diff --git a/.circleci/config.yml b/.circleci/config.yml deleted file mode 100644 index a3cccbf9b7..0000000000 --- a/.circleci/config.yml +++ /dev/null @@ -1,272 +0,0 @@ -version: 2.1 - -commands: - - pip_install: - description: "Install dependencies via pip" - parameters: - args: - type: string - default: "" - steps: - - run: - name: "Install dependencies via pip" - command: ./scripts/install_via_pip.sh << parameters.args >> - - conda_install: - description: "Install dependencies via conda" - parameters: - args: - type: string - default: "" - steps: - - run: - name: "Install dependencies via conda" - command: ./scripts/install_via_conda.sh << parameters.args >> - - lint_flake8: - description: "Lint with flake8" - steps: - - run: - name: "Lint with flake8" - command: flake8 - - ufmt_check: - description: "Check formatting with ufmt" - steps: - - run: - name: "Check formatting with ufmt" - command: ufmt check . - - mypy_check: - description: "Static type checking with mypy" - steps: - - run: - name: "Mypy checks" - command: ./scripts/run_mypy.sh - - unit_tests: - description: "Run unit tests" - steps: - - run: - name: "Run unit tests" - command: python -m pytest -ra --cov=. --cov-report term-missing - - sphinx: - description: "Run sphinx" - steps: - - run: - name: "Run sphinx" - command: sphinx-build -T --keep-going sphinx/source sphinx/build - - configure_github_bot: - description: "Configure Docusaurus GitHub bot" - steps: - - run: - name: "Configure Docusaurus GitHub bot" - # Do not do this if we don't have the right org (pytorch), or if this is just a PR - command: | - if [[ $CIRCLE_PROJECT_USERNAME == "pytorch" && -z $CI_PULL_REQUEST && -z $CIRCLE_PR_USERNAME ]]; then - git config --global user.email "docusaurus-bot@users.noreply.github.com" - git config --global user.name "Captum website deployment script" - echo "machine github.com login docusaurus-bot password $DOCUSAURUS_GITHUB_TOKEN" > ~/.netrc - fi - - deploy_site: - description: "Deploy website to GitHub Pages" - steps: - - run: - name: "Deploy website to GitHub Pages" - # TODO: make the installation above conditional on there being relevant changes (no need to install if there are none) - command: | - if ! git diff --name-only HEAD^ | grep -E "(^captum\/.*)|(^\.circleci\/.*)|(^docs\/.*)|(^website\/.*)|(^scripts\/.*)|(^sphinx\/.*)|(^tutorials\/.*)"; then - echo "Skipping deploy. No relevant website files have changed" - elif [[ $CIRCLE_PROJECT_USERNAME == "pytorch" && -z $CI_PULL_REQUEST && -z $CIRCLE_PR_USERNAME ]]; then - mkdir -p website/static/.circleci && cp -a .circleci/. website/static/.circleci/. - ./scripts/build_docs.sh -b - cd website - GIT_USER=docusaurus-bot yarn run publish-gh-pages - else - echo "Skipping deploy." - fi - - simple_pip_install: - description: "Simple install of Captum via pip. Does not include extra dependencies such as yarn and nodejs needed for building insights." - steps: - - run: - name: "Simple PIP install" - command: | - python -m pip install --upgrade pip - python -m pip install -e .[dev] - - py_3_7_setup: - description: "Set python version to 3.7 and install pip and pytest" - steps: - - run: - name: "Switch to Python v3.7" - command: | - pyenv versions - pyenv install 3.7.0 - pyenv global 3.7.0 - - install_cuda: - description: "Install CUDA for GPU Machine" - steps: - - run: - name: "Install CUDA" - command: | - wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin - sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600 - wget https://developer.download.nvidia.com/compute/cuda/11.4.2/local_installers/cuda-repo-ubuntu2004-11-4-local_11.4.2-470.57.02-1_amd64.deb - sudo dpkg -i cuda-repo-ubuntu2004-11-4-local_11.4.2-470.57.02-1_amd64.deb - sudo apt-key add /var/cuda-repo-ubuntu2004-11-4-local/7fa2af80.pub - sudo apt-get update - sudo apt-get --yes --force-yes install cuda - -jobs: - - lint_py36: - docker: - - image: circleci/python:3.6.8 - steps: - - checkout - - pip_install - - lint_flake8 - - ufmt_check - - sphinx - - test_py36_pip: - docker: - - image: circleci/python:3.6.8 - steps: - - checkout - - pip_install: - args: "-n" - - mypy_check - - unit_tests - - test_py36_pip_release: - docker: - - image: circleci/python:3.6.8 - steps: - - checkout - - pip_install - - mypy_check - - unit_tests - - test_py36_pip_torch_1_6: - docker: - - image: circleci/python:3.6.8 - steps: - - checkout - - pip_install: - args: "-v 1.6" - - unit_tests - - test_py36_pip_torch_1_7: - docker: - - image: circleci/python:3.6.8 - steps: - - checkout - - pip_install: - args: "-v 1.7" - - unit_tests - - test_py36_pip_torch_1_8: - docker: - - image: circleci/python:3.6.8 - steps: - - checkout - - pip_install: - args: "-v 1.8" - - unit_tests - - test_py36_pip_torch_1_9: - docker: - - image: circleci/python:3.6.8 - steps: - - checkout - - pip_install: - args: "-v 1.9" - - unit_tests - - - test_py37_conda: - docker: - - image: continuumio/miniconda3 - steps: - - checkout - - conda_install: - args: "-n" - - unit_tests - - - test_cuda_multi_gpu: - machine: - image: ubuntu-2004:202201-02 - resource_class: gpu.nvidia.medium.multi - steps: - - checkout - - install_cuda - - py_3_7_setup - - simple_pip_install - - unit_tests - - auto_deploy_site: - docker: - - image: circleci/python:3.6.8-node - steps: - - checkout - - pip_install: - args: "-n -d" - - configure_github_bot - - deploy_site - - -aliases: - - - &exclude_ghpages_fbconfig - branches: - ignore: - - gh-pages - - fb-config - - -workflows: - - lint_test_and_deploy_site: - jobs: - - lint_py36: - filters: *exclude_ghpages_fbconfig - - test_py36_pip: - filters: *exclude_ghpages_fbconfig - - test_py36_pip_release: - filters: *exclude_ghpages_fbconfig - - test_py37_conda: - filters: *exclude_ghpages_fbconfig - - test_py36_pip_torch_1_6: - filters: *exclude_ghpages_fbconfig - - test_py36_pip_torch_1_7: - filters: *exclude_ghpages_fbconfig - - test_py36_pip_torch_1_8: - filters: *exclude_ghpages_fbconfig - - test_py36_pip_torch_1_9: - filters: *exclude_ghpages_fbconfig - - test_cuda_multi_gpu: - filters: *exclude_ghpages_fbconfig - - - auto_deploy_site: - requires: - - lint_py36 - - test_py36_pip - - test_py36_pip_release - - test_py37_conda - - test_py36_pip_torch_1_6 - - test_py36_pip_torch_1_7 - - test_py36_pip_torch_1_8 - - test_py36_pip_torch_1_9 - - test_cuda_multi_gpu - filters: - branches: - only: - - master diff --git a/.conda/meta.yaml b/.conda/meta.yaml index c05884ec6a..c82b04eab6 100644 --- a/.conda/meta.yaml +++ b/.conda/meta.yaml @@ -13,11 +13,14 @@ build: requirements: host: - - python>=3.6 + - python>=3.9 + - setuptools run: - - numpy - - pytorch>=1.6 + - numpy<2.0 + - pytorch>=1.10 - matplotlib-base + - tqdm + - packaging test: imports: @@ -25,8 +28,14 @@ test: about: home: https://captum.ai - license: BSD + license: BSD-3 license_file: LICENSE summary: Model interpretability for PyTorch + description: | + Captum is a model interpretability and understanding library for PyTorch. + Captum means comprehension in Latin and contains general purpose implementations + of integrated gradients, saliency maps, smoothgrad, vargrad and others for + PyTorch models. It has quick integration for models built with domain-specific + libraries such as torchvision, torchtext, and others. doc_url: https://captum.ai dev_url: https://github.com/pytorch/captum diff --git a/.github/workflows/lint.yml b/.github/workflows/lint.yml new file mode 100644 index 0000000000..ab4d71bc6c --- /dev/null +++ b/.github/workflows/lint.yml @@ -0,0 +1,23 @@ +name: Captum Lint + +on: + pull_request: + push: + branches: + - master + + workflow_dispatch: + +jobs: + tests: + uses: pytorch/test-infra/.github/workflows/linux_job.yml@main + with: + runner: linux.12xlarge + docker-image: cimg/python:3.11 + repository: pytorch/captum + script: | + sudo chmod -R 777 . + ./scripts/install_via_pip.sh + ufmt check . + flake8 + sphinx-build -WT --keep-going sphinx/source sphinx/build diff --git a/.github/workflows/retry.yml b/.github/workflows/retry.yml new file mode 100644 index 0000000000..b64b5b1f99 --- /dev/null +++ b/.github/workflows/retry.yml @@ -0,0 +1,26 @@ +name: Rerun tests if failed +on: + workflow_run: + workflows: ["Unit-tests for Conda install", "Unit-tests for Pip install with mypy type checks", "Unit-tests for Pip install"] + types: ["completed"] + +permissions: + actions: write + +jobs: + rerun-tests: + runs-on: ubuntu-latest + steps: + - name: Log workflow metadata + run: | + echo "ID: ${{ github.event.workflow_run.id }}" + echo "attempt: ${{ github.event.workflow_run.run_attempt }}" + echo "event: ${{ github.event.workflow_run.conclusion }}" + echo "event: ${{ github.event.workflow_run.event }}" + - name: Rerun Failed Workflows + if: github.event.workflow_run.conclusion == 'failure' && github.event.workflow_run.run_attempt <= 3 + env: + GH_TOKEN: ${{ github.token }} + RUN_ID: ${{ github.event.workflow_run.id }} + run: | + gh run rerun ${RUN_ID} --repo="${{ github.repository }}" --failed diff --git a/.github/workflows/test-conda-cpu.yml b/.github/workflows/test-conda-cpu.yml new file mode 100644 index 0000000000..e0da5e42e3 --- /dev/null +++ b/.github/workflows/test-conda-cpu.yml @@ -0,0 +1,34 @@ +name: Unit-tests for Conda install + +on: + pull_request: + push: + branches: + - master + + workflow_dispatch: + +env: + CHANNEL: "nightly" + +jobs: + tests: + strategy: + matrix: + python_version: ["3.9", "3.10", "3.11", "3.12"] + fail-fast: false + uses: pytorch/test-infra/.github/workflows/linux_job.yml@main + with: + runner: linux.12xlarge + repository: pytorch/captum + script: | + # Set up Environment Variables + export PYTHON_VERSION="${{ matrix.python_version }}" + + # Create Conda Env + conda create -yp ci_env python="${PYTHON_VERSION}" + conda activate /pytorch/captum/ci_env + ./scripts/install_via_conda.sh + + # Run Tests + python3 -m pytest -ra --cov=. --cov-report term-missing diff --git a/.github/workflows/test-pip-cpu-with-mypy.yml b/.github/workflows/test-pip-cpu-with-mypy.yml new file mode 100644 index 0000000000..7e166261e4 --- /dev/null +++ b/.github/workflows/test-pip-cpu-with-mypy.yml @@ -0,0 +1,27 @@ +name: Unit-tests for Pip install with mypy type checks + +on: + pull_request: + push: + branches: + - master + + workflow_dispatch: + +jobs: + tests: + strategy: + matrix: + pytorch_args: ["", "-n"] + fail-fast: false + uses: pytorch/test-infra/.github/workflows/linux_job.yml@main + with: + runner: linux.12xlarge + docker-image: cimg/python:3.11 + repository: pytorch/captum + script: | + sudo chmod -R 777 . + ./scripts/install_via_pip.sh ${{ matrix.pytorch_args }} + ./scripts/run_mypy.sh + # Run Tests + python3 -m pytest -ra --cov=. --cov-report term-missing diff --git a/.github/workflows/test-pip-cpu.yml b/.github/workflows/test-pip-cpu.yml new file mode 100644 index 0000000000..83a513ac21 --- /dev/null +++ b/.github/workflows/test-pip-cpu.yml @@ -0,0 +1,49 @@ +name: Unit-tests for Pip install + +on: + pull_request: + push: + branches: + - master + + workflow_dispatch: + +jobs: + tests: + strategy: + matrix: + pytorch_args: ["-v 1.10", "-v 1.11", "-v 1.12", "-v 1.13", "-v 2.0.0", "-v 2.1.0", "-v 2.2.0", "-v 2.3.0"] + transformers_args: ["-t 4.38.0", "-t 4.39.0", "-t 4.41.0", "-t 4.43.0", "-t 4.45.2"] + docker_img: ["cimg/python:3.9", "cimg/python:3.10", "cimg/python:3.11", "cimg/python:3.12"] + exclude: + - pytorch_args: "-v 1.10" + docker_img: "cimg/python:3.10" + - pytorch_args: "-v 1.10" + docker_img: "cimg/python:3.11" + - pytorch_args: "-v 1.11" + docker_img: "cimg/python:3.11" + - pytorch_args: "-v 1.12" + docker_img: "cimg/python:3.11" + - pytorch_args: "-v 1.10" + docker_img: "cimg/python:3.12" + - pytorch_args: "-v 1.11" + docker_img: "cimg/python:3.12" + - pytorch_args: "-v 1.12" + docker_img: "cimg/python:3.12" + - pytorch_args: "-v 1.13" + docker_img: "cimg/python:3.12" + - pytorch_args: "-v 2.0.0" + docker_img: "cimg/python:3.12" + - pytorch_args: "-v 2.1.0" + docker_img: "cimg/python:3.12" + fail-fast: false + uses: pytorch/test-infra/.github/workflows/linux_job.yml@main + with: + runner: linux.12xlarge + docker-image: ${{ matrix.docker_img }} + repository: pytorch/captum + script: | + sudo chmod -R 777 . + ./scripts/install_via_pip.sh ${{ matrix.pytorch_args }} ${{ matrix.transformers_args }} + # Run Tests + python3 -m pytest -ra --cov=. --cov-report term-missing diff --git a/.github/workflows/test-pip-gpu.yml b/.github/workflows/test-pip-gpu.yml new file mode 100644 index 0000000000..117f515f48 --- /dev/null +++ b/.github/workflows/test-pip-gpu.yml @@ -0,0 +1,32 @@ +name: Unit-tests for Pip install + +on: + pull_request: + push: + branches: + - master + + workflow_dispatch: + +jobs: + tests: + strategy: + matrix: + cuda_arch_version: ["12.1"] + fail-fast: false + uses: pytorch/test-infra/.github/workflows/linux_job.yml@main + with: + runner: linux.4xlarge.nvidia.gpu + repository: pytorch/captum + gpu-arch-type: cuda + gpu-arch-version: ${{ matrix.cuda_arch_version }} + script: | + python3 -m pip install --upgrade pip --progress-bar off + python3 -m pip install -e .[dev] --progress-bar off + + # Build package + python3 -m pip install build --progress-bar off + python3 -m build + + # Run Tests + python3 -m pytest -ra --cov=. --cov-report term-missing diff --git a/.github/workflows/test-website-depoy.yml b/.github/workflows/test-website-depoy.yml new file mode 100644 index 0000000000..8cd194fd42 --- /dev/null +++ b/.github/workflows/test-website-depoy.yml @@ -0,0 +1,22 @@ +name: Test deployment + +on: + pull_request: + # Review gh actions docs if you want to further define triggers, paths, etc + # https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#on + +jobs: + test-deploy: + name: Test deployment + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v3 + + - name: Setup / build docs + run: | + sudo chmod -R 777 . + python3 -m pip install --upgrade pip --progress-bar off + python3 -m pip install -e .[dev] --progress-bar off + python3 -m pip install beautifulsoup4 ipython jinja2==3.0.0 nbconvert==5.6.1 ipython_genutils --progress-bar off + ./scripts/build_docs.sh -b + cd website diff --git a/.github/workflows/website-depoy.yml b/.github/workflows/website-depoy.yml new file mode 100644 index 0000000000..8c28e1abe4 --- /dev/null +++ b/.github/workflows/website-depoy.yml @@ -0,0 +1,38 @@ +name: Deploy to GitHub Pages + +on: + push: + branches: + - master + # Review gh actions docs if you want to further define triggers, paths, etc + # https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#on + +permissions: + contents: write + pages: write + +jobs: + deploy: + name: Deploy to GitHub Pages + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v3 + + - name: Setup / build docs + run: | + sudo chmod -R 777 . + python3 -m pip install --upgrade pip --progress-bar off + python3 -m pip install -e .[dev] --progress-bar off + python3 -m pip install beautifulsoup4 ipython jinja2==3.0.0 nbconvert==5.6.1 ipython_genutils --progress-bar off + ./scripts/build_docs.sh -b + cd website + + + # Popular action to deploy to GitHub Pages: + # Docs: https://github.com/peaceiris/actions-gh-pages#%EF%B8%8F-docusaurus + - name: Deploy to GitHub Pages + uses: peaceiris/actions-gh-pages@v3 + with: + github_token: ${{ secrets.GITHUB_TOKEN }} + # Build output to publish to the `gh-pages` branch: + publish_dir: ./website/build/captum/ diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 960acfe041..3cdca2e4f4 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -45,7 +45,7 @@ flake8 . from the repository root. We feel strongly that having a consistent code style is extremely important, so -CircleCI will fail on your PR if it does not adhere to the ufmt or flake8 formatting style. +Github Actions will fail on your PR if it does not adhere to the ufmt or flake8 formatting style. #### Type Hints @@ -63,7 +63,7 @@ Then run this script from the repository root: ``` Note that we expect mypy to have version 0.760 or higher, and when type checking, use PyTorch 1.4 or higher due to fixes to PyTorch type hints available in 1.4. We also use the Literal feature which is -available only in Python 3.8 or above. If type-checking using a previous version of Python, you will +available only in Python 3.9 or above. If type-checking using a previous version of Python, you will need to install the typing-extension package which can be done with pip using `pip install typing-extensions`. #### Unit Tests diff --git a/README.md b/README.md index 801fa4d23a..3a43c01799 100644 --- a/README.md +++ b/README.md @@ -6,7 +6,6 @@ [![GitHub - License](https://img.shields.io/github/license/pytorch/captum?logo=github&style=flat&color=green)][#github-license] [![Conda](https://img.shields.io/conda/vn/pytorch/captum?logo=anaconda&style=flat&color=orange)](https://anaconda.org/pytorch/captum) [![PyPI](https://img.shields.io/pypi/v/captum.svg)][#pypi-package] -[![CircleCI](https://circleci.com/gh/pytorch/captum.svg?style=shield)](https://circleci.com/gh/pytorch/captum) [![Conda - Platform](https://img.shields.io/conda/pn/conda-forge/captum?logo=anaconda&style=flat)][#conda-forge-package] [![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/captum?logo=anaconda&style=flat&color=orange)][#conda-forge-package] [![Conda Recipe](https://img.shields.io/static/v1?logo=conda-forge&style=flat&color=green&label=recipe&message=captum)][#conda-forge-feedstock] @@ -26,14 +25,12 @@ of integrated gradients, saliency maps, smoothgrad, vargrad and others for PyTorch models. It has quick integration for models built with domain-specific libraries such as torchvision, torchtext, and others. -*Captum is currently in beta and under active development!* - #### About Captum -With the increase in model complexity and the resulting lack of transparency, model interpretability methods have become increasingly important. Model understanding is both an active area of research as well as an area of focus for practical applications across industries using machine learning. Captum provides state-of-the-art algorithms, including Integrated Gradients, to provide researchers and developers with an easy way to understand which features are contributing to a model’s output. +With the increase in model complexity and the resulting lack of transparency, model interpretability methods have become increasingly important. Model understanding is both an active area of research as well as an area of focus for practical applications across industries using machine learning. Captum provides state-of-the-art algorithms such as Integrated Gradients, Testing with Concept Activation Vectors (TCAV), TracIn influence functions, just to name a few, that provide researchers and developers with an easy way to understand which features, training examples or concepts contribute to a models' predictions and in general what and how the model learns. In addition to that, Captum also provides adversarial attacks and minimal input perturbation capabilities that can be used both for generating counterfactual explanations and adversarial perturbations. -For model developers, Captum can be used to improve and troubleshoot models by facilitating the identification of different features that contribute to a model’s output in order to design better models and troubleshoot unexpected model outputs. + Captum helps ML researchers more easily implement interpretability algorithms that can interact with PyTorch models. Captum also allows researchers to quickly benchmark their work against other existing algorithms available in the library. @@ -41,15 +38,15 @@ Captum helps ML researchers more easily implement interpretability algorithms th #### Target Audience -The primary audiences for Captum are model developers who are looking to improve their models and understand which features are important and interpretability researchers focused on identifying algorithms that can better interpret many types of models. +The primary audiences for Captum are model developers who are looking to improve their models and understand which concepts, features or training examples are important and interpretability researchers focused on identifying algorithms that can better interpret many types of models. Captum can also be used by application engineers who are using trained models in production. Captum provides easier troubleshooting through improved model interpretability, and the potential for delivering better explanations to end users on why they’re seeing a specific piece of content, such as a movie recommendation. ## Installation **Installation Requirements** -- Python >= 3.6 -- PyTorch >= 1.2 +- Python >= 3.9 +- PyTorch >= 1.10 ##### Installing the latest release @@ -93,6 +90,7 @@ pip install -e . To customize the installation, you can also run the following variants of the above: * `pip install -e .[insights]`: Also installs all packages necessary for running Captum Insights. +**NOTE**: Captum Insights is being deprecated. See further details [below](#captum-insights). * `pip install -e .[dev]`: Also installs all tools necessary for development (testing, linting, docs building; see [Contributing](#contributing) below). * `pip install -e .[tutorials]`: Also installs all packages necessary for running the tutorial notebooks. @@ -159,8 +157,7 @@ model.eval() Next, we need to define simple input and baseline tensors. Baselines belong to the input space and often carry no predictive signal. Zero tensor can serve as a baseline for many tasks. -Some interpretability algorithms such as `Integrated -Gradients`, `Deeplift` and `GradientShap` are designed to attribute the change +Some interpretability algorithms such as `IntegratedGradients`, `Deeplift` and `GradientShap` are designed to attribute the change between the input and baseline to a predictive class or a value that the neural network outputs. @@ -390,13 +387,17 @@ Captum on different types of models can be found in our tutorials. ## Captum Insights +**NOTE**: *Support for Captum Insights is being deprecated in an upcoming release. +While the code will still be available, there will no longer be active +development or support for it.* + Captum provides a web interface called Insights for easy visualization and access to a number of our interpretability algorithms. To analyze a sample model on CIFAR10 via Captum Insights run ``` -python -m captum.insights.example +python -m captum.insights.attr_vis.example ``` and navigate to the URL specified in the output. @@ -463,7 +464,11 @@ You can watch the recorded talk [here](https://www.youtube.com/watch?v=ayhBHZYje **ICLR 2021 workshop on Responsible AI**: - [Paper](https://arxiv.org/abs/2009.07896) on the Captum Library -- [Paper](https://arxiv.org/abs/2106.07475) on Invesitgating Sanity Checks for Saliency Maps +- [Paper](https://arxiv.org/abs/2106.07475) on Investigating Sanity Checks for Saliency Maps + + +Summer school on medical imaging at University of Lyon. A class on model explainability (link to the video) +https://www.youtube.com/watch?v=vn-jLzY67V0 ## References of Algorithms @@ -472,23 +477,27 @@ You can watch the recorded talk [here](https://www.youtube.com/watch?v=ayhBHZYje * `SmoothGrad`: [SmoothGrad: removing noise by adding noise, Daniel Smilkov et al. 2017](https://arxiv.org/abs/1706.03825) * `NoiseTunnel`: [Sanity Checks for Saliency Maps, Julius Adebayo et al. 2018](https://arxiv.org/abs/1810.03292) * `NeuronConductance`: [How Important is a neuron?, Kedar Dhamdhere et al. 2018](https://arxiv.org/abs/1805.12233) -* `LayerConductance`: [Computationally Efficient Measures of Internal Neuron Importance, Avanti Shrikumar et al. 2018](https://arxiv.org/pdf/1807.09946.pdf) -* `DeepLift`, `NeuronDeepLift`, `LayerDeepLift`: [Learning Important Features Through Propagating Activation Differences, Avanti Shrikumar et al. 2017](https://arxiv.org/pdf/1704.02685.pdf) and [Towards better understanding of gradient-based attribution methods for deep neural networks, Marco Ancona et al. 2018](https://openreview.net/pdf?id=Sy21R9JAW) -* `NeuronIntegratedGradients`: [Computationally Efficient Measures of Internal Neuron Importance, Avanti Shrikumar et al. 2018](https://arxiv.org/pdf/1807.09946.pdf) +* `LayerConductance`: [Computationally Efficient Measures of Internal Neuron Importance, Avanti Shrikumar et al. 2018](https://arxiv.org/abs/1807.09946) +* `DeepLift`, `NeuronDeepLift`, `LayerDeepLift`: [Learning Important Features Through Propagating Activation Differences, Avanti Shrikumar et al. 2017](https://arxiv.org/abs/1704.02685) and [Towards better understanding of gradient-based attribution methods for deep neural networks, Marco Ancona et al. 2018](https://openreview.net/pdf?id=Sy21R9JAW) +* `NeuronIntegratedGradients`: [Computationally Efficient Measures of Internal Neuron Importance, Avanti Shrikumar et al. 2018](https://arxiv.org/abs/1807.09946) * `GradientShap`, `NeuronGradientShap`, `LayerGradientShap`, `DeepLiftShap`, `NeuronDeepLiftShap`, `LayerDeepLiftShap`: [A Unified Approach to Interpreting Model Predictions, Scott M. Lundberg et al. 2017](http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions) -* `InternalInfluence`: [Influence-Directed Explanations for Deep Convolutional Networks, Klas Leino et al. 2018](https://arxiv.org/pdf/1802.03788.pdf) +* `InternalInfluence`: [Influence-Directed Explanations for Deep Convolutional Networks, Klas Leino et al. 2018](https://arxiv.org/abs/1802.03788) * `Saliency`, `NeuronGradient`: [Deep Inside Convolutional Networks: Visualising -Image Classification Models and Saliency Maps, K. Simonyan, et. al. 2014](https://arxiv.org/pdf/1312.6034.pdf) -* `GradCAM`, `Guided GradCAM`: [Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, Ramprasaath R. Selvaraju et al. 2017](https://arxiv.org/abs/1610.02391.pdf) -* `Deconvolution`, `Neuron Deconvolution`: [Visualizing and Understanding Convolutional Networks, Matthew D Zeiler et al. 2014](https://arxiv.org/pdf/1311.2901.pdf) -* `Guided Backpropagation`, `Neuron Guided Backpropagation`: [Striving for Simplicity: The All Convolutional Net, Jost Tobias Springenberg et al. 2015](https://arxiv.org/pdf/1412.6806.pdf) +Image Classification Models and Saliency Maps, K. Simonyan, et. al. 2014](https://arxiv.org/abs/1312.6034) +* `GradCAM`, `Guided GradCAM`: [Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, Ramprasaath R. Selvaraju et al. 2017](https://arxiv.org/abs/1610.02391) +* `Deconvolution`, `Neuron Deconvolution`: [Visualizing and Understanding Convolutional Networks, Matthew D Zeiler et al. 2014](https://arxiv.org/abs/1311.2901) +* `Guided Backpropagation`, `Neuron Guided Backpropagation`: [Striving for Simplicity: The All Convolutional Net, Jost Tobias Springenberg et al. 2015](https://arxiv.org/abs/1412.6806) * `Feature Permutation`: [Permutation Feature Importance](https://christophm.github.io/interpretable-ml-book/feature-importance.html) * `Occlusion`: [Visualizing and Understanding Convolutional Networks](https://arxiv.org/abs/1311.2901) * `Shapley Value`: [A value for n-person games. Contributions to the Theory of Games 2.28 (1953): 307-317](https://apps.dtic.mil/dtic/tr/fulltext/u2/604084.pdf) * `Shapley Value Sampling`: [Polynomial calculation of the Shapley value based on sampling](https://www.sciencedirect.com/science/article/pii/S0305054808000804) * `Infidelity and Sensitivity`: [On the (In)fidelity and Sensitivity for Explanations](https://arxiv.org/abs/1901.09392) +* `TracInCP, TracInCPFast, TracInCPRandProj`: [Estimating Training Data Influence by Tracing Gradient Descent](https://arxiv.org/abs/2002.08484) +* `SimilarityInfluence`: [Pairwise similarities between train and test examples based on predefined similarity metrics] +* `BinaryConcreteStochasticGates`: [Stochastic Gates with Binary Concrete Distribution](https://arxiv.org/abs/1712.01312) +* `GaussianStochasticGates`: [Stochastic Gates with Gaussian Distribution](https://arxiv.org/abs/1810.04247) -More details about the above mentioned [algorithms](https://captum.ai/docs/algorithms) and their pros and cons can be found on our [web-site](https://captum.ai/docs/algorithms_comparison_matrix). +More details about the above mentioned [attribution algorithms](https://captum.ai/docs/attribution_algorithms) and their pros and cons can be found on our [web-site](https://captum.ai/docs/algorithms_comparison_matrix). ## License Captum is BSD licensed, as found in the [LICENSE](LICENSE) file. diff --git a/captum/__init__.py b/captum/__init__.py index 24b3fae727..9f524f8585 100644 --- a/captum/__init__.py +++ b/captum/__init__.py @@ -1,3 +1,14 @@ #!/usr/bin/env python3 -__version__ = "0.5.0" +# pyre-strict +import captum.attr as attr +import captum.concept as concept +import captum.influence as influence +import captum.log as log +import captum.metrics as metrics +import captum.robust as robust + + +__version__ = "0.8.0" + +__all__ = ["attr", "concept", "influence", "log", "metrics", "robust"] diff --git a/captum/_utils/av.py b/captum/_utils/av.py index f3b235dd8d..97329a8b10 100644 --- a/captum/_utils/av.py +++ b/captum/_utils/av.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + import glob import os import re @@ -47,7 +49,7 @@ def __init__( identifier: Optional[str] = None, layer: Optional[str] = None, num_id: Optional[str] = None, - ): + ) -> None: r""" Loads into memory the list of all activation file paths associated with the input `model_id`. @@ -66,12 +68,14 @@ def __init__( which the activation vectors are computed """ + # pyre-fixme[4]: Attribute must be annotated. self.av_filesearch = AV._construct_file_search( path, model_id, identifier, layer, num_id ) files = glob.glob(self.av_filesearch) + # pyre-fixme[4]: Attribute must be annotated. self.files = AV.sort_files(files) def __getitem__(self, idx: int) -> Union[Tensor, Tuple[Tensor, ...]]: @@ -80,7 +84,7 @@ def __getitem__(self, idx: int) -> Union[Tensor, Tuple[Tensor, ...]]: av = torch.load(fl) return av - def __len__(self): + def __len__(self) -> int: return len(self.files) AV_DIR_NAME: str = "av" @@ -211,9 +215,9 @@ def save( AV.generate_dataset_activations from batch index. It assumes identifier is same for all layers if a list of `layers` is provided. - layers (str or List of str): The layer(s) for which the activation vectors + layers (str or list[str]): The layer(s) for which the activation vectors are computed. - act_tensors (Tensor or List of Tensor): A batch of activation vectors. + act_tensors (tensor or list of tensor): A batch of activation vectors. This must match the dimension of `layers`. num_id (str): string representing the batch number for which the activation vectors are computed @@ -299,13 +303,15 @@ def _manage_loading_layers( for the `layer` are stored. model_id (str): The name/version of the model for which layer activations are being computed and stored. - layers (str or List of str): The layer(s) for which the activation vectors + layers (str or list[str]): The layer(s) for which the activation vectors are computed. + load_from_disk (bool, optional): Whether or not to load from disk. + Default: True identifier (str or None): An optional identifier for the layer activations. Can be used to distinguish between activations for different training batches. - num_id (str): An optional string representing the batch number for which the - activation vectors are computed + num_id (str, optional): An optional string representing the batch number + for which the activation vectors are computed. Returns: List of layer names for which activations should be generated @@ -324,7 +330,8 @@ def _manage_loading_layers( "Overwriting activations: load_from_disk is set to False. Removing all " f"activations matching specified parameters {{path: {path}, " f"model_id: {model_id}, layers: {layers}, identifier: {identifier}}} " - "before generating new activations." + "before generating new activations.", + stacklevel=1, ) for layer in layers: files = glob.glob( @@ -344,7 +351,7 @@ def _compute_and_save_activations( inputs: Union[Tensor, Tuple[Tensor, ...]], identifier: str, num_id: str, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, load_from_disk: bool = True, ) -> None: r""" @@ -357,9 +364,9 @@ def _compute_and_save_activations( define all of its layers as attributes of the model. model_id (str): The name/version of the model for which layer activations are being computed and stored. - layers (str or List of str): The layer(s) for which the activation vectors + layers (str or list[str]): The layer(s) for which the activation vectors are computed. - inputs (tensor or tuple of tensors): Batch of examples for + inputs (Tensor or tuple[Tensor, ...]): Batch of examples for which influential instances are computed. They are passed to the input `model`. The first dimension in `inputs` tensor or tuple of tensors corresponds to the batch size. @@ -368,7 +375,7 @@ def _compute_and_save_activations( different training batches. num_id (str): An required string representing the batch number for which the activation vectors are computed - additional_forward_args (optional): Additional arguments that will be + additional_forward_args (Any, optional): Additional arguments that will be passed to `model` after inputs. Default: None load_from_disk (bool): Forces function to regenerate activations if False. @@ -393,6 +400,8 @@ def _compute_and_save_activations( AV.save(path, model_id, identifier, unsaved_layers, new_activations, num_id) @staticmethod + # pyre-fixme[3]: Return annotation cannot be `Any`. + # pyre-fixme[2]: Parameter annotation cannot be `Any`. def _unpack_data(data: Union[Any, Tuple[Any, Any]]) -> Any: r""" Helper to extract input from labels when getting items from a Dataset. Assumes @@ -433,7 +442,7 @@ def generate_dataset_activations( define all of its layers as attributes of the model. model_id (str): The name/version of the model for which layer activations are being computed and stored. - layers (str or List of str): The layer(s) for which the activation vectors + layers (str or list[str]): The layer(s) for which the activation vectors are computed. dataloader (torch.utils.data.DataLoader): DataLoader that yields Dataset for which influential instances are computed. They are passed to @@ -488,6 +497,8 @@ def sort_files(files: List[str]) -> List[str]: lexigraphical sort. """ + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def split_alphanum(s): r""" Splits string into a list of strings and numbers diff --git a/captum/_utils/common.py b/captum/_utils/common.py index 6db0727024..9ebcdd6f2e 100644 --- a/captum/_utils/common.py +++ b/captum/_utils/common.py @@ -1,23 +1,60 @@ #!/usr/bin/env python3 + +# pyre-strict import typing from enum import Enum from functools import reduce from inspect import signature -from typing import Any, Callable, cast, Dict, List, overload, Tuple, Union +from typing import ( + Any, + Callable, + cast, + Dict, + List, + Literal, + Optional, + overload, + Sequence, + Tuple, + Union, +) import numpy as np import torch from captum._utils.typing import ( BaselineType, - Literal, TargetType, TensorOrTupleOfTensorsGeneric, TupleOrTensorOrBoolGeneric, ) + from torch import device, Tensor + +from torch.futures import Future from torch.nn import Module +def parse_version(v: str) -> Tuple[int, ...]: + """ + Parse version strings into tuples for comparison. + + Versions should be in the form of "..", ".", + or "". The "dev", "post" and other letter portions of the given version will + be ignored. + + Args: + + v (str): A version string. + + Returns: + version_tuple (tuple[int]): A tuple of integer values to use for version + comparison. + """ + version_list = [n for n in v.split(".") if n.isdigit()] + assert version_list != [] + return tuple(map(int, version_list)) + + class ExpansionTypes(Enum): repeat = 1 repeat_interleave = 2 @@ -45,13 +82,17 @@ def safe_div( @typing.overload -def _is_tuple(inputs: Tensor) -> Literal[False]: - ... +def _is_tuple(inputs: Tuple[Tensor, ...]) -> Literal[True]: ... @typing.overload -def _is_tuple(inputs: Tuple[Tensor, ...]) -> Literal[True]: - ... +def _is_tuple(inputs: Tensor) -> Literal[False]: ... + + +@typing.overload +def _is_tuple( + inputs: TensorOrTupleOfTensorsGeneric, # type: ignore +) -> bool: ... def _is_tuple(inputs: Union[Tensor, Tuple[Tensor, ...]]) -> bool: @@ -136,31 +177,82 @@ def _format_baseline( return baselines +def _is_mask_valid(mask: Tensor, inp: Tensor) -> bool: + """ + Checks whether the mask is valid for the given input. + """ + if mask.dim() > inp.dim(): + return False + + for mask_d, inp_d in zip(mask.shape[::-1], inp.shape[::-1]): + if mask_d != 1 and mask_d != inp_d: + return False + + return True + + +def _format_feature_mask( + feature_mask: Union[None, Tensor, Tuple[Tensor, ...]], + inputs: Tuple[Tensor, ...], + start_idx: int = 0, +) -> Tuple[Tensor, ...]: + """ + Format a feature mask into a tuple of tensors. + The `inputs` should be correctly formatted first + If `feature_mask` is None, assign each non-batch dimension with a consecutive + integer from `start_idx`. + If `feature_mask` is a tensor, wrap it in a tuple. + """ + if feature_mask is None: + formatted_mask = [] + current_num_features = start_idx + for inp in inputs: + # the following can handle empty tensor where numel is 0 + # empty tensor will be added to the feature mask + num_features = torch.numel(inp[0:1]) + + formatted_mask.append( + current_num_features + + torch.reshape( + torch.arange(num_features, device=inp.device), + inp[0:1].shape, + ) + ) + current_num_features += num_features + formatted_mask = tuple(formatted_mask) + + else: + formatted_mask = _format_tensor_into_tuples(feature_mask) + + return formatted_mask + + @overload -def _format_tensor_into_tuples(inputs: None) -> None: - ... +def _format_tensor_into_tuples(inputs: None) -> None: ... @overload def _format_tensor_into_tuples( - inputs: Union[Tensor, Tuple[Tensor, ...]] -) -> Tuple[Tensor, ...]: - ... + inputs: Union[Tensor, Tuple[Tensor, ...]], +) -> Tuple[Tensor, ...]: ... def _format_tensor_into_tuples( - inputs: Union[None, Tensor, Tuple[Tensor, ...]] + inputs: Union[None, Tensor, Tuple[Tensor, ...]], ) -> Union[None, Tuple[Tensor, ...]]: if inputs is None: return None if not isinstance(inputs, tuple): - assert isinstance( - inputs, torch.Tensor - ), "`inputs` must have type " "torch.Tensor but {} found: ".format(type(inputs)) + assert isinstance(inputs, torch.Tensor), ( + "`inputs` must be a torch.Tensor or a tuple[torch.Tensor] " + f"but found: {type(inputs)}" + ) inputs = (inputs,) return inputs +# pyre-fixme[3]: Return annotation cannot be `Any`. +# pyre-fixme[2]: Parameter annotation cannot be `Any`. def _format_inputs(inputs: Any, unpack_inputs: bool = True) -> Any: return ( inputs @@ -170,7 +262,7 @@ def _format_inputs(inputs: Any, unpack_inputs: bool = True) -> Any: def _format_float_or_tensor_into_tuples( - inputs: Union[float, Tensor, Tuple[Union[float, Tensor], ...]] + inputs: Union[float, Tensor, Tuple[Union[float, Tensor], ...]], ) -> Tuple[Union[float, Tensor], ...]: if not isinstance(inputs, tuple): assert isinstance( @@ -182,24 +274,25 @@ def _format_float_or_tensor_into_tuples( return inputs -@overload -def _format_additional_forward_args(additional_forward_args: None) -> None: - ... - - @overload def _format_additional_forward_args( - additional_forward_args: Union[Tensor, Tuple] -) -> Tuple: - ... + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. + additional_forward_args: Union[Tensor, Tuple], + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. +) -> Tuple: ... @overload -def _format_additional_forward_args(additional_forward_args: Any) -> Union[None, Tuple]: - ... +def _format_additional_forward_args( # type: ignore + additional_forward_args: Optional[object], + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. +) -> Union[None, Tuple]: ... -def _format_additional_forward_args(additional_forward_args: Any) -> Union[None, Tuple]: +def _format_additional_forward_args( + additional_forward_args: Optional[object], + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. +) -> Union[None, Tuple]: if additional_forward_args is not None and not isinstance( additional_forward_args, tuple ): @@ -208,9 +301,11 @@ def _format_additional_forward_args(additional_forward_args: Any) -> Union[None, def _expand_additional_forward_args( - additional_forward_args: Any, + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. + additional_forward_args: Union[None, Tuple], n_steps: int, expansion_type: ExpansionTypes = ExpansionTypes.repeat, + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. ) -> Union[None, Tuple]: def _expand_tensor_forward_arg( additional_forward_arg: Tensor, @@ -233,9 +328,11 @@ def _expand_tensor_forward_arg( return None return tuple( - _expand_tensor_forward_arg(additional_forward_arg, n_steps, expansion_type) - if isinstance(additional_forward_arg, torch.Tensor) - else additional_forward_arg + ( + _expand_tensor_forward_arg(additional_forward_arg, n_steps, expansion_type) + if isinstance(additional_forward_arg, torch.Tensor) + else additional_forward_arg + ) for additional_forward_arg in additional_forward_args ) @@ -275,24 +372,32 @@ def _expand_target( def _expand_feature_mask( feature_mask: Union[Tensor, Tuple[Tensor, ...]], n_samples: int -): +) -> Tuple[Tensor, ...]: + # pyre-fixme[6]: For 1st argument expected `Tensor` but got `Union[Tensor, + # typing.Tuple[Tensor, ...]]`. is_feature_mask_tuple = _is_tuple(feature_mask) feature_mask = _format_tensor_into_tuples(feature_mask) feature_mask_new = tuple( - feature_mask_elem.repeat_interleave(n_samples, dim=0) - if feature_mask_elem.size(0) > 1 - else feature_mask_elem + ( + feature_mask_elem.repeat_interleave(n_samples, dim=0) + if feature_mask_elem.size(0) > 1 + else feature_mask_elem + ) for feature_mask_elem in feature_mask ) - return _format_output(is_feature_mask_tuple, feature_mask_new) + return _format_output(is_feature_mask_tuple, feature_mask_new) # type: ignore def _expand_and_update_baselines( inputs: Tuple[Tensor, ...], n_samples: int, + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime subscripting errors. kwargs: dict, draw_baseline_from_distrib: bool = False, -): +) -> None: + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def get_random_baseline_indices(bsz, baseline): num_ref_samples = baseline.shape[0] return np.random.choice(num_ref_samples, n_samples * bsz).tolist() @@ -310,25 +415,31 @@ def get_random_baseline_indices(bsz, baseline): if draw_baseline_from_distrib: bsz = inputs[0].shape[0] baselines = tuple( - baseline[get_random_baseline_indices(bsz, baseline)] - if isinstance(baseline, torch.Tensor) - else baseline + ( + baseline[get_random_baseline_indices(bsz, baseline)] + if isinstance(baseline, torch.Tensor) + else baseline + ) for baseline in baselines ) else: baselines = tuple( - baseline.repeat_interleave(n_samples, dim=0) - if isinstance(baseline, torch.Tensor) - and baseline.shape[0] == input.shape[0] - and baseline.shape[0] > 1 - else baseline + ( + baseline.repeat_interleave(n_samples, dim=0) + if isinstance(baseline, torch.Tensor) + and baseline.shape[0] == input.shape[0] + and baseline.shape[0] > 1 + else baseline + ) for input, baseline in zip(inputs, baselines) ) # update kwargs with expanded baseline kwargs["baselines"] = baselines -def _expand_and_update_additional_forward_args(n_samples: int, kwargs: dict): +# pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use +# `typing.Dict[, ]` to avoid runtime subscripting errors. +def _expand_and_update_additional_forward_args(n_samples: int, kwargs: dict) -> None: if "additional_forward_args" not in kwargs: return additional_forward_args = kwargs["additional_forward_args"] @@ -344,7 +455,9 @@ def _expand_and_update_additional_forward_args(n_samples: int, kwargs: dict): kwargs["additional_forward_args"] = additional_forward_args -def _expand_and_update_target(n_samples: int, kwargs: dict): +# pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use +# `typing.Dict[, ]` to avoid runtime subscripting errors. +def _expand_and_update_target(n_samples: int, kwargs: dict) -> None: if "target" not in kwargs: return target = kwargs["target"] @@ -355,7 +468,9 @@ def _expand_and_update_target(n_samples: int, kwargs: dict): kwargs["target"] = target -def _expand_and_update_feature_mask(n_samples: int, kwargs: dict): +# pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use +# `typing.Dict[, ]` to avoid runtime subscripting errors. +def _expand_and_update_feature_mask(n_samples: int, kwargs: dict) -> None: if "feature_mask" not in kwargs: return @@ -369,23 +484,22 @@ def _expand_and_update_feature_mask(n_samples: int, kwargs: dict): @typing.overload def _format_output( - is_inputs_tuple: Literal[True], output: Tuple[Tensor, ...] -) -> Tuple[Tensor, ...]: - ... + is_inputs_tuple: Literal[True], + output: Tuple[Tensor, ...], +) -> Tuple[Tensor, ...]: ... @typing.overload def _format_output( - is_inputs_tuple: Literal[False], output: Tuple[Tensor, ...] -) -> Tensor: - ... + is_inputs_tuple: Literal[False], + output: Tuple[Tensor, ...], +) -> Tensor: ... @typing.overload def _format_output( is_inputs_tuple: bool, output: Tuple[Tensor, ...] -) -> Union[Tensor, Tuple[Tensor, ...]]: - ... +) -> Union[Tensor, Tuple[Tensor, ...]]: ... def _format_output( @@ -401,28 +515,29 @@ def _format_output( "The input is a single tensor however the output isn't." "The number of output tensors is: {}".format(len(output)) ) + # pyre-fixme[7]: Expected `Union[Tensor, typing.Tuple[Tensor, ...]]` but got + # `Union[tuple[Tensor], Tensor]`. return output if is_inputs_tuple else output[0] @typing.overload def _format_outputs( - is_multiple_inputs: Literal[False], outputs: List[Tuple[Tensor, ...]] -) -> Union[Tensor, Tuple[Tensor, ...]]: - ... + is_multiple_inputs: Literal[False], + outputs: List[Tuple[Tensor, ...]], +) -> Union[Tensor, Tuple[Tensor, ...]]: ... @typing.overload def _format_outputs( - is_multiple_inputs: Literal[True], outputs: List[Tuple[Tensor, ...]] -) -> List[Union[Tensor, Tuple[Tensor, ...]]]: - ... + is_multiple_inputs: Literal[True], + outputs: List[Tuple[Tensor, ...]], +) -> List[Union[Tensor, Tuple[Tensor, ...]]]: ... @typing.overload def _format_outputs( is_multiple_inputs: bool, outputs: List[Tuple[Tensor, ...]] -) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]: - ... +) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]: ... def _format_outputs( @@ -441,12 +556,26 @@ def _format_outputs( ) +# pyre-fixme[24] Callable requires 2 arguments +def _construct_future_forward(original_forward: Callable) -> Callable: + # pyre-fixme[3] return type not specified + def future_forward(*args: Any, **kwargs: Any): + # pyre-fixme[29]: `typing.Type[torch.futures.Future]` is not a function. + fut: torch.futures.Future[Tensor] = torch.futures.Future() + fut.set_result(original_forward(*args, **kwargs)) + return fut + + return future_forward + + def _run_forward( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_func: Callable, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. inputs: Any, target: TargetType = None, - additional_forward_args: Any = None, -) -> Tensor: + additional_forward_args: Optional[object] = None, +) -> Union[Tensor, Future[Tensor]]: forward_func_args = signature(forward_func).parameters if len(forward_func_args) == 0: output = forward_func() @@ -458,14 +587,57 @@ def _run_forward( additional_forward_args = _format_additional_forward_args(additional_forward_args) output = forward_func( - *(*inputs, *additional_forward_args) - if additional_forward_args is not None - else inputs + *( + # pyre-fixme[60]: Concatenation not yet support for multiple variadic + # tuples: `*inputs, *additional_forward_args`. + (*inputs, *additional_forward_args) + if additional_forward_args is not None + else inputs + ) ) + if isinstance(output, torch.futures.Future): + return output.then(lambda x: _select_targets(x.value(), target)) return _select_targets(output, target) def _select_targets(output: Tensor, target: TargetType) -> Tensor: + """ + IMPORTANT: + please avoid patching this function. The existing behavior is very + unpredictable. We should be more opinionated about the type and format of + the target so that we can stop supporting some unpredictable cases. + Or better, we should encourage users to wrapping their forward function to + return the attr targets themselves, instead of passing target. + + This legacy function behaves based on + - the type of target + - if the target has the length of the output + + If the target is int or scalar tensor, the target is seen as the + index of the last dimensions of every example in the output. E.g., if the + output is of shape (Batch, ..., X, Y), the selected output will be (Batch, ..., X) + + If the target is tuple[int], the target is seens as the last indices of every + example in the output. E.g., if the + output is of shape (Batch, ..., X, Y, Z) and the target is tuple(y, z), + the selected output will be (Batch, ..., X) + + If the target is a non-scalar tensor, it must be a 1D tensor of the output length + and the output must be a 2D tensor. The target is then seen as the indices of the + 2nd dim of the output. E.g., if the output is of shape (Batch, X) and the target is + in shape (X,), the selected output will be (Batch,) + + If the target is a list[int], it must has the same length as the output. The output + must be a 2D tensor and each int element of the target is seen as the 2nd dim of it. + E.g., if the output is of shape (Batch, X) and the target is [x1, x2, ...], + the selected output will be (Batch,) + + If the target is a list[tuple], it must has the same length as the output. Each + tuple element of the target is seen as the leading dim behind the batch dim + of the output. E.g., if the output is of shape (Batch, X, Y, Z, ...) and + the target is [(x1, y1), (x2, y2), ...], the selected output + will be in shape (Batch, Z, ...) + """ if target is None: return output @@ -479,7 +651,7 @@ def _select_targets(output: Tensor, target: TargetType) -> Tensor: return _verify_select_column(output, cast(int, target.item())) elif len(target.shape) == 1 and torch.numel(target) == num_examples: assert dims == 2, "Output must be 2D to select tensor of targets." - return torch.gather(output, 1, target.reshape(len(output), 1)) + return torch.gather(output, 1, target.reshape(len(output), 1)).squeeze(-1) else: raise AssertionError( "Tensor target dimension %r is not valid. %r" @@ -491,20 +663,25 @@ def _select_targets(output: Tensor, target: TargetType) -> Tensor: assert dims == 2, "Output must be 2D to select tensor of targets." return torch.gather( output, 1, torch.tensor(target, device=device).reshape(len(output), 1) - ) + ).squeeze(-1) elif isinstance(target[0], tuple): return torch.stack( [ + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type + # parameter. output[(i,) + cast(Tuple, targ_elem)] for i, targ_elem in enumerate(target) ] ) else: - raise AssertionError("Target element type in list is not valid.") + raise AssertionError( + f"Target element type {type(target[0])} in list is not valid." + ) else: - raise AssertionError("Target type %r is not valid." % target) + raise AssertionError(f"Target type {type(target)} is not valid.") +# pyre-fixme[24]: Generic type `slice` expects 3 type parameters. def _contains_slice(target: Union[int, Tuple[Union[int, slice], ...]]) -> bool: if isinstance(target, tuple): for index in target: @@ -515,7 +692,9 @@ def _contains_slice(target: Union[int, Tuple[Union[int, slice], ...]]) -> bool: def _verify_select_column( - output: Tensor, target: Union[int, Tuple[Union[int, slice], ...]] + output: Tensor, + # pyre-fixme[24]: Generic type `slice` expects 3 type parameters. + target: Union[int, Tuple[Union[int, slice], ...]], ) -> Tensor: target = (target,) if isinstance(target, int) else target assert ( @@ -526,9 +705,11 @@ def _verify_select_column( def _verify_select_neuron( layer_output: Tuple[Tensor, ...], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. selector: Union[int, Tuple[Union[int, slice], ...], Callable], ) -> Tensor: if callable(selector): + # pyre-fixme[7]: Expected `Tensor` but got `object`. return selector(layer_output if len(layer_output) > 1 else layer_output[0]) assert len(layer_output) == 1, ( @@ -574,7 +755,10 @@ def _extract_device( def _reduce_list( - val_list: List[TupleOrTensorOrBoolGeneric], + val_list: Sequence[TupleOrTensorOrBoolGeneric], + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + # pyre-fixme[24]: Generic type `list` expects 1 type parameter, use + # `typing.List[]` to avoid runtime subscripting errors. red_func: Callable[[List], Any] = torch.cat, ) -> TupleOrTensorOrBoolGeneric: """ @@ -589,14 +773,20 @@ def _reduce_list( """ assert len(val_list) > 0, "Cannot reduce empty list!" if isinstance(val_list[0], torch.Tensor): - first_device = val_list[0].device - return red_func([elem.to(first_device) for elem in val_list]) + first_device = cast(Tensor, val_list[0]).device + return red_func( + [elem.to(first_device) for elem in cast(List[Tensor], val_list)] + ) elif isinstance(val_list[0], bool): + # pyre-fixme[7]: Expected `TupleOrTensorOrBoolGeneric` but got `bool`. return any(val_list) elif isinstance(val_list[0], tuple): final_out = [] + # pyre-fixme[6]: For 1st argument expected `pyre_extensions.ReadOnly[Sized]` + # but got `TupleOrTensorOrBoolGeneric`. for i in range(len(val_list[0])): final_out.append( + # pyre-fixme[16]: `bool` has no attribute `__getitem__`. _reduce_list([val_elem[i] for val_elem in val_list], red_func) ) else: @@ -604,6 +794,7 @@ def _reduce_list( "Elements to be reduced can only be" "either Tensors or tuples containing Tensors." ) + # pyre-fixme[7]: Expected `TupleOrTensorOrBoolGeneric` but got `Tuple[Any, ...]`. return tuple(final_out) @@ -643,6 +834,7 @@ def _flatten_tensor_or_tuple(inp: TensorOrTupleOfTensorsGeneric) -> Tensor: return torch.cat([single_inp.flatten() for single_inp in inp]) +# pyre-fixme[3]: Return annotation cannot be `Any`. def _get_module_from_name(model: Module, layer_name: str) -> Any: r""" Returns the module (layer) object, given its (string) name @@ -659,21 +851,69 @@ def _get_module_from_name(model: Module, layer_name: str) -> Any: def _register_backward_hook( - module: Module, hook: Callable, attr_obj: Any -) -> torch.utils.hooks.RemovableHandle: - # Special case for supporting output attributions for neuron methods - # This can be removed after deprecation of neuron output attributions - # for NeuronDeepLift, NeuronDeconvolution, and NeuronGuidedBackprop - # in v0.6.0 - if ( - hasattr(attr_obj, "skip_new_hook_layer") - and attr_obj.skip_new_hook_layer == module - ): - return module.register_backward_hook(hook) + module: Module, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + hook: Callable, + attr_obj: Union[object, None], +) -> List[torch.utils.hooks.RemovableHandle]: + grad_out: Dict[device, Tensor] = {} + + def forward_hook( + module: Module, + inp: Union[Tensor, Tuple[Tensor, ...]], + out: Union[Tensor, Tuple[Tensor, ...]], + ) -> None: + nonlocal grad_out + + def output_tensor_hook(output_grad: Tensor) -> None: + nonlocal grad_out + grad_out[output_grad.device] = output_grad + + if isinstance(out, tuple): + assert ( + len(out) == 1 + ), "Backward hooks not supported for module with >1 output" + out[0].register_hook(output_tensor_hook) + else: + out.register_hook(output_tensor_hook) - if torch.__version__ >= "1.9": - # Only supported for torch >= 1.9 - return module.register_full_backward_hook(hook) - else: - # Fallback for previous versions of PyTorch - return module.register_backward_hook(hook) + def pre_hook(module: Module, inp: Union[Tensor, Tuple[Tensor, ...]]) -> Tensor: + def input_tensor_hook( + input_grad: Tensor, + ) -> Union[None, Tensor, Tuple[Tensor, ...]]: + nonlocal grad_out + + if len(grad_out) == 0: + return None + hook_out = hook(module, input_grad, grad_out[input_grad.device]) + + if hook_out is not None: + return hook_out[0] if isinstance(hook_out, tuple) else hook_out + return None + + if isinstance(inp, tuple): + assert ( + len(inp) == 1 + ), "Backward hooks not supported for module with >1 input" + inp[0].register_hook(input_tensor_hook) + return inp[0].clone() + else: + inp.register_hook(input_tensor_hook) + return inp.clone() + + return [ + module.register_forward_pre_hook(pre_hook), + module.register_forward_hook(forward_hook), + ] + + +def _get_max_feature_index(feature_mask: Tuple[Tensor, ...]) -> int: + """ + Returns the max feature mask index + The feature mask should be formatted to tuple of tensors at first. + + Note: This util is commonly used to identify the number of features (max_index + 1), + as we expect user to be resposible to ensure consecutive feature mask indices from 0 + """ + + return int(max(torch.max(mask).item() for mask in feature_mask if mask.numel())) diff --git a/captum/_utils/exceptions.py b/captum/_utils/exceptions.py new file mode 100644 index 0000000000..f548ba2075 --- /dev/null +++ b/captum/_utils/exceptions.py @@ -0,0 +1,19 @@ +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. + +# pyre-strict + + +class FeatureAblationFutureError(Exception): + """This custom error is raised when an error + occurs within the callback chain of a + FeatureAblation attribution call""" + + pass + + +class ShapleyValueFutureError(Exception): + """This custom error is raised when an error + occurs within the callback chain of a + ShapleyValue attribution call""" + + pass diff --git a/captum/_utils/gradient.py b/captum/_utils/gradient.py index a15157d8d7..1e2b827ab4 100644 --- a/captum/_utils/gradient.py +++ b/captum/_utils/gradient.py @@ -1,9 +1,22 @@ #!/usr/bin/env python3 + +# pyre-strict import threading import typing import warnings from collections import defaultdict -from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union +from typing import ( + Any, + Callable, + cast, + Dict, + List, + Literal, + Optional, + Sequence, + Tuple, + Union, +) import torch from captum._utils.common import ( @@ -14,8 +27,8 @@ ) from captum._utils.sample_gradient import SampleGradientWrapper from captum._utils.typing import ( - Literal, ModuleOrModuleList, + SliceIntType, TargetType, TensorOrTupleOfTensorsGeneric, ) @@ -50,13 +63,15 @@ def apply_gradient_requirements( """Input Tensor %d has a dtype of %s. Gradients cannot be activated for these data types.""" - % (index, str(inputs_dtype)) + % (index, str(inputs_dtype)), + stacklevel=2, ) elif not input.requires_grad: if warn: warnings.warn( "Input Tensor %d did not already require gradients, " - "required_grads has been set automatically." % index + "required_grads has been set automatically." % index, + stacklevel=2, ) input.requires_grad_() return grad_required @@ -86,10 +101,11 @@ def undo_gradient_requirements( def compute_gradients( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, inputs: Union[Tensor, Tuple[Tensor, ...]], target_ind: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, ) -> Tuple[Tensor, ...]: r""" Computes gradients of the output with respect to inputs for an @@ -110,6 +126,10 @@ def compute_gradients( with torch.autograd.set_grad_enabled(True): # runs forward pass outputs = _run_forward(forward_fn, inputs, target_ind, additional_forward_args) + # _run_forward may return future of Tensor, + # but we don't support it here now + # And it will fail before here. + outputs = cast(Tensor, outputs) assert outputs[0].numel() == 1, ( "Target not provided when necessary, cannot" " take gradient with respect to multiple outputs." @@ -124,6 +144,7 @@ def _neuron_gradients( inputs: Union[Tensor, Tuple[Tensor, ...]], saved_layer: Dict[device, Tuple[Tensor, ...]], key_list: List[device], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. gradient_neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], ) -> Tuple[Tensor, ...]: with torch.autograd.set_grad_enabled(True): @@ -134,9 +155,11 @@ def _neuron_gradients( ) gradient_tensors.append( torch.autograd.grad( - torch.unbind(current_out_tensor) - if current_out_tensor.numel() > 1 - else current_out_tensor, + ( + torch.unbind(current_out_tensor) + if current_out_tensor.numel() > 1 + else current_out_tensor + ), inputs, ) ) @@ -145,36 +168,41 @@ def _neuron_gradients( @typing.overload +# pyre-fixme[43]: The implementation of `_forward_layer_eval` does not accept all +# possible arguments of overload defined on line `170`. def _forward_layer_eval( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, inputs: Union[Tensor, Tuple[Tensor, ...]], - layer: Module, - additional_forward_args: Any = None, + layer: List[Module], + additional_forward_args: Optional[object] = None, device_ids: Union[None, List[int]] = None, attribute_to_layer_input: bool = False, grad_enabled: bool = False, -) -> Tuple[Tensor, ...]: - ... +) -> List[Tuple[Tensor, ...]]: ... @typing.overload +# pyre-fixme[43]: The implementation of `_forward_layer_eval` does not accept all +# possible arguments of overload defined on line `158`. def _forward_layer_eval( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, inputs: Union[Tensor, Tuple[Tensor, ...]], - layer: List[Module], - additional_forward_args: Any = None, + layer: Module, + additional_forward_args: Optional[object] = None, device_ids: Union[None, List[int]] = None, attribute_to_layer_input: bool = False, grad_enabled: bool = False, -) -> List[Tuple[Tensor, ...]]: - ... +) -> Tuple[Tensor, ...]: ... def _forward_layer_eval( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, inputs: Union[Tensor, Tuple[Tensor, ...]], layer: ModuleOrModuleList, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, device_ids: Union[None, List[int]] = None, attribute_to_layer_input: bool = False, grad_enabled: bool = False, @@ -182,6 +210,8 @@ def _forward_layer_eval( return _forward_layer_eval_with_neuron_grads( forward_fn, inputs, + # pyre-fixme[6]: For 3rd argument expected `Module` but got + # `ModuleOrModuleList`. layer, additional_forward_args=additional_forward_args, gradient_neuron_selector=None, @@ -192,40 +222,46 @@ def _forward_layer_eval( @typing.overload +# pyre-fixme[43]: The implementation of `_forward_layer_distributed_eval` does not +# accept all possible arguments of overload defined on line `203`. def _forward_layer_distributed_eval( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. inputs: Any, layer: ModuleOrModuleList, target_ind: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, attribute_to_layer_input: bool = False, forward_hook_with_return: Literal[False] = False, require_layer_grads: bool = False, -) -> Dict[Module, Dict[device, Tuple[Tensor, ...]]]: - ... +) -> Dict[Module, Dict[device, Tuple[Tensor, ...]]]: ... @typing.overload +# pyre-fixme[43]: The implementation of `_forward_layer_distributed_eval` does not +# accept all possible arguments of overload defined on line `216`. def _forward_layer_distributed_eval( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, inputs: Any, layer: ModuleOrModuleList, target_ind: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, attribute_to_layer_input: bool = False, *, forward_hook_with_return: Literal[True], require_layer_grads: bool = False, -) -> Tuple[Dict[Module, Dict[device, Tuple[Tensor, ...]]], Tensor]: - ... +) -> Tuple[Dict[Module, Dict[device, Tuple[Tensor, ...]]], Tensor]: ... def _forward_layer_distributed_eval( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, inputs: Any, layer: ModuleOrModuleList, target_ind: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, attribute_to_layer_input: bool = False, forward_hook_with_return: bool = False, require_layer_grads: bool = False, @@ -245,13 +281,22 @@ def _forward_layer_distributed_eval( """ saved_layer: Dict[Module, Dict[device, Tuple[Tensor, ...]]] = defaultdict(dict) lock = threading.Lock() + # pyre-fixme[9]: all_layers has type `List[Module]`; used as + # `Union[List[Variable[ModuleOrModuleList <: [Module, List[Module]]]], + # Variable[ModuleOrModuleList <: [Module, List[Module]]]]`. all_layers: List[Module] = [layer] if isinstance(layer, Module) else layer # Set a forward hook on specified module and run forward pass to # get layer output tensor(s). # For DataParallel models, each partition adds entry to dictionary # with key as device and value as corresponding Tensor. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def hook_wrapper(original_module): + # pyre-fixme[53]: Captured variable `lock` is not annotated. + # pyre-fixme[53]: Captured variable `original_module` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward_hook(module, inp, out=None): eval_tsrs = inp if attribute_to_layer_input else out is_eval_tuple = isinstance(eval_tsrs, tuple) @@ -297,6 +342,10 @@ def forward_hook(module, inp, out=None): target=target_ind, additional_forward_args=additional_forward_args, ) + # _run_forward may return future of Tensor, + # but we don't support it here now + # And it will fail before here. + output = cast(Tensor, output) finally: for hook in all_hooks: hook.remove() @@ -331,6 +380,7 @@ def _gather_distributed_tensors( def _extract_device_ids( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, saved_layer: Dict[Module, Dict[device, Tuple[Tensor, ...]]], device_ids: Union[None, List[int]], @@ -350,8 +400,10 @@ def _extract_device_ids( ): if ( hasattr(forward_fn, "device_ids") + # pyre-fixme[33]: Given annotation cannot be `Any`. and cast(Any, forward_fn).device_ids is not None ): + # pyre-fixme[33]: Given annotation cannot be `Any`. device_ids = cast(Any, forward_fn).device_ids else: raise AssertionError( @@ -365,53 +417,62 @@ def _extract_device_ids( @typing.overload +# pyre-fixme[43]: The implementation of `_forward_layer_eval_with_neuron_grads` does +# not accept all possible arguments of overload defined on line `378`. def _forward_layer_eval_with_neuron_grads( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, inputs: Union[Tensor, Tuple[Tensor, ...]], layer: Module, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, *, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. gradient_neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], grad_enabled: bool = False, device_ids: Union[None, List[int]] = None, attribute_to_layer_input: bool = False, -) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: - ... +) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: ... @typing.overload +# pyre-fixme[43]: The implementation of `_forward_layer_eval_with_neuron_grads` does +# not accept all possible arguments of overload defined on line `405`. def _forward_layer_eval_with_neuron_grads( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, inputs: Union[Tensor, Tuple[Tensor, ...]], - layer: Module, - additional_forward_args: Any = None, + layer: List[Module], + additional_forward_args: Optional[object] = None, gradient_neuron_selector: None = None, grad_enabled: bool = False, device_ids: Union[None, List[int]] = None, attribute_to_layer_input: bool = False, -) -> Tuple[Tensor, ...]: - ... +) -> List[Tuple[Tensor, ...]]: ... @typing.overload +# pyre-fixme[43]: The implementation of `_forward_layer_eval_with_neuron_grads` does +# not accept all possible arguments of overload defined on line `392`. def _forward_layer_eval_with_neuron_grads( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, inputs: Union[Tensor, Tuple[Tensor, ...]], - layer: List[Module], - additional_forward_args: Any = None, + layer: Module, + additional_forward_args: Optional[object] = None, gradient_neuron_selector: None = None, grad_enabled: bool = False, device_ids: Union[None, List[int]] = None, attribute_to_layer_input: bool = False, -) -> List[Tuple[Tensor, ...]]: - ... +) -> Tuple[Tensor, ...]: ... def _forward_layer_eval_with_neuron_grads( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, inputs: Union[Tensor, Tuple[Tensor, ...]], layer: ModuleOrModuleList, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. gradient_neuron_selector: Union[ None, int, Tuple[Union[int, slice], ...], Callable ] = None, @@ -476,63 +537,80 @@ def _forward_layer_eval_with_neuron_grads( @typing.overload +# pyre-fixme[43]: The implementation of `compute_layer_gradients_and_eval` does not +# accept all possible arguments of overload defined on line `486`. def compute_layer_gradients_and_eval( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, layer: Module, inputs: Union[Tensor, Tuple[Tensor, ...]], target_ind: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, *, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. gradient_neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], device_ids: Union[None, List[int]] = None, attribute_to_layer_input: bool = False, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. output_fn: Union[None, Callable] = None, -) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...], Tuple[Tensor, ...]]: - ... + grad_kwargs: Optional[Dict[str, Any]] = None, +) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...], Tuple[Tensor, ...]]: ... @typing.overload +# pyre-fixme[43]: The implementation of `compute_layer_gradients_and_eval` does not +# accept all possible arguments of overload defined on line `502`. def compute_layer_gradients_and_eval( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, layer: List[Module], inputs: Union[Tensor, Tuple[Tensor, ...]], target_ind: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, gradient_neuron_selector: None = None, device_ids: Union[None, List[int]] = None, attribute_to_layer_input: bool = False, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. output_fn: Union[None, Callable] = None, -) -> Tuple[List[Tuple[Tensor, ...]], List[Tuple[Tensor, ...]]]: - ... + grad_kwargs: Optional[Dict[str, Any]] = None, +) -> Tuple[List[Tuple[Tensor, ...]], List[Tuple[Tensor, ...]]]: ... @typing.overload +# pyre-fixme[43]: The implementation of `compute_layer_gradients_and_eval` does not +# accept all possible arguments of overload defined on line `517`. def compute_layer_gradients_and_eval( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, layer: Module, inputs: Union[Tensor, Tuple[Tensor, ...]], target_ind: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, gradient_neuron_selector: None = None, device_ids: Union[None, List[int]] = None, attribute_to_layer_input: bool = False, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. output_fn: Union[None, Callable] = None, -) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: - ... + grad_kwargs: Optional[Dict[str, Any]] = None, +) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: ... def compute_layer_gradients_and_eval( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, layer: ModuleOrModuleList, inputs: Union[Tensor, Tuple[Tensor, ...]], target_ind: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. gradient_neuron_selector: Union[ None, int, Tuple[Union[int, slice], ...], Callable ] = None, device_ids: Union[None, List[int]] = None, attribute_to_layer_input: bool = False, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. output_fn: Union[None, Callable] = None, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[ Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]], Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...], Tuple[Tensor, ...]], @@ -577,10 +655,11 @@ def compute_layer_gradients_and_eval( args: Additional input arguments that forward function requires. It takes an empty tuple (no additional arguments) if no additional arguments are required + grad_kwargs: Additional keyword arguments for torch.autograd.grad Returns: - 2-element tuple of **gradients**, **evals**: + tuple[**gradients**, **evals**]: - **gradients**: Gradients of output with respect to target layer output. - **evals**: @@ -604,6 +683,8 @@ def compute_layer_gradients_and_eval( " take gradient with respect to multiple outputs." ) + # pyre-fixme[6]: For 2nd argument expected `Dict[Module, Dict[device, + # typing.Tuple[Tensor, ...]]]` but got `Module`. device_ids = _extract_device_ids(forward_fn, saved_layer, device_ids) # Identifies correct device ordering based on device ids. @@ -616,9 +697,11 @@ def compute_layer_gradients_and_eval( if isinstance(layer, Module): all_outputs = _reduce_list( [ - saved_layer[layer][device_id] - if output_fn is None - else output_fn(saved_layer[layer][device_id]) + ( + saved_layer[layer][device_id] + if output_fn is None + else output_fn(saved_layer[layer][device_id]) + ) for device_id in key_list ] ) @@ -626,14 +709,19 @@ def compute_layer_gradients_and_eval( all_outputs = [ _reduce_list( [ - saved_layer[single_layer][device_id] - if output_fn is None - else output_fn(saved_layer[single_layer][device_id]) + ( + saved_layer[single_layer][device_id] + if output_fn is None + else output_fn(saved_layer[single_layer][device_id]) + ) for device_id in key_list ] ) for single_layer in layer ] + # pyre-fixme[9]: all_layers has type `List[Module]`; used as + # `Union[List[Variable[ModuleOrModuleList <: [Module, List[Module]]]], + # Variable[ModuleOrModuleList <: [Module, List[Module]]]]`. all_layers: List[Module] = [layer] if isinstance(layer, Module) else layer grad_inputs = tuple( layer_tensor @@ -641,7 +729,12 @@ def compute_layer_gradients_and_eval( for device_id in key_list for layer_tensor in saved_layer[single_layer][device_id] ) - saved_grads = torch.autograd.grad(torch.unbind(output), grad_inputs) + saved_grads = torch.autograd.grad( + # pyre-fixme[6]: For 1st argument expected `Tensor` but got `Module`. + outputs=torch.unbind(output), + inputs=grad_inputs, + **grad_kwargs or {}, + ) offset = 0 all_grads: List[Tuple[Tensor, ...]] = [] @@ -683,15 +776,21 @@ def compute_layer_gradients_and_eval( def construct_neuron_grad_fn( layer: Module, - neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], + neuron_selector: Union[ + int, + Tuple[Union[int, SliceIntType], ...], + Callable[[Union[Tensor, Tuple[Tensor, ...]]], Tensor], + ], device_ids: Union[None, List[int]] = None, attribute_to_neuron_input: bool = False, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. ) -> Callable: def grad_fn( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_fn: Callable, inputs: TensorOrTupleOfTensorsGeneric, target_ind: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, ) -> Tuple[Tensor, ...]: _, grads = _forward_layer_eval_with_neuron_grads( forward_fn, @@ -707,11 +806,30 @@ def grad_fn( return grad_fn +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[2]: Parameter must be annotated. +def _extract_parameters_from_layers(layer_modules): + layer_parameters = [] + if layer_modules is not None: + layer_parameters = [ + parameter + for layer_module in layer_modules + for parameter in layer_module.parameters() + ] + assert ( + len(layer_parameters) > 0 + ), "No parameters are available for modules for provided input `layers`" + return layer_parameters + + def _compute_jacobian_wrt_params( model: Module, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. inputs: Tuple[Any, ...], labels: Optional[Tensor] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. loss_fn: Optional[Union[Module, Callable]] = None, + layer_modules: Optional[List[Module]] = None, ) -> Tuple[Tensor, ...]: r""" Computes the Jacobian of a batch of test examples given a model, and optional @@ -720,17 +838,18 @@ def _compute_jacobian_wrt_params( Args: model (torch.nn.Module): The trainable model providing the forward pass - inputs (tuple of Any): The minibatch for which the forward pass is computed. + inputs (tuple[Any, ...]): The minibatch for which the forward pass is computed. It is unpacked before passing to `model`, so it must be a tuple. The individual elements of `inputs` can be anything. - labels (Tensor or None): Labels for input if computing a loss function. - loss_fn (torch.nn.Module or Callable or None): The loss function. If a library + labels (Tensor, optional): Labels for input if computing a loss function. + loss_fn (torch.nn.Module or Callable, optional): The loss function. If a library defined loss function is provided, it would be expected to be a torch.nn.Module. If a custom loss is provided, it can be either type, but must behave as a library loss function would if `reduction='none'`. - + layer_modules (List[torch.nn.Module], optional): A list of PyTorch modules + w.r.t. which jacobian gradients are computed. Returns: - grads (Tuple of Tensor): Returns the Jacobian for the minibatch as a + grads (tuple[Tensor, ...]): Returns the Jacobian for the minibatch as a tuple of gradients corresponding to the tuple of trainable parameters returned by `model.parameters()`. Each object grads[i] references to the gradients for the parameters in the i-th trainable layer of the model. @@ -757,27 +876,37 @@ def _compute_jacobian_wrt_params( assert out.shape[0] == loss.shape[0], msg1 out = loss + if layer_modules is not None: + layer_parameters = _extract_parameters_from_layers(layer_modules) grads_list = [ torch.autograd.grad( outputs=out[i], - inputs=model.parameters(), # type: ignore + inputs=cast( + Union[Tensor, Sequence[Tensor]], + # pyre-fixme[61]: `layer_parameters` is undefined, or not always + # defined. + model.parameters() if layer_modules is None else layer_parameters, + ), grad_outputs=torch.ones_like(out[i]), retain_graph=True, ) for i in range(out.shape[0]) ] - grads = tuple([torch.stack(x) for x in zip(*grads_list)]) return tuple(grads) +# pyre-fixme[3]: Return annotation cannot contain `Any`. def _compute_jacobian_wrt_params_with_sample_wise_trick( model: Module, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. inputs: Tuple[Any, ...], labels: Optional[Tensor] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. loss_fn: Optional[Union[Module, Callable]] = None, reduction_type: Optional[str] = "sum", + layer_modules: Optional[List[Module]] = None, ) -> Tuple[Any, ...]: r""" Computes the Jacobian of a batch of test examples given a model, and optional @@ -789,22 +918,25 @@ def _compute_jacobian_wrt_params_with_sample_wise_trick( Args: model (torch.nn.Module): The trainable model providing the forward pass - inputs (tuple of Any): The minibatch for which the forward pass is computed. + inputs (tuple[Any, ...]): The minibatch for which the forward pass is computed. It is unpacked before passing to `model`, so it must be a tuple. The individual elements of `inputs` can be anything. - labels (Tensor or None): Labels for input if computing a loss function. - loss_fn (torch.nn.Module or Callable or None): The loss function. If a library + labels (Tensor, optional): Labels for input if computing a loss function. + loss_fn (torch.nn.Module or Callable, optional): The loss function. If a library defined loss function is provided, it would be expected to be a torch.nn.Module. If a custom loss is provided, it can be either type, but must behave as a library loss function would if `reduction='sum'` or `reduction='mean'`. - reduction_type (str): The type of reduction applied. If a loss_fn is passed, - this should match `loss_fn.reduction`. Else if gradients are being - computed on direct model outputs (scores), then 'sum' should be used. + reduction_type (str, optional): The type of reduction applied. If a loss_fn is + passed, this should match `loss_fn.reduction`. Else if gradients are + being computed on direct model outputs (scores), then 'sum' should be + used. Defaults to 'sum'. + layer_modules (torch.nn.Module, optional): A list of PyTorch modules w.r.t. + which jacobian gradients are computed. Returns: - grads (Tuple of Tensor): Returns the Jacobian for the minibatch as a + grads (tuple[Tensor, ...]): Returns the Jacobian for the minibatch as a tuple of gradients corresponding to the tuple of trainable parameters returned by `model.parameters()`. Each object grads[i] references to the gradients for the parameters in the i-th trainable layer of the model. @@ -813,7 +945,9 @@ def _compute_jacobian_wrt_params_with_sample_wise_trick( parameters of the i-th layer, for the j-th member of the minibatch. """ with torch.autograd.set_grad_enabled(True): - sample_grad_wrapper = SampleGradientWrapper(model) + inputs = tuple(inp.clone() for inp in inputs) + apply_gradient_requirements(inputs) + sample_grad_wrapper = SampleGradientWrapper(model, layer_modules) try: sample_grad_wrapper.add_hooks() @@ -825,18 +959,21 @@ def _compute_jacobian_wrt_params_with_sample_wise_trick( if labels is not None and loss_fn is not None: loss = loss_fn(out, labels) # TODO: allow loss_fn to be Callable - if isinstance(loss_fn, Module) and hasattr(loss_fn, "reduction"): + if (isinstance(loss_fn, Module) or callable(loss_fn)) and hasattr( + loss_fn, "reduction" + ): + reduction = loss_fn.reduction # type: ignore msg0 = ( "Please ensure that loss_fn.reduction is set to `sum` or `mean`" ) - assert loss_fn.reduction != "none", msg0 + assert reduction != "none", msg0 msg1 = ( - f"loss_fn.reduction ({loss_fn.reduction}) does not match" + f"loss_fn.reduction ({reduction}) does not match" f"reduction type ({reduction_type}). Please ensure they are" " matching." ) - assert loss_fn.reduction == reduction_type, msg1 + assert reduction == reduction_type, msg1 msg2 = ( "Please ensure custom loss function is applying either a " "sum or mean reduction." @@ -851,12 +988,23 @@ def _compute_jacobian_wrt_params_with_sample_wise_trick( out = loss sample_grad_wrapper.compute_param_sample_gradients( - out, loss_mode=reduction_type + out, + # pyre-fixme[6]: In call `SampleGradientWrapper. + # compute_param_sample_gradients`, for argument `loss_mode`, + # expected `str` but got `Optional[str]`. + loss_mode=reduction_type, # type: ignore ) - + if layer_modules is not None: + layer_parameters = _extract_parameters_from_layers(layer_modules) grads = tuple( param.sample_grad # type: ignore - for param in model.parameters() + for param in ( + model.parameters() + if layer_modules is None + # pyre-fixme[61]: `layer_parameters` is undefined, or not always + # defined. + else layer_parameters + ) if hasattr(param, "sample_grad") ) finally: diff --git a/captum/_utils/models/__init__.py b/captum/_utils/models/__init__.py index 5ebcee2e47..3ce0193126 100644 --- a/captum/_utils/models/__init__.py +++ b/captum/_utils/models/__init__.py @@ -1,25 +1,6 @@ -from captum._utils.models.linear_model import ( - LinearModel, - SGDLasso, - SGDLinearModel, - SGDLinearRegression, - SGDRidge, - SkLearnLasso, - SkLearnLinearModel, - SkLearnLinearRegression, - SkLearnRidge, -) +# pyre-strict from captum._utils.models.model import Model __all__ = [ "Model", - "LinearModel", - "SGDLinearModel", - "SGDLasso", - "SGDRidge", - "SGDLinearRegression", - "SkLearnLinearModel", - "SkLearnLasso", - "SkLearnRidge", - "SkLearnLinearRegression", ] diff --git a/captum/_utils/models/linear_model/__init__.py b/captum/_utils/models/linear_model/__init__.py index d4f50d2146..64b77741ec 100644 --- a/captum/_utils/models/linear_model/__init__.py +++ b/captum/_utils/models/linear_model/__init__.py @@ -1,3 +1,4 @@ +# pyre-strict from captum._utils.models.linear_model.model import ( LinearModel, SGDLasso, diff --git a/captum/_utils/models/linear_model/model.py b/captum/_utils/models/linear_model/model.py index bfffdbf38a..08ec2442f9 100644 --- a/captum/_utils/models/linear_model/model.py +++ b/captum/_utils/models/linear_model/model.py @@ -1,3 +1,4 @@ +# pyre-strict from typing import Callable, cast, List, Optional import torch.nn as nn @@ -9,6 +10,8 @@ class LinearModel(nn.Module, Model): SUPPORTED_NORMS: List[Optional[str]] = [None, "batch_norm", "layer_norm"] + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, train_fn: Callable, **kwargs) -> None: r""" Constructs a linear model with a training function and additional @@ -20,7 +23,7 @@ def __init__(self, train_fn: Callable, **kwargs) -> None: Please note that this is an experimental feature. Args: - train_fn (callable) + train_fn (Callable) The function to train with. See `captum._utils.models.linear_model.train.sgd_train_linear_model` and @@ -35,6 +38,7 @@ def __init__(self, train_fn: Callable, **kwargs) -> None: self.norm: Optional[nn.Module] = None self.linear: Optional[nn.Linear] = None self.train_fn = train_fn + # pyre-fixme[4]: Attribute must be annotated. self.construct_kwargs = kwargs def _construct_model_params( @@ -47,7 +51,7 @@ def _construct_model_params( weight_values: Optional[Tensor] = None, bias_value: Optional[Tensor] = None, classes: Optional[Tensor] = None, - ): + ) -> None: r""" Lazily initializes a linear model. This will be called for you in a train method. @@ -65,14 +69,14 @@ def _construct_model_params( normalization parameters used. bias (bool): Whether to add a bias term. Not needed if normalized input. - weight_values (tensor, optional): + weight_values (Tensor, optional): The values to initialize the linear model with. This must be a 1D or 2D tensor, and of the form `(num_outputs, num_features)` or `(num_features,)`. Additionally, if this is provided you need not to provide `in_features` or `out_features`. - bias_value (tensor, optional): + bias_value (Tensor, optional): The bias value to initialize the model with. - classes (tensor, optional): + classes (Tensor, optional): The list of prediction classes supported by the model in case it performs classificaton. In case of regression it is set to None. Default: None @@ -114,8 +118,11 @@ def _construct_model_params( self.linear.bias.data = bias_value if classes is not None: + # pyre-fixme[16]: `Optional` has no attribute `classes`. self.linear.classes = classes + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def fit(self, train_data: DataLoader, **kwargs): r""" Calls `self.train_fn` @@ -131,6 +138,7 @@ def forward(self, x: Tensor) -> Tensor: assert self.linear is not None if self.norm is not None: x = self.norm(x) + # pyre-fixme[29]: `Optional[nn.modules.linear.Linear]` is not a function. return self.linear(x) def representation(self) -> Tensor: @@ -156,6 +164,7 @@ def classes(self) -> Optional[Tensor]: class SGDLinearModel(LinearModel): + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, **kwargs) -> None: r""" Factory class. Construct a a `LinearModel` with the @@ -174,6 +183,7 @@ def __init__(self, **kwargs) -> None: class SGDLasso(SGDLinearModel): + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, **kwargs) -> None: r""" Factory class to train a `LinearModel` with SGD @@ -186,6 +196,8 @@ def __init__(self, **kwargs) -> None: """ super().__init__(**kwargs) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def fit(self, train_data: DataLoader, **kwargs): # avoid cycles from captum._utils.models.linear_model.train import l2_loss @@ -194,6 +206,7 @@ def fit(self, train_data: DataLoader, **kwargs): class SGDRidge(SGDLinearModel): + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, **kwargs) -> None: r""" Factory class to train a `LinearModel` with SGD @@ -203,6 +216,8 @@ def __init__(self, **kwargs) -> None: """ super().__init__(**kwargs) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def fit(self, train_data: DataLoader, **kwargs): # avoid cycles from captum._utils.models.linear_model.train import l2_loss @@ -211,6 +226,7 @@ def fit(self, train_data: DataLoader, **kwargs): class SGDLinearRegression(SGDLinearModel): + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, **kwargs) -> None: r""" Factory class to train a `LinearModel` with SGD @@ -219,6 +235,8 @@ def __init__(self, **kwargs) -> None: """ super().__init__(**kwargs) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def fit(self, train_data: DataLoader, **kwargs): # avoid cycles from captum._utils.models.linear_model.train import l2_loss @@ -229,6 +247,7 @@ def fit(self, train_data: DataLoader, **kwargs): class SkLearnLinearModel(LinearModel): + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, sklearn_module: str, **kwargs) -> None: r""" Factory class to construct a `LinearModel` with sklearn training method. @@ -259,6 +278,8 @@ def __init__(self, sklearn_module: str, **kwargs) -> None: self.sklearn_module = sklearn_module + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def fit(self, train_data: DataLoader, **kwargs): r""" Args: @@ -273,6 +294,7 @@ def fit(self, train_data: DataLoader, **kwargs): class SkLearnLasso(SkLearnLinearModel): + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, **kwargs) -> None: r""" Factory class. Trains a `LinearModel` model with @@ -281,11 +303,14 @@ def __init__(self, **kwargs) -> None: """ super().__init__(sklearn_module="linear_model.Lasso", **kwargs) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def fit(self, train_data: DataLoader, **kwargs): return super().fit(train_data=train_data, **kwargs) class SkLearnRidge(SkLearnLinearModel): + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, **kwargs) -> None: r""" Factory class. Trains a model with `sklearn.linear_model.Ridge`. @@ -295,11 +320,14 @@ def __init__(self, **kwargs) -> None: """ super().__init__(sklearn_module="linear_model.Ridge", **kwargs) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def fit(self, train_data: DataLoader, **kwargs): return super().fit(train_data=train_data, **kwargs) class SkLearnLinearRegression(SkLearnLinearModel): + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, **kwargs) -> None: r""" Factory class. Trains a model with `sklearn.linear_model.LinearRegression`. @@ -309,11 +337,14 @@ def __init__(self, **kwargs) -> None: """ super().__init__(sklearn_module="linear_model.LinearRegression", **kwargs) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def fit(self, train_data: DataLoader, **kwargs): return super().fit(train_data=train_data, **kwargs) class SkLearnLogisticRegression(SkLearnLinearModel): + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, **kwargs) -> None: r""" Factory class. Trains a model with `sklearn.linear_model.LogisticRegression`. @@ -323,11 +354,14 @@ def __init__(self, **kwargs) -> None: """ super().__init__(sklearn_module="linear_model.LogisticRegression", **kwargs) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def fit(self, train_data: DataLoader, **kwargs): return super().fit(train_data=train_data, **kwargs) class SkLearnSGDClassifier(SkLearnLinearModel): + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, **kwargs) -> None: r""" Factory class. Trains a model with `sklearn.linear_model.SGDClassifier(`. @@ -337,5 +371,7 @@ def __init__(self, **kwargs) -> None: """ super().__init__(sklearn_module="linear_model.SGDClassifier", **kwargs) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def fit(self, train_data: DataLoader, **kwargs): return super().fit(train_data=train_data, **kwargs) diff --git a/captum/_utils/models/linear_model/train.py b/captum/_utils/models/linear_model/train.py index aaf8a2e4bf..37f1507c94 100644 --- a/captum/_utils/models/linear_model/train.py +++ b/captum/_utils/models/linear_model/train.py @@ -1,6 +1,9 @@ +# pyre-strict import time import warnings -from typing import Any, Callable, Dict, List, Optional +from functools import reduce +from types import ModuleType +from typing import Any, Callable, cast, Dict, List, Optional, Tuple import torch import torch.nn as nn @@ -8,13 +11,90 @@ from torch.utils.data import DataLoader -def l2_loss(x1, x2, weights=None): +# pyre-fixme[2]: Parameter must be annotated. +def l2_loss(x1, x2, weights=None) -> torch.Tensor: if weights is None: return torch.mean((x1 - x2) ** 2) / 2.0 else: return torch.sum((weights / weights.norm(p=1)) * ((x1 - x2) ** 2)) / 2.0 +class ConvergenceTracker: + def __init__(self, patience: int, threshold: float) -> None: + self.min_avg_loss: Optional[torch.Tensor] = None + self.convergence_counter: int = 0 + self.converged: bool = False + + self.threshold = threshold + self.patience = patience + + def update(self, average_loss: torch.Tensor) -> bool: + if self.min_avg_loss is not None: + # if we haven't improved by at least `threshold` + if average_loss > self.min_avg_loss or torch.isclose( + cast(torch.Tensor, self.min_avg_loss), average_loss, atol=self.threshold + ): + self.convergence_counter += 1 + if self.convergence_counter >= self.patience: + self.converged = True + return True + else: + self.convergence_counter = 0 + if self.min_avg_loss is None or self.min_avg_loss >= average_loss: + self.min_avg_loss = average_loss.clone() + return False + + +class LossWindow: + def __init__(self, window_size: int) -> None: + self.loss_window: List[torch.Tensor] = [] + self.window_size = window_size + + def append(self, loss: torch.Tensor) -> None: + if len(self.loss_window) >= self.window_size: + self.loss_window = self.loss_window[-self.window_size :] + self.loss_window.append(loss) + + def average(self) -> torch.Tensor: + return torch.mean(torch.stack(self.loss_window)) + + +def _init_linear_model(model: LinearModel, init_scheme: Optional[str] = None) -> None: + assert model.linear is not None + if init_scheme is not None: + assert init_scheme in ["xavier", "zeros"] + + with torch.no_grad(): + if init_scheme == "xavier": + # pyre-fixme[16]: `Optional` has no attribute `weight`. + torch.nn.init.xavier_uniform_(model.linear.weight) + else: + model.linear.weight.zero_() + + # pyre-fixme[16]: `Optional` has no attribute `bias`. + if model.linear.bias is not None: + model.linear.bias.zero_() + + +def _get_point( + datapoint: Tuple[torch.Tensor, ...], + device: Optional[str] = None, +) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: + if len(datapoint) == 2: + x, y = datapoint + w = None + else: + x, y, w = datapoint + + if device is not None: + x = x.to(device) + y = y.to(device) + if w is not None: + w = w.to(device) + + return x, y, w + + def sgd_train_linear_model( model: LinearModel, dataloader: DataLoader, @@ -23,6 +103,7 @@ def sgd_train_linear_model( reduce_lr: bool = True, initial_lr: float = 0.01, alpha: float = 1.0, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. loss_fn: Callable = l2_loss, reg_term: Optional[int] = 1, patience: int = 10, @@ -99,30 +180,16 @@ def sgd_train_linear_model( This will return the final training loss (averaged with `running_loss_window`) """ - - loss_window: List[torch.Tensor] = [] - min_avg_loss = None - convergence_counter = 0 - converged = False - - def get_point(datapoint): - if len(datapoint) == 2: - x, y = datapoint - w = None - else: - x, y, w = datapoint - - if device is not None: - x = x.to(device) - y = y.to(device) - if w is not None: - w = w.to(device) - - return x, y, w + converge_tracker = ConvergenceTracker(patience, threshold) # get a point and construct the model data_iter = iter(dataloader) - x, y, w = get_point(next(data_iter)) + x, y, w = _get_point(next(data_iter), device) + + if running_loss_window is None: + running_loss_window = x.shape[0] * len(dataloader) + + loss_window = LossWindow(running_loss_window) model._construct_model_params( in_features=x.shape[1], @@ -131,120 +198,125 @@ def get_point(datapoint): ) model.train() - assert model.linear is not None - - if init_scheme is not None: - assert init_scheme in ["xavier", "zeros"] - - with torch.no_grad(): - if init_scheme == "xavier": - torch.nn.init.xavier_uniform_(model.linear.weight) - else: - model.linear.weight.zero_() - - if model.linear.bias is not None: - model.linear.bias.zero_() - - optim = torch.optim.SGD(model.parameters(), lr=initial_lr) - if reduce_lr: - scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( - optim, factor=0.5, patience=patience, threshold=threshold - ) - - t1 = time.time() - epoch = 0 - i = 0 - while epoch < max_epoch: - while True: # for x, y, w in dataloader - if running_loss_window is None: - running_loss_window = x.shape[0] * len(dataloader) - - y = y.view(x.shape[0], -1) - if w is not None: - w = w.view(x.shape[0], -1) - - i += 1 - - out = model(x) - - loss = loss_fn(y, out, w) - if reg_term is not None: - reg = torch.norm(model.linear.weight, p=reg_term) - loss += reg.sum() * alpha - - if len(loss_window) >= running_loss_window: - loss_window = loss_window[1:] - loss_window.append(loss.clone().detach()) - assert len(loss_window) <= running_loss_window - - average_loss = torch.mean(torch.stack(loss_window)) - if min_avg_loss is not None: - # if we haven't improved by at least `threshold` - if average_loss > min_avg_loss or torch.isclose( - min_avg_loss, average_loss, atol=threshold - ): - convergence_counter += 1 - if convergence_counter >= patience: - converged = True - break - else: - convergence_counter = 0 - if min_avg_loss is None or min_avg_loss >= average_loss: - min_avg_loss = average_loss.clone() - - if debug: - print( - f"lr={optim.param_groups[0]['lr']}, Loss={loss}," - + "Aloss={average_loss}, min_avg_loss={min_avg_loss}" - ) - - loss.backward() - - optim.step() - model.zero_grad() - if scheduler: - scheduler.step(average_loss) - - temp = next(data_iter, None) - if temp is None: + # Initialize linear model weights if applicable + _init_linear_model(model, init_scheme) + + with torch.enable_grad(): + optim = torch.optim.SGD(model.parameters(), lr=initial_lr) + if reduce_lr: + scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( + optim, factor=0.5, patience=patience, threshold=threshold + ) + + t1 = time.time() + epoch = 0 + i = 0 + while epoch < max_epoch: + while True: # for x, y, w in dataloader + y = y.view(x.shape[0], -1) + if w is not None: + w = w.view(x.shape[0], -1) + + i += 1 + + out = model(x) + + loss = loss_fn(y, out, w) + if reg_term is not None: + # pyre-fixme[16]: `Optional` has no attribute `weight`. + reg = torch.norm(model.linear.weight, p=reg_term) # type: ignore + loss += reg.sum() * alpha + + loss_window.append(loss.clone().detach()) + average_loss = loss_window.average() + if converge_tracker.update(average_loss): + break # converged + + if debug: + print( + f"lr={optim.param_groups[0]['lr']}, Loss={loss}, " + f"Aloss={average_loss}, " + f"min_avg_loss={converge_tracker.min_avg_loss}" + ) + + loss.backward() + optim.step() + model.zero_grad() + # pyre-fixme[61]: `scheduler` is undefined, or not always defined. + if scheduler: + scheduler.step(average_loss) + + temp = next(data_iter, None) + if temp is None: + break + x, y, w = _get_point(temp, device) + + if converge_tracker.converged: break - x, y, w = get_point(temp) - if converged: - break - - epoch += 1 - data_iter = iter(dataloader) - x, y, w = get_point(next(data_iter)) + epoch += 1 + data_iter = iter(dataloader) + x, y, w = _get_point(next(data_iter), device) t2 = time.time() return { "train_time": t2 - t1, - "train_loss": torch.mean(torch.stack(loss_window)).item(), + "train_loss": loss_window.average().item(), "train_iter": i, "train_epoch": epoch, } class NormLayer(nn.Module): - def __init__(self, mean, std, n=None, eps=1e-8) -> None: + # pyre-fixme[2]: Parameter must be annotated. + def __init__(self, mean, std, n=None, eps: float = 1e-8) -> None: super().__init__() + # pyre-fixme[4]: Attribute must be annotated. self.mean = mean + # pyre-fixme[4]: Attribute must be annotated. self.std = std + # pyre-fixme[4]: Attribute must be annotated. self.eps = eps + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, x): return (x - self.mean) / (self.std + self.eps) +def _import_sklearn() -> ModuleType: + try: + import sklearn + import sklearn.linear_model + import sklearn.svm + except ImportError: + raise ValueError("sklearn is not available. Please install sklearn >= 0.23") + + if not sklearn.__version__ >= "0.23.0": + warnings.warn( + "Must have sklearn version 0.23.0 or higher to use " + "sample_weight in Lasso regression.", + stacklevel=1, + ) + return sklearn + + +def _import_numpy() -> ModuleType: + try: + import numpy + except ImportError: + raise ValueError("numpy is not available. Please install numpy.") + return numpy + + def sklearn_train_linear_model( model: LinearModel, dataloader: DataLoader, construct_kwargs: Dict[str, Any], sklearn_trainer: str = "Lasso", norm_input: bool = False, - **fit_kwargs, -): + **fit_kwargs: Any, +) -> Dict[str, float]: r""" Alternative method to train with sklearn. This does introduce some slight overhead as we convert the tensors to numpy and then convert the resulting @@ -272,25 +344,9 @@ def sklearn_train_linear_model( fit_kwargs Other arguments to send to `sklearn_trainer`'s `.fit` method """ - from functools import reduce - - try: - import numpy as np - except ImportError: - raise ValueError("numpy is not available. Please install numpy.") - - try: - import sklearn - import sklearn.linear_model - import sklearn.svm - except ImportError: - raise ValueError("sklearn is not available. Please install sklearn >= 0.23") - - if not sklearn.__version__ >= "0.23.0": - warnings.warn( - "Must have sklearn version 0.23.0 or higher to use " - "sample_weight in Lasso regression." - ) + # Lazy imports + np = _import_numpy() + sklearn = _import_sklearn() num_batches = 0 xs, ys, ws = [], [], [] @@ -321,8 +377,9 @@ def sklearn_train_linear_model( x /= std t1 = time.time() - sklearn_model = reduce( - lambda val, el: getattr(val, el), [sklearn] + sklearn_trainer.split(".") + # pyre-fixme[29]: `str` is not a function. + sklearn_model = reduce( # type: ignore + lambda val, el: getattr(val, el), [sklearn] + sklearn_trainer.split(".") # type: ignore # noqa: E501 )(**construct_kwargs) try: sklearn_model.fit(x, y, sample_weight=w, **fit_kwargs) @@ -331,7 +388,8 @@ def sklearn_train_linear_model( warnings.warn( "Sample weight is not supported for the provided linear model!" " Trained model without weighting inputs. For Lasso, please" - " upgrade sklearn to a version >= 0.23.0." + " upgrade sklearn to a version >= 0.23.0.", + stacklevel=1, ) t2 = time.time() @@ -344,7 +402,7 @@ def sklearn_train_linear_model( ) # extract model device - device = model.device if hasattr(model, "device") else "cpu" + device = getattr(model, "device", "cpu") num_outputs = sklearn_model.coef_.shape[0] if sklearn_model.coef_.ndim > 1 else 1 weight_values = torch.FloatTensor(sklearn_model.coef_).to(device) # type: ignore @@ -359,6 +417,8 @@ def sklearn_train_linear_model( ) if norm_input: + # pyre-fixme[61]: `mean` is undefined, or not always defined. + # pyre-fixme[61]: `std` is undefined, or not always defined. model.norm = NormLayer(mean, std) return {"train_time": t2 - t1} diff --git a/captum/_utils/models/model.py b/captum/_utils/models/model.py index 9e8a98db04..f6cb6600f0 100644 --- a/captum/_utils/models/model.py +++ b/captum/_utils/models/model.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + from abc import ABC, abstractmethod from typing import Dict, Optional, Union @@ -18,7 +20,10 @@ class Model(ABC): @abstractmethod def fit( - self, train_data: DataLoader, **kwargs + self, + train_data: DataLoader, + # pyre-fixme[2]: Parameter must be annotated. + **kwargs, ) -> Optional[Dict[str, Union[int, float, Tensor]]]: r""" Override this method to actually train your model. diff --git a/captum/_utils/progress.py b/captum/_utils/progress.py index 88cb07e83f..a789472f19 100644 --- a/captum/_utils/progress.py +++ b/captum/_utils/progress.py @@ -1,29 +1,51 @@ #!/usr/bin/env python3 +# pyre-strict + import sys +import typing import warnings from time import time -from typing import cast, Iterable, Sized, TextIO +from types import TracebackType +from typing import ( + Any, + Callable, + cast, + Iterable, + Iterator, + Literal, + Optional, + Sized, + TextIO, + Type, + TypeVar, + Union, +) try: - from tqdm import tqdm + from tqdm.auto import tqdm except ImportError: tqdm = None +T = TypeVar("T") +IterableType = TypeVar("IterableType") + class DisableErrorIOWrapper(object): - def __init__(self, wrapped: TextIO): + def __init__(self, wrapped: TextIO) -> None: """ The wrapper around a TextIO object to ignore write errors like tqdm https://github.com/tqdm/tqdm/blob/bcce20f771a16cb8e4ac5cc5b2307374a2c0e535/tqdm/utils.py#L131 """ self._wrapped = wrapped - def __getattr__(self, name): + def __getattr__(self, name: str) -> object: return getattr(self._wrapped, name) @staticmethod - def _wrapped_run(func, *args, **kwargs): + def _wrapped_run( + func: Callable[..., T], *args: object, **kwargs: object + ) -> Union[T, None]: try: return func(*args, **kwargs) except OSError as e: @@ -32,29 +54,75 @@ def _wrapped_run(func, *args, **kwargs): except ValueError as e: if "closed" not in str(e): raise + return None - def write(self, *args, **kwargs): + def write(self, *args: object, **kwargs: object) -> Optional[int]: return self._wrapped_run(self._wrapped.write, *args, **kwargs) - def flush(self, *args, **kwargs): + def flush(self, *args: object, **kwargs: object) -> None: return self._wrapped_run(self._wrapped.flush, *args, **kwargs) -class SimpleProgress: +class NullProgress(Iterable[IterableType]): + """Passthrough class that implements the progress API. + + This class implements the tqdm and SimpleProgressBar api but + does nothing. This class can be used as a stand-in for an + optional progressbar, most commonly in the case of nested + progress bars. + """ + + def __init__( + self, + iterable: Optional[Iterable[IterableType]] = None, + *args: Any, + **kwargs: Any, + ) -> None: + del args, kwargs + self.iterable = iterable + + def __enter__(self) -> "NullProgress[IterableType]": + return self + + def __exit__( + self, + exc_type: Union[Type[BaseException], None], + exc_value: Union[BaseException, None], + exc_traceback: Union[TracebackType, None], + ) -> Literal[False]: + return False + + def __iter__(self) -> Iterator[IterableType]: + if not self.iterable: + return + for it in cast(Iterable[IterableType], self.iterable): + yield it + + def update(self, amount: int = 1) -> None: + pass + + def close(self) -> None: + pass + + +class SimpleProgress(Iterable[IterableType]): def __init__( self, - iterable: Iterable = None, - desc: str = None, - total: int = None, - file: TextIO = None, + iterable: Optional[Iterable[IterableType]] = None, + desc: Optional[str] = None, + total: Optional[int] = None, + file: Optional[TextIO] = None, mininterval: float = 0.5, - ): + ) -> None: """ Simple progress output used when tqdm is unavailable. - Same as tqdm, output to stderr channel + Same as tqdm, output to stderr channel. + If you want to do nested Progressbars with simple progress + the parent progress bar should be used as a context + (i.e. with statement) and the nested progress bar should be + created inside this context. """ self.cur = 0 - self.iterable = iterable self.total = total if total is None and hasattr(iterable, "__len__"): @@ -62,35 +130,52 @@ def __init__( self.desc = desc - file = DisableErrorIOWrapper(file if file else sys.stderr) - cast(TextIO, file) - self.file = file + file_wrapper = DisableErrorIOWrapper(file if file else sys.stderr) + self.file: DisableErrorIOWrapper = file_wrapper self.mininterval = mininterval self.last_print_t = 0.0 self.closed = False + self._is_parent = False + + def __enter__(self) -> "SimpleProgress[IterableType]": + self._is_parent = True + self._refresh() + return self + + def __exit__( + self, + exc_type: Union[Type[BaseException], None], + exc_value: Union[BaseException, None], + exc_traceback: Union[TracebackType, None], + ) -> Literal[False]: + self.close() + return False - def __iter__(self): + def __iter__(self) -> Iterator[IterableType]: if self.closed or not self.iterable: return self._refresh() - for it in self.iterable: + for it in cast(Iterable[IterableType], self.iterable): yield it self.update() self.close() - def _refresh(self): + def _refresh(self) -> None: progress_str = self.desc + ": " if self.desc else "" if self.total: # e.g., progress: 60% 3/5 - progress_str += f"{100 * self.cur // self.total}% {self.cur}/{self.total}" + progress_str += ( + f"{100 * self.cur // cast(int, self.total)}%" + f" {self.cur}/{cast(int, self.total)}" + ) else: # e.g., progress: ..... progress_str += "." * self.cur + end = "\n" if self._is_parent else "" + print("\r" + progress_str, end=end, file=self.file) - print("\r" + progress_str, end="", file=self.file) - - def update(self, amount: int = 1): + def update(self, amount: int = 1) -> None: if self.closed: return self.cur += amount @@ -100,22 +185,46 @@ def update(self, amount: int = 1): self._refresh() self.last_print_t = cur_t - def close(self): - if not self.closed: + def close(self) -> None: + if not self.closed and not self._is_parent: self._refresh() print(file=self.file) # end with new line self.closed = True +@typing.overload +def progress( + iterable: None = None, + desc: Optional[str] = None, + total: Optional[int] = None, + use_tqdm: bool = True, + file: Optional[TextIO] = None, + mininterval: float = 0.5, + **kwargs: object, +) -> Union[SimpleProgress[None], tqdm]: ... + + +@typing.overload +def progress( + iterable: Iterable[IterableType], + desc: Optional[str] = None, + total: Optional[int] = None, + use_tqdm: bool = True, + file: Optional[TextIO] = None, + mininterval: float = 0.5, + **kwargs: object, +) -> Union[SimpleProgress[IterableType], tqdm]: ... + + def progress( - iterable: Iterable = None, - desc: str = None, - total: int = None, - use_tqdm=True, - file: TextIO = None, + iterable: Optional[Iterable[IterableType]] = None, + desc: Optional[str] = None, + total: Optional[int] = None, + use_tqdm: bool = True, + file: Optional[TextIO] = None, mininterval: float = 0.5, - **kwargs, -): + **kwargs: object, +) -> Union[SimpleProgress[IterableType], tqdm]: # Try to use tqdm is possible. Fall back to simple progress print if tqdm and use_tqdm: return tqdm( @@ -131,7 +240,8 @@ def progress( warnings.warn( "Tried to show progress with tqdm " "but tqdm is not installed. " - "Fall back to simply print out the progress." + "Fall back to simply print out the progress.", + stacklevel=1, ) return SimpleProgress( iterable, desc=desc, total=total, file=file, mininterval=mininterval diff --git a/captum/_utils/sample_gradient.py b/captum/_utils/sample_gradient.py index 694b2c0121..c5c15d867b 100644 --- a/captum/_utils/sample_gradient.py +++ b/captum/_utils/sample_gradient.py @@ -1,6 +1,7 @@ +# pyre-strict from collections import defaultdict from enum import Enum -from typing import cast, Iterable, Tuple, Union +from typing import cast, DefaultDict, Iterable, List, Optional, Tuple, Union import torch from captum._utils.common import _format_tensor_into_tuples, _register_backward_hook @@ -8,7 +9,7 @@ from torch.nn import Module -def _reset_sample_grads(module: Module): +def _reset_sample_grads(module: Module) -> None: module.weight.sample_grad = 0 # type: ignore if module.bias is not None: module.bias.sample_grad = 0 # type: ignore @@ -58,6 +59,7 @@ def conv2d_param_grads( if reset: _reset_sample_grads(module) + # pyre-fixme[22]: The cast is redundant. batch_size = cast(int, activation.shape[0]) unfolded_act = torch.nn.functional.unfold( activation, @@ -100,24 +102,29 @@ class SampleGradientWrapper: - https://github.com/pytorch/opacus/tree/main/opacus/grad_sample """ - def __init__(self, model): + # pyre-fixme[2]: Parameter must be annotated. + def __init__(self, model, layer_modules: Optional[List[Module]] = None) -> None: + # pyre-fixme[4]: Attribute must be annotated. self.model = model self.hooks_added = False - self.activation_dict = defaultdict(list) - self.gradient_dict = defaultdict(list) - self.forward_hooks = [] - self.backward_hooks = [] + self.activation_dict: DefaultDict[Module, List[Tensor]] = defaultdict(list) + self.gradient_dict: DefaultDict[Module, List[Tensor]] = defaultdict(list) + self.forward_hooks: List[torch.utils.hooks.RemovableHandle] = [] + self.backward_hooks: List[torch.utils.hooks.RemovableHandle] = [] + self.layer_modules: Optional[List[Module]] = layer_modules - def add_hooks(self): + def add_hooks(self) -> None: self.hooks_added = True self.model.apply(self._register_module_hooks) - def _register_module_hooks(self, module: torch.nn.Module): - if isinstance(module, tuple(SUPPORTED_MODULES.keys())): + def _register_module_hooks(self, module: torch.nn.Module) -> None: + if (self.layer_modules is None or module in self.layer_modules) and isinstance( + module, tuple(SUPPORTED_MODULES.keys()) + ): self.forward_hooks.append( module.register_forward_hook(self._forward_hook_fn) ) - self.backward_hooks.append( + self.backward_hooks.extend( _register_backward_hook(module, self._backward_hook_fn, None) ) @@ -126,7 +133,7 @@ def _forward_hook_fn( module: Module, module_input: Union[Tensor, Tuple[Tensor, ...]], module_output: Union[Tensor, Tuple[Tensor, ...]], - ): + ) -> None: inp_tuple = _format_tensor_into_tuples(module_input) self.activation_dict[module].append(inp_tuple[0].clone().detach()) @@ -135,11 +142,11 @@ def _backward_hook_fn( module: Module, grad_input: Union[Tensor, Tuple[Tensor, ...]], grad_output: Union[Tensor, Tuple[Tensor, ...]], - ): + ) -> None: grad_output_tuple = _format_tensor_into_tuples(grad_output) self.gradient_dict[module].append(grad_output_tuple[0].clone().detach()) - def remove_hooks(self): + def remove_hooks(self) -> None: self.hooks_added = False for hook in self.forward_hooks: @@ -151,11 +158,13 @@ def remove_hooks(self): self.forward_hooks = [] self.backward_hooks = [] - def _reset(self): + def _reset(self) -> None: self.activation_dict = defaultdict(list) self.gradient_dict = defaultdict(list) - def compute_param_sample_gradients(self, loss_blob, loss_mode="mean"): + def compute_param_sample_gradients( + self, loss_blob: Tensor, loss_mode: str = "mean" + ) -> None: assert ( loss_mode.upper() in LossMode.__members__ ), f"Provided loss mode {loss_mode} is not valid" @@ -165,6 +174,8 @@ def compute_param_sample_gradients(self, loss_blob, loss_mode="mean"): loss_blob.backward(gradient=torch.ones_like(loss_blob)) for module in self.gradient_dict: + # pyre-fixme[6]: For 1st argument expected `Type[Union[Conv2d, Linear]]` + # but got `Type[Module]`. sample_grad_fn = SUPPORTED_MODULES[type(module)] activations = self.activation_dict[module] gradients = self.gradient_dict[module] diff --git a/captum/_utils/transformers_typing.py b/captum/_utils/transformers_typing.py new file mode 100644 index 0000000000..2b7b4b43cf --- /dev/null +++ b/captum/_utils/transformers_typing.py @@ -0,0 +1,120 @@ +#!/usr/bin/env python3 + +# pyre-strict + +from typing import Any, Dict, Optional, Protocol, Tuple, Type + +import torch + +from packaging.version import Version +from torch import nn + + +class CacheLike(Protocol): + """Protocol for cache-like objects.""" + + +class DynamicCacheLike(CacheLike, Protocol): + """Protocol for dynamic cache-like objects.""" + + @classmethod + def from_legacy_cache( + cls: Type["DynamicCacheLike"], + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + ) -> "DynamicCacheLike": ... + + +transformers_installed: bool +Cache: Optional[Type[CacheLike]] +DynamicCache: Optional[Type[DynamicCacheLike]] + +try: + # pyre-ignore[21]: Could not find a module corresponding to import `transformers`. + import transformers # noqa: F401 + + transformers_installed = True +except ImportError: + transformers_installed = False + +if transformers_installed: + try: + # pyre-ignore[21]: Could not find a module corresponding to import + # `transformers.cache_utils`. + from transformers.cache_utils import ( # noqa: F401 + Cache as _Cache, + DynamicCache as _DynamicCache, + ) + + Cache = _Cache + # pyre-ignore[9]: Incompatible variable type: DynamicCache is declared to have + # type `Optional[Type[DynamicCacheLike]]` but is used as type + # `Type[_DynamicCache]` + DynamicCache = _DynamicCache + except ImportError: + Cache = DynamicCache = None +else: + Cache = DynamicCache = None + +# GenerationMixin._update_model_kwargs_for_generation +# "cache_position" at v4.39.0 (only needed for models that support cache class) +# "use_cache" at v4.41.0 (optional, default is True) +# "cache_position" is mandatory at v4.43.0 ("use_cache" is still optional, default True) +_transformers_version: Optional[Version] +if transformers_installed: + _transformers_version = Version(transformers.__version__) +else: + _transformers_version = None + +_mandated_cache_version = Version("4.43.0") +_use_cache_version = Version("4.41.0") +_cache_position_version = Version("4.39.0") + + +def update_model_kwargs( + model_kwargs: Dict[str, Any], + model: nn.Module, + input_ids: torch.Tensor, + caching: bool, +) -> None: + if not supports_caching(model): + return + assert _transformers_version is not None + if caching: + # Enable caching + if _transformers_version >= _cache_position_version: + cache_position = torch.arange( + input_ids.shape[1], dtype=torch.int64, device=input_ids.device + ) + model_kwargs["cache_position"] = cache_position + # pyre-ignore[58]: Unsupported operand `>=` is not supported for operand types + # `Optional[Version]` and `Version`. + if _transformers_version >= _use_cache_version: + model_kwargs["use_cache"] = True + else: + # Disable caching + if _transformers_version >= _use_cache_version: + model_kwargs["use_cache"] = False + + +def supports_caching(model: nn.Module) -> bool: + if not transformers_installed: + # Not a transformers model + return False + # Cache may be optional or unsupported depending on model/version + try: + # pyre-ignore[21]: Could not find a module corresponding to import + # `transformers.generation.utils`. + from transformers.generation.utils import GenerationMixin + except ImportError: + return False + if not isinstance(model, GenerationMixin): + # Model isn't a GenerationMixin, we don't support additional caching logic + # for it + return False + assert _transformers_version is not None + if _transformers_version >= _mandated_cache_version: + # Cache is mandatory + return True + # Fallback on _supports_cache_class attribute + # pyre-fixme[7]: Expected `bool` but got `Union[Module, Tensor]`. + return getattr(model, "_supports_cache_class", False) diff --git a/captum/_utils/typing.py b/captum/_utils/typing.py index 89ea6af048..512c910f08 100644 --- a/captum/_utils/typing.py +++ b/captum/_utils/typing.py @@ -1,27 +1,34 @@ #!/usr/bin/env python3 -from typing import List, Tuple, TYPE_CHECKING, TypeVar, Union +# pyre-strict + +from collections import UserDict +from typing import ( + List, + Literal, + Optional, + overload, + Protocol, + Tuple, + TYPE_CHECKING, + TypeVar, + Union, +) from torch import Tensor from torch.nn import Module -if TYPE_CHECKING: - import sys - - if sys.version_info >= (3, 8): - from typing import Literal # noqa: F401 - else: - from typing_extensions import Literal # noqa: F401 -else: - Literal = {True: bool, False: bool, (True, False): bool} - TensorOrTupleOfTensorsGeneric = TypeVar( "TensorOrTupleOfTensorsGeneric", Tensor, Tuple[Tensor, ...] ) -TupleOrTensorOrBoolGeneric = TypeVar("TupleOrTensorOrBoolGeneric", Tuple, Tensor, bool) +TupleOrTensorOrBoolGeneric = TypeVar( + "TupleOrTensorOrBoolGeneric", Tuple[Tensor, ...], Tensor, bool +) +PassThroughOutputType = TypeVar("PassThroughOutputType") ModuleOrModuleList = TypeVar("ModuleOrModuleList", Module, List[Module]) TargetType = Union[None, int, Tuple[int, ...], Tensor, List[Tuple[int, ...]], List[int]] -BaselineType = Union[None, Tensor, int, float, Tuple[Union[Tensor, int, float], ...]] +BaselineTupleType = Union[None, Tuple[Union[Tensor, int, float], ...]] +BaselineType = Union[None, Tensor, int, float, BaselineTupleType] TensorLikeList1D = List[float] TensorLikeList2D = List[TensorLikeList1D] @@ -35,3 +42,69 @@ TensorLikeList4D, TensorLikeList5D, ] + +try: + # Subscripted slice syntax is not supported in previous Python versions, + # falling back to slice type. + SliceIntType = slice[int, int, int] +except TypeError: + # pyre-ignore[24]: Generic type `slice` expects 3 type parameters. + SliceIntType = slice # type: ignore + +# Necessary for Python >=3.7 and <3.9! +if TYPE_CHECKING: + BatchEncodingType = UserDict[Union[int, str], object] +else: + BatchEncodingType = UserDict + + +class TokenizerLike(Protocol): + """A protocol for tokenizer-like objects that can be used with Captum + LLM attribution methods.""" + + @overload + def encode( + self, text: str, add_special_tokens: bool = ..., return_tensors: None = ... + ) -> List[int]: ... + + @overload + def encode( + self, + text: str, + add_special_tokens: bool = ..., + return_tensors: Literal["pt"] = ..., + ) -> Tensor: ... + + def encode( + self, + text: str, + add_special_tokens: bool = True, + return_tensors: Optional[str] = None, + ) -> Union[List[int], Tensor]: ... + + def decode(self, token_ids: Tensor) -> str: ... + + @overload + def convert_ids_to_tokens(self, token_ids: List[int]) -> List[str]: ... + @overload + def convert_ids_to_tokens(self, token_ids: int) -> str: ... + + def convert_ids_to_tokens( + self, token_ids: Union[List[int], int] + ) -> Union[List[str], str]: ... + + @overload + def convert_tokens_to_ids(self, tokens: str) -> int: ... + @overload + def convert_tokens_to_ids(self, tokens: List[str]) -> List[int]: ... + + def convert_tokens_to_ids( + self, tokens: Union[List[str], str] + ) -> Union[List[int], int]: ... + + def __call__( + self, + text: Optional[Union[str, List[str], List[List[str]]]] = None, + add_special_tokens: bool = True, + return_offsets_mapping: bool = False, + ) -> BatchEncodingType: ... diff --git a/captum/attr/__init__.py b/captum/attr/__init__.py index 8b942230a1..a33cd862dd 100644 --- a/captum/attr/__init__.py +++ b/captum/attr/__init__.py @@ -1,71 +1,71 @@ #!/usr/bin/env python3 -from captum.attr._core.deep_lift import DeepLift, DeepLiftShap # noqa -from captum.attr._core.feature_ablation import FeatureAblation # noqa -from captum.attr._core.feature_permutation import FeaturePermutation # noqa -from captum.attr._core.gradient_shap import GradientShap # noqa -from captum.attr._core.guided_backprop_deconvnet import ( # noqa - Deconvolution, - GuidedBackprop, -) -from captum.attr._core.guided_grad_cam import GuidedGradCam # noqa -from captum.attr._core.input_x_gradient import InputXGradient # noqa -from captum.attr._core.integrated_gradients import IntegratedGradients # noqa -from captum.attr._core.kernel_shap import KernelShap # noqa -from captum.attr._core.layer.grad_cam import LayerGradCam # noqa -from captum.attr._core.layer.internal_influence import InternalInfluence # noqa -from captum.attr._core.layer.layer_activation import LayerActivation # noqa -from captum.attr._core.layer.layer_conductance import LayerConductance # noqa -from captum.attr._core.layer.layer_deep_lift import ( # noqa - LayerDeepLift, - LayerDeepLiftShap, -) -from captum.attr._core.layer.layer_feature_ablation import LayerFeatureAblation # noqa -from captum.attr._core.layer.layer_gradient_shap import LayerGradientShap # noqa -from captum.attr._core.layer.layer_gradient_x_activation import ( # noqa - LayerGradientXActivation, -) -from captum.attr._core.layer.layer_integrated_gradients import ( # noqa - LayerIntegratedGradients, -) -from captum.attr._core.layer.layer_lrp import LayerLRP # noqa -from captum.attr._core.lime import Lime, LimeBase # noqa -from captum.attr._core.lrp import LRP # noqa -from captum.attr._core.neuron.neuron_conductance import NeuronConductance # noqa -from captum.attr._core.neuron.neuron_deep_lift import ( # noqa - NeuronDeepLift, - NeuronDeepLiftShap, -) -from captum.attr._core.neuron.neuron_feature_ablation import ( # noqa - NeuronFeatureAblation, + +# pyre-strict +from captum.attr._core.dataloader_attr import DataLoaderAttribution +from captum.attr._core.deep_lift import DeepLift, DeepLiftShap +from captum.attr._core.feature_ablation import FeatureAblation +from captum.attr._core.feature_permutation import FeaturePermutation +from captum.attr._core.gradient_shap import GradientShap +from captum.attr._core.guided_backprop_deconvnet import Deconvolution, GuidedBackprop +from captum.attr._core.guided_grad_cam import GuidedGradCam +from captum.attr._core.input_x_gradient import InputXGradient +from captum.attr._core.integrated_gradients import IntegratedGradients +from captum.attr._core.kernel_shap import KernelShap +from captum.attr._core.layer.grad_cam import LayerGradCam +from captum.attr._core.layer.internal_influence import InternalInfluence +from captum.attr._core.layer.layer_activation import LayerActivation +from captum.attr._core.layer.layer_conductance import LayerConductance +from captum.attr._core.layer.layer_deep_lift import LayerDeepLift, LayerDeepLiftShap +from captum.attr._core.layer.layer_feature_ablation import LayerFeatureAblation +from captum.attr._core.layer.layer_feature_permutation import LayerFeaturePermutation +from captum.attr._core.layer.layer_gradient_shap import LayerGradientShap +from captum.attr._core.layer.layer_gradient_x_activation import LayerGradientXActivation +from captum.attr._core.layer.layer_integrated_gradients import LayerIntegratedGradients +from captum.attr._core.layer.layer_lrp import LayerLRP +from captum.attr._core.lime import Lime, LimeBase +from captum.attr._core.llm_attr import ( + LLMAttribution, + LLMAttributionResult, + LLMGradientAttribution, ) -from captum.attr._core.neuron.neuron_gradient import NeuronGradient # noqa -from captum.attr._core.neuron.neuron_gradient_shap import NeuronGradientShap # noqa -from captum.attr._core.neuron.neuron_guided_backprop_deconvnet import ( # noqa +from captum.attr._core.lrp import LRP +from captum.attr._core.neuron.neuron_conductance import NeuronConductance +from captum.attr._core.neuron.neuron_deep_lift import NeuronDeepLift, NeuronDeepLiftShap +from captum.attr._core.neuron.neuron_feature_ablation import NeuronFeatureAblation +from captum.attr._core.neuron.neuron_gradient import NeuronGradient +from captum.attr._core.neuron.neuron_gradient_shap import NeuronGradientShap +from captum.attr._core.neuron.neuron_guided_backprop_deconvnet import ( NeuronDeconvolution, NeuronGuidedBackprop, ) -from captum.attr._core.neuron.neuron_integrated_gradients import ( # noqa +from captum.attr._core.neuron.neuron_integrated_gradients import ( NeuronIntegratedGradients, ) -from captum.attr._core.noise_tunnel import NoiseTunnel # noqa -from captum.attr._core.occlusion import Occlusion # noqa -from captum.attr._core.saliency import Saliency # noqa -from captum.attr._core.shapley_value import ShapleyValues, ShapleyValueSampling # noqa -from captum.attr._models.base import ( # noqa +from captum.attr._core.noise_tunnel import NoiseTunnel +from captum.attr._core.occlusion import Occlusion +from captum.attr._core.saliency import Saliency +from captum.attr._core.shapley_value import ShapleyValues, ShapleyValueSampling +from captum.attr._models.base import ( configure_interpretable_embedding_layer, InterpretableEmbeddingBase, remove_interpretable_embedding_layer, TokenReferenceBase, ) -from captum.attr._utils import visualization # noqa -from captum.attr._utils.attribution import ( # noqa # noqa # noqa # noqa # noqa +from captum.attr._utils import visualization +from captum.attr._utils.attribution import ( Attribution, GradientAttribution, LayerAttribution, NeuronAttribution, PerturbationAttribution, ) +from captum.attr._utils.baselines import ProductBaselines from captum.attr._utils.class_summarizer import ClassSummarizer +from captum.attr._utils.interpretable_input import ( + InterpretableInput, + TextTemplateInput, + TextTokenInput, +) from captum.attr._utils.stat import ( CommonStats, Count, @@ -77,7 +77,7 @@ Sum, Var, ) -from captum.attr._utils.summarizer import Summarizer +from captum.attr._utils.summarizer import Summarizer, SummarizerSingleTensor __all__ = [ "Attribution", @@ -86,6 +86,7 @@ "NeuronAttribution", "LayerAttribution", "IntegratedGradients", + "DataLoaderAttribution", "DeepLift", "DeepLiftShap", "InputXGradient", @@ -105,8 +106,13 @@ "LayerConductance", "LayerGradientXActivation", "LayerActivation", + "LayerFeaturePermutation", "LayerFeatureAblation", + "LLMAttribution", + "LLMAttributionResult", + "LLMGradientAttribution", "InternalInfluence", + "InterpretableInput", "LayerGradCam", "LayerDeepLift", "LayerDeepLiftShap", @@ -123,8 +129,11 @@ "NeuronDeconvolution", "NeuronGuidedBackprop", "NoiseTunnel", + "ProductBaselines", "GradientShap", "InterpretableEmbeddingBase", + "TextTemplateInput", + "TextTokenInput", "TokenReferenceBase", "visualization", "configure_interpretable_embedding_layer", @@ -140,4 +149,5 @@ "Max", "Sum", "Count", + "SummarizerSingleTensor", ] diff --git a/captum/attr/_core/dataloader_attr.py b/captum/attr/_core/dataloader_attr.py new file mode 100644 index 0000000000..7d763b17f4 --- /dev/null +++ b/captum/attr/_core/dataloader_attr.py @@ -0,0 +1,472 @@ +#!/usr/bin/env python3 + +# pyre-strict + +from collections import defaultdict +from copy import copy +from typing import Callable, cast, Dict, Iterable, List, Optional, Tuple, Union + +import torch +from captum._utils.common import ( + _format_baseline, + _format_feature_mask, + _format_output, + _format_tensor_into_tuples, + _get_max_feature_index, + _run_forward, +) +from captum._utils.typing import BaselineType +from captum.attr._core.feature_ablation import FeatureAblation +from captum.attr._utils.attribution import Attribution +from torch import Tensor + + +class InputRole: + need_attr = 0 + need_forward = 1 + no_forward = 2 + + +SUPPORTED_METHODS = {FeatureAblation} + + +# default reducer wehn reduce is None. Simply concat the outputs by the batch dimension +def _concat_tensors(accum: Optional[Tensor], cur_output: Tensor, _) -> Tensor: + return cur_output if accum is None else torch.cat([accum, cur_output]) + + +def _create_perturbation_mask( + perturbed_feature_indices: Tensor, # 1D tensor of one-hot feature indices + feature_mask: Tuple[Tensor, ...], + feature_idx_to_mask_idx: Dict[int, List[int]], +) -> Tuple[Union[Tensor, None], ...]: + """ + Create binary mask for inputs based on perturbed one-hot feature indices + Use None if no perturbation is needed for the corresponding input + """ + + # a set of input/mask indices that need perturbation + perturbation_mask_indices = set() + for i, v in enumerate(perturbed_feature_indices.tolist()): + # value 0 means the feature has been perturbed + if not v: + perturbation_mask_indices |= set(feature_idx_to_mask_idx[i]) + + # create binary mask for inputs & set it to None if no perturbation is needed + perturbation_mask = tuple( + perturbed_feature_indices[mask_elem] if i in perturbation_mask_indices else None + for i, mask_elem in enumerate(feature_mask) + ) + + return perturbation_mask + + +def _perturb_inputs( + inputs: Iterable[object], + input_roles: Tuple[int], + baselines: Tuple[Union[int, float, Tensor], ...], + perturbation_mask: Tuple[Union[Tensor, None], ...], +) -> Tuple[object, ...]: + """ + Perturb inputs based on perturbation mask and baselines + """ + + perturbed_inputs = [] + attr_inp_count = 0 + + for inp, role in zip(inputs, input_roles): + if role != InputRole.need_attr: + perturbed_inputs.append(inp) + continue + + pert_mask = perturbation_mask[attr_inp_count] + + # no perturbation is needed for this input + if pert_mask is None: + perturbed_inputs.append(inp) + else: + baseline = baselines[attr_inp_count] + + perturbed_inp = cast(Tensor, inp) * pert_mask + baseline * (1 - pert_mask) + perturbed_inputs.append(perturbed_inp) + + attr_inp_count += 1 + + perturbed_inputs = tuple(perturbed_inputs) + + return perturbed_inputs + + +def _convert_output_shape( + unique_attr: Tensor, + attr_inputs: Tuple[Tensor, ...], + feature_mask: Tuple[Tensor, ...], +) -> Tuple[Tensor, ...]: + """ + Convert the shape of a single tensor of unique feature attributionto + to match the shape of the inputs returned by dataloader + """ + + # unique_attr in shape(*output_dims, n_features) + output_dims = unique_attr.shape[:-1] + n_features = unique_attr.shape[-1] + + attr = [] + + for inp, mask in zip(attr_inputs, feature_mask): + # input in shape(batch_size, *inp_feature_dims) + # attribute in shape(*output_dims, *inp_feature_dims) + # pyre-fixme[60]: Concatenation not yet support for multiple variadic + # tuples: `*output_dims, *inp.shape[slice(1, None, None)]`. + attr_shape = (*output_dims, *inp.shape[1:]) + + expanded_feature_indices = mask.expand(attr_shape) + + if len(inp.shape) > 2: + # exclude batch_size & last of actual value + extra_inp_dims = list(inp.shape[1:-1]) + + # unsqueeze unqiue_attr to have same number of dims as inp + # (*output_dims, 1..., 1, n_features) + # then broadcast to (*output_dims, *inp.shape[1:-1], n_features) + n_extra_dims = len(extra_inp_dims) + # pyre-fixme[60]: Concatenation not yet support for multiple variadic + # tuples: `*output_dims, *(1).__mul__(n_extra_dims)`. + unsqueezed_shape = (*output_dims, *(1,) * n_extra_dims, n_features) + # pyre-fixme[60]: Concatenation not yet support for multiple variadic + # tuples: `*output_dims, *extra_inp_dims`. + expanded_shape = (*output_dims, *extra_inp_dims, n_features) + expanded_unqiue_attr = unique_attr.reshape(unsqueezed_shape).expand( + expanded_shape + ) + else: + expanded_unqiue_attr = unique_attr + + # gather from (*output_dims, *inp.shape[1:-1], n_features) + inp_attr = torch.gather(expanded_unqiue_attr, -1, expanded_feature_indices) + attr.append(inp_attr) + + return tuple(attr) + + +class DataLoaderAttribution(Attribution): + r""" + Decorate a perturbation-based attribution algorthm to make it work with dataloaders. + The decorated instance will calculate attribution in the + same way as configured in the original attribution instance, but it will provide a + new "attribute" function which accepts a pytorch "dataloader" instance as the input + instead of a single batched "tensor" and supports customizing a "reduce" function to + determine how the forward return of each iteration of the dataloader should be + aggregated to single metric tensor to attribute. This would + be specially useful to attribute against some corpus-wise metrics, + e.g., Precision & Recall. + """ + + attr_method: Attribution + + def __init__(self, attr_method: Attribution) -> None: + r""" + Args: + attr_method (Attribution): An instance of any attribution algorithm + of type `Attribution`. E.g. Integrated Gradients, + Conductance or Saliency. + """ + + assert ( + type(attr_method) in SUPPORTED_METHODS + ), f"DataloaderAttribution does not support {type(attr_method)}" + + super().__init__(attr_method.forward_func) + + # shallow copy is enough to avoid modifying original instance + self.attr_method = copy(attr_method) + + self.attr_method.forward_func = self._forward_with_dataloader + + def _forward_with_dataloader( + self, + batched_perturbed_feature_indices: Tensor, + dataloader: torch.utils.data.DataLoader, + input_roles: Tuple[int], + baselines: Tuple[Union[int, float, Tensor], ...], + feature_mask: Tuple[Tensor, ...], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + reduce: Callable, + to_metric: Optional[Callable[[Tensor], Tensor]], + show_progress: bool, + feature_idx_to_mask_idx: Dict[int, List[int]], + ) -> Tensor: + """ + Wrapper of the original given forward_func to be used in the attribution method + It iterates over the dataloader with the given forward_func + """ + + # batched_perturbed_feature_indices in shape(n_perturb, n_features) + # n_perturb is not always the same as perturb_per_pass if not enough perturb + perturbation_mask_list: List[Tuple[Union[Tensor, None], ...]] = [ + _create_perturbation_mask( + perturbed_feature_indices, + feature_mask, + feature_idx_to_mask_idx, + ) + for perturbed_feature_indices in batched_perturbed_feature_indices + ] + + # each perturbation needs an accum state + accum_states = [None for _ in range(len(perturbation_mask_list))] + + # tranverse the dataloader + for inputs in dataloader: + # for each batch read from the dataloader, + # apply every perturbation based on perturbations_per_pass + for i, perturbation_mask in enumerate(perturbation_mask_list): + perturbed_inputs = _perturb_inputs( + inputs, input_roles, baselines, perturbation_mask + ) + + # due to explicitly defined roles + # we can keep inputs in their original order + # regardless of if they need attr + # instead of using additional_forward_inputs + forward_inputs = tuple( + _ + for _, role in zip(perturbed_inputs, input_roles) + if role != InputRole.no_forward + ) + + output = _run_forward( + self.forward_func, + forward_inputs, + ) + + accum_states[i] = reduce(accum_states[i], output, perturbed_inputs) + + accum_states = cast(List[Tensor], accum_states) + accum_results: List[Tensor] = [ + to_metric(accum) if to_metric else accum for accum in accum_states + ] + + assert all(type(r) is Tensor for r in accum_results), ( + "Accumulated metrics for attribution must be a Tensor," + f"received: {next(r for r in accum_results if type(r) is not Tensor)}" + ) + + # shape(n_perturb * output_dims[0], *output_dims[1:]) + # the underneath attr method needs to support forward_func output's + # 1st dim to grow with perturb_per_eval + batched_accum = torch.stack(accum_results, dim=0) + return batched_accum + + def attribute( + self, + dataloader: torch.utils.data.DataLoader, + input_roles: Optional[Tuple[int, ...]] = None, + baselines: BaselineType = None, + feature_mask: Union[None, Tensor, Tuple[Tensor, ...]] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + reduce: Optional[Callable] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + to_metric: Optional[Callable] = None, + perturbations_per_pass: int = 1, + show_progress: bool = False, + return_input_shape: bool = True, + ) -> Union[Tensor, Tuple[Tensor, ...]]: + r""" + Args: + + dataloader (torch.Dataloader): the dataloader to attribute, which should + return a tuple of consistent size for every iteration + input_roles (tuple[int, ...], optional): a tuple of integers to define the + role of each element returned from the dataloader. It should + have the same size as the return of the dataloader. + The available roles are: + + 0: the element is passed to forward_func and needs attribution. + It must be a tensor. + 1: the element is excluded for forward_func. A typical example + is the label. + 2: the element is passed to forward_func but does not need + attribution. Like additional_forward_args + + baselines (Union[Tensor, tuple[Tensor, ...]], optional): same as the + baseline in attribute. The same baseline will be + applied to the entire dataloader. The first dimension is + assumed to be batch size and it must be 1. Baselines should only + be specififed for the dataloader's returns that need + attribution (role = 0) + + feature_mask (Union[Tensor, tuple[Tensor, ...]], optional): same as the + feature_mask in attribute. The same feature_mask will be + applied to the entire dataloader. The first dimension is + assumed to be batch size and it must be 1. Mask should only + be specififed for the dataloader's returns that need + attribution (role = 0) + reduce (Callable, optional): a function to accumulate the forward output of + each iteration of the dataloader. The function signature is: + ``reduce(accum, current_output, current_inputs) -> accum``, + where: + + accum (Any): accumulated states, can be any type + current_output (Tensor): current output tensor from forward_func + current_inputs (tuple[Any,...]): current inputs from dataloader + + to_metric (Callable, optional): an optional function to further convert + accumulated results through "reduce" after tranversing the whole + dataloader to a single tensor of metrics to calculate + attribution against. The function signature is: + ``to_metric(accum) -> metric``, where: + + accum (Any): accumulated state from reduce function + metric (Tensor): final result to be attributed, must be a Tensor + + If None, will directly attribute w.r.t the reduced ``accum`` + perturbations_per_pass (int, optional) the number perturbations to execute + concurrently in each traverse of the dataloader. The number of + traverses needed is + ceil(n_perturbations / perturbations_per_pass). + + This argument offers control of the trade-off between memory + and efficiency. If the dataloader involves slow operations like + remote request or file I/O, multiple traversals can be + inefficient. On the other hand, each perturbation needs to + store its accumulated outputs of the reduce + function until the end of the data traverse. + return_input_shape (bool, optional): if True, returns the attribution + following the input shapes given by the dataloader. + Otherwise, returns a single tensor for the attributions of + all the features, where the last dimension + is the number of features. + + Returns: + **attributions** : + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): + Attribution with respect to each input feature. + if return_input_shape is True, attributions will be + the same size as the given dataloader's returns that need + attribution (role = 0), with each value + providing the attribution of the corresponding input index. + If a single tensor is provided as inputs, a single tensor is + returned. If a tuple is provided for inputs, a tuple of + corresponding sized tensors is returned. + If return_input_shape is False, a single tensor is returned + where each index of the last dimension represents a feature + """ + inputs = cast(Union[Tensor, Tuple[Tensor, ...]], next(iter(dataloader))) + is_inputs_tuple = True + + inputs_tuple: Tuple[Tensor, ...] + if type(inputs) is list: + # support list as it is a common return type for dataloader in torch + inputs_tuple = tuple(inputs) + elif type(inputs) is not tuple: + is_inputs_tuple = False + inputs_tuple = _format_tensor_into_tuples(inputs) + + if input_roles: + assert len(input_roles) == len(inputs_tuple), ( + "input_roles must have the same size as the return of the dataloader,", + f"length of input_roles is {len(input_roles)} ", + f"whereas the length of dataloader return is {len(inputs_tuple)}", + ) + + assert any(role == InputRole.need_attr for role in input_roles), ( + "input_roles must contain at least one element need attribution" + f"({InputRole.need_attr}), received input_roles: {input_roles}" + ) + else: + # by default, assume every element in the dataloader needs attribution + input_roles = tuple(InputRole.need_attr for _ in inputs_tuple) + + attr_inputs = tuple( + inp + for role, inp in zip(input_roles, inputs_tuple) + if role == InputRole.need_attr + ) + + baselines = _format_baseline(baselines, attr_inputs) + + assert len(attr_inputs) == len(baselines), ( + "Baselines must have the same size as the return of the dataloader ", + "that need attribution", + f"length of baseline is {len(baselines)} ", + 'whereas the length of dataloader return with role "0" is', + f" {len(inputs_tuple)}", + ) + + for i, baseline in enumerate(baselines): + if isinstance(baseline, Tensor): + assert baseline.size(0) == 1, ( + "If the baseline is a tensor, " + "its 1st dim of baseline must be 1 so it can be broadacasted to " + "any batch of the dataloader:" + f"baselines[{i}].shape = {baseline.shape}" + ) + + feature_mask = _format_feature_mask(feature_mask, attr_inputs) + + assert len(attr_inputs) == len(feature_mask), ( + "Feature mask must have the same size as the return of the dataloader ", + "that need attribution", + f"length of feature_mask is {len(feature_mask)} ", + 'whereas the length of dataloader return with role "0"', + f" is {len(inputs_tuple)}", + ) + + for i, each_mask in enumerate(feature_mask): + assert each_mask.size(0) == 1, ( + "The 1st dim of feature_mask must be 1 so it can be broadcasted to " + "any batch of the dataloader:" + f"feature_mask[{i}].shape = {each_mask.shape}" + ) + + # map to retrieve masks contain a given feature index + feature_idx_to_mask_idx = defaultdict(list) + for i, mask in enumerate(feature_mask): + unqiue_feature_indices = torch.unique(mask).tolist() + for feature_idx in unqiue_feature_indices: + feature_idx_to_mask_idx[feature_idx].append(i) + + max_feature_idx = _get_max_feature_index(feature_mask) + n_features = max_feature_idx + 1 + + if reduce is None: + reduce = _concat_tensors + + # onehot tensor for feature indices + feature_indices = torch.ones((1, n_features), device=attr_inputs[0].device) + + # unique_attr in shape(*output_dims, n_features) + unique_attr = self.attr_method.attribute( + feature_indices, + perturbations_per_eval=perturbations_per_pass, + additional_forward_args=( + dataloader, + input_roles, + baselines, + feature_mask, + reduce, + to_metric, + show_progress, + feature_idx_to_mask_idx, + ), + ) + + if not return_input_shape: + return unique_attr + else: + attr = _convert_output_shape( + unique_attr, + attr_inputs, + feature_mask, + ) + + return _format_output(is_inputs_tuple, attr) + + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for DataLoaderAttribution. + """ + raise NotImplementedError( + "attribute_future is not implemented for DataLoaderAttribution" + ) diff --git a/captum/attr/_core/deep_lift.py b/captum/attr/_core/deep_lift.py index 251e68dc23..d7997195eb 100644 --- a/captum/attr/_core/deep_lift.py +++ b/captum/attr/_core/deep_lift.py @@ -1,7 +1,9 @@ #!/usr/bin/env python3 + +# pyre-strict import typing import warnings -from typing import Any, Callable, cast, List, Tuple, Union +from typing import Callable, cast, Dict, List, Literal, Optional, Tuple, Type, Union import torch import torch.nn as nn @@ -23,12 +25,7 @@ apply_gradient_requirements, undo_gradient_requirements, ) -from captum._utils.typing import ( - BaselineType, - Literal, - TargetType, - TensorOrTupleOfTensorsGeneric, -) +from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._utils.attribution import GradientAttribution from captum.attr._utils.common import ( _call_custom_attribution_func, @@ -43,34 +40,6 @@ from torch.utils.hooks import RemovableHandle -# Check if module backward hook can safely be used for the module that produced -# this inputs / outputs mapping -def _check_valid_module(inputs_grad_fn, outputs) -> bool: - def is_output_cloned(output_fn, input_grad_fn) -> bool: - """ - Checks if the output has been cloned. This happens especially in case of - layer deeplift. - """ - return ( - output_fn[0].next_functions is not None - and output_fn[0].next_functions[0][0] == input_grad_fn - ) - - curr_fn = outputs.grad_fn - first_next = curr_fn.next_functions[0] - try: - # if `inputs` in the input to the network then the grad_fn is None and - # for that input backward_hook isn't computed. That's the reason why we - # need to check on `inputs_grad_fns[first_next[1]]` being None. - return ( - inputs_grad_fn is None - or first_next[0] == inputs_grad_fn - or is_output_cloned(first_next, inputs_grad_fn) - ) - except IndexError: - return False - - class DeepLift(GradientAttribution): r""" Implements DeepLIFT algorithm based on the following paper: @@ -112,10 +81,7 @@ def __init__( r""" Args: - model (nn.Module): The reference to PyTorch model instance. Model cannot - contain any in-place nonlinear submodules; these are not - supported by the register_full_backward_hook PyTorch API - starting from PyTorch v1.9. + model (nn.Module): The reference to PyTorch model instance. multiply_by_inputs (bool, optional): Indicates whether to factor model inputs' multiplier in the final attribution scores. In the literature this is also known as local vs global @@ -139,7 +105,7 @@ def __init__( Default: 1e-10 """ GradientAttribution.__init__(self, model) - self.model = model + self.model: nn.Module = model self.eps = eps self.forward_handles: List[RemovableHandle] = [] self.backward_handles: List[RemovableHandle] = [] @@ -151,11 +117,11 @@ def attribute( inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, - return_convergence_delta: Literal[False] = False, + additional_forward_args: Optional[Tuple[object, ...]] = None, + *, + return_convergence_delta: Literal[True], custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, - ) -> TensorOrTupleOfTensorsGeneric: - ... + ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: ... @typing.overload def attribute( @@ -163,12 +129,10 @@ def attribute( inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, - *, - return_convergence_delta: Literal[True], + additional_forward_args: Optional[Tuple[object, ...]] = None, + return_convergence_delta: Literal[False] = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, - ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: - ... + ) -> TensorOrTupleOfTensorsGeneric: ... @log_usage() def attribute( # type: ignore @@ -176,7 +140,7 @@ def attribute( # type: ignore inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[Tuple[object, ...]] = None, return_convergence_delta: bool = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, ) -> Union[ @@ -185,16 +149,16 @@ def attribute( # type: ignore r""" Args: - inputs (tensor or tuple of tensors): Input for which - attributions are computed. If forward_func takes a single + inputs (Tensor or tuple[Tensor, ...]): Input for which + attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. - If forward_func takes multiple tensors as input, a tuple + If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and @@ -226,7 +190,7 @@ def attribute( # type: ignore use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -251,14 +215,14 @@ def attribute( # type: ignore target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to - forward_func in order, following the arguments in inputs. + model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None @@ -267,7 +231,7 @@ def attribute( # type: ignore is set to True convergence delta will be returned in a tuple following attributions. Default: False - custom_attribution_func (callable, optional): A custom function for + custom_attribution_func (Callable, optional): A custom function for computing final attribution scores. This function can take at least one and at most three arguments with the following signature: @@ -288,7 +252,7 @@ def attribute( # type: ignore Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attribution score computed based on DeepLift rescale rule with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value @@ -296,14 +260,14 @@ def attribute( # type: ignore If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. - - **delta** (*tensor*, returned if return_convergence_delta=True): + - **delta** (*Tensor*, returned if return_convergence_delta=True): This is computed using the property that - the total sum of forward_func(inputs) - forward_func(baselines) + the total sum of model(inputs) - model(baselines) must equal the total sum of the attributions computed based on DeepLift's rescale rule. Delta is calculated per example, meaning that the number of elements in returned delta tensor is equal to the number of - of examples in input. + examples in input. Note that the logic described for deltas is guaranteed when the default logic for attribution computations is used, meaning that the `custom_attribution_func=None`, otherwise it is not guaranteed and @@ -324,20 +288,21 @@ def attribute( # type: ignore # converting it into a tuple. is_inputs_tuple = _is_tuple(inputs) - inputs = _format_tensor_into_tuples(inputs) - baselines = _format_baseline(baselines, inputs) + inputs_tuple = _format_tensor_into_tuples(inputs) + baselines = _format_baseline(baselines, inputs_tuple) - gradient_mask = apply_gradient_requirements(inputs) + gradient_mask = apply_gradient_requirements(inputs_tuple) - _validate_input(inputs, baselines) + _validate_input(inputs_tuple, baselines) # set hooks for baselines warnings.warn( """Setting forward, backward hooks and attributes on non-linear activations. The hooks and attributes will be removed - after the attribution is finished""" + after the attribution is finished""", + stacklevel=2, ) - baselines = _tensorize_baseline(inputs, baselines) + baselines = _tensorize_baseline(inputs_tuple, baselines) main_model_hooks = [] try: main_model_hooks = self._hook_main_model() @@ -354,54 +319,67 @@ def attribute( # type: ignore wrapped_forward_func = self._construct_forward_func( self.model, - (inputs, baselines), + (inputs_tuple, baselines), expanded_target, additional_forward_args, ) - gradients = self.gradient_func(wrapped_forward_func, inputs) + gradients = self.gradient_func(wrapped_forward_func, inputs_tuple) if custom_attribution_func is None: if self.multiplies_by_inputs: attributions = tuple( (input - baseline) * gradient for input, baseline, gradient in zip( - inputs, baselines, gradients + inputs_tuple, baselines, gradients ) ) else: attributions = gradients else: attributions = _call_custom_attribution_func( - custom_attribution_func, gradients, inputs, baselines + custom_attribution_func, + gradients, + inputs_tuple, + baselines, ) finally: # Even if any error is raised, remove all hooks before raising self._remove_hooks(main_model_hooks) - undo_gradient_requirements(inputs, gradient_mask) + undo_gradient_requirements(inputs_tuple, gradient_mask) + # pyre-fixme[7]: Expected `Union[Tuple[Variable[TensorOrTupleOfTensorsGeneric... return _compute_conv_delta_and_format_attrs( self, return_convergence_delta, attributions, baselines, - inputs, + inputs_tuple, additional_forward_args, target, is_inputs_tuple, ) + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for DeepLift. + """ + raise NotImplementedError("attribute_future is not implemented for DeepLift") + def _construct_forward_func( self, - forward_func: Callable, - inputs: Tuple, + forward_func: Callable[..., Tensor], + inputs: Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]], target: TargetType = None, - additional_forward_args: Any = None, - ) -> Callable: - def forward_fn(): - model_out = _run_forward( - forward_func, inputs, None, additional_forward_args + additional_forward_args: Optional[Tuple[object, ...]] = None, + ) -> Callable[[], Tensor]: + def forward_fn() -> Tensor: + model_out = cast( + Tensor, + _run_forward(forward_func, inputs, None, additional_forward_args), ) return _select_targets( - torch.cat((model_out[:, 0], model_out[:, 1])), target + torch.cat((model_out[:, 0], model_out[:, 1])), + target, ) if hasattr(forward_func, "device_ids"): @@ -429,26 +407,8 @@ def _forward_pre_hook( set necessary hooks on inputs there. """ inputs = _format_tensor_into_tuples(inputs) + # pyre-fixme[16]: `Module` has no attribute `input`. module.input = inputs[0].clone().detach() - module.input_grad_fns = inputs[0].grad_fn # type: ignore - - def tensor_backward_hook(grad): - if module.saved_grad is None: - raise RuntimeError( - """Module {} was detected as not supporting correctly module - backward hook. You should modify your hook to ignore the given - grad_inputs (recompute them by hand if needed) and save the - newly computed grad_inputs in module.saved_grad. See MaxPool1d - as an example.""".format( - module - ) - ) - return module.saved_grad - - # the hook is set by default but it will be used only for - # failure cases and will be removed otherwise - handle = inputs[0].register_hook(tensor_backward_hook) - module.input_hook = handle def _forward_hook( self, @@ -461,31 +421,15 @@ def _forward_hook( outputs of a neuron """ outputs = _format_tensor_into_tuples(outputs) + # pyre-fixme[16]: `Module` has no attribute `output`. module.output = outputs[0].clone().detach() - if not _check_valid_module(module.input_grad_fns, outputs[0]): - warnings.warn( - """An invalid module {} is detected. Saved gradients will - be used as the gradients of the module's input tensor. - See MaxPool1d as an example.""".format( - module - ) - ) - module.is_invalid = True # type: ignore - module.saved_grad = None # type: ignore - self.forward_handles.append(cast(RemovableHandle, module.input_hook)) - else: - module.is_invalid = False # type: ignore - # removing the hook if there is no failure case - cast(RemovableHandle, module.input_hook).remove() - del module.input_hook - del module.input_grad_fns def _backward_hook( self, module: Module, - grad_input: Union[Tensor, Tuple[Tensor, ...]], - grad_output: Union[Tensor, Tuple[Tensor, ...]], - ): + grad_input: Tensor, + grad_output: Tensor, + ) -> Tensor: r""" `grad_input` is the gradient of the neuron with respect to its input `grad_output` is the gradient of the neuron with respect to its output @@ -506,15 +450,14 @@ def _backward_hook( "Please, ensure that module is being used only once in the " "network.".format(module) ) - multipliers = tuple( - SUPPORTED_NON_LINEAR[type(module)]( - module, - module.input, - module.output, - grad_input, - grad_output, - eps=self.eps, - ) + + multipliers = SUPPORTED_NON_LINEAR[type(module)]( + module, + module.input, + module.output, + grad_input, + grad_output, + eps=self.eps, ) # remove all the properies that we set for the inputs and output del module.input @@ -545,10 +488,10 @@ def _register_hooks( # adds forward hook to leaf nodes that are non-linear forward_handle = module.register_forward_hook(self._forward_hook) pre_forward_handle = module.register_forward_pre_hook(self._forward_pre_hook) - backward_handle = _register_backward_hook(module, self._backward_hook, self) + backward_handles = _register_backward_hook(module, self._backward_hook, self) self.forward_handles.append(forward_handle) self.forward_handles.append(pre_forward_handle) - self.backward_handles.append(backward_handle) + self.backward_handles.extend(backward_handles) def _remove_hooks(self, extra_hooks_to_remove: List[RemovableHandle]) -> None: for handle in extra_hooks_to_remove: @@ -559,7 +502,10 @@ def _remove_hooks(self, extra_hooks_to_remove: List[RemovableHandle]) -> None: backward_handle.remove() def _hook_main_model(self) -> List[RemovableHandle]: - def pre_hook(module: Module, baseline_inputs_add_args: Tuple) -> Tuple: + def pre_hook( + module: Module, + baseline_inputs_add_args: Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]], + ) -> Tuple[object, ...]: inputs = baseline_inputs_add_args[0] baselines = baseline_inputs_add_args[1] additional_args = None @@ -572,7 +518,7 @@ def pre_hook(module: Module, baseline_inputs_add_args: Tuple) -> Tuple: ) if additional_args is not None: expanded_additional_args = cast( - Tuple, + Tuple[object], _expand_additional_forward_args( additional_args, 2, ExpansionTypes.repeat ), @@ -580,7 +526,9 @@ def pre_hook(module: Module, baseline_inputs_add_args: Tuple) -> Tuple: return (*baseline_input_tsr, *expanded_additional_args) return baseline_input_tsr - def forward_hook(module: Module, inputs: Tuple, outputs: Tensor): + def forward_hook( + module: Module, inputs: Tuple[Tensor, ...], outputs: Tensor + ) -> Tensor: return torch.stack(torch.chunk(outputs, 2), dim=1) if isinstance( @@ -588,6 +536,8 @@ def forward_hook(module: Module, inputs: Tuple, outputs: Tensor): ): return [ self.model.module.register_forward_pre_hook(pre_hook), # type: ignore + # pyre-fixme[16]: Item `Tensor` of `Tensor | Module` has no + # attribute `register_forward_hook`. self.model.module.register_forward_hook(forward_hook), ] # type: ignore else: @@ -600,7 +550,7 @@ def has_convergence_delta(self) -> bool: return True @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs @@ -611,12 +561,14 @@ class DeepLiftShap(DeepLift): each baseline and averages resulting attributions. More details about the algorithm can be found here: - http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf + https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf Note that the explanation model: + 1. Assumes that input features are independent of one another 2. Is linear, meaning that the explanations are modeled through the additive composition of feature effects. + Although, it assumes a linear model for each explanation, the overall model across multiple explanations can be complex and non-linear. """ @@ -625,9 +577,7 @@ def __init__(self, model: Module, multiply_by_inputs: bool = True) -> None: r""" Args: - model (nn.Module): The reference to PyTorch model instance. Model cannot - contain any in-place nonlinear submodules; these are not - supported by the register_full_backward_hook PyTorch API. + model (nn.Module): The reference to PyTorch model instance. multiply_by_inputs (bool, optional): Indicates whether to factor model inputs' multiplier in the final attribution scores. In the literature this is also known as local vs global @@ -656,11 +606,11 @@ def attribute( TensorOrTupleOfTensorsGeneric, Callable[..., TensorOrTupleOfTensorsGeneric] ], target: TargetType = None, - additional_forward_args: Any = None, - return_convergence_delta: Literal[False] = False, + additional_forward_args: Optional[Tuple[object, ...]] = None, + *, + return_convergence_delta: Literal[True], custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, - ) -> TensorOrTupleOfTensorsGeneric: - ... + ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: ... @typing.overload def attribute( @@ -670,12 +620,10 @@ def attribute( TensorOrTupleOfTensorsGeneric, Callable[..., TensorOrTupleOfTensorsGeneric] ], target: TargetType = None, - additional_forward_args: Any = None, - *, - return_convergence_delta: Literal[True], + additional_forward_args: Optional[Tuple[object, ...]] = None, + return_convergence_delta: Literal[False] = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, - ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: - ... + ) -> TensorOrTupleOfTensorsGeneric: ... @log_usage() def attribute( # type: ignore @@ -685,7 +633,7 @@ def attribute( # type: ignore TensorOrTupleOfTensorsGeneric, Callable[..., TensorOrTupleOfTensorsGeneric] ], target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[Tuple[object, ...]] = None, return_convergence_delta: bool = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, ) -> Union[ @@ -694,16 +642,16 @@ def attribute( # type: ignore r""" Args: - inputs (tensor or tuple of tensors): Input for which - attributions are computed. If forward_func takes a single + inputs (Tensor or tuple[Tensor, ...]): Input for which + attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. - If forward_func takes multiple tensors as input, a tuple + If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (tensor, tuple of tensors, callable): + baselines (Tensor, tuple[Tensor, ...], or Callable): Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and @@ -728,7 +676,7 @@ def attribute( # type: ignore It is recommended that the number of samples in the baselines' tensors is larger than one. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -753,14 +701,14 @@ def attribute( # type: ignore target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to - forward_func in order, following the arguments in inputs. + model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None @@ -769,7 +717,7 @@ def attribute( # type: ignore is set to True convergence delta will be returned in a tuple following attributions. Default: False - custom_attribution_func (callable, optional): A custom function for + custom_attribution_func (Callable, optional): A custom function for computing final attribution scores. This function can take at least one and at most three arguments with the following signature: @@ -789,7 +737,7 @@ def attribute( # type: ignore Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attribution score computed based on DeepLift rescale rule with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value @@ -797,9 +745,9 @@ def attribute( # type: ignore If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. - - **delta** (*tensor*, returned if return_convergence_delta=True): + - **delta** (*Tensor*, returned if return_convergence_delta=True): This is computed using the property that the - total sum of forward_func(inputs) - forward_func(baselines) + total sum of model(inputs) - model(baselines) must be very close to the total sum of attributions computed based on approximated SHAP values using Deeplift's rescale rule. @@ -825,25 +773,28 @@ def attribute( # type: ignore >>> # Computes shap values using deeplift for class 3. >>> attribution = dl.attribute(input, target=3) """ - baselines = _format_callable_baseline(baselines, inputs) + formatted_baselines = _format_callable_baseline(baselines, inputs) - assert isinstance(baselines[0], torch.Tensor) and baselines[0].shape[0] > 1, ( + assert ( + isinstance(formatted_baselines[0], torch.Tensor) + and formatted_baselines[0].shape[0] > 1 + ), ( "Baselines distribution has to be provided in form of a torch.Tensor" " with more than one example but found: {}." " If baselines are provided in shape of scalars or with a single" " baseline example, `DeepLift`" - " approach can be used instead.".format(baselines[0]) + " approach can be used instead.".format(formatted_baselines[0]) ) # Keeps track whether original input is a tuple or not before # converting it into a tuple. is_inputs_tuple = _is_tuple(inputs) - inputs = _format_tensor_into_tuples(inputs) + inputs_tuple = _format_tensor_into_tuples(inputs) # batch sizes - inp_bsz = inputs[0].shape[0] - base_bsz = baselines[0].shape[0] + inp_bsz = inputs_tuple[0].shape[0] + base_bsz = formatted_baselines[0].shape[0] ( exp_inp, @@ -851,7 +802,10 @@ def attribute( # type: ignore exp_tgt, exp_addit_args, ) = self._expand_inputs_baselines_targets( - baselines, inputs, target, additional_forward_args + formatted_baselines, + inputs_tuple, + target, + additional_forward_args, ) attributions = super().attribute.__wrapped__( # type: ignore self, @@ -860,10 +814,12 @@ def attribute( # type: ignore target=exp_tgt, additional_forward_args=exp_addit_args, return_convergence_delta=cast( - Literal[True, False], return_convergence_delta + Literal[True, False], + return_convergence_delta, ), custom_attribution_func=custom_attribution_func, ) + delta: Tensor = torch.tensor(0) if return_convergence_delta: attributions, delta = cast(Tuple[Tuple[Tensor, ...], Tensor], attributions) @@ -875,8 +831,10 @@ def attribute( # type: ignore ) if return_convergence_delta: + # pyre-fixme[7]: Expected `Union[Tuple[Variable[TensorOrTupleOfTensorsGen... return _format_output(is_inputs_tuple, attributions), delta else: + # pyre-fixme[7]: Expected `Union[Tuple[Variable[TensorOrTupleOfTensorsGen... return _format_output(is_inputs_tuple, attributions) def _expand_inputs_baselines_targets( @@ -884,8 +842,8 @@ def _expand_inputs_baselines_targets( baselines: Tuple[Tensor, ...], inputs: Tuple[Tensor, ...], target: TargetType, - additional_forward_args: Any, - ) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...], TargetType, Any]: + additional_forward_args: Optional[Tuple[object, ...]], + ) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...], TargetType, object]: inp_bsz = inputs[0].shape[0] base_bsz = baselines[0].shape[0] @@ -926,9 +884,9 @@ def _compute_mean_across_baselines( self, inp_bsz: int, base_bsz: int, attribution: Tensor ) -> Tensor: # Average for multiple references - attr_shape: Tuple = (inp_bsz, base_bsz) + attr_shape: Tuple[int, ...] = (inp_bsz, base_bsz) if len(attribution.shape) > 1: - attr_shape += attribution.shape[1:] + attr_shape += tuple(attribution.shape[1:]) return torch.mean(attribution.view(attr_shape), dim=1, keepdim=False) @@ -939,7 +897,7 @@ def nonlinear( grad_input: Tensor, grad_output: Tensor, eps: float = 1e-10, -): +) -> Tensor: r""" grad_input: (dLoss / dprev_layer_out, dLoss / wij, dLoss / bij) grad_output: (dLoss / dlayer_out) @@ -947,18 +905,10 @@ def nonlinear( """ delta_in, delta_out = _compute_diffs(inputs, outputs) - new_grad_inp = list(grad_input) - - # supported non-linear modules take only single tensor as input hence accessing - # only the first element in `grad_input` and `grad_output` - new_grad_inp[0] = torch.where( - abs(delta_in) < eps, new_grad_inp[0], grad_output[0] * delta_out / delta_in + new_grad_inp = torch.where( + abs(delta_in) < eps, grad_input, grad_output * delta_out / delta_in ) - # If the module is invalid, save the newly computed gradients - # The original_grad_input will be overridden later in the Tensor hook - if module.is_invalid: - module.saved_grad = new_grad_inp[0] return new_grad_inp @@ -969,18 +919,17 @@ def softmax( grad_input: Tensor, grad_output: Tensor, eps: float = 1e-10, -): +) -> Tensor: delta_in, delta_out = _compute_diffs(inputs, outputs) - new_grad_inp = list(grad_input) grad_input_unnorm = torch.where( - abs(delta_in) < eps, new_grad_inp[0], grad_output[0] * delta_out / delta_in + abs(delta_in) < eps, grad_input, grad_output * delta_out / delta_in ) # normalizing - n = grad_input[0].numel() + n = grad_input.numel() # updating only the first half - new_grad_inp[0] = grad_input_unnorm - grad_input_unnorm.sum() * 1 / n + new_grad_inp = grad_input_unnorm - grad_input_unnorm.sum() * 1 / n return new_grad_inp @@ -991,7 +940,7 @@ def maxpool1d( grad_input: Tensor, grad_output: Tensor, eps: float = 1e-10, -): +) -> Tensor: return maxpool( module, F.max_pool1d, @@ -1011,7 +960,7 @@ def maxpool2d( grad_input: Tensor, grad_output: Tensor, eps: float = 1e-10, -): +) -> Tensor: return maxpool( module, F.max_pool2d, @@ -1025,8 +974,13 @@ def maxpool2d( def maxpool3d( - module: Module, inputs, outputs, grad_input, grad_output, eps: float = 1e-10 -): + module: Module, + inputs: Tensor, + outputs: Tensor, + grad_input: Tensor, + grad_output: Tensor, + eps: float = 1e-10, +) -> Tensor: return maxpool( module, F.max_pool3d, @@ -1041,14 +995,16 @@ def maxpool3d( def maxpool( module: Module, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. pool_func: Callable, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. unpool_func: Callable, - inputs, - outputs, - grad_input, - grad_output, + inputs: Tensor, + outputs: Tensor, + grad_input: Tensor, + grad_output: Tensor, eps: float = 1e-10, -): +) -> Tensor: with torch.no_grad(): input, input_ref = inputs.chunk(2) output, output_ref = outputs.chunk(2) @@ -1071,7 +1027,7 @@ def maxpool( module.ceil_mode, True, ) - grad_output_updated = grad_output[0] + grad_output_updated = grad_output unpool_grad_out_delta, unpool_grad_out_ref_delta = torch.chunk( unpool_func( grad_output_updated * delta_out, @@ -1087,20 +1043,7 @@ def maxpool( unpool_grad_out_delta = unpool_grad_out_delta + unpool_grad_out_ref_delta unpool_grad_out_delta = torch.cat(2 * [unpool_grad_out_delta]) - # If the module is invalid, we need to recompute the grad_input - if module.is_invalid: - original_grad_input = grad_input - grad_input = ( - unpool_func( - grad_output_updated, - indices, - module.kernel_size, - module.stride, - module.padding, - list(cast(torch.Size, module.input.shape)), - ), - ) - if grad_input[0].shape != inputs.shape: + if grad_input.shape != inputs.shape: raise AssertionError( "A problem occurred during maxpool modul's backward pass. " "The gradients with respect to inputs include only a " @@ -1116,13 +1059,7 @@ def maxpool( new_grad_inp = torch.where( abs(delta_in) < eps, grad_input[0], unpool_grad_out_delta / delta_in ) - # If the module is invalid, save the newly computed gradients - # The original_grad_input will be overridden later in the Tensor hook - if module.is_invalid: - module.saved_grad = new_grad_inp - return original_grad_input - else: - return (new_grad_inp,) + return new_grad_inp def _compute_diffs(inputs: Tensor, outputs: Tensor) -> Tuple[Tensor, Tensor]: @@ -1137,7 +1074,7 @@ def _compute_diffs(inputs: Tensor, outputs: Tensor) -> Tuple[Tensor, Tensor]: return torch.cat(2 * [delta_in]), torch.cat(2 * [delta_out]) -SUPPORTED_NON_LINEAR = { +SUPPORTED_NON_LINEAR: Dict[Type[Module], Callable[..., Tensor]] = { nn.ReLU: nonlinear, nn.ELU: nonlinear, nn.LeakyReLU: nonlinear, diff --git a/captum/attr/_core/feature_ablation.py b/captum/attr/_core/feature_ablation.py index fd0007fc75..c6a47417e4 100644 --- a/captum/attr/_core/feature_ablation.py +++ b/captum/attr/_core/feature_ablation.py @@ -1,24 +1,46 @@ #!/usr/bin/env python3 +# pyre-strict + import math -from typing import Any, Callable, cast, Tuple, Union +from typing import ( + Any, + Callable, + cast, + Dict, + Generator, + List, + Optional, + Tuple, + TypeVar, + Union, +) import torch from captum._utils.common import ( _expand_additional_forward_args, _expand_target, _format_additional_forward_args, + _format_feature_mask, _format_output, - _format_tensor_into_tuples, _is_tuple, _run_forward, ) -from captum._utils.progress import progress +from captum._utils.exceptions import FeatureAblationFutureError +from captum._utils.progress import progress, SimpleProgress from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._utils.attribution import PerturbationAttribution from captum.attr._utils.common import _format_input_baseline from captum.log import log_usage from torch import dtype, Tensor +from torch.futures import collect_all, Future + +try: + from tqdm.auto import tqdm +except ImportError: + tqdm = None + +IterableType = TypeVar("IterableType") class FeatureAblation(PerturbationAttribution): @@ -43,32 +65,44 @@ class FeatureAblation(PerturbationAttribution): first dimension (i.e. a feature mask requires to be applied to all inputs). """ - def __init__(self, forward_func: Callable) -> None: + def __init__( + self, forward_func: Callable[..., Union[int, float, Tensor, Future[Tensor]]] + ) -> None: r""" Args: - forward_func (callable): The forward function of the model or - any modification of it + forward_func (Callable): The forward function of the model or + any modification of it. """ PerturbationAttribution.__init__(self, forward_func) self.use_weights = False + # only used when perturbations_per_eval > 1, where the 1st dim of forward_func's + # output must grow as the input batch size. If forward's output is aggregated, + # we cannot expand the input to include more perturbations in one call. + # If it's False, we will force the validation by comparing the outpus of + # the original input and the modified input whose batch size expanded based on + # perturbations_per_eval. Set the flag to True if the output of the modified + # input grow as expected. Once it turns to True, we will assume the model's + # behavior stays consistent and no longer check again + self._is_output_shape_valid = False + @log_usage() def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, feature_mask: Union[None, Tensor, Tuple[Tensor, ...]] = None, perturbations_per_eval: int = 1, show_progress: bool = False, + enable_cross_tensor_attribution: bool = False, **kwargs: Any, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - - inputs (tensor or tuple of tensors): Input for which ablation + inputs (Tensor or tuple[Tensor, ...]): Input for which ablation attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -77,7 +111,7 @@ def attribute( to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define reference value which replaces each feature when ablated. Baselines can be provided as: @@ -101,10 +135,11 @@ def attribute( - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. + In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -129,7 +164,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -144,7 +179,7 @@ def attribute( Note that attributions are not computed with respect to these arguments. Default: None - feature_mask (tensor or tuple of tensors, optional): + feature_mask (Tensor or tuple[Tensor, ...], optional): feature_mask defines a mask for the input, grouping features which should be ablated together. feature_mask should contain the same number of tensors as inputs. @@ -155,7 +190,8 @@ def attribute( - 1, and indices corresponding to the same feature should have the same value. Note that features within each input tensor are ablated - independently (not across tensors). + independently (not across tensors), unless + enable_cross_tensor_attribution is True. If the forward function returns a single scalar per batch, we enforce that the first dimension of each mask must be 1, since attributions are returned batch-wise rather than per @@ -163,7 +199,7 @@ def attribute( same features (indices) in each input example. If None, then a feature mask is constructed which assigns each scalar within a tensor as a separate feature, which - is ablated independently. + is ablated independently by default. Default: None perturbations_per_eval (int, optional): Allows ablation of multiple features to be processed simultaneously in one call to @@ -186,6 +222,10 @@ def attribute( (e.g. time estimation). Otherwise, it will fallback to a simple output of progress. Default: False + enable_cross_tensor_attribution (bool, optional): If True, features + IDs in feature_mask are global IDs across input tensors, + and are ablated together. + Default: False **kwargs (Any, optional): Any additional arguments used by child classes of FeatureAblation (such as Occlusion) to construct ablations. These arguments are ignored when using @@ -193,8 +233,8 @@ def attribute( Default: None Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The attributions with respect to each input feature. If the forward function returns a scalar value per example, attributions will be @@ -246,96 +286,459 @@ def attribute( # Keeps track whether original input is a tuple or not before # converting it into a tuple. is_inputs_tuple = _is_tuple(inputs) - inputs, baselines = _format_input_baseline(inputs, baselines) - additional_forward_args = _format_additional_forward_args( + + formatted_inputs, baselines = _format_input_baseline(inputs, baselines) + formatted_additional_forward_args = _format_additional_forward_args( additional_forward_args ) - num_examples = inputs[0].shape[0] - feature_mask = ( - _format_tensor_into_tuples(feature_mask) - if feature_mask is not None - else None - ) + num_examples = formatted_inputs[0].shape[0] + formatted_feature_mask = _format_feature_mask(feature_mask, formatted_inputs) + assert ( isinstance(perturbations_per_eval, int) and perturbations_per_eval >= 1 ), "Perturbations per evaluation must be an integer and at least 1." with torch.no_grad(): + attr_progress = None if show_progress: - feature_counts = self._get_feature_counts( - inputs, feature_mask, **kwargs - ) - total_forwards = ( - sum( - math.ceil(count / perturbations_per_eval) - for count in feature_counts - ) - + 1 - ) # add 1 for the initial eval - attr_progress = progress( - desc=f"{self.get_name()} attribution", total=total_forwards + attr_progress = self._attribute_progress_setup( + formatted_inputs, + formatted_feature_mask, + enable_cross_tensor_attribution, + **kwargs, + perturbations_per_eval=perturbations_per_eval, ) attr_progress.update(0) # Computes initial evaluation with all features, which is compared # to each ablated result. - initial_eval = _run_forward( - self.forward_func, inputs, target, additional_forward_args + initial_eval: Union[Tensor, Future[Tensor]] = _run_forward( + self.forward_func, + formatted_inputs, + target, + formatted_additional_forward_args, ) - - if show_progress: + if attr_progress is not None: attr_progress.update() - agg_output_mode = FeatureAblation._find_output_mode( - perturbations_per_eval, feature_mask + total_attrib: List[Tensor] = [] + weights: List[Tensor] = [] + flattened_initial_eval: Tensor + n_outputs: int + attrib_type: dtype + + if isinstance(initial_eval, torch.Future): + raise AssertionError( + "when using the attribute function, initial_eval should have " + f"non-Future type rather than {type(initial_eval)}" + ) + + ( + total_attrib, + weights, + initial_eval, + flattened_initial_eval, + n_outputs, + attrib_type, + ) = self._process_initial_eval( + initial_eval, + formatted_inputs, ) - # get as a 2D tensor (if it is not a scalar) - if isinstance(initial_eval, torch.Tensor): - initial_eval = initial_eval.reshape(1, -1) - num_outputs = initial_eval.shape[1] + if enable_cross_tensor_attribution: + total_attrib, weights = self._attribute_with_cross_tensor_feature_masks( + formatted_inputs, + formatted_additional_forward_args, + target, + baselines, + formatted_feature_mask, + attr_progress, + flattened_initial_eval, + initial_eval, + n_outputs, + total_attrib, + weights, + attrib_type, + perturbations_per_eval, + **kwargs, + ) else: - num_outputs = 1 - - if not agg_output_mode: - assert ( - isinstance(initial_eval, torch.Tensor) - and num_outputs == num_examples - ), ( - "expected output of `forward_func` to have " - + "`batch_size` elements for perturbations_per_eval > 1 " - + "and all feature_mask.shape[0] > 1" + total_attrib, weights = self._attribute_with_independent_feature_masks( + formatted_inputs, + formatted_additional_forward_args, + target, + baselines, + formatted_feature_mask, + num_examples, + perturbations_per_eval, + attr_progress, + initial_eval, + flattened_initial_eval, + n_outputs, + total_attrib, + weights, + attrib_type, + **kwargs, ) - # Initialize attribution totals and counts - attrib_type = cast( - dtype, - initial_eval.dtype - if isinstance(initial_eval, Tensor) - else type(initial_eval), + if attr_progress is not None: + attr_progress.close() + + # pyre-fixme[7]: Expected `Variable[TensorOrTupleOfTensorsGeneric <: + # [Tensor, typing.Tuple[Tensor, ...]]]` + # but got `Union[Tensor, typing.Tuple[Tensor, ...]]`. + return self._generate_result(total_attrib, weights, is_inputs_tuple) # type: ignore # noqa: E501 line too long + + def _attribute_with_independent_feature_masks( + self, + formatted_inputs: Tuple[Tensor, ...], + formatted_additional_forward_args: Optional[Tuple[object, ...]], + target: TargetType, + baselines: BaselineType, + formatted_feature_mask: Tuple[Tensor, ...], + num_examples: int, + perturbations_per_eval: int, + attr_progress: Optional[Union[SimpleProgress[IterableType], tqdm]], + initial_eval: Tensor, + flattened_initial_eval: Tensor, + n_outputs: int, + total_attrib: List[Tensor], + weights: List[Tensor], + attrib_type: dtype, + **kwargs: Any, + ) -> Tuple[List[Tensor], List[Tensor]]: + # Iterate through each feature tensor for ablation + for i in range(len(formatted_inputs)): + # Skip any empty input tensors + if torch.numel(formatted_inputs[i]) == 0: + continue + + for ( + current_inputs, + current_add_args, + current_target, + current_mask, + ) in self._ith_input_ablation_generator( + i, + formatted_inputs, + formatted_additional_forward_args, + target, + baselines, + formatted_feature_mask, + perturbations_per_eval, + **kwargs, + ): + # modified_eval has (n_feature_perturbed * n_outputs) elements + # shape: + # agg mode: (*initial_eval.shape) + # non-agg mode: + # (feature_perturbed * batch_size, *initial_eval.shape[1:]) + modified_eval: Union[Tensor, Future[Tensor]] = _run_forward( + self.forward_func, + current_inputs, + current_target, + current_add_args, + ) + + if attr_progress is not None: + attr_progress.update() + + assert not isinstance(modified_eval, torch.Future), ( + "when use_futures is True, modified_eval should have " + f"non-Future type rather than {type(modified_eval)}" + ) + total_attrib, weights = self._process_ablated_out( + modified_eval, + current_inputs, + current_mask, + perturbations_per_eval, + num_examples, + initial_eval, + flattened_initial_eval, + formatted_inputs, + n_outputs, + total_attrib, + weights, + i, + attrib_type, + ) + return total_attrib, weights + + def _attribute_with_cross_tensor_feature_masks( + self, + formatted_inputs: Tuple[Tensor, ...], + formatted_additional_forward_args: Optional[Tuple[object, ...]], + target: TargetType, + baselines: BaselineType, + formatted_feature_mask: Tuple[Tensor, ...], + attr_progress: Optional[Union[SimpleProgress[IterableType], tqdm]], + flattened_initial_eval: Tensor, + initial_eval: Tensor, + n_outputs: int, + total_attrib: List[Tensor], + weights: List[Tensor], + attrib_type: dtype, + perturbations_per_eval: int, + **kwargs: Any, + ) -> Tuple[List[Tensor], List[Tensor]]: + feature_idx_to_tensor_idx: Dict[int, List[int]] = {} + for i, mask in enumerate(formatted_feature_mask): + for feature_idx in torch.unique(mask): + if feature_idx.item() not in feature_idx_to_tensor_idx: + feature_idx_to_tensor_idx[feature_idx.item()] = [] + feature_idx_to_tensor_idx[feature_idx.item()].append(i) + all_feature_idxs = list(feature_idx_to_tensor_idx.keys()) + + additional_args_repeated: object + if perturbations_per_eval > 1: + # Repeat features and additional args for batch size. + all_features_repeated = tuple( + torch.cat([formatted_inputs[j]] * perturbations_per_eval, dim=0) + for j in range(len(formatted_inputs)) ) + additional_args_repeated = ( + _expand_additional_forward_args( + formatted_additional_forward_args, perturbations_per_eval + ) + if formatted_additional_forward_args is not None + else None + ) + target_repeated = _expand_target(target, perturbations_per_eval) + else: + all_features_repeated = formatted_inputs + additional_args_repeated = formatted_additional_forward_args + target_repeated = target + num_examples = formatted_inputs[0].shape[0] - total_attrib = [ - torch.zeros( - (num_outputs,) + input.shape[1:], - dtype=attrib_type, - device=input.device, + current_additional_args: object + if isinstance(baselines, tuple): + reshaped = False + reshaped_baselines: list[Union[Tensor, int, float]] = [] + for baseline in baselines: + if isinstance(baseline, Tensor): + reshaped = True + reshaped_baselines.append( + baseline.reshape((1,) + tuple(baseline.shape)) + ) + else: + reshaped_baselines.append(baseline) + baselines = tuple(reshaped_baselines) if reshaped else baselines + for i in range(0, len(all_feature_idxs), perturbations_per_eval): + current_feature_idxs = all_feature_idxs[i : i + perturbations_per_eval] + current_num_ablated_features = min( + perturbations_per_eval, len(current_feature_idxs) + ) + + # Store appropriate inputs and additional args based on batch size. + if current_num_ablated_features != perturbations_per_eval: + current_additional_args = ( + _expand_additional_forward_args( + formatted_additional_forward_args, current_num_ablated_features + ) + if formatted_additional_forward_args is not None + else None ) - for input in inputs - ] + current_target = _expand_target(target, current_num_ablated_features) + expanded_inputs = tuple( + feature_repeated[0 : current_num_ablated_features * num_examples] + for feature_repeated in all_features_repeated + ) + else: + current_additional_args = additional_args_repeated + current_target = target_repeated + expanded_inputs = all_features_repeated - # Weights are used in cases where ablations may be overlapping. - if self.use_weights: - weights = [ - torch.zeros( - (num_outputs,) + input.shape[1:], device=input.device - ).float() - for input in inputs - ] + current_inputs, current_masks = ( + self._construct_ablated_input_across_tensors( + expanded_inputs, + formatted_feature_mask, + baselines, + current_feature_idxs, + feature_idx_to_tensor_idx, + current_num_ablated_features, + ) + ) + + # modified_eval has (n_feature_perturbed * n_outputs) elements + # shape: + # agg mode: (*initial_eval.shape) + # non-agg mode: + # (feature_perturbed * batch_size, *initial_eval.shape[1:]) + modified_eval = _run_forward( + self.forward_func, + current_inputs, + current_target, + current_additional_args, + ) + + if attr_progress is not None: + attr_progress.update() + + assert not isinstance(modified_eval, torch.Future), ( + "when use_futures is True, modified_eval should have " + f"non-Future type rather than {type(modified_eval)}" + ) + + total_attrib, weights = self._process_ablated_out_full( + modified_eval, + current_masks, + flattened_initial_eval, + initial_eval, + current_inputs, + n_outputs, + num_examples, + total_attrib, + weights, + attrib_type, + perturbations_per_eval, + ) + return total_attrib, weights + + def _construct_ablated_input_across_tensors( + self, + inputs: Tuple[Tensor, ...], + input_mask: Tuple[Tensor, ...], + baselines: BaselineType, + feature_idxs: List[int], + feature_idx_to_tensor_idx: Dict[int, List[int]], + current_num_ablated_features: int, + ) -> Tuple[Tuple[Tensor, ...], Tuple[Optional[Tensor], ...]]: + ablated_inputs = [] + current_masks: List[Optional[Tensor]] = [] + tensor_idxs = { + tensor_idx + for sublist in ( + feature_idx_to_tensor_idx[feature_idx] for feature_idx in feature_idxs + ) + for tensor_idx in sublist + } + + for i, input_tensor in enumerate(inputs): + if i not in tensor_idxs: + ablated_inputs.append(input_tensor) + current_masks.append(None) + continue + tensor_mask = [] + ablated_input = input_tensor.clone() + baseline = baselines[i] if isinstance(baselines, tuple) else baselines + for j, feature_idx in enumerate(feature_idxs): + original_input_size = ( + input_tensor.shape[0] // current_num_ablated_features + ) + start_idx = j * original_input_size + end_idx = (j + 1) * original_input_size + + mask = (input_mask[i] == feature_idx).to(input_tensor.device).long() + if mask.ndim == 0: + mask = mask.reshape((1,) * input_tensor.dim()) + tensor_mask.append(mask) + + assert baseline is not None, "baseline must be provided" + ablated_input[start_idx:end_idx] = input_tensor[start_idx:end_idx] * ( + 1 - mask + ) + (baseline * mask.to(input_tensor.dtype)) + current_masks.append(torch.stack(tensor_mask, dim=0)) + ablated_inputs.append(ablated_input) + + return tuple(ablated_inputs), tuple(current_masks) + + def _initial_eval_to_processed_initial_eval_fut( + self, initial_eval: Future[Tensor], formatted_inputs: Tuple[Tensor, ...] + ) -> Tuple[List[Tensor], List[Tensor], Tensor, Tensor, int, dtype]: + try: + initial_eval_processed = initial_eval.value() + if not isinstance(initial_eval_processed, Tensor): + raise AssertionError( + "initial_eval_to_processed_initial_eval_fut: " + "initial_eval should be a Tensor" + ) + result = self._process_initial_eval( + initial_eval_processed, formatted_inputs + ) + + except FeatureAblationFutureError as e: + raise FeatureAblationFutureError( + "initial_eval_to_processed_initial_eval_fut func failed" + ) from e + return result + + @log_usage() + def attribute_future( + self, + inputs: TensorOrTupleOfTensorsGeneric, + baselines: BaselineType = None, + target: TargetType = None, + additional_forward_args: Optional[object] = None, + feature_mask: Union[None, Tensor, Tuple[Tensor, ...]] = None, + perturbations_per_eval: int = 1, + show_progress: bool = False, + **kwargs: Any, + ) -> Future[TensorOrTupleOfTensorsGeneric]: + r""" + Almost the same as the attribute function, except that it requires a + forward function that returns a Future, and it returns a Future. + """ + + # Keeps track whether original input is a tuple or not before + # converting it into a tuple. + is_inputs_tuple = _is_tuple(inputs) + formatted_inputs, baselines = _format_input_baseline(inputs, baselines) + formatted_additional_forward_args = _format_additional_forward_args( + additional_forward_args + ) + num_examples = formatted_inputs[0].shape[0] + formatted_feature_mask = _format_feature_mask(feature_mask, formatted_inputs) + + assert ( + isinstance(perturbations_per_eval, int) and perturbations_per_eval >= 1 + ), "Perturbations per evaluation must be an integer and at least 1." + with torch.no_grad(): + if show_progress: + attr_progress = self._attribute_progress_setup( + formatted_inputs, + formatted_feature_mask, + **kwargs, + perturbations_per_eval=perturbations_per_eval, + ) + attr_progress.update(0) + + # Computes initial evaluation with all features, which is compared + # to each ablated result. + initial_eval: Union[Tensor, Future[Tensor]] = _run_forward( + self.forward_func, + formatted_inputs, + target, + formatted_additional_forward_args, + ) + if show_progress: + attr_progress.update() + + processed_initial_eval_fut: Optional[ + Future[Tuple[List[Tensor], List[Tensor], Tensor, Tensor, int, dtype]] + ] = None + + if not isinstance(initial_eval, torch.Future): + raise AssertionError( + "when using attribute_future, initial_eval should have " + f"Future type rather than {type(initial_eval)}" + ) + + processed_initial_eval_fut = initial_eval.then( + lambda initial_eval: self._initial_eval_to_processed_initial_eval_fut( + initial_eval, + formatted_inputs, + ) + ) + + # The will be the same amount futures as modified_eval down there, + # since we cannot add up the evaluation result adhoc under async mode. + all_modified_eval_futures: List[ + List[Future[Tuple[List[Tensor], List[Tensor]]]] + ] = [[] for _ in range(len(inputs))] # Iterate through each feature tensor for ablation - for i in range(len(inputs)): + for i in range(len(formatted_inputs)): # Skip any empty input tensors - if torch.numel(inputs[i]) == 0: + if torch.numel(formatted_inputs[i]) == 0: continue for ( @@ -345,17 +748,20 @@ def attribute( current_mask, ) in self._ith_input_ablation_generator( i, - inputs, - additional_forward_args, + formatted_inputs, + formatted_additional_forward_args, target, baselines, - feature_mask, + formatted_feature_mask, perturbations_per_eval, **kwargs, ): - # modified_eval dimensions: 1D tensor with length - # equal to #num_examples * #features in batch - modified_eval = _run_forward( + # modified_eval has (n_feature_perturbed * n_outputs) elements + # shape: + # agg mode: (*initial_eval.shape) + # non-agg mode: + # (feature_perturbed * batch_size, *initial_eval.shape[1:]) + modified_eval: Union[Tensor, Future[Tensor]] = _run_forward( self.forward_func, current_inputs, current_target, @@ -365,59 +771,175 @@ def attribute( if show_progress: attr_progress.update() - # (contains 1 more dimension than inputs). This adds extra - # dimensions of 1 to make the tensor broadcastable with the inputs - # tensor. - if not isinstance(modified_eval, torch.Tensor): - eval_diff = initial_eval - modified_eval - else: - if not agg_output_mode: - assert ( - modified_eval.numel() == current_inputs[0].shape[0] - ), """expected output of forward_func to grow with - batch_size. If this is not the case for your model - please set perturbations_per_eval = 1""" - - eval_diff = ( - initial_eval - modified_eval.reshape((-1, num_outputs)) - ).reshape((-1, num_outputs) + (len(inputs[i].shape) - 1) * (1,)) - eval_diff = eval_diff.to(total_attrib[i].device) - if self.use_weights: - weights[i] += current_mask.float().sum(dim=0) - total_attrib[i] += (eval_diff * current_mask.to(attrib_type)).sum( - dim=0 + if not isinstance(modified_eval, torch.Future): + raise AssertionError( + "when using attribute_future, modified_eval should have " + f"Future type rather than {type(modified_eval)}" + ) + if processed_initial_eval_fut is None: + raise AssertionError( + "processed_initial_eval_fut should not be None" + ) + + # Need to collect both initial eval and modified_eval + eval_futs: Future[ + List[ + Future[ + Union[ + Tuple[ + List[Tensor], + List[Tensor], + Tensor, + Tensor, + int, + dtype, + ], + Tensor, + ] + ] + ] + ] = collect_all( + [ + processed_initial_eval_fut, + modified_eval, + ] ) + ablated_out_fut: Future[Tuple[List[Tensor], List[Tensor]]] = ( + eval_futs.then( + lambda eval_futs, current_inputs=current_inputs, current_mask=current_mask, i=i: self._eval_fut_to_ablated_out_fut( # type: ignore # noqa: E501 line too long + eval_futs=eval_futs, + current_inputs=current_inputs, + current_mask=current_mask, + i=i, + perturbations_per_eval=perturbations_per_eval, + num_examples=num_examples, + formatted_inputs=formatted_inputs, + ) + ) + ) + + all_modified_eval_futures[i].append(ablated_out_fut) + if show_progress: attr_progress.close() - # Divide total attributions by counts and return formatted attributions - if self.use_weights: - attrib = tuple( - single_attrib.float() / weight - for single_attrib, weight in zip(total_attrib, weights) + return self._generate_async_result(all_modified_eval_futures, is_inputs_tuple) # type: ignore # noqa: E501 line too long + + # pyre-fixme[3] return type must be annotated + def _attribute_progress_setup( + self, + formatted_inputs: Tuple[Tensor, ...], + feature_mask: Tuple[Tensor, ...], + enable_cross_tensor_attribution: bool, + perturbations_per_eval: int, + **kwargs: Any, + ): + feature_counts = self._get_feature_counts( + formatted_inputs, feature_mask, **kwargs + ) + total_forwards = ( + math.ceil(int(sum(feature_counts)) / perturbations_per_eval) + if enable_cross_tensor_attribution + else sum( + math.ceil(count / perturbations_per_eval) for count in feature_counts + ) + ) + total_forwards += 1 # add 1 for the initial eval + attr_progress = progress( + desc=f"{self.get_name()} attribution", total=total_forwards + ) + return attr_progress + + def _eval_fut_to_ablated_out_fut( + self, + # pyre-ignore Invalid type parameters [24] + eval_futs: Future[List[Future[List[object]]]], + current_inputs: Tuple[Tensor, ...], + current_mask: Tensor, + i: int, + perturbations_per_eval: int, + num_examples: int, + formatted_inputs: Tuple[Tensor, ...], + ) -> Tuple[List[Tensor], List[Tensor]]: + try: + modified_eval = cast(Tensor, eval_futs.value()[1].value()) + initial_eval_tuple = cast( + Tuple[ + List[Tensor], + List[Tensor], + Tensor, + Tensor, + int, + dtype, + ], + eval_futs.value()[0].value(), + ) + if len(initial_eval_tuple) != 6: + raise AssertionError( + "eval_fut_to_ablated_out_fut: " + "initial_eval_tuple should have 6 elements: " + "total_attrib, weights, initial_eval, " + "flattened_initial_eval, n_outputs, attrib_type " ) - else: - attrib = tuple(total_attrib) - _result = _format_output(is_inputs_tuple, attrib) - return _result + if not isinstance(modified_eval, Tensor): + raise AssertionError( + "eval_fut_to_ablated_out_fut: " "modified eval should be a Tensor" + ) + ( + total_attrib, + weights, + initial_eval, + flattened_initial_eval, + n_outputs, + attrib_type, + ) = initial_eval_tuple + result = self._process_ablated_out( # type: ignore # noqa: E501 line too long + modified_eval=modified_eval, + current_inputs=current_inputs, + current_mask=current_mask, + perturbations_per_eval=perturbations_per_eval, + num_examples=num_examples, + initial_eval=initial_eval, + flattened_initial_eval=flattened_initial_eval, + inputs=formatted_inputs, + n_outputs=n_outputs, + total_attrib=total_attrib, + weights=weights, + i=i, + attrib_type=attrib_type, + ) + except FeatureAblationFutureError as e: + raise FeatureAblationFutureError( + "eval_fut_to_ablated_out_fut func failed)" + ) from e + return result def _ith_input_ablation_generator( self, - i, - inputs, - additional_args, - target, - baselines, - input_mask, - perturbations_per_eval, - **kwargs, - ): + i: int, + inputs: TensorOrTupleOfTensorsGeneric, + additional_args: Optional[Tuple[object, ...]], + target: TargetType, + baselines: BaselineType, + input_mask: Union[None, Tensor, Tuple[Tensor, ...]], + perturbations_per_eval: int, + **kwargs: Any, + ) -> Generator[ + Tuple[ + Tuple[Tensor, ...], + object, + TargetType, + Tensor, + ], + None, + None, + ]: """ - This method return an generator of ablation perturbations of the i-th input + This method returns a generator of ablation perturbations of the i-th input Returns: - ablation_iter (generator): yields each perturbation to be evaluated + ablation_iter (Generator): yields each perturbation to be evaluated as a tuple (inputs, additional_forward_args, targets, mask). """ extra_args = {} @@ -428,16 +950,17 @@ def _ith_input_ablation_generator( else: extra_args[key] = value - input_mask = input_mask[i] if input_mask is not None else None - min_feature, num_features, input_mask = self._get_feature_range_and_mask( - inputs[i], input_mask, **extra_args + cur_input_mask = input_mask[i] if input_mask is not None else None + min_feature, num_features, cur_input_mask = self._get_feature_range_and_mask( + inputs[i], cur_input_mask, **extra_args ) num_examples = inputs[0].shape[0] perturbations_per_eval = min(perturbations_per_eval, num_features) baseline = baselines[i] if isinstance(baselines, tuple) else baselines if isinstance(baseline, torch.Tensor): - baseline = baseline.reshape((1,) + baseline.shape) + baseline = baseline.reshape((1,) + tuple(baseline.shape)) + additional_args_repeated: object if perturbations_per_eval > 1: # Repeat features and additional args for batch size. all_features_repeated = [ @@ -456,6 +979,7 @@ def _ith_input_ablation_generator( target_repeated = target num_features_processed = min_feature + current_additional_args: object while num_features_processed < num_features: current_num_ablated_features = min( perturbations_per_eval, num_features - num_features_processed @@ -490,12 +1014,13 @@ def _ith_input_ablation_generator( # may not necessarilly be num_examples and will match the first # dimension of this tensor. current_reshaped = current_features[i].reshape( - (current_num_ablated_features, -1) + current_features[i].shape[1:] + (current_num_ablated_features, -1) + + tuple(current_features[i].shape[1:]) ) ablated_features, current_mask = self._construct_ablated_input( current_reshaped, - input_mask, + cur_input_mask, baseline, num_features_processed, num_features_processed + current_num_ablated_features, @@ -506,7 +1031,7 @@ def _ith_input_ablation_generator( # (current_num_ablated_features * num_examples, inputs[i].shape[1:]), # which can be provided to the model as input. current_features[i] = ablated_features.reshape( - (-1,) + ablated_features.shape[2:] + (-1,) + tuple(ablated_features.shape[2:]) ) yield tuple( current_features @@ -516,8 +1041,14 @@ def _ith_input_ablation_generator( num_features_processed += current_num_ablated_features def _construct_ablated_input( - self, expanded_input, input_mask, baseline, start_feature, end_feature, **kwargs - ): + self, + expanded_input: Tensor, + input_mask: Union[None, Tensor, Tuple[Tensor, ...]], + baseline: Union[None, float, Tensor], + start_feature: int, + end_feature: int, + **kwargs: Any, + ) -> Tuple[Tensor, Tensor]: r""" Ablates given expanded_input tensor with given feature mask, feature range, and baselines. expanded_input shape is (`num_features`, `num_examples`, ...) @@ -535,14 +1066,22 @@ def _construct_ablated_input( thus counted towards ablations for that feature) and 0s otherwise. """ current_mask = torch.stack( - [input_mask == j for j in range(start_feature, end_feature)], dim=0 + cast(List[Tensor], [input_mask == j for j in range(start_feature, end_feature)]), # type: ignore # noqa: E501 line too long + dim=0, ).long() + current_mask = current_mask.to(expanded_input.device) + assert baseline is not None, "baseline must be provided" ablated_tensor = ( expanded_input * (1 - current_mask).to(expanded_input.dtype) ) + (baseline * current_mask.to(expanded_input.dtype)) return ablated_tensor, current_mask - def _get_feature_range_and_mask(self, input, input_mask, **kwargs): + def _get_feature_range_and_mask( + self, + input: Tensor, + input_mask: Optional[Tensor], + **kwargs: Any, + ) -> Tuple[int, int, Union[None, Tensor, Tuple[Tensor, ...]]]: if input_mask is None: # Obtain feature mask for selected input tensor, matches size of # 1 input example, (1 x inputs[i].shape[1:]) @@ -551,41 +1090,301 @@ def _get_feature_range_and_mask(self, input, input_mask, **kwargs): input[0:1].shape, ).long() return ( - torch.min(input_mask).item(), - torch.max(input_mask).item() + 1, + int(torch.min(input_mask).item()), + int(torch.max(input_mask).item() + 1), input_mask, ) - def _get_feature_counts(self, inputs, feature_mask, **kwargs): + def _get_feature_counts( + self, + inputs: TensorOrTupleOfTensorsGeneric, + feature_mask: Tuple[Tensor, ...], + **kwargs: Any, + ) -> Tuple[float, ...]: """return the numbers of input features""" if not feature_mask: return tuple(inp[0].numel() if inp.numel() else 0 for inp in inputs) return tuple( - (mask.max() - mask.min()).item() + 1 - if mask is not None - else (inp[0].numel() if inp.numel() else 0) + ( + (mask.max() - mask.min()).item() + 1 + if mask is not None + else (inp[0].numel() if inp.numel() else 0) + ) for inp, mask in zip(inputs, feature_mask) ) - @staticmethod - def _find_output_mode( - perturbations_per_eval: int, - feature_mask: Union[None, TensorOrTupleOfTensorsGeneric], - ) -> bool: + def _parse_forward_out(self, forward_output: Tensor) -> Tensor: + """ + A temp wrapper for global _run_forward util to force forward output + type assertion & conversion. + Remove after the strict logic is supported by all attr classes """ - Returns True if the output mode is "aggregation output mode" + if isinstance(forward_output, Tensor): + return forward_output - Aggregation output mode is defined as: when there is no 1:1 correspondence - with the `num_examples` (`batch_size`) and the amount of outputs your model - produces, i.e. the model output does not grow in size as the input becomes - larger. + output_type = type(forward_output) + assert output_type is int or output_type is float, ( + "the return of forward_func must be a tensor, int, or float," + f" received: {forward_output}" + ) - We assume this is the case if `perturbations_per_eval == 1` - and your feature mask is None or is associated to all - examples in a batch (fm.shape[0] == 1 for all fm in feature_mask). - """ - return perturbations_per_eval == 1 and ( - feature_mask is None - or all(len(sm.shape) == 0 or sm.shape[0] == 1 for sm in feature_mask) + # using python built-in type as torch dtype + # int -> torch.int64, float -> torch.float64 + # ref: https://github.com/pytorch/pytorch/pull/21215 + return torch.tensor(forward_output, dtype=cast(dtype, output_type)) + + def _process_initial_eval( + self, + initial_eval: Tensor, + inputs: TensorOrTupleOfTensorsGeneric, + ) -> Tuple[List[Tensor], List[Tensor], Tensor, Tensor, int, dtype]: + initial_eval = self._parse_forward_out(initial_eval) + + # number of elements in the output of forward_func + n_outputs = initial_eval.numel() if isinstance(initial_eval, Tensor) else 1 + + # flatten eval outputs into 1D (n_outputs) + # add the leading dim for n_feature_perturbed + flattened_initial_eval = initial_eval.reshape(1, -1) + + # Initialize attribution totals and counts + attrib_type = flattened_initial_eval.dtype + + total_attrib = [ + # attribute w.r.t each output element + torch.zeros( + (n_outputs,) + input.shape[1:], + dtype=attrib_type, + device=input.device, + ) + for input in inputs + ] + + # Weights are used in cases where ablations may be overlapping. + weights = [] + if self.use_weights: + weights = [ + torch.zeros((n_outputs,) + input.shape[1:], device=input.device).float() + for input in inputs + ] + + return ( + total_attrib, + weights, + initial_eval, + flattened_initial_eval, + n_outputs, + attrib_type, + ) + + def _process_ablated_out( + self, + modified_eval: Tensor, + current_inputs: Tuple[Tensor, ...], + current_mask: Tensor, + perturbations_per_eval: int, + num_examples: int, + initial_eval: Tensor, + flattened_initial_eval: Tensor, + inputs: TensorOrTupleOfTensorsGeneric, + n_outputs: int, + total_attrib: List[Tensor], + weights: List[Tensor], + i: int, + attrib_type: dtype, + ) -> Tuple[List[Tensor], List[Tensor]]: + modified_eval = self._parse_forward_out(modified_eval) + + # if perturbations_per_eval > 1, the output shape must grow with + # input and not be aggregated + if perturbations_per_eval > 1 and not self._is_output_shape_valid: + current_batch_size = current_inputs[0].shape[0] + + # number of perturbation, which is not the same as + # perturbations_per_eval when not enough features to perturb + n_perturb = current_batch_size / num_examples + + current_output_shape = modified_eval.shape + + # use initial_eval as the forward of perturbations_per_eval = 1 + initial_output_shape = initial_eval.shape + + assert ( + # check if the output is not a scalar + current_output_shape + and initial_output_shape + # check if the output grow in same ratio, i.e., not agg + and current_output_shape[0] == n_perturb * initial_output_shape[0] + ), ( + "When perturbations_per_eval > 1, forward_func's output " + "should be a tensor whose 1st dim grow with the input " + f"batch size: when input batch size is {num_examples}, " + f"the output shape is {initial_output_shape}; " + f"when input batch size is {current_batch_size}, " + f"the output shape is {current_output_shape}" + ) + + self._is_output_shape_valid = True + + # reshape the leading dim for n_feature_perturbed + # flatten each feature's eval outputs into 1D of (n_outputs) + modified_eval = modified_eval.reshape(-1, n_outputs) + # eval_diff in shape (n_feature_perturbed, n_outputs) + eval_diff = flattened_initial_eval - modified_eval + + # append the shape of one input example + # to make it broadcastable to mask + eval_diff = eval_diff.reshape(eval_diff.shape + (inputs[i].dim() - 1) * (1,)) + eval_diff = eval_diff.to(total_attrib[i].device) + + if self.use_weights: + weights[i] += current_mask.float().sum(dim=0) + + total_attrib[i] += (eval_diff * current_mask.to(attrib_type)).sum(dim=0) + return total_attrib, weights + + def _process_ablated_out_full( + self, + modified_eval: Tensor, + current_mask: Tuple[Optional[Tensor], ...], + flattened_initial_eval: Tensor, + initial_eval: Tensor, + inputs: TensorOrTupleOfTensorsGeneric, + n_outputs: int, + num_examples: int, + total_attrib: List[Tensor], + weights: List[Tensor], + attrib_type: dtype, + perturbations_per_eval: int, + ) -> Tuple[List[Tensor], List[Tensor]]: + modified_eval = self._parse_forward_out(modified_eval) + # if perturbations_per_eval > 1, the output shape must grow with + # input and not be aggregated + current_batch_size = inputs[0].shape[0] + + # number of perturbation, which is not the same as + # perturbations_per_eval when not enough features to perturb + n_perturb = current_batch_size / num_examples + if perturbations_per_eval > 1 and not self._is_output_shape_valid: + + current_output_shape = modified_eval.shape + + # use initial_eval as the forward of perturbations_per_eval = 1 + initial_output_shape = initial_eval.shape + + assert ( + # check if the output is not a scalar + current_output_shape + and initial_output_shape + # check if the output grow in same ratio, i.e., not agg + and current_output_shape[0] == n_perturb * initial_output_shape[0] + ), ( + "When perturbations_per_eval > 1, forward_func's output " + "should be a tensor whose 1st dim grow with the input " + f"batch size: when input batch size is {num_examples}, " + f"the output shape is {initial_output_shape}; " + f"when input batch size is {current_batch_size}, " + f"the output shape is {current_output_shape}" + ) + + self._is_output_shape_valid = True + + # reshape the leading dim for n_feature_perturbed + # flatten each feature's eval outputs into 1D of (n_outputs) + modified_eval = modified_eval.reshape(-1, n_outputs) + # eval_diff in shape (n_feature_perturbed, n_outputs) + eval_diff = flattened_initial_eval - modified_eval + eval_diff_shape = eval_diff.shape + + if self.use_weights: + for weight, mask in zip(weights, current_mask): + if mask is not None: + weight += mask.float().sum(dim=0) + for i, mask in enumerate(current_mask): + if mask is None or inputs[i].numel() == 0: + continue + eval_diff = eval_diff.reshape( + eval_diff_shape + (inputs[i].dim() - 1) * (1,) + ) + eval_diff = eval_diff.to(total_attrib[i].device) + total_attrib[i] += (eval_diff * mask.to(attrib_type)).sum(dim=0) + + return total_attrib, weights + + def _fut_tuple_to_accumulate_fut_list( + self, + total_attrib: List[Tensor], + weights: List[Tensor], + i: int, + fut_tuple: Future[Tuple[List[Tensor], List[Tensor]]], + ) -> None: + try: + attrib, weight = fut_tuple.value() + self._accumulate_for_single_input(total_attrib, weights, i, attrib, weight) + except FeatureAblationFutureError as e: + raise FeatureAblationFutureError( + "fut_tuple_to_accumulate_fut_list failed" + ) from e + + def _generate_async_result( + self, + futs: List[List[Future[Tuple[List[Tensor], List[Tensor]]]]], + is_inputs_tuple: bool, + ) -> Future[Union[Tensor, Tuple[Tensor, ...]]]: + # Each element of the 2d list contains evalutaion results for a feature + # Need to add up all the results for each input + accumulate_fut_list: List[Future[None]] = [] + total_attrib: List[Tensor] = [] + weights: List[Tensor] = [] + + for i, fut_tuples in enumerate(futs): + for fut_tuple in fut_tuples: + + accumulate_fut_list.append( + fut_tuple.then( + lambda fut_tuple, i=i: self._fut_tuple_to_accumulate_fut_list( # type: ignore # noqa: E501 line too long + total_attrib, weights, i, fut_tuple + ) + ) + ) + + result_fut = collect_all(accumulate_fut_list).then( + lambda x: self._generate_result(total_attrib, weights, is_inputs_tuple) ) + + return result_fut + + def _accumulate_for_single_input( + self, + total_attrib: List[Tensor], + weights: List[Tensor], + idx: int, + attrib: List[Tensor], + weight: List[Tensor], + ) -> None: + if total_attrib: + total_attrib[idx] = attrib[idx] + else: + total_attrib.extend(attrib) + if self.use_weights: + if weights: + weights[idx] = weight[idx] + else: + weights.extend(weight) + + def _generate_result( + self, + total_attrib: List[Tensor], + weights: List[Tensor], + is_inputs_tuple: bool, + ) -> Union[Tensor, Tuple[Tensor, ...]]: + # Divide total attributions by counts and return formatted attributions + if self.use_weights: + attrib = tuple( + single_attrib.float() / weight + for single_attrib, weight in zip(total_attrib, weights) + ) + else: + attrib = tuple(total_attrib) + return _format_output(is_inputs_tuple, attrib) diff --git a/captum/attr/_core/feature_permutation.py b/captum/attr/_core/feature_permutation.py index 544ff16ac6..6e9184d60a 100644 --- a/captum/attr/_core/feature_permutation.py +++ b/captum/attr/_core/feature_permutation.py @@ -1,11 +1,14 @@ #!/usr/bin/env python3 -from typing import Any, Callable, Tuple, Union + +# pyre-strict +from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch -from captum._utils.typing import TargetType, TensorOrTupleOfTensorsGeneric +from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._core.feature_ablation import FeatureAblation from captum.log import log_usage from torch import Tensor +from torch.futures import Future def _permute_feature(x: Tensor, feature_mask: Tensor) -> Tensor: @@ -52,7 +55,8 @@ class FeaturePermutation(FeatureAblation): of examples to compute attributions and cannot be performed on a single example. By default, each scalar value within - each input tensor is taken as a feature and shuffled independently. Passing + each input tensor is taken as a feature and shuffled independently, *unless* + attribute() is called with enable_cross_tensor_attribution=True. Passing a feature mask, allows grouping features to be shuffled together. Each input scalar in the group will be given the same attribution value equal to the change in target as a result of shuffling the entire feature @@ -70,14 +74,16 @@ class FeaturePermutation(FeatureAblation): """ def __init__( - self, forward_func: Callable, perm_func: Callable = _permute_feature + self, + forward_func: Callable[..., Union[int, float, Tensor, Future[Tensor]]], + perm_func: Callable[[Tensor, Tensor], Tensor] = _permute_feature, ) -> None: r""" Args: - forward_func (callable): The forward function of the model or - any modification of it - perm_func (callable, optional): A function that accepts a batch of + forward_func (Callable): The forward function of the model or + any modification of it. + perm_func (Callable, optional): A function that accepts a batch of inputs and a feature mask, and "permutes" the feature using feature mask across the batch. This defaults to a function which applies a random permutation, this argument only needs @@ -94,21 +100,24 @@ def attribute( # type: ignore self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, perturbations_per_eval: int = 1, show_progress: bool = False, + enable_cross_tensor_attribution: bool = False, **kwargs: Any, ) -> TensorOrTupleOfTensorsGeneric: r""" - This function is almost equivalent to `FeatureAblation.attribute`. The - main difference is the way ablated examples are generated. Specifically - they are generated through the `perm_func`, as we set the baselines for - `FeatureAblation.attribute` to None. + This function is almost equivalent to + :func:`FeatureAblation.attribute `. The + main difference is the way ablated examples are generated. Specifically they + are generated through the ``perm_func``, as we set the baselines for + :func:`FeatureAblation.attribute ` to + ``None``. Args: - inputs (tensor or tuple of tensors): Input for which + inputs (Tensor or tuple[Tensor, ...]): Input for which permutation attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If @@ -118,7 +127,7 @@ def attribute( # type: ignore 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which difference is computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -143,7 +152,7 @@ def attribute( # type: ignore target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -158,7 +167,7 @@ def attribute( # type: ignore Note that attributions are not computed with respect to these arguments. Default: None - feature_mask (tensor or tuple of tensors, optional): + feature_mask (Tensor or tuple[Tensor, ...], optional): feature_mask defines a mask for the input, grouping features which should be ablated together. feature_mask should contain the same number of tensors as inputs. @@ -169,14 +178,16 @@ def attribute( # type: ignore corresponding to the same feature should have the same value. Note that features within each input tensor are ablated independently (not across - tensors). + tensors), unless enable_cross_tensor_attribution is + True. The first dimension of each mask must be 1, as we require to have the same group of features for each input sample. If None, then a feature mask is constructed which assigns each scalar within a tensor as a separate feature, which - is permuted independently. + is permuted independently, unless + enable_cross_tensor_attribution is True. Default: None perturbations_per_eval (int, optional): Allows permutations of multiple features to be processed simultaneously @@ -195,15 +206,19 @@ def attribute( # type: ignore (e.g. time estimation). Otherwise, it will fallback to a simple output of progress. Default: False + enable_cross_tensor_attribution (bool, optional): If True, then + features can be grouped across input tensors depending on + the values in the feature mask. + Default: False **kwargs (Any, optional): Any additional arguments used by child - classes of FeatureAblation (such as Occlusion) to construct - ablations. These arguments are ignored when using - FeatureAblation directly. + classes of :class:`.FeatureAblation` (such as + :class:`.Occlusion`) to construct ablations. These + arguments are ignored when using FeatureAblation directly. Default: None Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The attributions with respect to each input feature. If the forward function returns a scalar value per example, attributions will be @@ -253,7 +268,36 @@ def attribute( # type: ignore >>> attr = feature_perm.attribute(input, target=1, >>> feature_mask=feature_mask) """ + # Remove baselines from kwargs if provided so we don't specify this field + # twice in the FeatureAblation.attribute call below. + if isinstance(kwargs, dict) and "baselines" in kwargs: + del kwargs["baselines"] return FeatureAblation.attribute.__wrapped__( + self, + inputs, + baselines=None, + target=target, + additional_forward_args=additional_forward_args, + feature_mask=feature_mask, + perturbations_per_eval=perturbations_per_eval, + show_progress=show_progress, + enable_cross_tensor_attribution=enable_cross_tensor_attribution, + **kwargs, + ) + + def attribute_future( + self, + inputs: TensorOrTupleOfTensorsGeneric, + target: TargetType = None, + additional_forward_args: Optional[object] = None, + feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, + perturbations_per_eval: int = 1, + show_progress: bool = False, + **kwargs: Any, + ) -> Future[TensorOrTupleOfTensorsGeneric]: + if isinstance(kwargs, dict) and "baselines" in kwargs: + del kwargs["baselines"] + return FeatureAblation.attribute_future.__wrapped__( self, inputs, baselines=None, @@ -268,8 +312,8 @@ def attribute( # type: ignore def _construct_ablated_input( self, expanded_input: Tensor, - input_mask: Tensor, - baseline: Union[int, float, Tensor], + input_mask: Union[None, Tensor, Tuple[Tensor, ...]], + baseline: Union[None, float, Tensor], start_feature: int, end_feature: int, **kwargs: Any, @@ -288,13 +332,18 @@ def _construct_ablated_input( Since `baselines` is set to None for `FeatureAblation.attribute, this will be the zero tensor, however, it is not used. """ - assert input_mask.shape[0] == 1, ( + assert ( + input_mask is not None + and not isinstance(input_mask, tuple) + and input_mask.shape[0] == 1 + ), ( "input_mask.shape[0] != 1: pass in one mask in order to permute" "the same features for each input" ) current_mask = torch.stack( [input_mask == j for j in range(start_feature, end_feature)], dim=0 ).bool() + current_mask = current_mask.to(expanded_input.device) output = torch.stack( [ @@ -303,3 +352,47 @@ def _construct_ablated_input( ] ) return output, current_mask + + def _construct_ablated_input_across_tensors( + self, + inputs: Tuple[Tensor, ...], + input_mask: Tuple[Tensor, ...], + baselines: BaselineType, + feature_idxs: List[int], + feature_idx_to_tensor_idx: Dict[int, List[int]], + current_num_ablated_features: int, + ) -> Tuple[Tuple[Tensor, ...], Tuple[Optional[Tensor], ...]]: + current_masks: List[Optional[Tensor]] = [] + tensor_idxs = { + tensor_idx + for sublist in ( + feature_idx_to_tensor_idx[feature_idx] for feature_idx in feature_idxs + ) + for tensor_idx in sublist + } + permuted_inputs = [] + for i, input_tensor in enumerate(inputs): + if i not in tensor_idxs: + current_masks.append(None) + permuted_inputs.append(input_tensor) + continue + tensor_mask = [] + permuted_input = input_tensor.clone() + for j, feature_idx in enumerate(feature_idxs): + original_input_size = ( + input_tensor.shape[0] // current_num_ablated_features + ) + start_idx = j * original_input_size + end_idx = (j + 1) * original_input_size + + mask = (input_mask[i] == feature_idx).to(input_tensor.device).bool() + if mask.ndim == 0: + mask = mask.reshape((1,) * input_tensor.dim()) + tensor_mask.append(mask) + permuted_input[start_idx:end_idx] = self.perm_func( + input_tensor[start_idx:end_idx], mask + ) + current_masks.append(torch.stack(tensor_mask, dim=0)) + permuted_inputs.append(permuted_input) + + return tuple(permuted_inputs), tuple(current_masks) diff --git a/captum/attr/_core/gradient_shap.py b/captum/attr/_core/gradient_shap.py index 57d5e909af..9cf9e85a47 100644 --- a/captum/attr/_core/gradient_shap.py +++ b/captum/attr/_core/gradient_shap.py @@ -1,13 +1,14 @@ #!/usr/bin/env python3 + +# pyre-strict import typing -from typing import Any, Callable, Tuple, Union +from typing import Callable, Literal, Optional, Tuple, Union import numpy as np import torch from captum._utils.common import _is_tuple from captum._utils.typing import ( BaselineType, - Literal, TargetType, Tensor, TensorOrTupleOfTensorsGeneric, @@ -50,16 +51,18 @@ class GradientShap(GradientAttribution): In some sense it can be viewed as an approximation of integrated gradients by computing the expectations of gradients for different baselines. - Current implementation uses Smoothgrad from `NoiseTunnel` in order to + Current implementation uses Smoothgrad from :class:`.NoiseTunnel` in order to randomly draw samples from the distribution of baselines, add noise to input samples and compute the expectation (smoothgrad). """ - def __init__(self, forward_func: Callable, multiply_by_inputs: bool = True) -> None: + def __init__( + self, forward_func: Callable[..., Tensor], multiply_by_inputs: bool = True + ) -> None: r""" Args: - forward_func (function): The forward function of the model or + forward_func (Callable): The forward function of the model or any modification of it. multiply_by_inputs (bool, optional): Indicates whether to factor model inputs' multiplier in the final attribution scores. @@ -88,11 +91,10 @@ def attribute( n_samples: int = 5, stdevs: Union[float, Tuple[float, ...]] = 0.0, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, *, return_convergence_delta: Literal[True], - ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: - ... + ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: ... @typing.overload def attribute( @@ -104,12 +106,13 @@ def attribute( n_samples: int = 5, stdevs: Union[float, Tuple[float, ...]] = 0.0, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, return_convergence_delta: Literal[False] = False, - ) -> TensorOrTupleOfTensorsGeneric: - ... + ) -> TensorOrTupleOfTensorsGeneric: ... @log_usage() + # pyre-fixme[43]: This definition does not have the same decorators as the + # preceding overload(s). def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, @@ -119,7 +122,7 @@ def attribute( n_samples: int = 5, stdevs: Union[float, Tuple[float, ...]] = 0.0, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, return_convergence_delta: bool = False, ) -> Union[ TensorOrTupleOfTensorsGeneric, Tuple[TensorOrTupleOfTensorsGeneric, Tensor] @@ -127,7 +130,7 @@ def attribute( r""" Args: - inputs (tensor or tuple of tensors): Input for which SHAP attribution + inputs (Tensor or tuple[Tensor, ...]): Input for which SHAP attribution values are computed. If `forward_func` takes a single tensor as input, a single input tensor should be provided. If `forward_func` takes multiple tensors as input, a tuple @@ -135,7 +138,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (tensor, tuple of tensors, callable): + baselines (Tensor, tuple[Tensor, ...], or Callable): Baselines define the starting point from which expectation is computed and can be provided as: @@ -158,11 +161,11 @@ def attribute( It is recommended that the number of samples in the baselines' tensors is larger than one. - n_samples (int, optional): The number of randomly generated examples + n_samples (int, optional): The number of randomly generated examples per sample in the input batch. Random examples are generated by adding gaussian random noise to each sample. Default: `5` if `n_samples` is not provided. - stdevs (float, or a tuple of floats optional): The standard deviation + stdevs (float or tuple of float, optional): The standard deviation of gaussian noise with zero mean that is added to each input in the batch. If `stdevs` is a single float value then that same value is used for all inputs. If it is @@ -171,7 +174,7 @@ def attribute( corresponds to the input with the same index in the inputs tuple. Default: 0.0 - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -196,7 +199,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It can contain a tuple of ND tensors or @@ -215,7 +218,7 @@ def attribute( Default: False Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attribution score computed based on GradientSHAP with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value @@ -223,7 +226,7 @@ def attribute( If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. - - **delta** (*tensor*, returned if return_convergence_delta=True): + - **delta** (*Tensor*, returned if return_convergence_delta=True): This is computed using the property that the total sum of forward_func(inputs) - forward_func(baselines) must be very close to the total sum of the attributions @@ -252,10 +255,10 @@ def attribute( """ # since `baselines` is a distribution, we can generate it using a function # rather than passing it as an input argument - baselines = _format_callable_baseline(baselines, inputs) - assert isinstance(baselines[0], torch.Tensor), ( + formatted_baselines = _format_callable_baseline(baselines, inputs) + assert isinstance(formatted_baselines[0], torch.Tensor), ( "Baselines distribution has to be provided in a form " - "of a torch.Tensor {}.".format(baselines[0]) + "of a torch.Tensor {}.".format(formatted_baselines[0]) ) input_min_baseline_x_grad = InputBaselineXGradient( @@ -273,7 +276,7 @@ def attribute( nt_samples=n_samples, stdevs=stdevs, draw_baseline_from_distrib=True, - baselines=baselines, + baselines=formatted_baselines, target=target, additional_forward_args=additional_forward_args, return_convergence_delta=return_convergence_delta, @@ -281,21 +284,34 @@ def attribute( return attributions + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for GradientShap. + """ + raise NotImplementedError( + "attribute_future is not implemented for GradientShap" + ) + def has_convergence_delta(self) -> bool: return True @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs class InputBaselineXGradient(GradientAttribution): - def __init__(self, forward_func: Callable, multiply_by_inputs=True) -> None: + _multiply_by_inputs: bool + + def __init__( + self, forward_func: Callable[..., Tensor], multiply_by_inputs: bool = True + ) -> None: r""" Args: - forward_func (function): The forward function of the model or - any modification of it + forward_func (Callable): The forward function of the model or + any modification of it. multiply_by_inputs (bool, optional): Indicates whether to factor model inputs' multiplier in the final attribution scores. In the literature this is also known as local vs global @@ -320,11 +336,10 @@ def attribute( inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, *, return_convergence_delta: Literal[True], - ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: - ... + ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: ... @typing.overload def attribute( @@ -332,10 +347,9 @@ def attribute( inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, return_convergence_delta: Literal[False] = False, - ) -> TensorOrTupleOfTensorsGeneric: - ... + ) -> TensorOrTupleOfTensorsGeneric: ... @log_usage() def attribute( # type: ignore @@ -343,7 +357,7 @@ def attribute( # type: ignore inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, return_convergence_delta: bool = False, ) -> Union[ TensorOrTupleOfTensorsGeneric, Tuple[TensorOrTupleOfTensorsGeneric, Tensor] @@ -351,17 +365,17 @@ def attribute( # type: ignore # Keeps track whether original input is a tuple or not before # converting it into a tuple. is_inputs_tuple = _is_tuple(inputs) - inputs, baselines = _format_input_baseline(inputs, baselines) + inputs_tuple, baselines = _format_input_baseline(inputs, baselines) rand_coefficient = torch.tensor( - np.random.uniform(0.0, 1.0, inputs[0].shape[0]), - device=inputs[0].device, - dtype=inputs[0].dtype, + np.random.uniform(0.0, 1.0, inputs_tuple[0].shape[0]), + device=inputs_tuple[0].device, + dtype=inputs_tuple[0].dtype, ) input_baseline_scaled = tuple( _scale_input(input, baseline, rand_coefficient) - for input, baseline in zip(inputs, baselines) + for input, baseline in zip(inputs_tuple, baselines) ) grads = self.gradient_func( self.forward_func, input_baseline_scaled, target, additional_forward_args @@ -369,7 +383,7 @@ def attribute( # type: ignore if self.multiplies_by_inputs: input_baseline_diffs = tuple( - input - baseline for input, baseline in zip(inputs, baselines) + input - baseline for input, baseline in zip(inputs_tuple, baselines) ) attributions = tuple( input_baseline_diff * grad @@ -378,6 +392,7 @@ def attribute( # type: ignore else: attributions = grads + # pyre-fixme[7]: Expected `Union[Tuple[Variable[TensorOrTupleOfTensorsGeneric... return _compute_conv_delta_and_format_attrs( self, return_convergence_delta, @@ -389,11 +404,20 @@ def attribute( # type: ignore is_inputs_tuple, ) + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for InputBaseLineXGradient. + """ + raise NotImplementedError( + "attribute_future is not implemented for InputBaseLineXGradient" + ) + def has_convergence_delta(self) -> bool: return True @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs diff --git a/captum/attr/_core/guided_backprop_deconvnet.py b/captum/attr/_core/guided_backprop_deconvnet.py index e1953ed5b9..35b7f19936 100644 --- a/captum/attr/_core/guided_backprop_deconvnet.py +++ b/captum/attr/_core/guided_backprop_deconvnet.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 + +# pyre-strict import warnings -from typing import Any, List, Tuple, Union +from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn.functional as F @@ -27,7 +29,7 @@ def __init__(self, model: Module, use_relu_grad_output: bool = False) -> None: r""" Args: - model (nn.Module): The reference to PyTorch model instance. + model (nn.Module): The reference to PyTorch model instance. """ GradientAttribution.__init__(self, model) self.model = model @@ -43,7 +45,7 @@ def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, ) -> TensorOrTupleOfTensorsGeneric: r""" Computes attribution by overriding relu gradients. Based on constructor @@ -57,46 +59,58 @@ def attribute( # converting it into a tuple. is_inputs_tuple = _is_tuple(inputs) - inputs = _format_tensor_into_tuples(inputs) - gradient_mask = apply_gradient_requirements(inputs) + inputs_tuple = _format_tensor_into_tuples(inputs) + gradient_mask = apply_gradient_requirements(inputs_tuple) # set hooks for overriding ReLU gradients warnings.warn( "Setting backward hooks on ReLU activations." - "The hooks will be removed after the attribution is finished" + "The hooks will be removed after the attribution is finished", + stacklevel=1, ) try: self.model.apply(self._register_hooks) gradients = self.gradient_func( - self.forward_func, inputs, target, additional_forward_args + self.forward_func, inputs_tuple, target, additional_forward_args ) finally: self._remove_hooks() - undo_gradient_requirements(inputs, gradient_mask) + undo_gradient_requirements(inputs_tuple, gradient_mask) + # pyre-fixme[7]: Expected `TensorOrTupleOfTensorsGeneric` but got + # `Tuple[Tensor, ...]`. return _format_output(is_inputs_tuple, gradients) - def _register_hooks(self, module: Module): + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for ModifiedReluGradientAttribution. + """ + raise NotImplementedError( + "attribute_future is not implemented for ModifiedReluGradientAttribution" + ) + + def _register_hooks(self, module: Module) -> None: if isinstance(module, torch.nn.ReLU): - hook = _register_backward_hook(module, self._backward_hook, self) - self.backward_hooks.append(hook) + hooks = _register_backward_hook(module, self._backward_hook, self) + self.backward_hooks.extend(hooks) def _backward_hook( self, module: Module, grad_input: Union[Tensor, Tuple[Tensor, ...]], grad_output: Union[Tensor, Tuple[Tensor, ...]], - ): + ) -> Union[Tuple[Tensor], Tensor]: to_override_grads = grad_output if self.use_relu_grad_output else grad_input if isinstance(to_override_grads, tuple): return tuple( - F.relu(to_override_grad) for to_override_grad in to_override_grads + F.relu(to_override_grad) for to_override_grad in to_override_grads # type: ignore # noqa: E501 line too long ) else: return F.relu(to_override_grads) - def _remove_hooks(self): + def _remove_hooks(self) -> None: for hook in self.backward_hooks: hook.remove() @@ -121,9 +135,7 @@ def __init__(self, model: Module) -> None: r""" Args: - model (nn.Module): The reference to PyTorch model instance. Model cannot - contain any in-place ReLU submodules; these are not - supported by the register_full_backward_hook PyTorch API. + model (nn.Module): The reference to PyTorch model instance. """ ModifiedReluGradientAttribution.__init__( self, model, use_relu_grad_output=False @@ -134,21 +146,21 @@ def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which - attributions are computed. If forward_func takes a single + inputs (Tensor or tuple[Tensor, ...]): Input for which + attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. - If forward_func takes multiple tensors as input, a tuple + If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -173,21 +185,21 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to - forward_func in order, following the arguments in inputs. + model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The guided backprop gradients with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value @@ -234,9 +246,7 @@ def __init__(self, model: Module) -> None: r""" Args: - model (nn.Module): The reference to PyTorch model instance. Model cannot - contain any in-place ReLU submodules; these are not - supported by the register_full_backward_hook PyTorch API. + model (nn.Module): The reference to PyTorch model instance. """ ModifiedReluGradientAttribution.__init__(self, model, use_relu_grad_output=True) @@ -245,21 +255,21 @@ def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which - attributions are computed. If forward_func takes a single + inputs (Tensor or tuple[Tensor, ...]): Input for which + attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. - If forward_func takes multiple tensors as input, a tuple + If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -284,21 +294,21 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to - forward_func in order, following the arguments in inputs. + model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The deconvolution attributions with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value diff --git a/captum/attr/_core/guided_grad_cam.py b/captum/attr/_core/guided_grad_cam.py index f6e29c4b29..9f89f387d3 100644 --- a/captum/attr/_core/guided_grad_cam.py +++ b/captum/attr/_core/guided_grad_cam.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 + +# pyre-strict import warnings -from typing import Any, List, Union +from typing import List, Optional, Union import torch from captum._utils.common import _format_output, _format_tensor_into_tuples, _is_tuple @@ -38,7 +40,7 @@ class GuidedGradCam(GradientAttribution): More details regarding GuidedGradCAM can be found in the original GradCAM paper here: - https://arxiv.org/pdf/1610.02391.pdf + https://arxiv.org/abs/1610.02391 Warning: Ensure that all ReLU operations in the forward function of the given model are performed using a module (nn.module.ReLU). @@ -51,17 +53,14 @@ def __init__( r""" Args: - model (nn.Module): The reference to PyTorch model instance. Model cannot - contain any in-place ReLU submodules; these are not - supported by the register_full_backward_hook PyTorch API - starting from PyTorch v1.9. + model (nn.Module): The reference to PyTorch model instance. layer (torch.nn.Module): Layer for which GradCAM attributions are computed. Currently, only layers with a single tensor output are supported. - device_ids (list(int)): Device ID list, necessary only if forward_func - applies a DataParallel model. This allows reconstruction of + device_ids (list[int]): Device ID list, necessary only if model + is a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. - If forward_func is given as the DataParallel model itself, + If model is given as the DataParallel model itself, then it is not necessary to provide this argument. """ GradientAttribution.__init__(self, model) @@ -73,22 +72,22 @@ def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, interpolate_mode: str = "nearest", attribute_to_layer_input: bool = False, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which attributions - are computed. If forward_func takes a single + inputs (Tensor or tuple[Tensor, ...]): Input for which attributions + are computed. If model takes a single tensor as input, a single input tensor should be provided. - If forward_func takes multiple tensors as input, a tuple + If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -113,14 +112,14 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments - are provided to forward_func in order following the + are provided to model in order following the arguments in inputs. Note that attributions are not computed with respect to these arguments. @@ -151,8 +150,8 @@ def attribute( Default: False Returns: - *tensor* of **attributions**: - - **attributions** (*tensor*): + *Tensor* of **attributions**: + - **attributions** (*Tensor*): Element-wise product of (upsampled) GradCAM and Guided Backprop attributions. If a single tensor is provided as inputs, a single tensor is @@ -182,10 +181,10 @@ def attribute( >>> attribution = guided_gc.attribute(input, 3) """ is_inputs_tuple = _is_tuple(inputs) - inputs = _format_tensor_into_tuples(inputs) + inputs_tuple = _format_tensor_into_tuples(inputs) grad_cam_attr = self.grad_cam.attribute.__wrapped__( self.grad_cam, # self - inputs=inputs, + inputs=inputs_tuple, target=target, additional_forward_args=additional_forward_args, attribute_to_layer_input=attribute_to_layer_input, @@ -200,18 +199,18 @@ def attribute( guided_backprop_attr = self.guided_backprop.attribute.__wrapped__( self.guided_backprop, # self - inputs=inputs, + inputs=inputs_tuple, target=target, additional_forward_args=additional_forward_args, ) output_attr: List[Tensor] = [] - for i in range(len(inputs)): + for i in range(len(inputs_tuple)): try: output_attr.append( guided_backprop_attr[i] * LayerAttribution.interpolate( grad_cam_attr, - inputs[i].shape[2:], + tuple(inputs_tuple[i].shape[2:]), interpolate_mode=interpolate_mode, ) ) @@ -219,8 +218,11 @@ def attribute( warnings.warn( "Couldn't appropriately interpolate GradCAM attributions for some " "input tensors, returning empty tensor for corresponding " - "attributions." + "attributions.", + stacklevel=1, ) output_attr.append(torch.empty(0)) + # pyre-fixme[7]: Expected `TensorOrTupleOfTensorsGeneric` but got + # `Tuple[Tensor, ...]`. return _format_output(is_inputs_tuple, tuple(output_attr)) diff --git a/captum/attr/_core/input_x_gradient.py b/captum/attr/_core/input_x_gradient.py index 7817466013..8686a05579 100644 --- a/captum/attr/_core/input_x_gradient.py +++ b/captum/attr/_core/input_x_gradient.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 -from typing import Any, Callable + +# pyre-strict +from typing import Callable, Optional from captum._utils.common import _format_output, _format_tensor_into_tuples, _is_tuple from captum._utils.gradient import ( @@ -9,6 +11,7 @@ from captum._utils.typing import TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._utils.attribution import GradientAttribution from captum.log import log_usage +from torch import Tensor class InputXGradient(GradientAttribution): @@ -18,11 +21,11 @@ class InputXGradient(GradientAttribution): https://arxiv.org/abs/1605.01713 """ - def __init__(self, forward_func: Callable) -> None: + def __init__(self, forward_func: Callable[..., Tensor]) -> None: r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it """ GradientAttribution.__init__(self, forward_func) @@ -32,12 +35,12 @@ def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which + inputs (Tensor or tuple[Tensor, ...]): Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -46,7 +49,7 @@ def attribute( to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -71,7 +74,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -84,8 +87,8 @@ def attribute( Default: None Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The input x gradient with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value @@ -111,20 +114,31 @@ def attribute( # converting it into a tuple. is_inputs_tuple = _is_tuple(inputs) - inputs = _format_tensor_into_tuples(inputs) - gradient_mask = apply_gradient_requirements(inputs) + inputs_tuple = _format_tensor_into_tuples(inputs) + gradient_mask = apply_gradient_requirements(inputs_tuple) gradients = self.gradient_func( - self.forward_func, inputs, target, additional_forward_args + self.forward_func, inputs_tuple, target, additional_forward_args ) attributions = tuple( - input * gradient for input, gradient in zip(inputs, gradients) + input * gradient for input, gradient in zip(inputs_tuple, gradients) ) - undo_gradient_requirements(inputs, gradient_mask) + undo_gradient_requirements(inputs_tuple, gradient_mask) + # pyre-fixme[7]: Expected `TensorOrTupleOfTensorsGeneric` but got + # `Tuple[Tensor, ...]`. return _format_output(is_inputs_tuple, attributions) + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for InputXGradient. + """ + raise NotImplementedError( + "attribute_future is not implemented for InputXGradient" + ) + @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return True diff --git a/captum/attr/_core/integrated_gradients.py b/captum/attr/_core/integrated_gradients.py index e96a826c32..825c2cae64 100644 --- a/captum/attr/_core/integrated_gradients.py +++ b/captum/attr/_core/integrated_gradients.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 + +# pyre-strict import typing -from typing import Any, Callable, List, Tuple, Union +from typing import Callable, List, Literal, Optional, Tuple, Union import torch from captum._utils.common import ( @@ -10,12 +12,7 @@ _format_output, _is_tuple, ) -from captum._utils.typing import ( - BaselineType, - Literal, - TargetType, - TensorOrTupleOfTensorsGeneric, -) +from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._utils.approximation_methods import approximation_parameters from captum.attr._utils.attribution import GradientAttribution from captum.attr._utils.batching import _batch_attribution @@ -47,13 +44,13 @@ class IntegratedGradients(GradientAttribution): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], multiply_by_inputs: bool = True, ) -> None: r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it multiply_by_inputs (bool, optional): Indicates whether to factor model inputs' multiplier in the final attribution scores. @@ -82,28 +79,28 @@ def attribute( inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, - return_convergence_delta: Literal[False] = False, - ) -> TensorOrTupleOfTensorsGeneric: - ... + *, + return_convergence_delta: Literal[True], + ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: ... @typing.overload + # pyre-fixme[43]: The implementation of `attribute` does not accept all possible + # arguments of overload defined on line `82`. def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, - *, - return_convergence_delta: Literal[True], - ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: - ... + return_convergence_delta: Literal[False] = False, + ) -> TensorOrTupleOfTensorsGeneric: ... @log_usage() def attribute( # type: ignore @@ -111,7 +108,7 @@ def attribute( # type: ignore inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, @@ -130,7 +127,7 @@ def attribute( # type: ignore Args: - inputs (tensor or tuple of tensors): Input for which integrated + inputs (Tensor or tuple[Tensor, ...]): Input for which integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -138,7 +135,7 @@ def attribute( # type: ignore that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define the starting point from which integral is computed and can be provided as: @@ -162,11 +159,12 @@ def attribute( # type: ignore - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. + In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -191,7 +189,7 @@ def attribute( # type: ignore target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -210,7 +208,7 @@ def attribute( # type: ignore Default: None n_steps (int, optional): The number of steps used by the approximation method. Default: 50. - method (string, optional): Method for approximating the integral, + method (str, optional): Method for approximating the integral, one of `riemann_right`, `riemann_left`, `riemann_middle`, `riemann_trapezoid` or `gausslegendre`. Default: `gausslegendre` if no method is provided. @@ -232,7 +230,7 @@ def attribute( # type: ignore Default: False Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Integrated gradients with respect to each input feature. attributions will always be the same size as the provided inputs, with each value providing the attribution of the @@ -240,7 +238,7 @@ def attribute( # type: ignore If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. - - **delta** (*tensor*, returned if return_convergence_delta=True): + - **delta** (*Tensor*, returned if return_convergence_delta=True): The difference between the total approximated and true integrated gradients. This is computed using the property that the total sum of forward_func(inputs) - @@ -248,7 +246,7 @@ def attribute( # type: ignore integrated gradient. Delta is calculated per example, meaning that the number of elements in returned delta tensor is equal to the number of - of examples in inputs. + examples in inputs. Examples:: @@ -264,27 +262,33 @@ def attribute( # type: ignore # converting it into a tuple. is_inputs_tuple = _is_tuple(inputs) - inputs, baselines = _format_input_baseline(inputs, baselines) + # pyre-fixme[9]: inputs has type `TensorOrTupleOfTensorsGeneric`; used as + # `Tuple[Tensor, ...]`. + formatted_inputs, formatted_baselines = _format_input_baseline( + inputs, baselines + ) - _validate_input(inputs, baselines, n_steps, method) + # pyre-fixme[6]: For 1st argument expected `Tuple[Tensor, ...]` but got + # `TensorOrTupleOfTensorsGeneric`. + _validate_input(formatted_inputs, formatted_baselines, n_steps, method) if internal_batch_size is not None: - num_examples = inputs[0].shape[0] + num_examples = formatted_inputs[0].shape[0] attributions = _batch_attribution( self, num_examples, internal_batch_size, n_steps, - inputs=inputs, - baselines=baselines, + inputs=formatted_inputs, + baselines=formatted_baselines, target=target, additional_forward_args=additional_forward_args, method=method, ) else: attributions = self._attribute( - inputs=inputs, - baselines=baselines, + inputs=formatted_inputs, + baselines=formatted_baselines, target=target, additional_forward_args=additional_forward_args, n_steps=n_steps, @@ -301,15 +305,29 @@ def attribute( # type: ignore additional_forward_args=additional_forward_args, target=target, ) + # pyre-fixme[7]: Expected `Union[Tuple[Variable[TensorOrTupleOfTensorsGen... return _format_output(is_inputs_tuple, attributions), delta + # pyre-fixme[7]: Expected + # `Union[Tuple[Variable[TensorOrTupleOfTensorsGeneric <: [Tensor, + # typing.Tuple[Tensor, ...]]], Tensor], Variable[TensorOrTupleOfTensorsGeneric + # <: [Tensor, typing.Tuple[Tensor, ...]]]]` but got `Tuple[Tensor, ...]`. return _format_output(is_inputs_tuple, attributions) + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for IntegratedGradients. + """ + raise NotImplementedError( + "attribute_future is not implemented for IntegratedGradients" + ) + def _attribute( self, inputs: Tuple[Tensor, ...], baselines: Tuple[Union[Tensor, int, float], ...], target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", step_sizes_and_alphas: Union[None, Tuple[List[float], List[float]]] = None, @@ -358,7 +376,7 @@ def _attribute( # calling contiguous to avoid `memory whole` problems scaled_grads = [ grad.contiguous().view(n_steps, -1) - * torch.tensor(step_sizes).view(n_steps, 1).to(grad.device) + * torch.tensor(step_sizes).float().view(n_steps, 1).to(grad.device) for grad in grads ] @@ -386,5 +404,5 @@ def has_convergence_delta(self) -> bool: return True @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs diff --git a/captum/attr/_core/kernel_shap.py b/captum/attr/_core/kernel_shap.py index 2826b30dfe..6fdbfcb9b5 100644 --- a/captum/attr/_core/kernel_shap.py +++ b/captum/attr/_core/kernel_shap.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 -from typing import Any, Callable, Generator, Tuple, Union +# pyre-strict + +from typing import Callable, cast, Generator, Optional, Tuple, Union import torch from captum._utils.models.linear_model import SkLearnLinearRegression @@ -25,12 +27,12 @@ class KernelShap(Lime): https://arxiv.org/abs/1705.07874 """ - def __init__(self, forward_func: Callable) -> None: + def __init__(self, forward_func: Callable[..., Tensor]) -> None: r""" Args: - forward_func (callable): The forward function of the model or - any modification of it + forward_func (Callable): The forward function of the model or + any modification of it. """ Lime.__init__( self, @@ -47,7 +49,7 @@ def attribute( # type: ignore inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, feature_mask: Union[None, Tensor, Tuple[Tensor, ...]] = None, n_samples: int = 25, perturbations_per_eval: int = 1, @@ -86,7 +88,7 @@ def attribute( # type: ignore Args: - inputs (tensor or tuple of tensors): Input for which KernelShap + inputs (Tensor or tuple[Tensor, ...]): Input for which KernelShap is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -94,7 +96,7 @@ def attribute( # type: ignore that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define the reference value which replaces each feature when the corresponding interpretable feature is set to 0. @@ -120,10 +122,11 @@ def attribute( # type: ignore - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. + In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which surrogate model is trained (for classification cases, this is usually the target class). @@ -149,7 +152,7 @@ def attribute( # type: ignore target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -166,7 +169,7 @@ def attribute( # type: ignore Note that attributions are not computed with respect to these arguments. Default: None - feature_mask (tensor or tuple of tensors, optional): + feature_mask (Tensor or tuple[Tensor, ...], optional): feature_mask defines a mask for the input, grouping features which correspond to the same interpretable feature. feature_mask @@ -184,7 +187,7 @@ def attribute( # type: ignore If None, then a feature mask is constructed which assigns each scalar within a tensor as a separate feature. Default: None - n_samples (int, optional): The number of samples of the original + n_samples (int, optional): The number of samples of the original model used to train the surrogate interpretable model. Default: `50` if `n_samples` is not provided. perturbations_per_eval (int, optional): Allows multiple samples @@ -219,8 +222,8 @@ def attribute( # type: ignore Default: False Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The attributions with respect to each input feature. If return_input_shape = True, attributions will be the same size as the provided inputs, with each value @@ -274,7 +277,7 @@ def attribute( # type: ignore ) num_features_list = torch.arange(num_interp_features, dtype=torch.float) denom = num_features_list * (num_interp_features - num_features_list) - probs = (num_interp_features - 1) / denom + probs = torch.tensor((num_interp_features - 1)) / denom probs[0] = 0.0 return self._attribute_kwargs( inputs=inputs, @@ -289,8 +292,19 @@ def attribute( # type: ignore show_progress=show_progress, ) + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for KernelShap. + """ + raise NotImplementedError("attribute_future is not implemented for KernelShap") + def kernel_shap_similarity_kernel( - self, _, __, interpretable_sample: Tensor, **kwargs + self, + _, + __, + interpretable_sample: Tensor, + **kwargs: object, ) -> Tensor: assert ( "num_interp_features" in kwargs @@ -310,13 +324,17 @@ def kernel_shap_similarity_kernel( return torch.tensor([similarities]) def kernel_shap_perturb_generator( - self, original_inp: Union[Tensor, Tuple[Tensor, ...]], **kwargs + self, + original_inp: Union[Tensor, Tuple[Tensor, ...]], + **kwargs: object, ) -> Generator[Tensor, None, None]: r""" Perturbations are sampled by the following process: - Choose k (number of selected features), based on the distribution p(k) = (M - 1) / (k * (M - k)) + where M is the total number of features in the interpretable space + - Randomly select a binary vector with k ones, each sample is equally likely. This is done by generating a random vector of normal values and thresholding based on the top k elements. @@ -336,11 +354,13 @@ def kernel_shap_perturb_generator( device = original_inp.device else: device = original_inp[0].device - num_features = kwargs["num_interp_features"] + num_features = cast(int, kwargs["num_interp_features"]) yield torch.ones(1, num_features, device=device, dtype=torch.long) yield torch.zeros(1, num_features, device=device, dtype=torch.long) while True: - num_selected_features = kwargs["num_select_distribution"].sample() + num_selected_features = cast( + Categorical, kwargs["num_select_distribution"] + ).sample() rand_vals = torch.randn(1, num_features) threshold = torch.kthvalue( rand_vals, num_features - num_selected_features diff --git a/captum/attr/_core/layer/grad_cam.py b/captum/attr/_core/layer/grad_cam.py index c650409149..d57049ad8e 100644 --- a/captum/attr/_core/layer/grad_cam.py +++ b/captum/attr/_core/layer/grad_cam.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 -from typing import Any, Callable, List, Tuple, Union + +# pyre-strict +from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union import torch import torch.nn.functional as F @@ -47,25 +49,25 @@ class LayerGradCam(LayerAttribution, GradientAttribution): More details regarding the GradCAM method can be found in the original paper here: - https://arxiv.org/pdf/1610.02391.pdf + https://arxiv.org/abs/1610.02391 """ def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], layer: Module, device_ids: Union[None, List[int]] = None, ) -> None: r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it layer (torch.nn.Module): Layer for which attributions are computed. Output size of attribute matches this layer's output dimensions, except for dimension 2, which will be 1, since GradCAM sums over channels. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -79,14 +81,16 @@ def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, attribute_to_layer_input: bool = False, relu_attributions: bool = False, + attr_dim_summation: bool = True, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[Tensor, Tuple[Tensor, ...]]: r""" Args: - inputs (tensor or tuple of tensors): Input for which attributions + inputs (Tensor or tuple[Tensor, ...]): Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -94,7 +98,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -119,7 +123,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -149,10 +153,17 @@ def attribute( otherwise, by default, both positive and negative attributions are returned. Default: False + attr_dim_summation (bool, optional): Indicates whether to + sum attributions along dimension 1 (usually channel). + The default (True) means to sum along dimension 1. + Default: True + grad_kwargs (Dict[str, Any], optional): Additional keyword + arguments for torch.autograd.grad. + Default: None Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attributions based on GradCAM method. Attributions will be the same size as the output of the given layer, except for dimension 2, @@ -189,29 +200,39 @@ def attribute( # hidden layer and hidden layer evaluated at each input. layer_gradients, layer_evals = compute_layer_gradients_and_eval( self.forward_func, - self.layer, + cast(Module, self.layer), inputs, target, additional_forward_args, device_ids=self.device_ids, attribute_to_layer_input=attribute_to_layer_input, + grad_kwargs=grad_kwargs, ) summed_grads = tuple( - torch.mean( - layer_grad, - dim=tuple(x for x in range(2, len(layer_grad.shape))), - keepdim=True, + ( + torch.mean( + layer_grad, + dim=tuple(x for x in range(2, len(layer_grad.shape))), + keepdim=True, + ) + if len(layer_grad.shape) > 2 + else layer_grad ) - if len(layer_grad.shape) > 2 - else layer_grad for layer_grad in layer_gradients ) - scaled_acts = tuple( - torch.sum(summed_grad * layer_eval, dim=1, keepdim=True) - for summed_grad, layer_eval in zip(summed_grads, layer_evals) - ) + if attr_dim_summation: + scaled_acts = tuple( + torch.sum(summed_grad * layer_eval, dim=1, keepdim=True) + for summed_grad, layer_eval in zip(summed_grads, layer_evals) + ) + else: + scaled_acts = tuple( + summed_grad * layer_eval + for summed_grad, layer_eval in zip(summed_grads, layer_evals) + ) + if relu_attributions: scaled_acts = tuple(F.relu(scaled_act) for scaled_act in scaled_acts) return _format_output(len(scaled_acts) > 1, scaled_acts) diff --git a/captum/attr/_core/layer/internal_influence.py b/captum/attr/_core/layer/internal_influence.py index 8976fe7344..a0bbffee20 100644 --- a/captum/attr/_core/layer/internal_influence.py +++ b/captum/attr/_core/layer/internal_influence.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 -from typing import Any, Callable, List, Tuple, Union + +# pyre-strict +from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union import torch from captum._utils.common import ( @@ -30,7 +32,7 @@ class InternalInfluence(LayerAttribution, GradientAttribution): given input. If no baseline is provided, the default baseline is the zero tensor. More details on this approach can be found here: - https://arxiv.org/pdf/1802.03788.pdf + https://arxiv.org/abs/1802.03788 Note that this method is similar to applying integrated gradients and taking the layer as input, integrating the gradient of the layer with @@ -39,14 +41,14 @@ class InternalInfluence(LayerAttribution, GradientAttribution): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], layer: Module, device_ids: Union[None, List[int]] = None, ) -> None: r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it layer (torch.nn.Module): Layer for which attributions are computed. Output size of attribute matches this layer's input or @@ -54,7 +56,7 @@ def __init__( the inputs or outputs of the layer, corresponding to attribution of each neuron in the input or output of this layer. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -69,16 +71,17 @@ def attribute( inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, attribute_to_layer_input: bool = False, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[Tensor, Tuple[Tensor, ...]]: r""" Args: - inputs (tensor or tuple of tensors): Input for which internal + inputs (Tensor or tuple[Tensor, ...]): Input for which internal influence is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -86,7 +89,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define a starting point from which integral is computed and can be provided as: @@ -115,7 +118,7 @@ def attribute( use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -140,7 +143,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -159,7 +162,7 @@ def attribute( Default: None n_steps (int, optional): The number of steps used by the approximation method. Default: 50. - method (string, optional): Method for approximating the integral, + method (str, optional): Method for approximating the integral, one of `riemann_right`, `riemann_left`, `riemann_middle`, `riemann_trapezoid` or `gausslegendre`. Default: `gausslegendre` if no method is provided. @@ -185,15 +188,18 @@ def attribute( attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False + grad_kwargs (Dict[str, Any], optional): Additional keyword + arguments for torch.autograd.grad. + Default: None Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Internal influence of each neuron in given layer output. Attributions will always be the same size as the output or input of the given layer depending on whether `attribute_to_layer_input` is set to `False` or - `True`respectively. + `True` respectively. Attributions are returned in a tuple if the layer inputs / outputs contain multiple tensors, otherwise a single tensor is returned. @@ -236,6 +242,7 @@ def attribute( n_steps=n_steps, method=method, attribute_to_layer_input=attribute_to_layer_input, + grad_kwargs=grad_kwargs, ) return attrs @@ -245,11 +252,12 @@ def _attribute( inputs: Tuple[Tensor, ...], baselines: Tuple[Union[Tensor, int, float], ...], target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", attribute_to_layer_input: bool = False, step_sizes_and_alphas: Union[None, Tuple[List[float], List[float]]] = None, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[Tensor, Tuple[Tensor, ...]]: if step_sizes_and_alphas is None: # retrieve step size and scaling factor for specified approximation method @@ -284,12 +292,13 @@ def _attribute( # Returns gradient of output with respect to hidden layer. layer_gradients, _ = compute_layer_gradients_and_eval( forward_fn=self.forward_func, - layer=self.layer, + layer=cast(Module, self.layer), inputs=scaled_features_tpl, target_ind=expanded_target, additional_forward_args=input_additional_args, device_ids=self.device_ids, attribute_to_layer_input=attribute_to_layer_input, + grad_kwargs=grad_kwargs, ) # flattening grads so that we can multiply it with step-size # calling contiguous to avoid `memory whole` problems @@ -302,7 +311,10 @@ def _attribute( # aggregates across all steps for each tensor in the input tuple attrs = tuple( _reshape_and_sum( - scaled_grad, n_steps, inputs[0].shape[0], layer_grad.shape[1:] + scaled_grad, + n_steps, + inputs[0].shape[0], + tuple(layer_grad.shape[1:]), ) for scaled_grad, layer_grad in zip(scaled_grads, layer_gradients) ) diff --git a/captum/attr/_core/layer/layer_activation.py b/captum/attr/_core/layer/layer_activation.py index 86c511706b..d9aea9b27d 100644 --- a/captum/attr/_core/layer/layer_activation.py +++ b/captum/attr/_core/layer/layer_activation.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 -from typing import Any, Callable, List, Tuple, Union + +# pyre-strict +from typing import Callable, cast, List, Optional, Tuple, Union import torch from captum._utils.common import _format_output @@ -18,16 +20,16 @@ class LayerActivation(LayerAttribution): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Union[int, float, Tensor]], layer: ModuleOrModuleList, device_ids: Union[None, List[int]] = None, ) -> None: r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it - layer (torch.nn.Module or list(torch.nn.Module)): Layer or layers + layer (torch.nn.Module or list of torch.nn.Module): Layer or layers for which attributions are computed. Output size of attribute matches this layer's input or output dimensions, depending on whether we attribute to @@ -36,7 +38,7 @@ def __init__( this layer. If multiple layers are provided, attributions are returned as a list, each element corresponding to the activations of the corresponding layer. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -48,13 +50,13 @@ def __init__( def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, attribute_to_layer_input: bool = False, ) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]: r""" Args: - inputs (tensor or tuple of tensors): Input for which layer + inputs (Tensor or tuple[Tensor, ...]): Input for which layer activation is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -62,7 +64,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -87,8 +89,8 @@ def attribute( Default: False Returns: - *tensor* or tuple of *tensors* or *list* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors* or *list*): + *Tensor* or *tuple[Tensor, ...]* or list of **attributions**: + - **attributions** (*Tensor*, *tuple[Tensor, ...]*, or *list*): Activation of each neuron in given layer output. Attributions will always be the same size as the output of the given layer. @@ -112,7 +114,7 @@ def attribute( >>> input = torch.randn(2, 3, 32, 32, requires_grad=True) >>> # Computes layer activation. >>> # attribution is layer output, with size Nx12x32x32 - >>> attribution = layer_cond.attribute(input) + >>> attribution = layer_act.attribute(input) """ with torch.no_grad(): layer_eval = _forward_layer_eval( @@ -124,7 +126,9 @@ def attribute( attribute_to_layer_input=attribute_to_layer_input, ) if isinstance(self.layer, Module): - return _format_output(len(layer_eval) > 1, layer_eval) + return _format_output( + len(layer_eval) > 1, cast(Tuple[Tensor, ...], layer_eval) + ) else: return [ _format_output(len(single_layer_eval) > 1, single_layer_eval) @@ -132,5 +136,5 @@ def attribute( ] @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return True diff --git a/captum/attr/_core/layer/layer_conductance.py b/captum/attr/_core/layer/layer_conductance.py index 3d76569c10..2d15d25270 100644 --- a/captum/attr/_core/layer/layer_conductance.py +++ b/captum/attr/_core/layer/layer_conductance.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 + +# pyre-strict import typing -from typing import Any, Callable, List, Tuple, Union +from typing import Any, Callable, cast, Dict, List, Literal, Optional, Tuple, Union import torch from captum._utils.common import ( @@ -10,7 +12,7 @@ _format_output, ) from captum._utils.gradient import compute_layer_gradients_and_eval -from captum._utils.typing import BaselineType, Literal, TargetType +from captum._utils.typing import BaselineType, TargetType from captum.attr._utils.approximation_methods import approximation_parameters from captum.attr._utils.attribution import GradientAttribution, LayerAttribution from captum.attr._utils.batching import _batch_attribution @@ -32,7 +34,7 @@ class LayerConductance(LayerAttribution, GradientAttribution): The details of the approach can be found here: https://arxiv.org/abs/1805.12233 - https://arxiv.org/pdf/1807.09946.pdf + https://arxiv.org/abs/1807.09946 Note that this provides the total conductance of each neuron in the layer's output. To obtain the breakdown of a neuron's conductance by input @@ -42,14 +44,14 @@ class LayerConductance(LayerAttribution, GradientAttribution): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], layer: Module, device_ids: Union[None, List[int]] = None, ) -> None: r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it layer (torch.nn.Module): Layer for which attributions are computed. Output size of attribute matches this layer's input or @@ -57,7 +59,7 @@ def __init__( the inputs or outputs of the layer, corresponding to attribution of each neuron in the input or output of this layer. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -75,15 +77,15 @@ def attribute( inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, *, return_convergence_delta: Literal[True], attribute_to_layer_input: bool = False, - ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]: - ... + grad_kwargs: Optional[Dict[str, Any]] = None, + ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]: ... @typing.overload def attribute( @@ -91,16 +93,18 @@ def attribute( inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, return_convergence_delta: Literal[False] = False, attribute_to_layer_input: bool = False, - ) -> Union[Tensor, Tuple[Tensor, ...]]: - ... + grad_kwargs: Optional[Dict[str, Any]] = None, + ) -> Union[Tensor, Tuple[Tensor, ...]]: ... @log_usage() + # pyre-fixme[43]: This definition does not have the same decorators as the + # preceding overload(s). def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], @@ -108,19 +112,20 @@ def attribute( None, int, float, Tensor, Tuple[Union[int, float, Tensor], ...] ] = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, return_convergence_delta: bool = False, attribute_to_layer_input: bool = False, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[ Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor] ]: r""" Args: - inputs (tensor or tuple of tensors): Input for which layer + inputs (Tensor or tuple[Tensor, ...]): Input for which layer conductance is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -128,7 +133,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define the starting point from which integral is computed and can be provided as: @@ -152,11 +157,12 @@ def attribute( - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. + In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -181,7 +187,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -200,7 +206,7 @@ def attribute( Default: None n_steps (int, optional): The number of steps used by the approximation method. Default: 50. - method (string, optional): Method for approximating the integral, + method (str, optional): Method for approximating the integral, one of `riemann_right`, `riemann_left`, `riemann_middle`, `riemann_trapezoid` or `gausslegendre`. Default: `gausslegendre` if no method is provided. @@ -231,10 +237,13 @@ def attribute( attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False + grad_kwargs (Dict[str, Any], optional): Additional keyword + arguments for torch.autograd.grad. + Default: None Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Conductance of each neuron in given layer input or output. Attributions will always be the same size as the input or output of the given layer, depending on @@ -244,7 +253,7 @@ def attribute( Attributions are returned in a tuple if the layer inputs / outputs contain multiple tensors, otherwise a single tensor is returned. - - **delta** (*tensor*, returned if return_convergence_delta=True): + - **delta** (*Tensor*, returned if return_convergence_delta=True): The difference between the total approximated and true conductance. This is computed using the property that the total sum of @@ -252,7 +261,7 @@ def attribute( the total sum of the attributions. Delta is calculated per example, meaning that the number of elements in returned delta tensor is equal to the number of - of examples in inputs. + examples in inputs. Examples:: @@ -318,11 +327,12 @@ def _attribute( inputs: Tuple[Tensor, ...], baselines: Tuple[Union[Tensor, int, float], ...], target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", attribute_to_layer_input: bool = False, step_sizes_and_alphas: Union[None, Tuple[List[float], List[float]]] = None, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[Tensor, Tuple[Tensor, ...]]: num_examples = inputs[0].shape[0] if step_sizes_and_alphas is None: @@ -356,14 +366,18 @@ def _attribute( # Conductance Gradients - Returns gradient of output with respect to # hidden layer and hidden layer evaluated at each input. - (layer_gradients, layer_evals,) = compute_layer_gradients_and_eval( + ( + layer_gradients, + layer_evals, + ) = compute_layer_gradients_and_eval( forward_fn=self.forward_func, - layer=self.layer, + layer=cast(Module, self.layer), inputs=scaled_features_tpl, additional_forward_args=input_additional_args, target_ind=expanded_target, device_ids=self.device_ids, attribute_to_layer_input=attribute_to_layer_input, + grad_kwargs=grad_kwargs, ) # Compute differences between consecutive evaluations of layer_eval. @@ -382,7 +396,7 @@ def _attribute( grad_diff * layer_gradient[:-num_examples], n_steps, num_examples, - layer_eval.shape[1:], + tuple(layer_eval.shape[1:]), ) for layer_gradient, layer_eval, grad_diff in zip( layer_gradients, layer_evals, grad_diffs @@ -391,5 +405,5 @@ def _attribute( return _format_output(len(attributions) > 1, attributions) @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return True diff --git a/captum/attr/_core/layer/layer_deep_lift.py b/captum/attr/_core/layer/layer_deep_lift.py index 71a8e9eb29..da24e7cb48 100644 --- a/captum/attr/_core/layer/layer_deep_lift.py +++ b/captum/attr/_core/layer/layer_deep_lift.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 + +# pyre-strict import typing -from typing import Any, Callable, cast, Sequence, Tuple, Union +from typing import Any, Callable, cast, Dict, Literal, Optional, Sequence, Tuple, Union import torch from captum._utils.common import ( @@ -11,12 +13,7 @@ ExpansionTypes, ) from captum._utils.gradient import compute_layer_gradients_and_eval -from captum._utils.typing import ( - BaselineType, - Literal, - TargetType, - TensorOrTupleOfTensorsGeneric, -) +from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._core.deep_lift import DeepLift, DeepLiftShap from captum.attr._utils.attribution import LayerAttribution from captum.attr._utils.common import ( @@ -69,10 +66,7 @@ def __init__( r""" Args: - model (nn.Module): The reference to PyTorch model instance. Model cannot - contain any in-place nonlinear submodules; these are not - supported by the register_full_backward_hook PyTorch API - starting from PyTorch v1.9. + model (nn.Module): The reference to PyTorch model instance. layer (torch.nn.Module): Layer for which attributions are computed. The size and dimensionality of the attributions corresponds to the size and dimensionality of the layer's @@ -107,12 +101,13 @@ def attribute( inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, - return_convergence_delta: Literal[False] = False, + additional_forward_args: Optional[object] = None, + *, + return_convergence_delta: Literal[True], attribute_to_layer_input: bool = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, - ) -> Union[Tensor, Tuple[Tensor, ...]]: - ... + grad_kwargs: Optional[Dict[str, Any]] = None, + ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]: ... @typing.overload def attribute( @@ -120,40 +115,42 @@ def attribute( inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, - *, - return_convergence_delta: Literal[True], + additional_forward_args: Optional[object] = None, + return_convergence_delta: Literal[False] = False, attribute_to_layer_input: bool = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, - ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]: - ... + grad_kwargs: Optional[Dict[str, Any]] = None, + ) -> Union[Tensor, Tuple[Tensor, ...]]: ... @log_usage() + # pyre-fixme[43]: This definition does not have the same decorators as the + # preceding overload(s). def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, return_convergence_delta: bool = False, attribute_to_layer_input: bool = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[ Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor] ]: r""" Args: - inputs (tensor or tuple of tensors): Input for which layer - attributions are computed. If forward_func takes a + inputs (Tensor or tuple[Tensor, ...]): Input for which layer + attributions are computed. If model takes a single tensor as input, a single input tensor should be - provided. If forward_func takes multiple tensors as input, + provided. If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and @@ -180,11 +177,12 @@ def attribute( - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. + In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -209,14 +207,14 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to - forward_func in order, following the arguments in inputs. + model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None @@ -236,7 +234,7 @@ def attribute( attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False - custom_attribution_func (callable, optional): A custom function for + custom_attribution_func (Callable, optional): A custom function for computing final attribution scores. This function can take at least one and at most three arguments with the following signature: @@ -252,10 +250,13 @@ def attribute( `custom_attribution_func` returns a tuple of attribution tensors that have the same length as the `inputs`. Default: None + grad_kwargs (Dict[str, Any], optional): Additional keyword + arguments for torch.autograd.grad. + Default: None Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attribution score computed based on DeepLift's rescale rule with respect to layer's inputs or outputs. Attributions will always be the same size as the provided layer's inputs or outputs, depending on @@ -264,20 +265,21 @@ def attribute( just a tensor is returned; if the layer input / output has multiple tensors, then a corresponding tuple of tensors is returned. - - **delta** (*tensor*, returned if return_convergence_delta=True): + - **delta** (*Tensor*, returned if return_convergence_delta=True): This is computed using the property that the total sum of - forward_func(inputs) - forward_func(baselines) must equal the + model(inputs) - model(baselines) must equal the total sum of the attributions computed based on DeepLift's rescale rule. Delta is calculated per example, meaning that the number of elements in returned delta tensor is equal to the number of - of examples in input. + examples in input. Note that the logic described for deltas is guaranteed when the default logic for attribution computations is used, meaning that the `custom_attribution_func=None`, otherwise it is not guaranteed and depends on the specifics of the `custom_attribution_func`. + Examples:: >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, @@ -319,7 +321,9 @@ def attribute( additional_forward_args, ) - def chunk_output_fn(out: TensorOrTupleOfTensorsGeneric) -> Sequence: + def chunk_output_fn( + out: TensorOrTupleOfTensorsGeneric, + ) -> Sequence[Union[Tensor, Sequence[Tensor]]]: if isinstance(out, Tensor): return out.chunk(2) return tuple(out_sub.chunk(2) for out_sub in out) @@ -330,11 +334,12 @@ def chunk_output_fn(out: TensorOrTupleOfTensorsGeneric) -> Sequence: inputs, attribute_to_layer_input=attribute_to_layer_input, output_fn=lambda out: chunk_output_fn(out), + grad_kwargs=grad_kwargs, ) - attr_inputs = tuple(map(lambda attr: attr[0], attrs)) - attr_baselines = tuple(map(lambda attr: attr[1], attrs)) - gradients = tuple(map(lambda grad: grad[0], gradients)) + attr_inputs = tuple(attr[0] for attr in attrs) + attr_baselines = tuple(attr[1] for attr in attrs) + gradients = tuple(grad[0] for grad in gradients) if custom_attribution_func is None: if self.multiplies_by_inputs: @@ -366,7 +371,7 @@ def chunk_output_fn(out: TensorOrTupleOfTensorsGeneric) -> Sequence: ) @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs @@ -381,12 +386,14 @@ class LayerDeepLiftShap(LayerDeepLift, DeepLiftShap): input flag `attribute_to_layer_input`. More details about the algorithm can be found here: - http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf + https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf Note that the explanation model: + 1. Assumes that input features are independent of one another 2. Is linear, meaning that the explanations are modeled through the additive composition of feature effects. + Although, it assumes a linear model for each explanation, the overall model across multiple explanations can be complex and non-linear. """ @@ -400,10 +407,7 @@ def __init__( r""" Args: - model (nn.Module): The reference to PyTorch model instance. Model cannot - contain any in-place nonlinear submodules; these are not - supported by the register_full_backward_hook PyTorch API - starting from PyTorch v1.9. + model (nn.Module): The reference to PyTorch model instance. layer (torch.nn.Module): Layer for which attributions are computed. The size and dimensionality of the attributions corresponds to the size and dimensionality of the layer's @@ -438,14 +442,14 @@ def attribute( Tensor, Tuple[Tensor, ...], Callable[..., Union[Tensor, Tuple[Tensor, ...]]] ], target: TargetType = None, - additional_forward_args: Any = None, - return_convergence_delta: Literal[False] = False, + additional_forward_args: Optional[Tuple[object, ...]] = None, + *, + return_convergence_delta: Literal[True], attribute_to_layer_input: bool = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, - ) -> Union[Tensor, Tuple[Tensor, ...]]: - ... + ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]: ... - @typing.overload + @typing.overload # type: ignore def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], @@ -453,15 +457,15 @@ def attribute( Tensor, Tuple[Tensor, ...], Callable[..., Union[Tensor, Tuple[Tensor, ...]]] ], target: TargetType = None, - additional_forward_args: Any = None, - *, - return_convergence_delta: Literal[True], + additional_forward_args: Optional[Tuple[object, ...]] = None, + return_convergence_delta: Literal[False] = False, attribute_to_layer_input: bool = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, - ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]: - ... + ) -> Union[Tensor, Tuple[Tensor, ...]]: ... @log_usage() + # pyre-fixme[43]: This definition does not have the same decorators as the + # preceding overload(s). def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], @@ -469,7 +473,7 @@ def attribute( Tensor, Tuple[Tensor, ...], Callable[..., Union[Tensor, Tuple[Tensor, ...]]] ], target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[Tuple[object, ...]] = None, return_convergence_delta: bool = False, attribute_to_layer_input: bool = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, @@ -479,16 +483,16 @@ def attribute( r""" Args: - inputs (tensor or tuple of tensors): Input for which layer - attributions are computed. If forward_func takes a single + inputs (Tensor or tuple[Tensor, ...]): Input for which layer + attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. - If forward_func takes multiple tensors as input, a tuple + If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (tensor, tuple of tensors, callable): + baselines (Tensor, tuple[Tensor, ...], or Callable): Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and @@ -513,7 +517,7 @@ def attribute( It is recommended that the number of samples in the baselines' tensors is larger than one. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -538,14 +542,14 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to - forward_func in order, following the arguments in inputs. + model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None @@ -564,7 +568,7 @@ def attribute( outputs of internal layers are single tensors. Support for multiple tensors will be added later. Default: False - custom_attribution_func (callable, optional): A custom function for + custom_attribution_func (Callable, optional): A custom function for computing final attribution scores. This function can take at least one and at most three arguments with the following signature: @@ -584,7 +588,7 @@ def attribute( Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attribution score computed based on DeepLift's rescale rule with respect to layer's inputs or outputs. Attributions will always be the same size as the provided layer's inputs @@ -595,9 +599,9 @@ def attribute( from a forward hook. For standard modules, inputs of a single tensor are usually wrapped in a tuple, while outputs of a single tensor are not. - - **delta** (*tensor*, returned if return_convergence_delta=True): + - **delta** (*Tensor*, returned if return_convergence_delta=True): This is computed using the property that the - total sum of forward_func(inputs) - forward_func(baselines) + total sum of model(inputs) - model(baselines) must be very close to the total sum of attributions computed based on approximated SHAP values using DeepLift's rescale rule. @@ -647,20 +651,25 @@ def attribute( ) = DeepLiftShap._expand_inputs_baselines_targets( self, baselines, inputs, target, additional_forward_args ) - attributions = LayerDeepLift.attribute.__wrapped__( # type: ignore + attribs_layer_deeplift = LayerDeepLift.attribute.__wrapped__( # type: ignore self, exp_inp, exp_base, target=exp_target, additional_forward_args=exp_addit_args, return_convergence_delta=cast( - Literal[True, False], return_convergence_delta + Literal[True, False], + return_convergence_delta, ), attribute_to_layer_input=attribute_to_layer_input, custom_attribution_func=custom_attribution_func, ) + delta: Tensor + attributions: Union[Tensor, Tuple[Tensor, ...]] if return_convergence_delta: - attributions, delta = attributions + attributions, delta = attribs_layer_deeplift + else: + attributions = attribs_layer_deeplift if isinstance(attributions, tuple): attributions = tuple( DeepLiftShap._compute_mean_across_baselines( @@ -675,8 +684,15 @@ def attribute( if return_convergence_delta: return attributions, delta else: - return attributions + return cast( + Union[ + Tensor, + Tuple[Tensor, ...], + Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor], + ], + attributions, + ) @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs diff --git a/captum/attr/_core/layer/layer_feature_ablation.py b/captum/attr/_core/layer/layer_feature_ablation.py index 75ac885eac..c0297d954e 100644 --- a/captum/attr/_core/layer/layer_feature_ablation.py +++ b/captum/attr/_core/layer/layer_feature_ablation.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 -from typing import Any, Callable, List, Tuple, Union + +# pyre-strict +from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Type, Union import torch from captum._utils.common import ( @@ -35,14 +37,14 @@ class LayerFeatureAblation(LayerAttribution, PerturbationAttribution): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], layer: Module, device_ids: Union[None, List[int]] = None, ) -> None: r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it layer (torch.nn.Module): Layer for which attributions are computed. Output size of attribute matches this layer's input or @@ -50,7 +52,7 @@ def __init__( the inputs or outputs of the layer, corresponding to attribution of each neuron in the input or output of this layer. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself @@ -67,7 +69,7 @@ def attribute( inputs: Union[Tensor, Tuple[Tensor, ...]], layer_baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, layer_mask: Union[None, Tensor, Tuple[Tensor, ...]] = None, attribute_to_layer_input: bool = False, perturbations_per_eval: int = 1, @@ -75,7 +77,7 @@ def attribute( r""" Args: - inputs (tensor or tuple of tensors): Input for which layer + inputs (Tensor or tuple[Tensor, ...]): Input for which layer attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -83,7 +85,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - layer_baselines (scalar, tensor, tuple of scalars or tensors, optional): + layer_baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Layer baselines define reference values which replace each layer input / output value when ablated. Layer baselines should be a single tensor with dimensions @@ -94,7 +96,7 @@ def attribute( In the cases when `baselines` is not provided, we internally use zero as the baseline for each neuron. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -119,7 +121,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -131,7 +133,7 @@ def attribute( Note that attributions are not computed with respect to these arguments. Default: None - layer_mask (tensor or tuple of tensors, optional): + layer_mask (Tensor or tuple[Tensor, ...], optional): layer_mask defines a mask for the layer, grouping elements of the layer input / output which should be ablated together. @@ -171,8 +173,8 @@ def attribute( Default: 1 Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attribution of each neuron in given layer input or output. Attributions will always be the same size as the input or output of the given layer, depending on @@ -221,16 +223,21 @@ def attribute( >>> layer_mask=layer_mask) """ - def layer_forward_func(*args): - layer_length = args[-1] - layer_input = args[:layer_length] - original_inputs = args[layer_length:-1] + def layer_forward_func(*args: Any) -> Union[Tensor]: + r""" + Args: + args (Any): Tensors comprising the layer input and the original + inputs, and an int representing the length of the layer input + """ + layer_length: int = args[-1] + layer_input: Tuple[Tensor, ...] = args[:layer_length] + original_inputs: Tuple[Tensor, ...] = args[layer_length:-1] device_ids = self.device_ids if device_ids is None: device_ids = getattr(self.forward_func, "device_ids", None) - all_layer_inputs = {} + all_layer_inputs: Dict[torch.device, Tuple[Tensor, ...]] = {} if device_ids is not None: scattered_layer_input = scatter(layer_input, target_gpus=device_ids) for device_tensors in scattered_layer_input: @@ -238,7 +245,11 @@ def layer_forward_func(*args): else: all_layer_inputs[layer_input[0].device] = layer_input - def forward_hook(module, inp, out=None): + def forward_hook( + module: Module, + inp: Union[None, Tensor, Tuple[Tensor, ...]], + out: Union[None, Tensor, Tuple[Tensor, ...]] = None, + ) -> Union[Tensor, Tuple[Tensor, ...]]: device = _extract_device(module, inp, out) is_layer_tuple = ( isinstance(out, tuple) @@ -266,7 +277,11 @@ def forward_hook(module, inp, out=None): finally: if hook is not None: hook.remove() - return eval + + # _run_forward may return future of Tensor, + # but we don't support it here now + # And it will fail before here. + return cast(Tensor, eval) with torch.no_grad(): inputs = _format_tensor_into_tuples(inputs) @@ -288,7 +303,7 @@ def forward_hook(module, inp, out=None): else inputs + layer_eval_len ) - ablator = FeatureAblation(layer_forward_func) + ablator = self.attributor(layer_forward_func) layer_attribs = ablator.attribute.__wrapped__( ablator, # self @@ -300,3 +315,7 @@ def forward_hook(module, inp, out=None): ) _attr = _format_output(len(layer_attribs) > 1, layer_attribs) return _attr + + @property + def attributor(self) -> Type[FeatureAblation]: + return FeatureAblation diff --git a/captum/attr/_core/layer/layer_feature_permutation.py b/captum/attr/_core/layer/layer_feature_permutation.py new file mode 100644 index 0000000000..8db7b965d3 --- /dev/null +++ b/captum/attr/_core/layer/layer_feature_permutation.py @@ -0,0 +1,253 @@ +#!/usr/bin/env python3 + +# pyre-strict +from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Type, Union + +import torch +from captum._utils.common import ( + _extract_device, + _format_additional_forward_args, + _format_output, + _format_tensor_into_tuples, + _run_forward, +) + +from captum._utils.gradient import _forward_layer_eval +from captum._utils.typing import TargetType, TensorOrTupleOfTensorsGeneric +from captum.attr._core.feature_permutation import FeaturePermutation +from captum.attr._utils.attribution import LayerAttribution +from captum.log import log_usage +from torch import Tensor +from torch.nn import Module +from torch.nn.parallel.scatter_gather import scatter + + +class LayerFeaturePermutation(LayerAttribution, FeaturePermutation): + r""" + A perturbation based approach to computing layer attribution similar to + LayerFeatureAblation, but using FeaturePermutation under the hood instead + of FeatureAblation. + """ + + def __init__( + self, + forward_func: Callable[..., Tensor], + layer: Module, + device_ids: Union[None, List[int]] = None, + ) -> None: + r""" + Args: + + forward_func (Callable): The forward function of the model or any + modification of it + layer (torch.nn.Module): Layer for which attributions are computed. + Output size of attribute matches this layer's input or + output dimensions, depending on whether we attribute to + the inputs or outputs of the layer, corresponding to + attribution of each neuron in the input or output of + this layer. + device_ids (list[int]): Device ID list, necessary only if forward_func + applies a DataParallel model. This allows reconstruction of + intermediate outputs from batched results across devices. + If forward_func is given as the DataParallel model itself + (or otherwise has a device_ids attribute with the device + ID list), then it is not necessary to provide this + argument. + """ + LayerAttribution.__init__(self, forward_func, layer, device_ids) + FeaturePermutation.__init__(self, forward_func) + + @log_usage() + def attribute( + self, + inputs: Union[Tensor, Tuple[Tensor, ...]], + target: TargetType = None, + additional_forward_args: Optional[object] = None, + layer_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, + perturbations_per_eval: int = 1, + ) -> Union[Tensor, Tuple[Tensor, ...]]: + r""" + Args: + + inputs (Tensor or tuple[Tensor, ...]): Input for which layer + attributions are computed. If forward_func takes a single + tensor as input, a single input tensor should be provided. + If forward_func takes multiple tensors as input, a tuple + of the input tensors should be provided. It is assumed + that for all given input tensors, dimension 0 corresponds + to the number of examples, and if multiple input tensors + are provided, the examples must be aligned appropriately. + target (int, tuple, Tensor, or list, optional): Output indices for + which gradients are computed (for classification cases, + this is usually the target class). + If the network returns a scalar value per example, + no target index is necessary. + For general 2D outputs, targets can be either: + + - a single integer or a tensor containing a single + integer, which is applied to all input examples + + - a list of integers or a 1D tensor, with length matching + the number of examples in inputs (dim 0). Each integer + is applied as the target for the corresponding example. + + For outputs with > 2 dimensions, targets can be either: + + - A single tuple, which contains #output_dims - 1 + elements. This target index is applied to all examples. + + - A list of tuples with length equal to the number of + examples in inputs (dim 0), and each tuple containing + #output_dims - 1 elements. Each tuple is applied as the + target for the corresponding example. + + Default: None + additional_forward_args (Any, optional): If the forward function + requires additional arguments other than the inputs for + which attributions should not be computed, this argument + can be provided. It must be either a single additional + argument of a Tensor or arbitrary (non-tuple) type or a + tuple containing multiple additional arguments including + tensors or any arbitrary python types. These arguments + are provided to forward_func in order following the + arguments in inputs. + Note that attributions are not computed with respect + to these arguments. + Default: None + layer_mask (Tensor or tuple[Tensor, ...], optional): + layer_mask defines a mask for the layer, grouping + elements of the layer input / output which should be + ablated together. + layer_mask should be a single tensor with dimensions + matching the input / output of the target layer (or + broadcastable to match it), based + on whether we are attributing to the input or output + of the target layer. layer_mask + should contain integers in the range 0 to num_groups + - 1, and all elements with the same value are + considered to be in the same group. + If None, then a layer mask is constructed which assigns + each neuron within the layer as a separate group, which + is ablated independently. + Default: None + perturbations_per_eval (int, optional): Allows permutation of multiple + neuron (groups) to be processed simultaneously in one + call to forward_fn. + Each forward pass will contain a maximum of + perturbations_per_eval * #examples samples. + For DataParallel models, each batch is split among the + available devices, so evaluations on each available + device contain at most + (perturbations_per_eval * #examples) / num_devices + samples. + Default: 1 + + Returns: + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): + Attribution of each neuron in given layer input or + output. Attributions will always be the same size as + the input or output of the given layer, depending on + whether we attribute to the inputs or outputs + of the layer which is decided by the input flag + `attribute_to_layer_input` + Attributions are returned in a tuple if + the layer inputs / outputs contain multiple tensors, + otherwise a single tensor is returned. + """ + + def layer_forward_func(*args: Any) -> Tensor: + r""" + Args: + args (Any): Tensors comprising the layer input and the original + inputs, and an int representing the length of the layer input + """ + layer_length: int = args[-1] + layer_input: Tuple[Tensor, ...] = args[:layer_length] + original_inputs: Tuple[Tensor, ...] = args[layer_length:-1] + + device_ids = self.device_ids + if device_ids is None: + device_ids = getattr(self.forward_func, "device_ids", None) + + all_layer_inputs: Dict[torch.device, Tuple[Tensor, ...]] = {} + if device_ids is not None: + scattered_layer_input = scatter(layer_input, target_gpus=device_ids) + for device_tensors in scattered_layer_input: + all_layer_inputs[device_tensors[0].device] = device_tensors + else: + all_layer_inputs[layer_input[0].device] = layer_input + + def forward_hook( + module: Module, + inp: Union[None, Tensor, Tuple[Tensor, ...]], + out: Union[None, Tensor, Tuple[Tensor, ...]] = None, + ) -> Union[Tensor, Tuple[Tensor, ...]]: + device = _extract_device(module, inp, out) + is_layer_tuple = ( + isinstance(out, tuple) + if out is not None + else isinstance(inp, tuple) + ) + if device not in all_layer_inputs: + raise AssertionError( + "Layer input not placed on appropriate " + "device. If using a DataParallel model, either provide the " + "DataParallel model as forward_func or provide device ids" + " to the constructor." + ) + if not is_layer_tuple: + return all_layer_inputs[device][0] + return all_layer_inputs[device] + + hook = None + try: + hook = self.layer.register_forward_hook(forward_hook) + eval = _run_forward(self.forward_func, original_inputs, target=target) + finally: + if hook is not None: + hook.remove() + + # _run_forward may return future of Tensor, + # but we don't support it here now + # And it will fail before here. + return cast(Tensor, eval) + + with torch.no_grad(): + inputs = _format_tensor_into_tuples(inputs) + additional_forward_args = _format_additional_forward_args( + additional_forward_args + ) + layer_eval = _forward_layer_eval( + self.forward_func, + inputs, + self.layer, + additional_forward_args, + device_ids=self.device_ids, + ) + layer_eval_len = (len(layer_eval),) + all_inputs = ( + (inputs + additional_forward_args + layer_eval_len) + if additional_forward_args is not None + else inputs + layer_eval_len + ) + + permutator = self.attributor(forward_func=layer_forward_func) + + layer_attribs = permutator.attribute.__wrapped__( + permutator, + inputs=layer_eval, + target=target, + additional_forward_args=all_inputs, + feature_mask=layer_mask, + perturbations_per_eval=perturbations_per_eval, + ) + _attr = _format_output(len(layer_attribs) > 1, layer_attribs) + + return _attr + + @property + def attributor( + self, + ) -> Type[FeaturePermutation]: + return FeaturePermutation diff --git a/captum/attr/_core/layer/layer_gradient_shap.py b/captum/attr/_core/layer/layer_gradient_shap.py index 9473475cdf..e0e213997c 100644 --- a/captum/attr/_core/layer/layer_gradient_shap.py +++ b/captum/attr/_core/layer/layer_gradient_shap.py @@ -1,12 +1,14 @@ #!/usr/bin/env python3 +# pyre-strict + import typing -from typing import Any, Callable, cast, List, Tuple, Union +from typing import Any, Callable, cast, Dict, List, Literal, Optional, Tuple, Union import numpy as np import torch from captum._utils.gradient import _forward_layer_eval, compute_layer_gradients_and_eval -from captum._utils.typing import Literal, TargetType, TensorOrTupleOfTensorsGeneric +from captum._utils.typing import TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._core.gradient_shap import _scale_input from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._utils.attribution import GradientAttribution, LayerAttribution @@ -29,7 +31,7 @@ class LayerGradientShap(LayerAttribution, GradientAttribution): #deep-learning-example-with-gradientexplainer-tensorflowkeraspytorch-models A Unified Approach to Interpreting Model Predictions - http://papers.nips.cc/paper\ + https://papers.nips.cc/paper\ 7062-a-unified-approach-to-interpreting-model-predictions GradientShap approximates SHAP values by computing the expectations of @@ -52,14 +54,14 @@ class LayerGradientShap(LayerAttribution, GradientAttribution): In some sense it can be viewed as an approximation of integrated gradients by computing the expectations of gradients for different baselines. - Current implementation uses Smoothgrad from `NoiseTunnel` in order to + Current implementation uses Smoothgrad from :class:`.NoiseTunnel` in order to randomly draw samples from the distribution of baselines, add noise to input samples and compute the expectation (smoothgrad). """ def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], layer: Module, device_ids: Union[None, List[int]] = None, multiply_by_inputs: bool = True, @@ -67,7 +69,7 @@ def __init__( r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it layer (torch.nn.Module): Layer for which attributions are computed. Output size of attribute matches this layer's input or @@ -75,7 +77,7 @@ def __init__( the inputs or outputs of the layer, corresponding to attribution of each neuron in the input or output of this layer. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -104,40 +106,46 @@ def __init__( def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, - baselines: Union[TensorOrTupleOfTensorsGeneric, Callable], + baselines: Union[ + TensorOrTupleOfTensorsGeneric, Callable[..., TensorOrTupleOfTensorsGeneric] + ], n_samples: int = 5, stdevs: Union[float, Tuple[float, ...]] = 0.0, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, *, return_convergence_delta: Literal[True], attribute_to_layer_input: bool = False, - ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]: - ... + ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]: ... @typing.overload def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, - baselines: Union[TensorOrTupleOfTensorsGeneric, Callable], + baselines: Union[ + TensorOrTupleOfTensorsGeneric, Callable[..., TensorOrTupleOfTensorsGeneric] + ], n_samples: int = 5, stdevs: Union[float, Tuple[float, ...]] = 0.0, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, return_convergence_delta: Literal[False] = False, attribute_to_layer_input: bool = False, - ) -> Union[Tensor, Tuple[Tensor, ...]]: - ... + ) -> Union[Tensor, Tuple[Tensor, ...]]: ... @log_usage() + # pyre-fixme[43]: This definition does not have the same decorators as the + # preceding overload(s). def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, - baselines: Union[TensorOrTupleOfTensorsGeneric, Callable], + baselines: Union[ + TensorOrTupleOfTensorsGeneric, Callable[..., TensorOrTupleOfTensorsGeneric] + ], n_samples: int = 5, stdevs: Union[float, Tuple[float, ...]] = 0.0, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, return_convergence_delta: bool = False, attribute_to_layer_input: bool = False, ) -> Union[ @@ -146,7 +154,7 @@ def attribute( r""" Args: - inputs (tensor or tuple of tensors): Input which are used to compute + inputs (Tensor or tuple[Tensor, ...]): Input which are used to compute SHAP attribution values for a given `layer`. If `forward_func` takes a single tensor as input, a single input tensor should be provided. @@ -155,7 +163,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (tensor, tuple of tensors, callable): + baselines (Tensor, tuple[Tensor, ...], or Callable): Baselines define the starting point from which expectation is computed and can be provided as: @@ -178,11 +186,11 @@ def attribute( It is recommended that the number of samples in the baselines' tensors is larger than one. - n_samples (int, optional): The number of randomly generated examples + n_samples (int, optional): The number of randomly generated examples per sample in the input batch. Random examples are generated by adding gaussian random noise to each sample. Default: `5` if `n_samples` is not provided. - stdevs (float, or a tuple of floats optional): The standard deviation + stdevs (float or tuple of float, optional): The standard deviation of gaussian noise with zero mean that is added to each input in the batch. If `stdevs` is a single float value then that same value is used for all inputs. If it is @@ -191,7 +199,7 @@ def attribute( corresponds to the input with the same index in the inputs tuple. Default: 0.0 - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -216,7 +224,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It can contain a tuple of ND tensors or @@ -244,9 +252,10 @@ def attribute( attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False + Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attribution score computed based on GradientSHAP with respect to layer's input or output. Attributions will always be the same size as the provided layer's inputs or outputs, @@ -255,7 +264,7 @@ def attribute( Attributions are returned in a tuple if the layer inputs / outputs contain multiple tensors, otherwise a single tensor is returned. - - **delta** (*tensor*, returned if return_convergence_delta=True): + - **delta** (*Tensor*, returned if return_convergence_delta=True): This is computed using the property that the total sum of forward_func(inputs) - forward_func(baselines) must be very close to the total sum of the attributions @@ -285,10 +294,10 @@ def attribute( """ # since `baselines` is a distribution, we can generate it using a function # rather than passing it as an input argument - baselines = _format_callable_baseline(baselines, inputs) - assert isinstance(baselines[0], torch.Tensor), ( + formatted_baselines = _format_callable_baseline(baselines, inputs) + assert isinstance(formatted_baselines[0], torch.Tensor), ( "Baselines distribution has to be provided in a form " - "of a torch.Tensor {}.".format(baselines[0]) + "of a torch.Tensor {}.".format(formatted_baselines[0]) ) input_min_baseline_x_grad = LayerInputBaselineXGradient( @@ -307,7 +316,7 @@ def attribute( nt_samples=n_samples, stdevs=stdevs, draw_baseline_from_distrib=True, - baselines=baselines, + baselines=formatted_baselines, target=target, additional_forward_args=additional_forward_args, return_convergence_delta=return_convergence_delta, @@ -320,14 +329,14 @@ def has_convergence_delta(self) -> bool: return True @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs class LayerInputBaselineXGradient(LayerAttribution, GradientAttribution): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], layer: Module, device_ids: Union[None, List[int]] = None, multiply_by_inputs: bool = True, @@ -335,7 +344,7 @@ def __init__( r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it layer (torch.nn.Module): Layer for which attributions are computed. Output size of attribute matches this layer's input or @@ -343,7 +352,7 @@ def __init__( the inputs or outputs of the layer, corresponding to attribution of each neuron in the input or output of this layer. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -374,11 +383,12 @@ def attribute( inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: Union[Tensor, Tuple[Tensor, ...]], target: TargetType = None, - additional_forward_args: Any = None, - return_convergence_delta: Literal[False] = False, + additional_forward_args: Optional[object] = None, + *, + return_convergence_delta: Literal[True], attribute_to_layer_input: bool = False, - ) -> Union[Tensor, Tuple[Tensor, ...]]: - ... + grad_kwargs: Optional[Dict[str, Any]] = None, + ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]: ... @typing.overload def attribute( @@ -386,12 +396,11 @@ def attribute( inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: Union[Tensor, Tuple[Tensor, ...]], target: TargetType = None, - additional_forward_args: Any = None, - *, - return_convergence_delta: Literal[True], + additional_forward_args: Optional[object] = None, + return_convergence_delta: Literal[False] = False, attribute_to_layer_input: bool = False, - ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]: - ... + grad_kwargs: Optional[Dict[str, Any]] = None, + ) -> Union[Tensor, Tuple[Tensor, ...]]: ... @log_usage() def attribute( # type: ignore @@ -399,9 +408,10 @@ def attribute( # type: ignore inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: Union[Tensor, Tuple[Tensor, ...]], target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, return_convergence_delta: bool = False, attribute_to_layer_input: bool = False, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[ Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor] ]: @@ -418,18 +428,19 @@ def attribute( # type: ignore ) grads, _ = compute_layer_gradients_and_eval( self.forward_func, - self.layer, + cast(Module, self.layer), input_baseline_scaled, target, additional_forward_args, device_ids=self.device_ids, attribute_to_layer_input=attribute_to_layer_input, + grad_kwargs=grad_kwargs, ) attr_baselines = _forward_layer_eval( self.forward_func, baselines, - self.layer, + cast(Module, self.layer), additional_forward_args=additional_forward_args, device_ids=self.device_ids, attribute_to_layer_input=attribute_to_layer_input, @@ -438,12 +449,12 @@ def attribute( # type: ignore attr_inputs = _forward_layer_eval( self.forward_func, inputs, - self.layer, + cast(Module, self.layer), additional_forward_args=additional_forward_args, device_ids=self.device_ids, attribute_to_layer_input=attribute_to_layer_input, ) - + attributions: Tuple[Tensor, ...] if self.multiplies_by_inputs: input_baseline_diffs = tuple( input - baseline for input, baseline in zip(attr_inputs, attr_baselines) @@ -470,5 +481,5 @@ def has_convergence_delta(self) -> bool: return True @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs diff --git a/captum/attr/_core/layer/layer_gradient_x_activation.py b/captum/attr/_core/layer/layer_gradient_x_activation.py index a63a5d7abe..f56265c2e8 100644 --- a/captum/attr/_core/layer/layer_gradient_x_activation.py +++ b/captum/attr/_core/layer/layer_gradient_x_activation.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 -from typing import Any, Callable, List, Tuple, Union + +# pyre-strict +from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union from captum._utils.common import ( _format_additional_forward_args, @@ -22,7 +24,7 @@ class LayerGradientXActivation(LayerAttribution, GradientAttribution): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], layer: ModuleOrModuleList, device_ids: Union[None, List[int]] = None, multiply_by_inputs: bool = True, @@ -30,9 +32,9 @@ def __init__( r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it - layer (torch.nn.Module or list(torch.nn.Module)): Layer or layers + layer (torch.nn.Module or list of torch.nn.Module): Layer or layers for which attributions are computed. Output size of attribute matches this layer's input or output dimensions, depending on whether we attribute to @@ -41,7 +43,7 @@ def __init__( this layer. If multiple layers are provided, attributions are returned as a list, each element corresponding to the attributions of the corresponding layer. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -66,7 +68,7 @@ def __init__( self._multiply_by_inputs = multiply_by_inputs @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs @log_usage() @@ -74,13 +76,14 @@ def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, attribute_to_layer_input: bool = False, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]: r""" Args: - inputs (tensor or tuple of tensors): Input for which attributions + inputs (Tensor or tuple[Tensor, ...]): Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -88,7 +91,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -113,7 +116,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -132,10 +135,12 @@ def attribute( layer input, otherwise it will be computed with respect to layer output. Default: False - + grad_kwargs (Dict[str, Any], optional): Additional keyword + arguments for torch.autograd.grad. + Default: None Returns: - *tensor* or tuple of *tensors* or *list* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors* or *list*): + *Tensor* or *tuple[Tensor, ...]* or list of **attributions**: + - **attributions** (*Tensor*, *tuple[Tensor, ...]*, or *list*): Product of gradient and activation for each neuron in given layer output. Attributions will always be the same size as the @@ -175,11 +180,15 @@ def attribute( additional_forward_args, device_ids=self.device_ids, attribute_to_layer_input=attribute_to_layer_input, + grad_kwargs=grad_kwargs, ) if isinstance(self.layer, Module): return _format_output( len(layer_evals) > 1, - self.multiply_gradient_acts(layer_gradients, layer_evals), + self.multiply_gradient_acts( + cast(Tuple[Tensor, ...], layer_gradients), + cast(Tuple[Tensor, ...], layer_evals), + ), ) else: return [ @@ -194,8 +203,10 @@ def multiply_gradient_acts( self, gradients: Tuple[Tensor, ...], evals: Tuple[Tensor, ...] ) -> Tuple[Tensor, ...]: return tuple( - single_gradient * single_eval - if self.multiplies_by_inputs - else single_gradient + ( + single_gradient * single_eval + if self.multiplies_by_inputs + else single_gradient + ) for single_gradient, single_eval in zip(gradients, evals) ) diff --git a/captum/attr/_core/layer/layer_integrated_gradients.py b/captum/attr/_core/layer/layer_integrated_gradients.py index 2e769a5658..6590fa75ea 100644 --- a/captum/attr/_core/layer/layer_integrated_gradients.py +++ b/captum/attr/_core/layer/layer_integrated_gradients.py @@ -1,7 +1,20 @@ #!/usr/bin/env python3 + +# pyre-strict import functools import warnings -from typing import Any, Callable, List, overload, Tuple, Union +from typing import ( + Any, + Callable, + cast, + Dict, + List, + Literal, + Optional, + overload, + Tuple, + Union, +) import torch from captum._utils.common import ( @@ -10,7 +23,7 @@ _format_outputs, ) from captum._utils.gradient import _forward_layer_eval, _run_forward -from captum._utils.typing import BaselineType, Literal, ModuleOrModuleList, TargetType +from captum._utils.typing import BaselineType, ModuleOrModuleList, TargetType from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._utils.attribution import GradientAttribution, LayerAttribution from captum.attr._utils.common import ( @@ -20,6 +33,7 @@ ) from captum.log import log_usage from torch import Tensor +from torch.nn import Module from torch.nn.parallel.scatter_gather import scatter @@ -41,24 +55,23 @@ class LayerIntegratedGradients(LayerAttribution, GradientAttribution): More details regarding the integrated gradients method can be found in the original paper: https://arxiv.org/abs/1703.01365 - """ def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], layer: ModuleOrModuleList, device_ids: Union[None, List[int]] = None, multiply_by_inputs: bool = True, ) -> None: r""" Args: - forward_func (callable): The forward function of the model or any + + forward_func (Callable): The forward function of the model or any modification of it - layer (ModuleOrModuleList): - Layer or list of layers for which attributions are computed. - For each layer the output size of the attribute matches - this layer's input or output dimensions, depending on + layer (ModuleOrModuleList): Layer or list of layers for which attributions + are computed. For each layer the output size of the attribute + matches this layer's input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to the attribution of each neuron in the input or output of this layer. @@ -74,7 +87,7 @@ def __init__( dependence, e.g. if you pass in l2 you cannot pass in l1 or l3. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -101,77 +114,197 @@ def __init__( if isinstance(layer, list) and len(layer) > 1: warnings.warn( "Multiple layers provided. Please ensure that each layer is" - "**not** solely solely dependent on the outputs of" + "**not** solely dependent on the outputs of" "another layer. Please refer to the documentation for more" - "detail." + "detail.", + stacklevel=2, ) + def _make_gradient_func( + self, + num_outputs_cumsum: Tensor, + attribute_to_layer_input: bool, + grad_kwargs: Optional[Dict[str, Any]], + ) -> Callable[..., Tuple[Tensor, ...]]: + + def _gradient_func( + forward_fn: Callable[..., Tensor], + inputs: Union[Tensor, Tuple[Tensor, ...]], + target_ind: TargetType = None, + additional_forward_args: Optional[object] = None, + ) -> Tuple[Tensor, ...]: + if self.device_ids is None or len(self.device_ids) == 0: + scattered_inputs = (inputs,) + else: + # scatter method does not have a precise enough return type in its + # stub, so suppress the type warning. + scattered_inputs = scatter( # type:ignore + # pyre-fixme[6]: For 1st argument expected `Tensor` but got + # `Union[Tensor, typing.Tuple[Tensor, ...]]`. + inputs, + target_gpus=self.device_ids, + ) + + scattered_inputs_dict: Dict[ + torch.device, Union[Tensor, Tuple[Tensor, ...]] + ] = { + scattered_input[0].device: scattered_input + for scattered_input in scattered_inputs + } + + with torch.autograd.set_grad_enabled(True): + + def layer_forward_hook( + module: Module, + hook_inputs: Union[Tensor, Tuple[Tensor, ...]], + hook_outputs: Union[None, Tensor, Tuple[Tensor, ...]] = None, + layer_idx: int = 0, + ) -> Union[Tensor, Tuple[Tensor, ...]]: + device = _extract_device(module, hook_inputs, hook_outputs) + is_layer_tuple = ( + isinstance(hook_outputs, tuple) + # hook_outputs is None if attribute_to_layer_input == True + if hook_outputs is not None + else isinstance(hook_inputs, tuple) + ) + + if is_layer_tuple: + return cast( + Union[Tensor, Tuple[Tensor, ...]], + scattered_inputs_dict[device][ + num_outputs_cumsum[layer_idx] : num_outputs_cumsum[ + layer_idx + 1 + ] + ], + ) + + return scattered_inputs_dict[device][num_outputs_cumsum[layer_idx]] + + hooks = [] + try: + + layers = self.layer + if not isinstance(layers, list): + layers = [self.layer] + + for layer_idx, layer in enumerate(layers): + hook = None + # TODO: + # Allow multiple attribute_to_layer_input flags for + # each layer, i.e. attribute_to_layer_input[layer_idx] + if attribute_to_layer_input: + hook = layer.register_forward_pre_hook( + functools.partial( + layer_forward_hook, layer_idx=layer_idx + ) + ) + else: + hook = layer.register_forward_hook( + functools.partial( + layer_forward_hook, layer_idx=layer_idx + ) + ) + + hooks.append(hook) + + # the inputs is an empty tuple + # coz it is prepended into additional_forward_args + output = _run_forward( + self.forward_func, (), target_ind, additional_forward_args + ) + finally: + for hook in hooks: + if hook is not None: + hook.remove() + + # _run_forward may return future of Tensor, + # but we don't support it here now + # And it will fail before here. + output = cast(Tensor, output) + assert output[0].numel() == 1, ( + "Target not provided when necessary, cannot" + " take gradient with respect to multiple outputs." + ) + # torch.unbind(forward_out) is a list of scalar tensor tuples and + # contains batch_size * #steps elements + grads = torch.autograd.grad( + torch.unbind(output), inputs, **grad_kwargs or {} + ) + return grads + + return _gradient_func + @overload def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType, target: TargetType, - additional_forward_args: Any, + additional_forward_args: Optional[object], n_steps: int, method: str, internal_batch_size: Union[None, int], return_convergence_delta: Literal[False], attribute_to_layer_input: bool, - ) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]: - ... + grad_kwargs: Optional[Dict[str, Any]], + ) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]: ... @overload - def attribute( + def attribute( # type: ignore self, inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType, target: TargetType, - additional_forward_args: Any, + additional_forward_args: Optional[object], n_steps: int, method: str, internal_batch_size: Union[None, int], return_convergence_delta: Literal[True], attribute_to_layer_input: bool, + grad_kwargs: Optional[Dict[str, Any]], ) -> Tuple[ Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]], Tensor, - ]: - ... + ]: ... @overload + # pyre-fixme[43]: This definition does not have the same decorators as the + # preceding overload(s). def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, return_convergence_delta: bool = False, attribute_to_layer_input: bool = False, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[ Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]], Tuple[ Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]], Tensor, ], - ]: - ... + ]: ... @log_usage() + # pyre-fixme[43]: This definition does not have the same decorators as the + # preceding overload(s). def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, return_convergence_delta: bool = False, attribute_to_layer_input: bool = False, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[ Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]], Tuple[ @@ -192,7 +325,7 @@ def attribute( Args: - inputs (tensor or tuple of tensors): Input for which layer integrated + inputs (Tensor or tuple[Tensor, ...]): Input for which layer integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -200,7 +333,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define the starting point from which integral is computed and can be provided as: @@ -214,6 +347,7 @@ def attribute( - a tuple of tensors or scalars, the baseline corresponding to each tensor in the inputs' tuple can be: + - either a tensor with matching dimensions to corresponding tensor in the inputs' tuple or the first dimension is one and the remaining @@ -227,7 +361,7 @@ def attribute( use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -252,7 +386,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -261,17 +395,19 @@ def attribute( tensors or any arbitrary python types. These arguments are provided to forward_func in order following the arguments in inputs. + For a tensor, the first dimension of the tensor must correspond to the number of examples. It will be repeated for each of `n_steps` along the integrated path. For all other types, the given argument is used for all forward evaluations. + Note that attributions are not computed with respect to these arguments. Default: None n_steps (int, optional): The number of steps used by the approximation method. Default: 50. - method (string, optional): Method for approximating the integral, + method (str, optional): Method for approximating the integral, one of `riemann_right`, `riemann_left`, `riemann_middle`, `riemann_trapezoid` or `gausslegendre`. Default: `gausslegendre` if no method is provided. @@ -280,6 +416,7 @@ def attribute( which are computed (forward / backward passes) sequentially. internal_batch_size must be at least equal to #examples. + For DataParallel models, each batch is split among the available devices, so evaluations on each available device contain internal_batch_size / num_devices examples. @@ -297,54 +434,60 @@ def attribute( then the attributions will be computed with respect to layer input, otherwise it will be computed with respect to layer output. + Note that currently it is assumed that either the input or the output of internal layer, depending on whether we attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False - Returns: - **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor*, tuple of *tensors* or tuple of *tensors*): - Integrated gradients with respect to `layer`'s inputs or - outputs. Attributions will always be the same size and - dimensionality as the input or output of the given layer, - depending on whether we attribute to the inputs or outputs - of the layer which is decided by the input flag - `attribute_to_layer_input`. - - For a single layer, attributions are returned in a tuple if - the layer inputs / outputs contain multiple tensors, - otherwise a single tensor is returned. - - For multiple layers, attributions will always be - returned as a list. Each element in this list will be - equivalent to that of a single layer output, i.e. in the - case that one layer, in the given layers, inputs / outputs - multiple tensors: the corresponding output element will be - a tuple of tensors. The ordering of the outputs will be - the same order as the layers given in the constructor. - - **delta** (*tensor*, returned if return_convergence_delta=True): - The difference between the total approximated and true - integrated gradients. This is computed using the property - that the total sum of forward_func(inputs) - - forward_func(baselines) must equal the total sum of the - integrated gradient. - Delta is calculated per example, meaning that the number of - elements in returned delta tensor is equal to the number of - of examples in inputs. - - Examples:: - - >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, - >>> # and returns an Nx10 tensor of class probabilities. - >>> # It contains an attribute conv1, which is an instance of nn.conv2d, - >>> # and the output of this layer has dimensions Nx12x32x32. - >>> net = ImageClassifier() - >>> lig = LayerIntegratedGradients(net, net.conv1) - >>> input = torch.randn(2, 3, 32, 32, requires_grad=True) - >>> # Computes layer integrated gradients for class 3. - >>> # attribution size matches layer output, Nx12x32x32 - >>> attribution = lig.attribute(input, target=3) + grad_kwargs (Dict[str, Any], optional): Additional keyword + arguments for torch.autograd.grad. + Default: None + + Returns: + **attributions** or 2-element tuple of **attributions**, **delta**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): + Integrated gradients with respect to `layer`'s inputs + or outputs. Attributions will always be the same size and + dimensionality as the input or output of the given layer, + depending on whether we attribute to the inputs or outputs + of the layer which is decided by the input flag + `attribute_to_layer_input`. + + For a single layer, attributions are returned in a tuple if + the layer inputs / outputs contain multiple tensors, + otherwise a single tensor is returned. + + For multiple layers, attributions will always be + returned as a list. Each element in this list will be + equivalent to that of a single layer output, i.e. in the + case that one layer, in the given layers, inputs / outputs + multiple tensors: the corresponding output element will be + a tuple of tensors. The ordering of the outputs will be + the same order as the layers given in the constructor. + + - **delta** (*Tensor*, returned if return_convergence_delta=True): + The difference between the total approximated and true + integrated gradients. This is computed using the property + that the total sum of forward_func(inputs) - + forward_func(baselines) must equal the total sum of the + integrated gradient. + Delta is calculated per example, meaning that the number of + elements in returned delta tensor is equal to the number of + examples in inputs. + + Examples:: + + >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, + >>> # and returns an Nx10 tensor of class probabilities. + >>> # It contains an attribute conv1, which is an instance of nn.conv2d, + >>> # and the output of this layer has dimensions Nx12x32x32. + >>> net = ImageClassifier() + >>> lig = LayerIntegratedGradients(net, net.conv1) + >>> input = torch.randn(2, 3, 32, 32, requires_grad=True) + >>> # Computes layer integrated gradients for class 3. + >>> # attribution size matches layer output, Nx12x32x32 + >>> attribution = lig.attribute(input, target=3) """ inps, baselines = _format_input_baseline(inputs, baselines) _validate_input(inps, baselines, n_steps, method) @@ -354,9 +497,22 @@ def attribute( additional_forward_args ) - def flatten_tuple(tup): + def flatten_tuple(tup: List[Tuple[Tensor, ...]]) -> Tuple[Tensor, ...]: return tuple( - sum((list(x) if isinstance(x, (tuple, list)) else [x] for x in tup), []) + cast( + List[Tensor], + sum( + ( + ( + list(x) + if isinstance(x, (tuple, list)) + else cast(List[Tensor], [x]) + ) + for x in tup + ), + [], + ), + ) ) if self.device_ids is None: @@ -370,16 +526,18 @@ def flatten_tuple(tup): additional_forward_args=additional_forward_args, attribute_to_layer_input=attribute_to_layer_input, ) - + input_layer_list: List[Tuple[Tensor, ...]] # if we have one output if not isinstance(self.layer, list): - inputs_layer = (inputs_layer,) + input_layer_list = [cast(Tuple[Tensor, ...], inputs_layer)] + else: + input_layer_list = inputs_layer - num_outputs = [1 if isinstance(x, Tensor) else len(x) for x in inputs_layer] + num_outputs = [1 if isinstance(x, Tensor) else len(x) for x in input_layer_list] num_outputs_cumsum = torch.cumsum( torch.IntTensor([0] + num_outputs), dim=0 # type: ignore ) - inputs_layer = flatten_tuple(inputs_layer) + inputs_layer = flatten_tuple(input_layer_list) baselines_layer = _forward_layer_eval( self.forward_func, @@ -392,93 +550,10 @@ def flatten_tuple(tup): baselines_layer = flatten_tuple(baselines_layer) # inputs -> these inputs are scaled - def gradient_func( - forward_fn: Callable, - inputs: Union[Tensor, Tuple[Tensor, ...]], - target_ind: TargetType = None, - additional_forward_args: Any = None, - ) -> Tuple[Tensor, ...]: - if self.device_ids is None or len(self.device_ids) == 0: - scattered_inputs = (inputs,) - else: - # scatter method does not have a precise enough return type in its - # stub, so suppress the type warning. - scattered_inputs = scatter( # type:ignore - inputs, target_gpus=self.device_ids - ) - scattered_inputs_dict = { - scattered_input[0].device: scattered_input - for scattered_input in scattered_inputs - } - - with torch.autograd.set_grad_enabled(True): - - def layer_forward_hook( - module, hook_inputs, hook_outputs=None, layer_idx=0 - ): - device = _extract_device(module, hook_inputs, hook_outputs) - is_layer_tuple = ( - isinstance(hook_outputs, tuple) - # hook_outputs is None if attribute_to_layer_input == True - if hook_outputs is not None - else isinstance(hook_inputs, tuple) - ) - - if is_layer_tuple: - return scattered_inputs_dict[device][ - num_outputs_cumsum[layer_idx] : num_outputs_cumsum[ - layer_idx + 1 - ] - ] - - return scattered_inputs_dict[device][num_outputs_cumsum[layer_idx]] - - hooks = [] - try: - - layers = self.layer - if not isinstance(layers, list): - layers = [self.layer] - - for layer_idx, layer in enumerate(layers): - hook = None - # TODO: - # Allow multiple attribute_to_layer_input flags for - # each layer, i.e. attribute_to_layer_input[layer_idx] - if attribute_to_layer_input: - hook = layer.register_forward_pre_hook( - functools.partial( - layer_forward_hook, layer_idx=layer_idx - ) - ) - else: - hook = layer.register_forward_hook( - functools.partial( - layer_forward_hook, layer_idx=layer_idx - ) - ) - - hooks.append(hook) - - output = _run_forward( - self.forward_func, tuple(), target_ind, additional_forward_args - ) - finally: - for hook in hooks: - if hook is not None: - hook.remove() - - assert output[0].numel() == 1, ( - "Target not provided when necessary, cannot" - " take gradient with respect to multiple outputs." - ) - # torch.unbind(forward_out) is a list of scalar tensor tuples and - # contains batch_size * #steps elements - grads = torch.autograd.grad(torch.unbind(output), inputs) - return grads - - self.ig.gradient_func = gradient_func + self.ig.gradient_func = self._make_gradient_func( + num_outputs_cumsum, attribute_to_layer_input, grad_kwargs + ) all_inputs = ( (inps + additional_forward_args) if additional_forward_args is not None @@ -524,5 +599,5 @@ def has_convergence_delta(self) -> bool: return True @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self.ig.multiplies_by_inputs diff --git a/captum/attr/_core/layer/layer_lrp.py b/captum/attr/_core/layer/layer_lrp.py index e72bbbaddc..ac1a889e24 100644 --- a/captum/attr/_core/layer/layer_lrp.py +++ b/captum/attr/_core/layer/layer_lrp.py @@ -1,6 +1,10 @@ #!/usr/bin/env python3 + +# pyre-strict import typing -from typing import Any, cast, List, Tuple, Union +from typing import cast, Dict, List, Literal, Optional, Tuple, TypeVar, Union + +import torch from captum._utils.common import ( _format_tensor_into_tuples, @@ -13,15 +17,18 @@ undo_gradient_requirements, ) from captum._utils.typing import ( - Literal, ModuleOrModuleList, TargetType, TensorOrTupleOfTensorsGeneric, ) from captum.attr._core.lrp import LRP from captum.attr._utils.attribution import LayerAttribution +from captum.attr._utils.lrp_rules import PropagationRule from torch import Tensor from torch.nn import Module +from torch.utils.hooks import RemovableHandle + +T = TypeVar("T") class LayerLRP(LRP, LayerAttribution): @@ -38,18 +45,21 @@ class LayerLRP(LRP, LayerAttribution): Ancona et al. [https://openreview.net/forum?id=Sy21R9JAW]. """ + device_ids: List[int] + verbose: bool + layers: List[Module] + attribute_to_layer_input: bool = False + backward_handles: List[RemovableHandle] + forward_handles: List[RemovableHandle] + def __init__(self, model: Module, layer: ModuleOrModuleList) -> None: """ Args: - model (module): The forward function of the model or + model (Module): The forward function of the model or any modification of it. Custom rules for a given layer need to be defined as attribute `module.rule` and need to be of type PropagationRule. - Model cannot contain any in-place nonlinear submodules; - these are not supported by the register_full_backward_hook - PyTorch API starting from PyTorch v1.9. - layer (torch.nn.Module or list(torch.nn.Module)): Layer or layers for which attributions are computed. @@ -69,34 +79,32 @@ def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, - return_convergence_delta: Literal[False] = False, + additional_forward_args: Optional[object] = None, + *, + return_convergence_delta: Literal[True], attribute_to_layer_input: bool = False, verbose: bool = False, - ) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]: - ... + ) -> Tuple[ + Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]], + Union[Tensor, List[Tensor]], + ]: ... @typing.overload def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, - *, - return_convergence_delta: Literal[True], + additional_forward_args: Optional[object] = None, + return_convergence_delta: Literal[False] = False, attribute_to_layer_input: bool = False, verbose: bool = False, - ) -> Tuple[ - Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]], - Union[Tensor, List[Tensor]], - ]: - ... + ) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]: ... def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, return_convergence_delta: bool = False, attribute_to_layer_input: bool = False, verbose: bool = False, @@ -110,23 +118,23 @@ def attribute( ], ]: r""" - Args: - inputs (tensor or tuple of tensors): Input for which relevance is + + inputs (Tensor or tuple[Tensor, ...]): Input for which relevance is propagated. - If forward_func takes a single + If model takes a single tensor as input, a single input tensor should be provided. - If forward_func takes multiple tensors as input, a tuple + If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - target (int, tuple, tensor or list, optional): Output indices for - which gradients are computed (for classification cases, - this is usually the target class). - If the network returns a scalar value per example, - no target index is necessary. - For general 2D outputs, targets can be either: + target (int, tuple, Tensor, or list, optional): Output indices for + which gradients are computed (for classification cases, + this is usually the target class). + If the network returns a scalar value per example, + no target index is necessary. + For general 2D outputs, targets can be either: - a single integer or a tensor containing a single integer, which is applied to all input examples @@ -153,7 +161,7 @@ def attribute( argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to - forward_func in order, following the arguments in inputs. + model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None @@ -176,9 +184,10 @@ def attribute( Default: False Returns: - *tensor* or tuple of *tensors* of **attributions** or 2-element tuple of - **attributions**, **delta** or lists of **attributions** and **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions** or 2-element tuple of + **attributions**, **delta** or list of **attributions** and **delta**: + + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The propagated relevance values with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value @@ -190,24 +199,25 @@ def attribute( implementations. If attributions for all layers are returned (layer=None) a list of tensors or tuples of tensors is returned with entries for each layer. - - **delta** (*tensor* or list of *tensors* - returned if return_convergence_delta=True): + - **delta** (*Tensor* or list of *Tensor* + returned if return_convergence_delta=True): Delta is calculated per example, meaning that the number of elements in returned delta tensor is equal to the number of - of examples in input. + examples in input. If attributions for all layers are returned (layer=None) a list of tensors is returned with entries for each layer. + Examples:: >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, >>> # and returns an Nx10 tensor of class probabilities. It has one >>> # Conv2D and a ReLU layer. >>> net = ImageClassifier() - >>> lrp = LRP(net, net.conv1) + >>> layer_lrp = LayerLRP(net, net.conv1) >>> input = torch.randn(3, 3, 32, 32) >>> # Attribution size matches input size: 3x3x32x32 - >>> attribution = lrp.attribute(input, target=5) + >>> attribution = layer_lrp.attribute(input, target=5) """ self.verbose = verbose @@ -219,23 +229,25 @@ def attribute( self.backward_handles = [] self.forward_handles = [] - inputs = _format_tensor_into_tuples(inputs) - gradient_mask = apply_gradient_requirements(inputs) + inputs_tuple = _format_tensor_into_tuples(inputs) + gradient_mask = apply_gradient_requirements(inputs_tuple) try: # 1. Forward pass output = self._compute_output_and_change_weights( - inputs, target, additional_forward_args + inputs_tuple, + target, + additional_forward_args, ) self._register_forward_hooks() # 2. Forward pass + backward pass _ = compute_gradients( - self._forward_fn_wrapper, inputs, target, additional_forward_args + self._forward_fn_wrapper, inputs_tuple, target, additional_forward_args ) relevances = self._get_output_relevance(output) finally: self._restore_model() - undo_gradient_requirements(inputs, gradient_mask) + undo_gradient_requirements(inputs_tuple, gradient_mask) if return_convergence_delta: delta: Union[Tensor, List[Tensor]] @@ -243,7 +255,10 @@ def attribute( delta = [] for relevance_layer in relevances: delta.append( - self.compute_convergence_delta(relevance_layer, output) + self.compute_convergence_delta( + cast(Union[Tensor, Tuple[Tensor, ...]], relevance_layer), + output, + ) ) else: delta = self.compute_convergence_delta( @@ -253,28 +268,35 @@ def attribute( else: return relevances # type: ignore - def _get_single_output_relevance(self, layer, output): + def _get_single_output_relevance( + self, layer: Module, output: Tensor + ) -> Union[Tensor, Tuple[Tensor, ...]]: if self.attribute_to_layer_input: - normalized_relevances = layer.rule.relevance_input + normalized_relevances = cast( + Dict[torch.device, Tensor], + cast(PropagationRule, layer.rule).relevance_input, + ) else: - normalized_relevances = layer.rule.relevance_output + normalized_relevances = cast(PropagationRule, layer.rule).relevance_output key_list = _sort_key_list(list(normalized_relevances.keys()), self.device_ids) - normalized_relevances = _reduce_list( + normalized_relevances_reduced = _reduce_list( [normalized_relevances[device_id] for device_id in key_list] ) - if isinstance(normalized_relevances, tuple): + if isinstance(normalized_relevances_reduced, tuple): return tuple( normalized_relevance * output.reshape((-1,) + (1,) * (normalized_relevance.dim() - 1)) - for normalized_relevance in normalized_relevances + for normalized_relevance in normalized_relevances_reduced ) else: - return normalized_relevances * output.reshape( - (-1,) + (1,) * (normalized_relevances.dim() - 1) + return normalized_relevances_reduced * output.reshape( + (-1,) + (1,) * (normalized_relevances_reduced.dim() - 1) ) - def _get_output_relevance(self, output): + def _get_output_relevance( + self, output: Tensor + ) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]: if isinstance(self.layer, list): relevances = [] for layer in self.layer: @@ -285,8 +307,8 @@ def _get_output_relevance(self, output): @staticmethod def _convert_list_to_tuple( - relevances: Union[List[Any], Tuple[Any, ...]] - ) -> Tuple[Any, ...]: + relevances: Union[List[T], Tuple[T, ...]], + ) -> Tuple[T, ...]: if isinstance(relevances, list): return tuple(relevances) else: diff --git a/captum/attr/_core/lime.py b/captum/attr/_core/lime.py index 76f3f4ca71..5b754f85fe 100644 --- a/captum/attr/_core/lime.py +++ b/captum/attr/_core/lime.py @@ -1,9 +1,12 @@ #!/usr/bin/env python3 + +# pyre-strict import inspect import math import typing import warnings -from typing import Any, Callable, cast, List, Optional, Tuple, Union +from collections.abc import Iterator +from typing import Any, Callable, cast, List, Literal, Optional, Tuple, Union import torch from captum._utils.common import ( @@ -12,6 +15,7 @@ _flatten_tensor_or_tuple, _format_output, _format_tensor_into_tuples, + _get_max_feature_index, _is_tuple, _reduce_list, _run_forward, @@ -19,12 +23,7 @@ from captum._utils.models.linear_model import SkLearnLasso from captum._utils.models.model import Model from captum._utils.progress import progress -from captum._utils.typing import ( - BaselineType, - Literal, - TargetType, - TensorOrTupleOfTensorsGeneric, -) +from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._utils.attribution import PerturbationAttribution from captum.attr._utils.batching import _batch_example_iterator from captum.attr._utils.common import ( @@ -69,20 +68,25 @@ class LimeBase(PerturbationAttribution): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], interpretable_model: Model, - similarity_func: Callable, - perturb_func: Callable, + similarity_func: Callable[ + ..., + Union[float, Tensor], + ], + perturb_func: Callable[..., object], perturb_interpretable_space: bool, - from_interp_rep_transform: Optional[Callable], - to_interp_rep_transform: Optional[Callable], + from_interp_rep_transform: Optional[ + Callable[..., Union[Tensor, Tuple[Tensor, ...]]] + ], + to_interp_rep_transform: Optional[Callable[..., Tensor]], ) -> None: r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it. If a batch is provided as input for attribution, it is expected that forward_func returns a scalar representing the entire batch. @@ -106,7 +110,7 @@ def __init__( Note that calling fit multiple times should retrain the interpretable model, each attribution call reuses the same given interpretable model object. - similarity_func (callable): Function which takes a single sample + similarity_func (Callable): Function which takes a single sample along with its corresponding interpretable representation and returns the weight of the interpretable sample for training interpretable model. Weight is generally @@ -116,8 +120,8 @@ def __init__( The expected signature of this callable is: >>> similarity_func( - >>> original_input: Tensor or tuple of Tensors, - >>> perturbed_input: Tensor or tuple of Tensors, + >>> original_input: Tensor or tuple[Tensor, ...], + >>> perturbed_input: Tensor or tuple[Tensor, ...], >>> perturbed_interpretable_input: >>> Tensor [2D 1 x num_interp_features], >>> **kwargs: Any @@ -131,7 +135,7 @@ def __init__( All kwargs passed to the attribute method are provided as keyword arguments (kwargs) to this callable. - perturb_func (callable): Function which returns a single + perturb_func (Callable): Function which returns a single sampled input, generally a perturbation of the original input, which is used to train the interpretable surrogate model. Function can return samples in either @@ -146,10 +150,10 @@ def __init__( The expected signature of this callable is: >>> perturb_func( - >>> original_input: Tensor or tuple of Tensors, + >>> original_input: Tensor or tuple[Tensor, ...], >>> **kwargs: Any - >>> ) -> Tensor or tuple of Tensors or - >>> generator yielding tensor or tuple of Tensors + >>> ) -> Tensor, tuple[Tensor, ...], or + >>> generator yielding tensor or tuple[Tensor, ...] All kwargs passed to the attribute method are provided as keyword arguments (kwargs) to this callable. @@ -171,7 +175,7 @@ def __init__( input. Once sampled, inputs can be converted to / from the interpretable representation with either to_interp_rep_transform or from_interp_rep_transform. - from_interp_rep_transform (callable): Function which takes a + from_interp_rep_transform (Callable): Function which takes a single sampled interpretable representation (tensor of shape 1 x num_interp_features) and returns the corresponding representation in the input space @@ -186,7 +190,7 @@ def __init__( >>> curr_sample: Tensor [2D 1 x num_interp_features] >>> original_input: Tensor or Tuple of Tensors, >>> **kwargs: Any - >>> ) -> Tensor or tuple of Tensors + >>> ) -> Tensor or tuple[Tensor, ...] Returned sampled input should match the type of original_input and corresponding tensor shapes. @@ -194,7 +198,7 @@ def __init__( All kwargs passed to the attribute method are provided as keyword arguments (kwargs) to this callable. - to_interp_rep_transform (callable): Function which takes a + to_interp_rep_transform (Callable): Function which takes a sample in the original input space and converts to its interpretable representation (tensor of shape 1 x num_interp_features). @@ -235,15 +239,16 @@ def __init__( ), "Must provide transform from original input space to interpretable space" @log_usage() + @torch.no_grad() def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[Tuple[object, ...]] = None, n_samples: int = 50, perturbations_per_eval: int = 1, show_progress: bool = False, - **kwargs, + **kwargs: object, ) -> Tensor: r""" This method attributes the output of the model with given target index @@ -266,7 +271,7 @@ def attribute( Args: - inputs (tensor or tuple of tensors): Input for which LIME + inputs (Tensor or tuple[Tensor, ...]): Input for which LIME is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -274,7 +279,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which surrogate model is trained (for classification cases, this is usually the target class). @@ -300,7 +305,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -315,7 +320,7 @@ def attribute( Note that attributions are not computed with respect to these arguments. Default: None - n_samples (int, optional): The number of samples of the original + n_samples (int, optional): The number of samples of the original model used to train the surrogate interpretable model. Default: `50` if `n_samples` is not provided. perturbations_per_eval (int, optional): Allows multiple samples @@ -342,7 +347,7 @@ def attribute( Returns: **interpretable model representation**: - - **interpretable model representation* (*Any*): + - **interpretable model representation** (*Any*): A representation of the interpretable model trained. The return type matches the return type of train_interpretable_model_func. For example, this could contain coefficients of a @@ -412,132 +417,156 @@ def attribute( >>> # model. >>> attr_coefs = lime_attr.attribute(input, target=1, kernel_width=1.1) """ - with torch.no_grad(): - inp_tensor = ( - cast(Tensor, inputs) if isinstance(inputs, Tensor) else inputs[0] + inp_tensor = cast(Tensor, inputs) if isinstance(inputs, Tensor) else inputs[0] + device = inp_tensor.device + + interpretable_inps = [] + similarities = [] + outputs = [] + + curr_model_inputs = [] + expanded_additional_args = None + expanded_target = None + gen_perturb_func = self._get_perturb_generator_func(inputs, **kwargs) + + if show_progress: + attr_progress = progress( + total=math.ceil(n_samples / perturbations_per_eval), + desc=f"{self.get_name()} attribution", ) - device = inp_tensor.device - - interpretable_inps = [] - similarities = [] - outputs = [] - - curr_model_inputs = [] - expanded_additional_args = None - expanded_target = None - perturb_generator = None - if inspect.isgeneratorfunction(self.perturb_func): - perturb_generator = self.perturb_func(inputs, **kwargs) - - if show_progress: - attr_progress = progress( - total=math.ceil(n_samples / perturbations_per_eval), - desc=f"{self.get_name()} attribution", - ) - attr_progress.update(0) - - batch_count = 0 - for _ in range(n_samples): - if perturb_generator: - try: - curr_sample = next(perturb_generator) - except StopIteration: - warnings.warn( - "Generator completed prior to given n_samples iterations!" - ) - break - else: - curr_sample = self.perturb_func(inputs, **kwargs) - batch_count += 1 - if self.perturb_interpretable_space: - interpretable_inps.append(curr_sample) - curr_model_inputs.append( - self.from_interp_rep_transform( # type: ignore - curr_sample, inputs, **kwargs - ) - ) - else: - curr_model_inputs.append(curr_sample) - interpretable_inps.append( - self.to_interp_rep_transform( # type: ignore - curr_sample, inputs, **kwargs - ) - ) - curr_sim = self.similarity_func( - inputs, curr_model_inputs[-1], interpretable_inps[-1], **kwargs - ) - similarities.append( - curr_sim.flatten() - if isinstance(curr_sim, Tensor) - else torch.tensor([curr_sim], device=device) + attr_progress.update(0) + + batch_count = 0 + for _ in range(n_samples): + try: + interpretable_inp, curr_model_input = gen_perturb_func() + except StopIteration: + warnings.warn( + "Generator completed prior to given n_samples iterations!", + stacklevel=1, ) + break + batch_count += 1 + interpretable_inps.append(interpretable_inp) + curr_model_inputs.append(curr_model_input) - if len(curr_model_inputs) == perturbations_per_eval: - if expanded_additional_args is None: - expanded_additional_args = _expand_additional_forward_args( - additional_forward_args, len(curr_model_inputs) - ) - if expanded_target is None: - expanded_target = _expand_target(target, len(curr_model_inputs)) - - model_out = self._evaluate_batch( - curr_model_inputs, - expanded_target, - expanded_additional_args, - device, - ) - - if show_progress: - attr_progress.update() - - outputs.append(model_out) + curr_sim = self.similarity_func( + inputs, curr_model_input, interpretable_inp, **kwargs + ) + similarities.append( + curr_sim.flatten() + if isinstance(curr_sim, Tensor) + else torch.tensor([curr_sim], device=device) + ) - curr_model_inputs = [] + if len(curr_model_inputs) == perturbations_per_eval: + if expanded_additional_args is None: + expanded_additional_args = _expand_additional_forward_args( + additional_forward_args, len(curr_model_inputs) + ) + if expanded_target is None: + expanded_target = _expand_target(target, len(curr_model_inputs)) - if len(curr_model_inputs) > 0: - expanded_additional_args = _expand_additional_forward_args( - additional_forward_args, len(curr_model_inputs) - ) - expanded_target = _expand_target(target, len(curr_model_inputs)) model_out = self._evaluate_batch( curr_model_inputs, expanded_target, expanded_additional_args, device, ) + if show_progress: attr_progress.update() + outputs.append(model_out) - if show_progress: - attr_progress.close() - - combined_interp_inps = torch.cat(interpretable_inps).double() - combined_outputs = ( - torch.cat(outputs) - if len(outputs[0].shape) > 0 - else torch.stack(outputs) - ).double() - combined_sim = ( - torch.cat(similarities) - if len(similarities[0].shape) > 0 - else torch.stack(similarities) - ).double() - dataset = TensorDataset( - combined_interp_inps, combined_outputs, combined_sim + curr_model_inputs = [] + + if len(curr_model_inputs) > 0: + expanded_additional_args = _expand_additional_forward_args( + additional_forward_args, len(curr_model_inputs) + ) + expanded_target = _expand_target(target, len(curr_model_inputs)) + model_out = self._evaluate_batch( + curr_model_inputs, + expanded_target, + expanded_additional_args, + device, ) - self.interpretable_model.fit(DataLoader(dataset, batch_size=batch_count)) - return self.interpretable_model.representation() + if show_progress: + attr_progress.update() + outputs.append(model_out) + + if show_progress: + attr_progress.close() + + # Argument 1 to "cat" has incompatible type + # "list[Tensor | tuple[Tensor, ...]]"; + # expected "tuple[Tensor, ...] | list[Tensor]" [arg-type] + combined_interp_inps = torch.cat(interpretable_inps).float() # type: ignore + combined_outputs = ( + torch.cat(outputs) if len(outputs[0].shape) > 0 else torch.stack(outputs) + ).float() + combined_sim = ( + torch.cat(similarities) + if len(similarities[0].shape) > 0 + else torch.stack(similarities) + ).float() + dataset = TensorDataset(combined_interp_inps, combined_outputs, combined_sim) + self.interpretable_model.fit(DataLoader(dataset, batch_size=batch_count)) + return self.interpretable_model.representation() + + def _get_perturb_generator_func( + self, inputs: TensorOrTupleOfTensorsGeneric, **kwargs: Any + ) -> Callable[ + [], Tuple[TensorOrTupleOfTensorsGeneric, TensorOrTupleOfTensorsGeneric] + ]: + perturb_generator: Optional[Iterator[TensorOrTupleOfTensorsGeneric]] + perturb_generator = None + if inspect.isgeneratorfunction(self.perturb_func): + perturb_generator = self.perturb_func(inputs, **kwargs) + + def generate_perturbation() -> ( + Tuple[TensorOrTupleOfTensorsGeneric, TensorOrTupleOfTensorsGeneric] + ): + if perturb_generator: + curr_sample = next(perturb_generator) + else: + curr_sample = self.perturb_func(inputs, **kwargs) + + if self.perturb_interpretable_space: + interpretable_inp = curr_sample + curr_model_input = self.from_interp_rep_transform( # type: ignore + curr_sample, inputs, **kwargs + ) + else: + curr_model_input = curr_sample + interpretable_inp = self.to_interp_rep_transform( # type: ignore + curr_sample, inputs, **kwargs + ) + + return interpretable_inp, curr_model_input # type: ignore + + return generate_perturbation + + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for LimeBase. + """ + raise NotImplementedError( + "LimeBase does not support attribution of future samples." + ) def _evaluate_batch( self, curr_model_inputs: List[TensorOrTupleOfTensorsGeneric], expanded_target: TargetType, - expanded_additional_args: Any, + expanded_additional_args: object, device: torch.device, - ): + ) -> Tensor: model_out = _run_forward( self.forward_func, + # pyre-fixme[6]: For 1st argument expected `Sequence[Variable[TupleOrTens... _reduce_list(curr_model_inputs), expanded_target, expanded_additional_args, @@ -555,7 +584,7 @@ def has_convergence_delta(self) -> bool: return False @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return False @@ -563,13 +592,15 @@ def multiplies_by_inputs(self): # for Lime child implementation. +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[2]: Parameter must be annotated. def default_from_interp_rep_transform(curr_sample, original_inputs, **kwargs): assert ( "feature_mask" in kwargs ), "Must provide feature_mask to use default interpretable representation transform" assert ( "baselines" in kwargs - ), "Must provide baselines to use default interpretable representation transfrom" + ), "Must provide baselines to use default interpretable representation transform" feature_mask = kwargs["feature_mask"] if isinstance(feature_mask, Tensor): binary_mask = curr_sample[0][feature_mask].bool() @@ -589,8 +620,9 @@ def default_from_interp_rep_transform(curr_sample, original_inputs, **kwargs): def get_exp_kernel_similarity_function( - distance_mode: str = "cosine", kernel_width: float = 1.0 -) -> Callable: + distance_mode: str = "cosine", + kernel_width: float = 1.0, +) -> Callable[..., float]: r""" This method constructs an appropriate similarity function to compute weights for perturbed sample in LIME. Distance between the original @@ -603,7 +635,7 @@ def get_exp_kernel_similarity_function( Args: - distance_mode (str, optional): Distance mode can be either "cosine" or + distance_mode (str, optional): Distance mode can be either "cosine" or "euclidean" corresponding to either cosine distance or Euclidean distance respectively. Distance is computed by flattening the original inputs and perturbed inputs @@ -622,6 +654,8 @@ def get_exp_kernel_similarity_function( similarity_fn for Lime or LimeBase. """ + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def default_exp_kernel(original_inp, perturbed_inp, __, **kwargs): flattened_original_inp = _flatten_tensor_or_tuple(original_inp).float() flattened_perturbed_inp = _flatten_tensor_or_tuple(perturbed_inp).float() @@ -637,7 +671,9 @@ def default_exp_kernel(original_inp, perturbed_inp, __, **kwargs): return default_exp_kernel -def default_perturb_func(original_inp, **kwargs): +def default_perturb_func( + original_inp: TensorOrTupleOfTensorsGeneric, **kwargs: object +) -> Tensor: assert ( "num_interp_features" in kwargs ), "Must provide num_interp_features to use default interpretable sampling function" @@ -646,42 +682,40 @@ def default_perturb_func(original_inp, **kwargs): else: device = original_inp[0].device - probs = torch.ones(1, kwargs["num_interp_features"]) * 0.5 + probs = torch.ones(1, cast(int, kwargs["num_interp_features"])) * 0.5 return torch.bernoulli(probs).to(device=device).long() -def construct_feature_mask(feature_mask, formatted_inputs): +def construct_feature_mask( + feature_mask: Union[None, Tensor, Tuple[Tensor, ...]], + formatted_inputs: Tuple[Tensor, ...], +) -> Tuple[Tuple[Tensor, ...], int]: + feature_mask_tuple: Tuple[Tensor, ...] if feature_mask is None: - feature_mask, num_interp_features = _construct_default_feature_mask( + feature_mask_tuple, num_interp_features = _construct_default_feature_mask( formatted_inputs ) else: - feature_mask = _format_tensor_into_tuples(feature_mask) + feature_mask_tuple = _format_tensor_into_tuples(feature_mask) min_interp_features = int( min( torch.min(single_mask).item() - for single_mask in feature_mask + for single_mask in feature_mask_tuple if single_mask.numel() ) ) if min_interp_features != 0: warnings.warn( "Minimum element in feature mask is not 0, shifting indices to" - " start at 0." + " start at 0.", + stacklevel=2, ) - feature_mask = tuple( - single_mask - min_interp_features for single_mask in feature_mask + feature_mask_tuple = tuple( + single_mask - min_interp_features for single_mask in feature_mask_tuple ) - num_interp_features = int( - max( - torch.max(single_mask).item() - for single_mask in feature_mask - if single_mask.numel() - ) - + 1 - ) - return feature_mask, num_interp_features + num_interp_features = _get_max_feature_index(feature_mask_tuple) + 1 + return feature_mask_tuple, num_interp_features class Lime(LimeBase): @@ -722,9 +756,11 @@ class Lime(LimeBase): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], interpretable_model: Optional[Model] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. similarity_func: Optional[Callable] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. perturb_func: Optional[Callable] = None, ) -> None: r""" @@ -732,9 +768,9 @@ def __init__( Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it - interpretable_model (optional, Model): Model object to train + interpretable_model (Model, optional): Model object to train interpretable model. This argument is optional and defaults to SkLearnLasso(alpha=0.01), @@ -760,14 +796,14 @@ def __init__( Note that calling fit multiple times should retrain the interpretable model, each attribution call reuses the same given interpretable model object. - similarity_func (optional, callable): Function which takes a single sample + similarity_func (Callable, optional): Function which takes a single sample along with its corresponding interpretable representation and returns the weight of the interpretable sample for training the interpretable model. This is often referred to as a similarity kernel. This argument is optional and defaults to a function which - applies an exponential kernel to the consine distance between + applies an exponential kernel to the cosine distance between the original input and perturbed input, with a kernel width of 1.0. @@ -780,8 +816,8 @@ def __init__( The expected signature of this callable is: >>> def similarity_func( - >>> original_input: Tensor or tuple of Tensors, - >>> perturbed_input: Tensor or tuple of Tensors, + >>> original_input: Tensor or tuple[Tensor, ...], + >>> perturbed_input: Tensor or tuple[Tensor, ...], >>> perturbed_interpretable_input: >>> Tensor [2D 1 x num_interp_features], >>> **kwargs: Any @@ -793,7 +829,7 @@ def __init__( kwargs includes baselines, feature_mask, num_interp_features (integer, determined from feature mask). - perturb_func (optional, callable): Function which returns a single + perturb_func (Callable, optional): Function which returns a single sampled input, which is a binary vector of length num_interp_features, or a generator of such tensors. @@ -805,7 +841,7 @@ def __init__( following expected signature: >>> perturb_func( - >>> original_input: Tensor or tuple of Tensors, + >>> original_input: Tensor or tuple[Tensor, ...], >>> **kwargs: Any >>> ) -> Tensor [Binary 2D Tensor 1 x num_interp_features] >>> or generator yielding such tensors @@ -840,7 +876,7 @@ def attribute( # type: ignore inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, feature_mask: Union[None, Tensor, Tuple[Tensor, ...]] = None, n_samples: int = 25, perturbations_per_eval: int = 1, @@ -879,7 +915,7 @@ def attribute( # type: ignore Args: - inputs (tensor or tuple of tensors): Input for which LIME + inputs (Tensor or tuple[Tensor, ...]): Input for which LIME is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -887,7 +923,7 @@ def attribute( # type: ignore that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define reference value which replaces each feature when the corresponding interpretable feature is set to 0. @@ -913,10 +949,11 @@ def attribute( # type: ignore - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. + In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which surrogate model is trained (for classification cases, this is usually the target class). @@ -942,7 +979,7 @@ def attribute( # type: ignore target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -959,7 +996,7 @@ def attribute( # type: ignore Note that attributions are not computed with respect to these arguments. Default: None - feature_mask (tensor or tuple of tensors, optional): + feature_mask (Tensor or tuple[Tensor, ...], optional): feature_mask defines a mask for the input, grouping features which correspond to the same interpretable feature. feature_mask @@ -977,7 +1014,7 @@ def attribute( # type: ignore If None, then a feature mask is constructed which assigns each scalar within a tensor as a separate feature. Default: None - n_samples (int, optional): The number of samples of the original + n_samples (int, optional): The number of samples of the original model used to train the surrogate interpretable model. Default: `50` if `n_samples` is not provided. perturbations_per_eval (int, optional): Allows multiple samples @@ -1001,7 +1038,12 @@ def attribute( # type: ignore coefficient of the corresponding interpretale feature. All elements with the same value in the feature mask will contain the same coefficient in the returned - attributions. If return_input_shape is False, a 1D + attributions. + If forward_func returns a single element per batch, then the + first dimension of each tensor will be 1, and the remaining + dimensions will have the same shape as the original input + tensor. + If return_input_shape is False, a 1D tensor is returned, containing only the coefficients of the trained interpreatable models, with length num_interp_features. @@ -1012,8 +1054,8 @@ def attribute( # type: ignore Default: False Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The attributions with respect to each input feature. If return_input_shape = True, attributions will be the same size as the provided inputs, with each value @@ -1075,18 +1117,22 @@ def attribute( # type: ignore show_progress=show_progress, ) + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + return super().attribute_future() + def _attribute_kwargs( # type: ignore self, inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, feature_mask: Union[None, Tensor, Tuple[Tensor, ...]] = None, n_samples: int = 25, perturbations_per_eval: int = 1, return_input_shape: bool = True, show_progress: bool = False, - **kwargs, + **kwargs: object, ) -> TensorOrTupleOfTensorsGeneric: is_inputs_tuple = _is_tuple(inputs) formatted_inputs, baselines = _format_input_baseline(inputs, baselines) @@ -1101,7 +1147,8 @@ def _attribute_kwargs( # type: ignore "Attempting to construct interpretable model with > 10000 features." "This can be very slow or lead to OOM issues. Please provide a feature" "mask which groups input features to reduce the number of interpretable" - "features. " + "features. ", + stacklevel=1, ) coefs: Tensor @@ -1115,7 +1162,9 @@ def _attribute_kwargs( # type: ignore "You are providing multiple inputs for Lime / Kernel SHAP " "attributions. This trains a separate interpretable model " "for each example, which can be time consuming. It is " - "recommended to compute attributions for one example at a time." + "recommended to compute attributions for one example at a " + "time.", + stacklevel=1, ) output_list = [] for ( @@ -1139,12 +1188,14 @@ def _attribute_kwargs( # type: ignore additional_forward_args=curr_additional_args, n_samples=n_samples, perturbations_per_eval=perturbations_per_eval, - baselines=curr_baselines - if is_inputs_tuple - else curr_baselines[0], - feature_mask=curr_feature_mask - if is_inputs_tuple - else curr_feature_mask[0], + baselines=( + curr_baselines if is_inputs_tuple else curr_baselines[0] + ), + feature_mask=( + curr_feature_mask + if is_inputs_tuple + else curr_feature_mask[0] + ), num_interp_features=num_interp_features, show_progress=show_progress, **kwargs, @@ -1188,12 +1239,15 @@ def _attribute_kwargs( # type: ignore **kwargs, ) if return_input_shape: + # pyre-fixme[7]: Expected `TensorOrTupleOfTensorsGeneric` but got + # `Tuple[Tensor, ...]`. return self._convert_output_shape( formatted_inputs, feature_mask, coefs, num_interp_features, is_inputs_tuple, + leading_dim_one=(bsz > 1), ) else: return coefs @@ -1206,19 +1260,30 @@ def _convert_output_shape( coefs: Tensor, num_interp_features: int, is_inputs_tuple: Literal[True], - ) -> Tuple[Tensor, ...]: - ... + leading_dim_one: bool = False, + ) -> Tuple[Tensor, ...]: ... @typing.overload - def _convert_output_shape( + def _convert_output_shape( # type: ignore self, formatted_inp: Tuple[Tensor, ...], feature_mask: Tuple[Tensor, ...], coefs: Tensor, num_interp_features: int, is_inputs_tuple: Literal[False], - ) -> Tensor: - ... + leading_dim_one: bool = False, + ) -> Tensor: ... + + @typing.overload + def _convert_output_shape( + self, + formatted_inp: Tuple[Tensor, ...], + feature_mask: Tuple[Tensor, ...], + coefs: Tensor, + num_interp_features: int, + is_inputs_tuple: bool, + leading_dim_one: bool = False, + ) -> Union[Tensor, Tuple[Tensor, ...]]: ... def _convert_output_shape( self, @@ -1227,6 +1292,7 @@ def _convert_output_shape( coefs: Tensor, num_interp_features: int, is_inputs_tuple: bool, + leading_dim_one: bool = False, ) -> Union[Tensor, Tuple[Tensor, ...]]: coefs = coefs.flatten() attr = [ @@ -1239,4 +1305,7 @@ def _convert_output_shape( coefs[single_feature].item() * (feature_mask[tensor_ind] == single_feature).float() ) + if leading_dim_one: + for i in range(len(attr)): + attr[i] = attr[i][0:1] return _format_output(is_inputs_tuple, tuple(attr)) diff --git a/captum/attr/_core/llm_attr.py b/captum/attr/_core/llm_attr.py new file mode 100644 index 0000000000..3466ad4996 --- /dev/null +++ b/captum/attr/_core/llm_attr.py @@ -0,0 +1,894 @@ +# pyre-strict + +import warnings + +from abc import ABC + +from copy import copy + +from textwrap import shorten + +from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Type, Union + +import matplotlib.colors as mcolors + +import matplotlib.pyplot as plt +import numpy as np + +import torch +from captum._utils.typing import TokenizerLike +from captum.attr._core.feature_ablation import FeatureAblation +from captum.attr._core.kernel_shap import KernelShap +from captum.attr._core.layer.layer_gradient_shap import LayerGradientShap +from captum.attr._core.layer.layer_gradient_x_activation import LayerGradientXActivation +from captum.attr._core.layer.layer_integrated_gradients import LayerIntegratedGradients +from captum.attr._core.lime import Lime +from captum.attr._core.shapley_value import ShapleyValues, ShapleyValueSampling +from captum.attr._utils.attribution import ( + Attribution, + GradientAttribution, + PerturbationAttribution, +) +from captum.attr._utils.interpretable_input import ( + InterpretableInput, + TextTemplateInput, + TextTokenInput, +) +from torch import nn, Tensor + +DEFAULT_GEN_ARGS: Dict[str, Any] = { + "max_new_tokens": 25, + "do_sample": False, + "temperature": None, + "top_p": None, +} + + +class LLMAttributionResult: + """ + Data class for the return result of LLMAttribution, + which includes the necessary properties of the attribution. + It also provides utilities to help present and plot the result in different forms. + """ + + def __init__( + self, + seq_attr: Tensor, + token_attr: Optional[Tensor], + input_tokens: List[str], + output_tokens: List[str], + ) -> None: + self.seq_attr = seq_attr + self.token_attr = token_attr + self.input_tokens = input_tokens + self.output_tokens = output_tokens + + @property + def seq_attr_dict(self) -> Dict[str, float]: + return {k: v for v, k in zip(self.seq_attr.cpu().tolist(), self.input_tokens)} + + def plot_token_attr( + self, show: bool = False + ) -> Union[None, Tuple[plt.Figure, plt.Axes]]: + """ + Generate a matplotlib plot for visualising the attribution + of the output tokens. + + Args: + show (bool): whether to show the plot directly or return the figure and axis + Default: False + """ + + if self.token_attr is None: + raise ValueError( + "token_attr is None (no token-level attribution was performed), please " + "use plot_seq_attr instead for the sequence-level attribution plot" + ) + token_attr = self.token_attr.cpu() + + # maximum absolute attribution value + # used as the boundary of normalization + # always keep 0 as the mid point to differentiate pos/neg attr + max_abs_attr_val = token_attr.abs().max().item() + + fig, ax = plt.subplots() + + # Hide the grid + ax.grid(False) + + # Plot the heatmap + data = token_attr.numpy() + + fig.set_size_inches( + max(data.shape[1] * 1.3, 6.4), max(data.shape[0] / 2.5, 4.8) + ) + colors = [ + "#93003a", + "#d0365b", + "#f57789", + "#ffbdc3", + "#ffffff", + "#a4d6e1", + "#73a3ca", + "#4772b3", + "#00429d", + ] + + im = ax.imshow( + data, + vmax=max_abs_attr_val, + vmin=-max_abs_attr_val, + cmap=mcolors.LinearSegmentedColormap.from_list( + name="colors", colors=colors + ), + aspect="auto", + ) + fig.set_facecolor("white") + + # Create colorbar + cbar = fig.colorbar(im, ax=ax) # type: ignore + cbar.ax.set_ylabel("Token Attribution", rotation=-90, va="bottom") + + # Show all ticks and label them with the respective list entries. + shortened_tokens = [ + shorten(t, width=50, placeholder="...") for t in self.input_tokens + ] + ax.set_xticks(np.arange(data.shape[1]), labels=shortened_tokens) + ax.set_yticks(np.arange(data.shape[0]), labels=self.output_tokens) + + # Let the horizontal axes labeling appear on top. + ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) + + # Rotate the tick labels and set their alignment. + plt.setp(ax.get_xticklabels(), rotation=-30, ha="right", rotation_mode="anchor") + + # Loop over the data and create a `Text` for each "pixel". + # Change the text's color depending on the data. + for i in range(data.shape[0]): + for j in range(data.shape[1]): + val = data[i, j] + color = "black" if 0.2 < im.norm(val) < 0.8 else "white" + im.axes.text( + j, + i, + "%.4f" % val, + horizontalalignment="center", + verticalalignment="center", + color=color, + ) + + if show: + plt.show() + return None # mypy wants this + else: + return fig, ax + + def plot_seq_attr( + self, show: bool = False + ) -> Union[None, Tuple[plt.Figure, plt.Axes]]: + """ + Generate a matplotlib plot for visualising the attribution + of the output sequence. + + Args: + show (bool): whether to show the plot directly or return the figure and axis + Default: False + """ + + fig, ax = plt.subplots() + + data = self.seq_attr.cpu().numpy() + + fig.set_size_inches(max(data.shape[0] / 2, 6.4), max(data.shape[0] / 4, 4.8)) + + shortened_tokens = [ + shorten(t, width=50, placeholder="...") for t in self.input_tokens + ] + ax.set_xticks(range(data.shape[0]), labels=shortened_tokens) + + ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) + + plt.setp( + ax.get_xticklabels(), + rotation=-30, + ha="right", + rotation_mode="anchor", + ) + + fig.set_facecolor("white") + + # pos bar + ax.bar( + range(data.shape[0]), + [max(v, 0) for v in data], + align="center", + color="#4772b3", + ) + # neg bar + ax.bar( + range(data.shape[0]), + [min(v, 0) for v in data], + align="center", + color="#d0365b", + ) + + ax.set_ylabel("Sequence Attribution", rotation=90, va="bottom") + + if show: + plt.show() + return None # mypy wants this + else: + return fig, ax + + +def _clean_up_pretty_token(token: str) -> str: + """Remove newlines and leading/trailing whitespace from token.""" + return token.replace("\n", "\\n").strip() + + +def _encode_with_offsets( + txt: str, + tokenizer: TokenizerLike, + add_special_tokens: bool = True, + **kwargs: Any, +) -> Tuple[List[int], List[Tuple[int, int]]]: + enc = tokenizer( + txt, + return_offsets_mapping=True, + add_special_tokens=add_special_tokens, + **kwargs, + ) + input_ids = cast(List[int], enc["input_ids"]) + offset_mapping = cast(List[Tuple[int, int]], enc["offset_mapping"]) + assert len(input_ids) == len(offset_mapping), ( + f"{len(input_ids)} != {len(offset_mapping)}: {txt} -> " + f"{input_ids}, {offset_mapping}" + ) + # For the case where offsets are not set properly (the end and start are + # equal for all tokens - fall back on the start of the next span in the + # offset mapping) + offset_mapping_corrected = [] + for i, (start, end) in enumerate(offset_mapping): + if start == end: + if (i + 1) < len(offset_mapping): + end = offset_mapping[i + 1][0] + else: + end = len(txt) + offset_mapping_corrected.append((start, end)) + return input_ids, offset_mapping_corrected + + +def _convert_ids_to_pretty_tokens( + ids: Tensor, + tokenizer: TokenizerLike, +) -> List[str]: + """ + Convert ids to tokens without ugly unicode characters (e.g., Ġ). See: + https://github.com/huggingface/transformers/issues/4786 and + https://discuss.huggingface.co/t/bpe-tokenizers-and-spaces-before-words/475/2 + + This is the preferred function over tokenizer.convert_ids_to_tokens() for + user-facing data. + + Quote from links: + > Spaces are converted in a special character (the Ġ) in the tokenizer prior to + > BPE splitting mostly to avoid digesting spaces since the standard BPE algorithm + > used spaces in its process + """ + txt = tokenizer.decode(ids) + input_ids: Optional[List[int]] = None + # Don't add special tokens (they're either already there, or we don't want them) + input_ids, offset_mapping = _encode_with_offsets( + txt, tokenizer, add_special_tokens=False + ) + + pretty_tokens = [] + end_prev = -1 + idx = 0 + for i, offset in enumerate(offset_mapping): + start, end = offset + if input_ids[i] != ids[idx]: + # When the re-encoded string doesn't match the original encoding we skip + # this token and hope for the best, falling back on a naive method. This + # can happen when a tokenizer might add a token that corresponds to + # a space only when add_special_tokens=False. + warnings.warn( + f"(i={i}, idx={idx}) input_ids[i] {input_ids[i]} != ids[idx] " + f"{ids[idx]} (corresponding to text: {repr(txt[start:end])}). " + "Skipping this token.", + stacklevel=2, + ) + continue + pretty_tokens.append( + _clean_up_pretty_token(txt[start:end]) + + (" [OVERLAP]" if end_prev > start else "") + ) + end_prev = end + idx += 1 + if len(pretty_tokens) != len(ids): + warnings.warn( + f"Pretty tokens length {len(pretty_tokens)} != ids length {len(ids)}! " + "Falling back to naive decoding logic.", + stacklevel=2, + ) + return _convert_ids_to_pretty_tokens_fallback(ids, tokenizer) + return pretty_tokens + + +def _convert_ids_to_pretty_tokens_fallback( + ids: Tensor, tokenizer: TokenizerLike +) -> List[str]: + """ + Fallback function that naively handles logic when multiple ids map to one string. + """ + pretty_tokens = [] + idx = 0 + while idx < len(ids): + decoded = tokenizer.decode(ids[idx]) + decoded_pretty = _clean_up_pretty_token(decoded) + # Handle case where single token (e.g. unicode) is split into multiple IDs + # NOTE: This logic will fail if a tokenizer splits a token into 3+ IDs + if decoded.strip() == "�" and tokenizer.encode(decoded) != [ids[idx]]: + # ID at idx is split, ensure next token is also from a split + decoded_next = tokenizer.decode(ids[idx + 1]) + if decoded_next.strip() == "�" and tokenizer.encode(decoded_next) != [ + ids[idx + 1] + ]: + # Both tokens are from a split, combine them + decoded = tokenizer.decode(ids[idx : idx + 2]) + pretty_tokens.append(decoded_pretty) + pretty_tokens.append(decoded_pretty + " [OVERLAP]") + else: + # Treat tokens as separate + pretty_tokens.append(decoded_pretty) + pretty_tokens.append(_clean_up_pretty_token(decoded_next)) + idx += 2 + else: + # Just a normal token + idx += 1 + pretty_tokens.append(decoded_pretty) + return pretty_tokens + + +class BaseLLMAttribution(Attribution, ABC): + """Base class for LLM Attribution methods""" + + SUPPORTED_INPUTS: Tuple[Type[InterpretableInput], ...] + SUPPORTED_METHODS: Tuple[Type[Attribution], ...] + + model: nn.Module + tokenizer: TokenizerLike + device: torch.device + + def __init__( + self, + attr_method: Attribution, + tokenizer: TokenizerLike, + ) -> None: + assert isinstance( + attr_method, self.SUPPORTED_METHODS + ), f"{self.__class__.__name__} does not support {type(attr_method)}" + + super().__init__(attr_method.forward_func) + + # alias, we really need a model and don't support wrapper functions + # coz we need call model.forward, model.generate, etc. + self.model: nn.Module = cast(nn.Module, self.forward_func) + + self.tokenizer: TokenizerLike = tokenizer + self.device: torch.device = ( + cast(torch.device, self.model.device) + if hasattr(self.model, "device") + else next(self.model.parameters()).device + ) + + def _get_target_tokens( + self, + inp: InterpretableInput, + target: Union[str, torch.Tensor, None] = None, + skip_tokens: Union[List[int], List[str], None] = None, + gen_args: Optional[Dict[str, Any]] = None, + ) -> Tensor: + assert isinstance( + inp, self.SUPPORTED_INPUTS + ), f"LLMAttribution does not support input type {type(inp)}" + + if target is None: + # generate when None + assert hasattr(self.model, "generate") and callable(self.model.generate), ( + "The model does not have recognizable generate function." + "Target must be given for attribution" + ) + + if not gen_args: + gen_args = DEFAULT_GEN_ARGS + + model_inp = self._format_model_input(inp.to_model_input()) + # pyre-fixme[29]: `Union[Module, Tensor]` is not a function. + output_tokens = self.model.generate(model_inp, **gen_args) + target_tokens = output_tokens[0][model_inp.size(1) :] + else: + assert gen_args is None, "gen_args must be None when target is given" + # Encode skip tokens + if skip_tokens: + if isinstance(skip_tokens[0], str): + skip_tokens = cast(List[str], skip_tokens) + skip_tokens = self.tokenizer.convert_tokens_to_ids(skip_tokens) + else: + skip_tokens = [] + skip_tokens = cast(List[int], skip_tokens) + + if isinstance(target, str): + encoded = self.tokenizer.encode(target) + target_tokens = torch.tensor( + [token for token in encoded if token not in skip_tokens] + ) + elif isinstance(target, torch.Tensor): + target_tokens = target[ + ~torch.isin(target, torch.tensor(skip_tokens, device=target.device)) + ] + else: + raise TypeError( + "target must either be str or Tensor, but the type of target is " + "{}".format(type(target)) + ) + return target_tokens + + def _format_model_input(self, model_input: Union[str, Tensor]) -> Tensor: + """ + Convert str to tokenized tensor + to make LLMAttribution work with model inputs of both + raw text and text token tensors + """ + # return tensor(1, n_tokens) + if isinstance(model_input, str): + return self.tokenizer.encode(model_input, return_tensors="pt").to( + self.device + ) + return model_input.to(self.device) + + +class LLMAttribution(BaseLLMAttribution): + """ + Attribution class for large language models. It wraps a perturbation-based + attribution algorthm to produce commonly interested attribution + results for the use case of text generation. + The wrapped instance will calculate attribution in the + same way as configured in the original attribution algorthm, but it will provide a + new "attribute" function which accepts text-based inputs + and returns LLMAttributionResult + """ + + SUPPORTED_METHODS = ( + FeatureAblation, + ShapleyValueSampling, + ShapleyValues, + Lime, + KernelShap, + ) + SUPPORTED_PER_TOKEN_ATTR_METHODS = ( + FeatureAblation, + ShapleyValueSampling, + ShapleyValues, + ) + SUPPORTED_INPUTS = (TextTemplateInput, TextTokenInput) + + def __init__( + self, + attr_method: PerturbationAttribution, + tokenizer: TokenizerLike, + attr_target: str = "log_prob", # TODO: support callable attr_target + ) -> None: + """ + Args: + attr_method (Attribution): Instance of a supported perturbation attribution + Supported methods include FeatureAblation, ShapleyValueSampling, + ShapleyValues, Lime, and KernelShap. Lime and KernelShap do not + support per-token attribution and will only return attribution + for the full target sequence. + class created with the llm model that follows huggingface style + interface convention + tokenizer (Tokenizer): tokenizer of the llm model used in the attr_method + attr_target (str): attribute towards log probability or probability. + Available values ["log_prob", "prob"] + Default: "log_prob" + """ + + super().__init__(attr_method, tokenizer) + + # shallow copy is enough to avoid modifying original instance + self.attr_method: PerturbationAttribution = copy(attr_method) + self.include_per_token_attr: bool = isinstance( + attr_method, self.SUPPORTED_PER_TOKEN_ATTR_METHODS + ) + + self.attr_method.forward_func = self._forward_func + + assert attr_target in ( + "log_prob", + "prob", + ), "attr_target should be either 'log_prob' or 'prob'" + self.attr_target = attr_target + + def _forward_func( + self, + perturbed_tensor: Union[None, Tensor], + inp: InterpretableInput, + target_tokens: Tensor, + use_cached_outputs: bool = False, + _inspect_forward: Optional[Callable[[str, str, List[float]], None]] = None, + ) -> Tensor: + # Lazily import transformers_typing to avoid importing transformers package if + # it isn't needed + from captum._utils.transformers_typing import ( + Cache, + DynamicCache, + supports_caching, + update_model_kwargs, + ) + + perturbed_input = self._format_model_input(inp.to_model_input(perturbed_tensor)) + init_model_inp = perturbed_input + + model_inp = init_model_inp + attention_mask = torch.ones( + [1, model_inp.shape[1]], dtype=torch.long, device=model_inp.device + ) + model_kwargs = {"attention_mask": attention_mask} + # If applicable, update model kwargs for transformers models + update_model_kwargs( + model_kwargs=model_kwargs, + model=self.model, + input_ids=model_inp, + caching=use_cached_outputs, + ) + + log_prob_list: List[Tensor] = [] + outputs = None + for target_token in target_tokens: + if use_cached_outputs: + if outputs is not None: + # If applicable, convert past_key_values to DynamicCache for + # transformers models + if ( + Cache is not None + and DynamicCache is not None + and supports_caching(self.model) + and not isinstance(outputs.past_key_values, Cache) + ): + outputs.past_key_values = DynamicCache.from_legacy_cache( + outputs.past_key_values + ) + # nn.Module typing suggests non-base attributes are modules or + # tensors + _update_model_kwargs_for_generation = ( + self.model._update_model_kwargs_for_generation + ) + # pyre-fixme[29]: `Union[Module, Tensor]` is not a function. + model_kwargs = _update_model_kwargs_for_generation( # type: ignore + outputs, model_kwargs + ) + # nn.Module typing suggests non-base attributes are modules or tensors + prep_inputs_for_generation = self.model.prepare_inputs_for_generation + # pyre-fixme[29]: `Union[Module, Tensor]` is not a function. + model_inputs = prep_inputs_for_generation( # type: ignore + model_inp, **model_kwargs + ) + outputs = self.model.forward(**model_inputs) + else: + # Update attention mask to adapt to input size change + attention_mask = torch.ones( + [1, model_inp.shape[1]], dtype=torch.long, device=model_inp.device + ) + model_kwargs["attention_mask"] = attention_mask + outputs = self.model.forward(model_inp, **model_kwargs) + new_token_logits = outputs.logits[:, -1] + log_probs = torch.nn.functional.log_softmax(new_token_logits, dim=1) + + log_prob_list.append(log_probs[0][target_token].detach()) + + model_inp = torch.cat( + (model_inp, torch.tensor([[target_token]]).to(self.device)), dim=1 + ) + + total_log_prob = torch.sum(torch.stack(log_prob_list), dim=0) + # 1st element is the total prob, rest are the target tokens + # add a leading dim for batch even we only support single instance for now + if self.include_per_token_attr: + target_log_probs = torch.stack( + [total_log_prob, *log_prob_list], dim=0 + ).unsqueeze(0) + else: + target_log_probs = total_log_prob + target_probs = torch.exp(target_log_probs) + + if _inspect_forward: + prompt = self.tokenizer.decode(init_model_inp[0]) + response = self.tokenizer.decode(target_tokens) + + # callback for externals to inspect (prompt, response, seq_prob) + _inspect_forward(prompt, response, target_probs[0].tolist()) + + return target_probs if self.attr_target != "log_prob" else target_log_probs + + def attribute( + self, + inp: InterpretableInput, + target: Union[str, torch.Tensor, None] = None, + skip_tokens: Union[List[int], List[str], None] = None, + num_trials: int = 1, + gen_args: Optional[Dict[str, Any]] = None, + use_cached_outputs: bool = True, + # internal callback hook can be used for logging + _inspect_forward: Optional[Callable[[str, str, List[float]], None]] = None, + **kwargs: Any, + ) -> LLMAttributionResult: + """ + Args: + inp (InterpretableInput): input prompt for which attributions are computed + target (str or Tensor, optional): target response with respect to + which attributions are computed. If None, it uses the model + to generate the target based on the input and gen_args. + Default: None + skip_tokens (List[int] or List[str], optional): the tokens to skip in the + the output's interpretable representation. Use this argument to + define uninterested tokens, commonly like special tokens, e.g., + sos, and unk. It can be a list of strings of the tokens or a list + of integers of the token ids. + Default: None + num_trials (int, optional): number of trials to run. Return is the average + attributions over all the trials. + Defaults: 1. + gen_args (dict, optional): arguments for generating the target. Only used if + target is not given. When None, the default arguments are used, + {"max_new_tokens": 25, "do_sample": False, + "temperature": None, "top_p": None} + Defaults: None + **kwargs (Any): any extra keyword arguments passed to the call of the + underlying attribute function of the given attribution instance + + Returns: + + attr (LLMAttributionResult): Attribution result. token_attr will be None + if attr method is Lime or KernelShap. + """ + target_tokens = self._get_target_tokens( + inp, + target, + skip_tokens=skip_tokens, + gen_args=gen_args, + ) + + attr = torch.zeros( + [ + 1 + len(target_tokens) if self.include_per_token_attr else 1, + inp.n_itp_features, + ], + dtype=torch.float, + device=self.device, + ) + + for _ in range(num_trials): + attr_input = inp.to_tensor().to(self.device) + + cur_attr = self.attr_method.attribute( + attr_input, + additional_forward_args=( + inp, + target_tokens, + use_cached_outputs, + _inspect_forward, + ), + **kwargs, + ) + + # temp necessary due to FA & Shapley's different return shape of multi-task + # FA will flatten output shape internally (n_output_token, n_itp_features) + # Shapley will keep output shape (batch, n_output_token, n_input_features) + cur_attr = cur_attr.reshape(attr.shape) + + attr += cur_attr + + attr = attr / num_trials + + attr = inp.format_attr(attr) + + return LLMAttributionResult( + attr[0], + ( + attr[1:] if self.include_per_token_attr else None + ), # shape(n_output_token, n_input_features) + inp.values, + _convert_ids_to_pretty_tokens(target_tokens, self.tokenizer), + ) + + def attribute_future(self) -> Callable[[], LLMAttributionResult]: + r""" + This method is not implemented for LLMAttribution. + """ + raise NotImplementedError( + "attribute_future is not implemented for LLMAttribution" + ) + + +class LLMGradientAttribution(BaseLLMAttribution): + """ + Attribution class for large language models. It wraps a gradient-based + attribution algorthm to produce commonly interested attribution + results for the use case of text generation. + The wrapped instance will calculate attribution in the + same way as configured in the original attribution algorthm, + with respect to the log probabilities of each + generated token and the whole sequence. It will provide a + new "attribute" function which accepts text-based inputs + and returns LLMAttributionResult + """ + + SUPPORTED_METHODS = ( + LayerGradientShap, + LayerGradientXActivation, + LayerIntegratedGradients, + ) + SUPPORTED_INPUTS = (TextTokenInput,) + + def __init__( + self, + attr_method: GradientAttribution, + tokenizer: TokenizerLike, + ) -> None: + """ + Args: + attr_method (Attribution): instance of a supported perturbation attribution + class created with the llm model that follows huggingface style + interface convention + tokenizer (Tokenizer): tokenizer of the llm model used in the attr_method + """ + super().__init__(attr_method, tokenizer) + + # shallow copy is enough to avoid modifying original instance + self.attr_method: GradientAttribution = copy(attr_method) + self.attr_method.forward_func = GradientForwardFunc(self) + + def attribute( + self, + inp: InterpretableInput, + target: Union[str, torch.Tensor, None] = None, + skip_tokens: Union[List[int], List[str], None] = None, + gen_args: Optional[Dict[str, Any]] = None, + **kwargs: Any, + ) -> LLMAttributionResult: + """ + Args: + inp (InterpretableInput): input prompt for which attributions are computed + target (str or Tensor, optional): target response with respect to + which attributions are computed. If None, it uses the model + to generate the target based on the input and gen_args. + Default: None + skip_tokens (List[int] or List[str], optional): the tokens to skip in the + the output's interpretable representation. Use this argument to + define uninterested tokens, commonly like special tokens, e.g., + sos, and unk. It can be a list of strings of the tokens or a list + of integers of the token ids. + Default: None + gen_args (dict, optional): arguments for generating the target. Only used if + target is not given. When None, the default arguments are used, + {"max_new_tokens": 25, "do_sample": False, + "temperature": None, "top_p": None} + Defaults: None + **kwargs (Any): any extra keyword arguments passed to the call of the + underlying attribute function of the given attribution instance + + Returns: + + attr (LLMAttributionResult): attribution result + """ + target_tokens = self._get_target_tokens( + inp, + target, + skip_tokens=skip_tokens, + gen_args=gen_args, + ) + + attr_inp = inp.to_tensor().to(self.device) + + attr_list = [] + for cur_target_idx, _ in enumerate(target_tokens): + # attr in shape(batch_size, input+output_len, emb_dim) + attr = self.attr_method.attribute( + attr_inp, + additional_forward_args=( + inp, + target_tokens, + cur_target_idx, + ), + **kwargs, + ).detach() + attr = cast(Tensor, attr) + + # will have the attr for previous output tokens + # cut to shape(batch_size, inp_len, emb_dim) + if cur_target_idx: + attr = attr[:, :-cur_target_idx] + + # the author of IG uses sum + # https://github.com/ankurtaly/Integrated-Gradients/blob/master/BertModel/bert_model_utils.py#L350 + attr = attr.sum(-1) + + attr_list.append(attr) + + # assume inp batch only has one instance + # to shape(n_output_token, ...) + attr = torch.cat(attr_list, dim=0) + + # grad attr method do not care the length of features in interpretable format + # it attributes to all the elements of the output of the specified layer + # so we need special handling for the inp type which don't care all the elements + if isinstance(inp, TextTokenInput) and inp.itp_mask is not None: + itp_mask = inp.itp_mask.to(attr.device) + itp_mask = itp_mask.expand_as(attr) + attr = attr[itp_mask].view(attr.size(0), -1) + + # for all the gradient methods we support in this class + # the seq attr is the sum of all the token attr if the attr_target is log_prob, + # shape(n_input_features) + seq_attr = attr.sum(0) + + return LLMAttributionResult( + seq_attr, + attr, # shape(n_output_token, n_input_features) + inp.values, + _convert_ids_to_pretty_tokens(target_tokens, self.tokenizer), + ) + + def attribute_future(self) -> Callable[[], LLMAttributionResult]: + r""" + This method is not implemented for LLMGradientAttribution. + """ + raise NotImplementedError( + "attribute_future is not implemented for LLMGradientAttribution" + ) + + +class GradientForwardFunc(nn.Module): + """ + A wrapper class for the forward function of a model in LLMGradientAttribution + """ + + def __init__(self, attr: LLMGradientAttribution) -> None: + super().__init__() + self.attr = attr + self.model: nn.Module = attr.model + + def forward( + self, + perturbed_tensor: Tensor, + inp: InterpretableInput, + target_tokens: Tensor, # 1D tensor of target token ids + cur_target_idx: int, # current target index + ) -> Tensor: + perturbed_input = self.attr._format_model_input( + inp.to_model_input(perturbed_tensor) + ) + + if cur_target_idx: + # the input batch size can be expanded by attr method + output_token_tensor = ( + target_tokens[:cur_target_idx] + .unsqueeze(0) + .expand(perturbed_input.size(0), -1) + .to(self.attr.device) + ) + new_input_tensor = torch.cat([perturbed_input, output_token_tensor], dim=1) + else: + new_input_tensor = perturbed_input + + output_logits = self.model(new_input_tensor) + + new_token_logits = output_logits.logits[:, -1] + log_probs = torch.nn.functional.log_softmax(new_token_logits, dim=1) + + target_token = target_tokens[cur_target_idx] + token_log_probs = log_probs[..., target_token] + + # the attribution target is limited to the log probability + return token_log_probs diff --git a/captum/attr/_core/lrp.py b/captum/attr/_core/lrp.py index e11d0b8544..c2c0dac740 100644 --- a/captum/attr/_core/lrp.py +++ b/captum/attr/_core/lrp.py @@ -1,8 +1,10 @@ #!/usr/bin/env python3 +# pyre-strict + import typing from collections import defaultdict -from typing import Any, cast, List, Tuple, Union +from typing import Any, Callable, cast, Dict, List, Literal, Optional, Tuple, Union import torch.nn as nn from captum._utils.common import ( @@ -16,7 +18,7 @@ apply_gradient_requirements, undo_gradient_requirements, ) -from captum._utils.typing import Literal, TargetType, TensorOrTupleOfTensorsGeneric +from captum._utils.typing import TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._utils.attribution import GradientAttribution from captum.attr._utils.common import _sum_rows from captum.attr._utils.custom_modules import Addition_Module @@ -41,18 +43,21 @@ class LRP(GradientAttribution): Ancona et al. [https://openreview.net/forum?id=Sy21R9JAW]. """ + verbose: bool = False + _original_state_dict: Dict[str, Any] = {} + layers: List[Module] = [] + backward_handles: List[RemovableHandle] = [] + forward_handles: List[RemovableHandle] = [] + def __init__(self, model: Module) -> None: r""" Args: - model (module): The forward function of the model or any modification of + model (Module): The forward function of the model or any modification of it. Custom rules for a given layer need to be defined as attribute `module.rule` and need to be of type PropagationRule. If no rule is specified for a layer, a pre-defined default rule for the module type - is used. Model cannot contain any in-place nonlinear submodules; - these are not supported by the register_full_backward_hook - PyTorch API starting from PyTorch v1.9. - + is used. """ GradientAttribution.__init__(self, model) self.model = model @@ -67,30 +72,30 @@ def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, - return_convergence_delta: Literal[False] = False, + additional_forward_args: Optional[object] = None, + *, + return_convergence_delta: Literal[True], verbose: bool = False, - ) -> TensorOrTupleOfTensorsGeneric: - ... + ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: ... @typing.overload def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, - *, - return_convergence_delta: Literal[True], + additional_forward_args: Optional[object] = None, + return_convergence_delta: Literal[False] = False, verbose: bool = False, - ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: - ... + ) -> TensorOrTupleOfTensorsGeneric: ... @log_usage() + # pyre-fixme[43]: This definition does not have the same decorators as the + # preceding overload(s). def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, return_convergence_delta: bool = False, verbose: bool = False, ) -> Union[ @@ -98,20 +103,22 @@ def attribute( ]: r""" Args: - inputs (tensor or tuple of tensors): Input for which relevance is - propagated. If forward_func takes a single + + inputs (Tensor or tuple[Tensor, ...]): Input for which relevance is + propagated. If model takes a single tensor as input, a single input tensor should be provided. - If forward_func takes multiple tensors as input, a tuple + If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - target (int, tuple, tensor or list, optional): Output indices for - which gradients are computed (for classification cases, - this is usually the target class). - If the network returns a scalar value per example, - no target index is necessary. - For general 2D outputs, targets can be either: + + target (int, tuple, Tensor, or list, optional): Output indices for + which gradients are computed (for classification cases, + this is usually the target class). + If the network returns a scalar value per example, + no target index is necessary. + For general 2D outputs, targets can be either: - a single integer or a tensor containing a single integer, which is applied to all input examples @@ -138,7 +145,7 @@ def attribute( argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to - forward_func in order, following the arguments in inputs. + model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None @@ -153,9 +160,10 @@ def attribute( of rules is printed during propagation. Returns: - *tensor* or tuple of *tensors* of **attributions** - or 2-element tuple of **attributions**, **delta**:: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions** + or 2-element tuple of **attributions**, **delta**: + + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The propagated relevance values with respect to each input feature. The values are normalized by the output score value (sum(relevance)=1). To obtain values comparable to other @@ -168,10 +176,12 @@ def attribute( corresponding sized tensors is returned. The sum of attributions is one and not corresponding to the prediction score as in other implementations. - - **delta** (*tensor*, returned if return_convergence_delta=True): + + - **delta** (*Tensor*, returned if return_convergence_delta=True): Delta is calculated per example, meaning that the number of elements in returned delta tensor is equal to the number of of examples in the inputs. + Examples:: >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, @@ -186,26 +196,28 @@ def attribute( """ self.verbose = verbose self._original_state_dict = self.model.state_dict() - self.layers: List[Module] = [] + self.layers = [] self._get_layers(self.model) self._check_and_attach_rules() self.backward_handles: List[RemovableHandle] = [] self.forward_handles: List[RemovableHandle] = [] is_inputs_tuple = _is_tuple(inputs) - inputs = _format_tensor_into_tuples(inputs) - gradient_mask = apply_gradient_requirements(inputs) + input_tuple = _format_tensor_into_tuples(inputs) + gradient_mask = apply_gradient_requirements(input_tuple) try: # 1. Forward pass: Change weights of layers according to selected rules. output = self._compute_output_and_change_weights( - inputs, target, additional_forward_args + input_tuple, + target, + additional_forward_args, ) # 2. Forward pass + backward pass: Register hooks to configure relevance # propagation and execute back-propagation. self._register_forward_hooks() normalized_relevances = self.gradient_func( - self._forward_fn_wrapper, inputs, target, additional_forward_args + self._forward_fn_wrapper, input_tuple, target, additional_forward_args ) relevances = tuple( normalized_relevance @@ -215,9 +227,10 @@ def attribute( finally: self._restore_model() - undo_gradient_requirements(inputs, gradient_mask) + undo_gradient_requirements(input_tuple, gradient_mask) if return_convergence_delta: + # pyre-fixme[7]: Expected `Union[Tuple[Variable[TensorOrTupleOfTensorsGen... return ( _format_output(is_inputs_tuple, relevances), self.compute_convergence_delta(relevances, output), @@ -225,6 +238,13 @@ def attribute( else: return _format_output(is_inputs_tuple, relevances) # type: ignore + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for LRP. + """ + raise NotImplementedError("attribute_future is not implemented for LRP") + def has_convergence_delta(self) -> bool: return True @@ -241,7 +261,7 @@ def compute_convergence_delta( Args: - attributions (tensor or tuple of tensors): Attribution scores that + attributions (Tensor or tuple[Tensor, ...]): Attribution scores that are precomputed by an attribution algorithm. Attributions can be provided in form of a single tensor or a tuple of those. It is assumed that attribution @@ -249,12 +269,13 @@ def compute_convergence_delta( examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - output (tensor with single element): The output value with respect to which + output (Tensor): The output value with respect to which the attribution values are computed. This value corresponds to - the target score of a classification model. + the target score of a classification model. The given tensor + should only have a single element. Returns: - *tensor*: + *Tensor*: - **delta** Difference of relevance in output layer and input layer. """ if isinstance(attributions, tuple): @@ -314,10 +335,10 @@ def _check_rules(self) -> None: def _register_forward_hooks(self) -> None: for layer in self.layers: if type(layer) in SUPPORTED_NON_LINEAR_LAYERS: - backward_handle = _register_backward_hook( + backward_handles = _register_backward_hook( layer, PropagationRule.backward_hook_activation, self ) - self.backward_handles.append(backward_handle) + self.backward_handles.extend(backward_handles) else: forward_handle = layer.register_forward_hook( layer.rule.forward_hook # type: ignore @@ -346,7 +367,7 @@ def _compute_output_and_change_weights( self, inputs: Tuple[Tensor, ...], target: TargetType, - additional_forward_args: Any, + additional_forward_args: Optional[object], ) -> Tensor: try: self._register_weight_hooks() @@ -357,7 +378,11 @@ def _compute_output_and_change_weights( # adjustments as inputs to the layers with adjusted weights. This procedure # is important for graph generation in the 2nd forward pass. self._register_pre_hooks() - return output + + # _run_forward may return future of Tensor, + # but we don't support it here now + # And it will fail before here. + return cast(Tensor, output) def _remove_forward_hooks(self) -> None: for forward_handle in self.forward_handles: diff --git a/captum/attr/_core/neuron/neuron_conductance.py b/captum/attr/_core/neuron/neuron_conductance.py index dec6b39b01..6c8020f93e 100644 --- a/captum/attr/_core/neuron/neuron_conductance.py +++ b/captum/attr/_core/neuron/neuron_conductance.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 + +# pyre-strict import warnings -from typing import Any, Callable, List, Tuple, Union +from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from captum._utils.common import ( @@ -12,7 +14,12 @@ _verify_select_neuron, ) from captum._utils.gradient import compute_layer_gradients_and_eval -from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric +from captum._utils.typing import ( + BaselineType, + SliceIntType, + TargetType, + TensorOrTupleOfTensorsGeneric, +) from captum.attr._utils.approximation_methods import approximation_parameters from captum.attr._utils.attribution import GradientAttribution, NeuronAttribution from captum.attr._utils.batching import _batch_attribution @@ -37,7 +44,7 @@ class NeuronConductance(NeuronAttribution, GradientAttribution): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], layer: Module, device_ids: Union[None, List[int]] = None, multiply_by_inputs: bool = True, @@ -45,7 +52,7 @@ def __init__( r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it layer (torch.nn.Module): Layer for which neuron attributions are computed. Attributions for a particular neuron in the input or output @@ -62,7 +69,7 @@ def __init__( Currently, it is assumed that the inputs or the outputs of the layer, depending on which one is used for attribution, can only be a single tensor. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -91,19 +98,24 @@ def __init__( def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, - neuron_selector: Union[int, Tuple[int, ...], Callable], + neuron_selector: Union[ + int, + Tuple[Union[int, SliceIntType], ...], + Callable[[Union[Tensor, Tuple[Tensor, ...]]], Tensor], + ], baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "riemann_trapezoid", internal_batch_size: Union[None, int] = None, attribute_to_neuron_input: bool = False, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which neuron + inputs (Tensor or tuple[Tensor, ...]): Input for which neuron conductance is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -111,7 +123,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - neuron_selector (int, callable, or tuple of ints or slices): + neuron_selector (int, Callable, tuple[int], or slice): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: @@ -143,7 +155,7 @@ def attribute( the gradient of output with respect to the intermedite neuron, which cannot be computed for aggregations of multiple intemediate neurons. - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define the starting point from which integral is computed and can be provided as: @@ -172,7 +184,7 @@ def attribute( use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -197,7 +209,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -216,7 +228,7 @@ def attribute( Default: None n_steps (int, optional): The number of steps used by the approximation method. Default: 50. - method (string, optional): Method for approximating the integral, + method (str, optional): Method for approximating the integral, one of `riemann_right`, `riemann_left`, `riemann_middle`, `riemann_trapezoid` or `gausslegendre`. Default: `gausslegendre` if no method is provided. @@ -244,8 +256,8 @@ def attribute( Default: False Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Conductance for particular neuron with respect to each input feature. Attributions will always be the same size as the provided @@ -277,24 +289,27 @@ def attribute( "The neuron_selector provided is a callable. Please ensure that this" " function only selects neurons from the given layer; aggregating" " or performing other operations on the tensor may lead to inaccurate" - " results." + " results.", + stacklevel=1, ) is_inputs_tuple = _is_tuple(inputs) - inputs, baselines = _format_input_baseline(inputs, baselines) - _validate_input(inputs, baselines, n_steps, method) + formatted_inputs, formatted_baselines = _format_input_baseline( + inputs, baselines + ) + _validate_input(formatted_inputs, formatted_baselines, n_steps, method) - num_examples = inputs[0].shape[0] + num_examples = formatted_inputs[0].shape[0] if internal_batch_size is not None: - num_examples = inputs[0].shape[0] + num_examples = formatted_inputs[0].shape[0] attrs = _batch_attribution( self, num_examples, internal_batch_size, n_steps, - inputs=inputs, - baselines=baselines, + inputs=formatted_inputs, + baselines=formatted_baselines, neuron_selector=neuron_selector, target=target, additional_forward_args=additional_forward_args, @@ -303,28 +318,36 @@ def attribute( ) else: attrs = self._attribute( - inputs=inputs, + inputs=formatted_inputs, neuron_selector=neuron_selector, - baselines=baselines, + baselines=formatted_baselines, target=target, additional_forward_args=additional_forward_args, n_steps=n_steps, method=method, attribute_to_neuron_input=attribute_to_neuron_input, + grad_kwargs=grad_kwargs, ) + # pyre-fixme[7]: Expected `TensorOrTupleOfTensorsGeneric` but got + # `Tuple[Tensor, ...]`. return _format_output(is_inputs_tuple, attrs) def _attribute( self, inputs: Tuple[Tensor, ...], - neuron_selector: Union[int, Tuple[int, ...], Callable], + neuron_selector: Union[ + int, + Tuple[Union[int, SliceIntType], ...], + Callable[[Union[Tensor, Tuple[Tensor, ...]]], Tensor], + ], baselines: Tuple[Union[Tensor, int, float], ...], target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "riemann_trapezoid", attribute_to_neuron_input: bool = False, step_sizes_and_alphas: Union[None, Tuple[List[float], List[float]]] = None, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[Tensor, ...]: num_examples = inputs[0].shape[0] @@ -371,6 +394,7 @@ def _attribute( gradient_neuron_selector=neuron_selector, device_ids=self.device_ids, attribute_to_layer_input=attribute_to_neuron_input, + grad_kwargs=grad_kwargs, ) mid_grads = _verify_select_neuron(layer_gradients, neuron_selector) @@ -389,7 +413,9 @@ def _attribute( # Aggregates across all steps for each tensor in the input tuple total_grads = tuple( - _reshape_and_sum(scaled_grad, n_steps, num_examples, input_grad.shape[1:]) + _reshape_and_sum( + scaled_grad, n_steps, num_examples, tuple(input_grad.shape[1:]) + ) for (scaled_grad, input_grad) in zip(scaled_grads, input_grads) ) @@ -406,5 +432,5 @@ def _attribute( return attributions @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs diff --git a/captum/attr/_core/neuron/neuron_deep_lift.py b/captum/attr/_core/neuron/neuron_deep_lift.py index aff216d37a..e7e3f2a77e 100644 --- a/captum/attr/_core/neuron/neuron_deep_lift.py +++ b/captum/attr/_core/neuron/neuron_deep_lift.py @@ -1,9 +1,14 @@ #!/usr/bin/env python3 -import warnings -from typing import Any, Callable, cast, Tuple, Union + +# pyre-strict +from typing import Callable, cast, Optional, Tuple, Union from captum._utils.gradient import construct_neuron_grad_fn -from captum._utils.typing import BaselineType, TensorOrTupleOfTensorsGeneric +from captum._utils.typing import ( + BaselineType, + SliceIntType, + TensorOrTupleOfTensorsGeneric, +) from captum.attr._core.deep_lift import DeepLift, DeepLiftShap from captum.attr._utils.attribution import GradientAttribution, NeuronAttribution from captum.log import log_usage @@ -46,10 +51,7 @@ def __init__( r""" Args: - model (nn.Module): The reference to PyTorch model instance. Model cannot - contain any in-place nonlinear submodules; these are not - supported by the register_full_backward_hook PyTorch API - starting from PyTorch v1.9. + model (nn.Module): The reference to PyTorch model instance. layer (torch.nn.Module): Layer for which neuron attributions are computed. Attributions for a particular neuron for the input or output of this layer are computed using the argument neuron_selector @@ -81,25 +83,29 @@ def __init__( def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, - neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], + neuron_selector: Union[ + int, + Tuple[Union[int, SliceIntType], ...], + Callable[[Union[Tensor, Tuple[Tensor, ...]]], Tensor], + ], baselines: BaselineType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, attribute_to_neuron_input: bool = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which layer - attributions are computed. If forward_func takes a + inputs (Tensor or tuple[Tensor, ...]): Input for which layer + attributions are computed. If model takes a single tensor as input, a single input tensor should be - provided. If forward_func takes multiple tensors as input, + provided. If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - neuron_selector (int, callable, or tuple of ints or slices): + neuron_selector (int, Callable, tuple[int], or slice): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: @@ -120,7 +126,7 @@ def attribute( indexed output tensor is used for attribution. Note that specifying a slice of a tensor would amount to computing the attribution of the sum of the specified - neurons, and not the individual neurons independantly. + neurons, and not the individual neurons independently. - a callable, which should take the target layer as input (single tensor or tuple @@ -133,7 +139,7 @@ def attribute( or a 1D tensor with length equal to batch_size (one scalar per input example) - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and @@ -165,14 +171,14 @@ def attribute( use zero scalar corresponding to each input tensor. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided - to forward_func in order, following the arguments in inputs. + to model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None @@ -187,7 +193,7 @@ def attribute( attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False - custom_attribution_func (callable, optional): A custom function for + custom_attribution_func (Callable, optional): A custom function for computing final attribution scores. This function can take at least one and at most three arguments with the following signature: @@ -207,7 +213,7 @@ def attribute( Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Computes attributions using Deeplift's rescale rule for particular neuron with respect to each input feature. Attributions will always be the same size as the provided @@ -231,17 +237,6 @@ def attribute( >>> attribution = dl.attribute(input, (4,1,2)) """ dl = DeepLift(cast(Module, self.forward_func), self.multiplies_by_inputs) - if not attribute_to_neuron_input: - warnings.warn( - "Attribution to neuron output is no longer supported for" - " NeuronDeepLift and will be deprecated in Captum" - " 0.6.0 due to changes in PyTorch's full backward hook" - " behavior. To obtain attributions for a neuron's" - " output, please attribute with respect to the next layer's input" - ) - dl.skip_new_hook_layer = self.layer # type: ignore - else: - dl.skip_new_hook_layer = None # type: ignore dl.gradient_func = construct_neuron_grad_fn( self.layer, neuron_selector, @@ -258,7 +253,7 @@ def attribute( ) @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs @@ -273,12 +268,13 @@ class NeuronDeepLiftShap(NeuronAttribution, GradientAttribution): by the input flag `attribute_to_layer_input`. More details about the algorithm can be found here: - http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf + https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf Note that the explanation model: 1. Assumes that input features are independent of one another 2. Is linear, meaning that the explanations are modeled through the additive composition of feature effects. + Although, it assumes a linear model for each explanation, the overall model across multiple explanations can be complex and non-linear. """ @@ -289,10 +285,7 @@ def __init__( r""" Args: - model (nn.Module): The reference to PyTorch model instance. Model cannot - contain any in-place nonlinear submodules; these are not - supported by the register_full_backward_hook PyTorch API - starting from PyTorch v1.9. + model (nn.Module): The reference to PyTorch model instance. layer (torch.nn.Module): Layer for which neuron attributions are computed. Attributions for a particular neuron for the input or output of this layer are computed using the argument neuron_selector @@ -323,27 +316,31 @@ def __init__( def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, - neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], + neuron_selector: Union[ + int, + Tuple[Union[int, SliceIntType], ...], + Callable[[Union[Tensor, Tuple[Tensor, ...]]], Tensor], + ], baselines: Union[ TensorOrTupleOfTensorsGeneric, Callable[..., TensorOrTupleOfTensorsGeneric] ], - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, attribute_to_neuron_input: bool = False, custom_attribution_func: Union[None, Callable[..., Tuple[Tensor, ...]]] = None, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which layer - attributions are computed. If forward_func takes a + inputs (Tensor or tuple[Tensor, ...]): Input for which layer + attributions are computed. If model takes a single tensor as input, a single input tensor should be - provided. If forward_func takes multiple tensors as input, + provided. If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - neuron_selector (int, callable, or tuple of ints or slices): + neuron_selector (int, Callable, tuple[int], or slice): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: @@ -364,7 +361,7 @@ def attribute( indexed output tensor is used for attribution. Note that specifying a slice of a tensor would amount to computing the attribution of the sum of the specified - neurons, and not the individual neurons independantly. + neurons, and not the individual neurons independently. - a callable, which should take the target layer as input (single tensor or tuple @@ -376,7 +373,8 @@ def attribute( this function returns either a tensor with one element or a 1D tensor with length equal to batch_size (one scalar per input example) - baselines (tensor, tuple of tensors, callable): + + baselines (Tensor, tuple[Tensor, ...], or Callable): Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and @@ -401,14 +399,14 @@ def attribute( It is recommended that the number of samples in the baselines' tensors is larger than one. - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided - to forward_func in order, following the arguments in inputs. + to model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None @@ -423,7 +421,7 @@ def attribute( attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False - custom_attribution_func (callable, optional): A custom function for + custom_attribution_func (Callable, optional): A custom function for computing final attribution scores. This function can take at least one and at most three arguments with the following signature: @@ -443,7 +441,7 @@ def attribute( Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Computes attributions using Deeplift's rescale rule for particular neuron with respect to each input feature. Attributions will always be the same size as the provided @@ -468,17 +466,6 @@ def attribute( """ dl = DeepLiftShap(cast(Module, self.forward_func), self.multiplies_by_inputs) - if not attribute_to_neuron_input: - warnings.warn( - "Attribution to neuron output is no longer supported for" - " NeuronDeepLiftShap and will be deprecated in Captum" - " 0.6.0 due to changes in PyTorch's full backward hook" - " behavior. To obtain attributions for a neuron's" - " output, please attribute with respect to the next layer's input" - ) - dl.skip_new_hook_layer = self.layer # type: ignore - else: - dl.skip_new_hook_layer = None # type: ignore dl.gradient_func = construct_neuron_grad_fn( self.layer, neuron_selector, @@ -495,5 +482,5 @@ def attribute( ) @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs diff --git a/captum/attr/_core/neuron/neuron_feature_ablation.py b/captum/attr/_core/neuron/neuron_feature_ablation.py index d706f71cb4..d391481ed4 100644 --- a/captum/attr/_core/neuron/neuron_feature_ablation.py +++ b/captum/attr/_core/neuron/neuron_feature_ablation.py @@ -1,13 +1,20 @@ #!/usr/bin/env python3 -from typing import Any, Callable, List, Tuple, Union + +# pyre-strict +from typing import Any, Callable, cast, List, Optional, Tuple, Union import torch from captum._utils.common import _verify_select_neuron from captum._utils.gradient import _forward_layer_eval -from captum._utils.typing import BaselineType, TensorOrTupleOfTensorsGeneric +from captum._utils.typing import ( + BaselineType, + SliceIntType, + TensorOrTupleOfTensorsGeneric, +) from captum.attr._core.feature_ablation import FeatureAblation from captum.attr._utils.attribution import NeuronAttribution, PerturbationAttribution from captum.log import log_usage +from torch import Tensor from torch.nn import Module @@ -28,14 +35,14 @@ class NeuronFeatureAblation(NeuronAttribution, PerturbationAttribution): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Union[int, float, Tensor]], layer: Module, device_ids: Union[None, List[int]] = None, ) -> None: r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it layer (torch.nn.Module): Layer for which attributions are computed. Attributions for a particular neuron in the input or output @@ -44,7 +51,7 @@ def __init__( Currently, it is assumed that the inputs or the outputs of the layer, depending on which one is used for attribution, can only be a single tensor. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -57,9 +64,13 @@ def __init__( def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, - neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], + neuron_selector: Union[ + int, + Tuple[Union[int, SliceIntType], ...], + Callable[[Union[Tensor, Tuple[Tensor, ...]]], Tensor], + ], baselines: BaselineType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, attribute_to_neuron_input: bool = False, perturbations_per_eval: int = 1, @@ -67,7 +78,7 @@ def attribute( r""" Args: - inputs (tensor or tuple of tensors): Input for which neuron + inputs (Tensor or tuple[Tensor, ...]): Input for which neuron attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -75,7 +86,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - neuron_selector (int, callable, or tuple of ints or slices): + neuron_selector (int, Callable, tuple[int], or slice): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: @@ -96,7 +107,7 @@ def attribute( indexed output tensor is used for attribution. Note that specifying a slice of a tensor would amount to computing the attribution of the sum of the specified - neurons, and not the individual neurons independantly. + neurons, and not the individual neurons independently. - a callable, which should take the target layer as input (single tensor or tuple @@ -108,7 +119,8 @@ def attribute( this function returns either a tensor with one element or a 1D tensor with length equal to batch_size (one scalar per input example) - baselines (scalar, tensor, tuple of scalars or tensors, optional): + + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define reference value which replaces each feature when ablated. Baselines can be provided as: @@ -132,10 +144,11 @@ def attribute( - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. + In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -147,7 +160,7 @@ def attribute( Note that attributions are not computed with respect to these arguments. Default: None - feature_mask (tensor or tuple of tensors, optional): + feature_mask (Tensor or tuple[Tensor, ...], optional): feature_mask defines a mask for the input, grouping features which should be ablated together. feature_mask should contain the same number of tensors as inputs. @@ -187,8 +200,8 @@ def attribute( Default: 1 Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attributions of particular neuron with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value providing the attribution @@ -243,7 +256,7 @@ def attribute( >>> feature_mask=feature_mask) """ - def neuron_forward_func(*args: Any): + def neuron_forward_func(*args: Any) -> Tensor: with torch.no_grad(): layer_eval = _forward_layer_eval( self.forward_func, @@ -252,7 +265,9 @@ def neuron_forward_func(*args: Any): device_ids=self.device_ids, attribute_to_layer_input=attribute_to_neuron_input, ) - return _verify_select_neuron(layer_eval, neuron_selector) + return _verify_select_neuron( + cast(Tuple[Tensor, ...], layer_eval), neuron_selector + ) ablator = FeatureAblation(neuron_forward_func) diff --git a/captum/attr/_core/neuron/neuron_gradient.py b/captum/attr/_core/neuron/neuron_gradient.py index 5292990bbf..b806c1f4c2 100644 --- a/captum/attr/_core/neuron/neuron_gradient.py +++ b/captum/attr/_core/neuron/neuron_gradient.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 -from typing import Any, Callable, List, Tuple, Union + +# pyre-strict +from typing import Callable, List, Optional, Tuple, Union from captum._utils.common import ( _format_additional_forward_args, @@ -12,9 +14,10 @@ apply_gradient_requirements, undo_gradient_requirements, ) -from captum._utils.typing import TensorOrTupleOfTensorsGeneric +from captum._utils.typing import SliceIntType, TensorOrTupleOfTensorsGeneric from captum.attr._utils.attribution import GradientAttribution, NeuronAttribution from captum.log import log_usage +from torch import Tensor from torch.nn import Module @@ -26,14 +29,14 @@ class NeuronGradient(NeuronAttribution, GradientAttribution): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Union[int, float, Tensor]], layer: Module, device_ids: Union[None, List[int]] = None, ) -> None: r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it layer (torch.nn.Module): Layer for which attributions are computed. Output size of attribute matches this layer's input or @@ -44,7 +47,7 @@ def __init__( Currently, it is assumed that the inputs or the outputs of the layer, depending on which one is used for attribution, can only be a single tensor. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -57,14 +60,18 @@ def __init__( def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, - neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], - additional_forward_args: Any = None, + neuron_selector: Union[ + int, + Tuple[Union[int, SliceIntType], ...], + Callable[[Union[Tensor, Tuple[Tensor, ...]]], Tensor], + ], + additional_forward_args: Optional[object] = None, attribute_to_neuron_input: bool = False, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which neuron + inputs (Tensor or tuple[Tensor, ...]): Input for which neuron gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -72,7 +79,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - neuron_selector (int, callable, or tuple of ints or slices): + neuron_selector (int, Callable, tuple[int], or slice): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: @@ -93,7 +100,7 @@ def attribute( indexed output tensor is used for attribution. Note that specifying a slice of a tensor would amount to computing the attribution of the sum of the specified - neurons, and not the individual neurons independantly. + neurons, and not the individual neurons independently. - a callable, which should take the target layer as input (single tensor or tuple @@ -105,7 +112,7 @@ def attribute( this function returns either a tensor with one element or a 1D tensor with length equal to batch_size (one scalar per input example) - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -130,8 +137,8 @@ def attribute( Default: False Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Gradients of particular neuron with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value providing the attribution @@ -159,11 +166,11 @@ def attribute( >>> attribution = neuron_ig.attribute(input, (4,1,2)) """ is_inputs_tuple = _is_tuple(inputs) - inputs = _format_tensor_into_tuples(inputs) + inputs_tuple = _format_tensor_into_tuples(inputs) additional_forward_args = _format_additional_forward_args( additional_forward_args ) - gradient_mask = apply_gradient_requirements(inputs) + gradient_mask = apply_gradient_requirements(inputs_tuple) _, input_grads = _forward_layer_eval_with_neuron_grads( self.forward_func, @@ -175,5 +182,9 @@ def attribute( attribute_to_layer_input=attribute_to_neuron_input, ) - undo_gradient_requirements(inputs, gradient_mask) + undo_gradient_requirements(inputs_tuple, gradient_mask) + + # pyre-fixme[7]: Expected `Variable[TensorOrTupleOfTensorsGeneric <: + # [Tensor, typing.Tuple[Tensor, ...]]]` but got `Union[Tensor, + # typing.Tuple[Tensor, ...]]`. return _format_output(is_inputs_tuple, input_grads) diff --git a/captum/attr/_core/neuron/neuron_gradient_shap.py b/captum/attr/_core/neuron/neuron_gradient_shap.py index 42a543b50d..b0b82084f5 100644 --- a/captum/attr/_core/neuron/neuron_gradient_shap.py +++ b/captum/attr/_core/neuron/neuron_gradient_shap.py @@ -1,11 +1,14 @@ #!/usr/bin/env python3 -from typing import Any, Callable, List, Tuple, Union + +# pyre-strict +from typing import Callable, List, Optional, Tuple, Union from captum._utils.gradient import construct_neuron_grad_fn -from captum._utils.typing import TensorOrTupleOfTensorsGeneric +from captum._utils.typing import SliceIntType, TensorOrTupleOfTensorsGeneric from captum.attr._core.gradient_shap import GradientShap from captum.attr._utils.attribution import GradientAttribution, NeuronAttribution from captum.log import log_usage +from torch import Tensor from torch.nn import Module @@ -18,7 +21,7 @@ class NeuronGradientShap(NeuronAttribution, GradientAttribution): #deep-learning-example-with-gradientexplainer-tensorflowkeraspytorch-models A Unified Approach to Interpreting Model Predictions - http://papers.nips.cc/paper\ + https://papers.nips.cc/paper\ 7062-a-unified-approach-to-interpreting-model-predictions GradientShap approximates SHAP values by computing the expectations of @@ -41,14 +44,14 @@ class NeuronGradientShap(NeuronAttribution, GradientAttribution): In some sense it can be viewed as an approximation of integrated gradients by computing the expectations of gradients for different baselines. - Current implementation uses Smoothgrad from `NoiseTunnel` in order to + Current implementation uses Smoothgrad from :class:`.NoiseTunnel` in order to randomly draw samples from the distribution of baselines, add noise to input samples and compute the expectation (smoothgrad). """ def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Union[int, float, Tensor]], layer: Module, device_ids: Union[None, List[int]] = None, multiply_by_inputs: bool = True, @@ -56,17 +59,17 @@ def __init__( r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it layer (torch.nn.Module): Layer for which neuron attributions are computed. The output size of the attribute method matches the - dimensions of the inputs or ouputs of the neuron with + dimensions of the inputs or outputs of the neuron with index `neuron_selector` in this layer, depending on whether we attribute to the inputs or outputs of the neuron. Currently, it is assumed that the inputs or the outputs of the neurons in this layer, depending on which one is used for attribution, can only be a single tensor. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -94,19 +97,23 @@ def __init__( def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, - neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], + neuron_selector: Union[ + int, + Tuple[Union[int, SliceIntType], ...], + Callable[[Union[Tensor, Tuple[Tensor, ...]]], Tensor], + ], baselines: Union[ TensorOrTupleOfTensorsGeneric, Callable[..., TensorOrTupleOfTensorsGeneric] ], n_samples: int = 5, stdevs: float = 0.0, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, attribute_to_neuron_input: bool = False, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which SHAP attribution + inputs (Tensor or tuple[Tensor, ...]): Input for which SHAP attribution values are computed. If `forward_func` takes a single tensor as input, a single input tensor should be provided. If `forward_func` takes multiple tensors as input, a tuple @@ -114,7 +121,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - neuron_selector (int, callable, or tuple of ints or slices): + neuron_selector (int, Callable, tuple[int], or slice): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: @@ -135,7 +142,7 @@ def attribute( indexed output tensor is used for attribution. Note that specifying a slice of a tensor would amount to computing the attribution of the sum of the specified - neurons, and not the individual neurons independantly. + neurons, and not the individual neurons independently. - a callable, which should take the target layer as input (single tensor or tuple @@ -147,7 +154,7 @@ def attribute( this function returns either a tensor with one element or a 1D tensor with length equal to batch_size (one scalar per input example) - baselines (tensor, tuple of tensors, callable): + baselines (Tensor, tuple[Tensor, ...], or Callable): Baselines define the starting point from which expectation is computed and can be provided as: @@ -170,11 +177,11 @@ def attribute( It is recommended that the number of samples in the baselines' tensors is larger than one. - n_samples (int, optional): The number of randomly generated examples + n_samples (int, optional): The number of randomly generated examples per sample in the input batch. Random examples are generated by adding gaussian random noise to each sample. Default: `5` if `n_samples` is not provided. - stdevs (float, or a tuple of floats optional): The standard deviation + stdevs (float or tuple of float, optional): The standard deviation of gaussian noise with zero mean that is added to each input in the batch. If `stdevs` is a single float value then that same value is used for all inputs. If it is @@ -183,7 +190,7 @@ def attribute( corresponds to the input with the same index in the inputs tuple. Default: 0.0 - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It can contain a tuple of ND tensors or @@ -209,7 +216,7 @@ def attribute( Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attribution score computed based on GradientSHAP with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value @@ -253,5 +260,5 @@ def attribute( ) @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs diff --git a/captum/attr/_core/neuron/neuron_guided_backprop_deconvnet.py b/captum/attr/_core/neuron/neuron_guided_backprop_deconvnet.py index 7c69aed87a..4b3720c96f 100644 --- a/captum/attr/_core/neuron/neuron_guided_backprop_deconvnet.py +++ b/captum/attr/_core/neuron/neuron_guided_backprop_deconvnet.py @@ -1,12 +1,14 @@ #!/usr/bin/env python3 -import warnings -from typing import Any, Callable, List, Tuple, Union + +# pyre-strict +from typing import Callable, List, Optional, Tuple, Union from captum._utils.gradient import construct_neuron_grad_fn -from captum._utils.typing import TensorOrTupleOfTensorsGeneric +from captum._utils.typing import SliceIntType, TensorOrTupleOfTensorsGeneric from captum.attr._core.guided_backprop_deconvnet import Deconvolution, GuidedBackprop from captum.attr._utils.attribution import GradientAttribution, NeuronAttribution from captum.log import log_usage +from torch import Tensor from torch.nn import Module @@ -35,10 +37,7 @@ def __init__( r""" Args: - model (nn.Module): The reference to PyTorch model instance. Model cannot - contain any in-place ReLU submodules; these are not - supported by the register_full_backward_hook PyTorch API - starting from PyTorch v1.9. + model (nn.Module): The reference to PyTorch model instance. layer (Module): Layer for which attributions are computed. Output size of attribute matches this layer's input or output dimensions, depending on whether we attribute to @@ -48,10 +47,10 @@ def __init__( Currently, it is assumed that the inputs or the outputs of the layer, depending on which one is used for attribution, can only be a single tensor. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if model applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. - If forward_func is given as the DataParallel model itself, + If model is given as the DataParallel model itself, then it is not necessary to provide this argument. """ NeuronAttribution.__init__(self, model, layer, device_ids) @@ -62,23 +61,27 @@ def __init__( def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, - neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], - additional_forward_args: Any = None, + neuron_selector: Union[ + int, + Tuple[Union[int, SliceIntType], ...], + Callable[[Union[Tensor, Tuple[Tensor, ...]]], Tensor], + ], + additional_forward_args: Optional[object] = None, attribute_to_neuron_input: bool = False, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which - attributions are computed. If forward_func takes a single + inputs (Tensor or tuple[Tensor, ...]): Input for which + attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. - If forward_func takes multiple tensors as input, a tuple + If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - neuron_selector (int, callable, or tuple of ints or slices): + neuron_selector (int, Callable, tuple[int], or slice): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: @@ -99,7 +102,7 @@ def attribute( indexed output tensor is used for attribution. Note that specifying a slice of a tensor would amount to computing the attribution of the sum of the specified - neurons, and not the individual neurons independantly. + neurons, and not the individual neurons independently. - a callable, which should take the target layer as input (single tensor or tuple @@ -111,14 +114,14 @@ def attribute( this function returns either a tensor with one element or a 1D tensor with length equal to batch_size (one scalar per input example) - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to - forward_func in order, following the arguments in inputs. + model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None @@ -134,8 +137,8 @@ def attribute( Support for multiple tensors will be added later. Default: False Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Deconvolution attribution of particular neuron with respect to each input feature. Attributions will always be the same size as the provided @@ -163,18 +166,6 @@ def attribute( >>> # index (4,1,2). >>> attribution = neuron_deconv.attribute(input, (4,1,2)) """ - if not attribute_to_neuron_input: - warnings.warn( - "Attribution to neuron output is no longer supported for" - " NeuronDeconvolution and will be deprecated in Captum" - " 0.6.0 due to changes in PyTorch's full backward hook" - " behavior. To obtain attributions for a neuron's" - " output, please attribute with respect to the next layer's input" - ) - self.deconv.skip_new_hook_layer = self.layer # type: ignore - else: - self.deconv.skip_new_hook_layer = None # type: ignore - self.deconv.gradient_func = construct_neuron_grad_fn( self.layer, neuron_selector, self.device_ids, attribute_to_neuron_input ) @@ -207,20 +198,17 @@ def __init__( r""" Args: - model (nn.Module): The reference to PyTorch model instance. Model cannot - contain any in-place ReLU submodules; these are not - supported by the register_full_backward_hook PyTorch API - starting from PyTorch v1.9. + model (nn.Module): The reference to PyTorch model instance. layer (Module): Layer for which neuron attributions are computed. Attributions for a particular neuron in the output of this layer are computed using the argument neuron_selector in the attribute method. Currently, only layers with a single tensor output are supported. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if model applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. - If forward_func is given as the DataParallel model itself, + If model is given as the DataParallel model itself, then it is not necessary to provide this argument. """ NeuronAttribution.__init__(self, model, layer, device_ids) @@ -231,23 +219,27 @@ def __init__( def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, - neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], - additional_forward_args: Any = None, + neuron_selector: Union[ + int, + Tuple[Union[int, SliceIntType], ...], + Callable[[Union[Tensor, Tuple[Tensor, ...]]], Tensor], + ], + additional_forward_args: Optional[object] = None, attribute_to_neuron_input: bool = False, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which - attributions are computed. If forward_func takes a single + inputs (Tensor or tuple[Tensor, ...]): Input for which + attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. - If forward_func takes multiple tensors as input, a tuple + If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - neuron_selector (int, callable, or tuple of ints or slices): + neuron_selector (int, Callable, tuple[int], or slice): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: @@ -268,7 +260,7 @@ def attribute( indexed output tensor is used for attribution. Note that specifying a slice of a tensor would amount to computing the attribution of the sum of the specified - neurons, and not the individual neurons independantly. + neurons, and not the individual neurons independently. - a callable, which should take the target layer as input (single tensor or tuple @@ -280,14 +272,14 @@ def attribute( this function returns either a tensor with one element or a 1D tensor with length equal to batch_size (one scalar per input example) - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to - forward_func in order, following the arguments in inputs. + model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None @@ -303,8 +295,8 @@ def attribute( Support for multiple tensors will be added later. Default: False Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Guided backprop attribution of particular neuron with respect to each input feature. Attributions will always be the same size as the provided @@ -332,18 +324,6 @@ def attribute( >>> # index (4,1,2). >>> attribution = neuron_gb.attribute(input, (4,1,2)) """ - if not attribute_to_neuron_input: - warnings.warn( - "Attribution to neuron output is no longer supported for" - " NeuronGuidedBackprop and will be deprecated in Captum" - " 0.6.0 due to changes in PyTorch's full backward hook" - " behavior. To obtain attributions for a neuron's" - " output, please attribute with respect to the next layer's input" - ) - self.guided_backprop.skip_new_hook_layer = self.layer # type: ignore - else: - self.guided_backprop.skip_new_hook_layer = None # type: ignore - self.guided_backprop.gradient_func = construct_neuron_grad_fn( self.layer, neuron_selector, self.device_ids, attribute_to_neuron_input ) diff --git a/captum/attr/_core/neuron/neuron_integrated_gradients.py b/captum/attr/_core/neuron/neuron_integrated_gradients.py index f67aec7e7e..0e4504bee9 100644 --- a/captum/attr/_core/neuron/neuron_integrated_gradients.py +++ b/captum/attr/_core/neuron/neuron_integrated_gradients.py @@ -1,8 +1,10 @@ #!/usr/bin/env python3 -from typing import Any, Callable, List, Tuple, Union + +# pyre-strict +from typing import Callable, List, Optional, Tuple, Union from captum._utils.gradient import construct_neuron_grad_fn -from captum._utils.typing import TensorOrTupleOfTensorsGeneric +from captum._utils.typing import SliceIntType, TensorOrTupleOfTensorsGeneric from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._utils.attribution import GradientAttribution, NeuronAttribution from captum.log import log_usage @@ -25,7 +27,7 @@ class NeuronIntegratedGradients(NeuronAttribution, GradientAttribution): def __init__( self, - forward_func: Callable, + forward_func: Callable[..., Tensor], layer: Module, device_ids: Union[None, List[int]] = None, multiply_by_inputs: bool = True, @@ -33,7 +35,7 @@ def __init__( r""" Args: - forward_func (callable): The forward function of the model or any + forward_func (Callable): The forward function of the model or any modification of it layer (torch.nn.Module): Layer for which attributions are computed. Output size of attribute matches this layer's input or @@ -44,7 +46,7 @@ def __init__( Currently, it is assumed that the inputs or the outputs of the layer, depending on which one is used for attribution, can only be a single tensor. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -73,9 +75,13 @@ def __init__( def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, - neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable], + neuron_selector: Union[ + int, + Tuple[Union[int, SliceIntType], ...], + Callable[[Union[Tensor, Tuple[Tensor, ...]]], Tensor], + ], baselines: Union[None, Tensor, Tuple[Tensor, ...]] = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, @@ -84,7 +90,7 @@ def attribute( r""" Args: - inputs (tensor or tuple of tensors): Input for which neuron integrated + inputs (Tensor or tuple[Tensor, ...]): Input for which neuron integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -92,7 +98,7 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - neuron_selector (int, callable, or tuple of ints or slices): + neuron_selector (int, Callable, tuple[int], or slice): Selector for neuron in given layer for which attribution is desired. Neuron selector can be provided as: @@ -113,7 +119,7 @@ def attribute( indexed output tensor is used for attribution. Note that specifying a slice of a tensor would amount to computing the attribution of the sum of the specified - neurons, and not the individual neurons independantly. + neurons, and not the individual neurons independently. - a callable, which should take the target layer as input (single tensor or tuple @@ -125,7 +131,7 @@ def attribute( this function returns either a tensor with one element or a 1D tensor with length equal to batch_size (one scalar per input example) - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define the starting point from which integral is computed. Baselines can be provided as: @@ -155,7 +161,7 @@ def attribute( use zero scalar corresponding to each input tensor. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -174,7 +180,7 @@ def attribute( Default: None n_steps (int, optional): The number of steps used by the approximation method. Default: 50. - method (string, optional): Method for approximating the integral, + method (str, optional): Method for approximating the integral, one of `riemann_right`, `riemann_left`, `riemann_middle`, `riemann_trapezoid` or `gausslegendre`. Default: `gausslegendre` if no method is provided. @@ -202,8 +208,8 @@ def attribute( Default: False Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Integrated gradients for particular neuron with respect to each input feature. Attributions will always be the same size as the provided @@ -248,5 +254,5 @@ def attribute( ) @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs diff --git a/captum/attr/_core/noise_tunnel.py b/captum/attr/_core/noise_tunnel.py index 0fbc32115e..5d9eb19626 100644 --- a/captum/attr/_core/noise_tunnel.py +++ b/captum/attr/_core/noise_tunnel.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 + +# pyre-strict from enum import Enum -from typing import Any, cast, List, Tuple, Union +from typing import Any, Callable, cast, Dict, List, Optional, Sequence, Tuple, Union import torch from captum._utils.common import ( @@ -25,7 +27,7 @@ class NoiseTunnelType(Enum): vargrad = 3 -SUPPORTED_NOISE_TUNNEL_TYPES = list(NoiseTunnelType.__members__.keys()) +SUPPORTED_NOISE_TUNNEL_TYPES: List[str] = list(NoiseTunnelType.__members__.keys()) class NoiseTunnel(Attribution): @@ -43,16 +45,22 @@ class NoiseTunnel(Attribution): returned. More details about adding noise can be found in the following papers: - https://arxiv.org/abs/1810.03292 - https://arxiv.org/abs/1810.03307 - https://arxiv.org/abs/1706.03825 - https://arxiv.org/pdf/1806.10758 + + * https://arxiv.org/abs/1810.03292 + * https://arxiv.org/abs/1810.03307 + * https://arxiv.org/abs/1706.03825 + * https://arxiv.org/abs/1806.10758 + This method currently also supports batches of multiple examples input, however it can be computationally expensive depending on the model, the dimensionality of the data and execution environment. It is assumed that the batch size is the first dimension of input tensors. """ + is_delta_supported: bool + _multiply_by_inputs: bool + is_gradient_method: bool + def __init__(self, attribution_method: Attribution) -> None: r""" Args: @@ -69,7 +77,7 @@ def __init__(self, attribution_method: Attribution) -> None: Attribution.__init__(self, self.attribution_method.forward_func) @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return self._multiply_by_inputs @log_usage() @@ -78,7 +86,7 @@ def attribute( inputs: Union[Tensor, Tuple[Tensor, ...]], nt_type: str = "smoothgrad", nt_samples: int = 5, - nt_samples_batch_size: int = None, + nt_samples_batch_size: Optional[int] = None, stdevs: Union[float, Tuple[float, ...]] = 1.0, draw_baseline_from_distrib: bool = False, **kwargs: Any, @@ -93,7 +101,7 @@ def attribute( r""" Args: - inputs (tensor or tuple of tensors): Input for which integrated + inputs (Tensor or tuple[Tensor, ...]): Input for which integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -101,21 +109,21 @@ def attribute( that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - nt_type (string, optional): Smoothing type of the attributions. + nt_type (str, optional): Smoothing type of the attributions. `smoothgrad`, `smoothgrad_sq` or `vargrad` Default: `smoothgrad` if `type` is not provided. - nt_samples (int, optional): The number of randomly generated examples + nt_samples (int, optional): The number of randomly generated examples per sample in the input batch. Random examples are generated by adding gaussian random noise to each sample. Default: `5` if `nt_samples` is not provided. - nt_samples_batch_size (int, optional): The number of the `nt_samples` + nt_samples_batch_size (int, optional): The number of the `nt_samples` that will be processed together. With the help of this parameter we can avoid out of memory situation and reduce the number of randomly generated examples per sample in each batch. Default: None if `nt_samples_batch_size` is not provided. In this case all `nt_samples` will be processed together. - stdevs (float, or a tuple of floats optional): The standard deviation + stdevs (float or tuple of float, optional): The standard deviation of gaussian noise with zero mean that is added to each input in the batch. If `stdevs` is a single float value then that same value is used for all inputs. If it is @@ -137,7 +145,7 @@ def attribute( Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - - **attributions** (*tensor* or tuple of *tensors*): + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attribution with respect to each input feature. attributions will always be the same size as the provided inputs, with each value @@ -166,166 +174,12 @@ def attribute( >>> nt = NoiseTunnel(ig) >>> # Generates 10 perturbed input tensors per image. >>> # Computes integrated gradients for class 3 for each generated - >>> # input and averages attributions accros all 10 + >>> # input and averages attributions across all 10 >>> # perturbed inputs per image >>> attribution = nt.attribute(input, nt_type='smoothgrad', >>> nt_samples=10, target=3) """ - - def add_noise_to_inputs(nt_samples_partition: int) -> Tuple[Tensor, ...]: - if isinstance(stdevs, tuple): - assert len(stdevs) == len(inputs), ( - "The number of input tensors " - "in {} must be equal to the number of stdevs values {}".format( - len(inputs), len(stdevs) - ) - ) - else: - assert isinstance( - stdevs, float - ), "stdevs must be type float. " "Given: {}".format(type(stdevs)) - stdevs_ = (stdevs,) * len(inputs) - return tuple( - add_noise_to_input(input, stdev, nt_samples_partition).requires_grad_() - if self.is_gradient_method - else add_noise_to_input(input, stdev, nt_samples_partition) - for (input, stdev) in zip(inputs, stdevs_) - ) - - def add_noise_to_input( - input: Tensor, stdev: float, nt_samples_partition: int - ) -> Tensor: - # batch size - bsz = input.shape[0] - - # expand input size by the number of drawn samples - input_expanded_size = (bsz * nt_samples_partition,) + input.shape[1:] - - # expand stdev for the shape of the input and number of drawn samples - stdev_expanded = torch.tensor(stdev, device=input.device).repeat( - input_expanded_size - ) - - # draws `np.prod(input_expanded_size)` samples from normal distribution - # with given input parametrization - # FIXME it look like it is very difficult to make torch.normal - # deterministic this needs an investigation - noise = torch.normal(0, stdev_expanded) - return input.repeat_interleave(nt_samples_partition, dim=0) + noise - - def update_sum_attribution_and_sq( - sum_attribution: List[Tensor], - sum_attribution_sq: List[Tensor], - attribution: Tensor, - i: int, - nt_samples_batch_size_inter: int, - ) -> None: - bsz = attribution.shape[0] // nt_samples_batch_size_inter - attribution_shape = cast( - Tuple[int, ...], (bsz, nt_samples_batch_size_inter) - ) - if len(attribution.shape) > 1: - attribution_shape += cast(Tuple[int, ...], tuple(attribution.shape[1:])) - - attribution = attribution.view(attribution_shape) - current_attribution_sum = attribution.sum(dim=1, keepdim=False) - current_attribution_sq = torch.sum(attribution**2, dim=1, keepdim=False) - - sum_attribution[i] = ( - current_attribution_sum - if not isinstance(sum_attribution[i], torch.Tensor) - else sum_attribution[i] + current_attribution_sum - ) - sum_attribution_sq[i] = ( - current_attribution_sq - if not isinstance(sum_attribution_sq[i], torch.Tensor) - else sum_attribution_sq[i] + current_attribution_sq - ) - - def compute_partial_attribution( - inputs_with_noise_partition: Tuple[Tensor, ...], kwargs_partition: Any - ) -> Tuple[Tuple[Tensor, ...], bool, Union[None, Tensor]]: - # smoothgrad_Attr(x) = 1 / n * sum(Attr(x + N(0, sigma^2)) - # NOTE: using __wrapped__ such that it does not log the inner logs - - attributions = attr_func.__wrapped__( # type: ignore - self.attribution_method, # self - inputs_with_noise_partition - if is_inputs_tuple - else inputs_with_noise_partition[0], - **kwargs_partition, - ) - delta = None - - if self.is_delta_supported and return_convergence_delta: - attributions, delta = attributions - - is_attrib_tuple = _is_tuple(attributions) - attributions = _format_tensor_into_tuples(attributions) - - return ( - cast(Tuple[Tensor, ...], attributions), - cast(bool, is_attrib_tuple), - delta, - ) - - def expand_partial(nt_samples_partition: int, kwargs_partial: dict) -> None: - # if the algorithm supports targets, baselines and/or - # additional_forward_args they will be expanded based - # on the nt_samples_partition and corresponding kwargs - # variables will be updated accordingly - _expand_and_update_additional_forward_args( - nt_samples_partition, kwargs_partial - ) - _expand_and_update_target(nt_samples_partition, kwargs_partial) - _expand_and_update_baselines( - cast(Tuple[Tensor, ...], inputs), - nt_samples_partition, - kwargs_partial, - draw_baseline_from_distrib=draw_baseline_from_distrib, - ) - _expand_and_update_feature_mask(nt_samples_partition, kwargs_partial) - - def compute_smoothing( - expected_attributions: Tuple[Union[Tensor], ...], - expected_attributions_sq: Tuple[Union[Tensor], ...], - ) -> Tuple[Tensor, ...]: - if NoiseTunnelType[nt_type] == NoiseTunnelType.smoothgrad: - return expected_attributions - - if NoiseTunnelType[nt_type] == NoiseTunnelType.smoothgrad_sq: - return expected_attributions_sq - - vargrad = tuple( - expected_attribution_sq - expected_attribution * expected_attribution - for expected_attribution, expected_attribution_sq in zip( - expected_attributions, expected_attributions_sq - ) - ) - - return cast(Tuple[Tensor, ...], vargrad) - - def update_partial_attribution_and_delta( - attributions_partial: Tuple[Tensor, ...], - delta_partial: Tensor, - sum_attributions: List[Tensor], - sum_attributions_sq: List[Tensor], - delta_partial_list: List[Tensor], - nt_samples_partial: int, - ) -> None: - for i, attribution_partial in enumerate(attributions_partial): - update_sum_attribution_and_sq( - sum_attributions, - sum_attributions_sq, - attribution_partial, - i, - nt_samples_partial, - ) - if self.is_delta_supported and return_convergence_delta: - delta_partial_list.append(delta_partial) - - return_convergence_delta: bool - return_convergence_delta = ( + return_convergence_delta: bool = ( "return_convergence_delta" in kwargs and kwargs["return_convergence_delta"] ) with torch.no_grad(): @@ -346,54 +200,73 @@ def update_partial_attribution_and_delta( _validate_noise_tunnel_type(nt_type, SUPPORTED_NOISE_TUNNEL_TYPES) kwargs_copy = kwargs.copy() - expand_partial(nt_samples_batch_size, kwargs_copy) - - attr_func = self.attribution_method.attribute + self._expand_partial( + nt_samples_batch_size, kwargs_copy, inputs, draw_baseline_from_distrib + ) - sum_attributions: List[Union[None, Tensor]] = [] - sum_attributions_sq: List[Union[None, Tensor]] = [] + sum_attributions: Sequence[Union[None, Tensor]] = [] + sum_attributions_sq: Sequence[Union[None, Tensor]] = [] delta_partial_list: List[Tensor] = [] + is_attrib_tuple = is_inputs_tuple for _ in range(nt_samples_partition): - inputs_with_noise = add_noise_to_inputs(nt_samples_batch_size) + inputs_with_noise = self._add_noise_to_inputs( + nt_samples_batch_size, inputs, stdevs + ) ( attributions_partial, is_attrib_tuple, delta_partial, - ) = compute_partial_attribution(inputs_with_noise, kwargs_copy) + ) = self._compute_partial_attribution( + inputs_with_noise, + kwargs_copy, + is_inputs_tuple, + return_convergence_delta, + ) if len(sum_attributions) == 0: sum_attributions = [None] * len(attributions_partial) sum_attributions_sq = [None] * len(attributions_partial) - update_partial_attribution_and_delta( - cast(Tuple[Tensor, ...], attributions_partial), + self._update_partial_attribution_and_delta( + attributions_partial, cast(Tensor, delta_partial), cast(List[Tensor], sum_attributions), cast(List[Tensor], sum_attributions_sq), delta_partial_list, nt_samples_batch_size, + return_convergence_delta, ) nt_samples_remaining = ( nt_samples - nt_samples_partition * nt_samples_batch_size ) if nt_samples_remaining > 0: - inputs_with_noise = add_noise_to_inputs(nt_samples_remaining) - expand_partial(nt_samples_remaining, kwargs) + inputs_with_noise = self._add_noise_to_inputs( + nt_samples_remaining, inputs, stdevs + ) + self._expand_partial( + nt_samples_remaining, kwargs, inputs, draw_baseline_from_distrib + ) ( attributions_partial, is_attrib_tuple, delta_partial, - ) = compute_partial_attribution(inputs_with_noise, kwargs) + ) = self._compute_partial_attribution( + inputs_with_noise, + kwargs, + is_inputs_tuple, + return_convergence_delta, + ) - update_partial_attribution_and_delta( - cast(Tuple[Tensor, ...], attributions_partial), + self._update_partial_attribution_and_delta( + attributions_partial, cast(Tensor, delta_partial), cast(List[Tensor], sum_attributions), cast(List[Tensor], sum_attributions_sq), delta_partial_list, nt_samples_remaining, + return_convergence_delta, ) expected_attributions = tuple( @@ -408,9 +281,10 @@ def update_partial_attribution_and_delta( for sum_attribution_sq in sum_attributions_sq ] ) - attributions = compute_smoothing( - cast(Tuple[Tensor, ...], expected_attributions), - cast(Tuple[Tensor, ...], expected_attributions_sq), + attributions = self._compute_smoothing( + expected_attributions, + expected_attributions_sq, + nt_type, ) delta = None @@ -418,26 +292,221 @@ def update_partial_attribution_and_delta( delta = torch.cat(delta_partial_list, dim=0) return self._apply_checks_and_return_attributions( - attributions, is_attrib_tuple, return_convergence_delta, delta + attributions, + is_attrib_tuple, + return_convergence_delta, + delta, + ) + + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for NoiseTunnel. + """ + raise NotImplementedError("attribute_future is not implemented for NoiseTunnel") + + def _add_noise_to_inputs( + self, + nt_samples_partition: int, + inputs: Tuple[Tensor, ...], + stdevs: Union[float, Tuple[float, ...]], + ) -> Tuple[Tensor, ...]: + if isinstance(stdevs, tuple): + assert len(stdevs) == len(inputs), ( + "The number of input tensors " + "in {} must be equal to the number of stdevs values {}".format( + len(inputs), len(stdevs) + ) + ) + stdevs_ = stdevs + else: + assert isinstance( + stdevs, float + ), "stdevs must be type float. " "Given: {}".format(type(stdevs)) + stdevs_ = (stdevs,) * len(inputs) + return tuple( + ( + self._add_noise_to_input( + input, stdev, nt_samples_partition + ).requires_grad_() + if self.is_gradient_method + else self._add_noise_to_input(input, stdev, nt_samples_partition) + ) + for (input, stdev) in zip(inputs, stdevs_) + ) + + @staticmethod + def _add_noise_to_input( + input: Tensor, stdev: float, nt_samples_partition: int + ) -> Tensor: + # batch size + bsz = input.shape[0] + + # expand input size by the number of drawn samples + input_expanded_size = (bsz * nt_samples_partition,) + tuple(input.shape[1:]) + + # expand stdev for the shape of the input and number of drawn samples + stdev_expanded = torch.tensor(stdev, device=input.device).repeat( + input_expanded_size + ) + + # draws `np.prod(input_expanded_size)` samples from normal distribution + # with given input parametrization + # FIXME it look like it is very difficult to make torch.normal + # deterministic this needs an investigation + noise = torch.normal(0, stdev_expanded) + return input.repeat_interleave(nt_samples_partition, dim=0) + noise + + @staticmethod + def _update_sum_attribution_and_sq( + sum_attribution: List[Tensor], + sum_attribution_sq: List[Tensor], + attribution: Tensor, + i: int, + nt_samples_batch_size_inter: int, + ) -> None: + bsz = attribution.shape[0] // nt_samples_batch_size_inter + attribution_shape = cast(Tuple[int, ...], (bsz, nt_samples_batch_size_inter)) + if len(attribution.shape) > 1: + attribution_shape += tuple(attribution.shape[1:]) + + attribution = attribution.view(attribution_shape) + current_attribution_sum = attribution.sum(dim=1, keepdim=False) + current_attribution_sq = torch.sum( + torch.pow(attribution, 2), dim=1, keepdim=False + ) + + sum_attribution[i] = ( + current_attribution_sum + if not isinstance(sum_attribution[i], torch.Tensor) + else sum_attribution[i] + current_attribution_sum + ) + sum_attribution_sq[i] = ( + current_attribution_sq + if not isinstance(sum_attribution_sq[i], torch.Tensor) + else sum_attribution_sq[i] + current_attribution_sq ) + def _compute_partial_attribution( + self, + inputs_with_noise_partition: Tuple[Tensor, ...], + kwargs_partition: object, + is_inputs_tuple: bool, + return_convergence_delta: bool, + ) -> Tuple[Tuple[Tensor, ...], bool, Union[None, Tensor]]: + attr_func = self.attribution_method.attribute + # smoothgrad_Attr(x) = 1 / n * sum(Attr(x + N(0, sigma^2)) + # NOTE: using __wrapped__ such that it does not log the inner logs + + attributions = attr_func.__wrapped__( # type: ignore + self.attribution_method, # self + ( + inputs_with_noise_partition + if is_inputs_tuple + else inputs_with_noise_partition[0] + ), + **kwargs_partition, + ) + delta = None + + if self.is_delta_supported and return_convergence_delta: + attributions, delta = attributions + + is_attrib_tuple = _is_tuple(attributions) + attributions = _format_tensor_into_tuples(attributions) + + return ( + cast(Tuple[Tensor, ...], attributions), + cast(bool, is_attrib_tuple), + delta, + ) + + @staticmethod + def _expand_partial( + nt_samples_partition: int, + kwargs_partial: Dict[str, Any], + inputs: Tuple[Tensor, ...], + draw_baseline_from_distrib: bool, + ) -> None: + # if the algorithm supports targets, baselines and/or + # additional_forward_args they will be expanded based + # on the nt_samples_partition and corresponding kwargs + # variables will be updated accordingly + _expand_and_update_additional_forward_args(nt_samples_partition, kwargs_partial) + _expand_and_update_target(nt_samples_partition, kwargs_partial) + _expand_and_update_baselines( + inputs, + nt_samples_partition, + kwargs_partial, + draw_baseline_from_distrib=draw_baseline_from_distrib, + ) + _expand_and_update_feature_mask(nt_samples_partition, kwargs_partial) + + @staticmethod + def _compute_smoothing( + expected_attributions: Tuple[Union[Tensor], ...], + expected_attributions_sq: Tuple[Union[Tensor], ...], + nt_type: str, + ) -> Tuple[Tensor, ...]: + if NoiseTunnelType[nt_type] == NoiseTunnelType.smoothgrad: + return expected_attributions + + if NoiseTunnelType[nt_type] == NoiseTunnelType.smoothgrad_sq: + return expected_attributions_sq + + vargrad = tuple( + expected_attribution_sq - expected_attribution * expected_attribution + for expected_attribution, expected_attribution_sq in zip( + expected_attributions, expected_attributions_sq + ) + ) + + return vargrad + + def _update_partial_attribution_and_delta( + self, + attributions_partial: Tuple[Tensor, ...], + delta_partial: Tensor, + sum_attributions: List[Tensor], + sum_attributions_sq: List[Tensor], + delta_partial_list: List[Tensor], + nt_samples_partial: int, + return_convergence_delta: bool, + ) -> None: + for i, attribution_partial in enumerate(attributions_partial): + self._update_sum_attribution_and_sq( + sum_attributions, + sum_attributions_sq, + attribution_partial, + i, + nt_samples_partial, + ) + if self.is_delta_supported and return_convergence_delta: + delta_partial_list.append(delta_partial) + def _apply_checks_and_return_attributions( self, attributions: Tuple[Tensor, ...], is_attrib_tuple: bool, return_convergence_delta: bool, delta: Union[None, Tensor], + # pyre-fixme[34]: `Variable[TensorOrTupleOfTensorsGeneric <: + # [torch._tensor.Tensor, typing.Tuple[torch._tensor.Tensor, ...]]]` + # isn't present in the function's parameters. ) -> Union[ TensorOrTupleOfTensorsGeneric, Tuple[TensorOrTupleOfTensorsGeneric, Tensor] ]: - attributions = _format_output(is_attrib_tuple, attributions) + attributions_tuple = _format_output(is_attrib_tuple, attributions) ret = ( - (attributions, cast(Tensor, delta)) + (attributions_tuple, cast(Tensor, delta)) if self.is_delta_supported and return_convergence_delta - else attributions + else attributions_tuple ) ret = cast( + # pyre-fixme[34]: `Variable[TensorOrTupleOfTensorsGeneric <: + # [torch._tensor.Tensor, typing.Tuple[torch._tensor.Tensor, ...]]]` + # isn't present in the function's parameters. Union[ TensorOrTupleOfTensorsGeneric, Tuple[TensorOrTupleOfTensorsGeneric, Tensor], diff --git a/captum/attr/_core/occlusion.py b/captum/attr/_core/occlusion.py index de148693fa..f6bfcbe8a8 100644 --- a/captum/attr/_core/occlusion.py +++ b/captum/attr/_core/occlusion.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 -from typing import Any, Callable, Tuple, Union + +# pyre-strict +from typing import Any, Callable, Optional, Tuple, Union import numpy as np import torch @@ -35,12 +37,12 @@ class Occlusion(FeatureAblation): /tensorflow/methods.py#L401 """ - def __init__(self, forward_func: Callable) -> None: + def __init__(self, forward_func: Callable[..., Tensor]) -> None: r""" Args: - forward_func (callable): The forward function of the model or - any modification of it + forward_func (Callable): The forward function of the model or + any modification of it. """ FeatureAblation.__init__(self, forward_func) self.use_weights = True @@ -55,14 +57,14 @@ def attribute( # type: ignore ] = None, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, perturbations_per_eval: int = 1, show_progress: bool = False, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which occlusion + inputs (Tensor or tuple[Tensor, ...]): Input for which occlusion attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -71,7 +73,7 @@ def attribute( # type: ignore to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - sliding_window_shapes (tuple or tuple of tuples): Shape of patch + sliding_window_shapes (tuple or tuple[tuple]): Shape of patch (hyperrectangle) to occlude each input. For a single input tensor, this must be a tuple of length equal to the number of dimensions of the input tensor - 1, defining @@ -80,7 +82,7 @@ def attribute( # type: ignore this must be a tuple containing one tuple for each input tensor defining the dimensions of the patch for that input tensor, as described for the single tensor case. - strides (int or tuple or tuple of ints or tuple of tuples, optional): + strides (int, tuple, tuple[int], or tuple[tuple], optional): This defines the step by which the occlusion hyperrectangle should be shifted by in each direction for each iteration. For a single tensor input, this can be either a single @@ -100,7 +102,7 @@ def attribute( # type: ignore If None is provided, a stride of 1 is used for each dimension of each input tensor. Default: None - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define reference value which replaces each feature when occluded. Baselines can be provided as: @@ -124,10 +126,11 @@ def attribute( # type: ignore - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. + In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which difference is computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -152,7 +155,7 @@ def attribute( # type: ignore target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -186,8 +189,8 @@ def attribute( # type: ignore Default: False Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The attributions with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value @@ -266,11 +269,18 @@ def attribute( # type: ignore show_progress=show_progress, ) + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for Occlusion. + """ + raise NotImplementedError("attribute_future is not implemented for Occlusion") + def _construct_ablated_input( self, expanded_input: Tensor, - input_mask: Union[None, Tensor], - baseline: Union[Tensor, int, float], + input_mask: Union[None, Tensor, Tuple[Tensor, ...]], + baseline: Union[None, float, Tensor], start_feature: int, end_feature: int, **kwargs: Any, @@ -306,12 +316,15 @@ def _construct_ablated_input( ], dim=0, ).long() + assert baseline is not None, "baseline should not be None" ablated_tensor = ( expanded_input * ( torch.ones(1, dtype=torch.long, device=expanded_input.device) - input_mask ).to(expanded_input.dtype) + # pyre-fixme[58]: `*` is not supported for operand types `Union[None, float, + # Tensor]` and `Tensor`. ) + (baseline * input_mask.to(expanded_input.dtype)) return ablated_tensor, input_mask @@ -365,14 +378,19 @@ def _occlusion_mask( padded_tensor = torch.nn.functional.pad( sliding_window_tsr, tuple(pad_values) # type: ignore ) - return padded_tensor.reshape((1,) + padded_tensor.shape) + return padded_tensor.reshape((1,) + tuple(padded_tensor.shape)) def _get_feature_range_and_mask( - self, input: Tensor, input_mask: Tensor, **kwargs: Any - ) -> Tuple[int, int, None]: - feature_max = np.prod(kwargs["shift_counts"]) + self, input: Tensor, input_mask: Optional[Tensor], **kwargs: Any + ) -> Tuple[int, int, Union[None, Tensor, Tuple[Tensor, ...]]]: + feature_max = int(np.prod(kwargs["shift_counts"])) return 0, feature_max, None - def _get_feature_counts(self, inputs, feature_mask, **kwargs): + def _get_feature_counts( + self, + inputs: TensorOrTupleOfTensorsGeneric, + feature_mask: Tuple[Tensor, ...], + **kwargs: Any, + ) -> Tuple[int, ...]: """return the numbers of possible input features""" return tuple(np.prod(counts).astype(int) for counts in kwargs["shift_counts"]) diff --git a/captum/attr/_core/saliency.py b/captum/attr/_core/saliency.py index 7e2aeed5cd..f4dce70cdc 100644 --- a/captum/attr/_core/saliency.py +++ b/captum/attr/_core/saliency.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 -from typing import Any, Callable +# pyre-strict + +from typing import Callable, Optional import torch from captum._utils.common import _format_output, _format_tensor_into_tuples, _is_tuple @@ -11,6 +13,7 @@ from captum._utils.typing import TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._utils.attribution import GradientAttribution from captum.log import log_usage +from torch import Tensor class Saliency(GradientAttribution): @@ -20,15 +23,15 @@ class Saliency(GradientAttribution): the default, the absolute value of the gradients is returned. More details about the approach can be found in the following paper: - https://arxiv.org/pdf/1312.6034.pdf + https://arxiv.org/abs/1312.6034 """ - def __init__(self, forward_func: Callable) -> None: + def __init__(self, forward_func: Callable[..., Tensor]) -> None: r""" Args: - forward_func (callable): The forward function of the model or - any modification of it + forward_func (Callable): The forward function of the model or + any modification of it. """ GradientAttribution.__init__(self, forward_func) @@ -38,21 +41,21 @@ def attribute( inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, abs: bool = True, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: - inputs (tensor or tuple of tensors): Input for which integrated - gradients are computed. If forward_func takes a single - tensor as input, a single input tensor should be provided. + inputs (Tensor or tuple[Tensor, ...]): Input for which saliency + is computed. If forward_func takes a single tensor + as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -81,7 +84,7 @@ def attribute( to True, otherwise returns the (signed) gradients if False. Default: True - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -95,8 +98,8 @@ def attribute( Default: None Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The gradients with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value @@ -122,17 +125,26 @@ def attribute( # converting it into a tuple. is_inputs_tuple = _is_tuple(inputs) - inputs = _format_tensor_into_tuples(inputs) - gradient_mask = apply_gradient_requirements(inputs) + inputs_tuple = _format_tensor_into_tuples(inputs) + gradient_mask = apply_gradient_requirements(inputs_tuple) # No need to format additional_forward_args here. # They are being formated in the `_run_forward` function in `common.py` gradients = self.gradient_func( - self.forward_func, inputs, target, additional_forward_args + self.forward_func, inputs_tuple, target, additional_forward_args ) if abs: attributions = tuple(torch.abs(gradient) for gradient in gradients) else: attributions = gradients - undo_gradient_requirements(inputs, gradient_mask) + undo_gradient_requirements(inputs_tuple, gradient_mask) + # pyre-fixme[7]: Expected `TensorOrTupleOfTensorsGeneric` but got + # `Tuple[Tensor, ...]`. return _format_output(is_inputs_tuple, attributions) + + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + def attribute_future(self) -> Callable: + r""" + This method is not implemented for Saliency. + """ + raise NotImplementedError("attribute_future is not implemented for Saliency") diff --git a/captum/attr/_core/shapley_value.py b/captum/attr/_core/shapley_value.py index 72af4e7237..ca7f6f7e98 100644 --- a/captum/attr/_core/shapley_value.py +++ b/captum/attr/_core/shapley_value.py @@ -1,31 +1,37 @@ #!/usr/bin/env python3 +# pyre-strict + import itertools import math import warnings -from typing import Any, Callable, Iterable, Sequence, Tuple, Union +from typing import Callable, cast, Iterable, List, Optional, Sequence, Tuple, Union import torch from captum._utils.common import ( _expand_additional_forward_args, _expand_target, _format_additional_forward_args, + _format_feature_mask, _format_output, _format_tensor_into_tuples, + _get_max_feature_index, + _is_mask_valid, _is_tuple, _run_forward, ) +from captum._utils.exceptions import ShapleyValueFutureError from captum._utils.progress import progress from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._utils.attribution import PerturbationAttribution from captum.attr._utils.common import ( - _construct_default_feature_mask, _find_output_mode_and_verify, _format_input_baseline, _tensorize_baseline, ) from captum.log import log_usage -from torch import Tensor +from torch import dtype, Size, Tensor +from torch.futures import collect_all, Future def _all_perm_generator(num_features: int, num_samples: int) -> Iterable[Sequence[int]]: @@ -38,6 +44,27 @@ def _perm_generator(num_features: int, num_samples: int) -> Iterable[Sequence[in yield torch.randperm(num_features).tolist() +def _shape_feature_mask( + feature_mask: Tuple[Tensor, ...], inputs: Tuple[Tensor, ...] +) -> Tuple[Tensor, ...]: + """ + ensure feature_mask has the same number of dims as the inputs + i.e., prepend dummy dims of 1 to the masks that broadcastable to inputs + """ + mask_list = [] + for i, (mask, inp) in enumerate(zip(feature_mask, inputs)): + assert _is_mask_valid(mask, inp), ( + f"the shape of feature mask (index {i}) is invalid," + f"input shape: {inp.shape}, feature mask shape {mask.shape}" + ) + if mask.dim() < inp.dim(): + mask = mask.reshape((1,) * (inp.dim() - mask.dim()) + tuple(mask.shape)) + + mask_list.append(mask) + + return tuple(mask_list) + + class ShapleyValueSampling(PerturbationAttribution): """ A perturbation based approach to compute attribution, based on the concept @@ -62,11 +89,11 @@ class ShapleyValueSampling(PerturbationAttribution): https://pdfs.semanticscholar.org/7715/bb1070691455d1fcfc6346ff458dbca77b2c.pdf """ - def __init__(self, forward_func: Callable) -> None: + def __init__(self, forward_func: Callable[..., Union[int, float, Tensor]]) -> None: r""" Args: - forward_func (callable): The forward function of the model or + forward_func (Callable): The forward function of the model or any modification of it. The forward function can either return a scalar per example, or a single scalar for the full batch. If a single scalar is returned for the batch, @@ -83,7 +110,7 @@ def attribute( inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[Tuple[object, ...]] = None, feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, n_samples: int = 25, perturbations_per_eval: int = 1, @@ -96,7 +123,7 @@ def attribute( Args: - inputs (tensor or tuple of tensors): Input for which Shapley value + inputs (Tensor or tuple[Tensor, ...]): Input for which Shapley value sampling attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. @@ -106,7 +133,7 @@ def attribute( to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define reference value which replaces each feature when ablated. Baselines can be provided as: @@ -131,10 +158,11 @@ def attribute( - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. + In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which difference is computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -159,7 +187,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -174,7 +202,7 @@ def attribute( Note that attributions are not computed with respect to these arguments. Default: None - feature_mask (tensor or tuple of tensors, optional): + feature_mask (Tensor or tuple[Tensor, ...], optional): feature_mask defines a mask for the input, grouping features which should be added together. feature_mask should contain the same number of tensors as inputs. @@ -196,7 +224,7 @@ def attribute( If None, then a feature mask is constructed which assigns each scalar within a tensor as a separate feature Default: None - n_samples (int, optional): The number of feature permutations + n_samples (int, optional): The number of feature permutations tested. Default: `25` if `n_samples` is not provided. perturbations_per_eval (int, optional): Allows multiple ablations @@ -218,8 +246,8 @@ def attribute( Default: False Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The attributions with respect to each input feature. If the forward function returns a scalar value per example, attributions will be @@ -272,30 +300,24 @@ def attribute( # Keeps track whether original input is a tuple or not before # converting it into a tuple. is_inputs_tuple = _is_tuple(inputs) - inputs, baselines = _format_input_baseline(inputs, baselines) + inputs_tuple, baselines = _format_input_baseline(inputs, baselines) additional_forward_args = _format_additional_forward_args( additional_forward_args ) - feature_mask = ( - _format_tensor_into_tuples(feature_mask) - if feature_mask is not None - else None + formatted_feature_mask = _format_feature_mask(feature_mask, inputs_tuple) + reshaped_feature_mask = _shape_feature_mask( + formatted_feature_mask, inputs_tuple ) + assert ( isinstance(perturbations_per_eval, int) and perturbations_per_eval >= 1 ), "Ablations per evaluation must be at least 1." with torch.no_grad(): - baselines = _tensorize_baseline(inputs, baselines) - num_examples = inputs[0].shape[0] - - if feature_mask is None: - feature_mask, total_features = _construct_default_feature_mask(inputs) - else: - total_features = int( - max(torch.max(single_mask).item() for single_mask in feature_mask) - + 1 - ) + baselines = _tensorize_baseline(inputs_tuple, baselines) + num_examples = inputs_tuple[0].shape[0] + + total_features = _get_max_feature_index(reshaped_feature_mask) + 1 if show_progress: attr_progress = progress( @@ -307,7 +329,7 @@ def attribute( ) attr_progress.update(0) - initial_eval = _run_forward( + initial_eval = self._strict_run_forward( self.forward_func, baselines, target, additional_forward_args ) @@ -315,15 +337,24 @@ def attribute( attr_progress.update() agg_output_mode = _find_output_mode_and_verify( - initial_eval, num_examples, perturbations_per_eval, feature_mask + initial_eval, + num_examples, + perturbations_per_eval, + reshaped_feature_mask, + allow_multi_outputs=True, ) # Initialize attribution totals and counts + output_shape = initial_eval.shape + + # attr shape (*output_shape, *input_feature_shape) total_attrib = [ - torch.zeros_like( - input[0:1] if agg_output_mode else input, dtype=torch.float + torch.zeros( + tuple(output_shape) + tuple(input.shape[1:]), + dtype=torch.float, + device=inputs_tuple[0].device, ) - for input in inputs + for input in inputs_tuple ] iter_count = 0 @@ -340,11 +371,11 @@ def attribute( current_target, current_masks, ) in self._perturbation_generator( - inputs, + inputs_tuple, additional_forward_args, target, baselines, - feature_mask, + reshaped_feature_mask, feature_permutation, perturbations_per_eval, ): @@ -352,11 +383,12 @@ def attribute( warnings.warn( "Feature mask is missing some integers between 0 and " "num_features, for optimal performance, make sure each" - " consecutive integer corresponds to a feature." + " consecutive integer corresponds to a feature.", + stacklevel=1, ) # modified_eval dimensions: 1D tensor with length # equal to #num_examples * #features in batch - modified_eval = _run_forward( + modified_eval = self._strict_run_forward( self.forward_func, current_inputs, current_target, @@ -364,29 +396,49 @@ def attribute( ) if show_progress: attr_progress.update() - if agg_output_mode: eval_diff = modified_eval - prev_results prev_results = modified_eval else: + # when perturb_per_eval > 1, every num_examples stands for + # one perturb. Since the perturbs are from a consecutive + # perumuation, each diff of a perturb is its eval minus + # the eval of the previous perturb all_eval = torch.cat((prev_results, modified_eval), dim=0) eval_diff = all_eval[num_examples:] - all_eval[:-num_examples] prev_results = all_eval[-num_examples:] + for j in range(len(total_attrib)): - current_eval_diff = eval_diff - if not agg_output_mode: - # current_eval_diff dimensions: - # (#features in batch, #num_examples, 1,.. 1) - # (contains 1 more dimension than inputs). This adds extra - # dimensions of 1 to make the tensor broadcastable with the - # inputs tensor. - current_eval_diff = current_eval_diff.reshape( - (-1, num_examples) + (len(inputs[j].shape) - 1) * (1,) - ) - total_attrib[j] += ( - current_eval_diff * current_masks[j].float() - ).sum(dim=0) + # format eval_diff to shape + # (n_perturb, *output_shape, 1,.. 1) + # where n_perturb may not be perturb_per_eval + # Append n_input_feature dim of 1 to make the tensor + # have the same dim as the mask tensor. + formatted_eval_diff = eval_diff.reshape( + (-1,) + + tuple(output_shape) + + (len(inputs_tuple[j].shape) - 1) * (1,) + ) + + # mask in shape (n_perturb, *mask_shape_broadcastable_to_input) + # reshape to + # ( + # n_perturb, + # *broadcastable_to_output_shape + # *broadcastable_to_input_feature_shape + # ) + cur_mask = current_masks[j] + cur_mask = cur_mask.reshape( + tuple(cur_mask.shape[:2]) + + (len(output_shape) - 1) * (1,) + + tuple(cur_mask.shape[2:]) + ) + # aggregate n_perturb + cur_attr = (formatted_eval_diff * cur_mask.float()).sum(dim=0) + + # (*output_shape, *input_feature_shape) + total_attrib[j] += cur_attr if show_progress: attr_progress.close() @@ -396,18 +448,332 @@ def attribute( tensor_attrib_total / iter_count for tensor_attrib_total in total_attrib ) formatted_attr = _format_output(is_inputs_tuple, attrib) + # pyre-fixme[7]: Expected `TensorOrTupleOfTensorsGeneric` but got + # `Tuple[Tensor, ...]`. + return formatted_attr + + def attribute_future( + self, + inputs: TensorOrTupleOfTensorsGeneric, + baselines: BaselineType = None, + target: TargetType = None, + additional_forward_args: Optional[Tuple[object, ...]] = None, + feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, + n_samples: int = 25, + perturbations_per_eval: int = 1, + show_progress: bool = False, + ) -> Future[TensorOrTupleOfTensorsGeneric]: + r""" + This method is not implemented for ShapleyValueSampling. + """ + is_inputs_tuple = _is_tuple(inputs) + inputs_tuple, baselines = _format_input_baseline(inputs, baselines) + additional_forward_args = _format_additional_forward_args( + additional_forward_args + ) + formatted_feature_mask = _format_feature_mask(feature_mask, inputs_tuple) + reshaped_feature_mask = _shape_feature_mask( + formatted_feature_mask, inputs_tuple + ) + + assert ( + isinstance(perturbations_per_eval, int) and perturbations_per_eval >= 1 + ), "Ablations per evaluation must be at least 1." + + with torch.no_grad(): + baselines = _tensorize_baseline(inputs_tuple, baselines) + num_examples = inputs_tuple[0].shape[0] + + total_features = _get_max_feature_index(reshaped_feature_mask) + 1 + + if show_progress: + attr_progress = progress( + desc=f"{self.get_name()} attribution", + total=self._get_n_evaluations( + total_features, n_samples, perturbations_per_eval + ) + + 1, # add 1 for the initial eval + ) + attr_progress.update(0) + + initial_eval: Future[Tensor] = self._strict_run_forward_future( + self.forward_func, baselines, target, additional_forward_args + ) + + if show_progress: + attr_progress.update() + + prev_result_tuple: Future[ + Tuple[Tensor, Tensor, Size, List[Tensor], bool] + ] = initial_eval.then( + lambda inp=initial_eval: self._initialEvalToPrevResultsTuple( # type: ignore # noqa: E501 line too long + inp, + num_examples, + perturbations_per_eval, + reshaped_feature_mask, + inputs_tuple, + ) + ) + + iter_count = 0 + # Iterate for number of samples, generate a permutation of the features + # and evalute the incremental increase for each feature. + for feature_permutation in self.permutation_generator( + total_features, n_samples + ): + prev_result_tuple = prev_result_tuple.then( + lambda inp=prev_result_tuple: self._setPrevResultsToInitialEval(inp) # type: ignore # noqa: E501 line too long + ) + + iter_count += 1 + for ( + current_inputs, + current_add_args, + current_target, + current_masks, + ) in self._perturbation_generator( + inputs_tuple, + additional_forward_args, + target, + baselines, + reshaped_feature_mask, + feature_permutation, + perturbations_per_eval, + ): + if sum(torch.sum(mask).item() for mask in current_masks) == 0: + warnings.warn( + "Feature mask is missing some integers between 0 and " + "num_features, for optimal performance, make sure each" + " consecutive integer corresponds to a feature.", + stacklevel=1, + ) + # modified_eval dimensions: 1D tensor with length + # equal to #num_examples * #features in batch + modified_eval = self._strict_run_forward_future( + self.forward_func, + current_inputs, + current_target, + current_add_args, + ) + if show_progress: + attr_progress.update() + + assert isinstance(modified_eval, torch.Future), ( + "when using futures method, modified_eval should have " + f"Future type rather than {type(modified_eval)}" + ) + eval_futs: Future[ + List[ + Future[ + Union[ + Tuple[Tensor, Tensor, Size, List[Tensor], bool], + Tensor, + ] + ] + ] + ] = collect_all([prev_result_tuple, modified_eval]) + + prev_result_tuple = eval_futs.then( + lambda evals=eval_futs, masks=current_masks: self._evalFutToPrevResultsTuple( # type: ignore # noqa: E501 line too long + evals, num_examples, inputs_tuple, masks + ) + ) + + if show_progress: + attr_progress.close() + + # Divide total attributions by number of random permutations and return + # formatted attributions. + formatted_attr: Future[Union[Tensor, tuple[Tensor, ...]]] = ( + prev_result_tuple.then( + lambda inp=prev_result_tuple: self._prevResultTupleToFormattedAttr( # type: ignore # noqa: E501 line too long + inp, iter_count, is_inputs_tuple + ) + ) + ) + # pyre-fixme[7]: Expected `TensorOrTupleOfTensorsGeneric` but got + # `Tuple[Tensor, ...]`. + return formatted_attr # type: ignore + + def _initialEvalToPrevResultsTuple( + self, + initial_eval: Future[Tensor], + num_examples: int, + perturbations_per_eval: int, + reshaped_feature_mask: TensorOrTupleOfTensorsGeneric, + inputs_tuple: Tuple[Tensor, ...], + ) -> Tuple[Tensor, Tensor, Size, List[Tensor], bool]: + """Since the initial eval is a Future, it is easier to bundle the prev_result, + agg_output_mode, output_shape, and total_attrib together + as Shapley Value Feature Attributions are being calculated""" + try: + initial_eval_processed = initial_eval.value() + prev_result = initial_eval_processed + if not isinstance(initial_eval_processed, Tensor): + raise AssertionError( + "initial_eval_to_processed_initial_eval_fut: " + "initial_eval should be a Tensor" + ) + agg_output_mode = _find_output_mode_and_verify( + initial_eval_processed, + num_examples, + perturbations_per_eval, + reshaped_feature_mask, + allow_multi_outputs=True, + ) + output_shape = initial_eval_processed.shape + total_attrib: List[Tensor] = [ + torch.zeros( + tuple(output_shape) + tuple(input.shape[1:]), + dtype=torch.float, + device=inputs_tuple[0].device, + ) + for input in inputs_tuple + ] + result = ( + initial_eval_processed, + prev_result, + output_shape, + total_attrib, + agg_output_mode, + ) + except ShapleyValueFutureError as e: + raise ShapleyValueFutureError( + "_initial_eval_to_prev_results_tuple func failed" + ) from e + return result + + def _setPrevResultsToInitialEval( + self, + processed_initial_eval: Future[Tuple[Tensor, Tensor, Size, List[Tensor], bool]], + ) -> Tuple[Tensor, Tensor, Size, List[Tensor], bool]: + """At the beginning of each feature permutation, the prev_results is + reset to the initial eval, and this method helps set that up""" + (initial_eval, prev_results, output_shape, total_attrib, agg_output_mode) = ( + processed_initial_eval.value() + ) + prev_results = initial_eval + return (initial_eval, prev_results, output_shape, total_attrib, agg_output_mode) + + def _evalFutToPrevResultsTuple( + self, + eval_futs: Future[ + List[ + Union[ + Future[Tuple[Tensor, Tensor, Size, List[Tensor], bool]], + Future[Tensor], + ] + ] + ], + num_examples: int, + inputs_tuple: Tuple[Tensor, ...], + current_masks: Tuple[Tensor, ...], + ) -> Tuple[Tensor, Tensor, Size, List[Tensor], bool]: + """Helper method responsible for calculating + eval differences between the modified eval and prev_results + Tensor and storing them in total_attrib. Returns prev_results_tuple + with modified total_attrib and prev_results""" + prev_results_tuple = eval_futs.value()[0].value() + modified_eval = eval_futs.value()[1].value() + if not isinstance(modified_eval, Tensor) or not isinstance( + prev_results_tuple, tuple + ): + raise ShapleyValueFutureError( + "_eval_fut_to_prev_results_tuple func failed due to type mismatch" + ) + ( + initial_eval, + prev_results, + output_shape, + total_attrib, + agg_output_mode, + ) = prev_results_tuple + if agg_output_mode: + eval_diff = modified_eval - prev_results + prev_results = modified_eval + else: + # when perturb_per_eval > 1, every num_examples stands for + # one perturb. Since the perturbs are from a consecutive + # perumuation, each diff of a perturb is its eval minus + # the eval of the previous perturb + + all_eval = torch.cat((prev_results, modified_eval), dim=0) + eval_diff = all_eval[num_examples:] - all_eval[:-num_examples] + prev_results = all_eval[-num_examples:] + + for j in range(len(total_attrib)): + # format eval_diff to shape + # (n_perturb, *output_shape, 1,.. 1) + # where n_perturb may not be perturb_per_eval + # Append n_input_feature dim of 1 to make the tensor + # have the same dim as the mask tensor. + formatted_eval_diff = eval_diff.reshape( + (-1,) + tuple(output_shape) + (len(inputs_tuple[j].shape) - 1) * (1,) + ) + + # mask in shape (n_perturb, *mask_shape_broadcastable_to_input) + # reshape to + # ( + # n_perturb, + # *broadcastable_to_output_shape + # *broadcastable_to_input_feature_shape + # ) + cur_mask = current_masks[j] + cur_mask = cur_mask.reshape( + tuple(cur_mask.shape[:2]) + + (len(output_shape) - 1) * (1,) + + tuple(cur_mask.shape[2:]) + ) + + # aggregate n_perturb + cur_attr = (formatted_eval_diff * cur_mask.float()).sum(dim=0) + # (*output_shape, *input_feature_shape) + total_attrib[j] += cur_attr + + result = ( + initial_eval, + prev_results, + output_shape, + total_attrib, + agg_output_mode, + ) + return result + + def _prevResultTupleToFormattedAttr( + self, + prev_result_tuple: Future[ + Tuple[Tensor, Tensor, Tuple[int], List[Tensor], bool] + ], + iter_count: int, + is_inputs_tuple: bool, + ) -> Union[Tensor, Tuple[Tensor, ...]]: + """Helper method to format total_attrib, which is a + list of tensors, into formatted attributions, which + are either a single tensor or a tuple of tensors""" + + ( + _, + _, + _, + total_attrib, + _, + ) = prev_result_tuple.value() + attrib = tuple( + tensor_attrib_total / iter_count for tensor_attrib_total in total_attrib + ) + formatted_attr = _format_output(is_inputs_tuple, attrib) return formatted_attr def _perturbation_generator( self, inputs: Tuple[Tensor, ...], - additional_args: Any, + additional_args: Optional[Tuple[object, ...]], target: TargetType, baselines: Tuple[Tensor, ...], input_masks: TensorOrTupleOfTensorsGeneric, feature_permutation: Sequence[int], perturbations_per_eval: int, - ) -> Iterable[Tuple[Tuple[Tensor, ...], Any, TargetType, Tuple[Tensor, ...]]]: + ) -> Iterable[Tuple[Tuple[Tensor, ...], object, TargetType, Tuple[Tensor, ...]]]: """ This method is a generator which yields each perturbation to be evaluated including inputs, additional_forward_args, targets, and mask. @@ -479,10 +845,71 @@ def _perturbation_generator( combined_masks, ) - def _get_n_evaluations(self, total_features, n_samples, perturbations_per_eval): + def _get_n_evaluations( + self, total_features: int, n_samples: int, perturbations_per_eval: int + ) -> int: """return the total number of forward evaluations needed""" return math.ceil(total_features / perturbations_per_eval) * n_samples + # pyre-fixme[2]: Parameter must be annotated. + def _strict_run_forward(self, *args, **kwargs) -> Tensor: + """ + A temp wrapper for global _run_forward util to force forward output + type assertion & conversion. + Remove after the strict logic is supported by all attr classes + """ + forward_output = _run_forward(*args, **kwargs) + if isinstance(forward_output, Tensor): + # format scalar to shape (1) so we can always assume non-empty output_shape + if not forward_output.shape: + forward_output = forward_output.reshape(1) + + return forward_output + + output_type = type(forward_output) + assert output_type is int or output_type is float, ( + "the return of forward_func must be a tensor, int, or float," + f" received: {forward_output}" + ) + + # using python built-in type as torch dtype + # int -> torch.int64, float -> torch.float64 + # ref: https://github.com/pytorch/pytorch/pull/21215 + return torch.tensor([forward_output], dtype=cast(dtype, output_type)) + + # pyre-fixme[2]: Parameter must be annotated. + def _strict_run_forward_future(self, *args, **kwargs) -> Future[Tensor]: + """ + A temp wrapper for global _run_forward util to force + forward outputtype assertion & conversion, but takes + into account the Future tensor type + """ + + def process_strict_run_forward(fut: Future[Tensor]) -> Tensor: + output = fut.value() + if isinstance(output, Tensor): + # format scalar to shape (1) so we can always + # assume non-empty output_shape + if not output.shape: + output = output.reshape(1) + return output + output_type = type(output) + assert output_type is int or output_type is float, ( + "the return of forward_func must be a Future of tensor, int, or float," + f" received: {output_type}" + ) + output = torch.tensor([output], dtype=cast(dtype, output_type)) + return output + + forward_output = _run_forward(*args, **kwargs) + assert isinstance(forward_output, torch.Future), ( + "The return type of forward_func must be a Future" + f" received: {type(forward_output)}" + ) + + return_output = forward_output.then(process_strict_run_forward) + return return_output + class ShapleyValues(ShapleyValueSampling): """ @@ -515,11 +942,11 @@ class ShapleyValues(ShapleyValueSampling): evaluations, and we plan to add this approach in the future. """ - def __init__(self, forward_func: Callable) -> None: + def __init__(self, forward_func: Callable[..., Union[int, float, Tensor]]) -> None: r""" Args: - forward_func (callable): The forward function of the model or + forward_func (Callable): The forward function of the model or any modification of it. The forward function can either return a scalar per example, or a single scalar for the full batch. If a single scalar is returned for the batch, @@ -536,7 +963,7 @@ def attribute( inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, perturbations_per_eval: int = 1, show_progress: bool = False, @@ -548,7 +975,7 @@ def attribute( Args: - inputs (tensor or tuple of tensors): Input for which Shapley value + inputs (Tensor or tuple[Tensor, ...]): Input for which Shapley value sampling attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. @@ -558,7 +985,7 @@ def attribute( to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define reference value which replaces each feature when ablated. Baselines can be provided as: @@ -583,10 +1010,11 @@ def attribute( - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. + In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which difference is computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -611,7 +1039,7 @@ def attribute( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -626,7 +1054,7 @@ def attribute( Note that attributions are not computed with respect to these arguments. Default: None - feature_mask (tensor or tuple of tensors, optional): + feature_mask (Tensor or tuple[Tensor, ...], optional): feature_mask defines a mask for the input, grouping features which should be added together. feature_mask should contain the same number of tensors as inputs. @@ -666,8 +1094,8 @@ def attribute( a simple output of progress. Default: False Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The attributions with respect to each input feature. If the forward function returns a scalar value per example, attributions will be @@ -729,7 +1157,8 @@ def attribute( warnings.warn( "You are attempting to compute Shapley Values with at least 10 " "features, which will likely be very computationally expensive." - "Consider using Shapley Value Sampling instead." + "Consider using Shapley Value Sampling instead.", + stacklevel=1, ) return super().attribute.__wrapped__( @@ -743,7 +1172,9 @@ def attribute( show_progress=show_progress, ) - def _get_n_evaluations(self, total_features, n_samples, perturbations_per_eval): + def _get_n_evaluations( + self, total_features: int, n_samples: int, perturbations_per_eval: int + ) -> int: """return the total number of forward evaluations needed""" return math.ceil(total_features / perturbations_per_eval) * math.factorial( total_features diff --git a/captum/attr/_models/base.py b/captum/attr/_models/base.py index d57646c0da..8d0c3f6f4f 100644 --- a/captum/attr/_models/base.py +++ b/captum/attr/_models/base.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + import warnings from functools import reduce @@ -19,14 +21,21 @@ class InterpretableEmbeddingBase(Module): precomputed embedding vectors to the layers below. """ + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, embedding, full_name) -> None: Module.__init__(self) + # pyre-fixme[4]: Attribute must be annotated. self.num_embeddings = getattr(embedding, "num_embeddings", None) + # pyre-fixme[4]: Attribute must be annotated. self.embedding_dim = getattr(embedding, "embedding_dim", None) + # pyre-fixme[4]: Attribute must be annotated. self.embedding = embedding + # pyre-fixme[4]: Attribute must be annotated. self.full_name = full_name + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, *inputs, **kwargs): r""" The forward function of a wrapper embedding layer that takes and returns @@ -70,13 +79,15 @@ def forward(self, *inputs, **kwargs): ) return inputs[0] if len(inputs) > 0 else list(kwargs.values())[0] + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def indices_to_embeddings(self, *input, **kwargs): r""" Maps indices to corresponding embedding vectors. E.g. word embeddings Args: - *input (Any, Optional): This can be a tensor(s) of input indices or any + *input (Any, optional): This can be a tensor(s) of input indices or any other variable necessary to comput the embeddings. A typical example of input indices are word or token indices. **kwargs (Any, optional): Similar to `input` this can be any sequence @@ -99,10 +110,11 @@ class TokenReferenceBase: `TokenReferenceBase` class. """ - def __init__(self, reference_token_idx=0) -> None: + def __init__(self, reference_token_idx: int = 0) -> None: self.reference_token_idx = reference_token_idx - def generate_reference(self, sequence_length, device): + # pyre-fixme[2]: Parameter must be annotated. + def generate_reference(self, sequence_length, device: torch.device) -> torch.Tensor: r""" Generated reference tensor of given `sequence_length` using `reference_token_idx`. @@ -120,6 +132,8 @@ def generate_reference(self, sequence_length, device): return torch.tensor([self.reference_token_idx] * sequence_length, device=device) +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[2]: Parameter must be annotated. def _get_deep_layer_name(obj, layer_names): r""" Traverses through the layer names that are separated by @@ -128,7 +142,8 @@ def _get_deep_layer_name(obj, layer_names): return reduce(getattr, layer_names.split("."), obj) -def _set_deep_layer_value(obj, layer_names, value): +# pyre-fixme[2]: Parameter must be annotated. +def _set_deep_layer_value(obj, layer_names, value) -> None: r""" Traverses through the layer names that are separated by dot in order to access the embedding layer and update its value. @@ -137,22 +152,25 @@ def _set_deep_layer_value(obj, layer_names, value): setattr(reduce(getattr, layer_names[:-1], obj), layer_names[-1], value) -def configure_interpretable_embedding_layer(model, embedding_layer_name="embedding"): +def configure_interpretable_embedding_layer( + model: Module, embedding_layer_name: str = "embedding" +) -> InterpretableEmbeddingBase: r""" - This method wraps model's embedding layer with an interpretable embedding + This method wraps a model's embedding layer with an interpretable embedding layer that allows us to access the embeddings through their indices. Args: - model (torch.nn.Model): An instance of PyTorch model that contains embeddings. + model (torch.nn.Module): An instance of PyTorch model that contains embeddings. embedding_layer_name (str, optional): The name of the embedding layer in the `model` that we would like to make interpretable. Returns: - interpretable_emb (tensor): An instance of `InterpretableEmbeddingBase` - embedding layer that wraps model's embedding layer that is being - accessed through `embedding_layer_name`. + interpretable_emb (InterpretableEmbeddingBase): An instance of + `InterpretableEmbeddingBase` embedding layer that wraps model's + embedding layer that is being accessed through + `embedding_layer_name`. Examples:: @@ -193,7 +211,8 @@ def configure_interpretable_embedding_layer(model, embedding_layer_name="embeddi "embeddings and compute attributions for each embedding dimension. " "The original embedding layer must be set " "back by calling `remove_interpretable_embedding_layer` function " - "after model interpretation is finished. " + "after model interpretation is finished. ", + stacklevel=1, ) interpretable_emb = InterpretableEmbeddingBase( embedding_layer, embedding_layer_name @@ -202,7 +221,9 @@ def configure_interpretable_embedding_layer(model, embedding_layer_name="embeddi return interpretable_emb -def remove_interpretable_embedding_layer(model, interpretable_emb): +def remove_interpretable_embedding_layer( + model: Module, interpretable_emb: InterpretableEmbeddingBase +) -> None: r""" Removes interpretable embedding layer and sets back original embedding layer in the model. @@ -210,8 +231,8 @@ def remove_interpretable_embedding_layer(model, interpretable_emb): Args: model (torch.nn.Module): An instance of PyTorch model that contains embeddings - interpretable_emb (tensor): An instance of `InterpretableEmbeddingBase` - that was originally created in + interpretable_emb (InterpretableEmbeddingBase): An instance of + `InterpretableEmbeddingBase` that was originally created in `configure_interpretable_embedding_layer` function and has to be removed after interpretation is finished. diff --git a/captum/attr/_models/pytext.py b/captum/attr/_models/pytext.py index f5e6af3a04..0b529bc60f 100644 --- a/captum/attr/_models/pytext.py +++ b/captum/attr/_models/pytext.py @@ -1,5 +1,8 @@ #!/usr/bin/env python3 + +# pyre-strict from collections import defaultdict +from typing import Tuple import torch from pytext.models.embeddings.dict_embedding import DictEmbedding @@ -17,11 +20,16 @@ class PyTextInterpretableEmbedding(EmbeddingBase): layer which passes precomputed embedding vectors to lower layers. """ + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, embeddings) -> None: + # pyre-fixme[4]: Attribute must be annotated. self.embedding_dims = [embedding.embedding_dim for embedding in embeddings] super().__init__(sum(self.embedding_dims)) + # pyre-fixme[4]: Attribute must be annotated. self.embeddings = embeddings + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, input): r""" The forward pass of embedding layer. This can be for the text or any @@ -39,6 +47,8 @@ def forward(self, input): """ return input + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def get_attribution_map(self, attributions): r""" After attribution scores are computed for an input embedding vector @@ -81,23 +91,33 @@ class BaselineGenerator: This is an example input baseline generator for DocNN model which uses word and dict features. """ + PAD = "" + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, model, data_handler, device) -> None: + # pyre-fixme[4]: Attribute must be annotated. self.model = model + # pyre-fixme[4]: Attribute must be annotated. self.data_handler = data_handler if "dict_feat" in data_handler.features: + # pyre-fixme[4]: Attribute must be annotated. self.vocab_dict = data_handler.features["dict_feat"].vocab if "word_feat" in data_handler.features: + # pyre-fixme[4]: Attribute must be annotated. self.vocab_word = data_handler.features["word_feat"].vocab + # pyre-fixme[4]: Attribute must be annotated. self.baseline_single_word_feature = self._generate_baseline_single_word_feature( device ) + # pyre-fixme[4]: Attribute must be annotated. self.baseline_single_dict_feature = self._generate_baseline_single_dict_feature( device ) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def generate_baseline(self, integ_grads_embeddings, seq_length): r""" Generates baseline for input word and dict features. In the future we @@ -128,7 +148,8 @@ def generate_baseline(self, integ_grads_embeddings, seq_length): ) return tuple(baseline) - def _generate_baseline_single_word_feature(self, device): + # pyre-fixme[2]: Parameter must be annotated. + def _generate_baseline_single_word_feature(self, device) -> torch.Tensor: return ( torch.tensor( [self.vocab_word.stoi[self.PAD] if hasattr(self, "vocab_word") else 0] @@ -137,7 +158,10 @@ def _generate_baseline_single_word_feature(self, device): .to(device) ) - def _generate_baseline_single_dict_feature(self, device): + def _generate_baseline_single_dict_feature( + self, + device: torch.device, + ) -> Tuple[torch.Tensor, ...]: r"""Generate dict features based on Assistant's case study by using sia_transformer: fbcode/assistant/sia/transformer/sia_transformer.py @@ -163,14 +187,16 @@ def _generate_baseline_single_dict_feature(self, device): gazetteer_feat_id = ( torch.tensor( [ - self.vocab_dict.stoi[gazetteer_feat] - if hasattr(self, "vocab_dict") - else 0 + ( + self.vocab_dict.stoi[gazetteer_feat] + if hasattr(self, "vocab_dict") + else 0 + ) for gazetteer_feat in gazetteer_feats ] ) .unsqueeze(0) - .to(device) + .to(device=device) ) gazetteer_feat_weights = ( torch.tensor(gazetteer_feat_weights).unsqueeze(0).to(device) @@ -181,9 +207,13 @@ def _generate_baseline_single_dict_feature(self, device): return (gazetteer_feat_id, gazetteer_feat_weights, gazetteer_feat_lengths) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def _generate_word_baseline(self, seq_length): return self.baseline_single_word_feature.repeat(1, seq_length) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def _generate_dict_baseline(self, seq_length): return ( self.baseline_single_dict_feature[0].repeat(1, seq_length), @@ -192,6 +222,8 @@ def _generate_dict_baseline(self, seq_length): ) +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[2]: Parameter must be annotated. def configure_task_integ_grads_embeddings(task): r""" Wraps Pytext's DocNN model embedding with `IntegratedGradientsEmbedding` for @@ -216,7 +248,8 @@ def configure_task_integ_grads_embeddings(task): return integrated_gradients_embedding_lst[0] -def configure_model_integ_grads_embeddings(model): +# pyre-fixme[2]: Parameter must be annotated. +def configure_model_integ_grads_embeddings(model) -> EmbeddingList: r""" Wraps Pytext's DocNN model embedding with `IntegratedGradientsEmbedding` IntegratedGradientsEmbedding allows to perform baseline related operations @@ -237,6 +270,8 @@ def configure_model_integ_grads_embeddings(model): return EmbeddingList([integrated_gradients_embedding], False) +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[2]: Parameter must be annotated. def reshape_word_features(word_features): r""" Creates one-sample batch for word features for sanity check purposes @@ -253,8 +288,18 @@ def reshape_word_features(word_features): return word_features.unsqueeze(0) +# pyre-fixme[3]: Return type must be annotated. def reshape_dict_features( - dict_feature_id_batch, dict_weight_batch, dict_seq_len_batch, seq_length, idx + # pyre-fixme[2]: Parameter must be annotated. + dict_feature_id_batch, + # pyre-fixme[2]: Parameter must be annotated. + dict_weight_batch, + # pyre-fixme[2]: Parameter must be annotated. + dict_seq_len_batch, + # pyre-fixme[2]: Parameter must be annotated. + seq_length, + # pyre-fixme[2]: Parameter must be annotated. + idx, ): r""" Creates one-sample batch for dict features for sanity check purposes diff --git a/captum/attr/_utils/approximation_methods.py b/captum/attr/_utils/approximation_methods.py index 9d63e90c1a..9af3cf9580 100644 --- a/captum/attr/_utils/approximation_methods.py +++ b/captum/attr/_utils/approximation_methods.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 + +# pyre-strict from enum import Enum -from typing import Callable, List, Tuple +from typing import Callable, cast, List, Tuple import torch @@ -19,7 +21,7 @@ class Riemann(Enum): "riemann_trapezoid", ] -SUPPORTED_METHODS = SUPPORTED_RIEMANN_METHODS + ["gausslegendre"] +SUPPORTED_METHODS: List[str] = SUPPORTED_RIEMANN_METHODS + ["gausslegendre"] def approximation_parameters( @@ -28,7 +30,7 @@ def approximation_parameters( r"""Retrieves parameters for the input approximation `method` Args: - method: The name of the approximation method. Currently only `riemann` + method (str): The name of the approximation method. Currently only `riemann` and gauss legendre are """ if method in SUPPORTED_RIEMANN_METHODS: @@ -45,17 +47,16 @@ def riemann_builders( Args: - n: The number of integration steps - method: `left`, `right`, `middle` and `trapezoid` riemann + method (Riemann): `left`, `right`, `middle` and `trapezoid` riemann Returns: 2-element tuple of **step_sizes**, **alphas**: - - **step_sizes** (*callable*): + - **step_sizes** (*Callable*): `step_sizes` takes the number of steps as an input argument and returns an array of steps sizes which sum is smaller than or equal to one. - - **alphas** (*callable*): + - **alphas** (*Callable*): `alphas` takes the number of steps as an input argument and returns the multipliers/coefficients for the inputs of integrand in the range of [0, 1] @@ -92,9 +93,9 @@ def alphas(n: int) -> List[float]: return step_sizes, alphas -def gauss_legendre_builders() -> Tuple[ - Callable[[int], List[float]], Callable[[int], List[float]] -]: +def gauss_legendre_builders() -> ( + Tuple[Callable[[int], List[float]], Callable[[int], List[float]]] +): r"""Numpy's `np.polynomial.legendre` function helps to compute step sizes and alpha coefficients using gauss-legendre quadrature rule. Since numpy returns the integration parameters in different scales we need to @@ -104,18 +105,14 @@ def gauss_legendre_builders() -> Tuple[ proposed by [Xue Feng and her intern Hauroun Habeeb] (https://research.fb.com/people/feng-xue/). - Args: - - n (int): The number of integration steps - Returns: 2-element tuple of **step_sizes**, **alphas**: - - **step_sizes** (*callable*): + - **step_sizes** (*Callable*): `step_sizes` takes the number of steps as an input argument and returns an array of steps sizes which sum is smaller than or equal to one. - - **alphas** (*callable*): + - **alphas** (*Callable*): `alphas` takes the number of steps as an input argument and returns the multipliers/coefficients for the inputs of integrand in the range of [0, 1] @@ -124,15 +121,20 @@ def gauss_legendre_builders() -> Tuple[ # allow using riemann even without np import numpy as np + from numpy.typing import NDArray def step_sizes(n: int) -> List[float]: assert n > 0, "The number of steps has to be larger than zero" # Scaling from 2 to 1 - return list(0.5 * np.polynomial.legendre.leggauss(n)[1]) + return cast( + NDArray[np.float64], 0.5 * np.polynomial.legendre.leggauss(n)[1] + ).tolist() def alphas(n: int) -> List[float]: assert n > 0, "The number of steps has to be larger than zero" # Scaling from [-1, 1] to [0, 1] - return list(0.5 * (1 + np.polynomial.legendre.leggauss(n)[0])) + return cast( + NDArray[np.float64], 0.5 * (1 + np.polynomial.legendre.leggauss(n)[0]) + ).tolist() return step_sizes, alphas diff --git a/captum/attr/_utils/attribution.py b/captum/attr/_utils/attribution.py index f4b6e9d35c..04f0b1d247 100644 --- a/captum/attr/_utils/attribution.py +++ b/captum/attr/_utils/attribution.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 -from typing import Any, Callable, cast, Generic, List, Tuple, Type, Union + +# pyre-strict +from typing import Callable, cast, Generic, List, Optional, Tuple, Type, Union import torch import torch.nn.functional as F @@ -22,21 +24,26 @@ from torch.nn import Module +# pyre-fixme[13]: Attribute `attribute` is never initialized. +# pyre-fixme[13]: Attribute `compute_convergence_delta` is never initialized. class Attribution: r""" All attribution algorithms extend this class. It enforces its child classes to extend and override core `attribute` method. """ + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. def __init__(self, forward_func: Callable) -> None: r""" Args: - forward_func (callable or torch.nn.Module): This can either be an instance + forward_func (Callable or torch.nn.Module): This can either be an instance of pytorch model or any modification of model's forward function. """ self.forward_func = forward_func + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + # pyre-fixme[13]: Attribute `attribute` is never initialized. attribute: Callable r""" This method computes and returns the attribution values for each input tensor. @@ -47,17 +54,17 @@ def __init__(self, forward_func: Callable) -> None: Args: - inputs (tensor or tuple of tensors): Input for which attribution + inputs (Tensor or tuple[Tensor, ...]): Input for which attribution is computed. It can be provided as a single tensor or a tuple of multiple tensors. If multiple input tensors - are provided, the batch sizes must be aligned accross all + are provided, the batch sizes must be aligned across all tensors. Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attribution values for each input tensor. The `attributions` have the same shape and dimensionality as the inputs. @@ -67,8 +74,40 @@ def __init__(self, forward_func: Callable) -> None: """ + # pyre-fixme[24] Generic type `Callable` expects 2 type parameters. + # pyre-fixme[13]: Attribute `attribute_future` is never initialized. + attribute_future: Callable + + r""" + This method computes and returns a Future of attribution values for each input + tensor. Deriving classes are responsible for implementing its logic accordingly. + + Specific attribution algorithms that extend this class take relevant + arguments. + + Args: + + inputs (Tensor or tuple[Tensor, ...]): Input for which attribution + is computed. It can be provided as a single tensor or + a tuple of multiple tensors. If multiple input tensors + are provided, the batch sizes must be aligned across all + tensors. + + + Returns: + + *Future[Tensor]* or *Future[tuple[Tensor, ...]]* of **attributions**: + - **attributions** (*Future[Tensor]* or *Future[tuple[Tensor, ...]]*): + Future of attribution values for each input tensor. + The results should be the same as the attribute + method, except that the results are returned as a Future. + If a single tensor is provided as inputs, a single Future tensor + is returned. If a tuple is provided for inputs, a Future of a + tuple of corresponding sized tensors is returned. + """ + @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return False def has_convergence_delta(self) -> bool: @@ -88,6 +127,8 @@ def has_convergence_delta(self) -> bool: """ return False + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + # pyre-fixme[13]: Attribute `compute_convergence_delta` is never initialized. compute_convergence_delta: Callable r""" The attribution algorithms which derive `Attribution` class and provide @@ -97,21 +138,21 @@ def has_convergence_delta(self) -> bool: Args: - attributions (tensor or tuple of tensors): Attribution scores that + attributions (Tensor or tuple[Tensor, ...]): Attribution scores that are precomputed by an attribution algorithm. Attributions can be provided in form of a single tensor or a tuple of those. It is assumed that attribution tensor's dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - *args (optional): Additonal arguments that are used by the + *args (Any, optional): Additonal arguments that are used by the sub-classes depending on the specific implementation of `compute_convergence_delta`. Returns: - *tensor* of **deltas**: - - **deltas** (*tensor*): + *Tensor* of **deltas**: + - **deltas** (*Tensor*): Depending on specific implementaion of sub-classes, convergence delta can be returned per sample in form of a tensor or it can be aggregated @@ -146,15 +187,17 @@ class GradientAttribution(Attribution): that we want to interpret or the model itself. """ + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. def __init__(self, forward_func: Callable) -> None: r""" Args: - forward_func (callable or torch.nn.Module): This can either be an instance + forward_func (Callable or torch.nn.Module): This can either be an instance of pytorch model or any modification of model's forward function. """ Attribution.__init__(self, forward_func) + # pyre-fixme[4]: Attribute must be annotated. self.gradient_func = compute_gradients @log_usage() @@ -166,7 +209,7 @@ def compute_convergence_delta( ], end_point: Union[Tensor, Tuple[Tensor, ...]], target: TargetType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, ) -> Tensor: r""" Here we provide a specific implementation for `compute_convergence_delta` @@ -184,26 +227,26 @@ def compute_convergence_delta( Args: - attributions (tensor or tuple of tensors): Precomputed attribution + attributions (Tensor or tuple[Tensor, ...]): Precomputed attribution scores. The user can compute those using any attribution - algorithm. It is assumed the the shape and the + algorithm. It is assumed the shape and the dimensionality of attributions must match the shape and the dimensionality of `start_point` and `end_point`. It also assumes that the attribution tensor's dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. - start_point (tensor or tuple of tensors, optional): `start_point` + start_point (Tensor or tuple[Tensor, ...], optional): `start_point` is passed as an input to model's forward function. It is the starting point of attributions' approximation. It is assumed that both `start_point` and `end_point` have the same shape and dimensionality. - end_point (tensor or tuple of tensors): `end_point` + end_point (Tensor or tuple[Tensor, ...]): `end_point` is passed as an input to model's forward function. It is the end point of attributions' approximation. It is assumed that both `start_point` and `end_point` have the same shape and dimensionality. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -228,7 +271,7 @@ def compute_convergence_delta( target for the corresponding example. Default: None - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -245,8 +288,8 @@ def compute_convergence_delta( Returns: - *tensor* of **deltas**: - - **deltas** (*tensor*): + *Tensor* of **deltas**: + - **deltas** (*Tensor*): This implementation returns convergence delta per sample. Deriving sub-classes may do any type of aggregation of those values, if necessary. @@ -276,17 +319,22 @@ def compute_convergence_delta( _validate_target(num_samples, target) with torch.no_grad(): - start_out_sum = _sum_rows( - _run_forward( - self.forward_func, start_point, target, additional_forward_args - ) + start_out_eval = _run_forward( + self.forward_func, start_point, target, additional_forward_args ) + # _run_forward may return future of Tensor, + # but we don't support it here now + # And it will fail before here. + start_out_sum = _sum_rows(cast(Tensor, start_out_eval)) - end_out_sum = _sum_rows( - _run_forward( - self.forward_func, end_point, target, additional_forward_args - ) + end_out_eval = _run_forward( + self.forward_func, end_point, target, additional_forward_args ) + # _run_forward may return future of Tensor, + # but we don't support it here now + # And it will fail before here. + end_out_sum = _sum_rows(cast(Tensor, end_out_eval)) + row_sums = [_sum_rows(attribution) for attribution in attributions] attr_sum = torch.stack( [cast(Tensor, sum(row_sum)) for row_sum in zip(*row_sums)] @@ -302,30 +350,35 @@ class PerturbationAttribution(Attribution): that we want to interpret or the model itself. """ + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. def __init__(self, forward_func: Callable) -> None: r""" Args: - forward_func (callable or torch.nn.Module): This can either be an instance + forward_func (Callable or torch.nn.Module): This can either be an instance of pytorch model or any modification of model's forward function. """ Attribution.__init__(self, forward_func) @property - def multiplies_by_inputs(self): + def multiplies_by_inputs(self) -> bool: return True -class InternalAttribution(Attribution, Generic[ModuleOrModuleList]): - layer: ModuleOrModuleList +# mypy false positive "Free type variable expected in Generic[...]" but +# ModuleOrModuleList is a TypeVar +class InternalAttribution(Attribution, Generic[ModuleOrModuleList]): # type: ignore r""" Shared base class for LayerAttrubution and NeuronAttribution, attribution types that require a model and a particular layer. """ + layer: ModuleOrModuleList + def __init__( self, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_func: Callable, layer: ModuleOrModuleList, device_ids: Union[None, List[int]] = None, @@ -333,12 +386,12 @@ def __init__( r""" Args: - forward_func (callable or torch.nn.Module): This can either be an instance + forward_func (Callable or torch.nn.Module): This can either be an instance of pytorch model or any modification of model's forward function. layer (torch.nn.Module): Layer for which output attributions are computed. Output size of attribute matches that of layer output. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model, which allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -349,9 +402,10 @@ def __init__( self.device_ids = device_ids +# pyre-fixme[24]: Generic type `InternalAttribution` expects 1 type parameter. class LayerAttribution(InternalAttribution): r""" - Layer attribution provides attribution values for the given layer, quanitfying + Layer attribution provides attribution values for the given layer, quantifying the importance of each neuron within the given layer's output. The output attribution of calling attribute on a LayerAttribution object always matches the size of the layer output. @@ -359,6 +413,7 @@ class LayerAttribution(InternalAttribution): def __init__( self, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_func: Callable, layer: ModuleOrModuleList, device_ids: Union[None, List[int]] = None, @@ -366,12 +421,12 @@ def __init__( r""" Args: - forward_func (callable or torch.nn.Module): This can either be an instance + forward_func (Callable or torch.nn.Module): This can either be an instance of pytorch model or any modification of model's forward function. layer (torch.nn.Module): Layer for which output attributions are computed. Output size of attribute matches that of layer output. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model, which allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -392,13 +447,13 @@ def interpolate( Args: - layer_attribution (torch.Tensor): Tensor of given layer attributions. + layer_attribution (Tensor): Tensor of given layer attributions. interpolate_dims (int or tuple): Upsampled dimensions. The number of elements must be the number of dimensions of layer_attribution - 2, since the first dimension corresponds to number of examples and the second is assumed to correspond to the number of channels. - interpolate_mode (str): Method for interpolation, which + interpolate_mode (str): Method for interpolation, which must be a valid input interpolation mode for torch.nn.functional. These methods are "nearest", "area", "linear" (3D-only), "bilinear" @@ -407,8 +462,8 @@ def interpolate( attribution. Returns: - *tensor* of upsampled **attributions**: - - **attributions** (*tensor*): + *Tensor* of upsampled **attributions**: + - **attributions** (*Tensor*): Upsampled layer attributions with first 2 dimensions matching slayer_attribution and remaining dimensions given by interpolate_dims. @@ -416,9 +471,11 @@ def interpolate( return F.interpolate(layer_attribution, interpolate_dims, mode=interpolate_mode) +# pyre-fixme[13]: Attribute `attribute` is never initialized. +# pyre-fixme[24]: Generic type `InternalAttribution` expects 1 type parameter. class NeuronAttribution(InternalAttribution): r""" - Neuron attribution provides input attribution for a given neuron, quanitfying + Neuron attribution provides input attribution for a given neuron, quantifying the importance of each input feature in the activation of a particular neuron. Calling attribute on a NeuronAttribution object requires also providing the index of the neuron in the output of the given layer for which attributions @@ -429,6 +486,7 @@ class NeuronAttribution(InternalAttribution): def __init__( self, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_func: Callable, layer: Module, device_ids: Union[None, List[int]] = None, @@ -436,12 +494,12 @@ def __init__( r""" Args: - forward_func (callable or torch.nn.Module): This can either be an instance + forward_func (Callable or torch.nn.Module): This can either be an instance of pytorch model or any modification of model's forward function. layer (torch.nn.Module): Layer for which output attributions are computed. Output size of attribute matches that of layer output. - device_ids (list(int)): Device ID list, necessary only if forward_func + device_ids (list[int]): Device ID list, necessary only if forward_func applies a DataParallel model, which allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, @@ -449,6 +507,8 @@ def __init__( """ InternalAttribution.__init__(self, forward_func, layer, device_ids) + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + # pyre-fixme[13]: Attribute `attribute` is never initialized. attribute: Callable r""" This method computes and returns the neuron attribution values for each @@ -469,8 +529,8 @@ def __init__( Returns: - *tensor* or tuple of *tensors* of **attributions**: - - **attributions** (*tensor* or tuple of *tensors*): + *Tensor* or *tuple[Tensor, ...]* of **attributions**: + - **attributions** (*Tensor* or *tuple[Tensor, ...]*): Attribution values for each input vector. The `attributions` have the dimensionality of inputs. diff --git a/captum/attr/_utils/baselines.py b/captum/attr/_utils/baselines.py new file mode 100644 index 0000000000..5b347cb31c --- /dev/null +++ b/captum/attr/_utils/baselines.py @@ -0,0 +1,68 @@ +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. + +# pyre-strict +import random +from typing import Any, Dict, List, Tuple, Union + + +class ProductBaselines: + """ + A Callable Baselines class that returns a sample from the Cartesian product of + the inputs' available baselines. + + Args: + baseline_values (List or Dict): A list or dict of lists containing + the possible values for each feature. If a dict is provided, the keys + can a string of the feature name and the values is a list of available + baselines. The keys can also be a tuple of strings to group + multiple features whose baselines are not independent to each other. + If the key is a tuple, the value must be a list of tuples of + the corresponding values. + """ + + def __init__( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + baseline_values: Union[ + List[List[Any]], + Dict[Union[str, Tuple[str, ...]], List[Any]], + ], + ) -> None: + if isinstance(baseline_values, dict): + dict_keys = list(baseline_values.keys()) + baseline_values = [baseline_values[k] for k in dict_keys] + else: + dict_keys = [] + + # pyre-fixme[4]: Attribute must be annotated. + self.dict_keys = dict_keys + self.baseline_values = baseline_values + + # pyre-fixme[3]: Return annotation cannot contain `Any`. + def sample(self) -> Union[List[Any], Dict[str, Any]]: + baselines = [ + random.choice(baseline_list) for baseline_list in self.baseline_values + ] + + if not self.dict_keys: + return baselines + + dict_baselines = {} + for key, val in zip(self.dict_keys, baselines): + if not isinstance(key, tuple): + key, val = (key,), (val,) + + for k, v in zip(key, val): + dict_baselines[k] = v + + return dict_baselines + + # pyre-fixme[3]: Return annotation cannot contain `Any`. + def __call__(self) -> Union[List[Any], Dict[str, Any]]: + """ + Returns: + + baselines (List or Dict): A sample from the Cartesian product of + the inputs' available baselines + """ + return self.sample() diff --git a/captum/attr/_utils/batching.py b/captum/attr/_utils/batching.py index 611517b3f9..f7bce61ecc 100644 --- a/captum/attr/_utils/batching.py +++ b/captum/attr/_utils/batching.py @@ -1,7 +1,9 @@ #!/usr/bin/env python3 + +# pyre-strict import typing import warnings -from typing import Any, Callable, Iterator, Tuple, Union +from typing import Any, Callable, Iterator, Optional, Tuple, Union import torch from captum._utils.common import ( @@ -19,13 +21,17 @@ from torch import Tensor +# pyre-fixme[3]: Return type must be annotated. def _batch_attribution( + # pyre-fixme[2]: Parameter must be annotated. attr_method, + # pyre-fixme[2]: Parameter must be annotated. num_examples, + # pyre-fixme[2]: Parameter must be annotated. internal_batch_size, - n_steps, - include_endpoint=False, - **kwargs, + n_steps: int, + include_endpoint: bool = False, + **kwargs: Any, ): """ This method applies internal batching to given attribution method, dividing @@ -45,7 +51,8 @@ def _batch_attribution( warnings.warn( "Internal batch size cannot be less than the number of input examples. " "Defaulting to internal batch size of %d equal to the number of examples." - % num_examples + % num_examples, + stacklevel=1, ) # Number of steps for each batch step_count = max(1, internal_batch_size // num_examples) @@ -56,7 +63,8 @@ def _batch_attribution( "This method computes finite differences between evaluations at " "consecutive steps, so internal batch size must be at least twice " "the number of examples. Defaulting to internal batch size of %d" - " equal to twice the number of examples." % (2 * num_examples) + " equal to twice the number of examples." % (2 * num_examples), + stacklevel=1, ) total_attr = None @@ -97,17 +105,20 @@ def _batch_attribution( @typing.overload -def _tuple_splice_range(inputs: None, start: int, end: int) -> None: - ... +def _tuple_splice_range(inputs: None, start: int, end: int) -> None: ... @typing.overload -def _tuple_splice_range(inputs: Tuple, start: int, end: int) -> Tuple: - ... +# pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. +def _tuple_splice_range(inputs: Tuple, start: int, end: int) -> Tuple: ... def _tuple_splice_range( - inputs: Union[None, Tuple], start: int, end: int + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. + inputs: Union[None, Tuple], + start: int, + end: int, + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. ) -> Union[None, Tuple]: """ Splices each tensor element of given tuple (inputs) from range start @@ -125,9 +136,10 @@ def _tuple_splice_range( ) +# pyre-fixme[3]: Return annotation cannot contain `Any`. def _batched_generator( inputs: TensorOrTupleOfTensorsGeneric, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, target_ind: TargetType = None, internal_batch_size: Union[None, int] = None, ) -> Iterator[Tuple[Tuple[Tensor, ...], Any, TargetType]]: @@ -139,6 +151,8 @@ def _batched_generator( assert internal_batch_size is None or ( isinstance(internal_batch_size, int) and internal_batch_size > 0 ), "Batch size must be greater than 0." + # pyre-fixme[9]: inputs has type `TensorOrTupleOfTensorsGeneric`; used as + # `Tuple[Tensor, ...]`. inputs = _format_tensor_into_tuples(inputs) additional_forward_args = _format_additional_forward_args(additional_forward_args) num_examples = inputs[0].shape[0] @@ -148,33 +162,42 @@ def _batched_generator( warnings.warn( """It looks like that the attribution for a gradient-based method is computed in a `torch.no_grad` block or perhaps the inputs have no - requires_grad.""" + requires_grad.""", + stacklevel=1, ) if internal_batch_size is None: + # pyre-fixme[7]: Expected `Iterator[Tuple[typing.Tuple[Tensor, ...], typing.A... yield inputs, additional_forward_args, target_ind else: for current_total in range(0, num_examples, internal_batch_size): with torch.autograd.set_grad_enabled(True): inputs_splice = _tuple_splice_range( - inputs, current_total, current_total + internal_batch_size + # pyre-fixme[6]: For 1st argument expected `None` but got + # `TensorOrTupleOfTensorsGeneric`. + inputs, + current_total, + current_total + internal_batch_size, ) + # pyre-fixme[7]: Expected `Iterator[Tuple[typing.Tuple[Tensor, ...], typi... yield inputs_splice, _tuple_splice_range( + # pyre-fixme[6]: In call `_tuple_splice_range`, for 1st positional + # argument, expected `None` but got + # `Optional[typing.Tuple[typing.Any, ...]]` additional_forward_args, current_total, current_total + internal_batch_size, - ), target_ind[ - current_total : current_total + internal_batch_size - ] if isinstance( - target_ind, list - ) or ( - isinstance(target_ind, torch.Tensor) and target_ind.numel() > 1 - ) else target_ind + ), ( + target_ind[current_total : current_total + internal_batch_size] + if isinstance(target_ind, list) + or (isinstance(target_ind, torch.Tensor) and target_ind.numel() > 1) + else target_ind + ) def _batched_operator( operator: Callable[..., TupleOrTensorOrBoolGeneric], inputs: TensorOrTupleOfTensorsGeneric, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, target_ind: TargetType = None, internal_batch_size: Union[None, int] = None, **kwargs: Any, @@ -198,6 +221,8 @@ def _batched_operator( return _reduce_list(all_outputs) +# pyre-fixme[3]: Return annotation cannot be `Any`. +# pyre-fixme[2]: Parameter annotation cannot be `Any`. def _select_example(curr_arg: Any, index: int, bsz: int) -> Any: if curr_arg is None: return None @@ -213,6 +238,8 @@ def _select_example(curr_arg: Any, index: int, bsz: int) -> Any: return _format_output(is_tuple, tuple(selected_arg)) +# pyre-fixme[2]: Parameter must be annotated. +# pyre-fixme[24]: Generic type `Iterator` expects 1 type parameter. def _batch_example_iterator(bsz: int, *args) -> Iterator: """ Batches the provided argument. diff --git a/captum/attr/_utils/class_summarizer.py b/captum/attr/_utils/class_summarizer.py index 2485711866..316f15e26c 100644 --- a/captum/attr/_utils/class_summarizer.py +++ b/captum/attr/_utils/class_summarizer.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 + +# pyre-strict from collections import defaultdict -from typing import Any, Dict, List, Optional, Union +from typing import Any, cast, Dict, Generic, List, Optional, TypeVar, Union from captum._utils.common import _format_tensor_into_tuples from captum._utils.typing import TargetType, TensorOrTupleOfTensorsGeneric @@ -9,8 +11,10 @@ from captum.log import log_usage from torch import Tensor +KeyType = TypeVar("KeyType") + -class ClassSummarizer(Summarizer): +class ClassSummarizer(Summarizer, Generic[KeyType]): r""" Used to keep track of summaries for associated classes. The classes/labels can be of any type that are supported by `dict`. @@ -21,7 +25,7 @@ class ClassSummarizer(Summarizer): @log_usage() def __init__(self, stats: List[Stat]) -> None: Summarizer.__init__.__wrapped__(self, stats) - self.summaries: Dict[Any, Summarizer] = defaultdict( + self.summaries: Dict[KeyType, Summarizer] = defaultdict( lambda: Summarizer(stats=stats) ) @@ -29,18 +33,18 @@ def update( # type: ignore self, x: TensorOrTupleOfTensorsGeneric, labels: TargetType = None, - ): + ) -> None: r""" Updates the stats of the summarizer, optionally associated to classes. This accepts either a single tensor to summarise or a tuple of tensors. Args: - x (Tensor or Tuple[Tensor, ...]): + x (Tensor or tuple[Tensor, ...]): The input tensor to be summarised. The first dimension of this input must be associated to the batch size of the inputs. - labels (int, tuple, tensor or list, optional): + labels (int, tuple, Tensor, or list, optional): The associated labels for `x`. If Any, we assume `labels` represents the label for all inputs in `x`. @@ -50,10 +54,13 @@ def update( # type: ignore super().update(x) return + # pyre-fixme[9]: x has type `TensorOrTupleOfTensorsGeneric`; used as + # `Tuple[Tensor, ...]`. x = _format_tensor_into_tuples(x) num_labels = 1 + # pyre-fixme[33]: Given annotation cannot contain `Any`. labels_typed: Union[List[Any], Tensor] if isinstance(labels, list) or isinstance(labels, Tensor): labels_typed = labels @@ -78,14 +85,15 @@ def update( # type: ignore tensors_to_summarize_copy = tuple(tensor[i].clone() for tensor in x) label = labels_typed[0] if len(labels_typed) == 1 else labels_typed[i] - self.summaries[label].update(tensors_to_summarize) + self.summaries[cast(KeyType, label)].update(tensors_to_summarize) super().update(tensors_to_summarize_copy) @property def class_summaries( self, ) -> Dict[ - Any, Union[None, Dict[str, Optional[Tensor]], List[Dict[str, Optional[Tensor]]]] + KeyType, + Union[None, Dict[str, Optional[Tensor]], List[Dict[str, Optional[Tensor]]]], ]: r""" Returns: diff --git a/captum/attr/_utils/common.py b/captum/attr/_utils/common.py index 34979764be..0333637744 100644 --- a/captum/attr/_utils/common.py +++ b/captum/attr/_utils/common.py @@ -1,7 +1,9 @@ #!/usr/bin/env python3 + +# pyre-strict import typing from inspect import signature -from typing import Any, Callable, List, Tuple, TYPE_CHECKING, Union +from typing import Callable, List, Literal, Optional, Tuple, TYPE_CHECKING, Union import torch from captum._utils.common import ( @@ -10,12 +12,7 @@ _format_tensor_into_tuples, _validate_input as _validate_input_basic, ) -from captum._utils.typing import ( - BaselineType, - Literal, - TargetType, - TensorOrTupleOfTensorsGeneric, -) +from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._utils.approximation_methods import SUPPORTED_METHODS from torch import Tensor @@ -71,15 +68,19 @@ def _validate_noise_tunnel_type( def _format_input_baseline( inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: Union[Tensor, Tuple[Tensor, ...]], -) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: - ... +) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: ... @typing.overload -def _format_input_baseline( +def _format_input_baseline( # type: ignore inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType -) -> Tuple[Tuple[Tensor, ...], Tuple[Union[Tensor, int, float], ...]]: - ... +) -> Tuple[Tuple[Tensor, ...], Tuple[Union[Tensor, int, float], ...]]: ... + + +@typing.overload +def _format_input_baseline( # type: ignore + inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType +) -> Tuple[Tuple[Tensor, ...], Tuple[Union[Tensor, int, float], ...]]: ... def _format_input_baseline( @@ -102,8 +103,7 @@ def _format_callable_baseline( Tuple[Tensor, ...], ], inputs: Union[Tensor, Tuple[Tensor, ...]], -) -> Tuple[Tensor, ...]: - ... +) -> Tuple[Tensor, ...]: ... @typing.overload @@ -117,8 +117,7 @@ def _format_callable_baseline( Tuple[Union[Tensor, int, float], ...], ], inputs: Union[Tensor, Tuple[Tensor, ...]], -) -> Tuple[Union[Tensor, int, float], ...]: - ... +) -> Tuple[Union[Tensor, int, float], ...]: ... def _format_callable_baseline( @@ -169,6 +168,9 @@ def _format_and_verify_strides( i, strides[i], inputs[i].shape ) + # pyre-fixme[7]: Expected `Tuple[Union[int, typing.Tuple[int, ...]], ...]` but + # got `Union[Tuple[Union[int, typing.Tuple[Union[int, typing.Tuple[int, ...]], + # ...]]], typing.Tuple[Union[int, typing.Tuple[int, ...]], ...]]`. return strides @@ -180,6 +182,7 @@ def _format_and_verify_sliding_window_shapes( # Assumes inputs is already formatted (in tuple) if isinstance(sliding_window_shapes[0], int): sliding_window_shapes = (sliding_window_shapes,) # type: ignore + # pyre-fixme[35]: Target cannot be annotated. sliding_window_shapes: Tuple[Tuple[int, ...], ...] assert len(sliding_window_shapes) == len( inputs @@ -204,11 +207,23 @@ def _compute_conv_delta_and_format_attrs( attributions: Tuple[Tensor, ...], start_point: Union[int, float, Tensor, Tuple[Union[int, float, Tensor], ...]], end_point: Union[Tensor, Tuple[Tensor, ...]], - additional_forward_args: Any, + additional_forward_args: Optional[object], + target: TargetType, + is_inputs_tuple: Literal[True], +) -> Union[Tuple[Tensor, ...], Tuple[Tuple[Tensor, ...], Tensor]]: ... + + +@typing.overload +def _compute_conv_delta_and_format_attrs( + attr_algo: "GradientAttribution", + return_convergence_delta: bool, + attributions: Tuple[Tensor, ...], + start_point: Union[int, float, Tensor, Tuple[Union[int, float, Tensor], ...]], + end_point: Union[Tensor, Tuple[Tensor, ...]], + additional_forward_args: Optional[object], target: TargetType, is_inputs_tuple: Literal[False] = False, -) -> Union[Tensor, Tuple[Tensor, Tensor]]: - ... +) -> Union[Tensor, Tuple[Tensor, Tensor]]: ... @typing.overload @@ -218,11 +233,12 @@ def _compute_conv_delta_and_format_attrs( attributions: Tuple[Tensor, ...], start_point: Union[int, float, Tensor, Tuple[Union[int, float, Tensor], ...]], end_point: Union[Tensor, Tuple[Tensor, ...]], - additional_forward_args: Any, + additional_forward_args: Optional[object], target: TargetType, - is_inputs_tuple: Literal[True], -) -> Union[Tuple[Tensor, ...], Tuple[Tuple[Tensor, ...], Tensor]]: - ... + is_inputs_tuple: bool = False, +) -> Union[ + Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor] +]: ... # FIXME: GradientAttribution is provided as a string due to a circular import. @@ -233,7 +249,7 @@ def _compute_conv_delta_and_format_attrs( attributions: Tuple[Tensor, ...], start_point: Union[int, float, Tensor, Tuple[Union[int, float, Tensor], ...]], end_point: Union[Tensor, Tuple[Tensor, ...]], - additional_forward_args: Any, + additional_forward_args: Optional[object], target: TargetType, is_inputs_tuple: bool = False, ) -> Union[ @@ -256,6 +272,8 @@ def _compute_conv_delta_and_format_attrs( def _tensorize_baseline( inputs: Tuple[Tensor, ...], baselines: Tuple[Union[int, float, Tensor], ...] ) -> Tuple[Tensor, ...]: + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def _tensorize_single_baseline(baseline, input): if isinstance(baseline, (int, float)): return torch.full_like(input, baseline) @@ -318,6 +336,7 @@ def _find_output_mode_and_verify( num_examples: int, perturbations_per_eval: int, feature_mask: Union[None, TensorOrTupleOfTensorsGeneric], + allow_multi_outputs: bool = False, ) -> bool: """ This method identifies whether the model outputs a single output for a batch @@ -345,15 +364,16 @@ def _find_output_mode_and_verify( "returns a scalar." ) else: - agg_output_mode = False - assert ( - isinstance(initial_eval, torch.Tensor) and initial_eval[0].numel() == 1 - ), "Target should identify a single element in the model output." + agg_output_mode = perturbations_per_eval == 1 + if not allow_multi_outputs: + assert ( + isinstance(initial_eval, torch.Tensor) and initial_eval[0].numel() == 1 + ), "Target should identify a single element in the model output." return agg_output_mode def _construct_default_feature_mask( - inputs: Tuple[Tensor, ...] + inputs: Tuple[Tensor, ...], ) -> Tuple[Tuple[Tensor, ...], int]: feature_mask = [] current_num_features = 0 diff --git a/captum/attr/_utils/custom_modules.py b/captum/attr/_utils/custom_modules.py index 8dea72054f..6593bc33c8 100644 --- a/captum/attr/_utils/custom_modules.py +++ b/captum/attr/_utils/custom_modules.py @@ -1,5 +1,8 @@ #!/usr/bin/env python3 + +# pyre-strict import torch.nn as nn +from torch import Tensor class Addition_Module(nn.Module): @@ -10,5 +13,5 @@ class Addition_Module(nn.Module): def __init__(self) -> None: super().__init__() - def forward(self, x1, x2): + def forward(self, x1: Tensor, x2: Tensor) -> Tensor: return x1 + x2 diff --git a/captum/attr/_utils/input_layer_wrapper.py b/captum/attr/_utils/input_layer_wrapper.py index 402319fb43..f0256ec217 100644 --- a/captum/attr/_utils/input_layer_wrapper.py +++ b/captum/attr/_utils/input_layer_wrapper.py @@ -1,9 +1,12 @@ #!/usr/bin/env python3 +# pyre-strict + import inspect -from typing import Any +from typing import List import torch.nn as nn +from torch import Tensor class InputIdentity(nn.Module): @@ -19,7 +22,7 @@ def __init__(self, input_name: str) -> None: super().__init__() self.input_name = input_name - def forward(self, x): + def forward(self, x: Tensor) -> Tensor: return x @@ -60,17 +63,19 @@ def __init__(self, module_to_wrap: nn.Module) -> None: self.module = module_to_wrap # ignore self - self.arg_name_list = inspect.getfullargspec(module_to_wrap.forward).args[1:] + self.arg_name_list: List[str] = inspect.getfullargspec( + module_to_wrap.forward + ).args[1:] self.input_maps = nn.ModuleDict( {arg_name: InputIdentity(arg_name) for arg_name in self.arg_name_list} ) - def forward(self, *args, **kwargs) -> Any: - args = list(args) - for idx, (arg_name, arg) in enumerate(zip(self.arg_name_list, args)): - args[idx] = self.input_maps[arg_name](arg) + def forward(self, *args: object, **kwargs: object) -> object: + args_list = list(args) + for idx, (arg_name, arg) in enumerate(zip(self.arg_name_list, args_list)): + args_list[idx] = self.input_maps[arg_name](arg) for arg_name in kwargs.keys(): kwargs[arg_name] = self.input_maps[arg_name](kwargs[arg_name]) - return self.module(*tuple(args), **kwargs) + return self.module(*tuple(args_list), **kwargs) diff --git a/captum/attr/_utils/interpretable_input.py b/captum/attr/_utils/interpretable_input.py new file mode 100644 index 0000000000..3d5f0566f2 --- /dev/null +++ b/captum/attr/_utils/interpretable_input.py @@ -0,0 +1,482 @@ +# pyre-strict +from abc import ABC, abstractmethod +from typing import Callable, cast, Dict, List, Optional, Tuple, Union + +import torch + +from captum._utils.typing import TokenizerLike +from torch import Tensor + + +def _scatter_itp_attr_by_mask( + itp_attr: Tensor, + input_shape: Tuple[int, ...], + mask: Tensor, +) -> Tensor: + """ + Scatter the attribution of the interpretable features to the model input shape + by mask, if the interpretable features are the mask groups of the raw + input elements, + """ + + # itp_attr in shape(*output_dims, n_itp_features) + output_dims = itp_attr.shape[:-1] + n_itp_features = itp_attr.shape[-1] + + # input_shape in shape(batch_size, *inp_feature_dims) + # attribute in shape(*output_dims, *inp_feature_dims) + # pyre-fixme[60]: Concatenation not yet support for multiple variadic tuples: + # `*output_dims, *input_shape[slice(1, None, None)]`. + attr_shape = (*output_dims, *input_shape[1:]) + + expanded_feature_indices = mask.expand(attr_shape) + + if len(input_shape) > 2: + # exclude batch_size & last of actual value + extra_inp_dims = list(input_shape[1:-1]) + + # unsqueeze itp_attr to have same number of dims as input + # (*output_dims, 1..., 1, n_itp_features) + # then broadcast to (*output_dims, *inp.shape[1:-1], n_itp_features) + n_extra_dims = len(extra_inp_dims) + # pyre-fixme[60]: Concatenation not yet support for multiple variadic + # tuples: `*output_dims, *(1).__mul__(n_extra_dims)`. + unsqueezed_shape = (*output_dims, *(1,) * n_extra_dims, n_itp_features) + # pyre-fixme[60]: Concatenation not yet support for multiple variadic + # tuples: `*output_dims, *extra_inp_dims`. + expanded_shape = (*output_dims, *extra_inp_dims, n_itp_features) + expanded_itp_attr = itp_attr.reshape(unsqueezed_shape).expand(expanded_shape) + else: + expanded_itp_attr = itp_attr + + # gather from (*output_dims, *inp.shape[1:-1], n_itp_features) + attr = torch.gather(expanded_itp_attr, -1, expanded_feature_indices) + + return attr + + +class InterpretableInput(ABC): + """ + InterpretableInput is an adapter for different kinds of model inputs to + work in Captum's attribution methods. Generally, attribution methods of Captum + assume the inputs are numerical PyTorch tensors whose 1st dimension must be batch + size and each index in the rest of dimensions is an interpretable feature. But this + is not always true in practice. First, the model may take inputs of formats other + than tensor that also require attributions. For example, a model with encapsulated + tokenizer can directly take string as input. Second, what is considered as + an interpretable feature always depends on the actual application and the user's + desire. For example, the interpretable feature of an image tensor can either be + each pixel or some segments. For text, users may see the entire string as one + interpretable feature or view each word as one interpretable feature. This class + provides a place to define what is the actual model input and the corresponding + interpretable format for attribution, and the transformation between them. + It serves as a common interface to be used inthe attribution methods to make + Captum understand how to perturb various inputs. + + The concept Interpretable Input mainly comes from the following two papers: + + `"Why Should I Trust You?": Explaining the Predictions of Any Classifier + `_ + + `A Unified Approach to Interpreting Model Predictions + `_ + + which is also referred to as interpretable representation or simplified + input. It can be represented as a mapping function: + + .. math:: + x = h_x(x') + + where :math:`x` is the model input, which can be anything that the model consumes; + :math:`x'` is the interpretable input used in the attribution algorithms + (it must be a PyTorch tensor in Captum), which is often + binary indicating the “presence” or “absence”; :math:`h_x` is the + transformer. It is supposed to work with perturbation-based attribution methods, + but if :math:`h_x` is differentiable, it may also be used + in gradient-based methods. + + InterpretableInput is the abstract class defining the interface. Captum provides + the child implementations for some common input formats, + like text and sparse features. Users can inherit this + class to create other types of customized input. + + (We expect to support InterpretableInput in all attribution methods, but it + is only allowed in certain attribution classes like LLMAttribution for now.) + """ + + n_itp_features: int + values: List[str] + + @abstractmethod + def to_tensor(self) -> Tensor: + """ + Return the interpretable representation of this input as a tensor + + Returns: + + itp_tensor (Tensor): interpretable tensor + """ + pass + + @abstractmethod + def to_model_input( + self, perturbed_tensor: Optional[Tensor] = None + ) -> Union[str, Tensor]: + """ + Get the (perturbed) input in the format required by the model + based on the given (perturbed) interpretable representation. + + Args: + + perturbed_tensor (Tensor, optional): tensor of the interpretable + representation of this input. If it is None, assume the + interpretable representation is pristine and return the + original model input + Default: None. + + + Returns: + + model_input (Any): model input passed to the forward function + """ + pass + + def format_attr(self, itp_attr: Tensor) -> Tensor: + """ + Format the attribution of the interpretable feature if needed. + The way of formatting depends on the specific interpretable input type. + A common use is if the interpretable features are the mask groups of the raw + input elements, the attribution of the interpretable features can be scattered + back to the model input shape. + + Args: + + itp_attr (Tensor): attributions of the interpretable features + + Returns: + + attr (Tensor): formatted attribution + """ + return itp_attr + + +class TextTemplateInput(InterpretableInput): + """ + TextTemplateInput is an implementation of InterpretableInput for text inputs, whose + interpretable features are certain segments (e.g., words, phrases) of the text. + It takes a template string (or function) to define the feature segmentats + of the input text. Its input format to the model will be the completed text, + while its interpretable representation will be a binary tensor of the number of + the segment features whose values indicates if the feature is + “presence” or “absence”. + + Args: + + template (str or Callable): template string or function that takes + the text segments and format them into the text input for the model + values (List[str] or Dict[str, str]): the values of the segments. it is + the input to the template. + baselines (List[str] or Dict[str, str] or Callable or None, optional): the + baseline values for the segment features. If it is None, emptry string + will be used as the baseline. + Default: None + mask (List[int] or Dict[str, int] or None, optional): the mask to group the + segment features. It must be in the same format as the values + and assign each segment a mask index. Segments with the same + index will be seen as a single interpretable feature, which means + they must be perturbed together and end with same attributions. + Default: None + + Examples:: + + >>> text_inp = TextTemplateInput( + >>> template="{} feels {} right now", + >>> values=["He", "depressed"], + >>> baselines=["It", "neutral"], + >>> ) + >>> + >>> text_inp.to_tensor() + >>> # torch.tensor([[1, 1]]) + >>> + >>> text_inp.to_model_input(torch.tensor([[0, 1]])) + >>> # "It feels depressed right now" + + """ + + values: List[str] + dict_keys: List[str] + baselines: Union[List[str], Callable[[], Union[List[str], Dict[str, str]]]] + n_features: int + n_itp_features: int + format_fn: Callable[..., str] + mask: Union[List[int], Dict[str, int], None] + formatted_mask: List[int] + + def __init__( + self, + template: Union[str, Callable[..., str]], + values: Union[List[str], Dict[str, str]], + baselines: Union[ + List[str], + Dict[str, str], + Callable[[], Union[List[str], Dict[str, str]]], + None, + ] = None, + mask: Union[List[int], Dict[str, int], None] = None, + ) -> None: + # convert values dict to list + if isinstance(values, dict): + dict_keys = list(values.keys()) + values = [values[k] for k in dict_keys] + else: + assert isinstance( + values, list + ), f"the values must be either a list or a dict, received: {type(values)}" + dict_keys = [] + + self.values = values + self.dict_keys = dict_keys + + n_features = len(values) + + if baselines is None: + # default baseline is to remove the element + baselines = [""] * len(values) + elif not callable(baselines): + if dict_keys: + assert isinstance(baselines, dict), ( + "if values is a dict, the baselines must also be a dict " + "or a callable which return a dict, " + f"received: {type(baselines)}" + ) + + # convert dict to list + baselines = [baselines[k] for k in dict_keys] + else: + assert isinstance(baselines, list), ( + "if values is a list, the baselines must also be a list " + "or a callable which return a list, " + f"received: {type(baselines)}" + ) + + self.baselines = baselines + + if mask is None: + n_itp_features = n_features + else: + if self.dict_keys: + assert isinstance(mask, dict), ( + "if values is dict, the mask must also be a dict, " + f"received: {type(mask)}" + ) + + # convert dict to list + mask = [mask[k] for k in self.dict_keys] + + mask_ids = set(mask) + mask_id_to_idx = {mid: i for i, mid in enumerate(mask_ids)} + + # internal compressed mask of continuous interpretable indices from 0 + # cannot replace original mask of ids for grouping across values externally + self.formatted_mask = [mask_id_to_idx[mid] for mid in mask] + + n_itp_features = len(mask_ids) + + # number of raw features and intepretable features + self.n_features = n_features + self.n_itp_features = n_itp_features + + if isinstance(template, str): + template = template.format + else: + assert callable(template), ( + "the template must be either a string or a callable, " + f"received: {type(template)}" + ) + template = template + self.format_fn = template + + self.mask = mask + + def to_tensor(self) -> torch.Tensor: + # Interpretable representation in shape(1, n_itp_features) + return torch.tensor([[1.0] * self.n_itp_features]) + + def to_model_input(self, perturbed_tensor: Optional[Tensor] = None) -> str: + values = list(self.values) # clone + + if perturbed_tensor is not None: + if callable(self.baselines): + # a placeholder for advanced baselines + # TODO: support callable baselines + baselines = self.baselines() + if self.dict_keys: + assert isinstance(baselines, dict), ( + "if values is a dict and the baselines is a callable" + f"it must return a dict, received: {type(baselines)}" + ) + baselines = [baselines[k] for k in self.dict_keys] + else: + assert isinstance(baselines, list), ( + "if values is a list and the baselines is a callable" + f"it must return a list, received: {type(baselines)}" + ) + else: + baselines = self.baselines + + for i in range(len(values)): + itp_idx = i + if self.mask: + itp_idx = self.formatted_mask[i] + + itp_val = perturbed_tensor[0][itp_idx] + + if not itp_val: + values[i] = baselines[i] + + if self.dict_keys: + dict_values = dict(zip(self.dict_keys, values)) + input_str = self.format_fn(**dict_values) + else: + input_str = self.format_fn(*values) + + return input_str + + def format_attr(self, itp_attr: torch.Tensor) -> torch.Tensor: + if self.mask is None: + return itp_attr + + device = itp_attr.device + + formatted_attr = _scatter_itp_attr_by_mask( + itp_attr, # shape(*output_dims, n_itp_features) + (1, self.n_features), + torch.tensor([self.formatted_mask], device=device), + ) + return formatted_attr + + +class TextTokenInput(InterpretableInput): + """ + TextTokenInput is an implementation of InterpretableInput for text inputs, whose + interpretable features are the tokens of the text with respect to a given tokenizer. + It is initiated with the string form of the input text and the corresponding + tokenizer. Its input format to the model will be the tokenized id tensor, + while its interpretable representation will be a binary tensor of the tokens + whose values indicates if the token is “presence” or “absence”. + + Args: + + text (str): text string for the model + tokenizer (Tokenizer): tokenizer of the language model + baselines (int or str, optional): the + baseline value for the tokens. It can be a string of the baseline token + or an integer of the baseline token id. Common choices include unknown + token or padding token. The default value is 0, which + is commonly used for unknown token. + Default: 0 + skip_tokens (List[int] or List[str], optional): the tokens to skip in the + the input's interpretable representation. Use this argument to define + uninterested tokens, commonly like special tokens, e.g., sos, and unk. + It can be a list of strings of the tokens or a list of integers of the + token ids. + Default: None + + Examples:: + + >>> text_inp = TextTokenInput("This is a test.", tokenizer) + >>> + >>> text_inp.to_tensor() + >>> # the shape dependens on the tokenizer + >>> # assuming it is broken into ["", "This", "is", "a", "test", "."], + >>> # torch.tensor([[1, 6]]) + >>> + >>> text_inp.to_model_input(torch.tensor([[0, 1]])) + >>> # torch.tensor([[1, 6]]) + + """ + + inp_tensor: Tensor + itp_tensor: Tensor + itp_mask: Optional[Tensor] + values: List[str] + tokenizer: TokenizerLike + n_itp_features: int + baselines: int + + def __init__( + self, + text: str, + tokenizer: TokenizerLike, + baselines: Union[int, str] = 0, # usually UNK + skip_tokens: Union[List[int], List[str], None] = None, + ) -> None: + inp_tensor = tokenizer.encode(text, return_tensors="pt") + + # input tensor into the model of token ids + self.inp_tensor = inp_tensor + # tensor of interpretable token ids + self.itp_tensor = inp_tensor + # interpretable mask + self.itp_mask = None + + if skip_tokens: + if isinstance(skip_tokens[0], str): + skip_tokens = cast(List[str], skip_tokens) + skip_tokens = tokenizer.convert_tokens_to_ids(skip_tokens) + assert isinstance(skip_tokens, list) + + skip_token_set = set(skip_tokens) + itp_mask = torch.zeros_like(inp_tensor) + itp_mask.map_(inp_tensor, lambda _, v: v not in skip_token_set) + itp_mask = itp_mask.bool() + + itp_tensor = inp_tensor[itp_mask].unsqueeze(0) + + self.itp_tensor = itp_tensor + self.itp_mask = itp_mask + + self.skip_tokens = skip_tokens + + # features values, the tokens + self.values = tokenizer.convert_ids_to_tokens(self.itp_tensor[0].tolist()) + self.tokenizer = tokenizer + self.n_itp_features = len(self.values) + + self.baselines = ( + baselines + if type(baselines) is int + else tokenizer.convert_tokens_to_ids([baselines])[0] # type: ignore + ) + + def to_tensor(self) -> torch.Tensor: + # return the perturbation indicator as interpretable tensor instead of token ids + return torch.ones_like(self.itp_tensor) + + def to_model_input(self, perturbed_tensor: Optional[Tensor] = None) -> Tensor: + if perturbed_tensor is None: + return self.inp_tensor + + device = perturbed_tensor.device + + perturb_mask = perturbed_tensor != 1 + + # perturb_per_eval or gradient based can expand the batch dim + expand_shape = (perturbed_tensor.size(0), -1) + + perturb_itp_tensor = self.itp_tensor.expand(*expand_shape).clone().to(device) + perturb_itp_tensor[perturb_mask] = self.baselines + + # if no iterpretable mask, the interpretable tensor is the input tensor + if self.itp_mask is None: + return perturb_itp_tensor + + itp_mask = self.itp_mask.expand(*expand_shape).to(device) + perturb_inp_tensor = self.inp_tensor.expand(*expand_shape).clone().to(device) + + perturb_inp_tensor[itp_mask] = perturb_itp_tensor.view(-1) + + return perturb_inp_tensor + + def format_attr(self, itp_attr: Tensor) -> Tensor: + return itp_attr diff --git a/captum/attr/_utils/lrp_rules.py b/captum/attr/_utils/lrp_rules.py index edacdef004..91761c226c 100644 --- a/captum/attr/_utils/lrp_rules.py +++ b/captum/attr/_utils/lrp_rules.py @@ -1,10 +1,13 @@ #!/usr/bin/env python3 +# pyre-strict + from abc import ABC, abstractmethod +from typing import cast, Dict, List, Union import torch - -from ..._utils.common import _format_tensor_into_tuples +from captum._utils.common import _format_tensor_into_tuples +from torch import Tensor class PropagationRule(ABC): @@ -13,61 +16,87 @@ class PropagationRule(ABC): STABILITY_FACTOR is used to assure that no zero divison occurs. """ + relevance_input: Dict[torch.device, Union[torch.Tensor, List[torch.Tensor]]] = {} + relevance_output: Dict[torch.device, torch.Tensor] = {} + STABILITY_FACTOR = 1e-9 + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward_hook(self, module, inputs, outputs): """Register backward hooks on input and output tensors of linear layers in the model.""" inputs = _format_tensor_into_tuples(inputs) + # pyre-fixme[16]: `PropagationRule` has no attribute `_has_single_input`. + # pyre-fixme[6]: For 1st argument expected `pyre_extensions.ReadOnly[Sized]` + # but got `None`. self._has_single_input = len(inputs) == 1 + # pyre-fixme[16]: `PropagationRule` has no attribute `_handle_input_hooks`. self._handle_input_hooks = [] + # pyre-fixme[16]: `None` has no attribute `__iter__`. for input in inputs: if not hasattr(input, "hook_registered"): input_hook = self._create_backward_hook_input(input.data) self._handle_input_hooks.append(input.register_hook(input_hook)) input.hook_registered = True output_hook = self._create_backward_hook_output(outputs.data) + # pyre-fixme[16]: `PropagationRule` has no attribute `_handle_output_hook`. self._handle_output_hook = outputs.register_hook(output_hook) return outputs.clone() @staticmethod + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def backward_hook_activation(module, grad_input, grad_output): """Backward hook to propagate relevance over non-linear activations.""" - if ( - isinstance(grad_input, tuple) - and isinstance(grad_output, tuple) - and len(grad_input) > len(grad_output) - ): - # Adds any additional elements of grad_input if applicable - # This occurs when registering a backward hook on nn.Dropout - # modules, which has an additional element of None in - # grad_input - return grad_output + grad_input[len(grad_output) :] + # replace_out is set in _backward_hook_input, this is necessary + # due to 2 tensor hooks on the same tensor + if hasattr(grad_output, "replace_out"): + hook_out = grad_output.replace_out + del grad_output.replace_out + return hook_out return grad_output + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def _create_backward_hook_input(self, inputs): + # pyre-fixme[53]: Captured variable `inputs` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def _backward_hook_input(grad): relevance = grad * inputs device = grad.device + # pyre-fixme[16]: `PropagationRule` has no attribute `_has_single_input`. if self._has_single_input: + # pyre-fixme[16]: `PropagationRule` has no attribute `relevance_input`. self.relevance_input[device] = relevance.data else: - self.relevance_input[device].append(relevance.data) + cast(List[Tensor], self.relevance_input[device]).append(relevance.data) + + # replace_out is needed since two hooks are set on the same tensor + # The output of this hook is needed in backward_hook_activation + grad.replace_out = relevance return relevance return _backward_hook_input - def _create_backward_hook_output(self, outputs): + # pyre-fixme[3]: Return type must be annotated. + def _create_backward_hook_output(self, outputs: torch.Tensor): + # pyre-fixme[53]: Captured variable `outputs` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def _backward_hook_output(grad): sign = torch.sign(outputs) sign[sign == 0] = 1 relevance = grad / (outputs + sign * self.STABILITY_FACTOR) + # pyre-fixme[16]: `PropagationRule` has no attribute `relevance_output`. self.relevance_output[grad.device] = grad.data return relevance return _backward_hook_output - def forward_hook_weights(self, module, inputs, outputs): + # pyre-fixme[2]: Parameter must be annotated. + def forward_hook_weights(self, module, inputs, outputs) -> None: """Save initial activations a_j before modules are changed""" device = inputs[0].device if isinstance(inputs, tuple) else inputs.device if hasattr(module, "activations") and device in module.activations: @@ -81,9 +110,13 @@ def forward_hook_weights(self, module, inputs, outputs): self._manipulate_weights(module, inputs, outputs) @abstractmethod + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def _manipulate_weights(self, module, inputs, outputs): raise NotImplementedError + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward_pre_hook_activations(self, module, inputs): """Pass initial activations to graph generation pass""" device = inputs[0].device if isinstance(inputs, tuple) else inputs.device @@ -104,10 +137,12 @@ class EpsilonRule(PropagationRule): discriminator during propagation. """ - def __init__(self, epsilon=1e-9) -> None: + def __init__(self, epsilon: float = 1e-9) -> None: + # pyre-fixme[4]: Attribute must be annotated. self.STABILITY_FACTOR = epsilon - def _manipulate_weights(self, module, inputs, outputs): + # pyre-fixme[2]: Parameter must be annotated. + def _manipulate_weights(self, module, inputs, outputs) -> None: pass @@ -123,11 +158,14 @@ class GammaRule(PropagationRule): the positive relevance is increased. """ - def __init__(self, gamma=0.25, set_bias_to_zero=False) -> None: + def __init__(self, gamma: float = 0.25, set_bias_to_zero: bool = False) -> None: + # pyre-fixme[4]: Attribute must be annotated. self.gamma = gamma + # pyre-fixme[4]: Attribute must be annotated. self.set_bias_to_zero = set_bias_to_zero - def _manipulate_weights(self, module, inputs, outputs): + # pyre-fixme[2]: Parameter must be annotated. + def _manipulate_weights(self, module, inputs, outputs) -> None: if hasattr(module, "weight"): module.weight.data = ( module.weight.data + self.gamma * module.weight.data.clamp(min=0) @@ -149,10 +187,12 @@ class Alpha1_Beta0_Rule(PropagationRule): Use for lower layers. """ - def __init__(self, set_bias_to_zero=False) -> None: + def __init__(self, set_bias_to_zero: bool = False) -> None: + # pyre-fixme[4]: Attribute must be annotated. self.set_bias_to_zero = set_bias_to_zero - def _manipulate_weights(self, module, inputs, outputs): + # pyre-fixme[2]: Parameter must be annotated. + def _manipulate_weights(self, module, inputs, outputs) -> None: if hasattr(module, "weight"): module.weight.data = module.weight.data.clamp(min=0) if self.set_bias_to_zero and hasattr(module, "bias"): @@ -169,8 +209,13 @@ class IdentityRule(EpsilonRule): Can be used for BatchNorm2D. """ + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def _create_backward_hook_input(self, inputs): + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def _backward_hook_input(grad): + # pyre-fixme[16]: `IdentityRule` has no attribute `relevance_output`. return self.relevance_output[grad.device] return _backward_hook_input diff --git a/captum/attr/_utils/stat.py b/captum/attr/_utils/stat.py index 803bbc7ab7..919a67cdd6 100644 --- a/captum/attr/_utils/stat.py +++ b/captum/attr/_utils/stat.py @@ -1,5 +1,8 @@ #!/usr/bin/env python3 -from typing import Any, Callable, List, Optional, TYPE_CHECKING + +# pyre-strict + +from typing import Any, Callable, cast, List, Optional, TYPE_CHECKING import torch from torch import Tensor @@ -29,25 +32,27 @@ def __init__(self, name: Optional[str] = None, **kwargs: Any) -> None: kwargs (Any): Additional arguments used to construct the statistic """ + # pyre-fixme[4]: Attribute must be annotated. self.params = kwargs self._name = name self._other_stats: Optional[SummarizerSingleTensor] = None - def init(self): + def init(self) -> None: pass def _get_stat(self, stat: "Stat") -> Optional["Stat"]: assert self._other_stats is not None return self._other_stats.get(stat) + # pyre-fixme[3]: Return type must be annotated. def update(self, x: Tensor): raise NotImplementedError() def get(self) -> Optional[Tensor]: raise NotImplementedError() - def __hash__(self): + def __hash__(self) -> int: return hash((self.__class__, frozenset(self.params.items()))) def __eq__(self, other: object) -> bool: @@ -62,7 +67,7 @@ def __ne__(self, other: object) -> bool: return not self.__eq__(other) @property - def name(self): + def name(self) -> str: """ The name of the statistic. i.e. it is the key in a .summary @@ -85,12 +90,15 @@ class Count(Stat): def __init__(self, name: Optional[str] = None) -> None: super().__init__(name=name) - self.n = None + self.n: Optional[int] = None - def get(self): + # pyre-fixme[15]: `captum.attr._utils.stat.Count.get` overrides method defined + # in `Stat` inconsistently. Returned type `Optional[int]` is not a subtype of + # the overridden return `Optional[torch._tensor.Tensor]`. + def get(self) -> Optional[int]: # type: ignore return self.n - def update(self, x): + def update(self, x: Tensor) -> None: if self.n is None: self.n = 0 self.n += 1 @@ -109,18 +117,19 @@ def __init__(self, name: Optional[str] = None) -> None: def get(self) -> Optional[Tensor]: return self.rolling_mean - def init(self): - self.n = self._get_stat(Count()) + def init(self) -> None: + self.n = cast(Count, self._get_stat(Count())) - def update(self, x): - n = self.n.get() + def update(self, x: Tensor) -> None: + n = cast(Count, self.n).get() if self.rolling_mean is None: # Ensures rolling_mean is a float tensor self.rolling_mean = x.clone() if x.is_floating_point() else x.double() else: delta = x - self.rolling_mean - self.rolling_mean += delta / n + # pyre-ignore[16]: `Optional` has no attribute `__iadd__` (false positive) + self.rolling_mean += delta / cast(int, n) class MSE(Stat): @@ -130,10 +139,13 @@ class MSE(Stat): def __init__(self, name: Optional[str] = None) -> None: super().__init__(name=name) + # pyre-fixme[4]: Attribute must be annotated. self.prev_mean = None + # pyre-fixme[4]: Attribute must be annotated. self.mse = None - def init(self): + def init(self) -> None: + # pyre-fixme[16]: `MSE` has no attribute `mean`. self.mean = self._get_stat(Mean()) def get(self) -> Optional[Tensor]: @@ -141,8 +153,9 @@ def get(self) -> Optional[Tensor]: return torch.zeros_like(self.prev_mean) return self.mse - def update(self, x: Tensor): - mean = self.mean.get() + def update(self, x: Tensor) -> None: + # pyre-fixme[16]: `MSE` has no attribute `mean`. + mean = self.mean.get() # type: ignore if mean is not None and self.prev_mean is not None: rhs = (x - self.prev_mean) * (x - mean) @@ -152,7 +165,7 @@ def update(self, x: Tensor): self.mse += rhs # do not not clone - self.prev_mean = mean.clone() + self.prev_mean = mean.clone() # type: ignore class Var(Stat): @@ -175,27 +188,31 @@ def __init__(self, name: Optional[str] = None, order: int = 0) -> None: super().__init__(name=name, order=order) self.order = order - def init(self): + def init(self) -> None: + # pyre-fixme[16]: `Var` has no attribute `mse`. self.mse = self._get_stat(MSE()) + # pyre-fixme[16]: `Var` has no attribute `n`. self.n = self._get_stat(Count()) - def update(self, x: Tensor): + def update(self, x: Tensor) -> None: pass def get(self) -> Optional[Tensor]: - mse = self.mse.get() - n = self.n.get() + # pyre-fixme[16]: `Var` has no attribute `mse`. + mse = self.mse.get() # type: ignore + # pyre-fixme[16]: `Var` has no attribute `n`. + n = self.n.get() # type: ignore if mse is None: return None - if n <= self.order: + if n <= self.order: # type: ignore return torch.zeros_like(mse) # NOTE: The following ensures mse is a float tensor. # torch.true_divide is available in PyTorch 1.5 and later. # This is for compatibility with 1.4. - return mse.to(torch.float64) / (n - self.order) + return mse.to(torch.float64) / (n - self.order) # type: ignore class StdDev(Stat): @@ -215,14 +232,16 @@ def __init__(self, name: Optional[str] = None, order: int = 0) -> None: super().__init__(name=name, order=order) self.order = order - def init(self): + def init(self) -> None: + # pyre-fixme[16]: `StdDev` has no attribute `var`. self.var = self._get_stat(Var(order=self.order)) - def update(self, x: Tensor): + def update(self, x: Tensor) -> None: pass def get(self) -> Optional[Tensor]: - var = self.var.get() + # pyre-fixme[16]: `StdDev` has no attribute `var`. + var = self.var.get() # type: ignore return var**0.5 if var is not None else None @@ -232,15 +251,16 @@ class GeneralAccumFn(Stat): where fn is a custom function """ + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. def __init__(self, fn: Callable, name: Optional[str] = None) -> None: super().__init__(name=name) - self.result = None + self.result: Optional[Tensor] = None self.fn = fn def get(self) -> Optional[Tensor]: return self.result - def update(self, x): + def update(self, x: Tensor) -> None: if self.result is None: self.result = x else: @@ -249,21 +269,30 @@ def update(self, x): class Min(GeneralAccumFn): def __init__( - self, name: Optional[str] = None, min_fn: Callable = torch.min + self, + name: Optional[str] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + min_fn: Callable = torch.min, ) -> None: super().__init__(name=name, fn=min_fn) class Max(GeneralAccumFn): def __init__( - self, name: Optional[str] = None, max_fn: Callable = torch.max + self, + name: Optional[str] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + max_fn: Callable = torch.max, ) -> None: super().__init__(name=name, fn=max_fn) class Sum(GeneralAccumFn): def __init__( - self, name: Optional[str] = None, add_fn: Callable = torch.add + self, + name: Optional[str] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + add_fn: Callable = torch.add, ) -> None: super().__init__(name=name, fn=add_fn) diff --git a/captum/attr/_utils/summarizer.py b/captum/attr/_utils/summarizer.py index 874e5d263b..3f4ffc54ed 100644 --- a/captum/attr/_utils/summarizer.py +++ b/captum/attr/_utils/summarizer.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + from typing import Dict, List, Optional, Tuple, Type, Union import torch @@ -26,6 +28,9 @@ class Summarizer: >>>print(summ.summary['mean']) """ + _stats: List[Stat] + _summary_stats_indicies: List[int] + @log_usage() def __init__(self, stats: List[Stat]) -> None: r""" @@ -37,12 +42,12 @@ def __init__(self, stats: List[Stat]) -> None: self._is_inputs_tuple: Optional[bool] = None self._stats, self._summary_stats_indicies = _reorder_stats(stats) - def _copy_stats(self): + def _copy_stats(self) -> List[Stat]: import copy return copy.deepcopy(self._stats) - def update(self, x: Union[float, Tensor, Tuple[Union[float, Tensor], ...]]): + def update(self, x: Union[float, Tensor, Tuple[Union[float, Tensor], ...]]) -> None: r""" Calls `update` on each `Stat` object within the summarizer @@ -121,37 +126,37 @@ def _reorder_stats(stats: List[Stat]) -> Tuple[List[Stat], List[int]]: dep_order = [StdDev, Var, MSE, Mean, Count] # remove dupe stats - stats = set(stats) + stats_set = set(stats) summary_stats = set(stats) from collections import defaultdict - stats_by_module: Dict[Type, List[Stat]] = defaultdict(list) - for stat in stats: + stats_by_module: Dict[Type[Stat], List[Stat]] = defaultdict(list) + for stat in stats_set: stats_by_module[stat.__class__].append(stat) # StdDev is an odd case since it is parameterized, thus # for each StdDev(order) we must ensure there is an associated Var(order) for std_dev in stats_by_module[StdDev]: stat_to_add = Var(order=std_dev.order) # type: ignore - stats.add(stat_to_add) + stats_set.add(stat_to_add) stats_by_module[stat_to_add.__class__].append(stat_to_add) # For the other modules (deps[1:n-1]): if i exists => # we want to ensure i...n-1 exists for i, dep in enumerate(dep_order[1:]): if dep in stats_by_module: - stats.update([mod() for mod in dep_order[i + 1 :]]) + stats_set.update([mod() for mod in dep_order[i + 1 :]]) break # Step 2: get the correct order # NOTE: we are sorting via a given topological order - sort_order = {mod: i for i, mod in enumerate(dep_order)} + sort_order: Dict[Type[Stat], int] = {mod: i for i, mod in enumerate(dep_order)} sort_order[Min] = -1 sort_order[Max] = -1 sort_order[Sum] = -1 - stats = list(stats) + stats = list(stats_set) stats.sort(key=lambda x: sort_order[x.__class__], reverse=True) # get the summary stat indices @@ -170,13 +175,17 @@ class SummarizerSingleTensor: If possible use `Summarizer` instead. """ + _stats: List[Stat] + _stat_to_stat: Dict[Stat, Stat] + _summary_stats: List[Stat] + def __init__(self, stats: List[Stat], summary_stats_indices: List[int]) -> None: r""" Args: - stats (list of Stat): A list of all the Stat objects that + stats (list[Stat]): A list of all the Stat objects that need to be updated. This must be in the appropriate order for updates (see `_reorder_stats`) - summary_stats (list of int): A list of indicies, referencing `stats`, + summary_stats (list[int]): A list of indicies, referencing `stats`, which are the stats you want to show in the .summary property. This does not require any specific order. """ @@ -188,7 +197,7 @@ def __init__(self, stats: List[Stat], summary_stats_indices: List[int]) -> None: stat._other_stats = self stat.init() - def update(self, x: Tensor): + def update(self, x: Tensor) -> None: r""" Updates the summary of a given tensor `x` diff --git a/captum/attr/_utils/visualization.py b/captum/attr/_utils/visualization.py index 2db9026872..508fe3a639 100644 --- a/captum/attr/_utils/visualization.py +++ b/captum/attr/_utils/visualization.py @@ -1,15 +1,23 @@ #!/usr/bin/env python3 + +# pyre-strict import warnings from enum import Enum -from typing import Any, Iterable, List, Tuple, Union +from typing import Any, Callable, cast, Dict, Iterable, List, Optional, Tuple, Union + +import matplotlib import numpy as np -from matplotlib import pyplot as plt -from matplotlib.colors import LinearSegmentedColormap +import numpy.typing as npt +from matplotlib import cm, colors, pyplot as plt +from matplotlib.axes import Axes +from matplotlib.collections import LineCollection +from matplotlib.colors import Colormap, LinearSegmentedColormap, Normalize from matplotlib.figure import Figure -from matplotlib.pyplot import axis, figure +from matplotlib.image import AxesImage from mpl_toolkits.axes_grid1 import make_axes_locatable from numpy import ndarray +from torch import Tensor try: from IPython.display import display, HTML @@ -27,6 +35,12 @@ class ImageVisualizationMethod(Enum): alpha_scaling = 5 +class TimeseriesVisualizationMethod(Enum): + overlay_individual = 1 + overlay_combined = 2 + colored_graph = 3 + + class VisualizeSign(Enum): positive = 1 absolute_value = 2 @@ -34,23 +48,26 @@ class VisualizeSign(Enum): all = 4 -def _prepare_image(attr_visual: ndarray): +def _prepare_image(attr_visual: npt.NDArray) -> npt.NDArray: return np.clip(attr_visual.astype(int), 0, 255) -def _normalize_scale(attr: ndarray, scale_factor: float): +def _normalize_scale(attr: npt.NDArray, scale_factor: float) -> npt.NDArray: assert scale_factor != 0, "Cannot normalize by scale factor = 0" if abs(scale_factor) < 1e-5: warnings.warn( "Attempting to normalize by value approximately 0, visualized results" "may be misleading. This likely means that attribution values are all" - "close to 0." + "close to 0.", + stacklevel=2, ) attr_norm = attr / scale_factor return np.clip(attr_norm, -1, 1) -def _cumulative_sum_threshold(values: ndarray, percentile: Union[int, float]): +def _cumulative_sum_threshold( + values: npt.NDArray, percentile: Union[int, float] +) -> float: # given values should be non-negative assert percentile >= 0 and percentile <= 100, ( "Percentile for thresholding must be " "between 0 and 100 inclusive." @@ -58,46 +75,177 @@ def _cumulative_sum_threshold(values: ndarray, percentile: Union[int, float]): sorted_vals = np.sort(values.flatten()) cum_sums = np.cumsum(sorted_vals) threshold_id = np.where(cum_sums >= cum_sums[-1] * 0.01 * percentile)[0][0] + # pyre-fixme[7]: Expected `float` but got `ndarray[typing.Any, dtype[typing.Any]]`. return sorted_vals[threshold_id] -def _normalize_image_attr( - attr: ndarray, sign: str, outlier_perc: Union[int, float] = 2 -): - attr_combined = np.sum(attr, axis=2) +def _normalize_attr( + attr: npt.NDArray, + sign: str, + outlier_perc: Union[int, float] = 2, + reduction_axis: Optional[int] = None, +) -> npt.NDArray: + attr_combined = attr + if reduction_axis is not None: + attr_combined = np.sum(attr, axis=reduction_axis) + # Choose appropriate signed values and rescale, removing given outlier percentage. - if VisualizeSign[sign] == VisualizeSign.all: - threshold = _cumulative_sum_threshold(np.abs(attr_combined), 100 - outlier_perc) - elif VisualizeSign[sign] == VisualizeSign.positive: + if VisualizeSign[sign].value == VisualizeSign.all.value: + threshold = _cumulative_sum_threshold( + np.abs(attr_combined), 100.0 - outlier_perc + ) + elif VisualizeSign[sign].value == VisualizeSign.positive.value: attr_combined = (attr_combined > 0) * attr_combined - threshold = _cumulative_sum_threshold(attr_combined, 100 - outlier_perc) - elif VisualizeSign[sign] == VisualizeSign.negative: + threshold = _cumulative_sum_threshold(attr_combined, 100.0 - outlier_perc) + elif VisualizeSign[sign].value == VisualizeSign.negative.value: attr_combined = (attr_combined < 0) * attr_combined threshold = -1 * _cumulative_sum_threshold( - np.abs(attr_combined), 100 - outlier_perc + np.abs(attr_combined), 100.0 - outlier_perc ) - elif VisualizeSign[sign] == VisualizeSign.absolute_value: + elif VisualizeSign[sign].value == VisualizeSign.absolute_value.value: attr_combined = np.abs(attr_combined) - threshold = _cumulative_sum_threshold(attr_combined, 100 - outlier_perc) + threshold = _cumulative_sum_threshold(attr_combined, 100.0 - outlier_perc) else: raise AssertionError("Visualize Sign type is not valid.") return _normalize_scale(attr_combined, threshold) +def _create_default_plot( + plt_fig_axis: Optional[Tuple[Figure, Union[Axes, List[Axes]]]], + use_pyplot: bool, + fig_size: Tuple[int, int], + **kwargs: Any, +) -> Tuple[Figure, Union[Axes, List[Axes]]]: + # Create plot if figure, axis not provided + if plt_fig_axis is not None: + plt_fig, plt_axis = plt_fig_axis + else: + if use_pyplot: + plt_fig, plt_axis = plt.subplots(figsize=fig_size, **kwargs) + else: + plt_fig = Figure(figsize=fig_size) + plt_axis = plt_fig.subplots(**kwargs) + return plt_fig, plt_axis + # Figure.subplots returns Axes or array of Axes + + +def _initialize_cmap_and_vmin_vmax( + sign: str, +) -> Tuple[Union[str, Colormap], float, float]: + if VisualizeSign[sign].value == VisualizeSign.all.value: + default_cmap: Union[str, LinearSegmentedColormap] = ( + LinearSegmentedColormap.from_list("RdWhGn", ["red", "white", "green"]) + ) + vmin, vmax = -1, 1 + elif VisualizeSign[sign].value == VisualizeSign.positive.value: + default_cmap = "Greens" + vmin, vmax = 0, 1 + elif VisualizeSign[sign].value == VisualizeSign.negative.value: + default_cmap = "Reds" + vmin, vmax = 0, 1 + elif VisualizeSign[sign].value == VisualizeSign.absolute_value.value: + default_cmap = "Blues" + vmin, vmax = 0, 1 + else: + raise AssertionError("Visualize Sign type is not valid.") + return default_cmap, vmin, vmax + + +def _visualize_original_image( + plt_axis: Axes, + original_image: Optional[npt.NDArray], + **kwargs: Any, +) -> None: + assert ( + original_image is not None + ), "Original image expected for original_image method." + if len(original_image.shape) > 2 and original_image.shape[2] == 1: + original_image = np.squeeze(original_image, axis=2) + plt_axis.imshow(original_image) + + +def _visualize_heat_map( + plt_axis: Axes, + norm_attr: npt.NDArray, + cmap: Union[str, Colormap], + vmin: float, + vmax: float, + **kwargs: Any, +) -> AxesImage: + heat_map = plt_axis.imshow(norm_attr, cmap=cmap, vmin=vmin, vmax=vmax) + return heat_map + + +def _visualize_blended_heat_map( + plt_axis: Axes, + original_image: npt.NDArray, + norm_attr: npt.NDArray, + cmap: Union[str, Colormap], + vmin: float, + vmax: float, + alpha_overlay: float, + **kwargs: Any, +) -> AxesImage: + assert ( + original_image is not None + ), "Original Image expected for blended_heat_map method." + plt_axis.imshow(np.mean(original_image, axis=2), cmap="gray") + heat_map = plt_axis.imshow( + norm_attr, cmap=cmap, vmin=vmin, vmax=vmax, alpha=alpha_overlay + ) + return heat_map + + +def _visualize_masked_image( + plt_axis: Axes, + sign: str, + original_image: npt.NDArray, + norm_attr: npt.NDArray, + **kwargs: Any, +) -> None: + assert VisualizeSign[sign].value != VisualizeSign.all.value, ( + "Cannot display masked image with both positive and negative " + "attributions, choose a different sign option." + ) + plt_axis.imshow(_prepare_image(original_image * np.expand_dims(norm_attr, 2))) + + +def _visualize_alpha_scaling( + plt_axis: Axes, + sign: str, + original_image: npt.NDArray, + norm_attr: npt.NDArray, + **kwargs: Any, +) -> None: + assert VisualizeSign[sign].value != VisualizeSign.all.value, ( + "Cannot display alpha scaling with both positive and negative " + "attributions, choose a different sign option." + ) + plt_axis.imshow( + np.concatenate( + [ + original_image, + _prepare_image(np.expand_dims(norm_attr, 2) * 255), + ], + axis=2, + ) + ) + + def visualize_image_attr( - attr: ndarray, - original_image: Union[None, ndarray] = None, + attr: npt.NDArray, + original_image: Optional[npt.NDArray] = None, method: str = "heat_map", sign: str = "absolute_value", - plt_fig_axis: Union[None, Tuple[figure, axis]] = None, + plt_fig_axis: Optional[Tuple[Figure, Axes]] = None, outlier_perc: Union[int, float] = 2, - cmap: Union[None, str] = None, + cmap: Optional[Union[str, Colormap]] = None, alpha_overlay: float = 0.5, show_colorbar: bool = False, - title: Union[None, str] = None, + title: Optional[str] = None, fig_size: Tuple[int, int] = (6, 6), use_pyplot: bool = True, -): +) -> Tuple[Figure, Axes]: r""" Visualizes attribution for a given image by normalizing attribution values of the desired sign (positive, negative, absolute value, or all) and displaying @@ -105,18 +253,18 @@ def visualize_image_attr( Args: - attr (numpy.array): Numpy array corresponding to attributions to be + attr (numpy.ndarray): Numpy array corresponding to attributions to be visualized. Shape must be in the form (H, W, C), with channels as last dimension. Shape must also match that of the original image if provided. - original_image (numpy.array, optional): Numpy array corresponding to + original_image (numpy.ndarray, optional): Numpy array corresponding to original image. Shape must be in the form (H, W, C), with channels as the last dimension. Image can be provided either with float values in range 0-1 or int values between 0-255. This is a necessary argument for any visualization method which utilizes the original image. Default: None - method (string, optional): Chosen method for visualizing attribution. + method (str, optional): Chosen method for visualizing attribution. Supported options are: 1. `heat_map` - Display heat map of chosen attributions @@ -132,8 +280,9 @@ def visualize_image_attr( 5. `alpha_scaling` - Sets alpha channel of each pixel to be equal to normalized attribution value. + Default: `heat_map` - sign (string, optional): Chosen sign of attributions to visualize. Supported + sign (str, optional): Chosen sign of attributions to visualize. Supported options are: 1. `positive` - Displays only positive pixel attributions. @@ -147,6 +296,7 @@ def visualize_image_attr( values. This is not supported for `masked_image` or `alpha_scaling` modes, since signed information cannot be represented in these modes. + Default: `absolute_value` plt_fig_axis (tuple, optional): Tuple of matplotlib.pyplot.figure and axis on which to visualize. If None is provided, then a new figure @@ -159,7 +309,7 @@ def visualize_image_attr( and scale value are computed using absolute value of attributions. Default: 2 - cmap (string, optional): String corresponding to desired colormap for + cmap (str, optional): String corresponding to desired colormap for heatmap visualization. This defaults to "Reds" for negative sign, "Blues" for absolute value, "Greens" for positive sign, and a spectrum from red to green for all. Note that this @@ -169,18 +319,18 @@ def visualize_image_attr( `blended_heat_map` visualization mode, which overlays the heat map over the greyscaled original image. Default: 0.5 - show_colorbar (boolean, optional): Displays colorbar for heatmap below + show_colorbar (bool, optional): Displays colorbar for heatmap below the visualization. If given method does not use a heatmap, then a colormap axis is created and hidden. This is necessary for appropriate alignment when visualizing multiple plots, some with colorbars and some without. Default: False - title (string, optional): Title string for plot. If None, no title is + title (str, optional): Title string for plot. If None, no title is set. Default: None fig_size (tuple, optional): Size of figure created. Default: (6,6) - use_pyplot (boolean, optional): If true, uses pyplot to create and show + use_pyplot (bool, optional): If true, uses pyplot to create and show figure and displays the figure after creating. If False, uses Matplotlib object oriented API and simply returns a figure object without showing. @@ -208,95 +358,62 @@ def visualize_image_attr( >>> # Displays blended heat map visualization of computed attributions. >>> _ = visualize_image_attr(attribution, orig_image, "blended_heat_map") """ - # Create plot if figure, axis not provided - if plt_fig_axis is not None: - plt_fig, plt_axis = plt_fig_axis - else: - if use_pyplot: - plt_fig, plt_axis = plt.subplots(figsize=fig_size) - else: - plt_fig = Figure(figsize=fig_size) - plt_axis = plt_fig.subplots() + plt_fig, plt_axis = _create_default_plot(plt_fig_axis, use_pyplot, fig_size) + if isinstance(plt_axis, list): + # To ensure plt_axis is always a single axis, not a list of axes. + plt_axis = plt_axis[0] if original_image is not None: if np.max(original_image) <= 1.0: original_image = _prepare_image(original_image * 255) - else: - assert ( - ImageVisualizationMethod[method] == ImageVisualizationMethod.heat_map - ), "Original Image must be provided for any visualization other than heatmap." + elif ( + ImageVisualizationMethod[method].value + != ImageVisualizationMethod.heat_map.value + ): + raise ValueError( + "Original Image must be provided for " + "any visualization other than heatmap." + ) # Remove ticks and tick labels from plot. - plt_axis.xaxis.set_ticks_position("none") - plt_axis.yaxis.set_ticks_position("none") + if plt_axis.xaxis is not None: + plt_axis.xaxis.set_ticks_position("none") + if plt_axis.yaxis is not None: + plt_axis.yaxis.set_ticks_position("none") plt_axis.set_yticklabels([]) plt_axis.set_xticklabels([]) - plt_axis.grid(b=False) - - heat_map = None - # Show original image - if ImageVisualizationMethod[method] == ImageVisualizationMethod.original_image: - if len(original_image.shape) > 2 and original_image.shape[2] == 1: - original_image = np.squeeze(original_image, axis=2) - plt_axis.imshow(original_image) + plt_axis.grid(visible=False) + + heat_map: Optional[AxesImage] = None + + visualization_methods: Dict[str, Callable[..., Union[None, AxesImage]]] = { + "heat_map": _visualize_heat_map, + "blended_heat_map": _visualize_blended_heat_map, + "masked_image": _visualize_masked_image, + "alpha_scaling": _visualize_alpha_scaling, + "original_image": _visualize_original_image, + } + # Choose appropriate signed attributions and normalize. + norm_attr = _normalize_attr(attr, sign, outlier_perc, reduction_axis=2) + + # Set default colormap and bounds based on sign. + default_cmap, vmin, vmax = _initialize_cmap_and_vmin_vmax(sign) + cmap = cmap if cmap is not None else default_cmap + + kwargs = { + "plt_axis": plt_axis, + "original_image": original_image, + "sign": sign, + "cmap": cmap, + "alpha_overlay": alpha_overlay, + "vmin": vmin, + "vmax": vmax, + "norm_attr": norm_attr, + } + if method in visualization_methods: + heat_map = visualization_methods[method](**kwargs) else: - # Choose appropriate signed attributions and normalize. - norm_attr = _normalize_image_attr(attr, sign, outlier_perc) - - # Set default colormap and bounds based on sign. - if VisualizeSign[sign] == VisualizeSign.all: - default_cmap = LinearSegmentedColormap.from_list( - "RdWhGn", ["red", "white", "green"] - ) - vmin, vmax = -1, 1 - elif VisualizeSign[sign] == VisualizeSign.positive: - default_cmap = "Greens" - vmin, vmax = 0, 1 - elif VisualizeSign[sign] == VisualizeSign.negative: - default_cmap = "Reds" - vmin, vmax = 0, 1 - elif VisualizeSign[sign] == VisualizeSign.absolute_value: - default_cmap = "Blues" - vmin, vmax = 0, 1 - else: - raise AssertionError("Visualize Sign type is not valid.") - cmap = cmap if cmap is not None else default_cmap - - # Show appropriate image visualization. - if ImageVisualizationMethod[method] == ImageVisualizationMethod.heat_map: - heat_map = plt_axis.imshow(norm_attr, cmap=cmap, vmin=vmin, vmax=vmax) - elif ( - ImageVisualizationMethod[method] - == ImageVisualizationMethod.blended_heat_map - ): - plt_axis.imshow(np.mean(original_image, axis=2), cmap="gray") - heat_map = plt_axis.imshow( - norm_attr, cmap=cmap, vmin=vmin, vmax=vmax, alpha=alpha_overlay - ) - elif ImageVisualizationMethod[method] == ImageVisualizationMethod.masked_image: - assert VisualizeSign[sign] != VisualizeSign.all, ( - "Cannot display masked image with both positive and negative " - "attributions, choose a different sign option." - ) - plt_axis.imshow( - _prepare_image(original_image * np.expand_dims(norm_attr, 2)) - ) - elif ImageVisualizationMethod[method] == ImageVisualizationMethod.alpha_scaling: - assert VisualizeSign[sign] != VisualizeSign.all, ( - "Cannot display alpha scaling with both positive and negative " - "attributions, choose a different sign option." - ) - plt_axis.imshow( - np.concatenate( - [ - original_image, - _prepare_image(np.expand_dims(norm_attr, 2) * 255), - ], - axis=2, - ) - ) - else: - raise AssertionError("Visualize Method type is not valid.") + raise AssertionError("Visualize Method type is not valid.") # Add colorbar. If given method is not a heatmap and no colormap is relevant, # then a colormap axis is created and hidden. This is necessary for appropriate @@ -319,44 +436,44 @@ def visualize_image_attr( def visualize_image_attr_multiple( - attr: ndarray, - original_image: Union[None, ndarray], + attr: npt.NDArray, + original_image: Union[None, npt.NDArray], methods: List[str], signs: List[str], - titles: Union[None, List[str]] = None, + titles: Optional[List[str]] = None, fig_size: Tuple[int, int] = (8, 6), use_pyplot: bool = True, **kwargs: Any, -): +) -> Tuple[Figure, Union[Axes, List[Axes]]]: r""" Visualizes attribution using multiple visualization methods displayed in a 1 x k grid, where k is the number of desired visualizations. Args: - attr (numpy.array): Numpy array corresponding to attributions to be + attr (numpy.ndarray): Numpy array corresponding to attributions to be visualized. Shape must be in the form (H, W, C), with channels as last dimension. Shape must also match that of the original image if provided. - original_image (numpy.array, optional): Numpy array corresponding to + original_image (numpy.ndarray, optional): Numpy array corresponding to original image. Shape must be in the form (H, W, C), with channels as the last dimension. Image can be provided either with values in range 0-1 or 0-255. This is a necessary argument for any visualization method which utilizes the original image. - methods (list of strings): List of strings of length k, defining method + methods (list[str]): List of strings of length k, defining method for each visualization. Each method must be a valid string argument for method to visualize_image_attr. - signs (list of strings): List of strings of length k, defining signs for + signs (list[str]): List of strings of length k, defining signs for each visualization. Each sign must be a valid string argument for sign to visualize_image_attr. - titles (list of strings, optional): List of strings of length k, providing + titles (list[str], optional): List of strings of length k, providing a title string for each plot. If None is provided, no titles are added to subplots. Default: None fig_size (tuple, optional): Size of figure created. Default: (8, 6) - use_pyplot (boolean, optional): If true, uses pyplot to create and show + use_pyplot (bool, optional): If true, uses pyplot to create and show figure and displays the figure after creating. If False, uses Matplotlib object oriented API and simply returns a figure object without showing. @@ -399,11 +516,20 @@ def visualize_image_attr_multiple( plt_fig = plt.figure(figsize=fig_size) else: plt_fig = Figure(figsize=fig_size) - plt_axis = plt_fig.subplots(1, len(methods)) + plt_axis_np = plt_fig.subplots(1, len(methods), squeeze=True) + plt_axis: Union[Axes, List[Axes]] + plt_axis_list: List[Axes] = [] # When visualizing one if len(methods) == 1: - plt_axis = [plt_axis] + plt_axis = cast(Axes, plt_axis_np) + plt_axis_list = [plt_axis] + # Figure.subplots returns Axes or array of Axes + else: + # https://github.com/numpy/numpy/issues/24738 + plt_axis = cast(List[Axes], cast(npt.NDArray, plt_axis_np).tolist()) + plt_axis_list = plt_axis + # Figure.subplots returns Axes or array of Axes for i in range(len(methods)): visualize_image_attr( @@ -411,7 +537,7 @@ def visualize_image_attr_multiple( original_image=original_image, method=methods[i], sign=signs[i], - plt_fig_axis=(plt_fig, plt_axis[i]), + plt_fig_axis=(plt_fig, plt_axis_list[i]), use_pyplot=False, title=titles[i] if titles else None, **kwargs, @@ -422,6 +548,363 @@ def visualize_image_attr_multiple( return plt_fig, plt_axis +def _plot_attrs_as_axvspan( + attr_vals: npt.NDArray, + x_vals: npt.NDArray, + ax: Axes, + x_values: npt.NDArray, + cmap: LinearSegmentedColormap, + cm_norm: Normalize, + alpha_overlay: float, +) -> None: + half_col_width = (x_values[1] - x_values[0]) / 2.0 + for icol, col_center in enumerate(x_vals): + left = col_center - half_col_width + right = col_center + half_col_width + ax.axvspan( + xmin=left, + xmax=right, + facecolor=(cmap(cm_norm(attr_vals[icol]))), # type: ignore + edgecolor=None, + alpha=alpha_overlay, + ) + + +def _visualize_overlay_individual( + num_channels: int, + plt_axis_list: npt.NDArray, + x_values: npt.NDArray, + data: npt.NDArray, + channel_labels: List[str], + norm_attr: npt.NDArray, + cmap: LinearSegmentedColormap, + cm_norm: Normalize, + alpha_overlay: float, + **kwargs: Any, +) -> None: + # helper method for visualize_timeseries_attr + pyplot_kwargs = kwargs.get("pyplot_kwargs", {}) + + for chan in range(num_channels): + plt_axis_list[chan].plot(x_values, data[chan, :], **pyplot_kwargs) + if channel_labels is not None: + plt_axis_list[chan].set_ylabel(channel_labels[chan]) + + _plot_attrs_as_axvspan( + norm_attr[chan], + x_values, + plt_axis_list[chan], + x_values, + cmap, + cm_norm, + alpha_overlay, + ) + + plt.subplots_adjust(hspace=0) + pass + + +def _visualize_overlay_combined( + num_channels: int, + plt_axis_list: npt.NDArray, + x_values: npt.NDArray, + data: npt.NDArray, + channel_labels: List[str], + norm_attr: npt.NDArray, + cmap: LinearSegmentedColormap, + cm_norm: Normalize, + alpha_overlay: float, + **kwargs: Any, +) -> None: + pyplot_kwargs = kwargs.get("pyplot_kwargs", {}) + + cycler = plt.cycler("color", matplotlib.colormaps["Dark2"].colors) # type: ignore + plt_axis_list[0].set_prop_cycle(cycler) + + for chan in range(num_channels): + label = channel_labels[chan] if channel_labels else None + plt_axis_list[0].plot(x_values, data[chan, :], label=label, **pyplot_kwargs) + + _plot_attrs_as_axvspan( + norm_attr, + x_values, + plt_axis_list[0], + x_values, + cmap, + cm_norm, + alpha_overlay, + ) + + plt_axis_list[0].legend(loc="best") + + +def _visualize_colored_graph( + num_channels: int, + plt_axis_list: npt.NDArray, + x_values: npt.NDArray, + data: npt.NDArray, + channel_labels: List[str], + norm_attr: npt.NDArray, + cmap: LinearSegmentedColormap, + cm_norm: Normalize, + alpha_overlay: float, + **kwargs: Any, +) -> None: + # helper method for visualize_timeseries_attr + pyplot_kwargs = kwargs.get("pyplot_kwargs", {}) + for chan in range(num_channels): + points = np.array([x_values, data[chan, :]]).T.reshape(-1, 1, 2) + segments = np.concatenate([points[:-1], points[1:]], axis=1) + + lc = LineCollection(segments, cmap=cmap, norm=cm_norm, **pyplot_kwargs) + lc.set_array(norm_attr[chan, :]) + plt_axis_list[chan].add_collection(lc) + plt_axis_list[chan].set_ylim( + 1.2 * np.min(data[chan, :]), 1.2 * np.max(data[chan, :]) + ) + if channel_labels is not None: + plt_axis_list[chan].set_ylabel(channel_labels[chan]) + + plt.subplots_adjust(hspace=0) + + +def visualize_timeseries_attr( + attr: npt.NDArray, + data: npt.NDArray, + x_values: Optional[npt.NDArray] = None, + method: str = "overlay_individual", + sign: str = "absolute_value", + channel_labels: Optional[List[str]] = None, + channels_last: bool = True, + plt_fig_axis: Optional[Tuple[Figure, Union[Axes, List[Axes]]]] = None, + outlier_perc: Union[int, float] = 2, + cmap: Optional[Union[str, Colormap]] = None, + alpha_overlay: float = 0.7, + show_colorbar: bool = False, + title: Optional[str] = None, + fig_size: Tuple[int, int] = (6, 6), + use_pyplot: bool = True, + **pyplot_kwargs: Any, +) -> Tuple[Figure, Union[Axes, List[Axes]]]: + r""" + Visualizes attribution for a given timeseries data by normalizing + attribution values of the desired sign (positive, negative, absolute value, + or all) and displaying them using the desired mode in a matplotlib figure. + + Args: + + attr (numpy.ndarray): Numpy array corresponding to attributions to be + visualized. Shape must be in the form (N, C) with channels + as last dimension, unless `channels_last` is set to True. + Shape must also match that of the timeseries data. + data (numpy.ndarray): Numpy array corresponding to the original, + equidistant timeseries data. Shape must be in the form + (N, C) with channels as last dimension, unless + `channels_last` is set to true. + x_values (numpy.ndarray, optional): Numpy array corresponding to the + points on the x-axis. Shape must be in the form (N, ). If + not provided, integers from 0 to N-1 are used. + Default: None + method (str, optional): Chosen method for visualizing attributions + overlaid onto data. Supported options are: + + 1. `overlay_individual` - Plot each channel individually in + a separate panel, and overlay the attributions for each + channel as a heat map. The `alpha_overlay` parameter + controls the alpha of the heat map. + + 2. `overlay_combined` - Plot all channels in the same panel, + and overlay the average attributions as a heat map. + + 3. `colored_graph` - Plot each channel in a separate panel, + and color the graphs according to the attribution + values. Works best with color maps that does not contain + white or very bright colors. + + Default: `overlay_individual` + sign (str, optional): Chosen sign of attributions to visualize. + Supported options are: + + 1. `positive` - Displays only positive pixel attributions. + + 2. `absolute_value` - Displays absolute value of + attributions. + + 3. `negative` - Displays only negative pixel attributions. + + 4. `all` - Displays both positive and negative attribution + values. + + Default: `absolute_value` + channel_labels (list[str], optional): List of labels + corresponding to each channel in data. + Default: None + channels_last (bool, optional): If True, data is expected to have + channels as the last dimension, i.e. (N, C). If False, data + is expected to have channels first, i.e. (C, N). + Default: True + plt_fig_axis (tuple, optional): Tuple of matplotlib.pyplot.figure and axis + on which to visualize. If None is provided, then a new figure + and axis are created. + Default: None + outlier_perc (float or int, optional): Top attribution values which + correspond to a total of outlier_perc percentage of the + total attribution are set to 1 and scaling is performed + using the minimum of these values. For sign=`all`, outliers + and scale value are computed using absolute value of + attributions. + Default: 2 + cmap (str, optional): String corresponding to desired colormap for + heatmap visualization. This defaults to "Reds" for negative + sign, "Blues" for absolute value, "Greens" for positive sign, + and a spectrum from red to green for all. Note that this + argument is only used for visualizations displaying heatmaps. + Default: None + alpha_overlay (float, optional): Alpha to set for heatmap when using + `blended_heat_map` visualization mode, which overlays the + heat map over the greyscaled original image. + Default: 0.7 + show_colorbar (bool): Displays colorbar for heat map below + the visualization. + title (str, optional): Title string for plot. If None, no title is + set. + Default: None + fig_size (tuple, optional): Size of figure created. + Default: (6,6) + use_pyplot (bool): If true, uses pyplot to create and show + figure and displays the figure after creating. If False, + uses Matplotlib object oriented API and simply returns a + figure object without showing. + Default: True. + pyplot_kwargs: Keyword arguments forwarded to plt.plot, for example + `linewidth=3`, `color='black'`, etc + + Returns: + 2-element tuple of **figure**, **axis**: + - **figure** (*matplotlib.pyplot.figure*): + Figure object on which visualization + is created. If plt_fig_axis argument is given, this is the + same figure provided. + - **axis** (*matplotlib.pyplot.axis*): + Axis object on which visualization + is created. If plt_fig_axis argument is given, this is the + same axis provided. + + Examples:: + + >>> # Classifier takes input of shape (batch, length, channels) + >>> model = Classifier() + >>> dl = DeepLift(model) + >>> attribution = dl.attribute(data, target=0) + >>> # Pick the first sample and plot each channel in data in a separate + >>> # panel, with attributions overlaid + >>> visualize_timeseries_attr(attribution[0], data[0], "overlay_individual") + """ + + # Check input dimensions + assert len(attr.shape) == 2, "Expected attr of shape (N, C), got {}".format( + attr.shape + ) + assert len(data.shape) == 2, "Expected data of shape (N, C), got {}".format( + attr.shape + ) + + # Convert to channels-first + if channels_last: + attr = np.transpose(attr) + data = np.transpose(data) + + num_channels = attr.shape[0] + timeseries_length = attr.shape[1] + + if num_channels > timeseries_length: + warnings.warn( + "Number of channels ({}) greater than time series length ({}), " + "please verify input format".format(num_channels, timeseries_length), + stacklevel=2, + ) + + num_subplots = num_channels + if ( + TimeseriesVisualizationMethod[method].value + == TimeseriesVisualizationMethod.overlay_combined.value + ): + num_subplots = 1 + attr = np.sum(attr, axis=0) # Merge attributions across channels + + if x_values is not None: + assert ( + x_values.shape[0] == timeseries_length + ), "x_values must have same length as data" + else: + x_values = np.arange(timeseries_length) + + # Create plot if figure, axis not provided + plt_fig, plt_axis = _create_default_plot( + plt_fig_axis, use_pyplot, fig_size, nrows=num_subplots, sharex=True + ) + + if not isinstance(plt_axis, ndarray): + plt_axis_list = np.array([plt_axis]) + else: + plt_axis_list = plt_axis + + norm_attr = _normalize_attr(attr, sign, outlier_perc, reduction_axis=None) + + # Set default colormap and bounds based on sign. + default_cmap, vmin, vmax = _initialize_cmap_and_vmin_vmax(sign) + cmap = cmap if cmap is not None else default_cmap + cmap = cm.get_cmap(cmap) # type: ignore + cm_norm = colors.Normalize(vmin, vmax) + + visualization_methods: Dict[str, Callable[..., Union[None, AxesImage]]] = { + "overlay_individual": _visualize_overlay_individual, + "overlay_combined": _visualize_overlay_combined, + "colored_graph": _visualize_colored_graph, + } + kwargs = { + "num_channels": num_channels, + "plt_axis_list": plt_axis_list, + "x_values": x_values, + "data": data, + "channel_labels": channel_labels, + "norm_attr": norm_attr, + "cmap": cmap, + "cm_norm": cm_norm, + "alpha_overlay": alpha_overlay, + "pyplot_kwargs": pyplot_kwargs, + } + if method in visualization_methods: + visualization_methods[method](**kwargs) + else: + raise AssertionError("Invalid visualization method: {}".format(method)) + + plt.xlim([x_values[0], x_values[-1]]) + + if show_colorbar: + axis_separator = make_axes_locatable(plt_axis_list[-1]) + colorbar_axis = axis_separator.append_axes("bottom", size="5%", pad=0.4) + colorbar_alpha = alpha_overlay + if ( + TimeseriesVisualizationMethod[method] + == TimeseriesVisualizationMethod.colored_graph + ): + colorbar_alpha = 1.0 + plt_fig.colorbar( + cm.ScalarMappable(cm_norm, cmap), + orientation="horizontal", + cax=colorbar_axis, + alpha=colorbar_alpha, + ) + if title: + plt_axis_list[0].set_title(title) + + if use_pyplot: + plt.show() + + return plt_fig, plt_axis + + # These visualization methods are for text and are partially copied from # experiments conducted by Davide Testuggine at Facebook. @@ -430,6 +913,7 @@ class VisualizationDataRecord: r""" A data record for storing attribution relevant information """ + __slots__ = [ "word_attributions", "pred_prob", @@ -443,26 +927,34 @@ class VisualizationDataRecord: def __init__( self, - word_attributions, - pred_prob, - pred_class, - true_class, - attr_class, - attr_score, - raw_input_ids, - convergence_score, + word_attributions: Tensor, + pred_prob: float, + pred_class: int, + true_class: int, + attr_class: int, + attr_score: float, + raw_input_ids: List[str], + convergence_score: float, ) -> None: - self.word_attributions = word_attributions - self.pred_prob = pred_prob - self.pred_class = pred_class - self.true_class = true_class - self.attr_class = attr_class - self.attr_score = attr_score - self.raw_input_ids = raw_input_ids - self.convergence_score = convergence_score + + self.word_attributions: Tensor = word_attributions + + self.pred_prob: float = pred_prob + + self.pred_class: int = pred_class + + self.true_class: int = true_class + + self.attr_class: int = attr_class + + self.attr_score: float = attr_score + + self.raw_input_ids: List[str] = raw_input_ids + + self.convergence_score: float = convergence_score -def _get_color(attr): +def _get_color(attr: int) -> str: # clip values to prevent CSS errors (Values should be from [-1,1]) attr = max(-1, min(1, attr)) if attr > 0: @@ -476,17 +968,19 @@ def _get_color(attr): return "hsl({}, {}%, {}%)".format(hue, sat, lig) -def format_classname(classname): +# pyre-fixme[2]: Parameter must be annotated. +def format_classname(classname) -> str: return '{}'.format(classname) -def format_special_tokens(token): +def format_special_tokens(token: str) -> str: if token.startswith("<") and token.endswith(">"): return "#" + token.strip("<>") return token -def format_tooltip(item, text): +# pyre-fixme[2]: Parameter must be annotated. +def format_tooltip(item, text) -> str: return '
{item}\ {text}\
'.format( @@ -494,7 +988,8 @@ def format_tooltip(item, text): ) -def format_word_importances(words, importances): +# pyre-fixme[2]: Parameter must be annotated. +def format_word_importances(words, importances) -> str: if importances is None or len(importances) == 0: return "" assert len(words) <= len(importances) diff --git a/captum/concept/__init__.py b/captum/concept/__init__.py index 0a1eee9e11..d821a664da 100644 --- a/captum/concept/__init__.py +++ b/captum/concept/__init__.py @@ -1,5 +1,16 @@ #!/usr/bin/env python3 -from captum.concept._core.cav import CAV # noqa -from captum.concept._core.concept import Concept, ConceptInterpreter # noqa -from captum.concept._core.tcav import TCAV # noqa -from captum.concept._utils.classifier import Classifier, DefaultClassifier # noqa + +# pyre-strict +from captum.concept._core.cav import CAV +from captum.concept._core.concept import Concept, ConceptInterpreter +from captum.concept._core.tcav import TCAV +from captum.concept._utils.classifier import Classifier, DefaultClassifier + +__all__ = [ + "CAV", + "Concept", + "ConceptInterpreter", + "TCAV", + "Classifier", + "DefaultClassifier", +] diff --git a/captum/concept/_core/cav.py b/captum/concept/_core/cav.py index 39aa9fba85..b3cb9ef124 100644 --- a/captum/concept/_core/cav.py +++ b/captum/concept/_core/cav.py @@ -1,8 +1,12 @@ #!/usr/bin/env python3 +# pyre-strict + import os -from typing import Any, Dict, List +from contextlib import AbstractContextManager, nullcontext +from typing import Any, Dict, List, Optional, TYPE_CHECKING +import numpy as np import torch from captum.concept._core.concept import Concept from captum.concept._utils.common import concepts_to_str @@ -14,14 +18,14 @@ class CAV: boundary of a classifier which distinguishes between activation vectors produced by different concepts. More details can be found in the paper: - https://arxiv.org/pdf/1711.11279.pdf + https://arxiv.org/abs/1711.11279 """ def __init__( self, concepts: List[Concept], layer: str, - stats: Dict[str, Any] = None, + stats: Optional[Dict[str, Any]] = None, save_path: str = "./cav/", model_id: str = "default_model_id", ) -> None: @@ -65,7 +69,7 @@ def assemble_save_path( layer name. model_id (str): A unique model identifier associated with input `layer` and `concepts` - concepts (list(Concept)): A list of concepts that are concatenated + concepts (list[Concept]): A list of concepts that are concatenated together and used as a concept key using their ids. These concept ids are retrieved from TCAV s`Concept` objects. layer (str): The name of the layer for which the activations are @@ -87,7 +91,7 @@ def assemble_save_path( file_name = concepts_to_str(concepts) + "-" + layer + ".pkl" return os.path.join(path, model_id, file_name) - def save(self): + def save(self) -> None: r""" Saves a dictionary of the CAV computed values into a pickle file in the location returned by the "assemble_save_path" static methods. The @@ -134,7 +138,9 @@ def create_cav_dir_if_missing(save_path: str, model_id: str) -> None: os.makedirs(cav_model_id_path) @staticmethod - def load(cavs_path: str, model_id: str, concepts: List[Concept], layer: str): + def load( + cavs_path: str, model_id: str, concepts: List[Concept], layer: str + ) -> Optional["CAV"]: r""" Loads CAV dictionary from a pickle file for given input `layer` and `concepts`. @@ -146,7 +152,7 @@ def load(cavs_path: str, model_id: str, concepts: List[Concept], layer: str): model_id (str): A unique model identifier associated with the CAVs. There exist a folder named `model_id` under `cavs_path` path. The CAVs are loaded from this folder. - concepts (list[Concept]): A List of concepts for which + concepts (list[Concept]): A List of concepts for which we would like to load the cavs. layer (str): The layer name. Ex.: "inception4c". In case of nested layers we use dots to specify the depth / hierarchy. @@ -162,7 +168,29 @@ def load(cavs_path: str, model_id: str, concepts: List[Concept], layer: str): cavs_path = CAV.assemble_save_path(cavs_path, model_id, concepts, layer) if os.path.exists(cavs_path): - save_dict = torch.load(cavs_path) + # Necessary for Python >=3.7 and <3.9! + if TYPE_CHECKING: + ctx: AbstractContextManager[None, None] + else: + ctx: AbstractContextManager + if hasattr(torch.serialization, "safe_globals"): + safe_globals = [ + # pyre-ignore[16]: Module `numpy.core.multiarray` has no attribute + # `_reconstruct` + np.core.multiarray._reconstruct, # type: ignore[attr-defined] + np.ndarray, + np.dtype, + ] + if hasattr(np, "dtypes"): + # pyre-ignore[16]: Module `numpy` has no attribute `dtypes`. + safe_globals.extend([np.dtypes.UInt32DType, np.dtypes.Int32DType]) + ctx = torch.serialization.safe_globals(safe_globals) + else: + # safe globals not in existence in this version of torch yet. Use a + # dummy context manager instead + ctx = nullcontext() + with ctx: + save_dict = torch.load(cavs_path) concept_names = save_dict["concept_names"] concept_ids = save_dict["concept_ids"] diff --git a/captum/concept/_core/concept.py b/captum/concept/_core/concept.py index a550ab8a9d..dfa8e1a807 100644 --- a/captum/concept/_core/concept.py +++ b/captum/concept/_core/concept.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + from typing import Callable, Union import torch @@ -7,7 +9,6 @@ class Concept: - r""" Concepts are human-friendly abstract representations that can be numerically encoded into torch tensors. They can be illustrated as @@ -22,10 +23,9 @@ class Concept: def __init__( self, id: int, name: str, data_iter: Union[None, torch.utils.data.DataLoader] ) -> None: - r""" Args: - id (int): The unique identifier of the concept. + id (int): The unique identifier of the concept. name (str): A unique name of the concept. data_iter (DataLoader): A pytorch DataLoader object that combines a dataset and a sampler, and provides an iterable over a given @@ -35,6 +35,7 @@ def __init__( https://pytorch.org/docs/stable/data.html Example:: + >>> # Creates a Concept object named "striped", with a data_iter >>> # object to iterate over all files in "./concepts/striped" >>> concept_name = "striped" @@ -57,6 +58,7 @@ def __repr__(self) -> str: return "Concept(%r, %r)" % (self.id, self.name) +# pyre-fixme[13]: Attribute `interpret` is never initialized. class ConceptInterpreter: r""" An abstract class that exposes an abstract interpret method @@ -71,6 +73,8 @@ def __init__(self, model: Module) -> None: """ self.model = model + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + # pyre-fixme[13]: Attribute `interpret` is never initialized. interpret: Callable r""" An abstract interpret method that performs concept-based model interpretability @@ -79,7 +83,7 @@ def __init__(self, model: Module) -> None: Args: - inputs (tensor or tuple of tensors): Inputs for which concept-based + inputs (Tensor or tuple[Tensor, ...]): Inputs for which concept-based interpretation scores are computed. It can be provided as a single tensor or a tuple of multiple tensors. If multiple input tensors are provided, the batch size (the first diff --git a/captum/concept/_core/tcav.py b/captum/concept/_core/tcav.py index 6d79ba06ae..ebb053bd29 100644 --- a/captum/concept/_core/tcav.py +++ b/captum/concept/_core/tcav.py @@ -1,7 +1,9 @@ #!/usr/bin/env python3 +# pyre-strict + from collections import defaultdict -from typing import Any, cast, Dict, List, Set, Tuple, Union +from typing import Any, cast, Dict, List, Optional, Set, Tuple, Union import numpy as np import torch @@ -27,7 +29,7 @@ class LabelledDataset(Dataset): It is used to train a classifier in train_tcav """ - def __init__(self, datasets: List[AV.AVDataset], labels: List[int]): + def __init__(self, datasets: List[AV.AVDataset], labels: List[int]) -> None: """ Creates the LabelledDataset given a list of K Datasets, and a length K list of integer labels representing K different concepts. @@ -37,11 +39,13 @@ def __init__(self, datasets: List[AV.AVDataset], labels: List[int]): However, __get_item__ not only returns a batch of activation vectors, but also a batch of labels indicating which concept that batch of activation vectors is associated with. + Args: + datasets (list[Dataset]): The k-th element of datasets is a Dataset representing activation vectors associated with the k-th concept - labels (list[Int]): The k-th element of labels is the integer label + labels (list[int]): The k-th element of labels is the integer label associated with the k-th concept """ assert len(datasets) == len( @@ -51,13 +55,13 @@ def __init__(self, datasets: List[AV.AVDataset], labels: List[int]): from itertools import accumulate offsets = [0] + list(accumulate(map(len, datasets), (lambda x, y: x + y))) - self.length = offsets[-1] + self.length: int = offsets[-1] self.datasets = datasets self.labels = labels - self.lowers = offsets[:-1] - self.uppers = offsets[1:] + self.lowers: List[int] = offsets[:-1] + self.uppers: List[int] = offsets[1:] - def _i_to_k(self, i): + def _i_to_k(self, i: int) -> int: left, right = 0, len(self.uppers) while left < right: @@ -68,17 +72,19 @@ def _i_to_k(self, i): left = mid else: right = mid + return -1 - def __getitem__(self, i): + def __getitem__(self, i: int) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Tensor]: """ Returns a batch of activation vectors, as well as a batch of labels indicating which concept the batch of activation vectors is associated with. - args: + Args: + i (int): which (activation vector, label) batch in the dataset to return - returns: + Returns: inputs (Tensor): i-th batch in Dataset (representing activation vectors) labels (Tensor): labels of i-th batch in Dataset @@ -86,12 +92,18 @@ def __getitem__(self, i): assert i < self.length k = self._i_to_k(i) inputs = self.datasets[k][i - self.lowers[k]] - assert len(inputs.shape) == 2 - - labels = torch.tensor([self.labels[k]] * inputs.size(0), device=inputs.device) + # pyre-fixme[16]: Item `tuple` of `Union[Tensor, Tuple[Tensor, ...]]` has no + # attribute `shape`. + assert len(inputs.shape) == 2 # type: ignore + + # pyre-fixme[16]: Item `tuple` of `Union[Tensor, Tuple[Tensor, ...]]` has no + # attribute `size`. + # pyre-fixme[16]: Item `tuple` of `Union[Tensor, Tuple[Tensor, ...]]` has no + # attribute `device`. + labels = torch.tensor([self.labels[k]] * inputs.size(0), device=inputs.device) # type: ignore # noqa: E501 line too long return inputs, labels - def __len__(self): + def __len__(self) -> int: """ returns the total number of batches in the labelled_dataset """ @@ -99,13 +111,13 @@ def __len__(self): def train_cav( - model_id, + model_id: str, concepts: List[Concept], layers: Union[str, List[str]], classifier: Classifier, save_path: str, - classifier_kwargs: Dict, -) -> Dict[str, Dict[str, CAV]]: + classifier_kwargs: Dict[str, Any], +) -> Dict[str, Dict[str, Optional[CAV]]]: r""" A helper function for parallel CAV computations that can be called from a python process. @@ -113,6 +125,7 @@ def train_cav( Please see the TCAV class documentation for further information. Args: + model_id (str): A unique identifier for the PyTorch model for which we would like to load the layer activations and train a model in order to compute CAVs. @@ -120,7 +133,7 @@ def train_cav( to train a classifier and learn decision boundaries between those concepts for each layer defined in the `layers` argument. - layers (str, list[str]): A list of layer names or a single layer + layers (str or list[str]): A list of layer names or a single layer name that is used to compute the activations of all concept examples per concept and train a classifier using those activations. @@ -142,7 +155,7 @@ def train_cav( """ concepts_key = concepts_to_str(concepts) - cavs: Dict[str, Dict[str, CAV]] = defaultdict() + cavs: Dict[str, Dict[str, Optional[CAV]]] = defaultdict() cavs[concepts_key] = defaultdict() layers = [layers] if isinstance(layers, str) else layers for layer in layers: @@ -155,9 +168,10 @@ def train_cav( labels = [concept.id for concept in concepts] - labelled_dataset = LabelledDataset(cast(List[AV.AVDataset], datasets), labels) + labelled_dataset = LabelledDataset(datasets, labels) - def batch_collate(batch): + # pyre-fixme[2]: Parameter must be annotated. + def batch_collate(batch) -> Tuple[Tensor, Tensor]: inputs, labels = zip(*batch) return torch.cat(inputs), torch.cat(labels) @@ -193,7 +207,8 @@ def batch_collate(batch): model_id, ) # Saving cavs on the disk - cavs[concepts_key][layer].save() + # pyre-fixme[16]: `Optional` has no attribute `save`. + cavs[concepts_key][layer].save() # type: ignore return cavs @@ -203,7 +218,7 @@ class TCAV(ConceptInterpreter): This class implements ConceptInterpreter abstract class using an approach called Testing with Concept Activation Vectors (TCAVs), as described in the paper: - https://arxiv.org/pdf/1711.11279.pdf + https://arxiv.org/abs/1711.11279 TCAV scores for a given layer, a list of concepts and input example are computed using the dot product between prediction's layer @@ -243,17 +258,18 @@ def __init__( model: Module, layers: Union[str, List[str]], model_id: str = "default_model_id", - classifier: Classifier = None, - layer_attr_method: LayerAttribution = None, - attribute_to_layer_input=False, + classifier: Optional[Classifier] = None, + layer_attr_method: Optional[LayerAttribution] = None, + attribute_to_layer_input: bool = False, save_path: str = "./cav/", **classifier_kwargs: Any, ) -> None: r""" Args: + model (Module): An instance of pytorch model that is used to compute layer activations and attributions. - layers (str, list[str]): A list of layer name(s) that are + layers (str or list[str]): A list of layer name(s) that are used for computing concept activations (cavs) and layer attributions. model_id (str, optional): A unique identifier for the PyTorch `model` @@ -275,7 +291,7 @@ def __init__( attribution algorithm. save_path (str, optional): The path for storing CAVs and Activation Vectors (AVs). - classifier_kwargs (any, optional): Additional arguments such as + classifier_kwargs (Any, optional): Additional arguments such as `test_split_ratio` that are passed to concept `classifier`. Examples:: @@ -295,19 +311,27 @@ def __init__( For more thorough examples, please check out TCAV tutorial and test cases. """ ConceptInterpreter.__init__(self, model) - self.layers = [layers] if isinstance(layers, str) else layers + self.layers: List[str] = [layers] if isinstance(layers, str) else layers self.model_id = model_id self.concepts: Set[Concept] = set() self.classifier = classifier - self.classifier_kwargs = classifier_kwargs + # pyre-fixme[4]: Attribute `classifier_kwargs` of class `TCAV` + # must have a type other than `Any`. + self.classifier_kwargs: Any = classifier_kwargs + # pyre-fixme[8]: Attribute has type `Dict[str, Dict[str, CAV]]`; used as + # `DefaultDict[Variable[_KT], DefaultDict[Variable[_KT], Variable[_VT]]]`. self.cavs: Dict[str, Dict[str, CAV]] = defaultdict(lambda: defaultdict()) if self.classifier is None: self.classifier = DefaultClassifier() if layer_attr_method is None: - self.layer_attr_method = cast( + self.layer_attr_method: LayerAttribution = cast( LayerAttribution, LayerGradientXActivation( # type: ignore - model, None, multiply_by_inputs=False + model, + # pyre-fixme[6]: For 2nd argument expected `ModuleOrModuleList` + # but got `None`. + None, + multiply_by_inputs=False, ), ) else: @@ -319,7 +343,7 @@ def __init__( "will use `default_model_id` as its default value." ) - self.attribute_to_layer_input = attribute_to_layer_input + self.attribute_to_layer_input: bool = attribute_to_layer_input self.save_path = save_path # Creates CAV save directory if it doesn't exist. It is created once in the @@ -336,13 +360,15 @@ def generate_all_activations(self) -> None: for concept in self.concepts: self.generate_activation(self.layers, concept) - def generate_activation(self, layers: Union[str, List], concept: Concept) -> None: + def generate_activation( + self, layers: Union[str, List[str]], concept: Concept + ) -> None: r""" Computes layer activations for the specified `concept` and the list of layer(s) `layers`. Args: - layers (str, list[str]): A list of layer names or a layer name + layers (str or list[str]): A list of layer names or a layer name that is used to compute layer activations for the specific `concept`. concept (Concept): A single Concept object that provides access @@ -352,11 +378,12 @@ def generate_activation(self, layers: Union[str, List], concept: Concept) -> Non layer_modules = [_get_module_from_name(self.model, layer) for layer in layers] layer_act = LayerActivation(self.model, layer_modules) - assert concept.data_iter is not None, ( + data_iter = concept.data_iter + assert data_iter is not None, ( "Data iterator for concept id:", "{} must be specified".format(concept.id), ) - for i, examples in enumerate(concept.data_iter): + for i, examples in enumerate(data_iter): activations = layer_act.attribute.__wrapped__( # type: ignore layer_act, examples, @@ -403,6 +430,7 @@ def load_cavs( of concepts and layer. Args: + concepts (list[Concept]): A list of Concept objects for which we want to load the CAV. @@ -420,9 +448,10 @@ def load_cavs( concept_layers = defaultdict(list) for layer in self.layers: - self.cavs[concepts_key][layer] = CAV.load( - self.save_path, self.model_id, concepts, layer - ) + cav = CAV.load(self.save_path, self.model_id, concepts, layer) + + if cav is not None: + self.cavs[concepts_key][layer] = cav # If CAV aren't loaded if ( @@ -445,8 +474,8 @@ def compute_cavs( self, experimental_sets: List[List[Concept]], force_train: bool = False, - processes: int = None, - ): + processes: Optional[int] = None, + ) -> Dict[str, Dict[str, CAV]]: r""" This method computes CAVs for given `experiments_sets` and layers specified in `self.layers` instance variable. Internally, it @@ -458,6 +487,7 @@ def compute_cavs( the argument. Args: + experimental_sets (list[list[Concept]]): A list of lists of concept instances for which the cavs will be computed. force_train (bool, optional): A flag that indicates whether to @@ -469,6 +499,7 @@ def compute_cavs( multi-processing, otherwise it will be performed sequentially in a single process. Default: None + Returns: cavs (dict) : A mapping of concept ids and layers to CAV objects. If CAVs for the concept_ids-layer pairs are present in the @@ -548,7 +579,7 @@ def compute_cavs( # list[Dict[concept, Dict[layer, list]]] => Dict[concept, Dict[layer, list]] for cavs in cavs_list: for c_key in cavs: - self.cavs[c_key].update(cavs[c_key]) + self.cavs[c_key].update(cavs[c_key]) # type: ignore return self.cavs @@ -558,8 +589,8 @@ def interpret( inputs: TensorOrTupleOfTensorsGeneric, experimental_sets: List[List[Concept]], target: TargetType = None, - additional_forward_args: Any = None, - processes: int = None, + additional_forward_args: Optional[object] = None, + processes: Optional[int] = None, **kwargs: Any, ) -> Dict[str, Dict[str, Dict[str, Tensor]]]: r""" @@ -569,7 +600,8 @@ def interpret( scores for specific predictions and CAV vectors. Args: - inputs (tensor or tuple of tensors): Inputs for which predictions + + inputs (Tensor or tuple[Tensor, ...]): Inputs for which predictions are performed and attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. @@ -581,7 +613,7 @@ def interpret( provided, the examples must be aligned appropriately. experimental_sets (list[list[Concept]]): A list of list of Concept instances. - target (int, tuple, tensor or list, optional): Output indices for + target (int, tuple, Tensor, or list, optional): Output indices for which attributions are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -617,6 +649,7 @@ def interpret( attribution algorithm's attribute method. This could be for example `n_steps` in case of integrated gradients. Default: None + Returns: results (dict): A dictionary of sign and magnitude -based tcav scores for each concept set per layer. @@ -651,6 +684,9 @@ def interpret( ) self.compute_cavs(experimental_sets, processes=processes) + # pyre-fixme[9]: scores has type `Dict[str, Dict[str, Dict[str, Tensor]]]`; + # used as `DefaultDict[Variable[_KT], DefaultDict[Variable[_KT], + # Variable[_VT]]]`. scores: Dict[str, Dict[str, Dict[str, Tensor]]] = defaultdict( lambda: defaultdict() ) @@ -658,7 +694,7 @@ def interpret( # Retrieves the lengths of the experimental sets so that we can sort # them by the length and compute TCAV scores in batches. exp_set_lens = np.array( - list(map(lambda exp_set: len(exp_set), experimental_sets)), dtype=object + [len(exp_set) for exp_set in experimental_sets], dtype=object ) exp_set_lens_arg_sort = np.argsort(exp_set_lens) @@ -694,6 +730,7 @@ def interpret( attribs = _format_tensor_into_tuples(attribs) # n_inputs x n_features attribs = torch.cat( + # pyre-fixme[16]: `None` has no attribute `__iter__`. [torch.reshape(attrib, (attrib.shape[0], -1)) for attrib in attribs], dim=1, ) @@ -703,6 +740,7 @@ def interpret( classes = [] for concepts in experimental_sets: concepts_key = concepts_to_str(concepts) + # pyre-fixme[33]: Given annotation cannot contain `Any`. cavs_stats = cast(Dict[str, Any], self.cavs[concepts_key][layer].stats) cavs.append(cavs_stats["weights"].float().detach().tolist()) classes.append(cavs_stats["classes"]) @@ -737,7 +775,7 @@ def interpret( attribs, cav_subset, classes_subset, - experimental_subset_sorted, + experimental_subset_sorted, # type: ignore ) i += 1 diff --git a/captum/concept/_utils/classifier.py b/captum/concept/_utils/classifier.py index b9b21f809d..477fa0c255 100644 --- a/captum/concept/_utils/classifier.py +++ b/captum/concept/_utils/classifier.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + import random import warnings from abc import ABC, abstractmethod @@ -64,7 +66,11 @@ def __init__(self) -> None: @abstractmethod def train_and_eval( - self, dataloader: DataLoader, **kwargs: Any + self, + dataloader: DataLoader, + **kwargs: Any, + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime subscripting errors. ) -> Union[Dict, None]: r""" This method is responsible for training a classifier using the data @@ -83,7 +89,7 @@ def train_and_eval( stats (dict): a dictionary of statistics about the performance of the model. For example the accuracy of the model on the test and/or train dataset(s). The user may decide to return None or an - empty dictionary if she/he decides to not return any performance + empty dictionary if they decide to not return any performance statistics. """ pass @@ -95,7 +101,7 @@ def weights(self) -> Tensor: C is the number of classes and F is the number of features. Returns: - weights (tensor): A torch Tensor with the weights resulting from + weights (Tensor): A torch Tensor with the weights resulting from the model training. """ pass @@ -126,18 +132,24 @@ class DefaultClassifier(Classifier): class and handles large concept datasets accordingly. """ - def __init__(self): + def __init__(self) -> None: warnings.warn( "Using default classifier for TCAV which keeps input" " both train and test datasets in the memory. Consider defining" " your own classifier that doesn't rely heavily on memory, for" " large number of concepts, by extending" - " `Classifer` abstract class" + " `Classifer` abstract class", + stacklevel=2, ) self.lm = model.SkLearnSGDClassifier(alpha=0.01, max_iter=1000, tol=1e-3) def train_and_eval( - self, dataloader: DataLoader, test_split_ratio: float = 0.33, **kwargs: Any + self, + dataloader: DataLoader, + test_split_ratio: float = 0.33, + **kwargs: Any, + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime subscripting errors. ) -> Union[Dict, None]: r""" Implements Classifier::train_and_eval abstract method for small concept @@ -169,16 +181,19 @@ def train_and_eval( inputs.append(input) labels.append(label) + # pyre-fixme[61]: `input` is undefined, or not always defined. device = "cpu" if input is None else input.device x_train, x_test, y_train, y_test = _train_test_split( torch.cat(inputs), torch.cat(labels), test_split=test_split_ratio ) - self.lm.device = device + # error: Incompatible types in assignment (expression has type "str | Any", + # variable has type "Tensor | Module") [assignment] + self.lm.device = device # type: ignore self.lm.fit(DataLoader(TensorDataset(x_train, y_train))) predict = self.lm(x_test) - predict = self.lm.classes()[torch.argmax(predict, dim=1)] + predict = self.lm.classes()[torch.argmax(predict, dim=1)] # type: ignore score = predict.long() == y_test.long().cpu() accs = score.float().mean() @@ -189,10 +204,10 @@ def weights(self) -> Tensor: r""" This function returns a C x F tensor weights, where C is the number of classes and F is the number of features. - In case of binary classification, C = 2 othewise it is > 2. + In case of binary classification, C = 2 otherwise it is > 2. Returns: - weights (tensor): A torch Tensor with the weights resulting from + weights (Tensor): A torch Tensor with the weights resulting from the model training. """ assert self.lm.linear is not None, ( @@ -217,7 +232,7 @@ def classes(self) -> List[int]: classes (list): The list of classes used by the classifier to train the model in the `train_and_eval` method. """ - return self.lm.classes().detach().numpy() + return self.lm.classes().detach().numpy() # type: ignore def _train_test_split( diff --git a/captum/concept/_utils/common.py b/captum/concept/_utils/common.py index 6161736509..49c5097832 100644 --- a/captum/concept/_utils/common.py +++ b/captum/concept/_utils/common.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + from typing import List from captum.concept._core.concept import Concept diff --git a/captum/concept/_utils/data_iterator.py b/captum/concept/_utils/data_iterator.py index 6a8a48f197..4d7b277d61 100644 --- a/captum/concept/_utils/data_iterator.py +++ b/captum/concept/_utils/data_iterator.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + import glob import os from typing import Callable, Iterator @@ -13,14 +15,16 @@ class CustomIterableDataset(IterableDataset): An auxiliary class for iterating through a dataset. """ + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. def __init__(self, transform_filename_to_tensor: Callable, path: str) -> None: r""" Args: - transform_filename_to_tensor (callable): Function to read a data + transform_filename_to_tensor (Callable): Function to read a data file from path and return a tensor from that file. path (str): Path to dataset files. This can be either a path to a directory or a file where input examples are stored. """ + # pyre-fixme[4]: Attribute must be annotated. self.file_itr = None self.path = path diff --git a/captum/influence/__init__.py b/captum/influence/__init__.py index ac2c40a618..54b6be45e5 100644 --- a/captum/influence/__init__.py +++ b/captum/influence/__init__.py @@ -1,12 +1,15 @@ #!/usr/bin/env python3 -from captum.influence._core.influence import DataInfluence # noqa -from captum.influence._core.similarity_influence import SimilarityInfluence # noqa -from captum.influence._core.tracincp import TracInCP, TracInCPBase # noqa +# pyre-strict + +from captum.influence._core.influence import DataInfluence +from captum.influence._core.influence_function import NaiveInfluenceFunction +from captum.influence._core.similarity_influence import SimilarityInfluence +from captum.influence._core.tracincp import TracInCP, TracInCPBase from captum.influence._core.tracincp_fast_rand_proj import ( TracInCPFast, TracInCPFastRandProj, -) # noqa +) __all__ = [ "DataInfluence", @@ -15,4 +18,5 @@ "TracInCP", "TracInCPFast", "TracInCPFastRandProj", + "NaiveInfluenceFunction", ] diff --git a/captum/influence/_core/arnoldi_influence_function.py b/captum/influence/_core/arnoldi_influence_function.py new file mode 100644 index 0000000000..3f1d6b1685 --- /dev/null +++ b/captum/influence/_core/arnoldi_influence_function.py @@ -0,0 +1,1064 @@ +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. + +# pyre-strict +import functools +from typing import Any, Callable, List, Optional, Tuple, Union + +import torch + +from captum._utils.gradient import _extract_parameters_from_layers + +from captum.influence._core.influence_function import ( + _get_dataset_embeddings_intermediate_quantities_influence_function, + InfluenceFunctionBase, + IntermediateQuantitiesInfluenceFunction, +) + +from captum.influence._utils.common import ( + _compute_batch_loss_influence_function_base, + _compute_jacobian_sample_wise_grads_per_batch, + _dataset_fn, + _format_inputs_dataset, + _functional_call, + _get_k_most_influential_helper, + _influence_batch_intermediate_quantities_influence_function, + _influence_helper_intermediate_quantities_influence_function, + _influence_route_to_helpers, + _load_flexible_state_dict, + _parameter_add, + _parameter_dot, + _parameter_linear_combination, + _parameter_multiply, + _parameter_to, + _params_to_names, + _progress_bar_constructor, + _self_influence_helper_intermediate_quantities_influence_function, + _top_eigen, + KMostInfluentialResults, +) +from captum.log import log_usage + +from torch import Tensor +from torch.nn import Module +from torch.utils.data import DataLoader, Dataset +from tqdm import tqdm + + +def _parameter_arnoldi( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + hvp: Callable, + b: Tuple[Tensor, ...], + n: int, + tol: float, + projection_device: torch.device, + show_progress: bool, +) -> Tuple[List[Tuple[Tensor, ...]], Tensor]: + r""" + Given `hvp`, a function which computes the Hessian-vector product of an arbitrary + vector `v` with an implicitly-defined Hessian matrix `A`, performs the Arnoldi + iteration for `A` for `n` iterations. (We use `A`, not `H` to refer to the + Hessian, unlike elsewhere, because `H` is already used in the below explanation + of the Arnoldi iteration.) + + For more details on the Arnoldi iteration, please see Trefethen and Bau, Chp 33. + Running Arnoldi iteration for n iterations gives a basis for the Krylov subspace + spanned by :math`\{b, Ab,..., A^{n-1}b\}`, as well as a `n+1` by `n` matrix + :math`H_n` which is upper Hessenberg (all entries below the diagonal, except those + adjoining it, are 0), whose first n rows represent the restriction of `A` to the + Krylov subspace, using the basis. Here, `b` is an arbitrary initialization basis + vector. The basis is assembled into a `D` by `n+1` matrix, where the last + column is a "correction factor", i.e. not part of the basis, denoted + :math`Q_{n+1}`. Letting :math`Q_n` denote the matrix with the first n columns of + :math`Q_{n+1}`, the following equality is satisfied: :math`A=Q_{n+1} H_n Q_n'`. + + In this implementation, `v` is not actually a vector, but instead a tuple of + tensors, because `hvp` being a Hessian-vector product, `v` lies in parameter-space, + which Pytorch represents as tuples of tensors. This implementation avoids + flattening `v` to a 1D tensor, which leads to scalability gains. + + Args: + hvp (Callable): A callable that accepts an arbitrary tuple of tensors + `v`, which represents a parameter, and returns + `Av`, i.e. the multiplication of `v` with an implicitly defined matrix + `A` of compatible dimension, which in practice is a Hessian-vector + product. + b (tensor): The Arnoldi iteration requires an initialization basis to + construct the basis, typically randomly chosen. This is that basis, + and is a tuple of tensors. We assume that the device of `b` is the same + as the required device of input `v` to `hvp`. For example, if `hvp` + computes HVP using a model that is on the GPU, then `b` should also be + on the GPU. + n (int): The number of iterations to run the iteration for. + tol (float, optional): After many iterations, the already-obtained + basis vectors may already approximately span the Krylov subspace, + in which case the addition of additional basis vectors involves + normalizing a vector with a small norm. These vectors are not + necessary to include in the basis and furthermore, their small norm + leads to numerical issues. Therefore we stop the Arnoldi iteration + when the addition of additional vectors involves normalizing a + vector with norm below a certain threshold. This argument specifies + that threshold. + Default: 1e-4 + projection_device (torch.device) The returned quantities (which will be used + to define a projection of parameter-gradients, hence the name) are + potentially memory intensive, because they represent a basis of a + subspace in the space of parameters, which are potentially + high-dimensional. Therefore we need to be careful of out-of-memory + GPU errors. This argument represents the device where the returned + quantities should be stored, and its choice requires balancing + speed with GPU memory. + show_progress (bool): If true, the progress of the iteration (i.e. number of + basis vectors already determined) will be displayed. It will try to + use tqdm if available for advanced features (e.g. time estimation). + Otherwise, it will fallback to a simple output of progress. + + Returns: + qs (list of tuple of tensors): A list of tuple of tensors, whose first `n` + elements contain a basis for the Krylov subspace. + H (tensor): A tensor with shape `(n+1, n)` whose first `n` rows represent + the restriction of `A` to the Krylov subspace. + """ + # because the HVP is the computational bottleneck, we always do HVP on + # the same device as the model, which is assumed to be the device `b` is on + computation_device = next(iter(b)).device + + # all entries of `b` have the same dtype, and so can be used to determine dtype + # of `H` + H = torch.zeros(n + 1, n, dtype=next(iter(b)).dtype).to(device=projection_device) + qs = [ + _parameter_to( + # pyre-fixme[6]: For 2nd argument expected `Tensor` but got `float`. + # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and + # `float`. + _parameter_multiply(b, 1.0 / _parameter_dot(b, b) ** 0.5), + device=projection_device, + ) + ] + + iterates = range(1, n + 1) + if show_progress: + iterates = tqdm(iterates, desc="Running Arnoldi Iteration for step") + + for k in iterates: + v = _parameter_to( + hvp(_parameter_to(qs[k - 1], device=computation_device)), + device=projection_device, + ) + + for i in range(k): + H[i, k - 1] = _parameter_dot(qs[i], v) + v = _parameter_add(v, _parameter_multiply(qs[i], -H[i, k - 1])) + # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `float`. + H[k, k - 1] = _parameter_dot(v, v) ** 0.5 + + if H[k, k - 1] < tol: + break + # pyre-fixme[6]: For 2nd argument expected `Tensor` but got `float`. + # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. + qs.append(_parameter_multiply(v, 1.0 / H[k, k - 1])) + + # pyre-fixme[61]: `k` is undefined, or not always defined. + return qs[:k], H[:k, : k - 1] + + +def _parameter_distill( + qs: List[Tuple[Tensor, ...]], + H: Tensor, + k: Optional[int], + hessian_reg: float, + hessian_inverse_tol: float, +) -> Tuple[Tensor, List[Tuple[Tensor, ...]]]: + """ + This takes the output of `_parameter_arnoldi`, and extracts the top-k eigenvalues + / eigenvectors of the matrix that `_parameter_arnoldi` found the Krylov subspace + for. In this documentation, we will refer to that matrix by `A`. + + Args: + qs (list of tuple of tensors): A list of tuple of tensors, whose first `N` + elements contain a basis for the Krylov subspace. + H (tensor): A tensor with shape `(N+1, N)` whose first `N` rows represent + the restriction of `A` to the Krylov subspace. + k (int): The number of top eigenvalues / eigenvectors to return. Note that the + actual number returned may be less, due to filtering based on + `hessian_inverse_tol`. + hessian_reg (float): hessian_reg (float): We add an entry to the diagonal of + `H` to encourage it to be positive definite. This is that entry. + hessian_inverse_tol (float): To compute the "square root" of `H` using the top + eigenvectors / eigenvalues, the eigenvalues should be positive, and + furthermore if above a tolerance, the inversion will be more + numerically stable. Therefore, we only return eigenvectors / + eigenvalues where the eigenvalue is above a tolerance. This argument + specifies that tolerance. We do not compute the square root in this + function, but assume the output of this function will be used for + computing it, hence the need for this argument. + + Returns: + (eigenvalues, eigenvectors) (tensor, list of tuple of tensors): `eigenvalues` + is a 1D tensor of the top eigenvalues of `A`. Note that due to + filtering based on `hessian_inverse_tol`, the actual number of + eigenvalues may be less than `k`. The eigenvalues are in ascending + order, mimicking the convention of `torch.linalg.eigh`. `eigenvectors` + are the corresponding eigenvectors. Since `A` represents the Hessian + of parameters, with the parameters represented as a tuple of tensors, + the eigenvectors, because they represent parameters, are also + tuples of tensors. Therefore, `eigenvectors` is a list of tuple of + tensors. + """ + # get rid of last basis of qs, last column of H, since they are not part of + # the decomposition + qs = qs[:-1] + H = H[:-1] + + # if arnoldi basis is empty, raise exception + if len(qs) == 0: + raise Exception( + "Arnoldi basis is empty. Consider increasing the `arnoldi_tol` argument" + ) + + # ls, vs are the top eigenvalues / eigenvectors. however, the eigenvectors are + # expressed as coordinates using the Krylov subspace basis, qs (each column of vs + # represents a different eigenvector). + ls, vs = _top_eigen(H, k, hessian_reg, hessian_inverse_tol) + + # if no positive eigenvalues exist, we cannot compute a low-rank + # approximation of the square root of the hessian H, so raise exception + if vs.shape[1] == 0: + raise Exception( + "Restriction of Hessian to Krylov subspace has no positive " + "eigenvalues, so cannot take its square root." + ) + + # we want to express the top eigenvectors as coordinates using the standard basis. + # each column of vs represents a different eigenvector, expressed as coordinates + # using the Krylov subspace basis. to express the eigenvector using the standard + # basis, we use it as the coefficients in a linear combination with the Krylov + # subspace basis, qs. + vs_standard = [_parameter_linear_combination(qs, v) for v in vs.T] + + return ls, vs_standard + + +class ArnoldiInfluenceFunction(IntermediateQuantitiesInfluenceFunction): + r""" + This is a computationally-efficient implementation that computes the type of + "infinitesimal" influence scored defined in the paper "Understanding Black-box + Predictions via Influence Functions" by Koh et al + (https://arxiv.org/pdf/1703.04730.pdf). This implementation does *not* follow + the approach in that paper, however. Instead, it follows an implementation that is + several orders of magnitudes faster, described in the paper "Scaling Up Influence + Functions" by Schioppa et al (https://arxiv.org/pdf/2112.03052.pdf). + + This implementation computes a low-rank approximation of the inverse Hessian, i.e. + a tall and skinny (with width k) matrix :math`R` such that + :math`H^{-1} \approx RR'`, where k is small. In particular, let :math`V` be the + matrix of width k whose columns contain the top-k eigenvectors of :math`H`, and let + :math`S` be the k by k matrix whose diagonals contain the corresponding eigenvalues. + This implementation lets :math`R=VS^{-0.5}`. Thus, the core computational step is + computing the top-k eigenvalues / eigenvectors. + + This approximation is useful for several reasons: + - It avoids numerical issues associated with inverting small eigenvalues + - Since the influence score is given by + :math`\nabla_\theta L(x)' H^{-1} \nabla_\theta L(z)`, which is approximated by + :math`(\nabla_\theta L(x)' R) (\nabla_\theta L(z)' R)`, we can compute an + "influence embedding" for a given example :math`x`, :math`\nabla_\theta L(x)' R`, + such that the influence score of one example on another is approximately the + dot-product of their respective embeddings. + - Even for large models, we can store `R` in memory, provided k is small. This + means influence embeddings (and thus influence scores) can be efficiently + computed by doing a backwards pass to compute :math`\nabla_\theta L(x)` and then + multiplying by :math`R'`. This is orders of magnitude faster than the previous + LISSA approach of Koh et al, which to compute the influence score involving a + given example, need to compute Hessian-vector products involving on the order + of 10^4 examples. + + The key novelty of the approach by Schioppa et al is that it uses the Arnoldi + iteration to find the top-k eigenvalues / eigenvectors of the Hessian without + explicitly forming the Hessian. In more detail, the approach first runs the + Arnoldi iteration, which only requires the ability to compute Hessian-vector + products, to find a Krylov subspace of moderate dimension, i.e. 200. It then finds + the top-k eigevalues / eigenvectors of the restriction of the Hessian to the + subspace, where k is small, i.e. 50. Finally, it expresses the eigenvectors in + the original basis. This approach for finding the top-k eigenvalues / eigenvectors + is justified by the property of the Arnoldi iteration, that the Krylov subspace + it returns tends to contain the top eigenvectors. + + This implementation require some computation time `__init__`, where it + runs the Arnoldi iteration to calculate `R`. This computation is linear in + `arnoldi_dim` as well as the size of `hessian_dataset`. After that initial + overhead, calculation of influence scores is quick, only requiring a backwards pass + and multiplication, per example. + + Unlike `NaiveInfluenceFunction`, this implementation does not flatten any + parameters, as the 2D Hessian is never formed, and Pytorch's Hessian-vector + implementation (`torch.autograd.functional.hvp`) allows the input and output + vector to be a tuple of tensors. Avoiding flattening / unflattening parameters + brings scalability gains. + """ + + def __init__( + self, + model: Module, + train_dataset: Union[Dataset, DataLoader], + checkpoint: str, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + checkpoints_load_func: Callable = _load_flexible_state_dict, + layers: Optional[List[str]] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]] = None, + batch_size: Union[int, None] = 1, + hessian_dataset: Optional[Union[Dataset, DataLoader]] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + test_loss_fn: Optional[Union[Module, Callable]] = None, + sample_wise_grads_per_batch: bool = False, + projection_dim: int = 50, + seed: int = 0, + arnoldi_dim: int = 200, + arnoldi_tol: float = 1e-1, + hessian_reg: float = 1e-3, + hessian_inverse_tol: float = 1e-4, + projection_on_cpu: bool = True, + show_progress: bool = False, + ) -> None: + """ + Args: + model (torch.nn.Module): An instance of pytorch model. This model should + define all of its layers as attributes of the model. + train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader): + In the `influence` method, we either compute the influence score of + training examples on examples in a test batch, or self influence + scores for those training examples, depending on which mode is used. + This argument represents the training dataset containing those + training examples. In order to compute those influence scores, we + will create a Pytorch DataLoader yielding batches of training + examples that is then used for processing. If this argument is + already a Pytorch Dataloader, that DataLoader can be directly + used for processing. If it is instead a Pytorch Dataset, we will + create a DataLoader using it, with batch size specified by + `batch_size`. For efficiency purposes, the batch size of the + DataLoader used for processing should be as large as possible, but + not too large, so that certain intermediate quantities created + from a batch still fit in memory. Therefore, if + `train_dataset` is a Dataset, `batch_size` should be large. + If `train_dataset` was already a DataLoader to begin with, + it should have been constructed to have a large batch size. It is + assumed that the Dataloader (regardless of whether it is created + from a Pytorch Dataset or not) yields tuples. For a `batch` that is + yielded, of length `L`, it is assumed that the forward function of + `model` accepts `L-1` arguments, and the last element of `batch` is + the label. In other words, `model(*batch[:-1])` gives the output of + `model`, and `batch[-1]` are the labels for the batch. + checkpoint (str): The path to the checkpoint used to compute influence + scores. + checkpoints_load_func (Callable, optional): The function to load a saved + checkpoint into a model to update its parameters, and get the + learning rate if it is saved. By default uses a utility to load a + model saved as a state dict. + Default: _load_flexible_state_dict + layers (list[str] or None, optional): A list of layer names for which + gradients should be computed. If `layers` is None, gradients will + be computed for all layers. Otherwise, they will only be computed + for the layers specified in `layers`. + Default: None + loss_fn (Callable, optional): The loss function applied to model. For now, + we require it to be a "reduction='none'" loss function. For + example, `BCELoss(reduction='none')` would be acceptable, but + `BCELoss(reduction='sum')` would not. + batch_size (int or None, optional): Batch size of the DataLoader created to + iterate through `train_dataset` and `hessian_dataset`, if they are + of type `Dataset`. `batch_size` should be chosen as large as + possible so that a backwards pass on a batch still fits in memory. + If `train_dataset` and `hessian_dataset`are both of type + `DataLoader`, then `batch_size` is ignored as an argument. + Default: 1 + hessian_dataset (Dataset or Dataloader, optional): The influence score and + self-influence scores this implementation calculates are defined in + terms of the Hessian, i.e. the second-derivative of the model + parameters. This argument provides the dataset used for calculating + the Hessian. It should be smaller than `train_dataset`, which + is the dataset whose examples we want the influence of. If not + provided or none, it will be assumed to be the same as + `train_dataset`. + Default: None + test_loss_fn (Callable, optional): In some cases, one may want to use a + separate loss functions for training examples, i.e. those in + `train_dataset`, and for test examples, i.e. those + represented by the `inputs` and `targets` arguments to the + `influence` method. For example, if one wants to calculate the + influence score of a training example on a test example's + prediction for a fixed class, `test_loss_fn` could map from the + logits for all classes to the logits for a fixed class. + `test_loss_fn` needs satisfy the same constraints as `loss_fn`. + If not provided, the loss function for test examples is assumed to + be the same as the loss function for training examples, i.e. + `loss_fn`. + Default: None + sample_wise_grads_per_batch (bool, optional): PyTorch's native gradient + computations w.r.t. model parameters aggregates the results for a + batch and does not allow to access sample-wise gradients w.r.t. + model parameters. This forces us to iterate over each sample in + the batch if we want sample-wise gradients which is computationally + inefficient. We offer an implementation of batch-wise gradient + computations w.r.t. to model parameters which is computationally + more efficient. This implementation can be enabled by setting the + `sample_wise_grad_per_batch` argument to `True`, and should be + enabled if and only if the `loss_fn` argument is a "reduction" loss + function. For example, `nn.BCELoss(reduction="sum")` would be a + valid `loss_fn` if this implementation is enabled (see + documentation for `loss_fn` for more details). Note that our + current implementation enables batch-wise gradient computations + only for a limited number of PyTorch nn.Modules: Conv2D and Linear. + This list will be expanded in the near future. Therefore, please + do not enable this implementation if gradients will be computed + for other kinds of layers. + Default: False + projection_dim (int, optional): This implementation produces a low-rank + approximation of the (inverse) Hessian. This is the rank of that + approximation, and also corresponds to the dimension of the + "influence embeddings" produced by the + `compute_intermediate_quantities` method. + Default: 50 + seed (int, optional): This implementation has a source of randomness - the + initialization basis to the Arnoldi iteration. This seed is used + to make that randomness reproducible. + Default: 42 + arnoldi_dim (int, optional): Calculating the low-rank approximation of the + (inverse) Hessian requires approximating the Hessian's top + eigenvectors / eigenvalues. This is done by first computing a + Krylov subspace via the Arnoldi iteration, and then finding the top + eigenvectors / eigenvalues of the restriction of the Hessian to the + Krylov subspace. Because only the top eigenvectors / eigenvalues + computed in the restriction will be similar to those in the full + space, `arnoldi_dim` should be chosen to be larger than + `projection_dim`. In the paper, they often choose `projection_dim` + to be between 10 and 100, and `arnoldi_dim` to be 200. Please see + the paper as well as Trefethen and Bau, Chapters 33-34 for more + details on the Arnoldi iteration. + Default: 200 + arnoldi_tol (float, optional): After many iterations, the already-obtained + basis vectors may already approximately span the Krylov subspace, + in which case the addition of additional basis vectors involves + normalizing a vector with a small norm. These vectors are not + necessary to include in the basis and furthermore, their small norm + leads to numerical issues. Therefore we stop the Arnoldi iteration + when the addition of additional vectors involves normalizing a + vector with norm below a certain threshold. This argument specifies + that threshold. + Default: 1e-4 + hessian_reg (float, optional): After computing the basis for the Krylov + subspace, the restriction of the Hessian to the subspace may not be + positive definite, which is required, as we compute a low-rank + approximation of its square root via eigen-decomposition. + `hessian_reg` adds an entry to the diagonals of the restriction of + the Hessian to encourage it to be positive definite. This argument + specifies that entry. Note that the regularized Hessian (i.e. with + `hessian_reg` added to its diagonals) does not actually need to be + positive definite - it just needs to have at least 1 positive + eigenvalue. + Default: 1e-3 + hessian_inverse_tol: (float) The tolerance to use when computing the + pseudo-inverse of the (square root of) hessian, restricted to the + Krylov subspace. + Default: 1e-4 + projection_on_cpu (bool, optional): Whether to move the projection, + i.e. low-rank approximation of the inverse Hessian, to cpu, to save + gpu memory. + Default: True + show_progress (bool, optional): In initialization, the Arnoldi iteration + and the subroutine it uses (calculating Hessian-vector products + over batches in `hessian_dataset`) can take a long time. If + `show_progress` is true, the progress of both computations + (number of steps in Arnoldi iteration, number of batches processed + in computing Hessian-vector products) will be displayed. It will + try to use tqdm if available for advanced features (e.g. time + estimation). Otherwise, it will fallback to a simple output of + progress. + Default: False + """ + InfluenceFunctionBase.__init__( + self, + model, + train_dataset, + checkpoint, + checkpoints_load_func, + layers, + loss_fn, + batch_size, + hessian_dataset, + test_loss_fn, + sample_wise_grads_per_batch, + ) + + self.projection_dim = projection_dim + torch.manual_seed(seed) # for reproducibility + + self.arnoldi_dim = arnoldi_dim + self.arnoldi_tol = arnoldi_tol + self.hessian_reg = hessian_reg + self.hessian_inverse_tol = hessian_inverse_tol + + # infer the device the model is on. all parameters are assumed to be on the + # same device + # pyre-fixme[4]: Attribute must be annotated. + self.model_device = next(model.parameters()).device + + # pyre-fixme[4]: Attribute must be annotated. + self.R = self._retrieve_projections_arnoldi_influence_function( + self.hessian_dataloader, + projection_on_cpu, + show_progress, + ) + + def _retrieve_projections_arnoldi_influence_function( + self, + dataloader: DataLoader, + projection_on_cpu: bool, + show_progress: bool, + ) -> List[Tuple[Tensor, ...]]: + """ + + Returns the `R` described in the documentation for + `ArnoldiInfluenceFunction`. The returned `R` represents a set of + parameters in parameter space. However, since this implementation does *not* + flatten parameters, each of those parameters is represented as a tuple of + tensors. Therefore, `R` is represented as a list of tuple of tensors, and + can be viewed as a linear function that takes in a tuple of tensors + (representing a parameter), and returns a vector, where the i-th entry is + the dot-product (as it would be defined over tuple of tensors) of the parameter + (i.e. the input to the linear function) with the i-th entry of `R`. + + Can specify that projection should always be saved on cpu. if so, gradients are + always moved to same device as projections before multiplying (moving + projections to gpu when multiplying would defeat the purpose of moving them to + cpu to save gpu memory). + + Returns: + R (list of tuple of tensors): List of tuple of tensors of length + `projection_dim` (initialization argument). Each element + corresponds to a parameter in parameter-space, is represented as a + tuple of tensors, and together, define a projection that can be + applied to parameters (represented as tuple of tensors). + """ + # create function that computes hessian-vector product, given a vector + # represented as a tuple of tensors + + # first figure out names of params that require gradients. this is need to + # create that function, as it replaces params based on their names + params = tuple( + self.model.parameters() + if self.layer_modules is None + else _extract_parameters_from_layers(self.layer_modules) + ) + # the same position in `params` and `param_names` correspond to each other + param_names = _params_to_names(params, self.model) + + # get factory that given a batch, returns a function that given params as + # tuple of tensors, returns loss over the batch + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def tensor_tuple_loss_given_batch(batch): + # pyre-fixme[53]: Captured variable `param_names` is not annotated. + # pyre-fixme[53]: Captured variable `batch` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def tensor_tuple_loss(*params): + # `params` is a tuple of tensors, and assumed to be order specified by + # `param_names` + features, labels = tuple(batch[0:-1]), batch[-1] + + _output = _functional_call( + self.model, dict(zip(param_names, params)), features + ) + + # compute the total loss for the batch, adjusting the output of + # `self.loss_fn` based on `self.reduction_type` + return _compute_batch_loss_influence_function_base( + self.loss_fn, _output, labels, self.reduction_type + ) + + return tensor_tuple_loss + + # define function that given batch and vector, returns HVP of loss using the + # batch and vector + # pyre-fixme[53]: Captured variable `params` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def batch_HVP(batch, v): + tensor_tuple_loss = tensor_tuple_loss_given_batch(batch) + return torch.autograd.functional.hvp(tensor_tuple_loss, params, v=v)[1] + + # define function that returns HVP of loss over `dataloader`, given a + # specified vector + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def HVP(v): + _hvp = None + + _dataloader = dataloader + if show_progress: + _dataloader = tqdm( + dataloader, desc="processing `hessian_dataset` batch" + ) + + # the HVP of loss using the entire `dataloader` is the sum of the + # per-batch HVP's + return _dataset_fn(_dataloader, batch_HVP, _parameter_add, v) + + for batch in _dataloader: + hvp = batch_HVP(batch, v) + if _hvp is None: + _hvp = hvp + else: + _hvp = _parameter_add(_hvp, hvp) + return _hvp + + # now that can compute the hessian-vector product (of loss over `dataloader`), + # can perform arnoldi iteration + + # we always perform the HVP computations on the device where the model is. + # effectively this means we do the computations on gpu if available. this + # is necessary because the HVP is computationally expensive. + + # get initial random vector, and place it on the same device as the model. + # `_parameter_arnoldi` needs to know which device the model is on, and + # will infer it through the device of this random vector + b = _parameter_to( + tuple(torch.randn_like(param) for param in params), + device=self.model_device, + ) + + # perform the arnoldi iteration, see its documentation for what its return + # values are. note that `H` is *not* the Hessian. + qs, H = _parameter_arnoldi( + HVP, + b, + self.arnoldi_dim, + self.arnoldi_tol, + torch.device("cpu") if projection_on_cpu else self.model_device, + show_progress, + ) + + # `ls`` and `vs`` are (approximately) the top eigenvalues / eigenvectors of the + # matrix used (implicitly) to compute Hessian-vector products by the `HVP` + # input to `_parameter_arnoldi`. this matrix is the Hessian of the loss, + # summed over the examples in `dataloader`. note that because the vectors in + # the Hessian-vector product are actually tuples of tensors representing + # parameters, `vs`` is a list of tuples of tensors. note that here, `H` is + # *not* the Hessian (`qs` and `H` together define the Krylov subspace of the + # Hessian) + + ls, vs = _parameter_distill( + qs, H, self.projection_dim, self.hessian_reg, self.hessian_inverse_tol + ) + + # if `vs` were a 2D tensor whose columns contain the top eigenvectors of the + # aforementioned hessian, then `R` would be `vs @ torch.diag(ls ** -0.5)`, i.e. + # scaling each column of `vs` by the corresponding entry in `ls ** -0.5`. + # however, since `vs` is instead a list of tuple of tensors, `R` should be + # a list of tuple of tensors, where each entry in the list is scaled by the + # corresponding entry in `ls ** 0.5`, which we first compute. + # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. + ls = (1.0 / ls) ** 0.5 + + # then, scale each entry in `vs` by the corresponding entry in `ls ** 0.5` + # since each entry in `vs` is a tuple of tensors, we use a helper function + # that takes in a tuple of tensors, and a scalar, and multiplies every tensor + # by the scalar. + return [_parameter_multiply(v, l) for (v, l) in zip(vs, ls)] + + def compute_intermediate_quantities( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs_dataset: Union[Tuple[Any, ...], DataLoader], + aggregate: bool = False, + show_progress: bool = False, + return_on_cpu: bool = True, + test: bool = False, + ) -> Tensor: + r""" + Computes "embedding" vectors for all examples in a single batch, or a + `Dataloader` that yields batches. These embedding vectors are constructed so + that the influence score of a training example on a test example is simply the + dot-product of their corresponding vectors. In both cases, a batch should be + small enough so that a backwards pass for a batch does not lead to + out-of-memory errors. + + In more detail, the embedding vector for an example `x` is + :math`\nabla_\theta L(x)' R`, where :math`R` is as defined in this class' + description. Each element of `R` and :math`\nabla_\theta L(x)` lie in + parameter-space. Therefore, if parameter-space were 1D, so that `R` were + a 2D tensor whose columns are different elements in parameter-space, we would + compute the embeddings for a batch by assembling :math`\nabla_\theta L(x)` for + all examples `x` in the batch as rows in a 2D "batch parameter-gradient" + tensor, and right-multiplying by `R`. However, parameter-space in this + implementation is actually a tuple of tensors. So we do the analogous + computation given this representation of parameter-space. + + If `aggregate` is True, the *sum* of the vectors for all examples is returned, + instead of the vectors for each example. This can be useful for computing the + influence of a given training example on the total loss over a validation + dataset, because due to properties of the dot-product, this influence is the + dot-product of the training example's vector with the sum of the vectors in the + validation dataset. Also, by doing the sum aggregation within this method as + opposed to outside of it (by computing all vectors for the validation dataset, + then taking the sum) allows memory usage to be reduced. + + Args: + inputs_dataset (Tuple, or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, and + and `batch[-1]` are the labels, if any. Here, `model` is model + provided in initialization. This is the same assumption made for + each batch yielded by training dataset `train_dataset`. + aggregate (bool): Whether to return the sum of the vectors for all + examples, as opposed to vectors for each example. + show_progress (bool, optional): Computation of vectors can take a long + time if `inputs_dataset` represents many examples. If + `show_progress`is true, the progress of this computation will be + displayed. In particular, the number of batches for which + vectors have been computed will be displayed. It will try to + use tqdm if available for advanced features (e.g. time estimation). + Otherwise, it will fallback to a simple output of progress. + Default: False + return_on_cpu (bool, optional): Whether to return the vectors on the cpu + (or if not, the gpu). If None, is set to the device that the model + is on. + Default: None + test (bool, optional): Whether to compute the vectors using the loss + function `test_loss_fn` provided in initialization (instead of + `loss_fn`). This argument does not matter if `test_loss_fn` was + not provided, as in this case, `test_loss_fn` and `loss_fn` are the + same. + + Returns: + intermediate_quantities (Tensor): This is a 2D tensor with shape + `(N, projection_dim)`, where `N` is the total number of examples in + `inputs_dataset`, and `projection_dim` was provided in + initialization. Each row contains the vector for a different + example. + """ + # if `inputs_dataset` is not a `DataLoader`, turn it into one. + inputs_dataset = _format_inputs_dataset(inputs_dataset) + + if show_progress: + inputs_dataset = _progress_bar_constructor( + self, inputs_dataset, "inputs_dataset", "intermediate quantities" + ) + + # infer model / data device through model. return device is same as that of + # model unless explicitly specified + if return_on_cpu is None: + return_device = self.model_device + else: + return_device = torch.device("cpu") if return_on_cpu else self.model_device + + # choose the correct loss function and reduction type based on `test` + loss_fn = self.test_loss_fn if test else self.loss_fn + reduction_type = self.test_reduction_type if test else self.reduction_type + + # define a helper function that returns the embeddings for a batch + # pyre-fixme[53]: Captured variable `loss_fn` is not annotated. + # pyre-fixme[53]: Captured variable `reduction_type` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def get_batch_embeddings(batch): + # get gradient + features, labels = tuple(batch[0:-1]), batch[-1] + # `jacobians`` is a tensor of tuples. unlike parameters, however, the first + # dimension is a batch dimension + jacobians = _compute_jacobian_sample_wise_grads_per_batch( + self, features, labels, loss_fn, reduction_type + ) + + # `jacobians`` contains the per-example parameters for a batch. this + # function takes in `params`, a tuple of tensors representing a single + # parameter setting, and for each example, computes the dot-product of its + # per-example parameter with `params`. in other words, given `params`, + # representing a basis vector, this function returns the coordinate of + # each example in the batch along that basis. note that `jacobians` and + # `params` are both tuple of tensors, with the same length. however, a + # tensor in `jacobians` always has dimension 1 greater than the + # corresponding tensor in `params`, because the tensors in `jacobians` have + # a batch dimension (the 1st). to do this computation, the naive way would + # be to convert `jacobians` to a list of tuple of tensors, and use + # `_parameter_dot` to take the dot-product of each element in the list + # with `params` to get a 1D tensor whose length is the batch size. however, + # we can do the same computation without actually creating that list of + # tuple of tensors by using broadcasting. + # pyre-fixme[53]: Captured variable `return_device` is not annotated. + # pyre-fixme[53]: Captured variable `jacobians` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def get_batch_coordinate(params): + batch_coordinate = 0 + for _jacobians, param in zip(jacobians, params): + batch_coordinate += torch.sum( + _jacobians * param.to(device=self.model_device).unsqueeze(0), + dim=tuple(range(1, len(_jacobians.shape))), + ) + # pyre-fixme[16]: Item `int` of `Union[int, Tensor]` has no + # attribute `to`. + return batch_coordinate.to(device=return_device) + + # to get the embedding for the batch, we get the coordinates for the batch + # corresponding to one parameter in `R`. We do this for every parameter in + # `R`, and then concatenate. + return torch.stack( + [get_batch_coordinate(params) for params in self.R], + dim=1, + ) + + # using `get_batch_embeddings` and a helper, return all the vectors or their + # sum, depending on `aggregate` + return _get_dataset_embeddings_intermediate_quantities_influence_function( + get_batch_embeddings, + inputs_dataset, + aggregate, + ) + + @log_usage(skip_self_logging=True) + def influence( # type: ignore[override] + self, + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. + inputs: Tuple, + k: Optional[int] = None, + proponents: bool = True, + show_progress: bool = False, + ) -> Union[Tensor, KMostInfluentialResults]: + """ + This is the key method of this class, and can be run in 2 different modes, + where the mode that is run depends on the arguments passed to this method: + + - influence score mode: This mode is used if `k` is None. This mode computes + the influence score of every example in training dataset `train_dataset` + on every example in the test dataset represented by `inputs`. + - k-most influential mode: This mode is used if `k` is not None, and an int. + This mode computes the proponents or opponents of every example in the + test dataset represented by `inputs`. In particular, for each test example in + the test dataset, this mode computes its proponents (resp. opponents), + which are the indices in the training dataset `train_dataset` of the + training examples with the `k` highest (resp. lowest) influence scores on the + test example. Proponents are computed if `proponents` is True. Otherwise, + opponents are computed. For each test example, this method also returns the + actual influence score of each proponent (resp. opponent) on the test + example. + + Args: + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. + k (int, optional): If not provided or `None`, the influence score mode will + be run. Otherwise, the k-most influential mode will be run, + and `k` is the number of proponents / opponents to return per + example in the test dataset. + Default: None + proponents (bool, optional): Whether seeking proponents (`proponents=True`) + or opponents (`proponents=False`), if running in k-most influential + mode. + Default: True + show_progress (bool, optional): For all modes, computation of results + requires "training dataset computations": computations for each + batch in the training dataset `train_dataset`, which may + take a long time. If `show_progress` is true, the progress of + "training dataset computations" will be displayed. In particular, + the number of batches for which computations have been performed + will be displayed. It will try to use tqdm if available for + advanced features (e.g. time estimation). Otherwise, it will + fallback to a simple output of progress. + Default: False + + Returns: + The return value of this method depends on which mode is run. + + - influence score mode: if this mode is run (`k` is None), returns a 2D + tensor `influence_scores` of shape `(input_size, train_dataset_size)`, + where `input_size` is the number of examples in the test dataset, and + `train_dataset_size` is the number of examples in training dataset + `train_dataset`. In other words, `influence_scores[i][j]` is the + influence score of the `j`-th example in `train_dataset` on the `i`-th + example in the test dataset. + - k-most influential mode: if this mode is run (`k` is an int), returns + a namedtuple `(indices, influence_scores)`. `indices` is a 2D tensor of + shape `(input_size, k)`, where `input_size` is the number of examples in + the test dataset. If computing proponents (resp. opponents), + `indices[i][j]` is the index in training dataset `train_dataset` of the + example with the `j`-th highest (resp. lowest) influence score (out of + the examples in `train_dataset`) on the `i`-th example in the test + dataset. `influence_scores` contains the corresponding influence scores. + In particular, `influence_scores[i][j]` is the influence score of example + `indices[i][j]` in `train_dataset` on example `i` in the test dataset + represented by `inputs`. + """ + return _influence_route_to_helpers( + self, + inputs, + k, + proponents, + show_progress=show_progress, + ) + + def _get_k_most_influential( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], + k: int = 5, + proponents: bool = True, + show_progress: bool = False, + ) -> KMostInfluentialResults: + r""" + Args: + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. + k (int, optional): The number of proponents or opponents to return per test + example. + Default: 5 + proponents (bool, optional): Whether seeking proponents (`proponents=True`) + or opponents (`proponents=False`) + Default: True + show_progress (bool, optional): To compute the proponents (or opponents) + for the batch of examples, we perform computation for each batch in + training dataset `train_dataset`, If `show_progress` is + true, the progress of this computation will be displayed. In + particular, the number of batches for which the computation has + been performed will be displayed. It will try to use tqdm if + available for advanced features (e.g. time estimation). Otherwise, + it will fallback to a simple output of progress. + Default: False + + Returns: + (indices, influence_scores) (namedtuple): `indices` is a torch.long Tensor + that contains the indices of the proponents (or opponents) for each + test example. Its dimension is `(inputs_batch_size, k)`, where + `inputs_batch_size` is the number of examples in `inputs`. For + example, if `proponents==True`, `indices[i][j]` is the index of the + example in training dataset `train_dataset` with the + k-th highest influence score for the j-th example in `inputs`. + `indices` is a `torch.long` tensor so that it can directly be used + to index other tensors. Each row of `influence_scores` contains the + influence scores for a different test example, in sorted order. In + particular, `influence_scores[i][j]` is the influence score of + example `indices[i][j]` in training dataset `train_dataset` + on example `i` in the test dataset represented by `inputs`. + """ + desc = ( + None + if not show_progress + else ( + ( + f"Using {self.get_name()} to perform computation for " + f'getting {"proponents" if proponents else "opponents"}. ' + "Processing training batches" + ) + ) + ) + return KMostInfluentialResults( + *_get_k_most_influential_helper( + self.train_dataloader, + functools.partial( + _influence_batch_intermediate_quantities_influence_function, self + ), + inputs, + k, + proponents, + show_progress, + desc, + ) + ) + + def _influence( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], + show_progress: bool = False, + ) -> Tensor: + r""" + Args: + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. + show_progress (bool, optional): To compute the influence of examples in + training dataset `train_dataset`, we compute the influence + of each batch. If `show_progress` is true, the progress of this + computation will be displayed. In particular, the number of batches + for which influence has been computed will be displayed. It will + try to use tqdm if available for advanced features (e.g. time + estimation). Otherwise, it will fallback to a simple output of + progress. + Default: False + + Returns: + influence_scores (Tensor): Influence scores over the entire + training dataset `train_dataset`. Dimensionality is + (inputs_batch_size, src_dataset_size). For example: + influence_scores[i][j] = the influence score for the j-th training + example to the i-th example in the test dataset. + """ + # turn inputs and targets into a dataset. inputs has already been processed + # so that it should always be unpacked + inputs_dataset = _format_inputs_dataset(inputs) + return _influence_helper_intermediate_quantities_influence_function( + self, inputs_dataset, show_progress + ) + + def self_influence( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs_dataset: Optional[Union[Tuple[Any, ...], DataLoader]] = None, + show_progress: bool = False, + ) -> Tensor: + """ + Computes self influence scores for the examples in `inputs_dataset`, which is + either a single batch or a Pytorch `DataLoader` that yields batches. Therefore, + the computed self influence scores are *not* for the examples in training + dataset `train_dataset` (unlike when computing self influence scores using the + `influence` method). Note that if `inputs_dataset` is a single batch, this + will call `model` on that single batch, and if `inputs_dataset` yields + batches, this will call `model` on each batch that is yielded. Therefore, + please ensure that for both cases, the batch(es) that `model` is called + with are not too large, so that there will not be an out-of-memory error. + + Implementation-wise, the self-influence score for an example is simply the + squared norm of the example's "embedding" vector. Therefore, the implementation + leverages `compute_intermediate_quantities`. + + Args: + inputs_dataset (tuple or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, + and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset`. + Default: None + show_progress (bool, optional): Computation of self influence scores can + take a long time if `inputs_dataset` represents many examples. If + `show_progress`is true, the progress of this computation will be + displayed. In particular, the number of batches for which + self influence scores have been computed will be displayed. It will + try to use tqdm if available for advanced features (e.g. time + estimation). Otherwise, it will fallback to a simple output of + progress. + Default: False + """ + return _self_influence_helper_intermediate_quantities_influence_function( + self, inputs_dataset, show_progress + ) diff --git a/captum/influence/_core/influence.py b/captum/influence/_core/influence.py index f8ef1eb882..232fe5e1cc 100644 --- a/captum/influence/_core/influence.py +++ b/captum/influence/_core/influence.py @@ -1,7 +1,9 @@ #!/usr/bin/env python3 +# pyre-strict + from abc import ABC, abstractmethod -from typing import Any +from typing import Any, Type from torch.nn import Module from torch.utils.data import Dataset @@ -12,23 +14,25 @@ class DataInfluence(ABC): An abstract class to define model data influence skeleton. """ - def __init_( - self, model: Module, influence_src_dataset: Dataset, **kwargs: Any - ) -> None: + def __init_(self, model: Module, train_dataset: Dataset, **kwargs: Any) -> None: r""" Args: model (torch.nn.Module): An instance of pytorch model. - influence_src_dataset (torch.utils.data.Dataset): PyTorch Dataset that is + train_dataset (torch.utils.data.Dataset): PyTorch Dataset that is used to create a PyTorch Dataloader to iterate over the dataset and its labels. This is the dataset for which we will be seeking for influential instances. In most cases this is the training dataset. **kwargs: Additional key-value arguments that are necessary for specific implementation of `DataInfluence` abstract class. """ + # pyre-fixme[16]: `DataInfluence` has no attribute `model`. self.model = model - self.influence_src_dataset = influence_src_dataset + # pyre-fixme[16]: `DataInfluence` has no attribute `train_dataset`. + self.train_dataset = train_dataset @abstractmethod + # pyre-fixme[3]: Return annotation cannot be `Any`. + # pyre-fixme[2]: Parameter annotation cannot be `Any`. def influence(self, inputs: Any = None, **kwargs: Any) -> Any: r""" Args: @@ -44,3 +48,15 @@ def influence(self, inputs: Any = None, **kwargs: Any) -> Any: though this may change in the future. """ pass + + @classmethod + def get_name(cls: Type["DataInfluence"]) -> str: + r""" + Create readable class name. Due to the nature of the names of `TracInCPBase` + subclasses, simply returns the class name. For example, for a class called + TracInCP, we return the string TracInCP. + + Returns: + name (str): a readable class name + """ + return cls.__name__ diff --git a/captum/influence/_core/influence_function.py b/captum/influence/_core/influence_function.py new file mode 100644 index 0000000000..1c44b731cd --- /dev/null +++ b/captum/influence/_core/influence_function.py @@ -0,0 +1,1364 @@ +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. + +# pyre-strict + +import functools +from abc import abstractmethod +from operator import add +from typing import Any, Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn + +from captum._utils.gradient import _extract_parameters_from_layers +from captum.influence._core.influence import DataInfluence + +from captum.influence._utils.common import ( + _check_loss_fn, + _compute_batch_loss_influence_function_base, + _compute_jacobian_sample_wise_grads_per_batch, + _dataset_fn, + _flatten_params, + _format_inputs_dataset, + _functional_call, + _get_k_most_influential_helper, + _influence_batch_intermediate_quantities_influence_function, + _influence_helper_intermediate_quantities_influence_function, + _influence_route_to_helpers, + _load_flexible_state_dict, + _params_to_names, + _progress_bar_constructor, + _self_influence_helper_intermediate_quantities_influence_function, + _set_active_parameters, + _top_eigen, + _unflatten_params_factory, + KMostInfluentialResults, +) +from captum.log import log_usage +from torch import device, Tensor +from torch.nn import Module +from torch.utils.data import DataLoader, Dataset +from tqdm import tqdm + + +class InfluenceFunctionBase(DataInfluence): + r""" + `InfluenceFunctionBase` is a base class for implementations which compute the + influence score as defined in the paper "Understanding Black-box Predictions via + Influence Functions" (https://arxiv.org/pdf/1703.04730.pdf). This "infinitesimal" + influence score approximately answers the question if a given training example + were infinitesimally down-weighted and the model re-trained to optimality, how much + would the loss on a given test example change. Mathematically, the aforementioned + influence score is given by :math`\nabla_\theta L(x)' H^{-1} \nabla_\theta L(z)`, + where :math`\nabla_\theta L(x)` is the gradient of the loss, considering only + training example :math`x` with respect to (a subset of) model parameters + :math`\theta`, :math`\nabla_\theta L(z)` is the analogous quantity for a test + example :math`z`, and :math`H` is the Hessian of the (subset of) model parameters + at a given model checkpoint. "Subset of model parameters" refers to the parameters + specified by the `layers` initialization argument; for computational purposes, + we may only consider the gradients / Hessian involving parameters in a subset of + the model's layers. This is a commonly-taken approach in the research literature. + + There can be multiple implementations of this class, because although the paper + defines a particular "infinitesimal" kind of influence score, there can be multiple + ways to compute it, each with different levels of accuracy / scalability. + """ + + def __init__( + self, + model: Module, + train_dataset: Union[Dataset, DataLoader], + checkpoint: str, + checkpoints_load_func: Callable[ + [Module, str], float + ] = _load_flexible_state_dict, + layers: Optional[List[str]] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]] = None, + batch_size: Union[int, None] = 1, + hessian_dataset: Optional[Union[Dataset, DataLoader]] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + test_loss_fn: Optional[Union[Module, Callable]] = None, + sample_wise_grads_per_batch: bool = False, + ) -> None: + """ + Args: + model (torch.nn.Module): An instance of pytorch model. This model should + define all of its layers as attributes of the model. + train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader): + In the `influence` method, we either compute the influence score of + training examples on examples in a test batch, or self influence + scores for those training examples, depending on which mode is used. + This argument represents the training dataset containing those + training examples. In order to compute those influence scores, we + will create a Pytorch DataLoader yielding batches of training + examples that is then used for processing. If this argument is + already a Pytorch Dataloader, that DataLoader can be directly + used for processing. If it is instead a Pytorch Dataset, we will + create a DataLoader using it, with batch size specified by + `batch_size`. For efficiency purposes, the batch size of the + DataLoader used for processing should be as large as possible, but + not too large, so that certain intermediate quantities created + from a batch still fit in memory. Therefore, if + `train_dataset` is a Dataset, `batch_size` should be large. + If `train_dataset` was already a DataLoader to begin with, + it should have been constructed to have a large batch size. It is + assumed that the Dataloader (regardless of whether it is created + from a Pytorch Dataset or not) yields tuples. For a `batch` that is + yielded, of length `L`, it is assumed that the forward function of + `model` accepts `L-1` arguments, and the last element of `batch` is + the label. In other words, `model(*batch[:-1])` gives the output of + `model`, and `batch[-1]` are the labels for the batch. + checkpoint (str): The path to the checkpoint used to compute influence + scores. + checkpoints_load_func (Callable, optional): The function to load a saved + checkpoint into a model to update its parameters, and get the + learning rate if it is saved. By default uses a utility to load a + model saved as a state dict. + Default: _load_flexible_state_dict + layers (list[str] or None, optional): A list of layer names for which + gradients should be computed. If `layers` is None, gradients will + be computed for all layers. Otherwise, they will only be computed + for the layers specified in `layers`. + Default: None + loss_fn (Callable, optional): The loss function applied to model. There + are two options for the return type of `loss_fn`. First, `loss_fn` + can be a "per-example" loss function - returns a 1D Tensor of + losses for each example in a batch. `nn.BCELoss(reduction="none")` + would be an "per-example" loss function. Second, `loss_fn` can be + a "reduction" loss function that reduces the per-example losses, + in a batch, and returns a single scalar Tensor. For this option, + the reduction must be the *sum* or the *mean* of the per-example + losses. For instance, `nn.BCELoss(reduction="sum")` is acceptable. + Note for the first option, the `sample_wise_grads_per_batch` + argument must be False, and for the second option, + `sample_wise_grads_per_batch` must be True. Also note that for + the second option, if `loss_fn` has no "reduction" attribute, + the implementation assumes that the reduction is the *sum* of the + per-example losses. If this is not the case, i.e. the reduction + is the *mean*, please set the "reduction" attribute of `loss_fn` + to "mean", i.e. `loss_fn.reduction = "mean"`. + batch_size (int or None, optional): Batch size of the DataLoader created to + iterate through `train_dataset` and `hessian_dataset`, if they are + of type `Dataset`. `batch_size` should be chosen as large as + possible so that a backwards pass on a batch still fits in memory. + If `train_dataset` and `hessian_dataset`are both of type + `DataLoader`, then `batch_size` is ignored as an argument. + Default: 1 + hessian_dataset (Dataset or Dataloader, optional): The influence score and + self-influence scores this implementation calculates are defined in + terms of the Hessian, i.e. the second-derivative of the model + parameters. This argument provides the dataset used for calculating + the Hessian. It should be smaller than `train_dataset`, which + is the dataset whose examples we want the influence of. If not + provided or none, it will be assumed to be the same as + `train_dataset`. + Default: None + test_loss_fn (Callable, optional): In some cases, one may want to use a + separate loss functions for training examples, i.e. those in + `train_dataset`, and for test examples, i.e. those + represented by the `inputs` and `targets` arguments to the + `influence` method. For example, if one wants to calculate the + influence score of a training example on a test example's + prediction for a fixed class, `test_loss_fn` could map from the + logits for all classes to the logits for a fixed class. + `test_loss_fn` needs satisfy the same constraints as `loss_fn`. + Thus, the same checks that we apply to `loss_fn` are also applied + to `test_loss_fn`, if the latter is provided. Note that the + constraints on both `loss_fn` and `test_loss_fn` both depend on + `sample_wise_grads_per_batch`. This means `loss_fn` and + `test_loss_fn` must either both be "per-example" loss functions, + or both be "reduction" loss functions. If not provided, the loss + function for test examples is assumed to be the same as the loss + function for training examples, i.e. `loss_fn`. + Default: None + sample_wise_grads_per_batch (bool, optional): PyTorch's native gradient + computations w.r.t. model parameters aggregates the results for a + batch and does not allow to access sample-wise gradients w.r.t. + model parameters. This forces us to iterate over each sample in + the batch if we want sample-wise gradients which is computationally + inefficient. We offer an implementation of batch-wise gradient + computations w.r.t. to model parameters which is computationally + more efficient. This implementation can be enabled by setting the + `sample_wise_grad_per_batch` argument to `True`, and should be + enabled if and only if the `loss_fn` argument is a "reduction" loss + function. For example, `nn.BCELoss(reduction="sum")` would be a + valid `loss_fn` if this implementation is enabled (see + documentation for `loss_fn` for more details). Note that our + current implementation enables batch-wise gradient computations + only for a limited number of PyTorch nn.Modules: Conv2D and Linear. + This list will be expanded in the near future. Therefore, please + do not enable this implementation if gradients will be computed + for other kinds of layers. + Default: False + """ + + self.model = model + + self.checkpoint = checkpoint + + self.checkpoints_load_func = checkpoints_load_func + # actually load the checkpoint + checkpoints_load_func(model, checkpoint) + self.loss_fn = loss_fn + # If test_loss_fn not provided, it's assumed to be same as loss_fn + # pyre-fixme[4]: Attribute must be annotated. + self.test_loss_fn = loss_fn if test_loss_fn is None else test_loss_fn + self.sample_wise_grads_per_batch = sample_wise_grads_per_batch + self.batch_size = batch_size + + if not isinstance(train_dataset, DataLoader): + assert isinstance(batch_size, int), ( + "since the `train_dataset` argument was a `Dataset`, " + "`batch_size` must be an int." + ) + # pyre-fixme[4]: Attribute must be annotated. + self.train_dataloader = DataLoader(train_dataset, batch_size, shuffle=False) + else: + self.train_dataloader = train_dataset + + if hessian_dataset is None: + # pyre-fixme[4]: Attribute must be annotated. + self.hessian_dataloader = self.train_dataloader + elif not isinstance(hessian_dataset, DataLoader): + assert isinstance(batch_size, int), ( + "since the `shared_dataset` argument was a `Dataset`, " + "`batch_size` must be an int." + ) + self.hessian_dataloader = DataLoader( + hessian_dataset, batch_size, shuffle=False + ) + else: + self.hessian_dataloader = hessian_dataset + + # we check the loss functions in `InfluenceFunctionBase` rather than + # individually in its child classes because we assume all its implementations + # have the same requirements on loss functions, i.e. the type of reductions + # supported. furthermore, these checks are done using a helper function that + # handles all implementations with a `sample_wise_grads_per_batch` + # initialization argument. + + # we save the reduction type for both `loss_fn` and `test_loss_fn` because + # 1) if `sample_wise_grads_per_batch` is true, the reduction type is needed + # to compute per-example gradients, and 2) regardless, reduction type for + # `loss_fn` is needed to compute the Hessian. + + # check `loss_fn` + self.reduction_type: str = _check_loss_fn( + self, loss_fn, "loss_fn", sample_wise_grads_per_batch + ) + # check `test_loss_fn` if it was provided + self.test_reduction_type: str = "" + if not (test_loss_fn is None): + self.test_reduction_type = _check_loss_fn( + self, test_loss_fn, "test_loss_fn", sample_wise_grads_per_batch + ) + else: + self.test_reduction_type = self.reduction_type + + self.layer_modules: Optional[List[Module]] = None + if not (layers is None): + self.layer_modules = _set_active_parameters(model, layers) + + @abstractmethod + def self_influence( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs_dataset: Optional[Union[Tuple[Any, ...], DataLoader]] = None, + show_progress: bool = False, + ) -> Tensor: + """ + Computes self influence scores for the examples in `inputs_dataset`, which is + either a single batch or a Pytorch `DataLoader` that yields batches. Therefore, + the computed self influence scores are *not* for the examples in training + dataset `train_dataset` (unlike when computing self influence scores using the + `influence` method). Note that if `inputs_dataset` is a single batch, this + will call `model` on that single batch, and if `inputs_dataset` yields + batches, this will call `model` on each batch that is yielded. Therefore, + please ensure that for both cases, the batch(es) that `model` is called + with are not too large, so that there will not be an out-of-memory error. + + Args: + inputs_dataset (tuple or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, + and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset`. + show_progress (bool, optional): Computation of self influence scores can + take a long time if `inputs_dataset` represents many examples. If + `show_progress` is true, the progress of this computation will be + displayed. In more detail, this computation will iterate over all + checkpoints (provided as the `checkpoints` initialization argument) + in an outer loop, and iterate over all batches that + `inputs_dataset` represents in an inner loop. Therefore, the + total number of (checkpoint, batch) combinations that need to be + iterated over is + (# of checkpoints x # of batches that `inputs_dataset` represents). + If `show_progress` is True, the total progress of both the outer + iteration over checkpoints and the inner iteration over batches is + displayed. It will try to use tqdm if available for advanced + features (e.g. time estimation). Otherwise, it will fallback to a + simple output of progress. + Default: False + + Returns: + self_influence_scores (Tensor): This is a 1D tensor containing the self + influence scores of all examples in `inputs_dataset`, regardless of + whether it represents a single batch or a `DataLoader` that yields + batches. + """ + pass + + @abstractmethod + def _get_k_most_influential( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], + k: int = 5, + proponents: bool = True, + show_progress: bool = False, + ) -> KMostInfluentialResults: + r""" + Args: + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. + k (int, optional): The number of proponents or opponents to return per test + example. + Default: 5 + proponents (bool, optional): Whether seeking proponents (`proponents=True`) + or opponents (`proponents=False`) + Default: True + show_progress (bool, optional): To compute the proponents (or opponents) + for the batch of examples, we perform computation for each batch in + training dataset `train_dataset`, If `show_progress` is + true, the progress of this computation will be displayed. In + particular, the number of batches for which the computation has + been performed will be displayed. It will try to use tqdm if + available for advanced features (e.g. time estimation). Otherwise, + it will fallback to a simple output of progress. + Default: False + + Returns: + (indices, influence_scores) (namedtuple): `indices` is a torch.long Tensor + that contains the indices of the proponents (or opponents) for each + test example. Its dimension is `(inputs_batch_size, k)`, where + `inputs_batch_size` is the number of examples in `inputs`. For + example, if `proponents==True`, `indices[i][j]` is the index of the + example in training dataset `train_dataset` with the + k-th highest influence score for the j-th example in `inputs`. + `indices` is a `torch.long` tensor so that it can directly be used + to index other tensors. Each row of `influence_scores` contains the + influence scores for a different test example, in sorted order. In + particular, `influence_scores[i][j]` is the influence score of + example `indices[i][j]` in training dataset `train_dataset` + on example `i` in the test dataset represented by `inputs`. + """ + pass + + @abstractmethod + def _influence( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], + show_progress: bool = False, + ) -> Tensor: + r""" + Args: + + inputs (tuple[Any, ...]): A batch of examples. Does not represent labels, + which are passed as `targets`. The assumption is that + `model(*inputs)` produces the predictions for the batch. + targets (Tensor, optional): If computing influence scores on a loss + function, these are the labels corresponding to the batch + `inputs`. + Default: None + + Returns: + influence_scores (Tensor): Influence scores over the entire + training dataset `train_dataset`. Dimensionality is + (inputs_batch_size, src_dataset_size). For example: + influence_scores[i][j] = the influence score for the j-th training + example to the i-th input example. + """ + pass + + @abstractmethod + def influence( # type: ignore[override] + self, + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. + inputs: Tuple, + k: Optional[int] = None, + proponents: bool = True, + show_progress: bool = False, + ) -> Union[Tensor, KMostInfluentialResults]: + r""" + This is the key method of this class, and can be run in 2 different modes, + where the mode that is run depends on the arguments passed to this method: + + - influence score mode: This mode is used if `k` is None. This mode computes + the influence score of every example in training dataset `train_dataset` + on every example in the test dataset represented by `inputs`. + - k-most influential mode: This mode is used if `k` is not None, and an int. + This mode computes the proponents or opponents of every example in the + test dataset represented by `inputs`. In particular, for each test example in + the test dataset, this mode computes its proponents (resp. opponents), + which are the indices in the training dataset `train_dataset` of the + training examples with the `k` highest (resp. lowest) influence scores on the + test example. Proponents are computed if `proponents` is True. Otherwise, + opponents are computed. For each test example, this method also returns the + actual influence score of each proponent (resp. opponent) on the test + example. + + Args: + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. + k (int, optional): If not provided or `None`, the influence score mode will + be run. Otherwise, the k-most influential mode will be run, + and `k` is the number of proponents / opponents to return per + example in the test dataset. + Default: None + proponents (bool, optional): Whether seeking proponents (`proponents=True`) + or opponents (`proponents=False`), if running in k-most influential + mode. + Default: True + show_progress (bool, optional): For all modes, computation of results + requires "training dataset computations": computations for each + batch in the training dataset `train_dataset`, which may + take a long time. If `show_progress` is true, the progress of + "training dataset computations" will be displayed. In particular, + the number of batches for which computations have been performed + will be displayed. It will try to use tqdm if available for + advanced features (e.g. time estimation). Otherwise, it will + fallback to a simple output of progress. + Default: False + + Returns: + The return value of this method depends on which mode is run. + + - influence score mode: if this mode is run (`k` is None), returns a 2D + tensor `influence_scores` of shape `(input_size, train_dataset_size)`, + where `input_size` is the number of examples in the test dataset, and + `train_dataset_size` is the number of examples in training dataset + `train_dataset`. In other words, `influence_scores[i][j]` is the + influence score of the `j`-th example in `train_dataset` on the `i`-th + example in the test dataset. + - k-most influential mode: if this mode is run (`k` is an int), returns + a namedtuple `(indices, influence_scores)`. `indices` is a 2D tensor of + shape `(input_size, k)`, where `input_size` is the number of examples in + the test dataset. If computing proponents (resp. opponents), + `indices[i][j]` is the index in training dataset `train_dataset` of the + example with the `j`-th highest (resp. lowest) influence score (out of + the examples in `train_dataset`) on the `i`-th example in the test + dataset. `influence_scores` contains the corresponding influence scores. + In particular, `influence_scores[i][j]` is the influence score of example + `indices[i][j]` in `train_dataset` on example `i` in the test dataset + represented by `inputs`. + """ + pass + + +class IntermediateQuantitiesInfluenceFunction(InfluenceFunctionBase): + """ + Implementations of this class all implement the `compute_intermediate_quantities` + method, which computes the "embedding" vectors for all examples in a test dataset. + These embedding vectors are assumed to have the following properties: + - the influence score of one example on another example, as calculated by the + implementation, is the dot-product of their respective embeddings. + - the self influence score of an example is the squared norm of its embedding. + """ + + @abstractmethod + # pyre-fixme[3]: Return type must be annotated. + def compute_intermediate_quantities( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs_dataset: Union[Tuple[Any, ...], DataLoader], + aggregate: bool = False, + show_progress: bool = False, + return_on_cpu: bool = True, + test: bool = False, + ): + pass + + +# pyre-fixme[3]: Return type must be annotated. +def _flatten_forward_factory( + model: nn.Module, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]], + reduction_type: str, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + unflatten_fn: Callable, + param_names: List[str], +): + """ + Given a model, loss function, reduction type of the loss, function that unflattens + 1D tensor input into a tuple of tensors, the name of each tensor in that tuple, + each of which represents a parameter of `model`, and returns a factory. The factory + accepts a batch, and returns a function whose input is the parameters represented + by `param_names`, and output is the total loss of the model with those parameters, + calculated on the batch. The parameter input to the returned function is assumed to + be *flattened* via the inverse of `unflatten_fn`, which takes a tuple of tensors to + a 1D tensor. This returned function, accepting a single flattened 1D parameter, is + useful for computing the parameter gradient involving the batch as a 1D tensor, and + the Hessian involving the batch as a 2D tensor. Both quantities are needed to + calculate the kind of influence scores returned by implementations of + `InfluenceFunctionBase`. + """ + + # this is the factory that accepts a batch + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def flatten_forward_factory_given_batch(batch): + + # this is the function that factory returns, which is a function of flattened + # parameters + # pyre-fixme[53]: Captured variable `batch` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def flattened_forward(flattened_params): + # as everywhere else, the all but the last elements of a batch are + # assumed to correspond to the features, i.e. input to forward function + features, labels = tuple(batch[0:-1]), batch[-1] + + _output = _functional_call( + model, dict(zip(param_names, unflatten_fn(flattened_params))), features + ) + + # compute the total loss for the batch, adjusting the output of + # `loss_fn` based on `reduction_type` + return _compute_batch_loss_influence_function_base( + loss_fn, _output, labels, reduction_type + ) + + return flattened_forward + + return flatten_forward_factory_given_batch + + +# pyre-fixme[3]: Return type must be annotated. +def _compute_dataset_func( + inputs_dataset: Union[Tuple[Tensor, ...], DataLoader], + model: Module, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]], + reduction_type: str, + layer_modules: Optional[List[Module]], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + f: Callable, + show_progress: bool, + # pyre-fixme[2]: Parameter must be annotated. + **f_kwargs, +): + """ + This function is used to compute higher-order functions of a given model's loss + over a given dataset, using the model's current parameters. For example, that + higher-order function `f` could be the Hessian, or a Hessian-vector product. + This function uses the factory returned by `_flatten_forward_factory`, which given + a batch, returns the loss for the batch as a function of flattened parameters. + In particular, for each batch in `inputs_dataset`, this function uses the factory + to obtain `flattened_forward`, which returns the loss for `model`, using the batch. + `flattened_forward`, as well as the flattened parameters for `model`, are used by + argument `f`, a higher-order function, to compute a batch-specific quantity. + For example, `f` could compute the Hessian via `torch.autograd.functional.hessian`, + or compute a Hessian-vector product via `torch.autograd.functional.hvp`. Additional + arguments besides `flattened_forward` and the flattened parameters, i.e. the vector + in Hessian-vector products, can be passed via named arguments. + """ + # extract the parameters in a tuple + params = tuple( + model.parameters() + if layer_modules is None + else _extract_parameters_from_layers(layer_modules) + ) + + # construct functions that can flatten / unflatten tensors, and get + # names of each param in `params`. + # Both are needed for calling `_flatten_forward_factory` + _unflatten_params = _unflatten_params_factory( + tuple([param.shape for param in params]) + ) + param_names = _params_to_names(params, model) + + # prepare factory + factory_given_batch = _flatten_forward_factory( + model, + loss_fn, + reduction_type, + _unflatten_params, + param_names, + ) + + # the function returned by the factor is evaluated at a *flattened* version of + # params, so need to create that + flattened_params = _flatten_params(params) + + # define function of a single batch + # pyre-fixme[53]: Captured variable `factory_given_batch` is not annotated. + # pyre-fixme[53]: Captured variable `flattened_params` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def batch_f(batch): + flattened_forward = factory_given_batch(batch) # accepts flattened params + return f(flattened_forward, flattened_params, **f_kwargs) + + # sum up results of `batch_f` + if show_progress: + # pyre-fixme[9]: inputs_dataset has type `Union[DataLoader[typing.Any], + # typing.Tuple[Tensor, ...]]`; used as `tqdm[Tensor]`. + inputs_dataset = tqdm(inputs_dataset, desc="processing `hessian_dataset` batch") + + return _dataset_fn(inputs_dataset, batch_f, add) + + +def _get_dataset_embeddings_intermediate_quantities_influence_function( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + batch_embeddings_fn: Callable, + inputs_dataset: DataLoader, + aggregate: bool, +) -> Tensor: + """ + given `batch_embeddings_fn`, which produces the embeddings for a given batch, + returns either the embeddings for an entire dataset (if `aggregate` is false), + or the sum of the embeddings for an entire dataset (if `aggregate` is true). + """ + # if aggregate is false, we concatenate the embeddings for all batches + if not aggregate: + return torch.cat( + [batch_embeddings_fn(batch) for batch in inputs_dataset], dim=0 + ) + else: + # if aggregate is True, we return the sum of all embeddings for all + # batches. we do this by summing over each batch, and then summing over all + # batches. + inputs_dataset_iter = iter(inputs_dataset) + + batch = next(inputs_dataset_iter) + total_embedding = torch.sum(batch_embeddings_fn(batch), dim=0) + + for batch in inputs_dataset_iter: + total_embedding += torch.sum(batch_embeddings_fn(batch), dim=0) + + # we unsqueeze because regardless of aggregate, the returned tensor should + # be 2D. + return total_embedding.unsqueeze(0) + + +class NaiveInfluenceFunction(IntermediateQuantitiesInfluenceFunction): + r""" + This is a computationally-inefficient implementation that computes the type of + "infinitesimal" influence scores defined in the paper "Understanding Black-box + Predictions via Influence Functions" by Koh et al + (https://arxiv.org/pdf/1703.04730.pdf). The computational bottleneck in computing + infinitesimal influence scores is computing inverse Hessian-vector products, as can + be seen from its definition in `InfluenceFunctionBase`. This implementation is + inefficient / naive in that it explicitly forms the Hessian :math`H`, unlike other + implementations which compute inverse Hessian-vector products without explicitly + forming the Hessian. The purpose of this implementation is to have a way to + generate the "ground-truth" influence scores, to which other implementations, + which are more efficient but return only approximations of the influence score, can + be compared. + + This implementation computes a low-rank approximation of the inverse Hessian, i.e. + a tall and skinny (with width k) matrix :math`R` such that + :math`H^{-1} \approx RR'`, where k is small. In particular, let :math`L` be the + matrix of width k whose columns contain the top-k eigenvectors of :math`H`, and let + :math`V` be the k by k matrix whose diagonals contain the corresponding eigenvalues. + This implementation lets :math`R=LV^{-1}L'`. Thus, the core computational step is + computing the top-k eigenvalues / eigenvectors. + + This low-rank approximation is useful for several reasons: + - It avoids numerical issues associated with inverting small eigenvalues. + - Since the influence score is given by + :math`\nabla_\theta L(x)' H^{-1} \nabla_\theta L(z)`, which is approximated by + :math`(\nabla_\theta L(x)' R) (\nabla_\theta L(z)' R)`, we can compute an + "influence embedding" for a given example :math`x`, :math`\nabla_\theta L(x)' R`, + such that the influence score of one example on another is approximately the + dot-product of their respective embeddings. + + This implementation is "naive" in that it computes the top-k eigenvalues / + eigenvectors by explicitly forming the Hessian, converting it to a 2D tensor, + computing its eigenvectors / eigenvalues, and then sorting. See documentation of the + `_retrieve_projections_naive_influence_function` method for more details. + """ + + def __init__( + self, + model: Module, + train_dataset: Union[Dataset, DataLoader], + checkpoint: str, + checkpoints_load_func: Callable[ + [Module, str], float + ] = _load_flexible_state_dict, + layers: Optional[List[str]] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]] = None, + batch_size: Union[int, None] = 1, + hessian_dataset: Optional[Union[Dataset, DataLoader]] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + test_loss_fn: Optional[Union[Module, Callable]] = None, + sample_wise_grads_per_batch: bool = False, + projection_dim: int = 50, + seed: int = 42, + hessian_reg: float = 1e-6, + hessian_inverse_tol: float = 1e-5, + projection_on_cpu: bool = True, + show_progress: bool = False, + ) -> None: + """ + Args: + model (torch.nn.Module): An instance of pytorch model. This model should + define all of its layers as attributes of the model. + train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader): + In the `influence` method, we either compute the influence score of + training examples on examples in a test batch, or self influence + scores for those training examples, depending on which mode is used. + This argument represents the training dataset containing those + training examples. In order to compute those influence scores, we + will create a Pytorch DataLoader yielding batches of training + examples that is then used for processing. If this argument is + already a Pytorch Dataloader, that DataLoader can be directly + used for processing. If it is instead a Pytorch Dataset, we will + create a DataLoader using it, with batch size specified by + `batch_size`. For efficiency purposes, the batch size of the + DataLoader used for processing should be as large as possible, but + not too large, so that certain intermediate quantities created + from a batch still fit in memory. Therefore, if + `train_dataset` is a Dataset, `batch_size` should be large. + If `train_dataset` was already a DataLoader to begin with, + it should have been constructed to have a large batch size. It is + assumed that the Dataloader (regardless of whether it is created + from a Pytorch Dataset or not) yields tuples. For a `batch` that is + yielded, of length `L`, it is assumed that the forward function of + `model` accepts `L-1` arguments, and the last element of `batch` is + the label. In other words, `model(*batch[:-1])` gives the output of + `model`, and `batch[-1]` are the labels for the batch. + checkpoint (str): The path to the checkpoint used to compute influence + scores. + checkpoints_load_func (Callable, optional): The function to load a saved + checkpoint into a model to update its parameters, and get the + learning rate if it is saved. By default uses a utility to load a + model saved as a state dict. + Default: _load_flexible_state_dict + layers (list[str] or None, optional): A list of layer names for which + gradients should be computed. If `layers` is None, gradients will + be computed for all layers. Otherwise, they will only be computed + for the layers specified in `layers`. + Default: None + loss_fn (Callable, optional): The loss function applied to model. For now, + we require it to be a "reduction='none'" loss function. For + example, `BCELoss(reduction='none')` would be acceptable, but + `BCELoss(reduction='sum')` would not. + batch_size (int or None, optional): Batch size of the DataLoader created to + iterate through `train_dataset` and `hessian_dataset`, if they are + of type `Dataset`. `batch_size` should be chosen as large as + possible so that a backwards pass on a batch still fits in memory. + If `train_dataset` and `hessian_dataset`are both of type + `DataLoader`, then `batch_size` is ignored as an argument. + Default: 1 + hessian_dataset (Dataset or Dataloader, optional): The influence score and + self-influence scores this implementation calculates are defined in + terms of the Hessian, i.e. the second-derivative of the model + parameters. This argument provides the dataset used for calculating + the Hessian. It should be smaller than `train_dataset`, which + is the dataset whose examples we want the influence of. If not + provided or none, it will be assumed to be the same as + `train_dataset`. + Default: None + test_loss_fn (Callable, optional): In some cases, one may want to use a + separate loss functions for training examples, i.e. those in + `train_dataset`, and for test examples, i.e. those + represented by the `inputs` and `targets` arguments to the + `influence` method. For example, if one wants to calculate the + influence score of a training example on a test example's + prediction for a fixed class, `test_loss_fn` could map from the + logits for all classes to the logits for a fixed class. + `test_loss_fn` needs satisfy the same constraints as `loss_fn`. + Thus, the same checks that we apply to `loss_fn` are also applied + to `test_loss_fn`, if the latter is provided. Note that the + constraints on both `loss_fn` and `test_loss_fn` both depend on + `sample_wise_grads_per_batch`. This means `loss_fn` and + `test_loss_fn` must either both be "per-example" loss functions, + or both be "reduction" loss functions. If not provided, the loss + function for test examples is assumed to be the same as the loss + function for training examples, i.e. `loss_fn`. + Default: None + sample_wise_grads_per_batch (bool, optional): PyTorch's native gradient + computations w.r.t. model parameters aggregates the results for a + batch and does not allow to access sample-wise gradients w.r.t. + model parameters. This forces us to iterate over each sample in + the batch if we want sample-wise gradients which is computationally + inefficient. We offer an implementation of batch-wise gradient + computations w.r.t. to model parameters which is computationally + more efficient. This implementation can be enabled by setting the + `sample_wise_grad_per_batch` argument to `True`, and should be + enabled if and only if the `loss_fn` argument is a "reduction" loss + function. For example, `nn.BCELoss(reduction="sum")` would be a + valid `loss_fn` if this implementation is enabled (see + documentation for `loss_fn` for more details). Note that our + current implementation enables batch-wise gradient computations + only for a limited number of PyTorch nn.Modules: Conv2D and Linear. + This list will be expanded in the near future. Therefore, please + do not enable this implementation if gradients will be computed + for other kinds of layers. + Default: False + projection_dim (int, optional): This implementation produces a low-rank + approximation of the (inverse) Hessian. This is the rank of that + approximation, and also corresponds to the dimension of the + "influence embeddings" produced by the + `compute_intermediate_quantities` method. + Default: 50 + seed (int, optional): This implementation has a source of randomness - the + initialization basis to the Arnoldi iteration. This seed is used + to make that randomness reproducible. + Default: 42 + hessian_reg (float, optional): We add an entry to the hessian's diagonal + entries before computing its eigenvalues / eigenvectors. + This is that entry. + Default: 1e-6 + hessian_inverse_tol: (float) The tolerance to use when computing the + pseudo-inverse of the (square root of) hessian. + Default: 1e-6 + projection_on_cpu (bool, optional): Whether to move the projection, + i.e. low-rank approximation of the inverse Hessian, to cpu, to save + gpu memory. + Default: True + show_progress (bool, optional): This implementation explicitly computes the + Hessian over batches in `hessian_dataloader` (and sums them) which + can take a long time. If `show_progress` is true, the number of + batches for which the Hessian has been computed will be displayed. + It will try to use tqdm if available for advanced features (e.g. + time estimation). Otherwise, it will fallback to a simple output of + progress. + Default: False + """ + InfluenceFunctionBase.__init__( + self, + model, + train_dataset, + checkpoint, + checkpoints_load_func, + layers, + loss_fn, + batch_size, + hessian_dataset, + test_loss_fn, + sample_wise_grads_per_batch, + ) + + self.projection_dim = projection_dim + torch.manual_seed(seed) # for reproducibility + + self.hessian_reg = hessian_reg + self.hessian_inverse_tol = hessian_inverse_tol + + # infer the device the model is on. all parameters are assumed to be on the + # same device + self.model_device: device = next(model.parameters()).device + + self.R: Tensor = self._retrieve_projections_naive_influence_function( + self.hessian_dataloader, + projection_on_cpu, + show_progress, + ) + + def _retrieve_projections_naive_influence_function( + self, + dataloader: DataLoader, + projection_on_cpu: bool, + show_progress: bool, + ) -> Tensor: + r""" + Returns the matrix `R` described in the documentation for + `NaiveInfluenceFunction`. In short, `R` has the property that + :math`H^{-1} \approx RR'`, where `H` is the Hessian. Since this is a "naive" + implementation, it does so by explicitly forming the Hessian, converting + it to a 2D tensor, and computing its eigenvectors / eigenvalues, before + filtering out some eigenvalues and then inverting them. The returned matrix + `R` represents a set of parameters in parameter space. Since the Hessian + is obtained by first flattening the parameters, each column of `R` corresponds + to a *flattened* parameter in parameter space. + + Args: + dataloader (DataLoader): The returned matrix `R` gives a low-rank + approximation of the Hessian `H`. This dataloader defines the + dataset used to compute the Hessian that is being approximated. + projection_on_cpu (bool, optional): Whether to move the projection, + i.e. low-rank approximation of the inverse Hessian, to cpu, to save + gpu memory. + show_progress (bool): Computing the Hessian that is being approximated + requires summing up the Hessians computed using different batches, + which may take a long time. If `show_progress` is true, the number + of batches that have been processed will be displayed. It will try + to use tqdm if available for advanced features (e.g. time + estimation). Otherwise, it will fallback to a simple output of + progress. + + Returns: + R (Tensor): Tall and skinny tensor with width `projection_dim` + (initialization argument). Each column corresponds to a flattened + parameter in parameter-space. `R` has the property that + :math`H^{-1} \approx RR'`. + """ + # compute the hessian using the dataloader. hessian is always computed using + # the training loss function. H is 2D, with each column / row corresponding to + # a different parameter. we cannot directly use + # `torch.autograd.functional.hessian`, because it does not return a 2D tensor. + # instead, to compute H, we first create a function that accepts *flattened* + # model parameters (i.e. a 1D tensor), and outputs the loss of `self.model`, + # using those parameters, aggregated over `dataloader`. this function is then + # passed to `torch.autograd.functional.hessian`. because its input is 1D, the + # resulting hessian is 2D, as desired. all this functionality is handled by + # `_compute_dataset_func`. + H = _compute_dataset_func( + dataloader, + self.model, + self.loss_fn, + self.reduction_type, + self.layer_modules, + torch.autograd.functional.hessian, + show_progress, + ) + + # H is approximately `vs @ torch.diag(ls) @ vs.T``, using eigendecomposition + ls, vs = _top_eigen( + H, self.projection_dim, self.hessian_reg, self.hessian_inverse_tol + ) + + # if no positive eigenvalues exist, we cannot compute a low-rank + # approximation of the square root of the hessian H, so raise exception + if len(ls) == 0: + raise Exception( + "Hessian has no positive " + "eigenvalues, so cannot take its square root." + ) + + # `R` is `vs @ torch.diag(ls ** -0.5)`, since H^{-1} is approximately + # `vs @ torch.diag(ls ** -1) @ vs.T` + # see https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix#Matrix_inverse_via_eigendecomposition # noqa: E501 + # for details, which mentions that discarding small eigenvalues (as done in + # `_top_eigen`) reduces noisiness of the inverse. + # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. + ls = (1.0 / ls) ** 0.5 + return (ls.unsqueeze(0) * vs).to( + device=torch.device("cpu") if projection_on_cpu else self.model_device + ) + + def compute_intermediate_quantities( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs_dataset: Union[Tuple[Any, ...], DataLoader], + aggregate: bool = False, + show_progress: bool = False, + return_on_cpu: bool = True, + test: bool = False, + ) -> Tensor: + r""" + Computes "embedding" vectors for all examples in a single batch, or a + `Dataloader` that yields batches. These embedding vectors are constructed so + that the influence score of a training example on a test example is simply the + dot-product of their corresponding vectors. In both cases, a batch should be + small enough so that a backwards pass for a batch does not lead to + out-of-memory errors. + + In more detail, the embedding vector for an example `x` is + :math`\nabla_\theta L(x)' R`, where :math`R` is as defined in this class' + description. The embeddings for a batch of examples are computed by assembling + :math`\nabla_\theta L(x)` for all examples `x` in the batch as rows in a 2D + tensor, and right-multiplying by `R`. + + If `aggregate` is True, the *sum* of the vectors for all examples is returned, + instead of the vectors for each example. This can be useful for computing the + influence of a given training example on the total loss over a validation + dataset, because due to properties of the dot-product, this influence is the + dot-product of the training example's vector with the sum of the vectors in the + validation dataset. Also, by doing the sum aggregation within this method as + opposed to outside of it (by computing all vectors for the validation dataset, + then taking the sum) allows memory usage to be reduced. + + Args: + inputs_dataset (Tuple, or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, and + and `batch[-1]` are the labels, if any. Here, `model` is model + provided in initialization. This is the same assumption made for + each batch yielded by training dataset `train_dataset`. + aggregate (bool): Whether to return the sum of the vectors for all + examples, as opposed to vectors for each example. + show_progress (bool, optional): Computation of vectors can take a long + time if `inputs_dataset` represents many examples. If + `show_progress`is true, the progress of this computation will be + displayed. In particular, the number of batches for which + vectors have been computed will be displayed. It will try to + use tqdm if available for advanced features (e.g. time estimation). + Otherwise, it will fallback to a simple output of progress. + Default: False + return_on_cpu (bool, optional): Whether to return the vectors on the cpu. + If None or False, is set to the device that the model is on. + Default: None + test (bool, optional): Whether to compute the vectors using the loss + function `test_loss_fn` provided in initialization (instead of + `loss_fn`). This argument does not matter if `test_loss_fn` was + not provided, as in this case, `test_loss_fn` and `loss_fn` are the + same. + + Returns: + intermediate_quantities (Tensor): This is a 2D tensor with shape + `(N, projection_dim)`, where `N` is the total number of examples in + `inputs_dataset`, and `projection_dim` was provided in + initialization. Each row contains the vector for a different + example. + """ + # if `inputs_dataset` is not a `DataLoader`, turn it into one. + inputs_dataset = _format_inputs_dataset(inputs_dataset) + + if show_progress: + inputs_dataset = _progress_bar_constructor( + self, inputs_dataset, "inputs_dataset", "intermediate quantities" + ) + + # infer model / data device through model + return_device: device = ( + torch.device("cpu") if return_on_cpu else self.model_device + ) + + # as described in the description for `NaiveInfluenceFunction`, the embedding + # for an example `x` is :math`\nabla_\theta L(x)' R`. + # `_basic_computation_naive_influence_function` returns a 2D tensor where + # each row is :math`\nabla_\theta L(x)'` for a different example `x` in a + # batch. therefore, we right-multiply its output with `R` to get the embeddings + # for a batch, and then concatenate the per-batch embeddings to get embeddings + # for the entire dataset. + + # choose the correct loss function and reduction type based on `test` + loss_fn = self.test_loss_fn if test else self.loss_fn + reduction_type: str = self.test_reduction_type if test else self.reduction_type + + # define a helper function that returns the embeddings for a batch + # pyre-fixme[53]: Captured variable `loss_fn` is not annotated. + def get_batch_embeddings(batch: Tuple[Tensor, ...]) -> Tensor: + nonlocal loss_fn, reduction_type, return_device + # if `self.R` is on cpu, and `self.model_device` was not cpu, this implies + # `self.R` was too large to fit in gpu memory, and we should do the matrix + # multiplication of the batch jacobians with `self.R` separately for each + # column of `self.R`, to avoid moving the entire `self.R` to gpu all at + # once and running out of gpu memory + batch_jacobians = _basic_computation_naive_influence_function( + self, batch[0:-1], batch[-1], loss_fn, reduction_type + ) + if self.R.device == torch.device( + "cpu" + ) and self.model_device != torch.device("cpu"): + return torch.stack( + [ + torch.matmul(batch_jacobians, R_col.to(batch_jacobians.device)) + for R_col in self.R.T + ], + dim=1, + ).to(return_device) + else: + return torch.matmul(batch_jacobians, self.R).to(device=return_device) + + # using `get_batch_embeddings` and a helper, return all the vectors or their + # sum, depending on `aggregate` + return _get_dataset_embeddings_intermediate_quantities_influence_function( + get_batch_embeddings, + inputs_dataset, + aggregate, + ) + + @log_usage(skip_self_logging=True) + def influence( # type: ignore[override] + self, + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. + inputs: Tuple, + k: Optional[int] = None, + proponents: bool = True, + show_progress: bool = False, + ) -> Union[Tensor, KMostInfluentialResults]: + """ + This is the key method of this class, and can be run in 2 different modes, + where the mode that is run depends on the arguments passed to this method: + + - influence score mode: This mode is used if `k` is None. This mode computes + the influence score of every example in training dataset `train_dataset` + on every example in the test batch represented by `inputs`. + - k-most influential mode: This mode is used if `k` is not None, and an int. + This mode computes the proponents or opponents of every example in the + test batch represented by `inputs`. In particular, for each test example in + the test batch, this mode computes its proponents (resp. opponents), + which are the indices in the training dataset `train_dataset` of the + training examples with the `k` highest (resp. lowest) influence scores on the + test example. Proponents are computed if `proponents` is True. Otherwise, + opponents are computed. For each test example, this method also returns the + actual influence score of each proponent (resp. opponent) on the test + example. + + Args: + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. + k (int, optional): If not provided or `None`, the influence score mode will + be run. Otherwise, the k-most influential mode will be run, + and `k` is the number of proponents / opponents to return per + example in the test batch. + Default: None + proponents (bool, optional): Whether seeking proponents (`proponents=True`) + or opponents (`proponents=False`), if running in k-most influential + mode. + Default: True + show_progress (bool, optional): For all modes, computation of results + requires "training dataset computations": computations for each + batch in the training dataset `train_dataset`, which may + take a long time. If `show_progress` is true, the progress of + "training dataset computations" will be displayed. In particular, + the number of batches for which computations have been performed + will be displayed. It will try to use tqdm if available for + advanced features (e.g. time estimation). Otherwise, it will + fallback to a simple output of progress. + Default: False + + Returns: + The return value of this method depends on which mode is run. + + - influence score mode: if this mode is run (`k` is None), returns a 2D + tensor `influence_scores` of shape `(input_size, train_dataset_size)`, + where `input_size` is the number of examples in the test dataset, and + `train_dataset_size` is the number of examples in training dataset + `train_dataset`. In other words, `influence_scores[i][j]` is the + influence score of the `j`-th example in `train_dataset` on the `i`-th + example in the test batch. + - k-most influential mode: if this mode is run (`k` is an int), returns + a namedtuple `(indices, influence_scores)`. `indices` is a 2D tensor of + shape `(input_size, k)`, where `input_size` is the number of examples in + the test batch. If computing proponents (resp. opponents), + `indices[i][j]` is the index in training dataset `train_dataset` of the + example with the `j`-th highest (resp. lowest) influence score (out of + the examples in `train_dataset`) on the `i`-th example in the test + batch. `influence_scores` contains the corresponding influence scores. + In particular, `influence_scores[i][j]` is the influence score of example + `indices[i][j]` in `train_dataset` on example `i` in the test batch + represented by `inputs`. + """ + + return _influence_route_to_helpers( + self, + inputs, + k, + proponents, + show_progress=show_progress, + ) + + def _get_k_most_influential( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], + k: int = 5, + proponents: bool = True, + show_progress: bool = False, + ) -> KMostInfluentialResults: + r""" + Args: + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. + k (int, optional): The number of proponents or opponents to return per test + example. + Default: 5 + proponents (bool, optional): Whether seeking proponents (`proponents=True`) + or opponents (`proponents=False`) + Default: True + show_progress (bool, optional): To compute the proponents (or opponents) + for the batch of examples, we perform computation for each batch in + training dataset `train_dataset`, If `show_progress` is + true, the progress of this computation will be displayed. In + particular, the number of batches for which the computation has + been performed will be displayed. It will try to use tqdm if + available for advanced features (e.g. time estimation). Otherwise, + it will fallback to a simple output of progress. + Default: False + + Returns: + (indices, influence_scores) (namedtuple): `indices` is a torch.long Tensor + that contains the indices of the proponents (or opponents) for each + test example. Its dimension is `(inputs_batch_size, k)`, where + `inputs_batch_size` is the number of examples in `inputs`. For + example, if `proponents==True`, `indices[i][j]` is the index of the + example in training dataset `train_dataset` with the + k-th highest influence score for the j-th example in `inputs`. + `indices` is a `torch.long` tensor so that it can directly be used + to index other tensors. Each row of `influence_scores` contains the + influence scores for a different test example, in sorted order. In + particular, `influence_scores[i][j]` is the influence score of + example `indices[i][j]` in training dataset `train_dataset` + on example `i` in the test dataset represented by `inputs`. + """ + desc = ( + None + if not show_progress + else ( + ( + f"Using {self.get_name()} to perform computation for " + f'getting {"proponents" if proponents else "opponents"}. ' + "Processing training batches" + ) + ) + ) + return KMostInfluentialResults( + *_get_k_most_influential_helper( + self.train_dataloader, + functools.partial( + _influence_batch_intermediate_quantities_influence_function, self + ), + inputs, + k, + proponents, + show_progress, + desc, + ) + ) + + def _influence( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], + show_progress: bool = False, + ) -> Tensor: + r""" + Args: + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. + show_progress (bool, optional): To compute the influence of examples in + training dataset `train_dataset`, we compute the influence + of each batch. If `show_progress` is true, the progress of this + computation will be displayed. In particular, the number of batches + for which influence has been computed will be displayed. It will + try to use tqdm if available for advanced features (e.g. time + estimation). Otherwise, it will fallback to a simple output of + progress. + Default: False + + Returns: + influence_scores (Tensor): Influence scores over the entire + training dataset `train_dataset`. Dimensionality is + (inputs_batch_size, src_dataset_size). For example: + influence_scores[i][j] = the influence score for the j-th training + example to the i-th example in the test dataset. + """ + # turn inputs and targets into a dataset. inputs has already been processed + # so that it should always be unpacked + inputs_dataset = _format_inputs_dataset(inputs) + return _influence_helper_intermediate_quantities_influence_function( + self, inputs_dataset, show_progress + ) + + @log_usage(skip_self_logging=True) + def self_influence( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs_dataset: Optional[Union[Tuple[Any, ...], DataLoader]] = None, + show_progress: bool = False, + ) -> Tensor: + """ + Computes self influence scores for the examples in `inputs_dataset`, which is + either a single batch or a Pytorch `DataLoader` that yields batches. Therefore, + the computed self influence scores are *not* for the examples in training + dataset `train_dataset` (unlike when computing self influence scores using the + `influence` method). Note that if `inputs_dataset` is a single batch, this + will call `model` on that single batch, and if `inputs_dataset` yields + batches, this will call `model` on each batch that is yielded. Therefore, + please ensure that for both cases, the batch(es) that `model` is called + with are not too large, so that there will not be an out-of-memory error. + + Implementation-wise, the self-influence score for an example is simply the + squared norm of the example's "embedding" vector. Therefore, the implementation + leverages `compute_intermediate_quantities`. + + Args: + inputs_dataset (tuple or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, + and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset`. + Default: None + show_progress (bool, optional): Computation of self influence scores can + take a long time if `inputs_dataset` represents many examples. If + `show_progress`is true, the progress of this computation will be + displayed. In particular, the number of batches for which + self influence scores have been computed will be displayed. It will + try to use tqdm if available for advanced features (e.g. time + estimation). Otherwise, it will fallback to a simple output of + progress. + Default: False + """ + return _self_influence_helper_intermediate_quantities_influence_function( + self, inputs_dataset, show_progress + ) + + +def _basic_computation_naive_influence_function( + influence_inst: InfluenceFunctionBase, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Tuple[Any, ...], + targets: Optional[Tensor] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]] = None, + reduction_type: Optional[str] = None, +) -> Tensor: + """ + This computes the per-example parameter gradients for a batch, flattened into a + 2D tensor where the first dimension is batch dimension. This is used by + `NaiveInfluenceFunction` which computes embedding vectors for each example by + projecting their parameter gradients. + """ + # `jacobians` contains one tensor for each parameter we compute jacobians for. + # the first dimension of each tensor is the batch dimension, and the remaining + # dimensions correspond to the parameter, so that for the tensor corresponding + # to parameter `p`, its shape is `(batch_size, *p.shape)` + jacobians = _compute_jacobian_sample_wise_grads_per_batch( + influence_inst, inputs, targets, loss_fn, reduction_type + ) + + return torch.stack( + [ + _flatten_params(tuple(jacobian[i] for jacobian in jacobians)) + for i in range(len(next(iter(jacobians)))) + ], + dim=0, + ) diff --git a/captum/influence/_core/similarity_influence.py b/captum/influence/_core/similarity_influence.py index f781079a48..1583658cdc 100644 --- a/captum/influence/_core/similarity_influence.py +++ b/captum/influence/_core/similarity_influence.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + import warnings from functools import partial from typing import Any, Callable, Dict, List, Optional, Tuple, Union @@ -18,7 +20,7 @@ """ -def euclidean_distance(test, train) -> Tensor: +def euclidean_distance(test: Tensor, train: Tensor) -> Tensor: r""" Calculates the pairwise euclidean distance for batches of feature vectors. Tensors test and train have shape (batch_size_1, *), and (batch_size_2, *). @@ -31,7 +33,7 @@ def euclidean_distance(test, train) -> Tensor: return similarity -def cosine_similarity(test, train, replace_nan=0) -> Tensor: +def cosine_similarity(test: Tensor, train: Tensor, replace_nan: int = 0) -> Tensor: r""" Calculates the pairwise cosine similarity for batches of feature vectors. Tensors test and train have shape (batch_size_1, *), and (batch_size_2, *). @@ -40,12 +42,8 @@ def cosine_similarity(test, train, replace_nan=0) -> Tensor: test = test.view(test.shape[0], -1) train = train.view(train.shape[0], -1) - if torch.__version__ <= "1.6.0": - test_norm = torch.norm(test, p=None, dim=1, keepdim=True) - train_norm = torch.norm(train, p=None, dim=1, keepdim=True) - else: - test_norm = torch.linalg.norm(test, ord=2, dim=1, keepdim=True) - train_norm = torch.linalg.norm(train, ord=2, dim=1, keepdim=True) + test_norm = torch.linalg.norm(test, ord=2, dim=1, keepdim=True) + train_norm = torch.linalg.norm(train, ord=2, dim=1, keepdim=True) test = torch.where(test_norm != 0.0, test / test_norm, Tensor([replace_nan])) train = torch.where(train_norm != 0.0, train / train_norm, Tensor([replace_nan])).T @@ -73,16 +71,17 @@ def __init__( influence_src_dataset: Dataset, activation_dir: str, model_id: str = "", + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. similarity_metric: Callable = cosine_similarity, similarity_direction: str = "max", batch_size: int = 1, **kwargs: Any, - ): + ) -> None: r""" Args: module (torch.nn.Module): An instance of pytorch model. This model should define all of its layers as attributes of the model. - layers (str or List of str): The fully qualified layer(s) for which the + layers (str or list[str]): The fully qualified layer(s) for which the activation vectors are computed. influence_src_dataset (torch.utils.data.Dataset): PyTorch Dataset that is used to create a PyTorch Dataloader to iterate over the dataset and @@ -92,8 +91,8 @@ def __init__( and retrieve activation computations. Best practice would be to use an absolute path. model_id (str): The name/version of the model for which layer - activations are being computed. Activations will be stored and - loaded under the subdirectory with this name if provided. + activations are being computed. Activations will be stored and + loaded under the subdirectory with this name if provided. similarity_metric (Callable): This is a callable function that computes a similarity metric between two representations. For example, the representations pair could be from the training and test sets. @@ -129,6 +128,7 @@ def __init__( implementation of `DataInfluence` abstract class. """ self.module = module + # pyre-fixme[4]: Attribute must be annotated. self.layers = [layers] if isinstance(layers, str) else layers self.influence_src_dataset = influence_src_dataset self.activation_dir = activation_dir @@ -136,6 +136,7 @@ def __init__( self.batch_size = batch_size if similarity_direction == "max" or similarity_direction == "min": + # pyre-fixme[4]: Attribute must be annotated. self.similarity_direction = similarity_direction else: raise ValueError( @@ -145,6 +146,7 @@ def __init__( if similarity_metric is cosine_similarity: if "replace_nan" in kwargs: + # pyre-fixme[4]: Attribute must be annotated. self.replace_nan = kwargs["replace_nan"] else: self.replace_nan = -2 if self.similarity_direction == "max" else 2 @@ -152,6 +154,7 @@ def __init__( self.similarity_metric = similarity_metric + # pyre-fixme[4]: Attribute must be annotated. self.influence_src_dataloader = DataLoader( influence_src_dataset, batch_size, shuffle=False ) @@ -160,19 +163,22 @@ def influence( # type: ignore[override] self, inputs: Union[Tensor, Tuple[Tensor, ...]], top_k: int = 1, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. additional_forward_args: Optional[Any] = None, load_src_from_disk: bool = True, **kwargs: Any, + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime subscripting errors. ) -> Dict: r""" Args: - inputs (tensor or tuple of tensors): Batch of examples for which influential - instances are computed. They are passed to the forward_func. The - first dimension in `inputs` tensor or tuple of tensors corresponds - to the batch size. A tuple of tensors is only passed in if this - is the input form that `module` accepts. + inputs (Tensor or tuple[Tensor, ...]): Batch of examples for which + influential instances are computed. They are passed to the + forward_func. The first dimension in `inputs` tensor or tuple + of tensors corresponds to the batch size. A tuple of tensors + is only passed in if thisis the input form that `module` accepts. top_k (int): The number of top-matching activations to return - additional_forward_args (optional): Additional arguments that will be + additional_forward_args (Any, optional): Additional arguments that will be passed to forward_func after inputs. load_src_from_disk (bool): Loads activations for `influence_src_dataset` where possible. Setting to False would force regeneration of @@ -191,17 +197,17 @@ def influence( # type: ignore[override] Returns: influences (dict): Returns the influential instances retrieved from - `influence_src_dataset` for each test example represented through a - tensor or a tuple of tensor in `inputs`. Returned influential - examples are represented as dict, with keys corresponding to - the layer names passed in `layers`. Each value in the dict is a - tuple containing the indices and values for the top k similarities - from `influence_src_dataset` by the chosen metric. The first value - in the tuple corresponds to the indices corresponding to the top k - most similar examples, and the second value is the similarity score. - The batch dimension corresponds to the batch dimension of `inputs`. - If inputs.shape[0] == 5, then dict[`layer_name`][0].shape[0] == 5. - These tensors will be of shape (inputs.shape[0], top_k). + `influence_src_dataset` for each test example represented through a + tensor or a tuple of tensor in `inputs`. Returned influential + examples are represented as dict, with keys corresponding to + the layer names passed in `layers`. Each value in the dict is a + tuple containing the indices and values for the top k similarities + from `influence_src_dataset` by the chosen metric. The first value + in the tuple corresponds to the indices corresponding to the top k + most similar examples, and the second value is the similarity score. + The batch dimension corresponds to the batch dimension of `inputs`. + If inputs.shape[0] == 5, then dict[`layer_name`][0].shape[0] == 5. + These tensors will be of shape (inputs.shape[0], top_k). """ inputs_batch_size = ( inputs[0].shape[0] if isinstance(inputs, tuple) else inputs.shape[0] @@ -291,7 +297,11 @@ def influence( # type: ignore[override] "returned as a tensor with [inputs_idx, src_dataset_idx] pairs " "which may have corrupted similarity scores." ) - warnings.warn(zero_warning, RuntimeWarning) + warnings.warn( + zero_warning, + RuntimeWarning, + stacklevel=1, + ) key = "-".join(["zero_acts", layer]) influences[key] = zero_acts diff --git a/captum/influence/_core/tracincp.py b/captum/influence/_core/tracincp.py index d3671767ce..ef8104cb97 100644 --- a/captum/influence/_core/tracincp.py +++ b/captum/influence/_core/tracincp.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + import glob import warnings from abc import abstractmethod @@ -7,28 +9,31 @@ from typing import ( Any, Callable, + cast, + Iterable, Iterator, List, Optional, - Union, Tuple, - NamedTuple, Type, + Union, ) import torch from captum._utils.av import AV -from captum._utils.common import _format_inputs -from captum._utils.gradient import ( - _compute_jacobian_wrt_params, - _compute_jacobian_wrt_params_with_sample_wise_trick, -) -from captum._utils.progress import progress +from captum._utils.progress import NullProgress, progress from captum.influence._core.influence import DataInfluence from captum.influence._utils.common import ( + _check_loss_fn, + _compute_jacobian_sample_wise_grads_per_batch, + _format_inputs_dataset, _get_k_most_influential_helper, _gradient_dot_product, + _influence_route_to_helpers, _load_flexible_state_dict, + _self_influence_by_batches_helper, + _set_active_parameters, + KMostInfluentialResults, ) from captum.log import log_usage from torch import Tensor @@ -43,7 +48,7 @@ Implements abstract DataInfluence class and provides implementation details for influence computation based on the logic provided in TracIn paper -(https://arxiv.org/pdf/2002.08484.pdf). +(https://arxiv.org/abs/2002.08484). The TracIn paper proposes an idealized notion of influence which can be represented by the total amount a training example reduces loss for a test example via a training @@ -66,24 +71,6 @@ """ -class KMostInfluentialResults(NamedTuple): - """ - This namedtuple stores the results of using the `influence` method. This method - is implemented by all subclasses of `TracInCPBase` to calculate - proponents / opponents. The `indices` field stores the indices of the - proponents / opponents for each example in the test batch. For example, if finding - opponents, `indices[i][j]` stores the index in the training data of the example - with the `j`-th highest influence score on the `i`-th example in the test batch. - Similarly, the `influence_scores` field stores the actual influence scores, so that - `influence_scores[i][j]` is the influence score of example `indices[i][j]` in the - training data on example `i` of the test batch. Please see `TracInCPBase.influence` - for more details. - """ - - indices: Tensor - influence_scores: Tensor - - class TracInCPBase(DataInfluence): """ To implement the `influence` method, classes inheriting from `TracInCPBase` will @@ -95,20 +82,25 @@ class TracInCPBase(DataInfluence): def __init__( self, model: Module, - influence_src_dataset: Union[Dataset, DataLoader], - checkpoints: Union[str, List[str], Iterator], - checkpoints_load_func: Callable = _load_flexible_state_dict, + train_dataset: Union[Dataset, DataLoader], + checkpoints: Union[str, List[str], Iterator[str]], + checkpoints_load_func: Callable[ + [Module, str], float + ] = _load_flexible_state_dict, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. loss_fn: Optional[Union[Module, Callable]] = None, batch_size: Union[int, None] = 1, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + test_loss_fn: Optional[Union[Module, Callable]] = None, ) -> None: r""" Args: + model (torch.nn.Module): An instance of pytorch model. This model should define all of its layers as attributes of the model. - influence_src_dataset (torch.utils.data.Dataset or torch.utils.DataLoader): - In the `influence` method, we either compute the influence score of - training examples on examples in a test batch, or self influence - scores for those training examples, depending on which mode is used. + train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader): + In the `influence` method, we compute the influence score of + training examples on examples in a test batch. This argument represents the training dataset containing those training examples. In order to compute those influence scores, we will create a Pytorch DataLoader yielding batches of training @@ -120,10 +112,16 @@ def __init__( DataLoader used for processing should be as large as possible, but not too large, so that certain intermediate quantities created from a batch still fit in memory. Therefore, if - `influence_src_dataset` is a Dataset, `batch_size` should be large. - If `influence_src_dataset` was already a DataLoader to begin with, - it should have been constructed to have a large batch size. - checkpoints (str or List of str or Iterator): Either the directory of the + `train_dataset` is a Dataset, `batch_size` should be large. + If `train_dataset` was already a DataLoader to begin with, + it should have been constructed to have a large batch size. It is + assumed that the Dataloader (regardless of whether it is created + from a Pytorch Dataset or not) yields tuples. For a `batch` that is + yielded, of length `L`, it is assumed that the forward function of + `model` accepts `L-1` arguments, and the last element of `batch` is + the label. In other words, `model(*batch[:-1])` gives the output of + `model`, and `batch[-1]` are the labels for the batch. + checkpoints (str, list[str], or Iterator): Either the directory of the path to store and retrieve model checkpoints, a list of filepaths with checkpoints from which to load, or an iterator which returns objects from which to load checkpoints. @@ -132,96 +130,166 @@ def __init__( learning rate if it is saved. By default uses a utility to load a model saved as a state dict. Default: _load_flexible_state_dict - layers (List of str or None, optional): A list of layer names for which - gradients should be computed. If `layers` is None, gradients will - be computed for all layers. Otherwise, they will only be computed - for the layers specified in `layers`. - Default: None loss_fn (Callable, optional): The loss function applied to model. Default: None batch_size (int or None, optional): Batch size of the DataLoader created to - iterate through `influence_src_dataset`, if it is a Dataset. + iterate through `train_dataset`, if it is a Dataset. `batch_size` should be chosen as large as possible so that certain intermediate quantities created from a batch still fit in memory. Specific implementations of `TracInCPBase` will detail the size of the intermediate quantities. `batch_size` must be an int if - `influence_src_dataset` is a Dataset. If `influence_src_dataset` + `train_dataset` is a Dataset. If `train_dataset` is a DataLoader, then `batch_size` is ignored as an argument. Default: 1 + test_loss_fn (Callable, optional): In some cases, one may want to use a + separate loss functions for training examples, i.e. those in + `train_dataset`, and for test examples, i.e. those + represented by the `inputs` and `targets` arguments to the + `influence` method. For example, if one wants to calculate the + influence score of a training example on a test example's + prediction for a fixed class, `test_loss_fn` could map from the + logits for all classes to the logits for a fixed class. + `test_loss_fn` needs to satisfy the same constraints as `loss_fn`. + If not provided, the loss function for test examples is assumed to + be the same as the loss function for training examples, i.e. + `loss_fn`. + Default: None """ - self.model = model - - if isinstance(checkpoints, str): - self.checkpoints = AV.sort_files(glob.glob(join(checkpoints, "*"))) - elif isinstance(checkpoints, List) and isinstance(checkpoints[0], str): - self.checkpoints = AV.sort_files(checkpoints) - else: - self.checkpoints = list(checkpoints) # cast to avoid mypy error - if isinstance(self.checkpoints, List): - assert len(self.checkpoints) > 0, "No checkpoints saved!" - + self.model: Module = model + self.checkpoints = checkpoints # type: ignore + self._checkpoints: List[str] = self.checkpoints self.checkpoints_load_func = checkpoints_load_func self.loss_fn = loss_fn + # If test_loss_fn not provided, it's assumed to be same as loss_fn + # pyre-fixme[4]: Attribute must be annotated. + self.test_loss_fn = loss_fn if test_loss_fn is None else test_loss_fn self.batch_size = batch_size - if not isinstance(influence_src_dataset, DataLoader): + if not isinstance(train_dataset, DataLoader): assert isinstance(batch_size, int), ( - "since the `influence_src_dataset` argument was a `Dataset`, " + "since the `train_dataset` argument was a `Dataset`, " "`batch_size` must be an int." ) - self.influence_src_dataloader = DataLoader( - influence_src_dataset, batch_size, shuffle=False - ) + # pyre-fixme[4]: Attribute must be annotated. + self.train_dataloader = DataLoader(train_dataset, batch_size, shuffle=False) else: - self.influence_src_dataloader = influence_src_dataset + self.train_dataloader = train_dataset - self.influence_src_dataloader_len: Optional[int] = None + self.train_dataloader_len: Optional[int] = None try: # since we will calculate the number of batches in - # `self.influence_src_dataloader` whenever we use progress bar, calculate + # `self.train_dataloader` whenever we use progress bar, calculate # it once in initialization, for re-use. - self.influence_src_dataloader_len = len(self.influence_src_dataloader) - except AttributeError: - pass + self.train_dataloader_len = len(self.train_dataloader) + except TypeError: + warnings.warn( + "Unable to determine the number of batches in training dataset " + "`train_dataset`. Therefore, if showing the progress of computations, " + "only the number of batches processed can be displayed, and not the " + "percentage completion of the computation, nor any time estimates.", + stacklevel=1, + ) + + @property + def checkpoints(self) -> List[str]: + return self._checkpoints + + @checkpoints.setter + def checkpoints(self, checkpoints: Union[str, List[str], Iterator[str]]) -> None: + if isinstance(checkpoints, str): + self._checkpoints = AV.sort_files(glob.glob(join(checkpoints, "*"))) + elif isinstance(checkpoints, List) and isinstance(checkpoints[0], str): + self._checkpoints = AV.sort_files(checkpoints) + else: + self._checkpoints = list(checkpoints) # cast to avoid mypy error + + if len(self._checkpoints) <= 0: + raise ValueError( + f"Invalid checkpoints provided for TracIn class: {checkpoints}!" + ) @abstractmethod - def _self_influence(self, show_progress: bool = False): + def self_influence( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Optional[Union[Tuple[Any, ...], DataLoader]] = None, + show_progress: bool = False, + ) -> Tensor: """ - Returns: - self influence scores (tensor): 1D tensor containing self influence - scores for all examples in training dataset - `influence_src_dataset`. - show_progress (bool, optional): To compute the self influence scores for - all examples in training dataset `influence_src_dataset`, we - compute the self influence scores for each batch. If - `show_progress`is true, the progress of this computation will be - displayed. In particular, the number of batches for which self - influence scores have been computed will be displayed. It will - try to use tqdm if available for advanced features (e.g. time - estimation). Otherwise, it will fallback to a simple output of - progress. + If `inputs` is not specified calculates the self influence + scores for the training dataset `train_dataset`. Otherwise, computes + self influence scores for the examples in `inputs`, + which is either a single batch or a Pytorch `DataLoader` that yields + batches. Therefore, in this case, the computed self influence scores + are *not* for the examples in training dataset `train_dataset`. + Note that if `inputs` is a single batch, this + will call `model` on that single batch, and if `inputs` yields + batches, this will call `model` on each batch that is yielded. Therefore, + please ensure that for both cases, the batch(es) that `model` is called + with are not too large, so that there will not be an out-of-memory error. + + Args: + inputs (tuple or DataLoader, optional): This specifies the + dataset for which self influence scores will be computed. + Either a single tuple of any, or a `DataLoader`, where each + batch yielded is a tuple of type any. In either case, the tuple + represents a single batch, where the last element is assumed to + be the labels for the batch. That is, `model(*batch[0:-1])` + produces the output for `model`, and `batch[-1]` are the labels, + if any. This is the same assumption made for each batch yielded + by training dataset `train_dataset`. Please see documentation for + the `train_dataset` argument to `TracInCP.__init__` for + more details on the assumed structure of a batch. If not provided + or `None`, self influence scores will be computed for training + dataset `train_dataset`, which yields batches satisfying the + above assumptions. + Default: None. + show_progress (bool, optional): Computation of self influence scores can + take a long time if `inputs` represents many examples. If + `show_progress` is true, the progress of this computation will be + displayed. In more detail, this computation will iterate over all + checkpoints (provided as the `checkpoints` initialization argument) + in an outer loop, and iterate over all batches that + `inputs` represents in an inner loop. Therefore, the + total number of (checkpoint, batch) combinations that need to be + iterated over is + (# of checkpoints x # of batches that `inputs` represents). + If `show_progress` is True, the total progress of both the outer + iteration over checkpoints and the inner iteration over batches is + displayed. It will try to use tqdm if available for advanced + features (e.g. time estimation). Otherwise, it will fallback to a + simple output of progress. Default: False + + Returns: + self_influence_scores (Tensor): This is a 1D tensor containing the self + influence scores of all examples in `inputs`, regardless of + whether it represents a single batch or a `DataLoader` that yields + batches. """ pass @abstractmethod def _get_k_most_influential( self, - inputs: Tuple[Any, ...], - targets: Optional[Tensor] = None, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], k: int = 5, proponents: bool = True, show_progress: bool = False, ) -> KMostInfluentialResults: r""" Args: - inputs (Tuple of Any): A tuple that represents a batch of examples. It does - not represent labels, which are passed as `targets`. - targets (tensor, optional): If computing influence scores on a loss - function, these are the labels corresponding to the batch `inputs`. - Default: None + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. k (int, optional): The number of proponents or opponents to return per test example. Default: 5 @@ -230,7 +298,7 @@ def _get_k_most_influential( Default: True show_progress (bool, optional): To compute the proponents (or opponents) for the batch of examples, we perform computation for each batch in - training dataset `influence_src_dataset`, If `show_progress`is + training dataset `train_dataset`, If `show_progress` is true, the progress of this computation will be displayed. In particular, the number of batches for which the computation has been performed will be displayed. It will try to use tqdm if @@ -244,101 +312,90 @@ def _get_k_most_influential( test example. Its dimension is `(inputs_batch_size, k)`, where `inputs_batch_size` is the number of examples in `inputs`. For example, if `proponents==True`, `indices[i][j]` is the index of the - example in training dataset `influence_src_dataset` with the + example in training dataset `train_dataset` with the k-th highest influence score for the j-th example in `inputs`. `indices` is a `torch.long` tensor so that it can directly be used to index other tensors. Each row of `influence_scores` contains the influence scores for a different test example, in sorted order. In particular, `influence_scores[i][j]` is the influence score of - example `indices[i][j]` in training dataset `influence_src_dataset` - on example `i` in the test batch represented by `inputs` and - `targets`. + example `indices[i][j]` in training dataset `train_dataset` + on example `i` in the test batch represented by `inputs`. """ pass @abstractmethod def _influence( self, - inputs: Tuple[Any, ...], - targets: Optional[Tensor] = None, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], show_progress: bool = False, ) -> Tensor: r""" Args: - inputs (Tuple of Any): A batch of examples. Does not represent labels, - which are passed as `targets`. The assumption is that - `self.model(*inputs)` produces the predictions for the batch. - targets (tensor, optional): If computing influence scores on a loss - function, these are the labels corresponding to the batch - `inputs`. - Default: None - Returns: - influence_scores (tensor): Influence scores over the entire - training dataset `influence_src_dataset`. Dimensionality is - (inputs_batch_size, src_dataset_size). For example: - influence_scores[i][j] = the influence score for the j-th training - example to the i-th input example. + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. show_progress (bool, optional): To compute the influence of examples in - training dataset `influence_src_dataset`, we compute the influence - of each batch. If `show_progress`is true, the progress of this + training dataset `train_dataset`, we compute the influence + of each batch. If `show_progress` is true, the progress of this computation will be displayed. In particular, the number of batches for which influence has been computed will be displayed. It will try to use tqdm if available for advanced features (e.g. time estimation). Otherwise, it will fallback to a simple output of progress. Default: False + + Returns: + influence_scores (Tensor): Influence scores over the entire + training dataset `train_dataset`. Dimensionality is + (inputs_batch_size, src_dataset_size). For example: + influence_scores[i][j] = the influence score for the j-th training + example to the i-th example in the test batch. """ pass @abstractmethod def influence( # type: ignore[override] self, - inputs: Any = None, - targets: Optional[Tensor] = None, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], k: Optional[int] = None, proponents: bool = True, unpack_inputs: bool = True, show_progress: bool = False, ) -> Union[Tensor, KMostInfluentialResults]: r""" - This is the key method of this class, and can be run in 3 different modes, + This is the key method of this class, and can be run in 2 different modes, where the mode that is run depends on the arguments passed to this method: - - self influence mode: This mode is used if `inputs` is None. This mode - computes the self influence scores for every example in - the training dataset `influence_src_dataset`. - - influence score mode: This mode is used if `inputs` is not None, and `k` is - None. This mode computes the influence score of every example in - training dataset `influence_src_dataset` on every example in the test - batch represented by `inputs` and `targets`. - - k-most influential mode: This mode is used if `inputs` is not None, and - `k` is not None, and an int. This mode computes the proponents or - opponents of every example in the test batch represented by `inputs` - and `targets`. In particular, for each test example in the test batch, - this mode computes its proponents (resp. opponents), which are the - indices in the training dataset `influence_src_dataset` of the training - examples with the `k` highest (resp. lowest) influence scores on the - test example. Proponents are computed if `proponents` is True. - Otherwise, opponents are computed. For each test example, this method - also returns the actual influence score of each proponent (resp. - opponent) on the test example. + - influence score mode: This mode is used if `k` is None. This mode computes + the influence score of every example in training dataset `train_dataset` + on every example in the test batch represented by `inputs`. + - k-most influential mode: This mode is used if `k` is not None, and an int. + This mode computes the proponents or opponents of every example in the + test batch represented by `inputs`. In particular, for each test example in + the test batch, this mode computes its proponents (resp. opponents), + which are the indices in the training dataset `train_dataset` of the + training examples with the `k` highest (resp. lowest) influence scores on the + test example. Proponents are computed if `proponents` is True. Otherwise, + opponents are computed. For each test example, this method also returns the + actual influence score of each proponent (resp. opponent) on the test + example. Args: - inputs (Any, optional): If not provided or `None`, the self influence mode - will be run. Otherwise, `inputs` is the test batch that will be - used when running in either influence score or k-most influential - mode. If the argument `unpack_inputs` is False, the - assumption is that `self.model(inputs)` produces the predictions - for a batch, and `inputs` can be of any type. Otherwise if the - argument `unpack_inputs` is True, the assumption is that - `self.model(*inputs)` produces the predictions for a batch, and - `inputs` will need to be a tuple. In other words, `inputs` will be - unpacked as an argument when passing to `self.model`. - Default: None - targets (tensor, optional): If computing influence scores on a loss - function, these are the labels corresponding to the batch `inputs`. - Default: None + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. k (int, optional): If not provided or `None`, the influence score mode will be run. Otherwise, the k-most influential mode will be run, and `k` is the number of proponents / opponents to return per @@ -348,14 +405,10 @@ def influence( # type: ignore[override] or opponents (`proponents=False`), if running in k-most influential mode. Default: True - unpack_inputs (bool, optional): Whether to unpack the `inputs` argument to - when passing it to `model`, if `inputs` is a tuple (no unpacking - done otherwise). - Default: True show_progress (bool, optional): For all modes, computation of results requires "training dataset computations": computations for each - batch in the training dataset `influence_src_dataset`, which may - take a long time. If `show_progress`is true, the progress of + batch in the training dataset `train_dataset`, which may + take a long time. If `show_progress` is true, the progress of "training dataset computations" will be displayed. In particular, the number of batches for which computations have been performed will be displayed. It will try to use tqdm if available for @@ -366,33 +419,24 @@ def influence( # type: ignore[override] Returns: The return value of this method depends on which mode is run. - - self influence mode: if this mode is run (`inputs` is None), returns a 1D - tensor of self influence scores over training dataset - `influence_src_dataset`. The length of this tensor is the number of - examples in `influence_src_dataset`, regardless of whether it is a - Dataset or DataLoader. - - influence score mode: if this mode is run (`inputs is not None, `k` is - None), returns a 2D tensor `influence_scores` of shape - `(input_size, influence_src_dataset_size)`, where `input_size` is - the number of examples in the test batch, and - `influence_src_dataset_size` is the number of examples in - training dataset `influence_src_dataset`. In other words, - `influence_scores[i][j]` is the influence score of the `j`-th - example in `influence_src_dataset` on the `i`-th example in the - test batch. - - k-most influential mode: if this mode is run (`inputs` is not None, - `k` is an int), returns a namedtuple `(indices, influence_scores)`. - `indices` is a 2D tensor of shape `(input_size, k)`, where - `input_size` is the number of examples in the test batch. If - computing proponents (resp. opponents), `indices[i][j]` is the - index in training dataset `influence_src_dataset` of the example - with the `j`-th highest (resp. lowest) influence score (out of the - examples in `influence_src_dataset`) on the `i`-th example in the - test batch. `influence_scores` contains the corresponding influence - scores. In particular, `influence_scores[i][j]` is the influence - score of example `indices[i][j]` in `influence_src_dataset` on - example `i` in the test batch represented by `inputs` and - `targets`. + - influence score mode: if this mode is run (`k` is None), returns a 2D + tensor `influence_scores` of shape `(input_size, train_dataset_size)`, + where `input_size` is the number of examples in the test batch, and + `train_dataset_size` is the number of examples in training dataset + `train_dataset`. In other words, `influence_scores[i][j]` is the + influence score of the `j`-th example in `train_dataset` on the `i`-th + example in the test batch. + - k-most influential mode: if this mode is run (`k` is an int), returns + a namedtuple `(indices, influence_scores)`. `indices` is a 2D tensor of + shape `(input_size, k)`, where `input_size` is the number of examples in + the test batch. If computing proponents (resp. opponents), + `indices[i][j]` is the index in training dataset `train_dataset` of the + example with the `j`-th highest (resp. lowest) influence score (out of + the examples in `train_dataset`) on the `i`-th example in the test + dataset. `influence_scores` contains the corresponding influence scores. + In particular, `influence_scores[i][j]` is the influence score of example + `indices[i][j]` in `train_dataset` on example `i` in the test batch + represented by `inputs`. """ pass @@ -409,57 +453,31 @@ def get_name(cls: Type["TracInCPBase"]) -> str: return cls.__name__ -def _influence_route_to_helpers( - influence_instance: TracInCPBase, - inputs: Any = None, - targets: Optional[Tensor] = None, - k: Optional[int] = None, - proponents: bool = True, - unpack_inputs: bool = True, - show_progress: bool = False, -) -> Union[Tensor, KMostInfluentialResults]: - """ - This is a helper function called by `TracInCP.influence` and - `TracInCPFast.influence`. Those methods share a common logic in that they assume - an instance of their respective classes implement 3 private methods - (`_self_influence`, `_influence`, `_get_k_most_influential`), and the logic of - which private method to call is common, as described in the documentation of the - `influence` method. The arguments and return values of this function are the exact - same as the `influence` method. Note that `influence_instance` refers to the - instance for which the `influence` method was called. - """ - _inputs = _format_inputs(inputs, unpack_inputs) - - if inputs is None: - return influence_instance._self_influence(show_progress) - elif k is None: - return influence_instance._influence(_inputs, targets, show_progress) - else: - return influence_instance._get_k_most_influential( - _inputs, targets, k, proponents, show_progress - ) - - class TracInCP(TracInCPBase): def __init__( self, model: Module, - influence_src_dataset: Union[Dataset, DataLoader], - checkpoints: Union[str, List[str], Iterator], - checkpoints_load_func: Callable = _load_flexible_state_dict, + train_dataset: Union[Dataset, DataLoader], + checkpoints: Union[str, List[str], Iterator[str]], + checkpoints_load_func: Callable[ + [Module, str], float + ] = _load_flexible_state_dict, layers: Optional[List[str]] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. loss_fn: Optional[Union[Module, Callable]] = None, batch_size: Union[int, None] = 1, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + test_loss_fn: Optional[Union[Module, Callable]] = None, sample_wise_grads_per_batch: bool = False, ) -> None: r""" Args: + model (torch.nn.Module): An instance of pytorch model. This model should define all of its layers as attributes of the model. - influence_src_dataset (torch.utils.data.Dataset or torch.utils.DataLoader): - In the `influence` method, we either compute the influence score of - training examples on examples in a test batch, or self influence - scores for those training examples, depending on which mode is used. + train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader): + In the `influence` method, we compute the influence score of + training examples on examples in a test batch. This argument represents the training dataset containing those training examples. In order to compute those influence scores, we will create a Pytorch DataLoader yielding batches of training @@ -471,10 +489,16 @@ def __init__( DataLoader used for processing should be as large as possible, but not too large, so that certain intermediate quantities created from a batch still fit in memory. Therefore, if - `influence_src_dataset` is a Dataset, `batch_size` should be large. - If `influence_src_dataset` was already a DataLoader to begin with, - it should have been constructed to have a large batch size. - checkpoints (str or List of str or Iterator): Either the directory of the + `train_dataset` is a Dataset, `batch_size` should be large. + If `train_dataset` was already a DataLoader to begin with, + it should have been constructed to have a large batch size. It is + assumed that the Dataloader (regardless of whether it is created + from a Pytorch Dataset or not) yields tuples. For a `batch` that is + yielded, of length `L`, it is assumed that the forward function of + `model` accepts `L-1` arguments, and the last element of `batch` is + the label. In other words, `model(*batch[:-1])` gives the output of + `model`, and `batch[-1]` are the labels for the batch. + checkpoints (str, list[str], or Iterator): Either the directory of the path to store and retrieve model checkpoints, a list of filepaths with checkpoints from which to load, or an iterator which returns objects from which to load checkpoints. @@ -483,7 +507,7 @@ def __init__( learning rate if it is saved. By default uses a utility to load a model saved as a state dict. Default: _load_flexible_state_dict - layers (List of str or None, optional): A list of layer names for which + layers (list[str] or None, optional): A list of layer names for which gradients should be computed. If `layers` is None, gradients will be computed for all layers. Otherwise, they will only be computed for the layers specified in `layers`. @@ -507,14 +531,32 @@ def __init__( to "mean", i.e. `loss_fn.reduction = "mean"`. Default: None batch_size (int or None, optional): Batch size of the DataLoader created to - iterate through `influence_src_dataset`, if it is a Dataset. + iterate through `train_dataset`, if it is a Dataset. `batch_size` should be chosen as large as possible so that certain intermediate quantities created from a batch still fit in memory. Specific implementations of `TracInCPBase` will detail the size of the intermediate quantities. `batch_size` must be an int if - `influence_src_dataset` is a Dataset. If `influence_src_dataset` + `train_dataset` is a Dataset. If `train_dataset` is a DataLoader, then `batch_size` is ignored as an argument. Default: 1 + test_loss_fn (Callable, optional): In some cases, one may want to use a + separate loss functions for training examples, i.e. those in + `train_dataset`, and for test examples, i.e. those + represented by the `inputs` and `targets` arguments to the + `influence` method. For example, if one wants to calculate the + influence score of a training example on a test example's + prediction for a fixed class, `test_loss_fn` could map from the + logits for all classes to the logits for a fixed class. + `test_loss_fn` needs satisfy the same constraints as `loss_fn`. + Thus, the same checks that we apply to `loss_fn` are also applied + to `test_loss_fn`, if the latter is provided. Note that the + constraints on both `loss_fn` and `test_loss_fn` both depend on + `sample_wise_grads_per_batch`. This means `loss_fn` and + `test_loss_fn` must either both be "per-example" loss functions, + or both be "reduction" loss functions. If not provided, the loss + function for test examples is assumed to be the same as the loss + function for training examples, i.e. `loss_fn`. + Default: None sample_wise_grads_per_batch (bool, optional): PyTorch's native gradient computations w.r.t. model parameters aggregates the results for a batch and does not allow to access sample-wise gradients w.r.t. @@ -539,126 +581,96 @@ def __init__( TracInCPBase.__init__( self, model, - influence_src_dataset, + train_dataset, checkpoints, checkpoints_load_func, loss_fn, batch_size, + test_loss_fn, ) self.sample_wise_grads_per_batch = sample_wise_grads_per_batch - # If we are able to access the reduction used by `loss_fn`, we check whether - # the reduction is compatible with `sample_wise_grads_per_batch` - if isinstance(loss_fn, Module) and hasattr( - loss_fn, "reduction" - ): # TODO: allow loss_fn to be Callable - if self.sample_wise_grads_per_batch: - assert loss_fn.reduction in ["sum", "mean"], ( - 'reduction for `loss_fn` must be "sum" or "mean" when ' - "`sample_wise_grads_per_batch` is True" - ) - self.reduction_type = str(loss_fn.reduction) - else: - assert loss_fn.reduction == "none", ( - 'reduction for `loss_fn` must be "none" when ' - "`sample_wise_grads_per_batch` is False" - ) - else: - # if we are unable to access the reduction used by `loss_fn`, we warn - # the user about the assumptions we are making regarding the reduction - # used by `loss_fn` - if self.sample_wise_grads_per_batch: - warnings.warn( - 'Since `loss_fn` has no "reduction" attribute, and ' - "`sample_wise_grads_per_batch` is True, the implementation assumes " - 'that `loss_fn` is a "reduction" loss function that reduces the ' - "per-example losses by taking their *sum*. If `loss_fn` " - "instead reduces the per-example losses by taking their mean, " - 'please set the reduction attribute of `loss_fn` to "mean", i.e. ' - '`loss_fn.reduction = "mean"`. Note that if ' - "`sample_wise_grads_per_batch` is True, the implementation " - "assumes the reduction is either a sum or mean reduction." - ) - self.reduction_type = "sum" - else: - warnings.warn( - 'Since `loss_fn` has no "reduction" attribute, and ' - "`sample_wise_grads_per_batch` is False, the implementation " - 'assumes that `loss_fn` is a "per-example" loss function (see ' - "documentation for `loss_fn` for details). Please ensure that " - "this is the case." - ) + # check `loss_fn` + self.reduction_type: str = _check_loss_fn( + self, loss_fn, "loss_fn", sample_wise_grads_per_batch + ) + # check `test_loss_fn` if it was provided + self.test_reduction_type: str = ( + self.reduction_type + if test_loss_fn is None + else _check_loss_fn( + self, test_loss_fn, "test_loss_fn", sample_wise_grads_per_batch + ) + ) r""" TODO: Either restore model state after done (would have to place functionality within influence to restore after every influence call)? or make a copy so that changes to grad_requires aren't persistent after using TracIn. """ + self.layer_modules: Optional[List[Module]] = None if layers is not None: - assert isinstance(layers, List), "`layers` should be a list!" - assert len(layers) > 0, "`layers` cannot be empty!" - assert isinstance( - layers[0], str - ), "`layers` should contain str layer names." - layerstr = " ".join(layers) - gradset = False - for layer in layers: - for name, param in model.named_parameters(): - param.requires_grad = False - if name in layerstr or layer in name: - param.requires_grad = True - gradset = True - assert gradset, "At least one parameter of network must require gradient." + self.layer_modules = _set_active_parameters(model, layers) @log_usage() def influence( # type: ignore[override] self, - inputs: Any = None, - targets: Optional[Tensor] = None, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], k: Optional[int] = None, proponents: bool = True, - unpack_inputs: bool = True, show_progress: bool = False, + aggregate: bool = False, ) -> Union[Tensor, KMostInfluentialResults]: r""" - This is the key method of this class, and can be run in 3 different modes, - where the mode that is run depends on the arguments passed to this method: - - - self influence mode: This mode is used if `inputs` is None. This mode - computes the self influence scores for every example in - the training dataset `influence_src_dataset`. - - influence score mode: This mode is used if `inputs` is not None, and `k` is - None. This mode computes the influence score of every example in - training dataset `influence_src_dataset` on every example in the test - batch represented by `inputs` and `targets`. - - k-most influential mode: This mode is used if `inputs` is not None, and - `k` is not None, and an int. This mode computes the proponents or - opponents of every example in the test batch represented by `inputs` - and `targets`. In particular, for each test example in the test batch, - this mode computes its proponents (resp. opponents), which are the - indices in the training dataset `influence_src_dataset` of the training - examples with the `k` highest (resp. lowest) influence scores on the - test example. Proponents are computed if `proponents` is True. - Otherwise, opponents are computed. For each test example, this method - also returns the actual influence score of each proponent (resp. - opponent) on the test example. + This is the key method of this class, and can be run in 2 different modes, + where the mode that is run depends on the arguments passed to this method. + Below, we describe the 2 modes, when `aggregate` is false: + + - influence score mode: This mode is used if `k` is None. This mode computes + the influence score of every example in training dataset `train_dataset` + on every example in the test dataset represented by `inputs`. + - k-most influential mode: This mode is used if `k` is not None, and an int. + This mode computes the proponents or opponents of every example in the + test dataset represented by `inputs`. In particular, for each test example in + the test dataset, this mode computes its proponents (resp. opponents), + which are the indices in the training dataset `train_dataset` of the + training examples with the `k` highest (resp. lowest) influence scores on the + test example. Proponents are computed if `proponents` is True. Otherwise, + opponents are computed. For each test example, this method also returns the + actual influence score of each proponent (resp. opponent) on the test + example. + + When `aggregate` is True, this method computes "aggregate" influence scores, + which for a given training example, is the *sum* of its influence scores over + all examples in the test dataset. Below, we describe the 2 modes, when + `aggregate` is True: + + - influence score mode: This mode is used if `k` is None. This mode computes + the aggregate influence score of each example in training dataset + `train_dataset` on the test dataset. + - k-most influential mode: This mode is used if `k` is not None, and an int. + This mode computes the "aggregate" proponents (resp. opponents), which are + the indices in the training dataset `train_dataset` of the examples with the + `k` highest (resp. lowest) aggregate influence scores on the test dataset. + Proponents are computed if `proponents` is True. Otherwise, opponents are + computed. This method also returns the actual aggregate influence scores + of each proponent (resp. opponent) on the test dataset. Args: - inputs (Any, optional): If not provided or `None`, the self influence mode - will be run. Otherwise, `inputs` is the test batch that will be - used when running in either influence score or k-most influential - mode. If the argument `unpack_inputs` is False, the - assumption is that `self.model(inputs)` produces the predictions - for a batch, and `inputs` can be of any type. Otherwise if the - argument `unpack_inputs` is True, the assumption is that - `self.model(*inputs)` produces the predictions for a batch, and - `inputs` will need to be a tuple. In other words, `inputs` will be - unpacked as an argument when passing to `self.model`. - Default: None - targets (tensor, optional): If computing influence scores on a loss - function, these are the labels corresponding to the batch `inputs`. - Default: None + + inputs (Tuple, or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, and + and `batch[-1]` are the labels, if any. Here, `model` is model + provided in initialization. This is the same assumption made for + each batch yielded by training dataset `train_dataset`. Please see + documentation for the `train_dataset` argument to + `TracInCPFastRandProj.__init__` for more details on the assumed + structure of a batch. k (int, optional): If not provided or `None`, the influence score mode will be run. Otherwise, the k-most influential mode will be run, and `k` is the number of proponents / opponents to return per @@ -668,174 +680,417 @@ def influence( # type: ignore[override] or opponents (`proponents=False`), if running in k-most influential mode. Default: True - unpack_inputs (bool, optional): Whether to unpack the `inputs` argument to - when passing it to `model`, if `inputs` is a tuple (no unpacking - done otherwise). - Default: True show_progress (bool, optional): For all modes, computation of results requires "training dataset computations": computations for each - batch in the training dataset `influence_src_dataset`, which may - take a long time. If `show_progress`is true, the progress of + batch in the training dataset `train_dataset`, which may + take a long time. If `show_progress` is true, the progress of "training dataset computations" will be displayed. In particular, the number of batches for which computations have been performed will be displayed. It will try to use tqdm if available for advanced features (e.g. time estimation). Otherwise, it will fallback to a simple output of progress. Default: False + aggregate (bool, optional): If true, return "aggregate" influence scores or + examples with the highest / lowest aggregate influence scores on + the test dataset, depending on the mode. Returns: - The return value of this method depends on which mode is run. - - - self influence mode: if this mode is run (`inputs` is None), returns a 1D - tensor of self influence scores over training dataset - `influence_src_dataset`. The length of this tensor is the number of - examples in `influence_src_dataset`, regardless of whether it is a - Dataset or DataLoader. - - influence score mode: if this mode is run (`inputs is not None, `k` is - None), returns a 2D tensor `influence_scores` of shape - `(input_size, influence_src_dataset_size)`, where `input_size` is - the number of examples in the test batch, and - `influence_src_dataset_size` is the number of examples in - training dataset `influence_src_dataset`. In other words, - `influence_scores[i][j]` is the influence score of the `j`-th - example in `influence_src_dataset` on the `i`-th example in the - test batch. - - k-most influential mode: if this mode is run (`inputs` is not None, - `k` is an int), returns a namedtuple `(indices, influence_scores)`. - `indices` is a 2D tensor of shape `(input_size, k)`, where - `input_size` is the number of examples in the test batch. If - computing proponents (resp. opponents), `indices[i][j]` is the - index in training dataset `influence_src_dataset` of the example - with the `j`-th highest (resp. lowest) influence score (out of the - examples in `influence_src_dataset`) on the `i`-th example in the - test batch. `influence_scores` contains the corresponding influence - scores. In particular, `influence_scores[i][j]` is the influence - score of example `indices[i][j]` in `influence_src_dataset` on - example `i` in the test batch represented by `inputs` and - `targets`. + The return value of this method depends on which mode is run, and whether + `aggregate` is True of False. + + Below are the return values for the 2 modes, when `aggregate` is False: + + - influence score mode: if this mode is run (`k` is None), returns a 2D + tensor `influence_scores` of shape `(input_size, train_dataset_size)`, + where `input_size` is the number of examples in the test dataset, and + `train_dataset_size` is the number of examples in training dataset + `train_dataset`. In other words, `influence_scores[i][j]` is the + influence score of the `j`-th example in `train_dataset` on the `i`-th + example in the test dataset. + - k-most influential mode: if this mode is run (`k` is an int), returns + a namedtuple `(indices, influence_scores)`. `indices` is a 2D tensor of + shape `(input_size, k)`, where `input_size` is the number of examples in + the test dataset. If computing proponents (resp. opponents), + `indices[i][j]` is the index in training dataset `train_dataset` of the + example with the `j`-th highest (resp. lowest) influence score (out of + the examples in `train_dataset`) on the `i`-th example in the test + dataset. `influence_scores` contains the corresponding influence scores. + In particular, `influence_scores[i][j]` is the influence score of example + `indices[i][j]` in `train_dataset` on example `i` in the test dataset + represented by `inputs`. + + Below are the return values for the 2 modes, when `aggregate` is True: + + - influence score mode: if this mode is run (`k` is None), returns a 2D + tensor `influence_scores` of shape `(1, train_dataset_size)`, where + `influence_scores[0][j] is the aggregate influence score of the `j`-th + example in `train_dataset` on the test dataset. + - k-most influential mode: if this mode is run (`k` is an int), returns a + namedtuple `(indices, influence_scores)`. `indices` is a 2D tensor of + shape `(1, k)`. If computing proponents (resp. opponents), + `indices[0][j]` is the index in training dataset `train_dataset` of the + example with the `j`-th highest (resp. lowest) aggregate influence score + on the test dataset. `influence_scores` contains the corresponding + aggregate influence scores. In particular, `influence_scores[0][j]` is + the aggregate influence score of example `indices[0][j]` on the test + dataset. """ + + assert inputs is not None, ( + "`inputs` argument is required." + "If you wish to calculate self influence scores," + " please use the `self_influence` method instead." + ) return _influence_route_to_helpers( self, inputs, - targets, k, proponents, - unpack_inputs, - show_progress, + show_progress=show_progress, + aggregate=aggregate, ) - def _influence_batch_tracincp( + def _sum_jacobians( self, - inputs: Tuple[Any, ...], - targets: Optional[Tensor], - batch: Tuple[Any, ...], - ): + inputs: DataLoader, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]] = None, + reduction_type: Optional[str] = None, + ) -> Tuple[Tensor, ...]: """ - computes influence scores for a single training batch + sums the jacobians of all examples in `inputs`. result is of the + same format as layer_jacobians, but the batch dimension has size 1 """ + inputs_iter = iter(inputs) - def get_checkpoint_contribution(checkpoint): + inputs_batch = next(inputs_iter) + # pyre-fixme[2]: Parameter `inputs_batch` must have a type that does not contain `Any`. # noqa: E501 + def get_batch_contribution(inputs_batch: Tuple[Any, ...]) -> Tuple[Tensor, ...]: + _input_jacobians = self._basic_computation_tracincp( + inputs_batch[0:-1], + inputs_batch[-1], + loss_fn, + reduction_type, + ) + + return tuple( + torch.sum(jacobian, dim=0).unsqueeze(0) for jacobian in _input_jacobians + ) + + inputs_jacobians = get_batch_contribution(inputs_batch) + + for inputs_batch in inputs_iter: + inputs_batch_jacobians = get_batch_contribution(inputs_batch) + inputs_jacobians = tuple( + [ + inputs_jacobian + inputs_batch_jacobian + for (inputs_jacobian, inputs_batch_jacobian) in zip( + inputs_jacobians, inputs_batch_jacobians + ) + ] + ) + + return inputs_jacobians + + def _concat_jacobians( + self, + inputs: DataLoader, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]] = None, + reduction_type: Optional[str] = None, + ) -> Tuple[Tensor, ...]: + all_inputs_batch_jacobians = [ + self._basic_computation_tracincp( + inputs_batch[0:-1], + inputs_batch[-1], + loss_fn, + reduction_type, + ) + for inputs_batch in inputs + ] + + return tuple( + torch.cat(all_inputs_batch_jacobian, dim=0) + for all_inputs_batch_jacobian in zip(*all_inputs_batch_jacobians) + ) + + @log_usage() + def compute_intermediate_quantities( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], + aggregate: bool = False, + ) -> Tensor: + """ + Computes "embedding" vectors for all examples in a single batch, or a + `Dataloader` that yields batches. These embedding vectors are constructed so + that the influence score of a training example on a test example is simply the + dot-product of their corresponding vectors. Allowing a `DataLoader` + yielding batches to be passed in (as opposed to a single batch) gives the + potential to improve efficiency, because we load each checkpoint only once in + this method call. Thus if a `DataLoader` yielding batches is passed in, this + reduces the total number of times each checkpoint is loaded for a dataset, + compared to if a single batch is passed in. The reason we do not just increase + the batch size is that for large models, large batches do not fit in memory. + + If `aggregate` is True, the *sum* of the vectors for all examples is returned, + instead of the vectors for each example. This can be useful for computing the + influence of a given training example on the total loss over a validation + dataset, because due to properties of the dot-product, this influence is the + dot-product of the training example's vector with the sum of the vectors in the + validation dataset. Also, by doing the sum aggregation within this method as + opposed to outside of it (by computing all vectors for the validation dataset, + then taking the sum) allows memory usage to be reduced. + + Args: + inputs (Tuple, or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, and + and `batch[-1]` are the labels, if any. Here, `model` is model + provided in initialization. This is the same assumption made for + each batch yielded by training dataset `train_dataset`. + aggregate (bool): Whether to return the sum of the vectors for all + examples, as opposed to vectors for each example. + + Returns: + intermediate_quantities (Tensor): A tensor of dimension + (N, D * C). Here, N is the total number of examples in + `inputs` if `aggregate` is False, and 1, otherwise (so that + a 2D tensor is always returned). C is the number of checkpoints + passed as the `checkpoints` argument of `TracInCP.__init__`, and + each row represents the vector for an example. Regarding D: Let I + be the dimension of the output of the last fully-connected layer + times the dimension of the input of the last fully-connected layer. + If `self.projection_dim` is specified in initialization, + D = min(I * C, `self.projection_dim` * C). Otherwise, D = I * C. + In summary, if `self.projection_dim` is None, the dimension of each + vector will be determined by the size of the input and output of + the last fully-connected layer of `model`. Otherwise, + `self.projection_dim` must be an int, and random projection will be + performed to ensure that the vector is of dimension no more than + `self.projection_dim` * C. `self.projection_dim` corresponds to + the variable d in the top of page 15 of the TracIn paper: + https://arxiv.org/pdf/2002.08484.pdf. + """ + f_inputs: DataLoader = _format_inputs_dataset(inputs) + + def get_checkpoint_contribution(checkpoint: str) -> Tensor: + nonlocal f_inputs assert ( checkpoint is not None ), "None returned from `checkpoints`, cannot load." learning_rate = self.checkpoints_load_func(self.model, checkpoint) - - input_jacobians = self._basic_computation_tracincp( - inputs, - targets, + # get jacobians as tuple of tensors + if aggregate: + inputs_jacobians = self._sum_jacobians( + f_inputs, + self.loss_fn, + self.reduction_type, + ) + else: + inputs_jacobians = self._concat_jacobians( + f_inputs, + self.loss_fn, + self.reduction_type, + ) + # flatten into single tensor + return learning_rate * torch.cat( + [ + input_jacobian.flatten(start_dim=1) + for input_jacobian in inputs_jacobians + ], + dim=1, ) + return torch.cat( + [ + get_checkpoint_contribution(checkpoint) + for checkpoint in self.checkpoints + ], + dim=1, + ) + + def _influence_batch_tracincp( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + input_checkpoint_jacobians: List[Tuple[Any, ...]], + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + train_batch: Tuple[Any, ...], + ) -> Tensor: + """ + computes influence scores for a single training batch. + `input_checkpoint_jacobians` is the output of + `_basic_computation_tracincp` applied to the test batch, for each checkpoint, + computed by `_get_checkpoint_jacobians`. + """ + + def get_checkpoint_contribution( + input_jacobians: Tuple[Tensor, ...], checkpoint: str + ) -> Tensor: + + assert ( + checkpoint is not None + ), "None returned from `checkpoints`, cannot load." + + learning_rate = self.checkpoints_load_func(self.model, checkpoint) + return ( _gradient_dot_product( input_jacobians, - self._basic_computation_tracincp(batch[0:-1], batch[-1]), + self._basic_computation_tracincp( + train_batch[0:-1], + train_batch[-1], + self.loss_fn, + self.reduction_type, + ), ) * learning_rate ) - batch_tracin_scores = get_checkpoint_contribution(self.checkpoints[0]) + batch_tracin_scores = get_checkpoint_contribution( + input_checkpoint_jacobians[0], self.checkpoints[0] + ) - for checkpoint in self.checkpoints[1:]: - batch_tracin_scores += get_checkpoint_contribution(checkpoint) + for input_jacobians, checkpoint in zip( + input_checkpoint_jacobians[1:], self.checkpoints[1:] + ): + batch_tracin_scores += get_checkpoint_contribution( + input_jacobians, checkpoint + ) return batch_tracin_scores + def _get_checkpoint_jacobians( + self, + inputs_dataset: DataLoader, + aggregate: bool, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]] = None, + ) -> List[Tuple[Tensor, ...]]: + """ + computes the jacobians of all examples in `inputs_dataset`, for all + checkpoints. if `aggregate` is True, the jacobians for examples are summed. + returns a list where each element corresponds to a checkpoint. this logic is + separated into a helper function because it is used by both `_influence` and + `_get_k_most_influential`. + """ + inputs_checkpoint_jacobians = [] + for checkpoint in self.checkpoints: + self.checkpoints_load_func(self.model, checkpoint) + if aggregate: + inputs_checkpoint_jacobians.append( + self._sum_jacobians(inputs_dataset, loss_fn, self.reduction_type) + ) + else: + inputs_checkpoint_jacobians.append( + self._concat_jacobians(inputs_dataset, loss_fn, self.reduction_type) + ) + return inputs_checkpoint_jacobians + def _influence( self, - inputs: Tuple[Any, ...], - targets: Optional[Tensor] = None, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], show_progress: bool = False, + aggregate: bool = False, ) -> Tensor: r""" - Computes the influence of examples in training dataset `influence_src_dataset` - on the examples in the test batch represented by `inputs` and `targets`. + Computes the influence of examples in training dataset `train_dataset` + on the examples in the test dataset represented by `inputs`. This implementation does not require knowing the number of training examples in advance. Instead, the number of training examples is inferred from the output of `self._basic_computation_tracincp`. Args: - inputs (Tuple of Any): A test batch of examples. Does not represent labels, - which are passed as `targets`. The assumption is that - `self.model(*inputs)` produces the predictions for the batch. - targets (tensor, optional): If computing influence scores on a loss - function, these are the labels corresponding to the batch `inputs`. - Default: None + + inputs_dataset (Tuple, or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, and + and `batch[-1]` are the labels, if any. Here, `model` is model + provided in initialization. This is the same assumption made for + each batch yielded by training dataset `train_dataset`. show_progress (bool, optional): To compute the influence of examples in - training dataset `influence_src_dataset`, we compute the influence - of each batch. If `show_progress`is true, the progress of this + training dataset `train_dataset`, we compute the influence + of each batch. If `show_progress` is true, the progress of this computation will be displayed. In particular, the number of batches for which influence has been computed will be displayed. It will try to use tqdm if available for advanced features (e.g. time estimation). Otherwise, it will fallback to a simple output of progress. Default: False + aggregate (bool): Whether to return "aggregate" influence scores (see their + definition in `influence`). + Default: False Returns: - influence_scores (tensor): Influence scores from the TracInCP method. - Its shape is `(input_size, influence_src_dataset_size)`, where `input_size` - is the number of examples in the test batch, and - `influence_src_dataset_size` is the number of examples in - training dataset `influence_src_dataset`. For example: + influence_scores (Tensor): If `aggregate` is False, influence scores are + returned as a 2D tensor whose shape is `(input_size, train_dataset_size)`, + where `input_size` is the number of examples in the test dataset, and + `train_dataset_size` is the number of examples in + training dataset `train_dataset`. For example: `influence_scores[i][j]` is the influence score for the j-th training - example to the i-th input example. + example to the i-th example in the test dataset. If `aggregate` is True, + "aggregate" influence scores are returned as a 2D tensor whose shape is + `(1, train_dataset_size)`. For example: `influence_scores[0][j]` is the + aggregate influence score of the j-th training example on the test dataset. """ - influence_src_dataloader = self.influence_src_dataloader + # If `inputs` is not a `DataLoader`, turn it into one. + inputs = _format_inputs_dataset(inputs) + train_dataloader = self.train_dataloader + data_iterable: Union[Iterable[Tuple[object, ...]], DataLoader] = ( + train_dataloader + ) if show_progress: - influence_src_dataloader = progress( - influence_src_dataloader, + data_iterable = progress( + cast(Iterable[Tuple[object, ...]], train_dataloader), desc=( f"Using {self.get_name()} to compute " "influence for training batches" ), - total=self.influence_src_dataloader_len, + total=self.train_dataloader_len, ) + # create list of the outputs of `_basic_computation_tracincp`, for each + # checkpoint, which are jacobians + inputs_checkpoint_jacobians = self._get_checkpoint_jacobians( + inputs, aggregate, self.test_loss_fn + ) + return torch.cat( [ - self._influence_batch_tracincp(inputs, targets, batch) - for batch in influence_src_dataloader + self._influence_batch_tracincp(inputs_checkpoint_jacobians, batch) + for batch in data_iterable ], dim=1, ) def _get_k_most_influential( self, - inputs: Tuple[Any, ...], - targets: Optional[Tensor] = None, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], k: int = 5, proponents: bool = True, show_progress: bool = False, + aggregate: bool = False, ) -> KMostInfluentialResults: r""" Args: - inputs (Tuple of Any): A tuple that represents a batch of examples. It does - not represent labels, which are passed as `targets`. - targets (Tensor, optional): If computing influence scores on a loss - function, these are the labels corresponding to the batch `inputs`. - Default: None + + inputs (Tuple, or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, and + and `batch[-1]` are the labels, if any. Here, `model` is model + provided in initialization. This is the same assumption made for + each batch yielded by training dataset `train_dataset`. k (int, optional): The number of proponents or opponents to return per test example. Default: 5 @@ -844,30 +1099,39 @@ def _get_k_most_influential( Default: True show_progress (bool, optional): To compute the proponents (or opponents) for the batch of examples, we perform computation for each batch in - training dataset `influence_src_dataset`, If `show_progress`is + training dataset `train_dataset`, If `show_progress` is true, the progress of this computation will be displayed. In particular, the number of batches for which the computation has been performed will be displayed. It will try to use tqdm if available for advanced features (e.g. time estimation). Otherwise, it will fallback to a simple output of progress. Default: False + aggregate (bool): Whether to return with the highest / lowest "aggregate" + influence scores (see their definition in `influence`). Returns: - (indices, influence_scores) (namedtuple): `indices` is a torch.long Tensor - that contains the indices of the proponents (or opponents) for each - test example. Its dimension is `(inputs_batch_size, k)`, where - `inputs_batch_size` is the number of examples in `inputs`. For - example, if `proponents==True`, `indices[i][j]` is the index of the - example in training dataset `influence_src_dataset` with the - k-th highest influence score for the j-th example in `inputs`. - `indices` is a `torch.long` tensor so that it can directly be used - to index other tensors. Each row of `influence_scores` contains the - influence scores for a different test example, in sorted order. In + (indices, influence_scores) (namedtuple): If `aggregate` is False, + `indices` is a 2D tensor of shape `(input_size, k)`, where + `input_size` is the number of examples in the test dataset. If + computing proponents (resp. opponents), `indices[i][j]` is the + index in training dataset `train_dataset` of the example with the + `j`-th highest (resp. lowest) influence score (out of the examples + in `train_dataset`) on the `i`-th example in the test dataset. + `influence_scores` contains the corresponding influence scores. In particular, `influence_scores[i][j]` is the influence score of - example `indices[i][j]` in training dataset `influence_src_dataset` - on example `i` in the test batch represented by `inputs` and - `targets`. + example `indices[i][j]` in `train_dataset` on example `i` in the + test dataset represented by `inputs`. If `aggregate` is True, + `indices` is a 2D tensor of shape `(1, k)`. If computing proponents + (resp. opponents), `indices[0][j]` is the index in training dataset + `train_dataset` of the example with the `j`-th highest (resp. + lowest) aggregate influence score on the test dataset. + `influence_scores` contains the corresponding aggregate influence + scores. In particular, `influence_scores[0][j]` is the aggregate + influence score of example `indices[0][j]` on the test dataset. """ + # If `inputs` is not a `DataLoader`, turn it into one. + inputs = _format_inputs_dataset(inputs) + desc = ( None if not show_progress @@ -875,16 +1139,22 @@ def _get_k_most_influential( ( f"Using {self.get_name()} to perform computation for " f'getting {"proponents" if proponents else "opponents"}. ' - "Processing training batches: 100%" + "Processing training batches" ) ) ) + + # create list of the outputs of `_basic_computation_tracincp`, for each + # checkpoint, which are jacobians + inputs_checkpoint_jacobians = self._get_checkpoint_jacobians( + inputs, aggregate, self.test_loss_fn + ) + return KMostInfluentialResults( *_get_k_most_influential_helper( - self.influence_src_dataloader, + self.train_dataloader, self._influence_batch_tracincp, - inputs, - targets, + inputs_checkpoint_jacobians, k, proponents, show_progress, @@ -892,116 +1162,289 @@ def _get_k_most_influential( ) ) - def _self_influence_batch_tracincp(self, batch: Tuple[Any, ...]): + def _self_influence_by_checkpoints( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], + show_progress: bool = False, + ) -> Tensor: """ - Computes self influence scores for a single batch + Computes self influence scores for the examples in `inputs`, which is + either a single batch or a Pytorch `DataLoader` that yields batches. Therefore, + the computed self influence scores are *not* for the examples in training + dataset `train_dataset` (unlike when computing self influence scores using the + `influence` method). Note that if `inputs` is a single batch, this + will call `model` on that single batch, and if `inputs` yields + batches, this will call `model` on each batch that is yielded. Therefore, + please ensure that for both cases, the batch(es) that `model` is called + with are not too large, so that there will not be an out-of-memory error. This + implementation performs an outer iteration over checkpoints, and an inner + iteration over all batches that `inputs` represents. The pros of this + implementation are that the checkpoints do not need to be loaded too many + times. + + Args: + batches (tuple or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, + and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset`. Please see documentation for the + `train_dataset` argument to `TracInCP.__init__` for + more details on the assumed structure of a batch. + show_progress (bool, optional): Computation of self influence scores can + take a long time if `inputs` represents many examples. If + `show_progress` is true, the progress of this computation will be + displayed. In more detail, this computation will iterate over all + checkpoints (provided as the `checkpoints` initialization argument) + in an outer loop, and iterate over all batches that + `inputs` represents in an inner loop. Thus if + `show_progress` is True, the progress of both the outer + iteration and the inner iterations will be displayed. To show + progress, it will try to use tqdm if available for advanced + features (e.g. time estimation). Otherwise, it will fallback to a + simple output of progress. + Default: False + + Returns: + self_influence_scores (Tensor): This is a 1D tensor containing the self + influence scores of all examples in `inputs`, regardless of + whether it represents a single batch or a `DataLoader` that yields + batches. """ + # If `inputs` is not a `DataLoader`, turn it into one. + inputs = _format_inputs_dataset(inputs) - def get_checkpoint_contribution(checkpoint): + # If `show_progress` is true, create an outer progress bar that keeps track of + # how many checkpoints have been processed + if show_progress: + # Try to determine length of inner progress bar if possible, with a default + # of `None`. + inputs_len: Optional[int] = None + try: + inputs_len = len(inputs) + except TypeError: + warnings.warn( + "Unable to determine the number of batches in `inputs`. " + "Therefore, if showing the progress of the computation of self " + "influence scores, only the number of batches processed can be " + "displayed, and not the percentage completion of the computation, " + "nor any time estimates.", + stacklevel=1, + ) + def calculate_via_vector_norm(layer_jacobian: Tensor) -> Tensor: + # Helper to efficiently calculate vector norm if pytorch version permits. + return ( + torch.linalg.vector_norm( + layer_jacobian, + dim=list(range(1, len(layer_jacobian.shape))), + ) + ** 2 + ) + + def get_checkpoint_contribution(checkpoint: str) -> Tensor: + nonlocal inputs_len + # This function returns a 1D tensor representing the contribution to the + # self influence score for the given checkpoint, for all batches in + # `inputs`. The length of the 1D tensor is the total number of + # examples in `inputs`. assert ( checkpoint is not None ), "None returned from `checkpoints`, cannot load." learning_rate = self.checkpoints_load_func(self.model, checkpoint) - layer_jacobians = self._basic_computation_tracincp(batch[0:-1], batch[-1]) - - # note that all variables in this function are for an entire batch. - # each `layer_jacobian` in `layer_jacobians` corresponds to a different - # layer. `layer_jacobian` is the jacobian w.r.t to a given layer's - # parameters. if the given layer's parameters are of shape *, then - # `layer_jacobian` is of shape (batch_size, *). for each layer, we need - # the squared jacobian for each example. so we square the jacobian and - # sum over all dimensions except the 0-th (the batch dimension). We then - # sum the contribution over all layers. - return ( - torch.sum( - torch.stack( - [ - torch.sum(layer_jacobian.flatten(start_dim=1) ** 2, dim=1) - for layer_jacobian in layer_jacobians - ], - dim=0, + # This will store a list of the contribution of the self influence score + # from each batch. Each element is a 1D tensor of length batch_size - the + # batch size of each batch in `inputs` (they do not need to be all + # the same) + checkpoint_contribution = [] + + _inputs: Union[DataLoader, Iterable[Tuple[Tensor, ...]]] = inputs + # If `show_progress` is true, create an inner progress bar that keeps track + # of how many batches have been processed for the current checkpoint + if show_progress: + _inputs = progress( + inputs, + desc=( + f"Using {self.get_name()} to compute self " + "influence. Processing batch" ), - dim=0, + total=inputs_len, ) - * learning_rate - ) - batch_self_tracin_scores = get_checkpoint_contribution(self.checkpoints[0]) + for batch in _inputs: - for checkpoint in self.checkpoints[1:]: - batch_self_tracin_scores += get_checkpoint_contribution(checkpoint) + layer_jacobians = self._basic_computation_tracincp( + cast(Tuple[Tensor, ...], batch)[0:-1], + cast(Tuple[Tensor, ...], batch)[-1], + self.loss_fn, + self.reduction_type, + ) - return batch_self_tracin_scores + # Note that all variables in this function are for an entire batch. + # Each `layer_jacobian` in `layer_jacobians` corresponds to a different + # layer. `layer_jacobian` is the jacobian w.r.t to a given layer's + # parameters. If the given layer's parameters are of shape *, then + # `layer_jacobian` is of shape (batch_size, *). For each layer, we need + # the squared jacobian for each example. So we square the jacobian and + # sum over all dimensions except the 0-th (the batch dimension). We then + # sum the contribution over all layers. We use the optimized + # torch.linalg.vector_norm as opposed to the explicit flatten. + + checkpoint_contribution.append( + torch.sum( + torch.stack( + [ + calculate_via_vector_norm(layer_jacobian) + for layer_jacobian in layer_jacobians + ], + dim=0, + ), + dim=0, + ) + * learning_rate + ) - def _self_influence(self, show_progress: bool = False): - """ - Returns: - self influence scores (tensor): 1D tensor containing self influence - scores for all examples in training dataset - `influence_src_dataset`. - show_progress (bool, optional): To compute the self influence scores for - all examples in training dataset `influence_src_dataset`, we - compute the self influence scores for each batch. If - `show_progress`is true, the progress of this computation will be - displayed. In particular, the number of batches for which self - influence scores have been computed will be displayed. It will - try to use tqdm if available for advanced features (e.g. time - estimation). Otherwise, it will fallback to a simple output of - progress. - Default: False - """ - influence_src_dataloader = self.influence_src_dataloader + # We concatenate the contributions from each batch into a single 1D tensor, + # which represents the contributions for all batches in `inputs` + + return torch.cat(checkpoint_contribution, dim=0) if show_progress: - influence_src_dataloader = progress( - influence_src_dataloader, + checkpoints_progress = progress( desc=( f"Using {self.get_name()} to compute self " - "influence for training batches" + "influence. Processing checkpoint" ), - total=self.influence_src_dataloader_len, + total=len(self.checkpoints), + mininterval=0.0, + ) + else: + checkpoints_progress = NullProgress() + with checkpoints_progress: + batches_self_tracin_scores = get_checkpoint_contribution( + self.checkpoints[0] ) + checkpoints_progress.update() + # The self influence score for all examples is the sum of contributions from + # each checkpoint + for checkpoint in self.checkpoints[1:]: + batches_self_tracin_scores += get_checkpoint_contribution(checkpoint) + checkpoints_progress.update() - return torch.cat( - [ - self._self_influence_batch_tracincp(batch) - for batch in influence_src_dataloader - ], - dim=0, + return batches_self_tracin_scores + + @log_usage() + def self_influence( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Optional[Union[Tuple[Any, ...], DataLoader]] = None, + show_progress: bool = False, + outer_loop_by_checkpoints: bool = False, + ) -> Tensor: + """ + Computes self influence scores for the examples in `inputs`, which is + either a single batch or a Pytorch `DataLoader` that yields batches. + If `inputs` is not specified or `None` calculates self influence + score for the training dataset `train_dataset`. Note that if `inputs` + is a single batch, this will call `model` on that single batch, and if + `inputs` yields batches, this will call `model` on each batch that is + yielded. Therefore, please ensure that for both cases, the batch(es) that + `model` is called with are not too large, so that there will not be an + out-of-memory error. + Internally, this computation requires iterating both over the batches in + `inputs`, as well as different model checkpoints. There are two ways + this iteration can be done. If `outer_loop_by_checkpoints` is False, the outer + iteration will be over batches, and the inner iteration will be over + checkpoints. This has the pro that displaying the progress of the computation + is more intuitive, involving displaying the number of batches for which self + influence scores have been computed. If `outer_loop_by_checkpoints` is True, + the outer iteration will be over checkpoints, and the inner iteration will be + over batches. This has the pro that the checkpoints do not need to be loaded + for each batch. For large models, loading checkpoints can be time-intensive. + + Args: + inputs (tuple or DataLoader, optional): This specifies the + dataset for which self influence scores will be computed. + Either a single tuple of any, or a `DataLoader`, where each + batch yielded is a tuple of type any. In either case, the tuple + represents a single batch, where the last element is assumed to + be the labels for the batch. That is, `model(*batch[0:-1])` + produces the output for `model`, and `batch[-1]` are the labels, + if any. This is the same assumption made for each batch yielded + by training dataset `train_dataset`. Please see documentation for + the `train_dataset` argument to `TracInCP.__init__` for + more details on the assumed structure of a batch. If not provided + or `None`, self influence scores will be computed for training + dataset `train_dataset`, which yields batches satisfying the + above assumptions. + Default: None. + show_progress (bool, optional): Computation of self influence scores can + take a long time if `inputs` represents many examples. If + `show_progress`is true, the progress of this computation will be + displayed. In more detail, if `outer_loop_by_checkpoints` is False, + this computation will iterate over all batches in an outer loop. + Thus if `show_progress` is True, the number of batches for which + self influence scores have been computed will be displayed. If + `outer_loop_by_checkpoints` is True, this computation will iterate + over all checkpoints (provided as the `checkpoints` initialization + argument) in an outer loop, and iterate over all batches that + `inputs` represents in an inner loop. Thus if + `show_progress` is True, the progress of both the outer + iteration and the inner iterations will be displayed. To show + progress, it will try to use tqdm if available for advanced + features (e.g. time estimation). Otherwise, it will fallback to a + simple output of progress. + Default: False + outer_loop_by_checkpoints (bool, optional): If performing an outer + iteration over checkpoints; see method description for more + details. + Default: False + """ + inputs = inputs if inputs is not None else self.train_dataloader + if outer_loop_by_checkpoints: + return self._self_influence_by_checkpoints(inputs, show_progress) + return _self_influence_by_batches_helper( + self._self_influence_by_checkpoints, + self.get_name(), + inputs, + show_progress, ) def _basic_computation_tracincp( self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. inputs: Tuple[Any, ...], targets: Optional[Tensor] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]] = None, + reduction_type: Optional[str] = None, ) -> Tuple[Tensor, ...]: """ For instances of TracInCP, computation of influence scores or self influence scores repeatedly calls this function for different checkpoints - and batches. + and batches. In particular, this function computes the jacobian of a loss + function w.r.t. parameters in the `layers` initialization argument. Args: - inputs (Tuple of Any): A batch of examples, which could be a training batch - or test batch, depending which method is the caller. Does not + + inputs (tuple[Any, ...]): A batch of examples, which could be a training + batch or test batch, depending which method is the caller. Does not represent labels, which are passed as `targets`. The assumption is - that `self.model(*inputs)` produces the predictions for the batch. + that `model(*inputs)` produces the predictions for the batch. targets (tensor or None): If computing influence scores on a loss function, these are the labels corresponding to the batch `inputs`. + Default: none + loss_fn (Callable, optional): The loss function to use when computing the + jacobian. + reduction_type (str, optional): The reduction type of `loss_fn`. This + argument is only used if `sample_wise_grads_per_batch` was true in + initialization. """ - if self.sample_wise_grads_per_batch: - return _compute_jacobian_wrt_params_with_sample_wise_trick( - self.model, - inputs, - targets, - self.loss_fn, - self.reduction_type, - ) - return _compute_jacobian_wrt_params( - self.model, - inputs, - targets, - self.loss_fn, + return _compute_jacobian_sample_wise_grads_per_batch( + self, inputs, targets, loss_fn, reduction_type ) diff --git a/captum/influence/_core/tracincp_fast_rand_proj.py b/captum/influence/_core/tracincp_fast_rand_proj.py index 66007d9e50..6d430fa8f6 100644 --- a/captum/influence/_core/tracincp_fast_rand_proj.py +++ b/captum/influence/_core/tracincp_fast_rand_proj.py @@ -1,45 +1,55 @@ #!/usr/bin/env python3 +# pyre-strict + +import threading import warnings -from typing import Any, Callable, Iterator, List, Optional, Union, Tuple +from collections import defaultdict +from typing import ( + Any, + Callable, + cast, + Dict, + Iterable, + Iterator, + List, + Optional, + Tuple, + Union, +) import torch -from captum._utils.common import _get_module_from_name, _format_inputs -from captum._utils.progress import progress +from captum._utils.common import _get_module_from_name, _sort_key_list +from captum._utils.gradient import _gather_distributed_tensors +from captum._utils.progress import NullProgress, progress + from captum.influence._core.tracincp import ( - TracInCPBase, - KMostInfluentialResults, _influence_route_to_helpers, + KMostInfluentialResults, + TracInCPBase, ) from captum.influence._utils.common import ( + _check_loss_fn, + _format_inputs_dataset, + _get_k_most_influential_helper, _jacobian_loss_wrt_inputs, _load_flexible_state_dict, + _self_influence_by_batches_helper, _tensor_batch_dot, - _get_k_most_influential_helper, - _DatasetFromList, ) from captum.influence._utils.nearest_neighbors import ( - NearestNeighbors, AnnoyNearestNeighbors, + NearestNeighbors, ) from captum.log import log_usage -from torch import Tensor +from torch import device, Tensor from torch.nn import Module from torch.utils.data import DataLoader, Dataset -layer_inputs = [] - - -def _capture_inputs(layer: Module, input: Tensor, output: Tensor) -> None: - r"""Save activations into layer.activations in forward pass""" - - layer_inputs.append(input[0].detach()) - - r""" Implements abstract DataInfluence class and also provides implementation details for influence computation based on the logic provided in TracIn paper -(https://arxiv.org/pdf/2002.08484.pdf). +(https://arxiv.org/abs/2002.08484). The TracIn paper proposes an idealized notion of influence which can be represented by the total amount a training example reduces loss for a test example via a training @@ -71,32 +81,44 @@ class TracInCPFast(TracInCPBase): computes influence scores for that special case. Note that the computed influence scores are exactly the same as when naive back-propagation is used - there is no loss in accuracy. + + In more detail regarding the influence score computation: let :math`x` + and :math`\nabla_y f(y)` be the input and output-gradient of the last + fully-connected layer, respectively, for a training example. Similarly, let + :math`x'` and :math`\nabla_{y'} f(y')` be the corresponding quantities for + a test example. Then, the influence score of the training example on the test + example is the sum of the contribution from each checkpoint. The contribution from + a given checkpoint is :math`(x^T x')(\nabla_y f(y)^T \nabla_{y'} f(y'))`. + """ def __init__( self, model: Module, final_fc_layer: Union[Module, str], - influence_src_dataset: Union[Dataset, DataLoader], + train_dataset: Union[Dataset, DataLoader], + # pyre-fixme[24]: Generic type `Iterator` expects 1 type parameter. checkpoints: Union[str, List[str], Iterator], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. checkpoints_load_func: Callable = _load_flexible_state_dict, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. loss_fn: Optional[Union[Module, Callable]] = None, batch_size: Union[int, None] = 1, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + test_loss_fn: Optional[Union[Module, Callable]] = None, vectorize: bool = False, ) -> None: r""" Args: + model (torch.nn.Module): An instance of pytorch model. This model should define all of its layers as attributes of the model. - final_fc_layer (torch.nn.Module or str): The last fully connected layer in + final_fc_layer (torch.nn.Module): The last fully connected layer in the network for which gradients will be approximated via fast random - projection method. Can be either the layer module itself, or the - fully qualified name of the layer if it is a defined attribute of - the passed `model`. - influence_src_dataset (torch.utils.data.Dataset or torch.utils.DataLoader): - In the `influence` method, we either compute the influence score of - training examples on examples in a test batch, or self influence - scores for those training examples, depending on which mode is used. + projection method. + train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader): + In the `influence` method, we compute the influence score of + training examples on examples in a test batch. This argument represents the training dataset containing those training examples. In order to compute those influence scores, we will create a Pytorch DataLoader yielding batches of training @@ -108,10 +130,16 @@ def __init__( DataLoader used for processing should be as large as possible, but not too large, so that certain intermediate quantities created from a batch still fit in memory. Therefore, if - `influence_src_dataset` is a Dataset, `batch_size` should be large. - If `influence_src_dataset` was already a DataLoader to begin with, - it should have been constructed to have a large batch size. - checkpoints (str or List of str or Iterator): Either the directory of the + `train_dataset` is a Dataset, `batch_size` should be large. + If `train_dataset` was already a DataLoader to begin with, + it should have been constructed to have a large batch size. It is + assumed that the Dataloader (regardless of whether it is created + from a Pytorch Dataset or not) yields tuples. For a `batch` that is + yielded, of length `L`, it is assumed that the forward function of + `model` accepts `L-1` arguments, and the last element of `batch` is + the label. In other words, `model(*batch[:-1])` gives the output of + `model`, and `batch[-1]` are the labels for the batch. + checkpoints (str, list[str], or Iterator): Either the directory of the path to store and retrieve model checkpoints, a list of filepaths with checkpoints from which to load, or an iterator which returns objects from which to load checkpoints. @@ -132,14 +160,28 @@ def __init__( to "mean", i.e. `loss_fn.reduction = "mean"`. Default: None batch_size (int or None, optional): Batch size of the DataLoader created to - iterate through `influence_src_dataset`, if it is a Dataset. + iterate through `train_dataset`, if it is a Dataset. `batch_size` should be chosen as large as possible so that certain intermediate quantities created from a batch still fit in memory. Specific implementations of `TracInCPBase` will detail the size of the intermediate quantities. `batch_size` must be an int if - `influence_src_dataset` is a Dataset. If `influence_src_dataset` + `train_dataset` is a Dataset. If `train_dataset` is a DataLoader, then `batch_size` is ignored as an argument. Default: 1 + test_loss_fn (Callable, optional): In some cases, one may want to use a + separate loss functions for training examples, i.e. those in + `train_dataset`, and for test examples, i.e. those + represented by the `inputs` and `targets` arguments to the + `influence` method. For example, if one wants to calculate the + influence score of a training example on a test example's + prediction for a fixed class, `test_loss_fn` could map from the + logits for all classes to the logits for a fixed class. + `test_loss_fn` needs satisfy the same constraints as `loss_fn`. + Thus, the same checks that we apply to `loss_fn` are also applied + to `test_loss_fn`, if the latter is provided. If not provided, the + loss function for test examples is assumed to be the same as the + loss function for training examples, i.e. `loss_fn`. + Default: None vectorize (bool, optional): Flag to use experimental vectorize functionality for `torch.autograd.functional.jacobian`. Default: False @@ -147,98 +189,89 @@ def __init__( TracInCPBase.__init__( self, model, - influence_src_dataset, + train_dataset, checkpoints, checkpoints_load_func, loss_fn, batch_size, + test_loss_fn, ) self.vectorize = vectorize # TODO: restore prior state - self.final_fc_layer = final_fc_layer - if isinstance(self.final_fc_layer, str): - self.final_fc_layer = _get_module_from_name(model, self.final_fc_layer) - assert isinstance(self.final_fc_layer, Module) + self.final_fc_layer = cast(Module, final_fc_layer) for param in self.final_fc_layer.parameters(): param.requires_grad = True assert loss_fn is not None, "loss function must not be none" - # If we are able to access the reduction used by `loss_fn`, we check whether - # the reduction is either 'sum' or 'mean', as required - if isinstance(loss_fn, Module) and hasattr( - loss_fn, "reduction" - ): # TODO: allow loss_fn to be Callable - assert loss_fn.reduction in [ - "sum", - "mean", - ], 'reduction for `loss_fn` must be "sum" or "mean"' - self.reduction_type = str(loss_fn.reduction) + # check `loss_fn` + # pyre-fixme[4]: Attribute must be annotated. + self.reduction_type = _check_loss_fn(self, loss_fn, "loss_fn") + # check `test_loss_fn` if it was provided + # pyre-fixme[4]: Attribute must be annotated. + self.test_reduction_type = ( + self.reduction_type + if test_loss_fn is None + else _check_loss_fn(self, test_loss_fn, "test_loss_fn") + ) + + @property + def final_fc_layer(self) -> Module: + # pyre-fixme[16]: `TracInCPFast` has no attribute `_final_fc_layer`. + return self._final_fc_layer + + @final_fc_layer.setter + def final_fc_layer(self, layer: Union[Module, str]) -> None: + if isinstance(layer, str): + try: + self._final_fc_layer = _get_module_from_name(self.model, layer) + if not isinstance(self._final_fc_layer, Module): + raise Exception("No module found for final_fc_layer") + except Exception as ex: + raise ValueError( + f'Invalid final_fc_layer str: "{layer}" provided!' + ) from ex else: - # if we are unable to access the reduction used by `loss_fn`, we warn - # the user about the assumptions we are making regarding the reduction - # used by `loss_fn` - warnings.warn( - 'Since `loss_fn` has no "reduction" attribute, the implementation ' - 'assumes that `loss_fn` is a "reduction" loss function that ' - "reduces the per-example losses by taking their *sum*. If " - "`loss_fn` instead reduces the per-example losses by taking their " - 'mean, please set the reduction attribute of `loss_fn` to "mean", ' - 'i.e. `loss_fn.reduction = "mean"`.' - ) - self.reduction_type = "sum" + self._final_fc_layer = layer @log_usage() def influence( # type: ignore[override] self, - inputs: Any = None, - targets: Optional[Tensor] = None, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Tuple[Any, ...], k: Optional[int] = None, proponents: bool = True, - unpack_inputs: bool = True, show_progress: bool = False, ) -> Union[Tensor, KMostInfluentialResults]: r""" - This is the key method of this class, and can be run in 3 different modes, + This is the key method of this class, and can be run in 2 different modes, where the mode that is run depends on the arguments passed to this method: - - self influence mode: This mode is used if `inputs` is None. This mode - computes the self influence scores for every example in - the training dataset `influence_src_dataset`. - - influence score mode: This mode is used if `inputs` is not None, and `k` is - None. This mode computes the influence score of every example in - training dataset `influence_src_dataset` on every example in the test - batch represented by `inputs` and `targets`. - - k-most influential mode: This mode is used if `inputs` is not None, and - `k` is not None, and an int. This mode computes the proponents or - opponents of every example in the test batch represented by `inputs` - and `targets`. In particular, for each test example in the test batch, - this mode computes its proponents (resp. opponents), which are the - indices in the training dataset `influence_src_dataset` of the training - examples with the `k` highest (resp. lowest) influence scores on the - test example. Proponents are computed if `proponents` is True. - Otherwise, opponents are computed. For each test example, this method - also returns the actual influence score of each proponent (resp. - opponent) on the test example. + - influence score mode: This mode is used if `k` is None. This mode computes + the influence score of every example in training dataset `train_dataset` + on every example in the test batch represented by `inputs`. + - k-most influential mode: This mode is used if `k` is not None, and an int. + This mode computes the proponents or opponents of every example in the + test batch represented by `inputs`. In particular, for each test example in + the test batch, this mode computes its proponents (resp. opponents), + which are the indices in the training dataset `train_dataset` of the + training examples with the `k` highest (resp. lowest) influence scores on the + test example. Proponents are computed if `proponents` is True. Otherwise, + opponents are computed. For each test example, this method also returns the + actual influence score of each proponent (resp. opponent) on the test + example. Args: - inputs (Any, optional): If not provided or `None`, the self influence mode - will be run. Otherwise, `inputs` is the test batch that will be - used when running in either influence score or k-most influential - mode. If the argument `unpack_inputs` is False, the - assumption is that `self.model(inputs)` produces the predictions - for a batch, and `inputs` can be of any type. Otherwise if the - argument `unpack_inputs` is True, the assumption is that - `self.model(*inputs)` produces the predictions for a batch, and - `inputs` will need to be a tuple. In other words, `inputs` will be - unpacked as an argument when passing to `self.model`. - Default: None - targets (tensor, optional): The labels corresponding to the batch `inputs`. - This method is designed to be applied for a loss function, so - `targets` is required, unless running in "self influence" mode. - Default: None + + inputs (tuple or DataLoader): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. k (int, optional): If not provided or `None`, the influence score mode will be run. Otherwise, the k-most influential mode will be run, and `k` is the number of proponents / opponents to return per @@ -248,14 +281,10 @@ def influence( # type: ignore[override] or opponents (`proponents=False`), if running in k-most influential mode. Default: True - unpack_inputs (bool, optional): Whether to unpack the `inputs` argument to - when passing it to `model`, if `inputs` is a tuple (no unpacking - done otherwise). - Default: True show_progress (bool, optional): For all modes, computation of results requires "training dataset computations": computations for each - batch in the training dataset `influence_src_dataset`, which may - take a long time. If `show_progress`is true, the progress of + batch in the training dataset `train_dataset`, which may + take a long time. If `show_progress` is true, the progress of "training dataset computations" will be displayed. In particular, the number of batches for which computations have been performed will be displayed. It will try to use tqdm if available for @@ -266,54 +295,54 @@ def influence( # type: ignore[override] Returns: The return value of this method depends on which mode is run. - - self influence mode: if this mode is run (`inputs` is None), returns a 1D - tensor of self influence scores over training dataset - `influence_src_dataset`. The length of this tensor is the number of - examples in `influence_src_dataset`, regardless of whether it is a - Dataset or DataLoader. - - influence score mode: if this mode is run (`inputs is not None, `k` is - None), returns a 2D tensor `influence_scores` of shape - `(input_size, influence_src_dataset_size)`, where `input_size` is - the number of examples in the test batch, and - `influence_src_dataset_size` is the number of examples in - training dataset `influence_src_dataset`. In other words, - `influence_scores[i][j]` is the influence score of the `j`-th - example in `influence_src_dataset` on the `i`-th example in the - test batch. - - k-most influential mode: if this mode is run (`inputs` is not None, - `k` is an int), returns a namedtuple `(indices, influence_scores)`. - `indices` is a 2D tensor of shape `(input_size, k)`, where - `input_size` is the number of examples in the test batch. If - computing proponents (resp. opponents), `indices[i][j]` is the - index in training dataset `influence_src_dataset` of the example - with the `j`-th highest (resp. lowest) influence score (out of the - examples in `influence_src_dataset`) on the `i`-th example in the - test batch. `influence_scores` contains the corresponding influence - scores. In particular, `influence_scores[i][j]` is the influence - score of example `indices[i][j]` in `influence_src_dataset` on - example `i` in the test batch represented by `inputs` and - `targets`. + - influence score mode: if this mode is run (`k` is None), returns a 2D + tensor `influence_scores` of shape `(input_size, train_dataset_size)`, + where `input_size` is the number of examples in the test batch, and + `train_dataset_size` is the number of examples in training dataset + `train_dataset`. In other words, `influence_scores[i][j]` is the + influence score of the `j`-th example in `train_dataset` on the `i`-th + example in the test batch. + - k-most influential mode: if this mode is run (`k` is an int), returns + a namedtuple `(indices, influence_scores)`. `indices` is a 2D tensor of + shape `(input_size, k)`, where `input_size` is the number of examples in + the test batch. If computing proponents (resp. opponents), + `indices[i][j]` is the index in training dataset `train_dataset` of the + example with the `j`-th highest (resp. lowest) influence score (out of + the examples in `train_dataset`) on the `i`-th example in the test + batch. `influence_scores` contains the corresponding influence scores. + In particular, `influence_scores[i][j]` is the influence score of example + `indices[i][j]` in `train_dataset` on example `i` in the test batch + represented by `inputs`. """ + assert inputs is not None, ( + "`inputs` argument is required." + "If you wish to calculate self influence scores," + " please use the `self_influence` method instead." + ) return _influence_route_to_helpers( self, inputs, - targets, k, proponents, - unpack_inputs, - show_progress, + show_progress=show_progress, ) + # pyre-fixme[3]: Return type must be annotated. def _influence_batch_tracincp_fast( self, - inputs: Tuple[Any, ...], - targets: Tensor, - batch: Tuple[Any, ...], + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + test_batch: Tuple[Any, ...], + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + train_batch: Tuple[Any, ...], ): """ - computes influence scores for a single training batch + computes influence scores for a single training batch, when only considering + gradients in the last fully-connected layer, using the computation trick + described in the `TracInCPFast` class description. """ + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def get_checkpoint_contribution(checkpoint): assert ( @@ -324,16 +353,29 @@ def get_checkpoint_contribution(checkpoint): input_jacobians, input_layer_inputs = _basic_computation_tracincp_fast( self, - inputs, - targets, + test_batch[0:-1], + test_batch[-1], + self.test_loss_fn, + self.test_reduction_type, ) src_jacobian, src_layer_input = _basic_computation_tracincp_fast( - self, batch[0:-1], batch[-1] + self, + train_batch[0:-1], + train_batch[-1], + self.loss_fn, + self.reduction_type, ) return ( - _tensor_batch_dot(input_jacobians, src_jacobian) + _tensor_batch_dot( + input_jacobians, src_jacobian + ) # shape is (test batch size, training batch size), containing x^T x' + # for every example x in the training batch and example x' in the test + # batch * _tensor_batch_dot(input_layer_inputs, src_layer_input) + # shape is (test batch size, training batch size), containing + # (\nabla_y f(y)^T \nabla_{y'} f(y')) for every label y in the training + # batch and label y' in the test batch * learning_rate ) @@ -346,27 +388,29 @@ def get_checkpoint_contribution(checkpoint): def _influence( # type: ignore[override] self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. inputs: Tuple[Any, ...], - targets: Tensor, show_progress: bool = False, ) -> Tensor: r""" - Computes the influence of examples in training dataset `influence_src_dataset` - on the examples in the test batch represented by `inputs` and `targets`. + Computes the influence of examples in training dataset `train_dataset` + on the examples in the test batch represented by `inputs`. This implementation does not require knowing the number of training examples in advance. Instead, the number of training examples is inferred from the output of `_basic_computation_tracincp_fast`. Args: - inputs (Tuple of Any): A batch of examples. Does not represent labels, - which are passed as `targets`. The assumption is that - `self.model(*inputs)` produces the predictions for the batch. - targets (tensor): The labels corresponding to the batch `inputs`. This - method is designed to be applied for a loss function, so labels - are required. + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. show_progress (bool, optional): To compute the influence of examples in - training dataset `influence_src_dataset`, we compute the influence - of each batch. If `show_progress`is true, the progress of this + training dataset `train_dataset`, we compute the influence + of each batch. If `show_progress` is true, the progress of this computation will be displayed. In particular, the number of batches for which influence has been computed will be displayed. It will try to use tqdm if available for advanced features (e.g. time @@ -375,51 +419,56 @@ def _influence( # type: ignore[override] Default: False Returns: - influence_scores (tensor): Influence scores from the TracInCPFast method. - Its shape is `(input_size, influence_src_dataset_size)`, where `input_size` + influence_scores (Tensor): Influence scores from the `TracInCPFast` method. + Its shape is `(input_size, train_dataset_size)`, where `input_size` is the number of examples in the test batch, and - `influence_src_dataset_size` is the number of examples in - training dataset `influence_src_dataset`. For example: + `train_dataset_size` is the number of examples in + training dataset `train_dataset`. For example: `influence_scores[i][j]` is the influence score for the j-th training - example to the i-th input example. + example to the i-th example in the test batch. """ - assert targets is not None - influence_src_dataloader = self.influence_src_dataloader + train_dataloader = self.train_dataloader + train_dataloader_iterable: Union[DataLoader, Iterable[Tuple[object, ...]]] = ( + train_dataloader + ) if show_progress: - influence_src_dataloader = progress( - influence_src_dataloader, + train_dataloader_iterable = progress( + cast(Iterable[Tuple[object, ...]], train_dataloader), desc=( f"Using {self.get_name()} to compute " "influence for training batches" ), - total=self.influence_src_dataloader_len, + total=self.train_dataloader_len, ) return torch.cat( [ - self._influence_batch_tracincp_fast(inputs, targets, batch) - for batch in influence_src_dataloader + self._influence_batch_tracincp_fast(inputs, batch) + for batch in train_dataloader_iterable ], dim=1, ) def _get_k_most_influential( # type: ignore[override] self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. inputs: Tuple[Any, ...], - targets: Tensor, k: int = 5, proponents: bool = True, show_progress: bool = False, ) -> KMostInfluentialResults: r""" Args: - inputs (Tuple of Any): A tuple that represents a batch of examples. It does - not represent labels, which are passed as `targets`. - targets (tensor): The labels corresponding to the batch `inputs`. This - method is designed to be applied for a loss function, so labels - are required. + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. k (int, optional): The number of proponents or opponents to return per test example. Default: 5 @@ -428,7 +477,7 @@ def _get_k_most_influential( # type: ignore[override] Default: True show_progress (bool, optional): To compute the proponents (or opponents) for the batch of examples, we perform computation for each batch in - training dataset `influence_src_dataset`, If `show_progress`is + training dataset `train_dataset`, If `show_progress` is true, the progress of this computation will be displayed. In particular, the number of batches for which the computation has been performed will be displayed. It will try to use tqdm if @@ -442,15 +491,14 @@ def _get_k_most_influential( # type: ignore[override] test example. Its dimension is `(inputs_batch_size, k)`, where `inputs_batch_size` is the number of examples in `inputs`. For example, if `proponents==True`, `indices[i][j]` is the index of the - example in training dataset `influence_src_dataset` with the + example in training dataset `train_dataset` with the k-th highest influence score for the j-th example in `inputs`. `indices` is a `torch.long` tensor so that it can directly be used to index other tensors. Each row of `influence_scores` contains the influence scores for a different test example, in sorted order. In particular, `influence_scores[i][j]` is the influence score of - example `indices[i][j]` in training dataset `influence_src_dataset` - on example `i` in the test batch represented by `inputs` and - `targets`. + example `indices[i][j]` in training dataset `train_dataset` + on example `i` in the test batch represented by `inputs`. """ desc = ( None @@ -459,16 +507,15 @@ def _get_k_most_influential( # type: ignore[override] ( f"Using {self.get_name()} to perform computation for " f'getting {"proponents" if proponents else "opponents"}. ' - "Processing training batches: 100%" + "Processing training batches" ) ) ) return KMostInfluentialResults( *_get_k_most_influential_helper( - self.influence_src_dataloader, + self.train_dataloader, self._influence_batch_tracincp_fast, inputs, - targets, k, proponents, show_progress, @@ -476,118 +523,336 @@ def _get_k_most_influential( # type: ignore[override] ) ) - def _self_influence_batch_tracincp_fast(self, batch: Tuple[Any, ...]): + def _self_influence_by_checkpoints( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], + show_progress: bool = False, + ) -> Tensor: """ - Computes self influence scores for a single batch + Computes self influence scores for the examples in `inputs`, which is + either a single batch or a Pytorch `DataLoader` that yields batches. Therefore, + the computed self influence scores are *not* for the examples in training + dataset `train_dataset` (unlike when computing self influence scores using the + `influence` method). Note that if `inputs` is a single batch, this + will call `model` on that single batch, and if `inputs` yields + batches, this will call `model` on each batch that is yielded. Therefore, + please ensure that for both cases, the batch(es) that `model` is called + with are not too large, so that there will not be an out-of-memory error. This + implementation performs an outer iteration over checkpoints, and an inner + iteration over all batches that `inputs` represents. The pros of this + implementation are that the checkpoints do not need to be loaded too many + times. + + Args: + batches (tuple or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, + and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset`. Please see documentation for the + `train_dataset` argument to `TracInCP.__init__` for + more details on the assumed structure of a batch. + show_progress (bool, optional): Computation of self influence scores can + take a long time if `inputs` represents many examples. If + `show_progress` is true, the progress of this computation will be + displayed. In more detail, this computation will iterate over all + checkpoints (provided as the `checkpoints` initialization argument) + in an outer loop, and iterate over all batches that + `inputs` represents in an inner loop. Thus if + `show_progress` is True, the progress of both the outer + iteration and the inner iterations will be displayed. To show + progress, it will try to use tqdm if available for advanced + features (e.g. time estimation). Otherwise, it will fallback to a + simple output of progress. + Default: False + + Returns: + self_influence_scores (Tensor): This is a 1D tensor containing the self + influence scores of all examples in `inputs`, regardless of + whether it represents a single batch or a `DataLoader` that yields + batches. """ + # If `inputs` is not a `DataLoader`, turn it into one. + inputs = _format_inputs_dataset(inputs) - def get_checkpoint_contribution(checkpoint): + # If `show_progress` is true, create an outer progress bar that keeps track of + # how many checkpoints have been processed + if show_progress: + # Try to determine length of inner progress bar if possible, with a default + # of `None`. + inputs_len = None + try: + inputs_len = len(inputs) + except TypeError: + warnings.warn( + "Unable to determine the number of batches in `inputs`. " + "Therefore, if showing the progress of the computation of self " + "influence scores, only the number of batches processed can be " + "displayed, and not the percentage completion of the computation, " + "nor any time estimates.", + stacklevel=1, + ) + # pyre-fixme[53]: Captured variable `inputs_len` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def get_checkpoint_contribution(checkpoint): + # This function returns a 1D tensor representing the contribution to the + # self influence score for the given checkpoint, for all batches in + # `inputs`. The length of the 1D tensor is the total number of + # examples in `inputs`. assert ( checkpoint is not None ), "None returned from `checkpoints`, cannot load." learning_rate = self.checkpoints_load_func(self.model, checkpoint) - batch_jacobian, batch_layer_input = _basic_computation_tracincp_fast( - self, batch[0:-1], batch[-1] - ) - - return ( - torch.sum(batch_jacobian**2, dim=1) - * torch.sum(batch_layer_input**2, dim=1) - * learning_rate - ) + # This will store a list of the contribution of the self influence score + # from each batch. Each element is a 1D tensor of length batch_size - the + # batch size of each batch in `inputs` (they do not need to be all + # the same) + checkpoint_contribution = [] + + _inputs = inputs + # If `show_progress` is true, create an inner progress bar that keeps track + # of how many batches have been processed for the current checkpoint + if show_progress: + _inputs = progress( + inputs, + desc=( + f"Using {self.get_name()} to compute self " + "influence. Processing batch" + ), + total=inputs_len, + ) - batch_self_tracin_scores = get_checkpoint_contribution(self.checkpoints[0]) + for batch in _inputs: - for checkpoint in self.checkpoints[1:]: - batch_self_tracin_scores += get_checkpoint_contribution(checkpoint) + batch_jacobian, batch_layer_input = _basic_computation_tracincp_fast( + self, + batch[0:-1], + batch[-1], + self.loss_fn, + self.reduction_type, + ) - return batch_self_tracin_scores + checkpoint_contribution.append( + # pyre-fixme[58]: `**` is not supported for operand types + # `Tensor` and `int`. + torch.sum(batch_jacobian**2, dim=1) + # pyre-fixme[58]: `**` is not supported for operand types + # `Tensor` and `int`. + * torch.sum(batch_layer_input**2, dim=1) + * learning_rate + ) - def _self_influence(self, show_progress: bool = False): - """ - Returns: - self influence scores (tensor): 1D tensor containing self influence - scores for all examples in training dataset - `influence_src_dataset`. - show_progress (bool, optional): To compute the self influence scores for - all examples in training dataset `influence_src_dataset`, we - compute the self influence scores for each batch. If - `show_progress`is true, the progress of this computation will be - displayed. In particular, the number of batches for which self - influence scores have been computed will be displayed. It will - try to use tqdm if available for advanced features (e.g. time - estimation). Otherwise, it will fallback to a simple output of - progress. - Default: False - """ - influence_src_dataloader = self.influence_src_dataloader + # We concatenate the contributions from each batch into a single 1D tensor, + # which represents the contributions for all batches in `inputs` + return torch.cat(checkpoint_contribution, dim=0) if show_progress: - influence_src_dataloader = progress( - influence_src_dataloader, + checkpoints_progress = progress( desc=( f"Using {self.get_name()} to compute self " - "influence for training batches" + "influence. Processing checkpoint" ), - total=self.influence_src_dataloader_len, + total=len(self.checkpoints), + mininterval=0.0, ) + else: + checkpoints_progress = NullProgress() - return torch.cat( - [ - self._self_influence_batch_tracincp_fast(batch) - for batch in influence_src_dataloader - ], - dim=0, + with checkpoints_progress: + batches_self_tracin_scores = get_checkpoint_contribution( + self.checkpoints[0] + ) + checkpoints_progress.update() + # The self influence score for all examples is the sum of contributions from + # each checkpoint + for checkpoint in self.checkpoints[1:]: + batches_self_tracin_scores += get_checkpoint_contribution(checkpoint) + checkpoints_progress.update() + return batches_self_tracin_scores + + @log_usage() + def self_influence( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Optional[Union[Tuple[Any, ...], DataLoader]] = None, + show_progress: bool = False, + outer_loop_by_checkpoints: bool = False, + ) -> Tensor: + """ + Computes self influence scores for the examples in `inputs`, which is + either a single batch or a Pytorch `DataLoader` that yields batches. + If `inputs` is not specified or `None` calculates self influence + score for the training dataset `train_dataset`. Note that if `inputs` + is a single batch, this will call `model` on that single batch, + and if `inputs` yields batches, this will call `model` + on each batch that is yielded. Therefore, please ensure that for both cases, + the batch(es) that `model` is called with are not too large, so that + there will not be an out-of-memory error. + Internally, this computation requires iterating both over the batches in + `inputs`, as well as different model checkpoints. There are two ways + this iteration can be done. If `outer_loop_by_checkpoints` is False, the outer + iteration will be over batches, and the inner iteration will be over + checkpoints. This has the pro that displaying the progress of the computation + is more intuitive, involving displaying the number of batches for which self + influence scores have been computed. If `outer_loop_by_checkpoints` is True, + the outer iteration will be over checkpoints, and the inner iteration will be + over batches. This has the pro that the checkpoints do not need to be loaded + for each batch. For large models, loading checkpoints can be time-intensive. + + Args: + inputs (tuple or DataLoader, optional): This specifies the + dataset for which self influence scores will be computed. + Either a single tuple of any, or a `DataLoader`, where each + batch yielded is a tuple of type any. In either case, the tuple + represents a single batch, where the last element is assumed to + be the labels for the batch. That is, `model(*batch[0:-1])` + produces the output for `model`, and `batch[-1]` are the labels, + if any. This is the same assumption made for each batch yielded + by training dataset `train_dataset`. Please see documentation for + the `train_dataset` argument to `TracInCP.__init__` for + more details on the assumed structure of a batch. If not provided + or `None`, self influence scores will be computed for training + dataset `train_dataset`, which yields batches satisfying the + above assumptions. + Default: None. + show_progress (bool, optional): Computation of self influence scores can + take a long time if `inputs` represents many examples. If + `show_progress`is true, the progress of this computation will be + displayed. In more detail, if `outer_loop_by_checkpoints` is False, + this computation will iterate over all batches in an outer loop. + Thus if `show_progress` is True, the number of batches for which + self influence scores have been computed will be displayed. If + `outer_loop_by_checkpoints` is True, this computation will iterate + over all checkpoints (provided as the `checkpoints` initialization + argument) in an outer loop, and iterate over all batches that + `inputs` represents in an inner loop. Thus if + `show_progress` is True, the progress of both the outer + iteration and the inner iterations will be displayed. To show + progress, it will try to use tqdm if available for advanced + features (e.g. time estimation). Otherwise, it will fallback to a + simple output of progress. + Default: False + outer_loop_by_checkpoints (bool, optional): If performing an outer + iteration over checkpoints; see method description for more + details. + Default: False + """ + inputs = inputs if inputs is not None else self.train_dataloader + if outer_loop_by_checkpoints: + return self._self_influence_by_checkpoints(inputs, show_progress) + return _self_influence_by_batches_helper( + self._self_influence_by_checkpoints, + self.get_name(), + inputs, + show_progress, ) def _basic_computation_tracincp_fast( influence_instance: TracInCPFast, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. inputs: Tuple[Any, ...], targets: Tensor, -): + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]] = None, + reduction_type: Optional[str] = None, +) -> Tuple[Tensor, Tensor]: """ For instances of TracInCPFast and children classes, computation of influence scores or self influence scores repeatedly calls this function for different checkpoints - and batches. + and batches. These computations involve a loss function. If `test` is True, the + loss function is `self.loss_fn`. If `test` is False, the loss function is + `self.test_loss_fn`. These two attributes were set in initialization, with + `self.loss_fn` equal to the `loss_fn` initialization argument, and + `self.test_loss_fn` equal to the `test_loss_fn` initialization argument if it was + provided, and `loss_fn` otherwise. Args: + influence_instance (TracInCPFast): A instance of TracInCPFast or its children. We assume `influence_instance` has a `loss_fn` attribute, i.e. the loss function applied to the output of the last fully-connected layer, as well as a `reduction_type` attribute, which indicates whether `loss_fn` reduces the per-example losses by using their mean or sum. The `reduction_type` attribute must either be "mean" or "sum". - inputs (Tuple of Any): A batch of examples, which could be a training batch + inputs (tuple[Any, ...]): A batch of examples, which could be a training batch or test batch, depending which method is the caller. Does not represent labels, which are passed as `targets`. The assumption is - that `self.model(*inputs)` produces the predictions for the batch. - targets (tensor): If computing influence scores on a loss function, + that `model(*inputs)` produces the predictions for the batch. + targets (Tensor): If computing influence scores on a loss function, these are the labels corresponding to the batch `inputs`. + loss_fn (Callable, optional): The loss function to use when computing the + jacobian. + reduction_type (str, optional): The reduction type of `loss_fn`. This argument + is only used if `sample_wise_grads_per_batch` was true in + initialization of `influence_instance`. + + Returns: + (input_jacobians, layer_inputs) (tuple): `input_jacobians` is a 2D tensor, + where each row is the jacobian of the loss, with respect to the + *output* of the last fully-connected layer. `layer_inputs` is a 1D + tensor, where each row is the *input* to the last fully-connected + layer. For both, the length is the number of examples in the batch + represented by `inputs` and `targets`. """ - global layer_inputs - layer_inputs = [] + layer_inputs: Dict[device, Tuple[Tensor, ...]] = defaultdict() + lock = threading.Lock() + + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def hook_wrapper(original_module): + # pyre-fixme[53]: Captured variable `lock` is not annotated. + # pyre-fixme[2]: Parameter must be annotated. + def _capture_inputs(layer, input, output) -> None: + r"""Save activations into layer_inputs in forward pass""" + with lock: + is_eval_tuple = isinstance(input, tuple) + if is_eval_tuple: + layer_inputs_val = tuple(inp.detach() for inp in input) + else: + layer_inputs_val = input.detach() + layer_inputs[layer_inputs_val[0].device] = layer_inputs_val + + return _capture_inputs + assert isinstance(influence_instance.final_fc_layer, Module) - handle = influence_instance.final_fc_layer.register_forward_hook(_capture_inputs) + handle = influence_instance.final_fc_layer.register_forward_hook( + hook_wrapper(influence_instance.final_fc_layer) + ) out = influence_instance.model(*inputs) - assert influence_instance.loss_fn is not None, "loss function is required" - assert influence_instance.reduction_type in [ + assert loss_fn is not None, "loss function is required" + assert reduction_type in [ "sum", "mean", ], 'reduction_type must be either "mean" or "sum"' input_jacobians = _jacobian_loss_wrt_inputs( - influence_instance.loss_fn, + loss_fn, out, targets, influence_instance.vectorize, - influence_instance.reduction_type, + reduction_type, ) handle.remove() - _layer_inputs = layer_inputs[0] + + device_ids = cast( + Union[None, List[int]], + ( + influence_instance.model.device_ids + if hasattr(influence_instance.model, "device_ids") + else None + ), + ) + key_list = _sort_key_list(list(layer_inputs.keys()), device_ids) + + _layer_inputs = _gather_distributed_tensors(layer_inputs, key_list=key_list)[0] assert len(input_jacobians.shape) == 2 @@ -595,62 +860,87 @@ def _basic_computation_tracincp_fast( class TracInCPFastRandProj(TracInCPFast): + r""" + A version of TracInCPFast which is optimized for "interactive" calls to + `influence` for the purpose of calculating proponents / opponents, or + influence scores. "Interactive" means there will be multiple calls to + `influence`, with each call for a different batch of test examples, and + subsequent calls rely on the results of previous calls. The implementation in + this class has been optimized so that each call to `influence` is fast, so that + it can be used for interactive analysis. This class should only be used for + interactive use cases. It should not be used if `influence` will only be + called once, because to enable fast calls to `influence`, time and memory + intensive preprocessing is required in `__init__`. Furthermore, it should not + be used to calculate self influence scores - `TracInCPFast` should be used + instead for that purpose. To enable interactive analysis, this implementation + computes and saves "embedding" vectors for all training examples in + `train_dataset`. Crucially, the influence score of a training + example on a test example is simply the dot-product of their corresponding + vectors, and proponents / opponents can be found by first storing vectors for + training examples in a nearest-neighbor data structure, and then finding the + nearest-neighbors for a test example in terms of dot-product (see appendix F + of the TracIn paper). This class should only be used if calls to `influence` + to obtain proponents / opponents or influence scores will be made in an + "interactive" manner, and there is sufficient memory to store vectors for the + entire `train_dataset`. This is because in order to enable interactive + analysis, this implementation incures overhead in `__init__` to setup the + nearest-neighbors data structure, which is both time and memory intensive, as + vectors corresponding to all training examples needed to be stored. To reduce + memory usage, this implementation enables random projections of those vectors. + Note that the influence scores computed with random projections are less + accurate, though correct in expectation. + + In more detail regarding the "embedding" vectors - the influence of a training + example on a test example, when only considering gradients in the last + fully-connected layer, the sum of the contribution from each checkpoint. The + contribution from a given checkpoint is + :math`(x^T x')(\nabla_y f(y)^T \nabla_{y'} f(y'))`, using the notation in the + description of `TracInCPFast`. As is, this is not a dot-product of 2 vectors. + However, we can rewrite that contribution as + :math`(x \nabla_y f(y)^T) \dot (x' f(y')^T)`. Both terms in this + product are 2D matrices, as they are outer products, and the "product" is actually + a dot-product, treating both matrices as vectors. Therefore, for a given + checkpoint, its contribution to the "embedding" of an example is just the + outer-product :math`(x \nabla_y f(y)^T)`, flattened. Furthemore, to reduce the + dimension of this contribution, we can right-multiply and + left-multiply the outer-product with two separate projection matrices. These + transform :math`\nabla_y f(y)` and :math`x` to lower dimensional vectors. While + the dimension of these two lower dimensional vectors do not necessarily need to + be the same, in our implementation, we let them be the same, both equal to the + square root of the desired projection dimension. Finally, the embedding of an + example is the concatenation of the contributions from each checkpoint. + """ + def __init__( self, model: Module, - final_fc_layer: Union[Module, str], - influence_src_dataset: Union[Dataset, DataLoader], + final_fc_layer: Module, + train_dataset: Union[Dataset, DataLoader], + # pyre-fixme[24]: Generic type `Iterator` expects 1 type parameter. checkpoints: Union[str, List[str], Iterator], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. checkpoints_load_func: Callable = _load_flexible_state_dict, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. loss_fn: Optional[Union[Module, Callable]] = None, batch_size: Union[int, None] = 1, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + test_loss_fn: Optional[Union[Module, Callable]] = None, vectorize: bool = False, nearest_neighbors: Optional[NearestNeighbors] = None, - projection_dim: int = None, + projection_dim: Optional[int] = None, seed: int = 0, ) -> None: r""" - A version of TracInCPFast which is optimized for "interactive" calls to - `influence` for the purpose of calculating proponents / opponents, or - influence scores. "Interactive" means there will be multiple calls to - `influence`, with each call for a different batch of test examples, and - subsequent calls rely on the results of previous calls. The implementation in - this class has been optimized so that each call to `influence` is fast, so that - it can be used for interactive analysis. This class should only be used for - interactive use cases. It should not be used if `influence` will only be - called once, because to enable fast calls to `influence`, time and memory - intensive preprocessing is required in `__init__`. Furthermore, it should not - be used to calculate self influencs scores - `TracInCPFast` should be used - instead for that purpose. To enable interactive analysis, this implementation - saves pre-computed vectors for all training examples in - `influence_src_dataset`. Crucially, the influence score of a training - example on a test example is simply the dot-product of their corresponding - vectors, and proponents / opponents can be found by first storing vectors for - training examples in a nearest-neighbor data structure, and then finding the - nearest-neighbors for a test example in terms of dot-product (see appendix F - of the TracIn paper). This class should only be used if calls to `influence` - to obtain proponents / opponents or influence scores will be made in an - "interactive" manner, and there is sufficient memory to store vectors for the - entire `influence_src_dataset`. This is because in order to enable interactive - analysis, this implementation incures overhead in ``__init__` to setup the - nearest-neighbors data structure, which is both time and memory intensive, as - vectors corresponding to all training examples needed to be stored. To reduce - memory usage, this implementation enables random projections of those vectors. - Note that the influence scores computed with random projections are less - accurate, though correct in expectation. - Args: + model (torch.nn.Module): An instance of pytorch model. This model should define all of its layers as attributes of the model. - final_fc_layer (torch.nn.Module or str): The last fully connected layer in + final_fc_layer (torch.nn.Module): The last fully connected layer in the network for which gradients will be approximated via fast random - projection method. Can be either the layer module itself, or the - fully qualified name of the layer if it is a defined attribute of - the passed `model`. - influence_src_dataset (torch.utils.data.Dataset or torch.utils.DataLoader): - In the `influence` method, we either compute the influence score of - training examples on examples in a test batch, or self influence - scores for those training examples, depending on which mode is used. + projection method. + train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader): + In the `influence` method, we compute the influence score of + training examples on examples in a test batch. This argument represents the training dataset containing those training examples. In order to compute those influence scores, we will create a Pytorch DataLoader yielding batches of training @@ -662,10 +952,16 @@ def __init__( DataLoader used for processing should be as large as possible, but not too large, so that certain intermediate quantities created from a batch still fit in memory. Therefore, if - `influence_src_dataset` is a Dataset, `batch_size` should be large. - If `influence_src_dataset` was already a DataLoader to begin with, - it should have been constructed to have a large batch size. - checkpoints (str or List of str or Iterator): Either the directory of the + `train_dataset` is a Dataset, `batch_size` should be large. + If `train_dataset` was already a DataLoader to begin with, + it should have been constructed to have a large batch size. It is + assumed that the Dataloader (regardless of whether it is created + from a Pytorch Dataset or not) yields tuples. For a `batch` that is + yielded, of length `L`, it is assumed that the forward function of + `model` accepts `L-1` arguments, and the last element of `batch` is + the label. In other words, `model(*batch[:-1])` gives the output of + `model`, and `batch[-1]` are the labels for the batch. + checkpoints (str, list[str], or Iterator): Either the directory of the path to store and retrieve model checkpoints, a list of filepaths with checkpoints from which to load, or an iterator which returns objects from which to load checkpoints. @@ -682,14 +978,27 @@ def __init__( `nn.BCELoss(reduction="mean")` is *not* acceptable. Default: None batch_size (int or None, optional): Batch size of the DataLoader created to - iterate through `influence_src_dataset`, if it is a Dataset. + iterate through `train_dataset`, if it is a Dataset. `batch_size` should be chosen as large as possible so that certain intermediate quantities created from a batch still fit in memory. Specific implementations of `TracInCPBase` will detail the size of the intermediate quantities. `batch_size` must be an int if - `influence_src_dataset` is a Dataset. If `influence_src_dataset` + `train_dataset` is a Dataset. If `train_dataset` is a DataLoader, then `batch_size` is ignored as an argument. Default: 1 + test_loss_fn (Callable, optional): In some cases, one may want to use a + separate loss functions for training examples, i.e. those in + `train_dataset`, and for test examples, i.e. those + represented by the `inputs` and `targets` arguments to the + `influence` method. For example, if one wants to calculate the + influence score of a training example on a test example's + prediction for a fixed class, `test_loss_fn` could map from the + logits for all classes to the logits for a fixed class. + `test_loss_fn` needs satisfy the same constraints as `loss_fn`. + Thus, the same checks that we apply to `loss_fn` are also applied + to `test_loss_fn`, if the latter is provided. If not provided, the + loss function for test examples is assumed to be the same as the + loss function for training examples, i.e. `loss_fn`. vectorize (bool): Flag to use experimental vectorize functionality for `torch.autograd.functional.jacobian`. Default: False @@ -716,7 +1025,7 @@ def __init__( int, and random projection will be performed to ensure that the vector is of dimension no more than `projection_dim` * C. `projection_dim` corresponds to the variable d in the top of page - 15 of the TracIn paper: https://arxiv.org/pdf/2002.08484.pdf. + 15 of the TracIn paper: https://arxiv.org/abs/2002.08484. Default: None seed (int, optional): Because this implementation chooses a random projection, its output is random. Setting this seed specifies the @@ -728,25 +1037,28 @@ def __init__( self, model, final_fc_layer, - influence_src_dataset, + train_dataset, checkpoints, checkpoints_load_func, loss_fn, batch_size, + test_loss_fn, vectorize, ) warnings.warn( ( "WARNING: Using this implementation stores quantities related to the " - "entire `influence_src_dataset` in memory, and may results in running " + "entire `train_dataset` in memory, and may results in running " "out of memory. If this happens, consider using %s instead, for which " "each call to `influence` to compute influence scores or proponents " "will be slower, but may avoid running out of memory." ) - % "`TracInCPFast`" + % "`TracInCPFast`", + stacklevel=1, ) + # pyre-fixme[4]: Attribute must be annotated. self.nearest_neighbors = ( AnnoyNearestNeighbors() if nearest_neighbors is None else nearest_neighbors ) @@ -754,13 +1066,15 @@ def __init__( self.projection_dim = projection_dim torch.manual_seed(seed) # for reproducibility + # pyre-fixme[4]: Attribute must be annotated. self.projection_quantities = self._set_projections_tracincp_fast_rand_proj( - self.influence_src_dataloader, + self.train_dataloader, ) + # pyre-fixme[4]: Attribute must be annotated. self.src_intermediate_quantities = ( self._get_intermediate_quantities_tracincp_fast_rand_proj( - self.influence_src_dataloader, + self.train_dataloader, self.projection_quantities, ) ) @@ -771,33 +1085,35 @@ def __init__( def _influence( # type: ignore[override] self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. inputs: Tuple[Any, ...], - targets: Tensor, ) -> Tensor: r""" Args: - inputs (tuple of Any): A batch of examples. Does not represent labels, - which are passed as `targets`. The assumption is that - `self.model(*inputs)` produces the predictions for the batch. - targets (tensor): The labels corresponding to the batch `inputs`. This - method is designed to be applied for a loss function, so labels - are required. + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. Returns: - influence_scores (tensor): Influence scores from the - TracInCPFastRandProj method. Its shape is - `(input_size, influence_src_dataset_size)`, where `input_size` is the - number of examples in the test batch, and `influence_src_dataset_size` is - the number of examples in training dataset `influence_src_dataset`. For - example, `influence_scores[i][j]` is the influence score for the j-th - training example to the i-th input example. + influence_scores (Tensor): Influence scores from the `TracInCPFastRandProj` + method. Its shape is `(input_size, train_dataset_size)`, where `input_size` + is the number of examples in the test batch, and + `train_dataset_size` is the number of examples in + training dataset `train_dataset`. For example: + `influence_scores[i][j]` is the influence score for the j-th training + example to the i-th example in the test batch. """ - inputs_batch = (*inputs, targets) + # TODO: after D35721609 lands, use helper function + # `TracInCP._influence_rand_proj` here to avoid duplicated logic input_projections = self._get_intermediate_quantities_tracincp_fast_rand_proj( - DataLoader( - _DatasetFromList([inputs_batch]), shuffle=False, batch_size=None - ), + inputs, self.projection_quantities, + test=True, ) src_projections = self.src_intermediate_quantities @@ -806,18 +1122,21 @@ def _influence( # type: ignore[override] def _get_k_most_influential( # type: ignore[override] self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. inputs: Tuple[Any, ...], - targets: Tensor, k: int = 5, proponents: bool = True, ) -> KMostInfluentialResults: r""" Args: - inputs (Tuple of Any): A tuple that represents a batch of examples. It does - not represent labels, which are passed as `targets`. - targets (tensor): The labels corresponding to the batch `inputs`. This - method is designed to be applied for a loss function, so labels - are required. + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. k (int, optional): The number of proponents or opponents to return per test example. Default: 5 @@ -831,22 +1150,19 @@ def _get_k_most_influential( # type: ignore[override] test example. Its dimension is `(inputs_batch_size, k)`, where `inputs_batch_size` is the number of examples in `inputs`. For example, if `proponents==True`, `indices[i][j]` is the index of the - example in training dataset `influence_src_dataset` with the + example in training dataset `train_dataset` with the k-th highest influence score for the j-th example in `inputs`. `indices` is a `torch.long` tensor so that it can directly be used to index other tensors. Each row of `influence_scores` contains the influence scores for a different test example, in sorted order. In particular, `influence_scores[i][j]` is the influence score of - example `indices[i][j]` in training dataset `influence_src_dataset` - on example `i` in the test batch represented by `inputs` and - `targets`. + example `indices[i][j]` in training dataset `train_dataset` + on example `i` in the test batch represented by `inputs`. """ - inputs_batch = (*inputs, targets) input_projections = self._get_intermediate_quantities_tracincp_fast_rand_proj( - DataLoader( - _DatasetFromList([inputs_batch]), shuffle=False, batch_size=None - ), + inputs, self.projection_quantities, + test=True, ) multiplier = 1 if proponents else -1 @@ -860,17 +1176,62 @@ def _get_k_most_influential( # type: ignore[override] return KMostInfluentialResults(indices, distances) - def _self_influence(self): + @log_usage() + def self_influence( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Optional[Union[Tuple[Any, ...], DataLoader]] = None, + show_progress: bool = False, + outer_loop_by_checkpoints: bool = False, + ) -> Tensor: """ - NOT IMPLEMENTED - no need to implement `TracInCPFastRandProj._self_influence`, - as `TracInCPFast._self_influence` is sufficient - the latter does not benefit + NOT IMPLEMENTED - no need to implement `TracInCPFastRandProj.self_influence`, + as `TracInCPFast.self_influence` is sufficient - the latter does not benefit from random projections, since no quantities associated with a training example are stored (other than its self influence score) + Computes self influence scores for a single batch or a Pytorch `DataLoader` + that yields batches. Note that if `inputs` is a single batch, this + will call `model` on that single batch, and if `inputs` yields + batches, this will call `model` on each batch that is yielded. Therefore, + please ensure that for both cases, the batch(es) that `model` is called + with are not too large, so that there will not be an out-of-memory error. + + Args: + inputs (tuple or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, + and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset`. Please see documentation for the + `train_dataset` argument to `TracInCP.__init__` for + more details on the assumed structure of a batch. + show_progress (bool, optional): Computation of self influence scores can + take a long time if `inputs` represents many examples. If + `show_progress` is true, the progress of this computation will be + displayed. In more detail, this computation will iterate over all + checkpoints (provided as the `checkpoints` initialization argument) + and all batches that `inputs` represents. Therefore, the + total number of (checkpoint, batch) combinations that need to be + iterated over is + (# of checkpoints x # of batches that `inputs` represents). + If `show_progress` is True, the total number of such combinations + that have been iterated over is displayed. It will try to use tqdm + if available for advanced features (e.g. time estimation). + Otherwise, it will fallback to a simple output of progress. + Default: False + outer_loop_by_checkpoints (bool, optional): If performing an outer + iteration over checkpoints; see method description for more + details. + Default: False + Returns: - self influence scores (Tensor): 1-d Tensor containing self influence - scores for all examples in training dataset - `influence_src_dataset`. + self_influence_scores (Tensor): This is a 1D tensor containing the self + influence scores of all examples in `inputs`, regardless of + whether it represents a single batch or a `DataLoader` that yields + batches. """ warnings.warn( ( @@ -883,60 +1244,47 @@ def _self_influence(self): "`TracInCPFastRandProj`needed. Further considering the fact that " "random projections results only in approximate self influence " "scores, there is no reason to use `TracInCPFastRandProj` when " - "calculating self-influence scores." - ) + "calculating self influence scores." + ), + stacklevel=1, ) raise NotImplementedError @log_usage() def influence( # type: ignore[override] self, - inputs: Any, - targets: Tensor, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Optional[Tuple[Any, ...]] = None, k: int = 5, proponents: bool = True, - unpack_inputs: bool = True, ) -> Union[Tensor, KMostInfluentialResults]: r""" This is the key method of this class, and can be run in 2 different modes, - where the mode that is run depends on the arguments passed to this method - - - influence score mode: This mode is used if `inputs` is not None, and `k` is - None. This mode computes the influence score of every example in - training dataset `influence_src_dataset` on every example in the test - batch represented by `inputs` and `targets`. - - - k-most influential mode: This mode is used if `inputs` is not None, and - `k` is not None, and an int. This mode computes the proponents or - opponents of every example in the test batch represented by `inputs` - and `targets`. In particular, for each test example in the test batch, - this mode computes its proponents (resp. opponents), which are the - indices in the training dataset `influence_src_dataset` of the training - examples with the `k` highest (resp. lowest) influence scores on the - test example. Proponents are computed if `proponents` is True. - Otherwise, opponents are computed. For each test example, this method - also returns the actual influence score of each proponent (resp. - opponent) on the test example. - - Note that unlike `TracInCPFast`, this class should *not* be run in self - influence mode. To compute self influence scores when only considering - gradients in the last fully-connected layer, please use `TracInCPFast` instead. + where the mode that is run depends on the arguments passed to this method: + + - influence score mode: This mode is used if `k` is None. This mode computes + the influence score of every example in training dataset `train_dataset` + on every example in the test batch represented by `inputs`. + - k-most influential mode: This mode is used if `k` is not None, and an int. + This mode computes the proponents or opponents of every example in the + test batch represented by `inputs`. In particular, for each test example in + the test batch, this mode computes its proponents (resp. opponents), + which are the indices in the training dataset `train_dataset` of the + training examples with the `k` highest (resp. lowest) influence scores on the + test example. Proponents are computed if `proponents` is True. Otherwise, + opponents are computed. For each test example, this method also returns the + actual influence score of each proponent (resp. opponent) on the test + example. Args: - inputs (Any, optional): If not provided or `None`, the self influence mode - will be run. Otherwise, `inputs` is the test batch that will be - used when running in either influence score or k-most influential - mode. If the argument `unpack_inputs` is False, the - assumption is that `self.model(inputs)` produces the predictions - for a batch, and `inputs` can be of any type. Otherwise if the - argument `unpack_inputs` is True, the assumption is that - `self.model(*inputs)` produces the predictions for a batch, and - `inputs` will need to be a tuple. In other words, `inputs` will be - unpacked as an argument when passing to `self.model`. - Default: None - targets (tensor): The labels corresponding to the batch `inputs`. This - method is designed to be applied for a loss function, so `targets` - is required. + + inputs (tuple): `inputs` is the test batch and is a tuple of + any, where the last element is assumed to be the labels for the + batch. That is, `model(*batch[0:-1])` produces the output for + `model`, and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset` - please see its documentation in `__init__` for + more details on the assumed structure of a batch. k (int, optional): If not provided or `None`, the influence score mode will be run. Otherwise, the k-most influential mode will be run, and `k` is the number of proponents / opponents to return per @@ -946,55 +1294,40 @@ def influence( # type: ignore[override] or opponents (`proponents=False`), if running in k-most influential mode. Default: True - unpack_inputs (bool, optional): Whether to unpack the `inputs` argument to - when passing it to `model`, if `inputs` is a tuple (no unpacking - done otherwise). - Default: True Returns: - The return value of this method depends on which mode is run. - - influence score mode: if this mode is run (`inputs is not None, `k` is - None), returns a 2D tensor `influence_scores` of shape - `(input_size, influence_src_dataset_size)`, where `input_size` is - the number of examples in the test batch, and - `influence_src_dataset_size` is the number of examples in - training dataset `influence_src_dataset`. In other words, - `influence_scores[i][j]` is the influence score of the `j`-th - example in `influence_src_dataset` on the `i`-th example in the - test batch. - - k-most influential mode: if this mode is run (`inputs` is not None, - `k` is an int), returns a namedtuple `(indices, influence_scores)`. - `indices` is a 2D tensor of shape `(input_size, k)`, where - `input_size` is the number of examples in the test batch. If - computing proponents (resp. opponents), `indices[i][j]` is the - index in training dataset `influence_src_dataset` of the example - with the `j`-th highest (resp. lowest) influence score (out of the - examples in `influence_src_dataset`) on the `i`-th example in the - test batch. `influence_scores` contains the corresponding influence - scores. In particular, `influence_scores[i][j]` is the influence - score of example `indices[i][j]` in `influence_src_dataset` on - example `i` in the test batch represented by `inputs` and - `targets`. + - influence score mode: if this mode is run (`k` is None), returns a 2D + tensor `influence_scores` of shape `(input_size, train_dataset_size)`, + where `input_size` is the number of examples in the test batch, and + `train_dataset_size` is the number of examples in training dataset + `train_dataset`. In other words, `influence_scores[i][j]` is the + influence score of the `j`-th example in `train_dataset` on the `i`-th + example in the test batch. + - k-most influential mode: if this mode is run (`k` is an int), returns + a namedtuple `(indices, influence_scores)`. `indices` is a 2D tensor of + shape `(input_size, k)`, where `input_size` is the number of examples in + the test batch. If computing proponents (resp. opponents), + `indices[i][j]` is the index in training dataset `train_dataset` of the + example with the `j`-th highest (resp. lowest) influence score (out of + the examples in `train_dataset`) on the `i`-th example in the test + batch. `influence_scores` contains the corresponding influence scores. + In particular, `influence_scores[i][j]` is the influence score of example + `indices[i][j]` in `train_dataset` on example `i` in the test batch + represented by `inputs`. """ - msg = ( - "Since `inputs` is None, this suggests `TracInCPFastRandProj` is being " - "used in self influence mode. However, `TracInCPFastRandProj` should not " - "be used to compute self influence scores. If desiring self influence " - "scores which only consider gradients in the last fully-connected layer, " - "please use `TracInCPFast` instead." + assert inputs is not None, ( + "`inputs` argument is required." + "`TracInCPFastRandProj` does not support computing self influence scores" + "Even if it did, one would use the `self_influence` method." + ) + return _influence_route_to_helpers( + self, + inputs, + k, + proponents, ) - assert inputs is not None, msg - - _inputs = _format_inputs(inputs, unpack_inputs) - - if inputs is None: - return self._self_influence() - elif k is None: - return self._influence(_inputs, targets) - else: - return self._get_k_most_influential(_inputs, targets, k, proponents) def _set_projections_tracincp_fast_rand_proj( self, @@ -1011,17 +1344,18 @@ def _set_projections_tracincp_fast_rand_proj( `TracInCPFastRandProj.__init__`. Args: + dataloader (DataLoader): determining the projection requires knowing the dimensionality of the last layer's parameters (`jacobian_dim` below) and its input (`layer_input_dim` below). These are - determined by passing a batch to `self.model`. `dataloader` + determined by passing a batch to `model`. `dataloader` provides that batch. Returns: - jacobian_projection (tensor or None): Projection matrix to apply to + jacobian_projection (Tensor or None): Projection matrix to apply to Jacobian of last layer to reduce its dimension, if needed. None otherwise. - input_projection (tensor or None): Projection matrix to apply to input of + input_projection (Tensor or None): Projection matrix to apply to input of last layer to reduce its dimension, if needed. None otherwise. """ # figure out projection dimensions, if needed @@ -1040,6 +1374,8 @@ def _set_projections_tracincp_fast_rand_proj( self, batch[0:-1], batch[-1], + self.loss_fn, + self.reduction_type, ) jacobian_dim = batch_jacobians.shape[ @@ -1048,6 +1384,8 @@ def _set_projections_tracincp_fast_rand_proj( layer_input_dim = batch_layer_inputs.shape[ 1 ] # this is the dimension of the input of the last fully-connected layer + device = batch_jacobians.device + dtype = batch_jacobians.dtype # choose projection if needed # without projection, the dimension of the intermediate quantities returned @@ -1061,7 +1399,7 @@ def _set_projections_tracincp_fast_rand_proj( # allowable dimension of the "partial" intermediate quantity. Therefore, # we only project if `jacobian_dim` * `layer_input_dim` > `projection_dim`. # `projection_dim` corresponds to the variable d in the top of page 15 of - # the TracIn paper: https://arxiv.org/pdf/2002.08484.pdf. + # the TracIn paper: https://arxiv.org/abs/2002.08484. if jacobian_dim * layer_input_dim > projection_dim: jacobian_projection_dim = min(int(projection_dim**0.5), jacobian_dim) layer_input_projection_dim = min( @@ -1076,14 +1414,16 @@ def _set_projections_tracincp_fast_rand_proj( 1.0 / layer_input_projection_dim**0.5, ) - projection_quantities = jacobian_projection, layer_input_projection + projection_quantities = jacobian_projection.to( + device=device, dtype=dtype + ), layer_input_projection.to(device=device, dtype=dtype) return projection_quantities def _process_src_intermediate_quantities_tracincp_fast_rand_proj( self, src_intermediate_quantities: torch.Tensor, - ): + ) -> None: """ Assumes `self._get_intermediate_quantities_tracin_fast_rand_proj` returns vector representations for each example, and that influence between a @@ -1094,9 +1434,10 @@ def _process_src_intermediate_quantities_tracincp_fast_rand_proj( method creates that data structure. This method has side effects. Args: - src_intermediate_quantities (tensor): the output of the + + src_intermediate_quantities (Tensor): the output of the `_get_intermediate_quantities_tracin_fast_rand_proj` function when - applied to training dataset `influence_src_dataset`. This + applied to training dataset `train_dataset`. This output is the vector representation of all training examples. The dot product between the representation of a training example and the representation of a test example gives the influence score @@ -1106,8 +1447,10 @@ def _process_src_intermediate_quantities_tracincp_fast_rand_proj( def _get_intermediate_quantities_tracincp_fast_rand_proj( self, - dataloader: DataLoader, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], projection_quantities: Optional[Tuple[torch.Tensor, torch.Tensor]], + test: bool = False, ) -> torch.Tensor: r""" This method computes vectors that can be used to compute influence. (see @@ -1118,14 +1461,27 @@ def _get_intermediate_quantities_tracincp_fast_rand_proj( specifically, largest dot-product) data structure. Args: - dataloader (DataLoader): DataLoader for which the intermediate quantities - are computed. + inputs (Tuple, or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, and + and `batch[-1]` are the labels, if any. Here, `model` is model + provided in initialization. This is the same assumption made for + each batch yielded by training dataset `train_dataset`. Please see + documentation for the `train_dataset` argument to + `TracInCPFastRandProj.__init__` for more details on the assumed + structure of a batch. projection_quantities (tuple or None): Is either the two tensors defining the randomized projections to apply, or None, which means no projection is to be applied. + test (bool): If True, the intermediate quantities are computed using + `self.test_loss_fn`. Otherwise, they are computed using + `self.loss_fn`. + Default: False Returns: - checkpoint_projections (tensor): A tensor of dimension + intermediate_quantities (Tensor): A tensor of dimension (N, D * C), where N is total number of examples in `dataloader`, C is the number of checkpoints passed as the `checkpoints` argument of `TracInCPFastRandProj.__init__`, and each row represents the @@ -1141,17 +1497,36 @@ def _get_intermediate_quantities_tracincp_fast_rand_proj( performed to ensure that the vector is of dimension no more than `self.projection_dim` * C. `self.projection_dim` corresponds to the variable d in the top of page 15 of the TracIn paper: - https://arxiv.org/pdf/2002.08484.pdf. + https://arxiv.org/abs/2002.08484. """ - checkpoint_projections: List[Any] = [[] for _ in self.checkpoints] - - if projection_quantities is None: - project = False - else: + # if `inputs` is not a `DataLoader`, turn it into one. + inputs = _format_inputs_dataset(inputs) + + # internally, whether `projection_quantities` is None determines whether + # any projection will be applied to reduce the dimension of the "embedding" + # vectors. If projection will be applied, there are actually 2 different + # projection matrices - one to project the `input_jacobians`, and one to + # project the `layer_inputs`. See below for details of those two quantities. + # here, we extract the corresponding projection matrices for those two + # quantities, if doing projection. Note that the same projections are used + # for each checkpoint. + project = False + if projection_quantities is not None: project = True jacobian_projection, layer_input_projection = projection_quantities - for (j, checkpoint) in enumerate(self.checkpoints): + # for each checkpoint, we will populate a list containing the contribution of + # the checkpoint for each batch + # pyre-fixme[24]: Generic type `list` expects 1 type parameter, use + # `typing.List[]` to avoid runtime subscripting errors. + checkpoint_contributions: List[Union[List, Tensor]] = [ + [] for _ in self.checkpoints + ] + + # the "embedding" vector is the concatenation of contributions from each + # checkpoint, which we compute one by one + for j, checkpoint in enumerate(self.checkpoints): + assert ( checkpoint is not None ), "None returned from `checkpoints`, cannot load." @@ -1159,30 +1534,129 @@ def _get_intermediate_quantities_tracincp_fast_rand_proj( learning_rate = self.checkpoints_load_func(self.model, checkpoint) learning_rate_root = learning_rate**0.5 - for batch in dataloader: - - batch_jacobians, batch_layer_inputs = _basic_computation_tracincp_fast( + # after loading a checkpoint, we compute the contribution of that + # checkpoint, for *all* batches (instead of a single batch). this enables + # increased efficiency. + for batch in inputs: + + # compute `input_jacobians` and `layer_inputs`, for a given checkpoint + # using a helper function. `input_jacobians` is a 2D tensor, + # where each row is the jacobian of the loss, with respect to the + # *output* of the last fully-connected layer. `layer_inputs` is a 2D + # tensor, where each row is the *input* to the last fully-connected + # layer. For both, the length is the number of examples in `batch` + input_jacobians, layer_inputs = _basic_computation_tracincp_fast( self, batch[0:-1], batch[-1], + self.test_loss_fn, + self.test_reduction_type, ) + # if doing projection, project those two quantities if project: - batch_jacobians = torch.matmul(batch_jacobians, jacobian_projection) - - batch_layer_inputs = torch.matmul( - batch_layer_inputs, layer_input_projection - ) - - checkpoint_projections[j].append( + # pyre-fixme[61]: `jacobian_projection` is undefined, or not + # always defined. + input_jacobians = torch.matmul(input_jacobians, jacobian_projection) + + # pyre-fixme[61]: `layer_input_projection` is undefined, or not + # always defined. + layer_inputs = torch.matmul(layer_inputs, layer_input_projection) + + # for an example, the contribution to the "embedding" vector from each + # checkpoint is the outer product of its `input_jacobian` and its + # `layer_input`, flattened to a 1D tensor. here, we perform this + # for the entire batch. we append the contribution to a list containing + # the contribution of all batches, from the checkpoint. + # pyre-fixme[24]: Generic type `list` expects 1 type parameter, use + # `typing.List[]` to avoid runtime subscripting errors. + cast(list, checkpoint_contributions[j]).append( torch.matmul( - torch.unsqueeze(batch_jacobians, 2), - torch.unsqueeze(batch_layer_inputs, 1), - ).flatten(start_dim=1) + torch.unsqueeze( + input_jacobians, 2 + ), # size is (batch_size, output_size, 1) + torch.unsqueeze( + layer_inputs, 1 + ), # size is (batch_size, 1, input_size) + ).flatten( + start_dim=1 + ) # matmul does a batched matrix multiplication to return a 3D + # tensor. each element along the batch (0-th) dimension is the + # matrix product of a (output_size, 1) and (1, input_size) tensor + # in other words, each element is an outer product, and the matmul + # is just doing a batched outer product. this is what we want, as + # the contribution to the "embedding" for an example is the outer + # product of the last layer's input and the gradient of its output. + # finally, we flatten the 3rd dimension so that the contribution to + # the embedding for this checkpoint is a 2D tensor, i.e. each + # example's contribution to the embedding is a 1D tensor. * learning_rate_root ) - checkpoint_projections[j] = torch.cat(checkpoint_projections[j], dim=0) + # once we have computed the contribution from each batch, for a given + # checkpoint, we concatenate them along the batch dimension to get a + # single 2D tensor for that checkpoint + checkpoint_contributions[j] = torch.cat( + checkpoint_contributions[j], dim=0 # type: ignore + ) + + # finally, we concatenate along the checkpoint dimension, to get a tensor of + # shape (batch_size, projection_dim * number of checkpoints) + # each row in this result is the "embedding" vector for an example in `batch` + return torch.cat(checkpoint_contributions, dim=1) # type: ignore - return torch.cat(checkpoint_projections, dim=1) + @log_usage() + def compute_intermediate_quantities( + self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], + ) -> Tensor: + """ + Computes "embedding" vectors for all examples in a single batch, or a + `Dataloader` that yields batches. These embedding vectors are constructed so + that the influence score of a training example on a test example is simply the + dot-product of their corresponding vectors. Please see the documentation for + `TracInCPFastRandProj.__init__` for more details. Allowing a `DataLoader` + yielding batches to be passed in (as opposed to a single batch) gives the + potential to improve efficiency, because we load each checkpoint only once in + this method call. Thus if a `DataLoader` yielding batches is passed in, this + reduces the total number of times each checkpoint is loaded for a dataset, + compared to if a single batch is passed in. The reason we do not just increase + the batch size is that for large models, large batches do not fit in memory. + + Args: + inputs (Tuple, or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, and + and `batch[-1]` are the labels, if any. Here, `model` is model + provided in initialization. This is the same assumption made for + each batch yielded by training dataset `train_dataset`. Please see + documentation for the `train_dataset` argument to + `TracInCPFastRandProj.__init__` for more details on the assumed + structure of a batch. + + Returns: + intermediate_quantities (Tensor): A tensor of dimension + (N, D * C), where N is total number of examples in + `inputs`, C is the number of checkpoints passed as the + `checkpoints` argument of `TracInCPFastRandProj.__init__`, and each + row represents the vector for an example. Regarding D: Let I be the + dimension of the output of the last fully-connected layer times the + dimension of the input of the last fully-connected layer. If + `self.projection_dim` is specified in initialization, + D = min(I * C, `self.projection_dim` * C). Otherwise, D = I * C. + In summary, if `self.projection_dim` is None, the dimension of each + vector will be determined by the size of the input and output of + the last fully-connected layer of `model`. Otherwise, + `self.projection_dim` must be an int, and random projection will be + performed to ensure that the vector is of dimension no more than + `self.projection_dim` * C. `self.projection_dim` corresponds to + the variable d in the top of page 15 of the TracIn paper: + https://arxiv.org/pdf/2002.08484.pdf. + """ + return self._get_intermediate_quantities_tracincp_fast_rand_proj( + inputs, self.projection_quantities + ) diff --git a/captum/influence/_utils/common.py b/captum/influence/_utils/common.py index 28c76ebbc3..a05001ac64 100644 --- a/captum/influence/_utils/common.py +++ b/captum/influence/_utils/common.py @@ -1,14 +1,42 @@ #!/usr/bin/env python3 -from typing import Callable, Optional, Tuple, Union, Any, List +# pyre-strict +import warnings +from functools import reduce +from typing import ( + Any, + Callable, + cast, + Dict, + Iterable, + List, + NamedTuple, + Optional, + Tuple, + TYPE_CHECKING, + Union, +) import torch import torch.nn as nn +from captum._utils.common import _get_module_from_name, parse_version +from captum._utils.gradient import ( + _compute_jacobian_wrt_params, + _compute_jacobian_wrt_params_with_sample_wise_trick, +) from captum._utils.progress import progress + from torch import Tensor from torch.nn import Module from torch.utils.data import DataLoader, Dataset +if TYPE_CHECKING: + from captum.influence._core.influence_function import ( + InfluenceFunctionBase, + IntermediateQuantitiesInfluenceFunction, + ) + from captum.influence._core.tracincp import TracInCP, TracInCPBase + def _tensor_batch_dot(t1: Tensor, t2: Tensor) -> Tensor: r""" @@ -38,7 +66,7 @@ def _tensor_batch_dot(t1: Tensor, t2: Tensor) -> Tensor: def _gradient_dot_product( - input_grads: Tuple[Tensor], src_grads: Tuple[Tensor] + input_grads: Tuple[Tensor, ...], src_grads: Tuple[Tensor, ...] ) -> Tensor: r""" Computes the dot product between the gradient vector for a model on an input batch @@ -54,12 +82,12 @@ def _gradient_dot_product( total = _tensor_batch_dot(*next(iterator)) for input_grad, src_grad in iterator: total += _tensor_batch_dot(input_grad, src_grad) - total = torch.Tensor(total) return total def _jacobian_loss_wrt_inputs( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. loss_fn: Union[Module, Callable], out: Tensor, targets: Tensor, @@ -84,17 +112,17 @@ def _jacobian_loss_wrt_inputs( batch). Args: - loss_fn (torch.nn.Module or Callable or None): The loss function. If a library + loss_fn (torch.nn.Module, Callable): The loss function. If a library defined loss function is provided, it would be expected to be a torch.nn.Module. If a custom loss is provided, it can be either type, but must behave as a library loss function would if `reduction='sum'` or `reduction='mean'`. - out (tensor): This is a tensor that represents the batch of inputs to + out (Tensor): This is a tensor that represents the batch of inputs to `loss_fn`. In practice, this will be the output of a model; this is why this argument is named `out`. `out` is a 2D tensor of shape (batch size, model output dimensionality). We will call `loss_fn` via `loss_fn(out, targets)`. - targets (tensor): The labels for the batch of inputs. + targets (Tensor): The labels for the batch of inputs. vectorize (bool): Flag to use experimental vectorize functionality for `torch.autograd.functional.jacobian`. reduction_type (str): The type of reduction used by `loss_fn`. If `loss_fn` @@ -102,37 +130,29 @@ def _jacobian_loss_wrt_inputs( only be "mean" or "sum". Returns: - jacobians (tensor): Returns the jacobian of the per-sample loss (implicitly + jacobians (Tensor): Returns the jacobian of the per-sample loss (implicitly defined by `loss_fn` and `reduction_type`) w.r.t each sample in the batch represented by `out`. This is a 2D tensor, where the first dimension is the batch dimension. """ - # TODO: allow loss_fn to be Callable - if isinstance(loss_fn, Module) and hasattr(loss_fn, "reduction"): - msg0 = "Please ensure that loss_fn.reduction is set to `sum` or `mean`" - - assert loss_fn.reduction != "none", msg0 - msg1 = ( - f"loss_fn.reduction ({loss_fn.reduction}) does not match" - f"reduction type ({reduction_type}). Please ensure they are" - " matching." - ) - assert loss_fn.reduction == reduction_type, msg1 - if reduction_type != "sum" and reduction_type != "mean": raise ValueError( - f"{reduction_type} is not a valid value for reduction_type. " + f"`{reduction_type}` is not a valid value for reduction_type. " "Must be either 'sum' or 'mean'." ) - if torch.__version__ >= "1.8": - input_jacobians = torch.autograd.functional.jacobian( - lambda out: loss_fn(out, targets), out, vectorize=vectorize - ) - else: - input_jacobians = torch.autograd.functional.jacobian( - lambda out: loss_fn(out, targets), out + # TODO: allow loss_fn to be Callable + if isinstance(loss_fn, Module) and hasattr(loss_fn, "reduction"): + msg = ( + f"loss_fn.reduction `{loss_fn.reduction}` does not match" + f"reduction type `{reduction_type}`. Please ensure they are" + " matching." ) + assert loss_fn.reduction == reduction_type, msg + + input_jacobians = torch.autograd.functional.jacobian( + lambda out: loss_fn(out, targets), out + ) if reduction_type == "mean": input_jacobians = input_jacobians * len(input_jacobians) @@ -140,9 +160,7 @@ def _jacobian_loss_wrt_inputs( return input_jacobians -def _load_flexible_state_dict( - model: Module, path: str, device_ids: str = "cpu", keyname: Optional[str] = None -) -> int: +def _load_flexible_state_dict(model: Module, path: str) -> float: r""" Helper to load pytorch models. This function attempts to find compatibility for loading models that were trained on different devices / with DataParallel but are @@ -153,23 +171,18 @@ def _load_flexible_state_dict( state_dict and other information. Args: - model: The model for which to load a checkpoint - path: The filepath to the checkpoint - keyname: The key under which the model state_dict is stored, if any. + + model (torch.nn.Module): The model for which to load a checkpoint + path (str): The filepath to the checkpoint The module state_dict is modified in-place, and the learning rate is returned. """ - device = device_ids + checkpoint = torch.load(path) - checkpoint = torch.load(path, map_location=device) - - learning_rate = checkpoint.get("learning_rate", 1) + learning_rate = checkpoint.get("learning_rate", 1.0) # can get learning rate from optimizer state_dict? - if keyname is not None: - checkpoint = checkpoint[keyname] - if "module." in next(iter(checkpoint)): if isinstance(model, nn.DataParallel): model.load_state_dict(checkpoint) @@ -190,9 +203,10 @@ def _load_flexible_state_dict( def _get_k_most_influential_helper( influence_src_dataloader: DataLoader, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. influence_batch_fn: Callable, - inputs: Tuple[Any, ...], - targets: Optional[Tensor], + # pyre-fixme[2]: Parameter annotation cannot be `Any`. + inputs: Any, k: int = 5, proponents: bool = True, show_progress: bool = False, @@ -207,13 +221,12 @@ def _get_k_most_influential_helper( influence_src_dataloader (DataLoader): The DataLoader, representing training data, for which we want to compute proponents / opponents. influence_batch_fn (Callable): A callable that will be called via - `influence_batch_fn(inputs, targets, batch)`, where `batch` is a batch + `influence_batch_fn(inputs, batch)`, where `batch` is a batch in the `influence_src_dataloader` argument. - inputs (Tuple of Any): A batch of examples. Does not represent labels, - which are passed as `targets`. - targets (Tensor, optional): If computing TracIn scores on a loss function, - these are the labels corresponding to the batch `inputs`. - Default: None + inputs (any): This argument represents the test batch, and can be of any type. + It is passed as the first argument to `influence_batch_fn`, and thus + needs to be compatible with it. It is not necessarily the test batch + itself, but can be some quantity derived from it, i.e. its jacobians. k (int, optional): The number of proponents or opponents to return per test instance. Default: 5 @@ -222,7 +235,7 @@ def _get_k_most_influential_helper( Default: True show_progress (bool, optional): To compute the proponents (or opponents) for the batch of examples, we perform computation for each batch in - training dataset `influence_src_dataloader`, If `show_progress`is + training dataset `influence_src_dataloader`, If `show_progress` is true, the progress of this computation will be displayed. In particular, the number of batches for which the computation has been performed will be displayed. It will try to use tqdm if @@ -261,21 +274,22 @@ def _get_k_most_influential_helper( # if show_progress, create progress bar total: Optional[int] = None + data_iterator: Union[Iterable[object], DataLoader] = influence_src_dataloader if show_progress: try: total = len(influence_src_dataloader) except AttributeError: pass - influence_src_dataloader = progress( - influence_src_dataloader, + data_iterator = progress( + cast(Iterable[object], influence_src_dataloader), desc=desc, total=total, ) - for batch in influence_src_dataloader: + for batch in data_iterator: # calculate tracin_scores for the batch - batch_tracin_scores = influence_batch_fn(inputs, targets, batch) + batch_tracin_scores = influence_batch_fn(inputs, batch) batch_tracin_scores *= multiplier # get the top-k indices and tracin_scores for the batch @@ -287,9 +301,15 @@ def _get_k_most_influential_helper( num_instances_processed += batch_size # combine the top-k for the batch with those for previously seen batches - topk_indices = torch.cat([topk_indices, batch_topk_indices], dim=1) + topk_indices = torch.cat( + [topk_indices.to(batch_topk_indices.device), batch_topk_indices], dim=1 + ) topk_tracin_scores = torch.cat( - [topk_tracin_scores, batch_topk_tracin_scores], dim=1 + [ + topk_tracin_scores.to(batch_topk_tracin_scores.device), + batch_topk_tracin_scores, + ], + dim=1, ) # retain only the top-k in terms of tracin_scores @@ -305,11 +325,784 @@ def _get_k_most_influential_helper( class _DatasetFromList(Dataset): - def __init__(self, _l: List[Any]): + def __init__(self, _l: List[Any]) -> None: self._l = _l + # pyre-fixme[3]: Return annotation cannot be `Any`. def __getitem__(self, i: int) -> Any: return self._l[i] def __len__(self) -> int: return len(self._l) + + +def _format_inputs_dataset( + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs_dataset: Union[Tuple[Any, ...], DataLoader], +) -> DataLoader: + # if `inputs_dataset` is not a `DataLoader`, turn it into one. + # `_DatasetFromList` turns a list into a `Dataset` where `__getitem__` + # returns an element in the list, and using it to construct a `DataLoader` + # with `batch_size=None` gives a `DataLoader` that yields a single batch. + if not isinstance(inputs_dataset, DataLoader): + inputs_dataset = DataLoader( + _DatasetFromList([inputs_dataset]), shuffle=False, batch_size=None + ) + return inputs_dataset + + +def _self_influence_by_batches_helper( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + self_influence_batch_fn: Callable, + instance_name: str, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs_dataset: Union[Tuple[Any, ...], DataLoader], + show_progress: bool = False, +) -> Tensor: + """ + Computes self influence scores for the examples in `inputs_dataset`, which is + either a single batch or a Pytorch `DataLoader` that yields batches. The self + influence scores for a single batch are computed using the + `self_influence_batch_fn` input. Note that if `inputs_dataset` is a single batch, + this will call `model` on that single batch, where `model` is the model used to + compute self influence scores by `self_influence_batch_fn`, and if `inputs_dataset` + yields batches, this will call `model` on each batch that is yielded. Therefore, + please ensure that for both cases, the batch(es) that `model` is called + with are not too large, so that there will not be an out-of-memory error. This + implementation performs an outer iteration over all batches that + `inputs_dataset` represents, and an inner iteration over checkpoints. The pros + of this implementation are that showing the progress of the computation is + straightforward. + + Args: + self_influence_batch_fn (Callable): This is the function that computes self + influence scores for a single batch. + instance_name (str): This is the name of the implementation class that + `self_influence_batch_fn` is a method of. This is used for displaying + warning messages. + batches (tuple or DataLoader): Either a single tuple of any, or a + `DataLoader`, where each batch yielded is a tuple of any. In + either case, the tuple represents a single batch, where the last + element is assumed to be the labels for the batch. That is, + `model(*batch[0:-1])` produces the output for `model`, + and `batch[-1]` are the labels, if any. This is the same + assumption made for each batch yielded by training dataset + `train_dataset`. Please see documentation for the + `train_dataset` argument to `TracInCP.__init__` for + more details on the assumed structure of a batch. + show_progress (bool, optional): Computation of self influence scores can + take a long time if `inputs_dataset` represents many examples. If + `show_progress`is true, the progress of this computation will be + displayed. In particular, the number of batches for which self + influence scores have been computed will be displayed. It will try + to use tqdm if available for advanced features (e.g. time + estimation). Otherwise, it will fallback to a simple output of + progress. + Default: False + + Returns: + self_influence_scores (Tensor): This is a 1D tensor containing the self + influence scores of all examples in `inputs_dataset`, regardless of + whether it represents a single batch or a `DataLoader` that yields + batches. + """ + # If `inputs_dataset` is not a `DataLoader`, turn it into one. + inputs_dataset = _format_inputs_dataset(inputs_dataset) + inputs_dataset_iterator: Union[Iterable[object], DataLoader] = inputs_dataset + + # If `show_progress` is true, create a progress bar that keeps track of how + # many batches have been processed + if show_progress: + # First, try to determine length of progress bar if possible, with a + # default of `None` + inputs_dataset_len = None + try: + inputs_dataset_len = len(inputs_dataset) + except TypeError: + warnings.warn( + "Unable to determine the number of batches in `inputs_dataset`. " + "Therefore, if showing the progress of the computation of self " + "influence scores, only the number of batches processed can be " + "displayed, and not the percentage completion of the computation, " + "nor any time estimates.", + stacklevel=1, + ) + # then create the progress bar + inputs_dataset_iterator = progress( + inputs_dataset, + desc=f"Using {instance_name} to compute self influence. Processing batch", + total=inputs_dataset_len, + ) + + # To compute self influence scores for each batch, we use + # `_self_influence_by_checkpoints`, which can accept a tuple representing a + # single batch as the `inputs_dataset` argument (as well as a DataLoader). + # Because we are already displaying progress in terms of number of batches + # processed in this method, we will not show progress for the call to + # `_self_influence_by_checkpoints`. + return torch.cat( + [ + self_influence_batch_fn(batch, show_progress=False) + for batch in inputs_dataset_iterator + ] + ) + + +def _check_loss_fn( + influence_instance: Union["TracInCPBase", "InfluenceFunctionBase"], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]], + loss_fn_name: str, + sample_wise_grads_per_batch: bool = True, +) -> str: + """ + This checks whether `loss_fn` satisfies the requirements assumed of all + implementations of `TracInCPBase`. It works regardless of whether the + implementation has the `sample_wise_grads_per_batch` attribute. + It returns the reduction type of the loss_fn. If `sample_wise_grads_per_batch` + if not provided, we assume the implementation does not have that attribute. + """ + # if `loss_fn` is `None`, there is nothing to check. then, the reduction type is + # only used by `_compute_jacobian_wrt_params_with_sample_wise_trick`, where + # reduction type should be "sum" if `loss_fn` is `None`. + if loss_fn is None: + return "sum" + + # perhaps since `Module` is an implementation of `Callable`, this has redundancy + assert isinstance(loss_fn, Module) or callable(loss_fn) + + reduction_type = "none" + + # If we are able to access the reduction used by `loss_fn`, we check whether + # the reduction is compatible with `sample_wise_grads_per_batch`, if it has the + # attribute. + if hasattr(loss_fn, "reduction"): + reduction = loss_fn.reduction # type: ignore + if sample_wise_grads_per_batch: + assert reduction in [ + "sum", + "mean", + ], ( + 'reduction for `loss_fn` must be "sum" or "mean" when ' + "`sample_wise_grads_per_batch` is True (i.e. the default value) " + ) + reduction_type = str(reduction) + else: + assert reduction == "none", ( + 'reduction for `loss_fn` must be "none" when ' + "`sample_wise_grads_per_batch` is False" + ) + else: + # if we are unable to access the reduction used by `loss_fn`, we warn + # the user about the assumptions we are making regarding the reduction + # used by `loss_fn` + if sample_wise_grads_per_batch: + warnings.warn( + f"Since `{loss_fn_name}`` has no 'reduction' attribute, and " + "`sample_wise_grads_per_batch` is True, the implementation assumes " + f"that `{loss_fn_name}` is a 'reduction' loss function that reduces " + f"the per-example losses by taking their *sum*. If `{loss_fn_name}` " + "instead reduces the per-example losses by taking their mean, " + f'please set the reduction attribute of `{loss_fn_name}` to "mean", ' + f'i.e. `{loss_fn_name}.reduction = "mean"`. Note that if ' + "`sample_wise_grads_per_batch` is True, the implementation " + "assumes the reduction is either a sum or mean reduction.", + stacklevel=1, + ) + reduction_type = "sum" + else: + warnings.warn( + f'Since `{loss_fn_name}` has no "reduction" attribute, and ' + "`sample_wise_grads_per_batch` is False, the implementation " + f'assumes that `{loss_fn_name}` is a "per-example" loss function (see ' + f"documentation for `{loss_fn_name}` for details). Please ensure " + "that this is the case.", + stacklevel=1, + ) + + return reduction_type + + +def _set_active_parameters(model: Module, layers: List[str]) -> List[Module]: + """ + sets relevant parameters, as indicated by `layers`, to have `requires_grad=True`, + and returns relevant modules. + """ + assert isinstance(layers, List), "`layers` should be a list!" + assert len(layers) > 0, "`layers` cannot be empty!" + assert isinstance(layers[0], str), "`layers` should contain str layer names." + layer_modules = [_get_module_from_name(model, layer) for layer in layers] + for layer, layer_module in zip(layers, layer_modules): + for name, param in layer_module.named_parameters(): + if not param.requires_grad: + warnings.warn( + "Setting required grads for layer: {}, name: {}".format( + ".".join(layer), name + ), + stacklevel=1, + ) + param.requires_grad = True + return layer_modules + + +# pyre-fixme[3]: Return type must be annotated. +def _progress_bar_constructor( + influence_inst: "InfluenceFunctionBase", + inputs_dataset: DataLoader, + quantities_name: str, + dataset_name: str = "inputs_dataset", +): + # Try to determine length of progress bar if possible, with a default + # of `None`. + inputs_dataset_len = None + try: + inputs_dataset_len = len(inputs_dataset) + except TypeError: + warnings.warn( + f"Unable to determine the number of batches in " + f"`{dataset_name}`. Therefore, if showing the progress " + f"of the computation of {quantities_name}, " + "only the number of batches processed can be " + "displayed, and not the percentage completion of the computation, " + "nor any time estimates.", + stacklevel=1, + ) + + return progress( + inputs_dataset, + desc=( + f"Using {influence_inst.get_name()} to compute {quantities_name}. " + "Processing batch" + ), + total=inputs_dataset_len, + ) + + +def _params_to_names(params: Iterable[nn.Parameter], model: nn.Module) -> List[str]: + """ + Given an iterable of parameters, `params` of a model, `model`, returns the names of + the parameters from the perspective of `model`. This is useful if, given + parameters for which we do not know the name, want to pass them as a dict + to a function of those parameters, i.e. `torch.nn.utils._stateless`. + """ + param_id_to_name = { + id(param): param_name for (param_name, param) in model.named_parameters() + } + return [param_id_to_name[id(param)] for param in params] + + +def _flatten_params(_params: Tuple[Tensor, ...]) -> Tensor: + """ + Given a tuple of tensors, which is how Pytorch represents parameters of a model, + flattens it into a single tensor. This is useful if we want to do matrix operations + on the parameters of a model, i.e. invert its Hessian, or compute dot-product of + parameter-gradients. Note that flattening and then passing to standard linear + algebra operations may not be the most efficient way to perform them. + """ + return torch.cat([_param.view(-1) for _param in _params]) + + +# pyre-fixme[3]: Return type must be annotated. +def _unflatten_params_factory( + param_shapes: Union[List[Tuple[int, ...]], Tuple[Tensor, ...]], +): + """ + returns a function which is the inverse of `_flatten_params` + """ + + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def _unflatten_params(flattened_params): + params = [] + offset = 0 + for shape in param_shapes: + length = 1 + for s in shape: + length *= s + params.append(flattened_params[offset : offset + length].view(shape)) + offset += length + return tuple(params) + + return _unflatten_params + + +def _influence_batch_intermediate_quantities_influence_function( + influence_inst: "IntermediateQuantitiesInfluenceFunction", + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + test_batch: Tuple[Any, ...], + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + train_batch: Tuple[Any, ...], +) -> Tensor: + """ + computes influence of a test batch on a train batch, for implementations of + `IntermediateQuantitiesInfluenceFunction` + """ + return torch.matmul( + influence_inst.compute_intermediate_quantities(test_batch), + influence_inst.compute_intermediate_quantities(train_batch).T, + ) + + +def _influence_helper_intermediate_quantities_influence_function( + influence_inst: "IntermediateQuantitiesInfluenceFunction", + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs_dataset: Union[Tuple[Any, ...], DataLoader], + show_progress: bool, +) -> Tensor: + """ + Helper function that computes influence scores for implementations of + `NaiveInfluenceFunction` which implement the `compute_intermediate_quantities` + method returning "embedding" vectors, so that the influence score of one example + on another is the dot-product of their vectors. + """ + # If `inputs_dataset` is not a `DataLoader`, turn it into one. + inputs_dataset = _format_inputs_dataset(inputs_dataset) + + inputs_intermediate_quantities = influence_inst.compute_intermediate_quantities( + inputs_dataset, + show_progress=show_progress, + test=True, + ) + + train_dataloader = influence_inst.train_dataloader + if show_progress: + train_dataloader = _progress_bar_constructor( + influence_inst, train_dataloader, "train_dataset", "influence scores" + ) + + return torch.cat( + [ + torch.matmul( + inputs_intermediate_quantities, + influence_inst.compute_intermediate_quantities(batch).T, + ) + for batch in train_dataloader + ], + dim=1, + ) + + +def _self_influence_helper_intermediate_quantities_influence_function( + influence_inst: "IntermediateQuantitiesInfluenceFunction", + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs_dataset: Optional[Union[Tuple[Any, ...], DataLoader]], + show_progress: bool, +) -> Tensor: + """ + Helper function that computes self-influence scores for implementations of + `NaiveInfluenceFunction` which implement the `compute_intermediate_quantities` + method returning "embedding" vectors, so that the self-influence score of an + example is the squared norm of its vector. + """ + + inputs_dataset = ( + inputs_dataset + if inputs_dataset is not None + else influence_inst.train_dataloader + ) + + # If `inputs_dataset` is not a `DataLoader`, turn it into one. + inputs_dataset = _format_inputs_dataset(inputs_dataset) + + if show_progress: + inputs_dataset = _progress_bar_constructor( + influence_inst, inputs_dataset, "inputs_dataset", "self influence scores" + ) + + return torch.cat( + [ + torch.sum( + influence_inst.compute_intermediate_quantities( + batch, + show_progress=False, + ) + ** 2, + dim=1, + ) + for batch in inputs_dataset + ] + ) + + +# pyre-fixme[3]: Return type must be annotated. +def _eig_helper(H: Tensor): + """ + wrapper around `torch.linalg.eig` that sorts eigenvalues / eigenvectors by + ascending eigenvalues, like `torch.linalg.eigh`, and returns the real component + (since `H` is never complex, there should never be a complex component. however, + `torch.linalg.eig` always returns a complex tensor, which in this case would + actually have no complex component) + """ + ls, vs = torch.linalg.eig(H) + ls, vs = ls.real, vs.real + + ls_argsort = torch.argsort(ls) + vs = vs[:, ls_argsort] + ls = ls[ls_argsort] + return ls, vs + + +def _top_eigen( + H: Tensor, k: Optional[int], hessian_reg: float, hessian_inverse_tol: float +) -> Tuple[Tensor, Tensor]: + """ + This is a wrapper around `torch.linalg.eig` that performs some pre / + post-processing to make it suitable for computing the low-rank + "square root" of a matrix, i.e. given square matrix H, find tall and + skinny L such that LL' approximates H. This function returns eigenvectors (as the + columns of a matrix Q) and corresponding eigenvectors (as diagonal entries in + a matrix V), and we can then let L=QV^{1/2}Q'. However, doing so requires the + eigenvalues in V to be positive. Thus, this function does pre-processing (adds + an entry to the diagonal of H) and post-processing (returns only the top-k + eigenvectors / eigenvalues where the eigenvalues are above a positive tolerance) + to encourage and guarantee, respectively, that the returned eigenvalues be + positive. The pre-processing shifts the eigenvalues up by a constant, and the + post-processing effectively replaces H with the most similar matrix (in terms of + Frobenius norm) whose eigenvalues are above the tolerance, see + https://nhigham.com/2021/01/26/what-is-the-nearest-positive-semidefinite-matrix/. + + Args: + H (Tensor): a 2D square Tensor for which the top eigenvectors / eigenvalues + will be computed. + k (int): how many eigenvectors / eigenvalues to return (before dropping pairs + whose eigenvalue is below the tolerance). + hessian_reg (float): We add an entry to the diagonal of `H` to encourage it to + be positive definite. This is that entry. + hessian_inverse_tol (float): To compute the "square root" of `H` using the top + eigenvectors / eigenvalues, the eigenvalues should be positive, and + furthermore if above a tolerance, the inversion will be more + numerically stable. Therefore, we only return eigenvectors / + eigenvalues where the eigenvalue is above a tolerance. This argument + specifies that tolerance. + + Returns: + (eigenvalues, eigenvectors) (tuple of tensors): Mimicking the output of + `torch.linalg.eigh`, `eigenvalues` is a 1D tensor of the top-k + eigenvalues of the regularized `H` that are additionally above + `hessian_inverse_tol`, and `eigenvectors` is a 2D tensor whose columns + contain the corresponding eigenvectors. The eigenvalues are in + ascending order. + """ + # add regularization to hopefully make H positive definite + H = H + (torch.eye(len(H)).to(device=H.device) * hessian_reg) + + # find eigvectors / eigvals of H + # ls are eigenvalues, in ascending order + # columns of vs are corresponding eigenvectors + ls, vs = _eig_helper(H) + + # despite adding regularization to the hessian, it may still not be positive + # definite. we can get rid of negative eigenvalues, but for numerical stability + # can get rid of eigenvalues below a tolerance + keep = ls > hessian_inverse_tol + + ls = ls[keep] + vs = vs[:, keep] + + # only keep the top `k` eigvals / eigvectors + if not (k is None): + ls = ls[-k:] + vs = vs[:, -k:] + + # `torch.linalg.eig` is not deterministic in that you can multiply an eigenvector + # by -1, and it is still an eigenvector. to make eigenvectors deterministic, + # we multiply an eigenvector according to some rule that flips if you multiply + # the eigenvector by -1. in this case, that rule is whether the sum of the + # entries of the eigenvector are > 0 + rule = torch.sum(vs, dim=0) > 0 # entries are 0/1 + rule_multiplier = (2 * rule) - 1 # entries are -1/1 + vs = vs * rule_multiplier.unsqueeze(0) + + return ls, vs + + +class KMostInfluentialResults(NamedTuple): + """ + This namedtuple stores the results of using the `influence` method. This method + is implemented by all subclasses of `TracInCPBase` to calculate + proponents / opponents. The `indices` field stores the indices of the + proponents / opponents for each example in the test batch. For example, if finding + opponents, `indices[i][j]` stores the index in the training data of the example + with the `j`-th highest influence score on the `i`-th example in the test batch. + Similarly, the `influence_scores` field stores the actual influence scores, so that + `influence_scores[i][j]` is the influence score of example `indices[i][j]` in the + training data on example `i` of the test batch. Please see `TracInCPBase.influence` + for more details. + """ + + indices: Tensor + influence_scores: Tensor + + +def _influence_route_to_helpers( + influence_instance: Union["TracInCPBase", "InfluenceFunctionBase"], + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Union[Tuple[Any, ...], DataLoader], + k: Optional[int] = None, + proponents: bool = True, + # pyre-fixme[2]: Parameter must be annotated. + **kwargs, +) -> Union[Tensor, KMostInfluentialResults]: + """ + This is a helper function called by `TracInCPBase` and `InfluenceFunctionBase` + implementations. Those methods share a common logic in that they assume + an instance of their respective classes implement 2 private methods + (``_influence`, `_get_k_most_influential`), and the logic of + which private method to call is common, as described in the documentation of the + `influence` method. The arguments and return values of this function are the exact + same as the `influence` method. Note that `influence_instance` refers to the + instance for which the `influence` method was called. + """ + if k is None: + return influence_instance._influence(inputs, **kwargs) + else: + return influence_instance._get_k_most_influential( + inputs, + k, + proponents, + **kwargs, + ) + + +def _parameter_dot( + params_1: Tuple[Tensor, ...], params_2: Tuple[Tensor, ...] +) -> Tensor: + """ + returns the dot-product of 2 tensors, represented as tuple of tensors. + """ + return torch.tensor( + sum( + torch.sum(param_1 * param_2) + for (param_1, param_2) in zip(params_1, params_2) + ) + ) + + +def _parameter_add( + params_1: Tuple[Tensor, ...], params_2: Tuple[Tensor, ...] +) -> Tuple[Tensor, ...]: + """ + returns the sum of 2 tensors, represented as tuple of tensors. + """ + return tuple(param_1 + param_2 for (param_1, param_2) in zip(params_1, params_2)) + + +def _parameter_multiply(params: Tuple[Tensor, ...], c: Tensor) -> Tuple[Tensor, ...]: + """ + multiplies all tensors in a tuple of tensors by a given scalar + """ + return tuple(param * c for param in params) + + +# pyre-fixme[2]: Parameter must be annotated. +def _parameter_to(params: Tuple[Tensor, ...], **to_kwargs) -> Tuple[Tensor, ...]: + """ + applies the `to` method to all tensors in a tuple of tensors + """ + return tuple(param.to(**to_kwargs) for param in params) + + +def _parameter_linear_combination( + paramss: List[Tuple[Tensor, ...]], cs: Tensor +) -> Tuple[Tensor, ...]: + """ + scales each parameter (tensor of tuples) in a list by the corresponding scalar in a + 1D tensor of the same length, and sums up the scaled parameters + """ + assert len(cs.shape) == 1 + result = _parameter_multiply(paramss[0], cs[0]) + for params, c in zip(paramss[1:], cs[1:]): + result = _parameter_add(result, _parameter_multiply(params, c)) + return result + + +def _compute_jacobian_sample_wise_grads_per_batch( + influence_inst: Union["TracInCP", "InfluenceFunctionBase"], + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. + inputs: Tuple[Any, ...], + targets: Optional[Tensor] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]] = None, + reduction_type: Optional[str] = "none", +) -> Tuple[Tensor, ...]: + """ + `TracInCP`, `InfluenceFunction`, and `ArnoldiInfluenceFunction` all compute + jacobians, depending on their `sample_wise_grads_per_batch` attribute. this helper + wraps that logic. + """ + + if influence_inst.sample_wise_grads_per_batch: + return _compute_jacobian_wrt_params_with_sample_wise_trick( + influence_inst.model, + inputs, + targets, + loss_fn, + reduction_type, + influence_inst.layer_modules, + ) + return _compute_jacobian_wrt_params( + influence_inst.model, + inputs, + targets, + loss_fn, + influence_inst.layer_modules, + ) + + +# pyre-fixme[3]: Return type must be annotated. +def _compute_batch_loss_influence_function_base( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]], + # pyre-fixme[2]: Parameter annotation cannot be `Any`. + input: Any, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. + target: Any, + reduction_type: str, +): + """ + In implementations of `InfluenceFunctionBase`, we need to compute the total loss + for a batch given `loss_fn`, whose reduction can either be 'none', 'sum', or + 'mean', and whose output requires different scaling based on the reduction. This + helper houses that common logic, and returns the total loss for a batch given the + predictions (`inputs`) and labels (`targets`) for it. We compute the total loss + in order to compute the Hessian. + """ + if loss_fn is not None: + _loss = loss_fn(input, target) + else: + # following convention of `_compute_jacobian_wrt_params`, is no loss function is + # provided, the quantity backpropped is the output of the forward function. + assert reduction_type == "none" + _loss = input + + if reduction_type == "none": + # if loss_fn is a "reduction='none'" loss function, need to sum + # up the per-example losses. + return torch.sum(_loss) + elif reduction_type == "mean": + # in this case, we want the total loss for the batch, and should + # multiply the mean loss for the batch by the batch size. however, + # we can only infer the batch size if `_output` is a Tensor, and + # we assume the 0-th dimension to be the batch dimension. + if isinstance(input, Tensor): + multiplier = input.shape[0] + else: + multiplier = 1 + msg = ( + "`loss_fn` was inferred to behave as a `reduction='mean'` " + "loss function. however, the batch size of batches could not " + "be inferred. therefore, the total loss of a batch, which is " + "needed to compute the Hessian, is approximated as the output " + "of `loss_fn` for the batch. if this approximation is not " + "accurate, please change `loss_fn` to behave as a " + "`reduction='sum'` loss function, or a `reduction='none'` " + "and set `sample_grads_per_batch` to false." + ) + warnings.warn( + msg, + stacklevel=1, + ) + return _loss * multiplier + elif reduction_type == "sum": + return _loss + else: + # currently, only support `reduction_type` to be + # 'none', 'sum', or 'mean' for + # `InfluenceFunctionBase` implementations + raise Exception + + +# pyre-fixme[2]: Parameter must be annotated. +def _set_attr(obj, names, val) -> None: + if len(names) == 1: + setattr(obj, names[0], val) + else: + _set_attr(getattr(obj, names[0]), names[1:], val) + + +# pyre-fixme[2]: Parameter must be annotated. +def _del_attr(obj, names) -> None: + if len(names) == 1: + delattr(obj, names[0]) + else: + _del_attr(getattr(obj, names[0]), names[1:]) + + +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[2]: Parameter must be annotated. +def _model_make_functional(model, param_names, params): + params = tuple([param.detach().requires_grad_() for param in params]) + + for param_name in param_names: + _del_attr(model, param_name.split(".")) + + return params + + +# pyre-fixme[2]: Parameter must be annotated. +def _model_reinsert_params(model, param_names, params, register: bool = False) -> None: + for param_name, param in zip(param_names, params): + _set_attr( + model, + param_name.split("."), + torch.nn.Parameter(param) if register else param, + ) + + +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[2]: Parameter must be annotated. +def _custom_functional_call(model, d, features): + param_names, params = zip(*list(d.items())) + _params = _model_make_functional(model, param_names, params) + _model_reinsert_params(model, param_names, params) + out = model(*features) + _model_reinsert_params(model, param_names, _params, register=True) + return out + + +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[2]: Parameter must be annotated. +def _functional_call(model: Module, d: Dict[str, Tensor], features): + """ + Makes a call to `model.forward`, which is treated as a function of the parameters + in `d`, a dict from parameter name to parameter, instead of as a function of + `features`, the argument that is unpacked to `model.forward` (i.e. + `model.forward(*features)`). Depending on what version of PyTorch is available, + we either use our own implementation, or directly use `torch.nn.utils.stateless` + or `torch.func.functional_call`. Put another way, this function mimics the latter + two implementations, using our own when the PyTorch version is too old. + """ + import torch + + version = parse_version(torch.__version__) + if version < (1, 12, 0): + return _custom_functional_call(model, d, features) + elif version >= (1, 12, 0) and version < (2, 0, 0): + import torch.nn.utils.stateless + + return torch.nn.utils.stateless.functional_call(model, d, features) + else: + import torch.func + + return torch.func.functional_call(model, d, features) + + +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[2]: Parameter must be annotated. +def _dataset_fn(dataloader, batch_fn, reduce_fn, *batch_fn_args, **batch_fn_kwargs): + """ + Applies `batch_fn` to each batch in `dataloader`, reducing the results using + `reduce_fn`. This is useful for computing Hessians and Hessian-vector + products over an entire dataloader, and is used by both `NaiveInfluenceFunction` + and `ArnoldiInfluenceFunction`. + """ + _dataloader = iter(dataloader) + + # pyre-fixme[53]: Captured variable `batch_fn` is not annotated. + # pyre-fixme[53]: Captured variable `reduce_fn` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + def _reduce_fn(_result, _batch): + return reduce_fn(_result, batch_fn(_batch, *batch_fn_args, **batch_fn_kwargs)) + + result = batch_fn(next(_dataloader), *batch_fn_args, **batch_fn_kwargs) + return reduce(_reduce_fn, _dataloader, result) diff --git a/captum/influence/_utils/nearest_neighbors.py b/captum/influence/_utils/nearest_neighbors.py index 3c26d1d448..acf3a7850b 100644 --- a/captum/influence/_utils/nearest_neighbors.py +++ b/captum/influence/_utils/nearest_neighbors.py @@ -1,3 +1,4 @@ +# pyre-strict from abc import ABC, abstractmethod from typing import Tuple @@ -34,7 +35,7 @@ def get_nearest_neighbors( so that `query` is 2D. Args: - query (tensor): tensor representing the batch of tensors for which k-nearest + query (Tensor): tensor representing the batch of tensors for which k-nearest neighbors are desired. `query` is of shape (N, *), where N is the size of the batch, i.e. the 0-th dimension of `query` indexes the batch. * denotes an arbitrary shape, so that each tensor in the @@ -68,7 +69,7 @@ def setup(self, data: torch.Tensor) -> None: dimension indexes the tensors in the stored tensors. Args: - data (tensor): A tensor of shape (N, *) representing the stored tensors. + data (Tensor): A tensor of shape (N, *) representing the stored tensors. The 0-th dimension indexes the tensors in the stored tensors, so that `data[i]` is the tensor with index `i`. The nearest neighbors of a query will be referred to by their index. @@ -92,7 +93,7 @@ class AnnoyNearestNeighbors(NearestNeighbors): but arbitrary shape *, and flatten them before storing in the Annoy data structure. """ - def __init__(self, num_trees: int = 10): + def __init__(self, num_trees: int = 10) -> None: """ Args: num_trees (int): The number of trees to use. Increasing this number gives @@ -129,7 +130,7 @@ def setup(self, data: torch.Tensor) -> None: tensors. Args: - data (tensor): A tensor of shape (N, *) representing the stored tensors. + data (Tensor): A tensor of shape (N, *) representing the stored tensors. The 0-th dimension indexes the tensors in the stored tensors, so that `data[i]` is the tensor with index `i`. The nearest neighbors of a query will be referred to by their index. @@ -138,8 +139,10 @@ def setup(self, data: torch.Tensor) -> None: data = data.view((len(data), -1)) projection_dim = data.shape[1] + # pyre-fixme[16]: `AnnoyNearestNeighbors` has no attribute `knn_index`. + # pyre-fixme[16]: Module `annoy` has no attribute `AnnoyIndex`. self.knn_index = annoy.AnnoyIndex(projection_dim, "dot") - for (i, projection) in enumerate(data): + for i, projection in enumerate(data): self.knn_index.add_item(i, projection) self.knn_index.build(self.num_trees) @@ -160,7 +163,7 @@ def get_nearest_neighbors( dot-product of the flattened version of tensors. Args: - query (tensor): tensor representing the batch of tensors for which k-nearest + query (Tensor): tensor representing the batch of tensors for which k-nearest neighbors are desired. `query` is of shape (N, *), where N is the size of the batch, i.e. the 0-th dimension of `query` indexes the batch. * denotes an arbitrary shape, so that each tensor in the @@ -178,6 +181,7 @@ def get_nearest_neighbors( """ query = query.view((len(query), -1)) indices_and_distances = [ + # pyre-fixme[16]: `AnnoyNearestNeighbors` has no attribute `knn_index`. self.knn_index.get_nns_by_vector(instance, k, include_distances=True) for instance in query ] diff --git a/captum/insights/__init__.py b/captum/insights/__init__.py index 48ba6fdfa0..73f306965f 100644 --- a/captum/insights/__init__.py +++ b/captum/insights/__init__.py @@ -1 +1,8 @@ -from captum.insights.attr_vis import AttributionVisualizer, Batch # noqa +# pyre-strict +from captum.insights.attr_vis import AttributionVisualizer, Batch, features + +__all__ = [ + "AttributionVisualizer", + "Batch", + "features", +] diff --git a/captum/insights/attr_vis/__init__.py b/captum/insights/attr_vis/__init__.py index a5d0102ff6..80b32e1e89 100644 --- a/captum/insights/attr_vis/__init__.py +++ b/captum/insights/attr_vis/__init__.py @@ -1 +1,7 @@ -from captum.insights.attr_vis.app import AttributionVisualizer, Batch # noqa +# pyre-strict +from captum.insights.attr_vis.app import AttributionVisualizer, Batch + +__all__ = [ + "AttributionVisualizer", + "Batch", +] diff --git a/captum/insights/attr_vis/_utils/transforms.py b/captum/insights/attr_vis/_utils/transforms.py index fb376b7c3b..511a6dc43e 100644 --- a/captum/insights/attr_vis/_utils/transforms.py +++ b/captum/insights/attr_vis/_utils/transforms.py @@ -1,10 +1,14 @@ #!/usr/bin/env python3 +# pyre-strict + from typing import Callable, List, Optional, Union def format_transforms( - transforms: Optional[Union[Callable, List[Callable]]] + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + transforms: Optional[Union[Callable, List[Callable]]], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. ) -> List[Callable]: if transforms is None: return [] diff --git a/captum/insights/attr_vis/app.py b/captum/insights/attr_vis/app.py index 9a0433090b..c6fff9c0ea 100644 --- a/captum/insights/attr_vis/app.py +++ b/captum/insights/attr_vis/app.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 + +# pyre-strict from collections import namedtuple from itertools import cycle from typing import ( @@ -35,7 +37,7 @@ _CONTEXT_NONE = "_CONTEXT_NONE" -def _get_context(): +def _get_context() -> str: """Determine the most specific context that we're in. Implementation from TensorBoard: https://git.io/JvObD. @@ -51,6 +53,10 @@ def _get_context(): # returned by `IPython.get_ipython` does not have a `get_trait` # method. try: + # To avoid fbsource//third-party/pypi/google-cloud-pubsub:google-cloud-pubsub + # which will cause "Duplicate extension: grpc/_cython/cygrpc.so!" + # @manual + # pyre-fixme[21]: Could not find module `google.colab`. import google.colab # noqa: F401 import IPython except ImportError: @@ -75,10 +81,16 @@ def _get_context(): return _CONTEXT_NONE +# pyre-fixme[4]: Attribute annotation cannot be `Any`. +# pyre-fixme[2]: Parameter annotation cannot be `Any`. VisualizationOutput = namedtuple( "VisualizationOutput", "feature_outputs actual predicted active_index model_index" ) +# pyre-fixme[4]: Attribute annotation cannot be `Any`. +# pyre-fixme[2]: Parameter annotation cannot be `Any`. Contribution = namedtuple("Contribution", "name percent") +# pyre-fixme[4]: Attribute annotation cannot be `Any`. +# pyre-fixme[2]: Parameter annotation cannot be `Any`. SampleCache = namedtuple("SampleCache", "inputs additional_forward_args label") @@ -101,6 +113,7 @@ def __init__( self, inputs: Union[Tensor, Tuple[Tensor, ...]], labels: Optional[Tensor], + # pyre-fixme[2]: Parameter must be annotated. additional_args=None, ) -> None: r""" @@ -108,7 +121,7 @@ def __init__( Args: - inputs (tensor or tuple of tensors): Batch of inputs for a model. + inputs (Tensor or tuple[Tensor, ...]): Batch of inputs for a model. These may be either a Tensor or tuple of tensors. Each tensor must correspond to a feature for AttributionVisualizer, and the corresponding input transform function of the feature @@ -116,7 +129,7 @@ def __init__( model. It is assumed that the first dimension of each input tensor corresponds to the number of examples (batch size) and is aligned for all input tensors. - labels (tensor): Tensor containing correct labels for input examples. + labels (Tensor): Tensor containing correct labels for input examples. This must be a 1D tensor with length matching the first dimension of each input tensor. additional_args (tuple, optional): If the forward function @@ -133,6 +146,7 @@ def __init__( """ self.inputs = inputs self.labels = labels + # pyre-fixme[4]: Attribute must be annotated. self.additional_args = additional_args @@ -143,17 +157,18 @@ def __init__( classes: List[str], features: Union[List[BaseFeature], BaseFeature], dataset: Iterable[Batch], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. score_func: Optional[Callable] = None, use_label_for_attr: bool = True, ) -> None: r""" Args: - models (torch.nn.module): One or more PyTorch modules (models) for + models (torch.nn.Module): One or more PyTorch modules (models) for attribution visualization. - classes (list of string): List of strings corresponding to the names of + classes (list[str]): List of strings corresponding to the names of classes for classification. - features (list of BaseFeature): List of BaseFeatures, which correspond + features (list[BaseFeature]): List of BaseFeatures, which correspond to input arguments to the model. Each feature object defines relevant transformations for converting to model input, constructing baselines, and visualizing. The length of the @@ -163,10 +178,10 @@ def __init__( a single BaseFeature, while a multimodal classifier may provide a list of features, each corresponding to a different tensor input and potentially different modalities. - dataset (iterable of Batch): Defines the dataset to visualize attributions + dataset (Iterable of Batch): Defines the dataset to visualize attributions for. This must be an iterable of batch objects, each of which may contain multiple input examples. - score_func (callable, optional): This function is applied to the model + score_func (Callable, optional): This function is applied to the model output to obtain the score for each class. For instance, this function could be the softmax or final non-linearity of the network, applied to the model output. The indices @@ -175,7 +190,7 @@ def __init__( are taken directly and assumed to correspond to the class scores. Default: None - use_label_for_attr (boolean, optional): If true, the class index is passed + use_label_for_attr (bool, optional): If true, the class index is passed to the relevant attribution method. This is necessary in most cases where there is an output neuron corresponding to each class. When the model output is a scalar and class index @@ -198,6 +213,7 @@ class scores. ) self._outputs: List[VisualizationOutput] = [] self._config = FilterConfig(prediction="all", classes=[], num_examples=4) + # pyre-fixme[4]: Attribute must be annotated. self._dataset_iter = iter(dataset) self._dataset_cache: List[Batch] = [] @@ -217,7 +233,8 @@ def _calculate_attribution_from_cache( return None return result[0] - def _update_config(self, settings): + # pyre-fixme[2]: Parameter must be annotated. + def _update_config(self, settings) -> None: self._config = FilterConfig( attribution_method=settings["attribution_method"], attribution_arguments=settings["arguments"], @@ -227,8 +244,8 @@ def _update_config(self, settings): ) @log_usage() - def render(self, debug=True): - from captum.insights.attr_vis.widget import CaptumInsights + def render(self, debug: bool = True) -> None: + from captum.insights.attr_vis.widget.widget import CaptumInsights from IPython.display import display widget = CaptumInsights(visualizer=self) @@ -237,7 +254,15 @@ def render(self, debug=True): display(widget.out) @log_usage() - def serve(self, blocking=False, debug=False, port=None, bind_all=False): + # pyre-fixme[3]: Return type must be annotated. + def serve( + self, + blocking: bool = False, + debug: bool = False, + # pyre-fixme[2]: Parameter must be annotated. + port=None, + bind_all: bool = False, + ): context = _get_context() if context == _CONTEXT_COLAB: return self._serve_colab(blocking=blocking, debug=debug, port=port) @@ -246,14 +271,28 @@ def serve(self, blocking=False, debug=False, port=None, bind_all=False): blocking=blocking, debug=debug, port=port, bind_all=bind_all ) - def _serve(self, blocking=False, debug=False, port=None, bind_all=False): + # pyre-fixme[3]: Return type must be annotated. + def _serve( + self, + blocking: bool = False, + debug: bool = False, + # pyre-fixme[2]: Parameter must be annotated. + port=None, + bind_all: bool = False, + ): from captum.insights.attr_vis.server import start_server return start_server( self, blocking=blocking, debug=debug, _port=port, bind_all=bind_all ) - def _serve_colab(self, blocking=False, debug=False, port=None): + def _serve_colab( + self, + blocking: bool = False, + debug: bool = False, + # pyre-fixme[2]: Parameter must be annotated. + port=None, + ) -> None: import ipywidgets as widgets from captum.insights.attr_vis.server import start_server from IPython.display import display, HTML @@ -350,10 +389,15 @@ def _should_keep_prediction( def _calculate_vis_output( self, + # pyre-fixme[2]: Parameter must be annotated. inputs, + # pyre-fixme[2]: Parameter must be annotated. additional_forward_args, + # pyre-fixme[2]: Parameter must be annotated. label, + # pyre-fixme[2]: Parameter must be annotated. target=None, + # pyre-fixme[2]: Parameter must be annotated. single_model_index=None, ) -> Optional[List[VisualizationOutput]]: # Use all models, unless the user wants to render data for a particular one @@ -363,6 +407,8 @@ def _calculate_vis_output( else self.models ) results = [] + # pyre-fixme[6]: For 1st argument expected `Iterable[_T]` but got + # `Union[List[Any], Module]`. for model_index, model in enumerate(models_used): # Get list of model visualizations for each input actual_label_output = None @@ -415,7 +461,13 @@ def _calculate_vis_output( features_per_input = [ feature.visualize(attr, data, contrib) for feature, attr, data, contrib in zip( - self.features, attrs_per_feature, inputs, net_contrib + # pyre-fixme[6]: For 1st argument expected + # `Iterable[Variable[_T1]]` but got `Union[List[BaseFeature], + # BaseFeature]`. + self.features, + attrs_per_feature, + inputs, + net_contrib, ) ] @@ -424,14 +476,16 @@ def _calculate_vis_output( feature_outputs=features_per_input, actual=actual_label_output, predicted=predicted_scores, - active_index=target - if target is not None - else actual_label_output.index, + active_index=( + target if target is not None else actual_label_output.index + ), # Even if we only iterated over one model, the index should be fixed # to show the index the model would have had in the list - model_index=single_model_index - if single_model_index is not None - else model_index, + model_index=( + single_model_index + if single_model_index is not None + else model_index + ), ) ) @@ -476,13 +530,17 @@ def _get_outputs(self) -> List[Tuple[List[VisualizationOutput], SampleCache]]: return vis_outputs @log_usage() + # pyre-fixme[3]: Return type must be annotated. def visualize(self): self._outputs = [] while len(self._outputs) < self._config.num_examples: + # pyre-fixme[6]: For 1st argument expected + # `Iterable[VisualizationOutput]` but got + # `List[Tuple[List[VisualizationOutput], SampleCache]]`. self._outputs.extend(self._get_outputs()) return [o[0] for o in self._outputs] - def get_insights_config(self): + def get_insights_config(self) -> Dict[str, Any]: return { "classes": self.classes, "methods": list(ATTRIBUTION_NAMES_TO_METHODS.keys()), diff --git a/captum/insights/attr_vis/attribution_calculation.py b/captum/insights/attr_vis/attribution_calculation.py index 3f695b1807..1eceed8f4e 100644 --- a/captum/insights/attr_vis/attribution_calculation.py +++ b/captum/insights/attr_vis/attribution_calculation.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 + +# pyre-strict import inspect from collections import namedtuple from typing import ( @@ -23,6 +25,8 @@ from torch import Tensor from torch.nn import Module +# pyre-fixme[4]: Attribute annotation cannot be `Any`. +# pyre-fixme[2]: Parameter annotation cannot be `Any`. OutputScore = namedtuple("OutputScore", "score index label") @@ -32,6 +36,7 @@ def __init__( models: Sequence[Module], classes: Sequence[str], features: List[BaseFeature], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. score_func: Optional[Callable] = None, use_label_for_attr: bool = True, ) -> None: @@ -40,11 +45,23 @@ def __init__( self.features = features self.score_func = score_func self.use_label_for_attr = use_label_for_attr + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime subscripting + # errors. self.baseline_cache: dict = {} + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime subscripting + # errors. self.transformed_input_cache: dict = {} def calculate_predicted_scores( - self, inputs, additional_forward_args, model + self, + # pyre-fixme[2]: Parameter must be annotated. + inputs, + # pyre-fixme[2]: Parameter must be annotated. + additional_forward_args, + # pyre-fixme[2]: Parameter must be annotated. + model, ) -> Tuple[ List[OutputScore], Optional[List[Tuple[Tensor, ...]]], Tuple[Tensor, ...] ]: @@ -56,6 +73,8 @@ def calculate_predicted_scores( else: # Initialize baselines baseline_transforms_len = 1 # todo support multiple baselines + # pyre-fixme[9]: baselines has type `List[List[Optional[Tensor]]]`; used + # as `List[List[None]]`. baselines: List[List[Optional[Tensor]]] = [ [None] * len(self.features) for _ in range(baseline_transforms_len) ] @@ -76,6 +95,7 @@ def calculate_predicted_scores( True, ) + # pyre-fixme[22]: The cast is redundant. baselines = cast(List[List[Optional[Tensor]]], baselines) baselines_group = [tuple(b) for b in baselines] self.baseline_cache[hashable_inputs] = baselines_group @@ -87,6 +107,11 @@ def calculate_predicted_scores( additional_forward_args=additional_forward_args, ) + # _run_forward may return future of Tensor, + # but we don't support it here now + # And it will fail before here. + outputs = cast(Tensor, outputs) + if self.score_func is not None: outputs = self.score_func(outputs) @@ -110,6 +135,9 @@ def calculate_attribution( additional_forward_args: Optional[Tuple[Tensor, ...]], label: Optional[Union[Tensor]], attribution_method_name: str, + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime subscripting + # errors. attribution_arguments: Dict, model: Module, ) -> Tuple[Tensor, ...]: @@ -131,7 +159,7 @@ def calculate_attribution( ) if "baselines" in inspect.signature(attribution_method.attribute).parameters: attribution_arguments["baselines"] = baseline - attr = attribution_method.attribute.__wrapped__( + attr = attribution_method.attribute.__wrapped__( # type: ignore attribution_method, # self data, additional_forward_args=additional_forward_args, @@ -157,7 +185,11 @@ def calculate_net_contrib( return net_contrib.tolist() def _transform( - self, transforms: Iterable[Callable], inputs: Tensor, batch: bool = False + self, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + transforms: Iterable[Callable], + inputs: Tensor, + batch: bool = False, ) -> Tensor: transformed_inputs = inputs # TODO support batch size > 1 diff --git a/captum/insights/attr_vis/config.py b/captum/insights/attr_vis/config.py index b5d88cc922..5acb916b27 100644 --- a/captum/insights/attr_vis/config.py +++ b/captum/insights/attr_vis/config.py @@ -1,15 +1,16 @@ #!/usr/bin/env python3 -from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple, Union - -from captum.attr import ( - Deconvolution, - DeepLift, - FeatureAblation, - GuidedBackprop, - InputXGradient, - IntegratedGradients, - Occlusion, - Saliency, + +# pyre-strict +from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple, Type, Union + +from captum.attr._core import ( + deep_lift, + feature_ablation, + guided_backprop_deconvnet, + input_x_gradient, + integrated_gradients, + occlusion, + saliency, ) from captum.attr._utils.approximation_methods import SUPPORTED_METHODS @@ -34,48 +35,63 @@ class StrConfig(NamedTuple): Config = Union[NumberConfig, StrEnumConfig, StrConfig] SUPPORTED_ATTRIBUTION_METHODS = [ - Deconvolution, - DeepLift, - GuidedBackprop, - InputXGradient, - IntegratedGradients, - Saliency, - FeatureAblation, - Occlusion, + guided_backprop_deconvnet.Deconvolution, + deep_lift.DeepLift, + guided_backprop_deconvnet.GuidedBackprop, + input_x_gradient.InputXGradient, + integrated_gradients.IntegratedGradients, + saliency.Saliency, + feature_ablation.FeatureAblation, + occlusion.Occlusion, ] +# pyre-fixme[2]: Parameter annotation cannot contain `Any`. class ConfigParameters(NamedTuple): params: Dict[str, Config] help_info: Optional[str] = None # TODO fill out help for each method + # pyre-fixme[4]: Attribute annotation cannot contain `Any`. post_process: Optional[Dict[str, Callable[[Any], Any]]] = None -ATTRIBUTION_NAMES_TO_METHODS = { +ATTRIBUTION_NAMES_TO_METHODS: Dict[ + str, + Type[ + Union[ + deep_lift.DeepLift, + feature_ablation.FeatureAblation, + guided_backprop_deconvnet.Deconvolution, + guided_backprop_deconvnet.GuidedBackprop, + input_x_gradient.InputXGradient, + integrated_gradients.IntegratedGradients, + saliency.Saliency, + ] + ], +] = { # mypy bug - treating it as a type instead of a class cls.get_name(): cls # type: ignore for cls in SUPPORTED_ATTRIBUTION_METHODS } -def _str_to_tuple(s): +def _str_to_tuple(s: Tuple[int, ...]) -> Tuple[int, ...]: if isinstance(s, tuple): return s return tuple([int(i) for i in s.split()]) ATTRIBUTION_METHOD_CONFIG: Dict[str, ConfigParameters] = { - IntegratedGradients.get_name(): ConfigParameters( + integrated_gradients.IntegratedGradients.get_name(): ConfigParameters( params={ "n_steps": NumberConfig(value=25, limit=(2, None)), "method": StrEnumConfig(limit=SUPPORTED_METHODS, value="gausslegendre"), }, post_process={"n_steps": int}, ), - FeatureAblation.get_name(): ConfigParameters( + feature_ablation.FeatureAblation.get_name(): ConfigParameters( params={"perturbations_per_eval": NumberConfig(value=1, limit=(1, 100))}, ), - Occlusion.get_name(): ConfigParameters( + occlusion.Occlusion.get_name(): ConfigParameters( params={ "sliding_window_shapes": StrConfig(value=""), "strides": StrConfig(value=""), diff --git a/captum/insights/attr_vis/example.py b/captum/insights/attr_vis/example.py index 72d7892758..cb7c071b7c 100644 --- a/captum/insights/attr_vis/example.py +++ b/captum/insights/attr_vis/example.py @@ -1,15 +1,19 @@ #!/usr/bin/env python3 + +# pyre-strict import os +from typing import List import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms from captum.insights import AttributionVisualizer, Batch + from captum.insights.attr_vis.features import ImageFeature -def get_classes(): +def get_classes() -> List[str]: classes = [ "Plane", "Car", @@ -25,31 +29,32 @@ def get_classes(): return classes -def get_pretrained_model(): - class Net(nn.Module): - def __init__(self) -> None: - super(Net, self).__init__() - self.conv1 = nn.Conv2d(3, 6, 5) - self.pool1 = nn.MaxPool2d(2, 2) - self.pool2 = nn.MaxPool2d(2, 2) - self.conv2 = nn.Conv2d(6, 16, 5) - self.fc1 = nn.Linear(16 * 5 * 5, 120) - self.fc2 = nn.Linear(120, 84) - self.fc3 = nn.Linear(84, 10) - self.relu1 = nn.ReLU() - self.relu2 = nn.ReLU() - self.relu3 = nn.ReLU() - self.relu4 = nn.ReLU() - - def forward(self, x): - x = self.pool1(self.relu1(self.conv1(x))) - x = self.pool2(self.relu2(self.conv2(x))) - x = x.view(-1, 16 * 5 * 5) - x = self.relu3(self.fc1(x)) - x = self.relu4(self.fc2(x)) - x = self.fc3(x) - return x - +class Net(nn.Module): + def __init__(self) -> None: + super(Net, self).__init__() + self.conv1 = nn.Conv2d(3, 6, 5) + self.pool1 = nn.MaxPool2d(2, 2) + self.pool2 = nn.MaxPool2d(2, 2) + self.conv2 = nn.Conv2d(6, 16, 5) + self.fc1 = nn.Linear(16 * 5 * 5, 120) + self.fc2 = nn.Linear(120, 84) + self.fc3 = nn.Linear(84, 10) + self.relu1 = nn.ReLU() + self.relu2 = nn.ReLU() + self.relu3 = nn.ReLU() + self.relu4 = nn.ReLU() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.pool1(self.relu1(self.conv1(x))) + x = self.pool2(self.relu2(self.conv2(x))) + x = x.view(-1, 16 * 5 * 5) + x = self.relu3(self.fc1(x)) + x = self.relu4(self.fc2(x)) + x = self.fc3(x) + return x + + +def get_pretrained_model() -> Net: net = Net() pt_path = os.path.abspath( os.path.join(os.path.dirname(__file__), "models/cifar_torchvision.pt") @@ -58,10 +63,13 @@ def forward(self, x): return net +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[2]: Parameter must be annotated. def baseline_func(input): return input * 0 +# pyre-fixme[3]: Return type must be annotated. def formatted_data_iter(): dataset = torchvision.datasets.CIFAR10( root="data/test", train=False, download=True, transform=transforms.ToTensor() @@ -74,7 +82,7 @@ def formatted_data_iter(): yield Batch(inputs=images, labels=labels) -def main(): +def main() -> None: normalize = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) model = get_pretrained_model() visualizer = AttributionVisualizer( diff --git a/captum/insights/attr_vis/features.py b/captum/insights/attr_vis/features.py index 0986170758..b7dc23a1d6 100644 --- a/captum/insights/attr_vis/features.py +++ b/captum/insights/attr_vis/features.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 + +# pyre-strict import base64 import warnings from collections import namedtuple @@ -8,11 +10,16 @@ from captum._utils.common import safe_div from captum.attr._utils import visualization as viz from captum.insights.attr_vis._utils.transforms import format_transforms +from matplotlib.figure import Figure +from torch import Tensor + +# pyre-fixme[4]: Attribute annotation cannot be `Any`. +# pyre-fixme[2]: Parameter annotation cannot be `Any`. FeatureOutput = namedtuple("FeatureOutput", "name base modified type contribution") -def _convert_figure_base64(fig): +def _convert_figure_base64(fig: Figure) -> str: buff = BytesIO() with warnings.catch_warnings(): warnings.simplefilter("ignore") @@ -34,8 +41,11 @@ class BaseFeature: def __init__( self, name: str, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. baseline_transforms: Optional[Union[Callable, List[Callable]]], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. input_transforms: Optional[Union[Callable, List[Callable]]], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. visualization_transform: Optional[Callable], ) -> None: r""" @@ -43,23 +53,25 @@ def __init__( name (str): The label of the specific feature. For example, an ImageFeature's name can be "Photo". - baseline_transforms (list, callable, optional): Optional list of + baseline_transforms (list, Callable, optional): Optional list of callables (e.g. functions) to be called on the input tensor to construct multiple baselines. Currently only one baseline is supported. See :py:class:`.IntegratedGradients` for more information about baselines. - input_transforms (list, callable, optional): Optional list of callables + input_transforms (list, Callable, optional): Optional list of callables (e.g. functions) called on the input tensor sequentially to convert it into the format expected by the model. - visualization_transform (callable, optional): Optional callable (e.g. + visualization_transform (Callable, optional): Optional callable (e.g. function) applied as a postprocessing step of the original input data (before ``input_transforms``) to convert it to a format to be understood by the frontend visualizer as specified in ``captum/captum/insights/frontend/App.js``. """ self.name = name + # pyre-fixme[4]: Attribute must be annotated. self.baseline_transforms = format_transforms(baseline_transforms) + # pyre-fixme[4]: Attribute must be annotated. self.input_transforms = format_transforms(input_transforms) self.visualization_transform = visualization_transform @@ -67,6 +79,7 @@ def __init__( def visualization_type() -> str: raise NotImplementedError + # pyre-fixme[2]: Parameter must be annotated. def visualize(self, attribution, data, contribution_frac) -> FeatureOutput: raise NotImplementedError @@ -81,24 +94,27 @@ class ImageFeature(BaseFeature): def __init__( self, name: str, - baseline_transforms: Union[Callable, List[Callable]], - input_transforms: Union[Callable, List[Callable]], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + baseline_transforms: Optional[Union[Callable, List[Callable]]], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + input_transforms: Optional[Union[Callable, List[Callable]]], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. visualization_transform: Optional[Callable] = None, ) -> None: r""" Args: name (str): The label of the specific feature. For example, an ImageFeature's name can be "Photo". - baseline_transforms (list, callable, optional): Optional list of + baseline_transforms (list, Callable, optional): Optional list of callables (e.g. functions) to be called on the input tensor to construct multiple baselines. Currently only one baseline is supported. See :py:class:`.IntegratedGradients` for more information about baselines. - input_transforms (list, callable, optional): A list of transforms + input_transforms (list, Callable, optional): A list of transforms or transform to be applied to the input. For images, normalization is often applied here. - visualization_transform (callable, optional): Optional callable (e.g. + visualization_transform (Callable, optional): Optional callable (e.g. function) applied as a postprocessing step of the original input data (before input_transforms) to convert it to a format to be visualized. @@ -114,6 +130,7 @@ def __init__( def visualization_type() -> str: return "image" + # pyre-fixme[2]: Parameter must be annotated. def visualize(self, attribution, data, contribution_frac) -> FeatureOutput: if self.visualization_transform: data = self.visualization_transform(data) @@ -156,15 +173,18 @@ class TextFeature(BaseFeature): def __init__( self, name: str, - baseline_transforms: Union[Callable, List[Callable]], - input_transforms: Union[Callable, List[Callable]], - visualization_transform: Callable, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + baseline_transforms: Optional[Union[Callable, List[Callable]]], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + input_transforms: Optional[Union[Callable, List[Callable]]], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + visualization_transform: Optional[Callable], ) -> None: r""" Args: name (str): The label of the specific feature. For example, an ImageFeature's name can be "Photo". - baseline_transforms (list, callable, optional): Optional list of + baseline_transforms (list, Callable, optional): Optional list of callables (e.g. functions) to be called on the input tensor to construct multiple baselines. Currently only one baseline is supported. See @@ -174,7 +194,7 @@ def __init__( corresponding to PAD with the same size as the input tensor. See :py:class:`.TokenReferenceBase` for more information. - input_transforms (list, callable, optional): A list of transforms + input_transforms (list, Callable, optional): A list of transforms or transform to be applied to the input. For text, a common transform is to convert the tokenized input tensor into an interpretable embedding. See @@ -182,7 +202,7 @@ def __init__( and :py:func:`~.configure_interpretable_embedding_layer` for more information. - visualization_transform (callable, optional): Optional callable (e.g. + visualization_transform (Callable, optional): Optional callable (e.g. function) applied as a postprocessing step of the original input data (before ``input_transforms``) to convert it to a suitable format for visualization. For text features, @@ -200,7 +220,8 @@ def __init__( def visualization_type() -> str: return "text" - def visualize(self, attribution, data, contribution_frac) -> FeatureOutput: + # pyre-fixme[2]: Parameter must be annotated. + def visualize(self, attribution: Tensor, data, contribution_frac) -> FeatureOutput: if self.visualization_transform: text = self.visualization_transform(data) else: @@ -255,7 +276,8 @@ def __init__(self, name: str, categories: List[str]) -> None: def visualization_type() -> str: return "general" - def visualize(self, attribution, data, contribution_frac) -> FeatureOutput: + # pyre-fixme[2]: Parameter must be annotated. + def visualize(self, attribution: Tensor, data, contribution_frac) -> FeatureOutput: attribution = attribution.squeeze(0) data = data.squeeze(0) @@ -279,8 +301,11 @@ class EmptyFeature(BaseFeature): def __init__( self, name: str = "empty", + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. baseline_transforms: Optional[Union[Callable, List[Callable]]] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. input_transforms: Optional[Union[Callable, List[Callable]]] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. visualization_transform: Optional[Callable] = None, ) -> None: super().__init__( @@ -294,7 +319,8 @@ def __init__( def visualization_type() -> str: return "empty" - def visualize(self, _attribution, _data, contribution_frac) -> FeatureOutput: + # pyre-fixme[2]: Parameter must be annotated. + def visualize(self, attribution, data, contribution_frac) -> FeatureOutput: return FeatureOutput( name=self.name, base=None, diff --git a/captum/insights/attr_vis/frontend/package.json b/captum/insights/attr_vis/frontend/package.json index 072d0ae5e8..83810fef18 100644 --- a/captum/insights/attr_vis/frontend/package.json +++ b/captum/insights/attr_vis/frontend/package.json @@ -1,6 +1,6 @@ { "name": "frontend", - "version": "0.5.0", + "version": "0.8.0", "private": true, "homepage": ".", "dependencies": { diff --git a/captum/insights/attr_vis/server.py b/captum/insights/attr_vis/server.py index 124d152fce..5edbd0eb26 100644 --- a/captum/insights/attr_vis/server.py +++ b/captum/insights/attr_vis/server.py @@ -1,24 +1,30 @@ #!/usr/bin/env python3 + +# pyre-strict import logging -import os import socket import threading from time import sleep -from typing import Optional +from typing import cast, Dict, Optional from captum.log import log_usage from flask import Flask, jsonify, render_template, request +from flask.wrappers import Response from flask_compress import Compress from torch import Tensor app = Flask( __name__, static_folder="frontend/build/static", template_folder="frontend/build" ) +# pyre-fixme[5]: Global expression must be annotated. visualizer = None +# pyre-fixme[5]: Global expression must be annotated. port = None Compress(app) +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[2]: Parameter must be annotated. def namedtuple_to_dict(obj): if isinstance(obj, Tensor): return obj.item() @@ -37,13 +43,15 @@ def namedtuple_to_dict(obj): @app.route("/attribute", methods=["POST"]) -def attribute(): +def attribute() -> Response: # force=True needed for Colab notebooks, which doesn't use the correct # Content-Type header when forwarding requests through the Colab proxy - r = request.get_json(force=True) + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime subscripting errors. + r = cast(Dict, request.get_json(force=True)) return jsonify( namedtuple_to_dict( - visualizer._calculate_attribution_from_cache( + visualizer._calculate_attribution_from_cache( # type: ignore r["inputIndex"], r["modelIndex"], r["labelIndex"] ) ) @@ -51,24 +59,25 @@ def attribute(): @app.route("/fetch", methods=["POST"]) -def fetch(): +def fetch() -> Response: # force=True needed, see comment for "/attribute" route above - visualizer._update_config(request.get_json(force=True)) - visualizer_output = visualizer.visualize() + visualizer._update_config(request.get_json(force=True)) # type: ignore + visualizer_output = visualizer.visualize() # type: ignore clean_output = namedtuple_to_dict(visualizer_output) return jsonify(clean_output) @app.route("/init") -def init(): - return jsonify(visualizer.get_insights_config()) +def init() -> Response: + return jsonify(visualizer.get_insights_config()) # type: ignore @app.route("/") -def index(id=0): +def index(id: int = 0) -> str: return render_template("index.html") +# pyre-fixme[3]: Return type must be annotated. def get_free_tcp_port(): tcp = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tcp.bind(("", 0)) @@ -77,7 +86,7 @@ def get_free_tcp_port(): return port -def run_app(debug: bool = True, bind_all: bool = False): +def run_app(debug: bool = True, bind_all: bool = False) -> None: if bind_all: app.run(port=port, use_reloader=False, debug=debug, host="0.0.0.0") else: @@ -85,6 +94,7 @@ def run_app(debug: bool = True, bind_all: bool = False): @log_usage() +# pyre-fixme[3]: Return type must be annotated. def start_server( _viz, blocking: bool = False, @@ -97,7 +107,6 @@ def start_server( global port if port is None: - os.environ["WERKZEUG_RUN_MAIN"] = "true" # hides starting message if not debug: log = logging.getLogger("werkzeug") log.disabled = True diff --git a/captum/insights/attr_vis/widget/__init__.py b/captum/insights/attr_vis/widget/__init__.py index 82f0af8d40..02ce796629 100644 --- a/captum/insights/attr_vis/widget/__init__.py +++ b/captum/insights/attr_vis/widget/__init__.py @@ -1,8 +1,11 @@ -from captum.insights.attr_vis.widget._version import __version__, version_info # noqa -from captum.insights.attr_vis.widget.widget import * # noqa +# pyre-strict +from typing import Dict, List +from captum.insights.attr_vis.widget._version import __version__, version_info +from captum.insights.attr_vis.widget.widget import CaptumInsights -def _jupyter_nbextension_paths(): + +def _jupyter_nbextension_paths() -> List[Dict[str, str]]: return [ { "section": "notebook", @@ -11,3 +14,6 @@ def _jupyter_nbextension_paths(): "require": "jupyter-captum-insights/extension", } ] + + +__all__ = ["__version__", "version_info", "CaptumInsights"] diff --git a/captum/insights/attr_vis/widget/_version.py b/captum/insights/attr_vis/widget/_version.py index adb82fbbe2..5a71ccd5e7 100644 --- a/captum/insights/attr_vis/widget/_version.py +++ b/captum/insights/attr_vis/widget/_version.py @@ -1,12 +1,15 @@ +# pyre-strict version_info = (0, 1, 0, "alpha", 0) _specifier_ = {"alpha": "a", "beta": "b", "candidate": "rc", "final": ""} -__version__ = "%s.%s.%s%s" % ( +__version__: str = "%s.%s.%s%s" % ( version_info[0], version_info[1], version_info[2], - "" - if version_info[3] == "final" - else _specifier_[version_info[3]] + str(version_info[4]), + ( + "" + if version_info[3] == "final" + else _specifier_[version_info[3]] + str(version_info[4]) + ), ) diff --git a/captum/insights/attr_vis/widget/widget.py b/captum/insights/attr_vis/widget/widget.py index 2f5adbfced..175072118d 100644 --- a/captum/insights/attr_vis/widget/widget.py +++ b/captum/insights/attr_vis/widget/widget.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 + +# pyre-strict import ipywidgets as widgets from captum.insights import AttributionVisualizer from captum.insights.attr_vis.server import namedtuple_to_dict @@ -9,21 +11,32 @@ class CaptumInsights(widgets.DOMWidget): """A widget for interacting with Captum Insights.""" + # pyre-fixme[4]: Attribute must be annotated. _view_name = Unicode("CaptumInsightsView").tag(sync=True) + # pyre-fixme[4]: Attribute must be annotated. _model_name = Unicode("CaptumInsightsModel").tag(sync=True) + # pyre-fixme[4]: Attribute must be annotated. _view_module = Unicode("jupyter-captum-insights").tag(sync=True) + # pyre-fixme[4]: Attribute must be annotated. _model_module = Unicode("jupyter-captum-insights").tag(sync=True) + # pyre-fixme[4]: Attribute must be annotated. _view_module_version = Unicode("^0.1.0").tag(sync=True) + # pyre-fixme[4]: Attribute must be annotated. _model_module_version = Unicode("^0.1.0").tag(sync=True) visualizer = Instance(klass=AttributionVisualizer) + # pyre-fixme[4]: Attribute must be annotated. insights_config = Dict().tag(sync=True) + # pyre-fixme[4]: Attribute must be annotated. label_details = Dict().tag(sync=True) + # pyre-fixme[4]: Attribute must be annotated. attribution = Dict().tag(sync=True) + # pyre-fixme[4]: Attribute must be annotated. config = Dict().tag(sync=True) - output = List().tag(sync=True) + output = List().tag(sync=True) # type: ignore + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, **kwargs) -> None: super(CaptumInsights, self).__init__(**kwargs) self.insights_config = self.visualizer.get_insights_config() @@ -32,16 +45,18 @@ def __init__(self, **kwargs) -> None: print("Captum Insights widget created.") @observe("config") - def _fetch_data(self, change): + # pyre-fixme[2]: Parameter must be annotated. + def _fetch_data(self, change) -> None: if not self.config: return with self.out: self.visualizer._update_config(self.config) self.output = namedtuple_to_dict(self.visualizer.visualize()) - self.config = dict() + self.config = {} @observe("label_details") - def _fetch_attribution(self, change): + # pyre-fixme[2]: Parameter must be annotated. + def _fetch_attribution(self, change) -> None: if not self.label_details: return with self.out: @@ -52,4 +67,4 @@ def _fetch_attribution(self, change): self.label_details["labelIndex"], ) ) - self.label_details = dict() + self.label_details = {} diff --git a/captum/insights/example.py b/captum/insights/example.py index a29a685a6d..afd5da7c58 100644 --- a/captum/insights/example.py +++ b/captum/insights/example.py @@ -1,10 +1,14 @@ # for legacy purposes + +# pyre-strict import warnings +# pyre-fixme[21]: Could not find name `Net` in `captum.insights.attr_vis.example`. from captum.insights.attr_vis.example import * # noqa warnings.warn( - "Deprecated. Please import from captum.insights.attr_vis.example instead." + "Deprecated. Please import from captum.insights.attr_vis.example instead.", + stacklevel=1, ) diff --git a/captum/log/__init__.py b/captum/log/__init__.py index 81d61383d0..0e6cd0cbda 100644 --- a/captum/log/__init__.py +++ b/captum/log/__init__.py @@ -1,7 +1,10 @@ #!/usr/bin/env python3 +# pyre-strict + try: from captum.log.fb.internal_log import ( + disable_detailed_logging, log, log_usage, patch_methods, @@ -9,37 +12,22 @@ TimedLog, ) - __all__ = ["log", "log_usage", "TimedLog", "set_environment"] + __all__ = [ + "log", + "log_usage", + "TimedLog", + "set_environment", + "disable_detailed_logging", + "patch_methods", + ] except ImportError: - from functools import wraps - - def log(*args, **kwargs): - pass - # bug with mypy: https://github.com/python/mypy/issues/1153 - class TimedLog: # type: ignore - def __init__(self, *args, **kwargs): - pass - - def __enter__(self): - return self - - def __exit__(self, exception_type, exception_value, traceback): - return exception_value is not None - - def log_usage(*log_args, **log_kwargs): - def _log_usage(func): - @wraps(func) - def wrapper(*args, **kwargs): - return func(*args, **kwargs) - - return wrapper - - return _log_usage - - def set_environment(env): - pass - - def patch_methods(tester, patch_log=True): - pass + from captum.log.dummy_log import ( # type: ignore + disable_detailed_logging, + log, + log_usage, + patch_methods, + set_environment, + TimedLog, + ) diff --git a/captum/log/dummy_log.py b/captum/log/dummy_log.py new file mode 100644 index 0000000000..3610e4707d --- /dev/null +++ b/captum/log/dummy_log.py @@ -0,0 +1,55 @@ +#!/usr/bin/env python3 + +# pyre-strict + +from functools import wraps +from types import TracebackType +from typing import Any, List, Optional, Union + + +def log(*args: Any, **kwargs: Any) -> None: + pass + + +class TimedLog: + def __init__(self, *args: Any, **kwargs: Any) -> None: + pass + + def __enter__(self) -> "TimedLog": + return self + + def __exit__( + self, + exception_type: Optional[BaseException], + exception_value: Optional[BaseException], + traceback: Optional[TracebackType], + ) -> bool: + return exception_value is not None + + +# pyre-fixme[3]: Return type must be annotated. +def log_usage(*log_args: Any, **log_kwargs: Any): + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def _log_usage(func): + @wraps(func) + # pyre-fixme[53]: Captured variable `func` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + def wrapper(*args: Any, **kwargs: Any): + return func(*args, **kwargs) + + return wrapper + + return _log_usage + + +def set_environment(env: Union[None, List[str], str]) -> None: + pass + + +def disable_detailed_logging() -> None: + pass + + +def patch_methods(_, patch_log: bool = True) -> None: + pass diff --git a/captum/metrics/__init__.py b/captum/metrics/__init__.py index 6c8e5a3ac3..2ac613386c 100644 --- a/captum/metrics/__init__.py +++ b/captum/metrics/__init__.py @@ -1,7 +1,15 @@ #!/usr/bin/env python3 -from captum.metrics._core.infidelity import ( # noqa +# pyre-strict + +from captum.metrics._core.infidelity import ( infidelity, infidelity_perturb_func_decorator, ) -from captum.metrics._core.sensitivity import sensitivity_max # noqa +from captum.metrics._core.sensitivity import sensitivity_max + +__all__ = [ + "infidelity", + "infidelity_perturb_func_decorator", + "sensitivity_max", +] diff --git a/captum/metrics/_core/infidelity.py b/captum/metrics/_core/infidelity.py index 33f485a78e..1769424402 100644 --- a/captum/metrics/_core/infidelity.py +++ b/captum/metrics/_core/infidelity.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 -from typing import Any, Callable, cast, Tuple, Union +# pyre-strict + +from typing import Callable, cast, Optional, Tuple, Union import torch from captum._utils.common import ( @@ -13,43 +15,64 @@ ExpansionTypes, safe_div, ) -from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric +from captum._utils.typing import ( + BaselineTupleType, + BaselineType, + TargetType, + TensorOrTupleOfTensorsGeneric, +) from captum.log import log_usage from captum.metrics._utils.batching import _divide_and_aggregate_metrics from torch import Tensor -def infidelity_perturb_func_decorator(multipy_by_inputs: bool = True) -> Callable: +def infidelity_perturb_func_decorator( + multiply_by_inputs: bool = True, + # pyre-ignore[34]: The type variable `Variable[TensorOrTupleOfTensorsGeneric + # <: [torch._tensor.Tensor, typing.Tuple[torch._tensor.Tensor, ...]]]` isn't + # present in the function's parameters. +) -> Callable[ + [Callable[..., TensorOrTupleOfTensorsGeneric]], + Callable[ + [TensorOrTupleOfTensorsGeneric, BaselineType], + Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]], + ], +]: r"""An auxiliary, decorator function that helps with computing perturbations given perturbed inputs. It can be useful for cases - when `pertub_func` returns only perturbed inputs and we + when `perturb_func` returns only perturbed inputs and we internally compute the perturbations as (input - perturbed_input) / (input - baseline) if - multipy_by_inputs is set to True and + multiply_by_inputs is set to True and (input - perturbed_input) otherwise. - If users decorate their `pertub_func` with - `@infidelity_perturb_func_decorator` function then their `pertub_func` + If users decorate their `perturb_func` with + `@infidelity_perturb_func_decorator` function then their `perturb_func` needs to only return perturbed inputs. Args: - multipy_by_inputs (bool): Indicates whether model inputs' + multiply_by_inputs (bool): Indicates whether model inputs' multiplier is factored in the computation of attribution scores. """ - def sub_infidelity_perturb_func_decorator(pertub_func: Callable) -> Callable: + def sub_infidelity_perturb_func_decorator( + perturb_func: Callable[..., TensorOrTupleOfTensorsGeneric], + ) -> Callable[ + [TensorOrTupleOfTensorsGeneric, BaselineType], + Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]], + ]: r""" Args: - pertub_func(callable): Input perturbation function that takes inputs + perturb_func(Callable): Input perturbation function that takes inputs and optionally baselines and returns perturbed inputs Returns: - default_perturb_func(callable): Internal default perturbation + default_perturb_func(Callable): Internal default perturbation function that computes the perturbations internally and returns perturbations and perturbed inputs. @@ -66,41 +89,49 @@ def sub_infidelity_perturb_func_decorator(pertub_func: Callable) -> Callable: def default_perturb_func( inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None - ): + ) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: r""" """ - inputs_perturbed = ( - pertub_func(inputs, baselines) + inputs_perturbed: TensorOrTupleOfTensorsGeneric = ( + perturb_func(inputs, baselines) if baselines is not None - else pertub_func(inputs) + else perturb_func(inputs) ) - inputs_perturbed = _format_tensor_into_tuples(inputs_perturbed) - inputs = _format_tensor_into_tuples(inputs) - baselines = _format_baseline(baselines, inputs) + inputs_perturbed_formatted = _format_tensor_into_tuples(inputs_perturbed) + inputs_formatted = _format_tensor_into_tuples(inputs) + baselines = _format_baseline(baselines, inputs_formatted) if baselines is None: perturbations = tuple( - safe_div( - input - input_perturbed, - input, - default_denom=1.0, + ( + safe_div( + input - input_perturbed, + input, + default_denom=1.0, + ) + if multiply_by_inputs + else input - input_perturbed + ) + for input, input_perturbed in zip( + inputs_formatted, inputs_perturbed_formatted ) - if multipy_by_inputs - else input - input_perturbed - for input, input_perturbed in zip(inputs, inputs_perturbed) ) else: perturbations = tuple( - safe_div( - input - input_perturbed, - input - baseline, - default_denom=1.0, + ( + safe_div( + input - input_perturbed, + input - baseline, + default_denom=1.0, + ) + if multiply_by_inputs + else input - input_perturbed ) - if multipy_by_inputs - else input - input_perturbed for input, input_perturbed, baseline in zip( - inputs, inputs_perturbed, baselines + inputs_formatted, + inputs_perturbed_formatted, + baselines, ) ) - return perturbations, inputs_perturbed + return perturbations, inputs_perturbed_formatted return default_perturb_func @@ -109,15 +140,17 @@ def default_perturb_func( @log_usage() def infidelity( - forward_func: Callable, - perturb_func: Callable, + forward_func: Callable[..., Tensor], + perturb_func: Callable[ + ..., Tuple[TensorOrTupleOfTensorsGeneric, TensorOrTupleOfTensorsGeneric] + ], inputs: TensorOrTupleOfTensorsGeneric, attributions: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, target: TargetType = None, n_perturb_samples: int = 10, - max_examples_per_batch: int = None, + max_examples_per_batch: Optional[int] = None, normalize: bool = False, ) -> Tensor: r""" @@ -126,7 +159,7 @@ def infidelity( and the differences between the predictor function at its input and perturbed input. More details about the measure can be found in the following paper: - https://arxiv.org/pdf/1901.09392.pdf + https://arxiv.org/abs/1901.09392 It is derived from the completeness property of well-known attribution algorithms and is a computationally more efficient and generalized @@ -134,7 +167,7 @@ def infidelity( of the attributions and the differences of the predictor function at its input and fixed baseline. More details about the Sensitivity-n can be found here: - https://arxiv.org/pdf/1711.06104.pdfs + https://arxiv.org/abs/1711.06104 The users can perturb the inputs any desired way by providing any perturbation function that takes the inputs (and optionally baselines) @@ -147,10 +180,10 @@ def infidelity( Args: - forward_func (callable): + forward_func (Callable): The forward function of the model or any modification of it. - perturb_func (callable): + perturb_func (Callable): The perturbation function of model inputs. This function takes model inputs and optionally baselines as input arguments and returns either a tuple of perturbations and perturbed inputs or just @@ -166,25 +199,25 @@ def infidelity( >>> from captum.metrics import infidelity_perturb_func_decorator - >>> @infidelity_perturb_func_decorator() + >>> @infidelity_perturb_func_decorator() >>> def my_perturb_func(inputs): >>> >>> return perturbed_inputs - In case `multipy_by_inputs` is False we compute perturbations by - `input - perturbed_input` difference and in case `multipy_by_inputs` + In case `multiply_by_inputs` is False we compute perturbations by + `input - perturbed_input` difference and in case `multiply_by_inputs` flag is True we compute it by dividing (input - perturbed_input) by (input - baselines). The user needs to only return perturbed inputs in `perturb_func` as described above. `infidelity_perturb_func_decorator` needs to be used with - `multipy_by_inputs` flag set to False in case infidelity + `multiply_by_inputs` flag set to False in case infidelity score is being computed for attribution maps that are local aka that do not factor in inputs in the final attribution score. Such attribution algorithms include Saliency, GradCam, Guided Backprop, or Integrated Gradients and DeepLift attribution scores that are already - computed with `multipy_by_inputs=False` flag. + computed with `multiply_by_inputs=False` flag. If there are more than one inputs passed to infidelity function those will be passed to `perturb_func` as tuples in the same order as they @@ -205,12 +238,13 @@ def infidelity( Similar to previous case here as well we need to return only perturbed inputs in case `infidelity_perturb_func_decorator` decorates out `perturb_func`. + It is important to note that for performance reasons `perturb_func` isn't called for each example individually but on a batch of input examples that are repeated `max_examples_per_batch / batch_size` times within the batch. - inputs (tensor or tuple of tensors): Input for which + inputs (Tensor or tuple[Tensor, ...]): Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -220,7 +254,7 @@ def infidelity( multiple input tensors are provided, the examples must be aligned appropriately. - baselines (scalar, tensor, tuple of scalars or tensors, optional): + baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define reference values which sometimes represent ablated values and are used to compare with the actual inputs to compute importance scores in attribution algorithms. They can be represented @@ -249,21 +283,21 @@ def infidelity( Default: None - attributions (tensor or tuple of tensors): + attributions (Tensor or tuple[Tensor, ...]): Attribution scores computed based on an attribution algorithm. This attribution scores can be computed using the implementations provided in the `captum.attr` package. Some of those attribution approaches are so called global methods, which means that they factor in model inputs' multiplier, as described in: - https://arxiv.org/pdf/1711.06104.pdf + https://arxiv.org/abs/1711.06104 Many global attribution algorithms can be used in local modes, meaning that the inputs multiplier isn't factored in the attribution scores. This can be done duing the definition of the attribution algorithm - by passing `multipy_by_inputs=False` flag. + by passing `multiply_by_inputs=False` flag. For example in case of Integrated Gradients (IG) we can obtain local attribution scores if we define the constructor of IG as: - ig = IntegratedGradients(multipy_by_inputs=False) + ig = IntegratedGradients(multiply_by_inputs=False) Some attribution algorithms are inherently local. Examples of inherently local attribution methods include: @@ -271,7 +305,7 @@ def infidelity( For local attributions we can use real-valued perturbations whereas for global attributions that perturbation is binary. - https://arxiv.org/pdf/1901.09392.pdf + https://arxiv.org/abs/1901.09392 If we want to compute the infidelity of global attributions we can use a binary perturbation matrix that will allow us to select @@ -291,7 +325,7 @@ def infidelity( tensor as well. If inputs is provided as a tuple of tensors then attributions will be tuples of tensors as well. - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional @@ -304,7 +338,7 @@ def infidelity( being passed to `perturb_func` as an input argument. Default: None - target (int, tuple, tensor or list, optional): Indices for selecting + target (int, tuple, Tensor, or list, optional): Indices for selecting predictions from output(for classification cases, this is usually the target class). If the network returns a scalar value per example, no target @@ -365,7 +399,7 @@ def infidelity( Default: False Returns: - infidelities (tensor): A tensor of scalar infidelity scores per + infidelities (Tensor): A tensor of scalar infidelity scores per input example. The first dimension is equal to the number of examples in the input batch and the second dimension is one. @@ -385,90 +419,179 @@ def infidelity( >>> # Computes infidelity score for saliency maps >>> infid = infidelity(net, perturb_fn, input, attribution) """ + # perform argument formattings + inputs_formatted = _format_tensor_into_tuples(inputs) + baselines_formatted: BaselineTupleType = None + if baselines is not None: + baselines_formatted = _format_baseline(baselines, inputs_formatted) + additional_forward_args = _format_additional_forward_args(additional_forward_args) + attributions_formatted = _format_tensor_into_tuples(attributions) - def _generate_perturbations( - current_n_perturb_samples: int, - ) -> Tuple[TensorOrTupleOfTensorsGeneric, TensorOrTupleOfTensorsGeneric]: - r""" - The perturbations are generated for each example - `current_n_perturb_samples` times. + # Make sure that inputs and corresponding attributions have matching sizes. + assert len(inputs_formatted) == len(attributions_formatted), ( + "The number of tensors in the inputs and attributions must match. " + f"Found number of tensors in the inputs is: {len(inputs_formatted)} and in " + f"the attributions: {len(attributions_formatted)}" + ) + for inp, attr in zip(inputs_formatted, attributions_formatted): + assert inp.shape == attr.shape, ( + "Inputs and attributions must have matching shapes. " + f"One of the input tensor's shape is {inp.shape} and the " + f"attribution tensor's shape is: {attr.shape}" + ) - For performance reasons we are not calling `perturb_func` on each example but - on a batch that contains `current_n_perturb_samples` - repeated instances per example. - """ + bsz = inputs_formatted[0].size(0) - def call_perturb_func(): - r""" """ - baselines_pert = None - inputs_pert: Union[Tensor, Tuple[Tensor, ...]] - if len(inputs_expanded) == 1: - inputs_pert = inputs_expanded[0] - if baselines_expanded is not None: - baselines_pert = cast(Tuple, baselines_expanded)[0] - else: - inputs_pert = inputs_expanded - baselines_pert = baselines_expanded - return ( - perturb_func(inputs_pert, baselines_pert) - if baselines_pert is not None - else perturb_func(inputs_pert) - ) + _next_infidelity_tensors = _make_next_infidelity_tensors_func( + forward_func, + bsz, + perturb_func, + inputs_formatted, + baselines_formatted, + attributions_formatted, + additional_forward_args, + target, + normalize, + ) + + with torch.no_grad(): + # if not normalize, directly return aggrgated MSE ((a-b)^2,) + # else return aggregated MSE's polynomial expansion tensors (a^2, ab, b^2) + agg_tensors = _divide_and_aggregate_metrics( + inputs_formatted, + n_perturb_samples, + _next_infidelity_tensors, + agg_func=_sum_infidelity_tensors, + max_examples_per_batch=max_examples_per_batch, + ) + + if normalize: + beta_num = agg_tensors[1] + beta_denorm = agg_tensors[0] + + beta = safe_div(beta_num, beta_denorm) - inputs_expanded = tuple( - torch.repeat_interleave(input, current_n_perturb_samples, dim=0) - for input in inputs + infidelity_values = ( + beta * beta * agg_tensors[0] - 2 * beta * agg_tensors[1] + agg_tensors[2] ) + else: + infidelity_values = agg_tensors[0] - baselines_expanded = baselines - if baselines is not None: - baselines_expanded = tuple( + infidelity_values /= n_perturb_samples + + return infidelity_values + + +def _generate_perturbations( + current_n_perturb_samples: int, + perturb_func: Callable[ + ..., Tuple[TensorOrTupleOfTensorsGeneric, TensorOrTupleOfTensorsGeneric] + ], + inputs: Tuple[Tensor, ...], + baselines: BaselineTupleType, +) -> Tuple[TensorOrTupleOfTensorsGeneric, TensorOrTupleOfTensorsGeneric]: + r""" + The perturbations are generated for each example + `current_n_perturb_samples` times. + + For performance reasons we are not calling `perturb_func` on each example but + on a batch that contains `current_n_perturb_samples` + repeated instances per example. + """ + + # pyre-fixme[53]: Captured variable `baselines_expanded` is not annotated. + # pyre-fixme[53]: Captured variable `inputs_expanded` is not annotated. + def call_perturb_func() -> ( + Tuple[TensorOrTupleOfTensorsGeneric, TensorOrTupleOfTensorsGeneric] + ): + r""" """ + baselines_pert: BaselineType = None + inputs_pert: Union[Tensor, Tuple[Tensor, ...]] + if len(inputs_expanded) == 1: + inputs_pert = inputs_expanded[0] + if baselines_expanded is not None: + baselines_pert = baselines_expanded[0] + else: + inputs_pert = inputs_expanded + baselines_pert = baselines_expanded + return ( + perturb_func(inputs_pert, baselines_pert) + if baselines_pert is not None + else perturb_func(inputs_pert) + ) + + inputs_expanded = tuple( + torch.repeat_interleave(input, current_n_perturb_samples, dim=0) + for input in inputs + ) + + baselines_expanded = baselines + if baselines is not None: + baselines_expanded = tuple( + ( baseline.repeat_interleave(current_n_perturb_samples, dim=0) if isinstance(baseline, torch.Tensor) and baseline.shape[0] == input.shape[0] and baseline.shape[0] > 1 else baseline - for input, baseline in zip(inputs, cast(Tuple, baselines)) ) + for input, baseline in zip(inputs, baselines) + ) + + return call_perturb_func() + + +def _validate_inputs_and_perturbations( + inputs: Tuple[Tensor, ...], + inputs_perturbed: Tuple[Tensor, ...], + perturbations: Tuple[Tensor, ...], +) -> None: + # asserts the sizes of the perturbations and inputs + assert len(perturbations) == len(inputs), ( + "The number of perturbed " + "inputs and corresponding perturbations must have the same number of " + f"elements. Found number of inputs is: {len(perturbations)} and " + f"perturbations: {len(inputs)}" + ) + + # asserts the shapes of the perturbations and perturbed inputs + for perturb, input_perturbed in zip(perturbations, inputs_perturbed): + assert perturb[0].shape == input_perturbed[0].shape, ( + "Perturbed input " + "and corresponding perturbation must have the same shape and " + f"dimensionality. Found perturbation shape is: {perturb[0].shape} " + f"and the input shape is: {input_perturbed[0].shape}" + ) - return call_perturb_func() - - def _validate_inputs_and_perturbations( - inputs: Tuple[Tensor, ...], - inputs_perturbed: Tuple[Tensor, ...], - perturbations: Tuple[Tensor, ...], - ) -> None: - # asserts the sizes of the perturbations and inputs - assert len(perturbations) == len(inputs), ( - """The number of perturbed - inputs and corresponding perturbations must have the same number of - elements. Found number of inputs is: {} and perturbations: - {}""" - ).format(len(perturbations), len(inputs)) - - # asserts the shapes of the perturbations and perturbed inputs - for perturb, input_perturbed in zip(perturbations, inputs_perturbed): - assert perturb[0].shape == input_perturbed[0].shape, ( - """Perturbed input - and corresponding perturbation must have the same shape and - dimensionality. Found perturbation shape is: {} and the input shape - is: {}""" - ).format(perturb[0].shape, input_perturbed[0].shape) + +def _make_next_infidelity_tensors_func( + forward_func: Callable[..., Tensor], + bsz: int, + perturb_func: Callable[ + ..., Tuple[TensorOrTupleOfTensorsGeneric, TensorOrTupleOfTensorsGeneric] + ], + inputs: Tuple[Tensor, ...], + baselines: BaselineTupleType, + attributions: Tuple[Tensor, ...], + additional_forward_args: Optional[Tuple[object, ...]] = None, + target: TargetType = None, + normalize: bool = False, +) -> Callable[[int], Union[Tuple[Tensor], Tuple[Tensor, Tensor, Tensor]]]: def _next_infidelity_tensors( current_n_perturb_samples: int, ) -> Union[Tuple[Tensor], Tuple[Tensor, Tensor, Tensor]]: perturbations, inputs_perturbed = _generate_perturbations( - current_n_perturb_samples + current_n_perturb_samples, perturb_func, inputs, baselines ) - perturbations = _format_tensor_into_tuples(perturbations) - inputs_perturbed = _format_tensor_into_tuples(inputs_perturbed) + perturbations_formatted = _format_tensor_into_tuples(perturbations) + inputs_perturbed_formatted = _format_tensor_into_tuples(inputs_perturbed) _validate_inputs_and_perturbations( - cast(Tuple[Tensor, ...], inputs), - cast(Tuple[Tensor, ...], inputs_perturbed), - cast(Tuple[Tensor, ...], perturbations), + inputs, + inputs_perturbed_formatted, + perturbations_formatted, ) targets_expanded = _expand_target( @@ -484,11 +607,20 @@ def _next_infidelity_tensors( inputs_perturbed_fwd = _run_forward( forward_func, - inputs_perturbed, + inputs_perturbed_formatted, targets_expanded, additional_forward_args_expanded, ) + if isinstance(inputs_perturbed_fwd, torch.futures.Future): + raise NotImplementedError( + f"Outputs from forward_func of type {type(inputs_perturbed_fwd)} are " + "not yet supported." + ) inputs_fwd = _run_forward(forward_func, inputs, target, additional_forward_args) + # _run_forward may return future of Tensor, + # but we don't support it here now + # And it will fail before here. + inputs_fwd = cast(Tensor, inputs_fwd) inputs_fwd = torch.repeat_interleave( inputs_fwd, current_n_perturb_samples, dim=0 ) @@ -501,7 +633,7 @@ def _next_infidelity_tensors( attributions_times_perturb = tuple( (attribution_expanded * perturbation).view(attribution_expanded.size(0), -1) for attribution_expanded, perturbation in zip( - attributions_expanded, perturbations + attributions_expanded, perturbations_formatted ) ) @@ -528,53 +660,10 @@ def _next_infidelity_tensors( # returns (a-b)^2 if no need to normalize return ((attr_times_perturb_sums - perturbed_fwd_diffs).pow(2).sum(-1),) - def _sum_infidelity_tensors(agg_tensors, tensors): - return tuple(agg_t + t for agg_t, t in zip(agg_tensors, tensors)) + return _next_infidelity_tensors - # perform argument formattings - inputs = _format_tensor_into_tuples(inputs) # type: ignore - if baselines is not None: - baselines = _format_baseline(baselines, cast(Tuple[Tensor, ...], inputs)) - additional_forward_args = _format_additional_forward_args(additional_forward_args) - attributions = _format_tensor_into_tuples(attributions) # type: ignore - # Make sure that inputs and corresponding attributions have matching sizes. - assert len(inputs) == len(attributions), ( - """The number of tensors in the inputs and - attributions must match. Found number of tensors in the inputs is: {} and in the - attributions: {}""" - ).format(len(inputs), len(attributions)) - for inp, attr in zip(inputs, attributions): - assert inp.shape == attr.shape, ( - """Inputs and attributions must have - matching shapes. One of the input tensor's shape is {} and the - attribution tensor's shape is: {}""" - ).format(inp.shape, attr.shape) - - bsz = inputs[0].size(0) - with torch.no_grad(): - # if not normalize, directly return aggrgated MSE ((a-b)^2,) - # else return aggregated MSE's polynomial expansion tensors (a^2, ab, b^2) - agg_tensors = _divide_and_aggregate_metrics( - cast(Tuple[Tensor, ...], inputs), - n_perturb_samples, - _next_infidelity_tensors, - agg_func=_sum_infidelity_tensors, - max_examples_per_batch=max_examples_per_batch, - ) - - if normalize: - beta_num = agg_tensors[1] - beta_denorm = agg_tensors[0] - - beta = safe_div(beta_num, beta_denorm) - - infidelity_values = ( - beta**2 * agg_tensors[0] - 2 * beta * agg_tensors[1] + agg_tensors[2] - ) - else: - infidelity_values = agg_tensors[0] - - infidelity_values /= n_perturb_samples - - return infidelity_values +def _sum_infidelity_tensors( + agg_tensors: Tuple[Tensor, ...], tensors: Tuple[Tensor, ...] +) -> Tuple[Tensor, ...]: + return tuple(agg_t + t for agg_t, t in zip(agg_tensors, tensors)) diff --git a/captum/metrics/_core/sensitivity.py b/captum/metrics/_core/sensitivity.py index 77d87e6291..b4b0190ea1 100644 --- a/captum/metrics/_core/sensitivity.py +++ b/captum/metrics/_core/sensitivity.py @@ -1,8 +1,10 @@ #!/usr/bin/env python3 +# pyre-strict + from copy import deepcopy from inspect import signature -from typing import Any, Callable, cast, Tuple, Union +from typing import Any, Callable, cast, Optional, Tuple, Union import torch from captum._utils.common import ( @@ -30,8 +32,8 @@ def default_perturb_func( Args: - inputs (tensor or a tuple of tensors): The input tensors that we'd - like to perturb by adding a random noise sampled unifromly + inputs (Tensor or tuple[Tensor, ...]): The input tensors that we'd + like to perturb by adding a random noise sampled uniformly random from an L_infinity ball with a radius `perturb_radius`. radius (float): A radius used for sampling from @@ -39,12 +41,14 @@ def default_perturb_func( Returns: - perturbed_input (tuple(tensor)): A list of perturbed inputs that - are createed by adding noise sampled uniformly random + perturbed_input (tuple[Tensor, ...]): A list of perturbed inputs that + are created by adding noise sampled uniformly random from L_infiniy ball with a radius `perturb_radius` to the original inputs. """ + # pyre-fixme[9]: inputs has type `TensorOrTupleOfTensorsGeneric`; used as + # `Tuple[Tensor, ...]`. inputs = _format_tensor_into_tuples(inputs) perturbed_input = tuple( input @@ -58,13 +62,15 @@ def default_perturb_func( @log_usage() def sensitivity_max( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. explanation_func: Callable, inputs: TensorOrTupleOfTensorsGeneric, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. perturb_func: Callable = default_perturb_func, perturb_radius: float = 0.02, n_perturb_samples: int = 10, norm_ord: str = "fro", - max_examples_per_batch: int = None, + max_examples_per_batch: Optional[int] = None, **kwargs: Any, ) -> Tensor: r""" @@ -90,7 +96,7 @@ def sensitivity_max( More about the Lipschitz Continuity Metric can also be found here `On the Robustness of Interpretability Methods` - https://arxiv.org/pdf/1806.08049.pdf + https://arxiv.org/abs/1806.08049 and `Towards Robust Interpretability with Self-Explaining Neural Networks` https://papers.nips.cc/paper\ @@ -99,16 +105,16 @@ def sensitivity_max( More details about sensitivity max can be found here: `On the (In)fidelity and Sensitivity of Explanations` - https://arxiv.org/pdf/1901.09392.pdf + https://arxiv.org/abs/1901.09392 Args: - explanation_func (callable): + explanation_func (Callable): This function can be the `attribute` method of an attribution algorithm or any other explanation method that returns the explanations. - inputs (tensor or tuple of tensors): Input for which + inputs (Tensor or tuple[Tensor, ...]): Input for which explanations are computed. If `explanation_func` takes a single tensor as input, a single input tensor should be provided. @@ -119,7 +125,7 @@ def sensitivity_max( multiple input tensors are provided, the examples must be aligned appropriately. - perturb_func (callable): + perturb_func (Callable): The perturbation function of model inputs. This function takes model inputs and optionally `perturb_radius` if the function takes more than one argument and returns @@ -138,7 +144,7 @@ def sensitivity_max( perturb_radius (float, optional): The epsilon radius used for sampling. In the `default_perturb_func` it is used as the radius of the L-Infinity ball. In a general case it can serve as a radius of - any L_p nom. + any L_p norm. This argument is passed to `perturb_func` if it takes more than one argument. @@ -149,10 +155,12 @@ def sensitivity_max( `perturb_func` function. Default: 10 - norm_ord (int, float, inf, -inf, 'fro', 'nuc', optional): The type of norm - that is used to compute the - norm of the sensitivity matrix which is defined as the difference - between the explanation function at its input and perturbed input. + norm_ord (int, float, or str, optional): The type of norm that is used to + compute the norm of the sensitivity matrix which is defined as the + difference between the explanation function at its input and perturbed + input. Acceptable values are either a string of 'fro' or 'nuc', or a + number in the range of [-inf, inf] (including float("-inf") & + float("inf")). Default: 'fro' max_examples_per_batch (int, optional): The number of maximum input @@ -166,7 +174,7 @@ def sensitivity_max( `input batch size * n_perturb_samples`. Default: None - **kwargs (Any, optional): Contains a list of arguments that are passed + **kwargs (Any, optional): Contains a list of arguments that are passed to `explanation_func` explanation function which in some cases could be the `attribute` function of an attribution algorithm. Any additional arguments that need be passed to the explanation @@ -176,7 +184,7 @@ def sensitivity_max( Returns: - sensitivities (tensor): A tensor of scalar sensitivity scores per + sensitivities (Tensor): A tensor of scalar sensitivity scores per input example. The first dimension is equal to the number of examples in the input batch and the second dimension is one. Returned sensitivities are normalized by @@ -221,8 +229,11 @@ def max_values(input_tnsr: Tensor) -> Tensor: return torch.max(input_tnsr, dim=1).values # type: ignore kwarg_expanded_for = None + # pyre-fixme[33]: Given annotation cannot be `Any`. kwargs_copy: Any = None + # pyre-fixme[53]: Captured variable `bsz` is not annotated. + # pyre-fixme[53]: Captured variable `expl_inputs` is not annotated. def _next_sensitivity_max(current_n_perturb_samples: int) -> Tensor: inputs_perturbed = _generate_perturbations(current_n_perturb_samples) @@ -246,6 +257,8 @@ def _next_sensitivity_max(current_n_perturb_samples: int) -> Tensor: ) if ( isinstance(baselines[0], Tensor) + # pyre-fixme[16]: Item `float` of `Union[float, int, Tensor]` + # has no attribute `shape`. and baselines[0].shape == inputs[0].shape ): _expand_and_update_baselines( @@ -268,7 +281,10 @@ def _next_sensitivity_max(current_n_perturb_samples: int) -> Tensor: [ (expl_input - expl_perturbed).view(expl_perturbed.size(0), -1) for expl_perturbed, expl_input in zip( - expl_perturbed_inputs, expl_inputs_expanded + # pyre-fixme[6]: For 1st argument expected + # `Iterable[Variable[_T1]]` but got `None`. + expl_perturbed_inputs, + expl_inputs_expanded, ) ], dim=1, diff --git a/captum/metrics/_utils/batching.py b/captum/metrics/_utils/batching.py index ee3b38f58e..3f4eaff6b2 100644 --- a/captum/metrics/_utils/batching.py +++ b/captum/metrics/_utils/batching.py @@ -1,7 +1,9 @@ #!/usr/bin/env python3 +# pyre-strict + import warnings -from typing import Callable, Tuple +from typing import Callable, Optional, Tuple import torch from torch import Tensor @@ -10,9 +12,11 @@ def _divide_and_aggregate_metrics( inputs: Tuple[Tensor, ...], n_perturb_samples: int, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. metric_func: Callable, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. agg_func: Callable = torch.add, - max_examples_per_batch: int = None, + max_examples_per_batch: Optional[int] = None, ) -> Tensor: r""" This function is used to slice large number of samples `n_perturb_samples` per @@ -28,9 +32,9 @@ def _divide_and_aggregate_metrics( attributions for. n_perturb_samples (int): The number of samples per example that are used for perturbation purposes for example. - metric_func (callable): This function takes the number of samples per + metric_func (Callable): This function takes the number of samples per input batch and returns an overall metric for each example. - agg_func (callable, optional): This function is used to aggregate the + agg_func (Callable, optional): This function is used to aggregate the metrics across multiple sub-batches and that are generated by `metric_func`. max_examples_per_batch (int, optional): The maximum number of allowed examples @@ -38,7 +42,7 @@ def _divide_and_aggregate_metrics( Returns: - metric (tensor): A metric score estimated by `metric_func` per + metric (Tensor): A metric score estimated by `metric_func` per input example. """ bsz = inputs[0].size(0) @@ -57,7 +61,8 @@ def _divide_and_aggregate_metrics( "to compute the metrics, contains at least an instance of " "the original example and doesn't exceed the number of " "expanded n_perturb_samples." - ).format(max_examples_per_batch, bsz) + ).format(max_examples_per_batch, bsz), + stacklevel=1, ) max_inps_per_batch = ( diff --git a/captum/module/__init__.py b/captum/module/__init__.py new file mode 100644 index 0000000000..eff75a3bc6 --- /dev/null +++ b/captum/module/__init__.py @@ -0,0 +1,10 @@ +# pyre-strict +from captum.module.binary_concrete_stochastic_gates import BinaryConcreteStochasticGates +from captum.module.gaussian_stochastic_gates import GaussianStochasticGates +from captum.module.stochastic_gates_base import StochasticGatesBase + +__all__ = [ + "BinaryConcreteStochasticGates", + "GaussianStochasticGates", + "StochasticGatesBase", +] diff --git a/captum/module/binary_concrete_stochastic_gates.py b/captum/module/binary_concrete_stochastic_gates.py new file mode 100644 index 0000000000..0d7e7f759a --- /dev/null +++ b/captum/module/binary_concrete_stochastic_gates.py @@ -0,0 +1,251 @@ +#!/usr/bin/env python3 + +# pyre-strict +import math +from typing import Any, Optional + +import torch +from captum.module.stochastic_gates_base import StochasticGatesBase +from torch import nn, Tensor + + +def _torch_empty(batch_size: int, n_gates: int, device: torch.device) -> Tensor: + return torch.empty(batch_size, n_gates, device=device) + + +# torch.fx is introduced in 1.8.0 +if hasattr(torch, "fx"): + torch.fx.wrap(_torch_empty) + + +class BinaryConcreteStochasticGates(StochasticGatesBase): + """ + Stochastic Gates with binary concrete distribution. + + Stochastic Gates is a practical solution to add L0 norm regularization for neural + networks. L0 regularization, which explicitly penalizes any present (non-zero) + parameters, can help network pruning and feature selection, but directly optimizing + L0 is a non-differentiable combinatorial problem. To surrogate L0, Stochastic Gate + uses certain continuous probability distributions (e.g., Concrete, Gaussian) with + hard-sigmoid rectification as a continuous smoothed Bernoulli distribution + determining the weight of a parameter, i.e., gate. Then L0 is equal to the gates's + non-zero probability represented by the parameters of the continuous probability + distribution. The gate value can also be reparameterized to the distribution + parameters with a noise. So the expected L0 can be optimized through learning + the distribution parameters via stochastic gradients. + + BinaryConcreteStochasticGates adopts a "stretched" binary concrete distribution as + the smoothed Bernoulli distribution of gate. The binary concrete distribution does + not include its lower and upper boundaries, 0 and 1, which are required by a + Bernoulli distribution, so it needs to be linearly stretched beyond both boundaries. + Then use hard-sigmoid rectification to "fold" the parts smaller than 0 or larger + than 1 back to 0 and 1. + + More details can be found in the original paper: + https://arxiv.org/abs/1712.01312 + + Examples:: + + >>> n_params = 5 # number of parameters + >>> stg = BinaryConcreteStochasticGates(n_params, reg_weight=0.01) + >>> inputs = torch.randn(3, n_params) # mock inputs with batch size of 3 + >>> gated_inputs, reg = stg(mock_inputs) # gate the inputs + + """ + + def __init__( + self, + n_gates: int, + mask: Optional[Tensor] = None, + reg_weight: float = 1.0, + temperature: float = 2.0 / 3, + lower_bound: float = -0.1, + upper_bound: float = 1.1, + eps: float = 1e-8, + reg_reduction: str = "sum", + ) -> None: + """ + Args: + n_gates (int): number of gates. + + mask (Tensor, optional): If provided, this allows grouping multiple + input tensor elements to share the same stochastic gate. + This tensor should be broadcastable to match the input shape + and contain integers in the range 0 to n_gates - 1. + Indices grouped to the same stochastic gate should have the same value. + If not provided, each element in the input tensor + (on dimensions other than dim 0, i.e., batch dim) is gated separately. + Default: None + + reg_weight (float, optional): rescaling weight for L0 regularization term. + Default: 1.0 + + temperature (float, optional): temperature of the concrete distribution, + controls the degree of approximation, as 0 means the original Bernoulli + without relaxation. The value should be between 0 and 1. + Default: 2/3 + + lower_bound (float, optional): the lower bound to "stretch" the binary + concrete distribution + Default: -0.1 + + upper_bound (float, optional): the upper bound to "stretch" the binary + concrete distribution + Default: 1.1 + + eps (float, optional): term to improve numerical stability in binary + concerete sampling + Default: 1e-8 + + reg_reduction (str, optional): the reduction to apply to the regularization: + ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be + applied and it will be the same as the return of ``get_active_probs``, + ``'mean'``: the sum of the gates non-zero probabilities will be divided + by the number of gates, ``'sum'``: the gates non-zero probabilities will + be summed. + Default: ``'sum'`` + """ + super().__init__( + n_gates, mask=mask, reg_weight=reg_weight, reg_reduction=reg_reduction + ) + + # avoid changing the tensor's variable name + # when the module is used after compilation, + # users may directly access this tensor by name + log_alpha_param = torch.empty(n_gates) + nn.init.normal_(log_alpha_param, mean=0.0, std=0.01) + self.log_alpha_param = nn.Parameter(log_alpha_param) + + assert ( + 0 < temperature < 1 + ), f"the temperature should be bwteen 0 and 1, received {temperature}" + self.temperature = temperature + + assert ( + lower_bound < 0 + ), f"the stretch lower bound should smaller than 0, received {lower_bound}" + self.lower_bound = lower_bound + assert ( + upper_bound > 1 + ), f"the stretch upper bound should larger than 1, received {upper_bound}" + self.upper_bound = upper_bound + + self.eps = eps + + # pre-calculate the fixed term used in active prob + # pyre-fixme[4]: Attribute must be annotated. + self.active_prob_offset = temperature * math.log(-lower_bound / upper_bound) + + def _sample_gate_values(self, batch_size: int) -> Tensor: + """ + Sample gate values for each example in the batch from the binary concrete + distributions + + Args: + batch_size (int): input batch size + + Returns: + gate_values (Tensor): gate value tensor of shape(batch_size, n_gates) + """ + if self.training: + u = _torch_empty( + batch_size, self.n_gates, device=self.log_alpha_param.device + ) + u.uniform_(self.eps, 1 - self.eps) + s = torch.sigmoid( + (torch.logit(u) + self.log_alpha_param) / self.temperature + ) + + else: + s = torch.sigmoid(self.log_alpha_param) + s = s.expand(batch_size, self.n_gates) + + s_bar = s * (self.upper_bound - self.lower_bound) + self.lower_bound + + return s_bar + + def _get_gate_values(self) -> Tensor: + """ + Get the raw gate values, which are the means of the underneath gate + distributions, derived from learned log_alpha_param + + Returns: + gate_values (Tensor): value of each gate after model is trained + """ + gate_values = ( + torch.sigmoid(self.log_alpha_param) * (self.upper_bound - self.lower_bound) + + self.lower_bound + ) + return gate_values + + def _get_gate_active_probs(self) -> Tensor: + """ + Get the active probability of each gate, i.e, gate value > 0, in the binary + concrete distributions + + Returns: + probs (Tensor): probabilities tensor of the gates are active + in shape(n_gates) + """ + return torch.sigmoid(self.log_alpha_param - self.active_prob_offset) + + @classmethod + def _from_pretrained( + cls, log_alpha_param: Tensor, *args: Any, **kwargs: Any + ) -> "BinaryConcreteStochasticGates": + """ + Private factory method to create an instance with pretrained parameters + + Args: + log_alpha_param (Tensor): FloatTensor containing weights for + the pretrained log_alpha + + mask (Tensor, optional): If provided, this allows grouping multiple + input tensor elements to share the same stochastic gate. + This tensor should be broadcastable to match the input shape + and contain integers in the range 0 to n_gates - 1. + Indices grouped to the same stochastic gate should have the same value. + If not provided, each element in the input tensor + (on dimensions other than dim 0 - batch dim) is gated separately. + Default: None + + reg_weight (float, optional): rescaling weight for L0 regularization term. + Default: 1.0 + + temperature (float, optional): temperature of the concrete distribution, + controls the degree of approximation, as 0 means the original Bernoulli + without relaxation. The value should be between 0 and 1. + Default: 2/3 + + lower_bound (float, optional): the lower bound to "stretch" the binary + concrete distribution + Default: -0.1 + + upper_bound (float, optional): the upper bound to "stretch" the binary + concrete distribution + Default: 1.1 + + eps (float, optional): term to improve numerical stability in binary + concerete sampling + Default: 1e-8 + + reg_reduction (str, optional): the reduction to apply to the regularization: + ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be + applied and it will be the same as the return of ``get_active_probs``, + ``'mean'``: the sum of the gates non-zero probabilities will be divided + by the number of gates, ``'sum'``: the gates non-zero probabilities will + be summed. + Default: ``'sum'`` + + Returns: + stg (BinaryConcreteStochasticGates): StochasticGates instance + """ + assert ( + log_alpha_param.dim() == 1 + ), "log_alpha_param is expected to be 1-dimensional" + + n_gates = log_alpha_param.numel() + stg = cls(n_gates, *args, **kwargs) + stg.load_state_dict({"log_alpha_param": log_alpha_param}, strict=False) + + return stg diff --git a/captum/module/gaussian_stochastic_gates.py b/captum/module/gaussian_stochastic_gates.py new file mode 100644 index 0000000000..55b804e3ec --- /dev/null +++ b/captum/module/gaussian_stochastic_gates.py @@ -0,0 +1,181 @@ +#!/usr/bin/env python3 + +# pyre-strict +import math +from typing import Any, Optional + +import torch +from captum.module.stochastic_gates_base import StochasticGatesBase +from torch import nn, Tensor + + +class GaussianStochasticGates(StochasticGatesBase): + """ + Stochastic Gates with Gaussian distribution. + + Stochastic Gates is a practical solution to add L0 norm regularization for neural + networks. L0 regularization, which explicitly penalizes any present (non-zero) + parameters, can help network pruning and feature selection, but directly optimizing + L0 is a non-differentiable combinatorial problem. To surrogate L0, Stochastic Gate + uses certain continuous probability distributions (e.g., Concrete, Gaussian) with + hard-sigmoid rectification as a continuous smoothed Bernoulli distribution + determining the weight of a parameter, i.e., gate. Then L0 is equal to the gates's + non-zero probability represented by the parameters of the continuous probability + distribution. The gate value can also be reparameterized to the distribution + parameters with a noise. So the expected L0 can be optimized through learning + the distribution parameters via stochastic gradients. + + GaussianStochasticGates adopts a gaussian distribution as the smoothed Bernoulli + distribution of gate. While the smoothed Bernoulli distribution should be + within 0 and 1, gaussian does not have boundaries. So hard-sigmoid rectification + is used to "fold" the parts smaller than 0 or larger than 1 back to 0 and 1. + + More details can be found in the original paper: + https://arxiv.org/abs/1810.04247 + + Examples:: + + >>> n_params = 5 # number of gates + >>> stg = GaussianStochasticGates(n_params, reg_weight=0.01) + >>> inputs = torch.randn(3, n_params) # mock inputs with batch size of 3 + >>> gated_inputs, reg = stg(mock_inputs) # gate the inputs + """ + + def __init__( + self, + n_gates: int, + mask: Optional[Tensor] = None, + reg_weight: Optional[float] = 1.0, + std: Optional[float] = 0.5, + reg_reduction: str = "sum", + ) -> None: + """ + Args: + n_gates (int): number of gates. + + mask (Tensor, optional): If provided, this allows grouping multiple + input tensor elements to share the same stochastic gate. + This tensor should be broadcastable to match the input shape + and contain integers in the range 0 to n_gates - 1. + Indices grouped to the same stochastic gate should have the same value. + If not provided, each element in the input tensor + (on dimensions other than dim 0, i.e., batch dim) is gated separately. + Default: None + + reg_weight (float, optional): rescaling weight for L0 regularization term. + Default: 1.0 + + std (float, optional): standard deviation that will be fixed throughout. + Default: 0.5 + + reg_reduction (str, optional): the reduction to apply to the regularization: + ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be + applied and it will be the same as the return of ``get_active_probs``, + ``'mean'``: the sum of the gates non-zero probabilities will be divided + by the number of gates, ``'sum'``: the gates non-zero probabilities will + be summed. + Default: ``'sum'`` + """ + super().__init__( + n_gates, + mask=mask, + # pyre-fixme[6]: For 3rd argument expected `float` but got + # `Optional[float]`. + reg_weight=reg_weight, # type: ignore + reg_reduction=reg_reduction, + ) + + mu = torch.empty(n_gates) + nn.init.normal_(mu, mean=0.5, std=0.01) + self.mu = nn.Parameter(mu) + + # pyre-fixme[58]: `<` is not supported for operand types `int` and + # `Optional[float]`. + assert 0 < std, f"the standard deviation should be positive, received {std}" # type: ignore # noqa: E501 line too long + self.std = std + + def _sample_gate_values(self, batch_size: int) -> Tensor: + """ + Sample gate values for each example in the batch from the Gaussian distribution + + Args: + batch_size (int): input batch size + + Returns: + gate_values (Tensor): gate value tensor of shape(batch_size, n_gates) + """ + + if self.training: + n = torch.empty(batch_size, self.n_gates, device=self.mu.device) + # pyre-fixme[6]: For 2nd argument expected `float` but got + # `Optional[float]`. + n.normal_(mean=0, std=self.std) # type: ignore + return self.mu + n + + return self.mu.expand(batch_size, self.n_gates) + + def _get_gate_values(self) -> Tensor: + """ + Get the raw gate values, which are the means of the underneath gate + distributions, the learned mu + + Returns: + gate_values (Tensor): value of each gate after model is trained + """ + return self.mu + + def _get_gate_active_probs(self) -> Tensor: + """ + Get the active probability of each gate, i.e, gate value > 0, in the + Gaussian distribution + + Returns: + probs (Tensor): probabilities tensor of the gates are active + in shape(n_gates) + """ + std = self.std + assert std is not None, "std should not be None" + x = self.mu / std + return 0.5 * (1 + torch.erf(x / math.sqrt(2))) + + @classmethod + def _from_pretrained( + cls, mu: Tensor, *args: Any, **kwargs: Any + ) -> "GaussianStochasticGates": + """ + Private factory method to create an instance with pretrained parameters + + Args: + mu (Tensor): FloatTensor containing weights for the pretrained mu + + mask (Tensor, optional): If provided, this allows grouping multiple + input tensor elements to share the same stochastic gate. + This tensor should be broadcastable to match the input shape + and contain integers in the range 0 to n_gates - 1. + Indices grouped to the same stochastic gate should have the same value. + If not provided, each element in the input tensor + (on dimensions other than dim 0 - batch dim) is gated separately. + Default: None + + reg_weight (float, optional): rescaling weight for L0 regularization term. + Default: 1.0 + + std (float, optional): standard deviation that will be fixed throughout. + Default: 0.5 + + reg_reduction (str, optional): the reduction to apply to the regularization: + ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be + applied and it will be the same as the return of ``get_active_probs``, + ``'mean'``: the sum of the gates non-zero probabilities will be divided + by the number of gates, ``'sum'``: the gates non-zero probabilities will + be summed. + Default: ``'sum'`` + + Returns: + stg (GaussianStochasticGates): StochasticGates instance + """ + n_gates = mu.numel() + stg = cls(n_gates, *args, **kwargs) + stg.load_state_dict({"mu": mu}, strict=False) + + return stg diff --git a/captum/module/stochastic_gates_base.py b/captum/module/stochastic_gates_base.py new file mode 100644 index 0000000000..b34a4d5f4d --- /dev/null +++ b/captum/module/stochastic_gates_base.py @@ -0,0 +1,225 @@ +#!/usr/bin/env python3 + +# pyre-strict +from abc import ABC, abstractmethod +from typing import Optional, Tuple + +import torch +from torch import Tensor +from torch.nn import Module + + +class StochasticGatesBase(Module, ABC): + """ + Abstract module for Stochastic Gates. + + Stochastic Gates is a practical solution to add L0 norm regularization for neural + networks. L0 regularization, which explicitly penalizes any present (non-zero) + parameters, can help network pruning and feature selection, but directly optimizing + L0 is a non-differentiable combinatorial problem. To surrogate L0, Stochastic Gate + uses certain continuous probability distributions (e.g., Concrete, Gaussian) with + hard-sigmoid rectification as a continuous smoothed Bernoulli distribution + determining the weight of a parameter, i.e., gate. Then L0 is equal to the gates's + non-zero probability represented by the parameters of the continuous probability + distribution. The gate value can also be reparameterized to the distribution + parameters with a noise. So the expected L0 can be optimized through learning + the distribution parameters via stochastic gradients. + + This base class defines the shared variables and forward logic of how the input is + gated regardless of the underneath distribution. The actual implementation should + extend this class and implement the distribution specific functions. + """ + + def __init__( + self, + n_gates: int, + mask: Optional[Tensor] = None, + reg_weight: float = 1.0, + reg_reduction: str = "sum", + ) -> None: + """ + Args: + n_gates (int): number of gates. + + mask (Tensor, optional): If provided, this allows grouping multiple + input tensor elements to share the same stochastic gate. + This tensor should be broadcastable to match the input shape + and contain integers in the range 0 to n_gates - 1. + Indices grouped to the same stochastic gate should have the same value. + If not provided, each element in the input tensor + (on dimensions other than dim 0 - batch dim) is gated separately. + Default: None + + reg_weight (float, optional): rescaling weight for L0 regularization term. + Default: 1.0 + + reg_reduction (str, optional): the reduction to apply to the regularization: + ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be + applied and it will be the same as the return of ``get_active_probs``, + ``'mean'``: the sum of the gates non-zero probabilities will be divided + by the number of gates, ``'sum'``: the gates non-zero probabilities will + be summed. + Default: ``'sum'`` + """ + super().__init__() + + if mask is not None: + max_mask_ind = mask.max().item() + assert max_mask_ind == n_gates - 1, ( + f"the maximum mask index (received {max_mask_ind}) should be equal to" + f" the number of gates - 1 (received {n_gates}) since each mask" + " should correspond to a gate" + ) + + valid_reg_reduction = ["none", "mean", "sum"] + assert ( + reg_reduction in valid_reg_reduction + ), f"reg_reduction must be one of [none, mean, sum], received: {reg_reduction}" + self.reg_reduction = reg_reduction + + self.n_gates = n_gates + self.register_buffer( + "mask", mask.detach().clone() if mask is not None else None + ) + self.reg_weight = reg_weight + + def forward(self, input_tensor: Tensor) -> Tuple[Tensor, Tensor]: + """ + Args: + input_tensor (Tensor): Tensor to be gated with stochastic gates + + + Returns: + tuple[Tensor, Tensor]: + + - gated_input (Tensor): Tensor of the same shape weighted by the sampled + gate values + + - l0_reg (Tensor): L0 regularization term to be optimized together with + model loss, + e.g. loss(model_out, target) + l0_reg + """ + if self.mask is None: + n_ele = self._get_numel_of_input(input_tensor) + assert n_ele == self.n_gates, ( + "if mask is not given, each example in the input batch should have the" + " same number of elements" + f" (received {n_ele}) as gates ({self.n_gates})" + ) + + input_size = input_tensor.size() + batch_size = input_size[0] + + gate_values = self._sample_gate_values(batch_size) + + # hard-sigmoid rectification z=min(1,max(0,_z)) + gate_values = torch.clamp(gate_values, min=0, max=1) + + if self.mask is not None: + # use expand_as not expand/broadcast_to which do not work with torch.fx + input_mask = self.mask.expand_as(input_tensor) + + # flatten all dim except batch to gather from gate values + flattened_mask = input_mask.reshape(batch_size, -1) + gate_values = torch.gather(gate_values, 1, flattened_mask) + + # reshape gates(batch_size, n_elements) into input_size for point-wise mul + gate_values = gate_values.reshape(input_size) + gated_input = input_tensor * gate_values + + prob_density = self._get_gate_active_probs() + if self.reg_reduction == "sum": + l0_reg = prob_density.sum() + elif self.reg_reduction == "mean": + l0_reg = prob_density.mean() + else: + l0_reg = prob_density + + l0_reg *= self.reg_weight + + return gated_input, l0_reg + + def get_gate_values(self, clamp: bool = True) -> Tensor: + """ + Get the gate values, which are the means of the underneath gate distributions, + optionally clamped within 0 and 1. + + Args: + clamp (bool, optional): whether to clamp the gate values or not. As smoothed + Bernoulli variables, gate values are clamped within 0 and 1 by default. + Turn this off to get the raw means of the underneath + distribution (e.g., concrete, gaussian), which can be useful to + differentiate the gates' importance when multiple gate + values are beyond 0 or 1. + Default: ``True`` + + Returns: + Tensor: + - gate_values (Tensor): value of each gate in shape(n_gates) + """ + gate_values = self._get_gate_values() + if clamp: + gate_values = torch.clamp(gate_values, min=0, max=1) + + return gate_values.detach() + + def get_gate_active_probs(self) -> Tensor: + """ + Get the active probability of each gate, i.e, gate value > 0 + + Returns: + Tensor: + - probs (Tensor): probabilities tensor of the gates are active + in shape(n_gates) + """ + return self._get_gate_active_probs().detach() + + @abstractmethod + def _get_gate_values(self) -> Tensor: + """ + Protected method to be override in the child depending on the chosen + distribution. Get the raw gate values derived from the learned parameters of + the according distribution without clamping. + + Returns: + gate_values (Tensor): gate value tensor of shape(n_gates) + """ + pass + + @abstractmethod + def _sample_gate_values(self, batch_size: int) -> Tensor: + """ + Protected method to be override in the child depending on the chosen + distribution. Sample gate values for each example in the batch from a + probability distribution + + Args: + batch_size (int): input batch size + + Returns: + gate_values (Tensor): gate value tensor of shape(batch_size, n_gates) + """ + pass + + @abstractmethod + def _get_gate_active_probs(self) -> Tensor: + """ + Protected method to be override in the child depending on the chosen + distribution. Get the active probability of each gate, i.e, gate value > 0 + + Returns: + probs (Tensor): probabilities tensor of the gates are active + in shape(n_gates) + """ + pass + + def _get_numel_of_input(self, input_tensor: Tensor) -> int: + """ + Get the number of elements of a single example in the batched input tensor + """ + assert input_tensor.dim() > 1, ( + "The input tensor must have more than 1 dimension with the 1st dimention" + " being batch size;" + f" received input tensor shape {input_tensor.size()}" + ) + return input_tensor[0].numel() diff --git a/captum/optim/__init__.py b/captum/optim/__init__.py index 9177d5c62c..3723f67edb 100644 --- a/captum/optim/__init__.py +++ b/captum/optim/__init__.py @@ -1,12 +1,13 @@ """optim submodule.""" -from captum.optim import models +from captum.optim import models # noqa: F401 from captum.optim._core import loss, optimization # noqa: F401 from captum.optim._core.optimization import InputOptimization # noqa: F401 from captum.optim._param.image import images, transforms # noqa: F401 from captum.optim._param.image.images import ImageTensor # noqa: F401 from captum.optim._utils import circuits, reducer # noqa: F401 from captum.optim._utils.image import atlas # noqa: F401 +from captum.optim._utils.image import dataset # noqa: F401 from captum.optim._utils.image.common import ( # noqa: F401 hue_to_rgb, make_grid_image, @@ -28,6 +29,7 @@ "reducer", "make_grid_image", "atlas", + "dataset", "hue_to_rgb", "nchannels_to_rgb", "save_tensor_as_image", diff --git a/captum/optim/_core/loss.py b/captum/optim/_core/loss.py index d9974bfa9b..01a3f89fd2 100644 --- a/captum/optim/_core/loss.py +++ b/captum/optim/_core/loss.py @@ -1,20 +1,17 @@ -import functools import operator from abc import ABC, abstractmethod, abstractproperty -from typing import Any, Callable, List, Optional, Tuple, Union +from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn as nn -from captum.optim._utils.image.common import _dot_cossim, get_neuron_pos +from captum.optim._utils.image.common import ( + _create_new_vector, + _dot_cossim, + get_neuron_pos, +) from captum.optim._utils.typing import ModuleOutputMapping -def _make_arg_str(arg: Any) -> str: - arg = str(arg) - too_big = len(arg) > 15 or "\n" in arg - return arg[:15] + "..." if too_big else arg - - class Loss(ABC): """ Abstract Class to describe loss. @@ -23,7 +20,8 @@ class Loss(ABC): """ def __init__(self) -> None: - super(Loss, self).__init__() + super().__init__() + self.__name__ = self.__class__.__name__ @abstractproperty def target(self) -> Union[nn.Module, List[nn.Module]]: @@ -64,40 +62,10 @@ def __rmul__(self, other: Union[int, float, "Loss"]) -> "CompositeLoss": return self.__mul__(other) def __rtruediv__(self, other: Union[int, float, "Loss"]) -> "CompositeLoss": - if isinstance(other, (int, float)): - - def loss_fn(module: ModuleOutputMapping) -> torch.Tensor: - return operator.truediv(other, torch.mean(self(module))) - - name = self.__name__ - target = self.target - elif isinstance(other, Loss): - # This should never get called because __div__ will be called instead - pass - else: - raise TypeError( - "Can only apply math operations with int, float or Loss. Received type " - + str(type(other)) - ) - return CompositeLoss(loss_fn, name=name, target=target) + return rmodule_op(self, other, operator.truediv) def __rpow__(self, other: Union[int, float, "Loss"]) -> "CompositeLoss": - if isinstance(other, (int, float)): - - def loss_fn(module: ModuleOutputMapping) -> torch.Tensor: - return operator.pow(other, torch.mean(self(module))) - - name = self.__name__ - target = self.target - elif isinstance(other, Loss): - # This should never get called because __pow__ will be called instead - pass - else: - raise TypeError( - "Can only apply math operations with int, float or Loss. Received type " - + str(type(other)) - ) - return CompositeLoss(loss_fn, name=name, target=target) + return rmodule_op(self, other, operator.pow) def module_op( @@ -105,10 +73,35 @@ def module_op( ) -> "CompositeLoss": """ This is a general function for applying math operations to Losses + + Args: + + self (Loss): A Loss objective instance. + other (int, float, Loss, or None): The Loss objective instance or number to + use on the self Loss objective as part of a math operation. If math_op + is a unary operation, then other should be set to None. + math_op (Callable): A math operator to use on the Loss instance. + + Returns: + loss (CompositeLoss): A CompositeLoss instance with the math operations + created by the specified arguments. """ if other is None and math_op == operator.neg: def loss_fn(module: ModuleOutputMapping) -> torch.Tensor: + """ + Pass collected activations through loss objective, and then apply a unary + math op. + + Args: + + module (ModuleOutputMapping): A dict of captured activations with + nn.Modules as keys. + + Returns: + loss (torch.Tensor): The target activations after being run + through the loss objective, and the unary math_op. + """ return math_op(self(module)) name = self.__name__ @@ -116,6 +109,19 @@ def loss_fn(module: ModuleOutputMapping) -> torch.Tensor: elif isinstance(other, (int, float)): def loss_fn(module: ModuleOutputMapping) -> torch.Tensor: + """ + Pass collected activations through the loss objective and then apply the + math operations with numbers. + + Args: + + module (ModuleOutputMapping): A dict of captured activations with + nn.Modules as keys. + + Returns: + loss (torch.Tensor): The target activations after being run + through the loss objective, and then the math_op with a number. + """ return math_op(self(module), other) name = self.__name__ @@ -123,6 +129,19 @@ def loss_fn(module: ModuleOutputMapping) -> torch.Tensor: elif isinstance(other, Loss): # We take the mean of the output tensor to resolve shape mismatches def loss_fn(module: ModuleOutputMapping) -> torch.Tensor: + """ + Pass collected activations through the loss objectives and then combine the + outputs with a math operation. + + Args: + + module (ModuleOutputMapping): A dict of captured activations with + nn.Modules as keys. + + Returns: + loss (torch.Tensor): The target activations after being run + through the loss objectives, and then merged with the math_op. + """ return math_op(torch.mean(self(module)), torch.mean(other(module))) name = f"Compose({', '.join([self.__name__, other.__name__])})" @@ -142,96 +161,253 @@ def loss_fn(module: ModuleOutputMapping) -> torch.Tensor: return CompositeLoss(loss_fn, name=name, target=target) +def rmodule_op( + self: Loss, other: Union[int, float, Loss], math_op: Callable +) -> "CompositeLoss": + """ + This is a general function for applying the "r" versions of math operations to + Losses. + """ + if isinstance(other, (int, float)): + + def loss_fn(module: ModuleOutputMapping) -> torch.Tensor: + return math_op(other, self(module)) + + name = self.__name__ + target = self.target + elif isinstance(other, Loss): + # This should never get called because __math_op__ will be called instead + pass + else: + raise TypeError( + "Can only apply math operations with int, float or Loss. Received type " + + str(type(other)) + ) + return CompositeLoss(loss_fn, name=name, target=target) + + class BaseLoss(Loss): + """ + The base class used for all Loss objectives. + """ + def __init__( self, target: Union[nn.Module, List[nn.Module]] = [], - batch_index: Optional[int] = None, + batch_index: Optional[Union[int, List[int]]] = None, ) -> None: - super(BaseLoss, self).__init__() + """ + Args: + + target (nn.Module or list of nn.Module): A target nn.Module or list of + nn.Module. + batch_index (int or list of int, optional): The index or index range of + activations to optimize if optimizing a batch of activations. If set to + ``None``, defaults to all activations in the batch. Index ranges should + be in the format of: [start, end]. + Default: ``None`` + """ + super().__init__() self._target = target if batch_index is None: self._batch_index = (None, None) + elif isinstance(batch_index, (list, tuple)): + self._batch_index = tuple(batch_index) else: self._batch_index = (batch_index, batch_index + 1) + assert all([isinstance(b, (int, type(None))) for b in self._batch_index]) + assert len(self._batch_index) == 2 @property def target(self) -> Union[nn.Module, List[nn.Module]]: + """ + Returns: + target (nn.Module or list of nn.Module): A target nn.Module or list of + nn.Module. + """ return self._target @property def batch_index(self) -> Tuple: + """ + Returns: + batch_index (tuple of int): A tuple of batch indices with a format + of: (start, end). + """ return self._batch_index class CompositeLoss(BaseLoss): + """ + When math operations are performed using one or more loss objectives, this class + is used to store and run those operations. Below we show examples of common + CompositeLoss use cases. + + + Using CompositeLoss with a unary op or with a binary op involving a Loss instance + and a float or integer: + + .. code-block:: python + + def compose_single_loss(loss: opt.loss.Loss) -> opt.loss.CompositeLoss: + def loss_fn( + module: Dict[nn.Module, Optional[torch.Tensor]] + ) -> torch.Tensor: + return loss(module) + + # Name of new composable loss instance + name = loss.__name__ + # All targets being used in the composable loss instance + target = loss.target + return opt.loss.CompositeLoss(loss_fn, name=name, target=target) + + Using CompositeLoss with a binary op using two Loss instances: + + .. code-block:: python + + def compose_binary_loss( + loss1: opt.loss.Loss, loss2: opt.loss.Loss + ) -> opt.loss.CompositeLoss: + def loss_fn( + module: Dict[nn.Module, Optional[torch.Tensor]] + ) -> torch.Tensor: + # Operation using 2 loss instances + return loss1(module) + loss2(module) + + # Name of new composable loss instance + name = "Compose(" + ", ".join([loss1.__name__, loss2.__name__]) + ")" + + # All targets being used in the composable loss instance + target1 = loss1.target if type(loss1.target) is list else [loss1.target] + target2 = loss2.target if type(loss2.target) is list else [loss2.target] + target = target1 + target2 + + # Remove duplicate targets + target = list(dict.fromkeys(target)) + return opt.loss.CompositeLoss(loss_fn, name=name, target=target) + + Using CompositeLoss with a list of Loss instances: + + .. code-block:: python + + def compose_multiple_loss(loss: List[opt.loss.Loss]) -> opt.loss.CompositeLoss: + def loss_fn( + module: Dict[nn.Module, Optional[torch.Tensor]] + ) -> torch.Tensor: + loss_tensors = [loss_obj(module) for loss_obj in loss] + # We can use any operation that combines the list of tensors into a + # single tensor + return sum(loss_tensors) + + # Name of new composable loss instance + name = "Compose(" + ", ".join([obj.__name__ for obj in loss]) + ")" + + # All targets being used in the composable loss instance + # targets will either be List[nn.Module] or nn.Module + targets = [loss_obj.target for loss_obj in loss] + # Flatten list of targets + target = [ + o for l in [t if type(t) is list else [t] for t in targets] for o in l + ] + # Remove duplicate targets + target = list(dict.fromkeys(target)) + return opt.loss.CompositeLoss(loss_fn, name=name, target=target) + """ + def __init__( self, loss_fn: Callable, name: str = "", target: Union[nn.Module, List[nn.Module]] = [], ) -> None: - super(CompositeLoss, self).__init__(target) + """ + Args: + + loss_fn (Callable): A function that takes a dict of captured activations + with nn.Modules as keys, and then passes those activations through loss + objective(s) & math operations. + name (str, optional): The name of all composable operations in the + instance. + Default: ``""`` + target (nn.Module or list of nn.Module): A target nn.Module or list of + nn.Module. + """ + super().__init__(target) self.__name__ = name self.loss_fn = loss_fn def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: - return self.loss_fn(targets_to_values) - + """ + Pass collected activations through the loss function. -def loss_wrapper(cls: Any) -> Callable: - """ - Primarily for naming purposes. - """ + Args: - @functools.wraps(cls) - def wrapper(*args, **kwargs) -> object: - obj = cls(*args, **kwargs) - args_str = " [" + ", ".join([_make_arg_str(arg) for arg in args]) + "]" - obj.__name__ = cls.__name__ + args_str - return obj + module (ModuleOutputMapping): A dict of captured activations with + nn.Modules as keys. - return wrapper + Returns: + loss (torch.Tensor): The target activations after being run through the + loss function. + """ + return self.loss_fn(targets_to_values) -@loss_wrapper class LayerActivation(BaseLoss): """ Maximize activations at the target layer. This is the most basic loss available and it simply returns the activations in their original form. - - Args: - target (nn.Module): The layer to optimize for. - batch_index (int, optional): The index of the image to optimize if we - optimizing a batch of images. If unspecified, defaults to all images - in the batch. """ + def __init__( + self, + target: nn.Module, + batch_index: Optional[Union[int, List[int]]] = None, + ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + batch_index (int or list of int, optional): The index or index range of + activations to optimize if optimizing a batch of activations. If set + to ``None``, defaults to all activations in the batch. Index ranges + should be in the format of: [start, end]. + Default: ``None`` + """ + BaseLoss.__init__(self, target, batch_index) + def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: activations = targets_to_values[self.target] activations = activations[self.batch_index[0] : self.batch_index[1]] return activations -@loss_wrapper class ChannelActivation(BaseLoss): """ Maximize activations at the target layer and target channel. This loss maximizes the activations of a target channel in a specified target layer, and can be useful to determine what features the channel is excited by. - - Args: - target (nn.Module): The layer to containing the channel to optimize for. - channel_index (int): The index of the channel to optimize for. - batch_index (int, optional): The index of the image to optimize if we - optimizing a batch of images. If unspecified, defaults to all images - in the batch. """ def __init__( - self, target: nn.Module, channel_index: int, batch_index: Optional[int] = None + self, + target: nn.Module, + channel_index: int, + batch_index: Optional[Union[int, List[int]]] = None, ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + channel_index (int): The index of the channel to optimize for. + batch_index (int or list of int, optional): The index or index range of + activations to optimize if optimizing a batch of activations. If set to + ``None``, defaults to all activations in the batch. Index ranges should + be in the format of: [start, end]. + Default: ``None`` + """ BaseLoss.__init__(self, target, batch_index) self.channel_index = channel_index @@ -248,26 +424,12 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: ] -@loss_wrapper class NeuronActivation(BaseLoss): """ This loss maximizes the activations of a target neuron in the specified channel from the specified layer. This loss is useful for determining the type of features that excite a neuron, and thus is often used for circuits and neuron related research. - - Args: - target (nn.Module): The layer to containing the channel to optimize for. - channel_index (int): The index of the channel to optimize for. - x (int, optional): The x coordinate of the neuron to optimize for. If - unspecified, defaults to center, or one unit left of center for even - lengths. - y (int, optional): The y coordinate of the neuron to optimize for. If - unspecified, defaults to center, or one unit up of center for even - heights. - batch_index (int, optional): The index of the image to optimize if we - optimizing a batch of images. If unspecified, defaults to all images - in the batch. """ def __init__( @@ -276,8 +438,28 @@ def __init__( channel_index: int, x: Optional[int] = None, y: Optional[int] = None, - batch_index: Optional[int] = None, + batch_index: Optional[Union[int, List[int]]] = None, ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + channel_index (int): The index of the channel to optimize for. + x (int, optional): The x coordinate of the neuron to optimize for. If + unspecified, defaults to center, or one unit left of center for even + lengths. + Default: ``None`` + y (int, optional): The y coordinate of the neuron to optimize for. If + unspecified, defaults to center, or one unit up of center for even + heights. + Default: ``None`` + batch_index (int or list of int, optional): The index or index range of + activations to optimize if optimizing a batch of activations. If set to + ``None``, defaults to all activations in the batch. Index ranges should + be in the format of: [start, end]. + Default: ``None`` + """ BaseLoss.__init__(self, target, batch_index) self.channel_index = channel_index self.x = x @@ -299,30 +481,46 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: ] -@loss_wrapper class DeepDream(BaseLoss): """ Maximize 'interestingness' at the target layer. Mordvintsev et al., 2015. https://github.com/google/deepdream + This loss returns the squared layer activations. When combined with a negative mean loss summarization, this loss will create hallucinogenic visuals commonly referred to as 'Deep Dream'. - Args: - target (nn.Module): The layer to optimize for. - batch_index (int, optional): The index of the image to optimize if we - optimizing a batch of images. If unspecified, defaults to all images - in the batch. + DeepDream tries to increase the values of neurons proportional to the amount + they are presently active. This is equivalent to maximizing the sum of the + squares. If you remove the square, you'd be visualizing a direction of: + ``[1,1,1,....]`` (which is same as :class:`.LayerActivation`). """ + def __init__( + self, + target: nn.Module, + batch_index: Optional[Union[int, List[int]]] = None, + ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + batch_index (int or list of int, optional): The index or index range of + activations to optimize if optimizing a batch of activations. If set + to ``None``, defaults to all activations in the batch. Index ranges + should be in the format of: [start, end]. + Default: ``None`` + """ + BaseLoss.__init__(self, target, batch_index) + def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: activations = targets_to_values[self.target] activations = activations[self.batch_index[0] : self.batch_index[1]] return activations**2 -@loss_wrapper class TotalVariation(BaseLoss): """ Total variation denoising penalty for activations. @@ -331,14 +529,26 @@ class TotalVariation(BaseLoss): This loss attempts to smooth / denoise the target by performing total variance denoising. The target is most often the image that’s being optimized. This loss is often used to remove unwanted visual artifacts. - - Args: - target (nn.Module): The layer to optimize for. - batch_index (int, optional): The index of the image to optimize if we - optimizing a batch of images. If unspecified, defaults to all images - in the batch. """ + def __init__( + self, + target: nn.Module, + batch_index: Optional[Union[int, List[int]]] = None, + ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + batch_index (int or list of int, optional): The index or index range of + activations to optimize if optimizing a batch of activations. If set + to ``None``, defaults to all activations in the batch. Index ranges + should be in the format of: [start, end]. + Default: ``None`` + """ + BaseLoss.__init__(self, target, batch_index) + def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: activations = targets_to_values[self.target] activations = activations[self.batch_index[0] : self.batch_index[1]] @@ -347,26 +557,29 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: return torch.sum(torch.abs(x_diff)) + torch.sum(torch.abs(y_diff)) -@loss_wrapper class L1(BaseLoss): """ L1 norm of the target layer, generally used as a penalty. - - Args: - target (nn.Module): The layer to optimize for. - constant (float): Constant threshold to deduct from the activations. - Defaults to 0. - batch_index (int, optional): The index of the image to optimize if we - optimizing a batch of images. If unspecified, defaults to all images - in the batch. """ def __init__( self, target: nn.Module, constant: float = 0.0, - batch_index: Optional[int] = None, + batch_index: Optional[Union[int, List[int]]] = None, ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + constant (float): Constant threshold to deduct from the activations. + batch_index (int or list of int, optional): The index or index range of + activations to optimize if optimizing a batch of activations. If set to + ``None``, defaults to all activations in the batch. Index ranges should + be in the format of: [start, end]. + Default: ``None`` + """ BaseLoss.__init__(self, target, batch_index) self.constant = constant @@ -376,41 +589,45 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: return torch.abs(activations - self.constant).sum() -@loss_wrapper class L2(BaseLoss): """ L2 norm of the target layer, generally used as a penalty. - - Args: - target (nn.Module): The layer to optimize for. - constant (float): Constant threshold to deduct from the activations. - Defaults to 0. - epsilon (float): Small value to add to L2 prior to sqrt. Defaults to 1e-6. - batch_index (int, optional): The index of the image to optimize if we - optimizing a batch of images. If unspecified, defaults to all images - in the batch. """ def __init__( self, target: nn.Module, constant: float = 0.0, - epsilon: float = 1e-6, - batch_index: Optional[int] = None, + eps: float = 1e-6, + batch_index: Optional[Union[int, List[int]]] = None, ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + constant (float): Constant threshold to deduct from the activations. + Default: ``0.0`` + eps (float): Small value to add to L2 prior to sqrt. + Default: ``1e-6`` + batch_index (int or list of int, optional): The index or index range of + activations to optimize if optimizing a batch of activations. If set to + ``None``, defaults to all activations in the batch. Index ranges should + be in the format of: [start, end]. + Default: ``None`` + """ BaseLoss.__init__(self, target, batch_index) self.constant = constant - self.epsilon = epsilon + self.eps = eps def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: activations = targets_to_values[self.target][ self.batch_index[0] : self.batch_index[1] ] activations = ((activations - self.constant) ** 2).sum() - return torch.sqrt(self.epsilon + activations) + return torch.sqrt(self.eps + activations) -@loss_wrapper class Diversity(BaseLoss): """ Use a cosine similarity penalty to extract features from a polysemantic neuron. @@ -419,15 +636,31 @@ class Diversity(BaseLoss): This loss helps break up polysemantic layers, channels, and neurons by encouraging diversity across the different batches. This loss is to be used along with a main loss. - - Args: - target (nn.Module): The layer to optimize for. - batch_index (int, optional): Unused here since we are optimizing for diversity - across the batch. """ + def __init__( + self, + target: nn.Module, + batch_index: Optional[List[int]] = None, + ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + batch_index (list of int, optional): The index range of activations to + optimize. If set to ``None``, defaults to all activations in the batch. + Index ranges should be in the format of: [start, end]. + Default: ``None`` + """ + if batch_index: + assert isinstance(batch_index, (list, tuple)) + assert len(batch_index) == 2 + BaseLoss.__init__(self, target, batch_index) + def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: activations = targets_to_values[self.target] + activations = activations[self.batch_index[0] : self.batch_index[1]] batch, channels = activations.shape[:2] flattened = activations.view(batch, channels, -1) grams = torch.matmul(flattened, torch.transpose(flattened, 1, 2)) @@ -443,7 +676,6 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: ) -@loss_wrapper class ActivationInterpolation(BaseLoss): """ Interpolate between two different layers & channels. @@ -451,23 +683,29 @@ class ActivationInterpolation(BaseLoss): https://distill.pub/2017/feature-visualization/#Interaction-between-Neurons This loss helps to interpolate or mix visualizations from two activations (layer or channel) by interpolating a linear sum between the two activations. - - Args: - target1 (nn.Module): The first layer to optimize for. - channel_index1 (int): Index of channel in first layer to optimize. Defaults to - all channels. - target2 (nn.Module): The first layer to optimize for. - channel_index2 (int): Index of channel in first layer to optimize. Defaults to - all channels. """ def __init__( self, target1: nn.Module = None, - channel_index1: int = -1, + channel_index1: Optional[int] = None, target2: nn.Module = None, - channel_index2: int = -1, + channel_index2: Optional[int] = None, ) -> None: + """ + Args: + + target1 (nn.Module): The first layer, transform, or image parameterization + instance to optimize the output for. + channel_index1 (int, optional): Index of channel in first target to + optimize. Default is set to ``None`` for all channels. + Default: ``None`` + target2 (nn.Module): The second layer, transform, or image parameterization + instance to optimize the output for. + channel_index2 (int, optional): Index of channel in second target to + optimize. Default is set to ``None`` for all channels. + Default: ``None`` + """ self.target_one = target1 self.channel_index_one = channel_index1 self.target_two = target2 @@ -481,15 +719,16 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: assert activations_one is not None and activations_two is not None # ensure channel indices are valid - assert ( - self.channel_index_one < activations_one.shape[1] - and self.channel_index_two < activations_two.shape[1] - ) + if self.channel_index_one: + assert self.channel_index_one < activations_one.shape[1] + if self.channel_index_two: + assert self.channel_index_two < activations_two.shape[1] + assert activations_one.size(0) == activations_two.size(0) - if self.channel_index_one > -1: + if self.channel_index_one: activations_one = activations_one[:, self.channel_index_one] - if self.channel_index_two > -1: + if self.channel_index_two: activations_two = activations_two[:, self.channel_index_two] B = activations_one.size(0) @@ -503,7 +742,6 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: return sum_tensor -@loss_wrapper class Alignment(BaseLoss): """ Penalize the L2 distance between tensors in the batch to encourage visual @@ -513,19 +751,36 @@ class Alignment(BaseLoss): When interpolating between activations, it may be desirable to keep image landmarks in the same position for visual comparison. This loss helps to minimize L2 distance between neighbouring images. - - Args: - target (nn.Module): The layer to optimize for. - decay_ratio (float): How much to decay penalty as images move apart in batch. - Defaults to 2. """ - def __init__(self, target: nn.Module, decay_ratio: float = 2.0) -> None: - BaseLoss.__init__(self, target) + def __init__( + self, + target: nn.Module, + decay_ratio: float = 2.0, + batch_index: Optional[List[int]] = None, + ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + decay_ratio (float): How much to decay penalty as images move apart in + the batch. + Default: ``2.0`` + batch_index (list of int, optional): The index range of activations to + optimize. If set to ``None``, defaults to all activations in the batch. + Index ranges should be in the format of: [start, end]. + Default: ``None`` + """ + if batch_index: + assert isinstance(batch_index, (list, tuple)) + assert len(batch_index) == 2 + BaseLoss.__init__(self, target, batch_index) self.decay_ratio = decay_ratio def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: activations = targets_to_values[self.target] + activations = activations[self.batch_index[0] : self.batch_index[1]] B = activations.size(0) sum_tensor = torch.zeros(1, device=activations.device) @@ -540,7 +795,6 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: return -sum_tensor -@loss_wrapper class Direction(BaseLoss): """ Visualize a general direction vector. @@ -550,23 +804,28 @@ class Direction(BaseLoss): the alignment between the input vector and the layer’s activation vector. The dimensionality of the vector should correspond to the number of channels in the layer. - - Args: - target (nn.Module): The layer to optimize for. - vec (torch.Tensor): Vector representing direction to align to. - cossim_pow (float, optional): The desired cosine similarity power to use. - batch_index (int, optional): The index of the image to optimize if we - optimizing a batch of images. If unspecified, defaults to all images - in the batch. """ def __init__( self, target: nn.Module, vec: torch.Tensor, - cossim_pow: Optional[float] = 0.0, + cossim_pow: float = 0.0, batch_index: Optional[int] = None, ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + vec (torch.Tensor): Vector representing direction to align to. + cossim_pow (float, optional): The desired cosine similarity power to use. + Default: ``0.0`` + batch_index (int, optional): The index of activations to optimize if + optimizing a batch of activations. If set to ``None``, defaults to + all activations in the batch. + Default: ``None`` + """ BaseLoss.__init__(self, target, batch_index) self.vec = vec.reshape((1, -1, 1, 1)) self.cossim_pow = cossim_pow @@ -578,7 +837,6 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: return _dot_cossim(self.vec, activations, cossim_pow=self.cossim_pow) -@loss_wrapper class NeuronDirection(BaseLoss): """ Visualize a single (x, y) position for a direction vector. @@ -586,21 +844,6 @@ class NeuronDirection(BaseLoss): https://distill.pub/2019/activation-atlas/#Aggregating-Multiple-Images Extends Direction loss by focusing on visualizing a single neuron within the kernel. - - Args: - target (nn.Module): The layer to optimize for. - vec (torch.Tensor): Vector representing direction to align to. - x (int, optional): The x coordinate of the neuron to optimize for. If - unspecified, defaults to center, or one unit left of center for even - lengths. - y (int, optional): The y coordinate of the neuron to optimize for. If - unspecified, defaults to center, or one unit up of center for even - heights. - channel_index (int): The index of the channel to optimize for. - cossim_pow (float, optional): The desired cosine similarity power to use. - batch_index (int, optional): The index of the image to optimize if we - optimizing a batch of images. If unspecified, defaults to all images - in the batch. """ def __init__( @@ -610,9 +853,33 @@ def __init__( x: Optional[int] = None, y: Optional[int] = None, channel_index: Optional[int] = None, - cossim_pow: Optional[float] = 0.0, + cossim_pow: float = 0.0, batch_index: Optional[int] = None, ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + vec (torch.Tensor): Vector representing direction to align to. + x (int, optional): The x coordinate of the neuron to optimize for. If + set to ``None``, defaults to center, or one unit left of center for + even lengths. + Default: ``None`` + y (int, optional): The y coordinate of the neuron to optimize for. If + set to ``None``, defaults to center, or one unit up of center for + even heights. + Default: ``None`` + channel_index (int): The index of the channel to optimize for. If set to + ``None``, then all channels will be used. + Default: ``None`` + cossim_pow (float, optional): The desired cosine similarity power to use. + Default: ``0.0`` + batch_index (int, optional): The index of activations to optimize if + optimizing a batch of activations. If set to ``None``, defaults to all + activations in the batch. + Default: ``None`` + """ BaseLoss.__init__(self, target, batch_index) self.vec = vec.reshape((1, -1, 1, 1)) self.x = x @@ -636,7 +903,6 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: return _dot_cossim(self.vec, activations, cossim_pow=self.cossim_pow) -@loss_wrapper class AngledNeuronDirection(BaseLoss): """ Visualize a direction vector with an optional whitened activation vector to @@ -652,11 +918,9 @@ class AngledNeuronDirection(BaseLoss): More information on the algorithm this objective uses can be found here: https://github.com/tensorflow/lucid/issues/116 - This Lucid equivalents of this loss function can be found here: - https://github.com/tensorflow/lucid/blob/master/notebooks/ - activation-atlas/activation-atlas-simple.ipynb - https://github.com/tensorflow/lucid/blob/master/notebooks/ - activation-atlas/class-activation-atlas.ipynb + This Lucid equivalents of this loss objective can be found here: + https://github.com/tensorflow/lucid/blob/master/notebooks/activation-atlas/activation-atlas-simple.ipynb + https://github.com/tensorflow/lucid/blob/master/notebooks/activation-atlas/class-activation-atlas.ipynb Like the Lucid equivalents, our implementation differs slightly from the associated research paper. @@ -678,16 +942,29 @@ def __init__( ) -> None: """ Args: - target (nn.Module): A target layer instance. + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. vec (torch.Tensor): A neuron direction vector to use. vec_whitened (torch.Tensor, optional): A whitened neuron direction vector. + If set to ``None``, then no whitened vec will be used. + Default: ``None`` cossim_pow (float, optional): The desired cosine similarity power to use. - x (int, optional): Optionally provide a specific x position for the target - neuron. - y (int, optional): Optionally provide a specific y position for the target - neuron. + x (int, optional): The x coordinate of the neuron to optimize for. If + set to ``None``, defaults to center, or one unit left of center for + even lengths. + Default: ``None`` + y (int, optional): The y coordinate of the neuron to optimize for. If + set to ``None``, defaults to center, or one unit up of center for + even heights. + Default: ``None`` eps (float, optional): If cossim_pow is greater than zero, the desired epsilon value to use for cosine similarity calculations. + Default: ``1.0e-4`` + batch_index (int, optional): The index of activations to optimize if + optimizing a batch of activations. If set to ``None``, defaults to all + activations in the batch. + Default: ``None`` """ BaseLoss.__init__(self, target, batch_index) self.vec = vec.unsqueeze(0) if vec.dim() == 1 else vec @@ -724,30 +1001,34 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: return dot * torch.clamp(cossims, min=0.1) ** self.cossim_pow -@loss_wrapper class TensorDirection(BaseLoss): """ Visualize a tensor direction vector. Carter, et al., "Activation Atlas", Distill, 2019. https://distill.pub/2019/activation-atlas/#Aggregating-Multiple-Images Extends Direction loss by allowing batch-wise direction visualization. - - Args: - target (nn.Module): The layer to optimize for. - vec (torch.Tensor): Vector representing direction to align to. - cossim_pow (float, optional): The desired cosine similarity power to use. - batch_index (int, optional): The index of the image to optimize if we - optimizing a batch of images. If unspecified, defaults to all images - in the batch. """ def __init__( self, target: nn.Module, vec: torch.Tensor, - cossim_pow: Optional[float] = 0.0, + cossim_pow: float = 0.0, batch_index: Optional[int] = None, ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + vec (torch.Tensor): Vector representing direction to align to. + cossim_pow (float, optional): The desired cosine similarity power to use. + Default: ``0.0`` + batch_index (int, optional): The index of activations to optimize if + optimizing a batch of activations. If set to ``None``, defaults to all + activations in the batch. + Default: ``None`` + """ BaseLoss.__init__(self, target, batch_index) assert vec.dim() == 4 self.vec = vec @@ -773,27 +1054,11 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: return _dot_cossim(self.vec, activations, cossim_pow=self.cossim_pow) -@loss_wrapper class ActivationWeights(BaseLoss): """ Apply weights to channels, neurons, or spots in the target. This loss weighs specific channels or neurons in a given layer, via a weight vector. - - Args: - target (nn.Module): The layer to optimize for. - weights (torch.Tensor): Weights to apply to targets. - neuron (bool): Whether target is a neuron. Defaults to False. - x (int, optional): The x coordinate of the neuron to optimize for. If - unspecified, defaults to center, or one unit left of center for even - lengths. - y (int, optional): The y coordinate of the neuron to optimize for. If - unspecified, defaults to center, or one unit up of center for even - heights. - wx (int, optional): Length of neurons to apply the weights to, along the - x-axis. - wy (int, optional): Length of neurons to apply the weights to, along the - y-axis. """ def __init__( @@ -806,6 +1071,29 @@ def __init__( wx: Optional[int] = None, wy: Optional[int] = None, ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance to optimize the output of. + weights (torch.Tensor): Weights to apply to targets. + neuron (bool): Whether target is a neuron. + Default: ``False`` + x (int, optional): The x coordinate of the neuron to optimize for. If + set to ``None``, defaults to center, or one unit left of center for + even lengths. + Default: ``None`` + y (int, optional): The y coordinate of the neuron to optimize for. If + set to ``None``, defaults to center, or one unit up of center for + even heights. + Default: ``None`` + wx (int, optional): Length of neurons to apply the weights to, along the + x-axis. Set to ``None`` for the full length. + Default: ``None`` + wy (int, optional): Length of neurons to apply the weights to, along the + y-axis. Set to ``None`` for the full length. + Default: ``None`` + """ BaseLoss.__init__(self, target) self.x = x self.y = y @@ -842,32 +1130,259 @@ def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: return activations +class L2Mean(BaseLoss): + """ + Simple L2Loss penalty where the mean is used instead of the square root of the + sum. + + Used for CLIP models in https://distill.pub/2021/multimodal-neurons/ as per the + supplementary code: + https://github.com/openai/CLIP-featurevis/blob/master/example_facets.py + """ + + def __init__( + self, + target: torch.nn.Module, + channel_index: Optional[int] = None, + constant: float = 0.5, + batch_index: Optional[Union[int, List[int]]] = None, + ) -> None: + """ + Args: + + target (nn.Module): A target layer, transform, or image parameterization + instance. + channel_index (int, optional): Optionally only target a specific channel. + If set to ``None``, all channels with be used. + Default: ``None`` + constant (float, optional): Constant value to deduct from the activations. + Default: ``0.5`` + batch_index (int or list of int, optional): The index or index range of + activations to optimize if optimizing a batch of activations. If set + to ``None``, defaults to all activations in the batch. Index ranges + should be in the format of: [start, end]. + Default: ``None`` + """ + BaseLoss.__init__(self, target, batch_index) + self.constant = constant + self.channel_index = channel_index + + def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: + activations = targets_to_values[self.target][ + self.batch_index[0] : self.batch_index[1] + ] + if self.channel_index is not None: + activations = activations[:, self.channel_index : self.channel_index + 1] + return ((activations - self.constant) ** 2).mean() + + +class VectorLoss(BaseLoss): + """ + This objective is useful for optimizing towards channel directions. This can + helpful for visualizing models like OpenAI's CLIP. + + This loss objective is similar to the Direction objective, except it computes the + matrix product of the activations and vector, rather than the cosine similarity. + In addition to optimizing towards channel directions, this objective can also + perform a similar role to the ChannelActivation objective by using one-hot 1D + vectors. + + See here for more details: + https://distill.pub/2021/multimodal-neurons/ + https://github.com/openai/CLIP-featurevis/blob/master/example_facets.py + """ + + def __init__( + self, + target: torch.nn.Module, + vec: torch.Tensor, + activation_fn: Optional[Callable] = torch.nn.functional.relu, + move_channel_dim_to_final_dim: bool = True, + batch_index: Optional[Union[int, List[int]]] = None, + ) -> None: + """ + Args: + + target (nn.Module): A target layer instance. + vec (torch.Tensor): A 1D channel vector with the same size as the + channel / feature dimension of the target layer instance. + activation_fn (callable, optional): An optional activation function to + apply to the activations before computing the matrix product. If set + to ``None``, then no activation function will be used. + Default: ``torch.nn.functional.relu`` + move_channel_dim_to_final_dim (bool, optional): Whether or not to move the + channel dimension to the last dimension before computing the matrix + product. Set to ``False`` if the using the channels last format. + Default: ``True`` + batch_index (int or list of int, optional): The index or index range of + activations to optimize if optimizing a batch of activations. If set + to ``None``, defaults to all activations in the batch. Index ranges + should be in the format of: [start, end]. + Default: ``None`` + """ + BaseLoss.__init__(self, target, batch_index) + assert vec.dim() == 1 + self.vec = vec + self.activation_fn = activation_fn + self.move_channel_dim_to_final_dim = move_channel_dim_to_final_dim + + def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: + activations = targets_to_values[self.target] + activations = activations[self.batch_index[0] : self.batch_index[1]] + return _create_new_vector( + activations, + vec=self.vec, + activation_fn=self.activation_fn, + move_channel_dim_to_final_dim=self.move_channel_dim_to_final_dim, + ).mean() + + +class FacetLoss(BaseLoss): + """ + The Facet loss objective used for Faceted Feature Visualization as described in: + https://distill.pub/2021/multimodal-neurons/#faceted-feature-visualization + https://github.com/openai/CLIP-featurevis/blob/master/example_facets.py + + The FacetLoss objective allows us to steer feature visualization towards a + particular theme / concept. This is done by using the weights from linear probes + trained on the lower layers of a model to discriminate between a certain theme or + concept and generic natural images. + """ + + def __init__( + self, + vec: torch.Tensor, + ultimate_target: torch.nn.Module, + layer_target: Union[torch.nn.Module, List[torch.nn.Module]], + facet_weights: torch.Tensor, + strength: Optional[Union[float, List[float]]] = None, + batch_index: Optional[Union[int, List[int]]] = None, + ) -> None: + """ + Args: + + vec (torch.Tensor): A 1D channel vector with the same size as the + channel / feature dimension of ultimate_target. + ultimate_target (nn.Module): The main target layer that we are + visualizing targets from. This is normally the penultimate layer of + the model. + layer_target (nn.Module): A layer that we have facet_weights for. This + target layer should be below the ``ultimate_target`` layer in the + model. + facet_weights (torch.Tensor): Weighting that steers the objective + towards a particular theme or concept. These weight values should + come from linear probes trained on ``layer_target``. + strength (float, list of float, optional): A single float or list of floats + to use for batch dimension weighting. If using a single value, then it + will be applied to all batch dimensions equally. Otherwise a list of + floats with a shape of: [start, end] should be used for + :func:`torch.linspace` to calculate the step values in between. Default + is set to ``None`` for no weighting. + Default: ``None`` + batch_index (int or list of int, optional): The index or index range of + activations to optimize if optimizing a batch of activations. If set + to ``None``, defaults to all activations in the batch. Index ranges + should be in the format of: [start, end]. + Default: ``None`` + """ + BaseLoss.__init__(self, [ultimate_target, layer_target], batch_index) + self.ultimate_target = ultimate_target + self.layer_target = layer_target + assert vec.dim() == 1 + self.vec = vec + if isinstance(strength, (tuple, list)): + assert len(strength) == 2 + self.strength = strength + assert facet_weights.dim() == 4 or facet_weights.dim() == 2 + self.facet_weights = facet_weights + + def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor: + activations_ultimate = targets_to_values[self.ultimate_target] + activations_ultimate = activations_ultimate[ + self.batch_index[0] : self.batch_index[1] + ] + new_vec = _create_new_vector(activations_ultimate, self.vec) + target_activations = targets_to_values[self.layer_target] + + layer_grad = torch.autograd.grad( + outputs=new_vec, + inputs=target_activations, + grad_outputs=torch.ones_like(new_vec), + retain_graph=True, + )[0].detach()[self.batch_index[0] : self.batch_index[1]] + layer = target_activations[self.batch_index[0] : self.batch_index[1]] + + flat_attr = layer * torch.nn.functional.relu(layer_grad) + if self.facet_weights.dim() == 2 and flat_attr.dim() == 4: + flat_attr = torch.sum(flat_attr, dim=(2, 3)) + + if self.strength: + if isinstance(self.strength, (tuple, list)): + strength_t = torch.linspace( + self.strength[0], + self.strength[1], + steps=flat_attr.shape[0], + device=flat_attr.device, + ).reshape(flat_attr.shape[0], *[1] * (flat_attr.dim() - 1)) + else: + strength_t = self.strength + flat_attr = strength_t * flat_attr + + if ( + self.facet_weights.dim() == 4 + and layer.dim() == 4 + and self.facet_weights.shape[2:] != layer.shape[2:] + ): + facet_weights = torch.nn.functional.interpolate( + self.facet_weights, size=layer.shape[2:] + ) + else: + facet_weights = self.facet_weights + + return torch.sum(flat_attr * facet_weights) + + def sum_loss_list( loss_list: List, to_scalar_fn: Callable[[torch.Tensor], torch.Tensor] = torch.mean, ) -> CompositeLoss: """ Summarize a large number of losses without recursion errors. By default using 300+ - loss functions for a single optimization task will result in exceeding Python's + loss objectives for a single optimization task will result in exceeding Python's default maximum recursion depth limit. This function can be used to avoid the - recursion depth limit for tasks such as summarizing a large list of loss functions + recursion depth limit for tasks such as summarizing a large list of loss objectives with the built-in sum() function. This function works similar to Lucid's optvis.objectives.Objective.sum() function. Args: - loss_list (list): A list of loss function objectives. - to_scalar_fn (Callable): A function for converting loss function outputs to - scalar values, in order to prevent size mismatches. - Default: torch.mean + loss_list (list): A list of loss objectives. + to_scalar_fn (Callable): A function for converting loss objective outputs to + scalar values, in order to prevent size mismatches. Set to + :class:`torch.nn.Identity` for no reduction op. + Default: :func:`torch.mean` Returns: - loss_fn (CompositeLoss): A composite loss function containing all the loss - functions from `loss_list`. + loss_fn (CompositeLoss): A CompositeLoss instance containing all the loss + functions from ``loss_list``. """ def loss_fn(module: ModuleOutputMapping) -> torch.Tensor: + """ + Pass collected activations through the list of loss objectives based on + specified targets, and then apply a reduction op to reduce them to scalar + before adding them together. + + Args: + + module (ModuleOutputMapping): A dict of captured activations with + nn.Modules as keys. + + Returns: + loss (torch.Tensor): The target activations after being run through the + loss objectives, and then added together. + """ return sum([to_scalar_fn(loss(module)) for loss in loss_list]) name = "Sum(" + ", ".join([loss.__name__ for loss in loss_list]) + ")" @@ -888,19 +1403,26 @@ def loss_fn(module: ModuleOutputMapping) -> torch.Tensor: def default_loss_summarize(loss_value: torch.Tensor) -> torch.Tensor: """ - Helper function to summarize tensor outputs from loss functions. + Helper function to summarize tensor outputs from loss objectives. - default_loss_summarize applies `mean` to the loss tensor + default_loss_summarize applies :func:`torch.mean` to the loss tensor and negates it so that optimizing it maximizes the activations we are interested in. + + Args: + + loss_value (torch.Tensor): A tensor containing the loss values. + + Returns: + loss_value (torch.Tensor): The loss_value's mean multiplied by -1. """ return -1 * loss_value.mean() __all__ = [ "Loss", - "loss_wrapper", "BaseLoss", + "CompositeLoss", "LayerActivation", "ChannelActivation", "NeuronActivation", @@ -916,6 +1438,9 @@ def default_loss_summarize(loss_value: torch.Tensor) -> torch.Tensor: "AngledNeuronDirection", "TensorDirection", "ActivationWeights", + "L2Mean", + "VectorLoss", + "FacetLoss", "sum_loss_list", "default_loss_summarize", ] diff --git a/captum/optim/_core/optimization.py b/captum/optim/_core/optimization.py index cd11db9e34..6ce3fb3e13 100644 --- a/captum/optim/_core/optimization.py +++ b/captum/optim/_core/optimization.py @@ -1,5 +1,3 @@ -"""captum.optim.optimization.""" - import warnings from typing import Callable, Iterable, Optional @@ -31,10 +29,24 @@ class InputOptimization(Objective, Parameterized): """ Core function that optimizes an input to maximize a target (aka objective). This is similar to gradient-based methods for adversarial examples, such - as FGSM. The code for this was based on the implementation by the authors of Lucid. - For more details, see the following: - https://github.com/tensorflow/lucid - https://distill.pub/2017/feature-visualization/ + as :class:`FGSM `. The code for this was based on the + implementation by the authors of Lucid. For more details, see the following: + + * https://github.com/tensorflow/lucid + * https://distill.pub/2017/feature-visualization/ + + Alias: ``captum.optim.InputOptimization`` + + Example:: + + >>> model = opt.models.googlenet(pretrained=True) + >>> loss_fn = opt.loss.LayerActivation(model.mixed4c) + >>> image = opt.images.NaturalImage(size=(224, 224)) + >>> transform = opt.transforms.TransformationRobustness() + >>> + >>> obj = opt.InputOptimization(model, loss_fn, image, transform) + >>> history = obj.optimize(opt.optimization.n_steps(512)) + >>> image().show(figsize=(10, 10)) # Display results """ def __init__( @@ -47,13 +59,32 @@ def __init__( r""" Args: - model (nn.Module, optional): The reference to PyTorch model instance. - input_param (nn.Module, optional): A module that generates an input, - consumed by the model. - transform (nn.Module, optional): A module that transforms or preprocesses - the input before being passed to the model. - loss_function (callable): The loss function to minimize during optimization - optimization. + model (nn.Module, optional): The reference to PyTorch model instance. Set + to ``None`` for no model instance. + loss_function (Callable): The :mod:`Loss <.loss>` objective instance to + minimize during optimization. + input_param (InputParameterization, optional): A module that generates an + input, consumed by the model. Example: An + :mod:`ImageParameterization ` instance. + transform (nn.Module, optional): A module that transforms or preprocesses + the input before being passed to the model. Set to + :class:`torch.nn.Identity` for no transforms. + + Instance variables that be used in the :func:`InputOptimization.optimize` + function, custom optimization functions, and StopCriteria functions: + + Attributes: + + model (torch.nn.Module): The given model instance given when initializing + ``InputOptimization``. If ``model`` was set to ``None`` during + initialization, then an instance of :class:`torch.nn.Identity` will be + returned. + input_param (InputParameterization): The given input parameterization + instance given when initializing ``InputOptimization``. + loss_function (Loss): The composable :mod:`Loss <.loss>` instance given + when initializing ``InputOptimization``. + transform (torch.nn.Module): The given transform instance given when + initializing ``InputOptimization``. """ self.model = model or nn.Identity() # Grab targets from loss_function @@ -76,9 +107,9 @@ def loss(self) -> torch.Tensor: r"""Compute loss value for current iteration. Returns: - *tensor* representing **loss**: - - **loss** (*tensor*): - Size of the tensor corresponds to the targets passed. + tensor representing **loss**: + - **loss** (torch.Tensor): Size of the tensor corresponds to the targets + passed. """ input_t = self.input_param() @@ -95,7 +126,9 @@ def loss(self) -> torch.Tensor: return loss_value def cleanup(self) -> None: - r"""Garbage collection, mainly removing hooks.""" + r"""Garbage collection, mainly removing hooks. + This should only be run after optimize is finished running. + """ self.hooks.remove_hooks() # Targets are managed by ModuleOutputHooks; we mainly just want a convenient setter @@ -109,6 +142,11 @@ def targets(self, value: Iterable[nn.Module]) -> None: self.hooks = ModuleOutputsHook(value) def parameters(self) -> Iterable[nn.Parameter]: + """ + Returns: + parameters (iterable of torch.nn.Parameter): An iterable of parameters in + the input parameterization. + """ return self.input_param.parameters() def optimize( @@ -122,18 +160,19 @@ def optimize( Args: - stop_criteria (StopCriteria, optional): A function that is called - every iteration and returns a bool that determines whether - to stop the optimization. - See captum.optim.typing.StopCriteria for details. - optimizer (Optimizer, optional): An torch.optim.Optimizer used to - optimize the input based on the loss function. + stop_criteria (StopCriteria, optional): A function that is called + every iteration and returns a bool that determines whether to stop the + optimization. + Default: :func:`n_steps(512) <.n_steps>` + optimizer (torch.optim.Optimizer, optional): A ``torch.optim.Optimizer`` + instance to use for optimizing the input based on the loss function. + Default: :class:`torch.optim.Adam` loss_summarize_fn (Callable, optional): The function to use for summarizing tensor outputs from loss functions. - Default: default_loss_summarize - lr: (float, optional): If no optimizer is given, then lr is used as the + Default: :func:`.default_loss_summarize` + lr (float, optional): If no optimizer is given, then lr is used as the learning rate for the Adam optimizer. - Default: 0.025 + Default: ``0.025`` Returns: history (torch.Tensor): A stack of loss values per iteration. The size @@ -163,13 +202,18 @@ def optimize( def n_steps(n: int, show_progress: bool = True) -> StopCriteria: """StopCriteria generator that uses number of steps as a stop criteria. + Example:: + + >>> stop_criteria = opt.optimization.n_steps(512, True) + Args: - n (int): Number of steps to run optimization. - show_progress (bool, optional): Whether or not to show progress bar. - Default: True + + n (int): Number of steps to run optimization. + show_progress (bool, optional): Whether or not to show progress bar. + Default: ``True`` Returns: - *StopCriteria* callable + StopCriteria (Callable): A stop criteria function. """ if show_progress: diff --git a/captum/optim/_core/output_hook.py b/captum/optim/_core/output_hook.py index 4903155e74..d7bd8affd4 100644 --- a/captum/optim/_core/output_hook.py +++ b/captum/optim/_core/output_hook.py @@ -101,11 +101,11 @@ def __init__(self, model: nn.Module, targets: Iterable[nn.Module]) -> None: """ Args: - model (nn.Module): The reference to PyTorch model instance. - targets (nn.Module or list of nn.Module): The target layers to + model (nn.Module): The reference to PyTorch model instance. + targets (nn.Module or list of nn.Module): The target layers to collect activations from. """ - super(ActivationFetcher, self).__init__() + super().__init__() self.model = model self.layers = ModuleOutputsHook(targets) @@ -113,12 +113,13 @@ def __call__(self, input_t: TupleOfTensorsOrTensorType) -> ModuleOutputMapping: """ Args: - input_t (tensor or tuple of tensors, optional): The input to use + input_t (torch.Tensor or tuple of torch.Tensor, optional): The input to use with the specified model. Returns: - activations_dict: An dict containing the collected activations. The keys - for the returned dictionary are the target layers. + activations_dict (ModuleOutputMapping): A dict containing the collected + activations. The keys for the returned dictionary are the target + layers. """ try: diff --git a/captum/optim/_param/image/__init__.py b/captum/optim/_param/image/__init__.py index a2311f7c46..5c36c0c80f 100755 --- a/captum/optim/_param/image/__init__.py +++ b/captum/optim/_param/image/__init__.py @@ -1 +1 @@ -"""(Differentiable) Input Parameterizations. Currently only 3-channel images""" +"""(Differentiable) Input Parameterizations. Currently only images""" diff --git a/captum/optim/_param/image/images.py b/captum/optim/_param/image/images.py index fa313b38af..317e099723 100644 --- a/captum/optim/_param/image/images.py +++ b/captum/optim/_param/image/images.py @@ -1,4 +1,3 @@ -from copy import deepcopy from types import MethodType from typing import Callable, List, Optional, Tuple, Type, Union @@ -21,6 +20,29 @@ class ImageTensor(torch.Tensor): + r""" + A subclass of :class:`torch.Tensor` that provides functions for easy loading, + saving, and displaying image tensors. + + Alias: ``captum.optim.ImageTensor`` + + Example using file path or URL:: + + >>> image_tensor = opt.images.ImageTensor.load() + >>> image_tensor.export(filename="image_tensor.jpg") # Save image(s) + >>> image_tensor.show() # Displays image(s) via Matplotlib + + Example using ``torch.Tensor``:: + + >>> image_tensor = torch.randn(1, 3, 224, 224) + >>> image_tensor = opt.images.ImageTensor(image_tensor) + + Example using ``np.ndarray``:: + + >>> image_tensor = np.random.rand(1, 3, 224, 224) + >>> image_tensor = opt.images.ImageTensor(image_tensor) + """ + @staticmethod def __new__( cls: Type["ImageTensor"], @@ -32,12 +54,17 @@ def __new__( Args: x (list or np.ndarray or torch.Tensor): A list, NumPy array, or PyTorch - tensor to create an `ImageTensor` from. + tensor to create an ``ImageTensor`` from. Returns: - x (ImageTensor): An `ImageTensor` instance. + x (ImageTensor): An ``ImageTensor`` instance. """ - if isinstance(x, torch.Tensor) and x.is_cuda: + if ( + isinstance(x, torch.Tensor) + and x.is_cuda + or isinstance(x, torch.Tensor) + and x.dtype != torch.float32 + ): x.show = MethodType(cls.show, x) x.export = MethodType(cls.export, x) return x @@ -45,17 +72,18 @@ def __new__( return super().__new__(cls, x, *args, **kwargs) @classmethod - def open(cls, path: str, scale: float = 255.0, mode: str = "RGB") -> "ImageTensor": + def load(cls, path: str, scale: float = 255.0, mode: str = "RGB") -> "ImageTensor": """ - Load an image file from a URL or local filepath directly into an `ImageTensor`. + Load an image file from a URL or local filepath directly into an + ``ImageTensor``. Args: path (str): A URL or filepath to an image. scale (float, optional): The image scale to use. - Default: 255.0 + Default: ``255.0`` mode (str, optional): The image loading mode / colorspace to use. - Default: "RGB" + Default: ``"RGB"`` Returns: x (ImageTensor): An `ImageTensor` instance. @@ -69,6 +97,11 @@ def open(cls, path: str, scale: float = 255.0, mode: str = "RGB") -> "ImageTenso img_np = np.array(img.convert(mode)).astype(np.float32) return cls(img_np.transpose(2, 0, 1) / scale) + @classmethod + def open(cls, path: str, scale: float = 255.0, mode: str = "RGB") -> "ImageTensor": + r"""Alias for :func:`load`.""" + return cls.load(path=path, scale=scale, mode=mode) + def __repr__(self) -> str: prefix = "ImageTensor(" indent = len(prefix) @@ -104,24 +137,27 @@ def show( pad_value: float = 0.0, ) -> None: """ - Display an `ImageTensor`. + Display image(s) in the ``ImageTensor`` instance using + :func:`captum.optim.show`. Args: - figsize (Tuple[int, int], optional): height & width to use - for displaying the `ImageTensor` figure. - scale (float, optional): Value to multiply the `ImageTensor` by so that + figsize (tuple of int, optional): The height & width to use for displaying + the ``ImageTensor`` figure, in the format of: (height, width). + Default: ``None`` + scale (float, optional): Value to multiply the ``ImageTensor`` by so that it's value range is [0-255] for display. - Default: 255.0 + Default: ``255.0`` images_per_row (int, optional): The number of images per row to use for the - grid image. Default is set to None for no grid image creation. - Default: None + grid image. Default is set to ``None`` for no grid image creation. + Default: ``None`` padding (int, optional): The amount of padding between images in the grid - images. This parameter only has an effect if `nrow` is not None. - Default: 2 + images. This parameter only has an effect if ``images_per_row`` is not + ``None``. + Default: ``2`` pad_value (float, optional): The value to use for the padding. This - parameter only has an effect if `nrow` is not None. - Default: 0.0 + parameter only has an effect if ``images_per_row`` is not None. + Default: ``0.0`` """ show( self, @@ -142,27 +178,29 @@ def export( pad_value: float = 0.0, ) -> None: """ - Save an `ImageTensor` as an image file. + Save image(s) in the `ImageTensor` instance as an image file, using + :func:`captum.optim.save_tensor_as_image`. Args: - filename (str): The filename to use when saving the `ImageTensor` as an + filename (str): The filename to use when saving the ``ImageTensor`` as an image file. - scale (float, optional): Value to multiply the `ImageTensor` by so that + scale (float, optional): Value to multiply the ``ImageTensor`` by so that it's value range is [0-255] for saving. - Default: 255.0 + Default: ``255.0`` mode (str, optional): A PIL / Pillow supported colorspace. Default is set to None for automatic RGB / RGBA detection and usage. - Default: None + Default: ``None`` images_per_row (int, optional): The number of images per row to use for the grid image. Default is set to None for no grid image creation. - Default: None + Default: ``None`` padding (int, optional): The amount of padding between images in the grid - images. This parameter only has an effect if `nrow` is not None. - Default: 2 + images. This parameter only has an effect if ``images_per_row`` is not + ``None``. + Default: ``2`` pad_value (float, optional): The value to use for the padding. This - parameter only has an effect if `nrow` is not None. - Default: 0.0 + parameter only has an effect if ``images_per_row`` is not ``None``. + Default: ``0.0`` """ save_tensor_as_image( self, @@ -181,12 +219,32 @@ def forward(self) -> torch.Tensor: class ImageParameterization(InputParameterization): + r"""The base class for all Image Parameterizations""" pass class FFTImage(ImageParameterization): """ Parameterize an image using inverse real 2D FFT + + Example:: + + >>> fft_image = opt.images.FFTImage(size=(224, 224)) + >>> output_image = fft_image() + >>> print(output_image.required_grad) + True + >>> print(output_image.shape) + torch.Size([1, 3, 224, 224]) + + Example for using an initialization tensor:: + + >>> init = torch.randn(1, 3, 224, 224) + >>> fft_image = opt.images.FFTImage(init=init) + >>> output_image = fft_image() + >>> print(output_image.required_grad) + True + >>> print(output_image.shape) + torch.Size([1, 3, 224, 224]) """ __constants__ = ["size"] @@ -201,16 +259,16 @@ def __init__( """ Args: - size (Tuple[int, int]): The height & width dimensions to use for the - parameterized output image tensor. + size (tuple of int): The height & width dimensions to use for the + parameterized output image tensor, in the format of: (height, width). channels (int, optional): The number of channels to use for each image. - Default: 3 + Default: ``3`` batch (int, optional): The number of images to stack along the batch dimension. - Default: 1 - init (torch.tensor, optional): Optionally specify a tensor to + Default: ``1`` + init (torch.Tensor, optional): Optionally specify a CHW or NCHW tensor to use instead of creating one. - Default: None + Default: ``None`` """ super().__init__() if init is None: @@ -221,9 +279,9 @@ def __init__( if init.dim() == 3: init = init.unsqueeze(0) self.size = (init.size(2), init.size(3)) - self.torch_rfft, self.torch_irfft, self.torch_fftfreq = self.get_fft_funcs() + self.torch_rfft, self.torch_irfft, self.torch_fftfreq = self._get_fft_funcs() - frequencies = self.rfft2d_freqs(*self.size) + frequencies = self._rfft2d_freqs(*self.size) scale = 1.0 / torch.max( frequencies, torch.full_like(frequencies, 1.0 / (max(self.size[0], self.size[1]))), @@ -250,7 +308,7 @@ def __init__( self.register_buffer("spectrum_scale", spectrum_scale) self.fourier_coeffs = nn.Parameter(fourier_coeffs) - def rfft2d_freqs(self, height: int, width: int) -> torch.Tensor: + def _rfft2d_freqs(self, height: int, width: int) -> torch.Tensor: """ Computes 2D spectrum frequencies. @@ -260,7 +318,7 @@ def rfft2d_freqs(self, height: int, width: int) -> torch.Tensor: width (int): The w dimension of the 2d frequency scale. Returns: - **tensor** (tensor): A 2d frequency scale tensor. + tensor (torch.Tensor): A 2d frequency scale tensor. """ fy = self.torch_fftfreq(height)[:, None] @@ -268,20 +326,20 @@ def rfft2d_freqs(self, height: int, width: int) -> torch.Tensor: return torch.sqrt((fx * fx) + (fy * fy)) @torch.jit.export - def torch_irfftn(self, x: torch.Tensor) -> torch.Tensor: - if x.dtype != torch.complex64: + def _torch_irfftn(self, x: torch.Tensor) -> torch.Tensor: + if not torch.is_complex(x): x = torch.view_as_complex(x) return torch.fft.irfftn(x, s=self.size) # type: ignore - def get_fft_funcs(self) -> Tuple[Callable, Callable, Callable]: + def _get_fft_funcs(self) -> Tuple[Callable, Callable, Callable]: """ Support older versions of PyTorch. This function ensures that the same FFT operations are carried regardless of whether your PyTorch version has the torch.fft update. Returns: - fft functions (tuple of Callable): A list of FFT functions - to use for irfft, rfft, and fftfreq operations. + fft_functions (tuple of callable): A list of FFT functions to use for + irfft, rfft, and fftfreq operations. """ if version.parse(TORCH_VERSION) > version.parse("1.7.0"): @@ -292,7 +350,7 @@ def get_fft_funcs(self) -> Tuple[Callable, Callable, Callable]: def torch_rfft(x: torch.Tensor) -> torch.Tensor: return torch.view_as_real(torch.fft.rfftn(x, s=self.size)) - torch_irfftn = self.torch_irfftn + torch_irfftn = self._torch_irfftn def torch_fftfreq(v: int, d: float = 1.0) -> torch.Tensor: return torch.fft.fftfreq(v, d) @@ -320,7 +378,7 @@ def torch_fftfreq(v: int, d: float = 1.0) -> torch.Tensor: def forward(self) -> torch.Tensor: """ Returns: - **output** (torch.tensor): A spatially recorrelated tensor. + output (torch.Tensor): A spatially recorrelated NCHW tensor. """ scaled_spectrum = self.fourier_coeffs * self.spectrum_scale @@ -333,6 +391,25 @@ def forward(self) -> torch.Tensor: class PixelImage(ImageParameterization): """ Parameterize a simple pixel image tensor that requires no additional transforms. + + Example:: + + >>> pixel_image = opt.images.PixelImage(size=(224, 224)) + >>> output_image = pixel_image() + >>> print(output_image.required_grad) + True + >>> print(output_image.shape) + torch.Size([1, 3, 224, 224]) + + Example for using an initialization tensor:: + + >>> init = torch.randn(1, 3, 224, 224) + >>> pixel_image = opt.images.PixelImage(init=init) + >>> output_image = pixel_image() + >>> print(output_image.required_grad) + True + >>> print(output_image.shape) + torch.Size([1, 3, 224, 224]) """ def __init__( @@ -345,16 +422,16 @@ def __init__( """ Args: - size (Tuple[int, int]): The height & width dimensions to use for the - parameterized output image tensor. + size (tuple of int): The height & width dimensions to use for the + parameterized output image tensor, in the format of: (height, width). channels (int, optional): The number of channels to use for each image. - Default: 3 + Default: ``3`` batch (int, optional): The number of images to stack along the batch dimension. - Default: 1 - init (torch.tensor, optional): Optionally specify a tensor to + Default: ``1`` + init (torch.Tensor, optional): Optionally specify a CHW or NCHW tensor to use instead of creating one. - Default: None + Default: ``None`` """ super().__init__() if init is None: @@ -367,6 +444,10 @@ def __init__( self.image = nn.Parameter(init) def forward(self) -> torch.Tensor: + """ + Returns: + output (torch.Tensor): An NCHW tensor. + """ if torch.jit.is_scripting(): return self.image return self.image.refine_names("B", "C", "H", "W") @@ -374,96 +455,101 @@ def forward(self) -> torch.Tensor: class LaplacianImage(ImageParameterization): """ - TODO: Fix divison by 6 in setup_input when init is not None. Parameterize an image tensor with a laplacian pyramid. + + Example:: + + >>> laplacian_image = opt.images.LaplacianImage(size=(224, 224)) + >>> output_image = laplacian_image() + >>> print(output_image.required_grad) + True + >>> print(output_image.shape) + torch.Size([1, 3, 224, 224]) + + Example for using an initialization tensor:: + + >>> init = torch.randn(1, 3, 224, 224) + >>> laplacian_image = opt.images.LaplacianImage(init=init) + >>> output_image = laplacian_image() + >>> print(output_image.required_grad) + True + >>> print(output_image.shape) + torch.Size([1, 3, 224, 224]) """ def __init__( self, - size: Tuple[int, int] = None, + size: Tuple[int, int] = (224, 224), channels: int = 3, batch: int = 1, init: Optional[torch.Tensor] = None, + power: float = 0.1, + scale_list: List[float] = [1.0, 2.0, 4.0, 8.0, 16.0, 32.0], ) -> None: """ Args: - size (Tuple[int, int]): The height & width dimensions to use for the - parameterized output image tensor. + size (tuple of int): The height & width dimensions to use for the + parameterized output image tensor, in the format of: (height, width). channels (int, optional): The number of channels to use for each image. - Default: 3 + Default: ``3`` batch (int, optional): The number of images to stack along the batch dimension. - Default: 1 - init (torch.tensor, optional): Optionally specify a tensor to + Default: ``1`` + init (torch.Tensor, optional): Optionally specify a CHW or NCHW tensor to use instead of creating one. - Default: None + Default: ``None`` + power (float, optional): The desired power value to use. + Default: ``0.1`` + scale_list (list of float, optional): The desired list of scale values to + use in the laplacian pyramid. The height & width dimensions specified + in ``size`` or used in the ``init`` tensor should be divisible by every + scale value in the scale list with no remainder left over. The default + ``scale_list`` values are set to work with a ``size`` of + ``(224, 224)``. + Default: ``[1.0, 2.0, 4.0, 8.0, 16.0, 32.0]`` """ super().__init__() - power = 0.1 - - if init is None: - tensor_params, self.scaler = self._setup_input(size, channels, power, init) - - self.tensor_params = torch.nn.ModuleList( - [deepcopy(tensor_params) for b in range(batch)] - ) - else: + if init is not None: + assert init.dim() in [3, 4] init = init.unsqueeze(0) if init.dim() == 3 else init - P = [] - for b in range(init.size(0)): - tensor_params, self.scaler = self._setup_input( - size, channels, power, init[b].unsqueeze(0) - ) - P.append(tensor_params) - self.tensor_params = torch.nn.ModuleList(P) + size = list(init.shape[2:]) - def _setup_input( - self, - size: Tuple[int, int], - channels: int, - power: float = 0.1, - init: Optional[torch.Tensor] = None, - ) -> Tuple[List[torch.Tensor], List[torch.nn.Upsample]]: tensor_params, scaler = [], [] - scale_list = [1, 2, 4, 8, 16, 32] for scale in scale_list: + assert size[0] % scale == 0 and size[1] % scale == 0, ( + "The chosen image height & width dimensions" + + " must be divisible by all scale values " + + " with no remainder left over." + ) + h, w = int(size[0] // scale), int(size[1] // scale) if init is None: - x = torch.randn([1, channels, h, w]) / 10 + x = torch.randn([batch, channels, h, w]) / 10 else: x = F.interpolate(init.clone(), size=(h, w), mode="bilinear") - x = x / 6 # Prevents output from being all white + x = x / 10 upsample = torch.nn.Upsample(scale_factor=scale, mode="nearest") - x = x * (scale**power) / (32**power) + x = x * (scale**power) / (max(scale_list) ** power) x = torch.nn.Parameter(x) tensor_params.append(x) scaler.append(upsample) - tensor_params = torch.nn.ParameterList(tensor_params) - return tensor_params, scaler + self.tensor_params = torch.nn.ParameterList(tensor_params) + self.scaler = scaler - def _create_tensor(self, params_list: torch.nn.ParameterList) -> torch.Tensor: + def forward(self) -> torch.Tensor: """ - Resize tensor parameters to the target size. - - Args: - - params_list (torch.nn.ParameterList): List of tensors to resize. - Returns: - **tensor** (torch.Tensor): The sum of all tensor parameters. + output (torch.Tensor): An NCHW tensor created from a laplacian pyramid. """ - A: List[torch.Tensor] = [] - for xi, upsamplei in zip(params_list, self.scaler): + A = [] + for xi, upsamplei in zip(self.tensor_params, self.scaler): A.append(upsamplei(xi)) - return torch.sum(torch.cat(A), 0) + 0.5 + output = sum(A) + 0.5 - def forward(self) -> torch.Tensor: - A: List[torch.Tensor] = [] - for params_list in self.tensor_params: - tensor = self._create_tensor(params_list) - A.append(tensor) - return torch.stack(A).refine_names("B", "C", "H", "W") + if torch.jit.is_scripting(): + return output + return output.refine_names("B", "C", "H", "W") class SimpleTensorParameterization(ImageParameterization): @@ -484,7 +570,8 @@ def __init__(self, tensor: torch.Tensor = None) -> None: """ Args: - tensor (torch.tensor): The tensor to return everytime this module is called. + tensor (torch.Tensor): The tensor to return every time this module is + called. """ super().__init__() assert isinstance(tensor, torch.Tensor) @@ -509,6 +596,17 @@ class SharedImage(ImageParameterization): Mordvintsev, et al., "Differentiable Image Parameterizations", Distill, 2018. https://distill.pub/2018/differentiable-parameterizations/ + + Example:: + + >>> fft_image = opt.images.FFTImage(size=(224, 224), batch=2) + >>> shared_shapes = ((1, 3, 64, 64), (4, 3, 32, 32)) + >>> shared_image = opt.images.SharedImage(shared_shapes, fft_image) + >>> output_image = shared_image() + >>> print(output_image.required_grad) + True + >>> print(output_image.shape) + torch.Size([2, 3, 224, 224]) """ __constants__ = ["offset"] @@ -522,13 +620,13 @@ def __init__( """ Args: - shapes (list of int or list of list of ints): The shapes of the shared + shapes (list of int or list of list of int): The shapes of the shared tensors to use for creating the nn.Parameter tensors. parameterization (ImageParameterization): An image parameterization instance. - offset (int or list of int or list of list of ints , optional): The offsets + offset (int or list of int or list of list of int, optional): The offsets to use for the shared tensors. - Default: None + Default: ``None`` """ super().__init__() assert shapes is not None @@ -552,12 +650,12 @@ def _get_offset(self, offset: Union[int, Tuple[int]], n: int) -> List[List[int]] Args: - offset (int or list of int or list of list of ints , optional): The offsets + offset (int or list of int or list of list of int, optional): The offsets to use for the shared tensors. n (int): The number of tensors needing offset values. Returns: - **offset** (list of list of int): A list of offset values. + offset (List[List[int]]): A list of offset values. """ if type(offset) is tuple or type(offset) is list: if type(offset[0]) is tuple or type(offset[0]) is list: @@ -581,7 +679,7 @@ def _apply_offset(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]: x_list (list of torch.Tensor): list of tensors to offset. Returns: - **A** (list of torch.Tensor): list of offset tensors. + A (list of torch.Tensor): list of offset tensors. """ A: List[torch.Tensor] = [] @@ -616,8 +714,8 @@ def _interpolate_bilinear( Args: x (torch.Tensor): The NCHW tensor to resize. - size (tuple of int): The desired output size to resize the input - to, with a format of: [height, width]. + size (tuple of int): The desired output size to resize the input to, with + a format of: [height, width]. Returns: x (torch.Tensor): A resized NCHW tensor. @@ -645,8 +743,8 @@ def _interpolate_trilinear( Args: x (torch.Tensor): The NCHW tensor to resize. - size (tuple of int): The desired output size to resize the input - to, with a format of: [channels, height, width]. + size (tuple of int): The desired output size to resize the input to, with + a format of: [channels, height, width]. Returns: x (torch.Tensor): A resized NCHW tensor. @@ -678,7 +776,7 @@ def _interpolate_tensor( width (int): The width to resize the tensor to. Returns: - **tensor** (torch.Tensor): A resized tensor. + tensor (torch.Tensor): A resized tensor. """ if x.size(1) == channels: @@ -721,6 +819,28 @@ def forward(self) -> torch.Tensor: class StackImage(ImageParameterization): """ Stack multiple NCHW image parameterizations along their batch dimensions. + + Example:: + + >>> fft_image_1 = opt.images.FFTImage(size=(224, 224), batch=1) + >>> fft_image_2 = opt.images.FFTImage(size=(224, 224), batch=1) + >>> stack_image = opt.images.StackImage([fft_image_1, fft_image_2]) + >>> output_image = stack_image() + >>> print(output_image.required_grad) + True + >>> print(output_image.shape) + torch.Size([2, 3, 224, 224]) + + Example with ``ImageParameterization`` & ``torch.Tensor``:: + + >>> fft_image = opt.images.FFTImage(size=(224, 224), batch=1) + >>> tensor_image = torch.randn(1, 3, 224, 224) + >>> stack_image = opt.images.StackImage([fft_image, tensor_image]) + >>> output_image = stack_image() + >>> print(output_image.required_grad) + True + >>> print(output_image.shape) + torch.Size([2, 3, 224, 224]) """ __constants__ = ["dim", "output_device"] @@ -735,15 +855,16 @@ def __init__( Args: parameterizations (list of ImageParameterization and torch.Tensor): A list - of image parameterizations to stack across their batch dimensions. - dim (int, optional): Optionally specify the dim to concatinate - parameterization outputs on. Default is set to the batch dimension. - Default: 0 + of image parameterizations and tensors to concatenate across a + specified dimension. + dim (int, optional): Optionally specify the dim to concatenate + parameterization outputs on. Default is set to the batch dimension. + Default: ``0`` output_device (torch.device, optional): If the parameterizations are on different devices, then their outputs will be moved to the device - specified by this variable. Default is set to None with the expectation - that all parameterizations are on the same device. - Default: None + specified by this variable. Default is set to ``None`` with the + expectation that all parameterization outputs are on the same device. + Default: ``None`` """ super().__init__() assert len(parameterizations) > 0 @@ -786,16 +907,46 @@ def forward(self) -> torch.Tensor: class NaturalImage(ImageParameterization): - r"""Outputs an optimizable input image. + r"""Outputs an optimizable input image wrapped in :class:`.ImageTensor`. - By convention, single images are CHW and float32s in [0,1]. - The underlying parameterization can be decorrelated via a ToRGB transform. - When used with the (default) FFT parameterization, this results in a fully - uncorrelated image parameterization. :-) + By convention, single images are CHW and float32s in [0, 1]. + The underlying parameterization can be decorrelated via a + :class:`captum.optim.transforms.ToRGB` transform. + When used with the (default) :class:`.FFTImage` parameterization, this results in + a fully uncorrelated image parameterization. :-) If a model requires a normalization step, such as normalizing imagenet RGB values, - or rescaling to [0,255], it can perform those steps with the provided transforms or - inside its computation. + or rescaling to [0, 255], it can perform those steps with the provided transforms + or inside its module class. + + Example:: + + >>> image = opt.images.NaturalImage(size=(224, 224), channels=3, batch=1) + >>> image_tensor = image() + >>> print(image_tensor.required_grad) + True + >>> print(image_tensor.shape) + torch.Size([1, 3, 224, 224]) + + Example for using an initialization tensor:: + + >>> init = torch.randn(1, 3, 224, 224) + >>> image = opt.images.NaturalImage(init=init) + >>> image_tensor = image() + >>> print(image_tensor.required_grad) + True + >>> print(image_tensor.shape) + torch.Size([1, 3, 224, 224]) + + Example for using a parameterization:: + + >>> fft_image = opt.images.FFTImage(size=(224, 224), channels=3, batch=1) + >>> image = opt.images.NaturalImage(parameterization=fft_image) + >>> image_tensor = image() + >>> print(image_tensor.required_grad) + True + >>> print(image_tensor.shape) + torch.Size([1, 3, 224, 224]) """ def __init__( @@ -805,33 +956,60 @@ def __init__( batch: int = 1, init: Optional[torch.Tensor] = None, parameterization: ImageParameterization = FFTImage, - squash_func: Optional[Callable[[torch.Tensor], torch.Tensor]] = None, + squash_func: Optional[Callable[[torch.Tensor], torch.Tensor]] = torch.sigmoid, decorrelation_module: Optional[nn.Module] = ToRGB(transform="klt"), decorrelate_init: bool = True, ) -> None: """ Args: - size (Tuple[int, int], optional): The height and width to use for the - nn.Parameter image tensor. - Default: (224, 224) + size (tuple of int, optional): The height and width to use for the + nn.Parameter image tensor, in the format of: (height, width). + This parameter is not used if the given ``parameterization`` is an + instance. + Default: ``(224, 224)`` channels (int, optional): The number of channels to use when creating the - nn.Parameter tensor. - Default: 3 + nn.Parameter tensor. This parameter is not used if the given + ``parameterization`` is an instance. + Default: ``3`` batch (int, optional): The number of channels to use when creating the - nn.Parameter tensor, or stacking init images. - Default: 1 + nn.Parameter tensor. This parameter is not used if the given + ``parameterization`` is an instance. + Default: ``1`` + init (torch.Tensor, optional): Optionally specify a tensor to use instead + of creating one from random noise. This parameter is not used if the + given ``parameterization`` is an instance. Set to ``None`` for random + init. + Default: ``None`` parameterization (ImageParameterization, optional): An image parameterization class, or instance of an image parameterization class. - Default: FFTImage - squash_func (Callable[[torch.Tensor], torch.Tensor]], optional): The squash - function to use after color recorrelation. A funtion or lambda function. - Default: None - decorrelation_module (nn.Module, optional): A ToRGB instance. - Default: ToRGB + Default: :class:`.FFTImage` + squash_func (callable, optional): The squash function to use after color + recorrelation. A function, lambda function, or callable class instance. + Any provided squash function should take a single input tensor and + return a single output tensor. If set to ``None``, then + :class:`torch.nn.Identity` will be used to make it a non op. + Default: :func:`torch.sigmoid` + decorrelation_module (nn.Module, optional): A module instance that + recorrelates the colors of an input image. Custom modules can make use + of the ``decorrelate_init`` parameter by having a second ``inverse`` + parameter in their forward functions that performs the inverse + operation when it is set to ``True`` (see :class:`.ToRGB` for an + example). Set to ``None`` for no recorrelation. + Default: :class:`.ToRGB` decorrelate_init (bool, optional): Whether or not to apply color - decorrelation to the init tensor input. - Default: True + decorrelation to the init tensor input. This parameter is not used if + the given ``parameterization`` is an instance or if init is ``None``. + Default: ``True`` + + Attributes: + + parameterization (ImageParameterization): The given image parameterization + instance given when initializing ``NaturalImage``. + Default: :class:`.FFTImage` + decorrelation_module (torch.nn.Module): The given decorrelation module + instance given when initializing ``NaturalImage``. + Default: :class:`.ToRGB` """ super().__init__() if not isinstance(parameterization, ImageParameterization): @@ -851,21 +1029,13 @@ def __init__( ) init = self.decorrelate(init, inverse=True).rename(None) - if squash_func is None: - squash_func = self._clamp_image - - self.squash_func = torch.sigmoid if squash_func is None else squash_func + self.squash_func = squash_func or torch.nn.Identity() if not isinstance(parameterization, ImageParameterization): parameterization = parameterization( size=size, channels=channels, batch=batch, init=init ) self.parameterization = parameterization - @torch.jit.export - def _clamp_image(self, x: torch.Tensor) -> torch.Tensor: - """JIT supported squash function.""" - return x.clamp(0, 1) - @torch.jit.ignore def _to_image_tensor(self, x: torch.Tensor) -> torch.Tensor: """ @@ -873,14 +1043,20 @@ def _to_image_tensor(self, x: torch.Tensor) -> torch.Tensor: Args: - x (torch.tensor): An input tensor. + x (torch.Tensor): An input tensor. Returns: - x (ImageTensor): An instance of ImageTensor with the input tensor. + x (ImageTensor): An instance of ``ImageTensor`` with the input tensor. """ return ImageTensor(x) - def forward(self) -> torch.Tensor: + def forward(self) -> ImageTensor: + """ + Returns: + image_tensor (ImageTensor): The parameterization output wrapped in + :class:`.ImageTensor`, that has optionally had its colors + recorrelated. + """ image = self.parameterization() if self.decorrelate is not None: image = self.decorrelate(image) diff --git a/captum/optim/_param/image/transforms.py b/captum/optim/_param/image/transforms.py index 4ec8762637..a4ad00ef0f 100644 --- a/captum/optim/_param/image/transforms.py +++ b/captum/optim/_param/image/transforms.py @@ -20,9 +20,9 @@ def __init__(self, background: Optional[torch.Tensor] = None) -> None: """ Args: - background (tensor, optional): An NCHW image tensor to be used as the + background (torch.Tensor, optional): An NCHW image tensor to be used as the Alpha channel's background. - Default: None + Default: ``None`` """ super().__init__() self.background = background @@ -36,7 +36,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: x (torch.Tensor): RGBA image tensor to blend into an RGB image tensor. Returns: - **blended** (torch.Tensor): RGB image tensor. + blended (torch.Tensor): RGB image tensor. """ assert x.dim() == 4 assert x.size(1) == 4 @@ -60,7 +60,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: x (torch.Tensor): RGBA image tensor. Returns: - **rgb** (torch.Tensor): RGB image tensor without the alpha channel. + rgb (torch.Tensor): RGB image tensor without the alpha channel. """ assert x.dim() == 4 assert x.size(1) == 4 @@ -71,13 +71,31 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: class ToRGB(nn.Module): """Transforms arbitrary channels to RGB. We use this to ensure our image parametrization itself can be decorrelated. So this goes between - the image parametrization and the normalization/sigmoid step. + the image parametrization and the normalization / sigmoid step, like in + :class:`captum.optim.images.NaturalImage`. + We offer two precalculated transforms: Karhunen-Loève (KLT) and I1I2I3. KLT corresponds to the empirically measured channel correlations on imagenet. I1I2I3 corresponds to an approximation for natural images from Ohta et al.[0] + + While the default transform matrices should work for the vast majority of use + cases, you can also use your own 3x3 transform matrix. If you wish to calculate + your own KLT transform matrix on a custom dataset, then please see + :func:`captum.optim.dataset.dataset_klt_matrix` for an example of how to do so. + [0] Y. Ohta, T. Kanade, and T. Sakai, "Color information for region segmentation," Computer Graphics and Image Processing, vol. 13, no. 3, pp. 222–241, 1980 https://www.sciencedirect.com/science/article/pii/0146664X80900477 + + Example:: + + >>> to_rgb = opt.transforms.ToRGB() + >>> x = torch.randn(1, 3, 224, 224) + >>> decorrelated_colors = to_rgb(x, inverse=True) + >>> recorrelated_colors = to_rgb(decorrelated_colors) + + .. note:: The ``ToRGB`` transform is included by default inside + :class:`.NaturalImage`. """ @staticmethod @@ -86,7 +104,7 @@ def klt_transform() -> torch.Tensor: Karhunen-Loève transform (KLT) measured on ImageNet Returns: - **transform** (torch.Tensor): A Karhunen-Loève transform (KLT) measured on + transform (torch.Tensor): A Karhunen-Loève transform (KLT) measured on the ImageNet dataset. """ # Handle older versions of PyTorch @@ -105,7 +123,7 @@ def klt_transform() -> torch.Tensor: def i1i2i3_transform() -> torch.Tensor: """ Returns: - **transform** (torch.Tensor): An approximation of natural colors transform + transform (torch.Tensor): An approximation of natural colors transform (i1i2i3). """ i1i2i3_matrix = [ @@ -119,9 +137,9 @@ def __init__(self, transform: Union[str, torch.Tensor] = "klt") -> None: """ Args: - transform (str or tensor): Either a string for one of the precalculated - transform matrices, or a 3x3 matrix for the 3 RGB channels of input - tensors. + transform (str or torch.Tensor): Either a string for one of the + precalculated transform matrices, or a 3x3 matrix for the 3 RGB + channels of input tensors. """ super().__init__() assert isinstance(transform, str) or torch.is_tensor(transform) @@ -143,12 +161,12 @@ def _forward(self, x: torch.Tensor, inverse: bool = False) -> torch.Tensor: """ Args: - x (torch.tensor): A CHW or NCHW RGB or RGBA image tensor. - inverse (bool, optional): Whether to recorrelate or decorrelate colors. - Default: False. + x (torch.Tensor): A CHW or NCHW RGB or RGBA image tensor. + inverse (bool, optional): Whether to recorrelate or decorrelate colors. + Default: ``False`` Returns: - chw (torch.tensor): A tensor with it's colors recorrelated or + chw (torch.Tensor): A tensor with it's colors recorrelated or decorrelated. """ @@ -197,12 +215,12 @@ def _forward_without_named_dims( Args: - x (torch.tensor): A CHW pr NCHW RGB or RGBA image tensor. - inverse (bool, optional): Whether to recorrelate or decorrelate colors. - Default: False. + x (torch.Tensor): A CHW pr NCHW RGB or RGBA image tensor. + inverse (bool, optional): Whether to recorrelate or decorrelate colors. + Default: ``False`` Returns: - chw (torch.tensor): A tensor with it's colors recorrelated or + chw (torch.Tensor): A tensor with it's colors recorrelated or decorrelated. """ @@ -244,12 +262,12 @@ def forward(self, x: torch.Tensor, inverse: bool = False) -> torch.Tensor: Args: - x (torch.tensor): A CHW or NCHW RGB or RGBA image tensor. - inverse (bool, optional): Whether to recorrelate or decorrelate colors. - Default: False. + x (torch.Tensor): A CHW or NCHW RGB or RGBA image tensor. + inverse (bool, optional): Whether to recorrelate or decorrelate colors. + Default: ``False`` Returns: - chw (torch.tensor): A tensor with it's colors recorrelated or + chw (torch.Tensor): A tensor with it's colors recorrelated or decorrelated. """ if torch.jit.is_scripting(): @@ -263,6 +281,8 @@ class CenterCrop(torch.nn.Module): """ Center crop a specified amount from a tensor. If input are smaller than the specified crop size, padding will be applied. + + See :func:`.center_crop` for the functional version of this transform. """ __constants__ = [ @@ -291,18 +311,20 @@ def __init__( pixels_from_edges (bool, optional): Whether to treat crop size values as the number of pixels from the tensor's edge, or an exact shape in the center. - Default: False + Default: ``False`` offset_left (bool, optional): If the cropped away sides are not equal in size, offset center by +1 to the left and/or top. - This parameter is only valid when `pixels_from_edges` is False. - Default: False - padding_mode (optional, str): One of "constant", "reflect", "replicate" - or "circular". This parameter is only used if the crop size is larger - than the image size. - Default: "constant" - padding_value (float, optional): fill value for "constant" padding. This - parameter is only used if the crop size is larger than the image size. - Default: 0.0 + This parameter is only valid when ``pixels_from_edges`` is + ``False``. + Default: ``False`` + padding_mode (str, optional): One of: ``"constant"``, ``"reflect"``, + ``"replicate"``, or ``"circular"``. This parameter is only used if the + crop size is larger than the image size. + Default: ``"constant"`` + padding_value (float, optional): fill value for ``"constant"`` padding. + This parameter is only used if the crop size is larger than the image + size. + Default: ``0.0`` """ super().__init__() if not hasattr(size, "__iter__"): @@ -333,7 +355,7 @@ def forward(self, input: torch.Tensor) -> torch.Tensor: input (torch.Tensor): Input to center crop. Returns: - **tensor** (torch.Tensor): A center cropped *tensor*. + tensor (torch.Tensor): A center cropped NCHW tensor. """ return center_crop( @@ -358,28 +380,32 @@ def center_crop( Center crop a specified amount from a tensor. If input are smaller than the specified crop size, padding will be applied. + This function is the functional version of: :class:`.CenterCrop`. + Args: - input (tensor): A CHW or NCHW image tensor to center crop. + input (torch.Tensor): A CHW or NCHW image tensor to center crop. size (int, sequence, int): Number of pixels to center crop away. pixels_from_edges (bool, optional): Whether to treat crop size values as the number of pixels from the tensor's edge, or an exact shape in the center. - Default: False + Default: ``False`` offset_left (bool, optional): If the cropped away sides are not equal in size, offset center by +1 to the left and/or top. - This parameter is only valid when `pixels_from_edges` is False. - Default: False - padding_mode (optional, str): One of "constant", "reflect", "replicate" or - "circular". This parameter is only used if the crop size is larger than - the image size. - Default: "constant" - padding_value (float, optional): fill value for "constant" padding. This - parameter is only used if the crop size is larger than the image size. - Default: 0.0 + This parameter is only valid when ``pixels_from_edges`` is + ``False``. + Default: ``False`` + padding_mode (str, optional): One of: ``"constant"``, ``"reflect"``, + ``"replicate"``, or ``"circular"``. This parameter is only used if the crop + size is larger than the image size. + Default: ``"constant"`` + padding_value (float, optional): fill value for ``"constant"`` padding. + This parameter is only used if the crop size is larger than the image + size. + Default: ``0.0`` Returns: - **tensor**: A center cropped *tensor*. + tensor (torch.Tensor): A center cropped NCHW tensor. """ assert input.dim() == 3 or input.dim() == 4 @@ -433,7 +459,8 @@ def center_crop( class RandomScale(nn.Module): """ - Apply random rescaling on a NCHW tensor using the F.interpolate function. + Apply random rescaling on a NCHW tensor using the + :func:`torch.nn.functional.interpolate` function. """ __constants__ = [ @@ -458,21 +485,26 @@ def __init__( Args: scale (float, sequence, or torch.distribution): Sequence of rescaling - values to randomly select from, or a torch.distributions instance. + values to randomly select from, or a :mod:`torch.distributions` + instance. mode (str, optional): Interpolation mode to use. See documentation of - F.interpolate for more details. One of; "bilinear", "nearest", "area", - or "bicubic". - Default: "bilinear" + :func:`torch.nn.functional.interpolate` for more details. One of; + ``"bilinear"``, ``"nearest"``, ``"nearest-exact"``, ``"area"``, or + ``"bicubic"``. + Default: ``"bilinear"`` align_corners (bool, optional): Whether or not to align corners. See - documentation of F.interpolate for more details. - Default: False + documentation of :func:`torch.nn.functional.interpolate` for more + details. + Default: ``False`` recompute_scale_factor (bool, optional): Whether or not to recompute the - scale factor See documentation of F.interpolate for more details. - Default: False + scale factor See documentation of + :func:`torch.nn.functional.interpolate` for more details. + Default: ``False`` antialias (bool, optional): Whether or not use to anti-aliasing. This - feature is currently only available for "bilinear" and "bicubic" - modes. See documentation of F.interpolate for more details. - Default: False + feature is currently only available for ``"bilinear"`` and + ``"bicubic"`` modes. See documentation of + :func:`torch.nn.functional.interpolate` for more details. + Default: ``False`` """ super().__init__() assert mode not in ["linear", "trilinear"] @@ -508,7 +540,7 @@ def _scale_tensor(self, x: torch.Tensor, scale: float) -> torch.Tensor: scale (float): The amount to scale the NCHW image by. Returns: - **x** (torch.Tensor): A scaled NCHW image tensor. + x (torch.Tensor): A scaled NCHW image tensor. """ if self._has_antialias: x = F.interpolate( @@ -538,7 +570,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: x (torch.Tensor): NCHW image tensor to randomly scale. Returns: - **x** (torch.Tensor): A randomly scaled NCHW image *tensor*. + x (torch.Tensor): A randomly scaled NCHW image tensor. """ assert x.dim() == 4 if self._is_distribution: @@ -562,11 +594,11 @@ class RandomScaleAffine(nn.Module): """ Apply random rescaling on a NCHW tensor. - This random scaling transform utilizes F.affine_grid & F.grid_sample, and as a - result has two key differences to the default RandomScale transforms This - transform either shrinks an image while adding a background, or center crops image - and then resizes it to a larger size. This means that the output image shape is the - same shape as the input image. + This random scaling transform utilizes :func:`torch.nn.functional.affine_grid` + & :func:`torch.nn.functional.grid_sample`, and as a result has two key differences + to the default RandomScale transforms This transform either shrinks an image while + adding a background, or center crops image and then resizes it to a larger size. + This means that the output image shape is the same shape as the input image. In constrast to RandomScaleAffine, the default RandomScale transform simply resizes the input image using F.interpolate. @@ -591,18 +623,21 @@ def __init__( Args: scale (float, sequence, or torch.distribution): Sequence of rescaling - values to randomly select from, or a torch.distributions instance. + values to randomly select from, or a :mod:`torch.distributions` + instance. mode (str, optional): Interpolation mode to use. See documentation of - F.grid_sample for more details. One of; "bilinear", "nearest", or - "bicubic". - Default: "bilinear" + :func:`torch.nn.functional.grid_sample` for more details. One of; + ``"bilinear"``, ``"nearest"``, or ``"bicubic"``. + Default: ``"bilinear"`` padding_mode (str, optional): Padding mode for values that fall outside of - the grid. See documentation of F.grid_sample for more details. One of; - "zeros", "border", or "reflection". - Default: "zeros" + the grid. See documentation of :func:`torch.nn.functional.grid_sample` + for more details. One of; ``"zeros"``, ``"border"``, or + ``"reflection"``. + Default: ``"zeros"`` align_corners (bool, optional): Whether or not to align corners. See - documentation of F.affine_grid & F.grid_sample for more details. - Default: False + documentation of :func:`torch.nn.functional.affine_grid` & + :func:`torch.nn.functional.grid_sample` for more details. + Default: ``False`` """ super().__init__() if isinstance(scale, torch.distributions.distribution.Distribution): @@ -637,7 +672,7 @@ def _get_scale_mat( m (float): The scale value to use. Returns: - **scale_mat** (torch.Tensor): A scale matrix. + scale_mat (torch.Tensor): A scale matrix. """ scale_mat = torch.tensor( [[m, 0.0, 0.0], [0.0, m, 0.0]], device=device, dtype=dtype @@ -654,7 +689,7 @@ def _scale_tensor(self, x: torch.Tensor, scale: float) -> torch.Tensor: scale (float): The amount to scale the NCHW image by. Returns: - **x** (torch.Tensor): A scaled NCHW image tensor. + x (torch.Tensor): A scaled NCHW image tensor. """ scale_matrix = self._get_scale_mat(scale, x.device, x.dtype)[None, ...].repeat( x.shape[0], 1, 1 @@ -678,7 +713,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: x (torch.Tensor): NCHW image tensor to randomly scale. Returns: - **x** (torch.Tensor): A randomly scaled NCHW image *tensor*. + x (torch.Tensor): A randomly scaled NCHW image tensor. """ assert x.dim() == 4 if self._is_distribution: @@ -736,7 +771,7 @@ def forward(self, input: torch.Tensor) -> torch.Tensor: input (torch.Tensor): Input to randomly translate. Returns: - **tensor** (torch.Tensor): A randomly translated *tensor*. + tensor (torch.Tensor): A randomly translated NCHW tensor. """ insets = torch.randint( high=self.pad_range, @@ -750,8 +785,7 @@ def forward(self, input: torch.Tensor) -> torch.Tensor: class RandomRotation(nn.Module): """ - Apply random rotation transforms on a NCHW tensor, using a sequence of degrees or - torch.distributions instance. + Apply random rotation transforms on a NCHW tensor. """ __constants__ = [ @@ -772,19 +806,22 @@ def __init__( """ Args: - degrees (float, sequence, or torch.distribution): Tuple of degrees values - to randomly select from, or a torch.distributions instance. + degrees (float, sequence, or torch.distribution): Tuple or list of degrees + values to randomly select from, or a :mod:`torch.distributions` + instance. mode (str, optional): Interpolation mode to use. See documentation of - F.grid_sample for more details. One of; "bilinear", "nearest", or - "bicubic". - Default: "bilinear" + :func:`torch.nn.functional.grid_sample` for more details. One of; + ``"bilinear"``, ``"nearest"``, or ``"bicubic"``. + Default: ``"bilinear"`` padding_mode (str, optional): Padding mode for values that fall outside of - the grid. See documentation of F.grid_sample for more details. One of; - "zeros", "border", or "reflection". - Default: "zeros" + the grid. See documentation of :func:`torch.nn.functional.grid_sample` + for more details. One of; ``"zeros"``, ``"border"``, or + ``"reflection"``. + Default: ``"zeros"`` align_corners (bool, optional): Whether or not to align corners. See - documentation of F.affine_grid & F.grid_sample for more details. - Default: False + documentation of :func:`torch.nn.functional.affine_grid` & + :func:`torch.nn.functional.grid_sample` for more details. + Default: ``False`` """ super().__init__() if isinstance(degrees, torch.distributions.distribution.Distribution): @@ -820,7 +857,7 @@ def _get_rot_mat( theta (float): The rotation value in degrees. Returns: - **rot_mat** (torch.Tensor): A rotation matrix. + rot_mat (torch.Tensor): A rotation matrix. """ theta = theta * math.pi / 180.0 rot_mat = torch.tensor( @@ -843,7 +880,7 @@ def _rotate_tensor(self, x: torch.Tensor, theta: float) -> torch.Tensor: theta (float): The amount to rotate the NCHW image, in degrees. Returns: - **x** (torch.Tensor): A rotated NCHW image tensor. + x (torch.Tensor): A rotated NCHW image tensor. """ rot_matrix = self._get_rot_mat(theta, x.device, x.dtype)[None, ...].repeat( x.shape[0], 1, 1 @@ -867,7 +904,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: x (torch.Tensor): NCHW image tensor to randomly rotate. Returns: - **x** (torch.Tensor): A randomly rotated NCHW image *tensor*. + x (torch.Tensor): A randomly rotated NCHW image tensor. """ assert x.dim() == 4 if self._is_distribution: @@ -899,7 +936,7 @@ def __init__(self, multiplier: float = 1.0) -> None: """ Args: - multiplier (float, optional): A float value used to scale the input. + multiplier (float, optional): A float value used to scale the input. """ super().__init__() self.multiplier = multiplier @@ -913,7 +950,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: x (torch.Tensor): Input to scale values of. Returns: - **tensor** (torch.Tensor): tensor with it's values scaled. + tensor (torch.Tensor): tensor with it's values scaled. """ return x * self.multiplier @@ -932,31 +969,13 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: x (torch.Tensor): RGB image tensor to convert to BGR. Returns: - **BGR tensor** (torch.Tensor): A BGR tensor. + BGR tensor (torch.Tensor): A BGR tensor. """ assert x.dim() == 4 assert x.size(1) == 3 return x[:, [2, 1, 0]] -# class TransformationRobustness(nn.Module): -# def __init__(self, jitter=False, scale=False): -# super().__init__() -# if jitter: -# self.jitter = RandomSpatialJitter(4) -# if scale: -# self.scale = RandomScale() - -# def forward(self, x): -# original_shape = x.shape -# if hasattr(self, "jitter"): -# x = self.jitter(x) -# if hasattr(self, "scale"): -# x = self.scale(x) -# cropped = center_crop(x, original_shape) -# return cropped - - # class RandomHomography(nn.Module): # def __init__(self): # super().__init__() @@ -975,11 +994,11 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: class GaussianSmoothing(nn.Module): """ Apply gaussian smoothing on a - 1d, 2d or 3d tensor. Filtering is performed seperately for each channel + 1d, 2d or 3d tensor. Filtering is performed separately for each channel in the input using a depthwise convolution. """ - __constants__ = ["groups"] + __constants__ = ["groups", "padding"] def __init__( self, @@ -987,6 +1006,7 @@ def __init__( kernel_size: Union[int, Sequence[int]], sigma: Union[float, Sequence[float]], dim: int = 2, + padding: Union[str, int, Tuple[int, int]] = "same", ) -> None: """ Args: @@ -996,7 +1016,11 @@ def __init__( kernel_size (int, sequence): Size of the gaussian kernel. sigma (float, sequence): Standard deviation of the gaussian kernel. dim (int, optional): The number of dimensions of the data. - Default value is 2 (spatial). + Default value is ``2`` for (spatial) + padding (str, int or list of tuple, optional): The desired padding amount + or mode to use. One of; ``"valid"``, ``"same"``, a single number, or a + tuple in the format of: (padH, padW). + Default: ``"same"`` """ super().__init__() if isinstance(kernel_size, numbers.Number): @@ -1007,9 +1031,18 @@ def __init__( # The gaussian kernel is the product of the # gaussian function of each dimension. kernel = 1 - meshgrids = torch.meshgrid( - [torch.arange(size, dtype=torch.float32) for size in kernel_size] - ) + + # PyTorch v1.10.0 adds a new indexing argument + if version.parse(torch.__version__) >= version.parse("1.10.0"): + meshgrids = torch.meshgrid( + [torch.arange(size, dtype=torch.float32) for size in kernel_size], + indexing="ij", + ) + else: + meshgrids = torch.meshgrid( + [torch.arange(size, dtype=torch.float32) for size in kernel_size] + ) + for size, std, mgrid in zip(kernel_size, sigma, meshgrids): mean = (size - 1) / 2 kernel *= ( @@ -1027,6 +1060,7 @@ def __init__( self.register_buffer("weight", kernel) self.groups = channels + self.padding = padding if dim == 1: self.conv = F.conv1d @@ -1048,9 +1082,11 @@ def forward(self, input: torch.Tensor) -> torch.Tensor: input (torch.Tensor): Input to apply gaussian filter on. Returns: - **filtered** (torch.Tensor): Filtered output. + filtered (torch.Tensor): Filtered output. """ - return self.conv(input, weight=self.weight, groups=self.groups) + return self.conv( + input, weight=self.weight, groups=self.groups, padding=self.padding + ) class SymmetricPadding(torch.autograd.Function): @@ -1070,7 +1106,7 @@ def forward( x (torch.Tensor): Input to apply symmetric padding on. Returns: - **tensor** (torch.Tensor): Padded tensor. + tensor (torch.Tensor): Padded tensor. """ ctx.padding = padding x_device = x.device @@ -1093,7 +1129,7 @@ def backward( grad_output (torch.Tensor): Input to remove symmetric padding from. Returns: - **grad_input** (torch.Tensor): Unpadded tensor. + grad_input (torch.Tensor): Unpadded tensor. """ grad_input = grad_output.clone() B, C, H, W = grad_input.size() @@ -1117,7 +1153,8 @@ def __init__(self, warp: bool = False) -> None: Args: warp (bool, optional): Whether or not to make the resulting RGB colors more - distict from each other. Default is set to False. + distict from each other. + Default: ``False`` """ super().__init__() self.warp = warp @@ -1131,7 +1168,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: x (torch.Tensor): Input to reduce channel dimensions on. Returns: - **3 channel RGB tensor** (torch.Tensor): RGB image tensor. + x (torch.Tensor): A 3 channel RGB image tensor. """ assert x.dim() == 4 return nchannels_to_rgb(x, self.warp) @@ -1181,6 +1218,16 @@ def _center_crop(self, x: torch.Tensor) -> torch.Tensor: ] def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Randomly crop an NCHW image tensor. + + Args: + + x (torch.Tensor): The NCHW image tensor to randomly crop. + + Returns + x (torch.Tensor): The randomly cropped NCHW image tensor. + """ assert x.dim() == 4 hs = int(math.ceil((x.shape[2] - self.crop_size[0]) / 2.0)) ws = int(math.ceil((x.shape[3] - self.crop_size[1]) / 2.0)) @@ -1206,9 +1253,21 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: return self._center_crop(x) +# Define TransformationRobustness defaults externally for easier Sphinx docs formatting +_TR_TRANSLATE: List[int] = [4] * 10 +_TR_SCALE: List[float] = [0.995**n for n in range(-5, 80)] + [ + 0.998**n for n in 2 * list(range(20, 40)) +] +_TR_DEGREES: List[int] = ( + list(range(-20, 20)) + list(range(-10, 10)) + list(range(-5, 5)) + 5 * [0] +) + + class TransformationRobustness(nn.Module): """ - This transform combines the standard transforms together for ease of use. + This transform combines the standard transforms (:class:`.RandomSpatialJitter`, + :class:`.RandomScale` & :class:`.RandomRotation`) together for ease of + use. Multiple jitter transforms can be used to create roughly gaussian distribution of jitter. @@ -1222,15 +1281,9 @@ class TransformationRobustness(nn.Module): def __init__( self, padding_transform: Optional[nn.Module] = nn.ConstantPad2d(2, value=0.5), - translate: Optional[Union[int, List[int]]] = [4] * 10, - scale: Optional[NumSeqOrTensorOrProbDistType] = [ - 0.995**n for n in range(-5, 80) - ] - + [0.998**n for n in 2 * list(range(20, 40))], - degrees: Optional[NumSeqOrTensorOrProbDistType] = list(range(-20, 20)) - + list(range(-10, 10)) - + list(range(-5, 5)) - + 5 * [0], + translate: Optional[Union[int, List[int]]] = _TR_TRANSLATE, + scale: Optional[NumSeqOrTensorOrProbDistType] = _TR_SCALE, + degrees: Optional[NumSeqOrTensorOrProbDistType] = _TR_DEGREES, final_translate: Optional[int] = 2, crop_or_pad_output: bool = False, ) -> None: @@ -1238,26 +1291,30 @@ def __init__( Args: padding_transform (nn.Module, optional): A padding module instance. No - padding will be applied before transforms if set to None. - Default: nn.ConstantPad2d(2, value=0.5) - translate (int or list of int, optional): The max horizontal and vertical - translation to use for each jitter transform. - Default: [4] * 10 + padding will be applied before transforms if set to ``None``. + Default: ``nn.ConstantPad2d(2, value=0.5)`` + translate (int or List[int], optional): The max horizontal and vertical + translation to use for each :class:`.RandomSpatialJitter` transform. + Default: ``[4] * 10`` scale (float, sequence, or torch.distribution, optional): Sequence of - rescaling values to randomly select from, or a torch.distributions - instance. If set to None, no rescaling transform will be used. - Default: A set of optimal values. + rescaling values to randomly select from, or a + :mod:`torch.distributions` instance. If set to ``None``, no + :class:`.RandomScale` transform will be used. + Default: ``[0.995**n for n in range(-5, 80)] + [0.998**n for n in 2 * + list(range(20, 40))]`` degrees (float, sequence, or torch.distribution, optional): Sequence of - degrees to randomly select from, or a torch.distributions - instance. If set to None, no rotation transform will be used. - Default: A set of optimal values. + degrees to randomly select from, or a :mod:`torch.distributions` + instance. If set to ``None``, no :class:`.RandomRotation` transform + will be used. + Default: ``list(range(-20, 20)) + list(range(-10, 10)) + + list(range(-5, 5)) + 5 * [0]`` final_translate (int, optional): The max horizontal and vertical - translation to use for the final jitter transform on fractional - pixels. - Default: 2 + translation to use for the final :class:`.RandomSpatialJitter` + transform on fractional pixels. + Default: ``2`` crop_or_pad_output (bool, optional): Whether or not to crop or pad the transformed output so that it is the same shape as the input. - Default: False + Default: ``False`` """ super().__init__() self.padding_transform = padding_transform @@ -1280,6 +1337,14 @@ def __init__( self.crop_or_pad_output = crop_or_pad_output def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Args: + + x (torch.Tensor): An NCHW tensor. + + Returns: + x (torch.Tensor): A transformed NCHW tensor. + """ assert x.dim() == 4 crop_size = x.shape[2:] diff --git a/captum/optim/_utils/circuits.py b/captum/optim/_utils/circuits.py index 9c84d16247..d82d049fca 100644 --- a/captum/optim/_utils/circuits.py +++ b/captum/optim/_utils/circuits.py @@ -1,4 +1,4 @@ -from typing import Callable, Optional, Tuple, Union +from typing import Callable, Optional import torch import torch.nn as nn @@ -11,7 +11,7 @@ def extract_expanded_weights( model: nn.Module, target1: nn.Module, target2: nn.Module, - crop_shape: Optional[Union[Tuple[int, int], IntSeqOrIntType]] = None, + crop_shape: Optional[IntSeqOrIntType] = None, model_input: TupleOfTensorsOrTensorType = torch.zeros(1, 3, 224, 224), crop_func: Optional[Callable] = center_crop, ) -> torch.Tensor: @@ -20,24 +20,47 @@ def extract_expanded_weights( literally adjacent in a neural network, or where the weights aren’t directly represented in a single weight tensor. + Example:: + + >>> # Load InceptionV1 model with nonlinear layers replaced by + >>> # their linear equivalents + >>> linear_model = opt.models.googlenet( + >>> pretrained=True, use_linear_modules_only=True + >>> ).eval() + >>> # Extract weight interactions between target layers + >>> W_3a_3b = opt.circuits.extract_expanded_weights( + >>> linear_model, linear_model.mixed3a, linear_model.mixed3b, 5 + >>> ) + >>> # Display results for channel 147 of mixed3a and channel 379 of + >>> # mixed3b, in human readable format + >>> W_3a_3b_hm = opt.weights_to_heatmap_2d( + >>> W_3a_3b[379, 147, ...] / W_3a_3b[379, ...].max() + >>> ) + >>> opt.show(W_3a_3b_hm) + Voss, et al., "Visualizing Weights", Distill, 2021. See: https://distill.pub/2020/circuits/visualizing-weights/ Args: - model (nn.Module): The reference to PyTorch model instance. - target1 (nn.module): The starting target layer. Must be below the layer - specified for target2. - target2 (nn.Module): The end target layer. Must be above the layer - specified for target1. - crop_shape (int or tuple of ints, optional): Specify the exact output size - to crop out. - model_input (tensor or tuple of tensors, optional): The input to use + + model (nn.Module): The reference to PyTorch model instance. + target1 (nn.Module): The starting target layer. Must be below the layer + specified for ``target2``. + target2 (nn.Module): The end target layer. Must be above the layer + specified for ``target1``. + crop_shape (int, list of int, or tuple of int, optional): Specify the exact + output size to crop out. Set to ``None`` for no cropping. + Default: ``None`` + model_input (torch.Tensor or tuple of torch.Tensor, optional): The input to use with the specified model. - crop_func (Callable, optional): Specify a function to crop away the padding + Default: ``torch.zeros(1, 3, 224, 224)`` + crop_func (Callable, optional): Specify a function to crop away the padding from the output weights. + Default: :func:`.center_crop` + Returns: - *tensor*: A tensor containing the expanded weights in the form of: - (target2 output channels, target1 output channels, height, width) + tensor (torch.Tensor): A tensor containing the expanded weights in the form + of: (target2 output channels, target1 output channels, height, width) """ if isinstance(model_input, torch.Tensor): model_input = model_input.to(next(model.parameters()).device) diff --git a/captum/optim/_utils/image/atlas.py b/captum/optim/_utils/image/atlas.py index 5954a3a471..3e616fd55c 100644 --- a/captum/optim/_utils/image/atlas.py +++ b/captum/optim/_utils/image/atlas.py @@ -14,20 +14,20 @@ def normalize_grid( Args: - xy_grid (torch.tensor): The xy coordinate grid tensor to normalize, + xy_grid (torch.Tensor): The xy coordinate grid tensor to normalize, with a shape of: [n_points, n_axes]. min_percentile (float, optional): The minimum percentile to use when normalizing the tensor. Value must be in the range [0, 1]. - Default: 0.01 + Default: ``0.01`` max_percentile (float, optional): The maximum percentile to use when normalizing the tensor. Value must be in the range [0, 1]. - Default: 0.99 + Default: ``0.99`` relative_margin (float, optional): The relative margin to use when normalizing the tensor. - Default: 0.1 + Default: ``0.1`` Returns: - normalized_grid (torch.tensor): A normalized xy coordinate grid tensor. + normalized_grid (torch.Tensor): A normalized xy coordinate grid tensor. """ assert xy_grid.dim() == 2 @@ -56,8 +56,8 @@ def calc_grid_indices( This function draws a 2D grid across the irregular grid of points, and then groups point indices based on the grid cell they fall within. The grid cells are then filled with 1D tensors that have anywhere from 0 to n_indices values in them. The - sets of grid indices can then be used with the compute_avg_cell_samples function - to create atlas grid cell direction vectors. + sets of grid indices can then be used with the :func:`compute_avg_cell_samples` + function to create atlas grid cell direction vectors. Indices are stored for grid cells in an xy matrix, where the outer lists represent x positions and the inner lists represent y positions. Each grid cell is filled @@ -71,23 +71,31 @@ def calc_grid_indices( Each cell in the above example would contain a list of indices inside a tensor for that particular cell, like this: - indices = [ - [tensor([0, 5]), tensor([1]), tensor([2, 3])], - [tensor([]), tensor([4]), tensor([])], - [tensor([6, 7, 8]), tensor([]), tensor([])], - ] + + :: + + indices = [ + [tensor([0, 5]), tensor([1]), tensor([2, 3])], + [tensor([]), tensor([4]), tensor([])], + [tensor([6, 7, 8]), tensor([]), tensor([])], + ] Args: - xy_grid (torch.tensor): The xy coordinate grid activation samples, with a shape + + xy_grid (torch.Tensor): The xy coordinate grid activation samples, with a shape of: [n_points, 2]. - grid_size (Tuple[int, int]): The grid_size of grid cells to use. The grid_size - variable should be in the format of: [width, height]. - x_extent (Tuple[float, float], optional): The x axis range to use. - Default: (0.0, 1.0) - y_extent (Tuple[float, float], optional): The y axis range to use. - Default: (0.0, 1.0) + grid_size (tuple of int): The number of grid cells to use across the height + and width dimensions. The ``grid_size`` variable should be in the format + of: [width, height]. + x_extent (tuple of float, optional): The x axis range to use, in the format + of: (min, max). + Default: ``(0.0, 1.0)`` + y_extent (tuple of float, optional): The y axis range to use, in the format + of: (min, max). + Default: ``(0.0, 1.0)`` + Returns: - indices (list of list of torch.Tensors): List of lists of grid indices + indices (list of list of torch.Tensor): List of lists of grid indices stored inside tensors to use. Each 1D tensor of indices has a size of: 0 to n_indices. """ @@ -121,33 +129,35 @@ def compute_avg_cell_samples( """ Create direction vectors for sets of activation samples, attribution samples, and grid indices. Grid cells without the minimum number of points as specified by - min_density will be ignored. The calc_grid_indices function can be used to produce - the values required for the grid_indices variable. + ``min_density`` will be ignored. The :func:`calc_grid_indices` function can be used + to produce the values required for the ``grid_indices`` variable. Carter, et al., "Activation Atlas", Distill, 2019. https://distill.pub/2019/activation-atlas/ Args: - grid_indices (list of list of torch.tensor): List of lists of grid indices + grid_indices (list of list of torch.Tensor): List of lists of grid indices stored inside tensors to use. Each 1D tensor of indices has a size of: 0 to n_indices. - raw_samples (torch.tensor): Raw unmodified activation or attribution samples, + raw_samples (torch.Tensor): Raw unmodified activation or attribution samples, with a shape of: [n_samples, n_channels]. - grid_size (Tuple[int, int]): The grid_size of grid cells to use. The grid_size - variable should be in the format of: [width, height]. + grid_size (tuple of int): The number of grid cells to use across the height + and width dimensions. The ``grid_size`` variable should be in the format + of: [width, height]. min_density (int, optional): The minimum number of points for a cell to be counted. - Default: 8 + Default: ``8`` Returns: - cell_vecs (torch.tensor): A tensor containing all the direction vectors that - were created, stacked along the batch dimension with a shape of: - [n_vecs, n_channels]. - cell_coords (list of Tuple[int, int, int]): List of coordinates for grid - spatial positions of each direction vector, and the number of samples used - for the cell. The list for each cell is in the format of: - [x_coord, y_coord, number_of_samples_used]. + cell_vecs_and_cell_coords: A 2 element tuple of: ``(cell_vecs, cell_coords)``. + - cell_vecs (torch.Tensor): A tensor containing all the direction vectors + that were created, stacked along the batch dimension with a shape of: + [n_vecs, n_channels]. + - cell_coords (list of tuple of int): List of coordinates for grid + spatial positions of each direction vector, and the number of samples + used for the cell. The list for each cell is in the format of: + [x_coord, y_coord, number_of_samples_used]. """ assert raw_samples.dim() == 2 @@ -174,39 +184,43 @@ def create_atlas_vectors( ) -> Tuple[torch.Tensor, List[Tuple[int, int, int]]]: """ Create direction vectors by splitting an irregular grid of activation samples into - cells. Grid cells without the minimum number of points as specified by min_density - will be ignored. + cells. Grid cells without the minimum number of points as specified by + ``min_density`` will be ignored. Carter, et al., "Activation Atlas", Distill, 2019. https://distill.pub/2019/activation-atlas/ Args: - xy_grid (torch.tensor): The xy coordinate grid activation samples, with a shape + xy_grid (torch.Tensor): The xy coordinate grid activation samples, with a shape of: [n_points, 2]. - raw_activations (torch.tensor): Raw unmodified activation samples, with a shape + raw_activations (torch.Tensor): Raw unmodified activation samples, with a shape of: [n_samples, n_channels]. - grid_size (Tuple[int, int]): The size of grid cells to use. The grid_size - variable should be in the format of: [width, height]. + grid_size (tuple of int): The number of grid cells to use across the height + and width dimensions. The ``grid_size`` variable should be in the format + of: [width, height]. min_density (int, optional): The minimum number of points for a cell to be counted. - Default: 8 + Default: ``8`` normalize (bool, optional): Whether or not to remove outliers from an xy coordinate grid tensor, and rescale it to [0, 1]. - Default: True - x_extent (Tuple[float, float], optional): The x axis range to use. - Default: (0.0, 1.0) - y_extent (Tuple[float, float], optional): The y axis range to use. - Default: (0.0, 1.0) + Default: ``True`` + x_extent (tuple of float, optional): The x axis range to use, in the format + of: (min, max). + Default: ``(0.0, 1.0)`` + y_extent (tuple of float, optional): The y axis range to use, in the format + of: (min, max). + Default: ``(0.0, 1.0)`` Returns: - grid_vecs (torch.tensor): A tensor containing all the direction vectors that - were created, stacked along the batch dimension, with a shape of: - [n_vecs, n_channels]. - cell_coords (list of Tuple[int, int, int]): List of coordinates for grid - spatial positions of each direction vector, and the number of samples used - for the cell. The list for each cell is in the format of: - [x_coord, y_coord, number_of_samples_used]. + grid_vecs_and_cell_coords: A 2 element tuple of: ``(grid_vecs, cell_coords)``. + - grid_vecs (torch.Tensor): A tensor containing all the direction vectors + that were created, stacked along the batch dimension, with a shape + of: [n_vecs, n_channels]. + - cell_coords (list of tuple of int): List of coordinates for grid + spatial positions of each direction vector, and the number of samples + used for the cell. The list for each cell is in the format of: + [x_coord, y_coord, number_of_samples_used]. """ assert xy_grid.dim() == 2 and xy_grid.size(1) == 2 @@ -235,19 +249,19 @@ def create_atlas( Args: - cells (list of torch.tensor or torch.tensor): A list or stack of NCHW image + cells (list of torch.Tensor or torch.Tensor): A list or stack of NCHW image tensors made with atlas direction vectors. - coords (list of Tuple[int, int] or list of Tuple[int, int, int]): A list of - coordinates to use for the atlas image tensors. The first 2 values in each - coordinate list should be: [x, y, ...]. - grid_size (Tuple[int, int]): The size of grid cells to use. The grid_size - variable should be in the format of: [width, height]. + coords (list of tuple of int): A list of coordinates to use for the atlas image + tensors. The first 2 values in each coordinate list should be: [x, y, ...]. + grid_size (tuple of int): The number of grid cells to use across the height + and width dimensions. The ``grid_size`` variable should be in the format + of: [width, height]. base_tensor (Callable, optional): What to use for the atlas base tensor. Basic - choices are: torch.ones or torch.zeros. - Default: torch.ones + choices are: :func:`torch.ones` or :func:`torch.zeros`. + Default: :func:`torch.ones` Returns: - atlas_canvas (torch.tensor): The full activation atlas visualization, with a + atlas_canvas (torch.Tensor): The full activation atlas visualization, with a shape of NCHW. """ @@ -262,7 +276,7 @@ def create_atlas( # cell_b -> number of images # cell_c -> image channel - # cell_h -> image hight + # cell_h -> image height # cell_w -> image width cell_b, cell_c, cell_h, cell_w = cells[0].shape atlas_canvas = base_tensor( diff --git a/captum/optim/_utils/image/common.py b/captum/optim/_utils/image/common.py index f1cdc5f477..a410897d38 100644 --- a/captum/optim/_utils/image/common.py +++ b/captum/optim/_utils/image/common.py @@ -1,5 +1,5 @@ import math -from typing import List, Optional, Tuple, Union +from typing import Callable, List, Optional, Tuple, Union import matplotlib.pyplot as plt import numpy as np @@ -27,13 +27,13 @@ def make_grid_image( tiles (torch.Tensor or list of torch.Tensor): A stack of NCHW image tensors or a list of NCHW image tensors to create a grid from. - nrow (int, optional): The number of rows to use for the grid image. - Default: 4 + images_per_row (int, optional): The number of rows to use for the grid image. + Default: ``4`` padding (int, optional): The amount of padding between images in the grid images. - padding: 2 + padding: ``2`` pad_value (float, optional): The value to use for the padding. - Default: 0.0 + Default: ``0.0`` Returns: grid_img (torch.Tensor): The full NCHW grid image. @@ -79,22 +79,27 @@ def show( """ Show CHW & NCHW tensors as an image. + Alias: ``captum.optim.images.show`` + Args: x (torch.Tensor): The tensor you want to display as an image. - figsize (Tuple[int, int], optional): height & width to use - for displaying the image figure. - scale (float): Value to multiply the input tensor by so that + figsize (tuple of int, optional): The height & width to use for displaying the + ``ImageTensor`` figure, in the format of: (height, width). + Default: ``None`` + scale (float, optional): Value to multiply the input tensor by so that it's value range is [0-255] for display. + Default: ``255.0`` images_per_row (int, optional): The number of images per row to use for the - grid image. Default is set to None for no grid image creation. - Default: None + grid image. Default is set to ``None`` for no grid image creation. + Default: ``None`` padding (int, optional): The amount of padding between images in the grid - images. This parameter only has an effect if nrow is not None. - Default: 2 + images. This parameter only has an effect if ``images_per_row`` is not + ``None``. + Default: ``2`` pad_value (float, optional): The value to use for the padding. This parameter - only has an effect if nrow is not None. - Default: 0.0 + only has an effect if ``images_per_row`` is not ``None``. + Default: ``0.0`` """ if x.dim() not in [3, 4]: @@ -127,24 +132,28 @@ def save_tensor_as_image( """ Save RGB & RGBA image tensors with a shape of CHW or NCHW as images. + Alias: ``captum.optim.images.save_tensor_as_image`` + Args: x (torch.Tensor): The tensor you want to save as an image. filename (str): The filename to use when saving the image. scale (float, optional): Value to multiply the input tensor by so that it's value range is [0-255] for saving. + Default: ``255.0`` mode (str, optional): A PIL / Pillow supported colorspace. Default is set to None for automatic RGB / RGBA detection and usage. - Default: None + Default: ``None`` images_per_row (int, optional): The number of images per row to use for the grid image. Default is set to None for no grid image creation. - Default: None + Default: ``None`` padding (int, optional): The amount of padding between images in the grid - images. This parameter only has an effect if `nrow` is not None. - Default: 2 + images. This parameter only has an effect if ``images_per_row`` is not + ``None``. + Default: ``2`` pad_value (float, optional): The value to use for the padding. This parameter - only has an effect if `nrow` is not None. - Default: 0.0 + only has an effect if ``images_per_row`` is not ``None``. + Default: ``0.0`` """ if x.dim() not in [3, 4]: @@ -170,14 +179,14 @@ def get_neuron_pos( """ Args: - H (int) The height - W (int) The width + H (int): The h position to use. + W (int): The w position to use. x (int, optional): Optionally specify and exact x location of the neuron. If - set to None, then the center x location will be used. - Default: None + set to ``None``, then the center x location will be used. + Default: ``None`` y (int, optional): Optionally specify and exact y location of the neuron. If - set to None, then the center y location will be used. - Default: None + set to ``None``, then the center y location will be used. + Default: ``None`` Return: Tuple[_x, _y] (Tuple[int, int]): The x and y dimensions of the neuron. @@ -208,17 +217,22 @@ def _dot_cossim( a specified dimension. Args: + x (torch.Tensor): The tensor that you wish to compute the cosine similarity for in relation to tensor y. y (torch.Tensor): The tensor that you wish to compute the cosine similarity for in relation to tensor x. cossim_pow (float, optional): The desired cosine similarity power to use. + Default: ``0.0`` dim (int, optional): The target dimension for computing cosine similarity. + Default: ``1`` eps (float, optional): If cossim_pow is greater than zero, the desired epsilon value to use for cosine similarity calculations. + Default: ``1e-8`` + Returns: tensor (torch.Tensor): Dot cosine similarity between x and y, along the - specified dim. + specified dim. """ dot = torch.sum(x * y, dim) @@ -241,13 +255,16 @@ def hue_to_rgb( ) -> torch.Tensor: """ Create an RGB unit vector based on a hue of the input angle. + Args: + angle (float): The hue angle to create an RGB color for. device (torch.device, optional): The device to create the angle color tensor on. - Default: torch.device("cpu") + Default: ``torch.device("cpu")`` warp (bool, optional): Whether or not to make colors more distinguishable. - Default: True + Default: ``True`` + Returns: color_vec (torch.Tensor): A color vector. """ @@ -288,11 +305,12 @@ def nchannels_to_rgb( Args: - x (torch.Tensor): NCHW image tensor to transform into RGB image. - warp (bool, optional): Whether or not to make colors more distinguishable. - Default: True + x (torch.Tensor): NCHW image tensor to transform into RGB image. + warp (bool, optional): Whether or not to make colors more distinguishable. + Default: ``True`` eps (float, optional): An optional epsilon value. - Default: 1e-4 + Default: ``1e-4`` + Returns: tensor (torch.Tensor): An NCHW RGB image tensor. """ @@ -326,13 +344,15 @@ def weights_to_heatmap_2d( no excitation or inhibition. Args: - weight (torch.Tensor): A 2d tensor to create the heatmap from. - colors (list of str): A list of 5 strings containing hex triplet + + weight (torch.Tensor): A 2d tensor to create the heatmap from. + colors (list of str, optional): A list of 5 strings containing hex triplet (six digit), three-byte hexadecimal color values to use for coloring the heatmap. + Default: ``["0571b0", "92c5de", "f7f7f7", "f4a582", "ca0020"]`` Returns: - color_tensor (torch.Tensor): A weight heatmap. + color_tensor (torch.Tensor): A weight heatmap. """ assert weight.dim() == 2 @@ -363,3 +383,56 @@ def hex2base10(x: str) -> float: * ((1 - (-x - 0.5) * 2) * color_list[1] + (-x - 0.5) * 2 * color_list[0]) ).permute(2, 0, 1) return color_tensor + + +def _create_new_vector( + x: torch.Tensor, + vec: torch.Tensor, + activation_fn: Optional[ + Callable[[torch.Tensor], torch.Tensor] + ] = torch.nn.functional.relu, + move_channel_dim_to_final_dim: bool = True, +) -> torch.Tensor: + """ + Create a vector using a given set of activations and another vector. + This function is intended for use in CLIP related loss objectives. + + https://distill.pub/2021/multimodal-neurons/ + https://github.com/openai/CLIP-featurevis/blob/master/example_facets.py + The einsum equation: "ijkl,j->ikl", used by the paper's associated code is the + same thing as: "[..., C] @ vec", where vec has a shape of 'C'. + + Args: + + x (torch.Tensor): A set of 2d or 4d activations. + vec (torch.Tensor): A 1D direction vector to use, with a compatible shape for + computing the matrix product of the activations. See torch.matmul for + See torch.matmul for more details on compatible shapes: + https://pytorch.org/docs/stable/generated/torch.matmul.html + By default, ``vec`` is expected to share the same size as the channel or + feature dimension of the activations. + activation_fn (Callable, optional): An optional activation function to + apply to the activations before computing the matrix product. If set + to None, then no activation function will be used. + Default: ``torch.nn.functional.relu`` + move_channel_dim_to_final_dim (bool, optional): Whether or not to move the + channel dimension to the last dimension before computing the matrix + product. + Default: ``True`` + + Returns + x (torch.Tensor): A vector created from the input activations and the + stored vector. + """ + assert x.device == vec.device + assert x.dim() > 1 and vec.dim() == 1 + if activation_fn: + x = activation_fn(x) + if x.dim() > 2: + if move_channel_dim_to_final_dim: + permute_vals = [0] + list(range(x.dim()))[2:] + [1] + x = x.permute(*permute_vals) + mean_vals = list(range(1, x.dim() - 1)) + return torch.mean(x @ vec, mean_vals) + else: + return (x @ vec)[:, None] diff --git a/captum/optim/_utils/image/dataset.py b/captum/optim/_utils/image/dataset.py index c894173990..7f03129ac7 100644 --- a/captum/optim/_utils/image/dataset.py +++ b/captum/optim/_utils/image/dataset.py @@ -1,6 +1,7 @@ from typing import cast import torch +from packaging import version try: from tqdm.auto import tqdm @@ -18,11 +19,11 @@ def image_cov(x: torch.Tensor) -> torch.Tensor: Args: - x (torch.Tensor): One or more NCHW image tensors stacked across the batch + x (torch.Tensor): One or more NCHW image tensors stacked across the batch dimension. Returns: - *tensor* (torch.Tensor): The average color channel covariance matrix for the + tensor (torch.Tensor): The average color channel covariance matrix for the for the input tensor, with a shape of: [n_channels, n_channels]. """ @@ -41,18 +42,27 @@ def dataset_cov_matrix( """ Calculate the covariance matrix for an image dataset. + Example:: + + >>> # Load image dataset + >>> dataset = torchvision.datasets.ImageFolder("") + >>> dataset_loader = torch.utils.data.DataLoader(dataset) + >>> # Calculate dataset COV matrix + >>> cov_mtx = opt.dataset.dataset_cov(dataset_loader, True) + >>> print(cov_mtx) + Args: - loader (torch.utils.data.DataLoader): The reference to a PyTorch + loader (torch.utils.data.DataLoader): The reference to a PyTorch dataloader instance. show_progress (bool, optional): Whether or not to display a tqdm progress bar. - Default: False - device (torch.device, optional): The PyTorch device to use for for calculating - the cov matrix. - Default: torch.device("cpu") + Default: ``False`` + device (torch.device, optional): The PyTorch device to use for calculating the + cov matrix. + Default: ``torch.device("cpu")`` Returns: - *tensor*: A covariance matrix for the specified dataset. + tensor (torch.Tensor): A covariance matrix for the specified dataset. """ if show_progress: @@ -73,6 +83,15 @@ def dataset_cov_matrix( return cov_mtx +# Handle older versions of PyTorch +# Defined outside of function in order to support JIT +_torch_norm = ( + torch.linalg.norm + if version.parse(torch.__version__) >= version.parse("1.7.0") + else torch.norm +) + + def cov_matrix_to_klt( cov_mtx: torch.Tensor, normalize: bool = False, epsilon: float = 1e-10 ) -> torch.Tensor: @@ -81,22 +100,22 @@ def cov_matrix_to_klt( Args: - cov_mtx (tensor): A 3 by 3 covariance matrix generated from a dataset. - normalize (bool): Whether or not to normalize the resulting KLT matrix. - Default: False - epsilon (float): + cov_mtx (torch.Tensor): A 3 by 3 covariance matrix generated from a dataset. + normalize (bool): Whether or not to normalize the resulting KLT matrix. + Default: ``False`` + epsilon (float, optional): A small epsilon value to use for numerical + stability. + Default: ``1e-10`` Returns: - *tensor*: A KLT matrix for the specified covariance matrix. + tensor (torch.Tensor): A KLT matrix for the specified covariance + matrix. """ - # Handle older versions of PyTorch - torch_norm = torch.linalg.norm if torch.__version__ >= "1.9.0" else torch.norm - U, S, V = torch.svd(cov_mtx) svd_sqrt = U @ torch.diag(torch.sqrt(S + epsilon)) if normalize: - svd_sqrt / torch.max(torch_norm(svd_sqrt, dim=0)) + svd_sqrt / torch.max(_torch_norm(svd_sqrt, dim=0)) return svd_sqrt @@ -107,25 +126,34 @@ def dataset_klt_matrix( device: torch.device = torch.device("cpu"), ) -> torch.Tensor: """ - Calculate the color correlation matrix, also known as - a Karhunen-Loève transform (KLT) matrix, for a dataset. - The color correlation matrix can then used in color decorrelation - transforms for models trained on the dataset. + Calculate the color correlation matrix, also known as a Karhunen-Loève transform + (KLT) matrix, for a dataset. The color correlation matrix can then used in color + decorrelation & recorrelation transforms like + :class:`captum.optim.transforms.ToRGB` for models trained on the dataset. + + Example:: + + >>> # Load image dataset + >>> dataset = torchvision.datasets.ImageFolder("") + >>> dataset_loader = torch.utils.data.DataLoader(dataset) + >>> # Calculate dataset KLT matrix + >>> klt_mtx = opt.dataset.dataset_klt_matrix(dataset_loader, True, True) + >>> print(klt_mtx) Args: - loader (torch.utils.data.DataLoader): The reference to a PyTorch + loader (torch.utils.data.DataLoader): The reference to a PyTorch dataloader instance. - normalize (bool): Whether or not to normalize the resulting KLT matrix. - Default: False + normalize (bool): Whether or not to normalize the resulting KLT matrix. + Default: ``False`` show_progress (bool, optional): Whether or not to display a tqdm progress bar. - Default: False - device (torch.device, optional): The PyTorch device to use for for calculating - the cov matrix. - Default: torch.device("cpu") + Default: ``False`` + device (torch.device, optional): The PyTorch device to use for calculating the + cov matrix. + Default: ``torch.device("cpu")`` Returns: - *tensor*: A KLT matrix for the specified dataset. + tensor (torch.Tensor): A KLT matrix for the specified dataset. """ cov_mtx = dataset_cov_matrix(loader, show_progress=show_progress, device=device) diff --git a/captum/optim/_utils/reducer.py b/captum/optim/_utils/reducer.py index 2696d003d6..85f15f7bf3 100644 --- a/captum/optim/_utils/reducer.py +++ b/captum/optim/_utils/reducer.py @@ -16,20 +16,47 @@ class ChannelReducer: """ + The ChannelReducer class is a wrapper for PyTorch and NumPy based dimensionality + reduction algorithms, like those from ``sklearn.decomposition`` (ex: NMF, PCA), + ``sklearn.manifold`` (ex: TSNE), UMAP, and other libraries. This class handles + things like reshaping, algorithm search by name (for scikit-learn only), and + PyTorch tensor conversions to and from NumPy arrays. + + Example:: + + >>> reducer = opt.reducer.ChannelReducer(2, "NMF") + >>> x = torch.randn(1, 8, 128, 128).abs() + >>> output = reducer.fit_transform(x) + >>> print(output.shape) + torch.Size([1, 2, 128, 128]) + + >>> # reduction_alg attributes are easily accessible + >>> print(reducer.components.shape) + torch.Size([2, 8]) + Dimensionality reduction for the channel dimension of an input tensor. Olah, et al., "The Building Blocks of Interpretability", Distill, 2018. See here for more information: https://distill.pub/2018/building-blocks/ + Some of the possible algorithm choices: + + * https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition + * https://scikit-learn.org/stable/modules/classes.html#module-sklearn.manifold + * https://umap-learn.readthedocs.io/en/latest/ + Args: - n_components (int, optional): The number of channels to reduce the target + + n_components (int, optional): The number of channels to reduce the target dimension to. - reduction_alg (str or callable, optional): The desired dimensionality - reduction algorithm to use. The default reduction_alg is set to NMF from - sklearn, which requires users to put inputs on CPU before passing them to - fit_transform. - **kwargs (optional): Arbitrary keyword arguments used by the specified - reduction_alg. + reduction_alg (str or Callable, optional): The desired dimensionality + reduction algorithm to use. The default ``reduction_alg`` is set to NMF + from sklearn, which requires users to put inputs on CPU before passing them + to :func:`ChannelReducer.fit_transform`. Name strings are only supported + for ``sklearn.decomposition`` & ``sklearn.manifold`` class names. + Default: ``NMF`` + **kwargs (Any, optional): Arbitrary keyword arguments used by the specified + ``reduction_alg``. """ def __init__( @@ -47,14 +74,42 @@ def __init__( self._reducer = reduction_alg(n_components=n_components, **kwargs) def _get_reduction_algo_instance(self, name: str) -> Union[None, Callable]: + """ + Search through a library for a ``reduction_alg`` matching the provided str + name. + + Args: + + name (str): The name of the reduction_alg to search for. + + Returns: + reduction_alg (Callable or None): The ``reduction_alg`` if it was found, + otherwise None. + """ if hasattr(sklearn.decomposition, name): obj = sklearn.decomposition.__getattribute__(name) if issubclass(obj, BaseEstimator): return obj + elif hasattr(sklearn.manifold, name): + obj = sklearn.manifold.__getattribute__(name) + if issubclass(obj, BaseEstimator): + return obj return None @classmethod def _apply_flat(cls, func: Callable, x: torch.Tensor) -> torch.Tensor: + """ + Flatten inputs, run them through the reduction_alg, and then reshape them back + to their original size using the resized dimension. + + Args: + + func (Callable): The ``reduction_alg`` transform function being used. + x (torch.Tensor): The tensor being transformed and reduced. + + Returns: + x (torch.Tensor): A transformed tensor. + """ orig_shape = x.shape try: return func(x.reshape([-1, x.shape[-1]])).reshape( @@ -70,14 +125,21 @@ def fit_transform( self, x: torch.Tensor, swap_2nd_and_last_dims: bool = True ) -> torch.Tensor: """ - Perform dimensionality reduction on an input tensor. + Perform dimensionality reduction on an input tensor using the specified + ``reduction_alg``'s ``.fit_transform`` function. + Args: - tensor (tensor): A tensor to perform dimensionality reduction on. - swap_2nd_and_last_dims (bool, optional): If true, input channels are + + x (torch.Tensor): A tensor to perform dimensionality reduction on. + swap_2nd_and_last_dims (bool, optional): If ``True``, input channels are expected to be in the second dimension unless the input tensor has a - shape of CHW. Default is set to True. + shape of CHW. When reducing the channel dimension, this parameter + should be set to ``True`` unless you are already using the channels + last format. + Default: ``True``. + Returns: - *tensor*: A tensor with one of it's dimensions reduced. + x (torch.Tensor): A tensor with one of it's dimensions reduced. """ if x.dim() == 3 and swap_2nd_and_last_dims: @@ -127,14 +189,20 @@ def __dir__(self) -> List: def posneg(x: torch.Tensor, dim: int = 0) -> torch.Tensor: """ - Hack that makes a matrix positive by concatination in order to simulate one-sided + Hack that makes a matrix positive by concatenation in order to simulate one-sided NMF with regular NMF. + Voss, et al., "Visualizing Weights", Distill, 2021. + See: https://distill.pub/2020/circuits/visualizing-weights/ + Args: - x (tensor): A tensor to make positive. - dim (int, optional): The dimension to concatinate the two tensor halves at. + + x (torch.Tensor): A tensor to make positive. + dim (int, optional): The dimension to concatenate the two tensor halves at. + Default: ``0`` + Returns: - tensor (torch.tensor): A positive tensor for one-sided dimensionality + tensor (torch.Tensor): A positive tensor for one-sided dimensionality reduction. """ diff --git a/captum/optim/_utils/typing.py b/captum/optim/_utils/typing.py index a0e3d6f1c0..10d37bd835 100755 --- a/captum/optim/_utils/typing.py +++ b/captum/optim/_utils/typing.py @@ -1,7 +1,8 @@ import sys from typing import Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union -from torch import Tensor, __version__ +from torch import Tensor +from torch import distributions from torch.nn import Module from torch.optim import Optimizer @@ -33,16 +34,11 @@ def cleanup(self) -> None: LossFunction = Callable[[ModuleOutputMapping], Tensor] SingleTargetLossFunction = Callable[[Tensor], Tensor] -if __version__ < "1.4.0": - NumSeqOrTensorOrProbDistType = Union[Sequence[int], Sequence[float], Tensor] -else: - from torch import distributions - - NumSeqOrTensorOrProbDistType = Union[ - Sequence[int], - Sequence[float], - Tensor, - distributions.distribution.Distribution, - ] +NumSeqOrTensorOrProbDistType = Union[ + Sequence[int], + Sequence[float], + Tensor, + distributions.distribution.Distribution, +] IntSeqOrIntType = Union[List[int], Tuple[int], Tuple[int, int], int] TupleOfTensorsOrTensorType = Union[Tuple[Tensor, ...], Tensor] diff --git a/captum/optim/models/__init__.py b/captum/optim/models/__init__.py index 0f809d5ef5..60d2b19234 100755 --- a/captum/optim/models/__init__.py +++ b/captum/optim/models/__init__.py @@ -1,11 +1,17 @@ from ._common import ( # noqa: F401 + MaxPool2dRelaxed, RedirectedReluLayer, SkipLayer, collect_activations, get_model_layers, replace_layers, skip_layers, + Conv2dSame, ) +from ._image.clip_resnet50x4_image import CLIP_ResNet50x4Image # noqa: F401 +from ._image.clip_resnet50x4_image import clip_resnet50x4_image # noqa: F401 +from ._image.clip_resnet50x4_text import CLIP_ResNet50x4Text # noqa: F401 +from ._image.clip_resnet50x4_text import clip_resnet50x4_text # noqa: F401 from ._image.inception5h_classes import INCEPTION5H_CLASSES # noqa: F401 from ._image.inception_v1 import InceptionV1, googlenet # noqa: F401 from ._image.inception_v1_places365 import ( # noqa: F401 @@ -16,7 +22,10 @@ INCEPTIONV1_PLACES365_CLASSES, ) + __all__ = [ + "Conv2dSame", + "MaxPool2dRelaxed", "RedirectedReluLayer", "SkipLayer", "collect_activations", @@ -29,4 +38,8 @@ "InceptionV1Places365", "googlenet_places365", "INCEPTIONV1_PLACES365_CLASSES", + "CLIP_ResNet50x4Image", + "clip_resnet50x4_image", + "CLIP_ResNet50x4Text", + "clip_resnet50x4_text", ] diff --git a/captum/optim/models/_common.py b/captum/optim/models/_common.py index e65e281217..da6062370e 100644 --- a/captum/optim/models/_common.py +++ b/captum/optim/models/_common.py @@ -16,6 +16,9 @@ def get_model_layers(model: nn.Module) -> List[str]: Args: model (nn.Module): A PyTorch model or module instance to collect layers from. + + Returns: + model_layers (list of str): A list of hookable layers in the model. """ layers = [] @@ -68,6 +71,14 @@ class RedirectedReluLayer(nn.Module): @torch.jit.ignore def forward(self, input: torch.Tensor) -> torch.Tensor: + """ + Args: + + x (torch.Tensor): A tensor to pass through RedirectedReLU. + + Returns: + x (torch.Tensor): The output of RedirectedReLU. + """ return RedirectedReLU.apply(input) @@ -82,16 +93,24 @@ def replace_layers( Replace all target layers with new layers inside the specified model, possibly with the same initialization variables. + Example:: + + >>> model = opt.models.googlenet(pretrained=True) + >>> # Replace MaxPool2d layers with their AvgPool2d equivalents + >>> opt.models.replace_layers(model, nn.MaxPool2d, nn.AvgPool2d, True) + Args: - model: (nn.Module): A PyTorch model instance. - layer1: (Type[nn.Module]): The layer class that you want to transfer + + model (nn.Module): A PyTorch model instance. + layer1 (Type[nn.Module]): The layer class that you want to transfer initialization variables from. - layer2: (Type[nn.Module]): The layer class to create with the variables - from layer1. - transfer_vars (bool, optional): Wether or not to try and copy - initialization variables from layer1 instances to the replacement - layer2 instances. - kwargs: (Any, optional): Any additional variables to use when creating + layer2 (Type[nn.Module]): The layer class to create with the variables + from ``layer1``. + transfer_vars (bool, optional): Whether or not to try and copy + initialization variables from ``layer1`` instances to the replacement + ``layer2`` instances. + Default: ``False`` + kwargs (Any, optional): Any additional variables to use when creating the new layer. """ @@ -112,13 +131,16 @@ def _transfer_layer_vars( """ Given a layer instance, create a new layer instance of another class with the same initialization variables as the original layer. + Args: - layer1: (nn.Module): A layer instance that you want to transfer + + layer1 (nn.Module): A layer instance that you want to transfer initialization variables from. - layer2: (nn.Module): The layer class to create with the variables + layer2 (nn.Module): The layer class to create with the variables from of layer1. - kwargs: (Any, optional): Any additional variables to use when creating + kwargs (Any, optional): Any additional variables to use when creating the new layer. + Returns: layer2 instance (nn.Module): An instance of layer2 with the initialization variables that it shares with layer1, and any specified additional @@ -144,8 +166,7 @@ def _transfer_layer_vars( class Conv2dSame(nn.Conv2d): """ Tensorflow like 'SAME' convolution wrapper for 2D convolutions. - TODO: Replace with torch.nn.Conv2d when support for padding='same' - is in stable version + torch.nn.Conv2d with padding='same' can be used when the stride is equal to 1. """ def __init__( @@ -170,24 +191,25 @@ def __init__( kernel_size (int or tuple of int): The desired kernel size to use. stride (int or tuple of int, optional): The desired stride for the cross-correlation. - Default: 1 + Default: ``1`` padding (int or tuple of int, optional): This value is always set to 0. - Default: 0 + Default: ``0`` dilation (int or tuple of int, optional): The desired spacing between the kernel points. - Default: 1 + Default: ``1`` groups (int, optional): Number of blocked connections from input channels - to output channels. Both in_channels and out_channels must be divisable + to output channels. Both in_channels and out_channels must be divisible by groups. - Default: 1 + Default: ``1`` bias (bool, optional): Whether or not to apply a learnable bias to the output. + Default: ``True`` """ super().__init__( in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias ) - def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int: + def _calc_same_pad(self, i: int, k: int, s: int, d: int) -> int: """ Calculate the required padding for a dimension. @@ -207,15 +229,15 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: - x (torch.tensor): The input tensor to apply 2D convolution to. + x (torch.Tensor): The input tensor to apply 2D convolution to. Returns x (torch.Tensor): The input tensor after the 2D convolution was applied. """ ih, iw = x.size()[-2:] kh, kw = self.weight.size()[-2:] - pad_h = self.calc_same_pad(i=ih, k=kh, s=self.stride[0], d=self.dilation[0]) - pad_w = self.calc_same_pad(i=iw, k=kw, s=self.stride[1], d=self.dilation[1]) + pad_h = self._calc_same_pad(i=ih, k=kh, s=self.stride[0], d=self.dilation[0]) + pad_w = self._calc_same_pad(i=iw, k=kw, s=self.stride[1], d=self.dilation[1]) if pad_h > 0 or pad_w > 0: x = F.pad( @@ -240,6 +262,13 @@ def collect_activations( """ Collect target activations for a model. + Example:: + + >>> model = opt.models.googlenet(pretrained=True) + >>> target = model.mixed4c # Target layer + >>> activ_dict = opt.models.collect_activations(model, target) + >>> activations = activ_dict[target] # Get activations from dict + Args: model (nn.Module): A PyTorch model instance. @@ -247,13 +276,13 @@ def collect_activations( given model. model_input (torch.Tensor or tuple of torch.Tensor, optional): Optionally provide an input tensor to use when collecting the target activations. - Default: torch.zeros(1, 3, 224, 224) + Default: ``torch.zeros(1, 3, 224, 224)`` Returns: - activ_dict (ModuleOutputMapping): A dictionary of collected activations where - the keys are the target layers. + activ_dict (dict[nn.Module, torch.Tensor]): A dictionary of collected + activations where the keys are the target layers. """ - if not isinstance(targets, list): + if not isinstance(targets, (list, tuple)): targets = [targets] targets = list(dict.fromkeys(targets)) catch_activ = ActivationFetcher(model, targets) @@ -267,32 +296,34 @@ class SkipLayer(torch.nn.Module): during the forward pass. Use cases include removing nonlinear activation layers like ReLU for circuits research. - This layer works almost exactly the same way that nn.Indentiy does, except it also - ignores any additional arguments passed to the forward function. Any layer replaced - by SkipLayer must have the same input and output shapes. + This layer works almost exactly the same way that :class:`torch.nn.Identity` does, + except it also ignores any additional arguments passed to the forward function. + Any layer replaced by SkipLayer must have the same input and output shapes. See nn.Identity for more details: https://pytorch.org/docs/stable/generated/torch.nn.Identity.html - - Args: - args (Any): Any argument. Arguments will be safely ignored. - kwargs (Any) Any keyword argument. Arguments will be safely ignored. """ def __init__(self, *args, **kwargs) -> None: + """ + Args: + + args (Any, optional): Any argument. Arguments will be safely ignored. + kwargs (Any, optional) Any keyword argument. Arguments will be safely + ignored. + """ super().__init__() - def forward( - self, x: Union[torch.Tensor, Tuple[torch.Tensor]], *args, **kwargs - ) -> Union[torch.Tensor, Tuple[torch.Tensor]]: + def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: """ Args: + x (torch.Tensor or tuple of torch.Tensor): The input tensor or tensors. args (Any): Any argument. Arguments will be safely ignored. kwargs (Any) Any keyword argument. Arguments will be safely ignored. + Returns: - x (torch.Tensor or tuple of torch.Tensor): The unmodified input tensor or - tensors. + x (torch.Tensor): The unmodified input tensor. """ return x @@ -306,12 +337,14 @@ def skip_layers( with layers that do nothing. This is useful for removing the nonlinear ReLU layers when creating expanded weights. + Args: + model (nn.Module): A PyTorch model instance. - layers (nn.Module or list of nn.Module): The layer - class type to replace in the model. + layers (nn.Module or list of nn.Module): The layer class type to replace in the + model. """ - if not hasattr(layers, "__iter__"): + if not isinstance(layers, (tuple, list)): layers = cast(Type[nn.Module], layers) replace_layers(model, layers, SkipLayer) else: @@ -330,9 +363,10 @@ class MaxPool2dRelaxed(torch.nn.Module): attributions of spatial posititions can be estimated using the rate at which increasing the neuron affects the output classes. - This layer peforms a MaxPool2d operation on the input, while using an equivalent - AvgPool2d layer to compute the gradient. This means that the forward pass returns - nn.MaxPool2d(input) while the backward pass uses nn.AvgPool2d(input). + This layer peforms a :class:`torch.nn.MaxPool2d` operation on the input, while + using an equivalent :class:`torch.nn.AvgPool2d` layer to compute the gradient. + This means that the forward pass returns ``nn.MaxPool2d(input)`` while the + backward pass uses ``nn.AvgPool2d(input)``. Carter, et al., "Activation Atlas", Distill, 2019. https://distill.pub/2019/activation-atlas/ @@ -348,24 +382,29 @@ class MaxPool2dRelaxed(torch.nn.Module): def __init__( self, - kernel_size: Union[int, Tuple[int, ...]], - stride: Optional[Union[int, Tuple[int, ...]]] = None, - padding: Union[int, Tuple[int, ...]] = 0, + kernel_size: Union[int, Tuple[int, int]], + stride: Optional[Union[int, Tuple[int, int]]] = None, + padding: Union[int, Tuple[int, int]] = 0, ceil_mode: bool = False, ) -> None: """ Args: - kernel_size (int or tuple of int): The size of the window to perform max & - average pooling with. + kernel_size (int or tuple of int): The size of the window to perform max + and average pooling with. Either a single int to use for both the + height & width or a tuple of 2 integers in format of: (height, width). stride (int or tuple of int, optional): The stride window size to use. - Default: None + Either a single int to use for both the height & width or a tuple of 2 + integers in format of: (height, width). + Default: ``None`` padding (int or tuple of int): The amount of zero padding to add to both - sides in the nn.MaxPool2d & nn.AvgPool2d modules. - Default: 0 + sides in the ``nn.MaxPool2d`` & ``nn.AvgPool2d`` modules. Either a + single int to use for both the height & width or a tuple of 2 integers + in format of: (height, width). + Default: ``0`` ceil_mode (bool, optional): Whether to use ceil or floor for creating the output shape. - Default: False + Default: ``False`` """ super().__init__() self.maxpool = torch.nn.MaxPool2d( diff --git a/captum/optim/models/_image/clip_resnet50x4_image.py b/captum/optim/models/_image/clip_resnet50x4_image.py new file mode 100644 index 0000000000..14c3cc4ed0 --- /dev/null +++ b/captum/optim/models/_image/clip_resnet50x4_image.py @@ -0,0 +1,382 @@ +from typing import Any, Optional, Type +from warnings import warn + +import torch +import torch.nn as nn +from captum.optim.models._common import RedirectedReluLayer, SkipLayer + +GS_SAVED_WEIGHTS_URL = ( + "https://pytorch.s3.amazonaws.com/models/captum/clip_resnet50x4_image.pt" +) + + +def clip_resnet50x4_image( + pretrained: bool = False, + progress: bool = True, + model_path: Optional[str] = None, + **kwargs: Any, +) -> "CLIP_ResNet50x4Image": + """ + The visual portion of OpenAI's ResNet 50x4 CLIP model from 'Learning Transferable + Visual Models From Natural Language Supervision': https://arxiv.org/abs/2103.00020 + + This model can be combined with the CLIP ResNet 50x4 Text model to create the full + CLIP ResNet 50x4 model. + + Note that the model was trained on inputs with a shape of: [B, 3, 288, 288]. + + Example:: + + >>> model = opt.models.clip_resnet50x4_image(pretrained=True) + >>> output = model(torch.zeros(1, 3, 288, 288)) + + See here for more details: + https://github.com/openai/CLIP + https://github.com/mlfoundations/open_clip + + Args: + + pretrained (bool, optional): If ``True``, returns a pre-trained model. + Default: ``False`` + progress (bool, optional): If ``True``, displays a progress bar of the download + to stderr. + Default: ``True`` + model_path (str, optional): Optional path for the model file. + Default: ``None`` + replace_relus_with_redirectedrelu (bool, optional): If ``True``, return + pretrained model with Redirected ReLU in place of ReLU layers. + Default: *``True``* when ``pretrained`` is ``True`` otherwise *``False``* + use_linear_modules_only (bool, optional): If ``True``, return model + with all nonlinear layers replaced with linear equivalents. + Default: ``False`` + transform_input (bool, optional): If ``True``, preprocesses the input according + to the method with which it was trained. + Default: *``True``* when ``pretrained`` is ``True`` otherwise *``False``* + use_attnpool (bool, optional): Whether or not to use the final + ``AttentionPool2d`` layer in the forward function. If set to ``True``, + model inputs are required to have a shape of: [B, 3, 288, 288] or + [3, 288, 288]. + Default: ``False`` + + Returns: + model (CLIP_ResNet50x4Image): An instance of a CLIP ResNet 50x4 model's + image portion. + """ + if pretrained: + if "transform_input" not in kwargs: + kwargs["transform_input"] = True + if "replace_relus_with_redirectedrelu" not in kwargs: + kwargs["replace_relus_with_redirectedrelu"] = True + if "use_linear_modules_only" not in kwargs: + kwargs["use_linear_modules_only"] = False + if "use_attnpool" not in kwargs: + kwargs["use_attnpool"] = False + + model = CLIP_ResNet50x4Image(**kwargs) + + if model_path is None: + state_dict = torch.hub.load_state_dict_from_url( + GS_SAVED_WEIGHTS_URL, progress=progress, check_hash=False + ) + else: + state_dict = torch.load(model_path, map_location="cpu") + model.load_state_dict(state_dict) + return model + + return CLIP_ResNet50x4Image(**kwargs) + + +class CLIP_ResNet50x4Image(nn.Module): + """ + The visual portion of OpenAI's ResNet 50x4 CLIP model from 'Learning Transferable + Visual Models From Natural Language Supervision': https://arxiv.org/abs/2103.00020 + """ + + __constants__ = ["transform_input", "use_attnpool"] + + def __init__( + self, + transform_input: bool = False, + replace_relus_with_redirectedrelu: bool = False, + use_linear_modules_only: bool = False, + use_attnpool: bool = True, + ) -> None: + """ + Args: + + replace_relus_with_redirectedrelu (bool, optional): If ``True``, return + model with Redirected ReLU in place of ReLU layers. + Default: False + use_linear_modules_only (bool, optional): If ``True``, return model with + all nonlinear layers replaced with linear equivalents. + Default: ``False`` + transform_input (bool, optional): If ``True``, preprocesses the input + according to the method with which it was trained on. + Default: ``False`` + use_attnpool (bool, optional): Whether or not to use the final + ``AttentionPool2d`` layer in the forward function. If set to ``True``, + model inputs are required to have a shape of: [B, 3, 288, 288] or + [3, 288, 288]. + Default: ``True`` + """ + super().__init__() + if use_linear_modules_only: + activ = SkipLayer + else: + if replace_relus_with_redirectedrelu: + activ = RedirectedReluLayer + else: + activ = nn.ReLU + + self.transform_input = transform_input + self.use_attnpool = use_attnpool + + # Stem layers + self.conv1 = nn.Conv2d(3, 40, kernel_size=3, stride=2, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(40) + self.relu1 = activ() + self.conv2 = nn.Conv2d(40, 40, kernel_size=3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(40) + self.relu2 = activ() + self.conv3 = nn.Conv2d(40, 80, kernel_size=3, padding=1, bias=False) + self.bn3 = nn.BatchNorm2d(80) + self.relu3 = activ() + self.avgpool = nn.AvgPool2d(2) + + # Residual layers + self.layer1 = self._build_layer(80, 80, blocks=4, stride=1, activ=activ) + self.layer2 = self._build_layer(320, 160, blocks=6, stride=2, activ=activ) + self.layer3 = self._build_layer(640, 320, blocks=10, stride=2, activ=activ) + self.layer4 = self._build_layer(1280, 640, blocks=6, stride=2, activ=activ) + + # Attention Pooling + self.attnpool = AttentionPool2d(9, 2560, out_features=640, num_heads=40) + + def _build_layer( + self, + inplanes: int = 80, + planes: int = 80, + blocks: int = 4, + stride: int = 1, + activ: Type[nn.Module] = nn.ReLU, + ) -> nn.Module: + """ + Residual layer creation helper function. + + Args: + + inplanes (int, optional): The number of input channels / features to use + for the first layer. + Default: ``80`` + planes (int, optional): The number of output channels / features to use + for the first layer. This variable is then multiplied by 4 to get the + number of input channels / features to use for the subsequent layers. + Default: ``80`` + blocks (int, optional): The number of Bottleneck layers to create. + Default: ``4`` + stride (int, optional): The stride value to use for the Bottleneck layers. + Default: ``1`` + activ (type of nn.Module, optional): The nn.Module class type to use for + activation layers. + Default: ``nn.ReLU`` + + Returns: + residual_layer (nn.Sequential): A full residual layer instance. + """ + layers = [Bottleneck(inplanes, planes, stride, activ=activ)] + for _ in range(blocks - 1): + layers += [Bottleneck(planes * 4, planes, activ=activ)] + return nn.Sequential(*layers) + + def _transform_input(self, x: torch.Tensor) -> torch.Tensor: + """ + Args: + + x (torch.Tensor): An input tensor to normalize the values of. + + Returns: + x (torch.Tensor): A normalized tensor. + """ + assert x.dim() == 3 or x.dim() == 4 + if self.transform_input: + if x.min() < 0.0 or x.max() > 1.0: + warn("Model input has values outside of the range [0, 1].") + x = x.unsqueeze(0) if x.dim() == 3 else x + x = x - torch.tensor( + [0.48145466, 0.4578275, 0.40821073], device=x.device + ).view(3, 1, 1) + x = x / torch.tensor( + [0.26862954, 0.26130258, 0.27577711], device=x.device + ).view(3, 1, 1) + return x + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Args: + + x (torch.Tensor): An input tensor to run through the model. + + Returns: + x (torch.Tensor): The model output. + """ + x = self._transform_input(x) + + # Stem layers + x = self.relu1(self.bn1(self.conv1(x))) + x = self.relu2(self.bn2(self.conv2(x))) + x = self.relu3(self.bn3(self.conv3(x))) + x = self.avgpool(x) + + # Residual layers + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + # Attention Pooling + if self.use_attnpool: + x = self.attnpool(x) + return x + + +class Bottleneck(nn.Module): + def __init__( + self, + inplanes: int = 80, + planes: int = 80, + stride: int = 1, + activ: Type[nn.Module] = nn.ReLU, + ) -> None: + """ + Args: + + inplanes (int, optional): The number of input channels / features to use + for the first layer. + Default: ``80`` + planes (int, optional): The number of output channels / features to use + for the subsequent layers. + Default: ``80`` + stride (int, optional): The stride value to use for the Bottleneck layers. + Default: ``1`` + activ (type of nn.Module, optional): The nn.Module class type to use for + activation layers. + Default: ``nn.ReLU`` + """ + super().__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + self.relu1 = activ() + + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + self.relu2 = activ() + + self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() + + self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu3 = activ() + + if stride > 1 or inplanes != planes * 4: + self.downsample = nn.Sequential( + nn.AvgPool2d(stride), + nn.Conv2d(inplanes, planes * 4, kernel_size=1, stride=1, bias=False), + nn.BatchNorm2d(planes * 4), + ) + else: + self.downsample = None + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Args: + + x (torch.Tensor): An input tensor to run through the module. + + Returns: + x (torch.Tensor): The module output. + """ + assert x.dim() == 4 + if self.downsample is not None: + identity = self.downsample(x) + else: + identity = x.clone() + + x = self.relu1(self.bn1(self.conv1(x))) + x = self.relu2(self.bn2(self.conv2(x))) + x = self.avgpool(x) + + x = self.bn3(self.conv3(x)) + identity + x = self.relu3(x) + return x + + +class AttentionPool2d(nn.Module): + def __init__( + self, + spacial_size: int = 9, + in_features: int = 2560, + out_features: int = 640, + num_heads: int = 40, + ) -> None: + """ + Args: + + spacial_size (int, optional): The desired size to user for the positional + embedding. + Default: ``9`` + in_features (int, optional): The desired input size for the nn.Linear + layers. + Default: ``2560`` + out_features (int, optional): The desired output size for the nn.Linear + layers. + Default: ``640`` + num_heads (int, optional): The number of heads to use. + Default: ``40`` + """ + super().__init__() + self.positional_embedding = nn.Parameter( + torch.randn(spacial_size**2 + 1, in_features) / in_features**0.5 + ) + self.k_proj = nn.Linear(in_features, in_features) + self.q_proj = nn.Linear(in_features, in_features) + self.v_proj = nn.Linear(in_features, in_features) + self.c_proj = nn.Linear(in_features, out_features) + self.num_heads = num_heads + + @torch.jit.ignore + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Args: + + x (torch.Tensor): An input tensor to run through the module. + + Returns: + x (torch.Tensor): The module output. + """ + assert x.dim() == 4 + x = x.reshape(*x.shape[:2], -1).permute(2, 0, 1) + x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) + x = x + self.positional_embedding[:, None, :] + return torch.nn.functional.multi_head_attention_forward( + query=x, + key=x, + value=x, + embed_dim_to_check=x.shape[-1], + num_heads=self.num_heads, + q_proj_weight=self.q_proj.weight, + k_proj_weight=self.k_proj.weight, + v_proj_weight=self.v_proj.weight, + in_proj_weight=None, + in_proj_bias=torch.cat( + [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias] + ), + bias_k=None, + bias_v=None, + add_zero_attn=False, + dropout_p=0.0, + out_proj_weight=self.c_proj.weight, + out_proj_bias=self.c_proj.bias, + use_separate_proj_weight=True, + training=self.training, + need_weights=False, + )[0][0] diff --git a/captum/optim/models/_image/clip_resnet50x4_text.py b/captum/optim/models/_image/clip_resnet50x4_text.py new file mode 100644 index 0000000000..8fdbcc5179 --- /dev/null +++ b/captum/optim/models/_image/clip_resnet50x4_text.py @@ -0,0 +1,195 @@ +import math +from typing import Any, Optional + +import torch +import torch.nn as nn + + +GS_SAVED_WEIGHTS_URL = ( + "https://pytorch.s3.amazonaws.com/models/captum/clip_resnet50x4_text.pt" +) + + +def clip_resnet50x4_text( + pretrained: bool = False, + progress: bool = True, + model_path: Optional[str] = None, + **kwargs: Any, +) -> "CLIP_ResNet50x4Text": + """ + The text portion of OpenAI's ResNet 50x4 CLIP model from 'Learning Transferable + Visual Models From Natural Language Supervision': https://arxiv.org/abs/2103.00020 + + This model can be combined with the CLIP ResNet 50x4 Image model to create the full + CLIP ResNet 50x4 model. + + Example:: + + >>> model = opt.models.clip_resnet50x4_text(pretrained=True) + >>> clip_tokenizer = opt.transforms.CLIPTokenizer(pretrained_merges=True) + >>> tokenized_input = clip_tokenizer("Some example text.") + >>> output = model(tokenized_input) + + See here for more details: + https://github.com/openai/CLIP + https://github.com/mlfoundations/open_clip + + Args: + + pretrained (bool, optional): If ``True``, returns a pre-trained model. + Default: ``False`` + progress (bool, optional): If ``True``, displays a progress bar of the download + to stderr. + Default: ``True`` + model_path (str, optional): Optional path for the model file. + Default: ``None`` + width (int, optional): The desired width size to use for the model. + Default: ``640`` + num_heads (int, optional): The number of heads to use for the model. + Default: ``10`` + num_residual_layers (int, optional): The number of residual layers to use for + each residual attention block in the model. + Default: ``12`` + content_length (int, optional): The expected size of text inputs to the model. + Default: ``77`` + vocab_size (int, optional): The size of the vocab used to train the model. + Default: ``49408`` + + Returns: + model (CLIP_ResNet50x4Text): An instance of a CLIP ResNet 50x4 model's text + portion. + """ + if pretrained: + model = CLIP_ResNet50x4Text(**kwargs) + + if model_path is None: + state_dict = torch.hub.load_state_dict_from_url( + GS_SAVED_WEIGHTS_URL, progress=progress, check_hash=False + ) + else: + state_dict = torch.load(model_path, map_location="cpu") + model.load_state_dict(state_dict) + return model + + return CLIP_ResNet50x4Text(**kwargs) + + +class CLIP_ResNet50x4Text(nn.Module): + """ + The text portion of OpenAI's ResNet 50x4 CLIP model from 'Learning Transferable + Visual Models From Natural Language Supervision': https://arxiv.org/abs/2103.00020 + """ + + def __init__( + self, + width: int = 640, + num_heads: int = 10, + num_residual_layers: int = 12, + content_length: int = 77, + vocab_size: int = 49408, + ) -> None: + """ + Args: + + width (int, optional): The desired width size to use for the model. + Default: ``640`` + num_heads (int, optional): The num number of heads to use for the model. + Default: ``10`` + num_residual_layers (int, optional): The number of residual layers to use + for each residual attention block. + Default: ``12`` + content_length (int, optional): The expected size of text inputs to the + model. + Default: ``77`` + vocab_size (int, optional): The size of the vocab used to train the model. + Default: ``49408`` + """ + super().__init__() + self.transformer = nn.Sequential( + *[ + ResidualAttentionBlock(width, num_heads, content_length) + for _ in range(num_residual_layers) + ] + ) + self.token_embedding = nn.Embedding(vocab_size, width) + self.positional_embedding = nn.Parameter(torch.empty(content_length, width)) + self.ln_final = nn.LayerNorm(width) + self.text_projection = nn.Parameter(torch.empty(width, width)) + + # logit_scale is only used when combining Text & Image models + self.logit_scale = nn.Parameter(torch.ones([]) * math.log(1 / 0.07)) + + def forward(self, text: torch.Tensor) -> torch.Tensor: + """ + Args: + + x (torch.Tensor): An input tensor to run through the model. + + Returns: + x (torch.Tensor): The model output. + """ + x = self.token_embedding(text) + x = x + self.positional_embedding.to(device=x.device, dtype=x.dtype) + x = self.transformer(x.permute(1, 0, 2)).permute(1, 0, 2) + x = self.ln_final(x) + x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] + return x @ self.text_projection.to(device=x.device, dtype=x.dtype) + + +class QuickGELU(nn.Module): + """ + OpenAI's models use a slightly different GELU than PyTorch's default GELU. + """ + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Args: + + x (torch.Tensor): An input tensor to run through the module. + + Returns: + x (torch.Tensor): The module output. + """ + return x * torch.sigmoid(1.702 * x) + + +class ResidualAttentionBlock(nn.Module): + def __init__( + self, width: int = 640, num_heads: int = 10, content_length: int = 77 + ) -> None: + """ + Args: + + width (int, optional): The desired width size to use. + Default: ``640`` + num_heads (int, optional): The num number of heads to use. + Default: ``10`` + content_length (int, optional): The desired ``content_length`` to use. + Default: ``77`` + """ + super().__init__() + self.attn = nn.MultiheadAttention(width, num_heads) + self.ln_1 = nn.LayerNorm(width) + self.mlp = nn.Sequential( + nn.Linear(width, width * 4), QuickGELU(), nn.Linear(width * 4, width) + ) + self.ln_2 = nn.LayerNorm(width) + self.attn_mask = ( + torch.empty(content_length, content_length).fill_(float("-inf")).triu_(1) + ) + + def attention(self, x: torch.Tensor) -> torch.Tensor: + attn_mask = self.attn_mask.to(device=x.device, dtype=x.dtype) + return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Args: + + x (torch.Tensor): An input tensor to run through the module. + + Returns: + x (torch.Tensor): The module output. + """ + x = x + self.attention(self.ln_1(x)) + return x + self.mlp(self.ln_2(x)) diff --git a/captum/optim/models/_image/inception_v1.py b/captum/optim/models/_image/inception_v1.py index d24c87d42d..e0660d6f93 100644 --- a/captum/optim/models/_image/inception_v1.py +++ b/captum/optim/models/_image/inception_v1.py @@ -15,38 +15,45 @@ def googlenet( **kwargs: Any, ) -> "InceptionV1": r"""GoogLeNet (also known as Inception v1 & Inception 5h) model architecture from - `"Going Deeper with Convolutions" `_. + `"Going Deeper with Convolutions" `_. + + Example:: + + >>> model = opt.models.googlenet(pretrained=True) + >>> output = model(torch.zeros(1, 3, 224, 224)) Args: - pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. - Default: False - progress (bool, optional): If True, displays a progress bar of the download to - stderr - Default: True + pretrained (bool, optional): If ``True``, returns a model pre-trained on + ImageNet. + Default: ``False`` + progress (bool, optional): If ``True``, displays a progress bar of the download + to stderr. + Default: ``True`` model_path (str, optional): Optional path for InceptionV1 model file. - Default: None - replace_relus_with_redirectedrelu (bool, optional): If True, return pretrained - model with Redirected ReLU in place of ReLU layers. - Default: *True* when pretrained is True otherwise *False* - use_linear_modules_only (bool, optional): If True, return pretrained + Default: ``None`` + replace_relus_with_redirectedrelu (bool, optional): If ``True``, return + pretrained model with :class:`.RedirectedReLU` in place of ReLU layers. + Default: *``True``* when pretrained is True otherwise *``False``* + use_linear_modules_only (bool, optional): If ``True``, return pretrained model with all nonlinear layers replaced with linear equivalents. - Default: False - aux_logits (bool, optional): If True, adds two auxiliary branches that can + Default: ``False`` + aux_logits (bool, optional): If ``True``, adds two auxiliary branches that can improve training. - Default: False + Default: ``False`` out_features (int, optional): Number of output features in the model used for training. - Default: 1008 - transform_input (bool, optional): If True, preprocesses the input according to - the method with which it was trained on ImageNet. - Default: False - bgr_transform (bool, optional): If True and transform_input is True, perform an - RGB to BGR transform in the internal preprocessing. - Default: False + Default: ``1008`` + transform_input (bool, optional): If ``True``, preprocesses the input according + to the method with which it was trained on ImageNet. + Default: ``False`` + bgr_transform (bool, optional): If ``True`` and ``transform_input`` is + ``True``, perform an RGB to BGR transform in the internal + preprocessing. + Default: ``False`` Returns: - **InceptionV1** (InceptionV1): An Inception5h model. + model (InceptionV1): An Inception5h model instance. """ if pretrained: @@ -93,24 +100,25 @@ def __init__( """ Args: - replace_relus_with_redirectedrelu (bool, optional): If True, return - pretrained model with Redirected ReLU in place of ReLU layers. - Default: False - use_linear_modules_only (bool, optional): If True, return pretrained + replace_relus_with_redirectedrelu (bool, optional): If ``True``, return + pretrained model with :class:`.RedirectedReLU` in place of ReLU layers. + Default: ``False`` + use_linear_modules_only (bool, optional): If ``True``, return pretrained model with all nonlinear layers replaced with linear equivalents. - Default: False + Default: ``False`` aux_logits (bool, optional): If True, adds two auxiliary branches that can improve training. - Default: False + Default: ``False`` out_features (int, optional): Number of output features in the model used for training. - Default: 1008 - transform_input (bool, optional): If True, preprocesses the input according - to the method with which it was trained on ImageNet. - Default: False - bgr_transform (bool, optional): If True and transform_input is True, - perform an RGB to BGR transform in the internal preprocessing. - Default: False + Default: ``1008`` + transform_input (bool, optional): If ``True``, preprocesses the input + according to the method with which it was trained on ImageNet. + Default: ``False`` + bgr_transform (bool, optional): If ``True`` and ``transform_input`` is + ``True``, perform an RGB to BGR transform in the internal + preprocessing. + Default: ``False`` """ super().__init__() self.aux_logits = aux_logits @@ -283,20 +291,26 @@ def __init__( """ Args: - in_channels (int, optional): The number of input channels to use for the - inception module. - c1x1 (int, optional): - c3x3reduce (int, optional): - c3x3 (int, optional): - c5x5reduce (int, optional): - c5x5 (int, optional): - pool_proj (int, optional): + in_channels (int): The number of input channels to use for the first + layers of the inception module branches. + c1x1 (int): The number of output channels to use for the first layer in + the c1x1 branch. + c3x3reduce (int): The number of output channels to use for the first layer + in the c3x3 branch. + c3x3 (int): The number of output channels to use for the second layer in + the c3x3 branch. + c5x5reduce (int): The number of output channels to use for the first layer + in the c5x5 branch. + c5x5 (int): The number of output channels to use for the second layer in + the c5x5 branch. + pool_proj (int): The number of output channels to use for the second layer + in the pool branch. activ (type of nn.Module, optional): The nn.Module class type to use for activation layers. - Default: nn.ReLU + Default: :class:`torch.nn.ReLU` p_layer (type of nn.Module, optional): The nn.Module class type to use for pooling layers. - Default: nn.MaxPool2d + Default: :class:`torch.nn.MaxPool2d` """ super().__init__() self.conv_1x1 = nn.Conv2d( @@ -390,13 +404,13 @@ def __init__( in_channels (int, optional): The number of input channels to use for the auxiliary branch. - Default: 508 + Default: ``508`` out_features (int, optional): The number of output features to use for the auxiliary branch. - Default: 1008 + Default: ``1008`` activ (type of nn.Module, optional): The nn.Module class type to use for activation layers. - Default: nn.ReLU + Default: :class:`nn.ReLU` """ super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d((4, 4)) diff --git a/captum/optim/models/_image/inception_v1_places365.py b/captum/optim/models/_image/inception_v1_places365.py index 5ebca2a9b5..62a6834e16 100644 --- a/captum/optim/models/_image/inception_v1_places365.py +++ b/captum/optim/models/_image/inception_v1_places365.py @@ -18,35 +18,44 @@ def googlenet_places365( **kwargs: Any, ) -> "InceptionV1Places365": r"""GoogLeNet (also known as Inception v1 & Inception 5h) model architecture from - `"Going Deeper with Convolutions" `_. + `"Going Deeper with Convolutions" `_. The pretrained GoogleNet model was trained using the MIT Places365 Standard dataset. See here for more information: https://arxiv.org/abs/1610.02055 + Example:: + + >>> model = opt.models.googlenet_places365(pretrained=True) + >>> output = model(torch.zeros(1, 3, 224, 224)) + Args: - pretrained (bool, optional): If True, returns a model pre-trained on the MIT - Places365 Standard dataset. - Default: False - progress (bool, optional): If True, displays a progress bar of the download to - stderr - Default: True - model_path (str, optional): Optional path for InceptionV1 model file. - Default: None - replace_relus_with_redirectedrelu (bool, optional): If True, return pretrained - model with Redirected ReLU in place of ReLU layers. - Default: *True* when pretrained is True otherwise *False* - use_linear_modules_only (bool, optional): If True, return pretrained + + pretrained (bool, optional): If ``True``, returns a model pre-trained on the + MIT Places365 Standard dataset. + Default: ``False`` + progress (bool, optional): If ``True``, displays a progress bar of the + download to stderr. + Default: ``True`` + model_path (str, optional): Optional path for the InceptionV1 model file. + Default: ``None`` + replace_relus_with_redirectedrelu (bool, optional): If ``True``, return + pretrained model with :class:`.RedirectedReLU` in place of ReLU layers. + Default: *``True``* when pretrained is True otherwise *``False``* + use_linear_modules_only (bool, optional): If ``True``, return pretrained model with all nonlinear layers replaced with linear equivalents. - Default: False - aux_logits (bool, optional): If True, adds two auxiliary branches that can + Default: ``False`` + aux_logits (bool, optional): If ``True``, adds two auxiliary branches that can improve training. - Default: True + Default: ``True`` out_features (int, optional): Number of output features in the model used for - training. Default: 365 when pretrained is True. - Default: 365 + training. + Default: ``365`` transform_input (bool, optional): If True, preprocesses the input according to the method with which it was trained on Places365. - Default: True + Default: ``True`` + + Returns: + model (InceptionV1Places365): An InceptionV1 Places365 model instance. """ if pretrained: @@ -95,19 +104,19 @@ def __init__( out_features (int, optional): Number of output features in the model used for training. - Default: 365 - aux_logits (bool, optional): If True, adds two auxiliary branches that can - improve training. - Default: True - transform_input (bool, optional): If True, preprocesses the input according - to the method with which it was trained on Places365. - Default: True - replace_relus_with_redirectedrelu (bool, optional): If True, return - pretrained model with Redirected ReLU in place of ReLU layers. - Default: False - use_linear_modules_only (bool, optional): If True, return pretrained model - with all nonlinear layers replaced with linear equivalents. - Default: False + Default: ``365`` + aux_logits (bool, optional): If ``True``, adds two auxiliary branches that + can improve training. + Default: ``True`` + transform_input (bool, optional): If ``True``, preprocesses the input + according to the method with which it was trained on Places365. + Default: ``True`` + replace_relus_with_redirectedrelu (bool, optional): If ``True``, return + pretrained model with :class:`.RedirectedReLU` in place of ReLU layers. + Default: ``False`` + use_linear_modules_only (bool, optional): If ``True``, return pretrained + model with all nonlinear layers replaced with linear equivalents. + Default: ``False`` """ super().__init__() self.aux_logits = aux_logits @@ -281,20 +290,26 @@ def __init__( """ Args: - in_channels (int, optional): The number of input channels to use for the - inception module. - c1x1 (int, optional): - c3x3reduce (int, optional): - c3x3 (int, optional): - c5x5reduce (int, optional): - c5x5 (int, optional): - pool_proj (int, optional): + in_channels (int): The number of input channels to use for the first + layers of the inception module branches. + c1x1 (int): The number of output channels to use for the first layer in + the c1x1 branch. + c3x3reduce (int): The number of output channels to use for the first layer + in the c3x3 branch. + c3x3 (int): The number of output channels to use for the second layer in + the c3x3 branch. + c5x5reduce (int): The number of output channels to use for the first layer + in the c5x5 branch. + c5x5 (int): The number of output channels to use for the second layer in + the c5x5 branch. + pool_proj (int): The number of output channels to use for the second layer + in the pool branch. activ (type of nn.Module, optional): The nn.Module class type to use for activation layers. - Default: nn.ReLU + Default: :class:`torch.nn.ReLU` p_layer (type of nn.Module, optional): The nn.Module class type to use for pooling layers. - Default: nn.MaxPool2d + Default: :class:`torch.nn.MaxPool2d` """ super().__init__() self.conv_1x1 = nn.Conv2d( @@ -388,13 +403,13 @@ def __init__( in_channels (int, optional): The number of input channels to use for the auxiliary branch. - Default: 508 + Default: ``508`` out_features (int, optional): The number of output features to use for the auxiliary branch. - Default: 1008 - activ (type of nn.Module, optional): The nn.Module class type to use for - activation layers. - Default: nn.ReLU + Default: ``1008`` + activ (type of nn.Module, optional): The ``nn.Module`` class type to use + for activation layers. + Default: :class:`torch.nn.ReLU` """ super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d((4, 4)) diff --git a/captum/robust/__init__.py b/captum/robust/__init__.py index 42eb818860..290f575e9c 100644 --- a/captum/robust/__init__.py +++ b/captum/robust/__init__.py @@ -1,9 +1,11 @@ #!/usr/bin/env python3 -from captum.robust._core.fgsm import FGSM # noqa -from captum.robust._core.metrics.attack_comparator import AttackComparator # noqa -from captum.robust._core.metrics.min_param_perturbation import ( # noqa - MinParamPerturbation, -) -from captum.robust._core.perturbation import Perturbation # noqa -from captum.robust._core.pgd import PGD # noqa +# pyre-strict + +from captum.robust._core.fgsm import FGSM +from captum.robust._core.metrics.attack_comparator import AttackComparator +from captum.robust._core.metrics.min_param_perturbation import MinParamPerturbation +from captum.robust._core.perturbation import Perturbation +from captum.robust._core.pgd import PGD + +__all__ = ["FGSM", "AttackComparator", "MinParamPerturbation", "Perturbation", "PGD"] diff --git a/captum/robust/_core/fgsm.py b/captum/robust/_core/fgsm.py index f717481ccd..af36e25ba5 100644 --- a/captum/robust/_core/fgsm.py +++ b/captum/robust/_core/fgsm.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 -from typing import Any, Callable, Tuple + +# pyre-strict +from typing import Any, Callable, Optional, Tuple, Union import torch from captum._utils.common import ( @@ -15,43 +17,53 @@ undo_gradient_requirements, ) from captum._utils.typing import TensorOrTupleOfTensorsGeneric +from captum.log import log_usage from captum.robust._core.perturbation import Perturbation from torch import Tensor class FGSM(Perturbation): r""" - Fast Gradient Sign Method is an one-step method that can generate - adversarial examples. For non-targeted attack, the formulation is - x' = x + epsilon * sign(gradient of L(theta, x, y)). - For targeted attack on t, the formulation is - x' = x - epsilon * sign(gradient of L(theta, x, t)). - L(theta, x, y) is the model's loss function with respect to model + Fast Gradient Sign Method is a one-step method that can generate + adversarial examples. + + For non-targeted attack, the formulation is:: + + x' = x + epsilon * sign(gradient of L(theta, x, y)) + + For targeted attack on t, the formulation is:: + + x' = x - epsilon * sign(gradient of L(theta, x, t)) + + ``L(theta, x, y)`` is the model's loss function with respect to model parameters, inputs and labels. More details on Fast Gradient Sign Method can be found in the original - paper: - https://arxiv.org/pdf/1412.6572.pdf + paper: https://arxiv.org/abs/1412.6572 """ def __init__( self, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_func: Callable, - loss_func: Callable = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_func: Optional[Callable] = None, lower_bound: float = float("-inf"), upper_bound: float = float("inf"), ) -> None: r""" Args: - forward_func (callable): The pytorch model for which the attack is + forward_func (Callable): The pytorch model for which the attack is computed. - loss_func (callable, optional): Loss function of which the gradient + loss_func (Callable, optional): Loss function of which the gradient computed. The loss function should take in outputs of the model and labels, and return a loss tensor. The default loss function is negative log. lower_bound (float, optional): Lower bound of input values. + Default: ``float("-inf")`` upper_bound (float, optional): Upper bound of input values. e.g. image pixels must be in the range 0-255 + Default: ``float("inf")`` Attributes: bound (Callable): A function that bounds the input values based on @@ -63,16 +75,21 @@ def __init__( super().__init__() self.forward_func = forward_func self.loss_func = loss_func + # pyre-fixme[4]: Attribute must be annotated. self.bound = lambda x: torch.clamp(x, min=lower_bound, max=upper_bound) + # pyre-fixme[4]: Attribute must be annotated. self.zero_thresh = 10**-6 + @log_usage() def perturb( self, inputs: TensorOrTupleOfTensorsGeneric, epsilon: float, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. target: Any, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, targeted: bool = False, + mask: Optional[TensorOrTupleOfTensorsGeneric] = None, ) -> TensorOrTupleOfTensorsGeneric: r""" This method computes and returns the perturbed input for each input tensor. @@ -80,13 +97,13 @@ def perturb( Args: - inputs (tensor or tuple of tensors): Input for which adversarial + inputs (Tensor or tuple[Tensor, ...]): Input for which adversarial attack is computed. It can be provided as a single tensor or a tuple of multiple tensors. If multiple input tensors are provided, the batch sizes must be - aligned accross all tensors. + aligned across all tensors. epsilon (float): Step size of perturbation. - target (any): True labels of inputs if non-targeted attack is + target (Any): True labels of inputs if non-targeted attack is desired. Target class of inputs if targeted attack is desired. Target will be passed to the loss function to compute loss, so the type needs to match the @@ -112,7 +129,8 @@ def perturb( examples in inputs (dim 0), and each tuple containing #output_dims - 1 elements. Each tuple is applied as the label for the corresponding example. - additional_forward_args (any, optional): If the forward function + + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. These arguments are provided to @@ -120,11 +138,17 @@ def perturb( Default: None. targeted (bool, optional): If attack should be targeted. Default: False. + mask (Tensor or tuple[Tensor, ...], optional): mask of zeroes and ones + that defines which elements within the input tensor(s) are + perturbed. This mask must have the same shape and + dimensionality as the inputs. If this argument is not + provided, all elements will be perturbed. + Default: None. Returns: - - **perturbed inputs** (*tensor* or tuple of *tensors*): + - **perturbed inputs** (*Tensor* or *tuple[Tensor, ...]*): Perturbed input for each input tensor. The perturbed inputs have the same shape and dimensionality as the inputs. @@ -132,16 +156,28 @@ def perturb( is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. """ + # pyre-fixme[6]: For 1st argument expected `Tensor` but got + # `TensorOrTupleOfTensorsGeneric`. is_inputs_tuple = _is_tuple(inputs) + # pyre-fixme[35]: Target cannot be annotated. inputs: Tuple[Tensor, ...] = _format_tensor_into_tuples(inputs) + # pyre-fixme[9]: masks has type `Union[typing.Tuple[int, ...], + # typing.Tuple[Tensor, ...]]`; used as `Tuple[Union[int, Tensor], ...]`. + masks: Union[Tuple[int, ...], Tuple[Tensor, ...]] = ( + _format_tensor_into_tuples(mask) + if (mask is not None) + else (1,) * len(inputs) + ) gradient_mask = apply_gradient_requirements(inputs) def _forward_with_loss() -> Tensor: additional_inputs = _format_additional_forward_args(additional_forward_args) outputs = self.forward_func( # type: ignore - *(*inputs, *additional_inputs) # type: ignore - if additional_inputs is not None - else inputs + *( + (*inputs, *additional_inputs) # type: ignore + if additional_inputs is not None + else inputs + ) ) if self.loss_func is not None: return self.loss_func(outputs, target) @@ -151,31 +187,38 @@ def _forward_with_loss() -> Tensor: grads = compute_gradients(_forward_with_loss, inputs) undo_gradient_requirements(inputs, gradient_mask) - perturbed_inputs = self._perturb(inputs, grads, epsilon, targeted) + perturbed_inputs = self._perturb(inputs, grads, epsilon, targeted, masks) perturbed_inputs = tuple( self.bound(perturbed_inputs[i]) for i in range(len(perturbed_inputs)) ) + # pyre-fixme[7]: Expected `TensorOrTupleOfTensorsGeneric` but got + # `Tuple[Tensor, ...]`. return _format_output(is_inputs_tuple, perturbed_inputs) def _perturb( self, + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. inputs: Tuple, + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. grads: Tuple, epsilon: float, targeted: bool, + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. + masks: Tuple, + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. ) -> Tuple: r""" A helper function to calculate the perturbed inputs given original inputs, gradient of loss function and epsilon. The calculation is - different for targetd v.s. non-targeted as described above. + different for targeted v.s. non-targeted as described above. """ multiplier = -1 if targeted else 1 inputs = tuple( torch.where( torch.abs(grad) > self.zero_thresh, - inp + multiplier * epsilon * torch.sign(grad), + inp + multiplier * epsilon * torch.sign(grad) * mask, inp, ) - for grad, inp in zip(grads, inputs) + for grad, inp, mask in zip(grads, inputs, masks) ) return inputs diff --git a/captum/robust/_core/metrics/attack_comparator.py b/captum/robust/_core/metrics/attack_comparator.py index 57b03e8f18..348e2d69ed 100644 --- a/captum/robust/_core/metrics/attack_comparator.py +++ b/captum/robust/_core/metrics/attack_comparator.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 + +# pyre-strict import warnings from collections import namedtuple from typing import ( @@ -21,6 +23,7 @@ _reduce_list, ) from captum.attr import Max, Mean, Min, Summarizer +from captum.log import log_usage from captum.robust._core.perturbation import Perturbation from torch import Tensor @@ -32,6 +35,7 @@ class AttackInfo(NamedTuple): + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. attack_fn: Union[Perturbation, Callable] name: str num_attempts: int @@ -40,6 +44,8 @@ class AttackInfo(NamedTuple): additional_args: List[str] +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[2]: Parameter must be annotated. def agg_metric(inp): if isinstance(inp, Tensor): return inp.mean(dim=0) @@ -58,17 +64,19 @@ class AttackComparator(Generic[MetricResultType]): def __init__( self, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_func: Callable, metric: Callable[..., MetricResultType], - preproc_fn: Callable = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + preproc_fn: Optional[Callable] = None, ) -> None: r""" Args: - forward_func (callable or torch.nn.Module): This can either be an instance + forward_func (Callable or torch.nn.Module): This can either be an instance of pytorch model or any modification of a model's forward function. - metric (callable): This function is applied to the model output in + metric (Callable): This function is applied to the model output in order to compute the desired performance metric or metrics. This function should have the following signature:: @@ -85,23 +93,28 @@ def __init__( If tensor metrics represent results for the full batch, the size of the first dimension should be 1. - preproc_fn (callable, optional): Optional method applied to inputs. Output + preproc_fn (Callable, optional): Optional method applied to inputs. Output of preproc_fn is then provided as input to model, in addition to additional_forward_args provided to evaluate. + Default: ``None`` """ self.forward_func = forward_func + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. self.metric: Callable = metric self.preproc_fn = preproc_fn self.attacks: Dict[str, AttackInfo] = {} self.summary_results: Dict[str, Summarizer] = {} + # pyre-fixme[4]: Attribute must be annotated. self.metric_aggregator = agg_metric self.batch_stats = [Mean, Min, Max] self.aggregate_stats = [Mean] self.summary_results = {} + # pyre-fixme[4]: Attribute must be annotated. self.out_format = None def add_attack( self, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. attack: Union[Perturbation, Callable], name: Optional[str] = None, num_attempts: int = 1, @@ -113,31 +126,38 @@ def add_attack( Adds attack to be evaluated when calling evaluate. Args: - attack (perturbation or callable): This can either be an instance + + attack (Perturbation or Callable): This can either be an instance of a Captum Perturbation / Attack or any other perturbation or attack function such as a torchvision transform. - name (optional, str): Name or identifier for attack, used as key for + name (str, optional): Name or identifier for attack, used as key for attack results. This defaults to attack.__class__.__name__ if not provided and must be unique for all added attacks. + Default: ``None`` - num_attempts (int): Number of attempts that attack should be + num_attempts (int, optional): Number of attempts that attack should be repeated. This should only be set to > 1 for non-deterministic attacks. The minimum, maximum, and average (best, worst, and average case) are tracked for attack attempts. - - apply_before_preproc (bool): Defines whether attack should be applied - before or after preproc function. - - attack_kwargs (dict): Additional arguments to be provided to given attack. - This should be provided as a dictionary of keyword arguments. - - additional_attack_arg_names (list[str]): Any additional arguments for the - attack which are specific to the particular input example or batch. - An example of this is target, which is necessary for some attacks such - as FGSM or PGD. These arguments are included if provided as a kwarg - to evaluate. + Default: ``1`` + + apply_before_preproc (bool, optional): Defines whether attack should be + applied before or after preproc function. + Default: ``True`` + + attack_kwargs (dict, optional): Additional arguments to be provided to + given attack. This should be provided as a dictionary of keyword + arguments. + Default: ``None`` + + additional_attack_arg_names (list[str], optional): Any additional + arguments for the attack which are specific to the particular input + example or batch. An example of this is target, which is necessary + for some attacks such as FGSM or PGD. These arguments are included + if provided as a kwarg to evaluate. + Default: ``None`` """ if name is None: name = attack.__class__.__name__ @@ -163,7 +183,11 @@ def add_attack( ) def _format_summary( - self, summary: Union[Dict, List[Dict]] + self, + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime subscripting + # errors. + summary: Union[Dict, List[Dict]], ) -> Dict[str, MetricResultType]: r""" This method reformats a given summary; particularly for tuples, @@ -175,6 +199,7 @@ def _format_summary( if isinstance(summary, dict): return summary else: + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. summary_dict: Dict[str, Tuple] = {} for key in summary[0]: summary_dict[key] = tuple(s[key] for s in summary) @@ -196,7 +221,9 @@ def _update_out_format( def _evaluate_batch( self, + # pyre-fixme[2]: Parameter annotation cannot contain `Any`. input_list: List[Any], + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. additional_forward_args: Optional[Tuple], key_list: List[str], batch_summarizers: Dict[str, Summarizer], @@ -227,11 +254,14 @@ def _evaluate_batch( batch_summarizers[key_list[i]].update(out_metric) current_count += batch_size + @log_usage() def evaluate( self, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. inputs: Any, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, perturbations_per_eval: int = 1, + # pyre-fixme[2]: Parameter must be annotated. **kwargs, ) -> Dict[str, Union[MetricResultType, Dict[str, MetricResultType]]]: r""" @@ -239,7 +269,7 @@ def evaluate( Args: - inputs (any): Input for which attack metrics + inputs (Any): Input for which attack metrics are computed. It can be provided as a tensor, tuple of tensors, or any raw input type (e.g. PIL image or text string). This input is provided directly as input to preproc function as well @@ -247,7 +277,7 @@ def evaluate( function is provided, this input is provided directly to the main model and all attacks. - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the preprocessing outputs (or inputs if preproc_fn is None), this argument can be provided. It must be either a single additional @@ -259,8 +289,8 @@ def evaluate( For a tensor, the first dimension of the tensor must correspond to the number of examples. For all other types, the given argument is used for all forward evaluations. - Default: None - perturbations_per_eval (int, optional): Allows perturbations of multiple + Default: ``None`` + perturbations_per_eval (int, optional): Allows perturbations of multiple attacks to be grouped and evaluated in one call of forward_fn Each forward pass will contain a maximum of perturbations_per_eval * #examples samples. @@ -272,9 +302,10 @@ def evaluate( In order to apply this functionality, the output of preproc_fn (or inputs itself if no preproc_fn is provided) must be a tensor or tuple of tensors. - Default: 1 - kwargs (any, optional): Additional keyword arguments provided to metric function - as well as selected attacks based on chosen additional_args + Default: ``1`` + kwargs (Any, optional): Additional keyword arguments provided to metric + function as well as selected attacks based on chosen additional_args. + Default: ``None`` Returns: @@ -338,6 +369,10 @@ def evaluate( [stat() for stat in self.aggregate_stats] ) + # pyre-fixme[53]: Captured variable `batch_summarizers` is not annotated. + # pyre-fixme[53]: Captured variable `expanded_additional_args` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def _check_and_evaluate(input_list, key_list): if len(input_list) == perturbations_per_eval: self._evaluate_batch( @@ -363,7 +398,8 @@ def _check_and_evaluate(input_list, key_list): for key in attack.additional_args: if key not in kwargs: warnings.warn( - f"Additional sample arg {key} not provided for {attack_key}" + f"Additional sample arg {key} not provided for {attack_key}", + stacklevel=1, ) else: additional_attack_args[key] = kwargs[key] @@ -403,6 +439,11 @@ def _parse_and_update_results( ) -> Dict[str, Union[MetricResultType, Dict[str, MetricResultType]]]: results: Dict[str, Union[MetricResultType, Dict[str, MetricResultType]]] = { ORIGINAL_KEY: self._format_summary( + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime + # subscripting errors. + # pyre-fixme[24]: Generic type `list` expects 1 type parameter, use + # `typing.List[]` to avoid runtime subscripting errors. cast(Union[Dict, List], batch_summarizers[ORIGINAL_KEY].summary) )["mean"] } @@ -412,6 +453,11 @@ def _parse_and_update_results( for attack_key in self.attacks: attack = self.attacks[attack_key] attack_results = self._format_summary( + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime + # subscripting errors. + # pyre-fixme[24]: Generic type `list` expects 1 type parameter, use + # `typing.List[]` to avoid runtime subscripting errors. cast(Union[Dict, List], batch_summarizers[attack.name].summary) ) results[attack.name] = attack_results @@ -455,6 +501,11 @@ def summary(self) -> Dict[str, Dict[str, MetricResultType]]: """ return { key: self._format_summary( + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime + # subscripting errors. + # pyre-fixme[24]: Generic type `list` expects 1 type parameter, use + # `typing.List[]` to avoid runtime subscripting errors. cast(Union[Dict, List], self.summary_results[key].summary) ) for key in self.summary_results diff --git a/captum/robust/_core/metrics/min_param_perturbation.py b/captum/robust/_core/metrics/min_param_perturbation.py index 279179ab64..afca08f1ce 100644 --- a/captum/robust/_core/metrics/min_param_perturbation.py +++ b/captum/robust/_core/metrics/min_param_perturbation.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 + +# pyre-strict import math from enum import Enum from typing import Any, Callable, cast, Dict, Generator, List, Optional, Tuple, Union @@ -10,6 +12,7 @@ _reduce_list, ) from captum._utils.typing import TargetType +from captum.log import log_usage from captum.robust._core.perturbation import Perturbation from torch import Tensor @@ -18,8 +21,12 @@ def drange( min_val: Union[int, float], max_val: Union[int, float], step_val: Union[int, float] ) -> Generator[Union[int, float], None, None]: curr = min_val + # pyre-fixme[58]: `>` is not supported for operand types `Union[float, int]` and + # `int`. while curr < max_val: yield curr + # pyre-fixme[58]: `+` is not supported for operand types `Union[float, int]` + # and `Union[float, int]`. curr += step_val @@ -40,7 +47,9 @@ class MinParamPerturbationMode(Enum): class MinParamPerturbation: def __init__( self, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_func: Callable, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. attack: Union[Callable, Perturbation], arg_name: str, arg_min: Union[int, float], @@ -48,10 +57,12 @@ def __init__( arg_step: Union[int, float], mode: str = "linear", num_attempts: int = 1, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. preproc_fn: Optional[Callable] = None, apply_before_preproc: bool = False, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. correct_fn: Optional[Callable] = None, - ): + ) -> None: r""" Identifies minimal perturbation based on target variable which causes misclassification (or other incorrect prediction) of target input. @@ -63,7 +74,7 @@ def __init__( corresponding perturbed input. Args: - forward_func (callable or torch.nn.Module): This can either be an instance + forward_func (Callable or torch.nn.Module): This can either be an instance of pytorch model or any modification of a model's forward function. @@ -85,23 +96,23 @@ def __init__( arg_step (int, float): Minimum interval for increase of target variable. mode (str, optional): Mode for search of minimum attack value; - either 'linear' for linear search on variable, or 'binary' for + either ``linear`` for linear search on variable, or ``binary`` for binary search of variable - Default: 'linear' + Default: ``linear`` num_attempts (int, optional): Number of attempts or trials with given variable. This should only be set to > 1 for non-deterministic perturbation / attack functions - Default: 1 + Default: ``1`` - preproc_fn (callable, optional): Optional method applied to inputs. Output + preproc_fn (Callable, optional): Optional method applied to inputs. Output of preproc_fn is then provided as input to model, in addition to additional_forward_args provided to evaluate. - Default: None + Default: ``None`` apply_before_preproc (bool, optional): Defines whether attack should be applied before or after preproc function. - Default: False + Default: ``False`` correct_fn (Callable, optional): This determines whether the perturbed input leads to a correct or incorrect prediction. By default, this function @@ -114,13 +125,15 @@ def __init__( function must be provided which determines correctness. The first argument to this function must be the model out; - any additional arguments should be provided through correct_fn_kwargs. + any additional arguments should be provided through + ``correct_fn_kwargs``. + + This function should have the following signature:: - This function should have the following signature: def correct_fn(model_out: Tensor, **kwargs: Any) -> bool Method should return a boolean if correct (True) and incorrect (False). - Default: None (applies standard correct_fn for classification) + Default: ``None`` (applies standard correct_fn for classification) """ self.forward_func = forward_func self.attack = attack @@ -129,25 +142,34 @@ def correct_fn(model_out: Tensor, **kwargs: Any) -> bool self.arg_max = arg_max self.arg_step = arg_step assert self.arg_max > ( - self.arg_min + self.arg_step + self.arg_min + # pyre-fixme[6]: For 1st argument expected `int` but got `Union[float, + # int]`. + + self.arg_step ), "Step size cannot be smaller than range between min and max" self.num_attempts = num_attempts self.preproc_fn = preproc_fn self.apply_before_preproc = apply_before_preproc + # pyre-fixme[4]: Attribute must be annotated. self.correct_fn = cast( - Callable, correct_fn if correct_fn is not None else default_correct_fn + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + Callable, + correct_fn if correct_fn is not None else default_correct_fn, ) assert ( mode.upper() in MinParamPerturbationMode.__members__ ), f"Provided perturb mode {mode} is not valid - must be linear or binary" + # pyre-fixme[4]: Attribute must be annotated. self.mode = MinParamPerturbationMode[mode.upper()] def _evaluate_batch( self, + # pyre-fixme[24]: Generic type `list` expects 1 type parameter, use + # `typing.List[]` to avoid runtime subscripting errors. input_list: List, - additional_forward_args: Any, + additional_forward_args: Optional[Tuple[object, ...]], correct_fn_kwargs: Optional[Dict[str, Any]], target: TargetType, ) -> Optional[int]: @@ -182,9 +204,12 @@ def _evaluate_batch( current_count += batch_size return None + # pyre-fixme[3]: Return annotation cannot contain `Any`. def _apply_attack( self, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. inputs: Any, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. preproc_input: Any, attack_kwargs: Optional[Dict[str, Any]], param: Union[int, float], @@ -205,12 +230,16 @@ def _apply_attack( preproc_attacked_inp = attacked_inp return preproc_attacked_inp, attacked_inp + # pyre-fixme[3]: Return annotation cannot contain `Any`. def _linear_search( self, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. inputs: Any, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. preproc_input: Any, attack_kwargs: Optional[Dict[str, Any]], - additional_forward_args: Any, + additional_forward_args: Optional[Tuple[object, ...]], + # pyre-fixme[2]: Parameter annotation cannot be `Any`. expanded_additional_args: Any, correct_fn_kwargs: Optional[Dict[str, Any]], target: TargetType, @@ -262,12 +291,16 @@ def _linear_search( ) return None, None + # pyre-fixme[3]: Return annotation cannot contain `Any`. def _binary_search( self, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. inputs: Any, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. preproc_input: Any, attack_kwargs: Optional[Dict[str, Any]], - additional_forward_args: Any, + additional_forward_args: Optional[Tuple[object, ...]], + # pyre-fixme[2]: Parameter annotation cannot be `Any`. expanded_additional_args: Any, correct_fn_kwargs: Optional[Dict[str, Any]], target: TargetType, @@ -277,11 +310,23 @@ def _binary_search( max_range = self.arg_max min_so_far = None min_input = None + # pyre-fixme[58]: `<` is not supported for operand types `Union[float, int]` + # and `int`. while max_range > min_range: + # pyre-fixme[6]: For 1st argument expected `int` but got `Union[float, + # int]`. + # pyre-fixme[58]: `//` is not supported for operand types `int` and + # `Union[float, int]`. mid_step = ((max_range - min_range) // self.arg_step) // 2 + # pyre-fixme[6]: For 1st argument expected `int` but got `Union[float, + # int]`. + # pyre-fixme[58]: `<` is not supported for operand types `int` and + # `Union[float, int]`. if mid_step == 0 and min_range + self.arg_step < max_range: mid_step = 1 + # pyre-fixme[58]: `*` is not supported for operand types `int` and + # `Union[float, int]`. mid = min_range + (mid_step * self.arg_step) input_list = [] @@ -333,9 +378,13 @@ def _binary_search( return min_input, min_so_far + @log_usage() + # pyre-fixme[3]: Return annotation cannot contain `Any`. def evaluate( self, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. inputs: Any, + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. additional_forward_args: Optional[Tuple] = None, target: TargetType = None, perturbations_per_eval: int = 1, @@ -363,7 +412,7 @@ def evaluate( pre-processing function is provided, this input is provided directly to the main model and all attacks. - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the preprocessing outputs (or inputs if preproc_fn is None), this argument can be provided. It must be either a single additional @@ -375,9 +424,9 @@ def evaluate( For a tensor, the first dimension of the tensor must correspond to the number of examples. For all other types, the given argument is used for all forward evaluations. - Default: None + Default: ``None`` target (TargetType): Target class for classification. This is required if - using the default correct_fn + using the default ``correct_fn``. perturbations_per_eval (int, optional): Allows perturbations of multiple attacks to be grouped and evaluated in one call of forward_fn @@ -391,10 +440,10 @@ def evaluate( In order to apply this functionality, the output of preproc_fn (or inputs itself if no preproc_fn is provided) must be a tensor or tuple of tensors. - Default: 1 - attack_kwargs (dictionary, optional): Optional dictionary of keyword + Default: ``1`` + attack_kwargs (dict, optional): Optional dictionary of keyword arguments provided to attack function - correct_fn_kwargs (dictionary, optional): Optional dictionary of keyword + correct_fn_kwargs (dict, optional): Optional dictionary of keyword arguments provided to correct function Returns: diff --git a/captum/robust/_core/perturbation.py b/captum/robust/_core/perturbation.py index 9eb6d53481..c90f7ac0a7 100644 --- a/captum/robust/_core/perturbation.py +++ b/captum/robust/_core/perturbation.py @@ -1,13 +1,18 @@ #!/usr/bin/env python3 + +# pyre-strict from typing import Callable +# pyre-fixme[13]: Attribute `perturb` is never initialized. class Perturbation: r""" All perturbation and attack algorithms extend this class. It enforces its child classes to extend and override core `perturb` method. """ + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + # pyre-fixme[13]: Attribute `perturb` is never initialized. perturb: Callable r""" This method computes and returns the perturbed input for each input tensor. @@ -18,15 +23,15 @@ class Perturbation: Args: - inputs (tensor or tuple of tensors): Input for which adversarial attack + inputs (Tensor or tuple[Tensor, ...]): Input for which adversarial attack is computed. It can be provided as a single tensor or a tuple of multiple tensors. If multiple input tensors - are provided, the batch sizes must be aligned accross all + are provided, the batch sizes must be aligned across all tensors. Returns: - - **perturbed inputs** (*tensor* or tuple of *tensors*): + - **perturbed inputs** (*Tensor* or *tuple[Tensor, ...]*): Perturbed input for each input tensor. The perturbed inputs have the same shape and dimensionality as the inputs. @@ -35,5 +40,7 @@ class Perturbation: corresponding sized tensors is returned. """ + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def __call__(self, *args, **kwargs): return self.perturb(*args, **kwargs) diff --git a/captum/robust/_core/pgd.py b/captum/robust/_core/pgd.py index b14239c681..cf49c26ae4 100644 --- a/captum/robust/_core/pgd.py +++ b/captum/robust/_core/pgd.py @@ -1,10 +1,13 @@ #!/usr/bin/env python3 -from typing import Any, Callable + +# pyre-strict +from typing import Any, Callable, Optional, Tuple, Union import torch import torch.nn.functional as F from captum._utils.common import _format_output, _format_tensor_into_tuples, _is_tuple from captum._utils.typing import TensorOrTupleOfTensorsGeneric +from captum.log import log_usage from captum.robust._core.fgsm import FGSM from captum.robust._core.perturbation import Perturbation from torch import Tensor @@ -31,28 +34,31 @@ class PGD(Perturbation): x_(t+1) = Clip_r(x_t - alpha * sign(gradient of L(theta, x, t))) More details on Projected Gradient Descent can be found in the original - paper: - https://arxiv.org/pdf/1706.06083.pdf + paper: https://arxiv.org/abs/1706.06083 """ def __init__( self, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. forward_func: Callable, - loss_func: Callable = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_func: Optional[Callable] = None, lower_bound: float = float("-inf"), upper_bound: float = float("inf"), ) -> None: r""" Args: - forward_func (callable): The pytorch model for which the attack is + forward_func (Callable): The pytorch model for which the attack is computed. - loss_func (callable, optional): Loss function of which the gradient + loss_func (Callable, optional): Loss function of which the gradient computed. The loss function should take in outputs of the model and labels, and return the loss for each input tensor. The default loss function is negative log. lower_bound (float, optional): Lower bound of input values. + Default: ``float("-inf")`` upper_bound (float, optional): Upper bound of input values. e.g. image pixels must be in the range 0-255 + Default: ``float("inf")`` Attributes: bound (Callable): A function that bounds the input values based on @@ -62,19 +68,23 @@ def __init__( super().__init__() self.forward_func = forward_func self.fgsm = FGSM(forward_func, loss_func) + # pyre-fixme[4]: Attribute must be annotated. self.bound = lambda x: torch.clamp(x, min=lower_bound, max=upper_bound) + @log_usage() def perturb( self, inputs: TensorOrTupleOfTensorsGeneric, radius: float, step_size: float, step_num: int, + # pyre-fixme[2]: Parameter annotation cannot be `Any`. target: Any, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, targeted: bool = False, random_start: bool = False, norm: str = "Linf", + mask: Optional[TensorOrTupleOfTensorsGeneric] = None, ) -> TensorOrTupleOfTensorsGeneric: r""" This method computes and returns the perturbed input for each input tensor. @@ -82,17 +92,17 @@ def perturb( Args: - inputs (tensor or tuple of tensors): Input for which adversarial + inputs (Tensor or tuple[Tensor, ...]): Input for which adversarial attack is computed. It can be provided as a single tensor or a tuple of multiple tensors. If multiple input tensors are provided, the batch sizes must be - aligned accross all tensors. + aligned across all tensors. radius (float): Radius of the neighbor ball centered around inputs. The perturbation should be within this range. step_size (float): Step size of each gradient step. step_num (int): Step numbers. It usually guarantees that the perturbation can reach the border. - target (any): True labels of inputs if non-targeted attack is + target (Any): True labels of inputs if non-targeted attack is desired. Target class of inputs if targeted attack is desired. Target will be passed to the loss function to compute loss, so the type needs to match the @@ -118,23 +128,29 @@ def perturb( examples in inputs (dim 0), and each tuple containing #output_dims - 1 elements. Each tuple is applied as the label for the corresponding example. - additional_forward_args (any, optional): If the forward function + additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. These arguments are provided to forward_func in order following the arguments in inputs. - Default: None. + Default: ``None`` targeted (bool, optional): If attack should be targeted. - Default: False. + Default: ``False`` random_start (bool, optional): If a random initialization is added to - inputs. Default: False. + inputs. Default: ``False`` norm (str, optional): Specifies the norm to calculate distance from - original inputs: 'Linf'|'L2'. - Default: 'Linf'. + original inputs: ``Linf`` | ``L2``. + Default: ``Linf`` + mask (Tensor or tuple[Tensor, ...], optional): mask of zeroes and ones + that defines which elements within the input tensor(s) are + perturbed. This mask must have the same shape and + dimensionality as the inputs. If this argument is not + provided, all elements are perturbed. + Default: None. Returns: - - **perturbed inputs** (*tensor* or tuple of *tensors*): + - **perturbed inputs** (*Tensor* or *tuple[Tensor, ...]*): Perturbed input for each input tensor. The perturbed inputs have the same shape and dimensionality as the inputs. @@ -152,17 +168,35 @@ def _clip(inputs: Tensor, outputs: Tensor) -> Tensor: else: raise AssertionError("Norm constraint must be L2 or Linf.") + # pyre-fixme[6]: For 1st argument expected `Tensor` but got + # `TensorOrTupleOfTensorsGeneric`. is_inputs_tuple = _is_tuple(inputs) formatted_inputs = _format_tensor_into_tuples(inputs) + # pyre-fixme[9]: formatted_masks has type `Union[typing.Tuple[int, ...], + # typing.Tuple[Tensor, ...]]`; used as `Tuple[Union[int, Tensor], ...]`. + formatted_masks: Union[Tuple[int, ...], Tuple[Tensor, ...]] = ( + _format_tensor_into_tuples(mask) + if (mask is not None) + else (1,) * len(formatted_inputs) + ) perturbed_inputs = formatted_inputs if random_start: perturbed_inputs = tuple( - self.bound(self._random_point(formatted_inputs[i], radius, norm)) + self.bound( + self._random_point( + formatted_inputs[i], radius, norm, formatted_masks[i] + ) + ) for i in range(len(formatted_inputs)) ) for _i in range(step_num): perturbed_inputs = self.fgsm.perturb( - perturbed_inputs, step_size, target, additional_forward_args, targeted + perturbed_inputs, + step_size, + target, + additional_forward_args, + targeted, + formatted_masks, ) perturbed_inputs = tuple( _clip(formatted_inputs[j], perturbed_inputs[j]) @@ -173,9 +207,13 @@ def _clip(inputs: Tensor, outputs: Tensor) -> Tensor: self.bound(perturbed_inputs[j]).detach() for j in range(len(perturbed_inputs)) ) + # pyre-fixme[7]: Expected `TensorOrTupleOfTensorsGeneric` but got + # `Tuple[Tensor, ...]`. return _format_output(is_inputs_tuple, perturbed_inputs) - def _random_point(self, center: Tensor, radius: float, norm: str) -> Tensor: + def _random_point( + self, center: Tensor, radius: float, norm: str, mask: Union[Tensor, int] + ) -> Tensor: r""" A helper function that returns a uniform random point within the ball with the given center and radius. Norm should be either L2 or Linf. @@ -184,12 +222,16 @@ def _random_point(self, center: Tensor, radius: float, norm: str) -> Tensor: u = torch.randn_like(center) unit_u = F.normalize(u.view(u.size(0), -1)).view(u.size()) d = torch.numel(center[0]) + # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and + # `float`. r = (torch.rand(u.size(0)) ** (1.0 / d)) * radius + # pyre-fixme[16]: `float` has no attribute `__getitem__`. + # pyre-fixme[16]: `float` has no attribute `dim`. r = r[(...,) + (None,) * (r.dim() - 1)] x = r * unit_u - return center + x + return center + (x * mask) elif norm == "Linf": x = torch.rand_like(center) * radius * 2 - radius - return center + x + return center + (x * mask) else: raise AssertionError("Norm constraint must be L2 or Linf.") diff --git a/tests/attr/helpers/__init__.py b/captum/testing/attr/helpers/__init__.py similarity index 100% rename from tests/attr/helpers/__init__.py rename to captum/testing/attr/helpers/__init__.py diff --git a/captum/testing/attr/helpers/attribution_delta_util.py b/captum/testing/attr/helpers/attribution_delta_util.py new file mode 100644 index 0000000000..dd4fc100e8 --- /dev/null +++ b/captum/testing/attr/helpers/attribution_delta_util.py @@ -0,0 +1,41 @@ +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. + +# pyre-strict +from typing import Tuple, Union + +import torch +from captum.testing.helpers import BaseTest +from torch import Tensor + + +def assert_attribution_delta( + test: BaseTest, + inputs: Union[Tensor, Tuple[Tensor, ...]], + attributions: Union[Tensor, Tuple[Tensor, ...]], + n_samples: int, + delta: Tensor, + delta_thresh: Union[float, Tensor] = 0.0006, + is_layer: bool = False, +) -> None: + if not is_layer: + for input, attribution in zip(inputs, attributions): + test.assertEqual(attribution.shape, input.shape) + if isinstance(inputs, tuple): + bsz = inputs[0].shape[0] + else: + bsz = inputs.shape[0] + test.assertEqual([bsz * n_samples], list(delta.shape)) + + delta = torch.mean(delta.reshape(bsz, -1), dim=1) + assert_delta(test, delta, delta_thresh) + + +def assert_delta( + test: BaseTest, delta: Tensor, delta_thresh: Union[Tensor, float] = 0.0006 +) -> None: + delta_condition = (delta.abs() < delta_thresh).all() + test.assertTrue( + delta_condition, + "Sum of SHAP values {} does" + " not match the difference of endpoints.".format(delta), + ) diff --git a/tests/attr/helpers/conductance_reference.py b/captum/testing/attr/helpers/conductance_reference.py similarity index 81% rename from tests/attr/helpers/conductance_reference.py rename to captum/testing/attr/helpers/conductance_reference.py index cdcf02d70f..b50fe6ee09 100644 --- a/tests/attr/helpers/conductance_reference.py +++ b/captum/testing/attr/helpers/conductance_reference.py @@ -1,4 +1,8 @@ #!/usr/bin/env python3 + +# pyre-strict +from typing import cast, Tuple, Union + import numpy as np import torch from captum._utils.gradient import ( @@ -8,6 +12,8 @@ from captum.attr._utils.approximation_methods import approximation_parameters from captum.attr._utils.attribution import LayerAttribution from captum.attr._utils.common import _reshape_and_sum +from torch import Tensor +from torch.utils.hooks import RemovableHandle """ Note: This implementation of conductance follows the procedure described in the original @@ -23,6 +29,7 @@ class ConductanceReference(LayerAttribution): + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, forward_func, layer) -> None: r""" Args @@ -33,12 +40,22 @@ def __init__(self, forward_func, layer) -> None: """ super().__init__(forward_func, layer) - def _conductance_grads(self, forward_fn, input, target_ind=None): + def _conductance_grads( + self, + # pyre-fixme[2]: Parameter must be annotated. + forward_fn, + # pyre-fixme[2]: Parameter must be annotated. + input, + # pyre-fixme[2]: Parameter must be annotated. + target_ind=None, + ) -> Tuple[Tensor, Tensor, int]: with torch.autograd.set_grad_enabled(True): # Set a forward hook on specified module and run forward pass to # get output tensor size. saved_tensor = None + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward_hook(module, inp, out): nonlocal saved_tensor saved_tensor = out @@ -50,7 +67,7 @@ def forward_hook(module, inp, out): # The hidden layer tensor is assumed to have dimension (num_hidden, ...) # where the product of the dimensions >= 1 correspond to the total # number of hidden neurons in the layer. - layer_size = tuple(saved_tensor.size())[1:] + layer_size = tuple(cast(Tensor, saved_tensor).size())[1:] layer_units = int(np.prod(layer_size)) # Remove unnecessary forward hook. @@ -60,6 +77,10 @@ def forward_hook(module, inp, out): # just the gradient of each hidden unit with respect to input. saved_grads = None + # pyre-fixme[53]: Captured variable `layer_size` is not annotated. + # pyre-fixme[53]: Captured variable `layer_units` is not annotated. + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def backward_hook(grads): nonlocal saved_grads saved_grads = grads @@ -80,6 +101,8 @@ def backward_hook(grads): # tensor. Save backward hook in order to remove hook appropriately. back_hook = None + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward_hook_register_back(module, inp, out): nonlocal back_hook back_hook = out.register_hook(backward_hook) @@ -96,12 +119,12 @@ def forward_hook_register_back(module, inp, out): input_grads = torch.autograd.grad(torch.unbind(output), expanded_input) # Remove backwards hook - back_hook.remove() + cast(RemovableHandle, back_hook).remove() # Remove duplicates in gradient with respect to hidden layer, # choose one for each layer_units indices. output_mid_grads = torch.index_select( - saved_grads, + cast(Tensor, saved_grads), 0, torch.tensor(range(0, input_grads[0].shape[0], layer_units)), ) @@ -109,12 +132,14 @@ def forward_hook_register_back(module, inp, out): def attribute( self, + # pyre-fixme[2]: Parameter must be annotated. inputs, - baselines=None, + baselines: Union[None, int, Tensor] = None, + # pyre-fixme[2]: Parameter must be annotated. target=None, - n_steps=500, - method="riemann_trapezoid", - ): + n_steps: int = 500, + method: str = "riemann_trapezoid", + ) -> Tensor: r""" Computes conductance using gradients along the path, applying riemann's method or gauss-legendre. @@ -147,7 +172,12 @@ def attribute( # compute scaled inputs from baseline to final input. scaled_features = torch.cat( - [baselines + alpha * (inputs - baselines) for alpha in alphas], dim=0 + # pyre-fixme[6]: For 1st argument expected `Union[List[Tensor], + # typing.Tuple[Tensor, ...]]` but got `List[float]`. + # pyre-fixme[58]: `+` is not supported for operand types `Union[int, + # torch._tensor.Tensor]` and `float`. + [baselines + alpha * (inputs - baselines) for alpha in alphas], + dim=0, ) # Conductance Gradients - Returns gradient of output with respect to @@ -184,5 +214,6 @@ def attribute( scaled_grads.view(mid_layer_gradients.shape) * summed_input_grads, n_steps, inputs.shape[0], + # pyre-fixme[6]: For 4th argument expected `Tuple[int, ...]` but got `Size`. mid_layer_gradients.shape[1:], ) diff --git a/tests/attr/helpers/gen_test_utils.py b/captum/testing/attr/helpers/gen_test_utils.py similarity index 86% rename from tests/attr/helpers/gen_test_utils.py rename to captum/testing/attr/helpers/gen_test_utils.py index 15b1dddf44..4ac1dd5909 100644 --- a/tests/attr/helpers/gen_test_utils.py +++ b/captum/testing/attr/helpers/gen_test_utils.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + import typing from typing import Any, cast, Dict, List, Tuple, Type, Union @@ -24,10 +26,13 @@ def gen_test_name( def parse_test_config( + # pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use + # `typing.Dict[, ]` to avoid runtime subscripting errors. test_config: Dict, ) -> Tuple[List[Type[Attribution]], Module, Dict[str, Any], Module, bool, bool]: algorithms = cast(List[Type[Attribution]], test_config["algorithms"]) model = test_config["model"] + # pyre-fixme[33]: Given annotation cannot contain `Any`. args = cast(Dict[str, Any], test_config["attribute_args"]) layer = test_config["layer"] if "layer" in test_config else None noise_tunnel = ( @@ -36,7 +41,7 @@ def parse_test_config( baseline_distr = ( test_config["baseline_distr"] if "baseline_distr" in test_config else False ) - return algorithms, model, args, layer, noise_tunnel, baseline_distr + return algorithms, model, args, layer, noise_tunnel, baseline_distr # type: ignore def should_create_generated_test(algorithm: Type[Attribution]) -> bool: @@ -55,13 +60,11 @@ def should_create_generated_test(algorithm: Type[Attribution]) -> bool: @typing.overload -def get_target_layer(model: Module, layer_name: str) -> Module: - ... +def get_target_layer(model: Module, layer_name: str) -> Module: ... @typing.overload -def get_target_layer(model: Module, layer_name: List[str]) -> List[Module]: - ... +def get_target_layer(model: Module, layer_name: List[str]) -> List[Module]: ... def get_target_layer( diff --git a/captum/testing/attr/helpers/get_config_util.py b/captum/testing/attr/helpers/get_config_util.py new file mode 100644 index 0000000000..aa66d08a86 --- /dev/null +++ b/captum/testing/attr/helpers/get_config_util.py @@ -0,0 +1,54 @@ +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. + +# pyre-strict +from typing import Any, Tuple + +import torch +from captum._utils.gradient import compute_gradients +from captum.testing.helpers.basic_models import BasicModel, BasicModel5_MultiArgs +from torch import Tensor +from torch.nn import Module + + +# pyre-fixme[3]: Return annotation cannot contain `Any`. +def get_basic_config() -> Tuple[Module, Tensor, Tensor, Any]: + input = torch.tensor([1.0, 2.0, 3.0, 0.0, -1.0, 7.0], requires_grad=True).T + # manually percomputed gradients + grads = torch.tensor([-0.0, -0.0, -0.0, 1.0, 1.0, -0.0]) + return BasicModel(), input, grads, None + + +# pyre-fixme[3]: Return annotation cannot contain `Any`. +def get_multiargs_basic_config() -> ( + Tuple[Module, Tuple[Tensor, ...], Tuple[Tensor, ...], Any] +): + model = BasicModel5_MultiArgs() + additional_forward_args = ([2, 3], 1) + inputs = ( + torch.tensor([[1.5, 2.0, 34.3], [3.4, 1.2, 2.0]], requires_grad=True), + torch.tensor([[3.0, 3.5, 23.2], [2.3, 1.2, 0.3]], requires_grad=True), + ) + grads = compute_gradients( + model, inputs, additional_forward_args=additional_forward_args + ) + return model, inputs, grads, additional_forward_args + + +# pyre-fixme[3]: Return annotation cannot contain `Any`. +def get_multiargs_basic_config_large() -> ( + Tuple[Module, Tuple[Tensor, ...], Tuple[Tensor, ...], Any] +): + model = BasicModel5_MultiArgs() + additional_forward_args = ([2, 3], 1) + inputs = ( + torch.tensor( + [[10.5, 12.0, 34.3], [43.4, 51.2, 32.0]], requires_grad=True + ).repeat_interleave(3, dim=0), + torch.tensor( + [[1.0, 3.5, 23.2], [2.3, 1.2, 0.3]], requires_grad=True + ).repeat_interleave(3, dim=0), + ) + grads = compute_gradients( + model, inputs, additional_forward_args=additional_forward_args + ) + return model, inputs, grads, additional_forward_args diff --git a/captum/testing/attr/helpers/neuron_layer_testing_util.py b/captum/testing/attr/helpers/neuron_layer_testing_util.py new file mode 100644 index 0000000000..450fef8c44 --- /dev/null +++ b/captum/testing/attr/helpers/neuron_layer_testing_util.py @@ -0,0 +1,41 @@ +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. + +# pyre-strict +from typing import Tuple + +import torch +from torch import Tensor + + +def create_inps_and_base_for_deeplift_neuron_layer_testing() -> ( + Tuple[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor]] +): + x1 = torch.tensor([[-10.0, 1.0, -5.0]], requires_grad=True) + x2 = torch.tensor([[3.0, 3.0, 1.0]], requires_grad=True) + + b1 = torch.tensor([[0.0, 0.0, 0.0]], requires_grad=True) + b2 = torch.tensor([[0.0, 0.0, 0.0]], requires_grad=True) + + inputs = (x1, x2) + baselines = (b1, b2) + + return inputs, baselines + + +def create_inps_and_base_for_deepliftshap_neuron_layer_testing() -> ( + Tuple[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor]] +): + x1 = torch.tensor([[-10.0, 1.0, -5.0]], requires_grad=True) + x2 = torch.tensor([[3.0, 3.0, 1.0]], requires_grad=True) + + b1 = torch.tensor( + [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], requires_grad=True + ) + b2 = torch.tensor( + [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], requires_grad=True + ) + + inputs = (x1, x2) + baselines = (b1, b2) + + return inputs, baselines diff --git a/tests/attr/helpers/test_config.py b/captum/testing/attr/helpers/test_config.py similarity index 93% rename from tests/attr/helpers/test_config.py rename to captum/testing/attr/helpers/test_config.py index 7892502468..d97da0f169 100644 --- a/tests/attr/helpers/test_config.py +++ b/captum/testing/attr/helpers/test_config.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + import torch from captum.attr._core.deep_lift import DeepLift, DeepLiftShap from captum.attr._core.feature_ablation import FeatureAblation @@ -38,8 +40,8 @@ from captum.attr._core.saliency import Saliency from captum.attr._core.shapley_value import ShapleyValueSampling from captum.attr._utils.input_layer_wrapper import ModelInputWrapper -from tests.helpers.basic import set_all_random_seeds -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic import set_all_random_seeds +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, @@ -87,6 +89,7 @@ # Set random seeds to ensure deterministic behavior set_all_random_seeds(1234) +# pyre-fixme[5]: Global expression must be annotated. config = [ # Attribution Method Configs # Primary Methods (Generic Configs) @@ -109,6 +112,19 @@ "model": BasicModel_MultiLayer(), "attribute_args": {"inputs": torch.randn(4, 3), "target": 1}, }, + { + "name": "basic_single_target_cross_tensor_attributions", + "algorithms": [ + FeatureAblation, + FeaturePermutation, + ], + "model": BasicModel_MultiLayer(), + "attribute_args": { + "inputs": torch.randn(4, 3), + "target": 1, + "enable_cross_tensor_attribution": True, + }, + }, { "name": "basic_multi_input", "algorithms": [ @@ -176,6 +192,21 @@ }, "dp_delta": 0.0005, }, + { + "name": "basic_multi_input_multi_target_cross_tensor_attributions", + "algorithms": [ + FeatureAblation, + FeaturePermutation, + ], + "model": BasicModel_MultiLayer_MultiInput(), + "attribute_args": { + "inputs": (10 * torch.randn(6, 3), 5 * torch.randn(6, 3)), + "additional_forward_args": (2 * torch.randn(6, 3), 5), + "target": [0, 1, 1, 0, 0, 1], + "enable_cross_tensor_attribution": True, + }, + "dp_delta": 0.0005, + }, { "name": "basic_multiple_tuple_target", "algorithms": [ @@ -199,6 +230,20 @@ "additional_forward_args": (None, True), }, }, + { + "name": "basic_multiple_tuple_target_cross_tensor_attributions", + "algorithms": [ + FeatureAblation, + FeaturePermutation, + ], + "model": BasicModel_MultiLayer(), + "attribute_args": { + "inputs": torch.randn(4, 3), + "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], + "additional_forward_args": (None, True), + "enable_cross_tensor_attribution": True, + }, + }, { "name": "basic_tensor_single_target", "algorithms": [ @@ -240,6 +285,19 @@ "target": torch.tensor([1, 1, 0, 0]), }, }, + { + "name": "basic_tensor_multi_target_cross_tensor_attributions", + "algorithms": [ + FeatureAblation, + FeaturePermutation, + ], + "model": BasicModel_MultiLayer(), + "attribute_args": { + "inputs": torch.randn(4, 3), + "target": torch.tensor([1, 1, 0, 0]), + "enable_cross_tensor_attribution": True, + }, + }, # Primary Configs with Baselines { "name": "basic_multiple_tuple_target_with_baselines", @@ -259,6 +317,20 @@ "additional_forward_args": (None, True), }, }, + { + "name": "basic_multiple_tuple_target_with_baselines_cross_tensor_attributions", + "algorithms": [ + FeatureAblation, + ], + "model": BasicModel_MultiLayer(), + "attribute_args": { + "inputs": torch.randn(4, 3), + "baselines": 0.5 * torch.randn(4, 3), + "target": [(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)], + "additional_forward_args": (None, True), + "enable_cross_tensor_attribution": True, + }, + }, { "name": "basic_tensor_single_target_with_baselines", "algorithms": [ @@ -276,6 +348,19 @@ "target": torch.tensor([0]), }, }, + { + "name": "basic_tensor_single_target_with_baselines_cross_tensor_attributions", + "algorithms": [ + FeatureAblation, + ], + "model": BasicModel_MultiLayer(), + "attribute_args": { + "inputs": torch.randn(4, 3), + "baselines": 0.5 * torch.randn(4, 3), + "target": torch.tensor([0]), + "enable_cross_tensor_attribution": True, + }, + }, # Primary Configs with Internal Batching { "name": "basic_multiple_tuple_target_with_internal_batching", diff --git a/captum/testing/helpers/__init__.py b/captum/testing/helpers/__init__.py new file mode 100644 index 0000000000..16a664407b --- /dev/null +++ b/captum/testing/helpers/__init__.py @@ -0,0 +1,16 @@ +#!/usr/bin/env python3 + +# pyre-strict + +try: + from captum.testing.helpers.fb.internal_base import FbBaseTest as BaseTest + + __all__ = [ + "BaseTest", + ] + +except ImportError: + # tests/helpers/__init__.py:13: error: Incompatible import of "BaseTest" + # (imported name has type "type[BaseTest]", local name has type + # "type[FbBaseTest]") [assignment] + from captum.testing.helpers.basic import BaseTest # type: ignore diff --git a/tests/helpers/basic.py b/captum/testing/helpers/basic.py similarity index 60% rename from tests/helpers/basic.py rename to captum/testing/helpers/basic.py index 8f5fb0ae9f..04d6c8f667 100644 --- a/tests/helpers/basic.py +++ b/captum/testing/helpers/basic.py @@ -1,15 +1,23 @@ #!/usr/bin/env python3 + +# pyre-strict import copy import random import unittest -from typing import Callable + +from typing import Callable, Generator import numpy as np import torch from captum.log import patch_methods +from torch import Tensor +# pyre-fixme[3]: Return type must be annotated. +# pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. def deep_copy_args(func: Callable): + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def copy_args(*args, **kwargs): return func( *(copy.deepcopy(x) for x in args), @@ -19,7 +27,16 @@ def copy_args(*args, **kwargs): return copy_args -def assertTensorAlmostEqual(test, actual, expected, delta=0.0001, mode="sum"): +def assertTensorAlmostEqual( + # pyre-fixme[2]: Parameter must be annotated. + test, + # pyre-fixme[2]: Parameter must be annotated. + actual, + # pyre-fixme[2]: Parameter must be annotated. + expected, + delta: float = 0.0001, + mode: str = "sum", +) -> None: assert isinstance(actual, torch.Tensor), ( "Actual parameter given for " "comparison must be a tensor." ) @@ -57,21 +74,36 @@ def assertTensorAlmostEqual(test, actual, expected, delta=0.0001, mode="sum"): raise ValueError("Mode for assertion comparison must be one of `max` or `sum`.") -def assertTensorTuplesAlmostEqual(test, actual, expected, delta=0.0001, mode="sum"): +def assertTensorTuplesAlmostEqual( + # pyre-fixme[2]: Parameter must be annotated. + test, + # pyre-fixme[2]: Parameter must be annotated. + actual, + # pyre-fixme[2]: Parameter must be annotated. + expected, + delta: float = 0.0001, + mode: str = "sum", +) -> None: if isinstance(expected, tuple): + assert len(actual) == len( + expected + ), f"the length of actual {len(actual)} != expected {len(expected)}" + for i in range(len(expected)): assertTensorAlmostEqual(test, actual[i], expected[i], delta, mode) else: assertTensorAlmostEqual(test, actual, expected, delta, mode) -def assertAttributionComparision(test, attributions1, attributions2): +# pyre-fixme[2]: Parameter must be annotated. +def assertAttributionComparision(test, attributions1, attributions2) -> None: for attribution1, attribution2 in zip(attributions1, attributions2): for attr_row1, attr_row2 in zip(attribution1, attribution2): assertTensorAlmostEqual(test, attr_row1, attr_row2, 0.05, "max") -def assert_delta(test, delta): +# pyre-fixme[2]: Parameter must be annotated. +def assert_delta(test, delta) -> None: delta_condition = (delta.abs() < 0.00001).all() test.assertTrue( delta_condition, @@ -81,14 +113,34 @@ def assert_delta(test, delta): ) -def set_all_random_seeds(seed): - random.seed(1234) - np.random.seed(1234) - torch.manual_seed(1234) - torch.cuda.manual_seed_all(1234) +def set_all_random_seeds(seed: int = 1234) -> None: + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True +def lcg( + a: int = 16843009, b: int = 3014898611, m: int = 1 << 32 +) -> Generator[int, None, None]: + """Linear congruential generator""" + x = 1 + while True: + x = (a * x + b) % m + yield x + + +def rand_like(a: Tensor) -> Tensor: + """Random tensors (for dependency-free version-agnostic reproducibility). + PyTorch does not guarantee reproducible numbers across PyTorch releases, + individual commits, or different platforms. See: + https://pytorch.org/docs/stable/notes/randomness.html""" + g = lcg() + nums = [next(g) / (1 << 32) for _ in range(a.numel())] + return torch.tensor(nums, dtype=a.dtype, device=a.device).reshape(a.shape) + + class BaseTest(unittest.TestCase): """ This class provides a basic framework for all Captum tests by providing @@ -96,6 +148,6 @@ class BaseTest(unittest.TestCase): initializations are random, this ensures that tests run deterministically. """ - def setUp(self): + def setUp(self) -> None: set_all_random_seeds(1234) patch_methods(self) diff --git a/tests/helpers/basic_models.py b/captum/testing/helpers/basic_models.py similarity index 62% rename from tests/helpers/basic_models.py rename to captum/testing/helpers/basic_models.py index d8aea80b0b..cf50b4b58d 100644 --- a/tests/helpers/basic_models.py +++ b/captum/testing/helpers/basic_models.py @@ -1,11 +1,15 @@ #!/usr/bin/env python3 -from typing import no_type_check, Optional, Tuple +# pyre-strict + +from typing import Dict, no_type_check, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F +from captum._utils.typing import PassThroughOutputType from torch import Tensor +from torch.futures import Future """ @no_type_check annotation is applied to type-hinted models to avoid errors @@ -16,12 +20,15 @@ class BasicLinearReLULinear(nn.Module): - def __init__(self, in_features, out_features=5, bias=False): + # pyre-fixme[2]: Parameter must be annotated. + def __init__(self, in_features, out_features: int = 5, bias: bool = False) -> None: super().__init__() self.fc1 = nn.Linear(in_features, out_features, bias=bias) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(out_features, 1, bias=bias) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, x): x = self.fc1(x) x = self.relu1(x) @@ -30,9 +37,11 @@ def forward(self, x): class MixedKwargsAndArgsModule(nn.Module): - def __init__(self): + def __init__(self) -> None: super().__init__() + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, x, y=None): if y is not None: return x + y @@ -43,7 +52,8 @@ class BasicModel(nn.Module): def __init__(self) -> None: super().__init__() - def forward(self, input): + # pyre-fixme[3]: Return type must be annotated. + def forward(self, input: Tensor): input = 1 - F.relu(1 - input) return input @@ -59,7 +69,7 @@ class BasicModel2(nn.Module): def __init__(self) -> None: super().__init__() - def forward(self, input1, input2): + def forward(self, input1: Tensor, input2: Tensor) -> Tensor: relu_out1 = F.relu(input1) relu_out2 = F.relu(input2) return F.relu(relu_out1 - 1 - relu_out2) @@ -76,7 +86,8 @@ class BasicModel3(nn.Module): def __init__(self) -> None: super().__init__() - def forward(self, input1, input2): + # pyre-fixme[2]: Parameter must be annotated. + def forward(self, input1, input2: Tensor) -> Tensor: relu_out1 = F.relu(input1 - 1) relu_out2 = F.relu(input2) return F.relu(relu_out1 - relu_out2) @@ -92,7 +103,14 @@ class BasicModel4_MultiArgs(nn.Module): def __init__(self) -> None: super().__init__() - def forward(self, input1, input2, additional_input1, additional_input2=0): + def forward( + self, + # pyre-fixme[2]: Parameter must be annotated. + input1, + input2: Tensor, + additional_input1: Union[bool, float, int, Tensor], + additional_input2: int = 0, + ) -> Tensor: relu_out1 = F.relu(input1 - 1) relu_out2 = F.relu(input2) relu_out2 = relu_out2.div(additional_input1) @@ -109,7 +127,15 @@ class BasicModel5_MultiArgs(nn.Module): def __init__(self) -> None: super().__init__() - def forward(self, input1, input2, additional_input1, additional_input2=0): + def forward( + self, + # pyre-fixme[2]: Parameter must be annotated. + input1, + input2: Tensor, + # pyre-fixme[2]: Parameter must be annotated. + additional_input1, + additional_input2: int = 0, + ) -> Tensor: relu_out1 = F.relu(input1 - 1) * additional_input1[0] relu_out2 = F.relu(input2) relu_out2 = relu_out2 * additional_input1[1] @@ -120,8 +146,11 @@ class BasicModel6_MultiTensor(nn.Module): def __init__(self) -> None: super().__init__() + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, input1, input2): input = input1 + input2 + # pyre-fixme[6]: For 1st argument expected `Tensor` but got `int`. return 1 - F.relu(1 - input)[:, 1] @@ -130,25 +159,33 @@ def __init__(self) -> None: super().__init__() self.linear = nn.Linear(7, 1) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, x1, x2): return self.linear(torch.cat((x1, x2), dim=-1)) class BasicLinearModel2(nn.Module): - def __init__(self, in_features, out_features): + # pyre-fixme[2]: Parameter must be annotated. + def __init__(self, in_features, out_features) -> None: super().__init__() self.linear = nn.Linear(in_features, out_features, bias=False) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, input): return self.linear(input) class BasicLinearModel_Multilayer(nn.Module): - def __init__(self, in_features, hidden_nodes, out_features): + # pyre-fixme[2]: Parameter must be annotated. + def __init__(self, in_features, hidden_nodes, out_features) -> None: super().__init__() self.linear1 = nn.Linear(in_features, hidden_nodes, bias=False) self.linear2 = nn.Linear(hidden_nodes, out_features, bias=False) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, input): x = self.linear1(input) return self.linear2(x) @@ -164,7 +201,8 @@ def __init__(self) -> None: self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() - def forward(self, x1, x2, x3=2): + # pyre-fixme[2]: Parameter must be annotated. + def forward(self, x1, x2, x3: int = 2) -> int: return 2 * self.relu1(x1) + x3 * self.relu2(x2 - 1.5) @@ -178,6 +216,8 @@ def __init__(self) -> None: self.lin2 = nn.Linear(1, 1, bias=False) self.lin2.weight = nn.Parameter(torch.ones(1, 1)) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, x): x = x.unsqueeze(1) return self.lin2(self.pool1(self.lin1(x))[:, 0, :]) @@ -190,6 +230,8 @@ def __init__(self) -> None: self.relu = nn.ReLU() self.lin2 = nn.Linear(2, 2) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, inputs): return self.relu(self.lin2(self.relu(self.lin1(inputs)))) @@ -200,6 +242,8 @@ def __init__(self) -> None: self.lin1 = nn.Linear(3, 3) self.relu = nn.ReLU() + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, inputs): return self.relu(self.lin1(self.relu(self.lin1(inputs)))) @@ -211,18 +255,22 @@ def __init__(self) -> None: self.lin1.weight = nn.Parameter(torch.tensor([[3.0, 1.0, 2.0]])) self.lin1.bias = nn.Parameter(torch.zeros(1)) - def forward(self, inputs, sparse_list): + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. + def forward(self, inputs, sparse_list: Tensor): return ( self.lin1(inputs) + (sparse_list[0] if torch.numel(sparse_list) > 0 else 0) ).sum() class BasicModel_MaxPool_ReLU(nn.Module): - def __init__(self, inplace=False) -> None: + def __init__(self, inplace: bool = False) -> None: super().__init__() self.maxpool = nn.MaxPool1d(3) self.relu = nn.ReLU(inplace=inplace) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, x): return self.relu(self.maxpool(x)).sum(dim=1) @@ -238,7 +286,8 @@ def __init__(self) -> None: self.tanh1 = nn.Tanh() self.tanh2 = nn.Tanh() - def forward(self, x1, x2): + # pyre-fixme[2]: Parameter must be annotated. + def forward(self, x1, x2) -> int: return 2 * self.tanh1(x1) + 2 * self.tanh2(x2 - 1.5) @@ -264,6 +313,7 @@ def forward(self, x1: Tensor, x2: Tensor, x3: int = 1) -> Tensor: class SimpleLRPModel(nn.Module): + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, inplace) -> None: super().__init__() self.linear = nn.Linear(3, 3, bias=False) @@ -273,6 +323,8 @@ def __init__(self, inplace) -> None: self.linear2.weight.data.fill_(3.0) self.dropout = torch.nn.Dropout(p=0.01) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, x): return self.dropout(self.linear2(self.relu(self.linear(x)))) @@ -282,6 +334,8 @@ def __init__(self) -> None: super().__init__() self.seq = nn.Sequential(nn.Conv1d(4, 2, 1), nn.ReLU(), nn.Linear(1000, 1)) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, inputs): return self.seq(inputs) @@ -292,13 +346,23 @@ class TextModule(nn.Module): nested embedding layers """ - def __init__(self, num_embeddings, embedding_dim, second_embedding=False) -> None: + def __init__( + self, + # pyre-fixme[2]: Parameter must be annotated. + num_embeddings, + # pyre-fixme[2]: Parameter must be annotated. + embedding_dim, + second_embedding: bool = False, + ) -> None: super().__init__() self.inner_embedding = nn.Embedding(num_embeddings, embedding_dim) self.second_embedding = second_embedding if self.second_embedding: + # pyre-fixme[4]: Attribute must be annotated. self.inner_embedding2 = nn.Embedding(num_embeddings, embedding_dim) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, input=None, another_input=None): assert input is not None, "The inputs to embedding module must be specified" embedding = self.inner_embedding(input) @@ -306,6 +370,7 @@ def forward(self, input=None, another_input=None): another_embedding = self.inner_embedding2( input if another_input is None else another_input ) + # pyre-fixme[61]: `another_embedding` is undefined, or not always defined. return embedding if another_input is None else embedding + another_embedding @@ -327,11 +392,11 @@ class BasicEmbeddingModel(nn.Module): def __init__( self, - num_embeddings=30, - embedding_dim=100, - hidden_dim=256, - output_dim=1, - nested_second_embedding=False, + num_embeddings: int = 30, + embedding_dim: int = 100, + hidden_dim: int = 256, + output_dim: int = 1, + nested_second_embedding: bool = False, ) -> None: super().__init__() self.embedding1 = nn.Embedding(num_embeddings, embedding_dim) @@ -344,6 +409,8 @@ def __init__( self.linear2 = nn.Linear(hidden_dim, output_dim) self.linear2.weight = nn.Parameter(torch.ones(output_dim, hidden_dim)) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, input1, input2, input3=None): embedding1 = self.embedding1(input1) embedding2 = self.embedding2(input2, input3) @@ -351,6 +418,86 @@ def forward(self, input1, input2, input3=None): return self.linear2(self.relu(self.linear1(embeddings))).sum(1) +class PassThroughLayerOutput(nn.Module): + """ + This layer is used to test the case where the model returns a layer that + is not supported by the gradient computation. + """ + + def __init__(self) -> None: + super().__init__() + + @no_type_check + def forward(self, output: PassThroughOutputType) -> PassThroughOutputType: + return output + + +class BasicModel_GradientLayerAttribution(nn.Module): + def __init__( + self, + inplace: bool = False, + unsupported_layer_output: PassThroughOutputType = None, + ) -> None: + super().__init__() + # Linear 0 is simply identity transform + self.unsupported_layer_output = unsupported_layer_output + self.linear0 = nn.Linear(3, 3) + self.linear0.weight = nn.Parameter(torch.eye(3)) + self.linear0.bias = nn.Parameter(torch.zeros(3)) + self.linear1 = nn.Linear(3, 4) + self.linear1.weight = nn.Parameter(torch.ones(4, 3)) + self.linear1.bias = nn.Parameter(torch.tensor([-10.0, 1.0, 1.0, 1.0])) + + self.linear1_alt = nn.Linear(3, 4) + self.linear1_alt.weight = nn.Parameter(torch.ones(4, 3)) + self.linear1_alt.bias = nn.Parameter(torch.tensor([-10.0, 1.0, 1.0, 1.0])) + + self.relu = nn.ReLU(inplace=inplace) + self.relu_alt = nn.ReLU(inplace=False) + self.unsupported_layer = PassThroughLayerOutput() + + self.linear2 = nn.Linear(4, 2) + self.linear2.weight = nn.Parameter(torch.ones(2, 4)) + self.linear2.bias = nn.Parameter(torch.tensor([-1.0, 1.0])) + + self.linear3 = nn.Linear(4, 2) + self.linear3.weight = nn.Parameter(torch.ones(2, 4)) + self.linear3.bias = nn.Parameter(torch.tensor([-1.0, 1.0])) + + self.int_layer = PassThroughLayerOutput() # sample layer with an int ouput + + @no_type_check + def forward( + self, x: Tensor, add_input: Optional[Tensor] = None + ) -> Dict[str, Tensor]: + input = x if add_input is None else x + add_input + lin0_out = self.linear0(input) + lin1_out = self.linear1(lin0_out) + lin1_out_alt = self.linear1_alt(lin0_out) + + if self.unsupported_layer_output is not None: + self.unsupported_layer(self.unsupported_layer_output) + # unsupportedLayer is unused in the forward func. + self.relu_alt( + lin1_out_alt + ) # relu_alt's output is supported but it's unused in the forward func. + + relu_out = self.relu(lin1_out) + lin2_out = self.linear2(relu_out) + + lin3_out = self.linear3(lin1_out_alt) + int_output = self.int_layer(lin3_out.to(torch.int64)) + + output_tensors = torch.cat((lin2_out, int_output), dim=1) + + # we return a dictionary of tensors as an output to test the case + # where an output accessor is required + return { + "task {}".format(i + 1): output_tensors[:, i] + for i in range(output_tensors.shape[1]) + } + + class MultiRelu(nn.Module): def __init__(self, inplace: bool = False) -> None: super().__init__() @@ -363,7 +510,11 @@ def forward(self, arg1: Tensor, arg2: Tensor) -> Tuple[Tensor, Tensor]: class BasicModel_MultiLayer(nn.Module): - def __init__(self, inplace=False, multi_input_module=False) -> None: + def __init__( + self, + inplace: bool = False, + multi_input_module: bool = False, + ) -> None: super().__init__() # Linear 0 is simply identity transform self.multi_input_module = multi_input_module @@ -385,6 +536,7 @@ def __init__(self, inplace=False, multi_input_module=False) -> None: self.linear2.bias = nn.Parameter(torch.tensor([-1.0, 1.0])) @no_type_check + # pyre-fixme[3]: Return type must be annotated. def forward( self, x: Tensor, @@ -394,9 +546,14 @@ def forward( input = x if add_input is None else x + add_input lin0_out = self.linear0(input) lin1_out = self.linear1(lin0_out) + if self.multi_input_module: relu_out1, relu_out2 = self.multi_relu(lin1_out, self.linear1_alt(input)) relu_out = relu_out1 + relu_out2 + # relu is not used when multi_input_module set to True, + # so this is to set an unsued layer intentionally for testing + # and it won't be part of return + self.relu(lin1_out) else: relu_out = self.relu(lin1_out) lin2_out = self.linear2(relu_out) @@ -407,11 +564,83 @@ def forward( return lin2_out +class BasicModel_MultiLayer_with_Future(nn.Module): + # This model is used to test the case where the model returns a future + def __init__(self, inplace: bool = False, multi_input_module: bool = False) -> None: + super().__init__() + # Linear 0 is simply identity transform + self.multi_input_module = multi_input_module + self.linear0 = nn.Linear(3, 3) + self.linear0.weight = nn.Parameter(torch.eye(3)) + self.linear0.bias = nn.Parameter(torch.zeros(3)) + self.linear1 = nn.Linear(3, 4) + self.linear1.weight = nn.Parameter(torch.ones(4, 3)) + self.linear1.bias = nn.Parameter(torch.tensor([-10.0, 1.0, 1.0, 1.0])) + + self.linear1_alt = nn.Linear(3, 4) + self.linear1_alt.weight = nn.Parameter(torch.ones(4, 3)) + self.linear1_alt.bias = nn.Parameter(torch.tensor([-10.0, 1.0, 1.0, 1.0])) + self.multi_relu = MultiRelu(inplace=inplace) + self.relu = nn.ReLU(inplace=inplace) + + self.linear2 = nn.Linear(4, 2) + self.linear2.weight = nn.Parameter(torch.ones(2, 4)) + self.linear2.bias = nn.Parameter(torch.tensor([-1.0, 1.0])) + + @no_type_check + # pyre-fixme[3]: Return type must be annotated. + def forward( + self, + x: Tensor, + add_input: Optional[Tensor] = None, + multidim_output: bool = False, + ): + input = x if add_input is None else x + add_input + lin0_out = self.linear0(input) + lin1_out = self.linear1(lin0_out) + if self.multi_input_module: + relu_out1, relu_out2 = self.multi_relu(lin1_out, self.linear1_alt(input)) + relu_out = relu_out1 + relu_out2 + # relu is not used when multi_input_module set to True, + # so this is to set an unsued layer intentionally for testing + # and it won't be part of return + self.relu(lin1_out) + else: + relu_out = self.relu(lin1_out) + # pyre-fixme [29]: `typing.Type[Future]` is not a function + result = Future() + lin2_out = self.linear2(relu_out) + if multidim_output: + stack_mid = torch.stack((lin2_out, 2 * lin2_out), dim=2) + result.set_result(torch.stack((stack_mid, 4 * stack_mid), dim=3)) + return result + else: + result.set_result(lin2_out) + return result + + +class BasicModelBoolInput_with_Future(nn.Module): + def __init__(self) -> None: + super().__init__() + self.mod = BasicModel_MultiLayer_with_Future() + + # pyre-fixme[3]: Return type must be annotated. + def forward( + self, + x: Tensor, + add_input: Optional[Tensor] = None, + mult: float = 10.0, + ): + assert x.dtype is torch.bool, "Input must be boolean" + return self.mod(x.float() * mult, add_input) + + class BasicModelBoolInput(nn.Module): def __init__(self) -> None: super().__init__() self.mod = BasicModel_MultiLayer() + # pyre-fixme[3]: Return type must be annotated. def forward( self, x: Tensor, @@ -428,12 +657,34 @@ def __init__(self) -> None: self.model = BasicModel_MultiLayer() @no_type_check + # pyre-fixme[3]: Return type must be annotated. + def forward(self, x1: Tensor, x2: Tensor, x3: Tensor, scale: int): + return self.model(scale * (x1 + x2 + x3)) + + +class BasicModel_MultiLayer_TupleInput(nn.Module): + def __init__(self) -> None: + super().__init__() + self.model = BasicModel_MultiLayer() + + @no_type_check + def forward(self, x: Tuple[Tensor, Tensor, Tensor]) -> Tensor: + return self.model(x[0] + x[1] + x[2]) + + +class BasicModel_MultiLayer_MultiInput_with_Future(nn.Module): + def __init__(self) -> None: + super().__init__() + self.model = BasicModel_MultiLayer_with_Future() + + @no_type_check + # pyre-fixme[3]: Return type must be annotated. def forward(self, x1: Tensor, x2: Tensor, x3: Tensor, scale: int): return self.model(scale * (x1 + x2 + x3)) class BasicModel_MultiLayer_TrueMultiInput(nn.Module): - def __init__(self): + def __init__(self) -> None: super().__init__() self.m1 = BasicModel_MultiLayer() self.m234 = BasicModel_MultiLayer_MultiInput() @@ -465,6 +716,7 @@ def __init__(self, inplace: bool = False) -> None: self.relu2 = nn.ReLU(inplace=inplace) @no_type_check + # pyre-fixme[3]: Return type must be annotated. def forward(self, x: Tensor, x2: Optional[Tensor] = None): if x2 is not None: x = x + x2 @@ -481,6 +733,7 @@ def __init__(self, inplace: bool = False) -> None: self.fc1 = nn.Linear(16, 4) @no_type_check + # pyre-fixme[3]: Return type must be annotated. def forward(self, x: Tensor): bsz = x.shape[0] x = self.relu1(self.conv1(x)) @@ -575,6 +828,8 @@ def __init__(self) -> None: self.fc1.weight = nn.Parameter(torch.ones(8, 4)) self.fc2.weight = nn.Parameter(torch.ones(10, 8)) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, x): x = self.relu1(self.conv1(x)) x = self.pool1(x) diff --git a/tests/helpers/classification_models.py b/captum/testing/helpers/classification_models.py similarity index 71% rename from tests/helpers/classification_models.py rename to captum/testing/helpers/classification_models.py index 3db10f7640..298cd2a29c 100644 --- a/tests/helpers/classification_models.py +++ b/captum/testing/helpers/classification_models.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 + +# pyre-strict import torch import torch.nn as nn @@ -10,16 +12,22 @@ class SigmoidModel(nn.Module): -pytorch-and-make-your-life-simpler-ec5367895199 """ + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, num_in, num_hidden, num_out) -> None: super().__init__() + # pyre-fixme[4]: Attribute must be annotated. self.num_in = num_in + # pyre-fixme[4]: Attribute must be annotated. self.num_hidden = num_hidden + # pyre-fixme[4]: Attribute must be annotated. self.num_out = num_out self.lin1 = nn.Linear(num_in, num_hidden) self.lin2 = nn.Linear(num_hidden, num_out) self.relu1 = nn.ReLU() self.sigmoid = nn.Sigmoid() + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, input): lin1 = self.lin1(input) lin2 = self.lin2(self.relu1(lin1)) @@ -32,10 +40,14 @@ class SoftmaxModel(nn.Module): https://adventuresinmachinelearning.com/pytorch-tutorial-deep-learning/ """ - def __init__(self, num_in, num_hidden, num_out, inplace=False) -> None: + # pyre-fixme[2]: Parameter must be annotated. + def __init__(self, num_in, num_hidden, num_out, inplace: bool = False) -> None: super().__init__() + # pyre-fixme[4]: Attribute must be annotated. self.num_in = num_in + # pyre-fixme[4]: Attribute must be annotated. self.num_hidden = num_hidden + # pyre-fixme[4]: Attribute must be annotated. self.num_out = num_out self.lin1 = nn.Linear(num_in, num_hidden) self.lin2 = nn.Linear(num_hidden, num_hidden) @@ -44,6 +56,8 @@ def __init__(self, num_in, num_hidden, num_out, inplace=False) -> None: self.relu2 = nn.ReLU(inplace=inplace) self.softmax = nn.Softmax(dim=1) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, input): lin1 = self.relu1(self.lin1(input)) lin2 = self.relu2(self.lin2(lin1)) @@ -58,10 +72,14 @@ class SigmoidDeepLiftModel(nn.Module): -pytorch-and-make-your-life-simpler-ec5367895199 """ + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, num_in, num_hidden, num_out) -> None: super().__init__() + # pyre-fixme[4]: Attribute must be annotated. self.num_in = num_in + # pyre-fixme[4]: Attribute must be annotated. self.num_hidden = num_hidden + # pyre-fixme[4]: Attribute must be annotated. self.num_out = num_out self.lin1 = nn.Linear(num_in, num_hidden, bias=False) self.lin2 = nn.Linear(num_hidden, num_out, bias=False) @@ -70,6 +88,8 @@ def __init__(self, num_in, num_hidden, num_out) -> None: self.relu1 = nn.ReLU() self.sigmoid = nn.Sigmoid() + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, input): lin1 = self.lin1(input) lin2 = self.lin2(self.relu1(lin1)) @@ -82,10 +102,14 @@ class SoftmaxDeepLiftModel(nn.Module): https://adventuresinmachinelearning.com/pytorch-tutorial-deep-learning/ """ + # pyre-fixme[2]: Parameter must be annotated. def __init__(self, num_in, num_hidden, num_out) -> None: super().__init__() + # pyre-fixme[4]: Attribute must be annotated. self.num_in = num_in + # pyre-fixme[4]: Attribute must be annotated. self.num_hidden = num_hidden + # pyre-fixme[4]: Attribute must be annotated. self.num_out = num_out self.lin1 = nn.Linear(num_in, num_hidden) self.lin2 = nn.Linear(num_hidden, num_hidden) @@ -97,6 +121,8 @@ def __init__(self, num_in, num_hidden, num_out) -> None: self.relu2 = nn.ReLU() self.softmax = nn.Softmax(dim=1) + # pyre-fixme[3]: Return type must be annotated. + # pyre-fixme[2]: Parameter must be annotated. def forward(self, input): lin1 = self.relu1(self.lin1(input)) lin2 = self.relu2(self.lin2(lin1)) diff --git a/captum/testing/helpers/evaluate_linear_model.py b/captum/testing/helpers/evaluate_linear_model.py new file mode 100644 index 0000000000..15dc24c8c1 --- /dev/null +++ b/captum/testing/helpers/evaluate_linear_model.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python3 +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. + +# pyre-strict + +from typing import cast, Dict + +import torch + +from captum._utils.models.linear_model.model import LinearModel +from torch import Tensor +from torch.utils.data import DataLoader + + +def evaluate(test_data: DataLoader, classifier: LinearModel) -> Dict[str, Tensor]: + classifier.eval() + + l1_loss = 0.0 + l2_loss = 0.0 + n = 0 + l2_losses = [] + with torch.no_grad(): + for data in test_data: + if len(data) == 2: + x, y = data + w = None + else: + x, y, w = data + + out = classifier(x) + + y = y.view(x.shape[0], -1) + assert y.shape == out.shape + + if w is None: + l1_loss += (out - y).abs().sum(0).to(dtype=torch.float64) + l2_loss += ((out - y) ** 2).sum(0).to(dtype=torch.float64) + l2_losses.append(((out - y) ** 2).to(dtype=torch.float64)) + else: + l1_loss += ( + (w.view(-1, 1) * (out - y)).abs().sum(0).to(dtype=torch.float64) + ) + l2_loss += ( + (w.view(-1, 1) * ((out - y) ** 2)).sum(0).to(dtype=torch.float64) + ) + l2_losses.append( + (w.view(-1, 1) * ((out - y) ** 2)).to(dtype=torch.float64) + ) + + n += x.shape[0] + + l2_losses = torch.cat(l2_losses, dim=0) + assert n > 0 + + # just to double check + assert ((l2_losses.mean(0) - l2_loss / n).abs() <= 0.1).all() + + classifier.train() + return {"l1": cast(Tensor, l1_loss / n), "l2": cast(Tensor, l2_loss / n)} diff --git a/captum/testing/helpers/influence/__init__.py b/captum/testing/helpers/influence/__init__.py new file mode 100644 index 0000000000..35302f75f5 --- /dev/null +++ b/captum/testing/helpers/influence/__init__.py @@ -0,0 +1 @@ +# pyre-strict diff --git a/captum/testing/helpers/influence/common.py b/captum/testing/helpers/influence/common.py new file mode 100644 index 0000000000..699c206464 --- /dev/null +++ b/captum/testing/helpers/influence/common.py @@ -0,0 +1,719 @@ +# pyre-strict +import inspect +import os +import unittest +from functools import partial +from inspect import isfunction +from typing import Any, Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from captum.influence import DataInfluence +from captum.influence._core.arnoldi_influence_function import ArnoldiInfluenceFunction +from captum.influence._core.influence_function import NaiveInfluenceFunction +from captum.influence._core.tracincp_fast_rand_proj import ( + TracInCPFast, + TracInCPFastRandProj, +) +from parameterized import parameterized +from parameterized.parameterized import param +from torch import Tensor +from torch.nn import Module +from torch.utils.data import DataLoader, Dataset + + +# pyre-fixme[2]: Parameter must be annotated. +def _isSorted(x, key=lambda x: x, descending=True) -> bool: + if descending: + return all(key(x[i]) >= key(x[i + 1]) for i in range(len(x) - 1)) + else: + return all(key(x[i]) <= key(x[i + 1]) for i in range(len(x) - 1)) + + +# pyre-fixme[2]: Parameter must be annotated. +def _wrap_model_in_dataparallel(net) -> Module: + alt_device_ids = [0] + list(range(torch.cuda.device_count() - 1, 0, -1)) + net = net.cuda() + return torch.nn.DataParallel(net, device_ids=alt_device_ids) + + +def _move_sample_list_to_cuda(samples: List[Tensor]) -> List[Tensor]: + return [s.cuda() for s in samples] + + +class ExplicitDataset(Dataset): + def __init__( + self, + samples: Tensor, + labels: Tensor, + use_gpu: bool = False, + ) -> None: + # pyre-fixme[4]: Attribute must be annotated. + self.samples, self.labels = samples, labels + if use_gpu: + self.samples = self.samples.cuda() + self.labels = self.labels.cuda() + + def __len__(self) -> int: + return len(self.samples) + + def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor]: + return (self.samples[idx], self.labels[idx]) + + +class UnpackDataset(Dataset): + def __init__( + self, + samples: List[Tensor], + labels: Tensor, + use_gpu: bool = False, + ) -> None: + # pyre-fixme[4]: Attribute must be annotated. + self.samples, self.labels = samples, labels + if use_gpu: + self.samples = _move_sample_list_to_cuda(self.samples) + self.labels = self.labels.cuda() + + def __len__(self) -> int: + return len(self.samples[0]) + + # pyre-fixme[3]: Return type must be annotated. + def __getitem__(self, idx: int): + """ + The signature of the returning item is: List[List], where the contents + are: [sample_0, sample_1, ...] + [labels] (two lists concacenated). + """ + return [lst[idx] for lst in self.samples] + [self.labels[idx]] + + +class IdentityDataset(ExplicitDataset): + def __init__( + self, + num_features: int, + use_gpu: bool = False, + ) -> None: + self.samples: Tensor = torch.diag(torch.ones(num_features)) + self.labels: Tensor = torch.zeros(num_features).unsqueeze(1) + if use_gpu: + self.samples = self.samples.cuda() + self.labels = self.labels.cuda() + + +class RangeDataset(ExplicitDataset): + def __init__( + self, + low: int, + high: int, + num_features: int, + use_gpu: bool = False, + ) -> None: + self.samples: Tensor = ( + torch.arange(start=low, end=high, dtype=torch.float) + .repeat(num_features, 1) + .transpose(1, 0) + ) + self.labels: Tensor = torch.arange( + start=low, end=high, dtype=torch.float + ).unsqueeze(1) + if use_gpu: + self.samples = self.samples.cuda() + self.labels = self.labels.cuda() + + +class BinaryDataset(ExplicitDataset): + def __init__(self, use_gpu: bool = False) -> None: + self.samples: Tensor = F.normalize( + torch.stack( + ( + torch.Tensor([1, 1]), + torch.Tensor([2, 1]), + torch.Tensor([1, 2]), + torch.Tensor([1, 5]), + torch.Tensor([0.01, 1]), + torch.Tensor([5, 1]), + torch.Tensor([1, 0.01]), + torch.Tensor([-1, -1]), + torch.Tensor([-2, -1]), + torch.Tensor([-1, -2]), + torch.Tensor([-1, -5]), + torch.Tensor([-5, -1]), + torch.Tensor([1, -1]), + torch.Tensor([2, -1]), + torch.Tensor([1, -2]), + torch.Tensor([1, -5]), + torch.Tensor([0.01, -1]), + torch.Tensor([5, -1]), + torch.Tensor([-1, 1]), + torch.Tensor([-2, 1]), + torch.Tensor([-1, 2]), + torch.Tensor([-1, 5]), + torch.Tensor([-5, 1]), + torch.Tensor([-1, 0.01]), + ) + ) + ) + self.labels: Tensor = torch.cat( + ( + torch.Tensor([1]).repeat(12, 1), + torch.Tensor([-1]).repeat(12, 1), + ) + ) + super().__init__(self.samples, self.labels, use_gpu) + + +class CoefficientNet(nn.Module): + def __init__(self, in_features: int = 1) -> None: + super().__init__() + self.fc1 = nn.Linear(in_features, 1, bias=False) + self.fc1.weight.data.fill_(0.01) + + def forward(self, x: Tensor) -> Tensor: + x = self.fc1(x) + return x + + +class BasicLinearNet(nn.Module): + def __init__( + self, + in_features: int, + hidden_nodes: int, + out_features: int, + ) -> None: + super().__init__() + self.linear1 = nn.Linear(in_features, hidden_nodes) + self.linear2 = nn.Linear(hidden_nodes, out_features) + + def forward(self, input: Tensor) -> Tensor: + x = torch.tanh(self.linear1(input)) + return torch.tanh(self.linear2(x)) + + +class MultLinearNet(nn.Module): + def __init__( + self, + in_features: int, + hidden_nodes: int, + out_features: int, + num_inputs: int, + ) -> None: + super().__init__() + self.pre = nn.Linear(in_features * num_inputs, in_features) + self.linear1 = nn.Linear(in_features, hidden_nodes) + self.linear2 = nn.Linear(hidden_nodes, out_features) + + def forward(self, *inputs: Tensor) -> Tensor: + """ + The signature of inputs is a Tuple of Tensor, + where the Tensor has the dimensions [num_inputs x in_features]. + It first concacenates the list and a linear layer to reduce the + dimension. + """ + inputs = self.pre(torch.cat(inputs, dim=1)) + x = torch.tanh(self.linear1(inputs)) + return torch.tanh(self.linear2(x)) + + +class Linear(nn.Module): + """ + a wrapper around `nn.Linear`, with purpose being to have an analogue to + `UnpackLinear`, with both's only parameter being 'linear'. "infinitesimal" + influence (i.e. that calculated by `InfluenceFunctionBase` implementations) for + this simple module can be analytically calculated, so its purpose is for testing + those implementations. + """ + + def __init__(self, in_features: int) -> None: + super().__init__() + self.linear = nn.Linear(in_features, 1, bias=False) + + def forward(self, input: Tensor) -> Tensor: + return self.linear(input) + + +class UnpackLinear(nn.Module): + """ + the analogue of `Linear` which unpacks inputs, serving the same purpose. + """ + + def __init__(self, in_features: int, num_inputs: int) -> None: + super().__init__() + self.linear = nn.Linear(in_features * num_inputs, 1, bias=False) + + def forward(self, *inputs: Tensor) -> Tensor: + return self.linear(torch.cat(inputs, dim=1)) + + +def get_random_data( + in_features: int, + out_features: int, + num_examples: int, + use_gpu: bool, + unpack_inputs: bool, +) -> Tuple[Dataset, Dataset, Dataset]: + """ + returns train_dataset, test_dataset and hessian_dataset constructed from + random labels and random features, with features having shape + [num_examples x num_features] and labels having shape [num_examples]. + + Note: the random labels and features for different dataset needs to be + generated together. + Otherwise, some tests will fail (https://fburl.com/testinfra/737jnpip) + """ + + num_train = 32 + num_hessian = 22 # this needs to be high to prevent numerical issues + num_inputs = 2 if unpack_inputs else 1 + + labels = torch.normal(1, 2, (num_examples, out_features)).double() + all_samples = [ + torch.normal(0, 1, (num_examples, in_features)).double() + for _ in range(num_inputs) + ] + + train_dataset = ( + UnpackDataset( + [samples[:num_train] for samples in all_samples], + labels[:num_train], + use_gpu, + ) + if unpack_inputs + else ExplicitDataset(all_samples[0][:num_train], labels[:num_train], use_gpu) + ) + + hessian_dataset = ( + UnpackDataset( + [samples[:num_hessian] for samples in all_samples], + labels[:num_hessian], + use_gpu, + ) + if unpack_inputs + else ExplicitDataset( + all_samples[0][:num_hessian], labels[:num_hessian], use_gpu + ) + ) + + test_dataset = ( + UnpackDataset( + [samples[num_train:] for samples in all_samples], + labels[num_train:], + use_gpu, + ) + if unpack_inputs + else ExplicitDataset(all_samples[0][num_train:], labels[num_train:], use_gpu) + ) + return (train_dataset, hessian_dataset, test_dataset) + + +def _adjust_model(model: Module, gpu_setting: Optional[str]) -> Module: + """ + Given a model, returns a copy of the model on GPU based on the provided + `gpu_setting`. + Or returns the original model on CPU if no valid setting is provided. + + Two valid settings are supported for now: + - `'cuda'`: returned model is on gpu + - `'cuda_data_parallel``: returned model is a `DataParallel` model, + and on gpu + + The need to differentiate between `'cuda'` and `'cuda_data_parallel'` + is that sometimes we may want to test a model that is on gpu, but is *not* + wrapped in `DataParallel`. + """ + if gpu_setting == "cuda_data_parallel": + return _wrap_model_in_dataparallel(model) + elif gpu_setting == "cuda": + return model.cuda() + else: + return model + + +def is_gpu(gpu_setting: Optional[str]) -> bool: + """ + Returns whether the model should be on gpu based on the given `gpu_setting` str. + """ + return gpu_setting == "cuda_data_parallel" or gpu_setting == "cuda" + + +# pyre-fixme[3]: Return type must be annotated. +def get_random_model_and_data( + # pyre-fixme[2]: Parameter must be annotated. + tmpdir, + # pyre-fixme[2]: Parameter must be annotated. + unpack_inputs, + return_test_data: bool = True, + gpu_setting: Optional[str] = None, + return_hessian_data: bool = False, + model_type: str = "random", +): + """ + returns a model, training data, and optionally data for computing the hessian + (needed for `InfluenceFunctionBase` implementations) as features / labels, and + optionally test data as features / labels. + + the data is always generated the same way. however depending on `model_type`, + a different model and checkpoints are returned. + - `model_type='random'`: the model is a 2-layer NN, and several checkpoints are + generated + - `model_type='trained_linear'`: the model is a linear model, and assumed to be + eventually trained to optimality. therefore, we find the optimal parameters, and + save a single checkpoint containing them. the training is done using the Hessian + data, because the purpose of training the model is so that the Hessian is positive + definite. since the Hessian is calculated using the Hessian data, it should be + used for training. since it is trained to optimality using the Hessian data, we can + guarantee that the Hessian is positive definite, so that different + implementations of `InfluenceFunctionBase` can be more easily compared. (if the + Hessian is not positive definite, we drop eigenvectors corresponding to negative + eigenvalues. since the eigenvectors dropped in `ArnoldiInfluence` differ from those + in `NaiveInfluenceFunction` due to the formers' use of Arnoldi iteration, we should + only use models / data whose Hessian is positive definite, so that no eigenvectors + are dropped). in short, this model / data are suitable for comparing different + `InfluenceFunctionBase` implementations. + - `model_type='trained_NN'`: the model is a 2-layer NN, and trained (not + necessarily) to optimality using the Hessian data. since it is trained, for same + reasons as for `model_type='trained_linear`, different implementations of + `InfluenceFunctionBase` can be more easily compared, due to lack of numerical + issues. + + `gpu_setting` specify whether the model is on gpu and whether it is a `DataParallel` + model. More details in the `_adjust_model_for_gpu` API. + """ + in_features, hidden_nodes = 5, 4 + num_inputs = 2 + use_gpu = is_gpu(gpu_setting) + + # generate data. regardless the model, the data is always generated the same way + # the only exception is if the `model_type` is 'trained_linear', i.e. a simple + # linear regression model. this is a simple model, and for simplicity, the + # number of `out_features` is 1 in this case. + if model_type == "trained_linear": + out_features = 1 + else: + out_features = 3 + + num_samples = 50 + + train_dataset, hessian_dataset, test_dataset = get_random_data( + in_features, out_features, num_samples, use_gpu, unpack_inputs + ) + + net: Module # Union[BasicLinearNet, MultLinearNet, Linear, UnpackLinear] + if model_type == "random": + net = ( + BasicLinearNet(in_features, hidden_nodes, out_features) + if not unpack_inputs + else MultLinearNet(in_features, hidden_nodes, out_features, num_inputs) + ).double() + + # generate checkpoints randomly + num_checkpoints = 5 + + for i in range(num_checkpoints): + net.linear1.weight.data = torch.normal( # type: ignore + 3, 4, (hidden_nodes, in_features) + ).double() + net.linear2.weight.data = torch.normal( # type: ignore + 5, 6, (out_features, hidden_nodes) + ).double() + if unpack_inputs: + net.pre.weight.data = torch.normal( # type: ignore + 3, 4, (in_features, in_features * num_inputs) + ).double() + checkpoint_name = "-".join(["checkpoint-reg", str(i + 1) + ".pt"]) + net_adjusted = _adjust_model(net, gpu_setting) + torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) + + elif model_type == "trained_linear": + net = ( + Linear(in_features) + if not unpack_inputs + else UnpackLinear(in_features, num_inputs) + ).double() + + # regardless of `unpack_inputs`, the model is a linear regression, so that + # we can get the optimal trained parameters via least squares + + # turn input into a single tensor for use by least squares + tensor_hessian_samples = ( + hessian_dataset.samples # type: ignore + if not unpack_inputs + else torch.cat(hessian_dataset.samples, dim=1) # type: ignore + ) + + # run least squares to get optimal trained parameters + theta = torch.linalg.lstsq( + hessian_dataset.labels, # type: ignore + tensor_hessian_samples, + ).solution + # the first `n` rows of `theta` contains the least squares solution, where + # `n` is the number of features in `tensor_hessian_samples` + theta = theta[: tensor_hessian_samples.shape[1]] + + # save that trained parameter as a checkpoint + checkpoint_name = "checkpoint-final.pt" + net.linear.weight.data = theta.contiguous() # type: ignore + net_adjusted = _adjust_model(net, gpu_setting) + torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) + + elif model_type == "trained_NN": + net = ( + BasicLinearNet(in_features, hidden_nodes, out_features) + if not unpack_inputs + else MultLinearNet(in_features, hidden_nodes, out_features, num_inputs) + ).double() + + net_adjusted = _adjust_model(net, gpu_setting) + + # train model using several optimization steps on Hessian data + batch = next(iter(DataLoader(hessian_dataset, batch_size=len(hessian_dataset)))) # type: ignore # noqa: E501 line too long + + optimizer = torch.optim.Adam(net.parameters()) + num_steps = 200 + criterion = nn.MSELoss(reduction="sum") + for _ in range(num_steps): + optimizer.zero_grad() + output = net_adjusted(*batch[:-1]) + loss = criterion(output, batch[-1]) + loss.backward() + optimizer.step() + + # save that trained parameter as a checkpoint + checkpoint_name = "checkpoint-final.pt" + torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) + + training_data = ( + # pyre-fixme[61]: `net_adjusted` is undefined, or not always defined. + net_adjusted, + train_dataset, + ) + + hessian_data = (hessian_dataset.samples, hessian_dataset.labels) # type: ignore + + test_data = (test_dataset.samples, test_dataset.labels) # type: ignore + + if return_test_data: + if not return_hessian_data: + return (*training_data, *test_data) + else: + return (*training_data, *hessian_data, *test_data) + else: + if not return_hessian_data: + return training_data + else: + return (*training_data, *hessian_data) + + +# pyre-fixme[3]: Return type must be annotated. +def generate_symmetric_matrix_given_eigenvalues( + eigenvalues: Union[Tensor, List[float]], +): + """ + following https://github.com/google-research/jax-influence/blob/74bd321156b5445bb35b9594568e4eaaec1a76a3/jax_influence/test_utils.py#L123 # noqa: E501 + generate symmetric random matrix with specified eigenvalues. this is used in + `TestArnoldiInfluence._test_parameter_arnoldi_and_distill` either to check that + `_parameter_arnoldi` does return the top eigenvalues of a symmetric random matrix, + or that `_parameter_distill` does return the eigenvectors corresponding to the top + eigenvalues of that symmetric random matrix. + """ + # generate random matrix, then apply gram-schmidt to get random orthonormal basis + D = len(eigenvalues) + + Q, _ = torch.linalg.qr(torch.randn((D, D))) + return torch.matmul(Q, torch.matmul(torch.diag(torch.tensor(eigenvalues)), Q.T)) + + +def generate_assymetric_matrix_given_eigenvalues( + eigenvalues: Union[Tensor, List[float]], +) -> Tensor: + """ + following https://github.com/google-research/jax-influence/blob/74bd321156b5445bb35b9594568e4eaaec1a76a3/jax_influence/test_utils.py#L105 # noqa: E501 + generate assymetric random matrix with specified eigenvalues. this is used in + `TestArnoldiInfluence._test_parameter_arnoldi_and_distill` either to check that + `_parameter_arnoldi` does return the top eigenvalues of a assymmetric random + matrix, or that `_parameter_distill` does return the eigenvectors corresponding to + the top eigenvalues of that assymmetric random matrix. + """ + # the matrix M, given eigenvectors Q and eigenvalues L, should satisfy MQ = QL + # or equivalently, Q'M' = LQ'. + D = len(eigenvalues) + Q_T = torch.randn((D, D)) + + return torch.linalg.solve( + Q_T, torch.matmul(torch.diag(torch.tensor(eigenvalues)), Q_T) + ).T + + +class DataInfluenceConstructor: + name: str = "" + # pyre-fixme[24]: Generic type `type` expects 1 type parameter, use + # `typing.Type[]` to avoid runtime subscripting errors. + data_influence_class: type + + def __init__( + self, + # pyre-fixme[24]: Generic type `type` expects 1 type parameter, use + # `typing.Type[]` to avoid runtime subscripting errors. + data_influence_class: type, + name: Optional[str] = None, + duplicate_loss_fn: bool = False, + # pyre-fixme[2]: Parameter must be annotated. + **kwargs, + ) -> None: + """ + if `duplicate_loss_fn` is True, will explicitly pass the provided `loss_fn` as + the `test_loss_fn` when constructing the TracInCPBase instance + """ + self.data_influence_class = data_influence_class + self.name = name if name else data_influence_class.__name__ + self.duplicate_loss_fn = duplicate_loss_fn + # pyre-fixme[4]: Attribute must be annotated. + self.kwargs = kwargs + + def __repr__(self) -> str: + return self.name + + def __name__(self) -> str: + return self.name + + def __call__( + self, + net: Module, + dataset: Union[Dataset, DataLoader], + tmpdir: str, + batch_size: Union[int, None], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + loss_fn: Optional[Union[Module, Callable]], + # pyre-fixme[2]: Parameter must be annotated. + **kwargs, + ) -> DataInfluence: + constructor_kwargs = self.kwargs.copy() + constructor_kwargs.update(kwargs) + # if `self.duplicate_loss_fn`, explicitly pass in `loss_fn` as `test_loss_fn` + # when constructing the instance. Doing so should not affect the behavior of + # the returned tracincp instance, since if `test_loss_fn` is not passed in, + # the constructor sets `test_loss_fn` to be the same as `loss_fn` + if self.duplicate_loss_fn: + constructor_kwargs["test_loss_fn"] = loss_fn + if self.data_influence_class is TracInCPFastRandProj: + self.check_annoy() + if self.data_influence_class in [TracInCPFast, TracInCPFastRandProj]: + return self.data_influence_class( + net, + list(net.children())[-1], + dataset, + tmpdir, + loss_fn=loss_fn, + batch_size=batch_size, + **constructor_kwargs, + ) + elif self.data_influence_class in [ + NaiveInfluenceFunction, + ArnoldiInfluenceFunction, + ]: + # for these implementations, only a single checkpoint is needed, not + # a directory containing several checkpoints. therefore, given + # directory `tmpdir`, we do not pass it directly to the constructor, + # but instead find 1 checkpoint in it, and pass that to the + # constructor + checkpoint_name = sorted(os.listdir(tmpdir))[-1] + checkpoint = os.path.join(tmpdir, checkpoint_name) + + return self.data_influence_class( + net, + dataset, + checkpoint, + loss_fn=loss_fn, + batch_size=batch_size, + **constructor_kwargs, + ) + else: + return self.data_influence_class( + net, + dataset, + tmpdir, + batch_size=batch_size, + loss_fn=loss_fn, + **constructor_kwargs, + ) + + def check_annoy(self) -> None: + try: + import annoy # noqa + except ImportError: + raise unittest.SkipTest( + ( + f"Skipping tests for {self.data_influence_class.__name__}, " + "because it requires the Annoy module." + ) + ) + + +def generate_test_name( + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + testcase_func: Callable, + param_num: str, + # pyre-fixme[11]: Annotation `param` is not defined as a type. + param: param, + args_to_skip: Optional[List[str]] = None, +) -> str: + """ + Creates human readable names for parameterized tests + """ + + if args_to_skip is None: + args_to_skip = [] + param_strs = [] + + func_param_names = list(inspect.signature(testcase_func).parameters) + # skip the first 'self' parameter + if func_param_names[0] == "self": + func_param_names = func_param_names[1:] + + for i, arg in enumerate(param.args): + if func_param_names[i] in args_to_skip: + continue + if isinstance(arg, bool): + if arg: + param_strs.append(func_param_names[i]) + elif isfunction(arg): + param_strs.append(arg.__name__) + else: + args_str = str(arg) + if args_str.isnumeric(): + param_strs.append(func_param_names[i]) + param_strs.append(args_str) + return "%s_%s_%s" % ( + testcase_func.__name__, + param_num, + parameterized.to_safe_name("_".join(param_strs)), + ) + + +# pyre-fixme[24]: Generic type `partial` expects 1 type parameter. +# Should be partial[str] but will cause TypeError: 'type' object is not subscriptable +def build_test_name_func(args_to_skip: Optional[List[str]] = None) -> partial: + """ + Returns function to generate human readable names for parameterized tests + """ + + return partial(generate_test_name, args_to_skip=args_to_skip) + + +# pyre-fixme[3]: Return type must be specified as type that does not contain `Any`. +def _format_batch_into_tuple( + # pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter. + inputs: Union[Tuple, Tensor], + targets: Tensor, + unpack_inputs: bool, +) -> Tuple[Union[Tensor, Tuple[Any, ...]], Tensor]: + if unpack_inputs: + return (*inputs, targets) + else: + return (inputs, targets) + + +GPU_SETTING_LIST = ( + ["", "cuda", "cuda_data_parallel"] + if torch.cuda.is_available() and torch.cuda.device_count() != 0 + else [""] +) diff --git a/docs/Captum_Attribution_Algos.png b/docs/Captum_Attribution_Algos.png index 704dc9e2c0..ef0c1d4c22 100644 Binary files a/docs/Captum_Attribution_Algos.png and b/docs/Captum_Attribution_Algos.png differ diff --git a/docs/algorithms.md b/docs/attribution_algorithms.md similarity index 97% rename from docs/algorithms.md rename to docs/attribution_algorithms.md index 80d50550a0..f1d00a8f53 100644 --- a/docs/algorithms.md +++ b/docs/attribution_algorithms.md @@ -1,5 +1,5 @@ --- -id: algorithms +id: attribution_algorithms title: Algorithm Descriptions --- @@ -37,7 +37,7 @@ To learn more about GradientSHAP, visit the following resources: - [Original Implementation](https://github.com/slundberg/shap/#deep-learning-example-with-gradientexplainer-tensorflowkeraspytorch-models) ### DeepLIFT -DeepLIFT is a back-propagation based approach that attributes a change to inputs based on the differences between the inputs and corresponding references (or baselines) for non-linear activations. As such, DeepLIFT seeks to explain the difference in the output from reference in terms of the difference in inputs from reference. DeepLIFT uses the concept of multipliers to "blame" specific neurons for the difference in output. The definition of a multiplier is as follows (from [original paper](https://arxiv.org/pdf/1704.02685.pdf)): +DeepLIFT is a back-propagation based approach that attributes a change to inputs based on the differences between the inputs and corresponding references (or baselines) for non-linear activations. As such, DeepLIFT seeks to explain the difference in the output from reference in terms of the difference in inputs from reference. DeepLIFT uses the concept of multipliers to "blame" specific neurons for the difference in output. The definition of a multiplier is as follows (from [original paper](https://arxiv.org/abs/1704.02685)): ![deepLIFT_eq1](/img/deepLIFT_multipliers_eq1.png) *x is the input neuron with a difference from reference Δx, and t is the target neuron with a difference from reference Δt. C is then the contribution of Δx to Δt.* @@ -62,7 +62,7 @@ To learn more about DeepLIFT SHAP, visit the following resources: Saliency is a simple approach for computing input attribution, returning the gradient of the output with respect to the input. This approach can be understood as taking a first-order Taylor expansion of the network at the input, and the gradients are simply the coefficients of each feature in the linear representation of the model. The absolute value of these coefficients can be taken to represent feature importance. To learn more about Saliency, visit the following resources: -- [Original paper](https://arxiv.org/pdf/1312.6034.pdf) +- [Original paper](https://arxiv.org/abs/1312.6034) ### Input X Gradient Input X Gradient is an extension of the saliency approach, taking the gradients of the output with respect to the input and multiplying by the input feature values. One intuition for this approach considers a linear model; the gradients are simply the coefficients of each input, and the product of the input with a coefficient corresponds to the total contribution of the feature to the linear model's output. @@ -141,17 +141,17 @@ Conductance combines the neuron activation with the partial derivatives of both Conductance builds on Integrated Gradients (IG) by looking at the flow of IG attribution which occurs through the hidden neuron. The formal definition of total conductance of a hidden neuron *y* (from the [original paper](https://arxiv.org/abs/1805.12233)) is as follows: ![conductance_eq1](/img/conductance_eq_1.png) -For more efficient computation of layer conductance, we use the idea presented in this [paper](https://arxiv.org/pdf/1807.09946.pdf) to avoid computing the gradient of each neuron with respect to the input. +For more efficient computation of layer conductance, we use the idea presented in this [paper](https://arxiv.org/abs/1807.09946) to avoid computing the gradient of each neuron with respect to the input. To learn more about Conductance, visit the following resources: - [Original Paper](https://arxiv.org/abs/1805.12233) -- [Computationally Efficient Measures of Internal Neuron Importance](https://arxiv.org/pdf/1807.09946.pdf) +- [Computationally Efficient Measures of Internal Neuron Importance](https://arxiv.org/abs/1807.09946) ### Internal Influence Internal Influence approximates the integral of gradients with respect to a particular layer along the path from a baseline input to the given input. This method is similar to applying integrated gradients, integrating the gradient with respect to the layer (rather than the input). To learn more about Internal Influence, visit the following resources: -- [Original Paper](https://arxiv.org/pdf/1802.03788.pdf) +- [Original Paper](https://arxiv.org/abs/1802.03788) ### Layer Activation Layer Activation is a simple approach for computing layer attribution, returning the activation of each neuron in the identified layer. @@ -208,7 +208,7 @@ Note that based on this definition, summing the neuron conductance (over all inp To learn more about Conductance, visit the following resources: - [Original Paper](https://arxiv.org/abs/1805.12233) -- [Computationally Efficient Measures of Internal Neuron Importance](https://arxiv.org/pdf/1807.09946.pdf) +- [Computationally Efficient Measures of Internal Neuron Importance](https://arxiv.org/abs/1807.09946) ### Neuron Gradient Neuron gradient is the analog of the saliency method for a particular neuron in a network. It simply computes the gradient of the neuron output with respect to the model input. Like Saliency, this approach can be understood as taking a first-order Taylor expansion of the neuron's output at the given input, and the gradients correspond to the coefficients of each feature in the linear representation of the model. @@ -259,9 +259,9 @@ To learn more about Noise Tunnel methods, visit the following resources: Infidelity measures the mean squared error between model explanations in the magnitudes of input perturbations and predictor function's changes to those input perturbtaions. Infidelity is defined as follows: ![infidelity_eq](/img/infidelity_eq.png) It is derived from the completeness property of well-known attribution algorithms, such as Integrated Gradients, and is a computationally more efficient and generalized notion of Sensitivy-n. The latter measures correlations between the sum of the attributions and the differences of the predictor function at its input and fixed baseline. More details about the Sensitivity-n can be found here: -https://arxiv.org/pdf/1711.06104.pdfs +https://arxiv.org/abs/1711.06104 More details about infidelity measure can be found here: -- [Original paper](https://arxiv.org/pdf/1901.09392.pdf) +- [Original paper](https://arxiv.org/abs/1901.09392) ### Sensitivity Sensitivity measures the degree of explanation changes to subtle input perturbations using Monte Carlo sampling-based approximation and is defined @@ -270,4 +270,4 @@ as follows: In order to approximate sensitivity measure, by default, we sample from a sub-space of an L-Infinity ball with a default radius. The users can modify both the radius of the ball and the sampling function. More details about sensitivity measure can be found here: -- [Original paper](https://arxiv.org/pdf/1901.09392.pdf) +- [Original paper](https://arxiv.org/abs/1901.09392) diff --git a/docs/contribution_guide.md b/docs/contribution_guide.md index 731e12bfc0..82e4f158a2 100644 --- a/docs/contribution_guide.md +++ b/docs/contribution_guide.md @@ -4,7 +4,7 @@ title: The Captum Contribution Process --- The Captum development process involves a healthy amount of open discussions between the core development team and the community. -Captum operates similar to most open source projects on GitHub. However, if you've never contributed to an open source project before, here is the basic process. +Captum operates similarly to most open source projects on GitHub. However, if you've never contributed to an open source project before, here is the basic process. 1. **Figure out what you're going to work on.** @@ -59,7 +59,7 @@ https://captum.ai/tutorials/Bert_SQUAD_Interpret https://captum.ai/tutorials/IMDB_TorchText_Interpret **Vision** -- We provide a sample toy model for CIFAR dataset and examples with ResNet model. +- We provide a sample toy model for the CIFAR dataset and examples with a ResNet model. https://captum.ai/tutorials/CIFAR_TorchVision_Interpret https://captum.ai/tutorials/Resnet_TorchVision_Interpret These would be great starting points for benchmarking. @@ -77,3 +77,20 @@ https://captum.ai/tutorials/House_Prices_Regression_Interpret **Multimodal** - You can use VQA model and dataset described here: https://captum.ai/tutorials/Multimodal_VQA_Captum_Insights + + +## Docstring style + +Docstring is required for all public APIs to provide users the details of the arguments and returns. [Our API documentation](https://captum.ai/api/) is generated from the docstring. Captum adopts a customized docstring format modified on top of [Google style](https://www.sphinx-doc.org/en/master/usage/extensions/example_google.html). Specifically, each argument should be listed as `arg_name (type): description` in the `Args:` section. The argument typing convention: +- primitive types: `int`, `str`, `float`, `bool` +- common collection types: `list`, `tuple`, `dict` + - [PEP 585](https://peps.python.org/pep-0585/#implementation) has deprecated the duplicate types: `List`, `Tuple`, `Dict` + - element types: `list[int]`, `dict[int, str]` +- other foundamental types: `Any`, `Callable`, `Iterable` +- class types: `MyClass`, `external_lib.SomeClass` +- omit `torch` for common Pytorch types: `Tensor`, `nn.Module` +- use `or` and `,` for union types: `type1 or type2`, `type1, tyep2, or type3` + - [PEP 604](https://peps.python.org/pep-0604/) proposes to use `|` to connect types: `type1 | type2`. We may consider migration later. +- append `optional` for argument with default value: `int, optional` + - append default value to the end of the description: `Default: None` + - Notice this is different with python's type hint `Optional[...]`, which indicate if the argument can be `None` diff --git a/docs/extension/integrated_gradients.md b/docs/extension/integrated_gradients.md index 0a00fb0ad1..ebcca190ec 100644 --- a/docs/extension/integrated_gradients.md +++ b/docs/extension/integrated_gradients.md @@ -42,7 +42,7 @@ class ToyModel(nn.Module): Second, let's apply integrated gradients on the toy model's output layer using sample data. The code snippet below computes the attribution of output with respect to the inputs. -`attribute` method of `IntegratedGradients` class returns input attributions which +The `attribute` method of `IntegratedGradients` class returns input attributions which have the same size and dimensionality as the inputs and an approximation error which is computed based on the completeness property of the integrated gradients. Completeness property is one of the axioms that integrated gradients satisfies. @@ -114,7 +114,7 @@ class ToySoftmaxModel(nn.Module): Now, let's apply integrated gradients on the toy classification model defined above using inputs that contain a range of numbers. We also choose an arbitrary target class (target_class_index: 5) which we use to attribute our predictions to. -Similar to previous example the output of attribution is a tensor with the same +Similar to the previous example, the output of attribution is a tensor with the same dimensionality as the inputs and an approximation error computed based on the completeness property of integrated gradients. @@ -157,9 +157,9 @@ Now, let's look at a model that besides input tensors takes input arguments of other types. In practice this can be used to pass the sequence length or the word/token indices in a sequence of a text, for instance. The example below demonstrates how to use `additional_forward_args`. In this particular example -`additional_forward_args` represents single integer value. -Those arguments are passed as `additional_forward_args` to `attribute` method and -they will be passed to model's forward function followed by inputs in the oder +`additional_forward_args` represents a single integer value. +Those arguments are passed as `additional_forward_args` to the `attribute` method and +they will be passed to the model's forward function followed by inputs in the order provided in `additional_forward_args`. In the example below, we also demonstrate how to apply integrated gradients to a batch of samples. The first dimension of the input corresponds to the batch size. diff --git a/docs/faq.md b/docs/faq.md index de4e22ea4c..16bf59b54a 100644 --- a/docs/faq.md +++ b/docs/faq.md @@ -9,7 +9,7 @@ title: FAQ * [Are SmoothGrad or VarGrad supported in Captum?](#are-smoothgrad-or-vargrad-supported-in-captum) * [How do I use Captum with BERT models?](#how-do-i-use-captum-with-bert-models) * [My model inputs or outputs token indices, and when using Captum I see errors relating to gradients, how do I resolve this?](#my-model-inputs-or-outputs-token-indices-and-when-using-captum-i-see-errors-relating-to-gradients-how-do-i-resolve-this) -* [Can my model using functional non-linearities (E.g. nn.functional.ReLU) or reused modules be used with Captum?](#can-my-model-using-functional-non-linearities-eg-nnfunctionalrelu-or-reused-modules-be-used-with-captum) +* [Can my model use functional non-linearities (E.g. nn.functional.ReLU) or can reused modules be used with Captum?](#can-my-model-use-functional-non-linearities-eg-nnfunctionalrelu-or-can-reused-modules-be-used-with-captum) * [Do JIT models, DataParallel models, or DistributedDataParallel models work with Captum?](#do-jit-models-dataparallel-models-or-distributeddataparallel-models-work-with-captum) * [I am working on a new interpretability or attribution method and would like to add it to Captum. How do I proceed?](#i-am-working-on-a-new-interpretability-or-attribution-method-and-would-like-to-add-it-to-captum-how-do-i-proceed) * [I am using a gradient-based attribution algorithm such as integrated gradients for a RNN or LSTM network and I see 'cudnn RNN backward can only be called in training mode'. How can I resolve this issue ?](#how-can-I-resolve-cudnn-RNN-backward-error-for-RNN-or-LSTM-network) @@ -53,7 +53,7 @@ For NLP models that take token indices as inputs, we cannot take gradients with If the output of the model is a token index, such as an image captioning cases, it is necessary to attribute with respect to the token score or probability rather than the index. Make sure that the model returns this and use target to choose the appropriate scalar score to attribute with respect to. -### **Can my model using functional non-linearities (E.g. nn.functional.ReLU) or reused modules be used with Captum?** +### **Can my model use functional non-linearities (E.g. nn.functional.ReLU) or can reused modules be used with Captum?** Most methods will work fine with functional non-linearities and arbitrary operations. Some methods, which require placing hooks during back-propagation, including DeepLift, DeepLiftShap, Guided Backpropagation, and Deconvolution will not work appropriately with functional non-linearities and must use the corresponding module activation (e.g. torch.nn.ReLU) which should be initialized in the module constructor. For DeepLift, it is important to also not reuse modules in the forward function, since this can cause issues in the propagation of multipliers. Computing layer or neuron attribution with layer modules that are used multiple times generally computes attributions for the last execution of the module. For more information regarding these restrictions, refer to the API documentation for the specific method, including DeepLift, DeepLiftShap, Guided Backpropagation, and Deconvolution. diff --git a/environment.yml b/environment.yml index cd9c40927c..fc7d864223 100644 --- a/environment.yml +++ b/environment.yml @@ -2,5 +2,8 @@ name: captum channels: - pytorch dependencies: - - numpy - - pytorch>=1.2 + - numpy<2.0 + - pytorch>=1.10 + - matplotlib-base + - tqdm + - packaging diff --git a/pyproject.toml b/pyproject.toml index 42b6011531..9608c4f127 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -2,4 +2,4 @@ first_party_detection = false [tool.black] -target-version = ['py36'] +target-version = ['py39'] diff --git a/scripts/build_docs.sh b/scripts/build_docs.sh index 945751d401..58d34fe816 100755 --- a/scripts/build_docs.sh +++ b/scripts/build_docs.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/bin/bash -e # run this script from the project root using `./scripts/build_docs.sh` @@ -51,8 +51,6 @@ mkdir -p $WEBSITE_SPHINX_DIR # move static files from /sphinx/build/html/_static/*: for sphinx_static_file in 'documentation_options.js' \ - 'jquery.js' \ - 'underscore.js' \ 'doctools.js' \ 'language_data.js' \ 'searchtools.js' \ diff --git a/scripts/install_via_conda.sh b/scripts/install_via_conda.sh index aad12b91c1..4d2912774c 100755 --- a/scripts/install_via_conda.sh +++ b/scripts/install_via_conda.sh @@ -2,11 +2,8 @@ set -e -PYTORCH_NIGHTLY=false - while getopts 'nf' flag; do case "${flag}" in - n) PYTORCH_NIGHTLY=true ;; f) FRAMEWORKS=true ;; *) echo "usage: $0 [-n] [-f]" >&2 exit 1 ;; @@ -16,33 +13,20 @@ while getopts 'nf' flag; do # update conda # removing due to setuptools error during update #conda update -y -n base -c defaults conda - -# required to use conda develop -conda install -y conda-build +conda update -q --all --yes # install other frameworks if asked for and make sure this is before pytorch if [[ $FRAMEWORKS == true ]]; then - pip install pytext-nlp + pip install -q pytext-nlp fi -if [[ $PYTORCH_NIGHTLY == true ]]; then - # install CPU version for much smaller download - conda install -y pytorch cpuonly -c pytorch-nightly -else - # install CPU version for much smaller download - conda install -y -c pytorch pytorch-cpu -fi +# install CPU version for much smaller download +conda install -q -y pytorch cpuonly -c pytorch # install other deps -conda install -y numpy sphinx pytest flake8 ipywidgets ipython scikit-learn parameterized -conda install -y -c conda-forge matplotlib pytest-cov sphinx-autodoc-typehints mypy flask flask-compress -# deps not available in conda -pip install sphinxcontrib-katex - -# install node/yarn for insights build -conda install -y -c conda-forge yarn -# nodejs should be last, otherwise other conda packages will downgrade node -conda install -y --no-channel-priority -c conda-forge nodejs=14 +conda install -q -y pytest ipywidgets ipython scikit-learn parameterized werkzeug +conda install -q -y -c conda-forge matplotlib pytest-cov flask flask-compress conda-build +conda install -q -y transformers -# build insights and install captum -BUILD_INSIGHTS=1 python setup.py develop +# install captum +python setup.py develop diff --git a/scripts/install_via_pip.sh b/scripts/install_via_pip.sh index 7a13dedb9e..d2f8ea41e3 100755 --- a/scripts/install_via_pip.sh +++ b/scripts/install_via_pip.sh @@ -5,20 +5,22 @@ set -e PYTORCH_NIGHTLY=false DEPLOY=false CHOSEN_TORCH_VERSION=-1 +CHOSEN_TRANSFORMERS_VERSION=-1 -while getopts 'ndfv:' flag; do +while getopts 'ndfv:t:' flag; do case "${flag}" in n) PYTORCH_NIGHTLY=true ;; d) DEPLOY=true ;; f) FRAMEWORKS=true ;; v) CHOSEN_TORCH_VERSION=${OPTARG};; - *) echo "usage: $0 [-n] [-d] [-f] [-v version]" >&2 + t) CHOSEN_TRANSFORMERS_VERSION=${OPTARG};; + *) echo "usage: $0 [-n] [-d] [-f] [-v version] [-t transformers_version]" >&2 exit 1 ;; esac done # NOTE: Only Debian variants are supported, since this script is only -# used by our tests on CircleCI. In the future we might generalize, +# used by our tests on GitHub Actions. In the future we might generalize, # but users should hopefully be using conda installs. # install nodejs and yarn for insights build @@ -34,36 +36,42 @@ sudo apt install yarn # yarn needs terminal info export TERM=xterm -# NOTE: All of the below installs use sudo, b/c otherwise pip will get -# permission errors installing in the docker container. An alternative would be -# to use a virtualenv, but that would lead to bifurcation of the CircleCI config -# since we'd need to source the environemnt in each step. +# Remove all items from pip cache to avoid hash mismatch +pip cache purge # upgrade pip -sudo pip install --upgrade pip +pip install --upgrade pip --progress-bar off # install captum with dev deps -sudo pip install -e .[dev] -sudo BUILD_INSIGHTS=1 python setup.py develop +pip install -e .[dev] --progress-bar off +BUILD_INSIGHTS=1 python setup.py develop # install other frameworks if asked for and make sure this is before pytorch if [[ $FRAMEWORKS == true ]]; then - sudo pip install pytext-nlp + pip install pytext-nlp --progress-bar off fi # install pytorch nightly if asked for if [[ $PYTORCH_NIGHTLY == true ]]; then - sudo pip install --upgrade --pre torch -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html + pip install --upgrade --pre torch -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html --progress-bar off else - # If no version specified, upgrade to latest release. + # If no version is specified, upgrade to the latest release. if [[ $CHOSEN_TORCH_VERSION == -1 ]]; then - sudo pip install --upgrade torch + pip install --upgrade torch --progress-bar off else - sudo pip install torch==$CHOSEN_TORCH_VERSION + pip install torch=="$CHOSEN_TORCH_VERSION" --progress-bar off fi fi # install deployment bits if asked for if [[ $DEPLOY == true ]]; then - sudo pip install beautifulsoup4 ipython nbconvert==5.6.1 + pip install beautifulsoup4 ipython nbconvert==5.6.1 --progress-bar off +fi + +# install appropriate transformers version +# If no version is specified, upgrade to the latest release. +if [[ $CHOSEN_TRANSFORMERS_VERSION == -1 ]]; then + pip install --upgrade transformers --progress-bar off +else + pip install transformers=="$CHOSEN_TRANSFORMERS_VERSION" --progress-bar off fi diff --git a/scripts/parse_tutorials.py b/scripts/parse_tutorials.py index 1b3f274a4e..2181d39416 100644 --- a/scripts/parse_tutorials.py +++ b/scripts/parse_tutorials.py @@ -71,8 +71,9 @@ def gen_tutorials(repo_dir: str) -> None: # pull out html div for notebook soup = BeautifulSoup(html, "html.parser") nb_meat = soup.find("div", {"id": "notebook-container"}) - del nb_meat.attrs["id"] - nb_meat.attrs["class"] = ["notebook"] + if nb_meat: + del nb_meat.attrs["id"] + nb_meat.attrs["class"] = ["notebook"] html_out = JS_SCRIPTS + str(nb_meat) # generate html file diff --git a/scripts/run_mypy.sh b/scripts/run_mypy.sh index d2f7c8d076..fe4594c19d 100755 --- a/scripts/run_mypy.sh +++ b/scripts/run_mypy.sh @@ -10,5 +10,5 @@ mypy -p captum.metrics --ignore-missing-imports --allow-redefinition mypy -p captum.robust --ignore-missing-imports --allow-redefinition mypy -p captum.concept --ignore-missing-imports --allow-redefinition mypy -p captum.influence --ignore-missing-imports --allow-redefinition -mypy -p tests --ignore-missing-imports --allow-redefinition mypy -p captum._utils --ignore-missing-imports --allow-redefinition +mypy -p tests --ignore-missing-imports --allow-redefinition diff --git a/setup.cfg b/setup.cfg index 9ead7322fc..0856b359e6 100644 --- a/setup.cfg +++ b/setup.cfg @@ -1,7 +1,8 @@ [flake8] # E203: black and flake8 disagree on whitespace before ':' # W503: black and flake8 disagree on how to place operators -ignore = E203, W503 +# E704: black and flake8 disagree on Multiple statements on one line (def) +ignore = E203, W503, E704 max-line-length = 88 exclude = build, dist, tutorials, website @@ -10,3 +11,9 @@ exclude = omit = test/* setup.py + +[mypy] +exclude = ^.*fb.*$ + +[mypy-captum.log.fb.*] +ignore_errors = True diff --git a/setup.py b/setup.py index 48bc6f4057..38cb97d5b3 100755 --- a/setup.py +++ b/setup.py @@ -16,7 +16,7 @@ from setuptools import find_packages, setup REQUIRED_MAJOR = 3 -REQUIRED_MINOR = 6 +REQUIRED_MINOR = 9 # Check for python version if sys.version_info < (REQUIRED_MAJOR, REQUIRED_MINOR): @@ -61,19 +61,19 @@ def report(*args): TUTORIALS_REQUIRES = INSIGHTS_REQUIRES + ["torchtext", "torchvision"] -TEST_REQUIRES = ["pytest", "pytest-cov", "parameterized"] +TEST_REQUIRES = ["pytest", "pytest-cov", "parameterized", "flask", "flask-compress"] DEV_REQUIRES = ( INSIGHTS_REQUIRES + TEST_REQUIRES + [ - "black==22.3.0", + "black", "flake8", - "sphinx", + "sphinx<8.2.0", "sphinx-autodoc-typehints", "sphinxcontrib-katex", "mypy>=0.760", - "usort==0.6.4", + "usort==1.0.2", "ufmt", "scikit-learn", "annoy", @@ -82,7 +82,9 @@ def report(*args): # get version string from module with open(os.path.join(os.path.dirname(__file__), "captum/__init__.py"), "r") as f: - version = re.search(r"__version__ = ['\"]([^'\"]*)['\"]", f.read(), re.M).group(1) + version_match = re.search(r"__version__ = ['\"]([^'\"]*)['\"]", f.read(), re.M) + assert version_match is not None, "Unable to find version string." + version = version_match.group(1) report("-- Building version " + version) # read in README.md as the long description @@ -129,14 +131,18 @@ def get_package_files(root, subdirs): "conda": "https://anaconda.org/pytorch/captum", }, keywords=[ + "Model Interpretability", + "Model Understanding", "Model Interpretability", "Model Understanding", "Feature Importance", "Neuron Importance", + "Data Attribution", + "Explainable AI", "PyTorch", ], classifiers=[ - "Development Status :: 4 - Beta", + "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", @@ -146,8 +152,17 @@ def get_package_files(root, subdirs): ], long_description=long_description, long_description_content_type="text/markdown", - python_requires=">=3.6", - install_requires=["matplotlib", "numpy", "torch>=1.6"], + python_requires=">={required_major}.{required_minor}".format( + required_minor=REQUIRED_MINOR, + required_major=REQUIRED_MAJOR, + ), + install_requires=[ + "matplotlib", + "numpy<2.0", + "packaging", + "torch>=1.10", + "tqdm", + ], packages=find_packages(exclude=("tests", "tests.*")), extras_require={ "dev": DEV_REQUIRES, @@ -160,8 +175,8 @@ def get_package_files(root, subdirs): ( "share/jupyter/nbextensions/jupyter-captum-insights", [ - "captum/insights/attr_vis/widget/static/extension.js", - "captum/insights/attr_vis/widget/static/index.js", + "captum/insights/attr_vis/frontend/widget/src/extension.js", + "captum/insights/attr_vis/frontend/widget/src/index.js", ], ), ( diff --git a/sphinx/source/approximation_methods.rst b/sphinx/source/approximation_methods.rst deleted file mode 100644 index b6b197d92e..0000000000 --- a/sphinx/source/approximation_methods.rst +++ /dev/null @@ -1,7 +0,0 @@ -Captum Approximation -==================== - -.. automodule:: captum.attr._utils.approximation_methods - -.. autoclass:: Riemann - :members: diff --git a/sphinx/source/base_classes.rst b/sphinx/source/base_classes.rst index c337d666fc..a1f3d8117b 100644 --- a/sphinx/source/base_classes.rst +++ b/sphinx/source/base_classes.rst @@ -1,32 +1,32 @@ Base Classes -========== +======================== Attribution -^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.Attribution :members: Layer Attribution -^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.LayerAttribution :members: Neuron Attribution -^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.NeuronAttribution :members: Gradient Attribution -^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.GradientAttribution :members: Perturbation Attribution -^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.PerturbationAttribution :members: diff --git a/sphinx/source/binary_concrete_stg.rst b/sphinx/source/binary_concrete_stg.rst new file mode 100644 index 0000000000..11d4d442a9 --- /dev/null +++ b/sphinx/source/binary_concrete_stg.rst @@ -0,0 +1,6 @@ +BinaryConcreteStochasticGates +==================================== + +.. autoclass:: captum.module.BinaryConcreteStochasticGates + :members: + :inherited-members: Module diff --git a/sphinx/source/common.rst b/sphinx/source/common.rst deleted file mode 100644 index 711a7e6fe5..0000000000 --- a/sphinx/source/common.rst +++ /dev/null @@ -1,12 +0,0 @@ -Captum.Utils -============ - -.. automodule:: captum.attr._utils.common - -.. autofunction:: validate_input -.. autofunction:: validate_noise_tunnel_type -.. autofunction:: format_input -.. autofunction:: _format_attributions -.. autofunction:: zeros -.. autofunction:: _reshape_and_sum -.. autofunction:: _run_forward diff --git a/sphinx/source/concept.rst b/sphinx/source/concept.rst index 7aa60aabb9..19157398b7 100644 --- a/sphinx/source/concept.rst +++ b/sphinx/source/concept.rst @@ -1,29 +1,29 @@ Concept-based Interpretability -====== +============================== TCAV -^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.concept.TCAV :members: ConceptInterpreter -^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.concept.ConceptInterpreter :members: Concept -^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.concept.Concept :members: Classifier -^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.concept.Classifier :members: diff --git a/sphinx/source/conf.py b/sphinx/source/conf.py index 27bdc763fd..b01d1c8b81 100644 --- a/sphinx/source/conf.py +++ b/sphinx/source/conf.py @@ -10,7 +10,9 @@ # -- Path setup -------------------------------------------------------------- import os +import re import sys +from typing import List base_path = os.path.abspath(os.path.join(__file__, "..", "..", "..")) # read module from src instead of installation @@ -75,6 +77,11 @@ # Inlcude init docstrings into body of autoclass directives autoclass_content = "both" +# Preserve signature defaults +# Prevents entire tensors from being printed, & gives callable functions +# proper names +autodoc_preserve_defaults = True + # Configuration for intersphinx: refer to the Python standard library and PyTorch intersphinx_mapping = { "python": ("https://docs.python.org/3", None), @@ -201,3 +208,46 @@ # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True + + +# -- Docstring Improvements -------------------------------------------------- + + +# Regex code for typing replacements. +# The "(? None: + """ + Modify docstrings before creating html files. + Sphinx converts the 'Args:' and 'Returns:' sections of docstrings into + reStructuredText (rST) syntax, which can then be found via ':type' & ':rtype'. + + See here for more information: + https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html + """ + for i in range(len(lines)): + # Skip unless line is an parameter doc or a return doc + if not lines[i].startswith(":type"): + continue + if ":py:data:" in lines[i]: + continue + + # Ensure Any, Callable, & Iterator types are hyperlinked with intersphinx. + # The tilde '~' character hides the 'typing.' portion of the string. + lines[i] = re.sub(_rt[0] + r"Any" + _rt[1], "~typing.Any", lines[i]) + lines[i] = re.sub(_rt[0] + r"Callable" + _rt[1], "~typing.Callable", lines[i]) + lines[i] = re.sub(_rt[0] + r"Iterator" + _rt[1], "~typing.Iterator", lines[i]) + lines[i] = re.sub(_rt[0] + r"Iterable" + _rt[1], "~typing.Iterable", lines[i]) + + # Ensure Tensor type is hyperlinked by interpshinx + lines[i] = re.sub(_rt[0] + r"Tensor" + _rt[1], "~torch.Tensor", lines[i]) + + +def setup(app) -> None: + app.connect("autodoc-process-docstring", autodoc_process_docstring) diff --git a/sphinx/source/deconvolution.rst b/sphinx/source/deconvolution.rst index 61e092e768..d5813d3842 100644 --- a/sphinx/source/deconvolution.rst +++ b/sphinx/source/deconvolution.rst @@ -1,5 +1,5 @@ Deconvolution -========= +============= .. autoclass:: captum.attr.Deconvolution :members: diff --git a/sphinx/source/feature_ablation.rst b/sphinx/source/feature_ablation.rst index 35484a0fe6..e337aecf73 100644 --- a/sphinx/source/feature_ablation.rst +++ b/sphinx/source/feature_ablation.rst @@ -1,5 +1,6 @@ Feature Ablation -========= +================ .. autoclass:: captum.attr.FeatureAblation :members: + :exclude-members: compute_convergence_delta diff --git a/sphinx/source/feature_permutation.rst b/sphinx/source/feature_permutation.rst index d58f625aee..609ff1ff39 100644 --- a/sphinx/source/feature_permutation.rst +++ b/sphinx/source/feature_permutation.rst @@ -1,5 +1,6 @@ Feature Permutation -========= +=================== .. autoclass:: captum.attr.FeaturePermutation :members: + :exclude-members: compute_convergence_delta diff --git a/sphinx/source/gaussian_stg.rst b/sphinx/source/gaussian_stg.rst new file mode 100644 index 0000000000..dcecd361f4 --- /dev/null +++ b/sphinx/source/gaussian_stg.rst @@ -0,0 +1,6 @@ +GaussianStochasticGates +==================================== + +.. autoclass:: captum.module.GaussianStochasticGates + :members: + :inherited-members: Module diff --git a/sphinx/source/gradient_shap.rst b/sphinx/source/gradient_shap.rst index 2a676dcb06..8d94c31463 100644 --- a/sphinx/source/gradient_shap.rst +++ b/sphinx/source/gradient_shap.rst @@ -3,6 +3,3 @@ GradientShap .. autoclass:: captum.attr.GradientShap :members: - -.. autoclass:: captum.attr.InputBaselineXGradient - :members: diff --git a/sphinx/source/guided_backprop.rst b/sphinx/source/guided_backprop.rst index 6ef3a947ae..4c0685e8c5 100644 --- a/sphinx/source/guided_backprop.rst +++ b/sphinx/source/guided_backprop.rst @@ -1,5 +1,5 @@ Guided Backprop -========= +=============== .. autoclass:: captum.attr.GuidedBackprop :members: diff --git a/sphinx/source/guided_grad_cam.rst b/sphinx/source/guided_grad_cam.rst index 99f18d2af1..207d8e55fa 100644 --- a/sphinx/source/guided_grad_cam.rst +++ b/sphinx/source/guided_grad_cam.rst @@ -1,5 +1,5 @@ Guided GradCAM -========= +============== .. autoclass:: captum.attr.GuidedGradCam :members: diff --git a/sphinx/source/index.rst b/sphinx/source/index.rst index c54d99c28c..80f328d8a5 100644 --- a/sphinx/source/index.rst +++ b/sphinx/source/index.rst @@ -12,6 +12,7 @@ Captum API Reference :caption: API Reference attribution + llm_attr noise_tunnel layer neuron @@ -19,6 +20,7 @@ Captum API Reference robust concept influence + module utilities base_classes diff --git a/sphinx/source/influence.rst b/sphinx/source/influence.rst index 6366924a70..6b906d8c47 100644 --- a/sphinx/source/influence.rst +++ b/sphinx/source/influence.rst @@ -1,41 +1,41 @@ Influential Examples -====== +==================== DataInfluence -^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.influence.DataInfluence :members: SimilarityInfluence -^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.influence.SimilarityInfluence :members: TracInCPBase -^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.influence.TracInCPBase :members: TracInCP -^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.influence.TracInCP :members: TracInCPFast -^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.influence.TracInCPFast :members: TracInCPFastRandProj -^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.influence.TracInCPFastRandProj :members: diff --git a/sphinx/source/input_x_gradient.rst b/sphinx/source/input_x_gradient.rst index cd5f222e27..5213eab69b 100644 --- a/sphinx/source/input_x_gradient.rst +++ b/sphinx/source/input_x_gradient.rst @@ -1,5 +1,5 @@ Input X Gradient -=============== +================ .. autoclass:: captum.attr.InputXGradient :members: diff --git a/sphinx/source/insights.rst b/sphinx/source/insights.rst index ece9180971..1e0963d483 100644 --- a/sphinx/source/insights.rst +++ b/sphinx/source/insights.rst @@ -4,12 +4,12 @@ Insights Batch ^^^^^ -.. autoclass:: captum.insights.api.Batch +.. autoclass:: captum.insights.Batch :members: AttributionVisualizer ^^^^^^^^^^^^^^^^^^^^^ -.. autoclass:: captum.insights.api.AttributionVisualizer +.. autoclass:: captum.insights.AttributionVisualizer :members: diff --git a/sphinx/source/kernel_shap.rst b/sphinx/source/kernel_shap.rst index 48cfde3535..421ed0ea62 100644 --- a/sphinx/source/kernel_shap.rst +++ b/sphinx/source/kernel_shap.rst @@ -3,3 +3,4 @@ KernelShap .. autoclass:: captum.attr.KernelShap :members: + :exclude-members: compute_convergence_delta diff --git a/sphinx/source/layer.rst b/sphinx/source/layer.rst index 7fbbd5bd85..e9ae1a4f5b 100644 --- a/sphinx/source/layer.rst +++ b/sphinx/source/layer.rst @@ -1,70 +1,75 @@ Layer Attribution -====== +=========================== Layer Conductance -^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.LayerConductance :members: Layer Activation -^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.LayerActivation :members: Internal Influence -^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.InternalInfluence :members: Layer Gradient X Activation -^^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.LayerGradientXActivation :members: GradCAM -^^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.LayerGradCam :members: Layer DeepLift -^^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.LayerDeepLift :members: Layer DeepLiftShap -^^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.LayerDeepLiftShap :members: Layer GradientShap -^^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.LayerGradientShap :members: Layer Integrated Gradients -^^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.LayerIntegratedGradients :members: Layer Feature Ablation -^^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.LayerFeatureAblation :members: +Layer Feature Permutation +^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +.. autoclass:: captum.attr.LayerFeaturePermutation + :members: Layer LRP -^^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.LayerLRP :members: diff --git a/sphinx/source/lime.rst b/sphinx/source/lime.rst index 4c722304f1..483458572c 100644 --- a/sphinx/source/lime.rst +++ b/sphinx/source/lime.rst @@ -3,6 +3,7 @@ Lime .. autoclass:: captum.attr.LimeBase :members: + :exclude-members: compute_convergence_delta .. autoclass:: captum.attr.Lime :members: diff --git a/sphinx/source/llm_attr.rst b/sphinx/source/llm_attr.rst new file mode 100644 index 0000000000..834fa2392f --- /dev/null +++ b/sphinx/source/llm_attr.rst @@ -0,0 +1,21 @@ +LLM Attribution Classes +======================== + +LLMAttribution +^^^^^^^^^^^^^^^^^^^^^^^^ + +.. autoclass:: captum.attr.LLMAttribution + :members: + +LLMGradientAttribution +^^^^^^^^^^^^^^^^^^^^^^^^ + +.. autoclass:: captum.attr.LLMGradientAttribution + :members: + + +LLMAttributionResult +^^^^^^^^^^^^^^^^^^^^^^^^ + +.. autoclass:: captum.attr.LLMAttributionResult + :members: diff --git a/sphinx/source/metrics.rst b/sphinx/source/metrics.rst index 47c11e4856..8e71a40b02 100644 --- a/sphinx/source/metrics.rst +++ b/sphinx/source/metrics.rst @@ -1,15 +1,15 @@ Metrics -====== +=========== Infidelity -^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^ .. autoclass:: captum.metrics.infidelity :members: Sensitivity -^^^^^^^^^^^^^^^^ +^^^^^^^^^^^ .. autoclass:: captum.metrics.sensitivity_max :members: diff --git a/sphinx/source/module.rst b/sphinx/source/module.rst new file mode 100644 index 0000000000..11327384bd --- /dev/null +++ b/sphinx/source/module.rst @@ -0,0 +1,6 @@ +Module +==================== +.. toctree:: + + binary_concrete_stg + gaussian_stg diff --git a/sphinx/source/neuron.rst b/sphinx/source/neuron.rst index 8ad1514378..897f237baf 100644 --- a/sphinx/source/neuron.rst +++ b/sphinx/source/neuron.rst @@ -1,56 +1,57 @@ Neuron Attribution -======= +=========================== Neuron Gradient -^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.NeuronGradient :members: Neuron Integrated Gradients -^^^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.NeuronIntegratedGradients :members: Neuron Conductance -^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.NeuronConductance :members: Neuron DeepLift -^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.NeuronDeepLift :members: Neuron DeepLiftShap -^^^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.NeuronDeepLiftShap :members: Neuron GradientShap -^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.NeuronGradientShap :members: Neuron Guided Backprop -^^^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.NeuronGuidedBackprop :members: Neuron Deconvolution -^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.NeuronDeconvolution :members: Neuron Feature Ablation -^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.attr.NeuronFeatureAblation :members: + :exclude-members: compute_convergence_delta diff --git a/sphinx/source/noise_tunnel.rst b/sphinx/source/noise_tunnel.rst index e1aff40b18..15b6ec7dbf 100644 --- a/sphinx/source/noise_tunnel.rst +++ b/sphinx/source/noise_tunnel.rst @@ -3,3 +3,4 @@ NoiseTunnel .. autoclass:: captum.attr.NoiseTunnel :members: + :exclude-members: compute_convergence_delta diff --git a/sphinx/source/occlusion.rst b/sphinx/source/occlusion.rst index a05b236e24..5867d739b9 100644 --- a/sphinx/source/occlusion.rst +++ b/sphinx/source/occlusion.rst @@ -3,3 +3,4 @@ Occlusion .. autoclass:: captum.attr.Occlusion :members: + :exclude-members: compute_convergence_delta diff --git a/sphinx/source/pytext.rst b/sphinx/source/pytext.rst deleted file mode 100644 index 66c847dcd9..0000000000 --- a/sphinx/source/pytext.rst +++ /dev/null @@ -1,11 +0,0 @@ -Captum.Models -========================== - -.. automodule:: captum.attr._models.pytext - -.. autoclass:: PyTextInterpretableEmbedding - :members: - - -.. autoclass:: BaselineGenerator - :members: diff --git a/sphinx/source/robust.rst b/sphinx/source/robust.rst index 3b90a32ae5..48b360ad80 100644 --- a/sphinx/source/robust.rst +++ b/sphinx/source/robust.rst @@ -1,29 +1,29 @@ Robustness -====== +====================== FGSM -^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.robust.FGSM :members: PGD -^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.robust.PGD :members: Attack Comparator -^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.robust.AttackComparator :members: Min Param Perturbation -^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: captum.robust.MinParamPerturbation :members: diff --git a/sphinx/source/shapley_value_sampling.rst b/sphinx/source/shapley_value_sampling.rst index c998125af9..4d40338540 100644 --- a/sphinx/source/shapley_value_sampling.rst +++ b/sphinx/source/shapley_value_sampling.rst @@ -1,7 +1,9 @@ Shapley Value Sampling -========= +====================== .. autoclass:: captum.attr.ShapleyValueSampling :members: + :exclude-members: compute_convergence_delta .. autoclass:: captum.attr.ShapleyValues :members: + :exclude-members: compute_convergence_delta diff --git a/sphinx/source/utilities.rst b/sphinx/source/utilities.rst index f4e3d7ace6..24a87769eb 100644 --- a/sphinx/source/utilities.rst +++ b/sphinx/source/utilities.rst @@ -1,6 +1,18 @@ Utilities ========== +Interpretable Input +^^^^^^^^^^^^^^^^^^^^^ +.. autoclass:: captum.attr.InterpretableInput + :members: + +.. autoclass:: captum.attr.TextTemplateInput + :members: + +.. autoclass:: captum.attr.TextTokenInput + :members: + + Visualization ^^^^^^^^^^^^^^ @@ -8,6 +20,8 @@ Visualization .. autofunction:: captum.attr.visualization.visualize_image_attr_multiple +.. autofunction:: captum.attr.visualization.visualize_timeseries_attr + Interpretable Embeddings ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ @@ -16,6 +30,7 @@ Interpretable Embeddings :members: .. autofunction:: captum.attr.configure_interpretable_embedding_layer + .. autofunction:: captum.attr.remove_interpretable_embedding_layer @@ -45,3 +60,9 @@ Linear Models :members: .. autoclass:: captum._utils.models.linear_model.SGDRidge :members: + +Baselines +^^^^^^^^^^^^^^^^ + +.. autoclass:: captum.attr.ProductBaselines + :members: diff --git a/tests/attr/layer/test_grad_cam.py b/tests/attr/layer/test_grad_cam.py index 6f0229a76b..1f8829d24d 100755 --- a/tests/attr/layer/test_grad_cam.py +++ b/tests/attr/layer/test_grad_cam.py @@ -1,16 +1,20 @@ #!/usr/bin/env python3 +# pyre-unsafe + import unittest -from typing import Any, Tuple, Union +from typing import Any, Dict, Optional, Tuple, Union import torch from captum._utils.typing import TensorLikeList from captum.attr._core.layer.grad_cam import LayerGradCam -from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorTuplesAlmostEqual +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, ) +from packaging import version from torch import Tensor from torch.nn import Module @@ -33,6 +37,23 @@ def test_simple_input_conv(self) -> None: net, net.conv1, inp, [[[[11.25, 13.5], [20.25, 22.5]]]] ) + def test_simple_input_conv_split_channels(self) -> None: + net = BasicModel_ConvNet_One_Conv() + inp = torch.arange(16).view(1, 1, 4, 4).float() + expected_result = [ + [ + [[-3.7500, 3.0000], [23.2500, 30.0000]], + [[15.0000, 10.5000], [-3.0000, -7.5000]], + ] + ] + self._grad_cam_test_assert( + net, + net.conv1, + inp, + expected_activation=expected_result, + attr_dim_summation=False, + ) + def test_simple_input_conv_no_grad(self) -> None: net = BasicModel_ConvNet_One_Conv() @@ -100,7 +121,9 @@ def _grad_cam_test_assert( additional_input: Any = None, attribute_to_layer_input: bool = False, relu_attributions: bool = False, - ): + attr_dim_summation: bool = True, + grad_kwargs: Optional[Dict[str, Any]] = None, + ) -> None: layer_gc = LayerGradCam(model, target_layer) self.assertFalse(layer_gc.multiplies_by_inputs) attributions = layer_gc.attribute( @@ -109,11 +132,31 @@ def _grad_cam_test_assert( additional_forward_args=additional_input, attribute_to_layer_input=attribute_to_layer_input, relu_attributions=relu_attributions, + attr_dim_summation=attr_dim_summation, + grad_kwargs=grad_kwargs, ) assertTensorTuplesAlmostEqual( self, attributions, expected_activation, delta=0.01 ) + def test_relu_gradcam_with_unused_layer(self) -> None: + if version.parse(torch.__version__) < version.parse("2.1.0"): + raise unittest.SkipTest( + "Skipping unused layed gradient test since it is not supported " + "by torch version < 2.1" + ) + net = BasicModel_MultiLayer(multi_input_module=True) + inp = torch.tensor([[0.0, 6.0, 0.0]], requires_grad=True) + gradcam = LayerGradCam(net, net.relu) + attributions = gradcam.attribute( + inputs=inp, + target=0, + grad_kwargs={"materialize_grads": True}, + ) + self.assertEqual(len(attributions), 1) + self.assertEqual(list(attributions[0].shape), [1]) + self.assertAlmostEqual(attributions[0].sum(), 0) + if __name__ == "__main__": unittest.main() diff --git a/tests/attr/layer/test_internal_influence.py b/tests/attr/layer/test_internal_influence.py index 897f14d8c9..5316e49a38 100644 --- a/tests/attr/layer/test_internal_influence.py +++ b/tests/attr/layer/test_internal_influence.py @@ -1,15 +1,18 @@ #!/usr/bin/env python3 + +# pyre-unsafe import unittest -from typing import Any, List, Tuple, Union +from typing import Any, Dict, List, Optional, Tuple, Union import torch from captum._utils.typing import BaselineType from captum.attr._core.layer.internal_influence import InternalInfluence -from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest +from captum.testing.helpers.basic_models import ( BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) +from packaging import version from torch import Tensor from torch.nn import Module @@ -142,6 +145,23 @@ def test_multiple_with_baseline_internal_inf(self) -> None: net, net.linear1, inp, [[0.7, 0.8, 0.8, 0.8], [0.5, 0.6, 0.6, 0.6]], base ) + def test_simple_input_internal_inf_with_unused_layer(self) -> None: + if version.parse(torch.__version__) < version.parse("2.1.0"): + raise unittest.SkipTest( + "Skipping unused layed gradient test since it is not supported " + "by torch version < 2.1" + ) + net = BasicModel_MultiLayer(multi_input_module=True) + inp = torch.tensor([[0.0, 100.0, 0.0]], requires_grad=True) + self._internal_influence_test_assert( + net, + net.multi_relu, + inp, + ([[0.9, 1.0, 1.0, 1.0]], [[0.9, 1.0, 1.0, 1.0]]), + attribute_to_layer_input=True, + grad_kwargs={"materialize_grads": True}, + ) + def _internal_influence_test_assert( self, model: Module, @@ -156,7 +176,8 @@ def _internal_influence_test_assert( baseline: BaselineType = None, additional_args: Any = None, attribute_to_layer_input: bool = False, - ): + grad_kwargs: Optional[Dict[str, Any]] = None, + ) -> None: for internal_batch_size in [None, 5, 20]: int_inf = InternalInfluence(model, target_layer) self.assertFalse(int_inf.multiplies_by_inputs) @@ -169,6 +190,7 @@ def _internal_influence_test_assert( additional_forward_args=additional_args, internal_batch_size=internal_batch_size, attribute_to_layer_input=attribute_to_layer_input, + grad_kwargs=grad_kwargs, ) assertTensorTuplesAlmostEqual( self, attributions, expected_activation, delta=0.01, mode="max" diff --git a/tests/attr/layer/test_layer_ablation.py b/tests/attr/layer/test_layer_ablation.py index 5f055d4ace..4d35c9f801 100644 --- a/tests/attr/layer/test_layer_ablation.py +++ b/tests/attr/layer/test_layer_ablation.py @@ -1,13 +1,15 @@ #!/usr/bin/env python3 +# pyre-unsafe + import unittest from typing import Any, List, Tuple, Union import torch from captum._utils.typing import BaselineType from captum.attr._core.layer.layer_feature_ablation import LayerFeatureAblation -from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, @@ -21,10 +23,10 @@ def test_simple_ablation_with_mask(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) self._ablation_test_assert( - net, - net.linear0, - inp, - ([280.0, 280.0, 120.0],), + model=net, + layer=net.linear0, + test_input=inp, + expected_ablation=([280.0, 280.0, 120.0],), layer_mask=torch.tensor([[0, 0, 1]]), perturbations_per_eval=(1, 2, 3), attribute_to_layer_input=True, @@ -37,20 +39,20 @@ def test_multi_input_ablation(self) -> None: inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) baseline = torch.tensor([[1.0, 2.0, 3.0]]) self._ablation_test_assert( - net, - net.model.linear1, - (inp1, inp2, inp3), - [[168.0, 992.0, 148.0], [84.0, 632.0, 120.0]], + model=net, + layer=net.model.linear1, + test_input=(inp1, inp2, inp3), + expected_ablation=[[168.0, 992.0, 148.0], [84.0, 632.0, 120.0]], additional_input=(1,), baselines=baseline, perturbations_per_eval=(1, 2, 3), attribute_to_layer_input=True, ) self._ablation_test_assert( - net, - net.model.linear0, - (inp1, inp2, inp3), - [[168.0, 992.0, 148.0], [84.0, 632.0, 120.0]], + model=net, + layer=net.model.linear0, + test_input=(inp1, inp2, inp3), + expected_ablation=[[168.0, 992.0, 148.0], [84.0, 632.0, 120.0]], additional_input=(1,), baselines=baseline, perturbations_per_eval=(1, 2, 3), @@ -65,10 +67,10 @@ def test_multi_input_ablation_with_layer_mask(self) -> None: baseline = torch.tensor([[1.0, 2.0, 3.0]]) layer_mask = torch.tensor([[0, 1, 0], [0, 1, 2]]) self._ablation_test_assert( - net, - net.model.linear1, - (inp1, inp2, inp3), - [[316.0, 992.0, 316.0], [84.0, 632.0, 120.0]], + model=net, + layer=net.model.linear1, + test_input=(inp1, inp2, inp3), + expected_ablation=[[316.0, 992.0, 316.0], [84.0, 632.0, 120.0]], additional_input=(1,), baselines=baseline, perturbations_per_eval=(1, 2, 3), @@ -76,10 +78,10 @@ def test_multi_input_ablation_with_layer_mask(self) -> None: attribute_to_layer_input=True, ) self._ablation_test_assert( - net, - net.model.linear0, - (inp1, inp2, inp3), - [[316.0, 992.0, 316.0], [84.0, 632.0, 120.0]], + model=net, + layer=net.model.linear0, + test_input=(inp1, inp2, inp3), + expected_ablation=[[316.0, 992.0, 316.0], [84.0, 632.0, 120.0]], additional_input=(1,), baselines=baseline, layer_mask=layer_mask, @@ -91,17 +93,19 @@ def test_simple_multi_input_conv_intermediate(self) -> None: inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) self._ablation_test_assert( - net, - net.relu1, - (inp, inp2), - [[[[4.0, 13.0], [40.0, 49.0]], [[0, 0], [-15.0, -24.0]]]], + model=net, + layer=net.relu1, + test_input=(inp, inp2), + expected_ablation=[[[[4.0, 13.0], [40.0, 49.0]], [[0, 0], [-15.0, -24.0]]]], perturbations_per_eval=(1, 2, 4, 8, 12, 16), ) self._ablation_test_assert( - net, - net.relu1, - (inp, inp2), - ([[[4.0, 13.0], [40.0, 49.0]], [[0, 0], [-15.0, -24.0]]],), + model=net, + layer=net.relu1, + test_input=(inp, inp2), + expected_ablation=( + [[[4.0, 13.0], [40.0, 49.0]], [[0, 0], [-15.0, -24.0]]], + ), baselines=torch.tensor( [[[-4.0, -13.0], [-2.0, -2.0]], [[0, 0], [0.0, 0.0]]] ), @@ -109,10 +113,12 @@ def test_simple_multi_input_conv_intermediate(self) -> None: attribute_to_layer_input=True, ) self._ablation_test_assert( - net, - net.relu1, - (inp, inp2), - [[[[17.0, 17.0], [67.0, 67.0]], [[0, 0], [-39.0, -39.0]]]], + model=net, + layer=net.relu1, + test_input=(inp, inp2), + expected_ablation=[ + [[[17.0, 17.0], [67.0, 67.0]], [[0, 0], [-39.0, -39.0]]] + ], perturbations_per_eval=(1, 2, 4), layer_mask=torch.tensor([[[[0, 0], [1, 1]], [[2, 2], [3, 3]]]]), ) @@ -121,17 +127,20 @@ def test_simple_multi_output_ablation(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 6.0, 0.0]]) self._ablation_test_assert( - net, net.multi_relu, inp, ([[0.0, 7.0, 7.0, 7.0]], [[0.0, 7.0, 7.0, 7.0]]) + model=net, + layer=net.multi_relu, + test_input=inp, + expected_ablation=([[0.0, 7.0, 7.0, 7.0]], [[0.0, 7.0, 7.0, 7.0]]), ) def test_simple_multi_output_input_ablation(self) -> None: net = BasicModel_MultiLayer(multi_input_module=True) inp = torch.tensor([[0.0, 6.0, 0.0]]) self._ablation_test_assert( - net, - net.multi_relu, - inp, - ([[0.0, 7.0, 7.0, 7.0]], [[0.0, 7.0, 7.0, 7.0]]), + model=net, + layer=net.multi_relu, + test_input=inp, + expected_ablation=([[0.0, 7.0, 7.0, 7.0]], [[0.0, 7.0, 7.0, 7.0]]), attribute_to_layer_input=True, ) @@ -151,7 +160,7 @@ def _ablation_test_assert( for batch_size in perturbations_per_eval: ablation = LayerFeatureAblation(model, layer) attributions = ablation.attribute( - test_input, + inputs=test_input, target=target, layer_mask=layer_mask, additional_forward_args=additional_input, diff --git a/tests/attr/layer/test_layer_activation.py b/tests/attr/layer/test_layer_activation.py index 11905f0cf5..3da6871bbf 100644 --- a/tests/attr/layer/test_layer_activation.py +++ b/tests/attr/layer/test_layer_activation.py @@ -1,17 +1,19 @@ #!/usr/bin/env python3 +# pyre-unsafe + import unittest from typing import Any, List, Tuple, Union import torch import torch.nn as nn from captum.attr._core.layer.layer_activation import LayerActivation -from tests.helpers.basic import ( +from captum.testing.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic_models import ( BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, Conv1dSeqModel, @@ -140,7 +142,7 @@ def _layer_activation_test_assert( ], additional_input: Any = None, attribute_to_layer_input: bool = False, - ): + ) -> None: layer_act = LayerActivation(model, target_layer) self.assertTrue(layer_act.multiplies_by_inputs) attributions = layer_act.attribute( @@ -162,7 +164,7 @@ def _multiple_layer_activation_test_assert( ], additional_input: Any = None, attribute_to_layer_input: bool = False, - ): + ) -> None: layer_act = LayerActivation(model, target_layers) self.assertTrue(layer_act.multiplies_by_inputs) attributions = layer_act.attribute( diff --git a/tests/attr/layer/test_layer_conductance.py b/tests/attr/layer/test_layer_conductance.py index 2fb2720f18..978ef1e568 100644 --- a/tests/attr/layer/test_layer_conductance.py +++ b/tests/attr/layer/test_layer_conductance.py @@ -1,22 +1,25 @@ #!/usr/bin/env python3 +# pyre-unsafe + import unittest -from typing import Any, cast, List, Tuple, Union +from typing import Any, cast, Dict, List, Optional, Tuple, Union import torch from captum._utils.typing import BaselineType from captum.attr._core.layer.layer_conductance import LayerConductance -from tests.attr.helpers.conductance_reference import ConductanceReference -from tests.helpers.basic import ( +from captum.testing.attr.helpers.conductance_reference import ConductanceReference +from captum.testing.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) +from packaging import version from torch import Tensor from torch.nn import Module @@ -103,7 +106,7 @@ def test_simple_multi_input_relu_conductance_batch(self) -> None: def test_matching_conv1_conductance(self) -> None: net = BasicModel_ConvNet() inp = 100 * torch.randn(1, 1, 10, 10, requires_grad=True) - self._conductance_reference_test_assert(net, net.conv1, inp) + self._conductance_reference_test_assert(net, net.conv1, inp, n_steps=100) def test_matching_pool1_conductance(self) -> None: net = BasicModel_ConvNet() @@ -131,6 +134,25 @@ def test_matching_conv_with_baseline_conductance(self) -> None: baseline = 100 * torch.randn(3, 1, 10, 10, requires_grad=True) self._conductance_reference_test_assert(net, net.fc1, inp, baseline) + def test_layer_conductance_with_unused_layer(self) -> None: + if version.parse(torch.__version__) < version.parse("2.1.0"): + raise unittest.SkipTest( + "Skipping unused layed gradient test since it is not supported " + "by torch version < 2.1" + ) + net = BasicModel_MultiLayer_MultiInput() + inp1 = torch.tensor([[0.0, 10.0, 1.0], [0.0, 0.0, 10.0]]) + inp2 = torch.tensor([[0.0, 4.0, 5.0], [0.0, 0.0, 10.0]]) + inp3 = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 5.0]]) + self._conductance_test_assert( + net, + net.model.relu, + (inp1, inp2), + [[90.0, 100.0, 100.0, 100.0], [100.0, 100.0, 100.0, 100.0]], + additional_args=(inp3, 5), + grad_kwargs={"materialize_grads": True}, + ) + def _conductance_test_assert( self, model: Module, @@ -139,6 +161,7 @@ def _conductance_test_assert( expected_conductance: Union[List[List[float]], Tuple[List[List[float]], ...]], baselines: BaselineType = None, additional_args: Any = None, + grad_kwargs: Optional[Dict[str, Any]] = None, ) -> None: cond = LayerConductance(model, target_layer) self.assertTrue(cond.multiplies_by_inputs) @@ -152,6 +175,7 @@ def _conductance_test_assert( additional_forward_args=additional_args, internal_batch_size=internal_batch_size, return_convergence_delta=True, + grad_kwargs=grad_kwargs, ) delta_condition = (delta.abs() < 0.01).all() self.assertTrue( @@ -170,6 +194,7 @@ def _conductance_reference_test_assert( target_layer: Module, test_input: Tensor, test_baseline: Union[None, Tensor] = None, + n_steps: int = 300, ) -> None: layer_output = None @@ -190,7 +215,7 @@ def forward_hook(module, inp, out): test_input, baselines=test_baseline, target=target_index, - n_steps=300, + n_steps=n_steps, method="gausslegendre", return_convergence_delta=True, ), @@ -206,7 +231,7 @@ def forward_hook(module, inp, out): test_input, baselines=test_baseline, target=target_index, - n_steps=300, + n_steps=n_steps, method="gausslegendre", ) @@ -228,11 +253,13 @@ def forward_hook(module, inp, out): Tensor, cond.attribute( test_input[i : i + 1], - baselines=test_baseline[i : i + 1] - if test_baseline is not None - else None, + baselines=( + test_baseline[i : i + 1] + if test_baseline is not None + else None + ), target=target_index, - n_steps=300, + n_steps=n_steps, method="gausslegendre", ), ) diff --git a/tests/attr/layer/test_layer_deeplift.py b/tests/attr/layer/test_layer_deeplift.py index ce64de2f3b..fa8a291b38 100644 --- a/tests/attr/layer/test_layer_deeplift.py +++ b/tests/attr/layer/test_layer_deeplift.py @@ -1,18 +1,25 @@ #!/usr/bin/env python3 +# pyre-unsafe + from __future__ import print_function +import unittest from typing import cast, List, Tuple, Union import torch from captum.attr._core.layer.layer_deep_lift import LayerDeepLift, LayerDeepLiftShap -from tests.helpers.basic import ( +from captum.testing.attr.helpers.neuron_layer_testing_util import ( + create_inps_and_base_for_deeplift_neuron_layer_testing, + create_inps_and_base_for_deepliftshap_neuron_layer_testing, +) +from captum.testing.helpers.basic import ( assert_delta, assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_ConvNet_MaxPool3d, BasicModel_MaxPool_ReLU, @@ -20,13 +27,14 @@ LinearMaxPoolLinearModel, ReLULinearModel, ) +from packaging import version from torch import Tensor class TestDeepLift(BaseTest): def test_relu_layer_deeplift(self) -> None: - model = ReLULinearModel(inplace=False) - inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() + model = ReLULinearModel(inplace=True) + inputs, baselines = create_inps_and_base_for_deeplift_neuron_layer_testing() layer_dl = LayerDeepLift(model, model.relu) attributions, delta = layer_dl.attribute( @@ -39,8 +47,8 @@ def test_relu_layer_deeplift(self) -> None: assert_delta(self, delta) def test_relu_layer_deeplift_wo_mutliplying_by_inputs(self) -> None: - model = ReLULinearModel(inplace=False) - inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() + model = ReLULinearModel(inplace=True) + inputs, baselines = create_inps_and_base_for_deeplift_neuron_layer_testing() layer_dl = LayerDeepLift(model, model.relu, multiply_by_inputs=False) attributions = layer_dl.attribute( @@ -52,7 +60,7 @@ def test_relu_layer_deeplift_wo_mutliplying_by_inputs(self) -> None: def test_relu_layer_deeplift_multiple_output(self) -> None: model = BasicModel_MultiLayer(multi_input_module=True) - inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() + inputs, baselines = create_inps_and_base_for_deeplift_neuron_layer_testing() layer_dl = LayerDeepLift(model, model.multi_relu) attributions, delta = layer_dl.attribute( @@ -69,7 +77,7 @@ def test_relu_layer_deeplift_multiple_output(self) -> None: def test_relu_layer_deeplift_add_args(self) -> None: model = ReLULinearModel() - inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() + inputs, baselines = create_inps_and_base_for_deeplift_neuron_layer_testing() layer_dl = LayerDeepLift(model, model.relu) attributions, delta = layer_dl.attribute( @@ -83,8 +91,8 @@ def test_relu_layer_deeplift_add_args(self) -> None: assert_delta(self, delta) def test_linear_layer_deeplift(self) -> None: - model = ReLULinearModel(inplace=False) - inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() + model = ReLULinearModel(inplace=True) + inputs, baselines = create_inps_and_base_for_deeplift_neuron_layer_testing() layer_dl = LayerDeepLift(model, model.l3) attributions, delta = layer_dl.attribute( @@ -98,12 +106,12 @@ def test_linear_layer_deeplift(self) -> None: def test_relu_deeplift_with_custom_attr_func(self) -> None: model = ReLULinearModel() - inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() + inputs, baselines = create_inps_and_base_for_deeplift_neuron_layer_testing() attr_method = LayerDeepLift(model, model.l3) self._relu_custom_attr_func_assert(attr_method, inputs, baselines, [[2.0]]) def test_inplace_maxpool_relu_with_custom_attr_func(self) -> None: - model = BasicModel_MaxPool_ReLU(inplace=False) + model = BasicModel_MaxPool_ReLU(inplace=True) inp = torch.tensor([[[1.0, 2.0, -4.0], [-3.0, -2.0, -1.0]]]) dl = LayerDeepLift(model, model.maxpool) @@ -116,8 +124,8 @@ def custom_att_func(mult, inp, baseline): dl.attribute(inp, custom_attribution_func=custom_att_func) def test_linear_layer_deeplift_batch(self) -> None: - model = ReLULinearModel(inplace=False) - _, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() + model = ReLULinearModel(inplace=True) + _, baselines = create_inps_and_base_for_deeplift_neuron_layer_testing() x1 = torch.tensor( [[-10.0, 1.0, -5.0], [-10.0, 1.0, -5.0], [-10.0, 1.0, -5.0]], requires_grad=True, @@ -151,7 +159,7 @@ def test_relu_layer_deepliftshap(self) -> None: ( inputs, baselines, - ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() + ) = create_inps_and_base_for_deepliftshap_neuron_layer_testing() layer_dl_shap = LayerDeepLiftShap(model, model.relu) attributions, delta = layer_dl_shap.attribute( inputs, @@ -167,7 +175,7 @@ def test_relu_layer_deepliftshap_wo_mutliplying_by_inputs(self) -> None: ( inputs, baselines, - ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() + ) = create_inps_and_base_for_deepliftshap_neuron_layer_testing() layer_dl_shap = LayerDeepLiftShap(model, model.relu, multiply_by_inputs=False) attributions = layer_dl_shap.attribute( inputs, @@ -181,7 +189,7 @@ def test_relu_layer_deepliftshap_multiple_output(self) -> None: ( inputs, baselines, - ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() + ) = create_inps_and_base_for_deepliftshap_neuron_layer_testing() layer_dl = LayerDeepLiftShap(model, model.multi_relu) attributions, delta = layer_dl.attribute( @@ -197,11 +205,11 @@ def test_relu_layer_deepliftshap_multiple_output(self) -> None: assert_delta(self, delta) def test_linear_layer_deepliftshap(self) -> None: - model = ReLULinearModel(inplace=False) + model = ReLULinearModel(inplace=True) ( inputs, baselines, - ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() + ) = create_inps_and_base_for_deepliftshap_neuron_layer_testing() layer_dl_shap = LayerDeepLiftShap(model, model.l3) attributions, delta = layer_dl_shap.attribute( inputs, @@ -225,7 +233,7 @@ def test_relu_deepliftshap_with_custom_attr_func(self) -> None: ( inputs, baselines, - ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() + ) = create_inps_and_base_for_deepliftshap_neuron_layer_testing() attr_method = LayerDeepLiftShap(model, model.l3) self._relu_custom_attr_func_assert(attr_method, inputs, baselines, [[2.0]]) @@ -291,36 +299,20 @@ def custom_attr_func(multipliers, inputs, baselines): assertTensorAlmostEqual(self, attr[0], expected, 1e-19) - -def _create_inps_and_base_for_deeplift_neuron_layer_testing() -> Tuple[ - Tuple[Tensor, Tensor], Tuple[Tensor, Tensor] -]: - x1 = torch.tensor([[-10.0, 1.0, -5.0]], requires_grad=True) - x2 = torch.tensor([[3.0, 3.0, 1.0]], requires_grad=True) - - b1 = torch.tensor([[0.0, 0.0, 0.0]], requires_grad=True) - b2 = torch.tensor([[0.0, 0.0, 0.0]], requires_grad=True) - - inputs = (x1, x2) - baselines = (b1, b2) - - return inputs, baselines - - -def _create_inps_and_base_for_deepliftshap_neuron_layer_testing() -> Tuple[ - Tuple[Tensor, Tensor], Tuple[Tensor, Tensor] -]: - x1 = torch.tensor([[-10.0, 1.0, -5.0]], requires_grad=True) - x2 = torch.tensor([[3.0, 3.0, 1.0]], requires_grad=True) - - b1 = torch.tensor( - [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], requires_grad=True - ) - b2 = torch.tensor( - [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], requires_grad=True - ) - - inputs = (x1, x2) - baselines = (b1, b2) - - return inputs, baselines + def test_relu_deeplift_with_unused_layer(self) -> None: + if version.parse(torch.__version__) < version.parse("2.1.0"): + raise unittest.SkipTest( + "Skipping unused layed gradient test since it is not supported " + "by torch version < 2.1" + ) + model = BasicModel_MultiLayer(multi_input_module=True) + inp = torch.tensor([[3.0, 4.0, 5.0]], requires_grad=True) + dl = LayerDeepLift(model, model.relu) + attributions = dl.attribute( + inputs=inp, + target=0, + grad_kwargs={"materialize_grads": True}, + ) + self.assertEqual(len(attributions), 1) + self.assertEqual(list(attributions[0].shape), [4]) + self.assertAlmostEqual(int(attributions[0].sum()), 0) diff --git a/tests/attr/layer/test_layer_feature_permutation.py b/tests/attr/layer/test_layer_feature_permutation.py new file mode 100644 index 0000000000..ab945c3680 --- /dev/null +++ b/tests/attr/layer/test_layer_feature_permutation.py @@ -0,0 +1,35 @@ +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. + +# pyre-unsafe + +import torch +from captum.attr._core.layer.layer_feature_permutation import LayerFeaturePermutation +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import BasicModel_MultiLayer +from torch import Tensor + + +class TestLayerFeaturePermutation(BaseTest): + def test_single_input(self) -> None: + net = BasicModel_MultiLayer() + feature_importance = LayerFeaturePermutation( + forward_func=net, + layer=net.linear0, + ) + + batch_size = 2 + input_size = (3,) + constant_value = 10000 + + inp = torch.randn((batch_size,) + input_size) + inp[:, 0] = constant_value + + attribs = feature_importance.attribute(inputs=inp) + + self.assertTrue(isinstance(attribs, Tensor)) + self.assertEqual(len(attribs), 4) + self.assertEqual(attribs.squeeze(0).size(), (2 * batch_size,) + input_size) + zeros = torch.zeros(2 * batch_size) + assertTensorAlmostEqual(self, attribs[:, 0], zeros, delta=0, mode="max") + self.assertTrue((attribs[:, 1 : input_size[0]].abs() > 0).all()) diff --git a/tests/attr/layer/test_layer_gradient_shap.py b/tests/attr/layer/test_layer_gradient_shap.py index 1a80035846..15a374e1f1 100644 --- a/tests/attr/layer/test_layer_gradient_shap.py +++ b/tests/attr/layer/test_layer_gradient_shap.py @@ -1,21 +1,30 @@ #!/usr/bin/env python3 -from typing import Any, Callable, List, Tuple, Union + +# pyre-strict + +import unittest +from typing import Any, Callable, List, Optional, Tuple, Union import torch + from captum._utils.typing import TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._core.gradient_shap import GradientShap -from captum.attr._core.layer.layer_gradient_shap import LayerGradientShap -from tests.attr.test_gradient_shap import _assert_attribution_delta -from tests.helpers.basic import ( +from captum.attr._core.layer.layer_gradient_shap import ( + LayerGradientShap, + LayerInputBaselineXGradient, +) +from captum.testing.attr.helpers.attribution_delta_util import assert_attribution_delta +from captum.testing.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic_models import ( BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) -from tests.helpers.classification_models import SoftmaxModel +from captum.testing.helpers.classification_models import SoftmaxModel +from packaging import version from torch import Tensor from torch.nn import Module @@ -99,7 +108,7 @@ def test_basic_multilayer_compare_w_inp_features(self) -> None: ) def test_classification(self) -> None: - def custom_baseline_fn(inputs): + def custom_baseline_fn(inputs: Tensor) -> Tensor: num_in = inputs.shape[1] return torch.arange(0.0, num_in * 4.0).reshape(4, num_in) @@ -129,11 +138,37 @@ def test_basic_multi_input(self) -> None: net, net.model.linear2, inputs, baselines, 0, expected, add_args=add_args ) + def test_relu_grad_shap_with_unused_layer(self) -> None: + if version.parse(torch.__version__) < version.parse("2.1.0"): + raise unittest.SkipTest( + "Skipping unused layed gradient test since it is not supported " + "by torch version < 2.1" + ) + + model = BasicModel_MultiLayer(inplace=True, multi_input_module=True) + model.eval() + + inputs = torch.tensor([[1.0, -20.0, 10.0]], requires_grad=True) + baselines = torch.zeros(3, 3) + lgs = LayerInputBaselineXGradient(model, model.relu, multiply_by_inputs=False) + attrs = lgs.attribute( + inputs, baselines, target=0, grad_kwargs={"materialize_grads": True} + ) + + assertTensorAlmostEqual( + self, + attrs, + torch.tensor( + [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]] + ), + ) + def _assert_attributions( self, model: Module, layer: Module, inputs: TensorOrTupleOfTensorsGeneric, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. baselines: Union[TensorOrTupleOfTensorsGeneric, Callable], target: TargetType, expected: Union[ @@ -144,9 +179,11 @@ def _assert_attributions( Tuple[List[float], ...], Tuple[List[List[float]], ...], ], - expected_delta: Tensor = None, + expected_delta: Optional[Tensor] = None, n_samples: int = 5, attribute_to_layer_input: bool = False, + # pyre-fixme[2]: Parameter `add_args` has type `None` + # but type `Any` is specified. add_args: Any = None, ) -> None: lgs = LayerGradientShap(model, layer) @@ -162,7 +199,15 @@ def _assert_attributions( ) assertTensorTuplesAlmostEqual(self, attrs, expected, delta=0.005) if expected_delta is None: - _assert_attribution_delta(self, inputs, attrs, n_samples, delta, True) + assert_attribution_delta( + # pyre-fixme[6]: For 1st argument expected `FbBaseTest` but got `Test`. + self, # type: ignore + inputs, + attrs, + n_samples, + delta, + is_layer=True, + ) else: for delta_i, expected_delta_i in zip(delta, expected_delta): assertTensorAlmostEqual(self, delta_i, expected_delta_i, delta=0.01) diff --git a/tests/attr/layer/test_layer_gradient_x_activation.py b/tests/attr/layer/test_layer_gradient_x_activation.py index 0e16e3493b..1dc1888fc4 100644 --- a/tests/attr/layer/test_layer_gradient_x_activation.py +++ b/tests/attr/layer/test_layer_gradient_x_activation.py @@ -1,4 +1,7 @@ #!/usr/bin/env python3 + +# pyre-strict + import unittest from typing import Any, List, Tuple, Union @@ -6,12 +9,13 @@ from captum._utils.typing import ModuleOrModuleList from captum.attr._core.layer.layer_activation import LayerActivation from captum.attr._core.layer.layer_gradient_x_activation import LayerGradientXActivation -from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest +from captum.testing.helpers.basic_models import ( BasicEmbeddingModel, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) +from packaging import version from torch import Tensor from torch.nn import Module @@ -129,12 +133,35 @@ def test_gradient_activation_embedding_no_grad(self) -> None: list(layer_act.attribute(inputs=(input1, input2)).shape), [4, 100] ) + def test_simple_multi_gradient_activation_with_unused_layer(self) -> None: + if version.parse(torch.__version__) < version.parse("2.1.0"): + raise unittest.SkipTest( + "Skipping unused layed gradient test since it is not supported " + "by torch version < 2.1" + ) + + model = BasicModel_MultiLayer(multi_input_module=True) + test_input = torch.tensor([[3.0, 4.0, 0.0]], requires_grad=True) + # pyre-fixme[6]: For 2nd argument expected `ModuleOrModuleList` but got + # `List[Union[ReLU, Linear]]`. + layer_act = LayerGradientXActivation(model, [model.linear1, model.relu]) + attributions = layer_act.attribute( + inputs=test_input, target=0, grad_kwargs={"materialize_grads": True} + ) + self.assertEqual(len(attributions), 2) + self.assertEqual(list(attributions[0].shape), [1, 4]) + self.assertEqual(list(attributions[1].shape), [1, 4]) + def _layer_activation_test_assert( self, model: Module, target_layer: ModuleOrModuleList, test_input: Union[Tensor, Tuple[Tensor, ...]], + # pyre-fixme[24]: Generic type `list` expects 1 type parameter, use + # `typing.List[]` to avoid runtime subscripting errors. expected_activation: Union[List, Tuple[List[List[float]], ...]], + # pyre-fixme[2]: Parameter `additional_input` has type `None` + # but type `Any` is specified. additional_input: Any = None, ) -> None: layer_act = LayerGradientXActivation(model, target_layer) @@ -147,6 +174,8 @@ def _layer_activation_test_assert( self, attributions, expected_activation, delta=0.01 ) else: + # pyre-fixme[6]: For 1st argument expected + # `pyre_extensions.PyreReadOnly[Sized]` but got `ModuleOrModuleList`. for i in range(len(target_layer)): assertTensorTuplesAlmostEqual( self, attributions[i], expected_activation[i], delta=0.01 @@ -169,6 +198,8 @@ def _layer_activation_test_assert( delta=0.01, ) else: + # pyre-fixme[6]: For 1st argument expected + # `pyre_extensions.PyreReadOnly[Sized]` but got `ModuleOrModuleList`. for i in range(len(target_layer)): assertTensorTuplesAlmostEqual( self, diff --git a/tests/attr/layer/test_layer_integrated_gradients.py b/tests/attr/layer/test_layer_integrated_gradients.py index 9c0d56f79b..37fcb11c9f 100644 --- a/tests/attr/layer/test_layer_integrated_gradients.py +++ b/tests/attr/layer/test_layer_integrated_gradients.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict +import unittest from typing import Any, cast, List, Tuple, Union import torch @@ -11,16 +13,17 @@ configure_interpretable_embedding_layer, remove_interpretable_embedding_layer, ) -from tests.helpers.basic import ( +from captum.testing.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic_models import ( BasicEmbeddingModel, BasicModel_MultiLayer, BasicModel_MultiLayer_TrueMultiInput, ) +from packaging import version from torch import Tensor from torch.nn import Module @@ -113,6 +116,8 @@ def test_multiple_layers_multiple_inputs_shared_input(self) -> None: net = BasicModel_MultiLayer_TrueMultiInput() + # pyre-fixme[6]: For 2nd argument expected `ModuleOrModuleList` but got + # `List[Union[BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput]]`. lig = LayerIntegratedGradients(net, layer=[net.m1, net.m234]) ig = IntegratedGradients(net) @@ -132,7 +137,8 @@ def test_multiple_layers_multiple_inputs_shared_input(self) -> None: self, # last input for second layer is first input => # add the attributions - (attribs_inputs[0] + attribs_inputs[1][-1],) + attribs_inputs[1][0:-1], + (attribs_inputs[0] + attribs_inputs[1][-1],) # type: ignore + + attribs_inputs[1][0:-1], # type: ignore attribs_inputs_regular_ig, delta=1e-5, ) @@ -159,6 +165,8 @@ def test_multiple_layers_multiple_input_outputs(self) -> None: net = BasicModel_MultiLayer_TrueMultiInput() + # pyre-fixme[6]: For 2nd argument expected `ModuleOrModuleList` but got + # `List[Union[BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput]]`. lig = LayerIntegratedGradients(net, layer=[net.m1, net.m234]) ig = IntegratedGradients(net) @@ -176,7 +184,7 @@ def test_multiple_layers_multiple_input_outputs(self) -> None: assertTensorTuplesAlmostEqual( self, - (attribs_inputs[0],) + attribs_inputs[1], + (attribs_inputs[0],) + attribs_inputs[1], # type: ignore attribs_inputs_regular_ig, delta=1e-7, ) @@ -223,9 +231,31 @@ def test_multiple_tensors_compare_with_exp_wo_mult_by_inputs(self) -> None: attributions, ) + def test_simple_multi_gradient_activation_with_unused_layer(self) -> None: + if version.parse(torch.__version__) < version.parse("2.1.0"): + raise unittest.SkipTest( + "Skipping unused layed gradient test since it is not supported " + "by torch version < 2.1" + ) + + model = BasicModel_MultiLayer(multi_input_module=True) + test_input = torch.tensor([[3.0, 4.0, 0.0]], requires_grad=True) + # pyre-fixme[6]: For 2nd argument expected `ModuleOrModuleList` but got + # `List[Union[ReLU, Linear]]`. + layer_ig = LayerIntegratedGradients(model, [model.linear1, model.relu]) + attributions = cast( + List[Tensor], + layer_ig.attribute( + inputs=test_input, target=0, grad_kwargs={"materialize_grads": True} + ), + ) + self.assertEqual(len(attributions), 2) + self.assertEqual(list(attributions[0].shape), [1, 4]) + self.assertEqual(list(attributions[1].shape), [1, 4]) + def _assert_compare_with_layer_conductance( self, model: Module, input: Tensor, attribute_to_layer_input: bool = False - ): + ) -> None: lc = LayerConductance(model, cast(Module, model.linear2)) # For large number of steps layer conductance and layer integrated gradients # become very close @@ -256,7 +286,7 @@ def _assert_compare_with_emb_patching( additional_args: Union[None, Tuple[Tensor, ...]], multiply_by_inputs: bool = True, multiple_emb: bool = False, - ): + ) -> None: model = BasicEmbeddingModel(nested_second_embedding=True) if multiple_emb: module_list: List[Module] = [model.embedding1, model.embedding2] @@ -340,8 +370,10 @@ def _assert_compare_with_expected( target_layer: Module, test_input: Union[Tensor, Tuple[Tensor, ...]], expected_ig: Tuple[List[List[float]], ...], + # pyre-fixme[2]: Parameter `additional_input` has type `None` + # but type `Any` is specified. additional_input: Any = None, - ): + ) -> None: layer_ig = LayerIntegratedGradients(model, target_layer) attributions = layer_ig.attribute( test_input, target=0, additional_forward_args=additional_input diff --git a/tests/attr/layer/test_layer_lrp.py b/tests/attr/layer/test_layer_lrp.py index 3fc8cd80ea..8217b4c2ff 100644 --- a/tests/attr/layer/test_layer_lrp.py +++ b/tests/attr/layer/test_layer_lrp.py @@ -1,27 +1,37 @@ #!/usr/bin/env python3 +# pyre-strict + +from typing import Any, Tuple + import torch import torch.nn as nn from captum.attr import LayerLRP from captum.attr._utils.lrp_rules import Alpha1_Beta0_Rule, EpsilonRule, GammaRule -from ...helpers.basic import assertTensorAlmostEqual, BaseTest -from ...helpers.basic_models import BasicModel_ConvNet_One_Conv, SimpleLRPModel +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( + BasicModel_ConvNet_One_Conv, + SimpleLRPModel, +) +from torch import Tensor -def _get_basic_config(): +def _get_basic_config() -> Tuple[BasicModel_ConvNet_One_Conv, Tensor]: input = torch.arange(16).view(1, 1, 4, 4).float() return BasicModel_ConvNet_One_Conv(), input -def _get_simple_model(inplace=False): +def _get_simple_model(inplace: bool = False) -> Tuple[SimpleLRPModel, Tensor]: model = SimpleLRPModel(inplace) inputs = torch.tensor([[1.0, 2.0, 3.0]]) return model, inputs -def _get_simple_model2(inplace=False): +# pyre-fixme[3]: Return type must be specified as type that does not contain `Any`. +def _get_simple_model2(inplace: bool = False) -> Tuple[Any, Tensor]: class MyModel(nn.Module): def __init__(self, inplace) -> None: super().__init__() @@ -39,56 +49,75 @@ def forward(self, input): class Test(BaseTest): - def test_lrp_creator(self): + def test_lrp_creator(self) -> None: model, _ = _get_basic_config() - model.conv1.rule = 1 + model.conv1.rule = 1 # type: ignore self.assertRaises(TypeError, LayerLRP, model, model.conv1) - def test_lrp_creator_activation(self): + def test_lrp_creator_activation(self) -> None: model, inputs = _get_basic_config() model.add_module("sigmoid", nn.Sigmoid()) lrp = LayerLRP(model, model.conv1) self.assertRaises(TypeError, lrp.attribute, inputs) - def test_lrp_basic_attributions(self): + def test_lrp_basic_attributions(self) -> None: model, inputs = _get_basic_config() logits = model(inputs) score, classIndex = torch.max(logits, 1) lrp = LayerLRP(model, model.conv1) - relevance, delta = lrp.attribute( - inputs, classIndex.item(), return_convergence_delta=True + relevance, delta = lrp.attribute( # type: ignore + inputs, + classIndex.item(), + return_convergence_delta=True, ) assertTensorAlmostEqual( self, relevance[0], torch.Tensor([[[0, 4], [31, 40]], [[0, 0], [-6, -15]]]) ) assertTensorAlmostEqual(self, delta, torch.Tensor([0])) - def test_lrp_simple_attributions(self): + def test_lrp_simple_attributions(self) -> None: model, inputs = _get_simple_model(inplace=False) model.eval() - model.linear.rule = EpsilonRule() - model.linear2.rule = EpsilonRule() + model.linear.rule = EpsilonRule() # type: ignore + model.linear2.rule = EpsilonRule() # type: ignore lrp_upper = LayerLRP(model, model.linear2) relevance_upper, delta = lrp_upper.attribute( - inputs, attribute_to_layer_input=True, return_convergence_delta=True + inputs, + attribute_to_layer_input=True, + return_convergence_delta=True, ) lrp_lower = LayerLRP(model, model.linear) relevance_lower = lrp_lower.attribute(inputs) assertTensorAlmostEqual(self, relevance_lower[0], relevance_upper[0]) - self.assertEqual(delta.item(), 0) + # pyre-fixme[16]: Item `tuple` of `Union[Tensor, Tuple[Tensor, ...]]` has no + # attribute `item`. + self.assertEqual(delta.item(), 0) # type: ignore - def test_lrp_simple_repeat_attributions(self): + def test_lrp_simple_repeat_attributions(self) -> None: model, inputs = _get_simple_model() model.eval() - model.linear.rule = GammaRule() - model.linear2.rule = Alpha1_Beta0_Rule() + model.linear.rule = GammaRule() # type: ignore + model.linear2.rule = Alpha1_Beta0_Rule() # type: ignore output = model(inputs) lrp = LayerLRP(model, model.linear) _ = lrp.attribute(inputs) output_after = model(inputs) assertTensorAlmostEqual(self, output, output_after) - def test_lrp_simple_tanh(self): + def test_lrp_simple_inplaceReLU(self) -> None: + model_default, inputs = _get_simple_model() + model_inplace, _ = _get_simple_model(inplace=True) + for model in [model_default, model_inplace]: + model.eval() + model.linear.rule = EpsilonRule() # type: ignore + model.linear2.rule = EpsilonRule() # type: ignore + lrp_default = LayerLRP(model_default, model_default.linear2) + lrp_inplace = LayerLRP(model_inplace, model_inplace.linear2) + relevance_default = lrp_default.attribute(inputs, attribute_to_layer_input=True) + relevance_inplace = lrp_inplace.attribute(inputs, attribute_to_layer_input=True) + assertTensorAlmostEqual(self, relevance_default[0], relevance_inplace[0]) + + def test_lrp_simple_tanh(self) -> None: class Model(nn.Module): def __init__(self) -> None: super(Model, self).__init__() @@ -109,49 +138,55 @@ def forward(self, x): self, relevance[0], torch.Tensor([0.0537, 0.0537, 0.0537]) ) # Result if tanh is skipped for propagation - def test_lrp_simple_attributions_GammaRule(self): + def test_lrp_simple_attributions_GammaRule(self) -> None: model, inputs = _get_simple_model() with torch.no_grad(): model.linear.weight.data[0][0] = -2 model.eval() - model.linear.rule = GammaRule(gamma=1) - model.linear2.rule = GammaRule() + model.linear.rule = GammaRule(gamma=1) # type: ignore + model.linear2.rule = GammaRule() # type: ignore lrp = LayerLRP(model, model.linear) relevance = lrp.attribute(inputs) assertTensorAlmostEqual(self, relevance[0], torch.tensor([24.0, 36.0, 36.0])) - def test_lrp_simple_attributions_AlphaBeta(self): + def test_lrp_simple_attributions_AlphaBeta(self) -> None: model, inputs = _get_simple_model() with torch.no_grad(): model.linear.weight.data[0][0] = -2 model.eval() - model.linear.rule = Alpha1_Beta0_Rule() - model.linear2.rule = Alpha1_Beta0_Rule() + model.linear.rule = Alpha1_Beta0_Rule() # type: ignore + model.linear2.rule = Alpha1_Beta0_Rule() # type: ignore lrp = LayerLRP(model, model.linear) relevance = lrp.attribute(inputs) assertTensorAlmostEqual(self, relevance[0], torch.tensor([24.0, 36.0, 36.0])) - def test_lrp_simple_attributions_all_layers(self): + def test_lrp_simple_attributions_all_layers(self) -> None: model, inputs = _get_simple_model(inplace=False) model.eval() - model.linear.rule = EpsilonRule() - model.linear2.rule = EpsilonRule() + model.linear.rule = EpsilonRule() # type: ignore + model.linear2.rule = EpsilonRule() # type: ignore layers = [model.linear, model.linear2] - lrp = LayerLRP(model, layers) + # pyre-fixme[6]: For 2nd argument expected `ModuleOrModuleList` but got + # `List[Linear]`. + lrp = LayerLRP(model, layers) # type: ignore relevance = lrp.attribute(inputs, attribute_to_layer_input=True) self.assertEqual(len(relevance), 2) assertTensorAlmostEqual(self, relevance[0][0], torch.tensor([18.0, 36.0, 54.0])) - def test_lrp_simple_attributions_all_layers_delta(self): + def test_lrp_simple_attributions_all_layers_delta(self) -> None: model, inputs = _get_simple_model(inplace=False) model.eval() - model.linear.rule = EpsilonRule() - model.linear2.rule = EpsilonRule() + model.linear.rule = EpsilonRule() # type: ignore + model.linear2.rule = EpsilonRule() # type: ignore layers = [model.linear, model.linear2] - lrp = LayerLRP(model, layers) + # pyre-fixme[6]: For 2nd argument expected `ModuleOrModuleList` but got + # `List[Linear]`. + lrp = LayerLRP(model, layers) # type: ignore inputs = torch.cat((inputs, 2 * inputs)) relevance, delta = lrp.attribute( - inputs, attribute_to_layer_input=True, return_convergence_delta=True + inputs, + attribute_to_layer_input=True, + return_convergence_delta=True, ) self.assertEqual(len(relevance), len(delta)) assertTensorAlmostEqual( diff --git a/tests/attr/models/test_base.py b/tests/attr/models/test_base.py index 4ebee39ee2..cdfdf66444 100644 --- a/tests/attr/models/test_base.py +++ b/tests/attr/models/test_base.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-unsafe + from __future__ import print_function import unittest @@ -10,13 +12,13 @@ InterpretableEmbeddingBase, remove_interpretable_embedding_layer, ) -from tests.helpers.basic import assertTensorAlmostEqual -from tests.helpers.basic_models import BasicEmbeddingModel, TextModule +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import BasicEmbeddingModel, TextModule from torch.nn import Embedding class Test(unittest.TestCase): - def test_interpretable_embedding_base(self): + def test_interpretable_embedding_base(self) -> None: input1 = torch.tensor([2, 5, 0, 1]) input2 = torch.tensor([3, 0, 0, 2]) model = BasicEmbeddingModel() @@ -59,7 +61,7 @@ def test_interpretable_embedding_base(self): remove_interpretable_embedding_layer(model, interpretable_embedding1) self.assertTrue(model.embedding1.__class__ is Embedding) - def test_custom_module(self): + def test_custom_module(self) -> None: input1 = torch.tensor([[3, 2, 0], [1, 2, 4]]) input2 = torch.tensor([[0, 1, 0], [1, 2, 3]]) model = BasicEmbeddingModel() @@ -81,7 +83,7 @@ def test_custom_module(self): self.assertTrue(model.embedding2.__class__ is TextModule) self._assert_embeddings_equal(input2, output, interpretable_embedding) - def test_nested_multi_embeddings(self): + def test_nested_multi_embeddings(self) -> None: input1 = torch.tensor([[3, 2, 0], [1, 2, 4]]) input2 = torch.tensor([[0, 1, 0], [2, 6, 8]]) input3 = torch.tensor([[4, 1, 0], [2, 2, 8]]) @@ -113,7 +115,7 @@ def _assert_embeddings_equal( interpretable_embedding, embedding_dim=None, num_embeddings=None, - ): + ) -> None: if interpretable_embedding.embedding_dim is not None: self.assertEqual(embedding_dim, interpretable_embedding.embedding_dim) self.assertEqual(num_embeddings, interpretable_embedding.num_embeddings) diff --git a/tests/attr/models/test_pytext.py b/tests/attr/models/test_pytext.py index 57f7752865..9518588f07 100644 --- a/tests/attr/models/test_pytext.py +++ b/tests/attr/models/test_pytext.py @@ -1,6 +1,6 @@ #!/usr/bin/env python3 -from __future__ import print_function +# pyre-strict import os import tempfile @@ -19,12 +19,20 @@ from pytext.config.component import create_featurizer, create_model from pytext.config.doc_classification import ModelInputConfig, TargetConfig from pytext.config.field_config import FeatureConfig, WordFeatConfig - from pytext.data import CommonMetadata - from pytext.data.doc_classification_data_handler import DocClassificationDataHandler + from pytext.data.data_handler import CommonMetadata + + # pyre-fixme[21]: Could not find module + # `pytext.data.doc_classification_data_handler`. + from pytext.data.doc_classification_data_handler import ( # @manual=//pytext:main_lib # noqa + DocClassificationDataHandler, + ) from pytext.data.featurizer import SimpleFeaturizer from pytext.fields import FieldMeta from pytext.models.decoders.mlp_decoder import MLPDecoder - from pytext.models.doc_model import DocModel_Deprecated + + # pyre-fixme[21]: Could not find name `DocModel_Deprecated` in + # `pytext.models.doc_model`. + from pytext.models.doc_model import DocModel_Deprecated # @manual=//pytext:main_lib from pytext.models.embeddings.word_embedding import WordEmbedding from pytext.models.representations.bilstm_doc_attention import BiLSTMDocAttention except ImportError: @@ -33,7 +41,11 @@ class VocabStub: def __init__(self) -> None: + # pyre-fixme[24]: Generic type `list` expects 1 type parameter, + # use `typing.List[]` to avoid runtime subscripting errors. self.itos: List = [] + # pyre-fixme[24]: Generic type `list` expects 1 type parameter, + # use `typing.List[]` to avoid runtime subscripting errors. self.stoi: Dict = {} @@ -41,9 +53,9 @@ def __init__(self) -> None: class TestWordEmbeddings(unittest.TestCase): - def setUp(self): + def setUp(self) -> None: if not HAS_PYTEXT: - return self.skipTest("Skip the test since PyText is not installed") + raise unittest.SkipTest("Skip the test since PyText is not installed") self.embedding_file, self.embedding_path = tempfile.mkstemp() self.word_embedding_file, self.word_embedding_path = tempfile.mkstemp() @@ -52,7 +64,7 @@ def setUp(self): self.model = self._create_dummy_model() self.data_handler = self._create_dummy_data_handler() - def tearDown(self): + def tearDown(self) -> None: for f in ( self.embedding_file, self.word_embedding_file, @@ -68,7 +80,7 @@ def tearDown(self): ): os.remove(p) - def test_word_embeddings(self): + def test_word_embeddings(self) -> None: embedding_list = configure_model_integ_grads_embeddings(self.model) integrated_gradients_embedding = embedding_list[0] input = torch.arange(0, 300).unsqueeze(0).unsqueeze(0) @@ -81,7 +93,7 @@ def test_word_embeddings(self): ) ) - def test_baseline_generation(self): + def test_baseline_generation(self) -> None: baseline_generator = BaselineGenerator(self.model, self.data_handler, "cpu") embedding_list = configure_model_integ_grads_embeddings(self.model) integrated_gradients_embedding = embedding_list[0] @@ -94,6 +106,7 @@ def test_baseline_generation(self): ) ) + # pyre-fixme[3]: Return type is not specified. def _create_dummy_data_handler(self): feat = WordFeatConfig( vocab_size=4, @@ -105,7 +118,11 @@ def _create_dummy_data_handler(self): featurizer = create_featurizer( SimpleFeaturizer.Config(), FeatureConfig(word_feat=feat) ) + # pyre-fixme[16]: Module `pytext.data` has no attribute + # `doc_classification_data_handler`. data_handler = DocClassificationDataHandler.from_config( + # pyre-fixme[16]: Module `pytext.data` has no attribute + # `doc_classification_data_handler`. DocClassificationDataHandler.Config(), ModelInputConfig(word_feat=feat), TargetConfig(), @@ -124,12 +141,19 @@ def _create_dummy_data_handler(self): return data_handler + # pyre-fixme[3]: Return type is not specified. def _create_dummy_model(self): return create_model( + # pyre-fixme[16]: Module `pytext.models.doc_model` has no attribute + # `DocModel_Deprecated`. DocModel_Deprecated.Config( + # pyre-fixme[28]: Unexpected keyword argument `save_path` to call + # `object.__init__`. representation=BiLSTMDocAttention.Config( save_path=self.representation_path ), + # pyre-fixme[28]: Unexpected keyword argument `save_path` to call + # `object.__init__`. decoder=MLPDecoder.Config(save_path=self.decoder_path), ), FeatureConfig( @@ -141,14 +165,22 @@ def _create_dummy_model(self): self._create_dummy_meta_data(), ) - def _create_dummy_meta_data(self): + def _create_dummy_meta_data(self) -> "CommonMetadata": text_field_meta = FieldMeta() + # pyre-fixme[8]: Attribute `vocab` declared in class + # `pytext.fields.field.FieldMeta` has type `Vocab` but is used as type + # `VocabStub`. text_field_meta.vocab = VocabStub() text_field_meta.vocab_size = 4 text_field_meta.unk_token_idx = 1 text_field_meta.pad_token_idx = 0 + # pyre-fixme[16]: `pytext.fields.field.FieldMeta` has no attribute + # `pretrained_embeds_weight`. text_field_meta.pretrained_embeds_weight = None label_meta = FieldMeta() + # pyre-fixme[8]: Attribute `vocab` declared in class + # `pytext.fields.field.FieldMeta` has type `Vocab` but is used as type + # `VocabStub`. label_meta.vocab = VocabStub() label_meta.vocab_size = 3 metadata = CommonMetadata() diff --git a/tests/attr/neuron/test_neuron_ablation.py b/tests/attr/neuron/test_neuron_ablation.py index 6556e95702..02b92cb65b 100644 --- a/tests/attr/neuron/test_neuron_ablation.py +++ b/tests/attr/neuron/test_neuron_ablation.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-unsafe + import unittest from typing import Any, Callable, Tuple, Union @@ -10,8 +12,9 @@ TensorOrTupleOfTensorsGeneric, ) from captum.attr._core.neuron.neuron_feature_ablation import NeuronFeatureAblation -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, @@ -80,8 +83,8 @@ def test_multi_input_ablation_with_mask(self) -> None: inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) mask1 = torch.tensor([[1, 1, 1], [0, 1, 0]]) - mask2 = torch.tensor([[0, 1, 2]]) - mask3 = torch.tensor([[0, 1, 2], [0, 0, 0]]) + mask2 = torch.tensor([[3, 4, 2]]) + mask3 = torch.tensor([[5, 6, 7], [5, 5, 5]]) expected = ( [[492.0, 492.0, 492.0], [200.0, 200.0, 200.0]], [[80.0, 200.0, 120.0], [0.0, 400.0, 0.0]], diff --git a/tests/attr/neuron/test_neuron_conductance.py b/tests/attr/neuron/test_neuron_conductance.py index 347c31b99c..619268aaa3 100644 --- a/tests/attr/neuron/test_neuron_conductance.py +++ b/tests/attr/neuron/test_neuron_conductance.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-strict + import unittest from typing import Any, Callable, cast, List, Tuple, Union @@ -7,12 +9,15 @@ from captum._utils.typing import BaselineType, TensorOrTupleOfTensorsGeneric from captum.attr._core.layer.layer_conductance import LayerConductance from captum.attr._core.neuron.neuron_conductance import NeuronConductance -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, ) + +from packaging import version from torch import Tensor from torch.nn import Module @@ -142,7 +147,7 @@ def test_matching_layer_tuple_selector_fn(self) -> None: for j in range(layer_attr[i].shape[1]): neuron_attr = nc.attribute( inp, - lambda x: x[i][:, j], + lambda x, i=i, j=j: x[i][:, j], target=0, n_steps=500, method="gausslegendre", @@ -153,13 +158,45 @@ def test_matching_layer_tuple_selector_fn(self) -> None: delta=0.005, ) + def test_relu_neuron_conductance_with_unused_layer(self) -> None: + if version.parse(torch.__version__) < version.parse("2.1.0"): + raise unittest.SkipTest( + "Skipping unused layed gradient test since it is not supported " + "by torch version < 2.1" + ) + + net = BasicModel_MultiLayer(multi_input_module=True) + inp = torch.tensor([[0.0, 6.0, 0.0]]) + + lc = LayerConductance(net, net.multi_relu) + layer_attr = lc.attribute(inp, target=0, n_steps=500, method="gausslegendre") + nc = NeuronConductance(net, net.multi_relu) + for i in range(len(layer_attr)): + for j in range(layer_attr[i].shape[1]): + neuron_attr = nc.attribute( + inp, + lambda x, i=i, j=j: x[i][:, j], + target=0, + n_steps=500, + method="gausslegendre", + grad_kwargs={"materialize_grads": True}, + ) + self.assertAlmostEqual( + neuron_attr.sum().item(), + layer_attr[i][0][j].item(), + delta=0.005, + ) + def _conductance_input_test_assert( self, model: Module, target_layer: Module, test_input: TensorOrTupleOfTensorsGeneric, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. test_neuron: Union[int, Tuple[int, ...], Callable], expected_input_conductance: Union[List[float], Tuple[List[List[float]], ...]], + # pyre-fixme[2]: Parameter `additional_input` has type `None` but type + # `Any` is specified. additional_input: Any = None, multiply_by_inputs: bool = True, ) -> None: @@ -209,7 +246,7 @@ def _conductance_input_sum_test_assert( target_layer: Module, test_input: TensorOrTupleOfTensorsGeneric, test_baseline: BaselineType = None, - ): + ) -> None: layer_cond = LayerConductance(model, target_layer) attributions = cast( Tensor, @@ -236,7 +273,13 @@ def _conductance_input_sum_test_assert( for n in range(attributions.shape[0]): self.assertAlmostEqual( torch.sum(neuron_vals[n]).item(), + # pyre-fixme[6]: For 2nd argument expected + # `SupportsRSub[Variable[_T], + # SupportsAbs[SupportsRound[object]]]` but got + # `Union[bool, float, int]`. attributions[n, i, j, k].item(), + # pyre-fixme[6]: For 3rd argument expected `None` but + # got `float`. delta=0.005, ) diff --git a/tests/attr/neuron/test_neuron_deeplift.py b/tests/attr/neuron/test_neuron_deeplift.py index bfe7b55d0e..cba6291eef 100644 --- a/tests/attr/neuron/test_neuron_deeplift.py +++ b/tests/attr/neuron/test_neuron_deeplift.py @@ -1,19 +1,21 @@ #!/usr/bin/env python3 +# pyre-unsafe + from __future__ import print_function -import copy from typing import Tuple, Union import torch from captum._utils.typing import TensorOrTupleOfTensorsGeneric from captum.attr._core.neuron.neuron_deep_lift import NeuronDeepLift, NeuronDeepLiftShap -from tests.attr.layer.test_layer_deeplift import ( - _create_inps_and_base_for_deeplift_neuron_layer_testing, - _create_inps_and_base_for_deepliftshap_neuron_layer_testing, +from captum.testing.attr.helpers.neuron_layer_testing_util import ( + create_inps_and_base_for_deeplift_neuron_layer_testing, + create_inps_and_base_for_deepliftshap_neuron_layer_testing, ) -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_ConvNet_MaxPool3d, LinearMaxPoolLinearModel, @@ -53,7 +55,7 @@ def test_deeplift_compare_with_and_without_inplace(self) -> None: def test_linear_neuron_deeplift(self) -> None: model = ReLULinearModel() - inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() + inputs, baselines = create_inps_and_base_for_deeplift_neuron_layer_testing() neuron_dl = NeuronDeepLift(model, model.l3) attributions = neuron_dl.attribute( @@ -71,7 +73,7 @@ def test_linear_neuron_deeplift(self) -> None: def test_linear_neuron_deeplift_wo_inp_marginal_effects(self) -> None: model = ReLULinearModel() - inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() + inputs, baselines = create_inps_and_base_for_deeplift_neuron_layer_testing() neuron_dl = NeuronDeepLift(model, model.l3, multiply_by_inputs=False) attributions = neuron_dl.attribute( @@ -82,7 +84,7 @@ def test_linear_neuron_deeplift_wo_inp_marginal_effects(self) -> None: def test_relu_deeplift_with_custom_attr_func(self) -> None: model = ReLULinearModel() - inputs, baselines = _create_inps_and_base_for_deeplift_neuron_layer_testing() + inputs, baselines = create_inps_and_base_for_deeplift_neuron_layer_testing() neuron_dl = NeuronDeepLift(model, model.l3) expected = ([[0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0]]) self._relu_custom_attr_func_assert(neuron_dl, inputs, baselines, expected) @@ -92,7 +94,7 @@ def test_relu_neuron_deeplift_shap(self) -> None: ( inputs, baselines, - ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() + ) = create_inps_and_base_for_deepliftshap_neuron_layer_testing() neuron_dl = NeuronDeepLiftShap(model, model.relu) @@ -107,7 +109,7 @@ def test_linear_neuron_deeplift_shap(self) -> None: ( inputs, baselines, - ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() + ) = create_inps_and_base_for_deepliftshap_neuron_layer_testing() neuron_dl = NeuronDeepLiftShap(model, model.l3) attributions = neuron_dl.attribute( @@ -129,7 +131,7 @@ def test_linear_neuron_deeplift_shap_wo_inp_marginal_effects(self) -> None: ( inputs, baselines, - ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() + ) = create_inps_and_base_for_deepliftshap_neuron_layer_testing() neuron_dl = NeuronDeepLiftShap(model, model.l3, multiply_by_inputs=False) attributions = neuron_dl.attribute( @@ -151,7 +153,7 @@ def test_relu_deepliftshap_with_custom_attr_func(self) -> None: ( inputs, baselines, - ) = _create_inps_and_base_for_deepliftshap_neuron_layer_testing() + ) = create_inps_and_base_for_deepliftshap_neuron_layer_testing() neuron_dl = NeuronDeepLiftShap(model, model.l3) expected = (torch.zeros(1, 3), torch.zeros(1, 3)) self._relu_custom_attr_func_assert(neuron_dl, inputs, baselines, expected) @@ -181,11 +183,10 @@ def test_lin_maxpool_lin_classification(self) -> None: baselines = torch.tensor([[1, 2, 3, 9], [4, 8, 6, 7]]).float() model = LinearMaxPoolLinearModel() - model_copy = copy.deepcopy(model) ndl = NeuronDeepLift(model, model.pool1) attr = ndl.attribute(inputs, neuron_selector=(0), baselines=baselines) - ndl2 = NeuronDeepLift(model_copy, model_copy.lin2) + ndl2 = NeuronDeepLift(model, model.lin2) attr2 = ndl2.attribute( inputs, neuron_selector=(0), @@ -197,12 +198,11 @@ def test_lin_maxpool_lin_classification(self) -> None: def test_convnet_maxpool2d_classification(self) -> None: inputs = 100 * torch.randn(2, 1, 10, 10) model = BasicModel_ConvNet() - model_copy = copy.deepcopy(model) ndl = NeuronDeepLift(model, model.pool1) attr = ndl.attribute(inputs, neuron_selector=(0, 0, 0)) - ndl2 = NeuronDeepLift(model_copy, model_copy.conv2) + ndl2 = NeuronDeepLift(model, model.conv2) attr2 = ndl2.attribute( inputs, neuron_selector=(0, 0, 0), attribute_to_neuron_input=True ) @@ -212,12 +212,11 @@ def test_convnet_maxpool2d_classification(self) -> None: def test_convnet_maxpool3d_classification(self) -> None: inputs = 100 * torch.randn(2, 1, 10, 10, 10) model = BasicModel_ConvNet_MaxPool3d() - model_copy = copy.deepcopy(model) ndl = NeuronDeepLift(model, model.pool1) attr = ndl.attribute(inputs, neuron_selector=(0, 0, 0, 0)) - ndl2 = NeuronDeepLift(model_copy, model_copy.conv2) + ndl2 = NeuronDeepLift(model, model.conv2) attr2 = ndl2.attribute( inputs, neuron_selector=(0, 0, 0, 0), attribute_to_neuron_input=True ) diff --git a/tests/attr/neuron/test_neuron_gradient.py b/tests/attr/neuron/test_neuron_gradient.py index d14b56eaa6..466ee5dd8f 100644 --- a/tests/attr/neuron/test_neuron_gradient.py +++ b/tests/attr/neuron/test_neuron_gradient.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-unsafe + import unittest from typing import Any, Callable, cast, List, Tuple, Union @@ -8,12 +10,12 @@ from captum._utils.typing import TensorOrTupleOfTensorsGeneric from captum.attr._core.neuron.neuron_gradient import NeuronGradient from captum.attr._core.saliency import Saliency -from tests.helpers.basic import ( +from captum.testing.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, @@ -141,7 +143,7 @@ def _gradient_matching_test_assert( while len(neuron) < len(out.shape) - 1: neuron = neuron + (0,) input_attrib = Saliency( - lambda x: _forward_layer_eval( + lambda x, neuron=neuron: _forward_layer_eval( model, x, output_layer, grad_enabled=True )[0][(slice(None), *neuron)] ) diff --git a/tests/attr/neuron/test_neuron_gradient_shap.py b/tests/attr/neuron/test_neuron_gradient_shap.py index f5d2920a0b..2311c8b441 100644 --- a/tests/attr/neuron/test_neuron_gradient_shap.py +++ b/tests/attr/neuron/test_neuron_gradient_shap.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 + +# pyre-unsafe from typing import Callable, Tuple, Union import torch @@ -6,9 +8,10 @@ from captum.attr._core.neuron.neuron_integrated_gradients import ( NeuronIntegratedGradients, ) -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicModel_MultiLayer -from tests.helpers.classification_models import SoftmaxModel +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import BasicModel_MultiLayer +from captum.testing.helpers.classification_models import SoftmaxModel from torch import Tensor from torch.nn import Module diff --git a/tests/attr/neuron/test_neuron_integrated_gradients.py b/tests/attr/neuron/test_neuron_integrated_gradients.py index b2f50ae64d..ce5819ffc7 100644 --- a/tests/attr/neuron/test_neuron_integrated_gradients.py +++ b/tests/attr/neuron/test_neuron_integrated_gradients.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-unsafe + import unittest from typing import Any, Callable, Tuple, Union @@ -9,12 +11,12 @@ from captum.attr._core.neuron.neuron_integrated_gradients import ( NeuronIntegratedGradients, ) -from tests.helpers.basic import ( +from captum.testing.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, @@ -144,7 +146,7 @@ def _ig_input_test_assert( grad = NeuronIntegratedGradients( model, target_layer, multiply_by_inputs=multiply_by_inputs ) - self.assertEquals(grad.multiplies_by_inputs, multiply_by_inputs) + self.assertEqual(grad.multiplies_by_inputs, multiply_by_inputs) attributions = grad.attribute( test_input, test_neuron, diff --git a/tests/attr/test_approximation_methods.py b/tests/attr/test_approximation_methods.py index 54a517b596..b2ced6ecf8 100644 --- a/tests/attr/test_approximation_methods.py +++ b/tests/attr/test_approximation_methods.py @@ -1,23 +1,26 @@ #!/usr/bin/env python3 +# pyre-unsafe + import unittest +from typing import List import torch from captum.attr._utils.approximation_methods import Riemann, riemann_builders -from tests.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic import assertTensorAlmostEqual class Test(unittest.TestCase): - def __init__(self, methodName="runTest") -> None: + def __init__(self, methodName: str = "runTest") -> None: super().__init__(methodName) - def test_riemann_0(self): + def test_riemann_0(self) -> None: with self.assertRaises(AssertionError): step_sizes, alphas = riemann_builders() step_sizes(0) alphas(0) - def test_riemann_2(self): + def test_riemann_2(self) -> None: expected_step_sizes_lrm = [0.5, 0.5] expected_step_sizes_trapezoid = [0.25, 0.25] expected_left = [0.0, 0.5] @@ -34,7 +37,7 @@ def test_riemann_2(self): expected_trapezoid, ) - def test_riemann_3(self): + def test_riemann_3(self) -> None: expected_step_sizes = [1 / 3] * 3 expected_step_sizes_trapezoid = [1 / 6, 1 / 3, 1 / 6] expected_left = [0.0, 1 / 3, 2 / 3] @@ -51,7 +54,7 @@ def test_riemann_3(self): expected_trapezoid, ) - def test_riemann_4(self): + def test_riemann_4(self) -> None: expected_step_sizes = [1 / 4] * 4 expected_step_sizes_trapezoid = [1 / 8, 1 / 4, 1 / 4, 1 / 8] expected_left = [0.0, 0.25, 0.5, 0.75] @@ -70,14 +73,14 @@ def test_riemann_4(self): def _assert_steps_and_alphas( self, - n, - expected_step_sizes, - expected_step_sizes_trapezoid, - expected_left, - expected_right, - expected_middle, - expected_trapezoid, - ): + n: int, + expected_step_sizes: List[float], + expected_step_sizes_trapezoid: List[float], + expected_left: List[float], + expected_right: List[float], + expected_middle: List[float], + expected_trapezoid: List[float], + ) -> None: step_sizes_left, alphas_left = riemann_builders(Riemann.left) step_sizes_right, alphas_right = riemann_builders(Riemann.right) step_sizes_middle, alphas_middle = riemann_builders(Riemann.middle) diff --git a/tests/attr/test_baselines.py b/tests/attr/test_baselines.py new file mode 100644 index 0000000000..1aab426f96 --- /dev/null +++ b/tests/attr/test_baselines.py @@ -0,0 +1,64 @@ +# pyre-unsafe +from typing import cast, Dict, List, Tuple, Union + +from captum.attr._utils.baselines import ProductBaselines + +# from parameterized import parameterized +from captum.testing.helpers import BaseTest + + +class TestProductBaselines(BaseTest): + def test_list(self) -> None: + baseline_values = [ + [1, 2, 3], + [4, 5, 6, 7], + [8, 9], + ] + + baselines = ProductBaselines(baseline_values) + + baseline_sample = baselines() + + self.assertIsInstance(baseline_sample, list) + for sample_val, vals in zip(baseline_sample, baseline_values): + self.assertIn(sample_val, vals) + + def test_dict(self) -> None: + baseline_values = { + "f1": [1, 2, 3], + "f2": [4, 5, 6, 7], + "f3": [8, 9], + } + + baselines = ProductBaselines( + cast(Dict[Union[str, Tuple[str, ...]], List[int]], baseline_values) + ) + + baseline_sample = baselines() + + self.assertIsInstance(baseline_sample, dict) + baseline_sample = cast(dict, baseline_sample) + + for sample_key, sample_val in baseline_sample.items(): + self.assertIn(sample_val, baseline_values[sample_key]) + + def test_dict_tuple_key(self) -> None: + baseline_values: Dict[Union[str, Tuple[str, ...]], List] = { + ("f1", "f2"): [(1, "1"), (2, "2"), (3, "3")], + "f3": [4, 5], + } + + baselines = ProductBaselines(baseline_values) + + baseline_sample = baselines() + + self.assertIsInstance(baseline_sample, dict) + baseline_sample = cast(dict, baseline_sample) + + self.assertEqual(len(baseline_sample), 3) + + self.assertIn( + (baseline_sample["f1"], baseline_sample["f2"]), + baseline_values[("f1", "f2")], + ) + self.assertIn(baseline_sample["f3"], baseline_values["f3"]) diff --git a/tests/attr/test_class_summarizer.py b/tests/attr/test_class_summarizer.py index 7009cca788..13c4fdeef9 100644 --- a/tests/attr/test_class_summarizer.py +++ b/tests/attr/test_class_summarizer.py @@ -1,11 +1,15 @@ #!/usr/bin/env python3 + +# pyre-unsafe +from typing import List + import torch from captum.attr import ClassSummarizer, CommonStats -from tests.helpers.basic import BaseTest +from captum.testing.helpers import BaseTest class Test(BaseTest): - def class_test(self, data, classes, x_sizes): + def class_test(self, data, classes, x_sizes) -> None: summarizer = ClassSummarizer(stats=CommonStats()) for x, y in data: summarizer.update(x, y) @@ -39,13 +43,13 @@ def class_test(self, data, classes, x_sizes): self.assertEqual(len(all_keys), 0) self.assertEqual(all_classes.sum(), len(classes)) - def test_classes(self): + def test_classes(self) -> None: sizes_to_test = [ # ((1,),), ((3, 2, 10, 3), (1,)), # ((20,),), ] - list_of_classes = [ + list_of_classes: List[List] = [ list(range(100)), ["%d" % i for i in range(100)], list(range(300, 400)), @@ -53,7 +57,9 @@ def test_classes(self): for batch_size in [None, 1, 4]: for sizes, classes in zip(sizes_to_test, list_of_classes): - def create_batch_labels(batch_idx): + def create_batch_labels( + batch_idx, batch_size=batch_size, classes=classes + ): if batch_size is None: # batch_size = 1 return classes[batch_idx] @@ -78,7 +84,7 @@ def create_batch_labels(batch_idx): ): self.class_test(data, classes, sizes) - def test_no_class(self): + def test_no_class(self) -> None: size = (30, 20) summarizer = ClassSummarizer(stats=CommonStats()) for _ in range(10): @@ -95,7 +101,7 @@ def test_no_class(self): self.assertIsInstance(summarizer.class_summaries, dict) self.assertEqual(len(summarizer.class_summaries), 0) - def test_single_label(self): + def test_single_label(self) -> None: size = (4, 3, 2, 1) data = torch.randn((100,) + size) diff --git a/tests/attr/test_common.py b/tests/attr/test_common.py index c2c987e4c1..5cf48ea309 100644 --- a/tests/attr/test_common.py +++ b/tests/attr/test_common.py @@ -1,31 +1,65 @@ #!/usr/bin/env python3 +# pyre-unsafe + import torch from captum.attr._core.noise_tunnel import SUPPORTED_NOISE_TUNNEL_TYPES from captum.attr._utils.common import _validate_input, _validate_noise_tunnel_type -from tests.helpers.basic import BaseTest +from captum.testing.helpers import BaseTest class Test(BaseTest): def test_validate_input(self) -> None: - with self.assertRaises(AssertionError): - _validate_input((torch.tensor([-1.0, 1.0]),), (torch.tensor([-2.0]),)) + with self.assertRaises(AssertionError) as err: + _validate_input( + (torch.tensor([-1.0, 1.0]),), (torch.tensor([-2.0, 0.0, 1.0]),) + ) + self.assertEqual( + "Baseline can be provided as a tensor for just one input and " + "broadcasted to the batch or input and baseline must have the " + "same shape or the baseline corresponding to each input tensor " + "must be a scalar. Found baseline: tensor([-2., 0., 1.]) and " + "input: tensor([-1., 1.])", + str(err.exception), + ) + + with self.assertRaises(AssertionError) as err: _validate_input( (torch.tensor([-1.0, 1.0]),), (torch.tensor([-1.0, 1.0]),), n_steps=-1 ) + self.assertEqual( + "The number of steps must be a positive integer. Given: -1", + str(err.exception), + ) + + with self.assertRaises(AssertionError) as err: _validate_input( (torch.tensor([-1.0, 1.0]),), (torch.tensor([-1.0, 1.0]),), method="abcde", ) + self.assertIn( + "Approximation method must be one for the following", + str(err.exception), + ) + # any baseline which is broadcastable to match the input is supported, which + # includes a scalar / single-element tensor. + _validate_input((torch.tensor([-1.0, 1.0]),), (torch.tensor([-2.0]),)) _validate_input((torch.tensor([-1.0]),), (torch.tensor([-2.0]),)) _validate_input( (torch.tensor([-1.0]),), (torch.tensor([-2.0]),), method="gausslegendre" ) def test_validate_nt_type(self) -> None: - with self.assertRaises(AssertionError): + with self.assertRaises( + AssertionError, + ) as err: _validate_noise_tunnel_type("abc", SUPPORTED_NOISE_TUNNEL_TYPES) + self.assertIn( + "Noise types must be either `smoothgrad`, `smoothgrad_sq` or `vargrad`.", + str(err.exception), + ) + _validate_noise_tunnel_type("smoothgrad", SUPPORTED_NOISE_TUNNEL_TYPES) _validate_noise_tunnel_type("smoothgrad_sq", SUPPORTED_NOISE_TUNNEL_TYPES) _validate_noise_tunnel_type("vargrad", SUPPORTED_NOISE_TUNNEL_TYPES) diff --git a/tests/attr/test_data_parallel.py b/tests/attr/test_data_parallel.py index 16fc653d15..0901f720b3 100644 --- a/tests/attr/test_data_parallel.py +++ b/tests/attr/test_data_parallel.py @@ -1,8 +1,10 @@ #!/usr/bin/env python3 + +# pyre-unsafe import copy import os from enum import Enum -from typing import Any, Callable, cast, Dict, Optional, Tuple, Type +from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Type import torch import torch.distributed as dist @@ -16,14 +18,18 @@ ) from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._utils.attribution import Attribution, InternalAttribution -from tests.attr.helpers.gen_test_utils import ( +from captum.testing.attr.helpers.gen_test_utils import ( gen_test_name, get_target_layer, parse_test_config, should_create_generated_test, ) -from tests.attr.helpers.test_config import config -from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest, deep_copy_args +from captum.testing.attr.helpers.test_config import config +from captum.testing.helpers.basic import ( + assertTensorTuplesAlmostEqual, + BaseTest, + deep_copy_args, +) from torch import Tensor from torch.nn import Module @@ -35,7 +41,7 @@ """ # Distributed Data Parallel env setup -os.environ["MASTER_ADDR"] = "127.0.0.1" +os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "29500" dist.init_process_group(backend="gloo", rank=0, world_size=1) @@ -57,7 +63,7 @@ class DataParallelCompareMode(Enum): class DataParallelMeta(type): - def __new__(cls, name: str, bases: Tuple, attrs: Dict): + def __new__(metacls, name: str, bases: Tuple, attrs: Dict): for test_config in config: ( algorithms, @@ -75,7 +81,7 @@ def __new__(cls, name: str, bases: Tuple, attrs: Dict): for mode in DataParallelCompareMode: # Creates test case corresponding to each algorithm and # DataParallelCompareMode - test_method = cls.make_single_dp_test( + test_method = metacls.make_single_dp_test( algorithm, model, layer, @@ -98,14 +104,14 @@ def __new__(cls, name: str, bases: Tuple, attrs: Dict): ) attrs[test_name] = test_method - return super(DataParallelMeta, cls).__new__(cls, name, bases, attrs) + return super(DataParallelMeta, metacls).__new__(metacls, name, bases, attrs) # Arguments are deep copied to ensure tests are independent and are not affected # by any modifications within a previous test. @classmethod @deep_copy_args def make_single_dp_test( - cls, + metacls, algorithm: Type[Attribution], model: Module, target_layer: Optional[str], @@ -115,7 +121,6 @@ def make_single_dp_test( baseline_distr: bool, mode: DataParallelCompareMode, ) -> Callable: - """ This method creates a single Data Parallel / GPU test for the given algorithm and parameters. @@ -135,91 +140,22 @@ def data_parallel_test_assert(self) -> None: else: cuda_args[key] = args[key] - alt_device_ids = None cuda_model = copy.deepcopy(model).cuda() - # Initialize models based on DataParallelCompareMode - if mode is DataParallelCompareMode.cpu_cuda: - model_1, model_2 = model, cuda_model - args_1, args_2 = args, cuda_args - elif mode is DataParallelCompareMode.data_parallel_default: - model_1, model_2 = ( - cuda_model, - torch.nn.parallel.DataParallel(cuda_model), - ) - args_1, args_2 = cuda_args, cuda_args - elif mode is DataParallelCompareMode.data_parallel_alt_dev_ids: - alt_device_ids = [0] + [ - x for x in range(torch.cuda.device_count() - 1, 0, -1) - ] - model_1, model_2 = ( - cuda_model, - torch.nn.parallel.DataParallel( - cuda_model, device_ids=alt_device_ids - ), - ) - args_1, args_2 = cuda_args, cuda_args - elif mode is DataParallelCompareMode.dist_data_parallel: + # Set up test arguments based on DataParallelCompareMode + model_1, model_2, args_1, args_2, alt_device_ids = _get_dp_test_args( + cuda_model, model, cuda_args, args, mode + ) - model_1, model_2 = ( - cuda_model, - torch.nn.parallel.DistributedDataParallel( - cuda_model, device_ids=[0], output_device=0 - ), - ) - args_1, args_2 = cuda_args, cuda_args - else: - raise AssertionError("DataParallel compare mode type is not valid.") - - attr_method_1: Attribution - attr_method_2: Attribution - if target_layer: - internal_algorithm = cast(Type[InternalAttribution], algorithm) - attr_method_1 = internal_algorithm( - model_1, get_target_layer(model_1, target_layer) - ) - # cuda_model is used to obtain target_layer since DataParallel - # adds additional wrapper. - # model_2 is always either the CUDA model itself or DataParallel - if alt_device_ids is None: - attr_method_2 = internal_algorithm( - model_2, get_target_layer(cuda_model, target_layer) - ) - else: - # LayerDeepLift and LayerDeepLiftShap do not take device ids - # as a parameter, since they must always have the DataParallel - # model object directly. - # Some neuron methods and GuidedGradCAM also require the - # model and cannot take a forward function. - if issubclass( - internal_algorithm, - ( - LayerDeepLift, - LayerDeepLiftShap, - LayerLRP, - NeuronDeepLift, - NeuronDeepLiftShap, - NeuronDeconvolution, - NeuronGuidedBackprop, - GuidedGradCam, - ), - ): - attr_method_2 = internal_algorithm( - model_2, - get_target_layer(cuda_model, target_layer), # type: ignore - ) - else: - attr_method_2 = internal_algorithm( - model_2.forward, - get_target_layer(cuda_model, target_layer), - device_ids=alt_device_ids, - ) - else: - attr_method_1 = algorithm(model_1) - attr_method_2 = algorithm(model_2) - - if noise_tunnel: - attr_method_1 = NoiseTunnel(attr_method_1) - attr_method_2 = NoiseTunnel(attr_method_2) + # Construct attribution methods + attr_method_1, attr_method_2 = _get_dp_attr_methods( + algorithm, + target_layer, + model_1, + model_2, + cuda_model, + alt_device_ids, + noise_tunnel, + ) if attr_method_1.has_convergence_delta(): attributions_1, delta_1 = attr_method_1.attribute( return_convergence_delta=True, **args_1 @@ -265,10 +201,111 @@ def data_parallel_test_assert(self) -> None: return data_parallel_test_assert +def _get_dp_test_args( + cuda_model: Module, + model: Module, + cuda_args: Dict[str, Any], + args: Dict[str, Any], + mode: DataParallelCompareMode, +) -> Tuple[Module, Module, Dict[str, Any], Dict[str, Any], Optional[List[int]]]: + # Initialize models based on DataParallelCompareMode + alt_device_ids = None + if mode is DataParallelCompareMode.cpu_cuda: + model_1, model_2 = model, cuda_model + args_1, args_2 = args, cuda_args + elif mode is DataParallelCompareMode.data_parallel_default: + model_1, model_2 = ( + cuda_model, + torch.nn.parallel.DataParallel(cuda_model), + ) + args_1, args_2 = cuda_args, cuda_args + elif mode is DataParallelCompareMode.data_parallel_alt_dev_ids: + alt_device_ids = [0] + list(range(torch.cuda.device_count() - 1, 0, -1)) + model_1, model_2 = ( + cuda_model, + torch.nn.parallel.DataParallel(cuda_model, device_ids=alt_device_ids), + ) + args_1, args_2 = cuda_args, cuda_args + elif mode is DataParallelCompareMode.dist_data_parallel: + + model_1, model_2 = ( + cuda_model, + torch.nn.parallel.DistributedDataParallel( + cuda_model, device_ids=[0], output_device=0 + ), + ) + args_1, args_2 = cuda_args, cuda_args + else: + raise AssertionError("DataParallel compare mode type is not valid.") + + return model_1, model_2, args_1, args_2, alt_device_ids + + +def _get_dp_attr_methods( + algorithm: Type[Attribution], + target_layer: Optional[str], + model_1: Module, + model_2: Module, + cuda_model: Module, + alt_device_ids: Optional[List[int]], + noise_tunnel: bool, +) -> Tuple[Attribution, Attribution]: + attr_method_1: Attribution + attr_method_2: Attribution + if target_layer: + internal_algorithm = cast(Type[InternalAttribution], algorithm) + attr_method_1 = internal_algorithm( + model_1, get_target_layer(model_1, target_layer) + ) + # cuda_model is used to obtain target_layer since DataParallel + # adds additional wrapper. + # model_2 is always either the CUDA model itself or DataParallel + if alt_device_ids is None: + attr_method_2 = internal_algorithm( + model_2, get_target_layer(cuda_model, target_layer) + ) + else: + # LayerDeepLift and LayerDeepLiftShap do not take device ids + # as a parameter, since they must always have the DataParallel + # model object directly. + # Some neuron methods and GuidedGradCAM also require the + # model and cannot take a forward function. + if issubclass( + internal_algorithm, + ( + LayerDeepLift, + LayerDeepLiftShap, + LayerLRP, + NeuronDeepLift, + NeuronDeepLiftShap, + NeuronDeconvolution, + NeuronGuidedBackprop, + GuidedGradCam, + ), + ): + attr_method_2 = internal_algorithm( + model_2, + get_target_layer(cuda_model, target_layer), # type: ignore + ) + else: + attr_method_2 = internal_algorithm( + model_2.forward, + get_target_layer(cuda_model, target_layer), + device_ids=alt_device_ids, + ) + else: + attr_method_1 = algorithm(model_1) + attr_method_2 = algorithm(model_2) + if noise_tunnel: + attr_method_1 = NoiseTunnel(attr_method_1) + attr_method_2 = NoiseTunnel(attr_method_2) + return attr_method_1, attr_method_2 + + if torch.cuda.is_available() and torch.cuda.device_count() != 0: class DataParallelTest(BaseTest, metaclass=DataParallelMeta): @classmethod - def tearDownClass(cls): + def tearDownClass(cls) -> None: if torch.distributed.is_initialized(): dist.destroy_process_group() diff --git a/tests/attr/test_dataloader_attr.py b/tests/attr/test_dataloader_attr.py new file mode 100644 index 0000000000..8a568a127d --- /dev/null +++ b/tests/attr/test_dataloader_attr.py @@ -0,0 +1,384 @@ +#!/usr/bin/env fbpython + +# pyre-unsafe +import math +from typing import cast +from unittest.mock import Mock, patch + +import torch + +from captum.attr._core.dataloader_attr import DataLoaderAttribution, InputRole +from captum.attr._core.feature_ablation import FeatureAblation +from captum.testing.helpers.basic import ( + assertAttributionComparision, + assertTensorAlmostEqual, + BaseTest, +) +from parameterized import parameterized +from torch import Tensor +from torch.utils.data import DataLoader, TensorDataset + + +def sum_forward(*inps) -> Tensor: + inps = [torch.flatten(inp, start_dim=1) for inp in inps] + return torch.cat(inps, dim=1).sum(1) + + +class Linear(torch.nn.Module): + def __init__(self, n) -> None: + super().__init__() + self.linear = torch.nn.Linear(n, 1) + + def forward(self, *inps): + inps = [torch.flatten(inp, start_dim=1) for inp in inps] + return self.linear(torch.cat(inps, dim=1)) + + +mock_dataset = TensorDataset( + # iD feature + torch.tensor( + [ + [0.0, 0.1], + [0.3, 0.4], + [0.6, 0.7], + [0.9, 1.0], + [1.2, 1.3], + ] + ), + # 2D feature + torch.tensor( + [ + [[0.1, 0.2], [0.3, 0.2]], + [[0.4, 0.5], [0.3, 0.2]], + [[0.8, 0.1], [0.2, 0.5]], + [[1.1, 0.7], [0.1, 0.7]], + [[0.6, 1.4], [1.2, 0.4]], + ] + ), + # scalar feature or label + torch.tensor( + [ + [0], + [1], + [0], + [0], + [1], + ] + ), +) + + +class Test(BaseTest): + @parameterized.expand( + [ + (sum_forward,), + (Linear(7),), + ] + ) + def test_dl_attr(self, forward) -> None: + fa = FeatureAblation(forward) + dl_fa = DataLoaderAttribution(fa) + + dataloader = DataLoader(mock_dataset, batch_size=2) + + dl_attributions = dl_fa.attribute(dataloader) + + # default reduce of DataLoaderAttribution works the same as concat all batches + attr_list = [] + for batch in dataloader: + batch_attr = fa.attribute(tuple(batch)) + attr_list.append(batch_attr) + + expected_attr = tuple( + torch.cat(feature_attrs, dim=0) for feature_attrs in zip(*attr_list) + ) + + assertAttributionComparision(self, dl_attributions, expected_attr) + + @parameterized.expand( + [ + (sum_forward,), + (Linear(7),), + ] + ) + def test_dl_attr_with_mask(self, forward) -> None: + # FeatureAblation does not support grouping across tensors for now + # add such test cases after support grouping across tensors in FeatureAblation + masks = ( + torch.tensor([[0, 0]]), + torch.tensor([[[1, 2], [3, 2]]]), + torch.tensor([[4]]), + ) + + fa = FeatureAblation(forward) + dl_fa = DataLoaderAttribution(fa) + + dataloader = DataLoader(mock_dataset, batch_size=2) + + dl_attributions = dl_fa.attribute(dataloader, feature_mask=masks) + + # default reduce of DataLoaderAttribution works the same as concat all batches + attr_list = [] + for batch in dataloader: + batch_attr = fa.attribute(tuple(batch), feature_mask=masks) + attr_list.append(batch_attr) + + expected_attr = tuple( + torch.cat(feature_attrs, dim=0) for feature_attrs in zip(*attr_list) + ) + + assertAttributionComparision(self, dl_attributions, expected_attr) + + @parameterized.expand( + [ + (sum_forward,), + (Linear(7),), + ] + ) + def test_dl_attr_with_baseline(self, forward) -> None: + baselines = ( + torch.tensor([[0, -1]]), + 1, + 0.1, + ) + + fa = FeatureAblation(forward) + dl_fa = DataLoaderAttribution(fa) + + dataloader = DataLoader(mock_dataset, batch_size=2) + + dl_attributions = dl_fa.attribute(dataloader, baselines=baselines) + + # default reduce of DataLoaderAttribution works the same as concat all batches + attr_list = [] + for batch in dataloader: + batch_attr = fa.attribute(tuple(batch), baselines=baselines) + attr_list.append(batch_attr) + + expected_attr = tuple( + torch.cat(feature_attrs, dim=0) for feature_attrs in zip(*attr_list) + ) + + assertAttributionComparision(self, dl_attributions, expected_attr) + + def test_dl_attr_with_reduce_and_to_metric(self) -> None: + forward = sum_forward + func_call_counts = { + "reduce": 0, + "to_metric": 0, + } + + def reduce(accum, cur_output, cur_inputs): + func_call_counts["reduce"] += 1 + + accum = {"sum": 0, "count": 0} if accum is None else accum + + accum["sum"] += cur_output.sum() + accum["count"] += len(cur_output) + + return accum + + def to_metric(accum): + func_call_counts["to_metric"] += 1 + + self.assertEqual(isinstance(accum, dict), True) + return torch.tensor( + [ + accum["sum"] / accum["count"], + accum["sum"], + ] + ) + + fa = FeatureAblation(forward) + dl_fa = DataLoaderAttribution(fa) + + batch_size = 2 + dataloader = DataLoader(mock_dataset, batch_size=batch_size) + + dl_attribution = dl_fa.attribute( + dataloader, + reduce=reduce, + to_metric=to_metric, + return_input_shape=False, + ) + + n_iters = len(dataloader) + + n_features = 7 + # after support other attr methods, this can be diff from n_features + n_perturbations = 7 + n_passes = n_perturbations + 1 # +1 for base forward without perturbation + n_outputs = 2 # [mean, sum] + + self.assertEqual(func_call_counts["reduce"], n_iters * n_passes) + self.assertEqual(func_call_counts["to_metric"], n_passes) + + expected_attr_shape = (n_outputs, n_features) + + self.assertEqual(type(dl_attribution), Tensor) + dl_attribution = cast(Tensor, dl_attribution) + self.assertEqual(dl_attribution.shape, expected_attr_shape) + + @parameterized.expand( + [ + ([0, 0, 0],), + ([0, 1, 0],), + ([0, 1, 1],), + ([0, 1, 2],), + ([0, 2, 2],), + ] + ) + def test_dl_attr_with_input_roles(self, input_roles) -> None: + n_inputs = len(input_roles) + n_forward_inputs = sum(1 for r in input_roles if r != InputRole.no_forward) + n_attr_inputs = sum(1 for r in input_roles if r == InputRole.need_attr) + + def reduce(accum, cur_output, cur_inputs): + # all inputs from dataloader should be given to reduce + self.assertEqual(len(cur_inputs), n_inputs) + + return cur_output if accum is None else torch.cat([accum, cur_output]) + + def forward(*forward_inputs): + # inputs of InputRole.no_forward should not be passed to forward + self.assertEqual(len(forward_inputs), n_forward_inputs) + return sum_forward(*forward_inputs) + + fa = FeatureAblation(forward) + dl_fa = DataLoaderAttribution(fa) + + batch_size = 2 + dataloader = DataLoader(mock_dataset, batch_size=batch_size) + + dl_attributions = dl_fa.attribute( + dataloader, + input_roles=input_roles, + reduce=reduce, + ) + + # only inputs needs + self.assertEqual(len(dl_attributions), n_attr_inputs) + + # default reduce of DataLoaderAttribution works the same as concat all batches + attr_list = [] + for batch in dataloader: + attr_inputs = tuple( + _ for _, role in zip(batch, input_roles) if role == InputRole.need_attr + ) + additional_forward_args = tuple( + _ + for _, role in zip(batch, input_roles) + if role == InputRole.need_forward + ) + + batch_attr = fa.attribute( + attr_inputs, additional_forward_args=additional_forward_args + ) + attr_list.append(batch_attr) + + expected_attr = tuple( + torch.cat(feature_attrs, dim=0) for feature_attrs in zip(*attr_list) + ) + + assertAttributionComparision(self, dl_attributions, expected_attr) + + def test_dl_attr_not_return_input_shape(self) -> None: + forward = sum_forward + fa = FeatureAblation(forward) + dl_fa = DataLoaderAttribution(fa) + + dataloader = DataLoader(mock_dataset, batch_size=2) + + dl_attribution = dl_fa.attribute(dataloader, return_input_shape=False) + + expected_attr_shape = (len(mock_dataset), 7) + + self.assertEqual(type(dl_attribution), Tensor) + dl_attribution = cast(Tensor, dl_attribution) + self.assertEqual(dl_attribution.shape, expected_attr_shape) + + # default reduce of DataLoaderAttribution works the same as concat all batches + attr_list = [] + for batch in dataloader: + batch_attr = fa.attribute(tuple(batch)) + attr_list.append(batch_attr) + + expected_attr = torch.cat( + [ + # flatten feature dim + torch.cat(feature_attrs, dim=0).flatten(start_dim=1) + for feature_attrs in zip(*attr_list) + ], + dim=1, + ) + + assertTensorAlmostEqual(self, dl_attribution, expected_attr) + + def test_dl_attr_with_mask_not_return_input_shape(self) -> None: + forward = sum_forward + masks = ( + torch.tensor([[0, 0]]), + torch.tensor([[[1, 2], [3, 2]]]), + torch.tensor([[4]]), + ) + + fa = FeatureAblation(forward) + dl_fa = DataLoaderAttribution(fa) + + dataloader = DataLoader(mock_dataset, batch_size=2) + + dl_attribution = dl_fa.attribute( + dataloader, feature_mask=masks, return_input_shape=False + ) + + expected_attr_shape = (len(mock_dataset), 5) + + self.assertEqual(type(dl_attribution), Tensor) + dl_attribution = cast(Tensor, dl_attribution) + self.assertEqual(dl_attribution.shape, expected_attr_shape) + + @parameterized.expand([(2,), (3,), (4,)]) + def test_dl_attr_with_perturb_per_pass(self, perturb_per_pass: int) -> None: + forward = sum_forward + + fa = FeatureAblation(forward) + dl_fa = DataLoaderAttribution(fa) + + mock_dl_iter = Mock(wraps=DataLoader.__iter__) + + with patch.object(DataLoader, "__iter__", lambda self: mock_dl_iter(self)): + dataloader = DataLoader(mock_dataset, batch_size=2) + + dl_attributions = dl_fa.attribute( + dataloader, perturbations_per_pass=perturb_per_pass + ) + + n_features = 7 + # 2 extra iter calls: get one input for format; get unperturbed output + n_iter_overhead = 2 + + self.assertEqual( + mock_dl_iter.call_count, + math.ceil(n_features / perturb_per_pass) + n_iter_overhead, + ) + + # default reduce of DataLoaderAttribution works the same as concat all batches + attr_list = [] + for batch in dataloader: + batch_attr = fa.attribute(tuple(batch)) + attr_list.append(batch_attr) + + expected_attr = tuple( + torch.cat(feature_attrs, dim=0) for feature_attrs in zip(*attr_list) + ) + + assertAttributionComparision(self, dl_attributions, expected_attr) + + def test_futures_not_implemented(self) -> None: + forward = sum_forward + fa = FeatureAblation(forward) + dl_fa = DataLoaderAttribution(fa) + attributions = None + with self.assertRaises(NotImplementedError): + attributions = dl_fa.attribute_future() + self.assertEqual(attributions, None) diff --git a/tests/attr/test_deconvolution.py b/tests/attr/test_deconvolution.py index 8b991c6e54..5cde4f3be2 100644 --- a/tests/attr/test_deconvolution.py +++ b/tests/attr/test_deconvolution.py @@ -1,8 +1,9 @@ #!/usr/bin/env python3 +# pyre-unsafe + from __future__ import print_function -import copy import unittest from typing import Any, Tuple, Union @@ -12,8 +13,9 @@ from captum.attr._core.neuron.neuron_guided_backprop_deconvnet import ( NeuronDeconvolution, ) -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicModel_ConvNet_One_Conv +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import BasicModel_ConvNet_One_Conv from torch.nn import Module @@ -126,8 +128,7 @@ def _deconv_matching_assert( test_input: TensorOrTupleOfTensorsGeneric, ) -> None: out = model(test_input) - model_copy = copy.deepcopy(model) - attrib = Deconvolution(model_copy) + attrib = Deconvolution(model) self.assertFalse(attrib.multiplies_by_inputs) neuron_attrib = NeuronDeconvolution(model, output_layer) for i in range(out.shape[1]): diff --git a/tests/attr/test_deeplift_basic.py b/tests/attr/test_deeplift_basic.py index 70e2c82510..88e17f9ccd 100644 --- a/tests/attr/test_deeplift_basic.py +++ b/tests/attr/test_deeplift_basic.py @@ -1,17 +1,19 @@ #!/usr/bin/env python3 +# pyre-unsafe + from inspect import signature -from typing import Callable, List, Tuple, Union +from typing import Callable, List, Optional, Tuple, Union import torch from captum.attr._core.deep_lift import DeepLift, DeepLiftShap from captum.attr._core.integrated_gradients import IntegratedGradients -from tests.helpers.basic import ( +from captum.testing.helpers.basic import ( assertAttributionComparision, assertTensorAlmostEqual, BaseTest, ) -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic_models import ( BasicModelWithReusedModules, Conv1dSeqModel, LinearMaxPoolLinearModel, @@ -103,8 +105,36 @@ def test_relu_linear_deeplift(self) -> None: # expected = [[[0.0, 0.0]], [[6.0, 2.0]]] self._deeplift_assert(model, DeepLift(model), inputs, baselines) + def test_relu_linear_deeplift_compare_inplace(self) -> None: + model1 = ReLULinearModel(inplace=True) + x1 = torch.tensor([[-10.0, 1.0, -5.0], [2.0, 3.0, 4.0]], requires_grad=True) + x2 = torch.tensor([[3.0, 3.0, 1.0], [2.3, 5.0, 4.0]], requires_grad=True) + inputs = (x1, x2) + attributions1 = DeepLift(model1).attribute(inputs) + + model2 = ReLULinearModel() + attributions2 = DeepLift(model2).attribute(inputs) + assertTensorAlmostEqual(self, attributions1[0], attributions2[0]) + assertTensorAlmostEqual(self, attributions1[1], attributions2[1]) + + def test_relu_linear_deepliftshap_compare_inplace(self) -> None: + model1 = ReLULinearModel(inplace=True) + x1 = torch.tensor([[-10.0, 1.0, -5.0], [2.0, 3.0, 4.0]], requires_grad=True) + x2 = torch.tensor([[3.0, 3.0, 1.0], [2.3, 5.0, 4.0]], requires_grad=True) + inputs = (x1, x2) + b1 = torch.tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]) + b2 = torch.tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]) + baselines = (b1, b2) + + attributions1 = DeepLiftShap(model1).attribute(inputs, baselines) + + model2 = ReLULinearModel() + attributions2 = DeepLiftShap(model2).attribute(inputs, baselines) + assertTensorAlmostEqual(self, attributions1[0], attributions2[0]) + assertTensorAlmostEqual(self, attributions1[1], attributions2[1]) + def test_relu_linear_deeplift_batch(self) -> None: - model = ReLULinearModel(inplace=False) + model = ReLULinearModel(inplace=True) x1 = torch.tensor([[-10.0, 1.0, -5.0], [2.0, 3.0, 4.0]], requires_grad=True) x2 = torch.tensor([[3.0, 3.0, 1.0], [2.3, 5.0, 4.0]], requires_grad=True) @@ -170,7 +200,7 @@ def test_relu_deepliftshap_multi_ref(self) -> None: self._deeplift_assert(model, DeepLiftShap(model), inputs, baselines) def test_relu_deepliftshap_baselines_as_func(self) -> None: - model = ReLULinearModel(inplace=False) + model = ReLULinearModel(inplace=True) x1 = torch.tensor([[-10.0, 1.0, -5.0]]) x2 = torch.tensor([[3.0, 3.0, 1.0]]) @@ -218,7 +248,7 @@ def custom_attr_func( ) -> Tuple[Tensor, ...]: return tuple(multiplier * 0.0 for multiplier in multipliers) - model = ReLULinearModel(inplace=False) + model = ReLULinearModel(inplace=True) x1 = torch.tensor([[-10.0, 1.0, -5.0]]) x2 = torch.tensor([[3.0, 3.0, 1.0]]) b1 = torch.tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]) @@ -267,13 +297,21 @@ def test_lin_maxpool_lin_classification(self) -> None: assertTensorAlmostEqual(self, attrs, expected, 0.0001) assertTensorAlmostEqual(self, delta, expected_delta, 0.0001) + def test_futures_not_implemented(self) -> None: + model = ReLUDeepLiftModel() + dl = DeepLift(model, multiply_by_inputs=False) + attributions = None + with self.assertRaises(NotImplementedError): + attributions = dl.attribute_future() + self.assertEqual(attributions, None) + def _deeplift_assert( self, model: Module, attr_method: Union[DeepLift, DeepLiftShap], inputs: Tuple[Tensor, ...], baselines, - custom_attr_func: Callable[..., Tuple[Tensor, ...]] = None, + custom_attr_func: Optional[Callable[..., Tuple[Tensor, ...]]] = None, ) -> None: input_bsz = len(inputs[0]) if callable(baselines): diff --git a/tests/attr/test_deeplift_classification.py b/tests/attr/test_deeplift_classification.py index 163c93103c..17b984605f 100644 --- a/tests/attr/test_deeplift_classification.py +++ b/tests/attr/test_deeplift_classification.py @@ -1,24 +1,28 @@ #!/usr/bin/env python3 -from typing import Union +# pyre-unsafe + +from typing import TypeVar, Union import torch from captum._utils.typing import TargetType from captum.attr._core.deep_lift import DeepLift, DeepLiftShap from captum.attr._core.integrated_gradients import IntegratedGradients -from tests.helpers.basic import assertAttributionComparision, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic import assertAttributionComparision, BaseTest +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet, BasicModel_ConvNet_MaxPool1d, BasicModel_ConvNet_MaxPool3d, ) -from tests.helpers.classification_models import ( +from captum.testing.helpers.classification_models import ( SigmoidDeepLiftModel, SoftmaxDeepLiftModel, ) from torch import Tensor from torch.nn import Module +DeepLiftAttrMethod = TypeVar("DeepLiftAttrMethod", DeepLift, DeepLiftShap) + class Test(BaseTest): def test_sigmoid_classification(self) -> None: @@ -63,9 +67,13 @@ def test_softmax_classification_batch_zero_baseline(self) -> None: def test_softmax_classification_batch_multi_target(self) -> None: num_in = 40 - inputs = torch.arange(0.0, num_in * 3.0, requires_grad=True).reshape(3, num_in) - baselines = torch.arange(1.0, num_in + 1).reshape(1, num_in) - model = SoftmaxDeepLiftModel(num_in, 20, 10) + inputs = ( + torch.arange(0.0, num_in * 3.0, requires_grad=True) + .reshape(3, num_in) + .double() + ) + baselines = torch.arange(1.0, num_in + 1).reshape(1, num_in).double() + model = SoftmaxDeepLiftModel(num_in, 20, 10).double() dl = DeepLift(model) self.softmax_classification( @@ -149,12 +157,17 @@ def test_convnet_with_maxpool1d_large_baselines(self) -> None: def softmax_classification( self, model: Module, - attr_method: Union[DeepLift, DeepLiftShap], + attr_method: DeepLiftAttrMethod, input: Tensor, - baselines, + baselines: Union[float, int, Tensor], target: TargetType, ) -> None: # TODO add test cases for multiple different layers + if isinstance(attr_method, DeepLiftShap): + assert isinstance( + baselines, Tensor + ), "Non-tensor baseline not supported for DeepLiftShap" + model.zero_grad() attributions, delta = attr_method.attribute( input, baselines=baselines, target=target, return_convergence_delta=True diff --git a/tests/attr/test_feature_ablation.py b/tests/attr/test_feature_ablation.py index e215e7215b..5c3101ad01 100644 --- a/tests/attr/test_feature_ablation.py +++ b/tests/attr/test_feature_ablation.py @@ -1,17 +1,23 @@ #!/usr/bin/env python3 +# pyre-strict + import io +import threading +import time import unittest import unittest.mock from typing import Any, cast, List, Tuple, Union import torch +from captum._utils.common import _construct_future_forward from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._core.feature_ablation import FeatureAblation from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._utils.attribution import Attribution -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( BasicModel, BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, @@ -78,9 +84,9 @@ def test_simple_ablation_int_to_int_nt(self) -> None: ) def test_simple_ablation_int_to_float(self) -> None: - net = BasicModel() + net: BasicModel = BasicModel() - def wrapper_func(inp): + def wrapper_func(inp: Tensor) -> Tensor: return net(inp).float() ablation_algo = FeatureAblation(wrapper_func) @@ -158,14 +164,27 @@ def test_multi_sample_ablation_with_mask(self) -> None: perturbations_per_eval=(1, 2, 3), ) + def test_multi_sample_ablation_with_mask_weighted(self) -> None: + ablation_algo = FeatureAblation(BasicModel_MultiLayer()) + ablation_algo.use_weights = True + inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]]) + mask = torch.tensor([[0, 0, 1], [1, 1, 0]]) + self._ablation_test_assert( + ablation_algo, + inp, + [[41.0, 41.0, 12.0], [280.0, 280.0, 120.0]], + feature_mask=mask, + perturbations_per_eval=(1, 2, 3), + ) + def test_multi_input_ablation_with_mask(self) -> None: ablation_algo = FeatureAblation(BasicModel_MultiLayer_MultiInput()) inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) mask1 = torch.tensor([[1, 1, 1], [0, 1, 0]]) - mask2 = torch.tensor([[0, 1, 2]]) - mask3 = torch.tensor([[0, 1, 2], [0, 0, 0]]) + mask2 = torch.tensor([[3, 4, 2]]) + mask3 = torch.tensor([[5, 6, 7], [5, 5, 5]]) expected = ( [[492.0, 492.0, 492.0], [200.0, 200.0, 200.0]], [[80.0, 200.0, 120.0], [0.0, 400.0, 0.0]], @@ -201,8 +220,52 @@ def test_multi_input_ablation_with_mask(self) -> None: perturbations_per_eval=(1, 2, 3), ) - def test_multi_input_ablation_with_mask_nt(self) -> None: - ablation_algo = NoiseTunnel(FeatureAblation(BasicModel_MultiLayer_MultiInput())) + def test_multi_input_ablation_with_mask_weighted(self) -> None: + ablation_algo = FeatureAblation(BasicModel_MultiLayer_MultiInput()) + ablation_algo.use_weights = True + inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) + inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) + inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) + mask1 = torch.tensor([[1, 1, 1], [0, 1, 0]]) + mask2 = torch.tensor([[3, 4, 2]]) + mask3 = torch.tensor([[5, 6, 7], [5, 5, 5]]) + expected = ( + [[492.0, 492.0, 492.0], [200.0, 200.0, 200.0]], + [[80.0, 200.0, 120.0], [0.0, 400.0, 0.0]], + [[0.0, 400.0, 40.0], [60.0, 60.0, 60.0]], + ) + self._ablation_test_assert( + ablation_algo, + (inp1, inp2, inp3), + expected, + additional_input=(1,), + feature_mask=(mask1, mask2, mask3), + ) + self._ablation_test_assert( + ablation_algo, + (inp1, inp2), + expected[0:1], + additional_input=(inp3, 1), + feature_mask=(mask1, mask2), + perturbations_per_eval=(1, 2, 3), + ) + expected_with_baseline = ( + [[468.0, 468.0, 468.0], [184.0, 192.0, 184.0]], + [[68.0, 188.0, 108.0], [-12.0, 388.0, -12.0]], + [[-16.0, 384.0, 24.0], [12.0, 12.0, 12.0]], + ) + self._ablation_test_assert( + ablation_algo, + (inp1, inp2, inp3), + expected_with_baseline, + additional_input=(1,), + feature_mask=(mask1, mask2, mask3), + baselines=(2, 3.0, 4), + perturbations_per_eval=(1, 2, 3), + ) + + def test_multi_input_ablation_with_mask_dupe_feature_idx(self) -> None: + ablation_algo = FeatureAblation(BasicModel_MultiLayer_MultiInput()) inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) @@ -214,6 +277,66 @@ def test_multi_input_ablation_with_mask_nt(self) -> None: [[80.0, 200.0, 120.0], [0.0, 400.0, 0.0]], [[0.0, 400.0, 40.0], [60.0, 60.0, 60.0]], ) + expected_cross_tensor = ( + [[1092.0, 1092.0, 1092.0], [260.0, 600.0, 260.0]], + [[80.0, 1092.0, 160.0], [260.0, 600.0, 0.0]], + [[80.0, 1092.0, 160.0], [260.0, 260.0, 260.0]], + ) + for test_enable_cross_tensor_attribution, expected_out in [ + (True, expected_cross_tensor), + (False, expected), + ]: + self._ablation_test_assert( + ablation_algo, + (inp1, inp2, inp3), + expected_out, + additional_input=(1,), + feature_mask=(mask1, mask2, mask3), + test_enable_cross_tensor_attribution=[ + test_enable_cross_tensor_attribution + ], + ) + + expected_with_baseline = ( + [[468.0, 468.0, 468.0], [184.0, 192.0, 184.0]], + [[68.0, 188.0, 108.0], [-12.0, 388.0, -12.0]], + [[-16.0, 384.0, 24.0], [12.0, 12.0, 12.0]], + ) + expected_cross_tensor_with_baseline = ( + [[1040.0, 1040.0, 1040.0], [184.0, 580.0, 184.0]], + [[52.0, 1040.0, 132.0], [184.0, 580.0, -12.0]], + [[52.0, 1040.0, 132.0], [184.0, 184.0, 184.0]], + ) + for test_enable_cross_tensor_attribution, expected_out in [ + (True, expected_cross_tensor_with_baseline), + (False, expected_with_baseline), + ]: + self._ablation_test_assert( + ablation_algo, + (inp1, inp2, inp3), + expected_out, + additional_input=(1,), + feature_mask=(mask1, mask2, mask3), + baselines=(2, 3.0, 4), + perturbations_per_eval=(1, 2, 3), + test_enable_cross_tensor_attribution=[ + test_enable_cross_tensor_attribution + ], + ) + + def test_multi_input_ablation_with_mask_nt(self) -> None: + ablation_algo = NoiseTunnel(FeatureAblation(BasicModel_MultiLayer_MultiInput())) + inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) + inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) + inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) + mask1 = torch.tensor([[1, 1, 1], [0, 1, 0]]) + mask2 = torch.tensor([[3, 4, 2]]) + mask3 = torch.tensor([[5, 6, 7], [5, 5, 5]]) + expected = ( + [[492.0, 492.0, 492.0], [200.0, 200.0, 200.0]], + [[80.0, 200.0, 120.0], [0.0, 400.0, 0.0]], + [[0.0, 400.0, 40.0], [60.0, 60.0, 60.0]], + ) self._ablation_test_assert( ablation_algo, (inp1, inp2, inp3), @@ -332,11 +455,11 @@ def test_error_perturbations_per_eval_limit_batch_scalar(self) -> None: _ = ablation.attribute(inp, perturbations_per_eval=2) def test_error_agg_mode_arbitrary_output(self) -> None: - net = BasicModel_MultiLayer() + net: BasicModel_MultiLayer = BasicModel_MultiLayer() # output 3 numbers for the entire batch # note that the batch size == 2 - def forward_func(inp): + def forward_func(inp: Tensor) -> Tensor: pred = net(inp) return torch.stack([pred.sum(), pred.max(), pred.min()]) @@ -345,17 +468,6 @@ def forward_func(inp): with self.assertRaises(AssertionError): _ = ablation.attribute(inp, perturbations_per_eval=2) - def test_error_agg_mode_incorrect_fm(self) -> None: - def forward_func(inp): - return inp[0].unsqueeze(0) - - inp = torch.tensor([[1, 2, 3], [4, 5, 6]]) - mask = torch.tensor([[0, 1, 2], [0, 0, 1]]) - - ablation = FeatureAblation(forward_func) - with self.assertRaises(AssertionError): - _ = ablation.attribute(inp, perturbations_per_eval=1, feature_mask=mask) - def test_empty_sparse_features(self) -> None: ablation_algo = FeatureAblation(BasicModelWithSparseInputs()) inp1 = torch.tensor([[1.0, -2.0, 3.0], [2.0, -1.0, 3.0]]) @@ -444,8 +556,98 @@ def test_mutli_inp_ablation_batch_scalar_tensor_int(self) -> None: ablation_algo = FeatureAblation(lambda *inp: int(torch.sum(net(*inp)).item())) self._multi_input_batch_scalar_ablation_assert(ablation_algo, dtype=torch.int64) + def test_future_output(self) -> None: + def forward_func(inp: Tensor) -> Tensor: + dummy_output = torch.ones(1, 5, 3, 2) + return dummy_output + + abl = FeatureAblation(_construct_future_forward(forward_func)) + inp = torch.randn(10, 5) + mask = torch.arange(5).unsqueeze(0) + self._ablation_test_assert( + ablation_algo=abl, + test_input=inp, + baselines=None, + target=None, + feature_mask=mask, + perturbations_per_eval=(1,), + # pyre-fixme[58]: `+` is not supported for operand types `Tuple[int]` + # and `Size`. + expected_ablation=torch.zeros((5 * 3 * 2,) + inp[0].shape), + test_future=True, + ) + + def test_future_output_2(self) -> None: + net: BasicModel_MultiLayer = BasicModel_MultiLayer() + + def slow_set_future(fut: torch.futures.Future[Tensor], value: Tensor) -> None: + time.sleep(10) + out = net(value) + fut.set_result(out) + + def forward_func(inp: Tensor) -> torch.futures.Future[Tensor]: + # pyre-fixme[29]: `typing.Type[torch.futures.Future]` is not a function. + fut: torch.futures.Future[Tensor] = torch.futures.Future() + t = threading.Thread(target=slow_set_future, args=(fut, inp)) + t.start() + return fut + + abl = FeatureAblation(forward_func) + inp = torch.tensor([[20.0, 50.0, 30.0], [10.0, 40.0, 20.0]], requires_grad=True) + self._ablation_test_assert( + ablation_algo=abl, + test_input=inp, + baselines=None, + target=0, + perturbations_per_eval=(1,), + expected_ablation=torch.tensor([[80.0, 200.0, 120.0], [40.0, 160.0, 80.0]]), + test_future=True, + ) + + def test_future_wrong_usage(self) -> None: + def forward_func(inp: Tensor) -> Tensor: + dummy_output = torch.ones(1, 5, 3, 2) + return dummy_output + + abl = FeatureAblation(_construct_future_forward(forward_func)) + inp = torch.randn(10, 5) + mask = torch.arange(5).unsqueeze(0) + perturbations_per_eval = (1,) + + with self.assertRaises(AssertionError): + for batch_size in perturbations_per_eval: + attributions = abl.attribute( # noqa + inp, + target=None, + feature_mask=mask, + additional_forward_args=None, + baselines=None, + perturbations_per_eval=batch_size, + ) + + def test_future_wrong_usage_2(self) -> None: + def forward_func(inp: Tensor) -> Tensor: + dummy_output = torch.ones(1, 5, 3, 2) + return dummy_output + + abl = FeatureAblation(forward_func) + inp = torch.randn(10, 5) + mask = torch.arange(5).unsqueeze(0) + perturbations_per_eval = (1,) + + with self.assertRaises(AssertionError): + for batch_size in perturbations_per_eval: + attributions = abl.attribute_future( # noqa + inp, + target=None, + feature_mask=mask, + additional_forward_args=None, + baselines=None, + perturbations_per_eval=batch_size, + ) + def test_unassociated_output_3d_tensor(self) -> None: - def forward_func(inp): + def forward_func(inp: Tensor) -> Tensor: return torch.ones(1, 5, 3, 2) inp = torch.randn(10, 5) @@ -457,11 +659,13 @@ def forward_func(inp): target=None, feature_mask=mask, perturbations_per_eval=(1,), + # pyre-fixme[58]: `+` is not supported for operand types `Tuple[int]` + # and `Size`. expected_ablation=torch.zeros((5 * 3 * 2,) + inp[0].shape), ) def test_single_inp_ablation_multi_output_aggr(self) -> None: - def forward_func(inp): + def forward_func(inp: Tensor) -> Tensor: return inp[0].unsqueeze(0) inp = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) @@ -478,7 +682,7 @@ def forward_func(inp): ) def test_single_inp_ablation_multi_output_aggr_mask_none(self) -> None: - def forward_func(inp): + def forward_func(inp: Tensor) -> Tensor: return inp[0].unsqueeze(0) inp = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) @@ -494,7 +698,7 @@ def forward_func(inp): ) def test_single_inp_ablation_multi_output_aggr_non_standard(self) -> None: - def forward_func(inp): + def forward_func(inp: Tensor) -> Tensor: return inp[0].unsqueeze(0) inp = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) @@ -510,7 +714,9 @@ def forward_func(inp): ) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) - def test_simple_ablation_with_show_progress(self, mock_stderr) -> None: + def test_simple_ablation_with_show_progress( + self, mock_stderr: unittest.mock.Mock + ) -> None: ablation_algo = FeatureAblation(BasicModel_MultiLayer()) inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) @@ -536,7 +742,9 @@ def test_simple_ablation_with_show_progress(self, mock_stderr) -> None: mock_stderr.truncate(0) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) - def test_simple_ablation_with_mask_and_show_progress(self, mock_stderr) -> None: + def test_simple_ablation_with_mask_and_show_progress( + self, mock_stderr: unittest.mock.Mock + ) -> None: ablation_algo = FeatureAblation(BasicModel_MultiLayer()) inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) @@ -571,7 +779,7 @@ def _single_input_one_sample_batch_scalar_ablation_assert( self._ablation_test_assert( ablation_algo, inp, - torch.tensor([[82.0, 82.0, 24.0]], dtype=dtype), + torch.tensor([[82.0, 82.0, 24.0]], dtype=torch.float32).to(dtype), feature_mask=mask, perturbations_per_eval=(1,), target=None, @@ -588,7 +796,7 @@ def _single_input_multi_sample_batch_scalar_ablation_assert( self._ablation_test_assert( ablation_algo, inp, - torch.tensor([[642.0, 642.0, 264.0]], dtype=dtype), + torch.tensor([[642.0, 642.0, 264.0]], dtype=torch.float32).to(dtype), feature_mask=mask, perturbations_per_eval=(1,), target=None, @@ -603,8 +811,8 @@ def _multi_input_batch_scalar_ablation_assert( inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) mask1 = torch.tensor([[1, 1, 1]]) - mask2 = torch.tensor([[0, 1, 2]]) - mask3 = torch.tensor([[0, 1, 2]]) + mask2 = torch.tensor([[0, 3, 2]]) + mask3 = torch.tensor([[4, 5, 6]]) expected = ( torch.tensor([[1784, 1784, 1784]], dtype=dtype), torch.tensor([[160, 1200, 240]], dtype=dtype), @@ -625,6 +833,8 @@ def _ablation_test_assert( self, ablation_algo: Attribution, test_input: TensorOrTupleOfTensorsGeneric, + # pyre-fixme[2]: Parameter `expected_ablation` must have a type that does not + # contain `Any`. expected_ablation: Union[ Tensor, Tuple[Tensor, ...], @@ -638,39 +848,56 @@ def _ablation_test_assert( Tuple[List[Any], ...], ], feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, + # pyre-fixme[2]: Parameter `additional_input` has type `None` but type `Any` + # is specified. additional_input: Any = None, perturbations_per_eval: Tuple[int, ...] = (1,), baselines: BaselineType = None, target: TargetType = 0, + test_enable_cross_tensor_attribution: List[bool] = [True, False], + test_future: bool = False, **kwargs: Any, ) -> None: - for batch_size in perturbations_per_eval: - self.assertTrue(ablation_algo.multiplies_by_inputs) - attributions = ablation_algo.attribute( - test_input, - target=target, - feature_mask=feature_mask, - additional_forward_args=additional_input, - baselines=baselines, - perturbations_per_eval=batch_size, - **kwargs, - ) - if isinstance(expected_ablation, tuple): - for i in range(len(expected_ablation)): - expected = expected_ablation[i] - if not isinstance(expected, torch.Tensor): - expected = torch.tensor(expected) - - self.assertEqual(attributions[i].shape, expected.shape) - self.assertEqual(attributions[i].dtype, expected.dtype) - assertTensorAlmostEqual(self, attributions[i], expected) - else: - if not isinstance(expected_ablation, torch.Tensor): - expected_ablation = torch.tensor(expected_ablation) - - self.assertEqual(attributions.shape, expected_ablation.shape) - self.assertEqual(attributions.dtype, expected_ablation.dtype) - assertTensorAlmostEqual(self, attributions, expected_ablation) + for enable_cross_tensor_attribution in test_enable_cross_tensor_attribution: + for batch_size in perturbations_per_eval: + self.assertTrue(ablation_algo.multiplies_by_inputs) + if isinstance(ablation_algo, FeatureAblation) and test_future: + attributions = ablation_algo.attribute_future( + test_input, + target=target, + feature_mask=feature_mask, + additional_forward_args=additional_input, + baselines=baselines, + perturbations_per_eval=batch_size, + **kwargs, + ).wait() + else: + attributions = ablation_algo.attribute( + test_input, + target=target, + feature_mask=feature_mask, + additional_forward_args=additional_input, + baselines=baselines, + perturbations_per_eval=batch_size, + enable_cross_tensor_attribution=enable_cross_tensor_attribution, + **kwargs, + ) + if isinstance(expected_ablation, tuple): + for i in range(len(expected_ablation)): + expected = expected_ablation[i] + if not isinstance(expected, torch.Tensor): + expected = torch.tensor(expected) + + self.assertEqual(attributions[i].shape, expected.shape) + self.assertEqual(attributions[i].dtype, expected.dtype) + assertTensorAlmostEqual(self, attributions[i], expected) + else: + if not isinstance(expected_ablation, torch.Tensor): + expected_ablation = torch.tensor(expected_ablation) + + self.assertEqual(attributions.shape, expected_ablation.shape) + self.assertEqual(attributions.dtype, expected_ablation.dtype) + assertTensorAlmostEqual(self, attributions, expected_ablation) if __name__ == "__main__": diff --git a/tests/attr/test_feature_permutation.py b/tests/attr/test_feature_permutation.py index 4a1a2fc144..611b19238a 100644 --- a/tests/attr/test_feature_permutation.py +++ b/tests/attr/test_feature_permutation.py @@ -1,14 +1,28 @@ #!/usr/bin/env python3 -from typing import List, Tuple + +# pyre-strict + +from typing import Any, Callable, List, Tuple import torch from captum.attr._core.feature_permutation import _permute_feature, FeaturePermutation -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicModelWithSparseInputs +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual, set_all_random_seeds +from captum.testing.helpers.basic_models import BasicModelWithSparseInputs from torch import Tensor class Test(BaseTest): + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + def construct_future_forward(self, original_forward: Callable) -> Callable: + def future_forward(*args: Any, **kwargs: Any) -> torch.futures.Future[Tensor]: + # pyre-fixme[29]: `typing.Type[torch.futures.Future]` is not a function. + fut: torch.futures.Future[Tensor] = torch.futures.Future() + fut.set_result(original_forward(*args, **kwargs)) + return fut + + return future_forward + def _check_features_are_permuted( self, inp: Tensor, perm_inp: Tensor, mask: Tensor ) -> None: @@ -89,19 +103,104 @@ def forward_func(x: Tensor) -> Tensor: inp[:, 0] = constant_value zeros = torch.zeros_like(inp[:, 0]) + for enable_cross_tensor_attribution in (True, False): + attribs = feature_importance.attribute( + inp, + enable_cross_tensor_attribution=enable_cross_tensor_attribution, + ) + self.assertTrue(attribs.squeeze(0).size() == (batch_size,) + input_size) + assertTensorAlmostEqual(self, attribs[:, 0], zeros, delta=0.05, mode="max") + self.assertTrue((attribs[:, 1 : input_size[0]].abs() > 0).all()) + + def test_single_input_with_future( + self, + ) -> None: + batch_size = 2 + input_size = (6,) + constant_value = 10000 + + def forward_func(x: Tensor) -> Tensor: + return x.sum(dim=-1) + + feature_importance = FeaturePermutation( + forward_func=self.construct_future_forward(forward_func) + ) + + inp = torch.randn((batch_size,) + input_size) + + inp[:, 0] = constant_value + zeros = torch.zeros_like(inp[:, 0]) + + attribs = feature_importance.attribute_future(inp) - attribs = feature_importance.attribute(inp) + self.assertTrue(type(attribs) is torch.Future) + attribs = attribs.wait() self.assertTrue(attribs.squeeze(0).size() == (batch_size,) + input_size) assertTensorAlmostEqual(self, attribs[:, 0], zeros, delta=0.05, mode="max") self.assertTrue((attribs[:, 1 : input_size[0]].abs() > 0).all()) - def test_multi_input(self) -> None: + def test_multi_input( + self, + ) -> None: + batch_size = 20 + inp1_size = (5, 2) + inp2_size = (5, 3) + + labels: Tensor = torch.randn(batch_size) + + def forward_func(*x: Tensor) -> Tensor: + y = torch.zeros(x[0].shape[0:2]) + for xx in x: + y += xx[:, :, 0] * xx[:, :, 1] + y = y.sum(dim=-1) + + # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and + # `int`. + return torch.mean((y - labels) ** 2) + + feature_importance = FeaturePermutation(forward_func=forward_func) + + inp = ( + torch.randn((batch_size,) + inp1_size), + torch.randn((batch_size,) + inp2_size), + ) + + feature_mask = ( + torch.arange(inp[0][0].numel()).view_as(inp[0][0]).unsqueeze(0), + torch.arange(inp[0][0].numel(), inp[0][0].numel() + inp[1][0].numel()) + .view_as(inp[1][0]) + .unsqueeze(0), + ) + + inp[1][:, :, 1] = 4 + for enable_cross_tensor_attribution in (True, False): + attribs = feature_importance.attribute( + inp, + feature_mask=feature_mask, + enable_cross_tensor_attribution=enable_cross_tensor_attribution, + ) + + self.assertTrue(isinstance(attribs, tuple)) + self.assertTrue(len(attribs) == 2) + + self.assertTrue(attribs[0].squeeze(0).size() == inp1_size) + self.assertTrue(attribs[1].squeeze(0).size() == inp2_size) + + self.assertTrue((attribs[1][:, :, 1] == 0).all()) + self.assertTrue((attribs[1][:, :, 2] == 0).all()) + + self.assertTrue((attribs[0] != 0).all()) + self.assertTrue((attribs[1][:, :, 0] != 0).all()) + + def test_multi_input_group_across_input_tensors( + self, + ) -> None: batch_size = 20 inp1_size = (5, 2) inp2_size = (5, 3) - labels = torch.randn(batch_size) + labels: Tensor = torch.randn(batch_size) def forward_func(*x: Tensor) -> Tensor: y = torch.zeros(x[0].shape[0:2]) @@ -109,10 +208,59 @@ def forward_func(*x: Tensor) -> Tensor: y += xx[:, :, 0] * xx[:, :, 1] y = y.sum(dim=-1) + # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and + # `int`. return torch.mean((y - labels) ** 2) feature_importance = FeaturePermutation(forward_func=forward_func) + inp = ( + torch.randn((batch_size,) + inp1_size), + torch.randn((batch_size,) + inp2_size), + ) + # Group all features together + feature_mask = tuple( + torch.zeros_like(inp_tensor[0]).unsqueeze(0) for inp_tensor in inp + ) + attribs = feature_importance.attribute( + inp, feature_mask=feature_mask, enable_cross_tensor_attribution=True + ) + + self.assertTrue(isinstance(attribs, tuple)) + self.assertTrue(len(attribs) == 2) + + self.assertTrue(attribs[0].squeeze(0).size() == inp1_size) + self.assertTrue(attribs[1].squeeze(0).size() == inp2_size) + + first_elem_first_attrib = attribs[0].flatten()[0] + first_elem_second_attrib = attribs[1].flatten()[0] + self.assertTrue(torch.all(attribs[0] == first_elem_first_attrib)) + self.assertTrue(torch.all(attribs[0] == first_elem_second_attrib)) + self.assertEqual(first_elem_first_attrib, first_elem_second_attrib) + + def test_multi_input_with_future( + self, + ) -> None: + batch_size = 20 + inp1_size = (5, 2) + inp2_size = (5, 3) + + labels: Tensor = torch.randn(batch_size) + + def forward_func(*x: Tensor) -> Tensor: + y = torch.zeros(x[0].shape[0:2]) + for xx in x: + y += xx[:, :, 0] * xx[:, :, 1] + y = y.sum(dim=-1) + + # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and + # `int`. + return torch.mean((y - labels) ** 2) + + feature_importance = FeaturePermutation( + forward_func=self.construct_future_forward(forward_func) + ) + inp = ( torch.randn((batch_size,) + inp1_size), torch.randn((batch_size,) + inp2_size), @@ -124,7 +272,10 @@ def forward_func(*x: Tensor) -> Tensor: ) inp[1][:, :, 1] = 4 - attribs = feature_importance.attribute(inp, feature_mask=feature_mask) + + attribs = feature_importance.attribute_future(inp, feature_mask=feature_mask) + self.assertTrue(type(attribs) is torch.Future) + attribs = attribs.wait() self.assertTrue(isinstance(attribs, tuple)) self.assertTrue(len(attribs) == 2) @@ -138,22 +289,63 @@ def forward_func(*x: Tensor) -> Tensor: self.assertTrue((attribs[0] != 0).all()) self.assertTrue((attribs[1][:, :, 0] != 0).all()) - def test_mulitple_perturbations_per_eval(self) -> None: + def test_multiple_perturbations_per_eval( + self, + ) -> None: perturbations_per_eval = 4 batch_size = 2 input_size = (4,) inp = torch.randn((batch_size,) + input_size) - def forward_func(x): + def forward_func(x: Tensor) -> Tensor: return 1 - x target = 1 + feature_importance = FeaturePermutation(forward_func=forward_func) attribs = feature_importance.attribute( inp, perturbations_per_eval=perturbations_per_eval, target=target ) + + self.assertTrue(attribs.size() == (batch_size,) + input_size) + + for i in range(inp.size(1)): + if i == target: + continue + assertTensorAlmostEqual( + self, attribs[:, i], torch.zeros_like(attribs[:, i]) + ) + + y = forward_func(inp) + actual_diff = torch.stack([(y[0] - y[1])[target], (y[1] - y[0])[target]]) + assertTensorAlmostEqual(self, attribs[:, target], actual_diff) + + def test_multiple_perturbations_per_eval_with_futures( + self, + ) -> None: + perturbations_per_eval = 4 + batch_size = 2 + input_size = (4,) + + inp = torch.randn((batch_size,) + input_size) + + def forward_func(x: Tensor) -> Tensor: + return 1 - x + + target = 1 + + feature_importance = FeaturePermutation( + forward_func=self.construct_future_forward(forward_func) + ) + + attribs = feature_importance.attribute_future( + inp, perturbations_per_eval=perturbations_per_eval, target=target + ) + self.assertTrue(type(attribs) is torch.Future) + attribs = attribs.wait() + self.assertTrue(attribs.size() == (batch_size,) + input_size) for i in range(inp.size(1)): @@ -167,7 +359,9 @@ def forward_func(x): actual_diff = torch.stack([(y[0] - y[1])[target], (y[1] - y[0])[target]]) assertTensorAlmostEqual(self, attribs[:, target], actual_diff) - def test_broadcastable_masks(self) -> None: + def test_broadcastable_masks( + self, + ) -> None: # integration test to ensure that # permutation function works with custom masks def forward_func(x: Tensor) -> Tensor: @@ -183,16 +377,67 @@ def forward_func(x: Tensor) -> Tensor: torch.tensor([[0, 1, 2, 3]]), torch.tensor([[[0, 1, 2, 3], [3, 3, 4, 5], [6, 6, 4, 6], [7, 8, 9, 10]]]), ] + for enable_cross_tensor_attribution in (True, False): + for mask in masks: + + attribs = feature_importance.attribute( + inp, + feature_mask=mask, + enable_cross_tensor_attribution=enable_cross_tensor_attribution, + ) + self.assertTrue(attribs is not None) + self.assertTrue(attribs.shape == inp.shape) + + fm = mask.expand_as(inp[0]) + + features = set(mask.flatten()) + for feature in features: + m = (fm == feature).bool() + attribs_for_feature = attribs[:, m] + assertTensorAlmostEqual( + self, + attribs_for_feature[0], + -attribs_for_feature[1], + delta=0.05, + mode="max", + ) + + def test_broadcastable_masks_with_future( + self, + ) -> None: + # integration test to ensure that + # permutation function works with custom masks + def forward_func(x: Tensor) -> Tensor: + return x.view(x.shape[0], -1).sum(dim=-1) + + batch_size = 2 + inp = torch.randn((batch_size,) + (3, 4, 4)) + + feature_importance = FeaturePermutation( + forward_func=self.construct_future_forward(forward_func) + ) + + masks = [ + torch.tensor([0]), + torch.tensor([[0, 1, 2, 3]]), + torch.tensor([[[0, 1, 2, 3], [3, 3, 4, 5], [6, 6, 4, 6], [7, 8, 9, 10]]]), + ] + + results = [] for mask in masks: - attribs = feature_importance.attribute(inp, feature_mask=mask) + attribs_future = feature_importance.attribute_future(inp, feature_mask=mask) + results.append(attribs_future) + self.assertTrue(attribs_future is not None) + for idx in range(len(results)): + attribs = results[idx].wait() self.assertTrue(attribs is not None) self.assertTrue(attribs.shape == inp.shape) - fm = mask.expand_as(inp[0]) + fm = masks[idx].expand_as(inp[0]) - features = set(mask.flatten()) + features = set(masks[idx].flatten()) for feature in features: m = (fm == feature).bool() attribs_for_feature = attribs[:, m] @@ -211,9 +456,13 @@ def test_empty_sparse_features(self) -> None: # test empty sparse tensor feature_importance = FeaturePermutation(model) - attr1, attr2 = feature_importance.attribute((inp1, inp2)) - self.assertEqual(attr1.shape, (1, 3)) - self.assertEqual(attr2.shape, (1,)) + for enable_cross_tensor_attribution in (True, False): + attr1, attr2 = feature_importance.attribute( + (inp1, inp2), + enable_cross_tensor_attribution=enable_cross_tensor_attribution, + ) + self.assertEqual(attr1.shape, (1, 3)) + self.assertEqual(attr2.shape, (1,)) def test_sparse_features(self) -> None: model = BasicModelWithSparseInputs() @@ -222,14 +471,22 @@ def test_sparse_features(self) -> None: inp2 = torch.tensor([1, 7, 2, 4, 5, 3, 6]) feature_importance = FeaturePermutation(model) - total_attr1, total_attr2 = feature_importance.attribute((inp1, inp2)) - - for _ in range(50): - attr1, attr2 = feature_importance.attribute((inp1, inp2)) - total_attr1 += attr1 - total_attr2 += attr2 - total_attr1 /= 50 - total_attr2 /= 50 - self.assertEqual(total_attr2.shape, (1,)) - assertTensorAlmostEqual(self, total_attr1, torch.zeros_like(total_attr1)) - assertTensorAlmostEqual(self, total_attr2, [-6.0], delta=0.2) + + for enable_cross_tensor_attribution in [True, False]: + set_all_random_seeds(1234) + total_attr1, total_attr2 = feature_importance.attribute( + (inp1, inp2), + enable_cross_tensor_attribution=enable_cross_tensor_attribution, + ) + for _ in range(50): + attr1, attr2 = feature_importance.attribute( + (inp1, inp2), + enable_cross_tensor_attribution=enable_cross_tensor_attribution, + ) + total_attr1 += attr1 + total_attr2 += attr2 + total_attr1 /= 50 + total_attr2 /= 50 + self.assertEqual(total_attr2.shape, (1,)) + assertTensorAlmostEqual(self, total_attr1, torch.zeros_like(total_attr1)) + assertTensorAlmostEqual(self, total_attr2, [-6.0], delta=0.2) diff --git a/tests/attr/test_gradient_shap.py b/tests/attr/test_gradient_shap.py index 4b9689e13c..4f9b95bc68 100644 --- a/tests/attr/test_gradient_shap.py +++ b/tests/attr/test_gradient_shap.py @@ -1,16 +1,23 @@ #!/usr/bin/env python3 -from typing import cast, Tuple, Union +# pyre-unsafe + +from typing import cast, Tuple import numpy as np +import numpy.typing as npt import torch from captum._utils.typing import Tensor from captum.attr._core.gradient_shap import GradientShap from captum.attr._core.integrated_gradients import IntegratedGradients -from numpy import ndarray -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicLinearModel, BasicModel2 -from tests.helpers.classification_models import SoftmaxModel +from captum.testing.attr.helpers.attribution_delta_util import ( + assert_attribution_delta, + assert_delta, +) +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import BasicLinearModel, BasicModel2 +from captum.testing.helpers.classification_models import SoftmaxModel class Test(BaseTest): @@ -47,7 +54,7 @@ def test_basic_multi_input(self) -> None: ) attributions_without_delta = gradient_shap.attribute((x1, x2), baselines) - _assert_attribution_delta(self, inputs, attributions, n_samples, delta) + assert_attribution_delta(self, inputs, attributions, n_samples, delta) # Compare with integrated gradients ig = IntegratedGradients(model) baselines = (torch.zeros(batch_size, 3), torch.zeros(batch_size, 4)) @@ -125,7 +132,7 @@ def generate_baselines_with_inputs(inputs: Tensor) -> Tensor: inp_shape = cast(Tuple[int, ...], inputs.shape) return torch.arange(0.0, inp_shape[1] * 2.0).reshape(2, inp_shape[1]) - def generate_baselines_returns_array() -> ndarray: + def generate_baselines_returns_array() -> npt.NDArray: return np.arange(0.0, num_in * 4.0).reshape(4, num_in) # 10-class classification model @@ -143,7 +150,7 @@ def generate_baselines_returns_array() -> ndarray: stdevs=0.009, return_convergence_delta=True, ) - _assert_attribution_delta(self, (inputs,), (attributions,), n_samples, delta) + assert_attribution_delta(self, (inputs,), (attributions,), n_samples, delta) attributions, delta = gradient_shap.attribute( inputs, @@ -153,11 +160,12 @@ def generate_baselines_returns_array() -> ndarray: stdevs=0.00001, return_convergence_delta=True, ) - _assert_attribution_delta(self, (inputs,), (attributions,), n_samples, delta) + assert_attribution_delta(self, (inputs,), (attributions,), n_samples, delta) with self.assertRaises(AssertionError): - attributions, delta = gradient_shap.attribute( + attributions, delta = gradient_shap.attribute( # type: ignore inputs, + # Intentionally passing wrong type. baselines=generate_baselines_returns_array, target=torch.tensor(1), n_samples=n_samples, @@ -185,7 +193,7 @@ def test_classification(self) -> None: stdevs=0.009, return_convergence_delta=True, ) - _assert_attribution_delta(self, (inputs,), (attributions,), n_samples, delta) + assert_attribution_delta(self, (inputs,), (attributions,), n_samples, delta) # try to call `compute_convergence_delta` externally with self.assertRaises(AssertionError): @@ -200,7 +208,7 @@ def test_classification(self) -> None: external_delta = gradient_shap.compute_convergence_delta( attributions, chosen_baselines, inputs, target=target_extendes ) - _assert_delta(self, external_delta) + assert_delta(self, external_delta) # Compare with integrated gradients ig = IntegratedGradients(model) @@ -220,7 +228,7 @@ def test_basic_relu_multi_input(self) -> None: baselines = (baseline1, baseline2) gs = GradientShap(model) - n_samples = 30000 + n_samples = 20000 attributions, delta = cast( Tuple[Tuple[Tensor, ...], Tensor], gs.attribute( @@ -230,45 +238,25 @@ def test_basic_relu_multi_input(self) -> None: return_convergence_delta=True, ), ) - _assert_attribution_delta(self, inputs, attributions, n_samples, delta) + assert_attribution_delta( + self, inputs, attributions, n_samples, delta, delta_thresh=0.008 + ) ig = IntegratedGradients(model) attributions_ig = ig.attribute(inputs, baselines=baselines) self._assert_shap_ig_comparision(attributions, attributions_ig) + def test_futures_not_implemented(self) -> None: + model = BasicModel2() + gs = GradientShap(model) + attributions = None + with self.assertRaises(NotImplementedError): + attributions = gs.attribute_future() + self.assertEqual(attributions, None) + def _assert_shap_ig_comparision( self, attributions1: Tuple[Tensor, ...], attributions2: Tuple[Tensor, ...] ) -> None: for attribution1, attribution2 in zip(attributions1, attributions2): for attr_row1, attr_row2 in zip(attribution1, attribution2): - assertTensorAlmostEqual(self, attr_row1, attr_row2, 0.005, "max") - - -def _assert_attribution_delta( - test: BaseTest, - inputs: Union[Tensor, Tuple[Tensor, ...]], - attributions: Union[Tensor, Tuple[Tensor, ...]], - n_samples: int, - delta: Tensor, - is_layer: bool = False, -) -> None: - if not is_layer: - for input, attribution in zip(inputs, attributions): - test.assertEqual(attribution.shape, input.shape) - if isinstance(inputs, tuple): - bsz = inputs[0].shape[0] - else: - bsz = inputs.shape[0] - test.assertEqual([bsz * n_samples], list(delta.shape)) - - delta = torch.mean(delta.reshape(bsz, -1), dim=1) - _assert_delta(test, delta) - - -def _assert_delta(test: BaseTest, delta: Tensor) -> None: - delta_condition = (delta.abs() < 0.0006).all() - test.assertTrue( - delta_condition, - "Sum of SHAP values {} does" - " not match the difference of endpoints.".format(delta), - ) + assertTensorAlmostEqual(self, attr_row1, attr_row2, 0.05, "max") diff --git a/tests/attr/test_guided_backprop.py b/tests/attr/test_guided_backprop.py index 46703c0184..a82273009c 100644 --- a/tests/attr/test_guided_backprop.py +++ b/tests/attr/test_guided_backprop.py @@ -1,6 +1,7 @@ #!/usr/bin/env python3 -import copy +# pyre-unsafe + import unittest from typing import Any, List, Tuple, Union @@ -10,8 +11,9 @@ from captum.attr._core.neuron.neuron_guided_backprop_deconvnet import ( NeuronGuidedBackprop, ) -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicModel_ConvNet_One_Conv +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import BasicModel_ConvNet_One_Conv from torch.nn import Module @@ -149,10 +151,9 @@ def _guided_backprop_matching_assert( model: Module, output_layer: Module, test_input: TensorOrTupleOfTensorsGeneric, - ): + ) -> None: out = model(test_input) - model_copy = copy.deepcopy(model) - attrib = GuidedBackprop(model_copy) + attrib = GuidedBackprop(model) self.assertFalse(attrib.multiplies_by_inputs) neuron_attrib = NeuronGuidedBackprop(model, output_layer) for i in range(out.shape[1]): diff --git a/tests/attr/test_guided_grad_cam.py b/tests/attr/test_guided_grad_cam.py index 11db183459..fa55209218 100644 --- a/tests/attr/test_guided_grad_cam.py +++ b/tests/attr/test_guided_grad_cam.py @@ -1,13 +1,17 @@ #!/usr/bin/env python3 +# pyre-unsafe + import unittest -from typing import Any +from typing import Any, List, Tuple, Union import torch from captum._utils.typing import TensorOrTupleOfTensorsGeneric from captum.attr._core.guided_grad_cam import GuidedGradCam -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicModel_ConvNet_One_Conv +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import BasicModel_ConvNet_One_Conv +from torch import Tensor from torch.nn import Module @@ -44,7 +48,7 @@ def test_simple_multi_input_conv(self) -> None: self._guided_grad_cam_test_assert(net, net.conv1, (inp, inp2), (ex, ex)) def test_simple_multi_input_relu_input(self) -> None: - net = BasicModel_ConvNet_One_Conv(inplace=False) + net = BasicModel_ConvNet_One_Conv(inplace=True) inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) inp2 = torch.ones((1, 1, 4, 4)) ex = [ @@ -61,6 +65,22 @@ def test_simple_multi_input_relu_input(self) -> None: net, net.relu1, (inp, inp2), (ex, ex), attribute_to_layer_input=True ) + def test_simple_multi_input_conv_inplace(self) -> None: + net = BasicModel_ConvNet_One_Conv(inplace=True) + inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) + inp2 = torch.ones((1, 1, 4, 4)) + ex = [ + [ + [ + [14.5, 29.0, 38.0, 19.0], + [29.0, 58.0, 76.0, 38.0], + [65.0, 130.0, 148.0, 74.0], + [32.5, 65.0, 74.0, 37.0], + ] + ] + ] + self._guided_grad_cam_test_assert(net, net.conv1, (inp, inp2), (ex, ex)) + def test_improper_dims_multi_input_conv(self) -> None: net = BasicModel_ConvNet_One_Conv() inp = torch.arange(16, dtype=torch.float).view(1, 1, 4, 4) @@ -90,7 +110,7 @@ def _guided_grad_cam_test_assert( model: Module, target_layer: Module, test_input: TensorOrTupleOfTensorsGeneric, - expected, + expected: Union[Tensor, List, Tuple], additional_input: Any = None, interpolate_mode: str = "nearest", attribute_to_layer_input: bool = False, diff --git a/tests/attr/test_hook_removal.py b/tests/attr/test_hook_removal.py index b23f80f933..bb849bdd0d 100644 --- a/tests/attr/test_hook_removal.py +++ b/tests/attr/test_hook_removal.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-unsafe + from enum import Enum from typing import Any, Callable, cast, Dict, Optional, Tuple, Type @@ -7,19 +9,20 @@ from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._models.base import _set_deep_layer_value from captum.attr._utils.attribution import Attribution, InternalAttribution -from tests.attr.helpers.gen_test_utils import ( +from captum.testing.attr.helpers.gen_test_utils import ( gen_test_name, get_target_layer, parse_test_config, should_create_generated_test, ) -from tests.attr.helpers.test_config import config -from tests.helpers.basic import BaseTest, deep_copy_args +from captum.testing.attr.helpers.test_config import config +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import deep_copy_args from torch.nn import Module """ Tests in this file are dynamically generated based on the config -defined in tests/attr/helpers/test_config.py. To add new test cases, +defined in captum/testing/attr/helpers/test_config.py. To add new test cases, read the documentation in test_config.py and add cases based on the schema described there. """ @@ -45,7 +48,7 @@ class HookRemovalMode(Enum): class ErrorModule(Module): def __init__( self, - ): + ) -> None: super().__init__() self.relu = torch.nn.ReLU() diff --git a/tests/attr/test_input_layer_wrapper.py b/tests/attr/test_input_layer_wrapper.py index 7b23a6fbf4..e9ed85a956 100644 --- a/tests/attr/test_input_layer_wrapper.py +++ b/tests/attr/test_input_layer_wrapper.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-unsafe + import functools import inspect from typing import Callable, Dict, Tuple @@ -21,12 +23,13 @@ LayerIntegratedGradients, ) from captum.attr._utils.input_layer_wrapper import ModelInputWrapper -from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest +from captum.testing.helpers.basic_models import ( BasicModel, BasicModel_MultiLayer_TrueMultiInput, MixedKwargsAndArgsModule, ) +from torch.nn import Module layer_methods_to_test_with_equiv = [ # layer_method, equiv_method, whether or not to use multiple layers @@ -41,7 +44,8 @@ class InputLayerMeta(type): - def __new__(cls, name: str, bases: Tuple, attrs: Dict): + def __new__(metacls, name: str, bases: Tuple, attrs: Dict): + global layer_methods_to_test_with_equiv for ( layer_method, equiv_method, @@ -52,13 +56,13 @@ def __new__(cls, name: str, bases: Tuple, attrs: Dict): f"test_{layer_method.__name__}" + f"_{equiv_method.__name__}_{multi_layer}" ) - attrs[ - test_name - ] = lambda self: self.layer_method_with_input_layer_patches( - layer_method, equiv_method, multi_layer + attrs[test_name] = ( + lambda self, layer_method=layer_method, equiv_method=equiv_method, multi_layer=multi_layer: self.layer_method_with_input_layer_patches( # noqa: E501 + layer_method, equiv_method, multi_layer + ) ) - return super(InputLayerMeta, cls).__new__(cls, name, bases, attrs) + return super(InputLayerMeta, metacls).__new__(metacls, name, bases, attrs) class TestInputLayerWrapper(BaseTest, metaclass=InputLayerMeta): @@ -104,8 +108,14 @@ def layer_method_with_input_layer_patches( real_attributions = equivalent_method.attribute(*args_to_use, target=0) - if not isinstance(a1, tuple): + if isinstance(a1, list): + a1 = tuple(a1) + elif not isinstance(a1, tuple): a1 = (a1,) + + if isinstance(a2, list): + a2 = tuple(a2) + elif not isinstance(a2, tuple): a2 = (a2,) if not isinstance(real_attributions, tuple): @@ -114,7 +124,9 @@ def layer_method_with_input_layer_patches( assertTensorTuplesAlmostEqual(self, a1, a2) assertTensorTuplesAlmostEqual(self, a1, real_attributions) - def forward_eval_layer_with_inputs_helper(self, model, inputs_to_test): + def forward_eval_layer_with_inputs_helper( + self, model: Module, inputs_to_test + ) -> None: # hard coding for simplicity # 0 if using args, 1 if using kwargs # => no 0s after first 1 (left to right) diff --git a/tests/attr/test_input_x_gradient.py b/tests/attr/test_input_x_gradient.py index 3f3852fb84..8718fae6de 100644 --- a/tests/attr/test_input_x_gradient.py +++ b/tests/attr/test_input_x_gradient.py @@ -1,38 +1,44 @@ #!/usr/bin/env python3 -from typing import Any, cast + +# pyre-unsafe +from typing import cast, Optional import torch from captum._utils.typing import TensorOrTupleOfTensorsGeneric from captum.attr._core.input_x_gradient import InputXGradient from captum.attr._core.noise_tunnel import NoiseTunnel -from tests.attr.test_saliency import _get_basic_config, _get_multiargs_basic_config -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.classification_models import SoftmaxModel +from captum.testing.attr.helpers.get_config_util import ( + get_basic_config, + get_multiargs_basic_config, +) +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.classification_models import SoftmaxModel from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_input_x_gradient_test_basic_vanilla(self) -> None: - self._input_x_gradient_base_assert(*_get_basic_config()) + self._input_x_gradient_base_assert(*get_basic_config()) def test_input_x_gradient_test_basic_smoothgrad(self) -> None: - self._input_x_gradient_base_assert(*_get_basic_config(), nt_type="smoothgrad") + self._input_x_gradient_base_assert(*get_basic_config(), nt_type="smoothgrad") def test_input_x_gradient_test_basic_vargrad(self) -> None: - self._input_x_gradient_base_assert(*_get_basic_config(), nt_type="vargrad") + self._input_x_gradient_base_assert(*get_basic_config(), nt_type="vargrad") def test_saliency_test_basic_multi_variable_vanilla(self) -> None: - self._input_x_gradient_base_assert(*_get_multiargs_basic_config()) + self._input_x_gradient_base_assert(*get_multiargs_basic_config()) def test_saliency_test_basic_multi_variable_smoothgrad(self) -> None: self._input_x_gradient_base_assert( - *_get_multiargs_basic_config(), nt_type="smoothgrad" + *get_multiargs_basic_config(), nt_type="smoothgrad" ) def test_saliency_test_basic_multi_vargrad(self) -> None: self._input_x_gradient_base_assert( - *_get_multiargs_basic_config(), nt_type="vargrad" + *get_multiargs_basic_config(), nt_type="vargrad" ) def test_input_x_gradient_classification_vanilla(self) -> None: @@ -44,12 +50,20 @@ def test_input_x_gradient_classification_smoothgrad(self) -> None: def test_input_x_gradient_classification_vargrad(self) -> None: self._input_x_gradient_classification_assert(nt_type="vargrad") + def test_futures_not_implemented(self) -> None: + model = SoftmaxModel(5, 20, 10) + input_x_grad = InputXGradient(model.forward) + attributions = None + with self.assertRaises(NotImplementedError): + attributions = input_x_grad.attribute_future() + self.assertEqual(attributions, None) + def _input_x_gradient_base_assert( self, model: Module, inputs: TensorOrTupleOfTensorsGeneric, expected_grads: TensorOrTupleOfTensorsGeneric, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, nt_type: str = "vanilla", ) -> None: input_x_grad = InputXGradient(model) @@ -80,11 +94,9 @@ def _input_x_gradient_base_assert( elif isinstance(attributions, Tensor): if nt_type == "vanilla": self._assert_attribution(expected_grads, inputs, attributions) - self.assertEqual( - cast(Tensor, inputs).shape, cast(Tensor, attributions).shape - ) + self.assertEqual(cast(Tensor, inputs).shape, attributions.shape) - def _assert_attribution(self, expected_grad, input, attribution): + def _assert_attribution(self, expected_grad, input, attribution: Tensor) -> None: assertTensorAlmostEqual( self, attribution, @@ -105,7 +117,9 @@ def _input_x_gradient_classification_assert(self, nt_type: str = "vanilla") -> N attributions = input_x_grad.attribute(input, target) output = model(input)[:, target] output.backward() - expected = input.grad * input + input_grad = input.grad + assert input_grad is not None + expected = input_grad * input assertTensorAlmostEqual(self, attributions, expected, 0.00001, "max") else: nt = NoiseTunnel(input_x_grad) diff --git a/tests/attr/test_integrated_gradients_basic.py b/tests/attr/test_integrated_gradients_basic.py index bf4f46797a..b3d4535817 100644 --- a/tests/attr/test_integrated_gradients_basic.py +++ b/tests/attr/test_integrated_gradients_basic.py @@ -1,7 +1,9 @@ #!/usr/bin/env python3 +# pyre-strict + import unittest -from typing import Any, cast, Tuple, Union +from typing import cast, Optional, Tuple, Union import torch from captum._utils.common import _zeros @@ -9,8 +11,9 @@ from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._utils.common import _tensorize_baseline -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( BasicModel, BasicModel2, BasicModel3, @@ -153,6 +156,14 @@ def test_batched_multi_input_smooth_batch_size_2(self) -> None: def test_batched_multi_input_smoothgrad_sq_batch_size_3(self) -> None: self._assert_batched_tensor_multi_input("vargrad", "riemann_trapezoid", 3) + def test_futures_not_implemented(self) -> None: + model = BasicModel2() + ig = IntegratedGradients(model, multiply_by_inputs=True) + attributions = None + with self.assertRaises(NotImplementedError): + attributions = ig.attribute_future() + self.assertEqual(attributions, None) + def _assert_multi_variable( self, type: str, @@ -336,7 +347,7 @@ def _assert_batched_tensor_multi_input( self, type: str, approximation_method: str = "gausslegendre", - nt_samples_batch_size: int = None, + nt_samples_batch_size: Optional[int] = None, ) -> None: model = BasicModel_MultiLayer() input = ( @@ -360,7 +371,7 @@ def _assert_n_samples_batched_size( self, type: str, approximation_method: str = "gausslegendre", - nt_samples_batch_size: int = None, + nt_samples_batch_size: Optional[int] = None, ) -> None: model = BasicModel_MultiLayer() input = ( @@ -383,11 +394,11 @@ def _compute_attribution_and_evaluate( inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: Union[None, int] = None, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, type: str = "vanilla", approximation_method: str = "gausslegendre", - multiply_by_inputs=True, - nt_samples_batch_size=None, + multiply_by_inputs: bool = True, + nt_samples_batch_size: Optional[int] = None, ) -> Tuple[Tensor, ...]: r""" attrib_type: 'vanilla', 'smoothgrad', 'smoothgrad_sq', 'vargrad' @@ -396,6 +407,7 @@ def _compute_attribution_and_evaluate( self.assertEqual(ig.multiplies_by_inputs, multiply_by_inputs) if not isinstance(inputs, tuple): inputs = (inputs,) # type: ignore + # pyre-fixme[35]: Target cannot be annotated. inputs: Tuple[Tensor, ...] if baselines is not None and not isinstance(baselines, tuple): @@ -487,13 +499,14 @@ def _compute_attribution_batch_helper_evaluate( model: Module, inputs: TensorOrTupleOfTensorsGeneric, baselines: Union[None, Tensor, Tuple[Tensor, ...]] = None, - target: Union[None, int] = None, - additional_forward_args: Any = None, + target: Optional[int] = None, + additional_forward_args: Optional[object] = None, approximation_method: str = "gausslegendre", ) -> None: ig = IntegratedGradients(model) if not isinstance(inputs, tuple): inputs = (inputs,) # type: ignore + # pyre-fixme[35]: Target cannot be annotated. inputs: Tuple[Tensor, ...] if baselines is not None and not isinstance(baselines, tuple): diff --git a/tests/attr/test_integrated_gradients_classification.py b/tests/attr/test_integrated_gradients_classification.py index 8fdd7401d2..b27ae28146 100644 --- a/tests/attr/test_integrated_gradients_classification.py +++ b/tests/attr/test_integrated_gradients_classification.py @@ -1,13 +1,16 @@ #!/usr/bin/env python3 +# pyre-unsafe + import unittest import torch from captum._utils.typing import BaselineType, Tensor from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._core.noise_tunnel import NoiseTunnel -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.classification_models import SigmoidModel, SoftmaxModel +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.classification_models import SigmoidModel, SoftmaxModel from torch.nn import Module diff --git a/tests/attr/test_interpretable_input.py b/tests/attr/test_interpretable_input.py new file mode 100644 index 0000000000..4d6be2c334 --- /dev/null +++ b/tests/attr/test_interpretable_input.py @@ -0,0 +1,230 @@ +#!/usr/bin/env python3 + +# pyre-unsafe + +from typing import List, Literal, Optional, overload, Union + +import torch +from captum._utils.typing import BatchEncodingType +from captum.attr._utils.interpretable_input import TextTemplateInput, TextTokenInput +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from parameterized import parameterized +from torch import Tensor + + +class DummyTokenizer: + def __init__(self, vocab_list) -> None: + self.token_to_id = {v: i for i, v in enumerate(vocab_list)} + self.id_to_token = vocab_list + self.unk_idx = len(vocab_list) + 1 + + @overload + def encode( + self, text: str, add_special_tokens: bool = ..., return_tensors: None = ... + ) -> List[int]: ... + + @overload + def encode( + self, + text: str, + add_special_tokens: bool = ..., + return_tensors: Literal["pt"] = ..., + ) -> Tensor: ... + + def encode( + self, + text: str, + add_special_tokens: bool = True, + return_tensors: Optional[str] = "pt", + ) -> Union[List[int], Tensor]: + assert return_tensors == "pt" + return torch.tensor([self.convert_tokens_to_ids(text.split(" "))]) + + @overload + def convert_ids_to_tokens(self, token_ids: List[int]) -> List[str]: ... + @overload + def convert_ids_to_tokens(self, token_ids: int) -> str: ... + + def convert_ids_to_tokens( + self, token_ids: Union[List[int], int] + ) -> Union[List[str], str]: + if isinstance(token_ids, int): + return ( + self.id_to_token[token_ids] + if token_ids < len(self.id_to_token) + else "[UNK]" + ) + return [ + (self.id_to_token[i] if i < len(self.id_to_token) else "[UNK]") + for i in token_ids + ] + + @overload + def convert_tokens_to_ids(self, tokens: str) -> int: ... + @overload + def convert_tokens_to_ids(self, tokens: List[str]) -> List[int]: ... + + def convert_tokens_to_ids( + self, tokens: Union[List[str], str] + ) -> Union[List[int], int]: + if isinstance(tokens, str): + return ( + self.token_to_id[tokens] if tokens in self.token_to_id else self.unk_idx + ) + return [ + (self.token_to_id[t] if t in self.token_to_id else self.unk_idx) + for t in tokens + ] + + def decode(self, token_ids: Tensor) -> str: + raise NotImplementedError + + def __call__( + self, + text: Optional[Union[str, List[str], List[List[str]]]] = None, + add_special_tokens: bool = True, + return_offsets_mapping: bool = False, + ) -> BatchEncodingType: + raise NotImplementedError + + +class TestTextTemplateInput(BaseTest): + @parameterized.expand( + [ + ("{} b {} {} e {}", ["a", "c", "d", "f"]), + ( + "{arg1} b {arg2} {arg3} e {arg4}", + {"arg1": "a", "arg2": "c", "arg3": "d", "arg4": "f"}, + ), + ] + ) + def test_input(self, template, values) -> None: + tt_input = TextTemplateInput(template, values) + + expected_tensor = torch.tensor([[1.0] * 4]) + assertTensorAlmostEqual(self, tt_input.to_tensor(), expected_tensor) + + self.assertEqual(tt_input.to_model_input(), "a b c d e f") + + perturbed_tensor = torch.tensor([[1.0, 0.0, 1.0, 0.0]]) + self.assertEqual(tt_input.to_model_input(perturbed_tensor), "a b d e ") + + @parameterized.expand( + [ + ("{} b {} {} e {}", ["a", "c", "d", "f"], ["w", "x", "y", "z"]), + ( + "{arg1} b {arg2} {arg3} e {arg4}", + {"arg1": "a", "arg2": "c", "arg3": "d", "arg4": "f"}, + {"arg1": "w", "arg2": "x", "arg3": "y", "arg4": "z"}, + ), + ] + ) + def test_input_with_baselines(self, template, values, baselines) -> None: + perturbed_tensor = torch.tensor([[1.0, 0.0, 1.0, 0.0]]) + + # single instance baselines + tt_input = TextTemplateInput(template, values, baselines=baselines) + self.assertEqual(tt_input.to_model_input(perturbed_tensor), "a b x d e z") + + @parameterized.expand( + [ + ("{} b {} {} e {}", ["a", "c", "d", "f"], [0, 1, 0, 1]), + ( + "{arg1} b {arg2} {arg3} e {arg4}", + {"arg1": "a", "arg2": "c", "arg3": "d", "arg4": "f"}, + {"arg1": 0, "arg2": 1, "arg3": 0, "arg4": 1}, + ), + ] + ) + def test_input_with_mask(self, template, values, mask) -> None: + tt_input = TextTemplateInput(template, values, mask=mask) + + expected_tensor = torch.tensor([[1.0] * 2]) + assertTensorAlmostEqual(self, tt_input.to_tensor(), expected_tensor) + + self.assertEqual(tt_input.to_model_input(), "a b c d e f") + + perturbed_tensor = torch.tensor([[1.0, 0.0]]) + self.assertEqual(tt_input.to_model_input(perturbed_tensor), "a b d e ") + + @parameterized.expand( + [ + ("{} b {} {} e {}", ["a", "c", "d", "f"], [0, 1, 0, 1]), + ( + "{arg1} b {arg2} {arg3} e {arg4}", + {"arg1": "a", "arg2": "c", "arg3": "d", "arg4": "f"}, + {"arg1": 0, "arg2": 1, "arg3": 0, "arg4": 1}, + ), + ] + ) + def test_format_attr(self, template, values, mask) -> None: + tt_input = TextTemplateInput(template, values, mask=mask) + + attr = torch.tensor([[0.1, 0.2]]) + + assertTensorAlmostEqual( + self, tt_input.format_attr(attr), torch.tensor([[0.1, 0.2, 0.1, 0.2]]) + ) + + +class TestTextTokenInput(BaseTest): + def test_input(self) -> None: + tokenizer = DummyTokenizer(["a", "b", "c"]) + tt_input = TextTokenInput("a c d", tokenizer) + + expected_tensor = torch.tensor([[1.0] * 3]) + assertTensorAlmostEqual(self, tt_input.to_tensor(), expected_tensor) + + expected_model_inp = torch.tensor([[0, 2, tokenizer.unk_idx]]) + assertTensorAlmostEqual(self, tt_input.to_model_input(), expected_model_inp) + + perturbed_tensor = torch.tensor([[1.0, 0.0, 0.0]]) + expected_perturbed_inp = torch.tensor([[0, 0, 0]]) + assertTensorAlmostEqual( + self, tt_input.to_model_input(perturbed_tensor), expected_perturbed_inp + ) + + def test_input_with_baselines(self) -> None: + tokenizer = DummyTokenizer(["a", "b", "c"]) + + # int baselines + tt_input = TextTokenInput("a c d", tokenizer, baselines=1) + + perturbed_tensor = torch.tensor([[1.0, 0.0, 0.0]]) + expected_perturbed_inp = torch.tensor([[0, 1, 1]]) + assertTensorAlmostEqual( + self, tt_input.to_model_input(perturbed_tensor), expected_perturbed_inp + ) + + # str baselines + tt_input = TextTokenInput("a c d", tokenizer, baselines="b") + assertTensorAlmostEqual( + self, tt_input.to_model_input(perturbed_tensor), expected_perturbed_inp + ) + + def test_input_with_skip_tokens(self) -> None: + tokenizer = DummyTokenizer(["a", "b", "c"]) + + # int skip tokens + tt_input = TextTokenInput("a c d", tokenizer, skip_tokens=[0]) + + expected_tensor = torch.tensor([[1.0] * 2]) + assertTensorAlmostEqual(self, tt_input.to_tensor(), expected_tensor) + + expected_model_inp = torch.tensor([[0, 2, tokenizer.unk_idx]]) + assertTensorAlmostEqual(self, tt_input.to_model_input(), expected_model_inp) + + perturbed_tensor = torch.tensor([[0.0, 0.0]]) + expected_perturbed_inp = torch.tensor([[0, 0, 0]]) + assertTensorAlmostEqual( + self, tt_input.to_model_input(perturbed_tensor), expected_perturbed_inp + ) + + # str skip tokens + tt_input = TextTokenInput("a c d", tokenizer, skip_tokens=["a"]) + assertTensorAlmostEqual(self, tt_input.to_tensor(), expected_tensor) + assertTensorAlmostEqual(self, tt_input.to_model_input(), expected_model_inp) + assertTensorAlmostEqual( + self, tt_input.to_model_input(perturbed_tensor), expected_perturbed_inp + ) diff --git a/tests/attr/test_jit.py b/tests/attr/test_jit.py index 0ed0bb2744..09a951bd4f 100644 --- a/tests/attr/test_jit.py +++ b/tests/attr/test_jit.py @@ -1,4 +1,9 @@ #!/usr/bin/env python3 + +# pyre-strict + +from __future__ import annotations + import unittest from enum import Enum from typing import Any, Callable, cast, Dict, Tuple, Type @@ -20,13 +25,17 @@ from captum.attr._core.saliency import Saliency from captum.attr._core.shapley_value import ShapleyValueSampling from captum.attr._utils.attribution import Attribution -from tests.attr.helpers.gen_test_utils import ( +from captum.testing.attr.helpers.gen_test_utils import ( gen_test_name, parse_test_config, should_create_generated_test, ) -from tests.attr.helpers.test_config import config -from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest, deep_copy_args +from captum.testing.attr.helpers.test_config import config +from captum.testing.helpers.basic import ( + assertTensorTuplesAlmostEqual, + BaseTest, + deep_copy_args, +) from torch import Tensor from torch.nn import Module @@ -73,7 +82,14 @@ class JITCompareMode(Enum): class JITMeta(type): - def __new__(cls, name: str, bases: Tuple, attrs: Dict): + def __new__( + metacls, + name: str, + # pyre-fixme[2]: Parameter `bases` must have a type that does not contain `Any`. + bases: Tuple[Type[Any], ...], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + attrs: Dict[str, Callable], + ) -> JITMeta: for test_config in config: ( algorithms, @@ -90,7 +106,7 @@ def __new__(cls, name: str, bases: Tuple, attrs: Dict): for mode in JITCompareMode: # Creates test case corresponding to each algorithm and # JITCompareMode - test_method = cls.make_single_jit_test( + test_method = metacls.make_single_jit_test( algorithm, model, args, noise_tunnel, baseline_distr, mode ) test_name = gen_test_name( @@ -106,26 +122,27 @@ def __new__(cls, name: str, bases: Tuple, attrs: Dict): ) attrs[test_name] = test_method - return super(JITMeta, cls).__new__(cls, name, bases, attrs) + return super(JITMeta, metacls).__new__(metacls, name, bases, attrs) # Arguments are deep copied to ensure tests are independent and are not affected # by any modifications within a previous test. @classmethod @deep_copy_args def make_single_jit_test( - cls, + metacls, algorithm: Type[Attribution], model: Module, args: Dict[str, Any], noise_tunnel: bool, baseline_distr: bool, mode: JITCompareMode, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. ) -> Callable: """ This method creates a single JIT test for the given algorithm and parameters. """ - def jit_test_assert(self) -> None: + def jit_test_assert(self: BaseTest) -> None: model_1 = model attr_args = args if ( @@ -161,6 +178,8 @@ def jit_test_assert(self) -> None: mode is JITCompareMode.cpu_jit_trace or JITCompareMode.data_parallel_jit_trace ): + # pyre-fixme[58]: `+` is not supported for operand types `None` and + # `Optional[Tuple[]]`. all_inps = _format_tensor_into_tuples(args["inputs"]) + ( _format_additional_forward_args(args["additional_forward_args"]) if "additional_forward_args" in args diff --git a/tests/attr/test_kernel_shap.py b/tests/attr/test_kernel_shap.py index e3d8027779..61bd66397f 100644 --- a/tests/attr/test_kernel_shap.py +++ b/tests/attr/test_kernel_shap.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-unsafe + import io import unittest import unittest.mock @@ -8,12 +10,13 @@ import torch from captum._utils.typing import BaselineType, TensorOrTupleOfTensorsGeneric from captum.attr._core.kernel_shap import KernelShap -from tests.helpers.basic import ( +from captum.testing.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, + set_all_random_seeds, ) -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic_models import ( BasicLinearModel, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, @@ -115,7 +118,7 @@ def test_simple_batch_kernel_shap(self) -> None: inp, [[7.0, 32.5, 10.5], [76.66666, 196.66666, 116.66666]], perturbations_per_eval=(1, 2, 3), - n_samples=20000, + n_samples=2000, ) def test_simple_batch_kernel_shap_with_mask(self) -> None: @@ -329,6 +332,14 @@ def test_multi_inp_kernel_shap_scalar_float(self) -> None: lambda *inp: torch.sum(net(*inp)).item() ) + def test_futures_not_implemented(self) -> None: + net = BasicModel_MultiLayer_MultiInput() + kernel_shap = KernelShap(net) + attributions = None + with self.assertRaises(NotImplementedError): + attributions = kernel_shap.attribute_future() + self.assertEqual(attributions, None) + def _multi_input_scalar_kernel_shap_assert(self, func: Callable) -> None: inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) @@ -337,9 +348,9 @@ def _multi_input_scalar_kernel_shap_assert(self, func: Callable) -> None: mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2]]) expected = ( - [[3850.6666, 3850.6666, 3850.6666]] * 2, - [[306.6666, 3850.6666, 410.6666]] * 2, - [[306.6666, 3850.6666, 410.6666]] * 2, + [[3850.6666, 3850.6666, 3850.6666]], + [[306.6666, 3850.6666, 410.6666]], + [[306.6666, 3850.6666, 410.6666]], ) self._kernel_shap_test_assert( @@ -386,6 +397,7 @@ def _kernel_shap_test_assert( ) if expected_coefs is not None: + set_all_random_seeds(1234) # Test with return_input_shape = False attributions = kernel_shap.attribute( test_input, diff --git a/tests/attr/test_lime.py b/tests/attr/test_lime.py index 4287aa05ba..095ef9cf0d 100644 --- a/tests/attr/test_lime.py +++ b/tests/attr/test_lime.py @@ -1,12 +1,16 @@ #!/usr/bin/env python3 +# pyre-strict + import io import unittest import unittest.mock -from typing import Any, Callable, Generator, List, Tuple, Union +from functools import partial +from typing import Any, Callable, Generator, List, Optional, Tuple, Union import torch -from captum._utils.models.linear_model import SkLearnLasso +from captum._utils.models.linear_model import SGDLasso, SkLearnLasso +from captum._utils.models.model import Model from captum._utils.typing import BaselineType, TensorOrTupleOfTensorsGeneric from captum.attr._core.lime import get_exp_kernel_similarity_function, Lime, LimeBase from captum.attr._utils.batching import _batch_example_iterator @@ -15,12 +19,12 @@ _format_input_baseline, _format_tensor_into_tuples, ) -from tests.helpers.basic import ( +from captum.testing.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic_models import ( BasicLinearModel, BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, @@ -30,7 +34,7 @@ def alt_perturb_func( - original_inp: TensorOrTupleOfTensorsGeneric, **kwargs + original_inp: TensorOrTupleOfTensorsGeneric, **kwargs: Any ) -> TensorOrTupleOfTensorsGeneric: if isinstance(original_inp, Tensor): device = original_inp.device @@ -47,9 +51,13 @@ def alt_perturb_func( binary_mask = curr_sample[0][feature_mask] return binary_mask * original_inp + (1 - binary_mask) * kwargs["baselines"] else: + # pyre-fixme[9]: binary_mask has type `TensorOrTupleOfTensorsGeneric`; used + # as `Tuple[Tensor, ...]`. binary_mask = tuple( curr_sample[0][feature_mask[j]] for j in range(len(feature_mask)) ) + + # pyre-fixme[7]: incompatible return type return tuple( binary_mask[j] * original_inp[j] + (1 - binary_mask[j]) * kwargs["baselines"][j] @@ -58,7 +66,7 @@ def alt_perturb_func( def alt_perturb_generator( - original_inp: TensorOrTupleOfTensorsGeneric, **kwargs + original_inp: TensorOrTupleOfTensorsGeneric, **kwargs: Any ) -> Generator[TensorOrTupleOfTensorsGeneric, None, None]: while True: yield alt_perturb_func(original_inp, **kwargs) @@ -88,6 +96,8 @@ def alt_to_interp_rep( torch.sum(torch.abs((mask == i).float() * (sample - inp))) for inp, sample, mask in zip(original_input, curr_sample, feature_mask) ) + # pyre-fixme[58]: `>` is not supported for operand types `Union[int, + # torch._tensor.Tensor]` and `float`. if sum_diff > 0.001: curr_total = 0 binary_vector[0][i] = curr_total @@ -120,6 +130,22 @@ def test_simple_lime(self) -> None: test_generator=True, ) + def test_simple_lime_sgd_model(self) -> None: + net = BasicModel_MultiLayer() + inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) + interpretable_model = SGDLasso() + interpretable_model.fit = partial( # type: ignore + interpretable_model.fit, initial_lr=0.1, max_epoch=500 + ) + self._lime_test_assert( + net, + inp, + [[73.3716, 193.3349, 113.3349]], + n_samples=1000, + expected_coefs_only=[[73.3716, 193.3349, 113.3349]], + interpretable_model=interpretable_model, + ) + def test_simple_lime_with_mask(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) @@ -173,7 +199,9 @@ def test_simple_lime_boolean_with_baselines(self) -> None: ) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) - def test_simple_lime_with_show_progress(self, mock_stderr) -> None: + def test_simple_lime_with_show_progress( + self, mock_stderr: unittest.mock.Mock + ) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) @@ -408,6 +436,7 @@ def test_single_lime_scalar_int(self) -> None: lambda inp: int(torch.sum(net(inp)).item()) ) + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. def _single_input_scalar_lime_assert(self, func: Callable) -> None: inp = torch.tensor([[2.0, 10.0, 3.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1]]) @@ -443,6 +472,20 @@ def test_multi_inp_lime_scalar_float(self) -> None: net = BasicModel_MultiLayer_MultiInput() self._multi_input_scalar_lime_assert(lambda *inp: torch.sum(net(*inp)).item()) + def test_futures_not_implemented(self) -> None: + net = BasicLinearModel() + # no mask + lime = Lime( + net, + similarity_func=get_exp_kernel_similarity_function("cosine", 10.0), + interpretable_model=(SkLearnLasso(alpha=1.0)), + ) + attributions = None + with self.assertRaises(NotImplementedError): + attributions = lime.attribute_future() + self.assertEqual(attributions, None) + + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. def _multi_input_scalar_lime_assert(self, func: Callable) -> None: inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) @@ -451,9 +494,9 @@ def _multi_input_scalar_lime_assert(self, func: Callable) -> None: mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2]]) expected = ( - [[3850.6666, 3850.6666, 3850.6666]] * 2, - [[305.5, 3850.6666, 410.1]] * 2, - [[305.5, 3850.6666, 410.1]] * 2, + [[3850.6666, 3850.6666, 3850.6666]], + [[305.5, 3850.6666, 410.1]], + [[305.5, 3850.6666, 410.1]], ) self._lime_test_assert( @@ -473,11 +516,15 @@ def _multi_input_scalar_lime_assert(self, func: Callable) -> None: def _lime_test_assert( self, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. model: Callable, test_input: TensorOrTupleOfTensorsGeneric, - expected_attr, - expected_coefs_only=None, + # pyre-fixme[2]: Parameter `expected_attr` must have a type other than `Any`. + expected_attr: Any, + expected_coefs_only: Union[None, List[List[Union[int, float]]], Tensor] = None, feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, + # pyre-fixme[2]: Parameter `additional_input` has type `None` + # but type `Any` is specified. additional_input: Any = None, perturbations_per_eval: Tuple[int, ...] = (1,), baselines: BaselineType = None, @@ -487,12 +534,17 @@ def _lime_test_assert( batch_attr: bool = False, test_generator: bool = False, show_progress: bool = False, + interpretable_model: Optional[Model] = None, ) -> None: for batch_size in perturbations_per_eval: lime = Lime( model, similarity_func=get_exp_kernel_similarity_function("cosine", 10.0), - interpretable_model=SkLearnLasso(alpha=1.0), + interpretable_model=( + interpretable_model + if interpretable_model + else SkLearnLasso(alpha=1.0) + ), ) attributions = lime.attribute( test_input, @@ -526,7 +578,11 @@ def _lime_test_assert( lime_alt = LimeBase( model, - SkLearnLasso(alpha=1.0), + ( + interpretable_model + if interpretable_model + else SkLearnLasso(alpha=1.0) + ), get_exp_kernel_similarity_function("euclidean", 1000.0), alt_perturb_generator if test_generator else alt_perturb_func, False, @@ -557,9 +613,11 @@ def _lime_test_assert( attributions = lime_alt.attribute( test_input, target=target, - feature_mask=formatted_feature_mask - if isinstance(test_input, tuple) - else formatted_feature_mask[0], + feature_mask=( + formatted_feature_mask + if isinstance(test_input, tuple) + else formatted_feature_mask[0] + ), additional_forward_args=additional_input, baselines=baselines, perturbations_per_eval=batch_size, @@ -586,9 +644,11 @@ def _lime_test_assert( target, additional_input, baselines if isinstance(test_input, tuple) else baselines[0], - formatted_feature_mask - if isinstance(test_input, tuple) - else formatted_feature_mask[0], + ( + formatted_feature_mask + if isinstance(test_input, tuple) + else formatted_feature_mask[0] + ), expected_coefs_only, ): attributions = lime_alt.attribute( diff --git a/tests/attr/test_llm_attr.py b/tests/attr/test_llm_attr.py new file mode 100644 index 0000000000..d6f1a2a4ea --- /dev/null +++ b/tests/attr/test_llm_attr.py @@ -0,0 +1,671 @@ +#!/usr/bin/env python3 + +# pyre-strict + +import copy + +from collections import UserDict +from typing import ( + Any, + cast, + Dict, + List, + Literal, + NamedTuple, + Optional, + overload, + Tuple, + Type, + Union, +) + +import torch +from captum._utils.models.linear_model import SkLearnLasso +from captum._utils.typing import BatchEncodingType +from captum.attr._core.feature_ablation import FeatureAblation +from captum.attr._core.kernel_shap import KernelShap +from captum.attr._core.layer.layer_gradient_shap import LayerGradientShap +from captum.attr._core.layer.layer_gradient_x_activation import LayerGradientXActivation +from captum.attr._core.layer.layer_integrated_gradients import LayerIntegratedGradients +from captum.attr._core.lime import Lime +from captum.attr._core.llm_attr import LLMAttribution, LLMGradientAttribution +from captum.attr._core.shapley_value import ShapleyValues, ShapleyValueSampling +from captum.attr._utils.attribution import GradientAttribution, PerturbationAttribution +from captum.attr._utils.interpretable_input import TextTemplateInput, TextTokenInput +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual, rand_like +from parameterized import parameterized, parameterized_class +from torch import nn, Tensor + + +class DummyTokenizer: + vocab_size: int = 256 + sos: int = 0 + unk: int = 1 + sos_str: str = "" + special_tokens: Dict[int, str] = {sos: sos_str, unk: ""} + + @overload + def encode( + self, text: str, add_special_tokens: bool = ..., return_tensors: None = ... + ) -> List[int]: ... + + @overload + def encode( + self, + text: str, + add_special_tokens: bool = ..., + return_tensors: Literal["pt"] = ..., + ) -> Tensor: ... + + def encode( + self, + text: str, + add_special_tokens: bool = True, + return_tensors: Optional[str] = None, + ) -> Union[List[int], Tensor]: + tokens = text.split(" ") + + tokens_ids: Union[List[int], Tensor] = [ + ord(s[0]) if len(s) == 1 else (self.sos if s == self.sos_str else self.unk) + for s in tokens + ] + + # start with sos + if add_special_tokens: + tokens_ids = [self.sos, *tokens_ids] + + if return_tensors: + return torch.tensor([tokens_ids]) + return tokens_ids + + @overload + def convert_ids_to_tokens(self, token_ids: List[int]) -> List[str]: ... + @overload + def convert_ids_to_tokens(self, token_ids: int) -> str: ... + + def convert_ids_to_tokens( + self, token_ids: Union[List[int], int] + ) -> Union[List[str], str]: + if isinstance(token_ids, int): + return ( + self.special_tokens[token_ids] + if token_ids in self.special_tokens + else chr(token_ids) + ) + return [ + (self.special_tokens[tid] if tid in self.special_tokens else chr(tid)) + for tid in token_ids + ] + + @overload + def convert_tokens_to_ids(self, tokens: str) -> int: ... + @overload + def convert_tokens_to_ids(self, tokens: List[str]) -> List[int]: ... + + def convert_tokens_to_ids( + self, tokens: Union[List[str], str] + ) -> Union[List[int], int]: + raise NotImplementedError + + def decode(self, token_ids: Tensor) -> str: + tokens = self.convert_ids_to_tokens(token_ids.tolist()) + # pyre-fixme[7]: Expected `str` but got `Union[List[str], str]`. + return tokens if isinstance(tokens, str) else " ".join(tokens) + + def __call__( + self, + text: Optional[Union[str, List[str], List[List[str]]]] = None, + add_special_tokens: bool = True, + return_offsets_mapping: bool = False, + ) -> BatchEncodingType: + assert isinstance(text, str) + input_ids = self.encode(text, add_special_tokens=add_special_tokens) + + result: BatchEncodingType = UserDict() + result["input_ids"] = input_ids + + if return_offsets_mapping: + offset_mapping = [] + if add_special_tokens: + offset_mapping.append((0, 0)) + idx = 0 + for token in text.split(" "): + offset_mapping.append((idx - (0 if idx == 0 else 1), idx + len(token))) + idx += len(token) + 1 # +1 for space + result["offset_mapping"] = offset_mapping + + return result + + +class Result(NamedTuple): + logits: Tensor + past_key_values: Tensor + + +class DummyLLM(nn.Module): + def __init__(self, deterministic_weights: bool = False) -> None: + + super().__init__() + self.tokenizer = DummyTokenizer() + self.emb = nn.Embedding(self.tokenizer.vocab_size, 10) + self.linear = nn.Linear(10, self.tokenizer.vocab_size) + self.trans = nn.TransformerEncoderLayer(d_model=10, nhead=2, batch_first=True) + if deterministic_weights: + self.emb.weight.data = rand_like(self.emb.weight) + + self.trans.eval() + + self_attn_in_weight = self.trans.self_attn.in_proj_weight + self.trans.self_attn.in_proj_weight.data = rand_like(self_attn_in_weight) + self.trans.self_attn.in_proj_bias.data.fill_(0.0) + + self_attn_out_weight = self.trans.self_attn.out_proj.weight + self.trans.self_attn.out_proj.weight.data = rand_like(self_attn_out_weight) + self.trans.self_attn.out_proj.bias.data.fill_(0.0) + + self.trans.linear1.weight.data = rand_like(self.trans.linear1.weight) + self.trans.linear1.bias.data.fill_(0.0) + + self.trans.linear2.weight.data = rand_like(self.trans.linear2.weight) + self.trans.linear2.bias.data.fill_(0.0) + + self.linear.weight.data = rand_like(self.linear.weight) + self.linear.bias.data.fill_(0.5) + + def forward(self, input_ids: Tensor, *args: Any, **kwargs: Any) -> Result: + emb = self.emb(input_ids) + if "past_key_values" in kwargs: + emb = torch.cat((kwargs["past_key_values"], emb), dim=1) + encoding = self.trans(emb) + logits = self.linear(encoding) + return Result(logits=logits, past_key_values=emb) + + def generate( + self, + input_ids: Tensor, + *args: Any, + mock_response: Optional[str] = None, + **kwargs: Any, + ) -> Tensor: + assert mock_response, "must mock response to use DummyLLM to generate" + response = self.tokenizer.encode(mock_response)[1:] + return torch.cat( + # pyre-fixme[6]: In call `torch._C._VariableFunctions.cat`, + # for 1st positional argument, expected `Union[List[Tensor], + # typing.Tuple[Tensor, ...]]` but got `List[Union[List[int], Tensor]]`. + [input_ids, torch.tensor([response], device=self.device)], # type: ignore + dim=1, + ) + + def _update_model_kwargs_for_generation( + self, outputs: Result, model_kwargs: Dict[str, Any] + ) -> Dict[str, Any]: + new_kwargs = copy.deepcopy(model_kwargs) + if hasattr(outputs, "past_key_values"): + new_kwargs["past_key_values"] = outputs.past_key_values + return new_kwargs + + def prepare_inputs_for_generation( + self, model_inp: Tensor, **model_kwargs: Any + ) -> Dict[str, Tensor]: + model_inp = model_inp.to(self.device) + if "past_key_values" in model_kwargs: + emb_len = model_kwargs["past_key_values"].shape[1] + return { + "input_ids": model_inp[:, emb_len:], + "past_key_values": model_kwargs["past_key_values"], + } + if "attention_mask" in model_kwargs: + return { + "input_ids": model_inp, + "attention_mask": model_kwargs["attention_mask"], + } + return {"input_ids": model_inp} + + @property + def device(self) -> torch.device: + return next(self.parameters()).device + + +@parameterized_class( + ("device", "use_cached_outputs"), + ( + [("cpu", True), ("cpu", False), ("cuda", True), ("cuda", False)] + if torch.cuda.is_available() + else [("cpu", True), ("cpu", False)] + ), +) +# pyre-fixme[13]: Attribute `device` is never initialized. +# pyre-fixme[13]: Attribute `use_cached_outputs` is never initialized. +class TestLLMAttr(BaseTest): + # pyre-fixme[13]: Attribute `device` is never initialized. + device: str + # pyre-fixme[13]: Attribute `use_cached_outputs` is never initialized. + use_cached_outputs: bool + + # pyre-fixme[56]: Pyre was not able to infer the type of argument `comprehension + @parameterized.expand( + [ + ( + AttrClass, + delta, + n_samples, + torch.tensor(true_seq_attr), + torch.tensor(true_tok_attr), + ) + for AttrClass, delta, n_samples, true_seq_attr, true_tok_attr in zip( + (FeatureAblation, ShapleyValueSampling, ShapleyValues), # AttrClass + (0.001, 0.001, 0.001), # delta + (None, 1000, None), # n_samples + ( # true_seq_attr + [-0.0007, -0.0031, -0.0126, 0.0102], # FeatureAblation + [0.0021, -0.0047, -0.0193, 0.0302], # ShapleyValueSampling + [0.0021, -0.0047, -0.0193, 0.0302], # ShapleyValues + ), + ( # true_tok_attr + [ # FeatureAblation + [0.0075, 0.0007, -0.0006, 0.0010], + [-0.0062, -0.0073, -0.0079, -0.0003], + [-0.0020, -0.0050, -0.0056, -0.0011], + [0.0113, 0.0034, 0.0006, 0.0047], + [-0.0112, 0.0050, 0.0009, 0.0058], + ], + [ # ShapleyValueSampling + [0.0037, -0.0006, -0.0011, -0.0029], + [0.0005, 0.0002, -0.0134, 0.0081], + [0.0017, 0.0010, -0.0098, 0.0028], + [0.0100, -0.0021, 0.0025, 0.0087], + [-0.0138, -0.0031, 0.0025, 0.0134], + ], + [ # ShapleyValues + [0.0037, -0.0006, -0.0011, -0.0029], + [0.0005, 0.0002, -0.0134, 0.0081], + [0.0017, 0.0010, -0.0098, 0.0028], + [0.0100, -0.0021, 0.0025, 0.0087], + [-0.0138, -0.0031, 0.0025, 0.0134], + ], + ), + ) + ] + ) + def test_llm_attr( + self, + AttrClass: Type[PerturbationAttribution], + delta: float, + n_samples: Optional[int], + true_seq_attr: Tensor, + true_tok_attr: Tensor, + ) -> None: + attr_kws: Dict[str, int] = {} + if n_samples is not None: + attr_kws["n_samples"] = n_samples + + llm = DummyLLM(deterministic_weights=True) + llm.to(self.device) + llm.eval() + tokenizer = DummyTokenizer() + llm_attr = LLMAttribution(AttrClass(llm), tokenizer) + + inp = TextTemplateInput("{} b {} {} e {}", ["a", "c", "d", "f"]) + res = llm_attr.attribute( + inp, + "m n o p q", + skip_tokens=[0], + use_cached_outputs=self.use_cached_outputs, + # pyre-fixme[6]: In call `LLMAttribution.attribute`, + # for 4th positional argument, expected + # `Optional[typing.Callable[..., typing.Any]]` but got `int`. + **attr_kws, # type: ignore + ) + + self.assertEqual(res.seq_attr.shape, (4,)) + self.assertEqual(cast(Tensor, res.token_attr).shape, (5, 4)) + self.assertEqual(res.input_tokens, ["a", "c", "d", "f"]) + self.assertEqual(res.output_tokens, ["m", "n", "o", "p", "q"]) + self.assertEqual(res.seq_attr.device.type, self.device) + self.assertEqual(cast(Tensor, res.token_attr).device.type, self.device) + + assertTensorAlmostEqual( + self, + actual=res.seq_attr, + expected=true_seq_attr, + delta=delta, + mode="max", + ) + assertTensorAlmostEqual( + self, + actual=res.token_attr, + expected=true_tok_attr, + delta=delta, + mode="max", + ) + + def test_llm_attr_without_target(self) -> None: + llm = DummyLLM() + llm.to(self.device) + tokenizer = DummyTokenizer() + fa = FeatureAblation(llm) + llm_fa = LLMAttribution(fa, tokenizer) + + inp = TextTemplateInput("{} b {} {} e {}", ["a", "c", "d", "f"]) + res = llm_fa.attribute( + inp, + gen_args={"mock_response": "x y z"}, + use_cached_outputs=self.use_cached_outputs, + ) + + self.assertEqual(res.seq_attr.shape, (4,)) + self.assertEqual(cast(Tensor, res.token_attr).shape, (3, 4)) + self.assertEqual(res.input_tokens, ["a", "c", "d", "f"]) + self.assertEqual(res.output_tokens, ["x", "y", "z"]) + self.assertEqual(res.seq_attr.device.type, self.device) + self.assertEqual(cast(Tensor, res.token_attr).device.type, self.device) + + def test_llm_attr_fa_log_prob(self) -> None: + llm = DummyLLM() + llm.to(self.device) + tokenizer = DummyTokenizer() + fa = FeatureAblation(llm) + llm_fa = LLMAttribution(fa, tokenizer, attr_target="log_prob") + + inp = TextTemplateInput("{} b {} {} e {}", ["a", "c", "d", "f"]) + res = llm_fa.attribute( + inp, + "m n o p q", + skip_tokens=[0], + use_cached_outputs=self.use_cached_outputs, + ) + + # With FeatureAblation, the seq attr in log_prob + # equals to the sum of each token attr + assertTensorAlmostEqual(self, res.seq_attr, cast(Tensor, res.token_attr).sum(0)) + + # pyre-fixme[56]: Pyre was not able to infer the type of argument `comprehension + @parameterized.expand( + [ + ( + AttrClass, + delta, + n_samples, + torch.tensor(true_seq_attr), + interpretable_model, + ) + for AttrClass, delta, n_samples, true_seq_attr, interpretable_model in zip( + (Lime, KernelShap), + (0.003, 0.001), + (1000, 2500), + ( + [0.0000, -0.0032, -0.0158, 0.0231], + [0.0021, -0.0047, -0.0193, 0.0302], + ), + (SkLearnLasso(alpha=0.001), None), + ) + ] + ) + def test_llm_attr_without_token( + self, + AttrClass: Type[PerturbationAttribution], + delta: float, + n_samples: int, + true_seq_attr: Tensor, + interpretable_model: Optional[nn.Module] = None, + ) -> None: + init_kws = {} + if interpretable_model is not None: + init_kws["interpretable_model"] = interpretable_model + attr_kws: Dict[str, int] = {} + if n_samples is not None: + attr_kws["n_samples"] = n_samples + + llm = DummyLLM(deterministic_weights=True) + llm.to(self.device) + llm.eval() + tokenizer = DummyTokenizer() + fa = AttrClass(llm, **init_kws) + llm_fa = LLMAttribution(fa, tokenizer, attr_target="log_prob") + + inp = TextTemplateInput("{} b {} {} e {}", ["a", "c", "d", "f"]) + res = llm_fa.attribute( + inp, + "m n o p q", + skip_tokens=[0], + use_cached_outputs=self.use_cached_outputs, + **attr_kws, # type: ignore + ) + + self.assertEqual(res.seq_attr.shape, (4,)) + self.assertEqual(res.seq_attr.device.type, self.device) + self.assertEqual(res.token_attr, None) + self.assertEqual(res.input_tokens, ["a", "c", "d", "f"]) + self.assertEqual(res.output_tokens, ["m", "n", "o", "p", "q"]) + assertTensorAlmostEqual( + self, + actual=res.seq_attr, + expected=true_seq_attr, + delta=delta, + mode="max", + ) + + def test_futures_not_implemented(self) -> None: + llm = DummyLLM() + llm.to(self.device) + tokenizer = DummyTokenizer() + fa = FeatureAblation(llm) + llm_fa = LLMAttribution(fa, tokenizer) + attributions = None + with self.assertRaises(NotImplementedError): + attributions = llm_fa.attribute_future() + self.assertEqual(attributions, None) + + def test_llm_attr_with_no_skip_tokens(self) -> None: + llm = DummyLLM() + llm.to(self.device) + tokenizer = DummyTokenizer() + fa = FeatureAblation(llm) + llm_fa = LLMAttribution(fa, tokenizer) + + inp = TextTokenInput("a b c", tokenizer) + res = llm_fa.attribute( + inp, + "m n o p q", + use_cached_outputs=self.use_cached_outputs, + ) + + # 5 output tokens, 4 input tokens including sos + self.assertEqual(res.seq_attr.shape, (4,)) + assert res.token_attr is not None + self.assertIsNotNone(res.token_attr) + token_attr = res.token_attr + self.assertEqual(token_attr.shape, (6, 4)) + self.assertEqual(res.input_tokens, ["", "a", "b", "c"]) + self.assertEqual(res.output_tokens, ["", "m", "n", "o", "p", "q"]) + + def test_llm_attr_with_skip_tensor_target(self) -> None: + llm = DummyLLM() + llm.to(self.device) + tokenizer = DummyTokenizer() + fa = FeatureAblation(llm) + llm_fa = LLMAttribution(fa, tokenizer) + + inp = TextTokenInput("a b c", tokenizer) + res = llm_fa.attribute( + inp, + torch.tensor(tokenizer.encode("m n o p q")), + skip_tokens=[0], + ) + + # 5 output tokens, 4 input tokens including sos + self.assertEqual(res.seq_attr.shape, (4,)) + assert res.token_attr is not None + self.assertIsNotNone(res.token_attr) + token_attr = res.token_attr + self.assertEqual(token_attr.shape, (5, 4)) + self.assertEqual(res.input_tokens, ["", "a", "b", "c"]) + self.assertEqual(res.output_tokens, ["m", "n", "o", "p", "q"]) + + +@parameterized_class( + ("device",), [("cpu",), ("cuda",)] if torch.cuda.is_available() else [("cpu",)] +) +class TestLLMGradAttr(BaseTest): + # pyre-fixme[13]: Attribute `device` is never initialized. + device: str + + @parameterized.expand( + [ + (LayerIntegratedGradients, None), + (LayerGradientXActivation, None), + (LayerGradientShap, (torch.tensor([[1, 0, 1, 0]]),)), + ] + ) + def test_llm_attr( + self, AttrClass: Type[GradientAttribution], baselines: Optional[Tuple[Tensor]] + ) -> None: + llm = DummyLLM() + llm.to(self.device) + tokenizer = DummyTokenizer() + attr = AttrClass(llm, llm.emb) # type: ignore[call-arg] + llm_attr = LLMGradientAttribution(attr, tokenizer) + + attr_kws: Dict[str, Any] = {} + if baselines is not None: + attr_kws["baselines"] = tuple( + baseline.to(self.device) for baseline in baselines + ) + + inp = TextTokenInput("a b c", tokenizer) + res = llm_attr.attribute(inp, "m n o p q", skip_tokens=[0], **attr_kws) + + # 5 output tokens, 4 input tokens including sos + self.assertEqual(res.seq_attr.shape, (4,)) + assert res.token_attr is not None + self.assertIsNotNone(res.token_attr) + token_attr = res.token_attr + self.assertEqual(token_attr.shape, (5, 4)) + self.assertEqual(res.input_tokens, ["", "a", "b", "c"]) + self.assertEqual(res.output_tokens, ["m", "n", "o", "p", "q"]) + + self.assertEqual(res.seq_attr.device.type, self.device) + assert res.token_attr is not None + self.assertEqual(token_attr.device.type, self.device) + + @parameterized.expand( + [ + (LayerIntegratedGradients, None), + (LayerGradientXActivation, None), + (LayerGradientShap, (torch.tensor([[1, 0, 1, 0]]),)), + ] + ) + def test_llm_attr_without_target( + self, AttrClass: Type[GradientAttribution], baselines: Optional[Tuple[Tensor]] + ) -> None: + llm = DummyLLM() + llm.to(self.device) + tokenizer = DummyTokenizer() + attr = AttrClass(llm, llm.emb) # type: ignore[call-arg] + llm_attr = LLMGradientAttribution(attr, tokenizer) + + attr_kws: Dict[str, Any] = {} + if baselines is not None: + attr_kws["baselines"] = tuple( + baseline.to(self.device) for baseline in baselines + ) + + inp = TextTokenInput("a b c", tokenizer) + res = llm_attr.attribute(inp, gen_args={"mock_response": "x y z"}, **attr_kws) + + self.assertEqual(res.seq_attr.shape, (4,)) + assert res.token_attr is not None + self.assertIsNotNone(res.token_attr) + token_attr = res.token_attr + self.assertEqual(token_attr.shape, (3, 4)) + self.assertEqual(res.input_tokens, ["", "a", "b", "c"]) + self.assertEqual(res.output_tokens, ["x", "y", "z"]) + + self.assertEqual(res.seq_attr.device.type, self.device) + assert res.token_attr is not None + self.assertEqual(token_attr.device.type, self.device) + + @parameterized.expand( + [ + (LayerIntegratedGradients, None), + (LayerGradientXActivation, None), + (LayerGradientShap, (torch.tensor([[1, 0, 1]]),)), + ] + ) + def test_llm_attr_with_skip_tokens( + self, AttrClass: Type[GradientAttribution], baselines: Optional[Tuple[Tensor]] + ) -> None: + llm = DummyLLM() + llm.to(self.device) + tokenizer = DummyTokenizer() + attr = AttrClass(llm, llm.emb) # type: ignore[call-arg] + llm_attr = LLMGradientAttribution(attr, tokenizer) + + attr_kws: Dict[str, Any] = {} + if baselines is not None: + attr_kws["baselines"] = tuple( + baseline.to(self.device) for baseline in baselines + ) + + inp = TextTokenInput("a b c", tokenizer, skip_tokens=[0]) + res = llm_attr.attribute(inp, "m n o p q", skip_tokens=[0], **attr_kws) + + # 5 output tokens, 4 input tokens including sos + self.assertEqual(res.seq_attr.shape, (3,)) + assert res.token_attr is not None + self.assertIsNotNone(res.token_attr) + token_attr = res.token_attr + self.assertEqual(token_attr.shape, (5, 3)) + self.assertEqual(res.input_tokens, ["a", "b", "c"]) + self.assertEqual(res.output_tokens, ["m", "n", "o", "p", "q"]) + + self.assertEqual(res.seq_attr.device.type, self.device) + assert res.token_attr is not None + self.assertEqual(token_attr.device.type, self.device) + + def test_llm_attr_with_no_skip_tokens(self) -> None: + llm = DummyLLM() + llm.to(self.device) + tokenizer = DummyTokenizer() + attr = LayerIntegratedGradients(llm, llm.emb) # type: ignore[call-arg] + llm_attr = LLMGradientAttribution(attr, tokenizer) + + attr_kws: Dict[str, Any] = {} + inp = TextTokenInput("a b c", tokenizer) + res = llm_attr.attribute(inp, "m n o p q", **attr_kws) + + # 6 output tokens, 4 input tokens including sos + self.assertEqual(res.seq_attr.shape, (4,)) + assert res.token_attr is not None + self.assertIsNotNone(res.token_attr) + token_attr = res.token_attr + self.assertEqual(token_attr.shape, (6, 4)) + self.assertEqual(res.input_tokens, ["", "a", "b", "c"]) + self.assertEqual(res.output_tokens, ["", "m", "n", "o", "p", "q"]) + + def test_llm_attr_with_skip_tensor_target(self) -> None: + llm = DummyLLM() + llm.to(self.device) + tokenizer = DummyTokenizer() + attr = LayerIntegratedGradients(llm, llm.emb) # type: ignore[call-arg] + llm_attr = LLMGradientAttribution(attr, tokenizer) + + attr_kws: Dict[str, Any] = {} + inp = TextTokenInput("a b c", tokenizer) + res = llm_attr.attribute( + inp, + torch.tensor(tokenizer.encode("m n o p q")), + skip_tokens=[0], + **attr_kws, + ) + + # 5 output tokens, 4 input tokens including sos + self.assertEqual(res.seq_attr.shape, (4,)) + assert res.token_attr is not None + self.assertIsNotNone(res.token_attr) + token_attr = res.token_attr + self.assertEqual(token_attr.shape, (5, 4)) + self.assertEqual(res.input_tokens, ["", "a", "b", "c"]) + self.assertEqual(res.output_tokens, ["m", "n", "o", "p", "q"]) diff --git a/tests/attr/test_llm_attr_hf_compatibility.py b/tests/attr/test_llm_attr_hf_compatibility.py new file mode 100644 index 0000000000..51c059eb29 --- /dev/null +++ b/tests/attr/test_llm_attr_hf_compatibility.py @@ -0,0 +1,281 @@ +#!/usr/bin/env python3 + +import warnings +from typing import cast, Dict, Optional, Type + +import torch +from captum.attr._core.feature_ablation import FeatureAblation +from captum.attr._core.llm_attr import ( + _convert_ids_to_pretty_tokens, + _convert_ids_to_pretty_tokens_fallback, + LLMAttribution, +) +from captum.attr._core.shapley_value import ShapleyValues, ShapleyValueSampling +from captum.attr._utils.attribution import PerturbationAttribution +from captum.attr._utils.interpretable_input import TextTemplateInput +from captum.testing.helpers import BaseTest +from parameterized import parameterized, parameterized_class +from torch import Tensor + +HAS_HF = True +try: + # pyre-ignore[21]: Could not find a module corresponding to import `transformers` + from transformers import AutoModelForCausalLM, AutoTokenizer +except ImportError: + HAS_HF = False + + +@parameterized_class( + ("device", "use_cached_outputs"), + ( + [("cpu", True), ("cpu", False), ("cuda", True), ("cuda", False)] + if torch.cuda.is_available() + else [("cpu", True), ("cpu", False)] + ), +) +class TestLLMAttrHFCompatibility(BaseTest): + # pyre-fixme[13]: Attribute `device` is never initialized. + device: str + # pyre-fixme[13]: Attribute `use_cached_outputs` is never initialized. + use_cached_outputs: bool + + def setUp(self) -> None: + if not HAS_HF: + self.skipTest("transformers package not found, skipping tests") + super().setUp() + + # pyre-fixme[56]: Pyre was not able to infer the type of argument `comprehension + @parameterized.expand( + [ + ( + AttrClass, + n_samples, + ) + for AttrClass, n_samples in zip( + (FeatureAblation, ShapleyValueSampling, ShapleyValues), # AttrClass + (None, 1000, None), # n_samples + ) + ] + ) + def test_llm_attr_hf_compatibility( + self, + AttrClass: Type[PerturbationAttribution], + n_samples: Optional[int], + ) -> None: + attr_kws: Dict[str, int] = {} + if n_samples is not None: + attr_kws["n_samples"] = n_samples + + tokenizer = AutoTokenizer.from_pretrained( + "hf-internal-testing/tiny-random-LlamaForCausalLM" + ) + llm = AutoModelForCausalLM.from_pretrained( + "hf-internal-testing/tiny-random-LlamaForCausalLM" + ) + + llm.to(self.device) + llm.eval() + llm_attr = LLMAttribution(AttrClass(llm), tokenizer) + + inp = TextTemplateInput("{} b {} {} e {}", ["a", "c", "d", "f"]) + res = llm_attr.attribute( + inp, + "m n o p q", + use_cached_outputs=self.use_cached_outputs, + # pyre-fixme[6]: In call `LLMAttribution.attribute`, + # for 4th positional argument, expected + # `Optional[typing.Callable[..., typing.Any]]` but got `int`. + **attr_kws, # type: ignore + ) + self.assertEqual(res.seq_attr.shape, (4,)) + self.assertEqual(res.input_tokens, ["a", "c", "d", "f"]) + self.assertEqual(res.seq_attr.device.type, self.device) + self.assertEqual(cast(Tensor, res.token_attr).device.type, self.device) + + +class TestTokenizerHFCompatibility(BaseTest): + def setUp(self) -> None: + if not HAS_HF: + self.skipTest("transformers package not found, skipping tests") + super().setUp() + + @parameterized.expand([(True,), (False,)]) + def test_tokenizer_pretty_print(self, add_special_tokens: bool) -> None: + tokenizer = AutoTokenizer.from_pretrained( + "hf-internal-testing/tiny-random-LlamaForCausalLM" + ) + txt = ( + 'One two three\n😍\n😂\n😸\n😍\n😂\n😸\n😍\n\'😂\n😸😂\n😍😍😍😍😍\n😂:\n"😸"\n😂' + "\n�\n\nథஐૹৣआΔΘϖ\n" + ) + special_tokens_pretty = [ + "", + "One", + ] + no_special_tokens_pretty = [ + "One", + ] + expected_tokens_tail_pretty = [ + "two", + "three", + "\\n", + "😍", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "\\n", + "😂", + "😂 [OVERLAP]", + "😂 [OVERLAP]", + "😂 [OVERLAP]", + "\\n", + "😸", + "😸 [OVERLAP]", + "😸 [OVERLAP]", + "😸 [OVERLAP]", + "\\n", + "😍", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "\\n", + "😂", + "😂 [OVERLAP]", + "😂 [OVERLAP]", + "😂 [OVERLAP]", + "\\n", + "😸", + "😸 [OVERLAP]", + "😸 [OVERLAP]", + "😸 [OVERLAP]", + "\\n", + "😍", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "\\n", + "'", + "😂", + "😂 [OVERLAP]", + "😂 [OVERLAP]", + "😂 [OVERLAP]", + "\\n", + "😸", + "😸 [OVERLAP]", + "😸 [OVERLAP]", + "😸 [OVERLAP]", + "😂", + "😂 [OVERLAP]", + "😂 [OVERLAP]", + "😂 [OVERLAP]", + "\\n", + "😍", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "😍", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "😍", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "😍", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "😍", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "😍 [OVERLAP]", + "\\n", + "😂", + "😂 [OVERLAP]", + "😂 [OVERLAP]", + "😂 [OVERLAP]", + ":", + "\\n", + '"', + "😸", + "😸 [OVERLAP]", + "😸 [OVERLAP]", + "😸 [OVERLAP]", + '"', + "\\n", + "😂", + "😂 [OVERLAP]", + "😂 [OVERLAP]", + "😂 [OVERLAP]", + "\\n", + "�", + "\\n", + "\\n", + "థ", + "థ [OVERLAP]", + "థ [OVERLAP]", + "ஐ", + "ஐ [OVERLAP]", + "ஐ [OVERLAP]", + "ૹ", + "ૹ [OVERLAP]", + "ૹ [OVERLAP]", + "ৣ", + "ৣ [OVERLAP]", + "ৣ [OVERLAP]", + "आ", + "Δ", + "Θ", + "ϖ", + "ϖ [OVERLAP]", + "\\n", + ] + ids = tokenizer.encode(txt, add_special_tokens=add_special_tokens) + head_pretty = ( + special_tokens_pretty if add_special_tokens else no_special_tokens_pretty + ) + with warnings.catch_warnings(): + if add_special_tokens: + # This particular tokenizer adds a token for the space after when + # we encode the decoded ids in _convert_ids_to_pretty_tokens + warnings.filterwarnings( + "ignore", category=UserWarning, message=".* Skipping this token." + ) + self.assertEqual( + _convert_ids_to_pretty_tokens(ids, tokenizer), + head_pretty + expected_tokens_tail_pretty, + ) + + @parameterized.expand([(True,), (False,)]) + def test_tokenizer_pretty_print_fallback(self, add_special_tokens: bool) -> None: + tokenizer = AutoTokenizer.from_pretrained( + "hf-internal-testing/tiny-random-LlamaForCausalLM" + ) + txt = "Running and jumping and climbing:\nMeow meow meow" + ids = tokenizer.encode(txt, add_special_tokens=add_special_tokens) + + special_tokens_pretty = ["", "Running"] + no_special_tokens_pretty = ["Running"] + expected_tokens_tail_pretty = [ + "and", + "jump", + "ing", + "and", + "clim", + "bing", + ":", + "\\n", + "Me", + "ow", + "me", + "ow", + "me", + "ow", + ] + head_pretty = ( + special_tokens_pretty if add_special_tokens else no_special_tokens_pretty + ) + self.assertEqual( + _convert_ids_to_pretty_tokens_fallback(ids, tokenizer), + head_pretty + expected_tokens_tail_pretty, + ) diff --git a/tests/attr/test_lrp.py b/tests/attr/test_lrp.py index e946144613..699c2bba99 100644 --- a/tests/attr/test_lrp.py +++ b/tests/attr/test_lrp.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 + +# pyre-unsafe from typing import cast, Tuple import torch @@ -10,8 +12,9 @@ GammaRule, IdentityRule, ) -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, BasicModelWithReusedLinear, @@ -125,6 +128,19 @@ def test_lrp_simple_repeat_attributions(self) -> None: output_after = model(inputs) assertTensorAlmostEqual(self, output, output_after) + def test_lrp_simple_inplaceReLU(self) -> None: + model_default, inputs = _get_simple_model() + model_inplace, _ = _get_simple_model(inplace=True) + for model in [model_default, model_inplace]: + model.eval() + model.linear.rule = EpsilonRule() # type: ignore + model.linear2.rule = EpsilonRule() # type: ignore + lrp_default = LRP(model_default) + lrp_inplace = LRP(model_inplace) + relevance_default = lrp_default.attribute(inputs) + relevance_inplace = lrp_inplace.attribute(inputs) + assertTensorAlmostEqual(self, relevance_default, relevance_inplace) + def test_lrp_simple_tanh(self) -> None: class Model(nn.Module): def __init__(self) -> None: @@ -311,5 +327,13 @@ def test_lrp_repeated_module(self) -> None: model = BasicModelWithReusedLinear() inp = torch.ones(2, 3) lrp = LRP(model) - with self.assertRaisesRegexp(RuntimeError, "more than once"): + with self.assertRaisesRegex(RuntimeError, "more than once"): lrp.attribute(inp, target=0) + + def test_futures_not_implemented(self) -> None: + model = BasicModelWithReusedLinear() + lrp = LRP(model) + attributions = None + with self.assertRaises(NotImplementedError): + attributions = lrp.attribute_future() + self.assertEqual(attributions, None) diff --git a/tests/attr/test_occlusion.py b/tests/attr/test_occlusion.py index fd3071bccf..32705cbdbb 100644 --- a/tests/attr/test_occlusion.py +++ b/tests/attr/test_occlusion.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 + +# pyre-unsafe import io import unittest import unittest.mock @@ -12,8 +14,9 @@ TensorOrTupleOfTensorsGeneric, ) from captum.attr._core.occlusion import Occlusion -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( BasicModel3, BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, @@ -279,6 +282,14 @@ def test_simple_multi_input_conv(self) -> None: strides=((1, 2, 1), (1, 1, 2)), ) + def test_futures_not_implemented(self) -> None: + net = BasicModel_ConvNet_One_Conv() + occ = Occlusion(net) + attributions = None + with self.assertRaises(NotImplementedError): + attributions = occ.attribute_future() + self.assertEqual(attributions, None) + @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_simple_input_with_show_progress(self, mock_stderr) -> None: net = BasicModel_MultiLayer() diff --git a/tests/attr/test_saliency.py b/tests/attr/test_saliency.py index 7c24ea7dde..a1518f47fa 100644 --- a/tests/attr/test_saliency.py +++ b/tests/attr/test_saliency.py @@ -1,87 +1,52 @@ #!/usr/bin/env python3 -from typing import Any, cast, Tuple, Union + +# pyre-unsafe +from typing import cast, Optional, Tuple, Union import torch -from captum._utils.gradient import compute_gradients from captum._utils.typing import TensorOrTupleOfTensorsGeneric from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._core.saliency import Saliency -from tests.helpers.basic import ( + +from captum.testing.attr.helpers.get_config_util import ( + get_basic_config, + get_multiargs_basic_config, + get_multiargs_basic_config_large, +) +from captum.testing.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) -from tests.helpers.basic_models import BasicModel, BasicModel5_MultiArgs -from tests.helpers.classification_models import SoftmaxModel +from captum.testing.helpers.classification_models import SoftmaxModel from torch import Tensor from torch.nn import Module -def _get_basic_config() -> Tuple[Module, Tensor, Tensor, Any]: - input = torch.tensor([1.0, 2.0, 3.0, 0.0, -1.0, 7.0], requires_grad=True).T - # manually percomputed gradients - grads = torch.tensor([-0.0, -0.0, -0.0, 1.0, 1.0, -0.0]) - return BasicModel(), input, grads, None - - -def _get_multiargs_basic_config() -> Tuple[ - Module, Tuple[Tensor, ...], Tuple[Tensor, ...], Any -]: - model = BasicModel5_MultiArgs() - additional_forward_args = ([2, 3], 1) - inputs = ( - torch.tensor([[1.5, 2.0, 34.3], [3.4, 1.2, 2.0]], requires_grad=True), - torch.tensor([[3.0, 3.5, 23.2], [2.3, 1.2, 0.3]], requires_grad=True), - ) - grads = compute_gradients( - model, inputs, additional_forward_args=additional_forward_args - ) - return model, inputs, grads, additional_forward_args - - -def _get_multiargs_basic_config_large() -> Tuple[ - Module, Tuple[Tensor, ...], Tuple[Tensor, ...], Any -]: - model = BasicModel5_MultiArgs() - additional_forward_args = ([2, 3], 1) - inputs = ( - torch.tensor( - [[10.5, 12.0, 34.3], [43.4, 51.2, 32.0]], requires_grad=True - ).repeat_interleave(3, dim=0), - torch.tensor( - [[1.0, 3.5, 23.2], [2.3, 1.2, 0.3]], requires_grad=True - ).repeat_interleave(3, dim=0), - ) - grads = compute_gradients( - model, inputs, additional_forward_args=additional_forward_args - ) - return model, inputs, grads, additional_forward_args - - class Test(BaseTest): def test_saliency_test_basic_vanilla(self) -> None: - self._saliency_base_assert(*_get_basic_config()) + self._saliency_base_assert(*get_basic_config()) def test_saliency_test_basic_smoothgrad(self) -> None: - self._saliency_base_assert(*_get_basic_config(), nt_type="smoothgrad") + self._saliency_base_assert(*get_basic_config(), nt_type="smoothgrad") def test_saliency_test_basic_vargrad(self) -> None: - self._saliency_base_assert(*_get_basic_config(), nt_type="vargrad") + self._saliency_base_assert(*get_basic_config(), nt_type="vargrad") def test_saliency_test_basic_multi_variable_vanilla(self) -> None: - self._saliency_base_assert(*_get_multiargs_basic_config()) + self._saliency_base_assert(*get_multiargs_basic_config()) def test_saliency_test_basic_multi_variable_smoothgrad(self) -> None: - self._saliency_base_assert(*_get_multiargs_basic_config(), nt_type="smoothgrad") + self._saliency_base_assert(*get_multiargs_basic_config(), nt_type="smoothgrad") def test_saliency_test_basic_multivar_sg_n_samples_batch_size_2(self) -> None: attributions_batch_size = self._saliency_base_assert( - *_get_multiargs_basic_config_large(), + *get_multiargs_basic_config_large(), nt_type="smoothgrad", n_samples_batch_size=2, ) attributions = self._saliency_base_assert( - *_get_multiargs_basic_config_large(), + *get_multiargs_basic_config_large(), nt_type="smoothgrad", ) @@ -89,42 +54,42 @@ def test_saliency_test_basic_multivar_sg_n_samples_batch_size_2(self) -> None: def test_saliency_test_basic_multivar_sg_n_samples_batch_size_3(self) -> None: attributions_batch_size = self._saliency_base_assert( - *_get_multiargs_basic_config_large(), + *get_multiargs_basic_config_large(), nt_type="smoothgrad_sq", n_samples_batch_size=3, ) attributions = self._saliency_base_assert( - *_get_multiargs_basic_config_large(), + *get_multiargs_basic_config_large(), nt_type="smoothgrad_sq", ) assertTensorTuplesAlmostEqual(self, attributions_batch_size, attributions) def test_saliency_test_basic_multivar_vg_n_samples_batch_size_1(self) -> None: attributions_batch_size = self._saliency_base_assert( - *_get_multiargs_basic_config_large(), + *get_multiargs_basic_config_large(), nt_type="vargrad", n_samples_batch_size=1, ) attributions = self._saliency_base_assert( - *_get_multiargs_basic_config_large(), + *get_multiargs_basic_config_large(), nt_type="vargrad", ) assertTensorTuplesAlmostEqual(self, attributions_batch_size, attributions) def test_saliency_test_basic_multivar_vg_n_samples_batch_size_6(self) -> None: attributions_batch_size = self._saliency_base_assert( - *_get_multiargs_basic_config_large(), + *get_multiargs_basic_config_large(), nt_type="vargrad", n_samples_batch_size=6, ) attributions = self._saliency_base_assert( - *_get_multiargs_basic_config_large(), + *get_multiargs_basic_config_large(), nt_type="vargrad", ) assertTensorTuplesAlmostEqual(self, attributions_batch_size, attributions) def test_saliency_test_basic_multi_vargrad(self) -> None: - self._saliency_base_assert(*_get_multiargs_basic_config(), nt_type="vargrad") + self._saliency_base_assert(*get_multiargs_basic_config(), nt_type="vargrad") def test_saliency_classification_vanilla(self) -> None: self._saliency_classification_assert() @@ -136,18 +101,26 @@ def test_saliency_classification_vargrad(self) -> None: self._saliency_classification_assert(nt_type="vargrad") def test_saliency_grad_unchanged(self) -> None: - model, inp, grads, add_args = _get_basic_config() + model, inp, grads, add_args = get_basic_config() inp.grad = torch.randn_like(inp) grad = inp.grad.detach().clone() self._saliency_base_assert(model, inp, grads, add_args) assertTensorTuplesAlmostEqual(self, inp.grad, grad, delta=0.0) + def test_futures_not_implemented(self) -> None: + model, inp, grads, add_args = get_basic_config() + saliency = Saliency(model) + attributions = None + with self.assertRaises(NotImplementedError): + attributions = saliency.attribute_future() + self.assertEqual(attributions, None) + def _saliency_base_assert( self, model: Module, inputs: TensorOrTupleOfTensorsGeneric, expected: TensorOrTupleOfTensorsGeneric, - additional_forward_args: Any = None, + additional_forward_args: Optional[object] = None, nt_type: str = "vanilla", n_samples_batch_size=None, ) -> Union[Tensor, Tuple[Tensor, ...]]: diff --git a/tests/attr/test_shapley.py b/tests/attr/test_shapley.py index 6c0d91f147..c987858bec 100644 --- a/tests/attr/test_shapley.py +++ b/tests/attr/test_shapley.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-unsafe + import io import unittest import unittest.mock @@ -8,94 +10,178 @@ import torch from captum._utils.typing import BaselineType, TensorOrTupleOfTensorsGeneric from captum.attr._core.shapley_value import ShapleyValues, ShapleyValueSampling -from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest +from captum.testing.helpers.basic_models import ( BasicModel_MultiLayer, BasicModel_MultiLayer_MultiInput, + BasicModel_MultiLayer_MultiInput_with_Future, + BasicModel_MultiLayer_with_Future, BasicModelBoolInput, + BasicModelBoolInput_with_Future, ) +from parameterized import parameterized +from torch.futures import Future class Test(BaseTest): - def test_simple_shapley_sampling(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_simple_shapley_sampling(self, use_future) -> None: inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) - self._shapley_test_assert( - net, - inp, - [[76.66666, 196.66666, 116.66666]], - perturbations_per_eval=(1, 2, 3), - n_samples=250, - ) + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + self._shapley_test_assert_future( + net_fut, + inp, + [[76.66666, 196.66666, 116.66666]], + perturbations_per_eval=(1, 2, 3), + n_samples=250, + ) + else: + net = BasicModel_MultiLayer() + self._shapley_test_assert( + net, + inp, + [[76.66666, 196.66666, 116.66666]], + perturbations_per_eval=(1, 2, 3), + n_samples=250, + ) - def test_simple_shapley_sampling_with_mask(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_simple_shapley_sampling_with_mask(self, use_future) -> None: inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) - self._shapley_test_assert( - net, - inp, - [[275.0, 275.0, 115.0]], - feature_mask=torch.tensor([[0, 0, 1]]), - perturbations_per_eval=(1, 2, 3), - ) + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + self._shapley_test_assert_future( + net_fut, + inp, + [[275.0, 275.0, 115.0]], + feature_mask=torch.tensor([[0, 0, 1]]), + perturbations_per_eval=(1, 2, 3), + ) + else: + net = BasicModel_MultiLayer() + self._shapley_test_assert( + net, + inp, + [[275.0, 275.0, 115.0]], + feature_mask=torch.tensor([[0, 0, 1]]), + perturbations_per_eval=(1, 2, 3), + ) - def test_simple_shapley_sampling_boolean(self) -> None: - net = BasicModelBoolInput() + @parameterized.expand([True, False]) + def test_simple_shapley_sampling_boolean(self, use_future) -> None: inp = torch.tensor([[True, False, True]]) - self._shapley_test_assert( - net, - inp, - [[35.0, 35.0, 35.0]], - feature_mask=torch.tensor([[0, 0, 1]]), - perturbations_per_eval=(1, 2, 3), - ) + if use_future: + net_fut = BasicModelBoolInput_with_Future() + self._shapley_test_assert_future( + net_fut, + inp, + [[35.0, 35.0, 35.0]], + feature_mask=torch.tensor([[0, 0, 1]]), + perturbations_per_eval=(1, 2, 3), + ) + else: + net = BasicModelBoolInput() + self._shapley_test_assert( + net, + inp, + [[35.0, 35.0, 35.0]], + feature_mask=torch.tensor([[0, 0, 1]]), + perturbations_per_eval=(1, 2, 3), + ) - def test_simple_shapley_sampling_boolean_with_baseline(self) -> None: - net = BasicModelBoolInput() + @parameterized.expand([True, False]) + def test_simple_shapley_sampling_boolean_with_baseline(self, use_future) -> None: inp = torch.tensor([[True, False, True]]) - self._shapley_test_assert( - net, - inp, - [[-40.0, -40.0, 0.0]], - feature_mask=torch.tensor([[0, 0, 1]]), - baselines=True, - perturbations_per_eval=(1, 2, 3), - ) + if use_future: + net_fut = BasicModelBoolInput_with_Future() + self._shapley_test_assert_future( + net_fut, + inp, + [[-40.0, -40.0, 0.0]], + feature_mask=torch.tensor([[0, 0, 1]]), + baselines=True, + perturbations_per_eval=(1, 2, 3), + ) + else: + net = BasicModelBoolInput() + self._shapley_test_assert( + net, + inp, + [[-40.0, -40.0, 0.0]], + feature_mask=torch.tensor([[0, 0, 1]]), + baselines=True, + perturbations_per_eval=(1, 2, 3), + ) - def test_simple_shapley_sampling_with_baselines(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_simple_shapley_sampling_with_baselines(self, use_future) -> None: inp = torch.tensor([[20.0, 50.0, 30.0]]) - self._shapley_test_assert( - net, - inp, - [[248.0, 248.0, 104.0]], - feature_mask=torch.tensor([[0, 0, 1]]), - baselines=4, - perturbations_per_eval=(1, 2, 3), - ) + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + self._shapley_test_assert_future( + net_fut, + inp, + [[248.0, 248.0, 104.0]], + feature_mask=torch.tensor([[0, 0, 1]]), + baselines=4, + perturbations_per_eval=(1, 2, 3), + ) + else: + net = BasicModel_MultiLayer() + self._shapley_test_assert( + net, + inp, + [[248.0, 248.0, 104.0]], + feature_mask=torch.tensor([[0, 0, 1]]), + baselines=4, + perturbations_per_eval=(1, 2, 3), + ) - def test_multi_sample_shapley_sampling(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_multi_sample_shapley_sampling(self, use_future) -> None: inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]]) - self._shapley_test_assert( - net, - inp, - [[7.0, 32.5, 10.5], [76.66666, 196.66666, 116.66666]], - perturbations_per_eval=(1, 2, 3), - n_samples=200, - ) + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + self._shapley_test_assert_future( + net_fut, + inp, + [[7.0, 32.5, 10.5], [76.66666, 196.66666, 116.66666]], + perturbations_per_eval=(1, 2, 3), + n_samples=200, + ) + else: + net = BasicModel_MultiLayer() + self._shapley_test_assert( + net, + inp, + [[7.0, 32.5, 10.5], [76.66666, 196.66666, 116.66666]], + perturbations_per_eval=(1, 2, 3), + n_samples=200, + ) - def test_multi_sample_shapley_sampling_with_mask(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_multi_sample_shapley_sampling_with_mask(self, use_future) -> None: inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1], [1, 1, 0]]) - self._shapley_test_assert( - net, - inp, - [[39.5, 39.5, 10.5], [275.0, 275.0, 115.0]], - feature_mask=mask, - perturbations_per_eval=(1, 2, 3), - ) + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + self._shapley_test_assert_future( + net_fut, + inp, + [[39.5, 39.5, 10.5], [275.0, 275.0, 115.0]], + feature_mask=mask, + perturbations_per_eval=(1, 2, 3), + ) + else: + net = BasicModel_MultiLayer() + self._shapley_test_assert( + net, + inp, + [[39.5, 39.5, 10.5], [275.0, 275.0, 115.0]], + feature_mask=mask, + perturbations_per_eval=(1, 2, 3), + ) def test_multi_input_shapley_sampling_without_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() @@ -116,6 +202,25 @@ def test_multi_input_shapley_sampling_without_mask(self) -> None: test_true_shapley=False, ) + def test_multi_input_shapley_sampling_without_mask_future(self) -> None: + net = BasicModel_MultiLayer_MultiInput_with_Future() + inp1 = torch.tensor([[23.0, 0.0, 0.0], [20.0, 50.0, 30.0]]) + inp2 = torch.tensor([[20.0, 0.0, 50.0], [0.0, 100.0, 0.0]]) + inp3 = torch.tensor([[0.0, 100.0, 10.0], [0.0, 10.0, 0.0]]) + expected = ( + [[90, 0, 0], [78.0, 198.0, 118.0]], + [[78, 0, 198], [0.0, 398.0, 0.0]], + [[0, 398, 38], [0.0, 38.0, 0.0]], + ) + self._shapley_test_assert_future( + net, + (inp1, inp2, inp3), + expected, + additional_input=(1,), + n_samples=200, + test_true_shapley=False, + ) + def test_multi_input_shapley_sampling_with_mask(self) -> None: net = BasicModel_MultiLayer_MultiInput() inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) @@ -151,100 +256,578 @@ def test_multi_input_shapley_sampling_with_mask(self) -> None: perturbations_per_eval=(1, 2, 3), ) + def test_multi_input_shapley_sampling_with_mask_future(self) -> None: + net = BasicModel_MultiLayer_MultiInput_with_Future() + inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) + inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) + inp3 = torch.tensor([[0.0, 100.0, 10.0], [2.0, 10.0, 3.0]]) + mask1 = torch.tensor([[1, 1, 1], [0, 1, 0]]) + mask2 = torch.tensor([[0, 1, 2]]) + mask3 = torch.tensor([[0, 1, 2], [0, 0, 0]]) + expected = ( + [[1088.6666, 1088.6666, 1088.6666], [255.0, 595.0, 255.0]], + [[76.6666, 1088.6666, 156.6666], [255.0, 595.0, 0.0]], + [[76.6666, 1088.6666, 156.6666], [255.0, 255.0, 255.0]], + ) + self._shapley_test_assert_future( + net, + (inp1, inp2, inp3), + expected, + additional_input=(1,), + feature_mask=(mask1, mask2, mask3), + ) + expected_with_baseline = ( + [[1040, 1040, 1040], [184, 580.0, 184]], + [[52, 1040, 132], [184, 580.0, -12.0]], + [[52, 1040, 132], [184, 184, 184]], + ) + self._shapley_test_assert_future( + net, + (inp1, inp2, inp3), + expected_with_baseline, + additional_input=(1,), + feature_mask=(mask1, mask2, mask3), + baselines=(2, 3.0, 4), + perturbations_per_eval=(1, 2, 3), + ) + + @parameterized.expand([True, False]) + def test_shapley_sampling_multi_task_output(self, use_future) -> None: + # return shape (batch size, 2) + inp = torch.tensor([[20.0, 50.0, 30.0]], requires_grad=True) + if use_future: + net1_fut = BasicModel_MultiLayer_with_Future() + + def forward_func(*args, **kwargs): + net_output = net1_fut(*args, **kwargs) + net_output.wait() + batch_size = net_output.value().size(0) + constant = torch.ones(batch_size, 2) + output = torch.cat( + [ + net_output.value(), + constant, + ], + dim=-1, + ) + fut = Future() + fut.set_result(output) + return fut + + self._shapley_test_assert_future( + forward_func, + inp, + [ + [ + [76.66666, 196.66666, 116.66666], + [76.66666, 196.66666, 116.66666], + [0, 0, 0], + [0, 0, 0], + ] + ], + target=None, # no target, multi-task output for all classes + perturbations_per_eval=(1, 2, 3), + n_samples=150, + test_true_shapley=True, + ) + else: + net1 = BasicModel_MultiLayer() + + def forward_func(*args, **kwargs): + net_output = net1(*args, **kwargs) + batch_size = net_output.size(0) + constant = torch.ones(batch_size, 2) + output = torch.cat( + [ + net_output, + constant, + ], + dim=-1, + ) + return output + + # return shape (batch size, 4) + self._shapley_test_assert( + forward_func, + inp, + [ + [ + [76.66666, 196.66666, 116.66666], + [76.66666, 196.66666, 116.66666], + [0, 0, 0], + [0, 0, 0], + ] + ], + target=None, # no target, multi-task output for all classes + perturbations_per_eval=(1, 2, 3), + n_samples=150, + test_true_shapley=True, + ) + + @parameterized.expand([True, False]) + def test_shapley_sampling_multi_task_output_with_mask(self, use_future) -> None: + # return shape (batch size, 2) + inp = torch.tensor([[20.0, 50.0, 30.0], [20.0, 50.0, 30.0]], requires_grad=True) + mask = torch.tensor([[1, 1, 0], [0, 1, 1]]) + if use_future: + net1_fut = BasicModel_MultiLayer_with_Future() + + # return shape (batch size, 4) + def forward_func(*args, **kwargs): + net_output = net1_fut(*args, **kwargs) + net_output.wait() + batch_size = net_output.value().size(0) + constant = torch.ones(batch_size, 1) + + output = torch.cat( + [ + net_output.value(), + constant, + ], + dim=-1, + ) + fut = Future() + fut.set_result(output) + return fut + + self._shapley_test_assert_future( + forward_func, + inp, + [ + [ + [275.0, 275.0, 115.0], + [275.0, 275.0, 115.0], + [0, 0, 0], + ], + [ + [75.0, 315.0, 315.0], + [75.0, 315.0, 315.0], + [0, 0, 0], + ], + ], + target=None, # no target, multi-task output for all classes + perturbations_per_eval=(1, 2, 3), + n_samples=150, + test_true_shapley=True, + feature_mask=mask, + ) + else: + + net1 = BasicModel_MultiLayer() + + # return shape (batch size, 4) + def forward_func(*args, **kwargs): + net_output = net1(*args, **kwargs) + batch_size = net_output.size(0) + constant = torch.ones(batch_size, 1) + + output = torch.cat( + [ + net_output, + constant, + ], + dim=-1, + ) + return output + + self._shapley_test_assert( + forward_func, + inp, + [ + [ + [275.0, 275.0, 115.0], + [275.0, 275.0, 115.0], + [0, 0, 0], + ], + [ + [75.0, 315.0, 315.0], + [75.0, 315.0, 315.0], + [0, 0, 0], + ], + ], + target=None, # no target, multi-task output for all classes + perturbations_per_eval=(1, 2, 3), + n_samples=150, + test_true_shapley=True, + feature_mask=mask, + ) + # Remaining tests are for cases where forward function returns a scalar # per batch, as either a float, integer, 0d tensor or 1d tensor. - def test_single_shapley_batch_scalar_float(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_single_shapley_batch_scalar_float(self, use_future) -> None: + def func(inp): + return torch.sum(net(inp)).item() + + def func_future(inp): + temp = net_fut(inp) + temp.wait() + fut = Future() + fut.set_result(torch.sum(temp.value()).item()) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer() + func_to_use = func self._single_input_one_sample_batch_scalar_shapley_assert( - lambda inp: torch.sum(net(inp)).item() + lambda inp: func_to_use(inp), use_future=use_future ) - def test_single_shapley_batch_scalar_tensor_0d(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_single_shapley_batch_scalar_tensor_0d(self, use_future) -> None: + def func(inp): + return torch.sum(net(inp)) + + def func_future(inp): + temp = net_fut(inp) + temp.wait() + fut = Future() + fut.set_result(torch.sum(temp.value())) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer() + func_to_use = func self._single_input_one_sample_batch_scalar_shapley_assert( - lambda inp: torch.sum(net(inp)) + lambda inp: func_to_use(inp), use_future=use_future ) - def test_single_shapley_batch_scalar_tensor_1d(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_single_shapley_batch_scalar_tensor_1d(self, use_future) -> None: + def func(inp): + return torch.sum(net(inp)).reshape(1) + + def func_future(inp): + temp = net_fut(inp) + temp.wait() + fut = Future() + fut.set_result(torch.sum(temp.value()).reshape(1)) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer() + func_to_use = func self._single_input_one_sample_batch_scalar_shapley_assert( - lambda inp: torch.sum(net(inp)).reshape(1) + lambda inp: func_to_use(inp), use_future=use_future ) - def test_single_shapley_batch_scalar_tensor_int(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_single_shapley_batch_scalar_tensor_int(self, use_future) -> None: + def func(inp): + return int(torch.sum(net(inp)).item()) + + def func_future(inp): + temp = net_fut(inp) + temp.wait() + fut = Future() + fut.set_result(int(torch.sum(temp.value()).item())) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer() + func_to_use = func self._single_input_one_sample_batch_scalar_shapley_assert( - lambda inp: int(torch.sum(net(inp)).item()) + lambda inp: func_to_use(inp), use_future=use_future ) - def test_single_shapley_int_batch_scalar_float(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_single_shapley_int_batch_scalar_float(self, use_future) -> None: + def func(inp): + return torch.sum(net(inp.float())).item() + + def func_future(inp): + temp = net_fut(inp.float()) + temp.wait() + fut = Future() + fut.set_result(torch.sum(temp.value()).item()) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer() + func_to_use = func self._single_int_input_multi_sample_batch_scalar_shapley_assert( - lambda inp: torch.sum(net(inp.float())).item() + lambda inp: func_to_use(inp), use_future=use_future ) - def test_single_shapley_int_batch_scalar_tensor_0d(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_single_shapley_int_batch_scalar_tensor_0d(self, use_future) -> None: + def func(inp): + return torch.sum(net(inp.float())) + + def func_future(inp): + temp = net_fut(inp.float()) + temp.wait() + fut = Future() + fut.set_result(torch.sum(temp.value())) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer() + func_to_use = func self._single_int_input_multi_sample_batch_scalar_shapley_assert( - lambda inp: torch.sum(net(inp.float())) + lambda inp: func_to_use(inp), use_future=use_future ) - def test_single_shapley_int_batch_scalar_tensor_1d(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_single_shapley_int_batch_scalar_tensor_1d(self, use_future) -> None: + def func(inp): + return torch.sum(net(inp.float())).reshape(1) + + def func_future(inp): + temp = net_fut(inp.float()) + temp.wait() + fut = Future() + fut.set_result(torch.sum(temp.value()).reshape(1)) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer() + func_to_use = func self._single_int_input_multi_sample_batch_scalar_shapley_assert( - lambda inp: torch.sum(net(inp.float())).reshape(1) + lambda inp: func_to_use(inp), use_future=use_future ) - def test_single_shapley_int_batch_scalar_tensor_int(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_single_shapley_int_batch_scalar_tensor_int(self, use_future) -> None: + def func(inp): + return int(torch.sum(net(inp.float())).item()) + + def func_future(inp): + temp = net_fut(inp.float()) + temp.wait() + fut = Future() + fut.set_result(int(torch.sum(temp.value()).item())) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer() + func_to_use = func self._single_int_input_multi_sample_batch_scalar_shapley_assert( - lambda inp: int(torch.sum(net(inp.float())).item()) + lambda inp: func_to_use(inp), use_future=use_future ) - def test_multi_sample_shapley_batch_scalar_float(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_multi_sample_shapley_batch_scalar_float(self, use_future) -> None: + def func(inp): + return torch.sum(net(inp)).item() + + def func_future(inp): + temp = net_fut(inp) + temp.wait() + fut = Future() + fut.set_result(torch.sum(temp.value()).item()) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer() + func_to_use = func self._single_input_multi_sample_batch_scalar_shapley_assert( - lambda inp: torch.sum(net(inp)).item() + lambda inp: func_to_use(inp), use_future=use_future ) - def test_multi_sample_shapley_batch_scalar_tensor_0d(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_multi_sample_shapley_batch_scalar_tensor_0d(self, use_future) -> None: + def func(inp): + return torch.sum(net(inp)) + + def func_future(inp): + temp = net_fut(inp) + temp.wait() + fut = Future() + fut.set_result(torch.sum(temp.value())) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer() + func_to_use = func self._single_input_multi_sample_batch_scalar_shapley_assert( - lambda inp: torch.sum(net(inp)) + lambda inp: func_to_use(inp), use_future=use_future ) - def test_multi_sample_shapley_batch_scalar_tensor_1d(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_multi_sample_shapley_batch_scalar_tensor_1d(self, use_future) -> None: + def func(inp): + return torch.sum(net(inp)).reshape(1) + + def func_future(inp): + temp = net_fut(inp) + temp.wait() + fut = Future() + fut.set_result(torch.sum(temp.value()).reshape(1)) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer() + func_to_use = func self._single_input_multi_sample_batch_scalar_shapley_assert( - lambda inp: torch.sum(net(inp)).reshape(1) + lambda inp: func_to_use(inp), use_future=use_future ) - def test_multi_sample_shapley_batch_scalar_tensor_int(self) -> None: - net = BasicModel_MultiLayer() + @parameterized.expand([True, False]) + def test_multi_sample_shapley_batch_scalar_tensor_int(self, use_future) -> None: + def func(inp): + return int(torch.sum(net(inp)).item()) + + def func_future(inp): + temp = net_fut(inp) + temp.wait() + fut = Future() + fut.set_result(int(torch.sum(temp.value()).item())) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer() + func_to_use = func self._single_input_multi_sample_batch_scalar_shapley_assert( - lambda inp: int(torch.sum(net(inp)).item()) + lambda inp: func_to_use(inp), use_future=use_future ) - def test_multi_inp_shapley_batch_scalar_float(self) -> None: - net = BasicModel_MultiLayer_MultiInput() + @parameterized.expand([True, False]) + def test_multi_inp_shapley_batch_scalar_float(self, use_future) -> None: + def func(*inp): + return torch.sum(net(*inp)).item() + + def func_future(*inp): + temp = net_fut(*inp) + temp.wait() + fut = Future() + fut.set_result(torch.sum(temp.value()).item()) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_MultiInput_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer_MultiInput() + func_to_use = func self._multi_input_batch_scalar_shapley_assert( - lambda *inp: torch.sum(net(*inp)).item() + lambda *inp: func_to_use(*inp), use_future=use_future ) - def test_multi_inp_shapley_batch_scalar_tensor_0d(self) -> None: - net = BasicModel_MultiLayer_MultiInput() - self._multi_input_batch_scalar_shapley_assert(lambda *inp: torch.sum(net(*inp))) + @parameterized.expand([True, False]) + def test_multi_inp_shapley_batch_scalar_tensor_0d(self, use_future) -> None: + def func(*inp): + return torch.sum(net(*inp)) - def test_multi_inp_shapley_batch_scalar_tensor_1d(self) -> None: - net = BasicModel_MultiLayer_MultiInput() + def func_future(*inp): + temp = net_fut(*inp) + temp.wait() + fut = Future() + fut.set_result(torch.sum(temp.value())) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_MultiInput_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer_MultiInput() + func_to_use = func self._multi_input_batch_scalar_shapley_assert( - lambda *inp: torch.sum(net(*inp)).reshape(1) + lambda *inp: func_to_use(*inp), use_future=use_future ) - def test_mutli_inp_shapley_batch_scalar_tensor_int(self) -> None: - net = BasicModel_MultiLayer_MultiInput() + @parameterized.expand([True, False]) + def test_multi_inp_shapley_batch_scalar_tensor_1d(self, use_future) -> None: + def func(*inp): + return torch.sum(net(*inp)).reshape(1) + + def func_future(*inp): + temp = net_fut(*inp) + temp.wait() + fut = Future() + fut.set_result(torch.sum(temp.value()).reshape(1)) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_MultiInput_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer_MultiInput() + func_to_use = func + self._multi_input_batch_scalar_shapley_assert( + lambda *inp: func_to_use(*inp), use_future=use_future + ) + + @parameterized.expand([True, False]) + def test_mutli_inp_shapley_batch_scalar_tensor_int(self, use_future) -> None: + def func(*inp): + return int(torch.sum(net(*inp)).item()) + + def func_future(*inp): + temp = net_fut(*inp) + temp.wait() + fut = Future() + fut.set_result(int(torch.sum(temp.value()).item())) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_MultiInput_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer_MultiInput() + func_to_use = func self._multi_input_batch_scalar_shapley_assert( - lambda *inp: int(torch.sum(net(*inp)).item()) + lambda *inp: func_to_use(*inp), use_future=use_future + ) + + @parameterized.expand([True, False]) + def test_mutli_inp_shapley_batch_scalar_tensor_expanded(self, use_future) -> None: + def func(*inp): + sum_val = torch.sum(net(*inp)).item() + return torch.tensor([sum_val, sum_val + 2.0, sum_val + 3.0]) + + def func_future(*inp): + temp = net_fut(*inp) + temp.wait() + sum_val = torch.sum(temp.value()).item() + fut = Future() + fut.set_result(torch.tensor([sum_val, sum_val + 2.0, sum_val + 3.0])) + return fut + + if use_future: + net_fut = BasicModel_MultiLayer_MultiInput_with_Future() + func_to_use = func_future + else: + net = BasicModel_MultiLayer_MultiInput() + func_to_use = func + self._multi_input_batch_scalar_shapley_assert( + lambda *inp: func_to_use(*inp), use_future=use_future, expanded_output=True ) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) @@ -306,76 +889,126 @@ def test_shapley_sampling_with_mask_and_show_progress(self, mock_stderr) -> None mock_stderr.truncate(0) def _single_input_one_sample_batch_scalar_shapley_assert( - self, func: Callable + self, + func: Callable, + use_future: bool = False, ) -> None: inp = torch.tensor([[2.0, 10.0, 3.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1]]) - - self._shapley_test_assert( - func, - inp, - [[79.0, 79.0, 21.0]], - feature_mask=mask, - perturbations_per_eval=(1,), - target=None, - ) + if use_future: + self._shapley_test_assert_future( + func, + inp, + [[79.0, 79.0, 21.0]], + feature_mask=mask, + perturbations_per_eval=(1,), + target=None, + ) + else: + self._shapley_test_assert( + func, + inp, + [[79.0, 79.0, 21.0]], + feature_mask=mask, + perturbations_per_eval=(1,), + target=None, + ) def _single_input_multi_sample_batch_scalar_shapley_assert( - self, func: Callable + self, + func: Callable, + use_future: bool = False, ) -> None: inp = torch.tensor([[2.0, 10.0, 3.0], [20.0, 50.0, 30.0]], requires_grad=True) mask = torch.tensor([[0, 0, 1]]) - - self._shapley_test_assert( - func, - inp, - [[629.0, 629.0, 251.0]], - feature_mask=mask, - perturbations_per_eval=(1,), - target=None, - n_samples=2500, - ) + if use_future: + self._shapley_test_assert_future( + func, + inp, + [[629.0, 629.0, 251.0]], + feature_mask=mask, + perturbations_per_eval=(1,), + target=None, + n_samples=2500, + ) + else: + self._shapley_test_assert( + func, + inp, + [[629.0, 629.0, 251.0]], + feature_mask=mask, + perturbations_per_eval=(1,), + target=None, + n_samples=2500, + ) def _single_int_input_multi_sample_batch_scalar_shapley_assert( - self, func: Callable + self, + func: Callable, + use_future: bool = False, ) -> None: inp = torch.tensor([[2, 10, 3], [20, 50, 30]]) mask = torch.tensor([[0, 0, 1]]) + if use_future: + self._shapley_test_assert_future( + func, + inp, + [[629.0, 629.0, 251.0]], + feature_mask=mask, + perturbations_per_eval=(1,), + target=None, + n_samples=2500, + ) + else: + self._shapley_test_assert( + func, + inp, + [[629.0, 629.0, 251.0]], + feature_mask=mask, + perturbations_per_eval=(1,), + target=None, + n_samples=2500, + ) - self._shapley_test_assert( - func, - inp, - [[629.0, 629.0, 251.0]], - feature_mask=mask, - perturbations_per_eval=(1,), - target=None, - n_samples=2500, - ) - - def _multi_input_batch_scalar_shapley_assert(self, func: Callable) -> None: + def _multi_input_batch_scalar_shapley_assert( + self, func: Callable, use_future: bool = False, expanded_output: bool = False + ) -> None: inp1 = torch.tensor([[23.0, 100.0, 0.0], [20.0, 50.0, 30.0]]) inp2 = torch.tensor([[20.0, 50.0, 30.0], [0.0, 100.0, 0.0]]) inp3 = torch.tensor([[0.0, 100.0, 10.0], [20.0, 10.0, 13.0]]) mask1 = torch.tensor([[1, 1, 1]]) mask2 = torch.tensor([[0, 1, 2]]) mask3 = torch.tensor([[0, 1, 2]]) + out_mult = 3 if expanded_output else 1 expected = ( - [[3850.6666, 3850.6666, 3850.6666]], - [[306.6666, 3850.6666, 410.6666]], - [[306.6666, 3850.6666, 410.6666]], - ) - - self._shapley_test_assert( - func, - (inp1, inp2, inp3), - expected, - additional_input=(1,), - feature_mask=(mask1, mask2, mask3), - perturbations_per_eval=(1,), - target=None, - n_samples=3500, - delta=1.2, + [[3850.6666, 3850.6666, 3850.6666]] * out_mult, + [[306.6666, 3850.6666, 410.6666]] * out_mult, + [[306.6666, 3850.6666, 410.6666]] * out_mult, ) + if use_future: + self._shapley_test_assert_future( + func, + (inp1, inp2, inp3), + expected, + additional_input=(1,), + feature_mask=(mask1, mask2, mask3), + perturbations_per_eval=(1,), + target=None, + n_samples=3500, + delta=1.2, + ) + else: + self._shapley_test_assert( + func, + (inp1, inp2, inp3), + expected, + additional_input=(1,), + feature_mask=(mask1, mask2, mask3), + perturbations_per_eval=(1,), + target=None, + n_samples=3500, + delta=1.2, + ) def _shapley_test_assert( self, @@ -422,6 +1055,54 @@ def _shapley_test_assert( self, attributions, expected_attr, mode="max", delta=0.001 ) + def _shapley_test_assert_future( + self, + model: Callable, + test_input: TensorOrTupleOfTensorsGeneric, + expected_attr, + feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, + additional_input: Any = None, + perturbations_per_eval: Tuple[int, ...] = (1,), + baselines: BaselineType = None, + target: Union[None, int] = 0, + n_samples: int = 100, + delta: float = 1.0, + # leaving this false as it is not supported for future + test_true_shapley: bool = False, + show_progress: bool = False, + ) -> None: + for batch_size in perturbations_per_eval: + shapley_samp = ShapleyValueSampling(model) + attributions = shapley_samp.attribute_future( + test_input, + target=target, + feature_mask=feature_mask, + additional_forward_args=additional_input, + baselines=baselines, + perturbations_per_eval=batch_size, + n_samples=n_samples, + show_progress=show_progress, + ) + attributions.wait() + assertTensorTuplesAlmostEqual( + self, attributions.value(), expected_attr, delta=delta, mode="max" + ) + if test_true_shapley: + shapley_val = ShapleyValues(model) + attributions = shapley_val.attribute_future( + test_input, + target=target, + feature_mask=feature_mask, + additional_forward_args=additional_input, + baselines=baselines, + perturbations_per_eval=batch_size, + show_progress=show_progress, + ) + attributions.wait() + assertTensorTuplesAlmostEqual( + self, attributions.value(), expected_attr, mode="max", delta=0.001 + ) + if __name__ == "__main__": unittest.main() diff --git a/tests/attr/test_stat.py b/tests/attr/test_stat.py index 9559b1b237..8289584cce 100644 --- a/tests/attr/test_stat.py +++ b/tests/attr/test_stat.py @@ -1,12 +1,16 @@ #!/usr/bin/env python3 + +# pyre-unsafe import random +from typing import Callable, List import torch from captum.attr import Max, Mean, Min, MSE, StdDev, Sum, Summarizer, Var -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual -def get_values(n=100, lo=None, hi=None, integers=False): +def get_values(n: int = 100, lo=None, hi=None, integers: bool = False): for _ in range(n): if integers: yield random.randint(lo, hi) @@ -15,7 +19,7 @@ def get_values(n=100, lo=None, hi=None, integers=False): class Test(BaseTest): - def test_div0(self): + def test_div0(self) -> None: summarizer = Summarizer([Var(), Mean()]) summ = summarizer.summary self.assertIsNone(summ) @@ -30,7 +34,7 @@ def test_div0(self): assertTensorAlmostEqual(self, summ["mean"], 10) assertTensorAlmostEqual(self, summ["variance"], 0) - def test_var_defin(self): + def test_var_defin(self) -> None: """ Variance is avg squared distance to mean. Thus it should be positive. This test is to ensure this is the case. @@ -63,7 +67,7 @@ def test_var_defin(self): assertTensorAlmostEqual(self, var, actual_var) self.assertTrue((var > 0).all()) - def test_multi_dim(self): + def test_multi_dim(self) -> None: x1 = torch.tensor([1.0, 2.0, 3.0, 4.0]) x2 = torch.tensor([2.0, 1.0, 2.0, 4.0]) x3 = torch.tensor([3.0, 3.0, 1.0, 4.0]) @@ -113,7 +117,7 @@ def test_multi_dim(self): mode="max", ) - def test_stats_random_data(self): + def test_stats_random_data(self) -> None: N = 1000 BIG_VAL = 100000 _values = list(get_values(lo=-BIG_VAL, hi=BIG_VAL, n=N)) @@ -140,7 +144,7 @@ def test_stats_random_data(self): "sum", "mse", ] - gt_fns = [ + gt_fns: List[Callable] = [ torch.mean, lambda x: torch.var(x, unbiased=False), lambda x: torch.var(x, unbiased=True), diff --git a/tests/attr/test_summarizer.py b/tests/attr/test_summarizer.py index 1b8d6859a2..186b339835 100644 --- a/tests/attr/test_summarizer.py +++ b/tests/attr/test_summarizer.py @@ -1,11 +1,13 @@ #!/usr/bin/env python3 + +# pyre-unsafe import torch from captum.attr import CommonStats, Summarizer -from tests.helpers.basic import BaseTest +from captum.testing.helpers import BaseTest class Test(BaseTest): - def test_single_input(self): + def test_single_input(self) -> None: size = (2, 3) summarizer = Summarizer(stats=CommonStats()) for _ in range(10): @@ -19,7 +21,7 @@ def test_single_input(self): for k in summ: self.assertTrue(summ[k].size() == size) - def test_multi_input(self): + def test_multi_input(self) -> None: size1 = (10, 5, 5) size2 = (3, 5) diff --git a/tests/attr/test_targets.py b/tests/attr/test_targets.py index 523c034e2b..0d4bf00c55 100644 --- a/tests/attr/test_targets.py +++ b/tests/attr/test_targets.py @@ -1,5 +1,7 @@ #!/usr/bin/env python3 +# pyre-unsafe + from typing import Any, Callable, cast, Dict, Optional, Tuple, Type @@ -10,15 +12,19 @@ from captum.attr._core.lime import Lime from captum.attr._core.noise_tunnel import NoiseTunnel from captum.attr._utils.attribution import Attribution, InternalAttribution -from tests.attr.helpers.gen_test_utils import ( +from captum.testing.attr.helpers.gen_test_utils import ( gen_test_name, get_target_layer, parse_test_config, should_create_generated_test, ) -from tests.attr.helpers.test_config import config -from tests.helpers.basic import assertTensorTuplesAlmostEqual, BaseTest, deep_copy_args -from tests.helpers.basic_models import BasicModel_MultiLayer +from captum.testing.attr.helpers.test_config import config +from captum.testing.helpers.basic import ( + assertTensorTuplesAlmostEqual, + BaseTest, + deep_copy_args, +) +from captum.testing.helpers.basic_models import BasicModel_MultiLayer from torch import Tensor from torch.nn import Module @@ -150,9 +156,11 @@ def target_test_assert(self) -> None: ) if original_additional_forward_args is not None: args["additional_forward_args"] = tuple( - single_add_arg[i : i + 1] - if isinstance(single_add_arg, Tensor) - else single_add_arg + ( + single_add_arg[i : i + 1] + if isinstance(single_add_arg, Tensor) + else single_add_arg + ) for single_add_arg in original_additional_forward_args ) if replace_baselines: @@ -160,9 +168,11 @@ def target_test_assert(self) -> None: args["baselines"] = original_baselines[i : i + 1] elif isinstance(original_baselines, tuple): args["baselines"] = tuple( - single_baseline[i : i + 1] - if isinstance(single_baseline, Tensor) - else single_baseline + ( + single_baseline[i : i + 1] + if isinstance(single_baseline, Tensor) + else single_baseline + ) for single_baseline in original_baselines ) # Since Lime methods compute attributions for a batch diff --git a/tests/attr/test_utils_batching.py b/tests/attr/test_utils_batching.py index 89cd8b0407..25bb536f0a 100644 --- a/tests/attr/test_utils_batching.py +++ b/tests/attr/test_utils_batching.py @@ -1,16 +1,19 @@ #!/usr/bin/env python3 +# pyre-unsafe + import torch from captum.attr._utils.batching import ( _batched_generator, _batched_operator, _tuple_splice_range, ) -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual class Test(BaseTest): - def test_tuple_splice_range(self): + def test_tuple_splice_range(self) -> None: test_tuple = ( torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]), "test", @@ -21,7 +24,7 @@ def test_tuple_splice_range(self): self.assertEqual(spliced_tuple[1], "test") assertTensorAlmostEqual(self, spliced_tuple[2], [[0, 1, 2], [3, 4, 5]]) - def test_tuple_splice_range_3d(self): + def test_tuple_splice_range_3d(self) -> None: test_tuple = ( torch.tensor([[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [6, 7, 8]]]), "test", @@ -30,7 +33,7 @@ def test_tuple_splice_range_3d(self): assertTensorAlmostEqual(self, spliced_tuple[0], [[[6, 7, 8], [6, 7, 8]]]) self.assertEqual(spliced_tuple[1], "test") - def test_batched_generator(self): + def test_batched_generator(self) -> None: def sample_operator(inputs, additional_forward_args, target_ind, scale): return ( scale * (sum(inputs)), @@ -55,12 +58,12 @@ def sample_operator(inputs, additional_forward_args, target_ind, scale): self.assertEqual(add[1], 5) self.assertEqual(targ, 7) - def test_batched_operator_0_bsz(self): + def test_batched_operator_0_bsz(self) -> None: inp1 = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) with self.assertRaises(AssertionError): _batched_operator(lambda x: x, inputs=inp1, internal_batch_size=0) - def test_batched_operator(self): + def test_batched_operator(self) -> None: def _sample_operator(inputs, additional_forward_args, target_ind, scale): return ( scale * (sum(inputs)), diff --git a/tests/concept/test_concept.py b/tests/concept/test_concept.py index ab7e81e42a..5b0474a1d0 100644 --- a/tests/concept/test_concept.py +++ b/tests/concept/test_concept.py @@ -1,11 +1,13 @@ #!/usr/bin/env python3import +# pyre-unsafe + from typing import cast, Iterable import torch from captum.concept._core.concept import Concept from captum.concept._utils.data_iterator import dataset_to_dataloader -from tests.helpers.basic import BaseTest +from captum.testing.helpers import BaseTest from torch.utils.data import IterableDataset @@ -14,7 +16,7 @@ class CustomIterableDataset(IterableDataset): An auxiliary class for iterating through an image dataset. """ - def __init__(self, get_tensor_from_filename_func, path): + def __init__(self, get_tensor_from_filename_func, path) -> None: r""" Args: diff --git a/tests/concept/test_tcav.py b/tests/concept/test_tcav.py index 44c2916c80..b63e121e3f 100644 --- a/tests/concept/test_tcav.py +++ b/tests/concept/test_tcav.py @@ -1,8 +1,11 @@ -#!/usr/bin/env python3import +#!/usr/bin/env python3 + +# pyre-strict import glob import os import tempfile +import unittest from collections import defaultdict, OrderedDict from typing import ( Any, @@ -25,8 +28,9 @@ from captum.concept._utils.classifier import Classifier from captum.concept._utils.common import concepts_to_str from captum.concept._utils.data_iterator import dataset_to_dataloader -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicModel_ConvNet +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import BasicModel_ConvNet from torch import Tensor from torch.utils.data import DataLoader, IterableDataset @@ -48,7 +52,7 @@ def __init__(self) -> None: def train_and_eval( self, dataloader: DataLoader, **kwargs: Any - ) -> Union[Dict, None]: + ) -> Union[Dict[str, Tensor], None]: inputs = [] labels = [] for input, label in dataloader: @@ -57,6 +61,7 @@ def train_and_eval( inputs = torch.cat(inputs) labels = torch.cat(labels) # update concept ids aka classes + # pyre-fixme[16]: `CustomClassifier` has no attribute `_classes`. self._classes = list(OrderedDict.fromkeys([label.item() for label in labels])) # Training is skipped for performance and indepenence of sklearn reasons @@ -83,11 +88,13 @@ def train_and_eval( accs = score.float().mean() # A hack to mock weights for two different layer + # pyre-fixme[16]: `CustomClassifier` has no attribute `num_features`. self.num_features = input.shape[1] return {"accs": accs} def weights(self) -> Tensor: + # pyre-fixme[16]: `CustomClassifier` has no attribute `num_features`. if self.num_features != 16: return torch.randn(2, self.num_features) @@ -134,6 +141,7 @@ def weights(self) -> Tensor: ) def classes(self) -> List[int]: + # pyre-fixme[16]: `CustomClassifier` has no attribute `_classes`. return self._classes @@ -143,7 +151,7 @@ def __init__(self) -> None: def train_and_eval( self, dataloader: DataLoader, **kwargs: Any - ) -> Union[Dict, None]: + ) -> Union[Dict[str, Tensor], None]: CustomClassifier.train_and_eval(self, dataloader) return None @@ -169,7 +177,11 @@ class CustomIterableDataset(IterableDataset): """ def __init__( - self, get_tensor_from_filename_func: Callable, path: str, num_samples=100 + self, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + get_tensor_from_filename_func: Callable, + path: str, + num_samples: int = 100, ) -> None: r""" Args: @@ -178,14 +190,14 @@ def __init__( """ self.path = path - self.file_itr = ["x"] * num_samples + self.file_itr: List[str] = ["x"] * num_samples self.get_tensor_from_filename_func = get_tensor_from_filename_func def get_tensor_from_filename(self, filename: str) -> Tensor: return self.get_tensor_from_filename_func(filename) - def __iter__(self) -> Iterator: + def __iter__(self) -> Iterator[Tensor]: mapped_itr = map(self.get_tensor_from_filename, self.file_itr) @@ -723,26 +735,22 @@ def test_compute_cav_repeating_concept_names(self) -> None: self.assertEqual(cavs["0-1"]["conv1"].concepts[1].id, 1) self.assertEqual(cavs["0-1"]["conv1"].concepts[1].name, "random") - self.assertEqual(cavs["0-1"]["conv1"].stats["classes"], [0, 1]) - self.assertAlmostEqual( - cavs["0-1"]["conv1"].stats["accs"].item(), 0.4848, delta=0.001 - ) - self.assertEqual( - list(cavs["0-1"]["conv1"].stats["weights"].shape), [2, 128] - ) + stats = cavs["0-1"]["conv1"].stats + self.assertIsNotNone(stats) + self.assertEqual(stats["classes"], [0, 1]) # type: ignore + self.assertAlmostEqual(stats["accs"].item(), 0.4848, delta=0.001) # type: ignore # noqa: E501 line too long + self.assertEqual(list(stats["weights"].shape), [2, 128]) # type: ignore self.assertEqual(cavs["2-3"]["conv1"].concepts[0].id, 2) self.assertEqual(cavs["2-3"]["conv1"].concepts[0].name, "ceo") self.assertEqual(cavs["2-3"]["conv1"].concepts[1].id, 3) self.assertEqual(cavs["2-3"]["conv1"].concepts[1].name, "striped") - self.assertEqual(cavs["2-3"]["conv1"].stats["classes"], [2, 3]) - self.assertAlmostEqual( - cavs["2-3"]["conv1"].stats["accs"].item(), 0.4848, delta=0.001 - ) - self.assertEqual( - list(cavs["2-3"]["conv1"].stats["weights"].shape), [2, 128] - ) + stats = cavs["2-3"]["conv1"].stats + self.assertIsNotNone(stats) + self.assertEqual(stats["classes"], [2, 3]) # type: ignore + self.assertAlmostEqual(stats["accs"].item(), 0.4848, delta=0.001) # type: ignore # noqa: E501 line too long + self.assertEqual(list(stats["weights"].shape), [2, 128]) # type: ignore def compute_cavs_interpret( self, @@ -783,7 +791,9 @@ def _compute_cavs_interpret( layers: Union[str, List[str]] = "conv2", attribute_to_layer_input: bool = False, ) -> None: - def wrap_in_list_if_not_already(input): + def wrap_in_list_if_not_already( + input: Union[str, float, List[float], List[str]], + ) -> Union[List[Union[float, str]], List[float], List[str]]: return ( input if isinstance(input, list) @@ -812,10 +822,14 @@ def wrap_in_list_if_not_already(input): ) concepts_key = concepts_to_str(experimental_sets[0]) - _layers: List[str] = wrap_in_list_if_not_already(layers) - _accs: List[float] = wrap_in_list_if_not_already(accs) - _sign_counts: List[float] = wrap_in_list_if_not_already(sign_count) - _magnitudes: List[float] = wrap_in_list_if_not_already(magnitude) + _layers: List[str] = cast(List[str], wrap_in_list_if_not_already(layers)) + _accs: List[float] = cast(List[float], wrap_in_list_if_not_already(accs)) + _sign_counts: List[float] = cast( + List[float], wrap_in_list_if_not_already(sign_count) + ) + _magnitudes: List[float] = cast( + List[float], wrap_in_list_if_not_already(magnitude) + ) for layer, acc, sign_count, magnitude in zip( _layers, _accs, _sign_counts, _magnitudes @@ -830,6 +844,8 @@ def wrap_in_list_if_not_already(input): self.assertAlmostEqual( stats["accs"].item(), acc, + # pyre-fixme[6]: For 3rd argument expected `None` but got + # `float`. delta=0.0001, ) @@ -879,6 +895,7 @@ def test_TCAV_1(self) -> None: concepts_dict = create_concepts() for concept in concepts_dict.values(): self.assertTrue(concept.data_iter is not None) + # pyre-fixme[22]: The cast is redundant. data_iter = cast(DataLoader, concept.data_iter) self.assertEqual( len(cast(CustomIterableDataset, data_iter.dataset).file_itr), 100 @@ -886,18 +903,19 @@ def test_TCAV_1(self) -> None: self.assertTrue(concept.data_iter is not None) total_batches = 0 - for data in cast(Iterable, concept.data_iter): + for data in cast(Iterable[Tensor], concept.data_iter): total_batches += data.shape[0] self.assertEqual(data.shape[1:], torch.Size([1, 10, 10])) self.assertEqual(total_batches, 100) def test_TCAV_generate_all_activations(self) -> None: - def forward_hook_wrapper(expected_act: Tensor): - def forward_hook(module, inp, out=None): + def forward_hook_wrapper(expected_act: Tensor) -> int: + # pyre-fixme[2]: Parameter `module` must have a type other than `Any`. + def forward_hook(module: Any, inp: Tensor, out=None) -> None: out = torch.reshape(out, (out.shape[0], -1)) self.assertEqual(out.detach().shape[1:], expected_act.shape[1:]) - return forward_hook + return forward_hook # type: ignore with tempfile.TemporaryDirectory() as tmpdirname: layers = ["conv1", "conv2", "fc1", "fc2"] @@ -924,19 +942,25 @@ def forward_hook(module, inp, out=None): tmpdirname, "default_model_id", concept.identifier, layer ) - def batch_collate(batch): + # pyre-fixme[2]: Parameter `batch` has no type specified. + def batch_collate(batch) -> Tensor: return torch.cat(batch) self.assertTrue(concept.data_iter is not None) assert not (activations is None) for activation in cast( - Iterable, DataLoader(activations, collate_fn=batch_collate) + # pyre-fixme[24]: Generic type `Iterable` + # expects 1 type parameter. + Iterable, + DataLoader(activations, collate_fn=batch_collate), ): concept_meta[concept.id] += activation.shape[0] layer_module = _get_module_from_name(tcav.model, layer) + # pyre-fixme[24]: Generic type `Iterable` + # expects 1 type parameter. for data in cast(Iterable, concept.data_iter): hook = layer_module.register_forward_hook( forward_hook_wrapper(activation) @@ -1191,6 +1215,10 @@ def test_TCAV_x_1_0_1_w_flipped_class_id(self) -> None: # Testing TCAV with default classifier and experimental sets of varying lengths def test_exp_sets_with_diffent_lengths(self) -> None: + try: + import sklearn.svm # noqa: F401 + except ImportError: + raise unittest.SkipTest("sklearn is not available.") # Create Concepts concepts_dict = create_concepts() diff --git a/tests/helpers/__init__.py b/tests/helpers/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/tests/influence/_core/test_arnoldi_influence.py b/tests/influence/_core/test_arnoldi_influence.py new file mode 100644 index 0000000000..1b1c2a8cdb --- /dev/null +++ b/tests/influence/_core/test_arnoldi_influence.py @@ -0,0 +1,532 @@ +# pyre-unsafe +import tempfile +from typing import Callable, List, Optional, Tuple + +import torch + +import torch.nn as nn +from captum.influence._core.arnoldi_influence_function import ( + _parameter_arnoldi, + _parameter_distill, + ArnoldiInfluenceFunction, +) +from captum.influence._core.influence_function import NaiveInfluenceFunction +from captum.influence._utils.common import ( + _eig_helper, + _flatten_params, + _top_eigen, + _unflatten_params_factory, +) +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.influence.common import ( + _format_batch_into_tuple, + build_test_name_func, + DataInfluenceConstructor, + ExplicitDataset, + generate_assymetric_matrix_given_eigenvalues, + generate_symmetric_matrix_given_eigenvalues, + get_random_model_and_data, + is_gpu, + UnpackDataset, +) +from parameterized import parameterized +from torch import Tensor +from torch.utils.data import DataLoader + + +class TestArnoldiInfluence(BaseTest): + @parameterized.expand( + [ + (dim, rank) + for (dim, rank) in [ + (5, 2), + (10, 5), + (20, 15), + ] + ], + name_func=build_test_name_func(), + ) + def test_top_eigen(self, dim: int, rank: int) -> None: + # generate symmetric matrix of specific rank and check can recover it using + # the eigenvalues / eigenvectors returned by `_top_eigen` + R = torch.randn(dim, rank) + H = torch.matmul(R, R.T) + ls, vs = _top_eigen(H, rank, 1e-5, 1e-5) + assertTensorAlmostEqual(self, vs @ torch.diag(ls) @ vs.T, H, 1e-2, "max") + + @parameterized.expand( + [ + (symmetric, eigenvalues, k, arnoldi_dim, params_shapes) + for symmetric in [True, False] + for (eigenvalues, k, arnoldi_dim, params_shapes, test_name) in [ + ( + 10 ** torch.linspace(-2, 2, 100), + 10, + 50, + [(4, 10), (15, 3), (3, 5)], + "standard", + ), + ] + ], + name_func=build_test_name_func(args_to_skip=["eigenvalues", "params_shapes"]), + ) + def test_parameter_arnoldi( + self, + symmetric: bool, + eigenvalues: Tensor, + k: int, + arnoldi_dim: int, + params_shapes: List[Tuple], + ) -> None: + """ + This performs the tests of https://github.com/google-research/jax-influence/blob/74bd321156b5445bb35b9594568e4eaaec1a76a3/jax_influence/arnoldi_test.py#L96 # noqa: E501 + See `_test_parameter_arnoldi_and_distill` documentation for 'arnoldi' + mode for details. + """ + self._test_parameter_arnoldi_and_distill( + "arnoldi", symmetric, eigenvalues, k, arnoldi_dim, params_shapes + ) + + @parameterized.expand( + [ + (symmetric, eigenvalues, k, arnoldi_dim, params_shapes) + for symmetric in [True, False] + for (eigenvalues, k, arnoldi_dim, params_shapes, test_name) in [ + ( + 10 ** torch.linspace(-2, 2, 100), + 10, + 50, + [(4, 10), (15, 3), (3, 5)], + "standard", + ), + ] + ], + name_func=build_test_name_func(args_to_skip=["eigenvalues", "params_shapes"]), + ) + def test_parameter_distill( + self, + symmetric: bool, + eigenvalues: Tensor, + k: int, + arnoldi_dim: int, + params_shapes: List[Tuple], + ) -> None: + """ + This performs the tests of https://github.com/google-research/jax-influence/blob/74bd321156b5445bb35b9594568e4eaaec1a76a3/jax_influence/arnoldi_test.py#L116 # noqa: E501 + See `_test_parameter_arnoldi_and_distill` documentation for + 'distill' mode for details. + """ + self._test_parameter_arnoldi_and_distill( + "distill", symmetric, eigenvalues, k, arnoldi_dim, params_shapes + ) + + def _test_parameter_arnoldi_and_distill( + self, + mode: str, + symmetric: bool, + eigenvalues: Tensor, + k: int, + arnoldi_dim: int, + param_shape: List[Tuple], + ) -> None: + """ + This is a helper with 2 modes. For both modes, it first generates a matrix + with `A` with specified eigenvalues. + + When mode is 'arnoldi', it checks that `_parameter_arnoldi` is correct. + In particular, it checks that the top-`k` eigenvalues of the restriction + of `A` to a Krylov subspace (the `H` returned by `_parameter_arnoldi`) + agree with those of the original matrix. This is a property we expect of the + Arnoldi iteration that `_parameter_arnoldi` implements. + + When mode is 'distill', it checks that `_parameter_distill` is correct. In + particular, it checks that the eigenvectors corresponding to the top + eigenvalues it returns agree with the top eigenvectors of `A`. This is the + property we require of `distill`, because we use the top eigenvectors (and + eigenvalues) of (implicitly-defined) `A` to calculate a low-rank approximation + of its inverse. + """ + # generate matrix `A` with specified eigenvalues + A = ( + generate_symmetric_matrix_given_eigenvalues(eigenvalues) + if symmetric + else generate_assymetric_matrix_given_eigenvalues(eigenvalues) + ) + + # create the matrix-vector multiplication function that `_parameter_arnoldi` + # expects that represents multiplication by `A`. + # since the vector actually needs to be a tuple of tensors, we + # specify the dimensions of that tuple of tensors. the function then + # flattens the vector, multiplies it by the generated matrix, and then + # unflattens the result + _unflatten_params = _unflatten_params_factory(param_shape) + + def _param_matmul(params: Tuple[Tensor]): + return _unflatten_params(torch.matmul(A, _flatten_params(params))) + + # generate `b` and call `_parameter_arnoldi` + b = tuple(torch.randn(shape) for shape in param_shape) + qs, H = _parameter_arnoldi( + _param_matmul, + b, + arnoldi_dim, + 1e-3, + torch.device("cpu"), + False, + ) + + assertTensorAlmostEqual( + self, + _flatten_params(_unflatten_params(_flatten_params(b))), + _flatten_params(b), + 1e-5, + "max", + ) + + # compute the eigenvalues / eigenvectors of `A` and `H`. we use `eig` since + # each matrix may not be symmetric. since `eig` does not sort by eigenvalues, + # need to manually do it. also get rid of last column of H, since + # it is not part of the decomposition + vs_A, ls_A = _eig_helper(A) + vs_H, ls_H = _eig_helper(H[:-1]) + + if mode == "arnoldi": + # compare the top-`k` eigenvalue of the two matrices + assertTensorAlmostEqual(self, vs_H[-k:], vs_A[-k:], 1e-3, "max") + elif mode == "distill": + # use `distill` to compute top-`k` eigenvectors of `H` in the original + # basis. then check if they are actually eigenvectors + vs_H_standard, ls_H_standard = _parameter_distill(qs, H, k, 0, 0) + + for l_H_standard, v_A in zip(ls_H_standard[-k:], vs_A[-k:]): + l_H_standard_flattened = _flatten_params(l_H_standard) # .real + expected = v_A * l_H_standard_flattened + actual = torch.matmul(A, l_H_standard_flattened) + # tol copied from original code + assert torch.norm(expected - actual) < 1e-2 + + # check that the top-`k` eigenvalues of `A` as computed by + # `_parameters_distill` are similar to those computed on `A` directly + for v_H_standard, v_A in zip(vs_H_standard[-k:], vs_A[-k:]): + # tol copied from original code + assert abs(v_H_standard - v_A) < 5 + + if False: + # code from original paper does not do this test, so skip for now + # use `distill`` to get top-`k` eigenvectors of `H` in the original + # basis, and compare with the top-`k` eigenvectors of `A`. need to + # flatten those from `distill` to compare + _, ls_H_standard = _parameter_distill(qs, H, k, 0, 0) + for l_H_standard, l_A in zip(ls_H_standard, ls_A): + # print(l_A) + # print(flatten_unflattener.flatten(l_H_standard).real) + l_H_standard_flattened /= torch.norm(l_H_standard_flattened) + assertTensorAlmostEqual( + self, + _flatten_params(l_H_standard).real, + l_A.real, + 1e-2, + "max", + ) + + # TODO: for some unknow reason, this test and the test below does not work + # on `cuda_data_parallel` setting. We need to investigate why. + # Use a local version of setting list for these two tests for now + # since we have changed the default setting list to includes all options. + # (This is also used in many other tests, which also needs to be unified later). + gpu_setting_list = ( + ["", "cuda"] + if torch.cuda.is_available() and torch.cuda.device_count() != 0 + else [""] + ) + + @parameterized.expand( + [ + ( + influence_constructor_1, + influence_constructor_2, + delta, + mode, + unpack_inputs, + gpu_setting, + ) + for gpu_setting in gpu_setting_list + for (influence_constructor_1, influence_constructor_2, delta) in [ + # compare implementations, when considering only 1 layer + ( + DataInfluenceConstructor( + NaiveInfluenceFunction, + layers=( + ["module.linear1"] + if gpu_setting == "cuda_dataparallel" + else ["linear1"] + ), + projection_dim=5, + show_progress=False, + name="NaiveInfluenceFunction_linear1", + ), + DataInfluenceConstructor( + ArnoldiInfluenceFunction, + layers=( + ["module.linear1"] + if gpu_setting == "cuda_dataparallel" + else ["linear1"] + ), + arnoldi_dim=50, + arnoldi_tol=1e-5, # set low enough so that arnoldi subspace + # is large enough + projection_dim=5, + show_progress=False, + name="ArnoldiInfluenceFunction_linear1", + ), + 1e-2, + ), + # compare implementations, when considering all layers + ( + DataInfluenceConstructor( + NaiveInfluenceFunction, + layers=None, + projection_dim=5, + show_progress=False, + name="NaiveInfluenceFunction_all_layers", + ), + DataInfluenceConstructor( + ArnoldiInfluenceFunction, + layers=None, + arnoldi_dim=50, + arnoldi_tol=1e-5, # set low enough so that arnoldi subspace + # is large enough + projection_dim=5, + show_progress=False, + name="ArnoldiInfluenceFunction_all_layers", + ), + 1e-2, + ), + ] + for mode in [ + # we skip the 'intermediate_quantities' mode, as + # `NaiveInfluenceFunction` and `ArnoldiInfluenceFunction` return + # intermediate quantities lying in different coordinate systems, + # which cannot be expected to be the same. + "self_influence", + "influence", + ] + for unpack_inputs in [ + False, + True, + ] + ], + name_func=build_test_name_func(), + ) + def test_compare_implementations_trained_NN_model_and_data( + self, + influence_constructor_1: Callable, + influence_constructor_2: Callable, + delta: float, + mode: str, + unpack_inputs: bool, + gpu_setting: Optional[str], + ) -> None: + """ + this compares 2 influence implementations on a trained 2-layer NN model. + the implementations we compare are `NaiveInfluenceFunction` and + `ArnoldiInfluenceFunction`. because the model is trained, calculations + are more numerically stable, so that we can project to a higher dimension (5). + """ + self._test_compare_implementations( + "trained_NN", + influence_constructor_1, + influence_constructor_2, + delta, + mode, + unpack_inputs, + gpu_setting, + ) + + # this compares `ArnoldiInfluenceFunction` and `NaiveInfluenceFunction` on randomly + # generated data. because these implementations are numerically equivalent, we + # can also compare the intermediate quantities. we do not compare with + # `NaiveInfluence` because on randomly generated data, it is not comparable, + # conceptually, with the other implementations, due to numerical issues. + + @parameterized.expand( + [ + ( + influence_constructor_1, + influence_constructor_2, + delta, + mode, + unpack_inputs, + gpu_setting, + ) + for gpu_setting in gpu_setting_list + for (influence_constructor_1, influence_constructor_2, delta) in [ + ( + DataInfluenceConstructor( + NaiveInfluenceFunction, + layers=( + ["module.linear1"] + if gpu_setting == "cuda_dataparallel" + else ["linear1"] + ), + show_progress=False, + projection_dim=1, + ), + DataInfluenceConstructor( + ArnoldiInfluenceFunction, + layers=( + ["module.linear1"] + if gpu_setting == "cuda_dataparallel" + else ["linear1"] + ), + show_progress=False, + arnoldi_dim=50, + arnoldi_tol=1e-6, + projection_dim=1, + ), + 1e-2, + ), + ] + for mode in [ + # we skip the 'intermediate_quantities' mode, as + # `NaiveInfluenceFunction` and `ArnoldiInfluenceFunction` return + # intermediate quantities lying in different coordinate systems, + # which cannot be expected to be the same. + "self_influence", + "influence", + ] + for unpack_inputs in [ + False, + True, + ] + ], + name_func=build_test_name_func(), + ) + def test_compare_implementations_random_model_and_data( + self, + influence_constructor_1: Callable, + influence_constructor_2: Callable, + delta: float, + mode: str, + unpack_inputs: bool, + gpu_setting: Optional[str], + ) -> None: + """ + this compares 2 influence implementations on a trained 2-layer NN model. + the implementations we compare are `NaiveInfluenceFunction` and + `ArnoldiInfluenceFunction`. because the model is not trained, calculations + are not numerically stable, and so we can only project to a low dimension (2). + """ + self._test_compare_implementations( + "random", + influence_constructor_1, + influence_constructor_2, + delta, + mode, + unpack_inputs, + gpu_setting, + ) + + def _test_compare_implementations( + self, + model_type: str, + influence_constructor_1: Callable, + influence_constructor_2: Callable, + delta: float, + mode: str, + unpack_inputs: bool, + gpu_setting: Optional[str], + ) -> None: + """ + checks that 2 implementations of `InfluenceFunctionBase` return the same + output, where the output is either self influence scores, or influence scores, + as determined by the `mode` input. this is a helper used by other tests. the + implementations are compared using the same data, but the model and saved + checkpoints can be different, and is specified using the `model_type` argument. + """ + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + hessian_samples, + hessian_labels, + test_samples, + test_labels, + ) = get_random_model_and_data( + tmpdir, + unpack_inputs, + return_test_data=True, + gpu_setting=gpu_setting, + return_hessian_data=True, + model_type=model_type, + ) + + train_dataset = DataLoader(train_dataset, batch_size=5) + + use_gpu = is_gpu(gpu_setting) + hessian_dataset = ( + ExplicitDataset(hessian_samples, hessian_labels, use_gpu) + if not unpack_inputs + else UnpackDataset(hessian_samples, hessian_labels, use_gpu) + ) + hessian_dataset = DataLoader(hessian_dataset, batch_size=5) + + criterion = nn.MSELoss(reduction="none") + batch_size = None + + influence_1 = influence_constructor_1( + net, + train_dataset, + tmpdir, + batch_size, + criterion, + hessian_dataset=hessian_dataset, + ) + + influence_2 = influence_constructor_2( + net, + train_dataset, + tmpdir, + batch_size, + criterion, + hessian_dataset=hessian_dataset, + ) + + if mode == "self_influence": + # compare self influence scores + assertTensorAlmostEqual( + self, + influence_1.self_influence(train_dataset), + influence_2.self_influence(train_dataset), + delta=delta, + mode="sum", + ) + elif mode == "intermediate_quantities": + # compare intermediate quantities + assertTensorAlmostEqual( + self, + influence_1.compute_intermediate_quantities(train_dataset), + influence_2.compute_intermediate_quantities(train_dataset), + delta=delta, + mode="max", + ) + elif mode == "influence": + # compare influence scores + assertTensorAlmostEqual( + self, + influence_1.influence( + _format_batch_into_tuple( + test_samples, test_labels, unpack_inputs + ) + ), + influence_2.influence( + _format_batch_into_tuple( + test_samples, test_labels, unpack_inputs + ) + ), + delta=delta, + mode="max", + ) + else: + raise Exception("unknown test mode") diff --git a/tests/influence/_core/test_dataloader.py b/tests/influence/_core/test_dataloader.py index 9613262573..abb646f987 100644 --- a/tests/influence/_core/test_dataloader.py +++ b/tests/influence/_core/test_dataloader.py @@ -1,3 +1,5 @@ +# pyre-strict + import tempfile from typing import Callable @@ -7,13 +9,15 @@ TracInCPFast, TracInCPFastRandProj, ) -from parameterized import parameterized -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.influence._utils.common import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.influence.common import ( + _format_batch_into_tuple, build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) +from parameterized import parameterized from torch.utils.data import DataLoader @@ -24,6 +28,21 @@ class TestTracInDataLoader(BaseTest): Dataset is fed to `self.tracin_constructor` gives the same results. """ + # pyre-fixme[56]: Pyre was not able to infer the type of argument + # `comprehension((reduction, constr, unpack_inputs) for + # generators(generator(unpack_inputs in [False, True] if ), + # generators(generator((reduction, constr) in + # [("none", captum.testing.helpers.influence.common.DataInfluenceConstructor + # (captum.influence._core.tracincp.TracInCP)), + # ("sum", captum.testing.helpers.influence.common.DataInfluenceConstructor + # (captum.influence._core.tracincp_fast_rand_proj.TracInCPFast)), ("sum", + # captum.testing.helpers.influence.common.DataInfluenceConstructor(captum.influence._core. + # tracincp_fast_rand_proj.TracInCPFastRandProj)), ("sum", + # captum.testing.helpers.influence.common.DataInfluenceConstructor( + # captum.influence._core.tracincp_fast_rand_proj.TracInCPFastRandProj, + # $parameter$name = "TracInCPFastRandProj_1DProj", + # $parameter$projection_dim = 1))] if ))))` + # to decorator factory `parameterized.parameterized.expand`. @parameterized.expand( [ ( @@ -49,7 +68,11 @@ class TestTracInDataLoader(BaseTest): name_func=build_test_name_func(args_to_skip=["reduction"]), ) def test_tracin_dataloader( - self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool + self, + reduction: str, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + tracin_constructor: Callable, + unpack_inputs: bool, ) -> None: with tempfile.TemporaryDirectory() as tmpdir: @@ -75,8 +98,10 @@ def test_tracin_dataloader( criterion, ) + # pyre-fixme[16]: `object` has no attribute `influence`. train_scores = tracin.influence( - test_samples, test_labels, k=None, unpack_inputs=unpack_inputs + _format_batch_into_tuple(test_samples, test_labels, unpack_inputs), + k=None, ) tracin_dataloader = tracin_constructor( @@ -88,7 +113,8 @@ def test_tracin_dataloader( ) train_scores_dataloader = tracin_dataloader.influence( - test_samples, test_labels, k=None, unpack_inputs=unpack_inputs + _format_batch_into_tuple(test_samples, test_labels, unpack_inputs), + k=None, ) assertTensorAlmostEqual( diff --git a/tests/influence/_core/test_naive_influence.py b/tests/influence/_core/test_naive_influence.py new file mode 100644 index 0000000000..0706408dc4 --- /dev/null +++ b/tests/influence/_core/test_naive_influence.py @@ -0,0 +1,295 @@ +# pyre-unsafe +import tempfile +from typing import Callable, List, Optional, Tuple + +import torch + +import torch.nn as nn +from captum.influence._core.influence_function import NaiveInfluenceFunction +from captum.influence._utils.common import ( + _custom_functional_call, + _flatten_params, + _functional_call, + _unflatten_params_factory, +) +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import ( + assertTensorAlmostEqual, + assertTensorTuplesAlmostEqual, +) +from captum.testing.helpers.influence.common import ( + _format_batch_into_tuple, + build_test_name_func, + DataInfluenceConstructor, + ExplicitDataset, + get_random_model_and_data, + is_gpu, + Linear, + UnpackDataset, +) +from parameterized import parameterized +from torch.utils.data import DataLoader + +# TODO: for some unknow reason, this test does not work +# on `cuda_data_parallel` setting. We need to investigate why. +# Use a local version of setting list for these two tests for now +# since we have changed the default setting list to includes all options. +# (This is also used in many other tests, which also needs to be unified later). +gpu_settings_list = ( + ["", "cuda"] + if torch.cuda.is_available() and torch.cuda.device_count() != 0 + else [""] +) + + +class TestNaiveInfluence(BaseTest): + def setUp(self) -> None: + super().setUp() + + @parameterized.expand( + [ + (param_shape,) + for param_shape in [ + [(2, 3), (4, 5)], + [(3, 2), (4, 2), (1, 5)], + ] + ], + name_func=build_test_name_func(), + ) + def test_flatten_unflattener(self, param_shapes: List[Tuple[int, ...]]) -> None: + # unflatten and flatten should be inverses of each other. check this holds. + _unflatten_params = _unflatten_params_factory(param_shapes) + params = tuple(torch.randn(shape) for shape in param_shapes) + assertTensorTuplesAlmostEqual( + self, + params, + _unflatten_params(_flatten_params(params)), + delta=1e-4, + mode="max", + ) + + @parameterized.expand( + [ + ( + reduction, + influence_constructor, + delta, + mode, + unpack_inputs, + gpu_setting, + ) + for reduction in ["none", "sum", "mean"] + for gpu_setting in gpu_settings_list + for (influence_constructor, delta) in [ + ( + DataInfluenceConstructor( + NaiveInfluenceFunction, + layers=( + ["module.linear"] + if gpu_setting == "cuda_dataparallel" + else ["linear"] + ), + projection_dim=None, + # letting projection_dim is None means no projection is done, + # in which case exact influence is returned + show_progress=False, + ), + 1e-3, + ), + ( + DataInfluenceConstructor( + NaiveInfluenceFunction, + layers=None, + # this tests that not specifyiing layers still works + projection_dim=None, + show_progress=False, + name="NaiveInfluenceFunction_all_layers", + ), + 1e-3, + ), + ] + for mode in [ + "influence", + "self_influence", + ] + for unpack_inputs in [ + False, + True, + ] + ], + name_func=build_test_name_func(), + ) + def test_matches_linear_regression( + self, + reduction: str, + influence_constructor: Callable, + delta: float, + mode: str, + unpack_inputs: bool, + gpu_setting: Optional[str], + ) -> None: + """ + this tests that `NaiveInfluence`, the simplest implementation, agree with the + analytically calculated solution for influence and self-influence for a model + where we can calculate that solution - linear regression trained with squared + error loss. + """ + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + hessian_samples, + hessian_labels, + test_samples, + test_labels, + ) = get_random_model_and_data( + tmpdir, + unpack_inputs, + return_test_data=True, + gpu_setting=gpu_setting, + return_hessian_data=True, + model_type="trained_linear", + ) + + train_dataset = DataLoader(train_dataset, batch_size=5) + + use_gpu = is_gpu(gpu_setting) + hessian_dataset = ( + ExplicitDataset(hessian_samples, hessian_labels, use_gpu) + if not unpack_inputs + else UnpackDataset(hessian_samples, hessian_labels, use_gpu) + ) + hessian_dataset = DataLoader(hessian_dataset, batch_size=5) + + criterion = nn.MSELoss(reduction=reduction) + batch_size = None + + # set `sample_grads_per_batch` based on `reduction` to be compatible + sample_wise_grads_per_batch = False if reduction == "none" else True + + influence = influence_constructor( + net, + train_dataset, + tmpdir, + batch_size, + criterion, + sample_wise_grads_per_batch=sample_wise_grads_per_batch, + hessian_dataset=hessian_dataset, + ) + + # since the model is a linear regression model trained with MSE loss, we + # can calculate the hessian and per-example parameter gradients + # analytically + tensor_hessian_samples = ( + hessian_samples + if not unpack_inputs + else torch.cat(hessian_samples, dim=1) + ) + # hessian at optimal parameters is 2 * X'X, where X is the feature matrix + # of the examples used for calculating the hessian. + # this is based on https://math.stackexchange.com/questions/2864585/hessian-on-linear-least-squares-problem # noqa: E501 + # and multiplying by 2, since we optimize squared error, + # not 1/2 squared error. + hessian = torch.matmul(tensor_hessian_samples.T, tensor_hessian_samples) * 2 + hessian = hessian + ( + torch.eye(len(hessian)).to(device=hessian.device) * 1e-4 + ) + + hessian_inverse = torch.linalg.pinv(hessian, rcond=1e-4) + + # gradient for an example is 2 * features * error + + # compute train gradients + tensor_train_samples = torch.cat( + [torch.cat(batch[:-1], dim=1) for batch in train_dataset], dim=0 + ) + train_predictions = torch.cat( + [net(*batch[:-1]) for batch in train_dataset], dim=0 + ) + train_labels = torch.cat([batch[-1] for batch in train_dataset], dim=0) + train_gradients = ( + (train_predictions - train_labels) * tensor_train_samples * 2 + ) + + # compute test gradients + tensor_test_samples = ( + test_samples if not unpack_inputs else torch.cat(test_samples, dim=1) + ) + test_predictions = ( + net(test_samples) if not unpack_inputs else net(*test_samples) + ) + test_gradients = (test_predictions - test_labels) * tensor_test_samples * 2 + + if mode == "influence": + # compute pairwise influences, analytically + analytical_train_test_influences = torch.matmul( + torch.matmul(test_gradients, hessian_inverse), train_gradients.T + ) + # compute pairwise influences using influence implementation + influence_train_test_influences = influence.influence( + _format_batch_into_tuple(test_samples, test_labels, unpack_inputs) + ) + # check error + assertTensorAlmostEqual( + self, + influence_train_test_influences, + analytical_train_test_influences, + delta=delta, + mode="max", + ) + elif mode == "self_influence": + # compute self influence, analytically + analytical_self_influences = torch.diag( + torch.matmul( + torch.matmul(train_gradients, hessian_inverse), + train_gradients.T, + ) + ) + # compute pairwise influences using influence implementation + influence_self_influences = influence.self_influence(train_dataset) + # check error + assertTensorAlmostEqual( + self, + influence_self_influences, + analytical_self_influences, + delta=delta, + mode="max", + ) + else: + raise Exception("unknown test mode") + + @parameterized.expand( + [(_custom_functional_call,), (_functional_call,)], + name_func=build_test_name_func(), + ) + def test_functional_call(self, method) -> None: + """ + tests `influence._utils.common._functional_call` for a simple case where the + model and loss are linear regression and squared error. `method` can either be + `_custom_functional_call`, which uses the custom implementation that is used + if pytorch does not provide one, or `_functional_call`, which uses a pytorch + implementation if available. + """ + # get linear model and a batch + batch_size = 25 + num_features = 5 + batch_samples = torch.normal(0, 1, (batch_size, num_features)) + batch_labels = torch.normal(0, 1, (batch_size, 1)) + net = Linear(num_features) + + # get the analytical gradient wrt to model parameters + batch_predictions = net(batch_samples) + analytical_grad = 2 * torch.sum( + (batch_predictions - batch_labels) * batch_samples, dim=0 + ) + + # get gradient as computed using `_functional_call` + param = net.linear.weight.detach().clone().requires_grad_(True) + _batch_predictions = method(net, {"linear.weight": param}, (batch_samples,)) + loss = torch.sum((_batch_predictions - batch_labels) ** 2) + actual_grad = torch.autograd.grad(loss, param)[0][0] + + # they should be the same + assertTensorAlmostEqual( + self, actual_grad, analytical_grad, delta=1e-3, mode="max" + ) diff --git a/tests/influence/_core/test_similarity_influence.py b/tests/influence/_core/test_similarity_influence.py index 4477e57094..2a75d4766a 100644 --- a/tests/influence/_core/test_similarity_influence.py +++ b/tests/influence/_core/test_similarity_influence.py @@ -1,3 +1,5 @@ +# pyre-strict + import tempfile from typing import List @@ -8,12 +10,14 @@ euclidean_distance, SimilarityInfluence, ) -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from torch import Tensor from torch.utils.data import Dataset class BasicLinearNet(nn.Module): - def __init__(self, num_features): + def __init__(self, num_features: int) -> None: super().__init__() self.fc1 = nn.Linear(num_features, 5, bias=False) self.fc1.weight.data.fill_(0.02) @@ -21,7 +25,7 @@ def __init__(self, num_features): self.fc2 = nn.Linear(5, 1, bias=False) self.fc2.weight.data.fill_(0.02) - def forward(self, x): + def forward(self, x: Tensor) -> Tensor: x = self.fc1(x) x = self.relu1(x) x = self.fc2(x) @@ -29,17 +33,17 @@ def forward(self, x): class RangeDataset(Dataset): - def __init__(self, low, high, num_features): - self.samples = ( + def __init__(self, low: int, high: int, num_features: int) -> None: + self.samples: Tensor = ( torch.arange(start=low, end=high, dtype=torch.float) .repeat(num_features, 1) .transpose(1, 0) ) - def __len__(self): + def __len__(self) -> int: return len(self.samples) - def __getitem__(self, idx): + def __getitem__(self, idx: int) -> Tensor: return self.samples[idx] @@ -60,6 +64,7 @@ def test_correct_influences_standard(self) -> None: layers = [] for name, _module in mymodel.named_modules(): layers.append(name) + # pyre-fixme[35]: Target cannot be annotated. layers: List[str] = list(filter(None, layers)) testlayers = layers[1:] @@ -98,6 +103,7 @@ def test_correct_influences_batch_single(self) -> None: layers = [] for name, _module in mymodel.named_modules(): layers.append(name) + # pyre-fixme[35]: Target cannot be annotated. layers: List[str] = list(filter(None, layers)) testlayers = layers[1:] @@ -136,6 +142,7 @@ def test_correct_influences_batch_overflow(self) -> None: layers = [] for name, _module in mymodel.named_modules(): layers.append(name) + # pyre-fixme[35]: Target cannot be annotated. layers: List[str] = list(filter(None, layers)) testlayers = layers[1:] @@ -174,6 +181,7 @@ def test_zero_activations(self) -> None: layers = [] for name, _module in mymodel.named_modules(): layers.append(name) + # pyre-fixme[35]: Target cannot be annotated. layers: List[str] = list(filter(None, layers)) testlayers = layers[1:] diff --git a/tests/influence/_core/test_tracin_aggregate_influence.py b/tests/influence/_core/test_tracin_aggregate_influence.py new file mode 100644 index 0000000000..5c30e7355d --- /dev/null +++ b/tests/influence/_core/test_tracin_aggregate_influence.py @@ -0,0 +1,155 @@ +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. + +# pyre-unsafe + +import tempfile +from typing import Callable + +import torch + +import torch.nn as nn +from captum.influence._core.tracincp import TracInCP +from captum.testing.helpers.basic import assertTensorAlmostEqual, BaseTest +from captum.testing.helpers.influence.common import ( + build_test_name_func, + DataInfluenceConstructor, + get_random_model_and_data, +) +from parameterized import parameterized +from torch.utils.data import DataLoader + + +class TestTracInAggregateInfluence(BaseTest): + @parameterized.expand( + [ + (reduction, constructor, unpack_inputs) + for unpack_inputs in [True, False] + for (reduction, constructor) in [ + ("none", DataInfluenceConstructor(TracInCP)), + ( + "sum", + DataInfluenceConstructor( + TracInCP, sample_wise_grads_per_batch=True + ), + ), + ] + ], + name_func=build_test_name_func(), + ) + def test_tracin_aggregate_influence( + self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool + ) -> None: + """ + tests that calling `influence` with `aggregate=True` + does give the same result as calling it with `aggregate=False`, and then + summing + """ + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + ) = get_random_model_and_data( + tmpdir, + unpack_inputs, + return_test_data=False, + ) + + # create a dataloader that yields batches from the dataset + train_dataset = DataLoader(train_dataset, batch_size=5) + + # create tracin instance + criterion = nn.MSELoss(reduction=reduction) + batch_size = 5 + + tracin = tracin_constructor( + net, + train_dataset, + tmpdir, + batch_size, + criterion, + ) + + train_scores = tracin.influence(train_dataset, aggregate=False) + aggregated_train_scores = tracin.influence(train_dataset, aggregate=True) + + assertTensorAlmostEqual( + self, + torch.sum(train_scores, dim=0, keepdim=True), + aggregated_train_scores, + delta=1e-3, # due to numerical issues, we can't set this to 0.0 + mode="max", + ) + + @parameterized.expand( + [ + (reduction, constructor, unpack_inputs) + for unpack_inputs in [True, False] + for (reduction, constructor) in [ + ("none", DataInfluenceConstructor(TracInCP)), + ( + "sum", + DataInfluenceConstructor( + TracInCP, sample_wise_grads_per_batch=True + ), + ), + ] + ], + name_func=build_test_name_func(), + ) + def test_tracin_aggregate_influence_api( + self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool + ) -> None: + """ + tests that the result of calling the public method + `influence` when `aggregate` is true for a DataLoader of batches is the same as + when the batches are collated into a single batch + """ + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + ) = get_random_model_and_data( + tmpdir, + unpack_inputs, + return_test_data=False, + ) + + # create a single batch representing the entire dataset + single_batch = next( + iter(DataLoader(train_dataset, batch_size=len(train_dataset))) + ) + + # create a dataloader that yields batches from the dataset + dataloader = DataLoader(train_dataset, batch_size=5) + + # create tracin instance + criterion = nn.MSELoss(reduction=reduction) + batch_size = 5 + tracin = tracin_constructor( + net, + train_dataset, + tmpdir, + batch_size, + criterion, + ) + + # compute influence scores using `influence` + # when passing in a single batch + single_batch_aggregated_train_scores = tracin.influence( + single_batch, aggregate=True + ) + + # compute influence scores using `influence` + # when passing in a dataloader with the same examples + dataloader_aggregated_train_scores = tracin.influence( + dataloader, aggregate=True + ) + + # the two influence scores should be equal + assertTensorAlmostEqual( + self, + single_batch_aggregated_train_scores, + dataloader_aggregated_train_scores, + delta=0.01, # due to numerical issues, we can't set this to 0.0 + mode="max", + ) diff --git a/tests/influence/_core/test_tracin_get_k_most_influential.py b/tests/influence/_core/test_tracin_get_k_most_influential.py deleted file mode 100644 index 017562d3d6..0000000000 --- a/tests/influence/_core/test_tracin_get_k_most_influential.py +++ /dev/null @@ -1,116 +0,0 @@ -import tempfile -from typing import Callable - -import torch -import torch.nn as nn -from captum.influence._core.tracincp import TracInCP -from captum.influence._core.tracincp_fast_rand_proj import ( - TracInCPFast, - TracInCPFastRandProj, -) -from parameterized import parameterized -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.influence._utils.common import ( - build_test_name_func, - DataInfluenceConstructor, - get_random_model_and_data, -) - - -class TestTracInGetKMostInfluential(BaseTest): - """ - This test constructs a random BasicLinearNet, and checks that the proponents - obtained by calling `influence` and sorting are equal to the proponents - obtained by calling `_get_k_most_influential`. Those calls are made through - the calls to wrapper method `influence`. - """ - - @parameterized.expand( - [ - (reduction, constr, unpack_inputs, proponents, batch_size, k) - # calls test helper method `test_tracin_get_k_most_influential` for several - # combinations of `batch_size` and `k`. This is important because the - # behavior of `_get_k_most_influential` depends on whether `k` is larger - # than `batch_size`. - for (batch_size, k) in [(4, 7), (7, 4), (40, 5), (5, 40), (40, 45)] - for unpack_inputs in [True, False] - for proponents in [True, False] - for reduction, constr in [ - ("none", DataInfluenceConstructor(TracInCP)), - ( - "sum", - DataInfluenceConstructor( - TracInCP, - name="TracInCPFastRandProjTests", - sample_wise_grads_per_batch=True, - ), - ), - ("sum", DataInfluenceConstructor(TracInCPFast)), - ("sum", DataInfluenceConstructor(TracInCPFastRandProj)), - ("mean", DataInfluenceConstructor(TracInCPFast)), - ("mean", DataInfluenceConstructor(TracInCPFastRandProj)), - ] - ], - name_func=build_test_name_func(), - ) - def test_tracin_get_k_most_influential( - self, - reduction: str, - tracin_constructor: Callable, - unpack_inputs: bool, - proponents: bool, - batch_size: int, - k: int, - ) -> None: - - with tempfile.TemporaryDirectory() as tmpdir: - - ( - net, - train_dataset, - test_samples, - test_labels, - ) = get_random_model_and_data(tmpdir, unpack_inputs, return_test_data=True) - - self.assertTrue(isinstance(reduction, str)) - self.assertTrue(callable(tracin_constructor)) - - criterion = nn.MSELoss(reduction=reduction) - - tracin = tracin_constructor( - net, - train_dataset, - tmpdir, - batch_size, - criterion, - ) - - train_scores = tracin.influence( - test_samples, test_labels, k=None, unpack_inputs=unpack_inputs - ) - sort_idx = torch.argsort(train_scores, dim=1, descending=proponents)[:, 0:k] - idx, _train_scores = tracin.influence( - test_samples, - test_labels, - k=k, - proponents=proponents, - unpack_inputs=unpack_inputs, - ) - - for i in range(len(idx)): - # check that idx[i] is correct - assertTensorAlmostEqual( - self, - train_scores[i, idx[i]], - train_scores[i, sort_idx[i]], - delta=0.0, - mode="max", - ) - # check that _train_scores[i] is correct - assertTensorAlmostEqual( - self, - _train_scores[i], - train_scores[i, sort_idx[i]], - delta=0.001, - mode="max", - ) diff --git a/tests/influence/_core/test_tracin_intermediate_quantities.py b/tests/influence/_core/test_tracin_intermediate_quantities.py new file mode 100644 index 0000000000..b0c87ec3c3 --- /dev/null +++ b/tests/influence/_core/test_tracin_intermediate_quantities.py @@ -0,0 +1,376 @@ +# pyre-unsafe +import tempfile +from typing import Callable + +import torch + +import torch.nn as nn +from captum.influence._core.arnoldi_influence_function import ArnoldiInfluenceFunction +from captum.influence._core.influence_function import NaiveInfluenceFunction +from captum.influence._core.tracincp import TracInCP +from captum.influence._core.tracincp_fast_rand_proj import ( + TracInCPFast, + TracInCPFastRandProj, +) +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.influence.common import ( + _format_batch_into_tuple, + build_test_name_func, + DataInfluenceConstructor, + get_random_model_and_data, +) +from parameterized import parameterized +from torch.utils.data import DataLoader + + +class TestTracInIntermediateQuantities(BaseTest): + @parameterized.expand( + [ + (reduction, constructor, unpack_inputs) + for unpack_inputs in [True, False] + for (reduction, constructor) in [ + ("none", DataInfluenceConstructor(TracInCP)), + ("none", DataInfluenceConstructor(NaiveInfluenceFunction)), + ("none", DataInfluenceConstructor(ArnoldiInfluenceFunction)), + ] + ], + name_func=build_test_name_func(), + ) + def test_tracin_intermediate_quantities_aggregate( + self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool + ) -> None: + """ + tests that calling `compute_intermediate_quantities` with `aggregate=True` + does give the same result as calling it with `aggregate=False`, and then + summing + """ + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + ) = get_random_model_and_data( + tmpdir, + unpack_inputs, + return_test_data=False, + ) + + # create a dataloader that yields batches from the dataset + train_dataset = DataLoader(train_dataset, batch_size=5) + + # create tracin instance + criterion = nn.MSELoss(reduction=reduction) + batch_size = 5 + + tracin = tracin_constructor( + net, + train_dataset, + tmpdir, + batch_size, + criterion, + ) + + intermediate_quantities = tracin.compute_intermediate_quantities( + train_dataset, aggregate=False + ) + aggregated_intermediate_quantities = tracin.compute_intermediate_quantities( + train_dataset, aggregate=True + ) + + assertTensorAlmostEqual( + self, + torch.sum(intermediate_quantities, dim=0, keepdim=True), + aggregated_intermediate_quantities, + delta=1e-4, # due to numerical issues, we can't set this to 0.0 + mode="max", + ) + + @parameterized.expand( + [ + (reduction, constructor, unpack_inputs) + for unpack_inputs in [True, False] + for (reduction, constructor) in [ + ("sum", DataInfluenceConstructor(TracInCPFastRandProj)), + ("none", DataInfluenceConstructor(TracInCP)), + ("none", DataInfluenceConstructor(NaiveInfluenceFunction)), + ] + ], + name_func=build_test_name_func(), + ) + def test_tracin_intermediate_quantities_api( + self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool + ) -> None: + """ + tests that the result of calling the public method + `compute_intermediate_quantities` for a DataLoader of batches is the same as + when the batches are collated into a single batch + """ + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + ) = get_random_model_and_data( + tmpdir, + unpack_inputs, + return_test_data=False, + ) + + # create a single batch representing the entire dataset + single_batch = next( + iter(DataLoader(train_dataset, batch_size=len(train_dataset))) + ) + + # create a dataloader that yields batches from the dataset + dataloader = DataLoader(train_dataset, batch_size=5) + + # create tracin instance + criterion = nn.MSELoss(reduction=reduction) + batch_size = 5 + tracin = tracin_constructor( + net, + train_dataset, + tmpdir, + batch_size, + criterion, + ) + + # compute intermediate quantities using `compute_intermediate_quantities` + # when passing in a single batch + single_batch_intermediate_quantities = ( + tracin.compute_intermediate_quantities(single_batch) + ) + + # compute intermediate quantities using `compute_intermediate_quantities` + # when passing in a dataloader with the same examples + dataloader_intermediate_quantities = tracin.compute_intermediate_quantities( + dataloader, + ) + + # the two self influences should be equal + assertTensorAlmostEqual( + self, + single_batch_intermediate_quantities, + dataloader_intermediate_quantities, + delta=0.01, # due to numerical issues, we can't set this to 0.0 + mode="max", + ) + + @parameterized.expand( + [ + ( + reduction, + constructor, + intermediate_quantities_tracin_constructor, + unpack_inputs, + ) + for unpack_inputs in [True, False] + for ( + reduction, + constructor, + intermediate_quantities_tracin_constructor, + ) in [ + ( + "sum", + DataInfluenceConstructor(TracInCPFast), + DataInfluenceConstructor(TracInCPFastRandProj), + ), + ( + "none", + DataInfluenceConstructor(TracInCP), + DataInfluenceConstructor(TracInCP), + ), + ( + "none", + DataInfluenceConstructor(NaiveInfluenceFunction), + DataInfluenceConstructor(NaiveInfluenceFunction), + ), + ] + ], + name_func=build_test_name_func(), + ) + def test_tracin_intermediate_quantities_consistent( + self, + reduction: str, + tracin_constructor: Callable, + intermediate_quantities_tracin_constructor: Callable, + unpack_inputs: bool, + ) -> None: + """ + Since the influence score of a test batch on a training data should be the dot + product of their intermediate quantities, checks that this is the case, by + computing the influence score 2 different ways and checking they give the same + results: 1) with the `influence` method, and by using the + `compute_intermediate_quantities` method on the test and training data, and + taking the dot product. No projection should be done. Otherwise, the + projection will cause error. For 1), we use an implementation that does not use + intermediate quantities, i.e. `TracInCPFast`. For 2), we use a method that + does use intermediate quantities, i.e. `TracInCPFastRandProj`. Since the + methods for the 2 cases are different, we need to parametrize the test with 2 + different tracin constructors. `tracin_constructor` is the constructor for the + tracin implementation for case 1. `intermediate_quantities_tracin_constructor` + is the constructor for the tracin implementation for case 2. Note that we also + use this test for implementations of `InfluenceFunctionBase`, where for the + same method, both ways should give the same result by definition. + """ + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + test_features, + test_labels, + ) = get_random_model_and_data(tmpdir, unpack_inputs, return_test_data=True) + + # create a dataloader that yields batches from the dataset + train_dataset = DataLoader(train_dataset, batch_size=5) + + # create tracin instance + criterion = nn.MSELoss(reduction=reduction) + batch_size = 5 + + tracin = tracin_constructor( + net, + train_dataset, + tmpdir, + batch_size, + criterion, + ) + + # create tracin instance which exposes `intermediate_quantities` + intermediate_quantities_tracin = intermediate_quantities_tracin_constructor( + net, + train_dataset, + tmpdir, + batch_size, + criterion, + ) + + # compute influence scores without using `compute_intermediate_quantities` + test_batch = _format_batch_into_tuple( + test_features, test_labels, unpack_inputs + ) + scores = tracin.influence( + test_batch, + ) + + # the influence score is the dot product of intermediate quantities + intermediate_quantities_scores = torch.matmul( + intermediate_quantities_tracin.compute_intermediate_quantities( + test_batch + ), + intermediate_quantities_tracin.compute_intermediate_quantities( + train_dataset + ).T, + ) + + # the scores computed using the two methods should be the same + assertTensorAlmostEqual( + self, + scores, + intermediate_quantities_scores, + delta=0.01, # due to numerical issues, we can't set this to 0.0 + mode="max", + ) + + @parameterized.expand( + [ + (reduction, constructor, projection_dim, unpack_inputs) + for unpack_inputs in [False] + for (reduction, constructor, projection_dim) in [ + ("sum", DataInfluenceConstructor(TracInCPFastRandProj), None), + ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 2), + ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 4), + ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 9), + ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 10), + ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 12), + ] + ], + name_func=build_test_name_func(), + ) + def test_tracin_intermediate_quantities_projection_consistency( + self, + reduction: str, + tracin_constructor: Callable, + projection_dim: int, + unpack_inputs: bool, + ) -> None: + """ + + tests that the result of calling the public method + "compute_intermediate_quantities" with TracInCPFastRandProj + with/without projection_dim gives embedding of correct size. + + if projection_dim None, size should be dim of + input to final layer * num classes * num checkpoints. + otherwise it should be "at most" projection_dim * num checkpoints. + See inline comments for "at most" caveat + """ + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + ) = get_random_model_and_data( + tmpdir, + unpack_inputs, + return_test_data=False, + ) + + # create a single batch + batch_size = 1 + single_batch = next(iter(DataLoader(train_dataset, batch_size=batch_size))) + + # NOW add projection_dim as a parameter passed in + kwargs = {"projection_dim": projection_dim} + + # create tracin instance + criterion = nn.MSELoss(reduction=reduction) + tracin = tracin_constructor( + net, train_dataset, tmpdir, batch_size, criterion, **kwargs + ) + + # compute intermediate quantities using `compute_intermediate_quantities` + # when passing in a single batch + single_batch_intermediate_quantities = ( + tracin.compute_intermediate_quantities(single_batch) + ) + + """ + net has + in_features = 5, + hidden_nodes (layer_input_dim) = 4, + out_features (jacobian_dim) = 3 + and 5 checkpoints + + projection only happens + (A) if project_dim < layer_input_dim * jacobian_dim ( 4 * 3 = 12 here ) + + also if jacobian_dim < int(sqrt(projection dim)), + then jacobian_dim is not projected down + similarly if layer_input_dim < int(sqrt(projection dim)), + then it is not projected down + + in other words, + jacobian_dim_post = min(jacobian_dim, int(sqrt(projection dim))) + layer_input_dim_post = min(layer_input_dim, int(sqrt(projection dim))) + + and if not None and projection_dim < layer_input_dim * jacobian_dim + (B) final_projection_dim = + jacobian_dim_post * layer_input_dim_post * num_checkpoints + + + if project dim = None we expect final dimension size of + layer_input * jacobian_dim * num checkpoints = 4 * 3 * 5 = 60 dimension + + otherwise using (B) if + project dim = 2 we expect 1 * 1 * 5 = 5 + project dim = 4 we expect 2 * 2 * 5 = 20 + project dim = 9 we expect 3 * 3 * 5 = 45 + project dim = 10 we expect 3 * 3 * 5 = 45 + project dim = 12 we expect 4 * 3 * 5 = 60 ( don't project since not (A)) + """ + + # print(single_batch_intermediate_quantities.shape) + expected_dim = {None: 60, 2: 5, 4: 20, 9: 45, 10: 45, 12: 60} + self.assertEqual( + expected_dim[projection_dim], + single_batch_intermediate_quantities.shape[1], + ) diff --git a/tests/influence/_core/test_tracin_k_most_influential.py b/tests/influence/_core/test_tracin_k_most_influential.py new file mode 100644 index 0000000000..0b29b8a499 --- /dev/null +++ b/tests/influence/_core/test_tracin_k_most_influential.py @@ -0,0 +1,158 @@ +# pyre-strict + +import tempfile +from typing import Callable, List, Optional, Tuple + +import torch +import torch.nn as nn +from captum.influence._core.tracincp import TracInCP +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.influence.common import ( + _format_batch_into_tuple, + build_test_name_func, + DataInfluenceConstructor, + get_random_model_and_data, + GPU_SETTING_LIST, + is_gpu, +) + +from parameterized import parameterized + + +class TestTracInGetKMostInfluential(BaseTest): + param_list: List[ + Tuple[str, DataInfluenceConstructor, bool, bool, int, int, str, bool] + ] = [] + for batch_size, k in [(4, 7), (7, 4), (40, 5), (5, 40), (40, 45)]: + for unpack_inputs in [True, False]: + for proponents in [True, False]: + for gpu_setting in GPU_SETTING_LIST: + for reduction, constr, aggregate in [ + ( + "none", + DataInfluenceConstructor( + TracInCP, name="TracInCP_all_layers" + ), + False, + ), + ( + "none", + DataInfluenceConstructor( + TracInCP, name="TracInCP_all_layers" + ), + True, + ), + ( + "none", + DataInfluenceConstructor( + TracInCP, + name="linear2", + layers=( + ["module.linear2"] + if gpu_setting == "cuda_data_parallel" + else ["linear2"] + ), + ), + False, + ), + ]: + if not ( + "sample_wise_grads_per_batch" in constr.kwargs + and constr.kwargs["sample_wise_grads_per_batch"] + and is_gpu(gpu_setting) + ): + param_list.append( + ( + reduction, + constr, + unpack_inputs, + proponents, + batch_size, + k, + gpu_setting, + aggregate, + ) + ) + + # pyre-fixme[56]: Pyre was not able to infer the type of argument + # `captum.testing.helpers.influence.common.build_test_name_func()` + # to decorator factory `parameterized.parameterized.expand`. + @parameterized.expand( + param_list, + name_func=build_test_name_func(), + ) + def test_tracin_k_most_influential( + self, + reduction: str, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + tracin_constructor: Callable, + unpack_inputs: bool, + proponents: bool, + batch_size: int, + k: int, + gpu_setting: Optional[str], + aggregate: bool, + ) -> None: + """ + This test constructs a random BasicLinearNet, and checks that the proponents + obtained by calling `influence` and sorting are equal to the proponents + obtained by calling `_k_most_influential`. Those calls are made through + the calls to wrapper method `influence`. + """ + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + test_samples, + test_labels, + ) = get_random_model_and_data( + tmpdir, + unpack_inputs, + True, + gpu_setting, + ) + + self.assertTrue(isinstance(reduction, str)) + self.assertTrue(callable(tracin_constructor)) + + criterion = nn.MSELoss(reduction=reduction) + + tracin = tracin_constructor( + net, + train_dataset, + tmpdir, + batch_size, + criterion, + ) + + # pyre-fixme[16]: `object` has no attribute `influence`. + train_scores = tracin.influence( + _format_batch_into_tuple(test_samples, test_labels, unpack_inputs), + k=None, + aggregate=aggregate, + ) + sort_idx = torch.argsort(train_scores, dim=1, descending=proponents)[:, 0:k] + idx, _train_scores = tracin.influence( + _format_batch_into_tuple(test_samples, test_labels, unpack_inputs), + k=k, + proponents=proponents, + aggregate=aggregate, + ) + for i in range(len(idx)): + # check that idx[i] is correct + assertTensorAlmostEqual( + self, + train_scores[i, idx[i]], + train_scores[i, sort_idx[i]], + delta=0.0, + mode="max", + ) + # check that _train_scores[i] is correct + assertTensorAlmostEqual( + self, + _train_scores[i], + train_scores[i, sort_idx[i]], + delta=0.001, + mode="max", + ) diff --git a/tests/influence/_core/test_tracin_regression.py b/tests/influence/_core/test_tracin_regression.py index 7a615d2c9f..05897b90ae 100644 --- a/tests/influence/_core/test_tracin_regression.py +++ b/tests/influence/_core/test_tracin_regression.py @@ -1,31 +1,40 @@ +# pyre-strict + import os import tempfile -from typing import Callable, cast, Optional +from typing import Any, Callable, Dict, List, Optional, Tuple import torch import torch.nn as nn +from captum.influence._core.arnoldi_influence_function import ArnoldiInfluenceFunction +from captum.influence._core.influence_function import NaiveInfluenceFunction from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import ( TracInCPFast, TracInCPFastRandProj, ) -from parameterized import parameterized -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.influence._utils.common import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.influence.common import ( + _isSorted, + _wrap_model_in_dataparallel, build_test_name_func, CoefficientNet, DataInfluenceConstructor, IdentityDataset, - isSorted, RangeDataset, ) +from parameterized import parameterized +from torch import Tensor class TestTracInRegression(BaseTest): - def _test_tracin_regression_setup(self, tmpdir: str, features: int): + def _test_tracin_regression_setup( + self, tmpdir: str, features: int, use_gpu: bool = False + ) -> Tuple[RangeDataset, Dict[str, Any]]: # fixme (return type) low = 1 high = 17 - dataset = RangeDataset(low, high, features) + dataset = RangeDataset(low, high, features, use_gpu) net = CoefficientNet(in_features=features) checkpoint_name = "-".join(["checkpoint-reg", "0" + ".pt"]) @@ -35,47 +44,129 @@ def _test_tracin_regression_setup(self, tmpdir: str, features: int): for i, weight in enumerate(weights): net.fc1.weight.data.fill_(weight) + net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint-reg", str(i + 1) + ".pt"]) - torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) + torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) - return dataset, net + # pyre-fixme[61]: `net_adjusted` is undefined, or not always defined. + return dataset, net_adjusted # type: ignore - @parameterized.expand( - [ - (reduction, constructor, mode, dim) - for dim in [1, 20] - for (mode, reduction, constructor) in [ - ("check_idx", "none", DataInfluenceConstructor(TracInCP)), - ("sample_wise_trick", None, DataInfluenceConstructor(TracInCP)), - ("check_idx", "sum", DataInfluenceConstructor(TracInCPFast)), - ("check_idx", "sum", DataInfluenceConstructor(TracInCPFastRandProj)), - ("check_idx", "mean", DataInfluenceConstructor(TracInCPFast)), - ("check_idx", "mean", DataInfluenceConstructor(TracInCPFastRandProj)), + use_gpu_list = ( + [True, False] + if torch.cuda.is_available() and torch.cuda.device_count() != 0 + else [False] + ) + + param_list: List[Tuple[Optional[str], DataInfluenceConstructor, str, int, bool]] = ( + [] + ) + for use_gpu in use_gpu_list: + for dim in [1, 20]: + for mode, reduction, constructor in [ + ( + "check_idx", + "none", + DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), + ), + ( + "check_idx", + "none", + DataInfluenceConstructor( + TracInCP, + name="TracInCP_fc1", + layers=["module.fc1"] if use_gpu else ["fc1"], + ), + ), + ( + "sample_wise_trick", + None, + DataInfluenceConstructor(TracInCP, name="TracInCP_fc1"), + ), + ( + "check_idx", + "sum", + DataInfluenceConstructor( + TracInCPFast, name="TracInCPFast_last_fc_layer" + ), + ), + ( + "check_idx", + "sum", + DataInfluenceConstructor( + TracInCPFastRandProj, name="TracInCPFast_last_fc_layer" + ), + ), + ( + "check_idx", + "mean", + DataInfluenceConstructor( + TracInCPFast, name="TracInCPFast_last_fc_layer" + ), + ), + ( + "check_idx", + "mean", + DataInfluenceConstructor( + TracInCPFastRandProj, name="TracInCPFastRandProj_last_fc_layer" + ), + ), ( "check_idx", "sum", DataInfluenceConstructor( TracInCPFastRandProj, - name="TracInCPFastRandProj1DimensionalProjection", + name="TracInCPFastRandProj1DimensionalProjection_last_fc_layer", projection_dim=1, ), ), - ] - ], + ( + "check_idx", + "mean", + DataInfluenceConstructor( + TracInCPFast, + name="TracInCPFastDuplicateLossFn", + duplicate_loss_fn=True, + ), + ), # add a test where `duplicate_loss_fn` is True + ( + "check_idx", + "mean", + DataInfluenceConstructor( + TracInCPFastRandProj, + name="TracInCPFastRandProjDuplicateLossFn", + duplicate_loss_fn=True, + ), # add a test where `duplicate_loss_fn` is True + ), + ]: + if not (mode == "sample_wise_trick" and use_gpu): + param_list.append((reduction, constructor, mode, dim, use_gpu)) + + # pyre-fixme[56]: Pyre was not able to infer the type of argument + # `captum.testing.helpers.influence.common.build_test_name_func + # ($parameter$args_to_skip = ["reduction"])` to decorator factory + # `parameterized.parameterized.expand`. + @parameterized.expand( + param_list, name_func=build_test_name_func(args_to_skip=["reduction"]), ) def test_tracin_regression( self, reduction: Optional[str], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. tracin_constructor: Callable, mode: str, features: int, + use_gpu: bool, ) -> None: with tempfile.TemporaryDirectory() as tmpdir: batch_size = 4 - dataset, net = self._test_tracin_regression_setup(tmpdir, features) + dataset, net = self._test_tracin_regression_setup( + tmpdir, + features, + use_gpu, + ) # and not mode == 'sample_wise_trick' # check influence scores of training data @@ -85,14 +176,18 @@ def test_tracin_regression( test_inputs = ( torch.arange(17, 33, dtype=torch.float).unsqueeze(1).repeat(1, features) ) + + if use_gpu: + test_inputs = test_inputs.cuda() + test_labels = test_inputs self.assertTrue(callable(tracin_constructor)) if mode == "check_idx": - self.assertTrue(isinstance(reduction, str)) - criterion = nn.MSELoss(reduction=cast(str, reduction)) + assert isinstance(reduction, str) + criterion = nn.MSELoss(reduction=reduction) tracin = tracin_constructor( net, @@ -102,9 +197,10 @@ def test_tracin_regression( criterion, ) - train_scores = tracin.influence(train_inputs, train_labels) + # pyre-fixme[16]: `object` has no attribute `influence`. + train_scores = tracin.influence((train_inputs, train_labels)) idx, _ = tracin.influence( - train_inputs, train_labels, k=len(dataset), proponents=True + (train_inputs, train_labels), k=len(dataset), proponents=True ) # check that top influence is one with maximal value # (and hence gradient) @@ -112,14 +208,14 @@ def test_tracin_regression( self.assertEqual(idx[i][0], 15) # check influence scores of test data - test_scores = tracin.influence(test_inputs, test_labels) + test_scores = tracin.influence((test_inputs, test_labels)) idx, _ = tracin.influence( - test_inputs, test_labels, k=len(test_inputs), proponents=True + (test_inputs, test_labels), k=len(test_inputs), proponents=True ) # check that top influence is one with maximal value # (and hence gradient) for i in range(len(idx)): - self.assertTrue(isSorted(idx[i])) + self.assertTrue(_isSorted(idx[i])) if mode == "sample_wise_trick": @@ -145,22 +241,25 @@ def test_tracin_regression( sample_wise_grads_per_batch=True, ) - train_scores = tracin.influence(train_inputs, train_labels) + train_scores = tracin.influence((train_inputs, train_labels)) train_scores_sample_wise_trick = tracin_sample_wise_trick.influence( - train_inputs, train_labels + (train_inputs, train_labels) ) assertTensorAlmostEqual( self, train_scores, train_scores_sample_wise_trick ) - test_scores = tracin.influence(test_inputs, test_labels) + test_scores = tracin.influence((test_inputs, test_labels)) test_scores_sample_wise_trick = tracin_sample_wise_trick.influence( - test_inputs, test_labels + (test_inputs, test_labels) ) assertTensorAlmostEqual( self, test_scores, test_scores_sample_wise_trick ) + # pyre-fixme[56]: Pyre was not able to infer the type of argument + # `captum.testing.helpers.influence.common.build_test_name_func()` + # to decorator factory `parameterized.parameterized.expand`. @parameterized.expand( [ ( @@ -175,7 +274,10 @@ def test_tracin_regression( name_func=build_test_name_func(), ) def test_tracin_regression_1D_numerical( - self, reduction: str, tracin_constructor: Callable + self, + reduction: str, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + tracin_constructor: Callable, ) -> None: low = 1 @@ -183,8 +285,7 @@ def test_tracin_regression_1D_numerical( features = 1 dataset = RangeDataset(low, high, features) net = CoefficientNet() - self.assertTrue(isinstance(reduction, str)) - criterion = nn.MSELoss(reduction=cast(str, reduction)) + criterion = nn.MSELoss(reduction=reduction) batch_size = 4 weights = [0.4379, 0.1653, 0.5132, 0.3651, 0.9992] @@ -207,7 +308,8 @@ def test_tracin_regression_1D_numerical( criterion, ) - train_scores = tracin.influence(train_inputs, train_labels, k=None) + # pyre-fixme[16]: `object` has no attribute `influence`. + train_scores = tracin.influence((train_inputs, train_labels), k=None) r""" Derivation for gradient / resulting TracIn score: @@ -231,7 +333,9 @@ def test_tracin_regression_1D_numerical( self, torch.sum(num), train_scores[i][j], delta=0.1 ) - def _test_tracin_identity_regression_setup(self, tmpdir: str): + def _test_tracin_identity_regression_setup( + self, tmpdir: str + ) -> Tuple[IdentityDataset, CoefficientNet]: num_features = 7 dataset = IdentityDataset(num_features) net = CoefficientNet() @@ -239,25 +343,48 @@ def _test_tracin_identity_regression_setup(self, tmpdir: str): num_checkpoints = 5 for i in range(num_checkpoints): - net.fc1.weight.data = torch.rand((1, num_features)) + net.fc1.weight.data = torch.rand((1, num_features)) * 100 checkpoint_name = "-".join(["checkpoint-reg", str(i) + ".pt"]) torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) return dataset, net + # pyre-fixme[56]: Pyre was not able to infer the type of argument + # `captum.testing.helpers.influence.common.build_test_name_func()` + # to decorator factory `parameterized.parameterized.expand` @parameterized.expand( [ ("check_idx", "none", DataInfluenceConstructor(TracInCP)), + ("check_idx", "none", DataInfluenceConstructor(TracInCP, layers=["fc1"])), ("sample_wise_trick", None, DataInfluenceConstructor(TracInCP)), + ( + "sample_wise_trick", + None, + DataInfluenceConstructor(TracInCP, layers=["fc1"]), + ), ("check_idx", "sum", DataInfluenceConstructor(TracInCPFast)), ("check_idx", "sum", DataInfluenceConstructor(TracInCPFastRandProj)), ("check_idx", "mean", DataInfluenceConstructor(TracInCPFast)), ("check_idx", "mean", DataInfluenceConstructor(TracInCPFastRandProj)), + ("check_idx", "none", DataInfluenceConstructor(NaiveInfluenceFunction)), + ( + "check_idx", + "none", + DataInfluenceConstructor( + ArnoldiInfluenceFunction, + arnoldi_tol=1e-8, # needs to be small to avoid empty arnoldi basis + hessian_reg=2e-3, + ), + ), ], name_func=build_test_name_func(), ) def test_tracin_identity_regression( - self, mode: str, reduction: Optional[str], tracin_constructor: Callable + self, + mode: str, + reduction: Optional[str], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + tracin_constructor: Callable, ) -> None: """ This test uses a linear model with positive coefficients, where input feature @@ -282,8 +409,8 @@ def test_tracin_identity_regression( if mode == "check_idx": - self.assertTrue(isinstance(reduction, str)) - criterion = nn.MSELoss(reduction=cast(str, reduction)) + assert isinstance(reduction, str) + criterion = nn.MSELoss(reduction=reduction) tracin = tracin_constructor( net, @@ -295,9 +422,10 @@ def test_tracin_identity_regression( # check influence scores of training data - train_scores = tracin.influence(train_inputs, train_labels) + # pyre-fixme[16]: `object` has no attribute `influence`. + train_scores = tracin.influence((train_inputs, train_labels)) idx, _ = tracin.influence( - train_inputs, train_labels, k=len(dataset), proponents=True + (train_inputs, train_labels), k=len(dataset), proponents=True ) # check that top influence for an instance is itself @@ -328,10 +456,100 @@ def test_tracin_identity_regression( sample_wise_grads_per_batch=True, ) - train_scores = tracin.influence(train_inputs, train_labels) + train_scores = tracin.influence((train_inputs, train_labels)) train_scores_tracin_sample_wise_trick = ( - tracin_sample_wise_trick.influence(train_inputs, train_labels) + tracin_sample_wise_trick.influence((train_inputs, train_labels)) ) assertTensorAlmostEqual( self, train_scores, train_scores_tracin_sample_wise_trick ) + + # pyre-fixme[56]: Pyre was not able to infer the type of argument + # `captum.testing.helpers.influence.common.build_test_name_func()` + # to decorator factory `parameterized.parameterized.expand`. + @parameterized.expand( + [ + ("none", "none", DataInfluenceConstructor(TracInCP)), + ( + "mean", + "mean", + DataInfluenceConstructor(TracInCP, sample_wise_grads_per_batch=True), + ), + ("sum", "sum", DataInfluenceConstructor(TracInCPFast)), + ("mean", "mean", DataInfluenceConstructor(TracInCPFast)), + ("sum", "sum", DataInfluenceConstructor(TracInCPFastRandProj)), + ("mean", "mean", DataInfluenceConstructor(TracInCPFastRandProj)), + ("none", "none", DataInfluenceConstructor(NaiveInfluenceFunction)), + # ( + # "none", + # "none", + # DataInfluenceConstructor(ArnoldiInfluenceFunction, arnoldi_tol=1e-9), + # # need to set `arnoldi_tol` small. otherwise, arnoldi iteration + # # terminates early and get 'Arnoldi basis is empty' exception. + # ), + ], + name_func=build_test_name_func(), + ) + def test_tracin_constant_test_loss_fn( + self, + reduction: Optional[str], + test_reduction: Optional[str], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + tracin_constructor: Callable, + ) -> None: + """ + All implementations of `TracInCPBase` can accept `test_loss_fn` in + initialization, which sets the loss function applied to test examples, which + can thus be different from the loss function applied to training examples. + This test passes `test_loss_fn` to be a constant function. Then, the influence + scores should all be 0, because gradients w.r.t. `test_loss_fn` will all be 0. + It re-uses the dataset and model from `test_tracin_identity_regression`. + + The reduction for `loss_fn` and `test_loss_fn` initialization arguments is + the same for all parameterized tests, for simplicity, and also because for + `TracInCP`, both loss functions must both be reduction loss functions (i.e. + reduction is "mean" or "sum"), or both be per-example loss functions (i.e. + reduction is "none"). Recall that for `TracInCP`, the + `sample_wise_grads_per_batch` initialization argument determines which of + those cases holds. + """ + with tempfile.TemporaryDirectory() as tmpdir: + + batch_size = 4 + + dataset, net = self._test_tracin_identity_regression_setup(tmpdir) + + train_inputs = dataset.samples + train_labels = dataset.labels + + self.assertTrue(callable(tracin_constructor)) + + assert isinstance(reduction, str) + criterion = nn.MSELoss(reduction=reduction) + + # the output of `net`, i.e. `input` for the loss functions below, is a + # batch_size x 1 2D tensor + if test_reduction == "none": + # loss function returns 1D tensor of all 0's, so is constant + def test_loss_fn(input: Tensor, target: int) -> Tensor: + return input.squeeze() * 0.0 + + elif test_reduction in ["sum", "mean"]: + # loss function returns scalar tensor of all 0's, so is constant + def test_loss_fn(input: Tensor, target: int) -> Tensor: + return input.mean() * 0.0 + + tracin = tracin_constructor( + net, + dataset, + tmpdir, + batch_size, + criterion, + # pyre-fixme[61]: `test_loss_fn` is undefined, or not always defined. + test_loss_fn=test_loss_fn, + ) + + # check influence scores of training data. they should all be 0 + # pyre-fixme[16]: `object` has no attribute `influence`. + train_scores = tracin.influence((train_inputs, train_labels), k=None) + assertTensorAlmostEqual(self, train_scores, torch.zeros(train_scores.shape)) diff --git a/tests/influence/_core/test_tracin_self_influence.py b/tests/influence/_core/test_tracin_self_influence.py index 60f0be2678..dddb1ff75e 100644 --- a/tests/influence/_core/test_tracin_self_influence.py +++ b/tests/influence/_core/test_tracin_self_influence.py @@ -1,20 +1,224 @@ +# pyre-unsafe import tempfile -from typing import Callable +from typing import Callable, Optional import torch import torch.nn as nn -from captum.influence._core.tracincp import TracInCP +from captum.influence._core.arnoldi_influence_function import ArnoldiInfluenceFunction +from captum.influence._core.influence_function import NaiveInfluenceFunction +from captum.influence._core.tracincp import TracInCP, TracInCPBase from captum.influence._core.tracincp_fast_rand_proj import TracInCPFast -from parameterized import parameterized -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.influence._utils.common import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.influence.common import ( + _format_batch_into_tuple, build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, + GPU_SETTING_LIST, + is_gpu, ) +from parameterized import parameterized +from torch.utils.data import DataLoader class TestTracInSelfInfluence(BaseTest): + + param_list = [] + + # add the tests for `TracInCPBase` implementations and `InfluenceFunctionBase` + # implementations separately, because the latter does not support `DataParallel` + + # add tests for `TracInCPBase` implementations + + for unpack_inputs in [True, False]: + for gpu_setting in GPU_SETTING_LIST: + for reduction, constructor in [ + ( + "none", + DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), + ), + ( + "none", + DataInfluenceConstructor( + TracInCP, + name="TracInCP_linear1", + layers=( + ["module.linear1"] + if gpu_setting == "cuda_data_parallel" + else ["linear1"] + ), + ), + ), + ( + "none", + DataInfluenceConstructor( + TracInCP, + name="TracInCP_linear1_linear2", + layers=( + ["module.linear1", "module.linear2"] + if gpu_setting == "cuda_data_parallel" + else ["linear1", "linear2"] + ), + ), + ), + ( + "sum", + DataInfluenceConstructor( + TracInCP, + name="TracInCP_sample_wise_grads_per_batch_all_layers", + sample_wise_grads_per_batch=True, + ), + ), + ( + "sum", + DataInfluenceConstructor( + TracInCPFast, "TracInCPFast_last_fc_layer" + ), + ), + ( + "mean", + DataInfluenceConstructor( + TracInCPFast, "TracInCPFast_last_fc_layer" + ), + ), + ]: + if not ( + "sample_wise_grads_per_batch" in constructor.kwargs + and constructor.kwargs["sample_wise_grads_per_batch"] + and is_gpu(gpu_setting) + ): + param_list.append( + (reduction, constructor, unpack_inputs, gpu_setting) + ) + + # add tests for `InfluenceFunctionBase` implementations + gpu_setting_list = ( + ["", "cuda"] + if torch.cuda.is_available() and torch.cuda.device_count() != 0 + else [""] + ) + + for unpack_inputs in [True, False]: + for gpu_setting in gpu_setting_list: + for reduction, constructor in [ + ( + "none", + DataInfluenceConstructor( + NaiveInfluenceFunction, name="NaiveInfluenceFunction_all_layers" + ), + ), + ( + "none", + DataInfluenceConstructor( + NaiveInfluenceFunction, + name="NaiveInfluenceFunction_linear1", + layers=( + ["module.linear1"] + if gpu_setting == "cuda_data_parallel" + else ["linear1"] + ), + ), + ), + ( + "none", + DataInfluenceConstructor( + ArnoldiInfluenceFunction, + name="ArnoldiInfluenceFunction_all_layers", + ), + ), + ( + "none", + DataInfluenceConstructor( + ArnoldiInfluenceFunction, + name="ArnoldiInfluenceFunction_linear1", + layers=( + ["module.linear1"] + if gpu_setting == "cuda_data_parallel" + else ["linear1"] + ), + ), + ), + ]: + if not ( + "sample_wise_grads_per_batch" in constructor.kwargs + and constructor.kwargs["sample_wise_grads_per_batch"] + and is_gpu(gpu_setting) + ): + param_list.append( + (reduction, constructor, unpack_inputs, gpu_setting) + ) + + @parameterized.expand( + param_list, + name_func=build_test_name_func(), + ) + def test_tracin_self_influence( + self, + reduction: str, + tracin_constructor: Callable, + unpack_inputs: bool, + gpu_setting: Optional[str], + ) -> None: + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + ) = get_random_model_and_data( + tmpdir, + unpack_inputs, + False, + gpu_setting, + ) + + # compute tracin_scores of training data on training data + criterion = nn.MSELoss(reduction=reduction) + batch_size = 5 + + tracin = tracin_constructor( + net, + train_dataset, + tmpdir, + batch_size, + criterion, + ) + train_scores = tracin.influence( + _format_batch_into_tuple( + train_dataset.samples, train_dataset.labels, unpack_inputs + ), + k=None, + ) + # calculate self_tracin_scores + self_tracin_scores = tracin.self_influence() + + # check that self_tracin scores equals the diagonal of influence scores + assertTensorAlmostEqual( + self, + torch.diagonal(train_scores), + self_tracin_scores, + delta=0.01, + mode="max", + ) + + # check that setting `outer_loop_by_checkpoints=False` and + # `outer_loop_by_checkpoints=True` gives the same self influence scores + # this test is only relevant for implementations of `TracInCPBase`, as + # implementations of `InfluenceFunctionBase` do not use checkpoints. + if isinstance(tracin, TracInCPBase): + self_tracin_scores_by_checkpoints = ( + tracin.self_influence( # type: ignore + DataLoader(train_dataset, batch_size=batch_size), + outer_loop_by_checkpoints=True, + ) + ) + assertTensorAlmostEqual( + self, + self_tracin_scores_by_checkpoints, + self_tracin_scores, + delta=0.01, + mode="max", + ) + @parameterized.expand( [ (reduction, constructor, unpack_inputs) @@ -25,7 +229,6 @@ class TestTracInSelfInfluence(BaseTest): "sum", DataInfluenceConstructor( TracInCP, - name="TracInCPFastRandProjTests", sample_wise_grads_per_batch=True, ), ), @@ -33,21 +236,31 @@ class TestTracInSelfInfluence(BaseTest): ("mean", DataInfluenceConstructor(TracInCPFast)), ] ], - name_func=build_test_name_func(args_to_skip=["reduction"]), + name_func=build_test_name_func(), ) - def test_tracin_self_influence( + def test_tracin_self_influence_dataloader_vs_single_batch( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool ) -> None: + # tests that the result of calling the public method `self_influence` for a + # DataLoader of batches is the same as when the batches are collated into a + # single batch with tempfile.TemporaryDirectory() as tmpdir: ( net, train_dataset, ) = get_random_model_and_data(tmpdir, unpack_inputs, return_test_data=False) - # compute tracin_scores of training data on training data + # create a single batch representing the entire dataset + single_batch = next( + iter(DataLoader(train_dataset, batch_size=len(train_dataset))) + ) + + # create a dataloader that yields batches from the dataset + dataloader = DataLoader(train_dataset, batch_size=5) + + # create tracin instance criterion = nn.MSELoss(reduction=reduction) batch_size = 5 - tracin = tracin_constructor( net, train_dataset, @@ -56,20 +269,19 @@ def test_tracin_self_influence( criterion, ) - train_scores = tracin.influence( - train_dataset.samples, - train_dataset.labels, - k=None, - unpack_inputs=unpack_inputs, - ) + # compute self influence using `self_influence` when passing in a single + # batch + single_batch_self_influence = tracin.self_influence(single_batch) - # calculate self_tracin_scores - self_tracin_scores = tracin.influence() + # compute self influence using `self_influence` when passing in a + # dataloader with the same examples + dataloader_self_influence = tracin.self_influence(dataloader) + # the two self influences should be equal assertTensorAlmostEqual( self, - torch.diagonal(train_scores), - self_tracin_scores, - delta=0.01, + single_batch_self_influence, + dataloader_self_influence, + delta=0.01, # due to numerical issues, we can't set this to 0.0 mode="max", ) diff --git a/tests/influence/_core/test_tracin_show_progress.py b/tests/influence/_core/test_tracin_show_progress.py index b4af4d3118..092297d983 100644 --- a/tests/influence/_core/test_tracin_show_progress.py +++ b/tests/influence/_core/test_tracin_show_progress.py @@ -1,21 +1,21 @@ +# pyre-strict + import io import tempfile -import unittest import unittest.mock from typing import Callable import torch.nn as nn from captum.influence._core.tracincp import TracInCP -from captum.influence._core.tracincp_fast_rand_proj import ( - TracInCPFast, -) -from parameterized import parameterized -from tests.helpers.basic import BaseTest -from tests.influence._utils.common import ( - get_random_model_and_data, - DataInfluenceConstructor, +from captum.influence._core.tracincp_fast_rand_proj import TracInCPFast +from captum.testing.helpers import BaseTest +from captum.testing.helpers.influence.common import ( build_test_name_func, + DataInfluenceConstructor, + get_random_model_and_data, ) +from parameterized import parameterized +from torch.utils.data import DataLoader class TestTracInShowProgress(BaseTest): @@ -30,6 +30,52 @@ class TestTracInShowProgress(BaseTest): in `TracInCPFastRandProj.__init__`). """ + def _check_error_msg_multiplicity( + self, + mock_stderr: io.StringIO, + msg: str, + msg_multiplicity: int, + greater_than: bool = True, + ) -> None: + """ + Checks that in `mock_stderr`, the error msg `msg` occurs `msg_multiplicity` + times. If 'greater_than' is true, it checks that the `msg` occurs at least + `msg_multiplicity` times. Otherwise, it checks that `msg` occurs exactly + `msg_multiplicity` times. The reason to let `greater_than` as true by default + is that tqdm sometimes displays the "100%" more than once for each progress bar + because it may want to correct its estimation of it/s. In this case, the + tqdm could remove the original "100%" and then re-display "100%" with the + updated estimate of it/s. + """ + output = mock_stderr.getvalue() + actual_msg_multiplicity = output.count(msg) + assert isinstance(actual_msg_multiplicity, int) + error_msg = ( + f"Error in progress of batches with output looking for '{msg}'" + f" at least {msg_multiplicity} times" + f"(found {actual_msg_multiplicity}) in {repr(output)}" + ) + if greater_than: + self.assertGreaterEqual( + actual_msg_multiplicity, msg_multiplicity, error_msg + ) + else: + self.assertEqual( + actual_msg_multiplicity, + msg_multiplicity, + error_msg, + ) + + # pyre-fixme[56]: Pyre was not able to infer the type of argument + # `comprehension((reduction, constr, mode) for + # generators(generator((reduction, constr) in + # [("none", captum.testing.helpers.influence.common.DataInfluenceConstructor + # (captum.influence._core.tracincp.TracInCP)), + # ("sum", captum.testing.helpers.influence.common.DataInfluenceConstructor + # (captum.influence._core.tracincp_fast_rand_proj.TracInCPFast))] if ), + # generators(generator(mode in ["self influence by checkpoints", + # "self influence by batches", "influence", "k-most"] if ))))` + # to decorator factory `parameterized.parameterized.expand`. @parameterized.expand( [ ( @@ -47,119 +93,164 @@ class TestTracInShowProgress(BaseTest): DataInfluenceConstructor(TracInCPFast), ), ] - for mode in ["self influence", "influence", "k-most"] + for mode in [ + "self influence by checkpoints", + "self influence by batches", + "influence", + "k-most", + ] ], name_func=build_test_name_func(args_to_skip=["reduction"]), ) - @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_tracin_show_progress( self, reduction: str, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. tracin_constructor: Callable, mode: str, - mock_stderr, ) -> None: - with tempfile.TemporaryDirectory() as tmpdir: + with unittest.mock.patch("sys.stderr", new_callable=io.StringIO) as mock_stderr: - batch_size = 5 + with tempfile.TemporaryDirectory() as tmpdir: - ( - net, - train_dataset, - test_samples, - test_labels, - ) = get_random_model_and_data( - tmpdir, unpack_inputs=False, return_test_data=True - ) + batch_size = 5 - self.assertTrue(isinstance(reduction, str)) - criterion = nn.MSELoss(reduction=reduction) + ( + net, + train_dataset, + test_samples, + test_labels, + ) = get_random_model_and_data( + tmpdir, unpack_inputs=False, return_test_data=True + ) - self.assertTrue(callable(tracin_constructor)) - tracin = tracin_constructor( - net, - train_dataset, - tmpdir, - batch_size, - criterion, - ) + self.assertTrue(isinstance(reduction, str)) + criterion = nn.MSELoss(reduction=reduction) - if mode == "self influence": - tracin.influence(show_progress=True) - output = mock_stderr.getvalue() - self.assertTrue( - ( - ( - f"Using {tracin.get_name()} to compute self influence " - "for training batches: 100%" - ) - in output - ), - f"Error progress output: {repr(output)}", + self.assertTrue(callable(tracin_constructor)) + tracin = tracin_constructor( + net, + train_dataset, + tmpdir, + batch_size, + criterion, ) - elif mode == "influence": - tracin.influence( - test_samples, - test_labels, - k=None, - show_progress=True, - ) - output = mock_stderr.getvalue() - self.assertTrue( - ( + if mode == "self influence by checkpoints": + # this tests progress for computing self influence scores, when + # `outer_loop_by_checkpoints` is True. In this case, we should see a + # single outer progress bar over checkpoints, and for every + # checkpoints, a separate progress bar over batches + # pyre-fixme[16]: `object` has no attribute `self_influence`. + tracin.self_influence( + DataLoader(train_dataset, batch_size=batch_size), + show_progress=True, + outer_loop_by_checkpoints=True, + ) + + # We are showing nested progress bars for the `self_influence` + # method, with the outer progress bar over checkpoints, and + # the inner progress bar over batches. First, we check that + # the outer progress bar reaches 100% once + self._check_error_msg_multiplicity( + mock_stderr, + ( + # pyre-fixme[16]: `object` has no attribute `get_name`. + f"Using {tracin.get_name()} to compute self influence. " + "Processing checkpoint: 100%" + ), + 1, + ) + # Second, we check that the inner progress bar reaches 100% + # once for each checkpoint in `tracin.checkpoints` + self._check_error_msg_multiplicity( + mock_stderr, + ( + f"Using {tracin.get_name()} to compute self influence. " + "Processing batch: 100%" + ), + # pyre-fixme[16]: `object` has no attribute `checkpoints`. + len(tracin.checkpoints), + ) + elif mode == "self influence by batches": + # This tests progress for computing self influence scores, when + # `outer_loop_by_checkpoints` is False. In this case, we should see + # a single outer progress bar over batches. + tracin.self_influence( + DataLoader(train_dataset, batch_size=batch_size), + show_progress=True, + outer_loop_by_checkpoints=False, + ) + self._check_error_msg_multiplicity( + mock_stderr, + ( + f"Using {tracin.get_name()} to compute self influence. " + "Processing batch: 100%" + ), + 1, + ) + elif mode == "influence": + + # pyre-fixme[16]: `object` has no attribute `influence`. + tracin.influence( + (test_samples, test_labels), + k=None, + show_progress=True, + ) + # Since the computation iterates once over training batches, we + # check that the progress bar over batches reaches 100% once + self._check_error_msg_multiplicity( + mock_stderr, ( f"Using {tracin.get_name()} to compute influence " "for training batches: 100%" - ) - in output - ), - f"Error progress output: {repr(output)}", - ) - elif mode == "k-most": + ), + 1, + ) + elif mode == "k-most": - tracin.influence( - test_samples, - test_labels, - k=2, - proponents=True, - show_progress=True, - ) - output = mock_stderr.getvalue() - self.assertTrue( - ( + tracin.influence( + (test_samples, test_labels), + k=2, + proponents=True, + show_progress=True, + ) + + # Since the computation iterates once over training batches, we + # check that the progress bar over batches reaches 100% once, and + # that the message is specific for finding proponents. + self._check_error_msg_multiplicity( + mock_stderr, ( f"Using {tracin.get_name()} to perform computation for " "getting proponents. Processing training batches: 100%" - ) - in output - ), - f"Error progress output: {repr(output)}", - ) - mock_stderr.seek(0) - mock_stderr.truncate(0) + ), + 1, + ) + mock_stderr.seek(0) + mock_stderr.truncate(0) - tracin.influence( - test_samples, - test_labels, - k=2, - proponents=False, - show_progress=True, - ) - output = mock_stderr.getvalue() - self.assertTrue( - ( + tracin.influence( + (test_samples, test_labels), + k=2, + proponents=False, + show_progress=True, + ) + + # Since the computation iterates once over training batches, we + # check that the progress bar over batches reaches 100% once, and + # that the message is specific for finding opponents. + self._check_error_msg_multiplicity( + mock_stderr, ( f"Using {tracin.get_name()} to perform computation for " "getting opponents. Processing training batches: 100%" - ) - in output - ), - f"Error progress output: {repr(output)}", - ) - else: - raise Exception("unknown test mode") + ), + 1, + ) + else: + raise Exception("unknown test mode") - mock_stderr.seek(0) - mock_stderr.truncate(0) + mock_stderr.seek(0) + mock_stderr.truncate(0) diff --git a/tests/influence/_core/test_tracin_validation.py b/tests/influence/_core/test_tracin_validation.py new file mode 100644 index 0000000000..431a8ea0c0 --- /dev/null +++ b/tests/influence/_core/test_tracin_validation.py @@ -0,0 +1,121 @@ +# pyre-unsafe +import tempfile +from typing import Callable + +import torch.nn as nn +from captum.influence._core.tracincp import TracInCP +from captum.influence._core.tracincp_fast_rand_proj import TracInCPFast +from captum.testing.helpers import BaseTest +from captum.testing.helpers.influence.common import ( + build_test_name_func, + DataInfluenceConstructor, + get_random_model_and_data, +) + +from parameterized import parameterized + + +class TestTracinValidator(BaseTest): + + param_list = [ + ( + "none", + DataInfluenceConstructor(TracInCP, name="TracInCP"), + ), + ( + "mean", + DataInfluenceConstructor( + TracInCPFast, + name="TracInCpFast", + ), + ), + ] + + @parameterized.expand( + param_list, + name_func=build_test_name_func(), + ) + def test_tracin_require_inputs_dataset( + self, + reduction: str, + tracin_constructor: Callable, + ) -> None: + """ + This test verifies that tracinCP and tracinCPFast + influence methods required `inputs_dataset`. + """ + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + test_samples, + test_labels, + ) = get_random_model_and_data(tmpdir, unpack_inputs=False) + + criterion = nn.MSELoss(reduction=reduction) + + tracin = tracin_constructor( + net, + train_dataset, + tmpdir, + loss_fn=criterion, + batch_size=1, + ) + with self.assertRaisesRegex(AssertionError, "required."): + tracin.influence(None, k=None) + + def test_tracincp_fast_rand_proj_inputs(self) -> None: + """ + This test verifies that TracInCPFast should be initialized + with a valid `final_fc_layer`. + """ + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + test_samples, + test_labels, + ) = get_random_model_and_data(tmpdir, unpack_inputs=False) + + with self.assertRaisesRegex( + ValueError, 'Invalid final_fc_layer str: "invalid_layer" provided!' + ): + TracInCPFast( + net, + "invalid_layer", # type: ignore + train_dataset, + tmpdir, + loss_fn=nn.MSELoss(), + batch_size=1, + ) + + @parameterized.expand( + param_list, + name_func=build_test_name_func(), + ) + def test_tracincp_input_checkpoints( + self, reduction: str, tracin_constructor: Callable + ) -> None: + """ + This test verifies that tracinCP and tracinCPFast + class should be initialized with valid `checkpoints`. + """ + with tempfile.TemporaryDirectory() as invalid_tmpdir: + with tempfile.TemporaryDirectory() as tmpdir: + ( + net, + train_dataset, + test_samples, + test_labels, + ) = get_random_model_and_data(tmpdir, unpack_inputs=False) + + with self.assertRaisesRegex( + ValueError, "Invalid checkpoints provided for TracIn class: " + ): + tracin_constructor( + net, + train_dataset, + invalid_tmpdir, + loss_fn=nn.MSELoss(), + batch_size=1, + ) diff --git a/tests/influence/_core/test_tracin_xor.py b/tests/influence/_core/test_tracin_xor.py index 52a71afcf7..6ae7059a7b 100644 --- a/tests/influence/_core/test_tracin_xor.py +++ b/tests/influence/_core/test_tracin_xor.py @@ -1,26 +1,33 @@ +# pyre-strict + import os import tempfile from collections import OrderedDict -from typing import Callable, cast, Optional +from typing import Callable, cast, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from captum.influence._core.tracincp import TracInCP -from parameterized import parameterized -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.influence._utils.common import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.influence.common import ( + _wrap_model_in_dataparallel, BasicLinearNet, BinaryDataset, build_test_name_func, DataInfluenceConstructor, ) +from parameterized import parameterized class TestTracInXOR(BaseTest): + # TODO: Move test setup to use setUp and tearDown method overrides. - def _test_tracin_xor_setup(self, tmpdir: str): - net = BasicLinearNet(2, 2, 1) + def _test_tracin_xor_setup( + self, tmpdir: str, use_gpu: bool = False + ) -> Tuple[BinaryDataset, ...]: + net = BasicLinearNet(in_features=2, hidden_nodes=2, out_features=1) state = OrderedDict( [ @@ -34,8 +41,10 @@ def _test_tracin_xor_setup(self, tmpdir: str): ] ) net.load_state_dict(state) + net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net + checkpoint_name = "-".join(["checkpoint", "class", "0" + ".pt"]) - torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) + torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ @@ -49,8 +58,10 @@ def _test_tracin_xor_setup(self, tmpdir: str): ] ) net.load_state_dict(state) + net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net + checkpoint_name = "-".join(["checkpoint", "class", "1" + ".pt"]) - torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) + torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ @@ -64,8 +75,10 @@ def _test_tracin_xor_setup(self, tmpdir: str): ] ) net.load_state_dict(state) + net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net + checkpoint_name = "-".join(["checkpoint", "class", "2" + ".pt"]) - torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) + torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ @@ -79,8 +92,10 @@ def _test_tracin_xor_setup(self, tmpdir: str): ] ) net.load_state_dict(state) + net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net + checkpoint_name = "-".join(["checkpoint", "class", "3" + ".pt"]) - torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) + torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ @@ -94,8 +109,10 @@ def _test_tracin_xor_setup(self, tmpdir: str): ] ) net.load_state_dict(state) + net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net + checkpoint_name = "-".join(["checkpoint", "class", "4" + ".pt"]) - torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) + torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ @@ -109,8 +126,10 @@ def _test_tracin_xor_setup(self, tmpdir: str): ] ) net.load_state_dict(state) + net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net + checkpoint_name = "-".join(["checkpoint", "class", "5" + ".pt"]) - torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) + torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ @@ -124,8 +143,10 @@ def _test_tracin_xor_setup(self, tmpdir: str): ] ) net.load_state_dict(state) + net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net + checkpoint_name = "-".join(["checkpoint", "class", "6" + ".pt"]) - torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) + torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ @@ -139,38 +160,89 @@ def _test_tracin_xor_setup(self, tmpdir: str): ] ) net.load_state_dict(state) + net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net + checkpoint_name = "-".join(["checkpoint", "class", "7" + ".pt"]) - torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) + torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) - dataset = BinaryDataset() + dataset = BinaryDataset(use_gpu) - return net, dataset + return net_adjusted, dataset # type: ignore - @parameterized.expand( - [ - ( - "none", - DataInfluenceConstructor(TracInCP), - "check_idx", + parametrized_list: List[ + Tuple[Optional[str], DataInfluenceConstructor, str, bool] + ] = [ + ( + "none", + DataInfluenceConstructor( + TracInCP, name="TracInCP_linear1", layers=["linear1"] ), - ( - None, - DataInfluenceConstructor(TracInCP), - "sample_wise_trick", + "check_idx", + False, + ), + ( + "none", + DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), + "check_idx", + False, + ), + ( + None, + DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), + "sample_wise_trick", + False, + ), + ( + None, + DataInfluenceConstructor( + TracInCP, name="TracInCP_linear1_linear2", layers=["linear1", "linear2"] ), - ], + "sample_wise_trick", + False, + ), + ] + + if torch.cuda.is_available() and torch.cuda.device_count() != 0: + parametrized_list.extend( + [ + ( + "none", + DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), + "check_idx", + True, + ), + ( + "none", + DataInfluenceConstructor( + TracInCP, + name="TracInCP_linear1_linear2", + layers=["module.linear1", "module.linear2"], + ), + "check_idx", + True, + ), + ], + ) + + # pyre-fixme[56]: Pyre was not able to infer the type of argument + # `captum.testing.helpers.influence.common.build_test_name_func($parameter$args_to_skip + # = ["reduction"])` to decorator factory `parameterized.parameterized.expand`. + @parameterized.expand( + parametrized_list, name_func=build_test_name_func(args_to_skip=["reduction"]), ) def test_tracin_xor( - self, reduction: Optional[str], tracin_constructor: Callable, mode: str + self, + reduction: Optional[str], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + tracin_constructor: Callable, + mode: str, + use_gpu: bool, ) -> None: with tempfile.TemporaryDirectory() as tmpdir: - dataset = BinaryDataset() - net = BasicLinearNet(2, 2, 1) - batch_size = 4 - net, dataset = self._test_tracin_xor_setup(tmpdir) + net, dataset = self._test_tracin_xor_setup(tmpdir, use_gpu) testset = F.normalize(torch.empty(100, 2).normal_(mean=0, std=0.5), dim=1) mask = ~torch.logical_xor(testset[:, 0] > 0, testset[:, 1] > 0) @@ -179,12 +251,16 @@ def test_tracin_xor( .unsqueeze(1) .float() ) + if use_gpu: + testset = testset.cuda() + testlabels = testlabels.cuda() self.assertTrue(callable(tracin_constructor)) if mode == "check_idx": self.assertTrue(isinstance(reduction, str)) + # pyre-fixme[22]: The cast is redundant. criterion = nn.MSELoss(reduction=cast(str, reduction)) tracin = tracin_constructor( @@ -194,9 +270,9 @@ def test_tracin_xor( batch_size, criterion, ) - test_scores = tracin.influence(testset, testlabels) + # pyre-fixme[16]: `object` has no attribute `influence`. + test_scores = tracin.influence((testset, testlabels)) idx = torch.argsort(test_scores, dim=1, descending=True) - # check that top 5 influences have matching binary classification for i in range(len(idx)): influence_labels = dataset.labels[idx[i][0:5], 0] @@ -225,10 +301,9 @@ def test_tracin_xor( criterion, sample_wise_grads_per_batch=True, ) - - test_scores = tracin.influence(testset, testlabels) + test_scores = tracin.influence((testset, testlabels)) test_scores_sample_wise_trick = tracin_sample_wise_trick.influence( - testset, testlabels + (testset, testlabels) ) assertTensorAlmostEqual( self, test_scores, test_scores_sample_wise_trick diff --git a/tests/influence/_utils/common.py b/tests/influence/_utils/common.py deleted file mode 100644 index 5d7cd3d5a0..0000000000 --- a/tests/influence/_utils/common.py +++ /dev/null @@ -1,303 +0,0 @@ -import inspect -import os -import unittest -from functools import partial -from typing import Callable, Iterator, List, Optional, Union - -import torch -import torch.nn as nn -import torch.nn.functional as F -from captum.influence import DataInfluence -from captum.influence._core.tracincp_fast_rand_proj import ( - TracInCPFast, - TracInCPFastRandProj, -) -from parameterized import parameterized -from parameterized.parameterized import param -from torch.nn import Module -from torch.utils.data import DataLoader, Dataset - - -def isSorted(x, key=lambda x: x, descending=True): - if descending: - return all([key(x[i]) >= key(x[i + 1]) for i in range(len(x) - 1)]) - else: - return all([key(x[i]) <= key(x[i + 1]) for i in range(len(x) - 1)]) - - -class ExplicitDataset(Dataset): - def __init__(self, samples, labels): - self.samples, self.labels = samples, labels - - def __len__(self): - return len(self.samples) - - def __getitem__(self, idx): - return (self.samples[idx], self.labels[idx]) - - -class UnpackDataset(Dataset): - def __init__(self, samples, labels): - self.samples, self.labels = samples, labels - - def __len__(self): - return len(self.samples[0]) - - def __getitem__(self, idx): - """ - The signature of the returning item is: List[List], where the contents - are: [sample_0, sample_1, ...] + [labels] (two lists concacenated). - """ - return [lst[idx] for lst in self.samples] + [self.labels[idx]] - - -class IdentityDataset(ExplicitDataset): - def __init__(self, num_features): - self.samples = torch.diag(torch.ones(num_features)) - self.labels = torch.zeros(num_features).unsqueeze(1) - - -class RangeDataset(ExplicitDataset): - def __init__(self, low, high, num_features): - self.samples = ( - torch.arange(start=low, end=high, dtype=torch.float) - .repeat(num_features, 1) - .transpose(1, 0) - ) - self.labels = torch.arange(start=low, end=high, dtype=torch.float).unsqueeze(1) - - -class BinaryDataset(ExplicitDataset): - def __init__(self): - self.samples = F.normalize( - torch.stack( - ( - torch.Tensor([1, 1]), - torch.Tensor([2, 1]), - torch.Tensor([1, 2]), - torch.Tensor([1, 5]), - torch.Tensor([0.01, 1]), - torch.Tensor([5, 1]), - torch.Tensor([1, 0.01]), - torch.Tensor([-1, -1]), - torch.Tensor([-2, -1]), - torch.Tensor([-1, -2]), - torch.Tensor([-1, -5]), - torch.Tensor([-5, -1]), - torch.Tensor([1, -1]), - torch.Tensor([2, -1]), - torch.Tensor([1, -2]), - torch.Tensor([1, -5]), - torch.Tensor([0.01, -1]), - torch.Tensor([5, -1]), - torch.Tensor([-1, 1]), - torch.Tensor([-2, 1]), - torch.Tensor([-1, 2]), - torch.Tensor([-1, 5]), - torch.Tensor([-5, 1]), - torch.Tensor([-1, 0.01]), - ) - ) - ) - self.labels = torch.cat( - ( - torch.Tensor([1]).repeat(12, 1), - torch.Tensor([-1]).repeat(12, 1), - ) - ) - - -class CoefficientNet(nn.Module): - def __init__(self, in_features=1): - super().__init__() - self.fc1 = nn.Linear(in_features, 1, bias=False) - self.fc1.weight.data.fill_(0.01) - - def forward(self, x): - x = self.fc1(x) - return x - - -class BasicLinearNet(nn.Module): - def __init__(self, in_features, hidden_nodes, out_features): - super().__init__() - self.linear1 = nn.Linear(in_features, hidden_nodes) - self.linear2 = nn.Linear(hidden_nodes, out_features) - - def forward(self, input): - x = torch.tanh(self.linear1(input)) - return torch.tanh(self.linear2(x)) - - -class MultLinearNet(nn.Module): - def __init__(self, in_features, hidden_nodes, out_features, num_inputs): - super().__init__() - self.pre = nn.Linear(in_features * num_inputs, in_features) - self.linear1 = nn.Linear(in_features, hidden_nodes) - self.linear2 = nn.Linear(hidden_nodes, out_features) - - def forward(self, *inputs): - """ - The signature of inputs is List[torch.Tensor], - where torch.Tensor has the dimensions [num_inputs x in_features]. - It first concacenates the list and a linear layer to reduce the - dimension. - """ - inputs = self.pre(torch.cat(inputs, dim=1)) - x = torch.tanh(self.linear1(inputs)) - return torch.tanh(self.linear2(x)) - - -def get_random_model_and_data(tmpdir, unpack_inputs, return_test_data=True): - - in_features, hidden_nodes, out_features = 5, 4, 3 - num_inputs = 2 - - net = ( - BasicLinearNet(in_features, hidden_nodes, out_features) - if not unpack_inputs - else MultLinearNet(in_features, hidden_nodes, out_features, num_inputs) - ) - - num_checkpoints = 5 - - for i in range(num_checkpoints): - net.linear1.weight.data = torch.normal(3, 4, (hidden_nodes, in_features)) - net.linear2.weight.data = torch.normal(5, 6, (out_features, hidden_nodes)) - if unpack_inputs: - net.pre.weight.data = torch.normal( - 3, 4, (in_features, in_features * num_inputs) - ) - checkpoint_name = "-".join(["checkpoint-reg", str(i + 1) + ".pt"]) - torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) - - num_samples = 50 - num_train = 32 - all_labels = torch.normal(1, 2, (num_samples, out_features)) - train_labels = all_labels[:num_train] - test_labels = all_labels[num_train:] - - if unpack_inputs: - all_samples = [ - torch.normal(0, 1, (num_samples, in_features)) for _ in range(num_inputs) - ] - train_samples = [ts[:num_train] for ts in all_samples] - test_samples = [ts[num_train:] for ts in all_samples] - else: - all_samples = torch.normal(0, 1, (num_samples, in_features)) - train_samples = all_samples[:num_train] - test_samples = all_samples[num_train:] - - dataset = ( - ExplicitDataset(train_samples, train_labels) - if not unpack_inputs - else UnpackDataset(train_samples, train_labels) - ) - - if return_test_data: - return net, dataset, test_samples, test_labels - else: - return net, dataset - - -class DataInfluenceConstructor: - name: str = "" - data_influence_class: type - - def __init__( - self, data_influence_class: type, name: Optional[str] = None, **kwargs - ): - self.data_influence_class = data_influence_class - self.name = name if name else data_influence_class.__name__ - self.kwargs = kwargs - - def __repr__(self): - return self.name - - def __call__( - self, - net: Module, - dataset: Union[Dataset, DataLoader], - tmpdir: Union[str, List[str], Iterator], - batch_size: Union[int, None], - loss_fn: Optional[Union[Module, Callable]], - **kwargs, - ) -> DataInfluence: - constuctor_kwargs = self.kwargs.copy() - constuctor_kwargs.update(kwargs) - if self.data_influence_class is TracInCPFastRandProj: - self.check_annoy() - if self.data_influence_class in [TracInCPFast, TracInCPFastRandProj]: - return self.data_influence_class( - net, - list(net.children())[-1], - dataset, - tmpdir, - loss_fn=loss_fn, - batch_size=batch_size, - **constuctor_kwargs, - ) - else: - return self.data_influence_class( - net, - dataset, - tmpdir, - batch_size=batch_size, - loss_fn=loss_fn, - **constuctor_kwargs, - ) - - def check_annoy(self) -> None: - try: - import annoy # noqa - except ImportError: - raise unittest.SkipTest( - ( - f"Skipping tests for {self.data_influence_class.__name__}, " - "because it requires the Annoy module." - ) - ) - - -def generate_test_name( - testcase_func: Callable, - param_num: str, - param: param, - args_to_skip: Optional[List[str]] = None, -) -> str: - """ - Creates human readable names for parameterized tests - """ - - if args_to_skip is None: - args_to_skip = [] - param_strs = [] - - func_param_names = list(inspect.signature(testcase_func).parameters) - # skip the first 'self' parameter - if func_param_names[0] == "self": - func_param_names = func_param_names[1:] - - for i, arg in enumerate(param.args): - if func_param_names[i] in args_to_skip: - continue - if isinstance(arg, bool): - if arg: - param_strs.append(func_param_names[i]) - else: - args_str = str(arg) - if args_str.isnumeric(): - param_strs.append(func_param_names[i]) - param_strs.append(args_str) - return "%s_%s" % ( - testcase_func.__name__, - parameterized.to_safe_name("_".join(param_strs)), - ) - - -def build_test_name_func(args_to_skip: Optional[List[str]] = None): - """ - Returns function to generate human readable names for parameterized tests - """ - - return partial(generate_test_name, args_to_skip=args_to_skip) diff --git a/tests/influence/_utils/test_common.py b/tests/influence/_utils/test_common.py new file mode 100644 index 0000000000..9f927c559b --- /dev/null +++ b/tests/influence/_utils/test_common.py @@ -0,0 +1,56 @@ +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. + +# pyre-unsafe + +# !/usr/bin/env python3 + +import torch + +from captum.influence._utils.common import _jacobian_loss_wrt_inputs +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual + + +class TestCommon(BaseTest): + def setUp(self) -> None: + super().setUp() + + def test_jacobian_loss_wrt_inputs(self) -> None: + with self.assertRaises(ValueError) as err: + _jacobian_loss_wrt_inputs( + torch.nn.BCELoss(reduction="sum"), + torch.tensor([-1.0, 1.0]), + torch.tensor([1.0]), + True, + "", + ) + self.assertEqual( + "`` is not a valid value for reduction_type. " + "Must be either 'sum' or 'mean'.", + str(err.exception), + ) + + with self.assertRaises(AssertionError) as err: + _jacobian_loss_wrt_inputs( + torch.nn.BCELoss(reduction="sum"), + torch.tensor([-1.0, 1.0]), + torch.tensor([1.0]), + True, + "mean", + ) + self.assertEqual( + "loss_fn.reduction `sum` does not matchreduction type `mean`." + " Please ensure they are matching.", + str(err.exception), + ) + + res = _jacobian_loss_wrt_inputs( + torch.nn.BCELoss(reduction="sum"), + torch.tensor([0.5, 1.0]), + torch.tensor([0.0, 1.0]), + True, + "sum", + ) + assertTensorAlmostEqual( + self, res, torch.tensor([2.0, 0.0]), delta=0.0, mode="sum" + ) diff --git a/tests/insights/test_contribution.py b/tests/insights/test_contribution.py index 56b5f26aaa..6978f3a275 100644 --- a/tests/insights/test_contribution.py +++ b/tests/insights/test_contribution.py @@ -1,14 +1,19 @@ #!/usr/bin/env python3 +# pyre-unsafe + import unittest -from typing import Callable, List, Union +from typing import Any, Callable, Generator, List, Tuple, Union import torch import torch.nn as nn from captum.insights import AttributionVisualizer, Batch from captum.insights.attr_vis.app import FilterConfig from captum.insights.attr_vis.features import BaseFeature, FeatureOutput, ImageFeature -from tests.helpers.basic import BaseTest +from captum.testing.helpers import BaseTest +from packaging import version +from torch import Tensor +from torch.utils.data import DataLoader class RealFeature(BaseFeature): @@ -26,7 +31,8 @@ def __init__( visualization_transform=None, ) - def visualization_type(self): + @staticmethod + def visualization_type() -> str: return "real" def visualize(self, attribution, data, contribution_frac) -> FeatureOutput: @@ -39,7 +45,7 @@ def visualize(self, attribution, data, contribution_frac) -> FeatureOutput: ) -def _get_classes(): +def _get_classes() -> List[str]: classes = [ "Plane", "Car", @@ -56,7 +62,7 @@ def _get_classes(): class TinyCnn(nn.Module): - def __init__(self, feature_extraction=False) -> None: + def __init__(self, feature_extraction: bool = False) -> None: super().__init__() self.feature_extraction = feature_extraction @@ -80,7 +86,7 @@ def forward(self, x): class TinyMultiModal(nn.Module): - def __init__(self, input_size=256, pretrained=False) -> None: + def __init__(self, input_size: int = 256, pretrained: bool = False) -> None: super().__init__() if pretrained: self.img_model = _get_cnn(feature_extraction=True) @@ -97,14 +103,20 @@ def forward(self, img, misc): return self.fc(x) -def _labelled_img_data(num_samples=10, width=8, height=8, depth=3, num_labels=10): +def _labelled_img_data( + num_samples: int = 10, + width: int = 8, + height: int = 8, + depth: int = 3, + num_labels: int = 10, +) -> Generator[Tuple[Tensor, Tensor], Any, Any]: for _ in range(num_samples): yield torch.empty(depth, height, width).uniform_(0, 1), torch.randint( num_labels, (1,) ) -def _multi_modal_data(img_dataset, feature_size=256): +def _multi_modal_data(img_dataset, feature_size: int = 256): def misc_data(length, feature_size=None): for _ in range(length): yield torch.randn(feature_size) @@ -116,11 +128,11 @@ def misc_data(length, feature_size=None): yield ((img, misc), label) -def _get_cnn(feature_extraction=False): +def _get_cnn(feature_extraction: bool = False) -> TinyCnn: return TinyCnn(feature_extraction=feature_extraction) -def _get_multimodal(input_size=256): +def _get_multimodal(input_size: int = 256) -> TinyMultiModal: return TinyMultiModal(input_size=input_size, pretrained=True) @@ -135,7 +147,13 @@ def to_iter(data_loader): class Test(BaseTest): - def test_one_feature(self): + def test_one_feature(self) -> None: + # TODO This test fails after torch 2.6.0. Disable for now. + if version.parse(torch.__version__) < version.parse("2.6.0"): + raise unittest.SkipTest( + "Skipping insights test_multi_features since it is not supported " + "by torch version < 2.6" + ) batch_size = 2 classes = _get_classes() dataset = list( @@ -144,8 +162,8 @@ def test_one_feature(self): # NOTE: using DataLoader to batch the inputs # since AttributionVisualizer requires the input to be of size `B x ...` - data_loader = torch.utils.data.DataLoader( - list(dataset), batch_size=batch_size, shuffle=False, num_workers=0 + data_loader: DataLoader = torch.utils.data.DataLoader( + list(dataset), batch_size=batch_size, shuffle=False, num_workers=0 # type: ignore # noqa: E501 line too long ) visualizer = AttributionVisualizer( @@ -169,7 +187,13 @@ def test_one_feature(self): total_contrib = sum(abs(f.contribution) for f in output[0].feature_outputs) self.assertAlmostEqual(total_contrib, 1.0, places=6) - def test_multi_features(self): + def test_multi_features(self) -> None: + # TODO This test fails after torch 2.6.0. Disable for now. + if version.parse(torch.__version__) < version.parse("2.6.0"): + raise unittest.SkipTest( + "Skipping insights test_multi_features since it is not supported " + "by torch version < 2.6" + ) batch_size = 2 classes = _get_classes() img_dataset = list( @@ -182,8 +206,8 @@ def test_multi_features(self): ) # NOTE: using DataLoader to batch the inputs since # AttributionVisualizer requires the input to be of size `N x ...` - data_loader = torch.utils.data.DataLoader( - list(dataset), batch_size=batch_size, shuffle=False, num_workers=0 + data_loader: DataLoader = torch.utils.data.DataLoader( + list(dataset), batch_size=batch_size, shuffle=False, num_workers=0 # type: ignore # noqa: E501 line too long ) visualizer = AttributionVisualizer( diff --git a/tests/insights/test_features.py b/tests/insights/test_features.py index b89bab09ea..a9d129d5c9 100644 --- a/tests/insights/test_features.py +++ b/tests/insights/test_features.py @@ -1,3 +1,4 @@ +# pyre-unsafe from unittest.mock import patch import torch @@ -9,18 +10,23 @@ ImageFeature, TextFeature, ) +from captum.testing.helpers import BaseTest from matplotlib.figure import Figure -from tests.helpers.basic import BaseTest class TestTextFeature(BaseTest): FEATURE_NAME = "question" - def test_text_feature_returns_text_as_visualization_type(self): - feature = TextFeature(self.FEATURE_NAME, None, None, None) + def test_text_feature_returns_text_as_visualization_type(self) -> None: + feature = TextFeature( + name=self.FEATURE_NAME, + baseline_transforms=None, + input_transforms=None, + visualization_transform=None, + ) self.assertEqual(feature.visualization_type(), "text") - def test_text_feature_uses_visualization_transform_if_provided(self): + def test_text_feature_uses_visualization_transform_if_provided(self) -> None: input_data = torch.rand(2, 2) transformed_data = torch.rand(1, 1) @@ -55,7 +61,7 @@ def mock_transform(data): # has original data self.assertIs(feature_output.base, input_data) - def test_text_feature_generates_correct_visualization_output(self): + def test_text_feature_generates_correct_visualization_output(self) -> None: attribution = torch.tensor([0.1, 0.2, 0.3, 0.4]) input_data = torch.rand(1, 2) expected_modified = [100 * x for x in (attribution / attribution.max())] @@ -81,7 +87,7 @@ def test_text_feature_generates_correct_visualization_output(self): class TestEmptyFeature(BaseTest): - def test_empty_feature_should_generate_fixed_output(self): + def test_empty_feature_should_generate_fixed_output(self) -> None: feature = EmptyFeature() contribution = torch.rand(1).item() expected_output = FeatureOutput( @@ -96,7 +102,7 @@ def test_empty_feature_should_generate_fixed_output(self): class TestImageFeature(BaseTest): - def test_image_feature_generates_correct_ouput(self): + def test_image_feature_generates_correct_ouput(self) -> None: attribution = torch.zeros(1, 3, 4, 4) data = torch.ones(1, 3, 4, 4) contribution = 1.0 @@ -134,7 +140,7 @@ def mock_viz_attr(*args, **kwargs): class TestGeneralFeature(BaseTest): - def test_general_feature_generates_correct_output(self): + def test_general_feature_generates_correct_output(self) -> None: name = "general_feature" categories = ["cat1", "cat2", "cat3", "cat4"] attribution = torch.Tensor(1, 4) diff --git a/tests/metrics/test_infidelity.py b/tests/metrics/test_infidelity.py index 629502de7b..173fc325c3 100644 --- a/tests/metrics/test_infidelity.py +++ b/tests/metrics/test_infidelity.py @@ -1,6 +1,9 @@ #!/usr/bin/env python3 + +# pyre-strict + import typing -from typing import Any, Callable, cast, List, Tuple, Union +from typing import Any, Callable, cast, List, Optional, Tuple, Union import torch from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric @@ -12,8 +15,9 @@ Saliency, ) from captum.metrics import infidelity, infidelity_perturb_func_decorator -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( BasicModel2, BasicModel4_MultiArgs, BasicModel_ConvNet_One_Conv, @@ -27,19 +31,24 @@ def _local_perturb_func_default( inputs: TensorOrTupleOfTensorsGeneric, ) -> TensorOrTupleOfTensorsGeneric: + # pyre-fixme[7]: Expected `TensorOrTupleOfTensorsGeneric` but got `Tensor`. + # pyre-fixme[6]: For 1st argument expected `Tensor` but got + # `TensorOrTupleOfTensorsGeneric`. return _local_perturb_func(inputs)[1] @typing.overload -def _local_perturb_func(inputs: Tensor) -> Tuple[Tensor, Tensor]: - ... +# pyre-ignore[43]: The implementation of `_local_perturb_func` does not accept all +# possible arguments of overload defined on line `43`. +def _local_perturb_func( + inputs: Tuple[Tensor, ...], +) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: ... @typing.overload -def _local_perturb_func( - inputs: Tuple[Tensor, ...] -) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: - ... +# pyre-ignore[43]: The implementation of `_local_perturb_func` does not accept all +# possible arguments of overload defined on line `51`. +def _local_perturb_func(inputs: Tensor) -> Tuple[Tensor, Tensor]: ... def _local_perturb_func( @@ -64,19 +73,24 @@ def _local_perturb_func( def _global_perturb_func1_default( inputs: TensorOrTupleOfTensorsGeneric, ) -> TensorOrTupleOfTensorsGeneric: + # pyre-fixme[7]: Expected `TensorOrTupleOfTensorsGeneric` but got `Tensor`. + # pyre-fixme[6]: For 1st argument expected `Tensor` but got + # `TensorOrTupleOfTensorsGeneric`. return _global_perturb_func1(inputs)[1] @typing.overload -def _global_perturb_func1(inputs: Tensor) -> Tuple[Tensor, Tensor]: - ... +# pyre-fixme[43]: The implementation of `_global_perturb_func1` does not accept all +# possible arguments of overload defined on line `74`. +def _global_perturb_func1( + inputs: Tuple[Tensor, ...], +) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: ... @typing.overload -def _global_perturb_func1( - inputs: Tuple[Tensor, ...] -) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: - ... +# pyre-fixme[43]: The implementation of `_global_perturb_func1` does not accept all +# possible arguments of overload defined on line `70`. +def _global_perturb_func1(inputs: Tensor) -> Tuple[Tensor, Tensor]: ... # sensitivity-N, N = #input features @@ -208,7 +222,7 @@ def test_classification_infidelity_tpl_target(self) -> None: model = BasicModel_MultiLayer() input = torch.arange(1.0, 13.0).view(4, 3) additional_forward_args = (torch.arange(1, 13).view(4, 3).float(), True) - targets: List = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] + targets: List[Tuple[int, ...]] = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] sa = Saliency(model) infid1 = self.infidelity_assert( @@ -242,14 +256,14 @@ def test_classification_infidelity_tpl_target_w_baseline(self) -> None: input = torch.arange(1.0, 13.0).view(4, 3) baseline = torch.ones(4, 3) additional_forward_args = (torch.arange(1, 13).view(4, 3).float(), True) - targets: List = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] + targets: List[Tuple[int, ...]] = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] ig = IntegratedGradients(model) - def perturbed_func2(inputs, baselines): + def perturbed_func2(inputs: Tensor, baselines: Tensor) -> Tuple[Tensor, Tensor]: return torch.ones(baselines.shape), baselines @infidelity_perturb_func_decorator(True) - def perturbed_func3(inputs, baselines): + def perturbed_func3(inputs: Tensor, baselines: Tensor) -> Tensor: return baselines attr, delta = ig.attribute( @@ -326,17 +340,17 @@ def basic_multilayer_sensitivity_n( self, attr_algo: Attribution, model: Module ) -> None: # sensitivity-2 - def _global_perturb_func2(input): + def _global_perturb_func2(input: Tensor) -> Tuple[Tensor, Tensor]: pert = torch.tensor([[0, 1, 1], [1, 1, 0], [1, 0, 1]]).float() return pert, (1 - pert) * input # sensitivity-1 - def _global_perturb_func3(input): + def _global_perturb_func3(input: Tensor) -> Tuple[Tensor, Tensor]: pert = torch.tensor([[0, 0, 1], [1, 0, 0], [0, 1, 0]]).float() return pert, (1 - pert) * input @infidelity_perturb_func_decorator(True) - def _global_perturb_func3_custom(input): + def _global_perturb_func3_custom(input: Tensor) -> Tensor: return _global_perturb_func3(input)[1] input = torch.tensor([[1.0, 2.5, 3.3]]) @@ -398,11 +412,12 @@ def basic_model_assert( model: Module, inputs: TensorOrTupleOfTensorsGeneric, expected: Tensor, - n_perturb_samples: int = 10, - max_batch_size: int = None, - perturb_func: Callable = _local_perturb_func, - multiply_by_inputs: bool = False, - normalize: bool = False, + n_perturb_samples: Optional[int] = 10, + max_batch_size: Optional[int] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + perturb_func: Optional[Callable] = _local_perturb_func, + multiply_by_inputs: Optional[bool] = False, + normalize: Optional[bool] = False, ) -> Tensor: ig = IntegratedGradients(model) if multiply_by_inputs: @@ -432,12 +447,15 @@ def basic_model_global_assert( model: Module, inputs: TensorOrTupleOfTensorsGeneric, expected: Tensor, - additional_args: Any = None, - target: TargetType = None, - n_perturb_samples: int = 10, - max_batch_size: int = None, - perturb_func: Callable = _global_perturb_func1, - normalize: bool = False, + # pyre-fixme[2]: Parameter `additional_args` has type `None` + # but type `Any` is specified. + additional_args: Optional[Any] = None, + target: Optional[TargetType] = None, + n_perturb_samples: Optional[int] = 10, + max_batch_size: Optional[int] = None, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + perturb_func: Optional[Callable] = _global_perturb_func1, + normalize: Optional[bool] = False, ) -> Tensor: attrs = attr_algo.attribute( inputs, additional_forward_args=additional_args, target=target @@ -462,14 +480,17 @@ def infidelity_assert( attributions: TensorOrTupleOfTensorsGeneric, inputs: TensorOrTupleOfTensorsGeneric, expected: Tensor, - additional_args: Any = None, - baselines: BaselineType = None, - n_perturb_samples: int = 10, - target: TargetType = None, - max_batch_size: int = None, - multi_input: bool = True, - perturb_func: Callable = _local_perturb_func, - normalize: bool = False, + # pyre-fixme[2]: Parameter `additional_args` has type `None` + # but type `Any` is specified. + additional_args: Optional[Any] = None, + baselines: Optional[BaselineType] = None, + n_perturb_samples: Optional[int] = 10, + target: Optional[TargetType] = None, + max_batch_size: Optional[int] = None, + multi_input: Optional[bool] = True, + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. + perturb_func: Optional[Callable] = _local_perturb_func, + normalize: Optional[bool] = False, **kwargs: Any, ) -> Tensor: infid = infidelity( diff --git a/tests/metrics/test_sensitivity.py b/tests/metrics/test_sensitivity.py index 3d24f27651..16c01b3934 100644 --- a/tests/metrics/test_sensitivity.py +++ b/tests/metrics/test_sensitivity.py @@ -1,6 +1,9 @@ #!/usr/bin/env python3 + +# pyre-strict + import typing -from typing import Any, Callable, cast, List, Tuple, Union +from typing import Callable, List, Optional, Tuple, Union import torch from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric @@ -13,8 +16,9 @@ ) from captum.metrics import sensitivity_max from captum.metrics._core.sensitivity import default_perturb_func -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( BasicModel2, BasicModel4_MultiArgs, BasicModel_ConvNet_One_Conv, @@ -24,19 +28,17 @@ @typing.overload -def _perturb_func(inputs: Tensor) -> Tensor: - ... +def _perturb_func(inputs: Tuple[Tensor, ...]) -> Tuple[Tensor, ...]: ... @typing.overload -def _perturb_func(inputs: Tuple[Tensor, ...]) -> Tuple[Tensor, ...]: - ... +def _perturb_func(inputs: Tensor) -> Tensor: ... def _perturb_func( - inputs: TensorOrTupleOfTensorsGeneric, + inputs: Union[Tensor, Tuple[Tensor, ...]], ) -> Union[Tensor, Tuple[Tensor, ...]]: - def perturb_ratio(input): + def perturb_ratio(input: Tensor) -> Tensor: return ( torch.arange(-torch.numel(input[0]) // 2, torch.numel(input[0]) // 2) .view(input[0].shape) @@ -49,7 +51,7 @@ def perturb_ratio(input): input1 = inputs[0] input2 = inputs[1] else: - input1 = cast(Tensor, inputs) + input1 = inputs perturbed_input1 = input1 + perturb_ratio(input1) @@ -168,7 +170,7 @@ def test_sensitivity_max_multi_dim(self) -> None: input = torch.arange(1.0, 13.0).view(4, 3) additional_forward_args = (None, True) - targets: List = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] + targets: List[Tuple[int, ...]] = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] ig = IntegratedGradients(model) self.sensitivity_max_assert( @@ -188,7 +190,7 @@ def test_sensitivity_max_multi_dim_batching(self) -> None: input = torch.arange(1.0, 16.0).view(5, 3) additional_forward_args = (torch.ones(5, 3).float(), False) - targets: List = [0, 0, 0, 0, 0] + targets: List[int] = [0, 0, 0, 0, 0] sa = Saliency(model) @@ -249,7 +251,7 @@ def test_classification_sensitivity_tpl_target_w_baseline(self) -> None: input = torch.arange(1.0, 13.0).view(4, 3) baseline = torch.ones(4, 3) additional_forward_args = (torch.arange(1, 13).view(4, 3).float(), True) - targets: List = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] + targets: List[Tuple[int, ...]] = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] dl = DeepLift(model) sens1 = self.sensitivity_max_assert( @@ -277,15 +279,18 @@ def test_classification_sensitivity_tpl_target_w_baseline(self) -> None: def sensitivity_max_assert( self, - expl_func: Callable, + expl_func: Callable[..., Union[Tensor, Tuple[Tensor, ...]]], inputs: TensorOrTupleOfTensorsGeneric, expected_sensitivity: Tensor, - perturb_func: Callable = _perturb_func, + perturb_func: Union[ + Callable[[Tensor], Tensor], + Callable[[Tuple[Tensor, ...]], Tuple[Tensor, ...]], + ] = _perturb_func, n_perturb_samples: int = 5, - max_examples_per_batch: int = None, - baselines: BaselineType = None, - target: TargetType = None, - additional_forward_args: Any = None, + max_examples_per_batch: Optional[int] = None, + baselines: Optional[BaselineType] = None, + target: Optional[TargetType] = None, + additional_forward_args: Optional[object] = None, ) -> Tensor: if baselines is None: sens = sensitivity_max( diff --git a/tests/module/test_binary_concrete_stochastic_gates.py b/tests/module/test_binary_concrete_stochastic_gates.py new file mode 100644 index 0000000000..a50d3a273f --- /dev/null +++ b/tests/module/test_binary_concrete_stochastic_gates.py @@ -0,0 +1,509 @@ +#!/usr/bin/env python3 + +# pyre-strict + +import unittest + +import torch +from captum.module.binary_concrete_stochastic_gates import BinaryConcreteStochasticGates +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from parameterized import parameterized_class + + +@parameterized_class( + [ + {"testing_device": "cpu"}, + {"testing_device": "cuda"}, + ] +) +class TestBinaryConcreteStochasticGates(BaseTest): + # pyre-fixme[13]: Attribute `testing_device` is never initialized. + testing_device: str + + def setUp(self) -> None: + super().setUp() + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + if self.testing_device == "cuda" and not torch.cuda.is_available(): + raise unittest.SkipTest("Skipping GPU test since CUDA not available.") + + def test_bcstg_1d_input(self) -> None: + + dim = 3 + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + gated_input, reg = bcstg(input_tensor) + expected_reg = 2.4947 + + if self.testing_device == "cpu": + expected_gated_input = [[0.0000, 0.0212, 0.1892], [0.1839, 0.3753, 0.4937]] + elif self.testing_device == "cuda": + expected_gated_input = [[0.0000, 0.0985, 0.1149], [0.2329, 0.0497, 0.5000]] + + # pyre-fixme[61]: `expected_gated_input` is undefined, or not always defined. + assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") + assertTensorAlmostEqual(self, reg, expected_reg) + + def test_bcstg_1d_input_with_reg_reduction(self) -> None: + + dim = 3 + mean_bcstg = BinaryConcreteStochasticGates(dim, reg_reduction="mean").to( + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + self.testing_device + ) + none_bcstg = BinaryConcreteStochasticGates(dim, reg_reduction="none").to( + self.testing_device + ) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + mean_gated_input, mean_reg = mean_bcstg(input_tensor) + none_gated_input, none_reg = none_bcstg(input_tensor) + expected_mean_reg = 0.8316 + expected_none_reg = torch.tensor([0.8321, 0.8310, 0.8325]) + + assertTensorAlmostEqual(self, mean_reg, expected_mean_reg) + assertTensorAlmostEqual(self, none_reg, expected_none_reg) + + def test_bcstg_1d_input_with_n_gates_error(self) -> None: + + dim = 3 + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) + input_tensor = torch.tensor([0.0, 0.1, 0.2]).to(self.testing_device) + + with self.assertRaises(AssertionError): + bcstg(input_tensor) + + def test_bcstg_num_mask_not_equal_dim_error(self) -> None: + dim = 3 + mask = torch.tensor([0, 0, 1]) # only two distinct masks, but given dim is 3 + + with self.assertRaises(AssertionError): + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) + + def test_gates_values_matching_dim_when_eval(self) -> None: + dim = 3 + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + bcstg.train(False) + gated_input, reg = bcstg(input_tensor) + assert gated_input.shape == input_tensor.shape + + def test_bcstg_1d_input_with_mask(self) -> None: + + dim = 2 + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + mask = torch.tensor([0, 0, 1]).to(self.testing_device) + bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + gated_input, reg = bcstg(input_tensor) + expected_reg = 1.6643 + + if self.testing_device == "cpu": + expected_gated_input = [[0.0000, 0.0000, 0.1679], [0.0000, 0.0000, 0.2223]] + elif self.testing_device == "cuda": + expected_gated_input = [[0.0000, 0.0000, 0.1971], [0.1737, 0.2317, 0.3888]] + + # pyre-fixme[61]: `expected_gated_input` is undefined, or not always defined. + assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") + assertTensorAlmostEqual(self, reg, expected_reg) + + def test_bcstg_2d_input(self) -> None: + + dim = 3 * 2 + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) + + # shape(2,3,2) + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + [ + [0.6, 0.7], + [0.8, 0.9], + [1.0, 1.1], + ], + ] + ).to(self.testing_device) + + gated_input, reg = bcstg(input_tensor) + + expected_reg = 4.9903 + if self.testing_device == "cpu": + expected_gated_input = [ + [[0.0000, 0.0990], [0.0261, 0.2431], [0.0551, 0.3863]], + [[0.0476, 0.6177], [0.5400, 0.1530], [0.0984, 0.8013]], + ] + elif self.testing_device == "cuda": + expected_gated_input = [ + [[0.0000, 0.0985], [0.1149, 0.2331], [0.0486, 0.5000]], + [[0.1840, 0.1571], [0.4612, 0.7937], [0.2975, 0.7393]], + ] + + # pyre-fixme[61]: `expected_gated_input` is undefined, or not always defined. + assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") + assertTensorAlmostEqual(self, reg, expected_reg) + + def test_bcstg_2d_input_with_n_gates_error(self) -> None: + + dim = 5 + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + ] + ).to(self.testing_device) + + with self.assertRaises(AssertionError): + bcstg(input_tensor) + + def test_bcstg_2d_input_with_mask(self) -> None: + + dim = 3 + mask = torch.tensor( + [ + [0, 1], + [1, 1], + [0, 2], + ] + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + ).to(self.testing_device) + bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) + + # shape(2,3,2) + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + [ + [0.6, 0.7], + [0.8, 0.9], + [1.0, 1.1], + ], + ] + ).to(self.testing_device) + + gated_input, reg = bcstg(input_tensor) + expected_reg = 2.4947 + + if self.testing_device == "cpu": + expected_gated_input = [ + [[0.0000, 0.0212], [0.0424, 0.0636], [0.3191, 0.4730]], + [[0.3678, 0.6568], [0.7507, 0.8445], [0.6130, 1.0861]], + ] + elif self.testing_device == "cuda": + expected_gated_input = [ + [[0.0000, 0.0985], [0.1971, 0.2956], [0.0000, 0.2872]], + [[0.4658, 0.0870], [0.0994, 0.1119], [0.7764, 1.1000]], + ] + + # pyre-fixme[61]: `expected_gated_input` is undefined, or not always defined. + assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") + assertTensorAlmostEqual(self, reg, expected_reg) + + def test_get_gate_values_1d_input(self) -> None: + + dim = 3 + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + bcstg(input_tensor) + gate_values = bcstg.get_gate_values() + + expected_gate_values = [0.5001, 0.5012, 0.4970] + + assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") + + def test_get_gate_values_1d_input_with_mask(self) -> None: + + dim = 2 + mask = torch.tensor([0, 1, 1]) + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + bcstg(input_tensor) + gate_values = bcstg.get_gate_values() + + expected_gate_values = [0.5001, 0.5012] + + assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") + + def test_get_gate_values_2d_input(self) -> None: + + dim = 3 * 2 + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) + + # shape(2,3,2) + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + [ + [0.6, 0.7], + [0.8, 0.9], + [1.0, 1.1], + ], + ] + ).to(self.testing_device) + + bcstg(input_tensor) + gate_values = bcstg.get_gate_values() + + expected_gate_values = [0.5001, 0.5012, 0.4970, 0.5007, 0.4982, 0.5015] + + assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") + + def test_get_gate_values_clamp(self) -> None: + # enlarge the bounds & extremify log_alpha to mock gate values beyond 0 & 1 + bcstg = BinaryConcreteStochasticGates._from_pretrained( + torch.tensor([10.0, -10.0, 10.0]), + lower_bound=-2, + upper_bound=2, + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + ).to(self.testing_device) + + clamped_gate_values = bcstg.get_gate_values().cpu().tolist() + assert clamped_gate_values == [1.0, 0.0, 1.0] + + unclamped_gate_values = bcstg.get_gate_values(clamp=False).cpu().tolist() + assert ( + unclamped_gate_values[0] > 1 + and unclamped_gate_values[1] < 0 + and unclamped_gate_values[2] > 1 + ) + + def test_get_gate_values_2d_input_with_mask(self) -> None: + + dim = 3 + mask = torch.tensor( + [ + [0, 1], + [1, 1], + [0, 2], + ] + ) + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) + + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + [ + [0.6, 0.7], + [0.8, 0.9], + [1.0, 1.1], + ], + ] + ).to(self.testing_device) + + bcstg(input_tensor) + gate_values = bcstg.get_gate_values() + + expected_gate_values = [0.5001, 0.5012, 0.4970] + + assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") + + def test_get_gate_active_probs_1d_input(self) -> None: + + dim = 3 + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + bcstg(input_tensor) + gate_active_probs = bcstg.get_gate_active_probs() + + expected_gate_active_probs = [0.8319, 0.8324, 0.8304] + + assertTensorAlmostEqual( + self, gate_active_probs, expected_gate_active_probs, mode="max" + ) + + def test_get_gate_active_probs_1d_input_with_mask(self) -> None: + + dim = 2 + mask = torch.tensor([0, 1, 1]) + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + bcstg(input_tensor) + gate_active_probs = bcstg.get_gate_active_probs() + + expected_gate_active_probs = [0.8319, 0.8324] + + assertTensorAlmostEqual( + self, gate_active_probs, expected_gate_active_probs, mode="max" + ) + + def test_get_gate_active_probs_2d_input(self) -> None: + + dim = 3 * 2 + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) + + # shape(2,3,2) + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + [ + [0.6, 0.7], + [0.8, 0.9], + [1.0, 1.1], + ], + ] + ).to(self.testing_device) + + bcstg(input_tensor) + gate_active_probs = bcstg.get_gate_active_probs() + + expected_gate_active_probs = [0.8319, 0.8324, 0.8304, 0.8321, 0.8310, 0.8325] + + assertTensorAlmostEqual( + self, gate_active_probs, expected_gate_active_probs, mode="max" + ) + + def test_get_gate_active_probs_2d_input_with_mask(self) -> None: + + dim = 3 + mask = torch.tensor( + [ + [0, 1], + [1, 1], + [0, 2], + ] + ) + # pyre-fixme[16]: `TestBinaryConcreteStochasticGates` has no attribute + # `testing_device`. + bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) + + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + [ + [0.6, 0.7], + [0.8, 0.9], + [1.0, 1.1], + ], + ] + ).to(self.testing_device) + + bcstg(input_tensor) + gate_active_probs = bcstg.get_gate_active_probs() + + expected_gate_active_probs = [0.8319, 0.8324, 0.8304] + + assertTensorAlmostEqual( + self, gate_active_probs, expected_gate_active_probs, mode="max" + ) + + def test_from_pretrained(self) -> None: + log_alpha_param = torch.tensor([0.1, 0.2, 0.3, 0.4]) + kwargs = { + "mask": torch.tensor([0, 1, 1, 0, 2, 3]), + "reg_weight": 0.1, + "lower_bound": -0.2, + "upper_bound": 1.2, + } + stg = BinaryConcreteStochasticGates._from_pretrained(log_alpha_param, **kwargs) + + for key, expected_val in kwargs.items(): + val = getattr(stg, key) + if isinstance(expected_val, torch.Tensor): + assertTensorAlmostEqual(self, val, expected_val, mode="max") + else: + assert val == expected_val diff --git a/tests/module/test_gaussian_stochastic_gates.py b/tests/module/test_gaussian_stochastic_gates.py new file mode 100644 index 0000000000..9d2d926b71 --- /dev/null +++ b/tests/module/test_gaussian_stochastic_gates.py @@ -0,0 +1,493 @@ +#!/usr/bin/env fbpython +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. + +# pyre-strict + +import unittest + +import torch +from captum.module.gaussian_stochastic_gates import GaussianStochasticGates +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from parameterized import parameterized_class + + +@parameterized_class( + [ + {"testing_device": "cpu"}, + {"testing_device": "cuda"}, + ] +) +class TestGaussianStochasticGates(BaseTest): + # pyre-fixme[13]: Attribute `testing_device` is never initialized. + testing_device: str + + def setUp(self) -> None: + super().setUp() + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + if self.testing_device == "cuda" and not torch.cuda.is_available(): + raise unittest.SkipTest("Skipping GPU test since CUDA not available.") + + def test_gstg_1d_input(self) -> None: + + dim = 3 + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim).to(self.testing_device) + + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + gated_input, reg = gstg(input_tensor) + expected_reg = 2.5213 + + if self.testing_device == "cpu": + expected_gated_input = [[0.0000, 0.0198, 0.1483], [0.1848, 0.3402, 0.1782]] + elif self.testing_device == "cuda": + expected_gated_input = [[0.0000, 0.0788, 0.0470], [0.0134, 0.0000, 0.1884]] + + # pyre-fixme[61]: `expected_gated_input` is undefined, or not always defined. + assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") + assertTensorAlmostEqual(self, reg, expected_reg) + + def test_gstg_1d_input_with_reg_reduction(self) -> None: + dim = 3 + mean_gstg = GaussianStochasticGates(dim, reg_reduction="mean").to( + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + self.testing_device + ) + none_gstg = GaussianStochasticGates(dim, reg_reduction="none").to( + self.testing_device + ) + + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + _, mean_reg = mean_gstg(input_tensor) + _, none_reg = none_gstg(input_tensor) + expected_mean_reg = 0.8404 + expected_none_reg = torch.tensor([0.8424, 0.8384, 0.8438]) + + assertTensorAlmostEqual(self, mean_reg, expected_mean_reg) + assertTensorAlmostEqual(self, none_reg, expected_none_reg) + + def test_gstg_1d_input_with_n_gates_error(self) -> None: + + dim = 3 + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim).to(self.testing_device) + input_tensor = torch.tensor([0.0, 0.1, 0.2]).to(self.testing_device) + + with self.assertRaises(AssertionError): + gstg(input_tensor) + + def test_gstg_1d_input_with_mask(self) -> None: + + dim = 2 + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + mask = torch.tensor([0, 0, 1]).to(self.testing_device) + gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + gated_input, reg = gstg(input_tensor) + expected_reg = 1.6849 + + if self.testing_device == "cpu": + expected_gated_input = [[0.0000, 0.0000, 0.1225], [0.0583, 0.0777, 0.3779]] + elif self.testing_device == "cuda": + expected_gated_input = [[0.0000, 0.0000, 0.1577], [0.0736, 0.0981, 0.0242]] + + # pyre-fixme[61]: `expected_gated_input` is undefined, or not always defined. + assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") + assertTensorAlmostEqual(self, reg, expected_reg) + + def test_gates_values_matching_dim_when_eval(self) -> None: + dim = 3 + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + gstg.train(False) + gated_input, reg = gstg(input_tensor) + assert gated_input.shape == input_tensor.shape + + def test_gstg_2d_input(self) -> None: + + dim = 3 * 2 + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim).to(self.testing_device) + + # shape(2,3,2) + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + [ + [0.6, 0.7], + [0.8, 0.9], + [1.0, 1.1], + ], + ] + ).to(self.testing_device) + + gated_input, reg = gstg(input_tensor) + expected_reg = 5.0458 + + if self.testing_device == "cpu": + expected_gated_input = [ + [[0.0000, 0.0851], [0.0713, 0.3000], [0.2180, 0.1878]], + [[0.2538, 0.0000], [0.3391, 0.8501], [0.3633, 0.8913]], + ] + elif self.testing_device == "cuda": + expected_gated_input = [ + [[0.0000, 0.0788], [0.0470, 0.0139], [0.0000, 0.1960]], + [[0.0000, 0.7000], [0.1052, 0.2120], [0.5978, 0.0166]], + ] + + # pyre-fixme[61]: `expected_gated_input` is undefined, or not always defined. + assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") + assertTensorAlmostEqual(self, reg, expected_reg) + + def test_gstg_2d_input_with_n_gates_error(self) -> None: + + dim = 5 + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim).to(self.testing_device) + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + ] + ).to(self.testing_device) + + with self.assertRaises(AssertionError): + gstg(input_tensor) + + def test_gstg_2d_input_with_mask(self) -> None: + + dim = 3 + mask = torch.tensor( + [ + [0, 1], + [1, 1], + [0, 2], + ] + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + ).to(self.testing_device) + gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) + + # shape(2,3,2) + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + [ + [0.6, 0.7], + [0.8, 0.9], + [1.0, 1.1], + ], + ] + ).to(self.testing_device) + + gated_input, reg = gstg(input_tensor) + expected_reg = 2.5213 + + if self.testing_device == "cpu": + expected_gated_input = [ + [[0.0000, 0.0198], [0.0396, 0.0594], [0.2435, 0.3708]], + [[0.3696, 0.5954], [0.6805, 0.7655], [0.6159, 0.3921]], + ] + elif self.testing_device == "cuda": + expected_gated_input = [ + [[0.0000, 0.0788], [0.1577, 0.2365], [0.0000, 0.1174]], + [[0.0269, 0.0000], [0.0000, 0.0000], [0.0448, 0.4145]], + ] + + # pyre-fixme[61]: `expected_gated_input` is undefined, or not always defined. + assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") + assertTensorAlmostEqual(self, reg, expected_reg) + + def test_get_gate_values_1d_input(self) -> None: + + dim = 3 + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + gstg(input_tensor) + gate_values = gstg.get_gate_values() + + expected_gate_values = [0.5005, 0.5040, 0.4899] + assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") + + def test_get_gate_values_1d_input_with_mask(self) -> None: + + dim = 2 + mask = torch.tensor([0, 1, 1]) + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + gstg(input_tensor) + gate_values = gstg.get_gate_values() + + expected_gate_values = [0.5005, 0.5040] + assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") + + def test_get_gate_values_2d_input(self) -> None: + + dim = 3 * 2 + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim).to(self.testing_device) + + # shape(2,3,2) + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + [ + [0.6, 0.7], + [0.8, 0.9], + [1.0, 1.1], + ], + ] + ).to(self.testing_device) + + gstg(input_tensor) + gate_values = gstg.get_gate_values() + + expected_gate_values = [0.5005, 0.5040, 0.4899, 0.5022, 0.4939, 0.5050] + assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") + + def test_get_gate_values_2d_input_with_mask(self) -> None: + + dim = 3 + mask = torch.tensor( + [ + [0, 1], + [1, 1], + [0, 2], + ] + ) + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) + + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + [ + [0.6, 0.7], + [0.8, 0.9], + [1.0, 1.1], + ], + ] + ).to(self.testing_device) + + gstg(input_tensor) + gate_values = gstg.get_gate_values() + + expected_gate_values = [0.5005, 0.5040, 0.4899] + assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") + + def test_get_gate_values_clamp(self) -> None: + gstg = GaussianStochasticGates._from_pretrained( + torch.tensor([2.0, -2.0, 2.0]) + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + ).to(self.testing_device) + + clamped_gate_values = gstg.get_gate_values().cpu().tolist() + assert clamped_gate_values == [1.0, 0.0, 1.0] + + unclamped_gate_values = gstg.get_gate_values(clamp=False).cpu().tolist() + assert ( + unclamped_gate_values[0] > 1 + and unclamped_gate_values[1] < 0 + and unclamped_gate_values[2] > 1 + ) + + def test_get_gate_active_probs_1d_input(self) -> None: + + dim = 3 + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + gstg(input_tensor) + gate_active_probs = gstg.get_gate_active_probs() + + expected_gate_active_probs = [0.8416, 0.8433, 0.8364] + assertTensorAlmostEqual( + self, gate_active_probs, expected_gate_active_probs, mode="max" + ) + + def test_get_gate_active_probs_1d_input_with_mask(self) -> None: + + dim = 2 + mask = torch.tensor([0, 1, 1]) + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) + input_tensor = torch.tensor( + [ + [0.0, 0.1, 0.2], + [0.3, 0.4, 0.5], + ] + ).to(self.testing_device) + + gstg(input_tensor) + gate_active_probs = gstg.get_gate_active_probs() + + expected_gate_active_probs = [0.8416, 0.8433] + + assertTensorAlmostEqual( + self, gate_active_probs, expected_gate_active_probs, mode="max" + ) + + def test_get_gate_active_probs_2d_input(self) -> None: + + dim = 3 * 2 + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim).to(self.testing_device) + + # shape(2,3,2) + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + [ + [0.6, 0.7], + [0.8, 0.9], + [1.0, 1.1], + ], + ] + ).to(self.testing_device) + + gstg(input_tensor) + gate_active_probs = gstg.get_gate_active_probs() + + expected_gate_active_probs = [0.8416, 0.8433, 0.8364, 0.8424, 0.8384, 0.8438] + + assertTensorAlmostEqual( + self, gate_active_probs, expected_gate_active_probs, mode="max" + ) + + def test_get_gate_active_probs_2d_input_with_mask(self) -> None: + + dim = 3 + mask = torch.tensor( + [ + [0, 1], + [1, 1], + [0, 2], + ] + ) + # pyre-fixme[16]: `TestGaussianStochasticGates` has no attribute + # `testing_device`. + gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) + + input_tensor = torch.tensor( + [ + [ + [0.0, 0.1], + [0.2, 0.3], + [0.4, 0.5], + ], + [ + [0.6, 0.7], + [0.8, 0.9], + [1.0, 1.1], + ], + ] + ).to(self.testing_device) + + gstg(input_tensor) + gate_active_probs = gstg.get_gate_active_probs() + + expected_gate_active_probs = [0.8416, 0.8433, 0.8364] + + assertTensorAlmostEqual( + self, gate_active_probs, expected_gate_active_probs, mode="max" + ) + + def test_from_pretrained(self) -> None: + mu = torch.tensor([0.1, 0.2, 0.3, 0.4]) + kwargs = { + "mask": torch.tensor([0, 1, 1, 0, 2, 3]), + "reg_weight": 0.1, + "std": 0.01, + } + stg = GaussianStochasticGates._from_pretrained(mu, **kwargs) + + for key, expected_val in kwargs.items(): + val = getattr(stg, key) + if isinstance(expected_val, torch.Tensor): + assertTensorAlmostEqual(self, val, expected_val, mode="max") + else: + assert val == expected_val diff --git a/tests/optim/core/test_loss.py b/tests/optim/core/test_loss.py index 49c35ed9d4..94886339d7 100644 --- a/tests/optim/core/test_loss.py +++ b/tests/optim/core/test_loss.py @@ -1,9 +1,9 @@ #!/usr/bin/env python3 +import operator import unittest -from typing import cast, List, Union +from typing import Any, List, Type, Union import captum.optim._core.loss as opt_loss -import numpy as np import torch from captum.optim.models import collect_activations from packaging import version @@ -15,18 +15,115 @@ def get_loss_value( - model: torch.nn.Module, loss: opt_loss.Loss, input_shape: List[int] = [1, 3, 1, 1] -) -> Union[int, float, np.ndarray]: - module_outputs = collect_activations(model, loss.target, torch.ones(*input_shape)) - loss_value = loss(module_outputs) - try: - return loss_value.item() - except ValueError: - return loss_value.detach() + model: torch.nn.Module, + loss: opt_loss.Loss, + model_input: Union[List[int], torch.Tensor] = [1, 3, 1, 1], +) -> torch.Tensor: + """ + Collect target activations and pass them through a composable loss instance. + + Args: + + model (nn.Module): A PyTorch model instance. + loss (Loss): A composable loss instance that uses targets from the provided + model instance. + model_input (list of int or torch.Tensor): A list of integers to use for the + shape of the model input, or a tensor to use as the model input. + Default: [1, 3, 1, 1] + + Returns: + loss (torch.Tensor): The target activations run through the loss objectives. + """ + if isinstance(model_input, (list, tuple)): + model_input = torch.ones(*model_input) + else: + assert isinstance(model_input, torch.Tensor) + module_outputs = collect_activations(model, loss.target, model_input) + return loss(module_outputs).detach() + + +class TestModuleOP(BaseTest): + def test_module_op_loss_unary_op(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping ModuleOP unary op test due to insufficient Torch" + + " version." + ) + model = BasicModel_ConvNet_Optim() + loss = opt_loss.ChannelActivation(model.layer, 0) + composed_loss = opt_loss.module_op(loss, None, operator.neg) + + expected_name = "ChannelActivation [Conv2d(3, 2, ke..., 0]" + self.assertEqual(composed_loss.__name__, expected_name) + output = get_loss_value(model, composed_loss) + expected = -torch.as_tensor([CHANNEL_ACTIVATION_0_LOSS]).sum().item() + self.assertEqual(output, expected) + + def test_module_op_loss_num_add(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping ModuleOP loss add num test due to insufficient Torch" + + " version." + ) + model = BasicModel_ConvNet_Optim() + loss = opt_loss.ChannelActivation(model.layer, 0) + composed_loss = opt_loss.module_op(loss, 1.0, operator.add) + + expected_name = "ChannelActivation [Conv2d(3, 2, ke..., 0]" + self.assertEqual(composed_loss.__name__, expected_name) + output = get_loss_value(model, composed_loss) + expected = torch.tensor([CHANNEL_ACTIVATION_0_LOSS]) + 1.0 + self.assertEqual(output, expected.item()) + + def test_module_op_loss_loss_add(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping ModuleOP Loss add Loss test due to insufficient Torch" + + " version." + ) + model = BasicModel_ConvNet_Optim() + loss1 = opt_loss.ChannelActivation(model.layer, 0) + loss2 = opt_loss.ChannelActivation(model.layer, 1) + composed_loss = opt_loss.module_op(loss1, loss2, operator.add) + + expected_name = ( + "Compose(ChannelActivation [Conv2d(3, 2, ke..., 0], " + + "ChannelActivation [Conv2d(3, 2, ke..., 1])" + ) + self.assertEqual(composed_loss.__name__, expected_name) + output = get_loss_value(model, composed_loss) + expected = ( + torch.as_tensor([CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_0_LOSS]) + .sum() + .item() + ) + self.assertEqual(output, expected) + + def test_module_op_loss_pow_error(self) -> None: + model = BasicModel_ConvNet_Optim() + with self.assertRaises(TypeError): + loss = opt_loss.ChannelActivation(model.layer, 0) + opt_loss.module_op(loss, "string", operator.pow) # type: ignore + + +class TestRModuleOP(BaseTest): + def test_module_op_loss_num_div(self) -> None: + model = BasicModel_ConvNet_Optim() + loss = opt_loss.ChannelActivation(model.layer, 0) + composed_loss = opt_loss.rmodule_op(loss, 1.0, operator.pow) + + output = get_loss_value(model, composed_loss) + self.assertEqual(output, 1.0**CHANNEL_ACTIVATION_0_LOSS) + + def test_rmodule_op_loss_pow_error(self) -> None: + model = BasicModel_ConvNet_Optim() + with self.assertRaises(TypeError): + loss = opt_loss.ChannelActivation(model.layer, 0) + opt_loss.rmodule_op(loss, "string", operator.pow) # type: ignore class TestDeepDream(BaseTest): - def test_channel_deepdream(self) -> None: + def test_deepdream(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.DeepDream(model.layer) expected = torch.as_tensor( @@ -34,29 +131,132 @@ def test_channel_deepdream(self) -> None: )[None, :] assertTensorAlmostEqual(self, get_loss_value(model, loss), expected, mode="max") + def test_deepdream_batch_index(self) -> None: + model = torch.nn.Identity() + batch_index = 1 + loss = opt_loss.DeepDream(model, batch_index=batch_index) + + model_input = torch.arange(0, 5 * 3 * 5 * 5).view(5, 3, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(loss.batch_index, (batch_index, batch_index + 1)) + assertTensorAlmostEqual( + self, output, model_input[batch_index : batch_index + 1] ** 2, delta=0.0 + ) + + +class TestLayerActivation(BaseTest): + def test_layer_activation(self) -> None: + model = BasicModel_ConvNet_Optim() + loss = opt_loss.LayerActivation(model.layer) + output = get_loss_value(model, loss) + expected = torch.as_tensor( + [CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_1_LOSS] + ) + expected = expected[None, :, None, None] + + if version.parse(torch.__version__) <= version.parse("1.6.0"): + delta = 1.0e-5 + else: + delta = 0.0 + assertTensorAlmostEqual(self, output, expected, delta=delta) + + def test_layer_activation_batch_index(self) -> None: + model = torch.nn.Identity() + batch_index = 1 + loss = opt_loss.LayerActivation(model, batch_index=batch_index) + + model_input = torch.arange(0, 5 * 3 * 5 * 5).view(5, 3, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(loss.batch_index, (batch_index, batch_index + 1)) + assertTensorAlmostEqual( + self, output, model_input[batch_index : batch_index + 1], delta=0.0 + ) + + def test_layer_activation_batch_index_negative(self) -> None: + model = torch.nn.Identity() + batch_index = -2 + loss = opt_loss.LayerActivation(model, batch_index=batch_index) + + model_input = torch.arange(0, 5 * 3 * 5 * 5).view(5, 3, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(loss.batch_index, (batch_index, batch_index + 1)) + assertTensorAlmostEqual( + self, output, model_input[batch_index : batch_index + 1], delta=0.0 + ) + class TestChannelActivation(BaseTest): + def test_channel_activation_init(self) -> None: + model = torch.nn.Identity() + channel_index = 5 + loss = opt_loss.ChannelActivation(model, channel_index=channel_index) + self.assertEqual(loss.channel_index, channel_index) + def test_channel_activation_0(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.ChannelActivation(model.layer, 0) self.assertAlmostEqual( - get_loss_value(model, loss), CHANNEL_ACTIVATION_0_LOSS, places=6 + get_loss_value(model, loss).item(), CHANNEL_ACTIVATION_0_LOSS, places=6 ) def test_channel_activation_1(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.ChannelActivation(model.layer, 1) self.assertAlmostEqual( - get_loss_value(model, loss), CHANNEL_ACTIVATION_1_LOSS, places=6 + get_loss_value(model, loss).item(), CHANNEL_ACTIVATION_1_LOSS, places=6 + ) + + def test_channel_index_activation_batch_index(self) -> None: + model = torch.nn.Identity() + batch_index = 1 + channel_index = 2 + loss = opt_loss.ChannelActivation( + model, channel_index=channel_index, batch_index=batch_index + ) + + model_input = torch.arange(0, 5 * 3 * 5 * 5).view(5, 3, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(loss.batch_index, (batch_index, batch_index + 1)) + assertTensorAlmostEqual( + self, + output, + model_input[batch_index : batch_index + 1, channel_index], + delta=0.0, ) class TestNeuronActivation(BaseTest): + def test_neuron_activation_init(self) -> None: + model = torch.nn.Identity() + channel_index = 5 + loss = opt_loss.NeuronActivation(model, channel_index=channel_index) + self.assertEqual(loss.channel_index, channel_index) + self.assertIsNone(loss.x) + self.assertIsNone(loss.y) + def test_neuron_activation_0(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.NeuronActivation(model.layer, 0) self.assertAlmostEqual( - get_loss_value(model, loss), CHANNEL_ACTIVATION_0_LOSS, places=6 + get_loss_value(model, loss).item(), CHANNEL_ACTIVATION_0_LOSS, places=6 + ) + + def test_neuron_activation_batch_index(self) -> None: + model = torch.nn.Identity() + batch_index = 1 + channel_index = 2 + loss = opt_loss.NeuronActivation( + model, channel_index=channel_index, batch_index=batch_index + ) + + model_input = torch.arange(0, 5 * 3 * 5 * 5).view(5, 3, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(loss.batch_index, (batch_index, batch_index + 1)) + assertTensorAlmostEqual( + self, + output, + model_input[batch_index : batch_index + 1, channel_index, 2:3, 2:3], + delta=0.0, ) @@ -64,37 +264,78 @@ class TestTotalVariation(BaseTest): def test_total_variation(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.TotalVariation(model.layer) - self.assertAlmostEqual(get_loss_value(model, loss), 0.0) + self.assertAlmostEqual(get_loss_value(model, loss).item(), 0.0) + + def test_total_variation_batch_index(self) -> None: + model = torch.nn.Identity() + batch_index = 1 + loss = opt_loss.TotalVariation(model, batch_index=batch_index) + + model_input = torch.arange(0, 5 * 3 * 5 * 5).view(5, 3, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(loss.batch_index, (batch_index, batch_index + 1)) + self.assertEqual(output.item(), 360.0) class TestL1(BaseTest): + def test_l1_init(self) -> None: + model = torch.nn.Identity() + loss = opt_loss.L1(model) + self.assertEqual(loss.constant, 0.0) + def test_l1(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.L1(model.layer) self.assertAlmostEqual( - get_loss_value(model, loss), + get_loss_value(model, loss).item(), CHANNEL_ACTIVATION_0_LOSS + CHANNEL_ACTIVATION_1_LOSS, places=6, ) + def test_l1_batch_index(self) -> None: + model = torch.nn.Identity() + batch_index = 1 + loss = opt_loss.L1(model, batch_index=batch_index) + + model_input = torch.arange(0, 5 * 3 * 5 * 5).view(5, 3, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(loss.batch_index, (batch_index, batch_index + 1)) + self.assertEqual(output.item(), 8400.0) + class TestL2(BaseTest): + def test_l2_init(self) -> None: + model = torch.nn.Identity() + loss = opt_loss.L2(model) + self.assertEqual(loss.constant, 0.0) + self.assertEqual(loss.epsilon, 1e-6) + def test_l2(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.L2(model.layer) self.assertAlmostEqual( - get_loss_value(model, loss), + get_loss_value(model, loss).item(), (CHANNEL_ACTIVATION_0_LOSS**2 + CHANNEL_ACTIVATION_1_LOSS**2) ** 0.5, places=5, ) + def test_l2_batch_index(self) -> None: + model = torch.nn.Identity() + batch_index = 1 + loss = opt_loss.L2(model, batch_index=batch_index) + + model_input = torch.arange(0, 5 * 3 * 5 * 5).view(5, 3, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(loss.batch_index, (batch_index, batch_index + 1)) + self.assertAlmostEqual(output.item(), 987.9017944335938, places=3) + class TestDiversity(BaseTest): def test_diversity(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.Diversity(model.layer) self.assertAlmostEqual( - get_loss_value(model, loss, input_shape=[2, 3, 1, 1]), + get_loss_value(model, loss, model_input=[2, 3, 1, 1]).item(), -1, ) @@ -114,7 +355,7 @@ def test_activation_interpolation_0_1(self) -> None: channel_index2=1, ) self.assertAlmostEqual( - get_loss_value(model, loss, input_shape=[2, 3, 1, 1]), + get_loss_value(model, loss, model_input=[2, 3, 1, 1]).item(), CHANNEL_ACTIVATION_0_LOSS + CHANNEL_ACTIVATION_1_LOSS, places=6, ) @@ -125,58 +366,199 @@ def test_alignment(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.Alignment(model.layer) self.assertAlmostEqual( - get_loss_value(model, loss, input_shape=[2, 3, 1, 1]), 0.0 + get_loss_value(model, loss, model_input=[2, 3, 1, 1]).item(), 0.0 + ) + + +class TestDirection(BaseTest): + def test_direction_init(self) -> None: + model = torch.nn.Identity() + vec = torch.ones(2) * 0.5 + loss = opt_loss.Direction(model, vec=vec) + self.assertEqual(list(loss.vec.shape), [1, 2, 1, 1]) + assertTensorAlmostEqual(self, loss.vec, vec.reshape((1, -1, 1, 1)), delta=0.0) + self.assertEqual(loss.cossim_pow, 0.0) + + def test_direction(self) -> None: + model = BasicModel_ConvNet_Optim() + vec = torch.ones(2) + loss = opt_loss.Direction(model.layer, vec=torch.ones(2)) + b = torch.as_tensor([CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_1_LOSS]) + dot = torch.sum(vec.reshape((1, -1, 1, 1)) * b.reshape((1, -1, 1, 1)), 1) + self.assertAlmostEqual(get_loss_value(model, loss).item(), dot.item(), places=6) + + def test_direction_batch_index(self) -> None: + model = torch.nn.Identity() + batch_index = 1 + vec = torch.tensor([0, 1, 0]).float() + loss = opt_loss.Direction(model, vec=vec, batch_index=batch_index) + + model_input = torch.arange(0, 5 * 3 * 5 * 5).view(5, 3, 5, 5).float() + output = get_loss_value(model, loss, model_input) + + expected = torch.tensor( + [ + [ + [100.0, 101.0, 102.0, 103.0, 104.0], + [105.0, 106.0, 107.0, 108.0, 109.0], + [110.0, 111.0, 112.0, 113.0, 114.0], + [115.0, 116.0, 117.0, 118.0, 119.0], + [120.0, 121.0, 122.0, 123.0, 124.0], + ] + ] ) + self.assertEqual(loss.batch_index, (batch_index, batch_index + 1)) + assertTensorAlmostEqual(self, output, expected, delta=0.0) class TestNeuronDirection(BaseTest): + def test_neuron_direction_init(self) -> None: + model = torch.nn.Identity() + vec = torch.ones(2) * 0.5 + loss = opt_loss.NeuronDirection(model, vec=vec) + self.assertIsNone(loss.x) + self.assertIsNone(loss.y) + self.assertIsNone(loss.channel_index) + self.assertEqual(loss.cossim_pow, 0.0) + self.assertEqual(list(loss.vec.shape), [1, 2, 1, 1]) + assertTensorAlmostEqual(self, loss.vec, vec.reshape((1, -1, 1, 1)), delta=0.0) + def test_neuron_direction(self) -> None: model = BasicModel_ConvNet_Optim() - loss = opt_loss.NeuronDirection(model.layer, vec=torch.ones(1, 1, 1, 1)) - a = 1 - b = [CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_1_LOSS] - dot = np.sum(np.inner(a, b)) - self.assertAlmostEqual(get_loss_value(model, loss), dot, places=6) + vec = torch.ones(2) + loss = opt_loss.NeuronDirection(model.layer, vec=vec) + b = torch.as_tensor([CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_1_LOSS]) + dot = torch.sum(b * vec) + self.assertAlmostEqual(get_loss_value(model, loss).item(), dot.item(), places=6) + + def test_neuron_direction_channel_index(self) -> None: + model = BasicModel_ConvNet_Optim() + vec = torch.ones(2) + loss = opt_loss.NeuronDirection(model.layer, vec=vec, channel_index=0) + + b = torch.as_tensor([CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_1_LOSS]) + dot = torch.sum(b * vec) + self.assertAlmostEqual(get_loss_value(model, loss).item(), dot.item(), places=6) + + def test_neuron_direction_batch_index(self) -> None: + model = torch.nn.Identity() + batch_index = 1 + vec = torch.tensor([0, 1, 0]).float() + loss = opt_loss.NeuronDirection(model, vec=vec, batch_index=batch_index) + + model_input = torch.arange(0, 5 * 3 * 5 * 5).view(5, 3, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(loss.batch_index, (batch_index, batch_index + 1)) + self.assertEqual(output.item(), 112.0) class TestAngledNeuronDirection(BaseTest): - def test_angled_neuron_direction(self) -> None: - model = BasicModel_ConvNet_Optim() + def test_neuron_activation_init(self) -> None: + model = torch.nn.Identity() + vec = torch.ones(1, 2) * 0.5 loss = opt_loss.AngledNeuronDirection( - model.layer, vec=torch.ones(1, 2), cossim_pow=0 + model, + vec=vec, ) - a = 1 - b = [CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_1_LOSS] - dot = torch.sum(torch.as_tensor(np.inner(a, b))).item() - output = torch.sum(cast(torch.Tensor, get_loss_value(model, loss))) + self.assertEqual(loss.eps, 1.0e-4) + self.assertEqual(loss.cossim_pow, 4.0) + self.assertIsNone(loss.x) + self.assertIsNone(loss.y) + self.assertIsNone(loss.vec_whitened) + assertTensorAlmostEqual(self, loss.vec, vec, delta=0.0) + + def test_angled_neuron_direction(self) -> None: + model = BasicModel_ConvNet_Optim() + vec = torch.ones(1, 2) + loss = opt_loss.AngledNeuronDirection(model.layer, vec=vec, cossim_pow=0) + b = torch.as_tensor([CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_0_LOSS]) + dot = torch.sum(b * vec).item() + output = torch.sum(get_loss_value(model, loss)) self.assertAlmostEqual(output.item(), dot, places=6) def test_angled_neuron_direction_whitened(self) -> None: model = BasicModel_ConvNet_Optim() + vec = torch.ones(1, 2) loss = opt_loss.AngledNeuronDirection( model.layer, - vec=torch.ones(1, 2), + vec=vec, vec_whitened=torch.ones(2, 2), cossim_pow=0, ) - a = 1 - b = [CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_1_LOSS] - dot = torch.sum(torch.as_tensor(np.inner(a, b))).item() * 2 - output = torch.sum(cast(torch.Tensor, get_loss_value(model, loss))) + b = torch.as_tensor([CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_0_LOSS]) + dot = torch.sum(vec * b).item() * 2 + output = torch.sum(get_loss_value(model, loss)) self.assertAlmostEqual(output.item(), dot, places=6) + def test_angled_neuron_direction_cossim_pow_4(self) -> None: + model = BasicModel_ConvNet_Optim() + cossim_pow = 4.0 + vec = torch.ones(1, 2) + loss = opt_loss.AngledNeuronDirection( + model.layer, vec=vec, cossim_pow=cossim_pow + ) + a = torch.as_tensor([CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_0_LOSS])[ + None, : + ] + + dot = torch.mean(a * vec) + cossims = dot / (1.0e-4 + torch.sqrt(torch.sum(a**2))) + dot = dot * torch.clamp(cossims, min=0.1) ** cossim_pow + + output = get_loss_value(model, loss).item() + self.assertAlmostEqual(output, dot.item(), places=6) + + def test_angled_neuron_direction_batch_index(self) -> None: + model = torch.nn.Identity() + batch_index = 1 + vec = torch.tensor([1, 0, 1]).float() + loss = opt_loss.AngledNeuronDirection(model, vec=vec, batch_index=batch_index) + + model_input = torch.arange(0, 5 * 3 * 5 * 5).view(5, 3, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(loss.batch_index, (batch_index, batch_index + 1)) + self.assertEqual(output.item(), 1.5350958108901978) + class TestTensorDirection(BaseTest): + def test_tensor_init(self) -> None: + model = BasicModel_ConvNet_Optim() + vec = torch.ones(1, 1, 1, 1) + loss = opt_loss.TensorDirection(model.layer, vec=vec) + self.assertEqual(loss.cossim_pow, 0.0) + assertTensorAlmostEqual(self, loss.vec, vec, delta=0.0) + def test_tensor_direction(self) -> None: model = BasicModel_ConvNet_Optim() - loss = opt_loss.TensorDirection(model.layer, vec=torch.ones(1, 1, 1, 1)) - a = 1 - b = [CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_1_LOSS] - dot = np.sum(np.inner(a, b)) - self.assertAlmostEqual(get_loss_value(model, loss), dot, places=6) + vec = torch.ones(1, 1, 1, 1) + loss = opt_loss.TensorDirection(model.layer, vec=vec) + b = torch.as_tensor([CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_1_LOSS]) + dot = torch.sum(b[None, :, None, None] * vec).item() + self.assertAlmostEqual(get_loss_value(model, loss).item(), dot, places=6) + + def test_tensor_direction_batch_index(self) -> None: + model = torch.nn.Identity() + batch_index = 1 + vec = torch.tensor([1, 0, 1, 0]).float().reshape((1, -1, 1, 1)) + loss = opt_loss.TensorDirection(model, vec=vec, batch_index=batch_index) + + model_input = torch.arange(0, 5 * 1 * 5 * 5).view(5, 1, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(output.item(), 74.0) class TestActivationWeights(BaseTest): + def test_neuron_activation_init(self) -> None: + model = torch.nn.Identity() + weights = torch.zeros(1) + loss = opt_loss.ActivationWeights(model, weights=weights) + self.assertIsNone(loss.x) + self.assertIsNone(loss.y) + self.assertIsNone(loss.wx) + self.assertIsNone(loss.wy) + self.assertFalse(loss.neuron) + assertTensorAlmostEqual(self, loss.weights, weights, delta=0.0) + def test_activation_weights_0(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.ActivationWeights(model.layer, weights=torch.zeros(1)) @@ -196,13 +578,316 @@ def test_activation_weights_1(self) -> None: mode="max", ) + def test_activation_weights_neuron_1(self) -> None: + model = BasicModel_ConvNet_Optim() + loss = opt_loss.ActivationWeights( + model.layer, weights=torch.ones(1), neuron=True, x=0, y=0, wx=1, wy=1 + ) + assertTensorAlmostEqual( + self, + get_loss_value(model, loss), + torch.as_tensor([CHANNEL_ACTIVATION_0_LOSS, CHANNEL_ACTIVATION_1_LOSS])[ + None, :, None, None + ], + mode="max", + ) + + +class _OverrideAbstractFunctions: + """ + Context manager for testing classes with abstract functions. + + Examples:: + >>> # Overriding the abstract methods in BaseLoss + >>> with _OverrideAbstractFunctions(path.to.classtype): + >>> # Do stuff with + """ + + def __init__(self, class_type: Type) -> None: + """ + Args: + + class_type (type): The path to the library class type. + """ + self.class_type = class_type + + def __enter__(self) -> None: + self.abstract_methods = self.class_type.__abstractmethods__ + self.class_type.__abstractmethods__ = frozenset() + + def __exit__(self, *args: Any) -> None: + self.class_type.__abstractmethods__ = self.abstract_methods + + +class TestLoss(BaseTest): + def test_loss_init(self) -> None: + with _OverrideAbstractFunctions(opt_loss.Loss): + loss = opt_loss.Loss() # type: ignore + self.assertIsNone(loss.target) + self.assertEqual(loss.__name__, "Loss") + self.assertEqual(opt_loss.Loss.__name__, "Loss") + + +class TestBaseLoss(BaseTest): + def test_subclass(self) -> None: + self.assertTrue(issubclass(opt_loss.BaseLoss, opt_loss.Loss)) + + def test_base_loss_init(self) -> None: + model = torch.nn.Identity() + with _OverrideAbstractFunctions(opt_loss.BaseLoss): + loss = opt_loss.BaseLoss(model) # type: ignore + self.assertEqual(loss._batch_index, (None, None)) + self.assertEqual(loss.batch_index, (None, None)) + self.assertEqual(loss._target, model) + self.assertEqual(loss.target, model) + self.assertEqual(loss.__name__, "BaseLoss") + self.assertEqual(opt_loss.BaseLoss.__name__, "BaseLoss") + + def test_base_loss_batch_index(self) -> None: + model = torch.nn.Identity() + batch_index = 5 + with _OverrideAbstractFunctions(opt_loss.BaseLoss): + loss = opt_loss.BaseLoss(model, batch_index=batch_index) # type: ignore + self.assertEqual(loss._batch_index, (batch_index, batch_index + 1)) + self.assertEqual(loss.batch_index, (batch_index, batch_index + 1)) + + def test_base_loss_target_list(self) -> None: + model = torch.nn.Sequential(torch.nn.Identity(), torch.nn.Identity()) + targets = [model[0], model[1]] + with _OverrideAbstractFunctions(opt_loss.BaseLoss): + loss = opt_loss.BaseLoss(targets) # type: ignore + self.assertEqual(loss._target, targets) + self.assertEqual(loss.target, targets) + + +class TestL2Mean(BaseTest): + def test_l2mean_init(self) -> None: + model = torch.nn.Identity() + loss = opt_loss.L2Mean(model) + self.assertEqual(loss.constant, 0.5) + self.assertIsNone(loss.channel_index) + + def test_l2mean_constant(self) -> None: + model = BasicModel_ConvNet_Optim() + constant = 0.5 + loss = opt_loss.L2Mean(model.layer, constant=constant) + output = get_loss_value(model, loss) + + expected = (CHANNEL_ACTIVATION_0_LOSS - constant) ** 2 + self.assertAlmostEqual(output, expected, places=6) + + def test_l2mean_channel_index(self) -> None: + model = BasicModel_ConvNet_Optim() + constant = 0.0 + loss = opt_loss.L2Mean(model.layer, channel_index=0, constant=constant) + output = get_loss_value(model, loss) + + expected = (CHANNEL_ACTIVATION_0_LOSS - constant) ** 2 + self.assertAlmostEqual(output, expected, places=6) + + def test_l2mean_batch_index(self) -> None: + raise unittest.SkipTest("Remove after PR merged") + model = torch.nn.Identity() + batch_index = 1 + loss = opt_loss.L2Mean(model, batch_index=batch_index) + + model_input = torch.arange(0, 5 * 4 * 5 * 5).view(5, 4, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(output.item(), 23034.25) + + +class TestVectorLoss(BaseTest): + def test_vectorloss_init(self) -> None: + model = torch.nn.Identity() + vec = torch.tensor([0, 1]).float() + loss = opt_loss.VectorLoss(model, vec=vec) + assertTensorAlmostEqual(self, loss.vec, vec, delta=0.0) + self.assertTrue(loss.move_channel_dim_to_final_dim) + self.assertEqual(loss.activation_fn, torch.nn.functional.relu) + + def test_vectorloss_single_channel(self) -> None: + model = BasicModel_ConvNet_Optim() + vec = torch.tensor([0, 1]).float() + loss = opt_loss.VectorLoss(model.layer, vec=vec) + output = get_loss_value(model, loss, input_shape=[1, 3, 6, 6]) + self.assertAlmostEqual(output, CHANNEL_ACTIVATION_1_LOSS, places=6) + + def test_vectorloss_multiple_channels(self) -> None: + model = BasicModel_ConvNet_Optim() + vec = torch.tensor([1, 1]).float() + loss = opt_loss.VectorLoss(model.layer, vec=vec) + output = get_loss_value(model, loss, input_shape=[1, 3, 6, 6]) + self.assertAlmostEqual(output, CHANNEL_ACTIVATION_1_LOSS * 2, places=6) + + def test_vectorloss_batch_index(self) -> None: + raise unittest.SkipTest("Remove after PR merged") + model = torch.nn.Identity() + batch_index = 1 + vec = torch.tensor([0, 1, 0, 0]).float() + loss = opt_loss.VectorLoss(model, vec=vec, batch_index=batch_index) + + model_input = torch.arange(0, 5 * 4 * 5 * 5).view(5, 4, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertEqual(output.item(), 137.0) + + +class TestFacetLoss(BaseTest): + def test_facetloss_init(self) -> None: + model = torch.nn.Sequential(torch.nn.Identity(), torch.nn.Identity()) + vec = torch.tensor([0, 1, 0]).float() + facet_weights = torch.ones([1, 2, 1, 1]) * 1.5 + loss = opt_loss.FacetLoss( + ultimate_target=model[1], + layer_target=model[0], + vec=vec, + facet_weights=facet_weights, + ) + assertTensorAlmostEqual(self, loss.vec, vec, delta=0.0) + assertTensorAlmostEqual(self, loss.facet_weights, facet_weights, delta=0.0) + + def test_facetloss_single_channel(self) -> None: + layer = torch.nn.Conv2d(2, 3, 1, bias=True) + layer.weight.data.fill_(0.1) # type: ignore + layer.bias.data.fill_(1) # type: ignore + model = torch.nn.Sequential(BasicModel_ConvNet_Optim(), layer) + + vec = torch.tensor([0, 1, 0]).float() + facet_weights = torch.ones([1, 2, 6, 6]) * 1.5 + loss = opt_loss.FacetLoss( + ultimate_target=model[1], + layer_target=model[0].layer, + vec=vec, + facet_weights=facet_weights, + ) + output = get_loss_value(model, loss, input_shape=[1, 3, 6, 6]) + expected = (CHANNEL_ACTIVATION_0_LOSS * 2) * 1.5 + self.assertAlmostEqual(output, expected / 10.0, places=6) + + def test_facetloss_multi_channel(self) -> None: + layer = torch.nn.Conv2d(2, 3, 1, bias=True) + layer.weight.data.fill_(0.1) # type: ignore + layer.bias.data.fill_(1) # type: ignore + + model = torch.nn.Sequential(BasicModel_ConvNet_Optim(), layer) + + vec = torch.tensor([1, 1, 1]).float() + facet_weights = torch.ones([1, 2, 6, 6]) * 2.0 + loss = opt_loss.FacetLoss( + ultimate_target=model[1], + layer_target=model[0].layer, + vec=vec, + facet_weights=facet_weights, + ) + output = get_loss_value(model, loss, input_shape=[1, 3, 6, 6]) + self.assertAlmostEqual(output, 1.560000, places=6) + + def test_facetloss_strength(self) -> None: + layer = torch.nn.Conv2d(2, 3, 1, bias=True) + layer.weight.data.fill_(0.1) # type: ignore + layer.bias.data.fill_(1) # type: ignore + model = torch.nn.Sequential(BasicModel_ConvNet_Optim(), layer) + + vec = torch.tensor([0, 1, 0]).float() + facet_weights = torch.ones([1, 2, 6, 6]) * 1.5 + strength = 0.5 + loss = opt_loss.FacetLoss( + ultimate_target=model[1], + layer_target=model[0].layer, + vec=vec, + facet_weights=facet_weights, + strength=strength, + ) + self.assertEqual(loss.strength, strength) + output = get_loss_value(model, loss, input_shape=[1, 3, 6, 6]) + self.assertAlmostEqual(output, 0.1950000, places=6) + + def test_facetloss_strength_batch(self) -> None: + layer = torch.nn.Conv2d(2, 3, 1, bias=True) + layer.weight.data.fill_(0.1) # type: ignore + layer.bias.data.fill_(1) # type: ignore + model = torch.nn.Sequential(BasicModel_ConvNet_Optim(), layer) + + vec = torch.tensor([0, 1, 0]).float() + facet_weights = torch.ones([1, 2, 6, 6]) * 1.5 + strength = [0.1, 5.05] + loss = opt_loss.FacetLoss( + ultimate_target=model[1], + layer_target=model[0].layer, + vec=vec, + facet_weights=facet_weights, + strength=strength, + ) + self.assertEqual(loss.strength, strength) + output = get_loss_value(model, loss, input_shape=[4, 3, 6, 6]) + self.assertAlmostEqual(output, 4.017000198364258, places=6) + + def test_facetloss_2d_weights(self) -> None: + layer = torch.nn.Conv2d(2, 3, 1, bias=True) + layer.weight.data.fill_(0.1) # type: ignore + layer.bias.data.fill_(1) # type: ignore + model = torch.nn.Sequential(BasicModel_ConvNet_Optim(), layer) + + vec = torch.tensor([0, 1, 0]).float() + facet_weights = torch.ones([1, 2]) * 1.5 + loss = opt_loss.FacetLoss( + ultimate_target=model[1], + layer_target=model[0].layer, + vec=vec, + facet_weights=facet_weights, + ) + output = get_loss_value(model, loss, input_shape=[1, 3, 6, 6]) + expected = (CHANNEL_ACTIVATION_0_LOSS * 2) * 1.5 + self.assertAlmostEqual(output, expected / 10.0, places=6) + + def test_facetloss_batch_index(self) -> None: + raise unittest.SkipTest("Remove after PR merged") + batch_index = 1 + layer = torch.nn.Conv2d(2, 3, 1, bias=True) + layer.weight.data.fill_(0.1) # type: ignore + layer.bias.data.fill_(1) # type: ignore + model = torch.nn.Sequential(BasicModel_ConvNet_Optim(), layer) + + vec = torch.tensor([0, 1, 0]).float() + facet_weights = torch.ones([1, 2, 5, 5]) * 1.5 + loss = opt_loss.FacetLoss( + ultimate_target=model[1], + layer_target=model[0].layer, + vec=vec, + facet_weights=facet_weights, + batch_index=batch_index, + ) + model_input = torch.arange(0, 5 * 3 * 5 * 5).view(5, 3, 5, 5).float() + output = get_loss_value(model, loss, model_input) + self.assertAlmostEqual(output.item(), 10.38000202178955, places=5) + + def test_facetloss_resize_4d(self) -> None: + layer = torch.nn.Conv2d(2, 3, 1, bias=True) + layer.weight.data.fill_(0.1) # type: ignore + layer.bias.data.fill_(1) # type: ignore + + model = torch.nn.Sequential(BasicModel_ConvNet_Optim(), layer) + + vec = torch.tensor([1, 1, 1]).float() + facet_weights = torch.ones([1, 2, 12, 12]) * 2.0 + loss = opt_loss.FacetLoss( + ultimate_target=model[1], + layer_target=model[0].layer, + vec=vec, + facet_weights=facet_weights, + ) + output = get_loss_value(model, loss, input_shape=[1, 3, 6, 6]) + self.assertAlmostEqual(output, 1.560000, places=6) + class TestCompositeLoss(BaseTest): + def test_subclass(self) -> None: + self.assertTrue(issubclass(opt_loss.CompositeLoss, opt_loss.BaseLoss)) + def test_negative(self) -> None: model = BasicModel_ConvNet_Optim() loss = -opt_loss.ChannelActivation(model.layer, 0) self.assertAlmostEqual( - get_loss_value(model, loss), -CHANNEL_ACTIVATION_0_LOSS, places=6 + get_loss_value(model, loss).item(), -CHANNEL_ACTIVATION_0_LOSS, places=6 ) def test_addition(self) -> None: @@ -213,11 +898,20 @@ def test_addition(self) -> None: + 1 ) self.assertAlmostEqual( - get_loss_value(model, loss), + get_loss_value(model, loss).item(), CHANNEL_ACTIVATION_0_LOSS + CHANNEL_ACTIVATION_1_LOSS + 1, places=6, ) + def test_radd(self) -> None: + model = BasicModel_ConvNet_Optim() + loss = 1.0 + opt_loss.ChannelActivation(model.layer, 0) + self.assertAlmostEqual( + get_loss_value(model, loss).item(), + CHANNEL_ACTIVATION_0_LOSS + 1.0, + places=6, + ) + def test_subtraction(self) -> None: model = BasicModel_ConvNet_Optim() loss = ( @@ -226,60 +920,135 @@ def test_subtraction(self) -> None: - 1 ) self.assertAlmostEqual( - get_loss_value(model, loss), + get_loss_value(model, loss).item(), CHANNEL_ACTIVATION_0_LOSS - CHANNEL_ACTIVATION_1_LOSS - 1, ) + def test_rsub(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping CompositeLoss rsub test due to insufficient Torch" + + " version." + ) + model = BasicModel_ConvNet_Optim() + loss = 1.0 - opt_loss.ChannelActivation(model.layer, 0) + self.assertAlmostEqual( + get_loss_value(model, loss).item(), + 1.0 - CHANNEL_ACTIVATION_0_LOSS, + ) + + def test_multiplication_loss_type(self) -> None: + model = BasicModel_ConvNet_Optim() + loss = opt_loss.ChannelActivation(model.layer, 0) * opt_loss.ChannelActivation( + model.layer, 1 + ) + self.assertAlmostEqual( + get_loss_value(model, loss).item(), + CHANNEL_ACTIVATION_0_LOSS * CHANNEL_ACTIVATION_0_LOSS, + places=5, + ) + def test_multiplication(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.ChannelActivation(model.layer, 0) * 10 self.assertAlmostEqual( - get_loss_value(model, loss), CHANNEL_ACTIVATION_0_LOSS * 10, places=5 + get_loss_value(model, loss).item(), CHANNEL_ACTIVATION_0_LOSS * 10, places=5 ) - # def test_multiplication_error(self) -> None: - # model = BasicModel_ConvNet_Optim() - # with self.assertRaises(TypeError): - # opt_loss.ChannelActivation(model.layer, 0) * "string" - # with self.assertRaises(TypeError): - # opt_loss.ChannelActivation(model.layer, 0) * opt_loss.ChannelActivation( - # model.layer, 1 - # ) + def test_multiplication_error(self) -> None: + model = BasicModel_ConvNet_Optim() + with self.assertRaises(TypeError): + opt_loss.ChannelActivation(model.layer, 0) * "string" # type: ignore + + def test_rmul(self) -> None: + model = BasicModel_ConvNet_Optim() + loss = 10 * opt_loss.ChannelActivation(model.layer, 0) + self.assertAlmostEqual( + get_loss_value(model, loss).item(), 10 * CHANNEL_ACTIVATION_0_LOSS, places=5 + ) + + def test_rmul_error(self) -> None: + model = BasicModel_ConvNet_Optim() + with self.assertRaises(TypeError): + "string" * opt_loss.ChannelActivation(model.layer, 0) # type: ignore + + def test_division_loss_type(self) -> None: + model = BasicModel_ConvNet_Optim() + loss = opt_loss.ChannelActivation(model.layer, 0) / opt_loss.ChannelActivation( + model.layer, 1 + ) + self.assertAlmostEqual( + get_loss_value(model, loss).item(), + CHANNEL_ACTIVATION_0_LOSS / CHANNEL_ACTIVATION_0_LOSS, + ) def test_division(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.ChannelActivation(model.layer, 0) / 10 self.assertAlmostEqual( - get_loss_value(model, loss), CHANNEL_ACTIVATION_0_LOSS / 10 + get_loss_value(model, loss).item(), CHANNEL_ACTIVATION_0_LOSS / 10 ) - # def test_division_error(self) -> None: - # model = BasicModel_ConvNet_Optim() - # with self.assertRaises(TypeError): - # opt_loss.ChannelActivation(model.layer, 0) / "string" - # with self.assertRaises(TypeError): - # opt_loss.ChannelActivation(model.layer, 0) / opt_loss.ChannelActivation( - # model.layer, 1 - # ) + def test_division_error(self) -> None: + model = BasicModel_ConvNet_Optim() + with self.assertRaises(TypeError): + opt_loss.ChannelActivation(model.layer, 0) / "string" # type: ignore + + def test_rdiv(self) -> None: + model = BasicModel_ConvNet_Optim() + loss = 10.0 / opt_loss.ChannelActivation(model.layer, 0) + self.assertAlmostEqual( + get_loss_value(model, loss).item(), + 10.0 / CHANNEL_ACTIVATION_0_LOSS, + places=6, + ) + + def test_rdiv_error(self) -> None: + model = BasicModel_ConvNet_Optim() + with self.assertRaises(TypeError): + "string" / opt_loss.ChannelActivation(model.layer, 0) # type: ignore + + def test_pow_loss_type(self) -> None: + model = BasicModel_ConvNet_Optim() + loss = opt_loss.ChannelActivation(model.layer, 0) ** opt_loss.ChannelActivation( + model.layer, 1 + ) + self.assertAlmostEqual( + get_loss_value(model, loss).item(), + CHANNEL_ACTIVATION_0_LOSS**CHANNEL_ACTIVATION_0_LOSS, + places=6, + ) def test_pow(self) -> None: model = BasicModel_ConvNet_Optim() loss = opt_loss.ChannelActivation(model.layer, 0) ** 2 self.assertAlmostEqual( - get_loss_value(model, loss), + get_loss_value(model, loss).item(), CHANNEL_ACTIVATION_0_LOSS**2, places=6, ) - # def test_pow_error(self) -> None: - # model = BasicModel_ConvNet_Optim() - # with self.assertRaises(TypeError): - # opt_loss.ChannelActivation(model.layer, 0) ** "string" - # with self.assertRaises(TypeError): - # opt_loss.ChannelActivation(model.layer, 0) ** opt_loss.ChannelActivation( - # model.layer, 1 - # ) + def test_pow_error(self) -> None: + model = BasicModel_ConvNet_Optim() + with self.assertRaises(TypeError): + opt_loss.ChannelActivation(model.layer, 0) ** "string" # type: ignore + + def test_rpow(self) -> None: + model = BasicModel_ConvNet_Optim() + loss = 2.0 ** opt_loss.ChannelActivation(model.layer, 0) + self.assertAlmostEqual( + get_loss_value(model, loss).item(), + 2.0**CHANNEL_ACTIVATION_0_LOSS, + places=6, + ) + + def test_rpow_error(self) -> None: + model = BasicModel_ConvNet_Optim() + with self.assertRaises(TypeError): + "string" ** opt_loss.ChannelActivation(model.layer, 0) # type: ignore + +class TestSumLossList(BaseTest): def test_sum_loss_list(self) -> None: n_batch = 400 model = torch.nn.Identity() @@ -295,3 +1064,27 @@ def test_sum_loss_list_compose_add(self) -> None: loss_fn = opt_loss.sum_loss_list(loss_fn_list) + opt_loss.LayerActivation(model) out = get_loss_value(model, loss_fn, [n_batch, 3, 1, 1]) self.assertEqual(out, float(n_batch + 1.0)) + + def test_sum_loss_list_sum(self) -> None: + n_batch = 100 + model = torch.nn.Identity() + loss_fn_list = [opt_loss.LayerActivation(model) for i in range(n_batch)] + loss_fn = opt_loss.sum_loss_list(loss_fn_list, torch.sum) + out = get_loss_value(model, loss_fn, [n_batch, 3, 1, 1]) + self.assertEqual(out.item(), 30000.0) + + def test_sum_loss_list_identity(self) -> None: + n_batch = 100 + model = torch.nn.Identity() + loss_fn_list = [opt_loss.LayerActivation(model) for i in range(n_batch)] + loss_fn = opt_loss.sum_loss_list(loss_fn_list, torch.nn.Identity()) + out = get_loss_value(model, loss_fn, [n_batch, 3, 1, 1]) + self.assertEqual(list(out.shape), [n_batch, 3, 1, 1]) + self.assertEqual(out.sum().item(), 30000.0) + + +class TestDefaultLossSummarize(BaseTest): + def test_default_loss_summarize(self) -> None: + x = torch.arange(0, 1 * 3 * 5 * 5).view(1, 3, 5, 5).float() + output = opt_loss.default_loss_summarize(x) + self.assertEqual(output.item(), -37.0) diff --git a/tests/optim/core/test_optimization.py b/tests/optim/core/test_optimization.py index 7f77cf4b4d..1cd3301a98 100644 --- a/tests/optim/core/test_optimization.py +++ b/tests/optim/core/test_optimization.py @@ -1,5 +1,6 @@ #!/usr/bin/env python3 import unittest +from typing import List import captum.optim as opt import torch @@ -9,6 +10,54 @@ class TestInputOptimization(BaseTest): + def test_input_optimization_init(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping InputOptimization init test due to insufficient Torch" + + " version." + ) + model = BasicModel_ConvNet_Optim() + loss_fn = opt.loss.ChannelActivation(model.layer, 1) + transform = torch.nn.Identity() + image_param = opt.images.NaturalImage() + obj = opt.InputOptimization( + model, loss_function=loss_fn, input_param=image_param, transform=transform + ) + + self.assertEqual(model, obj.model) + self.assertEqual(image_param, obj.input_param) + self.assertEqual(transform, obj.transform) + self.assertEqual(loss_fn, obj.loss_function) + self.assertEqual(list(image_param.parameters()), list(obj.parameters())) + + def test_input_optimization_custom_optimize(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping InputOptimization custom optimze test due to insufficient" + + " Torch version." + ) + model = BasicModel_ConvNet_Optim() + loss_fn = opt.loss.ChannelActivation(model.layer, 0) + obj = opt.InputOptimization(model, loss_function=loss_fn) + + stop_criteria = opt.optimization.n_steps(512, show_progress=False) + optimizer = torch.optim.Adam(obj.parameters(), lr=0.02) + + history: List[torch.Tensor] = [] + step = 0 + try: + while stop_criteria(step, obj, history, optimizer): + optimizer.zero_grad() + loss_value = -1.0 * obj.loss().mean() + history.append(loss_value.clone().detach()) + loss_value.backward() + optimizer.step() + step += 1 + finally: + obj.cleanup() + history = torch.stack(history) + self.assertIsInstance(history, torch.Tensor) + def test_input_optimization(self) -> None: if version.parse(torch.__version__) <= version.parse("1.6.0"): raise unittest.SkipTest( diff --git a/tests/optim/models/test_clip_resnet50x4_image.py b/tests/optim/models/test_clip_resnet50x4_image.py new file mode 100644 index 0000000000..ab5f22e52c --- /dev/null +++ b/tests/optim/models/test_clip_resnet50x4_image.py @@ -0,0 +1,185 @@ +#!/usr/bin/env python3 +import unittest + +import torch +from captum.optim.models import clip_resnet50x4_image +from captum.optim.models._common import RedirectedReluLayer, SkipLayer +from packaging import version +from tests.helpers.basic import BaseTest, assertTensorAlmostEqual +from tests.optim.helpers.models import check_layer_in_model + + +class TestCLIPResNet50x4Image(BaseTest): + def test_load_clip_resnet50x4_image_with_redirected_relu(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping load pretrained CLIP ResNet 50x4 Image due to insufficient" + + " Torch version." + ) + model = clip_resnet50x4_image( + pretrained=True, replace_relus_with_redirectedrelu=True + ) + self.assertTrue(check_layer_in_model(model, RedirectedReluLayer)) + + def test_load_clip_resnet50x4_image_no_redirected_relu(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping load pretrained CLIP ResNet 50x4 Image RedirectedRelu test" + + " due to insufficient Torch version." + ) + model = clip_resnet50x4_image( + pretrained=True, replace_relus_with_redirectedrelu=False + ) + self.assertFalse(check_layer_in_model(model, RedirectedReluLayer)) + self.assertTrue(check_layer_in_model(model, torch.nn.ReLU)) + + def test_load_clip_resnet50x4_image_linear(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping load pretrained CLIP ResNet 50x4 Image linear test due to" + + " insufficient Torch version." + ) + model = clip_resnet50x4_image(pretrained=True, use_linear_modules_only=True) + self.assertFalse(check_layer_in_model(model, RedirectedReluLayer)) + self.assertFalse(check_layer_in_model(model, torch.nn.ReLU)) + self.assertTrue(check_layer_in_model(model, SkipLayer)) + + def test_clip_resnet50x4_image_transform(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping CLIP ResNet 50x4 Image internal transform test due to" + + " insufficient Torch version." + ) + x = torch.randn(1, 3, 288, 288).clamp(0, 1) + model = clip_resnet50x4_image(pretrained=True) + output = model._transform_input(x) + expected_output = x.clone() - torch.tensor( + [0.48145466, 0.4578275, 0.40821073] + ).view(3, 1, 1) + expected_output = expected_output / torch.tensor( + [0.26862954, 0.26130258, 0.27577711] + ).view(3, 1, 1) + assertTensorAlmostEqual(self, output, expected_output, 0) + + def test_clip_resnet50x4_image_transform_warning(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping CLIP ResNet 50x4 Image internal transform warning test due" + + " to insufficient Torch version." + ) + x = torch.stack( + [torch.ones(3, 288, 288) * -1, torch.ones(3, 288, 288) * 2], dim=0 + ) + model = clip_resnet50x4_image(pretrained=True) + with self.assertWarns(UserWarning): + model._transform_input(x) + + def test_clip_resnet50x4_image_load_and_forward(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping basic pretrained CLIP ResNet 50x4 Image forward test due to" + + " insufficient Torch version." + ) + x = torch.zeros(1, 3, 288, 288) + model = clip_resnet50x4_image(pretrained=True, use_attnpool=True) + output = model(x) + self.assertEqual(list(output.shape), [1, 640]) + self.assertTrue(model.use_attnpool) + + def test_untrained_clip_resnet50x4_image_load_and_forward(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping basic untrained CLIP ResNet 50x4 Image forward test due to" + + " insufficient Torch version." + ) + x = torch.zeros(1, 3, 288, 288) + model = clip_resnet50x4_image(pretrained=False, use_attnpool=True) + output = model(x) + self.assertEqual(list(output.shape), [1, 640]) + self.assertTrue(model.use_attnpool) + + def test_clip_resnet50x4_image_warning(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping pretrained CLIP ResNet 50x4 Image transform input" + + " warning test due to insufficient Torch version." + ) + x = torch.stack( + [torch.ones(3, 288, 288) * -1, torch.ones(3, 288, 288) * 2], dim=0 + ) + model = clip_resnet50x4_image(pretrained=True) + with self.assertWarns(UserWarning): + _ = model._transform_input(x) + + def test_clip_resnet50x4_image_use_attnpool_false(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping basic pretrained CLIP ResNet 50x4 Image use_attnpool" + + " forward due to insufficient Torch version." + ) + x = torch.zeros(1, 3, 288, 288) + model = clip_resnet50x4_image(pretrained=True, use_attnpool=False) + output = model(x) + self.assertEqual(list(output.shape), [1, 2560, 9, 9]) + self.assertFalse(model.use_attnpool) + + def test_clip_resnet50x4_image_use_attnpool_false_size_128(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping basic pretrained CLIP ResNet 50x4 Image use_attnpool" + + " forward with 128x128 input due to insufficient Torch version." + ) + x = torch.zeros(1, 3, 128, 128) + model = clip_resnet50x4_image(pretrained=True, use_attnpool=False) + output = model(x) + self.assertEqual(list(output.shape), [1, 2560, 4, 4]) + self.assertFalse(model.use_attnpool) + + def test_clip_resnet50x4_image_forward_cuda(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping pretrained CLIP ResNet 50x4 Image forward CUDA test due to" + + " insufficient Torch version." + ) + if not torch.cuda.is_available(): + raise unittest.SkipTest( + "Skipping pretrained CLIP ResNet 50x4 Image forward CUDA test due to" + + " not supporting CUDA." + ) + x = torch.zeros(1, 3, 288, 288).cuda() + model = clip_resnet50x4_image(pretrained=True, use_attnpool=True).cuda() + output = model(x) + + self.assertTrue(output.is_cuda) + self.assertEqual(list(output.shape), [1, 640]) + self.assertTrue(model.use_attnpool) + + def test_clip_resnet50x4_image_jit_module_no_redirected_relu(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.8.0"): + raise unittest.SkipTest( + "Skipping pretrained CLIP ResNet 50x4 Image load & JIT module with" + + " no redirected relu test due to insufficient Torch version." + ) + x = torch.zeros(1, 3, 288, 288) + model = clip_resnet50x4_image( + pretrained=True, replace_relus_with_redirectedrelu=False, use_attnpool=True + ) + jit_model = torch.jit.script(model) + output = jit_model(x) + self.assertEqual(list(output.shape), [1, 640]) + self.assertTrue(model.use_attnpool) + + def test_clip_resnet50x4_image_jit_module_with_redirected_relu(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.8.0"): + raise unittest.SkipTest( + "Skipping pretrained CLIP ResNet 50x4 Image load & JIT module with" + + " redirected relu test due to insufficient Torch version." + ) + x = torch.zeros(1, 3, 288, 288) + model = clip_resnet50x4_image( + pretrained=True, replace_relus_with_redirectedrelu=True, use_attnpool=True + ) + jit_model = torch.jit.script(model) + output = jit_model(x) + self.assertEqual(list(output.shape), [1, 640]) + self.assertTrue(model.use_attnpool) diff --git a/tests/optim/models/test_clip_resnet50x4_text.py b/tests/optim/models/test_clip_resnet50x4_text.py new file mode 100644 index 0000000000..3d7f9d7cd5 --- /dev/null +++ b/tests/optim/models/test_clip_resnet50x4_text.py @@ -0,0 +1,64 @@ +#!/usr/bin/env python3 +import unittest + +import torch +from captum.optim.models import clip_resnet50x4_text +from packaging import version +from tests.helpers.basic import BaseTest, assertTensorAlmostEqual + + +class TestCLIPResNet50x4Text(BaseTest): + def test_clip_resnet50x4_text_logit_scale(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping basic pretrained CLIP ResNet 50x4 Text logit scale test due" + + " to insufficient Torch version." + ) + model = clip_resnet50x4_text(pretrained=True) + expected_logit_scale = torch.tensor(4.605170249938965) + assertTensorAlmostEqual(self, model.logit_scale, expected_logit_scale) + + def test_clip_resnet50x4_text_load_and_forward(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping basic pretrained CLIP ResNet 50x4 Text forward test due to" + + " insufficient Torch version." + ) + # Start & End tokens: 49405, 49406 + x = torch.cat([torch.tensor([49405, 49406]), torch.zeros(77 - 2)]) + x = x[None, :].long() + model = clip_resnet50x4_text(pretrained=True) + output = model(x) + self.assertEqual(list(output.shape), [1, 640]) + + def test_clip_resnet50x4_text_forward_cuda(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.6.0"): + raise unittest.SkipTest( + "Skipping pretrained CLIP ResNet 50x4 Text forward CUDA test due to" + + " insufficient Torch version." + ) + if not torch.cuda.is_available(): + raise unittest.SkipTest( + "Skipping pretrained CLIP ResNet 50x4 Text forward CUDA test due to" + + " not supporting CUDA." + ) + x = torch.cat([torch.tensor([49405, 49406]), torch.zeros(77 - 2)]).cuda() + x = x[None, :].long() + model = clip_resnet50x4_text(pretrained=True).cuda() + output = model(x) + + self.assertTrue(output.is_cuda) + self.assertEqual(list(output.shape), [1, 640]) + + def test_clip_resnet50x4_text_jit_module(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.8.0"): + raise unittest.SkipTest( + "Skipping pretrained CLIP ResNet 50x4 Text load & JIT module" + + " test due to insufficient Torch version." + ) + x = torch.cat([torch.tensor([49405, 49406]), torch.zeros(77 - 2)]) + x = x[None, :].long() + model = clip_resnet50x4_text(pretrained=True) + jit_model = torch.jit.script(model) + output = jit_model(x) + self.assertEqual(list(output.shape), [1, 640]) diff --git a/tests/optim/models/test_googlenet_places365.py b/tests/optim/models/test_googlenet_places365.py index d6e9cf321d..84f9291fb9 100644 --- a/tests/optim/models/test_googlenet_places365.py +++ b/tests/optim/models/test_googlenet_places365.py @@ -11,7 +11,7 @@ class TestInceptionV1Places365(BaseTest): def test_load_inceptionv1_places365_with_redirected_relu(self) -> None: - if torch.__version__ <= "1.6.0": + if version.parse(torch.__version__) <= version.parse("1.6.0"): raise unittest.SkipTest( "Skipping load pretrained InceptionV1 Places365 due to insufficient" + " Torch version." @@ -22,7 +22,7 @@ def test_load_inceptionv1_places365_with_redirected_relu(self) -> None: self.assertTrue(check_layer_in_model(model, RedirectedReluLayer)) def test_load_inceptionv1_places365_no_redirected_relu(self) -> None: - if torch.__version__ <= "1.6.0": + if version.parse(torch.__version__) <= version.parse("1.6.0"): raise unittest.SkipTest( "Skipping load pretrained InceptionV1 Places365 RedirectedRelu test" + " due to insufficient Torch version." @@ -34,7 +34,7 @@ def test_load_inceptionv1_places365_no_redirected_relu(self) -> None: self.assertTrue(check_layer_in_model(model, torch.nn.ReLU)) def test_load_inceptionv1_places365_linear(self) -> None: - if torch.__version__ <= "1.6.0": + if version.parse(torch.__version__) <= version.parse("1.6.0"): raise unittest.SkipTest( "Skipping load pretrained InceptionV1 Places365 linear test due to" + " insufficient Torch version." @@ -47,7 +47,7 @@ def test_load_inceptionv1_places365_linear(self) -> None: self.assertTrue(check_layer_in_model(model, torch.nn.AvgPool2d)) def test_inceptionv1_places365_transform(self) -> None: - if torch.__version__ <= "1.6.0": + if version.parse(torch.__version__) <= version.parse("1.6.0"): raise unittest.SkipTest( "Skipping InceptionV1 Places365 internal transform test due to" + " insufficient Torch version." @@ -62,7 +62,7 @@ def test_inceptionv1_places365_transform(self) -> None: assertTensorAlmostEqual(self, output, expected_output, 0) def test_inceptionv1_places365_transform_warning(self) -> None: - if torch.__version__ <= "1.6.0": + if version.parse(torch.__version__) <= version.parse("1.6.0"): raise unittest.SkipTest( "Skipping InceptionV1 Places365 internal transform warning test due" + " to insufficient Torch version." @@ -75,7 +75,7 @@ def test_inceptionv1_places365_transform_warning(self) -> None: model._transform_input(x) def test_inceptionv1_places365_load_and_forward(self) -> None: - if torch.__version__ <= "1.6.0": + if version.parse(torch.__version__) <= version.parse("1.6.0"): raise unittest.SkipTest( "Skipping basic pretrained InceptionV1 Places365 forward test due to" + " insufficient Torch version." @@ -86,7 +86,7 @@ def test_inceptionv1_places365_load_and_forward(self) -> None: self.assertEqual([list(o.shape) for o in outputs], [[1, 365]] * 3) def test_inceptionv1_places365_load_and_forward_diff_sizes(self) -> None: - if torch.__version__ <= "1.6.0": + if version.parse(torch.__version__) <= version.parse("1.6.0"): raise unittest.SkipTest( "Skipping pretrained InceptionV1 Places365 forward with different" + " sized inputs test due to insufficient Torch version." @@ -102,7 +102,7 @@ def test_inceptionv1_places365_load_and_forward_diff_sizes(self) -> None: self.assertEqual([list(o.shape) for o in outputs2], [[1, 365]] * 3) def test_inceptionv1_places365_forward_no_aux(self) -> None: - if torch.__version__ <= "1.6.0": + if version.parse(torch.__version__) <= version.parse("1.6.0"): raise unittest.SkipTest( "Skipping pretrained InceptionV1 Places365 with aux logits forward" + " test due to insufficient Torch version." @@ -113,7 +113,7 @@ def test_inceptionv1_places365_forward_no_aux(self) -> None: self.assertEqual(list(outputs.shape), [1, 365]) def test_inceptionv1_places365_forward_cuda(self) -> None: - if torch.__version__ <= "1.6.0": + if version.parse(torch.__version__) <= version.parse("1.6.0"): raise unittest.SkipTest( "Skipping pretrained InceptionV1 Places365 forward CUDA test due to" + " insufficient Torch version." diff --git a/tests/optim/models/test_models_common.py b/tests/optim/models/test_models_common.py index 5c10060760..11856e44e8 100644 --- a/tests/optim/models/test_models_common.py +++ b/tests/optim/models/test_models_common.py @@ -6,6 +6,7 @@ import torch import torch.nn.functional as F from captum.optim.models import googlenet +from packaging import version from tests.helpers.basic import BaseTest, assertTensorAlmostEqual @@ -37,7 +38,10 @@ def check_grad(self, grad_input, grad_output): rr_layer = model_utils.RedirectedReluLayer() x = torch.zeros(1, 3, 4, 4, requires_grad=True) - rr_layer.register_backward_hook(check_grad) + if version.parse(torch.__version__) >= version.parse("1.8.0"): + rr_layer.register_full_backward_hook(check_grad) + else: + rr_layer.register_backward_hook(check_grad) rr_loss = rr_layer(x * 1).mean() rr_loss.backward() diff --git a/tests/optim/param/test_images.py b/tests/optim/param/test_images.py index 617d34a3a3..02390dc0d2 100644 --- a/tests/optim/param/test_images.py +++ b/tests/optim/param/test_images.py @@ -20,6 +20,17 @@ def test_new(self) -> None: test_tensor = images.ImageTensor(x) self.assertTrue(torch.is_tensor(test_tensor)) self.assertEqual(x.shape, test_tensor.shape) + self.assertEqual(x.dtype, test_tensor.dtype) + + def test_new_dtype_float64(self) -> None: + x = torch.ones(5, dtype=torch.float64) + test_tensor = images.ImageTensor(x) + self.assertEqual(test_tensor.dtype, torch.float64) + + def test_new_dtype_float16(self) -> None: + x = torch.ones(5, dtype=torch.float16) + test_tensor = images.ImageTensor(x) + self.assertEqual(test_tensor.dtype, torch.float16) def test_new_numpy(self) -> None: x = torch.ones(5).numpy() @@ -33,6 +44,13 @@ def test_new_list(self) -> None: self.assertTrue(torch.is_tensor(test_tensor)) self.assertEqual(x.shape, test_tensor.shape) + def test_new_with_grad(self) -> None: + x = torch.ones(5, requires_grad=True) + test_tensor = images.ImageTensor(x) + self.assertTrue(test_tensor.requires_grad) + self.assertTrue(torch.is_tensor(test_tensor)) + self.assertEqual(x.shape, test_tensor.shape) + def test_torch_function(self) -> None: x = torch.ones(5) image_tensor = images.ImageTensor(x) @@ -102,7 +120,7 @@ def test_subclass(self) -> None: def test_pytorch_fftfreq(self) -> None: image = images.FFTImage((1, 1)) - _, _, fftfreq = image.get_fft_funcs() + _, _, fftfreq = image._get_fft_funcs() assertTensorAlmostEqual( self, fftfreq(4, 4), torch.as_tensor(np.fft.fftfreq(4, 4)), mode="max" ) @@ -114,7 +132,7 @@ def test_rfft2d_freqs(self) -> None: assertTensorAlmostEqual( self, - image.rfft2d_freqs(height, width), + image._rfft2d_freqs(height, width), torch.tensor([[0.0000, 0.3333], [0.5000, 0.6009]]), ) @@ -308,6 +326,33 @@ def test_fftimage_forward_init_batch(self) -> None: self, fftimage_tensor.detach(), fftimage_array, 25.0, mode="max" ) + def test_fftimage_forward_dtype_float64(self) -> None: + dtype = torch.float64 + image_param = images.FFTImage(size=(224, 224)).to(dtype=dtype) + output = image_param() + self.assertEqual(output.dtype, dtype) + + def test_fftimage_forward_dtype_float32(self) -> None: + dtype = torch.float32 + image_param = images.FFTImage(size=(224, 224)).to(dtype=dtype) + output = image_param() + self.assertEqual(output.dtype, dtype) + + def test_fftimage_forward_dtype_float16(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.12.0"): + raise unittest.SkipTest( + "Skipping FFTImage float16 dtype test due to" + + " insufficient Torch version." + ) + dtype = torch.float16 + if not torch.cuda.is_available(): + raise unittest.SkipTest( + "Skipping FFTImage float16 dtype test due to not supporting CUDA." + ) + image_param = images.FFTImage(size=(256, 256)).cuda().to(dtype=dtype) + output = image_param() + self.assertEqual(output.dtype, dtype) + class TestPixelImage(BaseTest): def test_subclass(self) -> None: @@ -317,12 +362,7 @@ def test_pixelimage_random(self) -> None: size = (224, 224) channels = 3 image_param = images.PixelImage(size=size, channels=channels) - - self.assertEqual(image_param.image.dim(), 4) - self.assertEqual(image_param.image.size(0), 1) - self.assertEqual(image_param.image.size(1), channels) - self.assertEqual(image_param.image.size(2), size[0]) - self.assertEqual(image_param.image.size(3), size[1]) + self.assertEqual(list(image_param.image.shape), [1, channels] + list(size)) self.assertTrue(image_param.image.requires_grad) def test_pixelimage_init(self) -> None: @@ -331,11 +371,7 @@ def test_pixelimage_init(self) -> None: init_tensor = torch.randn(channels, *size) image_param = images.PixelImage(size=size, channels=channels, init=init_tensor) - self.assertEqual(image_param.image.dim(), 4) - self.assertEqual(image_param.image.size(0), 1) - self.assertEqual(image_param.image.size(1), channels) - self.assertEqual(image_param.image.size(2), size[0]) - self.assertEqual(image_param.image.size(3), size[1]) + self.assertEqual(list(image_param.image.shape), [1, channels] + list(size)) assertTensorAlmostEqual(self, image_param.image, init_tensor[None, :], 0) self.assertTrue(image_param.image.requires_grad) @@ -344,12 +380,7 @@ def test_pixelimage_random_forward(self) -> None: channels = 3 image_param = images.PixelImage(size=size, channels=channels) test_tensor = image_param.forward().rename(None) - - self.assertEqual(test_tensor.dim(), 4) - self.assertEqual(test_tensor.size(0), 1) - self.assertEqual(test_tensor.size(1), channels) - self.assertEqual(test_tensor.size(2), size[0]) - self.assertEqual(test_tensor.size(3), size[1]) + self.assertEqual(list(test_tensor.shape), [1, channels] + list(size)) def test_pixelimage_forward_jit_module(self) -> None: if version.parse(torch.__version__) <= version.parse("1.8.0"): @@ -369,13 +400,33 @@ def test_pixelimage_init_forward(self) -> None: image_param = images.PixelImage(size=size, channels=channels, init=init_tensor) test_tensor = image_param.forward().rename(None) - self.assertEqual(test_tensor.dim(), 4) - self.assertEqual(test_tensor.size(0), 1) - self.assertEqual(test_tensor.size(1), channels) - self.assertEqual(test_tensor.size(2), size[0]) - self.assertEqual(test_tensor.size(3), size[1]) + self.assertEqual(list(test_tensor.shape), [1, channels] + list(size)) assertTensorAlmostEqual(self, test_tensor, init_tensor[None, :], 0) + def test_pixelimage_forward_dtype_float64(self) -> None: + dtype = torch.float64 + image_param = images.PixelImage(size=(224, 224)).to(dtype=dtype) + output = image_param() + self.assertEqual(output.dtype, torch.float64) + + def test_pixelimage_forward_dtype_float32(self) -> None: + dtype = torch.float32 + image_param = images.PixelImage(size=(224, 224)).to(dtype=dtype) + output = image_param() + self.assertEqual(output.dtype, torch.float32) + + def test_pixelimage_forward_dtype_float16(self) -> None: + dtype = torch.float16 + image_param = images.PixelImage(size=(224, 224)).to(dtype) + output = image_param() + self.assertEqual(output.dtype, dtype) + + def test_pixelimage_forward_dtype_bfloat16(self) -> None: + dtype = torch.bfloat16 + image_param = images.PixelImage(size=(224, 224)).to(dtype=dtype) + output = image_param() + self.assertEqual(output.dtype, dtype) + class TestLaplacianImage(BaseTest): def test_subclass(self) -> None: @@ -384,21 +435,67 @@ def test_subclass(self) -> None: def test_laplacianimage_random_forward(self) -> None: size = (224, 224) channels = 3 - image_param = images.LaplacianImage(size=size, channels=channels) + batch = 1 + image_param = images.LaplacianImage(size=size, channels=channels, batch=batch) + test_tensor = image_param.forward().rename(None) + self.assertEqual(list(test_tensor.shape), [batch, channels, size[0], size[1]]) + self.assertTrue(test_tensor.requires_grad) + + def test_laplacianimage_random_forward_batch_5(self) -> None: + size = (224, 224) + channels = 3 + batch = 5 + image_param = images.LaplacianImage(size=size, channels=channels, batch=batch) + test_tensor = image_param.forward().rename(None) + self.assertEqual(list(test_tensor.shape), [batch, channels, size[0], size[1]]) + + def test_laplacianimage_random_forward_scale_list(self) -> None: + size = (224, 224) + channels = 3 + batch = 1 + scale_list = [1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 56.0, 112.0] + image_param = images.LaplacianImage( + size=size, channels=channels, batch=batch, scale_list=scale_list + ) test_tensor = image_param.forward().rename(None) + self.assertEqual(list(test_tensor.shape), [batch, channels, size[0], size[1]]) - self.assertEqual(test_tensor.dim(), 4) - self.assertEqual(test_tensor.size(0), 1) - self.assertEqual(test_tensor.size(1), channels) - self.assertEqual(test_tensor.size(2), size[0]) - self.assertEqual(test_tensor.size(3), size[1]) + def test_laplacianimage_random_forward_scale_list_error(self) -> None: + scale_list = [1.0, 2.0, 4.0, 8.0, 16.0, 64.0, 144.0] + with self.assertRaises(AssertionError): + images.LaplacianImage( + size=(224, 224), channels=3, batch=1, scale_list=scale_list + ) - def test_laplacianimage_init(self) -> None: - init_t = torch.zeros(1, 224, 224) - image_param = images.LaplacianImage(size=(224, 224), channels=3, init=init_t) + def test_laplacianimage_init_tensor(self) -> None: + init_tensor = torch.zeros(1, 3, 224, 224) + image_param = images.LaplacianImage(init=init_tensor) output = image_param.forward().detach().rename(None) assertTensorAlmostEqual(self, torch.ones_like(output) * 0.5, output, mode="max") + def test_laplacianimage_random_forward_cuda(self) -> None: + if not torch.cuda.is_available(): + raise unittest.SkipTest( + "Skipping LaplacianImage CUDA test due to not supporting CUDA." + ) + image_param = images.LaplacianImage(size=(224, 224), channels=3, batch=1).cuda() + test_tensor = image_param.forward().rename(None) + self.assertTrue(test_tensor.is_cuda) + self.assertEqual(list(test_tensor.shape), [1, 3, 224, 224]) + self.assertTrue(test_tensor.requires_grad) + + def test_laplcianimage_forward_dtype_float64(self) -> None: + dtype = torch.float64 + image_param = images.LaplacianImage(size=(224, 224)).to(dtype=dtype) + output = image_param() + self.assertEqual(output.dtype, dtype) + + def test_laplcianimage_forward_dtype_float32(self) -> None: + dtype = torch.float32 + image_param = images.LaplacianImage(size=(224, 224)).to(dtype=dtype) + output = image_param() + self.assertEqual(output.dtype, dtype) + class TestSimpleTensorParameterization(BaseTest): def test_subclass(self) -> None: @@ -443,7 +540,7 @@ def test_simple_tensor_parameterization_with_grad(self) -> None: self.assertTrue(image_param.tensor.requires_grad) def test_simple_tensor_parameterization_jit_module_with_grad(self) -> None: - if torch.__version__ <= "1.8.0": + if version.parse(torch.__version__) <= version.parse("1.8.0"): raise unittest.SkipTest( "Skipping SimpleTensorParameterization JIT module test due to" + " insufficient Torch version." @@ -674,12 +771,7 @@ def test_interpolate_tensor(self) -> None: output_tensor = image_param._interpolate_tensor( test_tensor, batch, channels, size[0], size[1] ) - - self.assertEqual(output_tensor.dim(), 4) - self.assertEqual(output_tensor.size(0), batch) - self.assertEqual(output_tensor.size(1), channels) - self.assertEqual(output_tensor.size(2), size[0]) - self.assertEqual(output_tensor.size(3), size[1]) + self.assertEqual(list(output_tensor.shape), [batch, channels] + list(size)) def test_sharedimage_single_shape_hw_forward(self) -> None: shared_shapes = (128 // 2, 128 // 2) @@ -697,11 +789,7 @@ def test_sharedimage_single_shape_hw_forward(self) -> None: self.assertEqual( list(image_param.shared_init[0]().shape), [1, 1] + list(shared_shapes) ) - self.assertEqual(test_tensor.dim(), 4) - self.assertEqual(test_tensor.size(0), batch) - self.assertEqual(test_tensor.size(1), channels) - self.assertEqual(test_tensor.size(2), size[0]) - self.assertEqual(test_tensor.size(3), size[1]) + self.assertEqual(list(test_tensor.shape), [batch, channels] + list(size)) def test_sharedimage_single_shape_chw_forward(self) -> None: shared_shapes = (3, 128 // 2, 128 // 2) @@ -719,11 +807,7 @@ def test_sharedimage_single_shape_chw_forward(self) -> None: self.assertEqual( list(image_param.shared_init[0]().shape), [1] + list(shared_shapes) ) - self.assertEqual(test_tensor.dim(), 4) - self.assertEqual(test_tensor.size(0), batch) - self.assertEqual(test_tensor.size(1), channels) - self.assertEqual(test_tensor.size(2), size[0]) - self.assertEqual(test_tensor.size(3), size[1]) + self.assertEqual(list(test_tensor.shape), [batch, channels] + list(size)) def test_sharedimage_single_shape_bchw_forward(self) -> None: shared_shapes = (1, 3, 128 // 2, 128 // 2) @@ -739,11 +823,7 @@ def test_sharedimage_single_shape_bchw_forward(self) -> None: self.assertIsNone(image_param.offset) self.assertEqual(image_param.shared_init[0]().dim(), 4) self.assertEqual(list(image_param.shared_init[0]().shape), list(shared_shapes)) - self.assertEqual(test_tensor.dim(), 4) - self.assertEqual(test_tensor.size(0), batch) - self.assertEqual(test_tensor.size(1), channels) - self.assertEqual(test_tensor.size(2), size[0]) - self.assertEqual(test_tensor.size(3), size[1]) + self.assertEqual(list(test_tensor.shape), [batch, channels] + list(size)) def test_sharedimage_multiple_shapes_forward(self) -> None: shared_shapes = ( @@ -769,11 +849,7 @@ def test_sharedimage_multiple_shapes_forward(self) -> None: self.assertEqual( list(image_param.shared_init[i]().shape), list(shared_shapes[i]) ) - self.assertEqual(test_tensor.dim(), 4) - self.assertEqual(test_tensor.size(0), batch) - self.assertEqual(test_tensor.size(1), channels) - self.assertEqual(test_tensor.size(2), size[0]) - self.assertEqual(test_tensor.size(3), size[1]) + self.assertEqual(list(test_tensor.shape), [batch, channels] + list(size)) def test_sharedimage_multiple_shapes_diff_len_forward(self) -> None: shared_shapes = ( @@ -800,11 +876,7 @@ def test_sharedimage_multiple_shapes_diff_len_forward(self) -> None: s_shape = ([1] * (4 - len(s_shape))) + list(s_shape) self.assertEqual(list(image_param.shared_init[i]().shape), s_shape) - self.assertEqual(test_tensor.dim(), 4) - self.assertEqual(test_tensor.size(0), batch) - self.assertEqual(test_tensor.size(1), channels) - self.assertEqual(test_tensor.size(2), size[0]) - self.assertEqual(test_tensor.size(3), size[1]) + self.assertEqual(list(test_tensor.shape), [batch, channels] + list(size)) def test_sharedimage_multiple_shapes_diff_len_forward_jit_module(self) -> None: if version.parse(torch.__version__) <= version.parse("1.8.0"): @@ -831,12 +903,7 @@ def test_sharedimage_multiple_shapes_diff_len_forward_jit_module(self) -> None: ) jit_image_param = torch.jit.script(image_param) test_tensor = jit_image_param() - - self.assertEqual(test_tensor.dim(), 4) - self.assertEqual(test_tensor.size(0), batch) - self.assertEqual(test_tensor.size(1), channels) - self.assertEqual(test_tensor.size(2), size[0]) - self.assertEqual(test_tensor.size(3), size[1]) + self.assertEqual(list(test_tensor.shape), [batch, channels] + list(size)) class TestStackImage(BaseTest): @@ -1071,11 +1138,19 @@ def test_natural_image_init_func_pixelimage(self) -> None: self.assertIsInstance(image_param.decorrelate, ToRGB) self.assertEqual(image_param.squash_func, torch.sigmoid) - def test_natural_image_init_func_default_init_tensor(self) -> None: - image_param = images.NaturalImage(init=torch.ones(1, 3, 1, 1)) + def test_natural_image_custom_squash_func(self) -> None: + init_tensor = torch.randn(1, 3, 1, 1) + + def clamp_image(x: torch.Tensor) -> torch.Tensor: + return x.clamp(0, 1) + + image_param = images.NaturalImage(init=init_tensor, squash_func=clamp_image) + image = image_param.forward().detach() + self.assertIsInstance(image_param.parameterization, images.FFTImage) self.assertIsInstance(image_param.decorrelate, ToRGB) - self.assertEqual(image_param.squash_func, image_param._clamp_image) + self.assertEqual(image_param.squash_func, clamp_image) + assertTensorAlmostEqual(self, image, init_tensor.clamp(0, 1)) def test_natural_image_init_tensor_pixelimage_sf_sigmoid(self) -> None: if version.parse(torch.__version__) <= version.parse("1.8.0"): @@ -1084,10 +1159,10 @@ def test_natural_image_init_tensor_pixelimage_sf_sigmoid(self) -> None: + " test due to insufficient Torch version." ) image_param = images.NaturalImage( - init=torch.ones(1, 3, 1, 1), + init=torch.ones(1, 3, 1, 1).float(), parameterization=images.PixelImage, squash_func=torch.sigmoid, - ) + ).to(dtype=torch.float32) output_tensor = image_param() self.assertEqual(image_param.squash_func, torch.sigmoid) @@ -1103,9 +1178,10 @@ def test_natural_image_0(self) -> None: ) def test_natural_image_1(self) -> None: - image_param = images.NaturalImage(init=torch.ones(3, 1, 1)) + init_tensor = torch.ones(3, 1, 1) + image_param = images.NaturalImage(init=init_tensor) image = image_param.forward().detach() - assertTensorAlmostEqual(self, image, torch.ones_like(image), mode="max") + assertTensorAlmostEqual(self, image, torch.sigmoid(init_tensor).unsqueeze(0)) def test_natural_image_cuda(self) -> None: if not torch.cuda.is_available(): @@ -1132,10 +1208,11 @@ def test_natural_image_jit_module_init_tensor(self) -> None: "Skipping NaturalImage init tensor JIT module test due to" + " insufficient Torch version." ) - image_param = images.NaturalImage(init=torch.ones(1, 3, 1, 1)) + init_tensor = torch.ones(1, 3, 1, 1) + image_param = images.NaturalImage(init=init_tensor) jit_image_param = torch.jit.script(image_param) output_tensor = jit_image_param() - assertTensorAlmostEqual(self, output_tensor, torch.ones_like(output_tensor)) + assertTensorAlmostEqual(self, output_tensor, torch.sigmoid(init_tensor)) def test_natural_image_jit_module_init_tensor_pixelimage(self) -> None: if version.parse(torch.__version__) <= version.parse("1.8.0"): @@ -1143,12 +1220,13 @@ def test_natural_image_jit_module_init_tensor_pixelimage(self) -> None: "Skipping NaturalImage PixelImage init tensor JIT module" + " test due to insufficient Torch version." ) + init_tensor = torch.ones(1, 3, 1, 1) image_param = images.NaturalImage( - init=torch.ones(1, 3, 1, 1), parameterization=images.PixelImage + init=init_tensor, parameterization=images.PixelImage ) jit_image_param = torch.jit.script(image_param) output_tensor = jit_image_param() - assertTensorAlmostEqual(self, output_tensor, torch.ones_like(output_tensor)) + assertTensorAlmostEqual(self, output_tensor, torch.sigmoid(init_tensor)) def test_natural_image_decorrelation_module_none(self) -> None: if version.parse(torch.__version__) <= version.parse("1.8.0"): @@ -1156,9 +1234,43 @@ def test_natural_image_decorrelation_module_none(self) -> None: "Skipping NaturalImage no decorrelation module" + " test due to insufficient Torch version." ) - image_param = images.NaturalImage( - init=torch.ones(1, 3, 4, 4), decorrelation_module=None - ) + init_tensor = torch.ones(1, 3, 1, 1) + image_param = images.NaturalImage(init=init_tensor, decorrelation_module=None) image = image_param.forward().detach() self.assertIsNone(image_param.decorrelate) - assertTensorAlmostEqual(self, image, torch.ones_like(image)) + assertTensorAlmostEqual(self, image, torch.sigmoid(init_tensor)) + + def test_natural_image_forward_dtype_float64(self) -> None: + dtype = torch.float64 + image_param = images.NaturalImage( + size=(224, 224), decorrelation_module=ToRGB("klt") + ).to(dtype=dtype) + output = image_param() + self.assertEqual(output.dtype, dtype) + + def test_natural_image_forward_dtype_float32(self) -> None: + dtype = torch.float32 + image_param = images.NaturalImage( + size=(224, 224), decorrelation_module=ToRGB("klt") + ).to(dtype=dtype) + output = image_param() + self.assertEqual(output.dtype, dtype) + + def test_fftimage_forward_dtype_float16(self) -> None: + if version.parse(torch.__version__) <= version.parse("1.12.0"): + raise unittest.SkipTest( + "Skipping NaturalImage float16 dtype test due to" + + " insufficient Torch version." + ) + if not torch.cuda.is_available(): + raise unittest.SkipTest( + "Skipping NaturalImage float16 dtype test due to not supporting CUDA." + ) + dtype = torch.float16 + image_param = ( + images.NaturalImage(size=(256, 256), decorrelation_module=ToRGB("klt")) + .cuda() + .to(dtype=dtype) + ) + output = image_param() + self.assertEqual(output.dtype, dtype) diff --git a/tests/optim/param/test_transforms.py b/tests/optim/param/test_transforms.py index 385006a7ac..7522bdb30f 100644 --- a/tests/optim/param/test_transforms.py +++ b/tests/optim/param/test_transforms.py @@ -261,6 +261,24 @@ def test_random_scale_jit_module(self) -> None: 0, ) + def test_random_scale_dtype_float64(self) -> None: + dtype = torch.float64 + scale_module = transforms.RandomScale(scale=[0.975, 1.025, 0.95, 1.05]).to( + dtype=dtype + ) + x = torch.ones([1, 3, 224, 224], dtype=dtype) + output = scale_module(x) + self.assertEqual(output.dtype, dtype) + + def test_random_scale_dtype_float32(self) -> None: + dtype = torch.float32 + scale_module = transforms.RandomScale(scale=[0.975, 1.025, 0.95, 1.05]).to( + dtype=dtype + ) + x = torch.ones([1, 3, 224, 224], dtype=dtype) + output = scale_module(x) + self.assertEqual(output.dtype, dtype) + class TestRandomScaleAffine(BaseTest): def test_random_scale_affine_init(self) -> None: @@ -430,6 +448,40 @@ def test_random_scale_affine_jit_module(self) -> None: 0, ) + def test_random_scale_affine_dtype_float64(self) -> None: + dtype = torch.float64 + scale_module = transforms.RandomScaleAffine( + scale=[0.975, 1.025, 0.95, 1.05] + ).to(dtype=dtype) + x = torch.ones([1, 3, 224, 224], dtype=dtype) + output = scale_module(x) + self.assertEqual(output.dtype, dtype) + + def test_random_scale_affine_dtype_float32(self) -> None: + dtype = torch.float32 + scale_module = transforms.RandomScaleAffine( + scale=[0.975, 1.025, 0.95, 1.05] + ).to(dtype=dtype) + x = torch.ones([1, 3, 224, 224], dtype=dtype) + output = scale_module(x) + self.assertEqual(output.dtype, dtype) + + def test_random_scale_affine_dtype_float16(self) -> None: + if not torch.cuda.is_available(): + raise unittest.SkipTest( + "Skipping RandomScaleAffine float16 dtype test due to not supporting" + + " CUDA." + ) + dtype = torch.float16 + scale_module = ( + transforms.RandomScaleAffine(scale=[0.975, 1.025, 0.95, 1.05]) + .cuda() + .to(dtype=dtype) + ) + x = torch.ones([1, 3, 224, 224], dtype=dtype).cuda() + output = scale_module(x) + self.assertEqual(output.dtype, dtype) + class TestRandomRotation(BaseTest): def test_random_rotation_init(self) -> None: @@ -629,6 +681,37 @@ def test_random_rotation_jit_module(self) -> None: ) assertTensorAlmostEqual(self, test_output, expected_output, 0.005) + def test_random_rotation_dtype_float64(self) -> None: + dtype = torch.float64 + degrees = list(range(-25, -5)) + list(range(5, 25)) + rotation_module = transforms.RandomRotation(degrees=degrees).to(dtype=dtype) + x = torch.ones([1, 3, 224, 224], dtype=dtype) + output = rotation_module(x) + self.assertEqual(output.dtype, dtype) + + def test_random_rotation_dtype_float32(self) -> None: + dtype = torch.float32 + degrees = list(range(-25, -5)) + list(range(5, 25)) + rotation_module = transforms.RandomRotation(degrees=degrees).to(dtype=dtype) + x = torch.ones([1, 3, 224, 224], dtype=dtype) + output = rotation_module(x) + self.assertEqual(output.dtype, dtype) + + def test_random_rotation_dtype_float16(self) -> None: + if not torch.cuda.is_available(): + raise unittest.SkipTest( + "Skipping RandomRotation float16 dtype test due to not supporting" + + " CUDA." + ) + dtype = torch.float16 + degrees = list(range(-25, -5)) + list(range(5, 25)) + rotation_module = ( + transforms.RandomRotation(degrees=degrees).cuda().to(dtype=dtype) + ) + x = torch.ones([1, 3, 224, 224], dtype=dtype).cuda() + output = rotation_module(x) + self.assertEqual(output.dtype, dtype) + class TestRandomSpatialJitter(BaseTest): def test_random_spatial_jitter_init(self) -> None: @@ -714,6 +797,20 @@ def test_random_spatial_jitter_forward_jit_module(self) -> None: jittered_tensor = jit_spatialjitter(test_input) self.assertEqual(list(jittered_tensor.shape), list(test_input.shape)) + def test_random_spatial_jitter_dtype_float64(self) -> None: + dtype = torch.float64 + spatialjitter = transforms.RandomSpatialJitter(5).to(dtype=dtype) + x = torch.ones([1, 3, 224, 224], dtype=dtype) + output = spatialjitter(x) + self.assertEqual(output.dtype, dtype) + + def test_random_spatial_jitter_dtype_float32(self) -> None: + dtype = torch.float32 + spatialjitter = transforms.RandomSpatialJitter(5).to(dtype=dtype) + x = torch.ones([1, 3, 224, 224], dtype=dtype) + output = spatialjitter(x) + self.assertEqual(output.dtype, dtype) + class TestCenterCrop(BaseTest): def test_center_crop_init(self) -> None: @@ -1335,7 +1432,7 @@ def test_ignore_alpha(self) -> None: assert rgb_tensor.size(1) == 3 def test_ignore_alpha_jit_module(self) -> None: - if torch.__version__ <= "1.8.0": + if version.parse(torch.__version__) <= version.parse("1.8.0"): raise unittest.SkipTest( "Skipping IgnoreAlpha JIT module test due to insufficient" + " Torch version." @@ -1574,6 +1671,35 @@ def test_to_rgb_klt_forward_jit_module(self) -> None: self, inverse_tensor, torch.ones_like(inverse_tensor.rename(None)) ) + def test_to_rgb_dtype_float64(self) -> None: + dtype = torch.float64 + to_rgb = transforms.ToRGB(transform="klt").to(dtype=dtype) + test_tensor = torch.ones(1, 3, 224, 224, dtype=dtype) + output = to_rgb(test_tensor.refine_names("B", "C", "H", "W")) + self.assertEqual(output.dtype, dtype) + inverse_output = to_rgb(output, inverse=True) + self.assertEqual(inverse_output.dtype, dtype) + + def test_to_rgb_dtype_float32(self) -> None: + dtype = torch.float32 + to_rgb = transforms.ToRGB(transform="klt").to(dtype=dtype) + test_tensor = torch.ones(1, 3, 224, 224, dtype=dtype) + output = to_rgb(test_tensor.refine_names("B", "C", "H", "W")) + self.assertEqual(output.dtype, dtype) + inverse_output = to_rgb(output, inverse=True) + self.assertEqual(inverse_output.dtype, dtype) + + def test_to_rgb_dtype_float16_cuda(self) -> None: + if not torch.cuda.is_available(): + raise unittest.SkipTest( + "Skipping ToRGB float16 dtype test due to not supporting CUDA." + ) + dtype = torch.float16 + to_rgb = transforms.ToRGB(transform="klt").cuda().to(dtype=dtype) + test_tensor = torch.ones(1, 3, 224, 224, dtype=dtype).cuda() + output = to_rgb(test_tensor.refine_names("B", "C", "H", "W")) + self.assertEqual(output.dtype, dtype) + class TestGaussianSmoothing(BaseTest): def test_gaussian_smoothing_init_1d(self) -> None: @@ -1582,11 +1708,17 @@ def test_gaussian_smoothing_init_1d(self) -> None: sigma = 2.0 dim = 1 smoothening_module = transforms.GaussianSmoothing( - channels, kernel_size, sigma, dim + channels, + kernel_size, + sigma, + dim, + padding=0, ) self.assertEqual(smoothening_module.groups, channels) + self.assertEqual(smoothening_module.padding, 0) weight = torch.tensor([[0.3192, 0.3617, 0.3192]]).repeat(6, 1, 1) assertTensorAlmostEqual(self, smoothening_module.weight, weight, 0.001) + self.assertFalse(smoothening_module.padding) def test_gaussian_smoothing_init_2d(self) -> None: channels = 3 @@ -1594,7 +1726,11 @@ def test_gaussian_smoothing_init_2d(self) -> None: sigma = 2.0 dim = 2 smoothening_module = transforms.GaussianSmoothing( - channels, kernel_size, sigma, dim + channels, + kernel_size, + sigma, + dim, + padding=0, ) self.assertEqual(smoothening_module.groups, channels) weight = torch.tensor( @@ -1614,7 +1750,11 @@ def test_gaussian_smoothing_init_3d(self) -> None: sigma = 1.021 dim = 3 smoothening_module = transforms.GaussianSmoothing( - channels, kernel_size, sigma, dim + channels, + kernel_size, + sigma, + dim, + padding=0, ) self.assertEqual(smoothening_module.groups, channels) weight = torch.tensor( @@ -1654,7 +1794,11 @@ def test_gaussian_smoothing_1d(self) -> None: sigma = 2.0 dim = 1 smoothening_module = transforms.GaussianSmoothing( - channels, kernel_size, sigma, dim + channels, + kernel_size, + sigma, + dim, + padding=0, ) test_tensor = torch.tensor([1.0, 5.0]).repeat(6, 2).unsqueeze(0) @@ -1671,7 +1815,11 @@ def test_gaussian_smoothing_2d(self) -> None: sigma = 2.0 dim = 2 smoothening_module = transforms.GaussianSmoothing( - channels, kernel_size, sigma, dim + channels, + kernel_size, + sigma, + dim, + padding=0, ) test_tensor = torch.tensor([1.0, 5.0]).repeat(3, 6, 3).unsqueeze(0) @@ -1688,7 +1836,11 @@ def test_gaussian_smoothing_3d(self) -> None: sigma = 1.021 dim = 3 smoothening_module = transforms.GaussianSmoothing( - channels, kernel_size, sigma, dim + channels, + kernel_size, + sigma, + dim, + padding=0, ) test_tensor = torch.tensor([1.0, 5.0, 1.0]).repeat(4, 6, 6, 2).unsqueeze(0) @@ -1712,7 +1864,11 @@ def test_gaussian_smoothing_2d_jit_module(self) -> None: sigma = 2.0 dim = 2 smoothening_module = transforms.GaussianSmoothing( - channels, kernel_size, sigma, dim + channels, + kernel_size, + sigma, + dim, + padding=0, ) jit_smoothening_module = torch.jit.script(smoothening_module) @@ -1801,12 +1957,15 @@ def check_grad(self, grad_input, grad_output): class SymmetricPaddingLayer(torch.nn.Module): def forward( - self, x: torch.Tensor, padding: List[List[int]] + self, x_input: torch.Tensor, padding: List[List[int]] ) -> torch.Tensor: - return transforms.SymmetricPadding.apply(x_pt, padding) + return transforms.SymmetricPadding.apply(x_input, padding) sym_pad = SymmetricPaddingLayer() - sym_pad.register_backward_hook(check_grad) + if version.parse(torch.__version__) >= version.parse("1.8.0"): + sym_pad.register_full_backward_hook(check_grad) + else: + sym_pad.register_backward_hook(check_grad) x_out = sym_pad(x_pt, offset_pad) (x_out.sum() * 1).backward() @@ -2008,3 +2167,17 @@ def test_transform_robustness_forward_padding_crop_output_jit_module(self) -> No test_input = torch.ones(1, 3, 224, 224) test_output = transform_robustness(test_input) self.assertEqual(test_output.shape, test_input.shape) + + def test_transform_robustness_dtype_float64(self) -> None: + dtype = torch.float64 + transform_robustness = transforms.TransformationRobustness().to(dtype=dtype) + x = torch.ones([1, 3, 224, 224], dtype=dtype) + output = transform_robustness(x) + self.assertEqual(output.dtype, dtype) + + def test_transform_robustness_dtype_float32(self) -> None: + dtype = torch.float32 + transform_robustness = transforms.TransformationRobustness().to(dtype=dtype) + x = torch.ones([1, 3, 224, 224], dtype=dtype) + output = transform_robustness(x) + self.assertEqual(output.dtype, dtype) diff --git a/tests/optim/utils/image/test_common.py b/tests/optim/utils/image/test_common.py index ef484c7135..09e1a7355c 100644 --- a/tests/optim/utils/image/test_common.py +++ b/tests/optim/utils/image/test_common.py @@ -516,3 +516,50 @@ def test_make_grid_image_single_tensor_pad_value_jit_module(self) -> None: ) self.assertEqual(list(expected_output.shape), [1, 1, 7, 7]) assertTensorAlmostEqual(self, test_output, expected_output, 0) + + +class TestCreateNewVector(BaseTest): + def test_create_new_vector_one_hot(self) -> None: + x = torch.arange(0, 1 * 3 * 5 * 5).view(1, 3, 5, 5).float() + vec = torch.tensor([0, 1, 0]).float() + out = common._create_new_vector(x, vec) + self.assertEqual(out.item(), 37.0) + + def test_create_new_vector_one_hot_batch(self) -> None: + x = torch.arange(0, 4 * 3 * 5 * 5).view(4, 3, 5, 5).float() + vec = torch.tensor([0, 1, 0]).float() + out = common._create_new_vector(x, vec) + self.assertEqual(out.tolist(), [37.0, 112.0, 187.0, 262.0]) + + def test_create_new_vector(self) -> None: + x = torch.arange(0, 1 * 3 * 5 * 5).view(1, 3, 5, 5).float() + vec = torch.tensor([1, 1, 1]).float() + out = common._create_new_vector(x, vec) + self.assertEqual(out.item(), 111.0) + + def test_create_new_vector_activation_fn(self) -> None: + x = torch.arange(0, 1 * 3 * 5 * 5).view(1, 3, 5, 5).float() + x = x - x.mean() + vec = torch.tensor([1, 0, 1]).float() + out = common._create_new_vector(x, vec, activation_fn=torch.nn.functional.relu) + self.assertEqual(out.item(), 25.0) + + def test_create_new_vector_no_activation_fn(self) -> None: + x = torch.arange(0, 1 * 3 * 5 * 5).view(1, 3, 5, 5).float() + x = x - x.mean() + vec = torch.tensor([1, 1, 1]).float() + out = common._create_new_vector(x, vec, activation_fn=None) + self.assertEqual(out.item(), 0.0) + + def test_create_new_vector_channels_last(self) -> None: + x = torch.arange(0, 4 * 5 * 5 * 3).view(4, 5, 5, 3).float() + vec = torch.tensor([0, 1, 0]).float() + out = common._create_new_vector(x, vec, move_channel_dim_to_final_dim=False) + self.assertEqual(out.tolist(), [37.0, 112.0, 187.0, 262.0]) + + def test_create_new_vector_dim_2(self) -> None: + x = torch.arange(0, 1 * 3).view(1, 3).float() + vec = torch.tensor([0, 1, 0]).float() + out = common._create_new_vector(x, vec) + self.assertEqual(list(out.shape), [1, 1]) + self.assertEqual(out.item(), 1.0) diff --git a/tests/optim/utils/test_reducer.py b/tests/optim/utils/test_reducer.py index f2baa7675c..a9fb9cc93c 100644 --- a/tests/optim/utils/test_reducer.py +++ b/tests/optim/utils/test_reducer.py @@ -34,10 +34,10 @@ def test_channelreducer_pytorch(self) -> None: test_input = torch.randn(1, 32, 224, 224).abs() c_reducer = reducer.ChannelReducer(n_components=3, max_iter=100) test_output = c_reducer.fit_transform(test_input) - self.assertEquals(test_output.size(0), 1) - self.assertEquals(test_output.size(1), 3) - self.assertEquals(test_output.size(2), 224) - self.assertEquals(test_output.size(3), 224) + self.assertEqual(test_output.size(0), 1) + self.assertEqual(test_output.size(1), 3) + self.assertEqual(test_output.size(2), 224) + self.assertEqual(test_output.size(3), 224) def test_channelreducer_pytorch_dim_three(self) -> None: try: @@ -52,9 +52,7 @@ def test_channelreducer_pytorch_dim_three(self) -> None: test_input = torch.randn(32, 224, 224).abs() c_reducer = reducer.ChannelReducer(n_components=3, max_iter=100) test_output = c_reducer.fit_transform(test_input) - self.assertEquals(test_output.size(0), 3) - self.assertEquals(test_output.size(1), 224) - self.assertEquals(test_output.size(2), 224) + self.assertEqual(list(test_output.shape), [3, 224, 224]) def test_channelreducer_pytorch_pca(self) -> None: try: @@ -70,10 +68,7 @@ def test_channelreducer_pytorch_pca(self) -> None: c_reducer = reducer.ChannelReducer(n_components=3, reduction_alg="PCA") test_output = c_reducer.fit_transform(test_input) - self.assertEquals(test_output.size(0), 1) - self.assertEquals(test_output.size(1), 3) - self.assertEquals(test_output.size(2), 224) - self.assertEquals(test_output.size(3), 224) + self.assertEqual(list(test_output.shape), [1, 3, 224, 224]) def test_channelreducer_pytorch_custom_alg(self) -> None: test_input = torch.randn(1, 32, 224, 224).abs() @@ -82,10 +77,7 @@ def test_channelreducer_pytorch_custom_alg(self) -> None: n_components=3, reduction_alg=reduction_alg, max_iter=100 ) test_output = c_reducer.fit_transform(test_input) - self.assertEquals(test_output.size(0), 1) - self.assertEquals(test_output.size(1), 3) - self.assertEquals(test_output.size(2), 224) - self.assertEquals(test_output.size(3), 224) + self.assertEqual(list(test_output.shape), [1, 3, 224, 224]) def test_channelreducer_pytorch_custom_alg_components(self) -> None: reduction_alg = FakeReductionAlgorithm @@ -149,10 +141,7 @@ def test_channelreducer_noreshape_pytorch(self) -> None: test_input = torch.randn(1, 224, 224, 32).abs() c_reducer = reducer.ChannelReducer(n_components=3, max_iter=100) test_output = c_reducer.fit_transform(test_input, swap_2nd_and_last_dims=False) - self.assertEquals(test_output.size(0), 1) - self.assertEquals(test_output.size(1), 224) - self.assertEquals(test_output.size(2), 224) - self.assertEquals(test_output.size(3), 3) + self.assertEqual(list(test_output.shape), [1, 224, 224, 3]) def test_channelreducer_error(self) -> None: if not torch.cuda.is_available(): diff --git a/tests/robust/test_FGSM.py b/tests/robust/test_FGSM.py index 595d8c7b0e..4202ef83c4 100644 --- a/tests/robust/test_FGSM.py +++ b/tests/robust/test_FGSM.py @@ -1,11 +1,18 @@ #!/usr/bin/env python3 -from typing import Any, Callable, List, Tuple, Union + +# pyre-unsafe +from typing import Any, Callable, List, Optional, Tuple, Union import torch -from captum._utils.typing import TensorLikeList, TensorOrTupleOfTensorsGeneric +from captum._utils.typing import TensorOrTupleOfTensorsGeneric from captum.robust import FGSM -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicModel, BasicModel2, BasicModel_MultiLayer +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( + BasicModel, + BasicModel2, + BasicModel_MultiLayer, +) from torch import Tensor from torch.nn import CrossEntropyLoss @@ -128,21 +135,76 @@ def test_attack_bound(self) -> None: upper_bound=5.0, ) + def test_attack_masked_tensor(self) -> None: + model = BasicModel() + input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]], requires_grad=True) + mask = torch.tensor([[1, 0, 0, 1, 1]]) + self._FGSM_assert( + model, input, 1, 0.1, [[2.0, -9.0, 9.0, 1.0, -3.0]], mask=mask + ) + + def test_attack_masked_multiinput(self) -> None: + model = BasicModel2() + input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) + input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) + mask1 = torch.tensor([[1, 0], [1, 0]]) + mask2 = torch.tensor([[0, 0], [0, 0]]) + self._FGSM_assert( + model, + (input1, input2), + 0, + 0.25, + ([[3.75, -1.0], [2.75, 10.0]], [[2.0, -5.0], [-2.0, 1.0]]), + mask=(mask1, mask2), + ) + + def test_attack_masked_loss_defined(self) -> None: + model = BasicModel_MultiLayer() + add_input = torch.tensor([[-1.0, 2.0, 2.0]]) + input = torch.tensor([[1.0, 6.0, -3.0]]) + labels = torch.tensor([0]) + mask = torch.tensor([[0, 0, 1]]) + loss_func = CrossEntropyLoss(reduction="none") + adv = FGSM(model, loss_func) + perturbed_input = adv.perturb( + input, 0.2, labels, additional_forward_args=(add_input,), mask=mask + ) + assertTensorAlmostEqual( + self, perturbed_input, [[1.0, 6.0, -3.0]], delta=0.01, mode="max" + ) + + def test_attack_masked_bound(self) -> None: + model = BasicModel() + input = torch.tensor([[9.0, 10.0, -6.0, -1.0]]) + mask = torch.tensor([[1, 0, 1, 0]]) + self._FGSM_assert( + model, + input, + 3, + 0.2, + [[5.0, 5.0, -5.0, -1.0]], + targeted=True, + lower_bound=-5.0, + upper_bound=5.0, + mask=mask, + ) + def _FGSM_assert( self, model: Callable, inputs: TensorOrTupleOfTensorsGeneric, target: Any, epsilon: float, - answer: Union[TensorLikeList, Tuple[TensorLikeList, ...]], - targeted=False, + answer: Union[List, Tuple[List, ...]], + targeted: bool = False, additional_inputs: Any = None, lower_bound: float = float("-inf"), upper_bound: float = float("inf"), + mask: Optional[TensorOrTupleOfTensorsGeneric] = None, ) -> None: adv = FGSM(model, lower_bound=lower_bound, upper_bound=upper_bound) perturbed_input = adv.perturb( - inputs, epsilon, target, additional_inputs, targeted + inputs, epsilon, target, additional_inputs, targeted, mask ) if isinstance(perturbed_input, Tensor): assertTensorAlmostEqual( diff --git a/tests/robust/test_PGD.py b/tests/robust/test_PGD.py index 340026182f..6d7fd5c5fe 100644 --- a/tests/robust/test_PGD.py +++ b/tests/robust/test_PGD.py @@ -1,8 +1,15 @@ #!/usr/bin/env python3 + +# pyre-unsafe import torch from captum.robust import PGD -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicModel, BasicModel2, BasicModel_MultiLayer +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( + BasicModel, + BasicModel2, + BasicModel_MultiLayer, +) from torch.nn import CrossEntropyLoss @@ -108,3 +115,103 @@ def test_attack_random_start(self) -> None: ) norm = torch.norm((perturbed_input - input).squeeze()).numpy() self.assertLessEqual(norm, 0.25) + + def test_attack_masked_nontargeted(self) -> None: + model = BasicModel() + input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) + mask = torch.tensor([[1, 1, 0, 0, 0]]) + adv = PGD(model) + perturbed_input = adv.perturb(input, 0.25, 0.1, 2, 4, mask=mask) + assertTensorAlmostEqual( + self, + perturbed_input, + [[2.0, -9.0, 9.0, 1.0, -3.0]], + delta=0.01, + mode="max", + ) + + def test_attack_masked_targeted(self) -> None: + model = BasicModel() + input = torch.tensor([[9.0, 10.0, -6.0, -1.0]], requires_grad=True) + mask = torch.tensor([[1, 1, 1, 0]]) + adv = PGD(model) + perturbed_input = adv.perturb(input, 0.2, 0.1, 3, 3, targeted=True, mask=mask) + assertTensorAlmostEqual( + self, + perturbed_input, + [[9.0, 10.0, -6.0, -1.0]], + delta=0.01, + mode="max", + ) + + def test_attack_masked_multiinput(self) -> None: + model = BasicModel2() + input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) + input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) + mask1 = torch.tensor([[1, 1], [0, 0]]) + mask2 = torch.tensor([[0, 1], [0, 1]]) + adv = PGD(model) + perturbed_input = adv.perturb( + (input1, input2), 0.25, 0.1, 3, 0, norm="L2", mask=(mask1, mask2) + ) + answer = ([[3.75, -1.0], [3.0, 10.0]], [[2.0, -5.0], [-2.0, 1.0]]) + for i in range(len(perturbed_input)): + assertTensorAlmostEqual( + self, + perturbed_input[i], + answer[i], + delta=0.01, + mode="max", + ) + + def test_attack_masked_random_start(self) -> None: + model = BasicModel() + input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) + mask = torch.tensor([[1, 0, 1, 0, 1]]) + adv = PGD(model) + perturbed_input = adv.perturb( + input, 0.25, 0.1, 0, 4, random_start=True, mask=mask + ) + assertTensorAlmostEqual( + self, + perturbed_input, + [[2.0, -9.0, 9.0, 1.0, -3.0]], + delta=0.25, + mode="max", + ) + perturbed_input = adv.perturb( + input, 0.25, 0.1, 0, 4, norm="L2", random_start=True, mask=mask + ) + norm = torch.norm((perturbed_input - input).squeeze()).numpy() + self.assertLessEqual(norm, 0.25) + + def test_attack_masked_3dimensional_input(self) -> None: + model = BasicModel() + input = torch.tensor( + [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True + ) + mask = torch.tensor([[[1, 0], [0, 1]], [[1, 0], [1, 1]]]) + adv = PGD(model) + perturbed_input = adv.perturb(input, 0.25, 0.1, 3, (0, 1), mask=mask) + assertTensorAlmostEqual( + self, + perturbed_input, + [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], + delta=0.01, + mode="max", + ) + + def test_attack_masked_loss_defined(self) -> None: + model = BasicModel_MultiLayer() + add_input = torch.tensor([[-1.0, 2.0, 2.0]]) + input = torch.tensor([[1.0, 6.0, -3.0]]) + mask = torch.tensor([[0, 1, 0]]) + labels = torch.tensor([0]) + loss_func = CrossEntropyLoss(reduction="none") + adv = PGD(model, loss_func) + perturbed_input = adv.perturb( + input, 0.25, 0.1, 3, labels, additional_forward_args=(add_input,), mask=mask + ) + assertTensorAlmostEqual( + self, perturbed_input, [[1.0, 6.0, -3.0]], delta=0.01, mode="max" + ) diff --git a/tests/robust/test_attack_comparator.py b/tests/robust/test_attack_comparator.py index 494fe2f649..6f0e74d44f 100644 --- a/tests/robust/test_attack_comparator.py +++ b/tests/robust/test_attack_comparator.py @@ -1,22 +1,25 @@ #!/usr/bin/env python3 + +# pyre-unsafe import collections -from typing import List +from typing import Dict, List, Tuple, Union import torch from captum.robust import AttackComparator, FGSM -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicModel, BasicModel_MultiLayer +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import BasicModel, BasicModel_MultiLayer from torch import Tensor -def float_metric(model_out: Tensor, target: int): +def float_metric(model_out: Tensor, target: int) -> Tensor: return model_out[:, target] ModelResult = collections.namedtuple("ModelResult", "accuracy output") -def tuple_metric(model_out: Tensor, target: int, named_tuple=False): +def tuple_metric(model_out: Tensor, target: int, named_tuple: bool = False): _, pred = torch.max(model_out, dim=1) acc = (pred == target).float() output = model_out[:, target] @@ -51,7 +54,7 @@ def string_batch_perturb(inp: List[List[str]]) -> List[List[str]]: class SamplePerturb: - def __init__(self): + def __init__(self) -> None: self.count = 0 def perturb(self, inp: Tensor) -> Tensor: @@ -202,7 +205,9 @@ def test_attack_comparator_with_additional_args(self) -> None: attack_comp.reset() self.assertEqual(len(attack_comp.summary()), 0) - def _compare_results(self, obtained, expected) -> None: + def _compare_results( + self, obtained: Union[Dict, Tuple, Tensor], expected: Union[Dict, Tuple, Tensor] + ) -> None: if isinstance(expected, dict): self.assertIsInstance(obtained, dict) for key in expected: diff --git a/tests/robust/test_min_param_perturbation.py b/tests/robust/test_min_param_perturbation.py index beae331920..e9513d0983 100644 --- a/tests/robust/test_min_param_perturbation.py +++ b/tests/robust/test_min_param_perturbation.py @@ -1,10 +1,13 @@ #!/usr/bin/env python3 + +# pyre-unsafe from typing import cast, List import torch from captum.robust import MinParamPerturbation -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicModel, BasicModel_MultiLayer +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import BasicModel, BasicModel_MultiLayer from torch import Tensor diff --git a/tests/utils/models/linear_models/_test_linear_classifier.py b/tests/utils/models/linear_models/_test_linear_classifier.py index df826efa3c..b1f458e922 100644 --- a/tests/utils/models/linear_models/_test_linear_classifier.py +++ b/tests/utils/models/linear_models/_test_linear_classifier.py @@ -1,20 +1,29 @@ +# pyre-strict import argparse import random -from typing import Optional +from typing import cast, Optional import captum._utils.models.linear_model.model as pytorch_model_module import numpy as np +import numpy.typing as npt import sklearn.datasets as datasets import torch -from tests.utils.test_linear_model import _evaluate +from captum.testing.helpers.evaluate_linear_model import evaluate from torch.utils.data import DataLoader, TensorDataset +# pyre-fixme[3]: Return type must be annotated. def sklearn_dataset_to_loaders( - data, train_prop=0.7, batch_size=64, num_workers=4, shuffle=False, one_hot=False + # pyre-fixme[2]: Parameter must be annotated. + data, + train_prop: float = 0.7, + batch_size: int = 64, + num_workers: int = 4, + shuffle: bool = False, + one_hot: bool = False, ): xs, ys = data - if one_hot and ys.dtype != np.float: + if one_hot and ys.dtype != float: oh = np.zeros((ys.size, ys.max() + 1)) oh[np.arange(ys.size), ys] = 1 ys = oh @@ -41,6 +50,7 @@ def sklearn_dataset_to_loaders( return train_loader, val_loader, xs.shape[1], xs.shape[0] +# pyre-fixme[3]: Return type must be annotated. def compare_to_sk_learn( max_epoch: int, train_loader: DataLoader, @@ -75,11 +85,11 @@ def compare_to_sk_learn( alpha=alpha, ) - sklearn_stats.update(_evaluate(val_loader, sklearn_classifier)) - pytorch_stats.update(_evaluate(val_loader, pytorch_classifier)) + sklearn_stats.update(evaluate(val_loader, sklearn_classifier)) + pytorch_stats.update(evaluate(val_loader, pytorch_classifier)) - train_stats_pytorch = _evaluate(train_loader, pytorch_classifier) - train_stats_sklearn = _evaluate(train_loader, sklearn_classifier) + train_stats_pytorch = evaluate(train_loader, pytorch_classifier) + train_stats_sklearn = evaluate(train_loader, sklearn_classifier) o_pytorch = {"l2": train_stats_pytorch["l2"]} o_sklearn = {"l2": train_stats_sklearn["l2"]} @@ -87,15 +97,21 @@ def compare_to_sk_learn( pytorch_h = pytorch_classifier.representation() sklearn_h = sklearn_classifier.representation() if objective == "ridge": + # pyre-fixme[6]: For 2nd argument expected `Tensor` but got `float`. o_pytorch["l2_reg"] = alpha * pytorch_h.norm(p=2, dim=-1) + # pyre-fixme[6]: For 2nd argument expected `Tensor` but got `float`. o_sklearn["l2_reg"] = alpha * sklearn_h.norm(p=2, dim=-1) elif objective == "lasso": + # pyre-fixme[6]: For 2nd argument expected `Tensor` but got `float`. o_pytorch["l1_reg"] = alpha * pytorch_h.norm(p=1, dim=-1) + # pyre-fixme[6]: For 2nd argument expected `Tensor` but got `float`. o_sklearn["l1_reg"] = alpha * sklearn_h.norm(p=1, dim=-1) - rel_diff = (sum(o_sklearn.values()) - sum(o_pytorch.values())) / abs( - sum(o_sklearn.values()) - ) + rel_diff = cast( + npt.NDArray, + # pyre-fixme[6]: For 1st argument expected `int` but got `Union[int, Tensor]`. + (sum(o_sklearn.values()) - sum(o_pytorch.values())), + ) / abs(sum(o_sklearn.values())) return ( { "objective_rel_diff": rel_diff.tolist(), @@ -107,7 +123,8 @@ def compare_to_sk_learn( ) -def main(args): +# pyre-fixme[2]: Parameter must be annotated. +def main(args) -> None: if args.seed: torch.manual_seed(0) random.seed(0) @@ -190,5 +207,5 @@ def main(args): parser.add_argument("--init_scheme", type=str, default="xavier") parser.add_argument("--norm_sklearn", default=False, action="store_true") parser.add_argument("--objective", type=str, default="lasso") - args = parser.parse_args() + args: argparse.Namespace = parser.parse_args() main(args) diff --git a/tests/utils/test_av.py b/tests/utils/test_av.py index d5d4e2b92c..3dd639b485 100644 --- a/tests/utils/test_av.py +++ b/tests/utils/test_av.py @@ -1,3 +1,4 @@ +# pyre-unsafe import glob import tempfile from datetime import datetime @@ -5,22 +6,23 @@ import torch from captum._utils.av import AV -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicLinearReLULinear +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import BasicLinearReLULinear from torch.utils.data import DataLoader, Dataset DEFAULT_IDENTIFIER = "default_identifier" class RangeDataset(Dataset): - def __init__(self, low, high, num_features): + def __init__(self, low, high, num_features) -> None: self.samples = ( torch.arange(start=low, end=high, dtype=torch.float) .repeat(num_features, 1) .transpose(1, 0) ) - def __len__(self): + def __len__(self) -> int: return len(self.samples) def __getitem__(self, idx): diff --git a/tests/utils/test_common.py b/tests/utils/test_common.py index 5bea797e97..0c4d5d232c 100644 --- a/tests/utils/test_common.py +++ b/tests/utils/test_common.py @@ -1,21 +1,35 @@ #!/usr/bin/env python3 +# pyre-unsafe + from typing import cast, List, Tuple import torch -from captum._utils.common import _reduce_list, _select_targets, _sort_key_list, safe_div -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest +from captum._utils.common import ( + _format_feature_mask, + _get_max_feature_index, + _reduce_list, + _select_targets, + _sort_key_list, + parse_version, + safe_div, +) +from captum.testing.helpers.basic import ( + assertTensorAlmostEqual, + assertTensorTuplesAlmostEqual, + BaseTest, +) class Test(BaseTest): - def test_safe_div_number_denom(self): + def test_safe_div_number_denom(self) -> None: num = torch.tensor(4.0) assert safe_div(num, 2) == 2.0 assert safe_div(num, 0, 2) == 2.0 assert safe_div(num, 2.0) == 2.0 assert safe_div(num, 0.0, 2.0) == 2.0 - def test_safe_div_tensor_denom(self): + def test_safe_div_tensor_denom(self) -> None: num = torch.tensor([4.0, 6.0]) exp = torch.tensor([2.0, 3.0]) @@ -35,12 +49,12 @@ def test_safe_div_tensor_denom(self): # float default denom assert (safe_div(num, torch.tensor([0.0, 0.0]), 2.0) == exp).all() - def test_reduce_list_tensors(self): + def test_reduce_list_tensors(self) -> None: tensors = [torch.tensor([[3, 4, 5]]), torch.tensor([[0, 1, 2]])] reduced = _reduce_list(tensors) assertTensorAlmostEqual(self, reduced, [[3, 4, 5], [0, 1, 2]]) - def test_reduce_list_tuples(self): + def test_reduce_list_tuples(self) -> None: tensors = [ (torch.tensor([[3, 4, 5]]), torch.tensor([[0, 1, 2]])), (torch.tensor([[3, 4, 5]]), torch.tensor([[0, 1, 2]])), @@ -49,7 +63,7 @@ def test_reduce_list_tuples(self): assertTensorAlmostEqual(self, reduced[0], [[3, 4, 5], [3, 4, 5]]) assertTensorAlmostEqual(self, reduced[1], [[0, 1, 2], [0, 1, 2]]) - def test_sort_key_list(self): + def test_sort_key_list(self) -> None: key_list = [ torch.device("cuda:13"), torch.device("cuda:17"), @@ -61,7 +75,7 @@ def test_sort_key_list(self): for i in range(len(key_list)): self.assertEqual(sorted_keys[i].index, device_index_list[i]) - def test_sort_key_list_incomplete(self): + def test_sort_key_list_incomplete(self) -> None: key_list = [torch.device("cuda:10"), torch.device("cuda:0")] device_index_list = [0, 10, 13, 17] sorted_keys = _sort_key_list(key_list, device_index_list) @@ -77,10 +91,10 @@ def test_select_target_2d(self) -> None: assertTensorAlmostEqual( self, _select_targets(output_tensor, torch.tensor([1, 2, 0])), - [[2], [6], [7]], + [2, 6, 7], ) assertTensorAlmostEqual( - self, _select_targets(output_tensor, [1, 2, 0]), [[2], [6], [7]] + self, _select_targets(output_tensor, [1, 2, 0]), [2, 6, 7] ) # Verify error is raised if too many dimensions are provided. @@ -109,3 +123,85 @@ def test_select_target_3d(self) -> None: # Verify error is raised if too many dimensions are provided. with self.assertRaises(AssertionError): _select_targets(output_tensor, (1, 2, 3)) + + def test_format_feature_mask_of_tensor(self) -> None: + formatted_inputs = (torch.tensor([[0.0, 0.0], [0.0, 0.0]]),) + tensor_mask = torch.tensor([[0, 1]]) + formatted_tensor_mask = _format_feature_mask(tensor_mask, formatted_inputs) + + self.assertEqual(type(formatted_tensor_mask), tuple) + assertTensorTuplesAlmostEqual(self, formatted_tensor_mask, (tensor_mask,)) + + def test_format_feature_mask_of_tuple(self) -> None: + formatted_inputs = ( + torch.tensor([[0.0, 0.0], [0.0, 0.0]]), + torch.tensor([[0.0, 0.0], [0.0, 0.0]]), + ) + + tuple_mask = ( + torch.tensor([[0, 1], [2, 3]]), + torch.tensor([[4, 5], [6, 6]]), + ) + formatted_tuple_mask = _format_feature_mask(tuple_mask, formatted_inputs) + + self.assertEqual(type(formatted_tuple_mask), tuple) + assertTensorTuplesAlmostEqual(self, formatted_tuple_mask, tuple_mask) + + def test_format_feature_mask_of_none(self) -> None: + formatted_inputs = ( + torch.tensor([[0.0, 0.0], [0.0, 0.0]]), + torch.tensor([]), # empty tensor + torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), + ) + + expected_mask = ( + torch.tensor([[0, 1]]), + torch.tensor([]), + torch.tensor([[2, 3, 4]]), + ) + formatted_none_mask = _format_feature_mask(None, formatted_inputs) + + self.assertEqual(type(formatted_none_mask), tuple) + assertTensorTuplesAlmostEqual(self, formatted_none_mask, expected_mask) + + def test_get_max_feature_index(self) -> None: + mask = ( + torch.tensor([[0, 1], [2, 3]]), + torch.tensor([]), + torch.tensor([[4, 5], [6, 100]]), + torch.tensor([[0, 1], [2, 3]]), + ) + + assert _get_max_feature_index(mask) == 100 + + +class TestParseVersion(BaseTest): + def test_parse_version_dev(self) -> None: + version_str = "2.3.0.dev20240311 " + output = parse_version(version_str) + self.assertEqual(output, (2, 3, 0)) + + def test_parse_version_post(self) -> None: + version_str = "1.3.0.post2" + output = parse_version(version_str) + self.assertEqual(output, (1, 3, 0)) + + def test_parse_version_1_12_0(self) -> None: + version_str = "1.13.0" + output = parse_version(version_str) + self.assertEqual(output, (1, 13, 0)) + + def test_parse_version_1_12_2(self) -> None: + version_str = "1.13.1" + output = parse_version(version_str) + self.assertEqual(output, (1, 13, 1)) + + def test_parse_version_2_0(self) -> None: + version_str = "2.0.0" + output = parse_version(version_str) + self.assertEqual(output, (2, 0, 0)) + + def test_parse_version_1_13(self) -> None: + version_str = "1.13" + output = parse_version(version_str) + self.assertEqual(output, (1, 13)) diff --git a/tests/utils/test_gradient.py b/tests/utils/test_gradient.py index 2776708b26..59ec021832 100644 --- a/tests/utils/test_gradient.py +++ b/tests/utils/test_gradient.py @@ -1,5 +1,8 @@ #!/usr/bin/env python3 +# pyre-unsafe + +import unittest from typing import List, Tuple import torch @@ -9,8 +12,9 @@ compute_layer_gradients_and_eval, undo_gradient_requirements, ) -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( BasicModel, BasicModel2, BasicModel4_MultiArgs, @@ -18,6 +22,7 @@ BasicModel6_MultiTensor, BasicModel_MultiLayer, ) +from packaging import version class Test(BaseTest): @@ -242,3 +247,26 @@ def test_layer_gradient_output(self) -> None: ) assertTensorAlmostEqual(self, grads[0], [[0.0, 1.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, eval[0], [[26.0, 28.0]], delta=0.01, mode="max") + + def test_layer_gradient_unused_layer(self) -> None: + if version.parse(torch.__version__) < version.parse("2.1.0"): + raise unittest.SkipTest( + "Skipping unused layed gradient test since it is not supported " + "by torch version < 2.1" + ) + + model = BasicModel_MultiLayer(multi_input_module=True) + input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True) + grads, eval = compute_layer_gradients_and_eval( + model, + [model.linear1, model.relu], + input, + target_ind=1, + grad_kwargs={"materialize_grads": True}, + ) + assertTensorAlmostEqual( + self, grads[0][0], [[0.0, 1.0, 1.0, 1.0]], delta=0, mode="max" + ) + assertTensorAlmostEqual( + self, eval[0][0], [[-2.0, 9.0, 9.0, 9.0]], delta=0, mode="max" + ) diff --git a/tests/utils/test_helpers.py b/tests/utils/test_helpers.py index 46af61b58a..d989868ff5 100644 --- a/tests/utils/test_helpers.py +++ b/tests/utils/test_helpers.py @@ -1,7 +1,10 @@ #!/usr/bin/env python3 +# pyre-unsafe + import torch -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual class HelpersTest(BaseTest): diff --git a/tests/utils/test_jacobian.py b/tests/utils/test_jacobian.py index 9537c11b72..972ebbfd33 100644 --- a/tests/utils/test_jacobian.py +++ b/tests/utils/test_jacobian.py @@ -1,13 +1,19 @@ #!/usr/bin/env python3 +# pyre-unsafe + import torch import torch.nn as nn from captum._utils.gradient import ( _compute_jacobian_wrt_params, _compute_jacobian_wrt_params_with_sample_wise_trick, ) -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import BasicLinearModel2, BasicLinearModel_Multilayer +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( + BasicLinearModel2, + BasicLinearModel_Multilayer, +) class Test(BaseTest): diff --git a/tests/utils/test_linear_model.py b/tests/utils/test_linear_model.py index fcbc5e5272..7f6c789af7 100644 --- a/tests/utils/test_linear_model.py +++ b/tests/utils/test_linear_model.py @@ -1,59 +1,19 @@ #!/usr/bin/env python3 +# pyre-unsafe + +from typing import Optional, Union + import torch from captum._utils.models.linear_model.model import ( SGDLasso, SGDLinearRegression, SGDRidge, ) -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest - - -def _evaluate(test_data, classifier): - classifier.eval() - - l1_loss = 0.0 - l2_loss = 0.0 - n = 0 - l2_losses = [] - with torch.no_grad(): - for data in test_data: - if len(data) == 2: - x, y = data - w = None - else: - x, y, w = data - - out = classifier(x) - - y = y.view(x.shape[0], -1) - assert y.shape == out.shape - - if w is None: - l1_loss += (out - y).abs().sum(0).to(dtype=torch.float64) - l2_loss += ((out - y) ** 2).sum(0).to(dtype=torch.float64) - l2_losses.append(((out - y) ** 2).to(dtype=torch.float64)) - else: - l1_loss += ( - (w.view(-1, 1) * (out - y)).abs().sum(0).to(dtype=torch.float64) - ) - l2_loss += ( - (w.view(-1, 1) * ((out - y) ** 2)).sum(0).to(dtype=torch.float64) - ) - l2_losses.append( - (w.view(-1, 1) * ((out - y) ** 2)).to(dtype=torch.float64) - ) - - n += x.shape[0] - - l2_losses = torch.cat(l2_losses, dim=0) - assert n > 0 - - # just to double check - assert ((l2_losses.mean(0) - l2_loss / n).abs() <= 0.1).all() - - classifier.train() - return {"l1": l1_loss / n, "l2": l2_loss / n} +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.evaluate_linear_model import evaluate +from torch import Tensor class TestLinearModel(BaseTest): @@ -64,16 +24,16 @@ def train_and_compare( model_type, xs, ys, - expected_loss, - expected_reg=0.0, - expected_hyperplane=None, - norm_hyperplane=True, + expected_loss: Union[int, float, Tensor], + expected_reg: Union[float, Tensor] = 0.0, + expected_hyperplane: Optional[Tensor] = None, + norm_hyperplane: bool = True, weights=None, - delta=0.1, - init_scheme="zeros", - objective="lasso", - bias=True, - ): + delta: float = 0.1, + init_scheme: str = "zeros", + objective: str = "lasso", + bias: bool = True, + ) -> None: assert objective in ["lasso", "ridge", "ols"] if weights is None: @@ -96,7 +56,7 @@ def train_and_compare( self.assertTrue(model.bias() is not None if bias else model.bias() is None) - l2_loss = _evaluate(train_loader, model)["l2"] + l2_loss = evaluate(train_loader, model)["l2"] if objective == "lasso": reg = model.representation().norm(p=1).view_as(l2_loss) @@ -121,7 +81,7 @@ def train_and_compare( h /= h.norm(p=2) assertTensorAlmostEqual(self, h, expected_hyperplane, delta=delta) - def test_simple_linear_regression(self): + def test_simple_linear_regression(self) -> None: xs = torch.randn(TestLinearModel.MAX_POINTS, 1) ys = 3 * xs + 1 @@ -152,7 +112,7 @@ def test_simple_linear_regression(self): delta=0.2, ) - def test_simple_multi_output(self): + def test_simple_multi_output(self) -> None: xs = torch.randn(TestLinearModel.MAX_POINTS, 1) y1 = 3 * xs + 1 y2 = -5 * xs @@ -167,7 +127,7 @@ def test_simple_multi_output(self): objective="ols", ) - def test_simple_linear_classification(self): + def test_simple_linear_classification(self) -> None: xs = torch.tensor([[0.5, 0.5], [-0.5, -0.5], [0.5, -0.5], [-0.5, 0.5]]) ys = torch.tensor([1.0, -1.0, 1.0, -1.0]) self.train_and_compare( @@ -201,7 +161,7 @@ def test_simple_linear_classification(self): SGDRidge, xs, ys, expected_loss=0.25, expected_reg=0, objective="ridge" ) - def test_simple_xor_problem(self): + def test_simple_xor_problem(self) -> None: r""" ^ o | x @@ -246,7 +206,7 @@ def test_simple_xor_problem(self): bias=False, ) - def test_weighted_problem(self): + def test_weighted_problem(self) -> None: r""" ^ 0 | x diff --git a/tests/utils/test_progress.py b/tests/utils/test_progress.py index 8214fa897e..a87b997f0f 100644 --- a/tests/utils/test_progress.py +++ b/tests/utils/test_progress.py @@ -1,14 +1,66 @@ #!/usr/bin/env python3 +# pyre-unsafe + import io import unittest import unittest.mock -from captum._utils.progress import progress -from tests.helpers.basic import BaseTest +from captum._utils.progress import NullProgress, progress +from captum.testing.helpers import BaseTest class Test(BaseTest): + @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) + def test_nullprogress(self, mock_stderr) -> None: + count = 0 + with NullProgress(["x", "y", "z"]) as np: + for _ in np: + for _ in NullProgress([1, 2, 3]): + count += 1 + + self.assertEqual(count, 9) + output = mock_stderr.getvalue() + self.assertEqual(output, "") + + @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) + def test_nested_progress_tqdm(self, mock_stderr) -> None: + try: + import tqdm # noqa: F401 + except ImportError: + raise unittest.SkipTest("Skipping tqdm test, tqdm not available.") + + parent_data = ["x", "y", "z"] + test_data = [1, 2, 3] + with progress(parent_data, desc="parent progress") as parent: + for item in parent: + for _ in progress(test_data, desc=f"test progress {item}"): + pass + output = mock_stderr.getvalue() + self.assertIn("parent progress:", output) + for item in parent_data: + self.assertIn(f"test progress {item}:", output) + + @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) + def test_nested_simple_progress(self, mock_stderr) -> None: + parent_data = ["x", "y", "z"] + test_data = [1, 2, 3] + with progress( + parent_data, desc="parent progress", use_tqdm=False, mininterval=0.0 + ) as parent: + for item in parent: + for _ in progress( + test_data, desc=f"test progress {item}", use_tqdm=False + ): + pass + + output = mock_stderr.getvalue() + self.assertEqual( + output.count("parent progress:"), 5, "5 'parent' progress bar expected" + ) + for item in parent_data: + self.assertIn(f"test progress {item}:", output) + @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_progress_tqdm(self, mock_stderr) -> None: try: diff --git a/tests/utils/test_sample_gradient.py b/tests/utils/test_sample_gradient.py index 8f49235e72..854d3eb7c4 100644 --- a/tests/utils/test_sample_gradient.py +++ b/tests/utils/test_sample_gradient.py @@ -1,12 +1,19 @@ #!/usr/bin/env python3 -import unittest -from typing import Callable, Tuple +# pyre-strict + +from typing import Callable, List, Tuple import torch -from captum._utils.sample_gradient import SampleGradientWrapper, SUPPORTED_MODULES -from tests.helpers.basic import assertTensorAlmostEqual, BaseTest -from tests.helpers.basic_models import ( +from captum._utils.gradient import apply_gradient_requirements +from captum._utils.sample_gradient import ( + _reset_sample_grads, + SampleGradientWrapper, + SUPPORTED_MODULES, +) +from captum.testing.helpers import BaseTest +from captum.testing.helpers.basic import assertTensorAlmostEqual +from captum.testing.helpers.basic_models import ( BasicModel_ConvNet_One_Conv, BasicModel_ConvNetWithPaddingDilation, BasicModel_MultiLayer, @@ -37,12 +44,6 @@ def test_sample_grads_conv_mean_multi_inp(self) -> None: self._compare_sample_grads_per_sample(model, inp, lambda x: torch.mean(x)) def test_sample_grads_modified_conv_mean(self) -> None: - if torch.__version__ < "1.8": - raise unittest.SkipTest( - "Skipping sample gradient test with 3D linear module" - "since torch version < 1.8" - ) - model = BasicModel_ConvNetWithPaddingDilation() inp = (20 * torch.randn(6, 1, 5, 5),) self._compare_sample_grads_per_sample( @@ -50,12 +51,6 @@ def test_sample_grads_modified_conv_mean(self) -> None: ) def test_sample_grads_modified_conv_sum(self) -> None: - if torch.__version__ < "1.8": - raise unittest.SkipTest( - "Skipping sample gradient test with 3D linear module" - "since torch version < 1.8" - ) - model = BasicModel_ConvNetWithPaddingDilation() inp = (20 * torch.randn(6, 1, 5, 5),) self._compare_sample_grads_per_sample(model, inp, lambda x: torch.sum(x), "sum") @@ -64,11 +59,13 @@ def _compare_sample_grads_per_sample( self, model: Module, inputs: Tuple[Tensor, ...], + # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. loss_fn: Callable, loss_type: str = "mean", - ): + ) -> None: wrapper = SampleGradientWrapper(model) wrapper.add_hooks() + apply_gradient_requirements(inputs) out = model(*inputs) wrapper.compute_param_sample_gradients(loss_fn(out), loss_type) @@ -92,3 +89,54 @@ def _compare_sample_grads_per_sample( layer.bias.sample_grad[i], # type: ignore mode="max", ) + + def test_sample_grads_layer_modules(self) -> None: + """ + tests that if `layer_modules` argument is specified for `SampleGradientWrapper` + that only per-sample gradients for the specified layers are calculated + """ + model = BasicModel_ConvNet_One_Conv() + inp = (20 * torch.randn(6, 1, 4, 4), 9 * torch.randn(6, 1, 4, 4)) + + # possible candidates for `layer_modules`, which are the modules whose + # parameters we want to compute sample grads for + # pyre-fixme[9]: layer_moduless has type `List[List[Module]]`; used as + # `List[Union[List[Union[Conv2d, Linear]], List[Conv2d], List[Linear]]]`. + layer_moduless: List[List[Module]] = [ + [model.conv1], + [model.fc1], + [model.conv1, model.fc1], + ] + # hard coded all modules we want to check + all_modules = [model.conv1, model.fc1] + + for layer_modules in layer_moduless: + # we will call the wrapper multiple times, so should reset each time + for module in all_modules: + _reset_sample_grads(module) + + # compute sample grads + wrapper = SampleGradientWrapper(model, layer_modules) + wrapper.add_hooks() + apply_gradient_requirements(inp) + out = model(*inp) + wrapper.compute_param_sample_gradients(torch.sum(out), "sum") + + for module in all_modules: + if module in layer_modules: + # If we calculated the sample grads for the layer, none + # of its parameters' `sample_grad` attributes` would be an int, + # since even though they were all set to 0 in beginning of loop + # computing sample grads would override that 0. + # So, check that we did calculate sample grads for the desired + # layers via the above checking approach. + for parameter in module.parameters(): + assert not isinstance( + parameter.sample_grad, int # type: ignore + ) + else: + # For the layers we do not want sample grads for, their + # `sample_grad` should still be 0, since they should not have been + # over-written. + for parameter in module.parameters(): + assert parameter.sample_grad == 0 # type: ignore diff --git a/tutorials/CIFAR_TorchVision_Interpret.ipynb b/tutorials/CIFAR_TorchVision_Interpret.ipynb index 8670af67e6..c7692a4c60 100644 --- a/tutorials/CIFAR_TorchVision_Interpret.ipynb +++ b/tutorials/CIFAR_TorchVision_Interpret.ipynb @@ -233,7 +233,7 @@ ], "source": [ "\n", - "def imshow(img, transpose = True):\n", + "def imshow(img):\n", " img = img / 2 + 0.5 # unnormalize\n", " npimg = img.numpy()\n", " plt.imshow(np.transpose(npimg, (1, 2, 0)))\n", diff --git a/tutorials/House_Prices_Regression_Interpret.ipynb b/tutorials/House_Prices_Regression_Interpret.ipynb index aee3cfc3a0..cd8ca81166 100644 --- a/tutorials/House_Prices_Regression_Interpret.ipynb +++ b/tutorials/House_Prices_Regression_Interpret.ipynb @@ -4,21 +4,21 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Interpret regression models using Boston House Prices Dataset" + "# Interpret regression models using California Housing Prices Dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "This notebook demonstrates how to apply `Captum` library on a regression model and understand important features, layers / neurons that contribute to the prediction. It compares a number of attribution algorithms from `Captum` library for a simple DNN model trained on a sub-sample of a well-known Boston house prices dataset.\n", + "This notebook demonstrates how to apply `Captum` library on a regression model and understand important features, layers / neurons that contribute to the prediction. It compares a number of attribution algorithms from `Captum` library for a simple DNN model trained on a sub-sample of a well-known California house prices dataset.\n", "\n", "Note that in order to be able to run this notebook successfully you need to install scikit-learn package in advance.\n" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 85, "metadata": {}, "outputs": [], "source": [ @@ -31,7 +31,8 @@ "\n", "#scikit-learn related imports\n", "import sklearn\n", - "from sklearn.datasets import load_boston\n", + "from sklearn.datasets import fetch_california_housing\n", + "from sklearn.datasets import fetch_openml\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import mean_squared_error\n", "\n", @@ -56,22 +57,43 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's load boston house prices dataset and corresponding labels from scikit-learn library. " + "Let's load california house prices dataset and corresponding labels from scikit-learn library. " ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 86, "metadata": {}, "outputs": [], "source": [ - "boston = load_boston()\n", + "california = fetch_california_housing()\n", "\n", - "# feature_names -> ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']\n", - "feature_names = boston.feature_names\n", "\n", - "X = boston.data\n", - "y = boston.target\n" + "# https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset\n", + "feature_names = california.feature_names\n", + "\"\"\"\n", + "Features:\n", + "MedInc median income in block group\n", + "HouseAge median house age in block group\n", + "AveRooms average number of rooms per household\n", + "AveBedrms average number of bedrooms per household\n", + "Population block group population\n", + "AveOccup average number of household members\n", + "Latitude block group latitude\n", + "Longitude block group longitude\n", + " \n", + "The target variable is the median house value for California districts, \n", + "expressed in hundreds of thousands of dollars ($100,000).\n", + "\n", + "This dataset was derived from the 1990 U.S. census, using one row per census block group. \n", + "A block group is the smallest geographical unit for which the U.S. Census Bureau publishes sample data \n", + "(a block group typically has a population of 600 to 3,000 people).\n", + "\"\"\"\n", + "\n", + "#take first n examples for speed up\n", + "n = 600\n", + "X = california.data[:n]\n", + "y = california.target[:n]\n" ] }, { @@ -83,7 +105,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 87, "metadata": {}, "outputs": [], "source": [ @@ -100,7 +122,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 88, "metadata": {}, "outputs": [], "source": [ @@ -123,25 +145,23 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 89, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABsoAAAR8CAYAAAA0DMGQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzde5xcdX3/8fcnmwEWuWwCEclCAta61HQL0SjR2CoBXJXbGlFEblZbqvVSQRcCWoEWTXSriLXWqvUnyP3mCvLTqA14yQ+wiZuQRkjlGpiABMgikAU2m+/vj3MmOzt7ztzPmTPnvJ6PBw+yZ25nd2Y+5/O9fb7mnBMAAAAAAAAAAACQNdNafQIAAAAAAAAAAABAKzBQBgAAAAAAAAAAgExioAwAAAAAAAAAAACZxEAZAAAAAAAAAAAAMomBMgAAAAAAAAAAAGQSA2UAAAAAAAAAAADIJAbKgAiY2Rwze87MOlp9LgDQzszsfDP7TqvPAwAgmdmPzeyMVp8HAKSJmZ1iZj9t9XkAQNr4fbOvbPV5oD0wUIZImdn7zWy1H5ge8xvXb/Zvu9DMxvzbRszs/5nZG4se+1Yze7To59vNzJnZoSWv8QP/+Fsj/D3eamY7/HN91sw2mtlfh93fObfJObeHc248qnMCgDB+Y/u5gP+cmX3Ov8/tZvaCmR1Y9LijzOyhiM/te2b2kn8+T5vZz8zskLD7O+e+4Jz7myjPCQCKmdlDZnaU/+8P+LHznJL7PFrIPYty2mf9//7XzL5uZvsX3f8DZvbrCq91gJndaGZPmtkzZvY/ZvaBGH7XUT8m/8GP0XuE3d859w7n3GVRnhOAbKmiz+CKgMc4M3tVybFCvD4p4P7nm9mD/ms8ambXRvcbVe7rKOWcu9I597YozwkApJ253xNm9rKiY39jZrcX/WxmNmBmv/fzxE1mtszMdi26z41m9u2S5/6BmX09wnM/yI/zhf6Nh8xsabnH+H2zD0R1TkgXBsoQGTM7W9JXJX1B0n6S5kj6hqQTiu52rXNuD0n7SrpN0vUVnvZ/JZ1e9Br7SHqjpC3NO/NQm/1z3UvSuZK+bWavKb2TmU2P4VwAIJTf2N6j+D9Jn5T0B0nFyezzkv6xBaf4Jf+cDpD0hKTvBd2JeAogIZ6WdI6Z7VnmPtc65/aUNFPSuyS9QtKa4sGyKnxf0iOS5kraR9Jp8uJ21I7zY/JrJS2Q9NnSO/gdJrQdATRVlX0G1TpDXrw+vfigeatgT5N0lB/rFkj6rwZOu1qFvo5Zkn4t6SYzs9I7ke8CaIEOSf9Q5vavSTpTXjzdU9I7JB0p6bqi+3xU0hIzO0KS/EkKr5VUduCqSbr8+HqypM+Z2dtL70BsRT1o7CASZra3pH+S9FHn3E3Oueedc2POuVuccwOl93fObZd0paRuM5tV5qmvlHSSTZQ0PFnSDyS9FHIeh5vZ40X3l5m9y8zu9v/9Bn/22h/9WbRfqfS7Oc+QpK2SXlM0o+FDZrZJ0sqiY9P915lpZv/HzDab2VYzGyo6n2PNbG3RTLO/KLrtXDPL28QqtiMrnR8AlDKz+fI6Id7nnHus6KavSTrZzP6kiuf4dzP7l5JjP/Q7OOqKV865bZKukvTn/nNcaGY3mNkVZvZHSR8onUlsZm/2Y+WImT1i/moLM9vVzP7Fn+32BzP7ppl1+rfta2Y/8h/ztJn9ig5fADW4R9Idks6udEc/390g6SR5E7k+VcPrvF7S9/y8ebtzbtg59+OgO5rZPWZ2bNHP081si5m91sx28+PoU37c+28z26+Kc89L+rEmYvLtZvZ5M1slaZukV/rHdq7yNbO/9c/lWTP7nZm91j8+259pvMW8VRyfKHpMzfk3gPSptc+gwnPNlfQWeR27fWb2iqKbXy9phXPufklyzj3unPtWyPOca2Y3lBy71My+5v/7A2b2gB/zHjSzUyqdm3NuTNJl8iZQ7OM/xyozu8TMnpJ0oZWsOjazeeZVXXjaj5Pn+8enmdlSM7vfj/HXmdlM/7a6Yj+ATBqU9Gkz6yq9wcz+VNLfSzrFOXeHn5NukPRuSW83s8WSF0vl5bnfNrM58voW/s4591zAc842b2XazKJj882ropAzs1eZ2S/Mq6jwpFW56tc5d4ekDZrIXZ2ZfdTMfi/p90XHXuX/u9PMvmxmD/uv9euiPoOFRf0M66yoalk9sR/tiU4iROWNknaTN4hVkZntIm+mwlPyBqDCbJb0O0mFsgSnS7o87M7OubvkrZhYXHT4/fI6ZiXpUkmXOuf2kvQnmjw7Iuxcp5nZuyR1SVpfdNNbJP2ZpL6Ah31f0u6S5kl6uaRL/OeaL+m7kv5O3szh/5B0s9/h2yPpY5Je789Q7pP0UKXzA4BifvJ7g6R/ds7dXnJzXt4Ks4uqeKqr5U1UMP95Z8iLxdfUG6/MK+91iqThosMn+OfbJW9yRPH958rrxP1XebNzD5O01r95uaRX+8deJalb0uf82z4l6VH/MftJOl+Sq+J3BoCCf5T0yeIGfjl++e0fSvrLGl7jTkn/Zmbv8zscyrla3oSxgj5JTzrnfitvVcXekg6Ul19+WNJopRc3rxTvOzU5Jp8mr+N5T0kPl9z/PZIulJeP7yXpeElP+RMRbpG0Tl4sPlLe366QI9ecfwNIpZr6DCo4XdJq59yN8iY3FHdi3inpdPPKiC2w8vuIXyPpneavIPbv+15JV5lXpuxrkt7h57tv0kQeGsq8UmUfkPSIc+5J//Dhkh6Ql5d+vuT+e0r6uaSfSJotL68trID7uKR+eX0Ps+X1nfybf1tdsR9AJq2WdLukTwfcdqSkR51zvyk+6Jx7RF48Pbro2Pck3S/pt5J+4pz7SdCLOec2y5t09u6iw++XdIM/meCfJf1U0gx5VWf+tdIvYJ5F8vpZi3PXfnkxdkoFMEn/Iul18uL3TEnnSNphZt2SbpV0sX/805JuNLNZ9cZ+tCcGyhCVfeQ11rdXuN97zWxEXgL3t5JOrOIxl8tLdA+Rt9z2jgr339mR4Ced7/SPSdKYpFeZ2b7Oueecc3eWeZ7Z/rk+KekCSac55zYW3X6hPwtuUjJqXsmdd0j6sHNuqz9L7hf+zWdK+g/n3F3OuXF/z4cXJS2UNC5pV3mr1nLOuYcKs+AAoBr+oNblkv5H0pdC7rZM0nFmNq/C0/1K3uBSodP3REl3+ElvrfHq0348vU/SHvI6DwrucM4NOed2lMZTecn0z51zV/ux9Cnn3Fr/9zxT0lnOuaedc8/KK+HzPv9xY5L2lzTXf9yvnHMMlAGomnNuraSfySu/Xa3N8hrb1XqPvFj7j5IeNK/iwOtD7nuVpOPNbHf/5/drcn67j6RX+fnlGufcH8u87pAfk38t6Rfy4mfB95xzG/zZxGMlj/sbeaV0/9uvuHCfc+5heas3Zjnn/sk595K/L8S3NTkmV5t/A0ivmvoMiv8LuM/pmpgMe5WKyi86566QN8DUJy/GPWFmgbHcj2G/lVdCV/Im3G4rilM7JP25mXU65x7zV1mUPW95JXVfV/Sckretw7/6sbU03z1W0uPOuS87515wzj3rTwCWvMGvzzjnHnXOvShvssKJ5lWyqTX2A8i2z0n6uE2t6rWvpMcC7i//+L4lx34lL/ZM2U+yxFWa6Js1eXlhIW6PySs9PtuPe1P29S3xpLxSu9+RtNQ5V1xOd5nfJ1DaNztN0gcl/YNzLu/Hyf/nx9JTJf1f59z/9fshfiZvMPGd/sNrif1oYwyUISpPSdrXKteEvc451yVvJtX/yEsgK7lJXsL6MXkrtSq5Sl7d3F0lLZH0Wz8BlqQPyVuBcK9fmuDYsCeRl8x2OedmOucOc85dU3L7IyGPO1DS0865oJVycyV9qiTpP1DexeE+eXsKXSgvmb/GzGZX8fsCQMG58mZYnRE2MOSc2yLp6/JK34TyH3+NJlYwvF/+iq864tW/+PH0Fc6540sG1cJiqeTFx6ABuFnyVu2uKYqlP/GPS15pifsk/dQvmRBH3XQA6fM5SR+poZRVt7xGvCRtl5QLuE9OXueA/AlVS51z8+TlxmvlDWJN2dPGj7v3yJvosLu81VyFzobvS1ohb8XvZjP7kpkFvXZBvx+T5zrn/r6kY6GemDxX/gSzoph8vv87SbXl3wDSq6Y+g+L/im/0VxQcLC9PlbxY2GtmhxXu47z9e4+SV7Hgw5L+uWiVa6mdnbkqqkbjnHteXlndD0t6zMxu9SfvVjrvlzvnFjvn1hTdVk9slbz4+oOi2HqPvAlr+6n22A8gw5xz/yPpR5q6p9iT8iaZBtnfv13SzjKNn5a3t+SXK8ScGyW90V9M8FfyBp9+5d92jiST9Bsz22BmH6xw+vs652Y45/7MOfe1ktvC4uu+8lYxh+Wu7ynJXd8saf86Yj/aGANliMod8lZG9VdzZ+eVIDhTXn3uspueO29Pmx9L+oiqGChzzv1OXqmYd2hy2UU5537vnDtZXjnEL0q6wV9WW4+w1QmPSJppAbV//ds+X5L47+6cu9o/v6ucc2+WF7Sdf44AUJFfU/sz8lbqBs28LTYo6QhVnqxwtbxZq3PllTO4sXBDE+NVuZVej8gr01XqSXkrk+cVxdK9nbfBr/yZuJ9yzr1SXmfy2caejwBq5Jy7V96Erc9Uuq8/a/U4TXQAbJI0p3jQyx/gerlKShr6r/WkvPIwsxW+Kq1QNeEESb/zB88K+6Rd5Jx7jbzyMMeqaHVFjeqJyY9IerAkv93TOfdO//yamX8DaF819RmUcYa8Dta1Zva4pLuKjk/ix8frJd0tf0+bANdLequZHSBvFVhx/8EK59zR8jqL75W3WrYelWLrK8vc9o6S+LqbvzqimbEfQDZcIK+6V3fRsZWSDjSzNxTf0S/RvVB+KVg/p/2OvL3QPy5v25vQygv+4oGfyht0er+kawqTeZ23d+TfOudmy9ua5hvm7ytWh7D4+qSkFxSeu36/JLa+zDm33D+/ZsV+JBwDZYiEc+4ZebNu/83M+s1sd/M2aHyHmQWW/3JeGcMV8mYSVHK+pLc45x6q8pSukvQP8mYtXF84aGanmtks59wOSYWO5B1VPmdVnHOPyRvY+4aZzfD/Dn/l3/xtSR82s8P9+rovM7NjzGxPM+sxs8X+SrgX5HUCN/XcAKSTP+HgGkmfdM4NV7q/P5D2ZVWIv/5zPSkvIV5RGICLMV5dKekoM3uvmU03s33M7DA/hn9b0iVm9nL/nLoLM4XN7FjzNgg2Sc/Im3lLPAVQj4sk/bW8VQlT+LHpz+QNYr1C0lf8m+6SFx+Xmtlu/sDQcnllXR72H/tFM/tz/zn2lDcp7D7n3FMh53KNvL0iP6KijlwzO8LMes3bW+eP8lasRRHzviOvlO7r/Dz2Vf5Eit9IetbMzjVv0/QO//d6vX9+keffAJKvnj6DUma2m7w9xM6Ut09t4b+PS3q/H08/UNTGnmZm75BXceGuoOf0qy3cLun/yBv0v8d/rf3M7AQ/fr8o6TlFE7t+JGl/M/ukeXuX72lmh/u3fVPS5/1YK/P2zznB/3dcsR9ASviTrK6V9ImiY/8rL9ZcaWYL/TxunrxJsj93zv3cv+tH5K3S+oKf031I0jkVVlsVSuOeqMm563v8yQmSt/eiU/P7ZndI+q6kr5jZbP/3eqPfh3GFvCoNff7x3czsrWZ2QIyxHwnAQBki45z7sqSzJX1W0hZ5I/QfkzRU5mGDks4sdHSWee7NrnLN2mJXy9vwdqWb2EBXkt4uaYOZPSdvY/H3uak1wpvhNHmJ6r2SnpBXokzOudXyZm98Xd7F4D5N7NWzq7wOlCclPS5v1u15EZwbgPT5W3klWC41s+dK/vtmyGMulTeAVMlVko5SUWKrmOKVc26TvDrhn5JXzmytpEP9m8+VF0PvNLM/ytsEvce/7U/9n5+TN3v5G86525p9fgDSzzn3oLyKBqUroE7y88lnJN0sr6TY65y3j6Oct//BMZLeKulRSQ/IWy323sJsWnklZH8gb/DoAXkrdI8vcy6PyYtpb5LXyVHwCkk3yOsovUfenjzVlCuvib8q4/PyrgfPysvxZzrnxuWtZDhM0oOamGCxt//QuPJvAAlXZ59BsX55E7Qu91ckPO6ce1xeZ+h0efHmj/Im2m6SF1+/JOkjFfoTgvLdaf65bpaXh75FXkdxUzlvr92j5a1KflzS7+VVfpC8mHmzvHLiz0q6U16VBymm2A8gdf5JU/Paj8nL3a6Q14b+ibwJBO+WJDObI29P2w85516Sdlbz+rKkb/sTVIPcLK9t/rhzbl3R8ddLusvPDW+Wt4/YA43/alN8WtJ6Sf8tL45/UdI059wj8io0nK+Ja9GAvLgfS+xHMphjL3sAAAAAAAAAAABkECvKAAAAAAAAAAAAkEkMlAEAAAAAAAAAACCTGCgDAAAAAAAAAABAJjFQBgAAAAAAAAAAgExioAwAAAAAAAAAAACZNL3VJ9AM++67rzvooINafRoAMmrNmjVPOudmtfo8okasBdAqxFkAiF4WYi1xFkArZSHOSsRaAK3TSJxNxUDZQQcdpNWrV7f6NABklJk93OpziAOxFkCrEGcBIHpZiLXEWQCtlIU4KxFrAbROI3GW0osAAAAAAAAAAADIJAbKAAAAAAAAAAAAkEkMlAEAAAAAAAAAACCTGCgDAAAAAAAAAABAJjFQBgAAAAAAAAAAgExioAwAAAAAAAAAAACZxEAZAAAAAAAAAAAAMomBMgAAAAAAAAAAAGQSA2UAAAAAAAAAAADIpOmtfHEze0jSs5LGJW13zi0ws5mSrpV0kKSHJL3XObe1Wa959Fdu1++feL78eUk6ZeEcXdzfO+n40HBegys2Kj8yqg4zjTunrs6czKSRbWOa3dWpgb4eSdLgio3aPDKqrt1zck56ZnTi9v753c36dQCgolbE2oOW3jrl2EPLj2nW08fus0PrdfVdj2jcOXWY6eTDD5xyjQCarZB3bB4ZjTSHqOd14jq3dtGKOFvuPaj1/QnKcburfF+jiI98vtLj8M//TH949qWdP++35y666zNHV3xcaZvtT1/+Mv3s7LdGcYpoE+SzAJLiLy74if744vjOn/fatUN3X/T2Fp5R87Qi1lZSKS8svf2IQ2bptnu3JCKPrCanTWre2+h5NZLLVXpsLeeW1L8vksmcc617cS8AL3DOPVl07EuSnnbOLTezpZJmOOfOLfc8CxYscKtXr674etUMkhU7tWiwbGg4r/NuWq/RsfGyj8lNM8mksfHgv2tnrkPLlvTypQRSxMzWOOcWtPo8wsQda4M6FQrasXPhs0PrdcWdm6YcPzVgQgXQLEF5RxQ5RD2vE9e5FSPOTlbuPZBU0/tTLset9L5GER9b8flCNEoHyQoqDZaFtdkYLItekmMt+SyAJCgdJCuodrAsyXFWij/WVlIpL6ymr7ZVeWQ1OW1S895Gz6uRXK7SY2s5t6T+fRGtRuJsEksvniDpMv/fl0nqb9YT1zJIJklX3/XIzn8PrthYcZBMksZ2uNBBMkkaHRvX4IqNNZ0HAEQgslibNsXXgmqOA80QlHdEkUPU8zpxnVsKRBZny70Htb4/5XLcSu9rFPGRz1d6BA2SlTteENZmq7Uth0wgnwUQq6BBsnLHU6JlsbZSXlhNX22r8shqctqk5r2NnlcjuVylx9Zybkn9+yK5Wj1Q5iT91MzWmNmZ/rH9nHOP+f9+XNJ+QQ80szPNbLWZrd6yZUskJzdetNpu88ho0563mc8FAFVIdKxNuvGQlddhx4FmCMsVmp1D1PM6cZ1bm4k1zpZ7D2p9fyq9b+VujyI+8vkCEIJ8FgCil6hYWykvrDY/bEUeWU1Om9S8N6nnVe4cgo4n+fdAMrV6oOzNzrnXSnqHpI+a2V8V3+i8upCBLW3n3LeccwuccwtmzZoVycl1mO389+yuzqY9bzOfCwCqkOhYm3TF14JqjgPNEJYrNDuHqOd14jq3NhNrnC33HtT6/lR638rdHkV85PMFIAT5LABEL1GxtlJeWG1+2Io8spqcNql5b1LPq9w5BB1P8u+BZGrpQJlzLu///wlJP5D0Bkl/MLP9Jcn//xPNer0/ffnLarr/yYcfuPPfA3096sx1VHxMbpop1xHeOdCZ69BAX09N5wEAjYg71qZN8bWgmuNAMwTlHVHkEPW8Tlzn1k7ijrPl3oNa359yOW6l9zWK+MjnKz3223OXmo4XhLXZam3LIV3IZwEkwV67BudMYcfbTdJibaW8sJq+2lblkdXktEnNexs9r0ZyuUqPreXckvr3RXK1bKDMzF5mZnsW/i3pbZL+R9LNks7w73aGpB826zV/dvZbq/pSmqZuQt4/v1vLlvSq2x91LsyU7erMacbuOZmk7q5ODb7nUA2eeKi6uzplkmbsnlNX58TtbBgIIE6tiLVhG5y368bnF/f36tSFc3bG/Q6zKdcIoNmK844oc4h6Xieuc2sXrYiz5d6DWt+fsBy3mvc1ivjI5ys97vrM0VMGxfbbcxfd9Zmjyz4uqM1WzebvSC/yWQBJcfdFb58yKLbXrh26+6K3t+iMmqcVsbaSSnlh0O2nLpyTiDyympw2qXlvo+fVSC5X6bG1nFtS/75ILnMt2mPFzF4pb3aCJE2XdJVz7vNmto+k6yTNkfSwpPc6554u91wLFixwq1evrup1h4bzuvDmDRoZHZt0vDPXwZcFQF3MbI1zbkGrzyNIq2ItADQTcRYAopfUWEucBZAWSY2zErEWQDo0EmenN/tkquWce0DSoQHHn5J0ZBSvOTSc13k3rdfo2PiU20bHxjW4YiMDZQBSpRWxNo2GhvMaXLFRm0dGNburUwN9PVwvAEgizhIfAUStVXGW+AYgS7Ke06J9cH1GVFo2UNYKgys2Bg6SFWweGY3xbAAA7aB0kkV+ZFTn3bRekkjGAGQa8RFAWhHfAABIHq7PiFLL9ihrhUoDYbP9vRkAACgImmRRWIUMZNXQcF6Llq/UwUtv1aLlKzU0nG/1KaEJan1fiY8A0or4BgDtgXZJtnB9RpQytaJsdlen8mUGywb6emI8GwBIrzQthQ+bZMEqZGQVs/jSqZ73Nar4mKZrCID2FNZvUK4/AQAQrzS1S8h/q0P/DKKUqRVlA309spDbujpzBCAAaIJCspofGZXTRLLarjO7wlYbswoZWcUsvnSq532NIj6m7RoCoD1ZSMdB2HEAQPzS0i4h/60e/TOIUqYGyvrnd+uUhXOmDJZ15jp04fHzWnJOAJA2aUlWCwb6etSZ65h0rDPXwSpkZBaz+NKpnvc1iviYtmsIgPbkXG3HAQDxS0u7hPy3evTPIEqZGiiTpIv7e3XJSYepu6tTJqm7q1PLlvSymgwAmiQtyWpB//xuLVvSy3UD8DGLL53qeV+jiI9pu4YAAAAgGmlpl5D/Vo/+GUQpU3uUAQCiF7YfZLslq8X653eTeAG+gb6eSXsBSMziS4N639dmx8c0XkMAtJ8Zu+e0ddtY4HEAQDKkpV1C/lsb+mcQlcytKKPuKwBEi6XwQLoxiy+dkvK+cg0BkAQXHDdPuY7JmzbkOkwXHMeWDQCQFEnJXxtF/gskQ+ZWlJWr+9pugRQAkqgQSwdXbNTmkVHN7urUQF8PMRZIEWbxpVMS3leuIQCSgFgEAO0hCflro7jmAMmQuYEy6r4CQPTSkKwCAFqDawiAJCAWAQDiwjUHaL3MlV7cuzO4pjh1XwEAAAAAAAAAALIlUwNlQ8N5Pf/S9inHc9OMuq8AAAAAAAAAAAAZk6nSi4MrNmps3E05vsdu01neCgBNNDScp742AKAuXEMAJAGxCAAQNa41QHJkaqAsH7IP2dZtYzGfCQCk19BwXufdtF6jY+OSvNh73k3rJYmEDwBQFtcQAElALAIARI1rDZAsmSq92GFW03EAQO0GV2zcmegVjI6Na3DFxhadEQCgXXANAZAExCIAQNS41gDJkqmBsnE3texiueMAgNptDlm9G3YcAIACriEAkoBYBACIGtcaIFkyNVDW3dUZeNzkLXcFADRudkisDTsOAEAB1xAASUAsAgBEjWsNkCyZGigb6OtRUJFFJ7GsFQCaZKCvR525jknHOnMdGujradEZNW5oOK9Fy1fq4KW3atHylUyuAJA5ccXBNF5DALQfYhGAMLQN06PV7yXXGiBZprf6BOLUP79bn7x2beBtLGsFgOYobDo7uGKjNo+ManZXpwb6etp2M1o22AWQdXHGwbRdQwC0J2IRgCC0DdMjCe8l1xogWTI1UCZJXZ05jYyOTTnOslYAaJ7++d2pSe7KbbCblt8RAMqJOw6m6RoCoH0RiwCUom2YHkl5L7nWAMmRqdKLQ8N5Pf/S9inHp5lY1goACMQGuwCyjjgIAABATpQmvJcASmVqoGxwxUaNjbspx3c4afXDT7fgjAAASccGuwCyjjgIIItavXcNgOQhJ0oP3ksApTI1UFZuVsCVd24i8QUATHHEIbNqOg4AaUMcBJA1hb1r8iOjcprYu4Y+AyDbBvp61JnrmHSsM9dBlao2RH4LoFSmBsrKzQpw8lacAQBQ7LZ7t9R0HADShjgIIGvK7V0DILv653dr2ZJedXd1yiR1d3Vq2ZJe9phqQ+S3AEpNb/UJxGmgr0dnXbtWU4svevLUoQUAlKB2OYCsIw4CyBriHoAw/fO7GRhLAeI8gFKZGijrn9+t61dv0qr7g/cj6zCL+YwAIJ2GhvMaXLFRm0dGNburUwN9PW3bmJjd1Rk4kYLa5QCyIu44mKZrCID2RP4HAOmWlDhP3gskR6ZKL0rSQ0+FzwwYd2FrzQAA1Urbng7UoQeQdXHGwbRdQwC0J/auAYB0S0I7n7wXSJbMDZSVK6/YzewwAGhY2vZ0oA49gKyLMw6m7RoCoD2xdw0ApFsS2vnkvUCyZKr04tBwXiYF7lFmEqsDAKAJ0ljrmzr0ALIurjiYxmsIgPZDLAKA9Gt1O59rDZAsmVpRNrhiY+AgmSS96U9m0gkKAE0QVtObPR0AAJVwDQGQBMQiAEDUuNYAyZKpgbJyI/K/3fQMNWABoAmSUOsbQPWGhvNatHylDl56qxYtX0k+hKpE9bnhGgIgCQb6etCbCWUAACAASURBVJSbZpOO5aYZsQgAYpCV9gl5L5AsmSq9OLurM3SPstGxcX3qunWSxMoyAGhA//xurX74aV191yMad04dZnr36yhdCCRRYQPpQm38wgbSEvlQlg0N5zW4YqM2j4xqdlenBvp6Jn0eovzcFB5f7vUBIA47KvwMAGi+uNsnlfLeKJH3AsmSqYGygb6eScG21LhzdA4BQIOGhvO6cU1e484rdjvunG5ck9eCuZS4BZKm3AbSfF+zqZrOiag/N63eLwIALrplg8Z3TN64YXyH00W3bCA+AUCE4myfJGHSIHkvkByZKr3YP79by5b0qsMs9D6F4AsAqE+5xLZdZaX0A7KHDaRRqpoYHvb5yI+MEh8BpMLWbWM1HQcANEec7ZM09l00C30gyKJMDZRJ3mDZl9976JQasMXoHAKA+qWt470wyyw/MiqniVlmJIpIAzaQRqlqYni5zwfxEQAAAPWKs32Str6LZqEPBFmVuYEyqfLKMjqHAKB+aet4Z5YZ0owNpFGqmhge9LkpID4CSIOwIjRlitMAAJogzvZJ2voumoU+EGRVJgfKpPCVZXQOAUBj0tbxziwzpFlh8lB3V6dMUndXp5Yt6aVOfoZVE8MLn5swxEcA7c652o4DAJojzvZJ2voumiXpfSCUhURUprf6BMysQ9JqSXnn3LFmdrCkayTtI2mNpNOccy9F8drFG5JvHhnV7K5ODfT10DkEAA1IW2zt2j0XuB9F1+65FpwN0HxsII1i1cbw/vnduuiWDcRHAKk0IyT/m0F8A4DIxdU+SVvfRbPM7upUPmBQLAkr7QplIQsr3gplISVl/n1D41o+UCbpHyTdI2kv/+cvSrrEOXeNmX1T0ock/XuzXmxoOD8lAK5aurhZTw8AULo63sNmDr84Nq5Fy1eSUANInWpjeDNXXATl6MRUAK3CijIASI9yeWaa+i6aZaCvZ9JglJSclXblykLyPqJRLS29aGYHSDpG0nf8n03SYkk3+He5TFJ/s16PzQgBALV6ZnTqbGJJ2ja2g+sJgEwLi49hx8OQowNImpGQOBZ2HACQTOSZtUtyef6kl4VEe2v1HmVflXSOpB3+z/tIGnHObfd/flRS4LfQzM40s9VmtnrLli1VvRibEQIAalVteQGuJwCyplkboJOjA0iaDrOajgMAkok8sz7987u1auliPbj8GK1aujgRg2RS89ofQJCWDZSZ2bGSnnDOrann8c65bznnFjjnFsyaNauqxzDqDACoVdAGv2G4niAObF6MRjXrM9SsDdDJ0QEkzXhIjcWw4wCA1qiU15Jnpkuz2h9AkFbuUbZI0vFm9k5Ju8nbo+xSSV1mNt1fVXaApKb1/iR5M0IAQDIFbfD7/IvbA0vvcD1B1Ni8GI1q5meoWRugk6MDSJoZu+e0ddvUXG/G7rkWnA0AIEg1eS15Zro0q/0BBGnZQJlz7jxJ50mSmb1V0qedc6eY2fWSTpR0jaQzJP2wWa8ZtBmhSTrikOpWpAEAsql0g9/ShFxiFhPiwebFaFSzP0PN2AA9yRuGA8imsIVjLCgDgOSoJq8lz0yfZrQ/gCCt3qMsyLmSzjaz++TtWfafzXri/vndevfrulVcVdxJunFNnrJFAICqJXlzW6QbpUPQqCR+hoipAJLmmYDKAeWOAwDiV01eS54JoFqtLL24k3Pudkm3+/9+QNIbonqt2+7dotJJYMzEBoDmGhrOp34pPLOY0AqUDkGjkvoZKo6phWvIWdeuTe01BECyJTVWAgAmVBur26HtnoU+FCDpkriiLFJJnEULAGlSKEuYHxmV00SdcFbuAo1j82I0KumfIa4hAJIgbHsGtm0AgORIel5bLfJfIBkyN1AWNgOMmWEA0Bzl6oQDaAylQ9CopH+GuIZA8jqMFi1fqYOX3qpFy1fSUYTY3XbvlpqOAwDil/S8tlppzH/J5dCOElF6MU5HHDJLV9y5KfA4AKBxQaUPyh0HUJt2KB2CZEvyZ4jqDyjMqi50GBVmVUtK7OcW6UM+CwDtIcl5bbXSlv+Sy6FdZW5F2Y/WPVbTcQBAbTrMajoOAEAB1R+QxlnVaD/kswCAuKQt/yWXQ7vK3EDZyOhYTccBALUZd66m4wAAFKRlrwnUL22zqtGeyGcBAHFJW/5LLod2lamBMuqhAkD0ukNmPYUdBwCgIC17TaB+aZtVjfZEPgsAiEva8l9yObSrTO1RVm6JJwUUAKA5Bvp6JtWjltp7NhQAIF5p2GsC9SOPQBLwOQQAxClN+S/XULSrTA2UlVviSQEFAGiOQnI3uGKjNo+ManZXpwb6elKT9AEAgOiQRyAJ+BwCAFAfrqFoV5kaKJvd1ak89VABIHJpmg0FAADiRR6BJOBzCABAfbiGoh1lao+ySks82cMMQBqZWYeZDZvZj/yfDzazu8zsPjO71sx2afU5AkC7I9YCQLSIswAQPWItgKzK1EBZJeX2MAOANvYPku4p+vmLki5xzr1K0lZJH2rJWQFAuhBrASBaxFkAiB6xFkAmZWqgrNJAGGUZAaSNmR0g6RhJ3/F/NkmLJd3g3+UySf3Nft2h4bwWLV+pg5feqkXLV7JiF0CqtSrWNgsxG0DStSLOEhsBZE2757RJw3UEaC+Z2qNsc4WBsA6zmM4EAGLzVUnnSNrT/3kfSSPOue3+z49Kamrh6KHhvM67ab1Gx8YleZMQzrtpvSRRoxpAWsUea5uFmA2gTcQaZ4mNADKqbXPapOE6ArSfTK0om93VWfb2cediOhMAiJ6ZHSvpCefcmgae40wzW21mq7ds2VLVYwZXbNyZDBaMjo1T3hZAKjUaa+uJs81EzAaQdK2Is8RGAFnT7jlt0nAdAdpPpgbKDtqn/EBZd4WBNABoM4skHW9mD0m6Rl7JhEsldZlZYUXxAZJC1/87577lnFvgnFswa9asql40bPVupVW9ANCmGoq19cTZZiJmA2gDscdZYiOADGrrnDZpuI4A7SdTA2V3PrA19LZpkgb6euI7GQCImHPuPOfcAc65gyS9T9JK59wpkm6TdKJ/tzMk/bCZrxu2erfSql4AaEetirXNQswGkHStiLPERgBZ0+45bdJwHQHaT6YGysqVVnSiRiyAzDhX0tlmdp+8muP/2cwnH+jrUWeuY9KxzlwHkxEAZE2ksbZZiNkA2lhkcZbYCAA7tUVOmzRcR4D2M73yXbKB3ckApJlz7nZJt/v/fkDSG6J6rcKkg8EVG7V5ZFSzuzo10NfDZAQAqRdnrG0WYjaAdhJXnCU2Asiydsxpk4brCNB+GCgDAAAAMqx/fvekRvvQcF6Llq+kUQ8AAIBUGxrORzaYVZpjA0g2Bsp8nblMVaEEgMgMDed13k3rNTo2LknKj4zqvJvWS6LELQAkHTEcAIiFAJAFxHoAxRgd8r37dQe0+hQAIBUGV2zcmWgWjI6Na3DFxhadEQCgWsRwACAWAkAWEOsBFMvUQNmpC+eE3nbjmryGhvMxng0ApNPmkdGajgMAkoMYDgDEQgDIAmI9gGKZGii7uL9Xf/rylwXexowBAGiO2V2dNR0HACQHMRwAiIUAkAXEegDFMjVQ9tmh9fr9E8+H3s6MAQBo3EBfj3LTbNKx3DTTQF9Pi84IAFDO0HBei5av1MFLb9W2l7ZPieGduQ5iOIBMIZ8FgPQb6OtRZ65j0rFm5r3FOfai5SupZAYk3PRWn0CcrrxzU9nbmTEAAE1iFX4GACRC6SbmW7eNKddh6urM6ZnRMc3u6tRAXw8bmgPIHvJZAEi1Qn47uGKjNo+MNjXvLc2x8yOjOu+m9ZNeF0CyZGqgzFW4ndlhANC4wRUbNTY+OeKOjTsNrthIQggACRO0ifnYuNPLdp2utRe8rSXnNDScj6TDAgCqRT4LANnQP787krgelGMXtv0pfj3yXiA5MjVQVgmBCAAalw8pYxt2HADQOknbxJzZtwCSgHwWANCIanJs8l4gWRgoAwA0VYeZxt3UNbwdRr0aoBbMLkQcZnd1Bnb8NrMkeS2f5Wpn3wJAlMhnASDZkt5WqibHJu8FkmVaq08gKXL8JQCgKYI6FcodBzBVYXZhfmRUThOzC9kAGs020NejXMfkjt9chzV1E/NaPstJW+EGIJvIZwEgudqhrVRNjk3eCyQLw0O+sR2tPgMASIcZu+dqOo72MTSc16LlK3Xw0lu1aPnKRDVE0qbc7EKg6Ur7fUP6geuJAbV+lsNWsjVzhRsAVDItZOFY2HEAQHwaaSvF2qatkGOT9wLJwkAZAKCpwibaMgG3vbXDrL00YXYh4jK4YqPGdkwO0GM73JSOhnpjQK2f5YG+HnXmOiYd68x1NG2FGwBUY0dI3hp2HAAQn3rbSnG2aavJscl7gWTJ1EDZy3bpKHv7Z4fWx3QmAJBez4yO1XQc7YEVTvFidiHiUm1HQ70xoNbPcv/8bi1b0qvurk6ZpO6uTi1b0ss+DQAAAJBUf1spzjZtNTk2eS+QLNNbfQJxynVMkzQeevsVd27Sxf298Z0QAKRQNZvWtpukbxQcB1Y4xWugr0fn3bR+UkOO2YWIQrUxO+y7nh8Z1aLlK0PjYz2f5f753ZmLsQAAAKhOvW2lONu01ebY5L21o38GUcnUirIRVjMAQOTSVj6AkoMeVjjFi9mFiEu1MTvsu25S2fjIZxlAO9o9F9xVEnYcABCfevPLONu0aesXSQr6ZxClTK0oq8bQcJ6GOwA0oH9+t65fvUmr7n9657HXztm7bWNrufIM7fo71eOIQ2bpijs3BR5HNJhdiKgVZmMWx7gOM737dVM/e2ExoHS7nqD4yGcZQLsxs5qOAwDiVU9+WWubtpGVS/3zu7X64ad19V2PaNy50BwbtaF/BlFiOlSJC2/e0OpTAIC29tmh9ZMGySRp1f1Pt+0+kEkqOTg0nNei5St18NJbtWj5ylhnTd1275aajgNItqHhvAauXzelJMy4c7pxTX5KfKnlu05JVgDt7vmXgrdsCDsOAEi+Wtq01axcKtc+HxrO68Y1eY07b1pZWI6N2iSpfwbpw0BZCcozAkBjrr7rkZqOJ11SSg62usQACSmQLhfevEFjO0rXg3mCNjWv5btOSVYAAAAkTS1t2nIrl6TK7fNKj0d9ktI/g3Rq2UCZme1mZr8xs3VmtsHMLvKPH2xmd5nZfWZ2rZnt0qpzBADUrjBjqtrjSRdWhiHukoOtTrRJSIF0qTQ5rLTDoJbvOiVZAQAAkDS1tGkrDapVap8z0TQaSemfQTq1ckXZi5IWO+cOlXSYpLeb2UJJX5R0iXPuVZK2SvpQs16wmmriM3bPBR5vZbkrAGgnHSF7N4QdT7qklBxsdaLNZsRAtpR2GATFgLCoTklWAAAAJE0tbdpKg2qV2udMNI1GUvpnkE4tGyhznuf8H3P+f07SYkk3+Mcvk9TftNes4j4XHDdvyrFWl7sCgHZy8uEH1nQ86Vo9QFXQ6kS7f363li3pVXdXp0xSd1enli3pZcPcFGAyUPpU856GTQ6TwjsMdstNNB26OnOhuTUzZQEAANAszWqvlLZpuzpz2i03TWddu3bK81YaVKvUPmeiaTSS0j+DdGrpHmVm1mFmayU9Ielnku6XNOKc2+7f5VFJsfbABXX4tbrcFQC0k4v7e3Xqwjk7V5B1mOnUhXN0cX9vi8+sPnt3Bncmhx2PShIS7f753Vq1dLEeXH6MVi1dzCBZCjAZKH2qfU8vOG6ech1T14R1deamDIIXnnPrtolyjS9u36GukDjITFkA7S4X0lMSdhwAEI1mt1cKbdpLTjpML27foa3bxgKft9JE0UrtcyaaRqPVE4iRbtNb+eLOuXFJh5lZl6QfSDqk2sea2ZmSzpSkOXPmNOV8wsqCMVoNALW5uL+3bQfGSoVVjIy7kmQhoR5csVGbR0Y1u6tTA309JNpoSLnJQHy22lO172ktMSXsOXfLTVNnrmPSbXEM4A8N54mFACK1PWTJbNhxANlBHhKvqNor1Txv//zunf8uvO9nXbt25/u+bElv2c9C8ePRHAN9PTrvpvWxtz+QDS0dKCtwzo2Y2W2S3iipy8ym+6vKDpAUOEXAOfctSd+SpAULFjQlXQ0rCza7q1P5gEExRqsBIP2KV1BUczxKJNpoNiYDpU8t72m1MSUoD5a8OPjVkw6LtbOoMKu40DguzP6VgitDAEA9XEgPQ9hxANlAHhK/qNorYflt0PGw933Zkl6tWrq4ofNAbZhAjCi1bKDMzGZJGvMHyTolHS3pi5Juk3SipGsknSHph3Gd04K5MwOPM1oNAACzJ+uV5L9bvZOB6vqd1q+XPvIR6aKLpCOPbOS0UUbYe+okLVq+surPX/F7HGaaxT+AzypIAADQKuQh8Wtk8UJQm0VS2a10gqqN8b4nCxOIEZVWVtjeX9JtZna3pP+W9DPn3I8knSvpbDO7T9I+kv4zrhMKC5TUlQWA2jRrs10kB3tZ1Sfpf7d69r6r6XdyTlqzRnrzm6W/+Atp1Srp0kub/FugWNB7WlDt56/0PQ6zwyn2z3LYwF3YrGAAAIBmoRpD/I44ZFZNxwuC2iwD16/TwA3ryuaN4wFLh8vln/R3AOnRsoEy59zdzrn5zrm/cM79uXPun/zjDzjn3uCce5Vz7j3OuRfjOqdyF7bCZo8PLj9Gq5YuZpAMAEIkfWCgVmH7V4YdT6tys+gQrpG/WxwDzvVMBqr4O42MSKecIr3yldJRR0m5nLR5szRnjnTttdLNNzf998CE4vc0SDWfv6D3uNx94xQ2e9gU/6AdAADIlrA8hK1ZonPbvVsCj99692NlHxeUz47tcBobL19DNyiHLvf+tnt/B4AJrVxRljhc2ACgcWkbUAnbvzLseFoxe7I+9f7d4hxwrnUyUNC5d+wY17tv/a5kJs2YIV11lfTgg1JvrzRvnnT//dLDD0vvfW/Tzx9TFd7TMJVWX9XyvY47Bgz09ShomoJT/IN2AAAgW+qpxoDGhOWaW7eNlW0b1ZOjhr2X5So2SO3d3wFgAgNlRVpxYaM8GYC0SduAysX9vTp14ZydK8g6zHTqwjm6uL+3xWcWL2ZP1qfev1uSB5x3nrtzem3+Hu31wnP64eVn6+xfXzlxp3PPlV54QfrqV6WODm8ADbGrd0VsLd/ruGNA//zu0HKQ7XqdAQAA7YGtWeJXLtcs1zaqNUct915WqtggkYcCaTC91SeQJHFf2AqzxQsdYYXZ4q04FwBolkY2202qi/t7MzcwVmqgr2fSNUti9mQ16v27JXnA+avuHr3+ix/b+fN5fR/T9w9/l95z+Fwt+Ohp0t57t/DsUCxoj4VyxwuCPre5aSaZJpWraVUM6E7hdQYAALSH/vnd9NnFaKCvR5+8dm3gbeXaRrXks9UMdhbe90XLV5KHAinFirIqRbHyq9JscVabAWhHlKNIJ2ZP1qfev1viVvDl89JnPiOZ6fXnTwySfeGtH9TqhW/TGy/8pBac/zEGyRImbNZrudmwUvDndvA9h2rwxEMTEQO4zgCI2ozdczUdBwBEo39+t7o6g2NvubZRVPkseSiQXqwoKzI0nA8MjlGt/Co3W5zVZgDaVSFGDa7YqM0jo5rd1amBvp62jl1Dw/lU/T71YvZkfer5uyViBd/dd0vXXeeVTXzzm6UvfME7/prXeMfnzdP5ks6P74xQo0Y+R2Gf29JjrYiPabzOAEiWC46bp7OvW6sdRQtwp5l3HAAQrwuPn1dXTlttPlsL8tDWo38GUcnUQJlJoXsaSNKnrlsnaWrALLfyq5EvYrnyZFG9JgDEIU0DKkxcQCu0rAG2aZN0+unSL34xcewNb5D+8R+lBx+UDjoo2tdHU0X9OWplfEzTdQZAMnVMM+0oKs/VMY39NgGgFZI2OEUe2jr0zyBKmRooe9OfzNSq+58OvX3cucAvV1T7hJSb5XtWHfV3ASAp0jTDJ0kTF9L0d0VlsTXAXnhBmj5d+uAHpe9/f/JtN9wgvfvd3r8ZJGtL5T5Hnx1ar6vvekTjzqnDTCcffmBN+zEmKT4CQDMNrtg4aQ8bydvThvgGAK3RisGpSu1v2ufxo/2BKGVqoOyhpyoPMgV9ucqt/GpEuRkRgys2sjkkgLaUthk+UU2WqFXa/q6oLNKG1wsveHuOfeUr0l57SVdcIc2YIS1ZIr3lLdLHPiZNYyvbNAj7HH12aL2uuHPTzvuNO7fz52oHy5ISHwGg2YLa4uWOAwCiFfegVKX2N+3z1qD9gShlaqCs2qS29MsV5T4hYTMiErE3CQDUIW0zfKKaLFGrsL/rJ69dq8EVG2tuKDS6kgTRiqTh5Zz0859Lb3vb5ON/+ZfSnDnSpZc2cspIoHKfo6vveiTwMVff9YgWzJ1ZVUdEFPGxuBNk9106tO2lcTmJOAUAABKBdlT8mtE2Chto8577bo2O7ZDk7Uf5/sPn6LZ7t5Tt10hbv0e7SEr/DNIpUwNl1Sr9crWiFm7S6u8CQLXaeQZuUPKclIkL5WZI1dpQaMZKEkSrqQ2vdeukhx+Wtm2TTj554vjpp0tf+5q0995NOGMk0UW3bAj9HI274J17C6XIq+mIaHZ8LO0Eef6lieclTgEAgFajHdUa5dpGhdvL9Z2GDbStfvhpXXXnJu0ouu8Op0nvcalCu5yVTa2RlP4ZpBMDZSXCvlytqIXL5pAA2lGHWWAHbIclewP0sOR52ZJeLVvS2/KJC2EzpwpqGUQpt5KEBl4yNNzwWrlSOuEE6bnnvJ/331/63e+kyy6Tjj9e6upq6Pyox598Q8N5bd02Fnjb5pHR0FgtqepB2mZP7ArqBClFnAIAAK1CO6o1yk3GrWaCV9hA29V3PTJpkKwahcUVrGxqDRaWIEqZGigr1yEgSd18uQCgYeVWKSRZuVlqq5Yubvm1IWjmVKn8yKiGhvMVz7Vd36Msqavh5Zz0jW94+4sVO/JI6eqrvcGx009v+Nyox98eCjNsg+zdmdOxh+5fdrZsqbBB2mZO7KpmIJg4BQAAWoV2VPyGhvMySUF/4Q6zqiZ4heWYld63zlxH6MolVja1DgtLEJVM7dJ+8uEHlr09CR2hANDuukM68sOOJ0XSSyf0z+/WsiW9Ff+O5920XkPD+bL3CVvdl/RVf1ky0NejzlzHpGOBDa9HHvHKKb7tbdKaNdINN3jHZ8yQfvGLiX3JZs1q2rlVKn2CZCgXu17aPq6L+3t16sI5U773YXEgjtmx1bwGcQoAALQK7aj4Da7YGDhIZgof6CrNg+vJYzvMdra/TV5/xrIlvTv7jYvb50G3S94g36LlK3Xw0lu1aPnKiu10AK2VqRVlF/f36so7NwUG2F06uKgBQDMccciswFUKRxzSvI76KLRD6YTCzKnSFT3FqinBePLhBwa+R5UmlCA+ZUtK/PGP0t/9nXTNNRMP2HNP6YknpFtukfbYI9JzS/qgMjzlyrVu8zcrv7i/VwvmzpwUT4I6HOKaHVvNylniFAAAaBXaUfELa2M4eYNT1bThq8kxS518+IEVVy6Vu50qHED7ydSKMkk6ZeGcwOOvP2hGzGcCAOl0271bajqeFFWv4EmAwuy1MJUGLBbMnTklAZjmH0dy9M/v1qqli/Xg8mO06tN/pf4ZY9KPfiTtu+/kQbJLL5VGRqR3vrOuQbJaZzqGDR4naVAZqjp2he0LVjyFbLdcPE2GSitniVMAAKCVaEfFb+/OXODxwvY51bThS1d/VdKM95QqHED7ydSKMkm69jfBezGsuv/pnfu6BG1QL03M6t67MyczaWTbGJsGAkCJdl1t0m6bwvbP79bgio11rYIbXLFxyqbFO/zj5X7foOtjUv8+qbBjh/SVr0gDA97Pr3mNdOut0qmnSocd5q0q23XXhl6inpmO1ONvD/3zu/WZH6zX8y9NHQSbsftEh0O5WboFW7eN6byb1mv1w0/rtnu3RBoDCjNzFy1fOSW+VROnAAAAolJvOwr1GRrO6/mXtk85nptmk/LQatqoxdVZPnXdurL7kzXjPW3XfhEgyzI1UPbZofUaK72iFSmM6pd2GA1cv04yaWzcC6Ijo2M7H8PSWQCYrB1KGIZpt01h6x2wCCvHFnZconREbJyT1q+XjjlGevTRybddfLE0d6703e827eXKzXQMe1/bbVA5yz7/rl4N3LBuZw4rSbkO0wXHzdv5c7kSjcVGx8YnlTCPOgbUE6cAAACixOBHvAZXbJyUxxbssdv0SXuFVZuLFtq05QbJChrNOdu5XwTIqkyVXgyqI1xs88hoYIfR2A4XGJgLWDoLABMG+nqUmza5oEFhxheaq5oNhIPUswk1pSMi9tvfSl/4gjc4dtJJE4NkRx3l/ds56V3vkpq8UXi9jf1JZSGXLmaQLKH653dr8MRDJ8WIwRMPnfR+BZWsCVOaDUcVA8qV/ywXpwAAAKJECfJ4hbVJRraNBR6vJKzkeJBGc85qy0LWWgYfQHQytaKskmlmdc8YYPYIAEwIKkeBaNSzCi5sBl25mXXMnozA3XdLJ54o/f73E8cOPFD6/ve9lWOzZkV+CnHOdKR0Z7xK/96XnHRYaBkaafIKwW0vbdfWKjsgmh0DhobzGrhhXejt1cwABgAAiAIlyONVrq1ST9uilry10Zyzmiochby3sDgjPzK6Mw+mnQTEj4GyIuPOyTR1tmw1mD0CAJ6Lbtmg8R2TI+n4DqeLbtlAspcQ3SENju4y1zJKRzSJc9JvfiN94hPe/wtmzJB+9Stp3rzwx0YgrsY+pTvjVevfu3TAvfTxkkJz5GbHgItu2VC2kkO5OAUAABAlSpDHK6ytcsQhs+pqW1RbclxqTs5ZaVJrUN47Nu509nVrdz4eQHwyVXqxGkHN8tw0U64jfMkts0cAYELYKoRqVycgetWWgWj0MfBt3SqdfLL06ldLxx3nHXvySWn2bOm667zBs6efjn2QTKq/fGetKN0Zr0b/3kGfi1MWzoklNO80hAAAIABJREFUBpS7VhBzAABAq1GCPD5hbZXb7t1SV64b1KYN6vONK+cMy3t3OOm8m9ZThhGIWWZXlPU+9ns9v0unHtjngLL36+rM6cLjvY6rwoyR3XLT9OL2HdrhvJq1735d7WWvAABolXpmQsY5e7KeMhqJK+u3fbt08cXSRRdNPn7ssdLrXy/dd1/T9xurVz3lO2tF6c54RfH3XjB3phbMnbnze7Z3Z05m0lnXrtXgio2xfOeiGMQFAABAe2lkn2Vpaps26FgjOWcz2qaFgT9yXyA+mRwom7ZjXLdcfpYk6SevfqM+3H9+aGfVy3advjMo9c/v3lmKplBVbNw53bgmrwVzZxK8ACClEjcI0wT1DI7EMaBST4m+xJT1c0664w6pt1dauFD63e8mblu61Bs022WX+M4nQSjdGa9G/95h36llS3q1auniwNs/ee1aXXjzBl14/LzIvnftHncBAABQvbCcdO/OnEZGp67GqibXDWvTNivPbGbblEmFwdLYP4NkyGTpxR3TOvSJ4wYkSW//3zv00JeOU+9jvw+8b35kVAcvvVWLlq/U0HBeF92yIdLSQUPDeS1avnLSawJAO5kWskgm7HjSFRLd/MionCYSXeJzNOopGdfSsn7OSVde6U24mTZNWrRIGhqSzj5buuIKaWREQ799VIv2PloHf+5nmb22U7ozXo3+vSt9p4Jul6SR0bGG42PariEAAACoT1hOaqaqct1W9LHW0jadsXuu7HMxqXAq+mcQpUwOlEnSza95i179qR/oD3vMlCTdcvlZ+vs7rgu8b+GLN3DDutD6sc0Y5efLDiAN3n/4nJqOJx17K8WrnjIaLSnr9+ij0jnneINjp546cfzSS6X+fulDH5JOOUVDDzzHtV3x7YUGT6N/77BNzgvHy323Go2PabuGAAAAoD5hOefItrGKuW6r+lhraZtecNy8KfujFTCpMBj9M4hSJksvFrw0PafDP3q53vLAGl12/QW688BeSdIu28f00vSpo/pj4y70uboqzAKoRrkvOx1JANrFxf1eLL36rkc07pw6zHTy4QfuPN5uKnUYZ0kcJQ7qKRkXW1m/deukG2/0yif29kqDg97xefOk666TXvOaKQ/h2j4hjtKdmNDI37vDTONuat5rJi1avlLhGbGnkfiYtmsIAAAA6lOunVcp1w1rh11484ZI27S1tE2L90zLj4zuzMG7KScYiv4ZRCnTA2UFv3jl63TQObdIZnr5s0/pN984Q4/svZ+O+Nv/0PaO6v5EAX0JNWOjewBpcXF/b2o6NcM6jDtC9rZMq7j2ARvo65n0OlLl2XT1PKZqmzZJp50m/fKXE8cWLZIGBqSHHpLmzi378Eau7dReRzPU8zkKinmSl+9W0whtND6m6RoCAACA+gS18yRp20vbNTScL5vThq5GGx3bub9ZFG3aWtumTCasDf0ziFJmSy9O4X+hOtwOSdKBz/xB9/1Lv96+cVVVD38mYBPJWoXNfKcmLQC0TliHcdjxtIqrxEE9JeOaXtZvdFQaH5dOPtkbCCseJLvxRunXv5Z23bXiIJlU/7Wdcsxohno/R90N5p5Zi48AAABovkI7r6tzchWvrdsq74tbbV9qs9u0lJyPFv0ziBIryko8ttcsHXTOLfruDRdp8QOr9c2hZXqxI6c/P+s6jXWEl1dsxmBWpDPiAWSSme0m6ZeSdpUX829wzl1gZgdLukbSPpLWSDrNOfdSs143TSthukNKJzTakdxu4lz1XM+suoZn4r3wgnT++dIll0h77inddJO0997SCSdIRx4pffSj3n5kNar32h5nycY0fV9boVVxthr1lpwJm71brUbjI59JAMWSHGcBIC2SGmv753drcMXGnavACkbHxvXJa9dqcMXGwFyxlny22W3aetqm5L/VoX8GUWJFWRAzffA9F+ptH/y6JGnX8THt9+xT4XeXmjKYxawDABF4UdJi59yhkg6T9HYzWyjpi5Iucc69StJWSR9q1gsODec1cMO6SSsYBm5Y17YrYY44ZFZNx9MqlauenZN+/GNvVXlnpzdIJklHHSXtt5/0zW9KQ0PSxz9e1yCZVP+1Pa6BSVauNUXscbZa5UrOlHvPgz63M2rYj/egfeqPC3wmAQRIbJwFgBRJbKwt1wYKyxVryWdb3aYNyn/PunatPju0vqXnlUT0zyBKrCgr439nHaSDzv2RDno6r0e7XqFDnnhQ37/uH3Xk33xTf9xtD0neINkpC+c0bTCL2rQAmsk55yQ95/+Y8/9zkhZLer9//DJJF0r692a85kW3bNDY+ORl72PjThfdsqEt49tt926p6XhaDfT1aOCGdZPe21yHteeq57Vrpc2bpSeekP76ryeOn3GG9LWvSXvt1dSXq+faXssm0I2Ic+VaWrUizlYr7HNUKug9L/3cFiZBlMb3IP/v/qcr7hsRhs9kujA7Gs2Q5DgLAGmR5FhbKacNyxWryWeT0KYNyn+dpCvv3KQFc2emJndqRl5I/wyixIqyKjw00/vSfmLV1Zr1/IjuvvR9+vs7rlN3V6cuOemwnZuNDw3ntWj5Sh289FYtWr6y4ZmvzX4+ANlkZh1mtlbSE5J+Jul+SSPOue3+XR6VFJidmNmZZrbazFZv2VJd4rF1W/CejWHHky5s9lp+ZDR7Mbq0f7ydyoD/139Je+zhrR6bP98rpXjccdLll0tbt3qry773vaYPktVroK9HnbmOSceiKMccZ0nNNIs7zlYr6HMUJj8yWjmeVfmdd1LNez0U8t6wThA+k+2H1YFopqTGWQBIk6TG2mpy2nK5YiHP/OS1a6dO+oqwTVttv27YudeTUydVs/JC2q+IEgNlNfj7d52vf1v4HknSOb+8XKvOO1L9+5mk5jcEaVgCaBbn3Lhz7jBJB0h6g6RDanjst5xzC5xzC2bNyuZS9rAVPCZlKkYPrtiosR0lKwV3uGQn7s5J//qv3uDYUUdJzz/vHe/rk37zG2mffaTTTpO6ulp7ngHiKsecypKaLZDUOFtrCcVy8SwoBpRTS2O1OO8Nw2ey/ZRbHQjUKqlxFgDSJKmxtjinDROWK1bKM6Nq09bSr1suz03LAFCz8kLar4gSA2U1GnzLGVrwsSsmDnR3S841vSFIwxJAsznnRiTdJumNkrrMrFB+9wBJ6R3haVDQ7DXT1IlnaY/RbTNza9Mm6ZRTpKOPljZskK66yjs+c6b0y196g2c/+YnUBh1l/fO7tWrpYj24/BitWro4kpIbca1cy4okxtnSz9EFx82rOCM3KJ7V+l3vqmFPs6C8txifyfbUNtcNtJUkxlkASJskxtpCTvvVkw6rqf1SKc+UoslNaunXLZfn1pJTJ1mz8kLar4gSA2V12LV7f6+j7Wtfk374Q8lM+9xzt+Zu3TzlvpW+8GHLcGlYAmgGM5tlZl3+vzslHS3pHnlJ74n+3c6Q9MPWnGHyBa3ICFtT0U4xutbyvomeufXMM3q07wRv5djcudJVV+nF1b+VHn9c+ulPvWv2U09Jf/mXrT7TxIlr5VqatTTOLlvmfe4HB6Xt2yvfX1Pf8zCl5WX37qytke5qKGNTLnZ2mO3sVEjzqt00SvR1A22FfBYAopfUWFvabpVUU/ulmjb63p25pm+rUEu/bv/8bnXmgrvoa8mpk6xZeSHtV0RpeuW7SGb2MkmjzrkdZvZqeUtvf+yca88NZxpU6DgY6FvifRHHx3Xz5WdJkm7+s7/SJ44/Z+d9y33hC8twCzMMCstwC48LWhZMwxLIrjpj8f6SLjOzDnmTI65zzv3IzH4n6Rozu1jSsKT/jPr821npJsBh++i0S4wud/0JSzAH+nomPUZq8cyt7dulzZulNWukJUt0QNFNnzvq73T94Sdo2T5/pv4992zqyzZjA+KkKf18Z1nbxdnCyshzzpG+/nXpTW+Sli/3BozLKLznQ8N5feq6dRoPaIEXysvK/3+uw5SbZpPKL3bmOkJn6D4zWn0zodwG7YVzqyZOIVkSd91AYtQRa8lnASRGO7QH2i6nDTE0nNfA9et25p/5kVENXL9Og+85VKuWLq7qOcrlmZKUm2Z6/qXtGvFz12blnLX2646O7Qg8XktOnWTNzAtpvyIq1a4o+6Wk3cysW9JPJZ0m6XtRnVQ7mFRbtqNDa/7pq5Kk4+/5/+ydeXgUVdaH35tOAwkoAY2IEQgqgiJLBAYURwcUUVnMgAMyMqMO7iuISFAUVEZA3B2XcUYdRx0ERCOLigq4MeIIJoCIfIogGFARiAsEyHK/P24q6aW27vTe932ePElXV1dVV6pOnXvPOb/zPltmDqbz95scb3i7MlxdSqrRaEwI2RZLKddKKQuklF2llCdJKe+qXf61lPI3UsrjpJR/kFIeiNRBWmVCWS1PRpLdRocj75sQmVs1NapyRgjwemHYMOjcmYU9z+Gu/pfT4eZXyZ+4iH/3GEJFVU3EpTB1/9C0ICnsbB2XXaaCxsXFkJ8PL72kfl9zDaxbZ/tR43q2CpIFLq2sljRrkhlkA6x6RYSSOOCmQTukvsRtqpEQzw1NohKSrY2rndVoNBofkmg8kFw+rQVTF6w37ZM9dcF619uwaqUAyjdp1iSTymr/fUTC5wxlzqC4pMxS6SFZknGd0H6hJhlwVVEGCCnlPiHEGOBxKeW9QojShuxYCNEG+DfQCjUWf0pK+bAQoiUwB8gHtgAjpJR7GrKvaFFRWc34uWsAKLz9RhYMGMzpZ55Mzr6fWfyvG/nshls5qeAcy89bleGWlVcwa8lGhvfIY/kXOxM6S0Wj0cSUiNviaNDE6zHNhmriYhI0WTBscaJnEloRrrxvXDK3pFQT/mefDd9/7//e5MnQoQM3nHmdqRxmpKUw7QKMyfK/1ziSFHbWD48Hzj9f/SxYoIJmTz8NTzyh3p86FW6/HTL8kxWs+jV4hDANngHs2VdJ+b7KIJvX0OxQX5tql/ELySVxG20mF69j9sfbqJYSjxCM6t2GaYVd4n1YfuiMX40FyWdrNRqNhqQaD6SEnS23qKayWm5G4Ni9eZYXIaB8n9rGnn3m29peXtGg6kFjvTsXrq/bR+NM8+ThWUs2mo5nBfb9y9ySKFWQ2i/UJDquA2VCiFOAi4AxtcsaOuNZBYyXUn4qhDgEWC2EeBu4BFgqpZwhhCgCioCJDdxX1KiWknFzShk7p5S8nCxqPvycwu2lMHgwJ104WK104AA0bhz0Wbvy37LyCuavLtPRdY1G40s0bHHEsXI0rZYnK8ns5CWFvG9JCbzxBowZowIARpDs7LPh2WfhqKPqVo3V94l1/9BEGdCkGUlhZy0ZOlT9zJgBbdsqH3TqVFVpdsklcOmlcMQRALZSh3k2Pqpv9jS4Sxxwcy0bNrV90WLLPpCQYHYqjkwuXscLK7fWva6Wsu51ogXLNBoTktvWajSatCXW44EGkPJ2NpSxkq/seGALAjMlBYCcbG/I7QrM2O+TRFxeUWm6DavrR4a4LzPCabug0aQrbnWwxgKTgFellOuFEMegmjmGjZRyh5Ty09q/f0E1iMwDzgeeq13tOaCwIfuJBYZBrSu5Pqq7koc65RQoK4MmTaBDh6Am604yM1peRqPRBBBxW6xJLgIbGYcr8ZGw0pFr1sBxxylpxZNPhttug/feU5P8P/ygqsuWLPELkkHsvk+kGhC7IYlkXVKN1LCzRxwB+/fDL7/Av/4FTZtCURG0agUTJ8LWrXiEucCLRwj6dcq1lH8x8PVTCwvyWFHUn80zBrGiqH9QkCyUa9nufkoIO5UgzP54W0jLNZoEIzVsrUajSTtiOR5oIClhZ1tke02XN23kCWusZFYRaBYky/J6kBLHdgVO43O3LQ+srh8rifNQCKftgkaTrrgKlEkp35NSDgUerX39tZTyhkgdhBAiHygAPgZaSSl31L71HUqaMWmoMzbG5EN1rTH66ivVT6W4uG5dX31WKxIwK0Wj0cSJaNtiTWJjNDL2HQxMmLcmrMBJQumDSwn//a8KjHXvDps2qeWHHQYbNsCIEdC7N+TmWm4iVt8nlgFGPaCJDylnZ5s1g4svhk8+gfvvh/794b77oF07Ns0YxBUfz1f3oA/VUjJ/dZltVZeBGz811GvZKpGsRbZXKy34YCWPabVco0kkUs7WajSatKHo9DYM3bSSq1a+TNbB/UBiJvKkip2dMqQzXo9/+pbXI/B6MsIaK7nxXQUwvEceP1nIOxrbcDM+d1uBGM1xZhJVQWo0cceV9GJtue7TQDOgrRCiG3CllPKahh6AEKIZMB8YK6X8Wfhkt0oppRDCdLQnhLgCuAKgbdu27vaFeaZApPGTqmnbVlWXDRwIb78Nv/+9mrTYvRu83rry374zliW+DJZGo4kr0bTFmsgTadk8u0bG4Ww3rtKRe/bA1VfD2rXQuTNcdx38/LOqdnnsMRg+PORNxuL7xLI3nR7QxIeUtbNCwE03qZ+tW6FrV/jpJ25991kGffEhz/Ycylsd+rCvkfI7zXqXmeHGT7WScLS6lpOpB2Q85VGteslZVQpqNIlEytpajUaTOmzeDK++qpLdu3WDhx+Ghx9myE03MaR2lW+bH0HJKQMT0k9JOjv73/+qfrp9+vgttvILx80xb7fm61+a+Wl2LXAMJLD8i52O8v5uxuduWwRE0/9NirYLGk2C4LZH2UPAQGABgJRyjRDi9IbuXAjhRQXJXpRSvlK7+HshRGsp5Q4hRGvgB7PPSimfAp4C6Nmzp6v4V6zyK4MGqELAW2+pCcFu3eDXX5UkY35+3SoTBna0bYSu+5RoNBqiZIs1kScaOuCRaGQcV6qq4K674O67/ZcPHgynnw5ffllfjZ3AxCrAqAc0cSP17WzbtlBeTo/rX+SS1Qs5d+MKHlp0PwAHPJkMvvhhvsxt57gZN1muxSVllolqdtdyMvSAjHe/h1G92/j1KPNdnkjoMYzGgtS3tRqNJvGpqoIPPoCdO2HQINUj+be/DV7vgw/g1luhZ0/1flYWjBzJ3y69NJHHL8ljZ6WEvn3rX7/+uupL7VEVVmZ+4awlG23HSlZ+2vAeecxfXeaYFLa9vIIHR3a3nad1Mz7v1ynX1F/r1ylYLSVa/q/TfHOqoX1PTUNw26MMKWWg4L27VFMLhCodexrYIKV8wOetBcDFtX9fDLzWkP3EA0vJk65d1QPgiy9UkGzNGsjLg/JyW9ko3adEo9EYRNoWRwOroULCDiGigJbNq6WmBlasgH374MQT/YNkkybBgQNw771qgJm4g8y4YDZ4sluuiRzJYGcjwa6mOdx/+p8YcNnjvHzSmQA0rq7i7WeuZcvMwdy67Gm/9Vtke0OWN521ZKNlolqyX8vxtvPTCrswuk/bugQ9jxCM7tOWaYVdYrJ/N+gxjMaOdLG1Go0mAdi3T/Vu3bEDhgypH3t4vUqWeuRIldju9emHdcQRcMUVKmizfz+0bq2CZO+/r3om/+UvCT9+SRo7K4Q6rwbnnQejRsH06fD996YfcRorWflpy7/Y6Tf3alWJf1ROVkTk/Zd/sTOk5dEgodouRBnte2oaituKsm1CiFMBWVsFdiOwoYH77gv8CVgnhDBqZm8FZgBzhRBjgG+AEQ3cT8xxbLbYsTZqP2UKbN8OLVrAzJkU3nKLqaGyG4inomHTaDSWRMMWRxyrSdF06poSDdm8Ftle9uwLzlqzanAcN6SEF16AP/+5ftm8eUryrVkzGDoUDj00fseXJCTCoCpNSQo7GwkMmyJFBjcPGsfNg8Zx9v99xFOv/hWAKz55lQFfreSefmP4b6c+TBnSOWS/087m2V3L0cwEjdS2E0EedVphl4QKjAWixzAaG9LG1mo0mhhSWQkLFqjkvDVr/N+bOxd69IBFi/yX9+4N11+vEtubNg3q3WpGklSsJJed/e1v1bk/eFBJXi5frqr4br1VvX/77TB1qpJnxHmsZOen+VZuBVaegX+1lV2Vl5vxeSj+ot111dBrLhZqDYlwX8Tb90yEc6BpGG4ryq4CrgXygDKge+3rsJFSfiilFFLKrlLK7rU/r0spd0kpz5RSdpBSniWl3N2Q/cSakMpXi4vh5pvV3xMnqiyK774LWi0RBuIajSYhiLgt1kQHK0mxhsjmWTUynjKkc9jbjCjbtsGNN6rBi2+Q7LHHVJ/Oq66C0aN1kMwl+tkfN9LGzprZlOUnnErxp9+y/IXXAWhUVcU/XpnG+nsGU3h6J3Wfh4CdzbO6lqOZCRrJbUfDzqcaVj1AnHqDaNKCtLG1Go0mwuzfD6+8osYbzZvXV4f9/e9KSvGCC4KDZH36qL7I+flQUaECMsbPypVw0UUqSOaCJKpYSU4726iRqvB78knYsKFOfpG771Z/P/gg7N7tOFZy66c1pNrKzfjc7XHYXVfJcM0lyjHGcwydKOdA0zBcBcqklD9KKS+SUraSUh4hpRwtpdwV7YNLNsIqX501S5V/G7RuHZTBogfiGo0GtC1OJiYM7EiW1+O3rKE64IUFecy6oJufEz/rgm7xzVBas0Zl9t17r5JYfOQRtbxLF/j8c/U8u+YaOOSQ+B1jkqKf/fEhneysnU3pd9G5ICV5u7fDA7UK6b/+qvqbCaEC4C6YMLCjpeyu1bUcTUnDSG47GnZeo0kX0snWajSaMPn6a+WDnH46HH00PPusWp6XB8OHw/PPw88/169/6KGqd9i778JHH0F1dX0w7KOPlAx8RgY0adKgw4q39LJbUsLOduqkgp+7d8OAAWrZTTfBeefx0LInOLlsg+X8aSh+WmFBHiuK+rN5xiBWFPV3Pb52Mz53exx211UyXHOJcozxHEMnyjnQNAxX0otCiOeAG6WU5bWvWwD3Syn/Es2DSyZysrysKOof3oePPFIZ9wcegOOOUxMQq1ZBy5ZwzDEhNV7UZZ4aTeqibbF74m0LjX1F+hhiIZngyDffqMqwDz+sX9avHyxerN5r2zZ+x5ZCpFvT5UQh3eyso03JzIRx49TPk0/C1Ver5dddp37eeUf19rDo71BYkMeqb3bz4sqtfvK7dtdyJDJBrZ4BkcwyjZadD4V4P+s0mnBJN1ur0WgsqKpSvanefVdJIA4apPqC/eMfwev+739w6aWqb9UbbyjFiqFD4aij/Nc744yoHnKyqD6klJ1t0QLeekv9vXYtLFvGeZNv5/xPFgOw8fC2XPyHu/jpsFZ+kolg7qdF0n9y8qXd+ovhXFdl5RUUl5QlhO+XKPdFPMfQiXIONA3DbY+yroZxBZBS7hFCFETpmBICjxAck5vN1zv3Ue1Co/ininpdWsPolpVX4BGCainJc2N8b7pJ/a6qgl691N+jR1P4/POAs2EN1NY1yjyBhDCcGo2mwaSdLQ6HRLGFCRHUihQVFUoGY9Qo1W/Ml1dfhcJC9bcOkkWMRJiET1O0nbXiqqvUz+uvq4msjAw466z693ftUkleAUwr7ELPdi1dX8tH5WSZSvO5zQS1ewY0dNuBxNPOJ8qzzg5jHGS23AkdBEx5tK3VaNKJXbvUz/HHw+zZ8Mc/Bq/TpYvyL44+Wr1u1UqNMQoLVVJe48Zq+RVXqJ84EWlfIoqkpp3t2hW6dsV72WV8fdn1HDPnX3T8cSsrn7iE7085g1a/fwClNmnup8XDf3LjLzpdV1ay1Yni+1kdf4YQtC9aHDNfLp5j6CSyDRob3PYoy6jNPgBACNES90G2pKRaSr78Ya/f4C7L6yEny2u6vnHh+2qSGtuBELVJMzPh6afV3y+8AEJQ6NnlWAqsyzw1mpQnKWyx1fSX87RYZNC2MEJUVMDYsapS5IgjlH5/06ZqAPvoo1BTo6qhjSCZJuKEKwOiaRBJYWfjynnnqXt/7956GSSAww5T9uK114I+Esq13FBJQ7tnQCrJJSbDs25U7zYhLTfQPR7SAm1rNZpUw5g727gRfv/7+t5hQsDhh6tAmJSwbp3/53r3hnvuUVXqAHfcodb77jtVzX7OOfVBsgSgX6fckJbHkdS2s82accxLz6oxaa0keKvS/0GPHnDttfDMM8pXDSBR/Sc7H9XsPYNEOHYwP35Qc+Kx9uXiNYZOpXFGOuPWSN4PfCSEmIea67wA+GvUjipKNG3kYe/BaucVLaiorKaJN4Msr8eyjNPM6Pp+ftaSje5u0r/8RWXuH3mk0l3u1g3uv7++6swEXeap0aQ8SWGLrWpwnWtzI4O2he4wzdbv1lpJKA4d6r/yeecpyQvfSXGNJjVJCjvrhqhX5DRpApdcAhdfrBqsT5miltcGzy+75jGWHtIu5H0bco2zP95GtZR4hGB4j/pMXKfvZfcMSKVKzWR41k0r7ALg978c1btN3XIr7CaxkvF/pTElZWytRpN2VFbCBx/Ac89BcbF/n7BfflESecXF/p9p1Agef1wFwP76VxUYS1KWf7EzpOVxJD3srBCqJ/Y110B5OSxdqvpnP/44jBkDwB2jJvN82z6WFT+g/KfJxetC9lkihZP/CzB2TqnlscebQB87w0RVINV9uVQaZ6QzrgJlUsp/CyFWAUYTrmFSys+jd1jRwevJAMIPlAGU76vkwZHdgy58gL4zllkaXQO3GrJ1kwBX/4eRZauZ8cIUOPVU9ebBg8rRCECXeWo0qU2q2OJoo22hM36SE1KSs/EzFq5bSX6+h+73FNWveOml8NBDqjm2RpMGpIqdjamsjBAq+/uOO1RPkVo5pH8+fi0/N8omq+oAvcrnu953cUkZ81eX1Q2uq6Vk/uoyerZTso5O3ytdngHJ8j2nFXYJeZIpGYKAmoaRKrZWo0lpNm9WAa/iYtVHrH17FYQoLYVhw4LXP/102L9fySqeey4cc4ySaU4xrOb8nOYCY01a2tmcHBg+XF2fH3xQ16/urtnTuAu4cfB4fuzYlwOZwfOp2Y08vLBya93rainrXsciWGbn/xo+rpWkdaL4fr4Sk+2LFpuuk+q+XEq130hTbANlQohDpZThLAKoAAAgAElEQVQ/15bofgf8x+e9llLK3dE+wEhS7tNHLFyOyskKuvADJyOccJqoCNzeS3k9eO2215neuA2F334LbdpA587KQcms/xfGs2mhRqOJHqlmi6NNutjChlSLzFqykZO/XM0/599NVtUBAL5qeTRjr3qQRc8/r+QVW7Rw2IpGkzqkmp0NtSInYtVnl19O313HUv79Li74bCl3vvN3AEpnFrLvwSbw/rtKYsmGqQvW20riOH0vu2dAMvT1cksqP+uSJQioCZ1Us7UaTdJTVaWCYK+9Bvv2KQUjIeCEE4LX3bwZfvwRTjkFZs5UiXRDh8JRRwWve9hh0T/2ONGQ/puxQNtZ1DV8+un0nb6UJpv+j5dmTyJ3bzkPL7qfZZ+/x5eHt2V2t4Fsaal8vyyvh30W6mOzP97WoECZWx/bSRJy0ivrTK+7RPX9tC+nSVacKsr+AwwGVuOvmiVqXx8TpeNKWLb/VEF+0WLyfAycndyiGRWV1Yyfu4Zxc0pNDaWpgayqUZMAF9ae8vXrweuFRYvUhCa6zFOjSWG0LQ6BWNnCqMuaOew7rMnemhr4299YMelGv8VLj+3FhPPGsqc6C0ZfELXj1mgSmJSys6FU5EQ6eLS9vALZOJvnegzhP93PYfqbf+OCz5aSfXA/9OmjVlqzRjVjDziOqQvWWya22WWg+r5n9wzoO2NZykj6pbLfn8pBQE1q2VqNJmnYuRM+/RSOPx5atVKVNqtWBa/XqxdceCEMHKgSswsL1U+/fv59wm65JXbHnmCYBSvslscBbWdr2V5egTysDb2uewEhazj1m7WctqWUyz55lSv/9woAb3Y+g8qn/sn1C8z7fDXk/xqKj23nu1vNOXuEYPqwLgnp+2lfTpOs2AbKpJSDhRACOENKudVu3VQjLyeLfp1yWbx2B3v21Q/YDRvpa+DCKR01jK2ZobSd3MjPh+pq6N8f3nsPBg9W2TrffQeZmbrMU6NJQdLZFodLtG1hvKsSQqoW+eYbuP122LEDnniirs/YrqxDuXLYbaw6unPdqnk6w0uTpqSanQ0lizPS/aB8913p8XLzoHHcPGgck1fP47J3nlMrdesGAwaoSbdXXqH4sx8c1RmMY3fzvayeAakm6Zeqfn8qBwHTnVSztRpNQiGlkj7MylL9ma69NnidSZNUj7DdPkVFvXurYNjw4dChg1r25puxOeYkJM/Cx0qUcZS2s/X4+qRSZLAivzsr8rvzTM+hPD/ndjr9+A3nrH8P+nZg2ykjeLHbOZQ1P8JvGw2pFAzFx7bz3a381BopE9Y30r6cJllxFAyWUkrAXFw0yQjFvq0o6s+0wi5kN7KOJRoGzqp0NC8ny9XD0recFqxLUeuWZ2TAu++qjCCAXbugrMxxP9GiuKSMvjOW0b5oMX1nLKO4JH7HotGkKqlki1MBJ2mEaOM42VteDiNGqAdffj48/zx89hl8+y289x7Fn37LaePn+AXJdIaXJt1JJTs7YWBHsrwev2VW93ikg0dW+z783r+qSbwfflCTdG+/rZQRGjWi2zmncsjuHxy3G8r3MsPRx9YkDIUFeawo6s/mGYNYUdRfT6ykEKlkazWauPHVVzBmDDRvrvx9IdQ8UW2fUB57zH/9Ro3gqqvg8svVups2qWeylLByJRQV1QfJNLY01BeJBdrOKsz+VwA7m7XknDGP0eHmV3m+4DwArlo5j+fnTOa+xQ9y5lcfk1GjxvqjercJe/+h+Nh211Wy+q/al9MkI247a34qhOgV1SOJAVmZ7r6uR4i6oI9TQ86y8grKyisIjMEZBs3KMAfiayhdP3gLCpSM1uefQ7t2qjQ+Px9+/tlxf5HCqKooK69AUl9VoYNlGk1USApb3CLbG9LyZCTeVQlmTnFmdRXdxK8wd67qLzZvXv2bjz0G27fD734Hhx5KYUEe04d1IS8nC4FK7EhU2QaNJsYkhZ11IpR7PNKDb8d95+bCrbeqgH5tD5T2P2zlf49fzJaZg+m36ZOgbbbI9tZVTzXEdiXD5JZGkyakhK3VaKLK5s3wwANw+un1wbBLLlHvXXcdPPNM8NzP0KHq9wcfqLkiIxh24IBSlmjfPqZfIRVJonFU2ttZ439lRaXHy5MjxoOUZGzeTMnoq/ntlhKenn83X886ny8fGMa0tuaS4G4Ixce2u660/6rRxA6nHmUGvYHRQogtwF5qtW2llF1tP5VgVFTWuFrPVxbREPF1QlIv+JtnUlJqlJtmWDT+9DWUIZWo+jZave02JbHVvLlyqMaNc/V9G0Kk5Xo0Go0tSWGLpwzpzISX11BZXW/rvB7BlCGdbT6VXMS7Oa2h+X3gwEEu/+RVJr37LwB+7P4b+OM/VYbpiSeqQXSjRqbbSFXJLo2mgSSFnXWD23s8Gj0EXO27eXOV7AU8/7s/8qf3ZgPw7Mt38ubxp/DOcb15+aQzyWqU6ff8aIjt0jIwGk3CkPC2NtubwT6T+YNsr9tcY43GBVVV8P778Npr6ueii1TV9dix8PDDwesbfv20aXDppXDaaZBn8gxr2TK6x53mJMk4KuHtbCwoLMhj1pKNpmN3AfX+brt2DH9kMtw/USWZjhuHt/Ig9OihChP++U/VAifD/TMgVB/b6rrS/qtGEzuEdNGYUAjRzmy5lPKbiB9RGPTs2VOuMmtEGoCbCrGGkpeTxYqi/pbvB/a1AWUoI5aBcuON8Mgj9a+//x6OOMJ6/QbSvmixaSBRAJtnDIrafjWaREIIsVpK2TMG+4mrLXZra0HZulR25KJuy+2QEtau5eAZv6PRT+UBB1YM558f3f1rNHFA29noEm+bbdjUTlvWc9ZXH/PH0jdpsf8XAHb2PJXcpW/AoYfG7Hg0mnQlHWytWztbXFLGTXNLqfEZ7GYIeGBE95TyaTUx4scfYeFC9ffFF8PLL8PIkebrVlbC0qUqUNa2reof1q+f6uupSXrSwc5C/HxaM8zG7gK4qE9bphVaV5zx5ptw7rlKrWXPHhg9Grp2VZWdubmu953K8yIaTSLSEDtrW1EmhGgCXAUcB6wDnpZSVoWzo0RgwsCOjJ1TGtV9WMlu+RrHnGwvjTMz+KmiMvKG8uGHYeLE+qyiVq1UyX0DGlDaEe+qCo0mHUg1W5yMmDm404d1ia3TW1ICixer/gLnnlsfJBs4EJ59Flq3jt6+NZoUJ93tbLwzo+szZRtxX14nXjn3YpZOGQxA7qr/quozgCVLKM7tzNQF6ymvUFI4LbK9TBnSWU86aDRJQDLZ2sKCPOat2sqKTbvrlp1yTEttazTWSKl6x+fmwtdfq+S1L78MXu/MM6Fp0/rXvXurYFhhIXTqpJYNHKh+NJoQSSY7GyvcVmQFj/m7UCgl7N8PS5ZQ9uhT5L1wC9xyCwCfXzuREx+dbjvfGm8fW6PRhIaT9OJzQCXwAXAucCJwY7QPKloUFuRFPVCWIQTFJWV+hjAwe2HPvkqyvB4eHBmlbLSjjlJO2qxZytESAlatUg5bO9OkkrCJhlyPRqMJIqlscXFJGRPmraGypl7GdsK8NQBJ6SQG2nCjF+P0YV1sK4gjQmkpDB+uBtsGXbqo/mPHH+86k02j0TiSVHY2FfGdSCguKaNvo6Xs2LOXOz/+D3967yW10sCB1Jx0Jkf3GEL5kccByq+e8HLyPmM0mjQjaWzt5OJ1fkEygBWbdjO5eJ19BYImPfjlFyXFNmWK+tuXDz9U8zG+QbLGjVUg7OqrVXJb27ZqHU1SkuBVQkljZ2OJU8DKasxvfLa4bU8mndKYo9sN4u1nrgXgxMdmwmMzVcHCn/8MOTkNOsYEv640mrTAVnpRCLFOStml9u9M4H9SypNjdXBuCaWkN79ocZSPRmFktwKMn7vGtC+Zk0xjQ/A1sG0OacT7k89Wb/zlL/D001HbVzobc30e0pdoyyckii12a2u73/lWXaa/LzlZXkqnnB2NQ4sqdrK9Zj0pDZxsguX7UqoG3FdfXde/B4DDD4cVK1SATKNJM7SdTQ3M7B74Z/j265TL/NVlQUlYc/Z/zM4ly+m98X80O6hscvGJZ3DLuWM5mOnFIwQ1UsbUB0sm3y9exzq5eB2zP95GtZR4hGBU7zauggzJdG5TiXSwtW7t7LGTXjcdw3uEYNP086JxaJpE47vv4D//UdLmH3xQv3zePOjZE9q3D/7Mn/4E99yjkpeFiJqyjyZ+NFSCPx3sLCS+TxvoZ+w9UGU6h+ERgvtHdAvqc9Zy3088+epf6Vm2gQwpVf+ydu3gyivhN7/xu/eNfZWVV+ARgmopg+YRwr2uEtlfSuRjSyX0eQ4matKLqCwEAKSUVSIFHvIZAj+d8WhRl90qMXWwwVqmsaEEGtitvxzkjvNu4K7XH4FnnlE/n30GnTs7bMkdupTYOftEo2kgSWWLzRxMu+WJjp2tLiuvYOycUu5cuN5P+supqi7QZvy64wcaXzSVnyp/oHnvnmqQfeAAHHYYPPUUDBsW5W8Ze5LVoUvW49Y4klR2NlLE4nr2nRwQUNfb1rCfvpSVV/DCyq1B26iorObqw37L9vN60uzMvax7SPV1Kfz8PQo/fw+AQZc8zPpWx8bMB0sm3y9exzq5eJ3f/7NayrrXdsGyZDq3mpBJGltrNYa3Wq5JUqqq4P33VTCsuBh+/RWefFLJJlrJmrdsqSrCVqxQE+N52i6lE7OWbPQLZoDyU2Yt2Zgoz6iksbNucRNosvvc9vIKmmd5EQLK91WSk+3l1/1VfmN1K6qlDApgAezObs6Ii+4FYMuI1vDWWzBtmmqJANCjByxaRPGOar/PG8+QQN8mnOsqkf2lRD62VEKf58iT4fB+NyHEz7U/vwBdjb+FED/H4gAjTSyCZAaV1bLO8JoRrT5eZgb2313Opv+di6FJE7XgpJPgkUeisv90xO6hptFEgJSzxcmEG1u9Z18lk15ZR3FJGQBTF6wPsv+VNZKpC9YDymZU7j/Aze//my0zB7PmkVGcu+EDmn+1UQ28BwxQci0//piyQbJJr6yjrLwCSb1DZ5y/RCUZjru4pIy+M5bRvmgxfWcsS6hjS3CS2s6G83+P5PVstX/ffUB9kCwcjGDeL42bkj9xER1ufpWXTzqz7v3F/7qRu956gmN2fRsTHyyZfL94Hevsj7eFtNwgmc6tJmSS2tZqkpidO9UE9nXXwZtvqmX9+oHXq3qGPfoobNsGe/YoyfPGjeGJJ+CKK+CNN1SPIinVT//+kJEBp56qg2RpiFUSZbQS4cMgpexsoC/pG2gaN6eUfAvfN9DPLa+oZM++SiRq7G43VxtIoE/ii0cIOPlkKCqC7dvrx+6rV0Pr1niuuJz8MpNehbXbHTun1FbBxi6Il8j+UiIfWyqhz3Pksa0ok1J6YnUgyYAQkZWR7tcpOr1lrB7Qm/dJqKiA+fPhggtU01iAgwehUaOoHEu6kATOkiaJ0bY4vpj1YjTDN+PLqnrup30HYMUKdu0sZ/nT19Dmp+/r3nvklJE82ncUX95zfkSPPxFJgkxMU2J93KFW++iMsvBJZjsbzv+9uKTMVBo8nOvZbv9m90y4GLKMRkVSpcfLzYPGcfOgcdy+9B+MWfUaI9cu4c8lSmb9qV6/h1t+pyYzw8TuHkwm3y9exxpuRU4ynVtNaCSzrdUkAVLChg3qd+fO8OCDcNNNwett2gTnnKPmQ959V/0uLFQ/nTrVr3fVVTE7dE3ycFROlmnwIlqJ8KGSanbWzpf0VSkI9H0j6YPa4efTHHqomm+VUtmf8eMZULqUU9ev4N1jevDfdt1Z3Kkv+71N/LYRqLrgi0D5o2a+ebz8JTdjVO3LxQZ9niNP+CPHJCXLG9pXzsnysmXGIB4a2Z2cLG9Ej2X5Fzsjuj0Dqwd03fLhw6GmRjmE336rsqUKCqA6+g+RVMXxnGs0mqSlsCCP4T3yVLaYA6YZX1Ly+8+WsWXmYDbfOxROO40hP27gn70KGTfoJjqPnUv+xEU8cPqfOOKwQ6LwDRKPZHXoYnnc4VT76Iyy9CTU/7txbUVKGtxu/5G6N7wewYSBHS1957vPvJz8iYvoe/Wz/NpI+V5XfPIqeDwq021rsJyjE073YDL5fvE6VqvnptPzNJnOrUajiQPGvMXKlSqwZfQCy8hQAbKRSp6XL76o/0zjxmr5nDnw6qtq2YwZakJ75UpVDeIbJNNoLJgwsCNej/9zzPBTNJHHrS8Z6PtGenxm5bvkmfkmQqggvZQUTppD0bk30H3Hl9z/+oN88cAFbJk5mAFfrvT7iFUKkQRLnz4e/pLbMar25WKDPs+RJ+0CZaGq8/5UUVlnCPbsi2x/nbLyClfyOG7ldIz1jGwEX7K8Hv8Ht2HkDx5Uv0tLITNTyQpoQmbCwI5kef0Td4LOuUajSUqKS8qYv7rMVU8Kw/a2yPaS99MP3P3W42y5dwgPLn6gfqWnnuL0K/7A3D6FvHpSf/Y2zgbSy2ZEw6GLheRgLB1Ru+CD1XdN1gCkpmG4/b8b183YOaW2GbahXs92+4/YvSHt92XwY9MWnDRuHp3HzuX9/IL6N9q1gxEjlKyWS5wCkPmHmX83t/69HZG2Z/HyU0f1bhPScgMr1Y1oqXFoNJoE5eeflVzi6afXB8OEgGbNVICruBg2Bkwgd+wIDz2k/v773+vlEvfvh5deUs+CJk2C96XRhELgsFC3LowaofiSZeUVFNz1FsUlZREdn2V5PfQ5poXpe06+yWFtWvF2hz6cedkTXPn7W+uW/+OVaWyZOZjBG97HW20/12zl/8bDv3OboKd9udig56IjT9oFyvZV1oS0fk62N6olu04Z4m6j9WY9IIwJ27ycLKYP62Iuo3PMMSoj69RT1evzzlNNa6uqIvMF04TCgjymD+tCXk4WAodzrtFoEprACco7F653/Qw48ftNcNdd/Pvnjzjt27X8qeR1AD4/oj0Dr3iS4k+/hcsvZ0jf49PaZkTaoYtV77BYOqJWAyLju5l9V51Rlp64+b8H+olWCEIfwNrt3+yeCYfKGsmsJRtdX8t7G2cz6cr7lILC4MFq4fz50L69mmSdNMlRT90pALny6z2Wn21ov7dI27N4+anTCrswuk/buixsjxCM7tOWaYVdbD9nVTkYLTUOjUYTRyorYdkyuOEG1adXCMjPh19+geefh7/8BT74wP8zf/yj+twtt6ieYkYwTEpVRXbWWXH5Kpr0YNaSjaa9qLWCQ3QI1Zfcs6+SCS+voV+n3JA+Z6U+5hGC6cO6sGWXuV/o5JvU+YtCsOT4U8mfuIiBf/kbe5ocws6mOfxtwb08uuBebnnvX7Qp/850G1b+b6B/1yLbS+PMDMbV9j2LRuKo2wQ97cvFBj0XHXlse5RplJGNdCVZIHb9INz2QzFbT6JukhVF/e0PICMDVqyAVaugVy/47jvVhLJt27C/UzpSWJCnjZFGk+SY9dpx4uifvufBhffTq+zzumVdBg6k6cV3clqbbnx7aC4eIRjVu42fjUhnm+GrHW+mbR5qb65Y9Q5zOu5IYtX/wCOE5Xc166enM8pSHzf/d7dJXxKYv7qMnu1aOl7Xxn1q1lfB6xHsPVDFuDmlZDfy1L1v2MKe7Vr63UdubG1ZeQUPjezO2DmljuvWSSAJAQsXqoXffAN33AH//reS25oxA9q0gTVroEVwlrDVcWUIQXGJc5WxlQ1ysm+h2LNQbGW8njnTCrs4BsYC0dWxGk0KsnOnssfFxaqPz/Tp8OWXcOaZwet+8w3s3g2DBikJ3fx86NdPySf60rJlTA5do/FFP6Nii+/4q6y8Ao8Qjj5YZbVk+Rc7Gd4jj9kfb3OlDNPE66GqWvoFQb0Zgll/6EZhQR7jLPxPq/+74aOZ7Xtjbj4FN85GyBpO21JK/02fcOXHr3DNypcBmNvlLCaffS0HM714M+xlPQ3/zmweY8K8Ndy5cD3l+ypDHrda+Zhue/Tp+yR2pPO8UjRIu0BZhoCaBCyLtpogcGtcImKEevZUmbcbNqggWWmp6me2Zo2SN9BoNJoUx+1kcuPKA1R5MvnbazM59//+6//mggUUH30ys19ZR8WhqjKjWkpXk8+Ti9fVOfPGhHKoE4zJgpVDZ+bkBzZnDiSWjnisHFGr4IfV9bm9vCKmgTxN4uDm/x7KveAmyBx4nxpKBhKVzfrr/irKK1Si2d6D9ddstZS8sHIrm3f+6pfI1X7SYqcCLzxCUFiQx50L1zsnsZltq107eO45uPdeGDAA1q1TUowtW6qJ2B07ILe+ms7sHjS+w6RX1lk2XffFTP7Syb6FIqUZqq2MB6EmPgA08WZQYaIC0iTEXtMajSbGSAklJUoO8bTTVLLCiSeq6rBA/vQnOOEEGDIEfvgBCgvVT2CfsKuuis2xazQucRso0EQOs/FXftFi28+UlVe4bp8AqkgisPecb0+bUP7vgT6aFVJk8EH7k/mg/cn8/TfDeePZ62mx/xdGrHuHEeve4aG+o3ij9yBHn9wIIgZSWSPrfOZQ/EQ7H9NtYqb25TTJStpdoYkYJAPrxpBuZZQaKrdUJzU26XX6LvhOlehOnAhffw2HHAJ/+5ur7Wg0Gk0yYzeZ3LjyAFPe+TtbZg5m9d9Gc+L3X1PpyeTd9j2YPOBq8m9ZyORX18KQIa61u32ZXLyOF1ZurXPmjQnlycXrIvPlkoRwzl0qSg4WFuQxvEeen2TZ8B555g2jqf+uhQV5rCjqz+YZg1hR1D+hJsw10cPp/x6JvmOTi9dx7KTXyS9abNrnzHCxf66oCpIkCmTFpt1+tu2i3s4qBoZtnDKks6OUjq0EUqtWsHatku3qWDuor65W1WVCwNSpQL2UiZmPXlFZTaNM52FU4Hl3Y9/c2rNwbGWsCVdG8kCVuVS+1XKNRhNjDh5Uwa/KSrjppvreYRkZ0KOHkkZcsABycsDrVZ9p3BhGjoTZs6G8HAYOVMm5CxbAypVQVBQcJNNoEhDdEyi2WPVttRoTGZipcDhRWS2DXht+VSj/91Da97TI9pLl9fDdoYdTcONsOo5/hbldzqIiszE3rHiJu+feA8OGwZtvKn/VB7fS6gZu/UQndQM3Un/al9MkK2kXKLMKSIW6jaaNGt5vwRdj8B/4EDDT1TUzxg15WFsOYmc8A9dco1a6/nrl/P74Y/hfUqPRaBKcwIlIIWs4+/8+YsvMwWx8YDiXrlYSXu91PIW9jbK4YegtXDLiTmb3GMzoU9rVVX+FU+E0++NtIS1PVcI5d6k4YC0uKfPLgjSqEt36BRqNL6H2dwi0hYGBfDvcZu4atq24pMxVv4I8n2Cw7wDdCscqusxM1ctGSvj8c7j0UrX8zjuVzztyJIUnHk6NxfdxGuibSeW4sW9u7VkySNqEG8yzirMmasKjRpPSrFwJp59eHwwTQgW97rlH2dFHH/Vfv2NHmDVLBcWaNYNdu5Sd3b8fXnoJLrwQmjePz3fRaCKA7gkUO+wSbiYM7BhcAVaL1+Msz+gWw68K5f8eii9Wvq/SLzHrQGYjbjlvLCeMn88ZV/6D1078HQfefR/OPVfZ3ObNlSoCoQXkQjk2Jx/TTWKm9uU0yUraSS9GwlhWS+knIxMJ8nKyTMtb568uY3iPPJZ/sdNWsqQhcku22QKPPaYanrdpo97IzVXyjBEIOGo0Gk2iMWFgRybNX0vPL1dRlZFJp52bmbL0H3Xvf3P+SIYdP4JdGfU9ErK8niAnORxJDqvnU6Sc/ESjobrnvqSi5KDVs3n5FzuZPqxLSn1XTfQJvEdysr1ICeUVlUESgmZBmWgE7KulJL9ocXB/swwBwj+rN/CYfCV4+s5Y1nAJpBNOgCeegMsuU1UOu3bB3Lkwdy6bgZPGzuXXxtmhfUETV9mNfXNrz5JB+incYJ5V/5FIJDxqNJoAamrgvffg1VdV/7Bttfb++uvhkUeUXVy/3v8zhx2mbKUQ8PPPkJU4dkej0aQOVuOhsXNKycvJ4jf5LVixaXfQ50b2asPyL3a6rrSyw+hNa/iebsZcbvvvGusa2xw3p9TPJ96WcyQvFpzHh78dynu/LoeZM5XN7doVBgyg7WH9KGvbJaT5WYnyne3Gj3Z9etsXLXY1/kxFXy4cOXFN+MTrfKddoCwvBIMVK4zBv92kmG8fByvC7ZviOIg9+miVBXbPPdCl1givWqWka4wAmkaj0SQ7Tz5J4dVXU1j78ovcfIrGzGBVvy70vGY0tGjBH2csY1eAzTTr59OvUy4vrNwatIt+nXKDlhkIgWmPniT2JS2JhO55IKnWxNbu2Wz3XbUDr7HCri+g0zUTzYB94JYrayQ5WV6aNs50dR1PGNiRCfPWBDVfN2xGSPdEjx5KPWH/fmjRQv0GPnr8Yt7o2Jc1rY/nxYLz8GYImjbOrOvDZoYh1+O7L7f2zY09C+c5E2uyG3lMkwuzHZQ5+hxjPvHV55gWETs2jSbt2LkTFi5UwbB334Xx42HKFNUXbOHC4PVbtVK/n3tOySyecoqqJAtEB8k0aUay9AhNBewSa8rKKyzfX/7FTiYM7MjYOaUh7c+s/6zRmxbc/3+t+twG4uuvFhbkWR7vN79WwYwZ6ue112D0aFi1in/98h5vHH8K647swCud+7Enu75a15hCMPPgna5Zuz69xufHzSmtC1ia+dajercx9VNH9XY3h5xoY1p938eWeJ7vtAuUuTVYscLXqIyzMIrRllBxnZF6663qd2Ul9Oql/r7qKpWBq9FoNAmEa8eqqgrOPx9efz3orU6lKyg+6ii/ZW6z461kxHyXBx6jN0NwsDrYlc1y0QcnHOLpfNpVMhuJIYnkGMeDcKpFtAOv8cXtPe4mKGOVFeqE2YSDG36qqKR0ytmu1w88tqoaydQF6xk7p9TvGFzfE02aUPzfr5j0yjo6bVnPn0oW1zVW/+tbj/NY3wv57qYiXi7ZYTumCHw2RLL61c1zxpd42HwrBQ4nZY4tu8yftVbLQyHRJl40mogiJQzpdWEAACAASURBVJSUqGDYscfCxRfDgw+qPmKBLFyoAmVjxkDTptC9u/KJA/uE9egRm2PXaJIEp/5NmsjhVJll5WMaiYWBFVpOSMx9Xl/ZaLe+tbGu3fEH7idDmEsTZvgkzha37cms215j185yTtv1FVcu/TeFn7/H7cv+CcDd/cbwdK9CpEO2rd01G+ivZpicEyff2mhJMfvjbVRLiUcIRvVuU7c8EF//rHmWl70Hq+rUJRJhTKvv+9gSz/Oddj3KAJp43X/tLK+HFtneqByHAD89V6vJr+ZZXtPmlW6xan5pEHJvF68XHntM/f3kk6rcYcOGkI5Jo9FoooWdljkApaXKbrVrB9u3+wfJZs9WkwxSgk+QzLCjVo52oP22coiN5WbHaBYkA6iojHzDW8dzFGUioXue6oTTdy3cfkCa1CPS97hV9ufoPm1tP/fgyO5h7S8U+cCpC9YHTSpIqKv2CrSsoTYyL8nrxE2Dx3PpBVPq3rt2xUvcPbw7G6adS4cs6ykYs+8RKfvm9JzxJd42P1Si1X8t2c6DRmPJ3r2qR01NDXz4YX3vsIwMFdi6+2645BJVFduqVX1fsZEjla9bXq4UYkAFx2bPhokTg4NkGo0miFCev5qGEWqPXYOjalvbhJqslZeTZdmb1vAZ3PoQhr/30MjuSlbchBqp/Fjf11brgb8fs9/bmHeO7MwfLprJkD8/WLfu7cufZsu9Qxhd8jrNDuyz/b5216yvv2p1TgysfOue7VpyZPMmCODI5k3o2a6l6ecD/bPyiko/CXazfTjNc0eaRO4NHOtzEQvieb7TKlBm3Hx79lnLpEB9tN4jBMN75DFlSOewjLMThtatgdVD4JcDVWEP6NwMCMNqRnrNNUqCIaP2EjrxRHj8cVfHpNFoNNHELFhw6O7vKTz5aDVRUFCgFm7dqn727KkPjl14YdD2fO2oGWbBCyvtbWN5KI13o9FvJt4BFavvlEi9deJNOM/mRHbgNbEl0vd4z3YtaRxQ3dr32JaWA17f4wgVN1KrvtjJH1oRTiPz5cf2In/iIrre+JLf8nn3XsT495/nhB++DtpGNGUQnZ4zvsTb5odK8yzzJEWr5W5JtvOg0SAlfP893HhjfTBMCGjWTPWo2boVygLmBTp2VEGv//s/FRz74x9VQG3/fnjpJeXrNm9uvj+NRuOIVZ1OCqrlxx3f8VAo9OuU6/hst0pItBuPhuNDFBbk8Zv21tLRofixVnMI61p3IH/iInpd+zylrTuw/ZDDmfbW4wze8D4AQpon3rrtF+ZmjB7oN4eSnOR2bsTYRzwSnxJ1/qK4pIwJ89b4nYsJ89YkfbAsnuc7raQXrW4+jxDUSBlU3lktJfNXl9GzXUumD+vi1wD91/1Vfr0QsrweGmdmhGTkArVuCwvyWPXNbl5cudUv86G6xjyS7iYD1W25Yli9XZo1g+pq5XCPGgU9e6rllZWq6kyj0WjigOFAZVZX0XLfT5y+pYT7Xn/If6VLL4V//rM+2G+DneNmpcltJVFmLHcbuAh1wtgt8Q6ohNuHLBGIpWxXqM/mcOQaNamJ23vczfVcXFLGhJfXBGV2/m/zHj7f8YvtcbjNrjbkEa1saqRxc09Y3U8/N2lG/sRFCFnDRSVvcPqWEq7/aA7XfzQHgNsHXMXzJw8GzGUQI2VDnJ4zvsTb5oeK1bxNQ3t2Jtt50KQJNTWwdi0884ySTNy2rf69Dz5QF/4jjwR/bsoUyMmBESNUpZhGo4kJVrU10evmmt4YPtKdC9cHFT1YSXwv/2Kn47Pdd47X8McA9h2sCun4nPYzuXidad9VM7K8GaZqMlm1qmhO+9rZrAWFf34QpKTrd1/y1WFKEeJPny5m2PrlvNj9HBaecDr7vU0A+x7Evv5qTrYXb4bwmwMPJNC3DkU6z60fZuwjHrJ8iTp/MXXB+qD/S2WtBH0yq/LE83ynVaDM6uarkZLNMwbRd8ayoECXb88U34vMbJC76pvdps0K7Qi8mZd/sdPVA9atIYnJgPDCC5VzLoRy7Nu2hd/8Bj76yNUktEaj0USMqipeLL6bUzd+DMCH7box84xLAPhvx96cWvouNGkS0iat7KUhn2tGnsUEq5ENZzUBm5PlpWnjzKgHYeIdUDESQ3w1y4f3CCNhI8Ykeg+wRHXgNbHHzT3u9nqetWRjUJAM1CDMSaXBDU49C5xoke0N6Tjc3hNOfY2lyOCFkwfxwsmD+N2mVfzr5akA3P32k9z99pMAnDR2rt9nImlDnJ4zvsTb5odKucX/02q5W5LtPGhSjJ07VV+w4mL1OzsbXnlFyR0aage+5ObCoYfC8cfD+vWq51jjxrE/bo1Go4kjgb6TgV0fXGMsbZWw1SLbG5SQaLkfoYp7rXDyIZzmiH1b/TTxekwDZU1qq9+cerbVIQRrWx9f93JXdg5ZlfuZ9cYj3L7saeaf1J//dDuHfR3M5XYDz8WefZV4PYKcLC/lFZVB597Mtw5lLtrN9/LdRzwSnyLZZziSWBXrhKO4kUjE83ynVRTDqXQvlJstsL8AqCaF4eC7/VAj6eGuF/EBoZHieeCA+v2//4HHA++8E9n9aDQaTSBSwty5yg55vXVBMoAXu5/LutYdOGHyG/wwe37IQTIIz45OGNgRr8c/9d3rEXXOnVX/qcHdWod8fOEQTv+rSFJcUsb81WV1WWxGBXeiSwQkumxXWFLKmpTEzT3u9nqOdrVNQ+//KUM6Y9H6oQ7j7VDuCeN+ciNL8+6xPcmfuIje1/yLA576CY/PHhoBM2bArl1AZG1IKHY83jY/VKIlvZhs50GThEgJn34Kd9wBo0fDsmVKgaVxYzjiCBgzRgXJAPbtU8GzNm3g4Ydh+nTV99uQA//hByWv2KSJanOgg2QaTUIQrapnjTlW6i4Sa7lLY1LdrDdYhlC+o+v92ATJGupDBB6LVULQnn2V9J2xjH6dch3bAhnf2Nd/XXzCbxn4l8e44KKZLD22F38sfYN73nmi/tir/b+32bmorJY0bZzJlhmDeHBkd8fxZii+nJl/5s0QtMj2mu4jXrJ8uo96bInX+U6rijKnTOtwswyNaLtd2aodRqPJWUs2ui7X3nugiuKSMscLJebZ5ccdB1VV0KePahA8YICqMPv6axU4awCxlLvSaDRJwMsvw8qVcNttQZIzDzy+iMe2iohUK4VtRwMNus9rswyZfp1ymfPJtrrKjbLyCia8vMZvfV8aYhPjnRHlJJeQqPY+GWS7wpJS1qQcbu5xt9ezXZZnTpaXnyoqGyw35Hv/Ty5e51dt6qbazJMhqPGpevNkCA5pnMlPFZUNsiFG9atbxYjvDzmcjje/SqOqSl6acxttWrcgd9IkmDQJgK6Fkyjr2Dfoc+HYkFDseLxsvlW1n2/2tBnRmoSM97PPjER93mkc2LtX+aC5uSqYNW4cPPRQ8HrNmkH//qq/99//DkOHQmEhnHuuf5+wG26I3bFrNJoGYTXtF+Z0oMYHs2einY9kdsqNcbqVD1cjYeycUmYt2ej3zHUrF27gEaLBCYmegECenc9dVl7B/NVlDO+RVyctacwh+L42vtPk4nX+310IVh3dmVVHd+aRwdcw+TeHq2P//ntV1XzRRXDFFdChg+U5LyuvoO+MZXX7enBkd8vvH4ovF6p/plVU6gnX19ZYk1aBMqebL9ybzW3jQTOyvB76dcq1lXbxZggaZWaw92D9++UVla6kWuIyIPR44JNP4OOPVcBs61bYvl1ly4VJostdaTSaGPH66zBokP+yM8+EN96A/Hzo1InikjL+8co6qqWyF779JsOdKIXQ7OisJRtNtaJ9pXYDAxoFd70VJG9WWS25c2GwvnQkbGI8Ayp2E/SJbO9jLdulJ1A1DcHpHs+xGFjlBAysJgzsyPh5a4J65oLyR7O9GewzkYkJle3lFUGD+mop615bBcvMpCGra1TWa+mUsxt0TMUlZWEpRuQefihbF7zFyQV5qvdQt24APFE8HYBvco7kzMuepMqjhmLhVkqFYsfjYfOnDOnM2DmlpsvtiJb0IiRWMkEiP+80/vT/6n88M/+u+gUza3+ffTYsWQLffVf/XseOKhg2bBj06qWWPfig+tFoNElPKNLHGveYPRPHzSklu5HHby7UjhbZXqYM6Vz3DF28dofluoHPXI8QrosfsryeiKh2VFb7zw84yX5XVFaz/Iudfu0fikvKTHvimi0DdY6W3/GH+gW//gqnnqqeUffdB2edxbCWfXitbc86P9UX49ovK69g7JxS7ly43u+cG4Tqy4Xq00JiJT4ZhJPw1xCmDOkc1Eva6xGOvrbGmrQKlIH9zRfuzRZKFqhZ/xm7QFuezzp7D/rvx22zQjPtXd8sAN/vaDYpB2EaoN69VXPiDRtUkKykBEaNgtWroWlT58/7EI9mjZr0Qk9IJzBSwttvw8CBwe+9+y6ccYbfomjYi1An1sKpPLLqsWO2PNltol3AKZG/Wyyz1/QEqibauM2ILizIY+qC9ZZa9/sqa/B6BE0bZTaouuyonCzLoNSLH2+1HGTaZb22L1rsyte1qtptiGJEHV27qpO6YQMV3QrIqjxAu/Lv+Oq+Qm4fcBXzTzoTEWbWZ6L7LvNWmVfizVu11fY406WXWCI/7zT+DPrig+CFgwfDX/+q/p49W/1oNJqUp1+nXNNK836dcuNwNKmD2TNRAnsPVuP1CNN+uYH8XFHl99qph21FZTXj5yoFFzf+noCQ/a0sb4Zp3zGDQD+2iTfDthCjrLyCYye9TrWU5GR52Xuwyk+RxhgvWvnHQYGqY49VSj3bt8Mzz8BTTzHr26V8fMU/+DbnSBpXHeRAZiPL49mzz7yII9q+XCIlPhmEk/DXUMx6v4/s1Sbhzk0ykXaBMifCudncNlTM8nqYOrRzUNDK6bPj5pTaNqkMZZBsN/EGBL03Yd4aEJgaXlfnSQilqQ4wfjxs3KgkKJ58Eq680vnzPt8zlOUaTSjoCekE5Ntv66tQx4xRkxEG06dDUZHlR+3kCmJFtB3DZLeJdgGncSbVB5AY3y2W2Wt6AlUTbX6yCHyZLbda18DoW1A65Wz6zlgWsr0VKLtgVn0EKs4UKDnuRrZc4uzrWj3vnRQjWmQr2UmTQjvz7Z5wAifeNJ9D9v/K2ocvpEpkcPfbT3L320+yp8kh8Oe1qjLaJcUlZX4ZpE5yvfFgxabdIS03mDCwo2l2bKpJ6iT7szydmDrgKm45byzVGaqVwJYZgxw+odFoUpV5q761XB7NypFUx+7Z17RRJkI4B76qpQx5Hsf4TE6W1zIpDFQRQ2All5sxoV2QDOrnBwLnpJyOGTA9XmO8aDUfIYG+M5YFH+9RR8HkyTBpEsMveYhvc44EYOP9wwB4ofu53HnWFVR6gpO7zMao6SiPaJXwN/vjbVGzDVa938NVU0ok4pUQmBH1PdgghHhGCPGDEOIzn2UthRBvCyG+rP3dIp7H6AarxtCj+7S1bXBoGEIrBGrQazcBkJPtZdIr6+rWMwbmVg3R7SbeTBs21sigzI1wm46zbBlcfrn6+6qrVBBtt/1A2SBezRo16YHdfaGJIRUVSp5KCH+p1sMOUz0damrUbKlNkAz8G9e6WR4NrJ4Ldo5hjoX0ltnyZLeJhQV5TB/WxfQZmejfLVZNZfUEqiba2N1rhvpA+6LF9J2xzJU0oHFtmtk/Jy7q07ZO9sYK32ey4UO7DcjZ+bpWz3une21/ZbVpkMxuu0flZPFzk2bkT1zEcbcs4Pej7wOgxf5fVEZvnz5wzz0Uf/qt3/k38+vvXLjeUq43JbDp85kqJPrzTlPPL42b1gXJNBpNenOgyjzwYbVc4w67Z99PFZWU3HE2D43s7ihx6et/WY2vzT7z837rIFngON7XD3Wah7XzbX2325CWPoFsL6+wrXC0nTf2ePihcwEAGTX1xzO69A2+vO/3bLzv93T6YbPpPn2xGu8Djj5uOASOXSK13VCwqkpssDqFDak6lxnKPRZp4hooA/4FnBOwrAhYKqXsACytfZ3QWBmAaYVdLCfTikvKGD93jaUhFDiPB7O8HqQkpJvCbuItlMm3sCfqnnoKvvmm/vVhh7n6WDiTzhqNW/SEdByprob334f9+yE7W/VyMTjtNLV85kzIyLDuCBu4yTg4KIHYBYKsmDq0M96Ahr7eDMHUocH60qlgE60CTqnw3SKBnkDVRBure83ones7MNl7sCrIPgViXJuB9i8ny4vVR1tke3loZPe6LMtRva372RrPZCcf2u7zoTzvne41pwxhs+0GnvOSvE6cMPkNlrz+P7jlFtXf97bbKOzRht4fLsJbVVmn8BA4MAxFrjfZsOvzmUpYTWJp+S6NRqPRpBsTBnbEytP09TFXFPXnoZHdbZOyDP/LbHxthVXyk9k4PpTghN0chO92Izn3dFROlmWPMgO7eWPDX63J8JA/cRGdbnqZ1078HQCNqyu57qO5ABy6/9e6YJqZ3xw43geiEvyIZ1DFl3gkbKfqXGY8A4BxlV6UUr4vhMgPWHw+8Lvav58D3gUmxuygwsRKstGq55dTzwO76VxfXdxQJaqc5MDcZuY2aKKubVtVFXL33VCgMhVYtQpat4a8yPaP02jckC69MBIGKeGmm+Chh+qXvf22WrZ1q5JmdRlENyMaDZbDKfsOVco3FDuXyjYxlb9bKKSjXIUmtljda6YKA9WSFtleshtlUlZeEZTQFXhtmvXHNfbTPMuLEKpHQnYj/6FIz3YtTft+QH2lm50PbfjIVlIzVo3azZ73Vj1IQiFwu1bnfGBBHpzbC8aPZ33XU+m840seWPwgdyz9B56aavpd8RRTF6xPGzuYqoP+QKwmsZwmtzQajUajSTWMXksvrtxq62Ma6wKMn7vG1q8L9LuaO8grBmLsO7DPrdW8qZmfYjU30SLby6wlGxk3p5SjcrLIyfaaJjtZ+a5WGMpkbrDyqwLP22G5LZgyYhI3VtzMKd+sYcMR7QFY/ehFeGuq2dk0hxdnPOe4v2i1FkiUlgWjercxHTvYJQI2lFSdy4znWCARe5S1klLuqP37O6CV2UpCiCuAKwDatm0bo0MLDau+R40z7Zsz5uVksfdAlakBz8nyUjrl7LrXVkba6qZwmngLfM+bIfx6lAWu3yBuv139rqyEXr3U39ddB48+arp6IjZr1KQGekI6NuTvLjOvCrvkEiU3ddZZEdnPhIEdmTBvjV82ujcj/N4msexhF4qdS2WbmMrfzS1mjXmH99DnRRNZzO41qySs8n1K9gZUs+pQrk1jP2565ZphPJOdZGmMwJNVjweziQar572bYIWdAoTVdm3t2+GHM+jPD4KUnLallKfn30Xj6kpWPHEpC084A04ohxEjACx7abiVGUpkUnXQH0i6BAQ1Go0mlfBmgFlRuTfeel0pgKEw4NbHPKRJZpAv5JS8lV+02PXx+AZb3PQQM/NTzPxSr0fw6/6qusBYWXkF3gyB1yOCZLWdgmTeDEGzJpns2VfpSpnM6XgNAs9b+9rz9lG7bnXL5nYdwEWlb5K7t5yx158P1wP33gs332w67xMtvydR/Cmz63dU7zZR7V2YqnOZ8RwLJLQpl1JKLO5zKeVTUsqeUsqeubmJKU9hFdW2y2AwLmiryszA5aFKVNnJgZm9N+sP3Zh1QbeQ5MNCxuuFhx9Wf//tb+pL/t//RW77Go0D4cjkadzRb9MnzPlPEaM/Xcxp36zxf3PFClVd9uyz0KxZZHccaEMbUO2eqrrPmsTGqjFvPPTWNemFk+xnQ67NUHvlGhiTJHYDXgF1Wb/GM90KjxCOz3s3g2tZuw2BygzOyfJGxo8Qgg/bF9Dx5lc5a8zjvNRtIBd8thRGjlR+8tNPM3VQJ9dyvclGukjwaoldjUajST5m/aF7SMs17nHrYxpBq8C51RbZ3ojP4xj+oFOyll2CVOBcU9NGmaYS000bZdatZyfXZ7xnzNmW3HE2eTlZIQXJQvWrzHyT2wZeR/7ERVw71EcE7pZb1O+aGvjxR8dt2C1vyLFFYrvhMK2wC5umn8eWGYPYNP28qAbJQF1fw3vU93lOleTaeI4FErGi7HshRGsp5Q4hRGvgh3gfULiEGr32CFFn1O2yeX0JR6LKLpPV6r2o32Q33ACXXgqHHqped+yo5NeuvDK6+9VoatEVLJElo6aar2edX/d6f2Yjrj2/iGmP3KDu7ygya8nGoEysymoZdum9lXSBW0kDK8KRc9SkD4kiIaFJPZxsj1NmYkOuTTt7apfPYFR3WWUXggpaGfs3nuntixabThrUSMnmGYNsj9VuXwZ5OVl1PRfc4nT+mzbysPdg/fn96vC2TBlwNc/3/QPvzL8Vtm+Hyy6jMD+fPm2O48q+l7FWNnN8jsTjmZOZIagyafqR6dAvJF0keFM1C1ij0WhSncDKH68nej2I0gm3PqZV0OrniirHfQT6WU64aVOT5+CnWFVnBfJTRWWdgphd5dum6ecFLQtl/tl37tmKQL+xX6fcIFlMg8Un/JbSU85mxZgusHGjSuoqLoZhw9QKjz0GV19tKWve0N6s6exPWQWXe7ZrmdR+czzHAokYKFsAXAzMqP39WnwPJ3ysBtgtsr3sr6wJuol9DZXVZzOEoLikzO/isJvgT6qJ2EMOUdUlL74Io0fDySer5ZWVqupMkxQk1TWniRo1IoPvmrXkyF93c3e/MTz9m9+rN6IcJIPIl97b6YIfO+l1qqV0dI4DiaWcoyY5iVaAVpPeuLE9TgOThthYO0kYuyxYY9sTBnZkrEUyGaiJB9/jtfOnA9cNxE7C0XedUHBz/r2eDCB4nz8e1hrKyqCqChYsgOnTOfKDd3jtg3fg2mvhj1dAV+vxQDyeOWZBMrvlvqRDApOW2NVoNJrkI9JJmZp63PqYVutVS2np3xjzVKEEyXyDLRkCzNyXDIHrpCnjGKy8IN8KKDufue+MZUH+q5sEL4P7R3RzDJIF+o3zV5dxSGMPPx8IPn8ZotYnzs1VP1D/G5Sfeu21jM47noXD7+SnrEP8Pt/Q3qzpkmBlRion18ZrLBBX6UUhxGzgI6CjEOJbIcQYVIBsgBDiS+Cs2tdJQXFJGX1nLKN90WL6zlhGv065pqWCU4Z0ZvqwLn49BJr4CBoXl5Sx76B5JoRh+N3I2xjGray8Akn9oDjhZZsuukiV6fbqBVu3QqNGcNppalkIBP4/Ev57pwBJe81pIo8Q9Ln23+RPXFQfJIsRkS69t9MFN94L9VrXco4aJ6zkNuxkODQaJ9zansKCPFYU9WfzjEGsKOofNBA3w42NDUUSxmzbToOlQN/DKkO1WkpHP8WQymmRbZ6s5VAUZYqb8/+ThUR73fLMTJWh+8knfPTIc7x+8tkcfOLv0K2byuC9/36VeBbifjWxp7ikjDmfbPPLAp7zyTbtN2s0Gk0Ckyj9kFIRtz6mnc9p5t/4zlPZMbpPW8t2HFY5Pi5yf1wdQ2AFlN1mzfxXt1VZbvxXK7/RLEgGyu0M8tFPO029sW0bdFHyg53K/o9jdqtjzv11d92qkbh37MYuqYy2R5EnroEyKeUoKWVrKaVXSnm0lPJpKeUuKeWZUsoOUsqzpJS7nbcUf8wCBPNXlzG8R56loT1QVR/42bOvkkmvrGNy8TomvbKurqmjGRWV1Yyfu8ZxEBXuoDghAkzGROD+/er3ihXg8cDy5a4+rgM28UFPxGgSgUjrGdv1ufEllGvdynEpK6+Iv/3VJARWAVqnhs4ajR1Wg/NQBlPh2FjDtwyHwG27scmGPXaToWpnuwsL8pgyxLznV40kZP/GzWC2eZZ5YC5weXFJGX/54QiuGXADZ1z5D2oM8cqbb4aTToK7767rDaEH0YnJnQvXm1Yl3LlwfdjbTIhxnEaj0aQwidQPKVUwnl1mUtxmPqaZL+qLr39TXFLG+LlrbBUCDJZ/sTNqwRa7Hmfh9LYN9F/dVmW58V9D9Q9tR6dHHw1r11K8ehtjLphCSV4nMqur+OSxP7Nl5mBeeOk2OjZ2lsxMdOLlf2l7FHniGiiLF9G4gK0CBFaG1mr92R9vc2XA3VSWhTMoTrgA0/HHK4mZrl3V6/794bjjoNr+HOmATXzQEzGJhxCijRBiuRDicyHEeiHEjbXLWwoh3hZCfFn7u0W8jzVSmDXMbUhTXydH3Be317qV4yIgceyvJq5YVbFYLdfEj2Sxs8UlZZZ9wEIZTIVqY91m8VoRuO1+nXJt+5kZbC+vcL1Pu/XsfMdQkxvcDGatikYDl/v6ujsOzeWYiQs5cdw87v7DRGjcGO64Q8neTJpEN/FrSMejiQ1WiZF2CZN2JNw4LoIki53VaDSpz4SBHYN6knk9IiX6IcXD1gb6iRLq/DwrH9PwRa2UNgz/xti220RDO78uxyKRyWq5L8UlZSH7wW7GfL7bDGX7TnMWofqHToonxSVlTHr1M5Ye20utX1PNppbqf3raN2t4865C5ei++WZI+00UikvKmPDyGj//a8LLzsUtkSDSSeKaNAyURWsAEWqAwE5T1y1OgZ9wIssJGWDyeGDNGvjwQ/V60ybYscP2IzpgEx90NkNCUgWMl1KeCPQBrhVCnAgUAUullB2ApbWvU4ZIlt77Tgo74fZaN3NozHTI425/NXHDyh3QBWUJSVLYWaueCALnXluBSWaAaxtrl0HrROCw22hY7eY2OCony7VUqd16dr5jqMkNbgazboMnZse1r1EWzxzzW1i9GqZPh0GD4N57KZ5xIVtmDubSVfWtn/UgOvVIyHFc5EgKO6vRaNKEQEckdfzzmNtas2eXRAXJ7HzMwoI87h/RzdavCtUHtfLrikvKTBOZvBmCqUPNlQcMjDloO8x8yClDOgcFZAPx9V9Dked3mrMIJVEYYFTvNrbvB/4fDngbc+blf+e4iQv54opx9SvefLP6XV4Ov5oneVkRz4r6aCgEuKWwII/hPfLq/v+6Wa6xtgAAIABJREFU323DSbtAWbQGEKEGCKyWh9p7xG7wHk5kOaEDTH37qj5la9eq8t1PP4XOnaEi+Nh0wCY+6GyGxENKuUNK+Wnt378AG4A84HzgudrVngMK43OEyYEReHtoZHdLhzWUa92sIsNqfJUQ9lcTcxz7FGkShmSxs1a2RGLf+6uhSWZ2NqxFtte2V4LEv6LLasLDSqbHbQKa1XrFJWXBGw84Pl+cxhRuqvHc9ie09XWFgKIiWLRIJZjVMmXpPyj+901cunkF9557nB5Ex5mGZKebkdDjuAaSLHZWo9GkPrOWbKQyoDFVZY1MiaSEeNjahjy7nPyqhkoIVlRWM3XBetP2ODlZXmb9oZujL+U2WBfoQxYW5DHrgm62ybq+/msoRRdOcxaB59WJnu1a2r5vWSiCoNPfH1CZoGvXwltvqTf694dDDlH+7DJn6fZ4V9RHWiEgFIwkQt9+t/NXl6WEmkC8SLtAWbQGEG4DBE7au6N6twnajtcjwpLKcXpomEXcEz7AJERdI0huvBE+/xyys+Hpp/1W0wGb+BBpyTtNZBFC5AMFwMdAKymlUZr5HdDK4jNXCCFWCSFW7dzpTvc65THxQVtke4OudaespsCqNysnOGHsryamJPzzWGNKIttZq2vHqVq2oUlmdtfswaoaxyxsXx/dLthn5ns0pKLMGHSHWsXpNKZwqnh225/Qta+bn68mIHbsgLvuovshMGXudIb07QD33FPXxyzRiFZmcCL18Jo6tDPegEixm+x0K9LluZHIdlbz/+zdeXxcVf3/8ddJMi0pYMNStgBtWSxbgdAC1bqwaZA1UEAQEPwiKODGEmkVpQh+qeaHon4VBUVAFtlqKBQsSgEBKdASSilQKVshbBVIWRraNDm/P85MM0nmztxZ7zLv5+ORR2ZOJjPnznLmc8/yOSLxF+dJCekq1dYW+92VLa4qxfdfV3dPxoGudYfX+ernyud9ke97qNaYvPcBXndYra96pz+vueLpXINSfl7j9jUbMvna5xg7dTa/2Xyv/hvtv7/rBz7tNM8teGK+oj6rOB97UDF71Q2UlesEws8AgZ/cuxe3jOeSI8cPyEe77rA6jp+0dcY0Xakcuue3L8r4BvL60vAacd93h1HRGWB68EE46SR3+etfd41nVxegAZsglTLlnZSOMWY94Dbge9ba99P/Zq21eHRVWmuvsNZOtNZOHDVqVAVqGm6ZZhACjBhW59nelzIlVyZh6vST0onz/gdxFfZ2ttA2xuuk3e9eCNnSt3y0upe+HP8/Mm11TbbBvkyxRzErygpNGVnsOYXXwOXg8rxj3c02gx/9CJ59Fi64wM3U/eEP3T5mxsANNxRV71Jq7+ik9ZZBez3cUvxeD0HPOB6spamRtqN3G/Aa+pmd7qUaJgqGvZ0VkfirhkkJlWxrc313FXOu67XdQSkUuzd5rtv62eO319q89wH+aHX+sW2ueDrXwIyf1zg9Prt0/KHseP7dPHB1f8pwrryyf6Bs2bIB9xX04HV9IvPQild5KQV97OVSrnMBP6puoKycHU+5Bgjyyb37cU9/t0FXdw+3LehkyoTGtSfJ6XvZdHZ1c928ZXmd9HmNOt/33PJoDTBdfTW8+GL/9Q369xTNd8BGnc0SV8aYBC7Qvd5aOzNZ/JYxZvPk3zcH3g6qflHiNxApZGZPIQP8Yev0kxKL7/4HsROFdrbQSUQNWTYT99PW5NpwPZePVq9Z+zhjNsrc2eBVXuhjQuEnmPvuUFwnfD6DHQVNTqqpgenT4f33YfFi2DQ5Kfz442GffeCOO1yq8wBNn7U4Y1qr6bOK2+shjLNuy7WnaiTO4/IUhXZWROLP63u+2O//sKh0W5vtu6vYc91M9/3pbbOnCfQrW3yczut9MbgzfnCsl0/Kxnzl21fgZ6/2bHFzrvjEKz77wRvruawI3d3w0EMwbBjMnw+jR7tJXmedBWvWBD54vY7HhECv8lIK+tjLpVznAn7Ulf0RwiigjqdiO1jve245D0/db23qxmxSJ31eJ0bZ6tLSFLGN/8aOdY3nj34Ee+/tyubPh8ZG2HxzX3eR+gJOPe+pL2DIvm+HSNgZYwzwJ+BZa+0v0v40CzgJmJH8fXuGf5dBtmioz9j+Dg5ECp3Zk2/7m63TT21XtGXb/0CvbbhEqZ0tJMbLNonU7/uxpamRs256Mq/HTenp7X/fz3vxvYy38SrPZ7+Gwbza+1zue664tG7pnQavd3WzRUM9rc3jyvO532knePNNWLoUzjnH7f972GHubz//OXzzm27lWYV1eezF6FXul9frWcjrHFaRO4/zKUrtrIjEm9f3fLHf/2EQVFvr9d1VinPdwfedT5rCbPyGmF7vi5EjEowYVucZ65VzRdCFdyzOK1ZobR5H660L6en1PuhMAzPtHZ2+4tmc8dk668Dkye7yyJH9N7jsMrjsMu5f7xM0n/ALXhy52do/JWoql4mly2MvMq/yUmptHjegLxvikU2gXOcCflTdirIgN970O9Kbq4PVb4OZ7XaxHHW+6CI45BBYvRr23BO22MKd9PsQxhmmIiUyGTgR2M8Y82Ty5yBckPsFY8zzwAHJ67Fxfvsitp12F2OmzmbbaXdxfvuiktyv35n+lWpj47rUPm4KWbGs1zZSYt3OrshyQvJ6V7fv93cx7V/qfe93/67Ud0AxsqWMzKYUn9GKp7Hebju4/XaXpeHSS13Z97/vJp2tsw7885/lffwK8VphWMzKQ6mYWLezIhIdMY/RQ9XWZnuuC80IVarXKVt87Ofx3ssxiJKeerzUcj12RlkGBmszDErlsxowr/hs++3dKOX778MRRwCQ+PB9dnlzKQBbrngLY/tKl2PThyD71+OeTSAIVbeiLKgvtfaOTj5atWZIuVcHa7YVC35nuGb7UMZ11Blwy3Hb2qC1FX7xC/ezdClsu63nv8Q82JEqZq19CO8wYf9K1qVSzm9fxHXz+vNW91q79vrFLeOLum+/M/1bm8fResvCARMzyjGrye8KNwlOoSuW9dpGR9zb2WxxZ8OIhO/3d2vzOL7nsarMmOwzc1Pv+1pjMg6WpZ9ID/4O8CPTi5eq/zk3L8xrZVqkP6OJBJx9tvt57DGYNg3mzoUvfAG23BKuvdalZyzzwFKNgQzbgVJT5MP6HWitJL+zratd3NtZEYmOOMfoYWtrvZ7rfOJPv/dZSN383i7T4xn6V0xlqn+Y5vB47dOe0tdnfW095LUasKD4bP31YabLDPrNb/6aez4xBqzlod+fAkDn+qM4a9WltDSd6H0fJRJ0/3ocswlsMCKRcUB3A58pT4tRdSvKghjpTXWSDV4iuMGIRMaR3lwrFvzMcM31oYz9qPO550JXV//17baDP/7R8+axXGEnUqVufPTVvMrz5Xum/+DgtgzBbj572cRdWPeZLHTFsl5bKbVCPyOZ9vcFN/hv7dC9EQpZkW+t9/4HJlkHgOP23irjbdLLs7X1XptqHz9p64zlLU2NXHrMbp73N/T+Y/QZ3WsvuPdeePxxt6qsuxv228/tcfa978HHH5ftob36YrL00fji9R7zs/dGOWifURGR6FGMXjlez7VX/Oln/yKv+5ycx95l+bzemR7PMHSB1uD4Od9VXwbXx9xQn8AADVlWpA3LENdnk2sBQabwLJ/FCMXGZ3MatqWvppYa28c/tnPb8TR+sJybL/2qG3G84gpf91Oo2PevB+CCQ3cecv6ZqDVccOjOZX/sqhsoC+JLzWsTxhHD6jJ+cHJ9yDL9/YRJW+f9oax4WpdKGznS9bz8+c/u+m7Jjo6eoV84CnZE4qNSM8azdTq3zVkyJId3ap+dUlJQ5oS5s7GY/er02kqpFPMZaWlqpO2o3QbM4GuoT9B29G6eaWcyvb+ztX+1xnjO7rX0z669uGU8J0zaeu0KslpjOGHS1kwcveHa9jhbWz+8buhEsxpg4mjvzpFcn7nYf0YnTnSDZK++2j/p7Fe/gq23dvuZPfFEyR+yXANarc3jSAxallbJPSwGU+p3EZHoUYxeOV7PtVf82dXd4xnbps7dz7rpSYbX1bDBiMSA+7z+1E9xgsfEKXAxZyGvd/oxpO7HK1JNj5/zTQv90oyDueDQnVl3uEscl/qdSba9xjLJtYAgU13zWYxQbHyWus++mlpOnfIjxpx3J2cdfHb/Db7xDff7/ffd3rxlUGj/elgn+wYtdf6Z/tlvO2q3irSzVZd6saIbZCcV0kmWa+lkuZdWxioNyMknw0knuZkEr7wCY8bAvvu6WbLJBj2I94WIlIef1FzFypVOr5LpXOO41D5fpdjouVyKSc+i11ZKpdjPSLZN1v2+v7O1f73WZpxdC0MHRy5uGT8gje7g9jibTBtA94Hn85CKh7N5eOp+OR83Furr4ZRT4H/+B+67zw2WzZoFd9zh/v74425QLc2m6w/jrQ9WD7mrTdcflvWhyprCpgKrvf1S6ncRkWhSjF45mZ5rr/gz9bfBtx8cK3Z191CfqOWXX959wG0vbhnP9fOWZYxH+6zlpRkHF3wMQM54NT1+zmeSb60xGfsnvOQ7fThb+nSASdtskPF/8orliojPMj3W35u+wOcvOpuWzWv7syCceSZcd527/Kc/uZg2QIVu0VAtgmpnq25FGVR+JVXU0vqFeWZ+wVId5CtXut/33edSxzz44NqbxH6FnUiV8JOaq1i5ZoFHrd2PujB3NhazYlkzzKRUvD4LncnN0AuVz/s7V/uX6aQ9Pe2iF6/MDfnI9Pykx8OSxhiXgvH22+Hvf+8v33NP2HhjOO00WOP2Za6rzZwq3qs8pVyz9Su12tsvxQoiIiL5yxYbZorb8lnBXa7v5lzx6uD4OZ9JvsftvVVJ4mEvLU2NWVM5PrFsxZDziXxiuWLjs6yPtdlmbrEEQEtL/z+dcoqLaffZp6zpxLNRZoFwqsqBskqLWlq/WH9Yd9zRpV7cYQd3/XOfg512gr6+YOslIiXjlZorfQVCsXINzESt3Y+6MHc2FtrhG8tJKxKYbJ+FYt5X+by/C2n/0tMueinFgHim56ecHQ6x0dzs0pyvWAGXXQbvvANXXgnbbAPTp1P30osZ/83Pa1aOCWxeg55BDYYqVhAREclfS1PjgJTg6QwMiWvzmVRZru/mbLFPpvjZ74qyVD9HuWOZ6YftPOR5SUn1Fw+e5An4iuVKEZ/5ihunTHFx60svwfbbu7IHHoBVq9zlJZXt8w7zZN9qVnWpF4MQtbR+Yf+wFp0Wsq4Onn3WNYj77OMuv/EGNIbz9ai0WKXdlKo1ODVXqeVKpxe1dj/qypqmqwQKSRsQ5nSSEj2ZPiMpxb6v/L6/W5oaufCOxRk3J/dKmetnTyqv9rjRo3wwr7YiLHFvJHziE/Dd78IZZ7h0jL/9LVx4IQ8k/7z/KZfzwsb9q7obPDq30pUjHq0x0Jeh36kmoPSLihVERKJJfSbBu+DQnTnrpieHZCSwDE2/mE8q/HJ9N2eLVzOl8c4Vx9Ynaiu6N17qcbxSMKYmdRaSRrDi8dmYMfCf/7hBsyeegJEjYdmy/gUVBx8MN9zg4lufCmkTitmiodjHjoKgjksryiokSmn9wjwzv6Qz7D//ebeS7Kmn3CDZggWw++6BLbsNA61gEPGntXkcidpBG87WDtxwNkrtftTFcVPtsE9akWhJfUa8VOp9dcGhQ2ej1idqOW7vrXK2qV4Knfmbq63wE/d6zWauWomEm607dy7ceOPa4nv/dDrX3vQjzrv/aozt48OPhw6WpitXPJqpEyZbeSUoVhARiRb1mYRDS1Oj515bg+NaP+fug++71N/N+carmW6fOoJiz3ULjV9bmho9J7HVGlNwZrLA4jNjYMIEd3nddWGTTdzl2bPd4JkxMG9ezrtp7+ik9ZaFA9qE1lsW5mwTSrF6Ma7tUZDHpYEyGSLMaUBKnhbSGBif7Dg680xYuNBtVn7NNUXWNJpinXZTpNQyTV+TwMStszHMk1YkmrKd3JbyfZVtbz2vQe2JozcsuE3NNlDutb9DrTE524rW5nEkckxlveDQnf1VshodeyxjzruTPb59Pf/vsyfwuZc7OP3RW/nnH8/gy/Nnu3SNHhSPiohIWOk7KjzyimszxJnzX3m3YvtB5zuxM9Ptf/nl3XnZI37NZ0+zYuLXTPFxoiZzZgiI0CTPjTaCt95y++x+//v95ffd536/8AKsXJnxX6fPWkzPoFG9nj7L9FmLsz5kKSb7xrU9CvK4lHpRhghzGpCyzrCfNw++8hU3A/bkk91PV5ebSVAltIJB4qLcy7Tb5izJGAwpLZ6UStjTSUo0lft9lZr9ly3tSqZUjZNnzM3Ypp5z88IB/+vFK/3jpG024OEX3s1Y7kuOPge197m9O2Ik//fpY/nTxBZOeuJOvrTkYS7+x+XQcLm7wcKFsOuuA/6nmuLRuKbLERGJq2r6jgqz9o5OPlq1Zkh5prjW69z9+nnL1o6f5ZMqsFD5puPP5/ZeMa/X/RaivaMz46AQBhrqE3R1D80YUGMMY6fOjk6MU1sLP/uZ+3nuORg92pVvt13/bR58ED7zmbVXMx13tvJ0hWzRkC6u7VGQx6UVZZJRWGfml32G/Q03wPPP919vaCjN/UaEVjBIHFRimXZcAxIJjzimk5Tglft9VejsP6+2s9faotrvl9/JfL9e5ena5iyhp9d7WZuf/dOkX/ewdfj9pKM4/Ku/4DuHntv/h912g6OOgttuc3tFACPrM6cE8ir3a91hmTeh9yovt7imyxERiTP1mQQv9f05eCBigxGJjHGtV5w5OMqL8kocP7EtFB6/ej3nAD29FmOgNkMmhl5rc8Y4YYvP1tphB5dxDODctNj1s5912cnSV54FJK7tUZDHpYEyiZSKpIXcbjt3oj51Ktx5pyubP98tw425MKfdFPGrEsu0wxSQZEtzJtEW1kkrEm3lfF95bTqebTNyyN52FtN+FzOpIdttFBv5U5cpdaUx3LXLvi7Wfu45OO88+Mc/3GDZppvCtdcyrHd1xvvLI6tQRonazKe+XuXlFtd0OSIicZbvfldSepm+PwFGDKsreN/ZlFwxa1j5iW2LiV+9nvOU91b20JtjUzGvGCds8VlGbW0udv3XvwaWAZsl+tjmndeG/IufveCK7cuJax+uV4rPShxXiN51IrlVdIb9JZfAwQfDqlWw556w2WbuZD7GtIJB4qASq73CEpBoNrqIhEm2PcGyydSmpiu006KYSQ1et6k1RrGRT2s8OkzWlo8bBzNmwLJl0NICG28MJ53EYxcdygs/P4xPLn95wP+9tzJ3CptsikmNUw5anS4iElHaqzpQ+X5/5ooz0+Wz11eYZItbS9G3V6rYJNP9hC0+y+qzn3UDZh99BEuXAnDVuw8x94/f5OWfHcJ5919NTV8viVqTcy+4UvTlxLoPd/BHsUIfTQ2USeRUfIb98OFu0Azg5z9301lfeqm8jxkgrWCQqKvEaq+wBCSajS4iYeK1kbdXeUqqTfVSaKdFMZMavGYyXnrMboqNSm3kSPjb32DxYpg9G4Ba28c9V32LttmXsfObriOi2M6rQgdyyyVMq9NFRMSfbHtVS2Xk+/2Zfu6eS66YNay8Yt5Lj9mtJH172WKTwfFyNiPrE0NWUIUtPvNlxAjYdlsAdjrxiLXFpz96Ky+2Hc6/f3U8f5j5WNZBL/XleMuUAr+ntzLtrAbKRPyYOhXeTdsYc5tt4OqrA6uOiHir1GqvMAwqaza6iISJVweEn46JbG1oeqdFPilKWpoamTKhce2Jdq0xTJmQx6bZAc1krFrGwEEHMea8Ozllyo+4bvcvcfCSB5l9zfd4+WeHsP+Sf0Ovd9qfXAodyC2XsKxOFxER/wpNMy2lU8j3Z+rcPVcoV2tMJLc0KDrmzSHrqjzjL0RO1Bg+Wr1myAqqsMVneZs0Cazlzgee4f7t9gJg1EddrHini2kzF3Hf9Xev3Yc3XSn6cuKaYSjIfi4NlIn4tcEGrnG74gp3fXxy5vOaNcHVSUSGKHeQGCaajS4i+SrnvobFdvznGmjzezKYOsYxU2dz/bxla0+0e63ltgWdvo45yJmM1a6xoZ57t9ub85vPZNIZ1/DCho2sTAznir/9FOrqYMstXbrGAu43n/JyC8vqdBER8S+Sq19ippjvz1znyb3Whm7AIT12b/rJPex+4T1D4vj2jk5uW9BZUMzrR+o5z/Q+7+m1jBiWeRCtPlGz9jVab526IbF1d0+v52cnqPisEO0dnXz37pc4ecqPGXPenex/yuW8/olNSHywgn1POAhqamCHHeCVV9b+Tyn6cuK6Ki3Ifi4NlInk69RToa8PJkxwjVwiAc3NGWcIiEjllTtIDBPNRheRfJR71mGxHf+52jQ/J4PpxwhDtw3xe/LoNWOxs6s7lt8nYZL+Pnh/nfXY/9Q/sFfrbTzW9gd3g85OGD0avv1teP75vO43UTsonWZtZTYG9xKG1ekiIuJf5Fe/xESh359eK6MyjdWEYcBhcOz+3soeurp7hsTxXjHyOTcvLNnkuJamRvo83ucrV/cyedsNB5RN3nZDnr3oS2tfoy6PvWZ7rQ1dfJaP1GuU3ga8sPFWAKyqG8ZjWyb3KluyBMaMcW+2mTNL0pcT1wxDQfZzaaBMpBCpb9EPP3S/77nHzRD497+Dq5OIAPGdVZOJZqOLSD4q0T4W0/Gfq03zczKY6Riz3d5LthmLrbcu1GBZGWV6H1x81O7sde5pbmLalVfCxIkuy8MnP+ni8n/+09+ktcE3Ub+miIjkIWyrkyU/mWKMy768u2c8EPSAQ664NhXHe9UzfYVcKeLXhhEJz/Inlq0YUPbEshUDHs8rtt5gRCLS8Vm212hV3TDOOvPXA7OTAcyaRUtTI7+a1MAutd0F9+XENcNQkP1cdWV/BJE423lnWL3aLaF98UWYPBl23RU6OtzAmYhUXFhm1aRmdr3e1c0WDfW0No8ryxd7S1M800qKSOkF3T76aReztWlbNNRn3AMk/WSw2EGwlNbmcUybuSjjiW9Pr+XCOxar7S2jrN9tX/+6+3nzTTjsMHj8cfjCF9ws3U02gbvugo02GvJvbXOW0NM3KJ1mn0unqddSRET8yBQfKKNHtGSKMdrmLMkYY9YYQ3tHZ2Bxgp+4NhVX59onr9j4tb2jkw8/Hrr1TKLWYC2ek/FSj+f12bGWSMdn2Z73AW3Dqae6nzfegHXXBeCLh3yKL6ZufN110LRfXo8d5/YoqH4u9eSLFCuRgBdegHvvddefesqduItIIMIwqyaum6qKSLQF2T6Wol30k4Yj17H4PXlMzWT08p5H+hipoM02g8ceg48/hquvhpdfdtc33hhaW+G11wbcPOiBYhERiT5l9Ignr5SMvdYGeh7vJ0ZPTT7LVP/BiolfM004Alh3WB0rujPfb3qM5fXZ8fO/YZZtf8KMbcPmm8MnPuEu//73/eUnnOCyJLS0QG/27Bgpao9KTwNlIqWy336uMXvySdhiC5g/3+1jtmpV0DUTqSph2LermtI/ikh0BNk+lqJd9HMymK2joNYYpkzwPztRJ5nBOf7KRxgzdfban+OvfMT7xsOHw0knuT2EL7rIlf3iF/37QNx/PxCOiTSDtXd0MnnG3JLtHyIiIiL5S8WYmQY9gjyPzzUAlorjW5oamTKhMeugTbG8Vk6t6O7xHWNlStEexvgsH9n2J8x5LvGNb7i0jP/5D2zl9jXj9ttdhrLeXngkS/yb9hhx3O82r3OBEtJAmUgp1dTAbru5y6eeCk88AeusA9dfH2y9RKpIGGbVaNa6iIRRkO1jqdrFXCeD6ccIkN5d0Gstty3ozGswoqHeYy8Gj3LpV+PRV+NVnnL8lY/w8AvvDih7+IV3c58gGwPnn+86HJYuhSlTXPm++8KkSfz831ezTs/HQ/5t3x1GZb/fMtHqcxGR6FHbHV8tTY30eQx6BHUePzh232BEgob6xJA4vr2jk9sWdGYdtIHC49f2jk68wjevFW1+J+N5xWFBxWf5Ksm+hdtvD8uWucGxF190Me0tt8CnP+0uT5kCH35YohqHX8HnAiWgPcpEyuWJJ+Doo+G229wS2hNOgPffh/XXD7pmIrEX9L5dfvbREREJQlDtYyXbxdQxTp4xd8hjDt4vIZfph+1M6y0LB6SaSdQYph+2c0nrHEdf2Xtrrpu3LGN5NoNPjHOVZzR2LNx0E/zpT3DNNfDjHzP50Ud5jr9w57jP8KMvns57I0YCcN9zy/3fbwllW2UZl9nAIiJxo7Y73sJ4Hu8nds/0vhysmPi1bc4SMg3BGRiw53Ahe7R7xWFBxWf5KmafsMz7N491f9xzTxg5ElasgJkz3Q+41Wfbb1+OQwmNkpwLFEgrykTKxRi49VZ47rn+slQeWhGJtTCkfxQRCZMg2sVSrGJraWqk7ejdBqzCazt6N3WG+TBx9IZ5lZfFeuvBmWfCW2/xl6aDAThkyUM8cvnXuP8Pp7LvC48HNku8HKvPlcpRRKS8vNLPeZVLtET1PD5b7FCK+NXr/i396QWzZX3IFp9EPRvP4LSXflO951yduu220NUFPT3w3e/2/+P777vfjzyirX7KQCvKRMpt3DiXAuacc9w+ZgALFsDWW8OoaCwlFomazDNzKtepWcyMKhGROKpku5j6DvBKPtMwIr+0M0GvUo6q6bMWe5ZX/Pmsq+P3x5zNj754Otsvf4WvLbiDryz8O3++9UIe33YP2Okd+MpXoK5yp8elnrWe6nBJzWhOdbiA9tsTESmVWmMyprcr595QUjlhP4/36udoGJHgvZU9Q26/wYgEHT/+YtGP6xWzpKcX9KpbrvikUqv4iu0jynZ86WkvU6neJ47eMOv9+16dWlcHl13mfl55BUaPhtWrXVpGcIs05s2Dvfby/2SIJw2UiVTKpZe636tWwcSJ7vL55/dvOi4iJRGWjiJ1rIqIDFT92TPuAAAgAElEQVSJdnHwd0AmObZvkBLp6h7aYZOtvNxSqXGeHzWaHxz4LX77qWM4csmDnLH4bjjpJPezzz4wa1ZFUqUXk6onE6UDExEpP689oHLtDSXREdbz+Gz9HF5vv1K9LXPFLNnqlis+KXU8lEmxfUTFHJ+XglbSjR7tftfWwqmnwpVXuhd5771d+aWXwtln5zwe8abUiyKVNnw4XHihu3zxxW70f9nQ/RtEpDDZAhUREYk3P3s0rAhooEb88ZqVX+xs/ZamRi45cvzaNJqMHs22l15E/WvL3CbpAPffD1tuCSefDPfeW9Tj5VufxoZ6LjlyfMnTIkUldZGISBQ0eqxy8SoXKZVs/RxesW2pYt5cMUu2uuWKT0odD2VSbB9Rtv8vNB3ryPrMGS68ygeorYUrrnCDZP/4R3/59de736+/DoszZ3aIgnKdC/ihFWUiQfjxj91+CRtv7K6PHg3XXgsnnhhsvURiQB1FIiLVy09b7+sEVAJz3N5bcd28oZPIjtt7q6Lv23OW+K23ut+PPgq/+hVcc437aWmB73zHrTQrw8l5KWetVyp1kYhINavE6heRTLL1c4ysT2RcsV/KmHdwWsrUIFNLU2PWunnFJzXG0N7RuTYWKucqvmL7iMrRx+QVVuYdbh5wgBsw++AD6O3tL3v2WXf5ggtcH3RNdNZKlfNcIJfoPEsicbPRRq4x+93v3PWdd3a/16wJrk4iMeDVIaSOIhGR6Mu2GTj4a+tXrlasFWYTR2845CS1JllerFzvH/beG264wQ2YffOb8OCDbo/hmhrYd1/4+OOi61Aurc3jqE/UDihT562ISGlVYvWLBCNnjBCwbP0cXrFtKWPeVPrBzq5uLP3pB9s7OrPWLVN8Ai5daer/y/3cF9tHVI4+pq4Me8plK89p/fWhocFdTm39Ay6jWW0t7LADdEdj8ng5zwVyCe1AmTHmQGPMEmPMUmPM1KDrI1I2p58OfX2wxx7w8suQSMChh2oDDZECqaNIRCSesp2gp3idjKdb3asYK8za5iyhb1BZX7K8GO0dnbTeunDA+6f11oWZO2P22gsuvxxefRWOPNKV3X8/bL21m5m7JHzpnNV5KyJSGS1NjTw8dT9emnEwD0/dT+1sDPiJMYOWrZ/DK7YtZcybLf1gtrql4pNMafO6e3q58I7F/uOzAhXbR5Tt/7OlA8x2DGWd4P2lL7k+5XfecRO9wMWudXWu/K67Qt3nXK5zAT9COVBmjKkFfgt8CdgJOM4Ys1OwtRIpo1TD+sEH7vedd7qZq48+GlydRCJKHUUiIvHkZ3+B9O8AiaZypVC+8I7F9AzqMOrptVx4R5Y9HOrr4bbbXCqbmTNh0iT4yU/crNwTT4T584uqU6mp81ZERCR/UdjnPOh+jmzxWa66tTQ10ucxMPPeyp7847M8FfvcZfv/Sdts4Pl/2QZbKzLBe8MNYe5cNyjW2ekWZsybBwcf7Pqcd93VlYdMkNuphHWPsr2ApdbaFwGMMX8FDgeeCbRWIuU2fjysWgXbbedmsE6aBBMnugGzCOWTFQlauXNci4hI5fk9aUp9B4ydNjvjZMkK7AMtRSjXXlvveaSy8SofoKYGjjjC/TzwgNu3rL0drrvO/f2YY9yeZuusU1QdRUREpPKiss+5Vz+HMZkXCJUy5s21D1quPhiv+M6Lr/isgryO74llXZ7/kxpszfR/g/d8S6WpLFs/1hZbuN/jxsGECbBgASxaBFtu6cofeggmTy7PY+cpyH13w9rz3gi8mnb9tWTZWsaY04wx840x85cvX17RyomU1bBhsGwZ3HOPuz5/Prz1VrB1EhEREQlYvilKPr1N5jz2XuUSDq3N40jUDuzZSdSa8KRQ/vznYeFCeO01OPVUV3bzzW5fiLY2ePfdYOsnIiIieYn6PueViHm9Bt38DsZ5raAqt/PbFzF26my+d9OTeaXW9LtvWnfP4CSBA2UbbA0kE8CGG7p+5r4++M1v+stTYysPPwz//W/565FFkOcCYR0oy8lae4W1dqK1duKoUaOCro5I6X3hCy7NS0cHbL45PP642y9h9eqgayYiIiJScfmmKHn5ncwnpl7lEiKDZ0WXYBsFr36cgidbjxwJV1zhYvMLLoBPfxq+/33YaCM48EB47rlC77lgfjt1REREpF/U9zmvRMxbzMr89o7OtektU3t6pdIXljw+S3N++yKum7csYxiZLbVmKfesC+1gqzHwrW+5pYhvvw2HHeYuf+YzMGqU+/sttwRXvzKcC/gR1oGyTmCrtOtbJstEqktNDey+u7v8P//jBsuGD4e//jXYeomIiIhUWL77C3ild8kn7YtUXtucJfT0Ddqros8WvU+I1/l10efdiQRMn+72gHj8cVd2//2w446uk+Gss9zktzIrZaeOiIhINQl6/69iVSLmrfVYOuZVnpIenwD0Wrt2ELKlqbF88Rlw46OvZv2712qvfPasq8ly+JEZbB01qn+7n5/9rL/8mGNcLHv66RWtTrnOBfwI60DZ48D2xpixxphhwLHArIDrJBKsp56Cww93l487Dmpr4cMPg62TiIiISAXlk6KknDNUpXzKtU9Io8eMXq/ygkyc6GbjLlvmVpkBXHYZ1NXB738PH31UuscaJJ9OHRERKZxW78ZTIGnwSqQSMW9vpk3QspSneMUn59y8kPaOzrLGZ7nq5rXaK59Y9FMe6S0TNeQcbA1dW2KMy45gLTzzjBtAA7jqKvf7nXfcZLAyC3LPwFAOlFlr1wDfAuYAzwI3W2sXB1srkYAZ4zYNf+YZd72vD9ZfP9g6iYiIiIRUOWeoSvk0jEjkVe7XvjtkTtfvVV6UTTZxq8w++ACam93G6aefDuutB9tv7wbSSizITgURkWqh1bsSRpWIeRvqPeIzj/IUrzik11qmzVzEmI0yD1aVIj7LtdrN6zHy2bPumTc+yHjb9dZJ5BwkC3VbsuOOLiXjmjXwxhuu7IwzYN99Xf/0CSdAd3lizHKdC/gRyoEyAGvtXdbaT1prt7XW/jTo+oiExo47utH9734XZs92ZQsWuJF9EREREZEI85r8m2NScE73Pbc8r/KSWG89+Pvf4dln4aGHXNnSpbDNNrDLLi69TbEHlpRPp46IiBRGq3elWnmNOeUYi8oah3T39DLvxfcy/q0U8dlxe2+V9e9ej9HaPI7EoJyKiRqTMY1ioXu3RaYtqa2FDZOr5n7wA5dyHOD662HECPcGeC/za1iocp0L+BHagTIRyeGyy+Cgg+Djj12al403hgsvDLpWIiIiIqGg1IvR1NWduWPBq9yvQFdcGQOTJ7sz/FdegXPOgcWLYepUtyfEddfB6tVFPURr8zjqE7UDyiKzN4aISERo9a6EUSVi3i6PgR+v8pRM8Uk6r/SIpfhMXdwynhMmbe3596x7uA1+8kp8AhHJtmS33Vy8+vHHcOqp/eV1de73rbdCT3HxOpTvXMAPDZSJRN0668CPfuQuT5/uTsRfey3QKomIiIgETakXo6nQzeJzCc2Kq623divJ3n7bdTgAnHiiS6m+ySauvAAtTY1ccuR4GhvqMbi9PXLtjSEiIvkJzXeJSJpKxLyFvvdT8Um+8V2pPlMXt+T/2G1zltDTO/DZ6+m1GVd7FTpIOdIjZaVXeagMHw5XXOEmgL3zjothX3wRjj4ahg1zK806Ogq++3KdC/ihgTKROPjJT2B52pLhrbaCG24Irj4iIiIiIgUodLP4XEK34mrUKHjySejtdekZV6928fzWW8PJJ7uUNnlqaWrk4an78dKMg3l46n4aJBMRKbHQfZeIVEgx7/2WpkYuPWa3jP9/3N5blf0zlW9s6bXSLFN5oYOUhaayDJ1UWsbGRvjyl93l7m7YYw93MH/9a953Wa5zAT80UCYSFxtv7Ebzf/1rd32HHdzvNWuCq5OIiIhIQGJzAlplGj1mEHuV+xXaFVc1NdDc7OL4Z56BU06Ba65xm6QbAzfd5AbTREQkcKH9LpGqVomYt9j3vtf/X9wyvuyfqXxjy3xWiRW6+qnQvc1Ca/hwNyhmLdx5Z3/566+73/PmwRJ/+6+V61zAj7qyP4KIVNa3vw3f+pb7Rnz5ZRg7Fo480uWKVc+QiIiIVIkgN4KWwrU2j2PazEUDNjgv1czilqbGcHdm7rgj/Pa3bg+zT33KpWE89lgXz48Z4zogNtkk6FqKiFS10H+XSNWpVMxb7Hvf6//L/ZnKN7bMtkps7NTZbNFQT2vzOFqaGgte/VRrTMbbVCK9YNkdfLB7861c2b9/2ac+1f/3Sy6B887z7KMu57lALlpRJhJHqcamq8v9njnTzVadPz+4OomIiIhUUJCzEaVwmq0PbLMNvPWW2xD91luhthbuu88Nln3nOy5lo4iIiAiKeXMpZWxpcSkYp81cRHtHZ8HPfZDpBStmxAi3ZxnALbf0l0+b5vqo99kn42hukOcCWlEmEme77w4ffwyjR7uT7T33hE9/Gh56SKvLREREJNaCnI3opb2jk7Y5S3i9q3vAbFQZSLP1k+rqYMoU93PPPXDddfCb37gfgMsvh298Q3G9iIhIFSt1zFuueLUScbDXY+QTW45I1LCypy/rbbp7emmbs6Tg576xoT7jnmexHdw86ig3KLZ8ORxxBDz8MDzwgIthP/wQZs/u3+OM4M4FtKJMJO6GD4c333SNDsC//+0GzURERERiLGwrk9o7Opk2cxGdXd1DZqPKQO0dnUyeMZexU2czecZcPUcAX/wiXHstPP98f9npp8Ouu8KPfwzvvhtc3URERCQwpYx5yxWvViIOLtVjDE/U+rrd613dBT/3rc3jSNQOnOiUqDWBTuiriFGj3OINa2HFClfW1uZSjRsDe+8Nb70V2LmAVpSJVIuDDoI1a2DhQthsM3jsMTjrLLj/fkgkgq6diIiISMmFaWVS25wlA2abQv9s1LDUMQxSnRyp5yrVyQHoeQLYbrv+fR9uvhkuuwwuusj9/OAHcMYZ0KjnSUREpJqUKubNFq+m/l7IirBKxMGleoyulT2+brdFsau/BmcdjFHWRV8+8Qn3+xvfcFsGPf2066vebDNagP/3jT9iGzar6LmAVpSJVJPaWthjD3f5q191q8uGDYPbbgu2XiIiIiIx93qG9CrZyqtVrg4aSRoxAk4+GTo63Kbohx/ufm+5pZuR25c9ZZCIiIjIYF5xaWqwotDVWpWIg0v1GH4GwBI1bvVXoavY2uYsoadv4MhYT5+tznh3iy1g0SIXu7a1rS3uqe1f31WpcwENlIlUq2efhQMPdJePOgrq693MVBEREREpOa+T7qJno8aMBhTzZAxMnQrt7bB0qStbbz3o8TcbWkRERCTFKy6tNaaoiUyViINL9RitzeOoz5F+MTUdqdAJXop3MzAGzj2XsefdyU5n3cJb62884M+VeG40UCZSrYyBu+92o/YAH38M664bbJ1EREREYirTSXcxG63HlQYUi7DNNi4t4wcfuH2KRURERPLgFa/22sx5Af0OXlQiDi7VYwzed6zGDL1Nb5/lwjsWFzzgpXjX2xYN9awcNvR5qMRzo4EykWq3yy7uhPqMM+Cuu1zZggXw3nvB1ktEREQkRkq50XqcaUBRREREJBhe8WpjkQM7lYiD83mM9o5OJs+Yy9ips5k8Y+6QVIktTY08PHU/XppxMH0ee4e9t7Kn4AEvxbvegnxu6nLfRESqwm9/6353d8PEie7y//4vTJsWXJ1EREREYqRUG63HWer5KXSzeBEREREpnFe8Om3mogFpBvMdvKhEHOz1GO0dnWtjy5H1CT5YtYbe5AhYZ1c3rbcuXPv/+WhtHlfQ89LS1Mj8V97lxkdfpddaao1hygSdJ0Cw5wIaKBORgerr3T4HM2bAD37gfl5/HTbfPOiaiYiIiEgV0ICiiIiISHhEeSJTe0fngMGsru6h+7j29LpUipmOp6E+kfF/GuoTBT8v7R2d3Lagc21Ky15ruW1BJxNHbxiJ57TcgjoX0ECZiAx1ySVw1lmw6abu+hZbwE03wTHHBFsvERERERERERERqaioTmRqm7NkwIovL++tHDoYBjD9sJ05+6Yn6Usrq0mWQ2HPS6Y6dff00jZnSSSf47jQHmUiktkmm7i9yy691F3ffnv3uzf3l4uIiIiIiIiIiIhIkF7v6i76PmprTdbr+er0qJNXuVSGBspEJLuzz4a+Pmhqgpdegro6OO64oGslIiIiIiIiIiIiFdDe0cnkGXMZO3U2k2fMpb2jM+gq+dIwIuHrdiMSmYdJ2uYsoafXDijr6bW0zVlScJ1qTeaBNq9yqQwNlIlIbqmG+r333O+//tWVdXQEVyfxxRhzlTHmbWPM02llGxpj/mGMeT75e4Mg6ygiEmVqZ0VEyk9trYhIeamdlWxS+3x1dnVjcSufps1cFInBslU+0i4CDKurzVhejtVfqb3J/JZLZWigTET822MP6O6GDTfsv77PPi5Fo4TV1cCBg8qmAvdaa7cH7k1eFxGRwlyN2lkRkXK7GrW1IiLldDVqZ8VDtj21wm5lT1/uGwErujPvUVaO1V+NDfV5lUtlaKBMRPKzzjrwzjtwxx3u+gMPwNtvB1sn8WSt/Rfw7qDiw4FrkpevAVoqWikRkRhROysiUn5qa0VEykvtrGTjtc9XKfb/CostPAapyrH6q7V5HPWJgSvY6hO1tDaPK/g+pXgaKBORwhxyCPT0wIIFsOmmMG8efP7zsGZN0DWT3Da11r6RvPwmsGmQlRERiSG1syIi5ae2VkSkvNTOCuA9iORVHiYN9bn3KMs2SOX1/37u10tLUyNTJjSuXZVWawxTJjTS0tRY8H1K8TRQJiKFq6tz6RcBjj8e/vUvSCTg9tuDrZf4Zq21gOc0GGPMacaY+caY+cuXL/d1n7Ueq8+9ykVE4qwc7axIFCgekErK1tYqnhURKZ5i2uoW5RVQ0w/bmUTN0C/wVFGuQSqvDItFZF6kvaOT2xZ0rl2V1mstty3ojMSeb3GmgTIRKY2lS2H//d3llhZYf323n5mE0VvGmM0Bkr89c2daa6+w1k601k4cNWqUrzvv9QidvcpFRGKorO2sSBQoHpAK8NXWKp4VESmYYloB3AqoS44cT2NDPQa3l9YlR46PxAqolqZG2o7ebW3dG+oTJGoNfcnv9FyDVF0rM+9d5lXuR5T3fIuzuqArICIxYQz885/w1FOw227w4YcwYgQUkbNXymYWcBIwI/lbSwBFREpL7ayISPmprRURKS+1s7JWS1N0UwOm133yjLl0dQ8c5EoNUmU6vi0a6unMsBdbMWknq2HPtyjSijIRKa1dd3WDY6edBnff7coWLIAVK4KtV5UyxtwIPAKMM8a8Zow5BRfkfsEY8zxwQPK6iIgUQO2siEj5qa0VESkvtbNSLfIdpCpH2sko7/kWZ1pRJiLl8Yc/uN8rV8LEie7yz38Ora3B1akKWWuP8/jT/uV6zIb6xJDZOalyEZG4CaKdFYkCxQNSSpVua/X+FZFqo5hWqkW+K8RamhqZ/8q73Pjoq/Ram3NPMz9am8cxbeaiAekXo7LnW5xpRZmIlNeIEXDuue7y97/vUjS+9VawdZKy2nmL9fMqFxERkfhRPCBRpveviIhIPO27Q+Y99LzK2zs6uW1BJ73JrWVy7WnmR0tTI1MmNFJrDEBJBt+keBooE5Hya2uDN97ov77ZZjBzZnD1kbL69wvv5lUuIiIi8aN4QKJM718REZF4uu+55TnLz29fxLbT7mLM1Nl876YnB6z8gv49zQpVjsE3KZ4GykSkMjbbzO1dNiOZ0nqbbdzv3l7v/5FIsnmWi4iISPwoHpAo0/tXREQknnLtUXZ++yKum7ds7SCW3/tp7+hk8oy5jJ06m8kz5mYd9Gqbs6Tkg29SPA2UiUhlnXeeGxzbfXd48UWoq4OvfjXoWomIiIiIiIiIiEiMee1Fliq/8dFX876f9o5Ops1cRGdXNxbo7Opm2sxFnoNlmfZIy1YulaGBMhGpvJpk0/NuMnXJX/7i9i5btCi4OomIiIiIRFg+M5lFREREKiFs8UmuPcpyrSQDqE/U0to8bu31fFeIpfYm81sulaGBMhEJzsSJsHIlrLeeu77rrtDc7FI0ioiIiIiIL/nOZBYREREptzDGJ372KPNigMaGei45cjwtTY1ry3OlcxzMazDOzyCdlI8GykQkWPX18MEH8Le/uev33APLc385iYiIiIiIo70uREREJGzCGJ/kO6iV7qUZB/Pw1P0GDJJB7nSOgzXmWS6VoYEyEQmHlhZYvRoefxw22QTmzYMDDnD7mYmIiIiIiKdiOn1EREREyiGM8UmuQa1CBrFam8dRn6gdUDY4PWMxt5fK0ECZiIRHIuHSMQJ8+ctw771QVwd33RVsvSQv6w6rzatcRERE4ueESVvnVS7FyXcms2SneFZERKR4YYxPWpvHkagduBdYotasHaTKNIiVqDV8tGqN5z5rLU2NXHLkeBob6j3TMxZze6mMuqArICKS0UsvwT77wIMPwsEHw6hR8OqrMHx40DWTHHbfaiQPv/BuxnIRERERKb3W5nFMm7loQHojzUwunOJZERGR4oU2Phm8FVja9dRgVducJbze1U3DiAQffryGru4eoH+ftfTbpi7nM9CV7+2l/AJZUWaMOdoYs9gY02eMmTjob9OMMUuNMUuMMc1B1E9EQqCmBv71L1iwwF1fvhzWWSfYOokv8158L69yERERiZ8bH301r3IpjmYml5biWRERkeKFMT5pm7OEnr6BI2U9fdZz37T3u9cMuX3Q+6xJeQSVevFp4EjgX+mFxpidgGOBnYEDgd8ZY5TbQKSa7bEH9PXB174Gd9/typ54At5/P9h6iadeO3hqTvZyERERiR/FAxJlev+KiIjEU6fH/mip8vaOTlpvWUhnVzcW7+9+r/uR6ApkoMxa+6y1NtOw6+HAX621q6y1LwFLgb0qWzsRCR1j4Kqr4MADYeVKmDABRo6Eyy4LumYiIiIiIoFr7+hk2sxFazt1UmmBBu+hISIiIlIpYYxPao3JWj591uIhK8jyuR+JrqBWlHlpBNJzcbyWLBvCGHOaMWa+MWb+8uXLK1I5EQmBESPgO99xl886yw2ivf12sHUSEREREQlQ25wlA/b/AKUFEhERkWCFMT7JtWo8tRdZofcj0VW2gTJjzD+NMU9n+Dm8FPdvrb3CWjvRWjtx1KhRpbhLEYmKX/0KXnut//qmm8LttwdXHxERERGRAL3ukf7Hq1xERESk3MIYnzQ21OdVnu/9SHSVbaDMWnuAtXaXDD/ZerM7ga3Srm+ZLBMRGaixEayFiy9218eOdb97e73/R0REREQqYlht5nQ0XuVSnC08Omu8ykVERETKLYzxSWvzOOoTtQPK6hO1tDaPA2CDEYmc95F+e4mPsKVenAUca4wZbowZC2wPPBZwnUQkzH74Qzc4tuuu8MILUFcHX/960LWqapO33TCvchEREYmfY/bcKq9yKU6uTh/Jj+JZERGR4oUxPmlpauSSI8fT2FCPwa0Mu+TI8bQ0ud2fDt5184z/V5+oyXh7iY+6IB7UGHME8BtgFDDbGPOktbbZWrvYGHMz8AywBjjTWqvlISKSXU1yzP+//3W///Qn9/P007DzzsHVq0q9/E7mJfRe5SIiIhI/9z2XeR9pr3IpTqqzpm3OEl7v6maLhnpam8epE6dAimdFRESKF9b4pKWp0bMOXrHqhusO5+Gp+5WzWhKwQAbKrLV/A/7m8befAj+tbI1EJBb23hs+/BA22ghWrYJddoGDD4Y77gCjND+VEsYc1CIiIlJZigcqL1unj+RH718REZHSiFp8ohigeoUt9aKISHHWXRc+/hhuucVdnz27f6WZVEQYc1CLiIhIZSkekCjT+1dERKQ6KQaoXhooE5F4OuooWL0aHn8cRo2CRx6BAw90+5lJWbU2jyNRM3AFX6LGaI8MERGRKqJ4QKJM718REZHqpBigemmgTETiK5GAiRPd5SlTYM4cqKuDv/892HpVg8GZLpX5UkREpPooHpAo0/tXRESkOikGqEoaKBOR6vDaazBpkrv8pS/B5pu7FWdScm1zltDTaweU9fRa2uYsCahGIiIiUmmKByTK9P4VERGpTooBqpcGykSkOtTUuPSLjz3mrr/5JgwfHmydYkobn4qIiIjiAYkyvX9FRESqk2KA6qWBMhGpLnvuCX19cOKJ/SkYn3gCPvww2HrFiDY+FREREcUDEmV6/4qIiFQnxQDVSwNlIlJ9jIFrr4XmZvjoI5gwAdZfH373u6BrFgtjNsocPHiVi4iISPwoHpAo0/tXRESkOikGqF4aKBOR6rbuunD66e7ymWfC3LnB1icG5r34Xl7lIiIiEj+KByTK9P4VERGpTooBqpcGykREfvc7WLYMvvY12GGHoGsTeb3W5lUuIiIi8aN4QKJM718REZHqpBigetUFXQERkVDYaiu46qqgaxELtcZkDCBqjQmgNiIiIhIExQMSZXr/ioiIVCfFANVLK8pERKSkjtt7q7zKRUREJH4UD0iU6f0rIiJSnRQDVC+tKBMRkZK6uGU8ADc++iq91lJrDMftvdXachEREYk/xQMSZXr/ioiIVCfFANVLA2UiIlJyF7eMVxAhIiJS5RQPSJTp/SsiIlKdFANUJ6VeFBERERERERERERERkaqkgTIRERERERERERERERGpShooExERERERERERERERkaqkgTIRERERERERERERERGpShooExERERERERERERERkaqkgTIRERERERERERERERGpShooExERERERERERERERkaqkgTIRERERERERERERERGpShooExERERERERERERERkapkrLVB16FoxpjlwCt5/tvGwH/LUJ0w0rHGk441PEZba0cFXYlyU1sLxO94IH7HFLfjgfgdUyHHo3a2X9TfD8Lc/M8AACAASURBVKp/sFT/YIW9/rFvaxXPrhW3Y4rb8UD8jiluxwOKaT0V2NbmEsf3EOi4okbHFX4Ft7OxGCgrhDFmvrV2YtD1qAQdazzpWCUK4vbaxe14IH7HFLfjgfgdU9yOp9Ki/vyp/sFS/YMV9fpXqzi+bnE7prgdD8TvmOJ2PBDPYwqzuD7fOq5o0XHFm1IvioiIiIiIiIiIiIiISFXSQJmIiIiIiIiIiIiIiIhUpWoeKLsi6ApUkI41nnSsEgVxe+3idjwQv2OK2/FA/I4pbsdTaVF//lT/YKn+wYp6/atVHF+3uB1T3I4H4ndMcTseiOcxhVlcn28dV7TouGKsavcoExERERERERERERERkepWzSvKREREREREREREREREpIppoExERERERERERERERESqUlUOlBljDjTGLDHGLDXGTA26PqVkjNnKGHOfMeYZY8xiY8x3k+UbGmP+YYx5Pvl7g6DrWgrGmFpjTIcx5s7k9bHGmEeTr+1NxphhQdexVIwxDcaYW40xzxljnjXGfCrGr+tZyffv08aYG40x68T5tY2jOLSzcW1P49Zuxq1tjEP7Z4y5yhjztjHm6bSyjK+JcX6dPLanjDF7BFfzcIt6u2qMedkYs8gY86QxZn7Q9fEjn/dyGHnUf7oxpjP5OjxpjDkoyDp6ifp3cJb6R+L5r1a52lljzPDk9/DS5PfymMrXMj8+juns5Pv0KWPMvcaY0UHU0y+/34XGmCnGGGuMmVjJ+uXLz/EYY45Ja0tuqHQd8+XjPbd1sn3sSL7vQt0OZvouHfR3xbIlFrfPOfj6XJxsjFmeFh98PYh65iuObRj4er1+mfZa/ccY0xVEPfMVt/a5LKy1VfUD1AIvANsAw4CFwE5B16uEx7c5sEfy8vrAf4CdgJ8DU5PlU4GfBV3XEh3v2cANwJ3J6zcDxyYv/x44Peg6lvBYrwG+nrw8DGiI4+sKNAIvAfVpr+nJcX5t4/YTl3Y2ru1p3NrNOLWNcWn/gM8BewBPp5VlfE2Ag4C7AQNMAh4Nuv5h/IlDuwq8DGwcdD3yrLPv93IYfzzqPx04N+i6+ah7pL+Ds9Q/Es9/Nf74aWeBM4DfJy8fC9wUdL1LcEz7AiOSl08P8zH5/S5Mfub+BcwDJgZd7yJfn+2BDmCD5PVNgq53CY7pilQsm2wXXw663jmOach36aC/K5at8HsoebtIfM79HhPunO//gq5rGY4rUm2Y3+MadPtvA1cFXe8SvV6Rap/L8VONK8r2ApZaa1+01q4G/gocHnCdSsZa+4a19onk5Q+AZ3Edb4fjOhNJ/m4JpoalY4zZEjgY+GPyugH2A25N3iQWxwlgjBmJC9D+BGCtXW2t7SKGr2tSHVBvjKkDRgBvENPXNqZi0c7GsT2NW7sZ07Yx8u2ftfZfwLuDir1ek8OBa60zD2gwxmxemZpGSiza1ajJ870cOh71j4Sofwdnqb+El592Nv39dyuwfzKWCqucx2Stvc9auzJ5dR6wZYXrmA+/34UXAT8DPq5k5Qrg53hOBX5rrX0PwFr7doXrmC8/x2SBTyQvjwRer2D98ubju1SxbGnF7XMO8Y3j49iGQf6v13HAjRWpWXFi1z6XQzUOlDUCr6Zdf42YnrQkU0E0AY8Cm1pr30j+6U1g04CqVUqXAd8H+pLXNwK6rLVrktfj9NqOBZYDf04ugf2jMWZdYvi6Wms7gf8HLMN1EK8AFhDf1zaOYtfOxqg9jVu7Gau2Mebtn9drErv2okzi8DxZ4B5jzAJjzGlBV6YIkWxfBvlWMp3KVSakqQvTRf07eFD9IWLPfxXx086uvU3ye3kFLpYKq3y/O07BrYwJq5zHk0x7t5W1dnYlK1YgP6/PJ4FPGmMeNsbMM8YcWLHaFcbPMU0HTjDGvAbchVuNEWVxiNHCJG6fc/D/HpmSjA9uNcZsVZmqFSWObRjk8ZlOpiseC8ytQL2KVY3tc96qcaCsKhhj1gNuA75nrX0//W/WWovrrIgsY8whwNvW2gVB16VC6nDL/S+31jYBH+HSzawVh9cVINlhcDjuy2YLYF0gCl+mElNxaU9j2m7Gqm2slvYvSq+JlNRnrLV7AF8CzjTGfC7oChUrou/ly4Ftgd1xA/KXBlud7KL+HZyh/pF6/qV6GGNOACYCbUHXpVDGmBrgF8A5QdelhOpwqcv2wa1auNIY0xBojYp3HHC1tXZLXNrCvyRfO5GcYvo5B7gDGGOt3RX4B/2rl6Mujm1YumOBW621vUFXpESqvn2uqoNN6gTSR+a3TJbFhjEmgTshu95aOzNZ/FZq+XfydxSWu2YzGTjMGPMybrnofsCvcMvc65K3idNr+xrwmrU2NRP1VlzncNxeV4ADgJestcuttT3ATNzrHdfXNo5i087GrD2NY7sZt7Yxzu2f12sSm/aizCL/PCVXTKZSrvwNl/4jiqLavgBgrX3LWttrre0DriTEr0PUv4Mz1T9Kz38V8tPOrr1N8nt5JPBORWpXGF/fHcaYA4AfAodZa1dVqG6FyHU86wO7APcn491JwCxjzMSK1TA/fl6f14BZ1toea+1LuP0Ot69Q/Qrh55hOwe2/i7X2EWAdYOOK1K48Ih+jhUzcPufg4z1irX0nrf39IzChQnUrRhzbMMjvM30s0Ui7CNXZPuetGgfKHge2N8aMNcYMw72pZwVcp5JJ5kj/E/CstfYXaX+aBZyUvHwScHul61ZK1tpp1totrbVjcK/hXGvt8cB9wFHJm0X+OFOstW8CrxpjxiWL9geeIWava9IyYJIxZkTy/Zw61li+tjEVi3Y2bu1pHNvNGLaNcW7/vF6TWcBXjTMJWJGWVk36RbpdNcasa4xZP3UZ+CLwdLC1KlhU2xdg7eBSyhGE9HWI+newV/2j8vxXKT/tbPr77yhcLBXmVY05j8kY0wT8ATdIFtqB56Ssx2OtXWGt3dhaOyYZ787DHdf8YKqbk5/3XDtuJQbGmI1xacxerGQl8+TnmJbhYlyMMTviOmKXV7SWpaVYtrTi9jkHf21xenxwGG5v07CLYxsGPs+7jDE7ABsAj1S4foWqxvY5f9baqvvBLR/8D/AC8MOg61PiY/sMLgXJU8CTyZ+DcLnT7wWeB/4JbBh0XUt4zPsAdyYvbwM8BiwFbgGGB12/Eh7n7sD85GvbjmuQY/m6AhcCz+E6D/4CDI/zaxvHnzi0s3FuT+PUbsatbYxD+4ebVfcG0IObRXiK12sCGOC3ybZiETAx6PqH9SfK7WryPbww+bM4KvXP570cxh+P+v8l+Vl7CndyvHnQ9fSoe6S/g7PUPxLPf7X+ZGpngZ/gOmHBdRjdkvw+fgzYJug6l+CY/gm8lfY+nRV0nYs5nkG3vT/scYWP18fg0sw9k2w7jg26ziU4pp2Ah5MxwZPAF4Ouc47jyfRd+k3gm2mvkWLZCr6HBt029J9zP8cEXIKLkRfiJknuEHSdS3RckWvD/BxX8vp0YEbQdS3x6xWp9rkcPyb5RIiIiIiIiIiIiIiIiIhUlWpMvSgiIiIiIiIiIiIiIiKigTIRERERERERERERERGpThooExERERERERERERERkaqkgTIRERERERERERERERGpShooExERERERERERERERkaqkgTKJJWPMZsaYvxpjXjDGLDDG3GWM+aQxptsY86Qx5hljzLXGmETy9vsYY+5MXj7ZGGONMQek3V9LsuyooI5JRCTsjDFHJNvY9J8+Y8zpyTb022m3/T9jzMkBVldEJHSMMR8mf4/J1m4aY642xrxkjFlojPlPMq7dcvD9pF0/2Rjzf8nL44wx9yfb6GeNMVdU5OBEREImS7/B04NuN90Yc27a9TpjzHJjzIxBtzvEGNORbJufMcZ8o1LHIiISdsnY9tK06+caY6anXT/NGPNc8ucxY8xnkuW1yTb6c2m3vccYc3RFD0BiTwNlEjvGGAP8DbjfWruttXYCMA3YFHjBWrs7MB7YEjjG424WAcemXT8OWFi+WouIRJ+19m/W2t1TP8DvgAeBOcDbwHeNMcMCraSISHTkajdbrbW7AeOADmCuzzb218Avk231jsBvSlNdEZHoyNFvkMsXgP8ARyfvh+Qk3CuAQ5NtcxNwfznqLiISUauAI40xGw/+gzHmEOAbwGestTsA3wRuMMZsZq3tBc4A/s8YkzDGHAf0WWtvqWTlJf40UCZxtC/QY639farAWrsQeDXtei/wGNDocR8PAnslG+D1gO2AJ8tXZRGReDHGfBL4MXAi0AcsB+4FTgqyXiIiEeKr3bTOL4E3gS/5uN/NgdfS/n9RMZUUEYmonP0GWRwH/ApYBnwqWbY+UAe8k7yvVdbaJSWtsYhItK3BTSg4K8PfzsNNAvsvgLX2CeAa4Mzk9UeBR4DpwP8C36pAfaXKaKBM4mgXYEG2Gxhj1gH2Bv7ucRML/BNoBg4HZpWygiIicZacUXsDcI61dlnan34GnGuMqQ2mZiIikZNPu/kEsIOP2/0St/rsbmPMWcaYhqJqKCISTdn6DbZNTyWOW9kArO1LOAC4A7gRN2iGtfZdXL/BK8aYG40xxxtj1OcmIjLQb4HjjTEjB5XvzNA2eX6yPGUa8D3gBmvt0vJVUaqVvrSl2mybDHTfAt6w1j6V5bZ/xaVfPBYXAIuIiD8XAYuttTelF1prXwQeBb4SSK1ERCImz3bT5Lq75H3+GdgRuAXYB5hnjBleRDVFROLmhUHpxH+f9rdDgPustd3AbUBLajKDtfbrwP647DXnAldVuN4iIqFmrX0fuBb4TgH//jlgBW6ig0jJaaBM4mgxMMHjb6k9yrYFJhhjDvO6E2vtY7i9zDa21v6n9NUUEYkfY8w+wBS8UyH8Ly6tQq4OXRERcfy2m03As8nL3YP2K9sQ+G/qirX2dWvtVdbaw3FpcNThICLVJlu/QTbHAQcYY17GrX7YCNgv9Udr7aJkOtwv4GJiEREZ6DLgFGDdtLJnGNomT8C11Rhj1gV+jmtvNzHGHFSBekqV0UCZxNFcYLgx5rRUgTFmV2Cr1PVkztupuGW72UwFflCOSoqIxI0xZgPgz8BXrbUfZLqNtfY5XBB8aCXrJiISVbnaTeN8B7f3WCqt+APACcm/1wPHAPclrx+YTJGLMWYzXCdvZzmPQUQkhHL2GwxmjPkE8Flga2vtGGvtGNz+OccZY9ZLThhL2R14pRwVFxGJsmSq2ptxg2UpPwd+ZozZCMAYsztwMvC75N9/DNycjIvPAH6ZTIUrUjIaKJPYsdZa4AjcLK8XjDGLgUtwG5ynawdGGGM+m+W+7rbW3le+2oqIxMo3gU2Aywft6/DlQbf7KbBlxWsnIhJdmdrNNmPMQuA/wJ7Avtba1cm/fRc4MtkGzwNusdb+K/m3LwJPJ/93Dm7j9MFxsohIrOXRb5DuCGCutXZVWtntuIkMtcD3jTFLkm3vhbhOXhERGepSYOPUFWvtLFy62n8bY54DrgROsNa+YYzZGdf+/jR52w5cDHtexWstsWZcbCAiIiIiIiIiIiIiIiJSXbSiTERERERERERERERERKqSBspERERERERERERERESkKmmgTERERERERERERERERKqSBspERERERERERERERESkKmmgTERERERERERERERERKqSBspERERERERERERERESkKmmgTERERERERERERERERKqSBspERERERERERERERESkKmmgTERERERERERERERERKqSBspEREREROT/s3fvcXJUZf7Hv08mA0xQGC6RNcMtggYXsxKJAsYbWTEqtzF4A1xxdfGy7iqiwaC4hl3YhI0r6rquPy+7qFzl4giiG9EAq1GQZIcYo2QVkGADApLhOsAwOb8/qnqmp6equ6u7qutU9+f9evEiU307PVP1nFPn8hwAAAAAALoSA2UAAAAAAAAAAADoSgyUAQAAAAAAAAAAoCsxUAYAAAAAAAAAAICuxEAZAAAAAAAAAAAAuhIDZQAAAAAAAAAAAOhKDJQBAAAAAAAAAACgKzFQBgAAAAAAAAAAgK7EQBkAAAAAAAAAAAC6EgNlQIvM7DEze17e5QCAbmBmnzCzr+VdDgDoNGb2SjPbknc5AKAbmNkPzOyUvMsBAJ3IzL5sZp/KuxwoFgbK0HZm9nszGw0HmO4zswvM7FkVj19gZs7Mjq963fnh8XdlWLb9w894LPzv92a2vNZrnHPPcs7dkVWZACAJM7vBzLaZ2Y4Rjy00s++Fj4+Y2a/N7Fwz2y18/F1mNl4RA8v/zcmwvBeY2dPh5zxkZteZ2UFxz3fO/bNz7m+yKg8ANKKiPftoGE9/ZmbvN7MZFc+5wMzOqfj5PWZ2W/iaP5rZ983s2RmWsTKmP2Jmt5rZMXHPd879xDk3L6vyAEA99foKKp63IrxvP6zqeHVb9k4z+y8ze0Gby/7HuLKXOefe4Jz7RtblAoBKVff52yvi1mNmdnLF894Vxtm3Vb3+2DA+715x7HgzK5nZrhmW+wYzezIs54NmdpWZPTfu+c659zvn/imr8qAzMVCGvBzrnHuWpEMkLZB0ZtXj/yfpneUfzGympLdKur1N5esPy3eipH8ws9dXPyEsEwB4w8z2l/RKSU7ScVWPvVzSDZLWSTrIOdcv6fWSnpH04oqn/jycAFD53z0ZF/1fwpi7t6T7JV0Q9STiLgDPHOuce7ak/SStkvRxSV+PeqKZvVrSP0s6MXzNCyVd1oYy/jyMr/1h2b5dnhxRVT7iKwBf1OwrMDNT0FfwkCr6DCqU496ukl4raVTSBjN7UaalDpTL/hJJCyWdVf0EC9AXByAXlff5krYqjFvhfxdVPPUURcRZ59w1ktZKOl+SzKxf0n9I+oBz7uGMi/93YblfoKBte37Uk8ysJ+NyoENROSNXzrn7JK1R0AiudI2kV1TcyL9e0i8l3Rf1PmY2J5wFUTmjYUE4y6DXzA40sxvN7OHwWEMdE865n0vaLOlF4Xs6M/ugmf1W0m8rjh0Y/rvPzP7VzO4KP+unZtYXPnZ4ONt4xMw2mtlrKsr6LjO7I5xhfGflLA4ASOCdkm5SMNBUncrlXyT9l3NupXPuj5LknNvqnPu0c+6GpB9kZv9hZp+pOvZdMzs9/PfHw1llj5rZFjP7y3rv6Zx7QtLFmoy5K8zsCjO70MwekfSu8NiFFZ/5iorYereFq47NbEcz+4yZbQ1n9X65Ih7vacHKuhELVrH9hA4LAM1yzj3snLta0tsknRLTGftSBZ23w+FrHnLOfcM592j1E83sbWa2vurYR8zs6vDfb7RgRfCjYZz9WANl3C7pPyX1STrAzF5jZn8IY/V9kv6rfKziM/cJZ+s+YGZ/MrMvVjz2bjP7jQUrlNeY2X7hcbMgC8T9Fqxi29SmzmkAHaZGX8ErJT1X0ockvd3Mdoh5/bhz7nbn3N9KulHSiqjnhbHsmIqfZ4Zx7yVmtlPYDv1T2G68xcz2aqDsJUk/0GSb9gYLsjisk/SEpOeFxyayJJjZqWFZHg1j/EvC43PM7MqwTHea2YcqXvMyM1sfxts/mtln65UNAOoJ23WvlvReSUvM7M+qnvIhSW8wsyUKBqtuDNvCUe/1AzP7u6pjG81sabPtRufcQ5Ku1GSMvSDsn/i+mT0u6UibntnheAuyKzxiZrdbuCDCzHY1s6+b2b1hu/ocCwfarMm+ZBQXnULIlZntLekNkn5X9dCTkr4r6e3hz++U9M249wlXO/xc0gkVh0+SdIVzbkzSP0n6oaTdFKxY+LcGymZmtkjSwZKGKx4alHSYpD+PeNlnJB0q6eWSdpd0hqTtZjYg6VpJ54THPybpSjObbWY7S/qCpDeEM4xfLunWeuUDgAjvlHRR+N+S8o18GGeOUNCYTMslkt5mZhZ+xm6SXifpUjObJ+nvJL00jGtLJP2+3htakJ7mZE2NucdLukLBjLGLqp6/n4JOiH+TNFtBR0o5fq5SMNPsEEkHShqQ9A/hYx+V9IfwNXtJ+oSCVXgA0DTn3C8UxJZXRjx8s4K4fLaZLbKI9LgVrpE0z8yeX3HsJAUTCaRgZdj7wvj6IgWzemuyYMXY30h6TOFkL0l/pqBdup+CjpDK5/dI+p6kuyTtryCGXho+dryCuLlUQRz9iYI6QQrqgVcpiL+7KsgI8ad65QOAajX6Ck5RECe/Hf58bANvd5WiY7MUxK8TK35eIulB59z/hp+1q6R9JO0h6f0KVqjVK/s+kt6oqW3av1IQa5+tILZWPv8tCgby3ilpFwWZIf5kwUSuayRtVBCH/1LSaWHntCR9XtLnnXO7SDpAk78TAGjFOyWtd85dKek3Cu7RJzjnHpT0YQX358coGDiLMyXGmtmfK2h7Xqsm241mtqeC/t/KGHuSpHMVxNifVj3/ZQr6lJcp6Fd4lSb7Jy5QkGXnQAWrmF+noM0sNdGXjGJjoAx5GTKzRyXdrSDN1qcjnvNNSe+0YBnvqyUN1XnPixUG37Dj9u2a7FAYUxCI5zjnnnTO/TT6LSY8qGCJ8dckLXfO/bjisZXhLOApDeSwEftuSR92zpXCGWw/c849Jekdkr7vnPu+c267c+46SesVNJ4labukF5lZn3PuXufc5jrlA4ApzOwVCuLct51zGxSkqj0pfHg3BXX+fRXP/5dwZuzjZlaZFubw8Hj5v7iUtz9RMLhU7nR4s4LVEvdIGpe0o6Q/N7Ne59zvnXO1Uud+zMxGFHSEPEvSuyoe+7lzbiiMndUdEydJ+pFz7hLn3Jhz7k/OuVvDOuC9kj4SxutHFaQ8K0++GFMwE3m/8HU/cc4xUAYgDfcoGHyawjn3EwUDSy9R0DHwJzP7rEWkhglX135Xk+3a50s6SFJ5pu6Ygvi6i3NuW9iZG+fwML7eF77fmyrS4myX9Gnn3FMR8fVlkuZIWuace7yq/fx+Be3h3zjnnlEQXw8JJy+MKeigOEiShc+5t0b5AKBabF+Bmc2S9BZJF4cTYq9QdPrFapGxOXSxpOPC95aC9mV58H9MwQDZgeH9/Qbn3CN1yj6ioJP2RgXxsewC59xm59wzYdkr/Y2CVOS3uMDvnHN3KViNPNs594/OuaddsDf6VzW1TXugme3pnHvMOXdT3d8EANT3Tk32p16s6Dh7k4LBrR865x6o8V7f0WQ7UQoG3a4K+0qTthu/EMbYjZLulXR6xWPfdc6tC/sNnqx63Xsk/adz7rrw8ZJz7rZwYvEbJZ0WtnfvV7BCrjLGJulLRsExUIa8DIazYF+jICDuWf2EMADNlvRJSd+LuIGvdqWkIyzYzPFVCm7+fxI+doYkk/QLM9tsZu+u8157Oud2c8690Dn3harH7o57jaSdFL2P2n6S3lLZ+SzpFZKe65x7XEGqnvdLutfMrjWzg+qUDwCqnaKgkfpg+PPFmky/uE1BTJzY7NY5d4YL9in7jqTKvWlucs71V/x3QNSHhQNLl2pydthJCld8Oed+J+k0BTNj7zezS81sTo2yfyb8rD9zzh1XNagWF3OlYHZvVMydLWmWgv0oyjH3v8PjkrRawaDcDy1Ie7u8xmcAQBIDCiZbTeOc+4Fz7lgFnbXHK5gU8DdRz1XFBDAF8XUoHECTghm0b5R0V5gO5oga5SnH9D2dc4c7535U8dgDER0JZftIuiscCKu2n6TPV8TXhxS0swecc2slfVHSvyuI/18xs11qlA8AqtXqK3iTgpn/3w9/vkhB+q/Zqq1WbP6dghUTx4aDZcdpsoP4WwrSP15qZveEE81665S93zm3n3Pub6v6MJpp0+4naU5VP8InFGREkILO3xdIus2CtJDHRLwHADQszKw1V2EmAQXxcL6ZVafB/YqCBQ5vrNUWDSetXqvJwacTNdlvkLTd+KEwxg44506uGqBrNsb2KuiLLcfY/yfpOeHjSfuSUXAMlCFXzrkbFSxz/UzMUy5UkCIrNu1ixXttU7Ak9m0KOhQuLa8QcM7d55w71Tk3R9L7JH3Jwn3Fmil2zPEHFaSMjOpUvlvSt6o6n3d2zq0Ky7fGOXeUgk7s2xTMEgOAhliw99ZbJb3azO6zYL+Zj0h6sZm9OByQv1nBaoY0XSLpzeHssMNUkdrROXexc668ys1JOq/Jz6i10utuRcfcBxWkxTm4Iubu6oKNf+Wce9Q591Hn3PMUdIacbg3soQYAtZjZSxV0xtacbRrOZP2xgpSJcfswXCdpdtgpcaImO20Vrjg4XsFN/JCaT7VVL77uG6ZsjHrsfVXt2j7n3M/C8n3BOXeogjTlL1CQ5gYAEonpKzhFQfaBrWF793IFnZwnTXuDqd6kyUm0UcqpwY6X9Otw8EwuyDxwtnPuzxVskXCMGlvBFqWZNu3dku6sirfPds69MSzfb51zJyqoD86TdEWYch0AmnWKgsGhW8M4e3PFcUmSmb1HweDT3yoYvP+axewXGbpE0onhgNpOkq4vP5Biu7HZGPuUgsUS5Ri7i3Pu4LBsafYlowAYKIMPPifpKDN7ccRjX5B0lKT/afC9ykuC36yKDgUze0uY41wKVlY4BasrUuMmN0n/rAUb7vaY2RHhHhQXKpihtiQ8vpMFG6bvbWZ7WbCp5M4KAvRjaZcNQMcbVJDu8M8V7Ml1iKQXKugQKN/MnyHp3Wa23MyeI03s/TC32Q91zg0rGJT6mqQ1zrmR8H3nmdniMP49qWDQKou4dpGk15rZWy3YeH0PMzskjMdflXR+xXcdKO/nYGbHWLAxr0l6WMHvjrgLoClmtks4i/9SSRc65zZFPOd4M3u7me1mgZcpSC0emSbLBWm5LlewAnZ3BQNnMrMdzOxkM9s1fM4jyiZ+/UJBSptVZrZz2HZdFD72ZUlnmtnBYZl2tWB/HZnZS83ssHDFxeMK6gDiK4BmTfQVWLDv918qGKwqt3dfrGCAaNrgVXjfPdfM/k3B6rSza3zOpQr2pfmApvYjHGlm8y1Ik/uIgjRck09iEAAAIABJREFUWcS0rylIRX5oWEccGE5E+4WkR83s42bWF36nF4UTM2Rm7zCz2WHbdyR8L2IugKaY2U4KJuC+V5Nx9hBJfy/ppPCee46C9umpYfrELyvYV+yTNd76+wom0P6jpMvCmNXOduPXJf21mf2lmc0I+wYOCtM8/lDSv4bt+RlmdoCZvTosX+Z9yfALA2XIXbhU9puS/iHisYeccz8urwxrwNWSni/pPufcxorjL5V0s5k9Fj7nwy7I7522j0naJOkWBakdzpM0wzl3t4LZaZ+Q9ICCWQvLFFyDMxTk1b0nfM2rFTTQAaBRp0j6L+fc1nDW033OufsUpDE42cxmhulsFytITft/NpmO8AZN3ZT2CDN7rOq/l9b47IslvVYVnQoK9idbpWAQ7T4Fs1zPTOerTnLObVWQfuyjCuLnrQo6TCTp4wrSK95kZo9I+pGkeeFjzw9/fkzSzyV9yTl3vQAgmWtsch+dT0r6rKS/jnnuNkmnSvqtgs7WCyWtds5dVOP9y/H18qoUiH8l6fdhbHu/qjZYT4NzblzSsQo2Nt8q6Q8KsjbIOfcdBW3cS8My/ErSG8KX7qJgosI2SXcp6DhZnXb5AHSHqr6Cv5J0q3Puh1Xt3S9I+gszK6/QPSK8739EQTt3F0kvjZrEUPE59ypoE75c0mUVD/2Zgn3QHlGQnvFGBekYU+Wcu1zSuQri/qMKVgvvHsbi8sDgnZqcoLZr+NLXS9ocft/PS3q7q79lBQDEGVQwyfWbVXH2PxVs1/B6SV9SkMHrJ9LElgynSjqtPImqWjigdpWm9xu0pd3onPuFgjb6+Qomyt6oYOBOCiZa7CDp12E5rtDklhXt6kuGJ6zx8QcAAAAAAAAAAACgc7CiDAAAAAAAAAAAAF2JgTIAAAAAAAAAAAB0JQbKAAAAAAAAAAAA0JUYKAMAAAAAAAAAAEBXmpl3AdKw5557uv333z/vYgDoUhs2bHjQOTc773JkjVgLIC/EWQDIXjfEWuIsgDx1Q5yViLUA8tNKnO2IgbL9999f69evz7sYALqUmd2VdxnagVgLIC/EWQDIXjfEWuIsgDx1Q5yViLUA8tNKnCX1IgAAAAAAAAAAALoSA2UAAAAAAAAAAADoSgyUAQAAAAAAAAAAoCsxUAYAAAAAAAAAAICuxEAZAAAAAAAAAAAAuhIDZQAAAAAAAAAAAOhKDJQBAAAAAAAAAACgKzFQBgAAAAAAAAAAgK7EQBkAAAAAAAAAAAC60sw8P9zMfi/pUUnjkp5xzi00s90lXSZpf0m/l/RW59y2vMoIAEVHrAWAbBFnASBbxFkAyB6xFkA3y3WgLHSkc+7Bip+XS/qxc26VmS0Pf/54PkXrLkPDJa1es0X3jIxqTn+fli2Zp8EFA3kXq640yp3ld/e9fGm8/9BwSSuu3qyR0TFJ0gyTtjtpVu8MjT6zXc5JPWY68bB9tHC/3RN/VnX5jjxotq6/7YGWf6dnX7NZ254Iytzf16sVxx1ciHO+ScTajKR5fZ41tEmX3Hy3xp2buGbOGZyfcon94Fud41t5aklS1lrPrXysf1avnJMeHh2Lfc+494qrA3rMNO6cBsLnrr/roU4/v9saZ6vrMUnaocc0Nu7kpLq/47i6tTQyOvEcM6lv5gyNjm2f9jdP+xz0/bqr1Ey5o14jqZDfH8hR2+OsL/eISdqIf/Hp/9YjT41P/LzLjj365dmvT6XcSRQ1xgP1HHbudfrjo09P/LzXs3fQzZ88KscSpS63voNy3CiNjE67l2imrZW0X6vy9fvv0aeb7tiW+r1L0WPjUZ+9Qb+9//GJn5//nJ113emvya9AyFWnxUNzzuX34cFMhYWVAdjMtkh6jXPuXjN7rqQbnHPzar3PwoUL3fr167MtbIcbGi7pzKs2aXRsskHd19ujlUvnex2w0yh3lt/d9/Kl8f5DwyUtu3yjxrY3FkvKHaiNflZU+ao18ztddsVGjY1PLXPvDNPqt7w48e/VzDY45xYmelEbEWuzk+b1edbQJl1409Zpx99x+L6dNpjgXZ3jW3lqSVLWWs+VVDO2Vr9n3HudcOiALvvF3XXrgBmStkccb/T8Js5OFVePRYn6HTdSt0Yp/82v3FDK5Bz09bqr1Ey8iHpN7wyTTFP+hkX4/uhsPsfaPOKsL/eISdqI1YNkZe0eLCtS2wpIorpTuKzRzmGf46yUb99BrfZpM22tpP1ajbSNW703L3psrB4kK2OwrDu1Gg+z0kqczXuPMifph2a2wczeGx7byzl3b/jv+yTtlU/RusvqNVumVQijY+NavWZLTiVqTBrlzvK7+16+NN5/9ZotDQ+SSVMHyRr5rKjyVWvmdxrVuTi23Xl/zjeJWJuRNK/PS26+O9HxIvOtzvGtPLUkKWut59aLrdXvGfdel9xcf5BMih4kkzrq/G5rnI2rx6JE/Y4bqVujlP/mWZ2Dvl53lZopd9Rrxra7aX/DInx/IEdtj7O+3CMmaSNGDZLVOp6VosZ4oJ6oTuFaxwsot76DWu3TZtpaSfu1Gmkbt3rvUvTYGDVIVus4OlsnxsO8Uy++wjlXMrPnSLrOzG6rfNA558wsshcgDNjvlaR99903+5J2uHsq0uw0ctwXaZQ7y+/ue/nSeP8sf09ZlSONzysYYm1G0rw+x2NWeMcdLzLf6hzfylNLkrKmGd/jXtPq+dlB53db42ySczPqd9zKuR33N0vrHPTxuquU9Xfy/fsDOfIizuZxj1jENmKR2lYApsit76BefGimrZV2f1KrcZfYCPgt1xVlzrlS+P/7JX1H0ssk/TFcyqvw//fHvPYrzrmFzrmFs2fPbleRO9ac/r5Ex32RRrmz/O6+ly+N98/y95RVOdL4vCIh1mYnzeuzxyzR8SLzrc7xrTy1JClrrec28t0qnxP3/FbPz045v9sdZ5Ocm1G/41bO7bi/WVrnoI/XXaVmyp1WGwXoZr7E2TzuEYvYRixqjAe6XZ59B/XiQzNtrbT7k1qNu8RGwG+5DZSZ2c5m9uzyvyW9TtKvJF0t6ZTwaadI+m4+Jewuy5bMU19vz5Rjfb09ExuN+yqNcmf53X0vXxrvv2zJvGCfjQZVP7XeZ0WVr1ozv9Penull7p1h3p/zSRFrs5Xm9XniYfskOl5kvtU5vpWnliRlrfXcerG1+j3j3uvEw/ZpqA6Ia3B2wvmdR5yNq8eiRP2OG6lbo5T/5lmdg75ed5WaKXfUa3pn2LS/YRG+P5CHvOKsL/eISdqIu+wYHdvjjmelqDEeqGevZ++Q6HiR5N13UKt92kxbK2m/ViNt41bvXYoeG5//nJ0THUdn68R4mGfqxb0kfceC0fiZki52zv23md0i6dtm9h5Jd0l6a45l7BrlTSNXr9mie0ZGNae/T8uWzPN+M8k0yp3ld/e9fGm8f/l5K67erJHRMUnBYNh2J83qnaHRZ7bLuWDmzYmH7aOF++2e6LOiynfkQbN1/W0PtPw7Pfuazdr2RFDm/r5erTjuYO/P+SYQazOU5vVZ3hT4kpvv1rhzE9dMK5sF+8q3Ose38tSSpKyNPLf8WP+sXjknPTw6Fvm8Wu+1cL/dI+uAHjONO6eB8Lnr73qoU8/vtsfZqHpMknboMY2NOzmp5u+4Vt1aqkj9Yib1zZyh0bHt0/7maZ+DPl93lZqJF3GvSfo+QBfLLc76cI+YpI34y7Nfr7/49H9P2ZNslx179MuzX99yuZMoUtsKSOLmTx6lw869bsoePHs9ewfd/MmjcixVanLtO6iMG6WR0Wn3Es20tZL2a1W+fv89+nTTHdtSvXcpemy87vTX6KjP3jBlT7LnP2dnXXf6a/IrFHLTifHQnMd5rRu1cOFCt379+ryLAaCNhoZL3jQuzGyDc25hLh/eRsRaAHkhzgJA9roh1hJnAeSpG+KsRKwFkJ9W4myeK8oAdJh2DV4NDZd05lWbNDoWzJQsjYzqzKs2SVJhZuIAgI98moQAv3BuAEAxEK8BoHXEUqD7MFAGIBVZDF7FNUxWr9ky8Tllo2PjWr1mCw0XAGgSkxAQh3MDAIqBeA0ArSOWAt2JgTIAqUh78KpWw+Seiv1TKsUdB4qKWWxoJyYhIA7nxlTEZgDt1mjcIV4D6FZpts+IpUB3YqAMQCrSHryq1TCZ09+nUsT7zunva+qzAB8xi80/nd45ziQExPHh3PDl+iM2A2i3JHHHh3hd5kvcBtD50m6fZRlLiY2Av2bkXQAAnSFukKrZwataDZNlS+apr7dnyvG+3h4tWzKvqc8CfFRrsBjtV775Ko2Mymny5mtouJR30VKTdhxH58j73PDp+iM2A2i3JHEn73hd5lPcBtD50m6fZRVLiY2A3xgoA5CKtAevajVMBhcMaOXS+Rro75NJGujv08ql85mFg47i04xgdEfnOJMQECfvc8On64/YDKDdksSdvON1mU9xG0DnS7t9llUsJTYCfiP1IoBUlAep0lpCvmzJvClL56WpDZPBBQMMjKGjkWLUL93QOZ52HEfnyPvc8On6IzYDaLckcSfveF3mU9wG0PnSbp9lFUuJjYDfGCgDkJo0B698uckD8lJvsBjt1S2d40xCQJw8zw2frj9iM4B2Sxp3fKjLfYrbADpfFu2zLGIpsRHwG6kXAXhrcMGA1i1frDtXHa11yxfnfsMHtBMpRv3iSyojoBv5dP0RmwG0WxHjjk9xG0DnK0qcJDYCfmNFGQAAnvJhRjACrHIF8uPb9UdsBtBuRYs7vsVtAJ2vCHGS2Aj4jYEyAA0bGi5RoQPoWkW4+QI6FdcfABQLcRsApiM2Av5ioAxAQ4aGS1NyPpdGRnXmVZskiUoeAAAAAAAAAFBI7FEGoCGr12yZsjGqJI2OjWv1mi05lQgAAAAAAAAAgNawogxAQ+4ZGU10HPAR6UMBwG/EaQDoDMRzAJiO2Aj4i4EyAHUNDZc0w0zjzk17bE5/Xw4lApIjfSgA+I04DQCdgXgOANMRGwG/kXoRQE3lijxqkKyvt0fLlszLoVRAcqQPBQC/EacBoDMQzwFgOmIj4DcGygDUFFWRS1KPmVYunc+sFxQG6UMBwG/EaQDoDMRzAJiO2Aj4jYEyADXFVdjbnZsYJBsaLmnRqrWau/xaLVq1VkPDpXYWEWhIXJpQ0ocCgB+I0wDQGYjnADAdsRHwGwNlAGqqV5GXUzOWRkblNJljmcEy+GbZknnq6+2Zcoz0oeli0BxAK4oWp4l5AHzkQ2wqWjwHUDw+xLqkiI2A3xgoA1BTvYqcHMsoisEFA1q5dL4G+vtkkgb6+0gfmiIGzQG0qkhxmpgHwEe+xKYixXMAxeNLrEuK2Aj4bWbeBQDgt3KFvXrNFt0zMqo5/X1atmTexHFyLKNIBhcM0AjNSK1Bc37nABpVlDhNzAPgI59iU1HiOYDi8SnWJUVsBPzFQBmAumpV5HP6+1SKGBRLK8fy0HApdpAuNc5J//mf0jvfKfX2pvveQJdg0BxANyHmAfARsQlANyDWAcgCA2UAWrJsyTydedWmKbN50sqxXF5OX37v8nJ6SekNljknzQiz0G7fLp16ajrvC3SZrAfN09CWgXcAhZUkRhQh5gHoPsQmAN2AWAcgC+xRBqAlWeZYznz/s8pBMkl6z3vSeV+gC/m+MXFR89gDaI+kMcL3mAegOx150OxExwGgiIh1ALLAijIALcsqx3Kmy+mrB8nGx6f+DCCRevsZ5q3IeewBZC9pjPA95gHoTtff9kCi4wBQRMQ6AFlgoAzoYr6nIct0OX1likUGyYBU+Lwxsa957H2Pw0CrinKONxMjfI55ALqTT+2dosR/AMXjU6xLitgI+IueYaBLpZmGbGi4pEWr1mru8mu1aNXa1FKZZZrW6AMfkE44gUEyoEvEDbDnmceedJDodEU6x32MEQCQlC+xrEjxH0Dx+BLrkiI2An6jdxjoUmnt/5VlRZ/6/mfOSa96lfSZz0iHHipdcQWDZECX8HE/ocz3YQRyVqRz3McYAQBJ+RLLihT/ARSPL7EuKWIj4DdSLwJdKm5JelSqw1qy3vcntbRGlXuS3XGH9NGPSmatvy+AQvBxP6EipwwBGlGkc9zHGAEASfkSy4oU/wEUjy+xLiliI+A3BsqALhW3/5cpWCXWaAOjMBV95cqxu+5ikAzoQr7tJ5TpPoyAB4p2jvsWIwCgGT7EsqLFfwDF40OsS4rYCPiNnGNAl1q2ZJ6ihoqcpI9+e2PDqRMLkRt6ZsWcgLExqacn/rkA0CZFTRkCNIpzHAC6E/EfAKYjNgJ+Y0UZ0KUGFwzotMtujXxs3DmdedWmiefVsmzJPJ151aYp6Re9quhvvVUaD8s2NjZ10AwoiKHhUuHSSqC+oqYMARrFOZ4e6gGgs3T6NU38B+CrPOMvsRHwGz3GQBcbiFn2LTW+z1jWFX1LjZitW6VDDpFuvFFatIiVZCikoeHSlMHo0sjotIHsTu9s6WRFTBkCJNHsOU5cm9RIPQAgf43GrW65pmnjAPBNGvG31TYqsRHwFwNlQBeLWg1WqdF9xrKq6FtqxOy2mzQyIm3aJL3qVamXDWiX1Wu2TLtGKweyu6WzBUD3IK5NVa8eAJC/JHGLaxoA8tFq/KWNCnQ2BsqALlauyD/67Y0ad27a43nvM9Z0I6Y8SCZJL3xhhiUEshc3YF0+XqTOFlaIAN2nmeu+SHGtHerVAwDylyRuZX1N094CgGhJ4m9ULKWNCnQ2BsqALleuzKP2GTvyoNlatGptbjdZTd1Ezp49OUj21FOkW0ThzYlJkVoeyC5KByqz74Du0+x1X5S41i716gEA+UsSt7K8pmlvAUC8RuNvXCxtNRsTAL/NyLsAAPI3uGBAK5fO10B/n0zB3mUnHDqgKzeUVBoZldNkw2BouNS2csXdLMbeRB55pPTgg8G/n3xS2mGHjEoGtM+yJfPU1zt1wLevt0fLlsyT1MR1kpNas+/QfkPDJS1atVZzl1+rRavWtjW2oxjSOEeave6LEtfapV49ACB/SeJWltc07S0AiNdo/I2LpT1mke/brW1UoNMwUAZAUjBYtm75Yt256mitW75Y19/2QO43WYluIp2T9t8/+PeTT0o77ph9AYE2iBrIXrl0/sSs4KJ0oLJCxB/lGZJ5ToSA39I6R5q97osS19qlXj0AIH9J4laW13TUSolaxwGgmzQaf+Ni5rhztFGBDkbqRQCRfOjULjdWynmh+2f1yjnpI5fdqtVrtkymgvzCF6SlS6Wvf1366lelmYS2ImNfhekGFwzE/g6qrxNff2ekDvMHufVRT1rnSLPXfVHiWjvVqgc6GW0CFEXSuJXVNd1jFrn3dNwqiKS4JgEUXSPxt1YsXbl0ftviIDEXaC96kwFE8qVTu9yIicsRfdSxL9fOpa3Sz34mXXqpNIOFskXGvgrNKUIH6rIl8yL3QmT2Xfv5MBECfkvrHGnlui9CXEO2aBOgaHyIW1Edu7WOJ8E1CaBb1Iql7Yr1xFyg/ehRBjzkw94xvqU9iprd/v1/f3cwSCZJ//VfOZQKaWNfhc5F6jB/sP8T6knrHOG6RytoEwDJDcTE6bjjSXBNAugWWcbSRhFzgfZjRRngGV9mjfiW9qh6FvuPv/p+zd12b/DD449LfXTwdgJWunQ2H2Zag9V9qC/Nc4TrHs2iTQAkl2UdzzUJoFv4cL9EzAXaj4EywDM+7R3jU+dWZSrIN/1qrQ546A+SpL88+3v68axZeRYNKUo75Sc5vYHpfJsIAf9wjvilW+syX9KAA43y4VrNMn5zTQLoFj60hRuNuT7UPUCnYKAM8AyzRqJNzOh5+hn9+MCX6eIXv16fWfI+/cOxh+RdNKQozZlbvqzOBHzk00QI+IlzxA/dXJf5MJsbaJRP12pW8ZtrEkA3ybst3EjM9anuAToBe5QBnmHvmGiDCwa09n8+q8u+c7aemrmj/v3ty/QPb38plX+HSXM/G3J6AwCKrpvrMva4Q5F0w7XKNQkA7dNIzO2GugdoJ1aUAZ5hpl6Ml71Mz73lFj1X0pZz3yDtuGPeJUJG0pq5xepMtBtpL4D26oZrrtvrsrxncwON6pZrNck12Q0xGgCSShIb68Xcbql7gHZhRRngGWbqRTjiCOmWW4J/P/wwg2RoCKsz0U7ltBelkVE5Taa9GBou5V00oCN1yzVHXQYUA9fqVN0SowEgibRjI3UPkK7cB8rMrMfMhs3se+HPc83sZjP7nZldZmY75F1GoN0GFwxo3fLFunPV0Vq3fHF3D5K95jXSTTcF/x4ZkXbZJdfioDiWLZmnvt6eKcdYnYmskPYCaK9uueaoy4Bi4FqdqltiNAAkkXZspO4B0uVD6sUPS/qNpHLv93mSznfOXWpmX5b0Hkn/kVfhAOTo4YelG28M/r1tm7TrrvmWB4VSHmAm5QvagbQXAdIsFU9R/2bdcs1RlwHF4NO16kNc75YYDQBJpB0b86h7fKhjgKzkOlBmZntLOlrSuZJONzOTtFjSSeFTviFphRgoA7yUaQX5q19JL3qRdNtt0n77STvtlM77oquwtwnaZU5/n0oRNzjdlPainEqkPEuynEpEEtehp4r8N+uma466DCgGH65VX+J6N8VoAGhUFrGxnXWPL3UMkJW8Uy9+TtIZkraHP+8hacQ590z48x8kRV5pZvZeM1tvZusfeOCB7EsKYIpM884fdZQ0f7508cXSvHkMkgHwHmkvSLNUREX+m3HNAcB0vsR1YjQATFf02OhLHQNkJbeBMjM7RtL9zrkNzbzeOfcV59xC59zC2bNnp1w6APVkVkG+/vXSj34U/PuYY1p7LwBok8EFA1q5dL4G+vtkkgb6+7Ry6fyumllHmqXiKfLfjGsOAKbzJa4TowFguqLHRl/qGCAreaZeXCTpODN7o6SdFOxR9nlJ/WY2M1xVtrekFJanAEhbJhXkMcdIa9YE/37wQWmXXWo/HwA84kPKpTyRZql4iv436/ZrDgCq+RTXidEAMF2RY6NPdQyQhdxWlDnnznTO7e2c21/S2yWtdc6dLOl6SW8On3aKpO/mVEQANcRVhE1XkCtXStdeG/z7gQekPfZosmQAgDwUPZVIN+JvBgCdhbgOAMgKdQw6Xd57lEX5uKTTzex3CvYs+3rO5QEQIfUKcp99gv/ff7+0554tlg4A0G5FTyXSjfibAUBnIa4DALJCHYNOl2fqxQnOuRsk3RD++w5JL8uzPADqK1eEq9ds0T0jo5rT36dlS+Y1XEEODZe0es0WLV57hR7be3+9+u9P1uD4uDTDx/F7AEAjipxKpFvxNwOAzkJcBwBkhToGncyLgTIAxdRsBTk0XNKZV23Sv1zxzzr2tp/oyZk7aMGc+RPviXSZWY+k9ZJKzrljzGyupEsVrNrdIOmvnHNP51lGACg6Yi0AZIs4CwDZI9YC6FYs3QDQdqvXbNHKq1bp2Nt+Ikl65fu+ptFntmv1mi05l6xjfVjSbyp+Pk/S+c65AyVtk/SeXEoFAJ2FWAsA2SLOAkD2iLUAuhIDZQDa7mMXnqPBX98oSXrpB7+pB561uyTpnpHRPIvVkcxsb0lHS/pa+LNJWizpivAp35A0mE/pADRraLikRavWau7ya7Vo1VoNDZfyLlJXI9ZO4twEkIVOi7PESgA+yjvWEhsB5InUi0DBlff6amafsFwMD+tNm6+XJB32txdMDJJJ0pz+vrxK1ck+J+kMSc8Of95D0ohz7pnw5z9Iij1hzOy9kt4rSfvuu2+GxQTQqHL62tGxcUlSaWRUZ161SRLpa3PUdKztpDjLuQkgQx0TZ4mVADyWW6wlNgLIGyvKgAIrNyRKI6NymmxIeDvrZmxMOuQQ/eojn9KrPnyR/vjsPSce6uvt0bIl83IsXOcxs2Mk3e+c29DsezjnvuKcW+icWzh79uwUSwegWavXbJm4gSwbHRsnfW1OWo21nRRnOTcBZKHT4iyxEoCP8o61xEYAeWOgDCiwQjUkPvhBadYsrfnBLXrfc16jrTvtqh4zSdJAf59WLp3PLKH0LZJ0nJn9XsHmu4slfV5Sv5mVVxTvLcnTkVUAUeLS1JK+NjfE2hDnJoCMdFScJVYC8FSusZbYCCBvDJQBBVaYhsQHPiB96UvSM8/oU9dvVSks37hzEyvJGCRLn3PuTOfc3s65/SW9XdJa59zJkq6X9ObwaadI+m5ORQTQhLg0taSvzQexdhLnJoAsdFqcJVYC8FHesZbYCCBvDJQBHqu3kemufb2Rr4s7nosPflD68pclSUvPuFj390xt5Hi7Aq6zfVzS6Wb2OwU5x7+ec3kAJLBsyTz19fZMOUb6Wi91Xazl3ATQZoWMs8RKAAXTllhLbASQt5n1nwIgD2cNbdJFN22VC3+O2sg0zFw4Tdzxtlu+PFhJJkl33KHh//fryKd5twKuAznnbpB0Q/jvOyS9LM/yAGheuQ5YvWaL7hkZ1Zz+PlbmeqLbYy3nJoCsdUKcJVYC8F0esZbYCCBvDJQBHhoaLk0ZJCsrr74qNxRGnhiLfH3c8bZyTlqzJvj37bdLc+dqTv+dE2kXK7GUHkCnGxoupXrTN7hggJtGeCmtczPtawYAspYkblGPA8B0RYiNtFGBzkXqRcBDq9dsmTZIVla5+srbHM433yw99ZR0443Sn/4kPe95klhKD6A7DQ2XdOZVm1QaGZXT5Arh6nS6AAJcMwCKhrgFAJ2PWA90NgbKAA/VSkVYOQgWNfBkCirrqD3N2uKMM6TDD5c+9CFpl12k3XefeGhwwYBWLp2vgf4+maSB/j6tXDqf2TcAOtrqNVs0OjY+5Rj7MwLxuGYAFA1xCwA6H7Ee6GykXgQ8NKe/LzJFoUlTVl+VB5jOvmaztoXpFmvtaZa55cul1auDf3/sY5FPKcJSegBIU9zkB/ZnBKJxzQAoGuIWAHQ+Yj3Q2VhRhq40NFzSolVrNXf5tfmtvKohbqXYyYe4yQloAAAgAElEQVTvO22Qaf1dD8XuSTY6Nq4VV2/OqphTffKT0nnnBf/+zW+kF7ygPZ8LAJ7zNk0u4CmuGQBFQ9wCgM5HrAc6GyvK0HXKOYXLy6VzWXlVR7kc9TYIHRou6aKbtsbuZyZJI6NjOmtok66/7YHsNhv94Q+lf/7n4N+//rV00EHpvTcAFNyyJfOm1DuS//szskk1mpHWeVPEawZAd0sat6hnAWA632MjbVSgszFQhq5TK6ewTxVwIykKV6/ZUnOQrKxyMC2TgcG995b22kv68Y+lF74wnfcEgA7R6OQHXxRhQgn8k+Z5U7RrBgCSxC3qWQCYrgixkTYq0NkYKEPX6aScwo2WuXowLbWBwQsukP7whyDt4n33tfZeANDB8tifsdkZmUWZUAK/NHvexJ2n7GkKoGgajVvdUs/6vjIEgF+KEhtbbaMSGwF/MVCGrjOnv0+liAEmH3MK16tA475LI1oeGDz3XOmss4J/n3aa9KxntfZ+AIDUtDIjs5MmlKB9mjlvijBzGADS1g31LPEdQFLERmIjkLcZeRcAaLdlS+apr7dnyjEfcwqXK9DSyKicJivQoeHSxHOivkujmhkYHBouadGqtTrvNe+aHCS79VYGyYAaytfN3OXXatGqtVOuYSArtWZk1sMm1WhGM+dNK+dpnojrAFrRTLwsWtwpanwHkJ923oPkFVOJjYDfGChD1xlcMKCVS+droL9PJmmgv08rl87PZfZGrcq5kQo06rvM6q1/WTczMFgeuDtmzbf08Ru/IUla+jf/pqHteyZ6H6CbNDLgjcYVrZMoT63MyCzKhBL4Jeq86e0xPf7UM7HXbBFnDhPXAbRq2ZJ56u2xKcd6eyy2ni1i3ClifAeQr6SxsVl5xlRiI+A3Ui+iK/mw70W9JddxFWVpZFRDw6WJ8pe/SzlN4xNj22M/06SmcyCvXrNFvY8+rDNvuECSdPQpn9PmPebqj57liwbS1Gr+8KLkWS8C0lQk00qaYTapRjOqz5v+Wb167MlnNDI6Jin6mi1SOuwyX+I6+1sABVe9iXT1zxWSxh0f4kMR4zsADySIjc3Ksy1X1NjoQ70CtAMryoCc1Fsx1j+rN/a11bNdhoZLWnbFxpr7lQ309+nOVUdr3fLFTVVo2+7fpkd2epbec8Kn9Ir3f12b/+xAScx8QedKY6YZM8bSQ5qKZFpdFTa4YEDrli9uqd5A96k8b2btMFNj26f2blRfs0VcvehDXC/i6hIAk1av2TItPo5td7FtmiRxx5f4UMT4DiBfSWNjs/JsyxUxNvpSrwDtwEAZkJN6lbOrMXOmuqPp7Gs2a2w8/gUm6ciDZjdVTknSF76gX5//Zr3izmH9+MDD9Idd95p4yPeZL0Cz0hiYYa+n9PjQOV0kPqUZRndq5Jot4nnqQ1xn4gBQbEnbNEniji/xoYjxHUC+2nW/l2dbroix0Zd6BWgHUi8COam35PrhMFVRnMrGwrYnaj/XSbpyQ0kL99s9eQX8xS9KH/6wJOne5+wz5SHfZ74ArUijob5sybwp6QIlrptmFTVNRZ6aSTNMWo3ulMXfvdFr1od02En4ENeZOAAUW9I2TZK441N8KFp8B5Cvdt3vNRpTs7ovKlps9KleAbLGijIgJ/WWXNdrDCRtLDQ14+NLX5L+/u+Df//sZ/r7d7+2UDNfgFY0O9NsaLikRavWau7ya7V6zRadcOgA100KipimomhIq9Gdsvq7d+o168NMYB9WtQFoXtL4mCTu7NoXnb4/7jgA+KJdbcdGYir3RZNod6KbsKIMyEn1pvfVM1SiZrmUVTcW+vt6NVJnBZqUcMbHFVdIH/xg8O9166QjjtBgRbmBTtfMqoFyg7r8mtLIqK7cUGJwLEaSWXr1Ymaz74tJeW5sjfyk8Xevdc114rWY5UzgRuLXkQfN1oU3bZ322pbSbANom8EFA7p8/Vatu/2hiWMv2XfXmnGl0bgzNr490XEA8MXgggGtv+shXXLz3Rp3Tj1mOuHQxmJf0vu/ejGV+6JJtDvRTRgoA3JUq3Ku7GAqjYyqx0zjzmkgotJfcdzBOv2yW1Xv9ifRjI/h4eD/P/mJ9PKXN/46oEM008lbhAa1L4NIUYOKZ161SVL8gHwjnUTNvC8CWafV8OXcw1RRKW6kxv/u9a65dv6Ni36ONRq/rr/tgcjXxx0H4JezhjZNGSSTpHW3P6SzhjbpnMH5Lb33409Pn2RZ63hSRY+zAPw1NFzSlRtKGndOkjTuXENbiAwNl7Ts8o0a2x68rjQyqmWXb5TU/P0f6QYn0e5EN2GgDPBYkg6mnh7T9nEX+3jDS9b/93+lXXeVzjlHOv10aY89Gi0u0HGSdvL63qD2aRApq0HFIgxW+irLfQF8OvcwaWi4JFOwl2m1Rv/uvlxznXCONfq79L2uAVDbJTffHXu81YGyLHVCnAXgr2bblCuu3jwxSFY2tt1pxdWbm45N/bN6te2J6Vmb+md1Xxpb2p3oJuxRBniucr+jRavWRuZEXr1mi8YiBsl6zCJzLse+5wUXSIceKh1xRPAzg2RAIr7n765189FuWTW4acg3L8t9AXw69zBp9ZotkYNkJjX8d/flmuuEc6zR36XvdQ2A2sqrJRo9noQlPJ5EJ8RZAP5qtk0Ztw1JI9uTxIkLxymE6cKh3YluwkAZ4LFGNxCNaziMOzfxuhVXb9bQcClYln7FxinvueyKjdrwT5+X/vqvgxdeeqlkadxOAd2lXRsQN8uXDm0puwY3DfnmNbKxdbN8OvcwKe7379T46gBfrrlOOMca/V36XtcAqK0n5j4r7ngScX24afTtdkKcBeAvX9qUkvRwzCBb3PFORrsT3YTUi0CO6uV4X3H15shZeyuu3jzldXHLwiuNjI5p2eUbtcPMGdNWnx39y7U69Hv/Gvxw3XXS4sXpfEGgAyTZi6GZfc3aWcYsU+sltWzJvCnpe6R0GtxZvW+3yGpPKZ/OPUyK+7sMJPi7+HLN5XWOpblfT6O/y7zqmqyx9xG6xYmH7aMLb9oaebxVAynE9TjU5QCylLRNWW43xJlhwXOaaUsQ7yZ1arsTiMJAGZCTejneh4ZLNZeQlx+LqrzjjG13GqvayPmAP92tz5UHydaskV772qRfBehYzezFkNVAQxplzKtDu1bnZ9oNbhryfvJlMAVTpfF38eWaa+S7pD0Qk/Z+PUl+l+2ua7LG3kfoJucMztedDzymdbc/NHFs0QG7p7I/2f57RHfu7r9H65271OUAspSkHVTdboiy3anptgTxbqpOa3cCcRgoA3JSb6PSZnK9m5Kn1bj32Xtq7fMW6j8XHq8LX/e6xJ8JdLJmNxRuRdKO3CRlzKNDu17nZxafTUPeP74MpmCqtP4uPlxzld+lNDKqHrNpe+ekPRCTRR3hw+8yD3nUt0BehoZL+t+tD0859r9bH2565UOlm+7Yluh4EtTlALLWaDsoqt0Qpdm2BPEO6E4MlAEpSdq5XS/HezO53p3qD5aVH3/d//1cb/3lD/V3x39c737LCvX39Sb+PMBn5Wuy3GE67pwGEjZw270XQzMz6uPKUhoZ1aJVa6fFpHZ3wtL5ibJuHQDwXSf9XcrfIyqO7jhzRmQsOvuazU13gtSKv3OXX9tRnSpZp0Vk7yN0kyzbRuMu+k4w7nhSnVRnACiuJJmV6rUl4to4xLtJafStAEUwI+8CAJ2g3LldGhmV02SnzNBwKfK5i1atjR3MKuc8jst9PKPOHs+1boF6Z5hOPnxfHft/6/SV75yr195+i2Y/PqLeGaYVxx1c+42BAqm8JqXJzoFa12aUdm8oXKvjJE5cWUxqKCZljc5PAO0UF0fj0llve2Ks6VhZqy7IO/amKUk7t1ntrm+BPMV18Cbp+AWAbtZjdTrGKtRqS7SjjVN0afWtAEXAQBmQgkY7t6srmGqVOY+XLZmnvt6eaY+fdNi+6q03Whahv69Xq9/yYp3jfqd/+85KSdKpSz+l7fvP1eq3vJhZIOgotVIx1Bt4qhR3HWaVm7yZQaWoMkrTB82TfO80tavzszwJYe7ya7Vo1Voa7ECXanUQPi5WRsWYuPjbyPv5pF78bGYSR1Ltrm+BLJw1tEkHnPl97b/8Wh1w5vd11tCmvIsEAB2p0VWyJk3br7ayzXP2NZszb+O0wod73LT6VoAiIPUikIJGO7drVTDVe2nE5USWpMtuuTvyPeLSLg7092nd8sXS0JC0dGlw8Dvf0VcHB+t8M6CY6nWUNtqR2u7c5HP6ozdgrzWoVL0vT630q3ms4mrHRsjNpKwE0Jni4uhus3r15Nj2hvazqI6VcTFm5dL5Wrl0/kQd4VPsbVQj8bMdK4PZCwRFd9bQJl1409aJn8edm/j5nMH5eRULADrSQEx7r5JJOvnwfSfaElFtnjg+tN18ucdNq28FKAIGyoAUNNq5XasCqV6+LEXngF+0aq3Gxqd3xfSY6cTD9tGVG0rRHdLOSSedFBy88kqJQTJ0sLhrsvLxRrUzN3mzg0rlMi5atTa1752WdnR+sg8agLK4OPrpY4MU05Wx6PGnnolMyVgdK2vFmHXLF0/EmbgY7HP6wEbiZzOTOJrBXiAosktujp7IeMnNd08bKCvv71ItSSqxOP19vZFxjf2oAXSSqPZeb49p5x1m6uHRsch7zloT16v50Hbz5R43zb4VwHcMlAEpaLRzu14FU1ar8osbbBt3Ttff9oBOOHRA19/2wNQO6b13CJ50663S009raGw3rV61lhm76FhR12SZz6mcWh1UqjUYn+f3zrrzk33QAJTVi6OVsah6pq4UHSsbjTHtWEGbtka+WxG/F9BucWnAoo6feNg+U1afVR5v1YrjDtayyzdqbPvk57IfNYBO08x9c6P3hr60cXy5xy1q3wrQDAbKgBQMLhjQ+rse0iU3361x59RjphMOnd4xvGzJPJ122a0NvWdc5VdrsK00MqorN5S0cun8yc/+/vellxyt33zgY/qbfd8Qpma7ayI9ECnK0Imq0xGWZ+4OFGBguJVBpbj40GM2NS50mHatdgBQDI3G0UY7WRqNMUVMH9jIdyvi9wLaLckqsfIKs8p7xxMP2yeVFI1crwC6RdL75rg2T39fr3becaZ3MdOXe9wi960ASTFQBqRgaLikKzeUJm6Oxp3TlRtKWrjf7lMqjcEFA1px9ebIdBjVdo1Jj1FrNodUtRrtv/9bOvpoSdK/jvSrtEtQyVbfwpGiDJ2oG1M4xc367+RBMonVDgCa10hdkSTGFK3uafS7Fe17Ae2WdJXYOYPzM9u7jOsVAKaLa/OsOO5gL2OmT/e41CvoFgyUASlIkjt4xXEH1xzoKnv86Wc0NFya9vrq2RxR7hkZlX74Q+kNbwg+822f0I/2PaTm55GiDCi+bp1F3A3fe2i41NHfD37hfJuqk2NMJ383oJ2yXCWWFDEcAKZL2ubJO5bSRgPaz1xMLu0iWbhwoVu/fn3exUAXm7v82mmrtCTJJN256uhpx88a2hQ547DaQH+f1i1fHPt43Kbxi576oy763HuCH771Le3/q91a/izEM7MNzrmFeZcja8RaIB9x+yh1+krBSsTZ9uF8A7pXN8RaH+JslojhgN+6Ic5KxY+1xFKguFqJs6woA1IQlzt4hlnkqrDrb3ugofctr/KKm8kStxT77+aEl/Y3vqGhg4+U/erWyIG8yteQogxAnLxn0/mqXb+XJKuWgVa143wjpsTjdwN0h6yu9axjODEKgI/OGtqU6ope7r+A7sRAGZCCuH3Dxp3TmVdtkhQsmy7fWMSlTKw2p79v2kyW0sjolPeUJpdiHzb2oD48x3TEh94pvecEaeedtXrV2pqDZGzACfgvz06JRmKQj50mWZepkd9LWuJS45IyF1nI+nxr9NrJO+7l8dntjCvVn+tbDAeKqNGO2mau9Uav0yxjeF4xCgBqqc7YNO7cxM+NDpZVx9ha25y0s91EGw1oLwbKgBSUK6qPfnujxqvSmZZnnUhqaG+ysvIqr7iZLGdfs3lKhfnNA5/UK099V/CEcJBMqn1T9PuItJBAN2hXgzONz8m7U6LebLq8yxelHWVq5yzDuJu1Of19qX4OIGV/vjVy7eQZV6I++7TLbtXZ12zWp49tfLP3ZuJ/HrOXfYzhQBEl6ahNeq0PDZe07PKNGtse3GeWRka17PKNkqZfp1nGcFZYAPDRJTffHXu8kYGyqBgbp39Wb9vaTUliP4B0zMi7AECnGFwwoO0xe/7dMzIaeWNRqXeGabdZvTIFq7zKuY/jBrq2PTGm0sionKQ5m27RK099c/DAV74yMUgmxd8UDdDBig4zNFzSolVrNXf5tVq0aq2Ghkuxzzvzqk0T10+5cRv3/FbKk8bn1OqUaId6M5PzKl+tv3c7ytTOVV7LlsxTX2/PlGOkzEVWsj7fGrl28ox7ce21bU+MNRzDm43/eawebfR33Wgd204+lgndq1ZHbbWk1/qKqzdPdJSWjW13WnH15mnPzTKGx3UeN5otBQDSVG4HVE9WL4s7Xi0qxkbp6+2Rc2pbGzVJ7G8X2l7odLkNlJnZTmb2CzPbaGabzezs8PhcM7vZzH5nZpeZ2Q55lRFIKm5Qate+3pqdHD1mGtvuNGuHmTr/bYdo3fLFEzNE6s3+O/QPv9blFy+XJP3L4GnSqadOeZwOVnSDJJ2S7eqATetz8k67FxeDysfzKF+9v3c7ylTv95KmwQUDWrl0vgb6+6ZNpgDSlvX51si1k2fcq/UZjcbwZuN/O+NKWSO/63ZNMEnCxzKhuyXpqN2pN7obJu74yOhYw8ezjOE9ZomOA0BWKtsBcRqNTXExVtK0WPpwzHOzaKMmif3tQNsL3SDP1ItPSVrsnHvMzHol/dTMfiDpdEnnO+cuNbMvS3qPpP/IsZxAQ4aGS3ri6WciH3v86We0U+8MjY5tj3y8fANVGhnVRy67VevvekjnDM6v+Z6StMuTj+nKi86QJJ111Ad00bzX6oyq51TvY0ZeY3SiJKlg2tUBm9bn5J12L2oPxsrB9rjy7drXm1mZ6v292/E7q/d7SdvgggHiNtomy/OtkWsnz7hXa18KqbEY3mz8zzquRKWDbOR37WO6NR/LhM6TJIVqj1nkoFhUR+1Tz0TfE8YdTyqrGN7qqg0ASEu9jE2SdOJh+7T8OeuWL572uVHtphlmmrv82o7ub6PthW6Q24oyF3gs/LE3/M9JWizpivD4NyQN5lA8dIE0lwyXZ1ZseyJ6ZsfYuGv4xsdJuuimrTr5qz/XRy67ddp79vf1qj/sgH5kx511/qKT9MHjPq4LX3J0bAfS4IIBrVu+WHeuOnrKajWgUyTplGzXjP20PifvVaH1ZiYvWzJPvTOmdwI9/vQzmc0uq/f3bsfvjFVepN5AfVHnSCPXTp5xL+qzKzUSw5uN/1nGlbhZwEceNLvu7zrvlc1JPjvPMqGzJJ05H9chG3U8LsNX3PHdZkVPPoo7npW41P2k9AeQlkbvL+plbHrH4fs2tD+ZlCzGxrUTx51LfZWVL7G/jLYXukGeK8pkZj2SNkg6UNK/S7pd0ohzrryE5g+SIu8Mzey9kt4rSfvuu2/2hUVHSXvj8rOv2Vx3NksDKY8nOEnrbn8o8rGdd5ypcwee0Pz3v0NvOek8ff4VJ0kinSK6W5LVB+1aCdTq51TOYu6f1asdZ87Qw6NjucxSqzUzeXDBgM6+ZvO0Qf2xcZfZ7LJ6f+92raTt5lVeadej6Dz1zpFa50kr13CSFSC1PnvF1ZunpbZpNIa3Ev+ziitxs4Cvv+0BrVw6v+bvLO+VzVF8LBM6S9KZ8+UO2UtuvlvjzqnHTCcetk9kR62ZFLUIKy5L2KePPVgfvXyjxituKHtmmD597MEJvlHr2r2aHkB3SXJ/EdcOGOjvm7YKrJ4kMba6jTojYjVxWqusPn3swVp2xUaNjU++f29P+2N/GW0vdINcB8qcc+OSDjGzfknfkXRQgtd+RdJXJGnhwoWs9UciaS4ZHhouxa4kqxSXjiOpPX7zS73mzI9Ikl7Q85TulDp6eTfQiCQ37o10wLba0dro58SpvknY9sSY+np7dP7bDvHyOh+JiYFZzS5r5O/dzYNY7UDqDdTT6jnSzDWc1gBu+bObrQt8THvdyixgHzvHfSwTOksz18w5g/MbWsHQN3OGnohIyd83Mz7hzwxJ41U/t5uPsQ1A50jSdky7HZAkxla2UecuvzbyObXSeDfKt5hL2wvdINeBsjLn3IiZXS/pCEn9ZjYzXFW2tyTy+CB1aSwZLneeNFIB9vX26IRDB3TlhtKUSqW3x6bMDqnn4Pt+p6u/GQyS6TOf0Zc/+qGGXwt0sqSNyFodsGmulGl2sCbLQYjqjt8jD5qt6297oKXGd7tnl/l209CNSL2BerI8R+IGsOJi54qrNzc94NVsXPFtsD4uTvfP6q1b5/kYc30sEzpL/6zeyMmQ/SmkvIrbtzru+Oo1WzRWlZ5kbHv8yv00JnzF8S22AegcSdqOabYDksbYSnHtK5MmUo63wpeYW65XRsfGJxYBDND2QgfKbaDMzGZLGgsHyfokHSXpPEnXS3qzpEslnSLpu3mVEZ2r1U7d6o70WkzSCYcOaOF+u+t7G++deM1us3r16WMP1vq7HtJFN22Vq3pN9fDZn//xDl37jdMkSf/+hvdqYPHb2cAPqJBWI9KHlTJZdTBHDQJeeNPWicebHRTMY3aZLzcN3YrUG6gnq3Ok1mSGuBg5Mjo2kUaxW9OExsVp59RQnedjzPWxTOgccYlAUkgQkjg+xk3MjDpOamQARZU0NqbVDkgSY6stWzJPH7ns1mn9d07qmEwb1fXKuHMT9/qd8P2ASnms2C97rqTrzeyXkm6RdJ1z7nuSPi7pdDP7naQ9JH09xzKiQ7WySfzQcEkf/fbGhgbJpKCCvOimrVp2xcYpe108Gc4YPGdwvs5/2yFTNm4/+fB9p5Xvvb+4UpJ03qtP0eq/OE6nXXarDjn7h6lsEgpgkg8rZeJuBlrtYI4aBKxW7iBNYnDBgFYunT8ljq1cOp+Gc4xGN6n2WSv1KLpDFudIXBusHLcajZHNxLmii4vTD49OXzEjsToUiLs24o4nkTQ+9sRsXhZ1vNaEr3brhPYOgPbJ6/4iSYytNrhgYNogWVlcW6posdGnegXIWm4rypxzv5S0IOL4HZJe1v4SoZs0u0y7PJMi6V5jTpqWYrHWCpWF++2uhfvtrtVrtuip0r16aoedtPz1f6+vvvRN2vxnB048b2R0jBmCQMriZrLNMEslfUIjslihNTRcajhXejMdpN02s7/ZtEaNzPTOMmVSWkh7hnoaPUcaTQdbrw12z8iozn/bIQ2v+O/GgaCoOB2XRjzt1aFFiGtApSxXTietQ+PiXtRxHyZ8ScE1X7nKojQyqo9cdqsk7lsBRMvr/iJJjI0ykKC+KGJs9KVeAdrBiz3KgDw006nbyGqMJO4ZGY3tNF25dL7WHfMcaf5fav3AC/Xmk/9lyiBZWbtTwgGdLmqQSgoayu0amE77JqEcZxpF+rzaWklrVC+1Z5FSJnXb4CiSq3eOJEkHW68NNqe/b+Kzzr5mc+TeQtXPR3tS5xYprnWEkRHpoYek5z0v75IUWtbXRpI6NK4TdiAijmW5t1oSZ1yxMTIV2RlXbOS6BxArj/uLuBjb6D5jSeqLIsZGUu6jm+SZehEonFozJvp6e/SOw/fVjPqrsyfM6e+L7TS94ptrpPnzJUm/mL9IqrHsm5kcQHrK6amiUi00m2KgmfQKgwsGtG75Yt256mitW764pYZzkkF+0ufV10r6iXoz8khtgW6SJB1svTZYOW4NLhjQrB1qzwUsepxLM2VPO1LnEtfaYMsW6atflY4/XtptN+mAA6RR7g9a4VNa6STpyLLcWy2Jp8ejPzDuOADkZdmSeYrqbSvvM1ZPkvoi79jYTBuSlPvoJqwoAxpQThcTV3X1mE1UhBfdvDXmWVP19piWLZmn08Jl1pUOfHCrLvz63wY/fOpTmvOm96mvRiohZnKgk+WRrmlwwcBECoRqSQemfZhJX6vM7zh838g0Z4jXSvqJejPySG2BbtLoeV2OT1HXTmUbrJH3HShQnIuq/ySlXqdkPXubuJaBZ56RrrxS2rxZ+t73pOHh4Ph++0nPeY505plSH/cHnSJJpoGRmD3U4o4DQLcbXDAQ2S8nBe2sRavW1o29Rci00Wy/BCn30U0YKIM3fN27oLoyqdbX2zOlg6bh2Xrh83rMpuQ+3u2Jh/Wj8iDZJz4h/eM/ajB8LCqVEDM50MnyHGRKK8VAvVR77RD3XQb6+3TO4Py2lKGTtHJu1EvN4XtqC1/raqSrXX/nuPM96nlx107UjN1aMW/d8sWtF7wN4uq/nXpn5F6nJOV7XCuMRx6RrrtOOvFEaazifmDRImnxYum886RDD62ZhQKN82GiU6VGO2Gr7y0rjwMAosWlX5Q0cTzveqBVrfRLFGEgEEgDqRfhhfKNSGlkVE6TFVArqWTSUistUNSS6kZvQsa2O61es2Xajcyzng4q4S8e8Vbp3HMnjg8uGNDwP7xOn3vbIV6kAAHaIc90TVEpBkzSkQfNTvQ+PsykJ11Culr5fdZLzeHz38rnuhrpaeffOep8r1Y+/5OktcnzOkorLWJc/Re395rPq7N8jmve++1vpc99Lhj82nVX6c1vnhwke+MbpXvvlX76U+nHP5YWLmSQLEVZt0HTTKFaKWqQrNbxrCw6YPdExwEgL0PDJT3+1DMNPbfVeiDP2OhDvwTgu65bUcZMaD/5sOIiTlylYVLkrOQTD9tnykb09d67PHNl4OH79YYtP9XXXvomHbDsu9rlWTvp7yJew0wOdJM8G3ODCwa0/q6HdNFNWyfSrjpJV24oaeF+uzd8Hfowk550Celq9fdZK443897tatv4XFcjPXF/5xVXb07978lO2GUAACAASURBVBx1vh950OzYdLCNtoHyinlprkBJWs/5vDqLOiiBsTHpmmukE06Y/thf/IX0xS9KRxwhzey62/i2y7INmuVqNV9WlF106hE6+as/17rbH5o4tuiA3XXRqUe0tRwAUEtcBqkZJm2PmV/QSj2QZ2z0oV8C8F1XtbB9S5+AST7PbEhamZwzOL/hgbJd+3p15EGz9T8/uFn/85VTJUnXP++lun3PffTwE2MaGi5xbqKr5d2Yu/62B6btTZh0YKBeqr12DXIwyJ6uLH+fSd67nW0bn+tqpCfu7zkymk27JKtrKY+Yl+Zgclz919/Xq6ee2T7lc5pZ7dxu1EE1PPCAdMEF0hlnSLvsEqRYLDvxxCDDxNy5uRWvW2XZBs1y4okvK8okMSgGwHtxGaTiBsmk1uuBvGJjvX6JWlh0gm7RVakX80zhhdriKpqsO8MbSXnRaLqYyvdqdMaemfR/6zZODJJ9feHxun3PfSRJ2yXOTRSbc9Lq1dJNNwWbzjch73RNaQwM1EoXlkaKs6xS96AY2tm2yauuRnvV+nvSLqktzcHkuPpvxXEH64RDB1TZ0iyvdm42/lOPtJlz0re+JfX1BTcDe+0VDJJJ0lvfKg0NSQ89FDzv4osZJMvJ/2fvzMOcKNIG/uuEADOIDOgs4gCCF7iIgCAgrLqAigroCHgfuOt9ArooKt8CLgqKKN67ousJCgiOHLrgCqiLggIziAioCILhVBgEZmAyM/390ZNMjq5Od9JJOkn9nmceSKfTqXRXvfVWvVcsOqjZsZRIxxOXYBkqOi6RSCTZTKw6WrKwU0ezksY8vA0y/b4kW8iqiDLpCe1c4vFsiBU9L/wRM1czdu5aSst8EV4SRt4T4dcy67F3xLatzPjXTQC81nkA/+hzc8j7sm9K0prNm2HkSKiurj125ZXw5JNQYD5FHaQuXZNd3sQiT/p4PIqLir2Mnbs2pF6NjJTOLMx47iVTt4l3rpaeiM4nWo2GROklmdI37IxAMZr/Ji7YEHe0sx+ZcSNJlJXBI49AaSnMmwfeoM2lMWOgf3/o1CnuGmOZMpacgFUd1MpYSmS0migKwig6IlHI/iiRSMyQSlkhksdGxNs2s783ETpaLBH+Mv2+JJvIKkNZqlN4ScSkYjNcT9j7qtXApnP4JGTUFlG4tltRqFZVXHq54lWVz2uMZG+c3o+x594a8XmXotB65Hy5sJDEjKIo9YHPgHpoMv89VVVHK4rSGngXOApYCVynqmqFrV/eujXs3An/+Ac8+6x27N13tb/eveGZZ6BuXTj5ZMPLpDJdU6KN+LEaOUS51EEqrZmC2YVRMnWbeObqTN6MT6mctREjueInEf0qk/qG3XOGaP6z00AuNz8SyOefa5FijRvD4sVw6JB2fNAgaNNGix7r0MG2r8uksRROquSsFR3UylhKhZNossnk/iiRZCqpkLWplhUieexS4GBFpE7cONcT1/dZ+b1O0dFk0Ikkm8gqQ1k2KKTpTLI3w80IdbOTkOhaVaqKAjSsX4eDFZX4qjRjmaJWg+LihsGjaek7wNQ/9tZ18/Mb1+TCQhIHh4HeqqoeUBTFA/xPUZSPgHuBp1VVfVdRlH8CNwIv2f7tRx+tGcSeeUbbIJo0SfOiXrsW5syBhx+uPXfkSO31EUfY3oxYsduIH+49lpfrCYkI8xNtM1pknPcjldbYsNObMd5rmV0YJVu3iXWudspCL0GkVs7aRDS5Iko7bdYjVnReqvuGneM+WY5fdhrI5eaHjVRUwGefwSefwIQJtcfr1IE774QuXaCwMGF6TqrHUoJxvJy1MpZSnTEhGWR4f5RkORkcLZl0WZtqWSGSx2PmrAUi9WIr5R71+omV3+sUHU0GnUiMyDR5mFWGsmxQSNOZZA8usyHWRpOQv81Gc6UKlJb78LgUGud6qL9jG1++9Bfuuvh+5p1yNgCuapUGdd26Hit+5MJCEguqqqrAgZqXnpo/FegNXF1z/A1gDIneWKhfP9QwtnUrNGoEd92lvZ4wQfvr3x+GDIGLL9YizlKMXUZ8Pe8xj0vB41YCRnQwZ+SIphxLpdU6dnoz2nEtswujdNFtnLLQSwSOkrNxYPQsCkyknRb182jnpbJvOCWljVXsNJDLzY842bQJFi7UosemTtWO1akDp54Kv/0G//wnDBgQd0pFM0g5m1o5a3UspTJjQjLI5P4oyW5SHQGVSFIha50gK/Tk8fDpJbrn7iuPdHLVQ9RPRE5per/XKTpar7b5vL1si+5xSXaTifLQleoGJJvCTgUsHdmbTRP6sXRk77R9cJlGKopD6hVo1kM0CQW32Qy+apXcnTv48qW/AJB36EDgvWrA43axeUI/CgwmPbmwkMSCoihuRVFKgF3Ax8BGoFRVVX8hml8AXWGoKMotiqKsUBRlxe7du+1tWIsWFPUopOf4T+h891Q+OKOfdry4GD78UEvPeMYZ0KCBttFUJTYkpwOidK8N6taxXFDXSDmWkdKxIfLuu2/GasvFk408Bc0iesZ6x9NBt7Hye9IRx8pZC4ieRUFejm6/MtvPo52Xyr5hx1hNBbEWY9dDTx920jxiZxF7W1BV+O47eOwxzfh1/PFw222wYAH066c5/+zeDWvWwLZtmtNPEoxkIOUsKZazVseS4/q2Scy2O9P7oyR7SVfdwSzJlrUimaBCSmVjvDJM1E/cAp1A77oj+rbB4wo93+NSkq6jLV6v/yxFxyXZQybKw6wzlEmcSSoGV/gmQ16OB487dBIyWtxES1EUTtP9v7L0xSEAvHdqH97udFHI+6U1nilGxjC5sJDEgqqqVaqqdgSaA12BthY++7Kqql1UVe2Sn2+vx1Cwsfm33EYM7X07p4z6iKI5y7SaZv37w88/Q1kZ3H675qGtKDB7Nuzfb2tbkoFobO8r9+kaOYw2IkSG/rwcT8ybpdmOUQpdqw4cdnhGOn3z2iqZ9nvCcaqctYLVZ2S2n4vO85aW03PCIqHDUTK8VJ3gxRwrdhnI7TS62U0qHOl0OXRIM4Tdcgu4XNCuXWiE/JQpsGMHzJsHzz0HeXnJbV8NUs4afjbhctbKWHJM37aIlXZnen+UZC/prDuYIdmy1siBPZWyMV4ZZrS2tHTdcLtacnxvQsj0Pi+JnUzsG1mVelHiXFI1uMJDrK2kfxS1TSEyRLpJ2T6Wv3gDALPb9eJv/YYL2yQKr1ZALiwkcaGqaqmiKIuBM4E8RVHq1HiGNQeSrn0KDeQLv6fw9N5azbKRI2HdOhg2TEttBDBokLYpNWMGdO4MZ58NF16Y7OZbxkrqhGgh7OmSbi+dMJOO12wKXDvSZGTaM8603yPCaXLWClafkdl+bqTXGI25ZHipOiWlTapxagq4lNYt2bYN7rgDPvig9lhOTb946SUteqxFi8S2wSJSzqZezpodS4ns2y5Ft/Q1Lhs2V620O1v6oyT7yBbdIVmyNlhW6N3XVJUgiVeGiWqRN871MHpAO1PXnbhgQ0iJBgBflZr0+5EtfV5inUzsG9JQJnEEThlcVjYKjNocXjvi3B+WA/DBKedwb//7dK/XONcD6NedUIBrureUCwuJZRRFyQd8NYpuDnAe8DiwGBgMvAsMAT4QXyUxmDaQn3KK5skN4PPBF19oHt1eL3z8sVbXzM9rr8HVV1uqbZas+ohma8oUFXu5b8ZqqsIqBYcvEpy6sZmu6D0fPcw4cNhVPyjTnnGm/R4/TpazVrHyjMz2c5FeE60WerzOUmZku521vhJBphXHtkpSHemqq2HlSrjsMk2H+OGH0PfnzdNSQuc4e+Ev5ay9cjZRYzCWvm22LfXquCj3Vesejxer7c7U/ijJbpyuO8RDqmStX1a0HjlfVz9MVt1akYz1H/dnvDIj11SBoquq5mWjU6J1MrnPS+IjE/uGbYYyRVEaAOWqqlYrinIyWnjuR6qqmqt0KMlq0nFwGbXZP+k9P6eEaq+XWR37UnxsG37IP073Wh63wugB7QDpfScRE6OcbQa8oSiKGy3d7gxVVecpivId8K6iKOOAYuDVRLc/HLMGcqHSunYtLFkCt94K33+vnfyXv8D998O0afDLL3DuudC8ubANySw+amZs+9sTbiTzk84h7E7G38f8eeOrVDXwbzhmHDikHE9fMk3OJhKz/VzvPDP1XU3PBTqYle1OHqtOL46dDCNewh3pdu6E++6DqVOhfn0txaKfxx6D88+H009PWo2xbCIGWZt0OZvIMWi1b1tpyyEdI5nRcSvE0m4nyleJJB6crDsEk446baoc6EUydsXPe5i10hvTPLCvXP827yv3mZaN8dwPO+VvuvR5SfLJxL6hqCIzt9ULKcpK4CygMbAU+BqoUFX1Glu+wIAuXbqoK1asSPTXSBJMshVpO77P8Bo7d8IxxwAwd+n33P/RRl1v6oIMECTZjqIoK1VV7ZKM7yFFchbsl7XhCiloxubgeg5mzgmwaxd8+SVs2qQZ0V55pfa9OnW0VEk33hiy4SWqj1OQl8PSkb1t+qXmMarXA6lrl1OwKrfNnC/qY4M6F4QsjPzHnVK7R49M3pCScjaziCbrXIqmI6kquBWF7sc3ZtWWfabHo9NkuxX841h0f5zwGyzNzU77nmXL4O23YcMG+O9/a4+3bg2PPAIXXABHHx1ny9OXbJC1ZuVsLHLE7DxcVOxlxHurQ1JqedwKEwd3iFumdRy7MFD7Opi8HA8lo8/XbbdZrIzJZMkJiSTdyAY5C7HptPHIjXjWQSIZK3KcVNBSK5aW+YTfJbpmXo6Hw5XVCZWjUv5Ksp145KydqRcVVVXLFEW5EXhRVdUnFEUpsfH6kgwnmakZ9DxGRsxczdi5aw0nu3CEbd61K2Ak++jkHkz4bCuDOheweP3ujNzAlCSNjJKzZrxPLNVw+MMf4JJLtP+rqlZbpGdPKC+Hykq4+Wb4+9/hwQehWzf44x8dk84g2sYoOD/KNtFY9ew2e76ojy1ev5vxA9unjeHJ6dEnaURGyVmnYpSOMdfjoiwo8qFKVVm6cU/ENYxqVjhFtpsleA6IlpbSCb8hWbXDbPFSLSuDxx+HpUu1SPMNWtokTjkF/vY3aNIEhg/XIsokycTxstaqHLE8D4cPdIOBb6Utvir9yDHRcStYGZMprTEokUggDeRsOLHO+/Gug0QyVpTlRYVA/bHw7zLS6XI8bhSFhNd6lPJXIokdWw1liqKcCVwD3FhzzG3j9SWSuDHajPZVq8LJzv/ZsXPXBs7Jy/Ew5mItXWLwxPVw13wu6nMaAB+f2JXbL30ISsuZtdLL+IHtA+cPn17CxAUbLC34MzlaQGKKjJOz0QzkMW92Kgp06qRtkIEWYTZlCmzbBvXqaSkZ9+9nE7A5rxn/d/7tfN769MDH7UzvEG3c6nl8heNWlKz2ACsq9jJ8eknEHpKRwm92gWDUx9KptoZcENlGxslZJyJa+AMMm25+D0c0fhOdusdOfSx8DoiW68MJxbGTaYiMSQ5v3aqlZp43D2bMqD1+/vmaE0379tCrl63tlFjG8bLWqhyxMg9PXLABX3XoaPdVq8I5u1GORzdKrFGOJ+LYwQp9fVJ0PFGkm8OCRJKBOF7O6hHLvB/LOihYl3MJIsdEEWXh+L8LiNDpwjNJDRfouXbWepTyVyKJHTsNZcOAB4H3VVVdqyjK8WgFHyUSR2BmMzqYcl8Vw2qMWb3a5jP9660h6TFKy30Mm16CC/D75x3cvpOL+vQBYNHxXbh50N9Drjd27loO+ap1PV3AXO0iGS2Q1WSdnLVts7NdO5g8Wft/VRWcdBKMHQuffkqr0u28NUMbq1POKOTdboXcM/CceJsOmBu3eop9MNmeJqGo2MuImauFm8dWFwLhx1OVC99u5ILINrJOzqaK8IW/X15aQTROE1n71m59LNocEIxTIosdJzdVFT76CEpKNOPYl19qx485BnJz4bLLYMKEQLYHiSNwvKy1KkdEWQH0jludsxMZJWYFK/LPcXJCIsk+HC9n7cKK/IVIWaZnDBOl4jdqg55O5zeS+dPkihz37ZSNUv5KJLHjsutCqqp+qqrqxcBzNa9/UlX1HruuL5GYpajYS88Ji2g9cj49JyyiqNgLWNuICMZbWs7by7aEGMmC8S9P6vsOMWXWOABWHduGv142JuLcvWU+XU+XMXPW8uDsNXhLy1GpXXT42y5qf7DniiTzyUY5O6JvG3I8oY5vcW8Uut2aJ/mSJaCqLH1hKluPKmDnEU0Ysmo+E5v8yiXndYD8fOjTR4tGixEz49bIkOFWFAZ1Tp+opkSg53UdjEjhN3vcSh8TzS9OwOp9kOiTjXI2lQSPqftmrLakpwWP0/CxCTB+YHsK8nJQ0DYo7HI4sFsfM2vMtvM3xEtC5marlJXB/Plw1FHgckG/fvDww1qq5e7d4bPPwOuFgwfh9delkcxhpIOsLexUYEmOuINq4EY7bnXOthIllqcTZWZ03ApW5J8j5IREksWkg5y1CyvyF8R7g25FCZH34wrbM35ge+F1glEUc04QyZCNUv5KJLFjW0RZTUjvq8ARQEtFUToAt6qqeodd3yGRGBGeGhFqDU4rft5jWPsnXv6w/ze+enEIAPf2G87sU/tY+rxeKo3wUHEZLSDJRjlrS32SKPS842q442rtRVkZp//wA2xbD6+8AosWwamnau/dfrtW56xTJ9PXNjNuRR5foHm3TV22hbeXbQmka3DCJmkyiSbjRAq/WU9ws33M6VG9iYygySayUc6mCjPevHooEDJORWNz/MD2Ae9dO4km162mZTSaA8CZUcXJmJt12bJFM47doTMce/aEadOgZcvEtkFiC+kia62kvBLJML3jiZyzx1zcjhEzV4c4GXlcSqBkQDxYidpImZyQSCRA+shZO7Aif0Gsy1WrKpsm9As55pdZ0bJTqapmLNNLgxLsBJEM2Sjlr0QSO3amXpwM9AXmAKiqulpRlLNtvL5EIsQorWK5r4q3l21J2HfnH9gTMJItPKm7oZEsx+Oi3Gc+RYaZzXQZLZBVZKWcTWqdqNxc6NBBq2f2z3/Ca69pBrLKSnjpJfjiC9adeS4/rFzHVncDPup9OTcNPlPYPjPjVm+zJBi/ru00w0yyMNpEbpzrEd4LKwsEM33M6TXA0mFBlCZ1NtNWzqbJ/Q0QS6R/cOoao+skcmwayfVYDOp6c0B4PQsnPsekzM1VVbBggRYtFs4JJ2jz8tlna7VHJelG2spaEQUC2VCgs1ZL5JydyGuL6vWIoi3SqdarRGKFNNG50kfOqqoWHQ7wpz/BW29Bq1amP25VNlndWwuWq0bOTXp2OZGjZqL7i5S/kmSRJvLQNHYaylBVdasSKoiSWzFWkrXEmlYxXo48dICvX7g+8PqWgaMMz6/vcQNKhPdgfY8rJBLOT7TNdBktkH1IOZtE3G646SbtD2DnThZ/UszWZ/7JFasWUq+qkjuXzYTHYO8pp9F43vtw/PEhlzAzbs0q3uAsw0yyGNG3TYRnNIDHrTB6gLF3tJ0LhHSI6nXygsjpEXnBpKOcTaf768fq2BHpPMkem73a5us6YPVqmx+T0S4djNxJpbQU3n4b/vY3OOII+O232vcuvhgefxzatKlx25akM+koa42wulZL5JydqGtbjdqQSDKRdNK50kbOKgpcfbUWGf6//0Hr1vD883DgAAwerDnHGGBVNhnpciL8crWo2Muw6SWG7XErCtWqKnU6ScaTTvLQLHYayrYqitIDUBVF8QBDgXU2Xl8iEZKKjcqGhw/yzTNXArCvXgM6DJse9TN7y3w0zvVQr46LfeW+wMQJkaHcOR43vdrm03PCosDGyaDOBSxev1tupGQvUs6mkqZNGbWlLt5eN/Pon67nzi9ncM+X2rhvvO4bTYGfNEmrh9KjB/ToYXoD1K9495ywKKqxzEmGmWTgv1dj5qwNpKltnOth9IB2SZV/iYjqFXlfJcIrK9WeXk6PyAsiLeWs6P7eN2M1w6eXcGxeDr3a5idNhzDT36KlHGyc60FVCdGX9Nqb7Ij7xet3C4/HarRzspE74agqfPAB3HYb7NypOalU1fTlyy/XosnOOUfWGMs80lLWGuEko3ei5nwrUXOJbIdEkkqkTpsgpk7V/n76CWbNgupqGDlS+wNo2BDefRcuuijio1Zlk5EuF43CTgURJV/C0UvhGIxTZaNT2yVxLmkkD01jp6HsNuAZoADwAguBO228viRNSbSwLSr24hKEWieKupU+1ky+AoBVx7Zh4HWTTH92b5mP8NTFegurXm3zmbXSG2KZn7XS67g6FZKkIuVsivFvdh721OOps6/jqbOvA+Dk3T+z8DQfnHQSFBaCr1ZxLjzvPAqfe07zgI9CtDSMkJ3pVp2wiWx3VK/I+2rFz3siZH+8XllO8PSyUtckxaSlnBUZYvy6kbe0PMRzNpF9wGx/M5J3OR63aWN4siPujYxhMk22SQ4fhieegF9/hXnztE0xPw88oBnHunXTjGaSTCUtZW00nKCvJHLOtyJvnaB7SCSJQOq0Ceb442HECO3/AwbAFVfAV1/B/v2aflBQoNUqHToUGjQArOuC8WYjGD2gneGa3Ujvc6psdGq7JM4mjeShaWwzlKmq+itwjV3Xk2QGiRa2/usn00iWW1HO8x88DkBxM2tGMj+imkPB96TnhEVC73D/+ZLsQsrZ1CPaBD14UlsYWlM357ffYOJE+Mc/tNcffwxt20L37lo9FdDqoOmkjQpPwxhuVJfpVlOH3Z7iIu+rd5ZvjZjT4vXKcoKnl9XaAakiXeVstOgsPRLVB8z2N///75uxOq4+n+woDiNjmEyTbUBxsWYEa9BAmxcPHtSO9+unbYRddhn07JnaNkqSRrrK2lTRONejG73QONcTcSyRc74VeesE3UMiyWYyQs62agXLl2v/X7oU7rtPc6JZuBA+/RS2bYPDhykcPx4GdjetC8br2OS/rl5kWTS9z6my0antkkiSjW2GMkVR3gCGqqpaWvO6MTBJVdW/2vUdkvQj0cI22bXJGpXvZ/WzVwHwUN87mdbxwrivKbofRt7h0rMjO5FyNvWY2gRt2BAeeUT7q6qCV16BH3+ENWvgww/h4Ydrz73xRhg/HvJr86EHG83TPf1Burc/nGTUPBM5fsSTcjNWr0mzz8/MeelS1yRd5ayZaFQ9vKXltB4539bxaaW/FXYqYLigzoOVPp/MKA6jeSBWo92oojUBI7lbUbiqWwvGFbZP6O9IOFVVsGyZZhQbOzb0vdtug06dNONY48apaZ8kpaSrrE0Vowe0494ZJQSXa3Up6NZqTXTdRrPyNh1qu0okmUzGydmePTW9AqCiQltjT5kC334LgwdTCBQ2bw4ffQTt2hnWMrXDsSm4Zll4ZqiJCzYEUp+H64EiGegtLaeo2JuytbIVmZ1pa3yJJBg7Uy+e5hfAAKqq7lUUpZON13cEUiBYw4yw1bunYG6TIZnhnEceOhAwkgG2GMn86N0nI+9w6dmRtWSFnHUyljdB3W649dba1zt3QrNm8Nea9cmrr2p/vXrBX/4CgwZBbm7I96XrOJfpG4wRyXhR5FU8qdti8Zo0+/zMnme1dkAKSUs5Gy6brKSkVrF3fFrtb+mWrjDaPGBVbo8qWhOSFrNKVQOv085Ytn27Zhj79FP497+1Y4qipSXevl2Lqr7mGsPNK0nWkJayNpW4XQrVVWrIaz1yPC7KfNW6x5NJusl2icQs6ZIlgUyWs3XraukX77gDVq2Ca6+Fdevgl1+gfXt4/HH4/XcYOFBzzAl7NnZmIwh3co22LjLa50vlWtmszJZrfEkwaSQPTWOntuSq8VAAQFGUJthriEs5foHgLS0P2VQoKvamummOxWhTBPTv6YiZqxnx3mpT9zlZgy+n4hDfPHNl4HWrB+bZen29+zSibxtyPOLaDNIbLyvJeDmbDhR2KmDpyN5smtCPpSN7W1MImzbVDGKqquVZf/BBTdH/5RdYsgTOO6/WA27cODh0KGG/I9EYRRRL9GV8jsfNVd1a6B6PJ3WbaD45eLhSqMOYfX5mzxP9XgempEtbORssmyZd3sFQh9DDrvEp6m9lFfr9LY36RoC45oEw3lm+1dJxx7FxIzz1lDZvHXssDBkCs2bBuefCDTfArl3w/ffanHfttdJIJvGTtrI2FUxcsAFfVehGlK9K1ZXZ5ZWRRjKj44liRN82eNyh493jVhwt2yUSM1zVrYWl4ykkO+Ts6afDd99p6+sdOzSnnKOP1rK2dO4MLpeme7zyinZODXbqcn7MrIv0ZKPo3GRiVh+Xa3xJMGkkD01jp5CcBHypKMpMQAEGA4/aeP2UI3O2WidaSLPePfVVR1qjRfc5GSmb6vsOse7pwQBsbNKcPjf/M6brNKjr5mCFfsF6vQWDUe0OkN54WUrayFkZfWuCI46Axx7T/kAzir38MjzzjPb6//5P+wN46y3mt+jEY1/uTJt7muh0f+mOkSdjl+Oa2HoPRHn0S8t9Qg9As8/P7HnJriMVB2kjZ43Qu9+92uazeP1uttU4IulhhxOO/7vHzFlLaXltf9tbpt/fUtE3Uilnwr87XdKSBvD5tDoh778Pzz4b+f7TT8Odd4InsnaSWbJlHshy0kLWJrIvWkm5akWnEomOlIiU8O90qFiTSKzgH6dpkDI5LeSsrTRtqqV3Bq3+6V13wYwZ2uubb4abb+b7Ibdz8qR/QJMmFJVss1XGm5bVBrLQSBdP5JxkVh+XaXUlwaSRPDSNbYYyVVXfVBRlBdC75tBAVVW/s+v6TkAKBOtEE7ZWUifq3WeR8cku6lRV8vGrdwLgbZgfs5EM0G1n41wPowe0E05u/uOyMLwE0kfOplM4vqM24+rXh3vu0f5++QUeeACmTdPeu+46ll90D5NX/5fvmram+Ni2PHjgMOC8e+onken+Uo1d/UaUoi0RKTcLOxUwccGGiILT5b4qhk0vgFkj9AAAIABJREFUYeKCDSG/w+zzs/Kc0yGVaLrIWTMY3e+eExYlNCWWv78FG8pA3N+S2TeSJWdEqcXDv1uEo1KW/Por3HsvvPVW7bG6dbV/J0+G/v3hhBNs+ap0mQck8ZEOsjaRfdFqylUrc22i0yCZ1YEmLtgQ4QDrq1alk7EkIxhX2N7xG8HpIGf1sG19np9P0cinePDkv9Bsx8888vFLVLncHPvhh2z5dRdHr1pOtwOHOK/rQN7o3N8WGW9GVuvJRtG5UHs/vKXlKNTa2FKlH8m0upJw0kEeWiHu1IuKohxZ828TYAcwreZvR82xjCFaGkGJPkYhzVYU9mPzcigq9tJx7EJajZxPq5HzE2okq+c7zLIXh9Bi307+1XUgPe94zfbvyK1bJ+qkVtipgPED21OQl4OCVs9l/MD2coGRRaSbnE2XcHxHp9Nt3hymTtXcf6uquPGOF/i2SQvqVVUwZNV8Js+bxLpHL6Lw9OaaR39ZWapbHEEs6dTSoe84ut9EwcixJ/x3mH1+6Zg2T490k7PxkoznZmQESuW4SYacEcmJMXPWRny3iJSmLFFV+OYbrc5H+/aah3awkWzWLM14pqowdKhtRjJIj3lAEjvpJGsT2RenBhnJzBy3IrO7H9844pjRcStY0YGkk7FEkhrSSc6GY/c6yy/HfzqqOdde+ShDLn+EC4c8wytHnsLqhs1otv9XxnzyMpueuJjNj/fnlM3f8uRH62JuvxlZbSQDw88Nvh8QGYhmp35k9t5nytpPIhFhR0TZNKA/sJLQces3dh9vw3c4gmhpBCXWMZtWJsfjplfbfEbMXG3ofWEXuRXlfPf0ZQBM63AB43v9NSHfY3ahkA5e+JKEklZy1ukL42CvrHAcmU7X5WJRw+NQG8LFQybzx50/8cjHL9HFW6PEDx0Ko0dr0WebNkGvXnDKKaltM7GlU3N634H0TsNsVDwaQn+H2eeXRikVo5FWcjZekvHcRFENflI1bpIhZ0RywshI5r9fKUtZsncvjBoFL74IjRrBvn21740erdUcO/NMcGubI9pc+rXt/Scd5gFJXKSNrE1kXxRJRtFxKzJ782/67RMdt4IVHUhGHUgkKSNt5Gw4dq+z9OR1pbsOb7Xszlstu1OwbyfjP3qOs34uAWD22yN4sftg2Pcx9OsHPXpAHfPb5mZktUg2uhUlwiFe736Y+Y2xYPbeZ9DaTyLRJW5Dmaqq/RVFUYBzVFXVd4HKEKRAsJ8CwSSRl+OhQb06Ifc5WoiyXdSrrAgYyQAeuuCuhH2XXChIzJBuctbJC+PwNDp6OHEzLvieftf0eAZfOxGAE3Pgvz3qwo8/wrx52gZnMI89BiNGWFLw7cSqkd/JfcdPOm/i6jn8hBP8O8w+v0xw5kg3OWsHiX5uZpyhUjFukiFnrP6ugrwclo7sHf1Eu1m9WoteXrdOm0P81K8PkybBhRfCscdGfCyRKenSYR6QxE46yVqn9UWzMjuReorI2UbvuHQylkhSQzrJ2XDsll/R5PgvNOW6K8cBcMThMnpv/Iq8I+rDMxPhiSdqPzB2LDz4oKn6q9FktUg26mWNMlOqxq45ycq9z4S1n0QiIu7UiwCqqqrAfDuu5XSM0gimO0XFXnpOWETrkfPpOWFRUtLhiMJ2x1zcLuI+W5kcC2KYLDwuhT/UVdkwaWDgWKsH5hl8Ij48LoWyisqQ+52KZyDRcPq9Tyc56+RwfDNeWU7cjBPd07su7gjnnQe33w7PPw/r10PLlrUnPfQQ/OEPMHEifPYZ/PZbkltuDSf3HT/pnIY5OJWviHT4HYkineRsOmBGF0tFf0uGnBH9rsa5ntTKOJ9PM4ANGAAdOkDHjtr8sHYt3H23Vhtz3z7YsQNuvFHXSAaJTUmXDvOAJD7SRdYmsi82qOu2dNwKidRTRGUT9I7L8gESSepIFzkbjt3yy0iOh793oF4uH3fow+kjboPdu+G++2o/NHq0Vpv19tthyxaorIypPWBNNkYrVWOnfpTOa1yJxE7sdDFfpSjKGaqqfm3jNSVJIlWFs6NF6QUX8gypXBmFWDxOVJ+Pr8YXArAn50hOv2ea5Ws0qOvWrZvmUuDqbi1ZvH4320rLaZTj4WBFJXvLtCL33tJyRry3GlQCUXOyeHnySKPC8WkhZ50cfRtNNjh1M87UPVUUaNMGfv5Ze711K7z6KmzeDE2aQP/+sH+/9t6RR8JLL8FVV2mfcwhO7jt+0t1D2u8BqBddmU6/I4GkhZxNB6JFMKaqvyVDzojkxOgB7RL+3RHs2gWLF8P8+aF1xs45R/OWbtNGM5xZmAsSGbGSDvOAxBYcL2uD++Ijr4zkTz+XsHnI7bQ5tlPc13700vbcN3M1VUHZUtwuhUcvjT/laiL1FFGksOi4jDqQSFKK4+VsOHbLLzM6hfC9J5/U/nbu1JyJKis1Xap+fZg8WTvn/vu1aLP69S23y4xsNMrOUGCzfpTua1yJxC4U1WSNqKgXUpT1wEnAZuAgNWYNVVVPs+ULDOjSpYu6YsWKRH9NRtNzwiLdsN6UpYLBXIo0u3BVVzFp/tNc+t0SILZIMrei0LB+HUrLfRHv5eV4KBl9fuC16H7rkcpnkC3E2/8VRVmpqmqXRLQt7HtSJmchM2St0dizW9l0FNXV8PXX8OijMHdu6Hu33aZ5zBUUQI70GDNDsBNHOm/iptPvkHI2PQnuY41yPCgKlJb5HN/f7CBl40tV4fPPNZk/bx4sWaIdb9IE9uyBSy6Bp56C42MvUeLEdYPEHrJB1sYkZ0WG5Dj2UhIpIxJ1bTn2JZL4yQY5C7HrtI5en1RVwSefwD33wIawKPrhw2HcOMjNte3rki1zHX3vJRILxCNn7Ywo62vjtSRJxok1V8ykSLODepUVgXSLT5x9PS+eeXlM16lSVfbpGMmAiONW7ms61L1Jd5zY/wVknJxNtjJmJSd4RuFyQbduMGeO9nrlSrjrLi0V49tvQ5cu2uvqamjbVqt11rNnatvsYDLFQzpTfofNZJycTSXZ3MdEvz0h897hw1p63Rtv1KKJ/bRvD6eeqnlEn3suuONP6wbS61hiC+kla1UVNm3SogiefTbyfb8h7YQT4G9/gyFDUup8lCjZK8e+RJJWpJecrcFu+WWr3uV2w/nna+UO9u7VjGNvvKG99/TT2h9okWZ//zs0aBBX25Mtc7NZb5dI/MRtKFMUpT5wG3AisAZ4VVXV2BO2SlKC04oVQ3KMFHUrfSE1yWI1kkFtLQ4z91F0v/WQOYETjxP7fzCZKmeTmfIyWEHOy/VQr46LfeXZEdWgS+fO8OWX2v8rKuDHH+GWW7TNn2++gT/9SXvv2mu1iDNpNJNkOJkqZyX6pMpj1tZ5b8cO+PBDzTgWTvv28N57cPLJ8TZZF5keURIraS1rW7eGZ57R/qA2mqwqyLFz40aths3tt9eeo6paTZvjjgucVlTsZcTM1SEp90fMXA04Lu17CHLsSyTOJ63lbJyE63e92uYza6U3MfsNjRvD669rf/v2aU4S770HpaVaausnntDOa94cVq2C/HzLXyFlrkSSfOJOvagoynTAB3wOXAj8rKrqUBvaZppMS1OTCkS1SlIZZWElPWEsuKur2DjxksDrWNIt+vHfKyDiPnrcCg3q1gnZlBedF1yjLPi6ciJMLPH2/0SnT3CCnAX7ZW2yUgnE+nwTsZGays1Zve8NNyCq1Spdv/mcx/77Ekfv36N5SJ92mpaq68cfoWFDGDFC85iWxERRsZcxc9YG0vQ2zvUwekC7lPYDuz+TCKScTT16fQHsX7wb9Tkzsixa26LNCYns83HNe9XV8Omn0KdPZLq3pk3hlVegd+9Ayp9kjl2nyAlJ/GSDrE2onP3ySy2Cc/ZsKCyE99/X0qB27Vp7zjnncHdBH+Y174iquEI+Hp6uP5hrpnzJ0o17Aq97ntCEqTefqXvuqKI1vLN8K1WqiltRuKpbC8YVxl//zCpOaYdEYjfx9O1skLOQfJ1WT79TAL0d77wcDw3q1YlrTdSrbT6L1++uXUerUFru48iKcm5cPpuhX7wTeZFnn4WbbqJo/Z601puk3icJxolzfTxy1g5D2RpVVdvX/L8O8JWqqqfHdVGLOHlTIZ2wW9jFej3/57yl5cKJLV7sNJK5FYVJl3fQ3cTJy/Vw4FClrvELIjdw9I7JCSc5xNP/k6DsplzOgv2ytvXI+brjWwE2Tehn2/fEsjGZCOeBVDkkiL53UOeCEA+7cHI8biaedxz9m1TBtGnw/POwf3/tCa1aafXO2rUT1+6QhBDuQe7H41aYOLhDSvqBUf9zkhONlLOpRa8veFwKKOCrss/Bx6jPQaSTkUiWGbXNr2OG469Tmcg+b3neO3AA3n0XHngA6tWD7dtr3+vTByZN0pwZwmRwMseuk+SEJH6yQdYmXc6uXasZysrKQg4vOr4Lf71sDKfs+ok//7SSqR0v5Pf6R7BZRxaEG8n86BnLRhWt4e1lWyLOvbZ7y6RuXDmlHRKJ3cTbt7NBzkLyZW08jvaxrInM8Ieqcj55byQNN28MHPPlNmDymVfyY8OmLDm+M4c99dJKb5J6nyQYp871qTaUrQoWuuGvk4FTNxWymXgiOEReII1rvDT2lftwKQpVMfZdRa1m0xMXB17bEUkm+k2y4HF2kARlN+VyFuyXtR3HLgxE1QTj36y0y2gci0FONHZj8T6Ldk2o/c1moxmsGHZF3+s2IUdDZFVlJbzwAgwbFnLOS31vovex9WlTeB6cdZaWhkKiS7Q+kMh5IZb5yElzmJSzqcXK5kM8/cOoz4F+emsrFOTlsK20XDgniFIxW/lNRvLZ1JhatEhLefvDD1C3rpYeF+Dyy6FfPzj7bM1RwYBYHUT8RkT//FBgML8En69HouWE9GZODNkgaxMpZ6P2y6oqeP99Su55mP8773bWNDuJ+a/dQ7tdP4Ve6OqrtciDo44CoNXI+cLvDDesnfDgh7r6nVtR2Dj+IuttjvF8q+2QSNKFePt2NshZSL5OK1rzmyWWNZGVa9/fuzWX7PuRmaNfoun2zZy9uTjw/ry2Z/H3824j59hjImRqvAEIdutJTlofSlKPU+f6eORs3DXKgA6KovzubwuQU/NaAVRVVY+04TskacbEBRsivC3KfVVMXLDBUDjrfU4lUui2NlgsGOGqrmLyvEkA/HJkPn+67d+WPt+grpu83LqmJxtRnbVk1F+TZBQZJ2eLir0crIhMle5xKfRqmx93DZdgxVBkWDeqQScao6XlvoBxz2q7jMa9/1orft4TNY+61Ro3ou8142wQ8tk6dWDoUIrOHsyDs9fQ5NftnLVpFb80asqQt8fBa8/XntupE0yZotVCyyKiLUiM+kCi54VY5qMsm8MyTs7aiZVnHmv/KCr2Cjch7Opz/rEpqksab5+PVneoV9v8CK/LOlWVPPTDf+D+/8C8ebBuXe2bd9+tGcd69tSMZiax+jvC5xX//CCaX8x4VidSTiSzxqnEdjJW1prql243DB7MNd8cwcEK7bzbCx/kjmUzufKbhbUXmzYNxo7VDGU338xHH/yXf3UbxLy2Z1HpNt7CEel3esetjiUr51tph0SSTqRB385YOWuESL8zSyLXad7ScobN/o6vu7dk6tk34qquotuWNUybPgqA/us/p//6z/nw5B58uKoPrvtu4OJux8es7yRST8qy9aEkCmkgDy0Tt6FMVVW3HQ2RZBaxCs9on/NvQsYy5ILTLb7S5RLG9b7Jcrowj9tlyUvCaDNGIjFLJsrZiQs2hKTE8nNE/TosXr/bkqE9WtFevUk6x+MOpDvVw6yibcYBwOw1y31VgdzORt9h1RFB9L1mIsr0ZJX/+72N/sC7HS8AoNM973DLt//hvgUvaycVF0OXLtChg1Y3p6ICunWj6JsdcXm2WY14SCZmFiRGfSDR80Is81E2zWGZKGftxMrmQyz9wz9+ol0z3ogyRYE9Bw9HHPfPCaIIKbO/acyctRGpVX3VKmPmrKWwUwGL1+8GoPUeL3/77E2qXG7O+WkljQ4f1E4+91wtMnfgQOjb1+KvC22vld+hN6/40ZtfjM4XfZedns2xOuRJUk8my1or/dLjdgHauVsaN2Pkhfcw8sJ7tBpl954JM2fCiSdqJ7/yCqcAk+dNCjh8ltY/go5D301qm62eL9Iz3TJdtyTNcXrfzmQ5a8SIvm10U9ybJZY1kRVUYOqyLeTlethbBl+06kirB+bhqfJx1xczuOD7pZzh/Y4jKsrpcvaTcFFfGm4s5cizbqC84dGB68QagBCLnqSnu2XT+lASHafLw1hwRT8lMSiK0kJRlMWKonynKMpaRVGG1hxvoijKx4qi/FDzr8zhlIaIhGReroeeExbReuR8ek5YRFGx19TnXIpCq5HzGT69JKYJSlGrQ2qSxWIkAy3tYzhFxV7hbxrRtw05nlA9JdoGvUSSDQgjtsp8lgzt/s1Vb00qLW9pOVOXbdHdwHMrCgpahGq0NLB6Y9fqb4nlmiLDVbCzgNWIC5EcuqpbC62OjwCRrNL7nsN16vJcx4tp9cA8Wt0/l1sLH+L5s65he+NjYOFCLRqiTh0KT2/O3//9MAWlOwKGpPB5QETws4bIiAez1zH7XUZzlR5GCxI/I/q20b3nHreS8HkhlvnI7jkslvsqSQxWn4VZmRhr/zAyvPivKRo/IvROrVah3FcdcqxxricwJ8Tb5/XSCQOUllVAcTEX/+dNNj/en8VTbqXfhqVcvO4zFpx8Jo/0vhl27ICPP4Z//SsuIxlYH7vR5rHweceMLl5WURnoV3pzdTxyW3ozS5yIlX4plBXlPmjYEP7619qD1dVcfcU4Pm1dmzkt79CB2vcVRfvr1w+WLAELXtyisWzH8au6tdA9V3RcIkkXZN92MDHuzceyJooFFU1Ee9y1DfW5PTx91jX0vfFFut3xBv/ofRMz2p8LRUX0WbOE5S/ewObH+/PAktc5skb2R9PD7NCTRLpbr7b5Ie2H5KxlJc4kE+WhHakXY6USuE9V1VWKojQEViqK8jFwA/CJqqoTFEUZCYwEHkhhOyUx0KttPlOXbQmJ/PK4FQ4cqmRvmThtmV4RdajdEI3FNySiJtn9c2MykoG+d6xRBEFwBIisoSCR1NIox6O7SdCopgaYWS8lUbpWPapVVViTLBy9sVtWUSu/orXL6Jr3zVgtNIiJPHKOzcuJGnHRKMcT+H+499egzlokQ7gcmv/Ndt3f5FYUoTExqkedorCgTQ8W0IN38nJYemsnOOEEuPJKAPr+sIy+PyyjpNlJTD+tL/90Haaw47FR5bLViIdYiTVVhZkFif/zY+asDfT/xrkeRg9ol/B5IZb5yM45TKZKcw6xPAsz8iue6E6jhbtfFhUVey1tgDTK8fB7eWXUyNncunUCbY61z/tlbjBHHjrAnzaX0H3LGq4vng9PaAsab8N8CvbvZtR5t/NOxwuocrkpyMvh702bRr1+osZuNLke7hVqJiJ5b5kv0K/sjgBzqjezrJuW3Vjpl5Y8sBWFL1p15ItWHQOH6lZqOoSrOmhcffghfPghm4FfcxvR5e6pANTzHeawp55umxPpCd7luCZMW76F4OAOl6Idl0jSmXGF7QECmUDcisJV3VoEjktSgyhjjR5W646H61XxJJUTOUoAVLvc/JB/HFMGD+OGZbN57LxbeGjJawDcvvw9bvy6iJe6X8aWvGNgb49AbfBw/UOLWot93wLEult4CnGAqiqVsXPXMnx6idR/soxMlIcpM5Spqrod2F7z//2KoqwDCoBLgD/XnPYGsARpKEsrioq9zFrpjZg8KqvUiGPhi+TwCUhUW8gsilrNGzNGB17HYyQL9zIpKvbqbhjp/SY5SUgktYjqkwEcrKikf4dmIakTwVp0kwg9xdBoUyt87OrVZLEaPVHYqYDh00uE71/VrYXwt0dLdXUwyHs/fBN81kqvruGrVEeBBs2oKJJbIocGPbaVlmsK/BVX0Lr4COpU+bh+5Txu/Wo2dasq6bD9ewa9+gm8OQw2b4ahQ2HMGIo2HYx4LmZS95rdpDQ6L1pkmOhzZjfIUjknRPtu0X2xo70yVZpzsPIswvuESCdTIK4C3qLxU5CXE2JgNrsBAuhuEOgRLlvCdVH/2Bf10+C5oen+Xznvx68Yt/DFwPsHPfX5uvkfObZNK9bc/wh3L9kZkhbI4zL2wo3VyGxl7EaT6+HP3axu7u9XdkeA6bU31RkbpDNAZjKqaI3pzR+9GoT+4+HEW9Ojoo7mHFXtcmvhCRUV8M47MHEirF3Lz3nNAGizezML/n1X7Qf33gL33gtt2tjSDiMmLthAeAa0ahU570sygnGF7dN6IzgTMatT5HjcjLm4XcAJa+KCDQyfXsLEBRsMDTx+vaqo2Mswg/V8vAT0mTp1eLnbIF7uNghFrabjtu+5cMNSTtjzC0O/eAeaPA3Abx3P4J89bsXb8BhA0z88LgWPWwnRm/3XNbtetqKjVYNhQIQks8k0eZjKiLIAiqK0AjoBy4GmNUY0gB2A2L1S4khEm7kidVtvg8IvUFuPnB97Q1SVp+Y9xdmbi1l4UnduufThmI1kAIM617bLvxiOliZNIpFEYuTt5atSWbx+N+MHtjelwIk2VxVCZY7eBprVTS27omtEbW6c62FcYXu6HNdE9zuMDGyg3Tv/hq7ZTfBYvPL91xg7d23Ujejg62hRhPBq10t5teulgFY78uaNn9Llx/9qJz3zDDzzDIXAV33vZOFJ3fGiGf5EUYjB1zfzPKM9d5H89p8n+pwdG7eJikYwc914NnnNXF+mSnMOZp5FUbE3JPIRtD4RLlv95OV6dI6aJ9r4GVW0xnD8x4NLUWg9cn6g70Kks4FwLFRV8eGU9xm6agm3LZ8Vce0nz7qWKV0HcrhOXXI8bgaV1Y2MiouimibDyBwtYrAgbE4osFCrwy8X7IwAc2LGBukMkHmMKloTYviqUtXAa70NIX8NQjPHGwu8/RvHKkvr1oUhQ2DIEFoFrZ89VWGOaS+/rP0NHAizZtG1cg+Nf1rPwpO6oyq1VTnCx3wsWE3fKJFIJPFgtMbOrRsZPRbL2idahpd4EWVnUBUXxQVtKS5oC6rKlDMK+aBoDOzfz1ElX/Ofkq/5rFUn5p5yFnNOOYfDnnq6UXNgXseNpy6b1H8k6UzKDWWKohwBzAKGqar6uxJkyFBVVVUURXc3VVGUW4BbAFq2bJmMpkpMYnXTy79I1ttoE4UMR0VVGfPff3Hpd0uY3v48HrjwnriMZADTv9pKl+OaUNipIGpkR6pTv0gkTsZMLRS/Rxdg6OUl2lwVpRoMJpZNLTuia0RtHj2gneF3mFFWje6t3nuxGnf8ctBIPgdfRxRF6KpTh7aj7oVOk2DvXhgzBp59FoDHFrxANQrXlnzE+vxWbGp+Im926s/+6khZnuNxoyjmDITRnrvoPrsVxfBzehu3vdrmB/pvtI3cWA1VIiOV/3i4cUN03Vg3ec2226mp0rKRaM9CL3rWj8jp6cChSkYVrYkqd0XopSU9VFnFsOklEQa7cPJyPByurDYV5apHeL3DenVcxmNh3z548EF46SUAXgYqazaYJ5xzA/89sSs/HtUiQu8s91UFIlOC8Ts5iKJfrdalNCJaFDVgak7QmztERlT/99gdAea0jA3SGSDzeGf5VuFxPUOZlT4gCtiyIZArhG+POZFWD8wDoFH5flb/YaMWdTZ0KAAvffIcR5V8HTj/QN0cpnQbyInj/657vRyPK6LOo/94OIlM6yiRpBqZatd5GK2x9Z6N1bWPKKOUXbgVJSI7g67MVRS+P+4U+P13UFUeuvAerir5iONKt3PFNx/z0OLXWNv0eCrcHnp/8Bqcemrgoz0nLDL9m61kkdFD6j/ZQ6bJw5QayhRF8aAZyaaqqjq75vBORVGaqaq6XVGUZsAuvc+qqvoy2tqULl26JEZSSWLCiudBcPhv+EbbvTNKItI1mEJV2fzEAABe6zyAsX1uidtIBuCrVhkzZy2FnQoMf1+qU79IJE7HjIzwlpYz4r3VoBJIUaW3AR9PPZlUebrG2mYzyqp/o9usQSIer3wj5TfcG04URXhE/draQDRuDM88Q+uc81FVlZN+3UJO5WEOeuoz+NtP4NtPGPGff2nXO+s6pnbuT2m9BoHvEkXchbcz2kaWaJEluu/hNcjCI4/NGr5iMVSJvmPFz3tCUnhGS3sc/jtEv08Ps+12Yqq0bCXas4jmDKSHr1oNqU0ba9qVw5W1mwH+fYhokWRjLtacDKzWjdDbxC33Ven+9tZ7vEx66ymY1RBKSqCy1vA/+oqHKWp6KvtyGkb9TiuZCKJ5LQfLdLuiRs3OCSLHAFHqYCdGgNmNdAbIPKymJRQ5eOpF3O4TyDXRcTvYl9MQHn5Y+6th5pX30Hn3eM7wfgfAERXlDP98Ks+tuBR6ngz/93+wYQOMGAFnnMH4gadx7/QSgrdtXcD4gadFfF8i0zpKJKlEptp1JlZ1DStrn2gZpexA79p6MhegXh13IBtCWY8BTOt4AagqBb/v5qrV/+Hqkv/QpPx3aF/j1HH11TBpkqXfHHw/Y9kfkfpPdpCJ8jBlhjJFCx17FVinqupTQW/NAYYAE2r+/SAFzZPEgVnPg+CNVD3PhliNZF+/cF3g5SN9brbFSOantNxHUbFX6DXrVhTdOkASiaQWszJCz7CitwFv1as82uZjsKdrIrxjYr1muLJqlF7SrEEint9nVFMo3BtOpJTr1UjzbzT9kH8cAFdc8zgtSnfw6Of/5uzvvgBgxOdvMaL4fZg2DdavhEM5TGxUH+++Q7rtNNNu/3miRZZokSBaBFg1fMViqBJ9h17USrTrxrrJa7bdhZ0KWPHznpBaL8EpjSXJI9qziNUD1IxB1o+e7InFQNc41xNh5Ok5YVFUh6bxA9sbprPNrSjnri+nc8ey99hJCw8lAAAgAElEQVSdm0d+Wan2xjZg5Ejo1QvOOQfq1aNTsZdpM1ebUlxFERZ648zofoRH7IoM5sERfmUVlaZkUqyRWl2OayJMHRzPddMF6QyQeViNiLISJeYUw+rE0iZUXftE4HWrPV6u+OZjJu/I4W6AceO0N2bOBKAQOOeU0+h//dNRdUdRilY70jpKJKlEptp1LmZ1jaJiLy6bdDK70JON4evSvFwPBw5VBpzIQuuRgbfRH3jy7Ot5ofcNvJXzI11G3aNdaNo0eOcdHv3TYDbUa8JHJ/dgV8OjAt8jmnuC67JZiS6T+k/2kInyMJURZT2B64A1iqL4V6oPoRnIZiiKciPwM3B5itoniRG99DnhhIcV2xKWq6o8tPjf5B8s5fd6Degw9J2QXOt2MXHBBl0jmQJMurxD2goDiSRZ+Ddpg6MPrBCvvIim6PoV5kR4x5jd0BRtOoRHLBkZuRJVk0qU0g/ESrHZDaGiYi8HDkWmaNxxVDP2vD0DOhVoBetXrNA8nJcsgac0X5ulNee+0uUSJp4zJFATyEzKsPDzRIssK5ugVg1fVu5RtMgZM96O4deNdZPXSrtnrfQG2lalqsxa6Q2kNJYkj2jPwijq1+NWaFC3jul6YdtKyyNkVXjkUXj9Pyv4U9YGY5QWMNhJK9z4ffxvv3DJd5/SrnQr5373v8DxnMrDPHLBnXS/8xrO73+mfkNM+GT50wKLoq7CMTL2BTtliRao4RF+IvwyyYrjhGj+GD+wfYSjRLaQDVFz2cZV3VqE1CgLPq6HlSgxpxhWw/WFzU0KePzPN9Ra9w4ehNdf19I1bt4MQON139SOc0WBB4Fhw2D4cAgqidGrbb7u/evVNt/+HyKRJBGZaje9MYoOE8nhRD9bj1sRyv/gdWnPCYsiIpd91apuPbIunS6Eh+/WTlq7Ft57j57F67j6g38x9r9alpYtjZpy/6UPcOUVxtvuZqPLFJD6T5aRifIwZYYyVVX/h3hZ2SeZbZHYj1+YBxcTDiZ8UoqnUCQAqsp3Tw8m13eYNzv14+/n3WZrJJmfxrke4YBXSd/QUokk2SxevzsmIxnE720bbdL2e3PZ5R0TzbCht6FpxmBl5DFnxpvOjlR/Kvob0OEYbQgF3x+RZ1+DukEpGuvWhR49tD/Q6mxceimsWgXATSs+4KrVC3i719WcWnguPZtGzgX1PbU1iPJyPIHUbT0nLBJucFrdBLWSginaPfJj1ptP5AXvR0HrZz0nLAr8hlhrrOm12+NWOHi4MpASRBQtlO7eZumA2cit4GdhFPVbVa1yuNKCQUuBYUGRW97Scl0niXJfVdR+G06OxyV0KIDoY7X3yUdRMeVVztpcQvN9O+i4/QetLflN2Xzp1azadoBHu15B/WOPYUTfNpwv6Kei1LLBBMtHo6irYIyiWcykTTV7J4/Ny0lKqlg9Mq2mQaZHzWUb/jpkwdG3V3VroVufDKxFiaWNYTU3F+64Q/sDzYDm9Wr/rwqSAZMna38A7drBt9+yeP1u7fywNfni9buT0HCJJHHk1nVzsCJSF8qt605BayRWETnNGmWHinu/Mgoel2JK/ot0vn3lPkpGnx/QqyLqu7drB+3acRzw31m3cdxdN3LSjp9ouW8n775+L3z3LlxxBdx4IzRqFLiunp724OxvhLUq1/3jQtO/OdN0wGwlE+VhSmuUSTIfsykXRvRtw4iZqwO1iCyhqjzw6Rvk+g4DJMxI5nYpqKp440GmkZBIzGPGw8TjVkJqlIE93rZGim7w9e3wjjFr2LCSsswujH6fSHEdO3dtxG/xG8mMoghERpjwyGPRJrlhzY6WLWHlSu3/e/bAm2/S4IcfuLVrV7j7Vrhjf+DUb0aMZZSnMweCfsLhympmrtjCFxv3RDVWWtkEtZKCKfh7okUJRutLoqgVv0EzOAow/HfGUmPNTEoQozGQ6JqA2YzoGUart+d/pnoFy6tVIhbHuR4XhyqrdTMP6vX3eCIhg6lXx01RsTdq9G0I+/bBkiVsfmM6/3j/ncDhVce24cmzrsWbdwznjBlK4enNaQUMNNGOaHOC26UZjoM3LcxEXZmt7xPP5o1/zktGqthwjGQMpIEBQZIVdDmuSSDi/5hG9elyXBPhuVajxNLSsKoo0Ly59n+3WxPy27fDc89pUWeVlVCuyQHPpo1sfvkWAHY3yONfXQfybocL2FaaqsZLJPagtylsdFziLES6SrWqCmVyXPuVJijzVdNx7ELGXNzOcF5olOPRzepgxenp3EF/hkEbtRdz58KECVBWBlOmwAsvwNFHQ24u/7vqdh7ceqTOOiLSSAZwSHBcj0ysa5WtZKI8lIYySUKxtGCIxbalqkyd/jA9f/6GqR0vYNT5d8RsJNOrO+Y/1jhs40+Pg4crhRs2EokklGgbe25F4YozWpj2vLeCKFqica6H0QNqlVM76kfEk8880eHqot/XKMcjTA+pFyFltq1GRhgzbTVFkyZa+h8AVeWT3OZUPjaeviWfAHDaxNF8C7x3ah9e6j6YvTlHsie3EUs37om4VLzGSispmPyINs2C010aES1qRe8aer+zqNirayQR3ZNoKUGMnrOo1oskfkTGD1GkUqMcT0hUpVnDVZmFhbERovqvIkrLfeYW1atWwRdfwLx5sGABAEfXawDAFy1PY8y5t/B9fqvA6V8t/J7C05ubbke0+ayqWo0wHEdtM9aczUSpJsPRS81T2KlAWK8t3lSxRoj655g5azlcWS03TyQpx+pGXtpEidlNs2bw2GPaXxBtXLV1Y/MPljJq8b8ZtfjfLOjYByb00wxse/ZokQ4SiUSSJKzoMGbXYHYQTa8tKvZysCKyRIHHpcSevWPAAO0P4Lff4JVXtHpmX33Fn5YsYR3wVfM/8reLhrOlcTPDdYQZHdDofspMIxKnIA1lkoRidsFgJm1NBKrK5ic0of5T42MZdf4dMdckcyn6NdhVtE080eZwMKY3bCQSiWFqLwitmWNnvRO/chas5AUbF4qKvYGN4rxcDx6XEuE5VlZh3igej7Er0QXdRY4MihJp2Cj3VenWmfBjta1WDIixRhEWlWzjwW98lPcdDn2H02qPl1GLXuGYA3vo8+NXFB/bhkcXvhg4f/yfb+BfXQeFOFt4S8tD0gcapaQMn+fs2Ej2X9uMB6P/PvnbqGd0M7MZbpS3P/zcWN4Px2oUkcQ8omdRparkeNyh6TJdCgcrQiMBrRqu4kGkh0XDv6iGWl2zRcO6PHrMfs568mFYv7725JNP5mBBSx7pfROzm7bH59ZPg2o1Kqq0rCKmNkebQ8w6m4kidvVqoYk8la3KKz3Pav9GjVlE91nPKU1unkhSQaJTBmd62qkLbxnIKUefRLmvira7NnHzV7MZtHYxR/71eu2EIUPg449rP9C5M4wYAYMGQR25TSWRSBKDaB8ifI1v1bHTDozmGNGe6RH16xg6PYWn2xdy1FHwwAPa36JF/DpgEEeXldL1l+/47OWbmdrxArxH/oGP2vRkU5PI60SrPzmqaE3UGvXpXNdKkjlIDSRDcLKibSathGWBqKqMWvRK4OW5N70Us5EMjDdnrGziyYW8RGKO8I09vdpUdo+ncGXXv1kcbCQLfn9vmQ+PWyHH4wpJMbC3zLxR3GxKrPAN6WQUdBc5MoiUbCOstjVqqjJFoVpV45rPwje4Njcp4KbBowFwVVfxx12bQs5/cMnrPLjkdSoVFzdcNpb/te4EaM/FW1rOsOkljJ27NiTqEMQe53rpD2N5rmPmrDWV5sPMeDGzGR7NiBnN0Cf6DpH3oUxbnDhEz8LvHBA89ssqKiOcgsJTddqFx61QVaUSHIcWTyab4JSSA7/9hL9/MoW8QwdqTzjuOJg7l6LKJqY2PMwas+PZQDEbhQvmolP0dG0rEdlWU8YBkZkgLAaHWk0ZKTdPJMnGaopRKxFoTkk7pSj6KXLtCPYOlmEbaM1T147C3fet2t83bBiUlMDumpplK1fClVfC8uXQtauWznHXLrjrLmjaNP4GSSQSCbWyKbwEQPgaP57MMPFgde4prdHfjfQqy3NM795c8n+z8JaWU7BvFxdsWErz33dx/2dvcv9nbwJw2F2Huy9+gIUnnwkY158sKvZGNZL5f4NEkmqkoSwDSIWibbdhzupiefj/pnLTig/48OQe3H3JA1S7jAsFKmgbMxVWo9ZiwOkLeScbVSXZRfDGXuuR83XPsXM8RfMM1nvfV6VSrZNVLJ6IgHBcwNXdWwZqYMQ7Lq2M8fDN1aJir67R0oi8HI+lthYVew1333M8bsYPbA+gX4zYJEZ9p9rl5ttjTqTVA/MAKFy7mMnzJgFQR63moSX/5uDSHM7wfgfADYNHs+SEM3SNpKJ+tXj9bsYPbB+3vDVK+RtOtPFiZjPc6BrB54r6meg77DIcSsxj9LzDx75IBvtrEHpLy2OO+gomL0eL4rLSr/UbpnLyrz/Te+MK+mz8ivHn/IVVzU9ha6OmfHxidz458Qw2djiTj8cMCHxk4oRFUTc8PG7zUVHxbKCY3QiIlo7VSLbofTb8c73a5gfmnvoeV+AZuxWFQZ3Fjm56Xs2+KtWSc4uof9b3uHQzOcjNE0myEdWCaZSjH41qJQIt0dFqZrFaT9VWLrpIM4T5v/A//9Fq5Jxxhnbsnnu0f8eNq/3M5ZfD9OlJaJxEIklHzK6D/Wv/cBkfLIdTta8n0neiOTxG23ewOsf4r+dt9Ade7XopAG/2uIyHPnqB835cTr2qSl5+/1F+OTKfme3P452OFwivNXHBhqhGMrkulDgFaSjLAJKtaCfCMNerbb4pDwOA12eM5s+bVvL+H//Mvf3vNYwkUxR4+vKOFHYqEG4C2Y2TF/JO8V6USMKxK02dEdG8s4zSlFm5XjDhEQH+6DT/FXM8LsYPPC1hUXNWxni0lHt6+FN5WWnfiJmrhRswLoWAkSxeWSXqU/4aPcHvFbXrRVG7XgDU9x2i2f7feLFofOD9198bG/j/VVc+xpMf1Qm0w6hfmYmotpNo48VMhIpRRNj4ge11oy/1no/edySi5qBEjJWIpGjRZ3aknpl8RWz6WHA0YqPy/dz7v7fp8+PXNP9d22Bd0/QEcn1aLZyvW5zK1y1OBUA5FHodMzJ74uAOpvtkrBso8W4ExCrn9T4XnFI3OHI6OP2x3jWtejvrIeqfgPXoNokkAYiiqkTHrYwLI6//ZBKeNSH4eLxYklWKAhdeqP352bQJJk+GZ56pPTZjRq2hrF49aNFCS9d4/fWQ49w1uEQiSTxW9aNoctiqM78dGOk70Rweg/UqUbvj1dOGXtGbEUc1pbTcx2nbv2fEp29St7qSa4s/5PxNK2DReGjUCO6+G666KjBhRvveArkulDgIaSjLAOxYrFrBbsOcmVy1fu5Z+g5/3rSSXQ0aM+KiYVHTLaoq3DdjNcOmlwjTPtmJ0xfyTvFelEjCiSntk0WiGeOsKsPxRgToMapoDe8s30qVquJWFK7q1oJxhe1Nt8lojPvfF22YW42OiEWhjZZG0P+WHbJK1Kf8NXp6Tlik+7wPeeqzqUkBF/71eRS1mvs/fZPbl78XeP+ddx/iSe+18Nx10KMHPVr2Y2m9yJRALkUxVd8sGo1zPabqZJodL/7+6Pe4DI/Y03Nc8Uf5RYui8z8fUZ9PtuFQYj4iqdVROWwrLddNAWtH6pngyFORrNVLQfv0n47mgi3F3PvBemaf2puyuvW5cMMXrG52Ms+feTmLT+jCzoZH635nuIyOJuML8nIs9c9YNlDi2QiIVgB97Ny1hte1+hyNZK5dzi1GMsGMgVdmSZAkklLB3Cs6bmVciNalbjtyHlrgcKVO2gSD42B+3MWty7VqpRnKJk/WXh86BN98o/2/uhoqKmDjRrjtNu0PoFcvWLQo+rUlkjgQ6eaNc/WjTSXRsWM+typzoslhuxzFzOJWlJB1e3CtNP+9aZTjob7HRWmZL8TByF9j3X9MpC/aoaeNnbsWgG+ancx1V2oRvzkVh7ju+yW0O/gtLFkCy5bBNddAQQHMm8exjerj3Xco/PIowNM1jnSS9CQT5aE0lGUAyYjECMZOw5zZXLUAqydfQaPDB5l9ah9GXzKcykpz3+Gf/GIxkoUXuzdCb/PDaQv4ZBtVJRKzWIl8iJVoxjgrynAijOKjitaEePdXqWrgtVljmWgse0vLGTFzdcBI5X8NtffeihxQgKUje5s+34+ZdGtGz8COaAX/cTPPW1VcPP7nG3j8zzcA0Oz33XTd+i27jjgKPn8bZs9mKrNr2973rkDaCf+cE2/k7ugB7Rjx3mrd4s1+FDBMkxaOyONyxc97mLXSGzIn611bziXpjd7zD9cjg5/7sBjqFgbjcSkhkae92uaHyDo/PU5owubfymmyfg0Dt67g0m0l5I37FoDLTzqD2af2xuf20P2O16Om3Pa4FMoqKkOM1UZjPhaZbnUDJTjtpVXM1EPbW+YLKUIfTizjU/SZRDu3mDGqyywJkkQjStvvcesbs1odpb8mb3VU5JpctC5NtFNnOCLfJdFxK+POdl2hfn2tdhmAy6V5xH75JTz5JMyu0cW+/FL795dftGgzgLPPhvvv16LVXPFHykkkf2zWkKUb9+gel1jHrvncqsyJJofNRGjZQYO6bqpVdH8/hK6NS8t9miNZjXEp0bWy9fYz9ZxFyuvWZ8qpF/DQhOdgzRoYMgSKi8HrhU6dePfCS/lon4c5J/Xg26YngKKgANd0byl1tjQnE+Wh1BQygBF925DjCd0wSGRkk1HOXKuYyVULsPLZq2l0+CAArtf+zZpx/Zh8RUerdcMB88WJC/JyAinADK8HXNu9JUtH9o4wkj04ew3eGg9t/6RVVOyNodX2YOezk0jsprBTAUtH9mbThH4R48mu648f2D7Eu6VeHVfE+wV5OSiIvXqDU9DZyTvLt1o6rofRWA6P5PJVqzw0+xt6TlhE65HzcVnwYk6kzCj3VQnvfSxecKI+Ff68C/JyAvWTRGw/Mp8P2vXiy+NOo9cjH2mLgCDGL3ieJS/fwuneddz72VvkVpQHfpPfO1BEUbE38Cx6TlgUmCsKOxUwcXAHw36pYlxAORyRx+W05VsijqtofTB47pJzSXpjJrIouE/FG+HQoF6oX9681dtDXh9xuIw/b/yaZT/tZVtpOcNWvc8NS6aRl98YJkyAb79lx7uzA7qunpEsuIk5HhcomuEoWP8CAmM++Hf59T0zhpngMSq6nggzckCE2Wgwo+vHMj5Fn9GTn4mYF42IFkEtkcSLqLa16Piyn/aaPl4gGFui407ByrhLiq5w5pkwa5ZmNFNVKCvTjm/cWHvOZ59B//7gdsOtt2rHSkthr/7zkkii8YXOprDRcYkxds3nZmWOX58TESyH/WvJRMrmgxVVwt9vJluMUa1sq3pasK7bcexCRry3OmI/U1SnM3Cf27eHVas0mbxrF0yZQouObblp+SzmvTGMzU8MYPPj/SmihHEWSjhInEkmykMZUZYBJCMSIxg7vUjNeJTdtuw9jir/HYDTHpzDI25tg8SskS0cM456wV6/0TxIVNCt4+DENIfJSG8nkTidQ0G1GErLfSEea8Fe7KI6OtWqmpAxbId3sdUIhzJfNWU18k3vezxuBdRQI1s8MsNsGsEqVY2I6E2ErAqPWjATteFn88EqeP117Q/gzTdh6VLWfLaOa4o/ZNDaxdzzZW3B+SGXjQX0o/CieVIGt7OVoF9a8XQUzb0iD/IqVWXEzNWMnbuW0jIfebkePC5Ft184LZJaUotR6j49thnIBiuUlvsYPr2EYdNLyMvxUFruo/UeL703fk3vjV/RdetaPNVVnHXrK2zNO4bRPa7j4fPvZOQ1PQJ9pxBAURg7d62uDAlu4qGgOpB+/PpXrE4YojE6fmB7S3I3Vo9ksxEYRufFkkLISOamOpWqjGyVOA0relwi12RNG9Zl5/4K3ePxYmXciaKHe7XNj7sdQvwOC+eco00MVVXw/vta1Nny5dC7Rg+74Qb44IPaz11zDfztb9CxY+LaJskYRFpRcuNBMwe75nMzcjXaWk8kh1OhWxh9Z7Qa67HUyg6/N3qZYMp9VdT3uPC4lZBsJx63oj9/5efDTTcB4LrvPhgzBp5/HoAOj4+Cx0fBvfdqTgwnnWQ+qkHiGDJRHkpDWYaQzMWqnYa5aPUdXigaT78NS/nglHO4t/+9VFW7GDNnre3hzwqQl+sJyfUbnJ5r+PQSw4Fe7qtizJzQ2hBOXMAn26gqkTgNKwbsZKe1taNehf833Ddjdcyb225FoVpVycv1oKqakuxvW7yFds2kEfS3YfzA9gmVVUYGneDjZRWVuhvzEf3g+uvh+uuZMGERB7fv5HCduly9ekHg7TdmjgZltFaUvrBQy9ke5Phhtl/G00+Kir2Mnbs2JsXVV60G7sPeMh8et0Jejod9/8/eucdHUV7//zO7mcAGkU2Uelm5SS20FCEFK5qvWqiKFaEpoFTx1nqvvUBtalAq0NKSNlJabdWvt6835BsFm4L4LbaAWlGgYhKRn1BvoK62UCGoEMgmmd8fT2YzO/s8M8/szuzM7p7365VXktnZmWdnZ85zOed8TluqRj5JoQUTJ05g8/tiLhQzL+lMINzViVYA529/EXf9uQ4AsOPogbj/lG9h3dCx+PBItnj6QfRYAKwGgvkZbbrt3JRnN8R5HkT3t3n85cSpaxfRK3tdM83Ok62HZtU/8ezb+OH9k3UxzRjrygWRXPfRBOEmXs7JeE4yq+1OcPLciTLdnWTAZ004DEyfzn6MTJ+e6ihbupT9bNgAnH460NDAaqB9+9uAmr91VggiH3Cz7imQeU1uq3luJnVps0X//JnUWM9U7UtmPMsNepWZXB51FHDnneznnXeAm24CEgngvvuA5mbgzTfZPpdcwpxnYWuZdYLwCnKUERnhlmPOKrr1uk3LMWnHBhxUezEnWbfUTmtbQqrOjVOabjuXu122PkdrWwKDa1cnO9igTuD9jgAmCD9x4sDOdQbmxacO4EbeXnzqAEfHqa6MYXYWNYW6NA1LZoxO+ex6hlc29XX0SYvRASeisztrzytbNbdxa0p9TF4Gl3Ffu4ho8+c70KcfbjnvB7jlvB9A0brwsxcewnc3PgWMGAG8/jrwox/1HCgSQe+ZS4CjTkg7B+++zDTzsLEpLuWklCXRqaFPrxI0z+vpO6vq1gUuk5pgyE5+jWgAap5swYyvDkircyDDUQda8bV3tmDC25tx5ruvYvEZl+GhsVPw8sCR+Nk512P90FPwQb9jhO/fdzCRnIyLnlFR5i8P4/jLaT0Mq/qPTlxfnZqWUdalTDaYTP/Es6tjB1Vw+7r5AZfDIZUEwmuqhlZw625UDa3woTXeIMr0N8qUG3Hy3AUxaDTJpZeyHwD49FPggQfYYu1pp7Ft3/42+3355ey3ogC1tcAvf0kZDwThMm5mn/LGOcZxl2gWZFd/O5Os/Gww2lWnNda9VPsSkejSpOZ7KWPgU3/AxsDDK4BVq1iwwsqVzGn205+yN7zwAgteIKcZkUOoRhnhCFENlUwx1jgwcuNLDZjz3EP4vy+cjsofLks6ybzCznnlRJNYX2wZP7x/Wu04ADjY3uFrnTKCKGac1EvIdQ2WhdUjcem4gcmMg7Ci4NJxA7GwmtVKdGJ/s3HIHx+NuFr7xVyvcd/BBA60d1gOQKxsbrb9UGNTPMVJpiP6fHYR0bzPB4VlYygAji/vg4q77mASQK+/DtxzD5P8SZ64DWvvvx47f30BrvpHI4759D/Jl3jfYyZ1TRqb4rjpCbGTLKwotvXZeJgnVIFeFCtyrL6DWDSCPqX8cVaiS0upcyBDuKsTyx+rwT/+cBkWP7MEY+JvYNUXz8Rrx54EANhX1g+PfuUCSycZD94zKmvrFLDxmW4z5q/c5sjGic6jAMJaDTzKy1Rh/Vor28brjy4dN9CV/ikI9cYyIV/bTeQPS685Lc0pVjW0AkuvOS3rYzc2xVHzZGrtl5onW3I+R/zScX0dbXfy3OVNPdO+fYFZs4Bt23qcYM8/D0yc2LOPpgGLFvW8/sUvApMmAevXy9V1IAhCiJvZp3Mbt2LonGcwuHY1hs55BjPvezll3CXCzi6J1i3NhAR+dNE4m4exHrqdzXVzLJStbbab75nnzMkx8Pa9wEUXsSzfDz5gNSV1zjwT+Na3WJDp+vVAR0dWbSQIGSijjEhiF+HqNPpWFr0DqKpbh3hrG168+7s44ZPdeGngyfj+N2927CTTM7pkssAAfsSF+VqIolxEGAtozl+5LSVzYt/BBElREYRP8KKu1JCCg+0dGFK7Os325ToDc2H1yBTHWP2aHRhSuxr9IioOtHckHR129jebqLfxw/tjqcDe6QvNTjLLeE43q6wmqyg4N/ohq/qWvAG+nfNH9PnM2VZJQiHgf/6H/Xz6KRv8r10LAPjZuvtxQO2NujVMu33vlyuB69YC5eXJtzuNHNSvmVXGWZemYf4UOVlMI/qESr9XRe8M3KJYESLKco9FI9hQO8EyM0t/nx5pW/nzZ5MZCJH2Q6ja1YIJb29G74523HTBTegMhfHPowfh+SFfwbrPfxXbPneiZQS+GlIAxdou6Jifx5qJw6TuW2P2aM2TLSn19ayObzwPT4ZbA/to5pqKPNSwAk1Ll2nU5bsPd3RZ2jZeTUW3JMxIbYAg+Fw4diB2ftyWnBNeOHagK8edv3Jbmh1KdGlpUv46R/YK45PD6TbmyF7ZBZNufGefo+2AvL3I66zPM89kPzrvvw/84x/s764uYPt29vPMMz37XHwx8PjjuW0nQRQAbgXamVVAOjWNmxVsRtYu6bZPVC8aAKAhrX5XRA3jl98aiVd27ZVaUzwykrpMn6sxWrZZc3bzPalSA7EYyy4D2Dz5mWeYTOMvfgHccUfPG+fMAW67DejdO6O2EoQVlFFGALDw7o2RwYEAACAASURBVBui2tzMMODxYWsbfvWXO3HCJ7sBAN+ZPs+Rk0wBsLNuEmomDrNtk1XEBe9arNgSh+rwadELaPbple6PdvO6EQQhjznqKhpRAYU5sEW2zw/Mdqi1LZG2EGxnR3o7NVrdrN++x3Kg6/QaOZ3kWEXB2fVDMtlmVu3hfW67iOisJnd9+wJ/+xugaWh89QNMr3kMrx/7+eTLFa83ARUVbCW+e3LgNHJQRnLv+GgE1ZUx1E8flSK3pLs2ohEVajjV0aFPKo33Ko+8WRQrcGomDkvLcjd+N1GBzJaO8Znv89EHeKThZ9j56wvwxpLpuP+pX2DyGy8g3NUFrdshe8t538edVRdj2zFDLZ1kYUVB/YWjUD99VMo9LcpwND+P1ZUx9Cl1FvcncpLxjm88j+hdrQcT3Gwv42coL1NRP30U9gskZ1vbEo7G2HMbt2J2Q7PluL3QkZm7EEQ2OL3HRDUIedtF8tOi7Z+28/tx0XZZMpVzlqGgsj4HDACmTmV/h0LA4cPAQw8xSW2dZcvY7z17WL+nKMB11wE7aM5PEFa4lX26bNP7jvbP1C5ZqXB0AehTWsK1e7LBTXpgvcx4xs2xkNlmO0Fmvud4zty3LzBjBnOK7dkD1NX1vLZoERCJANdcA7z6Kqt1RhAuQRllBAA5777Xkko//H9/wSUta/BZaQRjv/8oDqu9HL3/+GhEqlh9NKJa6g+LroUojdqqPQBJURFE0DBGZVXVrUtblGhLdOKmJ1qS+/qBbD0hox3Rs3r0mjmZLnF82NqWVqPMjJO6U06KH8e6HTZWbRNt52Wb1SxvwfyV27C/LZHMFhS1RwG4A3y7iGin9SiN31NYUdCpaclM6Esv/hrLIrz5aYzpasXS+36IXq3dkZDvvMN+P/ooqq+8EtV33w3UXGWr2W7X16ghJflZrHT9W9sSae3Vs8EzKYpN5Ba7AudWa6Lhrk58+Z3XUf2Vb+Bf/T6HF/fvTr52QO2Na6bOxT8GjMDnjjoSMfCLjvNskhpScETvEsxuaE5rD288p8snjl7wLBSFOaiOj0ZcrVtrtAFmdYFoROWeS3c0m+9zPTvYiP7sy8J7fu3kY43X0GkttGzJ5TmlIpNzgB/XmcgNTu8xt2rN8hDZ6Gz9WXq/ztsuwsk9X7DZqqWlwBVXsB+dw4fZ75aWnm333st+AODHPwYWL2b7lZRQzR2C6IanDqCGFceBdk4c/NGIij69SvBha1syKEm2vpbduHN/W4KrKuJk/c/Y11jNHd0eC5nXSWTGrLLzPadz5hT69AFuvpn9fPwx8JOfAIcOAQ0NwIcfAhs3AsceC5xzDqsl2aeP/TEJQgA5yggAcs6crAxbN8KBdVUVZr/0EtacNA7f/+bNSISd1UqJqGGMH94fNz3RYtlBqiElWZxc1BbRtbAIQE5bAMpmEZUgiNwhet47Nc1XiVTZgbRR+s64qJzNusnxBmeV1aKuqI086doVW+L2smQh+wmRlT0VSSDqkxk9wm7amFhaexQAM8cN5H7Xdg4GniNNAb8Atfl70vsrXQ7OKD/3SiiK0d9fyqIQRx3Xo8n+298y2Z/rrmM/AHDZZcA996Bxx760dto5KusvHCW8x3nt1fs3uyAau6LYRO6xWrA0Zzod/8luLPjrPTjnrc1o7X0Eooc+AwB8bv8e/GL8VXj+xDF46+geCTL9nh87qILrWF40lTmN9PtTl5PVJRzNUoNmG2QcZxkXKJw4nezQsylHL3g2bREk3toGNaxADSkpGWlOMyZFjvfeaih5LYzwxooy8rFeyaVbketzBiEQzY/rTOQOkX0RbR87qAKPb3ovZc4YUth2MyGFP7d0GpiZLU6de3TPW9CrO8j37LOZB3PvXuDuu4H6emD/flbXDAC+852e7LO+fdmC7403Akcd5U+7CSII8LStPUINKTjQ3pE2RwTEdkwmIF8npCjckg5OgkcBfiCoce5o1Z5Mx0LGeXy/bkURO3lz2flezcRhafLnMvP/NI46ipUwAID2duC555gCy2OPAf/v/wG//z177emnmeOstNTZ8Ymih6QXCQBy6c52sj12iNKCW+b8CnjpJQBw5CTT5xGxaCS58GnlJItFI8kFQasUZdG1sIqsi5apiEZUbvp2tteNIAjvsHJY+ymRKuNI1+3I3MatmNXQLDVwV4AUaT3e68bsog21E4RFi3ltFEnXThsTS8o4iGzpEb1LLBdZGpviOHA4vYCvfh1kJgTG+pFGSYwlM0Zzsz909Gvxbt0kbKidkNLO6soYpo2JpUhUaABWbImnyV5YZQomujSxvGYo1DPIb2piBefPPrtnx0cfxZmzH8fshmacv2Yp/uvdV5P92vjh/YXyGfp3K5KrlJFcdksuhfCX4/v1xjlvbkT96t+hYenNeOnu7+KctzYDAJ47cQy+981anPyj/8WJN6/CA1/9VoqTDOi55wGkFDsPK0rKPaM/RwqnJpn53jLaIDfXS9SQkiYlqgD40nF9UfNkizBSONGp4YjefDkdWURSZPMmj7AdK+rSslaLLPpz57VcOo9cnzMItseP60zkDidSigC7H8zOry4N3PtBFIBpFZjpBWMHVaQ550TOPYDueUdUVAC33gq0tjLH2dVXs+2nndazz6efAvPmAUcfDWzYwLatWwds3pz79hKET9Sv2cGt2eimXTGOu47oXeK4pIGs2gvAnFn6PHh2QzPmNjInXM3EYWnjTytEgaDGNov6o0zGQrzSD9Cs1w5E6wRCzM3NNjiktBQ491zg0UdZQIIeRAoAF1wAnHUW8KMfAStXAgcPZnkyoligjDICgLhw44HDHWhsiqdF92YiLzJ/5ba04y954ucY9c+X8dwXxuGaKc4yyTT0FKG3kn6CYT+dBavS26J3jqJoX14Wgs6+gwlE1DCWzBidVu9M79x4klUE4TWKogwA8AiAY8Aem3s1Tfu9oigVABoADAawE8BFmqaJK3cXKHZFa3Mdma7b12iZmpa5oMuU6XJjNROHSRcFBlLtoKgIsYb0SDonxdhFCyjrt+9JnnuI4NytpmwK8/X47FBH2iSqvEzFvMkjWH0tSUkzL77T9dv32MqgAZllv3Db+6UvofE3D7G+bP+nOPfNTXiv/DiUdHbg1uceTNn1fyZciiuv/QEeatqTlvk8fnj/FKkTXa4SgGWGtXG7k/ujUMlbO7t/P1uga23Fs39dhz4fstoOrx8zFHecNgN7jijHslHnoSMsN13Q73n9WTdGjSazJrvhZU8B/PvdjWdWz0iLGWynUb5QA/DS23ttHXKtBxNoui1dTscJVpl9ojF2Y1M8TZbIjDHQwY9sq1yd00pmONe2JwhZbcWCH3bWaf0uJxloMUFmgeNFxyyxcu7x7BTd8y7wgx+wHwB4802mFHDvvcC4cWzb17+euv/w4Uxu7IorLGt+EoQb+GFrnWbvZoJxLVA0D7ayYzI2jidlqwFY2j1Xf7rlI9vsLB19PDO7odlyP13tw415GFedpUtDWWkJJp18HHfNgaegYnV88+dPdGruSWYfeSRwzz3sp70dWLsWeOstNtfprvUNALj8cuB3vwPKy7M/J+Epfsmbk6OMANCzMLpg1baUxYvWtkSaFE4mN2ZjUzwtQnfVQz/CyH+/DQC4drJzuUWgp8Oy6rh4EblWCzRWDsGxgyqEi7G82hB2klUEkQM6ANykadqriqL0BbBFUZS/ArgSwFpN0+oURakFUAvgZh/b6Qv6syiSbc1VZLrZXuw7mIAaVlCmhnAw0QUA6NOrJOkU0tFrqdlhtoNOFmisbKJ58CIj0ygjR2teFBbZ7LLSniy0monDMMtmMgEA/SKq67JBoj4o3tqWIr0hqgVihVXmXluiE1B7Y+WXzgIAdIRLMHPGQix89o8Ysu8jAMB31j0GrHsMo179AEtWv46uDz5A1+AhqJk4DAtWbeNOWGY1NKN+zQ70s6jJpOMkiKaAa/nkj53dsQN44QUmR7JyZXJzn8mT8f++dQmWdA3AX48cnPHhdZmY2Q3NaU6nRJeGOU+9hkMdXcL36/VmU2qDlalCGyCD0aGuw5MvlHkyjXK3bt/LVmNs3rNqxCwf64fsdy7OyZMZNjtBc2lTSF49p+TczpYLbI8out5JvS+3avJki9MFarrnXeakk5g8491392x77DFg7lxg5072//btTK7xyivZ/9/4BnOezZ4NDBxoPiJBZEvObW0mtRJ59CkN40B7evBrr5IQqurWJeUERVjZMRnZRNEcT3eWyYwzle5z6eMZu0BQY62ybMekVv3B+u17uK+JtvPIaaBFaSmzlQDLMmtoYA4yAHjkEfYzYwbwve8BY8cCZWXut4HICj+lnkl6kUhSXRlDWWm679QNOQXz+7/d/Jekk+yc+avQXmItBSZC78ys5BLNsjhWn8V8HA3Av/YfwqyGZgyd84ztIqzRyIsyK256ooUrceUVulRPLs9JBAdN0z7SNO3V7r8/BfAGgBiAbwJ4uHu3hwFU+9NC/6mujGHxRaN8lUgV1dfSnWRAT+CC8Rm2croY5WnNdtCpJCxPepAnsyiy105lfO0WhXWcDqwjahiKAtdkg3T7atVSo7yvXQ1NsxyHk8w9nQ2DR2P8tfdh8M1P45QbH8XqMROBX/4S1ZUxPP+VTvz9v6/GhjlfR/W4E3H2xtVQNL7TIt7ahgPtHVBD9m3S748lM0YDAGY3NKf1N1aSx/lOoO1sRwfw178Ct90GRKNsce3aa4HmZqB/fxbVvncvsHIlvvSHOtx3142WEit26I5o0Z3eluiCla94/PD+affJZ4c6HEnVmDmUSL/HM4lS1u99N+9l2TGalaOQJx/rh+x3Ls7Js31GhYlcO95JXj13+GFnRbZKtN1pBloua/KIcCovSfd8Dpg5E3j3XXajdXWx4BY9G6KrC/jLX1g2xKBBLMNMUYCbbvK3zUTB4IetdWw7BfzyWyMRNs1bQgrQ1aWlyglyMGbl8+DZPifIfhKzzL/VeY1B+KISAU6w6g/cyPoTOSk9D7QoLWX1vDWNyS/+9KfMabZ2LfDrX7P50PDhwIUXArt3e9sWQho/pZ7JUUak4JWX3/j+y159GnVr/oDnh3wFX571BG6cUmm5KGPVqeipvqJB++KLRgFIrb9iZczNCyBATwdtLJwpsxgsumZGzWKvFwkLeWGScI6iKIMBVALYBOAYTdM+6n7pX2DyCkWLqG5MrhbdZG2seXBgFWm3ZMZo7BQMmJ18XvNC7tzGraiqW8eti6ZH9xsxL6DInFs2e8Roc+0GTfp5zBKPOk77OXNfYYeVjnxYUVB/4SjUTx8l9Z3ItvWz8qORuO8B4JZb2IaBA3tqnbW3o/7/7sC7v5mCqzc/xX2/k5pMvP5mVkMzKn/+bIoMsfmaFFpdk0DY2U8+AVasAHr3BlQVOPdcaL/8JVqiA/CvIypw9ff+iMY/bWCTwTvuSJMeET0jMvAc0bJEIyrWb9/DlX3pU9pzH0YjqiP1Kd595jRKubxMTd77bt3Lbo3RRDZ+2phYyufU2+jVGDAX/WjQZN/8HjsUK7mys/sFC6qi7SLZRN72XNTkkcHpArXTe54CNrNEUYAzzuiRagyFgA8/BObMAUoMAc6//S373drK3nPsscDixWw8QBAZkitb68R2WlFdGcPiC1PnUkf2VtNsLQ9e+QHzsY01eL3AXC+Sd159XOfFeCNTh6WMbW9siuNAe3qtcYCNf3PWP0QizDn28MPARx+xQMIrrmCKG8uXA8ccw2zosmWshiThG36O+Ul6kUiRjwkJ0p6z9fLrqcrXbHoKtz73IN7oPxjXTp2LsiP79ERL2NRe4PHYxvewfvse1EwchkVTR6alHANIS9cUoa8lyBTqNEq96JgXg2XSs3k1bNzEajGHJvHFhaIoRwBYAWCWpmmfKIbFM03TNEVRuA+foijXArgWAAYWuLxHptKybiBjL3SMg4OLTx3A1Qu/1CDBJULm8/JS3u1qounR/VbyD25ca7PNtRo07ayblPxbJGHhtJ9zUtRZR6Qjb5zoyFwXWSm6tAnUl78MHD6MxqY4HrxnFW5eczeqdr2GV4//IgCg8ZHZGP3Rm3in/HjMPfd7eGnwaOw7mEiTrePBq/0JMKenVR1AN+sP+I2vdvbNN4HVq5kUk4n42ZMw/eTL8ZHaJ7ltw59eBxSF+706sUdGFGTnZLtg1HHJOg5m9rcl0DyvpzaY2TbZYbYPVpP+qEFylCfbaCW1WlW3TlryxskYLSqQQY0KonMbm+JYsSWe9jm9li3xuh8Nouybn2OHYiSXdtbp/eakZmdQnL5ObQsgf8/7KZtU0Bx3HPCrX7EfAEgkWGY4AGzcyH7/+9/AT37CfgC2GLxgAcuooDpnhAS5tLVe1jsWZZCZUcBslp2zTH99SO1q6Swx87qhCJE/L1fjjExKBABytp1Xn8zpMVynpAQ49VT28/vfA3V1zFYCwCWXsADTiy4CRo9mMo4VFblpFwHA3zE/OcqKHF4dLTMKnBVp5J3jwOEOTN/6N8x57n+wu085ZlxSh1AkgnmTRwBIrXESb21LGmkZY60b1UVTR6YU6QRYdIPsIoqmwdGii4aezoRXF4HX4fMohMLqRLBRFEUFG+gu1TRNTx35t6Iox2ma9pGiKMcB4OaZa5p2L4B7AWDs2LE+iMIED6vaNJnWrRk/vL+0dnnUkIGrS20t2/R+0mZefOqAFAmubMjEGaRLYGWDaOFGn6Lxrq1oMGVe7HGrLkgmdtQNHfnGpjg+O8SPyDOfi3df9ouo2H8oAa18AGZ++1cp70mE2LU6cd+HeLxhbnL7mK4VAE61jBi3ctxZ3UNOM3uCim929r//G7j++tRtI0cCf/wjcNppQEkJLqpbh49M92tbohPzV27jfqfjh/e3dYjz4GWUOmH99j22kyLjvRwtU3Eo0emotpiOVZ1GO/tl5Uh0MtG3c7gZbcT8KSNQ82RLSlS0GlIwfwobRzc2xTF/5bak3VQUsTxcPgdMebmYRgSfXNvZmonDuM+dlUw1IFezMyhOX1EX7EbXTAGbOUJVWRYEAJx3HjP+r70G3H478OijbHvfvuz39dcD997L/h4zBqipAaZNS81OI4qeXNtaJ7bTCp5zXtZJpXWfX/acskFlsWgE44f3x4otcds5teycyKuaz5k4yXTsbLvMvNnX/kFVgZ/9jP10dgIvvQT885/A/PnMlup8/evA/fcDgwfnvo1Fhp9jfuoRixzZ7KkVW+IYO6gi487q/kdvRtWu1/DC4EpcM3UuyvodgZ+bInT1v+0cdzx4RrWxKe44IlqXxpI9r54dIMqYAOB5tp4VQZmEEf6hsPCvBwC8oWnabw0vrQRwBYC67t9/9qF5eYdVdCyQnsEqs2CqR/7LDk0/O9SREvG2sHqka44xM5nUAHNj8CJaFK6/cJTwWvIWtADgQHtHeoRglnVBGpviQpsuwthX2N0PVpOfBau22UqIGBfyzPesVWTlhZf+BgBw1jtb8PO/3o1Brf8CAOxDCer/sh3VZwzD7hGVmH36d/BSr2OS7ctGKiqbSVlQ8NXOdnXX3/rZz4DvfAcYMiRtF9Fz3NqW4EbPOinMbSabb/PD1jYsmTE6bVKkhhQcbO/A4NrVKQse+w4mWO0yDbbPhNkuZTP5snMkyk70RWM0BT2ZlsZgsPoLR3FtQ2NTPM322T1W+Row5dZiGpF/+GZnzeuWNuuYspH/g4/iP/+Dj8rtHE0U5CIrgW0FBWz6yMknA488wn6MDBjQ8/eWLcC3v83+3rABOP10oKWFyTbqjjei6PDL1rqRNSWqYyqLE9skE1SmAMngq7GDKjCrodlyf5k5UZAzda3WXmXVUALRP4TDTPL2jDPY3GrdOuCcc9hra9eyudb55wM33giMG0eZZh7h55ifHGVFjtO6OE5vyvo1O7D4iV+gatdrAIDrv3ULDqu9cHRpCfdYIsedTCSI8bPoHUgm8KSxrGhLdOKmJ1owu6E57eE1dvg8maCIGsb44f3TIofdevgp8pYAUAXgMgBbFUXRR2e3gA1yn1AU5SoAuwBc5FP78gq72jSZRM46zdrSa1jkYpDgRIKNl1mbKZkMjKorY1iwalvaIDzRmXq9rOqCOJESkpnMhBUFXZombdvtJj92mVs6R/TuGd5lkhX4/IljcNZ19wMASjo70BUKoz3+EXDgAD63+UUs3fwiAOBQSSl+3DQH8SGnODq+ES+1/nOIf3b2hhvYjwVWzzHvvvdrknq8IQvSmAF5oL0jed+bn7pEp4byMhVlpSXCzxhRQ7bBTLxnVOS0lnEkylxD3hiNN97V+xFRgXaeTbMjnwOmSOqwaMm5neVJRZnHFJmy8Z19jrZ7RUjhy33xauU4hQI2A8jcuexH04A1a4D6erYI/NWvstdHj07d/5vfBH76U+ZEI4qFvF07yHb86sQ2yYwFjcerroxh9hPNloFMMnOiIGfqWnUbsnGRRuWcQBAKAWefzT5AZydT7GhpYQ6zP/6R2cjBg4H+/YGHHgK+8AW/W1xQ+DXmJ0dZDvAqNdYN+gnkrXhk0vF8dcMzOP+fLwEARv/wcRwsZcafN2i2ywD73YzRwtoyQGpHlMnCoE6vkhAWTR2Jm55ocZRZBvAXNY3f/bQxbIFF/9+chu12RAhF3hKapr0I8bjl67lsSyGQSXSsne3MxLbmaiFbNlpu5riBrme1ZTIwEtVHMl4vme/Qqt+W7V/MtcdksJv8WGVumTNtZjc020YuytARZkPFPUeU46SfrsT0lmex8Nm7ENa60LujHbf/qQ7P/HgFYvt34/pNy/G7qkvwcZ+o1LELJXAj6Ha2ZuIw4b1gfh4yyZZ0A/1eMD97B9s7bOvXth5MoOm2c7mZVWpIwaKpJ3PfZ2VjrJzWMvZXZrGFN0azknQcUruaO45zqp4geu6CPF8hCD/sbCZjPtnnSGRjc217RT52h753LhSwGWAUhck0nnde6va6OqC2tuf/P/+Z/XR1sffccAMwahRwxRVAhByehYhfY1o3xiBO1jbNOLVNdmNB3vFksv3nNm61nFP7nalrlVBg9fH2S34vTrrAnI9bw2Hghz9kf2sasG0bq//9m98Ab70FDOv+vu+8E5gxgznPiLyEHGUeE+TU2MamOA6029c50XEc/XX11Vjy9AN4aeDJ+O7023BI7Z18yVgs01xXQXRufUFDlJll7IgyKUKvc7iDyRgtvmiUVKSvGWN2ifm7X7ElnrJwyquh5nZECEXeEoR72EXHZhI5KzpmLItjuoVMtFw28rxOsRsQy0Qvi/bRwGyyXQCD1UQkFo1kNVi3m/xYnTtLNUkpEkoIy0afh2Wj2cLKF3e/g0SIDSVnvfg4Lnz9b7is6RkAwNsVJ2Duud/Dy4P4Tgo3MxAJa0TZlkDqs+EkW9INzM8LkD5ukkH/DG4GB1k5re0ybRWkSz2KMI/RqurWCY+tgR+QZTU2Ndf8NT93uk011/EI0nyFIPzCaUaUk3m/6LktjKqdjOrKGF7ZtTelju60MTQvDTQ338x+AODQIeCxx4AdO5iTrKsLuOce9poxk72+HvjJT3LfVqJgcGvN1EltRQXMlmc6XrQaC4YUcG2dXYkXDUgGqIqcZV5m6lqNJ/XrZRV8Z4WsSo2sQ833dXZFYU6yX/+aBRg8+CBw9dXstR/8gAUc3HgjyzabPBk44QTv20S4RsjvBhQ6djJdfsKTkwCAPqVhRNRwyjbH0V//+7/AAw8AAK6aluokA3qKZeoGzspJZj53dWUMi6aORCwagQK20KI7nxqb4hi94Fn5dgrQHVXm88wcNzDt2vD4sLUN81du437381duQ1XdOgypXS3sLAKhzUsQRUBjUzz5PFbVrUNjU9xy/5qJw4T20eq1XB/TLZzK83qJ3l/EW9uSC8azG5ox2PDdyVwv3j468dY2LN34nrDf1rNteMSiEWyonYB36yYl9eid3FuAeJKjb/fCQaqGFFbnKQPe+NyJeOvogQCA2865Hn84rUeFZejeD7Dsf2/BpDf+DgAYsjeOXh3tAHquFS2W5Y55k0fYPhvZZONngvF50TMmnZ6fN0Y0H9cpVgoH8dY2SxuiZ9iazyvb11gdW8dob+vX7BAuaqhhBYsvGoWddZPw9qLzsdN0TYw2FRBLPsrgtC8tVOg6FBZOx2BO5v1lpfznXLRdtGjjx2KO7H2u1+DVF4Y7NQ0rtsTpucgXevdmC7/19ez/UAh46SVg6tTU/Wpq2O8DB9ji8VlnAU8/3VNDlSBscGvN1EltxZnjBmY1XqyZOEwY2NClMYdX5c+fTbF3F586QPCOVJZtej/lf6PNPdjeAdWkjevW2sDMcQO52y8dNzDlOpUL5BFDCoT9gmz7ZOe6gVpnVxTgqqtYlllXF9DcDNx1F5O3/d73WG1IRQG+9CXg1Vdz3z7CMeQo8xi/U2OtELXhYHun0BElxT33ADNnAmeeiadfeANtpb25u33Y2ia1KMI7t74QsmQG09Ge3dCM0QueRc3ylozTrc1tM55H7xgWVo9MuTZhwYJptEyc9t3alkgu9Iog7XaC8B6e42XOU1stJ/BWjnqr16zw4phu4cQWed2vWRVoNkaR2V0v4zXlIbLN+jl4kYDmCUom9xZgvyiX7SRIARCNqCgvU5PXp/7CUaifPip5PfR+zWntsLbS3rj9zMsx+OanMfjmp3Hl9Hl4JfZFvHDiVwAA6++7DjsWT8XOX1+AL/7jOVpEzjEytiSXY9NoJH2SLXt+feSVjT0ULfTa1bgNK0qaDTE+M0tmjE6LAnZiD8zfkwiZLNP66aOyro8p851kau8KDboOhYfTMZiTef/Bdv6zJ9p+iWABU7TdK5zc54FayCTc4bTTgBUr2IKwpgG7dwNvvMFee/559vuFF1gGRTjMFodvv92/9nqEKlhFFW0nrHFrzdSqtqI+VgsrCi51oWRAdWXM7sYt1QAAIABJREFUVr1j38FEin1cWD0Sl44bKFxD1DHONc02d9/BBKCwcbTbawNjB1WkOQhC3duNzJs8ghtk2aVB2C/ItE8NKdJz3cCusysKk6e9/HKgqYnVM9N54w1gzBjgzDOBJ54A4oUxPixEe0jSix4T5CK2Vm1zKtenS7fc+tBtOH/HBnT07o2S1aux6A+bLc9vZ8iiERX1a3ZgdkNzWkq0Od3WDQeZsW1GeHJfALiSkRE17Ehb1wxptxNEbpAthst7/vWMITOZSp1avc9P+VRefQmRLIPX/Zpdf6F/dzJRgfo1HVK72pFEIW9RWUF6QEemhZbtpOOqK2O2UsUidMk1q2ObsZKBsyKsKHh+6Cl4c8yZ+Obw/li/fQ/uO6Ua1/yjEQDwjX9uwN9OOpWk3XKMnS3JpraDE0IA5k8ZkbZdNC6NRlT06VWSdt/qtpk3RrSCJ9cyu6EZr+zai/Xb91g6j/TFCyd22ak9MB5b9Awas0xF0r127XOr1lqQC8vnAqN8pZliug6FipNn3cm83+kawZ9e5S+o/enVuOs1Yq1w8rwHdiGTcI/+/Xvq8Jx/PtDRAfzpTywLbXP3OtD+/ez3zTezWj4AcMklLBNt9Ojct9kFZnx1ILeG84yv5tZxXSi4tWZqVVvx7UXnO22WLTEJOUGzfVxYPRJjB1Xgpidb0ClosNGRxrO5iU4Nnx7qwJIZo10dX9Sv2QFzHmgXgJueaOGOtfU5Ja+2cUbjHwcCJ0FeZ0+iKMDJJ/cUXlu+HFi7FnjxReDhh1kds89/HmhvB5YtA04/3d/2Zkgh2sM89vHlB37LZlnhVtv0BYfT/r4K5+/YAAAYf/0DaHxzv+VAuGbiMEtDpoYUHGjvEEaseSURJJMZMKuhGbMamtMWlMrLVCyaOlJaW9dMWFFymi1CEMWMzAS+2CPEZSVoc9GvyQx8nS6+iI7pRIiQN8XJZnHITjpu/pR0CT0Zxg/v7/helpGB47H4olHJjO+l3QPnuy64gWWb/XQVbpr0YwAUWR40nNR2yIawQOpTNC6dP2VE2jORjW0WZacu3fie7YKH00xLIDt7IJNlmqk9trOpsscp5sVws3wlj2K4DgTDyfPo9Nk9IMg0E233CifPu52cNFGAhMPA9OnApk09WWc//zl7rdNwrz7+OFBZyQYeGzeybfE4kPA+WMcNRDWcZWo7E+kEec3UCtl5ktk+3vqnrUInGZAq0SiyuZ2a5vqahNW5zGNt43y1S5Al4HT8k+jUpOeFeXnPTJ8O3H03sHUr8Mc/Ar/4BfDWW8B77wFVVcwezpkD7Nrld0sdUYj2kBxlHuO3bFYu2la/ZgfOev0F1P3fHdjfqw9OufERvN+rX7LgOY9oREV1Zcyyc+nUtLQaam2JTixYtQ2AM8OrhhXphU+ZzAARZaUlqK6MCT+3VTo4AHRpWiDuDYIoBmQm8CQbYy9Bm6t+TWYy4nTxRTTInjluoK3ErhHz/eDl4pCddCSP8jKVmyljdy/LysDxMDsxknUDTNeTFpG9x0pm0LjdSW2HbBBNhJ2MS7OxzaJ7ToP1857pBDwbe2B3TbIZy/PsXyaylsW8GC4zRyiG60AwnDyPQV4jsMLJ856XC5mE++j96u23M8fZJ58AS5YAse57vbKS/T7hBKC0lO0fCrEMtA8/9KfNNhRzgIgXuGUPebLeVtuzRW+33fHN9tEqwMEsC2k1hnB7TUJmvMI7p2y/YLcWCkBaySRf+9AkgwcDc+cym/j000Dfvmx7XR0wZAhw000sA1eXtg0whWgPSXoxB/gpm2WHG227tPFu3LBpOV6JfRFXXLgAB3qVAWAPxpIZo9Nku/ToYP38AJKSJUZJL1GQxb6DCTQ2xYXptlw04PShFdjw9l7L3crL0qUenTzg+r48ubKIGsa0MTGs2BIXTqppMk0QuUP0nBon8IXY8buBH/2aVX8BZLb4Yid1CLCixHaY7weZeysb9PYtWLXN1rkRUcOYN3kEZjc0c1+3u5f177qxKY6bnmjh1mgzEo2omP1Es7QEcVRQEJpwh8amOGqWtyQDj4xZ8cZniPdMZYoaUpCw0r+B+L6TtS2i98db2zCkdrWlFKPV+LFT0xBRw2njtPIyFfMmj8jI7mVrD+yuSTaSv4C1/ZPBa3sXZOzsZ7FcB6IHJ8+jV2OpKsGct2poBWdvZzh53t2yMUSB0bcvMGsW+zHy/e8Df/gD+1vT2CLxb34DdHUx59miRcC4ccDXvpa7FHgB0TKVO/6mMW3muGEP508ZgZonW1LGoGpI4cp9u4VxniQqy2JWq7LCLKXLs7lG3FyTsDuX8ZzG0hT9IirUsJKS5MDrF2ymBgDknGk6QV5nd8SkSSyAAADefhv4+9+BJ58EfvtbFjAAAEceyeqaTZzoXzsFFKI9JEcZkR2Njbhu8woAwLVT5yadZEBPrTPAeoCsGzgntVDq1+xAzcRhmN3QLLWok+jSsPPjNlw6biCWbXqfu9CnhhV8dqgj+ZDrqcVOanboji6rzz12UAV3cZMm0wSRW2TsU17oXxcRxgExr3ac2/XhAOtFdeM+5mMC/HvLjXabayyJiBmOL6qh008iylI/n52TTA0p+PRwh6M6ndnU9CTsWbBqW1p2vo55qwZxDUIjsWgEuz9pQ8JcyKD7/TO+OgDrt+8R1i0AsrehVs+lUR4GSK+BZzV+tKvllwlBXix2Y5GhujKGV3btTY6vw4qCaWMKZPHCBqv7MBag75koLi4cO5DrKLtwbHq9kLDARouya50+7wWzkEl4z513sh8A+OAD4Pe/Z5JkisIGi7fckrr/gAEs++KSS3Le1M8O8deGRNuJ3ODneMvoMBOdX59PieBZXd3m8mpAAe6uScjUHgOYA8Q4D21tS0ANKSgvU9F6MCG87jI13WScaQXN0KHs58orgZ07WWDArl3MkXbeecCoUcAPfgCccQbwhS/43FhGIdpDcpQRmXPjjcBdd6H1y5WYeN6t2BvunXzJ6PQRDZDNnYh0dhhYFEN1ZQyzBBHyovcsrB6ZjNIwn//A4Y40h1hbohO91ZDUwpHZ0SX63DKdKEEQucFuAp8PkfJ+2xK/zp+rxRe76Drj/WB3LcwOLqvFfDPGY4smLsY2meUnaiYOS4uyBIAD7R1JrXkRC1ZtE37+MjWEtkQXjo9GcLC9w7F8X6Y1PQk5nH4fMk4y3dEkev+KLfHk/cdz6rphQ2WiXo2FxM3P5ulDK/DS23u5Wale2BYvjum37Te2Y8WWeNImdWpasjahOTK60BCNEfJK/ofwDa+eYZEUl24PjVx86gDuAqyxRo65zebnfcWWOMYOqqB7nnCPE04A6utTtz38MNv2+uvs//ffB2bOZI6yQ4eASAS45homWTbM23kaL1DIajuRO/x2zlud306ueea49GAG3eby0Met5uwuRYGlw0q2/Y1NcW6GnqYh7XMkujSUlZag6bZzhceWzVgjuhk8mDnLAGDDBpZl9o9/AH/6E3D11cDnP8+CCZYtA6ZO9a2ZhWgPyVFGZMa11wL33QcAqHhxPW5957NktHpYUVK0a0VOMvNioRPJHz1yQiYqwfweHXMnJpLXaj2YkF44yrQTIggimAQ5EwDIzvFSCOfPBeZ7QDQBkbkWVnWVrK6X+dhWTjJRf1RdGeNmM+v1okTnb2yKWzpbNChYMmM0qitjGCwhU2mGsjPzi3hrG2qWt1iOi4z3tFc21HxcUXt0eRjzs7n3QDtmjhuYzHwLmm23I0i2l2fXNABLN75X8IvnQR8jELlH1vnl5TMsmhvzto8dVIFlm99Hp2EhNBxSMHYQX6Yx03EMQWSFogCXX85+dF55BWhvZ3//9a/s9333JdeoAAD33sucZ0TgCUrwj5dYySSGFHDtrsi5FlYULJrKgpHM2V06rvQr5jQ3BUK1Lbt1WeOYyUmSBAGgqor9AMDu3cw5psvXTpvGfl9yCTBnDjBihO/ytPkOOcpyQJCNfkZte/rpngHIzp1Av36oruwHANIDftGk2uwsU8MKoCElisEYicyLSlBDCqAgTWrooE3UvJXEGi/bTIekVQiisHHLqe1FX+D3goWT8we5L7RD5h6QuRaZ1ryzi0DUiUUj2FA7Qfh6q8DhZXV+uyLR2RSSVsNKoLIzC43Gprhrdcd0wooilHI0YrynvAoMMh5XJN99fDQifDbXb99j+bwEGdFnuumJlpQ6u7mwsSL7oYGfwVJoUOBbYeNk7OLE+eXl+M2JnGL9mh0pTjIA6OwSB9BQ7V4iMIwd2/P35MnAxx8Dd98N3H470NrKtm/fzn4vWsSkG484AqipAb73PeDoo3PfZoJLkIJ/vMRKRatL44+ZRLa1S9NQXcnK18iqKzilfs2OtDG/1RxAJNlrRB8znThnNVdm0UmNsqLlc58DfvQj9rNlC3DppczWPf44+7nuOqB/f1b77NRTyWmWASG/G1Do6EY/3h3tqht9uyKOgW3b448zj/XYscB//gMMGpR8yWrAb8ZqUl1epkIBW/Crnz4K9ReOQiwaSW4zyplUV8awaOrIlNfrLxyF+umjEDXVXdl3MMH9fI1N8eQCi9mE6E45K9sSpO+UIIhg4lVf4PeChez5g9wXuoXMtRBlT9llVcl8nzJydpmcX+bc8dY2R1LISYpdh95D9GfOzUscUcO2dep0cp0pWDNxGCJqOGWb/kz4bSe9QNT2Tk3LuY21+q4pYpjIZ5yOXZzMhZ1kfTlFZKd5253ax0zHMQThORUVwK23Avv2sZpmnZ2shhkAvPsu+/3ZZ8C8eWwRWVGATZvY9jZnz51oMZ8W+TPDie3MZ8YP72/5Os/u2tlc2XlaJjgdJ8vOEQBxLbKir1HmlDFjgDfeYDbvo4+ABx5gtu9XvwJOOw0IhZite+ghzwqDF6I9JEeZxwTZ6Dtu2zPPMB3o9nbg2WeBo45KeVlkSOOtbRhSuxpVdeuSEwurwfShRBeWzBiNDbUTkhEHG2on4N26ScltRnivV1fG0KdXesKk+fMZJ0BAT1YbkOqUE0Xhi45LEARhxKu+wO8FC9nzB7kvdAuZa2G1mK+jB28Y+03RscOKwg0iEcE7vwLriZuX91KiO2qdcB/ZLERZdImXmMT94EcdR17glP5M+G0nvUCm7bmysVbftUx0MUEEFadjFydOJ9Gz4cYzU16mSm93ah9lxjEEEQhCIUDtvufvvZctEv/zn8ANN/Ts8+Uvs99lZWwxWVGAL34RePBB4PBh4aFpkd9dCjGgicf67XssX+fZXTubKzMezLRfER1b5AAR9T08vOwDi5ZjjwW++12m/vbRR8BZZ/W89p3vACedBPzmN8C2ba46zQrRHpKjzGOCbPQdtW3NGlYgcMAA4K23gPLytF2sjLQ5Co9n8HXcmtjLfD6RBKQuX6UvOsp0QEH4TgmCCCZe9QV+L1jInj/IfaFbyFwLq8V8QBy9Pn54f+6xF180ShhEwqO6MoZpY2Ip2dMagBVb4sIIeav+2g0K6R4IEm5f167uCdWBwx2W+ykApo3xR4pOFFjlt530AtnnMhfPl9V37SS6mCCChpfZVk6yvpwiOgRvuyhQRrTdbhxDEIHmpJOAu+5iD4OmAX36sO1Tp/bss307cNVVQO/ePQ/N448D772X+/YWCYUY0MTDakwmGpfa2VyZ8WCm/YqoHwgLfFlOTuNlH0iAyTM+9xz7UrZvZ7XLPv95YMMGFiAwZAgLDLjzTqCry+/WBg6qUeYxVnWv/Ea6bT/5CbB4MSsK+MILLK2dA69emBndCbahdgJe2bUXj23kDzjcmNjLfD7ZCZDMZwvCd0oQRDDxqi8wFsX1o/aX7Pm9+PxBq3kmey2s6tlY1VJaNHWk1Oe1uy7rt+9Jk+Ozqm1UXRnDK7v2YunG9zxRSuwXkY8+JOSxqoOQCf0iqu04CGCOV7uI2VzjxE56bVdkjs/bh9d+o00ICWoS5WpsGhPcbzIZiAQRVJyOXXjzRdHip9Nnxsn++wV1tXnbRfbayo5TXT6i4Fixgv3WNODFF4H6emD3braQrGlMVcnAo4NG4w+nz8CmgSN9aGzh4cR2ZkJQ5oxWY3NjsoCTuaNxjCs6dqZjMVE/kBD4Vcx9jNV1p3FjDhk2jEkxAsCnnwLLlwMLF7L/f/hD9nPaaWzN/9RTWTZukUOOMo/x2uhng1Tbfvc79sAAQGOj0EkGpC9EiBbUdCeU1QDcjYm9zOeTnQCZOyAFqaVV1LCCA4c7MKR2dSAWbAmCCBZe9gV+L1jInN/tzx/Uos/ZfhdWwRsyx5a5Lla1jUTv4TnXACaPkW3kX6KToti8wCrAxzyGsSOihqEokJZyjLe2obEpHqhxkFvPTzbIHJ+3T82TLYDSU0Bdf9+iqSOxoXYC931A7rOLgzrfIYhMGT+8Pzeo0yrbCpBzyjs9tpP9o2Uq9nHKBkQ5sljFkPFPENIoCnDGGezHyC23MOdZgj1XZ+xqxhm7mjH45qd9aGTh4WXgZ5DmjHbB95m2TR/juj0WdNoPGNdQ7a47jRt9om9fJsP4ne+w2o1XXw2sWwe8/DJw+unAZZexNf/zzwcmTABKitNlVJyfOof4He1vhW3b1q4FamvZ39u3s1RNiWPq76+qW2fphLIyvLIG0ipKQebaDz6K7ygbfFS6o8742YznjZap+OxQB1q7IyiCsmBLEERwCHJfkAvc/vxWdUPy6Zqa+zDR4pZs8IjMdZHJNDK/x8q5poaV5AK+Ed2JZudMO9DuXh0togerAJ+y0jDaO7qQkBCPj3U/q7Mbmh2dP9fjIDeihb22KzLH5+3D+57M7/O7j/H7/AThBV5mWzk9tpPtTqQXg6x+QxCBQFGAX/6S/QBAIoEfTrsVB0p7+9uuAsOrwM8gzRl1lQ6RqhaQXdvcHouJ+ofyMhWHEl2WTi67665fi2Wb3k/OF/2Sbi9ahgxha/4AsH8/8PTTwOuvA0uWAL//fc9+Cxcyv0DYu1IMQYMcZTnA72h/K4Rtmz8fWLAAGDmSeZiPPtrxse2iBESGNxpRpa6XTHSI3bXf+M4+R9t1zA5B88JmPi7YEgThLbnoC4IiLcHDzc+fLxHQVt8Hrw9TQ0qa48lJdJ3MdZGREtbbo2dJl5WGuQ6t8u5AESNqSEH9haPSvuvBtaulPgPhHqII0wPtnQiLKnF3E1HDyRoIjU1xobSfiFyOg9yKFvbarsgc38m5zPuabWxjUxxVdety1h8Eeb5DEJngpU1wemxRgAtvuxPpxWKRPCMI11BVrPzSWX63gpAkV3NGWWnthn+8b3usbNrm5lhM1D/MmzwCgLVDzu66NzbFsWJLPDm36NQ0rNgSx9hBFdRH+EG/fj0Ss7fcAnz/+8Ajj7D/585ltcxmzgSuuAL40pcKPtOssD9dkeHaQPS555iTDGAeZgdOMnMbpo2JYf32Pdw2iQzv/CkjpM5z0xMtaYs2Thdm3Cgi6WXnS5MLgiBkCZK0hNfkQwS03fchyhyJRlT06VWSkd2XuS4yWvY6GsSLc2pYgaalZ7skujRuPyyS+7N21xBuwLvXOi2yyaIRFfOnjEhxsmUisZkrx7Vb0cJe2xWZ4zupLWfVrmLqDwjCK7y0CUE5drFInhEEUZzkYs4oa+sWrNrGVeHwsm3ZYNc/WNlxu+sepEw/wkTfvsDDD7Off/8buP9+oKUFeOst4JRTmFNtzx7g5ptZgk0BQlXaCgTdOMe7a4PpxrmxKW75nqq6dRhSuxpVdevYvkuXApMmASNGsIeiP18nXbYNK7bEUTNxGN6tm4QNtRNSjF51ZQyLpo5ELBqBAibvo0cvy5xHtGjjZGEmrPCX6GwCrVMQdWTZdnCZfKcEQRQvVgPOQqNm4jBE1NT0/6Dpmtt9H6K+an9bAhtqJ3D7TTtkr0t1ZQwbaidkVTC5T2lJUnLYDO+ziaaF2VU4I2Rw6rBqnneupRSgLLma6LsVsOS1XZE5Pm8fPdPUSbuKqT8gCK/IxCZw59cuHdurdutjgkzGHVaQHSIIQhZZ2+mUXMwZZW0dT17fTNDms5n2D3bXPV/UYYqeY44Bbr0VeOIJ9vP448CoUey1X/8aiESw+Q+X4cx3tqCks8P6WHmErxlliqI8COACALs1Tfty97YKAA0ABgPYCeAiTdOsdfAIxx55XtTDrtm3AM93p1euWwd87nOetgHILDXYbtHGycLMxacO4GsEa5AuRO+VZAVFWRAE4YRiGnDmQz0cu+8j0wjHbGtzGpGVYeQhcpIZP4OxraJaZdk46wgx+rWXzU7SMX8fmdqPXE70nT5LomfIa7sic3zRPk7bVUz9AUF4hVOb4CSDykt7U10Zwx/Xv4k3dx9IbjuhvHfOx0hkhwiCkMHL7NNczBndsnWxAM5nRcy872VseHtv8v+qoRVYes1pyf/trns+qMMQJnr1AqZNYz979wKzZgGPPorPHdiHR56ch6eH/RcOlvbG2qFfxd+HVOJgaf5+l35LLz4E4A8AHjFsqwWwVtO0OkVRarv/v9mHtuUVTo2z2Qlzyvuv40e6k6ylxbGTLJM2ZIrV8RTA0cLMwuqRWLHlA7QlulK2dwHSDimvOl+aXBAE4YRiG3AGvR6O3feRSZCFG7U5jfD6rwOHOyydYHbo/bC5raIs8MFHFeb96Sfma++Eg+0dydp0NROHOZIC1AkripRCgFs4eZbsniGv7YrM8UX7BElGkiCKBSc2wWmQo5NjhxWAp9gV5qigzLzv5RQnGQC8ufsAZt73cspCpteQHSIKlZAC8BSsnagSET14HSDu9dhO1tZFI6pwjqWPW4M8t9UxO8kAYMPbe9P6GKvrPn54f27Cwvjh8opmhI9UVLAaZo88guE1f8J/vdOEL/xnF67fuBwXbf1bz377rwd++1sgkl/9vq/Si5qmvQBgr2nzNwE83P33wwCqc9qoPMWp/J/R2TL2g2146Mn52N2nHOdfeQdw8skZpT57JUHo5HganEedHDI5yXScOKS8kKzI1fUkCKIwyAc5wmLC7vvIRH44WxkjXt9u7r/mTxmR1m4n6P2wrGTfS2+bh4FEtmQjl7jvYCJF7nn88P6O7oeIGsbii0bldKLv5FkqFikw6g8IIvd4GeQoKivJ225ewLTb7hVkh4hC5bQTKxxtJ6zJ9wBxWVs3f8oIqAJvaj6NRd3oY9Zv3+NoOxFcxnzhWPztpFNx12kXYewPluLO02b0vHjPPcCxxwJXXAG8+ipw6JB/DXWA3xllPI7RNO2j7r//BeAY3k6KolwL4FoAGDhwYI6aFlycRqbrUQ9nv7kJ9z/1C8T79kf15YtRekIs49RnryQIeeeZ3dDMrWuSiYSTTASIWaZn/PD+WL99j6eSX7m6ngRBFAb5IEdYTMjKrDn5frKZSMr27dWVMbyyay+WbXpfmAVmRVhRMKR2tXTtMapR5j5uLSy0JTqxfvseLJo60lbGUQF8tTnm501fbDC3Jd8XY2Sh/oAgco+XGVT5WOeT7BBRqOz8mD9mEG0nrMn37FNZW6f/P6uhmXucQhuLWlEs4/FiwGj32ktULD7zMiw+8zIMLQPWRt9minUffgicey5w+DDw2WfApZcCv/89y0yzwKrkhJcE0VGWRNM0TVEU7vhP07R7AdwLAGPHjg3yGDEnZFKXpOGOJ7Dk6dsBANdOm4vPyvtj0cRhGac+52owrC/iLd34XsrkIFMnkp1Dire4aEwTdlND2QhNLgiCcErQ5QiLDbe/j2wmkrJ9e2NTHCu2xDNykgFiiUXCe/TJhJvfwIetbcn7ePSCZ7mSMdGIiuZ557p4VufIOoLzeTHG6WSR+gOCyC0U5JgO2SGiEBEFDjmVqiYYhWA7ZW1ddWUMC1Ztw76DHAlGBUm1j0Inn8fjRCoiu/f2QQC3/ZD909kJrF0LPP448PDDwGOPsR8AePJJ4BvfAPr0SXm/l7UL7Qiio+zfiqIcp2naR4qiHAdgt98Nyhcc1SV5/klUP/RjvHdUDGfP+BVKBpyARd0T7tlZRDjkajC8sHokxg6qcMWJZOeQkpEwclND2dy2YugoCYIgCHt4E0kFbOBYVbfOsh8U9eHx1raUSVk2sn2Z0KvEVxXwgiGbumRWhBQleX8ogtobnxxKpNQ1q66M5TwCUNYRLHqGgl4Twc/JIkEQcngZ5KiAnz1GJZEIgsh3ii1AXBRTqGkomrFdIThHCQeEwyyj7NxzmRzjggVAXR177cILgSlTgNJS4JvfBM45BzjmGM9rF1oRREfZSgBXAKjr/v1nf5tTgNx5JzB7NgBgYNPL2DRgQMrL+eLdd9OJZHUs2fRfShMmCIIgvMQ4kYy3tqUsnNktnIv6diB1UpbrviybemhED145ODs1LXl/tPKiX9FTI0e/B1/ZtRcrtsRz6tSRlXDhqRJoAFZsiWPsoIrALkz4OVkkCEIer4IcnUgvKgp/IVYU7EAQBOE3xRQgzlNn0MmHsV15mcrNiCsvU6WPUWzOUcJA797AokXsp6MD+PvfgddeY/8vX57cbcHnv4qfnD8LrZEjU96ei7UKX8N4FUVZBuBlAMMURflAUZSrwBxk5yiK8iaAs7v/Lyoam+KoqluHIbWrUVW3Do1NcfcOvnkz8MPu9MeXXwZMTjIg/wvvun39ZB2EQXMkEgRBEIVHdWUMG2onIBaNpC2Q6ZMrXj/I69vN7wNy35ftt5gsEvI4nTRE1LD0hLYt0YlZDc0ISayytiU6sWzT+0KnjleI7lsNwNA5z2Cw4VlYv32P8NkJKlTLgSAIWayyFQiCIAh/CduMp4M+tps3eQTCodTPEA4pmDd5hKPj6HPad+smYUPtBHKSFSMlJcD48cCPfgTE48BddyVfOvutzXj1jpm496mF6Hv4QHJ7LtYqfM0o0zTtYsFLX89pQwKEp9IqjY3AlVcCJ54IPPcc10lmPE8+evedXD9ZWSBeWrCZfHIkEgRBEPmPlZQirx+B29rPAAAgAElEQVScNiaG3mpI2Jfpx5Pp89ykrJQyytzAKmPQTKx7zAPA0XctW39OtJ+XE3+r+1Zvj/nZyGX7RMiORfNF7YEgCHm8kqiNRlRhPUmCIIhiI9dy4HbYjafzYWwXAtBp+t8pcxu3Ytmm99GpaQgrCi4+dQAWVo90qYVE3hEOAzfcwH46OvDqL+/E1mdewPCP3sKnpWUAcrfuHkTpxaLGM2mVLVuAb32L/f3aa0InmU4uUp+ddFiy+85fuU3q+jlxqPEch+OH98f67Xuy7myD1mkTBEEQ+YFo4TysKNx+0Cg1JzoekC7vGFaU5ARG1lFiRlRbBQAOtOeuHlohI+vgjEUj2FA7IWWbsKh4hojuFS8n/ub7VkRbotOX9vFwMhalWg4EUVh4GRwrSlYg6UWCIIqNfKvxmg9ju/o1O5DoSh1HJ7o0R2vWcxu34rGN7yX/79S05P/kLCNQUoKvzJuN96ZchB+v2QElx+vl5CgLGJ5Iq2zZwgriDRgArFgBDByY+bEksXMAOc38stu3sSmO+Su3CfV+zdfPqUPSC8dhvnXaBEEQRHAQLZyLHCVWLi7zpIzX581t3GrrbOMRjahQFLjqiCHSkXUUxVvbMKR2dXJsBgCHEl2utSOihjFtTCylRpm+3euJv37fDqldbXmfdmpa2rPix8KEk7FoPqs9EASRjpd1B0X1JEXbCYIgCpV8q/G6aOrIQLbLiBtr1ss2vS/cTo4yQsev2oXkKAsYrkurPPggcNVVLITs1VeBwYMdH8Jp1pOMA8hJh2W3r/l8PMzXLwi1HvKt0yYIgiCCg2jh3Gl2UEyiX8/USVZepuJQoitnMo7Fjv4dzmpottxPQ8/YzEqO0ynRiIr5U0agujKGsYMqfHPq2MlQxrqVAYxyL9PG5H4i5nQsWkyF7gmi0PFyLkpSrQRBEIwgrPuZESkbhBUlL8Z5bvQxIpWSTNVLCMJNyFEWMFyVVvn735mTDADWrs3YSeY060nGAeSkw7Lbl3c+M+brF4QJRBA7bYIgCCJ/MC+cNzbF8dmhDun382T4jDQ2xTOW5YuoYWgabPvnPlSjLGPM309EDaGjS36C2ZbodNWJ2adXSfJ+9NOpYyVDGVHDGD+8P1ZsiScn452ahhVb4hg7qCKnbQ7CWJQgCH/w8vmvmTgMNctbkOjs6Q/UsBJ4OS+CIAi3CeJYa9yJ5djw9l7u9nyA+hii0Mmk5h7hIdWVMSyaOhKxaAQK2CJWRum3LS1AdTX7+29/A8aPz6g9Vk4vETIOIFHHxNtut6+dY6m8TOXWeoioqYtzuZbdcXINCIIgCMIOnma8CLs+Tw+UycRJFotGMG1MTCiHbOT4aG/HxyfY91OzvCXl+2lLdKVMWnONVRaXFzQ2xVFVtw5Dalejqm4dGpviAFLH0gCL0AV6xtTrt+9xPLb1giCMRQmC8AfPn39zV0BB+gRBFCFBHGvt/Jg/XhZtDyTUxxA5QDTX8xrKKAsgWUfhNjQA3/42cMIJwObNwNChGR8qk6wnmagNJ5lzdvtaSexE1DDmTR6Rtt3vWg+NTXEcOJwe9e93p00QBEEEA6eyx4C8o0JGblEmW5tHWFEQb23DUkOBZive3H3A8TmIbqeoj04xHrpDCsjs/nWCWQ7UrHhgNZaeLZCmzHVGv99jUYIg/MPL558XNJPo0kjenyCIoiOIYy3RfC3XAWeZ4kYfExOs4cYoaYDoJhN1O7cgR1mhsXUrcMkl7O81azJykhkXN0IC/VyrrCcZJ5iTDstuX5HETnmZinmTRwgfIr9kgUQ11ezaSxAEQRQHmQwMG5viUGAd0BdRw9JZ6plO1vQxQ7BcOIVHEGWa9e/e64lNY1OcWzNPts5rkGR4qO4YQRQvXj3/+b4ISxAE4SZBG2uJ5msKZ1sQcaOPIflGwg6Zkk5eQY6yQuLPfwYuvxw49ljgueeAk05yfAjz4gbPSSbKejI62PpFVPRWQ2g9mBA6wZx0WFb7ehklwouIzvZcoij9stKSQHXgBEEQhD+IBoY3PdGC2Q3N3L6nfs0OS+eUTBaZEVGhaSIYWGXTi+hTGsbB9k7PnJh6FKjXExurez3e2oYhtastx2eu1gMmCIIIGKL+25j1SxAEQfiDaAybL7Mu1/oYkm8kLMhE3c4tyFGWZwilbJ58ErjoIrbTK69k5CQDxE6csKKgS9OECw9mB1trWwIRNYwlM0Ynjyta3HMDL6JEeBHRNU+2AAqSkQ+ZREn7+cATBEEQwUfUH+iTEl7fY9WH7Kyb5LgN5CQLNrxITCvUkAI1HIIG53KaMhgdTV6Pc+wchBqsx2dBlOEhCIJwC1H/Tf06QRAEkS1u9DEkEUzY4acCCDnK8giRlE3fd/6Jr+tOspUrM3aSAeJFjC5Nw7sWC22i6OH5K7fhcEeXL7qi2cL7TGZjDjiPkg6S5A9BEAQRPGSyhcx9j+g9mWq9i7Tj3Ya06DND/94XrNqGfQcTtvsf0bsErRL7ZYI5W9HrcY5stqPV+CxoMjwEQRBuQRllBEEQhFe40cdQ8gBhh58KICHPz0C4Bs9xc/xHOzH6ymnAMccA69cDkydndQ7RIobd4obIoLW2JYTyO0HHiZF2sm/NxGGIqOGUbST5QxAEQejw+gkexr7Hrm9pbIqjqm4dhtSuRlXdOjQ2xV1pQzZQ35cd1ZUxNN12LnbWTcLOukkoL1OF++pS2G4SUcP43YzR2FA7AQCS99eBwx1Qw0ravm59104iVj9sbXN87xMEQeQzlFFGEARBeIUbfUym685E8VBdGcOiqSMRi0aggAVmytZazxZylOURZmfM0P+8j7UP3ICjPtvHapJ97WtZnyNTJ45Tg5YPkQJOPpOTff184AmCIIjgY+4nRBF6xr7Hqm/RM9LjrW0psnRWDgPz8dyG+j73mTd5hPA1Y51VK/qUhqW+8zI1JLy/WtsSgAaUl6mejHOcZCFGy1TH9z5BEEQ+I7KRlMFNEAThPyHBIFu0PWi40cdQ8gAhQ3VlDBtqJ+DduknYUDshZ+sGJL2YRxilbE78+AMs+99bAAC3zJyPXw0f7so5Mq3bIEqL7K2GuJJAbkQKCOu1uQTvM6khJaVGGZCZQSfJH4IgCMIKYz9hll4G+H2PqG8RySPbyQYbjze4dnXGn4XIDdWVMbyyay+WbnwvpR62GlJwsL0DsxqabY9xoL0T237ekyEmkt8s79MrZczIk6ouKy1B023nZvZhLOCOz8IKoKVKZEfUMDQNGd37BEEQQSKihtCW6OJuN+OnXBFBEARhTa8Svj3vVZIfeSxu9DFUL5gIMuQoyyN0gzRu+0b8z/IF+E9ZP1xw3T24+roLXD1PJk4ckaED4MlAXVSvzdiWbLH6TGTQCYIgiFyR7WQiiDrw+VSzNJ9YWD0SYwdVJO+VfhEVB9o7pOqYmamZOEzoXDPeO7m+v5yMz2ZLtJ8gCCLoHOIsqoq20wIkQRBEcHFiz4OIW30MJQ8QQYUcZXlEdWUM/V9+HlULFwAAFlzyM1x93QWBMS5Whs7tgXqm0fFOEX2moFxzgiAIojjIZjJhzEg3b5clGlGZpF4GxKIRHDjckfZ+yuzxBuO9UlW3ztH3Fo2wOmd61r4I473jxv3lFNnxWf2aHTlvG0EQhNs4tbO0AEkQBBFM/Bg3uw31MUQhQ46yfOKtt1A15wb29+OP486LL/a3PZJ4YUSDGB1PEARBEG7ilsSwGxIZ86eMQM2TLSnSdjLo5xFlJomk/Qg57O4RJ+MiNaRg/pQRXKlPI8Z7p7EpjoPtHZb7+AlJkBEEkQ1eS/3LQraMIAgiGGTbL5A9J4hgQ46yfGH9emDaNEBVgZYW4OST/W6Rr9hFYQRlUkMQBEEUFrnqX9yUGHZDIsN4DCfOrbZEJxas2gYFAM/Flid1qwMJ7x6pWd6C+Su3YX9bAsdHI4iWqVKyi7FoBOOH97f9fsOKgmljWACUyKEWjaiYP2VEIMZdJEFGEESm5ELqXxantozmwgRBEO7jRr9QCGNT6mOIQoYcZfnAO+8AE1hhdTQ3F72TDLCOwgjSpIYgCIIoHHLZv7gtMexGdrf+/prlLUh0ymeWWTlqnOWnEUZ490iiU0tKLcZb26CGFKhhxfL72lk3yTaLTKdT07BiSzxZB423f59eJYEab5E8DEEQmZArqX9ZZG0ZzYUJgiC8wa1+IZ/HptTHEIVOyO8GEDa8+SYwfjxQUQE8/zwwapTfLQoE1ZUxLJo6ErFoBApYJPSiqSNRXRmz7LwIgiAIIlNy2b8EVWK4fs0OodMlrFB+WC6RuRcSXRr6lJYIv5uwoiSjQu2cZDr6PR/Ue5QgCMIN8tXG0VyYIAjCG/K1X3AT6mOIQocyyoLMc88xJxkAvPoqUFnpa3OyxWl6rt3+oigM6rwIgiAIL8hl/xLUQs9Wn7VTc54fVl6mZtOcokZ0j5jZ35bAzHEDsXTje2kZfJ2aJpVJZkYfmwXxHiUIgnCDfLVxNBcmCILwhnztF9yE+hii0KGMsqCya1ePk+y++wrCSTbnqa2It7ZBQ096bmNT3JX9jYg6qWLqvAiCIAj3yWX/UjNxGCJqOGVbEAo9W33WWDSCaMSZ42vSycdl26SihXeP8OgXUbFiS1woc9mW6HScDagHMAXxHiUIgnCDfLVxNBcmCILwhnztF9yE+hii0CFHWRB57z3ga19jf//3fwNXX+1rc9zAaXpuNum81HkRBEEQXuBF/9LYFEflz5/F4NrVGFy7GqMXPIvGprilxLCf1EwcBjWc7lRRQwpqJg7D/CkjpJw3Ouu373GzeUWF+R4pL1OhhlK/GzWk4JNDCanaY7Lo93xQ71GCIAg3yFcbR3NhgiAIb8jXfsFNqI8hCh2SXgwaTU3AV74C9OsHbN4MnHKK3y1yBafpudmk8+qdlBOZR4IgCIKww+3+pbEpjprlLSk1v1rbEqh5siV5vqD1XXp7Fqzahn0HEwCAaETFBaOOS16XaJmKXiUhtLYlbI9HMh3ZYb5HjLLV/SIqDrR3oKsr8+PHohGMH94f67fv4d7zQbxHCYIg3CIfbRzNhQmCILwjH/sFN6E+hih0yFEWJD74AJg2jf19//0F4yQDnGv5Zqv9W+ydF0EQBOENbvYv9Wt2pDjJdBJdGurX7AhsP8ZzzhjrXO07mEBEDeNSQV0sIyTT4S7G76aqbp2Us1JELBrBhtoJbjWNIAiCyBE0FyYIgiC8gvoYopAh6cWgsGkTMGQI8PHHwMaNwPTpfrfIVZym51I6L0EQBFHoWGVTBSHTqrEpjqq6dRhSuxpVdeuEdUJFcsnrt++xdJLpco2EN/ACjnRkKpIF4R4kCIIgCIIgCIIgiFxAGWVBYPNmYNw49vf//R9w6qn+tscDnKbnUjovQRAEUeiIsqf117zEKNFn7mMbm+KYv3JbSjZSvLUNc57aCgBpfbGVXHLM4jNKeWuIjJjbuNXy9WiZinmTR2BWQ7NwH8r2IwiCIAiCIAiCIIoFcpT5zYcf9jjGFi8GTj/d3/Z4iNP0XErnJQiCIERYOXryhZqJw9JqlAHeZ1qZpRKNTjAAKa8ZaUt0ciUhreSSayYOEx4v0Rlsicl8ZW7jVjy28T3LffYdTGDOU1uhAMKsvwOHO9DYFKfvhyAIgiAIgiAIgih4SHrRT95/Hxg/HjjiCOCZZ4Af/9jvFhEEUWAoivKgoii7FUV53bCtQlGUvyqK8mb373I/20gQTtEdPfHWNmjocfSIpAGDSnVlDPXTR6G8TE1ui0ZU1F84ylPnhEgqsX7NDu5rRnjZY1ZyydWVMSyaOlJ4PCt5wHwhSHa2sSmOpTZOMp22RKelNGZrWyIvnyuCIAqTINlagiCIQoTsLEEQxQ45yvziX/8CBg4E/vlPJrf4jW/43SKCIAqThwCcZ9pWC2CtpmknAVjb/T9B5A1Wjp58o7oyhqbbzsXOuknYWTcJzfPO9TyDx0oq0a4uFU+OT3eGxaIRKABi0QgWTR2Z/BxFkJH0EAJiZ+vX7LB0fjklX58rgiAKkocQEFtLEARRoDwEsrMEQRQx5Cjzg3//m2WSAUxu8b/+y9/2EARRsGia9gKAvabN3wTwcPffDwOozmmjCCJLrBw9hD2i2lPHRyOWdan0LDEe1ZUx1EwchuOjEXzY2ob6NTuKJhMpSHY2k2fArlQcPVcEQQSBINlagiCIQoTsLEEQxQ7VKMs1r70GjBoFKArw/PPAmWf63SKCIIqPYzRN+6j7738BOEa0o6Io1wK4FgAGDhyYg6YRhD1WNbEIe3h1w4xOMF5NsZCSml1UXRlLqRMXLVPx2aEOJLpYPpOx7ll1ZQxhRUGnlp7rFFbs3DR5iy92VvRsWKEBlrXK6LkiCCLASNlaGs8SBEFkDK0dEARRNFBGWS556y3mJAOA228nJxlBEL6jaZoG8fooNE27V9O0sZqmje3fv38OW0YQYqxqYhH2WEklml+LRlSoYQXd/q+kA2xu49aUOnH7DiaSTjIdo2Pt4lMHcNsi2l5I5NLO8p4NAAiHrB2SVnKN44eT7ScIIvhY2VoazxIE4RaiEVXBhn4ZoLUDgiCMFKI9pIyyXLFnD1DdnaF8223Aj3/sb3sIgihm/q0oynGapn2kKMpxAHb73SCCcIJe80rPZjo+GkHNxGHFUAvLNXSnmN1rVXXr0NqWSHm9LdGJZZve52aImdFl+xZWjwSA5PvCioKLTx2Q3F6A+GJnRc+GcZvTGmbrt+9xuZUEQRCuQWNagiByimgc5WaN2IBBdpYgCC6FaA/JUZYL3ngDGD0aCIeBtWuBCRP8bhFBEMXNSgBXAKjr/v1nf5tDEM6xcvQQ7iGqTyXjJANSZfsWVo8sZMeYGd/srOjZMDo/ncgzUo0ygiACDI1pCYIgvIXsLEEQRQNJL3rNf/4DnHwy0N4OPPUUOckIgsgpiqIsA/AygGGKonygKMpVYIPccxRFeRPA2d3/EwRBpCGqTyVTW6xY5DDzzc7y5Bmtvk2qUUYQ/5+9e4+Tqy7zPP590mmkQKS5RDRNIKhMs2CUSFZwog6gGK7SRkeIjKLjLuuOOsI4rYm6C8zgJm7W6+jq4g1HkYsY2yhqwxh0lBEGsAMxQkbkXtwipLmlgabz7B/nVFJdOae6qrqqzu3zfr36lapTp6qeU6fyO786z/k9P6RB1tpaAPkUV816mirXmUA7C6AZeWwPGVHWSffeK51yijR7tjQ8LB1/fNIRASgYd18W89AbuhoIgNQbHi3vVLJvaMmAVqzZoPGJye3rlXp79NYj+vX9m8pTlvf2mHbfZbYeG5+ILIcZ9fp5GBWYxna23mdd+fe8tRu3l9Us9c7S089tU800c+rtsUIkOwGkXxrbWgDF844jD9B3rrsncnnW0c4CaEYe20MSZZ1y++3SwQcHt0dGpDe9Kdl4AAAAYgyPlqckxMpj41qxZoNWLl2glUsXRCZdFh24d8OJr+HRsoa+d7MmwkxMeWxcQ9+7WZJykSxLk7h9KU39rJ95btv221sntqnWXrv16txTDmP/AAAAAAByj0RZJzz66I4k2TnnkCQDAABd0eqordUjm6aMDpOk8YlJrR7ZpGuXHxs759V0r12JJ2pOrIltrvPWbiQR02Zx+/Kcy9fr7MvWS5LMpHrTzJV6e0iSAQAA1Lg4YvREZXmB5uIFgFy2hyTK2m3LFum444Lbn/iE9I//mGw8AAAgNTpZfrDeSCJJdd/3/ohEVr3llfc7/0cbtWVrUL6vr9Sr8968I7lSG0+USuk/tE/cPqtOjNVLkkk7kqQkygAAAHaI60JN07UCgNzJY3tIoqydHnlE2nff4PaVV0onnphsPAAAIDUaLYnXqriRROet3ahnnttW933n9pUiR33N7SvFbsvQFTdrYnJHN3hsfGJKOcWoeNB5cfuyWe14DQAAAAAAsmBW0gHkxtiYdMIJwe2PfIQkGQAAmKJeecN2iBtJNDY+Me37Di0ZUKm3Z8o6pd4eDS0ZiHzN1SObpiTJKia2uVaPbNLwaLmhRMteu/VOuw6aE7UvW9Fj1oZoAADtMDxa1uJV63TQ8iu1eNU6DY+Wkw4JAACgI5Lq9zCirB3uuUc68ECpt1dau1Y65ZSkIwIAACnTSnnDZjQ7kqj6fSsjyxotC1kv5tqSj3F6e0znnnJYw/GiMbX7cpaZJqertRihlecAANqv0yPSAQAA0iLJfg+Jspm6994gSSZJX/kKSTIAABCp2fKGzRpaMrDTnGCl3h7t2jtr+zxi9d53cGF/wx3Pekm5HrPYkoumoGZ5f5vnZ8NU1fsyqkxmI/rb9L0EAMxMvRHpHEcBAECeJNnvIVE2E48/Li1aFNx+z3ukv/7rZOMBAACpFZfIiitv2Ky4UWGSpn3f4dFyw6PJKtsSlXzpnWWa2BafkPnsaYdzUq/LKp/3+T/aGJkwjdLO7yUAYGY6PSIdQOMOfuHu+sPDT0UuB4Ai6VR7mGS/h0RZqx5+WBoclB59VLrkEun005OOCAAApFiz5Q1bfY+414tKoC1etU7lsfHtI72kxkobRCVf+kq9Ou/Nh2n1yKbI0Wb9fSWSZF1WmwCtlLo8b+1GjY1HJ816zLRy6QL2FQCkRKdHpANo3PuPOVhnX7Y+cjkAFEmn2sMk+z0kylrxxBPSfvsFt6+4QnrrW5ONBwAAZEIz5Q07+b61db9rx4A1Utqg3rbUjjbr7THN36ekl674iSbd1WOmZUfO0wWDC1rfKMQaHi3vlAwrj43r7MvWa6/demUW/9xPv/2VJMkAIEU6PSIdQOPO/9HG2OX0nwAUSafawyT7PSTKmvXkk9KJJ0qzZknLl5MkAwAAmRNV97vWjEob1GTeJiZd1/7x0e33J931nevukSSSZW1WmwSt1Wj5RQBAOnRjRDqAxsT1o+hfASiaTrWHSfZ7ZnX8HVpkZseb2SYzu93MlicdjyTpoYekPfaQfv1r6dJLpU9+MumIAAAAmtZIEqzV0garRzbVnaes2iXX39vSeyBeI0nQ6Z4PAAAAAECRpDJRZmY9kr4k6QRJh0paZmaHJhrUk09KL3pRcPu006S//MtEwwEAAGjVdEmwmZQ2iKonHmfSG0uooXEzneS4G5MkAwAaVxkpXB4bl2vHXKLDo+WkQwMAAGirJPs9qUyUSXq1pNvd/Q53f1bSpZJOTSyap56STjkluH3qqcFoMgAAgIwaWjKgUm/PlGWVaav6+0pauXRBy6UNeupNgIWOm+kkx92YJBkA0LiokcKVuUQBAADyJMl+T1rnKOuXVF2L5z5JR1avYGZnSTpLkg444IDORfKnP0lz5gRzkl18sfSOd3TuvQAAALqgk3W/GSWWrKjJjxvVrUmSAQCNixvpywhgAACQN0n2e9KaKJuWu18o6UJJWrRoUWfOyGzdKp10UnD7ggtIkgEAgLYZHi0nMkFtxeDC/o68X39fqeHyi/2MXmq76iRoeWxcPWYNJS97zGY0khAA0BlzY46rjAAGui+un0ufFkDRdKo9TLLfk9bSi2VJ86ru7x8u655HH5WOO0664QbpooukFSu6+vYAACC/8jzfSFRZx94eU++sqSUZGb3UOYML+7fvh0aSZKXeHn367a8kSQYAKRR1XOUYCiTjmEPmNLUcAPKqU+1hkv2etI4ou0HSwWZ2kIIE2emSujeca8sWaZ99gtvf/KZ05plde2sAAJB/9epuZz1ZEVfWMWpZ1rc1zaK+Y5K2jzCr/NvPvgCAVOtkuWQAzbnmts1NLQeAvOpUe5hkvyeViTJ3f87MPiBpRFKPpG+4+8auvPnTT0t77x3c/ou/kN797q68LQAAKI68zzcSV9aRk3rdE/dd2uauu1ad1OVoAAAz0alyyQCak/c+PAA0qpPtYVL9nrSWXpS7/8Td/8zdX+run+zKmz79tDQ4KJlJ73+/9ItfdOVtAQBAscTV12a+EbQL3zEAAID2on8FAIE8toepTZR13TPPSKWSNDIiffWr0he/mHREAAAgp4o438jwaFmLV63TQcuv1OJV63IxH1uaRX3HJGnrs8/x2QMAALRgaMnATvPu9s6yXPfhASBKHtvDVJZe7LpnnpHe+tbg9rHHSu99b7LxAACAXCvafCPDo2WtWLNh+5xZ5bFxrVizQRLlGDul8rmet3ajxsYnti/fsnWCzx4AAKBVNs19ACiKnLWHjCh74glp112lK6+U/t//k37+86QjAgAABTC4sF/XLj9Wd646SdcuPzbXSYvVI5u2J8kqxicmtXpkU0IRFcPgwn7t/rydr4vjswcAAGje6pFNmpj0KcsmJp1+FYDCyWN7WOxE2ZNPSi94QXD7ne+Uzjor2XgAAAByiInPk8NnDwAA0B70qwAgkMf2sLilF599dke5xQULpH/+52TjAQAAyKm5fSWVIzrMWZ7oN82GR8taPbIp8jOv4LMHAABoDn1aAAjksT0s5oiyp56STjhBuuoq6QtfkG65JemIAAAAcmv+PtGd5bjlaF1lPrh6SbJSb0+mJ1kGAABIAn1aAAjksT0sZqLspz+V1q2TPvMZ6YMfTDoaAACAXLvuji1NLUfrouaDq9ZjppVLF+R6TjwAAIBOoE8LAIE8tofFLL34lrdIGzdKhx6adCQAAAC5N+ne1HK0brqa8NvcSZIBAAC0gD4tAATy2B4Wc0RZTw9JMgAAgC7pMWtqOVo3XU34LNeMBwAASBJ9WgAI5LE9LGaiDAAAAF2z7Mh5TS1H64aWDKjU2xP5GHOTAQAAtI4+LQAE8tgeFrP0IgAAALrmgsEFkqRLrr9Xk+7qMdOyI+dtX472qZRVXD2ySeWxcfWYadJd/X0lDS0ZoOwiAABAi+jTAkAgj+0hiTIAAAB03AWDCzLdac6SwYX9JMQAAAA6gD4tAATy1h5SehEAAAAAAAAAAACFRKIMAAAAAAAAAAAAhUSiDAAAAAAAAAAAAIVEopq+ZdAAACAASURBVAwAAAAAAAAAAACFRKIMAAAAAAAAAAAAhUSiDAAAAAAAAAAAAIVEogwAAAAAAAAAAACFRKIMAAAAAAAAAAAAhUSiDAAAAAAAAAAAAIVk7p50DDNmZpsl3Z10HKF9Jf0p6SDaJC/bwnakS162Q9qxLQe6+5ykg+m0mLY2T/uzGtuVLWxXtrSyXUVuZ5OQ5e9elmOXiD9pWY6/HbHnvq2tamezvK8bxTbmA9uYD5w7aF1evh9sR7qwHenTrm1puZ3NRaIsTczsRndflHQc7ZCXbWE70iUv2yHla1taldfPgO3KFrYrW/K6XXmS5X2U5dgl4k9aluPPcuxJKMLnxTbmA9uYD0XYxk7Jy2fHdqQL25E+adgWSi8CAAAAAAAAAACgkEiUAQAAAAAAAAAAoJBIlLXfhUkH0EZ52Ra2I13ysh1SvralVXn9DNiubGG7siWv25UnWd5HWY5dIv6kZTn+LMeehCJ8XmxjPrCN+VCEbeyUvHx2bEe6sB3pk/i2MEcZAAAAAAAAAAAACokRZQAAAAAAAAAAACgkEmUAAAAAAAAAAAAoJBJlbWZmPWY2amY/TjqWVpnZXWa2wczWm9mNScczE2bWZ2ZXmNltZnarmb0m6ZiaZWYD4b6o/D1uZmcnHVcrzOwcM9toZr8zs0vMbNekY2qFmX0o3IaNWd0XM2Vmx5vZJjO73cyWJx1Pq8xsnpldY2a/D/fnh8Lle5vZ1Wb2h/DfvZKOtRW1xyQzO8jMrg/322VmtkvSMTYrql3Pw/6Kah+zur/M7Btm9rCZ/a5qWeQ+ssAXwm28xcxelVzkxRbXHmZNlvviWe63Zq2P10w7lUYx8a8Ovzu3mNkPzKwvyRjTKi992Onk6Td9Rdb/3zYiZhvPM7Ny1fmAE5OMcaby/vtLqruNudqX7dLsdyKtvx/C32//bmY3h9txfrg88jedmT0vvH97+Pj8JOOvVtufzuI2SNHHwqx9r6TmzoGkdTss5tx22raDRFn7fUjSrUkH0QbHuPvh7r4o6UBm6POSfubuh0h6pTK4b9x9U7gvDpd0hKStkn6QcFhNM7N+SX8raZG7v1xSj6TTk42qeWb2ckn/VdKrFXynTjazlyUbVXeZWY+kL0k6QdKhkpaZ2aHJRtWy5yR92N0PlXSUpPeH27Jc0s/d/WBJPw/vZ1HtMelTkj7r7i+TtEXSexOJamai2vVM76867WNW99dFko6vWRa3j06QdHD4d5akL3cpRuwsrj3Mmiz3xTPZb81oH+8iNd5OpdFF2jn+qyW93N1fIek/JK3odlBpl7M+bCPy8pu+4iJl+/9tIy7SztsoBf3Bw8O/n3Q5pnbL++8vqX6fKk/7sl2a/U6k9ffDM5KOdfdXSjpc0vFmdpTif9O9V9KWcPlnw/XSotHzCGnehoraY2HWvldSc+dAUrkddc5tp2o7SJS1kZntL+kkSV9LOhZIZranpNdL+rokufuz7j6WbFQz9gZJf3T3u5MOpEWzJZXMbLak3STdn3A8rfhPkq53963u/pykX0pamnBM3fZqSbe7+x3u/qykSyWdmnBMLXH3B9z9t+HtJxR0OPoVbM+3wtW+JWkwmQhbV3tMMjOTdKykK8JVMrddddr1zO8v7dw+PqCM7i93/1dJj9YsjttHp0r6Zw9cJ6nPzF7cnUhRrU57mBlZ7ovnoN+aqT5ek+1U6kTF7+5XhX1TSbpO0v5dDyz9ctOHLaKs/79tRMw25kqef39V5KFP1U0tfCdS+fshjOfJ8G5v+OeK/01XvX1XSHpD+Js9UU2eR0jlNkwjU9+rFs6BpHI7alSf207VdpAoa6/PSfqIpG1JBzJDLukqM7vJzM5KOpgZOEjSZknfDIcMf83Mdk86qBk6XdIlSQfRCncvS/o/ku5RcAL4MXe/KtmoWvI7Sa8zs33MbDdJJ0qal3BM3dYv6d6q+/cpBx3/sEzAQknXS9rP3R8IH3pQ0n4JhTUTtcekfSSNVZ1Ey+J+i2vXM72/otpHSTcp+/urWtw+ymV7knU17WGWZLkvntl+a476eJk+ltT4a0k/TTqIFCrSMScvv+mnk6f/t/V8ICw99Q3LcEnCWjn8/bWTiD5VLvdluzT4nUhtW25BycL1kh5WMNL7j4r/Tbd9O8LHH1Pwmz1pzZxHSOs2VEQdC7P2vWr2HEhat6Na9bntVG0HibI2MbOTJT3s7jclHUsbvNbdX6VgmOP7zez1SQfUotmSXiXpy+6+UNJTyvDwfQtqAL9Z0veSjqUVYSfwVAWN/FxJu5vZXyUbVfPc/VYFw8mvkvQzSeslTSYaFGbMzJ4v6fuSznb3x6sfc3dX0MHKjJwdk6pN265ndH/t1D4quuxOLmRxHxVJvfYwzXLQ7mW235qXPl61LLdTZvZxBWWsLk46FiQqL7/pG5bl/7fT+LKklyoo5faApE8nG0575O33V5SIbczlvmyXPHwn3H0yLC23v4JRzIckHFJTctCfrlX3WJiR71WuzoHUO7edhu0gUdY+iyW92czuUlDC4Vgz+06yIbUmvCpU7v6wgnqhr042opbdJ+k+d69cuXOFgsYlq06Q9Ft3fyjpQFr0Rkl3uvtmd5+QtEbSnyccU0vc/evufoS7v15Bfeb/SDqmLitr6ii6/cNlmWRmvQo65Be7+5pw8UOVYd3hvw8nFV+LdjomKahr3ReWxZKyud/i2vWs76+o9nGxsr+/qsXto1y1J1kX0x5mRdb74lnut+alj5f1Y4nM7N2STpZ0RniyAVMV5piTo9/008n8/9vpuPtD4cn3bZK+qhzsy5z+/poiahvzuC/bpcnvROrb8rA03jWSXqP433TbtyN8fE9Jj3Q51FrNnkdI4zZsF3MszNr3qtlzIGndjorac9up2g4SZW3i7ivcfX93n69gCOE6d8/clZRmtruZ7VG5LelNCkrNZY67PyjpXjMbCBe9QdLvEwxpppYpo2UXQ/dIOsrMdgtrFr9BGZmkvpaZvTD89wAF85N9N9mIuu4GSQeb2UHh1SCnS1qbcEwtCb+LX5d0q7t/puqhtZLODG+fKemH3Y5tJmKOSWco6Ky/LVwti9sV165nen8pun38vTK+v2rE7aO1kt5lgaMUlGx7IOoF0Fl12sNMyHpfPOP91rz08TJ9LDGz4xWUSnqzu29NOp6Uyk0ftp48/aZvQKb/3zaiZk6Wtyjj+zKvv7+qxW1j3vZlu7TwnUjl7wczm2NmfeHtkqTjFPSH4n7TVW/f2xT0XRO9yKWF8wip24aKOsfCTH2vWjgHksrtqFJ7bjtV22Ep+f7mipkdLenv3f3kpGNplpm9REGWXQqGd37X3T+ZYEgzYmaHK5iAchdJd0h6j7tvSTaq5oWN+j2SXuLujyUdT6vM7HxJpykoBzMq6b+4+zPJRtU8M/uVgrrLE5L+zt1/nnBIXWdmJyqoXd0j6RtZbSfM7LWSfiVpg3bU4P6Ygprol0s6QNLdkt7u7pmcWLv6mBS28ZdK2lvB/8G/ytr/wah2XcGFP5neX1Hto4Ia3JnbX2Z2iaSjJe0r6SFJ50oaVsQ+Cn8Yf1FBqcmtCo7TNyYRd9HFtYfu/pPkompNVvviWe63Zq2P10w7lVSM9cTEv0LS87TjSu7r3P19iQSYYnnpw9aTt9/0FVn/f9uImG08WkGpPpd0l6T/lrKTnk0pyO+vuG1cphzty3Zp9juR1t8PZvYKSd9ScHyZJelyd/+HuN/gZrarpG8rmJPtUUmnu/sdyUS/s0bOI6R5G+KOhWa2jzL0vZKaOweS8u3Y6dx22vYHiTIAAAAAAAAAAAAUEqUXAQAAAAAAAAAAUEgkygAAAAAAAAAAAFBIJMoAAAAAAAAAAABQSCTKAAAAAAAAAAAAUEgkygAAAAAAAAAAAFBIJMpQGGY2aWbrzex3ZvYjM+sLl883MzezC6rW3dfMJszsi8lFDADZYGaDYTt6SNWyg83sx2b2RzO7ycyuMbPXh4+928w2h21y5e/Q5LYAALKhqj+70cxuNrMPm9ms8LGjzezH4e39wjb4ZjP7vZn9JNnIASDd4s4XVD1+tpk9bWZ7Vi072sweM7NRM9tkZv9qZid3P3oASD8z26fq9/+DZlauur9LzHmFRWG/d5fw/kvN7A4ze0FyW4K8IlGGIhl398Pd/eWSHpX0/qrH7pR0UtX9v5S0sZvBAUCGLZP06/Bfmdmukq6UdKG7v9Tdj5D0QUkvqXrOZWGbXPn7fdejBoDsqfRnD5N0nKQTJJ0bsd4/SLra3V/p7odKWt7NIAEgg+qdL5CCfu4NkpbWLP+Vuy909wFJfyvpi2b2hs6HCwDZ4u6PVH7/S/qKpM9WnQ94VjXnFcLn3Cjpl5L+Plz0JUkfd/fHuxw+CoBEGYrqN5L6q+5vlXSrmS0K758m6fKuRwUAGWNmz5f0WknvlXR6uPgMSb9x97WV9dz9d+5+UfcjBIB8cveHJZ0l6QNmZjUPv1jSfVXr3tLN2AAg46acLzCzl0p6vqRPqOoEbi13X6/gQoUPdDpAAMiTmPMKFR+T9F/N7COSZrv7Jd2OD8VAogyFY2Y9kt4gaW3NQ5dKOt3M5kmalHR/t2MDgAw6VdLP3P0/JD1iZkdIOkzSb6d53mk1pRdLHY8UAHLG3e+Q1CPphTUPfUnS18Oytx83s7ndjw4AsifmfMHpCs4X/ErSgJntV+clfivpkDqPAwB2FnVeQZLk7mOSVklaqZ1H+wJtQ6IMRVIys/WSHpS0n6Srax7/mYISNqdLuqzLsQFAVi1TcOJA4b87XWVrZj8I53tYU7W4tvTieDeCBYAicPcRBeVuv6rghO2omc1JNioASLV65wuWSbrU3bdJ+r6CqRri1I7wBQBMb7rzCidIekgSc5ujY0iUoUjGwzq4ByrovE65CiGsh3uTpA9LuqL74QFAtpjZ3pKOlfQ1M7tL0pCktyuY4/FVlfXc/S2S3i1p7+5HCQD5ZWYvUVAJ4eHax9z9UXf/rru/U8G8Oq/vdnwAkCGR5wvMbIGkgyVdHfZ3T1ed8ouSFkq6tbOhAkB+xJ1XqJQWN7OTJe0paYmk1Wa2W1KxIt9IlKFw3H2rgkl2P2xms2se/rSkj7r7o92PDAAy522Svu3uB7r7fHefJ+lOSbdLWmxmb65al84sALRROELsK5K+6O5e89ixlZMIZraHpJdKuqf7UQJAtkScL1gm6bywrzvf3edKmmtmB9Y+18xeIel/KCh/CwBoTNx5hdeFUzR8RtL73X2DpB9K+niCsSLHapMEQCG4+6iZ3aKg0/urquUbFYyEAABMb5mkT9Us+76CK21PlvQZM/ucghIJT0i6oGq908zstVX3/8bd/62TwQJADlRKg/VKek7StxWcPKh1hKQvmtlzCi6O/Jq739C9MAEgu2rOF5wu6cSaVX4QLr9ewYncUQUXhT0s6W/d/efdjBcAMi7uvMIyScdL+oG7/z5cfp6km83sInf/Q/dCRBFYzcWHAAAAAAAAAAAAQCFQehEAAAAAAAAAAACFRKIMAAAAAAAAAAAAhUSiDAAAAAAAAAAAAIVEogwAAAAAAAAAAACFRKIMAAAAAAAAAAAAhUSiDAAAAAAAAAAAAIVEogwAAAAAAAAAAACFRKIMAAAAAAAAAAAAhUSiDAAAAAAAAAAAAIVEogwAAAAAAAAAAACFRKIMAAAAAAAAAAAAhUSiDAAAAAAAAAAAAIVEogwAAAAAAAAAAACFRKIMAAAAAAAAAAAAhUSiDAAAAAAAAAAAAIVEogwAAAAAAAAAAACFRKIMAAAAAAAAAAAAhUSiDAAAAAAAAAAAAIVEogxIkJm9zsw2JR0HAKQBbSIApJeZnWFmVyUdBwAAAAC0G4kyNMXM7jKzcTN70sweMrOLzOz5ZrYxXPakmU2a2dNV9z9mZu8Olz9pZo+b2c1mdnLE6z8/XOenNcufrPrbVhXDk+GP9vPM7DtV65uZDZnZH8J17zGzlWb2vA5/PrXbuT5qOyvc/VfuPtDJmABA2qn93mJmV5rZvA6/J20igMwJ28s3xjz2MTO7M2zX7jOzy8LldfvCVc8/2szczD5atex1Ves+FT5e3fc9oEPbeZ6ZTYTvMWZm/2Zmr4lb390vdvc3dSIWAAAAAEgSiTK04hR3f76kV0laJOkT7n6Yuz8/XP4rSR+o3Hf3/xU+7zfh432S/q+kS82sr+a13yrpGUnHmdmLKgurXuv5ku6pxBD+XRwR4xcknSXpXZL2kHSCpDdIurxNn0E91dv5dUmXm9letSuZ2ewuxAIA1Srt94slPSTpn7rwnrSJAHLBzM6U9E5JbwzbtUWSfi5JDfaFJelMSY8q6KMqfO6vqp57WLi4r+r593Rwsy4L33eOpF9LWmNmVrsSbTQAAACAPCNRhpa5e1nSTyW9vMnnbZP0bUm7Szq45uEzJX1F0i2S/qqVuMzsYEl/I+kMd/+Nuz/n7hsVJOGON7NjI55zmpndWLPsHDNbG94+0cx+b2ZPmFnZzP5+ujjC7fyGpJKkl4ZXEN9nZh81swclfbOyrOo955nZGjPbbGaPmNkXqx77azO7NRwJMmJmB4bLzcw+a2YPhyM2NphZU/sEQLG4+9OSrpB0aNTjtIkAEOk/Sxpx9z9Kkrs/6O4XNvpkM9td0tskvV/SwWa2qJUgwnbzipplnzezL4S3321md4Rt9J1mdsZ0r+nuE5K+JelFkvYJX+PasD19RNJ54bJfV73nYWZ2tZk9akGliY+Fy2eZ2XIz+2PYdl9uZnuHj+1qZt8Jl4+Z2Q1mtl8rnwMAAAAAtAuJMrTMgpJdJ0oabfJ5PZLeI2lC0t1Vyw+UdLSki8O/d0U9vwFvkHSfu/979UJ3v1fSdZKOi3jOjyQNhEm2indI+m54++uS/pu776EgMbhuuiDCK2//i6QnJf0hXPwiSXtLOlDBiLfq9Xsk/VjBZzJfUr+kS8PHTpX0MUlLFVzx+ytJl4RPfZOk10v6M0l7Snq7pEemiw9AcZnZbpJOU9AmRqFNBICdXSfpXRaU914UtlPNWKqgDfyepBEFF4i14lJJJ5rZHtL29vLtkr4bJuO+IOmEsI3+c0nrp3tBC8qTv1vSve7+p3DxkZLukLSfpE/WrL+HpH+R9DNJcyW9TOHoOkkflDQo6S/Cx7ZI+lL42JkK2uZ5kvaR9D5J401tPQAAAAC0GYkytGLYzMYUlGf5paT/Nc36FUeFz3ta0v+R9Ffu/nDV4++UdIu7/17BCYDDzGxhC/HtK+mBmMceCB+fwt23SvqhpGXS9lFph0haG64yIelQM3uBu29x99/Wef/Kdj4Yvt5b3P2x8LFtks5192fcvfakwKsVnEwYcven3P1pd69ctfs+SSvd/VZ3f07BZ354mFycUFBe8hBJFq4Tt/0Aiq3Sfj+m4KKB1VEr0SYCwM7c/TsKkkBLFPSBH7aqucYacKaCUoeTCi48ON3MeluI425Jv5X0lnDRsZK2unvl4odtkl5uZiV3fyCsrBDn7WEbfa+kI6peU5Lud/d/Cqsz1LbRJ0t60N0/HbbPT7j79eFj75P0cXe/z92fkXSepLeFF0xMKEiQvczdJ939Jnd/vNnPAAAAAADaiUQZWjHo7n3ufqC7/03ED+c417l7n6S9FJxsfV3N4+9SMJKsUtbxl2rtSts/KZh/J8qLw8ejfFfhSWEFIyeGw5PFUlC28URJd5vZL63OROcKt9Pd93X3o9z9X6oe2xyWPIsyT9Ld4UnfWgdK+nxYomZMwdwWJqnf3ddJ+qKCK3UfNrMLzewFdeIDUFyDYTu8q6QPSPqlVc0HWYM2EQBquPvF7v5GBfMuvk/SP5rZkumeF1ZiOEZhX1fBxQi7SjqpxVBq2+jvhvE9pWDE8PskPWBmV5rZIXVe5/KwjX6hux/r7jdVPXZvnefNk/THmMcOlPSDqjb6VkmTCkamfVvBaLpLzex+M/vfrSQLAQAAAKCdSJSh69z9SUn/XdI7KyPGzOzPFcxXtsLMHgznqzlS0jus+cnD10maZ2avrl4YnqA4SjvKwtS6WtIcMztcwYmHSokxufsN7n6qpBdKGpZ0eZMxbX+pOo/dK+mAmO29V0GZs76qv5K7/1sY3xfc/QgF8w39maShFuMDUADhVfxrFJy4fG3MarSJABDD3Sfc/XsK5tVtZB7Edyr47fWjsJ97h4JEWavlF78n6Wgz21/BKLDqNnrE3Y9TcIHYbZK+2uJ7TNdGv6TOYyfUtNG7uns5/NzOd/dDFZSFPFmtl1sHAAAAgLYgUYZEuPujkr4m6X+Gi85UcFL2UEmHh38vl1SSdEKTr/0fkr4i6WIzO8rMeszsMEnfl/QvNaMZqp83oeCkw2oFc+ZcLUlmtouZnWFme4brPK6gpE27/buC0pCrzGz3cLLzxeFjX1GQRDwsjGlPM/vL8PZ/NrMjw6txn1JQ2rIT8QHICQucqmCE761R69AmAii43rDdqfzNNrN3m9lJZraHmc0ysxMkHSbp+uleTEFf93zt6OcernB0rpnt02xw7r5Z0i8kfVPSne5+qySZ2X5mdmo4V9kzCuZE60Qb+GNJLzazs83seeFncmT42FckfTIshyszmxMec2Rmx5jZgnBetccVlGKkjQYAAACQKBJlSNLnFJwceIWCCcj/yd0frPq7U0F5llautP2AgkTcdxScIPiZgpMJb53med+V9EZJ36sp9/VOSXeZ2eMKStmc0UJMdYXzVZyiYDL0eyTdp6B0jtz9B5I+paBMzeOSfqcdCcQXKLhSeIukuyU9oph5hwAU3o/M7EkFJyc/KenMaeauoU0EUFQ/kTRe9XeegrbzYwrapDFJ/1vSf6+aPzGSmR2loBzhl2r6umsl3a4dJRSbVWmjv1u1bJakv5N0v4KytH+hoJJDW7n7EwrmujxFwRyUf1BQWlKSPq+gzPpVZvaEpOsUVIqQpBdJukLBZ3mrglLr3253fAAAAADQDHOvV1EDAAAAAAAAAAAAyCdGlAEAAAAAAAAAAKCQSJQBAAAAAIDUMLNvmNnDZva7mMfNzL5gZreb2S1m9qpuxwgAWUdbCwA7kCgDAAAAAABpcpGk4+s8foKkg8O/syR9uQsxAUDeXCTaWgCQRKIMAAAAAACkiLv/q6RH66xyqqR/9sB1kvrM7MXdiQ4A8oG2FgB2mJ10AO2w7777+vz585MOA0BB3XTTTX9y9zlJx9FptLUAkkI7CwCdl7G2tl/SvVX37wuXPVC7opmdpWAkhHbfffcjDjnkkK4ECAC1MtbOSrS1ADJmJu1sLhJl8+fP14033ph0GAAKyszuTjqGbqCtBZAU2lkA6Ly8trXufqGkCyVp0aJFTjsLICl5bWcl2loA6TCTdpbSiwAAAAAAIEvKkuZV3d8/XAYAaB/aWgCFQaIMAAAAAABkyVpJ77LAUZIec/edSoEBAGaEthZAYeSi9CIAAAAAAMgHM7tE0tGS9jWz+ySdK6lXktz9K5J+IulESbdL2irpPclECgDZRVsLADuQKAMAAAAAAKnh7sumedwlvb9L4QBALtHWAsAOlF4EAAAAAAAAAABAIZEoAwAAAAAAAAAAQCGRKAMAAAAAAAAAAEAhkSgDAAAAAAAAAABAIZEoAwAAAAAAAAAAQCHNTvLNzewuSU9ImpT0nLsvMrO9JV0mab6kuyS93d23JBUjAGQdbS0AdBbtLAAAAAAA2ZVooix0jLv/qer+ckk/d/dVZrY8vP/RJAL7xPAGXXL9vZp0V4+Zlh05TxcMLmjqNYZHy1o9skn3j41rbl9JQ0sGNLiwvy3xTffaR37yaj30xLPb7++3xy66/uPHteW986aZ/dTJfZo1fMcyJbVtLYDuaPb4VVm/PDauHjNNumuv3Xr15NMTmtgWrDPLpNe8ZG/d9cj4lPVMkse87l679ercUw7L47Gzq+3s8GhZ563dqLHxCUk7f67Do2V9bM0t2lrZWRGq+7dRr3fSK16sa27b3HKfZyb9q2MOmTOj9wYAAAAAoFFpSJTVOlXS0eHtb0n6hRI4efuJ4Q36znX3bL8/6b79fqPJsuHRslas2aDxiUlJUnlsXCvWbJCkGf/Qn+61axMYkvTQE8/qyE9eTSKjRjP7qZP7NGv4jmVeKtpaAN3R7PGrdv1JD9JeW7ZOTFlvm0vX/vHR7fcr68UlySqvMXTFzbHvnSMda2eHR8sa+t7Nmti245Ou/lwl6e8uX69t9XaEdvRv79z8pP79zi07vV51X7jZPs9M+1czeW8AAAAAAJqR9BxlLukqM7vJzM4Kl+3n7g+Etx+UtF8SgV1y/b1NLY+yemTT9h/8FeMTk1o9smlGsTXy2rUJjIq45UXWzH7q5D7NGr5jmZLathZAdzR7/Ipav50mJj1vx86utrOrRzZNSWpVVD7X1SObpk2SVbv2j49Gvl6tZvo8M+1fzeS9AQAAAABoRtIjyl7r7mUze6Gkq83stuoH3d3NLPJXe3gS4ixJOuCAA9oeWOWK6EaXR7l/bLyp5c3o5GsXTTOfJZ87Miq1bS2A7mj2+NWN41rOjp1dbWfrfXad/lwbff129K9aXQ8AAAAAgGYkOqLM3cvhvw9L+oGkV0t6yMxeLEnhvw/HPPdCd1/k7ovmzJnT9th6zJpaHmVuX6mp5c3o5GsXTTOfJZ87sijNbS2A7mj2+NWN41qejp3dbmfrfXZz+0od/Wwbfe129K9aXQ8AAAAAgGYkligzs93NbI/KbUlvkvQ7SWslnRmudqakHyYR37Ij5zW1PMrQkgGVenumLCv19mhoycCMYmvktffbY5fI58UtL7Jm9lMn92nW8B3LhrS3tQC6o9njV9T67dTbY7k5dibRzg4tGVDvrJ0v3qp8rkNLBhTxcKzFL9078vVqNdPnmWn/aibvDQAAAABAM5IsvbifpB9YMEJrtqTvuvvPzOwGSZeb2Xsl3S3p7UkEQvWPaQAAIABJREFUd8HgAknBnGST7uox07Ij521f3ojKZOOrRzbp/rFxze0raWjJQFsmIZ/uta//+HE68pNXT5kvar89dtH1Hz9uxu+dN83sp07u06zhO5YZqW5rAXRHs8ev6vXLY+PqMdOku/barVdPPj2hiW3BerNMes1L9tZdj4xPWc8UTNoVZa/denXuKYfl6djZ9Xa28tmdt3ajxsYnJEV/rh9bc4u2VnZWhOr+7fBoeafXO+kVL9Y1t22e8p2RpMWr1rW1zxS17jGHzNnpvXP0nQEAAAAApIh5E3NupdWiRYv8xhtvbPvrDo+WSYgAmJaZ3eTui5KOo9M61dYCyI9O9Z1oZ9NheLSsFWs2aHxicvuyUm+PVi5dQB8ZyIEitLVpb2cB5FsR2lmJthZAcmbSziY5oizVak8ElMfGtWLNBkniRAAAAEAN+k7Z0WpCc/XIpilJMkkan5jU6pFN7GMAAAAAQGYlNkdZ2tU7EZAVw6NlLV61Tgctv1KLV63T8Gg56ZAAAEBOxfWdPnz5zfRFUqSS0CyPjcsVJDTPuWy9PjG8Ydrn3j823tRyAAAAAACygERZjKyfCIg6CbJizQZOUAEAgI6I6yNNutMXSZGohKZLuvi6e6bdN3P7Sk0tBwAAAAAgC0iUxcj6iYA8jIjrJkbfAQDQnNpjZ99uvdM+h75I8uISmi5Nu2+Glgyo1NszZVmpt0dDSwbaFR4AAAAAAF1HoixG1k8EZH1EXDcx+g4AgOZEHTuffPo59fbYtM+lL5Ksehd9TbdvBhf2a+XSBervK8kk9feVtHLpAuYnAwAAAABk2uykA0iryg/+ViY6T4O5fSWVI052ZGVEXDcxMT0AAM2JOnZObHP1lXq1+/Nm6/6xcc0y06T7Ts+lL5KsoSUDOuey9dp5zzS2bwYX9tM/AgAAAADkComyOrJ8ImBoyYBWrNkw5SRWlkbEdROj7wAAaE7cMfKx8QmtP/dNknaMOqMvki6DC/t1492P6uLr7pmSLGPfAAAAAACKitKLOUVpnMZlfT46AAC6rZFjJ32R9LpgcIE+e9rh7BsAAAAAAMSIslzL8oi4bmL0HQAAzWn02ElfJL3YNwAAAAAABEiUofCyPh8dAADdxrETAAAAAADkBYkyQFxVDQBAszh2ZtvwaJlEJwAAAAAAIlEGAAAAFMrwaHlK6czy2LhWrNkgSSTLAAAAAACFMyvpAAAAAAB0z+qRTVPml5Ok8YlJrR7ZlFBEAAAAAAAkhxFlgCg/BABAMzhuZtv9Y+NNLQcAAAAAIM9IlKHwKD8EAEDjOG5mR1xCc25fSeWIpNjcvlICUQIAAAAAkCxKL6LwKD8EAEDjOG5mQyWhWR4bl2tHQnN4tKyhJQMq9fZMWb/U26OhJQPJBAsAAAAAQIJIlKHwKD8EAEDjOG5mQ72E5uDCfq1cukD9fSWZpP6+klYuXcCIQAAAAABAIVF6sYCYV2Qqyg8BANA4jpvZMF1Cc3Bhf6H7fwAAAAAAVDCirGDqleEpKsoPAQDQuGMOmdPUciQjLnE5t6+k4dGyFq9ap4OWX6nFq9YVuh8IAAAAAACJsoJhXpGdUX4IAIDGXXPb5qaWIxlxFwIdc8gcLpoCAAAAAKAKpRcLhnlFolF+CACAxtCXyIZKv6a23PZ0c5cBAAAAAFA0JMoKhnlFAADATEzXl2Au1PSIuhDonMvWR65bHhvX8GiZfQUAAAAAKBxKLxYM84oAAICZqDe3J3Ohpl+9i6PYVwAAAACAIiJRVjDMKwIAAGai3tyezIWaflGJzgr2FQAAAACgiCi9WDDMKwIAAGYqbm5P+hnpV9lvZ8eUYGRfAQAAAACKhkRZwTBHWTTmUwEAYGaGR8uaZaZJ950eK3o/I0lxfZzVI5voEwIAAAAAIEovFk69eUWKivlUAACYmcqxNCpJVvR+RpLq9XHoEwIAAAAAECBRVjD15hUpKuZTAQBgZqKOpZLUY1b4fkaS4vo4Z1+2XqtHNumtR/TTJwQAAAAAFB6lFwsobl6RomI+FQAAZibumLnNnT5Hgur1Zcpj4/r+TWWSYwAAAACAwmNEGQovbi4O5ugAAKAxHEvTac9Sb93HGUEPAAAAAACJMnTY8GhZi1et00HLr9TiVetSOe8Xc3QAADAzUcdSk3TMIXOSCQiSJLPp12EEPQAAAACg6Ci9iI6pTCBfmRujMoG8pFSV+KnEsnpkk+4fG9fcvpKGlgykKkYAANJscGG/brz7UV183T3ycJlL+v5NZS06cG+OqQkZ2zox7TqdGvU3PFqmbwUAAAAAyAQSZeiYuAnkV49sSt2JknbM28YJIQBAkV1z2+btSbKK8YlJnf+jjRwfEzK3r6RynRFjvbOsIyPos3KxFAAAAAAAEqUX0UFxpXzyWOKnckKoPDYu144TQmksNQkAQCfEHd+3bJ3g+JiQqJKYUzRQmrEV9S6WAgAAAAAgbUiU1ZGF+bXSLK6UT6dK/CSJE0IAgKJr9PjO8bF7Bhf2a+XSBeqP2TcTk96RfVGki6UAAAAAANlHoiwGI4RmLuoq5lJvT0dK/CSNE0IAgKKbdvRSFY6P6dGJfVGki6UAAAAAANlHoiwGI4RmrvoqZpPU31fSyqULcjk3BSeEAABFVznu95V6p12X42N3VF/4FacT+6JIF0sBAAAAALJvdtIBpFXcCYV6Jxqws8GF/blMjNUaWjIwZdJ6iRNCAIBieua5bXUf5/jYPVEXflXr1L6o9P1Wj2zS/WPjmttX0tCSgUL0CQEAAAAA2UOiLEaPmSbdI5cDtZI+ITQ8WuZkFAAgcdMlZqSpI/Q5VrVXbX+g3gVe/R3uLxTlYikAAAAAQPaRKIsRlSSrtxxI6oRQpaxS5cRkZT69SkwAAHRLo/Ndcaxqv6j+gEmK6rn295V07fJjuxofAAAAAABpxRxlMfpj5muIWw4khfn0AABp0cx8Vxyr2iuqP+CSamshUPoSAAAAAICpSJTFyMMk5MOjZS1etU4HLb9Si1et0/BoOemQ0AFxV+83elU/AADtEtd/isOxqn3iPktXcKGXhf+uXLogdhQffUcAaWJmx5vZJjO73cyWRzx+gJldY2ajZnaLmZ2YRJwAkFW0swCwA6UXYyQ959RMUY6vOOLmIGnmqn4AANohqv90zCFzdPF190SWAORY1T5x/YFGyyzSdwSQJmbWI+lLko6TdJ+kG8xsrbv/vmq1T0i63N2/bGaHSvqJpPldDxYAMoh2FgCmIlFWR5YnIa9Xji+r24RoQ0sGppzYkrI3+hEAkB+1/afFq9ZFJslM4ljVRjPtD9B3BJAyr5Z0u7vfIUlmdqmkUyVVn8B1SS8Ib+8p6f6uRggA2UY7CwBVSJTlFOX4iiProx8BAPlWryQgx6r2mWl/gL4jgJTpl3Rv1f37JB1Zs855kq4ysw9K2l3SG6NeyMzOknSWJB1wwAFtDxQAMqpt7axEWwsg+0iU5RTl+JozPFrOdKIpy6MfAQD5EXU8rVcSEO01k/4AfUcAGbRM0kXu/mkze42kb5vZy919W/VK7n6hpAsladGiRVGDnAEA0RpqZyXaWgDZNyvpANAZQ0sGVOrtmbKMcnzRKnNylMfG5doxJwcT2AMA0Li44+kxh8yhT5IB9B0BpExZ0ryq+/uHy6q9V9LlkuTuv5G0q6R9uxIdAGQf7SwAVCFRllODC/u1cukC9feVZAqu2l65dAGjjiLUm5MDAAA0Ju54es1tm+mTZAB9RwApc4Okg83sIDPbRdLpktbWrHOPpDdIkpn9JwUncDd3NUoAyC7aWQCoQulFFB5zcgAAsEOr5YjrHU+LUCLYzHok3Sip7O4nm9lBki6VtI+kmyS9092fTTLG6RRhPwHIBnd/zsw+IGlEUo+kb7j7RjP7B0k3uvtaSR+W9FUzO0fB1JfvdnfKfQFAA2hnAWAqEmU5VSl/VLmyu1L+SBInQGowJwcAAIGZ9B84nupDkm6V9ILw/qckfdbdLzWzrygoXfPlpIJLStbngQWQHHf/iaSf1Cz7n1W3fy9pcbfjAoC8oJ0FgB0ovZhTlBNsHHNyAAAQmEn/ocjHUzPbX9JJkr4W3jdJx0q6IlzlW5IGk4kuOcwDCwAAAADIAhJlOUU5wcYxJwcAAIGZ9B8Kfjz9nKSPSNoW3t9H0pi7Pxfev09S5AdhZmeZ2Y1mduPmzfma8oELtwAAAAAAWUDpxZyi/FFzmJMDAICZ9x+KeDw1s5MlPezuN5nZ0c0+390vlHShJC1atChXcz5w4RYAAAAAIAsYUZZTRS5/BAAAWkP/oSWLJb3ZzO6SdKmCkoufl9RnZpWL0vaXVLh6g3EJVi7cAgAAAACkCYmynCp4+SMAANAC+g/Nc/cV7r6/u8+XdLqkde5+hqRrJL0tXO1MST9MKMTEkHgFAAAAAGQBpRdzrIjljwAAwMzQf2ibj0q61MwukDQq6esJxxNpeLSs1SObdP/YuOb2lTS0ZKBt+7/yOp16fQAAAAAA2iHxRJmZ9Ui6UVLZ3U82s4MUlK3ZR9JNkt7p7s8mGSMAZBntLAB0h7v/QtIvwtt3SHp1kvFMZ3i0rBVrNmh8YlKSVB4b14o1GySprckyEmMAAAAAgDRLQ+nFD0m6ter+pyR91t1fJmmLpPcmEhUQY3i0rMWr1umg5Vdq8ap1Gh4t3JQjyB7aWQCJ4tiZTqtHNm1PklWMT0xq9cimhCICAAAAAKD7Ek2Umdn+kk6S9LXwvimYAP2KcJVvSRpMJjpgZ5Urr8tj43LtuPKaE35IK9pZAEnj2Jle94+NN7UcAAAAAIA8SnpE2eckfUTStvD+PpLG3P258P59kiJrtZjZWWZ2o5nduHnz5s5HCogrr5FJLbezEm0tgJnj2Jlec/tKTS0HAAAAACCPEkuUmdnJkh5295taeb67X+jui9x90Zw5c9ocHRCNK6+RJTNtZyXaWgAzx7EzvYaWDKjU2zNlWe8s09Znn6NMJgAAAACgMGYn+N6LJb3ZzE6UtKukF0j6vKQ+M5sdjnbYXxK/zpEac/tKKkec2OPKa6QU7SyAxHHsTK/BhcGA4tUjm3T/2Lj2LPXqqWef05atE5J2lMmsXhcAAAAAgLxJbESZu69w9/3dfb6k0yWtc/czJF0j6W3hamdK+mFCIQI7ibryutTbo6ElAwlFBMSjnQWQBhw7kzU8WtbiVetiR4gNLuzXtcuP1Z2rTtLuz5utiUmf8jhlMgEAAAAAeZf0HGVRPirp78zsdgVz6Xw94XiA7QYX9mvl0gXq7yvJJPX3lbRy6QKuskbW0M4C6BqOnckZHi1rxZoNKo+NyxWMEDvnsvWaH5M0o0wmAAAAAKCIkiy9uJ27/0LSL8Lbd0h6dZLxAPUMLuzn5B4yh3YWQJI4diZj9cgmjU9MTllWGS8WVVYxrkzmLDMNj5bZhwAAAACAXErjiDIgk6YrbQQAQJFxnOy+6UaC1ZZVjCqTKUmT7hr63s3sMwAAAABALpEoA9ogqrTRijUbOKEEAIA4TiZlbl9p2nWqk2mVMpkWsd7ENtd5aze2MToAAAAAANKBRBnQBlGljWqv0gYAoKg4TiYjboRYtdpk2uDC/u3lGWuNjU+0KTIAAAAAANIjFXOUAVkXV9poupJHAAAUAcfJ7hseLW9PUPaYadJdJk1JgpV6ezS0ZCCRuO4fG9fcvpKGlgww9xkAAAAAIFGMKAPaIK60USMljwAAyDuOk91VXepSCuYYK/X26IyjDlB/X0kmqb+vpJVLF0QmqfbarTfydc00o3KZzZTgZE47AAAAAEC3MKIMaFLUldBDSwa0Ys2GKWWlkrhKGwCAtBkeLWvrs8/ttJzjZOfElbq85rbNunb5sdM+/9xTDtPQFTdrYnJqEUZ3acWaDZIUOwqs3oixeiU4q1+vklCrrFtJqNV7XwAAAAAAWsWIMqAJcVdCS9LKpQsaukobAICiqBw3t2ydOrdVX6mX42QHzbTU5eDCfq1+2yvVY7bTY/Xmlqs3Ymx4tLx9hNt0cTGnHQAAAACgmxhRBqjx+TLqnbi5dvmxnPADABRe9TF1Vjg3Vq3dnzebY2YHze0rRSalmil1ObiwX+dctj7ysbiEW1w/6fwfbdTTE9vqxtvI6zOnHQAAAACgExhRhsJrZr4MTtwAABCv9pgalSSTOG522tCSAZV6e6Ysa6XUZbNzy8Xt1y1bJ3ZKoNWLizntAAAAAADdRKIMhddMeZ8snLgZHi1r8ap1Omj5lVq8al1kwg8AgE6IOqZGcUmfGN7Q+YAKanBhf0sloYdHy1r4D1dp/vIrNX/5ldry1DPqnTW1/GK9hFsr/aGouNqV6AMAAAAAoBGUXkThNTNK7JhD5ug7190TuTwNKlfyV05SVs+hRokrAECnNTNSrHI8vWBwQafCKbTBhf1NHfuHR8sauuJmTUzuGAW4dWKbZlkwp9xj4xOx5akr5TbLY+MyBYnQilJvj543e5bGxqfOUycFCbyoGCvLGimLDQAAAADATJEow04ana8rL5qZx+Oa2zZHvkbc8m6rNzouz/sQANBdcX2FuGNqnEuuv5dEWUqsHtk0JUlWsS1cdOeqkyKfV3uRjkvbk2X94XdD0pR1pOlHiDWb6AMAAAAAoFUkyjBFEUckDS0ZaPjkTdrnKEt7fACA7KvXV4g7psaVY4ybwwyNa9cFTvUSnGPjEzr8/KsiR5VFXaRTSZJdu/zYKcuLdCEWAAAAACA7SJRhiiKOSGqmvE8zo8+SkPb4AADZV6+vUEmM1B5TP3z5zZFJsR6znZahcTO9wKm6ZOJ0KqUTa9+j0Yt0GCEGAAAAAEgrEmV1FK0EoVTcEUmNnrxpZvRZEtIeHwAg+xrtK7ikBx97Wmdftl679c7S1omdE2XLjpzXiRALYyYXONUm2ZpR/R59u/Vqy9ad5x/r26236dcFAAAAACAJJMpiFLEEoSTtWeqNnGx9zxInO6T0Ty6f9vgAANlXb/Rybf+pMops68Q2zbIgeeYejCRbduQ85ieboZlc4BSVZGvlveOqZ1JVEwAAAACQFSTKYhSxBKEkxVVAojJSezUyWrHVEY2UNgIAdFK90cv1ki/bSJy03UxKLs+0WkDlPR6LuMCq3nIAAAAAANJmVtIBpFVRSxCORZTOqbe8aCpXypfHxuXaMdJweLTc1tdox/sAANAJgwv7tXLpAvX3lWSS+vtKeusR/Q3PdSUFI82+c909+sTwhs4Gm3NDSwZU6u2ZsqzRksvTJdMq10jttVuvemdNvWKq+j3iXof5UQEAAAAAWUGiLEbcvAp5n2+Bkx311Rtp2M7XaMf7AADQKYML+3Xt8mN156qTNLRkQN+/qdxwkqzaJdff24HoiiMqably6YKG512tTbJV0mH9fSV99rTD/z97dx4fVXX+cfxzMgwwASWo1Eoqghu4oOCKpbWFqmhxSXFBxLWurb8qVCNxqaJFiVIVrVrr1tpKFRSNCCq1gtVioYIBESt1QzC2lmriAhGG5Pz+mEyYTO6duXf2TL7v14uX5ubOnTMzN/eeOc85z8Oa6tHUXnsU007e3/U50gnWJVNTW8fw6gUMqJrH8OoFmjAkIiIiIiIiWaHUiy46a72FROmUJDMrDb0co7OuaBQRkY4nnVpXTcXescqBVFMu+6lrmug5slUftbPWCxYREREREZHcU6DMRWett5CtwY5ikU4tED/HyMTziIiI5EI6kzgCKoKaVcnqnWairmmqNVWT6az1gkVERERERCT3FChzUcyBilwMmhQrpxV3hsgs5+HVCzwNDnlZtaeVfSIi0lG49ZnKy0KMGNSHGYvX4rZubNyhO2e3cZ2YlxVZqQa5amrruP6ZVdTH1bDN5Kovra4XERERERGRXFGgzEWxBiqUxiY9sSvu6hoaMdA6+Of1vUy0ai92wKqsNEi3LiV83hjWyj4RESlYbn2m/tuHEgbJhu+2HVMqBuemkZ1QshVZTn3CiTOXs/TDzzhol+1cA2g1tXVUPrGCcJPzJ5ts1ZfX4FwxT1oTERERERGRwqJAmYtiTUGoNDbpi664G169oN0Ajtf30mnVXvyAVf3GMKFggNvHDtFnIyIiBcupz5RsJRnAqo+/zE0DO6lkK7Kc+oQWeGTxWh5ZvLZ1W/xEoGnzV7sGyZI9t58JW8U6aU1EREREREQKT+cMlDU2wl/+AkcfDcGg627FmILQaWZu/PZs1ZrItWy/Dr8pgZK1R0FMERHpqOL7TMOrFyQMkgE0NIapqa3TPS5Lkq3I8pPCsDHcxGWzVjBx5vKkn2vsc8Tz09cp1klrIiIiIiIiUnhK8t2AvPjrX+H446FrV5g5E5qakj+mSASMSbg9OtO3rqERy9aZvjW1dTlsZfqy+TpqausSDgA6DQ55aY9qcYiISLHweu+6+qmVWW5JkXv4Ydh1V/j883a/qhw1kFAw0GZb7IosvykMm6z1FCRLtOrLb1+nYmg5i6pG8kH1aBZVjVSQTERERERERLKi0wXKamrrGF4b5Lk9vx3ZcOqpsMceMG1apwiYNVnnIY7o9kQzfTuSbL2O2ICXE7fBIS/tcRuwUi0OERHpaLzeuzZsLv6+V1b99a/wwQdQVgbvvNPmVxVDy5k6ZjDlZSEMUF4W4sQDI6kTB1TNY+PmLRlvTu/SIFPHDHYNaKmvIyIiIiIiIoWoUwXKWoMcn3/NT350FQOumMOEMVdFBhiuuAIGD4brr4dwON9NzZpyl4GI8iRpeDraqqZsvQ6ngFdUeVnIdXDIS3uSzfwWERHpKHTvypGHHoLzz4/8/4EHwkcftfl17IqsylEDmb2srnV1e/3GMCXOiQZ8KwsFmT52CLXXHuUaJKuprXMMzqmvIyIiIiIiIvnWqQJl8UEOa0qo2ePbfOfGF2DWLPj6a5g8OZKS8fjjYUvmZ9rmW6ppeDraTN9svQ63gJeBhCmBvLTHaeZ3olnZIiIihcrrvStDcZrO7b77YO1auOEGeO45OO882LAB2JouekDVPC6btaLdZJ9mGwly9S5tX7M3+tm4pe2O3W/5dUcBtD7X8OoFbdJLRyer1W9sOxmtLJR4BZqIiIiIiIhILnSqQJlbkKPui01w8snwr3/BKadENj7zTGSF2aOPFlVKxmTBmGJZ1ZSt15FqAM5re1SLQ0REOpPxw/rluwnFYeedYcIE+OQTePBB6NmTf9x8b5v6qG7ptz9vDFN77VFMHzukTf/w9rFDWFM9mltP2b9dHyZW37JQ0lqsbivye3Tror6OiIiIiIiI5F2nCpQlDXJ06QIzZ0ZSL951V+Tn006L/PdPfyqagFmiYEyxrGrK1utINQBXLO+riIiIV06rlKJKDJw+rB9TKgbnsEWdwDXXwC9+AcAhVT9hxkMTwCVAFmWJrAQD2vUPa2rrWoNcTmkaQ8EAIwb1cVytFluLtVhSe4uIiIiIiEhx6pLvBuRS5aiBXPnkyjZf5B2DHF26wMUXUzPseD76xY0c8drzDBo/HsaPh9Gj4cknI+kZi1TF0PKiCOBk43VEjzdt/mo+bmikb1mIylEDPT1PsbyvIiIiXlx33D78fNZymmPiNCUGbjtliO6H2XTDDXDiiTBkCAd8vJoXH7iIE868na+6lbo+JLoCLGra/NXUNTRiiATSIJKmMRgw9Ojahc8bw/QtCzFiUB9mL6tzXa0WDYT1LQtR5xAU62ipvUVERERERKQ4dapAmZ8gR01tHVfWrKJxv+O4dfBojln9Kvc8XQ3z5kG3bvDAA3D22RBwT0UjxUkBLxEREW8CJYbmJtvmZ8mB/ffn8Cl/pvq+yzlk3ZuMX/4sM/c7iobQtpQY2gQvoxrDTUyes4pNW5pbJ5XF7xZusvTo1qVNTTKnlIpR0UCY58lqIiIiIiIiInnQqQJl4D3IEVtLwZoSnh30HXbd82nu/fMdHLViQaRQ+rRpcNZZcMUVCpiJiIiIxJg2fzXhprahlnCTZdr81ZpwkgM//+HenPv1zey2bjWh8Ne8+ptzePSg47jryHOp3+Qc3GpoDCc9bmy6xESpE2MDYemsyBcRERERERHJtk4XKIvWWkj2Jd3pi39zSYALj/45H7z+Ajz1FJx+Olx1FTz8MFx8MVx4YVGnZJTM8XIeej1XRURECpFbEKWuoZFdr5zHaYeqRlk2bQ1OdaXu35/wTvkenPv3Jzj3709w+AX3s7b3TikdNzZdoltKxYAx7Wqx5mJFvvpOIiIiIiIikoqSfDcgl2pq67jyyZXUNTRi2VqPoaa2rt2+bjUT+paFoKQkUvthwwaYPTuSivGSSyL/PeYY2Lw5y69EcqWmto7h1QsYUDWP4dULHM8Vv/t6OQ/9nKsiIiKFpqa2jhLjnmax2cIji9dyTc1K130kfRVDy1lUNZLaO8ax/3sroF8/AF6+73zOX/Kk7+MZaJMusXLUQELBtlkVQsEAt56yf84DVLnsO/npH4qIiIiIiEjh61SBsth0ilGN4SamzV/dbl+3L/5taimUlMCYMVBbC+PHR7Y9/zzsuCPMmAFN7jUbOruOMMBQU1tH5eMr2gy4VD6+wrGtfgZnEp2H0fdlwszlns9VERGRQhK9JzZZh0JYcf60ZG0OWiRApN/64YesqLoRgKtfeoifLH4cY5s9H8JCu1ViU8cMprwshAHKy0LtVpLlip9+fjo0mUlERERERKT4dKpAmVsKIKftvr74l5TAI4/Ali1www2R2bqnnw5dusAf/xjZLq1yNcCQbjBu8pxVhOOq3YebLZPnrGq3r5/BmUSpqKLvi5tEtUBERETyKdFkDzfNyWNpkmH7T72K+c/+gwX7Hs4h697kwH//i+03NHh6bLlDxoXoqrUPqkezqGpk3lId+unnpyNXATkRERERERHJnU5Vo8ytjoJbmkXftRQCAfjFL+Dqq+Ghh+C66+DMMyP/jjwSnnkmkp6xg0u3/kOiAYZMDa5Eg3HR54lbu4sfAAAgAElEQVQGoQDPz+FW0N5pu5/BmUT1PJINLLqdqyIiIvkUf9+VwjbqmIPh6Jfgyy/Zc+fdKf9iPXceNpbbDj/D9THtMitkSKbqivnt56cqVwE5ERERERERyZ1OtaLMUzrFTCgpgfPOg3Xr4MmW+g8vvADdu8NVV3XoFWaZWA2WiwGGXM/2TVjTLo7beZgsRVW2BqhERETS5XTf9SIU7PhdUWNMd2PMP4wxK4wxq4wx17dsH2CMWWKMedcYM9MY0zXfbW3DGNh2W6rOuQmAS/4+kzU3H0vXLe0nBHlNqei2mj/R9kxlGchVP99Pn09EREREREQ6ho4/OuFDzusolJTAj34UCYyddVZk29SpsPfe8KtfdciAWSYCULkYYMhEMK53adBxe4+ugXaDPX4GZ9zOQ6d0RlH5rPkhIiKSTKqTXaaO2S/DLcmLTcBIa+3+wBDgaGPMMOBm4HZr7e5APXBuHtvo6sSzjmHYJY+0/vyvW3/Erp9+1PqzAU8pFZ2CXhNnLmf8/X93DYZlcmJTrvr5OZt4JyIYY442xqxumXBQ5bLPKcaYt1omKvwp120UEenIdJ0VEdmqUwXKIE91FAIB+P3voakJnnoKunaFykrYa69IisZNm7LfhgzJRAAqFwMMmQjGjd5vJ8ftjZub2g32AL4GZ5zOQ7f3ZfrYIXmt+SEiIpJMqpNdln74WYZbkns24quWH4Mt/ywwEniiZfvDQEUempdUxdByNm3fh/6T5vJy/6EAPDHjCvb9z7uA98/WKehlgUXvfeYaDMt0loHY/lXlqIFMm7865Vq1iZ4jpxPvRDopY0wAuBs4BtgbGGeM2Ttunz2AK4Hh1tp9gAk5b6iISAel66yISFudqkZZ3pWUQEUFHH98JGA2ZQqce27k3w9+APPmFVwNs/i6EWWlQeo3tk/J42eALDqQkIl6FG4qRw1sVyvFbzBu4dvrHbc3x/0cHexJN5iVi/dFREQkG5zuu8ESQ8/uXRz7DVGPLlnHlIrBuWhiVrUMNCwDdicy4PAe0GCtjaYP+AhwvKEbYy4ALgDo169fVtvpVg8s+hmdOfaX7PrpR1S+/AesMVQtfIjy26s9HdtvcCvahmzUFfNbq9ZvnTTfdYxFJBWHAO9aa98HMMY8BpwAvBWzz/nA3dbaegBr7X9z3koRkY5L11kRkRgKlOVDSQmceCKMGQM/+xncfTe8+GKkhtnDD8Npp0GX/H000cGCuoZGDJHZwBAZZAiWGIIBQ7hpaz2tVFaDZXuAIRNBJz8DPpmqr6aBFxER6YgS3XfH3/93Fr3nvHIsWX3OjsJa2wQMMcaUAU8Bg3w89j7gPoCDDjooa29IouBRwJjWz+L97b/FT350Fef940ku+seTMPxJbjyxkgd2/17C/pRb0MtN9FjpTmxykiilY3zb/QbVRCRnyoF1MT9/BBwat8+eAMaYRUAAmGytfT7+QLmckCAi0oFk7Drbso+utSLSoSlQlk/GwF13wZ13RgJmr74aqWV21lmRVI3jx+c8YBY/WBA/WhNutpSFgvTo1qXgVz2lG3TqFQrS0Og+Cz6WCriLiEhn53Tframt41WXIBlE6l8VE2ttgzFmIXAYUGaM6dKyquxbQGZy/6UoUfDIKWD5wCFjOG358+xa/zFXz57G5YHpDLz8KdcgUuWogUycubxd39FJNBiWrdX0flI6+gmqiUjB6QLsAXyfyHX2ZWPMYGttQ+xOuZqQICJShDxdZ0HXWhHp+BQoKwQlJZFVZdbCnDmRlWZnnw0//znstx8891xktVkWxa4iS+bzxjDLrzsqq+3JtWtqVvLoknU0WUvAGMYdujPG4+idCriLiEhnENtXiK5AKk8S2Lj+mVUJAyelXQMJftsxGGP6AOGWIFkIOBK4GVgInAQ8BpwFPJ2/VroHj+IzCMQaecF9nPzGn5n23J10awqz5uZj2e/SxxyDSBVDy1n64WfMWLzW8VjR5ygLBTEGJs5czrT5q6kcNZBFVSPTfHVt+UnpmOk6aSKSMXXAzjE/O004+AhYYq0NAx8YY/5FZED3tdw0UUSkQ9N1VkQkRkm+GyAxjIETToAtW+Dpp+Gzz+CllyAUiqwu27Il6SFSEV1F5jVdTrGtnrqmZiWPLF7bOpu6yVoeWbw2YU0VFXAXEZHOJL6vEL1n1jU0MnHmcvpXzWN49QJqard+t76mZmXCeynAxs1NCX/fQewELDTGvEFk0OAFa+1cYBLwc2PMu8D2wIN5bKNr/y1gTMJg5uP7HcV+lz7W+vOjj17Fv+s3OO47pWIwt48dQsBhtpEFepcG2bSlmfqNYSxb0xzGnjeZUDlqIKFg2yCs28Qmt/el2Pq7Ih3Qa8AexpgBxpiuwKnAnLh9aoiscsAYswORFGHv57KRIiIdmK6zIiIxtKKsEBkDxx8PTU1wwQXw4IPwpz/BkiWRFI0//SkEgxl7OqeUM26KcfXUI4vX+tq/vCyU8ZnPIiIihSxRXyG2lmk0LR/ADA/312IIRlhr3wCGOmx/n0iR9ILgVg/MSx/wi+496T9pLuOWP88b39ydpx+eSM1L97H0yptY+Pb6dmkTJ85c7ngcp8BpsjSH0ZWMflIz+knpmK06aSKSHmvtFmPM/wHzidTFechau8oYcwOw1Fo7p+V3Rxlj3gKagEpr7af5a7WISMeh66yISFsKlBWykhJ44AG4/36YOxcmT4YJEyI1za65JrLKrGvXtJ8mWWqZaKqcZOmVilGwxBButm1+1sCJiIh0Nl7T0DWGm5g8ZxVffr0laa0qBSNyr3uwpDUgVBYKMvn4fTyn3gZ4dMjR7LChnsGfvMfgT96j4kdz+c6FD2DLvtm6unDCzOWtqTm9+rih0TEgBrQJYsUGY70Ey7z0WbNVJ01E0metfRZ4Nm7btTH/b4Gft/wTERGfdJ0VEdlKgbIEUpnBmhXGwHHHwbHHwqOPwq23wo9/HPn33e/C/PmR9IwpcqvjAMmDYwXzHmVLfOYgj3XLREREikmivkK8hsbE6Rahc06+yado6szYVVObtjQDziuqEvlfj94M/PlsVt92IgB/++153DPsJG753tmtwVGnIFkoGKBblxLH86NXKOgYEOvWpaRdu5KtQEuF16CaiIiIiIiIFCfVKHMRW4sjmzUUfDEGTjsNli6NrC4DeOUVKC2F3/0OwskHppy41XGYPnYIi6pGJgySFdx7lIJEsa9wk23387T5q7PbIBERkQLj1FdIx4hBfRSYyCGn1JmxAaepYwZT3pIG08ucoE3BbvSfNJfX+0ZWff108RM8+cfLIC5AFq1VFjCGxnATxkRW58cKBQMYg2P73IKuXlc4ioiIiIiIiHihQJmLRAMKeWcMXHddpIbZhRdCnz6R1WVdu8Jvf+s7YBY7QGKIzPKeOmZw0gGsgn6PfBg/rJ+v/VMdnKmprWN49QIGVM1jePWCDhdQFBGRzis+mBINgKS60PpPS/zVB5X0uPVdotsrhpazqGoka6pHM35Yv9bPN5kxZ9zKaWOnAHDAx6vpX/8x22za0Pr7JmsJBQOtK8zqN4bBRNI+xvY5GxxqlyXit7ad+mAiIiIiIiKSiFIvunBLL+Q17VBOlJTAvffCb34Dzz4bSc140UVw880wZAg88khktZkHqaScSTbo0lFMqRgMwKNL1tFkLQFjGHfozix8e73j5+13cAbapzzyU2NDRESkEDj1FaIpmOsaGltrmnrRbCOP1T0wN9xSZ8b3aWpq65i9rM5XfbFX+w9h18qn2fnzT7hq4UOMemcxvzvwOK4/4sLWlWSxwk2WHt26sPy6o1q3+amT5re2nfpgIiIiIiIikoxWlLlwm0nrdYZtThkDo0dDczPMnQsffABPPQU9esARR/heYeZ11q1bwCiVQFK+TakYzHtTf8ia6tG8N/WHTKkY7JqS0s/gTFSxrL4TERGJFV2JVF4W8hwki9I9MHe89mmc+ituystCnD6sH+VlIZpLAqzt3ZeHDjoBgHOWPcOam4/FNm1xfGz8pCqvqT29Zj2IpT6YiIiIiIiIJNPpVpRFZz5/3NBI3wSF5N1m0vqZYZtzsQGziy+OrDR78UXYc0+46ioYPz7pCjM/s26dir+nGkgqRNHX6+V8SaZYVt+JiEjx8Non8iKV+5nugbnjtU/j9TMxwKKqkW22Rc6nEBVdbqXmj5cB8P60E6g441aW923bN4yfVBXbPreVZSUm0r5ogMvrudoZ+mCZ/FsWERERERHpjPIWKDPGdAdeBrq1tOMJa+11xpgBwGPA9sAy4Axr7eZMPKefIFC5S4qa8o6wWsoYuOceuPtumDMHbrwRLrggEiyrroYzz4Rg0PGhyYq9x8pkICkb/AwauO2bSkpKJ15THolkWj6utSJS+DKdjs7tPpdIr5BzX0Syw0ufxuvn6NR/iR6/pnYge/cbxFs3jgag5o+XcebJ1/PyrgcC7pOqtj6+jsonVhBuajs5rbnlR7/narH3wZRaUkREREREJH35TL24CRhprd0fGAIcbYwZBtwM3G6t3R2oB87N1BP6Sb0yYlAfx2O4bS9IxsAJJ8CSJfD738OAAXDeedC1Kxx2GGzc2O4hfmfdRlMufVA9mkVVI7P+hdxrWsjooEFdQyOWrYMGTvv72TdVmUzjKOJTzq+1IlL4Mp2OLpX+0YbNWzJ6r5X0eUmBaEj8eU+bv5qNWyz9J83l2iMuBODrYDdOWvkXtuseSJo6sWJoOT26Jp7L5+dcLbY+WHxf+PpnVim1pIiIiIiISJryFiizEV+1/Bhs+WeBkcATLdsfBioy9Zx+gkAL317vuK/b9oJmDJx1ViRg9sADkW2LF0dqmD3wAGzeuoikkOuO+Qlo+RkAzEXtioqh5UwdM5jyshCG1GpsFCKvgUvJn3xca0Wk8KWajs7tuj/vjX/7bkO4yWowv8A49VeG77YdsRV6LTB7WZ3rPT/2HPrDgcexa+XTfOOrz/jVs9N5/fpj6LP45aTt+LwxeX1dr6kTi6kP5tQXrt/o/F4VU2pJERERERGRbMtrjTJjTIBIyq/dgbuB94AGa2208vdHQMa+xfpJvVKU9QyMgXPPhR//GC65BO66C84/H66+OrLS7LrrGDGoD48sXtvuoYWwks5PWkg/n5/fzzrVOhCZSuOYyTal+5xK9dMx5PpaKyKFL5V0dG7X/aUffuY6WJ9Mh+5XFan4/srw6gXEV+h1639B+3OruSTA3EHf5ZJFj7Hnp2sZ/tPTYO0bMHWqaxu8pID0M4krm32wXHLqC7sphEluIiIiIiIiHUU+Uy9irW2y1g4BvgUcAgzy+lhjzAXGmKXGmKXr13tb5eUn9Uohr6xKmzHw619DczM8+yz8979w002w554MueVaQpu/bveQQlhJ5yeg5efz87NvLtI0+pWvNuViJZ5kRq6vtSJS+FJJR+d23X90ybqU21EU/aoiFLty0C1gVdfQ2LqqMHb/DZu2EAyYtjsbw1Hn3cOdh42N/FxdHemPft2+zwnJU0AGA6bDpk5Mh9fAckdOLSkiIiIiIpIPeQ2URVlrG4CFwGFAmTEmutLtW4DjaL+19j5r7UHW2oP69PG22slP6pViq2fgyBg45phIwOy552DbbTnp7zX88/aTePrhiXTbsjUlYyHM+PYT0PLz+fnZtxCDQ/lqU1GuuixyubrWikjhSyUdndv1vcnGrzfypuj6VUUifgJOInUNjVQ+sYLKx1e07t/QGAYLJab9/rcdfgYH/GzG1g2hEDWvf9QunWf0/AwYh4MAPbp2yckKsUJLMe3WFy4LBYsitaSIiIiIiEi+5C31ojGmDxC21jYYY0LAkcDNRAZxTwIeA84Cns7k83pNvRLdJ9fp7PLCGDj6aBg1ilnfOYlTXn2S/f/zDi/efyF3HzaW2fv+gD47bJvvVvpKC+nn8/OzbyEGh/LVplTSdknu5etaKyKFz286OrfrfsAYz8GyrgFDuMkWd7+qg/OT3g8itebabWu2lIWCbNrS3O5Yn5X2ov+kudzzwp3sdOyRXPnUm3T7oh4b2rZdGueJM5c7PqeXGmbpKsQU05WjBrZpE0QCzpOP30d/SyIiIiIiImnIWKDMGNMDaLTWNhtj9iSS2us5a63bN9mdgIdbaueUALOstXONMW8BjxljpgC1wIOZaqNfxVLPADzWsDKGrnfdyV6zz+PINxZyztI5TJ1/F1Pn30X9XvvB/y2Cnj39HzdD3NI/um3PxOcX//p6hYKRmdJx8hkcylfAym2wRqsDsieF6yx0gGutiBSGRPf0mto6Nmza4vi4bl0M4aZIcCSZpuaMNjnjUrzOFpVMTbRpaAwzfewQJrgEuy4+8hL6hkJss+4j/nHPWQDsPfFxNhJqrX+Wz0k5fmrj5kqnmsgnIiIiIiKSQ5lcUfYy8F1jTG/gz8BrwFhgvNPO1to3gKEO298nUkNHMsTPjNjWL+A9u/HMXodz4bsLqXryNnr/8w3YZpvITp9+Ctttl/OZttlaOeX2OpZ++Bmzl9W12R4MGIIlps1gYL6DQ/kKWGmwJi98XWdB11oR8SbRPR1od5+JtTHcTDBgCAVLaAwnjoRFV54VwuocF76vs8XGLThV3hKccqtZFi9gDBVDy5k2f7VrsOvjhka6hrZp3fbW7SczfuwUXu0/BMjvpJxCzCIAxTWRT0REREREpFBkskaZsdZuBMYA91hrTwb2yeDxJUV+a1hVDC1nUdVIPrj5WKpm3xqpYXbppVt32H572Gsvbp/3ZtZqYznVhPBTo8wPt/fn0SXr2m0PN1m6dilprZkRMIYTD8zOgIXXuhip1JnJlNZzpXo0i6pGauAm+3SdFZGsSNRX8JKKL9xk2a5HN6aPHULv0qCn58x3jU8Xnf46m6h2q9Pv3ESDoomO17csxKYuXek/aS5P7f19AGbMvIYH590C5LePk61+p4iIiIiIiBSeTK4oM8aYw4jMuD23ZZu3b9KSVWnPiDUGpk+H22+HwYNh1Sp4+23+dMsZPLPXd7n9O+PZFOyW9Lhe0zS6zWo/8cDyNiu8IDOzit3a61ZvZcPmpjb7zF5Wx0G7bJfRQRu/q/ViZxdH3+eJM5drlVfx0XVWRLIiE6tnPm5obL0f1dTWUfn4iqTpGPO9OsdBp7/OelkxHvu7DZu2OKaljq5AS3a8aH9n4nGXM3P/o3js0asY+ebLsGwZHHhg3lZQKcW0iIiIiIhI55HJQNkE4ErgKWvtKmPMrsDCDB5fUpSx+g7GwJtvgrVQU0PozB9z0T+e5KJ/PMknPbdj1I/voiG0reNx/QR+3Ga1L3x7PVPHDM54qj+39ydgjGuwLL5t0RnxXtuWLGiYal2MQiw8Lxml66yIZFxNbR0lLve8vj7S7cXe/yuGlnP9M6uo35i4tFf3YCaTG2SErrP4S+937P47JZ3I5Ha8+CDauv0O5Zn/e4fj3n0VDjwQ3n0X6uvh4IPTfEX+KcW0iIiIiIhI55GxQJm19q/AX40xpS0/vw9ckqnjS+oyPiPWGPjRj3j5rwfz3uXXctnC37HjV5+x/M7TAJi3YGW7h/gJ/CSa1Z6NWcVu74/TCjY30YCUlwBV/Cz7uoZGKh9f0WbfVGf2F2LheckcXWdFJNOiEyycgmSxfYVENcri941qSBIkA9i0JXFNs1zTdTYxpwk5s5fVcUC/Xix+v54ma32npXbs2317dwA2HTKMbvWf8mq//aj8ye05D1SpHpiIiIiIiEjnkLFpvMaYw4wxbwFvt/y8vzHmnkwdX1KXrfoOFQd8i91u/SXDb/oLq76xa+v20SMHw69/DZs2tW7zE/jJdU0It/dnSsXgdtvLQs51VwLGeK7XNnnOqnapqMLNlslzVrXWJXNbx5bsPSjUwvOSGbrOikimudUfCxjT2ldwuk+ePqyfY78itr5mSUs9z0SSZGbMOV1n24v9TC+btcKxv7Povc9ag61N1jJj8Vr6x9VY9Vp7NWr8/X/npOOuAeDba99g0ZU/4MYHFzLk+j8nfayIiIiIiIiIH5lMvTgdGAXMAbDWrjDGHJ7B40sasjUjtvW4V74XScl40knw5JNwySWRf9//Pjz9tK/0j/moCZEoJVDs9viZ1NG2uc2ydwpQOdXxiG5PNGM//j1wSt+YsTSbHnmtOycZo+usiLSR7nXYbSJFs7VtjuOlHxF/j/SSvrgAFfV11u/5kupnGt2rrqGRiTOXM2Hmckzc9kSpoa+pWcmi9z6DnfZgj8ufYvWvxlCC5bW7z+D8MdcwoTHM5DmrmHz8Pup3iIiIiIiISNoyWhjCWrsublPynHVSPIyB2bOhuRlmzoxse+kl6NWLRVf+gJ3CX7XZ3S34la0VcJng1rbyDK2CcwuSxb8H0YGruoZGLFsHnPpv7/x8Iwb18dUOL9zaoFne2aXrrIhEZeI6nMlV3G6r0zqaYr3O+j1famrrHFeQ+WXj/hvltvIeYMbita3/Hw4E2XXSM0wfPg6AQ9a9CWydYJTpfofflW8iIiIiIiLS8WVyRdk6Y8y3AWuMCQKXAv/M4PGlozAGTjkFTj4ZqqrgllsA+PttpwKw74RZ9Npx+4SzmAu5JoRb27yugutdGqTeQ92WKAMsqhrZZptbLbLF79c7HmPh2+s9P59XqoeWF7rOikirTFyHM7mKu0jS/BbtddbP+ZKodl0muZ0zTs86/TvjefiAY/myWw96bNrI/U9OofKHE5g2vytARla4O9Vgi1/5ptX0IiIiIiIixSeTgbKLgDuAcqAO+DNwcQaPLx2NMXDzzVBdDQcfDMuWAfDmH38CF10Ee307zw3cKt1Bj+i+Xo5x3XH7UPnECsJNW4eBggFDj65dHNMyOs3qdxtYchvQysbgZTbqoWnwKSldZyWv9DdaWNK9Dkc/z8ZwEwFjaLKW8jQ+V7f0vx1M0V5n/ZwvuVod6NTHSbSCq760FwAj33stUrfs3h/ziyMv4soNJ7QLbi398DMWvr3e1/UqWTDRSyBNREREREREOp6MpV601v7PWjveWrujtfYb1trTrbWfZur40oEZA0uXRlIyPvww7LYb3HgjhEKwxx7w3//mtXmZSiFYMbScRVUj+aB6NIuqRiZcLTftpP3bpG+cdtL+TD5+H0LBQJt93Wb1u6XEChjjuD0bNcpCQefLh9v2ZJTKMTldZyWf9DdaeNJJmxj7eUJkokX0npPqgH/lqIHt7mPJuN238qWYr7N+zpdcrA400K6PEz0vk/nznodxw8jzAfjlC/eyYPrpGNvc+vvGcBMzFq/1fb1KFkxMFEgTERERERGRjitjgTJjzMPGmLKYn3sbYx7K1PGlCBgDZ54JixfD734X2fbuu7DjjpHf5Slglo9BD6egmp/abE6DkaFggHGH7uw52Jauxi3NvrYno8Gn5HSdlXzS32jhcbsXeLnmZ+PzjL2PeTXu0J1Tfr5sKObrrJ/zpaw0mPX2WGhdpRWtCeanJtpDB5/AyIseAGCnrz7lg1uOp3Tz1kCXU020CTOXJ6w7liyYmI3V9CIiIiIiIpJ/mUy9uJ+1tiH6g7W23hgzNIPHF59STZGVrdRabY/bj8pl66iYcBq88kpkhx13hMsugylToHv3tJ/Pq0Ia9PBamy1RqseDdtkuJ6nR3MqWpFrOpJA+hwKm66zkjf5GC4/bvQBgePWChPeBbH2e0fvYgKp5jnWm4k2pGJzW82VB0V5n/aSJznJpMgDKQsF2qQyT1UQrMbBt9yCfN4bpWxaivnRn+l/xDPMfupivu3SjMdgNY5uxxn0uYKJ0iclq9rmlF83Gyn1Jn9IFi4iIiIiIV5kMlJUYY3pba+sBjDHbZfj44kOqNRSyVXvB8bhPvQl3PErFkL4wYgT89a9w662Rf2ecAXfeCWVlSY6cvo466OEWVPMabEtXtJ6N0/ZUdNTPIcd0nZW80d9oYYq/5nu9j2f78/RSr8y0tLfABq6L+jqbrI8QDSw41UzNtA2btzB5zipftdCaLfTo1oXl1x0FwICqeWAMo869B6zFYJn3+0vp1/AfhlzyKFsCzh9dbN2xWMmCickCaVI4VE9ORERERET8yFjqReBW4O/GmF8aY6YArwK3ZPD44kOqKZWylVor4XGNgZdeitQwe/FF6NIF/vhH6N078rtPPknruZOpHDWQYKBtcCcYMBr0SMItXVaqabTSSSHWieg6K3mjv9GOwet9PNufZ+WogSSbNmGhEFN3dtrrbHzdumwLN9mUAnKxqx7bBHaNoWvTFvb+7wf03NzIu7+qYJ9P3vN0nKhkK5D8pMmW/FK6YBERERER8SNjM2SttX8wxiwFRrZsGmOtfStTxxd/Uk2plK1UTJ6OawyMHAmbN8O110ZSMAJ885uR/9bXZ2+FWfzCKI8phzKR0qVQ0sL4bUc0XdajS9bRZC0BYxh36M4pp9GqGFrO0g8/a3O8Ew/Mzeq4jkLXWcknP2nbJH+83sez8XnG3kd6hYKebqWFlrqzM19nnQILhap/1TwAenQNECwxhJsjZ9umLl3pf8UzPD5jEgfXvcW831/KfQf/iJtGntvuGPGrJ6+pWcmMxWtbz9vYFUiw9W+lrDSY8dSUyfpghdJX7EiULlhERERERPxIO1BmjNnWWvtFS2qa/wB/ivnddtbaz9J9DvEv1ZRK2UrF5HZcS6SOSpsv/MbAL38JN9wAhx8Of/tbZHvv3jB5MlxxBYQyl+pr2vzVrQMsUeFm65iSB7YOVtQ1NGLAcUDF6+BFoaSFSbUdUyoGZ6y+TE1tHbOX1bWmc2yyltnL6jhol+06/WCQrrNSKHKV2lVS5+c+nsnPMz7I4HWlUKGk7tR1tuMEEGJ7bBs2OwT2jOHk02/huH/9jV8/Vc0Frz3Fezvtxsy9vt9mtw2btrSm/qyprWtz/kY1hpuYPGcVm7Y0t/aR6jduPbcz0W9L1gcrlL5iR6N0wSIiIiIi4kcmUi9GBxKWATYpXTAAACAASURBVEtj/kV/ljxINaVStlIxOR03KvqFv6a2ru0vjIFXXomkZLzttkjQbPJkKC2FPfaATz9Nq01RfmacxqclchpQ8ZPSJVNpYWpq6xhevYABVfMYXr2g/XuZo3akoxDaUMB0nRURT/KRItMtyJCMgUJK3dnpr7O9QsF8NyEhvzVQnx/0XeYtWAkVFXy38jz6dDN884v/tf6+oTHc2v+cNn+16/nb0BhOuNIu3b5Ksv6P+kepUbpgERERERHxI+0VZdbaY40xBvietXZtBtokGZBqSqVspdaKPa7T7E63oupAJGA2cWLk39y5cNxx8O67sMMOkd9//DHstFPKbfMz49RLWiI/M7IzkRYmEzONCyE9TSG0oVDpOisiXuUjRWaiIEMilsJZEdPZr7M1tXVs2Lyl3fYSINilhE1bmnPfKCBYYujZvQsNG8OtK869CjdbLp7/IRcPPI+yFz9kwl9+z9mvPs7MwUcy6YeXApH+52WzVvg+drx0+irJ+j/qH6VG6YJFRERERMSPjNQos9ZaY8w8IDM52CQjUk2plK3UWtHjDqia5zig5ukL/7HHgrVw0kkwe3ZkW9++cPzx8NhjKaVkrBw1sE2gCdxnnHppo5+ULplIC5NoprHXz7EQ0tMUQhsKma6zIuJVrlNkpjpgX15g1/fOfJ2dNn814ab2vbNmYIvD9lwoDZbw9ZbmNqkOU9XQGObZ/gdy9quPM3blC4xd+QL7TJjFhm6lCYNkBigrDSZtg1NfxWtdsWTpyd2eX/2j5JQuWEREREREvMpE6sWo140xB2fweFKk3L7Y+/rC/8QTkYDZ978f+XnOnEhKxgkToL7eV3sqhpYzdcxgystCGCIDd1PHDHYdzEjEb0qXTKSFycRM40JIT1MIbegAdJ0VkYKT6oB9gV7fO+V1NlGfId3VVqlqDDfTnMGn/sfO+7LvhFmtP6+afgrf/eB11/0NMH5YP647bh/X9OHg3FeJTdVtSZBmnOTpyb/6egvBQNu0k+ofiYiIiIiIZFYmA2WHAouNMe8ZY94wxqw0xryRweNLkchoQGThwkjAbOFC6NkT7rgDttsukq7x4489H6ZiaDmLqkbyQfVoFlWNdJ196tT26NBFogBbouf1GqRzk4nAYybaka5CaEMHoOusiBScRAP9bnqXBgv1+t4pr7OFuDopG+G5r7qV0n/SXB7f9wgA7q6pdtyvvCzE7WOHMKVicLv+Se/SIGWhYMK+ip+6YrHHdxJutvTo2kX9IxERERERkSzKSOrFFqMyeCwpYlmpGfD978OXX8INN8B110W2lbcc79NPI8GzDMhG29NNC+MndWQ225EJhdCGAqfrrIgUHLd7I8DkOatoaGybNi4UDHDdcfvkvJ0edcrrrFNfohj1Lg3yReMWKkdP4J7DTqbJROYMnrb8OeYN/A6fh7bBAIuqRgJt0yeWlQbpFQrSsDFM37IQk4/fx7XP4ne1f7L05J83hll+3VG+X6+IiIiIiIh4k3agzBjTHbgI2B1YCTxorW1fDVwkRtYCItdeG/l3xBHw4ouRbdtvD7feCuecA717p/0UsW2PDqBMnLk8b0XCVay8+Ok6KyIdUfR+6bVWUz519utsbF/CqV5WrgVLDOFM5l2MMe7QnXlk8Vo+2C7ymvdcv4ab5t/NTfPv5qKKK3l+4HCGVy9gxKA+zF5W1xo8jK0TFk2lCLQ5l6PnulvL41fuxf9t9AoF2wWWnR6Xro7wNykiIiIiIpJLxqZZd8AYMxMIA68AxwAfWmsvzUDbPDvooIPs0qVLc/mU0lFMngzPPAOvt9Sg2GWXyP/HrTBLZcAgWn8ifiVXOulwNHDRMRljlllrD8ri8fN+nQVda0XEmdP90BBJnVcecy9L5x6n62zuOH2eqSoLBfny6y2+6pyVmMi5k63SaJE0oZbGcHPrtqsXPMD5r9UAsGTnfRk7birGmKTpH8vLQm1WnyV63+L7iE77lxja1WVLt28ZLxv9Vyke2b7WFoJCuM6KSOfVGa6zoGutiORPOtfZTATKVlprB7f8fxfgH9baA9I6qE+6ADvrTEGXpK/16aehoqLtg9atg299K+UBg+HVCxxnXccOmnhqW8x+lU+sINy09W8yGDBMO2n/rH1u8SmFrI2k9/F6vlxTs5JHl6yjyVoCxjDu0J2ZUjE4K20tZDkYwM37dRZ0rZXC15nue/ni9B4nW4UUDBiamizNcdsNcPvYIZ4+I11ncyv6Oae7umz62CEAOUnrGA3OetG7NMjX4eY2bdrnP+8y7+EJW3+eMIsN3UqTHqvcw99BucP1yK0fGcsA44f1y2jfymv/VTqnzjCAWyjXWRHpnDrDdRZ0rRWR/EnnOpuJGmWt+UGstVuMMRk4pKQrPvhT19DIxJnLmTBzueOX9Y7CaYAOaPda26XDOeGEyNTkCRPgjjsi23beGQ44gDtP+CWN4bZDK9GC64neIy/1J5w+B6dUPQDXP7OqTZAMINxkuf6ZVa6Bteh70SsUxBha62aksiLOS0qhWNfUrOSRxWtbf26ytvXnzhgsyzJdZ0WS8HO9Ff9qauva1Rura2hkwszlSR8bf2+LssAVT6wolM9H19kY0bSZXoI5bnqXBtt8tpfNWuFrZZlfFugaMGx2Od9i1W8MUxYKtgmUrfrm7ux+eQ2rbj+Jbk1b6Ll5o6dAWfRa4xYIjK15FsutHxnLAgvfXp90Pz/81k8TERERERHpDEoycIz9jTFftPz7Etgv+v/GmC8ycHxJwbT5q9t9YY8OG0S/0NfU1uW+YWmIDoLWNTRi2fo6Js9Z1e61RgNd7UyfHgmYjRoV+fn113n6xpOofu5Oyhrbnq7JBgzc6kXEbnf6HNzaFhuoSrY9/r1oaAxTvzHc+r5MnLmc/lXzGF69wPVzdmqbl3ZGPbpkna/tkhZdZ0WS8HO9FX+i9xyn2knp8hLUyBFdZx1UjhrYkqpwq1AwwOnD+lGeoG5WsMRw3XH7tP5cMbSc5iwGyaICJd4DnE7n85ZAFwZeXsO+E2bxyTY7cOry53nksauT5oFsDDcRcAmueukvJpLpAFa67RERERERESlGaQfKrLUBa+22Lf+2sdZ2ifn/bTPRSPEv2Zfqjjh46DYI6jZwV9fQyPDqBQxwChg9/zw1r3/EGWfcQsA2c+obf2b5naex5uZj2emLyMzdZAMGIwb1Sbo9W7N2kwW5YoOilY+vcAyWeWlDon3cZoVnc7Z4Z6XrrEhyWiWRPcnuOcVA11lnFUPLmTpmMOVlIQyR9HxTxwxmSsVgFlWNZE31aKaPHULv0mDrY8pCQaad3D5tdK9QkGyLrTuWjq+6lYK1VM+/i+98uII1txzHtz7/JOFjmqx1DCpGsx/EcwpCOsl0AMst+OnWThERERERkc4gEyvKpAB5+VLd0QYP/ab+MS2PiV19FhswmjZ/Na/03Zu9fz6bm75/Tuv2v//mHNbcfCxXH7x9wuO7pcKJ3e5n1m6ZywCS03Y/n1242TJ5zqp2270MWCU6j9xmTrttFxHJJq2SyJ6O1l+QzKoYWs6iqpHc3lJvbOLM5W0mIFUMLaf22qOYPnYI5WUhPm8MM23+6naTdDpc98AY9r3qGT7puR0Af7v3XM5Z+rTr7tEgYnxQ0S21aHwQsiwUJBho+yZlI4DlFvwskBSoIiIiIiIieaFAWZGqHDWw3ZfteB1t8NAtAFNiaDcz1qmge/wqutiBv/sOPZH+k+byl90Obt32wyOGwG23wVdfOT6vl9ULfmbt9tmmq+PxnLb7/eycVt0lG7BKNjgz7tCdfW0XEckmrZLwr6a2zn3ldYyO1l+QzHNLfx09Z5L9HiJ1VLOta5K+r19fNRkOvfgPTP7BBQBc9+L9XPbyH4l/lui1JhpU/KB6NIuqRiYNPsXuv/y6oxh78M6t/d2AMZx4YHlWAlh+2ykiIiIiIlLsFCgrYk0J6n50xMFDt5R+zZZ2M2PdXnlsEMtp4O+8k66j/6S5/OY74wj33BYuuwy22Qb69oX1bVeQeVm9EDtrFyKDHtGAXfyA5Dv/3eB4vHf+u6HdAKbXdD2JJBqw8jK7eErFYE4f1q/NgM7pw/oxpWJwWu0SEUmFVkn44yWwEVU5aiBBH7WfpPgkqwGY7Pc1tXWU5GBJWbg5O+mff3/Q8XznogcBeGnXA7HALj27tF5rTjywnGnzVzOgah5Drv8zQ2/4c9IAdLya2jpmL6tr7e82WcvsZXUdrqawiIiIiIhIR9Ql3w2Q7Jg8ZxVuVRrKy0Kts16TqamtY9r81Xzc0EhfH4/LxrHKy0KO6RfLy0JUDG0743Z49QLHfWODWJWjBnLlkysd667cPHw8j4w+j9sD73DIFRfBv/8N3/hG5Jdr1sAuuzg+3ikAGW1X7L7RAcmoZPXiYvePvtalH37Go0vWeaoJ5jS+2TfB+7moamTSY0IkWJatwFgmzz0R6Rzi7wXiLlFgw/E9VJzMlTFmZ+APwI5EFrTfZ629wxizHTAT6A+sAU6x1tbnq53pSLaKPtHvo0HZXNQwzeZTfNRrR/pPmgvAgR+9xewZV/DAEWex5uLLmL2srvXvKXYVf3z/LRHff5MiIiIiIiKSMVpRVqScUu1FeU2x4me2eS6OVTlqYLsTtqRlu9O+yVJwRVcfuKlraOSsL3ah/6S5VH/v7K2/6N8fevWiYs8yz6sX3AY/JsxczsSZyz3VX4ufmR076zgZpwnWTuk5gwHja6Wh17RdfmXy3BOR4pGta062FUq7Y9vhdt9xCnhMm7+acIJV6sIW4DJr7d7AMOBiY8zeQBXworV2D+DFlp87pGSr6BP93qkPlC25qpPabCI90vP+8jDXjxnClq+/dt032t9L9rfvJaV3vhTKNUxERERERCRbFCgTV8nS6OT6WEs//KzdKrnmlu3xvKbgqhhannBQJdrme4edRP9Jc5m/x7DIL774gv99oxwuuoirvv3NpDUeEg1y+Bl6jB7H76BTuVt9mfgn99GYbAazMnnuiUhx6KgB9EJpd3w73DgFPDI1UN/nq3p+8eL9GTlWIbHW/tta+3rL/38J/BMoB04AHm7Z7WGgIj8tTF+yCUiJfp+rQE8oGGDYrr1z8ly15YM4+OI/AhCwzbzzqx+x73/eTfiYZH/7XlJ650OhXMNERERERESySYEycZXJma1uj6lraPQ8M/VPS9a6bnea6eq1ULmfVEAXjrmG/pPmcuq4m/i8e08q/jGX0d/bB4yJpGR0kalBjuhx/HwGwRLnVWLT5q9uV8sj3Gw9B6OyGcwq5FnVIpIfHTWAXijt9jLBwq1+aSr3sGCJIRgw9Ny0kVvn3caam4/ltbvP4NylT3Po2pXJD9BBGWP6A0OBJcCO1tp/t/zqP0RSM3ZIySYgJfp9rgI9U8cMZs2nuesnrO/Zm/5XPMPf+0WyE8x9eAJdt7hndIDEf/tesiGkK5WVYYVyDRMREREREckm1SgTV241rFIZ8HA7FjjXb3CqT+VWn73Zutf/8pJi0q32WcAY1yDa4n778YPzf8upy5+nev5dkY0DBkT++8EHkfSMMRLVQ/MqdrAk0fvZjsuCuWTBy2Q1wbIZzMrkuScixaGjBtALpd2Jns9Am1qQ8ffgEYP6tKnBlEzvTV9xdfO7bO4e4sRfT6Jb05bW3/3qu6ezrHyvdF9OQTLG9ARmAxOstV+YmBXr1lprjHHsVBhjLgAuAOjXr18umpqSZDUA3X6fiT6QIfGi92i92okzl6f8HCkxhnHjpjLivdfosbmRzV2C7P6/tawt24nNXYKOD6lrqdvmlOUAcKzPmom6rdGVYX77y4VyDRMREREREckmrSgrUiUuwRG37U4yObPV6Vix4utvOaV4SSSdma5ur3PcoTsnbDPAY0OOpv+kuTy357e3bhwwAG66CTZsaN0UO9M6FfEzt93aXBZqPygTbnJeJZYo6OQlrU42UwRlon6aSDHqzHViCjUtWTKF0m635ysvC7VZee10D569rI4TD0ycqnjXTz9i9h8vZ83Nx1I7/VROuvMaVq74gEeGjmbcqTeyW+XT9J80l7u+fSpbAsU3T8sYEyQSJJthrX2yZfMnxpidWn6/E/Bfp8daa++z1h5krT2oT58+uWlwDlUMLefEA8vd5u14kmzt/4hBkfctX9eDRXsewry9DmebTRv4y4M/5V+3/ohD1r3pur9bH8spG0KmUh+mujIs0TWsM9+TRERERESkuChQVqS6dXH+aN22O/Fa58vvsdwkqr+VyixkrzNd3V7nlIrB7bY7BaIAfvKjq+g/aS6/O3RMZMPVV0PPnrD33vDJJ63Ps6hqJKcPc58tHj+IFAoGmD52SLvUkW5tbmh0TvnjtDorOqjkJtngSWlX53PJbbtvDvXTln74mQZkpNPq7HVicpGWLBsKpd1e2+F2D1749npuPWX/Nscwtplxy5/nr789jwUPXMSBH78NwGehbTn+zNt4dP9R/PIH5/P3XfanqSTxxJOOzESWjj0I/NNae1vMr+YAZ7X8/1nA07luW6FY+PZ6x2BXOsGzWHNXRDJcJpuYlS3hZosFvuzWg2cGfReAWX+q4lfzbnfcvzHcxOQ5q1z7NLEBqMtmrchI6sNEmQQScbt2jBjUp1Pfk0REREREpLgU35TeDMpEmpN8+Trc7Gt7rGy97mhKnuHVCxKm1fOcUjAJP7OK3dIFxW+vqa2j8vEV7Wp7RV3//R/zQMXFLBoahqOPhn/+E775TQAOv/ABmvoPYOPmLY6PLW95r9N5793SRTqtAogOKiWSKNj4zn83+Nruh1v9tBmL17YOtPlNsSnS0SVaDdAZ/gYSpSUrZIXSbq/tSJRmrWJoOb3efhNzzWS6bdnEh2U7sef/PqTJlBAuCXDVqIt5fPCRkbqdnctw4AxgpTEmmvvvKqAamGWMORf4EDglT+3LO7fzyhLp/3zc0EivUNB1wk8y0cdFz+cJWU7BWBosYWNMnzq26/WzEybx2P6jmDHzGk5680VOevNF9pr4BI1du7drc7Td8dkTYlMkuqUB95v60C2ttQHHVJBRbteOzn5PEhERERGR4qJAmYtU8/gXilRrPOXidTvVqoid1Z6oNpibUDDgeryMSzL+93FDI4waDday8rLJDL7tegBe/u15AAz92Qwo7dXucXUtg5Be3me3z8ntfXPa7mUwqpfLCrpsSzSgFksDMtKZqE5M8hpJhapQ2u2lHU79h29+8T9+P+cmuPlYRrRs+3ibHViw68HcNOLHfNGtR2cMjrWy1v4N997BD3LZlkLl1i8tLwuxqGpk68/X1KxsMykmFRVDy5k2f3XGJl7F610apGFj4j7Uov5D2Hvi47x1+8kADFu3koW7HZzwMY3hJibMXO65H+w3zWTlqIFMnLncacF+0r6U07XDrR5cZ7onSfYZY44G7gACwAPW2mqX/U4EngAOttYuzWETRUQ6NF1nRUS2UupFF6nm8S8Ubmn16hoaE6asy8XrTpbS0W+QDGiT1jFgTGubM53+Zdr81YSbErcvduDioj6H03/S3NY0PACv/PY8Jr9wL6Wb2w8k7PWL59j1ynn0r5rHblc+yzU1zrXZ/KanTFRXJpF8jXv6GfzRgIx0FoVS60qKWzTN2rc+/4Szl85h3PLnWfybsxlU9y8AmgMB/nHLvXzn4t9z/6Fj+KJ7z04dJBNvKkcNJBhXKDdY0r726JSKwYwf1i+llIyxfSan58uEUDCAtclrpgFs7Bqi/6S5jD77DhbudjD9P6vj/159LOnjvPSDU5kQVjG03LXdqfSldE+SbDPGBIC7gWOAvYFxxpi9HfbbBrgUWJLbFoqIdGy6zoqItKUVZS46+sz9hW+vd/1dolViuXrdiWa1l7vMOg4YcIpR7fGNHq3HyvZquGSzk+MHLqLv289OmMTPTpjEiPde48evPc3Zr8/l7NfnsiHYnR+ecycf9u4LQGNMGp8ma3lk8VogMnAUy+/n4TTo0rs0SH2SGdHJZkxnS+WogQlTXMbSgIx0FslW44qkbf58KsaNo6K+vnXTJcdVcsvhZ/LC7ofyTp9dIsGHBmhOYVKLdHLxcSuXOJZbPbNk2vWZshC/7R4sSdh3cloNtmrH3QC45bk7OOSjt7j8lUcY+rMZ1DtkF/CiLBRk8vH7pNS3detjp9KX0j1JcuAQ4F1r7fsAxpjHgBOAt+L2+yVwM1CZ2+aJiHR4us6KiMTQijIXHX2WZLJAitsqsUJ43W5Fw7fp7pwGcOPmSHApF6vhEq3Mil8ZB+3ft4W7HcwZp07h/DHXANAj/DV/ve8C1tx8LLvUf+x43BktAz+x3D4Pt/aVO+x/3XH7kGyydV7P97i2BUpMu9nhGpCRziTZalzpfGpq6xhevYABVfMSrhZPaMMGuPHGyKqwo4+GaJDse9/j5Mo/Mmfv73HPYafwTp9dgEi9SKeV1QFjOH1YP4IBrS6T9pxW5IebLJfNWtHuvE1nctaflqxlePUCJsxcnjADQMDHarPYc7p+Yzhh/G3Yrr3b9WGjzhg7pfX/a389ntH/fMVzG2L16NYl5eu+Wx87lb6U7kmSA+XAupifP2rZ1soYcwCws7V2Xi4bJiJSJHSdFRGJoUCZi0x+kcwHL7WlnAYinF63IXnKRr8SDe65ffF2q6kVnRmbi9VwidLhLKoa2W5wwOn9DJYYXtxzGP0nzWX2vlvrcvz1vguY+tyd7VIyxj5j9H2ra2h0nJjdZG277YnO22QDRW4pPLPNaUCtqdnSs3sXDchIp1YxtJxFVSP5oHq04zVHOo9orcq6hkYsW1dRJ71PWwszZ8IBB8C++8IvfwkPPQQHHwy77AIvvxzZ56WXWFrS23N7mq1lSsVgpp20f3ovTIqSW1+sydp25206k3SabfLV/+VlIbbpljyphiGy+j6+P5Jotdui9z5zTYW9qUtX+k+ay72HjAHg7jk3M23e9KTtiJdOvzbTwS3dkySfjDElwG3AZR72vcAYs9QYs3T9evfMKyIispWf62zL/rrWikiHpkCZi44+S9JLuRCngYjY1w2RQYLogIDnQbgkUh7cSyIXq+HKXAKQbtudzqOxh+zcGqC6bPTP6T9pLjMHHwnAuDf+zFu3n8xDj0+mz1eftTlW7PsGkc8l+jHHfk6x2xOdt17qrSVK4el2jmWiVI3bIFf9xrAGZESkU0i2WszXKmprYcUK6NIFSkrg1FOhtpb/BXsweU2AvSpuYfiYamqeWgTf3VpT08/9M7pvxdDypKuVpfNJdC7Fn7duk7Yg9ZqrUeVlIRZVjeRzl8lXsc83fli/rKSgrh7xY445504Avujew3GfYImhNOj8NS3dfm0xBbcysqo2RzpSWwtIHbBzzM/fatkWtQ2wL/CSMWYNMAyYY4w5KP5A1tr7rLUHWWsP6tMnPxMBRUQKUMaus6BrrYh0fKpRlkCiOlqFLtkXe6+r4+LDKNHBjFTel5raOqbNX+0YBIk9bjQg5FRrLJF0aiVE2/ZxQyN9y0JUjhro+BpTCQ7Fn0fDqxe0C1BN+uGlTPrhpez/8WoemP1LRr6/lNfuPhOAH/70fsB5UNTiXA8j+tN/Pv+apR9+5vhavMxITrSP2+K6dMrWRD8HN+kOkImIdASJ7oPR63nSVdTWwrJlkRVi9fUwZWvaNwYPZuFVv+Knq5oTPofTfdWJoe0KZA/lJaWTSXYuxZ7P0fPPqV82oCr1rD/RPmFNbR0lDn2nqPKY51v49vqkK9RS8c9v7MqulU9jgB6bNvLqb87hphE/Zub+owBopm3d2lj5Wu1faLxcJwtFR2prgXkN2MMYM4DIwO2pwGnRX1prPwd2iP5sjHkJuNxauzTH7RQR6ah0nRURiaEVZUUq0WzTRKuM4lctOUkl5Yuf47rNkk8m1VWAfla4uQUg/cw4TvT+reg7kIN/9gjXHnFh67Zn7zkfjGHLuo8cH5MoHWSTtTyyeC3X1LQPNHqZkZzLGmVezpFEr1VEpFh4WS3mdH0uaW7i0lXPRmZvlJRE0ilOmgTDhsF998F//hMJoL3xBtes6ZL0OeJXmbuxwOxldVohIa6i55LbhJf489lt1VOifonLAixga58Q4MonVzr2J0LBANPHDmnzfE6r2/wKBQOcPqxfu9TYzSUBmkoClH/xX3pt2sDNz/+ahfedj7HNNDVb1xSPiVb7dya5qE2cKR2prYXEWrsF+D9gPvBPYJa1dpUx5gZjzPH5bZ2ISMen66yISFsKlBWpylED2xQfh0gx8vgBgHhOX+TipRI88XNcv4G4UMzISCrpZPx8eS0rdUm9WBr0nFLFS/24Pxx4HP0nzeWJfX/Qum3JPWdx9YIH6LlpY5t9vayyenTJunbbkg3+5Lomn5dzJNlgrYhIMfBSczN6DTe2mT5f1XPtX+7j/WknMGHuPVsfcOGFkeDY6NFw/vmw446+ngO23lenjx3Srl8RqzHcxISZy+mfxoofKW4VQ8u59ZT906oBnLDvYgzBuLyf8cGvRH2NaN/PrW5uKqIBuikVg10DX//q058R5/8WgAH1/+aDW46nX/2/XY+Zydq7uZKNtIO5qE2cKR2prYXGWvustXZPa+1u1tobW7Zda62d47Dv97XKQUTEH11nRUS2UurFYhb/jdzDYpxkX9hSDZ74OW5ZaZB6hxVaPboGaNzcRGwimhJg6pj9fLfHS9uctrstaPo63OQ5pYqf7IGXj57I5aMncsKqhVS8/TLnv1bD+a/VsCHYnVHn3s2nO/TlgH69WPTeZwmP4zRzOj61UVlpEGvh88ZwwvST2ZKtc09EpKPpWxZyXF3bOlFl82Yq5jzAkQ89SOOXG3ngwOM4YfUr/O+AQ9lhh16R1WO77JLeczjRol5JU6K0in4ef9msFe36NuEmS+/SIKVdu7geO1kaRaf+W/S/XtKQRoWCgXZZDcpd/uYAPtiunAFXzOGVe8/lcSuLrgAAIABJREFUW1+s5+X7zmfYT37Pf7bdod2+sX+jXlOHp7p/JnhJO5hKu1K6huVJR2qriIiIiEhnpUBZkZo2fzXhuCIh4WabtL6Y2xc5aFuzwS8/x3ULRgUDJdw4dnDGv+D7+fLqVvzdqY6EWz23VArDP73PCJ7eZwQj17/NQw9dTo/w1/zt3nMBGDfxd9A1cb0Kt1VnhVSHL1vnnohIR+NUz6lnAG7p9Umb2RY9gB5jxlD1k/HwvfsgmHzFcqLnSDQhwalfIZKKdPseFUPLmThzuePvGjaGqb32KMff1dTWYUge73Xqv3lZ9R7LKfV35aiBTJy53PH5DWBNCd/5ye84/fV5HPH+a6zfdjtKNzfSGOyGNZHsCcES0/o36rfuVb7qZCXK3JCsNnGidqVTmzjXOlJbRUREREQ6K6VeLFKppvhwSmnjVLPBLz/HdQtGfd4YTim1Yqptc/ry6iVtYiyn99tt9miPrslrYCzoMygSSZwwoXXbo7efw6wZV7RLyRhr2K69PbQ2v5w+Bx+L70REikY03duupYbvvb+Mn6+cy7Mrfsfwn562daeTT4ZPPoHZs+GII3wFyWKfw2tdT6UIk0Li1pdKtEJn2vzVnhdFxp/vyVaixepdGnT8O6oYWu76/BZa/xYXjjyJhsdruPXkITw9o5IPbjmePdevwZitk96iK7D81L3KV52sZN9JUm1XqrWJ86EjtVVEREREpLPSirIilWqKj3RT4mTiuLlOT+KnbX7SJoJzm0cM6sMji9e2297stpQuRomB4dUL+LjbEfSdehwzltxP/5rHOOSjt3hz+inM3mcE0w4/q12qnrf+/aW/hudB7OdQ19DYZtZ3rmY9i4hkQlrpzb74Aq64gorf/paK6LbttoNZs+Dc8TBqFJSWZqSdflb2JFr1K5JrqazQ8RPsjU9v6GUlWlSi7pxb+sXyshCLqka2P9CBe8Fza/jzQ//HHd8+ldu/ezp1DY2uK9PA/2S5bAfBk/Xr02lXIWVGSKYjtVVEREREpDNSoKxIpZPiI1tf5Lwe1y2QNGJQ4vSC6fDaNj9pE6Pvd/yA6cbNWxz3d0rfGK/Zbp3VXNfQyDH7nsWJZ13F288s5NezbuDEVQs5cdVCAI449x7e3aEfgGPNt0IU/RyGVy9oN6jilsoyU/JRt0NEik9KacQaG2HdOrjhBpgxo+3vbrsNfvIT6N49m81OasSgPsxYvFZlyiTjUrn/pjKxy2uwN76/7GclGrTPjBD7+spKgwRLTJs0pq79c2Pg2We5fuxVXDdrKpe++hiXvvoYe172FJu7uK8gTbTaLh91spJ9J8lVu9TPExERERGRRJR6sUh15BQfC99e72s7RL78Dq9ewICqeQyvXkBNbV1W2ub1S3v0/YZI8fe6hkYskQHTTAatGsNNLHx7Pd2GHcxhFz/MVaMubv3dXx78KWtuPpZvfvG/jD1frrgNZGVrNUN0YDv2c7ryyZVZO49EpHh5TiO2fj2cempktVifPvDCC/CXv8DRR8Oll8JXX0VWlEz8f/buPT6K8t7j+OdJWDSharCilcitaqMilSiKlZ62YBVaL0S0Xo63VlvP0dpWtNGgtqK1JUqV3mw91mO19YaKRsALWqHHFkUrDaioeKkXXLSiEqsmYEjm/DG7ye5mZnd2d3Zndvf7fr14kZ3dnX1mduaZ2ef3PL9nZuBBsrb2KAtWRhUkE9/lc/1Nl47b6b7QKcVzXDxhgNP9crYjrlJHoyVu38bObjBQF0vlXW1MX/3gts03jpnEhLP/1Pe4+dGbBpQ7LlJt+HjzFsf74WxSjfsp02+SYpRL93kiIiIiIpKJRpSVsbCl+PDakzPbFCzFnJy8eWoDzXeuTuoJnKgmUp30439S61LPk78bkz5dj5toR1dfAOnW8V/j1vFf42cP/ob/XP0gACt+901+95WT4a19Yeedk94btt618fK4qc4296VHmSaaFxHxKu017MMPYf58+M53kp884ww46CBYvx6q8uvDVIh63amOFPFDIa6/TveFzXeu5lNbD6Kru4dqY+hJuOGqNoYTJo7g8qZxjuvLJu2ogQGj0VK3r7vHwhj7njGxjDPnr+Kp198fUI7hdTVEgdEXLObkfyzm7rFTGNSzhQPfeIa/jWmkvq6mb7TaR5u20BEb0ZZ6P1yo9OpepPtNUoxy6T5PREREREQyUaBMiiKbYFa2KViK/uPXJVZT7/DDPpteyLkEydxcOO1sLpx2NsevepCm5/+PM//yJxj+Jxg8GF5+GUaMKGqA0YvU8jjp8XMnJQhq3g4RKT91tZGkkcM7fLyRL762ilFsgiPmwv/9X/+LL7kELrzQrpt9UKh6XXWhFEohrr+Owaleq++8TL2X6LEsFqyMMmHU9o7nSfPUBprvWk13T+Z7kBMPHOnpPtApu4AF3LLijQHlaJ7a0Dcn2Z/2PRyAsx6/g/Mf/aP9go8+giFDmNS6dMB6U++Hw9aJLq7Q5dJ9noiIiIiIZBJY6kVjzAhjzDJjzHPGmDXGmB/Elm9vjHnYGPNS7P+hQZVR/OM5FRXpU7A4pdIp5o/fuUvWemooictmfoVcRku5pRCKu7Pxayz+5S2wzJ63jE8+gZEjwRjuuulBz99JqkKkqvEyYqFAA8rSzudR6lTXihRPW3uUjzZtYeTGt7j91hZeu+JwnvrNyfxi8VWc9sKfYfZs+OtfoafH7h0xe7ZvQTJwv9aed8fqvOrtcqgLJZwKcf3N5f4v3f1PU2M9Qwan71togJMOHOk4GiwbFgwoR1NjPSceODKpn9bNjV/vf/CpT8GyZWUZDPIrtXo53+eJiIiIiIg/gpyjbAtwnmVZewEHAt81xuwFtACPWJa1O/BI7LGUuGx+vLvNZQAD5/uadfczbFfjPKF5IX78pmtscJrvYPIewzyv2+toKaf9km6dC1ZGadtud7tR9oor+p67+Zff5rHffpNtNn+c9J5MDSrxEQt+85LWqEADygKbt6NIVNeKFMOGDSy8YRHX3/4jHr3uOxy47tm+p35w/Gy2W/scfOUr8MUv5p1e0Ulbe9S1Hu2xrL7rUy4Nz+nmdhLJRyGuv7ne/6W7//mgK/38snW1ESaM2n7A8sl7DHNMRJCu349TOS5vGse848b33QNu85lhtP3jTTj2WPsFU6bwq0eucVxfKQSDnOolP+cVK/P7PBERERER8UFggTLLst6yLOsfsb8/BJ4H6oHpQHyW6puApmBKKH7Ktien0wTtbj3ljbEnL0/V+ckW30c+ZWpsSO2RvOyFDZ7X7WVEWbUxA/ZLTST9aZxUpvPPt6NNZ50FwPAP3+WpX5/Ib+/5GcP//Y69LMM2FmqumkLNP+ZFponmS5nqWpECWr0aPv95iETgM5/hMy+tYdTGt1i8x39w0aFnMeb8hYy+YDELR00oSHAszksHhq7uHmYvXJN1w3N8zjOv9X6dS+cVESeFuP7mGthNd/+T6d5oY2f3gHOprT3KgpVRnPr4pOv3U1ebxTk0fz78+c8AHPHUA3wqZbPdgkF+jdTyg1tAbPbCNTlnPkhVzvd5IiIiIiLij1DMUWaMGQ00Ak8AO1mW9VbsqbeBnVzecwZwBsDIkSMLX8gSFG/cKvaE3U6apzYMmH8q256c6eZ5iFQNDLLEGy3Avzm3nLYjXTmzSXfjZUSZ02vmzPg8585fRW+a9w0YZXDNNbR9+0L++Nt7+O3tl/D1Fx/j6y8+BsC0b/2aSa24Hi+FSuHjdUTdpNalBTmmwzpvh59U14r4IBqFX/86aYQuABddxNruvfjKPlMH5Ikt9IgOr4GsDodRMenm9PQyd2Sq2UeOzfo9Utn8vv7G1xW/B66JVNHZne4uKfM9qZf7v9RzKdeORRs7u9l11v30WFbf/LdPvf4+t6x4oy/AljT/4MEHw+bN8N57XP52Lx+cez6Pfno3XpjwZcf7pLDNUevWEc5t3+V6H1oJ93kiIiIiIpK7wANlxphPAQuAcyzL+rdJaFyyLMsyxji2nluWdR1wHcCECRMKlJCtdLW1R2m+czXdvfauiXZ00XznaiCYH8GpjRZ1tREsC2bOX8XcJWs9BTyG19U4ppWqNqZvO1OlawDMReJ2uKW4SmwQdSuzk2pjMgaL6h0aW72UyWm0VlNjPZx1FEfvuhdf+Osifn7/LwB48A/fA+CQN2+A0w8dsO+y2aZseNl+6A/6Bd2wU2pU14qkl7ZzybPP2qM2amrg5z+Hl1/uf+Ptt9vpz4zh5PYoz+XZKSQX+XZgSHx/4n6o8lgvx9XX1Xi6JonkymsnsMSgyKTWpXS63D/2WlbSetzWn3of63ZW5NpZKlX8vIt2dNF812rH+XGT7nEHD4add6ap6l/wl1s5FfhX9MvM4MfMnL8qaVvSzRscxP1UtvupFFJJioiIiIhI6QlyjjKMMRHshttbLMu6O7b4X8aYnWPP7wy8E1T5StnshWsGBI+6ey1mL1wTUIn60ynOO248m7p76ejqzmrOAbf5BTI14hW7oS5xXrJs0v/0WJbjyLi4dI2t8X2bbt3p3vf4fxzB6AsW84f9juh77uFrTuPd5otgQ3L6yELNVZNNY2xcril4Ko3qWpH0nFJ/3XvVH9m8/Q726LBx42DmTHjwQbj2WnjuOTuNrWXBccf1jSALKr2X14Zjtwy38fen7ods6mWDvd8mtS4F0Nw/4rtc56xyC8T0WlZSKutM609MC+7UcQkGdpbyg1OQLG7Atu20E6xYYf+54v9YPutgtv+4I2lbspk3uBjc9tPQ2ojmFRMRERERkaIJLFBm7OEM/ws8b1nW1QlPLQROjf19KnBvsctWDpzSK6VbXkzperKm49YA6dZYEZcm9pS1tvYozXetTht8u+/pt/r+diqzW3mqDK6zu3ttbHXbF5n2Ubxx5NKv/hejL1jMRYeexZvb7si3H7kJdtzRnlvntdeStiksgmrYKRWqa0Uyi1+Xdul4my++2s6iG3/AH265kK02vme/YOhQez6ye+6Bgw+GPfd0XZfTHJuF1NYepfOTLZ5ea1kDLzOJDc9eU8XFRynH/zcwICXcrLuf9lQmEa9yvX/0Ok9uNut367yVGMRJ7DhVKI7bNnEiX/nJA30PV/7mJHZ9d13ftmQ7b3Chue3LS44Ym3fHgzDNxSYiIiIiIuEWZOrFScDJwDPGmFWxZRcCrcAdxpjTgdeBYwMqX8W6uO0ZbntiHT2WRbUxnDBxBJc3+RcYyacnq9v8AunmjXDJypiTSxetSduzF+y5JRKllnl0y32O7+u1oNdh3fV1NWlHiyVqntowIEVPpNpk7H2bmk7xlsavc0vj1znqnTXM+8MFduvqmDH2k+3tNDWO55z5q1zWVlxZTXpfmUqqrg3T3IpSIe6+m2UXHcfgXjvY1DL1bLqrB3HrPtNYuNeXuP3WWQEX0J3bHGKJgat0yw1w9H791yivHQ8S7wsmtS4d0HlE85NJIeR6/5hpntz4dcetE5TT+lNTMTpdr5a9sGHA+/yWug3xskQ/6mH0BYv54aN/5OzH7+CjrWrAsli/sZN5xzfmPW+wnzLty1zvAbKZi61Y9x66xxERERERCa/AAmWWZf0N1/EzHFzMspSjKuMcIMo0uuritme4ecUbfY97LKvvsV/BMrc5rnLtyRr/gVmMwE1qECwX9VnO8eWl4TJtI4+HQKFbI9KXv3ci3HA+3HgjfOtb9hONjQBs+4Pb+ffWn/KyCQWVQ8bGilJKdW02jVoiObMse86xH/8Y2toAGBx76tKDv8ODDQdx+/hpQObRuEFzGwFWVxthU3dv0nNOwTOL5MZ8r3NQxt/T1h7VPGRSNLneP6YLxLgFm72s363zVly6+7eaSLUvAWWnbYh2dPWd7z//0ilc9R8nYZkqTmq/n8sf+i18bx3MGBeqgE2mfZkLr3OxFeveQ/c4IiIiIiLhFugcZVI4bqOoMo2uuu2JdVktz4WXdDXZamqsp67GeWSR2/JCcfu8ePqXeANGoppItev7MjUAJc6p4aS71/KU1vLo/eqT0mkljjLgm9+0G5dnzux7z99+dxq/ufcKdvzwvbTr9iqSY230QQjSiYo/ck2r5SelaSpTlgVLlsBFF8Ef/gBf+lJfkIw992TZzfez58UP8IcJ0+mo2RYojblw3BriOzq7B6Qsc7v8J67D6xyU6zu6+q49IsWSz/2jW0rUTOlGs60HEq8hbl1UhtZGmDNjXN89V67igfzZC9cM2AaL/o+3jH2D9cV1sXSoI0bQ9OTioqaIDYLXEYjFuvcIwz2OiIiIiIi4U6CsTOU6V1WPy/Act+W5cJtrLN8f6bOPHEskZchcpMow+8ixea03G26flxrMSmzAiG//7CPH5tQA5GVOGbfGgniDzuiW+7hlxRt933OPZbFgZXRgkODqq+0G56ee4p+frufwF/7Kk789ldeuOJyxb7+ctgyZHHfAyJzeF9ScGuK/fNKy+iHxPLXo7+2tYFmJsiz43e/AGHuexWnT4Ior4Jln4O674e237dc89xyTT/xaQa5LhZZurqHUwIDb9T9xHanXZ7eG/OF1NZ7nMxPxSyHuH9NdX7Jdf+o1xO3WuSOWneCqY/fxFJh2Er8/bGuPus4/bEHSvtp0y+1w5ZX2k//933ZK7d5ez5/p1pEkrB1MvM7FVqx7j6DvcUREREREJL0g5yiTAso0H4ObamMcg2L59npNVYgUK17miyik+jSf59SgGG/ASJ1/LNvye0l75dRYkJoCJvVbd0pP02e//Wg6ZR7T1i7n2rY5ANx30zkAfP2bv8pYHie5zOURqco8/5qUDr/TsmbLa5omCbHeXnjuOWhvh4svhjf6UwnzhS/APffATjs5vrUQ16VC83qtb2uP8vHmLQPe7/TaxP3glJYu/p6ZIZmnUiqL3+ep23XH6/ywiXNOVbncQ6eysOfWnTNjHHNmjOO8O1Zn1SEt8X5zUuvStK8bsA2NzXDUUbD77vDaa7D//rByZcbPdEsb+NTr77NgZbRo6QSzmePLa/1YrHsPt8+pMoa29qhv+0vzoImIiIiI5EYjyspUrr1uT5g4IqvlYeOWWqcY0n2e116kuZTfSxBz8h7DBizLZyRa3IMNkxh9wWKuPWBG37L7b/w+tLTA++9nLFc2n+XIx/htWHtEV5JCpGXNhnp7l6jubrj8cnvkWHU1jB8PXV3w+c/DrFnwyiv20I7HHnMNkpUqL9f6eAN36qiTePq3dNeZdOvXaF4pB/lcd1JHkGUT7ErshJHNyLJ48Ct+3qa7PjkFzCe1LmXM9Wv54k8fJnrI4fDLX9pPvvVW2s9160hy2xPripZOMNtR315/CxXr3sMttW2PZfk2el0j40VEREREcqcRZWUsl163lzeNA+w5yXosi2pjOGHiiL7lkptC9lb10jDjNFrLS+O/1/K1Tj6N1smncdrf7+XHS39vpze74gr49KfhySfhs5/19FleRscl6u6xfBntownWwyHoUaFBj2iTLGzZAo8+aqcPe+ml5Of++EdoaoIzzgimbEWW6Vrv1imidvAgT+eW2/qbpzbQfNdqunv8S80sUmz5XHfyTT8a7ehiUutSJu8xjK0jVZ7W5XU01JDB1cxdspaZ81cxvK6GyXsMSxr59ea/N/PVid9lzpAxND3+OBx0EAwZAh0dMGjgz0O3e0a3e9B8Opi4jYjKZdS3l99Cxbr3iK/PaQShX6PXNTJeRERERCR3CpTJAJc3jVNgzGe5psL0ot5DgMmpwSJTYCqX8t2w/3Ru2H86rx05FA47DN57D3bd1X7y73+HCRNc3+u0j7zINrjmRA0L4eHUqFWsNEKFPE/FB11dcNttsGKFnUbxjDPsgBnA0UfDb34Dn/lMsGUMoUKNlGxqrGf2wjWu8yOJlIpc0zl6OYciVYYtluU6X1m0o4ubV7zh/KQDp9FQqdetSLXhky29ffdH0Y4ublnxhmOK7ZnzVxH5+hgOA/j4Y4hEYPVqe0RuAjuQ530+s1w7mKTruOR2v+fHqO9ipd5taqx3TVvrx3ZoZLyIiIiISO6UerGMKZWc/4bWRrJaHpea/mVobYStBlUxc/6qvL8bt1QuiZwaLJzeF89k6CVV55DBzp85ZHC13TN540a45Zb+J/bf306Ntm6d4/sS91GxqWEhvIqZRijXlLVSQJs3w9ln23VHbS2cfrodLOvogEcesRt2LQvuuktBMhduDdaJy7O9X2hrj9J42UO+BMn8ngNVpFjczq1qY/ru9YZsNQjL8idTdOK9ZvycnTl/FVtHqqirifRdt4YMHkR3b3JYzG3cpwWc8+BrtK1cZ9+nAeyzD1x4YdLrNm/xHiQD55TfXrh1XLp00RrXfVhqo7691MlhXLeIiIiISLlToKxMKUd9YVxyxFgi1ck/1SPVhkuOGJvxvfH5x+YdN55N3b10dHX78t00NdZz9H71ro2NbiNinIIC844bz2se50fr+sR55FfS8v/8T7sRe9as/mW77QYnnwzvvutYpuUtU/yceswTNSyEV7rRfoUQ5DyHErNpE/zjH9Daas8pds01/c99+9uwYQPMnAlf+pIdPJO0Ms2/k839Qlt7lPGXPsQ581exsdOfkWTZzOskEiZu59ZVx+6TdK8HdkAq33ubjzZtoa09OuCc3djZzeYtvcw7bjzLW6bwQZYB7O5ei7kPvWinyr71VnvhnDmwYUNfQK43y9PUKeW3F24dlDZ2djsG+wwD01GGXSHnRAt6rlcRERERkVKm1ItlSqnkCsOPeQyy/W4S087V1UawLPigq7vvswEWrIw6NjZWG8PR+7mnk8kn1Yxb32LH5T/7mf3vscfgqqvg5pvtfwBPPAEHHJD08hMPHJlVKqJ8KeVeeGm0X4V47z34wQ/6R6Fuu60dKJsxA8aPh299C7bZJtgyZqlYKUMzyXTd8npNSk2J5heNKJNSle7cmtS6dMC5km9IuLvXYvbCNXy4aUvaOa5ymfO175p6wglwyCH8bcFSzv5tO7u9tIpPbTUEho3ObX1ZyrbsFqU3l2wh50QLeq5XEREREZFSpkBZmXL7kenHfE6VLt95DLJp+G9rj9J85+q+FDqJPfjjvf7TTQDfY1ksWBllwqjtw/Ej+aCD7H/LlsGUKfayiRPt/xMCZhNGbc+tT7yRdQ/mXKlhIbzcGs2qjGFMy336rkpZZycsXgzHHZe8fOxYuPpqu44488xgypandPPseDlW/Q6ypbtuuV2Toh1dTGpd2tdJo8NlREe+NKJMSpnbuZVPZ45IlRmQOjEuXbrT+LXSrfNPlYGPXbIBJKViXbeZWW9uyyebN3HXLRcAcMv4aVw09WzP25DriHy3sm81qMpx24NI1+2HQs6JVqz51kREREREyo1SL5Yptx7a5d5zuxTmZcsmzd/shWtcG0vA7kGcKf1VIdPU5WzyZDsl449+1L9s4kQ45hh47z3mLlnrOUjm1zGtlHvh5DYHX49lKa1sKXrzzf6RYrfdlhwku+gi6OqCZ5+FQw+FQaXblyeflKHFTp3sdk0ysc+Op3YrVDir3O9LpDLlGiiqr6th7jf2ySkAZLDrD7f5Nn961LgB6cPBDswljqCP1189VdWcdvSPAThx1YO8dsXh1H6SOQAYrztyuQ93K/vsI8cqpaCIiIiIiBSUAmVlyq2Hdjn33C6VedmymT8gXc/hbIQ2Td1ll9kBs0svtR8vWAA77MA1vzqTMe97+97K+ZiWgY1mTo3qoQwGS7933oGvfhWMgREj7DkLn3jCTqW4YgVs2WLXA5dfDltvHXRpfZFPylC3INt5d6wuSCcQp2uSIf80cV6pDpdy5NbJw01NpJpfxOYYa2qsz/r9YJ+z6a6FTY31zD1mH4bWRvqW1dVEmPuNfZI6ByXWU0t3O4Bx58zve/zcvG8w8YM3HOuM+P/xMzrX+3CnjktuATR1ahIREREREb+UbndtSWtobcRxpFHij+NyUyrzsgWR5i/Xns1F8+Mf2/+efRaOOYbxa9ey7Pf/BcAhp13DS8NGub5VoxHKX2IaoTEt9zm+JrTB4Er13nvwyitw441w7bV2ICzu6qvt+ciqyrevjlvKUC91sduxHA8oZZvG0U3q/JdbDarqm/+ymGmaSzV1mkg68XPzvDtWpw0GG3C8D3S6V+z8ZEvGLALrO7oypn7NVG+k1gEfbjWE0RcsZt6in3PUc3/hvDFVrD9k3ID72LlL1g6oO7q6ezhn/irmLllb0BSyIiIiIiIi+VKgrEy5/SYv547b+fTgz1Wu88h4/bHvFvCMq4lUs3WkKmPDyeQ9hmX8rFDYe2944QWevOJaDmix5yZ6+IbvEt1mGId965d01Gw74C0ajVBZ8glASIE9+yyccgq0t9uPR42Cc86BH/4Q9t8fjj66rINjidzm2fGSJsxLoCrfTiCpDekbO7upiVQz77jxNDXWM6l1acYy+DXqrGSuT+ILv+ffC7P4ds2cv8rxXKmvq2F5y5S070/cN6nnrZPhdTV5dxxzqr8ALj76AuYd/l3WvV/DAbc8wv2LruBv193Bzx7/l+s2xvkV4M9GJR1rIiIiIiKSv8posapAH7ik7HNbnsjPeb6KOWdYNnN/+aEYqR4vOWKs43wS0J925pIjBs7bkGrZCxt8K1MxrD/0CHa/8D5+cPh5ANR/uIERHf9i2EcbGdr5QdJrNRqhsmSTulSK4N134Zpr7LSK48b1B8mOPRbuucceOXbllfCNb1RMkAzc59nx2kjtJeVaPp1AMs2hlqkMkWrDoKrka5MBhgzOLlUcwH1Pv5X1e6Q0lUqK7Gxkus9taqznxANHknonVxOpZvIew7K6R06sVwDHdTZPbci745hT/XXSgSPpteANU4MFTHrsfrZ78TkO+8re7PX3ZZ6C5sVMk1yOx5qIiIiIiBSWRpSVqVxHXWRK15INP9flRT49+HNRjFSP2aRpdEp5E1dqaennYOp4AAAgAElEQVTmLllLd4/FvWMnc+/YyQz/9zus33ZHrrz/Fxz7zJ8BOPjbv2P9Z0YrQFJhgkhdKikef9yeT/CJJ+Dkk+Hss/ufu+UWOOEEO3DmURC9/ovxmbmmCfOasi2fTiCZGtJTz7O62giWRV9qxo83bxkwh6YFWDmM8M00IlrKR6mkyPbK633u5U3jmDBq+6Q6Z/Iew1iwMpr1PXJiveJWj7ndD1rApNalnuq71PprUuvSpO/u6i+dzDafdPKtlYv4/d2X87dR+3DS8T9Nu04o3v1ouR1rIiIiIiJSeAqUlalcg0Z+/rAs9o/UYjeg59NjN5tGWi+NrfHXuKXLKrW0dKn7cP22OwLw+/2P6guUPXK9nZqRE58vatkkeJqnJABPPw3TpsFbCaN/xo2D3XeHNWtgr71yWm2xO1QE9ZnZamqsZ+b8Va7P59sJxEtnmnTnmdtcgZ3dvTmXScpfECmyCymb+9xMgad073Xjdo66pU6E3Os7p+/o0q/+F/eMnczCP57LF19fzStXHsmuzfem7ShRrPvRcjvWRERERESk8ConD1KFyTXtk58/LIP4kdrUWM/ylim82noYy1umFLTRM9dUj23tUZrvWp2UDqb5rtW+pIPJJy1dMdNkZuK2D18eNorRFyzmzOkt/Qv33BPa2opUMhFvwnQ+5ezll+HJJ+0A2T779AfJhgyBxYvt4NnkyTkHySBzCsBCCOIzc+FWD1Yb4zmNo5O29igfb94yYHk2wTc/G7trI7oVrRTFTpFdaPnc5xbyHjk1RWOqXOo7t+/o6Z0/x+4/vIf3arblfydMB2MYuc1gfnHc+EDTJJfbsSYiIiIiIoWn1okylkvQyM8fluX+IzXXoNSli9bQ3ZOcnqq7x+LSRWvyLlOuAdKwzeXgtG8N9M2B8cAeX2T0BYv576ZZPLVrI+y3Hzz2GBxzDLzwQtHLK5IobOdTVhYuhNpae0TA7rvD978PX/6yPc/YY4+BZcFHH8Fhh/nycUF0qCiVkQZu15irjt0nryDZrLufGZA2cWhtJKvgW/PUBiJV3tNrpjN4UPbzmklpKoc5JhM7QVS5jJzycp9b6Hvk+G8At7M02tFF42UPee7MkW7ewu7qCPt9/1Z+NuV0Pt27mUcvPpSmb36dOUftndM8jX4oh2NNRERERESKS6kXJYmf83wVe86wYss11aPbfCz5zNOS73w7YZvLwWnfOqUJe7BhEksaJvHqiBFw2232vEkLFthPPvecPdpMpMjCdj5l9Oqr8Mc/wuzZyct/9CM4/XQYNapgH53rfJql9pm5KEQ6YadjE6B2sH07OKl1qeeUwJcuWuPL/GIfdOW/DikNpT7HZGraVqc5BL3e5xbrHtmtvoP++04v6Rjjy89JkxJ2aG2Ey/5jFMwFnn6apv1G0PT66zByZB5bkJtSP9ZERERERKT4FCgrYyf+/nGWv/J+3+NJu27PLd/5Qtr3+PnDshJ+pIZhriQ/5tsphREWQ2sjjo2yfY3b559vj4CZMcN+HE8H9847MGxYkUoplcYpSB3688my7MDYo4/CihVw1llw6aX2c7vvzl9+dDUXRWvtbbrtFZqnDipYPRdEhwq3z5y8xzDPgaJi8fsa43YMxq8b2VxHOnwIkkH4ApRSWGG4b8qVW6C52hh6LSureqNY98jp5itL1NXdw+yFa9KWp6mxnrlL1roG3jZ199JdNxS2bIGddoL33rM7WlxzjX2d8VmmTmKlfKyJiIiIiEjxKVBWplKDZADLX3mfE3//uKdgmV8/LPUjdaC6msiAtFfx5bnwY/RKLiMsqo1x7E1dnWYSd6+cgn9ueWIn75EQBDvqKDsIcM89/QGz66+3g2gbN8IOO+RdNpE4tyB1XaagbhAsCxYtgunTk5dPmQJf+AKsXw+f+UzCNtn1QS6B92wE0aHC6TMn7zGMBSujeXU4KAVudb0xZH0dSTdSJRtJdbhIiLkFmnsti1db/UlH6zcvI8HiOrq6++5P3erAdIG3pDrj3Xdh3jw491z47nfhgANgwoS0n59NdgQ/OomJiIiIiIgkUqCsTKUGyTItl+KZfeRYmu9cTXdvf5ApUmWYfeTYnNbnx+iVbEd1tLVHGVRt6NkyMFB24GeHev5cN07Bv16X1y57YcPAhfGA2fPPwy67wJ13wgkn2M+tWdM/2kwkD25B6q0GVVETqQ4+7WxvLzz5pB0FOeUUePHF/uf23x9uvHHAuRBE2sggOlSkfuak1qWllS4zC4mNz9vVRKiuMvT0JtfdDn0egPTXEa8jVTJxrMNFQshLpyKvwZ5iBnoyjQRz41QHZgq8JdUZM2fanTN+8QvYd187eGZZjqP8s90ffl2r8k1dLiIiIiIi5cNtkIaIFEhTYz1zv7FP0gTnc7+xT84/zP2YEL6psZ45M8Z5mnQ93pixeYtz6GrN+g89f66bbBpz0gYE99wTttnGbqCJGzvWDhysWZNHCUXcj70Puro9n0++27IFWlvtY7y62h4tdsUVdqD4hhvgn/+0GyqffNIxYBz6tJEFUq7bHa+vox1dWNgjRlKDZOmku444XTdqI9nfVvoxKi1oxpgbjDHvGGOeTVi2vTHmYWPMS7H/8+9FIoFqntpATaQ6aVliJ4jU8y0e7Glrjw5YV7pAT7HK7oVTHdjUWE+913vPz34WfvUrqKqCadNgxx3hpz8d8L5s94cfdXY235eIiIiIiJQ/jSiTAdS7svD8HEHh1xw/XsvkNkdHnFNayWy5pXV04ikg+LnP2cGBe++FpiZ72d57w9VX2z2epSBSR7IYY89rVC71SrrRBUUdJWVZ0N5uB8KuuSb5uRtusEdY1tV5WlUuaVjLQabtDuq6mO/nZqqv0/FyHUk9zse03Jf15/iRrjcEbgR+A/wxYVkL8IhlWa3GmJbY4wsCKJv4JFOq2GxGORU7OJ9a9u1qInywqdt1NGmcW92f073nD35gj26++GL4yU/gww8hYqcdz3Z/+HGtCmIEtYiIiIiIhJdGlEkS9a4sPdmMBvNDMUZYeA2SZR0QnD69P2A2apTds/njj+G88zTCzGdOI1k2dnaXVb2SaXRBQW3aBC0tcNxxsPvusHSpHRQDOPJIePNN+1j/1rc8B8kg4G0KULrtLuR1sa09yqTWpYxpuY9JrUuT1unH5+ZTX+dyHckloOq1vg8zy7IeBVJzW08Hbor9fRPQVNRCSUE0NdazvGUKr7YexvKWKUnnSDbBHj+yAWQrseyrLjkUMpx66er+nO49Tz6ZB5c8Zf+9eTMMHszS+Q8D2e8PP65V5TqSWEREREREcqNAWZkaWhvJanlcsVPBiD/SNdz4rRgjS+pqnI/TmkiVPwHBI4+E116DE0+Ev/zFHlm29952urrOznyKLjGZRrKUQ71S7CA1n3wC8+bZx2lNjZ1S8Y47YMIEe6Tkhg39geD63MpQ9G0KiXTbXajrYqZAmB+f61ZfZxrDVR8bFelFYrCv85MtRKqyGyFWJiPKnOxkWdZbsb/fBnZye6Ex5gxjzFPGmKc2bNCcbaUqm2BPpuC8WwC9GOUFb3V//N5z3nHjAZg5f1Xa8ra1R5n51w2MPn8Rf6+3U/9uvuxy2tqjWQe+/LhWBRGsFBERERGR8FLqxTJ12Od35uYVbzguT0e9KyUTp3Q7fnNrN906Us3ylin+fthhh8GiRXDEEfbjP//ZDqRJXrzUGaVarxQ1Dd/mzfDww/Zce0cdBRs39j93yil24Gz77X39yKKmjQwRt+0u1HUxU9ovPz7XLT3a0fvVs+yFDUQ7ujAkDyzxOiqjrT3K7IVrktLtbuzsJlJtqKuJ8EFXd6YBK0B5jCjLxLIsyxjjuqGWZV0HXAcwYcKE8t8hZSqbdIRuaRyBpHXEA+iJ7yl0ebMJOMUD/l7K21fnGcM3TrqSPd55lXXb7cSn71/Do5v/RtVhp3LFX173fG3N91rlV+pyEREREREpDwqUlallLzj3SHZbHlep89PkqhLnc4tv3znzVxXsMzZ2Os9ztrGzm11n3U+PZVFtDCdMHMHlTePy/8DDD7dH4nz8MdTW5r8+ca1LUl9TarJpFIy/Pus64v334dxz4aab+pd973tw1llwwAHw5S/Ddtv5tk2SXqGui5kCYX58bqY5lSC3YzT1PEjU3WMxZKtBrLrk0L76Op36EqwHPPqXMWZny7LeMsbsDLwTdIGksLycb6mvT31uUuvSos2blW15neQzL9sLO44BYPKTS2HhFRz5k59w5PLlcJDPHaJc+LH9IiIiIiJSPhQoK1O59kRX70rvsm0wLydNjfUFDZSlE2907bGsvlGTvgTLAIYM8Wc9knHkYTHqFb8D2W3tUc67Y/WAhn+3RsGs6ojeXnjkEbj+ejudYqIHHoApU2Dw4JzLLrkr1HUxUyDM6XMNMHmPYVl9TqZRF7mMysiUWjV+r+FltFjt4LLNAr4QOBVojf1/b7DFkWLId5RTsTM7FLO8bnVe+xcOBes5e3T/pEnw7W/D73+fc5myUakjqEVEREREZKCybZ2odLnm3a/U+WlyofncwuG2J9YFXQRxkFqX1NVEGFobKVq9kmn+p1zX59bw79QomLGOWL/eTqd45JEwdqw9X96yZXaaxQsusOfLsyyYNk1BsgAV6rqYaU6epsZ6jt6vPmk+MQtYsDJasDmLvMrUaF9XG2FS61JP63rpnY/9KFKgjDG3AY8DDcaYN40xp2MHyA4xxrwEfDX2WCQtv+fNKvR8Z37Ny8bChXanELA7jBhjpx4usGLNByciIiIiIuGnEWVlqnlqA813raa7p79RN1JtPPWAV+9KbzSfW+FUG+N53ppKmN+mVAVZl2STDirX9SVyahR0qgu23fQRZ83/Dcw6OPmJs86C738fLrsMqqsHvC8olZhe1onfx3J8v3Z19/TVd/UO+3fZCxsGzPPlVxq2dN9tpu89XWrVSLXho01bXFPoliPLsk5weepgl+UijvwcwVqMzAd+zMvW1Fhv1zmrBvPvc+7gmV8ca7+hwPd3lZwZQkREREREBlKgrJyl/r5UPMFXms+tcA787FCWv/J+0MWQEuZ3IDvd+9waBeN1xHZdH3LoSyt4v3ZbfnfPHAb3bul/0Zw58MMfwqDwXY7ViFgYqfu1x7L6jqFMc/pkWp5rGRK/WyDj9+6WWnVobQTLgo6uygmSifgpn3mzUgPcnZ9syavDiJeOEn7My5ZUH21Vy+gLFlPHFmY//x5Nv7uUN1//F8dN/oHvHTb87lDjRh1ORERERERKQ/ha5sQXc5espbs3OTLW3WsVZDLwSlXJ87kVOjXNa+9pVF65CKqByO9Attv6qo1xTsP3/PMsvvlchq5Z3beo9cvf5PqDvsHepx3Ll045IlQjx5wUqxGxGMLUUJnNfi1Uh4xMaUEzla+psZ6nXn+f255YR49lUW0MJ0wcweVN4xjTcl9eZROpdLmMYL247RluWfFGX584txGf4C3Qnk1HiXh54/XszPmrmLtkred61qk+6mAQv1z8NE2//z27AMsfWsg+37+NKPjWYaMYmSHU4UREREREpHRojrIypbSAhVep87nFf/QXUroGnlT1GsEXSm3tUfb60QOcM3+Vb/OEZSPT/E9+re+qY/fpP+c/+QRuvhm++EXYa6++IFmPqeLIU+axaOpJDP/VXL70rSbann479POilMt1xO/56vKVzX71+zj2UgYv5Wtrj7JgZbQv9W2PZfXNnaZR1SLF1dYeTQqSZeLlHM12Ht586lm3Oue1j3uZfNn9fY9X/+oEpq1dnvV8wG7zkPk9H5wTzWcsIiIiIlI6NKKsTNXVRhznB6mrjQRQmvJVifO5ZZqrqZi8zrsnxdXWHh0wR2JcsUYk5ZO+Kqv1bVkP+3wdttvODpTtvTe8+y6MHg2zZ8Mpp1BtDAsT1lUqPczDnl7W6yixsI2My2a/+n0cey1DpvKl26duaRlFpDDmLlnrOUjmNdCebUeJfOrZdPXRax1djL5gMRc/8nu+/dS9XNs2h/9qupCHGg7KuA2Q/npbjMwQ5dLhRERERESkEihQVqbc5r8u8LzYUgFC9eNex3MozV2y1jFIFlesY8jvQHbf+t54A046CWb9Nen56w8+lZ1Oa+GI3+8KxriuJ2yBGzdhTi+bTbAxbA2Vk/cYxs0r3nBc7qQQHTKcvttIteHjzVvo6OrGkFy9pn7v6fZpvKznzF/lqSxKbSCSn3R1WV1NhCFbDco60J5tR4l86tl015q5S9YS7eji8oO/wz1jJ3Pr7RexavjnGL7d1tDZCbW1aded7nq7vGVK32sKlZY37B1ORERERESknwJlZaqja+BosnTLRbxy+9EfBM27F06ZGsZKsoHolVfg7ruhvh5OPLFvcdegrfj+kc08vPuBANQ88DI9NTVpj8mwBW7cFGo0kx/CMM9Xrpa9sMFx+X1Pv8XlTeOKUobU77auNsJHm7b03SNY0Bcsq3f43jPt06bG+r4G7kx6894akcrmdj4aYPaRY3Oqs7PtKJFNPes0GnjOjHGu15p4OdZ8Zjf2OWc+NZFqbvvwSRjyVbjhBvjWt1y3I9P1ttCZIcLc4URERERERJKpI2+ZqnYZzeC2XMQrpzlzghS24IKkD0AYKJ0Govvug223tUeH7bYbnH++nV6xtRVefJFJcx5hz/MW9AXJwNvcI8WYF8UvTY31LG+Zwquth7G8ZUoogmQQjnm+cuVW9o2d3UWdNy3xu60dPIju3uRRoPEgmdP37mWflsx5LlLinM5HA5x44Mi80g1nMw+v13rWbS4zwPFa41aO8XvEynHaabDXXq4pM/y63rrNc5ZJpc5n7CdjzDRjzFpjzMvGmBaH5881xjxnjHnaGPOIMWZUEOUUESlVqmdFRPppRFmZ6nH5wei2XMSrbNNqFVoYgwuVrnlqg+scZQftuj1zl6xl5vxVoRqh1KezE379a7jqKtiQMPKnsdEeUTZ6dN+i9R0vOq4iU/BWPczzF4Z5vnKVblRuUCNk3Y5Zt3KGbZ+KVDKn83HyHsNY9sIGxrTcl/P5mc1oK691Qi6phx3L0XgK7L+/HSR7/nmoqoJXX4XRo5NGrG1XEyFSbZLuR9wCeG5lz3de0Uqcz9gvxphq4BrgEOBN4O/GmIWWZT2X8LJ2YIJlWZ3GmDOBK4Hjil9aEZHSo3pWRCSZAmVlqt6lIa5eQQXxQVNjfUEDZUMGV/PxJz0ZX6fgQjjFG4QuXbSGjZ12Kre6mgiH77MzC1ZGc25sKgjLgttug3PPhU9/Gnbd1V7e0ABjxsAvfgFf+ILjW3NN6acgQ/6yDTaGqaGyeWqDa/0Z1AjZdKnb2tqjjvsu3T6NNyx7oXHuIvlLPB/zDexkI12AyYmvqYf33BO2bIFddoG334YxY2j7x5tJ297R1U2kyjC0NkJHZ7djGTPtrzDOK5rtfi9hBwAvW5b1TwBjzO3AdKCvAdeyrGUJr18BnFTUEoqIlDbVsyIiCRQoK1MasSClLFJdBQwMlNVEqth+yFaV0DBQ8pwa0Se1Lg1HY5NlQXs7HHwwdHT0Lx82DI44wp7vZFDmy2M+9WyYAjelqJSDjU2N9cxeuMZxztCgRsg2T21g5vxVpI4BtchtlJtTw7IbjXMX8VexAju5BOR8nzOyuhreegsWLIB6O6i116vP0D68gd4qOxVkd69F7eBBtP/4UMdVZNpfYZtXtJiB0BCoB9YlPH4TmJjm9acDDxS0RCIi5UX1rIhIAgXKylQpNyKKfODQgAywqbuX5S1Tilwa8UugjU29vfD447BoEYwaBWed1f/cvvvCjTfCuHFZrVL1bLBKOdg4+8ixoerMkm6UsNP5mWk0g+aOFAlOsa61uQTkCtaR7+ijAai9/ncsuOV8AA4+/Xe8ssMIIP22Z9pfvgf38hTGEW5hYIw5CZgAfNnl+TOAMwBGjhxZxJKJiJSHTPVs7DWqa0WkpClQVsZKuRFRKlvYGiXEH0X/Xnt6YN48aG7uXzZoENxxB1x/PUyfDjvskNdHqJ6VXAQZZHULcrmlbE49P72MZkg3D5uIFFaxrrW5BOQKXfd17vo5nh82mj03vMYj/3smV3/xRH416YS0255pf4UtS0fYRrgVWBQYkfB4l9iyJMaYrwIXAV+2LGuz04osy7oOuA5gwoQJGswsImLzrZ4F1bUiUvoUKCtjFZS/XspM89QGmu9cTXdv/71VpMoodWiJK2RjU7y+e/v9j9h9616ueXkRu952Q/KLTj4ZfvlLGDo0788TyVcQQdZ0Qa5052fi/USVMfRYyb97U0czOK1LRIqjWIGdfObpLFTd1zxtD2Z0/o6v/+Mhrrp/Huf+7RbOfnw+9694xfV3Uab9FbbR4xXWmezvwO7GmDHYDbfHA/+Z+AJjTCPwP8A0y7LeKX4RRURKmupZEZEECpSVqQrLXy/lyGR4LCUhtWHq6P3qWfbCBl8bmxY+8U/ePu8i/u+xO9hYuy0P7zaRjvfW8dZXprLzdlvDr38NI0ZkXlEBqMOChEm6lF3xtLapxyuQdD+RGiSLSxzN4NSw/FZHF70O74tU5btVIpKoWIGdsI20goRtHzKYA8Y08uQ1pzC4ZwufWvca3/tHZ9rfRen2V5hGj4dxvxeKZVlbjDFnA0uAauAGy7LWGGMuA56yLGshMBf4FHCnMQbgDcuyjgys0CIiJUT1rIhIMgXKypTy10spm7tkLd09yY2x3T2Wjt8S4xSwX7AyypwZ4/L/Hru7YdkymDqVxLv0fwzfg0d2O4CLpn6X4UOHBDqnnTosSNhkStnl1Bg8qXWpp5FhqaMZUtc1ZtZ94BBj26KkLCK+K0ZgJ2wjrRLL1VeGX58EL77IJfdE2X/tk3zu3de5/oAZQPLvojAFwjIJ634vFMuy7gfuT1n244S/v1r0QomIlBHVsyIi/RQoK1MVlr9eyoyO3/Lge8D+o49g6VL739ChMHt231P37PUVLjv4O2ys3a5vWdDHizosSNjkkrLLy3nkZTSDy0A01+UiEn6hDzAZAw0NrN/4EsvvvASAi5fdQMO5C9gc2Srw+4RchX6/i4iIiIiUICW8KVNujV5lmr9eyoyO3/LgS8CzowNOP91u7NpmG5g+Hf7wB5g0Ce69F7q6mDTnEWYe8cOkIBkEf7wo4Cth0zy1gZpIddKyTEEut/Oo2hgMUF9X488oURGpeG3tUSa1LmVMy31Mal1KW3vUl/UOH1rLPt+/re/x2quP5oB1zwZ+nyAiIiIiIuGhQFmZyqUxTCQsdPyWh5wDnp2d8PrrcMIJ9sixG27of+6nP4V33oGvfhWOPBK23jq0x4sCvhI2TY31zJkxjvq6Gs9BLrfz66pj9+HV1sNY3jJFQTIRyVs8XXG0owuL/nTFfgTLmqc28Mm2dYy+YDEPfu4LANxxawu/e/9vea9bRERERETKg1IvlqlKy18v5UXHb3nIZsL5B/68iq1nfp/Jz/6VrsjWvHHKGTSsXQunnAI77AA/+QnU1jp+TtiOl7b2KHOXrCXa0YUheVqmMATwpLJlm7LLr/Or2hh6HPIsVtuTgotIhStkuuLEeuzMoy6i6Z01zPvDBXx+wh55rVdERERERMqHAmVlTPnrpZTp+C19GRvY//1vWLQITjqJryW87669p3Bfz2iOv76Zpn138fxZYThe4j3i4419FvQFy+oV8C2KeKAyDEHTcuHH+eUUJEu3XETCoVh1aqHTFSfXY4fBdefS9sy/uO2Hf2T+Vafyw1N/xhd/cIquFyIiIiIiFUqBMhERKZgBDeyvvgo33girV0NXF/zP//Q99fP/OIlrJx7Dlmr70rTuoRc9B8rCwqlHfDxItrxlSjCFqiCpgcp46i5AjZ8B04gykdJTzDp1eF0NUYegWKHSFbc98y9m3f0MB77+TwB+ftOFLHusjbb5d+t6ISIiIiJSgRQoExGRwnrxRfjmN+Hxx/uXjRwJd9wBp5zCZ+99j14zcMpMv3qRF1OhesRrlJQ3hUzdJdlLPG7dxo1pRJlIeBWzTs0mXbMf4tu2bNf9OfrEK1lwy/lMfulJ2HcX2LDBTvssIiIiIiIVY2DLpIiIiB9efx0OOQQaGpKDZHfcAa+9BhMnwkEHsfPQIY5vL1Qv8kJyK3M+2xLv0R+NBRviPfrb2qM5r7NcFTp1l3iXety6qY3oVlQkrIpZpzY11jNnxjjq62ow2COx58wYV7BODonbsHKXvWg47+7+J4cNg02bCvK5IiIiIiISThpRJiIihbHjjvDee3DWWbDvvnDaaeCQZs2pF3mk2vDx5i2MabmvpEZQFaJHvEZJeVfs1F2VJpuRjU7HrZOuLb1+F1NEfFLsOrWY842mbtvmQYMZfcFiZj95O9/88m6w9db2Pcz22zveu4iIiIiISHkJtBuvMeYGY8w7xphnE5Ztb4x52BjzUuz/oUGWUUSklAVaz9bUwD/+AddcA6ef7trQlNqLfGhtBCzo6OouuRFUhegRr1FS3jVPbaAmUp20rJCpuypJtiMbvR6fyrwoEl7lXKe6bVvdVa1wySXw0Ud2+sWqKoiG//5DRERERETyE3S+mxuBaSnLWoBHLMvaHXgk9lhERHJzIyVQzzY11rO8ZQqvth5G7eBBdPcmt57HR1CVgsRtWd4yJe/e8YVI51iuip26q5KkG9noxOvxWa2RGiKhVc51asZtq6mBnXe2/95lF/jf/w2srCIiIiIiUniBpl60LOtRY8zolMXTga/E/r4J+AtwQdEKJSJSRkqxntUIqmSFSOdYzoqZuquSZHteOh23Tk6YOCLvsolI4ZRznZp226qrYf16mDMHLrwQvv1tuPJKeOEFpWIUERERESlDQY8oc7KTZVlvxf5+G9jJ6UXGmDOMMU8ZY57asGFD8UonIlL6PNWzEExd6zYSpcoY39IvtrVHmdS6lDEt9zGpdWmo0zqWc49+KR3ZjmyMH7fpRhkNLfMAAB3VSURBVIxVVxkmjNrel/KJiBTErFl2cAzgxRfhzjuDLY+IiIiIiBREGANlfSzLsgDH2Sssy7rOsqwJlmVNGDZsWJFLJiJuTZ/qY1ta0tWzseeLXtc6zRsC0GNZvsxVlu1cS2HgdzpHkWzlMldRU2M9Vx27j+P5DNDTa5VMSlURqWANDdDTA9dfD8ccAxs2wJ//HHSpRERERETER2EMlP3LGLMzQOz/dwIuj4g4cIusuEZcJExCXc+mG4nix1xl2c61JCK5j2yMv89NpaZUFZESU1UFp59u/3/yyXDIIbDDDnYATURERERESl4YA2ULgVNjf58K3BtgWUREylHo69mmxnp6Leewa74N65oDTSQ3uY5sbGqspz7L1I0iIqF13XX2/++9B4MGwZo1wZZHRERERETyFmigzBhzG/A40GCMedMYczrQChxijHkJ+GrssYiETJVLjkW35RKMUq5ns50TKej1ioi7XFI3ioiE0siR0NsL48fbj/feG37+82DLJCIiIiIieRkU5IdblnWCy1MHF7UgIpK1/5w4kptXvOG4XMIjbPVsW3uUuUvWsr6ji+F1NUzeYxjLXtjQ97h5akPfKJXmqQ3MuvuZpDSJfjSsF2q9UtlSj+3EY1no2xfaRyJSFoyB9nb405/glFPsOct++MOgSyUiIiIiIjkKNFAmIqXr1Q0fZbVcpK09mhSginZ0JQVbox1dzLr7GcBuVC9Uw7oa7MVvTsd24rEstsTzWkSkLJx8Mhx1FFgWdHfD0UfDj34E++8fdMlERERERCQLCpSJSE6Wv/J+VstF5i5ZmzSKy0lXdw9zl6zta0zPtWE90+gep/VqRJDkyunYTj2W/VZKx2splVVEJGuf+pT9/8qVsGiR/e/ss+HXvw62XCIiIiIi4lmgc5SJiEjliHZ0eXrdeo+vcxMf3RPt6MKif3RPW3vU1/eIxLkds/key25K6Xh1Kus581fReNlDoSyviEjO9tsP2trsv3/zGzs9Y2dnsGUSERERERFPFCgTkaypcVOy1dYexXh87fC6mrw+K93oHj/fIxLndszmeyy3tUeZ1LqUMS33Mal1aV/dW0rHq9tI0o2d3aEN7omI5Gz6dHg/IbvCkCHw9tvBlUdERERERDxRoExEshIfHSCSjblL1mJ5eF1NpJrmqQ15fVYuo3uKPSJIykvz1AZqItVJy/I9ltONGiul4zVdmcIa3BMRycvQofacZcceC9tuC3V10NsbdKlERERERCQNBcpEJCte5pkSSZWusby+rgYT+3/OjHF5z12Uy+ieQo0IksrQ1FjPnBnjfD2W040aK6XjNVOZwhjcExHxxfz50NEBW28NJ51kp2L84IOgSyUiIiIiIg4GBV0AESktatSUXAyvq3Gco6y+roblLVN8/azmqQ3MuvuZpCBDptE9ubxHJFFTY33eQd5E6UaNzTtufMkcr07nVqIwBvdERHxjjD26bNky+3FdHSxaBIcfHmy5REREREQkiUaUiUhWMjVqnnTgyCKVREqJ19R0bnMyZSOX0T2FGBEkko90o8ZK6XiNl7WuJjLgubAG90REfGUMvPUWnHmm/fiII+BrXwu2TCIiIiIikkQjykQkK+lGBxhgwqjti18oCb14A/7cJWtZ39HF8Loamqc2JDXsx+dkih9b8TmZEt+fzecV4z0ihZJplGMpHa/xsl7c9gy3PbGOHsui2hiO3q90tkFEJG+//S2ceioceCA8+CCcfz5ceWXQpRIRERERERQoE5EsxRs1z71jFb1W8nMWcOmiNWr4FEeZGvbd5mQ6Z/4q5i5ZOyCwJlLOvASXS0lbe5Rbn3ij77rRY1nc+sQbTBi1fcluk4hI1iZOhE2b7DnLvv99Oy3jG2/AqFFBl0xEREREpKIpUCYiOUkNksVt7OwubkGkbKSb/y6f0WWF1NYeLZtAhoSPH6PGwnKMXnj30wOuG72WvVznjIhUlK22gjvvtP++/nr4zndg//3hiSfsNI0iIiIiIlJ0mqNMRLIST48n4rdM8991dfcwd8naIpUms/i5EO3owqI/mJfLvGoihRCmY7Szuzer5SIiFeErX7H///vfoaoK3nwz0OKIiIiIiFQqBcpEJCtO6fFE/NA8tYGaSHXa16QbdVZsbqkiwxTMk8qmY1REJOR22w26u2Hbbe3HI0bA//xPsGUSEREREalACpSJSFbCFKiQ8tLUWM+cGeOoTzOyLNOos2JyOxd0jkhYhOkYdcsmpixjIlLxBg2CDz6AK66wH//3f8OWLcGWSURERESkwihQJiJZyRSoGFytVk/JXVNjPctbpvCL48YPGF1WE6mmeWpDQCUbyO1cCFMwTypbmI7REyeOzGp5uTDGTDPGrDXGvGyMaQm6PCISYuefD9EorF5tB8/mz4eXXw66VCIiIiIiFUGBMhHJSqb0eFces08RSyPlKnF0mQHq62qYM2McTY31QRetj9O5ELZgnlSetvYok1qXMqblPj7evIVISueFoI7Ry5vGcdKBI6mODSGrNoaTDhzJ5U3jil6WYjHGVAPXAF8D9gJOMMbsFWypRCTUhg+Hz38e3nkHjj8edt8d5s4NulQiIiIiImVvUNAFEJHSEg9UXLpoDRs7u5Oei1RpNJn4p6mxPlSBsVTxss1dspb1HV0Mr6uheWpDqMss5a2tPcqsu5/pm5eso6ubSJVhaG2Ejs7uwI/Ry5vGlXVgzMEBwMuWZf0TwBhzOzAdeC7QUolI+O24I1x7rZ2G8fzz4Sc/gffft0eaiYiIiIiI73SnLSJZa2qsZ+6StQMCZd29FnOXrFWgQCpG2IN5UlnmLlnbFySL6+61qB08iPYfHxpQqSpaPbAu4fGbwMSAyiIipea//gsOOwxGjIAPP4RIBNavh513DrpkIiIiIiJlR6kXRSQn6zu6slouIiKFpXq5NBljzjDGPGWMeWrDhg1BF0dEwmSXXaC3F/bf336sOkJEREREpCAUKBORnAyvq8lquYiIFFbY6+XE+dMmtS6lrT0adJEKLQqMSHi8S2xZEsuyrrMsa4JlWROGDRtWtMKJSIkwBp58Ev79b3v+svvvh3HjYPPmoEsmIiIiIlI2FCgTkZxM3sO5Mc9tuYiIFFbz1AZqItVJy2oi1TRPbQioRP3i86dFO7qwgGhHF7Pufqbcg2V/B3Y3xowxxgwGjgcWBlwmESlV22xj//+zn8Gzz8LWW8OKFcGWSURERESkTChQJiI5WfaCc+oXt+UiIlJYTY31zJkxjvq6GgxQX1fDnBnjQjGPntP8aV3dPcxdsjagEhWeZVlbgLOBJcDzwB2WZa0JtlQiUvL+9jeYNs3++wtfgDPPDLY8IiIiIiJlYFDQBRCR0qS5cEREwqepsT4UgbFUlXrNsCzrfuD+oMshImXmgQdg8WI44gi49lp45RV46KGgSyUiIiIiUrIUKBORnAyvqyHq0MAZlrlwRESkuNrao8xdspb1HV0Mr6uheWpDX9BO1wwREZ8dfjh0dMDOO8Ppp9vLPvkEBg8OtlwiIiIiIiVIqRdFJCejP+3cuOm2XEREylemOcg0r6WISAFstx10dsJxx8GLL8JWW8HxxwddKhERERGRkqNAmYjkZMU/N2a1XEREylemOcg0r6WISIFFIvb/8+eDMcGWRURERESkxChQJiI56bGsrJaLiEj5yjQHWaXOUSYiUjRjxsDHH/c/7lL9KiIiIiLilQJlIpKTapeeqm7LRUSkfLnNNRZfnul5ERHxQW0tWJb9r0b1q4iIiIiIVwqUiUhOTpg4IqvlIiJSvpqnNlATqU5aVhOppnlqg6fnRURERERERESCMijoAohIabq8aRwAtz2xjh7LotoYTpg4om+5iIhUjqbGesCeq2x9RxfD62pontrQtzzT8yIiIiIiIiIiQVGgTERydnnTOAXGREQEsINh6QJfmZ4XEREREREREQmCUi+KiIiIiIiIiIiIiIhIRVKgTERERERERERERERERCqSAmUiIiIiIiIiIiIiIiJSkRQoExERERERERERERERkYqkQJmIiIiIiIiIiIiIiIhUJAXKREREREREREREREREpCIpUCYiIiIiIiIioWKMmWaMWWuMedkY0+Lw/FbGmPmx558wxowufilFREqX6lkRkX4KlImIiIiIiIhIaBhjqoFrgK8BewEnGGP2SnnZ6cBGy7J2A+YBVxS3lCIipUv1rIhIMgXKRERERERERCRMDgBetizrn5ZlfQLcDkxPec104KbY33cBBxtjTBHLKCJSylTPiogkUKBMRERERERERMKkHliX8PjN2DLH11iWtQX4APh0UUonIlL6VM+KiCQYFHQB/LBy5cp3jTGvB10OH+0AvBt0IQpI21fatH0DjSpEQcImh7o2LMdKGMqhMqgMKkN+ZaiUevYjY8zaoMuRIgzHSiKVJz2VJ7OwlSlM5SnLutYYcwZwRuzhZmPMs0GWp0jCdFwVUiVsZyVsI1TOdjYEXYBCqcC6tlKOWW1n+aiEbYQ86tmyCJRZljUs6DL4yRjzlGVZE4IuR6Fo+0qbtq9yZVvXhmVfhqEcKoPKoDKEswwhtDZs+yRs35PKk57Kk1nYyhS28oRIFBiR8HiX2DKn17xpjBkEbAe8l7oiy7KuA66Dytnf2s7yUQnbCJW1nUGXIYFv9SxUXl1bCdsI2s5yUgnbCPnVs0q9KCIiIiIiIiJh8ndgd2PMGGPMYOB4YGHKaxYCp8b+PgZYalmWVcQyioiUMtWzIiIJymJEmYiIiIiIiIiUB8uythhjzgaWANXADZZlrTHGXAY8ZVnWQuB/gT8ZY14G3sdu5BUREQ9Uz4qIJFOgLJyuC7oABabtK23aPvEqLPsyDOVQGWwqg01lsIWhDGETxn0StjKpPOmpPJmFrUxhK09oWJZ1P3B/yrIfJ/y9CfhGlqutlP2t7SwflbCNoO0MRIHqWQjZdhZIJWwjaDvLSSVsI+SxnUYjZkVERERERERERERERKQSaY4yERERERERERERERERqUgKlAXMGHODMeYdY8yzDs+dZ4yxjDE7BFE2P7htnzHme8aYF4wxa4wxVwZVvnw5bZ8xZrwxZoUxZpUx5iljzAFBljFXxpgRxphlxpjnYt/TD2LLtzfGPGyMeSn2/9Cgy5qLNNs3N3ZsPm2MuccYUxd0WUuRMWaaMWatMeZlY0xLET/3NWPMM/HzL7asoMesSz3g+JnG9qvYfnnaGLNvAcsw2xgTje2LVcaYryc8NytWhrXGmKk+lSGrOqMQ+yJNGYq2L4wxWxtjnjTGrI6V4dLY8jHGmCdinzXf2BNmY4zZKvb45djzowtYhhuNMa8m7IfxseUFOS5j6642xrQbYxbHHhdtP5SaoOrNNOUZUJ8GUAbP9WuA5XGtX4pQnlDdq+VSBxe4PFnVxwGWx7FulvxkqlPL5brjYTvPjZ2TTxtjHjHGjAqinPnwen00xhxt7PaTCcUsn1+8bKcx5tiEOvbWYpfRDx6O2ZGxa0l77Lgt2nXVL073CynPG1Oge+9iUj3b93zJ17NQGXWt6tm+51XPurEsS/8C/Ad8CdgXeDZl+QjsCTVfB3YIupx+bh8wGfgzsFXs8Y5Bl9Pn7XsI+Frs768Dfwm6nDlu287AvrG/twFeBPYCrgRaYstbgCuCLqvP23coMCi2/IpS3b6A92018ArwWWAwsBrYq0if/VpqnVnoY9alHnD8zFid8ABggAOBJwpYhtnADx1eu1fsO9kKGBP7rqp9KENWdUYh9kWaMhRtX8S251OxvyPAE7HtuwM4Prb8WuDM2N9nAdfG/j4emO/DfnArw43AMQ6vL8hxGVv3ucCtwOLY46Lth1L6R4D1ZpoyvUbA96DZ1K8BlsexfilSeUJ1r5ZtHVyE8mRVHwdYHse6Wf/y2tcZ69RyuO543M7JQG3s7zNLbTu9Xh9jdc6jwApgQtDlLtB3uTvQDgyNPS65dhSP23kd/feHewGvBV3uHLbTsZ0v4fmC3XuH7LtUPVsi/yqhrlU9m/Qa1bMu/zSiLGCWZT0KvO/w1DzgfKCkJ5Fz2b4zgVbLsjbHXvNO0QvmE5fts4BtY39vB6wvaqF8YlnWW5Zl/SP294fA80A9MB24Kfaym4CmYEqYH7ftsyzrIcuytsRetgLYJagylrADgJcty/qnZVmfALdjHzdBKegx61IPuH3mdOCPlm0FUGeM2blAZXAzHbjdsqzNlmW9CryM/Z3lW4Zs6wzf90WaMrjxfV/Etuej2MNI7J8FTAHuii1P3Q/x/XMXcLAxxhSoDG4KclwaY3YBDgOujz02FHE/lJiw1ZuhkGX9GlR5AhO2e7Uc6uBClyfb+jio8oj/vNSp5XDdybidlmUtsyyrM/awFH/beL0+/gS7k+OmYhbOR1628zvANZZlbYSSbUfxsp0l357i4X6hIPfeRaZ6NqYM6lmojLpW9Ww/1bMuFCgLIWPMdCBqWdbqoMtSIJ8D/iM29Pr/jDH7B10gn50DzDXGrAN+DswKuDx5iw2Rb8Tu+bqTZVlvxZ56G9gpoGL5JmX7Ep2G3QNBslMPrEt4/CbFayizgIeMMSuNMWfElgVxzLp9ZrH3zdmxYeY3mP7UWwUvg8c6o6DlcDivi7YvjJ1ucBXwDvAwdo+ujoQgfOLn9JUh9vwHwKf9LoNlWfH98NPYfphnjNkqtQwO5cvHL7A7/fTGHn+aIu+HEhJkvenGqT4NgzDehzjVL0UVtns1j3VwMcqRTX1c9PJkqJsld17q1HK47mR77Tid0vttk3EbY+mURliWdV8xC+YzL9/l54DPGWOWG3uqh2lFK51/vGznbOAkY8ybwP3A94pTtKIK431ftlTPOivFehYqo65VPdtvNqpnHSlQFjLGmFrgQuDHQZelgAYB2/P/7d1rrBxlGcDx/wPlahGiRW41tCBSFLVCNaiNNCi0ICIaTNpgRIMfMEQD4RaoMUTjLUKVD4qKgIIEtOFWSIwBoYkaLlI4vXCVCCEtFIQopCLh9vhhZmVyPLvdc9jd2Tn7/yWb3Zmd3fd539199t15d94pDn08C/hdA/9V0slXgdMz853A6cClNcfzpkTETOBa4LTMfKF6X2YmDf8nbLv6RcRy4FXgqrpi05QszMxDgKOBUyPi49U763jP1vg5uRjYH5gPPAVcOIhChyFnTBDDQNsiM1/LzPkU/yb8MDCvn+V1E0NEHEzxx415wIcovofP6Vf5EXEs8ExmrulXGeq7jvl0GAxJP6SWXFs1DHl3K/HU1kbDkI87xTPo3KzRFRFfABYAP6w7ll6KiG2AFcAZdccyADMopgVbBCwDLonpeT7tZcCvMnM2xdRZV5avszTUpmuehZHKtebZEWcjDJ/9Kc6TsjYiHqf4EXVvROxZa1S9tRG4rjz88W6Kf5rPqjmmXjoJuK68vZIeTGlWl4jYjmJHx1WZ2arT063DVcvrJh6KDLStHxHxJeBY4MRyB5MmZxPFeRZbZpfr+i4zN5XXzwDXU3z+6njPtitzYG2TmU+XO+ReBy7hjVzUtxgmmTP6EsdEMdTRFmW5/wJuBz5Ccaj/jAnK+V8M5f27As/1IYYl5bRomcXUx5fT33b4GHBc2Ze5hmKqs4uoqR0aoLa82U6bfDoMhqof0iG/DMSw9dUmmYMHpst8XEc8nXKzpq6bnDodvne6+u6IiE8Cy4HjyvdZk2ytjrsABwOryz7HYcCqiFgwsAh7o5vXciOwKjNfyWLK8Ecodug2STf1PJniXJJk5h3Ajkyv/UUwhP2+KTDPVjQ8z8Jo5Frz7BvMs204UDZkMnN9Zr4jM+dk5hyKD+khmbm55tB66QaKk10SEe+mOLngs7VG1FtPAoeXt48A/lZjLFNWHuV3KfBgZq6o3LWKYjCQ8vrGQcfWC+3qVx5afTZFB+fFdo9XR38FDoiIuRGxPcWJe1f1u9CIeEtE7NK6DRwFbKCe92y7MlcBX4zCYcDzlemxemrc/MufpWiLVgxLI2KHiJhL0fG7uwflTTZn9LwtOnyuB9YWEbF7619nEbETcCTFeXpuB04oNxvfDq32OQG47c0O0LeJ4aHKjvOgOCdPtR16+lpk5rmZObvsyyylqNeJDLAdGqaWvNlOh3w6DIaqH9Ihvwyi7KHqq00hB/c7nsnm4zri6ZSbNXXd5NTp8L2z1XpGxAeBn1P8tmniHxw71jEzn8/MWZX9J3dS1PWeesKdsm7eszdQHOVARMyimCLs74MMsge6qecTwCcAIuIgih24/xholP03sN+EfWSeLU2DPAujkWvNs28wz7aTmV5qvABXU0xB8grFoNjJ4+5/HJhVd5y9rB/FwNhvKH4E3gscUXecPa7fQmANsJbivAyH1h3nFOu2kGKqnnXAWHk5hmJO6T9SDADeCryt7lh7XL9HKeaxba37Wd2xNvFStuUjFOcCWT6gMvcrP3drgftb5fb7PdsmD0xYJhDAT8p2WQ8s6GMMV5ZlrKPoJOxV2X55GcPDwNE9imFSOaMfbdEhhoG1BfB+4L6yrA3ANyvvz7vLHLMS2KFcv2O5/Gh5/359jOG2sh02UHwPz+zn+7ISzyLg5kG3Q9Mu1JA3O8QyYT6tIY6u82uN8bTNLwOIZ6j6alPJwX2OZ1L5uMZ4JszNXt50e/9fTgW+RbFjb9p873RRz1uBpyufyVV1x9zrOo7bdjU97scMSz0p+msrgAfKnLG07pj7VM/3AH+h6IOMAUfVHfMU6jhRf+EU4JTKa9m3vvcQvZbm2QZdRiHXmmfNs1u7RPlgSZIkSZIkSZIkaaQ49aIkSZIkSZIkSZJGkgNlkiRJkiRJkiRJGkkOlEmSJEmSJEmSJGkkOVAmSZIkSZIkSZKkkeRAmSRJkiRJkiRJkkaSA2VqnIh4LSLGImJDRKyMiH3K5bGI2BwRmyrL24/b/qaI2G3c850WES9FxK7l8uLK47dExMPl7SsiYlFE3Fx57PERsS4iHoyI9RFx/KDbQ5KGVSX/ro2IeyPio3XHJEnDLiK2TLDuwIhYXebUByPiF536rJXH/bjsG29TLn+58piXy/7rWER8f5B1lCRJkqRhEplZdwzSpETElsycWd6+CliTmSvK5fOBLZl5QZvtfw08kpnfqdx/F/AycFlmXj6urNXAmZl5T7m8qFw+NiI+AFwLHJmZj0XEXOAW4HOZua4/tZek5hiXfxcD52Xm4TWHJUlDrZo7K+v+APw0M28sl9+Xmesr96+m0mct120DPAY8BZybmbePe87HgQWZ+Wy/6iJJkiRJTeARZWq6PwHvmsT2dwD7tBYiYn9gJvANYNkkyz4T+G5mPgZQXn8POGuSzyNJo+CtwD/rDkKSGmovYGNroTpI1sEi4H7gYibfz5UkSZKkkeFAmRorImYARwPd7CggIrYFPgGsqqxeClxDMeB2YETsMYkQ3gusGbfunnK9JAl2Kqf0egj4JfDtugOSpIb6EXBbRPw+Ik4fP5V4G8uAq4HrgU9FxHZ9jVCSJEmSGsqBMjXRThExRjEo9QRwaZfbbwb2oJgesWUZcE1mvk4xjeLn+xCvJI2q/2Tm/MycBywBroiIqDsoSWqacnrwg4CVFEeK3RkRO7TbPiK2B44BbsjMF4C7gMUDCFWSJEmSGseBMjVRa8fr/Mz8Wma+3M32wL5AAKdCcW4H4ADglvIcDUuZ3LQ0DwCHjlt3KMUUN5Kkisy8A5gF7F53LJLURJn5ZGZelpmfAV4FDu6w+WJgN2B92c9diNMvSpIkSdKEHCjTyMjMF4GvA2eU0zYuA87PzDnlZW9g74jYt8unvAA4NyLmAJTX5wEX9jh0SWq8iJgHbAs8V3csktQ0EbGkNXViROwJvB3Y1OEhy4CvtPq5wFzgyIjYue/BSpIkSVLDzKg7AGmQMvO+iFhHsfNgKcWUNFXXl+t/0MVzjUXEOcBN5Y6LV4CzM3Osx2FLUlO1pr6F4ojekzLztToDkqQG2DkiNlaWVwCzgYsi4qVy3VmZuXmiB5eDYUuAU1rrMvPfEfFn4NPAb/sTtiRJkiQ1U2Rm3TFIkiRJkiRJkiRJA+fUi5IkSZIkSZIkSRpJDpRJkiRJkiRJkiRpJDlQJkmSJEmSJEmSpJHkQJkkSZIkSZIkSZJGkgNlkiRJkiRJkiRJGkkOlEmSJEmSJEmSJGkkOVAmSZIkSZIkSZKkkeRAmSRJkiRJkiRJkkbSfwHG5irNGHHB6gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACW8AAAZvCAYAAAD6WJXfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhTVf7H8U9aurC0hbK1LLIJQqkCZREUAVEUF1BcQUAdHRccBwf9jci4AOMGLuO4wTioo0MRcQdccAMUFERF0FIQgYKIRZBCy9ZSmvP7I5PQ0KRN0yw36fv1PDw0NyfJyb03yfne8z3n2IwxRgAAAAAAAAAAAAAAAACAkIoJdwUAAAAAAAAAAAAAAAAAoDYieQsAAAAAAAAAAAAAAAAAwoDkLQAAAAAAAAAAAAAAAAAIA5K3AAAAAAAAAAAAAAAAACAMSN4CAAAAAAAAAAAAAAAAgDAgeQsAAAAAAAAAAAAAAAAAwoDkLQAAAAAAAAAAAAAAAAAIA5K3AAAAAAAAAAAAAAAAACAMSN4CAAAAAAAAAAAAAAAAgDAgeQtAjW3dulU2m01t27YNd1UQYFOmTJHNZtOUKVPctr/00kuy2Wy69tprw1IvRL5rr71WNptNL730UrirAgAAAHjlrd3qLVYCfDVo0CDZbDYtXbo03FUBAABAlCOuQbAQ1wCBQ/IWEAHatm0rm80mm82mO+64o9KyTz75pKuszWYLUQ29c9aDH+2Kli5d6nasvv/++0rL9+jRw1WWpKmqORPMqkoqLH8caqu//e1vstlsOv30030q/9Zbb8lmsyk1NVVHjhwJcu0AAEC4OeORqpKunRfsauNF3zfffNPVprz77rvDXZ2I4Wyz22w2xcfHa8+ePV7LHj16VM2aNXOVr43nWXU5O2IGDRpUaTlfY6dodtVVV8lms2n06NE+lf/HP/4hm82mrl27BrlmAAAgkE4++WTZbDbVrVtXRUVF4a6Oa2D88f8aNGigzMxM3X777dqxY0e4q4kqENcEF3GN74hrgMhG8hYQYV555RWVlZV5vT87OzuEtUEgVXbs1q1bpzVr1oSuMlVISUnRSSedpPT09HBXBQFw9dVXS5K+/PJLbdmypcryznP1iiuuUHx8fFDrBgAAEAlmz57t+js7O1vGmDDWJjKVlpZq3rx5Xu//8MMPtXv37hDWqHJNmjTRSSedpCZNmoS7KggAZ0z0zjvv6MCBA1WWd8ZEY8eODWq9AABA4KxZs0Y5OTmSpOLiYr3xxhthrpG7Xr166fTTT9fpp5+utLQ0bdiwQU888YROOeUUV71hfcQ1CCfiGiCykbwFRJCTTjpJO3fu1CeffOLx/h9//FHffPONTjrppBDXDDXRokULJSUl6ZVXXpHdbvdYxtkZZJVjO2LECG3YsEEPP/xwuKuCAOjcubN69eolSZozZ06lZfft26f3339fEg16AAAASdqzZ4/ef/992Ww2JScn6+eff9bnn38e7mpFlI4dO8pms7klwR3PajHRrbfeqg0bNujWW28Nd1UQAEOGDFFaWpoOHTqkt99+u9Ky69ev13fffVetEe0AACD8nO3Jhg0but22itdff13Lly/X8uXLtWnTJq1bt04ZGRkqKCjQTTfdFO7qwQfENQg34hogspG8BUSQMWPGSPI+Q5Oz0UdCRWSpW7euLrnkEu3YsUNLliypcL8xRq+88orq16+vESNGhKGGqA2c3xtVJW+99tprKikpUfv27X1eZhEAACCazZs3T6WlpTrttNNcMZvVOoKs7oQTTtCAAQO0cuVKbdq0qcL9+/fv14IFC9SuXTvaoAiK2NhYjRo1SlLVMZHz8z1o0CC1bt066HUDAAA1V1ZWprlz50qSnnnmGcXGxuqzzz7Tzz//HOaaeXfSSSfpqaeekuRYMWHnzp1hrhGqQlyDcCOuASIbyVtABBk4cKBat26tt99+WwcPHnS7zxijOXPmuBKBKmOM0auvvqohQ4aocePGSkhIUPv27TV+/PhKA4DPPvtMZ599tpKTk5WSkqIzzzxTH3/8sV/v5dprr5XNZtNLL72kX3/9Vdddd53S09OVmJiorl276tlnn6308V9//bXGjBmjE044QQkJCWrevLlOO+00PfLIIyosLKzy9Z955hnZbDZdeOGFXssUFBQoPj5ecXFxbmuU5+TkaPTo0WrdurXi4+PVsGFDdezYUVdddZUWLVrk+04op7JOnqVLl2r79u0aMWKE6tevX+nzFBQU6O6771ZmZqbq16+vpKQk9e3bV7NmzfI6q9fRo0f1yCOPqHPnzkpMTFTLli11ww036LfffvP6Os61w6+99toK93388ce69dZb1a1bN6WmpioxMVEdOnTQuHHjvAbDNT0fgungwYN64IEHdMopp6h+/fpKTk7WqaeeqmeffVZHjx6tUL6yfSM5jqe39dmXL1+uESNGKC0tTXFxcUpNTVWXLl30xz/+UStXrvT4fKtWrdLIkSPVsmVLxcfHq3nz5rr88sv13XffVet9jho1SnXq1HHN4OeNM3nUec6WlZVp/vz5uu6669S1a1elpKSoXr166tKli+688079/vvv1apH+XPBE+f69lOmTPF4/4YNG3Tdddepbdu2SkhIUOPGjXXBBRdo8eLF1aoHAAAIvC+//FKXXHKJmjdvrvj4eLVq1UpXX3211q9f77F827ZtZbPZtHXrVo/3Dxo0SDabTUuXLnXbfvDgQf397393td8SExPVunVrDRo0SNOmTVNpaWmF5zp06JCmT5+uXr16KTk5WfXq1VP37t316KOPqqSkpNL35WzDX3XVVa7Rqq+//rqKi4srfdynn36qwYMHKzk5WQ0bNtRZZ52lxYsXa+vWrbLZbGrbtq3Hx9WkruX93//9n2w2W6UjrHNycmSz2dSsWTO3tq8/7daqVDZY6Y033tDhw4c1evRo2Wy2Sp/nl19+0fjx49WpUyfVrVtXDRs21JlnnlnpsjgHDx7UpEmT1K5dOyUmJqpt27a64447Kl1mwlu71N/2cfnzecOGDbr88svVpEkT1a1bVz179tRrr71W6fsOpj179ujOO+/USSedpLp166pRo0YaNGiQ5syZ43GJ0Kra7JXFTAsXLtS5556rJk2aKC4uTk2bNtUpp5yiP//5z16/Kz788EMNHz5czZs3V0JCglq1aqU//OEP2rx5c7Xep3NAyyeffOI1HnYOripf/vDhw5o7d65Gjhypk046SQ0aNFCDBg3UvXt3PfDAAxWu31TF23ebU1UxU6BiRAAAosknn3yi/Px8paWlaeTIkRo8eLCrT6W8devWyWazKTU1VUeOHPH6fD179pTNZtOCBQvctvvb9+JN7969XX9v27atwv3Vbac5VTc2K98++f7773XRRRepSZMmSk5O1tlnn+12PXnZsmUaOnSoUlNTlZSUpAsuuEAbNmzw+LyB6GshrjmGuKZyxDXHENcAFmUAWF6bNm2MJLNs2TJz1113GUlm9uzZbmU+//xzI8mMGjXKbN++3Ugynj7iR44cMZdffrnr/hYtWphu3bqZevXqGUkmPT3d/PjjjxUeN3fuXBMTE2MkmcaNG5tevXqZ1NRUExMTY6ZNm2YkmTZt2lR4nPN1lixZ4rb9mmuuMZLMlClTTFpamklMTDRZWVmmRYsWrsc88MADHvfH9OnTjc1mM5JMcnKy6dmzp+nQoYOJi4vz+Fqe7Nq1y9SpU8fExcWZPXv2eCzz3HPPGUnm/PPPd2376quvTN26dY0kk5KSYrp162YyMzNNSkqKkWQuuuiiKl/bacmSJUaS6dChgykrKzMtW7Y0SUlJ5uDBg27lrrvuOiPJfPjhh+b+++83ksw111xT4flycnJMy5YtjSQTHx9vMjIyTIcOHVz76rLLLjN2u93tMUePHjXDhg1z7fNOnTqZbt26mdjYWHPCCSeYW2+91UgykydPdnvcf/7zH6/1iI2NNTabzTRr1sx0797dZGZmmvr167vOnXXr1lV4TE3OB2+cdfR0XpbnPA6ePi+7du0yJ598spFkYmJizCmnnGK6dOniKj9kyBBz+PBhn/dN+dcbOHCg2/Z33nnH7TOWlZVlOnfu7Np3t912W4Xn+sc//uE6vqmpqaZHjx6mcePGRpKJi4szb775ZqXv/XgXXHCB19cyxpitW7e6Xm/jxo3GGOP6vomJiTHp6emueicmJhpJpm3btmbnzp0Vnst5zP/zn//4tN1p8uTJHs9JY4yZN2+eiY+PN5JMUlKS6d69u0lLSzOSjM1mM0899VR1dgcAAPgfZzzi7ffZaeDAgV5/p2fMmOFqRzRr1sz06tXLNGzY0EgyiYmJ5t133/X6unl5eZW+Xvn2f2lpqenbt6+rfXLSSSeZXr16mRYtWrjaWnv37nV7nl9++cVkZGQYSaZOnTrmxBNPNF26dDF16tQxkkz//v3NoUOHPNZh48aNrsft3r3bGGNMu3btjCQzb948r/vq5Zdfdu2PJk2amN69e5vGjRubmJgY8+ijj3ptx9akrsf79ttvXcfj6NGjHstMmjTJSDK33HKLa5s/7VZvnG3ns846y+zbt88kJiaaE088sUK5wYMHG0lmw4YN5vrrr/d6ni1dutQVm9WtW9ecfPLJpnXr1q72+x133FHhMQcOHDB9+vRxtRkzMzNNRkaGsdlsJisry4wcOdLj+e+tXepv+9h5Pj/22GOmQYMGJikpyfTs2dM0bdrUVf/jrwNUxVnH42OP41UWO/3000+ufRgfH2+ysrJM+/btXXW6+uqrK8SZlbXZy7/e8THT008/7XretLQ006tXL9OxY0fXvnviiScqPNdtt93mekyzZs1Mjx49THJysut6wRdffFHpez9eZmam19cyxpjPPvvMdX4VFhYaY4xZtmyZ6zPZqlUrV72dn8usrCyPn0tP32GVbXeqLGYKdIwIAEC0uOqqq9zaqi+99JKRZLp06VKhrPN68IIFCzw+148//mgkmUaNGpmSkhLXdn/6XvLy8lzlPcU9+fn5rvu///57t/v8aacZ419s5myfTJs2zdStW9c0bNjQ9OzZ09X2TkpKMjk5Oea1114zderUMc2aNTNZWVmu9960adMKbeBA9bUQ1zgQ1xDXlEdcA0QmkreACFA+eWvdunVGkjnnnHPcytxwww1Gknn//fcrTd5yJn/16NHDfPfdd67thw4dMrfccouRZHr16uX2mF9++cU0aNDASDJ33XWXKS0tNcY4gpEJEya4kqb8Sd6Ki4szl112mVsHyowZM1yBwvEdK++8846RZGJjY83jjz9ujhw54rrv4MGD5t///rfJzc2tZG8ec+655xpJ5rnnnvN4/6BBg4wkk52d7dp24YUXGknmb3/7m1tgZowxX3/9tZkzZ45Pr22Me/KWMcb89a9/NZLMK6+84ipz+PBhk5ycbNLT083Ro0e9Jm8dOHDAdOjQwUgy48ePdzW2jDFm3bp1pmvXrkaSeeaZZ9we9+STT7oCzWXLlrm25+XlmczMTNexrU7y1nPPPWd27Njhtu3QoUPmwQcfNJLMoEGDKjzG3/OhMoFI3rr00kuNJNO1a1ezadMm1/avv/7aNG/e3Egyd955p8fXrW7ylrMxPWPGDLcg0263myVLllS4WPDBBx8Ym81mmjRpUqGh+vzzz5s6deqYpKQk8+uvv1b6/subN2+ekWSaN2/uMdB1HsO+ffu6tu3bt8+89NJLFZIg9+7d60r+u/baays8V6CTt9auXWsSEhJMYmKi+fe//23Kyspc9y1YsMAkJyeb2NhYs2bNmir2AgAAOF5Nk7e+++4718W+Rx55xPU7XVxc7IpBUlJSKrRb/EneeuONN4wk061bN7N9+3a38rt27TL//Oc/3QZLlJWVmdNOO81IMiNHjnS7+Lx9+3ZzxhlnGEnm//7v/zzW4d577zWS+4CPu+++20gyF154ocfHbNu2zdWJcc8997jaXaWlpeauu+7yGl/VtK6edO7c2UiOgSKeOBPRli9f7tpW3XZrZcp3chhjXJ1dX375pdt7i4mJMX369DHGGK+dHDt27DCpqanGZrOZhx56yBQXF7vu++KLL1wDXRYuXOj2uAkTJrj2d05Ojmv7mjVrTMuWLV3Hw9dODn/bx87zOS4uztx6662uQSJ2u91MnDjR1QHorUPKk5p2ctjtdtOrVy/Xc5Q/5z744ANXx9aMGTM8vm51OjlKS0tNo0aNTJ06dczbb7/tVr60tNQsXLjQfPbZZ27b//WvfxlJpl27dm7fA0ePHjUPPPCAkWRatWpVYcBNZaZPn+7xuoiT89rLyJEjXdu2bt1qXnvtNbN//363svn5+eayyy4zkmOg0vEC3ckRjBgRAIBosH//flf7e9WqVcYYY4qKilyJQ998841b+YcffthIjoHynkyZMsVIMn/84x/dtvvT91JV8taLL75oJJkGDRq4xTH+ttP8jc3Kt1Vvv/12V99IcXGxueiii1zX/Rs2bGgef/xx1/Pu3bvXlVB0/HX0QPa1ENcQ1xhDXFMecQ0QmUjeAiJA+eQtY4zp0aOHiY2Ndf0wFRcXm4YNG5pmzZqZ0tJSr8lbu3btMgkJCSY5OblCR4Yxjs6A3r17G0nm888/d22/5557jCTTu3dvj/U75ZRT/E7eSktLMwcOHKjwuKysLCPJvPXWW27bnaPM//73v3usS3W8/PLLXpOJduzYYWJiYky9evXcGionnXSSkeSWHOWv45O3vv/+eyPJnHfeea4yr776qpFkbr/9dmOM8Zq89dRTTxlJZsSIER5fa+3atcZms5n27du7ttntdnPCCScYSebZZ5+t8BjniJXqJm9Vpn///kaS+eWXX9y2+3s+VMZZx+r8K2/jxo2uzP7Vq1dXeP7XXnvNSDL169c3RUVFFV63uslbCQkJplGjRj6/P+c+mT9/vsf777jjjmp/Vg4fPuwa0bNo0aIK9zs/f57OF29at25t6tWr50r6dAp08tYll1xiJJknn3zS4+Oco12uu+46n+sOAAAcnPGIr/+O/50ePXq0kTyPnLbb7a6BBvfee6/H161O8pazo8Vbm+B4CxYscMU6x7dXjDHm119/NQ0aNDANGjTwOMLU2QlQfsBHbm6ukRyjVXft2lXhMc5OnbPPPrvS93V8fFXTunoydepUrxfdV6xY4apH+RHI1W23Vub4To758+cbSWbcuHGuMs6Znp2zqHrr5Lj99tuNJDNhwgSPr7Vw4UIjyQwePNi1raioyNWR995771V4zFtvveU6r33t5KiKt/ax87h369bNbSCCMY6BU84ZZT3FJt446+jrv+PPuY8//thIMgkJCSY/P7/C8z/yyCMezxF/Ojmcs0r06NHDp/dWUlJi0tLSTGxsrNd94hyM89///ten5zTGMXjNOQPDhg0bKrxmo0aNvJ4vnhw6dMjEx8ebjh07Vrgv0J0cwYgRAQCIBs5Zto6fCcmZYHP8DEvO1Qfq169fYZUMY44lCn366aeubf72vXhL3srPzzcvvviia0asu+++2+35/G2n+RubOdsnPXr0qDA7kXMmMm/Pu2jRIiPJnHLKKW7bA9nXQlxDXENc4464BohMMQIQccaOHauysjLNnTtXkvTuu+9q3759GjVqlOrUqeP1ce+//75KSkp07rnnqlWrVhXuj4mJ0YUXXihJ+uyzz1zbP/zwQ0nSuHHjPD7vLbfc4vd7GTVqlOrXr19hu3Mt9y1btri2bdq0Sbm5uYqPj9df/vIXv1/TacSIEapbt64+//xz/frrr273zZs3T3a7XcOGDVODBg1c21u3bi1JQVmX++STT9Ypp5yijz/+WLt27ZJ0bF1055rT3rz11luSpD/+8Y8e7z/llFPUtm1bbdmyRb/88oskaf369fr555+VmJjocU3urKws9e3b16/38s033+iuu+7S8OHDNXDgQPXv31/9+/fXxo0bJUnff/+9x8dV53zwVUJCgk4//XSv/zIzMz0+7uOPP5YxRv3791ePHj0q3H/ppZeqVatWOnjwoL744otq1+t4rVu31r59+/Txxx9XWXbbtm1avXq1mjVrpuHDh3ss49xe/rNclcTERF122WWSjp17TqtXr1Zubq7i4uJ05ZVXVnjs4sWLNWHCBF1wwQUaMGCA65gXFhbq0KFD+umnn3yuR3UdOXJE77//vmJjYz2ey5J/+wMAALjr2LFjpe2q5ORkj4/76KOPJEl//vOfK9xns9k0fvx4t3I14Wyvv/feezp06FCV5Z3t6GuvvdZjLJWenq7evXvrwIED+vbbb93uW758ufLy8lSvXj1dfPHFru1dunRR9+7ddfToUb366qsVntPZ3vvDH/7gsU7ettekrt5cddVVkqS3335bJSUlbvc5482RI0fKZrO5tlen3Vpd5513npo0aaLXXntNpaWlkhzt0jp16mjkyJGVPraqmGjo0KGKj4/Xl19+qaNHj0qSli1bpkOHDqlNmzY677zzKjzmoosuUsuWLf16L/62j6+77jrFxLhfrouLi1O3bt0k+RcTJScnV/rZ7dixo8fHOT+Tl19+udLS0ircf/PNNyshIUHbtm3Tjz/+WO16lde0aVMlJCRo48aNWrt2bZXlV6xYoZ07dyorK8tjvCb5FwO0bNlSZ555pqSKMdG7776rvXv3qlmzZjrnnHPc7rPb7Zo/f77+9Kc/6bzzztMZZ5yh/v37a8iQIbLZbPrpp598+k7yV7BiRAAAosHs2bMlHWv7Oo0ePVqSo93rbB9KUps2bXTaaafp4MGDWrBggdtjvvvuO23YsEHp6ekaNGiQa7u/fS/ltWvXTjabTTabTenp6bruuutUVlame+65R/fff79bWX/baTWNzf7whz+4xQaS1KlTJ9WrV0+SdP3111d4jLOtdnw7NpB9LcQ1xDXENe6Ia4DI5D3LA4BljRo1Sn/96181e/Zs3X777a7gY8yYMZU+7ocffpAkrVy5Uv379/dY5rfffpMk7dixw7XNmXDTpUsXj4/xtt0XHTp08Li9WbNmkqQDBw64tq1fv16SlJGRoaSkJL9f0ykpKUkXXnihXn/9dc2bN08TJkxw3eds0I8aNcrtMX/5y1/0ySef6IYbbtDjjz+uc889V/3799eZZ56pxo0b17hOY8aM0Z133qm5c+dq9OjRWrRokbp27aru3btX+jjnsb3vvvv00EMPeSzz+++/S3Ic21atWrmOa5s2bVzB1fG6dOmilStX+lx/Y4xuvfVWzZgxo9JyBQUFHrdX53zwVVpampYvX+71/qVLl7oaseU5909GRobHx8XExKhz58765ZdftHHjRg0dOrTadStvwoQJ+tOf/qRzzjlHPXv21Nlnn63+/ftr4MCBFc535/EuLi72+lkuLi6W5P5Z9sXYsWP1wgsv6J133tGhQ4dc54azgX/++ee7netHjhzRlVdeqXfeeafS5/V2zANh48aNKi4uVnx8vM4//3yPZYwxkqq/PwAAwDF/+9vfvCZKS9KgQYMqXDzbt2+fdu/eLcl7u6pr166SjrW/auLiiy9W27Zt9dFHH6lFixYaOnSozjjjDA0aNMj1OuU521UzZ87UK6+84vE5nfU6vh3hjMOGDx9eYQDC6NGjtWbNGs2ePbtCx4jz4vYpp5zi8fW8ba9JXb058cQT1bt3b3399dd6//33NWLECEmOC7bOTpTjY6LqtFurKy4uTldccYVmzJih999/X23atFFOTo4uuOACNW3a1OvjDhw4oK1bt0qSbrzxxkpfo7i4WHv27FHz5s1d+6tz584VOqEkR5u/U6dO1WpD1rR9HIyYqEePHlq6dKnX+1966SWPSYNVxURJSUlq3bq1Nm3apI0bN6pz587VrptTbGysxo8fr0cffVRZWVk6/fTTdeaZZ7o6CxITE93KOz8PW7du9RoT7du3T5J/MdGnn36qV155xa2j1BkTHT9wbt++fTr//PO1YsWKSp937969XmPvmgpmjAgAQCTbsWOHlixZIqli8tZ5552nRo0aadeuXfroo4/criteddVV+uKLLzR37ly3ZBtnv8GVV17plpjib99Leb169VJCQoKOHj2qvLw87dq1S/Xr19egQYMqtFX9aacFIjbz1lZt0qSJfv75Z4/3O9vxx7djA9nXQlxDXCMR1xyPuAaIPCRvAREoLS1NZ599tj788EN9/vnn+uCDD9S5c2f16tWr0scVFhZKkrZv367t27dXWvbw4cOuv52NKG+NyubNm1en+m48zbIkyRX4OBMuJKmoqEiS1LBhQ79f73hXXXWVXn/9dc2dO9eVvLV582Z9/fXXatiwYYVRChdccIHee+89Pfjgg1q5cqU2bNigJ598UnXq1NGIESP0xBNP+D2CQXJ08tx1113Kzs5WbGysjh49WuWsW9KxY+vLCHvnsa3quErVP7azZ8/WjBkzVL9+fT366KMaMmSIWrZsqbp160pyJKfNmTPHNdrkeNU5H4LNuX+cwYQnzv2zf//+Gr/eLbfcoqSkJD3++OP69ttv9e2332r69OlKTEzU2LFj9eijjyolJUXSseNdVFRU5axf5T/LvhgwYIDatGmjbdu26Z133tFVV12lsrIy16wRx5+P06ZN0zvvvKO0tDQ98sgjGjBggNLS0pSQkCBJ6t+/v7744guvxzwQnPvjyJEjVe4PZ8MeAACERvkLst7aVYFsU9WvX1/Lli3TfffdpzfeeEPz5s3TvHnzJDku1E6fPt014l061o7Iycmp8rnLt6tKSkpcnQDHdwJJjougEydO1Ndff60ff/xRJ510kuu+gwcPSpLXDgFv2/2ta1Wuuuoqff3115o7d66rk2PJkiXauXOnMjIyXCOjnarTbvXH2LFjNWPGDGVnZ6tNmzaubZVx7htJPs2KG8yYqKbt40iMiTZt2hSQz++0adPUsmVLPfvss1q2bJmWLVsmyTHC/pZbbtGUKVNc+9F5zHfv3u3qhPSmujHRpZdeqltuuUVbtmzRl19+qdNOO0379u3T+++/L6ni+Xj77bdrxYoVOumkk/TQQw+pb9++atKkieLj4yVJrVq10o4dO0ISEwUjRgQAIJLNmTNHdrtdWVlZbm1ySYqPj9fll1+uf//735o9e7Zb8tYVV1yh2267TYsWLdLevXvVqFEjGWNcscXxMYC/fS/lvf7662rbtq0kR9LR888/r5tvvlnDhw/X6tWr3ervTzstELGZt4QNZ8KQp/s9JRNJge9rIa4hrvGGuIa4BogULJsIRCjnj+rYsWN15MgRnxJ8nMv/3X333TLGVPrvpZdeqvA4bw0H5xJ/websxHBmmQfCeeedp4YNG+rrr7/Wpk2bJB0bPXPppZe6GiXlnX/++friiy+0e/duvfPOO/rzn/+shg0b6vXXX9ewYcNq1HBp0aKFBg8erG+++UaPPvqoYmJiXNM3V8Z5jH766acqj61zOueqjqtU/WM7Z84cSdLjjz+ucePG6cQTT3QlbkmqMnC1Euf+qWwfOEdLle9gcwaj3oIPZ2edJ2PHjtWaNWuUn5+vV199Vddff73q1KmjWbNmuc2s56zb6aefXuXxdo7U8ZXNZnOdc84RGJ9++qny8/PVsGFDt85O6dgxf+mllzR27Fi1adPGFXhI1T/m/uw/5/5o2bJllfsjlEEhAACQ2xLk3tpVntpUkv/tqlatWunFF19UQUGBVq5cqWnTpqlXr17Kzc3VxRdfrK+++qpC/ZxLZlf2r/ysYwsXLnTFJcOHD3ctb+L816pVK9ntdknHZuhycl7E9jbS2NvFYn/rWhXnrAHvvvuu67W9zUTs5Gu71R99+/ZVx44dtXDhQmVnZys5OdnrcglO5c+zI0eOVLl/nJ1iwYyJAtU+DqdQx0QxMTG67bbbtHHjRuXl5enll1/WyJEjVVxcrGnTpumOO+6oULfRo0dXebwrG53vSYMGDVxLoTpjotdee00lJSXq0qWLevbs6Sp79OhRVyLn/Pnzdckll6hFixauawlHjx7Vzp07q/X6NYmJghEjAgAQyZxt8dWrV1dos9tsNv373/+W5Pgddw4elxwzSZ199tk6cuSIaxm7L774Qj///LNrlqfy/O178SYmJkY33nijxo8fr0OHDulPf/qTx9erTjutJrFZsASyr4W4hrjGG+Ia4hogUpC8BUSoESNGqEGDBvr555/dki0q45wS1JeR2uV16tRJkrRhwwaP9zuXMww255S9ubm5Acl+l6SEhARdcsklko415J3/expBX15qaqouuugiPfXUU8rJyVFKSoq+++47ffPNNzWqkzMo+PnnnzVw4EC1atWqysf4c2ydx/Xnn3/2ukZ1dY+ts7F02mmnVbivtLQ0ZOdKIDj3T25ursf77Xa76zPhLCsd64zzFig5kwQrk5aWpiuvvFLPP/+8vvrqK1fQmZ+fL+nY8V6/fr2rUzCQrr76akmOjsHdu3e7GvZXXHGFW4AmVX7M9+zZU+2pa/3Zfx07dlRcXJzy8/ODujwjAACovoYNG7pG/3prV61bt06Se5tKqrpdsHnz5kpfu06dOjr11FNdM2CNHDlSZWVlevHFF11l/I2RnJ1ASUlJat68ucd/qampkhwXSctfrHS+z++//97jczuXCTiev3WtSnp6ugYNGqTDhw/rnXfeceug8tbJ4VRVu9Vfo0ePVklJiX777TddeumlbgNCPElJSVGLFi0kHTuffOE8Fj/++KPHC8p2u10//vhjNWoe+PZxOFUVE+3fv9/VaRPomKht27a6+uqrNXfuXC1YsECS9OKLL7rin2B9HpycMdFrr72m0tJSV0x0/MC53bt36+DBg0pNTa0wm4ezfmVlZdV6bX/2X7BjRAAAItF3332nnJwc2Ww2r2325s2bKz4+XocPH9abb77p9nhn/4BzyXLn/57ayMFqm9x7771q0KCBPv30U7fEDX/aaTWJzYItEH0txDXENd4Q1xDXAJGC5C0gQtWrV0933HGHzjrrLN10002uaVcrc8EFFyg+Pl7vv/++fvrpJ59f65xzzpEk/etf//J4/8yZM31+rpro0KGDMjMzdeTIET311FMBe15nEDZ37lytXbtWubm5roa+r5o3b6527dpJkn799dca1efSSy/VOeeco7POOkvjx4/36THOBLSnnnrK55mFOnfurNatW+vw4cP673//W+H+NWvWVLm29fGcwYdzlEJ5//nPf6qc9tVKzjnnHNlsNi1fvlzfffddhfvfeust/fLLL6pfv75OP/101/b27dtLcuy/o0ePuj3GbrfrP//5T7XqkZGR4Zqe2XludezYUZmZmSooKPB47GrqpJNOUu/evXX06FG9+OKLevvttyV5nta5smP++OOPV7tB79x/X3/9dYX7fvnlF3344YcVtterV0/nnnuu7HZ7QL8bAABAYJx77rmSpKeffrrCfcYY13ZnOafK2gVvvvmm9u7dW6169O3bV5J7e93Zjn7uued8Xl55z549+uCDDyRJCxYs0M6dOz3+y8vLU2JiorZt2+ZaJkGShgwZIkleR9x72+5PXX1VPib64IMPtHfvXvXp00cdOnTw+Tk8tVv9NXbsWJ111lk666yzdMMNN/j0GOf++ec//+nz6/Tv31/16tXT1q1bPbYzFyxYUO1OiUC3j8PJ+Zl8/fXXPY6yfu6551RSUqI2bdq4XeCv7LN78OBB15LsvnJ+dg8fPuz63J9xxhlq0qSJ1q5dW+0R6L44++yzlZaWpj179ui5557T8uXLPQ6ccx7voqIij8t2PPLII9V+7cr23zfffKO1a9dW2B7sGBEAgEjkHHAxYMAAr232nTt3umbBOX7G3BEjRqhu3bpaunSptm/frjfeeEOS50Qgf/teqtK4cWP98Y9/lCQ9+OCDru3+ttP8jc1CqSZ9LcQ1xDWeENcQ1wCRguQtIIJNmTJFn3zyic/JUy1atNBf/vIXlZaW6txzz63QEDDGaNWqVRo3bpy2bNni2n7zzTerfv36+uqrr3Tvvfe6ElJKS0v117/+tVojAGrqgQcekOR470899ZTbtLmHDh3S888/X+3Znc4880ylp6dr/fr1uuuuuyQdm2L3eCNHjtR7772nI0eOuG1/44039MMPP8hms6lHjx7VfVtuGjRooA8//FCffPKJa0rTqtx0001q3769lixZotGjR1cYEXLgwAG99tpruv32213bYmJiXLfvvvtuffnll677tm3bpmuuuUZxcXHVqnv//v0lSffcc49botaiRYv017/+VYmJidV6vnA68cQTXYHS1Vdf7faZWL16tSux7tZbb3WbSrdbt25q0aKF8vPzNXnyZFcyXXFxsf7yl794HN1RVFSkkSNHaunSpW6jCcrKyvTUU09p7969ql+/vlvgMH36dNlsNv3pT3/S888/XyFRbMuWLXrwwQddo4uqy5moNWXKFB04cEDt2rVzS1Jzch7zO+64w7X0jzFG//3vf/XYY49V+5ifd955kqR33nnHtfa6JOXn52v06NEV3qfT/fffr4SEBD3wwAOaNm1ahQAjPz9fTz75pNckVAAAEDx33HGH6tSpo/nz5+vxxx93tXeOHDmi2267zTWyety4cW6Pc7YLHnnkEbcOkK+//lrjx4/32FZ94okn9M9//rPCBeaff/5Zzz//vCQpKyvLtX3EiBHq27evNmzYoGHDhlUY+VlSUqL33ntP1113nWvbq6++qtLSUp1wwgkaOHCg1/ednJysYcOGSXLvCLr55ptVr149ffTRR5oyZYrrovfRo0d1zz33aPny5R6fz5+6+urSSy9VQkKCPv74Yz3zzDOSPM9E7E+71R/t27fXJ598ok8++UT9+vXz6TETJ05UamqqXn75Zd1+++2uZS2dCgoK9OKLL7piSslxjJydKLfccotbLPn99997Pc8qE+j2cTgNHjxYvXv3VklJiUaNGuW2zMhHH32kqVOnSpLuuusu15IYkiPGTkxM1DfffONaikiS9u3bp2uvvVZ79uyp8Fq5ubm66aab9PXXX7sNSCopKXF1VLZp00aNGzeWJCUmJurvf/+7JOnyyy/X22+/XWEgU05OjiZOnKgvvvii2u89NjbW9Rn461//KmOMBg4cqBNOOMGtXMOGDdW1a1cdPXpUEyZMcF0rKCsr0/Tp0zVv3jzXUiO+cn73zZo1S6tWrXJt/+mnn3TNNdeoTp06Hh8X7BgRAIBIUlZW5lphw9OA1PKcK2E4k7ScGjRooGHDhslut+vGG2/U7t271b17d3Xp0qXCc/jb9+KL22+/XXFxcfrkk09cSRD+ttP8jc2CIRh9LcQ1xDWeENcQ1wARwwCwvDZt2hhJZtmyZT6V3759u5FkPH3ES0tLzZgxY1z3p6WlmT59+phu3bqZpKQk1/b169e7PS47O9vYbDYjyTRp0sT07t3bpKammpiYGDNt2jQjybRp06bC6zmfb8mSJW7br7nmGiPJ/Oc///H4HiZPnmwkmcmTJ1e47+GHH3bVJSUlxfTq1ct07NjRxMXFeXwtX/zlL39x1VWS+eqrrzyWS0lJMZJMQkKCyczMNL179zbp6emux917770+v+aSJUuMJNOhQwefH3P//fcbSeaaa66pcN/69etNu3btjCQTExNjunTpYk499VTTqVMnExsbaySZU0891e0xR48eNeeff76r/p07dzbdu3c3derUMSeccIK59dZbPR6H//znPx7rsW3bNpOammokmbp165ru3bubtm3bGknmzDPPNKNHj/Z43GtyPnjjrKOn87I853Hw9HnZtWuXOfnkk40kExsba7p162YyMjJc5c8++2xz+PDhCo+bPXu2q0zTpk1Nr169THJysmnQoIF57LHHjCQzcOBAV/m9e/e6ytevX99069bN9OrVyzRp0sRIMjabzcyaNavC6zzzzDOuY5uUlGR69uxpevXqZZo3b+56vpkzZ/q8z45/73Xq1Kny3P7mm29MQkKCkWSSk5NNz549TYsWLYwkM3bsWDNw4MBqfwdcf/31rtdt166d65zs3Lmzue2227yeC2+99ZapV6+ekWQSExNN9+7dTZ8+fUzr1q1dzzdx4kS/9gcAALWZMx7x1lZzcv7ue/qdnjFjhqsN37x5c9O7d2/TsGFDV9v63XffrfCYw4cPm65duxpJpk6dOiYzM9N06tTJSDIjR4702M5wthUkmbZt25o+ffqYzp07u9pMmZmZZt++fW6v8+uvv5oePXq4HnfiiSeaU0891WRkZJj4+HhXnZ1OPfVUI8lMmjSpyn03f/58V9xSvt340ksvufZH06ZNTe/evU2TJk1MTEyMeeSRR4wk0759+wrPV926VsfFF1/set6YmBjz66+/Vijjb7vVG2eb/ayzzvL5Mc62oqfzbPny5a66xMXFmZNPPtmceuqppn379q79feWVV7o9Zv/+/aZnz56u+p988skmMzPT2Gw2k5WVZUaOHOnx/PcWo/jbPva23amqmMkTZx3Lxx6eVBY7/fTTT6ZVq1auz2pWVpY58cQTXefB2LFjjd1ur/A4Z+wqybRs2dL07NnT1K1b1zRv3txMmTKlQjz53Xffuco3bNjQZGVlmR49erhi8Pj4ePP+++9XeJ277rrL9bjU1FTTu3dvk5WV5YpLJZkPPvjA531WXvk6STIvvPCCx3ILFixwnV+pqalun4l7773X9R2al5fn9jhvx9xut5uzzz7b9Vk86aSTTGZmpomJiTEDBgwwV111lddzIZgxIgAAkeSDDz5wXSM8vv3vibON/fDDD7ttf+edd9zaA9OnT/f6HP70veTl5bm2H99WKG/s2LFGkrnoootc2/xtp/kTm1XVVvXW3nHydP09kH0t5RHXENcQ17gjrgEiBzNvAbVMnTp1NHv2bL333nuuWZ2+++475efnq1OnTrr11lu1dOnSCmuajx49WosXL9aZZ56p4uJibdiwQSeffLI++OADXXnllSF9D3fddZe+/PJLXXHFFapXr57Wrl2roqIi9e7dW48++qjbSHpflR990aFDB/Xp08djuZdfflk33nijOnbsqF9//VXff/+96tWrpxEjRuizzz5zZciHQ+fOnbV27VpNmzZNvXv31o4dO7RmzRodOXJEAwcO1GOPPVZhGtfY2Fi98847evjhh9WpUydt2bJFv/32m6655hqtWrXKlf3vqxNOOEErVqzQJZdcovj4eG3YsEGJiYmaOnWqFi1a5DWT3qqaNm2qFStW6O9//7u6dOmijRs3atu2berdu7eefvppvf/++x5HmIwZM0avvfaaevbsqf3792vLli0666yz9NVXX6lnz54VyiclJWn27NkaO3asWrdura1bt2rdunVKTU3VmDFj9N1337mmxy7vT3/6k9asWaM//vGPatq0qdatW6effvpJTZo00ahRo/T666+71jT3570PHTrU7T150rNnT33++ecaMmSI7Ha7NmzYoGbNmumpp57Syy+/7Ndr/+tf/9Lf//53dejQQTt27NDu3bt10003acWKFWrYsKHXx40YMUK5ubm67bbb1LZtW/3444/Kzc11fUZffvll1+x6AAAgtMaNG6dly5bp4osvlt1u15o1a1SvXj2NGTNGq1ev1gUXXFDhMYmJiVq8eLGuv/56paam6qefflJMTIwee+wxzZkzx+Pr3HzzzZoyZYoGDBig0tJSrVmzRnv37nW131atWuVaAsMpPT1dK1as0IwZMzRgwADt2bNH3333nfbv368+ffpo6tSpWrJkiSTHCNGvvvpKkvf2UXnnnXeeGjdurMLCQi1cuNC1/ZprrtFHH32kQYMG6fDhw9qwYYO6du2qRYsW6fzzz5ckt9ld/alrdZWPiZyzEx/P33ZrqJx++unKzc3V3XffrYyMDOXl5en7779XTEyMhg4dqhkzZujJJ590e0yDBg20dOlSTZw4USeccIJ+/PFH7d+/XxMmTNBnn32mhISEatUhGO3jcDrxxBP13Xff6f/+7/90wgknaN26ddq1a5cGDBig2bNn6+WXX3Ybne50zz336Nlnn1VGRoZ2796t7du367LLLtM333yjNm3aVCjfsWNHzZo1S5dffrmaNm2qjRs36qefflLLli118803Kzc31zVyu7yHH35YX3zxha666irVr19fa9eu1datW9WqVStdd911eu+993TWWWf59d67d++uk08+WZLj++iyyy7zWG7YsGH64IMPdNppp+nw4cP68ccfdeKJJyo7O9uvawQ2m01vv/22br/9drVo0UJ5eXk6ePCgJk2apI8++qjSWROCGSMCABBJnDPfDhs2rEL73xNn2/74pRPPO+88NWrUSJLjN3rkyJFen8Pfvhdf3HnnnbLZbFqwYIFycnIk+d9O8yc2C4Zg9bUQ1xDXeEJcQ1wDRAKbMcfNvQcAAAAAAICwePPNN3XZZZfpoosu0jvvvBPu6gAAAAAAAAAIMmbeAgAAAAAAsIj//Oc/khyjrQEAAAAAAABEP5K3AAAAAAAAQujNN9/U+++/r7KyMte2Q4cO6c4779R7772n+vXra+zYsWGsIQAAAAAAAIBQqRPuCgAAAAAAANQmP/zwg6ZOnarExER16NBBCQkJWr9+vQ4fPqzY2Fg999xzSktLC3c1AQAAAAAAAIQAyVsAAAAAAAAhdNFFF+mXX37R559/ru3bt+vw4cNq2rSphg8frjvuuEO9e/cOdxUBAAAAAAAAhIjNGGPCXQkAAAAAAAAAAAAAAAAAqG1iwl0BAAAAAAAAAAAAAAAAAKiNauWyiXa7Xb/++quSkpJks9nCXR0AAADAjTFG+/fvV4sWLRQTw3gLVERMAwAAACsjpkFViGkAAABgVeGIZ2pl8tavv/6q1q1bh7saAAAAQKW2b9+uVq1ahbsasCBiGgAAAEQCYhp4Q0wDAAAAqwtlPFMrk7eSkpIkOXZ0cnJymGsDAAAAuCsqKlLr1q1d7VbgeMQ0AAAAsDJiGlSFmAYAAABWFY54plYmbzmn4E1OTiYoAAAAgGWxdAS8IaYBAABAJCCmgTfENAAAALC6UMYzLDYPAAAAAAAAAAAAAAAAAGFA8hYAAAAAAAAAAAAAAAAAhAHJWwAAAAAAAAAAAAAAAAAQBiRvAQAAAAAAAAAAAAAAAEAYkLwFAAAAAAAAAAAAAAAAAGFA8hYAAAAAAAAAAAAAAAAAhAHJWwAAAAAAAAAAAAAAAAAQBiRvAQAAAAAAAAAAAAAAAEAYkLwFAAAAAAAAAAAAAAAAAGFA8hYAAAAAAAAAAAAAAAAAhAHJWwAAAAAQZNdee61sNlul/4qLi8NdTQAAAACogHgGAAAACK464a4AAAAAANQWHTt2VLNmzTzeFxPD2BoAAAAA1kU8AwAAAAQHyVsAAAAAECJ/+9vfdO2114a7GgAAIIjK7Ear8gq0a3+xmiUlqk+7VMXG2KgTQmrnvmJd+PTnKio+quTEOnr3zwOU1jAx3NVChCOeiTxW//63ev0AAIER7O97X58/XL870fp75+19BeJ4ROs+q0xEJW+VlZXpxRdfVHZ2ttatW6cDBw6oefPm6tGjh/7whz/ooosuCncVAQAAAAAAANRSi3LyNXVhrvILjy0flp6SqMnDMjQ0M506ISS63PuBDpfaXbd/P1iqvtM+Vd24GK2//7ww1gxAKFn9+9/q9QMABEawv+99ff5w/e5E6++dt/c1vFu6FqzNr9HxkBSV+6wqETOP7d69e9W/f3/deOONWrZsmZo0aaLMzEyVlpZq/vz5mj17drirCAAAAAAAAKCWWpSTr3HZq90uMEvSzsJijcterUU5+dQJQXd84lZ5h0vt6nLvByGuEYBwsPr3v9XrBwAIjGB/3/v6/OH63YnW3ztv7yu/sFjPfZ5Xo+Nxc/Zq3RyF+8wXEZG8ZbfbNXz4cK1cuVKXXHKJfv75Z23YsEHffPONfv31V23fvl3jx48PdzUBAAAAoFJvvPGGLr74Yg0ePFgjR47U008/rcLCwnBXCwAA1FCZ3WjqwlwZD/c5t01dmKsyu6cStadOCK6d+4q9Jm45HS61a+e+4krLAN4Qz0QGq3//W71+AIDACPb3va/Pf+SoPSy/O9H6e1fZ+/KmusejqueItH3mq4hI3vr3v/+t5cuX68wzz9Trr7+uVq1aud3fqlUrDRgwIEy1AwAAAADfvPfee5o/f76WLFmiefPmafz48WrXrp0WLVpU6eNKSkpUVFTk9g8AAFjHqryCCiODyzNyjEJelVdQq+uE4Lrw6c8DWg44nr/xjERME0pW//63ev0AAIER7O97X59/9oqtYfndidbfu6relze+Hg9fniPS9pmvIiJ568knn5Qk3X///YqJiYgqAwAAIFI99ph08cXSkSPhrgmiSIcOHfTQQw9p7dq1Kioq0v79+/XRRx/p1FNP1d69e3XxxRfrm2++8fr4hx9+WCkpKa5/rVu3DmHtAQBAVXbt9+3is6/lAsGKdUJwFRUfDWg5wKmm8YxETBNKVv/+t3r9AACBEezve18ft63gUFDrUdPni7Tfu5rW19fjEcw6WFWdcFegKj/99JM2bNig1NRUnXbaaZo/f75ef/115efnq2nTpjr77LM1duxYJSQkhLuqAAAAiGQ//SR16nTs9tNPS3fcEb76IKrce++9FbYNGTJEAwcO1BlnnKFVq1Zp4sSJ+vTTTz0+ftKkSbr99ttdt4uKiujsAADAQpolJQa0XCBYsU4IruTEOvr9YKlP5YDqqGk8IxHThJLVv/+tXj8AQGAE+/ve18e1Sa0X1HrU9Pki7feupvX19XgEsw5WZflprL799ltJUufOnTV27FhdfPHFmjNnjhYvXqx58+bphhtuUPfu3bVt2zavz8F0vAAAAPDKGGn4cPfELUn64x/DUx/UKvHx8br//vslSUuXLtXevXs9lktISFBycrLbPwAAYB192qUqPSVRNi/32ySlpySqT7vUWl0nBNe7fx4Q0HJAVXyNZyRimlCy+ve/1esHAAiMYH/f+/r8Y/u1DcvvTrT+3lX1vrzx9Xj48hyRts98Zfnkrfz8fEnS119/rTlz5uiPf/yjtm7dquLiYn3yySdq3769NmzYoEsvvVR2u93jczAdLwAAADxaulSKiZEWLjy27ZFHHAldKSlhqxZql379+kmS7Ha7tmzZEubaAAAAf8TG2DR5WIYkVbgI7bw9eViGYmP8uUQdPXVCcKU1TFTduMov+deNi1Faw+gcqY7wIJ6xHqt//1u9fgCAwAj2972vzx9fJyYsvzvR+ntX2fvyprrHo7L7InGf+cryyVsHDx6UJJWWluqMM87QrFmz1KZNGyUkJOiss87SW2+9JZvNpm+//Vbvvfeex+eYNGmSCgsLXf+2b98eyrcAAAAAK8rOls4889jt+Hhp/37pr38NX51QK8XFxbn+Pnr0aBhrAgAAamJoZrpmjslSWop7YkxaSqJmjsnS0Mx06oSgW3//eV4TuOrGxWj9/eeFuEaIdsQz1mT173+r1w8AEBjB/r739fnD9bsTrb933t5XekqibhrQTuk1OB7/GpOlf0XhPvOFzRhjwl2Jyjz22GP66/860N544w1deumlFcqcddZZWrx4sW655RY9++yzVT5nUVGRUlJSVFhYyNS8AAAAtY0xks0mLV8unXGGY9v8+Y6lEy2C9mrt8u2336pXr16SpF9++UUtW7as8jGcIwAAWFeZ3WhVXoF27S9WsyTHkg7hHhlsxTpZVbTsq537inXh05+rqPiokhPr6N0/DwjpjFu0V2sPf+IZiXMkVKz+nWb1+iEycB4B1hfsz6mvzx+u74to/Z7y9r4CcTzCvc/C0VatE5JXqYFGjRq5/u7cubPHMl26dNHixYu1devWENUKAAAAEWf3bum88xwJW088IfXvLy1bJp12mmPpRCBMHn/8cUmOeMfXjg4AAGBdsTE29evQONzVcGPFOlnRopx8TV2Yq/zCYte29JRETR6WEXEjvNMaJuqbe88JdzVQCxDPWJvVv/+tXj9YXzT9dgPRLNjf974+f7h+d6L1987b+wrE8YjWfVYZy/dSnXTSSa6/ExISPJZxbi8rKwtJnQAAABBh7rhDatZM+vZb6Z//lH780bG9f38StxB0H3/8sSZNmqS8vDy37YWFhRo/frzmzp0rSbrvvvvCUT0AAADI0fk7Lnu1W+evJO0sLNa47NValJMfppoB4UU8A8Cq+O0GAEQTy8+81aNHDyUmJqq4uFhbtmzRiSeeWKHMli1bJIlRHQAAAHCXmyt17eq+bdIkqdwAASDYDh48qGnTpmnatGlq2bKlWrRoodLSUuXm5urIkSOy2Wy67777NGrUqHBXFQAAoFYqsxtNXZgr4+E+I8kmaerCXA3JSIuK5U2A6iCeAWBF/HYDAKKN5acZqF+/vs4//3xJ0ssvv1zh/p07d+rDDz+UJA0ePDikdQMAAIBF2e3S4MEVE7d+/VV66KHw1Am1Vs+ePXX33Xdr8ODBio2NVU5OjjZs2KCWLVvq6quv1ooVKzRlypRwVxMAAKDWWpVXUGHWjvKMpPzCYq3KKwhdpQCLIJ4BYEX8dgMAoo3lZ96SHNPtzp8/X6+++qrOOeccXXPNNZKkffv26dprr9Xhw4fVvn17XX755WGuKQAAAMLOGOn006WVK49te+YZ6U9/Cl+dUKu1bt1aDzzwQLirAQAAAC927ffe+etPOSCaEM8AsCJ+uwEA0cbyM29JUrdu3fTMM8/IGKNrr71Wbdq0Ue/evdWyZUt9+OGHatKkid58803Fx8eHu6oAAAAIl7Iyx/82mzR0qOPvRo2kQ4dI3AIAABGlzG60YvMezV+zQys271GZ3dOCMAACpVlSYkDLAQCA4OK3u2aINwDAeiJi5i1Juvnmm9W1a1c9+uijWrFihb7//nu1aNFCF1xwgSZNmqSWLVuGu4oAAAAIl2eekf78Z+mdd6SLLpLuuksaM0bq0CHcNQMAAKiWRTn5mrow120ZmPSURE0elqGhmelhrBkQvfq0S1V6SqJ2FhbLU9elTVJaSqL6tEsNddUAAIAH/Hb7j3gDAKwpImbecjrjjDO0YMEC7d69WyUlJcrLy9MzzzxD4hYAAEBtlZ/vmGnrz3923L77bseyiQkJJG4BAICIsygnX+OyV7t1pEjSzsJijcterUU5+WGqGRDdYmNsmjwsQ5Kjs7c85+3JwzIUG3P8vQAAIBz47fYP8QYAWFdEJW8BAAAALjffLLVo4b5twQJHMhcAAECEKbMbTV2Y63HmAOe2qQtzWdIECJKhmemaOSZLaSnuyyulpSRq5pgsZqIAAMBi+O2uHuINALC2iFk2EQAAAJAkrVkj9ejhvu2OO6THHgtLdQAAAAJhVV5BhRHw5RlJ+YXFWpVXoH4dGoeuYkAtMjQzXUMy0rQqr0C79herWZJjuSVm7QAAwJr47fYd8QYAWBvJWwAAAIgcGzZUTNzatUtq2jQ89QEAAAiQXfu9d6T4Uw6Af2JjbHRYAgAQQfjt9g3xBgBYG8smAgAAwPoOHXL836mT1L+/4+8XXpCMIXELAABEhWZJiVUXqkY5AAAAAHAi3gAAa2PmLQAAAFjX/v1Sq1bS0aPSTz9JLVpIb74ppaZKdWjKAgCA6NGnXarSUxK1s7BYxsP9NklpKY5lYAAAAACgOog3AMDamHkLAAAA1vToo1JyslRU5Jh56+WXHdubNSNxCwAARJ3YGJsmD8uQ5Og4Kc95e/KwDMXGHH8vAAAAAFSOeAMArI3kLQAAAFjLzz9LNpt0553Htl18sXTXXWGrEgAAQCgMzUzXzDFZSktxX6okLSVRM8dkaWhmephqBgAAACDSEW8AgHUxZQEAAACs4+qrpdmz3bf99JN04onhqQ8AAECIDc1M15CMNK3KK9Cu/cVqluRYuoQR8AAAAABqingDAKyJ5C0AAABYw+OPuydu3XefNHVq+OoDAAAQJrExNvXr0Djc1QAQwcrshk5ZAADgEfEGIh1tXUQjkrcAAAAQPmVl0t69UpMm0lVXSffeKx05Iv3+u9SwYbhrBwAAAAARZ1FOvqYuzFV+YbFrW3pKoiYPy2A5JAAAAEQ02rqIVjHhrgAAAABqqXnzpDp1pBEjJLtdSk+XfvtNOnqUxC0AAAAA8MOinHyNy17t1pklSTsLizUue7UW5eSHqWYAAABAzdDWRTQjeQsAAAChtW+fZLNJI0c6bi9fLq1f7/g7KSls1QIAAACASFZmN5q6MFfGw33ObVMX5qrM7qkEAAAAYF20dRHtSN4CAABA6EyZIjVq5L5txQqpa9ewVAcAAAAAosWqvIIKsxCUZyTlFxZrVV5B6CoFAAAABABtXUS7OuGuAAAAAGqB7dulE05w33bVVVJ2tmMWLgAAAABAjeza770zy59yAAAAgFVEalu3zG60Kq9Au/YXq1lSovq0S1VsDH0iqIjkLQAAAASXMdLw4e7btm2rmMwFAAAAAPBbs6TEgJYDAAAArCIS27qLcvI1dWGu24xh6SmJmjwsQ0Mz08NYM1gRyyYCAAAgOLZtk0pKHDNrTZ3q2DZtmiOZi8QtAAAAAAioPu1S1bBeXKVlGtWLU592qSGqEQAAABAYfdqlKj0lUd7mrLLJkRhllbbuopx8jcteXWGpx52FxRqXvVqLcvLDVDNYFclbAAAACKySEkdyVtu2jmQtyTHz1pEj0sSJYa0aAAAAANRmJtwVAAAAAPwQG2PT5GEZklQhgct5e/KwDEssSVhmN5q6MNdj29u5berCXJXZaZ3jGJK3AAAAEDgvvSQlJkrbtztuv/22ZLc7/o6rfAQ4AAAAAMB/q/IKtO9QaaVl9h0q1aq8ghDVCAAAAAicoZnpmjkmS2kp7ksjpqUkauaYLMssRbgqr6DCjFvlGUn5hcW0y+GmTrgrAAAAgCjw++9S06bu23r1klaulGIYLwAAAAAAwbZrv/cOIn/KAQAAAFYzNDNdQzLStCqvQLv2F6tZkmOpRCvMuOVEuxz+IHkLAAAANfPgg9I997hvW71a6tEjPPUBAAAAgFqoWVJi1YWqUQ4AAACwotgYm/p1aBzuanhFuxz+YBoEAAAA+G/zZvfErRtvlIwhcQsAAAAAQqxPu1SlpyTK25wDNknpKY6ZCQAAAIBIVGY3WrF5j+av2aEVm/eozG7CXaUKaJfDH8y8BQAAgOoxRlq1Sjr1VKlDB2n8eOnTT6WPPpJatAh37QAAAACgVoqNsWnysAyNy17ttczkYRmWWlIGAAAA8NWinHxNXZir/MJjyw2mpyRq8rAMDc1MD2PN3JVvl9sklU8vc7bEaZfjeMy8BQAAAN99/LEUEyP17SstX+7Y9s9/Sjk5JG4BAAAAQJgNzUzXjQPa6fh+oBibdOOAdpbq1AIAAJEnEmY9QnRalJOvcdmr3RK3JGlnYbHGZa/Wopz8MNXMs6GZ6Zo5JktpKe5LI6alJGrmmCza5aiAmbcAAABQtcOHpdatpT17jm3buFHq31+yMToEAAAAAKxgUU6+nvs8r8J2u5Ge+zxPPU5oREcRAADwS6TMeoToU2Y3mrowV55SBY0cs1lNXZirIRlplprNamhmuoZkpGlVXoF27S9WsyTHUolWqiOsg5m3AAAAULmZM6V69dwTt95/X7ruuvDVCQAAAADgpsxudNdbP1RaZtJbPzBDBgAAqLZIm/UI0WVVXkGFc688Iym/sFir8gpCVykfxcbY1K9DY13UvaX6dWhM4ha8YuYtAAAAeHbggJSU5L7tzDOlTz5xLJ0IAAAAALCMlVv2aN+h0krL7D1UqpVb9uj0E5uEqFYAACDSReqsR9GuzG5qzYxOu/Z7T9zypxxgRSRvAQAAwLPnn3e/nZMjde0anroAAAAAcKlNHTXw3YrNe6ou9L9yJG8BAABfVWfWo34dGoeuYrVYbVvCsllSYkDLAVZE8hYAAACO+e03acsWqV8/6ZZbpE8/lXr1kiZPDnfNAAAAAKj2ddSgOnxdDpFlEwEAgO+Y9chanEtYHt+icy5hOXNMVtTFBX3apSo9JVE7C4s9tmRtktJSHINagEjFejcAAACQ7HZHwlZamjR8uLRvnxQfLy1cSOIWAAAAYBHOjprjZz5wdtQsyskPU81gBf3a+zablq/lAAAAJGY9spKqlrCUHEtYltmjK1k/NsamycMyJDkStcpz3p48LIPZiBHRSN4CAACo7RYulGJjpZUrHbd//13a49tyGwAAAABCo7Z21MB3fTs0VsN6cZWWaVgvTn1ZzggAAFSDc9Yjb2kxNjlmgmXWo+CrzhKW0WZoZrpmjslSWop7kmBaSmJUzjaG2odlEwEAAGqrAwekJk2kkpJj21q0cCybmJAQvnoBAAAAqKA6HTX9SM6plWJjbJp2ycm6OXu11zLTLjmZGQkAAEC1OGc9Gpe9Wja5L8DMrEehVduXsByama4hGWlalVegXfuL1SzJkTTIuYdowMxbAAAAtdFHH0lJSe6JW4sXSzt2kLgFAAAAWFBt76iBb4ZmputfY7KUluwe16UlJ+hfzEgAAAD8xKxHoVVmN1qxeY/mr9mhFZv3uGbXZQlLRzJhvw6NdVH3lurXoTGJW4gazLwFAABQGz3yyLG/L7xQWrBAshHkAAAAAFZFRw18NTQzXYM7N9fsFVu1reCQ2qTW09h+bRVfh7HcAADAf8x6FBqLcvI1dWGu26y76SmJmjwsQ0My0pSekqidhcUel1O3yZFQxxKWQOQheQsAAKC2ePNN6dRTpVatpBkzpEmTpGnTpI4dw10zAAAAAFXo0y6Vjhr4xFOH3/PL8zR5WAazYgAAgBpxznqE4FiUk69x2asrtPd3FhZrXPZqzRyTxRKWQJRiqA0AAEC0+/prx6xal10m3XqrZIzUqZMjmYvELQAAACAixMbYNHlYhqRjHTNOdNTAydnhVz5xSzrW4bcoJz9MNQMAAEBlyuxGUxfmehyo4dw2dWGuhmSksYQlEIWYeQsAACBaHT0qZWVJP/xwbFvDhpLdLsXGhq1aAAAAAPwzNDNdM8dkVZhVKe1/y6jQUVO7VdXhZ9OxDj+S/AAAAKxlVV5BhQT88oyk/MJircorYAlLIAqRvAUAABCNXn9duuIK923Z2dLo0eGpDwAAAICAoKMG3lSnw4/ljgAAAKxl137v7ThP5VjCEoguJG8BAABEk+JiadAg6auvjm3r1EnKyZHi4sJWLQAAAACBQ0cNPKluhx8AAACso1lSYtWFqlEOQGSJCXcFAAAAEEBFRdKaNcduf/ml9OOPJG4BAAAAQJSjww8AACBy9WmXqvSURHmbT9cmKT3FMesugOhD8hYAAECk++UX6eGHJbtdatZMevllacYMx+1+/cJdOwAAAABACNDhBwAAELliY2yaPCxDkiq055y3Jw/LYLl0IEqRvAUAABCpjJEuu0xq3Vr629+kmTMd26+8Uho3TrIRxAEAAABAbUGHHwAAQGQbmpmumWOylJbiPlNqWkqiZo7J0tDM9DDVDECw1Ql3BQAAAOCH5culM85w39atW3jqAgAAAACwBGeH39SFucovLHZtT0tJ1ORhGXT4AQAAWNzQzHQNyUjTqrwC7dpfrGZJjplTScAHohvJWwAAAJHkyBGpc2cpL899e2GhlJwcnjoBAAAAACyDDj8AAIDIFhtjU78OjcNdDQAhRPIWAABApPj++4qza735pnTJJeGpDwAAAADAkujwAwAAAIDIQfIWAABApPjll2N/Z2VJq1ZJsbHhqw8AAAAAAAAAAACAGokJdwUAAABQiTlzpGeecfx9/vnSk09KP/0kffstiVsAAAAAAAAAAABAhGPmLQAAACv68Uepc+djtwcNkjIzpfHjw1YlAAAAAEBkKLMbrcor0K79xWqWlKg+7VIVG2MLd7UAAAAA/A9tdpRH8hYAAICVGCOdd5704YfHtjVoIJ1wQvjqBAAAAACIGIty8jV1Ya7yC4td29JTEjV5WIaGZqaHsWYAAAAAJNrsqIhlEwEAAKzi00+lmBj3xK1//lPav19KTg5btQAAAAAAkWFRTr7GZa926wSSpJ2FxRqXvVqLcvLDVDMAAAAAEm12eEbyFgAAgBU8+KB09tnHbjdoIB08KN12W/jqBAAAAACIGGV2o6kLc2U83OfcNnVhrsrsnkoAAAAACDba7PCG5C0AAAAr2LPn2N/vveeYbatevfDVBwAAAAAQUVblFVQYvV+ekZRfWKxVeQWhqxQAAAAAF9rs8IbkLQAAgHD47TfpyiulpUsdt//+d+m//5XKyqTzzw9r1QAAAAAAkWfXfu+dQP6UAwAAABBYtNnhTZ1wVwAAAKDWGT9eevppx9+rV0u5uY5lEseODW+9AAAAAAARq1lSYkDLAQAAAAgs2uzwhuQtAACAUPnhB+mUU9y3/fWvUlxceOoDAAAAAIgafdqlKj0lUTsLi2U83G+TlJaSqD7tUkNdNQAAAACizQ7vWDYRAAAg2Ox26YwzKiZu/fabdOON4akTAAAAACCqxMbYNHlYhiRHp095ztuTh2UoNub4ewEAAACEAm12eEPyFgAAQDDt3i3FxkrLlx/b9txzkjFSs2bhqxcAAAAAIOoMzUzXzDFZSktxX2YlLSVRM8dkaWhmephqBgAAAECizQ7PWDYRAAAgmBo2lLp1k9auldLSpLw8KZG1ygEAAAAAwTE0M11DMtK0Kq9Au/YXq1mSY9kVRu8DAAAA1kCbHccjeQsAACDQnnlGeu01af58qVEjKTtbql9fatcu3DUDAAAAANQCsTE29evQONzVAAAAAOAFbXaUFxHLJl577bWy2WyV/isuLg53NQEAQG23Y4dks0l//rO0bJk0ZYpje2YmiVsAAAAAAAAAAAARpMxutGLzHs1fs0MrNu9Rmd2Eu0qIUhE181bHjh3VrFkzj/fFxEREHhoAAIhW118vvfii+7b77gtPXQAAAAAAtVqZ3bAECwAAAFADi3LyNXVhrvILj00klJ6SqMnDMjQ0Mz2MNUM0iqjkrb/97W+69tprw12NiFY+aG/SIEEy0u8HSwjgAUS1MrvRys17tGLL75IcU5D2bd/Ykt954by4yoVdP337rdSrl/u2SZOkhx4KT32OE4jjWtVzROO5E43vCQAAAEDtQCcTAACwKq67IlIsysnXuOzVOn6erZ2FxRqXvVozx2TRtkZARVTyFmrGU9BeHgE8gGi0KCdfd731g/YdKnVte2bJJjWsF6dpl5xsqe+8cF5c5cKun957T7rwQvdte/ZIqanhqc9xAnFcq3qOaDx3ovE9AQAAAKgdvHUy5dPJBAAAwozrrogUZXajqQtzK7SpJclIskmaujBXQzLSSD5EwLDWYC3hDNq9JW5Jx7JEF+Xkh7BmABA8i3LydXP2arfELad9h0p1s4W+87x9T4fiuzmcrx2xzP+a7J07H9s2e7Zju4USt2p6XKt6joffz426c4fPAwAAAIBIVVknk+ToaJq6MFdldm8lAAAAgoPrrsFVZjdasXmP5q/ZoRWb99Deq6FVeQWV5lUYOQZHrMorCF2lEPUiKnnrjTfe0MUXX6zBgwdr5MiRevrpp1VYWBjualleVUG7k/N+AngA0aDMbjRlwboqy1nhO6+qDH4pePUM52tHpKIixxKJl13mSNTq0EH65hvp6FFpzJhw184lEMe1qucwkmYty4uqc4fPAxCZuDgFAADgUFUnk0QnEwAACD2uuwbXopx89Z++WKNmrdRtr67RqFkr1X/64ohMiLPKdb5d+ytvU1e3HOCLiFo28b333nO7PW/ePE2ePFmvvPKKhg4d6vVxJSUlKikpcd0uKioKWh2tyJeg3al8lmi/Do2DWzEACKJVeQXaWVRSZTkrfOdVJ4M/0PUM52tHnIceku6+2/H3t99Kn30mDRok9ewZ1mp5Eojj6kv7obK4KRLPHT4PQORhun0AQLQosxutyivQrv3FapaUqD7tUll+A9W2s/BwQMsBAAAEAtddg8fbktnOGc0iaclsK13na5aUGNBytQVxbc1ERPJWhw4d9NBDD+mCCy5Qu3btZLPZtGLFCt1777366quvdPHFF2v58uXq1auXx8c//PDDmjp1aohrbR3+ZHySJQog0lXneyzc33nhzOBn9IAPtm6V2rVz33bdddLAgWGpji8CcVwDdcwj6dzh8wBElmi6OAUAqN2s1EmByFZw8EhAywEAAAQC112Do6oZzWxyzGg2JCPN8gk0VrvO16ddqtJTErWzsNjj/rVJSktxJCfBgbi25iJi2cR7771XkyZN0imnnKKkpCQ1aNBAQ4YM0eeff64+ffqopKREEydO9Pr4SZMmqbCw0PVv+/btIax9+PmT8UmWKIBIV53vsXB/54Uzg5/RA5UwRho5smLi1pYt0gsvSDbrBjuBOK6BOuaRdO7weQAiB9PtAwCihbOT4viZCJydFJG41AnCJ7VBQkDLAQAABALXXYOjOjOaWZkVr/PFxtg0eViGJEeiVnnO25OHZVg+KS5UiGsDIyKSt7yJj4/X/fffL0launSp9u7d67FcQkKCkpOT3f7VJs7MUF++OmxyZECSJQog0vVpl6q05KovRlrhO6+q7+lgfjeH87Utb+xYad68Y7cfeMCR0HV8MpcFBeK4+tJ+iLFVDFyq8xpWw+cBiBzRcnEKAFC7WbGTApEtLdm3Dk9fywEAAAQC112DI1pmNLPqdb6hmemaOSZLaSnubee0lERm/C+HuDZwIjp5S5L69esnSbLb7dqyZUuYa2NNlWWGlkeWaGCU2Y1WbN6j+Wt2aMXmPXwRAWESG2PTlOFdqyxnhe+8cGbwM3rgOGVljn+SdM45x7bv2yfdfXdYquSPQBzXqp7DJumGM9rV6DWshs8DEDmi5eIUAKB2s2onBSJXzzaNVFW4EmNzlAMAAAgVrrsGR7TMaGbl63xDM9O1fOJgzb2hr54c2V1zb+ir5RMHk7hVDnFt4ER88lZcXJzr76NHj4axJtbmLTO0PLJEa25RTr76T1+sUbNW6rZX12jUrJXqP30xUwECYTI0M13/GpOlhvXiKtzXqF6c/mWh77xwZvAzeuB/5syR6tSRnnnGcXvsWGnzZsdsWykp4a2bHwJxXKt6jknnZ0TducPnAYgM0XJxCgBQu1m5kwKR6dtte1XVOFK7cZQDAAAIJa67Bl60zGhm9et8sTE29evQWBd1b6l+HRqTZHgc4trAqRPuCtTUunXrXH+3atUqjDWxvqGZ6RqSkaZVeQXatb9YTRokSEb6/WCJmiU5vrj5svGfcy3X46+PONdypeEBhIfzu2/l5j1aseV3SY5GVt/21mtgHf89Hcrv5nC+dtgVFEiNGx+7fffd0s03SwkJUvv24atXAATiuFb1HNF47kTjewKijfPi1M7CYo9TctvkuPhn9YtTAIDazeqdFIg8dJwAAAAr47prYDlnNBuXvdrj/UbS8G7plt+/XOeLbMS1gRPxyVuPP/64JKlz585q2bJlmGtjfc7MUARWVWu52uRYy3VIRprlfyCBaBQbY9PpHZvo9I5Nwl2VKoXze7pW/kbcc4/04IPu2774wpG4FSUCcVyreo5oPHei8T0B0aT8xSmb5NYOZ7p9AECkoJMCgUbHCULpnnvu0YP/u6Zy//3365577glzjQAAkYDrroE1NDNdNw5op+c+z/N4/78/z1OPExpZeoIRrvNFNuLawLH8sokff/yxJk2apLw89y+cwsJCjR8/XnPnzpUk3XfffeGoHiCJtVwBIOL89JNks7knbl17rWOJxG7dwlYtAIDvmG4fABDpnJ0UkiosdUInBfzRp12qGtaLq7RMw3pxdJygxtavX69HH3003NUAAKDWK7MbLVibX2mZqQtzVVbV2tphxnW+yEVcGziWn3nr4MGDmjZtmqZNm6aWLVuqRYsWKi0tVW5uro4cOSKbzab77rtPo0aNCndVUYsxJTmsoMxumGoW8MXu3VKnTu7btm+XWH4ZQAgxSj0wmG4fABDpnJ0UUxfmug0MTEtJ1ORhGXRSIOBoJaGmjDG66aabFBcXp/79+2vx4sXhrhIAALVWdSYYsfqMZ1zni1zEtYFh+eStnj176u6779aKFSu0adMm5eTkyBijli1b6owzztAtt9yiU089NdzVRC3HlOQIt0U5+RV+ENP5QQTc7d8vJSVJTZtKY8ZI2dnSP/4hTZgQ7poBqGUYpR5YTLcPAIh0dFIgUFblFWjfodJKy+w9VBoRnXewrhdeeEHLli3T9OnTlZubG+7qAABQq0XbBCNc54tcxLU1Z/nkrdatW+uBBx4IdzWASrGWK8JpUU6+xmWvrnDu7Sws1rjs1UwnCpSUSB06SDt2SGvWOJZFfPZZ6YUXpPj4cNcOQC3DKHUAAOAJnRQIhGjrvIP17N69WxMnTlRGRoYmTJigG264IdxVAgCgVmOCEVgJcW3NxIS7AkA0YC1XhEuZ3WjqwlyPSYPObZGwljUQNM8/LyUmOhK3JEfCliQlJ5O4BSAsnKPU77vvPrVu3Trc1QEAAEAUofMOwTZhwgQVFBRoxowZiouLC3d1AACo9ZwTjFTWA92oXhwTjIRImd1oxeY9mr9mh1Zs3kP/LKqF5C0gQJxruaaluF/8SEtJZOYjBE111rIGapXduyWbTSo/AvT006V//jNsVQKA40epAwAAAIHk7LyrTDqrA8BPn376qebMmaMxY8Zo4MCB4a4OAADQsQlGKksR2nuoVB/n7gxZnWqrRTn56j99sUbNWqnbXl2jUbNWqv/0xVqUkx/uqiFCWH7ZRCCSsJYrQo3p8AEP/u//pMcfd9+2dq10yinhqQ8A/I9zlPpbb73FKHUAAAAEXGyMTcO7peu5z/O8lhneLZ1rlai24uJi3XzzzUpJSdFjjz3m13OUlJSopKTEdbuoqChQ1QMAoFYbkpGmhvXitO9Qqcf7bXKs0jMkI412YJAsysnXuOzVFZLodhYWa1z2aiZ6gU+YeQsIMOdarhd1b6l+HRrzI4igYjp84DivvOKeuHXrrZIxJG4BCLuajlIvKSlRUVGR2z8AAACgvDK70YK1lY/sX7A2n+VbUG0PPPCANm3apAcffFDNmzf36zkefvhhpaSkuP6xjDwAAIGxKq/Aa+KWxCo9wVZmN5q6MNfj7GfObVMX5tIGR5VI3gKACFbVWtY2MR0+agFjpF9/dfx90UVSu3aOv3fulJ5+Onz1AoD/CcQodTo6AAAAUJVVeQXKL6x89nU67lBd69ev16OPPqqsrCyNGzfO7+eZNGmSCgsLXf+2b98ewFoCAFB7sUpPeFXVBid5Dr4ieQsAIphzLWtJFRK4nLcnD8tgBjg/lNmNVmzeo/lrdmjF5j1kxFvVokVSTIzUv790+LBUv760bp0jocvPkaAAEGiBGKVORwcAAACqsrPItw45X8sBknTLLbfo6NGjmjlzpmJi/O9SSkhIUHJysts/AACCqbb087BKT3j5mzxXW85P+K5OIJ6kpKRE3377rXbs2KHDhw/r6quvDsTTAgB8MDQzXTPHZGnqwly3zO60lERNHpbBGsp+WJSTX2F/prM/reXQISktTdq/33E7L09atUoaOFCqWze8dQMQkYIV0wRqlHpCQoISEhICUicAgVdmN1qVV6Bd+4vVLMkx8y0DKAAAoVZwoCSg5RA5gtlH891338lms2n48OEV7issLJQkTZ8+Xc8884xat26tr7/+OmCvDQCAv2pTP49zlZ6dhcUel+6zydFnaLcbzV+zg+sWAeZP8lxtOj/huxolb5WUlOi+++7Tv/71Lx04cMC1vXxgcP311+uDDz7QkiVLdNJJJ9Xk5QAAXgzNTNeQjDQ6jAJgUU6+xmWvrtDA3VlYrHHZqzVzTBYNp3B7+mlp/Hj3bR9/7EjcAoBqCnZME6hR6gCsiwtuAACrSK0fH9BysL5Q9dGUlZXpt99+83r/gQMHdODAASUmMqMHACD8KuvnuTl7ta47va2GZKRFTT+ac5WecdmrZZPc3rfz9uHSMo1+4SvX9ki7bmHlQXO+Js/1aZcqiX5IeOd378GRI0d0zjnn6LHHHpMxRoMGDVKTJk0qlLvkkku0c+dOvfHGGzWqKACgcrExNvXr0FgXdW+pfh0aW6bREknK7EZTF+Z6bFw5t01dmMvUpeGyd69ks7knbp17rmS3S2efHb56AYhYoYhpyo9ST0tLc/s3b948SY5R6mlpaerdu3eN3xOA0HJecCufuCUdu+C2KCc/TDUDANRGaSm+zUTtazlYW6j6aPbt2ydjjMd/11xzjSTp/vvvlzFGW7durclbAgCgxnzp53nxi60aNWul+k9fHDVxu3OVnrQU90TqhvXiJEn7DpW6bY+k6xaLcvLVf/pijZq1Ure9usZyx86ZPCc5ErXKc96ePCxDsTE2+iFRKb+Tt5566iktW7ZM/fv318aNG/Xpp5+qU6dOFcoNGTJE8fHx+uijj2pUUQAAgm1VXkGFjrfyjKT8wmKtyisIXaVwzB/+4H57/Xpp0SJHQhcA+CFUMY1zlPrx/4qLHb85Bw4c0G+//abdu3fX6P0ACC0uuAEArKZPu1TVi4+ttEz9+FjXqH9ENvpoAACoqKp+nvIiKYHJF0Mz07V84mDNvaGvnhzZXXP+eKoS6nhOB4mU6xaRMmjOW/JcWkqi20xa9EOiMn4nb82ZM0dxcXGaO3eu0tLSvJaLj4/XiSeeqG3btvn7UgAAhMSu/T426It8K4cAyM+XCv7XSJ08WapbV5o4UTJG6tw5vHUDEPFCEdMwSh2IXlxwAwBYTZnd6PCRskrLHDpSZukOOviOPhoAACrytZ9HipwEpuoov0pPjM2mnUUlXsta/bpFpA2aOz55bu4NfbV84mC3JRB9PT+rcx4jevidvLVx40Z17NhRLVq0qLJsUlJSpeuhAwBgBc2SEqsuJOn+d9dZJps/apWVSb16SS1aSLff7tjWo4e0f780bVp46wYgahDTAKgJLrgBAKzm5S+3euzcKs/8rxwiH/EMAAAV+drP42T1BKaaiPTrFpE4aK588ly/Do0VG+O+coyv52d1z2NEB7+Tt+rUqaPS0tKqC0ras2eP6tev7+9LAQAQEn3apSo9JbHCmtTHKzhYaqnpWKPO229LdepI337ruP3WW9KhQ46/Yytf/gEAqoOYBkBNcMENAGA1q7buCWg5WJsV4pmXXnpJxhjdc889AX9uAEDglNmNVmzeo/lrdmjF5j2WmakoGHzt5zmeVROYaiLSr1tEevKZJ1WdnzZJ6SmJLHNeS/mdvNWpUydt3bpVu3fvrrTc5s2btWnTJp188sn+vhQAACERG2PT5GEZkuRTw95K07FGhf37pZgY6ZJLjm1r1076/XepXr3w1QtA1CKmAVATXHADEE61qQMOvjtcUvmSidUtB2sjngEA+GJRTr76T1+sUbNW6rZX12jUrJXqP31x1A5Or24/j5NVE5hqItKvW0R68pknlZ2fztuTh2VUmLELtYPfyVuXXXaZSktLNWHCBNntdo9ljhw5onHjxslms2nkyJF+VxIAgFAZmpmumWOy1Kh+fKXlrDgda0R7/nkpOVky5TocPv9c2rJFiq/8WACAv8Id0zBKHYhsXHADEC61rQMOvju5VUpAy8Hawh3PAACsb1FOvsZlr66w9NzOwuKoXl3E2c+TllJ1Uo/VE5hqItKvW0R68pk33s7PtJREzRyTpaGZ6WGqGcLNZozxa1jW4cOH1atXL23YsEF9+vTRNddcoxkzZmjdunX65JNP9MMPP+i5557T+vXrlZWVpRUrViguLi7Q9fdLUVGRUlJSVFhYqOTk5HBXBwBgQW+v/kUTXltbZbknR3bXRd1bhqBGUWzvXim1XOP60kul11+XbNYMGIBQoL0aGsQ0AAJhUU6+pi7MdbsYnp6SqMnDMrjgBiDgnB1wx1/QdUZPXOyv3b746XeNfuGrKsvNuf5Und6xSVDrQns1+CI5npE4RwAg2MrsRv2nL66QuOVkkyNZZPnEwZZN3qmpMrvRqrwCfZK7Uy98sbXC/bWlDR3J1y2c8Y8ktxgoGo6d8/zctb9YzZIcSWjR+lmMROFoq/qdvCVJv/76qy6//HKtWLFCNg8drMYY9e3bV2+99ZbS0tJqVNFAIigAEC78EEeOFZv3aNSslVWWm3tDX/Xr0DgENYoyxkiffSYNHOhI0nriCemll6S335batw937YCwo70aOsQ0AAKBdj6AUKADDlUpsxv1fOBj7TtU6rVMw3px+vaeIUE/R2ivhkakxjMS5wgABBt9HO4iOYEpECL5ukVtP3YIj3C0VevU5MEtWrTQ8uXL9d577+mtt97SDz/8oMLCQjVo0EAZGRm65JJLNGLECI9BAwAEg5UbHzQuIotzOtadhcUVRjRLxy6KR9p0rJawcqXUr5/j7+xsafRo6S9/kSZMCGu1ANROxDQAAiE2xlYrLnYDCK9VeQVeE7ckx0j0/MJircor4DuploqNsWnaJSfr5v/NTuDJtEtOtsy1MtQc8QwAwJtd+723G/0pF+mGZqZrSEaaZfsQgy2Sr1vU9mNXa9nt0uefS4MGhbsmIVOj5C1JstlsuvDCC3XhhRcGoj4A4DcrJ0d5W9bAua54JE/rGa2ca4GPy14tmzxPx2rltcAtqbRUOvlk6ccfj23Lz3f8z0VEAGFETAMAACIBHXDwxdDMdP1rTJamLFinnUUlru1pyQmaMrwr15+iEPEMAMCTZkmJAS0XDSI5gam249jVIqWl0ltvSQ88IOXkSMuXS6efHu5ahUSNk7cAwAqsnBxVZjeaujDX4+xNRo5EoKkLczUkI41EIIsZmpmumWOyKiQFplkkKTCizJ0rXXWV+7Z586QrrghPfQAAAAAgwtABB18xOwEAAGB1kchk5RWGgKAqLpaGD5c+/vjYtuRkacsWkrcAIFJYPTmKZQ0iW1UXPGlIV6G4WEpPl/btO7bt5JOl1aulOjRDAAAAAMBXdMChOpidAACA2o3VRarHCn09Vl5hCAiaQ4eks8+WVqxw3z51qjR+vNSwYViqFQ5+95q2b9++WuVtNps2b97s78sBgFdWT45iWYPI5+2CJw1pH7z/vnvi1qpVUu/eYasOAJRHTAMAACIJHXCoDit0QCK4iGcAAFVhdRHfWKGvx8orDAUDbVWouFh68UXH8oj5+ce2N2zoWC6xZcuwVS1c/E7e2rp1q0/lbDabjDGy2fiwAQgOqydHsaxBdKptDelq2bNH+uYb6dxzpREjpOuuk1q1cmTJA4CFENMAAIBI428HHJ0jtYsVOiARfMQzAABfsJxy5azQ11OdFYYkRfyxpK1ayx06JM2eLb38svtsW61aOVbtado0fHULM7+Tt/Ly8rzed/DgQW3atEmzZs3SRx99pCeeeEIXXHCBvy8FAJWyenIUyxpEH6sv1Rk2xkgXXywtWOC4vWWL1K6d9MILYa0WAHhDTAMAACJRdTvg6BypXazQAYnQIJ4BAPiK5ZQ9s0pfj68rDD2z+Ce9+vX2iG7X01atxX77zdFf+OST0q5d0umnOxK2Jk6Urr9eqls33DUMO7+Tt9q0aVPp/RkZGRo+fLimTZumCRMmKCsrq8rHAIA/rJ4cxbIG0cfqS3WGxWefSYMGuW8rKgpLVQDAV8Q0AAAgUvnaAUfnSO1SVQekVEsHm0Up4hkAwcSsnYHHPvVPMPebr309K7fsUYzNFrRj5+vKQU988lOFbVZr11d2vKySLIcQ275d6tzZMeOWU9u20p/+JF1yiZSQELaqWY3NGOPp8xEwdrtdzZs3V69evfTBBx8E86V8VlRUpJSUFBUWFio5OTnc1QEQAM6LkZLn5CgrNFpq00jXaA9C5q/ZodteXVNluSdHdtdF3aN8TeaSEunEE6Vffjm2LSFB+v13qUGD8NULiHC0V62FmAYAAESiMrtR/+mLvXZIOQe7LZ84OKpi9tpsxeY9GjVrZZXl5t7QN+iDzWivWocV4xmJcwSwstrUlxEq7FP/BHu/+drX07BunPYdLg1KHSTf23DehLpd760PsKrjZaW2KkJgzx6pSZOK2198URozRoqLC32dqiEcbVW/Z97yVUxMjNq1a6eVK/3/wgGAqgzNTNfMMVkVGgVpFmr81pZ1xWtDEGL1pTpD5ptvpN693bctWCANGxae+gBAkBDTAKgton0QBiDVrvOcWaNrn51Fvs3a4Gs5RAfiGQDVwaydgcc+9U8o9puvfTjlE7eqqoM/8UZVKwxVJZTtem99gMO7pevfn+dVerxKjtp9eg1fZyKDRe3eLf3jH9Kzz7pvv+AC6c03mWmrEkFP3jp69Kg2bdqko0ePBvulANRykZAcFe3riteWIMTqS3WGzMyZx/7u109atkyKjQ1ffQAgSIhpANQGtWEQBlDbznNfOz3oHIkev+8vCWg5RAfiGQC+YkmzwGOf+ifY+82ZYLWzqFip9eNUcLC06gf5UAd/443YGJsmD8vQuOzVsqniCkO+JnQFu11fWR/gc5/neXxM+X312GXdfHqdqJ8YIVrl5zuStpYvl8oPGrjiCmnOHKlO0FOTIl5MMJ987969uuGGG7Rv3z5lZWUF86UAQNKx5KiLurdUvw6NaeyGUFWNacnROCuzB3W13pBwNqSlY0tzOjlvTx6WEZ3n37vvSmvWOP5+5BFp7FjH7S+/JHELQFQipgFQGzgvwB4/Q49zEMainPww1Sx6lNmNVmzeo/lrdmjF5j1RERdFmtp4njNrdO2z56BvSVm+lkPkI54BUB3VmbUTvmGf+ieY+21RTr76T1+sUbNWasK8NdVO3PJWh5rGG84VhtJS3NvmaSmJmnB2J5/q1KR+8GY08qUP0BvnvpLNkczmrefMJsf9UT8xQrRZsUIaNUpq10567DEpJkbq2VN65x2prEyaN4/ELR/5vZcGDx7s9T5jjHbv3q0tW7aouLhYcXFxmjp1qr8vBQCIALVtOYZIWKozoHJzpa5dHX/36CGtWiU1biz997/hrRcA1AAxDQAwEjwUattsT1ZUW8/znm0aKcYmVZYrGGNzlEN02LHvUEDLwdqIZwAEGrN2Bh771D/B2m/eZo7ypGG9OO07VHVi1679xQGLN4Zmpmtw5+aavWKrthUcUpvUehrbr61iY2x69eufq1xW8Y7X12rK8ODEmVX1Afri9wMllc4wJkXxxAjRaMkS6fj26GmnSVOnSmedJdk4jtXld/LW0qVLfSrXp08fTZ8+XQMHDvT3pQAAEaA2BiGRsFRnjdnt0tlnOxphTsnJUmkpmfIAIh4xDQDUvkEYoVZblpa3utp6nn+7bW+liVuSI7Hr2217o+p912YFB3ybOcLXcrA24hkAgcasnYHHPvVPMPZbZQlWkiN5KLV+vO65oIvSUurKbjca/cJXPtUhUPGGp4E/zy/P0+RhGV6TnsrbWRS8ODMQfXvNkhLVr0Pj2jUxQjT66Sepk4fZ4D75xJHMRdKW3/zudV1SvhP3ODabTfXr11f79u3VqBEjtwCgNqitQYhzqc6o9OGH0tCh7tuefVa65Zbw1AcAAoyYBgBq5yCMULH6bE9ldhPdA1HKicbz3Jfjt7PIt/fjazlYX7143y73+1oO1kY8AyDQ+rRLVXpKotfZfWxyJFiwpJnv2Kf+CcZ+8yXBas/BI0pLqat+HRqrzG58rsO73//qUx0qizd8Gfgzc0yWJr75vQoPH630fQQjzqxJ397xx6tWTIwQjXJzpQcflF591X37Qw9JkyaFp05Rxu8ojVEaAIDyCEKiSGmpNHasYx1qp8aNpe3bpbp1w1cvAAgwYhoAqL2DMELByrM91balHKPtPPf1+BUcKPHp+XwtB+vr066RPl7/m0/lEPmIZwAEWmyMjSXNAox96p9g7LfqDuioTh1qGm/4OvDns7+eqRgfZjUKRpxZVR+gN56OV20aSBQVvv9eeuABaccO6csvHduysqRrrpHGjw9v3aJMTLgrAACIDs6GrHSsMeZEEBJhjh6Vvv762O2PPpJ+/53ELQAAgCjkvADrrZVukyMphEEY1WfV2Z6cI7qPTyxzjuhelJMf0vqEQs82jVRVKBpjc5Szuuocv9T68T49p6/lYH3XnNbO6/e5k+1/5QAA8GRoZrpmjslSWop7kklaSiJLfvuJfeqfQO83fxKsfK1DTeNqXwf+zF6xVXsP+bb8daDjzKr6AG2ShmQ0qxB32WzSjQPaufbVopx89Z++WKNmrdRtr67RqFkr1X/64qiMQyPev/8tdewodesmvf66VFIiXX659O23jn8kbgUc8yMDAALG2ZBlreoIlJ/vWBJx0iSpfn3phRcc2fR//jPrUwMAAEQxRoIHjxVne7L6Uo7B8u22vbJXMTzcbhzlAjE6PVgjyat7/NJSfBuA42s5WF98nRjdOKCdnvs8z2uZGwe0U3wdxnQDALxjSbPAY5/6J5D7zd/VY3ypQ03jal8TrbYVHPKpnBScOLOyPsDh3dL178/zKuxbu5H+/XmeepzgGChT1dKQ9CNawBNPSLfffuy2zSZdcYV0993SySeHr161gE/JW4MHD67xC9lsNn366ac1fh4AgLURhESgm2+WnnvO8XdxsfTYY9KgQY5/ABAliGkAwDsGYQSHFZeWt/JSjsEUylnQgrkkZXWPn/McrOwxzKwXfSadn6Etvx/Ux7m7Ktw3JKOZJp2fEYZaoaaIZwCEWmyMLarag1bAPvVPoPZbTRKsfKlDTeJqXxOt2qTW86lc4/rxQWvje+oD7NmmkQY+uqTS5RSnLsyVMabWDSSKKJ995rlf8PvvpczMkFenNvIpeWvp0qU1fiEbs3YAQK1BEBIh1qyRevRw33b22WGpCgAEGzENAFSOQRiBZ8VZzay6lGOwhWoWNOeShsEaSV7d41f+HPSWQMjMetFnUU6+PvGQuCVJn+Tu0qKcfJJyIxDxDAAA3vk6822wBy75G1f7OvBnbL+2en55XqWDMyTp/osyg9rGP74PcMXmPT4NMqlM+YEofdqlcm0iVIyRli2T7rnH8X95H34onXNOeOpVS/mUvLVkyZJg1wMAAHgQlOU2ysqkfv2kr7923757t9SkSc2eGwAsipgGAKrGIIzAs9qsZlZcyjEUQjELWiiWpPTn+Hk7BwM1GxispbLz0IkZDSIT8QwAAJ5Vd+bbYA9ccsbVzr6dd7//tcrX8HXgT3ydmEoHZ0jSTQPa6fxTQtvGD+Tgn49zd+r219YQuwSbMdL770v33y/VqSN98YUUHy+NHi1de600YEC4a1gr2YwxlcVyUamoqEgpKSkqLCxUcnJyuKsDAIBHQVluY9MmqWNH920vvij94Q81qCmAQKO9iqpwjgCoSlAGAcBvVjkeZXaj/tMXV5nEtHzi4Kg7X5yzYkmeO0NqOivWis17NGrWyirLzb2hr99JkjU5flY5BxFcoTgPfUV7FVXhHAEA1JS3mW8D1cb3l799O74+zlO51PpxeuCiTJ1/SosAv5uq+doG9Ve4j2dUKSuTrrtO+u9/j23r2lUaPlz605+kli3DVzeLCUdb1aeZtwAAQGgFbbmNQ4eO/d2mjbRxoyObHgAAAFEjKIMAUCNWmdXMiks5hkqwZ0ELxZKUNTl+VjkHEVy1dWlUAABQ+4Ri5lt/1KRvx9dZwYI9e1h1+TrTsTFGvxWVeJ01LMYm2T3cGc7jGTVKS6WRI6W33jq2LTFRuvVW6Y47pLS08NUNLiRvAQBgMQEPOubNk3JyHNOfnnKKI6P+1FOlTp0CXHMAAACEW9AGASBqWG0px1AKZidHqJakrM3HD1Vr0iAhoOUAALAyZhat3VblFbi1h49nJOUXFmtVXkHIBjEEom/H10EXVhqc4esgE0leyxh5TtxyCsfxjApHj0pz50pXX13xvo0bpdatQ18neFXj5K2DBw9q4cKFWrt2rQoKClRaWuqxnM1m0wsvvFDTlwMAIOoFLOj4+WfH7FpO/ftL554rjR0buMoCQBQgpgEQLaw68hjWY7WR2qEUrE4OX0eb92mXWuPXqs3HD1WopMPLr3KICMQzAGojZhuGFWcctWJCWaj4OsjEW5nzM9P0whdbq3wdZpD10ZEj0sKF0sSJ0ubNx7bHxEibNknt2oWvbvCqRslbr776qsaNG6eioiLXNmMckZ/NZnPbRmAAAIBvAhJ0jB0rZWe7b+vduwa1AoDoREwDIJrU5gvFoRQtI/ytNFI7GoR6SUqOHzzZdaAkoOVgfcQzAGqjaJttOFrii1AL1cy31WHFhLJQ8mWQibcyK7fs8Sl5K5THM9BC8lkvKZFefFGaNs0xq9bmzVKTJtLtt0vXXCO1aBHY10NA+Z28tWLFCo0dO1Z169bV3XffrXnz5mnTpk2aNWuWtm/frrVr12rhwoVKSEjQPffcoxacCAAA+KRGQceqVY4lEcubPFmaMqXmFQOAKENMAyDa1PYLxaHACH9UhiUNEW4FPiZl+VoO1kY8A6A2irbZhokv/BfKmW99FYiEskhP5qtqkImn9/dx7k5NWbCu0ucNx/EMpKB/1gsKHH2DmzYd21avnvTSS9Jll0n169f8NRB0fidvPfbYY7Lb7ZozZ46GDRumJUuWaNOmTbr++utdZTZs2KDLL79czz77rL799tuAVBgAgGjnd9Dx/PPSDTe4b9u7V2rYMEg1BYDIRkwDINpYceRxNIm2Ef4IDpY0RDil1o8PaDlYG/EMairSEwQCIRD7gP0YWtE02zDxRc2EeuZbX/Rpl6q05ATtLPKcKF9VAlK0J/N5en8N68Vp3yHPSz47het4BkpQP+u//SZ17y7t3HlsW/36jpm3rr9eqlvX32ojDGo081aTJk00bNgwr2U6d+6sN998U126dNHkyZP1r3/9y9+XAwCg1vA76Dh06Njfc+dKI0cGuaYAENmIaaIDF8qBY6w48jjUgvWdEG0j/BFcLGmIcElL8a1zxtdysDbiGdREtCcI+CIQ+4D9GHrRMtsw8UVgWG3m249zd6r4qN3jfVUlIEV7Mp+391dV4pYUmuMZcdcSioqkZ56R7r7bfXtWlrR0qZSU5H+lETZ+J2/t2bNHp5xyiut2fLxjtM7BgwdVv9y0a506dVLXrl31wQcf1KCaAACroaM0uHwKOvbtk266SRo2TBozRvrTn6SmTaXLL5fq+P0TDwC1BjFN5ONCOeDOiiOPQymY3wnRNMK/tjty1K7ZK7ZqW8EhtUmtp7H92iq+Tky4qwUERM82jQJaDtZGPAN/RXuCgC8CsQ/Yj+ERLbMNE18ETqhmvq2qT8zbd4JTSr04TbvkZI/fC9GezFfZ+/PFY5d10+kdmwS0TuVF1LWEggLp9delu+5y9BE6DRggffCBY6lERCy/e3YbN26sw4cPu243aeL4wGzevNktYJCksrIy/fbbb/6+FADAYugoDY1Kg44pU6SpUx0FFy6ULrzQsTziqFHhrDIARBRimsjGhXLAM6uNPA6VYH8nRMsI/9ru4fdzNWtZnuzlTpQH31+vG85op0nnZ4SvYkCAfLVlj8/lzujUNMi1QbARz8Af0Z4g4ItA7AP2Y/hEy2zDxBeBFeyZb6vqE/MlOaluXKwGd26uFZv3VOjvifZkvqreX1V+P+h5GcpAiJhrCbt3S//4h/Tss1LnztKBA1KXLo6Zt668kgkdooTfR7Ft27b68ccfXbezsrL0+uuva86cOW6Bwdq1a7Vx40alpaXVrKYAEIGicXYqOkpDq0LQsXmzdOKJ7oUmTnQkbgEAqoWYJnJxoRyoXKhGHltFKL4TomWEf2328Pu5eu7zvArb7Uau7SRwRadovDbjzZurf/G5HMlbkY94Bv6I9gQBXwRiH7AfwydaZhsmvogcvvSJpdSNrzI5Kb+wWH0f/kQFB48tE+hMACvxstTi8SI1ma+m9Q7W5yAiriV8951jKcTySkulJUuk006TYphFOpr4nbw1ZMgQffXVV1q3bp26du2qq666SlOnTtVjjz2mHTt2qF+/fvrtt980Y8YM2e12XXrppYGsNwBYXjTOTkVHaRgZI11yifTOO+7bt22TTjghLFUCgEhHTBO5uFAOVC3YI4+tJBTfCdEywr+2OnLUrlnLKiZulTdrWZ7uOKczSyhGmWi8NlOZAyVHA1oO1kY8A38w209g9gH7MbyiYbZh4ovACHaSvq99YncO7ezT85VP3JKOJYD95eyOPj0+UpP5/K13sD8Hlr6WsHKl1K+f+7YGDaTsbGnYMJK2opTfyVtXXHGFvvzyS/3444/q2rWrWrdurZkzZ+rGG2/UK6+8orlz50qSjDHq27evHnjggYBVGgCsLlpnp/K1IfPExxt1+olNono0a0gdOiRlZDgStZymT5fuvDN8dQKAKEBME7m4UA6gvFB8J0TLCP/aavaKrW5LJXpiN45y15/RPjSVQtBF67WZyhhTxYlezXKwNuIZ+IPZfgKzD9iP4Rfpsw0TX9RcKJL0fe0TKzjg37J+zgSwuat+Vlpyon4ris5kvqoSmDwJxefAktcStm6Vpk2TnnvO/Yn+/GfpySclG98J0czn5K0333xTw4YNU3x8vCSpa9eu+vjjj93KXHPNNTrjjDP02muvaevWrapbt6769++viy++WLGxsYGtOQBYVDTPTuVrA+WZJZv0zJJNAW8o16alDtzUrSudfLIjeatOHamgQEpKCnetACDiENNEDy6UAygvVN8J0TDCv7baVnAooOWsoNbGxz6K5mszlfG1L4c+n8hEPINAYLafwOwD9qM1RPpsw8QX/qsqSf8vZ3dS2yb1atxO9rVPLLV+fLWTk5yMpJ1FJZpwdif985ONUZnMV1UCk5HUsF6c9h06NjNZKD4HlrqWsGmTNG+eNGWKdLTcLLl33SU99BAN+FrC5+Styy+/XI0aNdLll1+uMWPGqH///h7LtW/fXnfddVfAKggAkSaal/GpbgMlkKNZa9tSB3rpJenRR6X586UTT1TZszP0/Z/v1s/NWqvZriPqU99EbEMdAMKFmCZ6cKEcQHmh/E6I9BH+tVWb1HoBLRdutS4+9kM0X5upTP34uICWg7UQzyAQmO0nMPuA/YhAieT4IlyDCapK0pekJz7Z6NpWk3ayr31iaSl1NXlYhm7OXl3t13Bq26Re0JP5wjkApKoEpnB8DixxLWHtGmnMX6W5c6UOHaSGDaXu3aV775UGDKjx6yKy2IyPcyQ3adJEBQUFsv0vq69NmzYaO3asxowZo44dfVuH1SqKioqUkpKiwsJCJScnh7s6AKLM/DU7dNura6os9+TI7rqoe8vgVyiAyuxG/acvrvbUpmkpiVo+cbDfDS1voyiczxZVSx38/rvUtOmx2yNGaNHfn+XCPFDL0F4NDmKa6OJsH0ieL5RHVfsAQJX4TkBljhy1q/O9H1S6dGKMTdpw/3mKrxMTuor5oVbFxzUQzddmKvPcZ5v18Acbqiw36bzOumlgh6DWhfZq4EVTPCNxjoQbicCB2QfsR9RW4Tz3V2zeo1GzVvpcvibt5Kr6xMr3f32cu7NGyVtzb+irfh0aBy3BKhTHzJe6W20G4bBdS5gzRxozxn3bBRdI//iH1KlT4F8P1RaOtqrPyVtHjx7VBx98oNmzZ+vdd99VcXGxK0jo06ePxo4dqyuvvFKNG1t/pBJBAYBg8rXh6GyIRRpvDZmq+Pt+nY1jbyNmA5EcZhl33umYbaucJR9/o+s+2cmFeaCWob0aHMQ00YcL5cFltQtqQFX4TkBlHn4/V899nuf1/psGtNOk8zNCWKPqq1XxcQ1F+7UZb97+bocmzFtTZbknruyuET2Cm7RGezXwoimekThHrID2fmD2QbTsx2h5Hwi+cA8m8DVJv7yatJN9Se4ZkpFWaTs9WHXzVSiOWSTH4yGt+8svS9de674tLU167z0pKyuwr4UasXTyVnn79+/X66+/ruzsbH3++eey2+2y2WyqU6eOzjvvPI0dO9Zt7XWrISgAEEzVycSP1ODHU0OmKv6OZq0VF1zXr5cyjuskuPFGlc38FxfmgVqK9mrwEdNEDy4wB0ckX3RD7VabvxNq83v31cPv52rWsjy3GbhibNINZ1g/cUuqJfFxgNSGazOeWOkcob0aXJEez0icI4CVEP/BV1YYTPDFT79r9Atf+fVYf9tAVX1GqjsbmFMoEt5CcczCndAXCEGPp1eskO6/X/rgA/ftc+ZIV10VuNdBwERM8lZ5v/76q7KzszVnzhz98MMPjie12ZScnKwrrrhCY8aM0RlnnBGQygYKQQGsigut0aM2LNnhPF+/2LRbzyzZXGV5fxvFUb/UwZdfSqef7r7t11+ldN8b/FyYB6IP7dXQIqYB3EXDRTegtqHDzXdHjto1e8VWbSs4pDap9TS2X1vLL5XoFPXxcYDVhmszxzt8pExd7ltUZbn1fx+quvGxQa0L7dXQicR4RuIcQfSJ1P4d4r/oFYxz0gp9Fss27tbYF1f59diatJMr25++ttMb1o3TvsOlrtuhiNmCfcyskNBnaZ99Jr39tvTkk47bMTGS3e7YdvHFYa0aKheOtmqNr0y0aNFCd955p9auXavvv/9e//d//6eWLVuqsLBQs2bN0qBBg9SuXTvde++9gaivyz333CObzSabzaYHHnggoM8NhMOinHz1n75Yo2at1G2vrtGoWSvVf/piLcrJD3fV4IehmemaOSZLaSmJbtvTUhKjJtiJjbGpX4fGmjDkJKWnJMpbk8smRwO0T7tUv16nWVJi1YWqUc4y7HbH/126SI0aOf5++mnJGCndcX7s2u/bzGa+lgMAeBaumAawojK70dSFuR5nKXFum7owV2X2Go0DAxBAzg634y+W7yws1rjs1VxXOE58nRhdf0Z7/f2iTF1/RvuISdySojg+DpLacG3meP9dsTWg5RAZiGeA6iuzG63YvEfz1+zQis17ahzfRGr/DvFf9ArWORnuPotFOfn689zv/H58TdrJzj6xi7q3VL8Ojd0SkXx93mdHZ2nuDX315MjumntDXy2fODioM26t2LxHH/h4zD0dM1++K1flFVS6So+RlF9YrFV5BT7XPeIZI73wgjRggDRokDR7tnTyydJ110k//ui4n8QteFDjmbc8McZo6dKlys7O1ty5c11rr5eVlQXk+devX6/u3bvryJEjkqT7779f99xzj8+PZ0QHrIaRDdErUkfbVFcwR7NG3VIHhw87ZtqKj5eWLZPi4qTcXKljR8ff5VhhFAuA8KC9Gn7BjmlqinMEwUL7A6ialeI8RjlXn5WOX3VFXXwcIpF8zKvrsplf6ptte6ss16tNI70x7rSg1oX2anhZPZ6ROEcQPoGesTSS+3eI/6JTMM/JcJ4z3t6XL4LdTg5HO72yNq6n77mqHH/MfP2uZHbgcux2afx46dlnj22Lj5f+8Adp6lSpefPw1Q3VFo62ap1gPOmuXbv0/fff6/vvv1dJSUlAn9sYo5tuuklxcXHq37+/Fi9eHNDnB0KtqpENNjlGNgzJSIvaC0vRzJmJH+2co1mPb8ilBWDK19gYmyYPy9C47NWyyXNy2ORhGZHx+Zg5U7rllmO3582TxoyRMjI8Fu/TLlXpKYlVNvj9ndUMAOBdMGMawMrCPYoWsDqrLU9YnVHO4YhNrZY0Y7XjV11RFR+HUG25NiM5rp0HshwiF/EM4Jm35A/njKXVTWqJ9P4d4r/oE+xzMlx9FpW9r6oEu53sjHnOy0zTi19sDUk7vbK4RlK1ktw8HbPqfFcyO7AcSVv33is99JD79i5dpI8+klq1Ck+9EHEClrx18OBBvf3228rOztbixYtVVlYmY4zi4uJ0/vnna+zYsQF5nRdeeEHLli3T9OnTlZubG5DnBMLJ6hdaAV8NzUzXkIy0oFyYD2ZyWEjs3OlaCtHl/POl0aMrfRgX5gEgtEIV0wBWxkU3wDtvF7Dz/ezsCwQrd7hZLVEq0J214RLx8TGCqnPzJH378z6fyiH6EM8AlQtGUkuk9+9EWvxntYEBVhTsczJcfRZVva/KBLOd7Cnmsdkcq+IF6/Uri2tuzl6thvXiqp3kVv6YVfe7sjZOQuD6Ltp3UF2++Egdn39Kth9+cC+0Zo3UrVtY6ofIVaPkLbvdrg8//FDZ2dlasGCBDh065Bq107dvX40dO1ZXXnmlUlMD82HcvXu3Jk6cqIyMDE2YMEE33HBDQJ4XCCcrX2iFNURSQBLM0azBTA4LqltvdZ8iVZLWrfM629bxuDAPAMEV6pgGsLraeNEN8EVVI72NwjOrglU73KyW6FZVB4Rk7Vkxjhex8TGCrnubRprz9XafyiE6EM8AvgtGUkuk9+9EUvxntYEBVhWKczIcfRa+1rdhvTg9dPHJalQ/PujtZG8xj/1/G64/va3Ozkjz+vr+9P35EtfsO1Tq83uIsUnPjHKPzar7XVnbJiFYlJOvB975Qb2++khnbv5GHTYsk83YdbR+A9Vp3kx67z2pc+dwVxMRyq/krVWrVik7O1vz5s3T77//7goG2rVrpzFjxmjs2LE68cQTA1pRSZowYYIKCgr01ltvKS4uLuDPD4SDVS+0whoISNxF3FIHd93lnrh1++3S449X+2lq04X5SEpWBBDZwhXTAFZX2y66Ab7yZaR3OGZVsGKHmxUT3ax6/Goi4uJjhETBwSMBLQfrIp4Bqi8YSS2R3r8TKfFftMygGgqhOidD3Wfha32fHZWl0zs2CUodyqsq5rFJej9np/52gefPj799fzWZgcwTu5Ea1Y932+bPd6UzoW/KgnXaWXRsuebmyQmaMrxr1Hw+P/p6sw794QZl79igtvvyVWaL0fK23fVdi5P0n14XafofB2hoZ/f3Sp8XqsPn5K3NmzcrOztbc+bM0ebNmyVJxhg1bNhQV1xxhcaOHavTTz89aBX99NNPNWfOHI0ZM0YDBw4M2usAoWbFC62wBgKSCGWMdOSIlJAgnXeeNH26Y/uuXVLTpn4/bW24ME+yIoBgC3dMA0QKZv4EKtpZeDig5QLFih1uVkyU2lnkWweEr+UAq1r/a1FAy8FaiGeAmglGUks09O9YPf4LxnKX0SyU52Qo+yx8fV99Q1SfmszkV5O+v2DM4nf8c9bsu/L4z2CUfCaLimQGDtQ5a9a4Nu2pm6wXel+s/2ZdqAMJ9Tx+F9HnheryOXmrU6dOkuRaI/28887T2LFjNWzYMMXHx1fx6JopLi7WzTffrJSUFD322GPVfnxJSYlKSo5leRYVEZzCOqx4oRXhR0ASoRYulIYPl267TfrnP6WBA6Wff5Zatw53zSyPZEUAoRDOmAaINLVp5k/AF6GezaY6o3Ot1uEW6kQ3X/ZVwYESL49252s5wKoOlR4NaDlYC/EMUDPBSGqJlv4dK8d/wVjuMppFyzl5PKu9L39n8qtp318wZvE7/jmr+q6UpEb14ty+K7317/xWFOH9O4cPSzfdJM2e7ZaG9nnbHrppxN06HH9s3x3/XUSfF/zhc/KWMUannnqqxo4dq5EjR4Z0jfQHHnhAmzZt0jPPPKPmzZtX+/EPP/ywpk6dGoSaAYFhtQutCD8Ckghz4IDUuLFjxi1JevJJ6Z57pCZNSNzyAcmKvmOKXaBmwhnTAJGoNsz8CfgqtUFCQMtVxp/RuVbqcAtlopuv+yq1vm9JDb6WA6wqq3UjfZS7y6dyiDzEM0DNBCv5I1r6d6wa/wVjuctoFy3n5PGs9L78nZ1q5ZY9Ner78yUJNaVenAoPlbqezxtvCavO78qbs1d7fezeQ6X6OHenhmamR2f/zqFD0owZ0mOPSf/P3pmHR1FlbfztDkkgAbIQJQEVwqLsqyCI6IigCCgjiuI24q6IC+oMoOCoqLh9IjMoKq4jA7ghoECUzQFiQGSTsAiEBBQShCQkkEC27u+PspPudFfVreqq7uru9/c8eaCrb1fdulVdfc497z3n6NHazTnJLTHqttdR0qiJ7Ef/OHkmPMeEBARh8davv/6K9u3bm9kXn+zevRuvvfYaevXqhQcffFDXPiZPnozHH3+89nVpaSnOZTCdWAwrTbSS4CPqaGTuPx5y90nYiU+uvx5YuNBz29q1knCLCEGxohhMsUuI/wTLpyGEEBL6pDYVm5wXbSeHP6tzrRJwC5TQTctYpSY0EtqnaDtCCAkG9GcI8R+zxB+M75iHGeUuI4FwuSfrx5OGdEq1xHnpyeSXkZ2PSV/tENq/XIxQRIT68qiuAOD1nKvfP0BesDqkUyoS46Jx4k8RmC9c4qOwiu+UlgJvvQUsXw5kZwPFxUCrVsCVV+KncU/hxgU7VXdxdpOG4TUmJKAIi7eC5RSMGzcO1dXVmD17Nux2u659xMbGIjbW/5WPhJiNVSZaSfARdTRmrdmPr7b8HjLijVAUn8iKzXbuBLp08Wx8zTXA4sWALbQcoGDD1VPqMMUuIcbAQAchhBC99E1PVp28TqxXOkIr4bI6NxBCN61j5QquKE2gp2ksk0SIP5i1sG3LbycMbUesBf0ZQozBLFEL4zvmYEa5y0gh1O9JK8eTtGbyk5vfl0MpRigqQnU951buKsDX2w6jqKxKtm19fsotUvR9gTrxUVjEdw4cAPr3l6rrnDghbRs9Grj6auC224DoaPR2OJG2PEfoWfTtL0eEDmvpMSFBQVi8FSy2bt0Km82Ga6+91uu9kpISAMArr7yCWbNm4dxzz8WmTZsC3UVCSAgQatmeRGpKuwgV8UYoik/knIPZDfaixz/GeTbevBno1SvAPQwPuHpKmXAJ4hFCCCGEhDv+WmLhsjo3EEIprWPlHlyRm2jXUyaJED2YGYiMi4kytB0hhIQroS5qiSTMKndJrE0oxJNERVRK8/v1ERUjDumUiiYNo5GVUwjAif5tUtDvT7/Hhes5179tMzw1vJOmGGlByWmB3krtRLMXWzK+s2cP0LGj57YOHYCnnwbGjAEa1ElptDyLGPMierG8eAsAampqcNStnmh9Tp06hVOnTqFhQ97ghBBvrKzOl0PJCKhPKIg3QlF84ss5OP9YHp5YOBc99m2o2zhgALB+fcD7F05w9ZQy4RLEI4QQQggJZURWHheXV/llk4XFimXU+bMPzN0i28bfAJuesZILrlh9foCEF2YHIq/veQ4WbVNf6X99z3N0H4MQQggJNGaVuyTWJJTiSSKZ/NTm9+uj5iv5inl+teWw4ndBq2C1qKxSuN21PVqGXnynoAC4804gI8Nz+/33S2UTo3wvdBB9FjHmRfRiefHWCVdqOh+MHTsWn3zyCaZNm4YpU6YErlOEkJAhFNT5csgZAb6wungj1MQn9Z2DKEcNsmfciEbVFQCAKnsUvrh4FG5a9A6imtG48heunlImXIJ4hBBCCCGhTCBsMq7OFUfvWJlVJonoJ9QypftDIAKRFwnOqYi2I4QQQqwC7bjIIdTiSWrCKFEfMTEuGi+P6qoYswxUzDO5caxwu5CK75w4Afzzn8B77wFn3K7L2LHA++/LirbcEXkWhdSYEEthefEWIYToRW1SDACe+noHBnVojpgG9kB2TRiXETBjxa+YtSZHtb1VxRuhJj5xdw6G7VmPtxe/7PH+NXe8iT1npyP9hBP9g+8bhAVcPSUPg3iEEEIIIcEnEDZZuKzOdfnichghUPFnrFgmyTqEYqZ0fwhEIHLzwWLhdvweEEIICTVox0UGoRZPUkPUR3zr5l4Y0D5F9v1AZiRLbSrWZ1c7y8d3Dh4EXn4Z+PZbIDZWEm716wfcdx9wxx2AXVuMWORZZPkxIZaE4i1CSNgikoq0qKwK/aavwkvXdbHsD2WU3YYB7c4SEm9ZVbwRauKTP06eQUpZMX6edbvH9mPxiRjwwEeobBBd244YB1dP+SZcgniEEEIIIaFMIGyycFmdGwiBSriMVSQTypnS9RKIQGS4BTsJIYQQEnkEO55kdGZYUV+yn4pvFMiMZK4+Kx0vrZ7/a8n4TkYGcPXVntvuuw945x3giisAm7l9s+SYEEtjzVQzhBBiAKITUUVllXhw7hZkZOeb3CP9uAwluZ9zG7wNJSsRav2/9NE7vIRbo257DX3Gz60VbgHWEZuFE64VCyN7tET/ts1oxKIuMAXA6zvEwBQhhBBCSGAIlE3mWp2bmuDpa6QmNAwZMUugxCPhMFaRikim9Oe+2YUah68WoUsgApHBDnYSQgghhPhLMONJGdn5uOSV1bh5zgY8umAbbp6zAZe8stqv+KFRvmQgRfquPtvgu882+O6zZeI7X38tCbPchVuDBwP/+x/w7rvS/00WbrmwzJiQkMCwzFtHjhzB4cOHcfr0aVx66aVG7VaRjz/+GB9//HFAjkUICT20TkQZlU7UDEJ9VXHI9L+oCOjTB0kHDtRuqoiKxgVPLPQw5JjpiAQaptglJDAEw6chhBASOgTKJgv11bn+iEe0rnIP9bGKVAKZNcBKBCKDHzM3Rzb0ZwghhIQDwYonmZkZ1ghfMtAi/ZCMSfzyC/DAA0BWluf2f/0LePjh4PSJEA34Ld6aPXs23njjDRz4M9Bts9lQXV1d+/4TTzyBrKwsLFiwAOedd56/hyOEEGHUJqzcCYWJwZA0lNywdP+dTuDVV4E33gD++KN287A7/4XdZ7fxaGopsRmJKBiYIsQ86NMQQggRJVA2mWt1biiiVzySkZ3v5S+mCfiLoTxWkUqklvYLRCAyZBbPEUOhP0MIISTcCHQ8SS0zrA3+J4Dw15csLqtUbWN0RrKQiUnk5QFPPAEsXOi5/b33gHvvDUqXCNGDbvGW0+nEmDFj8OWXXwIAWrdujePHj+PUqVMe7S666CLMmDEDCxcuxGOPPeZXZwkhRAvuE1aiWH1iMGQMJRks2f/164GBA+ted+gAzJoFXHEFHvERPLCE2IxELAxMEWIs9GkIIYTogTaZMi5f/AEZX9wJb/GImavcifWI5NJ+gQhEWnrxHDEU+jOEEELCmUDGk8zODFs/w/CIbi00nUeNw4lpS3eptps6vGNkLSzasAGYNg1YsQLo0UOqoDN6NDBxItCrV7B7R4hmdIu3PvjgA3zxxRfo3Lkz5s2bh65du2LgwIH48ccfPdoNHz4cUVFRWLp0KR0DQkjAcU1YPfX1DhSVVam2T4mPRVZOoXWERT6wtKEkgGX6X1kpCbVyc+u2de0KbNoExMYCsKjYjBBCiGHQpyGEEEKCTyBWuRNrEeml/QIx18D5jMiA/gwhhJBwJ1DxJDMzw+rNMOyOmrjMRVJ8rOb+hSQvvghMmVL32m4HrrwS+OQToGPH4PWLED/xS7xlt9vxxRdfoEOHDrLt4uPj0bZt29qUvYQQEmiGdknDoA7N0W/6KhTJpBW1AUiIi8YTX2xHQamYAVVfKc9JsBDiiSekEonuzJsH3HyzV1PLiM0IIYQYDn0aQgghxHhcYiw56ouxzF7lTqwHS/sFZq6B8xnhD/0ZQgghkYgZsTmzMsMalWE4UsuOe+B0Ak8/DUyf7rn9rruAyZOBdu2C0y9CDES3eGvnzp1o06aNolPgIikpCdu3b9d7KEII8ZuYBna8dF2X2hKK9ScGnQBOlFcB8MzOJWdAGaGUJ0GgsBBISfHYVNypO/Z8/T36tjsLUUHqFiGEkOBAn4YQQggxHq1iLAYiIhOW9jMfLjoMf+jPEEIIiTTMis31TU9GatOGHskd3NGTGdbIDMORXHYcTiewfDnw5JPA7t2e7/3wA3DZZUHpFiFmoFu85XA4EBsrlnqvtLRUuC0hhJiF3MRg86axOFPt+FO85YkvA8oopbyRcEJOgBUrpLSpbtx5wz+xpm0f4MNNFN8RQkgEQp+GEEIIMR6tYqyIDkREOCztZx4Z2fl4dskujwBkatOGePZaznuEE/RnCCGERBJmxuZW7CrAmeoan+/pzQxrZIbhiCw77nAA//sf8MILwOrVnu9lZQH9+gWnXzphHJeIoFu8lZ6ejv379+PUqVNo3LixbLuCggL8+uuv6Nu3r95DEWI4fEBGLr4mBh1OJ259f6PsZ1wG1IacQsAGTPpqhyFKeaNgFjBlanbtxqk770HCTz/WbjvaOBkXPfQfj3bBFN8RQggJDvRpCCGEEOPRKsaKyEAEqYWl/YwnIzsfD/yZed6dgtIzeGDuFrzDeY+wgf4MIYSIw7hgaGNkFqv6yInCXCTGRWP6qK6a7ScjMwxHVNnx6mpg4UJJtLVjB3DxxUBcHPDgg1L2rdTUYPdQM4zjElHsej947bXXoqKiAs8884xiuyeeeAJOpxPXXXed3kMRYigZ2fm45JXVuHnOBjy6YBtunrMBl7yyGhnZ+cHuGgkQronBkT1aon/bZjh+qkLocw/N24Jb39+IE6e9M3S5cFfKi1LjcCIrpxCLtx1GVk4hahxyJqI3LqOyvnrfJUQSva/96YMeAnI8pxPHLrkcUZ071Qq3Pu41At0f+8xLuAXUGbvPfbPL9PMnhBBiDejTEEIIsSqV1Q58sO4AnlmcjQ/WHUBltSPYXRLGJcaSCxvYIE1Uu8RYrkCE6736bYEwCkQQYjI1DicmLdyh2Gbywh2c9wgT6M8QQogYjAuGPlqyWGlBSRTmIraBHUM6aRcMGZ1h2FVdKDXBs31qQsPwSEpQUQFcfTUQHQ3cdJMk3GrSBLjxRiAvD3j99ZAVbhkRxyWRge7MW08++SQ++eQTzJw5E7/99hvuvvtunDkj3XS5ubnYsWMH/vWvf2H16tVo06YNxo0bZ1inCdGLFcvdkeAjahgpibbqI6qo90dtbdRKA199SGwUjTsHtMb4Qe0RZbcZuiolIArzVauAwYNxltume0ZNxcr2Fyl+TEuaWkIIIaEPfRpCCCFWZPqyXZizLhfu2ooXl+3GvQPTMXlYp+B1TBA9q8JdgYj6vmIqVyMTookNBwpxolx5/qq4vAobDhRiQLuUAPWKmAX9GUIIUYdxwfDAyCxW7qiJwgCgoLRCV8zIjAzDYVl2/PRp4MorgfXrPbc/+yzwyCNAUlJQumUEZmaMI+GJbvFWUlISvvvuO4wcORJfffUVFi5cWPteu3btAABOpxNt2rTB0qVLER8f739vCfEDPiCJHGoGlB5EBGH+Og1G1MuW68OJ01WYsXIfPvoxDzddeA6WbM83RGxluqN06pSkxHfjZEwjXPTQf1Ae00h4N1oNfEIIIaEJfRpCCCFWY/qyXXh3ba7XdocTtdtDQcClR4wVloEIQgJMVk6hcDuKt0If+jOEEKIM44Lhg9FZrFyYJQoDlBe14M/XejIMh03Z8YoK4KOPgBdfBH7/vW57kybArl3AOecEr28GYUQcl0QWussmAkDnzp3xyy+/YObMmbjsssuQnJyMqKgoJCQkoH///nj99dexfft2XHDBBUb1lxDdmJVSk4Q+SiUatFK//IMcNQ4nnl0i7zQA6uX7/DUqRdLBniivwrtrc1XTeYqUQVRzlAA/SxZOneol3Bp7w7PoOuELTcItQLuBTwghJHShT0MIIcQqVFY7MGedt3DLnTnrckOmhOLQLmlYP3EQ5t/bDzPH9MD8e/th/cRBigt2XIGIkT1aon/bZgyiEaIZ0TkVlk0MF+jPEEKIPIwLhg9aS7OLYpYozIVrUUtCXLTXe4k+tkUEp08D774LDB4MPPhgnXArLQ0oKABKS8NCuAWYKw4k4YnuzFsu4uLi8PDDD+Phhx82oj+EmAYfkEQJuVXBiY2ihcslypV/8MWs1ftQUOqf2tpfo1IkHaxS/1yrUhwOYNpS9TKIpinMT50CJk0C3nrLY3Obvy+Gwx4lvh9oT1NrZDlJQgghwYM+DSGEECvwaVYe1NayOJxSu7sHtglMp/wkbFaFExIiXNS6GWYhR6gdCR/ozxBCiG8YFwwf9JRmF8GM0oa+KPFR1rqkvCqySnf+8Qfw/vvAv/4FHD0KXHwx0LIlMHEicM89QCNtSRhCAbPFgST88Fu8RUiowAckUcNXiQaH04lb398o9Hml8g/uZGTnY8bKfUL7VHIa/DUq/XVIXGKrcfO2eL3nqwyiKY7Sk08C8+YB+fl121avRtZ53eCYs0F8P9Bu4Gdk53uJ/fSWkySEEEIIIYSQg0XlhrYjhEQe9iixgKVoO0IIISSUYVwwvNBTml0Ns0RhLli6E8Dhw0CnTlJGLRetWgHjxgE33ADExgavbyYTKHEgCR9MEW8dOnQI8+fPx5EjR9CrVy/cfvvtsNv9qtBIiN/wAUlEqL8quMbhVLxvACm16Vs390I/gZIOLkNNFCWnwWVUPjDXWzwlYlSa6ZDUNzoB4PjJCqHPCvVrxw6gW7e6161aAbNnA1dfDQDoK3Dd7DZ4rGrXYuBnZOfjwblbvPbtS7RGCCEkNKFPQwghJNC0So4ztB0hJPI4fkps7kW0HQldjPZnFi1ahOXLl+Pnn3/GkSNHUFhYiLi4OHTq1Ak33XQTHnzwQcTExBh4BoQQ4j+MC4oRShVGfCVh8Le/ZojCXJhWkSYUKCoCzjoLcDg8t3/wAXD77UB0+JeNNFscSMIP3eKt2bNn4+mnn8azzz6LRx55pHb7hg0bcNVVV+HUqVNwOp2w2WyYO3cuvvvuOwY7SFDhA5LoQeS+eXlUVwxonyK0Py2lCkXrcyfGReNEvZSrCXHReHlUV0Wj0uW46C2dqIbL6Jy1ej8WbDqkehwhR8nhAC69FMjM9Ny+cycQH1/7UuS6zbq5F5LiYzQb+FwpQQgh4QN9GkIIIVbi9v6t8eKy3YqlE+02qR0hhPiCGUYii0D6M6+//joyMzMRGxuLFi1aoHv37sjPz0dWVhaysrLw6aefYuXKlUhMTDTo7AghxH8YF1QnFCuMmFGa3QxRGBChpTuPHwdmzABmzfIUbg0dCixaFNaZtnxhpjiQhB+6Iw9LlixBaWkpRo0a5bH98ccfx8mTJ3HxxRfjscceQ1paGlavXo0FCxb43VlC/MX1gExN8JygSE1oyEw5RBYj7xstBpia0+DK/lRfuAX4rp9dH5fjYjYzVu4VEm4BKuc8YwYQFeUp3HrvPcDp9BBuuVC7bsO6paF/22YY2aMl+gtkTXOhZaUEIYQQaxNIn2bRokW4//770bt3b6SlpSEmJgaJiYm4+OKLMXPmTFRWVvp7OoQQQkKcmAZ23DswXbHNvQPTEdOAQmJCiG96t0qC2vSG3Sa1I6FPIP2Ze+65B2vWrMHJkydx4MABbNq0Cb///juysrJwzjnnYPPmzXj66af9PSVCCDEcxgXlccWY6sc7XBVGMrLzg9Sz4OAShWmNGSkRUcL6ggLgH/8ARo4EXnqprkzi9dcDlZXA8uURJ9xyMbRLGtZPHIT59/bDzDE9MP/eflg/cVBEP3+Ib2xOp1NhPZ886enpOHPmDPLz6x7cubm5aNu2LTp27Ijs7GzYbDZkZ2ejW7du+Mtf/oLVq1cb1nF/KC0tRUJCAkpKStC0adNgd4cEgVBKAUqsgxH3TVZOIW6es0G13YTB5+PRwe1lj927VRIue22NrIjIlcVq/cRBqn3MyM7HpIU7fIrA5Ki/SsVfFFdylJUBjRvX+0AacOAA0FDdoDX6+75422E8umCbaruZY3pgZI+Wuo9DCIlsaK8GhkD6NJdcconHSvVmzZohPz8fhw8fBgD07t1b00p13iOEEBK+TF+2C3PW5Xpk4LLbJOHW5GHmL8AhhIQuovNO8+/tZ3ppHtqr5mOVGM0XX3yBG2+8ES1atKj1b0TgPUIICSRa4wThHkescThxySurDYkxEXlc46xWujOkx/mnn4A33gAWLwbOnAEGDABOnwamTJGEXKxiQEKUYNiqussmHjt2DB07dvTYtmbNGgDAmDFjYLNJD5guXbqgXbt22L9/vx/dJMRYzEipScIfI+4btRrrAJDaNBbjB7Wrfe0rbW1yfAyKyuQzdGipk+1KBztr9X58lJmLE6frRFxpCQ1xbfc0LNme75XOc+rwjpi2dLfiuYgwdXhHjB2Q7tswzcoCLr7Yc9sHHwB33SW8f/frZoTDFVErJQghJMwJpE9zzz334IUXXsCAAQMQHR1du33Dhg0YPXp07Ur1t956S/cxCCGEhAeTh3XCE1d2wKdZeThYVI5WyXG4vX9rZtwihKgSkaV5IhirxGg6dOgAACgvLzdl/4QQYgRa4juhWEpQK1oqjDCeqp+wLt25di1w2WWe2/r1A6ZOBa68ErCF4DkREmR0i7dqampw5oznQ33dunWw2Wy4rN4XNTk5Gdu3b9d7KEIICRtEDLVnr+1ca6i50tbWF0cpCbfcEZ2Mi7Lb8Ojg9hg/qJ1PcdM/hnb0ud1ut8mei6igK6VJrLdheugQcOGFUm1sF+npQE6OboPPKIerb3oyEuOiFTOVJcVFo296sq5+EkIICRyB9GnGjh3rc3u/fv3wxhtv4MYbb8SiRYso3iKEEAJAKqF498A2we4GISTE4IKzyMIqMZqsrCwAQK9evUzZPyGEBBK5mIyrlGC4lFoMB8F3qGRHc5XurB+fSg1VQeD+/UD79t7bv/8eGDyYoi1C/EC3eKt169bYv38/Tpw4gcTERNTU1CAjIwMNGzZE//79PdoWFRUhOZlBbEIIAcQNtRqHE899s8uvrFZaJ+PkVp/IbVc6lzF9zsWMlfu09/Guu4CPPqp7PXYs8PrrQDP9qzsC7XAZWVKSEEKIeVjFp+FKdUIIIYQQYgS9WyXBboNH2dX62G1SOxL6BNOfqampQX5+PpYsWYJJkyYhPj4e06dPV/xMRUUFKioqal+XlpYa1h9CCDECpZiME9Ki9ee+2YUhnVItKRLSQigJvn2JtFbsKrBMdjQREZmrAk4oiM1k2bMHePFFYN48z+3PPy9l2yKE+I1u8dbw4cPxxhtv4JZbbsG4cePw9ddf4+jRo7jhhhs8yoCUlJTgwIED6Nu3ryEdJoTIEyoqcyJmqKmlrVXCVSc7ENmf5M4FABZs+k21lndtH3/+GejTx7ORAUaf0Q7XT7lFilm3AOBEeRXTCRNCSAhgFZ+GK9UJIYQQQogRbD5YrCjcAiRh1+aDxZyzCAOC4c+8+eabmDBhgse2v/71r5g2bRq6dOmi+Nnp06fjueee87sPhBBiFpFUSrBvejLSEhqKx2+ChK+KKnKVUYKRHU1LxRctpTstxY4dwAsvAIcPA5mZ0rZevYDbbgPq2QSEEP/QLd566qmnsGjRImRkZOC7776D0+lEQkICpk2b5tHuq6++gsPhwOWXX+53Zwkh8oRjDe5wF6OpGWp609GaVSdb6XrInYtSiUgngKu7pGLT3qPo19HHPVpYCBiwItBohysc0gkTQgiRCKZPo3WlOlepE0IIIYQQNQpKxeYiRNsRaxMMf6Zly5YYMGAAqqqqcPDgQRw9ehRr1qzB/Pnz8fzzzyMqKkr2s5MnT8bjjz9e+7q0tBTnnnuu330ihBCjiKS5/yi7TTF+AxgfY9KKXEUVucX1gc6OFvYlNt9/H3j5ZSAnR3rdqxcwejQwcSLQu3dw+0ZImKJbvJWcnIwtW7bg/fffx759+3DuuefizjvvRFqa50PowIEDGDlyJK6//nq/O0sI8U04GgjhKEbTimg62uT4aBSV1RmrZtTJ1ns95Moq2myA0wnkfzAX/Ra/7PmhuXOBW29V7ZOouM9oh0v0uhw/WYEahzOsBIeEEBJuBMOn0btSnavUCSFEjHBfBEQICQ/MelYVnapQb6ShHbE2wfBnRo8ejdGjR9e+3rhxI+6//3689NJLKCoqwuzZs2U/Gxsbi9jYWL/7QAgxn0i1qUOplKARyMVv3GNMwboXlCqqKBGo7Gj+Vnyx9HfsX/8CHn207rXNJom2nn4a6NbNlENaejwICSA2p9Op9bkX8pSWliIhIQElJSVo2rRpsLvjN1Z9oFm1Xy6s3j9RahxOXPLKatnMQq7UpusnDgqZ85MTo7l6H4piND24rq1a2tr//f1ybD5YbNq9bMT1cH3fVu4qwAeZeYitrsS4rM/x6I8LPNp9//MBXNk7XXEff5w8g7zj5Zj/0yGPlaJyYrKsnELcPGeD6nnOv7efkDGvdl3ciTTBISHEOMLNXiV1fPHFF5g5c6bHSvWEhAQ89NBDiivVfWXeOvfcc3mPEEKIG1wERAgJBcx8Vn295XdM+Hy7arsZN3bHdb3O8etYatCniRyOHDmCNm3aoKqqCgcOHECrVq2EPsd7hBBrEsk2tWhMJpTibSLIxUuDeS+IxnXkmDmmB0b2aGlgjzzxJ+5k2e/YunXApZd6b9+2Deje3bTDWnY8SMQTDFtVd+YtYg2s+kCzar9cWL1/Wgi3Gtz+qtW1HsvKAj7RtLUxDeymXVujrkeU3Ya+6cl4/PNteGLtp3g46zOP9x/462R8d8EApH5/AFf0bO21r2W/5GPK4mwUlVXKHkMu05zRtduVrotonwghhEQueleqc5U6CRWsbmOT4GPWPRKOGakJIeGH2c+qSMsYQqxBixYt0KNHD2zcuBHbt28XFm8RQqxHpNvUrrn/B+Zu8fm+E8EvJWgGUXabT4GR1nvBSF/P39KUx09WYPG2w6bNS+it+GK575jTCWRmAlOmAP/7n+d7y5YBV19t6uEtNx6EBBnd4q1Dhw5p/sx5552n93DEB1Z9oFm1Xy6s3j+thFsNblEx2seZuUhpEqvb8AoVAZ9I2lozMVIcuH3tVmQ9Nbj29ekGsXhi+AQsu2CAlHZVZl/Tl+3Cu2tzVfsqJyYzo3a73HUR7RMhhBBrYAWf5qKLLsKyZcvQpk0bvPfee5g0aRKDHSRkCRUbmxiH1sl5s+6RQC4CIoTIQwGvMgF5Vol+jJclLLCCP+Oiurra419CSOhBmzp80Wqj6bkXjPb1/BGa223AtKW7DemHHHoE85b6jjmdwPLlwLRpQFSUJOCKjgZuuw3429+Av/zF3OPDYuNBiEXQLd5q3bo1bDbxL4rNZqPhbiBWfaBZtV8urN4/PYTbijpRkZk/hleoCfiGdknDkE6pQZkANUQc6HQCf/0rei1Z4rF58D2zcTjhbMV9LfvliJBwq/ZQ8C0AM0ME57ouH2fmetyPon0ihBASfKzi03ClOgkHQs3GJv6jdXLezHsk3DJSExKKUMCrTiCeVcdPVag30tCOWBur+DN5eXnYvl0q19ndxLJKhBBzoU1dF0OUIxRjiHpsNK33ghm+nlpFFSUc9T5gxryEnoovlviO1dQA99wDfPxx3bYOHYCnngIefBA4x9yy2u5YYjwIsRi6xVvnnXeerGNQVlaG48ePAwCio6PRokULvYchMlj1gWbVfrmwev/0YHRJuGCjR2SmxfAKRQFfMFeu+i0OXLAAuPlmj02vXvo3vN3/RtV91TicmLI4W6yj9fAlJjNDBBdltyGliVgJq1DJfkcIIZGElXwarlQnoUwo2tjEP7ROzpt9j4RbRmpCQg0KeMUIxLMq3BZ5EmUC5c9s3rwZS5YswR133IE2bdp4vJeRkYEJEyaguroaw4YNQ9u2bXUfhxArEYnZJEPBpjb7uvgTQ7TiPaPXRhO9xgUlp5G57zgmfbXDcF9PraKKE0BiXDROlFfVbrfbvIVb/vZDb/8A74ovQf2OVVdLsbovv6zbFhMDPPww8OSTQGqq8cdUIRSeOYQEGt3irby8PMX3S0tLMWfOHEybNg233HILXnzxRb2HIj6w6gPNqv3SetxQ+iHQYiBY0Xisjx41vRbDK9QEfFpXRRh9jXWLA6uqgKZNgTOeY33FM4txoCLK57Hq7+un3CIUlVX5bKuG3CSkr9rt/sKJUUIICV2s4tNwpToJdULNxib+oUeIZfY9QpuckOBBAa84gXhW9W6VJBu4dGG3Se1I6BMof+bkyZN4/vnn8fzzzyM1NRXnnHMOKisrcejQIZw4cQIA0KdPH3zyySe69k+I1YjUbJJWt6kDcV30xhCteM/4Y6OJXuNpS3ejqKxSsY0/vp5aRRX3xfrHT1YEvEKK1oovgfyOuWKFx4pPoePa5Wj/xIPejfbuBYKY/d/qzxxCgoFu8ZYaTZs2xRNPPIHOnTtj+PDh6NChA26//XazDhdxWPWBZtV+aT1uqP0QiBgIVjQefaEkRlNC1PAyWsBnpiBO66oIM66xntUD2L5dSrvqLtyaNg2YMgV///Oc5HDflx4RZTAyzYVb9jtCCCF1GOXTcKU6CXfCcZEMkUePEMvse4Q2OSHBgwJecQLxrNp8sFhRuAVIwq7NB4sj/npEAkb5M927d8fMmTOxatUq7Ny5E3v27EFlZSWaNWuG/v3748Ybb8Rtt92GBg1MCzcREjAiOZuklW3qQF0XPTHEYNwzInEpf2w00SQLasItd/T6emoVVVx9X7ztsKn90Ns/dwL1HcvIzscLi35B5y1rMemHj5BenO/ZYP9+wALzj1Z+5hASLOxmH2Do0KFo1aoVZs6cafahIgrXA01OImKDJNoI9APNqv1yYfX++cPQLmlYP3EQ5t/bDzPH9MD8e/th/cRBtcKtB+du8TLUXMZjRna+zF6Dg0uMlpqgXUSnZngZKeDLyM7HJa+sxs1zNuDRBdtw85wNuOSV1YrjWeNwIiunEIu3HUZWTiFqZGbU1FZFOCGtinB93sxrLHc9UhMaejoehw8DNhvQowfw88/StnbtgMpKYMqU2n3dd2k66tutdhtw36XpHk6MVhGlrJjMZFwCN/c+BLtPhBBCjMVfn8a1Ur1t27ZIS0tDnz590L17dyQlJeHqq6/Gnj17uFKdhDThukiG+EaPEMvse8Rfm1zUTyOEeEMBrziBmD/4vbjc0HYkPPDXn0lKSsIjjzyCxYsXY//+/Th58iQqKipw5MgRLFu2DGPHjqVwi4QFanPygOecfLhh1XnuQF4XrTHEYNwzonEpf2w0pXtBL/7MB7gqqozs0RL92zbzeQ8Gc15CpH+udmZ/x77bkoe1T76I+a/fgXt+WoT04nwUNWqK1wfejovGfYKMHUcsIdwCrPvMISSYmC7eAoDExETs2bMnEIeKGKz6QLNqv1wY3T+rTfD6MhBC1eGoL0abOryj0OfUDC+jBHx6xFJaxF5qqyKAulURgbjGSuJAAMDTTwPnnFP3gVGjJDHXvn1AdHTt5ozsfLy3NtdrFajTCby3NtdjLFzXShQvMVkAERa4EUIICVn88WlcK9WvvfZaxMfHY8+ePdizZw8aNWqEq6++Gh999BF+/PFHpKSkGNxrQgJDOC+SId7omRQPxD2i1ybXsyiHEFIHBbzaMHv+4PudBYa2I+EDYzSEqKMlU1G4YsV57kBeF60xxEDfM1riUv7aaHL3QnJ8tM/2cgRqPiBU5iVM+44VF8N5wQW4qnc6XvruLZxbchRnlRXj8eETcMkDH2DWxTfhjybNLBcPtuIzh5BgYvpyiD/++AO7d+9GfHy82YeKOLTW0o30frkwqn+hUoYwlNPXu8RogCSUe399rt/pM7WWAfSVfhaA5lrhWlPniq6KWLFLmmwLxDV2vx61bNoE9O3ruW30aODzz70+r7XGuvu1kjMlr+mWisGdUg0vWakHLelxCSGEhBb++jSuleqPPPKIwT0jxBroKrVNQhbXpLiSD1J/UjxQ94hWmzySy+IQYhQsd6IdM+cPTlVWG9qOhAeM0RAiBrNJSlhtnjvQ10VLDDGQfRONrzSJjcbxsgqkxMcitWlDHC2VL32YHB+N3q2SZI/p614oKD2DCZ9tE+pzIOcDQmlewtDvWG4u0L49UFNTe54VUQ0w/S93YX73q1ARHVvb1KrxYKs9cwgJJqaJt44fP45NmzZhypQpqKysxMiRI806VERj1Qeaq18bcgqRdeA4AEn00a+NNX4M9Iybu4gn73g53ly5NyQmeMPF4TDS8FIzvod0SkVWTiG+35mPL7f8jpNnamrbpCU0xJg+52kSS2kVLQHiqyIWbzuCri0ThNoaeo2dTsDuI3njb795ZuByQ4+QUO5aJcdH44WRXTCsWwu/TsNofArcCCGEhCz0aQgRx+qLeIhxRNltuLZ7Gt5dmyvb5truaV6+WaDuEVGbXI+fRgjxJpQCZVbCrPmDwpMVhrYjoQ39GUK0wWySdVhpnjsY10U0hhjIvonGV279YGPttsS46FrfxpffU1RWhcteW6Poj9W/F7JyCoX7HOj5gFCal/D7O3b4MNCpE1Ba6rF519npuPGWV3AqNk72o1aMB1vpmUNIMNEt3oqKihJq53Q6kZqaipdfflnvoYgKVn2grdhV4PEDOWvNfktlptIybr6ybPnCihO8oeZw+Mp05RpHeSFPDEb2aIGERjGocTiFBVy+jO8VuwpwySurZa91fskZzFi5V+hcXAaQHtFS3/RkJMdHo6isSvEYhWWVKCqrFOqPYdd43Trg0ks9t82YATz2mOLH9AoJrSJSVbo3CSGEhCb0aQgxFqvYbcRcahxOLNmuXFJwyfZ8/GNoR58CLqvcI6GcpZoQqxFKgbJwJ6VxDPb+USbUjoQ+9GcIMRZmk7QmwbouIjHEQPZNj+CmpFyKLyXEReNEue9Yk9akFGrnDACJjaLx1q290K9Ns4D7ekO7pGFQh+b4NCsPB4vK0So5Drf3b42YBj6SEYQiubnAwIGSeMudXr2w8eOvcdN/d6juwirxYEKIN7rFW06ncj3U+Ph4tGnTBldffTWefPJJpKSk6D0UCUHCqfSA3LnIYbUJ3lByOERKUbpP9q/cVYCvtx1GYVklPszMw4eZeZoEglF2G/qmJ9cGDmat3ocZK/cZdj4uA0iPaCnKbsN1PVrig8w81c8lN44NzDWurobjjTdgnzjRc3txMZCYqPpxf4SEwRaphkqZVEIIIdqgT0OI8QTbbiPmoyZ6ApR9YqvcI+GSpZoQq2AlcWYk0+asJvjxQLFQOxL60J8hxFiYTdKaWPm6BLJvegQ3roQTsVE2JMfH+EwEoDUphcg5v3x9VwxoF5zfHF+xnPfX54Z+LOfXX4EOHby3X3UVsGgR0LAhLnQ4kZawLyTiwYQQ3+iWmTocDsW/kydPYvv27Xj55ZfpFEQYaqUHAMkIqHGIyqGCh9K5qGGVCV6XIQXUGU4u/DUeaxxOZOUUYvG2w8jKKfTrmrpEcvWDAC7BX0Z23cruKLsNJaclwVb9zFS+2isd85JXVuPmORvw6IJthgm3bJCEPS4DSK9oaXCnVKHPpTZtaNo1rmXKFCA62kO4de+oKej/0kpk/H5aaBcuIaFcL+qPm1XQcm8SQggJLejTEEKIdsJF9BRqWaoJCQVc4syRPVqif9vAZ1ogwJCOzQ1tR6wN/RlCjMeVTTI1wdMGTE1oGFJJCczGyNiQCFa+LoHqm1p8RQ4ngKMnlSu4uCelEMGq1yMsYznbtwM2m7dw66GHgMpKICMDaChdBzPjwYSQwKA78xYhcoRT6QGRFcVyWGmC14z09UZmIlIT/NVX/WttL9d/LRnV5BBZTaE3+5mWz0XZbeaUKPjjD6C554Te369+BF90HQLYbLDVy6anVFrQyitk5DDiXiOEEEIIISScCBfRUyhlqSaEEFGKyuUDs3raEUJIJMJsksoEq0qFla9LIPqmFF8xCi0LcKx2PcIulvP118CoUd7b//Y34MMPAZnSySxnTkhoQ/EWMZxwWYUL6OujVSd4jTSkjC6LqVXw569A0J+Mau5MGNweCzb9pmoARdltmDq8I8bN2+q1DyXRklaxk+HG8vXXAwsXemwaeue/sefs9NrX7kavwwFMW6pe9tIMw1FJNOYP4SRGJYQQQgghxAjCRfTk8rcemLvF5/tOWG9xCTEGs/xHQqzA8VNioizRdoQQEqlYpdS31TA6NqQVo69LZbUDn2bl4WBROVolx+H2/q0R00C5aJWcLRmIe8YVX5m0cAdOlFepf0AjWhfgBOp7ImK/h0osR/Vc1q4FLrvM+4PjxgH//jdgVy+qZjVhHSFEHL/FWxUVFZg/fz6+//577N27FydPnkSTJk1w/vnn46qrrsKYMWMQGxtrRF9JiBAuq3AB7X20avYgF0YYUmao17UK/vwVCPqTUc1Fcnw0xg9qj/GD2qsaQBnZ+Zi2dLfP/aiJlrSKnQwxltesAQYN8tj0ca8ReHbIAz6bu4zecfO8gx6+nDajDUczV/qEkxiVEEKIPPRpCCFEnFDMqEuIi2BliiDhjZUEgScEM2qJtiOhAf0ZQkggCLfMRtOX7cKcdblwr/j44rLduHdgOiYP6+TzM1awJYd0SsWzS3YKt7cBaN40FoANR0t9L8ABpJhX71ZJRnTRUETHXE8sJ9A2nOK5HNkBXHWV94fuuQd47z2pdKIGKEAlJDTxS7y1ZcsWjB49Gnl5eXA6nV7vffbZZ5g2bRo+//xz9OrVy6+OktAhXFbhAurnUp9ISDtphnpdq+DPX4GgEUKbF0Z2qTXilM5z2S/5PkVNLqYOV79fAqaSdzqBESOAZcs8Nmes3IpnVxzWt0v4dtqMMhzNXukTTmJUQgghvqFPQwgh2rFyKQbRCXhX8EmOUAs+EXWCnSmChCdWCOK6IxrX0xj/IxaG/gwhkYtRwhPR/YRKZiMRpi/bhXfX5nptdzhRu72+gMsqtuRPuUUoKK0Qauu6is9e2xkAFEsuFpVV4bLX1gTdn3NHy5hrjeUEyoZzfb9W7CrAh5l5Xu/33LgSQ58a7P3B554DnnnGsH4QQkID3eKt33//HUOGDEFxcTFSUlJw7733onPnzmjevDmOHj2KnTt34v3338eBAwdw1VVXYdu2bWjZsqWRfScWJZxW4aqdixNS6bzWKfFBX1kXKMzIRKRV8OevQNBfoc39l6ZjWLcWqu2W/XIE4+d7l0p05+lFO3BVF/VggOkq+X37gPvvl7JuubjvPuDdd5GQUwhAn3gLMM9pC8RKn3ASoxJCCPGGPg0hhOjHiqUYtEzAWz34FIhV4FbKFmQ24ZYpglgDqwRx3enfJgWz1uQItSOhD/0ZQpQJZ1vHKOGJlv2ES5WKymoH5qzzFm65M2ddLp64skNtCUUr2ZJaxrf+4hpfC3DcsdKiBq1jriWWEygbztf3y8U1u/6Hf3/zmveHPvwQuPNOv49NCAlNdIu3pk+fjuLiYowaNQqffvopGjVq5NVm6tSpuP322/HVV19h+vTpmDVrll+dJaGDlVfhaiWczsUIzMhEpFXw569AUGtGNRfN4mMwbWQXDOumfs0zsvMxbp6ycAsAisurMGv1Pjw6+HwNPTGQ8nIgPr7udaNGQM+ewMqV0v+hf7zqY7TTFohgSziJUQkhhHhDn4YQQvzDSqUYtE7A+xN8MjsQGIhV4FbLFmQ2VhfrkdDDSkFcd/q1bYa4mCiUV9bItomLiUI/3udhAf0ZQuQJZ1vHKOGJ1v2ES5WKT7PyPEol+sLhlNrdPbANAGvYki4fZN/RU0Ltpw7viLED0j3skKFd0jCoQ3P0m74KRWXeJZSttKhB65iLxnIABMSGk/t+Pb36fdy7aZFX+6euegjXvPUcfRFCIhzd4q3ly5cjPj4eH3/8sU+nAAAaNmyIjz76CBkZGVhWrwwXCX+suApXL+F0Lv5iViYirSI5f0R17kacKOMvb4cJQ84XuuZq5Tfq81FmHsYPah/4+2nmTOCxx+pet2sHfPcd0EZySNwDEmP6nIsZK/fJZqATwWinLVArfSjgJISQ8IU+DSGEhAd6RBR6g09mBwIDsQrcitmCzCZcMkUEGq1CxXDOcFIfKwRx9RKeVyQyoT9DiG/C2dYxSjysZz9GxYYCaS/4OtbBonKhz7q3C7YtqZTBqT6u61BfuOVi88Fin8ItF2ZWUtFy3fWMuUgsJyun0HQbztf3a+zPS/Dsqve82j424gks6nw5AOAi+iKERDy6xVtHjhxBt27d0LhxY8V2jRs3RseOHbFjxw69hyIhjJVW4fpLOJ2LP5iZiUirSM4fUZ3LiHvq62xFQ9XFgHYpwuekNoFXnxOnqwI7mffrr0CHDp7bEhOBvXsBm3SOvpyBxLhoqb/lVbXbUhMa4umrO+KRz7Yqrlax24DerZIMOwUgsCt9KOAkhJDwhD4NIYSEB3pEFHqCT2YHAgORyceq2YLMJlwyRQQSrULFcM5w4otgB3Hl2JBTqJh1CwDKKmuwIacQA9qzdGKoQ3+GEG/MtHWsIFI2SjysZz9GxIZ82QvJ8TF4QbDiiRbkbJMBgnGYVslxtf8Ppi0p54P4QuQ6rNxVIHRcI20YPXai3jFXi+UEwoZz/36Ny/oc/1j7H682U64ch7k9h3lsoy9CCNEt3mrSpAmOHj0q1Pbo0aOIdy/LRQgJaczMRKRVJOePqK4uRexKFJVV+WyjJ5OYHqMuYJN5zZsDf/zhuW3PHuCCC2pfyjkDJX+KtiYMPh+tU+Jqjd6fcouE0gxvPlhsqEDNrCxwclDASQgh4Qd9GkIICQ/0TMBrDT4FQvQUiEw+oZwtyB8C7T+GOlqFiuGc4UQOqwoC1+8/JtyO4q3Qh/4MId6YZetYRaRslPBE7378iQ3J2QtFZZUYN28L7v89HZOHdRLqlxpKtsmXWw6rVhSx2YDb+7eufR0sW1LJB/GF2nWocTjx9bbDQvsyyobRayf6M+ZKsZyU+Fihfou288Ufpafxz5Xv4s7N33i9N/aGZ/FD2ws9ttEXIYS4sOv9YO/evfH7779jwYIFiu3mz5+P3377DRdeeKFiO0JIaDG0SxrWTxyE+ff2w8wxPTD/3n5YP3FQyE3GxTSw46XrusIG77TxejOJ6TFqTZ/MO3xY8jjchVs33QQ4nR7CLbWABAAs2HQII7q1qK0jbvZKhRqHE1k5hVi87TCycgpR86dSzBVsAYy7doQQQiIL+jSEEBIe+LMqe/ZtvZCa4Lk9NaGhVxBBSyBQL4FYBW7VbEFmQ/9RHJF5gee+2VXrm2ttHy64Aopyd4wNUlA/0EG4Hb+XGNqOWBv6M4R4Y4at4xKf1LcFXeKTjOx8TX30B6PEw/7sR09sSESE9O7aXCz75YhQv5QQsU3UrJK46CgPu1DNlnQCGNPnXHz7yxGPGIa/iFZ5GX95W6Hr8FNukWwiA3eaxccYYsP4YyeaZr+LNtfjFjidwKOPYmSvc72EW9fd9jpaT/zWp3ALsJ4vIheXI4SYi+7MWw8//DC+//573HHHHdi0aRPGjx+P9PT02vdzc3Px73//G2+//TZsNhseeeQRQzpMCLEO4ZKJyOhMYmorAtzxR1EvlKbZ4QDmzAEmTvTc/ttvwDnneO1Tz8okM1ebqq1oMjMLHCGEkPCHPg0hhIQH/qzKFi2RHgjRUyAy+Vg1W1AgoP8ohtZ5gUjN5mZE6SgzaBgTZWg7Ym3ozxDijdG2jtVKThuVAcrf/SjFhnzFLURFSFMWZ+OqLml+jaXosZQoq6zxsl3kbMmEuGgAwIyV+2q3GZWVTdS3aN+8iZCdJbq/kT1aGHI/+2snmmG/Hz9VYWg7AEBNDXDhhcC2bV5vjbrtNWxp2VH2o1b0RaySaZCQSES3eGv48OGYOHEiXnnlFbz55pt48803ERsbi7POOgvHjh1DRYX0UHM6nZg8eTKGDRumskdCCAkeohP2IihN4Lnjz2SekPE0Zw5w3311H+rQAZg8Gfjb32T3qycgYVbKYNF0ukZeO0IIIZEFfRpCCAkP/BVRiCxMCoToyeVbKQU4/M3kE+nlA+k/qqN1XiBSs7kB1hQENmsUbWg7Ym3ozxDijdG2jtVEykaJh80SIcvFLa7ukir0+aKyKr/H0iibw9d+6tuSecfL8ebKvaaVjjbaBxFtN6ST2PVSwwg70Wj73dCxqq4GbrkF+OILr7fmzf4aT+XJ21t3D2iNwZ1SLeeLRGI5dEKshO6yiQAwffp0LFmyBP3794fNZsOZM2fw22+/4cyZM7DZbBgwYAC++eYbvPjii0b1lxASQQQ6Ladrwn5kj5a1JQH1Ild+wx1fpThEUEvTvGLjPqlEortw6803gexsReEWoM9wNSN9rdZ0ukZeO0IIIZEFfRpCCAkPtJRA1EMgSqRF2W24trtyP6/t7l8mAquXDwzEPAD9R2W0zgtEcjY3QF/pKDP55bBYOUTRdsT60J8hxBOjbR0ripSNsnuNtp+V4hYfZuYJ78ffsTTK5pDbj8uWHNGtBRZsOmRq6WijfRC1/UHj/tQwyk400n73Z0xdvsqSTbkoHnQlEB3tJdza8MnX6P/SSlnhVlpCQ7xzWy9Mvaaz5XyRSC2HToiV0J15y8WIESMwYsQIlJWVYf/+/Th16hQaN26Mdu3aIT4+3og+EkIiELXMUkIlA4NM/RUBKY1jASdwvKxCd5/VjKf3v3oeg1/5yfONpUsBwZV1elcmGb3a1GormgghhIQ39GkIIf4SCv5JJGBmVqVAlEircTixZHu+Ypsl2/Pxj6EdDVlsZKVsQQDLc1gFrfMCkZ7NDRDL3hcoDhWXG9qOhAb0ZwjxxEhbx6oiZaPsXqP2I1JeEjbAKaD58Hcs1WwTALD/2Rd/bJdAxDCM9kHUqsbYNO5PDSvaiXrHNCM7Hy9/tQXvzHoI/Y8f9N7x/v3IOB33Z9Yq3/fFhMHnY/ygdpadK2BcjpDg47d4y0V8fDy6d+9u1O4IIRGMWlrO+y5Nx5Lt+SExoWv0BJ6c8dTxjwNY/tEjnhuvv15S/dvEDUF/nAEjAyVWXNFECCEk/KFPQwjRAwUn1sJMEYXZoie1yXLAuMlyq5UPZHkO66B1XiAQwkZCiBj0Zwipwyhbx4riExdG2b1G7EdE9CGrpHLDiKxPIrbJvQPT8d7aXGHbxddinUDFMPT6IHILjFz7m7RwB06UV3l8JiHO2LLKRtiJZiyU0jqmKzbuQ8uRV+OHozke28ujYzH4nnfwzLirMCQ9Fc+9slr2NrcBWLDpEMYPaudX382EcTlCgo9h4i1CCDECkbSc767N9Xovv+QMHpi7BW/f0hPDurUwtY9mo2SMehlFTifGZ32GJ9fN9di84ptMDBlxsa7j+xOQMMphtOqKJkIIIYQQQtyh4CTyMFP0FOjJcqtkCxLJ1PDcN7swpFMqBUABQuu8gFWzuUUiXdKaYONB9ZKIXdKaBKA3hBASXIywdShSFkPUPr2iw1lYteeYz/eMzPokYpv0PC9JyHaRW6wzps+5Qn0xIoYxtEsaBnVojk+z8nCwqBytkuNwe//WiGlg99leZIFRfeEWAJSUVxnux/pjJ5q5UErIrysuBpKTMaTeZ6ttdvQf9wmONU6q9VWaNIwO+axVjMsREnyExVv/+c9//D7Y3/72N7/3QUg4wdIa3oisNFZi/PytmAUbhnULzYlBNWPU3Sg6p+Qo/rnyPQzZv7F227pWPXD7mBcwv+MFfvUj2KuwrbyiiRBCSOhCn4YQYiQUnEQuZomeInWynOU5rInWeYFgzyMQics7pAqJty7vkBqA3hCjoT9DSHCIVJGylviVqH16z8C2uL7XOZiyOBtFZXXiITMyF6vZJiK2i9JinRkr9yExLhol5VWmxzB8xY3eX5/rc8zUFhi9dUsvTFu6y+dxzPJj9diJgVgoJevXFRYC3bsDhw97bM5LTMNf//Z/ONGoae02l6+Suf+40DGtnLWKcTlCgo+weGvs2LGwaSi9VR+bzUbHgBA3WFrDN/4aLg4nMG7eFrxjD70V7iLG6JBOqTincQOsnzq09v1KewN803Egnh3yAE7FxhuSWhgI7ipsrmgihBBiBvRpCCFGQsEJMZrerZJgt0l+rRx2m9QunGB5DuuidV7AKtncIpnmiY0MbUesBf0ZQoKH2SJlqy301xq/EhV9OBxOVDmc+PfNvQAncLyswtTzVbNNlN4XWazjwswYhhYRk0ifpy7ORmFZpezxzPJjtdiJQVsodfgw0LkzUOIthO89fi4K4xNlP/qfrDyhQ1h5IQ7jcoQEH2Hx1nnnnSfrGBw8eBCxsbFITeWKHUJEYGkNeYwyXEJthbuoMXrlttVYP/U2j/eHj52JfWe1CjvjKVJXNBFCCDEP+jSEECOh4IQYzeaDxYrCLUASdm0+WBxWAplIzThGiBmc3STW0HbEWtCfISS4mCVSttpCfz3xKzXRhxPA6aoa3PpBXRUR1zla1a4VWaxzorwKEwafjwWbDpkSw9AqYhLps5Jwy51g+rEBXyiVlwekp3tvv/hibHxnPm767w7VXZyqqFF83wpZq0REoozLERJchMVbeXl5su/Z7Xb06dMHa9euNaJPhIQ1LK2hjNoKDVGCvcJd60oZNWM05VQRsl7xXBlX0SAanSZ8iRp7FIDwNJ5YdoEQQoiR0KchhBgJBSfEaAItCLRKhgeW5yDEOBxqClCN7Yi1oD9DSPhhtYX+/sSv5EQfiXHRKC6vwonyKo/2+SVn8MDcLXj7ll4Y1s16MQ1Rm7t1ShzWTxxkil2tVcRkpOAqmH5swPyi3buBTp28t195JbB4MdCwIS50OJGWsM/vmCUQ3MQLWkSijMsREjyExVuEEGNgaQ1lRFZoiBKslQF6Vsoo9fWLuf9An8P1apD/9BMa9L4QcyPAeGLZBUIIIYQQYkUoOCFaEBFKBVIQaKUMDyzPQayGVYSNelifc0y43cDzzzK5N4QQYi2s9ny34kJ/f+NX9UUfKY1j8cTn2xSPOX7+FsxCTwzr1sLP3mtD7X7QYpubFcPQKmIS7XNyfDSKy6o0+bGB/P6Y7hft2AF06+a9ffBgYNkyIDq6dpOSryJK04YNcEPvc5DQKAY1DmfAnzt6s+kxLkdI4AkJ8daiRYuwfPly/Pzzzzhy5AgKCwsRFxeHTp064aabbsKDDz6ImJiYYHeTECFYWkMdpbSc13ZPw7trc4X2E4yVAXpXyvjqa+LpUmz71y0e2yrPOhsxfxwFAEQBNJ4IIYQQQggJEhScEFFEhVKBEgRaLcMDwPIcxDpYSdioh/V7j4u3u9rkzhBCiEbMFIdY8fluxYX+RsSv3EUfWTmFKCitUNyXwwmMm7cV79htAbsWIveDFRbraBUxifZ56vCOeGjeVmE/Vm68pg7vhKT4GMO/s6aNvVymrdtuAz7+GIiK8vkxOV9FlNIz1fgwMw8fZuYJPXeMfBZaUSRKCJEnJMRbr7/+OjIzMxEbG4sWLVqge/fuyM/PR1ZWFrKysvDpp59i5cqVSExMDHZXCVGFpTXEUErL2f2cRIyfvxVyGd71GG5GGEP+GEEexqjTiZt++R5/X/sfjza3PPo+Pn3jLk19IoQQQgghJNyw0op5Ck6IGlqEUoEQBPo7eW/m94/lOUiwsaKwUSuFZZWGtiOEkEBhprjKqs93Ky70Nzp+paXv9W1Qs+xO0fvBCot1tIqYRPs8tEsaZtttQn6s3Hjll5zBuHlbPLYZ9Z01fOzXrQMuvdR7+6hRwOefy4q2XNQ4nEhoFIN/DO2AolMVSGwUjReX70GRDntK7blj9LNQVCT6cWYuxg5Ip+9FSJAJCfHWPffcgxdeeAEDBgxAtFuqwg0bNmD06NHYvHkznn76abz11ltB7CUhYlhBrR8qyKXlHNatBWbB5mUYAvoMN6OMIX9WyriM0Y9f+hgL5j9Vu/3XlPPwxsDb8P35F2P2bb1oOBFCCCGEkIjGiivmKTixFlYS9+kRSpktCPTHbw3E9y+Sy3NY6d6NRMIlK0GT2AYogHKGE1c7QgixCmaKq6z8fLfiQn+j41da+u5ug5pld2q9H4K9WEePiEm0zyJ+rNJ4+cJIQaQhY79iBXDlld7bn3wSePVVwKb+nfd1LybHx+gSbgHKzx0znoWiAsppS3fj/fW5XIRGSJAJCS9t7NixPrf369cPb7zxBm688UYsWrSI4i0SEpil1o+0Sb5h3dLwjt1/o9lIY8ivlTIVFRh61YUYeuRI7aaFnS/HxKsfQUpyE8ymwUQIIYQQQiIcq66YByJbcGIlrCbu0yuU0isIFJkX0Ou3Bur7Fy5zG1rPw2r3biRixdJVeriwdTL2HSsTakcIIVbAbHGVlZ/vwV7oL2evGBm/cp2jaKm5P06eMdXu1HM/BHuxjh4Rk2if1fxYtfGqj9GCSN1j/+GHwN13e29/7jlg6lQh0RYg7wPpFW658HWfmfUs1CKgtMLcSrgSLn4uMZ+QEG8p0aFDBwBAeXl5kHtCiDhGq/UjdZLPX6PZaGNI90qZ8eOBeuLTA8+/hqhrbsZ/+CNOCCGEEEKIpVfME2vgT5DHrIlUfxb4aBUEis4L6PFb/fn+aRnbcJnb0HoeVhamRhJWLF2lhz6tkzF/029C7QghxAqYLa4SfW6v2FUQcPFWMMvyqdkrRsWvXOf4wFzvKiq+SImPxZNfbjfN79P7ex/sxTp6YmFG9FmP3WO0IFLTeSxYANx8s/f2l14CJk/WdFytWcf08MfJM7X+Uub+Y6Y8C9VEovWPwbkV4wkXP5cEBmHx1tq1axXfLykpUW1zqa96sn6SlZUFAOjVq5fh+ybETIxS60f6JJ8eA9QsY0jzSplDh4BWrTwb9e8PrF+PNnY72gifESGEEEJEsKpPQwhRx8or5knw8UdcZOZEaqBK4WiZF9CT4UHv90/L2IbL3IbW86Aw1TpYsXSVHs5qEmtoO2It6M+QcMRs8azoc/vDzDz0TU8OuL0RjLJ8ovaKUdmmhnZJw9u39ML4+VvgkFGPuGxQ2GCq3xfKv/fBEJD5Mw6+vrOmZR9atAi47jrv7e+8A9x/v65das06poe842W45JXVmo6j9VmoJBL1BedWjCVc/FwSOITFW3/5y19gk0kjaLPZkJ2djcsvv1z28zabDdXV1dp76IOamhrk5+djyZIlmDRpEuLj4zF9+nTZ9hUVFaioqKh9XVpaakg/CPEXf40tTvJpx9fksRoFJaeRlVOoalBqWinz3XfA0KGeO1i5ErjiCs3nFO4wnSghhBCjsJJPQwjRRrhkRCHm4I+4yMyJ1ECUwtE6L6Anw4Oe75+WsQ2XuQ0952F1YWok+ePBLl1lFHsKTgq3G3j+WSb3hhgN/RkSjpgtphEt2xdMeyOQZfm02itG2R/DuqVhFnpi3LytXu+526DHT1V4ve8LvX5fuPzeBwotWZvqU/87q2fRjKot+u9/A4884v3BDz8E7rxTY4890XuPuXysxLhonCivkm2XFBeNGSv3ad6/nmehnEhUCc6t+E+4+LkksNi1NHY6nbr/HA6H35198803YbPZ0KBBA5x77rl46KGHcMUVV2DDhg3o27ev7OemT5+OhISE2r9zzz3X774QYgW0TPKRusljrWr5aUt34+Y5G/Dogm24ec4GXPLKamRk5/ts6zKCUhM8DajUhIbS5HTUCeCWWzyFW61aAU4nhVs+yMjOxyWvrBYef0IIIUSNYPs0hBB9hPIKaWI+esRFahOpgDSRWiOXHkAAl1AKqAtKuTCqFI6eeQFVv7Ve8ETr90/r2IbL3Iae8/BHmFrjcCIrpxCLtx1GVk6hX/eqLyLNHw/E9zUQHCwqM7QdsR70Z0i44RKHyD1dbZAEHnrFNO7PdyWCbW+4hFIje7RE/7bNTPu9CabdNaxbC7xzWy+kKdigZvt94fJ7rwc9tqPSeClhtwHFZXVCPLnYnGthhy/7UtEWfeUVwGbzFm59+aUUa/NTuAWI32PJ8dEer1MTGuKd23rhpgvPUfxcRbW232R/n4VDu6Rh/cRBmDq8o1B7zq34T7j4uSSwCGfesoJh37JlSwwYMABVVVU4ePAgjh49ijVr1mD+/Pl4/vnnERUV5fNzkydPxuOPP177urS0lAIuEhZw9bk4/tSnLiqr9Hittgrb50qZVomIurA3sH271MhuBx5+WKqz3bx5WK1mNepcmE6UEEKI0VjBpyGE6IMrpIkSeoI8gcp4ZHYpHL3zAloyPPRNTxZaOe76/mkdW3/nNqziT+s5D70BSjPLfbr2H4n+eDBKVxmN6J0fmjNOhP4MCUf0ZAXVytAuabh7QGt8kJmn2jbcYynBjimp2aCB8PvC4fdeK/7YjnqyNjmcwEPztmK23YYhnVKFFna4Zx/yaYs6nZg+ZyL+8tRm7x0tXQoMGybUN1FE78X//f1ybD5Y7HE/u85JifLKGuG+GPUsjLLbMHZAOt5fn8u5lQAQ7OctCU2ExVtWYPTo0Rg9enTt640bN+L+++/HSy+9hKKiIsyePdvn52JjYxEbGxuobhISMMJ99bmRE7BG1qcWSWfpkVI4IwNod7Vngw0bgD59pLdNnnQNJEadC9OJEkIIIYQQdwIR1CGhi54gTyAnUs0shePPvICRpXDcx13r2PpzDlbyp/Wch55712xhVaD9ca1zP2aL9QJZusoMup+TiE9xSKgdIYRYhUCIaQZ3ShUSb4VqLEUU0fNLidcfU1X7rVayQQPl91n5995oW8cI29HXeBWerMAjn22FUgKv577ZhSYNo1Vjc+4LO7xsUacTU1e/j7t/Xuz9wVWrgEGDFPetF9F7MaaB3et+zsopNCweCRj7LOTcSuAI9xg+MYeQEm/V56KLLsKyZcvQpk0bvPfee5g0aRJatWoV7G6RCCLYqztDefW52tgZPQFrtHJZaBV2aSmQkOC5LTYWOHYMaNIEQHitZjXyXAK1Cp4QQgghhIQOkbhCmoihZwI60BOpRgql3AnEvMBPuUWKWbcA4ER5Va1/pnVs9Z6D1fxpPeeh9d4NhLAqkP641rmfQIn1zPq+BoKS08rfVa3tCCEkUJgtpgnlWApgXCxKbRxcPLxgK/7aowWGdErVdCwjfqsD5fdZ8ffeaFvHSNux/nhl5RQqCrdcNuOP+48L9bWgVDpnly1qczowddX7uGvzEq+2o259DX9/7k7Tr5/ee9GoeOT4y9thQLsUUxYrcG7FfEL9d4cEh5AWbwFAixYt0KNHD2zcuBHbt2+neIsEDCus7gxVhbTa2JkxASs6eVx/HNWQNcLuuQf44APPbd99B1x5Ze3LcMouZfS5MJ0oIYQQQgjxhZVXSJPgonUCOlwmUgMxL6DVP9M6tnrOwYr+tN5roeXeDYSwKlD+uNa5H6uJ9axKYqNoQ9sRQojZBGqBfKjGUgBjY1FK4+BOUVklPszMw4eZecLHMvK32ki/z3WPFZSeQdGpCiTHxyA1oZHl/Ei18Xvrll5Iio/RNB5m2o6ituDhE6eF2hWdqgAAHCsqxazFr2DEnnVebYbf8SZ2prbzeXylZ4k/zxk996K/C4Bc/tKEIeebdo9ybsV8Qvl3hwSPkBdvAUB1dbXHvyT4BDsjldkEc8Ko/tgO6ZQaUgppdQO0J6Yt3W34BGxxWaVQOy3CLcCHEXbyJHDDDcD333tur6kB7HaPTeGUXcroc2E6UUIIIYQQIocVV0gTa6BlAjqcJlLNXjmt1T/TM7Zaz8Gq/rTeayF67wZCWBUIf1yr+M6KYj2rckIwo5ZoO0IIMZNAL5APxWwzZsSiXOPw7JKdKCitUG2fL3AsM36rjfD7fN1jLgKZjEEtZqo2fgAwfv4Wj0xXIv030nasfw6ipTVbJDYSatcsBsA11+Dab7/12H6mQQyu+dsM7DvLM3mLuy2q9CwB4PdzRu5elLuuIotZEuOiUVxeFVRflHMr5hOKvzskuIS8eCsvLw/bt28HAHTv3j3IvSGANTJSmUkwJ4yUxnb9xEGWF8yJjN2UxdkoKpOfQHJNwM5Y8SsGtDtL6DxrHE5MW7rLn6574XMV9owZ0t9vv9VtW7sWGDjQ5z6snF1KqwDT6HMJl1XwhBBCCCGEkMCiZQK6LnC1q7ZMBxCaE6lmrpzW45/pmaQe2iUNgzo0x6dZeThYVI5WyXG4vX9rxDSwe7W1sj+t91qI3LuBEFa5rreSOC7NgFKcWsR3VhXrWZEEwYxaou0IIcQsgrVAPpSyzZgZixraJQ1NGkbj1vc3CrV3qhzLir/VcveYCxFRmlH9UIuZqo0fAK8ShSLfFaNsR1/nkNq0IRLjolFSXqXoIwxol4K3f8iR3Xdc5WnsmjEaeMX7vUvvm4NDSZ7nVt/3UHqWPDB3i89jGvGcUbuuaotZpo/qCsBbWBaKvihRJpR+d0jwsbx4a/PmzViyZAnuuOMOtGnTxuO9jIwMTJgwAdXV1Rg2bBjatm0bpF4SF5GQwjxYRqgVx1arwEdk7JSEW+7MWpODWWtyhISBIoavHmqV71u3Ar161b2Rng689RZw9dWKnxc1nPOOl/vTTc3oEWAaPYEcTqvgCSGEEEIIIVbH09N2OrXmZA5v/CkHqGWS2pcv+v76XJ++qNWzNZu1ij0QC52i7DZc2z0N767NlW1zbfe0gJbitLJYz2ps//2EcLsbLjzX3M4QQogMwc6oGCrZZsyORR0/pZ51yx2lY1ntt1rpHnNHTZTmL6JxPT3jIvJdMcJ2lDuHo6V1+1TyEfq1aeZzYUB8RTnmLXga3Qv2eWyvatgIV933Lg408u5Tfd9DJGOZL/x9zoheV5HFLBT1RAah8rtDgo/lxVsnT57E888/j+effx6pqak455xzUFlZiUOHDuHEiRMAgD59+uCTTz4JbkdJ0A3uQBEMI9SKY6tH4GOGYS4iXtNyXLvNewVDfWrPs+PZQJ8+wM8/173ZtCmQnQ3Exakeq296MlKbxqqmJl6w6RDGD2oXkGurVyRoxgQy04kSQgghhBBCzEQ+EFERcgvQzM6Crtc/E52k1uqLBiI7lBUJxEKnGocTS7bnK7ZZsj0f/xjaUfdxtIrvrC7WsxLVapNaGtsRQogZWDFLk1VwXzC/7+gpoc/ojbvo+d0sKDnt174C9VutZUG/Wfealrhe3vEyXcdQ+674azuKnENiXDRiG9g94lz1fQRXH5wAmp45hc//OxEdjh/02ucVT85HTlQT2fNNjIvG9FFdNWUsk0Pvc0bLdRVZzEJRDyHEHcuLt7p3746ZM2di1apV2LlzJ/bs2YPKyko0a9YM/fv3x4033ojbbrsNDRpY/lTCnkgxuP01QrVmqwKsN7Z6BT6iY5ccH4PiskrVVRGAmHhNi0Nw78B0vPfn6lJfx58wuD3GD2qPqNdeBbpO8nzznXeA++8XPlaU3Yab+56HGSv3KbYL1LX1RyRo1gQy04kSQgghhBBCzMCKi6T0EqhM3Wb5Z3quRSCyQ1mVoV3ScN+l6ZizLhfuSeJsNmlOw99rLRIE83eeQusCsEBkHAs0euYHRTh+UiyLimg7QggxA6tlabIKvsT4IugVRKn9vvqiqKxS174C/Vut9d4x414TjettOFCI+T8d8utYSv33Z5G8yDkUl1fhv/dcBLvNJmvXDO2Shg+uPg89hw1EUnmJxz7Kz2mFrPlLcc+3ear3YWwDO4Z0Sq19bcR107oPrfFairMIIVqwvOIpKSkJjzzyCB555JFgd4WoECkGt4hBa7cBxT6MWL0rYa00tv5McIsa8FOHd8JD87xFQHKoiddEr9msm3thWLc09DwvSf46tWoMRNk9P9yqFfDrr0BsrEBvPWmdEi/ULhDX1l+RoFmZsmjcEkIIIYQQQozGaouk9BJoEZoZ/pmeaxGI7FBWJSM736dozeEE3l2bi57nJfkl4ArEHJTWBWCByDgWSMzMlJccH2NoO0IIMQOrZWmyAnJifCX8FUS5/76KktzYdwzEar/VWu8dM+41UVspK6dQtTqLGmr917sIQ/Qcjp+qwMgeLX2/eeQI0KULBhUXe2w+2bMP4lZ9j9iEBEx5ZbXQvV9QWuHhExhx3bTuw0rxWkJI+GFXb0KIGJFicLuMUCUcTuCheVuQkV03kegyvutPSLpWwrq3rY+VxlbLpGp93MeuvknobsAP6yaJgFITjDGalI7rYtbNPTGsmzRBNrRLGtZPHIT59/bDzDE9MP/eflg/cRCGlhyQyiK685//AHl5uoRbgLWurRFGp+zYhUipEUIIIYQQQkhkEC6T7v746FZBz7XQkh0qGNQ4nMjKKcTibYeRlVOIGoNK1NU4nJi0cIdim8kLd/h1vEDNU7gWgNWf+0lNaOgzW5zW9lbFn/lBETbnid3zou0IIcQMXIut5ebqbQjP8sdyKInx5XAJpMb0ORff/nJEk73hbqckNIrBW7f0QnJ8tNBnU5vK//4H4rda1MZSu8fcMeteE7eV/LMTRfvvWoQxskfL2oxQavhlF+blSalhW7YE3IVb/foBJ0+iyZafEJWUqLn0obtPoOU610fvc8ZKMT1CSPjhV+atqqoqfPTRR1i+fDkOHDiAU6dOwen0/SNjs9mQk5Pjz+GIxbFaWlRfGJWSfGiXNLx1S0+Mn78VSvawa3Wr6/96V8JaaWz9neAWzc7kvhLgP1l5WJ5doHpMJWNI7rhyKxs9VhMfOgT85Tpg3bq6BtHRQEWFZHz6gZWurVFGJzNlEUIICSXo0xBCSGQSLpPu4SBC03MtrHzeZmZV2nCgECfKqxTbFJdXYcOBQgxol6LrGIGcp9CaBcKs0p2BIhCZ8opPK98fWtsR60N/hoQiVsvSFGy0ilcAICFOElvNWLmvdpuIvSFnpzx/TWc8880u2bKIrnZqv/9m/lb76ntyfAxeGNmldmG+C9GsYjaYd6/1bpWE5PhoFJX5/s112VT926Rg1hr9z2YzS4Xrsgv37QPOP9+78ZAhwJIlQENP21+rve7uE6g9S5w+/u96Dei79laK6RFCwg/d4q3jx49j0KBB2Llzp6wz4I7NT4EDsT5WN7iNnjxLio9VFG7VX90qshL248xcpDSJ9TJorTS2RkxwixrwUXYbSk5Xqgq3RI0hzY6D0wncdhswb17dtrvvBl59FUg2xvCy0rWl0UkIISTSoE9DCCGRS7j4P+EgQuvdKgl2GxTnWOw2qZ0Lq563XMkjV1Ylf7NOZOUUCrfTK94K9DyF1gVgobxgLBDlWu2C9qpoO2Jt6M+QUEZ0kXckICpeGX95W7Rv3gR5x8vx5sq9mu0NJTvl4QXbcN+l6Xjvz9LM/vz++/qt9jexglzfi8oqMW7eFtz/ezomD/OsmCN3j7kwSlwv19/nvtmlKNwCpDHt17aZol+ihpmlwjXZhTt2AN26+d5RZaWUEOFPXPdDQclpbDlU7PszPvAlIFR7lgAw9DljpZgeIST80C3emjRpErKzs3HOOefgH//4B/r06YOzzz4bdjsrMUYyVjW45Qy7/JIzeGDuFryjY/LMjFWe05burv1/fcPRyLH1x1Dum56M1KaxsjW4RSe4RSbbXCsSRfDHcXA/nmtc2uzPRtfRQz0bvPcecO+9Qv3RglW+NzQ6CSGERBr0aQghJHIJF/8nHERomw8WKwq3AEnYtflgca0/b8XzDkRWJfGyOv6V37HKPEW4EYiMcf3aJOObX9Sz1/drY91nAhGH/gwJdUI9o6JRiIrNB7Q7C33Tk3HJK6s12xsidsqS7fl465ZemLbU2N9/3xmzov/MmNVC9fMiZSXfXZuL7uckeu3P/R4rKD2DolMVSI6PQWpCI9PuNbl4pDuJcdGYPqpr7ZjK+SUi+Cv8VkPVLjxzGLD5uI633QZ8/DEQFeWx2df9IIqcf6b2LDH6OUNbmRBiFrrFW99++y2io6OxevVqtGvXzsg+kRDHaga3iGE3aeEOzZNnZq/y9LVKwoix9TcD2YpdBThT7fD5ntET3KLpgh8bfL7PvmsRqbnGpbDwJPb+33XeDYqKgKQkj01GleEEzP/eiPaVRichhJBIgj4NIYRENuHg/4SDCE2PoCXQ5y3iUwciq5JoWZ3+bfRl3XLHavN74UAgMsbd2Ps8IfHWjb3P030MYh3oz5BwIJQzKhqFFlG6XntD9HNJ8TFYP3GQYb//8hmzqjBu3lbc//sJr4xZ9RGNE01ZnI2runiXENR7j7nbfymNYwEncLysQnFMROKRgFTm2v0YFdUOPDa4Peb/dMgjcUJio2icECh1bHapcJ924eFdiOrqQ7Q1bhwwaxbgI9ujiLDNF4lx0XjZTewmZ5vLXWcznjO0lQkhZqBbvFVSUoILLriATgHxiZUMbhHD7kR5FWat3o9HB7cX3q+aQQ14pvDUmvZUbpWEP2Prb/p+NcMqoZ4B5S+iBmdVjQOLtx32MI60iNRc53XztuV46bu3PN57+Jq/Y/hLEzC0nnDL6DKcgHnfG619pdFJCCEkUqBPQwghJBz8n1AXoekVtOg9b60LsUR96oBkVWrbDIlx0ThRLh/ES4yLRj+D5hYCMb9n5MI4qxOIjHEXCV4v0XbE2tCfISQ80CJK12tvaPmcUb//4hmzkjCsm7y9Ktr3orIqIZG8iO2hlh3Kly1Y43Di48xc4YxSkxfuwLNLdnqItVKbNsSEweejdUoczm7SEA6nE7e+v1F1X0aXClcUR61YAfS80vtDjz8OvP66T9GWa58iwjZ3EuOicefF6Rg/qF3tNTIjNqcXK8XCCSHhgW7xVrt27VBZWWlkXwhRRc+Ejqhh99GPuR4GgBpKBrWL01U1WLGrAEO7pOGf13TCA3O3CO3bhRGrMl3oTd/vXnt62tLdioZVo+goDOmU6lc/3RE1OGet2V/7/7SEhri2exreW5srJFKrcTgxfeE2PLH2Pxif9blH+/ZPfo3qqGj8XG9c/BXBBRK9faXRSQghJBKgT0MIIQQID/9naJc0DOrQHJ9m5eFgUTlaJcfh9v6tEdPA+qWz/BG0aBXfaQ32aPGpA5FVKcpuw8ujuirOL708qmvIiJ+sFHwLBIHIGJe1/7hwu8s6nK37OMQa0J8hJHwQFaXrtTcCYafURzRj1tTF2biqi3xlHC19ytx/rNYm7N0qCZsPFnvYiCt2FajaHiLZoerbgnpKARb7EOMfLT2DN1fuxezbeqF/22aocTj9En7rianK2WezGv+G3o/c6f2BZ58FnnlGVrTlQvR+cDF1eEeMHZDu0d9Qis0RQogedIu37rnnHjz++OPYvHkzevfubWSfCPGJ3gkdUcPuRLmYKt8dl0E9aeEOn6seS8qrag0Gh0NrItA6RARoakaYaFrcDQcKASeQdeA4co6VYWNuEYrKxCYBjK6tLZLdzFcf3l2b6/M91z6e/jobgzo0R0wDO448NhEL338XzU6X1ra7/69P4bsLLvbYp+u89IrggkEo9ZUQQggJBvRpCCGEhAu+5kzeX58bEiIYfwUtouI7rcEerT513/RkoaxY/mRVAqS5qHdu6+UjU0Msnr22s+WvtwsrB9+0Bjq1tDc7U9576w4It6N4K/ShP0NIeCEiStcrejc7+6Ov30LRxAqFZZWKcaW+6clIjo8RilO5l5e22wD3sJycneZuewzplCqUHcrdFnQ4gIfmaS8FqLZfl42p107WE1P1ZZ+N2L0Ws5a86t34r38Fvv5a+Ny0Zp9NaRLrlWiC8S5CSLijW7z1yCOPYNOmTfjrX/+KWbNmYeTIkUb2i4QRRqQ/92dCp296sql1oYd0SsWzS3b6fM9lMEyWEXeJoiZAEzHCRM/t3v/8jPLKGt19NbK2tkh2Mz0UllVi9JOfYPHMu3Dun9uONk7GM0MewHfnX+zzM67z0ltTPhiEUl8JIYSQYECfhhASzkRSKbJIx8oiGFHMFrToCfaY4VMb9Q0M9XKfVg6+ZWTnaxLG6QmMmnn9SgTmP7W0I9aG/gyJBCLNplUTpesV86jFWpw+Pic69nK/hWP6nOvVVg6luFKU3YYXRnbBuHnaKtvUz6cgF6Nztz2aNIwWzg7lsgWnLM42LHblvl+XjanHTtbjH9S3z0b/sgKvLZ/ptW/HrFmwP/SQ5vPSmtWtfnvGuwghkYBu8dYVV1wBAPjjjz8watQoJCUloW3btoiPj/fZ3mazYdWqVXoPR0IUI9Kf+zuhE2W34c4BrTFj5T7VY+lJCftTbpHHhI6vPvpKfyqCyGoHUSNM9Nz8EW4BxtfWljNMdeN0Ys7CFzBkv2ed8CF3v43Sho1lP+Y6L7015YNBKPWVEEIICQb0aQgh4UqklSKLZKwsgtGKmYIWPcEerT71T7lFqgv3inVkfZcjlMt9WjX4lpGd77MkZUFpBR6YuwXv1At0+iOcNOv6xTQQ+76ItiPWhv4MCXdo0/pGr+hdqZJMYly0x2vRsVf6LZyxch/iY6NQVqEec0ppHCv7Xo3DiaT4GAzqcBZW7zmmui89uGyPrJxCzZ8VrVyjFXdbVIudrNc/cNlnf9v8DZ5f+a7XZ58YNgFfdb0C84f2Q38d5+PK/qYW55OLizLeRQiJBHSLt3744QeP10VFRSgqKpJtb1OpdUvCD6NWfhoxoTN+UHt89GOe7CSaPylhzTIEREoDaDHC9JQg1Npff9LqKlHfMN139KRH+ltRRmWvwhtLZ3hsm/6XsXj3ohsUP5ccX1fWIBi14fUSSn0lhBBCggF9GkJIOBIOWZiIOFYVwejFLEGLnmCPVp/a6gElK2UuseJY1TicmLRwh2KbSQt31AY6rSqcvCC1CbYcKhFqR0If+jMknKFNq4w/ovcSH3GykvKq2nEFIDT2Ir+FDQR/A5/4fJvPLJe+RGRGVmnxxrw9a6W+LSpqJ+v1D5r+6/+Q96/pXu0fG/EEFnW+vPa1XvvMPfub2ij7iosy3kUIiQR0i7fWrFljZD9ImGHkBIYREzpRdhteHtXVp1EgIpJSwixDQKQ0gFYjzIwShID/YyiCu2GalVOoSbwVU12Fvf93ncc2B2zo+thnKIuNU/38dT1a1p6X2bXhjSSU+koIIYQEA/o0hJBww6piAmIeVhTBWBE9wR6R7ABpbj61lQNKVstcYsWx2pBTqJo57UR5FTbkFGJA+xTLCidbN5PPKq+nHbE29GdIuEKbVgytonfRcXU6nUJjL/JbWHK6GiO6peHbX/IV+3a0tMJLlCcn4HO9vntAazSKaYBZa/Yr7lsL/duk4Ksth4WSINgAJMVHo6hMW+WdtISGOF1Vg5LyKlPiNpr8A6cTePFFYOpUdK73/p03/BNr2vbx+pw/9plapR0l+5TxLkJIJKBbvHXZZZcZ2Q8SZhg5gWHUhI7eVLJqmJXR6vUbumNA+xTFNlonaeXGIDEuWnWCSgl/x1ArWsa889Ec/OezqR7bXr5sLN7pp5xty53BnVJr/6+3prwaZqyANauvhBBCSLhAn4YQEm5YVUwQblgpg1GgRTBWOnct6An2RNltuLZ7Gt5dmyu732u7p1l+sZdc4DM/iJlLrDhWWQeOC7cb0D7FssLJ6iqHoe2ItaE/Q8KVSLZpzbS1RMdVCVebGSv2QjRFwJBOzTGsSxqmLM6WLTHo2tNTX+/AoA7Na/8vdwQbgGXZBXh9dHdDxFsu26OfYBIE1xV5YWQXTFu6W9Wmef2G7jheVlF7TVfsKjAtbiNk9zud6DNzGvCxd3nEiUMfwWfdr/TabpR95p41rqDkNIrKKpHcOBapTZXvd8a7CCGRgG7xFiFKGDmBYeSEjj+pZOVwGQwPzN2iex++OF5WodpGzyStrzHYeKAQb67ap6l/yfHRmDqis6pBZQYiRtrDnRvjzvuuQZOKMjRwShNShY2aou/4T1FjjxI6jty9ZbQQ0MwVsGaJFgkhhBBCCCHWw6pignDCahmMAimCsdq5a0FPsKfG4cSS7cpZIpZsz8c/hnZElN1myYCSUoYNQOpjMDKXWHGs6o4s1s6K2cMAYPEvR4TbPTS4vcm9IYQQfUSqTWu2rWXkeGkRTJ3dpCH6t22GhEbRuPWDjYpti8qq0GvaCgDAqYpq2Xa1QjMn/E6uUN/2UMsOBXjGV+x2m6pNUz9Rg5lxGyX/wOZ0YHrGLIz55XvvD2ZmIqNpOj6TiXU6YZx9prdUOuNdhJBwh+ItYgpGTmAYPaGj1yhQYmiXNEwY3B4zVmoTQCkhMjZ6J2ndxyAjOx8zNQi36lYUdEVSfAz+OCmtcAm0gEvJSHtz01xc9MrHtdu+7TAQz11xH441TpLdn9Z7yyghoNwK2Pr14/3BDNEiIYQQQgghxHpYVUwQLgTCf9NKoEQwVjx3rWgN9qhlpwC8s35YLaCk5xwChdXGqn/bZkKBaNc4WTF7GABU1tQY2o4QQoJBJNq0gbC1gjFeqU1ja38LRRIWAMqirfocL6sQypSlREKjaNw5oDWGuFVgqR9TSWkcCzjhkT3LZV/rtWnMitv48g+ia6owa/EruGrfBu8PbN4M9Ool/T9beeGCFWC8ixASzvgt3srNzcVnn32G7du3o6ioCFVVvkuv2Ww2rFq1yt/DkRDB6AkMq03o+KJ1Srwh+9EyNu5GmC+c8EzhXx+1FZi+SIqPxvW9WmLa0uCvtq1vpLXKz0WPYQM92nzcawSeHfKA4n5u6NUS6/cfR0FpnfMgcm/5KwQUrTFvxApYM0SLhBBCSLhAn4YQEi5YVUwQDgTSf9OK2XMmVj53rWgJ9hSUimWnqN/OSgGlgpLThrYzGiuNVb82zZAYF40T5b7tQABIiotGvzbS3Io1s4cBbc9qjLxC9evZ9qzGAegNCRT0Z0i44bJplQTIaWFk09Y4nJi00HeJQCNtLVFfwel04mhphe5MVu6cqXZgxa4CDO2SZop4zJXVSy1Tli9cv98nTldhxsp9WLDpNw/bWUtMRa9NY1bcxuUfvPj1dvzzk2cwOGeTV5s7x72Fmx68rvZ8XTa/HFay+RnvIoSEK36Jt1577TU8/fTTqK6uhs0mPaidzrqfc/dtrv+TyMCMCQx/J3TMrBUOGLNqQc/YDO2ShvsuTce7a3N9vv/e2lz0PC/J52StyArM+hSVVWHOujyv7cFabRtlt6F/ehIQ5V0Kse+4T/BHE3UD7ssth5HatCEmDD4frVPiAjZZKFpjPhgrYAkhhJBIgT4NISScsKqYIBywuv9mpgjG6ueuFdFgT9EpsewQvtpZJaBUVFZpaDsz0DpWZs3vRdlteHlUVzwgs0ASAKaP6upxLCsuNr2qcypW7Tkm1I6EB/RnSDgSZbfh2u5psjEPQHnRujtmx4WMYNbqfYriYaNsLVFfAYBfmazcKSmvqo0bDemU6neJQxf1F6X4soWPn6rAw/O3yu7D6Cxn9W2aGocTWTmFft17uu/f06cxdOo4DF20yOuty+57DweTWsAG4Ae38xW1+T/OzEVKk1jLfp8IISSU0S3eWrZsGSZOnIi0tDRMmzYNb775Jnbu3IkVK1bgt99+w/bt2/HBBx+gpqYGL7/8Mrp162Zkv0kIYMYEht7JL6NrhfsymNRWLYigZ2xqHE4s2a6cylRODW9kjXMjV4BoMki//x646iqPTc8Mvh//6X2NpmMeLT2DN1fuxezbegVsglV0/I28ToQQQgipgz4NISQcsaKYIBwIBf/NLMFQKJy7GSTHxxjaLhgkN441tF2wycjOx7NLdnlkO0tt2hDPXmvMs21olzS8c1svr2MozSHqFU6aJSY4eUas1JRoO2Jt6M+QcEUk5rFkez7+MbSj4rPT6LiQGdQ4nPgoM0+orRG2lqivoCeTlS/qx42UKslo3e+YPucC8P5NHdGtRe19ER1l8zoPuw1w+AjiGRnjMuLe07WPU6eAQYOATZ6Zts40iMGIO97E/pTzarfVP1/R+2va0t26z4kQQogyusVb//73v2Gz2fD5559jwIAB+OijjwAAV1xxRW2bKVOm4Prrr8fUqVOxaZN3SkYS/lgh/bnRtcKVDKapwzth3Dxxw9MGaZJvyvCOSE1opGts/FkBa3SaWi0rQOQmqYQN0qoq4I03gEmTPPbb5bHPcSo2TlffA532VXT8g1GL3p1QWJ1ECCGE6IE+DSEkXLGCLx5uhIr/pgVRXy8cz12E1IRGhrYLBqlNxa6JaLtgkpGd7zMrVkHpGTwwdwveMSgTvJ7np1bhpJligsRG0Ya2I9aGVs8AGAABAABJREFU/gwJV0QqhqjFIYyOC5nFT7lFOHFaPuuWO0bZWiK/de5tMvcfw6w1ObqP5x43conHnvp6B4rKxM5bjhkr9+GjH/MAwCNzmftvav1zPX6ywkN8pNRXvYsijLj3NO/jxAlgwABgl2fZw/LzO+KyIZNxrLHvEqPu56vn/rLa94kQQkId3eKtzZs3Iy0tDQMGDJBt06xZM8yfPx+tWrXCc889h7lz5+o9HAlhgpkq3lWj2aha4UoG0wNztyAxTtvEhxNAYVklco6V6Z7s82cFrBHZwvT0SW6S6truaXhvba66Qfrqq8DEiZ6NPv0UWf2vxqk5G3T3O9ClHkRrzLtS/waDUFidRAghhOiFPg0hJJyxStm2cMHlvykFEtOC7L9pQYuvF0jf1UqLh3q3SpLNzODCbpPaWZVwuW9rHE5MWrhDsc3khTsMW4xn5vPTbDHB8TKxcp+i7Yi1oT9DwhV/s34aHRcyE9FzTYyLNvT3WuS3ztWmb3oyvtpy2O84kutch3ZJw6AOzdFv+iq/Szf7KjdZ/zfV/VwXbzusqa9aMeLe07SP338D2rWTkh2407o1sGkTVvxegWMLtqn2+4+TZzCiWwvN8UKrfZ8IISTUsev9YGlpKVq2bFn7umHDhrXb3UlLS0OXLl2wZs0avYciIYCrdvPibYeRlVOIGqWZrQCiJSuVGmoGE+DbUBRh1pr9uHnOBlzyympkZCunA3b1xTXex0+KTbb4Us27apwDdTXNjUBJoe+apKp/XQpKzuBdH8ItoG58Z/13HWCzeQq3Pv4YcDiA226rnZT091xW7ipQfN+o+11p/N1rzAfL4FW6Vg/O3SJ0rxJCCCFWhj4NIYQQUaLsNlzbXVlQcW33tJAIWGj19QLlu2Zk5+OSV1bj5jkb8OiCbZrmScxg88FiReEWIAm7Nh8sDkyHdOC6djb4vnY2BHfeQZQNBwpV59yKy6uw4UBhgHqkD7W5RSek4Kc/86o7j5w0tB2xNvRnSLjib9ZPI+NCZiN6rndenG7K77V7rCNz/3Fk7jvuFfcwKo7kfq4xDex46bouPm0Uf3H9ivr6TTU7o6wR957IPmp+PwxncjLQqpWncKtLF6CwEMjNBVJSNJ2v3utspe8TIYSEOrrFW2effbaHE3D22WcDAH799VevtqdOnUJhobWdZ6Ifq02uuePvCg13RFL1+ouIKKb+eE9buhtKNrsNyqsoXWlqUxM8jbjkeO3p09WOJSKAk+PVpW/i25dv8ty4cydwxx2SoAvGOREfZObJXgOj73e58U9NaBjUVLMi18rfCUVCCCEk2NCnIYQQIkqNw4kl25X9viXb8y3vI+n19cz2Xa24eMjIOaVgYtV5By1k5YjZYKLtgoWWMmB6+b2o3NB2xNrQnyHhitoibbU4RCj9hossSE+Mi8b4Qe1qXxuxuLzG4cTMlfvQe9qK2ljHre9vxK0fbPQZ95CzJ0SQu17+7FMNOUGRv/eWHK5rslzQZlW695SSC5xTchTrZ9+Jn96+Aw1KTtS90bUrcPIksGMHkFzXd63n6881scL3iRBCQh3dZRPbtm2LLVu21L6+6KKLMH/+fMyePRt9+vSp3b5q1Srs378f6enp/vWUWJJA1Q3XmzZfVFW+7+gpZOUUKu43EIaHWopRufGWs81FV8D6qnHeu1USLnttjWbBmtKx9AjgLj2wGf/54p+eGx9/HPi///PZ3mVc1i//oBVf18Cs+12kxnyg0bJChKVYCCGEhCr0aQghhIiiRXRhZR/JH1/PLN/VqqWNzM7MEEisOO+gDS3Fe6xL/onThrbzRZFgOUTRdsTa0J8h4YprkfaDc7fABs+nu0jMI5R+w5XO1cXLo7rWnquW0tdyZGTnY9LCHapZLevHPdztiZW7CvBBZp7qseSulyvmV1HtwOujuwNOqaRvSuNYPPTfzThxulroXNSoH9dzjfcDc7d4tdWbUdbXNVFD7t6rcTjxtY/Sjq2LDuOHOfd7f2DwYGDJEqBRI5/70/Ndqm83Hj9ZgWlLd+s+J0IIIeLoFm8NHToUa9euxaZNm9CnTx/ccsst+Oc//4lPPvkEe/fuRf/+/XH06FF8/vnnsNlsuP32243sN7EAgZpc88cYdanK1Wo0z1qzH7PW7Ffcb6AMD7mJUqXxdmG3eQq5UjUY7b5qnMsZsb5Ijo/GS9d1VTyWJgGc04mMD8ejw/GDHps3bdyDPn0v8GpeX+D3v79fjs0Hi/HHyTM4cKwM/169T7XcgTv1r4HZ97tIjflAInqtVu4qsFS/CSGEEC3QpyGEECJKKGVwUMLf8zDDd7Xq4iG1OSUbpHkXrZkZgoXV5h1ciCzY7N8mBbPW5Kjuq3+bFLO6aQhbfxMrsbn1t2KM6n2OrmM4nA5D2xFrQ3+GhDNyi7RFYh6h9hsud67141VGLC7PyM4Xjvn4inu47In+bZuhT3qyV59FYlRKMb8B7VLw8vXdhPuohlxcLzEu2ku8lhAXjZdHKce46tstxWUVeGjeVmH5uNq991NuEYrK6vp1wbE8fPfheK92X/QZgVFrv0RUw1jVY+r5LrnbjTUOJ95fn6sYZ9WTrYwQQog3usVbN954I/bv34+iIinlZEpKCj777DOMGTMGP/74I3788cfatjfccAOmTJnif2+JpQjE5Jq/xqjIqgXR/YoKweRIjo/2MLrUqD9RKrLK1+EEpg7viJQmsYasohzaJQ1XdDgLq/YcU207dURnVcdAVADXpvB3vPTdLA/h1n96DcfsGyZg/YXn125zGcordxXg622HPcbXZeyP7NESWTmFmLlqn9Cx3XG/BladTDYL0Wv1QWYe+qQnh0SZBUIIIaQ+9GkIIYSIEkoZHJSw4nlYVRjnb9YPoo7ogs1+bZv5DLK6kxgXjX5Bmo8RrRgQiPxhjWOjAahn1ZLakVCH/gwJd/RmjgzF33C1czVicblrH1rQmpW1d6uk2kX1vq6XaMzvndt64dklO1FQqi9TpJxISu74AFCikonMl91it4n/bovcey57d/C+jXh/4TSv97/u9Bc8OXwC7hjYVki45cKfLKzu3yc5ru2eZqnvkxb0Vn4ihBAz0C3eSk9Px5w5czy2XXnllcjNzcXy5cuRl5eHRo0aYeDAgejVq5ffHSXWw+zJNaMyHWkpo6e0X61CMBcuI9GVCSpz/zGh1YLuE6U1Dicy9x8XOl5Kk1iM7NFSsHfKZGTnCwm3AKDoVAVqHE7Fa6EmgGt65hR+mTnGY9vRxsn4y33v4Ux0Q8x2M2rVUtG6G/sV1fpWE7pfA6tOJpuFFrFiMMpXEEIIIUZAn4YQQogooZbBQQ4rnocVBWUu/Mn6QZTRsmAzym7Dy6O6KmbhcC8pFUi0VAxIbxYvtE/Rdr5oe1Zj7Co4JdSOhD70Z0gkoDdzZCj+hiudqxGLy0USBMihJSur3PG1xPzqi43yjpfjzZV7a9sqoVSqUa26jVysQ85u0VLtReTea/vrNuS9MsJr+7zuQ/H0VePgtNkBAEM6pYof+E+i7Db0TU+uHdOfcouEhUpDu6ThvkvT8e7aXJ/vv7c2Fz3PS7Lk90oJI8qQEkKIkegWb8mRkJCAMWPGqDckIY/Zk2tGZjpyN/TUxFNqKwl8GfxJcdEoLq9SXMUR08CO/m2boW96Mr7cfBgFpb7Prf5EqdZ62UZNZmpdhTFt6W68vz5X0ahRqid+78aFePqHD2tfr23dE08NHY/fE5oLpwd2x93Yf310d+HzcJEcH+0xWW3lyWQzULpW9QmnjGOEEEIIQJ+GEEKshFVWQodiBgdf+HseZlwPKwrK3PEnUwHxjZ4Fm1sPKZcc3HqoOOBBNq0VA27v3xovLtutGOi126R2eomKshvajoQm9GcIkQin33DRReOZ+4/LnqM/C8+NiHtojfnVL90HAB9l5uLE6boMWUlx0XACHtk564ukXPZr5v5jQsf/ODPXo7oNAFXRlxK39TsPw7u2UL73Vq4EhgxBl3qbv+p8OZ4Y/jhgq/uc3hKF/giVahxOLNmer9gm1Bb5G1GGlBBCjMZw8RaJHMyeXDM605HL0BNtX1B6Blk5hV5GvVwq2Nk/7MdHmXkehqMvJf2KXQU4U13j85j1J0pFRErunzVyMlPPKgwRo2ZolzRMGNweM1ZKZQzbHzuIFR8+5NFmR/O2+NuNz2P8oHYY0O4s4fTA9XEZ23BCc8nLF0Z28TAyrT6ZbAZDu6ThrgGt8WFmnmrbcMk4RgghhBBCCLEOVlsJHYoZHHyh9zzMuh6hIIzTm/WD+EZr8Lay2oE563xnenAxZ10unriyA2IaBEaUpEeAFtPAjnsHymetAIB7B6b7dQ5pTcWC66LtCCEk1AmX33BR8dSsNfvx1ZbffdpnegRYRsY99Mb8fNmgiY2iceeA1hg/qD0AyAr0tCZHAKREBS7SEhpiTJ9zdWcsA6SMmrL34MKFwPXXe22eefHNmHHJLR6iLRdTh3fUbBf7K1QyMtmGFTCq8hMhhBgNxVtEN2ZPrpmV6Ui0/bRvd6KorE6I5T4h6W7wZ2Tn47LX1vgwHNMxflA7oXretZ+Li8b0UV0xtEuaJpGSr/H2dzWsHjGOq69Pfb0Dgzo0l51sap0ipX/PnjEajStPe7z3l3vfRV6yVPaxffMmXoaeHlHZ8bIK1Zrc7tx/aTqGdWvhsS0UJpPNYEinVCHxVrhkHCOEEEIIIYRYA6uuhA6XDA5az8Ps6xEuwjgrY5UsdoD24O2nWXmqZYkcTqnd3QPb+Ns9IfQGMScP6wRAEpu5n5PdJgm3XO/rJblxjKHtCCGEWAO1xeXuyNlnWvYBGB/30BPzk7NBS05X4c2V+3BBahMM7ZLmUzCkJTmCHAUlZ2oTEeilqLwSNQ6n5xh+/jlw001ebSddNR4LegxV3F9SfKym4xshVDI62UawCTcxGiEkfBASb0VFRQEAOnTogJ07d3psE8Vms6G6ulpj94jRGD1RY+bkmlmZjkQNVHfhFuDb4FU2HPfigtTGtZOhBSWnMW3pbsVjniivgsPhRI3DiY8zc4VFSvXH24jVsP6IcYrKqtBv+iq8dF0Xn8dr/ft+r7rdb/Ubjdcuu0O1D3qMv7ObNET/ts183qvuNI5tgFev74Zh3eSzhkXaZLLe76GVJoUJIYQQgD4NIYSEElZfCR0uGRxEzyNQ10OvMK6y2oFPs/JwsKgcrZLjcHv/1gHLvhQqWC2Lndbg7cGicqH2ou2MwJ8g5uRhnfDElR1MuW8T48REWaLtiHUIpj/jdDqRmZmJxYsXY926ddizZw/Ky8uRkpKC/v37Y/z48bj88ss175cQIo7S4vL6yNlnWvYBGB/30Bpr8McG1ZIcQQl/Pw8Ab63JwcIth6WxnDsTeOUVH43ewuKLR2LBgm2q+9MaIzNCqGRWso1gEW5iNEJI+CAk3nI6pZ8nh8PhtU0Ure2J8Zg1UWPWqlOzMh1pNVBd1DcGAfk61662kxfuwLNLdqKgtEL4GOPmbUViXLZHjW4lHrysLZ686gKPNLBaVsPKiWy0rsKoT1FZpffxHA44Zs9G18ce82jb56H/4FjjOvGPkjBPi/FnA5AcH4OCktPIyinEkE6pdWK60jM4frICxeUVsNvs6N+2Gfq1aaZ6P4XLKmtR9HwPrTYpTAghhAD0aQghJJTgSmhrEcjroVUYN33ZLq8MRi8u221IBqNwwYpZ7LQGb89NihPar2g7I/A3iBnTwG5KlrBtvxULtxt94bmGH5+YRzD9mdWrV2Pw4MEAALvdjnbt2iE+Ph779u3DwoULsXDhQkyZMgXTpk3TtX9CiBhyi8t9IWefye0jsVE0xl7cCn1aN8PxsgpT4h5aYw2iNujHmblIaRLr0Wc9FVzMZMiaLzH0qXe83/j4Y+AOKanB2TmFQvvSKpAyQqhkVrKNYBFuYjRCSPggJN5ydwiUthHrYvZEjVmrTs3KdOTa76SFO4RFUoCnwYs//6/UtljDvt3R0qdTFVUepRK1rERQE9noEbnVp/Z4r70KTJoE9zWEj414Aos6e67KUhPmaRGVOQEUllViwufbvc5NFDlxWyQFCLR8D604KUwIIYQA9GkIISSU4Epoa2HV6zF92S68uzbXa7vDidrtkS7gsmoWO63B2w7NmwjtV7SdEVg1iHm0RGwBqWg7Yh2C6c84nU60a9cOjz/+OMaMGYOkpCQAQGVlJZ599llMnz4dL7zwAi666CKMGDFCZW+EEH9wLS6fseJXzFqTo9rel30WzAXqSrGGMX3OQ0W1A1k5heibnixsW05burv2/64YUEW1Oc9HrbGyBzZ8iUn/+9j7jZkzgUce8dhklm1hlFBpTJ9zfZaQNLq8ZiCwqh1HCCFC4i0S2lh1okYUswzJIZ1S8eySXQC0C6ysOkGsZTVsyelKIZGNL0PaboPHqlal45UdPY6oKM+0788Mvh9zew6Dw+6d2ltNmOea4Htg7hb1DtRDq4CIGaTqEPkehvqzhhBCCCGEEGINUhrHGtqO+IcVV6ZXVjswZ523cMudOety8cSVHSK6hKKVs9hpWShWdLpSaJ+i7YzArIoB/nK6ssbQdoQAQN++fbF79240aOAZToqJicFLL72Ebdu2Yfny5ZgzZw7FW4QEgCi7DQPanSUk3pKzz4K5QL1+rCHveBnm/3QIM1burW2TltAQY/pozxDpigE9Nvh8ofbjL2+HpLhoDwGYHBMGn48Fmw6pZ/RyOjFl9fu45+fFXm/ddf0z6HTvzRjQ7iz0dTg97ASzbAt/hUq+4mTuGF1eMxBY1Y4jhBCKtyIAK0/UiGKGIekqnacHK6XKbN0svvb/oqKygpLTeCXjVyGRjS/RTnFZBR6at1V1hcHrS2fghuxVHttG3fYatrTs6NU2sVE03rq1l3DpwgmD2/tU+SuhRUDEDFLeqH0Pw+FZQwghhJiB0+lEZmYmFi9ejHXr1mHPnj0oLy9HSkoK+vfvj/Hjx+Pyyy9X3xEhhEQKosvZWc02IFhxZfqnWXmqi8ocTqmdGaXpQgWrZk1zIbpg04oCQsC8igH+4LSJPRhF2xECAE2bNlV8f8iQIVi+fDn27t2r2I4QYhzBsM/kqpTowRVryMjOx5sr9/mMw8xYuQ+JcdEoKa/S5B7YACzYdAipTWNxtLRC9rPN4mPwyBXtEWW34f31uapjOX5QO4wf1A4/5RZh5a4CfJCZV+/gTjy95gPcu2mR1z6uv/VVbD5Hygi7ek0OZq3J8ZkoQKttIXJN/BEqycXJXEwYfD7GD2oXkiInK9pxhBBC8VYEYPWJmmCh53xtAJo3jYXD6cQfpWeQHB+D4rLKoM0X223A7f1b174WnaTK3H9cUbhWX2TjS7Qz227DU1/vQFGZd+ayrvn78M1/JnhsW9zxMjx6zZOAzbcRd+J0Few2m7CR1zolXr2RD0QERMwgpQ8+awghhBDfrF69GoMHDwYA2O12tGvXDvHx8di3bx8WLlyIhQsXYsqUKZg2bVqQe0oIIdbgeJlYOS/RdsQ/rLgy/WBRuaHtwhWrip7cEVmw2Tc9GYlx0ThRLp89PykuOiilbYJZesoXcTFi0/2i7QgR4cwZaa6vUaNGQe4JIZFDoO0zM6qUiMRhXGgpV+iKAU0Y3B5vrtwn+9nCskpc9toa/POaTprGsn/bZujfthn6pCdLY3LiNMZnfYYn1831Ooa7aKs+cokCRG0LLddEj1BJ6fq4xmbBpkMYP6idTAvrEww7zkgRJCEk/BDy0tq08X+Fms1mQ06OegpPYjyhMFETDPScrxPAmWoHbn1/o/Ed0sG9A9M90v+LrLZIjIvGl1sOC+3/j5NnZA2JoV3SMKhDc/SbvgpFZX+mpXc68cryf+GmHSs89pPxbRYeXVcodDxR/L1flY7FDFL64LOGEEKIlQmmT+N0OtGuXTs8/vjjGDNmDJKSkgAAlZWVePbZZzF9+nS88MILuOiii1hmhBBCQN/CilhtZXqr5DhD24UrVsyaZhbBzCOlKEBzOoGaGulf97/KSsDhAIqLgTNngKqqur/mzesWPzZqBJw4Ie0jJ0f6f1UVUF0t/du1K+AqZde8Of5a/CtO5x1Et4J9OPtUEYoaNcX7fa7D6RjP5+VFYXDNIw2rxmicTie++OILAMCAAQMU21ZUVKCiok54XVpaamhfCIk0AmWfmVWlRCQOc6K8SrxcYT1ap8T7HB933M9BbiynDu+EhEYxWLztsGeMrFNzDNmdiTP/fB7xu3d47HfEHW8iO1VZ1KSUKEBN3C53TfJLzuCBuVtw94DWGNwp1UMYpFWoFClxskCWEDVDBEkICS+ExFt5eXm6D2Cz2eB0OmGTybZDzCeSJmq04BoXUYMvoVEDlJyuVlzlFyjsNkm4NXmYp2JfZLWFlsmsvOPluOSV1bKGREwDO166rgsenLsFLUr/wPPfz8YVOZtq265q2wdVixYjoVEMICDe+rXgJLJyCoWU5mr3tRpKk/zMIKUPPmsIIYRYmWD6NH379sXu3bvRoIGn+xUTE4OXXnoJ27Ztw/LlyzFnzhyKtwghBPQtrIqVMgzd3r81Xly2W7F0Yv1s5WGBw1En2nE6JdFPw4aSEMgl6nEJexo0QFRCAqb3bopHlh1H0ulS2J1ONKqqQHrRYTRwVCPaUYOxfVsi6rM/gDZtpP2npQG//y7to6wMWLvWUyyUkABcdJHUNj0dyMuT+lFeDsyfX9euqgpo1gy49lqp7fnnA4cOASUlQEUF8Oqrnv1NTgYeeEBq26kTkJ8PFBQADgei3nwT2+oNxeddB8PudOLXlFZoWlGGVifyUbzxbaQsW+w9bkOHSuKnLl2kf7dtk46zfr13227dpDYdOwKJicAPP0htDxzwbpuSIr3Xrh3Qvj2waJH02TMK80XnnQdcdhnw6afq17tZM+CGG4B331Vv26gR8OCDGPHGG6hvTbYt+h2PXfN3j213XJyuvk9iKawao5kzZw62bt2KmJgYPPbYY4ptp0+fjueee87wPhASyZhtn5lZpUQ0vtI6JQ7rJw6qPcfjJyswbelu1c+d3aQh+rdt9mcSgpU+q8i4n8P6iYO8xrK4rALTlnqKbc6Nj8KXa95E8zXfIQpAPAA0bgw0b451//cB/pZ1Sui8XMfXKoBSy4gFAB9k5uGDzDwvYZAWoVI4xcmskO3KLBEkISS8EBJv5ebm+tz+2WefYerUqejYsSPGjRuHjh07onnz5vjjjz+we/duvP3229i9ezemTZuGG2+80dCOE3GsmN7eCriPi5r457Er2mPBpt9Qcrpatk1yfDSmDOuEqUuyUVZRI9SHprFRKBVsCwCXnZ+CS9ufhdv7t/bIuOWO0mqLMX3Ow4yVe4WOlRgXjTdX7lU1JIae3wy5r9RNC1VENcAvqedj0j0v4+83XIihXdJQ43AKCa3e/iEHb//gu9Z3fZTuayVEJvm5ylsffNYQQgixMsH0aZo2bar4/pAhQ7B8+XLs3StmpxFCSLhD3yIAuLIBVVdLGX7sdiA6WhKdnD4NFBZ6inD+/ItKS0P/mhog3gYczgE2FwC//CKJhyoqgHPPBeLi6rIHnT4NtG0L7N0L7NsHZGRI7SoqpIxBKSlS23btJPHRRRcB27cDmzcDK9yyejdpIgmFqqqAHj0Qk5+P99r1wZn1G3BJ3lYknpEJkq3oDezfD9xzD7BuHfDTT/JjEh8viZVuvlkS7OTnq4/jZZcB//uf2Jiff740DiI0aQKcPCnWVoW/ALin/014JOsz3w2W1Xv9+OPA228rC5Bc3H8/8OWX0v0ix3ffSf/edpskBDt0yHe7wkLgxRel/193HbBnD7BbPjB7446VAID/pfdC0ulSdCvYD8g1z8iQDnHsBKKjG6Dppiz5/v7yi/RvTAyQmirdP3IcPy79e+KEdE+Xlcm3deFwSN83NeLiJEFWfDyQlCR9xtc4x8RIgrCGDYG0NDg7d8avf5Shw7G82iYZ51/s8ZHoKBufnyGIFWM0W7ZswaOPPgoAeOGFF9C2bVvF9pMnT8bjjz9e+7q0tBTnnnuuoX0ixIUVxBqBwszMQWZmX9ISh3E/xxqHE++vzxVe6LH5YLFP4ZbcObiOk5Gdj4fmba09RoOaavzjf5/gvk1fe+5g6lTg0UeBZs0wEMDstt7ZldTQIoBSuybu+CMMCpc4mRWyXZkpgiSEhBc2p9OpK6v0ypUrcfXVV+PRRx/F66+/Ltvu73//O958801kZGTgiiuu0N1RIyktLUVCQgJKSkpUAynhhBV+oKyIr3Fx4RqfhEYxuHnOBtV9PT2sI15cpq74d9Eo2o7TVQ7Vdsnx0Xjpuq6K16m+M9K7VRI2Hyz2cE6+/eUIHl2wTahviXHRslnGXMZvZupvsN91Z+12R4MGWPPZCsR17+rlDLlU5YCY0MoGCBmUStfP1z4hsN8ahxOXvLJa1fhfP3EQDSkf8FlDCCH+E6n2aqCxik8zffp0PPXUU+jZsye2bNki9BneI4QQS+FeFsyVZbCsrO7PXQT0Z0YgJCVJGX5iYiRRz9GjUpYdt3Y7847jyz1F2BZ7FvamnIey2DgMLdqHh84Dup7ybIuqKqBpU2DAAOCSS4Czzwa+/hrYuhX48UfPdlVV0vFHjQKGD5dEQR98IAlLlizxbOtwSCvpH34YuOkmoHt34P/+D1i6FFizxvd43HEHcNddwKWXAs88A3z2mbxoZ8gQYNw44K9/lUQz778vL9rp0kUKDN1zj5ShSCkbT0ICMHEiMHkyMHYs8Mknytfw8cel87rnHmksSFjgjI1FhQOY3fd63L1pEZw2GxIqZARGrVtLAqE77wQWLpTESMeOSX/16d8fiIqSsmplZQGlpVLmrSwfoqjrr5faDhwoCaGKiqTv1X//69324Yeltt26SUKlY8ek19OnAwAcsKHaHoUTjZrgowuvhcNmw6GEVEQ7qtGsvAR/G9AW6d98Jj2LoqOBBg1wHNF4u2U/FJ2pQWFcAqrtDdDGdho39G2Fnrt/kp5df7ZFbCxw1VXSODRtKomnSkqk1zt21LV1te/eXepfw4ZS2/Jyqe2xY3V9cLU9+2ypbVSUtM3prBNxNWggJugSYN3eY7j9QwWR4p98eldfDDz/LEOOKQftVfMJpj+Tm5uLAQMGID8/H7fccgvmzp2rObMX7xFiFqE2P21lodnibYeFYkozx/TAyB4tNe3bnziMXLzJVwxIzzm4+pZfcgbRNVW4fscqjNvwBc4rOVrbvqJBNBrs3Yuo9NY+z+2n3CJk7j+OWWsUhOB/Mv/efsLiN9HzcaE3nhUOcTK5bFeisUKjyMopFIoxa7kPCCHmEwxbVbd4a9CgQdixYwcKCgoQFRUl2666uhqpqano3r07Vq1apbujRhLJToGVjcBg4hqXgpLTKCqrRHLjWKQ2rRsfUWPo/LMbY+8f4ilRRZlxUw9c11Pe8BV1RkQNhBt6nYMvt/wu+35a6TFkzb7T+43qamkSSoZlvxzB04t2oLhcPoOZx3EEDb/Kaods2lt3UpvG4tlrOwsZY1qMf+INnzWEEOIfkWyvBhIr+DROpxO9e/fG1q1bMX78ePz73//22a6iogIVFRW1r12r1HmPkLDE6awLaldXSwKC0lIps099EVBCgiSsOftsqc3Ro5IQ6MwZb2FP69aSWKhLF+CPP6SsLj/+KAll6rft1k3KkjN4sFQ+bP164NtvpYB8fRHQgAFAr16SYOfgQUn08Omn0v/r93fIEClTz9NPS6XG3npL+jt92nscWrQARoyQBDoHDwJPPQXMmyc/bkOHSoKiI0eA22+XMgfJ0a0bkJkpCasuuwz49Vf5tikpQHa2JGo47zz1bED790vZl2JjldsBUoalbt0kIUO1sp+49pPFiB4wAP16tYGttFR5vytWSNeuRQv17EmLF0sClPbtlTPsANL433wz0KOH1Hcl3n8fuPtu4OKLfQta3HnzTUmUNWQIsHKlctuXXpIEWX/9q9R3JZ5+GnjhBeDWW5XvHQCYMAF44w3gvvuAOXOU2wKSsEXtOrjo0EH6vokwaBCwerVY21tvBVatkkR/clxwgfRde+QRKZuXr303biyJZy69VMoKdccd0r2wapVnvxs1kjKDNWgA9OwJHD4s3TtHj0oZvdavByoqcNoWhV/iU7E96TxUR0UhL7EFWjvL0PvmEbjorBhJyLd3r3TPx8ZKz6X0dOl70Lw5cOqU9PypqpIyOxUXS9nRYmOljFzNmklt4+KkZ2XTptL7gNS3qKja1+ESKNIbPLRKwC6QTFiwFV9vO6La7roeLTBjTE9T+0KfxnyC5c8UFBTgkksuQU5ODoYPH46vv/4a0dHRmvfDe4SYQag9+wMhNPNnrt5MW6LG4cSs1ft9VosRuV4iY1fjcOLjzFyhMovu55CVU4ixs9finyvfwy3bM2rbHI9LwNYWHfDUVQ/hWONk1fM2QgBV//o5nE7c+v5G1fNROj9RQjlO5i7A80UgxWdmiiAJIeYRDFtVqGyiL7Zs2YILLrhA0SkAgAYNGqBt27bYvHmz3kMRAzEzfarRBFL8oTYuomk/zRBuAUBqU/nja6mT3Dc9WbV8YWrTWDRpKP+9/ubjR9H1aI7nxs2bpWCFAhnZ+Zi2dLewcAsQT7erlvbWxf/d2AMD2qUIHVup/KRVV+hYiVB61hBCCIlcrODTzJkzB1u3bkVMTAwee+wx2XbTp0/Hc889Z/jxwx7XWiWbTRL+VFZ6ZwGqqpLaJSUBiYlSMPzIESlg/ttv3uIbAOjYEWjVCjjrLCkTR24usG2btwAIkAQknTpJZcPWrpXaf/+9d9uaGinbSZ8+kijg228lYdEnn3iLhaqrgUmTgL/8Rdr/ggVSWaqPP/Y9DrfeClxzjZQ16MMPga++ApbVr5P1JxddJLV/+GFg9myp/c8/+27brJkk9HjpJWDmTOBf/wIOHJC/HnfcIfXxjTeA555TFn4MGSKN01tvAQrfDQCSeGr9eim70X33Kbft0UPKxLRypXSeSrRvLwksfv5ZEuzIsXmzJBK64w5JOOZWDsiLFSuATZskUc2RI4BClgwcOQJ89JEk3jpxQl18k5Eh3UdnzigLtwCpLFh1tZT9Rkm4BUjfhZoa6XskUsZNtCRYw4Z139HkZElQJ0ebNri0c0ugbTPp+7dRIVhxySWSmAWQxDifyZSKA4DRoyXhDFAnhtq3z3fbRx+VBDWA9F1dvVrK0uXClV0nMVG6Z/v0kbZPmCD1aelS6X33TDxxcVIpuQsvlNpOnQqMHo3DS1diy+GTKK0BquwNUGOPQmyjWJz/t+vRd3Bfqe306cD48cCuXZ77dP2/c2dJ1AgAM2YAzz4rjbGvtsnJkjAJkL5zLiFxdLRh2YDMwmqZNRQDxruB2b17YuiwYQHrj2gJHi2leoKBnlKqkVqeprRCfX5MSztibYLhzxQVFWHIkCHIycnBZZddhi+++EKXcIsQMwi1Z7+W2I4/x/DHVlKLKdUvUehPv9wRicMM7ZKGIZ1SZeOIWqq2JMdHo3erJOlFeTkaz/431r77bzQ/VVTb5vlB92Jej6twJrouXqdmQ/lbDt7XOaQ2jUViXDRKyquEqtyI9tUXoRwnM7Pkp1bCpQQlIcR8dIu3nE4ncnNz4XA4YFeYyKmpqUFubi50JvgiEYrVJt9ERE9moGb4anVGouw2TB3eCePmeZfjcZmGz4zojCmLd3i9n1Regq3/9gxunOrWE423q5f2kXNCRBAxKEWNzuOnKtQbuaFm/BNCCCEktAm2T7NlyxY8+uijAIAXXngBbdu2lW07efJkPO4mCHFl3goaNTVSRpkFC6SsSL4YMULKJtO2rVSWTE4sBAC9e0tlurp3V89Sk5YGzJ8vZQvq2lXKCKTE119LooyuXeXLlrmYO1cS9IwYIQl8lHjvPeDee4EHH5QyGMnxr39JYqUJE4AXX5QESXJs2CBlyenZUxJNff21fNsXX5REMoMHS6KQuXPl2/73v1L2pJtukkQvStdi40YpMxUgiVjkhFuAVNIqL0/6//HjysItQMoeA0giOrWMPY4/y8uLCEdcAUtXVholgVFqqvRvQoKUkUdJuNSjh/Tv2WcDl18uXyIvPh5wiTHS0qR7yFc5MEDKQHTNNdL/W7YE/v53SdDmXpbMbpdEM5dfLgn0AEkc9sYbwPLlUmag+gKcnj2Bvn2lz6amSt/Nn3+WBGD127ZpI13j+HhJPLR2rSRALCz0bnv22VK2rbPOksZ5/37pOpaX17V1/cXFScKlJk2kfpSXS9fRZpPej4qSv55Hj/re7osN6iv/a1mwQPoT4bXXpD8RHn1U+hNh9Ghg9GjUvPyKum956aXISG6PBw+0hLOj51s2ANgPzO4Xi6GAJGLr2FF6Bqhx9tnSX/v26m1DKAAfiICnFqwYMA6nQJHW4KGVAnYBRdRe5Vx9WBBof+bUqVMYNmwYsrOz0adPH3zzzTdo5BL/EmIBQunZHwi7wQhbyV/xkZZ+uZgwuD3GD2ovtE+5ReRaY1JFZVUYNfVLLJz9AGJKitH1z+2Hm5yF/7XphZf/cidKGzb2+pyIDaVXACV3DkdLK2q31b8mSui190I1TmalRQxmiSAJIeGHbvFWnz59sGbNGjzzzDN44YUXZNs999xzOH78OAYNGqT3UCTCsNrkG6BsoJqNu+HrKz2qFmckIzsfTy3yFmYBQGJcNKaP6oqERjGeWaycTly3cw2mrH7fo/0V976DJ8ZfA7X1okpOiAgiBqWZk5HMIEUIIYSEL8H0aXJzczFixAicOXMGt9xyC5588knF9rGxsYgVKUEWKGw2KSOUEt9+K2VXAtRLYG3eXCfmUcsClJ8vZRYCxEp2iYqAoqLqApnx8cptzz1XEqoAkrBFSbzVt69UBguQxGnbtslnGPrrX+sy+wwcKAl61q/33faee6QsWQBw9dWS2MZX5q2oKGDiREnsBgA33ACcc44kDquffadBA+CWWyQxHSBlBOrZU8pG5Ctbz1/+Utffu+6SRCRZWd77jI6WRCYu4dR990n9yMure9/9M82aSWXMAOD++6V9V1Z6tvGVYeJvf5P+RBg+XPoT4eKLxcu4de4sCemUxHQuWrUCXn1V+lPjrLMkAeCECeptGzeWhHo33aTeFpDutYEDxdoqiEy9YDC3FtEFalYU/1gVf8bKrEzvVgwYh1ugaGiXNAzq0ByfZuXhYFE5WiXH4fb+rRHTwPs33koBu0Bit4llyxNtR6xNIP2ZiooKjBw5Ehs3bkTnzp2RkZGBJk2a6N4fIWYQSs9+s+0GI+1KI7MvqcWLbAAWbPoN4wcJLDrQeYz6ND1zCv9c+S6u3+m5WOel6x7Hx20HojLKe3GDVhtKqwBK5PolxEWjYYMoFJQq389G2HuhGCez0iIGM0SQhJDwRLd4a+rUqfjhhx8wffp0rFq1Cg888AA6duyIs846C8eOHcOePXvwzjvvYOPGjbDb7XjmmWeM7DcJU6w8USlnoJpF04YN8OoN3WoNX1+TvYmNxFbE/nHyDDKy8/HAXPksWcXlVbVtXQza/xM+/Or52td7m52HT3qPwH97SpKth+ZtxWy7TdE4V3NClEgTNCh7t0qC3QY4FKxxuw11aW8JIYQQQhA8n6agoABDhgxBfn4+hg8fjo8//hg2W4hN0NhswCuvSBlwfv7ZU1QTHQ2kp0vCmPPOk9p/9BGwc6f0V1/Y07y5VFKsc2ep7aJFUmahvDxvUU/TplIJwjZtpLarVklZgHxlDGrYUNp3QoLU9qefpDJxNTWe7Ro08BZ2rVsnPhbz5qmXs3MhKtQBxIU6gCS4uuUWaZzVGDJE+ps6Vb1tr17S3+23q7dNT5f+XCIxJZKTpb927dTbxsRIf2qCOkIsipYFalYU/1gVvWNlZqZ3KwaMwy1Q5Ov6vb8+1+f1s1LALpDEx4pN94u2I9YmUP5MTU0NxowZg9WrV6Nt27ZYsWIFkpNDQ/RJIgs9z35/RN3+fNZIu8FXP4y2K43KvhQIe1c0JpVcXoI7Nn+DOzd/g6YVZbXbN7XtiV7b16NXbgnmyCR0cAKYOlybDaVFACUyTifKq/Dfu3vBbrdhxa4CfJiZFxb2nlFYbRFDKJegJIQEDt1e2mWXXYa5c+fivvvuw8aNG/HTTz95tXE6nYiPj8e7776LSy+91K+OksggEIabmkGt9L5rhV+/6Ss9s1OZwD9HdPIQbvma7D1xWqwPKY1j8cTn21XbPbtkJ/7vxh6IrapA1uw7kXy6LpPBG5fcirf7jUZ1lOdjQ01M58+kpMugVLtmmw8WKwq3AEnYtflgccRPcBNCCCGkjmD4NEVFRRgyZAhycnJw2WWX4YsvvkB0CJWoqsVmA/7xD/H2Y8aItxXNAASIiX9cMDMAISTAaF2gZkXxj1XRM1ZmZ3q3qlgoXAJFWq+f1QJ2geL6nudg0bYjQu1I6BMof+bzzz/HokWLAAB2ux2jR4/22S4tLQ1ffPGFrmMQYgRan/3+iLr9FYQbZTfI9ePqLqlC+9diVxqRfSkQ9q7aZ5uVncC079/GsL0/1m7b2+w8fNV1ED68cCSqoqIxv+C0akKHaUt3wW6HKbaU6PkfL6vAyB4t0b9tM/RNTw55e89IrLiIIVRLUBJCAodfS2zGjBmDSy+9FLNnz8b333+PvXv34tSpU2jcuDHOP/98XHnllXjggQfQsmVLo/pLwhyzDTc1g1rE4N58sNh04RYAtEiSyrD4U3bQ5YzACdXUqQBQUFqBdpMfw69f/tdj+9+vfhRfdBvi1V5ETKdnUtJuA2bd3FP4mnCCmxBCCCF6CaRPc+rUKQwbNgzZ2dno06cPvvnmGzRiWTFCCAlbtC5Qs6r4x4poHatAZHq3slgo1ANFeq6fFQN2geDi9ilC2ekvbp8SuE4RUwmEP1NRUVH7/3379mHfvn0+27Vq1Ur3MQgxAi3Pfn9E3XKfzS85gwfmbsHdA1pjcKdUxd9aI+wGpXP4MDNP9nPuBNquDIS9K/fZc0qOYuzPS3Drtgw0qq57rj3w18n47vz+cLqVFHbFkoZ2SYPD4cS4eVu99mfUAgAt56DULtTtPTOw4iKGUCxBSQgJHH7nR27RogWmTZuGadOmGdEfEuEYabjVz9ZUXFaJcfO8ywa6DKzh3dLw7S/5su+7DLBACIDcywXqLTvo7owcL6tQbAsA5xXnY+1793ps23huF4y5+SUPo9UXSmOi5oT4YtbNvTCsW5qwA8UJbkIIIYT4QyB8moqKCowcORIbN25E586dkZGRgSbMBEUIIWGN1oVGVhb/WA2tYxWITO9WFwuFcqBI7/WzYsDObCqrHULZ6SurHWgUExWYThHTMdufGTt2LMaOHWvKvgkxGpFnvz+ibpHF9h9k5uGDzDzFTFz+2g0i52BTEPMGy64MhL1b/xi9ft+Nhf/9u0ebbWnt8d8eV+PLroN9xr/ObtIQNQ4nNuQU4qmvs30ex6gFACLnUB+5cQple88sKGojhIQSLG5PTENPvW+jDDdf2Zrkjuw6ji/hlut9dwPMbAGQDZ5Guehkb2KjaI8yiu7OSFZOoeJnR//yPV5b/i+PbcPHzsTO5m2Fjq00JkpOSH3S6jlQzy4Rc6A4wU0IIYQQK1NTU4MxY8Zg9erVaNu2LVasWIHkZNolhBBiFfTMX4igdaGR1cU/VkLrWAUqY7c/YiGz7kOrI3Le/ly/SAvYvbB0p3C7F6/rZnJvCCEkOKg9+/0RdWtZbK+WmWlolzS8dUtPTFmc7VHtRcRuEDkH558GkpXsykDYu65jvDRrGaaueg9D9nuWlP3b6OewNr2XpG7zQbP4GBSXVeCSV1arXmsjFgD4gn6BsVDURggJFQwRb2VmZuJ///sfDh8+jNOnT+PDDz+sfS8vLw+VlZU4//zzjTgUCRH01vs2wiCRy9akp+yg+2ddBlhxWYVq+nG9JMZF4+VRXT3GSHSy961besFut/l0RvqmJyO1aUOv0olppccw+YePcO3utbXb9iefg8H3viN0TFFRlNzkZVpCQ4zpcx5ap8R59XnW6n2KpR7rG8U0ZAkhhBDiD2b6NJ9//jkWLVoEALDb7Rg9erTPdmlpafjiiy90HYMQQog+9M5fiKBnoVEkZgrSi5axCmTGbj1iITPvQysjet7+Xr9ICtht/63E0HYkdGCMhhBPlJ79/oiCtQi91TIzZWTnY9rS3R7CreT4GEwdrv77L9qPuwe0xrLsAsPsShHRdf02vVslYfPB4trXQzqlmmvvZmZi6Hvv4cr//hf2mprazTMvvhkzLrlFVrTlYlSvlnho3lZNMUUzKvbQLyCEkMjDL/HW/v37ceutt+Lnn38GADidTthsNg/H4NVXX8W7776LH374AQMHDvSvtyQk8KdWOOD/KkW1lLX+sHJXAT7MzDNt/42iozCkU6rHNtHJ3n5tmykayb1bJWDpDmk8bU4Hfn19FGIc1VI7mx2LO12GGVfdh9+ixcr3aBVFaZm8zMjOx4yV+4T64V57nIYsIYQQQrQSCJ+moqKuhPW+ffuwb59vO6dVq1aa900IIUQ//s5fqKF3gVqkZQryB9GxCnTGbi1iIbPvQ6ui5bzDMeO6eZnWRGctzZrdJIGGMRpCtOOPKFir0FsuM5Pc72BxWSUemrcFs+3Kv/8p8bFCxx/UoTmeGt7JkN8cEdG1rzb1kyG4PrN+4iBjfwt37gQefRRYtUo6LgDHlVdiXNoVyEjtLLSLewem49tf8jX/SppVsYd+ASGERBa6xVtHjx7FZZddhvz8fPTp0wcjRozAp59+ipycHI92Y8eOxTvvvIOvvvqKjkEE4E+tcHf0GiRaUtbq4etth02d2vBlxOud7PVlJAPAoP0/4cOvnvfYdu3f3sDO1Haa+qpHFCUyeem6h0RxN4ppyBJCCCFEC4HyacaOHYuxY8ca1GtCCCFGYNT8hRp6FxrpyRQUqWX3RMbKqqVnAnUfWg2t523V66cXMzOtpTeLR/aRk0LtSOjDGA0h+vBHFKz2WTncMzMZ8vsv+pNnMyYDpYjoGoDPNvWr2BguUP/mG+CTT4CvvvLcvnEj7H374q/Z+fhu7hYA8tLl5PhovDCyC5LiYzFnXa7mLhSXVWr+jDtKdnwkZRAlhJBIR7d466WXXkJ+fj4eeugh/Otf/4LNZsP333/v5Rj07dsXTZo0wY8//uh3Z4n18adWeH3kDBIlI8aM1KQuGkXbPdLXmoWvc9A62evLkG565hR+mTnGa98XPLEQFQ1ial/HxUThdGWNrBGb2Cgab93aC/3aeGf6MgItArw0Hw4UDVlCCCGEiEKfhhBCIhcj5y/UCMRCo0gtu6cFK2bsDuR9aCX0nLe/mfrN/P5p2b/Zmdbsgucl2o5YG/ozhOjDH1Gw0meVcF+EbsTv//FTFT63622nhKjYzOl0Co2HYQL1t98GHnrIc9v11wOTJgEXXli7Sc6GSI6PxnU9WmJwp9Ta3+7F2w7r6sq0pbtwVRd95xJoOz5SF3wQQkgooFu89e233yI+Ph6vv/46bCr1gdu0aYPffvtN76FICOFPrXAR1IwYs1KTAsDpKodp+3ZH7hxEJ3t9GdJvLZqO4b9merS7ecyLyGrV3es45ZVSDXA5p+Xl67tiQLsUjWcljpZ7I5RWVRJCCCHEetCnIYSQyMXs+Yv6mLnQKFLL7unBahm7A30fWgW9563n+pkdENWy/0BkWmuZFGdoO2Jt6M8Qq2NlkYg/omC5z/rCVxavlbsKhPqo9HvpT+lHrYiKzbTgl0A9M1MSaK1f77k9Oxvo7Ls8oqgNoXe89J5LoO14LvgghBBro1u8dfjwYXTq1Amxsep1lWNjY1FcXKz3UCSEMNNgFDFihnRK1ZWy1ir4yiTl7uCkxMeqpsN1N6QbV5Qjc/adSKgo82jT+h/fADIOvQ1AYlw0YhvYUVBatypDdCWqvw6Z6L0xYfD5NCYJIYQQ4hf0aQghJHIJZMDLTCK17J4/WCljd7jch1rx57y1XD+zA6Ja9x+ITGv92zTD2z/kCLUjoQ/9GWJlQkEk4o+o2/2zK3YV4MPMPKEsXhnZ+fggM0+of0q/l/6UftSKmSJy4X07ncBrrwEZGcCaNZ7vffMNMGKE6i5EbAjXuGoVowHaxynQdjwXfBBCiPXRLd5q3Lgxjh07JtT20KFDaNaMDmEkYJbBqMWI0ZOy1grY4J1JypeD444vZ8dlIF6XvRr/+N8nHsKt6257HVtbdlDshxNAcXkV/nvPRbDbbJqcFjWHTETYJVIzPrVpLMYPaqfYF0IIIYQQNejTEEJI5BLIgJeZRGrZvXAhXO5DrQTivM0OiOrZf0AyrYlOhobSpCmRhf4MsSqhJBIxQtTd/dxETBh8Pub/dAgFpfJZvFy/HWqI/A76U/pRK2aKyFX37XQCK1YAkycDW7ZI26KjgbFjpexbbdoY2h/XuD4wd4vmz2odp0Da8aGw4MPKmfoIISRQ6BZv9ezZE6tXr8aOHTvQtWtX2Xb/+9//UFBQgOuuu07voUgIYZbBqMWIkUtZmxgXDQA4UV5Vuy0toSGu7Z6GJdvzdSnpjcJuA2bd3NPDYZFzcNxxOTtv3dILSfEx0uTOpk3Ie6Xu+5ablIbXLr0DyzpcoqlPx09VYGSPlsLtlRyyB+ZuwRUdzsLW306gqMxz/P95TSev1S1Th3fEQ/O2yt5Dz17bmUYbIYQQQvyGPg0hhEQugQx4mUmklt2zOqLBp3C5D7USiPM2OyCqZ/+ByLS2PkdMyLM+5xgGXnCW7uMQa0B/hliRQIpEgin28LWQPbVpLCYMbo/zkuNQVFaJ5MaxSGgUgxqHE1F2m+pvhwsnxH4H/Sn9qAVR0fWZqmoUl1cL7VNVoOZwAE88IZVI3LTJ8739+4HzztNyCpoY2iUN79zWC5MW7vCIJ8qhV3QeSDte1G75ODMXKU1iLfF9slqmPkIICQS6xVt33303Vq1ahbvuugtLlixBWpr3wzMnJwd33XUXbDYb7r33Xr86SkIHMwxGrUaMXLpbAD6N+e7nJGHcPO1KeqNwOIGk+Lr01koOjjuu98fP3wJbTQ2+/fhRdDyWV/v+T+d0wu03TkNFtHrq7PrkHS9TbyTQX9e2VXu8J49cwq7EuGgvUd19l6Z7ieqMdjoIIYQQEtnQpyGEyMFVv5FBoAJeZhKpZfesjNbgUzjch3ow+7zNDojq2X/f9GSvObD6JMVF+5VxLHN/oaHtiLWhP0OsSKCyCQVT7CG3kP1oaQVmrNznM97xz2s6oaLaIbT/uwa0Fj6HIZ1S0aRhNLJyCgE40b9NCvq1babou2j1dURF15tyi4RLQro+43XcmhrgjjuA//63blujRsD99wN//zvQooXw/v3BFWOctXo/PsrMxYnTvn+7/RGdB9KOF7Vbpi3dXfv/YH+frJipjxBCzEa3eGvMmDFYuHAhvvzyS3Tq1AlXXXUVDh06BAB45plnkJ2djWXLlqGyshK33347hg4dalinifXxp1a4L/QYMXLpbutvq3E4MW2peqpas3E3nkRXYLgYv34+Hl//X49t0y6/Gx/09VxN5TKsG8c2wKkK5RUQ8386hPGD2gtdM639deEyxupPWhWUnMF7a3M9MooxYEIIIYQQo6FPQwjxBVf9RhZGz18Emkgtu2dV9AafQv0+1IuZ5212QNSs/ftbzdApuAfRdsTa0J+xPpG4ICAQ2YSCKfYQWcjuK97x4NwteGzw+ULHGNIpVaidL7/lqy2HFf0Wvb6OiOg6oVGMkHirWXwMXryui+fxamqAzz8Hnn8e2LOnbntCArB3L3D22ar7rY+/378ouw2PDm6P8YPa4afcIqzYVYBF246gqKyyto0/ovNA2vF67B0rfJ/MKucYic9mQkhooFu8BQDz5s1D27Zt8eabb+Lzzz+v3f7iiy/C6XQiJiYG//jHP/Diiy/qPobT6URmZiYWL16MdevWYc+ePSgvL0dKSgr69++P8ePH4/LLL/fnNIhJGFEr3IWZRoxe4ZHRuBtPoo5L4ulSbPvXLR7bDiS1wJV3v43qqAaw26SsXi5SExpiTJ/zsKegBMuzjyruu6C0Qnj1i9HlF1xG2bSlu7B+4iAaTYQQQggxjUD4NISQ0IGrfiMTI+cvAk2klt2zIv4Gn0L5PnRhpUCY2QFRPfv/KbdItfzSifIqv7LRxDawG9qOWB/6M9YlUhcEmC2eDZbYw4WeeJKrXws2HUJq01gcLa3w+7dJj9/ir6+jJrpW+20EgOT4aGRNvgIxrt+higrg2muBX38FDh70bLx3L9C+vfJAyGDk989lo/Vv2wxPD+9kmK0TSDte5NrUxwrfJ6My9bkTqc9mQkho4Jd4q0GDBpg+fTqeeOIJLFu2DDt27EBJSQkaN26MTp06Yfjw4T5T9Wph9erVGDx4MADAbrejXbt2iI+Px759+7Bw4UIsXLgQU6ZMwbRp0/w6DrE2ZhoxRguP9JCW0BC9WyUhK6cQf5w8g+MnK1Q/0/e3bHw+b5LHtoeunYilHQfWvnY4ganDOyKlSSzyjpdh/k+HMGPlXuF+iY6NGeUXzDDKCCGEEELqEwifhhASGgQ7EESIXiK17J7VCEbwyUroCYSZGTwzOyCqZ/+ByEZzQWpTbDlUItSOhAf0Z6xJJC8I0CueFRUAB/v3Vu8z2tWvCYPb482V+/z6bdLjtxjl6yiJzUV+G1/6f/buPL6JMv8D+CcpPWihF1VaDqFcSq1yLQhWPBBcBBc8d/FgPVFUdhVXV1FZdYsCuvtDdvHEaxcFbwUXZJcCimAR5bSAAqUFxFakLRRaetDM7484aY6ZyTOTSTJJPu/Xi5c2eZJ5MpPMPPM83+f7XHGWM3CrqQn417+Ap54CysudT2ZmAlOnAlOmAOnprnrrDZYK5u/P7GD7ULXjtY6NFqv8nswax43lczMRRYaAgrdkWVlZ+P3vf2/GW/mQJAm9evXCfffdhwkTJiAjIwMA0NTUhMcffxwzZ87EjBkzcM455+Cyyy4LSh3IGoLViAlG4JFe4/rl4IJnVnt8Lu+sWbIuRypx/xcLcPmOz12Ptdjs6PnAYsDm22jNap+IxDZ2PFu0W3dCdNF9YyRqX5QVguuIiIgo+gXznoaIIkO4B4IougU7I1GsLrtnJaEefLKScGT/EBHsAdHR+Tm4/fxczP+iDJLbB7HZgEnDc33eP9jZaACg1yntTC1HkYP3M9YR6xMCjAS36gnmDff1NtDxpO5ZKQFfm4zctwRyr6OnHev32ts1GejXD/jhB6C6uvWFvXsDGzeiJaWdc1vlB1F+uB6LNuxHZa14kHck/v5C1Y5XOzYiwv17MmMcNxK/G0QUe0wJ3gqmIUOGYOfOnWjTxrOqCQkJeOqpp7BlyxZ8+umnmD9/PoO3IkCgnZXBaMTU1DWpBkrJ7DbgDyN6o8cpKSj7uQ7/Xr/PY13rQFx2dg5eXlPm02DwqY8kYdzOz/GPT/7memhhv9GYc951+LmdehrdrHaJuP+9rbqCqvSmjjcatS/CCsF1REREREQU/cI9EGQ2Ky1fFutCtTRHNCy7F8lCOfhkJeHM/iFidH4ORpzREQuKy7Gvuh7dMpMxcVj31uWaArC8pAIvrSnzedwhAS+tKcOA0zI8fuPBXsoRAH43+DQULt0pVI6IgoMTAvQFz+oN5g339TbQiexZ7RJR0CsroHEuI/ctRu91jLRjFcfxOiYh7qz81ixbAJCTAzzwAHD77UBKyi/b2qD5+/EX5B2pv79QteO9j83hY41C7YZw/Z7MaBvJIvW7QUSxxfLBW6mp2imcR40ahU8//RS7dokvBUfhYVZnpZmNmOUlFbh7oe+Ngbd51w7EmLNb6/iHi3u7GjeZyQmY/OZG1DW16N5+x/YJ+Ka8RnP7dhvQ8ejPKPzf8xhZ+rXr8et/NwPruvdXfZ3cqIEEXVH0RlLHtzgkpLVNwM0F3fHxlh9NCWwzs1EWaTjIQkREREQUeuEeCDJTqIKFyD8uzRE7Qjn4BFin7yDU2T/0UjofvrK2LODzYYtDwkMffqtZ5qEPv/UIQJMnP05+c5NieQmBLeUIAO98vV+43K3DexjeDhGpi7YJAUaJTMQ3Eswb6uutt4Anskut72P0GmfkvsXIawJpx7o+37FjwAsvAH//O3DoUGuBc84BPvsMSErS3JY3f0He/P355/7da3FImP/FXlTWNiqWDefvyYxlrt3xu0FEkUA4eCsuLi6gDdlsNpw8eTKg91DS0OA8ibZt29b09ybzWLGzUuvGQGa3AfOuHeARuAW0Nm6Wl1Tggfe36Q7ckpsZ153TDXOKdquWi29pxopX7kL3IxUAgCZ7G7x0zlV46ZyrcDwxWXMbEoAx+dko3ntYV930po5X6gTLTInHgK7pWPndz5qvTU+Ox5H65qA3yiIJB1mIiIiCx6r3NERkDeEeCDJLIPffVgkGiRZcmiO2hHLwyUp9B6HM/qFXMPsj15dW4Uh9s2aZI/XNWF9ahYLeWYa2YcS+6npTy5G18H4mMkTThIBA+QtQMhLMG8rrrZpAlp87XKccJKOHSPavzJR4VNY2oLi0CkNyM3Xf6wTcjj16FOjUCaj3ut786lfAqlVA+/auh0TG6ry3rxbkzd+fPit2VKLhpEPxuXD/nsxa5lrG7wYRRQLh4C1JCmwhtEBfr/ae7733HgCgoKBAtVxjYyMaG1sbRLW1tabXhdRZtbPS340B4ExznpGSqPic6EwAJXKjo1GlUQQAl363Fi8snuX6e0tOb9w/Zir2ZPlPay4vA/nqunLhOk25qBeG9egA2IDDxxtdjXqtY6K2D2rqmrHqu59xx/m5WLK1wmM/d0hJwPj+nTAqLxtDcjOxYkdl0BtlkcKKQY5ERETRxIr3NERkHVYYCApUIPffVgoGiRZcmiP2BDL4JBo8abW+g1Bl/9Ar2P2RopMli/cedgVvyXVSY0YfabdM7cmeesuRtfB+JjJEy4SAUDAazBuqYA8t4Vx+TiT7V3VdM6a+swVAa5tez72O4XZsdTXw7LPAP/7RGrjVuzfwyCPAddcB8fE+7yUyVqdE6fsjEtiW3jYeDklCi0PSfb2Npsku/sY405LjMevKs0L2ewrWMteyUJ2bo+k7QkShp2vZRJvNhtNPPx0TJ07ElVdeiXbt2gWrXkLmz5+PzZs3IyEhAffee69quZkzZ+KJJ54IXcWigJkXF6t2VgYyy0/vTAAAmHJRT/Tu2N5jfxaXVvmUS2xuxD1fLsJd6993PVbSsSeuuuFvaLGrz66aclFP1De14LV15XDovA9PT45HXk4q7n9/q3BHvUgn2JKtFfj8gYuwcV+N6ndJJH1yLLBqkCMREVG0sdo9DRFZixUGggJh9P7basEg0YJLc8QmI/0cosGTVuw7MDIQForBs+D3R4ru39ZyoegjnTisO2Ys3anZZ2n7pRxFJt7PWF80TAgIlUCCea0wruC9/Nwra8tCFrSnJ/uXe5te9F5Hdzt2+3YgP9+3wJVXAu++C2hkDjTaFlb6XogEth050YzrX/lK90QVq0x2MWP8VmSMs218HEblZQdWWUHBWubaXSjOzVb5jhBR5BIO3pozZw7eeustfPPNN3j00Ufx5JNP4oorrsDEiRMxcuRI2O3mRb+K2LRpE+655x4AwIwZM9CzZ0/VstOmTcN9993n+ru2thZdu3YNeh0jldkXF6t2VpYfrhMqp9QANDIToKDXKT4dL96dVTd/sxg3bvyPa5nEYwltMfmWZ7Aurbvf9x/WIwv3v79VV51kzS0O3LVwk8/jWh31oh1OG/fV+O1wCmR992hh1SBHIiKiaGK1exoisiYrDAQZZeT+24rBINGCS3PELj39HHqCJ63Yd2BkICwUg2fB7o8c1rMD5q3eI1QuVHUCnPs2OSEOdU0tqmWSE+N4Po9QvJ+JHJE+IcCbv2ARree1ngs0mNff9TaUGXD8BQ1JAKaP7Wvq9t3vWyqPnkDh0p2ormvyKefepl/74Aihex3R9mnnE0cAWxfPB/v1A6ZPB664AhA4L+ltC/v7XogGtumZqGKVyS5a47d67mFFxjhD1aYM5b4N5rnZKt8RIopswsFb99xzD+655x7s2rUL//73v7Fw4UK89dZbWLhwIU499VRcd911uP766zFw4MBg1hcAUFZWhssuuwwNDQ247rrrcP/992uWT0xMRGKi8tJ35CkYFxcrdlYuL6nAnKLdmmW0GoB6OlG03kdu0E+b/xk+XPAn5NY4g7Yq2nXAY5fciRW9h+K56wai9D87UFmrvk27Dfi63FhqWQCoa1Tu0NHqqLdqUF6k4v4kIiIKPivd0xCRtUXqBBMj999WDAaJFlw2ifzRGzxp1b4DIwNhRgfPRAfig90fObh7Jmw2QGsVOpvNWS5UdQKc53StwC3A2Q/Ic3pk4v1MZInkCQHu/E3213oegOZrgxnMG44MOP6ChgqX7oTdbjN1+/J9S3FplWLglsy7Te/vGuCvHdup9mfct/ljDHp2uecTkycDzz/vvAgKElnqUCb6vZB/f+tLq3D3wk04cqLZp4zoRBWrTHbRGr+d/OYmpCfH40h96+fU+r4bnfRj9vksHPs2GOdmq3xHiCjy6Z6K0adPH8yYMQN79+7FmjVrcOutt6KxsRFz5szB4MGDceaZZ2L27Nk4cOBAMOqLyspKjBo1ChUVFRg7dizeeOMN2HQ0Akidv4sL4Ly4tOhck09ueKkdJRucjYhQdVbKn9MfCcC4fjmKF9Lyw/XC25Og0ZCUJIzeugrrF0xxBW4BwKjbXsC3v7oQL9wwEHY70HBSu9PFIQHPrtQORjPKvVHvzopBeZGM+5OIiCh0wn1PQ0QULEbuv60aDBIN5AFJwHeBNS6bRIC+4EnA2n0Ho/NzsPbBEVg0aSjmTuiPRZOGYu2DIzQHqPW+ZnlJBQpmrcK189fjnre34Nr561EwaxWWl1T4lA12f+TGfTWagVuAM7Br476akNUJ4Dk9VvB+JnLIgTXj+3fGsJ4dIu6aLweLeF+r5Mn+M5ftUH1+8pubMFnjtfK5Ww54yk7zvHZlpyUZzlTjr95K1w2zjM7PwfSxeYrPBXP7Zp//1dqxXY9Uonz2ZfjyhZtx9frFsDU2Aj16AFOnAg4H8MILugK3tLalRM/3Is5ug91uUwzckqmNf7nT214LBpHxW/fALUD7+6a3Tbm8pALnzfZsgw0qXIG5Rbt1jxm7E923c1Z8j+LSqoC25c7sc7MVviNEFB0CyqN73nnn4eWXX0ZlZSXee+89/OY3v0FpaSkefvhh5ObmYsqUKWbVEwBQXV2NUaNGobS0FBdccAHee+89xMfHm7qNWBasi4vVOiv1LHn48poyn4bN8pIKPFu0S3h7GcnxyutCr1rlTBl7ww1IrKnGd1ndcPX1s9H9wf8gITMN08f2BQDc+eYmn0ZXOHg36q0WlBfpuD+JiIjCI9T3NEREwWTk/tvKwSDRIBgDkhQ99A60Wr3vIJhBCstLKjD5zU0+mekra50BAt79d8HujzQySB6KPtKsdmKrT4iWI+vj/QwFi79gEQnA/C/KNINJlCglCjASAGy03t7bNluLQ0LhUuXkAcHcfjDa9O7t2Nzqg/jb0jlY/fLtruelCy/E9gUfYvH7n6P47kfQYvAjtTgkpLVNwM0F3ZGRkuDxXHZqIqaO7G34e2FGUJsVAqP1jGvKtL5vetqUasGQR040Y07RLgyascJwQKLoPpu3uhTXzl+P82YrB+2HmxW+I0QUHYSXTdSSkJCAq666CldddRW++OILTJw4Efv378euXeIBLv4cP34cY8aMQUlJCQYPHoxPPvkEbdu2Ne39I5lZqSpFLxrr9vysextWWuNd78XRPZWlVsNfTU19s2cq8pMngfx84PvvXWWePv/3mD/kCjTHOYMRa+qacffCzUhLjte1rWDybtQHM6VxLOL+JCIiCq9Q3NMQmS0YyxZEIyP7KZL3rd77by7tF3zRsmwSmU/vQGuo+w6CfS4UXdKqxSHhoQ+/1XyvaR9+67MUTTD7I40Okge9j1S0I9EqHY5kGt7PkNlEgkWMxh8pLctt1rLl4V4SPFzbD1abfvR36zD64Ws8HpN+9SvsLhiFGztejIqSBqBkKwBjy1IqtQUyU+JxRf/OGJmXHXDbw4ygtnBPdmlxSFi357Ch16p930TblAD8jokeqW/G5Dc34UUDE1P07jM5m5jVJsGE+ztCRNHDlOCtn376CYsWLcKCBQuwZcsWSJKEdu3a4bzzzjPj7dHY2Ijx48fjq6++wplnnonly5ejffv2prx3pDNz3W7Ri8a81aX4YNNB3duwSmelnoujd8PGSHQ74BYwtnEjMGmSR+DWzVc/htU9B/tsF/BNcyrKu7EVCK1GvZWC8qIB9ycREVH4BPuehshsZt4LRjMj+yka9q2e+29OJAkNswYkKboYGWgNVd9BsM+FchYH78+tNCi3fm+V3z6ymvpmrN9bhYJeWR6Pj87PwYgzOmJBcTn2VdejW2YyJg7rjoQ2AS1IEdAgeTD7SCuOnjC1HEUO3s+Q2UKRISYY2wh3Bpxwbd/0Nv3WrUD//p6PXXYZMH06/pvc1XkNV1mWUjSwRq0tUF3XjNfWlWNwANdGOQC9srYBmSnxqK5TbkeIBLWFc7KLUnvMCKXvm7825ai8bLyxrkx42+6JMET527feJDj3t5FtBRMnRBGRWQwHb504cQIfffQRFixYgJUrV+LkyZOIi4vDJZdcgokTJ+KKK64wJTNWS0sLJkyYgFWrVqFnz55YsWIFMjN5cgP0dXKI0HORNLoNK3RW6m0MAM6GTSDR7Z2ajgHDhwNffulc9zsjA4fPuwiD+94EyRZYZ5G3qSP74O2v9/t0ro3rl4MlWyt0NfJEGvVWCcqLFtyfREREoROqexois5l9LxitjOynaNq3eu6/OZGEKDyMDrQGu+8g2OdCf0taeQ/KFZdWCb1vcalv8JbSoOcra8sCPrdZNfD1v9srhctd/auuQa4NBRvvZyiYQpEhJhjbCHcGnHBu35Q2/ddfAzNmAEuWeD7+6qvALbc4r+GzV2kuS/nQB9+ifVI8hvZQX0LZ3yo3EowH6IgGPIler8N1zVdrjxmh9n1Ta1Ou2FGJ82av0jWe6C+jnFpGV7V9qybY2fOMsGq7kIgij67gLUmSUFRUhDfffBMfffQR6urqIEkSBgwYgIkTJ+Laa69Fx44dTa3gu+++i48//hgAYLfbcc011yiWy8nJwXvvvWfqtq1MbyeHCD0XSStFNxtJ4T5hcFfMKdotvI3yw/W6GyqysQe3YPA5l7U+cO21wLPPYt2PzZDe3qL7/dTIkdtTRvTClBG9FPfJn0f3xfq9VXj/mwP4aMuPft8zMyUBT16R77dRb4WgvGjC/UlERBQ84binITJTMO4Fo5GR/RTr+5YTSYjCw+hAq96+A9H+s1CcC/UvKWVsLcBgB6EZPXbBzGpW13TS1HJkPbyfoVARmQRvtwGSpH8VkGBmoQl3Bpxwb1+0Te/TLvhxJ+LOH+5WURtwxRXAb38L/O53rteIZGI6cqIZ17/ylea1TWSVGyMBOnoCnvQEtYV6sou/4DZRIt837zZlIEFjahnl/LV9lPat0W2FCydEEZEZhIO3HnjgASxcuBCVlZWQJAldu3bFlClTMHHiRPTt2zdoFWxsbHT9/+7du7F7t3LATbdu3YJWBysK1rrZei6SVohu1tvZYTTF6JyiXbrr1qHuCKavmo/Ld3ze+mBhIfDoowCAU4+JzRoUoRS5rXRMVuyo1PX5Hx3blw0KIiIiihrhuqchMlOw7gWjjZH9xH3LiSRE4RKKTFqi/WehOBfqXVJqWI8szFtd6rf8sB6tWbdCFZCr99gFO6CssdlhajmyFt7PUCiJZJKZNDwXL68pU3xeUvh/99cGKwtNuDPghHv7ch20rtGudsGRExi2fxv+8OU7iNu/rbXAxInAI48Ap5/u+xodY2ta17ZKweV7RcsB/gOebHAmLHh0bF9kp7XV3dYK5WQXkeA2UXq+b4EGjSll+BJt+8j7dt2ew5i3eo+hbYUbJ0QRUaCEg7f+/ve/w2az4fTTT8cNN9yACy64ADabDTU1Nfjyyy+F3uPcc8/VXcGbbroJN910k+7XRbtgrpstX1zmrNgldIEMV3Sz3s4OM1OMarFJDry9cBrO+WE7AKDFZsc7BVfid0tfQ1xqe1c5I8s3qhGJ3Dby+bPTmFabiIiIoke47mmIzBTMe8FoYmQ/cd8SUTgFK3hSrT+oQqX/LBTnQr1LSg3t2QHpyfE4Ut+sWjY9OR5D3fZfKANyRY+dv4AyIPCAsp4dU7Bx/xGhchR5eD9DoSaSSWbAaRmqzwMISxaacGfACUeWJl1BxAs2Ytrq13D71x+5Hm+yt8HHZ16I3D/chsGTfuf7GgNja1rB0tV1TULvIVoOELv2V9U1ITutreUnrJhxz5mW1Aazrz5b1/fNaNCYWoYvvcH0w3p2wJDcTHyw6YewZa8LFCdEEVEgdC2bCADff/89pk+frntDNpsNJ08yHbNZgr1udpzdhoJeWaZHNxtZ4lDtffRc8M1KMepPz8MHsPLVOz0eu3zi3/FtTm/k/tyEYamtj/ubgSFa14lDT8P0y85EQhu7ahm9n9/qjR8iIiKiQPCehiJZsO8Fo4WR/cR9S0RmMav/y4x6aPUHSfAdUA3FuVDvklJxdhtmXXkWJr+5SfU9Z115lsc+DiQILVjHL1hLRLlLsMeZWo6sifczFEr+Msn4ez5cWWjCnQFHafuDumVg474aLN5y0LT66Mmu2dLiwMqnX0XZAs/zx4IBY/DC0KtRkXoqsg8nYa1DElpaXoRasHRmu0Sh14uWA4IfgB7MZY+9mXHPOWVEb931MrJvtDLKGQmmt0L2OiKicBEO3jrttNNgs/FEaBVyJ4faRc+M4Buz1+Y2s2Gj94JvZopRJfEtzZi04SPcs26R67GfU9Jx3uTX0NgmAYByo0dtBobtl7XiRSxYvx9FOw9p7kc9n5+NHyIiIopWvKehaGD2fVq0MrKfuG+JIpNVAqVkoRzY88dIsFAozoVGBuVG5+fgxRsG4vEl21FZ2+h6PDs1EY+PO9Nn3xoNQgvm8ausFeubEy2npF2CWHe/aDmyFt7PULj4yySj9Xw4s9CEOwOO+/aXl1TggmdWm3p9EV6dpqUFWLQIDU89jWd2futR9je/n4Nvc3q7/ta7tLwoeXxMbreVHjou9Lrq441ocQsm0xLMAHStTKaT39yEFwNc9tjbkNxMZKbEo7pOPeuoP5kpCYqPa7WdjewbrYxyRTsqhd7De/w03NnziIjCRfgurby8PIjVIL3i7DaM65eDl9aUqZYJNPjGzOhmvUsc+qM3gj6Yy1rc/M1iPLDm30hudnYcbep0Ov42fCK+7N7fo5xao8d9BkbRjkq8uq4cDp3TGPztRz2fn40fIiIiila8p6FowFmoYozsJ+5boshjpUApuT5m9n8FqvLoCd3lQnUuNDIopyeLipEgtGAfv+rjjf4L6Sin5Mej9aaWI2vh/QxRZNJ7fREJTBdZnaZw8be4ZNtnsF9/HQAgBUBdfBIWDBiD984ahdKsror1NbK0vD+ntk9SbLf5U7h0J15ZWybUttNz7dcT/C+Sfez+97ZhxBkd/a6QI7rNOLsNV/TvjFfXlWtsVduRet8lJ/21nUX2YcfURPz9t/1x+Hij5udocUj4aMtBoboqjZ+GO3seEVE4cIpNhFpeUoGXNQK3bj8/N+DOoBaHhLS2CbiloDs+2nLQI8JbT4CP3iUOReiNoA/GshYpjfV46PM3MHHzMgBAddtUPHHxJCzOu9CZOstNjp8ZiXF2G4bkZuK+d7cYqou8b9X2o+jnnz62L24qyGXjh4iIiIjIwjgLVYzRwADuW6LIYLVAqWD0f/nbnr/BrOo630E7Jd7lQnUuNDIoJ5pFRW8QWiiOn1oGDKPllPwseMxFyxERUWD0Xl9EA9O1MmIlnmzC77b+Fzdu+g/s1a3BMwdv/wMuSxyKmuQ0zTobWVpejRwwVVPXhLsX+rbbRIi27USv/St2VOoK/hfJPna88SQGFv4Pf7umn+J7GJlwMDIvO6DgLe8lJ0Xbzv724ePjzkRBryy/299QVi2UOaxDSoLq+Gm4s+cREYUag7cikL8obxuAJVsr8OfRfQ13Jig1JDJTEnB5/04YlZetK7pZdInDN9aVIat9olBHjd7Zc/6WmdRr5O6v8NcVL6DTscOux8beNBcVqacolheZkWhG+lmltcMB8f0VK4FbVltSgYiIiIhIL85CFWNkP3HfEllfqAOlRIj2fyn12+glOgDoPWinRqnc6PwcjDijIxYUl2NfdT26ZSZj4rDumhkljAjmoJyeILRQHL/stLamllPS2OQwtRwREQVGz/Xl6Ikm4cB0pYxYbZsasPDtRzCg4nvXY02paUj4033ArbciO6cTkmavgs3kpeXTkuNxtL7Z9XncnwOcSQMKl2pnrtKi1LZTG+Pxd+0HgMlvbvLZhlaAmGj2seONLYpLKBqdcOBv3/uTndoaeKen7WxWEL/ofhvfvxPvtYmIfsHgrQgU7M4EtYZETV0TXl9XrrvTWvQCXbh0p+v//UWcx9ltmD62L+5auNnnOaXZcyLLTPqTnhyPLnt34j//utf12L70bDz86ylY57VEorupI3sLNWbMSj9bWev7Plz+o5XVllQgIiIiIjKKs1DFGNlP3LdE1hbKQClRov06gfb/6BkAdB+006JUTqn/RHTZIisRDcgNxfETmVzqL3u/P40nW0wtR0REgRG9blTWNuDp5d8JB6a7Z8RKPNmEa7atwIwVL3i87v/Oux7n/XMGhvTvDgCIA4KytPysK88CfqmfUrBPWtuEgBMXeAe5aY3xqF37AWDQjBWq768W/K83+5h3kJnRCQda+94f7/aE3razGROaRPfbqLxs4fckIop25k6VopAIZmeCv4YE4GxItDgkj9cUl1Zh8ZaDKC6t8ngOMJZWVe5wWl5Sofj88pIKj2Avd9lpSYprhC/Zqvxe/mQkx+PF6/pj0w/vewRutdw9BTfe+wq+1AjcyklLwpQRvYW2Y9bSjtXHGxUfl6Pls9M8t6O0v6KV3MHp3Uj1930jIiIiIrIif/diRGQd/L2aK1SBUnqI9usE0v+jt99ODhbSohQsFG39J3JA7vj+nTGsZwfFgcdQHD95EFaL2uRK0XNIYhuxQVXRckREFBjR60b18Ubh4BrAeY0/Pb4R01a/hs9fus0jcOtg+1Mw6A9v4b0xN2PQ2d083sfIOJHIa0bn52DtgyOwaNJQzJ3QH4smDcXaB0dgdH6Oqe2x/21XbqNUeLVRlK7981btwZF69WX8vPexbEhuJtLbxgvX0f099ARNKVHb9+nJzvp4X81tv/zzbk8YaTuLtJ+0yO1QrVcFGrRORBRtmHkrApnRmaCWUlRv9LVIFiMjqT21Is7VZhjKpo/1nQEYyJKEz56diAvungCsXdv64L//jbiJE/HQL3UxI5tVoClQZZkpCarPBRItH+lLDVpxSQUiIiIiIqOYUZYocvD3ar5QBNroNSQ3E+nJ8ZqDgunJ8QENUOntt3PP2CA/L1Pru4rV/hORZaG8l5IyYvP+Gr/Pe58X9JxDkhLEuvtFyxERkXEtDgkOSUJ623gcOaHcPpCvL1rjOu4OHWsAjh9H3PPP478zHnQ9/mP7LLww9Gq8nz8SDQnO9s8LKuNTwVpaXi17sZntsTeK96mOn0lQb6O0OCS8vk5sZR7vQKc4uw03F3THnKLdwvVct+cwDh1rwO6fjhvapjvvfZ/VLhGQgJXf/YSPt/yI6romV1m1pQ3D0XbmikBERPrxLi0CDeqWAbsN0Jqkabc5yynRuuFvPOkQqsOhYw3CadqNpvZUSnGv1YEEOC/4hUt34Nf52Yaiyt21a6zHFy/eirSnjwOSBKSkAHffDRQWAgnOhrRZaz8D/hsyovstO62t3+3oXTIgGjqarbikAhERERGREXqWzCKi8OLvNThCFWhjNq2hKZFJc0ayJujtuwqk/ySSJ/4FMsAo+rmbTjow/wvtgeP5X5ThT5ecgYQ2zgUz9J5DOiQnCnxa8XJERGSM0piKN/frS1pb/8FbnWoPYdiTDwKrPgWqWzM1/ePSOzAvbzSa2jizMYmM3QRjaXm166FIuy0jJcEjCEmN5GegTK2NsqGsWjWAzptSANOdF/bSFbw1b/Ue4bJq21Sy7cARfLTlIKrrWj9LZko8rujfGSPzslXbIOFqO5s5huotktudRERqGLwVgTbuq9EM3AKcgV0b99X4NFD83fDfO1Jsib+sdom4/72twrPw1C7QItw7nIx2IJUfrtO1zcEHSvDewodcf9dcNAoZb7wCnHaaT1kz1n52fy+1hsz0sXkoXKq9/+QUo2Y2WqKlo9mKSyoQEREREekVqxlRiCIRf6/BY8WZ/BvKqjWzbgFATX2z4oCi6KQ5o1kT9PRdGe0/iYaJf0YGGPV87gXF5UJ9uguKy3Hr8B6GziE2m9j0T9FyRESkn7/VY2TyuE9a2wRU1jYgMyXeIyhH1q3mR3z+8u2eD/buDTz8MHD99bg7rg0GhzmIZXlJBR5fsh2VtY2ux7JTE/H4uDMxOj/Hb7utf9c0rPruZ1PqUnn0hM9jou2b9LbKWVI37tPOnGmUSNCUv0DAmrpmvLauHIM1jns4285mjqHKoqHdSUSkhMFbEchoJ4rIDf+iDfuRnZqEn2q1o68hQXcQlXyBXl9ahbsXbjIU5W7ks7c4JCzasF/odRn1R/HAmgW4buty12P/OWM4Wv7+Gsaf1kX1dUZmKajRasjY7VBt9MvrWK/YUWlaoyWaOpqtuKQCEREREZFezChLFDn4ew2uYM7kNyKQoCfRSXOBZE0Q7bsy0n8SLRP/AH0DjHo/977qeqE6yOWMnENsNrH+OdFyRESkj7/VYwDnMsrPXTsQR080aU7Y71B3BLd9/THu/Op9zyeefx64/XYgLs75t7/I4CBbXlKByb8s0eyusrYRk9/chBd/uR5qJS54dHGJafX5fNfPODXVOY55uK4Rp7ZPci41KODmgu6ua757kgTR5Q/1EAmaEgkEFB2rC2fb2cwx1GhqdxIReWPwVgQyGoQicsNfWduIqSP74NmiXZrR14frGn3fQIHS2tB2u004cCvHq8PJyGffUFbtEe2vSJLwzyVP4zfffeF6aGG/X2PWhTejNqkdFqW2DWkKTrWGjFrjSg7OApSDu7wbLaKfRbSTaH1pFex2W0D7Jtj7N1KXVCAiIiIicseMskSRg7/X4AvGTH6jjPRZ6Z00F4qsCXr7T0I98S8U/XMiA4xGPne3zGSh7cvljJxDughuQ7QcERHp429MBQCO1Dfjm33VeLZot+J15MzKPfjLyvk4u3IP2p50G9uaMAFYsABo0zq0G44MRO7X4qyURDz0wbea5R/68FuMystWbLcN6paBBcXlQksmivp4y4/4eMuPHo9lpyYiPTkeR+ubVQOhMpLjMWWEc3UikWUvA+UvaEokEFAmOinESm1nI6Ip4QQRkRIGb1lYi0PC+r1VKC6tAiBhWI8sDO3ZwXAQiugNf/esZNXo6wmDT0PjSQcOHxML3lLquNLTKTl9bJ5PQ07ksw/qloHi0qpfIuKPaW4jp/ZnFL9ws8djv71uFjZ0zYcNzoZuTV0Tzpu9yhIpONUaVwBw3uxVfhstDoeEwqU7hT6L6LHyzqQmsm/cG/jlh+uxaMN+VNYGb/9acUkFIiIiIiK9oi2jbCgnyRCFWrT9XkPByDnBzJn8gRiSm4n05HjNpRPTkz2X4jGSWSnYWRP09p+EMsOcc0mmHR79R9mpSXh8XOj754x87onDuuPJZTs1E6TYbc5ygLFzyNDcDnhudanf1wzNDf9vhogoGomOqby+rtxnLCen9mdM/up93Lhpqeux42f1R9u/Po648eMAr6yJochA5N02q6lr9Blf8udIfTPWl1ahoHeWR7tteUkFLnhmdVADpGQ/1Ta69pN3+0Z+bOaVZyHObhNe9tKIKRf1RO+O7VXbue77+/CxRt37RuT7Z5W2sxHMbExE0Y7BWxa1vKQCD334rUeHz7zVpUhPjsesK88yFISi54Z/WM8OHgFC5YfrsGjDfswp2uUqZ7epZ2PVymIkWo/fnJ3tkzI2Jy0J4/rl4OU1ZaqffVy/HKEGn93Rgombl+GBNf/2ePyse9/BscQUj/e7e6G1UnAqNa6KS6uEGi13Ldzs85zaZxE9Vt6Z1CqONmDym5swdWRvTBnR2+e7KDJrIRj712pLKhARERER6RVNGWXDMUucKJSi6fcaCrFwTvAOQzOanS3YWRP09J+EKsOc+pJMDR5LMikJRqCwkc+d0MaOScNz8dKaMtXyk4bnIqGNHYCxc4hdcDlE0XJEFPm8z4GDumVg474aS6+iEcmMjKkM27cNf13xArrVVCDBcdL1+J6n56HX/XehRQKK9/pO5tfKQAQAj3xUggv6nIotB44YOlZmZp8q3nsYBb2zPN47WAFSSuQEB2nJ8UhqE6eaSEBPtisjCnqdohpUZMb+jvZJIaLtr8raBleCD56jiCiSMHjLgtQ6IwBnhLrcIaE3CEXvDb8cILS8pEIxfatW4BagnsXIXz0AZ3rST7ZV+jxeebQBL68pw+3n52LJ1gqfzy4HdvlrWI3b8Rn+8cnfXH9/07kvnrrwFmzq0tfj/aaP7YvCpTs1G8CBpuA060YnkE4wtXSiIsdKy5yi3Vi04YDHDEjRRnmwUpxGelpYIiIiIopt0ZJRNhSzxInCLVp+r6Fg9XOCSN/NhrJqzaxbAFBT3+yRCSCQ7GzBzpog2n8SigxzLQ4JD32ovSTTtF+WZBKZQGhGUKDRzz1tTB72Hq7Dih2HfMqOyjsV08bkuf42cg6pPHpCqF6i5YgosimdA70n5es9J8ZCsHUgRMZU5HP68LJNWPDuXzyeKz7tLPzj3AkoPu1szB01AHu2Vyru7wmDu/oN8qmqa0LeX5Z71EP0WJkfXNV6rQp2gJQaCc4x1rduHQi73eYTDFdcWoV1e34OSiYwf5M2At3f7u8fzcGVou2vwv9sR3WdvtWCiIisgMFbFtPikPD4kh1+yz2+ZDvWPXSxriAUIzf8Io0o78a+M+gpD2ltE7B4y0GfernXQ01zi/IW5YCeJVsr8PkDF3nMEBnULQMXPLNas66JzY3445dv4+7177kee+SSu7Cw/2hINrvrscyUeNf7+2uoVRxtwLxVu3HPyD6a5ZSYeaMTaES9UjpRre+MqMra1o7WUXnZuhrlwUpxGslpYYmIiIiIIj2jrNZ9ZrAmcRCZSc+ASKT/XkPB6ucE0b4bI5mYrJ6dTaT/JBSfYf3eKqHAuPV7q1DQy39WDzOCAo1+7uUlFShSCNwCgKIdh7C8pMKjTnrPIRv31wjVf+P+Glz1q65CZYkoMqmdA70n5es5J1o92NoKRMZUeh7ejynF7+DyHZ97PH7n+Ifw6Rnnuf4uP1yPZ4t2Ke7vOUW7hepj5FgFI7jKvT3hb+m7YDtc14jx/Tu7/jYzwxjguyyjv0kbZu3vx36ThxU7lIP9QnHfEYqgMdGEE+6BWwDPUUQUORi8ZTEbyqo90nWqqaxtdAW06AlC0XvDL9KIckjA9LF9kdU+0W3Na/+Ng7TkeNWOl+ONJxUfB1oDejbuq/H47P6WDRy5+ys8svoV5NZUuB4b9/v/w7Yc36Cr6rpmV2CYiDlFu3F6dntdF32jNzpqDaAhuZnITk1EZW2jcB2UKKXiV/rOpLeN91kuUcsTn+xA+8R4Qw3gQFPrExERERFFm0jOKOvvPjNYkziIzGBkElYk/14DJZqxyqrnBD19N1kpiULv6V4uGrKzBfoZRL4jxaVVQnUpLm0N3gp2UKD8udVWT5Cgf5KspFInPeeQ7yuPCdVftBwRRSY9wSCi50SrB1sbEaxgE7Uxlcu++wLzFs+GAzbY3fbkYyPvwL8G/cbjPTKS22DRhv2aq8IYIXKszA6uSkmMw9AerW24cI/3uCdCMCvDmBy0La/mo2fSRqD7W74XARC24MpQZeTz1+7UamNF4jmKiGIPg7csRk+jxWgDR88Nv+g2stonYnz/zlheUoG7F27WbBwAyg0IvbzrplbX7tUH8dn8O1x/V7TrgMdGTcb/+gzz+/56slm5X/T9NfqbTjrw8Eclum90tBpAANBw0qFYNz1Zs5Q+s9J3xiFJuP6Vr4TeU+5oLd57WLAWnnb/dAzFpVUx07lNRERERCQiUjPKGslOQ2QFgWSbiNTfayCCmbEqFHQPUot2V3iVi4bsbEY/g/hAn54c7k5WDAoUGZxVq5PoOeRYo9hES9FyRBSZ9AaDiJwTrXheDUSwg03cx1Sa1n+F7i/MQbd1RQAAOyR82udczDv3d9jesafi64f16IBlJT8FXA8l/o6V2W2u+Di7x9+iAe/BkJ4c78qKaVbGK/dg9dH5Ofh1fo6uoEAj+7tDSgLG9++EUXnZrs9z3uxVYQmuDHVGPrV2Z2ZKAqrqmlRfF2nnKCKKTQzeshg9wUKBLJMnesMvuo1T2ycJd2pJkmRKulXvuvnUVZJwxfbVmLP0/1wP/ZB6Ckbf8hyOJyYLvb+cglPkRke+6B890aTZ6F9eUoGHP/rWJ22nR9Xh24jQagCpzfKTpSXH46nLz0Lh0h2G09h7f2daHJJQelLfreg3b3Up5q0u5brURERERERuQrEsQTDouc+kVpF6vKNFqLNNRPrx1jOIY9Vzgt5B6sPHxTKhK5Wzana2ppMOLCgux77qenTLTMbEYd2R0MauWFbvZ9DzHRnWIwvzVpf6re+wHq1LJgY7KFA+J6hROif8eOSE0HuLllNyesf22PVTnVA5IopeRs9tWq+zarC1EaLXoEDbY3Fz/g/D7r/f9beccWvib/+KL3IHar62xyntAQQneEumdqzMbnMdqW92tZeWl1Tg8SXq109Zu8Q4HG9sEXr/dI1Vfry5Hz29QY5ykgTv7XkHq+udtCG6v91XQPL+LvpbmShYgUvhysin1O6sPHoCU9/d6ve1kXCOIqLYxeAti3EufZfkd+nE7NRE1SAbs+vjL0AnvW08HJKE9YKNAzNkuEXHK9W185FKPPm/53FBWWtQU+FFt+LVIVcIvX9OWmvjRysFureiHZV4bV25aqP/9vNz8fKaMuFgJ7kR4a8B5E/b+Dj8Oj8bdjtMS8Xvnp5U1LCeHfDBph90Bny14rrUREREREROoVqWIBj83Wf6m1gSiyL5eEeLUGabiPTjrXcQx6rnBL2D1IEGoVktO9vMZTsw/4syONwOypPLdmLS8FxMG5MX0Hvr/Y4M7dnB78BsenI8hrrtv6x2gstYCpbzZuScsOVAjdB7bzlQg6sGdTFUrzNyUvHJtkqhckQUvYwG32i9zqrB1nqJXoMcDqBwqYH2mCQBL7wA3H23x8OHrvgdJnS4CHs7+D+/56QlYVjPDpi3eo/fslNH9sG/istRrZFxSI3asRIZF9Tr0LEGLNtWgbsWio0niQRupSfH47lrB2Jozw5YsaMSf3pvK+r8vK7GLZBMbxCPHKRldsD9kNxMzXaO3Ba+qSBXdTvhCq4MZ0Y+77az6DLbVj9HEVFsU54qRWETZ7fh8XH+O0AeH3dmSGbfyQE6gHrOpCMnmnH9K1/hbsFGlxlq6puxYoezI6LFIaG4tAr/2fYjrhuQg+Lnfo+1L92GC8o2oTEuHn8/73r0nfq+cOAW0BrE1OKQkNY2AZfmdxR63UdbDqo2+iUA878QD9wCWhsRga55LTeO5HSi2WmejZPstCRDAVGu90vV7uiywXnDMbRHB7/fJy3yvnvikx1ocZh120BEREREFFnkmeLe9wjyZIflJRVhqpkYrftMIxNLol2kH+9oEaoBEbXjXRFBx1vPIA5g3XOC3kFqeaBTrZZy30gkBKbOXLYDL63xDNwCAIcEvLSmDDOX+WbMWF5SgYJZq3Dt/PW45+0tuHb+ehTMWqX4nTXyHfndr7QHu3/3qy6e3xH9Ky3qYtUMNLsqj5tajoisRx4PWbzlIIpLqxT7yf1dk7yJXKOi5Toneg26a6HO9rckAStWAOef7xO4hbVr0eH9RTjRo5fQMXnsN3kY2qOD0P6eMqIX1k+7GJkp8QLv7PlarVVYAhnHUbL35+OYssicMUTbL/9mXXkWCnpnua7//gK3ZHoD76dc1AuLJg3F2gdHYHR+jitoaHz/zhjWs0PAbdQVOyo1A9Ql+G8Lhyu40krtoWg5RxFRbGPwlgWNzs/BizcMRHqyb2MrPTkeL4Y465BawI+3IyfE0pKa5fEl27FsWwXOm+3sGHr52fdx4U3jkH3c2bGzNbs3Rt8yD/8suBYnEsQbJLcWdHctbyi/96d+1ha3wbnGtNZSiAB8Or203s+9EWFGw0Z+j9H5OVj74AgsmjQUcyf092h0GjE6PwfrHroYU0f2UXzeu6NVNYAsNRFTR/bGlIt6aW7PuwOPiIiIiCiWiGTljYTJDmZPLIlW0XK8o0EoBkS0jjfgPOaRcLyNDOJY8ZygdwDIqkFoejWddGD+F2WaZeZ/UYamkw7X38tLKjD5zU0+KwlU1jZgssIgt97vSItDwpKt2oGLS7ZWePw2DtcJLmMpWM5bZnKC7nLdO6QIvUa0nJLjjSdNLUdE1uI+ZiEHyp432zdQVk/wjeg1Klquc4GMtSi2vyUJmDULsNuBSy4B1q4FEhKAdu2ANWuczxcUCB0T9/E/Pfs7oY0dT11xliuoSeRzTBjcVbOMWtssJy0Jz1830DW+9Nat5yA7Vbu9lJEcj7kr9wiPj/nTPqkN/nHtAFf70N9Sxt70BN53SElAz1OMX5f9Eal7enI8RuVla5YJV+CSlTLyRcs5iohiG5dNtCh5vd71e6t+SfUoYViPLAw1IYrbm8i63a76lFbh7oWbDAVqyak9JUlCZa2xjhF3lbWNuGvhJmTWH8VTaxbgt9v+hzaSs+Pom859cc31syHZ9McnjujbUXXNcyXynhrfvxNeW1eue3tq3BsRZjRs3N/D7FT8cXYb7hnZG6dnt/NZ2sF7vW9AeT1q+Xu3eMtBoW1yXWoiIiIiikXhXJbAbFr3BeQUTcc70oViaT+RrNuRcLyNDuKMzs/BiDM6YkFxOfZV16NbZjImDuuOhDbmzj0V6QcDWgeA7nxzE2zwTNCkNgAkD3SK9I1Y1YLicr+Dqw7JWe7W4T3Q4pDw0Iffapaf9uG3riUQAf3fESO/jUAGE0W+I99V1gq9/3eVtRje5xQAwMRh3fHksp2a+9duc5YzqqZerM9VtBwRWYfamIWcDco72FntmmS3eU4y13ONiobrXKBjLa72d+lhDCtZC8yYAWxyyyh1zz3AAw8AnTv7vFZt/6Unx+Pmc3MxZUQvw+0K0eMtm1O0G/8q3ofL+3fCqLxszXFBf9fEx8dpt5fMnnZQ23AS97y9GSUHj2DamDxdK9coBd5PflM5I5gEoKquCVPf3ep6rdnfc5G6H3Fb6lGNkXarGay2/Hk0nKOIKLYxeMvC4uw2FPTKQkGvrKBtY3lJhc9FTK0BEme3wW63GQ7cApyNg837a/DSGu0ZfKIeXTkft32z2PX3J2cMx18vvh0/t8sw/J73vbMFjS0O4QalfNFPa5tgSvBWh5QEPHlFvsf+rzGwXrkslI0jPYMvagFkVorUJyIiIiKyGistS2AGsyeWRJtoO96RLBQDIpVHT5haLlyMDuIo9VG9srbM1IEWPf1gQOsA0ONLdnhkldIaAIr0wNR91fW6yq3fW6W51A8A1NQ3Y/3eKlcfp97viJFzoZnfQ6XvyIEasd+he7mENnZMGp6r2S86aXhuQAGLSfFxppYjImvwl43VBmc2KPdAWUD5mjSoWwY27qsxfI2K9Oucv+uDP21aTmLektkYNru49cGUFCAnB/joIyA/X/P1evefnvJqx/uFz0oxp2iXT/nquia8tq4cr60rR3ZqIh4fd6Zmm8shSVhfWoXDdY0e9dAKmPndr7ri2ZW7NfeJEfJSzgCQ1ylN+HWBtNfVAiUDYeb9XjgCl8IVNKYl0s9RRBTbGLwVw7Rmakx+cxNuKejuE3FvtEP41PYJeGJ8PkblZetKX6qmQ90RvL1oGnpXHXA99sffPIAleRcE/N4/HdM382z62L4YnZ+DFoeE7NTEgLKKZabEo3jaxR6dNC0OCYVLxfaZFRpHgQ6+WC1Sn4iIiIjISjjZIbbweFtLsAdEqgUnbomWCxcjgzh6s4kYEdg2PF8lSdrDvaEITBXNIKZXt8xkXeWcKwb4V1zaGryl9zti5FwY7O+h3v0kmzbGuZzP/C/KPDKh2G3OwC35eaN6ntIOX5ZWC5UjosgRSDZWpWtSoNeoSJ6A4e/6oHaFj3O04P41C3DnV+97PvHII8C99wJZ4kkY9O4/PeW9y7Y4JLz99X6/r6usbcTkNze5lm0ElAOa3bkHNysFzNTUNeLhj0qE6m3Uy2vK8MaNg4XKTh3Zx6Otp3e5Ra1ASaPMvt8LJHDJaNvSitmuIvkcRUSxjcFbMcrfTA0Aroh79waY0Q7hZudqhrrSlyqSJFxdshKPrHoVGQ3HXA8PvntBQNm2jLIBKFy6E7/+ZQ3ya4echjlF+mcRyM2fp644y2d2neg+mzqyD97+er9lGkdGWTFSn4iIiIjIKjjZIbbweFtPMGdyZ7ZLNLVcOOkZxDGaTcT99f6Oh9FtqAXz/FTbaHrmBT30ZhDTQ//SfqJ5SzzL6fmOGD0XBvN7GMgSiNPG5OHekafjqWU7UF5Vj+4dkvHwmDy0TQg8G9aDo/tiwXr/g/QPju4b8LaIKHSYjdU4pXaC1vVh+ti+KFy603XNiW9pxpUlq3DX+vfQ7Uilq6zUpg1su3cD3bubWrdA2jreZQDgjXVlusbkHvplqeMVOyoV20DuvIOb3QNmlpdU4O6Fm01fMtGbBGDKO5uRnhyPo/XNqtvLTk3ElBG9PB4zMl5p9rL1wbjfMxK4FGjbktmuiIjMweCtGKWnUeLeABuVl20opWx1XRPufHMTbi7obqi+ADB0/za8vehh1987Ts3FtF9PwdZOpxt+z0DJDbX1pVUo6J2F7lkpQq9LbxvvsfykVpCV6A1X96xkrH1wRNAaR8Ga0anEipH6RERERERWwMkOsYXH25qCNZM7O1VswpxouXATHcQJJJuI6ECTkW0EGlQWLMHOUqZ3ab9zunfAPJT6fd9zuvv+ZkS/I/K5cPKbmxTfW4L6uTBY38NAlkBcXlLhsRTnF7uBFTsO4fFxgfd5bT1wRLhcQW/xLDFEFF7MxmqMv3aC2vXBbrfhnjfW45HVr+L3m5a6XlvVNhWbOvdFmxefx0UXDwxq3fSUUyqTnhwPAH6XNvZ2pL4ZX+4+rNoGcqfWHtJqQwXDsYaTrv9Xu2d6fNyZPtf+QIIdzQqUtML9nlltS2a7IiIKHIO3YpSehoV3A0ytISFi8ZYfdb7CuYb4pK8/woOf/8v12FMX3ozXfjUeJ+P0f4XtNuDGYd3w+pf7dL9WzR1vfoOnr+onfHN007ndcU6PDoqdRt5BUlmCM2pPbZ8UUONIKzhr2bYf8ejiElTXtTb0zZrRqYaR+kREREREyjjZIbbweMcOeea9VgBJToRlWhPppzCaTUTPQJORbQQSVBYsoQoo07O0nz1ObDtq5UT7sjbvr/H7vNr5MFjfQyNLIC4vqVAMQqusbfBZrsqd6KTK4r2HhT5H8d7DDN4iiiDMxqqfaDvB5/pQX4/RK9/F1gWzkHSoNdNW4UW3YtUFl+PBqwZhVIiWchYpB0CxjN6gLXcfbP5BOPmDUnso4BV4DLDBGbCW2MaOytpG1+Na90yBBDt6v7bFIWF9adUv12Fnu2Nojw6WX3bQqpMViIhiFYO3YpTeRol7A0ytISHyHlV1TchMifcIAtJy1bcrcdvXH6Hvz+UAgJM2O2665gmszR2gq/7u/jiiN87p0cHU4K3jjS24a+EmTBqei+zURI/GoZJ3vjmAP1zc26exozRDIiM5Hmlt26D2xMmg3Zhpzd7YvL9GcRZhhUkzOrUwUp+IiIiISBknO8QWHu/Y4D7zHoidTGtGsonoHWgyso1QL1ElEpwTyoAy0aX9Dh/X7gPTW05J00kH5n+hnuEKcAZQ/emSMxQzXYkwmtVm2pg8/OmSM7CguBz7quvRLTMZE4d1V6xHi0PCQx9+q/n+035Zrsp7+U7xpYxEzw/RdR4hinZWyM4TSQwFpFRWAv36AYcOAQCSAEhduuBQwUXYeNeDGNk5Gw+b0P4WrduIMzr6Lff4ku0AbKZnuKpvatH9Gvf2kGjbKDnejvpmh+5tKZEA1NQ3Y8EtQ9Amzi50z+QvKFJNRnI8BnXLQHFpFQ4da0D54Tq8vq4MR060ZgCbt3oP0pPjMevKsyy97KAVJysQEcUyBm/FKKONErnR5d6QKNpRiVfXlQu/xxX9O+O1deWa2z31WBU2PH+j6+/qtqkoHHEbPjrzIsAWWGMl95QUoc9vAxAfB+hpp87/ogxjz8rG0m8rNcspNXbUZlHUuM2QMOPGzLszsKauCXcvVJ69oZaOXiaBUfdEREREROHCyQ6xhcc7eEQz2oRiG7GYac1IxjG9A01GMpaEcokq0eCcUAaUedfpi91A0c5DPnUKxX5aUFzukdlKiUNylrt1eA9D2wgkq01CG7vQdtfvrfKbCaWmvhnr91ahoJczK5bepYzOyc3EvNV+q4JzmJ2HKOLEYhvBKF3thKw2wH33Aa+95lnopZdgu/FGdExMxJgw1G1Bcbnfcv6SCBg1uHsm/rfjJ12vcb/Olx+uF3rN1FGn48llO3Vtx58/LNqMWVedhfH9Oys+790mnz42D3cv1LfSUE19M4Y8VeT3mn6kvlkzq6a3cNzvhXqyAhERaWPwVozSmqmhxb3RJTckhvXsgMG5mXj4o2+FMmqNzMvG4NxM3P/eNhxvPOnz/MV7vsKrHxR6PnbbC6hJThOspTZ5eUH32axKJOgL3JKt3HlIqJx7Y0d0DfC0tvE4cqJ1H+u9MVPqDLTblI+/6HeCUfdEREREREQUqfRltAnNNmIt01qc3YZx/XIUs37LxvXL8fj8egeajGQsCdUSVXqCc0IVUKanTqHYT/uqxQaBRcspCUVWm+LSKuFyBb2yDGWOcfiLcvuFaDkishb3NkJlbQOqjzciMyUBaW0T0OKQoratoJdIOyGz/igynp4BvPsGcORI6xMXXAAsWwYkJ4etbgBQXmX8mhaIjOR43Hhud7y2rkx45Z2M5Dau63yLQ8KiDfv9viY7NREdUhKE3v+i07Pw2feHhcasjpxoVl0xRq1Nfvv5uViytcLjcZsNkDQ2qGdZSqsmQGhxSDh8TCwA0IzJCkRE5J+xPNIUci0OCcWlVVi85SDW7T6MdXsOY/GWgygurUKLQ/J4Xn7MH3mmRnaa+EX37a/3K7736PwcrJ82Eu0S1eMBbWidKTkqLxsvXDcQiW4pxE85Xo15H8/yCNx68Zyr0P3B/5gWuJWcEAfHL/trdH4OnrtuIMxuLzWcFEvz6t7YEV0D3G634a1bz8HcCf2xaNJQrH1whK7ArTvf3OSzHTP6ahh1T0RERERERJFG7T5ZDlBZXlIREduIdC0OCUu2au+HJVsrPPqjjAQxqfWDZaclKQ7wycE8gO8Cc2YF8/gLzgGcA37yZ5cDpdS26N73Fqo6hWI/dcsUG0AXLadG73dEP9FOOGc5PZljZB9uPii0BdFyRGQ9cXYbjp5owtPLv0Ph0p2Y+u5WXDt/Pc6bvSom2xVKY2Na7YTM+qP4x5Knsemf1+OMl591Bm717QvMmgU0NACffRa0wC1AvA3z8ZYfglYHLTOvPAsJbewY10/8mjesRwfXdV4OLPTn2iGnoaa+Sej9O6QkYsdfR6N9klg+EgnAwx99iya3sTqtNvnLa8owfWxfLJo0FHMn9Mf0sX01A7f08r5WW8HykgqcN3sVCpdqZz4zo21JRETimHkrAihFg7tLT44H4BnpLTpL1H2mxoLiMiwr0U6FqpVladV3Pylm0pJJAC47OwfzVu3G6+vKXRmkbJID/3r3MZxfvhkAcNJmx/whV2JuwQQ0xJsbzV3f1ILrX/0KmSnxmDE+HxkpiaYEL+mhNONQNPipuq4JdrtNNeWrGtHMXkYx6p6IiIiIiIgiiZGMNqHaRiiygVmJyIQ27/4oo9me9GY1M7pElegymXqXfwxFdii9dQKCv5TXxGHdMWPZTs2BVJvNWS5Qo/NzMOKMjlhQXI591fXolpmMicO6I6GN+hzoppMOofLn5HbAvNWlfutwTq5zvxpZyuhAdZ3Qa0TLEZH16F1ONVq1OCTMW7UHr68r81itJCfNuRSedzuhy9GfcOPGT3D9lk+R3OyWbei994ArrwTsocl14a8NIzvWYGBZGAE2AGnJ8UhqE+cRZOXe1lxeUoGXNTKieutxSnvX/4teu7pnpQhngSzaeQizr7bjuiFdNTO1uquua8bQmSvx1BX5GJWX7bdNXrh0J9Y+OAJxdhsWbzE/wNlKCRDUziHezGpbEhGROAZvWZzIRVQpPaeehrq8/OGhYw1+g7cA5UaG3CHpz/wvPBtWPasO4Knl83DOD9tdj4278Vns6NjD73t5kzvm6ptO4ugJ9SAywNlwu2vhZlx8xim6t2OG6WP7enTiZaUkCr/WSCNPNLOXEZkp8Yy6JyIiIiIioohiJEAlFNuIxQFZIwEqgQQxyf1govQGfOkJvjPy2YMdKGWkTnK9grXcZ5zdhrbxcahvUh/ITo6PM2VbSsfvlbVlqvt25rIdmP9Fmcfk0CeX7cSk4bmYNibPo6zdJlY/uZyRDHNNLWID4aLliMhaQhF8HgmWl1TgoQ+/VR0bu3vhJtx+fi5eXlOGAQe/w0dv3u9RZlt2L9gn34H8R6cCcXGhqjYA/22YYJ+dJQA3n5uLOy/siY37anyu2UYSAbi3q4KxxPORE81YX1rlN1Ort+q6Jtz55ibcO7KPrjZ5MJIVWCUBgp7ja1bbkoiIxDF4y8ICyZZkpKEeSKNKb3BQSmM9/rnkaRTs24LElpOoi0/Chq5n4vYrH0VzXLzw+7iTAEwYfBrmFO0Sfs3K7342tC2j7Dbg1vNyUbh0p2cHW2oS2iXG4Xij/9kU5Yf1z4wLZlT/jPH5UX0jSERERERERNHHaIBKMLcRqwOyRvujgh3E5E404Etv8F0gnz1YgVKB9A/qDYwTtaGsWjNwCwDqmloCCrYE9B+/mct2KGYAcUhwPe4ewKX3nGAkw1x2aiJKfvS/jexU8YmkRGQdoQg+t7rlJRWY/OYm1eflNtPXqzehePMiZK9c5vH81Bufwq//dCNGn9XJtDqJZtyUjcrLxr0je3usUAMAmSkJqKoTW0rQn4zkeEhQTv4wp2gX3v56Px77TZ7PKi96x/oykuMxtEfrd03vtSu9bbzHPlBTvPew4QQFr38plq1r3Z7DOHSsAVkpichOTcJPtdrZ0URZadlB0eM7fWxf3FSQG1X3HEREkYDBWxYWaLYkvQ11oynnAX2dmXd89T6mffaG6+9VPX6F6ZfchYNppwq/h5JL8zvitMy2Ab1HsDkk3+xjAHQ1Ahdt2I8pI3rrajQZieoXmeVxx/m5GHO2eTc5RERERERERKEQjKwAgW4jVgdkA+mPCmYQk15Ggu8C+ezBCpQa1C0DNhv8LlE4qFuG6dtWE4pgS73Hr+mkQ7GPz938L8rwp0vOcC2hWC04IC+Xk7OzqAUpSPDNMJedJtY3KlqOiKwlFOdDKxNZAWbgDztx7db/4ortq9BGcrge//62P6L6wen4W48OprYT9C53rVQ+vW08bi7IxWmZbTH13a0B12nKRT0xddTpAIB5q3ZjTtFunzJqgcl6vzu//VUXj/2pNzvqzQXdFevny9gxUwtgUzJv9R7X/6f/EvxmRjY0Ky07KHp8s9onWqbORESxJDSLOJMhZjWwRd9HblQBvs0gfynnRTokUxuO46nl8zwCtxYMGINbrn4s4MAtAPi05CcULt0Z8PuEg9wITIr3/5OsrG3EhrJqXe8vdwZqNbW8D2t2WhJevGEgXrxhIHLSPI9vh5QEPH/dQJ/070RERERERESRwN99sg2Bz5LXu41YHZCV+6PUBsaUAlS8Xz+sZweM798Zw3qaOyCrh57gO1mgnz0Yvi6v1gzcApyBXV+X+/ZNtTgkFJdWYfGWgygurUKLw4x8FaEJttR7/BYUl8Pfx3NIznKyzHZi2a5EyykZ0DXd1HJEZC2hOB/6E6xzvQitc3Wvw/vxxruP4cO3HsA1JUVoIzlwaNgFwIoVgCSh10vPAjYb/rPtR9PqLWds9K6THBi1vKRCqPzRE814tmgX9lefCLhOAJCRnOD6/7e/PqBYRv70T3yyw2Nf6P3uvLymzOdzytlRs73GlbLTknyCxaaM6I30ZPXVeOT2cqAB6+lt43WFfx39JeArzatucl1F30vrs+llxm/PCucQIiJSx8xbFmbWxVHP+xhNOT8kNxPpyfHKEeyShDHfr8NjK19Gx+OtHTvD73gFB9KzxT+IgBqTUsqGgwSgodnhtxwAVB7V14gXme0w79oByEhJVJypapVZrERERERERERm0JsVIBTb4GCKMXqXKgqWaAm+Ky6tEi5X0CvL9bfezCN6BJKhTJTe47evul6ovHu57FSx365crsUh4aEPv9UsO+3Dbz2yuWWliAV+iZYjImsJxflQSzDP9SKUztUX7/kKV5aswqXffwm72165fOLf8eBjN+LUnh2CUm+9GRtFyr/8Ranf7dp/yY6pFbZTuHQnXllbhgmDu+rO6urvO6ZEaVlvPdlRbz43F3OKdvk8LrefL83PBiQEtJThzQXd8WzRbuFMWq6EC23seOu2c3D4eKPrM6zYUenzfVJztL5ZMcOZXmZ9h8N9DiEiIm0M3rIwI40kd0YvsmqNKsDZMaPU0Fqxo1IxcCun9mcUv3Cz6+/SzM545Nd3Y/1pZxv4RP6Fbo5HeBUu3Ym2CXG6GmVGA/OA4KXiJyIiIiIiIgqXQO6Tg7GNWB1M8bcEktJyg7JwDyK7MxJ8F8hnDx7R3rXWcnImEe9Xqi3J5E4k+C4UwZZ6j1/XjGSh8u7l5N+41mCveza+9Xur/C71VFPfjPV7WwPpVnz3k1C9Vnz3Ey7oG/hKCEQUWqE4H6oJ5FxvFvdz9XVbPsVT/33O4/lP+5yLF4ZejW05fVzn02DVW+9y1yLl6xpbNLdpAzBpeC5eXlPmNwip8miD4HKEnkFxWt8xtXqrLevtb1xJqR3nTl7G+bV15XhtXTmSE+J0L2Uot5+njOiN07PbCwdd4ZdtVNY2wm6zYXz/zq7H5TFUtSUpvd8j0Pacmd9hI+cQq0yUICKKBQzesjC9jSRvgaRW925UaXWGjcrL9ulosjtacMPmZXhgzb9dj70x8DLMvOgWNLZJQChkpsSjuk5sLWsryUyJR01ds+bxrqlrMnRjoWe2AxEREREREVkHO82DIxT3yaLbCOeAbDjpHfyUWWEQ2Z2R4Dujnz2YhvXIwrzV/jN/DOvhDBbSm3nEnZ7gu2AHW+o9fn1ObSf0vu7l3H/jgP/fuJEsaEYyghFRZAlF8Lm3QM71ZhqSm4lRR/filmXzMWy/Z2bCX98yD9+f0h34pT6P/SYP+KVewai33oyNZmTe/OeE/risf2cMOC3DbxCSnvFE7wBmte+YFr2fT60d5857VcD6pl+C27wayhnJ8aipb/bbfh6dn4MRZ3TE0JlFusYODx1r8LkXG9QtQ3VJSm/e7Tk993V6fnsAhN5XzznEShMliIhiAYO3LM5II8ls/jrD7h3Zx6Nu43Z8jhn/fQ6pTc5OgJKOPfHCOVdjad/hIaw1MP2yM5GdmoRXvijFyu9+Dvr20pPj8dy1A3H0RDMKl+o/XnIn0PSxfXH3ws2aZQO5sYiz2zAkN9PViNtQVs1OfyIiIiIiIgtjp3lwhSLbtOg2wjEgG25Glhu0yiCyOyPBd1ZcanFozw5IT47XzPiUnhyPob98n0MZfBfMYEu9x+/rfdVC7/v1vmpccEZrhit9v3H9WdC6d0jGFwKJVrp3EMscRkTWFOpJ2pYINv7b3xC3fDnmr1zp8fCkKx/Fit5DXX9nJMdj5pVnYXR+DopLq4JWb70ZG7PaBb5c7U/HGgG0Hv831pWhcOlOw++nldVV7zZE9occtFR59AQKl+40vJKO9MsLby3ojpF52apLGSpdWzfuq9Gd9KH8cD3Om73K472NJI84dKxB932d6G9v3qo9ePvr/cLvK3IOEW2rcZIREZF5GLwVAbwvolkpiYANOHSsEYX/2a7aQDCjo0qkM+z1L8sAAKkNx7Ft7gTX8/XxiXjqwlvw1oBLIdnsuOj0U/Bd5bGQBaHtr6rDFQM6Y1jPDvjPlh/xh3c2uxp1RozKOxVFOw4BUO7AmXXlWSjo7Zzl9uv8bLy2tgxPLhNrOLt3Ao3Oz8ELdhse/uhbzcaf3Chbv7cKdptNuGHETn8iIiIiIqLIYbXsQu7YUR8csZY128hyg5YYRFYgB+Y8vmQHKmv9B98Z+ezBFme3YdaVZ2HyL9mhlMy68izX9zHUwXfBDLbUF1gl+ntUzngh8hvXmwUNAO6/5AwsWL/f72vuv+QMgboTkZWFIvhcFrZgY0kCioqARx4Bvv7a+VibNjgw7hpMzb0U37RpDTpKbxuPmwu6Y8qI3gFdo0TpzrgZwNiUzD1rYpzdhqz24gFhRrK6xtltuKkgF6+sLRP+nGr3B/6WSDTi4y0/Ir9zGjaUVWNUXrbQtVXvsU5sY8Ocol0+jxtZ9af8cD2eLdql675OtL5KdZTf97nrBiAjJdFnv2idQ0Tbag4HfJJZcLyRiMg4Bm9FCKWLaHFplVBwTyAdVSKdYUfqmzFs3za8+c6jHs+N+/0c7Mk6zfX36u9/xj+vHYDHlpSEZDnDOUW7cXp2e4zOz0GH9okBBW7ZAJQcrMVz1w1A4dKdfjtwVuyoxHOr9wi/v/d7jM7PwYlmB6a+s8Xva+9+axOOnGjdn1oNIyt3+hMREREREZEnK2YXknFiUHCFckA23IwsN2jFjFWePD+JpNIpNahbBmw2aPZZ2WzOcqE0Oj8HZ3dJxbYfan2eO7tLqsdvPBKC7/QEmgoHVvXsgHkCfX9q9Rf5jevNggYA728UW8Lp/Y0HcOvwHkJliYhCHmzscAD33w+sWwds2OD53J496NqtG94ROLcHs956MzYermvUvQ1v3TI9syaK1nvqyD4+WZlEs7rq+ZxK9wfpbeMxvHcHfLKtUqiuelTVNWHqu1sBiN+H6D3WjScDj7qzAeiYmohFG/brvq8L5Dclb2vKos0eS1CK7CvRttpdC32D/TneSERknD3cFSDjQtFR5e+1px6rwtPLnsWitx9GnOQAAHxw5kXo/uB/PAK3AGfj4/El6pnCgmHah9+ixSEF3FknN0QyUhKx9sERWDRpKOZO6I9Fk4bi8wcuQlrbBCzechDFpVVYts0ZIOUeUKVl+ti+WPvgCJ9GTHaqWKPMeztyw2h5SYXH4/46/QFn47DFeyFxIiIiIiIiCgs9AQ6hJE8M8q6b2v0okRZ5UBDwzVGklhXCihmrgNbfRmWt5wDtT7WNir+Nr8ur/U42lCRnuVCa9O+vFQO3AGDbD7WY9O+vXX/LwXdacsIYfLe8pALnzV6Fa+evxz1vb8G189fjvNmrAj5PDe3hDKzSkpEcj6E9jAefyVnQtLhnQQOA8qp6jdKtRMsREQGt53q1qQI2+J7rDWlpAW68EYiLA+bMcQZuJSUB99wD/PCD86LYrRuA1iDY8f2dq68oBeUGu95yxsZsr+tgdlqST+BKoG0Smw247pxuHo+Jfr4pI3r5jGspjUmpEfmcavcHR040ByVwy5u/+5AWh4Ti0ipUHj2BzJSEoNfH27VDTvPIyupN7b5uSG6m3/aGP95DfiL3bIG0wTjeSERkHDNvRbBQdFSpvlaS8Mcv38Z9a99yPbRgwBg8fcGNOJaYovwSOCPhQ6mmvhnr91aZ1ll36FgD4uw2DMnNxIayahTtqMTdCzd6BKTZbWIZcOWZozcV5GreWKjNPFWjFqVv1SUFiIiIiIiISJkVswtZORsYRS59y9UZy9YVbEZ+G1+WHhZ67y9LD6OgV5b/giY40dSCFTsOaZZZseMQTjS1oG1CHOLsNuR3TtXsc8rvnBqW4DsjGehFswqKLC850yuwyp1oNrDR+Tl48YaBeGzxdvx0rDUoMDs1EY+PO9On/i0Oh2p9jJQjIgL0Z5nSraUFeP99oLAQ2L699fGUFKC0FOjY0Zr1hnjGRqPjPTJJAkb8/TOP65Hez+c97mNWZkqtNlCoaN2HBGPJRlFyG6LxpNh11/u+bsWOSs0MnEaI3LMF2gbjeCMRkTEM3opgoeioUtpGl6M/ofB/z+OivRtd5a66/mls7JJneDvBVFxahamj+iA7NUkzsl3Eqe2TsLykAo8v2e4zi1ImGkguAZgw+DT8Z9uPig1jueGt1Qmk9d7eDSMrdvoTERERERHFItGBEitmFwp0YpCeQSKKLaKDn0BoBmP1MvLbOFhzQui9RcuZ4allO4TLFV5+FppOOrByp3aw18qdh9B00oGENs5FIELRp2kkmE5vsJccWPX4kh0efY7+liMysuysTfCrfFxwJQDRckSysrIyFBUVYcOGDdiwYQO2b9+OlpYWFBYW4tFHHw139SgE9AZaC2lqAsaPB3bsAPbv93zuu++A008PsNZBqrcXkaVwRdouZ6ksWSxTuh4Z/XxGrkVqn9NfGyhUlNpaatf2YEpJiMP5fbLQ85T2GNazA4b26CCcKdn9vk5uy2hplxiH440tuuvo754t0GBDGccbiYj0YfBWBHNv7CmRg4PM2MbkNzch4WQzPn39D8itPgg7JDTGtcF7Z43CUxfdgvqEtsLv2TbejhPNoZzdJWHFjko0nNTfgJHJnUY1dY24a+FmU2plAzCnaJfr78yUeFzRvzNG5mW7OidH5WUjPTnecGS9e8PIip3+REREREREsUbPQIkVswsFMjHIyCARxRaRwU+Z0cHKYAUQGvltdEoX64NRKhesz6F32b0FxeV+JzI6JGe5W4f3ABBY8J3o59YbTGc0q6CeoENAf4CYWnl5KU7v8j+qTDb1JlqOSDZ37lzMnTs33NWgMNN7zlPV1AQsWAA89RSwd6/zsYwM4N57gT/+EUhPt2a9TaiHWttlXL8cvLymTPP1atcjPZ+vxSFh3qrdmFO02+c5+Vr03HUDkJGSKLyvrBags27PYRw61oCsdol4fMn2kGcEO9Hcgk9LfgLwE+at3oOctCRMH5un+75OJCjueGMLMlMSUFPXZOhzqh07reQS3m03LRxvJCLSh8FbEW50fg5uPz8X878oU+womVO0C29/vT/gjtBrtq3AM5+23px91TUf0349BXs7dNH9XqEN3ALa2O0BR9ZLAKaPzcPDH39rVrV86lNd14xX15Xj1XXlrs7rtLYJAaVEdW8YWbHTn4iIiIiIKJboHbS3YnYhoxODjCxfRuSPkcCZYAUQGvltFPQ8Bc9/ttfvawp6nuLxdzA/x2mZYhM05XJ6g71kRoLv9HxuvcF0gWYVFKE3QMxIQFmXjLb4Zl+N37p0yRCfiEsEAFlZWbjsssswZMgQDB48GK+88go++OCDcFeLwkBPoLWP2lrggguAffuAGrdzVW4usGULkJpqSh2VBFRvEym1XQZ1y8AFz6wWGsNSux6JfD7nqjI7VFeokbc/ZdFmj/FGf20MqwXozFu9R/drMlPice2Q0/Dc6tKAt+89Vlt5tAF3L9yE28/PxctryoTu61ocEtbt+Vloe+P65eBfX+7TFVQl83fslJJLpCXH46nL81G4dCfHG4mITGYPdwUoMMtLKvDyGuXALZncEbq8pEL3+7ccr0PVXfd4BG5907kvJlz7lKHArUBd0b+TrvJpbdvg7a8PBBxZf0GfU3DwSL3pa0urqTjagMlvbsK/i8sNvd4GZ4PavWEkd/rLz3uXB0Lf6U9ERERERBQr/A3CA85B+BavG3w5wCE7zbNjPTstKSwBT/LEILU7R6X7UaOfnUiEPFg5vn9nDOvZwW/GI+8AnUD6zdzJvw0t3r+NoT07ID05XvM16cnxGOo2GBvsz3FJXrbOcqK/W99yo/NzsPbBEVg0aSjmTuiPRZOGYu2DI1QDt/R87qyURKFayeWMZhVcXlKBglmrcO389bjn7S24dv56FMxapXgc9ASIGSkPAFf07yz0OUTLEckeffRRfPLJJ5g+fTpGjx6Ndu3ahbtKFElOnAB69wbS0pxBWjU1QHY28Pe/A8ePO7NvBTFwK5RaHBKKS6uweMtBFJdWKbZv4+w2DMnNxKntk3DoWAMWFJfrXnZQb7Yr+TqqFrjlTin4SKuNIdIGsrrqumac2yNL8z7HKHl3LtlagX9OGICMlASP573v65aXVOC82aswTzCQbMnWCtx+fq7P/aLWUJ/SPZs7+fuiNCZ6tL4Zdo43EhEFBTNvRTCtzk93Wqm9Nb39Npr//BCuP7DP9dClN/8DO0/tYbTKAevWIVlX+VsKchXTv+r1+a6f8fkusSh3M31aUqn7NVoNo1Cs705ERERERES+AsnqYpWlXgBj2cBCkdGGSIvRJfH0iLPbMK5fDl7SWPJoXL8cj/ePs9sw68qzFJekkc268iyPLAzB/hxHTohNXJTL9e+SjgXY77d8/y7pio+LZAox9LlFP/4v5YxkTlteUqF47CprnZMyX/QKsNUbIGYkoKxNG7G52qLliIgCcvw48OKLwN/+Bvz0U+vjAwcCa9cCbSM7C6D3Ur41dU0oXOo/Q6RSJkm99GS7Eh1LVOOvjaG1xJ4oI1mjzHa4rlH1Pkd2Rsd2+O6n47rfW77fmb6kBDVuAVEZyfGYPravR+CW3pWEauqa8PKaMjx33UBkpCR4fB/vXrjJtX2ZyBLV/r4vT3yyA2sfHMHxRh2CteQ5EUUXBm9FCKWTush6xzK5YfDGujJktU9UvDDI2ziy7yAuvbgfACAJwMH2p+DRX9+F1T0HB+GTiZFTbC7a4L8zCACyUxPx+Lgz0XgytEs0hoPd5jkTwl/DyEqd/kRERESxoqysDEVFRdiwYQM2bNiA7du3o6WlBYWFhXj00UfDXT0iCgGjWV1kVlnqBdA/MSjQz04UqFAtibdkq3bWqyVbK/Dn0X09+mBG5+fgxRsG4vEl21FZ2+h6XO7bcv89heJz6A1i6pQhNtFStJwSI5/78PFG1fLu5HJDcjMVlwZyl54c78pQ0eKQ8NCH32q+97QPv/UY5Na7b40ElFUK9hWLliMiMuToUaBbN+d/3Q0cCHz2GdC+fViqpYe/QAvRACzvJcKNBOe4c1+OTq5j5dETqK5rQma7RGSn+tZVz1iiGn9tDLk989CH3+pewebmc7th8dYfUV0XmpVv1JzaPgnDenZQvM+RGQncclfjtW9q6ptx18LNeNFuw6i8bENBdnJwXeFSZ0CV+7F/wa4/uEq03SWPN//tmn6A5Ax+43ijsmAueU5E0YXBWxFA7aQ+Jl8sjbm7wqU7Pd5DvjAsL6nAE0u2Y9iXy/DoqlddZY6dko1RN/wT9QnhmwEhX+IHdcvAf7b5T/0+fWxfXHdONyz8ah++cksbHko2ALcNz8X8L9RnW5qxDQCYd61nNL1Iw8hKnf5EREREsWDu3LmYO3eu/4JEFLWMDMJbmZ6JQdH22claRGaxhyKAUGRgNNDseoF8DtHZ/vLSR5VHGxQHD90Hjd3La312rWV5gnX8gnHeca/V+r1Vfgena+qbsX5vFQp6ZQHQv6/0HgsA2HKgRuizbDlQg6sGdREqS0QkrKYGmDvX+U8O3OrVC3j4YeCGG4B47aWCrcJfoIWeACz3rFUjzugYUAYs94xJK3ZUqgYYeQeFmDlBQuu95PbMvFV78Pq6MuFsnkYDt1IS4jBhcFe0TYgTXmJQjfv11/1zzCnaFdD7inrow2/RPinecJCdWnCdkWQOot8XpfFmjjv6UjtfeAd2EhEBDN6yPK2T+qvrygN6b/nCcPv5udj5rw9Q/O5fXM/tPKU7Zl14M9b0GIS05HjU64yUN1N2WpLftPPu1pUexpPLdvqsyx0q7jMjB3XL8GlAe2fKMrwdRmUTERERRYysrCxcdtllGDJkCAYPHoxXXnkFH3zwQbirRUQhZGQQ3upEJwZF42cnaxCdxR6KAMJQZNcz+jn0zPb3t/SRBM9lduLsNuR3TtUcbMzvnKo4SBjM46f3vLOhrFooGEseFC0urRKqU3Fpa/CW3qU1jSxT2yLY6ShajshMjY2NaGxszYpXW1sbxtqQqXbuBPLyPB+z24HLLkPLe+9jw4FaHNp+KCKy8vgLtHjuuoEoXKovAEsOrFlQXB5QBix5TAiAZvBYhVdQiJkTJPy9V5zdhntG9saUEb2wfm8V7n5rk98gLqMZt+qaWvDaunLcO7K3ode7U1pC8PUv9SVnCGTs70h9M9btOWzsxW6U2pl6kzkY+b4wEElZKJY8J6LowuAtC/N3UgecjQFJMrYWtASgTctJ3HXlEKQ11rken3XBTXhl8OU4GdcGNnjOKgu1KRf1xB8v7oMLnlkt/JpV3/0cxBppmzqyD6aM6OW6yCpFtcvrTBs5Zndf2BM2m7O7ZliPLAwNQhQ7110mIiIiMp/30ohvv/12mGpCROFiZBDeXSTfqwX62YmU6JnFHooAwlAEiOld2g8I/mz/ppMOrNx5SLPMyp2H0HTSgYQ2dkP1MnL89Aah6Q2+c0gOofLu5Ywsral3mdqfj4ktFylajshMM2fOxBNPPBHuapCZKiqATp08Hzv7bODRR4GrrsLyHT/hib+viZilwuQlcbUCLaYvLkFVXZOh999XXa/7NZkp8biif2eMzMt2XefOm71KaHxJDgrxdx2VaQUf6W0rxdltKOiVhWt+1RnzvygXeo1RizbsR3rbeOFMX95uLeju833858pdupZ/nD62L3LS2uKuhcrtDhE/Hjlh+LUyMwL1RL8v7hiIpCwUS54TUXRh8JaFiaRblxtS3p2fIvr9+D1mLf+nR+DWxN/+FV/kDnT9LcF3DeZQKuh1Cjbuqwl4Pe5gS28bj5sLcnHnhT0VO9O9L7pK60yLWPT1AVT/cmMwb3Wp6Tc6XHeZiIiIiIgoePQOwsui4V7N6GcnUqJ3FnsogietkmHOvVZGZvvLr9Hi/poFxeV+s0w4JGBBcTluHd7DUL1CEQCqN/guIzlRqLx7OaNLa+papjZV8HMIliMy07Rp03Dfffe5/q6trUXXrl3DWCMy7IcfgNmzgfnzPR+/7TbgpZcAuz0ilwqbt2q3ZsCOBBgO3AKAbpnJQuWmj+2LrPaJiuf74tIqoXEl76AQteuobOrIPuh9ajvc/UvwkRnX2haHhA82HRQub4QEoLI2sIDkkXnZHn8v21aBuSv36HqPL0sP4+XfD/YbZK+lc3pb3UFTMjPbmVrtLi0MRPIViqXbiSi6MHjLwkRP1rcUdMenJZXCgUCnHK/GI6tfxbgda2D/5bL7Rbf++P3v/grJZvfz6tBJb+ucKfifbT+Guyp+HTnRjDlFuzB35S6PDiu1znT3TpcVOyrx8ZYfXUFZWrzLmHmjE4k3U0RERERERJFGzyA8EF33ano/e6hEclazWGVkFnuwgydDEWCkd2k/I/tJb4CRaBYR93JGj9/t5+di/hdlkNx2rs0GTBqe63P89Aah6Q2+y2ovFrzlXi6QATzRJY96ZKUIbUO0HJGZEhMTkZgo9tshiyovB3JzPR/r1QsYMwZ49lnnSRmRuVRYi0PC6+vKg/Le8jVk4rDueGVtmd9rzU0Fuar7RW+Qh1xerR3k3aZRSjxgdLLFhrJqw0sihoJSwNPykgpD2bNWfvcz7nl7s+HALQA4t1cWzuqS5jdoSq2dOX1snmn3NGrfFxEMRGoVisy8RBRdGLxlYaIn61F52XjE7aKc1S4RkICV3/2E17wamyP2bMBrH/zV9feHZ16EGSNuQ3VymplVN8XNBd0RZ7dF1EXLe6ahVme63OkyrGcHPDI2D/NW7cacot26tmfWjU4k3kwRERERERFFKtFB+Gi8VxP97KESDVnNYpHRIJhgB08GO8Oc3s9tZD9V1oq9Ri4nmkXEvZyRei0vqcDLa8p8joVDAl5eU4YBp2V47F+9QWh6g++yBTNXuZcLxQDe7wafhsKlO4XKEREJ270bmDkTWLCg9bELLgCmTwdGjHAFbckicamwDWXVwsvuZabEo6auWVd2pMd+k4eENvaAA731XiPcy4u0g8ycbLFiR6Xu14Sa+/4WCfzWsnSb9tLIWjKS4zG0h7M98sINA/HQh9/6BIK1S2yDIbkZ2HLgqEeih+y0JIzrl4PCpZ7tz8yUBFzev5Nr6Uy9x9D9u1B59AT+smQ7jjWc9Pu6SBrTDTarZOYlosgREcFbZWVlKCoqwoYNG7BhwwZs374dLS0tKCwsxKOPPhru6gWNnpO6d+dni0PC3Ytao8NPOV6Dx1a+jMu++8L12B9/cz+W5F3obFdrtDJtAJIT4lDf1KI7VadRKQlx+FX3TLQ4JAzqlgGbDR6z6iKFaGd6nN2Ge0b2wenZ7X06+DJT4jVnJ5hxoxOJN1NEREREsaSxsRGNja1LAdTW1oaxNkQUKrxXC65oymoWawIJggl28KTRQU+RDHB6P7eR/XRYMLBKLjdxWHc8uWyn5tKJdpuznNL2ROqldSxk3sei8ugJoW24l9MTfDckN9Pv0kgZyfEeg3GhGMBbtGG/cLlJ5/cwvB0iihEffghcdZXnY4MHA+PGARpjc5G4VJhoXdKT4zFjfD7uXrhZeEm5289vzRAZaKC3fC3xF6Csdk0RaQeZMdlieUmFT3IJK0lvG49ZV52lO/BbSyBDmDOvPMuj3XdUoX1xvPEkVn33MwDnuOEV/TtjZF42auoacffCzT7br65rwmvryvHaunLDk1Pk70JxaZVQ4FZmSjwDkdyEIjMvEUWXiAjemjt3LubOnRvuaoRcICd1eW1uu6MFH775APpX7AIAnLTZ8ergy/H80GtwtG17AP6DoiQAdU0tAX8ePeqaWnD9K18hvW08+ma3j8jALZmeznSlDr7K2gZMfWeL3+0EcqMTiTdTRERERLFk5syZeOKJJ8JdDSIKMd6rBU80ZjWLBqJLWIYiCCaUwZPLSyrw+JIdHlmvslOT8Pg4z0G2/l3Thd5PLjeoWwbsNt9M8e7sNmc5mehyP3K5hDZ2TBqei5fWlKmWnTQ8Fwlt7K6/9dbLyLE4fLxJtbw773J6gu+aTjo037vR6/lQDOB9XV4lXI7BW0Skats2oF8/z8fGjHFm2ho61O/LI3GpMNG63HxuLsac3Qkv2G3CS8ot2VqBP4/u6zq/B5Ldyv1a4m/YLFxBIYFmsAqFuy7sifaJ8Vi85aBr/4finsq7/eMdVCUSsA4A1XXNeG1dOQZ1y0Dh0p1+y1cEODlFdN9c0b+z4nculpepD3ZmXiKKLhERvJWVlYXLLrsMQ4YMweDBg/HKK6/ggw8+CHe1QsLISV1em3vYvq1Y9PYjrsf3p3XEnVc8jO0de4ak7mY4cqIZxWXV4a6GS3rbeFw/9DQ8t7pU92srj55AcWmV38aJ96yG4lKxTpdAbnQi8WaKiIiIKJZMmzYN9913n+vv2tpadO3aNYw1IqJQ4L1a8DCrmfXoWcIyFEEwRoMn9S7FubykApPf3OTzeGVtAya/uQkvug2yLfxqn1CdFn61D7cO74GN+2o0A6QA5wDixn01ru+5zSa2z9zLTRuTBwCY/0WZx/bsNmfglvy8TG+9jByLI/ViwVtK5UQyjqwvrUK9n8mu9U0tWF9ahYLeWa7Hgj2AlxgfZ2o5IooxGzcChYXA4sWej8+fD9x2m/DbROJSYf7qDDizbk0Z0QtAawDWG+vK/C5Xq9SmDCS7ldq1RBbuJcD1ZLDyF8wdLE99+p3H3zlpSZgwOPh9LPOuHYCMlETVcUK92b8eXVyiuXKPN6OTU0TvN0fmZfs8xmXqzV2OlIiiW0QEb3kvjfj222+HqSbhofek/vX3lZhY9G/8ae1brsd+bJ+Fkbe9iKY28QHXJzMlHtMvOxOntk/Efe9sxk/HxDpDIp0NwKyrzkJa2wRDwVuFS3d6rEOdmeJMrzvm7E6arwvFjU4k3kwRERERxZLExEQkJiaGuxpEFGK8VwseZjULDdFZ9kaWsDQaBCNaJyPBk3o/R4tDwkMffqv5/tM+/NY1yLavul6oTnI5I9/zYT07YN7qPX5f4z3gPG1MHv50yRlYUFyOfdX16JaZjInDuntk3JLpXdIwq51YG8ijnOhYmMExs+K9h4XLuQdvAcEdwGuXIBaUJVqOSLZu3TqMHz/e9ffx48cBODMEP/vss67HN2/ezEkmkai4GDj33Na/bTbgiiucSyZed53ut4vEpcK06iyb5bW0XZzdhqz2Ytcos9uU7teSyqMnUF3XhMx2ichODW9QSItDwro9YtfI7h2SUV4l1rYJtoqjDZhTtBvpyfE4Wt8c0BKIam4t6O53PFDP90QCdAVuBTI5xeh9KZepb2XGcqREFP0iIniLdJzU583Dmf83F0PLnJ0sNUntMfmKh/HVaWeZVpfqumZkpyZhWM8OeGJ8Pu78ZXZgBK9sCABIjLOhsUX9U8jrkrc4JL8zMJS4B245/27GXQs3444fjvjMQHQXihudSLyZIiIiIiIiina8VwueaMxqZrXlSERn2QeyhKXeIBg9M//lQSqt7Ac5boNURj7H+r1VfpcprKlvxvq9VSjolYVumcmaZWVyOSPf88HdM2GzAZJGp5fN5iznLaGNHbcO978Un3cfmd9yoh1wbuXS24pNYBUtp7EpQ+WCNYB36FijqeWIZM3Nzaiq8l0hor6+HvX1rcEXLS3aGenIYj77DJgxA1i5svWx668HHnkE6Ns3oLeOxKXC1OqslSUonG1K0WtJsNqI3u9bU9eEwqViS0kCsEzglhK1AL5AKGWl8haKew8jgYRG7kvNWKZe9LtrtfsgIiKjGLwVLY4eBX73O+C//0V7AD8np+OvF0/CJ33Pd/aomGzdnsMYkpvpNz1rJNEK3LIBeH/jQZyRnYrstLaYPrYv7l642ZQG3EtrytCvSwbGnK1+sxKKG51IvJkiIiIiIiKKdrxXC45oy2pmteVI9MyyD3QJS9GBS70z/+PsNozrl4OX1pSpvue4fjmugSEjn6O41DcQQklxqTN4a+Kw7pixdKdmX5QNwMRh3QE4v+fpyfGaAWIZyfEe3/ON+2o0A7cAZ2CX+1KLemUKZtKSyx2uEws0ci9nKFvXL0QGANPbJgi9v1q5YA0y/lQrtq9EyxHJLrzwQkj+Tg4UGSQJmDYNmD279bE2bYAbbgCuvRa45BLTNhWJS4XprXMo25RGrh1KbcT0tvG4uaA7pozobfhYKL2vKBuA9kltUNtw0tC2tYzJ74hlJT8Zfv2R+mbce3FvvPPNAVPHPDukJAh9B0Tabt4yUxJQU9ckPFZpNEBM731poG180fsbq90HhRKD1oiiD4O3LErXCfejj4ApU4Aff3Q9dMN9r2FXs1gnghHzVu/BB5t+cF38RuVlY86KXUJp1SORBKCqrglT390KwHnhv/38XCzZWuHRIPBenzszJV4oben0xSX4db72OtOhuNGJxJspIiIiIiKiaMd7NfNFU1azUC5HItJfpXeWfSiWsDQy87/FIWHJ1grN912ytQJ/Ht03gM+hL39TnN2GhDZ2NJ50qJZMaGPX9b31rkEgx0O0PzM7VWzQUC5nJKtJdlpbsW14lRMdAMxqJ9bvqlQumIOM2WlJKPmxVqgcEcUYSQKWLQMuu8zz8dtvdwZzde8elM1G4lJheuocqjalkWuHWhvxyIlmzCnajde/LMesK8/Sfe1Re19REoAuGW2xo+KYwXdQN3FYLsb17xxQwonXvyzHzCvykZGSiEPHGrD7p2OYt7o0oHoVjs83/b5CDgycPjYPdy9UX+7Tu3wggYR67ksDaVOK3t/E8rKMsRy0RhTNYiJ4q7GxEY2NrbOJamv938CGk/AJd8MG4JxzWv/u3Rt48UVgxAhMLanA5F+WMwyWiqMNmPzmJrx4w0CMystGRrKxNOORqPJoA15eU4bnrhuIjJQEVyNlULcMbNxX4/q7srYBU9/Z4vf9quqahNaZNnqj49155l1P98ZVJN5MERERERERRTveq5kvGrKambEciSjR/iq9s+xDsdyQkZn//l4DBP45hvXIEhoMHNYjC4BzmUWtwC0AaDzpcC2zuKGs2m/mhiP1zR6fOytFMGOVV7lgLkmpt7zR1+gZADT6vQ32IOM5uR1QtPOQUDkiihEtLcA77wB//zuwyWvM6KuvgCFDwlOvKBLsNuWybT/iroWbfR7XunZotRFlR+qbdV97RN5XhGjgVlK8HQ3N2m0fwDMwKc5uCyjhxNETzbh74Wa8cMNAjO/fGcWlVQEFb91xfq7iyjtKQe8ibTd38vfrBbv2CklmBhKK3pfqbSvJ+6OytgGF/9nu9/5mxBkdhe6DRpzRUXU8NFJFatAaM4UR+RcTwVszZ87EE088Ee5qCBE64eZ1BEaNAlatai3wyCPOf22ds8VG5WXrTq0pR2UnJ8Shvkl8bfr73t2K1KQdqKyN7GUT9ZAv/IVLd2DtgyM8Li7ujRbR9PdAYDNItSh1nnlnCGM0NhEREVFwrVu3DuPHj3f9ffz4cQDOe5Vnn33W9fjmzZvRtWvXUFePiChmRXpWs0CXIxGlZ4BA7yz7Qd0yfPopvNltznJKRAYBjMz81/saI8smDe3ZwW//XXpyPIYaXGbRUMYD0a++WzkjS1LKWUoA/1lK9C5h6b0NtePhvg3dgZAG9lMogi1vPLc7nlrmf2nNG8/tbuj9iSiCtLQA778PTJjQ+lhyMnDXXcAttwB9+4avblEoWG3KZdsqMGWRb+AWoH3tEAlCl99Dz7VH9H3NIhq4Bfi2HQp6ZQW0WpC8X0QCwpVkpsRjxvh8jDm7k89zakHvl+R1FHrvtKQ2mH312a72lfv3r2hHJT7actBjVaBwTE7R0zbWswynfH+zoLhc6D5o6MyVqK5rcj0e6eOhoZy8YyZmCiMSYw93BUJh2rRpOHr0qOvfgQMHwl0lRf5OuACwYP5SSOed5xm4tXAhMGOGK3ALgO7obMB5kXzxhoH49vFfY+rIPkhvK5ZJq76pJaYCt2TuHaBqhuRmIjNFbD8GMoNUjdx55t2A8e4QlTvTlpdoLwdARERERMY0NzejqqrK9U/ODFxfX+/xeEuL+CQKIiLy1eKQUFxahcVbDqK4tAotWhFBv5Bnj4/v3xnDenawVCe3P1ZYchBwDhDI+1rvLPuN+2o0A7cAZz/Gxn01Po8vL6nAebNX4dr563HP21tw7fz1OG/2Kp/+DSNZkvS+Rg4WAnzjetSyHcTZbZh15Vma7z/ryrNcr5EksTwXcjkjn/vw8UaNkq3kcnq/HzI5S4n38n3ZaUk+wV6iS1iqbiPVM0tYdmqizzb0BEIC+veTkW0YEWe3+T2HiZQhogjW2Ag89xyQn+8ZuPWnPwH79gHPPMPArSAxu025vKQCdy3cpNlOUrt26Gn7ub/eX1u6aEel8PuGilrbwSFJwuOc3tz3q9zGEzmamSnxmPO7/lg0aSi+fmSUauCW0rhdxdEG/Kt4n1D9pozo7RPwIn//pv/mTHz9yCgsmjQUcyc467L2wREhD5ARbRuv2FGpuD/82VddL1TOPXALiPzx0FC0J82m9p2P9GNBFAwxkXkrMTERiYliKb/DSeuE276xDq+/9zjOrtgNm+Mk0K6dc23yf/8biPdtfIg2zKZc1BO9O7b3mQVwz8jemDKiF/7+v+/w/Gd7jX+oGKC1r+PsNswYn6+Y0tadd5p2M+hJX2vlaGwiIiKiaHDhhRcKD7gSEZExsTib14pLDurNQGU0AE1PticjWbGMvMbIskmj83Pw4g0D8fiS7aisbQ30yU5NxOPjzvR4TXqy2ACkXM7IZ9D7nQok+9vo/ByMOKMjFhSXY191PbplJmPisO5IaOM531jvEpa+1IYMW+n9Hhr57YUi2PLLPYdx0k805EmHhC/3HMbwPqcY3g4RWVB9PXDJJcC6da2PpacD994L3Hor0KVLuGpGBsjjO6K8rx16235FOypx9ESTZlt6eUkFXl1Xrut9RdhsgHt3ifffai7Nz8bvh3X3yXCmJ4uTP/J+ldt4D334rWriDBuAp644S/O+w6xlJ7Paa495iy5tGGz+2saj8rJx3uxVhvZHt8xkQ3WK9PFQ0XZi0Y5KS3wHIjVTGFG4xETwVqRQO+Ges/9bvLNomuvvigsuQc6CVwCN5VREG2YFvU5RPXmv2FGJt7/+Qeh9Ypm/fT3m7E6444cjqqndvdO0m0Vv+lqzllIgIiIiIiIiCjW9y7ZFCyPBOXrpDThxX67OBv9L4hkJgtE7CCDXafIvy/QpvUYpK5be1wDGlk0SfU2W4L7K8soGdqfKZ4DCZ9C7jGUgAUlKg6uvrC3zCXSrPHpCaBve5dTOCz/V+p4X9H4PQxEYZ8SHm8T6cj/c9AODt4iiRWMj8PrrwJ13ej4+fTpw//1Aamp46kUB0Tu+433t0LvU36vryhUDs+S29HPXDcRf/yMeTKbH367uhyP1Ta5A7vTkBPzpva1+X/dpSSXG9+/kE7iltmSyEe77VW6vzVu1G6+vK8eRE61BXKITRsxadrL6eCMWbzkYEUu+a7Vzi0urdO8PuY01cVh3vLK2TLUtpiWSx0NF24kfbTmIh8eaP/asVyATPYhiEYO3LMT7hJvacBwPr34NE7b9z/XYvwaORZ9X3kBO1yzN9wq0887sBk6k8u5k9H5OtAN02pg89OuSgUcXl4RsbWWjs/QCmd1HREREREREFGqxPJtXb6CUEUYCTvRkoDLSh2X1QQAj2Q5EXpOdKnYs3MuNzs/B7efn4uU1ZT7fj9vPz/Xpk9KzjOWwnh0MBySp9T1WKARcei93o8a9nN7zwpDcTKQnx6tm0wCAjOR41/fQyG9Pb2CcEccaT5pajogsrLoamD0beOst4ODB1sdzcoDNm4GOHcNXNwqYnnEapZVd/AWhi5KvmdMXl6BK8HqsV6f0trhqUGtmuHV7Dgu/1v1aLpLVKj05HjcN645FG/bjp2PqSyCrjf/F2W24Z2QfTBnRW1egvsyM8Te7DShcutP1dyRkGlZr5+rdH+5trIQ2dtW2mKhIHA8dkpuJzJQEv+3j6rpmSwREhSLzLFE0sfsvQqEid1bZJAkvfvQkts2d4ArcerP/pTj7nrfx4tVTMaSH80Srtfa01lrCgPMiNmGwZ+Yu+f0+2vQDHv6oJOYDtwDtwC1AXwfomLNz8PUjI0O2zrTRWXqBzO4jIiIiIiIi/7Tu50k/PYE8ZrDa8ZMDpbLTPO/ns9OSTMk45uqvUnneBuVBw9H5OVj74Ai//SBafVhq/S96BwH8LT0kB/K4H0sjrwk2+Vho8T4Wy0sq8JJX4Bbg/F28tKYMy0sqPB7Xm+XKyPfD3+CqBM99m5GcIFQn93LBOC9411fvb09PYJxRp7QX21ei5YjIgo4fB/72N6BDB+Dpp52BW507A//4h/O5H39k4FYU0DNOozZOJS/NnNY2sDweEhC0wC2lNqSewUn3a7lIVqsj9c04p0cHfDntYkwd2UezrNb4nxyMNL5/Zwzr2UF4nNCM8TfvtoScHc27TWd1LQ4JhzUC6JR4t7HU2mKZKWJLjUfieGic3YbL+3cSKmuFgCgzM89a7T6cKBiYectC4uw2zByUigt/PdLj8auvn42NXc4EANw6+DT8Z9uPKD9cj0Ub9qOyVnntaUB9lqNsTtFuLNqwH9cOOQ1HTzTj4y0/Cs9kizXes+KUZoqKCOU60/5mrnozYykFIiIiIiIi0qa0TFgkzJa2slDO5rXq8TOyVJ+oQLJ7ifaD6MnUBegfBDCSqcuK2b28l0H0dyxaHBIe+vBbzfd86MNvPbLSHT4u1jcolzPy/RAZXHXftzX1YnVyL6f3vLChrFoz6xbgHPD1Pt56fnuhOFelJYkFZYmWIyILOXAAePxxYPFioKqq9fFZs4B77wUSE8NVM8tpcUhBaROFksj4jt0GzLt2gGYbdHR+DtonxeP6V74KTkUDpNSGPFynL6BHvm7quc46M2j1xunZ7fDQh9/6tAHSksWCf/TSO27nzmYDJIUXiWQaDtVvQnQ7SvdUSmwAMlMS8OjYvshOa6v4fkptsUHdMnDBM6uDurR8OI3Ky8ZrCsucerNCcFqgK4XJrHofTmS2iAjeWrduHcaPH+/6+/jx4wCAmTNn4tlnn3U9vnnzZnTt2tX75ZGhpQX4xz9w4aOPuh46abOj3z1voy4xGRnJ8WhucWBO0S7Vt6hUSCveugbzHsXXVtY2Yk7RbvM/T5RxSMD0sX2R1T4xYhr7Wp1n3sxaSoGIiIiIiIjUqS0TpnQ/T+Ky2okNVoqWU2P14xfMCWN6g6uMbkM0CKZ/13Sh95TLGQmaseoSH3qOxfrSKqGApPWlVSjonfXL32KBUu7l5Do9vmSHx0RTte+H3uxemSligUbu5fQG+AVyvEV/e2ZmHlDzU63Y5xAtR0QWsHcv0LOn52O9egEPPwzccAMQH5wgk0gVLQP8IuM7864diDFn+/9Mh4/rC4ZS0z6pDY41mLfs7q0F3RWPid7roFze6HVWqa10tL45KO17PeN27lKT2qBWY99rTSoI1W9CdDtq91Te5DuAJ6/IN5RII9hLy4eTHBClFvxmpeA0M46F1e/DicwUEcsmNjc3o6qqyvWvsdHZ0Kivr/d4vKWlJcw1NeiNN4A2bYD77gPq64Fhw9Dy0cf4evchPHXjufjN2dmoqW/G8UbtzyeftJRStr/99f7g1D2GZLVP1J0CNdzUUoZ6V9+spRSIiIiIiIhImdYyYVr38yRAdJcFsGt5/MSXQQyE6BI0C7/aJ/R+cjkjg3mhCgo0QvRYFO89LPR+7uVsgl1e3uU276/xCQiqPNqAzft9lwAUzfwvl8tOaytU3r2c3uUcQxFYZXQJUj2yU8XqJ1qOiMLo55+dAVregVv/+Aewcydw880M3PIiD/B7BzRE6rJyauM7OWlJePEGscAtwJzsO3YbTA3cAoCRedmKj4ssEw34Xjf1Xme1lsgOZvte7bgqsf3y7+pBXYTe2zvIPFi/Ce/l65Zt+1FoO/6WznYnOm65vKQC581ehWvnr8c9b2/BtfPX47zZqwAgqEvLh5McECV/P9xZMThN71Lj7ngfTrEmIjJvXXjhhZCUckFGuvp64IknnOuSA0BSEjB3LnDbbYiz2zEMwH+2/IhPtlUKv6WRNO8kRnS9Xaul41VLGbpxX41iPeXPUFnbgOrjjchMSVBNR0pERERERERirLgEW7QQXVpF7xIs7nj8nIKZ3UuPfdX1usoZWq4jBEGBgRA5FqLdqe7lhvXIwrzVpX5fM6xHluv/Zy7bgZfWlPm+L+B6fNqYPNfjGclimbTkcv6yCwC+QU96Z/mbtaSLllBkgUhOijO1HBGFwdatwB//CHzzjXMMSXbNNcBbbzFgS4W/AX5/y8pZhfcY06i87ICXxha5jsrUskGZGRfh75rqfr30t1n366be62w42/dK43Y1dY0oXLpTMbNqWtsE3cvkBes3oZRhy25T/t54b0d0vHr62L64qSDXb71EMjKtfXCE5cZtzRCKzMhm0pNl2R3vwynWRETwVlT63/+AO+90pryVbdwI5LV2ZCzbVoE/vLPZ0NsbSfNOytQakt6NaKWGlVXS8Sp16CldxLTWmbbKZyEiIiIiIopEVl2CLRqEImMOj5+1dMtM1lXOSNBMKIICgy1dMEjKvdzQnh2QnhyvudxienI8hv7Sr9R00oH5X/gGbrmb/0UZ/nTJGUho41wEokZwaUa5nL9BXBuUg570DGqFanmdYA+0/bfkJ+FyfxjRJ6BtEZHJDh50TvT/xz9aHxs4EJg+HRg3DrBHxEI6YRMNA/zBWt5OJBjqjvNzMeC0DMWgHK3ArZSEOLx4wyAca2j2GR9TInpNVbteytT2i57rbLjb90rjdr/Oz1EMbmlxSLqDzIPxm1ALltL6jrhvR3RfZrVP9Nvm0hOcZtXffKCMBkSFi5GJQOH+nRKFGoO3Qq22FkhLa/27Sxfg+eeB3/zGo9jykgrctXCT4c24d0iakRI1Vqk1JLWCnNxF0nq7/taZroigz0JERERERGQ1oQgwilWhyJjD42ctE4d1x5PLdmoOFNltznIyvUEz0XDMs9qJBW+5l4uz2zDryrMw+U31fslZV57l6idbUFzuNxuHQ3KWu3V4DwBAZopYvdzLqR0/f4Paega1jAZWNZ10YEFxOfZV16NbZjImDuvuClQLtE4y0Wz/WkF3RsoRUQh8/rlzon9pKdDkFtw6fz5w663i69nGuEgf4BfJIBTIuIzaNa5DSgIKx+e7lmB0vz4dPuZMWKClrqkFbeLsGHN2J5/Ao5q6JhQuNR6sPCovG+2T4lFcWgWH5EBGciKy2iciO1X7uil6nbViW08tuMVIkLnZvwk9Sx6qbcfMfR4NAZtmsEpm5GCx4u+UKJgYvBVq8+e3/v9VVwGvvw60b+9RRGudZX+UOiSH5Gb6nTFHypQakv6CnNxFSjpe0UaXBOt/FiIiIiIiIisKRYBRrApFxhweP2tJaGPHpOG5ikv1ySYNz/UJoNETNBMNxzw7ra2p5ZToXcJSz/a8yxnNLqBnUGt0fg5GnNFROBhr5rIdmP9FmUcA25PLdmLS8FyPpSIDqZOeTCynpibghyMn/L7nqaliAXREFERFRcCoUZ6PnX++M9PWxRczaEunSB7gD9WSjyLXUffr00ebDwq9b2Vtg89rZb/ON5YVSOvaJ3L9FLnORlpbL9wTEUSXPNTajpn7PNIDNklMpP1OiQLF4K1Qu+oqYPt2YMAA4A9/UCxi9AKo1iG5YkclA7cMUFpT2UhkuZHobtHZdGbR852LhUh1IiIiIiIis4VqSa5YFeylyHj8rEcOjPEOnLHboBk4Ixo0Y/VjLtJ3JA92aPX55HgNdvibVOo9gKx3CUuj9ZIFO7uA0mDxK2vLFM8jM5ftUAwgdEhwPa4VwCVaHz2ZWK4e1AWb9h/1+75XD+oSUL2IIlmo+9597NwJPPkk8NZbno8vWgRMmBC6ekSZSB7gD2UGIT3X0erjYktDa5Uzct0OdhYy97pZua2nJJwTEYwGQblvx8x9HskBmyQuEn+nRIFg8Faode8OvPaaZhGjF0ClDslAsnhpmXJRL8TH2fFs0S4AMJwm08qU1lQOJLJc9LgGa11zM+pmtDwZE/aOBCIiIiIiMlWwA4xindGsPHren8fPWqaNycOfLjlD15J1elj1mIv2HbkPdqgN2nkPdugdQDayhGWc3YZx/XI0M6eN65cT8j4QPYPFTScdmP+Fev0BZ2Dhny45w/D30Ugmlp0Vx4TeW7QcUbQJR9+7y4cfOif322yA5PbLnjMHuPfe4G47BkTyAL9VMwgZWeY4UKHKQiazaltPS7gmIhgJglLajln7PJIDNkmfSPydEhnF4C0L0nsBnHJRTxT0OkWxQzLQNJZKctKSMHVUH8TZbTg9u53PyTJQNhtwYZ9TsPr7n017TyOUjkMgjWOR4xqqGQVG6hZIedIvrB0JREREREQUNMEOMIp1wc7Kw+NnPQlt7Lh1eI+gvb/VjrneviO1wQ61Pga9A8hGlrBscUhYsrVC8/2XbK3An0f3Ddl+1jtYvKC4XDNgDXBm4FpQXG74+2kkE4voBNtonIhL5E+4+t6xcSMwYwbw8cfOvyUJuOIK4JFHgEGDzN9eDIvUAX6rZhAKxfLL3kKZhUxmtbaemcz8TfgLlgKcAfvu7SO17ZixzyM5YJP0i+bfKZE7Bm9ZkEjqcJkzkOp01ZOT2ZH43jPy3E+WK3ZU4rV15QFvQ5KAdolxul+XkRwPCTBliUi11OxGI8tFortDPaPAnUijS6a2b8g8YetIICIiIiKikAh2gBEFF4+ftYQia7VVjrnRviM9gx1GBpD1LmEpMtnU7IFZf/QOFu+rrhd6X9FySoxkYsntkCL0GtFyRNEiLH3vc+YA993X+reccWvZMuDSS83ZBvmIxAF+q2YQCmSZY6PClYXMKm29YDDrNyESLDXv2oHISEkQ2o4Z+zxSAzbJmGj+nRLJGLxlQf5SmsuUUpt7MzMSX21GnnyyHNazA37VLRN3L9rkkfXXW3K8HQlt4nDkhHKQlQ3Af7ZVCtcrOSEO83//Kwzt4TxhuzdAauqa8OjiElTXNQm/HwBcdrbyTZqeICdAX3R3OGYUyNy/c1pEvnMUmHAG8RERERERERFFkljLWh1I35HoYIfRAWQ9S1hacXkovXXqlpksVF60nBIjgXTXndMNhUt3+n3Nded0M1wvokgU0r73l18G7rjD87EbbgAefhjo2zew9yYhkTbAb9UMQkaWXw6UVbOQRTqzfhNWDJaKxIBNIiI1DN6yKLULoEy0I0pPFi+lbUwYfBq6ZyUrXuyUZjZmpCRoBm4BQH2zA/XNDtXn9abt/r/f9kNBryzX394NkMaTLZj67lZd7/nq2nIM6JqJMWf7BqqpNaKV6GmwhLvjyqzvHAUmnEF8RERERERERJEiFrNWh6LvKJABZNElLAMZmA1WpjW9dZo4rDueXLZTc+lEu81ZzigjgXSb9tUIvfemfTUo6J3lvyBRlAj6+VOSgJUrgcJCYM0az+c+/xw4/3xj70sxw4pBMVr1CtZ4kVWzkFErKwZLRVrAJhGRGgZvhZDezgX3C2Dl0ROormtCZrtEZKeKXwjlDpfJfjIqyR4Z0xenpib6rZ/azMZL87OFtmOG9OR4zLryLL+NQyPrbTsk4K6Fm/Ci3bejT6uxOn1snnBKUG9WmFHg8Z2rbUD18UZkpiQgO61t2BtfsSLcQXxEREREREREVherWatD1XcU7AFkowOzwcy0prdOCW3smDQ8Fy+tKVN9z0nDcxUzj4kyEkhXvPew0HsX7z3M4C2KKUE7f0oS8Pe/Aw880PpYQgKQmAh88glwwQX63o9imhWDYkJdL6tmISNPDJYiIgoOBm+FiNHOBbPW/L334t54duVuv2XzOqV6ZLFSojWz8bV15cYrqtNz1w4U6mQIJPuYWkdfMBqrVplRwEZXeFkhiI+IiIiIiIjIymI1a3Uo+46COVBrZGA22JnWjNRp2pg8AMD8L8o8MnDZbc7ALfn5QOgPpBM9Phz0pthi+vnT4QCWLAFmzAA2bmx9/I9/dAZydeliRrUjTrCyI8YSq47PhLJeVs1CRkREFGwM3goBK6Rxzz0lRajc4eONms+LzGy02aCaMtwGoGNqIgAbfqpVv1Hy9x7ZaUkYKthQ1Jt9zJ1WR5/ZjVXOKCDAOkF8RERERERERFYVq1mrQ913FMyBWj0Ds6HKtGZksHjamDz86ZIzsKC4HPuq69EtMxkTh3UPKOOWUr1EA+mG9eyAeav3+H1PKwYGEAWTaefPkyeBa68F3n+/9bHkZKBzZ+djZ59tcs0jRzCzI1LssWoWMiIiomBi8FaQWSWNu1nZfERmNkq/fFi1m6DHx50JAJo3SpOG5+LlX9KOm9ERNTo/B1NH9sGcol3Cr5GFsqOPMwqIQXxERERERERE2mI5a3U09R2JDsyGMtOakcHihDZ23Dq8R0Db9Uc0kG5ojw5IT47Hkfpm1TIZyfEY2oPBWxR7Ajp/njwJPPGEM9OWu4cfBqZOBbJiexlSKyQwoOhj1SxkREREwcLgrSCzShp3s7L5iAYy3VrQHctKKjVvgvzdKA04LcPUjqgpI3ph0YZ9qKzVzi7mLdQdfZxRQNHUEUtERERERERktljPWh1NfUciA7OhzrQWyYPFcXYbZl15luYKBDOvPCsivytEZtB9/mxuBhYsAGbOBPZ4ZbUrLQV6BDdwMxJYJYEBERERUaRj8FaQWSWNu1nZfEQDmUbmZePhsXmaN0H+bpTM7oiKs9vw+LgzcecvnRcqqzK6hLOjL5I7icgc0dQRS0RERERERGQmZq2Orb6jWM60ZsTo/By8eMNAPL5kBypruXwZkTeh82djI/DQQ8Czz7Y+1qEDUFAAPPcc0KVLUOsYSaySwICIiIgo0jF4K8is1LlgRjYfPTMbRW6C/JUxuyNK3gfenRfeYqWjj6wtljpiiYiIKDK0OCQGlxMRkSUwa3XsiPVMa0ZwUiCRQSdOAPPnA08/DRw82Pr43/4G3HEH0K5d+OpmUVZJYEBEREQU6Ri8FWRW61wI9MY9emY2eh4Nuw1wuD3Ejj4iIiIiIk/LSyp8BsiZwYGIiMKJASqxIXr6I0OLkwKJdDh0COjfH6ioaH2sc2dgzBhg1iwgk8GhaqyUwICIiIgoktnDXYFoJ3cuAK2dCbJwdS7IN+7j+3fGsJ4ddG9bntmYnebZ2M5OS8ILNwy09MDN8pIK3PnmJlTWNno8Lgdu3VrQHYsmDcXaB0dY+nMQEREREYWS3I72Xg6j8mgD7nxzE5aXVKi8koiIKLgC7eeiyBDJ/ZFEZGG1tcCddwIdO3oGbr34IlBaCrz8MgO3/JATGKhdfW1wTvphdkQiIiIibcy8FQLRmMY9Emc2tjgkPPHJDsUMaIDzJmJZSSUeHsuZekREREREMq12tARnO/qJT3ZgVF4229FEREQUNJHYH0lEFnX4MPDcc8DcuUBNTevjw4cDy5cDycnhq1uEYXZEIiIiInMweCtEorFzIdJSb28oq/bJFOBOAlBxtAEbyqoj6nMREREREQUT29FERERkFZHWH0lEFrR7N9CnT+vfZ5wB3HQTcO+9QGJiuGoV0aIxgQERERFRqDF4K4TYuRBeh46pDzgZKUdEREREFAvYjiYiIiIioqhRV9f6/++8A1x1FRAXF776RIloTGBAREREFEoM3qKYcWr7JFPLERERERHFArajiYiIiIgoavTvDzQ0AAkJgI2BRWZiAgMiIiIi4+zhrgBRqAzJzUROWhLUbsdsAHLSnLNBiIiIiIjIie1oIiIiIiKKKomJDNwiIiIiIkth8BbFjDi7DY/9Jg8AfAae5L8f+00e0/gSEREREblhO5qIiIiIiIiIiIiIKHgYvEUxZXR+Dl64YSCy0zyXdMlOS8ILNwzE6PycMNWMiIiIiMi62I4mIiIiIiIiIiIiIgqONuGuAFGojc7Pwai8bGwoq8ahYw04tb1ziRdmCiAiIiIiUsd2NBERERERERERERGR+Ri8RTEpzm7DsJ4dwl0NIiIiIqKIwnY0EREREREREREREZG5uGwiERERERERERERERERERERERFRGDB4i4iIiIiIiIiIiIiIiIiIiIiIKAwYvEVERERERERERERERERERERERBQGDN4iIiIiIiIiIiIiIiIiIiIiIiIKAwZvERERERERERERERERERERERERhQGDt4iIiIiIiIiIiIiIiIiIiIiIiMKAwVtERERERERERERERERERERERERhwOAtIiIiIiIiIiIiIiIiIiIiIiKiMGDwFhERERERERERERERERERERERURgweIuIiIiIiIiIiIiIiIiIiIiIiCgMGLxFREREREREREREREREREREREQUBgzeIiIiIiIiIiIiIiIiIiIiIiIiCgMGbxEREREREREREREREREREREREYVBm3BXIBwkSQIA1NbWhrkmRERERES+5Haq3G4l8sZ7GiIiIiKyMt7TkD+8pyEiIiIiqwrH/UxMBm8dO3YMANC1a9cw14SIiIiISN2xY8eQlpYW7mqQBfGehoiIiIgiAe9pSA3vaYiIiIjI6kJ5P2OTYnDqi8PhwI8//oj27dvDZrP5PF9bW4uuXbviwIEDSE1NDUMNYxf3fXhx/4cX93/4cN+HF/d/+HDfh5fW/pckCceOHUOnTp1gt3Olc/Kldk/D33Xs4TGPLTzesYXHO/bwmMeWaD/evKchf/yN00SqaP9thxL3pXm4L83DfWke7kvzcF+ah/vSPJG+L8NxPxOTmbfsdju6dOnit1xqampEfpGiAfd9eHH/hxf3f/hw34cX93/4cN+Hl9r+5+x00uLvnoa/69jDYx5beLxjC4937OExjy3RfLx5T0NaRMdpIlU0/7ZDjfvSPNyX5uG+NA/3pXm4L83DfWmeSN6Xob6f4ZQXIiIiIiIiIiIiIiIiIiIiIiKiMGDwFhERERERERERERERERERERERURgweEtBYmIiHnvsMSQmJoa7KjGH+z68uP/Di/s/fLjvw4v7P3y478OL+5+Cgd+r2MNjHlt4vGMLj3fs4TGPLTzeRNGJv23zcF+ah/vSPNyX5uG+NA/3pXm4L83DfamfTZIkKdyVICIiIiIiIiIiIiIiIiIiIiIiijXMvEVERERERERERERERERERERERBQGDN4iIiIiIiIiIiIiIiIiIiIiIiIKAwZvERERERERERERERERERERERERhQGDt4iIiIiIiIiIiIiIiIiIiIiIiMKAwVtuli1bhpEjRyIzMxMpKSkYOHAg/vnPf8LhcIS7alFLkiSsXbsWDzzwAIYOHYr09HQkJCSgU6dOuOqqq7B69epwVzHmPProo7DZbLDZbJgxY0a4qxMTWlpaMH/+fFxwwQXIyspCUlISunXrhssvvxyLFy8Od/Wi2qFDh3D//ffjzDPPRHJyMpKSktCzZ0/cfvvt2LNnT7irF9HKysowf/58TJo0Cf369UObNm2EzyvFxcUYP348TjnlFLRt2xZ5eXkoLCxEQ0NDCGoeHYzs/82bN+Mvf/mL61wUHx+PU089FZdeeik++uijENY+sgXy3Xf3yiuvuK7Ht912W5BqS9GG9zPRg9fR2BHoPTGPd2T6+OOPcccdd2DQoEHIyclBQkIC0tPTce6552Lu3LloampSfS2PeeQT7XfhsY5MN910k+v4qv1TO4Y85kSRiWMc5gqknUTaOPZjXCDXd1LGcbHAlJeX+/1Oyv8+//zzcFfX8jhWaJ7KykpMnToVvXv3RlJSErKysjB69Gj897//DXfVIoNEkiRJ0syZMyUAEgCpR48e0tlnny3Z7XYJgDRu3DippaUl3FWMSkVFRa79brfbpT59+kgDBgyQ2rVr53r80UcfDXc1Y8aOHTukhIQE174vLCwMd5WiXnV1tTR06FAJgGSz2aTTTz9dGjRokJSTkyMBkK666qpwVzFqfffdd9Kpp54qAZDi4+Ol008/XcrPz5eSkpIkAFJycrL02WefhbuaEeuee+5xnUvc//k7r7z55ptSXFycBEDq3LmzNGDAACk+Pl4CIA0ePFiqq6sL0SeIbHr3/549ezzK5ebmSoMGDZIyMjJcj914441sDwkw+t13d+jQISkzM9P12ltvvTWINaZowfuZ6MLraOwI5J6YxztyFRQUSACkxMREKTc3V/rVr34lde7c2XXMBw0aJNXU1Pi8jsc88on2u/BYR64bb7xRAiD17t1bKigoUPzX2Njo8zoec6LIxTEOcxltJ5E2jv0Exuj1nZRxXCxwFRUVqt/FgoICqUePHhIAKSkpSTpy5Ei4q2tpHCs0z7Zt26SOHTu6ruODBg2SevXq5br2zJw5M9xVtDwGb0mS9OWXX0o2m02y2+3SwoULXY9v2bLF9QV75plnwljD6LVixQqpV69e0vPPPy9VV1e7Hm9sbJSmTZvm+jF/8sknYaxlbHA4HNLw4cOllJQUacSIEWzAh0BLS4t03nnnSQCkK6+8Ujpw4IDH8wcOHJA+//zzMNUu+l188cUSAKmgoMBj3x8+fFgaN26cK4DF4XCEsZaRq7CwULrsssukv/71r9Knn34qXXXVVX7PK2VlZVJiYqIEQHr66add+768vFw6/fTTJQDS3XffHaqPENH07v/du3dLOTk50uzZs6Uff/zR9XhLS4v0z3/+U7LZbBIA6Z///GeoPkLEMvLd93b99ddLdrtdGjt2LIO3SAjvZ6IPr6Oxw+g9MY93ZHv99del1atXS01NTR6PFxcXS126dJEASHfddZfHczzmkU+034XHOrLJg7uvv/668Gt4zIkiG8c4zGWknUTaOPYTOCPXd1LGcbHQuP766yUA0m9/+9twV8XyOFZojubmZqlPnz4SAOnCCy+UDh065Hpu5cqVUvv27SWbzcbftx8M3pIkacyYMRIA6fbbb/d57q233pIASB06dPBpLFLgjh49KjU3N6s+f+mll7qyBVBwzZ8/XwIgzZ4929UQZQM+uF544QUJgHTRRRcxG0aI1dXVubKRbNu2zef56upqV7DKjh07wlDD6CNyXrnrrrskANIll1zi89y6detcMx8qKyuDWdWo5G//nzhxQnMm9+TJkyUA0tlnnx2sKkYtvdfUFStWSACkO++8U3rssccYvEVCeD8T/XgdjV5G74l5vKPXu+++KwGQOnXq5PE4j3nkE+134bGObEYGd3nMiSIbxzhCR62dRNo49hM4Bm+Zh+NiwXfs2DEpJSWFgcMCOFZono8//tiVcau8vNzn+VmzZkkApBEjRoShdpHDjhhXW1uLoqIiAMCtt97q8/w111yD1NRUVFVVcW3yIEhNTUWbNm1Unx81ahQAYNeuXaGqUkz6+eef8eCDDyIvLw9Tp04Nd3Vixty5cwEAhYWFsNtj/nQcUk1NTXA4HACAHj16+DyfkZGBzMxMAMDJkydDWrdYJUkSPvroIwDK1+Nzzz0XZ5xxBpqbm7nmfRAkJSUhOTlZ9flLLrkEAK/HwdbQ0IA777wTp556Kp566qlwV4ciBO9nCOB1NJIZuSfm8Y5uZ5xxBgCgvr7e9RiPeeQT7XfhsY49POZEkY9jHKGj1E4ibRz7IavhuFjwffjhh6irq8Mpp5yC0aNHh7s6lsaxQvOsW7cOADB48GB069bN5/mrrroKAPDZZ5/h0KFDIa1bJIn5s+LmzZvR1NSEpKQkDBw40Of5+Ph4DB48GADw1Vdfhbp6Ma+hoQEA0LZt2zDXJLpNnToV1dXVeP755xEfHx/u6sSE3bt347vvvkNmZibOPfdcLF68GDfccAMuvvhiTJgwAa+88goaGxvDXc2olZ6ejq5duwIAvvzyS5/nv//+e1RVVSE9PR29e/cOdfVi0v79+1FRUQEAKCgoUCwjP87rcejxehwaM2bMwJ49e/DMM88gPT093NWhCMH7GQJ4HY1mStdgHu/oVlxcDAAe53Qe88gn2u/CYx093n//fVx++eUYMWIEJkyYgH/+8584evSoTzkec6Loxz4V8yi1k0gbx37MJXp9J2UcFwuNN998EwAwYcIEzeBi4lihmWpqagAAnTt3VnxeftzhcODrr78OWb0iTcwHb+3evRsAcNppp6mewORIS7kshYYkSXjvvfcAqHdeUOBWrlyJt956CzfccAMuuOCCcFcnZmzcuBGAc7bQxIkTcfnll+Ott97CqlWr8M4772DSpEno378/9u3bF+aaRq8ZM2YAAG655RZ88MEHqKqqwtGjR/Hf//4Xl19+OWw2G55++mkkJSWFuaaxQb7GJiYmolOnTopleD0On3fffRcAr8fBtHPnTjzzzDMYPnw4fv/734e7OhRBeD9DAK+j0UrtnpjHO/q0tLTghx9+wPPPP4/7778fKSkpmDlzput5HvPIpqffhcc6eixduhSLFy/G6tWr8c477+CPf/wjcnNzsXz5co9yPOZE0Y1jHIHz104idRz7MZ/o9Z2UcVws+CoqKrBy5UoAwMSJE8Ncm8jAsUJzpKWlAQAOHjyo+Lz7499//31I6hSJYj54S44CzMjIUC0jPyeXpdCYP38+Nm/ejISEBNx7773hrk5UamhowOTJk5GWloa//e1v4a5OTJFnVX799dd46623cNttt6G8vBwNDQ0oKipCjx498N133+Gqq65ypewkc/3+97/HBx98gKysLFx99dXIyspCeno6Ro8ejYSEBCxbtgyTJk0KdzVjhnyNTU9Ph81mUyzD63F4/O9//8PHH38MAHjggQfCW5koJUkS7rjjDjgcDjz//PPhrg5FGN7PEMDraLRSuyfm8Y4ezz77LGw2G9q0aYOuXbvi7rvvxsUXX4z169djyJAhrnI85pFLb78Lj3Xk69mzJ5566ils3boVtbW1OHbsGP73v//hnHPOQU1NDS6//HJ88803rvI85kTRjWMcxom2k0gZx37Mpff6Tso4LhZ8b731FhwOB04//XRXJn7SxrFCc8jft2+++QYHDhzwef7DDz90/T/va9TFfPCWnLI2ISFBtUxiYiIA4MSJEyGpEwGbNm3CPffcA8AZ8dqzZ88w1yg6ycszPfnkk+jYsWO4qxNT6urqAADNzc0YPnw45s+fj27duiExMREXX3wxPvzwQ9hsNmzcuBFLly4Nc22jkyRJ2Lt3L6qqqhAXF4devXohLy8PCQkJKCkpwcsvv4zq6upwVzNm8HpsTfv378f1118PALjrrrtw/vnnh7lG0enVV1/FF198gXvvvRf5+fnhrg5FGJ4/CeD3IBpp3RPzeEePzp07o6CgAEOGDHHdk69evRqLFi1CS0uLqxyPeeTS2+/CYx35pk+fjmnTpuHss89G+/bt0a5dO4waNQpr1qzBkCFD0NjYiAcffNBVnsecKHpxjCMwou0kUsaxH3Ppvb6TMo6LBZ+8ZCKzbonjWKE5xo8fj06dOqGhoQHXXXedK1gTcGYtfPLJJ11/875GXcwHb8kp7pqamlTLyOvrck3y0CgrK8Nll13m+nHff//94a5SVJKXZxo4cCDuvPPOcFcn5rin15Rv4t3169cPF110EQAw5W6QTJ48GQ888AC6du2KPXv2YPfu3di+fTsOHDiAMWPG4KOPPsJFF13EzoAQ4fXYeqqrq3HppZfi8OHDuPDCC/F///d/4a5SVPr555/x4IMPokuXLnjsscfCXR2KQDx/EsDvQbTxd0/M4x09rrnmGqxduxZfffUVKisrsX79enTv3h1PPfUUpkyZ4irHYx6ZjPS78FhHr4SEBBQWFgIAPvvsM9dscx5zoujEMY7AibaTyBfHfkJH7fpOyjguFlzffvsttm7dCpvNhhtuuCHc1YkYHCs0R1JSEt555x20b98ea9euxWmnnYb8/Hx07twZl112GdLT013JAdq1axfm2lpXzAdviaSdFlmKhMxRWVmJUaNGoaKiAmPHjsUbb7yhmjKcAnPXXXfh5MmTeOGFF2C3x/ypIOTczydnnHGGYpm+ffsCAMrLy0NRpZiydetWzJ8/H/Hx8Xj77bfRvXt313Onnnoq3nrrLWRlZWHbtm149913w1fRGCL/Jo4cOQJJkhTL8HocOsePH8eYMWOwY8cODBo0CEuWLHHN9iZz/fnPf0Z1dTXmzJnDmxYyhPczBPA6Gk1E7ol5vKPXOeecg2XLliExMREvv/wy9u3bB4DHPFIZ6XfhsY5uw4YNAwA4HA7s3bsXAI85UTTiGEdwqLWTyBfHfkJL6fpOyjguFlwLFiwAAJx//vno1q1bmGsTGThWaK7zzjsPmzZtwi233ILs7Gzs2rULgDNA7ptvvnEFwGVnZ4ezmpYW81ft3r17A3AuC3Ty5EnFMvLFVi5LwVFdXY1Ro0ahtLQUF1xwAd577z3Ex8eHu1pRa/PmzbDZbBg3bhyys7M9/r3zzjsAgNmzZyM7O5vrIgfB6aef7vp/tYAI+XFGc5tv3bp1kCQJffr0QdeuXX2eT01NxZAhQwCAa9WHiHyNbWxsxI8//qhYhtfj0GhsbMT48ePx1VdfIS8vD8uXL0f79u3DXa2otXnzZgDAlClTfK7Hf/vb3wAACxcudD1G5I33MwTwOhotRO+JebyjW6dOndC/f384HA5s3boVAI95pDLS78JjHd3cz+lyu43HnCi6cIwjuJTaSeSLYz+hpXR9J2UcFwseh8OBRYsWAeCSiXpwrNB8vXr1wquvvooDBw6gqakJBw8exAsvvICMjAzXtXvQoEFhrqV1xXzw1oABAxAfH4+GhgZs2rTJ5/nm5mZ8/fXXAJyR/RQccoaPkpISDB48GJ988glTgYdAS0sLfvrpJ59/DQ0NAJzH5aeffsLPP/8c5ppGnwEDBrhSxKrNxpAf79y5c8jqFSuOHTvmt4w841X+PVBwnXbaaa7AlHXr1imWkR/n9Th4Tp48id/+9rdYtWoVevTogRUrViArKyvc1YoJStfjuro6AM414OXHiLzxfoYAXkejgZ57Yh7v6CcP+sj/5TGPXHr7XXiso9v27dtd/9+lSxcAPOZE0YRjHKHh3U4iZRz7CR2l6zsp47hY8KxevRo//PADkpKScPXVV4e7OhGDY4Wh89///hfHjx9Hp06dMHDgwHBXx7JiPngrNTUVI0eOBAC8+uqrPs+/9957qK2tRYcOHXDhhReGuHaxwT3Dx5lnnskMHyEip2NX+nfjjTcCAAoLCyFJEtOTBkFKSgrGjBkDAPjXv/7l83xlZSX++9//AgBGjBgR0rrFAnm26q5du3DgwAGf52tra10D3X369Alp3WKVzWbDFVdcAUD5evzll1/iu+++Q3x8PMaNGxfq6sUESZJw0003YcmSJejUqROKiorQqVOncFcr6m3ZskX1evzYY48BAG699VbXY0TeeD9DAK+jkU7vPTGPd3QrLy93zUbt168fAB7zSGWk34XHOrr9/e9/B+BcJkgekOQxJ4oOHOMIDaV2Evni2E9oKV3fSRnHxYJHXjJx3LhxSEtLC3NtIgfHCkOjqakJf/nLXwAAd955J+Li4sJcI+uK+eAtAHjkkUdgs9nwyiuvuFIKAs51Tu+77z4AwJ///GckJCSEq4pRq6WlBRMmTMCqVavQs2dPrFixApmZmeGuFlFI/OUvf0FcXBzefvttj4bqkSNHcNNNN+HEiRPo0aMHrrnmmjDWMjpdcsklyMrKQnNzMyZMmOBxk3ro0CFcf/31OHz4MGcphNgDDzyAhIQE/O9//8MzzzzjClTZt28fbrnlFgDAbbfdxqXjguSee+5xreFeVFSE3NzccFeJiATxfoYAXkcjldF7Yh7vyLVx40Y89thjijPNly9fjksvvRQnT57EmDFj0LNnT9dzPOaxg8c6cq1YsQLTpk1DWVmZx+NHjx7FH//4x/9n777Do6zS/49/nnQCJKEICb2X0DtIR1AsqLAW0Ljq+lXBdXXVtaPAoousutYVXV1FAbErsCAiAgoIgtIMRYo0IRGkhJpCcn5/5PeMmcxMMjOZZDLJ+3VduZSnnimB+37Ofc5xxGl2x4WNzxwIbfRxBI6/cRJQmvz99x3u0S8WeGfPntUnn3wiiSUTfUVfYWAtWLBA3333ndO2/fv368orr9S6deuUnJys+++/P0itCxEGxhhjnnjiCSPJSDLNmjUzHTt2NGFhYUaSufTSS825c+eC3cQK6d1333W87y1btjR9+/Z1+3PVVVcFu6mVyo033mgkmcmTJwe7KRXetGnTjGVZRpJp1KiR6d69u4mNjTWSTO3atc369euD3cQKa8GCBSYmJsZIMuHh4aZly5YmOTnZREVFGUkmIiLCTJ8+PdjNDFkrVqwwtWrVcvxER0cbSSY2NtZp+759+5zOe/vttx3//tavX9906dLFREZGGkmmW7du5tSpU0F6RaHF1/f/22+/dfx73LBhQ4//Hvft2zfIr6z88/e7786ECROMJHPLLbeUQcsR6shnKhb+Ha08SpIT83mHpqVLlzo+88TERNO9e3fTsWNHk5CQ4Njeo0cPc/jwYZdz+cwrjuKeu/BZh6ZPP/3U8Xtcv35906NHD9O5c2fHcwbLssyECRPcnstnDoQu+jgCpyRxErxD34/vSvLvO9yjXyyw7H+HzjvvPJOTkxPs5oQc+goD5+677zaSTI0aNUyXLl1M27ZtHb/rycnJ5pdffgl2E8u9iADVgIW8Rx99VJ06ddJzzz2nH374Qenp6erQoYNuvvlm3XnnnUzfVkqysrIc/79jxw7t2LHD7XGNGzcuqyYBZWrs2LFq166dnn76aa1atUqbNm1SvXr1dOmll+rhhx9mmt1SdPHFF2vjxo169tlntWTJEu3bt0/GGCUlJWnAgAH661//yrrLJZCTk6MjR464bD9z5ozOnDnj+HNubq7T/j/+8Y9q0aKFpkyZom+//VZbtmxRs2bNNGbMGD344IOKiYkp9bZXBL6+/wX/Pd6/f7/bKYLhHX+/+0BJkc9ULPw7WnmUJCfm8w5NnTp10gsvvKCvvvpKmzdv1rZt25Sdna1atWqpT58+uuaaa5SSkqKICNdHdnzmlQefdWjq1q2bHn30Ua1atUo7d+5UamqqjDGqX7+++vfvrzvuuEO9evVyey6fORC66OMInJLESUBpKcm/73CPfrHAspdMHD16NH8/+oG+wsC58sorlZaWpjVr1mjr1q2Kjo5Wjx49dO211+rPf/6zoqOjg93Ecs8y5v/PwwwAAAAAAAAAAAAAAAAAKDNhwW4AAAAAAAAAAAAAAAAAAFRGFG8BAAAAAAAAAAAAAAAAQBBQvAUAAAAAAAAAAAAAAAAAQUDxFgAAAAAAAAAAAAAAAAAEAcVbAAAAAAAAAAAAAAAAABAEFG8BAAAAAAAAAAAAAAAAQBBQvAUAAAAAAAAAAAAAAAAAQUDxFgAAAAAAAAAAAAAAAAAEAcVbAAAAAAAAAAAAAAAAABAEFG8BAAAAAAAAAAAAAAAAQBBQvAUACKg9e/bIsiw1adIk2E0BAAAAAAAAAAAAAKBco3gLAEJQkyZNZFmWLMvSfffdV+SxL7zwguNYy7LKqIXu2W1YtmxZUNsBAAAAwH92PjJ9+vQijxs0aJAsy9LEiRPLpF3lxccff+zIfR599NFgNwcAAACABx06dJBlWapSpYpOnDgR1LbYA+ML/1SrVk3t27fXvffeqwMHDgS1jQCA0kPxFgCEuHfffVe5ubke98+cObMMWwMAAAAAlduMGTMc/z9z5kwZY4LYGgAAAADubNiwQampqZKkzMxMffTRR0Fu0e+6d++uvn37qm/fvkpMTNS2bdv03HPPqWPHjo42AwAqFoq3ACCEtW7dWunp6Vq8eLHb/T/99JO+//57tW7duoxbBgAAAACVz5EjR7RgwQJZlqW4uDjt27dP33zzTbCbBQAAAKAQe9BFQkKC05/Lgw8//FArVqzQihUrtHPnTm3evFnJyck6evSobr/99mA3DwBQCijeAoAQlpKSIsnz7Fp2snHDDTeUWZsAAAAAoLJ6//33lZOTo/PPP9+Rr5WnTiAAAAAAUm5urmbPni1JevnllxUeHq6vv/5a+/btC3LL3GvdurVefPFFSdK3336r9PT0ILcIABBoFG8BQAgbOHCgGjZsqE8//VSnT5922meM0axZs1SlShWNGjXK4zWMMXrvvfc0bNgw1apVS9HR0WrWrJnuuuuuIhOAr7/+WkOHDlVcXJzi4+M1ePBgffnll369jptuukmWZWn69Ok6ePCg/vSnPykpKUkxMTFq166d/v3vfxd5/tq1a5WSkqJGjRopOjpadevW1fnnn69//vOfysjI8KtNAAAAAErPt99+q1GjRqlu3bqKiopSgwYN9Mc//lFbt251e3yTJk1kWZb27Nnjdv+gQYNkWZaWLVvmtP306dP6+9//ro4dO6pq1aqKiYlRw4YNNWjQID311FPKyclxudaZM2c0depUde/eXXFxcYqNjVXnzp319NNPKysrq8jXZRdqXXfddbr++usl5Y+az8zMLPK8r776SkOGDFFcXJwSEhJ0wQUXaMmSJdqzZ48sy1KTJk3cnleStgIAAACV1eLFi5WWlqbExESNHj1aQ4YMcfSp2DZv3izLslSzZk1lZ2d7vFa3bt1kWZbmzp3rtN3fvhdPevTo4fj/vXv3uuw/cuSIHnjgAbVu3VpVqlRRjRo1NGjQIM2aNavIpdx9zc0K5l6bNm3SFVdcodq1aysuLk5Dhw7V999/7zh2+fLlGj58uGrWrKnq1avr0ksv1bZt29xeNzU1Vddff70aNmyoqKgoJSQkqGXLlrruuuu0cOFCb98mAAhZFG8BQAizLEvXX3+9Tp8+rU8//dRp34oVK7Rnzx5deeWVql69utvzc3JydO2112rMmDFavHixYmJi1LZtW/3666966aWX1LVrV23fvt3lvPfee09DhgzRV199paioKLVq1UqbNm3S8OHD9f777/v9evbu3atu3bpp9uzZqlevnmrVqqUtW7bozjvv1JNPPun2nH/+85/q1auXZs2apYyMDHXo0EHVq1fX999/rwcffFDr16/3uz0AAAAAAm/atGnq16+fI4fp1KmTTp8+rRkzZqhr166aP39+QO5z7tw5DR06VBMmTNDmzZvVsGFDdejQQXl5eVq+fLkefvhhl0EwBw4cUI8ePfTQQw9p48aNqlu3rpo0aaLNmzfrgQce0NChQ3X27Fm399uxY4dWr16tiIgIXXPNNTr//PPVtGlTnThxwqUjp6B33nlHw4YN09KlSxUdHa1WrVpp48aNGjZsmD766COP55WkrQAAAEBl9s4770iSrr32WoWHhzsGXhScNbddu3bq0KGDjh07pi+++MLtdbZv365169apRo0aGj58uGO7v30vRTlz5ozj/2NjY5327dy5U126dNHTTz+tPXv2KDk5WTVr1tTXX3+tlJQU3XTTTW4LuEqSm3333Xfq3bu3vvnmGzVp0kRhYWGOQSmbN2/Whx9+qCFDhmj9+vVq2rSp8vLytGDBAg0YMEC//vqr07XWrFmjnj176t1339XJkyeVnJyshg0b6vDhw5o9e7ZeffVVn94rAAhFFG8BQIizl0QsvBSHN0smPv744/rwww/VpUsXrV+/XgcOHNCGDRv022+/6Y477lBaWpojabEdOHBAt956q/Ly8vTQQw8pPT1da9euVXp6uu6++2499thjfr+WJ598Uv369VNaWpp++OEHHThwQK+88ook6YknntDx48edjp8zZ44efPBBhYWF6dlnn9Vvv/2m77//Xjt37tTx48f1n//8R3Xr1vW7PQAAAAACa8OGDbrrrrtkjNE///lPpaWlOfKJO+64Q5mZmbr++uuVlpZW4nvNmTNHq1evVqdOnbR3715t27ZNa9eu1YEDB5Senq7nn39eUVFRjuPz8vJ0zTXXaMuWLRo9erR++eUX7dixQ1u2bNHu3bvVv39/rVixQo8//rjb+9k52IUXXqjatWtLyp+Bq+C+wvbt26dx48bJGKPx48crPT1da9asUXp6uh544AE98sgjbs8raVsBAACAyurUqVP67LPPJMnR/zFq1ChVqVJFW7du1Q8//OA41o7n7SUWC7O3/+EPf3DKLfzpeynO559/LkmqVq2amjdv7thujNGYMWO0f/9+DRw4UPv27dMPP/ygXbt26fPPP1fVqlX1zjvvuBRAlTQ3e+yxxzRu3Dj9+uuv+v777/Xrr7/qiiuu0MmTJ3XnnXfqtttu09SpU536e3r27KnDhw/rX//6l9O1Jk+erLNnz+qRRx7RoUOHtGHDBv344486fvy41q5dq2uuucan9woAQpIBAIScxo0bG0lm+fLlxhhjunTpYsLDw83BgweNMcZkZmaahIQEU6dOHZOTk2P2799vJJmCf+0fOnTIREdHm7i4OLN//36Xe+Tm5poePXoYSeabb75xbB8/fryRZHr06OG2bR07djSSTOPGjV322W1YunSp0/Ybb7zRSDKJiYnm1KlTLud17drVSDKffPKJ0/bk5GQjyfz97393/0YBAAAACDg7H/H2Z8KECY5zr7/+eiPJXHHFFS7XzcvLM+3atTOSzGOPPeb2nrt373bbpoEDB7rkGlOmTDGSzAsvvODV65o7d64j18nJyXHZf/DgQVOtWjVTrVo1c+bMGZf9TZs2NZLMzJkzHdu2bNliJJmIiAhz6NAhl3MeeughI8kMHTq0yNdVOL8qaVsBAACAymr69OlGkmnRooXT9quvvtpIMnfffbdj2549e4xlWaZq1arm9OnTLtdq06aNkWS++uorxzZ/+152797tyKEK5j1paWnmzTffNAkJCUaSefTRR52u9+WXXxpJJjo62qSlpbnc75///Kcjp8jLy3Ns9zc3s3OULl26OF3PGGN++uknx2twd92FCxcaSaZjx45O21u3bm0kmYyMDJdzAKCyYOYtAKgAbrjhBuXm5jpGefzvf//T8ePHNWbMGEVERLg9Z8GCBcrKytJFF12kBg0auOwPCwvTZZddJkn6+uuvHdvt6YHHjRvn9rp33HGH369jzJgxqlq1qst2ey33n3/+2bFt586d2rJli6KiovTXv/7V73sCAAAA8E/Lli3Vt29fjz9xcXEu5yxatEiS9Je//MVln2VZuuuuu5yOK4mGDRtKkubPn++0xIgnn3zyiSTppptucptHJSUlqUePHjp16pTTaHwpf9n63bt3KzY2VldeeaVje9u2bdW5c2edO3dO7733nss1v/zyS0nSzTff7LZNnraXpK0AAABAZWbPimvPqmWzZ8KaPXu2zp07J0lq3Lixzj//fJ0+fdplKfT169dr27ZtSkpK0qBBgxzb/e17Kahp06ayLEuWZSkpKUl/+tOflJubq/Hjx2vy5MlOx9q509VXX63ExESXa40dO1bR0dHau3evfvrpJ5fz/M3Nbr75ZlmW5bStVatWjiUdb7nlFpdzunTpIsm5r0f6PXf74IMP3N4LACoD9z36AICQMmbMGN1///2aMWOG7r33XkfykZKS4vGcH3/8UZK0evVq9evXz+0x9rrjBw4ccGyz12Fv27at23M8bfdGwal+C6pTp46k/OmMbVu3bpUkJScnq3r16n7fEwAAAIB/HnnkEd10000e9w8aNMipM+L48eM6fPiwpPw43p127dpJ+j3vKIkrr7xSTZo00aJFi1SvXj0NHz5c/fv316BBgxz3KcjOkaZNm6Z3333X7TXtdhXMkaTfO4Auv/xylwEp119/vTZs2KAZM2a4dIzs2LFDktSxY0e39/O0vSRtBQAAACqrAwcOaOnSpZJci7cuvvhi1ahRQ4cOHdKiRYt0ySWXOI5buXKlZs+erdGjRzuOtwfTX3vttQoL+32+FH/7Xgrq3r27oqOjde7cOe3evVuHDh1S1apVNWjQIJeCKTvu95RjVa9eXQ0bNtTOnTu1fft2tWnTJiC5maf+nNq1a2vfvn1u95933nmSnPt6JOmvf/2rFi9erFtvvVXPPvusLrroIvXr10+DBw9WrVq13N4HACoaircAoAJITEzU0KFD9cUXX+ibb77R559/rjZt2uxy76YAAQAASURBVKh79+4ez8nIyJAk7d+/X/v37y/y+mfPnnX8vx1U20F2YXXr1vW1+Q7uZt2S5Eh8jDGObSdOnJAkJSQk+H0/AAAAAGWn4AN6e4BGYXY+cfLkyRLfr2rVqlq+fLkef/xxffTRR3r//ff1/vvvS8rvoJg6dapjxLv0e46Umppa7LUL5khZWVmOEeKFO4Ck/ME2Dz74oNauXauffvpJrVu3duw7ffq0JHkckOJpu79tBQAAACqzWbNmKS8vT127dnWKyyUpKipKV199tf7zn/9oxowZjuKta665RnfffbcWLlyoY8eOqUaNGjLGOHKLwjmAv30vBX344Ydq0qSJJCkvL09vvPGGxo4dq8svv1zr1q1zarudZ3nKsaT8PGvnzp2OPCsQuZk9w1ZhdnGZu/2FC89sl156qebPn68nn3xSq1ev1rZt2/TCCy8oIiJCI0eO1HPPPaf69et7eHUAUDGwbCIAVBA33HCD47/Z2dmOP3tSrVo1SdKjjz4qY0yRP9OnT3c5zx6VUdihQ4cC8GqKZ3diHD9+vEzuBwAAAKBk7FxC8pw32CPQCxct2Q/5Cw7oKMgugiqsQYMGevPNN3X06FGtXr1aTz31lLp3764tW7boyiuv1HfffefSvi+//LLYHKngjGPz5s1z5CWXX365Y3kT+6dBgwbKy8uT9PsMXTZ7AEvhkec2Tx0l/rYVAAAAqMzseHzdunUucbtlWfrPf/4jSZozZ45jAHnt2rU1dOhQZWdnO5YvX7lypfbt26cWLVqoR48eTvfwt+/Fk7CwMN1222266667dObMGf35z392e7+i+mYK51klyc1KyyWXXKKVK1fq8OHD+uyzz/SXv/xFCQkJ+vDDDzVixAjl5OSUSTsAIFgo3gKACmLkyJGqVq2a9u3bJ8uyHOuze2JPhevNSO2CWrVqJUnatm2b2/32coalzZ6yd8uWLQEZlQ8AAACgdCUkJDhm8N2yZYvbYzZv3izp97zDZhc5eRpEsmvXriLvHRERoV69ejlmwBo9erRyc3P15ptvOo7xN0eyO4CqV6+uunXruv2pWbOmJGnmzJlOBWj269y0aZPba9tLrhTmb1sBAACAymr9+vVKTU2VZVke4/a6desqKipKZ8+e1ccff+w4155dy16y3P7vmDFjXO5TWrH6Y489pmrVqumrr77SsmXLHNvtnMJTjnXy5EnHDGD2sSXJzUpbzZo1dcUVV+jFF19Uamqq4uPjtX79en3//fdl2g4AKGsUbwFABREbG6v77rtPF1xwgW6//XY1bty4yOMvvfRSRUVFacGCBdqxY4fX97nwwgslSa+++qrb/dOmTfO+0SXQvHlztW/fXtnZ2XrxxRfL5J4AAAAASuaiiy6SJL300ksu+4wxju32cbZmzZpJktauXety3scff6xjx4751I7evXtLkg4ePOjYNmrUKEnSa6+9pszMTK+uc+TIEX3++eeSpLlz5yo9Pd3tz+7duxUTE6O9e/dq+fLljvOHDRsmSR5H3Hva7k9bAQAAgMrMHnQxYMAAj3F7enq67rvvPqfjpfzB81WqVNGyZcu0f/9+ffTRR5LcF2/52/dSnFq1aun//u//JElPPvmkY7udO3344YdKT093Oe+1115TVlaWGjdu7LTcor+5WVmqW7eumjZtKsk5dwOAiojiLQCoQCZOnKjFixd7VUBVr149/fWvf1VOTo4uuugip5EaUn5wvmbNGo0bN04///yzY/vYsWNVtWpVfffdd3rsscd07tw5SVJOTo7uv/9+x2iMsvDEE09Iyn/dL774otO0uWfOnNEbb7xRZjOBAQAAACjefffdp4iICM2ZM0fPPvusYznB7Oxs3X333Y6R1ePGjXM67+KLL5Yk/fOf/3TqAFm7dq3uuusuRUZGutzrueee0/PPP+9Y7sO2b98+vfHGG5Kkrl27OraPHDlSvXv31rZt2zRixAjt3LnT6bysrCzNnz9ff/rTnxzb3nvvPeXk5KhRo0YaOHCgx9cdFxenESNGSHLuBBo7dqxiY2O1aNEiTZw4Ubm5uZKkc+fOafz48VqxYoXb6/nTVgAAAKCyys3N1ezZsyVJN9xwQ5HHpqSkSJKjUEvKX2ZwxIgRysvL02233abDhw+rc+fOatu2rcv5/va9eOPee+9VZGSkFi9e7BjYMmTIEPXo0UNZWVkaM2aM0zKIixYt0qRJkyRJDz30kGM5esn/3Kw0jB49WvPnz1d2drbT9o8++kg//vijLMtSly5dSr0dABBMFG8BQCX25JNPKiUlRbt379bgwYOVlJSkXr16qXPnzoqPj1evXr306quvOgXMDRo00GuvvSbLsvTEE08oKSlJPXv2VGJiov71r39p8uTJZdb+K664QlOmTFFubq7uvvtunXfeeerRo4datWqlhIQE3XrrrS4dNQAAAACCp3PnznrxxRdlWZb+9re/qV69eurZs6fq1q2rl156SdHR0Zo1a5YSExOdzrv55pvVrl077du3T8nJyerQoYNat26tnj17asCAATr//PNd7rV3717dc889SkxMVNOmTdWrVy+1bdtWzZo1U2pqqtq3b697773XcXxYWJg++eQTdenSRYsXL1bLli3VsmVL9e7dW+3atVNcXJwuu+wyLViwwHGOXYh1/fXXO3WEuGN3An344YeO2bIaNWqkV155RZZladKkSY78KikpSVOmTHGMqA8PD3e6lj9tBQAAACqrL7/8Uunp6YqJidFVV11V5LHJycnq0qWLjDGaNWuWY7u9dOLChQsluZ91y+ZP34s3GjZsqNGjRzvuIUmWZendd99VgwYNtGzZMjVq1EjdunVTy5YtddFFF+nUqVO64YYbdPvttztdy9/crDQsXLhQl112meLi4tShQwf17NlT9erV09VXX63c3FyNHz/eMRszAFRUFG8BQCUWERGhGTNmaP78+bryyisl5a/7npaWplatWunOO+/UsmXLXNY0v/7667VkyRINHjxYmZmZ2rZtmzp06KDPP/9c1157bZm+hoceekjffvutrrnmGsXGxmrjxo06ceKEevTooaefftppJD0AAACA4Bs3bpyWL1+uK6+8Unl5edqwYYNiY2OVkpKidevW6dJLL3U5JyYmRkuWLNEtt9yimjVraseOHQoLC9Mzzzzj1KFS0NixYzVx4kQNGDBAOTk52rBhg44dO6YePXropZde0po1axQfH+90TlJSklatWqVXXnlFAwYM0JEjR7R+/XqdPHlSPXv21KRJk7R06VJJ0o4dO/Tdd99J+r0wqygXX3yxatWqpYyMDM2bN8+x/cYbb9SiRYs0aNAgnT17Vtu2bVO7du20cOFCXXLJJZKk6tWru1zPl7YCAAAAlZk96GLEiBEuOYA7dnxfcNbciy++WDVq1JCUXzBlF1G542/fizceeOABWZaluXPnKjU1VZLUokULrV+/Xn/729/UqFEjbd68WYcOHdKAAQM0Y8YMvf32224Hm/iTm5WGt99+W7fddptatmypgwcPatOmTYqNjdXIkSP19ddf6+9//3uZtAMAgskyxphgNwIAAAAAAACAs48//lhXXXWVrrjiCn322WfBbg4AAAAAAABKATNvAQAAAAAAAOXQW2+9JUnq27dvkFsCAAAAAACA0kLxFgAAAAAAABAkH3/8sRYsWKDc3FzHtjNnzuiBBx7Q/PnzVbVqVd1www1BbCEAAAAAAABKU0SwGwAAAAAAAABUVj/++KMmTZqkmJgYNW/eXNHR0dq6davOnj2r8PBwvfbaa0pMTAx2MwEAAAAAAFBKKN4CAAAAAAAAguSKK67QL7/8om+++Ub79+/X2bNndd555+nyyy/Xfffdpx49egS7iQAAAAAAAChFljHGBLsRAAAAAAAAAAAAAAAAAFDZhAW7AQAAAAAAAAAAAAAAAABQGVG8BQAAAAAAAAAAAAAAAABBQPEWgKBZtmyZLMvSoEGDgt0UBIGnz3/Pnj2yLEtNmjQJSrsQ+qZPny7LsnTTTTcFuykAAKAcuummm2RZlqZPn15m97QsS5Zlldn9EHieYkzyWpTUxIkTZVmWJk6cGOymAAAAoIKhHwalhX4YIPAo3gJKSYcOHWRZlqpUqaITJ04EuzmOQKzwT3h4uGrWrKn+/fvr3//+t86dOxfspiJACn7OL730UpHH3nPPPY5jCdaLV/D3ac+ePUUeax+3bNmyMmlbebNo0SKf/i48dOiQIiMjZVmW1q5dWwYtBAAAnjRp0sQlf6hSpYqaN2+uP/3pT9q8eXOwm1guTJ8+XRMnTiw2LoRnhfPVefPmFXn8yJEjHcdSNFU8u8OmuAJCX/Kciuo///mPLMtSw4YNlZeXV+zx69atk2VZioiIUHp6ehm0EAAABEp568MpKDs7W9OmTdPQoUOVmJioqKgo1a1bV0OGDNG///1vZWVlBbuJ+P/ohyk99MN4j34YoGKgeAsoBRs2bFBqaqokKTMzUx999FGQW+Sse/fu6tu3r/r27atu3bopMjJSK1as0J133qlhw4YpOzs72E1EgM2YMcPjvtzcXL333ntl2JqiRUZGqnXr1mrevHmwm4IAGDp0qOrVq6fMzEx9/PHHxR7/3nvv6dy5c2rdurV69OhRBi0EAADFadmypSN/aN68uX755Re99dZb6tatW7FFNpXB9OnTNWnSpCIfJrdu3VqtW7cuu0aFuKLyl2PHjmnBggVl2JqixcbGqnXr1mrUqFGwm4IAuOaaaxQdHa1ffvlFX3/9dbHHz5w5U5IcHasAACA0lOc+nM2bNys5OVl33HGHvvrqK1WpUkWdO3dWZGSkli5dqjvvvFPJyckMpimH6IdBsNAPA1QMFG8BpcAO0BISEpz+XF58+OGHWrFihVasWKE1a9YoPT1d7777rsLDw7Vs2TK98cYbwW4iAqh169Zau3atfvrpJ7f7v/zyS6Wnp5ebzqT69etr27Zt+uqrr4LdFARAWFiYrrvuOkm/d2wUxT7mhhtuKNV2AQAA7z3yyCOO/CE1NVX79u3T0KFDlZWVpZtvvlmnTp0KdhPLvW3btmnbtm3Bbka5Fx4erubNm2vevHnKyMhwe8z777+v7OzscpO/9OzZU9u2bdM777wT7KYgABISEjRixAhJxecvBTvgyF8AAAgt5bUPZ9euXerfv7927dqlwYMHKzU1Vbt379aaNWv0yy+/6LvvvlPXrl31888/O45D+UA/DIKJfhigYqB4Cwiw3NxczZ49W5L08ssvKzw8XF9//bX27dsX5JZ5ZlmWxowZo1GjRkmSFi9eHOQWIZBSUlIkeQ7YCNJQ2uzv1rJly3Tw4EGPx23fvl1r166VZVm6/vrry6p5AADAR3Xr1tWMGTMUHR2tI0eO6Msvvwx2k1CBpKSkFDn7wcyZM4kXUars/OXjjz8uckmir776SmlpaapWrZpGjhxZVs0DAAAlVJ77cFJSUnTs2DFdcMEFWrhwodq1a+e0v2fPnlq2bJk6duyoY8eO8Uy/HKEfBsFGPwwQ+ijeAgJs8eLFSktLU2JiokaPHq0hQ4bIGKNZs2Y5Hbd582ZZlqWaNWsWuUxht27dZFmW5s6d67TdGKP33ntPw4YNU61atRQdHa1mzZrprrvuUnp6ul9tb9y4sSR5bM+5c+f06quvql+/fkpISFBMTIzatGmj8ePHF7mG8qeffqrzzz9fVatWVa1atXTZZZfp+++/93j8smXLZFmWBg0apHPnzumf//ynOnTooNjYWMc64NOnT5dlWbrpppt09uxZPfzww2rWrJmqVKmi1q1bO60tfuTIEd19991q3LixYmJi1K5dO02fPt3tvU+fPq2///3v6tixo6pWraqYmBg1bNhQgwYN0lNPPaWcnJxi3sWSfbZHjhzR3/72N7Vp00YxMTGqWrWqmjRpouHDh+uVV14p9t7u/OEPf1CVKlU0c+ZMGWNcXu9nn32mRo0aacCAAUVep6w+f3sdc3drvqempmrChAnq06ePkpKSFBUVpaSkJI0aNUrffvut2+sV/K5kZWVp4sSJatGiheOzvffee3X69OkiX3tpMcZo5syZGjhwoBISElSlShW1adNGDz74oI4ePepyfFHvjc1e272wvXv36vbbb1ezZs0UHR2t6tWrq1mzZho5cqTH6Zp/+eUX3XXXXWrVqpWqVKmihIQEDR482OdpxDt27KiOHTsqLy9P7777rsfj7AS2f//+jte4evVqPfDAA+revbvq1Kmj6OhoNWzYUDfccIPPU4MX/C64U/DvHneOHj2qRx99VO3bt1fVqlVVvXp19e7dW6+//rry8vJ8agsAAKEuMTFRLVu2lCTt2LHDad/8+fM1fPhw1a5dW9HR0WratKnuuOMO7d+/3+21mjRpIsuytGfPHn3xxRcaNGiQ4uPjFRcXp2HDhmn58uXFnufOoEGDZFmWli1b5tVrOnv2rGbPnq3Ro0erdevWqlatmqpVq6bOnTvriSeecIkZ7djBXlpt8ODBjljMsiynnMNTjCblx+RPPPGEIweJi4tTr1699O9//1vnzp1zOb5gzJKXl6cXXnhB7du3V0xMjOrWratbbrlFhw8f9uo1S9L//vc/WZal9u3bezwmNzdXdevWlWVZ2rRpk2O7PzFmcexOD3ezH+zevVsrV65U37591bRp0yKvc+bMGU2dOlXdu3dXXFycYmNj1blzZz399NMeC3KMMXrjjTfUuXNnValSRXXq1NHo0aO1c+dOj/cpKob0J5adOHGiLMvSxIkTlZGRob/+9a9q1KiRoqOj1aJFC02ePNnt96Is5OTk6KWXXlLPnj0VFxenqlWrqlOnTnryySd15swZl+OLi6+Ly/2uv/56NWzYUFFRUUpISFDLli113XXXaeHChW6vt23bNv3pT39SkyZNFB0drVq1aunSSy/VkiVLfHqdF198sWrXrq2MjIwil4a185dRo0YpNjZWUv6MCnfeeac6deqkmjVrKiYmRs2bN9e4ceN87hAu+F1wp7j8JlD5HAAAFU157cNZvHixVq9ercjISP33v/9VVFSU2/tVr15dr776qiRp1apVHmdO+vLLLzVq1CjVq1dP0dHRqlevngYPHqx///vfbuPhn376SbfddptatGihKlWqqFatWurWrZsmTJigtLQ0x3H+PmMtuD0nJ0eTJk1Sq1atFBMTo/r16+vPf/6z22fintAP44x+GM/oh3FGPwxQjhkAAXXdddcZSebuu+82xhgzffp0I8m0bdvW5dgOHToYSWbu3Llur/XTTz8ZSaZGjRomKyvLsT07O9tcffXVRpKRZOrVq2c6depkYmNjjSSTlJRkfvrpJ6dr7d6923H87t273d5v0KBBRpK57777XPZlZGSYAQMGGEkmLCzMNG7c2LRv395ERUU5Xt+vv/7qct7UqVMd901KSjLdunUz1apVM9HR0Wby5MlGkhk4cKDTOUuXLjWSzIABA8yll15qJJnmzZubbt26mXbt2hljjHnrrbeMJDNmzBjTp08fEx4ebjp27GiaNGniuN+kSZPMr7/+alq2bGmioqJMly5dTL169Rz733zzTaf75uTkmN69ezteY+vWrU337t1NvXr1TFhYmJFkjh075va9K8yfz/b48eOmefPmRpKJiooyycnJpmvXrqZOnTrGsiwTHx/v1b1t9uvcv3+/GT16tJFkli9f7nTMO++8YySZhx9+2CxfvtxIMo0bN3a5Vll+/vZ31V07LrjgAiPJJCQkmLZt25quXbua2rVrG0kmPDzczJo1y+Uc+7ty3XXXmQEDBhjLsky7du1M69atHZ/rsGHDfHpvvfl9stnHLV261Gl7Xl6e4+8LSaZZs2ama9eujve0cePGZteuXV6/N4XvV/g8+32KjY01HTp0MJ07dzY1a9Y0kkynTp1crrNs2TITHx9vJJkqVaqYDh06mIYNGzqu7+7viaI8/fTTHu9la9asmZFkXn/9dcc2+3eiVq1apn379qZTp05O7Sr8vhrz+2d+4403erXdZv/dU/g7aYwxqamppn79+k6/n82bNzeWZRlJ5qqrrjJ5eXlevBMAAISOxo0bG0nmrbfecru/Xbt2RpKZOnWqY9tDDz3kiBcaNGhgunXr5shTatSoYdauXevxPlOmTDGWZZmaNWua7t27m1q1ajnizw8++MDjeZ7isYEDB7qNw2688Ua3r8uOhyMiIkyDBg1M9+7dTcuWLU1ERISRZLp27WrOnDnjOH7dunWmb9++Ji4uzkgy7du3N3379nX8LFiwwHGsuxjNGGMOHTrkyB3CwsJMx44dTdu2bR3HDxs2zJw9e9bpnIIxix1PtmzZ0rRr187R1nbt2pnMzEy370th2dnZjvd606ZNbo/54osvjCSTnJzs2OZPjOmJHeeGh4cbY4zp3bu3sSzL7N271+m4v//970aSee2118yMGTM8xm6//PKLSU5OdnyeLVq0MG3btnW8P/369XP6LG3jxo1zvPdNmjQxXbt2NdHR0SYhIcE88sgjbmPJomJIf2LZCRMmGEnmr3/9q6PNnTt3dsp1/+///s/r97ZgG4t7DFhUnnPmzBkzZMgQx/62bduajh07OnKqzp07m99++83r96bg/QrnN999952pUqWKkWTi4+NNp06dTPv27R3v3RVXXOFyrffff9+RS1WvXt107tzZJCYmGknGsizz4osvFvc2Ofnzn//s8V7GGHP69GlTrVo1I8l8+eWXju3h4eHGsixTp04d07lzZ9O+fXtTtWpVx/dg8+bNLteyP/MJEyZ4td1WVH4T6HwOAICKpLz24dx6661Fxh+FderUyUgyt912m8s+O5axY5Du3bubxo0bO2K3wrHezJkzHbFUlSpVTNeuXU2bNm1MdHS0S+7k7zNWd/0+LVu2NJ07d3bE6S1atHDbz+AJ/TD56IehH8ZGPwwQ2ijeAgLo5MmTjuB7zZo1xhhjTpw44Xjo+P333zsdP2XKFCPlFyC5M3HiRLcPZu0OkS5dupj169c7tp85c8bccccdRpLp3r270zmegpysrCyzfft2c9dddzkejP78888ubbGDzgsuuMApkDl69KgZNWqU4x/NgtatW+d4cPnyyy87/kE9efKkufbaa01kZGSRQXx4eLipU6eO+fbbbx377I4L+x//yMhI06FDB6c2z5492xFQXHjhhWbw4MFOAe2TTz7pCGLPnTvn2P7RRx85gpr9+/c7tenQoUPm+eefN6dPn3Z5b9zx57N95plnjCRz4YUXmiNHjjgdv3fvXvPcc895dW9bwaRh/vz5bhO5YcOGGUlm8+bNRSYNZfn5FxUYf/jhhy4dSnl5eeazzz4z1apVM3FxcebEiRNO+wt+V5KTk52S4lWrVjk62z7//HOP72VhgUgaXnrpJUfHwqJFixzb09LSTN++fY0k06tXL7f39TVpuPPOOx3B8smTJ532bd261bz22mtO2w4cOGBq1qxpLMsy//jHP5w6/lauXOkInufNm1fkay/o4MGDJjw83EgyqampLvtXrlxpJJmYmBhz/Phxx/a3337bJXnKyckxb7zxhomIiDDNmjUzubm5TvsDnTScOnXKkbzcddddJiMjw7Fv8+bNjo7rl19+2Yt3AgCA0FFU8VZaWprjQf7HH39sjDFm3rx5Rsovlpk5c6bj2IyMDDNy5Egj5RfEFC6ase8TERFh7r33XpOdnW2Myf83/4EHHjCSTFxcnDl48KDb8wJVvLVnzx7zwQcfuMRLaWlp5qqrrjKSzMSJE72+T0HuYjRjjPnDH/5gpPxiq507dzq2r1271tStW9dIMg888IDTOXbMEhkZaerVq2e+++47x76ffvrJNGjQwEgy06ZN89iewm6//XZHZ4I7N910k5FknnjiCcc2X2PMohQu3vr3v/9tJJl//OMfTse1atXKREdHm6NHj3os3srNzTXnn3++kWRGjx5t0tPTHfv2799v+vfvbySZv/3tb07nzZkzx0gy0dHRju+0Mfm54KBBgxz5iy/FW/7EsnbBTmRkpBkwYIA5cOCAY9/cuXMdMfXWrVvdv5luBKJ467777jNSfsfjDz/84Ni+Y8cO06ZNGyPJXHPNNW7v62vx1mWXXWYkmUceecSpE9SY/N+Nwp1FGzduNNHR0SYmJsb85z//cXpP586da+Li4kx4eLjZsGFDka+/oO+++87RYXD06FGX/bNmzXK8HwXv99prrzl9ZsbkP6uxn0MMGjTI5VqBLt4qjXwOAICKojz34djPGP/1r3959Vr+8pe/GEmmQ4cOTtuff/55R/HIjBkznGKVI0eOmGeffdYcOnTIsW3t2rWOWPeBBx4wp06dcuzLzs42s2fPdipGKmnxVkREhImLizNLlixx7Nu7d6+jGK1wP0NR6IehH8ZGP0w++mGA0EbxFhBA9giNFi1aOG23R1jYIzlse/bsMZZlmapVq7otCrIfgH711VeObYcOHTLR0dEmLi7OpcDImPwH1T169DCSzDfffOPYXjDI8fRzzTXXuH0AvHHjRkegUjggMyZ/xGnDhg2NZVlmz549ju0pKSlGkrn66qtdzjl79qypU6dOkUF8wY6gwux//C3LMuvWrXPZ36dPHyPlF3AVfnB67tw5R9BT8Fw70H/hhRfc3tMX/ny2dofJnDlzSnx/Y5yThpycHFOnTh2TkJDgCADtIK5r167GGOMxaSjrz9+bwNid8ePHG0kuD/ILflfczfRw7733OoJBb3nz+1T4p2DSkJeX5xg94S4Z/OWXXxwjPwp+R/xNGi666CIjyWzcuNGr12e/J/fcc4/b/XbH7JAhQ7y6nu3CCy80ksxDDz3kss+e5cDd98UT+zu2cuVKp+2BThpefPFFI8mMHDnS7XkbN240lmWZZs2aed12AABCgafirV9//dUMHTrUSPkjmO0Y0X7wWTjvMSY/ZrRHoP73v/91ex9PI0O7du1qJJnHH3/c7XmBKt4qypkzZ0xUVJRp2bKl1/cpyF2Mtn37dsfoUXc5zQcffGAkmapVqzrF4cXlS3bscvnll3v9+r7++msjyTRt2tRlX2ZmpmPEbcECM19jzKIULt767bffTGRkpNPsB6tXrzaSzKhRo4wxxmPx1ty5c40k06NHD5OTk+Nyr4MHD5pq1aqZatWqORUS9uvXz0gy999/v8s5aWlpjvjcl+KtoniKZe2CnSpVqrjN+e1OG2879Qq20Zefgr9XGRkZjk7OTz/91OX6a9asceRcBb8j/hZvtW7d2khyelhfFPs98ZTL2x02f/rTn7y6nq1Vq1ZGknn11Vdd9l188cUevy+e2N+xX375xWl7oIu3SiufAwCgIijPfTgJCQk+9Q/YRVo1atRwbDtz5oxjVt133nnHq+tccsklPsVKJS3e8hTL2v0QlmW5FJF4Qj8M/TD0w7iiHwYIXWECEDAzZsyQJF133XVO26+//npJ0uzZs3Xu3DnH9saNG+v888/X6dOnXdZDX79+vbZt26akpCSndX8XLFigrKwsXXTRRWrQoIFLG8LCwnTZZZdJkr7++mu37ezevbv69u2rvn37qk+fPmrcuLHCwsI0f/58vf322y5rBn/66aeSpGuuuUbVq1d3uV5sbKyGDh0qY4yWL1/u2L5o0SJJ0rhx41zOiYmJ0Z/+9Ce37bPFx8friiuuKPKYLl26qEuXLi7bO3fuLEm6+OKLVa9ePad94eHh6tixoyTp559/dmxv2LChJGn+/Pk6c+ZMkfctjj+frX3/Tz/91Ol7EggREREaPXq0jh8/rvnz50uS3n33XeXm5uqGG24o8txgff6e7Nu3T0899ZSuueYaDRkyRP369VO/fv30/vvvS5I2btzo9rzOnTure/fuLtt79Oghyfm74IuCv0/uftzZunWr9u/fr5iYGN16660u++vXr68//OEPkn5/H0vC/m599NFHMsYUe/wnn3wiSfq///s/t/uHDx+uqKgoffvttz59V+3v2rvvvuvUjpycHH3wwQdOxxS0bds2TZgwQaNGjdKgQYMcn7n9d5ynzzxQins/OnbsqCZNmujnn3/WL7/8UqptAQAgGP7xj384/v1t3769GjZsqMWLFysyMlKvv/66qlevrlOnTmnVqlWSpL/85S8u14iNjXXEPZ7imzvuuKPI7V988UUgXk6R8vLyNGfOHP35z3/WxRdfrP79+6tfv34aNmyYLMvSjh07Spwr2L788ksZY9SvXz+3Oc0f/vAHNWjQQKdPn9bKlStd9teoUUOjRo1y2e5PfNu/f381bNhQu3fv1urVq532LViwQBkZGerVq5eaN2/u2O5rjOmLWrVq6eKLL9bWrVu1bt06SdLMmTMluY8XC7Jjt5tuukkREREu+5OSktSjRw+dOnVKP/zwgyTp1KlT+vbbbyW5z18SExPdvtfe8DeWHT58uNucv6T5S1G5i7t8SZJWrFihM2fOqFGjRm5z9B49eqhPnz4yxujLL7/0q10F2d8tO0coSnZ2thYsWKDw8HDddNNNbo+5/PLLJXl+RuKJ/V2zv3u2Q4cOOV6nu+/j999/r4ceekiXX365Bg4c6PjMt2/fLknatGmTT+3wVWnlcwAAVATluQ/n5MmTkqSqVat69Vrs4+zzJGnlypU6cuSI6tWr53hNRTl79qwjrnnggQe8um9JRUVFuY1TOnbsqH79+skY4/Uzcfph6IehH8YV/TBA6HJ9igXALwcOHNDSpUsluQb+F198sWrUqKFDhw5p0aJFuuSSSxz7rrvuOq1cuVKzZ8/W6NGjHdtnz54tSbr22msVFvZ7neWPP/4oSVq9erX69evnti2//vqro03ufPjhh2rSpInTtu3bt+v666/XU089pezsbD377LMu9/z0008dD7QL27t3r9M9jx8/rkOHDkmS2rZt6/YcT9ttLVu2VHh4eJHHFOw8KOi8887zav+pU6cc26688ko1adJEixYtUr169TR8+HD1799fgwYNUrt27Ypshzu+frY333yznn76aU2fPl2ff/654/6DBw9Ws2bNfL5/YSkpKXrxxRc1Y8YMjRo1SjNmzFB4eLjGjBlT5HnB+vzdefvttzV27FhlZmZ6PObo0aNut3v6LtSpU0eS83fBF+5+nwqyLMtlm/3QvlGjRh6Tcfs7Zx9bEn/+85/19ttva/LkyXrnnXecvluFixtPnTqlPXv2SJJuu+22Iq+bmZmpI0eOqG7dul61Y+TIkapWrZr27dun5cuXa8CAAZKkzz//XEeOHFHt2rU1fPhwp3OmTJmi8ePHuxSVFuTpMw8U+3fg8ccf1z/+8Q+3x/z222+S8n8H3D2UAQAglO3YsUM7duyQlP+gPTExUQMGDNB9993nGDSxc+dO5eXlKTo62mPsWlx8U1zcGIi4qCjHjx/XJZdc4ihC8+TYsWOKjY0t8f3s15OcnOx2f1hYmNq0aaNffvlF27dvd4mTAhnfWpal0aNH6+mnn9bs2bPVu3dvxz47fymcN/gSY/ojJSVFc+fO1YwZM9SxY0e9//77qlmzplM+7Y4du02bNk3vvvuu22Ps997OX+zvb0xMjJo2ber2HH/yl5LEsqWVv6xYscLjvj179rh9/fb71aZNG7f5jZT/+71q1aqA/J7+9a9/1eLFi3Xrrbfq2Wef1UUXXaR+/fpp8ODBqlWrlkvbMjMzFRUV5fG7YXdYeHpG4klKSooef/xxrVy5Unv37lXjxo0lSe+9957OnTunTp06qUOHDk73ufPOO/XKK68Ued3SzF9KM58DACDUlfc+nOrVq+v48eM6ffq0V6/HPq5goc/WrVslST179nRqkyc7d+5UTk6OEhIS1Lp1a6/uW1INGjRwW5wk5cfcK1as8CmmpB+GfhiJfpiC6IcBQhfFW0CAzJo1S3l5eeratatLkBsVFaWrr75a//nPfzRjxgynwP+aa67R3XffrYULF+rYsWOqUaOGjDGO6vXCSURGRoYkaf/+/dq/f3+RbTp79qzX7W/VqpXeeustdejQQS+//LIeeOABRyBg33Pnzp3auXOnV/csGIDZhVKFFRdoeDPCxFOniR2oFbe/YNV51apVtXz5cj3++OP66KOP9P777zs+h+TkZE2dOtUxIsYbvn629erV06pVq/TYY485ZkF7++23JUm9e/fWv/71L/Xp08fr+xfWo0cPtWnTRgsWLNA333yjjRs3avjw4cV+DsH6/AvbtWuXbr31VuXk5Oi+++5TSkqKmjdvrmrVqsmyLL3xxhuO/e54+j7ZiVugZwsoiv3+2AmLO/b7U3DklL86d+6sb775RhMmTNCSJUv02muv6bXXXpNlWRo2bJief/55RxJnf96S3M7wUJgvf89UrVpVI0eO1IwZMzRz5kxH0mCPZB89erQiIyMdx3/zzTd65JFHFB4erilTpujyyy9X48aNFRsbK8uyNH78eD355JMeP/NAsd8Te2aGovjyfgAAECreeustjzPa2Oz45rzzzvNY3FFcfOMpNgpkXFSUe++9V6tWrVLr1q31j3/8Q71791bt2rUVFRUlKb+T4cCBAwGLPUoaEwY6vr3uuuv09NNP64MPPtC//vUvhYeH69SpU/rf//6nsLAwXXvttU7H+xJj+mPEiBGKj4/X7NmzNXDgQB0+fFhjx451fB6e2LFbampqsfconL/Url3b47G+5i8ljWUrc/5y6aWXav78+XryySe1evVqbdu2TS+88IIiIiI0cuRIPffcc6pfv76k3z/v7OzsYvOXojqf3GnSpIn69eun5cuXa9asWXrkkUckeZ4FbsaMGXrllVdUtWpVPf300xo2bJjq16+vKlWqSMrvyJs1a1ap5i+lmc8BABDqynsfTv369XX8+HHt2rXLq9djH2fHRZJ04sQJSVJCQoJX1/D1+EAIdExJP0w++mFc0Q9DPwwQalg2EQgQe7rddevWybIsl5///Oc/kqQ5c+Y4AmIp/+Hw0KFDlZ2d7ZgScuXKldq3b59atGjhmErUVq1aNUnSo48+KmNMkT/Tp0/36TW0b99e1atXV3Z2ttP0l/Y9X3/99WLvOXHiRKdzJOnw4cNu72ePCChPGjRooDfffFNHjx7V6tWr9dRTT6l79+7asmWLrrzySn333XdeX8vXz1bKHwXx0Ucf6fjx41q6dKkmTpyoNm3aaPXq1brwwgsdlfj+SklJUXZ2tuMhc3FT9Url5/P/4IMPlJOTo9GjR+uZZ55R586dVb16dUfnYHGJcHlivz9FvQf26KuCo5DcFR0WVNSorN69e+uLL77QsWPHtHDhQj344INq0KCBFi1apGHDhun48eNObZPyO0CK+8yLGu3ijv2d++ijj5SVlaUTJ05o3rx5Tvtss2bNkiTdf//9euihh5ScnKyqVav6/Zn7+/7Z78mOHTuKfT8KTsENAEBlYv97efjwYY//1rqLbwoqLm4sfF5JYqPCzp0751g+YM6cORo1apTq1avnKBQ6d+6c0tPTvb6eN/yNCUtL586d1bZtW6Wnp2vZsmWSpM8++0xnz57V4MGDlZiY6HKOtzGmP2JiYnT11Vfr119/1d133y3Jt/zFXpayqB+7KNE+xx7F646v+UugY9lgCkb+cskll2jlypU6fPiwPvvsM/3lL39RQkKCPvzwQ40YMcLRcWC3rX79+sV+3v50FNnfOfvz3L59u9auXauwsDCXjkD7mGeffVbjxo1TixYtHIVbUtnkL6WdzwEAEMrKex/O+eefL8n7pZ6/+eYbSXIqNLJjMW/jcF+Pl0qeh3nK+yTPuV9R6IfJRz+MK/ph6IcBQg3FW0AArF+/XqmpqbIsS3Xr1vX4ExUVpbNnz+rjjz92Ot9+4Gcv6WD/1900qvaSGt6MIvaH/Y9pwekv/blnQkKCo5p927Ztbo+xp/AtjyIiItSrVy89+OCDWrt2rUaPHq3c3Fy9+eabPl3Hl8+2oOjoaA0aNEgTJkxQamqq+vbtq1OnTjmm+vVXSkqKLMvSvn37VK1aNV155ZXFnlNePn87YbKT2MJKe73tQGrVqpWk/HXjPU0TvHnzZqdjpd9HrXhKxIobkSPlB8AXXXSRnnrqKW3btk3NmzfXgQMH9Pnnn0uS4uPjHVP42m0IpAsuuED169fXsWPHtGDBAn300UfKzMxUq1at1LNnT6djA/2Z+/v+lfbfuwAAVAQtWrRQWFiYsrKy9PPPP7s9xl18U5Cn+NDeXvi84v5t93bEun2N06dPq2bNmm6XC0lNTVVubq7bcz3NNFYc+/Vs2bLF7f68vDxHLO3pPQs0O08pnL8ULlIprLgY018pKSmS8uPmZs2aeYwLC/IndrO/v5mZmR47ashf8t8DTw/gSyt/qVmzpq644gq9+OKLSk1NVXx8vNavX6/vv/9ektSyZUtFRkYqLS2tVJbxuOaaaxQTE6MtW7Zo/fr1jtHqQ4cOVVJSktOxRX3mOTk5Pn+H/Hn/SjufAwAgVIVCH87VV18tSVqwYIFjeTxPVq9e7YgnC86Qay8Bt3bt2iKXP7O1bNlSUVFROn78uH766Sev2lnSGG///v0en4l7yv2KQz8M/TDu0A9DPwwQaijeAgLAHrExYMAApaene/y57777nI63jRw5UlWqVNGyZcu0f/9+ffTRR5LcB5aXXnqpoqKitGDBAu3YsSOgr2PTpk2OAKbg2t4jR46UlD+l5pEjR7y+3rBhwyRJr776qsu+rKwsnwuhgql3796SpIMHD/p0ni+frSfh4eGO0SG+3r+wxo0b6/bbb9cFF1ygv/3tbx6XlSyovHz+9ohleyREQdu2bXOMGggFbdu2VaNGjZSZmak33njDZf/BgwcdDwguuugix/ZatWopPj5eZ8+edRvQu7tWUWJjY9WhQwfHPW2jRo2SJD3//PM+Xc8bBUeoz5w50+OSI1LRn/miRYt8Thrsv9c2bNigc+fOOe3Ly8vTW2+95fY8+/148cUXy3RaZwAAQkm1atUcD/peeukll/1nz551xCoF45uCXnnllSK3X3jhhU7b7X/b165d63LOxx9/rGPHjnnZ+t/jjhMnTridfv+f//xnsef6Om3/hRdeKMuytGLFCq1fv95l/yeffKJffvlFVatWVd++fX26tr/sOO2TTz7RwYMH9eWXXyo6OtoRD3nDU4zpjwEDBmjUqFG64IILdP/993t1jt3W1157zetl8qpVq+aYscBd/vLrr786RvF7K9CxbDD169dPsbGx2r9/v+bMmeOy//vvv9eqVascy4HY7N/Rn3/+2W0u6Wv+UrduXTVt2lTS79+t2NhYXXTRRcrLy9OLL77o0/W8ER8frxEjRkjKz1/sjkBf85e33nqryFkm3Cnq77jTp0/rvffec3teaeZzAACEqlDowxk2bJh69eqlnJwc3XLLLR6XKDt58qRuv/12SVKvXr10wQUXOPb17dtXtWvX1oEDB7wqQKpSpYojz3rmmWe8aqe/z1ht2dnZ+u9//+uyPTU1VcuXL3eJKb1BPwz9MO7QD0M/DBByDIASOXfunElMTDSSzBtvvFHksZs3bzaSjGVZZt++fU77rrnmGiPJDB8+3EgynTt39nidBx54wEgyTZs2NUuXLnXal5eXZ7777jszduxYs2vXLsf23bt3G0lGktm9e7fLNbdt22a6du1qJJk2bdqY3Nxct+3r0qWLWbdunct7sHTpUnPdddeZzMxMx/bvv//ehIWFGcuyzLRp00xeXp4xxphTp06Z6667zkRGRhpJZuDAgU7XW7p0qdvtBb311ltGkrnxxhvd7p8wYYKRZCZMmOB2/4033mgkmbfeesux7V//+pd57rnnTHp6utOxe/fuNe3btzeSzOOPP+6xTZ54+9k+8sgj5o033jDHjh1z2v7jjz+aevXqGUnmzTff9Pq+9ue9f/9+r45fvny5kWQaN27s8TWUxedvf1cLt+PDDz80kkyNGjXM+vXrHdt/+ukn0759exMTE+P2O1Hcd8Wb71thxf0+FWQfV/h39aWXXjKSTFxcnFm8eLFje3p6uunfv7+RZHr37u1yPfuzuPDCC83Jkycd26dPn25iY2Md9yto7Nix5r333jOnT5922v7111+b6tWrG0lmyZIlju379+83NWvWNJLMPffc4/KdPHLkiPnvf/9rJk+eXORr92TTpk1GkomKinJ8R37++WeX455++mkjyTRv3txp/5o1a0z9+vUdn3nh33NPn/m5c+ccv0uPPPKI4zt59uxZ85e//MXjd/LkyZOmWbNmRpIZM2aMOXjwoMv+999/39xzzz1+vR8AAJRXjRs3domZizJv3jwjyURGRppZs2Y5tp84ccJcddVVRpJp0qSJOXPmjNv7REREmPvvv99kZ2cbY4zJyckxDz/8sJFkqlevbg4cOOB03iuvvGIkmUaNGpnt27c7tq9Zs8bUq1fP8W974TjMXS5gjDHt2rUzksztt99usrKyjDH58cNTTz1lwsLCTFRUlNv4789//rORZB588EGP7427GM0YY/7whz8YSaZ9+/ZO+dsPP/xgkpKS3F63uPjVUzztrZ49ezrlL1deeaXb43yNMYtitzk8PNzrds6YMcPt+5Cbm2t69+5tJJmhQ4eaHTt2OO3PzMw0//vf/8zNN9/stP3TTz81kkxMTIz59NNPHdsPHz5sLrjgAsf3qXCM6enz8DeWLS6XLS6/ccduY3GPAYvKc+677z4jydSvX98pJ9y5c6dJTk42ksy1117rck37+/THP/7R8bt97tw5M2XKFMd7Wvi7eu2115r//e9/jt9D24cffmjCw8ONZVlOvy/r16830dHRJjw83EyZMsXl75iDBw+a559/3kybNq3I1+/J3LlzHd8NSaZq1arm1KlTLsfZfxf06tXLHDp0yLH9888/N3FxcY7zC//d4+kzP3r0qOOc1157zbH92LFj5qqrrvL4nSztfA4AgFATKn04xhizfft2k5CQYCSZwYMHm9TUVKf9a9ascfTjJCQkOOVBthdeeMERs7z77ruOZ6DG5McX//rXv5xilbVr1zriiocfftgpvs/OzjbvvfeeWb58uWObv89Y7Zg0IiLCxMfHm2XLljn27d+/33Tp0sVIMn/4wx88vq9FoR+Gfhj6YZzRDwOEHoq3gBL6/PPPHQ/xjh8/XuzxdgA6ZcoUp+2fffaZ4x97SWbq1Kker5GTk2NSUlIcxyYmJpqePXuaTp06OQIASWbr1q2OcwoGOd27dzd9+/Y1ffv2Neeff75p0qSJCQsLM5JM7dq1nQIy28mTJ82wYcMc12jUqJHp1auX6dChg6lSpYpj+9mzZ53O+8c//uHYV69ePdO9e3dTvXp1Ex0dbSZPnlxkEF/WxVt33323o61NmjQxPXv2NG3atDHh4eGODhVvPuPCvP1sr7jiCiPJhIWFmRYtWpiePXuaFi1aOM4bPHiwycnJ8fq+gUwayvLz95Q05OTkODphwsPDTdu2bU379u2NZVkmKSnJPPHEEyGVNOTl5ZnrrrvOsb9Fixama9eujk7BRo0auSTvxhizdetWU61aNUcC3rVrV0fH3rRp09wmDZ06dXIkxm3btjU9e/Z0dJJKMikpKS73WbFihaldu7aR8jtgO3ToYHr16mWaNWtmLMvy2DnjLbtNkkz//v3dHpORkeEI1qOiokyHDh1M69atjSSTnJxs7r33Xp+SBmN+7+STZM477zzTvXt3ExcXZ6pVq2aeeeYZj9+FrVu3mqZNmzp+R9u2bWt69eplWrVq5fg7olevXn6/HwAAlEe+Fm8ZY8xDDz3k+Le2YcOGpnv37qZq1aqOh79r1qzxeJ8pU6YYy7JMrVq1TI8ePRyxSFhYmJk9e7bLeWfPnnUUXEVERJj27dubVq1aGUlm9OjRZuDAgW7jME/FW3PnznXEOTVr1jTdu3d3tOGxxx5ztLNw/PfNN984XnOrVq3MgAEDzMCBA83nn3/uOMZdjGaMMYcOHTIdOnRwxLidOnVyFMJI+cVHhWPs0i7eev75553yl/fff9/tcf7EmJ4EsnjLmPxiHTv3tmPtXr16meTkZEe8XbduXZfzbrvtNsc5TZs2Nd26dTMxMTEmISHBPPLII25jTE+fh7+xbHkt3jpz5owZPHiwY39ycrLp1KmTIxbu1KmT+e2339zeOyIiwkj5HYzdu3c3tWrVMhEREY6OlMLf1fj4eCPJREdHm/bt25sePXo4ch7797GwTz75xNGJEhMTYzp37mx69uxpGjZs6DivqALLomRnZzv+LpBkbrjhBrfH7d2719H5UqVKFdO5c2fTpEkTRz5//fXXu/27p6jP3M6bpfzCuW7dupkqVaqYunXrmokTJ3r8LpR2PgcAQCgJlT4c26ZNmxzPIe2+ih49epgGDRo4bdu4caPbe+fl5Zlx48Y5jq1du7bp0aOHadKkiSN2KxzrzZgxw1FQERsba7p27Wratm3rsfjcn2esdkw6YMAAc+mllzrypy5dujjixWbNmpm0tDTPH04R6IehH8Zd/k8/DP0wQChh2USghOzpc0eMGKH4+Phij09JSXE6z3bxxRerRo0akiTLsjR69GiP14iIiNCMGTM0f/58x1rZ69evV1pamlq1aqU777xTy5Yt87gu+Pfff6+VK1dq5cqV+vbbb/Xbb7+pffv2euihh7R582Z17tzZ5Zxq1app4cKFmjVrli666CKdOXNG69at02+//aaOHTvqwQcf1Jo1axQTE+N03sMPP6yPPvpIvXr10rFjx7Rr1y71799fK1asUL9+/Yp9v8rS2LFjNXHiRA0YMEA5OTnasGGDjh07ph49euill17SmjVrvPqMC/P2sx0/frweeugh9ejRQ6dOndKGDRt09uxZDRw4UO+8844WLVqkiIiIEr1Gf5WHzz8iIkJffPGF/vKXv6hu3brauXOnjh8/rltuuUU//PCD6tevH8iXXOosy9LMmTP1zjvvqH///jp06JA2b96sxo0b6/7779e6deucli+1tWnTRt98842GDx+usLAw/fTTT2ratKnmzZunsWPHur3Xc889p7vvvlsdO3bUb7/9pg0bNkjKnwp47ty5euedd1zO6du3r7Zs2aJHH31UycnJ2r17tzZt2qSwsDANHz5cr7zyil544QW/X3/B6XntvxcLi4uL04oVK/THP/5RcXFx+umnn5Sdna17771Xq1atUvXq1X2+b0pKij744AN169ZNJ0+e1M8//6wLLrhA3333nbp16+bxvDZt2mjjxo166qmn1KNHDx04cEAbNmxQdna2Bg4cqGeeecbjsiUAAFQmU6ZM0bx58zRs2DCdOnVKmzZtUu3atTV27Fht3LjRsQyFO6NHj9bnn3+udu3aadu2bcrMzNSQIUO0dOlStzF0TEyMlixZoltuuUU1a9bUjh07FBYWpmeeeUazZs3yue0jRozQ559/rvPPP19nz57VTz/9pBYtWmjmzJn6+9//7vG8/v37691331XPnj114MABffPNN/r666+Vnp5e7D3PO+88rVq1Sn//+9/Vtm1bbd++XXv37nXkIAsWLHCJsUvbtddeq/DwcEn5eYC9ZFxh/sSYZSUpKUmrVq3SK6+8ogEDBujIkSNav369Tp48qZ49e2rSpElaunSpy3mvvvqqXnvtNXXs2FEHDx7Uvn37dPnll2vt2rVq2bKlT20ojVg2mKpUqaIvvvhCL7zwgrp37669e/dq+/btSk5O1hNPPKFvv/1WtWrVcjlv0KBB+uKLL9SvXz9lZ2dr+/bt6tq1q5YtW6bLLrvM7b3efvtt3XbbbWrZsqUOHjyoTZs2KTY2ViNHjtTXX3/t9vdx5MiR2rJli+6++241adJEP/30k7Zs2eI47+2339ZDDz3k12uPjIx0+jvIU/7SqFEjrVq1SqNGjVJUVJS2bdummJgYTZo0SQsXLvQrnx8/frz+/e9/Kzk5WYcPH9b+/ft11VVX6fvvv1fjxo09nlfa+RwAAKEk1PpwOnTooK1bt+rll1/WkCFDdPr0aW3YsEFZWVkaNGiQXnzxRW3dulUdO3Z0e2/LsvTKK69o/vz5uuyyy2RZljZu3KicnBwNHDhQr7zyiurVq+fymjds2KCbb75ZtWvXVmpqqg4fPqx27dpp4sSJGj58uMvx/jxjtdv36aefauLEicrLy9OWLVt03nnnady4cfruu++UmJhY5Pme0A9DP4w79MPQDwOEEssYFg0FAAAAAADB0aRJE+3du1e7d+9WkyZNgt0cAAAAAECALVu2TIMHD9bAgQO1bNmyYDcHAIByh5m3AAAAAAAAAAAAAAAAACAIKN4CAAAAAAAAAAAAAAAAgCCgeAsAAAAAAAAAAAAAAAAAgoDiLQAAAAAAAAAAAAAAAAAIAssYY4LdCAAAAAAAAAAAAAAAAACobCKC3YBgyMvL08GDB1W9enVZlhXs5gAAAABOjDE6efKk6tWrp7AwJsuFK3IaAAAAlGfkNCgOOQ0AAADKq2DkM5WyeOvgwYNq2LBhsJsBAAAAFGn//v1q0KBBsJuBcoicBgAAAKGAnAaekNMAAACgvCvLfKZSFm9Vr15dUv4bHRcXF+TWAAAAAM5OnDihhg0bOuJWoDByGgAAAJRn5DQoDjkNAAAAyqtg5DOVsnjLnoI3Li6OpAAAAADlFktHwBNyGgAAAIQCchp4Qk4DAACA8q4s8xkWmwcAAAAAAAAAAAAAAACAIKB4CwAAAAAAAAAAAAAAAACCgOItAAAAAAAAAAAAAAAAAAgCircAAAAAAAAAAAAAAAAAIAgo3gIAAAAAAAAAAAAAAACAIKB4CwAAAAAAAAAAAAAAAACCgOItAAAAAAAAAAAAAAAAAAgCircAAAAAAAAAAAAAAAAAIAgo3gIAAAAAAAAAAAAAAACAIKB4CwAAAAAAAAAAAAAAAACCICSKt2666SZZllXkT2ZmZrCbCQAAAABukdMAAAAACFXkMwAAAEDpigh2A3zRsmVL1alTx+2+sLCQqEMDAAAAUImR0wAAAAAIVeQzAAAAQOkIqeKtRx55RDfddFOwmwEAAAAAfiGnAQAAABCqyGcAAACA0hFSxVsAyqfcPKM1u4/q0MlM1akeo55Nayo8zPL7HH+u521bSnJtT/epXS1aMtJvp7Mc15Sk1T8f0apdRyQZ9WlWW72b1/LrXmUhUO8LAABAafI2ZnGK1apGS5b026msgMU5vsZO7o6XShYv+huDr951RKt+/k2SpT7Na6l3s/IbowIAAADwjTd5QnHPtot7Tu9LLlL42M4NE/Tud3u19+gZNa4Zqxv6NFFUBLO2BVIoPesPpbYCAFDaKN4CUCILU9M0ad4WpWVkOrYlxcdowohkDW+f5PM5kny+nrdt8aet3t6noITYSGWfy9OZ7FzHtpeX7lJCbKSeGtXBp3uVhUC9LwAAAKXJ25iluFitpHGOr7GTu+MTYiOVcy5Pp/2MF/2NwR/65EcdP5NT4J47y22MCgAAAMA33uQJ3uZLkvvn9Jd3StLcjWle5SLF3UuSnlywVbf2b6qHL0n2/QXDRSg96w+ltgIAUBYsY4wJdiOKc9NNN+ntt9/WpZdeqoiICJ04cUJ16tRR37599cc//lHx8fE+Xe/EiROKj49XRkaG4uLiSqnVQMW3MDVN42auU+G/ROxxEdNSurpN2Dyd4+kvo6Ku521bbhvQVP/5ZrdPbfXlPr541ct7lQV/PkMAQOkjXq14yGlKxtuYxZtYrSRxjq+xk7+xY1Hxor8x+NiZ6/y+JwAAgK8qW7xa0QU6n5H4jgSaN3mCJK/yJV/zF3e5iK+50O0DKOAqqVB61h9KbQUAVE7BiFVDai7S+fPna86cOVq6dKnef/993XXXXWratKkWLlwY7KYBlU5untGkeVvcJl/2tknztig3z/h0jjueruftdY2k15e7Fm55c21v7+OLiXM3F3uvsuDPZwgAAEqGnMZ33sYs2efyvIrV/I1zfI2dShI7eooX/Y3BJ87dXOw9ifsAAABQHPKZ8smbPGHi3M2aONf7fMkXhXMRf3Kh15fvVva5PD/uDim0nvWHUlsBAChLIVG81bx5c/3jH//Qxo0bdeLECZ08eVKLFi1Sr169dOzYMV155ZX6/vvvPZ6flZWlEydOOP0AKJk1u48WOd2xkZSWkak1u496fU5R3F3Pl+sWFecXdW1f7+ON9BNZxd6rLPjzGQIAAP+Q0/jP25hlxqo9Xsdq/sQ5vsZOJYkdPcWL/sbg6Seyir0ncR8AAAA8KWk+I1XunKa0eZMnpJ/IUvqJkj/bLuoedk7hTy6UZ6QZq/aUStsqg1B61h9KbQUAoCxFBLsB3njsscdctg0bNkwDBw5U//79tWbNGj344IP66quv3J4/ZcoUTZo0qbSbCVQqh056l3wVPM7bc3y9byCu6811AnWfQF+rtNtQHtoKAECoI6fxn7exyN6jZ0rt2r4cax9X0hiqJHGvvzE4cR8AAADcKWk+I1XunKa0lac4viRt8SenQ75QetYfSm0FAKAshcTMW55ERUVp8uTJkqRly5bp2LFjbo97+OGHlZGR4fjZv39/WTYTqJDqVI/x+Thvz/H1voG4rjfXCdR9An2t0m5DeWgrAAAVFTlN8byNRRrXjC21a/tyrH1cSWOoksS9/sbgxH0AAADwhbf5jFS5c5rSVp7i+DrVY/xujz85HfKF0rP+UGorAABlKaSLtySpT58+kqS8vDz9/PPPbo+Jjo5WXFyc0w+AkunZtKaS4mNkedhvSUqKj1HPpjW9Pqco7q7ny3XDLPnUVndK0v6CEuOii71XWfDnMwQAAIFHTlM0b2OWG/o08TpW8yfO8TV2Kkns6Cle9DcGT4yLLvaexH0AAADwhzf5jFS5c5rS5k2ekBgXrcS4kj/b9qRgLuJPLhRmSTf0aVJKrav4QulZfyi1FQCAshTyxVuRkZGO/z937lwQWwJULuFhliaMSJbkWhRl/3nCiGSFh1k+nePL9by9riXp1v5N/bq2t/fxxcTL2xV7r7Lgz2cIAAACj5ymaN7GLFERYV7Fav7GOb7GTiWJHT3Fi/7G4BMvb1fsPYn7AAAA4A/ymeDzJk+YeHk7Tbzc+3ypuOPcnWPnFP7kQrf2b6qoiNLpsszNM1q164jmbDigVbuOKDfPlMp9gimUnvWHUlsBAChLIV+8tXnzZsf/N2jQIIgtASqf4e2TNC2lqxLjnaevTYyP0bSUrhrePsmnc15N6apXfbyet215+JJkn9vqy30KqhEbqdiocJftCbGRetWHe5UmO2HNOpenvw5tpbpxJXtfAACA/8hpiudt3OlNrFaSOMfX+NfT8QmxkarqZ7zobwz+akpXJcRGuuyrUY5iVAAAAIQe8pnywZs8wdt8ydNz+qT4GN0+oKmSvMhFvLmXlD/j1u0DmurhS5K9fak+WZiapn5Tl2jM66t193sbNOb11eo3dYkWpqaVyv2CyZ9cMVhCqa0AAJQVyxgT0iXm1113nWbPnq02bdpo69atXp1z4sQJxcfHKyMjg6l5gQDIzTNas/uoDp3MVJ3q+dPZFjcqoqhz/Lmet20pybU93ad2tWjJSL+dznJcU5JW/3xEq3YdkWTUp1lt9W5eq1yMFlmYmqZJ87YoLSPTsS0xLlpjejZSk9pVS/S+AAACg3i1ciGn8Z63sZxTrFY1WrKk305lBSzO8TWmdHe8VLJ40d8YfPWuI1r182+SLPVpXku9mwU+Rg1UzA0AAEJXZY1XKyN/8hmJ70hp8SYWL+7ZdnHP6X2J9wsf27lhgt79bq/2Hj2jxjVjdUOfJqU249bC1DSNm7lOhTtB7ZZW1CKhUMrHQqmtAIDKJRixarkv3vryyy+1ZMkS3XbbbWratKlje0ZGhh577DG99NJLkqR3331XY8aM8eqaJAUAKqvKmrACQKghXq1YyGlQmbgbKJAUH6MJI5KJMwEAqESIVyuO0shnJL4jKF25eUb9pi5xyksKspQ/y9OKB4dQLAQAAFwEI1aNKJO7lMDp06f11FNP6amnnlL9+vVVr1495eTkaMuWLcrOzpZlWXr88cd9SgoAoDLKzTOaNG+LS+GWJBnlJ6yT5m3RsOREElYAAAKInAaVhaeBAukZmRo3cx0DBQAAAEIQ+QxC0ZrdRz0Wbkn5z8PTMjK1ZvdR9Wleq+waBgAA4EG5L97q1q2bHn30Ua1atUo7d+5UamqqjDGqX7+++vfvrzvuuEO9evUKdjMBoNwjYQUAIDjIaVAZMFAAAACgYiKfCS0sQ5fv0EnPz8H9OQ4AAKC0lfvirYYNG+qJJ54IdjNQDpGEAL4hYQUAIDjIaVAZMFAAAACgYiKfCR0sYf67OtVjAnocAABAaSv3xVuAOyQhgO9IWAEAQFlgkEXlxEABAAAAIHhYwtxZz6Y1lRQfo/SMTLezA1uSEuPz81UAAIDygOIthBySEMA/JKwAAKC0Mcii8mKgAAAAABAcLGHuKjzM0oQRyRo3c50syem9sd+BCSOSK837AQAAyr+wYDcA8EVxSYiUn4Tk5rk7Aqjc7IRV+j1BtZGwAgCAkrIHWRReOs8eZLEwNS1ILUNZsAcKeIokLeUX8jFQAAAAAAgsX5Ywr0yGt0/StJSuSox3HkCSGB/DJAAAAKDcYeYthBRfkpA+zWuVXcOAEGEnrIVnxEhkRgwAAFACjPQGI9sBAACA4GAJc8+Gt0/SsORErdl9VIdOZqpO9fwBJeQlAACgvKF4CyGFJAQoORJWAAAQaAyygMRAAQAAACAYWMK8aOFhFnkoAAAo9yjeQkghCQECg4QVAAAEEoMsYGOgAAAAAFC27CXM0zMy3c6GbCl/QAVLmAMAAJRfYcFuAOALOwnx9NjfkpREEgIAAACUKQZZoCB7oMAVneurT/NaFG4BAAAApchewlySS98JS5gDAACEBoq3EFJIQgAAAIDyh0EWAAAAABA89hLmifHOA2YS42M0LaVrqS1hnptntGrXEc3ZcECrdh1Rbp67ub8AAABQHJZNRMixk5BJ87YoLeP3ZVcS42M0YURyqSUhAAAAANyzB1mMm7lOluS0VAeDLAAAAACg9JX1EuYLU9Nc+mmS6KcBAADwC8VbCEllnYQgtOTmGb4bAAAAZYxBFgAAAAAQXPYS5qVtYWqaxs1cp8LzbKVnZGrczHWlOtsXAABARUTxFkJWWSUhCC2M9gEAAAgeBlkAAAAAQMWWm2c0ad4Wl8ItKX8WZkvSpHlbNCw5kVwQAADASxRvAagwGO0DAAAQfAyyyMdssAAAAABCVVH5zJrdR50GTxdmJKVlZGrN7qPkhgAAAF6ieAtAhcBoHwAAAJQXzAYLAAAAIFQVl88cOum5cKsgb48DAACAFBbsBgBAIPgy2qekcvOMVu06ojkbDmjVriPKzXNXMgYAAIDKyJ4NtnBsas8GuzA1LUgtAwAAAICieZPP1Kke49W1vD0OAAAAzLwFoIIoq9E+zKIAAAAAT5gNFgAAAECo8jaf+fr+wUqKj1F6RqbbYy1JifH5Sy0CAADAO8y8BaBCKIvRPsyiAAAAgKKU5WywAAAAABBI3uYzP+w9pgkjkiXlF2oVZP95wohkBqwAAAD4gOItABVCz6Y1lRQf45Is2izlz5Dl72if4kYdSfmjjlhCEQAAoPIqq9lgAQAAACDQfMlnhrdP0rSUrkqMdx4snRgfo2kpXVmlAgAAwEcsmwigQggPszRhRLLGzVwnS3IqsgrEaB9fZlHo07yWX/cAAABAaPNlNtjcPKM1u4/q0MlM1ameP8iAkekAAAAASpunXMTX1S2Gt0/SsORE8hoAAIAAoHgLQIVhj/aZNG+LU6FVYnyMJoxILtFoH2ZRAAAAQHHs2WDTMzLdzthqKT82PXY6S/2mLnGKWZMCELMCAAAAQFEWpqa5PD+3c5FhyYle5TMFV7cID7MYzAwAABAAFG8BqFBKa7SPr6OOAAAAUPl4Mxvs5Z2S9Od317t0hqRnZGrczHUsMQIAAACgRDzNrLUwNU3jZq4rMhcpzdUtAAAA4BnFWwAqnNIY7ePtLAoFRx0FAsvpAAAAhJaiZoN97NJkTZ6/xW08aZQfU06at0XDkhOJ+QAAAAD4zNPMWo9d2laT528tNhdZ8eCQUlvdAgAAAJ5RvAUAXvBmFoVAjzoqagprkmQAAIDyy9NssGt2H3WK7QozktIyMrVm91GWHgEAAADgk6Jm1rrj3fVFnlswFymt1S0AAADgGcVbAOClomZRCGRBVW6e0ctLduq5xdtd9rGcDgAAQGhwNxvsoZOeC7f8OQ4AAAAApPxnypPmeZ7l11t2LlIaq1sAAADAM4q3AMAHpT3qaGFqmibO3az0E1lu97OcDgAAQOiqUz0moMcBAAAAgKRiZ/n1FrkIAABAcFC8BQA+Kq1RR56mtS6M5XQAAAD8k5tngrr0R8+mNZUUH6P0jEy3MZ+l/FldezatWWZtAgAAABD6AjF7bxK5CAAAQNBQvAUARSirDr6iprX2hOV0AAAAvLcwNc1l+eukAC9/XZzwMEsTRiRr3Mx1suS8fIkdYU4YkczsqgAAAAB8EogZs0b3aEQuAgAAECQUbwGAB2XZwefPtNZMYQ0AAOAdTzOcpmdkatzMdZqW0tUlviutIv7h7ZM0LaWrS5yZWMaFZAAAAAAqjuJm+fVGk9qxAW0TAAAAvEfxFgC44U8HX0n4MosWy+kAAAB4r6gZTo3yY6tJ87ZoWHKiozirtIv4h7dP0rDkxKAu4QgAAACg4ihqll9vMVgYAAAgeMKC3QAAKG+K6+CT8jv4cvP8HcPkytfEmOV0AAAAvFPcDKdGUlpGptbsPirp9yL+wufYRfwLU9MC0q7wMEt9mtfSFZ3rq0/zWsR2AAAAAErEnuU3Md75WXON2Mhiz01isDAAAEBQMfMWABTiSwdfn+a1AnJPb6e1Lq1lGwEAAMqTQC5Z6O0Mp4dOZvo1SxcAAAAAlBeFZ/mtXS1a932wodjzHru0LTkOAABAEFG8BSBoAtkpF0i+dPAFijfTWt8ztKXuHNKyXLxHAAAApSXQSxZ6O8NpneoxQSniBwAAAIBAsmf5laRVu44o/URWsefUqBpd2s0CAABAESjeAhAUge6UCyRfOvgCyZ7Wury+LwAAAKXNXrKwcCG7vWThtJSuPsdExc1waklK/P9LhPxv00GvrhnIIn4AAAAAKC3BGKgMAAAA31G8BaDMlUanXCD50sEXaIWntS5PM5IBAACUptJasrCoGU7tq0wYkazwMCtoRfwAAAAAUBrIcQAAAEJDWLAbAKByKa5TTsrvlMvNc3dE2bA7+KTfO/RshTv4Suv+fZrX0hWd66tP81oUbgEAgErBlyULfWXPcJoY79whkRgf4zRwwC7i9xR9WcqfFbU0ivgBAAAAINDIcQAAAEIDM28BKFO+dMr1aV6r7BpWiKclDBNZwhAAAKBUlPZyHt7McOrLLF0AAAAAUN6R4wAAAIQGircAlKnS7pQLJJYwBAAAKDuBXM4jN8+4jeHsGU6LQhE/AAAAgIqEHAcAAKD8o3gLQJkKZKdcWfCmgw8AAAAlZy/nkZ6R6XaJbUv5nQvFLeexMDXNpVMiycdOCYr4AQAAAFQk5DgAAADlG8VbAMpUoDrlAAAAULEEYjmPhalpGjdznUucmZ6RqXEz12laSlevC7go4gcAAABQkZDjAAAAlF9hwW4AgMrF7pSTfu+Es3nbKQcAAICKyV7OIzHeeRbWxPiYYguvcvOMJs3b4naAgL1t0rwtys1zdwQAAAAAVG65eUardh3RnA0HtGrXEXInAACAMsTMWwDKnN0pV3g5m0Qfl7MBAABAxePvch5rdh91ii0LM5LSMjK1ZvdRRpsDAAAAQAGBWH4eAAAA/qN4C0BQ+NspBwAAgIrPn+U8Dp30XLjlz3EAAAAAUBkEcvl5AAAA+IfiLQBB40+nHAAAAOBOneoxxR/kw3EAAAAAUNEVt/y8pfzl54clJzLwGgAAoBSFBbsBAAAAAACUVM+mNZUUHyNP3QmW8pf96Nm0Zlk2CwAAAADKLV+WnwcAAEDpoXgLADzIzTNateuI5mw4oFW7jig3z934IwAAAJQH4WGWJoxIliSXAi77zxNGJDNaHAAAAAD+P5afBwAAKB9YNhEA3FiYmqZJ87Y4jTpKio/RhBHJGt4+KYgtAwAAgCfD2ydpWkpXlzgukTgOAAAAAFyw/DwAAED5QPEWABSyMDVN42auU+F5ttIzMjVu5jpNS+lKxx8AAEA5Nbx9koYlJ2rN7qM6dDJTdarnL5XIjFsAAAAA4Mxefj49I9PlebiUP4txIsvPAwAAlDqWTQSAAnLzjCbN2+I2UbW3TZq3hSUUAQAAyrHwMEt9mtfSFZ3rq0/zWhRuAQAAAIAbLD8PAABQPlC8BQAFrNl91GmJncKMpLSMTK3ZfbTsGgUAAAAAAAAAQCmwl59PjHdeGjExPoZVKAAAAMoIyyYCQAGHTnou3PLnOAAAAAAAAAAAyrNhyYmqHh2pVT//Jil/JuPezZjFGAAAoKxQvAUABdSpHlP8QT4cBwAAAAAAAABAebUwNU2T5m1xWpHi43W/aMKIZGbdAgAAKCMsmwgABfRsWlNJ8THyNJ7IkpQUH6OeTWuWZbMAAABQAeTmGa3adURzNhzQql1HlJtngt0kAAAAAOVUWeQPC1PTNG7mOqfCLUlKz8jUuJnrtDA1LeD3BAAAgCtm3gKAAsLDLE0YkaxxM9fJklQwHbYLuiaMSGa6aAAAAPjE3Wj2pPgYRrMDAAAAcFEW+UNuntGkeVvkriTMKP95+KR5WzQsOZHn4QAAAKWMmbcAoJDh7ZM0LaWrEuOdl0ZMjI/RtJSudK4BAADAJ4xmBwAAAOCtssof1uw+6nKPgoyktIxMrdl9NCD3CwRmMwYAABUVM28BgBvD2ydpWHKi1uw+qkMnM1Wnev5SiYwwAgAAgC8YzQ4AAADAW4HMH3LzTJHPtw+d9Fy4VZC3x5U2ZjMGAAAVGcVbAOBBeJilPs1rldr1i0ueAQAAEPp8Gc1emrEnAAAAgPIvUPmDN4VOdarHeDrdibfHlZbcPKOXl+zUc4u3u+yzZyNjxQwAABDqKN4CgCBglBAAAEDlEGqj2QEAAAAETyDyB3vZxcKzdxUudOrZtKaS4mOUnpHpdqYvS1JifP6g42BZmJqmiXM3K/1Eltv9zGYMAAAqirBgNwAAKhs7eS48gspOnhemprmck5tntGrXEc3ZcECrdh1Rbp67dBoAAADlTaiMZgcAAAAQfCXNH4pbdlHKL3TKzTMKD7M0YUSypPwCqILsP08YkRy0gij7Obqnwi1bwdnIAAAAQhUzbwFAGSoueXY3SohZugAAAEJXKIxmBwAAAFA+lDR/8HXZxeHtkzQtpavL8+fEID9/Luo5uifMZgwAAEIZxVsA/JKbZ7Rm91EdOpmpOtXzk0WmJC6er8mzt1NcAwAAoHyyR7OPm7lOluQU15WH0ewAAAAAyg9/8wf7ef3nblZ1cKdgodPw9kkalpxYrp73F/cc3R1mMwYAAKGM4i0APqvMM0GVtGjN29E/h05m+jVLFwAAAMqf8jqaHQAAAED542v+4O55fXEKFzqFh1nq07xWyRoeQL7MosVsxgAAoCKgeAuATyrzTFCBKFrzdvRPneoxPs/S5S9mUQMAACh95XE0OwAAAOCv8ePH68knn5QkTZ48WePHjw9yiyoWb/MHT8/rPQmVQidfZ9FiNmMAABDqKN4C4LXKPBNUoIrWejatqaT4GKVnZLp9Hwsmz//bdNCrtvkyCqmwyjyLGgAAQFkrb6PZAQAAAH9s3bpVTz/9dLCbUeEVlz8U9bzenVBatr245+g2nmUDAICKIizYDQAQOnyZCaoiKa5oTcovWsvNKz5NDg+zNGFEsqTfk2Vb4eTZl1m6/GEXpBX+TO2CtIWpaX5dFwAAIBTl5hmt2nVEczYc0KpdR7yK7QAAAIDKxhij22+/XZGRkRoyZEiwm1OpFfe8vrDE+JiQWTmjqOfotnuGttSKB4eExOsBAAAoDjNvAfCatzM8lWQmqPIo0MsXDm+fpGkpXV1mvEosNErIl1m6fFWZZ1EDAAAojNlIAQAAAO/897//1fLlyzV16lRt2bIl2M2p1Lx9Dv/HPo11cfukgCzbnptnymwpeE/P0cnVAABARUTxFgCvlfZMUP4oi2SxNIrWhrdP0rDkxCLbbo8uGjdznSzJqdCqpFNcB7ogDQAAIFSVZHnssuy4AAAAAILt8OHDevDBB5WcnKx77rlHt956a7CbVKl5+xz+4vZJXj/jLSrHCcagF2+eowMAAFQEFG8B8FppzgTlj7JKFkuraC08zCo2afZ2li5fVdZZ1AAAAAoqyWykzNYFAACAyuaee+7R0aNH9cknnygyMjLYzan0Av28vqgcR5Lfg15Kypvn6AAAAKGO4i0AXivNmaB8VZIZEnwV7KK10hhdVB5nUQMAAChr/s5GWpaxKAAAAFAefPXVV5o1a5ZSUlI0cOBAn8/PyspSVlaW488nTpwIZPMqpUA+ry8qxxk7c50SYiP9GvQCAAAA74QFuwH+Gj9+vCzLkmVZeuKJJ4LdHKDSsGeCSox3LupJjI8ps06q4mZIkPKTxdw8d0f4zk6Cpd+TXltZFa3Zo4uu6FxffZrXKvG97II0T1exlD+qqqxmUQMAAAgGf2YjLetYtCLJzTNateuI5mw4oFW7jvAeAQAAhIjMzEyNHTtW8fHxeuaZZ/y6xpQpUxQfH+/4adiwYYBbWTkF4nm9NznO8TM5Hs8vOOgFAAAA/gnJmbe2bt2qp59+OtjNACqtYK8z7+8MCSVRWssXBkt5mkUNAAAgWPyZjTQYsWh5l5tnis0NWGYSAAAgdD3xxBPauXOnXn75ZdWtW9evazz88MO69957HX8+ceIEBVxe8CbWLunz+uJyHG95OzgGAAAArkKueMsYo9tvv12RkZHq16+flixZEuwmAZVSMNeZ92eGhEAIdtFaoFW0gjQAAABf+bM8trcxZvqJytFx4U1RFstMAgAAhC57MH3Xrl01btw4v68THR2t6OjoALas4vNlAETh5/X2rLfePMcO1HN0bwfHAAAAwFXIFW/997//1fLlyzV16lRt2bIl2M0BEAS+zpDgzegkbwWzaK00VLSCNAAAAF/4Mxupt7Ho5P9tVpXIsApdlORNUdaw5MQil2CxlL/M5LDkRGJQAACAcuiOO+7QuXPnNG3aNIWFhQW7ORVawefYe347o+cXb/drAISvs96WtOjK3aAXAAAA+CakircOHz6sBx98UMnJybrnnnt06623BrtJAILAlxkSWJ6leBWtIA0AAMAXvs5GWlwsajt6OqdCzyqVm2e8KsqqHhPJMpMAAAAhbP369bIsS5dffrnLvoyMDEnS1KlT9fLLL6thw4Zau3ZtWTexQnD3HNud4gZA+DPrrZ3j+LN0oqdBLwAAAPBNSBVv3XPPPTp69Kg++eQTRUZGBrs5AILE2xkSvtySHpDlWQI5cxcAAADKH19mIy0qFnWnos4qtWb3Ua+KslbtOuLV9QK95DkAAAACJzc3V7/++qvH/adOndKpU6cUE8Oyef7wVHDliacBEN4OsCicn4SHWbq8U5Je+2a3z233NOgFAAAAvgmZ4q2vvvpKs2bNUkpKigYOHOjTuVlZWcrKynL8+cSJE4FuHoAyVtwMCcOSE9Vv6pISL8/CzF0AAADlS2kV1vsyG6kdiz7yaaqOns72eFxFnlXK+2Ir77qgSrpUCwAAAErH8ePHPe676aab9Pbbb2vy5MkaP3582TWqAimq4Ko4hWNybwdYuCv6mrsxzad7/7FPY13cPomBzgAAAAESEsVbmZmZGjt2rOLj4/XMM8/4fP6UKVM0adKkUmgZgGAqaoaEVbuOlHh5Fn+mmAYAAEDpKU+F9cPbJ+lsdq7u+WBjscdWxFmlvC226tOstj5ed8CrJc8BAACAyqa4gquiFI7Jvc07fC36cufi9kkVboAKAABAMIUFuwHeeOKJJ7Rz5049+eSTqlu3rs/nP/zww8rIyHD87N+/vxRaCSAY7BkSruhcX32a13KM8vE3UbUVN8W0lD9zV26eP2OivJObZ7Rq1xHN2XBAq3YdKdV7AQAAlHd2YX3hTgW7sH5hqm8jxQMhMb6KV8dVxFmlejatqaT4GHkaY28pv7Cud/NamjAi2bGt8DFS/pLnjNYHAABAZeTPQA871i48AMLbvMPfoq+i7g0AAICSKffFW1u3btXTTz+trl27aty4cX5dIzo6WnFxcU4/ACo2fxNVm7dTTE9fubtUiqoWpqap39QlGvP6at393gaNeX21+k1dEpROSQAAEHjjx4+XZVmyLEtPPPFEsJtT7pWHwnp3vC1gqogdG+FhltdFWfYyk4nxzrF3YnwMs9kCAACgUvN1oEdRAyD8zU98bQODLwAAAAKv3Bdv3XHHHTp37pymTZumsLBy31wA5YSdqBalqI40b0cbTZ6/1auiKl9m0SqPs0oAAIDAsQeowHveFtav2X207Bol3wqYKiJfirKGt0/SigeHaPatvfXC6M6afWtvrXhwCIVbAAAAIWz69Okyxmj8+PHBbkrI8uY5dkF146I9DoDwNz8prujLlljEvQEAAFAyEcFuQHHWr18vy7J0+eWXu+zLyMiQJE2dOlUvv/yyGjZsqLVr15Z1EwGUQ+Fhli7vlKTXvtnt8ZjLOyV57EjzZbRR2v8vqvKUuC5MTdOkeVucOhyT4mM0YUSyy/HFzSphKX9WiWHJiRW2ExAAgIrMGKPbb79dkZGR6tevn5YsWRLsJoWEki6JXZrsAqbC8V6ih3ivohnePknDkhO1ZvdRHTqZqTrV8wdIuItV7SXPAQAAAOSzC67Gzlzn1fHPXtNZfVvU9rjfn/zEbsO4metkSW6fTd8ztJXuHNKCZ9IAAAClpNwXb0lSbm6ufv31V4/7T506pVOnTikmxrepXQFUXLl5RnM3Fj1D1dyNaXpgeFu3Cac92ig9I9NtslqYkfTwJz+6FFXZs2gVvka6h4IvX2aVoOMLAIDQ89///lfLly/X1KlTtWXLlmA3J2SUdEns0uZLAVNFRFEWAAAA4L/h7ZN0S98m+u/KPcUe+9upLK+u52t+4qnoy9MgZAAAAARWuV+H8Pjx4zLGuP258cYbJUmTJ0+WMUZ79uwJbmMBlBvFFUFJRS+tU9QU054cO5Ojl5fscPy5uFm0pPxZtAouoVieZ5UAAAAlc/jwYT344INKTk7WPffcE+zmhJTilvGwVPSS2GXBLmC6onN99WleK6QLt3xZ8hsAAABAyQ1NTvTquN9OZnkVn/uTn7DUOQAAQPCExMxbAOCrQBRBeRptVJS3Vu7RnUNaKjzM8msWrfI+qwQAAPDfPffco6NHj+qTTz5RZGRksJsTUopaxsPugpgwItnvgqncPFNpZ80qzJclvwEAAAAEhrcrQUyev1VvrNjtc3zubc7DrLoAAADBQfEWgAopUEVQ9hTT01fu1uT5W4u93vGzOY5iLH8KyIpL0i1JiWU8qwSdmQAAlNxXX32lWbNmKSUlRQMHDvT5/KysLGVl/b48xokTJwLZvJDgqbA+sYSFRRQr/c7XJb8BAAAABEZRA1YK8yU+z80zennJDr21co+On81xbC+Y8/D8FwAAIPgo3gJQIQWyCCo8zNJNfZvqpSU7nRJcT+xiLH8KyEp7Vglf0ZkJAEDJZWZmauzYsYqPj9czzzzj1zWmTJmiSZMmBbhloccurA9UxwLFSr8rbslvS/lLfg9LTqQjBwAAACgF3q4E4S4+d1eA9eWWdD30yY86fsb1mbad89w2oKnmbkzj+S8AAECQhXTx1vTp0zV9+vRgNwNAORToIqjwMEs3922q5xZvL/ZYuxjL3wKy0ppVwld0ZgIAEBhPPPGEdu7cqZdffll169b16xoPP/yw7r33XsefT5w4oYYNGwaqiSElUMt4UKzkzJ8lvwEAAAAElrcrQRSMzzPOZrs8S64WHaFTWeeKPF+SXvtmt8s++/nvv6/rohpVo5mRC15hBjcAAEomIMVbWVlZ+uGHH3TgwAGdPXtWf/zjHwNxWQAokUAXQd05pIXe+na325FKkmsxVkkKyAI9q4Sv6MwEAFQ2pZXTbN26VU8//bS6du2qcePG+X2d6OhoRUdHB6RNlUVxD44pVnLmz5LfAAAAKB/oo6lYwsMs1a7uXf735ZZ0vbVyj8tz3KIKt4pjX+vO2euVV+DCzMgFT1jBAwCAkitR8VZWVpYef/xxvfrqqzp16pRje8HE4JZbbtHnn3+upUuXqnXr1iW5HQD4LJBFUOFhlp4a1UFjZ65z2eepGKskBWSBmlXCH3RmAgAqi9LOae644w6dO3dO06ZNU1hYWMDajaJ58+C4NIuVQnHEsT9LfgMAACC46KOpuLyNuz/84Re3A3ADIa/QhVmRAe6wggcAAIHhd+9Bdna2LrzwQj3zzDMyxmjQoEGqXbu2y3GjRo1Senq6PvrooxI1FAD8ZRdBXdG5vvo0r1WijrPh7ZP0akpXJcU7J8+J8TEek5Dh7ZO04sEhmn1rb70wurNm39pbKx4cUq4TFmZeAABUBmWR06xfv16WZenyyy9XYmKi08/7778vSZo6daoSExPVo0ePEr8m/P7guHAhuv3geGFqmqTSK1ZamJqmvk8t0ZjXV+vu9zZozOur1fepJY77llf2kt+eImVL+QVwhZf8BgAAQHDQR1OxFRef205m+j/Dlq/s4pxJ87Yot3BlFyql4lbwkPi+AADgLb+Lt1588UUtX75c/fr10/bt2/XVV1+pVatWLscNGzZMUVFRWrRoUYkaCgDlhT/FWIEsICup3DyjVbuOaM6GA1q164jbxImZFwAAlUFZ5TS5ubn69ddfXX4yM/OLi06dOqVff/1Vhw8fLtHrgW8PjkujWGlhaprGzlyn9BOFCsdOZGpsgcKxgu0tLi4rzJ9zvGEv+S3J5T0pbslvAAAAlD36aCqegrH+mt1H9dil7uPzYCq4IgPgywoeAACgaH4vmzhr1ixFRkZq9uzZSkxM9HhcVFSUWrRoob179/p7KwAod4K5pGFJeLv2vN2ZmZ6R6bbz01L+bGPMvAAACGVlkdMcP37c476bbrpJb7/9tiZPnqzx48f7fG248nXp5wkjkjVu5jpZklPM40+xUm6e0UOf/FjkMQ9/8qOGJScqPMzyOi4ryJ9zfFGSJb8BAABQtuijqVg8xfq3DWiquRvTisxzgoEVGSCxggcAAIHk98xb27dvV8uWLVWvXr1ij61evbp+/fVXf28FABVaac2eUJi3SwhJzLwAAKgcyGkqHl8fHNvFSok+LIntyeqfj+j4mZwijzl2Jkerfz7iU1xm8+ccf4Tikt8AAACVEflMxVFUrP+fb3brsUvb6rFL2wapde6xIgMkVvAAACCQ/J55KyIiQjk5RT+Yth05ckRVq1b191YA4LfcPKM1u4/q0MlM1ameP1OUNwVH/p7nq9KePcFW3BJClvKXELJngpCYeQEAUPGR01Q8/jw4Ht4+ScOSE0sc+63adcSr477d+Zs+WX/Ap7jMn1iuJEJ1llkAAIDKhHymYvAm1p88f6seGN6m1NoQZkkFxxMX/nNBrMiAgljBAwCAwPG7eKtVq1batGmTDh8+rPPOO8/jcbt27dLOnTs1cOBAf28FAH7xtzCqrAqq7BFVhZMae/YEX2d7KIqvSwjZAtWZCQBAeUROU/H4++A4MMVK3s2eeuD4WZ/jMn9jOQAAAFRc5DMVg7ex/tFTWaXWhpfHdFWNqlGO57/HTmfrz++uc9zfxooMKMxewWPczHWyxPcFAICS8HvZxKuuuko5OTm65557lJeX5/aY7OxsjRs3TpZlafTo0X43EkDZCcQSfmW1DGBR/F1WprjzFmw66Pa1eXrNRW0vakSVlD97grfvXXHveUnWnrc7M6/oXF99mtci0QIAVBjBzmmmT58uY4zGjx8f0OuGmkDGjsFc+rlPs9peHVcvoYpXxxWMy0oSywEAAKBiCnY+g8DwNoavWTVKSfExLnlOIISFyen57yUdA7e8PCo+ewUPvi8AAJSM3zNv3XXXXXrnnXc0e/Zs7dq1SzfeeKMyMjIkSUuXLtWPP/6o1157TVu3blXXrl31pz/9KWCNBlA6AjHjVFnNWlUUf5eV8aag6s7Z652mjE6Kj9HlnZI0d2Oay2v2tH3CiGTFV4kK2OwJ3rznrD0PAIArcprgK43YMVhLP/duXksJsZE6fsbz0jUJsZHq26K2Xlm2q9jrFYzLiOUAAABQGPlMxeBtDJ8YX8XjDEcl5e5ZOSsywBd8XwAAKDnLGON3jHfw4EFdffXVWrVqlSzL9R9gY4x69+6tTz75RImJiSVqaCCdOHFC8fHxysjIUFxcXLCbA5QLnpbws3+zvRkhEYhrBMKqXUc05vXVxR43+9be6tm0piOh+O1klibP31qqbbPfi5v7NtGbK/cUe/wLozvris71Pe739j3PzTPqN3VJsUsIrXhwCAkVAJQDxKtlh5wmeEo7dszNM2X+4HhhaprGzlzncf+rKV01LDnR57iMWA4AAISaihCvhoJQzWckviO23Dyjbk986XEQSOFY390AmECYfWtvlmAHAAD4/4IRq/o985Yk1atXTytWrND8+fP1ySef6Mcff1RGRoaqVaum5ORkjRo1SiNHjnSbNAAoP/ydqSrQ1wgUb6eaXrwlXfd+sCHgiW5R7PdizoaDXh1f1MgrX99z1p4HAMAVOU1wlEXsaC/9XJaGt0/SqyldNXHuZqWfyHJsT4yL1sTL2zmK0XyNy4jlAAAA4A75TOj7ckt6kbP3GjnH+oVnONrz22k9t3hHidvBEuwAAADBVaLiLUmyLEuXXXaZLrvsskC0B0AQrNl9tMRL+AXiGoHi7VTT//Vi5qvSYCQdOZ2tmlUjdex0TpGzJ/RsWtPjdXx9z4O1hBAAAOUdOU3ZK0+xY6B5s1yEP3EZsRwAAADcIZ8JLQVnCK5dLVoT524u8viE2EgNS3aeNa3wQJWWdarpztnrlVeCtRRZgh0AACC4Sly8BSD0eTuqpqjjAnGNQOnZtKaS4mOKXFbGslSiZDYQRnaurzdX7vE4e8LoHo30v00HPS7z4897ztrzAACgPChPsWNp8GbWL3/iMmI5AAAAIHT5s+Th8TM5xQ5qqVE12u9n3d4MIgYAAEDpo3gLgNejaoo6LhDXCJTilpUxkkyQC7ckaWhyono0remSsCfERspIem7xdse2JDczKvj7ngdjCSEAAICCylPsGEz+xGXEcgAAAEDoWZiapnEz17kdbFyc4ga1+DvoxZcl2AvOGFZ4EElR+wAAAOAdv4u3mjVr5tPxlmVp165d/t4OQCnyZqaq4kbfBOIageRpWZmE2EgdO5NTJm3wpPB7UT06Uqt+/k2SpYgw6fmvdrqck56RqXEz12laSldHAVd5e88BAAg15DTBQxxTduhIAQAAqJjIZ/xX1jFybp7RpHlb/CrckqSFqelFttPfQS/xsZG6+fymLssySr+/R+knMrVyx2F9ueVXZWSec+y3BxtLcnkG724gMvKRnwEAAE8sY/ybfyYsLMy7G1iWjDGyLEu5ubn+3CrgTpw4ofj4eGVkZCguLi7YzQHKBXvkj+R+Cb+CRUOleY1AK5gM1a4Wrfs+2KD0E1lenXtD70aasXpfwNtkKf+9kFwT27AilnO0OzFXPDjEkdCVx/ccAFByxKtlg5wmuMpLHFORH567W5aFjhQAAFAWKkK8Wt6Fcj4jBe87EowYedWuIxrz+uoSX8dTO3PzjPpNXeL1coxVI8N0OifP43W9Wd6x8IoXhfdJPJsujPwMAIDQEYxY1e/irb1793rcd/r0ae3cuVOvv/66Fi1apOeee06XXnqpGjdu7HdDA4nEEXAvEMlDeU5AfEmSk+Jj9PX9g9XzycU6frb4mboSqkR6dZwk3T6gqbo0quH3NNmzb+3ttFROeX7PAQD+IV4tG+Q0wRfsOMbd/WtWjdTIzvU1NDkxpAu5PC3LQkcKAAAoCxUlXi3PQjmfkYLzHQlWjDxnwwHd/d6GgF3vT32baFihfKUkyzIWfP2S/L5O4WsWHohcmZGfAQAQWkKqeMtbTz31lCZMmKCvv/5avXv3Ls1beY3EEfAsEDMPlNfZC3xJkl/9/8nSC4t36LnF24s9ftYtvRQWZik946wmz9+qo6ezPR6bFB8jY4zXM4AV9sLozrqic32nbeX1PQcA+Id4tXwhpyldwYpjvOncKOuC+EC9F8WNvKcjBQAAlLaKFK+GuvKYz0hl/x0JZowcqJm3CnM3Y9ZDn/yo42e8G2RckCWpbly0JEvpJ7ybwcsbhQciV0bkZwAAhJ5g5DPezatbAg888IDi4uI0adKk0r4VgAAID7PUp3ktXdG5vvo0r+VXshCIaxQlN89o1a4jmrPhgFbtOqJcT+sMFlKneoxXx919QQvFV4nSnA0H1L1JDSVUifB4rKX8JLl381rq07yWEuOrFFm4JUlpGZl+F25J7l9Hab/nAABUZuQ0pSsYcUxuntGkeVuKHU2enpGpcTPXaWFqWqm3aWFqmvpNXaIxr6/W3e9t0JjXV6vf1CV+3XvN7qNFLnFilB+Trtl9tAQtBgAAQCggn8kXzBi5Z9OaSoqPUaAzncL5yvD2Sfph/DBd1jHJ53sZSeknsgJauCVJh04G9nqhiPwMAAB4w3NFQoCEhYWpadOmWr068KMKAFQuuXlGLy/ZobdW7nFaotDbGRHsJDk9I9NjR11CbKTeX/uLXvhqp9M2d+wEeMKIZEcnY2kmo/YInJ5Na5baPQAAgCtymoqnuIfnNqP8GGzSvC0alpzodWGZpxm03G2XpJeX7NBzi3e4XMfujPF1CQ1vY1I6UvIxiy0AAKjIyGfyBTNGDg+z9Nilybrj3XUu+yzJ7yUK3eUrX25J1/xNaSVe9jBQvB1QXZGRnwEAAG+UevHWuXPntHPnTp07d660bwWgAitqymdvO7XCwyxNGJGscTPXuSTF9p/zr+98j4z/f8+E2Ein+ye6KRorrWTUXaEYAAAoG+Q0FY8vD8ULjoL2ZrmPhalpmjRvi1NxWFJ8jC7vlKS5G9OcttuDBDwta1Jc8ZinoiNvY1I6Ujx/XmW5XCYA71BoCQD+IZ/JF8wYeWFqmibP3+J2X2J8jB67NFmT528pctCxJwXzlZ5Na3o1w3BZYCDy78jPAACAN0q1eOvYsWO69957dfz4cfXv3780bwWgAluYmqZxM9d5TDp9mRFhePskTUvp6tJBUzcuWpnn8tx2nNnXrxIZrn/f0lW/nc7y+KC4uNm97KTVGKNfT2R5fE1hllRwNUh3hWIAAKD0kdNUTP48FPem4MtT3JqWkanXvtntcrynoq2CPBWPFVV0NCw50auYtLJ3pHj6vPyd8QxA6aHQEgD8Qz7zO2+f2wY6Ri7u2fZjl7bVJR2TFBYmt4OOvXXoZKbXMwy7Yyn/Gblk6dcTvheRFb6WxEBkW7C+ewAAILT4Xbw1ZMgQj/uMMTp8+LB+/vlnZWZmKjIystKvpw7AP7l5xqvRQr7MiDC8fZKGJSc6jdjNM0bXv/FdsdcPC7N0Ref6Ho/LnwK7re54d73LvoJJq+Q+GbePeXlMV9WoGsWIYgAAShE5TeXlzXLahRVX8OVt3OqvgsVj3hQdFTXjrERHSlGfl7/LZQIoHRRaAoB75DO+KW5VBinwMXJxOYIlafL8rbqofZJj0LGn1SeKU6d6TImW3TOSxvRspJZ1qunPbp5tFxYbFa6oiDC3bWUgsrNgfPcAAEDo8bt4a9myZV4d17NnT02dOlUDBw7091YAKpmCSyH8djLLp9FC3iao4WGWU5HXnA0HAnL9/Cmwt7rdVzhpdTcDWM2qUbqicz3VqBpFwRYAAKWMnKbyKvjwvDjejoIuySh3b9jFY94WHa14cIjbeJOOlHzFfV6+LpcJoHRQaAkAnpHP+M7TqgylFSP7GnMOS07UhDmbfbpHwXxlze6jJWrvc4t3KCk+Rv/Xv6k+XndAR09nuz0uJiJMZ7JzdSY71+3+xy4l3yisrL97AAAg9PhdvLV06VKP+yzLUtWqVdWsWTPVqFHD31sAqITcLYXgC3/XhQ/EuvPFTYF9bfeGOp15To999qMkS01qxWrJfYO0Yf9xLd6Srk83HNCR09l6c+UevblyD0tAAABQyshpQlfBYn9/Zykd3j5J/9e/qV5f7rqcYWEFR0F7undJRrkXpXDxmC8dQO5mnGWAQD5vP6/S+lwBeIdCS/w/9u48vImyawP4nXRvoRsFUvayUyogyFrUVwRFEBAUBAR3VARFcMEFXgRURH1FPllU3K2A4sIii1JBESyLQIFSECgtILRgW9pC9zb5/himSzqTTCaTrb1/15VLSCYzT0KF58xznnOISB7jGXWcOUe2dc65+3QWLl4pVnx+86pNaioMm0vPLbIaIxWVGS2Oaf7GZNwew8Rqc4zPiIiIyBLVyVvcpUFEWrOW/GRNpI194asuvEUE+cEQ7I+MPOmA2lrFBSVtct779WSN517fdAy3dmqE+ORLbtcCQotFUSIiInfGmMYzSSX7q0l633Q4HZ/stLwoodcJ7azF81q6ttpNBEpUTR6zdQHIvOIsCbTYvEFEjsdESyIieYxn1BPnyOL9z58OX3DI/U9b5pxbktLx4vdHbDp/42A/jOvVAsVlRiSkZKFXVLhsez5nYWK1ZYzPiIiISI7q5C0iIi0pSX6yxpa+8FILb4G+Xjad3572jiKjCdiafEnyNVe2gNBqUZSIiIhIS3LJ/rYmvW9JSseTK623TDSagLAgX0XXXjr+ert3uZsLC/TGglFdqn0mJh1pw1pVAqXtMonIsfh3HhEROYoz7n+Kc05L940jQ/yRdaUYU1cftOnc93Rvip2nsrAovnLDsDj+peO7Y9a6JNm2h87AxGoiIiIi2+hdPQAiqhvKjSYkpGRhXeJ5JKRkodxYfYnEWisES0IDffCBDdWpxIU38+sVlJTLvuexm6KqnX9LUjr6L9yGcSt2Y9rqRMzfeEzV2K2pulPJWeS+H3FhcktSutPGQkRERCSylOwvPjd3Q3KNeabceZS6dKVI0bXnbzyG2UOjAVS2L7HXf4fF1JjjigtActfQAWgQ5IuM3ELJeTcJvPQ6zBkm/edl3n6GiFxHyd95tlbhJiIictb9Ty+9DsO7Wr5n3blJMJ7+xrbErZAAb3x/4HyNLhIZuUV4Iu4AXl57pFrilitmtEysJiIiIrKNospbAwYMsPtCOp0Ov/76q93nISLPo2QXk5qdODod8PSAdphyS1vsP3MZ6xLPWy1vrabClw7A+kPpeGFwJ3jpdXa3d1TDWTuVrC1MuqoSGBERkb0Y03g+a8n+Sttz2LppoFF9f8XXDgvyxfIJ3SXnvsO7RmL9oXSbrm0IrrngISYdybVCMQHIyi/B9G8PVVyb1VOlDY6JlPzzMvA7I3Iblv7OY6IlEdUljGe048z7n+VGE9YfspwIFn9MuiuDJTqdzuLGkpyCUsnnnYEVbImIiIjUUZS89dtvv9l9IZ2ON1GI6iKlrW3U7MQxmQC9Drj57e2Ky1urqfBVdSGwV1S43e0d1XDWTiWtFkWJiIjcDWMaz6c0md3acbYkxYvVXF7fqKxS16UrRRjRrSkGRRsq2mtX3VzwwuBO2JuajYzcQszfeAyX80tUteyTSzqSYmtLybpmcEyk7J8XEbkHJloSETGe0ZIz73/a021CSmigDx7q16paq0R3wsRqIiIiIvUUJW9t377d0eMgolrIll1MYiuEjNwimxKjpAJVSwtU9lSwunSlSPOAWwlDsJ/TdipptShKRETkbhjTeD6lyezWjrMlKV5sq7c28YJN1/bS6yQXeqo+H+DrZVclmapJRxl5RZj/01Fk55fWOI7VU62T+/MiIvfBREsiqusYz2jHmfc/45Mz7D6H6KU7OuDRG9vgp8PKYhNHEmOY0ECfalW+zBOry40m/ttNREREpJCi5K2bb77Z0eMgolrI1l1Mltq/2MLSApU9Fawa1fd3SdJSUZkRW5MznLKbWKtFUSIiInfDmMbzWUv2t1atSlw4yMgrQniQj2Sik0ivA5aMux6DYyKRkJKF7PwSq+MLD/KxKeFei0oyYtKRMEb5z8Pqqc7BxSkix2KiJRHVZYxntOOs+5/lRhN+TDxv1zmqimkaCi+9DhFBfpqdUy0xZrGUWL0lKV2ynTyrZhIRERFJU5S8RUSkhq27mGxp/2KN3AKV2gpfYvWrvanZio6fPbQTIur7IS0zX1EZ65gmwTj171UUlRprvJZTUIon4g5g2fjuGNLFsYGtvYuiRERERI7ipdfJJvtbq1YltXBgyf/dez3CgvywLvE8Tl68qug9I7s1tTlRR6tKMqye6npcnCIiIiLyDM66/7k3NdviBgtbZV4tBgAYTfZse1YnPNAHD/RrhVYRQTViFqnE6i1J6Zgcd6DG98uW7kRERETymLxFRA6jZhdT1QWsrckZ+HRXmuTinNIQ1XyBytKinyWFpeXYmpyBQdEGRcH9g7FRFQFsB0N9q4uFSRfyrI5h6qoDWILrMaRLE4Wjtp09i6JEREREjqamWpXcwoGUyBB/DO8aidc3H7N5M8HAaINNx4u0qCTD6qmuxcUpIiIiIs/hrPufWm+cEOfyexRuLtZKWKA3dr88EL7eekXHlxtNmLshWTL+Ykt3IiIiInl2J2/l5+djw4YNOHToELKzs1FaKr2TQKfT4ZNPPrH3ckTkQdTuYhIXsPq2aYBeUeGSi3Nje7bAovgTVscgtUAlt+in0wFyG5dyC8vwRNwBfDChu03BfbnRhJAAX7wwuCOyrxYj2N8bh8/n4mxWAX4/mWl1/FUZTcCTKw/iA73OoYs/WrTwISIi8iSMaTyLLdWqLC0cAML8LTzIF7OGdoIhJACX80swZaWyRK+q53B1ZVJWT3UdLk4RERGRqzGesZ0z7n9qtXHCfC5/+t8rmpxXqQf7RSlO3AKEimOWNsKwpTsRERGRNLuSt1avXo3JkycjL6+yYozpWuaDTqer9hwDA6K6R4tdTHKLcwCwet9Z1QtUUhW+lFScfvGHI9g/a5Ci4F6udcrsodGIP5Zs/WIynLH4o1ULHyIiInfHmMYzKa1WpWThICu/BIaQAPSKCkf/hdtsTtwCXF+ZlNVTXYeLU0RERORKjGfUc/T9T2sbLADxXnEnvLw2CTkFNZPuzOfyW5LSsSnpoibjU6pVRJBNx7OlOxEREZE6qpO3EhISMHHiRAQEBOCVV17BN998g1OnTmHFihU4d+4cDh06hA0bNsDPzw+zZs1CkyaOa/NFRO5Li11McotzltofmgDEtonA+kMXYAiWDry99Dr0igrHjG8TFX+enIJS7E7JshrcW2qd8uTKA4qvJ0Vc/OkVFe7Q5CotWvgQERG5M8Y0tZ8tCwfWknCkuFNlUlZPdY3atDhVbjRx8wYREZEHYTxjP0fe/1S6wWJwTCRuj4nEkm2n8NmuVOQUViZxVZ3LixVfnc3WCmJs6U5ERESkjurkrXfeeQdGoxFff/01hg0bhu3bt+PUqVN45JFHKo45fvw4Ro8ejaVLl2L//v2aDJiIPI+jdjHJLVCJvjvwD7478A8AYReT+aJVudGEz3el2rxIl3A6E7HtImSDe2utU7SwNTkDM75NrFHViwtzREREyjGmqX3Mk08i6vkpel+j+v6Kk2um3tIG7RrXt3lO64zEGFZPdb7asjglVzWY8QUREZH7Yjzj/pRusPDS6zBtYDtMHdBWdi6vZrOJvSJVtF5nS3ciIiIideyqvBUREYFhw4bJHtOxY0d8//336NSpE+bMmYMPPvhA7eVqj7IyYPt2oGtXoFEjV4+GyGm02MUkteAlLlAt2XYSi+JPyr43PbcIk+MOYPmE7hgcEym5OKGc5cUvZwTSn+5Kq/Fchtln1BJ34RMRUW3EmKZ2kZrfNa7vi3p+3rhaXCb7vvAgH2TkFSH7arGi68S2bWjzvNaZiTGsnupctWFxylLVYEfFF0RERGQ/xjOewZYNFpbm8q6o5Kqm9TpbuhMRERGpozp5KysrC126dKn4va+vLwAgPz8fQUGVPbDbt2+Pzp07Y/PmzXYMsxZZtgyYNk349fTpwIwZQLNmrh0TkQewtOA1KNqA1fvOKTrP3A3JMBqBKStrLk4oZTKZkJCSJRtkOzqQlmoTiWvP6SB8xkHRBs0CYO7CJyKi2ooxTe0hl3xy8UqJ1fdm55di+jeJAAC9DjDKTBJtScKpmviellmA9+JP1Bhbem4Rnog7gGXjr8eQLmxhowVXbDiwd3HK1ZskrFUNdkR8QUREzuHqf2PI8RjPeA4tNlgoreSq0wEmO9s/6HXAknHqE/jZ0p2IiIjIdqqTtxo0aIDCwsKK30dERAAAUlJSqgUMAFBeXo6LFy+qvVTtMmBA5a8XLQLefx+4915gyBBg/HjXjYvIjVnbCf7MwHaKKl2ZICySzVqXZFf7wqW/pWDpbymyCUyOboliaeziZ9ybmq1JxQXuwiciotqMMU3tYCn5xFaWErcA6zvEy40mLNl2Ep/tSkNOYamia05ddRBLoMOQLpxT2cOVGw7ULk65wyYJa1WDtY4viIjIOdzh3xhyPMYzdcvl/BKLm01E9iZuAcCScdfbHZ+wpTsRERGRbfRq39iqVSukp6dX/L579+4wmUz4+uuvqx136NAhnDhxAg0bNlQ/ytokJgYoKQG+/BK46SahjeLXXwP33SdsiVi7Figvd/UoiZyu3ChUs1qXeB4JKVkovxaFWtsJDgCfSbQQtCQ733oFBiXEBKYtSenVnhdbp8iFoToADYJ8NRmDHC2qfyn57uduSK74syIiIvI0jGlqBzUtq3VW1gvM1xMMIf5Wk9a3JKWjx2tbsSj+pOLELUBYfHlyZc05pdz8mGoSNxyY/xzIzdcdYXBMJHbOHIBVk/pg8dhuWDWpD3bOHGAxccvVYwaUxw2uaNNDRETquMu/MeR4jGfqji1J6Ziy8oDVxC17RYb444MJ3TWrDCxWHBvRrSn6tmnAxC0iIiIiC1RX3ho0aBD27NmDo0ePonPnzhg/fjzmzp2Ld955B+fPn0ffvn1x8eJFLFu2DEajEXfffbeW4/ZsPj7AxInCY/9+4IYbKl8bORJo00ZI5po8GTAYXDdOIiextBswJMDX6k5wWxbHtCTVRkQsST8kxoBPJJLKxPB0RLcm+NTGpDNbaFH9i7vwiYiotmNMUzuoSSqxthvdaAJmD+2EiPp+sjvEq7dGzMei+JM2j6OqqnNKVstQzp3a/ilth+NOY1YaNzi6ujAREWnDnf6NIcdjPFM3KKk0rKZVotgW/p17uiIzv9jmylhszUpERESkLdXJW2PGjMGff/6Jv//+G507d0bz5s2xfPlyPPbYY1i5ciVWrVoFADCZTOjTpw9ee+01zQZdq/ToIcyqDxwA1qwBPvgASEkB5s0THgCQnAx06uTacRI5iLW2fA/FtlJ0ntAAH0VJXDpYbjsoCvLVI7/EaPW4qglMuYUlNRbZzEtZG6okpTkqeSsyRAiW7cVd+EREVNsxpqkdHJVUElHfDyO6NZV8TSq5yl5V55RsW62cJ244cKcxi1WDM3KLJOMkcVFPi/iCiIgcz53+jSHHYzxTNyipNKwmcQsQ2sLHtouweKxUktbW5AxuNiEiIiLSmOLkre+//x7Dhg2Dr6/Q6qtz587YunVrtWMeeOAB3Hjjjfj222+RlpaGgIAA9O/fH3fddRe8vLy0HXlt07278HjlFeCzz4Cnn658LToaGD8emD69epUuIg+nZDfgusQLis71UGwU3os/YTUxS2kcqyRxq6qtyRn4bFdajfOLgfPDsa0wKNpQsQOp3GiyuEhijznDojXZ5cRd+EREVNswpqmdrCWfqCU3x5HbfKCFjLwivLXlOKtl2MATNxy405i99DrMGRaNyXEHamx0qbqox583IiLP4E7/xpD2GM/UTY74/9WgMNFq0+ELmLUuCdn5lZumQwN9kFNQcxM1N5sQERER2Udx8tbo0aMRFhaG0aNHY8KECejfv7/kca1bt8aLL76o2QDrnHr1gKeeElomTp4MfPyx8PzKlcIDAB57DFi2DGCwRR5OyW7ArPwShAf54HJ+qcWd4FMHtEUHQz3ZCgjmFbC0tjbxgsVFts1JGXhlaOWih7hI8kTcAavnVlotDACmD2ynWXDMXfhERFTbMKbxPEpacVhKPpGjv9ZWxNY5jpKWJfbIvlrMahk28sQNB+425sExkVg+oXuNWErpoh4REbkPd/s3hrTFeKZuUvr/q6V76KKQAG88HBuFqQPaWU3OX7ApGR/uSK3xvFTiFsDNJkRERET20is9MDw8HJcvX8aKFStw8803o3Xr1pgzZw5OnjzpyPHVXd7ewIoVlS0VJ06sfO2jj4D27YH33weuXnXdGInspHTX0Mhr7WrMwz3zneCDYyKxc+YATB/YDiH+1XNTHZm4FR7kg+z8EtnXqy6yqWEI8cey8dcjMsS/xndQVWSIP6YOaKfqGlLEhVDA+ndPRETkCRjTeJYtSenov3Abxq3YjWmrEzFuxW70X7gNW5LSaxwrJp8YQiwvbOiuPSbdGFXxe/PXAfk5jpKWJWroIMzlwoN8FR3PahmVxA0HcjNS8bt1pw0H7jhmMZZaNakPFo/thlWT+mDnzAFM3CIi8jDu+G8MaYfxTO1QbjQhISUL6xLPIyElC+VWblwr/f/6tRExFb+Xk1dYhvfiT2JrcobFa246nC6ZuGWNvffBiYiIiOoyxclbGRkZWLduHe6++274+fkhLS0Nr732Gjp27Ii+ffti2bJlyMrKcuRY667rrwe+/BL466/K506fFlor1q8P6HTAn3+6bnxEKindNTQw2iC5GGcI8a9Rhnlrcgbeiz+J3KIyTcdqiZhcZk3VRTaxaoMloQE++PrR3tg5cwCGdGliMZFKB8ckUskthEp990RERO6OMY3nEFsTmidKia045BK4qiafTB/YHobg6nOYID9vTLu1HV4Y3EnVHMdRSVMmALOHRsMQEqDoeFbLqOSJGw7cdcxeeh36tmmAEd2aom+bBm71nRFRdbYu/FPd4a7/xpA2GM94Pls2qIiU/n89pEsTLJ/QHY2D5WMF8V+LuRuSZf/tKDeaMGtdksJPJI2bTYiIiIhspzOZTDZH91euXMGaNWsQFxeHHTt2wGg0QqfTwdvbG3fccQcmTpxYrfe6u8nLy0NISAhyc3MRHBzs6uHYLj9fSOZ67z3gxInK52+4AVi6FOjVy2VDI7JFudGE/gu3WW3Lt3PmAHjpdVbb5ojnc0Q1BCmhgT54c9R1CAnwxbgVu60ev2pSn4r2NgkpWTa/BxACfPN2JpFOaGeipGURERFpx+Pnqx6AMY37sjanM58jWrLp8AU8//1h5BeXV3tenMcNijbYNMdROoczJ14PgGyb78gQf8weGo35G5MVz4/VqK3zOlfNk+3hiWMmItfj3x2khDv8nNTm+ao78PR4Bqh7PyPiBhXzeb44E7e2UVbp/9e7Tmbivk/2WB3Pqkl90CsqvEZssDc1W1XMY35utnknIiIiT+aKuaqq5K2qLly4gLi4OHz99dc4cuSIcFKdDsHBwRgzZgwmTJiAG2+8UZPBaqXWBAVGIzBlCvDBB9Wfj40FBgwAZs0C3Dg4IwIqg1YA1QJXpUFrVWoX09S4s0skFo+9viKpzJYkNABYl3ge01YnWr3O4rHdMMKssldtXXAjIqJKtWa+6iEY07gXtUnu5rYkpeOJa/NMOR/YWEnU2rzPXGigDx7qF4WpA9pWzNc2Hb6AJ1cerHGsOJt77KYoiy1KbB1zVe6wkOtInjhP9sQxE5Hr2LvwT3WLq/+Nqc3zVXfjifEMULd+RrTaoKLk/2ul950fjm2FzUkZNWKDO2IM+HRXmpKPpfpzEBEREbk7j0zeqiopKQlffvklVq9ejX/++Ue4gE6HFi1aYMKECZg/f75Wl7JLrQwKdu0CPvoIWLUKKC2tfP6994CHHxbaKxK5Ka0WkZQGplqINAtCbU1C02pRkoiIaqdaOV/1EIxpXM+eJHdRudGE2Dd/RUZescVzmM/plLA273tmYHu0ighUVSlWByAk0Ac5BaWSrwPqk7e0WvB39UIwEVFdpWVlSiJnqM3zVXfmKfEMULd+Rpx5L9ieDc46QNEmFbn3AkwkJiIiotrB45O3RCaTCb/99hvi4uKwatUqFBUVQafToby83PqbnaBWBwXp6cC99wJ//FH5XHAwcN99wLhxgBvusCECtFkE0qLylg5AkJ83rhaXWT3WvLR0WmYBVu09i4w860loaqp1ERFR3VGr56segjGN62ixsGHLvFDNAonazQf2zlfVzhG1WvD3hMpdTC4jotqKm8DI09Tm+aon0DqeWbt2LTZv3oy//voLFy5cQFZWFgIDAxEdHY17770XkydPtrlFY136GdFig4pSSqoF63WAUeZFHQCdhddFIQHeyC2svIfubnEBERERkT1cMVf1dsRJL126hMOHD+Pw4cMoLra805k0FhkJ7NgBZGUBK1cCS5cCf/8NLF8uPAChOtfYsa4dJ5EZL73O7puLvaLCERnibzEhqlF9X/Rv1xDfHzgv+ToAjLmhmaLS0PHJGZjxbWK1xStDsB+mD2yHVhFBFheLvPQ6zBkWjclxB2rsaBKPnjMsmgtNRERELsKYxnWUzOkMIcI8S86lK9JJSlI2J6VXXFfp3GtwTCQGRRtqJAkBwuK6XOKQLeOSYgKQnluEvanZNs2d96ZmyyZuKT2vXOWujNwiTI474BY77D0huYyISC2l/4bY+28NEdUOWscz77zzDnbt2gU/Pz80adIEXbt2RXp6OhISEpCQkICvvvoK8fHxCA0NtX/wtVCj+v6aHmeJtfvOJlhOzDIBsFby4fGbovDC4E7cNEFERESkIb1WJ8rPz0dcXBwGDx6M5s2bY8aMGdi/fz+8vb0xYsQIrFmzRqtLkRINGgBPPQUkJwMbN1Z/bdw4oF8/4LvvgDLr1YWIPIUYmAKVCVAiMTAtLjdJJm4BwiLg8gndMSjaoOh6n+xKq7EIdjGvGO/Fn4Sftx592zSwGLAOjonE8gndYQipHpSL4+ACExERkXMxprFPudGEhJQsrEs8j4SULJRb26otw9qcDqie5C51XVsWPb5MOINxK3aj/8Jt2HItkcva55Gq7rQ1OQP9F27DuBW7MW11ouQ5tViMAWxfmLd3wb/caMLcDcmSyXTic3M3JKv+M9eCmFxmPj8Xk8uq/jl4Kq3+HyMiz+TMhX8i8kyOjGceffRRbN++HVeuXMHp06exb98+/PPPP0hISECzZs2wf/9+vPLKKxp+mtrlcr71BLpIKxtUbGHpvvMjsa0UneOR2FaINHt/gyBfLBvfHS8Nia7YjD2iW1Or98GJiIiIyDq7Km8ZjUb8/PPPiIuLw/r161FQUACxC2OfPn0wceJE3HvvvQgP12bCSSro9cCQIcJWia++Au6/H/D1BRISgNGjhWNatgQOHxbaKxJ5ODEwNd9xHxLog5yCUuQUlEq+b/rAdpg6oB289DqUG01Wqz3IlY42XXt97oZkDIo2WA1a5ao2MNglIiJyDsY02tC64pHcnM5gdk65684eGg1DsB8y8pRXGahaQQqA7OeRei302lzT0jkHx0RarSqmlK0L8/Yu+GtRucuRrCWX2TI/d1esKkZEWlSmJKLax1nxzIMPPij5fJ8+ffDuu+9izJgxWLt2LZYuXWrXdWqjcqMJ8zces3rc7KFCrGGpkq8t5O47703NxicKuk4MjDbg5aHRvG9NRERE5CQ6k8laAdSa9u7di7i4OHzzzTfIzMysCAaioqIwYcIETJw4EW3bttV8sFqpS73UJWVkAMuWAfPnVz5Xvz4waZJQratVK5cNjUgrVashRAT54dk1h5CRJ73gJN7g3DlzQEXwKe7cB6RLSyuxalIfmxavpCo4MBgmIqqb6vx81QkY02hHrp2eOIuxp6KoOD/KyC1Edn4Jwuv5wRBcWenK0nUfuykKH+5Itel6OghJ/7kFpZLnVZNwZT7XtDbPDJW5vtS5lCo3mtB/4TarC/5y512XeB7TVidavc7UW9qiXeN6Tp/LJqRkYdyK3VaPs3V+7i4c+f8YEXkWS/+GAPz7gNyLO81XayN3imeOHDmCLl26IDQ0FJcvX1b8vrryM6J0rjp9YDus3nfO4cn69sYGRERERHWBK+aqiitvpaSkIC4uDl9//TVSUlIAACaTCaGhoRgzZgwmTpyI2NhYhw2UNGQwAPPmAc88AwweDOzbB1y5Arz7rvAAhP9On+7SYZLncafkI7FsMyAEyHKJW4B0pQBL1R7uiDHgUwW7k2xpZ8Od9ERERI7HmEZ7jq545KXXIbewBG/9/Hf1OVmwP4rKyi228VuXeAHLxl+Pl9cmyVZflXqv3LFqK2WZzzWtVRUDgMlxB2oki0m1jFRKbEWp9rxKK3ct2X6q4tfOnMva2xbSndWFqmJEpJzSypREVDu5azyTkJAAAOjevbvTr+0JlM5BF8WfrPGceSVfwP578PbGBkRERETkGIqTt9q3bw9ACAZ8fHxwxx13YOLEiRg2bBh8fX0dNkByoPBwYO9ewGgEfv4ZWLQI2LpVeG3GDOHx7bfAyJGAt10dNqkOcOfkI6UB8uakdACoCHgtlZZWkryldJFLbie9VHBORERE6jGm0Z6j2+nJzpMsJOZXHlOMk5fysX/WIOxOyULC6UycuHgVvyRftHkcWqg6J7XWOtsRC/P2LPiraffozLmsvW0h3Zm7t6wkIuez9m8IEdVe7hTPlJeXIz09HevXr8eLL76IoKAgLFiwwOJ7iouLUVxc2dY8Ly/P0cN0C/bMQcW596vrj2JQtAFbkzM0uQevdTKwO23qJiIiIvJUijNyTCYTevfujYkTJ2Ls2LF290gnN6LXA3fcITxWrgTuu6/ytTFjgJYtgZtvBl57DWje3HXjJLfl7slHSgPkLxPO4MuEM9UC3qoVvETWFq/E0tK9oqz/PWltJz0AvPzjEQzo2Bi+3npFn4OIiIikMabRntqKR9Zu7pcbTdidkoUXvz+iuuIVACyKP4EOhnoYHBOJ2HYRSEjJclnyVuaVYpQbTRWfU2qeKXLUwrza81ranS/HmVWhtJyfu5vaXFWMiNSz9G8IEdVe7hDPvPfee5hu1rHjrrvuwvz58xETE2PxvQsWLMDcuXMdOTy3pGYjhLmMvGJMW30QGw+na3YPXm1sYB7LXc4vwfyN7rmpm4iIiMiT6ExiM3QrTp48iXbt2jl6PE5RV3qp2+XsWeCTT4Bly4DMzMrnn3pKaKcYFeW6sZFbKTea0H/hNtnd4OJCyc6ZA1y220Yco60B8iOxrTAw2iAZtIoJa4B0aWmlwXJCShbGrdht9bjwIF+8MTKGAS8RUR3B+apjMKbRntK5zKpJfSoWma1VbJV63R6RVeaiaueFWvH0RQy1fzZV//wdRav5ubtR8/8YERGRO3CX+Wpt4g7xzJo1a7B48WKUlpbizJkzuHjxIkJCQjBlyhTMmzcPXl5esu+VqrzVvHnzOvEzIrf5WUv1/b3w6rAYNAkNcFjlK6XxgKfPwYmIiIhcEc8oLuPi6qCAnKxFC2DuXCGJa86cyufffx9o2xa45x7h18py/6gWs6WNh6uIlQKAysBRiU92pWHcit3ov3AbtlxrqSgSS0sbQqpX9TKE+NsUlCrdIZ+dX4LJcQdqjIOIiIiUY0yjPXEXudwcSwchYUmseCQuWpjPH8Xd4gs2JUu+bo+qc1FL80Lx96GBPjbNGW2RkVuEJ+IOYN6Go0hIyUK50bPiqcExkdg5cwBWTeqDxWO7YeotbRS9zxlVobSan7sbW/8fIyIiotrLHeKZ0aNHY+fOndizZw8yMjKwe/dutGrVCm+88QamTp1q8b1+fn4IDg6u9qgrBsdE4rGbomCeT6XXAXd20WaeeqWoHM+uOSR7P9tecrGcFDHKmbsh2eNiHiIiIiJXUVx5qzbhrh8VjEZg3Trggw+AX36p/trUqcCiRYC34i6cVIusSzyPaasTrR63eGw3jOjW1PEDskBtpQBLO4WstfyxRulOenEcrq5iRkREzsH5KlnjTj8jSiseKanYqtMBjri3bz4XtVT9C4Ds59F6aJ5eicsdq0LZOz93R7W1qhgREdVu7jRfJce6cOECWrdujdLSUpw+fRotW7ZU9L669DMiV3lLnM+FBPogp6BU8+suG389hnRpYvd5rMVylrBCLBEREXkit668RXWcXg+MHAn8/DNw5Ej115YsAdq0Ad55B8jJccnwyHUa1fe3fpANxylRbjQhISUL6xLP21SxoGqlgPv7KruJAFjeKeSl16FvmwYY0a0p+rZpYPPCkLWd9ObjcHUVMyIiIiJzSiseKanY6qhN2eZzUfMKUqsm9cHOmQMwOCbS4ud5OLaVpuMSK45Z2xWvdv7raO5YFcre+bk7qq1VxYiIiKh2aNKkCbp16waj0YhDhw65ejhup9xowtwNyZIbQcTnHDVjnbrqIDYdtr8Cl7VYzhJnVOElIiIiqg1YKolsFxMjtEtMSgJuvVX49dmzwPPPCw9ASPCKiXHtOMkpxAWbjNwiyQBUrBal1YKNpSoJShYtxMUcAPgy4Yzi61ZNnNJyp5DYukfcSa8EA14iIiJyN4NjIjEo2mCx4pEr5jCW5qJV54Xm5D7P3tRsfLorTbPxma6Nce6GZAyKNkgmGtk7/3WkqnNZ88pk4ieZMyy6ViRQuZqS/8eIiIiIXKWsrKzaf+uiqhVgI4L8AB2QebUYmVeKrW5iuVxQinu6N8V3B85rOiajCXhy5QFMv9QerSICVc8h7YnltNzUTURERFSbMXmL1IuJAS5eBIqKgK+/BubNE5K4AOC664BRo4AZM4B+/YT+J1QrOXPBRq68tFixwJZd59aSzuQ4YtFR3En/8o9HkJ1vvTw2A14iIiJyR5aSoQDnz2HsnYtKfR4lGxfCgnwUzelEVTcJiAliYnLO5fxiTFl5UJP5r6OIc1nzBDODmySY1SbW/h8jIiIicoW0tLSKiltdu3Z18WhcQ2rDha36tYnADwfPO6Qa8aL4ExW/VrMRRE0sp/WmbiIiIqLaziPaJq5duxaPP/44evTogcjISPj6+iI0NBT9+vXD4sWLUVJS4uoh1m3+/sAjjwCpqcCzz1Y+/8MPQP/+QsvFu+4CCgtdNkRyLGe08VBSXlqqraEcMekMsK0sdeaVYoe0qxkcE4ndLw1EeJCv7DGuaDtDREREpBUlLfa0LCLkiJZyluaQ4u9fGxGjuC12VVuTM9B/4TaMW7Eb01YnYtyK3Zi6qmbiFqBu/utIltpQEhEREZFn279/P+bMmYPTp0/XeG3Lli244447UFZWhiFDhqBNmzYuGKFriRuO7UncAoDLBSUOayNfldLW7VVZi+WkmMAqvERERES20JlMJtff6bWif//+2LVrF/z8/NCkSRM0aNAA6enpOH9eKCHbo0cPxMfHIzQ0VNH58vLyEBISgtzcXAQHBztw5HXY0aPAe+8BH39c/fm33gImTQIU/lmRZ6laGlrrNh4JKVkYt2K31eNWTepj0250W3ZF6XWoFkA7ol2NGOwD0lXM3KG6AhEROR7nq2SNp/6MWJvrPHZTFD7akVrjdaWm3tIG7RrXd3hLOWutDOU+pyPYOv8lIiIicgZPna9STb/99htuueUWAIDBYECzZs1QUlKCs2fPIicnBwDQs2dPbNq0CREREYrPWxt+RsqNJvRfuM3uxK3IEH+8cHsHTP/2kEYjs0ysirVz5gDFMZOaGOcD3ssmIiIiD+WKuapmlbcuXLiAffv2YceOHVqdssKjjz6K7du348qVKzh9+jT27duHf/75BwkJCWjWrBn279+PV155RfPrkh06dwZWrACSkgAvr8rnX3gBaNYMuO024JdfXDc+cgixjceIbk3Rt00DTRfLlLYrtLWtYdUqAQ/HtgIgX4nLfOeTml1KSsbj6CpmREREJM2RMQ0JrM11XhoSLfl6eJCPovPHtm3okLmoOWuVpuQ+pxx7huqItt5ERERE5HkcFc907doVixcvxvDhwxEUFITjx4/j+PHjCAgIwB133IHPPvsMf/75p02JW7XF3tRsuxO3AGB410gYQgI0GJEyVVu3i8qNJiSkZMl2nbA1xtHBfSoFExEREXkCuytvLV++HO+++25FyVydToeysrKK15999lkkJCRg9erVaNGihX2jlbBmzRqMGTMGTZo0qajEZU1t2NHhcQoKgG++Ad59V0joEvXsCfzvf0J7RR3L59Zl1qp2OaryljmpKgrmFbeqUrNLSQlHVjEjIiL3x/mqc7k6plHD039GrM11zF/v0TIMN7+9HRm5RZK7vB01J7OX+DnikzPwya60Gq/rYH9lLlbeIiIiInfk6fNVT+KJ8QxQO35G1iWex7TViXafJzLEH78/f4vFmMcRFo/thhHdmlqtLFyVGOPsOpWJJdtPWb0G4xUiIiLyRB5VectkMuHee+/F1KlTcfr0abRq1Qr16tWDeS5Y7969sXv3bvzwww92D1ZKx44dAQAFBQUOOT9pJDAQeOgh4PBhYPPmyuf37QNuugno1QuYOlVI8qI6Z0tSOvov3IZxK3Zj2upEjFuxG/0XbqtW0apXVDgiQ/xlq2LpIASUvaLC7RqLeRWF2UM7ySZuAdK7lLTgyCpmREREJHCXmKYusjbXMX/d11uPOcOiAUhXSTUBGNvTfRaiROLnmD2sMz6Y0B2REhXHHrlW/dVWWs1/iYiIiMgzMZ5xvUb1lVWhsiY9twj7z1y2GPM4QqP6/hXtEM0riMl1nRBjnHaN6ym6hjtVCrZWXYyIiIjIlVQnb33yySdYs2YNoqOjkZiYiJSUFHTp0qXGcUOHDoWXlxc2btxo10DlJCQkAAC6d+/ukPOTxnQ6YPBgwGQCEhOBxx4D/P2Bv/4Cli4FgoKATp2Ay5ddPVJykk2HL+AJBcGhl14nG7yKv58zLFqTJKeqi4UR9f0UvcedglAiIiJSxl1iGlLGWpuORfEnamwAcCdyrRYHRhtsPpfW818iIiIi8jyMZ1zP2oZjW1y6UiQb82g95Rc3gvRoGYa5G5IlK32Jz8m1PlSauKZVgpu9lGwgJyIiInIlu5K39Ho91qxZg+uuu072uKCgILRp06aiZK8WysvL8c8//2DZsmV47rnnEBQUhAULFsgeX1xcjLy8vGoPcgNduwIffgicPQv85z+Vzx8/DjRrJlTiOnnSZcMjx9t0OB1TVx2UfE0qOJQLXg0h/lg+oTsGx0Si3GjCrlOZeOfnv/HOz8ex62SmXTtoPC0IJSIiIuVcGdOQOmIC1PSB7SRfl9sd7i6kKo71igqHIdi2uWTV+S8RERER1U2MZ1zP0oZjW4n3l23tDCGnT2vpCr1VN4LsP3O5xqbqqix1nXBWpwwt2FpdjIiIiMgVvNW+8ejRo2jdunVF20JLwsLCcOjQIbWXqvDee+9h+vTp1Z676667MH/+fMTExMi+b8GCBZg7d67d1ycHadgQ2L4dyMsDRowA/vkHOHVKqMS1dKlwzOefA/ffL1TuolphS1I6nlx5wOIxVYPDvm0aABCC10HRBuxNzcalK0VoVF8IAL30OmxJSseLPxxBTkFpxTmWbE9BaKAP3hx1narFLTEIzcgtktyBpIOweOYOQSgRERHZxhUxDWlj9b5zks+bIMzP5m5IxqBog2xVqnKjSXI+6Qpeeh3G9WqBRfEnrB479ZY2iG3b0KXjJSIiIiL3wHjGPYgbjuduSLaYCGWJeZKTuOkDANYlnrfpXGGBPjAB2H26ZsIVINzLnjMsGoNjIhWf27zrhBhPDYkx4JNdaTWOd6dKweVGk8XqYkriR0dyp9iUiIiIXEt18pbRaISfn7J2Ynl5eYqPtaRp06aIjY1FaWkpzpw5g4sXL2L79u1YtWoV5s2bBy8vL8n3vfTSS5gxY0a18TRv3tzu8ZDGgoOFJC6TCdi2DXj3XWDTJuG1Bx8E/u//gBkzgNGjAV9flw6V7CMGTEqZB4dVg1fxfIvjT8oueOUUlOKJuAP4QEV1AnH31OS4A9AB1YI8dwlCGeARERGp44qYhuy3NzVb8e7wqnNG0Zak9BoLK5Eh/pg9NBphQb4umVO1ighUdFy7xvUlPxMRERER1T2MZ5xP7j7s4JhIDOjYGH0W/Irs/BKbz1tYWo6tyRmS966Vdny4I8aAjob6WBQv383knu5N8caoLvD11tt07qrHScVTeh2qVQermiDmavbGj44kF5u6y3dHREREzqU6eSsqKgqnTp3C1atXUa9ePdnjMjIy8Pfff6NXr15qL1Vh9OjRGD16dMXv9+zZg8cffxxvvPEGsrOzsXz5csn3+fn5MTDxJDodcOutwmPtWuChh4CiIuDAAWDCBOERGgr89RfQpo2rR0sqWAuYzFkKIrckpePV9UeRkVds9Tyvrj+KAR0bY/+ZyzYtysntntI6CFWThCUV4IUH+eC1ETEY0qWJJuMiIiKqrVwR05D9zBP7bTlObJdhvus6PbeoRlVYZ940Z6tuIiIiIrIV4xnnkt8E0glhQX7YdepfVYlbAJBbUIrJcQckW6Nb6wwh2pyUgYTTWRav892B89h5KhOvDu+MwTGRNnedkIunTNeeeDi2FQZFG9xqc7E98aMjyX2XYitHqZ8FIiIiqt30at84fPhwFBcX47///a/F45599lmYTCaMHDlS7aVk9e7dG5s2bYKfnx8++ugjnDlzRvNrkIvddRdw+TJw7hzw2muVz+fkAG3bAlOnAifld5KQe7IlEDIvGV2VGOAoSdwCgIy8YvRZ8CvGrdiNaasTMW7FbvRfuE1RT/vBMZHYOXMAVk3qg8Vju2HVpD7YOXOAZgHUlqR09F+4zaaxiZ/fPBEuO78UT648iNc3Kq9uRkREVBe5Q0xDtlOb6GSpXYYU8aa5tbliudGEhJQsrEs8j4SULJQblV6hkrhoIre8oYPleTERERER1T2MZ7QnN7eXuw8rbAI5iHErdmPJ9hTV1zVde7z84xGUlBmrveal12H20E6K4picglKrx2TkFVfEOWLXCQA1YhHzrhNK2g9uTspwq8QtwD03ylj7LgGhlaOa2JKIiIg8l+rkreeeew5NmjTB4sWLMXr0aGzZsgVFRcLENTU1FevXr8fAgQOxatUqREVF4cknn9Rs0FU1adIE3bp1g9FoZM/22iwiAnjlFSAvT6jIJVq6FOjQAejVC3j11cotHuTWbAmE5FoS2rr4JjLf/aR0UQ6obNc4oltT9G3TQLMgVC74tzS2kjIjXv4xyeLnX/FHKhO4iIiILHCXmKY20iKhSY7aRCdbq78quWmuJgFfii2LJkREREREAOMZrcnN7TcdTld1H1qN7PxS9FnwKxbHn6yIpTYdTse8n45pfi0xzhG7ThhCqt+zN4T4V6v+ZEv7QXfijhtlPPW7JCIiIsdS3TYxLCwMP//8M0aMGIHvv/8eP/zwQ8Vrbdu2BQCYTCa0bt0aGzduRFBQkP2jlVFWVlbtv1SL1a8PxMcLSVrbtwOLFgE//QTs2yc85s4FvvwSuPdewNfX1aMlGUpKPet1wJJx18tWtrJ18U2OuCto7oZkDIo2OH1BTMmOJfOxbUlKx8s/HkF2vvWdVCv+SMX1zUPZQpGIiEiCO8U0tYlcOxGtWhCKiU6T4w5AB1SbR1lKdFLTBqPqTfO+bRpUe03rNhfOatVtKzWtvYmIiIjI8RjPaMfS3N68vbqjZeeXYFH8CYdewzzOGRwTiUHRBovzfndtP2iN2vjRkTz1uyQiIiLHUp28BQCdO3fG4cOH8cknn+DHH3/EkSNHkJubi3r16iE6OhqjRo3C448/7tCgIC0traLiVteuXR12HXIzOh0wYIDw+PtvoGPHytfuvx+YORPo3l1I7mrXznXjrOPkFnrEgOmJOPnAd8m47hjSRX6BSsvAxdKinKOI382uU5mKdtnsTsmCXq/D1uQMfLorzaZrzVqXhNtjIrnIRkREJMEdYpraROuEJjlqEp3saYNhPvdUk4CvhJJFE2dydCIeEREREdmH8Yz9yo0mvPjDEYst7GqrqnGO2HVCjju2H1TK3TbKePJ3SURERI5jV/IWAAQGBuKpp57CU089pcV4ati/fz/Wr1+PBx54AK1bt6722pYtWzB9+nSUlZVhyJAhaNOmjUPGQG6uQwehEte//wIffwy8/z6Qng5s3Cg8ACHBq317146zjlGy0BMa6IOcgurVo0IDffDmqOusBkyOCFzkEsK0rjYg9d1YM2XlAeQUWq+0JSU7v9SpiWlERESextExTV3hqIQmObYmOimp/irHfO5pS5sLW+dg1hZNnMVZiXhEREREZB/GM/ZZsu1kjXvUdYUt99itxVM6AI2D/WA0mbAu8bzLN6KYc6eNMkq+S4OTWzkSERGR69mdvOVoV65cwbx58zBv3jwYDAY0a9YMJSUlOHv2LHJycgAAPXv2xBdffOHagZLrNWwIvPQS8OyzwJtvAnPmVL7WoQNw553AjBnAf/4jVO4ih7G20PPYTVH4aEeqZGCSqzBQtmfxTY5UsGpLtQElSV5y3401ahO3RCyxTERERI7myIQmObYkOllqlyFH7qZ5bW9z4exEPCIiIiIiVyg3mvCZjV0ObNG1WQgO/ZOrOP5QSzx/gI8XCkvLFb0n0sbkIGvtB00AisqMuO/jPdWu4U5Ve91lo4w7tnIkIiIi19M74qRnz57FwoULMW3aNHzxxRcwGo2qz9W1a1csXrwYw4cPR1BQEI4fP47jx48jICAAd9xxBz777DP8+eefiIiI0PATkEfz9QX++1/AaBQSuLp0EZK1fvpJaLOo1wOTJgHFxa4eaa1kbaHHBGDFH9KJW6K5G5JRbrQczooBDlAZ0Jjr2ixYwYgFUsGqmGhlvggpJqFtSUqvdmz/hdswbsVuTFudiHErdqP/wm3VjrH03TgaSywTERHZRsuYpq7whIQmsV2GIUT53Ejqpnltb3NhSyIeEREREbkfxjPK7E3NtnvTrCWH/skF4Pi95IYQf3wwoTvG9mqu+D22JAeVG01ISMlCcZkRzwxsh8bBftVeDwn0AYAaFcyk7qOTQC42NYT4s8oxERFRHaW68tby5cvxyiuv4NVXX8XTTz9d8fzu3btx++234+rVqzCZTNDpdIiLi8PPP/8Mvd72XLGwsDA8/fTT1a5BpIhOB7z6qvA4cQJYvBhYtkx47eOPhWSuqVOBxx8HmPynGWsLPQBgKS/LlooMcr3qxR09IQG+GLdit6JxmwertlQb2JqcoailjJLvxhFs3UWlBa1bTRIRETmCs2KausJTEpqqtsvYmpyBTy3stH/spijJm+a1vc2FJyTiEREREdV1jGfsp3Q+W8/PC1eLlVW0kmJln7LdTCbhArdFGxRVEps+sJ3i5CCpzhSGYH9MH9gerSICERHkh2fXHAJQMwmOVXstc6dWjkREROR6qmfq69evR15eHkaNGlXt+RkzZuDKlSvo168fnnnmGURGRmLbtm1YvXq13YMlUq19e2DpUuDkSaBzZ6BJEyAjA5g1S2i3qNMBa9e6epS1glYLOErPMzgmEjtnDsCqSX2weGw3rJrUBztnDsDgmMiKRTVLoY5eBywbf32NYFVptYHdKVkWk7yAykpitn439fy8bDpeig7OL7GspAoZERGRO2BMoy1rcy8dXJNULsVLr0OvqHBsTsqQPUYHYP2hdMmKsJaqwNaGNheekohHREREVJcxnrGf0vnso/1bW73PbI0OjqvAlZFXjMlxB3A5vxiRVqoMR4b4Y+qAdhaPESttzdtwFE9IdKa4mFeE9+JPwM9bD71eh4w8Vu1VS2zlOKJbU/Rt08BjY0giIiKyn+rkrePHj6Nhw4Zo1qxZxXOpqanYvXs3OnXqhB07duDdd9/Fli1bYDKZ8PHHH2syYCK7tG0LJCUBqalAXBzQokXlayNHAkOGAL/+Cphc0diudtBqAceW88gFOEpaKy4Z1x1DujSp8bzSRKuE05mKW8oo/UxDYhojPMjHrt1cgBCIO7vEsi2tJomIiFzNmTHN2rVr8fjjj6NHjx6IjIyEr68vQkND0a9fPyxevBglJSVafCSX8rSEJntbA2rV5kJcGFmXeB4JKVlW24c7gycl4hERERHVVVyjsZ+Szb/1/LzQMiIIY3sKawlyxw6JaWzxWiY4dtnBBGD+xmOYPTRaSBQze118zlpMVnVjrlyVYtO1x6vrjyIjt1DR+Fi1l4iIiMgy1W0T//33X3Tq1Knac9u3bwcAjB07FrprWwhiYmLQtm1bnDp1yo5hEmnM1xe47z5g/Hjg9deB2bOF5zdvFh4dOwJNmwI//AAEB7t2rB7GWgsZQKh2ZTLBKS1mrLVWlFtUU548pmzx8dKVItzZpYnV9jqhgT7YlHRR4bUrRYb4Y/bQaIQF+bqsxLItrSbdZdGWiIjqNmfGNO+88w527doFPz8/NGnSBF27dkV6ejoSEhKQkJCAr776CvHx8QgNDVV9DXcgN/cyWJl7uYIWrQHtbXMh1YLE2jzVGcREvMlxB6BD9Xm7OybiEREREdVFXKOxn6V5r+hqcTmmf5MIQLh3CwA5BZUtAsX5e3GZUdF93Vs7NsSvx//VYPQ1pecWISzIV3VMJm7MVZpjlpFXjF2nMhUdy6q9RERERJapTt4qLy9HUVH1m9h//PEHdDodbr755mrPh4eH49ChQ2ovReQ4Op3QOnHWLODUKWDxYuDTT4Hjx4VHSAgwbx7wxBNCe0WySslCz6Qbo/DRjlSnLQSpWVRTmoTmrXCcjer7K/pubN189UhsKwyMNlR8nnKjqeJz7k3NdmoCly3VK/q2aeCUMREREVnizJjm0UcfxWuvvYbY2Fj4+PhUPL97926MHj0a+/fvxyuvvIKlS5eqvoa7sDehyVm0ag0oVoG1ldzCiFix1NkVVM15UiIeERERUV3ENRptyM17peQWlMIEYPrAdmgVEVQt1lkcf0LR9R69sQ3u7t4cs9YlITu/sgKzIdgPV4vLcbW4zJ6Pg4zcQozs3kw2Jqt6/9j8ebmNuZZ8d+A8QgN9Kr4bc1pv1iYiIiKqrXQmk7pCrZ06dUJaWhrS09MRGhqK8vJyNGvWDHl5ecjJyam2ING+fXvk5+fj/Pnzmg3cHnl5eQgJCUFubi6CWVWJzF2+DNx0k9BeUeTvD8TEAC+9BIwa5bqxeRBrVQTcpcqAXLAqfgYlO42UBKc7Zw6odl6pzz62ZwssUhjkS31Xrv5O1yWex7TViVaPWzy2G0Z0a+rw8RAReTLOV53DXWKaNWvWYMyYMWjSpIni8/NnxH7lRhP6L9xmsSqq+TxO62vLLQ7pAIQH+WLW0E4whAS4NPnN0nyZiIiISA7nq47nLvGMWu72MyLOezNyCzF/47FqiVVVyd3vfSLugNVrRFZ5n9Q8+8mv9+Pno7Z3Zahq9tBOeOTG1pKvWbp/HBLgi3Erdqu6Zj0/b1wtLpPdsOzqjSlEREREtnLFXFV15a2hQ4fi3Xffxfjx4/Hkk0/ixx9/xMWLF3HPPfdUCwpyc3Nx+vRp9OrVS5MBEzlcWBhw5AhQUgJ89x3w7rvA/v3AX38Bd98tHLN+PXDnnULlLgJQc1FnULTBYsUFV1ZkEMcan5yBHxPPIzu/epnr2UM7ISzID8VlRky7tS0W/3pKNoFLZ/ZrqePMK4nJffafDl9QNP67ujXBzR0aISTAF+VGE7z0Oreo3KBV9QoiIiJncZeYpmPHjgCAgoICh5yfpLmyNaCSiqVZ+SWY/q1QHcGVrRTVVhYjIiIiIsdyl3jG08htThDnvQkpWbKJW0DN7gJixSolbmgZip8OX6i4btV59pakdMUtCC0Jr+cHoObnvJxfjCkrD8reP344tpXqa14tLkOQnxd8vPTVWkqyai8RERGRcqqTt15++WWsXbsWW7Zswc8//wyTyYSQkBDMnz+/2nHff/89jEYjbrnlFrsHS+RUvr7A+PHAuHFAfDxw222Vrw0fDlx3HTB9OjB2LBAQ4LpxugG1FZ9csRAkNdaq0nOL8OTKg4rPZwKQU1CK6QPb47M/U6sFpwAQEugj+T6pz640qWlt4gWsTRQSvYRks2jM3yhd0toEYfFx7oZkDIo2ODQ5zlqrSZbIJiIid+MuMU1CQgIAoHv37g45f11jS6UoV7UGvHTFcjsWc+7SSpGIiIiI3Ie7xDOeRMl9bKVzdfE4axszqtpwOAMbDmfUuK7SDhBKGIL9JT+nXie98Vh87oeD9lVlyy8uB1Au2VKSiIiIiKxTnbwVHh6OAwcO4OOPP8bJkyfRvHlzPPTQQ4iMrH4j+fTp0xgxYgTuFisWEXkanQ4YNAgwmYBffgHeeEOownXkCPDww8IjKgrYswdo2NDVo3U6d6j4pJSWQbC5vMKSGolbAJBbUGr1e6goyZ1XhLBAb1wuKFN8XSHZzHJJbvPdYI7iyuoVREREargypikvL0d6ejrWr1+PF198EUFBQViwYIHs8cXFxSguLq74fV5enmZjqU3UbCpwRUVYWyuROjIhn20RiYiIiDwT12hso/Q+tq3dBWzdmGF+3aXju8tuzLVVeJAPLueXYMrKmp/TaOUClwtK4e+jR1GpUfX1dQBW7zvnkNbzRERERLWdzmQyOSKPwa25Wy918kA5OcCKFcALL1Q+5+cHTJwIPPMM0Lmzq0bmVOVGE/ov3Ca7s0istOQOwZq1sdorPMinWvvFqqp+DwBqlKuev/GYw8ZV1eKx3TCiW1OHX0dtJTYiIqrE+Wrt9d5772H69OnVnrvrrrswf/58xMTEyL7v1Vdfxdy5c2s8z5+RSnKLMeIs1J02FdgzN101qY9mCfmctxEREZGjMKYha5z5M2LLfWwA6L9wm9XuAuI974SULIxbsVvVuHQAwoN8kWWhTaMtlozthtc3H3fKvWZLtIxZHIEbWIiIiMgaV8QzqitvEdVpoaHA888DU6cCEyYAp08DiYnAxx8LDwB49lngrbcAvd6VI3UoayWhHVHxqdxowu6ULCSczgQgtB7s07qB1eBq9+kshwStSgJs8XtYsu0UVu8767Lg2dYKD4C6QNYV1SuIiIg8RdOmTREbG4vS0lKcOXMGFy9exPbt27Fq1SrMmzcPXl5eku976aWXMGPGjIrf5+XloXnz5s4attsrN5owd4Pr20gr5aXXYXjXSHy4I9Xm96rd2W/OkyroEhERkRWZmcCPPwJr1gDnzgHt2gHJycK9yVGjXD06Ipez9T62Ld0FekWFIzTQR7IrgzUmQLPErcdvikKD+v4uT9wCtItZHIEbWIiIiMhdqU7eOnv2rM3vadGihdrLEbmngADg+++Flop//gm88w6wdq3w2v/+B8TFAa+/Dtx3H+Bve+KMu1MahGm5wPTiD0eqBcJLtp9CaKAP3hx1nWxwtSUpHS9+f0STMZgzARjWNRKf/3nG6rGL4k84ZAzWiLvBekWF2/Q+ewJZL73OrXdXERERAa6JaUaPHo3Ro0dX/H7Pnj14/PHH8cYbbyA7OxvLly+XfJ+fnx/8/PzsunZt5ohNBfbuxjZ/f4+WYdh/5jIuXSlCRD0/rEu8oPhcValJyDcf1+6ULLz4/RGPSXYjIiKia/LzgbIy4f5jcrKwiTQ7u+Zxx48L/01KYvJWLcY1GuVsvY89OCYSyyd0r3Fv1CBxb3RrcoaqxC2t6AA8emMUXhoSjXWJ5102jqrsjVkchRtYiIiIyJ2pTt5q1aoVdDrlN3F1Oh3KysrUXo7Ivel0QGys8Pj1V2DgQOH5ixeBRx8FXnpJaKu4aRNw3XWuHauGlAZhWgRrW5LS8UTcAcnXcgpK8UTcAXwgEVzJBWRaWn8o3YFnt4/UbjAlGMgSEVFd4A4xTe/evbFp0ya0bt0aH330EV588UW0bNlS02vUBVpvKrB3N7bU+/U6wGjHpFRtQr61cUlxRAVdsh/buxAR1SHp6cKG0e++A37/XXiuVSsgLQ14803g//4PuGAhEXzJEiA6GujSxRmjJRdxh3jGU6i5j62ku4BYAdiVTABW/JGKrk1DXZ40pUXM4iieVq2ZiIiI6h7VyVstWrSQDQzy8/ORmZkJAPDx8UGTJk3UXobI89x6q1CJKzdX2P22eLFQrhwQbpg8/DAwfToQE+PacWqgR8swq4tQep1wnD3KjSa8uv6o1ePMgytLAZkaYYE+uCyxi+qyRqWtHSHIzwv33tAcIQG+KDeaFAWeDGSJiKiucJeYpkmTJujWrRv27NmDQ4cOMXlLBS03FdiaxG6eUHM5vxhTVh6s8X57E7cAywn51hJ71GxqcOd2J3UN27sQEdVSeXnAsWNAvXrADz8Ilf23bJE+Ni1N+O+ZM8D48UBBAdChA3D5MjB6tJCsRXWKu8QznqBXVDgiQ/yRkVskOR+WSzqy1l3AWgVga3QAwoJ8kJ1vf+WuqasPYkhMYxiC/XAxr9ihm5mlqN1E7CyOqNZMREREpCXVyVtpYrAoIy8vDytWrMD8+fMxfvx4vP7662ovReSZQkKAZ58Fpk0Dnn8eeO894flPPxUebdsCd94ptFfU6106VLX2n7lsdRHKaBKOsyfg2ZuajYy8YqvHmQdX9gbP5uQ+qrMDYVtcLS7HJ7vS8MmuNMWLO0oD2d0pWYhtF6HxiImIiJzHnWIacQd8Xd0Jby+1izHmbE1il6uwpfX8UKo9S1XWEnvUbmrIvFKseAMAOQ6r4hIR1QKZmcCXXwqVtBISar7+yCPAyZPAjh3S7+/aVdgg2rkzEMF7MSRwp3jG3XnpdZgzLBqT4w5Ah+rzdXuSjuzZ7CBe6dWh0Zi25hBMGgQRm5Iuws9bXxG7SH3OkAAf5BRq3+bRWszialpXayYiIiLSmsMyRoKDg/Hss89i9erVePPNN/HVV1856lJE7s3bG1i0CDAagV27gHvuEZK1Tp0SErq8vIS2ioWFrh6pzZwV8Njy/qrHKn2fv4/lvwpDA30wfWB75EhU3TIXHuSj6JquIC7ubEmy3OZR6fc2ZaX1cxEREXkyZ8U0aWlpOHToEACga9euDrlGbScuxgCVixIiWxZjbNmNLSbUmB9vT4UtkQ5AgyBfLBrTFasm9cHOmQMsJm5JjaPq3E/tpob5G4+h/8JtnPO5kLWEQkBIKCzX4gePiIjsd+6cUD3r44+FtofPPAM0awY0bChs8pRK3IqMBIKCgClTgA8+EBK4UlKEyv7iIzERuPlmJm6RTbhGU93gmEgsn9AdhpDq1XgNIf6S1XUTUrKwLvE8ElKyZOda9rQpDAvywaM3RuHVjcc0SdwSFZcZAQAhgdXvU4uf8827r1N0Hr0OGBpjUHTs7KGdLMYs7kDLas1EREREjqC68pZSgwcPRsuWLbF48WJMnDjR0Zcjcl86HdCvn/BITQVat6587c03hZs6Tz4JPPYY0LSp68ZpA2cFPLa8v2p1AKXv++T+nrhSXFqjWkFooA8e6NsKvaLC8fPRDEXnmn1nZxiC/ZGRW4j/rj+KK0X2Vc8Qd0iFBvooSh6zRGnLQ6XfW05hKXf6ExFRnWBvTLN//36sX78eDzzwAFpXnQMC2LJlC6ZPn46ysjIMGTIEbdq00WrYdY64GGM+p7O0A7xqq8GIID/8eTpT0bUy8orw1pbjDqnAKs7QXh8ZY3WOpbRS2Au3d1A9HkdXd7LW7rGuY3sXIiI3lZ0NHD0KTJ8O7N8vfcx//gNERQHnz9d8rWdPodXhgw8KiV1EDsQ1mkqDYyIxKNpgtd240nbVvaLChXvBebZvlMjOL8WKP1LVfxgrAny8sPSR7sjML67xOacPbIdF8Sctvt9oAkoVbhCIqO/n9nN4rao1ExERETmKw5O3ACA0NBTHjx93xqWIPENUlLBr7tw54IUXhF13Z84A8+YJDwA4fBi4TtkuGFdxVsAjBMF+ilonzt94DB/vTMWcYdEYFG1QNL4+bRrAS6+rEbhfzi/B/I3JWPyr5UC2KkOwP/q2aYCElCy7E7eAysVGqbHNWpeE7PwSm86nZHHH2p+rOWvJYERERLWBPTHNlStXMG/ePMybNw8GgwHNmjVDSUkJzp49i5ycHABAz5498cUXX2g44rpJyWKMSGpRRqnsq8WatueuypZ2I0oTe2ydM5qfAwBe/vEIBnRsDF9v7Qp427IwVlexvQsRkYudOCG0OgwJAf7+W6iQlZMjVMiy5PbbhQ2cI0cCkyYB0dHCOYhchGs0lbz0Otn7ora2q96anIG8Iu1bEErx99GjqNSo+Pj03CIknM5CbNuIGjFRq4ggRef4JfmiouMi6vkhISXLrTdkOKp1JhEREZFWHJ68denSJRw7dgxBQcomg0R1SvPmwKpVQFkZ8OOPwJgxla916QIMHCjs4Lv9dqG9optxVsDjpdfh1eGd8UTcAUXHi8H00vHdMbZnCyyKP1HjGKnxVQ3ctySlY8rKmoG6HPNENVsWT+r5eePDCT2QmV+MiCA/QAdkXq25I8r8psLA6MbosyAe2fm23yCwND4vvQ7Du0biwx3Wd35xpz8REdUF9sY0Xbt2xeLFi/Hrr7/i6NGjOH78OEpKStCgQQP07dsXY8aMwYQJE+Dt7ZS9NbWepcUYkdyijDXinC88yFf1+MxFhvjjnXu6Su6It0bpnDO8np9NyflSsvNL0WfBr3hDQUUwJWxdGKur2N6FiMhJsrOBI0eA5GShMr6c5s2BJ54Qft2iBXD2rPDr2FihktbddwttEoncCNdolFFa1VbcxLolKV3x/Wot2JK4JVqy/RSWbD9VY4OEVnNHHYSOEc9+m1ht47W7bshQU62ZiIiIyFkctjqQmZmJffv2YdasWSgpKcGIESMcdSkiz+ftLdzgMZmARYuAtWuBnTuB+HjhAQA9egC//AKEu1fZXmcFPINjIvHBhO548YcjVtsHigH21FUHIFfZOSTQB2+Ouk62fY5coC5FKhHMlgD4rbu7ILZdhNXjSsqM+CohDWeyC9AyPBAT+7bCGyOvw+RrNwlsWYizNL4tSen4SEHiVlXc6U9ERLWRVjFNWFgYnn76aTz99NMaj5DUsHWuJ6o65wsJ0C55a3jXSEVzQSlK55yGYH+Lmy6UfhfZ+SWaJFbZujBWl7G9CxGRhkwmodXhd98Ba9YAnTsD//4LFBUBt91WWQ1fSlgY8Mgjwnvuugt46imgfn2nDZ1IDa7R2EZpVdvPd6UivJ4f5m1Ict7gIMz7An29kF9SbvN7zTdI2NLpwtJ4TAAuS9yrd+cNGbZUayYiIiJyJtXJW14KqwCZTCYYDAa8+eabai9FVLdMny480tKA998H3n1XeH7/fqBBA2D2bGEHoMHg0mFW5ayAR7zO7pQsrNl/DmsTL1g8Xi5xCwByLSSAWQvUzUklqomLLNbOM7BTQwzpYj2AXbApGSv+SK32mV7fdAyTboySTJ6TY21xR+1iJnf6ExGRJ2JMUzfZOtcTVZ3zlRtNVitZ6XWW56Oi9YfS8cLgTqrmzpfzrS+2RIZUzs3lNl2M7dkci+KVtwq3N7FK6cIYq7uyvQsRkSomk1BJ6/JlYPNmoZqWVJvD5GThvzodMHkyEBUlJGcdPy5U1Ro9WkjUcqN7cERVMZ7RltLNqfM3HnPwSKSZAFWJW+J7zTdIjOvVwqYYwJwhxB+FpeWSG63dfUOGkmrNRERERM6mOnnLZLJ8FzooKAitW7fGHXfcgeeeew4REep2EhPVWa1aAf/7n5DIFRtbWYZ9/nxg4ULAaAQ++wyYMMGlwxQ5K+Dx0usQ2y4CmfnFVpO3rJELHpUG6oE+XljxwA3o07pBtXOUG03Ym5qNO2IM+HRXmsVz/HrsX2xJSre4A2nBpmTJFoZGE/DhjlQ8fhOwc+aAiuS5tMwCvHetVaSSxR1xvJeuFCHzSrFNi5nc6U9ERJ6MMU3dpKZi6NRb2mL6oPbw0usq5k5DYgz4RGKuJ86yFo+9HntTs/DV7rMWz602SancaFK0cDR7aOXcT27TBQCs3ndOUVtFLRKrlP4ZsLqrgO1diIhkmEzAwYOVlbROnQICAwF/fyAvD/jwQ8BS5dN+/YQWiNHRQNeuwP33O2/sRBpgPKOt2r451Xwe3ypCfRvNBkG+eGtUF0z8bK/i6xERERGRZaqTt4xG2/trE5EKzZoBZ84AZWVCO8VFi4A//xRemzhRSOB69llg8GBAr3fpUJ3J3mDaUvCo9NwFpeXQ63TVEqG2JKUrroIlsrQDqaTMiI/+sNzCcMUfqXj2to7VPkcHQz1FiztqxiviTn8iIvJ0jGnqJjXzyNi2EfDS6yTnTuYVtgwh/hjeNRJvbDqmeI6lJklJaQWxsKDqLR7lNl2I1Z2UsiexSumfQW1fQLMF27sQUZ1mMgEXLggtDw0GYMkSoWrWrl01jy0oEB46HRAeDowYISRnAUDbtsLvGzCJgGoHxjPastauurYQ5/H2zLWz8kuwJy3LpusRERERkWWqk7eIyMm8vYF77hEe330nlG4HgG3bhEezZkCjRsAvv9TKm1BVq0M1qu+PHi3DNAmmpYLHXlHhCA3wQU6hfGtFqfdvSUrH5LgDNo3H2g6kl384Aiub6GA0AV8lpOGRG1tXPGe+uBMR5AfogMyrxUhIyUKvqHBsTc6webxVcac/EREReSJbFmWqVhmVm+uJc7WHY1thULQBl/OLMWXlQZvmWGoWTrSuXiVWd3r5xyPIzrc+D7ZnscfanwGru0pjexciqvXESlpffy1U0jp3ruYxX30FrFghf45p04AHHwQ6dAACAoS2h0REClhqV12biPN4+5PVlG0i4IYMIiIiImWYvEXkie65R7ihdfYs8P77wEcfAf/8IzwiIoBevYQqXZG1I6lGqsJB5LWKBh/tSLUrmM68Uoxyo6najnUvvQ4PxUZh0bXWg5aIwWe50YS5G5JVj0NqUa3caMKmI+mK3n8mu6DGc+LizpakdDz33aHqVbiC/VFUVq5qvKEBPlh6X/ca7SKJiIiIPIHSRZmqVUYByM71TNeO3ZyUgRfv6ISb396ueI5lT5KS0kWQkxevVCTvW5u7DY6JxICOjdFnwa/Izi+RPEaLxCpLfwas7kpEVAcYjcDJk8Dp00IFrd69geefF36dlyf9Hi8voXJWZCQwa5ZQTatFCyAmBggJce74iajWkmtXXRuYz+O99DrMHtoJT648qOp8fds0wPcH/uGGDCIiIiKN2J28VVxcjFWrVuGXX37BiRMncOXKFdSvXx/t27fH7bffjrFjx8LPz0+LsRKRuRYtgLffBv77X2DgQGDvtR7ze/cCLVsC48YBkycDffrYdFrzKleubMchV+EgI7cIH+1IxWM3ReGbv/5BToH16gBS5m88ho93ptaoIDV1QFt89meqxfPqAOw5nYVLV4qQeaXYroBeavFtb2o2CkrLFb2/eVig5POy31+e+jaJb959HWLbRtj8fiIiInfFmKbuUbIoU7XKaEJKlsW5nlhN9auENMVzQluTlNRWol2yPQVLtqcgUmHVVF9vPd4YGVPRQtFRiVVyfwas7kpEVIsYjcLGw++/B956C7h0Sfq4L78Edu+Wfm3kSOCBB4DBgwFxPnbrrY4ZL5GHYjyjLfOOBplXijF/4zGHXMvfW4eissoZd3iQj6IquGqYUH0evyUpXdXnEpOy+rRuwA0ZRERERBrSmUzWGnLJO3DgAEaPHo20tDRInUan0yEqKgrffvstunfvbtdAtZSXl4eQkBDk5uYiODjY1cMh0k5JCTBnDvDHH8CuXdVf++EHYMQIQK+3eAq5KleuWEApN5rQf+E22QUwMVA0Go24eEW6MoASYvi4fEL3ap9xS1I6nri2aOVIDYJ8sfeVgTUC2XWJ5zFtdaKiczSu74e5IzpXG7+1789Wrvo5ICKqizhfdR7GNHWH1AYFAJJtps03MCidl93ftyW+TDijaDy2zK2sVaIFrFeilZvz2npNreeD7rRxhIiIVCorA3bsABIThV8fPQqMHQuMHg3k58u/LzpaeMyYAVy4AHTsCLRrB/j6Om3o5DicrzqHp8YzgAt/RoqLgddfBw4dAj74wGr3inKjCT1f3+qwpCpA6HTwUGwUmocFYMaaQw67zgfXYgG5Db/WSMUU7rSeQERERKQVV8xVVVfe+ueffzBo0CBcvnwZERERmDRpEjp37ozGjRvj4sWLOHr0KD7++GOcPn0at99+OxITE9G0aVMtx05E5nx9gQULhF/v3SuUnN+xQ/j9qFFA+/bAM88A48dLlpS3VOVqctwBxQs9Wtmbmq2owoG9xFY3czckY1C0wemLRSO6NZG8ptJWOABw8UpxjT8ja9+fEhP7tIBOp0PL8EBM7NsKvt6Wk//U4IIdERG5CmOausPagoK1+YjSeVnLcOlqqOZmD+2EB2OjFM15rFWiffTGKHx/4Lxsm0ORkjmv+ffw+/O3YP+Zyw6dp4mtvomchfEHkR1MJiA1VUjOWrkSWL1a/thevYQNhD4+QOm1hAcvL+Cee4SkrjvuAAKV/btJRNIYz6gUHw/Mny/8ev164K67hL+Xhg0D6tevcbiXXoeR3Zrik11pDhtSTmEpFsWfQJCfl8OuIcYCAzo2lm0Jb41UlVzzSmWcXxERERGpozp5a8GCBbh8+TJGjRqFr776CgEBATWOmT17NiZOnIjvv/8eCxYswJIlS+waLBHZoFcv4PffhQpc77wDbN8OnDgBPPmk8ACAffuAG24AINzAlgvaXJXcdOmKNhWjlBATwfamZqNvmwYV34czDIo2VPu9uJiQkVdkU6lsE4CXfjhS8Wdk7/en1wFf7T5b8Xup9pL24s4sIiJyJcY0dYO1DQqP3RSF9YfSLc5HekWFW2xRKFaEndi3FT7emWr1OPPELblkEmtzdAD4ZGcqjApXXsznvFVZmpeN6MZFPqodGH8QKVRSAmzbBqxZAyQlCdWwkpOBadOAJ54Aiizcbxg7Vqim1a8fcPgw0LSpkMBFRJpjPKPSbbcBnToBx661DFy7VniI4uKERK4qFRYGRhscmrwlyi8ud9i51bR6ryo8yAe/P3+L5OZebsggIiIisp/qtomtW7fGv//+i/T0dNSrV0/2uKtXryIyMhINGzbE6dOnVQ9USyzZTHXSlSvAZ58JN9qqmjABmD4dCSEtMW7FbqunWTWpj9MCsYSULEVj0tLisd0woltTp107MsQfO2cOqFi8k1pMsNX0ge0wbWB7zT+Dra12rJFbSNX6OkREnojzVedgTFP7qW0jLTUf2XQ4HU+urNlS2/xYcY4DVG9lWPW4qjvT0zILsGrvWWTk1Uwmqe/vg/s+3mPT2JUQ57wizstci5WgnIM/50QSysuFRKzt24VEqzVrhNaHcqZPBxISgMJCISlr+/bKSlqDBgH+yiuIU+3H+arjeXI8A7jBz4jJVPl335o1wsZnkZ+fsOk5KAhYsQLlzZoj9s1fkZFX7Pxxaqxzk/o4euGKqvc6c22AiIiI6jZX3y/zqLaJFy5cQJcuXSwGBQBQr149dOrUCUeOHFF7KSLSQv36wNNPCzskJ00CvvxSeD4uDoiLQ18Ab3S9HbNvexLlevnyzM6shqW0woHJZMLFvGJVpZ7NiS1xnPU5Zw/tVC1xS2oxwVaf7UrD1AHtFH1/oYE+8PPWV7vxoNdBsnqDlhXY3LHSGxER1T2MaWo/tW2kzecjW5MzMH+jdFVW89Yhg2MisXxC9xoJ+eJxAKwmlGXkFuGJuAMI9HVM25SqbSA5L3MtVoJyDv6cU51XVAT88ktlgkJxMdClC/D330JC1rp1lRVopLzxhlBNq3t34H//A3T8/4TIHTCesZNOB3TtKjzmzxfawf75p1B58PhxoaMFALRsCS8AA0c+h/UtbkCev+Xv292pTdwCnLs2QERERHVXXb1fpjp5q379+rh48aKiYy9evIigoCC1lyIiLfn6Al98ITz++gtYtAhYvRowGjH+0M8YeGov/q/fWHwfcysKfWvumKy60ONoXnod5gyLxuS4A9BBunKBuAAmdYw5uaQk8XyGECFrF3De55y/8Rj0eh0GRRtkFxPE8dX390ZeUZnVc+YUlla0whG/PykmAGNuaIYXBneqyFzOvFKM+Rvlb9haarVjC2sLqVpdh4iIyBLGNLWfPYsL4nxkybaTeC/+pOw8bfbQTjVuGgyOiaxWXUvcHbY1OUNRsr74ekGJY9qmZF4tRkJKVsX8j/My17DW0pOVoLTD+IPqjNJS4NQp4de//Qb8/jsQHw9kZdU89vBh4b8nTgDDhwM9eggJWmlpwN13A7fcwnaHRG6O8YyGdDrgvvuEh8kEHD0K3HUXkJJScchrP76D/+q9sbNVN+hgwku3P4WM4AjXjdkFnLk2QERERHVTXb5fpjp5q0ePHti6dStWr16NsWPHyh63atUqnDt3DrfddpvaSxGRo9xwA/D118CcOUCHDgCARvmX8drW5Xh+x5fwLyvGmPELcahJhxrJTc5irXKB+Jez5DHBfhjXqwVaRQShUX1/XM4vwZSV8i1s5gyLrthlLVatsqd9oRLiPzTPDGxndTEhr6gMft56FJcZrZ5XXKgcHBOJx26Kwoc7UiWP+2hHKq5vEVbxPa5LPK9o3PbuslL6fu7mIiIiR2JM4zmqlsmOqOcHmIDM/GKrJbO1WFz4bFeaxQT7+RuP4faYyBpj8NLrqiWBWKr842zTVh+U3dQgh/MybbESlHMx/qBap7gY2LChspKW6drfJj4+QgLXPfcAJSXA+vXS72/QAPjoI+D664GWLQG93nljJyLNMJ5xEJ0OiIkBTp1CudGE/06Ygz4Hf0P7zDPokHkWA07/BQDYvfxBbG/dA5s69Ed82164HBji4oE7liHYz+lrA0RERFS31PX7ZaqTt5566in88ssveOCBB7Bv3z5MnToVUVFRFa+npqbi/fffx7Jly6DT6fD0009rMmAicoD27QGTCVv3nsLOV97BQ3+tR6ucdADAuq+eBQAMe+A9TJkwxiV/EcpVLqg6FiXHAMByvXwi2KBoQ0UFgkb1/fHykE54atVBxeO0VvlLivgPzWe70hQdryRxCwAigvyQkJKFjLwirNn/j8Vjq/4jl5aZr+j89i6EKn0/d3MREZEjMabxDFJlsquyVDJbi4T8nMJS2deqVuvpFRVucS6qtoWjI9iauAVwXqY1VoJyLsYf5LGuXhUqYSUnA15eQpvDr78WWhyaJP4yLy0F6tUDvL2Be+8F+vcXqmmFhwO9egnnIKJag/GM4+1NzcbXLXrj6xa9AQBtMs9h/tbl6HdWqF54y+n9uOX0/orj9zWNxrNDp+NsWO2rBlFUZsTW5IxaW+mCiIiIXK+u3y/TmUxSkb4yL730EhYuXAidTrgh7efnh4YNG+Lff/9FcXExAMBkMuGll17C66+/rs2INZCXl4eQkBDk5uYiODjY1cMhcitbktIxf90RTNiwApP3fFf9xZtuAh57DBgzxqNL51et3FC1hY35omBYoDcuF1hvUyiKDPHH2J4tsCj+hCOGrVhooA/8vb2Qkad8cXDVpD7ILSzBEzItFkViBbadMwfYlchXbjSh/8JtyMgtkkx40+o6RESeivNV52FM497kymRXJc4U5Epmbzp8AU+uVJ6Qr8aAjg1xLP1KtbmkeVLZusTzmLY6UbNrqtk4oPY6nJdpT+nPw+Kx3TCiW1PHD6iWY/xBbq+4WGhfOG8e8N130sdcfz3wn/8AixbVfC0yEhg9Gpg8Wdigx0pa5AbqynzV1Tw1ngHc72dE6p7xT4cvyM7Z2mSdw5DjOzEhcTMaX82u9trvUd2xsUN//NK+D3ICXP/ZbCEXZ1iLu4iIiIjs5U73y1wxV7UreQsAfvrpJ7z55pvYvXs3jMbKijB6vR79+vXDzJkzMXToULsHqiV3CwqI3E3VQLXz1rVonZgA/bffAGVVEpmefx7473+FHZ0eTsmioCWBvl5Ycf8N6NNayPDtv3CbqqoKoQE+yC0sdUkrnUX3dsNbW45bHbcO2gXo4vcOSLex5I0AIqrLOF91LsY07klMtlAyr7KUeJGQkoVxK3Y7aJSWxwRUzmm0Hse0W9vh/349CcBxSVyclzmO0p+HVZP61MqdhK7A+IPcQk6O0MrQaAROnRIqZQUEAK+9BpSXy7+vb1+gRw9hQ93580DnzkCzZkJrLyI3VRfmq+7CE+MZwL1+RqSq/QobdZtjUfxJq+8feHIPlqxfCP+yEsnXX7x9Kn5u39cjWivW8/PG1WLpDc1MeCciIiJHcqf7ZR6ZvCXKz8/HqVOncPXqVdSrVw9t27ZFUFCQFqfWnDsFBUQe4/x5YPFi4O23K58LDRVuHD76KNCuncuGZg9bFgXlTB/YHlMHtK1IePvl6EVsPJKu6jzvXavaZb6YoPQvan9vPYoUtlas6p7uTfHdgfOKxjhtoHZ/1nI3RuRaHxER1RWcr7oGYxr3oibZSSpw17rilS2qLm4AsFj5xxahgT7YP2uQZPXYEH9vlJuA/OIyu6/DeZnjsBKUazD+IKcpLBRaHB49CkyaJPxeSv36wBtvAE89BYSEALm5wvMtWwqVtEaPBnr2ZJIWeaS6MF91N54UzwDu8zMit7FXvCcb6OuFghILCbZmorLP446/d2Ho8Z3ofOl0xfNlOj1Sw5uiyNsX0+98FqciWmgyflfgBgMiIiJyBHe6X+aKuaq3VicKCgpC165dtTodEbmbpk2Bt94CnnsOePVVYOtWYZfoW28JDwD48EMhmUsDUmWqHfGXsLXeudaEBvqgXaMguxPA9Dpg8n/aoKCkFCv+SIVJZfaWmsQtAIg/dknRca0iAlWdX87gmEgMijY45c+aiIjIGsY07uXSFdvnVlLvaVTfX9F7J/Zpga92n7X5mpaYAKTnFmFvajb6tmmAOcOiMTnugN0tD3MKSrE1OaNiLrVk2yl8tisVOYWlyC1S3vZbyuyhnRBR34/zMgfz0utkfx7Eb3zOsGh+/xpj/EGay8wE1q4F1qwBGjcWkq/S04Fx44AZMyy/97HHgOhoYMwYYNQoofUhk7SIyA6MZ2xXbjRh7oZkybm5+JwtiVsAkBreFMv6jsGyvmPwn5S/0POfo7g59QBiLqagXdY5AED8J08CAF657Ulsad8PWUGh6j+EC6iJ1YiIiIisqev3yzRL3iKiOqJRI2DZMqHE/8aNwPDhla89/jgQFwdMny487+Wl6hLO3A1tb6DZv20Epqw8aHdVA6MJWP5bCj7akVrjXNrUR7Qsp7BU0XFKFz9t4aXXcacWERER1aBm3iH1nl5R4YgM8bdY8So00Af1/R0XHotzzsExkVg+oXuNua6tdADmbkjGoGgDtiZn4L34E4rmo3qdMO+UO6chxB8PxkbV2hsg7kbu58HASlAOxfiDVCkoEFoexscDycnAwoWWj3/6aSA8XGhv+PffQlUtsZJW165M0iIichP2buy15rc2N+C3Njfg7ZsfQIvL6fhg7RuIvpRa8frrvyzDvK0fYF+zaASVFGLKiBdxNsz954COuEdMREREBNTt+2WK705/+eWXdl/s/vvvt/scROQm9Hpg2DAhs+jTT4FHHhGe/+MP4QEAbdsKvzYYFJ9Wrkx1Rm4RJscdwPIJ3a3+pWxL1S57A82dJzPtTtwSfbarZuKWLer5eeNqsfpKC6EBPsgtLLVYhrJXVLjq8xMREbkaYxrPoiTpSmRtrjK2ZwssutaeWkpOQSmW/XZa9nV7VZ1zipV/dp/OwpSvDyhOoq9KrOi1+3SWbKUAUXiQD2bf2RmGYH9czi/GlJUHK84hqgs719wVK0ERuZmMDOD774VKWr//DoSGCo8zZ4AvvgAeeED+vU2bAi++KCRs9ekD3Hcfk7SISFOMZ7TnzApSZ8MiMeSh96EDMPTfo3gy6zCCjyai2amj6HMuCQCw46NJ2N08Bhs79sevbXvhQnAjp41PCd4jJiIiImeoq/fLdCaTspouer0eOjtuOOh0OpSV2de+QSvu0kudqNY5fx5YuhT44APg8uXK559/HnjqKaB5c4tvF/vYyu12UtLH1taqXdZ653qSZeO7Y/7GZNWfZfrAdngv/iQA6cU8JYlzRESkDc5XHYMxjecRE/sB+TaDluYqUnNDZ7I0fy03mrBk20ksujb/UmPqLW2xZPspq8etmtSnotKQvVVundXenIjIoa5cESpohYYCK1YIv9682fJ7Vq8W7ndERwu/b9RIqKQl/p6Iqqkr81Vnqk3xDOAePyMJKVkYt2K3064ntv8JDfRBToGwiaNZ7kXM/2UZbjm9X/I9Jxs0x5QRM3GiYSunjVMK7xETERFRXeKKuari5K1WrVrJBgZnzpyBn58fDFaq66Smplp83VncISggqtXy84HYWODQocrnvLyA8nJgyRJgyhTJtykNlqsuPlUlV7VLKrCsuuiUlpmPRfEna/TOtSY0wEdVpQRHuCOmMe7vG4XL+SWYstLyAqe5qouKW5MznNaykoiI5HG+6hiMaTyTtQQsubmK3NzQWZyRVDb1ljZYsj3F6nGLx3bDiG5NK36vNgHLme3NiYg0cf488O23QiWthISar3/5JWCpCs2oUcC0aUKCVkSE48ZJVAvVpfmqs9SmeAZwj58RZ2/srZq0JaVZ7kXccXwXHvlrLQxXs6u9tqdZZ2zq2B8/t+uLjGDn/5uk5byfG0KIiIjI3bl18pYler0e/fv3x44dO7QYk8O5Q1BAVCcYjcCmTcCiRcC2bdVf+/57YMQIIanrmnWJ5zFtdaLV05ovPgFASZkRfRbEIztfPvgNDfTB0nHdkVtYivkbqy86hQb6AIDF4LkqHYBnBrazq1KCI0SG+GN410isP5Re7fOFBfrgckFpjQQ1a4ltDJ6JiFyD81XnY0zj3qrOTyLq+QEmIDO/WHauYq2iq5ZCA31w7w3Nasy/HJ1UFh7kg8VjrsfEz/ZaPVZu84MtbNkoQUTkdFlZwN9/CxW0unUDXnkFOHpUSN6SExkpVN365RchOatpU6B9e+FBRHara/NVV/O0eAZwn58RJdV+tRAe6ANfby9k5CmLUXqeS8LiDe+gyZVMydfn3joJmzrE4mJ9xyVyBfl64cHYVujXJgI9W4Vj/5nLdt8z5oYQIiIi8gRM3nISdwkKiOqUdeuAu+6q/lxUFPDEE8CECUCTJqorb21JSsfLPyYhO79E9fDEMPOZge3RKiIQaZkFWLX3rGQwLQaTg6INbtdyUfwcS8dfj7Agv2rBNKtqERF5Ds5XnY8xTe3izPYnkdcqmAKwmgCvdVKZIdgfRWXlyC0olZyPKmk7roQW7c1rA25yIHIDly8L7Q3ffRfYL91eCp9/Djz0ECB1y/OGG4TXxo4FwsMdOlSiuo7zVefytHgGcK+fEbmEouFdI/HRDqFamfmGWPP2h44Umfcvhvy9C3ce+wPXp/9d7bXMwBAU+vjj6WHP42DTjg65vtTG5/AgH7w2IgZDujRRfB5uCCEiIiJP4Yq5qrdTrkJENGKEcON0/37g66+BL74AUlOBmTOFR48e6PXd94gM8ZdNhhIXhXpFVd5g1apygena+VfvO1ux6DR1QFvsTc1GRl4Rsq8WIzzIF4aQgGqLNHOGRWNy3AGbWy46ivg55m88VmPxbHBMJAZFG7jgRERERLXepSuOr7glSs8twt7UbPRt08Bqdau9qdmaVgO7mFc5b5arsDpnWLTq+Z6YrLTrVKbFcZtQ/XuojVghgMjJTpwQ2hwWFQkVtO66C7jvPiAjQ/49zZoJFbQaNxbuO7RsKfw+NNRZoyYiIg9l6b7p9S3CaswDDVU29+5NzcbmpHR8mXDGYeNLD26IT3rehU963oXrzx9H73NJuPXUXvQ8n4yIglwAufgx7jkAwPwBj2JTh1ikBzfU7PpSCWrZ+aV4cuVBPP5PDl4aEm31HOVGE+ZuSJa8hy7e0567IRmDog28X01ERER1EpO3iMi5evQQHq+9Bnz1lVB5CwD274dX2zb4YdBQPB/SC7tadbO6+GQp4FNDXHT6fFcqHoyNgpdeJ7n4VG40ISElqyKQXzr+ery8Nskpu6wA4Lboxvgl+aLs65YWz+Q+ExEREVFt0qi+v1OvpzRZTE1SWWiAN/Q6PbILalaZFRc5QgN94OetR0ZeccVrBjsTi6SSlaxxZtKcM8ltGMnILcLkuAM1KgSwQheRDf79V2h1uGED8L//yR8XGQl4S9zG7NcPGD0auPtuoHlzx42TiIhqPbn7ptY2xIrvcWTyVlUHm3bEwaYd8UGfe9D4SiaWrX0TPS4cr3h99raPMXvbxzjSuA3CC/Jw/5h5SImw/m9kWKAPCkvKUVRmtGk8H+5IRddmYRjSxXLcYW0jS13YEEJERERkCZO3iMg1AgOBxx8HHn0UWLRIaHuwbRsit6xHHNYDANZ1uhkz7pyBcr2X5OKT1pULRPM3HsOKP1Lx6nDhelUXX9Iy86+1U6xcGHNWeWxR+8b1LCZviWrr4hkRERGRNb2iwi1WdNWa0mQxNUllOYVlFl83AbhcUIqvH+0NvU6nScKQ2uq2Sj6fpyU22VohgBW6iGQcPQqsWQPs2QO0bi0kbI0bB8yaJSRwyRkyRKieFRsLjBolJHGx/RoRkVOZTCbs2rUL69atwx9//IHjx4+joKAAERER6Nu3L6ZOnYpbbrnF1cN0KGsbYntFhcMQ7I+MPMv3Y/U6wKhhgHKxfgTunvgOAOC69JO4/WQCep47ip7/JOO6iykAgF8/mYzEyPY4EdECK3qOxMmGLaud4+HYVggJ8MHnf6bZnLglmr0uCbfHWK6Y5cgNL0RERES1AZO3iMi1vLyA554THocOAVOnAjt3AgBGHPsdA3NP498HH0PzyU/BKzSk2lsdGchl5BXhibgDePymKKw/lG4xScxZiVti28i+rSOwZHuK1eOrLp552iIZERERkVrivGdIjAGf7Epz6LXM23pbm3M5Mqks82oxRnRravd51FS3lWpvLsUTE5tsqRCQW1hiU4WuuohxSS1nMgElJcC+fUBiIvDzz8BPP8kfHxUFxMQAaWlA27bA1q3AgAFCJa277gIMBicNnIiILNm2bRsGDhwIANDr9Wjbti2CgoJw8uRJ/PDDD/jhhx8wa9YszJ8/38UjdR0vvQ7jerXAovgTFo/TMnHL3JHIdjgS2Q4A0OhKFubFf4DBJxJghA7d0k+gW/oJjDkSX3H8lOEz0W7qw+gYWV/Vxo2qsvJLrFbMcuSGFyIiIqLagMlbpAhvsJJTdO0K/PGHcJP3+usBAEEXziHojdnAG7OFY3bsAG68EYBzArkPd6Q6/BpKVG0b2adNA4uLfuaLZ564SEZERES1m6PiCzWt/uwltvVWMufy0uswZ1g0JscdgA7QNIHL2txY6Xdua3VbqfbmUmxtPegulG4YycgtxFs//624Qpe9PDFGZ1xSi5hMwMGDwHffCdW0Tp0S4vSjR4F77xU2Zv35p/z7n3sOuO46oGdPoH17YVMXERG5LZPJhLZt22LGjBkYO3YswsLCAAAlJSV49dVXsWDBArz22mvo3bs37rzzTheP1nVaRQQqOu7h2Fb49q9/cLXYcoVde1yq3wBPjHwFANDw6mVMSfgGt59IQOTVrIpjlq5fCKxfiOzAEPQd9jz+bNXNvmtamTdb28iidEMIkRxPjJGIiIiqUpy8tWPHDouv5+bmWj3mpptuUno5ciO8wUpO162bcDO4sBD46iuhreLx48JrN90k7MKdMQOXA1u4dJjO1DjYD68O71zx/5zcop/54pmnLpIRERE5AmMa9+Co+EJtqz+19DpgybjrMTgm0qY51+CYSCyf0F1RkpkOwjwQ0OFinvpFDlu+c1ur20q1Nzdna+tBd6J0w0h2foniCl2WKhIo4YkxOuMSD2UyAenpwNWrQrLWr79WVtUy98cfwn+Tk4FbbwUaNhTaHR4/Dtx5JzBiBNDAvp99IqK6zlXxTK9evXDs2DF4e1dfTvL19cUbb7yBxMREbN68GStWrKjTyVtK542Dog148Y5O6D7/F1wtLpc8RgcgJNAHep0O2fkldo3r33pheHXQE3h10BPoeCkVi376Hzr9m1bxenhBLlZ+MwsAsPDmB7CxQ3+cDbN9Xmbt81vayKJ0QwiRHE+MkYiIiMzpTCaTonvber0eOp36SZNOp0NZmeN2EtgiLy8PISEhyM3NRXBwsKuH49bkbrCKPwm8wUpOYTQCzz8PvPtujZc2dojF9DufQ4m3jwsG5jxfP9obsW0jqj1nLSApN5rQf+E22UUkcaFv58wBDIqJiNwM56uOwZjG9RwVX1ib9zjKqkl90CsqXNWcS9wVvDU5A5/uSpNdwFg+oTsAYHLcAcDCMXLfm63feUJKFsat2C33kStMvaUNYts2VLSbWek5V03qY3dik9bEny1rFQJeGNwR079JtHq+xWO72dXe0hNjdMYlHsBkAvbsqaykdfas8HxQEJCfDwwaJLQw/Oor+XMsWwb07Qt06AAEBDhn3ETk1jx1vurO3DWeWbRoEWbMmIGOHTvi2LFjit9X235GlM4bxTnPgk3JLu360P7fNLy7cRFiLqZUe/5UeDM8PfwF/Of0X9jYsT/OhDWxeq5IG+ZyTLIhrXlijERERO7PFXNVm9omKszz0vy95BqevDuaahm9Hvjf/4TH4cPAe+8Bn30GABj69y4M/XsX3vjPQ1jVbTCu+AUpOuWkG1vh3yslWJt4wYED1862YxdrJG8NjonEoGiDbClgay1vtNz9T0RE5CkY07iOI+MLW1v9ydHrAKMNf8wbj1xA8oVcVXMuL70Ofds0QN82DdArKrzGAoZ5RSupal3Wql5Z+86Bmt+50nYm0wd1UPznpLSal61Vv5xBaYWAkABfReezp/W7p8bojEvciNEI/POPUB2rsBC4dAn4/HPh93l5NY/PzxdaGpaUACNHAi1bCtW0AgKAW24BQkKc/hGIiOo6d4xnioqEf+cD6njyri2VpbYkpeMjC4lbgb56FJQYHTlcnGjYCnc+uBgA0DbzLPqcPYLbTyRgX/POGJX0Kx79ax1e2PElAOCqbwCmDn8Bv7XpKXmu4V0jFc8/rd3TJrKFp8ZIREREUhQnbxmNjp0okvvhDVZyS126AJ9+iq0jH8Gg4f0rnn75t8/w1J+r8W2X27CpQyz2N4uWfHt4kA9eGxGDIV2aYNfJTI9J3vox8TxeHlqzbLS46CfFkxfJiIiIHIExjWvZE1+IVarkbu5vTc6we3w6AEvGdUdYkC++2XdW0TwxbvdZxee3NOdSsoChZpFDSVJbem4Rlmw7iWkD2wMQ5pezh0bjyZUHahyrtp2J0oQlexKbHEmu1aXBrOqtkqQ3S+0trfHUGJ1xiQsYjcC5c8D77wNxccDFizWPiYoCHngA2C1TFW/kSGDGDKBnT8DPr/I5IiJyGXeMZ0wmE9asWQMAiI2NtXhscXExiouLK36fJ5U47OGUzhvlkk1Ejk7cMncqogVORbRAXPehgMmEIX/vwo7Ms7gp7SAAoF5JIT7/bi4AoNDbD6Mmvo1jjVpXvP+jHam4vkWY4upGlu5pE9nCU2MkIiIiKTZV3qK6hTdYSUvWFtxsVS+6I1rN/AnBRVcx7tAW3HPkV7TLOodH/lqHR/5aBwAYdd/buP3RuxDTLBSZV4trXDe3sBQ6ndAhwt1l55faHGB4+iIZERER1S5q4wtrbTW2JKXj011pdo3NvE1HRl6R5kn+1uZcShYwbF3kUPqdL4o/iQ6G+hXf58trj0geFxLogzdHXWdzywml1bzsSWxyNGvJc7ZUWlDLU2N0xiUOVF4O7NgBZGYCqalAVhbQogUwc6ZQNUtOdDQQEwOMGiX8OjoaaNu2MkmLiIhIoRUrVuDgwYPw9fXFM888Y/HYBQsWYO7cuc4ZmANZu889OCYSAzo2xlcJaTiTXYCW4YGY2LcVfL31ALSrGuwwOh02deyPTR37o1X2efxv4yL0uHC84uWAsmJs/uxpHGvYCrNvm4yU8GbICQxhdSNyCU+NkYiIiKQweYtk8QYracURfewrFoAAfNj7HnzY627cnHoAX6yZU3HMD18/D9Op76B78EHgwQcBf+FntdxowpJtp7Ao/oQdn8r5xABDaSKc+B1ZuhkQ6eaLZERERFR7qIkvtiSlY3LcgRoJP+m5RXgi7gCWje+O+RuTVY0n2N8b9/RohkHRhhrzKUOwdjGOKxOTbInV5m5IhtEIyYpbopyCUlXjcEZikzNYS55TUmnBHp4ao9eG5D2XMxqBtDTg6FEhMevYMenjvLyAFSuExC0fH6D02v+zej0wejRwzz3AkCFAYGDle667zuHDJyKi2unAgQOYNm0aAOC1115DmzZtLB7/0ksvYcaMGRW/z8vLQ/PmzR06Rq0puc8tdczHO1MrjnHHJBKdDgjx90JOYXm159PCm+Luie8AAFpln8dbmxej1z/JKNV7odO/abjsH4xfPpmC7MBgnGrQHKeCz6HDlAdd8AmorvLUGImIiEiKzuSoRuduLC8vDyEhIcjNzUVwcLCrh+O2yo0m9F+4zeoN1p0zB7j9TXZyHbkFN/EnZvmE7qoXMcRzA9UXgAae2oNBJ/fgnuO/w6ukshQ3DAZsW/UzXv7zEjLyiuFpVk3qg9zCEry6PhkZeZVBfniQ77VWkML3WDW5Kz45AxsOy7cRevymKLw0RLrFpDmtq6cREZE8zlfJGk/8GbE1vhCPt5SIXs/PG1eLy2weS3iQD3a/NLBi97vcWLXaEf+BHXNee9j6OcICfXDZSoJWpB0xoCM2dbgjR82bPTlGl4vdtIgLa5WSEmDbNmDNGiH56upV4ORJYNIk4WHJvfcCnTsLG5fy84E2bYRzEBG5iCfOV0m51NRUxMbGIj09HePHj0dcXBx0OtvmH572M6LkPjcAi8csHd8d6bmFmL9RJhHbTuFBPricX2qxJaOcKbe0wdLtKYqODSm8gr5nDyMtrAk2fPEMfIzlNQ/65hshedzGnwsiW3hyjERERO7NFXNVJm95QFDgSrzBSvawtlikxcTZ4gJQQz2weDGwYEHFa4XefljV9XZ8dsNwnAs1qLqmK0SG+GP20GiLlRAevykK17cIq/F9WDuvku+/riy0ERG5C85XyRpP/RmxJb5ISMnCuBW7Nb2+LXGM3OKMGlWTt5ydEL8lKR1PxMnPIdVYNamPTe0bq+KGAPt4cozOmKKK8nIgN1doeZicDLzyiuXjv/oKePRRoGNHIZnLZBKqaI0eDQwaVFFlmojInXjqfJWsy8jIQP/+/ZGSkoKhQ4fixx9/hI+KhGFP+hlRep/bZDJZ3DSs1wFGB63IhQb64I27YvDkyoOq3j/1lrZYsv2Uze8LLrqK207uxjub3pM+4L//FeYtrPZJDuLJMRIREbkvJm85iScFBe6AN1hJLaULbvYs/gDWF4Di/zyOhmNHoeu5mjuaXrvlYXzcc6RLdgCFBHgjt1BZpYglY6/HrPVJqlvVWGLt+3dk9TQiIpLG+SpZ48k/I0rji3WJ5zFtdaKm17YUx0jNKX9OysDUVQfsXmAJDfTB0nHdkVtYivkbnR9bLY4/qWnL8MVju2FEt6aanc/RalvCmCfH6LXtz8KqoiLgl1+ESlpr1gANGgAREcDffwvtDe+/3/L7X38diI4G/vMfoH59oS0iEZGH8OT5KsnLzs7GzTffjKSkJNx8883YvHkzAgICVJ3Lk35GHLGxxBEe6tcSa/afV1Wd+OtHe+O5NYdUVR+u2KQ9tg28HpsExMdXP6BXL+B//wN+/llIPr/uOlbkIk15coxERETuyRVzVW+nXIU82uCYSAyKNtStG6xkM6mb8JeuKAv0lB4nx0uvk00+2pKUjifWpwDj3wZMJtyYdhCP7FuH/6TuBwDM2v4p7jz+Bz654S5s7hCLMi/n/bU49ZZ20OugqEx2el6RQxK3AMvff7nRhLkbkiUrTpggBOZzNyRjULSBfycQERGRIkrji0b17a8ko4PQYnrW0E4whATIxjFyN3rH9myuyc74nIJS3PfJHsnXMnKLMDnugEMT4qcOaItVe8/IVgHQAQgL8kF2vrL5phZ/NrawJ+GnNt7E9+QY3VLs5tFKS4FTp4CAAKFK1tGjQqsgcxcuCA9R9+5CcpZeL7Q4HD0aGDCA7Q6JiMgtXb16FUOGDEFSUhJ69uyJDRs2qE7c8jT23r92ls/+PKP6vXtOZ6Fb8xCbk7fEGeicYdHwiooEtm4Vnjh7Fvj9d+C774CBA4HPPwc++QR47bXKN3/5JTBhAhO5qILa2M+TYyQiIiIRk7dIkVp7g5U0YWmxSwlHLf6UG014dX1y5RM6Hf6I6o4/orrj9hN/4sMf3wAAdEs/ifc3vA1seBv/BoZi5P3/wz8hjR0ypqoi6vlCrzB42JeW5bBxWPr+96ZmWwzYTQDSc4uwNzWbf0cQERGRYkrii15R4QgN8EFOoX0J7K+PjLGYpCNXZTQjtwiL4k/adW0lbEmIl7uRLT6fkVeE7KvFCA/yrZas5qXX4dXhnS22knhtRAzm/ZRssc0LILR6uZxv+Rhbxm6NPclXlv5sHZ0w52iM0V2koADYtKmykpZYzN7HR0jg+uoroTWQnBtuEF7v3Blo2RKYONE54yYiIrJTcXExRowYgT179qBz587YsmUL6tev7+phOY2zNy+4wv9ts71lIiBU3JKcm7doIcx1xPnOjz8CmZnAunWVx9x/f2Ul0j17gJ49mchVh9m78YYxEhEReTombxGRXawtdoUG+iC3oFSycpNYTrlXVLjkue1tqSEuYEn5uX0/tJr5Exrk5+C+xM2YeGAjGhbkoGFBDnZ+8Ah+6ngj3rrpfpwNc9xijiFE+c60QF/t/7q29v0DyneVecruMyIiIvIcXnodHoptpTiBSofqSUl6HTDpxijZm7zlRhN2n87CzO8Oy1YZdRYlCfFSN7JDA3zQv10E/kq7LDnvrXqje3BMJJZP6F7jHFUXW/R6HZ64luAlx2gCpqw8iOV6neLEJ7U34e1JvmIFWbJLSQlw4gSQnAx06gTMmyf8OjlZ+vjSUiAoCPD2Bh57DGjbFmjaFGjSBLjxRrY7JCIij1ZeXo6xY8di27ZtaNOmDbZu3YrwcPn7ibVRr6hwRIb4IyO3yOJ9bpPJhIt5xU6NJZwpMsQfs4dGIyzI1/Z79iNHCo/z54EnngB++qn66717C3OoL78U5lHNmzORqw6pzRtviIiIlGLyFhGppmRBRGS+mFatnLINrWtsaW+iJKEoKygU/xc7Dh/2vhtffjMbvf85CgC48/gfGHJ8J7a26434tr2x5rqBgE4Hbx1QpkH0HVklaSo00Ee2JaIY+N/dvRkpSlV0AAEAAElEQVTWJl6QPEYNa9+/SOmusrqw+4yIiIicb+qAdljxRyquFpdZPdZ8imYyAR/tSMX1LcJqzB+l5pruQG7+KncjO6ewFD8dTpc9X7rZjW5rrSQGx0Tigwnd8eL3R6xWPFOa+KT2Jry9yVesIEuKFBcDu3YB778PrF0rfcwHHwAbNwKFhTVfMxiABx8EJk8GmjUT2h+OHevIERMRETndt99+i7XX/p3U6/UYPXq05HGRkZFYs2aNE0fmPF56HeYMi8bkuAM17nOL5gyLBgCLx1gye2gnhNfzw/yfjipuZ+4M4UE+mH1nZxiCNWpD17QpsGGD8Ov0dGEetW4d4O8PpKQI86uYGKBRIyGBa9w4YNIkJnLVYtx4Q0REJGDyFhGppmRBJKegFNMHtsfqfWdld/ib02qXhS0JRcXevrj3voXQmYwYcnwX7kmKxy2n9+P2k7tx+8ndeHvzYky781n83L4vynzsT1QSk6a2JKXLJm4Bwnc4Z1g0+rWN0KRtkMjS91+V0l1llqp32VtBTevzEBERkefw0uvw1t1d8ORKy9WgpMjd5JWba1qjZgHGVmmZBTWes3QjWwkTqn8H1lpJDI6JRH0/H9z3yR6L51SS+GTPTXh7k69YQZaqyckRkrTy8oCjR4EBA4BnnhEqaZWXS78nOBiIjgZCQoQErkaNhCpczZsLSVpERER1RHFxZcvskydP4uRJ6cq4LVu2dNaQXEKsZPviD0dq3M8NCfSpfoyCzRAi8f7qg7FR8NLr4Oelw5MrD2o9fNWy80thCPZ3zIaHyMjKBPqrV4GEBKG1YlmZkMiVkgL89hvw+OPCMR98IFQ5ZSJXrcKNN0RERAK7krdKS0vx2WefYfPmzTh9+jSuXr0Kk0n6lrJOp0NKSoo9lyMiN6N0oaNVRCB2zhygKPFGy10WvaLCYQj2l22dKMWk02NjpxuxsdONaJN5Diu/eQWNr2YDABb/9D8AwJs3P4iV3QYjz7+e4vNWVc/PCwM6Nq74rJaEBfpUfNY3777OahsbQL7K2TMD26NVRKBNiU+WdpUpqd6lRQU1Lc9DRERkjjGN+xvSJRKDEhtha/Ilm99rfpNXbSKU1GYER3gv/gQ6GOpVm99Yu5GthK03ujPzi60fBOvxgD034e1NvmIF2TqqsBD4+2/g11+B556TP660FDAaayZutWwJjB4tPHr25MIgERG5PWfEMw8++CAefPBBO0dae0htxM0tKK3YdHzw7GWbN+BWvb8aFuSnyTjN6XVCC3Q1nLLhoV49YNCgaxe8JFQ+Na9o+sQTwuP554ExY4AbbnD8uMjhuPGGiIhIoDp5KzMzEwMGDMDRo0dlg4GqdLzhRVTrOGJBRMtdFl56HV4dHq0o4UlKSkRz9J7yJdpknsPwYzsw7c9VAIAXf/8cT/+5CjuiumNFz5HY3yzapvNeLS5Hl7k/o0vTEKsLcZcLSis+6+CYSDx+UxQ+3JFa47hAXy+8O6YrANRIclJaZUuOuGPM1vNqVUGN/e6JiMhRGNN4hi1J6YhXkbhVlXiTV00iVGSIP6YOaIvJ/2mDPgviHd7CxHyjglY3qG05j1bzfHtuwts7Bi0qyJIby8wUqjRs3w60aCFU0Bo4EFi6VEjekhMbC3TuLPx3wgSgQQOh4gP/ficiIg/EeMa5LG3EFTcdv/j9YeQUWm/5XtVjN0VVu7dpy0ZkpV4Z0gn5xWV471fpqmnWmM+5Hd4hoV494N57hce//wJTpwLfflv5+ttvAwcPAs8+C2zdKiTe9+rF6qgeihtviIiIBKqTt1588UUkJSWhWbNmeOGFF9CzZ080atQIek6OiOoMpQsil/NL0H/hNkVVk7TeZTE4JhIfyJSzViolojkW3XgfPuo1Enec+BOP7FuLTv+mYfCJBAw+kYBf2vXBxz3vwt5mnRXf9C8qNWJv2mVFx4qfdUtSOj6SSNwCgMISYcf44JhIDIo2aB4823perSqosd89ERE5EmMa92dvy0CReJNXTSKUuAt+b2q2wxO3pDYqRGi0896WG91aJT7ZcxPe3jHYW0GW3ITRKLQ5PHhQaHv40Ufyx3p7C20N//1XaHe4cyfQrl1lJa2uXZmkRUREtQrjGedSsunY1sQtHYD1h9LxwuBOFfPS7KvKquAqFRrog092pqpOCos0m3M7vUNCw4bAN98Ij6wsoY3imjXAkCHAp58Kv3733crj330XePppwMtL+7GQQ3DjDRERkUB18tZPP/0EHx8fbNu2DW3bttVyTETkIZQsiAzvGokpK5VXTXLELgsx8Wj36Sx88WcqflFZuSHfLxDfXTcQ38Xcin5nDmHlN7MAALed3I3bTu4GAGxv3QOT73oJRT7a7QJpVN9f0cJl1SQmR/R+t+W8WlVQY797IiJyJMY07k+LloEAcPlaG0Bbd+pOH9iuYq6qRQWskABv5CpY0KmavP/qestttpUwX3CxRqvEJyU34cODfJGRW4iElKxqmwO0GIPaCrLkAhkZwA8/CItvv/0GDB0qJG3FxgLZ2cDmzfLvnTAB6N1baHPYpQvg788kLSIiqhMYzziXI1q2Sd3b/OdygabXEDY0S29CGdbFgA2HMyy+v+qc2+UdEho0AO6+W3gAQHi4kKS1enXlMTNmCA8A2LFDmE8yodGtceMNERGRQPWMJTc3Fx06dHB4UGAymbBz5048//zz6NOnD0JDQ+Hr64smTZrg7rvvxvbt2x16fSKyTFwQMYRUXwgzhPhj6fjrsf5QumzVJEBIOCo3Vh4hLvDITcN1sH3xCRACgNi2EXigb5RN75MehA5/tuqGVjN/wq2PLMfX3QZXvHTL6f04/u492LXsIYQUXrHvMqj8rLYkMbkDrSqosd89ERE5krNiGlJPq3/j5288hnKjqWKuqYTQLrFdxe9tTfwKC/RBaIBPteeKy4yK3tuovn/Fwoi9bVN0UHej29I8X+mijHgTXhyHOROArPwSTP/2EMat2I3+C7dhS1K6pmMYHBOJnTMHYNWkPlg8thtWTeqDnTMHMHHLVa5cAVJTgZ9/Bp5/HrjjDiHRKjISmDJFSNwCgI0bgbQ0ICkJ6NcP+M9/gCefBG68EXj1VSGxy2QSHl99JbTS6d0bCAhg4hYREdUZjGecy5Et28S4p9xowrpD6VaOrik00AfhQb7VnjME+yE00EfmHYK/zuRg2fjrJY8LC/TBB1Xm3NY6JAA17/U73J13AqtWCcn+DzxQ8/WbbhJabO/bBxw7JlR1JbekRexHRM5RbjQhISUL6xLPIyEly7l/7xPVcqorb7Vt2xYlJSVajkXStm3bMHDgQACAXq9H27ZtERQUhJMnT+KHH37ADz/8gFmzZmH+/PkOHwsRSZNrqaemapLDd1lofB8/JaI5Xrl9Kj7uORKbPnsaAWVCVYemV/5FwvIH8V3MQHx2w3CkhjdVNUzxs3paEpNWFdTY756IiBzJWTENqafVv/HpuUXYfToLsW0jKuaa1m4tmc85rVWRAoQ53IP9WiE00AeL4k/WeL2o1PJigdgOokfLMNz01na720Xa275Ei5bcctWvpEjt2NdiDI6qTEsW/PMP8N13QiWtP/8UngsNBXJyhApZvXsDS5bIv/+//wVuvVVofxgRAcya5YxRExEReRTGM87Vo2UY9DrAEWvUYtwjtGq3/c/0zVHXYUDHxvgqIQ1nsgvQMjwQ7RvXx8RP91p8X3puEcKC/LB/1iDsTslCwulMAMLcuU/rBtXm3G7dISEsDPj8c+GRkyNU3vrxR6C8HLh0CWjcWGinHREhVOu67z7gueeEttvkNrSI/YjIsZzeOpeojlE9M3n00UcxY8YM7N+/Hz169NByTNWYTCa0bdsWM2bMwNixYxEWFgYAKCkpwauvvooFCxbgtddeQ+/evXHnnXc6bBxEZJnUgojahCNHtjfJvFqs+r2WpIY3Radnv0dQcQE+/PF1RF9KRXhhHu4/uBH3H9yIK74BmHT3bOxufp2ineDmn9XTkpi06lPPfvdERORIzoppSD0lc4GQAB/kFEq3AalqytcH8Obd11XMNV/84ci1FiLKVN1kIOfRG6Pw4h2d0H/hNsXnFVVN3l/+2ymbKm4Zgv0wrlcLtGgQhOyrxQgP8oUhJECTG91aJD5VvQmfkVeE+T8dRXZ+ze/eBOF7qNoOXKsxkHXlRpPtCyU5OUByMpCZCRQXAx9/LPz+n3+kjxX/e9ttQlzUubPQxubmm4H27TX+RERERLUb4xnn2n/mskMSt4DKNu+2bswN8NFj0b3dAAA3v7292r108yrAcrYmZ6BvmwaIbReB2HYRAKTnhUrHtvlaJV2XJd2EhgKffio8ioqAxETg3DmhtfaFC8LjpZeEBwC89hrwwguAj7LvixyLsR+R+3J561yiOkBnMplUTTdNJhMmTpyI33//HUuWLMGIESO0HhsAIC8vD4GBgfCWyYAfMmQINm/ejOHDh2PdunWKzxkSEoLc3FwEBwdrOVwiqiIhJQvjVuy2etyqSX0kJ+SqFg80GpPdTCb0PXsYj+5bi1tT9lU8ndS4DX5r3QPL+oxGgW9AjbdNvaUNYts2rPFZy40m9F+4zWoS086ZA9xmJ4o4kQOkK6gpnchpdR4iIk/C+apzOCumcYS69DNibS7wzMB2klWupOggzB0GRRsQ++Y2iwlSoYE+WDquO/q0qb7jfMGmZHy4I1X2/M8MbI9F8ScUjcf8eg/1i0K7RkF4cuVBRe+5v29L3BET6VG7ke2NEcgxrO6evXwZ+OILIC4O2L+/5gnCwoA5c4BnnpG+wA03AC++CNxyi1DtgIiIar26NF91FU+OZwDP+xn58eB5TP8m0SHnjrx2X3dvarZN966/frQ3rhSVKqosLCfY3xt/zRoEX289APl54dieLWyKc9yuEktxMbB5MzBypPTrU6YA48YBsbHOHRcRkQcQ1yjlKjC64xolkb1cMVdVXXnr1ltvBQBcunQJo0aNQlhYGNq0aYOgoCDJ43U6HX799Vebr2Ptixg0aBA2b96MEydsvzlORI6ltGpSj5ZhSEjJqpGkpdUui6pJYBFBfjAE+9tUyUA0oXcLbDh8AbmFZdYP1umQ0LIrElp2RUzGKdx7+Bfcc+RXxFxMQczFFExN+BZXfQNw5wPvIe1aS8XIEH9MH9RBcmLj8HaSDqBVBTVHVmIjIqK6zVkxDdnH2lxgULQBq/eds9jOsKq5G5JR39/H6nwwp6AU932yp9qiQ7nRhPWH0i2+77M/pRO75AT5eSG/uBw5BaVYFH8Ctkzn7oiJ9LgEJ09rB16biXHS1uQMfLorDQDQKvs8WuZkoGneJTTNvYSNCa3wn4Qv4J95Sf5EzZoJ7Q1vuglYsUL4dbt2QMOGzvkgREREdRTjGceqek85LTMfn9s4z7eF2G5QSat2UWigD3q2CsfNb9vXbj2vqAx9FsTjjZHXAYBsVZX34k8gNNBHcfVit6vE4ucH3HUXYDIBV64IGwuWLat8felSID0dOH8e+P13YPRoIZGLFbmIiNy7dS5RLaI6eeu3336r9vvs7GxkZ2fLHq9T0CZMjaIi4S+KgICaFWyIyLWUJBwN7xpZo6SzlrtypHYKKS0Zba5nVDj6tWmguBKCKMnQFkmGtvjfjRMwe9vHuDtJaKNTr6QQv614HF9dPwSf3jACMycMs5h85YlJTFr1qWe/eyIicgR3iWnIOmtzgTnDovGEhXaGIvFmUkJKluJrV110qO/vY/VmlS2tGAEgv7i82u+VtmKJ9NDW0Z7WDry2+nVHEr7/6heM+XUl/pu6H/+VOW76nc9KJ2716ycsaI0ZAzRpUvn89dc7ZLxERERUE+MZx5G6p+xol64UwUuvw/CukbKVfqvSAdhnZTFdqez8UjwRdwChgT6SiWBie/PScqPic8q1RHcL9esLyVpLlwIFBcBvvwFr1gjJXcuWAb/8Uj2xa9Ys4eHn56oRExG5FDfiETmH6uSt7du3azkOVUwmE9asWQMAiLVQyrS4uBjFxcUVv8/Ly3P42IhIYCnhaHjXSHy0I9Vqf2S17RPl+i/nFNq2oCZqVN8fe1OVL/SZywkIxrNDZ2D2oMn44Mc3cFOakAQ28eAmTDy4CZmHvwLG3g1MmwbI3EyRWrjs0TIM+89cxrrE826Z1KRVBTX2uyciIq25Q0xDylmaCwyKNti0Cxw27E0XFx1e/OEITPZsadfYK3d0BADJCrbuTGl1Xk9MTHNLR48KC1H5+cLCVHIyDg2+B7e+OBW3Wnjb9tY9cCKiJQ406YC7Jv4PL88YhV7dWjlr1ERERKQA4xnHkLun7GiN6vtjS1I6PlKQuAUAlwtKkXA6U9MxWIqnTKi58cQaj6jEEhgIDBkiPMTfN2sGfPpp5TGvvSY8ACGx65ZbAG/Vy6tERB6HG/GInEP17OLmm2/WchyqrFixAgcPHoSvry+eeeYZ2eMWLFiAuXPnOm9gRFSNXMKRXEnnqrtyjEZg/sZkmytzlRtNmLshWZMgW1xAupxfgkXxJ+0+X4FvAO6/dz5gMqHfmUN4aP963HpqHyL27AT27AQ+/xyYMQMYOxbw9a3x/qoLl1uS0h1auYyIiKg2c4eYhrSxNzXbpopXIQE+MAT742KeslaLaipqOdrXe8/g9c3HnTIPVLuZQu79s4d2wpSVBz2mHbjbM5mExKw9e4DkZODll4VWMDLWNuyNrgDOhTRG89yLAICEFtdhY4f++Ll9X/xbr3ri3JkwIB1sF0NERORuGM9oT8t7yraIDLF8v1yeZ8yZPaoSy6BBwuP994VqW4sWVX/9ttuAiAhg61agtFSoPMtELiKq5bgRj8g5dCaTO+0dVu7AgQOIjY1FUVER3nrrLTz//POyx0pV3mrevDlyc3MRHBzsjOESkZmElCyMW7Fb1XvFkFSszKX1+aWutXT89Zi/8ZjDSmVHZZ/H93HPIwRl8CosqHwhIAA4eBDo0KHGe6ztAps+sD2mDmgLL73O7gU3IiJyrry8PISEhHC+SrL4M1LdusTzmLY60ab3iJW6zBOIPJmSebKtpFrG2JIkJvf+4V0jsf5QOjch2MJkEmKD774TqmkBQGSkUF1r8WJg4kTL7585EycjWmDcmWDk+wSg0Ff5jthVk/q4b7UEIiJyS5yvkjXu+DOi9p5ySIAP8gpLVcUVOgjz95AAX5uv/fWjvfHcmkOyi+nuwp65pFvc1y4sBP77X2DdOiA7GyguBo4cAVq3BsLDAS8v4P77gXnzhPv5RES1kLgmCUhvxNPyXhSRO3DFXNUj08FTU1Nx5513oqioCOPHj8dzzz1n8Xg/Pz/4sRc1kVuxZ7dN1cpcg6INksGaVrt5DNcWkEICfB2WuAUAqeFN0f3plVh2R0sMSfgJmDsXKCoSAsOOQkscHD0KREcDULYLbFH8CazaewYjujXhwhgRERHVamrKsudeq6QVYlO7RW346HUoNWq/vKJknmwLuc0C5m3O1bz/ox2pWDq+O8KCfLnBwJzJBKSnC63Uv/1WiANWrJA+9tQp4b9lZUC7dkCnTsLO//x8YPRo4K67gAaVC2XJieeRaUOiI3fPEhERUV2i9p7yw7FReC/+hGRlWRMg2+K96j3adYnnbbpmPT9vwATZqrbuIizQR/Vc0t6NJJoJCADeflt4lJYCx48DaWnCPDvzWuvKd94RHgAwfbrQZjEw0HljJCJysMExkVg+oXuNv5cNXG8k0ozdyVupqan45ptvcOjQIWRnZ6O0VPqmt06nw6+//mrv5ZCRkYFBgwYhPT0dQ4cOxeeffw6djjd3iTyNvX2PTQDSc4uwNzVbcteO2vOLQe7Dsa0wKNpQsYBka/CsVkhTA/Dii8BTTwmLLZs3V77YuTMwZAgwYwb2tuyqKJksI68YH+5Irfm8wgU3IiKiusDZMQ1pz1r5diliopO/tx5fPdwLT606iJxC5yRxlRpNCPL1Qn5JuebntjZPVsrSZgElSWJK3j9/YzJ2zhxQdxO2jEZg797KSlpnzwrPh4YCOTnAF18Azzwj//6GDYH33hM2eHTsCDz4oNVL2hInsY0lERGRZ2A8ox1b7ymLie5TB7RFB0M92QXtQdEG7E3NRkZeEbKvFiM8yBeGkIBqmxci6tlWgOBqcRnu+2QPIkP88dhNUTU277qLywWl2JqcYfM9aHs3kjiMjw9w3XXCr9PTgZ9/Bu68s/oxixYJj4ceAiZMAAYMcP44aym3qMRGVIcNjoms+DeN/x8Sac+u5K23334br7zyCsrKyioSqKp2Yaz6nBYJVtnZ2Rg0aBBSUlJw8803Y82aNfDx8bH7vETkfGoW2KTI7YZS0n85NNAHft56ZORVtlWVyxC3N9lMqWe/TcSrwzsL19+0Sdh1//rrwk77c+eE5zZtQl8A9wx5Bus73YwSb9v/HtS6KgMREZGncnZMQ47hpddhzrBoTI47YNOOcxOEZPcTF6/gjZExmLLyYMXzjlbggMStqjJyC5GQkqX6Ztre1GyLiz/WksSUvv/zXamIqO9Xu2/4mUzAP/8AyclAVBSwcKHw690ybXFycoTWK1euAJMmAY0bA82aAUFBwLBhQEiI6qHYEodx9ywREZH7YzyjLVvmSuaJ7tYWtC1trNiSlI5X1x9VNWbzqra7Tv2LJdtTVJ1LTmSIPwpLy5FboK41pK33oO3dSOI03t7A0KHCfL+4+P/Zu/O4qKr+D+CfGRhWZZN00FxwKxEVMRXTNE2LXFus1LTd0rTMlscsfcqszJaf+jyWmW1PmVq2qWmUiGXiViEqookErqABCsrOzPz+uF6YGWa5d/YZPu/Xa0pm7nJmYTjnnu/5foXr+AsXNjz+ySfC/3NzgV27hMXaQ4YI/XqSzWMysRE1cX5KhV2LBYnIPIVOvycvw5YtWzB69GjExMRg4cKFWLp0KQ4fPoyff/4Zp06dwoEDB/DRRx9Bo9HgjTfeQM+ePTFkyBCbG3r58mUMHz4ce/fuRd++fbFt2zY0b97cpmN5Yi11oqbIUn1kqV9Ma6cmme0kSKm/bGlArb+KIzo0EM+sP4BzZfYFm1ljsTZ0Tg7wn/8Ay5fX3/VPaAR2dOiN9wbcjdwWbW06p6XXkIiI3IP9Vddw9ZjGkfgZMc3UxVypYsKDMLZXTKMV6+qwQFTVaW2eqHCXqNAAlJTX1P8s96L2hswzmCWhvN6yCQkYl9DG5v31ef2Fd622ocTh+vVAYWHjbd58E3jnHeDcOdPHmDRJyMTbtSsQKC/7glTmxkmihwd2wHC9LMRERES2YH/V+bx5PAN47mfEXMYnYxEhKrxxRw9JfVdL2YKkns8SMQPYzjnD8MPBs7L74ZZEhaqwZ+5wpGYX4vEri11sIeca9O7cYkxcZWahg43HdKm6OmDnTmFMMH488MILjRduPP64sKijWTP3tNHLmPs9sTifQkREZAd39FVtDt669dZb8fPPP2PHjh0YOHAgbrjhBuzatQsaTcPq4eLiYtx5553IzMzE77//ji5dutjUyOrqaowcORJpaWno3r07duzYgago22pkA547KCBqisytlpg/qhsWbj5iMXOWOCC1NKFgbTWGuYGzqf0iQlS4WFErK7gMAG6Nb4Ufs85J3s/Sc9NodRj34noM3PMjHvhjE2IuFxs8/tjtL+CnrtfLaJ35CTfj83paGlRPbBMRkaOwv+oarhzTOBo/I+bp9xGKLlVj4eYjkvYTexHiinUxgB8KYNuRc/g4PV92P9AZbG2D1AUMInsnTKTub8p7kxIxsqcHX3jXaICMDOD8eSGDVkKCEJC1cydQXm56H39/ISDr8ceFlfYhIUC3btC074B9/9S4vE/LVetERORs7K86nzePZwDP/oxsOViAmWszoLXQ8Y6RcG0asNzvGhGnxqDFaQ4rdzhzaCdEhgRIHgNJNXt4F6z7/ZRd7ZRyDVpk70ISj7NjB/DVV8C775p+fNMmYMQIpy3e8HYarc7i74nUuSIiIiI5vCp4q2XLlggICMDp06cBwOTAAAAKCgrQvn173H333Vi9erXs82g0GowfPx7ff/89OnXqhN9++w0xMfZdSPTkQQFRU2QpgMpa5ix7VjaZGziP7RWDD3bkmVzFoUNDEJdUyyYkINBfKTsLhKmJMP1JMH9NHe7ISsObKf8x2GZP23gsH3APdnZIACSkQ//i4f4Y2CXa7OOeOLHjiW0iInIk9lddw1VjGmfgZ0Qa8SKv1FLd+hd9t2YXNupvKBWwOIHjaKYmSWLCgxDfJgxbs8/LPp650uGm+lEarQ4D39hmsJ3xsSxdIJf72utTKoDlE3tjZM/WMvd0MK0WyM8XSpw8+SRw4YLp7R57TMi4tXOn4f1KpVAaZfx4YOxYICDA4GF392m5GIKIiJyJ/VXn8+bxDODZnxFHZX6yli3oqeFdsCQ1x/aGmuHqcYsUTSrzljm1tUIm3nnzGj8WFiZk5zp7Fhg4EAgKcn37PJTPfh6IiMijuaOv6m/rjmVlZejVq1f9z0FXOhJlZWUGjY+JiUF8fDy2b99u03m++uorfP/99wAApVKJu+66y+R2MTExWL9+vU3nICL3MlcfOTk+BismJzaa0FDLnNAwdXxzA+fC0iqs3JFn8jg6CAPrIH8lXhzZDa9tkbaCqWXzIAzo1AIj4tRYnnYcS1KPSdrv/KXGgV7699X5+eOrXjfjq54j8Pie9fjXjs8AAEmnspB0KgtHo9vjkLoLXrxlBmr8VeZPZGF+xtLrNH11hlvSEXtim4iIyDu5akxDrqcflDKhb1ssSc2RlLFKB6CgtAr/3ZaDpdsaT6KIEyA3XXsVth39x642KhWATme6TWJg1MxhXTBzWBeDAJsL5TWYsSbDpnPqAFwwsQjBVD9qa3Yhquq0Jo8jdh9fGhNnMdhHfO3l0uqAx9fsx/tKhWv6dbW1wPbtwJYtgFotZNPq1Qv4/vvGAVn6unYFevcGrr9eCOAKDgY6dQJUFvreV3hCn9bcOIyIiIi8A8czzmPquqzc7TRaHRZsyjbZ3xevM3+Snm9L86zytMCtmHBhoYBU/WKjEBMeZLUqh5xjegSVCnjxReFWVwe8/TawcSNw4oQwJlEqgeHDgebNgUuXgAceAJYsASIi3N1yt3LE7yMREZE3sDl4q2XLligrKzP4GQD++usv9O3b12Dby5cvo7jYsLSXVNXVDat8c3JykJNj+sJv+/btbTo+EXm25PgYSWVd5LA2cLZEB6CwrBrl1XWSzmU8MF33+0nJ7WzZvPHqGlP3QaHAewPuxnsD7kb7C2fxwJ+bcPfBrbi26ASuLTqBG/P+wOe9R2F175EoCQlvtPtPhwuhVCgava5SLjAs2JSNEXFql63Q98Q2ERGR93LVmIZcy1z5awCSs6cuMxG4JVIA2P6X7YFbYg9l6g2x+GBHXqOgMlOBUWKAjZjNytFzMcb9qJ+yCvD4mv1mtw8PUeGNO3qYDS4y9R7Ywin9uvx8IDNTuC1YYH67M2eEQKzffweuvRY4cEBY/S5m0rr5ZptXw7NPS0RERI7A8YzzmLwGK3O7fXklFvvDOgAXK6VXd/Bm1hZ9GPNTKvDSmDhMX50habzklfz9geefF25arRDAlZsLtGkjjEUA4NNPhRsA3HcfsHQpEBnppga7jyN+H4mIiLyB0tYdO3XqhLNnz9b/3L9/f+h0OqxYscJgu23btuH48eNo08a2utMPPPAAdDqd1Vt+fr6tT4WIPJy4InxcQhv0i43CvrwSbMg8g925xdDYsIzI2sBZik/STWfnMjahb1v8cPAsducWY09useTzmluNJK46MjcsPRHZGguGP4YBj3+KXe16oigkHFeVX8TTO79Axn/vRf7i0Rh51DB7wGe7T2Diqj3o+9pWbDnY8L0u5QJDQWkV9uWVSHpOjuCJbSIiIu/lqjENuY6Yzci4v1BaUYvSilqMT5T2HlrqYepg30p2dXgQVkxOxNyRcVgxORHq8CCTj5sKjHJEP9Yc/axjM9eaD9wCgGCVH0bEqU0+Zu49EI1PvFpym2zu11VXCyvY77sPCAkB7rlHyKR1xx3A3LnA7bebD9waOhR47TXgX/8Cli0DLl8WAr10OqCyEvjsM6EEoh1lTNinJSIiIkfgeMZ5rF2DVcB6NimpWYAiglWWCiN4tWaB/njfxoyyYlUOOeMlr6VUArGxQtatkyeBn39uvM1nnwFRUcDEiaYf92GO+H0kIiLyBjZn3kpOTsaOHTvw+++/o2/fvpg0aRJeeukl/O9//8OxY8cwYMAAnDt3Dl999RUUCgWmTJniyHYTURNkagV/jMwSioBj0ueWVlnPvNUs0N+gTExIgJ/k45tbOaS/6siSsqBmmDTxdfhr6nDrX+mY+vt36Fl4HADw3oY3gA3ArNHPYEPcjYBCOE9JeS0eX7Mfj52+iLkj4zwyHbEntomIiLwXxzS+RUo2o/TcYkQE++NipbQsqo7SIjQA80Z1gzo82CDbqaUss/qlH8X7XdHHMVUu0pgYWGRccs/SewAI78HO4/9AHRaEwjIH9Otqa4Hz54FTp4CtW4Vyh+vWNd7uq6+E/5eWAjNnAseOAXFxQlBW//5CNq1hwySVO3QE9mmJiIjIETiecR5HZH6SmgXowYGxWJp6zOa2erKF47rbFWTljKocHk+pBEaMEBaPaDTAf/4DPP10w+Pr1gGtWgmZgf/4Q1igctNNQHS0+9rsZE0iExsRERHsCN66++67cfz4cZSUCCtBo6Oj8eWXX2LChAnYtWsXdu3aVb/t+PHjMW/ePPtbS0RNlriC33giqLC0CtNXZ8habeOq9LmXjUorVtRoJO03PrGNxeeSHB+DRwfHYuUO69m/mjcPxqa4Ifih22A8tvcbPP/rp/WPLfvhHTy+Zz0+uu42bOh+I6r9AwAAK3fkodfVkR6ZjtgT20RERN6LYxrfIjWbUbNAm4fBNnvt9niz/Tsxy6w+c4sWJvRt69R2ymEqsEjKe1BYVo3Zw7tiicQJqpbNg4Sgq2XLhDIhFy8KExlRUcClS8IK9bvvBl591fxBHnlEyJbVvTvQsSPw7LOSzu0s7NMSERGRI3A841xi5ifjfrla4mJiMVtQYWmVycUNiivHmjmsMwBI7h97E3V4sN3HMDVeajL8/IDZs4WbViuUdF+/HpgwAbj/fmHxirhQBRDGRcuXA1dd5b42O4m9v49ERETeQKHT6ewo+NBYaWkpfvzxR+Tn5yM4OBg33HADEhMTHXkKu5WVlSE8PBylpaUICwtzd3OIyAqNVodBi9PMTgSJA92dc4ZJWl0hHs/cwNndltzdC7dbKCdj7fUAhHTb796biKSOLbA1u9BgUDMwPxNzf/kEHS6cRbOayvp9lg6ciM97j0JxaARahAZg99ybMOSt7VYvMIivu6nsEI5e7WLtvZP7WfA2rniNicgzsL/qXhzTeBapf/82ZJ7BrHWZrm+gBUoFsHxiIkb2lH4h2dyiBXGFcUSICqUVtbL7sRHBKkABm/Y1Ze3UpEaTKFLfg2UTEqBSKjFzbYZBCcqQmkp0LTqJiMpL0Cj98PZP/0Gr0n8sHywsDFi7Vpi06N4dqKsDkpKAG24A/F0fqCdFU+/TEhFR09CU+quexhvGM4D3fEbsuR4n9u0B09mCVkxOxIg4Nd75+Sje++VvxzbcjdifdTKdTsi6tX498NZbprf58ktg1CggNNS1bXMyXh8nIiJXcUdf1eFXMsPDwzFhwgRHH5aImjCpWRRMlW4xRUqa3UcHx2L9n6dRUl5rT9NtYm1FkrXXAwAuVtZCqVDAT6kwSC/9Y1YBPgMw+oFlCKu6jHsO/IwXf/kYAPBU+lpM3/M1drXvia/jh+PPE4mS0xE7qqSlNU05RbKrXmMiIuKYxpPI+fsXHRro6uZZtXxib1mBW1JKP4qM+0LWvDspEZeqa032o+SKCRcukhuTmikqBrXo9+2n+PuNBSYfr/bzx0sjppsP3GrVCpg/Hxg9GmjbVigtMnKk5Pa7W1Pu0xIREZHzcTzjWPZkfrKWLQiA1UW6zhTor0B1nX1LO9ifdQOFAujbV7i98QawahUwbZrhNvfcAwQHA1lZwMGDwPDhQLNm7mmvAzXpTGxEROTzlO5uABGRNaZKstizHdAwcFaHG04wqcODsGJyIuaOjMP80d1ltdMRzE2E6bPl9RAHNbfqTXKWBTXDqv534JpnvsUTY55DZkxXBGpqMfTvP/HuxsUY0DkayR+/hRWTEsy+TsnxMfUryIwvMoglLVOyCiS1Vypr750vBjK5+jUmIiLyBHL+/qVkFeCZ9QcsHk8BICpU5YymNhITHoT3JydiZM/WsvaTsmjhYkUtnhretVFfyBzFlfYkdWphth8ld0rF3ESMWBpGfCS6/AImZf6Ip3Z+gdm/fYEhf/+J/MWj0a93LLDAdOAWAOS07ozb7h0hTEQ89RTw88/Q1NRi9/EibNh/GrvTD0Mz/XGgfXshcMsLNcU+LREREVFTlBwfg51zhmHt1CQsm5CAtVOTsHPOMAAwOd5xldAAP4QE2J7fISJYhfcm9Tbbnx0Rp8bu3GJsyDyD3bnF0Gg9sQaGD1AqgcceE7JxabVCINeYMUK5eLVaKDt/++1CKUWFArjtNqCA15KJiIg8kWfWECAi0iN1Bb/U7UT6GalMpdlVh8k7niNIWZFkz+vRLzYKUaEqg4xi1f4B2BQ3BJu6DUbimaP49ovnGnZYsgTJS5fi5vdX4vext6KwVmHwOknJDrFgUzZGxKkdutLK2nvnS9z1GhMREbmTnL9/W7MLTZYZ1Cf+hXx1XDwWbj7i1PLZQSolfn1uKAL8lbJLOkgN0u8QHYKdc4bVHzu/qBxLUnMkrXrX70et+i0XaUf/kfxaCGUgezcOLLp8Gfj6a/g98QR2X75sdv+nRz1t9rGKLtfi4Mznobt1JPp1ir7S3jEArmRge/tXn8tA2pT6tERERERNmXG2IEvjHVcZem1L/HDQ9iCeqjoNbomPwS3xMY36s1uzCxtlFPOF/rvHUyiARx4RbjodcP48kJkJdO4MHD8ubLNhg3ADhEzGK1cCreUtOiIiIiLnkBS85efnBwC49tprcfjwYYP7pFIoFKirq5PZPCKihhX85ibZFBBW9Gi1OmzIPCNr0sNSmt1+sVGICFHhYoXzSycqALw7ycREmJl2SXk9TGXw8lMq8Oq4eDy+Zr+JHRXIuLobOsz5AaOLjmD5R1eCuHQ6KB97FP2jo4EuXYDvvhNm7uD4kpZyNJUUye58jYmIfAnHNN5F6t+/PbnFkiY9IkNUuK13G0SGBmL+qDjMWGN/6UBzqmq1WPFLLq5RN5Nd8lhOkL5xX+gadXOz5ViMz+enVOBCeQ3SjpopS2jGh0NbYdj7rwKpqUBAANCpE3DffcD48Vb3/b7vKNzxyBhgVjIQHQ0kJAiTC1eEAEgysZ+Ygc34vSoorcK01RmYPbwrZg7r7LUBT02lT0tERET24XjGeeQuuHAEa+MdV0g7et6u/atqtfXXI8X+rEarw/K0HCxJzWm0vZhBmVlmXUShEMrN33ILcOwY8NtvwJAhhtv88APQpg0wbhzw6KNeVYqeiIjIF0kK3tLphMukWq220X1Syd2eiEjkp1TgpTFxmL668SSb+HNlrQb3frS3/n5vW8kz66YuBmV1LF008FMqMH9UN5MBWKayKxgb2bM1Hjt9ESt35Jl8XAFg9FP3Ah8+C5SWAh99BCxbBpw8CRQVAe3aAffeC8yejfMayyUeRXJKWtrKHRdaXMEZZUOJiJoijmm8i9S/a7v/LpI06VFSUYuP0/PxcXo+YsKD8OjgWGw8UGCwryOD9t/7JQfVdY0/L9YmLOwJ0peTxUmj1WHehiyz7VdpatHtfB6e+/Uz3HAis+GBxUYbHj4M3HWXyWPo+vbF0Udn41ifG9AyLBhjbOibSclIsCT1GNbuO4GXx3b3mr4/ERERkVwczzhHSlaB7AUXjuAJ1/EqajR2H0P/eaRkFeDljdkoLDP93KRUEPDV67tup1AAgwcL2bh0OmD1amERjmjDBqBnT2DnTiArCxg7Frj5ZmEegIiIiFxGUvCW/oDA0n1ERM6SHB+DFZMTGw2mI0JUuFBR22iizRErefbllbgk6xYAPDakU/2/rV00SMkqwMLNR0wex1x2BWNzR8ah19WRmLchCyXlNfX3twgNwLiE1ggPDoBGq4NfeDjw9NPAk08CCxYAH38MnD0LfPIJ8MknGAegpM8YLBz2CLRK86v95Ja0lMtdF1pcwVllQ4mImhqOabyL9L9r8i/kF5ZW4YMdeXh3Um9EhgbWTwxotTqDxQD2MBW4BVifsLC2aAGwHKQvNYvTvrwSlJTXoN2FAjyx60vclZVa/9ip8FZ4+4bJWPbDO1aPg//+V5gEKCgQVnXrZdJSAOh25WYrqRkJCsuquYqfiIiIfBrHM45nLsOrKzJE5RdVOOW4rlZ0qRoarU5SKXvAcgUBU9d3o0IDcFtCa4yIUzOQy1EUCmDKFOGm0wGHDgHr1wMTJwpZuk6dAjZtath+2DBhcXeHDm5rMhERUVOh0DXB5RZlZWUIDw9HaWkpwsLC3N0cIpJBf/VNdLNAPPNVJgrLqk1uK2Ym2DlnmE0Duw2ZZzBrXaZ9DZZo/qhuePiGjmYvGoitf3RwLD7YkWd2IPzepESM7Cn9ooL4eqZmF+K7zDMoKW8IVjMb/LR7N7BkiTCo07M64VYsHPYIqlWBBu225z2Qwtpr5u2TeBqtDoMWp1nNwOHM15iIXI/9VbLG1z8jUv/+vX1XL9z7ofyAK1N/PzVaHfq+ttWgP+RMa6cmmQ20cnhg+qVLQG2tsKL6oYesbj7v5sfx6N5v0K70XMOdQ4YAL78M3Hij/PPbSE5/nH0iIiIiz+Lr/VWynzs/I+J4w9xCAWf2Lc1dyzQWEazCvUnt8O72XIee39HUYUGoqtPIWgS9bEICxiW0qf9ZymviKwt1PZZOJ2RWXr8eeOUV09t88olQYjEy0rVtIyIicgN39FWVLjkLEZGDiNkExiW0gVKhMBu4BRiu5LFGo9Vhd24xvtt/Bh/99je+yziNokvmj+1oJ0oqLJaF0V25rfrNfOCWAsDCzdlIzynChswz2J1bDI3W8mUAP6UCpZU1+Dg9v9FEpbjKLCWrwHCnAQOAr74CfvnF4O7JmT9i14oHMfu31Wh5qVhSdgh7WXvNACGzhbXXwZOJGTiAxrlFXPEaExGR/XQ6HXbu3InnnnsOSUlJiIiIQEBAAFq3bo0777wT27dvd3cTPY7Uv39JHVtAHSY/+6SpfqKfUoHb9SYQnM24VIrYH92QeQbhwQH49bmhWDs1CcsmJGDt1CTsnDPM+kRFdrawYlqhMLyFhQHffANMm2Z595axuGfiImzsNhiDp32ExFd+gkajFS7k//KLSwO3AHmZReX0/YmIiIioabOW4dVZfUspZcFFDw7sgOs7RTv0/M5QWFYlu3qFfj9f6mtSYO5aNTmGQgHExwvVN3Q64fq/sQcfFDIunz4NfP45UMKxFxERkSNJKptIROSJjCe8bN3OVGYDkVIBuCLup31UiKSyMJbaIl5U0C/3Y21FkrXgJ0tlfTBkiDCQO30a5+99EJqDhxBz8Rxm7VqHWbvWYXPizYh44TkMdOJqKDkXWqSUEPJU5sqGSi2TSURE7pWWlobhw4cDAJRKJTp37ozQ0FDk5OTg22+/xbfffot58+Zh4cKFbm6pZ5H6929iv3ZYknrMpnMY9xOHx6nxUXq+1f1CA/1QXq2x6Zwi/QkLS5m2xpkKKDtzBjhxAmjZEvjgA+Ctt6yf8PRp4L77gA0boIuIwG5FJN7qdzf2t7nW7C6vjot3a4B4v9goxIQHmc3AZorUMQIRERERNV2Ouq4sl9Sy4ACwJDUHkSEqBPorUV1nvkSmcbl1TxcZokK/2Kj6n/fkFkt+TQAL16odTL8CSMvmQU2vbONddwnX/gFhIdAPPwB//AH4+QHHjwtjS39/oK4OGDgQ+PRToHNntzaZiEhfk/8eJ68kKXirY8eOdp9IoVAgN9ez07sSkXeRuhLf0nbWUjK7InBLqQCmDOiAH52wakjMnmWudKBDgp+uvhotf90KTU0t/vpgNTo+/yRU5ZcxKuNnYPzPwPXXA717A8uWCYM7B3LXhRZ3SI6PwYg4NTubREQ2cueYRqfToXPnznj66acxYcIERF4pMVBTU4OXX34ZixYtwquvvor+/ftj9OjRdrfTl0j5+9chOsTm4xv3E60FC4nlU+aP6oYZa/bbPEkSEx5UP2Fhrj9aWFqFt5ZtQO/c79Fq+0+mD/Tii8DGjZZPtngx8MADQqAXAKxaBQWAsqwCZK7OMLvbY4NjMbJna0nPx1nEDGzTLbTTmJxsXURERETegnM0juWI68q2kHuN8oKEjFahgX64bOfCElfSH/ekZBXgma8OyNrXFQt1rZWxb3IBAXfeKdwAoLQU2L0b6NEDOHRIuC89HejSRfh3UhKwejXQqZN72kpEBOvf40SeSlLwVn5+vs0nUCgU0Ol0UCh8uONCRG4hdXJNfyWPPjlpquVk4IoIVqG0slbyZN7UG2IR4K90ykSTtexZjgx+8gtQ4ZqZDwIzHxQGcEuXCqtydu0Sbu++KwRxbd0KtHDM4NpdF1rcRSwbSkRE8rlzTNOvXz8cOXIE/v6Gw6+AgAC8/vrryMzMxI8//ohVq1Y16eAtcxfArf39s+XvvLl+on6wkPEKdv1yjcnxMVihVJjN3mqNWPJY7I92O/c3bvz7D5QFNcOp8FYYe+RX3JmVZv1AKhUwZw6QkQG0bw8MHw4kJEhqg7nMZi1CA7BwXDxG9vSMi1liO1/emI3CMvOvtfie9mkfid25xU1nIoWIiIiaBM7ROJa915Vt5YxrlJerNYgKDcCF8hqvyMB1saIW+/JKUFpZg2kyFmnoc+ZCXUuLa6avzsCjg2Ox8UBB0w0ICA8HkpOF2759wI03ApWVDY/v2SNk4BoxAnjiCWD0aKEkIxGRi1j7HjeX7ILIE0gK3srLyzN5/5dffon58+ejW7duePzxx9GtWze0atUK58+fx5EjR/Dee+/hyJEjWLhwIe6++26HNpyISOrkmrnJGjlpqrU6YEpSO3y+56TVbR8cGIulqcespqxWAHjkhg6YOzIOgG1lYaSwtCLJacFPAwYItxMnhMFaXZ1w//79QHS0kCVixgwgxr4OkrsutBARkfdx55gmLCzM4uMjRozAjz/+iGPHbCv95wvsWRFnSx9KB2D+KNP9RKnlGvWzghWWVeGVTVm4UFFn8byxF8/iA+1hdOkhBOn5AdhttM2ma29ASK35Pqr27nugfHOxEKwlevBBi+c1x1sye4rtXJ6WgyWpOY0eF1s7tlcMhry1velOpBAREZHP4hyNY9l7XdlWzrr+e1tCa3wiofy7pygsrcTilL9s3t9ZC3UtLfYW71u5o/HvYpMNCOjXD6ioEP69eTMwYQJw+bLw89atwM03C/fn5gKjRgk/x8W5r71E5POsfY9bSnZB5AkUOp3Opj5iamoqbr31VsyaNQtvv/222e2ee+45LF26FCkpKbjppptsbqgjlZWVITw8HKWlpVYnUojI89k62ffwp/uw7eg/ks/zzl298PbPf1kNFNo5Zxi2Zhc2alN4kD9qNFpU1mrNtlOMCAcsB37ZYtmEBIxLaGNwn0arw6DFaZKek10dmbNngUGDAP0LTSoVEBkJbNkC9Olj86HNvWZia5vcoJmIfAL7q67hKWOaRYsW4YUXXkDv3r2RkSFt5bEvfUbMrYiz9rdcP1NXflG5yaAeS6z1F40zgfVpH4k/T1wwG+SUklVQv3K8/8lDmLnrS7QsL8FfV3XAkZax6FGQg5HHdllsU0lwGN4dcDd+vzoOkZWXcPSq9jjXPFpWu32dub7/2F4x+GBHnuzPERERETmHL/VXPZWnjGds5QmfEXeUVXLG9d+1U5OQdvQcVv1mOsjP00hdJG3MYdeqzdidW4yJq/bYtK+z2+ZVjh8H1q8H7rlHCPAqLjZ8PCEB+PxzID7eLc0jIt8l9Xt87dQkVrkhq9zRV7U5eGvYsGE4dOgQCgsL4efnZ3a7uro6qNVq9OrVC9u2bbO5oY7kCYMCIm/miTXdLbVJ/7HoZoGADth6pBCf7joh6xzjE9tgeFwryYFC4nkLy6qQnvMPvs44Y/bYs4d3wcxhXeCnVJi8aOAI5jojLg1+0miADRuA//s/ID294f6hQ4GnnwZGjgSUStmHZf1qIvI17K+6hieMaXQ6Hfr06YP9+/dj5syZ+O9//ytpP1/5jIiB5Ob6PcYXwMX+1dbsQnyfeRYl5TX120aEqFBTp0VFjUbSueX0dcz1NV4d1Ao3ZacDS5YAf5lfOZ7dugtChg5Ghy8+avTY+vjheHfAXciPamNiT/va7atMBdYZZ9zSx4kUIiIi1/OV/qon84TxjD085TPijmvdjrz+GxLghzfv6IEnv8yE1hvqJtpBAdPX3x313m3IPINZ6zLtaiMDAowcPw58/TUwd67px997D7jjDqBVK9e2i4h8ktTvcVPJLoiMeVXwVkREBK655hrs3bvX6rb9+/fHX3/9hYsXL9pyKofzlEEBkTfytiAZRw6EI4JV+HP+CJNZtcy9BilZBXh542EUllVbPb46LAgvjxWOseXgWTz3zUGUV1uffIwMUeFiRa3FlVpKBXB04a0I8DcdGLXl4FnM25CFkvJaq8/JYX78EXjmGeDYMSGoS9SjB7BtG3DVVbIO54lBhUREtmJ/1TU8YUzzwQcf4LHHHkNAQACys7PRqVMnk9tVV1ejurqhP1FWVoa2bdt6/WdEzoq40soai/06ayWrze1jLagn5dBZfPnKB5iVvhYJBUJpy7KAEPzetjsKmkdjcuaPFs9R1qcfmj0zG8qbRwBBQUBoaP1j1oLX7Gm3Lby1P8WVlURERJ6HYxrn84TxjD084TPizv5v/cLf0kos3HwEF8prHF6JwZeowwLx8tjuBhUsHD1PYU/mLREDAixITRVKKxpn4vL3B06eBL77TgjkUqvd0z4i8nq8PkSO5I6+qr+tO+p0OuTl5UGr1UJpIUuKRqNBXl4ebIwRIyIPYq6kjafWdDfXXltdrKzFvrwSJMfHYESc2urAXu75C8uqMG11BqbeECspxbV4tgeu72C1TJBWB/x54oLZzFsLNx8xCNyKCg3A/FFODsi79VbhduoU8N//Am+9Jdx/6BDQsiXQuTPw669A69aSDuenVLCzRUREsrh7TJORkYFZs2YBAF599VWzgVuAUFpxwYIFDj2/Jzh/SVrQ0tbsQnySnm+xXyU+plQAOp20QC4dgILSKuzLK8GAjlHAhQtCueclS4CPPwYAJF+56QurqcB1p7PxzuApjQ86fTrw/PNAu3bCthbO76dU4KUxcfXlFqUyaLfE/o+1iSlvW6ShT+rnSOp2RERERN7A3eMZb+fu/q/+tczgAD9MX51h04KUpmD28K6YOaxz/fjFWfMU/WKjEBMehMLSKpvfh5bNg2zcswkYPhwoKhL+nZYG/PADsHOnsMjp99+BGTOAmTOFAf211wJffAEkJrq3zUTkVax9j4uLIfvFRrm6aUSSyK9NdUXfvn1RXFyMf//73xa3W7BgAYqKitC3b19bT0VEHkCj1WHBpmyTf+zE+xZsyobGQ3IzW2qvPcQJH3FwPS6hDQZ0amEw8aXR6pB+vAjPf3PIpvNLCdwChA7GismJ6BAdan1jmJ6sEge6xtkeLpTXYMaaDKRkFUg6tl3atgXefFOYKO3cueH+48eBDh2A++4TBm9EREQO5s4xTV5eHkaPHo2qqipMmjQJzz77rMXt586di9LS0vrbqVOnHNYWd5J6YfurP05L7ldprwRumVsvr9BpkfxXOn78eCbyF49G/uLRGNA5Wijd3K0bkJJSH7hlzkfXjcPEiYvwWe9R6DDnB+w+XnQlYkwnlH24ErglRXJ8DGYP7yp5e31Sg5FSsgowaHEaJq7ag1nrMjFx1R4MWpxW39cz1ycUJz9c0ie8QqPVYXduMTZknsHu3GJJ4wupnyNOpBAREZEv4RyN7Typ/wsIY4IVkxPRKizQpef1dKGBfnh/ciJmDe9Sf/3dmfMU4uIawPx40hwFhOA/BgRINGwY8H//B+zbB/z8M6BSAf37C2NqADh6FOjTB1AogK5dgaws97aXiLyCpe9x8eeXxsR5RZZ5appszrw1f/58/PLLL1i0aBG2bduGadOmoVu3brjqqqvwzz//4OjRo3j//fexd+9eKJVKqwMIIvJs+/JKLJZzsWX1vz2sZQ6w1l5bWZvwcWSZRmveHt8LA7tEY3dusfWN0bjt1ga6CggD3RFxatd0ZGJigJwcoKYGeO45YP9+4LffgM8/F259+gAvvQSMGiVMrhIREdnJXWOawsJCjBgxAgUFBRg1ahQ+/fRTKBSW/9YGBgYiMND3LuT3i42COiwIhWWW+06Xq+tkHfehgR2QcvAsAk7kIeZSESpVQZi/bRX6nD1qeceiIuHC8JAhwK+/orKlGqvbJ+GDfnfin2aRZnf78crkjnGfVGoZlpnDOmPtvhOSSm3rkxKMZG1V+ruTemPh5iMe0Se0NfsBV1YSERFRU8Q5Gtt43DVRA5xM1lderQFgOK4qulTt1HkKMZDO1LhkbK8YfLAjr/48IgYE2CkoqKFKx8GDwvX/06cbHs/JAXr0AAYNAp59Vnjc3+bpbSLycea+x9Vekl2emjab/7oNGTIEq1evxqOPPoq9e/di3759jbbR6XQIDQ3FypUrMXjwYLsaSkTu5UmlSKRM6jijHS1CAyxO+Di6TKM1aUfPYWCXaJsnqzwtIK9eQACwbJnw7z/+AF59FdiwAfjzT2DsWKBLF6Hu/ddfC+UViYiIbOSOMU1JSQlGjBiB3NxcDBkyBOvXr4dKpbL7uN7KT6nAxH7tsCT1mM3HUGo1GHV0J57euRqxFxpWyOtPTT09arbFwC1dp05QvPMONDffgn1ny3F+aR+0bB4ErU6H1z7ca7UNn+0+gc92nzDok8oJRPJTKvDy2O6YfqV8orX+pNRgJCkTU/M2ZBmUzza1nSv6hPaUPhFXVpoqNcOJFCIiIvJVnKOxjSdeE3X1dWVv8vRXmQgLCrC64MeYlPkB48U2fdpH4s8TF1Bdp8Xb43sBCqDocrXBQpze7SIZEOBMPXsCYqbxXbuASZOAEyeEn3fuFKp03HuvENw1YgSQnAwkJbmvvUTkkZLjYzAiTi1pQSWRJ7ErNHnChAkYPHgwVqxYgZ9//hnHjh3D5cuX0axZM3Tt2hU333wzpk2bhjZt2jiqvUTkJp5QikSj1WF52nGTk3vGkzrOaMfCcfFm/7A7q0yjJV/+cQovjIozmKwyx9RklScF5Jl13XXA998LA7bly4EPPhBW2uTkAK1aCdvs3Qv06+e+NhIRkVdz5Zjm8uXLGDlyJLKystC3b19s2rQJwcHBDngW3q1DdIik7fw1dbj+xAF0KjkNlaYOma2vwbKNbyHmsuUspP+064SzYVfhP9dPQOeik0jvkIDN1w5CaXAYANT3H1OyCrBgabrhRfiwQESEqFBaUSupnyf2SR8dHIsPduTJCkQytzLQmJxgJCkTU5YCt/Q5s0/oiOwHXFlJRERETRHnaOTztGui7riubI+IEBXqNDqD7Mgx4UFoGxmMffkXHH6+ihotKmrkvxe2VNBQKgD9aovi4hv9ID4GBLjQ9dcD+fnCv0+fBr75RsjONXs2UF4uBHctWCA83q4dsHatsA8REYSFfi5NTEHkAHbnlWzdujUWLlyIhQsXOqI9ROSh3F2KJCWrAC9vPGy2lIzxpI619sr12OBYjOxpfsLHWWUaLblcrcGe3GIM7BKN5PgYPDo4Fqt+yzMYYCoVwNQbYk1OVjk7IE9qmSBJ2rYFFi8G5s8HJkwANm9ueKx/f2G1zdNPA4mJth2fiIiaNFeMaaqrqzFu3Djs3bsX3bt3R0pKCpo3b+6083kT476GUqvBgJOH8NyOz5BQYD4j11OjnzEbuKVRKPH6jQ9ibcKtqAwIwqODY7H2QD+zWbDMrXQ/V1Zdf59xRidTxD7pqt8aB27pP24uEMl4IiC/qAJr9500WGUuJxjJkRNOzlyk4ajsB5xIISIioqaIczTyeMIiZX3uuK5sD51Ohzduj8e5S9U4UVKB9lEhmDKgA2auMb+w2NUiQlTQanXQaHUmxwLmxn9aozvMLb5xRkCAQ6+l+6KrrwZmzRL+/ddfQiCX+DMAnDwJDBwo/Pudd4Dx44WALiIiIi/CosBEJIk7S5FITRttPKljrr1yhAb64a07e2Jkz9YWt3NXdqpduUUY2CUaKVkFJrM76HTABzvy0LtdZKMJPmcG5MkpEyRLs2bADz8AtbXAY48Bn3wi3P/FF8JNpQL+8x9g6lTAz8/28xARETmQRqPBhAkTkJaWhk6dOmHr1q2IinJOwLtXqa0Ftm9H/yNHML7gMr6JSUCnopPY8smTCNDWWdx107U3IKdFW0y7bS6q/AOwp10PVKlMT64oAGw8UIBfnxuKP09caHQx3FrWJwAIUikR6O+H0krrWap0EPpglh63FIhkPBEwc1hnmy/iS51wigoNwIXyGrcs0gAcm/2AKyuJiIiIyBJ3L1I2Zu915Yhgf/RpH4ltR/+xum1i23BknCq163yllXWYuS7T4L4Pd+bh+o6e0we/WFGLez/aa/J6tJxMZ1KzANvLadfSfVWbNsCTTwq3P/4QFnYf01v49cwzwNy5QF6ekI1r/HigfXv3tZeIiEgihwRvpaen49dff8WZM2dQWVmJjz/+uP6x/Px81NTUoGvXro44FRG5kTtKkdiSNloc8EotPWPJB5Ovw8Au0Va3c9VKLGNnL1baXGbGWQF55oLtLJUJkk2lAj7+WLj9+SewZAnw5ZfCJPD06cLqmlmzgPvvB5jVhIiIJHDmmOarr77C999/DwBQKpW46667TG4XExOD9evX23QOj6bVArm5QhbNdeuE8gZ6lADmx/XEN2MScDaspcnArcsBwfjP9ROwuvdIVAQ0lJo8rO5s9fRisNSfJy6YDOqRstK9qlaLqlotACBE5YeKWo3V81ojdZLGnmAkqRNT80fFYcYa1y/SEEntSxddqja7ep6IiIioKeMcjXTuXKRsTKPVoeiS6UoTUl2srJMUuAUA13e+yu7gLVMKS6vwzf4zDj+uvUxdj5ab6Ux/8U2/2CjsyytBYVkVSi5XIyo0AOrwYLuyZLnkWrovu+46IRMXAOzfLyz83rYNCAsD0tKAZ58VbgDQsqVwTWLoUPe1l4iIyAK7greOHz+Oe++9F3/88QcAIV2qQqEwGBi8+eabWLlyJX755RfccMMN9rWWiNzO1aVIbEkbrT/5o9/e1OxCfJSeL+kY4kRWksSJsn6xUYgIUeFihfVsDI7UOjLYrjIzjg7Ik5K54vlvDqF5oApJnVo45nPTpw+wejXw+uvA5MnAoUPA8ePAE08INwDYs0cor2jUVqaiJiIiV4xpqqsbLsbn5OQgJyfH5HbtvX0laHU1sHUrsH49cOIEcOONwMsvA6WlgJWJovDr+9X3SW547EOcDbsKGqVjs2iaC5aSu9LdEYFbgPSAJXv6LFInppLjY7BC6dpFGvqkljxfuPkIPtyZxxXoRERERFdwjsY25q6Jhoeo8OD1sRgRp3Z6G0xlW7KHUiFkADbXn44JD8KATi2wfPtxh5xPn7iAOCTAD+U1jhkvSfXiyG54d/txXDSRJdnUwmZbM51tzS7E019lmny/bM2SZeuibDKjd2/hNn8+UFcnXJ+48Ubgl1+Ex8+fB4YNE/7dogXw449A377uai0REVEjSlt3PHfuHIYMGYLff/8d1113HV5++WV07tx41fMDDzwAnU6Hb775xq6GEpHnEFf/j0togwGOCsAxo7C0UvK2CggDJeOU1mJ754/pjhFxLSUdB3DdCit7XN8x2u4yM8nxMdg5ZxjWTk3CsgkJWDs1CTvnDLNpQkxKsN3FSiFt9aDFaUjJKpB9DrPatQN27ABOnQKWLzd8LCkJUCiENMoQLo4MWpyGiav2YNa6TExctcfx7SEiIo/nqjGNuL+1W35+vp3PyIW0WuCbbwC1Wvgbq1AAQUHAmDHAZ58Bv/4KLF0qzB5ERgKdOjXsGxYGPPywcKG0ulrYZtWq+j7JA/cOdXjgFmA+WMrRGVQVECZOLD1uqs9qiiP6LOLElDrc8Hmqw4MMVnE7sk8olxhkBjT0xc0RV6Cz30ZERERNHedo7CP2f2cP74KIYBUAodzektRjTr9OKGZbclTgFgBodQ0BP6ZU1mpQWlGDmPAgq31uW+gAlNdocF37CCcc3bSY8CDExYSZDNzSb5e4sBmwffz3cXq+2ferwMYxipxF2SSTvz9w663A9u1CZq6ePQ0fLy4G+vUTFoZ//z1Q5bjfRSIiIlvZHLz1+uuvo6CgADNmzMCePXswf/58tGrVqtF2/fr1Q/PmzbFr1y67GkpETVNJeY2s7S0FXG05WICt2eetHqNVWKDsdMT78kpcnnUrIkTIXiV1wGlpO0cF5MlZuWTroNaqZs2AGTOEEoqPPGL4WN++KOmThB9eXIp/Si4bPMSJQCKipodjGjsoFMBjjwHnzpnfZu5cYbUrAOTkXFkGrhMycX34IZCcDAQEGOzip1TggYGxDp9QsBQsdaG8xmKwlRziYabeEAsFGk+cyFkkYG5Cx5Y+i9TALFcu0jDVRlNBZsbEVekLNmVDozWdV0Cj1WF3bjE2ZJ7B7txis9sREREReTOOZ+y3NbsQS1NzGgX/OPM6oaVsS/Z6aGAHhIeoTD5WWlGLGWv2Y2wv5y7OiGsdjlu6W19A7QgvjYlDUbm0spPidWsx66+ckY6UbXWwPEax1CZHbUdmdO0KHDggXI84eBBISBDuVyqBjAxhUdm4cUBiIjB7NpCS4tbmEhFR02Vz8NYPP/yA0NBQvP3221AoLHddOnbsiFOnTtl6KiJqwqKaBUraLiJYZTHgSqPVYd6GLEnHeufuBNkZBtwxgHrjjh4AgDqN1uoAUqEA+rSPBODcySy5K5dsGdRK5u8PrFolDMo+/BC4+27o/P0RlbEXyze+ieNv34b7/9yEkJrK+rbAme0hIiKPwzGNHRQKYPx4IdtWdDQwfTqQliYET4tBWnPmACpVw/YSycnCJNX8UXHYl1fSqP+TklWAGWsyYOuffnGFvkjMZjV3ZBxWTE5EqzDDvqzURQJSSlEv2JSNmjqt5H6dOwOzrBH7p9V1Wrx9Vy+8OPJai9tbWoHODKtERETUVHA8Yx+pfW5HXyeUUrnAVjdd2wpB/qan/cRnsfFAAd6dlIgYK4smbPXZ7hP46bD1BdT2mj28K5LjY2QvbBbHm3LeVanbFpRWYcnWY5KvuTtiUTbJ1KMHsH+/cM2isBBYuRIYMkSo6LF/v5BB/NZbhWsYzZoBmze7u8VERNSE+Nu645kzZxAXF4fAQOuBFYGBgbhw4YKtpyKiJkwdJm1g8sD1HSxOgu3LK5GcxavosrTVOvpcOYBShwXi5bHdAQCDFqdJGuzrdMCKX47jGnVzLNiUbbBPTHgQXhoT55CSOOLKJTkXIMSJtwGdWth9frMefhh4+GFkpGdhz7OvYMae9QCABakr8cxvq1EWGIonxzyHjKu7uaY9RETkETimsdP77ws3JxCzMBn3W+RSKoCHB8Vi4ebG/Z/5o+KwcLN9K97fnZQIpVKB85eq0LK5kN3LMCjKXO4ty6SWz0halIqS8oYsAY7s17lKSlZBo/fZOCjOHOMFFGK2MuP3VMycIDe7LhEREZEn43jGPnJK1jnqOqFGq0P68SKHHMtYTHgQoAAKy8xf2xafU2RoAHbOGYblaTlYkprjlPY4kzosEDOHdYZGq4NWq0NEsMpi6UTjTMzJ8TGYPbyLU5778u3HsXz7cUljM/FaemFplclxqQLCAiFzWaTJTlddBTz6qPDvU6eE8olTpzY8Xl4OjB4t/HvhQuCuu4BrrnF5M4mIqOmwOfNWs2bN8M8//0ja9uTJk2jRgpPgRCRfv9goqMOsX4D48o9TFlezyMmMZUsgljjQcraZQzsj/fmboNUC00yU0bFk5Y6/HVZ6xxz9TBlyuCpz2enQSLw15H50m/015t38OHKj2iCsuhxXl53Ht188h/zFozE5YzNTURMRNREc03g2sdTf7OFdbT7Gw4M64MPf8kz2fx5fI68vpU8BYQIgqVMLk9msxCCiwjLD458rk9bvktoX0Q/cAryvDLS50pCWJl706ffb3ZU5gYiIiMhdOJ6xj6tL1okZYpdvP27T/uMT21h8fGyvGMmLksXntO5378rGJpamf3lsd2zNLsSgxWm496O9VscPl6pq8frmbIOMWB2iQ53aViljM0tZp8WfXxoT51FZk31WdDTwyCPCKvi//gKuv97w8fnzgeuuA06cEAK5jh51TzuJiMin2Ry81bt3b5w9exaHDh2yuN2vv/6KwsJCJCUl2XoqImrC/JQKTOzXzup25sqmiKQGZEWG+NevZJFTXtDWoCW5BnaOxk9ZBZi5NkP2vhU1GpdMZgkrl+RNsroqc5l4nsqAIKzuPRLDH1mB12980GCbV7euwNCp44FvvwU0Gpe0i4iI3INjGu+w7veTsveJCFHhvUm98cPBQov9H1vpAEzo2xZA4z5jTZ3W7iAiW/tG5o7vzLLZtrIUbGWNGDynvwJdTuYEIiIiIl/A8Yx9XFmyztyiBamUCuD1O3riscGxZrf5YEce/v6nXNLxokMDnVq+0VkiQlRYMTkRAGS9nperNfgoPd+gpHp+UYUzmyp57CdmnVYbLQxXhwcxc7C7dO0KpKcLgVw5OcCyZUByMnDnncAPPwD//jfQrZtQWlGlAr77zt0tJiIiH2Fz2cSHH34Y27Ztw0MPPYSNGzciJqZxByI3NxcPPfQQFAoFpuqnmiQin6DR6rAvr8RCmRjHnKNWI21Kx9IqKKnl/HRQYGt2IQDYVF4wIkSFixXSMgXIIaZIvlBejcfX7Hf48R2dBrxLy2ZQKgAp84LGE2/OZJyKWqdQ4oP+d+KD/ndi/KFUvL1lKQAg7I89wmAMACZNEkpCNW/ukjYSEZHrcEzj+WydUCitqEXO+ctOnYxYkpqDT3blA4BB/y8qVNUoI5Y+Kf0ua+UzLDE+vqmyhJ5QXtHW99bcCnRXZ04gIiIicjeOZ+zjqpJ19ixaEGl1wO95Jdh4wHwWJx2Aj9PzpB1Q4Zh+8ZCuV+HXY9KyvzlCoL8Sw65thSFvbbf59SwsrcK01fIXRttC6jX35PgYjIhTO32uhWzQuTPw5JPCTacDfvoJuPVW4Mcfhcfr6oA77hD+rVAAv/4K3HCD+9pLRERezebMWxMmTMD48ePx559/Ii4uDhMmTMDJk8KK6H//+9+444470L17d+Tl5WHy5MlITk52WKOJyP3ENM8TV+3BrHWZBqtWHH0Oqamkiy5VN1rFImYZ+OHg2frsCJaUVtRi2uoMkyUJLaU6FldPOSNwCxAGevNHxWHh5iNOOb6osLTS7qwMKVkFmLEmQ1LgFgDcGi8MTF2RAcJSKupvegxH7JwfsH1bBvDii0DUlQsza9YAV18NPPss8PffTm8jERG5Dsc0ns+eCYVP0vMd1xAzLlbUNur/WQrc0mfpuVnqs0h1/lKV2RX+nlBeUep7GxGsMvjZ3Ap0V2ZOICIiIvIEHM/Yx1Ul6xyV4Wr330VWj3Opqk7asXKLEB0aaHebXBm4BQCFZdVY+MNhu15Pd+QgljL28VMqMKBTC4xLaIMBnVowcMsTKRRCBq4tW4TyiUOHGj6u0wGDBwNxccCGDcDFi8J9REREEil0Otv/ctTV1WH+/PlYunQpqqsbamkrFArodDoEBATgqaeewmuvvQY/Pz+HNNgRysrKEB4ejtLSUoSFhbm7OUReR5wEMv7yEIcTjkjna+4c1uhnETCVZSAiRAXodLhYKW0ga0xccbVzzrD6AZRGq8OgxWlOTzM9e3gXLEnNceo5okIDUFJeU/+z3KwMcl4L48xcrswAISkDRUUFMHMmsGuXUOde33/+AzzxhNPbSURNF/urrsMxjWfbnVuMiav2OP08Crj+Iv78Ud3wwMBYixflTfVZWoQGoFivv2bOF4/0x7PrD1jsl0WEqPDuxEQkuWFyQOp7+8Uj/aFUKKyuQBf7odYyJ+j344mIiMh5mkp/1d28dTwDeM5nxNmZajdknsGsdZl2H2fm0M6SFzlLoQ4LQlWdBqUVtXaNhdwxlnK3YJUSdyZejeZB/ljxq/XFvmunJjmk2gV5qPx8YOpUIDUVCAgAamqEAK9XXgEuXAD69wduvlmo8KHgWJSIyFu4o69qV/CWqKioCFu2bMGhQ4dQWlqKZs2aIS4uDqNGjTKZqtfdPGVQQOSNrAXnOGJSxJ5gKPGMjw6OxQc78kwGmDliMKk/4HLVpGJIgB8qajQ2729LSUe5AXn2vBaODP6TQnLZT61WSIM8bRpw+rThY+vXA7fdBvjbXIWYiMgk9lddj2Maz2QtIMeaiGAVSitNT0aI/db5o7ph4eYjTg/EN0XKpJBxn6VP+0gMeWu71SClt8f3wr0f7ZXUjqhQFV4dF4+RPVvb9kRs4IxgK3EBCGDY53d1P5Pkk9w3JyIir9FU+quewtvGM4BnfUac2Rex99pxff/+rl6490Np/Xupx21qQVdyWXuNwoP9UWplkXgMF5A0LaWlwKZNwPDhQIcOgF5Qbb3//Q+YMoWBXEREHs5rg7e8jScNCog8jbWBqtTBpj2rSRwRDKVQODcj7bIJCRiX0AaA41ZPOYtSATwxrDOyzpRi21H5qazlTJzZ+1pYOpfciyhOuejy+efAffcZ3tehg5CF6557gDZt7Ds+EdEV7K+SNU3pM2IuIEeKp27qgmXbchrtaxzMo99vyC+qwNLUYy6ZyLA1qEhKkFJ1nVZ2v+yxwbGYOzJO1j72cEawlbMzJ5Djecp7xgAyIiLHakr9VbJNU/mMaLQ69Hl1q8VFtaEBfiiv0TQKFtLvFw+7thWSFm0zqJpgL8WV/zS9WULrQgP9oPJTyl4Mbey9SYkY2ZPjkCZJDOSaMsX043PnAnfdBSQkMJCLiMgDuaOvylQhRFRPykVzKfXZ5Wzn6H1Fzh5wtmweZPLfzqa4MoKX8/TCglRYts32lNo6AAWlVdiXV2I1IM/e18L4XOIESmp2Ib7LPIOS8obBsqUJHadNAE2ZItwyM4GVK4XMW/n5wDPPCLennxYCuTp0sP0cREREZCA5PgYrJic2+ttuXILZlLX7TmJUzxjszCnCxcqGfoTaqF/gp1QY9HOuUTfD3G8P4kKFbaW2RcYlqY3pIEyYLNiUjRFxasmBIuZeE/3ntTu3WHZ7V+7IQ6+rI102uSDledhyzBFxagbheAkxgM/4V7mwtArTV2e4LFuapwSQEREReaq8vDykpqZi37592LdvHw4fPgyNRoOFCxdi3rx57m6e1wvwV+Kt8T0bZQQW+8UAMOSt7Q4N3AKuXGNm4JZJ5dUaABrMuqkz/rfrhMF4Uo6C0kpotDqOR5qi8HBg8mThduYM8NhjwObNDY8vWgR8+CGQng58/LEQyNW7NwO5iIiaMGbe8uEVHURymLtobrzqXWpWrC8e6Y+BnaNtaouryhDawlRmKHvL+djaDmvnigxR4YKdK4P06WcbM8dRr8WyCQkI9Fc2mkDRZy4jg9TPskNUVACrVwsDL5FSCQQGAq+9Bsye7ZjzEFGTw/4qWdMUPyPGWXEulFdjxpr9AKTPN0QEq/DgwA6YOayLxYvnKVkFmPPNIZTaeIFe7DP++txQvPDtIXydcdrqPmunJqFfbJTDMo3a2i9rERqAfS8Od+nkAjMeNU3iZ9RSf19u6UxbuHT8QETUhDTF/qove+qpp7Bs2bJG99sTvNVUPiNyKlmYGg9szS402VfxRaEBftDqdKis1TrtHPrX1a1dY1cAiAxVGSwotgUXBZCBs2eBn34SsnK1bw+0bAm88ILhNh98ADzyCAO5iIjcyB19VaXUDf38/Oy6+fszyReRp9JodViwKdvkQEW8b8GmbGi0OvSLjUJMeBCsdRmf+SoTKVkFNrVH6jmczfj84s8vjYkzmDzwUyrqV0C5wrBrr4I63DDDVUx4EN6blIi1U5OwbEICvnikPwL9JX/FSyIlq5b+a2Hu9ZMiv6gC01dnmJ3IARp/NgF5n2WHCAkBHn0U0GiALVuAESMArRaorBSycCkUwoqZGseuiiMiIttwTOPdxOxY4xLaYECnFhjZszVWTE5Eq7BAyccorazF0tQcbM0uNLuNGMhhT+AW0NBnTD1yTtJ+qdmFGLQ4DRNX7cGsdZmYuGoPBi1Os9inNn5NzPVR5fTDistrsC+vRMYe9rP0PMh37csrsdrfF7PyOovLxw9ERER2cOd4Jjo6GqNHj8Yrr7yCH3/8EXfeeacDn5l302h12J1bjA2ZZ7A7t7hRv0FOJQvjfjEAs30VX1Reo3Fq4BYgLA54f3Ii3p+ciMjQAIvb6gC7A7eAhqyyts6XkI9p3Rp48EHg22+BJUuA664DjL9TH31UWCSuUABbt7K2KRFREyF5Zl+n09l102qd2+EiItvJuWgudRLoXFm1zQMSawFACgARISqnBXeNT7wa703q3ShASh0eZLDqWqPVIT2nCG//dBRZZ8ow66YuCA9y/qTugVOl+PW5ofjikf6YObQzZg7thLfH98It8er6wb1SoUBhWbVDzqeAEBzWLzZK0vZi+RtTr997kxItBuYpAKjDArF230lJFyWMJ3TcNgGkVAK33gr8/DPw66+Gj339NdClC/B//yfUuSciIrfhmMb3JMfH4J27EyRvbykYQ+zbPf/NIcmTIwqFkM1Ln36fcV9eieTyGh+l5zfqx9h7kd9cv8ya85eqrE5CeSJvbHNTJmci01k8IYCMiIhIKneOZ+bNm4dNmzZh/vz5SE5ORrNmzRz4zLxXSlaB1QUYUhbEmtvOWl/FW7lyrYZ4qocGdsDaqUnYOWcYkuNjkBwfg/mjurmkDVwUQBaNGCHMIZw7B4wf3/jxm28GOnYENm4UtmEgFxGRz5IVZaBQKHDNNddgypQpuOOOO9hBJ/IRci+ai5NAL2/MRmGZ6X11EAZGCzZlY0ScWvbqefEcxmXz1FdSDAPA9NUZksoHyvV1xmmk5xZh/qg4RIYGNCrfotHqsDwtByt3/I2KGo3Bvs0C/RzcmsaKy2uw4pfjWPf7qfrXZvn2XIP0y46a4DCXbcya5PgYjIhTmyx/o1Safu/Eo0/s1w5LUnNktVN8vp4wAYTBg4UB1MGDQK9ewn0nTwLPPAP8619ATAzw229Ahw7OawMREZnFMY3vKbosL2BdPxhDXM2eklVgsVyzOe9O7I1brgRpmSr5J7XPYa5Pa2+fGmjol+35uxiPfvYHyo36r6bkF5U3Kmfn6aU+TL2Hnt7mps6eiUxH8YjxAxERkQwcz3gOc6WXxQUY4oIOscqEuXLmYqlo/YWzYlnxH300U5Mr45ciQ1W4PaENhsepG5VnV4cHSzpGVGgALpTX2DUPYWocSmSgZUtg/Xrh3//8AzzxBPDll0L1j/x8ICoKGDYMKC8HevYUgr5mzBAWlhMRkU+Q/I2+ZMkS9OnTB0ePHsW8efPQp08fPP/88zh8+DBiYmLQpk0bqzci8ky2XDRPjo/BO3f1sri9OCD5ND3PptXvyfEx2DlnWH0pQOOVMbZkEZCqsLQKM9ZkoLSyxqB8S0pWAfq8uhVLUnMaBW4BwOVq65NhjrAkNcdiZgY5ExzicDUkoHHgWUSIyiDbmBzmyt9Yysy1YnIiOkSHyj6X+Hw9YQKoXs+eQhBXRQWwahXQrZtQXvH0aaBTJ6Gc4i+/OL8dRERUj2Ma32Tr33UxGEOcdJEbuDV7eFeM7NnaYsk/qW2z1EN2ROYfP6UCAztH463xPa1uGxmistrX9DTm3kNPbjOhfiLTUlZeORmAbeFR4wciIiIrOJ7xHHJKL1urMgEYLpzVz+b12e4Tzmi+zzHOhhwVqsJN116FqNAAlJTX4qP0fJNZ0aT2R18dF1//s/HjgHANXSouCiBJrroKWLdOmF/45x/gu++A2FjgxAnhtmkT8OSTgJ+fkBJ82TKA2eKJiLye5OCtWbNmYd++fTh69Cjmzp2Lli1b4osvvsCtt96KNm3a4JlnnkFGRoYz20pEZthbHsTWi+ZF5dKyHCzcfMRs2mhrLE2GGQd3ffFIf6jDAiUf2xJTqYzFSaGLFfbXuXcG/TYntI1AVGiApP3EwaWpYLQLTnqulgLz5Aae6X82PWECqJHgYOCRR4DDh4E33hDSHGu1QirkoUOFwdWddwJVHLgTETkbxzS+ydrff3NaNg+yOOliTYfoEKvb9GkfabUkiNR2O+Ii/8ierfHY4FiLbTH3WnhqqQ85E2fkWeROZDqDR44fiIiIzPD28Ux1dTXKysoMbt5Kbulla4tZk+NjoNHqsCz1GKbZsLCkqXv33kSsnZqEJXf3wvxR3TAuoQ22Hf0HJeU1BtsZL+7Q74+a89KYOIzsaf79e39yIv6cN0JyCUYuCiDZQkKA224D2rQBzp8Hvvmm8TZPPSUEcs2eDezaxdKKREReSnYuxa5du+LVV1/F33//jR07duDhhx9GdXU1lixZgr59+6J79+5YvHgxTp065Yz2EpER/ZU49gRI2XLR3JaBhqNXv+sHdw3sHI2Xx3aXPXFnjv4g25aJvdAA16erFds8cPG2RoNTkfj6PDSwA754pD8C/c23UyzT44zJLnOBeXInYPU/m54wAWSWQgHMmQP89BNw6BAwaVLDY99+KwR5LVgAlJa6vm1ERE0MxzS+xdLff3MiQ1ToFxtlddLFkpxzl60unPjzxAWrJUGk9rIcdZF/7sg4vDcpsVGgf0x4EJ4a3tXiQgVHZAFzNLkTZ+RZpExkOpNHjx+IiIjM8NbxzKJFixAeHl5/a9u2rbubZDNbSi9bWsyaklWAgW+kYUlqjrOa7LOiQlVI6tgCpZU1ePOnv7Bw8xF8kp5vcltTizuS42Pw6ODYRotulArg0cGx9f1RS++fn1KBBwbGWszAxUUB5BAhIcAddwjBWcXFwH33GT6+dClw773C/MOsWcDOnczIRUTkReyKLBg0aBA++OADFBYWYv369RgzZgxyc3PxwgsvIDY2FjNnznRUO4nIBEeWB7HlorktWQ6cvfq9/nkYZeCy51L7+UtVNk3sldc4tlMs5zmUlJufdBNXBP17THdABxSWmc+g5o7JLqkTsDFmPpvungCSJD4e+OIL4OBBw/tffhm4+mphpczvv7ujZURETQ7HNL5BbkntCxW12JpdaFc2q+Xbj2Piqj0Y+Ma2+n63cUbcwjJpx48IVlns90QEq6DV6RzWfx7ZMwa/vzi80cSDlGxigGeV+rBl4kwOe7Mck3WWJsJcdX6PHz8QERGZ4U3jmblz56K0tLT+5mnBZXLYWnrZ1GJW8Rq/1LGDqEVoAG6NbyVrH1/Uo3U4lqcdNzlPYorx9e6UrAJ8sCOv0aIbnQ74YEeewRyLpSohW7MLrS6E4aIAcqioKOB//xM+rBcuCJU+7r0XePBBYO1a4D//AW64oaG04qJFQF2du1tNREQW+DviIAEBAbjzzjtx55134rfffsOUKVNw8uRJHDt2zBGHJyITrJUHETMmjYhTSx4QJMfHYEScGvvySnD+UhVaNhdWgpjbXwyymb46w2KJFVPtEwdIAzq1MLmNRquz2A5rjxuH/bRsHoh+sZH4LacYFyvllQJs2TzIIyao1OFBmNC3HZak2v7dGhWqwq/PDUWAvxIpWQV4/ptDkvZLP/6PpM+EMY1Whz25xdj9dxEAYXCb1LGF1f3FCZQFm7INBt0tQgMwLqE1RsSpLbZD7mfZbXr0EAZXFy8Kg6kvvwSys4Ua9cuWCatonn4auP56YYBFREROwzGN99P/+19YWon5Gw7jcrXpC5NiX/nt8b3sPm9hWTWmrc7A1Bti8U3GGYPsp1Gh5lde63twYAcsTc0x26e+WFmLez/ci5jwILw0Js4hwSTixIM+Wyeh3MmZbU7JKmjUH3Xke0ANTH0eXclrxg9ERERmeMN4JjAwEIGBgdY39ALioubC0iqT/XcFhGu51rIs2VLt4b4B7XFrfAz6xUbhh4Nn8WPWOTlN9zm/5hTh15wi2fudv1TlsDkW8TiWRISoMCJOLbudRJJERAB33incACAtDTh9Gli9umGbF14QbgCwcSMwcqQQ2EVERB7DIcFb586dw9q1a/H5558jMzMTOp0OzZo1w6BBgxxxeCIyQU55EDkXweVeNDcXZCOFuYAoa5Mklh4HgOmrMxoNuM5dqsamg4Wy2qc/yHZ3mZX5o7rhgYGx0Gh1+N/uPIuZtSwpKa/FnycuoLSyxuTrZM7y7bn1/5Y6YZWSVYDnvz1ksOJo+fbjiAhR4Y07eljd394JFHdPAMkSEQH8+9/A/PnA1q3ALbcI93/7rXADhLr2a9YI5RWJiMjhOKZxPuvB9/YT//7vzi02G7gFNPSVdx7/B1GhAbhQXiNrwsSUVb/lNbrPWp9N7G/OHNYF16ibW+1Tixl2nZUNyFGTUK7krDaLGRCMj+ns94Dcx6vGD0REREY4nnEtS4ua5ZRetqXaw63xMfV9Fk9aVOFtfjv2D3LOXXbIHIuU9/FiRa3suRoimw0bJtzefRf417+AlSsNHx87FlCrgVWrgO7dgXbtGMhFROQBbA7eqqysxHfffYfPP/8c27ZtQ11dHfz8/HDzzTdjypQpuP322xHMCWYip3F2eRA5jINsii5VY+HmI1b3MzW4tDZJ8ujgWHywI8/s4+EhKrsn3oDGg2xrk0LOFt08EFuzC7FgU7bNgVuiwtJKvPnTXzY/j8LSKkxbnYHZw7ugQ3SoycnXlKwCTFudYXL/ixW1mLY6A+9LmPBqchMoCgVw881CNq7Dh4Ua9Z9/DlRXA99/L9S0b9kS+PNPobwiERHZhWMa13F1BiOpfeAVv/4tabtb4lrip+zz9jTJ6qSO2Kfek1uMGWsyTGaLtTXDrlSOmoRyJWe02RlZjomIiIgcjeMZ9zK3qFktY5wj59q9qUUJUhYyQCFcaiRDX2eckbyttffJk+ZqiAyEhQHvvy/cLl0C5swBVqwQFpMXFgpBW4MHA7W1QMeOwIgRwIsvAgEB7m45EVGTJCt4S6fTITU1FatXr8Z3332H8vJy6HQ69O7dG1OmTMHEiRPRqhVrbBO5gqeVNNEPstFodVj1Wx4Ky0wPRsytfrc2SQIIGQ0sPW6prrwcxoNsW0tEOkp+UQWWph6zeN4WoQEo1ivTY05JeY3sFV36xDYsSc2pv09/8lWj1eHljYetHueF77Iw7NpWCPBX2twWn9a9u7Dy5dVXgTZtAI1GuP/8eaBtW+CJJ4BZs4BOndzbTiIiL8Mxjeu5IoORcVavvH8u23U8Y/YGbgFAaKAfLldr6n82Nanjp1RAqVRYLPNta4ZdqRwxCeVqjm6zs7IcExEREdmL4xnPYm/lALnX7o0XJUi5Zj30mquQdvQfWechQ9beJ0+bqyEyqXlz4L33hFtNDbBzp3BfeTlw4QJw7hywezfwyivC9vPmCTcfKXdLROQNJAdvPffcc1izZg0KCwuh0+nQtm1bzJw5E1OmTEG3bt2c2UYiMsGTS5pszS5EVZ3G5GOWVr9LSS+sdVHUlM7EciRxUsi4FKAzKQC0CgvE2n0nrQZu7ZwzDMPe+cXqZyKqmeM72wV6k6/hwQEoLKu2uk9JeQ2SFqXi9dutl1Bs0lq1AurqgNJSYMwY4LffhPv/+19g+XJh6dyOHcCgQULmLiIiMotjGtdzRQYjU1m9PPEvohi4FRGswgPXd0DfDlEoKq/G7txigwkeOau2nVWK0t5JKHdwZJu5cp6IiIg8EccznsmeygFSqz2owwLx8tjuJq+hWrpmHR6iQq+rIxm8ZacLVhZMe/JcDZFJAQFCWUVAyMCVlgbceqvhNq++Ktweewy46y5he84/EBE5leTgrXfeeQcKhQLXXHMNJk+ejCFDhkChUODChQvYtWuXpGNcf/31NjeUiAx5akkTc5kVRBEhKiy6w3SwjidNfpwrqzaZCWJEnBrPf3PIZe3QAZjYr51BlitTistrsGbvCcwf1Q0z1uw3+5mYP6qbXVm3rLV1waZs/OuWayTvU1Je67CMGz4vPFwI0tLpgNRU4P/+D0hJER4bPBi47jpgxgzg7ruF8opERNQIxzSu5+wMRub6np5cFeRiZS2WbjPs2+lnMZW6Gju/qByDFqcZvL5RoSq8Oi4eI3u2trud1iahnBU4Zg9HldzmynkiIiLyRBzP+B4pmbNmD++KmcM6W+1rm1psXFpRi6WpxxARonLKYmSVEqjVOvywHmfh5myEB6tQVF5tcuzjqXM1RJIEBADJycK8Q0UFMH++MPcgWrlSyMj1/vvAp58KgVxDhgAqlduaTETkqxQ6U+llTFAqlVDYEVGrUChQV1dn8/6OVFZWhvDwcJSWliIsLMzdzSGyi6lMAzFuKmmi0eoaTSAZU4cFIv35m0wOVHbnFmPiqj3ObKJsMeFB2DlnWH1703OKcO9He112/ogQFe7o3QYfp+dL2l4dFoRxCTHYeKCg0WdibK/G95uiABAlsQSjKfNHdcPCzUdk7WPpc0EW/PAD8PXXwJdfAlV672tUFPD770KdeiLySuyvOgfHNK63IfMMZq3LtLrdsgkJGJfQRtaxNVodBr6xTVLGT08nfipXTE7EiDg1Bi1Os7hqOyJEhQsWJl8eGxyLuSPjnNFUAJ41BnEGcVxjbeW8/jiBiIiIDHlLf9WbuHM8k56ejnHjxtX/fPnyZVRXVyMkJATBwcH19+/fvx9t27aVdEx+RhrY07/WaHXo8+pWs8FZ+uMHcwFiJI+598bXx0nUxFRWAr/+Cnz7LdCjB3D0qFByUd8zzwALFwJ6fweIiHyFO/qqkjNvtWvXzq6BARE5hyeVNJFS9rCwrNpsZgUpaaKVCmEBgKsGmcaZIHb/XeSiMwtKK2olB24BQGFZFVbuyMN7kxIRGRqA85eqEN0sEL/nlTTK8GCK+KlZOC4eCzdnW03ZbUpUs0CowwJlTaQWllVjedpxzBreRebZmrjRo4XbW28JK1/+/W/h/pISoFMnYQXMhx8CnTu7t51ERB6CYxrXc2YGo+Vpx30icAtoXELypTFxmLY6w+y21vpnK3fkodfVkRjZU/oEgdRMWuaynRXqldH29okJrpwnIiIiT+TO8UxtbS2Ki4sb3V9RUYGKior6nzUajSub5TPsuca/PO24xaxaOgAXKmoxe3gXrPv9VKNy8wzmkq+gtArTVmfgvUm9DbIee9JcDZHdgoOFjFzJycLPv/0G1NUBH3zQsM077wg3AFi/Hhg3jhm5iIjsIDl4Kz8/34nNICJ7OKo8iL2klj00t52USZKpN8Tigx15sgeWcjJPGSss09/etQMtWwfPL35/CH/MG4Gt2YV45qtMyRObar2VQEolLKbsNnuMsCC8PLa72QlHc5akHsM16mZeP9nnFlddJaQznjULGDtWWBEDCP/v2lW47557gAkTWJeeiJo0jmlcz1pwvpjBqF9slKzjpmQVYEnqMYe00VPol5C0RkrJk/kbsnBLvFrSRIHUFeIarQ4LNmWbfC+NA9C8fYIiOT4GKyYnNnpd1Fw5T0RERG7izvHMjTfeCIlFXMhGtlzj12h1+CQ9T9K2HaJDsXPOMOzLK0FhaSXSjxfj64zTtjSVrpi5dj+WQ2GwaMZT5mo8scw9ebkbbhBuy5YJ2bZef93w8bvuAiIjgTVrgKuvFuYlAgLc01YiIi+ldHcDiEgajVaH3bnF2JB5Brtzi6HRet5g2RGZFcRJEnW44Tbq8CCsmJyIuSPjTD5uSYvQAPz63FDMHRmHnXOGYe3UJCy5uxdGdGspaf+Syw2BT54w8JLiQkUt/rvtGKavzpAcuDV/VDfsnDOsfiLK3HthSVSoCv1io5AcH4PZNmTRWrAp2yM/214jLAz45RdAqwU++wwYOVJIVbdhAzBpEnDddcAXXwA1tpXEJCIikksMzgcah8DbmsFIDCByNQWAiGDJ659sVlha6ZDnV1xeIykQTMykZbzAQcyklZJVUH+ftUy7cgLQvEFyfEz9+GHZhASsnZpk0F8mIiIiInKnfXkluFhpfWEHIFyT91MqUFpZg8UpfzFwywG0OuDxNYZjJk+QklWAQYvTMHHVHsxal4mJq/Zg0OI0j2sneamgIOC114R5h6oqYN48oGVL4XbhglAFZMgQoFUrIYDriSeAy5fd3WoiIq/A4C0iL+AtnW0xs4K5qTcFhBX81jIrWJsk0X985tBOVttVXF6DP09cANCw8uX2xKsxsoe0SZeo0IbVAUkdWyAixDvSvq74NVdWxqwTJRXYl1diEDwlvtZfPNwfIQF+Vo/x6rj4+snXDtGhcpvsU5N9bqVQAFOmAJs3A0eOAD17CvdnZACTJwOBgUBEBJCb69ZmEhFR02AtOF9uIIyUUt0iRy0sFg/z4MBYxxzQgpLyGtmZYs2xlhnXWiYtwDC43t5Mu95IHD+MS2iDAZ1acLU6EREREXkMqf3uiGBhwa24cMOw0gSJ1/tt7el70oJkOYtziOwWGChk4Tp3Djh7Fti7VyitqFIBFy8COTnA8uVA8+bCnMX06cClS+5uNRGRx3L+smEisovY2Tbu+oudbVsmvJxFStlDqZkVrKUXFh+XO4Gkny64pFxa9iF1eLDBed+4o4fFkoARISqDUjbNg/xwXfsobP/rH9klCO1RXSfvTJ/tPoHPdp9oVCLHT6nApepaVNRoLO7/2OBYjOzZuv5nqZnYjPnSZJ9HuPZa4MABoKgIWLlSGCwVFgKlpcIqGADYtg0YNsy97SQiIp+WHB+DEXFqh5RtkNNXWD4xEZGhASgsrURJeQ0iQgJwsaIGu/8uRuqR85KPI5bK+93JQeYhAX6IahbosONZ64/JyaQ1oFMLmzPtsmQHEREREZHjSe2fPziwAwCYXbjRVIUE+GHVfdchqWMLbM0ubFQyXSr9MZM7NaUy9+SB/PyAfv2Ef585A+zcCdx4o+E2778v3KZMAe65Bxg1yuXNJCLyZAzeIvJg3tjZFjMrGA901EYBQbYynviJlji51bJ5EFKyChq1S6kQ0hubo58pTDx3dZ0Ws4d3xdp9Jw1WKYlBT1otMG9DVn1w2KUqDbb/9Q8AYXGBzsNHyMaBgRqtDs9/e8jiPuHB/hjctSU2ZJ6pn5ATM7EVllbJuihga9AXWREdDbz4IvDss8AddwBbtjQ8dtNNwJgxwNNPCymNFZ7xfUJERL5FPzjfnmAeqX2F8YlXo1arBQCMTWhjcPwLFTWSgrdujmuJBwd2RL/YKGzNLsRH6fmSzm2rihoNThZXOORY6rDARhlvjV/3wtJKSccSA+as9e8UEPr9+uc11Qc3XixARERERETySbn+GhmiwsxhXWRlMG4qKmo0yD5bBuiA6jot3h7fC1AARZerEd0sEM98lYnCsmpJxzK3yMiVC1nkLs4hcho/P2GeQacDamuBt94S5iZEn38O5OUB/v7A6tXAXXcJcxSh8qu5EBH5EgZvEXkwb+1sOzKzgj5TEz/qsEBEhKhQWlFrcQLpQnk1ZqzZ32gbS4FbCjRkCjN37tnDu6BDdGj9c9yaXYgZaxpnSpNyPk9hHBi4PC3HIJOYKaWVdbj3w731P4sTcuYysZliarLPGmZxsEFgoFBOUacDXnpJSGsMAJs2CTcA+N//gAkTgIAA88chIiKykb3BPFImKJQK4OuM0/g647TJ4w/oGI3l262XD46LCceATi3qF1U4mwLAut9PQh0WiHNl1Xatiu/bIdKgX2TqddcvD26JGDAnN9OuN2URJiIiIiLyNpb654DQR190Rw/4KRWsdmDGa1uOGPwsjh0Hdo7Gy2O7W6zAoc/UIiNXL2RpimXuyQuoVMALLwi3ujpgzx5g/XqgTx8hiOuLL4QALtFDDwHvvANERLityURE7qJ0dwOIyDxv7myLmRXGJbTBgE4tHBK4ZapW+7myaly8ErhlfAbx5/mj4rBw8xGLk1/GzYsKVeGhgR0QHhyALQfPmj330tQcqJTCV+nGzDN44bssn0g9LQYG7sktxic2ZJgQJ+T+KryMBwd2QKSViUG5ZTUB4TMxaHEaJq7ag1nrMjFx1R4MWpyGlKwC2e1tkhQK4JVXhCCuo0eFevOi++8HOnQAXn8dyLU+sU1ERCSVuT6d2HeQ8ndcnKAAGvf/RMYB88bHT+rUAhEhKqvnWrYtBylZBS5bpS72wSb2a2f3sX7LKYbmygth7nW/YKWMuAKGmWiBhky76nDDyQl1eJBBMJa1LMKAsFhA4w2rG4iIiIiIPJS5/nmMUf/c3moHTSVRv/7YMTk+Bu9N6t1o7kCfqTET4Jixr1y2lrknchl/f2DQIGDZMuC++4AnngBmzTLc5uOPgchI4Utn7VqgUlrGcCIiX6DQ6Ty9gJfjlZWVITw8HKWlpQgLC3N3c4jM2p1bjImr9ljdbu3UJI/KvOUI+hmVokMD8cz6AwYlCvUpAISHqBDk72eyjGF4cICk13H+qG44c7ES32eerS95CFgvregNpRBtNXNoJ0lZKaQIDfTDkC7R6NKqOb78/ZRBymm5K47MZXEQx9HM4mCjv/8G3n1XGBQVGF1A2LQJGD3aPe0iaoLYXyVrvPEzotHqMGhxmtkgKDEL5845wywGc4v9xK3ZhY36bZayfRofPyWrwOoqanGff91yDWZ/dcDito60bEICAv2VmPvtQVyoqLP5OGunJqFfbJTF190ca/0qaxlQm/JYhoiIiLyzv0quxc+IY1nrn4vjMUsZjC15b1Jv5Jy/jCWpOY5rtIcyHjtuOViAx9c0HjuaGzM5auwrl7X32FnnJbKbRgMsXQo8+2zjx5o1A77/Xiip2LMnEBLi6tYRURPljr4qyyYSeTBrJWFsKTPnDUylE7ZEB+BiRS2+eDgRyispoFs2D0Kf9pH488QF/ChxFUt6bhG2H/1HVmlFwHcDtwSOG8SVV2uwJescIv4uweu39UBkaIBN5Q6tZXHQL/nIQahMHTsKKYkXLQK+/FJY/SIaM0b4f1oacOONTWe5HREROYwjSoKbLv2nwu0JbVBaWYuvM85IPn5yfAxmD+9icfJB3Cf9eLG1p+dQLZsHYUCnFjh0phTv2hFIf/5SleSsYVGhKpSUN5TKVlsJrhcz7Vo6t9Q2EhERERGRfaz1z62VWDRHAeDdSYkY2VMYF1yjbi7r2r0l1hZNu4vx2HFkzxi8r0xs9LzV4UGY0Lcdquu02J1bXH+N2xFjX1vILXNP5DH8/IBnnhFuGg2wfDnw0UdAaSlw5gzQuTPQrRugVArZu269Ffjvf4HoaHe3nIjIoRi8ReTBmmJn21xGJSmKyqsxLqFN/XGGvLVd1iAy7eg/NpzV80SFBhhkoDCnWaAfyqs1FgMDB3RqgeXbjzu0fRcrajFjTQZWTE6sf7/kcNfgt0kJCACmTAEmTwYWLBBuomHDgIQE4M47hcFUcLDbmklERN7F3mAec/3EC+W1+Cg9H6EBfrKP3yE6VNI+X2eclrSdvYwXZyjsDKRv2TxI8us+LqENbo5T2xRcb+7cjtyOiIiIiIjsI5ZYlLtwOjI0wOAYI+LU9Vm+jhVewru/yFtwMnNoJwzsfBUulNdgxhrb5gKMPTywAwrLqrD5UKHB/QoFEKzyQ0WNRvYx9cdSxs87v6gca/edxJLUY/XbiNUlquu0so/vKObeY2uLc4g8hp+fUEpx1iwhc8LRo0IQ11VXASdPCtusWyfcAOCee4RArquucl+biYgchMFbRB6uKXW2LWVUkkKc+LEnAMxbRYWqMH90d5wsLseavScl7XO5WhiwmgoM1AGY0LctzpdVSQ4Gk0MH27NjMYuDCykUwMsvC7c9e4DPPwc+/RTIzBRuy5cLdemnTQNaMFCOiIgskxqkk3PuksGqZcB65k0AKJd4MV6/HZ4UOKS/OAMQyg7qbEzxqh8Eti+vRNI+GzPPYt4oxy0M6RcbhYgQFS5W1Jp83FezCDcV1sryEBEREZFnSo6PwbBrW+Hz3fn45dg/+C2nyOo+xtdZ9bN8ffTb35LPLY4BZo+4pr7vuEKZiOe/PWR23GBNjNE8yZI6LT7fnY8TJRVoHxWCKQM6wE+pwKfpeVi4+YisYxuPF8XnnZJVgKWpOY3Gp4WlVZi+OgNPDe9q0/EdxTjQjP118loKhZBxCwDy84F9+4CkJMNtvvxSuI0fD0ycCNxxh8ubSUTkKF4RvJWXl4fU1FTs27cP+/btw+HDh6HRaLBw4ULMmzfP3c0jcrqm0tmWWtLFmP7Ej70BYN5G/AS8fnsPADA5aLS0b0SICoH+ShSWVdffHx6iAgCLJYQcwdbsWMzi4CZJScJt4ULgtdeA//s/4Nw5YN484QYItefHjXNrM4mIyHNZKwkuWr49F8u35yImPAjzR3VDZGgg0o8XOaQsR0Swqr7PuC+vBIWllYgKDcCF8hqX9x+NS4SIizMAYNDiNJufr3GG3n6xUY1KIppSXF7j0MylW7MLLU7A6OB7WYSbClPlS40nzYiIiIjIM5nqy1lj6TprVLNAWec3HgOIcx/L03Lw/q9/o7JWXoast8f3wsAuDaXTAvyVePiGjo22e2BgLD7cmWd1PApYXmhibWGRAsC6309CHRaIc2XVFqteOHMhi7UymkReR6EA+vcXsnFptcDKlcDjjzc8/vXXQGUlUFcnBHPddRdw003MyEVEXsUrgreWLVuGZcuWubsZRG7VFDrbtmZK0p/42Z1b7JCJPW8hTvKNiFNj4BtpsiYddQAuVNTixZHdEBcThqLyauQXVWBp6jGXTV7a8p73i42COizQIOBMH7M4OFlUFPDOO8CiRcBXXwFLlgAZGcJjt90m/H/RImDOHGFARUREdIWlkuCmFJRW4fE1+x3ahgcHdsDW7EJJkxVS2mgL8a/j8om9ERkaaLA4Y2t2oewMssbZrYwz9PopFbg9oQ0+Ss+3eixHZS4VJzQsiQxRYUSc2iHnsxWzR8lnLsuxmGVgxeREBnAREREReSi5FSukXGdVh0lbQNsiNACv3R5vsq/op1Rg1vCuuK5DFO79cK/E1gmKyk1fIzZ1DinjUePFMMasLUDXQRjLzh7eBUtTc0xWvbB0fCKSQKkEpk8XbjqdMD+xfj0wYADw0UfApk3At982bD92LPD++0AMx6pE5NmU7m6AFNHR0Rg9ejReeeUV/Pjjj7jzzjvd3SQicgJbMyVF6E38NJVSeTOHdsLaqUnYOWcYkuNjsDwtB4Vltj3317YcwbNfH4BKqcS630+6NOtE0aVqaLTyzrg1uxBVdVqTj3Hw60IBAcDkycAffwBvvmn42Ny5QEIC8L//AdXSLqAQEVHTIJYEV4e7PkNmZIgKXVo2w/TVGZKC/dXhQZgtsdyFHOrwIKyYnIhbjCYtbMkgGxGiwr4XhmPt1CQsm5Bg0D/UN1xikJSjMpdKyah7oaIWe/4udsj5bJGSVYBBi9MwcdUezFqXiYmr9mDQ4jSkZBW4rU2eTkr50gWbsmX374mIiIjI+eSON6ReZxUzLFsSFarC7rk3WQ3yT+rYAlGhARJbKJAzhpEyHhXHa+baKnX+oUN0qMlzWTs+EcmkUAB9+gBvvCFUBXnlFWF+Qt/GjUDr1sK2n30GXLrknrYSEVnhFZm3jEsjrlu3zk0tISJnklpKx9jFitr6Ei+OmHAytRrGk6YfYsKDMHvENfWD5pSsArtLHBaWVuHxNRl2t23m0M5Q+Skkt2fh5iP4cGee5BIr1laHhYeo8MYdPTj4dSWFAnjuOeG2ZQswapQQ2HXwIPDAA8Lt2WeBf/2LKYqJiAiAYUnw9ONFWL79uNPPqQDw2m09sHCz5cmKqFAV5o2Mw4WKGkSFBqBl8yCow4JsDpI3Zf4o06URpZQ2NHaxohZ/nrhgNUOvtX62tRX1Gq0Oe3KLsfvvIgBCRuCkji3MTuJIndCY8UUG3rjT9X03Zo+yjdQsA44sv0lEREREjiFlgYU+44y+5uhntAJMZ5l6/fYeCPC3nkvCT6nAq+PiJV+njrGh+oL+ePT8pSpENwsEdEIGLynZeKXOP7RsHoQBnVoYnIvZfolcICFBuL32mhCo9cADho/ffz/w6KPAzz8DNTVAv35AWJgbGkpE1JhXBG8RUdMgt5SOPnGC6EJ5jaTtzaUrfnRwLDYeKDAYyEaGqFBSIX0irXmQHy5VaSRvL5f+aicpJWmkcFRwWpdWzTAuoQ2uUTfH898eMijhY47USTIpq8OCVX4Wy+/4Ymkcj3pOI0cKaYpLSoBVq4SSiufOAW+/DSxfDtx3HzBhAjB0qHvaR0REbmf8d6vTVaFOP2fMlUmH8OAAq5MVJeW1eHVLtkEQVUSIymFtUQB48ftDuGCijyQ3cEskJVDKUj/b2or6lKyCRv265duPI8JC0LzUCY2LlbUuD5aylj1KASF71Ig4tdf3Ex1NalBeU8mGTERERORNpPbR7hvQHrfGx8i6xihmtDIuTy81AEzfyJ4xeOx0LFbuyLO4nQK2V1/wUypsXmwgd2GMPeciIjsoFEKg1v33C3MWq1cDn34KnD4NnDwJtG8PdOoE+PsL1UNuvhn48EOgbVt3t5yImjAGbxGRRxEHei9vPIzCMunl1nLOXUb68SK88sNhq9s+MrADvs08ixK9QC/9geS/krsZTCruzPkH7/6SK7ktzgzcmj28i8FgV+6KKWcTyyCKK5iWpx3HJ+l5uFhpfjJS6iSZlOdqaaV/SlZBowsIMTZcQPAkHvucoqKAOXOAJ58EVqwA1qwB/vwT+OAD4QYIj7/+ulCf3oN4VDAcEZGXMvddaurvVqQDA6NMiQpVIe2ZG5F56iJ+lFgOzziIqlRGEL81OsBk4JY9pAZKmZtQCQ9R4cHrY00GwKdkFWDaatOr3i9W1GLa6gy8byLwSm5GXVcGSzF7lO3kZBkgIiIi8hW+cq1Iah/t1vgYm/rBxhmt7Hmt5o6MQ6+rIzBvQ5bJRS7uvP5pz8IYInIThQKYMkW46XTAqVNAURHQpQtw9Kiwzc8/A+3aCf8ePlwI5Grf3n1tJqImqUkEb1VXV6O6uiEIpKyszI2tISJp5A1ulm8/LrnkzreZZwwGfVGhKswf1a1+sGe8Gib9eJGstjhTh2jD7BSetqrduAzirOFdMHNYZ3yanoeFm4+Y3U/KJJk9K/09pTSOIy/2eMpzsig4GHj6aWD2bGDnTmDw4IbHFi8Wbh9/DEyaBAQGuq+dV3hsMBwRkRcx9106tlcMPtiR1+jvlqMDmYyVlNdi4OJtNme1AjyrfLY+BYCo0AAUllZid26xpH5FQ4B9Dj5Jz8fFylpcrKjFktRjWPf7SYO/eRqtDi9vtL4wwlTglXHpFEtcHSzF7FG2s7f8JhEREZG38aVrRa7oyzkyy9TInq1xS3wM9uWVoLCsCiWXqxEVGgB1eLDbA+gcmWmMiFxMoRCCtNq1A7KzgYMHhTKL+lJTgQ4dgFGjhICve+5xR0uJqAnyrHQXTrJo0SKEh4fX39oy5SGR02m0OuzOLcaGzDPYnVsMjVbatJcYkFJY5rzJEuPJu5LyWsxYsx8pZrIxeNKKe+MVUp64ql0MHhJfTz+lAtHNpQXmWJoks3Wlv7XSOIAw6Sj1M2qrlKwCDFqchomr9mDWukxMXLUHgxanmf3cWeIpz0kyhQK44QZhVUtKiuFjDz0kDJSmTQOOSwvAdAbxu8c4E4fx55mIiMwz911aUFqFlSYCt1zFnsAtT6YDUFxeg9lfHZDVr9iaXYilqTmNMqMa/80TJkmsZ8IVA6+MiRMaEcHSsqu5KliK2aNsJwblAY2X2jDLABEREfkaX7tW5I19OTEY7PbebfDwDR1xe+LVGNCphUe0MTk+BjvnDMPaqUlYNiEBa6cmYeecYQzcIvImCgXQq5cwb6HTAV99Zfj45s3Ahg3AqlXAyJHAJ58AeZZLuhIR2aNJBG/NnTsXpaWl9bdTp065u0lEPs3WIBVLASnOpkPjYBcxAO18WRWaBbo/UWGMiZVP4oopVw5XrZ3LVPBQdDNpwVuWtrP2XBUw/RrJKY3jLI6+2OMJz8lmt9wiDIROngTefBO4+mrg/Hlg5UohTfHUqcKKFxfyumA4IiIP5M5+HAmk9Ctq6rR44bssSX/z5ARTmds2OT4G91/fQdIxXBUsZWufkgRiUJ463PD9UocHeUbmVyIiIiIH8NVrRezLOZYYXDYuoY3HBJURkR3uuqshkOvwYWDBAuCRR4AvvgB+/FFYiN6xoxD0NXAgkJPj7hYTkY9pEsFbgYGBCAsLM7gRkXPYE6RiLSBFNNBJmbD0g130A9Bmf3UAl6vrnHJOOUytfLK0YsoWUo6hAzAlqZ3VbfRfT61G4oUMC5vZujrMXaVxxOC/7/afwQvfHXLoxR6fKPfTti3w3HPA338Lgx/Rhx8C3bsLA6BnnwW0Wqc3xauD4YiIPITUfpwjRYUGOOxYLRx4LGcLUZkexlvrV6RkFSBpUSpKymvMHlv/b56cYCpz26ZkFeA/2yxfzHR1sJQ3ZhzwNMwyQERERL7Ol68VsS9HRCRBXBzw738Dw4YB778PvPKK4eO7dgFduwrzGKtWAUVF7mknEfmUJhG8RUSuYe+KJKmBJum5xbY1UILC0kqzAWjuNHt4V7MDaHMrpmwhNXxI6nbnL1UhJasAM9ftl7R9Ubnl0jy2rA5zR2kcg+C/LzMtlmuy5WKPT5X7UamASZOEIK3ffgPuuKPhsXfeAfz8hGxdVc77ffSJYDgiIjdzx3fkhL5t8dRNXew6xn0D2mPt1CTsnnuTy7OZ2qqi1nxgs7l+hdi/lVpC8vylKvSLjYI6zHr21JjwIGi1ukbl0qVmY9PB9cFSzDhgP2YZICIiIl/m69eK2JcjIpLh2muB+fOFjFwbNgBBRvMujz4KqNXA3r3At98ykIuIbOb+OmBE5DPkrEgaYCJ7licEmuw8XoRducUWJ5mC/JWoqnN+NiBReLA/Zg7rbHGb5PgYaLXA42syXNKmDZlnJW2XX1SBJanHJB9XymcgOT4GI+LU2JdXgvOXqtCyuZCpwdxFBrE0TmFplcn3VQFhos5R2R7EyVG5SdPlXOxx9XNyCYUCGDRIuP36K3DjjQ2P/fwz0K4dMGMGMH060LKlQ0/tU8FwRERu4o7vyPd+yUVMeBAeGxyLjQcKDPqhLUIDUGwhw5To1viY+n7pS2PiMH11BhSQHqjuqfT7FbaUtGzZPAh+SgVeHtsd01Zb7l9W1mpw70d763+OCQ/CS2PiEB4cIGkxxOzhXdwSLCW3T0lERERETQevFRERkUljxwKVlcK/f/gB+Owz4Ngx4MQJoEULIClJWJCu0QDXXSc83q2be9tMRF6DmbeIyGHsXZEkBqS4c7rkp8OFVieZXBm4BQAPDexodRJJo9XhlR+yHXK+qFCV1W0uVVkuI6kAoA4LxCe78iSdU265HDmrw1xZGseWyVGRnIs9Pl/uZ8gQYRVLfj7QqhUQGAj88w/w8svCz717A1lZDjudte8eV5dzIiLyRlL7ceb+btmqsLQKH+zIw/xR3QzKfkjJpGX83W42G1NYICJCVF6RlUuk36+QU9LS+G9ecnwM3p+ciIiQxv3D0EA/AMDFCsNsXmK59A9/y5V0zg7RoZK2cwZmHPBOYnly42xvRERERI7Ca0VERGTV6NHAV18BmZlATg5QUiLMXWg0wuN//CGUX1QohPuzHTOHR0S+i8FbROQw9q5IshSQ4iqXqzVuOrN5XVo2s7rN8rQcFJbZn6Y7JjwIr46LhwL2vwcT+rZtNJlniTODjVxVGkfO5KhI6sUe40mqEXFq3y/30749UFgIXL4MrFsH9Osn3J+ZCfToIZRTXLlSKLloB58PhiMicgFr36UKAI8NjjX5d+uxwbE29z3EkI2Fm4+gX2xUfRBOgL+yvj3mjO0V0+i7PTk+BjvnDDMIBEt//ia8cUcPq88txgElrK2JCg1Aq+YBsiaR5JZyMf6blxwfgz/njcDnD/XDbQmtcXNcS7yQfC2aBZhO5K27cks7+o+k8+mPDRiUQ9bolyeftS4TE1ftwaDFaUjJKnB304iIiMiH8FoRERHJEh0tzF9kZABHjgBRRvM9mZlA9+7AsGHAF18Ii9eJiIywbCIROYwjSrmJQTYLNmXLDoIxRyx9ExLgh4oazwvOsmbh5mwMj2uFP09cMFnSJSWrAEtScxxyrvmj4jCyZwxWKBWN3oOoUBVKyq0HY0WFqvD67T2QdaZM0jlDA/3wzl29nB5s5IrSOHInR6Ve7EnJKmj0fogliXbOGeb75X78/YF77gHuvhvYuBFYvVqoHf/zz8Jt2jSgf3/gxx+ByEibTmHuu0d95XV21udTo9X5/vtHRE2GlO/SfyV3M/m917tdpM39P3OluZPjY/Do4Fis3GE6E+jKHXno3S6y0Xe8mI3J1ueWml2I7zLPSOo3yVVSXoPQAD/o0NDHFZnrV0hdYNEiNACv3R5v8m/e1uxCg+f+c/Z5q8eTchmyRWhA/djAUn/HJ4LSyW7mypOL2d58ZgEDEREReQR3XSsiIiIvd+21QHGx8O9t24AJE4CiIuHn7duBrl2BM2eE+Yzx44FBg4BevdzXXiLyGAqdzvNDO9PT0zFu3Lj6ny9fvozq6mqEhIQgODi4/v79+/ejbdu2Vo9XVlaG8PBwlJaWIiwszCltJmqqUrIKMG11htnH35d4QV2j1eHT9Dws3HzE7jaJkz5/FV5yWJCTqxkHTkWFqnB7QhsM69YKz3yVicKyaoecZ+3UpPrJSuOgksKyKsz+MtPqMZbck4Dbe7fB2z8dxfLt1svlzBjaCc/dcq29TfcIu3OLMXHVHsnbS5mQ3HKwAI+vafw7JU7J2jNJ5dWBQ3l5wH33ATt3Gt7/738Djz8ulFe0gStfE05SkyXsr5I1nvwZsfW71N7+37IJCRjds3X9uaNDAzFjTQYuVpoPoooIUeHPeSPMts/4ufRpH2k2oN7UfluzC/Fxer5Nz8eaiBCVQZZTsX84PE5t0C6NVodBi9PMLrAQ990zdzgC/Bsn5zYXMOMIDw3sgH+P6W72HI7o75BvED/H5gI8xYVCO+cM857+LBGRj/Pk/ip5Bm/5jHj19TMiIvIceXnA118DQ4YA06cLWbr0desmZOXq3ds97SMiA+7oq3pF5q3a2loUixGqeioqKlBRUVH/s0bjfRl1iMj8APiBgbH4cGeexYkmSx4a2AEj9CavRsSp8cmufFml/DyFceaGkvJafJSej48cPBmonznKOOvE7tzG38OmqMOE7A4DOkZLCt66vmO0zFY6jqMvvkjJPhcVGoB5o7pBHR5s9XxbDp7FzLX7TT4mZtxYsCkbI+LUstvt9YFDsbHAb78Bp04BAwYIK1UA4JVXgDfeAMaOBSZPBvSCv6UwlW3FGZg5goh8ma3fpX5KBaKbB9p83vyiCovBHaZcrKjFntxiDOzSuD9i6W/luIQ2Btua6lMM6NQCpZU1TgveClb54d2HE7Ht6Dl8n3kWJeU19f1D/b/pYsmX6aszzGbrev32HiYDtzRaHRZsynZK4BYAjIhTWzyHvf0d8h3WypOby8BHREREZC9XXSsiIiIfFxsLPPec8O9vvhECucSfAaHcYmKi8O///Ae4806gdWvXt5OI3Kbx1VkPdOONN0Kn01m9dejQwd1NJWrSxIkXc8SJF422YWomJasAgxanYeKqPZi1LhMTV+3BoMVpSMkqqJ9oEveV68esQoPgGD+lAm/c0cOGIzUdlsrqiIFJ5t4LBYQJTbH0TVKnFogIUVk8X0SICkl6mb525xZjQ+YZ7M4tNvicOIOlz56tLH1mxZ9fuz0etydejQGdWlgtlfj4mv2w9DLoT1LJIQYOGU+AiYFD9rwGLte2LXD6NFBZCaxZAyQlATU1wsDnttuAm28W0g9rte5uaT1rk9RA4+9Kcj1XfycRNRXWfreklvjTp4DQp1iaesymsou7/i5qdJ+5v5UFJv5WpmQVYOAbhn2KgW+kYcvBAot9Y3sVlFbhu/1n8El6PkrKawweM/6bLpZ8UYcbvr7q8CCLAcPWAmbsIfYb5QTlUNMltTy53DLmRERERERERC7XoQPw7LOATgfs2AFcfbXh408+Kdx34ADwyScNi9eJyKd5ReYtIvIOcldDS808s2JyYqOsB1KYWnmdHB+DhwZ2cHgGBP0sBsYZDbyBWGZEDLwyRUrWhvmj4gyyTrx+WzweX2M6cxQAvHFHD/gpFS7PAuWsrEcarQ7hwQF4cGCH+gwYIrWM52MtENKYnEkqn81uERQETJwo3HbvBq6/HlAqga1bhRsA9O0L/PQTEBnp1qY2hcwR3l5SwOsz0xF5KCm/W9ayWBrT75PY2v/6dFc+erQJr2+DtWxTOgBzvz2EEXFqbM0uNFkyvLCsymTZY0f7OuO0yftN/U1Pjo/BiDi1rO9nZwTCiGd7aUwc/JQKBuWQJFIDO20JACUiIiIiIiJymxtuECqMAEB6ulA6MTNTuM/PD3jooYZtO3QA1q4VFrETkc9h8BYROYyciRepmWdGxKkNJpoKSyuxcPORRtkF5LQpPDhA0r5ytAoLxMtju0OrBeZtyJLcPk8iTqBZYi6YTh0ehLG9YrBwc+MJ2ccGx2JD5lkUllU3bH/l9UqOj3F5+TipwUvNA1UoKq+WHHhiakI6KlSF2xPaYLhe+U4p5Ga5kDNJ1RQChzBggLBiJT9fSC+8ZIlw/++/A1FXAhQLCgC12i3N8/VJam8PfGJJSyLnkPq7ZSlY3JTwYBWGd2uJrzNsX4FYXq0xaIOUv8MXKmrxn23H8L/dJ2w+rzlB/kpU1dmfMVL8m77n72IoFQrZAbUarQ5Fl6qtbieXcUA7g3JICinlya0tRiEiIiIiIiLyaAMHCjcAuHwZyMoSFqrv2iXcl58vzH8AQlWSb74RFq0TkU9g8BZRE+GKLChyJl6kTIrpB5D4KRX1gSTBAX4mMxxIaVNKVgGWph6TtK8cDw/qCK1WJyuwzJO8O6m35GAEU1kbLpRXY8aa/SYnZD/YkYd3JyUiMjSg0efPHVmgpAYv3fvR3vr7rAWemJuQvlBei4/T89FX5u+bnKCdGJmTVL4eOGSgQwfg//5PSD88YABw8mTDY+3bA5MmAbNnAz17urRZvjxJ7e2BTz6bmY7IzeT+bpkLFo8JD8L8UXHIOX8Zn6Tn4WJlLS5W1toVuKVPbIPUv4Ef7vgb5bWOL8tbVadFSIASFTWOOfaMLzJwsbK2/mcpAbWmAnHtFRGswrv3JiKpo2HpaAblkBRSsgBLWYxCRERERERE5BWaNRMybKWnA8ePA8nJQG5uw+OnTgH9+gH9+wPTpwNTpgjVSIjIa/E3mKgJSMkqwKDFaZi4ag9mrcvExFV7MGhxGlKyChx6HnHixdzlcgUaAk2kToptzS5sdF9yfAzem5QIS9fl9c8lslYCxx6vbTmCx9fsd+gElyvlnL8sa3sxmG5cQhv0i43Cws1HLGZRW7g5G/1iozAuoU19MB4gLwuUo9gSlCQGnpj6nZGaRU6jlf7JkxO0I3eSypcDh8xq3Ro4cQKoqgImTABCQoCaGuDTT4FevQCFAtiyBdA6fgLeFDnfld7EGb8LruaO7ySipsCW363k+BjsnDMMa6cmYdmEBKydmoSdc4ZBqQSWph4zCEZyBP02SP0b6IzALZGjArcANHqtLPVrgIZAXEf3ay9W1kKpUDTqt4hBOQAa/W1kUA7pEwM71eGGv6Pq8CCPDxAnIiIiIiIislnnzkIAl04nVBi55pqGx/buBQ4fBubNEwK5Fi0Cfv3VfW0lIpsxeIvIx5mbfLE2aWMLORMvUifFNmSeNTnRP7JnDJZP7G1yH3OTPHJL0TUln6Tn2xxQYU+wgzuyQNkSlGQp8MQZwR7WgnsAQKkA3pskf5LKVwOHJAkMFOrBl5cDe/YA99zT8NioUUBcHPD880BxsVOb4auT1L4Q+NSkMtMRuZDU35n04/9gQ+YZ7M4thkarMwgWFzOw2hqIL/Ub9fylKvSLjUJIgJ8NZ7H//K5gqV/jzMUOgPnPAoNySCpzgZ38jBAREREREVGTcN11wNGjQiDX2bPA8uXA/fcLJRT37QNeeAG48UZh0XqrVsD27e5uMRFJxOAtIgk0Wh125xYbTCZ5A3dkQZE68dIvNgpRoSqrxysurzE70T+yZ2u8PzkRMRIneWydbI8Isd5Ob3exshZ7cm0LWLEn2MEdWaCkBEaZYi7wxBnBHpaCe0TLJ/bGLfFq2d9Nvho4JIdGq8Pu6M7Y8Pw7OLB5B7RPPw2EhQF//QUsXgxERwsDmwxp5Vlt4YuT1L4Q+NQkM9MRuYDU35nl23MtZom1JRBfceX25E2dZbVVqXDs38HI0ACHHs9e5vo1zl7sYOmzwKAcx/LWMawUxoGdvtxvJSIiIiIiIjIrJgaYMQPo3l3ItvXuu4aPnz8PDBsmzHe8+Sbw99/uaScRSeLv7gYQebqUrAIs2JRtMIkREx6El8bEefxEgpwsKGI2A0dIjo/BiDg19uWV4PylKrRsLmTx0b+o7qdU4PaENvgoPd/q8SxN9Es5l8iWyfaHBnaAyk+BlTvyZO8rlwLCexIRosLFCumlgBQKIcDeXjPWZOCNO3vI/lzbE+wgBlIVllaZDDJUQAhmcWQWKDF4afrqjPrXXA7jz6Ozgj3E4B5z3z8AMGhxmk3fTeaOrfaS7zZ7mPxOjx6JV36ehhFbVgOvvNKwcZ8+wKRJwHPPAQkJDm+LnO8vb+ALgU/u+E4iagr6xUZBHRaIwrJqyfuIWWL1A1ptCf4U/7ZptTooFYC5+BX93+99eSW4XF1n9dhy+hHzR3WDOjwY5y9VYWv2Ofxw0LHly41J7U8av6b2BNha6pNK/f4Ug3LIPt48hiUiIiIiIiIiG6jVwOOPC7eDB4EpU4T/i+bMEW5HjwIpKcCYMUDHju5rLxE1wsxbRBa4suSgM7gzC4qU1dDD49SSjmVtol/qymtxUl6Om65thY0HHPs+KwBEhqigDgs0uF8dHoT3Jyfiz3kj8OLIbpKO9eLIbnjXTPlIuS5W1tr0ubanDJ+7skCZy3okhfHn0ZllCM1loABg13eTRqtDeHAA/pV8LeaP6oYld/dqEtktLH2nP/rdMaTcNQ2orhYCtkRr1gC9ewurU15+GdBqHdomX8oc4QslOZmZjsg5/JQKTOzXTtY+prLE2hL8OX+U0KeasWa/2cAt8Xy3xgsBtYVl0vrGcgLA1eHBGNCpBUb3bI0/T1yQsac8M4d2wtqpSXh3YqKk7Y1fU3sCbO9LMv0e8/vTtbx9DEtEREREREREdurZEzhwQFhld+gQ8OKLwE03CRm6SkqAp54COnUSVuKFhQnBXETkdgzeIjLDHSUHHc3Ts6C4eqLfT6nA2F7SAlPEc0MBh5aOEZ/rojt6IP35m0yWhfFTKvDQoFir5RojQ1R4aFCs2fKREcG2lXuU+7m2N9jBXeXj9AOjltyTgEgJ5TFNfR6lPn8ANpWuMQ7uAWDXd1NKVgEGLU7DxFV7MPvLTCzcfARv/vQXSitrfHpCVfJ3ur8K+OILYVCTng5MmAD4+Ql14RcsALp1A1asACoqXNl8r+ArgU++WNKSyBN0iA6VvY9xaT9bSh8v2HQYc789JCnQ6uP0fExctQcLfzgsu62WRIWq6vsPzi5L2KVVcwzo1AJJnVpI7mfrl9fT6nRQhwXKLi8NAO2iQvHY4Fg0+ppXAI/cEMvvTxfwhTEsERERERERETlQfDzw6qtAaiqQkSHcN3x4w+OXLgG33ioEcjVrBvzyi1uaSUQsm0hklrtKDjqSp5d/slS+zhkT/RqtTlYWrZfGxKHosvTyPlIYl6Uz99nxUyrwxh09MG11htljLbqjR/1rY6r8mlanw70f7pXVPjmfa41WZ3C+dyclYuFm28rwuat8nBgYtTu3GBcklBaa0LedyTZZK0MI2F7i0Jg9301iJgbj7wNTpal8jU2v2/XXC7fFi4HBg4F//gGOHWtIPQwAf/whlFckAL5TktPXSloSeQJ7FguIWWL1+45SnbtUI/t8JeXSy1dL8eq4+PrvD1sy3ioAhAb64XK1xuq24usstZ+9Nbuw0Xd2RIgKOsgrCwkApy9U4NNdJxrto9MBq37Lg1IBzB0ZJ+OIJJcvjGGJiIiIiIiIyEkCAoABA4CtW4FTp4Dx44F9+xoeLy8Hhg4VMnc99RRw773CPkTkEgzeIjLDnSUHHcXVwVG2cPZEv36AUdGlakmZDqJCVXj99h5Ijo/B7txiu86vDgvExH7t0CE6VPbkf3J8DN6fnIiXN2YblO8xF/QjBiKJNFqdxeA9S6x9rlOyChq9ZzHhQZg/qhsiQwNtCnYwbr8rSf097hAdYvYxc8EeW7MLHRowZet3k7VMDAoImRhGxKl9MkDFru/0du2A/HxhBconnwDvvAOcPCk8dt11wv9//VUI8CKfCXxy53cSkS/q0z4SUaEBKCmXH0wlBiSJZX8fHNgBX/1xSlIwk7s9NljIkiqSG8QmfnO+eWdPvPB9Fi5aCDaPDFEZLMqQElxuqo9SeuUc4SEqi+cztuHAWYt9zpU78tDr6kiM7OkdgbzeyBfGsORYxgtuvLFPRkRERERERE7Qti2w90oCiL/+Ah54ANizB1AqgYMHgbNnhQCunTuBUaOA/v2B225zY4OJfB+Dt4jM8PSSg1J5QxYUZ030mwowkmL+6O71r4u17GX6hOClOESGBjjsedjz2lgK3rPG0ufaUvamGWv2Y8XkRIxLaCPjbO7nqN93UwF0jg6YsrWtTT0Tg0Pe4+bNgSefBKZPBx55BPjss4bHhgwBbrwRePppYSCjbNqVqRn4RET6UrIK8Py3h2QFAgGGWWJt7de5SvMgf1yqqqv/uUVoABaOi28UqCT2LaU+j4gQFRbd0QMj4tR44fssi9vq9zfEgI3qOi3evqsXoAOKyqvr+5KAkBXUUh8lWOWH+29qj0/T81Gq99xMaREagGIJgXnzN2ThlnjvChT3puAXXxnDkmOYW3DjKdcBiIiIiIiIyENccw2we7fw7+JiYMMGIQPX4MHA6dPAoUMN2yqVwFdfAXfe6Z62EvkwBm+5kDdd9CXPLzkohzdkQXH0RL+5ACMp1GENkxnWspfpADw0sANGxKmd9pra89qYC96zJCpUZfZz7avZm5z1++6MgClb29rUMzE49D1WqYD//U+4rVgBvPKKUFLxl18a6sG/+y5w//1AaKjjngQRkRdKySqwWAbaHOPSfrYcw1WUChgEbkWFqrBwXHeTGab8lArMHxWHx9dIez5iWed9eSVWg98uVtRiX14JSitrzAZsiP2N3bnFkvooy7Ydt9pGBYBxCa3xcXq+1W2Ly2u8KlDc24JffGkMS/ZpyuXSiYiIiIiIyA4tWgAPPST8+8ABYONG4MEHGx7XaoVyiwDw0kvAXXcB3bu7vp1EPqhpp4VwoZSsAgxanIaJq/Zg1rpMTFy1B4MWpyElq8DdTSMzxKAdoGHySOQpJQflEAOAxiW0wYBOLbym3bawFGBkiQLCZIzxZIYYAKUON1yhrg4PwvuTE/HvMd09+jVNjo/BzjnDMHNoZ0nb357QxuxzkROM5E2c9fvujIApW9va1DMxOO07ffp0oKAAyMsD/vWvhvtnzBDSDt93n2HNeCKiJkSj1eHljYetbhcR7G8QPA8I/awVkxMxIk6N5789ZGZPz6A16nReKK/FjDX7G431NFodducWI7ugTPKxxcD4wtJKSdv/fFgIljPur4kBG2KbHBWsHaP3PknlLYHiYvCLtdfSk/jaGJZsY23BDSB8r2iMv7yIiIiIiIiI9EVFCeUUdTrg77+BYcMMH1+wAIiPF+ZHXn0VyMoStiUimzB4ywW88aIvCSwF7XClqueyFmBkirXJDDEAau3UJCybkIC1U5Owc84wr/kM+CkVGNg5WtK2wy1Mvvly9iZn/L47K2DKlraKmRjMTdWZC170JU79Tm/bFli8GDh/Hvjvf4FOnYALF4DPPxdqwSsUwKpVdj4DIiLvsi+vBIVl1Va3u1hZh3fu6mWyn7U87bjscovuZio4Qn8xz/Lt1rNZ6R+roLQKGScvSNr+090nJLXJUcHab4/vheT4GPSLjUJUqErSPt4QKO7NwS8cw5KvLrghIiIiIiIiN4qNBbZtE4Kz8vOBt98GRo8GBg0Cjh0D5s8HevQQyioqFMDatQzkIpKJZROdzFdLjDUl3lBykAzZEjikllD+xNGlHV3NEWVUfD17k6N/351ZukZuW62VAAWaRiYGp3+nX3UVMHOmkJFr0ybg9tsbHnv0UWDRImDJEmFQ4+fnmHMSEXkoOX2yovJqjEtoA6Ch3HxhaSVW/ZYraf8ZN3aCQgEACvSPjcJzXx9EYZn7gsn1gyNKK2tsLuct+nzPSWnntXAS/TZZ66NIVVQuBOf5KRV4dVw8Hl+z3+L23hIo7ozS167EMWzT5ssLboiIiIiIiMgDtG8PPPOMcNNqgb17gTFjhDkR0aRJwg0AfvgBGDkSVy7eEZEZDN5yMm+/6EsCbw/aaWqkBg7NH9UN0c0Dm8xkhiOCd5wZjOQpHPn77uyAKbltFTMxLNiUbfC3SUrwoi9xyXe6nx9w223CLPrKlcC0acL9eXnC/Z07A9ddJ2TjatbMuW0hInKT6NBAyduK/beUrIJGf6ekGNTlKoPv9pfHxmHa6gxJ+0aFqlBS7pzsXoWllVicctSuAClHO3+pymofRWp79fvdI3u2xmOnL2Lljjyz23tLoLgvBL9wDNt0+fqCGyIiIiIiIvIgSiUwYACwcSNw7hzw4IPAjz8abjN6NNClC/D888A99wAhIQzkIjKBZROdzBcu+hJ5G6nl4R4YGItxCW0woFMLr5hEcgR7y6iIE30AGr2+TSl7kxyeVrrG20uAeqXHHhOCuE6eFAYnkZHA8ePAunVCucU5c4DTp93dSiIih0rJKsAz6w9I2lbMxmSu3Lw1EcGqRoHjyfExeG9SIix1ScQ+4Z65w/HFI/0RESyt7J8cX/1+WlLpSHtILVcoEgM2LPVRnrqpi8XXw1y55d7tImW1xVMx+IW8GculExERERERkVu0agVs2SLMh5w+LQRtAUBgIJCTA5SXC/MlXbsK1Us++oilFYn0KHS6pvcbUVZWhvDwcJSWliIsLMyp59qdW4yJq/ZY3W7t1CSuinUBsQQLS0f4PnHyDzCd7cgdQTOexN7fBVNZMWKaWPYmufj9Q/XKy4USihs3ApcvGz72/vvC4IWaPFf2V8k7efJnROyHSR1ovj85ESPi1Bi0OE124BYAzB7eBbOGdzX52JaDZ02W8jPVJ0zJKpCcrctThAX546Ux3WUFyu2cM8ygD6LfR8kvKsfafSctBpyZ609rtDqL76GYodX4/J5IfC7Wss16w3OhponjYSLyBJ7cXyXPwM8IERFRE3HpklA6ccgQIDFRyNBl7IMPgEceYUYu8hju6KsyeMvJLzQv+noOBps0PXzPnYvBSER20mqFAcuSJcAvvxg+9uabwNNPC+UXqUniRWyyxlM/I9YCePRFhqiw6I4eSI6PkbzoxdQx/pg3wmIfxFSfUB0WiIn92qFDdKhBP2bhpsP4KD1fdjvcaXzi1fg6Q1oGx/ctBGxIDboz15/2tYVLDH4hb8fxMBG5m6f2V8lz8DNCRETUBF26BGzeDEycaPrx554D7roLuO46BnKRWzF4y0Vc/ULzoq/7mZuI4Hvg+xhgRERe4aOPhFUl+jp2BJ56SqgR36yZW5pF7sOL2L4nLy8Pqamp2LdvH/bt24fDhw9Do9Fg4cKFmDdvnuzjeepnRGoAz4sju+GhQbH1/bINmWcwa12mrHMpIL0fb5hdquJKdqnGAQ3hwQE2BZG5W3iwP0or68w+rlQAyycmYmRP06+VlKC7iGAV3r03EUkdTZcc/y7jNGZ/ZT0D2LIJCRiX0KbR+T2xz87gF/J2nvq7RURNg6f2V8lz8DNCRETUxJ07B8yYAXzzjeH9fn5Abi7w3nvAnXcCffsykItczh19VX+XnKWJS46PwYrJiY1Xe/Oir0totDos2JRtcgW5DsKkz4JN2RgRp+ZFTB/kp1R4xcp+ImriHn5YuP3xh/D/U6eAv/8GnnxSuD33HPDEE0Dbtu5uKRHZaNmyZVi2bJm7m+F05y9JK3vYMizQoO/dsnmQrPOYC6AxF6gg9glTsgqwNPVYo7FBYWkVpq/OwLuTEhETHmRT+UZ3shS4BQDLJ/Y2G7gFAPvySqw+54uVtVAqFCbHTClZBVi4+Yikthq/154cIJUcH4MRcWoGv5DX4niYiIiIiIiIPFarVsDXXwv/Pn8e2LgR+PlnoLoa2LtXqFDy5psN2//nP0Kwl1LpnvYSORmDt1yEF33dx9pEhA5AQWkV9uWV8KImERG513XXAQcOAOXlwGefAY8/Ltz/1lvA//0fMHIkcOutwPTp7m0nEckWHR2N0aNHo1+/fujbty8+/PBDfGO8qswHSA3CMt6uX2wUYsKDzJabB4CoUBXmj+4OdZjpsZS1IKCaOi1e+O6QxUUdCzdnY/6obnh8zX5Jz8MbPDY4FiN7tra4jdSgO1PbSS23qICwgKlfbJTVfcVgOk/IkMzgFyIiIiIiIiIiJ2vZUqhO8sgjgE4nBG/dcw/w5ZcN24iL3QFg/XohKxczcpEPYViiC4kXfccltMGATqZLTZDj2TMRQURE5BahoUKAVm0t8N13wNChgEYDbNokBHQpFMB99wE1Ne5uKRFJNG/ePGzatAnz589HcnIymvloOVQxCMvcSEcBIaBKP4AHEMZKL42Jq9/GeB8FgNdv74Hbe5seS4lBQMaLNsQgoEVbspG0aBtKymvNtl1c1BEZGoj3JyciJMDP6vP1BhsPFECjtRxaZWvQnaUsx6a8NCau/r2zliEZEDIkW2s7ERERERERERH5EIUCSEoC1q0DSkqAyZMbb3PXXUD79sBHHwnbaLWubyeRgzF4i3yerRMRREREbufvD9x2G5CWBuw3ygLz+edAYKCQKvjSJbc0j4jImLUgLMAwgEefWG5eHW7YL1eHB+HdSb0RHhyADZlnsDu32CCgx1oQkA7Ayh15KCmXFvB6/lIVkuNjsGrKdZK293RilmFLrAXdAYA6LLBR0J2UcouAkDXNOIuWnAzJRERERERERETUBEVGCnMhOp0QpHX//cL9zZoBp04JcygPPCAEck2cKFQx0Wjc2mQiWzF4i3yerav/iYiIPEpCgjBA+eMPw/tnzQLatgX69AFOnnRL04iI9FkKwrJWBi85PgY75wzDFw/3x8yhnTBzaGfcc11bvPJDNiau2oNZ6zIxcdUe9Fm4FctSj0Gj1UkOIJJKXNSR1KkFYsJ9Y4HHj1kFjYLe9FkKuhNV1WmxNbvQ4D6p2Yvnj+7e6H23N0OyRqvD7txikwF9RERERERERETkYyIjgU8/FeZJ/vkH+P57YORIYM8e4PRpIVPXv/4lBHQpFMDixUBdnbtbTSSZv7sbQORs4kTE9NUZUAAGK/Ktrf4nIiLyOH36CIOTigrgs8+AJUuAY8eAjAygY0dg/Hjg6aeBfv3c3VIicqDq6mpUV1fX/1xWVubG1liXHB+DEXFq7MsrwflLVWjZXFgsIaXPvTW7EAs2ZVsMyLpYWYslqTn4ZFc+7uzdxmHtbhEaUL+oQ38cAUByaUBP9NnuE/hs9wnEhAfhpTFxJgPoRsSp8dTwLnh3+3HUaBo/24sVtZi+OsMgAE9q9mJ1WOPt7MmQnJJV0OgzYum5ERERERERERGRDwkKAsaNE/598iTw888NP4uef164PfGEMG8yaBCgZG4j8lz8dFKTYM/qfyIiIo8UEgJMmwYcOQKsWAG0aCGkA/7yS6B/f2FlycSJgF6wBxF5r0WLFiE8PLz+1rZtW3c3ySo/pQIDOrXAuIQ2GNCphaTArZSsAkxfnSE5k9bFilp8lJ5vZ0sbjEtobdBOc+MIb1VYWoXpqzOQklVgcH9KVgEGLU7DktQck4FbIh2ABZuy67Nc2ZPlWOq+fdpHGmTY2nLwrMnPiLnnRkREREREREREPiwoCBg7Vlj0XloKPPqo4eP//S9wyy1CmcWZM4FffmFpRfJICp1O580LiG1SVlaG8PBwlJaWIiwszN3NIRcSy6rIXf1PRETkFQ4cEDJx/e9/hvePHAmsXQuw3+M12F/1fQ888AD+97//YeHChZg3b57V7U1l3mrbtq1PfUY0Wh0GLU6zqQSiQiFcn7HX2qlJGNCphcm2ieOI/KIKLEk9Zv/JJIgKDcCF8hqHZv1SQFjEsnPOMPgpFfUBc3LOof86ifsDprMcW1osY23fRwfHYuOBAoPPhFIBmKuQaPzciIiIyH04piFr+BkhIiIip7p0CUhJATZvFjJuXX89MHWq4Tb//jfw4otAQIB72kgeyx19VWbeoibFltX/REREXqNXL6Hme0aG4f1btgBt2wLPPAPk57ujZURkp8DAQISFhRncfM2+vBKbArcAxwRumcsQBRiOI2YN74L3JiXCFUMJrVYLHWA2O5UtdAAKSquwL68EGq0OCzZlyw4OKyxreJ/syXJsad9HB8figx15jT4T5gK3AMPnRkRERERERERETVjz5sBddwlzJh9/DPToATzwgOE2r7wCBAYKK0M/+wyoq3NHS4kAAP7ubgAREREROVjv3kIkQ3GxMBg5fhw4ehT4v/8TbuPGCbXek5Lc3VIionrnL9kWuOUoY3vFSFrcodHqEBkagLiY5sg6e8mpbbpYKVwwCgnwQ3mNY9O5n79UZXPAXJHRe5UcH4MRcWqbshyb2rdP+0gMeWu7zRnH3P1ZIiIiIiIiIiIiD9O/v3BbvlzItrVsmeHj998PPPss8MYbQHIy0LIl4M9wGnIdZt4iIiIi8lUtWgCbNgGHDwvZt3r3Fu7fsAEYMEC4PfggoFeKjYjIXVo2D7K+kRNtPFAAjaW0ThDK/A1anIaJq/Y4PXBLnxi4FRLg57Bj5py7hPTjRTbtu3x7LlKyCgzusyfLsfG+f564YHMWNsD9nyUiIiIiX7VlyxYMHz4cUVFRCA0NRWJiIv773/9Cq9W6u2lERERE0oSGAkuXCgvgy8uB2f/P3n2HR1Xlfxz/THoCKUAoCS10CD00kSq9KoIFBAXBhgXLrn0VEFawrL3tosIKiGJhgRVRUUBABBSIS5PeA0ECSYD0nN8f85sxQ2bSSDKT5P16nnk0955z73fOnZBz5n7vOQ9bt1erJp05I1WpIt1yixQRYU3ievxxKZUHBVHySN4CAAAo77y8pMGDrcspbttmnY3Lz0/6+WfrlMEBAdZlFY8fd3ekACqwzg2qKiLUfUk3+S23t3JHnCYv2HpFSUVXKuX/k7jCgnyv+FhvrT6gt1bvL1LdxJQMTV6wNVcCV3Ep6sxZFuW9/CUAAACKbvbs2Ro6dKi+//57ValSRY0bN1ZsbKymTJmi66+/ngQuAABQ9gQFWVcrMUaKi5O+/Vbq2VPavVv64w/pm2+kF1+UAgOtSys++qiUkuLuqFFOkbwFAABQkbRrJ82dKx05IjVu/Of248etCVwPPywdOuS28ABUXN5eFl3bNsKtMbhKGsrKNpq2bGeRl/ErLkbWBKVAX2/Nn9hZYYFXnsR1JaYv35XvbGVFUZSZs2zzfE0dHl2oWb8AAACQv40bN+qpp56Sl5eXPv74Yx04cECxsbHaunWratasqWXLlumVV15xd5gAAABF5+sr9e9vnYHrxAnpu+9yl3n5ZWvC1x13WBO7srJKP06UWyRvAQAAVES1akn79kkJCVLnzn9uf+01a1JX7drS11+7LTwAFU9WttGy2JKZyamgagQHKCvbaOOBs1q6/YQ2HjirrGyjt37Yr1NJnrHErJF1ljAfby/NHtVaFv2ZuGRj+7k4ZujKL468ZisrKtssbHmlYF2en1UrNEDvjovRoFbuTQAEAAAoj2bOnCljjO644w6NGTPGvr1t27b2pK3Zs2crIyPDXSECAAAUHx8fqV8/64xcqanSU0857v/gA2n0aOnwYWnSJGnlSik93S2hovywGGPc/fBwqUtKSlJoaKgSExMVEhLi7nAAAADcLzvbOiXwK684PlHSpYv0yCPSyJHWAQtKBf3V8mfDhg267rrr7D9fuHBBaWlpCgoKUmBgoH37tm3bVLdu3XyPVx4/IxsPnNWYOT+7NYZ+LWpo58kkh6URw4J8df6S592Een10O13XrrZW7ojTtGU7HZLLaoX4a9q1LdU/upbe+mG/Xl21t8TjKG62ZSolOcx4ZsvZevuWGFWp5Kf45FTVCLYulciMWwAAeI7y2F+tqJKSklS9enWlp6dr06ZN6pzzATBJGRkZCg8PV1JSkr755hsNGDCgwMflMwIAAMqUtDRp9Wpp2TKpUiUpIkL6y18cy9x/vzRrllS5sntiRLFwR1+VmbcAAAAgeXlJgwZZE7h++UVq1Ejy95c2bZJuvtk6ZXBEhHT0qLsjBcqkjIwMnT171v5KS7Mm2ly6dMlhe1YFnWo7K9tow/4/3B2GVu2Od0jckuSRiVvS5UsLupp7S/pkS8n+u12UJQ4LYlCrCL07Lka1Qh2Pb5tha0ibCHVtVE3Xtautro2qkbgFAABQQrZt26b09HQFBAQoJiYm135fX1916tRJkrRp06bSDg8AAKD0+Ptb76O884700ktSz57Svfc6lnnrLSk4WLJYpDlzmJELBcb0CQAAAHDUoYO0f790+rT07rvS9OnW7adOSfXrS97e0t69UsOG7o0TKEN69+6tCjjpcYGs3BGn6ct35UqagnMWWROYOjeoap+d6vJP1umkVE1esFUP9WtyRe0aFuirxJSMXMe/PI6SMqhVhPpH19LmQwmKT05VeCV/ySL9cSFNGw+cZbYtAACAUrBv3z5JUr169eTjYkbuhg0b6vvvv7eXdSYtLc3+EItknc0AAACgTOvY0fp67TVp9mzp2Wcd9991l/Too9Lrr0vdu0t16lgTwAAnmHkLAAAAztWsKU2bJp07J3Xt+uf2rCypSRNp1Chp7Vrruu8AUAS25CMStwrGlqY0dXi0JGn68l1OE6ts2+ZuOHxF57u9WwOH8zqLo6STp7y9LOraqJr8fbz0189jNfb9TXrwk+0aM+dndX/hB63cEVei5wcAAKjozp07J0mqUqWKyzK2fbayzsyaNUuhoaH2V0GWiwcAACgTfH2lZ56x3itJT5dmzrQmaUVESImJ1qStG26QatSQOnWS7rzTuh3IgeQtAAAA5C0sTPrpJ2vS1qOPSv36SdnZ0pdfSr17Wwccn3wiZXjm0mIAPFNWtnGZfATnqlTy1cRuUQoN9NPPB8/mmfRmJJ1PKdq/yxZJEaEBur9P4zyXLhzUKqJIxy8sV0l+pxKtM4xV1ASurGyjjQfOaun2E9p44KyysvltAgAAxS811doH8/Pzc1nG//9nkEhJSXFZ5sknn1RiYqL9dezYseINFAAAwBP4+kpPPy2lpkrHj0vr1klt20rx8VJSkvTLL9L771vvu1gs0u23S+fPuztqeACWTQQAAEDBeHlJL75o/f+dO6VXX5U++ED64w9pzBipbl0pKkr66CPrfwEgD5sPJTDj1mX6Nq+uXXHJDu0SEuCjDvWrKPZ4ohIupuuDDYf1wYbDCgv0LdAx81r60BnbPFrPDG2hzYcSlJaZrZdvaGtfrrBGcECpLleYV5Kf+f94py/fpf7RtSrUEorOlhuNCA3Q1OHRpZZUBwAAKoaAAGsif3p6ussytuUQAwMDXZbx9/e3J3kBAABUCF5e1uUSJenYMetD8j16OJaZN8/6GjNGuvFG6dprJW/v0o4UHoCZtwAAAFB4LVtanw45fVqaPt06+9axY9anSBo0sD4x8t137o4SgAeLTyZx63J39Gikpwe3UHDAn89ZJaVmavXvZ5Rw0fFmWUFn1XK19KHN5UlgtUIDdFfPBprx1W6NmfOzHvxku8Z+sEl//SxW/j5e6tqoWqkmSeWX5GckxSWmavOhhFKLyd2YiQwAAJSmgiyJWJClFQEAACo0WyKXMVJmpvSPfzjuX7RIeuABac8eayLXl19KFy+6J1a4BclbAAAAKLoaNaRnn5WOHJEmT3bcN2CANHKkNaHLsJQTAEc1ggPyL1TBfLD+gO7/ZJuSUzOv+Fj5LX0YERqg98bF6Ndn+mvRnVfp9dHttOjOq/TM0Gj968dDHpMYVNAkv4qSDJjfTGSSdSYyllAEAADFpUmTJpKko0ePKjPTeT/14MGDDmUBAACQB29v6ZFH/kzkWr/e+vO990qffy598ok0apRUubL1QfmxY6WzZ90dNUoYyyYCAADgygUESO+8I731lvTUU9ILL1i3L1lifQUHSw8+aE308i3YUl8AyrcO9avIyyKRY/KnVbvPFMtxbPNiTR0eLW8viwa1ilD/6FrafChB8cmpuZY+7NqomiRrYlD3F37wqCUKC5rkV1GSAQszE5ntugIAAFyJ9u3by9fXV6mpqdq6das6d+7ssD8jI0NbtmyRJHXp0sUdIQIAAJRd3t5St27WlyTFxkrJyY4zc338sfUlSW++Kd1+u1SpUunHihLFzFsAAAAoPl5e0uzZ1idGdu2S7rrLmtiVnCzNnCk1bCi9+KKUx3ILACqGX4+cI3GrmDhb+vDdcTEa1CrCvs3by6Kujarpuna1XS596IlLFHZuUFURoQEul320zTDWuUHVUovJnZiJDAAAlLaQkBD169dPkvTBBx/k2v/ZZ58pKSlJ1apVU+/evUs5OgAAgHKmbVvp5ZelrCzp7bdz73/gAeuKKAsWSDt2sLRiOULyFgAAAEpGixbSP/8pHT0q9eljHVAcPy49/rhUtap1ut9vvnF3lADchOSS4vP2LTEOSx+uf7yPQ+JWQXliYpC3l0VTh0dLUq4ErstnGKsImIkMAAC4w9NPPy2LxaL3339fixYtsm+PjY3VI488Ikl67LHH5Ofn564QAQAAyhcvL+syisZYE7nee0+qX19q0EC6dElq3lwaMUKqXt26beRI6dQpd0eNK0DyFgAAAEpW9erS999bk7jmznXcN2iQNYnrxx+tgxAAZVJWttHGA2e1dPsJbTxwVln5TKmVlW30R3JaKUV3ZUICfNSrabieGdpCb41un2uWK3eyzTp1VaNq+c6qVRCemhg0qFWE3h0Xo1qhjud1NsNYecdMZAAAwB26deumGTNmKDs7W7fccosaNWqktm3bKiYmRqdPn9bQoUP1l7/8xd1hAgAAlE9eXtLdd0uHD0sHDkhbt0p161rvqaSkWLcvWSJFRFjvt4wYIcXFuTloFJbFmIp3lywpKUmhoaFKTExUSEiIu8MBAACoWLKzpaefti6vmFNMjPTQQ9KoUVJQkFtC8xT0V5EfT/qMrNwRp+nLdzkstxcRGqCpw6OdJtU4K++pnhnaQhO6NXBIhtqw/w+NfX9ToY5jqx0a5KvESxkqjkG47ZjFmbyUlW3U/YUfdCox1WmMFlkTptY/3sctM11lZRttPpSg+ORU1Qi2JihVlBm3clq5I06TF2yVJIfrVBKfCQAAisqT+qsoPv/973/16quv6tdff1VGRoaaNGmi22+/Xffff7+8vb0LdSw+IwAAAFfIGGnbNqlDB+f7R4yQbrhBGjPGmgCGAnNHX5XkLQYFAAAA7rNkibRwofTVV1JqjkSOWbOku+6yLq9YAdFfRX485TNiSyK5fFDpKonEVXlPFOEiScmW4FSY5DNbMpskl0k3hW2TvBLkrgSJQWVDYZMmAQAobZ7SX4Xn4jMCAABQjIyR/v1v6fbbHbc3ayZ99JH0979LN95oXQ0lPNw9MZYhJG+VEgYFAAAAHuaPP6xrtj/zzJ/bgoKs0/y+8YY0ZIj7YnMD+qvIjyd8RvJLYrp8lqbCJD1FhAbo2rYRWhYb55YZuizKO0lp5Y443fP/CU75uf+aRnq4fzN7EpirpJtr20boXz8ecpnEdWePKPVpXqtUZp0iMahsYCYyAIAn84T+KjwbnxEAAIASYowUGyt9/rkUGSnt3y+9+qpjmQEDpDlzpHr13BOjhyN5q5QwKAAAAPBQaWnSp59Kr7xiHVzkNG2a9Oyz1jXbyzn6q8iPJ3xGNh44qzFzfs633KI7r1LXRtUKXD7nUoXpmdm6atYqJVzMyLdeWJCvzl/Kv1xBPNyvqR7s1yTPMq+v2qtXV+3L91i295+Tq6QbZ0lTVSv5auZ1rTSkTWTR3kwRkRgEAACuhCf0V+HZ+IwAAACUkl27pE8+kWbMcL7/lVesM3aFhZVqWJ7MHX1VFrYEAACA5/D3l267zbpO+4IFjvumTbOu3b5ggZSe7pbwAPwpPrlgM2LZyhW0fHiwvz1J6Ncj5wqUuCVJt15Vv0DlCiIqPCjfMvf3aaJaIQEu91tkna2qc4Pcy796e1nUtVE1Xdeutro2qmZ/v4NaRWj943206M6r9Prodlp051Xa8nT/Uk/cyitGAAAAAAAAAGVIdLT03HNSdrY1ietyjzwi1ahh3bdpk3T+fKmHCJK3AAAA4IksFmnsWOv0vv/5z5/bt22Tbr1VqlZN6tlTOnvWbSECFV2NYNeJS87KFba8VPCEL0lauOlIgcsWJgZXvL0smnZttCyyJmrlZPt56vDoQic9kTQFAAAAAAAAoNhZLNLNN1vvuxgjLV4sde5sTe7KyJDatZOuu86ayBUcLPXqJR086O6oKwyStwAAAODZrrvOOpD44w/p73+XIiKkCxekdeukunWle++Vdu92d5RAhZCVbbTxwFkt3X5C2caoVoh/rsQlm8tnnurcoKoiQgMKXF4qeMKXpALP0JWfsCBfp7NlOTOoVYTeHRejWqGOcdYKDdC742I0qFVEscQEAAAAAAAAAMXqxhutM23t3Cnt2ydVqiRVr25N5LpwQfrxR6lRI2vSV48e0v797o64XPNxdwAAAABAgVSrJj31lPTXv0oPPSRt3Cht3y69+671JUnPPCNNn24dTAAoVit3xGn68l2KS/xzNqywIF8ZWROvTI6yzmae8vayaOrwaE1esLVA5aU/E75ynrOk3X51g0LNdjWoVYT6R9fS5kMJik9OVY1gawIaM2YBAAAAAAAAKBMaN7b+93//k/bskbp0kZKS/ty/fr3UpIk0cKB0003S7bdzH6aYMfMWAAAAyhY/P+mdd6StW6XVq63LJ9rMmCF5eUkffCClp7svRqCcWbkjTpMXbM2VRJV4yTrbVWiQr8N2VzNPFXamKlvCV0FV8vcucFlnwoJ8dX+fxoWux1KHAAAAAAAAAMqF5s2lxETriihLl0oBOb7L/eYb6b33pO+/lwYMkObMkQ4fdluo5YnFGGPyL1a+JCUlKTQ0VImJiQoJCXF3OAAAALhSX30lDRvmuC0iQrrvPmncOKl+fffEVUT0V5Gf0vyMZGUbdX/hB5ezX1lkTb56+Ya2+uNiWoFmnsrKNoWaqWrFbyd1/6JtynYxerXFcHPHunrt+32FeHeO3mOpQwAAgGLBmAb54TMCAABQxuzdK33+ufV+y+rV1ofoc+rQQfroIym64A/jeip39FWZeQsAAABl39Ch1qdA9u2TJk+WIiOluDjpb3+ToqKke+6xTvULoNA2H0rIc9lCIykuMVVeXpYCzzxV2JmqhrSJ1FtjYpzuy7nk4gN9myjsslnALi9bJchXtUL8HbZHhAaQuAUAAAAAAAAArjRtKj31lDR2rPTEE9Lzzzvu//VXqWVL63KKL7wgxce7J84yiuQtAAAAlB+NG1uXVDx0SJo//8/t//yn1KKFVKWKdXBR8SafBYosPtl14lZRyhXVkDYRem9cjCLyWHLR28ui2SNby1kqmG3brJGtteGJvlp051V6fXQ7LbrzKq1/vA+JWwAAAAAAAABQEI0bS08+ab3XsnKlFBbmuP+JJ6yro3zxhbRqlXT6tFvCLEtYNpHpeAEAAMovY6Qff5RefVVatswxaat3b+u24GC3hecK/VXkpzQ/IxsPnNWYOT/nW27RnVepa6NqJRqLVLAlF1fuiNP05bscZgyLCA3Q1OHRJGkBAACUAsY0yA+fEQAAgHJo1Srr/ZjTp6WtW6UDB6S2baWLF6XsbOvMXAsWSO3auTvSPLmjr+pTKmcBAAAA3MFikXr1sr5273Zca33NGql2bemxx6zLKoaHuy1MwJN1blBVEaEBOpWYKmdP/lhknf0qO9to6fYTLhOqiottycW8DGoVof7RtfJN8gIAAAAAAAAAFJN+/awvSTp5UkpNta6KsnmzddvOnVL79tb/b9FCWrjwz58rOGbe4okOAACAiuXgQalTJykh4c9t/v6St7f0yy/WAYOb0V9Ffkr7M7JyR5wmL9gqSQ4JXJb//zksyFfnL2XYtzPLFQAAQMXGmAb54TMCAABQgRw5IvXoIR07lntfjx7SmDHS5MmlH5cL7uirepXKWQAAAABP0bChdPaslJ5ufaqjQwcpLU26dMk6M9eQIdLXX1un8AUgyTqT1bvjYlQrNMBhe1iQryQ5JG5J0qnEVE1esFUrd8SVWowAAAAAAAAAAA9Uv7509KhkjLRunVSnzp/71q2TvvxS+uILayLXG29Iv/3mvljdhJm3eKIDAACgYjNGeucda8LWihXWn20eeMA6UChl9FeRH3d9RrKyjX0pwvDK/vrL4u06lZTmtKxtOcX1j/dhuUIAAIAKhjEN8sNnBAAAADp2TPr8c6lxY2n+fOmzzxz3Dx8uLV0qWUr3+2Vm3gIAAABKm8Ui3Xef9N//Snv3Svff/+e+N9+UTp92X2yAh/H2sqhro2q6rl1teVksLhO3JOtyinGJqdp8KMFlGQAAAAAAAABABVW3rvTww9YkrX/8Q3r1Vcf9y5dL33/vnthKGclbAAAAgE3jxtaErYMHpZgYafZsqXp1d0cFeKT45NRiLQcAAAAAAAAAqKDq1pUeesi6OsqmTVKjRtLkydLVV7s7slJRppK3VqxYoX79+qlq1aqqVKmSYmJi9Oabbyo7O9vdoQEAAKA8adBA+vVX6fHHJa8y1WUGSk2N4IBiLQcAAAAAAAAAgDp3lvbvl955RwoKcnc0paLM3ImaPXu2hg4dqu+//15VqlRR48aNFRsbqylTpuj6668ngQsAAAAASlHnBlUVERogi4v9FkkRoQHq3KBqaYYFAAAAAAAAAECZUiaStzZu3KinnnpKXl5e+vjjj3XgwAHFxsZq69atqlmzppYtW6ZXXnnF3WECAAAAQIXh7WXR1OHRkpQrgcv289Th0fL2cpXeBQAAAAAAAAAAykTy1syZM2WM0R133KExY8bYt7dt29aetDV79mxlZGS4K0QAAAAAqHAGtYrQu+NiVCvUcWnEWqEBendcjAa1inBTZAAAAAAAAAAAlA0+7g4gP0lJSVq1apUkadKkSbn233jjjZo8ebLOnj2r1atXa8CAAaUdIgAAAABUWINaRah/dC1tPpSg+ORU1Qi2LpXIjFsAAAAAAAAAAOTP42fe2rZtm9LT0xUQEKCYmJhc+319fdWpUydJ0qZNm0o7PAAAAACo8Ly9LOraqJqua1dbXRtVI3ELAAAAAAAAAIAC8vjkrX379kmS6tWrJx8f5xOFNWzY0KEsAAAAAAAAAAAAAAAAAHg6j1828dy5c5KkKlWquCxj22cre7m0tDSlpaXZf05KSirGCAEAAAAAAAAAAAAAAACg8Dx+5q3U1FRJkp+fn8sy/v7+kqSUlBSn+2fNmqXQ0FD7q27dusUfKAAAAAAAAAAAAAAAAAAUgscnbwUEBEiS0tPTXZaxzaoVGBjodP+TTz6pxMRE++vYsWPFHygAAAAAAAAAAAAAAAAAFILHL5uY35KIOfe5WlrR39/fPjsXAAAAAAAAAAAAAAAAAHgCj595q0mTJpKko0ePKjMz02mZgwcPOpQFAAAAAAAAAAAAAAAAAE/n8clb7du3l6+vr1JTU7V169Zc+zMyMrRlyxZJUpcuXUo7PAAAAAAAAAAAAAAAAAAoEo9P3goJCVG/fv0kSR988EGu/Z999pmSkpJUrVo19e7du5SjAwAAAAAAAAAAAAAAAICi8fjkLUl6+umnZbFY9P7772vRokX27bGxsXrkkUckSY899pj8/PzcFSIAAAAAAAAAAAAAAAAAFEqZSN7q1q2bZsyYoezsbN1yyy1q1KiR2rZtq5iYGJ0+fVpDhw7VX/7yF3eHCQAAAAAAAAAAAAAAAAAFViaStyTr7FvLly9Xnz59dPbsWe3fv1+tW7fWa6+9pqVLl8rb29vdIQIAAAAAAAAAAAAAAABAgfm4O4DCGDZsmIYNG+buMAAAAAAAAAAAAAAAAADgipWp5K3iYoyRJCUlJbk5EgAAACA3Wz/V1m8FLseYBgAAAJ6MMQ3yw5gGAAAAnsod45kKmbyVnJwsSapbt66bIwEAAABcS05OVmhoqLvDgAdiTAMAAICygDENXGFMAwAAAE9XmuMZi6mAj75kZ2fr5MmTCg4OlsVicXc4hZKUlKS6devq2LFjCgkJcXc4cIJr5Pm4Rp6Pa+T5uEaej2tUNri6TsYYJScnKzIyUl5eXm6MEJ7KXWMa/m0pPrRl8aI9ixftWbxoz+JFexYv2rN40Z5/YkyD/JTl+zRXin8ryg+uZfnBtSxfuJ7lB9ey/Chr19Id45kKOfOWl5eX6tSp4+4wrkhISEiZ+FBXZFwjz8c18nxcI8/HNfJ8XKOywdl14ul05MXdYxr+bSk+tGXxoj2LF+1ZvGjP4kV7Fi/as3jRnlaMaZAXd49pPAH/VpQfXMvyg2tZvnA9yw+uZflRlq5laY9neOQFAAAAAAAAAAAAAAAAANyA5C0AAAAAAAAAAAAAAAAAcAOSt8oYf39/TZ06Vf7+/u4OBS5wjTwf18jzcY08H9fI83GNygauE8oaPrPFh7YsXrRn8aI9ixftWbxoz+JFexYv2hNAQfBvRfnBtSw/uJblC9ez/OBalh9cy/xZjDHG3UEAAAAAAAAAAAAAAAAAQEXDzFsAAAAAAAAAAAAAAAAA4AYkbwEAAAAAAAAAAAAAAACAG5C8BQAAAAAAAAAAAAAAAABuQPIWAAAAAAAAAAAAAAAAALgByVsAAAAAAAAAAAAAAAAA4AYkb7nRihUr1K9fP1WtWlWVKlVSTEyM3nzzTWVnZxf5mIsXL9agQYNUs2ZN+fv7q3bt2ho0aJA+/PDDYoy8YinO65ScnKznnntO7du3V+XKleXn56d69epp7Nix2rp1awlEX74dOnRIc+bM0Z133qm2bdvKx8dHFotFM2fOvKLjbty4Udddd52qV6+uwMBARUdHa8aMGUpNTS2myCuO4r5G27Zt07PPPqtevXopPDxcvr6+qlGjhgYPHqwlS5YUc/QVQ0n9HuX0/vvvy2KxyGKx6I477ii241YUJXmN6DcUn5K4TvQb4ElKYuzi6a7k97qo/cndu3dr7NixioiIUEBAgBo1aqS//vWvOn/+fJ71Tpw4obvuukt169aVv7+/6tWrp7vvvlsnTpwozFsuMcYYrV+/Xo8++qiuuuoqhYWFyc/PT5GRkRo1apRWr16dZ33aM7f//Oc/uvvuu9WhQwdFRETIz89PYWFhuvrqq/X6668rPT3dZV3aM39/+9vf7P3XvH7naUvnJkyYYG8/Vy9XbUSbOpeVlaU5c+bYx8IBAQGqX7++RowYoaVLlzqtQ1vmdvjw4Xw/m7bX2rVrc9WnTQEU1ZX2h+HZCtp3hOcqSl8Lnic+Pl5//etf1bJlSwUFBdn7XXfddZf279/v7vCQgzu+c0PJKMq15F5vHgzcYtasWUaSkWQaNmxo2rRpY7y8vIwkc+2115qsrKxCHS81NdVce+21Dsfs1KmTqVu3rvHy8jIdOnQooXdSvhXndTp9+rRp2rSpkWS8vLxMo0aNTNu2bU3lypWNJOPt7W0+/vjjEnw35c+DDz5ovz45XzNmzCjyMRcsWGC8vb2NJFO7dm3Tvn174+vraySZTp06mYsXLxbjOyj/ivMa7d+/3+EYDRo0MB06dDBVqlSxbxs/fnyh//2s6Eri9yin+Ph4U7VqVftxJ02aVCzHrUhK4hrRbyh+xX2d6DfAkxT32KWsKOrvdVH7kz/88IMJDAw0kkz16tVNTEyMCQoKsrf7qVOnnNbbuXOn/W9taGioiYmJMaGhoUaSqVatmtm9e/cVt8WVWrVqlb39vLy8TNOmTU379u3t/6ZJMn/729+c1qU9nevWrZuRZPz9/U2DBg1Mx44dTe3ate3t2aFDB3Pu3Llc9WjP/O3atcv4+fnl+ztPW7o2fvx4I8k0adLEdOvWzekrLS0tVz3a1LmEhARz1VVXGUnGYrGYZs2amQ4dOpiIiAgjyYwaNSpXHdrSubi4OJefyW7dupmGDRsaSSYgIMCcP3/eoS5tCuBKXEl/GJ6toH1HeK6i9LXgefbs2WNq1KhhJBlfX1/TrFkz06pVKxMQEGAkmaCgILNmzRp3h4n/V9rfuaHkFPZacq83byRvucFPP/1kLBaL8fLycrjptn37dlOzZk0jybz00kuFOuaYMWOMJNOzZ0+zZ88eh33x8fHmm2++KZbYK5Livk6TJk0ykkyzZs0cvmC5cOGCueuuu4wkExISYhITE4v1fZRnM2bMMMOGDTPPPfec+frrr82oUaOuaIB06NAh4+/vbySZF1980WRnZxtjjDl8+LBp1qyZkWTuu+++4nwL5V5xXqN9+/aZiIgI88ILL5iTJ0/at2dlZZk333zTWCwWI8m8+eabxfkWyr3i/j263NixY42Xl5cZOnQoyVtFVBLXiH5D8Svu60S/AZ6iJMYuZUVRfq+L2p9MSkoy1atXN5LMlClTTHp6ujHGmD/++MOepDN06NBc9TIzM010dLT9C2Xbl1QXLlwwI0eONJJMmzZt3P6Fx3fffWcaN25s3nnnHZOQkGDfnpaWZp588kn7lzPLly93qEd7ujZ37lyzevVq+3uz2bhxo6lTp46RZO69916HfbRn/rKzs02PHj1MpUqVTJ8+fVz+ztOWebMlb82dO7fAdWhT57Kyskz37t2NJDNy5Ehz7Ngxh/3Hjh0za9euddhGWxbd2LFjjSRz0003OWynTQFcqaL2h+HZCtp3hOcqSl8Lnqlv375GkunWrZvDdfzjjz/sDzE3aNDA3o+De5Xmd24oWYW9ltzrzRvJW24wZMgQI8ncddddufYtXLjQ/gTV5V/CuvL1118bSaZ58+bm0qVLxR1uhVXc16lWrVpGklm2bFmufRkZGSY8PNxIMitWrLji2Csq2xfERR0g3XvvvUaSGTBgQK59GzZssGfsu3oqEvm7kmuUkpKSZ9b8PffcY/8CE0V3pb9HOX333XdGkpk8ebKZOnUqyVvF5EqvEf2G0nGl14l+AzxFcfeJy7KC/F4XtT/54osvGkmmRYsWJjMz02HfkSNHjI+Pj5Fkfv31V4d9ixcvtl+DpKQkh31JSUmmWrVqRpL58ssvC/t2i1ViYqLJyMhwuX/w4MFGss7klhPtWTS29xEZGemwnfbM35w5c4wk88ILL+T5O09b5q0oyVu0qXPvvvuukWSuueaaAifq0JZFk5ycbCpVquQ0eYI2BXClitofhmcraN8RnqsofS14nosXL9pniP/tt99y7U9ISLAnhOzatcsNESI/JfmdG0pXfteSe7158xJKVVJSklatWiVJmjRpUq79N954o0JCQnT27NkCr3P+2muvSbKuqx0YGFhssVZkJXGdUlJSJEkNGzbMtc/Hx0f169eXJGVmZhY1bFwBY4x9HV1n1/zqq69W8+bNlZGRwRrnbhIQEKCgoCCX+wcMGCBJ2rt3b2mFhDykpqZq8uTJqlGjhp5//nl3h4Mc6DeUDfQb4AlKok9cnl1Jf/LLL7+UJE2YMEHe3t4O++rVq6d+/fpJkj7//HOn9W666SYFBwc77AsODtaNN94oSfrss8+K+raKRUhIiHx8fFzu79+/vyTHfhztWXTNmzeXJF26dMm+jfbM35kzZ/T4448rOjpaDz/8sMtytGXxo01de/311yVJM2bMkJdX/l/j0pZF9+WXX+rixYuqXr26Bg0aZN9OmwIoDkXpD8OzFbTvCM9W2L4WPFN6erqys7MlOf8utUqVKqpataokvkstq7iHW35wrzdv/CUqZdu2bVN6eroCAgIUExOTa7+vr686deokSdq0aVO+x0tJSdH3338vi8WioUOHas2aNZo0aZL69u2rUaNG6bXXXlNycnKxv4/yrrivkyS1adNGkvTTTz/l2peQkKA9e/bIx8dH7dq1K3rgKLKjR48qLi5OktStWzenZWzbC3rNUbpSU1MliWQUDzFz5kzt379fL730ksLCwtwdDv4f/Yayg34DPEFJ9InLs6L2JzMzM/Xrr78Wup4k/fzzz0Wq52mc9eNoz6LbuHGjJDn83tKe+Xv44YeVkJCgd955R76+vi7L0ZYF9/nnn2vEiBHq06ePRo8erTfffFOJiYm5ytGmzu3bt0979uxR1apVdfXVV2vp0qUaN26c+vbtq9GjR+v9999XWlqaQx3asugWLFggSRo9erRDggVtCqA08L1m2VPQviM8V1H6WvBMYWFhqlu3riTn36X+/vvvOnv2rMLCwtSkSZPSDg/FgHu4FUdF7xORvFXK9u3bJ8n6dJWrJy1sWcG2snmJjY1VZmamIiMj9cILL+iaa67Rhx9+qB9++EFffvmlHn74YTVv3lzbt28vtvdQERT3dZKkadOmydfXV48++qjmzp2r06dP6+LFi9qwYYOGDRumixcv6oknnrB3MFC6bNfR399fkZGRTssU9pqjdC1evFiS644bSs/u3bv10ksvqUePHrrtttvcHQ5yoN9QdtBvgCcoiT5xeVbU/uThw4eVkZHhsL8g9dLT03X06NEC1ct5Dk9jjLHPHJKzH0d7Fk5WVpaOHz+ud955R3/9619VqVIlzZo1y76f9szb999/r4ULF2rcuHHq1atXnmVpy4L76quvtHTpUq1evVqffvqppkyZogYNGmjlypUO5WhT52yJP82bN9ett96qESNGaOHChfrhhx/06aef6s4771S7du105MgRex3asmji4uL0/fffS5JuvfVWh320KYCS5qo/DM9VmL4jPFdR+lrwXDNnzpQkTZw4UV988YXOnj2rxMREffPNNxoxYoQsFotefPFFBQQEuDlSFAX3cCuOin6vl+StUnbu3DlJ1ikaXbHts5XNiy3LND4+XrNnz9bw4cO1Z88epaWlafPmzYqJidHJkyd13XXX6cKFC8XwDiqG4r5OktSnTx999913atOmjSZOnKhatWqpcuXK6t69u+Li4rRgwQLNmDHjyoNHkdiuY1hYmCwWi9Myhb3mKD3ffvut/vOf/0iSHn30UfcGU8EZY3T33XcrOztb77zzjrvDwWXoN5Qd9BvgCUqiT1yeFbU/mfP/XbW1s3qJiYn2ZQHyq5edna2kpKQCvY/SNmfOHG3btk1+fn566KGH7Ntpz4J57bXXZLFY5OPjo7p16+q+++5T37599fPPP6tz5872crSna6mpqbrnnnsUGhqql19+Od/ytGX+GjVqpOeff16xsbFKSkpScnKyvv32W3Xp0kXnzp3TiBEj9Msvv9jL06bO2fruW7Zs0cKFC3XHHXfo8OHDSk1N1apVq9SwYUPt2bNHo0aNsr8f2rJoFi5cqOzsbDVr1sw+q6gNbQqgpLnqD8MzFbbvCM9VlL4WPNdtt92mL774QuHh4brhhhsUHh6usLAwDRo0SH5+flqxYoXuvPNOd4eJIuIebsXAvV6St0qdbao3Pz8/l2X8/f0lWZc2ys/FixclSRkZGWrYsKG++OILNWvWTH5+furUqZO++uorBQUF6ejRo5o7d24xvIOKobivk82hQ4cUHx8vi8Wi+vXrq3Xr1goMDNThw4f1/vvv6/Dhw1cUN4qupK45St7Ro0c1duxYSdK9996rnj17ujmiiu2DDz7QunXr9NBDD6lVq1buDgeXod9QttBvgLvRPyqcoraXrV5eda+03uV1PcXWrVv14IMPSrI+JduoUSP7PtqzYGrXrq1u3bqpc+fOqlmzpiRp9erVWrRokbKysuzlaE/XbMt9//3vf7e3YV5oy/w988wzevLJJ9WmTRsFBwercuXK6t+/v3788Ud17txZaWlpevzxx+3laVPncvbde/TooTlz5qh+/fry9/dX37599eWXX8pisejXX3/VV199JYm2LCrbkomXz7ol0aYASlZe/WF4psL2HeG5itLXgucyxujgwYM6e/asvL291bhxY0VHR8vPz087duzQv/71LyUkJLg7TBQR31GWf9zrtSJ5q5TZpmNMT093Wca2hnJB1vLMOb3jvffem2tt7Vq1amn06NGSlGtaerhW3NdJkmbNmqXbb79dFotF27dv1+HDh/Xbb78pPj5ekyZN0po1a9StWzclJiZe+RtAoZXENUfJS0hI0ODBg/XHH3+od+/eeuWVV9wdUoV25swZPf7446pTp46mTp3q7nDgBP2GsoN+AzwB/aPCKWp75fy32VXdK613eV1PcOjQIQ0bNkypqam65ZZb9Ne//tVhP+1ZMDfeeKPWr1+vTZs26dSpU/r5558VFRWl559/Xvfff7+9HO3pnG2575iYGE2ePLlAdWjLovPz87PPHLpmzRr7E9G0qXM547Td2M+pbdu2uuaaayT92XenLQvvf//7n2JjY2WxWDRu3Lhc+2lTACUlv/4wPE9R+o7wXEXpa8Fz3XPPPXr00UdVt25d7d+/X/v27dPOnTt17NgxDRkyREuWLNE111zj8JATyg6+oyzfuNf7J5K3SllBpuwryPIklx9Psq7L7EyLFi0kidkZCqG4r1N8fLyee+45SdK8efPUpk0b+77KlSvrvffeU3R0tE6ePMkyY25iu47nz5+XMcZpmcJcc5S8CxcuaMiQIdq1a5c6dOigZcuWOTx9itL32GOPKSEhQa+++qoqV67s7nDgBP2GsoF+AzxFcfeJy7ui9idz/r+rtnZWLzQ0VF5eXgWq5+XlpZCQkAK9j9Jw6tQp9e/fX3FxcRo6dKjmzZuXa9p72rNounTpohUrVsjf31//+te/dOTIEUm0pyv33nuvMjMz9e6779rjzQ9teWW6du0qybrc28GDByXRpq4Upe9OWxbe/PnzJUk9e/ZU/fr1c+2nTQGUhIL0h+F5itJ3hOfie9LyIzY2VnPmzJGvr68++eQTRUVF2ffVqFFDCxcuVHh4uH777TctXrzYfYGiyLiHW35xr9cRvYtS1qRJE0nWqd8yMzOdlrF9eWUrm5dmzZrZ/9/VB9m2nWzigivu6/TLL78oNTVVlStXVufOnXPt9/HxUe/eve1lUfps1zEtLU0nT550WqYw1xwlKy0tTdddd502bdqk6OhorVy5UsHBwe4Oq8Lbtm2bJOn+++9XrVq1HF4vv/yyJOnjjz+2b0Ppo99QNtBvgKco7j5xeVfU/mRUVJR9JkTb/oLU8/PzU7169QpUL+c53C0hIUH9+/fXgQMH1KtXL3322WdOY6M9iy4yMlLt2rVTdna2YmNjJdGermzbtk0Wi0XXXnttrv7rp59+Kkl64YUXVKtWLXXq1EkSbXmlcsZn+9tCmzpXlL47bVk42dnZWrRokSTnSyZKtCmA4lfQ/jA8T1H6jvBcfE9afmzYsEHGGDVt2lR169bNtT8kJMT+HSvfpZZN3MMtn7jXmxvJW6Wsffv28vX1VWpqqrZu3Zprf0ZGhrZs2SLJ+sRsfurUqWP/Q5TfgL527dpFDbvCKe7rlJycnG8ZW6awbd1elK569erZk0k2bNjgtIxte0GuOUpOZmambrrpJv3www9q2LChvvvuO4WHh7s7LORw+vTpXK+LFy9Ksq43btuG0ke/oWyg3wBPUdx94vKuqP1JHx8fxcTEFLpezp/LSv/V9jTdjh071KlTJy1fvtzldPa055WxJcXY/kt7upaVleW0/2r7G3vhwgWdPn1aZ86ckURbXqmdO3fa/79OnTqSaFNX2rdvb18epKB9d9qycFavXq3jx48rICBAN9xwg9MytCmA4lSY/jA8U2H7jvBcRelrwTPxXWr5xz3c8od7vc6RvFXKQkJC1K9fP0nSBx98kGv/Z599pqSkJFWrVs0+o0J+brzxRknSRx99lGtfamqqPeO/T58+RYy64inu62TL8r1w4YI2b96ca39mZqbWrl0rSWratOkVRI6islgsuv766yU5v+Y//fST9uzZI19fX1177bWlHR7+nzFGEyZM0LJlyxQZGalVq1YpMjLS3WHh/23fvl3GGKevqVOnSpImTZpk3wb3oN/g+eg3wFOUxNilPLuS/uTIkSMlWZdKvfyJ3qNHj2rVqlWSpFGjRjmtt3jx4lxfViYnJ+uzzz6TJJc3pEtTzqfpWrZsme/TdLRn0R0+fNg+41bbtm0l0Z6u2JZccPYaP368JGnGjBkyxtiXSqEtr8w//vEPSdalaWw3wWhT5ypVqqQhQ4ZIkv7973/n2n/q1Cl98803kv7su9OWhWNbMvHaa69VaGio0zK0KYDiUtj+MDxPUfqO8FxF6WvBM9m+S927d6+OHTuWa39SUpL94UO+Sy2buIdbvnCvNw8GpW79+vXGYrEYLy8v8/HHH9u3b9++3dSsWdNIMi+88IJDnVdffdXUr1/f3HzzzbmOFxcXZypXrmwkmZkzZ5qsrCxjjDGXLl0y48ePN5JMlSpVTHx8fMm+sXKmOK9Tdna2iY6ONpJM8+bNTWxsrH1fUlKSmTRpkpFkJJlffvmlZN9YOWb7vM+YMcNlmbx+lw4ePGj8/PyMJPPiiy+a7OxsY4wxhw8fNs2aNTOSzOTJk0ss/orgSq/RAw88YCSZ8PBws2vXrpIMtcK60mvkytSpU40kM2nSpOIIs0K70mtEv6F0XMl1ot8AT1KUPnF5VZDf66L2JxMTE014eLiRZKZMmWLS09ONMcb88ccfplu3bkaSGTx4cK56mZmZpnnz5kaSGTVqlLl48aIxxpgLFy6YUaNGGUmmVatW9n/r3SUzM9OMGDHCSDKNGjUyJ0+eLFA92tO5X375xTz77LPmwIEDufZ9/fXX9vcwZMgQh320Z+Hk9TtPW7r27bffmieeeMIcPHjQYfv58+ft4zlJDn9TjKFNXdm+fbvx9vY2Xl5eZt68efbt586dMwMHDjSSTMOGDU1aWpp9H21ZMJcuXTLBwcFGklm+fHmeZWlTAFeqqP1hlB0FGS/C8xSlrwXPk5ycbO9zXX311ebQoUP2fadPnzbDhg0zkkxAQIA5fvy4+wKFSyX5nRtKV0GuJfd6XSN5y01mzpxp/8KqYcOGpk2bNsbLy8tIMkOHDjWZmZkO5W03vXv16uX0eMuWLbP/g1WzZk3TqVMnExoaaiSZoKAg880335TCuyp/ivM6/frrr6ZKlSpGkrFYLCYqKsq0adPGBAYG2s8xc+bMUnpn5cP69etNtWrV7C9/f3/7Zz7n9qNHj9rr5Pe79O9//9t+jWvXrm3at29vfH19jSTToUMHc+HChVJ6d+VDcV6jn376yf67UrduXdOtWzeXLxRcSfweOUPyVtGVxDWi31D8ivs60W+AJylsn7i8KMrvtTFF70+uWrXKBAQEGEmmevXqpkOHDiYoKMhIMlFRUSYuLs5pvf/973/2fy9CQ0NNhw4d7P+mV61a1ezcubPY26awPv74Y/tnqEmTJi77cDfccEOuurRnbqtXr7a3Z61atUzHjh1NmzZtTFhYmH17p06dzJkzZ3LVpT0LLr8vHGlL55YsWWL/HNauXdt06tTJtGvXzt73tFgsZurUqU7r0qbOvfvuu8ZisRhJpl69eqZjx4729xceHm62bduWqw5tmT/b36bq1aubjIyMfMvTpgCuxJX0h1E2kLxVdhWlrwXPs2LFCnufy9vb2zRp0sRER0fbxyE+Pj4OCXpwr9L+zg0lp7DXknu9eSN5y42WL19u+vTpY0JDQ01QUJBp27atee2115ze/CjIjfLffvvNjB492tSqVcv4+vqayMhIc9ttt5ndu3eX4Lso/4rzOp04ccI88sgjJjo62gQGBtqv06hRo8wPP/xQwu+k/Ml50yKvV84s+4L8Lm3YsMEMGzbMVK1a1fj7+5tmzZqZadOmmZSUlJJ/U+VMcV6jgh5L4k9bYZTU79HlSN4qupK6RvQbildJXCf6DfAkhekTlxdF+b22KWp/cseOHWb06NGmRo0axs/PzzRo0MA88sgjJiEhIc96R48eNXfccYepXbu28fPzM7Vr1zZ33nmnOXbs2JU0QbGZO3dugdqyfv36TuvTno4SEhLM66+/bq699lrTqFEjU7lyZePn52ciIiLM4MGDzdy5c/NMRKA9C6YgN+Boy9yOHj1qnn76adOnTx9Tr149ExgYaAICAkyDBg3MbbfdZn7++ec869Omzv34449m+PDhJjw83Pj5+ZmoqChz33335TlzAG2Zt8GDBxtJ5oEHHihwHdoUQFFdaX8Yno/krbKtKH0teJ7ff//d3HXXXaZx48bG39/f+Pn5mfr165tbb73V/Prrr+4ODzm44zs3lIzCXkvu9ebNYowxAgAAAAAAAAAAAAAAAACUKi93BwAAAAAAAAAAAAAAAAAAFRHJWwAAAAAAAAAAAAAAAADgBiRvAQAAAAAAAAAAAAAAAIAbkLwFAAAAAAAAAAAAAAAAAG5A8hYAAAAAAAAAAAAAAAAAuAHJWwAAAAAAAAAAAAAAAADgBiRvAQAAAAAAAAAAAAAAAIAbkLwFAAAAAAAAAAAAAAAAAG5A8hYAAAAAAAAAAAAAAAAAuAHJWwAAj7BmzRpZLBb17t3b3aEAAAAAqCAmTJggi8WiefPmldo5LRaLLBZLqZ0PAAAAAAAAno3kLQAoJa1bt5bFYlFgYKCSkpLcGsvhw4ftNwxyvry9vVW1alX16NFDb7/9tjIzM90aJwAAAADPERUVlWsMERgYqEaNGmnixInauXOnu0N0u3nz5mnatGk6fPiwu0MBAAAAUECedP8mp/T0dL377rvq16+fatWqJT8/P9WsWVN9+vTR22+/rbS0NHeHCAAoJiRvAUAp2L59u3bs2CFJSk1N1eeff+7miP7UsWNHdevWTd26dVOHDh3k6+ur9evX6/7771f//v2Vnp7u7hABAAAAeJAmTZrYxxCNGjXS8ePHNXfuXHXo0EHLly93d3huNW/ePE2fPj3P5K1mzZqpWbNmpRcUAAAAAJc89f7Nzp07FR0drXvvvVfff/+9AgMD1a5dO/n6+mr16tW6//77FR0dzUM0AFBOkLwFAKVg/vz5kqSwsDCHnz3BZ599pvXr12v9+vXavHmzTp06pY8//lje3t5as2aN3n//fXeHCAAAAMCDPPXUU/YxxI4dO3T06FH169dPaWlpuv3223XhwgV3h+jR9uzZoz179rg7DAAAAADyzPs3Bw4cUI8ePXTgwAFdc8012rFjhw4dOqTNmzfr+PHj2rRpk2JiYnTw4EF7OQBA2UbyFgCUsKysLC1atEiS9NZbb8nb21tr167V0aNH3RyZcxaLRWPGjNHIkSMlSatWrXJzRAAAAAA8Wc2aNTV//nz5+/vr7Nmz+u6779wdEgAAAADky1Pv34wbN07nzp1T3759tXLlSrVs2dJhf+fOnbVmzRq1adNG586d06233uqmSAEAxYXkLQAoYatWrVJcXJxq1aql0aNHq0+fPjLGaOHChfYyO3fulMViUdWqVfNcprBDhw6yWCxatmyZw3ZjjD755BP1799f1apVk7+/vxo2bKgpU6bo1KlTRYq7fv36kuQynszMTL333nvq3r27wsLCFBAQoObNm+tvf/tbnmvCL1myRFdffbUqVaqkatWqadiwYfrll19cll+zZo0sFot69+6tzMxMvfjii2rdurWCgoIUFRUlybo0icVi0YQJE5SSkqInn3xSDRs2VGBgoJo1a6Y333zTfryzZ8/qwQcfVP369RUQEKCWLVtq3rx5Ts998eJFPffcc2rTpo0qVaqkgIAA1a1bV71799bs2bOVkZGRTysCAAAAFUOtWrXUpEkTSdK+ffvs27/66isNGjRI4eHh8vf3V4MGDXTvvffq2LFjTo8TFRUli8Wiw4cP65tvvlHv3r0VGhqqkJAQ9e/fX+vWrcu3njO9e/eWxWLRmjVrCvR+UlJStGjRIo0ePVrNmjVT5cqVVblyZbVr104zZ87UxYsXHcrbxi1r166VJF1zzTWyWCz2V84xh22bMxcvXtTMmTPtY5CQkBB16dJFb7/9tjIzM3OVzzleys7O1uuvv65WrVopICBANWvW1KRJk3TmzJkCvWcAAACgovHE+zerVq3Szz//LF9fX33wwQfy8/Nzer7g4GC99957kqSNGzfq+++/d1ruu+++08iRIxUZGSl/f39FRkbqmmuu0dtvv620tLRc5X///Xfdddddaty4sQIDA1WtWjV16NBBU6dOVVxcnL1czvsyzuQcq7janpGRoenTp6tp06YKCAhQ7dq1dd999ykhIcHpMQGgPCN5CwBK2EcffSRJuvnmm+Xt7a2xY8dKcpx6t2XLlmrdurXOnTunb775xulx9u7dq61bt6pKlSoaNGiQfXtGRoZuvvlmjRkzRqtWrVJAQIBatGih06dP680331RMTIz27t1b6LhtCVXNmzfPtS8pKUl9+/bV5MmTtXHjRoWFhalJkyY6dOiQ/v73v+uqq65SfHx8rnovvviiRo4cqY0bNyo0NFQNGjTQ2rVr1b17d61fvz7PeIwxGjFihB5//HGlpKQoOjpalStXdiiTnp6uvn376qWXXlJwcLBq1aqlvXv3asqUKXruuecUHx+vrl276r333lO1atVUrVo17dq1S7fffrvmzp3rcKzMzEz169dPU6dO1c6dO1W3bl21bt1a2dnZWrdunZ588slcN2wAAACAiswY4/Dzk08+qWHDhumbb75RYGCgWrdurfj4eL377rtq27Ztng9xfPLJJxo8eLD+97//qWnTpvLz89OqVavUu3dvffbZZyX9VvTrr7/qlltu0RdffKFLly6pRYsWioyM1M6dO/XMM8+oZ8+eSklJsZcPDQ1Vt27dFBISIklq1aqVunXrZn/VrFkz33OeOXNGXbt21TPPPKOdO3eqcePGqlOnjjZv3qz7779fQ4YMUWpqqsv6t956qx566CGlp6ercePGSkhI0IcffqhrrrnG6U0ZAAAAoKLzxPs3ixcvliQNGTLE/pC9K127dlXbtm0d6uV0//33a8CAAVqyZInS09PVpk0b+fn56ccff9T999/vkIwlSQsXLlSbNm00Z84cnTx5UtHR0apRo4Z27typ5557zuX7LwpjjK6//npNmzZNktSiRQvFx8frnXfeUZcuXZzeYwKAcs0AAEpMcnKyCQoKMpLM5s2bjTHGJCUlmcDAQCPJ/PLLL/ays2bNMpLMmDFjnB5r2rRpRpK54447HLY/8cQTRpJp37692bZtm337pUuXzL333mskmY4dOzrUOXTokJFkJJlDhw7Zt6elpZm9e/eaKVOmGEkmNDTUHDx4MFcso0ePNpJM3759zYEDB+zbExISzMiRI40kc8MNNzjU2bp1q/H29jYWi8W89dZbJjs7295GN998s/H19TWSTK9evRzqrV692kgy3t7epkaNGuann36y70tJSTHGGDN37lwjyfj6+prWrVs7xLxo0SIjyQQGBpoBAwaYa665xpw+fdq+/+9//7uRZCIiIkxmZqZ9++eff24kmbZt25pjx445xBQfH29ee+01c/HixVxtAwAAAJRX9evXN5LM3Llzc+2Li4sz/v7+RpL54osvzPLly40k4+PjYxYsWGAvl5iYaK6//nojyURFRZlLly45PYePj4955JFHTHp6ujHGmIyMDPPYY48ZSSYkJMScPHnSab2c45ucevXqZSSZ1atXO2wfP3680/d0+PBhs3jxYpOcnJzrfd5www1Gkpk2bVqBz5OTbSx2uVGjRhlJpmXLlmb//v327Vu2bDE1a9Y0ksxjjz3mUMc2XvL19TWRkZFm06ZN9n2///67qVOnjpFk3n33XZfxAAAAABWRp96/admypZFkXnnllQK9jwceeMBIMq1bt3bY/tprrxlJJigoyMyfP99kZWXZ9509e9b84x//MPHx8fZtW7Zssd+neeyxx8yFCxfs+9LT082iRYvMunXr7Nts92XGjx/vNC7bWMXVPR8fHx8TEhJifvjhB/u+I0eOmLZt2zq9xwQA5R3JWwBQgubNm2ckmcaNGztsv/HGG40k8+CDD9q3HT582FgsFlOpUiWnSUHNmzc3ksz3339v3xYfH2/8/f1NSEhIrgQjY4zJysoynTp1MpLMjz/+aN+eM3nL1eumm24yu3fvznXM2NhYI8nUr1/fJCUl5dp/8eJFU7duXWOxWMzhw4ft28eNG2ckmRtvvDFXnZSUFFOjRo08O/K2m0DO2AYJFovFbN26Ndf+rl272hO4Tpw44bAvMzPT1K5d20hyqGsbjL3++utOzwkAAABUNK6St06fPm369etnJJkqVaqYpKQk061bt1xjHpuLFy+a8PBwI8l88MEHTs/Rtm1bpzHExMQYSebZZ591Wq+4krfycunSJePn52eaNGlS4PPk5Cx5a+/evcZiseQal9gsXrzYSDKVKlVyGIflN1564403jCRz7bXXFvj9AQAAABWBp96/CQsLM5LM0qVLC/Q+bElaVapUsW+7dOmSqVatmpFkPvroowIdZ8iQIUaSmThxYoHKX2nylqsENds9KIvF4jB5AACUdyybCAAlyDa17i233OKw3Tb17qJFi5SZmSlJql+/vq6++mpdvHgx15ro27Zt0549exQREeGwPviKFSuUlpamgQMHqk6dOrnO7+XlpWHDhkmS1q5d6zTGjh072pfy6Nq1q+rXry8vLy999dVX+ve//63s7GyH8kuWLJEk3XTTTQoODs51vKCgIPXr10/GGK1bt86+/dtvv5UkTZ48OVedgIAATZw40Wl8NqGhobruuuvyLNO+fXu1b98+1/Z27dpJkgYPHqzIyEiHfd7e3mrTpo0k6eDBg/btdevWlSR99dVXunTpUp7nBQAAACqS559/Xt27d1f37t3VqlUr1a1bV6tWrZKvr6/mzJkjn1iJOgABAABJREFUi8WijRs3SpIeeOCBXPWDgoJ05513SvpznHC5e++9N8/txblchyvZ2dlaunSp7rvvPg0ePFg9evRQ9+7d1b9/f1ksFu3bt6/YxgrfffedjDHq3r270zHNqFGjVKdOHV28eFEbNmzItb9KlSoaOXJkru2dOnWS5DjWAQAAAOC592+Sk5MlSZUqVSrQ+7CVs9WTpA0bNujs2bOKjIy0v5+8pKSk6LvvvpMkPfbYYwU675Xy8/PTHXfckWt7mzZt1L17dxljXI4XAaA88nF3AABQXp04cUKrV6+WlLvzP3jwYFWpUkXx8fH69ttvNWTIEHu5DRs2aNGiRRo9erS9/KJFiyRZ11338voz7/Z///ufJOnnn39W9+7dncZx+vRpezzOfPbZZ4qKinLYtnfvXo0dO1azZ89Wenq6/vGPf+Q655IlS/TTTz85PeaRI0ccznn+/Hn7+uQtWrRwWsfVdpsmTZrI29s7zzKNGjVyur169eoF2n/hwgX7thEjRigqKkrffvutIiMjNWjQIPXo0UO9e/dWy5Yt84wDAAAAKM/27dunffv2SbJ+4V6rVi317NlTf/nLX9SuXTtt375d2dnZ8vf3V8OGDZ0ew9an3rt3r9P9+Y0bXNUrLufPn9eQIUPsSWiunDt3TkFBQVd8Ptv7iY6Odrrfy8tLzZs31/Hjx7V3714NGjTIYb+rsU6NGjUkOY51AAAAgIrOk+/fBAcH6/z587p48WKB3outXM6H7Xfv3i1J6ty5s0NMruzfv18ZGRkKCwtTs2bNCnTeK1WnTh2nEwRI1nHf+vXrS3zcBwCehOQtACghCxcuVHZ2tmJiYnJ1dv38/HTjjTfqX//6l+bPn2/v/N9000168MEHtXLlSp07d05VqlSRMUaffvqppNyDiMTEREnSsWPHdOzYsTzjSUlJKXDsTZs21dy5c9W6dWu99dZbeuyxx1SzZk2Hc+7fv1/79+8v0Dlz3iiwJUpdznZ8VwrylImrmyYWi6VA+40xDudbt26dnn32WX3++ef69NNP7dchOjpaL7zwgv2pGAAAAKAimTt3riZMmOByv63/X716dXtf+3K2/n/Op8NzsiUdFbZecXnkkUe0ceNGNWvWTM8//7yuuuoqhYeHy8/PT5L1RsOJEyeUkZFRLOeztZmr9y3l/d5djZdsN2pyjnUAAACAis6T79/Url1b58+f14EDBwr0Xmzlateubd+WlJQkSQoLCyvQMQpbvjgUdewDAOUVyyYCQAmxTbm7detWWSyWXK9//etfkqSlS5faO8bh4eHq16+f0tPT9eWXX0qyTm979OhRNW7c2L7khU3lypUlSU8//bSMMXm+5s2bV6j4W7VqpeDgYKWnpys2NjbXOefMmZPvOadNm+ZQR5LOnDnj9Hy2mbk8SZ06dfThhx8qISFBP//8s2bPnq2OHTtq165dGjFihDZt2uTuEAEAAACPY+v/nzlzxmXSkO0Jc1dPWuc3bri8nrMHMnIq6FPrkpSZmanFixdLso7XRo4cqcjISHviVmZmpk6dOlXg4xWErc3yGhfl12YAAAAACsaT799cffXVkhyXUszLjz/+KEnq2rWrfZttzHD+/PkCHaOw5aUrH4O5GvNJrsd9AFCekbwFACVg27Zt2rFjhywWi2rWrOny5efnp5SUFH3xxRf2uranMz7++GOH/44ZMybXeWxLauzYsaNE3oet052QkHBF5wwLC7M/RbFnzx6nZWzT+HoiHx8fdenSRY8//ri2bNmi0aNHKysrSx9++KG7QwMAAAA8TuPGjeXl5aW0tDQdPHjQaZmdO3dKss7664yr8YFt++X1bDNPuboBUNCn1m3HuHjxoqpWrep0yZAdO3YoKyvLaV1XM43lx/Z+du3a5XR/dna2fSzlqs0AAAAA5M/T79/ceOONkqQVK1boyJEjeZb9+eef7Q/f33zzzfbttmXqt2zZouzs7HzP2aRJE/n5+en8+fP6/fffCxRnfmOw/FZuOXbsmMvl3V2N+wCgPCN5CwBKgO2pjZ49e+rUqVMuX3/5y18cykvS9ddfr8DAQK1Zs0bHjh3T559/Lsl553/o0KHy8/PTihUrtG/fvmJ9D7/99pu949ywYUOH+CRpwYIFOnv2bIGP179/f0nSe++9l2tfWlpamUqEuuqqqyRJJ0+edHMkAAAAgOepXLmy/WnxN998M9f+lJQUvf/++5KkgQMHOj3GO++8k+f2AQMGOGy3jVm2bNmSq84XX3yhc+fOFTB6KTAwUJJ16RBny8+/+OKL+dYtzLL1kvX9WCwWrV+/Xtu2bcu1/8svv9Tx48dVqVIldevWrVDHBgAAAPAnT79/079/f3Xp0kUZGRmaNGmSy6Xak5OTdffdd0uSunTpor59+9r3devWTeHh4Tpx4oQWLVqU7zkDAwPtY6yXX365QHHaxmDbt29XZmamw77s7GzNnTs3z/rp6en64IMPcm3fsWOH1q1bJ4vFYr+vBAAVAclbAFDMsrKy7J3hW2+9Nc+y48aNkyR7R1+y3ugYPny4srOzddddd+nMmTNq166dWrRokat+ZGSkHnroIWVkZGjgwIFas2aNw35jjDZv3qzJkye7fOLdmd9//1233367JKl58+bq2LGjfV/Hjh1100036ezZs+rfv3+uGwtZWVlas2aNxo4dq7S0NPv2hx9+WF5eXlq8eLHee+89+6xeFy9e1MSJEx1m9/IEr776ql577TX70iQ2R48etd9oiomJcUdoAAAAgMd7/PHHJVmTrWxPo0vWGwy33Xabzpw5o6ioKI0ePdpp/R07duixxx6z36jIzMzUU089pV9//VXBwcG65557HMoPHjxYkjWxKueNkS1btmjKlCny9fUtcOxhYWFq2bKlMjMz9fDDDys9PV2Sdazzwgsv6NNPP7UvoXg52w2Mgi5xYtO4cWONHDlSknTbbbc5jN+2bt2qKVOmSJLuv/9+lg4BAAAAiqis3L+ZP3++wsLC9P3332vgwIH2mYtttmzZot69e+u3335TWFiYQ4KZJAUEBOiZZ56RJN19991atGiRw/KG586d06uvvuowa9bUqVPl6+ur999/X0899ZQuXbpk35eRkaFPP/1U69evt29r27atIiMjFRcXp6lTp9qPn5qaqoceesjlrMI2Pj4+mjp1qsPY6fjx47rtttskSSNHjlSjRo3yPAYAlCsGAFCsvv76ayPJBAQEmPPnz+dbvn379kaSmTVrln3bf/7zHyPJ/nrhhRdc1s/IyDDjxo2zl61Vq5bp3Lmzadu2rQkODrZv3717t73OoUOH7Ns7duxounXrZrp162auvvpqExUVZby8vIwkEx4ebrZt25brnMnJyaZ///72Y9SrV8906dLFtG7d2gQGBtq3p6SkONR7/vnn7fsiIyNNx44dTXBwsPH39zczZswwkkyvXr0c6qxevdrp9pzmzp1rJJnx48c73T916lQjyUydOtXp/vHjxxtJZu7cufZtDz74oD3WqKgo07lzZ9O8eXPj7e1tJJlWrVoV6PoCAAAA5UX9+vVz9Zvz8sQTT9j71HXr1jUdO3Y0lSpVMpJMlSpVzObNm12eY9asWcZisZhq1aqZTp06mfDwcCPJeHl5mUWLFuWql5KSYlq2bGkkGR8fH9OqVSvTtGlTI8mMHj3a9OrVy0gyq1evdqjnbCxgjDHLli0zFovFSDJVq1Y1HTt2tMfwzDPP2OM8dOiQQ70ff/zR/p6bNm1qevbsaXr16mW+/vprexnb/svFx8eb1q1bG0nG29vbtG3b1kRHR9vL9+vXL9cYK7/xkm3sV79+faf7AQAAgIqkLNy/sfntt99MgwYNHO5TdOrUydSpU8dhW2xsrNNzZ2dnm8mTJ9vLhoeHm06dOpmoqCj7fY7LxzPz5883vr6+RpIJCgoyMTExpkWLFiYgIMDpuGn+/Pn241evXt107NjRhISEmMqVK5uXX345z3s+PXv2NEOHDrWPndq3b298fHyMJNOwYUMTFxeX98UBgHKGmbcAoJjZnnAYPny4QkND8y1ve3oj55MRgwcPVpUqVSRJFovF5dPokvXphPnz5+urr77SiBEjJFnXbI+Li1PTpk11//33a82aNS7XBv/ll1+0YcMGbdiwQT/99JP++OMPtWrVSk888YR27typdu3a5apTuXJlrVy5UgsXLtTAgQN16dIlbd26VX/88YfatGmjxx9/XJs3b1ZAQIBDvSeffFKff/65unTponPnzunAgQPq0aOH1q9fr+7du+fbVqXpnnvu0bRp09SzZ09lZGRo+/btOnfunDp16qQ333xTmzdvLtD1BQAAACqqWbNmafny5erfv78uXLig3377TeHh4brnnnsUGxurTp06uaw7evRoff3112rZsqX27Nmj1NRU9enTR6tXr3Y6PgoICNAPP/ygSZMmqWrVqtq3b5+8vLz08ssva+HChYWOffjw4fr666919dVXKyUlRb///rsaN26sBQsW6LnnnnNZr0ePHvr444/VuXNnnThxQj/++KPWrl2rU6dO5XvO6tWra+PGjXruuefUokUL7d27V0eOHLGPQVasWJFrjAUAAACg4MrS/ZvWrVtr9+7deuutt9SnTx9dvHhR27dvV1pamnr37q033nhDu3fvVps2bZye22Kx6J133tFXX32lYcOGyWKxKDY2VhkZGerVq5feeecdRUZG5nq/27dv1+23367w8HDt2LFDZ86cUcuWLTVt2jQNGjQoV/nFixerQ4cOSk5O1sGDB9W3b19t2rRJHTp0yLNtLRaLlixZomnTpik7O1u7du1S9erVNXnyZG3atEm1atXKsz4AlDcWY3LMkQgAAAAAAAC4SVRUlI4cOaJDhw4pKirK3eEAAAAAAIrRmjVrdM0116hXr165lpIEgIqMmbcAAAAAAAAAAAAAAAAAwA1I3gIAAAAAAAAAAAAAAAAANyB5CwAAAAAAAAAAAAAAAADcgOQtAAAAAAAAAAAAAAAAAHADizHGuDsIAAAAAAAAAAAAAAAAAKhomHkLAAAAAAAAAAAAAAAAANyA5C0AAAAAAAAAAAAAAAAAcAOStwDksmbNGlksFvXu3dvdodh5YkwVWe/evWWxWLRmzRqH7RMmTJDFYtG8efPcEhfKvqioKFksFh0+fNjdoQAAgHLOE8cYnhhTRca4ByWFcQ8AAAAAAMiJ5C3Ag9i+vCvpL4CnTZumadOmlXpdFMy0adNksVhksVhUs2ZNZWZmuix79uxZ+fn52ctz8yB/thstEyZMyLOc7TpU5BtnV199tSwWi55++ukClZ8yZYosFouGDh1awpEBAIDSVlpjFU/BuKfkMe4pWYx7Co5xDwAAAAAAcDeSt4AKaPr06Zo+fbrL/UFBQWrWrJnq1atX6LooXvHx8fr2229d7v/kk0+UkZFRihHlLSIiQs2aNVNoaKi7Q0ExuO222yRJH3/8sYwxeZbNzMzUp59+Kkm69dZbSzw2AACAK8W4x3Mw7oE7Me4BAAAAAADuRvIWgFw6d+6sPXv26KOPPnJ3KBVas2bNJEnz5893WWb+/PmyWCxq0qRJaYWVp1mzZmnPnj26/vrr3R0KisFNN90kPz8/HT58WOvXr8+z7Lfffqv4+HgFBwfruuuuK6UIAQAAio5xj2dg3AN3Y9wDAAAAAADcjeQtAPBQ3bp1U1RUlJYuXark5ORc+/fv369NmzapV69eTmcLAK5U1apV7UuBLFy4MM+yCxYskCTdcMMNCgwMLPHYAAAAUD4w7oG7Me4BAAAAAADuRvIWUIadOnVKb775pgYOHKioqCgFBASoSpUq6tWrl9OnlqdNmyaLxWL/2WKxOLwOHz4sSVqzZo0sFot69+5d6Lq2ctOmTXMa87x582SxWDRhwgSn+5csWaKrr75alSpVUrVq1TRs2DD98ssv+bZFQkKCnn76abVq1UqVKlVScHCwrrrqKs2ZM0fZ2dn51re54YYbZLFY9PLLL7sss3z5clksFsXExOTaPnDgQIWHh8vX11fVq1dXmzZt9MADD2j37t0FjsHGYrFo7NixSklJ0RdffJFrv+0ajxs3Lt9j7dmzRxMnTlRUVJT8/f1VrVo1DR06VD/88IPLOn/88Yfuvfde1a5dWwEBAWrWrJlmzJiR53IlEyZMkMVi0bx58xy2p6SkaNGiRRo9erSaNWumypUrq3LlymrXrp1mzpypixcvOj1eVFSU/fP1888/a/DgwapSpYoqVaqkHj165Bl/STt69KgmT56sBg0ayN/fX+Hh4Ro8eLC+/vprp+VdtY2Nq98dY4w++ugj9ezZU2FhYfLz81OtWrXUoUMHPfbYYzp+/HiuYxlj9Mknn6h///6qVq2a/P391bBhQ02ZMkWnTp0q1Pu0LQXy2WefKT093WmZCxcuaOnSpQ7lz58/rw8++EDXXXedGjdurMDAQIWGhqpLly564403lJmZWag4cn4WnOndu7csFovWrFnjdP8333yja6+9VjVr1pS/v7/q1Kmj22+/XQcOHChUHAAAoOAK21/K2R9KTEzUQw89pHr16snf31+NGzfWjBkzXPYhjDF677331LZtWwUGBqpmzZq65ZZbdPDgQZdjEMY9jHskxj35YdzzJ8Y9AAAAAACgpJC8BZRh77//vqZMmaJ169bJx8dHrVu3VkhIiH788Ufddtttmjx5skP5evXqqVu3bvafu3Xr5vAKCAhwea4rqVtQL774okaOHKmNGzcqNDRUDRo00Nq1a9W9e/c8ly7YuXOn2rRpo+eff1779u1TVFSUatasqc2bN+uuu+7SzTffLGNMgWK45ZZbJEmLFi1yWca2b8yYMfZtb731lq699lp9++238vX1Vbt27VSlShXt27dPb731lr755psCnf9yti+EbU/35rRw4UIFBATohhtuyPMYixcvVtu2bTV37lwlJCQoOjpafn5+WrFihfr166c333wzV51Tp06pS5cuevfddxUfH68WLVrIGKNnn31WI0eOLHB72vz666+65ZZb9MUXX+jSpUtq0aKFIiMjtXPnTj3zzDPq2bOnUlJSXNb/73//q549e2rLli1q1KiRfH19tX79eg0cONDll9YladOmTWrbtq3ee+89nTlzRq1bt1ZgYKBWrlypIUOG6Nlnny22cz366KMaP3681q1bp9DQULVr105BQUHasWOHXnrppVw3+TIyMnTzzTdrzJgxWrVqlQICAtSiRQudPn1ab775pmJiYrR3794Cn3/o0KGqWrWqEhIStGLFCqdlvvzyS126dEl169ZVr169JFmv2R133KGVK1cqMzNTrVu3Vnh4uH755Rc9+OCDGjFiRKFuMF6Jhx56SIMGDdLy5cslSS1btlRycrLmzZunmJgY/fTTT6USBwAAFcmV9JcSExPVtWtXvf3226pWrZoiIyN14MABPfvss7nGODZ33HGHJk+erN9++00RERGqW7eulixZoo4dOxYqaYFxz58Y9zDuYdzjiHEPAAAAAAAoMQaAx6hfv76RZObOnVug8uvWrTM//PCDyczMdNgeGxtrWrRoYSSZNWvW5KonyeT167969WojyfTq1avQdadOnWokmalTpzrdP3fuXCPJjB8/3mH71q1bjbe3t7FYLOatt94y2dnZxhhjkpOTzc0332x8fX2dxnThwgXTqFEjI8lMmTLFJCYm2vft3LnTtGzZ0kgyb731lsuYc0pNTTWhoaFGkvn9999z7b948aKpVKmSsVgs5ujRo8YYYzIyMkyVKlWMj4+PWbJkiUP5jIwMs3z5crN27doCnd+YP9tw0qRJxhhjOnXqZLy8vMzx48ftZTZs2GAkmZtuuskYY0zfvn2dfnZiY2ONv7+/CQgIMP/6179MVlaWfd+yZctMSEiI8fb2Ntu3b3eod/311xtJJiYmxv4+jTHm+++/N8HBwfbrsXr1aod648ePdxrH4cOHzeLFi01ycrLD9ri4OHPDDTcYSWbatGm52sL2O+Hr62tmzZpl/6ynp6ebsWPHGkmmS5cuebRmbrYYL/8MXs52HS7/zF28eNHUq1fP3v5JSUn2ffPmzTPe3t5GklmxYoXT87r6/Xb2uxMfH2+8vLxMaGioWb9+vUP5lJQUs2jRIhMbG+uw/YknnjCSTPv27c22bdvs2y9dumTuvfdeI8l07Ngxz/d+ucmTJxtJ5oYbbnC6v3///kaSeeKJJ+zbYmNjzX//+1+TmprqUPbAgQOmZ8+eRpKZN29ermPZrvmhQ4cKtN2mV69eTj+T7733npFkGjRo4LAvMzPTzJw500gyderUMSkpKa4bAAAAFGqsUtT+kq0/5Ovra3r27GlOnDhh37ds2TJ7vd27dzvU++yzz4wk4+/vb/7zn//Yt589e9YMGDDA3ne9vP/HuIdxD+Mexj05Me4BAAAAAADuQvIW4EEKm7yVl1WrVhlJ5s4778y1zxOTt8aNG2ckmRtvvDFXnZSUFFOjRg2nMb3xxhtGkrn++uudni82NtZYLBbTsGFDlzFf7vbbb3f5pfqiRYuMJNOjRw/7tri4OPuXxsXh8psYr7/+upFkXnjhBXuZe+65x0gyy5YtM8a4vokxcuRII8m8/vrrTs/15ptvGklm4sSJ9m379u0zFovFSDI7duzIVeeVV16xfw4KehMjL5cuXTJ+fn6mSZMmufbZfieGDx+ea9+ZM2eMv7+/kWQSEhIKfD5bjAV9Xf6ZmzNnjpFkatas6fSLb9uNgpyfkZznLcxNjI0bN+b5+b5cfHy88ff3NyEhIebYsWO59mdlZZlOnToZSebHH38s0DGNMeann34ykkxAQIA5f/68w764uDj7jZudO3cW6Hj79+83kkz//v1z7SvOmxhpaWmmVq1axtvb22zdutVpvVGjRhlJ5qOPPipQ7AAAVFSFGasUtb9k6w8FBgY67cvY+ravvPKKw/arrrrKSDIzZ87MVSchIcGEhYV5TPIW454/Me75E+Mexj35bbdh3AMAAAAAQPnEsolAGZecnKw5c+Zo/PjxGjBggHr06KHu3bvriSeekCTFxsa6OcKC+fbbbyXJ6TIoAQEBmjhxotN6X375pSTrMinOtGnTRlFRUTp48KCOHz9eoFjyWkLEts1WRpKqV68uf39/7d27t0Tae8yYMfLx8bEvIZKenq7FixcrPDxcgwYNclkvPT1dK1askLe3tyZMmOC0zLXXXitJWrt2rX3bt99+K2OMevbsqZYtW+aqc8cdd8jPz6/Q7yM7O1tLly7Vfffdp8GDB9s/q/3795fFYtG+fft06dIlp3WdXd/w8HBFRUVJkg4ePFjoeGrUqJFrGZycr7p16zqtZ/us3nnnnU6XzXnwwQclST/99JMuXrxY6LhyssWwadMmHT16NN/yK1asUFpamgYOHKg6derk2u/l5aVhw4ZJcrzm+enatasaN26s1NRUff755w77Pv74Y2VlZSkmJkbR0dEO+9LS0vTxxx/rzjvv1MCBA+3XfPz48ZJK/t+njRs36tSpU4qJiVH79u2dlnH2OwAAAK7MlfaXBg0a5LQv06lTJ0mOfb/k5GRt2rRJknT77bfnqlOlShWNGDGi8G+ihDDucY1xD+Mexj1Fw7gHAAAAAICyz8fdAQAoum3btmnYsGE6efKkyzIJCQmlGFHRnD9/XvHx8ZKkFi1aOC3javv//vc/SdKzzz6r559/3mmZP/74Q5J04sQJp1/sXq5Pnz6qVauWfv/9d23bts3+5ef58+e1cuVK+fj46IYbbrCX9/b21pQpU/TSSy8pJiZG3bp10zXXXGP/wtbZF92FUb16dQ0YMEArVqxQbGysDh06pISEBN13333y9fV1WW/v3r1KTU2Vn5+fhgwZ4rSMMUaStW1y1pNct3lwcLBq166tQ4cOFfg9nD9/XkOGDNHGjRvzLHfu3DkFBQXl2t6oUSOn5WvUqKHff/9dFy5cKHAsNoMHD9a8efNc7p82bZqmT5+ea7utfS7/wt6mSZMm8vPzU3p6ug4cOKA2bdoUOjab2rVr68Ybb9Rnn32mxo0b65prrlHv3r3Vo0cPXXXVVfLxcfwzbvt9+Pnnn9W9e3enxzx9+rQkx2teEOPGjdO0adO0cOFCTZo0yb7ddnPt1ltvdSh/9OhRDRgwQL///rvLY5b0v0+29jh8+LDL9jh//rykwrcHAABw7Ur7S3n1/SQ59P32798vY4yqVaumyMhIp/WupD9WnBj35I1xD+Mexj1Fw7gHAAAAAICyj+QtoIzKysrSTTfdpJMnT2rIkCF6/PHH1bJlS4WFhcnb21v79+9XkyZNlJGR4e5Q85XzC+jq1as7LVOzZk2n2xMTEyVJv/76a77nSUlJKVA8Xl5euvnmm/X6669r0aJF9psYX3zxhdLT0zVkyBCFh4c71Jk9e7Zq166tt99+W+vWrdO6deskSSEhIbr33ns1bdo0+fv7F+j8ztx6661asWKFFixYYL95cPmXxpeztU16ero2bNiQZ9nU1FT7/9uuh6trIVmvR2FuYjzyyCPauHGjmjVrpueff15XXXWVwsPD7U+y16lTRydOnHD5ea1UqZLT7V5e1gkkbTdjSoOtfWw3Dy9nsVhUvXp1nThxQsnJyVd8vo8++kjR0dF6//339e2339qfgK9evboee+wxPfLII/Z2sF3zY8eO6dixY3ket6C/Dza33nqrpk2bprVr1+r48eOqU6eOdu/erW3btsnb21tjxoxxKD9hwgT9/vvv6tKli6ZPn6527dqpatWq8vX1VWZmpv2/JcnWHmfOnNGZM2fyLFvY9gAAAK5daX+pMH0/24w/wcHBLuPJa19pYtyTP8Y9jHsY9xQe4x4AAAAAAMo+lk0EyqjNmzdr//79ql+/vr788kv17NlT1apVk7e3tyTl+wVmSbFYLJJcf6nsbDmFypUr2//f1ReNtifUXdXdt2+fjDF5vnr37l3g92H7QvaTTz6xvxfb0iGXf1krWb9Mf/DBB7V3714dOnRI//73vzV69GilpqZq9uzZ+stf/lLgcztz3XXXKSQkRPPnz9d///tfNWnSRF26dMmzjq1tateunW/b5Lxetnp5fenr6no4k5mZqcWLF0uSli5dqpEjRyoyMtJ+AyMzM1OnTp0q8PHczdY+rtrAGGNvu5w3CovyuyFZl8+ZNm2ajh8/rt27d+uf//ynhg8frrNnz+rRRx/VK6+8kiu2p59+Ot/rndfT9840bNhQV199tbKzs/Xxxx9LkubPny9JGjBggMONxpMnT2r16tUKCgrSihUrNHDgQNWsWdM+Y0JR/n26kn9bxo4dm297rFmzptAxAQAA54raXyoKW7JLXjMSFUdiyeUY9zDuuRzjHivGPYx7AAAAAABA4ZG8BZRRhw8fliR16NDB6ZPNsbGxpRyRle3miasvwPfv359rW1hYmP1p3j179jitt3v3bqfbbUs47Nixo9Cx5qVLly5q1KiRjh07pvXr1+vUqVNas2aNAgMDNWLEiDzrRkVF6bbbbtOiRYu0bNkySdKHH36o7OzsIscTGBiokSNH6vTp00pLS9O4cePyrdOkSRP5+voqLi6uUMs0NG3aVJLra3HhwgUdP368wMc7c+aMLl68qKpVq6pZs2a59u/YsUNZWVkFPp672dpn165dTvfv27dP6enp8vb2dlj2pCi/G5dr3ry57rrrLi1btkzvvPOOJGnOnDn2/SX1+2Bz2223SZIWLlwoY4z9ZsblsyEcOXLEHm/VqlVzHaco/z7l134HDhzIta2k2wMAADhX1P5SUTRu3FheXl76448/FBcX57SMbUmx4sS4h3HP5Rj3WDHu+RPjHgAAAAAAUFAkbwFlVGBgoCTp9OnTufZlZGTotddey7duUabLz69uw4YNJUlbtmzJte/ixYv65JNPnNbr37+/JOm9997LtS8tLU0ffvih03ojR46UJL3xxhvFvoSE7UnzRYsW6dNPP1VWVpaGDx/u8MR8fq666ipJ1vY6d+7cFcVz1113qW/fvurbt2++S4dIUlBQkAYOHKjs7Gy98cYbBT7PgAEDJEk//vij0y/q33//faWnpxf4eLbPTFJSktPPzYsvvljgY3mCgQMHSrLePMi57IqNra27devmsOxJXr8bx48f1zfffFOoOGyfrZMnT9q3DR06VH5+flqxYoX27dtXqOMVxE033SR/f3/99ttveuedd3TkyBEFBwfruuuucyhnu+bx8fFOfy+Lcs3zar8vvvjC6e9Xjx49FB4ertjYWJ4wBwCgFBW1v1QUwcHB9pmZnM2wk5iYqP/85z+FPi7jHsY9jHsY9zDuAQAAAAAApYXkLaCMuuqqq+Tj46MNGzboo48+sm9PTEzU2LFjnSZ12di+DFy7dm2hz5tf3WuuuUYBAQH65Zdf9K9//cu+/fz585owYYLOnj3rtN7DDz8sLy8vLV68WO+99579i8+LFy9q4sSJLp+gvvvuu9WwYUOtXr1aY8eOzfW0/YULF7R48WI98sgjhX6vY8eOlSR99tlnWrBggSTplltuyVVu165duvvuu7VlyxaHL2zT0tL097//XZJUv359VatWrdAx5NS1a1etWrVKq1atUoMGDQpUZ8aMGfL399fMmTM1e/bsXDcR4uLi9PrrrzvcPGrcuLGuu+46GWM0fvx4h6fN16xZo2nTptmXgSiIsLAwtWzZUpmZmXr44YftN0CysrL0wgsv6NNPP7UvJVIWjBkzRvXq1dPp06c1YcIEhyV6FixYoH/+85+SpCeeeMKh3uDBgyVJ//nPf7RixQr79ri4OI0dO1aZmZm5zvX999/r0UcfzXUz6cKFC3rppZckSTExMfbtkZGReuihh5SRkaGBAwfm+uLeGKPNmzdr8uTJOnjwYKHfe5UqVTR06FBJ0l//+ldJ0qhRoxQUFORQrmXLlqpSpYqOHz+uv//97/bfi9TUVD344IPatm1boc9ta78XX3zR4QbNli1bNGXKFKefyYCAAD333HOSpBtvvFFLlizJdVNlx44devzxx7Vhw4ZCxwQAAJwran+pqGx9/RkzZmj58uX27efOndPo0aPzXFLRFcY9jHsY9zDukRj3AAAAAACAUmIAeIz69esbSaZy5cqmWrVqLl//+9//jDHG/PWvfzWSjCRTr14906FDBxMYGGh8fX3Nu+++aySZ+vXr5zrPc889ZyQZb29v0759e9OrVy/Tq1cvExcXZ4wxZvXq1UaS6dWrV6HrGmPMjBkz7HHVrl3bHlfNmjXNtGnTjCQzfvz4XMd+/vnn7fUiIyNNx44dTXBwsPH397cf01lMu3fvNg0aNDCSjJeXl2nRooXp0qWLadq0qfH29jaSTJcuXYp0Tdq1a2ePKSwszKSlpeUqs23bNocyMTExpn379iY0NNRIMn5+fmbFihUFPufUqVONJDNp0qQC1+nbt6+RZObOnZtr35dffmmCgoKMJBMQEGDatWtnOnfubOrWrWuP+/HHH3eoc+LECRMVFWUkGV9fX9O+fXvTtGlTI8kMHTrU9OzZ00gyq1evdqg3fvx4p3EsW7bMWCwWI8lUrVrVdOzY0YSHhxtJ5plnnrF/9g8dOuRQz9V2m169ejmNIy+2GJ19BnOyXQdnn7mff/7Zfn0rVapkOnbs6NCef/vb35wec9KkSfYyDRo0MO3atTM+Pj6mefPm5sEHHzSSzNSpU+3llyxZYi9fvXp107FjR9O2bVv79QwNDTW//vqrwzkyMjLMuHHj7PVq1aplOnfubNq2bWuCg4Pt23fv3l3gNsspZ0ySzPfff++03FtvveUQQ8eOHU1ISIixWCxmzpw59n2Xc3XNU1JSTMuWLY0k4+PjY1q1amX/TI4ePTrPz8ITTzxhP1/VqlVNp06dTExMjKlatap9+9dff12k9gAAoKIo7FilKP0lW/8rZ38op7lz57rsx02cONF+7IYNG5qOHTuawMBAU6VKFfP0008bSWbixIkOdRj3/IlxD+Mexj2OGPcAAAAAAIDSxMxbgAe6cOGCzp496/Jle1L1xRdf1GuvvabmzZvr1KlTOnLkiPr166d169Zp0KBBLo//xBNPaOrUqWrcuLF27dqltWvXau3atU6XQihK3b/97W96++23FR0drTNnzujYsWO64YYb9Msvv6h+/fouj/3kk0/q888/V5cuXXTu3DkdOHBAPXr00Pr169W9e3eX9Zo3b67Y2FjNnj1bnTp10okTJ7R9+3alp6erV69eevnll10uW5KfnE+cjxo1yumT0k2aNNGcOXN04403qnr16tq7d6/27dun2rVr65577tGuXbvsT8+6w/XXX69du3bpwQcfVFRUlH7//Xft2rVLQUFBuv766/Xvf/8719PSkZGR2rx5s+655x6Fh4dr165dMsboueee05IlS2SxWAoVw/Dhw/X111/r6quvVkpKin7//Xc1btxYCxYssD8hXJZ06dJFsbGxuvvuuxUeHq7ffvtNFy5c0IABA/TVV19pxowZTuu99957eu6559SoUSOdOHFCZ86c0d13362NGzcqLCwsV/kePXrojTfesC9bs2vXLh0+fFiNGzfWY489pj179jg8gS5JPj4+mj9/vr766iuNGDFCkrRt2zbFxcWpadOmuv/++7VmzRo1bdq0SO99yJAh9tkUateurd69ezstd99992nBggVq166dEhIStH//fnXs2FErVqzQHXfcUejzBgQE6IcfftCkSZNUtWpV7du3T15eXnr55Ze1cOHCPOvOmjVLGzZs0C233KJKlSopNjZWhw8fVp06dTRx4kR99dVX6tu3b6FjAgCgIiroWKWo/aWimjNnjt555x21bt1aJ06c0JEjRzR8+HBt3rxZERERkqxLLBYU4x7GPYx7GPcw7gEAAAAAAKXFYsxl82gDAAAAAACUEw888IDeeustvfrqq3rooYfcHQ4AAECJOnTokFatWqXNmzdr8+bN2rlzp7KysjRjxgz97W9/K/JxN27cqNmzZ+unn37ShQsX1KBBA40ZM0aPPvqoAgICivEdAAAAABWPj7sDAAAAAAAAKAkXLlzQ559/Lknq1q2bm6MBAAAoea+//rpef/31Yj3mwoULNX78eGVlZal27dqqW7euduzYoWeffVbLly/XmjVrFBQUVKznBAAAACoSlk0EAAAAAABl2muvvabt27c7bDtx4oRGjRqlU6dOKSYmRp06dXJPcAAAAKUoPDxcw4YN03PPPaevv/5ao0aNuqLjHT58WJMmTVJWVpZefPFFHTt2TFu3btW+ffvUrFkzbdmyRY899lgxRQ8AAABUTCybCAAAAAAAyrTevXtr7dq1Cg0NVcOGDZWWlqY9e/YoOztb4eHhWr16tVq1auXuMAEAAErdhAkT9O9//7vIyybed999eueddzRgwAB98803Dvt++ukndevWTb6+vjp27Jhq1qxZXGEDAAAAFQozbwEAAAAAgDLtwQcf1IgRIxQaGqo9e/bo4MGDatSokaZMmaLt27eTuAUAAFAExhgtWbJEkjRp0qRc+6+++mo1b95cGRkZWrp0aWmHBwAAAJQbPu4OAAAAAAAA4Epcf/31uv76690dBgAAQLly9OhRxcXFSZK6devmtEy3bt20Z88ebdq0SXfddVdphgcAAACUG8y8BQAAAAAAAAAAAAf79u2TJPn7+ysyMtJpmYYNGzqUBQAAAFB4FXLmrezsbJ08eVLBwcGyWCzuDgcAAABwYIxRcnKyIiMj5eXF8xbIjTENAAAAPBljmvLh3LlzkqSwsDCX444qVao4lHUlLS1NaWlp9p+zs7OVkJCgatWqMaYBAACAR3HHeKZCJm+dPHlSdevWdXcYAAAAQJ6OHTumOnXquDsMeCDGNAAAACgLGNOUbampqZIkPz8/l2X8/f0lSSkpKXkea9asWZo+fXrxBQcAAACUsNIcz1TI5K3g4GBJ1oYOCQlxczQAAACAo6SkJNWtW9febwUux5gGAAAAnowxTfkQEBAgSUpPT3dZxjabVmBgYJ7HevLJJ/XII4/Yf05MTFS9evUY0wAAAMDjuGM8UyGTt2xT8IaEhDAoAAAAgMdi6Qi4wpgGAAAAZQFjmrLNtiTi+fPnZYxxej1tyyXayrri7+9vn6UrJ8Y0AAAA8FSlOZ5hsXkAAAAAAAAAAAA4aNKkiSTr7FonT550WubgwYMOZQEAAAAUHslbAAAAAAAAAAAAcFCvXj3VqlVLkrRhwwanZWzbu3TpUmpxAQAAAOUNyVsAAAAAAAAAAABwYLFYdP3110uSPvjgg1z7f/rpJ+3Zs0e+vr669tprSzs8AAAAoNwgeQsAAAAAAAAAAKCCeu211xQVFaXRo0fn2vfoo4/Kz89P3377rV566SUZYyRJR44c0cSJEyVJd9xxh32GLgAAAACFR/IWAAAAAAAAAABAObBhwwaFh4fbX5988okkadasWQ7bjx07Zq9z/vx5HTlyRKdOncp1vAYNGmjOnDny8vLSY489prp16yomJkZNmjTR77//rg4dOuill14qtfcHAAAAlEc+7g4AAAAAAAAAAAAAVy4jI0Nnz57Ntf3SpUu6dOmS/eesrKwCH/O2225T48aNNWvWLP3000/atWuXGjZsqDFjxujxxx9XQEBAscQOAAAAVFQWY5vjtgJJSkpSaGioEhMTFRIS4u5wAAAAAAf0V5EfPiMAAADwZPRXkR8+IwAAAPBU7uirsmwiAAAAAAAAAAAAAAAAALgByVsAAAAAAAAAAAAAAAAA4AYkbwEAAAAAAAAAAAAAAACAG5SJ5K0JEybIYrHk+UpNTXV3mAAAAADgFGMaAAAAAAAAAADgjI+7AyiMJk2aqEaNGk73eXmViTw0AAAAABUYYxoAAAAAAAAAAJBTmUreeuqppzRhwgR3hwEAKCZZ2UabDyUoPjlVNYID1LlBVXl7WdwdVolIvJShifM262RiqiJDA/ThhM4KDfIt8fNWpDZ213t1x3kr0nUFyhvGNEDBlMW/dSUVc3pmtuZvPKwjCZdUv2qQbu0aJT+fK0/2vJCaqYc/3aaj51JUr0qgXr25vSoHXPnXRCUVLwAAAAAAAFBelankLQBA+bFyR5ymL9+luMQ/l4iKCA3Q1OHRGtQqwo2RFb9eL/2gI2dT7D/HJaaq7XPfqn61QK19tE+JnbcitbG73qs7zluRrisAoGIqi3/rSirmWSt2ac66Q8o2f277+4rdurNHAz05JLrIx732rXX67XiS/effTyWr1bRv1KZOiJbd38Pj4gUAAAAAAADKMx59BACUupU74jR5wVaHm1uSdCoxVZMXbNXKHXFuiqz4XZ64ldORsynq9dIPJXLeitTG7nqv7jhvRbquAICKqSz+rSupmGet2KV//uiYCCVJ2Ub654+HNGvFriId9/LErZx+O56ka99aV6TjllS8AAAAAAAAQHlXppK3Pv/8c40YMUJ9+vTR6NGj9eabbyoxMdHdYQEACiEr22j68l0yTvbZtk1fvktZl9/1KYMSL2W4TNyyOXI2RYmXMor1vBWpjd31Xt1x3op0XYHyjDEN4FpZ/FtXUjGnZ2ZrzrpDeZaZs+6Q0jOzC3XcC6mZLhO3bH47nqQLqZmFOm5JxQsAAAAAAABUBGUqeeurr77S0qVLtXr1an366aeaMmWKGjRooJUrV+ZZLy0tTUlJSQ4vAIB7bD6UkGtWgpyMrMsKbj6UUHpBlZCJ8zYXa7mCqkht7K736o7zVqTrCpRnjGkA18ri37qSinn+xsO5ZrC6XLaxliuMhz/dVqzlbEoqXgAAAAAAAKAiKBPJW40aNdLzzz+v2NhYJSUlKTk5Wd9++626dOmic+fOacSIEfrll19c1p81a5ZCQ0Ptr7p165Zi9ACAnOKTXd/cKko5T3Yyjxt5RSlXUBWpjd31Xt1x3op0XYHyiDENkL+y+LeupGI+knCpWMvZHD2X96ywhS1X2DgKGy8AAAAAAABQEZSJ5K1nnnlGTz75pNq0aaPg4GBVrlxZ/fv3148//qjOnTsrLS1Njz/+uMv6Tz75pBITE+2vY8eOlWL0AICcagQHFGs5TxYZWrD3UNByBVWR2thd79Ud561I1xUojxjTAPkri3/rSirm+lWDirWcTb0qgcVarrBxFDZeAAAAAAAAoCIoE8lbrvj5+WnGjBmSpDVr1ujcuXNOy/n7+yskJMThBQBwj84NqioiNEAWF/stkiJCA9S5QdXSDKtEfDihc7GWK6iK1Mbueq/uOG9Fuq5ARcKYBvhTWfxbV1Ix39o1Sl6uDvr/vCzWcoXx6s3ti7WcTUnFCwAAAAAAAFQEZTp5S5K6du0qScrOztbBgwfdHA0AID/eXhZNHR4tSbluctl+njo8Wt753f0pA0KDfFW/Wt6zFtSvFqjQIN9iPW9FamN3vVd3nLciXVegomFMA1iVxb91JRWzn4+X7uzRIM8yd/ZoID+fwn2tUznAR23q5J382aZOiCoH+BTquCUVLwAAAAAAAFARlPlvzXx9/7zhnZmZ6cZIAAAFNahVhN4dF6Naly0XWCs0QO+Oi9GgVhFuiqz4rX20j8sErvrVArX20T4lct6K1Mbueq/uOG9Fuq5ARcKYBvhTWfxbV1IxPzkkWnf3bJBrRisvi3R3zwZ6ckh0kY677P4eLhO42tQJ0bL7exTpuCUVLwAAAAAAAFDeWYwxxt1BXIlff/1VHTt2lCQdP35ctWvXzrdOUlKSQkNDlZiYyHIjAOBGWdlGmw8lKD45VTWCrcvJeNJMCsUp8VKGJs7brJOJqYoMDdCHEzoX+4xbzlSkNnbXe03PzNb8jYd1JOGS6lcN0q1do0p8VomKdF0rKvqrFQtjGiC3svi3rqT6BCV13AupmXr40206ei5F9aoE6tWb2xd6xq3SjBcAULbQX0V++IwAAADAU7mjr1rmk7duueUWLVq0SM2bN9fu3bsLVIdBAQAAKA4rd8Rp+vJdiktMtW+LCA3Q1OHRHjkzCMoO+qsVC2MaoOyjTwAAgCP6q8gPnxEAAAB4Knf0VT3+0cfvvvtOTz75pA4dOuSwPTExUVOmTNGiRYskSc8++6w7wgMAABXUyh1xmrxgq8NNWkk6lZiqyQu2auWOODdFBsDTMKYByjf6BAAAAAAAAACuxJXPh1/CLl68qNmzZ2v27NmqXbu2IiMjlZGRoV27dik9PV0Wi0XPPvusxowZ4+5QAQBABZGVbTR9+S45m77USLJImr58l/pH1/L4JZ4AlDzGNED5RZ8AAAAAAAAAwJXy+OStDh066Omnn9bGjRu1f/9+7dixQ8YY1a5dWz169NC9996rLl26uDtMAABQgWw+lJBrdo2cjKS4xFRtPpSgro2qlV5gADwSYxqg/KJPAAAAAAAAAOBKeXzyVt26dTVz5kx3hwEAAGAXn+z6Jm1RygEo3xjTAOUXfQIAAAAAAAAAV8rjk7cAAChuWdlGmw8lKD45VTWCA9S5QVWWsUGh1AgOKNZyAACgbKJPAHdgPAMAAAAAAFC+kLwFAKhQVu6I0/TluxyWt4kIDdDU4dEa1CrCjZGhLOncoKoiQgN0KjFVxsl+i6RaodYbaQAAoPyiT4DSxngGAAAAAACg/PFydwAAAJSWlTviNHnBVocbHZJ0KjFVkxds1codcW6KDGWNt5dFU4dHS7LelM3J9vPU4dHMgAAAQDlHnwClifEMAAAAAABA+UTyFgCgQsjKNpq+fJfTGRFs26Yv36WsbGclgNwGtYrQu+NiVCvUcRmkWqEBendcDDMfAABQQdAnQGlgPAMAAAAAAFB+sWwiAKBC2HwoIdcT6jkZSXGJqdp8KEFdG1UrvcBQpg1qFaH+0bW0+VCC4pNTVSPYuiwSs2sAAFCx0CdASWM8AwAAAAAAUH6RvAUAqBDik13f6ChKOcDG28vCDTIAAECfACWK8QwAAAAAAED5xbKJAIAKoUZwQP6FClEOAAAAAEoL4xkAAAAAAIDyi+QtAECF0LlBVUWEBsjVwjUWSRGh1uVtAAAAAMCTMJ4BAAAAAAAov0jeAgBUCN5eFk0dHi1JuW542H6eOjxa3l6ubocAAAAAgHswngEAAAAAACi/SN4CAFQYg1pF6N1xMaoV6riUSK3QAL07LkaDWkW4KTIAAAAAyBvjGQAAAAAAgPLJx90BAABQmga1ilD/6FrafChB8cmpqhFsXVqEJ9QBAAAAeDrGMwAAAAAAAOUPyVsAgArH28uiro2quTuMUpGVbbixAwAAUIbRn8PlKtJ4BgAAAAAAoCIgeQsAgHJq5Y44TV++S3GJqfZtEaEBmjo8miVVAAAAygD6cwAAAAAAAED55+XuAAAAQPFbuSNOkxdsdbjRJ0mnElM1ecFWrdwR56bIAAAAUBD05wAAAAAAAICKgeQtAADKmaxso+nLd8k42WfbNn35LmVlOysBAAAAd6M/BwAAAAAAAFQcJG8BAFDObD6UkGuGhpyMpLjEVG0+lFB6QQEAAKDA6M8BAAAAAAAAFYePuwMAAKAiyMo22nwoQfHJqaoRHKDODarK28tSIueKT3Z9o68o5QAAAFC6SqM/V5r9UwAAAAAAAACukbwFAEAJW7kjTtOX73KYPSEiNEBTh0drUKuIYj9fjeCAYi0HAACA0lXS/bnS7p8CAAAAAAAAcI1lEwEAKEErd8Rp8oKtuZa9OZWYqskLtmrljrhiP2fnBlUVERogV/MmWGS9Ode5QdViPzcAAACuXEn259zRPwUAAAAAAADgGslbAACUkKxso+nLd8k42WfbNn35LmVlOytRdN5eFk0dHi1JuW742X6eOjyaZXEAAAA8VEn159zVPwUAAAAAAADgGslbAACUkM2HEnLNaJCTkRSXmKrNhxKK/dyDWkXo3XExqhXquJROrdAAvTsuhuVwAAAAPFxJ9Ofc2T8FAOD/2Lv38KjKc///n0lICAESCBQTUSGApxiKxoqk4KFUbDygra1WLba1FivdVr/VVjxuoFqBn63V1hYrunswFVu3dAsV0yrQijYRSwSNwSohoGICkkCCQAhk5vfHdCDHmTUz65k1a9b7dV1eLZMns1bm8KzncK/7BgAAAAD0rp/TJwAAQKrasafvjbFY2kWrrLhA04rytba+WTv2tGnE4GBpHTJuAQAAuIPd4zmnx6cAAAAAAAAAeiJ4CwAAQ0YMzorcKIp2sUhP86l07DBjzw8AAACz7BzPJcP4FAAAAAAAAEBXlE0EAMCQiYV5KsjNUl95EXySCnKD2RMAAAAA0xifAgAAAAAAAMmH4C0AAAxJT/NpzvQiSeqxQRb695zpRUbLGHb4A6qsa9Jz67epsq5JHf6AsWMBAADAfnaO55JhfAoAAAAAAACgK8omAgBgUFlxgRbNKNG85bVqaGk7/Hh+bpbmTC9SWXGBsWNX1DT0OG5BAo7rNR3+gNbWN2vHnjaNGBzMVMGGJwAA3mNiTGBiPOfk+BQAAAAAAABAT75AIOC5FBytra3Kzc1VS0uLcnJynD4dAIAHJDrAp6KmQbPKq9X9Ih864qIZJWzM2YAAOZjCeBWR8BkBkouJMYHp8RwB6AAAkxivIhI+IwAAAEhWToxVKZsIAEACpKf5VDp2mC49daRKxw4zXipx3vLaHht9kg4/Nm95LSUU4xTaUO28SStJjS1tmlVerYqaBofODAAAJJKJMUEixnOJHJ8CAAAAAAAA6BvBWwAApJi19c09Ng87C0hqaGnT2vrmxJ1UiiFADgAASObGBIznAAAAAAAAAO8geAsAgBSzY0/fG32xtENPXt1Q7fAHVFnXpOfWb1NlXRPBaQAAzzM1JkjEeI7rOgAAAAAAAJAc+jl9AgAAwF4jBmfZ2g49eTFArqKmQfOW13bZoC7IzdKc6UUqKy5w8MwAAHCOqTGB6fEc13UAAAAAAAAgeZB5CwCAFDOxME8FuVny9fFzn4KbcxML8xJ5WinFawFyFTUNmlVe3SOzSGNLm2aVV6uipsGhMwMAwFmmxgQmx3Nc1wEAAAAAAIDkQvAWAAApJj3NpznTiySpx4Zf6N9zphcpPa2v7UBE4qUAuQ5/QPOW16q3Qkqhx+Ytr6XUEgDAk0yNCUyN57iuAwAAAAAAAMmH4C0AAFJQWXGBFs0oUX5u1ywP+blZWjSjhHI4cfJSgNza+uYemTk6C0hqaGnT2vrmxJ0UAABJwuSYwMR4jus6AAAAAAAAkHz6OX0CAADAjLLiAk0rytfa+mbt2NOmEYODWR9SIaAoGYQ2VOctr+2yCZqfm6U504tSJkBux56+N3hjaQcAQKoxOSawezzHdR0AAAAAAABIPgRvAQCQwtLTfCodO8zp00hZZcUFmnrSUXqycou2Nu/TqLxsXVM6Wpn9Uie56YjBWZEbRdEOAIBUZHJMYOd4jus6AAAAAAAAkHwI3gIAAIhRRU1Djywbj79Sn1KZtyYW5qkgN0uNLW0K9PJzn4KZRSYW5iX61AAASBpuGRNwXQcAAAAAAACST+qkhQAAAEigipoGzSqv7rJJK0mNLW2aVV6tipoGh87MXulpPs2ZXiQpuKHbWejfc6YXUY4TAOBZbhoTcF0HAAAAAAAAkg/BWwAAAFHq8Ac0b3ltrxkrQo/NW16rDn9vLdynrLhAi2aUKD+3awml/NwsLZpRklQZRQAASCQ3jgm4rgMAAAAAAADJhbKJAAAAUVpb39wju0ZnAUkNLW1aW9+s0rHDEndiBpUVF2haUb7W1jdrx542jRgcLKlEZg4AgJe5dUzAdR0AAAAAAABIHgRvAQAARGnHnr43aWNp5xbpab6k2ngGAMBpbh4TcF0HAAAAAAAAkgNlEwEAAKI0YnBW5EZRtAMAAO7EmAAAAAAAAABAvAjeAgAAiNLEwjwV5Gapr8JCPkkFucHyQwAAIHUxJgAAAAAAAAAQL4K3AAAAopSe5tOc6UWS1GOzNvTvOdOLlJ7W11YuAABIBYwJAAAAAAAAAMSL4C0AAIAYlBUXaNGMEuXndi2DlJ+bpUUzSlRWXODQmQEAgERiTAAAAAAAAAAgHv2cPgEAAAC3Kisu0LSifK2tb9aOPW0aMThYFonsGgAAeAtjAgAAAAAAAACxIngLAAAgDulpPpWOHeb0aQAAAIcxJgAAAAAAAAAQC8omAgAAAAAAAAAAAAAAAIADCN4CAAAAAAAAAAAAAAAAAAdQNhEAAABJrcMf0Nr6Zu3Y06YRg7M0sTBP6Wk+p08LAGAQfT8AAAAAAAAAryB4CwAAAEmroqZB85bXqqGl7fBjBblZmjO9SGXFBQ6eGQDAFPp+AAAAAAAAAF5C2UQAAAAkpYqaBs0qr+6yeS9JjS1tmlVerYqaBofODABgCn0/AAAAAAAAAK8heAsAAABJp8Mf0LzltQr08rPQY/OW16rD31sLAIAb0fcDAADYZ8WKFTrvvPOUl5engQMHqqSkRL/4xS/k9/ujfq49e/boRz/6kU477TQNGjRImZmZOu644/S1r31N1dXVBs4eAAAA8BaCtwAAAJB01tY398i60llAUkNLm9bWNyfupAAARtH3AwAA2GPBggW66KKLtHLlSg0dOlTjxo3Thg0bdNNNN+lLX/pSVAFcO3bs0Gc+8xnNmTNHb775pvLz81VUVKRdu3bpqaee0sSJE7VkyRKDfw0AAACQ+gjeAgAAQNLZsafvzftY2gEAkh99PwAAQPwqKyt15513Ki0tTU899ZTq6uq0YcMGVVdX66ijjtKyZcv04IMPWn6+O++8U++++65OPPFEvf3229q0aZPWr1+vxsZGXX/99ero6NANN9yg1tZWg38VAAAAkNoI3gIAAEDSGTE4y9Z2AIDkR98PAAAQv/vuu0+BQEDf/va3ddVVVx1+fMKECYeDthYsWKCDBw9aer7nn39ekvTAAw/opJNOOvz4wIED9ctf/lLDhw9Xa2urXn31VRv/CgAAAMBbCN4CAABA0plYmKeC3Cz5+vi5T1JBbpYmFuYl8rQAAAbR9wMAAMSntbVVL730kiTpuuuu6/Hzyy+/XDk5OWpqatLq1astPef+/fslSWPGjOnxs379+mnUqFGSpEOHDsV62gAAAIDnEbwFAACApJOe5tOc6UWS1GMTP/TvOdOLlJ7W1xY/AMBt6PsBAADi88Ybb6i9vV1ZWVkqKSnp8fOMjAydccYZkqTXXnvN0nN++tOfliT985//7PGz5uZmvfPOO+rXr59OPfXU2E8cAAAA8DiCtwAAAJCUyooLtGhGifJzu5bHys/N0qIZJSorLnDozAAAptD3AwAAxO69996TJB133HHq169fr21CGbRCbSOZO3euMjIy9MMf/lC/+c1vtH37du3du1evvvqqLr74Yu3du1e33367jj322LDPc+DAAbW2tnb5DwAAAEBQ76N3AAAAIAmUFRdoWlG+1tY3a8eeNo0YHCyXRdYVAEhd9P0AAACx2bVrlyRp6NChfbYJ/SzUNpKpU6fqxRdf1D333KNvfetbXX42evRolZeX62tf+1rE55k/f77mzZtn6ZgAAACA1xC8BQAAgKSWnuZT6dhhTp8GACCB6PsBAACi19bWJknKzMzss03//v0lSfv377f8vPX19dqxY4d8Pp+OO+445eTkaNOmTdqyZYsef/xxTZ48WaNHjw77HHfccYduueWWw/9ubW2NmK0LAAAA8ArKJgIAAAAAAAAAALhcVlaw9HR7e3ufbQ4cOCBJGjBggKXnnD9/vq699lr5fD6tX79eW7Zs0ZtvvqkdO3bouuuu09///ndNnjxZLS0tYZ+nf//+ysnJ6fIfAAAAgCCCtwAAAIBuOvwBVdY16bn121RZ16QOf8DpUwIAT6EfBgAAiJ6VkohWSiuG7NixQz/60Y8kSb/97W/16U9/+vDPBg0apEcffVRFRUX66KOP9Ktf/SqeUwcAAAA8jbKJAAAAQCcVNQ2at7xWDS1thx8ryM3SnOlFKisucPDMAMAb6IcBAABic/zxx0uS3n//fR06dEj9+vXcAtq8eXOXtuH861//UltbmwYNGqSJEyf2+Hm/fv107rnnqra2Vv/617/iPHsAAADAu8i8BQAAAEu8kAWloqZBs8qruwQMSFJjS5tmlVeroqbBoTMDAG9IRD/shesZAADwptNOO00ZGRlqa2tTdXV1j58fPHhQr7/+uiTpzDPPjPh8e/bsidgmEAiOpdra2iK0BAAAANAXMm8BAAAgIi9kQenwBzRvea1628IPSPJJmre8VtOK8pWe5kvw2QFA6ktEP+yF6xkAAPCunJwcnXfeeXrhhRf0xBNP9MiW9cwzz6i1tVXDhg3TueeeG/H5Qtm5PvnkE61du7ZHwNehQ4f0j3/8Q5J0wgkn2PNHAAAAAB5E5i3ABty5DQBIZV7JRrW2vrnH39hZQFJDS5vW1jcn7qQAwENM98NeuZ4BACCxXulld911l3w+nx5//HEtWbLk8OMbNmzQLbfcIkm67bbblJmZefhnDz30kEaPHq0rr7yyy3OddtppKioqkiR985vf1Jtvvnn4Z3v27NENN9yg2tpaSdKMGTOM/U0AAABAqiPzFhAn7twGkMw6/AGtrW/Wjj1tGjE4SxML88gYhKh4KRvVjj3WSjxYbQcAiI7JfthL17NUxtgWAKxhvdLbJk+erHvvvVd33323rr76at19990aNGiQampq5Pf7ddFFF+nWW2/t8ju7d+/W1q1bNXr06C6P+3w+PfnkkzrvvPP0zjvv6NRTT9WoUaOUk5Oj9957T/v375ck3XfffTr99NMT9ScCAAAAKYfgLSAOoTu3u28AhO7cXjSjhAURIAl5ZdOHxVrYIZosKKVjhyXuxAwYMTjL1nYAgOiY7Ie9dD2zym1jYsa2AGAN65WQgtm3JkyYoJ/97Gdat26dGhsbNX78eF177bW68cYblZ6ebvm5SkpKVFNTo5/+9KeqqKhQfX29tm3bpk996lO68MIL9V//9V/63Oc+Z/CvAQAAAFIfwVtAjLhzG3Anr2z6sFgLu3gpG9XEwjwV5GapsaWt1+u7T1J+bnBzGwBgP5P9sJeuZ1a4bUzM2BYArGG9Ep1dfPHFuvjiiy21nTt3rubOndvnz48++mj99Kc/1U9/+lObzg4AAABAZ2lOnwDgVtHcuQ0gOYQ2fbp/d0ObPhU1DQ6dmb0iLdZKwcXaDn9vLYCuvJSNKj3NpznTiyQFNzU6C/17zvQiNjkAwBCT/bCXrmeRuG1MzNgWAKxjvRIAAAAA3IngLSBG3LkNuIuXNn1YrIWdQllQ+tom9ymYqSNVslGVFRdo0YwS5ed23bzPz80iqwcAJICpfthr17O+uHFMzNgWAKxjvRIAAAAA3ImyiUCMuHMbcJdoNn1Kxw5L3IkZwGIt7BTKgjKrvFo+qctmb6pmoyorLtC0onytrW/Wjj1tGjE4uJmfSn8jACQzE/2wF69nvXHjmJixLQBYx3olAAAAALgTwVtAjEJ3bje2tPV617JPwbvDU/3O7VTW4Q+wcZ9CvLTpw2It7BbKgjJveW2XDd/83CzNmV6Uktmo0tN8SbNpDQBeZKIfDl3P5i57W42tBw4/flROf8295JSUvJ5158YxMWNbALCO9UoAAAAAcCeCt4AYced2aquoaegRpFCQwkEKXuClTR8Wa2EC2agAAKmj+7XLO9cyN46JGdsCgHWsVwIAAACAO6U5fQKAm4Xu3M7P7bqwnZ+bpUUzSgjycamKmgbNKq/uUU6ksaVNs8qrVVHT4NCZIR6hTZ++lid9CgbopcKmT2ixVup7a5LFWsQilAXl0lNHqnTsMD5DAABXCY3zG1u7jvO3t3pnnO/GMTFjWwCIDuuVAAAAAOA+rg3euvvuu+Xz+eTz+XTfffc5fTrwsLLiAr0ye6qWzJykh688VUtmTtIrs6eyEOJSHf6A5i2v7fWO7tBj85bXqsPfWwskM69t+rBYCwDJjfkMkFiM84PcOiZmbAsA0WG9EgAAAADcxZVlEzdu3KgHHnjA6dMADgtlIoH7ra1v7pFxq7OApIaWNq2tb+Y9d6HQpk/3kpj5KVoSkzJ3AJCcmM8Aicc4/wi3jokZ2wJAdFivBAAAAAD3cF3wViAQ0He+8x1lZGRoypQpWrVqldOnBCCF7NjT94ZOLO2QfLy26cNiLQAkF+YzgDMY53fl1jExY1sAAAAAAACkItcFbz3xxBNas2aNFi5cqNraWqdPB0CKGTE4K3KjKNohOTmx6dPhD7hucwwAYD/mM4Az3DzONzWOJBAKAAAAAAAASA6uCt76+OOPNXv2bBUVFen73/++Zs6c6fQpAUgxEwvzVJCbpcaWNgV6+blPwXIiEwvzEn1qcLGKmoYeZWkKkrwsDQDAfsxnAOe4dZzPOBIAAAAAAABIfWlOn0A0vv/976u5uVm/+tWvlJGR4fTpAEhB6Wk+zZleJCm4gdNZ6N9zpheRMQmWVdQ0aFZ5dZcNN0lqbGnTrPJqVdQ0OHRmAMLp8AdUWdek59ZvU2Vdkzr8vW31A9FhPoNU5Jb+0o3jfMaRAAAAAAAAgDe4JvPWypUr9Yc//EEzZszQOeecE9XvHjhwQAcOHDj879bWVrtPD0AKKSsu0KIZJT3ucM/nDndEqcMf0Lzltb1mdwgouFE4b3mtphXlJ9VGIeB1ZDmBCfHMZyTmNEhObusv3TTOZxwJAAAAAAAAeIcrgrfa2tp0ww03KDc3Vz/5yU+i/v358+dr3rx5Bs4MQKoqKy7QtKJ8ra1v1o49bRoxOFhChY0RRGNtfXOPTAmdBSQ1tLRpbX2zSscOS9yJAehTKMtJ983yUJaTRTNKkmpzH+4Q73xGYk6D5OPW/tIt43zGkQAAAAAAAIB3uKJs4n333adNmzbpxz/+sY466qiof/+OO+5QS0vL4f8++OADA2cJINWkp/lUOnaYLj11pErHDku6DR0kvx17+t5wi6UdALMiZTmRgllOkrUkGJJXvPMZiTkNkovb+0s3jPMZRwIAAAAAAADeYUvmrQMHDmjdunXatm2b9u/fr69//et2PK0kaePGjXrggQdUUlKiWbNmxfQc/fv3V//+/W07JwAArBgxOMvWdm7S4Q8kfUYLoDuynHibqTmNHfMZiTkNkgv9pXleHkemEsbEAAAAAAAAsCKu4K0DBw7ov//7v/Xoo4/qk08+Ofx4542O6667Ti+88IJWr16tE088MepjfPe739WhQ4e0aNEipaW5IlEYAACSpImFeSrIzVJjS1uvmSl8kvJzg5s4qaSipkHzltd22dQtyM3SnOlFRssnsTlmXqq/xmQ58SbTcxrmM0hFbu8v3XA98+o4MpU4NSYGAAAAAACA+8QcvNXe3q7zzz9fr7zyigYOHKhzzz1XNTU12rlzZ5d2l112mX7zm9/of//3f3XXXXdFfZw33nhDPp9Pl1xySY+ftbS0SJIWLlyoRx55RMcee6xef/312P4gAIBnJGrDLj3NpznTizSrvFo+qcvGW+hoc6YXJd1mYTwqaho0q7y6xyZjY0ubZpVXa9GMEiObVWyOmeeF15gsJ96TiDkN8xmkIjf3l265noXGkTeUV/f684CSdxzphuA405waEwMAAAAAAMCdYr71++c//7nWrFmjKVOm6N1339XKlSt1wgkn9Gg3bdo0ZWZm6m9/+1vMJ9nR0aHt27f3+K+tLbjY+sknn2j79u36+OOPYz4GAMAbKmoaNGXhKl21uEo3P71eVy2u0pSFq1RR02DkeGXFBVo0o0T5uV03L/Nzs1Ju06bDH9C85bW9ZocIPTZvea06/L21iF1oc6x7+abQ5pip99ZLvPIah7Kc9LW97FNwg58sJ6kjUXMa5jNINW7tL71yPXNSosfaycipMTEAAAAAAADcK+bgrT/84Q/KyMjQkiVLlJ+f32e7zMxMjRs3Tlu3bo3pOLt371YgEOj1v2984xuSpHvvvVeBQEBbtmyJ6RgAAG9wasOurLhAr8yeqiUzJ+nhK0/VkpmT9MrsqSkVuCVJa+ube7y2nQUkNbS0aW19s23HZHPMPC+9xqEsJ5J6BCSkarY8r0vEnIb5DFKRG/tLt13PQucbTjKdr0RwXIgTY2IAAAAAAAC4W8zBW++++66OP/54HX300RHbDh48WNu3b4/1UAAAxM3pDbv0NJ9Kxw7TpaeOVOnYYUm1mWmXHXv63qSKpZ0VbI6Z57XX2EvZ8sCcBoiH2/pLt13PIp2vlFzn6/RYO5k4MSYGAAAAAACAu/WL+Rf79dPBgwcttW1qatLAgQNjPRQAAHGLZsOudOywxJ1YChk+qL+t7axgc8w8L77GZcUFmlaUr7X1zdqxp00jBgdLf6Vi0KXXMacB4uOm/tJt17PGVmvnYbWdaYy1jxgxOCtyoyjaAQAAAAAAIPXFHLx1wgkn6M0339THH3+sT33qU322q6ur06ZNm3TOOefEeigAAOLmtg07V7KaSMHGhAte3Rzr8AcStlHu1dc4lC0PqY05DRA/t/SXibie2Xl9bv7kgK3tTGOsfcTEwjwV5GapsaWt12GvT8EMdRML8xJ9agAAAAAAAEhSMQdvfeUrX9G6dev0/e9/X7///e+VltazAmN7e7tmzZoln8+nK6+8Mq4T7c1vf/tb/fa3v7X9eQEAqcerASiJtHOvtc1Dq+2s8OLmWEVNg+Ytr+2S3aIgN0tzphcZKVHlxdcY3uH0nIb5DJA4pq9ndl+f8wZm2trONMbaR6Sn+TRnepFmlVfLp673LYRC+eZML0rKDHUAAAAAAABwRs/dCYtuuukmnXzyyVqyZIkmT56sRx99VC0tLZKk1atX6+c//7lOO+00vfTSSzrttNP0rW99y7aTBgAgWqENu762SHwKbrARgBI7JzbtQptjknq8t6m4OVZR06BZ5dU9yhI1trRpVnm1KmoabD+m115jeAtzGsA7TF7PTFyf83MH2NrONMbaXZUVF2jRjBLl53Yd9+bnZmnRjBIjAfcAAAAAAABwL18gEIi5eNFHH32kyy+/XJWVlfL5ei7RBQIBTZo0SUuXLlV+fn5cJ2qn1tZW5ebmqqWlRTk5OU6fDgAgQUIba1Lvd8CzkRKfDn9AUxauipjR4pXZU20P9El0NionhF7f7hvDISZfX8kbr3EyYbyaOMxpAG+x+3pm6voc6Xml4Hmbuu7HgrF2T4ksdQ0AyYbxKiLhMwIAAIBk5cRYNa7gLSm4mfH8889r6dKleuutt9TS0qJBgwapqKhIl112mb70pS/1ugniJCYFAOBdBKCY5eSmXapvjlXWNemqxVUR2y2ZOUmlY4cZOYdUf42TCePVxGJOA3iLndczk9fn0Liqr6D4ZAyGYqwNAAhhvIpI+IwAAAAgWTkxVu0X7xP4fD5dfPHFuvjii+04HwAAjCorLtC0onwCUAwJlYjpvmmXn4BNu/Q0n7GgpWSwY0/fmTdiaReLVH+N4V3MaQBvsfN6ZvL63Ne4KpmDoRhrAwAAAAAAANGLO3gLAAC3IQDFLDbtzBgxOMvWdgAAIH6mr89uHFcx1gYAAAAAAACiQ/AWAACwHZt29ptYmKeC3Cw1trT1WT4pPze4oQsAABIjEddnxlUAAAAAAABAaos5eGvMmDFRtff5fKqrq4v1cAAAAEmpwx9ISDaM9DSf5kwv0qzyavmkLhvEoaPNmV6U1Jk4gGTDnAZAvDpfn/vC9RkAAAAAAABAODEHb23ZssVSO5/Pp0AgIJ+PhUoAAJBaKmoaNG95rRpa2g4/VpCbpTnTi1RWXGD78cqKC7RoRkmPY+YbPKZXJSooD85iTgMkLzf1w2XFBbr+7EItXlMvf6fo6jSfNPOsQq7PAAAAAAAAAMKKOXirvr6+z5/t3btXmzZt0uLFi/W3v/1NP/vZz3TRRRfFeigAAICkU1HToFnl1T1KJDW2tGlWebUWzSgxFsA1rSjfNRvablRR06C5y95WY+uBw4/l5/TX3EtOYQM+xTCnAZKT2/rhipoGPfZyfY8xQSAgPfZyvU47bmhSnjcAAAAAAACA5OALBALd1xdttWDBAs2ZM0f/+Mc/NGnSJJOHsqy1tVW5ublqaWlRTk6O06cDAABskMgMHR3+gKYsXNUl+1VnPgWzYb0yeypBVS5TUdOgG8KUvnrUUFBed4xXkwtzGiBxkqUftsrNYwI3ZTcDALgP41VEwmcEAAAAycqJsarx4C2/36+jjjpKn/nMZ/TCCy+YPJRlTAoAWMFmBuAeiS5fWFnXpKsWV0Vst2TmJJWOHWb78WFGhz+g0+97Ubv3HeyzzZDsDK27e5rx6wHj1eTCnAZIjGTqh61y65gg0WMnAID3MF5FJHxGAAAAkKycGKvGXDbRqrS0NBUWFqqqKvJiJgAkCy9uZhCsBrdyonzhjj29Z9eItV20vPZ9bT/k15OVW7S1eZ9G5WXrmtLRyuyXZvtxquqawgYMSNLufQdVVdekyccPt/34SF7MaYDESFQ/bOd1xekxQSycKv0Mb/Pa+BUAAAAAACAaxoO3Dh06pE2bNunQoUOmDwUAtvDiZoYXg9WQGjr8Ac1bXtvj+ypJAQVLFc1bXqtpRfm2bg6NGJxla7toeO37On9FrRavqZe/05v84xUbNfOsQt1xYZGtx6rcvNNyO4K3vIU5DZAYieiH7b6uODkmiIVTYyd4m9fGrwAAAAAAANGyP2VBJ7t27dLMmTO1e/dulZSUmDwUANgi0maGFNzM6PAbrTibUKFgtc4L6dKRYLWKmgaHzgx26PAHVFnXpOfWb1NlXVNKfXYlaW19c4/PbmcBSQ0tbVpb32zrcScW5qkgN0t9bWn6FNyQmliYZ+txvfZ9nb+iVr9+uesGuyT5A9KvX67X/BW1Nh/R6iY1m9lewpwGSByrw5RYhzMmrisTC/M0JDsjbJuh2Rm2jwli5dTYyatSfSxuhdfGrwAAAAAAALGIOfPW1KlT+/xZIBDQxx9/rM2bN6utrU0ZGRmaN29erIcCgISJZjOjdOywxJ2YIdx5n9q8cIe7U6WK0tN8mjO9SLPKq+WTunyHQt+UOdOLbP3eeO372n7Ir8Vr6sO2WbymXreef5JtJRTPLMzTI6uttUNqYE4DJJchA8IHQUXbrjMnrishyRSu48Yyj27lhbF4JF4bvwIAAAAAAMQq5uCtv//975baTZw4UQsXLtQ555wT66EAIGG8tpnhtWA1J3X4A1pb36wde9o0YnAwI5PJDQqvlP90slRRWXGBFs0o6bEpl29oU85r39cnK7dEzKziDwTbXXfWGFuOmWbxO2m1HZIfcxogubS0HbS1XWemritr65u1e1/489m972DSXJ/dVuYxUeweq3tlLB6J18avAAAAAAAAsYo5eGv16r7TEvh8Pg0cOFBjxozR0KFDYz0EACSc1zYzvBas5pSKmgbNXVarxtZOAT45WZp7iZm77r10h3uofGFjS1uvf69PwWAqU6WKyooLNK0oPyGBeV77vtY37bW1nRU7PzlgazskP+Y0QHIxWbx2a/M+W9uFdB7f2dGuN3YGFjk9dkpGdmfI8tJYPBKvjV8BAAAAAABiFXPwFnedA0hFXtvM8FqwmhMqahp0Q3l1j8cbW9t0Q3m1HjVw172X7nB3onxhb+eQiNfRa99Xkxv4ffHaawzmNECyKR0zXI+srrPULlqj8rJtbRfSbDGg12q77uwOLEqGsVMyMZEhy0tj8UgYWwEAAAAAAFiT5vQJAEAyCW1mSD0DAlJxMyMUrNbXX+NTcHMoVYLVEq3DH9DtS98K2+aOpW+pI1INnyh57Q73UPnC/Nyumz75uVkpVZLGa9/X0461lunIajsrvPYaA0CymTR2mIZkZ4RtMyQ7Q5NiCHi5pnS0Ig3h03zBdtHIG5hpa7vOQoFF3QOBQoFFFTUNUT+n5J2xUySRMmRJwQxZ0Y7VvTYWD4exFQAAAAAAgDUEbwFAN17azPBasFqiVW1u0u59B8O22bXvoKo2N9l63OGD+tvazg3Kigv0yuypWjJzkh6+8lQtmTlJr8yeyvfVxQqGDLC1nRVee40BwA4d/oAq65r03PptqqxriisoPT3NpwWXjQ/bZsFl42PqhzP7pWnmWYVh28w8q1CZ/aJbJsnPtXYdstouxFRgUYgXxk6RRJMhKxrDB1oci1ts52aMrQAAAAAAAKyxVDZx6tSpcR/I5/Np5cqVcT8PACRCWXGBphXla219s3bsadOIwcG7gVNxUTkUrNa9HEt+HOVYEFRZZy0oq7KuSZPHRV/+p09W9/DsTfjluESVL3SSl76voUwN4TZVTWRqKCsu0PVnF2rxmnoFOn1HfL7gpn4qvcZew5wGsJ/dJf2kYD/86IwSzV32thpbj5QazM/pr7mXnBJXP3zHhcEgksVr6tU55intP3186OfRMHW9SkTpPS+MncIxliHLidrPScxL41cAAAAAAIBYWQre+vvf/x73gXw+j6xKAUgZXtrM8FKwWmI5E0W1c++ByI2iaIfk4pXvayhTw6zyakldvyUmMzVU1DTosZfre3wr/QHpsZfrddpxQ9lkdCnmNIC9QiX9uveXoZJ+8WSsNXmtu+PCIt16/kl6snKLtjbv06i8bF1TOjrqjFshna9XvY3ofIrtekXpPfNGDM6K3CiKdiE7P7E4FrfYLhV4ZfwKAAAAAAAQK0vBW6tXrzZ9HgAAh3kpWC1Rzhw9TI+ozlI7O5naiELy8Mr3NdGZGsKVqAqZt7xW04ry2Wx0IeY0gH0ilfTzKf7+0uS1LrNfmq47a4xtz9fX9SqeLGSM58w7fdRQpfmkcJUn03zBdtHgveudV8avAAAAAAAAsbAUvHXOOeeYPg8AAFJOWrq1zUqr7awKle9pbGnrMwNEvoFyc17V4Q+QRcCgRGZqSESJKjiHOQ1gn0T0l267vtp9vXLzeM4t7926rbvCBm5JwcCudVt3RfU5dvN7BwAAAAAAAGdYCt4CAADRc6pkSufyPT4lrtycF1XUNNiaZQO9S1SmBkpUAYA1pvtL09dXU8FFdl6v3Dqec9PYyNTn2K3vHQAAAAAAAJyT5vQJAACQqpwsmRIq35Of2/W583OztGhGSdJtnrlRRU2DZpVX98g80tjSplnl1aqoaXDozBAryhwBgDUm+0vT19eKmgZNWbhKVy2u0s1Pr9dVi6s0ZeGqpLxuu20857axkcnPsdveOwAAAAAAADgr7sxbe/fu1fLly7VhwwY1Nzfr4MGDvbbz+Xx64okn4j0cAACu4XTJlESWm/OaDn9A85bX9vq+BhR8b+ctr9W0onxebxc5fdRQ+XxSIEwJJZ8v2A6phTkNEB1TYxzT19dQcFH35w8FFyVjUI1bxnNuHBuZHqu75b0DAAAAAACA8+IK3nr66ac1a9Ystba2Hn4s8J/dLp/P1+UxNjoAe5kq9QHAPslQMiVR5ea8Zm19c4+sEp0FJDW0tGltfTOvv4u8vqU5bOCWFAzsen1LsyaPG56Yk4JxzGmA6Jka45i8vroxuCjEDeM5N46NEjFWd8N7BwAAAAAAAOfFHLxVWVmpa665RgMGDNBdd92lP/7xj9q0aZMWL16sDz74QBs2bNDy5cvVv39/3X333Tr66KPtPG/A0ypqGjRveW2XxfGC3CzNmV6UdHeKA8kokcGPoZIp3b+z+XxnXW3Hnr43J2Nph+RQWddkuR3BW6mBOQ0QOxNjHJPXVzcGF4W44cYdt46NGKsDAAAAAAAgGcQcvPWTn/xEfr9ff/jDHzR9+nStXr1amzZt0nXXXXe4zTvvvKPLL79cv/zlL7Vu3TpbThjwOjeW+nArN2ySIHpOBD9SMiUxEvmdHTE4y9Z2SBYR0m5F3Q7JjjkNEB+7xzgmr69uDS6qqGnQ3GW1amztFFiUk6W5lyRXYJGbx0aM1QEAAAAAAOC0uDJvDR8+XNOnT++zzUknnaRnn31WJ598subMmaNHH3001sMBlqR6sI2bS324DdnNUpOTwY9OlUxJ9X4xJNHf2YmFeSrIzVJjS1uvfbJPwYwNEwvzbD82zCkdM1yPrK6z1A6pgTkNED87xzinjxqqNJ/kDxMjm+YLtouWG4OLKmoadEN5dY/HG1vbdEN5tR5Noht3GBsBAAAAAAAAsYs5eKupqUmf/vSnD/87MzNTkrR3714NHDjw8OMnnHCCTjnlFL3wwgtxnCYQmReCbdxc6sNNyG6WmrwY/OiFflFy5jubnubTnOlFmlVeLZ+65mEKfXrmTC8y9llyKigv1Y87aewwDcnO0O59B/tsMyQ7Q5O4xqYM5jTR80pQMJyxbuuusIFbUjCwa93WXVHPdyYW5lnq4+MJLtrf3qH7V9RqS9M+jR6WrTsvLNKAzPSYnqvDH9DtS98K2+aOpW8lzdjV6bFRPLwyZgYAAAAAAEDyijl4a9iwYdq/f//hfw8fHsxAUFdX12UDRJI6Ojq0ffv2WA8FROSVYBu3lvpwEy8G+HiF14IfvdIvOvmdLSsu0KIZJT02+/INb/Y5tcHoheOmp/m04LLxvWY5CVlw2Xj6/xTCnCY6BDjANKfnO/H07jN//7perN1x+N9r3pOerHpf04pGaPHXz4j6+ao2N4UNNJOkXfsOqmpzkyaPiy0jpN3BmE6NjeLhlTEzAAAAAAAAkltarL84evRoNTQ0HP53SUmJAoGA/vCHP3Rpt2HDBr377rv61Kc+FftZAmFE2riXghv3HZFu4XYBN5b6cJtoAnzgLk5vBiZSMvSLHf6AKuua9Nz6baqsazJ2LKe/s2XFBXpl9lQtmTlJD195qpbMnKRXZk81Grg1q7y6x98c2mCsqGno4zc5rlVlxQV6dEaJ8nP6d3k8P6d/UpWngj2Y01jnVD8AbzE531lb32wpGCqWMUP3wK3OXqzdoZm/fz3q53x1005b23VXUdOgyQtW6arFVbr56fW6anGVJi9YFfd3OdFjo3gkw5gZAAAAAAAAkOLIvDVt2jS99tprevvtt3XKKafo6quv1rx58/STn/xE27ZtU2lpqbZv365f/epX8vv9+vKXv2zneQOHeSmbzsTCPBXkZqmxpa3XBWafgnc1x1Pqw+u8FODjNcMH9Y/cKIp2yczpfjGRmVmS4TubnuZLyPXFqSxjXjuuFNx4nnrSUXqycou2Nu/TqLxsXVM6Wpn9Yr7vAUmKOY01ZCZFOHZmbzI53zE1Ztjf3tFn4FbIi7U7tL+9I6oSih/t3h+5URTtOquoaeg1y2Rja5tuKK+OO1g5UWOjeDk9ZgYAAAAAAABCYt6BuuKKKzR16lT9+9//liQde+yxWrRokfr166ennnpKN910k3784x+rublZZ555pu677z7bThroLBk27hMlPc2nOdOLJPUs6RH695zpRWyaxYHsZqnL32Htjnmr7ZKZk/1iojOzeOk761SWMa8dVwp+js95YLXufX6jfl+5Vfc+v1HnPLCazEIpiDmNNU5nOUTyqqhp0JSFXbM3TVkYe/Ymk/MdU2OG+1fU2touZOSQAba2C+nwB3T70rfCtrlj6VueyDblpbUEAAAAAAAAJDfLwVvPPvus2tvbD//7lFNO0YsvvqjLLrvs8GPf+MY3tHHjRt1///2aOXOmbrrpJj3zzDNas2aNBg0aZO+ZA//hpY17KZgNZNGMEuXndv178nOztIhyTnEL3e3f13aQT8EMQmQ3c5/XtjTZ2i6ZOdUvOlF6xkvfWac2GL12XErDpTbmNLEhwAG9MdVfmprvmBozbGnaZ2u7kM+OG25ru5CqzU2WykdWbXb/mDgSr60lAAAAAAAAIHlZLpt4+eWXa+jQobr88ss1Y8YMTZkypdd2Y8aM0e23327bCQKReLGUYFlxgaYV5dtWngRHhO72n1VeLZ/U5TNFdjO3s/qeuf+9dapfdKL0jJe+s05tMHrpuJSGS33MaWJDgAO6M91fmpjvmBozjB6WrTXvWWsXjUljhmlIdkbYQKuh2RmaNCa6MVVlnbWgrMq6Jk2OMjDMbby4lgAAAAAAAIDkZDnzVl5ennbt2qXFixfrnHPO0ZgxYzRnzhy9956FVUrAIK+WEkxP86l07DBdeupIlY4dlnJ/n5PIbpaarAYL2RVU5CSn+kWnMrOEvrNH5fTv8vhROf1T6jvrVJYxJ487JDsjbJuh2Rm2HpfScKmPOU1svJTlENYkor80Md85Mmawb5x/54VFtrYLSU/zacFl48O2mX/Z+BheF6sZUFO/bKJX1xIAAAAAAACQfCwHbzU2Nuq5557Tl7/8ZfXv319btmzRfffdp5NOOkmlpaX61a9+paam1E+rj+REsA3sVlZcoH/88HO656KT9fXSUbrnopP1jx9+js+Si4WyF4QTS/YCqzr8AVXWNem59dtUWddka+nA3jjRLzqfmaWvbbfU4NQGYzJvbNr9LaI0XOpjThObZO4H4Az395ddryCBQOxXlMx+acrsF35ppb+FNr0pKy7QozNKlN8t2KwgN0uPxjieKx1jLZuW1XZux1oCgFSW6HUIAAAAAEDsfIEYVin37NmjZ555RuXl5Xr55Zfl9/vl8/nUr18/XXDBBbrmmms0ffp0ZWZmmjjnuLW2tio3N1ctLS3Kyclx+nRgo/ZDfj1ZuUVbm/dpVF62rikdHdMiOVBR06B5y2u7ZBQoyM3SnOlFLOC7WEVNg24or+7z57Fuglk5rlOfpw5/IGElVjv8AU1ZuCpi6ZlXZk+19Rycel+d4tTnKdHHraxr0lWLqyK2WzJzkm0Z85w4Zl8Yr5rHnCZ6jI8Qkkz9ZTQqaho0q7y6xzglNCqJJVgnEa+FneO5Dn9Ap9/3YthyjEOyM7Tu7mmeCshM5JgZgDu5rZ9IhnEbcxpEwmcEAAAAycqJsWpMwVudffTRRyovL9cf/vAHvfXWW8En9fmUk5OjK664QjNmzNBZZ51ly8nahUlBakqGRQmkBhObOkgeFTUNmrusVo2tiekrvPZ5Cv29UtecFqb+XisbkEOzM/SvFNuAdGrjIJFB0n+u/lDf/9OGiO1+dsUEfankGFuO6VQAYm8YryYWcxrr3LZxCTOSqb+0KnTOfZV7jPWc//zGNn3/j+sjtvvZV0/Vl04bafl5TfJa4DsAxMtta47Jsg7BnAaR8BkBAABAsnJirBr3btvRRx+t2267TRs2bNCbb76pH/zgBxo5cqRaWlq0ePFinXvuuSosLNQ999xjx/kCvQotSnRfiG9sadOs8mpV1DQ4dGZwmw5/QPOW1/a6CRV6bN7yWlLNu1hZcYFevX2qlsycpIevPFVLZk7SK7OnGlm49OLnKdGlZ6o2N4UN3JKkXfsOqmpzapVBS0/zqXTsMF166kiVjh2WkI3xipoGnfPAat37/Eb9vnKr7n1+o855YLWxa2zz3nZb21lBaTjvYk5jnRP9D5KPG/vLtfXNfQZuScGxWUNLm9bWN0f1vDtaLZaQtNguEY6UY+zf5fH8nP4EbgFAN25bc/TiOgQAAAAApAJbUyUUFxfr//v//j9t3bpVK1eu1LXXXqv+/ftr69atuv/+++08FHAYixKwk6lNHXiTVz9PZcUFemV2YgLkKuusBWVZbReLDn9AlXVNem79NlXWNaXk9caJDYu8Qf0jN4qinVWJDkBE8mFOA1jjtv5yxx6LQVYW24XUftRqa7tECd7Q8Pku47VXb/+8Le+bF8ZGTuM1BhLDjWuOXl2HAAAAAAC362fiSXfs2KE333xTb775pg4cOGDiEMBh0SxKlI4dlrgTgyuZ2tRB8uitbGJ+TpbmXmJ/uQMvf55CmVnMs7pIbmYx3W3lM2IRacPCp+CGxbSifFszrOTnZEVuFEW7aJQVF2haUT6l4TyOOQ0Qmcn+0u4SncMHWgv2tdouZP/BQ7a2SyQT4zUvjI2cxmsMJI4b1xy9vA4BAAAAAG5mW/DW3r179ec//1nl5eVatWqVOjo6FAgElJGRoQsvvFDXXHONXYcCumBRwhvs3rzpy4jB1oIArLZDcqmoadAN5dU9Hm9sbdMN5dW2l4lJhs9Tor47TikdM1yPrK6z1M5uoWxU3YOaQtmokjHrSCyc2rCYWJingtyssMcuyA1+pk1IXAAikglzGiB6rgkAsjr8iXKYdMboYfpb7Q5L7WJlajxn9/N6ZWwUDV5jwN3cuOaYDOsQAAAAAIDoxRW85ff79de//lXl5eVatmyZ9u3bp0AguIQ0adIkXXPNNfrqV7+qvDwzm2qAxKKEFyTyzuJQsEBjS1uvWWZ8CpaCMRUsAHM6/AHdvvStsG3uWPqWrdmDnP48JTLLmFPOKMyTzycFwiTW8vmC7ezkVDYqJzi1YZGe5tMlEwr065fr+2xzyYQC17++cB5zGiC5mApO2fmJtQx6VtuFzJg0Sj9esdFSu1iYmgvZ/byJGhu56cYEt77GAI5w45qj0+sQAAAAAIDYpMXyS2vXrtVNN92kgoICXXzxxVqyZIn27t2r0aNH65577tG7776rf/7zn5o1axabHDAutCjR19KkT2Yzc8Cs0OZN98wrDf/ZvKmoabD1eOlpPs2ZXiSp5033oX/PmV7EYrgLVW1u0u59B8O22bXvoKo2N9l2TCc/T6EsY50Dt6QjWcbs/u44Zd3WXWEDt6RgYNe6rbtsPW402ajczqkNiw5/QMs2hP+cLtvQoA6/mZKYSH3MaYDkEyk4RQoGp8TS9w8fZLFsosV2Ies/2G1ru876mgs1xjkXMjHHSsTYqKKmQVMWrtJVi6t089PrddXiKk1ZuCopx7Um3jsvjT+BZOHGNUfWtQAAAADAnSwHb9XV1WnevHk64YQTVFpaql/+8pf6+OOPlZubq+uvv15r1qw53GbcuHEmzxnogkWJ1BVu80YKLk7HunkTTllxgRbNKFF+btdAhPzcLMpQuFhlnbWgLKvtrAp9no7KSdznyWqWsVQIeukenBZvO6vcWD4jVqENi3BMbFhE2qCU2KBE9JjTAMnNaHCK1WFPlMMjU2MCU4FspuZYpsdGib6pJx6m3jsvjT+BZOHWNUfWtQAAAADAfSyXTTzhhBMkSYFAQBkZGbrgggt0zTXXaPr06crMzDR2goAVoUWJucveVmPrkTIXR+X019xLTmFRwkaJLFMRzcZ96dhhth67rLhA04ryXVOSA1YY2rGL8fiBSOmi4hBNlrHJ44YbO49EaLZY2shqO6vcWD4jVk6VL2SDEiYwpwGSm8m+f+dei2UTLbYLMTUmiCaQLZq5kKk5lsmxkdWAs2QpF2jqvfPS+DOVuan0p2lueS1Ca47dy6Dm21DC1iTWtSBJK1as0IMPPqjq6modOHBAJ554oq699lr913/9l9LSYirKoj/96U/6n//5H73xxhvavXu3hg8frvHjx+uKK67Qt771LZv/AgAAAMA7LAdvBQIBnXnmmbrmmmt05ZVXUjoESaqv++Bgh4qaBs1dVtslg01+TpbmXmJmsaqxZb+t7aKVnuazPSgMzikdM1yPrK6z1M5OoSwB3Tebtrce0KzyaiN3vUaTZcztwVt5A60FW1htZ1UoG1VjS1uvG4k+BRfzk6l8Rqysli+8rexkWzcC2KCECcxpgORmsu8fPtBi2USL7UJMjQlMBbKZmmOZHBs5eVNPLEy9d14af6aqipqGHgFABTYGALklGEoy/1rYza2BUKxreduCBQt0xx13SJLGjBmjQYMGacOGDbrpppv00ksv6c9//nNUAVwHDhzQFVdcoWXLlh1+zlGjRqmxsVEvvviidu7cSfAWAAAAEAfLo/N///vfqqys1He/+102OZB0QsER3ctibW9NvhIKblVR06AbenmNG1vbdIOh17h5b7ut7eBtk8YO05DsjLBthmRnaJKNC5umSqZE5nSWscTJzx1gazur3Fo+IxZOlS8MbVD29Qr6ZKZcI1IbcxoguRnt+61ekqO8dJsaE5gKZDM1xzI5NnL6pp5omXrvvDT+TEV9lf5stKn0Z0VNg6YsXKWrFlfp5qfX66rFVZqycFVSroeZfi1MCQVCXXrqSJWOHcZ3DUmtsrJSd955p9LS0vTUU0+prq5OGzZsUHV1tY466igtW7ZMDz74YFTPee2112rZsmU6++yz9c4776iurk5r167V+++/r8bGRt1///2G/hoAAADAGywHbx1//PEmzwOImXPBEd7R4Q/o9qVvhW1zx9K3bH+N8wZZu+vdajt4W3qaTwsuGx+2zYLLxtu6ABtNyRQ7Wc0eZneWsc46/AFV1jXpufXbVFnXZKwPDm3yhmMqwCdUPiO/2/Hzc7OMZFRzilPlC9mghAnMaQD72XnNN9n377RYQtlqu85MjAlMBbKZnGOZGhu57aYek0GIXhl/phrT61ZuCoZiDQ9IjPvuu0+BQEDf/va3ddVVVx1+fMKECYeDthYsWKCDBw9aer6KigotWbJEJ510kioqKnTiiSd2+fmnPvUpnX/++fb9AQAAAIAHWS6bCCSraIIjSBUem6rNTdq9L/xkfte+g6rabG8Jtvwca3ciW20HlBUX6NEZJZq77G01th7ZmMvP6a+5l5xi+2aHU0EvoSxj4b63dmcZ6yxYYjUxr3Fok7e30pRScHPMZICPW8tnRMPJ8oVlxQW6/uxCLV5Tr0CnN9jnk2aeVcgGJQA4zETZq1BwSvfnzY/zeU1fz+weE3Qe4/jUNV9qPIFspudYJsZGbrupx9R7F+KF8WeqMbluFSkYyqdgMNS0ovyk+IywhgeY19raqpdeekmSdN111/X4+eWXX65Zs2apqalJq1evthR09dBDD0mS7r77bg0YYG9mcwAAAABBBG/B9ZwKjvCSyromy+3sDN4K3bEcbmGPklmIViI3O5wKegllGbuhvLrPNnZnGQsJlVjtrrH1gG4or9ajBjIC9LXJG+/msVWh8hmpKtQXN7a09Rkgl2+oL66oadBjL9f3OK4/ID32cr1OO24oAVwA4JBQppfufXQo00s8WYBMjNcScT2ze0xgIpBtYmFexCD/odkZSfU6uPGmHlNBiCGpPv5MNSbXrdwWDMUaHmDeG2+8ofb2dmVlZamkpKTHzzMyMnTGGWdo5cqVeu211yIGb+3fv18rV66Uz+fTRRddpL///e968skntWXLFg0ZMkRnnXWWrrvuOg0ePNjUnwQAAAB4AsFbcD0nM4J4h9V09famte98x3L3Z6dkFuKRqM0OJ4NeEp1lTLJWYvX2pW8ZueubDATmmM4e0ZdwWQRCkimLAAB4SSIyvdg9XnPqehYvJ8Y4yVasLBEBZyYwPkWIyXUrtwVDsYYHmPfee+9Jko477jj169f79s+YMWO0cuXKw23D2bBhgw4dOqSRI0dq4cKFWrBgQZefL126VA888ICef/55nXrqqWGf68CBAzpw4MgaVWtra8TjAwAAAF6R5vQJAPEKBUf0tfzpE9mZ4lU6xlo2LavtohG6Yzk/t+vCXX5uVlx388PbOvwBVdY16bn121RZ16QOv5ktqtAmoaQefVQiNgnLigv06u2f15KZk/TwladqycxJevX2zxv73lTVRS6xunvfQVVZzOYXrdAm76WnjlTp2GFsjNnIib44miwCAIDEcmsf7da5hZ1jnLX1zZbGa8n23kUS72je1PyA8Skks+tWbguGYg0PMG/Xrl2SpKFDh/bZJvSzUNtwGhoaJEk7duzQggULNH36dL3zzjs6cOCA1q5dq5KSEn300Ue69NJL9cknn4R9rvnz5ys3N/fwf8cee6zVPwsAAABIeWTeguu59Q5qN5k0dljEO52HZGdokqFMRtyxDDtV1DQktLye6ZIpkSSypErl5p2W200+3v5gT5iV6L7YbVkEAMBL3NxHe31u4cb3LpqAs1jGvYmeH8B7TK5bOZntORas4QHmtbUFr2eZmZl9tunfv7+kYEnESPbu3StJOnjwoMaMGaNnn31WGRkZkqQzzjhDzz//vMaOHav3339fv/nNb/S9732vz+e64447dMsttxz+d2trKwFcAAAAwH+QeQspwa13ULtFeppPCy4bH7bNgsvGG11c445l2KGipkGzyqt7ZIpobGnTrPJqVdQ0GDluWXGBXpk9tUsGrFdmT03Bvsnq95Lvr1slsi92WxYBAPASt/fRXp5buPG9Mxlw5tT8AN5jat3K6WzPsWANDzArKyv43Wpvb++zTah04YABAyw/nyR997vfPRy4FZKfn68rr7xSklRRURH2ufr376+cnJwu/wEAAAAIsi3z1kcffaRt27Zp//79Ovvss+16WsAyr99BbVpZcYEenVGiucveVmPrgcOP5+f019xLTmFxDUmvwx/QvOW1vd6NHFBwYXve8lpNK8o30m8kMgOWU0rHDtMjqzdZagdE4rYsAkgNzGkAa+ij3cuN752pgDOn5wfwHlPrVk5ne44Fa3iAOVZKIloprdj9+STppJNO6rXNySefLEnasmWL1dMEAAAA0E3cwVuLFi3Sgw8+qM2bN0uSfD6fDh06dPjnt956qyorK/X000/ruOOOi/dwQFheCI5wEotrcLO19c097qjvLCCpoaUt5nIrkCaNiVxidWh2hiaN4fVFZJRUQSIxpwGiQx/tXm5870wFnDE/gBNMrVu5cb2GNTzAjOOPP16S9P777+vQoUPq16/nFlBo3hNqG86JJ554+P+Hyi12F3q8o6Mj6vMFAAAAEBRz2cRAIKCvfvWruvHGG7V582aNHj1agwYNUiDQdSntzDPPVFVVlZYuXRr3yQJwnpdLjMB+Hf6AKuua9Nz6baqsa1KHv7ftGHuYLLeCoPQ0n776mWPCtrniM8fQb8AySqrANOY0QOzoo93Lbe+dqbJwbp4fJHIeBfdgvQaAJJ122mnKyMhQW1ubqqure/z84MGDev311yUF5zmRHHPMMTr22GMlHQn66i70+MiRI2M9bQAAAMDzYs689cQTT+iZZ57RKaecoqeeekrjx4/XWWedpX/+859d2l100UVKT0/X888/r//3//5fvOcLAEgRFTUNPco6FBgs62Cq3AqO6PAHtGxDQ9g2yzY06Layk9lIgGVuzCIA92BOA8SHPtq93PbemSgLN3xQ79lDYm2XKImeRwEA3CUnJ0fnnXeeXnjhBT3xxBOaOHFil58/88wzam1t1bBhw3Tuuedaes7LL79cDz74oH7/+9/r+uuv7/KztrY2/fGPf5QkTZ061Za/AQAAAPCimDNvPfHEE0pLS9Mzzzyj8ePH99lu4MCBGjt2bJ93ZQAAvKeipkGzyqt7lClpbGnTrPJqVdSEDwCKRajcSl/bUT4FNz2iLbeCIyKVnpGOlJ4BokEWAZjCnAaIH320e7ntvSsrLtArs6dqycxJevjKU7Vk5iS9Mntq7AFLVpNVJVFSKyfmUQAA97nrrrvk8/n0+OOPa8mSJYcf37Bhg2655RZJ0m233abMzMzDP3vooYc0evRoXXnllT2e74c//KEGDRqkV199VT/+8Y/l9/slSfv379cNN9yghoYGDR06tEdgFwAAAADrYg7eevvttzVmzBiddNJJEdsOHTpUDQ0sIAEAgtmZ5i2v7XUPJPTYvOW1tpf+6FxupS+xlFvBEW4uPQPAm5jTAPAyN5beszPgbOfeA7a2M82peRQAwH0mT56se++9V36/X1dffbXGjh2rCRMmqKSkRNu3b9dFF12kW2+9tcvv7N69W1u3blVjY2OP58vPz9dTTz2lzMxM3X333Tr66KM1ceJEFRQU6He/+52ys7P19NNP61Of+lSi/kQAAAAg5cQcvOX3+9W/v7XU8a2trZbbAgBSW6TsTAGZy85UVlyg688uVPc9njSfdP3ZhUbLjLhxcyxalKYE4DbMaQC4gYlxZEVNg6YsXKWrFlfp5qfX66rFVZqycJWnMje5bezq5DwKAOA+d911l5YvX66pU6eqqalJmzZt0vjx4/XQQw/pueeeU3p6elTPN336dP3rX//SlVdeKZ/Pp/Xr12vgwIH6+te/rnXr1un888839JcAAAAA3tAv1l8sLCzUpk2b9Mknn2jQoEF9tmtsbNS///3vHrXVAQDe5GR2poqaBj32cn2Pu9UDAemxl+t12nFDjQRwVdQ0aN7y2i6bLQW5WZozvchowFiihUpTNra09ZoRwCcpn9KUAJIIcxoAyc7EODJUeq/7eC1Uem/RjJKUGqP2xW1jV7LcAgCidfHFF+viiy+21Hbu3LmaO3du2Dbjx4/vUoYRAAAAgH1izrx1ySWX6MCBA/rv//7vsO1uvfVWBQIBfelLX4r1UACSiBeyB8Esp+5wd6rMSGhzrPtd8qHNsVTKbtC5NGX3Ajahf1OaEkAyYU4DIJmZGEdSeu8It41d3ZYpDL1jTQUAAAAAAPQm5sxbP/jBD/S73/1ODz/8sD744ANdd911amsLLijW19frrbfe0s9//nOtWrVKY8aM0Xe/+13bThqAM7ySPQhmOXWHezRlRkrHDrPlmJE2x3wKbo5NK8pPmk2heIVKUy5eU69Apz/c55NmnmW2NCUARIs5DYBkZWoc6cSYOJm5aezqtkxh6Ik1FQAAAAAA0JeYM28NHTpUf/3rX1VYWKhnn31WF110kaqrqyVJ48aN05e+9KXDmxzPP/+8Bg4caNtJA0g8L2UPgllO3eHuRJmRaDbHUkWoNGX3G8j9/ylNabKv4C52ANFiTgN4kxvGDKbGkZTe68rJsWu03JYpDF2xpgIAAAAAAMKJOfOWJJ1yyil688039cQTT+jPf/6z3nrrLbW0tGjQoEEqKirSZZddpu985ztscgAu58XsQTCrrLhAi2aU9LjrON/gXcdOlBnx2uZYuL4ixFRfwV3sAGLFnAbwFreMGUyNIym9d4STY9dYOTGPQvxYUwEAAAAAAJHEFbwlSdnZ2fre976n733ve3acD4AkRGkNmFBWXKBpRflaW9+sHXvaNGJwsMSHqcVqJ8qMeG1zzKm+InQXe/f3NXQX+6IZJWxkAQiLOQ3gDW4aM5gaR1J67wi3znMTPY9C/Nz6WQMAAAAAAIkTc9lEAN6RDNmD3FDaBNFLT/OpdOwwXXrqSJWOHWZ0w8GJMiOhzbG+ntGnYKaHVNkcc6KviHQXuxS8i50+AwAAb3PbmMHUOLLzmLgvXim9lwzz3Fglch6F+Ln5swYAAAAAABLDSPDW+++/r4ULF+rmm2/W7373O/n9fhOHAZAgTmcPqqhp0JSFq3TV4ird/PR6XbW4SlMWrlJFTYOR4yF1hcqM5Od2/azm52YZybTgRMCYk5zoK6K5ix0AosGcBkgtbhszmBxHlhUX6PqzC9X9V9N80vVnFyZN9jHTnJ7nwjv4rAEAAAAAgEhiDt5atGiR8vLy9POf/7zL41VVVRo/frzuvPNO/eIXv9C3vvUtfeELX2CzA3AxJ7MHhUqbdN9oCZU2IYAL0SorLtArs6dqycxJevjKU7Vk5iS9MnuqsU2qRAeMOcmJvoK72AHEgzkN4B1uHDOYGkdW1DTosZfr1T3JWCAgPfZyvWfmWF7Lkgvn8FkDAAAAAACR9Iv1F5ctW6bW1lZddtllXR6/5ZZbtGfPHk2ePFlnnHGG/vSnP2nVqlV6+umndfXVV8d0rP/7v//TCy+8oH/961/66KOP1NTUpOzsbBUVFemrX/2qZs2apczMzFj/FAARhO76nlVeLZ/UpdSIyexBkUqb+BQsbTKtKD9lMhchMUJlRhKlrLhA04rytba+WTv2tGnE4ODCfKp9bp3oK7iLHUA8mNMA3uHWMYPd40jmWEc4Nc+F9/BZAwAAAAAAkfgCgUBva3YRFRYWqq2tTQ0NR+7IrK+v19ixY3XyySerpqZGPp9PNTU1+vSnP61zzz1Xq1atiukkp0yZoldffVX9+/fX0UcfrWHDhqmhoUHbtm2TJJ1++ul66aWXNGTIEEvP19raqtzcXLW0tCgnJyemcwK8qKKmQfOW13bJglWQm6U504uMZA+qrGvSVYurIrZbMnNSQgNx4H4d/kDKB1I5KZF9RYc/oCkLV6mxpa3XTUifgtkpXpk9lfcYrsJ4NTGY0wDewZghKBFzLLeNtRM9z4V38VmD1zBeRSR8RgAAAJCsnBirxpx56+OPP9bJJ5/c5bHVq1dLkq688kr5fMGFueLiYo0bN06bNm2K+SS//e1v67777tPkyZOVkZFx+PGqqipdfvnlWrdune666y798pe/jPkYACJLdPYgN5Y2QfJjwdy8RPYV3MUOIB7MaQDvYMwQZHqO5caxtley5MJ5fNYAAAAAAEBf0mL9xY6ODrW1dV3MW7NmjXw+n84555wuj+fl5enjjz+O9VD65je/qXPPPbfLJockTZo0SQ8++KCkYBkSAOaFys1deupIlY4dZnSR0a2lTZC8KmoaNKu8ustmkiQ1trRpVnm1Kmoa+vhNJLOy4gItmlGi/NyufUF+bpYWzShJ2o1CAM5jTgN4i+kxQ4c/oMq6Jj23fpsq65rU4Y8p0blRJudYbh5rJ3KeC2/jswYAAAAAAHoTc+at0aNHa9OmTdq9e7eGDBmijo4OVVRUKCsrS6WlpV3aNjc3Ky8vL+6T7c1JJ50kSdq3b5+R5wfgnImFeSrIzYpY2mRioZn+Bamlwx/QvOW1vX6WAgp+nuYtr9W0onwW0OPkRMYF7mIHEAvmNID3mBozuCXjlKk5FmNtAAAAAAAAIHYxZ9666KKLdODAAV199dX6y1/+ouuvv17bt2/XRRdd1OVu8paWFm3evFmjRo2y5YS7q6yslCSVlJQYeX4AzgmVNpGOlDIJ8VJpE9hjbX1zjywAnQUkNbS0aW19c+JOKgU5mXGBu9gBRIs5DeBNdo8Z3JRxytQci7E2AAAAAAAAELuYg7fuvPNOjRkzRhUVFbr00kv1m9/8Rrm5ubr33nu7tHv22Wfl9/v1uc99Lu6TDeno6NCHH36oX/3qV/rBD36ggQMHav78+bY9P4DkQTk02GXHnr43k2Jph54iZVyQghkXkrGEEABvYk4DIF5uHP+YmGMlaqzthtKUAAAAAAAAQLRiLpuYl5en6upqPf7443rvvfd07LHH6tprr1VBQddFvs2bN+vSSy/Vl7/85bhP9qGHHtL3v//9Lo998Ytf1L333qvi4uI+f+/AgQM6cODA4X+3trbGfS5ITh3+ACWzUhDl0GCHEYOzIjeKoh16iibjQunYYYk7MQDoA3MaAPFy6/jH7jlWIsbabilNCQDRYj0TAAAAABBz8JYk5eTk6JZbbgnb5r777ovnEF2MHDlSkydP1sGDB7V161Zt375dq1ev1pIlS/SjH/1I6enpvf7e/PnzNW/ePNvOA8mJhdzUFiptAsRqYmGehmRnaPe+g322GZqdoYmFeQk8q9RCdjMAbsScBkA83Dz+sXOONbEwTwW5WWED2Qpys2Iea4dKU3bPsxUqTUlWZgBuxXomAAAAAECKo2yiEy6//HK98soreu2119TY2KiqqiqNHj1a999/v2688cY+f++OO+5QS0vL4f8++OCDBJ41EiG0kNt9oTi0kFtR0+DQmcHNnCrJQSkQ5/BKx4fsZgAQGXMawBq3jIkZ/wSlp/l0yYTwQQaXTCiIKZOMG0tTAn1xS9+GxGA9EwAAAAAQEnPmrffffz/q3znuuONiPVyvzjzzTK1YsUJjxozRY489pttvv12jRo3q0a5///7q37+/rcdG8oi0kOtTcCF3WlE+KcdhWUVNg+Yue1uNrUfKE+Xn9NfcS04xeucjd1yas7a+OWzWLUnave9g0pW0cZPTRw1Vmk8Kt/+Q5gu2A6JBGRGYwpwGiJ+JPtqpsXgsQhmnGlvaep2T+iTlx5Fxyi06/AEt2xA+yGDZhgbdVnZy1J8Pt5amBLpjvo/OWM8EAAAAAHQWc/DW6NGj5fNZnzj6fD4dOnQo1sP16eijj9app56q1157TRs2bOh1owOpjYVc2K2ipkE3lFf3eLyx9YBuKK/Wo4ZKclAKxCw3l7Rxi3Vbd4UN3JKCgV3rtu6iP4ZlbHLBJOY0QHxM9NFOjcVjlZ7m05zpRZpVXi2fumZyDfUuc6YXpfzGe6R5uRT7vJxxPFIB8310x3omAAAAAKCzmIO3jjvuuD43Ovbu3audO3dKkjIyMnT00UfHehhLQhsoJjZSkPxYyPWGRGVd6fAHdPvSt8K2uX3pW7bf+cgdl+ZR0sY8r/bHZIUyh00umMacBoidiT46UWNxu6/dZcUFWjSjpEcgW36SBxvb+TqYHAcyjofbMd9Hb7w6fwYAAAAA9C7m4K0tW7aE/Xlra6sWL16se++9V1dffbV+/OMfx3qoiOexYcMGSdKECROMHAPJjYXc1JfIrCtVdU2WSutV1TVp8vHDbTsud1yaR0kb84YPtFbOy2o7NyArlDmRNrkkNrkQP+Y0QGxM9dGJGIubunaXFRdoWlG+awK67X4dTM7LKc0Nt2O+j96wngkAAAAA6CzN1BPn5OTo1ltv1dNPP60FCxboySefjOl51q1bpzlz5mjz5s09flZRUaELLrhAhw4d0oUXXqixY8fGe9pwoVBARl9L4j4FF6EJyHCn0B393Rc6Q3f0V9Q02Hq8ys07bW1nFXdcmhcqaROOF0raGGX1pUuRlzjR/VMyaD/k1xNrNuu/n6vRE2s2q/2Q39ixoim/BJjCnAbonak+2vRY3PS1Oz3Np9Kxw3TpqSNVOnaYbePKDn9AlXVNem79NlXWNakjUp3qCEy8Dibn5dGU5gaSEfN99Ib1TAAAAABAZ8aCt0LKyso0atQoPfzwwzH9/p49e/SjH/1IY8eOVUFBgc444wxNmDBBQ4cO1QUXXKB33nlHZ5xxhn73u9/ZfOZwi84BGd0XPEL/JiDDPnZvHEQ6lpU7+u09B2eiT7jjMjHKigt0/dmF6t4dpPmk688uJFNSnHZ+csDWdsnMmf7JWfNX1Oqke17Qvc9v1O8rt+re5zfqpHte0PwVtUaO19hqbfPKajsgHsxpgK7M9dHmxuKRrt0BJee1u6KmQZMXrNRVi6t089PrddXiKk1esDLmQDNTYxiT83ICX+B2zPfRG9YzAQAAAACdGQ/ekqQhQ4bonXfeiel3J0yYoIcffliXXHKJBg4cqHfeeUfvvPOOBgwYoAsuuEC/+c1v9M9//lPDh9tXvgzuU1ZcoEUzSpSf23WhKz83S4tmlBCQYZOKmgZNWbiqy8bBlIWrjGWXiaa0gF2sliiwu5SBV++4TGQwoBT8DD/2cn2PO/cDAemxl+tTMlNSInlpU8KJ/slJ81fU6te9fHf8AenXL9cbCeBqthjkZ7UdEC/mNMARpvpok2NxN2Z0rKhp0A3l1Wps7fo6NrYe0A0xZsgyOYYxNS/30hjTqkTPoxAfr873ERnrmQAAAACAkH6mD7Bjxw5t3LhRAwcOjOn3hw4dqptuukk33XSTzWeGVFNWXKBpRflaW9+sHXvaNGJwcOGLO9TsESqt0X1JOFRaw8SikhN3WE8aM0xDsjO0e9/BPtsMzc7QpDH2Bm+F7ricVV4tn9TldU7VOy4raho0b3ltl82jgtwszZleZGSBMlKWAZ+CWQamFeWn1OucSKFNicaWtl5fZ5+Ci9CpsCnhpQwQ7Yf8WrymPmybxWvqdev5Jymzn333BeQNzLS1HRAP5jRAV6b66DNG58nnCwbW98XnC7aLltsyOnb4A7p96Vth29y+9K2ox66mxzAm5uVeGmNakeh5FOLnxfk+rGM9EwAAAAAgGcy8tXPnTr3wwgu64IIL1N7ervPOO8/UoYDD0tN8Kh07TJeeOlKlY4ex0GETp8qDOXGHdXqaTwsuGx+2zfzLxhv5bHnpjstQMGD3u/5DwYAmMmB5LVOSE7xU9sFLGSCerNzSI+NWd/5AsJ2d8nMH2NoOiAVzGqB3pvrodVt3hQ3ckoKBXeu27orqeSX3ZXSsqmsKe0OJJO3ed1BVdU1RPW8ixjB2z8u9NMaMxIl5FOzhpfk+osd6JgAAAAAg5sxb6enpltoFAgHl5+drwYIFsR4KgMOiCXqxs5ygU3dYlxUX6NEZJZq7rLbLnfeJuJvZC3dcOpUBy0uZkpwU2pTong0gP8WyAXgpA8TW5n22trMq9BqHu/5QXgbxYk4DxMZUH21yvOa2jI6Vm3dabjf5eOslV906hvHKGDMcMgm7nxfm+wAAAAAAIDYxB28FItwOO3DgQI0ZM0YXXHCBfvCDH2j4cOuLiQCSi1NBL86XFujaz0Xq9+wSuuMyVTkVDOilTElOc2pTosMfSNgxne+fEufYodm2trOq82vc1+ZyqrzGcA5zGiA2pvro4YP629quM/dldLT62kX3Grt5DOP1wBen5lGwV6rP9wEAAAAAQGxiDt7y+/12ngeAJOZk0IsTd1iHSlF034ja3npAs8qrKWkQJ6eCAd2aZcCtEr0pUVHT0KOfMJ0tzysZIE46arCt7aLR12uciEyI8AbmNEDsjPTRVu+ViOGeiomFeRqSnRG2FOGQ7IykGQuWjh2mR1ZvstQuWm4ew3g58IVMwgAAAAAAAKkr5uAtAN7hdNBLIu+wphSFeU4FA7o5ywDC6yvgsrGlzXjApRcyQDTvb7e1XbS88BoDgFvZ3Ufv3HvA1nbdHTwUPmDzYEfyBHROGjMsYrDZ0OwMTRoTWyAT11f3IZNwYiUyqy8AAAAAAADBWwAiSoagl0TdYU0pCvOcDAZ0c5YB9C4ZAi5TPQNEMmwUpvprDABuZmcfbfKaU7W5SXvbO8K22XugQ1WbmzR5nPMlUtPTfFpw2XjdUF7dZ5v5l42Pa3zD9dVdnL6pykucyOoLAAAAAAC8Le7grQMHDmjJkiX629/+pnfffVd79uzR4MGDdcIJJ+gLX/iCrrzySvXv39+OcwXgIK8EvVCKwjyngwHJMpBaCLg0L7RRGO51LkjBjUKyLXgLcxp4gRv6NZPXnMq6JsvtkiF4SwqOWx+dUaK5y2rV2EoQidc5PY/yCiez+gIAAAAAAO+KK3irurpal19+ubZs2aJAINDjZ3/84x9177336k9/+pNKSkriOlEAzvNC0MvwQdY2Zq22Q++cDgZ0IsuAGzZM3YiAS/PS03y6ZEKBfv1yfZ9tLplQkFKfZ7IteAtzGniBW/o1s9ec3nIVxdMuMcqKCzT1pKP0ZOUWbW3ep1F52bqmdLQy+6U5fWpwgNPzqFSXDFl9AQAAAACAN8UcvPXhhx9q2rRp2rVrl4YPH66ZM2fqlFNO0VFHHaXt27fr7bff1uOPP67NmzfrC1/4gtavX6+RI0faee5ADwRHmOdUaY2Evbfu3NOxRaK/P14IBgxxy4apGyVDSb9U1+EPaNmGhrBtlm1o0G1lJ6fE95dsC97CnAZeYLpfs3MMafKaUzpmuB5ZXWepXTLpbRz5+Cv1jCM9zEvzqERLRFZf1q3ci/cOAAAAAGBSzMFb8+fP165du3TZZZfpySef1IABA3q0ueeee3TNNdfo2Wef1fz58/XII4/EdbJAOARHpK6KmgbNXfa2GlsPHH4sP6e/5l5yiu3v7c69ByI3iqKdWzj1/XEqGLD9kD9h2QsIBDErVF6psaWt15hKn4KZCFKtpF8iRdrEklKnNCXZFryHOQ1Snel+ze4xpMlrzqSxwzQkO0O79x3ss82Q7AxNiuNaZvfGvpsC7xLxvDjCqXlUqjOd1Zd1K/fivQMAAAAAmBZz8NYLL7yggQMH6re//W2vmxySlJWVpd/85jeqqKjQihUrYj5JIBKCI1JXRU2Dbiiv7vF4Y+sB3VBerUdtfm+9mMXHye+PExs781fUavGaevk7/cE/XrFRM88q1B0XFtl6LAJBzEtP82nO9CLNKq+WT12T4oVe0TnTi3h94+Cl0pSJyLaA5MKcBqnOZL9mYgxp8pqTnubTVz9zTNiSjF/9zDExjxns3th3W+Cd6ec1jYAzSGbXA1i3ci/eOwAAAABAIsScZuSjjz7SySefrEGDBoVtN2jQIJ188slqaAhf+gCIVaRFbSm4qN3hT8E6dymuwx/Q7UvfCtvm9qVv2frenj5qqCKt0af5gu1SgZPfn4qaBk1ZuEpXLa7SzU+v11WLqzRl4SpV1Ji7XsxfUatfv9w1cEuS/AHp1y/Xa/6KWluPF82GKWJXVlygRTNKlJ/bdRMlPzeLhXQbeCmo1UuBaghiToNUZ6pfMzWGNHnNsVqSMZZxb2hjv/u4L7SxH8v41uQ40sT5mnxe05yYlyA5hbL69rUk4FMwGDHarL6sW7kX7x0AAAAAIFFiDt4aPHiwtm/fbqnt9u3bNXDgwFgPBYRFcETqqqprClvWRJJ27zuoqrom2465buuuHoE93fkDwXapwKnvjxMbO+2H/Fq8pu9MC5K0eE292g/5bTsmgSCJU1ZcoFdmT9WSmZP08JWnasnMSXpl9lQCt2wwsTBPQ7IzwrYZmp1htDRl+yG/nlizWf/9XI2eWLPZ1u9pZ14KVEMQcxqkOlP9mqkxpMlrTjQlGaNhamPfbYF3bg1wcGvAGcwIZfWV1COAK56svqxbuRfvHQAAAAAgUWIO3jr99NP14Ycf6umnnw7bbsmSJfrggw/0mc98JtZDAWERHJG6KjfvtLWdFV77PDnx9zq1sfNk5RZLgXlPVm6x7ZgEgiBVRAqWOmAomEoKZsw76Z4XdO/zG/X7yq269/mNOumeF2zPlCcdybYQTizZFpC8mNMg1Znq10yOIU1dc0yds6mNfbcF3rkxwMGtAWcwy0RWX6+tM6QS3jsAAAAAQKLEHLz1ve99T4FAQN/4xjd06623qr6+azaT+vp63XLLLbr22mvl8/l00003xX2yQG8IjkhlVu9mje6u13C89nly4u91amNna/M+W9tZYarsBnryWrmbDn9AlXVNem79NlXWNRndVKyqa9K+9o6wbfa1d9iaBTEk0aVO09N8umRCgdL8HTple52e/81N+uLbq7u0uWRCQdTZFpC8mNMg1aWn+VQ8Midsm+KROVH3a6bGkCavOabO2dTGvtsC79wY4ODGgDMkht1Zfb22zpBKeO8AAAAAAIkSc/DWRRddpNmzZ+vgwYN66KGHNG7cOGVnZ2vUqFHKzs7WuHHj9PDDD6u9vV233367LrzwQjvPGziM4IjUVTp2mK3trPDa58mJv9epjZ1Redm2trPCVNkNdOW1cjeJDlRzIguilOBSp9u3S3fdpcDYsZp689e14eEr9fxvb9YpOzbrob/8VMP3HimVu2xDAxk4UghzGqS69kN+rdy4I2yblRt3RN2Xnj5qqCINX9J8wXbRMHnNMTXuNbWxHwooDieWgGJT5+vGAAc3BpwhcdLTfCodO0yXnjpSpWOHxTVn89o6QyrhvQMAAAAAJErMwVuSNH/+fC1btkylpaXy+Xxqa2vTBx98oLa2Nvl8Pk2ePFnLly/Xj3/8Y7vOFy6SqKwgBEekrkljhmlIdkbYNkOzMzRpjH3BW177PDnx9w4f1N/WdlZ99YzjbG1nlYmyGzjCa+VunAlUS3wWRMlwqdN166Q//EH6f/9P+sxnpPx86f775du8WWduWqfB7fu1J3OAJOn3p12kndlDDv8qGThSD3MapDJTfem6rbssPe+6rbvCN+rB3DXH1LjXVCBbhz+gP/7rw7Bt/vSvD6Me45g6X1PPa5IbA87gTl5bZ3CaneuRvHcAAAAAgETpF+8TXHzxxbr44ou1d+9ebdq0SZ988okGDRqkcePGaeDAgXacI1yooqZB85bXdtlcLsjN0pzpRUYCFULBEd2PmW/wmDAvPc2nBZeN1w3l1X22mX/ZeNsXybz2eUr432t13dTmWJsla9+33G7m2WNsPXZZcYGmFeVrbX2zduxp04jBwTtzWeCNXzTlbuzM0ueESIFqPgUD1aYV5dv62SodO0yPrN5kqZ2dbCt12tEhbdwovfKK9OqrUnl52OY/m3y1Xjx+kt751Cj509J7bUMGjtTDnAapylTZaFMZi84szNMjq621i4WJcW80gWzRXCurNjdp976DYdvs2ndQVZubNHnccMvPa+p8TT2vSaGMOo0tbb2Or3wKfjbIqAM7eG2dwSkm1iN57wAAAAAAiRB38FbIwIEDNWHCBLueDjbq8AcSGjAQygrSffEzlBXEVKYZgiNgJ699nhL59+7ce8DWdla9vsVappzXtzTbHrwlHSm7AXt5qdyNU4FqoSyI4TaQ7c6CKMVR6nT/fmntWumhh6T/+7/wv/xf/yVNnix99rPSqFGqrGvSw4urIh6TDBypizkNUo2pstGmMhalWRx7Wm3XG7vHvabGIpV1TZbbRRO8Zep83TgmC2XUmVVeLZ+63jtCRh2Y4LV1hkTraz2ywYb1SN47AAAAAIBptgVvITklOgOWU1lBQgiOSC0d/oBuX/pW2DZ3LH2Lz5NNEvX3OlWeJDuz9ww6sbZDcvBSuRunNkWdyoJ4Telo/XjFxrBZPNJ80jVjs6W5c6V584IPZmRIB3sJNJs6VZoyRTrllGCw1jHH9GhCBg4Aqeaa0tG67/mNYROa+v7TLhqm+sudn1gM8rfYri92jntNjUX8Ab+t7aI9j2jP161jMtMZdRJ9Mx2Sn9fWGRIl3HqkFFyTjHc9kvcOAAAAAGCS5eCt3//+93Ef7Otf/3rczwHrnMiA5aXyVTDPVKkQOCu02ReurygwEBzx5dOO0f+t/8hSOxPYuDHDS8E2Tm6KlhUX6NEZJZq7rFaNrYkJCM/sl6aZZxXq1y/XH37MF/Dr/Peq9J3XnlVAPhVqvzIXbO36iwcPSgUF0qRJ0oYN0uzZ0te/LmVFfl3IwJH6mNPAa9LTfMrOTNfe9o4+22T3T4+6XzPVX7oxAMjUWGRodn9b24WYOl83j8lMZdRJ9M10gJdFWo+UWI8EAAAAACQ3y8Fb3/zmN+Xzxb5w5fP52OhIIKcyYLmxVAKSl6lSIXBWeppPl0wo6BKQ0d0lEwpsD4747PHDlZ2Zrn3hNi8z0/XZ4+3/LHlx4yZRwWpeCrZxelO0rLhAU086Sk9WbtHW5n0alZeta0pHK7NfmpHjSdIdU47RSWsq9O+qt3T6h7Watmltz0Y+nzR0qNTcLH31q9L8+dLo0cHHY2A6AwecxZwGXrO2vjls4JYk7T3QEdNmdqi/7B7YG09/6fS1LhahsUhfGSoDim0sMnywtaAsq+1CTI2d3D4mszujjhM30wFe1tiy39Z2AAAAAAAkmuXgreOOO67PjY6tW7eqf//+ys/Pt+3EEB+nMmC58U5pJLNwBV5iaYdk0OEPaNmGhrBtlm1o0G1lJ9u6uZOe5tODV0wIW/rtwSsm2L6h5MWNm0QHq3kl2MbpTdGKmgbNXfa2GluPlKpavGaz5l5yin2v8Y4dUlWV9Oqr0mOPSbt360t9NN1fMFIDHn9MKi0NBm/ZyFQGDjiPOQ28JhE31wS6le3z+6Mr49eZ09e6ZJKfY23ObLVdZ6bGTl4Zk0Xi1M10gJc17223tR0AAAAAAIlmOXhry5Ytff4sLS1NZ5xxhl5++WU7zgk2cCoDlhvvlEbyKh0zXI+srrPUDu7hZDmDUOm3//6/t7TjkyMlOUcMytCPvjje9g0lL27cOBWs5pVgG6c2RStqGnoNfGxsPaAbyqv1aCzvayAg1dVJr7wiXXtt+OOfUKrXRxZp3TFFqh0xRgf7ZUiSFh13mspsDtwKsTsDB5IDcxp4jcmba/q6Nmzf0x77tUHuCwDq8Ad0+9K3wra5Y+lbUY/3TJcaNzV28sqYLBynbqYDvCxvkLUshFbb9SZR2aUBAAAAAN5kOXgL7uJUBizulIadJo0dpiHZGdq972CfbYZkZ2gSC96ukgzlVdPS0iUd7PZv+3lt48bpYDWngm0SvYif6E1RK5vSt1vZlG5vl6qrpa98Rdq2TRoxIphpq7uTTpKmTJG/9LO6sXKXVuSd0GsJxFQMfgQAu50+aqjSfJI/TKLaNF+wXTRsuzb0wfS1zs5rd9XmprDzFUnate+gqjZHV+q989xaMjO3NjV28noAdDLMdwCvMZmtUEp8dmkAAAAAgPcQvJWiJhbmWQp6MZEBy213SiN5paf5tOCy8WHL3C24bDyb9i7jZHnVvrMHtcWVIaIvXtu48VqwmuTcIn4iN0Wr6iJvSu/ed1BVdU2afHynTen6eunBB6X//V/pxBOl116T2jp9PnbskDIzpTPOCAZ2nXaadOut0gknSJJeq2vSiner+jxmKn6eAMBu67buChu4JQUDu9Zt3RVVXxrztSEKpq51dl+7K+uaLLeLJnhLYm7tVk7OdwCvMpmt0Kns0gAAAAAAbyF4y8NMhrtQKiF1OZFh5tEZJZq77G01th44/Hh+Tn/NveQUFshcyEpw6VADwaWmStqE47WNG68Fq3llEb9y887IjQIBffjn56XhHdLatdKrr0o1NUd+3tgY/N9hw6SmpuD/PvGE9IUvSFm9f/6d/jxRFgWAU+zsf0z1pZauDf9pF2vwlgkmrt2BQITouCjbdcfc2n2cmu/AXowF3cVUtkKns0sDAAAAALyD4K0Utba+2VLpBrJVIBpOZZhxasOCxVrnxLa1FZ6pkjbhhO7+bWxp6/Vv8imYOSFVNm68FKzmrUX8nuefeeigTvx4iz6zrVanf7hRF//7lfBP8cAD0sUXBzNw9VICsTdOZ+mjLAoAJ9jd/5jrS61e25LnGmjq2p0zIMPWdr3xehnCVGRivgP7MBZ0JxPZChOVXZr1JwAAAAAAwVspyulsFRU1DWRKSjFOZ5hJ9IYFi7XmWAku3W0guNRkSZu+hO7+7av0Z0Cx3f2brLwUrOalEpGlY4fpmWVV+ta/luk7a5dG/oVbbpGmTJE++1npqKNiPq5Tnyenr3cAvMtE/2OqLy0dO0yPrN5kqV2yMHXtbm0LP66Nth3cz6n5DuzBWNDdyooLNPWko/Rk5RZtbd6nUXnZuqZ0tDL7pcX0fIlYX2X9CQAAAAAgSbHNXJH0nM5WcUN5dZfALUlqbD2gG8qrVVHTYPsxYVaku9Sl4F3qHX5z9w+3H/LriTWb9d/P1eiJNZvVfshv7FihxdrumzuhxdpU/Qx3+AOqrGvSc+u3qbKuydj76VxwqdW/h/vgYxUKVpN65tmIp1RFMnI6SNq4qipp5EjJ59Pk4z+l1371zV4Dt1aPOV3/39lf141XzFHHjo+lQED66U+lL30prsAtyZnPUzJc7wB4k6n+x1RfOmnMMGVnpodtMzAzXZPGJE9giqlrt/tykMG0RIwTEzV38xrGgoll4nNcUdOgcx5YrXuf36jfV27Vvc9v1DkPrI55Hcf0+qpX158AAAAAAD1Zzrz18ssvh/15S0tLxDZnn3221cMhTk5lq+jwB3T70rfCtrl96VspUkbKO5zOMDN/Ra0Wr6lX53W8H6/YqJlnFeqOC4tsPZa3SqEdkcg7PZ0KLi0dM1yPrK6z1M4uoc9TX1Lx82SiVEUySqkSkW1t0t13SytWSNnZ0scfS++/H/ZXfnjBTVpa/Hl1pAU37odmZ0jD7O//E/15cvp6B/OY0yBZmex/TPWlmf3StK+9I+zPk4mpa/cZx+VJijzGDLaDFyQi2IMsPWYwFkwcE59jN2WwlLy7/gQAAAAA6J3l4K1zzz1XPl/vE0Wfz6eamhp97nOf6/P3fT6fDh06FP0ZIiahO6xnlVfLp655ZExmP6mqa7JUHqCqrkmTj7cvQAJmOZlhZv6KWv365foej/sDOvy4nQFcXlysTXRZCKeCSyeNHaYh2Rlh+6gh2RmaZOP76sXPkxTcJJ5WlK+19c3asadNIwYH389UWnA+fdRQpfmkcDeHp/mC7ZJOfb00Z460ZIlkYWx2KHeIvnTpHL1VcHyfbXYZLP2TyM9TymdUA3MaJC3T/Y/dfamVsnDxXhs6/AFb+35T1+53P/7EcrtzTh4R1XPDnUzOdyjpZ5bbx4J295ummPgcmwqEMrm+6tX1AgAAAABA76K6FTYQCMT8n99vrsQZehe6wzo/t+vdnPm5WcYW9F6t+9jWduhbIsskOJVhpv2QX4vX9Azc6mzxmnpbSyi6fbE2Wk6UhQgtfvb1jAGZCS5NT/NpwWXjw7ZZcNl4W4/rtc9TZ+lpPpWOHaZLTx2p0rHDknLTIB7rtu4Ku/krBTeH123dlZgTCuf996VnnpFGj5Z8PmnMGOnJJ3sP3Bo/Xlq5UtqzJ1gCMRDQ83+vCRu4FWLyc5yoz1NKZVRDn5jTIBklov+xsy81PcapqGnQlIWrdNXiKt389HpdtbhKUxauiqt8lKlr99bmvba2g/uZKldKST/zhg/qb2u73phayzHRb5pg6nMcTSBUtEytr3p5vQAAAAAA0JPlzFtsVLhTorOffLTb2oKC1XboXaLLJEwszIuYsWhodobtmZKerNxiaYPlycotuu6sMbYc02sb916707OsuECPzijR3GVvq7H1wOHH83P6a+4lp6RMiUiYl7QL7YcOSc8+Ky1cKL3xRuT2J58szZ4tXXWVlJnZaxMvfY6dygyIxGFOg2Tltv7H5LXBVGYhU9duqzPrZAxjd0uWHjcyUa7Ua3M3R1iNF4ox3srUWo6bMrKZ+hy7LYOllJh5Fv08AAAAALiH5eAtuFfoDutEGDl0gK3t0FOyLsqZuLd3a/M+W9tZ4baNs3g5EYASutO2L7GWM7AqkUGtXvs8eUki7sq3ZPdu6aGHpHnzwrebMCEYqLVvn/TNb0pf+pLlQ3jpc+xU2WkAcFv/Y+raYKrslWRuk3zCMUP0pN631C5WJjbfE31DkBeVFRdo6klH6cnKLdravE+j8rJ1TeloZfaLKgn+YUl780AK2bn3QORGUbTrzNRajsl+0wRTn+NEZrC0i+l5Fv08AAAAALhLbCtGQB8+O3a4re3QlVNlEtbWN4fNuiVJu/cdjCn9fDij8rJtbWeFqRIXycqJjDomyxlYlagSbF77PHmK4bvy+7R6tXTuudLQoVJpafB/wwVunXOO9MEH0vr10pIl0nPPRRW4JSXH5ziRpYKdKDsNAJL5/sfOvtTUtcHkODG0Sd7XGfkU3NSOdpO8ZX/4eVK07bozUQotFETS/bUOBZEkW5k1t6qoadA5D6zWvc9v1O8rt+re5zfqnAdWx/z6eikbqlNMvcYm13KSYX4dDVOvsak+3iST8yz6eQAAAABwHzJvwVZnjM6TzycFwqw3+XzBdoieU2USnLrD9+ozR+ne5zdaamcnEyUukpUTGXW8dse4lz5PXmLyrvzDOjqkn/xE+t//lf71r54/r6rq+dj8+dLNN0sD7M1wGfocdy85epShkqOdOXHHeKLLTgNAiKn+x0RfauLaYHKcaCq7Wd7A3ssOx9quMxOZetyWpcetTLx3XsqG6hRTr7HJtRy3za9NvcZuy2AZYmK9gH4eAAAAANyJ4C3Yat3WXWEDt6RgYNe6rbsSVsoxlTi1KDd8oMXyYBbbWbX+g92W29n9efLKxr0TC5xOfZ46M1F6JhyvfJ68xMgd43v2SG++Kb38snTnnZHb/+pXUlmZNHp0MDI6Ifq6J9wMJ0sFJ7LsNAB0Znf/Y74vte/aYDqzkIlN8vxcawHTVtuFmNp8d+qGIC8x9d65NTjFTUy9xibXctyWkc3k59itN07ZvV5APw8AAAAA7kTwFmzltjv+3MaxRTmr60U2rxE7/Xnq8AdU+1GLtjbv06i8bJ0+amhKLoQnfIHToc9TiBNZfCTnAkESHajmFbbcMf7uu9IDD0iPP27toDfeKN1yi1RYGMspx6Wvjf/treaCqLhjHADiZ7Iv7TMoLI5rQyIyC9m9SR4653Ab5bGU6jK1+e70HMsLTAZOuDU4xU1MvMYm13LcmJHN5OfYrTdO2bleQD8PAAAAAO5E8JYHJHLj3m13/LmNU4tyOz+xWB7MYjurnPw8zV9Rq8Vr6uXv9EL/eMVGzTyrUHdcWGT78ZyWyAVOpz5PkrNZfJzgVKCa5EzQWCKP2fmO8b50uWM8EJD+9jdp+nTp4MHwT/6lL0n79klTpkj/9V/S0KE9miTyb3UqiIo7xgEgfqb60nDXhtDzJnNmofZDfq146yNtadqn0cOydeqxQzQgMz2m5wqd8w1WxwQWmdp8Z85ununACbcGp7iJqSBPE2s5bs3Ixue4Kzvnd/TzAAAAAOBOBG+luERv3Ju66xhBTi3KObXwc/qooUrzqUsAVXdpvmA7O81fUatfv1zf43F/QIcfT8UArkRx6vPktSw+TgaqORE05sQxy4oLdP3ZhT0CPdN80o0lw1X2kzuklSuDwVfbt0s7doR/wqVLpS9+MWIJxET/rU4FUXHHOADEz1RfGunaICVvZqGZv39dL9YeuSaveU96sup9TSsaocVfPyOm53zj/V0Rfx7teedlZ9raLsSNWXrchsCJ1GBnJiTTazluzchmIju1kzcwxcruc6afBwAAAAB3IngrhTmxcZ+e5tMlEwp6DXwJuWRCQUoERjjFiUU5pxZ+1m3dFTZwSwoGVK3busu2Bb/2Q34tXtP351eSFq+p163nn6TMfmm2HDMZJHKB06nPk5ey+DgZqObEtcepQLWKmgY99nK9ApJO3rFZt778pM6re71nww8/7PnYCSdIy5ZJJ54Y9TET/bc6FUTFxicAxM9UX9rYst/Wdt2ZysjSPXCrsxdrd2jm71+POoCr/ZBfj0WYPzwWw/zhncZWy+3OOuFTlp836uyhMXBj2W47z9n0fMeNwSkwv5ZDJit3Zto2cc5uzcYGAAAAAF5H8FaKcmrjvsMf0LINDWHbLNvQoNvKTmaRIA6JXpSLVAokIDMLP04EDDxZucVSwNiTlVt03VljbDuukxK9wOmlz5NTnApUc+La48j1LhBQx8Z3VPWj36t6+S81tG1P+PaTJ0sLF0qnny5lxR5o5NS13akgKu4YB4D4mepLm/e229quN3ZnZNnf3tFn4FbIi7U7tL+9I6oSir/75xYFIswfAoFgu5lnW58/fLDLWuCb1XadhcseOvOswrjG/m4MLLL7nE0GTrgxOAVHmF7LMZHJyi0SMVeyOzDV5Dm7NRsbAAAAAHhZ6qSNQRfRbNwn8rgydFwvCi3KXXrqSJWOHZaSwXDDB/a3tZ0VW5r22dou2UVaLJSCi4UdkSLaomSltIzdvJTFx6lANSeuPQk5Zlub9Nhj0tixwZKGaWlKP6VIc59Z0GvgVvXRJ+o7X7pThbctU+WmndIrrwQDuOII3JKcu7aHNv77usr4ZKYkcmjjM3SM7seUuGMcACIx1ZfmDbI2/rbaLhHuX1Fra7uQ17dYu+5abRcycsgAW9t1Fsoe2n2IHwhIj71cr4qa8DdkhXveWeXVPcYrocCiWJ/XJFPnHAqcyM/tOv7Lz82KOcDKqbkb7OWFtRwnmJ4rVdQ0aMrCVbpqcZVufnq9rlpcpSkLV8XVr5k+57LiAr0ye6qWzJykh688VUtmTtIrs6cSuAUAAAAASSquzFsHDx7Ub37zG73wwgvavHmzPvnkEwX6uOXU5/Oprq4unsMhCk5t3Hsps42XhBaJ+2KsBJvVp7J1rdPqQndqLIg7kaHJqdKUoQCUcH+viQAUJzgVqObENcDIMRsbpQULpIcfDtvsjYITtXnYSCkQ0B8nfEFrjy2O77gROHWNdbLsBneMIxGY0yDVmehL83OsjSGstksEUzdpZFvM0mW1XYipqZCpTC9Olu2OlelztjvLkpfKwAPRMjlXMpXxLhHzOy9nYwMAAAAAt4k5eGvnzp2aOnWq3n777T43Nzrz+ZJjcc4rnNq4dyJTEsxzapF45ycHbG1nxanHDNGTet9Su1TgpdKU6Wk+XTKhQL9+ue/AsUsmFCTNZlI8nCo358S1x5ZjPvusdN99Um2tVFQkrV8f/sm+8hW9Pvt+Xf6/79p2flY4mT0utPE/d1mtGlsTG0SV6FLB8BbmNPAKu/tSNwbFjx6WrTXvWWsXjS+fdoz+b/1HltpF48Pd1sohWm0XYmpu58bAokScs52BE9wsB/TN1FzJZJCnl7KDAwAAAAAiizmlye23366amhqNHDlSP//5z1VZWam6ujrV19f3+t/mzZvtPG9E4FSJI2cyJcE0pxaJnVjIOnqotc0aq+2SnROv8dZma9kMrLazqsMf0LIN4UsaLNvQkBJlRjqXSOqLiUxJTlx7oj5mW5v0gx9IJ50ULIHo80lf+UowYKu9vffArUcflQ4eDNYSCgSkZ55RScm45P9bjej6/bAS7GIHysvAFOY08BI7+9JEjDU6/AFV1jXpufXbVFnXFPcY7c4Lw59vtO1CzrQYmGO1XcioPGvzDavtQkzN7dwYWOS2cybQA+ibqbmSydKGyTG/Q6pbsWKFzjvvPOXl5WngwIEqKSnRL37xC/n9/rif+/HHH5fP55PP59O3v/1tG84WAAAA8LaYM2/95S9/UUZGhlatWqVx48bZeU6wgVMljpzIlATznFokdiJ7kBuzCMTDidfY1EZUJJEWXaXkywYQj7LiAl1/dqEWr6nvkukszSfNPKvQSKYkJ649kY45ZH+rHj5+n9Ln/Hcwu1Ykv/2tdN550siRcR1XSvzfauKYIX2VCtneeiCuUiGA05jTAMmpoqahR5nHgjizPQ7ITNe0ohF6sXZHn22mFY3QgCjLG67bustyu2jGmNeUjtaPV2wMm7E2zRdsFw1Tc7tEzRk7/AHbMsi5LRjKqey6gBuYmiuZDPJ0cn4Hb1iwYIHuuOMOSdKYMWM0aNAgbdiwQTfddJNeeukl/fnPf1ZaWmz39n/88ceaPXu2nacLAAAAeF7MmbdaWlp04oknssmRxEIljo7K6Vqi8Kic/sY2Wd22+AlrnLobsPMd/d2PbTI4onhkTtg2xSNzUmbxzInX+JrS0Yr0dLFsREXitjvr41VR06DHXq7vseEXCEiPvVyviprwWchiFbr25Od27efzc7OMXXs6H/OUxk165LmF2rLwYtUvvFhv/PxqTfz2Fb0HbvXrJ915p9TYeCSr1je+ETFwq7fjdpaovzVRx4xUKkQKlgoxmbXO7uwrQAhzGniJnX1p6NrQl1AZqViOEQoY7h5039jSplnl1XGNYb5cEr50YaSf98bUGDOzX5pmnlUYts3MswqV2S+6ZR1Tc7tEzBkraho0ZeEqXbW4Sjc/vV5XLa7SlIWrYv5MJOKc7fzeOTF3A9zExFzJ9DqnE2u38IbKykrdeeedSktL01NPPaW6ujpt2LBB1dXVOuqoo7Rs2TI9+OCDMT//97//fe3evVsXXXSRjWcNAAAAeFvMmbfGjRun9vZ2O88FhnSvaGSywpFX7wS18+7fZOTk3YChhazud97nx3nnfV/aD/m1cmPfd+NL0sqNO9R+yB/1Rkmy6pyhqXP/4DOUoSmzX5o+f3L4rAefP3mE7a+vl4JLIwXbhDZUpxXlG/veTivKN98v+v3S0qXS5ZerTFJZuLZXXikdOCB9/vPSt74lDRhgyykk7G918JjRlAoxkbXORPYVIIQ5DbzC7r7U1LXB5BjGasBZtM89fGD/yI2iaNfZHf8p4dhXJtU7oizxKJmb25meM/aVBTQU1BdLkEMiztnuMUyi58eA29g9V0rcOmdfIZnxSfX1SvTtvvvuUyAQ0MyZM3XVVVcdfnzChAl68MEH9bWvfU0LFizQzTffrIyMjKie+6WXXtIf/vAHzZo1SyNGjNDzzz9v9+kDAAAAnhTzzvi3v/1tvffee1q3bp2d5wMbVdQ06Ibyam3f07VE4fY9B3RDnHcs98WLd4LaffdvsnIi20vnY//jh5/TPRedrK+XjtI9F52sf/zwc0aO+WTllrClSSTJHwi2SxV9ZWjyG8rQ1OEPqGZba9g2Ndtabc+s41QGOSdEs6FqSnqaT6Vjh+nSU0eqdOwwe/r9xkZp+nQpJ0c6+WRp2DDp8svD/86qVcGo5SVLgoFe//VftgVuhRj5W5PomE5mrTOZfQWQmNPAG0z0paauDSbHMMae2+olOMZL9R0XFunteWW6ZtJxOuv44bpm0nF6e15ZTIFbIabmdqae12QWUFPnbHIMU1ZcoFdmT9WSmZP08JWnasnMSXpl9lQCt4D/sHOuZHqdM9RXNLZ27Su2t8bfV3hlvRI9tba26qWXXpIkXXfddT1+fvnllysnJ0dNTU1avXp1VM/d1tZ2OGjr/vvvt+V8AQAAAATFnHnrpptu0uuvv64vfvGLeuSRR3TppZfaeV6IU4c/oNuXvhW2ze1L3zKSdcVLd4KauPs3mTmRYUYKvs5zl72txtYjgYiL12zW3EtOsf313dq8z9Z2yS7cRkiI3RmaIm2cSWay+DiZQS7RUqZE5OrV0j33SK++2vNn77zT87HJk6Wnn5aOib7kEfrmVNY6pzPIwRuY0yDVmepLTV0bTI5hTD33zk8ORG4URbvuus+F1rwnvVi7Pe65kKm5nYnnNZ0F1O5zTsQYJhScAsA8U+ucJvsKr61Xoqs33nhD7e3tysrKUklJSY+fZ2Rk6IwzztDKlSv12muv6fzzz7f83Pfdd582bdqk3/3udxoyZIiNZw0AAAAg5uCtz3/+85KkHTt26LLLLtPQoUM1duxYDRw4sNf2Pp9PK1eujPVwiFJVXZN27zsYts3ufQdVVdekyccPt/34TgX5JJJXN5UTvUgcyiDXXWNrMIPcozYvOI3Ky7a1XbJzohyak4FFXgkuHT7IYvkei+0Swu+XNmyQqqul73xH6ugI3/6CC6Qf/UiaMEGKMsU/ohPKWheurzCRtc7pco3wBuY0SHWm+lJTZaRMliA0FXBmctxlei7klgCgRMwf7HwtGMMAqcdNgaleXa/EEe+9954k6bjjjlO/fr1v/4wZM0YrV6483NaKjRs36oEHHtBZZ52lr3/967acKwAAAIAjYg7e+vvf/97l383NzWpu7ru8gM/HZDCRKjfvtNzORPCWF7Aga54TGeSuKR2tH6/YGLZ0Ypov2C4VOBFIZXJTzgovBJeGTaUWS7sYdPgD4V/j1lbpscekBQukpqbIT3j++dLs2dLnPicxpkio9DSfLplQoF+/XN9nm0smFNj+HUqZDHJIasxpkOpM9aWhjKa9BRZJwSFGTBlNDZYgNBaMbGjc5WQ27XhU1DT0uFGiIM4bJZyeP0SLMQwAK5KhBDHrlalp165dkqShQ4f22Sb0s1DbSAKBgL7zne/I7/frV7/6VcznduDAAR04cCQbaWtra8zPBQAAAKSamIO3oq2HjkQzuOptgYkF22TDgqx5TmSQy+yXps+fPEIv1u7os83nTx6hzH5pthzPaY6UQ3O2e5LkniwDsdq512L5HovtotXbNeA0/2498u/nNHLZM+F/+eyzpRNOkPr3l2bODGbWgqM6/AH98V8fhm3zx399qNvKTrZ189iVGeTgOsxpkOrysjNtbWeayRKEpoKRTY27nM6mHQtjZbqSYP4QDadKTgMwx8Q6pxtLEMMd2tqC721mZt/ju/79g/Po/fv3W3rOJ554QmvWrNEPfvADFRcXx3xu8+fP17x582L+fQAAACCVxRy8dc4559h5HrBZ6dhhemT1Jkvt7GZswTbJsKlsnhMZ5Dr8AdVsC3/XV822VnX4A8bucI+YschGpkrehLNjj7WNK6vt3CKR76uTG0YVNQ2a9eQ6fW39C7qh6n91TOsObco7RuOawwf/6IYbpAcekAYNsv2cEB/HNo8dziCXyO8snMOcBsnIzv7nncY9ltuddcKnojrHectr+/x5rCWZTI5hrAQj/ymGYGRT5/xq3ceW2yVD8JbJMl0mg/pMSMQci3EKkDim1jlN9RUEkCIrK/jetre399kmlP1qwIABEZ/v448/1uzZs3XMMcdozpw5cZ3bHXfcoVtuueXwv1tbW3XsscfG9ZwAAABAqog5eAvJbdKYYRqSnRF2s3VodoYmjbE3eMvkgm3SSYKyZKkv8bdYR0ovL5lNL5/orHWhkjezyqvlU9ePa+hVjankTRjNFjdVrLZzg0S/rwkPytu9W/re9xRYtUplH32k7vkseg3c+tOfpK98hRKILuBUKWYnM8h5IYMogORkd//zwa59trYLMVWSaWJhnqV5bCxjmKrNkYORd+07qKrNTZo8zvr1zFQ5xo92W8uIYrWdaSbLdLktEMH0HItxCpA4Jtc5TfUVTtykh+RipSSildKKIbfddpuam5v161//WoPivOGuf//+h7N+AQAAAOgqNep+oYf0NJ8WXDY+bJv5l423PYAqmgVbt3O6LJkXWF3UtzOIqrHV2uaH1XbRCN3N2f07FLqbs6KmwfZjSlJZcYEWzShRfm7XzY783CwjmfLyBlos32OxXbJz4n0NLQL3FTsaUJxBedu2SS+8IN1ySzD4auhQqbxcvo8+6rX5rEtv12nf+4NGz/6LRs/+iyo37ZQuv5zALddwplaRUxu1TvXFAGCi/xmVl21ruxAnSzLFem9MZV2Tre1C0tN8Kh6ZE7ZN8cicqMddI4dGzoQRTTvTTH4mQoEIfb2CPsUWIGeSqTkW4xQgsUyvc5roK0LrAVLPGZqpm/SQXI4//nhJ0vvvv69Dhw712mbz5s1d2obzxhtvSJJuvPFG5efnd/nvJz/5iSTpqaeeOvwYAAAAgNjEnXmrvr5ef/zjH7VhwwY1Nzfr4MHe72T1+XxauXJlvIdDFMqKC/TojBLNXVbbJdDE5B2ZTi7iJ5rb7v51IycyyDmVFcrprHVlxQWaVpSfkNIbXvruOP2+2iIQkP7xD2nhQqmiImLzXVmD9eszv6w/nHaB9vQf2GubVLgGeIlTpZiduGM8Jb6ziAlzGjjNVP9zTelo/XjFRvnDRDyl+YLtomFqPLe2vtlSqd7YsuCaSZ3cfsivlzbuCNvmpY071H7Ir8x+1u+f++zY4frl6jpL7ZKByTG+E9mC7WD3HItxCpB4iVjnNLEeEwoK656lL58sfZ5w2mmnKSMjQ21tbaqurtbEiRO7/PzgwYN6/fXXJUlnnnmm5efdvn17nz/bv3+/9u/fH9sJAwAAAJAUZ/DWAw88oLvuukuHDh2S7z/ZMwKBI8tInR/zkV3DEYkMyJC8FZRBGnLzQhnkbiiv7rON3RnknMoKZbLMiFXpaT5jz92FM0l8HOHU+xra2OlL2I2dQ4ek3/9euu66yAf6xjekgwelCy6QrrxSlVtbdNXiqoi/lgrXAKd1+AMJu7Y7VYo5tFHb1zUg7gxyvUiGvhiJx5wGycBU/5PZL00zzyrUr1/uXtT4iJlnFUYVVCSZmwuZ3CQvHTNcj1gIhiodE10w1O/+uUWBCPFegUCw3cyzx1h+Xqeuv7EyPT92ayCCnXMsxilA4iVqndPEekyi14SRPHJycnTeeefphRde0BNPPNEjeOuZZ55Ra2urhg0bpnPPPTfi861fv77Pn82dO1fz5s3Tddddp8cffzzOMwcAAAC8LeayiStWrNDs2bP1qU99So8//rhOOeUUSdKLL76o//mf/9HNN9+sgQMHKisrSw8//LBWrVpl20kjOqEFgEtPHanSscOMTtJDC7bhJFs5g1iRhjwxQhnk8nO6fq4KcrP0qIGSfvm51sqOWG1nlZey1u20mLXMartk5tT7GlVph7o6adKkYAnDceOkIUPCB24NHChVVwd3IX/7W+kPf5BmzJD69XNlSRs3qqhp0JSFq3TV4ird/PR6XbW4SlMWrjJWJsepUsxO8FJfjCDmNEgWJvufOy4s0nfOLlT3bjrNJ33n7ELdcWFR1M9pqkSzyU3ySWODwVDhDMnO0KQoN89f32KtzKLVdiFuu/4mYn5cVlygV2ZP1ZKZk/TwladqycxJemX21KQN3LIb4xQg8dy+zpnINWEkl7vuuks+n0+PP/64lixZcvjxDRs26JZbbpEk3XbbbcrMPHJz6kMPPaTRo0fryiuvTPj5AgAAAIgjeOsXv/iFfD6f/vSnP+lb3/qWcnNzJUmf//zn9c1vflM/+9nPVF9frzPOOEP33HOPjj76aNtOGskrPc2nSyaEXzi9ZEJByiwWhO7+ze+2kJOfm6VFBgKLvKqsuECv3p6YRfqJhXnKzkwP22ZgZrrtC3NeylqXDH9rhz+gyromPbd+myrrmtQRrpZQHJz6W8Nt2Fz4ziv66xPf1ZaFF6t03PBgwNZrrwV/WFcn7d3b9Re++EVp585gsFYgIH3yiXTaab0+t1eDWhP1eZKCgVuzyqt7BOc1trRpVnm1sQCuRAfSStYzyNn5eidD/4TEYk6DZDF8YH9b23V3x4VFenPOFzTt5BE6MX+wpp08Qm/O+UJMgVshb7y/K66f92ZiYZ6lAKtYxuJWgqEWxBAMlZ1pLaG51XadOXH9jUci5sdeDkRgnAIkntfWOZE6Jk+erHvvvVd+v19XX321xo4dqwkTJqikpETbt2/XRRddpFtvvbXL7+zevVtbt25VY2OjQ2cNAAAAeFvMZRPXrVungoICTZ48uc82w4YN05IlSzRq1CjNmzdP5eXlsR4OLtHhD2jZhvAbx8s2NOi2spNTZmGDNOSJkaiSfh3+gPYf7AjbZt/BDnX4A7a+x6GNqnBlUWLdqEo2oTtXw2WGMnnnakVNQ49yKwWGyq049beGNmz6dRzSpxveU9GOzbrvxUWRf/GKK6S775ZOOUVKiy2+260lbWKVyM9TKJipt1ClgCKUw7RJoFtdKL/BQDUnSgNREtl7mNMgaRguKz1/Ra0Wr6lXqNv+d+MefXreXzXzrNgyb7Uf8uuxMKUYJemxl+t16/knRV2SMZJ4rnChYKi5y95WY+uRLK/5Of0195JTYrp2f7nkGP3f+o8stYuF2+abps/XVOnoRJakjhXjFCDxvLjOidRx1113acKECfrZz36mdevWqbGxUePHj9e1116rG2+8Uenp4W9eBQAAAJBYMQdvtba2asKECYf/nZWVdfjxnJycw48XFBSouLhYq1evjuM04RaRNlol+zdak0GiAotg3pOVWxSIEIsQCATbXXfWmMSc1H+kyjJg6M7VX4fZ8DN152ooa1H3tziUtcjujHkJ/1t37JB+8QtNWrBAWw4ditg88OWvyDf7NumMM+w5/n+4bZMxVon+PDkRzBRSUdOgG8qrezy+fc8B3VBebST7hxOlgULZ42aVV8sndXlvUzl7nJcxp0GyMFlWev6K2l7HIv6ADj8ebQDX7/5Z32fJxJDAf9rNPHus5eddW98c9mYGSdq172Bc1zq7xymfHTe8xzWjO99/2sXKbfNNU+drKmg+kcH48WCcAiSeV9c5kTouvvhiXXzxxZbazp07V3Pnzo3q+WP5HQAAAAC9i/kW2BEjRqi1tbXLvyXp3//+d4+2n3zyiZqammI9FFzEiY1WwE5bm/fZ2s6qaDaq3K7DH9CTVe+HbVNe9b7tpeciZS2S7C/BZvUu3ZiPuXGjdMklks8X/O+oo6T77pOvW+DWy6NP0+9Pu0i/nHS5pnzncY2e/RedNu+v8v/pT7YHboWkekkbJz5PTl1jO/wB3b70rbBt7lj6lu3fWdMlxPpCSWRvYU6DZGGqHFr7Ib8eWxMhQ9aaerUf8kf1vK9vsVYS0Wq7kMZWa9cwq+36Yuc4ZX97h6VAtv3t4bP7IjxTpaOdKkkdK8YpQGKxzgkAAAAASJSYM2+NHTtW1dVHMjCceeaZWrJkiRYtWqQzOm0Er1y5Ups2bVJhYWF8ZwpXMLXpACTKqLxsW9tZ5aUFwX9u2ql9ETav9rZ36J+bduqsEz5l23GdyFpk6126HR3S/fdLDz4o7d4tFRZK9eE3Y39e+lX9YvKVOpie0eNn8WatSEaJLHfjxOfJqWCmqs1NloJLqzY3aXIcWUV6MFxCLByvZI8DcxokD1Pl0H73T2tZZX/3zy2aebb1rLIDM62V2bHaLmTnHosZyCy264udY4bv//ENy+0Wf8NM0HyqM1U6OhlKUseCcQqQOKxzAgAAAAASJebgrbKyMr388st6/fXXdcYZZ+jqq6/WnDlz9Lvf/U7vvvuuSktLtX37dv3pT3+Sz+fTNddcY+d5I0mZ2nQAEuXqM0fp3uc3WmpnJy8tCD5b/aHldnYGbzkRIBfXMT/6SPrWt6RXX5U++aTnz3sL3HrxRem88/Tc+m26+en1tp2fGyS63I0jAZcOBTNV1lnLNFRZZ2/wlskSYla4rUQVYsOcBsnCVDm017dY68Nf39IUVfDWZSXH6M/rP7LULhq79rXb2q43do8ZnMrc6yWmguadLEkdL8YpQGKwzgkAAAAASJSYyyZeccUV+ta3vqXm5mAJr+HDh+uPf/yjcnNz9c9//lM//elPVV5ervb2dn35y1/W3XffbdtJI3mFNh2knnvH8Ww6AImy/oPdtraz6vRRQxXpa5HmC7Zzu33thyI3iqKdVU4EyEV1zPfek/78Z+k73wmWQBw5UvrrX3sP3JKkv/wlmIErEDjy33nnRX/cFOBEuRsnXmPngpmslkO0t2yi1z7HcAZzGiSTUDm0o3LsK4eWnWntfi2r7UI+O254xKxaA/un67NRB/WaveaYGDMM7m/ttbParjcd/oAq65r03Pptqqxrsr1UcbIzFTTvpezHAGLDOicAAAAAIFFiXj0sLCzU4sWLuzx2/vnnq76+Xi+88IK2bNmiAQMG6KyzzlJJSUncJwr3CG06dL+bOd9gBhTALk4t4K/bukuR9mD8gWA7t99hfcboYfpb7Q5L7ezkxB2zfR3TF/DrvE1r9Z3XntVntm2UFkZ4otGjpdmzpW98QxowIObjHj6+UufuYKfK3TjxGjsVzFQ6ZrgeWV1nqZ2dQq9xuIwYBSnyOYZzmNMgOXW9sgQi1T0M48slx+j/LGTI+nKUGbLS03z66RUTdEN5dZ9tfnr5hKivvUOzrZX+tdquM1Njhq+ecZzWvb/bUrtYJDq7aDIyNQYiUByAFaxzAgAAAAASIfZbP/uQm5urK6+80u6nRRw6/AGtrW/Wjj1tGjE4uMlp+o6wsuICTSvKT/hxgXg5tYDf2LLf1nbJ7BufHa37V2wMmy/B9592djJVjsjKMW/+7Wv62hsr9N+rFkf+peuvl/x+6YtflC68MJiFK8bjJvJvdYpT5W6ceI0nFuZpSHaGdu872GebodkZtgczTRo7LOJxh2RnaJLNgaXpaT5dMqFAv365lxKh/3HJhIKU+Bwj+TCngRNCWaG6j5G2tx7QrPLqmLJvfXbccGVnpmtfe0efbQZmxpIhy4y8gZm2tuvM1Jjh2LxsW9t11tdnIpQpLNaMbG5jKmjeSzc8AIiPW9c5nVgTBgAAAADExvbgLSSXipoGzV1Wq8bWTneG5WRp7iXm7wxLT/O5PkMQvMepTC/Ne9ttbZfM0tN8GhBhEzE7M93IgmLC7phdv1766leld99V2ahRqm1oVHp7mFJ2o0dLf/ubdPzx9hxf3rk72MlyN068xu2H/GF/fiDCz2ORnubTgsvGh82usuCy8bZ/Zzv8AS3bEL581bINDbqt7GQ2IAC4nqmsUOlpPj0YKUPWFdFnyAqdb19iPd/d+6yNda2268zUmMHU/MGp7KLJyFTQvJdueACSkdsCi9y2zknmRgAAAABwF4K3UlhFTUOvi/SNrW26obxaj3rkLl0gGk5leskbZK30i9V2sUjUwuna+uawgVuStLe9w/ZMSSG23zEbCEiLFkn33y9t29bz51u3Kr3bQ9u/eo2GP/ZLpecMju2YFrn17uBoOF3uJpGvcVVdU8Tvzr72DlXVNWny8fZmUCkrLtCjM0o0d9nbamw9EoiYn9Nfcy85xch4IlKGFMlMVjUAznDbBq7dTGaSDPXhc557W9v32NOHmzrfodnWMmpZbdeZqTGDqfmDU9lFk5WpoHm33vDg9T4T7kdgkVlkbgQAAAAA97EUvJWeHtx2Pumkk/T22293ecwqn8+nQ4cORXl6iFWHP6Dbl74Vts0dS98yepcui4lm8fqa0eEP6I//+jBsmz/+60PbM73k51jbJLLaLlqJXDh1MlNSSFx3zO7bJ/3zn9Kbb0q33hq5/be/Ld12mzRu3OESiEfFduSYuO3u4Gh5qdzNq3UfW25nd/CWlPhgwGToK5BamNMkLzZwzfd5dvfhps63yWKWWavtOjM1ZjA1f+A62JOpsYjbbnigz0Si2b3+RGCRWWRuBAAAAAB3shS8FQgEp3t+v7/HY1ZF2x7xqdrcpN37DoZts2vfQVVtbtLkcfZv8LKYaBavrzlVdZG/O7v3HbQ9s83EwjwNyc4Ie+yh2RlGAlASvXDqdKakqG3dKj34oPTzn1trf9110g9+IJ10ktnzgiTny90ksj/+aLe1zVmr7WKRyGBA1/UVSHrMaWx0553S/PnB/z9qlDRypNS/v1RVJZ1/fvD/9+8vPflk19+78UapoCD4s/ffl4qL9ebH+/V81Ye6YVutAvJpb+YA7c0coDeOPkk/f69WA784QWeNyZPy8qTMzODvpqdLAwYcDopOBYno8+zsw02d7659YcpMx9CuM1NjBlPzB66DvTM1FnHLDQ8EvSDR7J7vEFhkHpkbAQAAAMCdLAVvdd7gCPcYkkdlXZPldnYHb7GYaBavr1mVm3dabmcis004JraLnVg4TepMSYGAtG6d9P/+n/Tqq+HbXnyxdPzx0lFHSddeK40YkZBTRE9OlbtJdH88cugAW9slu9NHDZXPF/xa9sXnC7YDrGBOY6O//OXI/9+6NfhfyHPP9f17jzzS46FPS/pFuGP9xuI5hQLINm+WJkw4EkC2Zk3XdhMnSqeeGgwE27hROvPMI22ff17atUvKyZEGD5bKyqTCwuDPWlqkY48N/v/MTKm5WUpLC7YbPFgaPlwaOFDqZ2mK3YOVQP4hhgL5Y2FuPGd1vBnbuNTEmMHU/MFtnwmYR9ALEs3EfIfAIvPI3AgAAAAA7hTbyjJcwGqYh73hICwmmsXra54z35zgAqaVO/btXsB0YuG0c9aDvpjMlNTFgQPSD38Y3EwOBIIbv9u2hf+dn/1M+t73glk/kDQSXe7Gif74s2OH65er6yy1SwWvb2kOG7glBb+2r29pNpJFFEAYr74q/epX0u7d0qRJUkeH1N4eDIYaOTJ4fT1wIJidq7n5yO9dfbWUlRVsu3Klmosm6K3NO5TZcVCl7/cs+b5j4FBldhzUkLZPgtfdjo6+z6nz9XvDhr7brV0b/C9k5cq+2/71r33/rC9paZLfHwwAy8oKBnt98EHPdqEMZTU10mmnyZeToztrPtbnNr6qT+3dLUlq65epvx5fqjeOPlEH0/spv2O/fP/zgTR0SPB36+uD70Eo2GzcOOnoo7tmJxswIBhslpYW/d8ShqksVkMGZNjarjd2jxn8FicGVttFgxmffewuC2cCQS9IJFPzHQKLzCNzIwAAAAC4U9IHbwUCAb366qt67rnntGbNGr3zzjvat2+fhg8frtLSUt1444363Oc+5/RpJp3SMcP1iIUN3tIx9m52sphoFq+veUMGZNraziqnFjCdOm5ZcYGuP7tQi9fUd9nISvNJM88qNJc97t//lr72tWB2rd50D9zKzpb+/nfpjDPMnA9slchyN070x5PGDLNUXnXSmNTo/53MIgrYLeXmNIMHS7NnR273gx+E/fGa9dt089PrIz7Nw1eeqktPHXkkSOzjj4OZsFpbg/8ddVSw4YEDwXKMQ4YE2x04IP35z8HHWlulPXukSy8NlmBsbw+WeSwqOhJs9tvf9vw7Tzkl+LM33pDGjj3S9uOPez/ZUDa30Ln15W9/O/L/6+uVJumKbk2yDrXr0o3/0KUb/3HkwZVWU5FZcMIJwUCvrVuDf2vo3xUVXdsdc4x0+eXBn33ySfCx0aNV1r+//v5+tXasXa/mtP76pH+23hk+Wo1jTtLXzjlek1rrpVc3S8OGBX+3oyP4+gweHAw4y87uUfqypS38zQzRtuuLnWOGodnW5gVW24VYubljl4GbO7wokWWw40HQCxLJ1HyHwCLzkjrbOQAAAACgT0kfvLVq1Sqdd955kqS0tDSNGzdOAwcO1HvvvaelS5dq6dKluvvuu3Xvvfc6fKbJZdLYyBu8Q7IzNMnmRV4WE83i9TVv+CBrmypW21nl1AKmU8etqGnQYy/X91hIDASkx16u12nHDbVno2T9eumdd6Tly6WnngrfNjs7WAbqzDOD/x8Iw4n+OD3NpwWXjdcNYbLWzb9sfNJliYidU7kQAfsxp+ld1OOQUDap447ru3Fpadd/f+Ur1k/oNzEERgUCUlubdPCgdOhQMLCrqUnKyAj+//b2YOBX5wCy8eODZRYPHAhm3jr2WNVu3am/Vr+vr9Ss1LEt2w8/ff3QAtUcNU4Z/kOa+MHb0vHHKy9nQPB3X3+95/kMHnzkuJG8++6R/9/a2nf20Q8/DGYe7cWo//zXxd8l/U/kw0s6UrJy716po0MzC47VF9ul45t6Zit74f9n787DoyrP/oF/Z7IHSEiCkLAHXCAG2QoGWbQoNqLCK1ZFBbWlqLS+1WpdsCpQVED7uvxs3ajaVlyqFRUU06qooCSABKgxqBASQEjAJEAC2TPP74/jyT4zz0yeZ86czPdzXbmUmXvmnJmzzHPOuc99n34O6sIiIBzA2W+XAz87z6gq9u23RsJZXJzxd9ZZwIwZze/9ww/AkCHG/1dVAQcPwtW9B76tduBIdA90G5qK0aclIywm2lhuEb5V9erVI0ppnInHfoER6DbYncGkFwokXfsgJhbpp6s6JhEREREREekllbw1ZMiQTk/I4XCgoMB7Jai2hBA49dRTcfvtt2P27NlISEgAANTV1WHx4sVYtmwZHnzwQZx99tm45JJLOj2fXYXMBd7lGi7w8mSiXvx+9UuOj1EaJ8s8genpztYUDScwrThxqq3dXH098PrrwIoVwNdfe48fOdKoGnLFFUB40OcyU5Cxan+cmZ6CZ+eMweI1+SipCO7qEJ1lVRVR6rp4TBN8usQFXIejuT2hKaXNvvgnP/H6NscLyvDkyhw8Oekaj3Gvzc+Qq3DichljI7NSWEmJ8VdZaSRqJSYaFcpqa4HiYqOtYliY8e9PPwU2bWqOHT/e+KutBQoKjApaZvWyN99sN2mRng5HbS2we7fxQEKC8dqqqvbzac7fj3oWH0BPNx/pou82tX7guzatNsvLjb+iImDNGo9fjxPA8B//2j/pNBK9qqvbPzdmTHNS2BdfAJmZmFLvwLs7dmFkye6msKqIKKwcdxnqw8JRFxaB/seP4KzuPwV2JBrfw6ZNze0uk5OBc85pft+6OiApCX3rTiKu5gSEw4GTEdFwOTtu2R2Mx352aEEIWNMGuzO6xD6TbEPX8Q4TiwIjMz0Fz8wZ066qYHIXPG4kIiIiIiLqKqSuVhcVFfk9AYfDASEEHA7/DrrHjx+PXbt2IbzNhfXIyEg8/PDD2LFjBz744AOsXLkypC50yGi+wPs1SiqaT4gnx0Vh8YwztRyo82SiXvx+9bMqiSrM6cCMkSl4bkOh25gZI1OUn8C04sSpsvYLJ08Cf/oTsHix5wmGhwO//rXx/1deCUyc6PM8E7Vl/f649VSF6HrVp6yqIkpdF49pgg8v4DZTPgY1E5Cifqz2dMopRsUvGTfcIBcHP9rN1dU1J4W5XM0Vyk6cAE6cQKMzDDf99Qv0Lt6HEcW70b2uGt3rqlDSPQlfJ5+KyIZ69HZV48ZB4XD272e89pNP2rfEvvhi47nKSmDzZmDUKGPa+fneP5TL1XHiFgDktrk5au1aJAFo+0sUW1+LWze93vrB7e97n3YL4wD8t4PHy2PimpLCBhw/DPHBWcZyLisD9u5tHTx3bvN68PXXRmW6yEgjAe9vfzOSx3r0MCrAZWY2J5RVVQGnnWb8u1s3ID6+ubJZWJiRoNijh5G02Ga/aJcWhIA1bbA7g/tMCiSdxztMLAqMzPQUTEtLtkUyLREREREREUkmbxUWdpxM8M9//hP3338/hg8fjl//+tcYPnw4+vTpgyNHjmDXrl14+umnsWvXLixduhRXXnmlXzMYFxfn8flp06bhgw8+wHctWz5Qk0AfqPNkol78fvWzKomq0SWwZmexx5g1O4txV+Zw5dM2T5y2TfTsoynR0+/2C599Blx+uXFhqm9f4PBh48KTO+PGAe+8Y8QSKdZyf+yOjv2xu9Y+hytqg661T2dZVUWUui4e0wQnXsA1WDUG7Qy/2s1FRgJJScZfB8IA/Dw+1dj3j7qow5hn54yB04/1otElMGnF+vbJOkIg3NWIqMZ6DI4WWPObiQirrzPaLX77bXOyWWQkMGxYc7Wwb74xxpm1tdi3KRcJb/0TcXVGdbHq8Ci8cdYFiGqoR2RjPS4q/QYxGeONBLKtW4HS0tbzMHhwc7tLs+1mfcfJy4nVFa3+7fhvRyleP3r55db//vRT97GrV7t/zgeZP/61c6/Ei7t1MxIN4+KM73/kyOaksehoY73p0cNI9hs6tPnfERFA797NyWeRci3uA9GaUnUVMu4zKVB0n39iYlFghDkdQZF8SkRERERERN5JJW8NGjSo3WMfffQR/vCHP+DWW2/Fn/70p1bPnX766Zg0aRLmz5+PO++8E/feey/GjBnT4ft0Vk2NcbIqpmWbCmol0AfqPJmoV6h+v4FqvWFVEpW3u76BQNz13fbz6Dlp2qt7lNeY8MYGjH7xSeDFp40KW20dOtT+sXvuMapwRXl/fyIVMtNTcOOUVKzcWAhXi6sZTgcwf3Kq8v2x3Vr7qGBFFVHqunhME7x4AdfaRH5/6PxNykxPwU1TUvH8hsJ2yQI3TvH/99XteNvhQENYOBrCwvG1C9hSE4UJQ/saCVXjxkm996BbgGXrfu92TDBreprvM+xyATU1+HRTPp5777+oLj+GqIY6lMXGo2+MEwsm9MeEyGqjKlZtrZHs9PbbzclmTidw1VXNyWZbtjQnnx08CKxd6/s86XbyZOuxf7HnbaKzZv7450l1eBTC/hoHJMQbSWG9exsJYqWlwMCBwKBBxr8bGox1xkwg694dG4/U4U+bDqGw1okTkTFwOcOUVCHjPrM1u7TptCPd55+YWERERERERETUTCp5qyMPP/wwevbsiRUrVniMW7ZsGV566SU8/PDDOP/88/2dXIeEEHjzzTcBABM9tMGqra1FbW3zBb+Kigq3sTqF0gklnkzUy8rv14r1OJCtN6xKogrEXd/uuK/k46FqQmd0cJUvruYEfvJ9Pob9UIS7NvzD+3v87nfAbbcZF0yILJKVV9xhhRSXAJ7bUIjRAxOUbjt2a+2jCscUpBOPaYJHqF/ADY5Efnk6f5Oy8orbJW6Znu/E76vO8ba7eXaJTsyz0wnExuK8C36CyVPHyv0O/uIXPs+7z6qrjbaKFRVGolhxMdDYiO/2HMLf39+O2LoadKuvRre6amTs/wr7EvqiW10VutVVY0RJARzJfRBddQI4ftxzFd0gEdNQC5T9YPwBrVtvZmd7fO3kH//akalC5kVYXBwmmBXhRo82ksaOHQPS0prbXEZHA4mJxv+HhxuVzVJSmtth9uzZYetLO9F5riCUzuF5onMszu+YiIiIiIiIqJnfyVu5ubk444wzEBYW5nkC4eEYOnQotm3b5u+k3Fq5ciW2b9+OyMhI3HbbbW7jli1bhiVLliifvi8CmXwSLEL9AoxuVny/VqzHfrVj6YSSCrmLNbJxsnr3iFYaJ8uKSj6lJ2txaul+3Lz5Lfw872O5F/3ud8bfgAFK5oGosxpdAves/spjzMLVXynddqxM8rQaxxSkC49pKFjYbR+va351jk11jbc9zbOps+PpoPodjIkx/szWl2edBQDYteMgXjnk/bjsydmjMHNUP7XzJETrhLJjx4wKXpWVRuvL6Ojm57/5xqiM9WNsxf5DOFxWiW511ehbWep1UkHDTOCtqwM2b25+fOtWa+YHaG73mZQE9OtnJIlFRRn/josDwsKM+U1PN/4dEWEkkPXq1VStrCnxLCLC6+R0nisIxXN4nujYB/E7JiIiIiIiImrN7+QtIQQKCwvhcrngdDrdxjU2NqKwsBBCeDqV6bvc3FzceuutAIAHH3wQQ4cOdRu7cOFC3H777U3/rqiowIAAJgAEOvmESAcr1mMrEovKT9R6D/IhTtb41ESkxEej5HhNh5/XAaM1wfjURKXTDUglHyGADRuAm28GvvnGY3uS98+YiH0JKTgY1xszHrkTZ48c7N80iTTL2VuGY1X1HmOOVtUjZ28ZJp7aS8k0rUryJOrKeExDwcJu+/he3eTaVMvGmXSOTXWNt0O1MmZblq7DDodRScqsLOWDOACbFCeRZBeU4eqVOXC6GtGtvgaJVccRU1+LmPpadK+rQkpFKYTDgV+P7Y3UyEagvByoqTESsnJzjc8TE2P8e88eI/msJjgSNz2q/3FsXFZm/GmWCaB9DdwWzKKaDofR7jIuzvhev/sOuPDC5uQyhwNITTUSyGJjkXvCgZezi9E7Mga9AZT0SMKJyFgcPubiOTxFeJ6UiIiIiIiIqD2/k7fGjRuHTz75BA888AAefPBBt3FLlixBaWkppk6d6u+k2iksLMQll1yCmpoaXHPNNfj973/vMT4qKgpRUb6dNFbFiuQTItWsWo+tuBCS2C1SaZysMKcDiy5Nw4JVuXCgdWdB8xtddGma8v2ElqoJlZXAjTcCr79u/LtXL6DU/V3sJyJjcP+0BXj7zJ82texIiY/GH0cMkp+mDbAlRNeSXSB3QSq7QF3yllVJnkRdGY9pKFjYbh8vO4TxcaijswKZrvG23aqm6WK7dbgF1W3hzGXtcoahMqobKqO6dRg36fJRSFVdhUxGbW3rhLGKCuDoUaM6WWUlsG+fkXwVHW08t2uXURXLrGZ25IiRqFVRATQ0BH7+fSUEcPiw8Wdas8Zt+BgAr3h6P8+dluXFxxsJY3Fxxndqtr+Mjm6uVhYXZxxLn3VW87/Dw4E+fZpfGx1tq9aXPE9KRERERERE1DG/k7fuv/9+fPrpp1i2bBk+/vhj3HzzzRg+fDhOOeUU/PDDD/jmm2/w7LPPYvPmzXA6nXjggQeUzHBJSQmmTZuG4uJiXHzxxfjb3/4GRxCfpOBduNQVWLUeW3EhJDk+RmmcLzLTU/DMnDHt7vpO1tg6QMkd8lu3AlddBRS6ue+5beLWwIF47t6/YFmh+333jJEpXepErZUtIaxKGuv6yWqy1XfUVelpedHZHR1Jni11/eVKoYbHNBQsApHIr3IfXipZhVY2zqS7elNmegpunJKKlRsL0bKQnsMBzJ+c6te4zG5V03Sx6mYUVVS2hQv6dSIqyucKZdoJ0ZwcVlFhJI8dPgw4nca/Dx0yksvq64HKSnz/3X58XXgE3euq0KeyHKeWf4+S7onoXleN7nXVVn8aOcePG3+mDz+0bl5MkZFGUlhkpFGtzEwQ++474Kc/bf53XZ1RrSwuzqh417On8f89ejQnn7lpfcnzpEREREREREQd8zt569xzz8WqVatw4403YvPmzdiyZUu7GCEEunXrhueeew5Tpkzp1IwCQHl5OaZNm4aCggKce+65ePPNNxHh5mRAsOBduNQVWLUeW3HS27xj3NPJxBSNd4xnpqdg6rA+eDm7CPvKqzAoMRZzJwxGZLj7Vk6d4fMd8kIAX3wB7N0LrF4NvPuu5wmkpAD/+hcwdqxxkQDGhcO/rVgPwP13vGZnMe7KHB60F3d8YWVLCKuSxqxMVguUCUN64c+fFEjFqdTyorOrxUrl7MRFZ1mhsFwp9PCYhoKJzkR+1ftwXeN03dWbsvKK8dyG9jccuATw3IZCjB6Y4PP3MXZQApwOtPpdbsvpMOK6OituRglGdq5CZhmHw6ju1b27VGLZgYIy3LQyx2vca/MzfEoAenfHQdz6+o6mf4c3NiC2vgbd6qoRX3MCPWsqEdlQj1vG9cH4nk4joayiwkjC2rTJSGiqqDBuYPruOyAhoblamR3U1TW3vCwubv3cnj1KJjEBQJFMYMsKZ7Gxxnd9+unNCWRHjwLp6c0JZN27G993XJyRCHj66c0JZTExRkJZt25GQiARERERERFREPI7eQsAZs+ejSlTpuCZZ57Bf/7zH3z33Xc4ceIEunfvjtNPPx0XXnghbr75ZvTr1/ky8CdOnMD06dORl5eHcePGYe3atYiJUV/5RrWgv+OSSIJV67EVJ71b3jHubpo67xjv6MLaXz8v1Haxw9sd8tH1NXihcgfCBv8COHDA+xtOmQLcdRdw0UVuT4p6u9MW6Dp32lrZEsKqpDErk9UCKWNoEnrGRuBYVb3bmJ6xEchQvA5n5RXj+Q2F7b5fIYDn/bzoLDvdUFiuFJp4TEPBRHX7NkDPPnx8aqLU76Cv43Sd1ZsaXQJ3vLHTY8wdb+70eVy2bd9Rj4lbgJHYtW3f0aAb2+qoqKljHbYbu1chswNd5wrantNoCAtHRVh3VER3R3HcKU2PL5iVAVi5PdfWNieNnTjRXLEsP99ox2j++9tvjYSlykojocx8XUUFsH+/0YLRDq0vq6qM/373XevHd+wI+Kw0cToBlwsYMKA5oSwqCjjlFOP/Dx8Ghg83KpjFxRmx/fs3t7/s3t1YVubrWIGViIiIiIgo5HUqeQsA+vbti6VLl2Lp0qUq5qdDtbW1mDlzJjZv3owzzzwTWVlZ6NGjh7bpqcQ7LqkrsGo9tuqkt1WVbaxKjmh5h/zJw6X47Rev4VdfeqmolZgIzJtnnOy99lrgzDOlpxdKFQmtaglhVdKYlclqgRbmdGD5rBG42UMLw+WzRnSJ7zeUliuFLh7TUDBR2b7Nyn24v++mq3rTpj2lOFnX6DHmZG0jNu0pxeTTT/EY15Jdx7Y6K2qqXIftilXI9NJ1rsA25/DMJKFT2uyrLr7YmvkBjLtJqqqMpKX6eiNBrLIS+P57IzHpx3aYrupqvPXpLjhPVGJS0Q7sSeqPbnXV6F5bjVPLv8eJyBh7tL50uYz/errJ7f33AzMvbfXqZSSFHTwIDBxo3GT36KNGZTIiIiIiIiIKWp1O3tKtsbERs2fPxvr16zF06FB8+OGHSEy0T6IT77ikrsDK9diKk97uKtu4NFa2seTCmhBG28NZs5ApBH52yilAaSkcwkPpgEsuAV5+GejZ0+/JhlJFQqsu5lmVNGbVdK2SmZ6CZ+eMweI1X6Okorbp8eS4KCyecaby/QSXK5F92f2YhgJLZTUkXfvwLYXlHqtuAcDRqnq/fxt0tBJ/a5tEFdkf43xJ3rLj2NbOFTV1VAvThVXI9NJxroDn8DrB4TCqfA0Z4jHMCaDHj/sgoOPvWOk+qKEBOHasdYvLigqjYllFBbB9O9CnT3NFsq+/NpKczNgffmhORqut9Tq5oFBaavwBwO7dxt+JE8Drr1s7X0REREREROSRkuStL774Ap999hkOHjyI6upqvPjii03PFRUVoa6uDqeffrpf7/3GG2/gnXfeAQA4nU5cccUVHcalpKTgzTff9GsauvGOS+oKrFyPA3nS21MSlUlHdYKAJEdUVQF33gk8/XSHTzt++KHdY9/8/gEMW/4AEBbm3zQ7YN7N7OnzpgTD3cwKWHUxz6qkMbtWnuiMQO6fuFyJ9OIxDQUD1dWQdO3Ddf826Ggl/v0xuXmRjTPZplLPj+xcUVNntTBdWIVMLx1jcZ7D0y+g33F4uFGJKpgIYSSCme0tv/8eaGxsTjArKgIiI5sTysrKgJoaI/6zz4zP43AY/z52TG6a112n8xMRERERERGRAp1K3tqzZw+uvfZafPnllwAAIQQcDkerCx2PPPIInnvuOXz66aeYPHmyz9OobXFX0+7du7F79+4O4wYNGuTzewcS77ikrsDK9ThQJ72tqjCj5QLYoUPApk1AXh6wZInX8CfPmY1Voy/GD92NUvpNd73uOqL05GmY04EZI1Pw3IZCtzEzRqZ0if3j+NRE9IyN8FiZIiE2QvnFPKuSxnp1i1IaZxeB2j9ZtVztWFGEyBc8pqFgoaMakq59uM7fBl1Vofr2jAb2Scb5wG6VeuxaUdPO1cJILx1jcZ7D0y+kv2OHA4iONv5OOQUYOtTqOSIiIiIiIqIg4HfPgcOHD+Pcc8/F1q1b8ZOf/ASLFy/Gqaee2i7uhhtugBACb731ll/TMV/v7a+oqMjfjxIw5gmlmaP6YcLQpNA4IUFdTldfj62qMKPkAlhODjBrlnEi0OEA+vUDrrii48StmBhg8WI0Hj6CCQ9/hMF3v4fHJ89pStwCmi88LVmbj0aXp1pkvml0CazZWewxZs3OYqXTDGY6PqVZAcLd1umApupmsruDrrXbCBhzuXqiY7mOHZQAb7t6p8OII7IbHtNQsPBWDQnwb0ym67dD11hD1/cAAGnJcUrjWjKryCS3+a6T46ODLqnIjhU1da4XRO509XMfwYDfMREREREREVEzv5O3Hn74YRQXF+M3v/kNcnJycP/996NPnz7t4saPH48ePXpg06ZNnZpRIqJAsKrCjM8XwBobgfffB5KTm5O1JkwA3n67/YuvvRZYtAhYtcootS+EUY5/0SJsqXRK33mvire7/aFhmlbZUljuseoWAByrqlf+Wc0KEO4uXwnoqQBReqLWe5APcXbR6BLILijDuzsOIrugTNuFQ7NqnSc6qtZt23cU3j6SSxhxRHbDYxoKFr5UQ/KFrt8Oc6wBtM/J7ky1KV3fAwBU1Hoek/ka11Zmego+v3sqXpufgSdnj8Jr8zPw+d1TlSRuqRxr2LGips71goiIiIiIiIiIKBj43TbxvffeQ7du3fCnP/0JDofnE7JDhgzBgQMH/J0UEVHAmElUJcdrOkx8ccC4g151ZRtv7VYSq47jvU+XI+zeC4wH4+KAigr3bzhwIPDMM8D06R6na8Wd93a8299fofRZAesvBja6RMDbbmTlFWPJ2vxWFxRT4qOx6NI05VU2ZKvW3ZU5XOnnDrX1mEILj2koWOja1+r87TCrTS1e8zVKKpoTs/vERWHxjDP9+h3U+ZvjdMjduyYb1xEd7dtUjzWsOt7pDI5FiIiIiIiIiIioq/P7rOTBgwdx2mmnISoqymtsVFQUjh5lNQYiCn66qgjIaNlu5dy92/Dfx69E0YpLULjiEmx76lokbf68Obht4ta4ccCBA0ZVLSGAffu8Jm4B1iTbWJ3gE0i9unn/jfQlTpbZWsYTHa1lLGvXCOPC5qQV63H1yhzc+voOXL0yB5NWrEdWnucL1p2d5oJVue0qQZQcr8GCVbnKp21V1bpQ2mYp9PCYhoKFrn1tYH473I2afafzN2ecZHtf2bhA0DHWsPJ4x18cixARERERERERUVfnd/JW9+7d8cMPP0jF7t+/H0lJau8+JSLSpWUSVUvJ8dF4Zs4Y5dV00NgIZGUBzz+PzFvnIPveC/D3Nxchrq6q4/hhw4Bt24D6+uZkrS1bgP79fZ60Fck2YwclwNu1IKfDiLM92Wteiq+NWZXkY9XFwEAnUQHNCXIdpb+Zj6lOkCs5Xq00TpaVSXlEuvGYhoKFrn2tzt8O8/e3pKLN72+F/7+/YwcleB0WOeDfOPG7IyeUxummc6wR8OOdTrLzWCRQ7bWJiIiIiIiIiMje/G6bOHr0aKxfvx5fffUVRowY4Tbus88+Q0lJCS677DJ/J0VEFHCZ6SmYlpaspwXb0aNGS8MVKzy3PjRdcglw113ApEmAl5ZOvjKTbW5eldvh8wLqk2227TsKb9csXMKIU912JtBKT9R6D/IhTpZVST5A88XAtu19kjW2EvR0YdMB48LmtLRkpeuxtwQ5geYEOVXrsVXrkxX7CaJA4TENBQtvLbQB//a15SfrlMaZPP3+Asb8+/P7u7Ww3O17tnzvrYXlmHhaL+n3BYD95SeVxumme6yh9XhHMV3bh26BbK9NRERERERERET25nfy1rx58/Dxxx/jl7/8JdasWYOUlPYnngoKCvDLX/4SDocD8+fP79SMEhEFWpjToSbp4ocfgHvuAV580XPcoEHA3LlAVBQwZw4weHDnpx2EjlR6rgjla5w/Gl0iIBeqrGrxoutCraxAXgy0IokKsGY9PlZdrzSOiHhMQ8FFRwJ0Yne51syycSZfqnz68vubvbdUOs7X5C27CcRYQ9nxTgAE+gaBzjIr07VNRjQrwwZjhTMiIiIiIiIiIrKO38lbs2fPxurVq/Gvf/0LaWlp+NnPfob9+/cDAB544AHk5eVh3bp1qKurw9y5c5GZmalspomIgpbLBbz0EvCrXxn/TkwEyj20puvRA/j5z4G//AWIiQnMPLZgVk1wR0fVIqsSmkyBvAPebPFScrymwyoSDhgXnFS3eNF1odYXgboYaFUyYK9uct+dbJwMh2R/Tdk4WVbsJ4gChcc0FGxUJ0D37iH3OyQbZ9JX5VNfz+lRAxLwcs5+qbhgYPWYORjZpVqYVZVhiYiIiIiIiIjIvpydefGrr76Ku+++GzU1NXjjjTdw4MABCCHw0EMP4Z133gEA3HXXXXjRW7UZIqIg1OgSyC4ow7s7DiK7oAyNHfX6Kyszkq8cDuMvLKw5cQvoOHHrb38zkryEMNomvviiJYlbgG9Vi1QZOygB3q5ROB1GnGrmHfBtP7N5B3xWXrHS6ZktXoD2lxh1tnhJjpO7iCcbF8wsu7Cp79qyW7LJcKqT5qzYTxAFEo9pKNiYCdAzR/XDhKFJnRsneOtB6Gvcj3RV+TxbMqFdNq6lvj3lxtuycbqZNwG4W/oOGDcgqL4JINgp3T404dipY1LH10REREREREREIcrvylsAEB4ejmXLluGOO+7AunXr8NVXX+H48ePo3r070tLScPHFF3fYeoSIKNi5q860YmQMppTvBb7+Gli+3PsbPfIIMG+eUYFLUqBa+gHWVC3atu8ovJ2ndwkjTmUSilV3wFvR4sW82OfpolFXudhnVXWz0hO1SuNkZAxJQs/YCByrct8WMSE2AhlD1CZvBUOrUyKdeExDXVnpScnfK8k4U0JspNI4k9MhNwaTjWvJbuMj8yaABaty4UDr/DqdNwFQ53Hs1F4gqx8TEREREREREdlRp5K3TL169cJ1112n4q2IiCxnVmcSQmBy0XbcvPlfmLjvv95fmJwM3HWXUXmrRw+/p714zdcoqWi+gJYcF4XFM87UclLbiqpFVl3M8OUOeNWViwLd4iXM6cCMkSl4bkOh25gZI1O6xMU+qy5sWrHthDkdWD5rBG5eles2ZtmsEV3isxJZgcc01BXp2ocfrZKrqCUbZ9KVbAbYc3xkxU0A1HkcO7XWdHzd5nGz+vEzc8ZwXSYiIiIiIiKikKckeYuIqEuor4frrdW44NprUehq9Bjq+sUv4DztNCA9Hbj4YsDZqS60AIyT2h0lZZRU1OLmVbl4VsNJbSuqFll1MSOU7oBvdAms2em5BeSancW4K3N4UF2g9Jd5YbNt4mMfjYmPVlX82r7/qNfnu8J+goiI1Bifmui1amPP2Aif9+GJ3eQqasnGmXSOExtdAv/88nuPMf/88vugGx8F+iYA6jxd250dWVX9mIiIiIiIiIjIbjqfbUBEZFf79wMjRgAOh/EXHw/n1bMR7iZxK793KmZd+ygG3/0eNv/hUWDhQuDSS5UkbjW6BO5Z/ZXHmHtWf4VGb/0GfWRWLXL3rgLqqxaZiSDu3tEBPS1rrLwDPiuvGJNWrMfVK3Nw6+s7cPXKHExasR5ZeZ4TrPzlrcoY0FxlrGtpu1bpuwBkbjuepqp626lrcOH5je6rhQDA8xsLUdfgUjZNwJrPSkREgePP3js5PkZpnMkcJ3ri7zgxp6DMYzINAByrqkdOQZnP721qdAlkF5Th3R0HkV1QpmzsHuZ0YMLQJMwc1Q8ThibxN7cLCJUl6Ev1YyIiIiIiIiKiUCadcRAWFtapv/BwFvkiIgsJAfzjH82JWg4HMGgQkJfXHFNd3eolHw8dh5G/fQ2D734Pg+9+D9N/8RRy+w8HoL46UyAuJgULKxLGAOuSxsw2IW0vWhT/2CZERwJXKFUZA5q/45KK1p/ncIW+7xhorvjVJ671Rebk+Ggt7V/+vqkIwss1YCGMONXMz5ocH5jPSqQLj2ko1GwpLPc6xjxaVe9z4sSoAT2VxpnCnA6k94vzGJPeL86vcWL23lKlcW0FOlmfgpeu7c6OQu24hIiIiIiIiIjIX9JXH4S3q4WaX09E5JPaWuC994BDh4CXXwa2bvUcn5EBvPACsiNOwdUvbPH69qqrM/lyMWniab2UTddsY+FOV2pjYSaNLViVCwfQKnlMV/UgT21C8OM86Ph+rawyFmjB0Yql9dR1jXm2Fsld4NtaVI75U4Yonz7bNlFXwGMaCjW6Eide3bxPOm7eZPnfpLoGFz7edcRjzMe7jqCuwYXIcF+r38r+Xvn+u2YmkrfdQ5T8mKzf2UTnRpfg769mKr/jkuPV3oN8iLOzUDouISIiIiIiIiLqDJ9uHXc4HDjjjDMwd+5czJo1C927d9c1X0REvikuBp54AnjkEbn4a64B7rwTGDWq1cPjXQIp8dEoOV7TYTKIA0alGdXVmXReTPLElzYWE4YmKZmmt4QxQF+yjVk9aMna/FafOzk+GosuTVNePciX9oWqvl+gucpY4NfjwLNiHTa5u1B7uKJWyYXatmIjw5TG+cNs20RkZzymod95f1UAAJCqSURBVFCiK3FiX3mV0jjTy9lF8NZp0CWMOF+SwgBgwtAk/PmTPVJxvtCdSJ6VV9xu7JqiaewaqlR/x+Un65TG2VkoHZcQEREREREREXWG9K2qjz/+OMaOHYtvvvkG9913H8aOHYt77rkHX3/9NVJSUtCvXz+vf0REyhw8CPz8580tEPv27Thx68wzgaVLgccfB44cMXqKCQG88kq7xC2guToT0D5NSld1JkD+IpHqpAkr2lj4ktCkQ2Z6Cj6/eypem5+BJ2ePwmvzM/D53VO1XPyy6q57q9ZjK1jVisXbhVrAuFDb6O0KtA8uH91faRxRKOIxDYUaXW2jByTEKo0z6UoKA4BxgxPh8DL0cTiMOF/4kkjuK3ftt0s0tt8ONTq+48TuUUrj7CyUjkuIiIiIiIiIiDpDOnnr1ltvxZYtW/DNN99g4cKF6N27N1555RVcdNFF6NevH+644w7k5ubqnFciClX19cCjjzYnasXHA/37A2+91XF8v37A3XcDdXVAXh5w333AbbcBp5wiNTmzOlNyfOsKBMnx0cor6ZgyhiShZ2yEx5iE2AhkDFGbvNVL8oKBbJyMYGgjYlYPmjmqHyYMTdJ2scDKu+6tWI+tYFUrFp0Xat0557ReXqtqxUaG4RyFrVWJuhoe01CoaZk44Y4/iRPDknsojTMNSpRL9pKNa2nbvqPw1vlUCCPOF7oSya1IFA81ur7j5Di5cadsnN2FynEJEREREREREVFn+NQ2EQBOP/10PPjgg3jwwQfx+eef4x//+Af+9a9/4fHHH8cTTzyBYcOG4brrrsM111yDAQMG6JhnIurq9u0D5s4FNm7s+PmKCsDpBFyu5sfWrgUuuUTZLGSmp2BaWjK2FJbjSGUNevcwKhLoSvIJczpw1U/647kNhW5jrvxJf/XTl70OofCaUCi1EbH6rvtAr8dWsKoVixUVv8KcDjx25UjcvMp9YsljV47sUsuXSBce01AoyUxPwY1TUrFyY2GrloROBzB/cqp/beGqJMdzknGmuRMG46F1uzy2TnQ6jDhf6frt1pVIbmVr6M5qdAlbjD91fcfjUxPRMzYCx6rq3cYkxEaEVKvAUDguISIiIiIiIiLqDOnKWx2ZNGkSnn/+eZSUlODNN9/EpZdeioKCAtx7771ITU3FLbfcomo+iagr27ED+Otfgd/9zqisNXiw+8QtAHuXPILG8qPNLRCFUJq4ZQpUdSbAuMCxZqfnlhxrdhYrv7O+9GSt0jgZVic0BVIw3HUfyPXYCla1YrGq4hcRqcdjGurqsvKK8fyGwnYJUUIAz28o9KstnK7fwchwJ+ZPTvUYM39yKiLDfT+VoWuedbWmtKo1dGdl5RVj0or1uHplDm59fQeuXpmDSSvWB2WLRyu/Y9ZLIyIiIiIiIiKiljqVvGWKjIzE5ZdfjnfeeQcffvghBgwYAJfLhe+++07F2xNRV9LYCLz5JjBuXHMbxNGjgfnzgSeeaB9/+un46o//hyl/XIfBd7+HwXe/h6lVaZj09FbtFwAaXQLZBWV4d8dBZBeUaW1J4u2ub0B9CzbAmgSUYEhoqmtw4YWNe/HAu3l4YeNe1DW4vL/ID+bFPE/8uZhnB4HcfqxoxWLFsjVb+7jjANsnEXUGj2moK9LVFk7n7+DC6Wm4aUoq2uZdOx3ATVNSsXC65zaQ7uhKstKVSG7HRPGsvGIsWJXb7rim5HgNFqzKDboELp1V0zxV3QKAY1X1yo/tgpmdkvqIiIiIiIiIiKzgc9vEjhw+fBivvfYaXn75ZezYsQNCCHTv3h2TJk1S8fZEZGc1NcCrrwLz5nmPXbAAOO00YOxYYPJkwOFougAg0Dq5xrwAoCsxIyuvGIvX5KOkovnCQ3JcNBbPSNMyvZbTUREna+ygBDgd8NqaZuygBGXTNC+ceUpW05nQtGxdfru2QQ+t24X5k/2/GOiOeTFvwY9t7lp+zTqrQlktK68YS9bmt1rGKfHRWHSpnu0HsKbV6YyRKR5bnc4YmaJ0+nZun0RkBzymoa5I12+H7t/BvaUn241PXcJ43F8tx2UOqB2XmYnkbcc/yZ0Y/1g9ZvaVt0RBM8l8Wlpy0Ix9Zdob9vSjvaFVx3bBqvmYvjXdx/RERERERERERHbid/JWdXU13n77bbz88sv4+OOP0dDQgLCwMFx44YWYO3cuLrvsMsTExKicVyKyg127gPPOA44cMf4dGQnU1bmP/+lPgaeeAs48s91TVl0AyMorxs0/Jtu0VFJRg5tX5eJZDSeXSyVbccjGydq276jHxC3AuFC2bd9RZckgYU4H0vvFebwQld4vTstFnWXr8ju8yOgSaHpcdQKXjot5wczKizNmi8hAkG11elfmcGXrsl3bJxEFMx7TUFen67ej0SWwKme/x5hVm/f79Ts4/x9b8WH+kQ6f+zD/COb/YytWXjfOp/c06RyXqU4ktyJRvDO6apK5P99u+Qm5lvOycR1pdImA3bTQGbLV/4IpqY+IiIiIiIiIyAo+JW8JIfDRRx9h1apVePvtt3Hy5EkIITB69GjMnTsXV199Nfr06aNrXoko2LhcwOOPA7//vfuYtolbv/iFkazVrZvXt7fiAkCjS+Ce1V95jFm4+ivlJ5e9tdXwNU6WFckgdQ0ufLyr4wtypo93HUFdgwuR4Uq6+zZNd+VG9xe/AGDlxkLcceEwpdMFAl8VyipWV1yoa3Dh5ewi7CuvwqDEWMydMFj5sjT50upU1f7Jju2TiIIRj2kolOj67di0pxQn6xo9xpysbcSmPaWYfPop0u9bXdfoNnHL9GH+EVTXNSImMkz6fVvKTE/B1GF9tIwZVCaSW5Eo3hl2TDKXaW949Mf2hr4s18RukUrj2rKiyq2/rBgzExERERERERHZkXTy1p133olXX30VJSUlEEJgwIABuOWWWzB37lwMHz5c5zwSUbCorARWrzaqar30klFly5PMTOAvfwFSUwGH7xcUrLgAkLO3TOoEfs7eMkw8tZey6Tokvx/ZOFlWJIO8nF0kVe3r5ewizJs8xPbTNQWyKpRVrKy4EMh2mIA1+yezfVLJ8ZoOE+QcMCqHBEv7JKJgxGMaCjW6fjtW534vHedL8tbD6/Kl45b+zwjp923JaI/+NUoqmqserdy4F4tnnBlUiS92S3qxY5K5rvFccrxcxUbZuJbs1oKQLSSJiIiIiIiIiORIJ2/93//9HxwOB8444wzMmTMH5557LhwOB44ePYpNmzZJvcc555zj94wSkQX27AH+7/+AZ5+Vi1+wALjjDmDoUCWTt+ICQHZBmXScyuSts1MT8edP5OJUsiIZZF95ldK4YJ9uKLGq4oIV7TCt2D+FOR1YdGkaFqzKhQNotc2aaZ2LLk0LiuobRMGKxzQUalr+drjjz2+Ht6pbvsaZisrkxmGycW25b49eq609ur/sVsnKjknmusZz41MT0TM2wuNNQQmxET5/F4GqcquyJWMgWkgSEREREREREXUFPrVNBIBvv/0W999/v88TcjgcaGho8Pl1RBQgQgAFBcDNNwMff+w5NiMDuPxyID4emD0b6NFDyyxZcwHAS2kmn+OCmxXJIIMSY5XGBft0Q4kVCU1WtcM090+eKmKkaLhAmZmegmfmjGnXKic5SFvlEAUrHtNQKMlMT8GNU1LbVah0OoD5k1P9+u0YNzgB/8k/LBXni0GJsdgoGecrmfbo92hoj+4vu1WyCtRxhcrEIl1JVjL8OZoMRJVb1S0ZdbeQJCIiIiIiIiLqKqSTtwYOHKi8XRcRWai6GliyBFixwvh3t27AyZPu44cPB+bNA373O8CpLgHCE12VAjyZMKQX/vxJgVScSjmFchW/cgrLfGo9IyPQySBzJwzGQ+t2eWxh6HQYcV1hulZTeYHLm7GDEuB0wOt3PHaQbxdyPbGqHWaY04H0fnEeL6Cl94vT8l1npqdgWlpywJYrUVfCYxoKRVl5xXh+Q2G7ZBEhgOc3FGL0wASfx3vXn5OKh9Z9IxXni2nD+2DV5v1Scb7KKfDeHv1YVT1yCsow8TS1Y31/2LGSle7jCtWJRTL8TbKSWdd8TbLSXY1NR0tGnS0kiYiIiIiIiIi6EunkraKiIo2zQUTaff018POfA9+4uchy8iQQEQHU/3iSOTERePddYNKkwM1jB3RUCvAkY2gSYiPDUOWhxUtsZBgy/LyT2Z3vy6uVxvkqkMkgkeFOnD+8Nz7MP+I25vzhvZVWSTKnO39yaoft9UzzJ6cqn66VAn2Ba9u+o1KJVNv2HfW7GkBbVrXDrGtw4eNd7tdhAPh41xHUNbi0rFNhToey75AolPCYhkKNrjZrYU4HukWGeWyL2C0qzOex5LEazwkvvsa1lL23VDouGJK37NouWddxhY7EIrslWemsxqZrXyFT3aynpupmRERERERERER20nWuUBNRMyGADRuAP/8Z+PWvAYcDSE93n7gFAP/4B3D8uPFaIYCyMssTt4DmSgFtE0LMSgFZecXKp+kt0SJKQyKGEC6lcf4wk0FmjuqHCUOTtF0IanQJ5B2s8BiTd7ACjd6ygPywcHoabpqSirYfzekAbpqSioXT05RP0yrmBa62laHMC1w6th3d1QA6YlU7TF8qfhEREVnFlzZrvr6vp8QtADhZ2+jz++ptFSg7tg2eZCizklVyfOvPmxwf7VeyUqCoPq7wllgEGIlFvh4/6Bq79uoWpTTOZFZjc/dtOuB/225d+wrAuOnBk3ovzxMRERERERERhQLpyltEFMRqa4FVq4BHHgG++857/LhxwN13A//zP0BYmPbZ85euu389kbn7+qgfd19745RsRSkbF8y8XRgAmi8M6KgstHB6Gu64cBhezi7CvvIqDEqMxdwJg7tUxS0rth1A9wXXjl1z9iAsfX+XVJxKVlX8IiIi8oWu5BRd76uzBfPZqYn48ydycf7S0a6a7ZJ9Syzy5fhB29hVU56gzmpsurbpnIIyj1WtAeBkXWPQtCslIiIiIiIiIrIKk7eI7KiyEnjxReC227zH/u53wGmnARMmAKNG6Z4zpXSdpPfEispBANAvIUZpXDCz6jtuKTLciXmTh2h7f6tZse0AzdUASo7XdJg45oBRKUJlW5QdB45Jx6n8rFZV/CIiIvKFruQUXe+rswWzUzKhRTauLZ3tqkO9XbKu4wddY9fSE7VK41oyq7G1XdeSO7mu6dqm7daulIiIiIiIiIjIKkzeIrKDLVuAs89u/rfTCbjctBaIjgYuvhh47DFg4MDAzJ8mViT5WFE5CADOGdILf/mkQCpOFx2VAjpi1XccSqxKkNNZDcCdQ0flKlsZceouelpV8ctU1+Dq0tXjiIhCmcoxmZmc4imp2582a6MG9FQaZyo5Xq00riWdCTVmu+q2CUBmu+pgbnFoB7qOH3SNXXUf7+ioxqbvJgz7tSslIiIiIiIiIrICk7eIgk19PXD//cCKFe5j2iZu3XUX8OCDQESE3nkLMCuSfManJqJnbITH1okJsRFKKwcBQMbQJK/T7RkbgQxNd9zrrBTQ1thBCe0ujrTlgH/tcMhgZYKcrmoA7myXrLy1/cAxXP6TAcqma1XFLwBYti4fKzcWtqpM8tC6XZg/ORULp6cpnRYREQWW6jFZmNOBGSNT8NyGQrcxM0am+Jz08ermfdJxvlQ7LT1RpzSuJV3jI6vaVYcSmWO0nn4eo2Wmp+DGKalYubEQosVCdDiA+ZNT/druAnFMqboam65EtglDk/DnT/ZIxRERERERERERhTKWaCCy2g8/AH/5i5F81b8/EBnpOXFr9mzg++8BIZr/VqzocolbQPPdv+5ODzvgX6WAzvLSycUvYU4Hls8a4TFm+awRWi74mJUC2lZkMCsFZOUVK53e1sJyr9+h+DGO/GNeMPLE3wtcMjLTU/D53VPx2vwMPDl7FF6bn4HP756qpeJESYVc9TDZuGCf7rJ1+XhuQ2G7llIuATy3oRDL1uUrnR4REQWOjjFZo0vgn19+7zHmjS+/R6O3XoVt7CuXq3wpG2c6elIuKUs2riVd4yNf2lWTPv4eJWXlFeN5N2Or5zcUKj8WMuk4puws8yaM5PjWCYzJ8dF+V4/LGJLkdbtLiI1AxhAmbxERERERERFRaGPyFlGg7dwJXHutcSuvwwH07g3ccotRbevgwfbx99wDHDrUnKj12mtAv36Bn28LmHf/Au1PxutqwbalsNzjHdIAcKyqXsvFl8z0FDw7ZwyS46JaPZ4cF4VnNbVa8VYpADAqBfh6Qc+T7L2lSuPIP7rrPpjVAGaO6ocJQ5O0VZqormtUGierXLKlkmycjLoGF1ZudF85BQBWbixEXYObtrpERBS0dI3JcvaWeR3bHq2qR87eMp/ed1BirNI40yHJdoiycb7yZ7RiVbtqFRpdAtkFZXh3x0FkF5QpHfOrJHOMdtSPYzRP253Jn+3OymPKzlJ9E4bMTUrLNN2kRERERERERERkJ2ybSKSTywXk5wO/+AXw5ZeeY6dNAy69FDjlFOCyy4CoKM/xISLQLdisvviSmZ6CaWnJ2FJYjiOVNejdw6gsputkti+VAtS1spD9LDyB7y9fLnDZvUXJWf3j8UWB9wvOZ/WPVzrdxG6RSuNkvJxd1K4qRFsuYcT50qKKiIisp2tMli3xG2nGTTy1l/T7zp0wGEvf3yUV54u+PWOUxrWka3xkZbvqzghk2/TO0nWMpmu7s/qYsrNUt2Q0b1JavCa/VVXaYF3fiIiIiIiIiIiswOQtIpWOHQPuugtYudL4d3Q0UOPhhOzZZwO/+Q0wZ45RhYs6FMiEpmC4+KL6ZLknVlxYmDA0CX/+ZI9UHPnH7heMfJGRmoRnPtsrFaeSFfsKXS2qfNHoEgFLLiUiCiX6frtlKwb5XnHJ4eVV/vw6TBiShKc/LZCK85Wu79hs9V5yvKbD78MB48aTQLd698Rs0dl2fs0Wnf62yNNF17hL1zoRDMeUwan1GidEcFZ6IyIiIiIiIiKyApO3iDpj0yZgxgygzM0d7TU1QEwMUP1jW49hw4A33wTS0zs96VC7gB6ohKbxqYnoGRvh8a78nrERWi++BHLZWnFhYdzgRDgcRhdQdxwOI478EwwXjAK1Hn935IR03LnDequbsAUF5HS1qJJlpwodRER2o+u3e8KQXvjzJzLJUPJVtwCjyqO3tAsB36tBOiVvaJGNa0nXd2y2el+wKrddQpuuVu+d4a1FpwNGq8BpaclBM8+6EuR0rRN2TOhrSfU43m2yYEVtUCYLEhERERERERFZgclbRLJcLmDdOuDbb41WiC++6Dk+Lg546SWjFWJEhNJZsfICeqgljXVE56fNyitu104iOS4ai2foWbbmhQVP7UJSFF9Y2LbvqMfELcBI7Nq27yirb/nJ6gtGgdxHHTgqV2VKNk5W6YlapXEy5k4YjAfX7fKa+OhriyoZdqvQQURkN+NTExEbGYaquka3MbGRYT7/dmcMTZK6MSHDxzGXrmqQpSclf18l41rSOT4KdKv3zrCmbXrnmAlyN6/K7fB5Af8S5HStE7rmNxCM49GvUVLRvI0lx0Vh8Ywz/VqPPSULAsZ3EWzJgkREREREREREVnBaPQNEQevECeDxx4HkZONqeFiYkYj1+993nLh1/vnAf/5jJHkJARw/DsyapSVxa8Gq3HYn3M0L6Fl5xUqn13bak1asx9Urc3Dr6ztw9cocTFqxXus0A21LYbnHi1sAcLSqHlsKy5VPOyuvGDevym2VuAUAJRU1uFnTsg1zOjBjpOeT8DNGpig9kR5KLf2sYl4w8nSRRNcFo0Dvo6yqRmVFdbMwpwMxEWEeY2IjwpQvV28VOgDjoluji61viIj81egSHhO3AKCqrtHnfW2Y04Hls0Z4jFk+a4TPvx26fn91/r7qHh9lpqfg87un4rX5GXhy9ii8Nj8Dn989NagSt4DAjMUbXQLZBWV4d8dBZBeUBe0YwVwngPY36ARj1TTdmo9HWydHllTU+n086i1ZEGhOFiQiIiIiIiIiCmVM3iIylZcDDz1kJGo5HECPHsDttwOHD7ePveceI4Fr924jUUsI4KOPgGnTjNdqYuUFdCuTxgKpbeJUZ+NkNboE7ln9lceYhau/Ur5sG10Ca3Z6XnZrdhYrnW4wtPQjPazYR82dMNjrbldHNSqzUoO7STugvmrdlsJyrxf2T9Y1Kr/45UuFDiIi8s/fNxUqjWspMz0Fz84Zg+S4qFaPJ8dF4Vk/KyfOnTAY3vJZnH78/potzD3R3cK8M8xW7zNH9cOEoUnKkn5UJkPpHovruOFH5ljpHj+PlcyqacnxrT9vcny035VFzTGxO2ZrymBKatP1HZccr1YaR0RERERERETUVbFtIoUmM9nqwgvl4nv3BmbOBJYtA5Ksax1hVYsLbwkZ5snnrtDqoFTyDnPZOFk5e8ukKn7l7C3DxFN7KZuuL3dCq1qnrGjVGGpkLxip3mat2EeZ1ag8tpnSUI3KinY4VlWtY7U8IiL9thYdlY6bP8X3989MT8G0tGRl7c8jw52YPzkVz21wn0w2f3IqIsPV3y/m7y+rt/ER0PnxkY4W86rbUetsH6mrzXJOgfdjpWNV9cgpKMPE03w/VlK9fdixNaWu77j0RJ3SOCIiIiIiIiKiroqVtyg0nDwJ/PKXzVW1nM6OE7ecLTaJP/0JaGw0Er0OHwaef97SxC3AugvooVR1xdsJa1/jZGUXlCmNk2VFpTErWjWGGqu2WSv2UVZVo7KCVVXrWC2PiEi/bpGe2+L6GtcR1VWhFk5Pw01TUttV4HI6gJumpGLh9DSf31NnC3Pd7dt0VJzSUf1YV6tAnRVYs/eWKo3riMrtw46J77q+42PVcklZsnFERERERERERF0Vk7eoazpwwEi+uv9+ID4e6N4deOkl9/E33mgkaJnJWkIAd9zROpkrCFh1Ad2OJ5/95ZBseykbJ0sIuYsYsnGyrKg0ZkWrxrbqGlx4YeNePPBuHl7YuBd1DS5t0zKpbHfjjVXbrBX7KCtbnQa6HY4VrRrN6XprYZUQxC2siIjs4H9G91Ma1xEdY5GF09Pw30U/w7ThvXFGcg9MG94b/130M78StwC9YxidYwYdSVY6k6HMVoF92rTS7BMX5Xd1LL03D8geewXHzR+9ukd5D/IhriOqt2fZV/s6FXstOSKirmfdunW44IILkJiYiG7dumHMmDF46qmn4HL5dh5s+/bteOCBB3DuueeiV69eiIiIQO/evXHRRRfh7bff1jT3REREREShhW0Tyf6EAD7/HHjkEeC99+Re8/DDwM03AwkJeudNMZ0tLjwJpaorE4Ym4c+f7JGKU8lbYoSvcbIOS174ko2TYUWrxpaWrcvHyo2FaHl946F1uzB/sn8VImSobnfjjVXbrBX7qPITtUrjZFnVInLRpWlYsCoXDrS+eNaZShkq6EtFJCIKDU7JGwNk49rSNRZpO676tqQSZy35t9/jKp1jGF1jBl0t5gMz1nBXe8t3OhPvxgyUO26XjdNOVybUj3Rszz1jIpXGmSYM6YU/f1IgFecvHe1KiYi6guXLl2PhwoUAgCFDhqB79+7YuXMnfvvb3+Kjjz7C22+/DafEjcsFBQUYM2ZM079TU1MxePBg7N27F1lZWcjKysL111+PF198Uer9iIiIiIioYxxNk/00NABbtwJnnNHcAnHKlI4Tty67zGh3uGaN8TqzqtbChbZL3AL0tbjwxkzI8ERHtRcrZAxJkqowkzFEbVJRL8kLULJxsj7KP6I0ToaVldyWrcvHcxtaJ24BgEsAz20oxLJ17isp+UtHJQZvrKrQZMU+KrGb3AUk2ThZVq3HZqWM5Db75OT4aL8rZXgj08LqmJ8trIiIyLBZch8qG9eSrrGIjnHV+NREr60hu0WF+TWG0TVm0FVxSudYw1wn2lYZO1zh/zqhM/Hu429KlMZ1RGUlq9KTcgmAsnEt6dqee3WXW+9l40wZQ70fX/eMjUCGnwmIOtqVEhF1BdnZ2bj33nvhdDrx6quvoqCgADt37kRubi769OmDNWvW4LHHHpN6LyEEUlJSsGLFChw6dAh79+7Fl19+idLSUjz11FNwOBz4+9//jqefflrzpyIiIiIi6tqYvEXBr7gYmDXLSNRyOIDYWGD8eOC77zqO/9nPgA8+MJK0Vq8G5s8HLr0UCPN8EcAurLhwH+Z0YMZIz+87Y2RKl7i7NczpwPJZIzzGLJs1QvlnjY+Wq6glGyeroVGuTLpsnIzEWMkLZ5JxsuoaXFi5sdBjzMqNhUpbKOpsd+OJVYmeQOD3UcnxMUrjZFlZkTAzPQWf3z0Vr83PwJOzR+G1+Rn4/O6pWvb/QGi1ziUiso6eUj26xiK6xlWNLoGqukaPMVW1jX6NnXSNGXT9Tuoaa+haJ8YOSoC3oaXTYcT5qvCHE0rj2lKdAGS3ZQfo2z5kjq+X+3l8bcVNMkREdvHggw9CCIFf/epXuPrqq5seHzlyZFPS1vLly1Ff7/lGLQDo378/9uzZg7vuugspKc3nHZxOJ2655RbcdNNNAICVK1cq/hRERERERKGFyVsUfN57rzlRy+EA+vYF3n67+fn6eiAurvnfU6YARUXNVbWysoDMzIDPdiAF+sJ9o0tgzU7PJz7X7CxWnoASSl7dXKQ0TlZMhFxSo2ycjG9KKpTGyXo5u6hdZYi2XMKIU0VXJQYZViR6tpz2+jvOw9yMgZh8Wi/MzRiI9Xecp2WaVlUGtKq6mSnM6cCEoUmYOaofJgxN0po8G0qtc4mIrCLbMszX1mK6xiK6xlUvZxd5TU8T8G+8pmvMoOt3UtdYQ9c6sW3fUal1Ytu+oz69LwCUnqhTGteSjgQguy07wJhnmQrU/oxtM9NT8OycMUiOi2r1eHJcFJ7187jEqptkiIjsoKKiAh999BEAYN68ee2ev+KKKxAXF4eysjJ88sknXt8vOjoasbGxbp+/8MILAQDfubvRmoiIiIiIpIRbPQMU4urrgTffBPbtA77+GnjlFc/xgwcDzz4LXHBBl6mk5S/zwn0geDtJDDSfJA7UPOlingR2xwHjJPC0tGSlyRIHjsndiS8bJ2vUoJ7Y/cNJqThVDhytVhona195ldI4GVZXLMpMT8G0tGRsKSzHkcoa9O5hXCTSXSVv2bp8rNzY3EZp427glc37MX9yKhZOT1M6LbPK2M2rct3G6KgyZk53wapcONC6Doru6maBZl6ALDle0+EFMgeMpMCu0DqXiMgqZmsxT21q/WktpmssomtcpXO81vK3293vmT+/3bp+J3WNNXStEzrHvaf0iMJ3R7wfs5zSI8prTEveEoD8Pfaz27KT1Zk0KNXHJb4kstn9HAURka+2b9+Ouro6REdHY8yYMe2ej4iIwLhx4/Dxxx9j8+bNTclX/qqpMfbHMTFqK54TEREREYUaVt6iwCotBRYvBmJijKpakZHAtdcC997bceLWrFlAdnZzVa3CQqMtYognbgHGiebsgjK8u+MgsgvKtN5RavVJ4kCyqlLSwAS5ExyycbKiw+W2Jdk4GYMS3d+t509cME83GCoWBbJCE2Akbj23obBd5QWXAJ7bUIhl69wnR9qNldXNAsnKNpxERKFCV2sxXWMRXeMq3eM187e7bQWulE78duv8ndQx1tC1Tugc9w45pbvSOJPOYz87LTvA+C48JY8CwLGq+k4dB6s8LgmlcxRERL7avXs3AGDgwIEID+/43v0hQ4a0iu2MN954AwAwceJEr7G1tbWoqKho9UdERERERAZW3iK9SkqAJ54AVqzwHrtoEXDGGcC55xqtEsmtrLxiLF7zNUoqapseS46LwuIZZ2pJFgiGBJRAseok8ONXjUb64n9Lxak0sn9PvIz9UnGqzJ0wGA+u2wXhId/Q4TDiVJo7YTAeWrfLYzsXp+LphlrForoGF57fWOgx5vmNhbjjwmGIDFeTP25VtTyTVdXNAs28ALlkbX6ri5zJ8dFYdGlal0lUIyKyktlaTOU4f+ygBDgd8Dr+GTsowaf3vebsQVj6/i6puGB435Yy01MwdVgfvJxdhH3lVRiUGIu5EwZ3amyi83dS9VhD1/h07KCEdlWmOnpvX9c1ALh3ehpezvF+zHKvjxVedR/72WXZAYE5Dm50CWXfRSidoyAi8tXRo0aL4oQE97+55nNmrL/+85//4J133gEA3HnnnV7jly1bhiVLlnRqmkREREREXRWTt0idxkbgnXeAn/9cLv7UU43Y++4DunXTOmtdSVZecYftwUoqanHzqlw8q6HaSygloFh1EjgmMgzhTgcaPFxZC3c6EBOpturc8WrPd1f7GicjzOlATEQYquoa3cbERIQpT36JDHdi/uRUPLfBfXLR/MmpypKKgNBqrQcAf99U5DEpDzCKKP59UxHmTxmiZJrB0DIlkG1srRQqiWpERFZSva/dtu+ox8QtwEjs2rbvqE+/ZV8WyVXf+bKoHJNPP0X6fXccOCYd5+9vb1Zecbskq79+Xhh0SVa66Bqfbi0s99pWT/wYN/G0Xj69d0xkGKal9caH+UfcxkxL6+3zsVIgjv1UjhN1Hlvo/i462u5SOpHcOD41UarVbFc4R0FE5CuzjWFkZKTbmKgoo9VwdXW139PZv38/rr32WgDAr3/9a0yZMsXraxYuXIjbb7+96d8VFRUYMGCA3/NARERERNSVsG0i+a+8HLj4YqNEjsMBhIe3T9xyOIAfDwYBAH//O+ByGVfvd+8Gli1j4pYPGl0C96z+ymPMPau/Ut5CMZRaZpmJau4+iQPGSWbVJ4G3FJZ7TNwCgIYf71RWKbGb+xM5/sTJ2FJY7jFxCwCq6hqVf1YAGD3Q853+3p73R6i01gOArUVlSuNksGVKYAW6DScRUSiyQ2ux1bnfK43zdT78/V3PyivGglW57RK/S47XYMGqXGTlFfv1viYdv5NZecWYuHw9rl6Zg1tf34GrV+Zg4vL1nZpXc3zaJ07d+DR7b6nSuLZWXjcO09J6d/jctLTeWHndOJ/f00wA8iTYEoB0HVvoPA7Wvd25w1EqEYWq6GjjN6Kurs5tTG2tUeU1JibGr2mUl5fjoosuQmlpKc477zw89thjUq+LiopCXFxcqz8iIiIiIjKw8hbJy88H3nwTOHkS+NOf4LW8yp13AvfeC/TsGZDZCwU5BWUe7ywFgGNV9cgpKPP5bmZvzJPEi9fko6Si67bMsqpSUslxuTvdZONkJcfLnaSRjZNh1We1sr2elZUYVLYn8SY2Um5YIRsngy1TiIiI3OvVPcp7kA9xppNeEvF9jTPp/F03x4IdHcUK6G+17A/3VZdrlFRdFm2O6V2duglI9jvz/7tded04nKhpwO/+uR37j1ZjYEIMHr9qNLpH6zu1FRxrQms6ji10HQfr2u62FJZ7PTdytKpea/VdIqJgJdMSUaa1ojsnTpzA9OnTkZ+fj7Fjx2LNmjVNlbyIiIiIiMh/rLxFHXO5gPfeA6ZMaa6sdeaZwOLFwKOPtk/ciowEnnrKSOwSwvh75BEmbimm+25mOa2XfdsT/l2BFZWSSk+4vxvOnzhZ5h3WnqiuNFZ6olZpnCxf2uvpYEXFoqy8Ykxa0bpSw6QVnavU4MnlY/orjZNhVbU8IiIiW5Adqvs4pB83WO5Cn2ycSefveiDGgnUNLrywcS8eeDcPL2zci7oGl9/vJVN1eaGfVZfNpLDDla3H24cra3Gzn5WQzpZcJrJxHcnKK8YFj32GD3cdwbcllfhw1xFc8Nhnfo9tfUkACjY6ji10HAfr2u5YfZeIyL3TTjsNgNHWsKGhocOYvXv3toqVVVtbi5kzZ2Lz5s1IS0tDVlYWevTo0bkZJiIiIiIiAKy8Raa6OiAnB7jqKqCkxHPstdcC06YBAwcC551nJHZRgOi/m9kds9VB20sDhytqsWBVbpdr/xboSknHquSSsmTjZIU5HZgxMgXPbSh0GzNjZIrSz21VolqoneB3t82a7Ul0bLPnnNoLsZFhHttidosMwzmnqqsMaFW1PCIiIjsoPSmZNC8ZZ7r+nFQ8tO4bqThf6Pxd1z0WXLYuHys3FqJlLtVD63Zh/uRULJye5vP75ez1XnX5aFU9cvaWYaIPYyvZpDBfKyE5Jc8LyMa1paMKWagdH8hQfRys6ztm9V0iIvdGjx6NiIgI1NTUIDc3F+PHj2/1fH19PbZu3QoAOPvss6Xft6GhAVdeeSXWr1+PIUOG4MMPP0SvXmo7PxARERERhTJW3gpVe/cC557bXFUrNtb4t7vErSuuMJK7hABWrQKuvx746U+ZuBVgsuX+VbcF8NbqADBaHfhz13cws6JSUqA1ugRe/KLIY8yLXxQpXbZ5B48pjZMVSif4rdpmw5wOPHblSI8x/3flSC1tKQNdLY+IiMgOdI1/wpwOdIsM8xjTLSrMr998Xb/rOseCy9bl47kNrRO3AMAlgOc2FGLZOvetu93JLihTGmfyJSnMF7oSBQF9Vch0tRW1O5XHwbq2u7GDEuBttpwOI46IKNTExcXhggsuAAC88MIL7Z5/8803UVFRgaSkJJx33nlS7ymEwA033IA1a9agb9+++Oijj9C3b1+Vs01EREREFPKYvBUKhAD+85/mRC2HAxg6FNiwoTmmsRFoeafMz38OlJY2t0B84w3AhztxSI+MIUnoGRvhMSYhNgIZQ9Qmb1ndbi4UeFuuvsbJ+uzbH1Df6PkiR32jwGff/qBsmrWS7WNk42SF0gl+K7fZzPQUPDtnDHp3j2z1eJ8ekX5VRPBlup/fPRWvzc/Ak7NH4bX5Gfj87qlM3CIiopCmqw3hlsJynPRQaRMATtY2+j3W0PG7rmssWNfgwsqN7qvYAsDKjYU+t1AUkr0sZeNMupLCdCbH6Uo409VWlJrp2gdt23e0XbJkWy5hxBERhaI//OEPcDgc+Otf/4rXXnut6fGdO3fi9ttvBwDcddddiIxsPnfzxBNPYPDgwZg9e3a797v11lvxyiuvoFevXvjoo4+QmupbdVUiIiIiIvKOyVtdUW0tsHUrcOyY8e/p04Gf/cx9/JgxwMaNwJEjzclab74JJKlNAKLOC3M6sHzWCI8xy2aNUF7VJlTbSTS6BLILyvDujoPILijTWlmsl+RFDNk4WY996L3djS9xMvr3jFUaJyuUTvAHwzbrdLYeYjgc+occoVAtj4iIyBdmG0KgfWP1zrQhDMRYQ/Xvuq6x4MvZRVLv+3J2kU/v2zNG8uYOybhmejKWdN4ooSvhTGe1MDLYeR9ERGRnEydOxNKlS+FyuXDNNddg6NChGDlyJMaMGYPDhw/j4osvxh133NHqNceOHcO+fftQ0qYzR3Z2Np566ikAQExMDObPn49JkyZ1+EdERERERP4Lt3oGSIEDB4DHHgOeeKL146+/Dlx1FTBsGJCV1fz49dcDd94JnHlmQGeT7CuU2s2ZsvKKsXjN1yipaD5RnxwXhcUzztRSySc5Tu67k42TdbhC7mS2bJyMmSP74p2dh6TiVAqlE/xWbrNZecVYsCq33eW+wxU1WLAqV2sbw0aXwJbCchyprEHvHsYd/EzgIiKiUGe2IWw7tu3TibGtHY8PdI0F95VXKY0zJcZGeg/yIc40bmAigALJOHm+JMdNGOrrjWJ6Es7suB6b7DTuNfdBS9bmt6oOnBwfjUWXpoXMPoiIKND+8Ic/YOTIkXj88cexbds2lJSUYMSIEfjFL36BW265BWFhnltgm2prm8ePBw4cwIEDB3TNMhERERFRSGPyll19/jnw+98Dmze7jzn64x3D990HPPwwEBMTmHkjbRpdAkvW5rt93gFgydp8TEtLVnri1mx1UHK8psPT4Q4YJ159bXUQrLLyinHzqtx2j5dU1OLmVblaWr+Zd6p7uuCho6VfTIRcNSTZOBl7Sk9Kx/1U2VRD6wS/VdusuY/qaJoC+vZRQOATLomIiOzHXd0b3wVi7Ko6OUXXWHBQoly1WNk407Fqz20CfY0zfXukUjru3OG9pd9X540SE4b0wp8/8Z5wNmFIL5/ed9SAnkrjAiUrr7hdIlRKJxKhAiEzPQXT0pKVbdNWHT8TEdnNJZdcgksuuUQqdvHixVi8eHG7x8877zwIwR7CRERERES6sW1isKutBV580aieNXEi8NxzxuO5uR0nbo0dC7zxBtDQANx8s/FYUhITt7qILYXlrU7QtiUAFB+vwZbCcqXT1dXqIBg1ugTuWf2Vx5h7Vn+lvIWiVS39+ibIXUSSjZNx4Khc1QHZOFlmQpMnKV0kCdGqbdaqfZSZcNkycQtoTrjMyitWOj0iIiI7MatilrSppGpWxfTnd1L32DUrrxiTVqzH1StzcOvrO3D1yhxMWrG+U7/pusaCcycMlmoXOHfCYJ/eN7F7lNI405f75MZhsnEmnTdKZAxNQs9Yz+0he8ZGIMPHil6rcoqUxgWCuT23HXOXHPd/ew4Ula1QrTp+JiIiIiIiIiLShclbwebYMWDhQsDpBBwOIDoamDcP+PZbYNMmYO1aI+6CC4DbbgOuu85I5BLC+PvyS+CKKwDJssdkL1a2fTNbHSS3ueCRHB+ttQ1aoOUUlOFYlee7149V1SOnoEzpdK1atj2iPF8E8TVOhq7qBN6EOR1I7xfnMSa9X1yXSEIErNlmrViPrUq4JCIisgNvVTEBoyqmr7+TOn/zdSWnhDkdmDHS8/hnxsgUn8eCkeFOzJ+c6jFm/uRURIb7dvpFV1v12Ei5AuyycabxqYlSCVb+3CgR5nRg+awRHmOWzxrh87LbWiSX2CMbp5uu7dmOrDw3QkRERERERESkA9smWm3/fuCHH4yKWZ9+CvzUQ5Ows882ErsAIC0NePzxgMwiBQ+r276pbnUQjLL3lkrHTTzNt7YcniTGRiqNkzU+NQkf7joiFafK3AmD8dC6XV5bXPhancCbugYXPvbyWT/edQR1DS6fL64Fq0Bvs726yVV+kI2T4UvCpcptloiIyA58qYo5wYeqRYkxkmNXyTiTzhbMjS6BNTs9J36t2VmMuzKH+/zeC6enYW/pSXyY336sOS2tNxZOT/Pp/YDmSmGelp8/lcIuG9UP7+w4JBWnWmdGoJnpKXh2zhilbbK7Rcrd9CYbp5uu7dmOrD43QkRERERERESkWte4Om0ndXXAxRcbVbUcDmDQIKN6FgCMaHMnaXo68PLLxmuEAHJyjNaJFLLGDkqQaskxdlCCtnlQ2eogOMl+HrWfO7+4QmmcrOvPGQyHl4/icBhxqkSGO3H+8N4eY84f3lt5AtXL2UVSrTVezi5SOl2rBXSbtWDz8SXhkoiIKNToqk7zzeFKpXEmnS2Yvb03OvHeWXnF+KiDxC0A+Cj/iF/Vwlq2wXbHnzbYTm+Dfx/jTFsKy70m1B+tqu9U++zM9BR8cc/5eG1+Bp6cPQqvzc/AF/ec73dF2Vlj+iuN043VppoFw7kRIiIiIiIiIiKVmLwVaE89Baxb1/qx6GgjQSspCTh0qLkF4ldfAXPmABHq2pWRvW3bd1Qq+WTbvuBo62BHsncoq76Teds+uYsYsnGyIsOdGOGlleCIfnFKE6kaXQJ5Bz0noeUdrFDe7mNfeZXSOGqv9ESt9yAf4uRYk3BJRERkB7qq0xw4Kjdeko0z6UxO0fXenqqFmYKpld3mIrn277JxpkAlFqm8MeGcU3shystxTlS4E+ecGhzVW1ltqhnPjRARERERERFRV8PkrUC79FIgNdX4/zvvBA4eBLZtAyJ/bCeR4t8doxQaeKetfhlDkry2xegWFYaMIWqTt2Ij5brYysbJqmtwSSVS1TW4lE1TZ9UDTwYlxiqN81WjSyC7oAzv7jiI7IKyoLmAp1Kv7pJtEyXjZFiVcElERGQHZus9d+ktDvjXem9Agtx4STbOpDM5Rdd766oWZiaFuWO2kPR9TKkn8d2uiUUxXo79vD0fSLq2ZzviuREiIiIiIiIi6mqYvBVop58O7N1rVNZ65BGgb1+r54hsJBhOiIdCAkqEl7uvI8LU7zovl2zFIRsny4pWgiXHq5XGyZo7YbBUa425EwYrnS5gtNKZtGI9rl6Zg1tf34GrV+Zg0or1frXQCWqyuwOFu42MIUnoGeu5QmVCbITyhEsiIiI7MFvvufvpFfCv9d6wPj2UxpnGpyZK/a77k5yiq82ariQSXUlhuhLfA9XGTuXxqEyrx2OdbPWoUstWmm2/avPf/mzPgaJy2QXDuREiIiIiIiIiIpXUlnAhIq3MO21Ljtd0eAHGASBZ4522WXnFWLI2v9VFhJT4aCy6NA2Z6V2japwvJ/BVVvIxW3bUeqhwpaNlR1HZSaVxMspP1imNkxUZ7sSAxBjsK3OfFDYgMUZpi0jA2G4WrMptt82WHK/BglW5eGbOmC6z/RyRbIcoGycjzOnA8lkjcPOqXLcxy2aNCNqLWERERHZUXi05npOMa6mqrtHj8ye9PO+OL23WfBnn60oi0ZUUNm6w3LGibJxJ1/fbkurjUTtWb8pMT8Ezc8a0+x6Sg/y4XPWys/rcCBERERERERGRaqy8RWQjLe+0dUfXnbZmAkrbu7/NBJSuUkHIyhP43u471lHjrKFR7l1l42QkSrbMk42TVV3X6DFxCwD2lVWj2s8Lgh0x29109O2Zj/nX7sa3eQhUtbxyyaQs2ThZmekpeHbOGCTHtb4omhIfjWe7UHIcERGRr3S13uvVTbJVsmScadPuUq/tuusaXNi0u9Sn9wX0jfN1VZzS9R1v3lumNM6k+zhKx/GoXas3Zaan4PO7p+K1+Rl4cvYovDY/A5/fPTVox7zull1xJ5ad3auQERERERERERG1xcpbRDaTmZ6CG6ekYuXGwlZ3NjsdwPzJqVpO2HpLQDEv+kxLS9Z2crTRJbClsBxHKmvQu4dxB62OaVl1At+XC1WTzzhF2XT3SVbUko2T0buH3AUm2ThZD69zf+GybdzS/xmhZJq+tLtRWcnNFOhqeYndIpXG+SIzPQXT0pIDsp8gIiKyC21jEdmfVx9/ht/a/r10nK9jYl3jfG0Vp3R9x7mS33Hu95h8uvx33EvyxgvZuJZ0HY/auXpTmNOh5fgBUHvs7WnZAcby8/dcgl2rkBERERERERERdYTJW0Q2k5VXjOc3FLY7+SkE8PyGQowemKD8JGUwJKAsXvM1Siqaq/Ukx0Vh8YwzlX9Wq07g67xQ5UllbYPSOCmyhR0UF4gqKqtSGifDykpuVrRrtGv1AiIioq5K11ikVLKKpmyc6aTkmFM2riVd43y7fcffH/VcidbXuCYax/i6jkfN6k0LVuXC0WbWgr16k66bm1Qfe3tbdkDnziXwBg4iIiIiIiIi6irYNpHIRrzdcWzetaq6LZrVCSg3r8ptdfIYAEoqanGzhnaNVrVfqJJs1ScbJyu9X5zSOBmlJyUvREnGyRqcFKs0ToZVyUxWtWt0Cbn3k43zRVZeMSYu/xhXr8zBra/vwNUrczBx+cddpqUrERGRP3SNRXRVWdJZoVXXOF/Xd6zrffv1lIuXjTMdkUwik41r9RqNx6Nm9abk+NafNzk+WsvNDipk5RVj0or1rca9k1as7/S4V8exd8lxuSRA2biOmFXIZo7qhwlDk5i4RURERERERES2xOQtIhvx5a5VlXS2wPCk0SVwz+qvPMbcs/or5QkoVpzAHzdY7g5/2ThZ04bLfRbZOBlWJTTdnTlcaZwMs8KDu8sHDhhtDFVXcvOlOoFKmyXfTzZOVqCTPImIiOxC11jE1SiZsC0ZZ+oRI1ccXDauLR3jfF3fsa73nTWqv9I4U7lkUpZsXEu6jx8y01Pw+d1T8dr8DDw5exRem5+Bz++eGrSJWwtW5bYb65vVdf0d9+o69i49Uac0joiIiIiIiIioq2LyFpGNlFTI3UksGyfNojZ3OQVlOFZV7zHmWFU9cgrK1E4YgT+Bf/05g+HwcoOww2HEqZS7/6jSOBlWJTR9dfC40jgZLSs8uKOjkpt11fICv7OwKsmTiIjIDnRVm8opkht/y8aZwp1hSuM6onqcr+s7Nt/X3QhG+Pm+4RFyp4Fk40yJ3SKVxrUUiOMHO1Rv0lldV9ex97EquaQs2TgiIiIiIiIioq7KFslbhYWFWLlyJebPn4+RI0ciPDwcDocDDz74oNWzRhRQOu9m9sSqNnfZe0uVxgWzyHAnbpyc6jHmxsmpiAxXu9sWku3rZONkWNWa0qqEpsz0FNw4JRVtP47TAdw4JVVLQqBV1c0mDOmlNE6GlUmeRES+4DENWUVHtalDR+VanMnGmc6WTL6RjXNHdaKOnVrvHZG80Uc2zpQcH6M0rqVA3BDR6BLILijDuzsOIrugLCgT/3VW19V17O3tBiVf44iIiIiIiIiIuir/eg0E2JNPPoknn3zS6tkgspzOu5k9sSoRpH1qT2fj5GXlFWPRu3k4XNl8B3CfHpFYMjNd28WXhdPTsLf0JD7MP9LuuWlpvbFwuucLFv6Ii4lQGifLvMC1ZG1+qwsQyfHRWHRpWpdKaMrKK8bzGwrb3SEvBPD8hkKMHpig/POOGtBTaZysjKFJ6Bkb4TGZqmdsBDKGJimb5qYCuQtImwpKMfE0dUljRES+4jENWSkzPQVTh/XBy9lF2FdehUGJsZg7YbDfNwYkx8mNl2TjTC7JGwZk4wIpMz0F09KSsaWwHEcqa9C7h1EJyt+EIrPKkjsOGFWWpqUl+zSN8pNyFY5k40xmdSxPyUWdqY5l3hCxcmMhWuZVOR3A/MmduyEiK68Yi9d83aoFd3JcFBbPOLPT4/RGl1C2Tui9GUXPsfeEIb3w508KpOKIiIiIiIiIiEKZLSpv9erVC5dccgn++Mc/4oMPPsDll19u9SwRWULn3cyeWNXmboJkgodsnKysvGLcvCq3VeIWAByurMPNq3KRlVesdHotp9tR4hYAfJh/RMt0K2o8VyzyNc4XgW5Naa7Hnqhej3W2NvFkVU6R0jhZYU4Hls8a4TFm+awRSquqHTomWflDMo6ISBce05CVsvKKce6jn2Dp+7vwj+x9WPr+Lpz76Cd+jy97dpNL7JeNM729/aDSuEBTWdFLV5WlxO5RSuNMuqtjmTdEtB02mzdE+Lsum8d+LRO3AKCkorbTx35ZecWYtGI9rl6Zg1tf34GrV+Zg0or1fr+nzptRdB17ZwxNQmyk5zansZFhSm/uICIiIiIiIiKyI1skb913331Yu3Yt7r//fmRmZqJ79+5WzxKRJcYOSvDaTsDhMOJUMk/Eu0svEdDT5i5jiFHFx5OE2AhkDFF3orfRJXD7Gzs9xtz+xk7lyTYy071Dw3Stq21mUN2yxtu0Zoz0nBg2Y2SK0nnQ2drEk61FR5XG+SIzPQXPzhmDPj1aX/BLjovCsxraBvVNkEtWlY0jItKFxzRklay8YixYldtuTFJyvAYL/ExOqahpUBpn+l6yzaJsnJ3pqrKkq2qaTrpuiGh0Cdyz+iuPMfes/sqvYzAd253Om6oyhiShm5ckq25RYX4de3ur8BflZwVAIiIiIiIiIqKuhGdIiGxka1E5vHUIEcKI6wpkqvgsU1zFZ9PuUlTVNXqMqaprxKbdcq3apKe7x/t0T9Y1YtMetdOVbU/RFdpYNLoE1uz0fJFkzc5ipQlyelubuOftwouvcf7wlmiqyjmS66ZsHBERUVeiK+lFtmuhr90N+/eUSxiSjbMzXVWWdFWjlW3z6M9YW9cNETkFZR7bfQPAsap65BSU+fS+urY73TdVeZsbf7qVbiks9/odH62qV34zCxERERERERGR3TB5i8hGsiVPGsvGydJ5R7I3mekpuGlKKtqef3Y6gJumpCqv4vPW9u+VxklPN1dyupJxsjKGeq9u1jM2oku0sfB20QdQXwVLZ2sTT2aN6a80zhdmlYG2rWcOV9T6XWXAk1Bah4mIiHylK+klITZSaZzp8rEDlMYFWqNLILugDO/uOIjsgrJOHR/pqrJkJgA50L66rvmYPwlAOivO6rohInuv3I0xsnEmq6rvdkZOQZnUTUy+JrJZdTMLEREREREREZHdMHmLyFZkT/6rTaLSdUeyjKy8Yjy/oRBtr3u4BPD8hkLliSAnauVau8jGyaqqk3s/2ThZMtXNliuubmYVKy4c6Kps4M05p/aSantyzqlqq1HpqjLgSSitw0RERL7SNf5J7CaXlCUbZzp7SJLXdt2OH+OCTVZeMSatWI+rV+bg1td34OqVOZi0Yr3fxytmkhXQcZIV4H+Vpcz0FDwzZwyS24xTk+Oj8Yyfba51jrV7dY/yHuRDXDM9TeR1fRfeqpsB/o+1dSWyWXUzCxERERERERGR3YRE8lZtbS0qKipa/RHZ0dmD5S5SyMbJ2iR5glY2TpanRBDASAZRnQiirQeMF+Mkl5lsHLXXq5vkRR/JOBlhTgdmjPR88WvGyBTliUVhTgfmZAz0GDPn7IHKp2tVlYHM9BQ8O2cMkuNaL7vkuCg86+cFSCKiYMNjGvKHrsSJ8pN1SuNM2/Yd9d667ce4YGJWHm07Dio5XtOpyqNmklWfNmOcPnFRfidZtXzvz++eitfmZ+DJ2aPw2vwMfH73VL/fU2eSjkvyeE82zjRBsjKrbJxJ13ehs5Kwy6U2zjR2UEK7KtptOR1GHBERERERERFRKAuJ5K1ly5YhPj6+6W/AgOBssUDkjUuyopZsnKxDR6uVxsmyos1do2RSlmycrOvPGQyHl5PaDocRp5LOu7eDjp4b6z1qdAms2en5Yt2ancXKv1+rpmtlW5TM9BR8cc/5rS5AfnHP+UzcIqIug8c05A9dVUCPVcslZcnGmQ4drVIaFwiBqTzqrvZW54Q5HZgwNAkzR/XDhKFJnUrsH5+a6LWVdUJshF8VZzdLHu/Jxpkyhnhvv50QG4EMHyu96Wp5WXxM7nhbNq6lo1Vy26psnGnbvqPtqmi35RLBl5BJRERERERERBRoIZG8tXDhQhw/frzp78CBA1bPEpFf3tl+UGmcrL49Y5TGySo5LnfSWTZOxpGKWqVxsiLDnbhxcqrHmBsnpyIyXO1u24oEOauUnpBbZrJxMqz6fq2aLtuiEBHpw2Ma8oeuKqC6cuJ3fH9MaVwg6Kw8alb0Kqlo/f6HKzpX0UuXugbPZZm8Pe+ebOKbbwlyMu23l/nRfttseempgrQ/LS+/3Ce3DsnGtfTdYblqjrJxJitv7iAiIiIiIiIispOQSN6KiopCXFxcqz8iOzpZ16g0TlZGqtydxrJxsqxItqltkPvuZON8sXB6Gm6aktqurYTTAdw0JRULp6cpn6YVCXJW6dVdsm2iZJwMqy5WWDVdXVUGZGTlFWPSivW4emUObn19B65emYNJK9YH3UVNIiJ/8ZiG/KGrGueEIb2UxjWzoFRqJ+kadwWmopc6OXvLUOXlOPRkXSNy9pb5/N761jd7+bakUmlcSw6H3OlB2ThTYmyk0jgiIiIiIiIioq4qJJK3iLqKcYMTlMZJs+gaSukJuZYMsnEyHN56F/oY56uF09PwzdKLcP/Fw3HdhEG4/+Lh+GbpRVoStwCg/KTcdycbF9T03LDvkVWVqKyarlllAHDf3MefKgPemFUp2la9KDkenFUpiIiIAkVXNc6MoUmIjQzzGNMtMgwZQ327uWNwUqzSuEDQNe7SWdFLh+wCuaQs2biWMoZ6b2/YMzbC5/XNWwt5B/xLkNPVml72ENSfQ9Xzh/dWGmfKLz6uNI6IiIiIiIiIqKti8haRjVx/jue2er7GydpcKHeCXTZOVt5BuRO4snEyTukud8evbJw/IsOdmDd5CP44Mx3zJg9R3iqxpUTJKlOyccGs9KRkJTfJOBljByW0q6TWltNhxKlkZQWszPQUPDNnDJLjW1+gTI6PxjNzxiAz3XPrJl/ZrSoFERFRIOmsxultjBrhxxj2mrMHKY0LBF3jLvu1m9N3p4RMe8PlfrQ31JUgpytp8oJhfZTGtZTeN15pnGnbvmNK44iIiIiIiIiIuiombxHZSJjTgW7e7nCPClNe1aahUe4Eu2ycrNp6yRaGknEyzuovl0QjGxfskuPkKgDIxgUzK6pRbdt3FN5yhlzCiFPJqgpYpsz0FHx+91S8Nj8DT84ehdfmZ+Dzu6cqT9wC7FeVgoiIKJB0VoU6VlXvMeZYVb3Pv787DhxTGhcIusZdVlVS9Zfu1oaZ6Sl4ds4Y9OnR+qaS5LgoPOvnDQK6EuRKKuTiZeNMZ0omTsnG+TMvvs6ztwp9vsYREREREREREXVVTN4ispEtheU4Wec5UelkbaPyJIU9P1QqjZPVtnJPZ+NkJHSTq6glGxfszEoBnuiq0BRoVlSjsrJiQqArYLUV5nRgwtAkzBzVDxOGJmlLFLNfVQoiIqLAsVtVKLv+rusYd1lZSdUfulobtqWye72uBLnSSsmKv5JxTfEaKwn/W7LNuGycKS0lTmkcEREREREREVFXFW71DMj44osvMHPmzKZ/nzhxAgCwbNkyPPHEE02Pb9++HQMGDAj07BGh0SWwpbAcRypr0LuHcQJdR6KCrrthvan2kjDma5z8dBuUxsmoqPZcQcDXuGBnVgpYsCoXQOsmJoGo0BRILT+rA4H5rFZXTMhMT8G0tOSA7J+sYvV3TEQki8c0ZAVd4x9dv792/l1XPe6yYuzaGWZrw5t/PK7oiD+tDU1ZecVYsCq3XdPFwxW1WLAq168kOTNBruR4TYfNHB0wEvB8TZA7WiWXPCUbZyo9IZm8JRnXUsGRE0rjTKe0qZTW2TgiIiIiIiIioq7KFpW36uvrUVZW1vRXW2uciKqqqmr1eGOj2sQRIhlZecWYtGI9rl6Zg1tf34GrV+Zg0or1yPLxjlQZuu7g9SYmUi7PUzZOVrVkO0TZOBmuDk/b+x9nB1ZXaAok87P2iQvMZx2fmui1BUhsZJjWigmBqoBlFbtVpSCi0MVjGrKKjvGPrjGO3X/XVY+77DZON1sbJsepa20IGDdLLVmb3+ERmPnYkrX5aPTWr7yNli0v3fEvQU423rf3LTtRpzSupbpGue9ONs6UHB+jNI6IiIiIiIiIqKuyReWt8847D0J0nUQJ6jrc3f1bcrzG77t/PdF1B683Q3t3w0e75OJUqm2Q2+5l42RUVstV8ZKNs4tQqNDUksvV+sK4rgvljS7hNbmwur4RjS7RZb9r3exWlYKIQhePaUhWXYMLL2cXYV95FQYlxmLuhMGIDFdx31Xr9a8z66OuMQ5/19uz2zhdx/xuKSxH8XH31aUFgOLjNdhSWI4JPrZlzExPwY1TUvH8hsJ269uNU1L9Op5PiI1UGmfKO3hcaVxL8TFhkHlZfIznpM22zIRMT8svmBMyiYiIiIiIiIgCxRaVt4iCkbe7fwX8u/vXE4dD7oS3bJyscKfcrkI2TtYZyT2UxsmQ/eoUf8VBoatXaAKMhMubV+XiyInWbS+PnKjHzatylVfMezm7CN6uiwphxJH/7FaVgoiIyJ1l6/Ix7P4PsPT9XfhH9j4sfX8Xht3/AZaty/f7Pc0bTkoqWt/gYbab82f8o3OMw9/19uw2Tlc9v0cq3Sf++BPXUlZeMZ5rk7gFGMfzz20o9Gv7SOwml5QlG2eKjpA73paNa6lvz1ilcSYzIdNTNb1QS8gkIiIiIiIiIuqILSpvEQUjb3f/Av7f/etOzxi5k7uycfLTjVAaJ2twolwlL9k4qfdKkpymZBwFj0aXwO1v7PQYc/sbOzEtLVnZxYPCspNK48g9u1WlICIiamvZunw8t6Gw3eMugabHF0733OKtLW83nDhg3HDi6/hH9xiHv+vUUu8e0d6DfIgzNboE7ln9lceYe1Z/5fP2UX5Srm2hbJxJZwvCPvFy351sXEtmQuaStfmtzqGkxEdj0aVpIZmQSURERERERETUFpO3iPxUUiF3V69snIzEWLnkKNk4WVYlb7k6vMzkf5yMuRMG46F1u+CpYJrTYcRR5zW6RMAuym3aXYqqOs/tfarqGrFpdykmn3GKkmnKfhJehlTDrPJARERkN3UNLqzc2D5xq6WVGwtxx4XDfGqhqKvdXCDGOPxdJ5PZeq/keE2HR34OGJXZfG29l1NQhmNV9R5jjlXVI6egDBNP6yX9vuVVtd6DfIgzjRrQE6s275eK89VZ/eLxCg5IxfmDCZlERERERERERJ6xbSKRn8pPSJ6QlYyTUXZC7s5c2ThZ/z14XGmcrNz9R5XGyYgMd2L+5FSPMfMnp/p00cxXjS6B7IIyvLvjILILypS23gwmWXnFmLRiPa5emYNbX9+Bq1fmYNKK9cpbF5re2v690jgZowckKI0jIiKirunl7CKPNw8ARgUuX9sQ6mo3xzFO12CX4w6z9R7QPiHQ/Lc/rfey95YqjTMdOlqtNM501Euima9xLeUdqlAa1xG7tf8kIiIiIiIiIgokVt4i8pMV1ajyS+ROlMrGyWqQPIkvGycrNlJuFyUbJ2vh9DTsLT2JD/OPtHtuWlpvn9vV+CIrrzgk2klk5RVjwarcdnfOlxyvwYJVuXhmzhjln/dkbYPSOBk6248QERFR17GvvEppnKlXtyilcSaOcezPbscdmekpuCCtd7tjNAHjGM2/ebZXndwyyRvDZONas9d3QURERERERETU1bDyFpGfjlXL3c0qGyfDW8s3X+NkHfbQasWfOFmXjeqnNE5WVl4xPuogcQsAPso/oq0ylJnQ1La1jZnQpGu6gdboEliyNr/DlifmY0vW5iu/879PnORFRsk4KbIfITiLHBAREVGADEqMVRpncgnJNuSScU04xrE1Ox53LFuX3+HNNQDwYf4RLFuX7/N7yrbl9LV9p+xhjK+HO18dPKY0rqXBSXL7Ftk4IiIiIiIiIiLyDZO3iPyUEBupNE7GuMFybUdk42QdOCp3h79snCynZBsF2TgZnhKLTDoSi6xKaLLClsLydheKWhIAio/XYEthudLpjhkot13IxsnQ1aqIiIiIupa5EwbD25DW6TDifLFZcjwlG2fiGMe+7HjcUdfgwsqNhR5jVm4sRF2Dy6f3zRiShJ6xnitlJ8RGIGOIb8lbhaUnlMaZqiVv0pKNa0nXPoiIiIiIiIiIiOQweYvIT6WSrQhk42Rcf06q1yYFjh/jVKqskWsjJxsnS9fFJk+sSiyyarpWsOpiX0rPGKVxMspP1imN80ejSyC7oAzv7jiI7IKyoLoQR0RERIbIcCfOH97bY8z5w3sjMtzXQ3g9JbKCYYxD/rHjccfL2UVeq1S5hBHnizCnA8tnjfAYs2zWCIQpvFmoM+oa5ZLTZONaigx3Yv5kz+cR5k9O9WMfREREREREREREMsKtngEiu/r60HGlcTIiw524cUoqntvg/q7jG6eoP6E6JCkWJRXek9CGKG+hEPh+LFYlFgVD9YJGl8CWwnIcqaxB7x7RGJ+aqOVCRe8ecm0JZeNkjR2UAKfDc3sSp8OIUyWxe5TSOF9l5RVjydr8VhfoUuKjsejSNGSmp2iZJhEREfmu0SWQd7DCY0zewQo0uoRP47MJQ3rhz58USMX5wuoxTrAK1Hi6M4LhuMNX+8rlKjzLxrWUmZ6CZ+eMweI1+SipUDNmTo6LRt6hSqk4X0SGyR3ny8a1tXB6GgCjilnLYyanw0jcMp8nIiIiIiIiIiL1mLxF5KfqesmWBZJxsswTps9vKGyVsuSAkbil44TqTeeeik2FW6XiVNJ1sckTqxKLrJquKZBJPuNTE5ESH42S4zUdpt05ACTHGxe7VNq276jUHfvb9h3FhKG+tUZxR/aCjK8XbmRk5RVjwarcdt9xyfEaLFiVi2fmjGECFxERUZDwVg0JaK6G5Ms4JWNoEmIjw1DloY1at8gwZPg49rFyjBOs7JI0b/Vxhz8GJcrdJCQb11ZmegqmpSUrS7zLTE/BR9/8IBXniwGJscg94P3msAF+fg+Acb7hjguH4eXsIuwrr8KgxFjMnTCYFbeIiIiIiIiIiDTj2RciP/1koFxiiWycLxZOT8O3D16E+y8ejusmDML9Fw/Htw9epO1O2Emnn4IoLydro8KdmHT6KUqnmzE0CT1jIzzG9IyN8PlikydmYpG70/QOGBdhVCcWWTVdoDnJp+0FQzPJJyuvWOn0wpwOLLrUWFfbfl7z34suTVNepaDlnfQq4mSMT02UWodVL9dGl8CStfkdJseZjy1Zm88WikREREFC5zilwcvvfb0f4wFz7OqJrrFrMAr0eLozrDzu8NfcCYPh7dDA6TDi/BXmdGDC0CTMHNUPE4YmdepYpF+CXPKUbJxp1uj+SuPciQx3Yt7kIfjjzHTMmzyEiVtERERERERERAHAMzBEfhreN05pnK8CeUI1zOnAk7NHeYx5cvYo5ck2YU4HrvqJ5xPPV/2kv9LpWpVYZNV0rUryyUxPwTNzxiC5zUW/5PhobRWhSiVbv8jGqaKjkY636h0CzdU7iIiIyHrlJ7y3KPclzrRpdynqGlweY+oaXNi0u9Sn9zXHrg50PHZ1QM/YNRjZLWnequOOzogMd2L+5FSPMfMnpwZNkpHMDRwJftzAES7ZDlE2joiIiIiIiIiIggfP6BD5qbyqTmlcsMtMT8Gzc8agT4+oVo8nx0XhWU3JNo0ugX9++b3HmDe+/F5LYtGNU1LhaHO9wuEwWlPqantiJjT1iQtcQpOVST6Z6Sn4/O6peG1+Bp6cPQqvzc/A53dP1fb9HquqVxonY0thudf3O1pVr/z7PSKZgCYbR0RERHoldotUGmd6a7vnsbSvcS1ZkYwfjOyYNG/V8U5nLJyehpumpLarwOV0ADdNSdVWhdpfMkmTvio9KZe8KRtHRERERERERETBI9zqGSCyq949PLcJ8TXODjLTUzB1WB+8nF2EfeVVGJQYi7kTBmu7wzlnb5lU4kvO3jJMPLWXsulm5RXj+Q2F7e6edwng+Q2FGD0wQfMFjdZTFkLfXfpWJ/mY7Um6Kqu+31DcPxEREdmZrt/uqrpGpXFtZaanYFpaMrYUluNIZQ169zDa7QVT1SbdrB5P+yMrrxjPbShs97hLAM8F5HjHPwunp+GOC4dpOR5tdAll63HO3jKv29TJukafj2M5xiciIiIiIiIi6rqYvEXkp/GpiUiJj0bJ8ZoOW2Q4YNx17msrhGCWlVeMJWvzW91Z/tfPC7Ho0jQtJ/ezC8qk41Qlb3lqe2JasjYf09KSlV+UysorxoJVue2mfbiiFgtW5WqpYBBKFwB6xspVqpCNk2HV9xuK+yciIiJbkx1W+jj8HDc4Ef/JPywV56+unozvjd3G040ugXtWf+Ux5p7VX2k53lEhMtyJeZOHKH3Pjo5zU+Kj/T7O1XUcyzE+EREREREREVHXxbaJRH4Kczqw6FKjNUPbU9rmvxddmhaUJ7z9YSYWtW0JUnK8BgtW5SIrr1jDVGUrTqmrTGVV2xNPSWPmY0vW5itvEWleAHC3ljpgXLjoChcAenWXS8qSjZNh1fcbavsnIiIiuys9IdkOTTLOdP05g9u1xmvL4TDiyD92G0/nFHivbnysqh45kglIdqfnOFfPcSzH+EREREREREREXReTt4g6ITM9Bc/MGYPk+NZ3USfHR2upkmQVqxKLJgyRuwtZNk6GVW1PrEoaC6ULAMnxMUrjZFj5/YbK/omIiKgr0FW9KTLciRsnp3qMuXFyqrY26KHAbuPp7L2lSuPsTNdxrs7jWI7xiYiIiIiIiIi6JrZNJOqkzPQUTEtLxpbCchyprEHvHsZd1cFycl4FXxKLVLZMyRiahJ6xER7vDO8ZG4EMhdO0qu2JVUljQPMFgLatQpI70SokGI1PTZRan1RXRbDy+w2F/RMREVFXoLMd2uiBCQAKvTxPnWGv8bSmHp02pOs4V/dxLMf4RERERERERERdD5O3iBQIczqUJi0FG6sSi8KcDiyfNQI3r8p1G7N81gilJ6l1XjjzxKqkMRMvABh0fVorv9+uvn8iIiLqCszqTQtW5cKB1s3UOlO9yaws5I4DRmWhaWnJITfuU80u4+kJQ5Pw50/2SMV1dbqOcwNxHMsxPhERERERERFR18LeCETklZWJRZnpKXh2zhgkx0W1ejw5LgrPamgLYVXbEzNpzN27OgCkaEgaa8m8ADBzVD9MGJoUdBeaOmtLYbnHu98B4GhVvfLWlKau/v0SERFR5+hoh2ZVa+5QZYfxXsYQoyqUJwmxEcgY0vUTg3Qe5wb6OJaIiIiIiIiIiOyNlbeIyCurqlGZAn0XuxVtT3RVW6BmVramJCIiIpKhetzL8Q+1JVMVapni6sbBSvdxrl2qsRERERERERERkfWYvEVEXgVDYlGg20JYcaLdiqSxUGJ1a0oiIiIiGSrHvRz/UEfMqlCL1+SjpKL5uCMlxI47AnGcy/aGREREREREREQkg8lbRCQlFBOLrDjRzruz9bG6glyjS3C5EhERUUBZPf6h4MXjDkMoHucSEREREREREVHwYfIWEUnjCf7A4N3ZelhZQS4rr7jdBaFQq2xAREREgWeOf9y1yBNga+5QxuMOA49ziYiIiIiIiIjIakzeIiKf8AQ/2ZkVd9Zn5RVjwarcdtUuSo7XYMGqXDwzZwwTuIiIiIiILMTjXCIiIiIiIiIishKTt4iIKKQE8s76RpfAkrX5HbYpEjAqfi1Zm49pacm8s5+IiIiUM8ci7nAsQkRERERERERERGQ9Jm8REVHICdSd9VsKy1tV+GpLACg+XoMtheW805+IiIiU41iEiIiIiIiIiIiIKPg5rZ4BIiKirupIpfuLpf7EEREREfmCYxEiIiIiIiIiIiKi4MfkLSIiIk1694hWGkdERETkC45FiIiIiIiIiIiIiIIfk7eIiIg0GZ+aiJT4aDjcPO8AkBIfjfGpiYGcLSIiIgoRHIsQERERERERERERBT8mbxEREWkS5nRg0aVpANDuoqn570WXpiHM6e6SKhEREZH/OBYhIiIiIiIiIiIiCn5M3iIiItIoMz0Fz8wZg+T41u2IkuOj8cycMchMT7FozoiIiCgUcCxCREREREREREREFNzCrZ4BIiKiri4zPQXT0pKxpbAcRypr0LuH0Z6IVS6IiIgoEDgWISIiIiIiIiIiIgpeTN4iIiIKgDCnAxOGJlk9G0RERBSiOBYhIiIiIiIiIiIiCk5sm0hERERERERERERERERERERERGQBJm8RERERERERERERERERERERERFZgMlbREREREREREREREREREREREREFmDyFhERERERERERERERERERERERkQWYvEVERERERERERERERERERERERGQBJm8RERERERERERERERERERERERFZgMlbREREREREREREREREXci6detwwQUXIDExEd26dcOYMWPw1FNPweVy+fV+2dnZmDlzJk455RTExMQgLS0NS5cuRU1NjeI5JyIiIiIKPUzeIiIiIiIiIiIiIiIi6iKWL1+Oiy++GB9//DESEhJw6qmnYufOnfjtb3+Lyy67zOcErldeeQWTJ0/GmjVrEBUVheHDh2PPnj144IEHMGXKFFRVVWn6JEREREREoYHJW0RERERERERERERERF1AdnY27r33XjidTrz66qsoKCjAzp07kZubiz59+mDNmjV47LHHpN+vqKgI8+bNQ2NjIx555BEcOHAAubm52L17N8444wxs3boVd911l8ZPRERERETU9TF5i4iIiIiIiIiIiIiIqAt48MEHIYTAr371K1x99dVNj48cObIpaWv58uWor6+Xer9HH30UtbW1uPDCC3HnnXfC4XAAAAYNGoQXX3wRAPD888/j8OHDij8JEREREVHoYPIWERERERERERERERGRzVVUVOCjjz4CAMybN6/d81dccQXi4uJQVlaGTz75xOv7CSHw9ttvu32/c845B8OGDUN9fT3efffdTs49EREREVHoYvIWERERERERERERERGRzW3fvh11dXWIjo7GmDFj2j0fERGBcePGAQA2b97s9f3279+P4uJiAMDEiRM7jDEfl3k/IiIiIiLqGJO3iIiIiIiIiIiIiIiIbG737t0AgIEDByI8PLzDmCFDhrSKlXm/qKgo9O3bt9PvR0REREREHet49N7FCSEAGCWEiYiIiIiCjTlONcetRG3xmIaIiIiIghmPaaxx9OhRAEBCQoLbGPM5M1bm/Xr27AmHw9Gp96utrUVtbW3Tv48fPw6AxzREREREFHysOJ4JyeStyspKAMCAAQMsnhMiIiIiIvcqKysRHx9v9WxQEOIxDRERERHZAY9pAqumpgYAEBkZ6TYmKioKAFBdXR3Q91u2bBmWLFnS7nEe0xARERFRsCorKwvY8UxIJm/17dsXBw4cQI8ePdzeLdLVVFRUYMCAAThw4ADi4uKsnh2yOa5PpBLXJ1KJ6xOpZOX6JIRAZWWl27YURDLHNNwn2heXnX1x2dkXl519cdnZF5edfcksOx7TWCM6OhoAUFdX5zbGrH4VExMT0PdbuHAhbr/99qZ/Hzt2DIMGDcL+/fuZ4Eft8DeCvOE6Qt5wHSFvuI6QJ8ePH8fAgQORmJgYsGmGZPKW0+lE//79rZ4NS8TFxXHnQ8pwfSKVuD6RSlyfSCWr1ieevCZPfDmm4T7Rvrjs7IvLzr647OyLy86+uOzsy9uy4zFN4Mm0MJRprdj2/Y4dOwYhRIc3jsi+X1RUVFOVrpbi4+O5DyC3+BtB3nAdIW+4jpA3XEfIE6fTGbhpBWxKREREREREREREREREpMVpp50GANi/fz8aGho6jNm7d2+rWJn3q62txaFDhzr9fkRERERE1DEmbxEREREREREREREREdnc6NGjERERgZqaGuTm5rZ7vr6+Hlu3bgUAnH322V7fb+DAgUhOTgYAfPHFFx3GmI/LvB8REREREXWMyVshIioqCosWLeqwLDGRr7g+kUpcn0glrk+kEtcnsjuuw/bFZWdfXHb2xWVnX1x29sVlZ19cdsErLi4OF1xwAQDghRdeaPf8m2++iYqKCiQlJeG8887z+n4OhwOXXXaZ2/fbtGkTvvnmG0RERGDGjBk+zSvXI/KE6wd5w3WEvOE6Qt5wHSFPrFg/HEIIEbCpERERERERERERERERkRZffPEFJk+eDIfDgVWrVuHqq68GAOzcuRM/+9nPcPjwYaxYsQJ33XVX02ueeOIJPPHEE8jIyMDrr7/e6v0KCwsxbNgw1NXV4ZFHHsHvf/97OBwO7Nu3Dz/72c/w7bffYsGCBXj66acD+jmJiIiIiLoSVt4iIiIiIiIiIiIiIiLqAiZOnIilS5fC5XLhmmuuwdChQzFy5EiMGTMGhw8fxsUXX4w77rij1WuOHTuGffv2oaSkpN37paamYuXKlXA6nbjrrrswYMAAjBkzBqeddhq+/fZbjB07Fo8++migPh4RERERUZfE5C0iIiIiIiIiIiIiIqIu4g9/+APWrl2LqVOnoqysDHv27MGIESPwxBNP4N1330VYWJhP73fddddh48aNuOSSS1BdXY38/HwMGTIEixcvxueff45u3bpp+iRERERERKGBbROJiIiIiIiIiIiIiIiIiIiIiIgswMpbREREREREREREREREREREREREFmDylkXeeecd3HTTTRg7dixSUlIQGRmJnj174pxzzsGTTz6Jurq6dq9xOBxSf3//+9+l52Pw4MFS77lkyZIOX3/w4EHceOONGDBgAKKiojBw4EDcdNNNOHjwoN/fDfnO7uvTp59+6vU1zz77bKe/J5ITLOsTANTV1eHJJ59ERkYG4uPjERERgZSUFFx22WVYv369x9dy/xQc7L4+cf8UXIJpfaqtrcX//d//YezYsejevTt69OiBcePG4emnn4bL5fL4Wu6fQtunn36KZcuW4bLLLkO/fv2a1sHvv//e7WtqamqwevVq/OpXv0J6ejq6deuG6OhonHrqqViwYAH27NnT4esaGxvx73//G//7v/+LMWPGoEePHoiKisKgQYNw3XXXITc316/P4M+2CACLFy/2ui1+8803fs1TIITysjNlZ2dj5syZOOWUUxATE4O0tDQsXboUNTU1fs1PoNh92Qkh8Pnnn+POO+9ERkYGevbsicjISPTt2xeXX345PvnkE7ev5XZn32Vn4nZn3T6zsLAQK1euxPz58zFy5EiEh4fD4XDgwQcf9Pg6bnf2XXYmbnfWLTvTunXrcMEFFyAxMRHdunXDmDFj8NRTT7k91rL7dtcV+LrMvLHrdkjuqVpHtm/fjgceeADnnnsuevXqhYiICPTu3RsXXXQR3n77bU1zT4Ggej/S0l//+tem34Nf/epXCuaWrKBjHXnjjTeQmZmJPn36ICoqCv369UNmZiZefPFFhXNOgaJyHamsrMQf//hHjB49Gt27d0dkZCQGDhyIa6+9ttNjXQqszh4fuqNlvCrIEhMnThQARFRUlEhNTRU/+clPRL9+/QQAAUCMHTtWHD16tN1r3P2lpaU1vfabb76Rno+f//znbt9z9OjRTe/573//u91rv/76a5GYmCgAiPj4eDFmzBgRHx8vAIikpCSxa9euzn5NJMnu69Mnn3wiAIi4uDi3r3/nnXdUfFUkIVjWp5MnT4oJEyY0vXbw4MFizJgxomfPnk2PrVixosPXcv8UPOy+PnH/FFyCZX2qqKgQZ599tgAgHA6HSEtLEyNHjhRhYWECgLjkkktEfX19h6/l/onM5d3278CBA25fc9999zXFRUdHixEjRoi0tDQREREhAIjY2Fixdu3adq/761//2vS68PDwpnU1Jiam6bHnnnvO58/gz7YohBCLFi0SAMSAAQPcbpf79u3zeX4CJZSXnRBCrFq1qmk/169fPzF69OimzzFu3Dhx8uRJn+cnUOy+7D766KOm93Q6neL0008Xo0ePFt27d296/L777uvwtdzu7LvshOB2Z/U+89Zbb+3wMyxdutTj67jd2XfZCcHtzuplJ4QQy5Yta3rvIUOGiLPOOks4nU4BQMyYMUM0Nja2e43dtzu782eZeWLn7ZA6pmod2bNnT6v9W2pqqhg7dqxISEhoeuz666/3eZ0j66nej7R05MiRpnNxAMS8efMUzjkFiup1pKamRsyYMaPVe44bN04MGDBAOJ1OMXbsWE2fhHRRuY4cPnxYnH766U3H8kOHDhUjR45sOpYPCwsTr776qsZPQyp15vjQHV3jVSZvWeSll14Sn3zyiairq2v1eHZ2tujfv78AIH79619Lv98f/vAHAUCMHz9e2TyuXLlSABApKSmioaGh1XMNDQ1NFzwvv/zyphXwxIkTYtasWQKAOOusszhIDhC7r09mcsS5556rbHrkv2BZn5YuXSoAiFNOOUXk5OQ0PV5XVycWL17cNEDavXt3q9dx/xRc7L4+cf8UXIJlffrFL34hAIi+ffuKHTt2ND1eWFgozjzzTAFA/PGPf2z3Ou6fSAghzjnnHHHDDTeIp59+Wnz55ZdSF9X+8Ic/iJ/+9KfinXfeETU1NU2Pl5SUiOnTpwsAonv37qK4uLjV61auXCnGjBkjXn75ZXHixImmx48fPy5uuOGGpn3fzp07ffoM/m6L5kW1RYsW+TS9YBHKy66wsFBERUUJAOKRRx4RLpdLCCFEUVGROOOMMwQA8Zvf/ManeQkkuy+7Dz/8UJx66qni6aefFuXl5U2P19bWioULFzZ9no4urnO7s++y43Zn/T5z6dKl4pJLLhF//OMfxQcffCAuv/xyn5K3uN3Zb9lxu7N+2W3atEk4HA7hdDpbXRDbsWOH6NOnjwAgHn300Xavs/t2Z2f+LjN37L4dUnsq15Hdu3eLlJQUsWLFCnHo0KGmxxsbG8VTTz0lHA6HACCeeuop5Z+D9FG9H2nr2muvFU6nU1x88cVM3rIpHevI1VdfLQCIKVOmtLup98iRIx0WNaHgpXodmTdvngAgzjjjjFY3W584cULceOONAjBu+D9+/LjSz0F6+Ht86I7O8SqTt4LQG2+80XRBUIbL5RKDBw9WPiidMmWKACDuuOMOt/OYlJQkKioqWj1XUVEhkpKSBACxevVqZfND/rHD+sTkCPsI5PqUkZEhAIj/9//+X4fPjxo1SgAQTz/9dIfzyP1T8LPD+sT9k30Ean0qLS1tuqPi9ddfb/d8dna2ACB69OjR6iJGy3nk/olakrmoVlpa6va5iooK0bt3bwFAPPbYY62eKy8vbzp4bKu+vl6kp6cLAOK3v/2tfzPfAU/bYle7qBZKy+7Xv/61ACAuvPDCds998cUXAoCIiIgQJSUlyuZHJ7stu+PHj7ut6CiEEBdddJEAjDtJ2+J215qdlh23u9aCYZ95/fXXh0TyVluhtOy43bVmxbIzE8ZuvPHGds+98sorTcdTbRPRu9p2Zyf+LjN3utp2SGrXkerqao+VLG6++WYBGDfGkX2o3o+09OGHHwoAYsGCBU2/FUzesh/V68gHH3wgAIhhw4aJqqoq1bNLFlC9jiQnJwsAYs2aNe2eq6+vF7169RIAxLp16zo97xR4sseH7ugcrzpBQWfYsGEAgKqqKqn4jRs3oqioCBEREZg9e7aSedi3bx82btwIAJg7d26751evXg0AuPLKK9GjR49Wz/Xo0QNXXHEFAODNN99UMj/kPzusT2QfgVyfqqurAQBDhgzp8PmhQ4cCABoaGlo9zv2TfdhhfSL7CNT6tHnzZjQ2NsLpdOKyyy5r93xGRgb69euHyspKZGVltXqO+yfyV1JSktvnevTogYyMDADAd9991+q5hIQEOByODl8XHh6OqVOndvi6zvB1W+zqusKyE0Lg7bffBgDMmzev3evOOeccDBs2DPX19Xj33XeVzY/VgmnZxcXFITw83O3z06ZN8/k9u7KusOy43bUXbPtMaq0rLDtud+0FetlVVFTgo48+AtDxMrjiiisQFxeHsrIyfPLJJ9LvS/qoXmahuh12ZarXkejoaMTGxrp9/sILLwTA33w70bnvr6mpwYIFC9C7d288/PDDSuaXAk/HOvLEE08AAO677z7ExMQom1eyho51xNP1pPDwcAwaNAgAryeFIt3jVSZvBaHs7GwAwJgxY6TiV61aBQDIzMxEr169lMzDK6+8AiEERowYgZEjR7Z7PicnBwAwceLEDl9vPr5582Yl80P+s8P6ZNq/fz9uuOEGnH/++bj00kuxcOFC7NixQ8k8kBqBXJ/OOussAMCmTZvaPVdbW4tt27YBAMaNG9fqOe6f7MMO65OJ+6fgF6j16ejRowCAU045BZGRkR3G9OvXD0Dz/sjE/RPpUlNTAwA+n3Dy93WeyGyLn3zyCa644gpMnToVP//5z/HII4+gpKRE2TzYiR2W3f79+1FcXAyA+6+WgmnZybwnt7tmdlh23O46FkzLTga3u2Z2WHbc7joWyGW3fft21NXVITo6usOxZERERNMxu7tlwO0usFQss5a4HXY9qtcRb6z6zSf/6VxHHnzwQezZswePPvooevbsqWJ2yQKq15Hq6mp8/PHHcDgcuPjii/Hpp59i3rx5OP/883H55ZfjiSeeQGVlpfLPQfro2I94up5UXl6Ob775BuHh4Rg1apT/M062pHu86v72PwqoxsZGFBcXY82aNbjnnnvQrVs3LFu2zOvramtrm6ozqKxoZF7Q7Og96+rqsH//fgDuK5iYjxcVFaG+vh4RERHK5o28s9P61FJhYSEKCwub/v3ee+9h+fLl+M1vfoMnn3wSYWFhyuaJ5Fm1Pt1zzz14++238eijjyIpKQlXXXUVEhMT8e233+K+++5DUVER5syZ03QXKMD9kx3YaX1qifun4GTF+hQfHw8AKC0tRV1dXYcJXAcPHgQAfPvtt02Pcf9Euhw+fBifffYZAPcHjB2pqanBmjVrfH5dR3zdFjds2NDq32+99RYWL16Mp59+GjfccEOn5sVO7LLsdu/eDQCIiopC3759O3wfc/9lxnZ1wbDsTEKIpt80T+/J7c5gl2XH7a69YFp2srjdGeyy7LjdtRfoZWd+rwMHDnRbtXDIkCH4+OOP3S4DbneBpWKZdfR+3A67DtXriDdvvPEGgMD/5pP/dK0ju3btwqOPPorJkyfjuuuuUzKvZA3V68jOnTvR0NCAfv36YcWKFVi+fHmr51evXo1HH30U77//PhNzbELHfmTx4sXIzMzEnXfeifDwcEyfPh3du3fHjh07cOedd+LkyZO47777MGDAAGWfg+xB93iVlbcs9sQTT8DhcCA8PBwDBgzAb37zG5x//vnIycnB+PHjvb5+7dq1OHbsGOLj43HppZcqmacvv/wSu3btgtPpxDXXXNPu+ePHj8PlcgEwSmR3xHzc5XKhoqJCyXyRd3ZcnwDjTphf/OIX+Pjjj3Hw4EHU1tZi165duO222+BwOPCXv/wFd999t5L5IXlWr09paWn44osvMG3aNPz+979H//79ERsbi9GjRyMnJwdPPfUU/v73v7d6DfdPwcuO6xPA/VOwsnJ9+slPfgKHw4HGxsYOy95u2bKlKXnLrNIFcP9E+tx+++2ora3F6aefjpkzZ0q/7o9//CNKSkqQmJjYYYlnGb5uiykpKbj33nuxdetWlJWVoaqqCl988QUuuugiVFdX45e//CXWrl3r17zYkV2Wnbkv69mzp9v2SOb+q+V+ryuzctm1tXLlSmzfvh2RkZG47bbb2j3P7a41uyw7bnftBdOy84bbXWt2WXbc7toL9LIzv1d3x0stn2u7DLjdWaMzy8zT+3E77DpUryOe/Oc//8E777wDALjzzjs79V4UODrWESEEbrrpJrhcLjz99NOdn0mylOp1xKyYc+TIESxfvhyXXnopvvnmG9TW1mLLli0YM2YMDh06hJkzZ+LEiRMKPgHppmM/MnXqVHz44Yc466yz8Mtf/hLJycno3r07Jk2ahOLiYqxatQpLly7t/MyT7egerzJ5y2L9+vXDxIkTMX78ePTp0weAUd75tddeQ2Njo9fXmxWNrrjiCkRHRyuZJ/M9p06d2tT2pyWz9CwAt+2CoqKimv7f7AtL+tlxfQKAs88+Gy+++CKmTp2Kvn37IjIyEsOGDcPjjz+Oxx9/HIBxgall1RvSLxjWp/379+Pw4cMQQqBv374YNWoUunfvjrKyMrz00kv473//2yqe+6fgZcf1CeD+KVhZuT4lJyfjsssuAwDcdtttrUrffvfdd63u5m65j+H+iXR45pln8OqrryIsLAx/+9vf3N5d1tb777/fdGfhs88+63f7AF+3xZtuugkPPfQQfvKTnyAxMRExMTE455xz8P777+Oyyy6DEAK/+93vIITwa37sxE7Lztx/udt3Ac37r1DYd1m97FrKzc3FrbfeCsBoCTJ06NB2Mdzumtlp2XG7ay2Ylp0MbnfN7LTsuN21ZsWy68wy4HZnDdXbDbfDridQy3T//v249tprAQC//vWvMWXKFL/fiwJLxzrywgsvYOPGjbjtttuQnp7e+ZkkS6leR06ePAkAqK+vx5AhQ/DWW2/hjDPOQGRkJMaNG4f3338fsbGx2L9/P1566SUFn4B00/VbU1hYiCNHjsDhcGDQoEEYMWIEYmJiUFRUhL/+9a8oKirq1HyTPeke27BtosWuuOIKXHHFFU3/3rx5M2666SY8/PDDKC8vxzPPPOP2tWVlZVi3bh0AKCv72dDQgNdee83je7a8yFlXV9dhTG1tbdP/s7944NhxffLmlltuwZ/+9Cd8//33WLNmTdMJbtLP6vXplVdewdy5c9GnTx98+umnOPfccwEY+52lS5fiwQcfxJQpU7Bz506kpqYC4P4pmNlxffKG+yfrWL0+PfPMM/j666/x7bffIiMjA4MHD0ZkZCT27NmD8PBwXHnllXjjjTfQvXv3ptdw/2R/d911V1P7F1+89NJLmDBhgvL5ee+99/Db3/4WAPCXv/xFehpffvklZs+eDSEEFi5c2Gpb8lVntsWWHA4Hli9fjrfffhsFBQX473//i5EjR/o9X21x2bXny7Iz91/u9l1A8/5L9b6Ly869wsJCXHLJJaipqcE111yD3//+9z69nttdcC87bnfNgmnZdRa3u+Bedtzumlm17HQsA93bXahTvcys3A5Jj0As0/Lyclx00UUoLS3Feeedh8cee8yv9yFrqF5HfvjhB9x9993o378/Fi1apGYmyVK6fmsAI9kzIiKi1fPJycmYPXs2XnzxRWRlZeF///d//ZltCiAdvzXLli3Dvffei2HDhmHHjh0466yzAAAnTpzAbbfdhhdeeAETJ05Efn4+4uPjO/kJyE60j20EBZ2DBw+KqKgo4XQ6RVFRkdu4v/zlLwKAGDx4sHC5XEqm/f777wsAolu3bqKysrLDmNraWuF0OgUAsWnTpg5jvvjiCwFAOJ1OUVdXp2TeyD/Bvj7JmDVrlgAgbrnlFiXzRf4L1PpUV1cn+vTpIwCI119/vcOYCy+8UAAQN954Y9Nj3D/ZS7CvTzK4fwoegf69O3bsmLjvvvvE8OHDRXR0tOjZs6eYMWOG2L59u/jDH/4gAIirrrqqKZ77J/u79tprBQCf/z788EOP72vGHThwQHpePvvsMxETEyMAiIcfflj6dfn5+aJXr15+7e9kyW6LHUlMTBQAxL/+9S+l88RlJ8fdsvvwww8FABEVFeV2v/nQQw8JAGLy5MlK54nLrmPFxcVi6NChAoC4+OKLO/Wbwe3OPSuXHbc7QzAtOyGEuP766wUAsXTp0k69D7c796xcdtzuDFYuu5UrVwoA4vTTT3cbM3/+fAFAzJ0716f31rXdhTrVy8zK7ZD00LldCyFEZWWlOPvsswUAMXbsWFFRUdGZ2SULqF5HbrjhBgFAvPnmm+2eW7RokQAg5s2b16l5psBSvY589NFHTWOk9957r8OYRx99VAAQaWlpfs83BY7qdeTw4cMiOjpaABA5OTntnq+vrxdpaWk+j5cpeHTm2F73eJVtE4OQ2crJ5XJh586dbuPMlj9z5sxx21PTV+Z7XnbZZa2qRbQUGRmJgQMHAgD27t3bYYz5+ODBg9tlLVNgBfv6JMNchxoaGpTMF/kvUOvT7t27cfjwYQDA+eef32HMBRdcAMC4s9PE/ZO9BPv6JIP7p+AR6N+7+Ph4LF26FPn5+aiursbRo0fx7rvvYtSoUU3r0dixY5viuX+yv1WrVkEI4fOfuX9RZdu2bbj00ktRXV2Nu+66CwsXLpR6XVFREaZNm4bS0lLMnj1buiqWr2S3xY7o2qdy2clxt+xOO+00AMZdY4cOHerwteb+y4xVhcuuvfLyckybNg0FBQU499xz8eabb3bqN4PbXcesXnbc7oJr2anG7a5jVi87bnfWLzvze92/f7/b7cPfZcBjdz1ULzMrt0PSQ+d2XVtbi5kzZ2Lz5s1IS0tDVlYWevTo0bkZpoBTvY5s374dgNExITk5udXfn/70JwDAq6++2vQYBT/V68gZZ5zR9P9ma7O2zMcbGxt9mleyhup15Msvv0RNTQ26d++O8ePHt3s+PDwc5513XlMshRbd41UmbwUpc+fibidTUFCA7OxsAMbFRxUqKyvx7rvvAgDmzp3rMfbss88GAHzxxRcdPm8+bsaRtYJ9ffLm66+/BgD079+/0/NFnReI9amystJrjBACQHN/YRP3T/YS7OuTN9w/BRcrfu/aKi8vx6effgoAuOSSS1o9x/0TddauXbuQmZmJiooK3HTTTVixYoXU60pKSnDBBRfg4MGDuOSSS/CPf/wDTqe+Q0Fv22JHSktLceTIEQBdc59q52U3cODAppPaobj/CqZld+LECUyfPh15eXkYN24c1q5d26mWQdzuOhYMy47bXfAsO9W43XUsGJYdtzvrl93o0aMRERGBmpoa5Obmtnu+vr4eW7duBeDbMujq252VVC+zUN8OuyJd23VDQwOuvPJKrF+/HkOGDMGHH36IXr16KZtvChxd68jhw4fb/Z08eRIAUF1d3fQYBT/V60j//v0xYMAAAN5vsO3Xr5+/s00BpHod0Xk9iexP+3hVpjwXBVZhYaEIDw8XAMSePXs6jDHLe44fP17ZdF966SUBQKSkpIiGhgaPsf/85z8FAJGUlNSuFG1FRYVISkoSAMRbb72lbP7IP3ZYnzz597//3VTCtKPylBRYgVqffvjhB+FwOATgvs3dtGnTBADxP//zP60e5/7JPuywPnnC/VNwser3rq1bbrlFABDnn39+u+e4f6KOmPsRb+1sCgsLRb9+/QQAcc0114jGxkap9y8rKxPp6ekCgPjpT38qqqurVcy2x/n0ti12ZOHChQKAiI+PF7W1tRrnUJ1QWnYLFiwQAMSFF17Y7nVmy9eIiAhRXFysdR5VseOyq6mpEVOnThUAxJlnninKyso6/Z7c7toLpmXH7c76ZdeWiraJ3O7aC6Zlx+3O+mV30UUXuW29+MorrzQdT/my/dhxu7MT1cusq22HpH4dcblcTe1m+/btK/bu3at6linAdOz7O8K2ifaleh25/fbbBQAxceLEds9VV1eLlJQUAUA8+OCDnZ53CgyV68i2bds8Xvdp2TbxtttuUzL/FFidPbbXOV5l8pYFvvzyS/HAAw+IgoKCds998MEHYtiwYQKAmD59utv3OPXUUwUA8dRTT3md3ptvvikGDRrU4Y9QS+eff74AIO644w6v79nQ0NA0n5dffrk4efKkEEKIEydOiMsvv1wAEOnp6dIH++S/rrA+XXXVVeLjjz9utb64XC6xevVqkZCQ4HYHSOoF0/qUmZkpAIjk5GTx2WefNT1eW1sr7rvvvqbBU9skB+6fgkdXWJ+4fwoewbQ+/fe//xVvv/22qK+vb3qssrJS3H333QKAiI2NFd98802713H/RB2RuahWUlLStP7OmDGj1brnyYkTJ0RGRoYAIM4++2xRWVkpPV933HGHGDRoULuxnL/bYl5enliwYIHIy8tr9Xh1dbV46KGHhNPpFADEww8/LD2PVguVZSeEEHv37hWRkZECgHjkkUeEy+USQghRVFQkzjjjDAFALFiwQHoerWa3ZdfQ0CD+53/+RwAQQ4cOFYcOHZJ6P2539l12QnC7s3rZdUTmBC+3O/suOyG43QXDsvv888+Fw+EQTqdTvPrqq02P79ixQ/Tp00cAECtWrGj1mq643dmJP8vs8ccfF4MGDRJXXXVVu/fratshqV9H/vd//1cAEL169RL5+fna55/0U72OuMPkLftSvY78//buPKiq8o/j+OcKCYj+BJFwIUDEUmMxgdTQEadyIZcWBtsx0xxHTWsal1zGLW0Zl1KLwnEw08yxdGwasanUFmYsTG9uJIgKIm4ZBGK4nd8fzj0jcq+AXrhA79fMnYHnOd9zv4dzzp3zcL73PIWFhUbz5s3NAi3b/2LLysrM60ZfX1/jzJkztbthcBpnHiPXrl0zi7M6d+5sWK1Ws++ff/4xXn75ZfM6OzMzs3Y3DLWiOuNDV12vUrzlAtu3bzdP6jZt2hgxMTFGZGSk4ePjY7bHxsYaZ8+etRufkZFhVuw5WuZGticgBQcHO1zmxIkT5kB279691dqOffv2mTeuW7ZsaURHRxstW7Y0JBmtWrUyDhw4UK314M40huPJdtx4e3sbUVFRxoMPPmj4+/tXK384V306no4dO2YEBQWZ79u+fXujW7duRosWLcy20aNH210vn0/1Q2M4nvh8qj/q0/G0adMmQ5Lh5eVldO3a1ejWrZvh6elpSDJ8fHyMH374weF6+XzC+PHjDT8/P/NlO359fX3NtqFDh1aIeeWVV8zlYmJijLi4OLuvt956q0LcggULzLjw8HCHcePHj6+Up20Qm5ycXKH9ds/FPXv2mP3+/v5GdHS0ER0dbTRr1sxsf/nll83Bbn30X913NqtXrzav8du3b2888MADxl133WVIMqKjo43S0tI7+wPXooa+79atW2eus1OnTg7XmZiYWCGO867h7jsbzjvX7TvDuH4D4MZt8PDwMKTrhfo3tufl5ZkxnHcNd9/ZcN65dt8ZhmHMnz/fXHdoaKgRGRlp7pPHHnus0hP+G8N519DVdJ/ZCij69u1rd30N+TyEfc46Rmz/25Fk3HPPPQ4/e6r64jnqH2d/jthD8VbD5uxjZMuWLWbxRUBAgBEbG2v+j7ZZs2bGtm3b6mCr4EzOPEZ2795t/g/fYrEYISEhRmRkpOHl5WW+B09mazhuZ3zoqutVd6HORUVF6f3339f333+vAwcOKCsrS5cuXZKfn5969eqlpKQkPf/883J3t7971qxZI0kaOHCg0+bxXrt2ra5du6aIiAhFRUVVKyY8PFxWq1Vz587V1q1btW/fPvn7+yspKUmzZs1SYGCgU3LDrTWG4+ntt9/Wjh07ZLValZeXp5KSEvn4+Ojhhx/W008/reTkZN11111OyQ23Vp+Op+DgYFmtVi1dulRbtmxRdna2Tp8+LV9fX/Xu3VujRo3Sk08+aTeWz6f6oTEcT3w+1R/16XiKiorSmDFj9NNPPyk/P19XrlxRcHCwBg8erDfeeMOc89wePp9QUlKiv/76q1L733//bf5cXFxcoa+8vNz8OTMz0+G6w8LCHMbt37/fYZyj88ae2z0XQ0JCNG/ePGVkZCgrK0t//vmnLl26pLvvvlsJCQkaNWqUBgwYUO08XOG/uu9sXnzxRYWFhWnhwoXKyMjQwYMHFRoaqmeeeUZTpkyRp6dntXOpaw193924zuzsbGVnZ9tdLjg4uMLvnHcNd9/ZcN7ZVxf7TpIuX75sdxvKyspUVlZm/n716lXzZ867hrvvbDjv7KurfSdJ06dPV1RUlJYsWaLdu3fr1KlTioiI0EsvvaTx48fLzc2twvKN4bxr6Gq6z6rSkM9D2OesY+TGz578/Hzl5+fXVsqoY87+HEHj4+xjZMiQIcrMzNSCBQu0Y8cO7d27V/7+/ho2bJimTZumzp0719KWoLY48xjp3r279u/fr0WLFik9PV1Hjx5VQUGB/P39lZCQoHHjxqlfv361uDVwpjsZHzpSW9erFsMwjNuKBAAAAAAAAAAAAAAAAADctiauTgAAAAAAAAAAAAAAAAAA/oso3gIAAAAAAAAAAAAAAAAAF6B4CwAAAAAAAAAAAAAAAABcgOItAAAAAAAAAAAAAAAAAHABircAAAAAAAAAAAAAAAAAwAUo3gIAAAAAAAAAAAAAAAAAF6B4CwAAAAAAAAAAAAAAAABcgOItAAAAAAAAAAAAAAAAAHABircAAAAAAAAAAAAAAAAAwAUo3gIAAAAAAAAAAAAAAAAAF6B4CwBwSzt27JDFYlF8fLyrUzHVx5wAAAAANFz1cYxRH3MCAAAAAACA81G8BQD1WEhIiCwWi9LS0mrtPWbPnq3Zs2fXeSwAAACAhqsuxir1BeMeAAAAAAAA1CaKtwDgP27OnDmaM2eOw/5mzZrpvvvuU1BQUI1jAQAAAKAhYNwDAAAAAAAAV3F3dQIAgPrtwQcfVFZWlqvTAAAAAIBaw7gHAAAAAAAArsKTtwAAAAAAAAAAAAAAAADABSjeAoBG4tSpU1q2bJkGDBigkJAQeXp6ytfXV3379tWaNWsqLT979mxZLBbzd4vFUuF17NgxSdKOHTtksVgUHx9f41jbcrNnz7abc1pamiwWi0aMGGG3f9OmTXrooYfk7e0tPz8/DR48WJmZmVX+Lc6fP6/p06crPDxc3t7eatGihXr27KnU1FRdu3atyngAAAAAzpWXl6exY8eqQ4cO8vDwUOvWrTVo0CBt3brV7vI3jiWKi4s1adIkBQUFycPDQ2FhYZo3b56uXLliN9YwDKWkpCgqKkpeXl4KCAjQs88+q9zcXIdjEMY9AAAAAAAAcBWmTQSARmLlypWaOXOmvLy81K5dO0VEROjMmTP68ccf9eOPPyojI0MfffSRuXxQUJDi4uL0yy+/SJLi4uIqrM/T09Phe91JbHW9++67mjJliiSpbdu2ateunXbu3KnevXtrxowZDuMOHDigAQMGqKCgQE2bNlVYWJjKy8v166+/ateuXfr222+1YcOGCjdhAAAAANSeXbt2aeDAgSoqKpK3t7ciIiJ0+vRppaenKz09XTNnztTcuXPtxhYXF6tXr17Kzs5WeHi43NzcdOTIEc2aNUt5eXlKTU2tFDNq1CitWrVKktShQwe1atVKmzZtUnp6usaNG1ftvBn3AAAAAAAAoC7w5C0AaCTi4+P1ww8/qKSkRDk5Ofrtt990/PhxWa1WdenSRSkpKdq5c6e5/MiRI/Xzzz+bv//8888VXm3atHH4XncSWx179uzRm2++KYvFouXLl6ugoECZmZkqLCzU448/7vDGzoULFzRs2DAVFBTo1Vdf1dmzZ3XgwAHl5ORo//79uv/++7Vx40Z9+OGHd5QfAAAAgOopKytTUlKSioqKlJSUpMLCQmVmZio/P19paWlyc3PTvHnzHD6Ba8WKFfL399fx48e1Z88eHT16VFu2bJGbm5tWrlyprKysCstv3LhRq1atkoeHhzZv3qzc3FxlZmaqoKBAsbGxeuedd6qdO+MeAAAAAAAA1AWKtwCgkejdu7f69esnNze3Cu2RkZFatmyZJGnt2rWuSK3GFi9erKtXryoxMVHjxo0zvy3evHlzpaWlydfX127cqlWrdOTIET3xxBN6//339b///c/s69q1q9atWyeLxaLFixfXyXYAAAAA/3Xr1q1TXl6eAgICtHr1arVo0cLsS05O1pgxYyRJCxcutBvv7u6utWvXql27dmbbkCFDNGzYMEmqVPS1aNEiSdLMmTPNZSSpVatWWr9+vby9vZ2zYU7AuAcAAAAAAAASxVsA0KiUlJQoNTVVycnJ6t+/v/r06aPevXtr6tSpkiSr1eriDKvn22+/lSSNHTu2Up+np6dGjhxpN+6rr76SdH2aFHsiIyMVEhKi3NxcnThxwknZAgAAAHDEdm0/evRou9MMTpw4UZKUkZGhCxcuVOofOHCgAgMDK7XHxsZKknJzc822kpIS7dq1S5L00ksvVYrx9fXV448/XvONqCWMewAAAAAAACBJ7q5OAADgHHv27NHgwYN18uRJh8ucP3++DjO6PUVFRTpz5owkqUuXLnaXcdS+b98+SdKsWbO0YMECu8ucO3dOklRQUGD3JhAAAAAA5zl8+LCk60+EsqdTp05q2rSpLl26pCNHjigyMrJCf8eOHe3G3X333ZKk0tJSsy0nJ0eGYcjPz6/Ck7pudPP6XYVxDwAAAAAAAGwo3gKARuDq1atKSkrSyZMnlZCQoClTpuj++++Xj4+P3NzclJOTo06dOuny5cuuTrVKN9588ff3t7tMQECA3fbi4mJJ0u7du6t8n4sXL95GdgAAAABqwnZ9byu2upnFYpG/v78KCgpUUlJSqd/RNIdNmlx/mLxhGGab7cldN07NeLNb9dUlxj0AAAAAAACwoXgLABqBX3/9VTk5OQoODtZXX30lDw+PCv35+fkuyctisUiqeEPlRvamRWnevLn589mzZ9WmTZtKy9i+oW4vtqioSNnZ2QoLC7udlAEAAAA4ke363tE1vGEYOnv2rKQ7L6yyFXrdWBh1M3sFYneKcQ8AAAAAAADuRBNXJwAAuHPHjh2TJEVHR1cq3JIkq9VaxxldZ7t5YrsZc7OcnJxKbT4+Pua38rOysuzGHTp0yG67bSqW/fv31zhXAAAAAM537733SpIOHjxotz87O1uXLl2Sm5ubwykSqyssLExNmjTRuXPnVFhYaHcZ25SDzsS4BwAAAAAAAHeC4i0AaAS8vLwkSadPn67Ud/nyZS1durTK2NuZTqOq2NDQUEnSb7/9VqnvwoULWr9+vd24Rx99VJKUkpJSqa+8vFyrVq2yG/fkk09Kkj744AOH33oHAAAAUHcGDBggSUpNTdW///5bqf+DDz6QJMXFxTmcIrG6WrRooR49ekiS0tLSKvUXFxdr8+bNNV4v4x4AAAAAAADUJoq3AKAR6Nmzp9zd3fXLL7/o008/NduLi4v13HPP2S3qsrHdaNi5c2eN37eq2H79+snT01OZmZn65JNPzPaioiKNGDFCf/31l9241157TU2aNNGGDRuUkpJi3pC4cOGCRo4cqfPnz9uNGzNmjEJDQ7V9+3Y999xzlb5tX1paqg0bNuj111+v8bYCAAAAqLlnnnlGQUFBOn36tEaMGFFhSsPPPvtMH3/8sSRp6tSpTnk/27X+vHnz9PXXX5vtf//9t55++ulbTqnoCOMeAAAAAAAA1CaKtwCgAZgwYYJat27t8HXu3DlNmjRJkpScnKzg4GDFxMSobdu22rx5s5YsWeJw3cOHD5ckDR48WN27d1d8fLzi4+N16tSpKvOqKtbX11fTp0+XdP0GQ2BgoGJiYtSuXTv99NNPZt/NoqOjNX/+fBmGobFjxyowMFCxsbFq27atvvzyS82aNctuXPPmzfXNN9+oQ4cO+vzzzxUYGKiuXbuqZ8+euu++++Tj46Phw4crIyOjym0DAAAAULWqxiq5ubnasGGDWrZsqS+++EJt2rRRbGysgoKC9MILL+jKlSuaMWOGBg0a5JR8EhMTNXLkSF28eFFDhw5Vx44dFRsbq/bt22vXrl2aPHmyJMnNza3a62TcAwAAAAAAgNrk7uoEAABVKy0tveU3xK9cuaJ3331XgYGBSklJUW5ursrKyvTII49o+vTpCggIcBg7depUXb16VevXr9fBgwdVXl4uSXanNLmd2BkzZqhVq1ZasWKFcnJydPnyZSUmJmrBggX67rvvHK572rRpuvfee/Xee+/pjz/+0MWLF9WnTx/NmTPnln+Lzp07y2q16sMPP9SmTZt06NAh5ebmqm3bturbt68SEhL01FNPVbltAAAAAKpWnbFKjx49ZLVatXDhQqWnp+uPP/6Qt7e3+vfvr4kTJyohIcGpOaWmpiomJkYfffSRDh8+rJKSEg0ZMkRvvfWWtm3bJun6FIvVxbgHAAAAAAAAtcli2J7JDgAAAAAAADRiEyZM0PLly7VkyRLz6cUAAAAAAACAKzFtIgAAAAAAABq90tJSbdy4UZIUFxfn4mwAAAAAAACA6yjeAgAAAAAAQKOxdOlS7d27t0JbQUGBnnrqKZ06dUrdu3dXbGysa5IDAAAAAAAAbsK0iQAAAAAAAGg04uPjtXPnTrVs2VKhoaEqLy9XVlaWrl27ptatW2v79u0KDw93dZoAAAAAAACAJMnd1QkAAAAAAAAAzjJx4kT5+vrq999/V1ZWlgzDUMeOHTVo0CBNnjxZ7du3d3WKAAAAAAAAgIknbwEAAAAAAAAAAAAAAACACzRxdQIAAAAAAAAAAAAAAAAA8F9E8RYAAAAAAAAAAAAAAAAAuADFWwAAAAAAAAAAAAAAAADgAhRvAQAAAAAAAAAAAAAAAIALULwFAAAAAAAAAAAAAAAAAC5A8RYAAAAAAAAAAAAAAAAAuADFWwAAAAAAAAAAAAAAAADgAhRvAQAAAAAAAAAAAAAAAIAL/B+f0UBkubpKvwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "fig, axs = plt.subplots(nrows = 3, ncols=5, figsize=(30, 20))\n", - "for i, (ax, col) in enumerate(zip(axs.flat, feature_names)):\n", + "fig, axs = plt.subplots(nrows = 3, ncols=3, figsize=(30, 20))\n", + "for i, (ax, col) in enumerate(zip(axs.flat, feature_names)): \n", " x = X[:,i]\n", " pf = np.polyfit(x, y, 1)\n", " p = np.poly1d(pf)\n", @@ -149,24 +169,20 @@ " ax.plot(x, y, 'o')\n", " ax.plot(x, p(x),\"r--\")\n", "\n", - " ax.set_title(col + ' vs Prices')\n", + " ax.set_title(col + ' vs Median House Value')\n", " ax.set_xlabel(col)\n", - " ax.set_ylabel('Prices')\n" + " ax.set_ylabel('Median House Value')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "From the diagram above we can tell that some of the most influential features that are correlated with the output price are: \n", - " - RM, the average numbers of rooms in the houses of the neighborhood.\n", - " If RM increases the house price increases too.\n", - " - LSTAT, the percentage of the house-owners in the neighborhood (lower class).\n", - " This variable is negatively correlated with the price. The lower the class the less likely is that the person will be able to afford an expensive house.\n", - " - PTRATIO, the pupil-teacher ratio by town.\n", - " If the pupil-teacher ratio increases then the house price decreases, resulting in a negative correlation between ptratio and house price.\n", - " \n", - "These features are being identified as important also from others and can be found by an online search." + "From the diagram above we can tell that some of the most influential features that are correlated with the output average house value are: \n", + " - MedInc, median income in block group\n", + " If MedInc increases the house value increases too.\n", + " - AveRooms, average number of rooms per household.\n", + " This variable is positively correlated with the house value. The higher the average number of rooms per household the higher the average value of the house. " ] }, { @@ -185,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 90, "metadata": {}, "outputs": [], "source": [ @@ -208,7 +224,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 91, "metadata": {}, "outputs": [], "source": [ @@ -230,14 +246,14 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 92, "metadata": {}, "outputs": [], "source": [ - "class BostonModel(nn.Module):\n", + "class CaliforniaModel(nn.Module):\n", " def __init__(self):\n", " super().__init__()\n", - " self.lin1 = nn.Linear(13, size_hidden1)\n", + " self.lin1 = nn.Linear(8, size_hidden1)\n", " self.relu1 = nn.ReLU()\n", " self.lin2 = nn.Linear(size_hidden1, size_hidden2)\n", " self.relu2 = nn.ReLU()\n", @@ -251,14 +267,14 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 93, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "BostonModel(\n", - " (lin1): Linear(in_features=13, out_features=100, bias=True)\n", + "CaliforniaModel(\n", + " (lin1): Linear(in_features=8, out_features=100, bias=True)\n", " (relu1): ReLU()\n", " (lin2): Linear(in_features=100, out_features=50, bias=True)\n", " (relu2): ReLU()\n", @@ -268,13 +284,13 @@ ")" ] }, - "execution_count": 9, + "execution_count": 93, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "model = BostonModel()\n", + "model = CaliforniaModel()\n", "model.train()\n" ] }, @@ -282,7 +298,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Train Boston Model" + "## Train California Model" ] }, { @@ -294,7 +310,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 94, "metadata": {}, "outputs": [], "source": [ @@ -310,7 +326,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 95, "metadata": {}, "outputs": [], "source": [ @@ -348,7 +364,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 96, "metadata": {}, "outputs": [], "source": [ @@ -366,19 +382,29 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 98, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Loading pre-trained model from: models/boston_model.pt\n" + "Epoch [1]/[200] running accumulative loss across all batches: 15496.155\n", + "Epoch [21]/[200] running accumulative loss across all batches: 448.178\n", + "Epoch [41]/[200] running accumulative loss across all batches: 408.678\n", + "Epoch [61]/[200] running accumulative loss across all batches: 397.588\n", + "Epoch [81]/[200] running accumulative loss across all batches: 341.604\n", + "Epoch [101]/[200] running accumulative loss across all batches: 319.684\n", + "Epoch [121]/[200] running accumulative loss across all batches: 262.656\n", + "Epoch [141]/[200] running accumulative loss across all batches: 200.881\n", + "Epoch [161]/[200] running accumulative loss across all batches: 195.418\n", + "Epoch [181]/[200] running accumulative loss across all batches: 173.983\n", + "Finished training the model. Saving the model to the path: models/california_model.pt\n" ] } ], "source": [ - "SAVED_MODEL_PATH = 'models/boston_model.pt'\n", + "SAVED_MODEL_PATH = 'models/california_model.pt'\n", "train_load_save_model(model, SAVED_MODEL_PATH)" ] }, @@ -391,14 +417,14 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 99, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "model err: 5.0695343\n" + "model err: 0.65797454\n" ] } ], @@ -430,9 +456,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 101, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], "source": [ "ig = IntegratedGradients(model)\n", "ig_nt = NoiseTunnel(ig)\n", @@ -444,7 +478,7 @@ "ig_nt_attr_test = ig_nt.attribute(X_test)\n", "dl_attr_test = dl.attribute(X_test)\n", "gs_attr_test = gs.attribute(X_test, X_train)\n", - "fa_attr_test = fa.attribute(X_test)" + "fa_attr_test = fa.attribute(X_test)\n" ] }, { @@ -458,19 +492,17 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 102, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABYsAAAK7CAYAAACzq9A5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZhldXkv+u8LLRIVJAzBMAgeNYOYwUgkE8ZcJRc4Il41EYNxOBoi52hijIkGE9rmGmOMGjV6OE5R4xAHckS44olDImoUIzgGh4gIAUHFFgRxRN/7x1oVdhdV1VXVtWv38Pk8Tz299xrfvfZvrer67t/+reruAAAAAACwa9tt1gUAAAAAADB7wmIAAAAAAITFAAAAAAAIiwEAAAAAiLAYAAAAAIAIiwEAAAAAiLAYAFhEVZ1cVe+Y0rYvrqr7TGPbK1VVv1xVn6uqb1TVA2ddz0pU1dFV9dlZ18GOpaq6qu6yxPxln59VdVlV3W/Nirt5u++pqseu9XbHbZ9WVS9fYv6jqur909j3elnqNVTV4WMb2LDeda1UVb2qqp4xxe3fcbz2776MZXeY4wYA20JYDABTVlW/VVUXjn+QXl1Vb6+qX5l1XVvT3a/r7l+f0raP6O73TGPbk5YZNJyR5EXdfbvuPnsb9zeV4Gwx3f2+7v7x9drfUqrqPlV15azrYGUWOkfW6/ycle5+Znc/NhEA7uq6+z/Ga//3t3VbVfX0qnrtWtQFALMkLAaAKaqqJyV5fpJnJjkwyR2T/M8kJ86yrq3ZxYKTw5JcPOsikh33uO+oda+FXfm174i8X9Pj2ALAzkFYDABTUlW3z9Br9X909//u7hu7+3vdfW53/9G4zK2r6vlVddX48/yquvU47z5VdWVV/XFVfWXslfzAqjq+qv69qr5WVadN7O/pVXVWVb2xqm6oqo9U1c9MzH9qVX1+nPepqvp/JuY9qqr+par+uqo2J3n6/K8xj73vHjcO2XBdVb24qmqct3tVPbeqvlpVX6iqxy/VW2+yB+5Y95uq6u/G2i6uqiPnLfsnY83XVtUrq2rPibrfP2/bXVV3qapTkpyc5I/HXt3nLlDH55P8lyTnjsvcuqpuX1WvGI/3F6vqGXNfUa6qO1fVP1XV5vG1vq6q9hnnvSbDhwFz2/rjhXrbLvDaz6qq11bV9UkeVVW7TbxXm8djs+8ix3GL7Y/b/qOq+kRV3Ti+jgNr6M1+Q1W9q6p+eFx2rkflKWPbu7qqnjyxreW0zadU1ZeS/H2Styc5aHzt36iqg6rqXlX1wbG9XF1VL6qqPZbTpsb5v1NVn55osz83Tj+oqv6hqq4Z29vvTaxzrxp68l9fVV+uquctcux+uKr+v3Eb146PD5mYv+/Y1q4a55+9yGt/5UStl9RwXp5TVQeN06uG8+orY02frKq7j/OOH1/XDWNbe/ICpc4/P6+rqkur6pfG6VeM237kxPJbDOFQiwxJUIucI4u00QWvK/O2t5K2u+Txn7fskteXsT2cMx77S6rqdybWXegcm+wB+t7x3+vGY/CLE+s+Z6ztC1V13Lzj+4yq+sDccauq/Wq4HlxfVR+uqsPHZRd9/xd4nY+um9v7pVX1uxPz5trdH9bNvw8ePTF/v/EYXF9V/5rkzgvtY5H9ruqaN86/rIZz4RNJbqyqDeO0J9dwHfr62Hb2nFjn/lX1sbEtf6Cqfnpi3j3GNnZDVb0xyZ5ZRFVdXlX3HB+fPLaJI8bnj6mbz9lF22XN61leVXeqqvfWzdfLF9ctewufXFX/MR6Pp43rHZvktCQPHdvEx8fpjxrfyxvGdnTyct8XAJgVYTEATM8vZvhD9y1LLPO0JL+Q5GeT/EySeyX504n5dxi3cXCS05O8LMnDk9wzydFJ/qyq7jSx/IlJ3pxk3ySvT3J2Vd1qnPf5cZ3bJ9mU5LVV9aMT6x6V5NIMPaD/fJF675/k55P8dJLfTPJ/j9N/J8lx4+v4uSQrHfv3AUnekGSfJOckedG8+SeP+7pzkh/LlsdoQd390iSvS/Ls8WvGJyywzJ2T/EeSE8ZlvpPkVUluSnKXJPdI8utJ5oK3SvIXSQ5K8pNJDk3y9HFbvz1vW89e5ms/MclZ42t/XZInZDh+vzru59okL17mtpLkwUmOyXCcTsgQ4p6W5IAM//f7vXnL/1qSu46v8yl18zAay2mb+2bomf2IDO//VeNrv113X5Xk+0n+IMn+Gc6H+yb57/P2v2CbqqrfyHBsH5Fk7wxtZHNV7Zbk3CQfz3Be3DfJE6tqri2+IMkLunvvDO3lTYscp90yBL2HZQj5v5Ut291rktwmyRFJfiTJXy/y2k+pqv8rQ7v4zSQ/muTyDO05GY7rvTO8H7cfl9k8zntFkt/t7r2S3D3JPy1SazKcn59Isl+Gc/sN43G7S4Zrwouq6nZLrH8LyzlHRktdVyatpO1u7fhP2tr15Q1Jrhz3+ZAkzxzfk8n6J8+xSfce/91nPAYfHJ8fleSzGdrus5O8ourmDzKSnJTktzO0wTsn+eD4evZN8ukkG8fllnr/5/tKhvNh7ySPTvLXNX5AMrrDuI2DkzwmyYtr/PAnw3H+dob299/Gn+V6VVZxzZvwsCT/NcMxvGmc9ptJjk1ypwzn9qOSIQxO8rdJfjdDW35JknNq+HBqjyRnZzj39s3Q5h68RN3nJ7nP+PhXM/z+uvfE8/PHxytpl69P8q9jbU/P8B7P9ytJfjzDtef0qvrJ7v4/Gb5B9MaxHf1MVd02yQuTHDee47+U5GNLvB4A2C4IiwFgevZL8tWJP54XcnKSM7r7K919TYYQd/KP0+8l+fPu/l6GQGT/DEHYDd19cZJPZQjy5lzU3WeNyz8vQ9D8C0nS3W/u7qu6+wfd/cYkn8sQAM65qrv/prtv6u5vLVLvs7r7uu7+jyT/nCG8SYZg4AXdfWV3X5vkWVs5NvO9v7vPG8eNfM2815QMYwpf0d1fyxBkP2yF21+WqjowyfFJnjj2BP9KhpDwpCTp7ku6+53d/Z3x/XpehgBiW3ywu88e35dvJXlckqeNx/I7GQKLh9Tyv+L9N9395e7+YpL3JflQd3+0u7+d4YOLe8xbftP4Wj+ZIeyaO7Zba5s/SLJxPBYLtpfuvqi7Lxjb1GUZgqH5x2uxNvXYDCHmh3twSXdfniEgPaC7z+ju73b3pRk+RDlpXO97Se5SVft39ze6+4JFatvc3f/Q3d/s7hsytKtfTZLxQ5Tjkjyuu68dvxFw/sTq81/7yUn+trs/Mr5nf5LkF8fepd9LsleSn0hS3f3p7r56ota7VdXe434+slCtoy909yvHc+SNGUK7M8Ya3pHkuxnCvmlY9Loyz7Lb7lLHfwGLXl+q6tAkv5zkKd397e7+WJKXZ/iQYc78c2w5Lu/ul43H+9UZQtgDJ+a/srs/391fz/CBzOe7+13j9f7Nufk8W+r9n39M3jZus8f29o4MH/BlYltnjO3xvCTfSPLjYy/gByc5fTyX/22seavW6Jr3wvH6/K15064ar9nn5ubz+pQkL+nuD3X397v71Um+k6E9/UKSWyV5/vgaz0ry4SXKP3+ilqMzhNpzzyfD4mW1y6q6Y4bry+njteX9GT68nG9Td3+ruz+e4UOrBXvaj36Q5O5V9UPdfXUPv7cBYLsmLAaA6dmcZP+thHwHZeiFOOfycdp/bqNvvvHO3B/iX56Y/60kk70Jr5h70N0/yM297VJVj5j46u91GXoy7r/Qukv40sTjb07s+6B56y9nW0ttd895x21ye/OP0Vo6LENYcfXEcXpJhp6lqWFIhzeMX9W+Pslrs+UxXI35x+qwJG+Z2P+nM/TQPfAWay5sfvtYqr3M3//ksd1a27xmDKAXVVU/VsPwAl8aj9czc8vjtVibOjRDb/j5Dssw3MV1E8fotNx8fB6ToRfnZ2oYDuD+i9R2m6p6yfhV9uszDEewzxi8HZrka2MwuZD5r32LY9Xd38hw/h/c3f+Uocfsi5N8papeWlV7j4s+OENQd3lVnV8TQyAsYP77mO7e2nu7Vha9rsyz7La7leM/31LXl4MyvFc3TEy7PEPv24WWX67/bJfd/c3x4eTxXdZ5tpX3fwtVdVxVXVDDcBrXZWgbk+fL5t7yw8e58+WAJBtyy3N5OdbimrfQ8V3svD4syR/OO38PzfA+HpTki93dy3wd5yc5evxwZ/cM3yL45fFDmtvn5l68y22Xc23pmxPTVvLattDdNyZ5aIaw+uqqeltV/cQSrwcAtgvCYgCYng9m6DG11JAMV2X4Q3bOHcdpq3Xo3IPx6/qHJLmqqg7L0Pvy8Un26+59kvxbhq8Yz5n8A32lrh73dYs61sjk9iaP0Y0ZhgpIklTVHeatt9LXdEWG92z/7t5n/Nm7u48Y5z9z3OZP9TDMwcOz9DGcX9/uGYKdpWq8IsPXlveZ+Nmzh57C07DYsd1a25xf90LH+swkn0ly1/F4nZYtj9dSrsjC465ekaGX7eTx2au7j0+S7v5cdz8sQ9j1l0nOGr8OPt8fZvgq+VFjbXNfX69xH/vWxNis88x/rVscq3F/+yX54ljTC7v7nknuliHI/qNx+oe7+8Sx1rOz+JAZK7VFu8swfMFilnOOLHhdWWC5lbTdpY7/fEtdX67K8F7tNTHtjhmP/Wip17gt171lWez9n1TDeOD/kOQ5SQ4cr9HnZXnnyzUZhpGYfy4vx7Ze85KVHcMrMnxbZrKN3Ka7/z7D+3zwvOE+Fn0d3X1JhrD2CUne293XZwhyT8nwbZUfTOxzOe3y6gxtafLcWcnvslsch+7+x+4+JkPP9M9k+D0MANs1YTEATMn49eTTM4wr+cCxJ92txt5jc+PZ/n2SP62qA6pq/3H5+TfTWYl7VtWDxl65T8wQAlyQ5LYZ/pC9JhlupJShZ/FaeVOS36+qg8eA7SlruO0k+R9VdUgNNyV6Woav4SfDV4CPqKqfreEGSk+ft96XM9zAblnGr4e/I8lzq2rvGm6MdOeqmvtq814Zvvr99ao6OLcMfebv798z9JL+r+MYr3+a5NZbKeN/JfnzMeDP2DZOXO5rWIU/G9vmERnGSZ07tittm19Osl8NN3acs1eS65N8Y+xRd+oK6np5kidX1T1rcJfxmPxrkhtquKnWD9Vw87O7V9XPJ0lVPbyqDhiDouvGbf1gge3vlaEH6HVju5obY3auHbw9yf+s4UZst6qqey+wjTl/n+TRYzu8dYaA7UPdfVlV/XxVHTW+/zdmGFf2B1W1Rw035bp9D8M7XL9InavxsSQPGt/Xu2Tobb2Y5Zwji11X5ltJ2130+C9g0etLd1+R5ANJ/qKq9qzhZmmPyfKvo9dkOO7Lvk6sxGLv/wKL7pHh2nBNkptquKHery9nH+O3T/53hhuT3qaq7pbkkVtZbW7dbb3mrdTLkjxuPCZVVbcdr497ZfiA9aYkvzeecw/KlkMlLeT8DB+Czg058Z55z5Nltssehrm5MMNx3KOGnv6LjeO9kC8nOXz8QGWuV/aJ44dH38lwHNfqHAeAqREWA8AUdfdzkzwpQ0h4TYYeTo/P0IswSZ6R4Y/TTyT5ZJKPjNNW660ZvvZ6bYbxZR80jv34qSTPzfDH+JeT/FSSf9mG/cz3sgyBwyeSfDRDj7ibMnzVdy28ftz+pRmGJnhGknT3vyc5I8m7MozB/P55670iw5iw11XV2VmeR2QIbj6V4TielaFXWDKM2/tzSb6e5G0ZAppJf5EhYL2uqp48fmDw3zMEn1/MEBZduZX9vyDDOJnvqKobMoRyRy2z9tU4P8klSd6d5Dk9jH+brLBtdvdnMoSml46v/6AkT07yW0luyNBG3rjY+gts780ZxrF9/bj+2Un2HYOx+2cYA/ULSb6a4fjOhdTHJrm4qr6R4Vie1AuPU/v8JD80rn9Bkv8zb/5vZxgj9jMZbjz2xCVqfVeSP8vQM/TqDD2i58ZQ3jvDa782w1fqNyf5q4l9XFbD1/sfl2Hs47Xw1xnGMP5yhrFr59/UbdJyzpEFrysLLLeStru14z9pa9eXhyU5PEMv47dkGE/6XUts7z+NQw78eZJ/GY/BQmMxb4ul3v/JOm7IcPPJN43L/lYWHi93MY/PMBzClzLcsO6VK1h3W655K9LdF2a4YeGLxn1dkvHmd9393SQPGp9/LUOb29r+zs8QaL93kefJytrlyRluxrk5w/XujRmC3uV48/jv5qr6SIa/tZ+UoV1+LcM4yiv5wAwAZqK2HBIKANhRVdXTk9ylux++HdRyXJL/1d2HbXXhrW/rsiSPXW74w/LUMK7nF5Lcqpe+CSO7sO3pujJnLa8vsJSqemOSz3T3Uj3fAWCnomcxALDNxuEAjq+qDeNXlTdm6OEHsE1cX1gv47Ahdx6H4zg2yYm5+ZtAALBLEBYDAGuhMnxd+doMXxP/dIYxbgG2lesL6+UOGcY9/kaSFyY5tbs/OtOKAGCdGYYCAAAAAAA9iwEAAAAASDbMuoC1tv/++/fhhx8+6zIAAAAAALZLF1100Ve7+4D503e6sPjwww/PhRdeOOsyAAAAAAC2S1V1+ULTDUMBAAAAAICwGAAAAAAAYTEAAAAAABEWAwAAAAAQYTEAAAAAABEWAwAAAAAQYTEAAAAAABEWAwAAAAAQYTEAAAAAABEWAwAAAAAQYTEAAAAAABEWAwAAAAAQYTEAAAAAABEWAwAAAAAQYTEAAAAAABEWAwAAAAAQYTEAAAAAABEWAwAAAAAQYTEAAAAAABEWAwAAAAAQYTEAAAAAABEWAwAAAAAQYTEAAAAAABEWAwAAAAAQYTEAAAAAABEWAwAAAAAQYTEAAAAAABEWAwAAAACQZMOsCwAAAACArXnmxZtXvM5pR+w3hUpg5yUsBgAAAGBVrtt45orX2WfTqVOoBFgLhqEAAAAAAEBYDAAAAACAYSgAAAAAWEfvO+GE1a34rFetaR3ALelZDAAAAACAsBgAAAAAAGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAEGExAAAAAAARFgMAAAAAkBmHxVV1bFV9tqouqaqnLrHcg6uqq+rI9awPAAAAAGBXMbOwuKp2T/LiJMcluVuSh1XV3RZYbq8kv5/kQ+tbIQAAAADArmOWPYvvleSS7r60u7+b5A1JTlxguf83yV8m+fZ6FgcAAAAAsCuZZVh8cJIrJp5fOU77T1X1c0kO7e63LbWhqjqlqi6sqguvueaata8UAAAAAGAnt93e4K6qdkvyvCR/uLVlu/ul3X1kdx95wAEHTL84AAAAAICdzCzD4i8mOXTi+SHjtDl7Jbl7kvdU1WVJfiHJOW5yBwAAAACw9mYZFn84yV2r6k5VtUeSk5KcMzezu7/e3ft39+HdfXiSC5I8oLsvnE25AAAAAAA7r5mFxd19U5LHJ/nHJJ9O8qbuvriqzqiqB8yqLgAAAACAXdGGWe68u89Lct68aacvsux91qMmAAAAAIBd0XZ7gzsAAAAAANaPsBgAAAAAAGExAAAAAADCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDJhlkXAAAAAADbk+PfecaK1znvmNOnUAmsLz2LAQAAAAAQFgMAAAAAICwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAMuOwuKqOrarPVtUlVfXUBeY/qao+VVWfqKp3V9Vhs6gTAAAAAGBnN7OwuKp2T/LiJMcluVuSh1XV3eYt9tEkR3b3Tyc5K8mz17dKAAAAAIBdwyx7Ft8rySXdfWl3fzfJG5KcOLlAd/9zd39zfHpBkkPWuUYAAAAAgF3CLMPig5NcMfH8ynHaYh6T5O0LzaiqU6rqwqq68JprrlnDEgEAAAAAdg07xA3uqurhSY5M8lcLze/ul3b3kd195AEHHLC+xQEAAAAA7AQ2zHDfX0xy6MTzQ8ZpW6iq+yV5WpJf7e7vrFNtAAAAAAC7lFn2LP5wkrtW1Z2qao8kJyU5Z3KBqrpHkpckeUB3f2UGNQIAAAAA7BJmFhZ3901JHp/kH5N8Osmbuvviqjqjqh4wLvZXSW6X5M1V9bGqOmeRzQEAAAAAsA1mOQxFuvu8JOfNm3b6xOP7rXtRAAAAAAC7oB3iBncAAAAAAEyXsBgAAAAAAGExAAAAAADCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAIiwGAAAAACDCYgAAAAAAkmyYdQEAAOw8Nm3atKr1Nm7cuMaVAAAAK6VnMQAAAAAAwmIAAAAAAITFAAAAAABEWAwAAAAAQITFAAAAAABEWAwAAAAAQITFAAAAAABEWAwAAAAAQITFAAAAAABEWAwAAAAAQITFAAAAAABEWAwAAAAAQJINsy4A2Pls2rRpxets3LhxCpUAwOLed8IJK17n6HPPnUIlAACwfRAWAwCwQ7tu45nrtq9nXrx5VeuddsR+a1wJAACsPcNQAAAAAAAgLAYAAAAAQFgMAAAAAECExQAAAAAARFgMAAAAAECExQAAAAAARFgMAAAAAECExQAAAAAAJNkw6wIAAGBnd+qmb694nTM37jmFSgAAYHF6FgMAAAAAICwGAAAAAEBYDAAAAABAjFkMAACwZjZt2rTidTZu3DiFSgAAVk7PYgAAAAAAhMUAAAAAAAiLAQAAAACIsBgAAAAAgAiLAQAAAACIsBgAAAAAgAiLAQAAAACIsBgAAAAAgAiLAQAAAACIsBgAAAAAgAiLAQAAAACIsBgAAAAAgCQbZl0AAAAAsOPbtGnTqtbbuHHjGlcCwGrpWQwAAAAAgJ7FAAAs7Ph3nrHidY6aQh0AAMD6EBYDAGyj6zaeueJ1PvmR81a1r/c961UrXue0I/Zb1b4AAIBdi2EoAAAAAAAQFgMAAAAAYBgKAADYLq1mzOgkOe+Y09e4EgAAdhXCYgAAAKbm1E3fXtV6Z27cc40r2X6874QTVrXe0eeeu8aVAMCWhMUAAACwSqu5yelqPfPizStex01OAVgJYxYDAAAAACAsBgAAAABAWAwAAAAAQITFAAAAAABEWAwAAAAAQITFAAAAAABEWAwAAAAAQITFAAAAAABEWAwAAAAAQJINsy4AAABYO5s2bVrxOhs3bpxCJayX6zaeueJ1PvmR81a1r/c961WrWOu2q9rX8e88Y8XrnHfM6avaFwAw0LMYAAAAAABhMQAAAAAAwmIAAAAAACIsBgAAAAAgM77BXVUdm+QFSXZP8vLufta8+bdO8ndJ7plkc5KHdvdl610nLMf2fmOR047Yb1X7AgCAHcVqbvCYuMkjAMyZWVhcVbsneXGSY5JcmeTDVXVOd39qYrHHJLm2u+9SVScl+cskD13/agHY0Z266dsrXufMjXtOoRIAAADYPq0oLK6q3ZLcrruvX4N93yvJJd196bjtNyQ5MclkWHxikqePj89K8qKqqu7uNdg/sAzHv/OMFa9z1BTqYOf0vhNOWPE6R5977hQqWVur6dWkRxMAAACzVlvLXavq9Ukel+T7ST6cZO8kL+juv9qmHVc9JMmx3f3Y8flvJzmqux8/scy/jctcOT7//LjMV+dt65QkpyTJHe94x3tefvnl21LaDmk1Q+9j9SYAACAASURBVCAkqxsGYTVDICTJFWfddsXrXP5Lz17Vvo76wMo/T9jZg5rV9KpMdpyeldv7MCCraf/J6s6B1bT/ZOc/B5it9ezZLay/pZ39dwCz5f+hWzrvmNNXtR5My2p/B6zmHJhF+3cN2pK/hW9pPf8fNIuhcPwtfDN/C69MVV3U3UfOn76cnsV36+7rq+rkJG9P8tQkFyXZprB4LXX3S5O8NEmOPPJIvY4BYDsjdAQAANj+7baMZW5VVbdK8sAk53T395KsRSD7xSSHTjw/ZJy24DJVtSHJ7TPc6A4AAAAAgDW0nLD4JUkuS3LbJO+tqsOSrMWYxR9OctequlNV7ZHkpCTnzFvmnCSPHB8/JMk/Ga8YAAAAAGDtbXUYiu5+YZIXTky6vKp+bVt33N03VdXjk/xjkt2T/G13X1xVZyS5sLvPSfKKJK+pqkuSfC1DoAxwC/tsOnXF6xydla8zrLdyp561unGyAAAAANbLVsPiqrp1kgcnOXze8mds6867+7wk582bdvrE428n+Y1t3c+uYDVBWbK6sGw1QVkiLAMAAFhvq71vwPHvXONCdmGreQ8cf2BWlnODu7cm+XqGm9p9Z7rlwJZWezfdTR9Y3R1IYXuzmnNA+wcAAABWYzlh8SHdfezUKwEAAAAAYGaWc4O7D1TVT029EgAAAAAAZmY5PYt/JcmjquoLGYahqCTd3T891cqANbXascoAAAAA2DUsJyw+bupVAAAAAAAwU1sdhqK7L0+yT5ITxp99xmkAAAAAAOwkthoWV9XvJ3ldkh8Zf15bVU+YdmEAAAAAAKyf5QxD8ZgkR3X3jUlSVX+Z5INJ/maahQEAsDaMW8+ubjXnwPHvnEIhAADbueWExZXk+xPPvz9OAwAAAACSbNy4cdYlwDZbTlj8yiQfqqq3jM8fmOQV0ysJAADYUeyz6dRVrXd0Vr7e0avaEwAAy7XVsLi7n1dV70nyK+OkR3f3R6daFWwjn+axvfEVcAAAAGB7t2hYXFV7d/f1VbVvksvGn7l5+3b316ZfHgAAAAAA62GpnsWvT3L/JBcl6YnpNT7/L1OsCwAAYGbOO+b0WZcAALDuFg2Lu/v+4793Wr9yAAAAAACYhd22tkBVvXs50wAAAAAA2HEtNWbxnkluk2T/qvrhDMNPJMneSQ5eh9oAAFbMTU4BAABWZ6kxi383yROTHJTkIxPTr0/yomkWBQAAAADA+lpqzOIXJHlBVT2hu/9mHWsCAAAAAGCdLdWzeM7Xq+oR8yd2999NoR4AAAAAAGZgOWHxz0883jPJfTMMSyEsBgAAAADYSWw1LO7uJ0w+r6p9krxhahUBAAAAALDudlvFOjcmudNaFwIAAAAAwOxstWdxVZ2bpMenuyf5ySRvmmZRAAAAAACsr+WMWfycicc3Jbm8u6+cUj0AAAAAAMzAVoeh6O7zk3w2ye2T7JshMAYAAAAAYCey1bC4qh6b5F+TPCjJQ5JcUFX/bdqFAQAAAACwfpYzDMUfJblHd29OkqraL8kHkvztNAsDAAAAAGD9bLVncZLNSW6YeH7DOA0AAAAAgJ3Eoj2Lq+pJ48NLknyoqt6apJOcmOQT61AbAAAAAADrZKlhKPYa//38+DPnrdMrBwAAAACAWVg0LO7uTetZCAAAAAAAs7PUMBTP7+4nVtW5GYaf2EJ3P2CqlQEAAAAAsG6WGobiNeO/z1mPQgAAAAAAmJ2lhqG4qKp2T3JKd5+8jjUBAAAAALDOdltqZnd/P8lhVbXHOtUDAAAAAMAMLDUMxZxLk/xLVZ2T5Ma5id39vKlVxU7pzI17zroEAAAAAGARywmLPz/+7JZkr3HaLW54BwAAAADAjms5YfGnuvvNkxOq6jemVA8AAAAAADOw5JjFoz9Z5jQAAAAAAHZQi/Ysrqrjkhyf5OCqeuHErL2T3DTtwgAAAABYvo0bN866BGAHt9QwFFcluTDJA5JcNDH9hiR/MM2iAAAAAABYX4uGxd398SQfr6oDu/vVk/Oq6veTvGDaxQEAAAAAsD6WM2bxSQtMe9Qa1wEAAAAAwAwtNWbxw5L8VpI7VdU5E7P2TrJ52oUBAAAAALB+lhqz+ANJrk6yf5LnTkzvJA+dZlEAAAAAAKyvpcYsvjzJ5Ul+sarukaGX8W8k+UKSf1if8gAAAAAAWA9LDUPxY0keNv58Nckbk1R3/9o61QYAAAAAwDpZahiKzyR5X5L7d/clSVJVf7AuVQEAAAAAsK52W2LegzKMWfzPVfWyqrpvklqfsgAAAAAAWE+LhsXdfXZ3n5TkJ5L8c5InJvmRqjqzqn59vQoEAAAAAGD6lupZnCTp7hu7+/XdfUKSQ5J8NMlTpl4ZAAAAAADrZqkxi2+hu69N8tLxBwAAAGBm9tl06qrWOzorX+/oVe0JYMey1Z7FAAAAAADs/ITFAAAAAAAIiwEAAAAAEBYDAAAAABBhMQAAAAAAERYDAAAAABBhMQAAAAAASTbMugAAAAAAmIYzN+456xJgh6JnMQAAAAAAwmIAAAAAAITFAAAAAABEWAwAAAAAQITFAAAAAABEWAwAAAAAQITFAAAAAABEWAwAAAAAQITFAAAAAAAk2TDrAgAAAAC42XnHnD7rEoBdlJ7FAAAAAAAIiwEAAAAAEBYDAAAAABBhMQAAAAAAcYM7gJ3Oxo0bZ10CAAAAsAPSsxgAAAAAAGExAAAAAADCYgAAAAAAYsxiAAAAYJ7zjjl91iUAMAN6FgMAAAAAICwGAAAAAEBYDAAAAABAhMUAAAAAAERYDAAAAABAhMUAAAAAAERYDAAAAABAhMUAAAAAAERYDAAAAABAhMUAAAAAACTZMOsCAAAAAIDt22lH7LfidU4969tTqIRpEhYDAAAAwA5on02nrnido7Pyddh1GIYCAAAAAABhMQAAAAAAwmIAAAAAACIsBgAAAAAgwmIAAAAAACIsBgAAAAAgwmIAAAAAACIsBgAAAAAgwmIAAAAAACIsBgAAAAAgwmIAAAAAADKjsLiq9q2qd1bV58Z/f3iBZX62qj5YVRdX1Seq6qGzqBUAAAAAYFcwq57FT03y7u6+a5J3j8/n+2aSR3T3EUmOTfL8qtpnHWsEAAAAANhlzCosPjHJq8fHr07ywPkLdPe/d/fnxsdXJflKkgPWrUIAAAAAgF3IrMLiA7v76vHxl5IcuNTCVXWvJHsk+fwi80+pqgur6sJrrrlmbSsFAAAAANgFbJjWhqvqXUnusMCsp00+6e6uql5iOz+a5DVJHtndP1home5+aZKXJsmRRx656LYAAAAAAFjY1MLi7r7fYvOq6stV9aPdffUYBn9lkeX2TvK2JE/r7gumVCoAAAAAwC5vVsNQnJPkkePjRyZ56/wFqmqPJG9J8nfdfdY61gYAAAAAsMuZVVj8rCTHVNXnktxvfJ6qOrKqXj4u85tJ7p3kUVX1sfHnZ2dTLgAAAADAzm1qw1Aspbs3J7nvAtMvTPLY8fFrk7x2nUsDAAAAANglzapnMQAAAAAA2xFhMQAAAAAAwmIAAPj/2bv3+J7r///j9+c2ZifeZowx5lBC2XxbyWFDoU+k9CHCnD7lEyWJfZQQkqJv1EeKj3wvTimHfl/JKR/0GVPR9EGf1QqpsYMxM7Zhx9fvD/P+7uSY7T3b7Xq57OL9er2er+f78Xq+3ntvu+/pOQAAAACExQAAAAAAAAAAERYDAAAAAAAAAERYDAAAAAAAAAAQYTEAAAAAAAAAQITFAAAAAAAAAAARFgMAAAAAAAAARFgMAAAAAAAAABBhMQAAAAAAAABAhMUAAAAAAAAAABEWAwAAAAAAAABEWAwAAAAAAAAAEGExAAAAAAAAAECExQAAAAAAAAAAERYDAAAAAAAAAERYDAAAAAAAAAAQYTEAAAAAAAAAQITFAAAAAAAAAAARFgMAAAAAAAAARFgMAAAAAAAAABBhMQAAAAAAAABAhMUAAAAAAAAAABEWAwAAAAAAAABEWAwAAAAAAAAAEGExAAAAAAAAAECExQAAAAAAAAAAERYDAAAAAAAAAERYDAAAAAAAAAAQYTEAAAAAAAAAQITFAAAAAAAAAAARFgMAAAAAAAAARFgMAAAAAAAAABBhMQAAAAAAAABAhMUAAAAAAAAAABEWAwAAAAAAAABEWAwAAAAAAAAAEGExAAAAAAAAAECExQAAAAAAAAAAERYDAAAAAAAAAERYDAAAAAAAAAAQYTEAAAAAAAAAQITFAAAAAAAAAAARFgMAAAAAAAAARFgMAAAAAAAAABBhMQAAAAAAAABAhMUAAAAAAAAAABEWAwAAAAAAAABEWAwAAAAAAAAAEGExAAAAAAAAAECExQAAAAAAAAAAERYDAAAAAAAAACS5OLoAAAAAAAAAALhsc7fXbvic6d9ML4VKKh9mFgMAAAAAAAAACIsBAAAAAAAAAITFAAAAAAAAAAARFgMAAAAAAAAARFgMAAAAAAAAABBhMQAAAAAAAABAhMUAAAAAAAAAABEWAwAAAAAAAAAkuTi6AAAAAAAAAAD4I6ZOneroEioEZhYDAAAAAAAAAAiLAQAAAAAAAACExQAAAAAAAAAAERYDAAAAAAAAAERYDAAAAAAAAAAQYTEAAAAAAAAAQITFAAAAAAAAAAARFgMAAAAAAAAARFgMAAAAAAAAABBhMQAAAAAAAABAhMUAAAAAAAAAABEWAwAAAAAAAABEWAwAAAAAAAAAEGExAAAAAAAAAECExQAAAAAAAAAAERYDAAAAAAAAAERYDAAAAAAAAAAQYTEAAAAAAAAAQITFAAAAAAAAAAARFgMAAAAAAAAARFgMAAAAAAAAABBhMQAAAAAAAABAhMUAAAAAAAAAABEWAwAAAAAAAABEWAwAAAAAAAAAEGExAAAAAAAAAECExQAAAAAAAAAAERYDAAAAAAAAAERYDAAAAAAAAAAQYTEAAAAAAAAAQITFAAAAAAAAAAARFgMAAAAAAAAARFgMAAAAAAAAABBhMQAAAAAAAABAhMUAAAAAAAAAABEWAwAAAAAAAABEWAwAAAAAAAAAEGExAAAAAAAAAEAOCouNMd7GmG3GmMP5/9a8Stvqxpg4Y8z8sqwRAAAAAAAAACoTR80sfkXSDsuy7pC0I3/7SmZI2lUmVQEAAAAAAABAJeWosPhxScvyHy+T1LukRsaYeyX5SvpnGdUFAAAAAAAAAJWSo8JiX8uyEvMfn9ClQLgQY4yTpDmSwq/VmTHmr8aYfcaYfadOnbq1lQIAAAAAAABAJeBSWh0bY7ZLqlvCoUkFNyzLsowxVgntnpO02bKsOGPMVZ/LsqxFkhZJUnBwcEl9AQAAAAAAAACuotTCYsuyul7pmDEmyRhTz7KsRGNMPUknS2jWTlKIMeY5SZ6Sqhpj0i3Lutr6xgAAAAAAAACAm1BqYfE1fCFpqKRZ+f+uL9rAsqxBlx8bY4ZJCiYoBgAAAAAAAIDS4ag1i2dJ6maMOSypa/62jDHBxpjFDqoJAAAAAAAAACoth8wstizrtKSHSti/T9IzJexfKmlpqRcGAAAAAAAAAJWUo2YWAwAAAAAAAADKEUetWewQ586d08mTJ5Wdne3oUoAy4+HhoQYNGsjJid8NAQAAAAAA4MoqTVh87tw5JSUlqX79+nJzc5MxxtElAaUuLy9P8fHxSk5OVp06dRxdDgAAAAAAAMqxSjPV8OTJk6pfv77c3d0JilFpODk5ydfXV2fPnnV0KQAAAAAAACjnKk1YnJ2dLTc3N0eXAZS5KlWqKCcnx9FlAAAAAAAAoJyrNGGxJGYUo1LidQ8AAAAAAIDrUanCYgAAAAAAAABAyQiLcdN+//13GWNY4gAAAAAAAACoAFwcXYAjpU5dUKr926aPuu62AQEBWrx4sbp27XrNtp07d1ZYWJieeeaZK7bJysrSrFmztHLlSsXFxclms6l169Z66aWX1L179+uuCwAAAAAAAEDlUKnD4oqsb9++io+P1/Lly9WmTRtJ0ldffaVNmzaVGBbn5OTIxYWXAwAAAAAAAFBZsQxFObR06VJ17NhR4eHhqlmzpho3bqwtW7ZIkiZNmqTIyEiNHj1anp6eGj16dLHzt2/frm3btmn9+vVq27atqlatqqpVq+pPf/qT/v73v9vbBQQEaPbs2WrdurU8PDyUk5OjWbNmqWnTpvLy8lLLli21bt06e/vc3FyFh4fLx8dHTZo00aZNm4rV3aRJE3l5ealx48ZauXJlKY0QAAAAAAAAgFuNqaTl1N69ezV06FAlJydr0aJFevrppxUfH6+ZM2fq66+/vuoyFNu3b1fbtm3VoEGDaz7Pp59+qk2bNsnHx0cuLi5q2rSpIiMjVbduXa1du1ZhYWE6cuSI6tWrp48++kgbN27U/v375eHhoT59+tj7ycjI0JgxYxQVFaXmzZsrMTFRKSkpt2w8AAAAAAAAAJQuZhaXU40aNdKIESPk7OysoUOHKjExUUlJSdd1bnJysurWrWvfTklJkc1mU40aNVStWrVCbceMGSN/f3+5ublJkp588kn5+fnJyclJ/fv31x133KHvvvtOkrRmzRqNHTtW/v7+8vb21sSJEwv15eTkpOjoaF24cEH16tVTq1at/sgQAAAAAAAAAChDhMXlVMGw193dXZKUnp5+XefWqlVLiYmJ9m1vb2+lpqbq+++/V2ZmZqG2/v7+hbaXL1+uoKAg2Ww22Ww2RUdHKzk5WZKUkJBQqH2jRo3sjz08PLR69WotXLhQ9erVU8+ePfXzzz9f59UCAAAAAAAAcDTC4tuQMeaqxx966CFFRUUpLi7uhvqKjY3ViBEjNH/+fJ0+fVqpqam6++67ZVmWJKlevXo6fvy4vf2xY8cK9fXwww9r27ZtSkxM1F133aURI0bcyGUBAAAAAAAAcCDC4tuQr6+vjh49esXj3bt3V5cuXdS7d2/t3btXWVlZys7O1p49e67ab0ZGhowxql27tiRpyZIlio6Oth/v16+f5s2bp7i4OJ05c0azZs2yH0tKStL69euVkZEhV1dXeXp6ysmJlxcAAAAAAABwu6jUf+DONn2Uo0u4KS+++KKGDh2qBQsWaPDgwZo3b16xNuvWrdObb76psLAwxcfHy9vbW/fcc4+2bt16xX5btmyp8ePHq127dnJyctKQIUPUoUMH+/ERI0bo0KFDCgwMVPXq1RUeHq6vvvpKkpSXl6e5c+dqyJAhMsYoKChICxYsuPUXDwAAAAAAAKBUmMtLDFQUwcHB1r59+4rtj4mJUYsWLRxQEeB4vP4BAAAAAEBZGzX94k2dt2BqtVtcCYoyxnxvWVZw0f2sEwAAAAAAAAAAICwGAAAAAAAAABAWAwAAAAAAAABEWAwAAAAAAAAAEGExAAAAAAAAAECExQAAAAAAAAAAERYDAAAAAAAAAERYDAAAAAAAAAAQYTH+gN9//13GGOXk5Di6FIcqL+Mwbdo0hYWFObQGAAAAAAAA3L5cHF2AI0X26lWq/Yds2HDdbQMCArR48WJ17dr1mm07d+6ssLAwPfPMM1dsk5WVpVmzZmnlypWKi4uTzWZT69at9dJLL6l79+7XXVd50Lx5c23YsEHu7u568cUXtXPnTmVnZ8vf31/h4eEaNmxYmdZzI/fqssOHD2vKlCnasWOHMjMz5evrqz/96U96+eWX1aBBg1KsFgAAAAAAALg+zCyuoPr27av169dr+fLlOnPmjH777Te9+OKL2rRpU4ntHT0r9kp+/fVX5ebm6s4779TgwYPl7++v2NhYnT59WitWrJCvr6+jS7ymI0eOqG3btvLz89P+/ft17tw5ff3112ratKl2795d4jnl9X4AAAAAAACg4iIsLoeWLl2qjh07Kjw8XDVr1lTjxo21ZcsWSdKkSZMUGRmp0aNHy9PTU6NHjy52/vbt27Vt2zatX79ebdu2VdWqVVW1alX96U9/0t///nd7u4CAAM2ePVutW7eWh4eHcnJyNGvWLDVt2lReXl5q2bKl1q1bZ2+fm5ur8PBw+fj4qEmTJsWC56VLl6pJkyby8vJS48aNtXLlymK1Xbx4UW5ubkpOTpYkzZw5Uy4uLjp37pwkacqUKRo7dqy9/aZNm9SjRw9JUlRUlIYNGyYPDw+5uLioTZs2euSRRyT931IQS5Yskb+/v2rWrKmFCxcqKipKrVu3ls1mKzRWeXl5euONN9SoUSPVqVNHQ4YM0dmzZ+3Hv/jiC7Vq1Uo2m02dO3dWTEyMJGnw4ME6duyYevXqJU9PT7399tv2c1auXKmGDRvKx8dHM2fOtO+fNm2aOnTooLlz59pnEdepU0djx47VU089JUmKiIhQgwYNNHv2bNWtW1fDhw/XmTNn9Oijj6p27dqqWbOmHn30UcXFxdn7/e2339SpUyd5eXmpW7du9jEFAAAAAAAAbgZhcTm1d+9eNW/eXMnJyZowYYKefvppWZalmTNnKiQkRPPnz1d6errmz59f7Nzt27erbdu217W8waeffqpNmzYpNTVVLi4uatq0qSIjI3X27FlNnTpVYWFhSkxMlCR99NFH2rhxo/bv3699+/bps88+s/eTkZGhMWPGaMuWLUpLS9M333yjoKCgYs9XrVo13Xfffdq5c6ckaefOnWrUqJG+/vpr+3anTp3s7Tdv3qyePXtKkh544AE9//zzWrVqlY4dO3bFcTt8+LBWr16tsWPHaubMmdq+fbt+/PFHrVmzxv68S5cu1dKlS/Wvf/1LR48eVXp6uj1MPnTokAYMGKD33ntPp06dUo8ePdSrVy9lZWVpxYoVatiwoTZs2KD09HRNmDDB/ty7d+/WL7/8oh07duj111+3B8zbt29Xnz59rnkvTpw4oZSUFMXGxmrRokXKy8vT8OHDFRsbq2PHjsnNza1Q4D1w4EDde++9Sk5O1pQpU7Rs2bJrPgcAAAAAAABwJYTF5VSjRo00YsQIOTs7a+jQoUpMTFRSUtJ1nZucnKy6devat1NSUmSz2VSjRg1Vq1atUNsxY8bI399fbm5ukqQnn3xSfn5+cnJyUv/+/XXHHXfou+++kyStWbNGY8eOlb+/v7y9vTVx4sRCfTk5OSk6OloXLlxQvXr11KpVqxLr69Spk3bu3KmcnBz98MMPGjNmjHbu3KmLFy8qKipKoaGhkqTz588rKipKnTt3liStXbtWISEhmjFjhho3bqygoCBFRUUV6nvKlCmqVq2aunfvLg8PDw0YMEB16tRR/fr1FRISov3790u6NAt43LhxatKkiTw9PfXWW29p1apVysnJ0erVq9WzZ09169ZNVapUUXh4uC5cuKBvvvnmquM+depUubm5KTAwUIGBgTp48GCJ92P+/Pmy2Wzy9PTUiBEjCo3f9OnT5erqKjc3N9WqVUt9+vSRu7u7vLy8NGnSJHvYfezYMUVFRWnGjBlydXVVaGioepXyGtwAAAAAAACo2AiLy6mC4aK7u7skKT09/brOrVWrln02sCR5e3srNTVV33//vTIzMwu19ff3L7S9fPlyBQUFyWazyWazKTo62r68QUJCQqH2jRo1sj/28PDQ6tWrtXDhQtWrV089e/bUzz//XGJ9nTp1UkREhP7973/rnnvuUbdu3bRz507t2bNHzZo1U61atSRJO3bsUPv27eXq6ipJqlmzpmbNmqUff/xRSUlJCgoKUu/evWVZlr3vgmsYu7m5Fdu+PIYJCQmF6m/UqJFycnKUlJRU7JiTk5P8/f0VHx9f4vVcVvSeXX6uovdj9OjRSk1N1dixY5WdnW3fX7t27UJh/vnz5/Xss8+qUaNGql69ukJDQ5Wamqrc3FwlJCSoZs2a8vDwKHQNAAAAAAAAwM0iLL4NGWOuevyhhx5SVFRUofVtr6ev2NhYjRgxQvPnz9fp06eVmpqqu+++2x7G1qtXT8ePH7e3L7oUxMMPP6xt27YpMTFRd911V6FZswW1b99ev/zyi9atW6dOnTqpZcuWOnbsmDZv3lxsCYrL6xUX5ePjo/DwcCUkJCglJeWa11mUn5+fYmNjC12Li4uLfH19ix2zLEvHjx9X/fr1JV17/It66KGH9L//+7/XbFe03zlz5uiXX37R3r17de7cOe3atcteT7169XTmzBllZGQUugYAAAAAAADgZhEW34Z8fX119OjRKx7v3r27unTpot69e2vv3r3KyspSdna29uzZc9V+MzIyZIxR7dq1JUlLlixRdHS0/Xi/fv00b948xcXF6cyZM5o1a5b9WFJSktavX6+MjAy5urrK09NTTk4lv7zc3d1177336oMPPrCHw+3bt9fChQsLhcVbtmyxr1csSS+//LKio6OVk5OjtLQ0LViwoNBM5BsxYMAAvfvuu/rtt9+Unp6uV199Vf3795eLi4v69eunTZs2aceOHcrOztacOXPk6uqq9u3bS7r2+Bc1bdo0RUZGaty4cfbZycnJyfY1ja8kLS1Nbm5ustlsSklJ0fTp0+3HGjVqpODgYE2dOlVZWVnavXu3NmzYcMPjAAAAAAAAAFzm4ugCHCnkNg3XXnzxRQ0dOlQLFizQ4MGDNW/evGJt1q1bpzfffFNhYWGKj4+Xt7e37rnnHm3duvWK/bZs2VLjx49Xu3bt5OTkpCFDhqhDhw724yNGjNChQ4cUGBio6tWrKzw8XF999ZUkKS8vT3PnztWQIUNkjFFQUJAWLFhwxefq1KmT9u/fr/vvv9++/dlnn9nXK46Ojpanp6caNmxoP+f8+fN64oknlJiYKDc3N7Vt21ZffPHFjQ1evr/85S9KSEhQaGioLl68qIcffljvv/++JKl58+b6+OOP9cILLyg+Pl5BQUHasGGDqlatKkmaOHGiXnjhBU2YMEGTJ09W3759r/pcd955p/bu3aspU6YoMDBQmZmZ8vPzU/fu3Qv9gbyixo4dq4EDB8rHx0d+fn4aP368Pv/8c/vxTz75REOHDpW3JLUZCwAAIABJREFUt7fatWunIUOGKDU19abGAwAAAAAAADAF13utCIKDg619+/YV2x8TE6MWLVo4oCLcjLffflvJycl6++23HV1KhcDrHwAAAAAAlLVR0y/e1HkLpla7diP8IcaY7y3LCi66v1LPLEb5FRAQoF69ejm6DAAAAAAAAKDSICxGudSvXz9HlwAAAAAAAABUKvyBOwAAAAAAAAAAYTEAAAAAAAAAgLAYAAAAAAAAACDCYgAAAAAAAACACIsBAAAAAAAAACIsBgAAAAAAAACIsBhXMXLkSM2YMcO+vWDBAvn6+srT01OnT592YGUAAAAAAAAAbjUXRxfgSG/+WLqB56utal1324CAACUlJcnFxUXOzs5q2bKlhgwZor/+9a9yciq9TD8iIkJhYWGKi4srdmzhwoX2x9nZ2Ro3bpz27NmjwMBASZIxRocPH1azZs1KrT4AAAAAAAAAZYOZxeXIhg0blJaWptjYWL3yyiuaPXu2nn76aUeXJUlKSkrSxYsX1apVK0eXAgAAAAAAAKAUEBaXQzVq1NBjjz2m1atXa9myZYqOjlZmZqbCw8PVsGFD+fr6auTIkbpw4YL9nI0bNyooKEg2m03t27fXDz/8YD8WEBCgt956Sy1btlTNmjU1fPhwXbx48Zp1DBs2TJMnT9ahQ4fUvHlzSZLNZtODDz6o0NBQSVJgYKA8PT21evXqWzwKAAAAAAAAAMoSYXE5dv/996tBgwaKjIzUK6+8okOHDunAgQM6cuSI4uPj9frrr0uS9u/fr7/85S/6xz/+odOnT+vZZ5/VY489pszMTHtfK1eu1NatW/Xrr7/q0KFDeuONN667jjvvvFM//vijJCk1NVVfffWVdu3aJUk6ePCg0tPT1b9//1t45QAAAAAAAADKGmFxOefn56eUlBQtWrRI7777rry9veXl5aVXX31Vq1atkiQtWrRIzz77rNq2bStnZ2cNHTpUrq6u2rNnj72f0aNHy9/fX97e3po0aZI+/fRTR10SAAAAAAAAgHKoUv+Bu9tBfHy8cnJydP78ed177732/ZZlKTc3V5IUGxurZcuW6f3337cfz8rKUkJCgn3b39/f/rhRo0aFjgEAAAAAAAAAM4vLsaioKMXHx6t3795yc3PTjz/+qNTUVKWmpurs2bNKT0+XdCkInjRpkv1Yamqqzp8/rwEDBtj7On78uP3xsWPH5OfnV+bXAwAAAAAAAKD8Iiwuh86dO6eNGzfqqaeeUlhYmAIDAzVixAi99NJLOnnypKRLM463bt0qSRoxYoQWLlyovXv3yrIsZWRkaNOmTUpLS7P3+cEHHyguLk4pKSmaOXNmsTWGL168WOjDsqxr1unr66ujR4/ewisHAAAAAAAA4CiVehmKV1vVcnQJhfTq1UsuLi5ycnJSy5YtNW7cOI0cOVKSNHv2bL3++ut64IEHlJycrPr162vUqFF6+OGHFRwcrI8++kijR4/W4cOH5ebmpo4dOyo0NNTe98CBA9W9e3clJCTo8ccf1+TJk+3H4uPj5ebmVqiWw4cPX7PeadOmaejQobpw4YIWLVqkfv363aKRAAAAAAAAAFDWzPXMIL2dBAcHW/v27Su2PyYmRi1atHBARY4XEBCgxYsXq2vXro4uBQ5SmV//AAAAAADAMUZNv3hT5y2YWu0WV4KijDHfW5YVXHQ/y1AAAAAAAAAAAAiLAQAAAAAAAACVfM3iyuL33393dAkAAAAAAAAAyjlmFgMAAAAAAAAACIsBAAAAAAAAAITFAAAAAAAAAAARFgMAAAAAAAAARFgMAAAAAAAAABBhcaUSEBCg7du3S5LefPNNPfPMMw6uCAAAAAAAAEB54eLoAhxp1PSLpdr/gqnVbqj9qlWr9O677yo6OloeHh5q3Lixhg4dqlGjRskYc0tre/XVV29JP7///rsaN26s7OxsubhcejllZWVp4sSJWr16tVJTU+Xj46PevXvrvffek3QptF68eLG6du1q72fp0qVavHixdu/eXaj/zp076+DBgzpx4oRcXV3t+4cNG6ZPPvlEVatWVdWqVXXvvffq/fff11133XVLrgsAAAAAAACobJhZXE7MmTNHL774ov72t7/pxIkTSkpK0sKFC/X1118rKyurWPvc3FwHVHl93nrrLe3bt0/fffed0tLSFBERof/6r/+64X5+//13RUZGyhijL774otjxCRMmKD09XXFxcapTp46GDRt2C6oHAAAAAAAAKifC4nLg7Nmzeu211/Thhx+qb9++8vLykjFGbdq00cqVK+Xq6qphw4Zp1KhR6tGjhzw8PPSvf/1LmzZtUps2bVS9enX5+/tr2rRphfpdsWKFGjVqpFq1amnmzJmFjk2bNk1hYWH27T179qh9+/ay2WwKDAxURESE/Vjnzp01ZcoUdejQQV5eXurevbuSk5MlSaGhoZIkm80mT09Pffvtt4qKitITTzwhPz8/GWMUEBCgIUOG3PC4LF++XA888ICGDRumZcuWXbGdu7u7Bg4cqOjo6Bt+DgAAAAAAAACXEBaXA99++60yMzP1+OOPX7XdJ598okmTJiktLU0dO3aUh4eHli9frtTUVG3atEkLFizQ559/Lkn66aefNGrUKK1YsUIJCQk6ffq04uLiSuw3Pj5ePXv21OTJk5WSkqJ33nlHffr00alTpwo995IlS3Ty5EllZWXpnXfekSTt2rVLkpSamqr09HS1a9dODzzwgObOnasPP/xQ//nPf2RZ1k2Ny/LlyzVo0CANGjRIW7duVVJSUont0tPTtXLlSrVp0+amngcAAAAAAAAAYXG5kJycLB8fH/uav5Lss3zd3Nzsgezjjz+uDh06yMnJSdWqVVPnzp11zz33yMnJSa1bt9aAAQO0c+dOSdJnn32mRx99VKGhoXJ1ddWMGTPk5FTy7f7444/Vo0cP9ejRQ05OTurWrZuCg4O1efNme5vhw4frzjvvlJubm/r166cDBw5c8XomTpyol19+WStXrlRwcLDq169fbGZw7969ZbPZ7B/PPfdcoeO7d+9WbGys+vXrp3vvvVdNmzbVJ598UqjNO++8I5vNpmbNmik9PV1Lly699mADAAAAAAAAKBFhcTlQq1YtJScnKycnx77vm2++UWpqqmrVqqW8vDxJkr+/f6Hz9u7dqy5duqh27dqqUaOGFi5caF8eIiEhoVB7Dw8P1apVq8Tnj42N1dq1awuFt7t371ZiYqK9Td26de2P3d3dlZ6efsXrcXZ21vPPP6+vv/5aqampmjRpkv7yl78oJibG3ubzzz9Xamqq/ePDDz8s1MeyZcvUvXt3+fj4SJIGDhxYLHAODw9XamqqTpw4oS+++EJNmza9Yk0AAAAAAAAAro6wuBxo166dXF1dtX79+qu2M8YU2h44cKAee+wxHT9+XGfPntXIkSPtSz7Uq1dPx48ft7c9f/68Tp8+XWK//v7+Gjx4cKHwNiMjQ6+88so1ay9aU1Fubm56/vnnVbNmTf3000/X7E+SLly4oDVr1mjnzp2qW7eu6tatq3fffVcHDx7UwYMHr6sPAAAAAAAAADeGsLgcsNlsmjp1qp577jl99tlnSktLU15eng4cOKCMjIwrnpeWliZvb29Vq1ZN3333XaFlGvr27auNGzdq9+7dysrK0muvvWafoVxUWFiYNmzYoK1btyo3N1cXL15URETEFdc4Lqh27dpycnLS0aNH7fvee+89RURE6MKFC8rJydGyZcuUlpZ23WsKf/7553J2dtZPP/2kAwcO6MCBA4qJiVFISIiWL19+XX0AAAAAAAAAuDEu125ScS2YWs3RJdhNmDBB9evX19tvv60hQ4bIw8NDTZo00ezZs9W+ffsS1+P98MMPNX78eI0ePVqdOnVSv379lJqaKklq1aqVPvjgAw0cOFAZGRkaN26cGjRoUOJz+/v7a/369ZowYYIGDBggZ2dn3X///VqwYME163Z3d9ekSZPUoUMHZWdn68svv5S7u7vGjx+vI0eOyBijO++8U//v//0/NWnS5LrGYtmyZRo+fLgaNmxYaP/o0aM1ZswYzZ49+7r6AQAAAAAAAHD9zOVlCyqK4OBga9++fcX2x8TEqEWLFg6oCHA8Xv8AAAAAAKCsjZp+8abOK08TPCsqY8z3lmUFF93PMhQAAAAAAAAAAMJiAAAAAAAAAABhMQAAAAAAAABAhMUAAAAAAAAAABEWAwAAAAAAAABEWAwAAAAAAAAAEGExAAAAAAAAAECExQAAAAAAAAAAERajjC1dulQdO3a84vHOnTtr8eLFN9X3sWPH5Onpqdzc3JstDwAAAAAAAKi0XBxdgCP12PZ6qfa/udtr1902ICBASUlJcnZ2tu87dOiQ/Pz8bvr5IyIiFBYWpri4uJvu42ZNmzZN06dP1549e9S2bdtSeY6AgAAtXrxYXbt2lSQ1bNhQ6enppfJcAAAAAAAAQEXHzOJyZMOGDUpPT7d//JGg+FbIycm5qfMsy9Ly5cvl7e2t5cuX3+KqAAAAAAAAAJQGwuLbwJ49e9S+fXvZbDYFBgYqIiLCfmzJkiVq0aKFvLy81KRJE/3jH/+QJGVkZOiRRx5RQkKCPD095enpqYSEBA0bNkyTJ0+2nx8REaEGDRrYtwMCAjR79my1bt1aHh4eysnJUUJCgvr06aPatWurcePGmjdv3lXrjYyMVGJioubNm6dVq1YpKyur0HHLsjR69GjVqFFDd911l3bs2FFiP7/++qsefPBB1apVSz4+Pho0aJBSU1MlSYMHD9axY8fUq1cveXp66u2339bvv/8uY4w95E5ISNBjjz0mb29vNWvWTB999JG972nTpqlfv34aMmSIvLy81KpVK+3bt+867gYAAAAAAABQMREWl3Px8fHq2bOnJk+erJSUFL3zzjvq06ePTp06JUmqU6eONm7cqHPnzmnJkiV66aWX9O9//1seHh7asmWL/Pz8bnim8qeffqpNmzYpNTVVTk5O6tWrlwIDAxUfH68dO3bovffe09atW694/rJly9SrVy/169dP0qUZ0wXt3btXTZs2VXJysqZPn64///nPSklJKdaPZVmaOHGiEhISFBMTo+PHj2vatGmSpBUrVqhhw4b22dgTJkwodv5TTz2lBg0aKCEhQZ999pleffVVffXVV/bjX3zxhZ566imlpqbqscce0+jRo69rfAAAAAAAAICKiLC4HOndu7dsNptsNpt69+4tSfr444/Vo0cP9ejRQ05OTurWrZuCg4O1efNmSVLPnj3VtGlTGWPUqVMnde/eXZGRkX+ojjFjxsjf319ubm6KiorSqVOn9Nprr6lq1apq0qSJRowYoVWrVpV47vnz57V27VoNHDhQVapUUd++fYstRVGnTh2NHTtWVapUUf/+/dW8eXNt2rSpWF/NmjVTt27d5Orqqtq1a2vcuHHauXPndV3D8ePH9fXXX2v27NmqVq2agoKC9MwzzxSqpWPHjurRo4ecnZ01ePBgHTx48AZGCQAAAAAAAKhYKvUfuCtvPv/8c/sfa7ssNjZWa9euLTQ7Nzs7W126dJEkbdmyRdOnT9ehQ4eUl5en8+fP65577vlDdfj7+xd6/oSEBNlsNvu+3NxchYSElHjuunXr5OLioh49ekiSBg0apK5du+rUqVOqXbu2JKl+/foyxtjPadSokRISEor1lZSUpBdffFGRkZFKS0tTXl6eataseV3XkJCQIG9vb3l5eRV6noJLTdStW9f+2N3dXRcvXlROTo5cXPi0AAAAAAAAQOXDzOJyzt/fX4MHD1Zqaqr9IyMjQ6+88ooyMzPVp08fhYeHKykpSampqerRo4csy5KkQoHsZR4eHjp//rx9+8SJE8XaFDzP399fjRs3LvT8aWlp9pnNRS1btkzp6elq2LCh6tatqyeffFLZ2dn65JNP7G3i4+PtNUrSsWPHSlwi49VXX5UxRv/5z3907tw5ffzxx4XOK+n6LvPz81NKSorS0tIKPU/9+vWveA4AAAAAAABQmREWl3NhYWHasGGDtm7dqtzcXF28eFERERGKi4tTVlaWMjMzVbt2bbm4uGjLli365z//aT/X19dXp0+f1tmzZ+37goKCtHnzZqWkpOjEiRN67733rvr8999/v7y8vDR79mxduHBBubm5io6OVlRUVLG2l9c03rhxow4cOKADBw7o4MGDevnllwst/3Dy5EnNmzdP2dnZWrt2rWJiYuwzkQtKS0uTp6enatSoofj4eP33f/93oeO+vr46evRoiXX7+/urffv2mjhxoi5evKgffvhB//M//6OwsLCrXi8AAAAAAABQWVXq/2+/udtrji7hmvz9/bV+/XpNmDBBAwYMkLOzs+6//34tWLBAXl5emjdvnvr166fMzEz16tVLjz32mP3cu+66SwMGDFCTJk2Um5urn376SYMHD9b27dsVEBCggIAADR8+XHPmzLni8zs7O2vjxo0aP368GjdurMzMTDVv3lxvvPFGsbYrVqxQUFCQunfvXmj/mDFjNGfOHEVHR0uS2rZtq8OHD8vHx0e+vr767LPPVKtWrWL9TZ06VUOGDFGNGjXUrFkzDR48WO+++679+MSJE/XCCy9owoQJmjx5svr27Vvo/E8//VQjR46Un5+fatasqenTpxdb5gMAAAAAAADAJabgf+uvCIKDg62C69JeFhMToxYtWjigIsDxeP0DAAAAAICyNmr6xZs6b8HUare4EhRljPnesqzgovtZhgIAAAAAAAAAULmXoQAAAAAAAABQOpghfPthZjEAAAAAAAAAgLAYAAAAAAAAAEBYDAAAAAAAAAAQYTEAAAAAAAAAQITFAAAAAAAAAAARFgMAAAAAAAAA5KCw2BjjbYzZZow5nP9vzSu0a2iM+acxJsYY85MxJqBsK739jBw5UjNmzLiutsOGDdPkyZNLuSIAAAAAAAAAtwMXBz3vK5J2WJY1yxjzSv72yyW0Wy5ppmVZ24wxnpLybmUR06dPv5XdFTN16tTravfWW29p165d2rJli33fHXfcoWbNmhXbN2PGDD311FNX7GvhwoU3X3ARxhgdPnxYzZo1u2V9AgAAAAAAACifHLUMxeOSluU/Xiapd9EGxpiWklwsy9omSZZlpVuWdb7sSiw7oaGh+uabb5SbmytJSkxMVHZ2tvbv319o35EjRxQaGurIUgEAAAAAAABUUI4Ki30ty0rMf3xCkm8Jbe6UlGqM+V9jzH5jzH8bY5xL6swY81djzD5jzL5Tp06VVs2l5r777lN2drYOHDggSYqMjFSXLl3UvHnzQvuaNm0qPz8//fzzz+rWrZu8vb3VvHlzrVmzxt5X0aUl3n77bdWrV09+fn5avHixjDE6cuSI/fiZM2fUs2dPeXl5qW3btvr1118lyR5KBwYGytPTU6tXr1ZycrIeffRR2Ww2eXt7KyQkRHl5t3SyNwAAAAAAAAAHKbWw2Biz3RgTXcLH4wXbWZZlSbJK6MJFUoikcEn3SWoiaVhJz2VZ1iLLsoItywquXbv2rb2QMlC1alW1bdtWu3btkiTt2rVLISEh6tixY6F9oaGhysjIULdu3TRw4ECdPHlSq1at0nPPPaeffvqpWL9ffvml5s6dq+3bt+vIkSOKiIgo1mbVqlWaOnWqzpw5o2bNmmnSpEn255OkgwcPKj09Xf3799ecOXPUoEEDnTp1SklJSXrzzTdljCmlUQEAAAAAAABQlkotLLYsq6tlWXeX8LFeUpIxpp4k5f97soQu4iQdsCzrqGVZOZI+l/RfpVWvo3Xq1Mke0EZGRiokJEQhISGF9nXq1EkbN25UQECAhg8fLhcXF7Vp00Z9+vTR2rVri/W5Zs0aDR8+XK1atZK7u7umTZtWrM0TTzyh+++/Xy4uLho0aJB9JnNJqlSposTERMXGxqpKlSoKCQkhLAYAAAAAAAAqCEctQ/GFpKH5j4dKWl9CmyhJNmPM5anCD0oqPn22gggNDdXu3buVkpKiU6dO6Y477lD79u31zTffKCUlRdHR0QoNDVVsbKz27t0rm81m/1i5cqVOnDhRrM+EhAT5+/vbtws+vqxu3br2x+7u7kpPT79ijX/729/UrFkzde/eXU2aNNGsWbP+4FUDAAAAAAAAKC9cHPS8syStMcY8LSlWUj9JMsYESxppWdYzlmXlGmPCJe0wl6avfi/pIwfVW+ratWuns2fP6qOPPlKHDh0kSdWrV5efn58++ugj+fn5qXHjxvL391enTp20bdu2a/ZZr149xcXF2bePHz/+h2r08vLSnDlzNGfOHEVHR+vBBx/Ufffdp4ceeugP9QsAAAAAAADA8Rwys9iyrNOWZT1kWdYd+ctVpOTv32dZ1jMF2m2zLKu1ZVn3WJY1zLKsLEfUWxbc3NwUHBysuXPnKiQkxL6/Y8eOmjt3rv0Pzj366KM6dOiQVqxYoezsbGVnZysqKkoxMTHF+uzXr5+WLFmimJgYnT9/XjNmzLihmnx9fXX06FH79saNG3XkyBFZlqUaNWrI2dlZTk6OmpwOAAAAAAAA4FZy1MzicmHq1KmOLqGQTp066dtvv1XHjh3t+0JCQjR//nx7WOzl5aV//vOfGjdunMaNG6e8vDwFBgZq7ty5xfp75JFHNGbMGHXp0kVOTk6aMmWKli9fLldX1+uqZ9q0aRo6dKguXLigRYsWKT4+XqNHj9apU6dUs2ZNPffcc+rSpcutuXgAAAAAAAAADmUsy3J0DbdUcHCwtW/fvmL7Y2Ji1KJFCwdUVH7ExMTo7rvvVmZmplxcKvXvCSodXv8AAAAAAAC4zBjzvWVZwUX3s4ZABbdu3TplZmbqzJkzevnll9WrVy+CYgAAAAAAAADFEBZXcP/4xz9Up04dNW3aVM7OzlqwYIGjSwIAAAAAAABQDjHFtIL78ssvHV0CAAAAAAAAgNtApZpZXNHWZwauB697AAAAAAAAXI9KExZXqVJFFy5ccHQZQJnLzs5mnWoAAAAAAABcU6UJi+vUqaP4+HidP3+emZaoNPLy8pSUlKQaNWo4uhQAAAAAAACUc5VmumH16tUlSQkJCcrOznZwNUDZ8fDwkI+Pj6PLAAAAAAAAQDlXacJi6VJgfDk0BgAAAAAAAAD8n0qzDAUAAAAAAAAA4MoIiwEAAAAAAAAAhMUAAAAAAAAAAMJiAAAAAAAAAIAkY1mWo2u4pYwxpyTFOroO3FI+kpIdXUQlxvg7HvfAsRh/x2L8HY974FiMv2Mx/o7HPXAsxt+xGH/H4x44FuNfuhpZllW76M4KFxaj4jHG7LMsK9jRdVRWjL/jcQ8ci/F3LMbf8bgHjsX4Oxbj73jcA8di/B2L8Xc87oFjMf6OwTIUAAAAAAAAAADCYgAAAAAAAAAAYTFuD4scXUAlx/g7HvfAsRh/x2L8HY974FiMv2Mx/o7HPXAsxt+xGH/H4x44FuPvAKxZDAAAAAAAAABgZjEAAAAAAAAAgLAYAAAAAAAAACDCYjiIMaauMWaVMeZXY8z3xpjNxpg7jTEXjDEHjDE/GWOWG2Oq5LfvbIzZmP94mDHGMsZ0LdBf7/x9fR11Tbc7Y8wT+WNf8CPPGDMqf2xfKNB2vjFmmAPLve0YY9Lz/w242ngaY5YaY34zxhw0xhzK/zxoULSfAtvDjDHz8x83N8ZE5N+7GGMM6zuV4CrvP9FF2k0zxoQX2HYxxpwyxswq0u5RY8z+/Hv2kzHm2bK6lttZ/ufBnALb4caYaQW2/2qM+Tn/4ztjTMf8/c759y20QNt/GmOeLNMLqGCMMbn57x3RxpgNxhhb/v7L71lvFGjrY4zJvvzegz+mwPcwdxXYd4cxZmOB96l/XX7N57/vnyry9bql467g9lfg9f9j/nv5eGOMU/6xgt+D+ubfl8vv95sdW/nt7UrvOwWOjzXGXDTG1Ciwr7Mx5mz+191fjDG7jDGPln31tz9jTK0C7yEnjDHxBbarXuG9KTj/86Rq/nZTY8xRY0x1x11J+VLkdb3WGFP/GuN8Q58HxpiHC5yfnv95cMBc+pnB/n6V37a3MeYHc+nngv8YY3qX9Xjcrgrcl4PGmH8bY9o7uqbbmSnyM2z+vmI/u17t9V3gvPfyP48uf50eXuCcrPzX+gFT5Gc23BjCYpQ5Y4yRtE5ShGVZTS3LulfSREm+kn61LCtI0j2SGkjqd4Vu/iPpqQLbAyQdLL2qKz7LstZZlhV0+UPSh5IiJW2VdFLSi5e/McQfdq3x/JtlWYGSmkvaL+mr6xz7eZLezb+HLSS9f2vKrTiu8f5zLd0kHZL0ZH4/Mpd+obVIUq/8e9ZGUkRp1F4BZUr6szHGp+iB/B/8n5XU0bKsuySNlPSJMaauZVm5kp6TNN8YU8UYM0BSnmVZa8uy+AroQv57x92SUiQ9X+DYb5J6Fth+UtKPZVlcBTdA0u78f2WMqSZpk6RFBd6nXpDUpMA5qwt+zbYs66cyr7piufz6b6VL7/WPSJpaQrvXJW2zLCvQsqyWkl4pyyIroKu970iXPieiJP25yP5Iy7LaWJbVXNIYXfp68FDpl1uxWJZ1usD3/Qv1f99DBlmWlaUi70355+yTtFPS5V+mfyBpkmVZ58q4/PKs4Os6S1L/a4zzDX0eWJa1tUB/+yQNyt8eUvAkY0ygpHckPZ7/c8Fjkt4xxrQuvUuvUC7fl0Bd+lnhLUcXVAEV+9n1Wq/v/ID4CUnHJXWSJMuylhQ4J0FSl/xtvkb/AYTFcIQukrIty1p4eYdlWQd16RP+8naupO8k1b9CH5GS7s8PCjwlNZN0oPRKrlyMMXdKek3SYEl5kk5J2iFpqCPrqkCuazytS96VdEKXfnC9lnqS4gqc/58/UmQFdc33n6sYIOnvko5Jape/z0uSi6TT+X1lWpb1yy2tuOLK0aWg/aUSjr2sS780SZYky7L+LWmZ8n+Asixrr6RvJU2T9Kak0WVQb2W/NxBJAAAHr0lEQVTyrQp//T0vKcYYE5y/3V/SmjKvqgLK/x6mo6Sn9X+/BB8k6VvLsr643M6yrGjLspaWfYWVj2VZJyX9VdLoy78YLKDo19kfyrK2Cq7Q+44xpqkkT0mTVSCsLMqyrAO6FOLzdeAWusJ702WvShphjJkgycWyrE/Lur7bSKQu/Zx6vW7q8+AKwiW9aVnWb5KU/+9bkv52g/1Aqi7pjKOLqIBu5mfXzro0YWGBbvxzAjeAsBiOcLek76/WIH9WTVtJX16hiSVpu6SHJT0u6YsrtMMNyp8p+Ymk8ZZlHStwaLakcGOMs2Mqq3BuZDz/Lemua7aS3tWlWchbjDEvFf1vbJB09fefpgX+C9MBXZrNKsn+ntRV0gZJnyr/mxPLslJ06f0n1hjzqTFm0OX/EoXr8oGkQabAfzHO10rF79O+/P2XTZQ0VtInlmUdKb0SK5f896SHVPzr6ipJTxlj/CXl6tLMDfxxj0v60rKs/9/e/YZaVpVxHP/+SJFxitQxiTGbSYkmIpy6L3UkJGvUsRwKvCesfCEiRoqI/zEmTCnNcQT/4qgxgqilo/WiRJrBP5ij1VQyKmlhUmqiUQx6jdLHF8/asGffe849x/PPe+7v8+bO2XvfwzPn3L32Ws9e69l/Bl6XNEX+nf9+nt87SXuWoVgy9EgXkYj4K/AB4KDGruuAW5RlQS6WtHz00U2eNu3ONNnuPAJ8SlKnFUDd9pOse3O1TQBExL+BH5KJx+YsWCsk7UVO9uhq8sYAzoOmbvpS1t6Scn19FtgMXDrugCbQexm7tsix2Fbg+JK7sCHwgNbebw4rSZp/Ai/PM2PjTvICOk02GDYYlwK7IuKu+sYycNoBfGMsUU2YHj/P5symWW9X3vM24NPAT8m7ro9L2qePMBebvzRKsdxY27cO2B4RM8A9wIlVoj8iTiU790+QszhuHXHcC1ZZtrqFXEbcq6OA/5A3AKx/S8r19xWyLMuDjf2/IpfnTwN3YYPSIvszlJ+zZslI2lpqWd5b29wsQzEzimAXu4h4gCwHcjOZnNwp6SPjjWpB69TutIA7I+Id8rrbqS79fP0k6918bdOx5HjN9dJnq/6uf0uuRruly+P7PQ9ssKoyFKuAtcCWOVabWB96HbuWsozHAfeVMcQOcvKgDYGTxTYOu4CpNvuqmsWHAVOSvtLuTSLiCbK28YHlrrf1SdIXgK/Rfinf5eTycF8oB6Pbz/NzwDPl3zON+sUHAK9VLyLipYi4NSK+Si7zdyJtT53an05awBclvUDO0lgGHF3tjIinSsmQY8hzyLq3iVzmurS27Wlmf09TlDq5kpYCV5DfwUGSjhtBnJNuplx/V5Bt0h6zxUpdxd8B5wA/G314k0fSAeTf8ObStpxLPqthF/D56riIWA+cQrb3NgKSDiVn0L/a3BcR/4qIOyLim2Qd0aOax1jX5mx3JH0W+CTwYDk3pum83LjeT7I+tWubas9rWAd8mEzSXClp33HF+j41U7uR991y/Zz3ePo/D5o69qWsexHxG+BAwDcHB6zHseuXgf2Ap8o5cSQuRTE0ThbbOGwD9pF0WrWhFNo/pHpd6lReQC4z7uQCsm6W9UnS/sBtwLciYvdcx0TEs2TH44RRxjap5vs8lc4k6zlVJVkeAk4u+5eQiYXt5fXaaimOpI+SCc1/DPP/sADN2/40KZ/wvQb4eESsjIiVZEe+JemD5SZLZTXwt2EEPqlKKY+7yYRx5QrgR5KWAUhaTSbLri/7vwfcXc6hM4CrS6kQ61NEvEnO9D6nLKGtuwo4v3xn1r+vA7dHxIrSthxCPkzweeCIxg1zJ2NGpMwUvhG4NiKise/oKjEm6UPk5IYXZ7+L9WKOdqcFbKiuuRGxHFguaUXzd8s1/BKyRIgNRru2aU3pe24EvlPqi94PXDzGWCdGP+dBGz8GLpS0EqD8vIi8llsPJK0iSxO9Pu5YJsl7GLu2gFNr47FPAMf4htVwNAcBZkMXESFpPbBJ0vnAW8ALZO3JuvuADZLWdHivXw4t0MXndLI23w2NFTbNEh+XATtHFdQiMNfneaWkS8jkwOPkE12rWQlnATeVJLKALRHxcNn3JeAaSW+V1+dGxCvDDX9h6aH9qVsPbIuI/9a23U8mNM8GzpN0EzADvEEmNa03V1Fb0RARP5d0MPCYpAB2AydHxMuSPkN+J4eXY3dKeoCcpf/90Yc+ecpn+ieyU/5IbfsuPCNpkFpk/fq6e8jZY+uAjZI2kUu9dwM/qB13kqQja6/PiIjHhhnshKuWge9Nzmy6nUyINU0B10r6PznpZnNEPDm6MCdXo92ZJpca120t23eQScudZD/pVeDMiPj1KOOdcO3apha5HH9rRDxdtm8A/ijpJxHx3OhCnEw9nAfN72eu9/pD6ev+oiTk/gecVx4KafOrrguQY65vR8Tb4wxogdtX0t9rrzcCH6PLsWtJCK+l9kyZiHhD0qPkxCuXSBswNW6Ym5mZmZmZmZmZmdki5DIUZmZmZmZmZmZmZuZksZmZmZmZmZmZmZk5WWxmZmZmZmZmZmZmOFlsZmZmZmZmZmZmZjhZbGZmZmZmZmZmZmY4WWxmZmZmZmZmZmZmOFlsZmZmZmZmZmZmZsC7Oma04nUhbWkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7QAAAPLCAYAAADfarY4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyT0lEQVR4nOzdd5RV5fk/7PvAwAwd6YgUKaIoghQbVWOv0WjEaNRYYsPejRGwl5gYTYxGjWJsicYo/kRFjQJiF0QRlSJNQUUUEKnKfv/gPefLODMwMwzOlrmutVgxuz337mfO5zx7Z5IkSQIAAAAAAAAAUqZaZRcAAAAAAAAAAMURaAMAAAAAAACQSgJtAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEglgTYAAAAAAAAAqSTQBgAAAAAAACCVBNoAAAAAAAAApJJAGwAAAAAAAIBUEmgDAFRhM2fOjEwmE+3atavsUtbpuOOOi0wmE/fee29ll1Jpvv/++7jmmmuic+fOUbNmzchkMjFw4MDKLmuTkMlkIpPJVHYZQAq0a9cuMplMzJw580edtzhDhw6NTCYTQ4cOrZDlbQwVvc4b04Z8lhg4cGBkMpl46aWXKrwu/k959tG9994bmUwmjjvuuI1W16bop7jdKrrmn8rfQQDAGnmVXQAAQFmMGzcuhg8fHmPGjIl58+bF8uXLo0mTJrHDDjvEz3/+8zjyyCOjTp06lV0mFDJz5sy49957o127duX+Eu7yyy+Pa665JmrWrBnbbbdd1K5dO7p27VqxhZZCRawL6bJw4cK4+eabo2HDhnH22WdXdjmQSo8//ni888478fOf/zy6d+9e2eVQgd555514/PHHo3v37vHzn/+8sssBfgKyPzRK8w+OAGBTo4c2APCTsHTp0jjiiCOib9++ceedd8asWbOidevWsf3220eSJPHUU0/FSSedFJ06dYr33nuvssv9yahRo0Z07tw5OnToUNmlrFPLli2jc+fO0aBBg8oupVxmzpwZw4YNK3cP8yRJ4vbbb49MJhPjxo2L8ePHx8svvxy33nprxRZaChu6LmnUuXPn6Ny5c2WXUWkWLlwYw4YNi5tvvrmyS4HUevzxx2PYsGHxzjvvlDhNhw4donPnzlGjRo0frzBKraTPEu+8804MGzYsHn/88copDCiVBg0aROfOnaNly5aVXUoMGzYshg0bVtllAECVooc2AJB6q1atir322ivGjRsXLVq0iOuvvz4OP/zwqFWrVm6ayZMnxy233BJ33313TJ8+vVJ6rv4UtWrVKj788MPKLmO9rr322rj22msru4xKM3/+/Pjqq6+iWbNm0atXr8ouZ5PzUzgHgPR74YUXKrsE1qGqf5aAn7pDDjkkDjnkkMouAwCoJAJtACD1hg0bFuPGjYvmzZvHq6++Wux7zrp06RK33357HH300VGtmofQsGlZtmxZREShH3EAAAAAQFXg214AINUWLVoUt9xyS0RE3HzzzcWG2Wvr27dv7LrrrkWGP/XUU7HPPvtEkyZNIj8/P7bccss47bTTYs6cOcUup127dpHJZGLmzJkxevTo2GOPPaJhw4bRqFGjOOSQQ2Lq1Km5aUeMGBH9+vWL+vXrx2abbRZHHnlkzJ07t8gyX3rppchkMjFw4MBYtWpVDBs2LLbaaqsoKCiIVq1axemnnx5fffVVsfW89tprceGFF0avXr2iWbNmkZ+fH61bt45f//rX8f777xc7z9ChQyOTycTQoUNj/vz5MXjw4GjXrl3UqFEj9+7jmTNnRiaTKXa7ZjKZyGQyERHx9NNPR//+/aNevXrRoEGD2HfffWPChAnFthsRMX369DjyyCOjadOmUbt27ejevXvcfvvtRbZtaR133HGRyWSKPOZ67XVctGhRnH322dGmTZvIz8+Pjh07xpVXXhnffffdOrfNZ599FieccEJsvvnmUVBQENtss0384Q9/WO98xbn33nsjk8kUerf0wIEDY7fddouIiNGjR+e2a0nb/YfWnm7WrFmF5n/ppZcKTfvGG2/EoEGDolWrVlGzZs1o3rx5HH744SXuq0mTJsWQIUNil112iZYtW0bNmjWjZcuWceihh8Yrr7xSZPrSrsvAgQOLrS+rpP259vAZM2bEcccdF61atYq8vLxC2zxJknj44Ydjzz33jMaNG0d+fn60b98+zjzzzPjss8/WuT2Ls/axvra0XQciImbPnh2nnnpqbLnllpGfnx9NmjSJfffdN55++ulip1/fdeC4446LLbfcMiKKHl9rb5Nly5bFQw89FIMGDYrOnTtH3bp1o27dutG9e/e46qqr4ttvvy22/bW34WuvvRb77rtvbLbZZlGnTp3o169f/O9//ytxXZMkiUceeST222+/3HWvTZs2se+++5b4yPuyngOzZs2Kk08+Odq3bx/5+flRr169aN++fRxyyCHx8MMPl1hbcZ577rkYPHhwdOvWLRo1ahQFBQXRoUOHOPXUU2P27NnrnPfNN9+Mo48+Onf9at68eey6665xww03xKJFi3LTrX2N+fbbb+PSSy/NHT8DBw4stO3uv//+GDBgQDRs2DBq1aoVW2+9dVx00UUlHl9l3RZPPvlk7L333tGkSZOoUaNGNG3aNLbffvs444wz4oMPPij1dlv7vJ81a1YcffTR0bx586hbt27ssssu8dxzz+Wmfe+99+IXv/hFNGvWLGrXrh39+/eP1157rcgy13VvyyrpvC9pWcOHD4+IiN/85jeFzpG1r00l3d/Wvia+8cYbsf/++0ejRo2iTp06seuuu5b7UdeffPJJnHnmmbHVVltFrVq1omHDhrHbbrvFo48+WuZlLVy4MO6+++44+OCDo2PHjlGrVq1o0KBB7LTTTnHLLbcUe09cn2+++SYuvPDCaNeuXRQUFMSWW24ZF110UXz77bcl3gciynf8rr0///Of/0T//v2jYcOGhfZHcW22a9cufvOb30RExPDhwwvt27XPqbV9+OGHcfjhh0eTJk2iVq1a0bNnz/j3v/9d7LRr7/t33303Dj744GjSpEnUr18/9thjj3jrrbdy044dOzb22WefaNSoUdSrVy/233//Ep8gMmnSpDjqqKOidevWUbNmzWjYsGF06tQpfvWrX8UzzzxT7DzF+f777+OJJ56I448/Prbddtto0KBB1K5dO7bZZpu48MIL48svv1zvepVle0REfPvtt3HJJZfElltuGQUFBdGuXbs477zzYsmSJaWuuyy++uqr+N3vfhfbbbdd1KlTJ+rVqxc777xz3HnnnbF69eoi05f3XFjfMfjD69L9998fvXr1itq1a0ejRo3i8MMPj48//rjE9Vi6dGlcf/310atXr6hfv37u8/WNN94YK1asKHaeJEnirrvuiu7du0etWrWiWbNmMWjQoJg2bVoZt2LEhAkTIpPJRI8ePYqMu+6663LrP3369ELjsp8tirsel3WdivucvbYXXnghdt9996hfv340bNgwfvazn8X//ve/Ut0TIkq3T7Kfq7J++Llp7et/Rd0nAYD/XwIAkGIPPPBAEhFJ06ZNk1WrVpVrGRdffHESEUlEJFtssUXSs2fPpHbt2klEJJtttlny5ptvFpmnbdu2SUQkf/zjH5Pq1asnzZo1S3r06JHUqVMniYikZcuWybx585I//vGPueV269Ytyc/PTyIi6dy5c7Js2bJCy3zxxReTiEj69++f7L///klEJJ06dUq6d++e5OXlJRGRdOzYMfn888+L1NOhQ4ckIpLGjRsn2223XdKtW7ekQYMGSUQktWrVSl588cUi8wwZMiSJiOS0005L2rRpk1SvXj3Zfvvtk+233z45/vjjkyRJkhkzZiQRkbRt27bI/Nlt9re//S3JZDJJy5YtC22DunXrJh988EGR+SZOnJg0bNgwV1vPnj1z2/PMM8/M/feMGTNKtwOTJDn22GOTiEjuueeeYtfx7LPPTrbZZpskLy8v6d69e9KuXbtc/SeeeGKJ22bw4MFJ69atk+rVqyfdu3dPttpqq9x8P//5z5Pvv/++2PmGDBlSbJ333HNPEhHJsccemxs2ePDgZLvttksiIqlfv37Sp0+f3L/DDjtsvevep0+fpFevXklEJPn5+YXmHz9+fG66P/7xj0kmk0kiImnUqFGyww47JI0bN04iIqlRo0byn//8p8iyf/aznyURkTRs2DDZZpttkh49eiRNmjRJIiKpXr168sADDxSavrTrMmDAgCQiij0uk6Tk/ZkdfvHFFycNGzZM8vPzkx49eiRbb711MnTo0CRJkmTlypXJ4YcfnttPm2++edKtW7fcOd2yZcvko48+Wu92XVt2WT+UtuvAa6+9lju36tSpk/Ts2TPZYostcvX//ve/LzLP+q4DV199dYnHV58+fXLLGTt2bBIRSV5eXrLFFlskvXr1Sjp16pSruUePHsnSpUtL3Ia33nprUqNGjaRx48ZJz549c9evvLy8Yo+TFStWJIccckhu3Vq2bJn07t07adWqVe44/6GyngMzZszIHe+1a9dOunbtmnTv3j1p1KhREhFJt27dirSxLtWrV08ymUzSrFmzpHv37sl2222XO1YaN26cvP/++8XOd/311+fqrl+/ftKzZ8+kQ4cOSY0aNYqcR9lrzC9/+cukR48eSSaTSbbZZptkhx12SPbaa68kSZJk9erVya9+9avctmvfvn3So0ePpGbNmrnr/fTp0zdoW9x666255bdo0SJ3PBQUFCQRkfzpT38q9XbLnveXX3550qRJk9yxna0nLy8veeGFF5KxY8cmderUSRo2bFjoGKpdu3YyadKkIutT0r0ta33nffYeNW/evKRPnz5Js2bNcufr2ufI3XffXeK8Wdlr4hVXXJHUrFkzqVu3btKrV6+kZcuWuTpuuummIrWs657z0ksvFfoc0LVr16R169a55Z133nklb/Ri/POf/0wiIqlZs2bStm3bpHfv3kn79u2TatWqJRGR7L///kXuieta50WLFiU77LBDEhFJtWrVkq5duybbbrttkslkkt69eydHHnlksfeB8hy/SfJ/+/O6665LIiJp3rx50rt376Rp06a52oq79xx22GFJp06dkohImjVrVmjfDh48ODdddh/+4Q9/SOrWrZvUq1cv6dmzZ9K0adNc2//85z+L1JWd77rrrktq1apV5PitV69eMmnSpOTf//53kpeXl7vPZO9pTZs2TT777LNCy3z99deTWrVqJRGRNGjQIOnWrVuy3Xbb5ZZ58MEHr3tnr2XOnDm5fZT9nLf11lvnzuV27doVaX9DtseSJUuSHXfcMYmIJJPJJNttt13SpUuXJJPJJD169EgGDRpU7HGxLsV99sqaNGlS0qpVq9yx3aVLl6RDhw65a+5hhx2WrF69utA85T0X1ncMrn1dyv5t0rZt20KfG1q2bJnMnz+/yLI/+eSTpEuXLrlrYseOHXOfeyMi6du3b7H34FNPPTVXV7t27ZIePXok+fn5ScOGDZNLL720xO1WnO+//z5p0KBBUq1ateTrr78uNG7ffffNtbP2NTFJkmT48OFJRCTHHHPMBq/Tuvb18OHDc/u1SZMmSe/evZPGjRsn1apVS2688cZi7wnl2Sd333130qdPn9z6/vBz07x585Ikqdj7JACwhkAbAEi1008/PYlYEy6Wx5NPPpn7ouT+++/PDV+0aFEuLGnXrl2RL0yyX9DWqFEjuemmm3JfXH399dfJzjvvnPtCq3bt2oVCv9mzZyft27dPIiK57bbbCi0zG2Tl5eUl9evXT/73v//lxs2aNSvp1q1b7su1Hxo+fHiRL3BXrVqV3HXXXUleXl7Svn37EsPX6tWrJ7vssksyZ86c3LhsyFaaQLt27dqFvlhcvHhxLgg94ogjCs3z/fffJ127dk0iItl3332Tr776Kjfu0UcfTfLz83MhTUUG2jVq1Ej69++ffPrpp7lxI0aMSKpXr55ERJHgPTtfXl5e0rVr10K1jB49Ovel8F/+8pdi5ytLoJ0k/7fvBwwYUOp1Xtv6wpmnn346yWQySZMmTYqEdtljpF69esncuXMLjXvkkUeSd999t9Cw1atXJ48//nhSt27dpH79+snixYvLvC4bGmhXr149Oeigg5IFCxbkxmWP2ewXjjvssEMyYcKE3PilS5cmp512WhIRSa9evUqsrTjrC7bScB349ttvkzZt2uTCzLX3y7333ps71keOHFlovg29DmTNnDkz+fe//5188803hYbPmzcvOeyww5KIyP3ooKRteO211ybfffddkiRrfphw1FFHJRGR7LTTTkXmO/vss3NfSj/99NOFxn366adFzsHynAODBw/Ona8/XK8PPvggueOOO0rcHsW54447Cl2DkmTNcXn11VcnEZEMHDiwyDyPP/54bv/cdNNNycqVK3Pjvv322+Tvf/97Mnny5Nyw7DWmevXqyVZbbVVoXHZ/Zr9Er1evXjJq1Kjc+GwwW9w2L8u2WLVqVbLZZpsleXl5yX//+99C065atSp58sknk9GjR69vc+Vkz/saNWokgwYNyh3b33//fe6c7tatW9KuXbvk3HPPTVasWJEkSZIsX748OfDAA3PnxNoqMtD+YZ3rCtrWF2jn5eUlgwYNSpYsWZIkyZrr7S233JIb98477xSar6R7zqeffpo0atQoyWQyyTXXXJMsX748N27cuHG5AO/JJ58ssdYfmjhxYvL//t//K7SsJEmS6dOnJ/37908iIrn33ntLvc7Zz2/t27cvdJxOmjQpadu2be6zwA+3Z3mO3yT5v/1Zs2bN5O9//3supFy1alXuB5El7cN1hWRZ2X1Yo0aNZPDgwbnzbfXq1clFF12URKz5gVX2GlfcfD88fg8++ODctaFhw4ZF7jPZ4PfCCy8stMwDDjggiYjk0ksvzS0v68033yzyY7R1WbhwYXLvvfcWut9m289eF4477rgK2x7nnHNO7txc+4co77zzTtKqVasSj4t1KWn/LVmyJPeD0DPPPDNZtGhRbtz777+fbLvttsV+1ivvubC+YzB7Xcre/9e+X8+bNy/Zfvvtk4hILrrookLL/f7775Ndd901iYhk0KBBhX5gMGfOnKRfv35JRCTnn39+ofmeeOKJJGLNj9XWvi9+8cUXycCBA3PburSBdpIkuR/irX1t+e6775L69evnrjs/DK6PP/74IkF3edeppH09a9as3I9ALrvsstxxt2rVquTiiy/OrWtJgXZZ90mSlHwPybZbkfdJAGANgTYAkGo///nPk4hIzjnnnHLNn/3y86yzzioy7ttvv831APthb4LsF7TF9XJ59tlnc19iFLfc22+/PYmI5KCDDio0PBtkRazp8flDEydOTCLW9FgprvdRSY4++ugkIpJx48YVGp79Ijw/P79IyJJVmkD7jDPOKDLu3XffTSLW9Axa2zPPPJNErOmNuHDhwiLzZWuq6EC7Vq1ahYK6rEMPPbTY7b12HW+//XaR+bIBQ7t27Qr13ElroN2jR48kIpInnnii2PHnnXdeErGmd2BpXXbZZUlEFPli/McItFu0aJELfNb2xRdfJPn5+Un9+vWL3d/ff/990rt37yQikjFjxqx3HbPWF2yl4Tpw5513JhFrenz9sNd3kiS54K9fv36Fhm/odaA0li5dmtSsWTPp1KlTkXHZbXjggQcWGTd//vxcD6i1f/zy6aef5r58Lu1+LM85sPfeeycRkUycOLFUbWyIvn37JhGRfPLJJ4WGZ3unlfbczF5jSrp2rV69OtdLt7jeX5988kmup+sLL7yQG16WbTFv3rwkYs2PSipC9rxv2bJl8u233xYat3Dhwlxvth122KFIT8oPP/wwiVjTs31taQ20mzVrVuz5m71X/TAIKumec+65567zs1H2x3y77757ibWWxbRp05KISPbcc88i44pb57X328svv1xknrWvg2tvz/Iev0my7s8sWRURaHfr1q3IDwhXrlyZtGjRIomIQk9OWXu+4o7fjz76KFd3cfeZ7Geq7bffvtDwzp07JxFRKKDdWFq3bp3Url27yFOSyrM9Fi9enAsdn3rqqSJtPfbYY8UeF+tT0v7LfpY75JBDip1v4sSJSSaTSdq3b1/qttZ1LqzvGMxelyKKfyLDiBEjit3f2eG9e/cu9mlVc+fOTerWrZvUrVu30A90s/edCy64oMg88+bNy51LZQm0r7/++iJB85tvvpm7HrVt27bIdTf7o4Jp06Zt8DqVtK+zP3bcY489iq07e7yWFGiXdZ8kyboD7Yq+TwIAa3iHNgCQat98801ERNSpU6fM8y5ZsiReffXViIg444wzioyvXbt2nHTSSRERMWrUqGKXccIJJxQZ1r1793WO32GHHSIiSnwPXs2aNePEE08sMnz77bePvn37RpIkxdbz4YcfxpAhQ+LQQw+NgQMHRt++faNv374xevToiIiYOHFise3tsccesfnmmxc7rjSKq7Vr165RUFAQixYtigULFuSGZ991euihh0aDBg2KzJd9T2VF22effWKLLbYoMrx3794RUfK+2GWXXYp9F+Dxxx8fBQUFMXPmzPjoo48qttgKNmvWrBg/fnw0a9YsDjrooGKnyQ7PHitrmz17dlx33XXxy1/+MnbffffccfWvf/0rIko+rjamX/ziF8We8yNHjowVK1bE3nvvXez+rlatWhxwwAERUfy6llcargPZ/z7ppJOioKCgyHxnnXVWRES88sorxb7PekOvAxERq1evjieeeCJOP/302HfffaNfv37Rt2/f2HPPPSOTycTUqVNj6dKlxc5b3Lo2adIk9z7LtbfTyJEjY9WqVbHzzjtHv3791ltXec+B1q1bR0TEo48+GkmSrLed0njrrbfi4osvjoMOOigGDBiQO5+mTJkSERHvvvtubtpp06bF5MmTo2bNmnH22WeXqZ1tt9222GvXBx98EHPmzImCgoLc/W1trVq1il/84hcRUfi+V5Zt0bRp08jPz48pU6ZU6PXhyCOPjNq1axca1qBBg9w73rPvrl5b586do1atWrF48eJC96K0OuGEE4o9f0877bSIiHj22WdLtZzHHnssIoo/ryLW3BNr1qwZr7zySpnefb1ixYp48MEH46STToq99947d44fe+yxEVH6+8HYsWNj+fLl0alTp+jTp0+R8QMHDszt17WV9/hd2zHHHFOqGsvr+OOPj2rVCn+VVqNGjejWrVtElHzNL+743WqrrXLHfFnuI9nzdV3vqS6r//3vf3HOOefE/vvvH/37989duxYtWhRLly6NqVOnFjtfWbbH2LFjY+nSpdG2bdvYd999iyzr4IMPjlatWlXYOq3vPNl+++2jXbt28fHHH8cnn3xSaNyGnAulOQaL298lfWbNrsdxxx0XeXl5ReZr2bJl9O7dO5YsWRJvv/12RKz5G+iVV16JiIhTTz21yDwtWrSIQw89dL11/tCAAQMiImLMmDG5Ydn/HjBgQAwYMCBmzZoVs2bNioiIuXPnxvTp02PzzTePDh06bNA6rUv274+S/s4ozd8fZdkn67Ox7pMAUNUV/dQAAJAi9erVi4goNqBZn2nTpsXq1asjPz8/2rdvX+w02267bURELmz4obW/fMlq2rRpqcYvWbKk2GVuscUWufX6oW222SZefvnlIvVce+21cdlll8Xq1auLnS8i4quvvipxmRuiuHWMWLOec+bMiSVLlkTjxo0jInJfeG6//fbFztO2bduoX79+LF68eINqKm2NzZo1i4iS90VJ26ZOnTrRunXrmDp1akyZMiW23nrriil0I3jvvfciImL58uXRt2/fYqdZvnx5RER8+umnhYYPHz48TjnllNz44pR0XG1MJe2X7Lq+9tprJa7r559/HhFF13VDpOE6kP3vLl26FDtPp06dombNmrFy5cqYPn16kXNwQ68DCxcujP322y/3I6GSfP3110VCyYh1n6MfffRRoe30wQcfRETEzjvvXKraynsOnH766TF8+PC48sor47777ot99tkn+vXrF7vttluZw/8kSWLw4MFx2223rXO6tc+n7Hp26dKlxGOhJCXtz+xx0qZNmxJ/CFbcfa8s26J69epx5plnxo033hg9evSIPn36xG677ZYLfIoLbEtjXfeaDz74YJ3jZ8+eXehelFYl7bfs8M8//zwWL14c9evXL3EZS5YsiZkzZ0ZExG9/+9t1trd8+fJYsGBBNG/efL21zZ49O/baa691/oirtPeD9X0WiFjzw7gZM2YUGlbe43dtG3qtW5/yft4oab4mTZrE7Nmzy3QfOfvss+P555+Pk046KW666abYe++9o2/fvrHbbruV+RxYuXJlHHHEEfH444+vc7qS9n1Ztkd2n2299dZFwv2INT9K22qrrSrs/p29N1x++eVxzTXXFDvNl19+GRFr7g3ZH8pt6LmwvmOwSZMmxf7os6RjKLsef/vb3+LBBx8sdpnZbZvddtm/gQoKCor98Uhp6ixOz549o06dOjF+/PhYsmRJ1K1bN0aPHh2ZTCb69esXCxYsiPvuuy9Gjx4dxxxzTO5HZNkgfEPWaV3Wd81Z17Uoouz7ZH021n0SAKo6gTYAkGrZnho//NKzNLJfPjRt2rTYL84iIvclb7Yn+A8VF8ysvax1jS+pl1v2y5HS1jNmzJi49NJLo3r16nHttdfGQQcdFG3bto3atWtHJpOJyy67LK6++upYtWpVscssT+/20syf7ZGz9npmf3iwrnCmXr16FR5ol6XGta1vX0ydOrXEYyMtFi1aFBERixcvjnHjxq1z2mXLluX+e/r06XHSSSfFqlWr4rzzzoujjz46OnToEHXr1o1MJhN33XVXbvyPraT9mV3XOXPmxJw5c9a5jLXXdUOl4TqQvZ6VNF8mk4mmTZvGp59+Wuwxu6HXgXPPPTdeffXV6Ny5c1xzzTWx8847R5MmTaJmzZoRsSag//TTT8t8HSruHM1eHxo2bFiq2sp7DnTv3j3GjBkTQ4YMif/9739xxx13xB133BGZTCb23HPPuPnmm0v9hf8///nPuO2226JOnTpx4403xp577hmtWrWKWrVqRUTE0UcfHQ888ECh7VPW9VxbSdtzfcdJRPHHV1m3xXXXXRetWrWKv/71rzF27NgYO3ZsRETUr18/TjvttBg6dGjk5+eXaZ2KO48i/u9cWt/4iuplvzGVtF/WHv7NN9+sM9DOHu8Rsd7jPaL018LjjjsuPvroo9hpp51i2LBh0b1792jUqFHUqFEjvvvuu9z/lkZpPwv8UHmP37Vt6LVufcr7eaM8x3dJn13333//eOqpp+Lqq6+O1157LT788MP485//HHl5eXHIIYfEn/70p1L3dL7uuuvi8ccfjxYtWsQNN9wQ/fv3jxYtWuTO3759+8a4ceMq5Nq+9ufykpTmxxellT1XStPDd+3zZEPPhfUdg+vbZj+UXY9JkyatbzVy65Hd1k2aNClx2vJs67y8vNh1113jueeei3HjxsVee+0VY8eOja5du0ajRo2if//+ERHrDbTLs07rsr5rzvp+NFbWfVIaG+M+CQBVnUAbAEi1XXfdNf7617/mHptZ3GPpSlK3bt2IiJg/f34kSVLsF4PZ3pxl7R23IebPn1/iuC+++CIiCtfzwAMPRETEBRdcEBdffHGRedYX7P2Ysl8IrasnQ5oC4rLui/UFJ+V5ksCGyh7nffr0iZdffrnU8/373/+OVatWxaBBg+IPf/hDkfEbclxtrO2UXdff/e53cdVVV5WvuJQo67GXXffsuB9KkiS3zIq+nn333Xe5R9s+8cQT0blz5yLjP/vsswprL1v/woULSzV9ec+BiDW9wJ999tlYsmRJjBs3Ll588cV48MEHY9SoUbHnnnvGpEmTShU4Z6/TN910U5x88slFxhd3PpV1PUtjfcdJRMn3vbJsi2rVqsVZZ50VZ511VsycOTPGjBkTTz/9dDz22GNx3XXXxTfffBN/+ctfKmy9yiqN1+qIks/7tYev7/zN7uOINb1ra9SoscF1zZ07N1588cWoXbt2jBw5Mho1alRofFnvB+X9LLAhx29Vs99++8V+++0XX331VYwdOzZeeOGFeOihh+KRRx6JadOmxeuvv16qYyN77br33ntj7733LjK+Ij9jrv25vCTr2vflaW/hwoUxderU6NixY6nmqehzoSJkt9tzzz0Xe+yxR5nmyfZAL055t3X//v3jueeei9GjR0eLFi3i66+/jqOPPjoiIjp27BitWrXKBdklBdrlWad1qVOnTixevLjEa05l/O2R9vskAPwUeYc2AJBq++23X9StWze++OKLePTRR8s0b8eOHaNatWqxYsWKEt999v7770fEmvcY/liyj+kuTvYRtGvXk3206K677lrsPGl6N1u27rXfE7u22bNnV3jv7A2R3d4/tHTp0pg9e3ZEFN4X2S/pS/oydtq0acUOL6mXVUXIPoL6gw8+WOcj6X+ovMdVadalvNtpfbLrWpoePWlX1utA9r8nT55c7DxTp06NlStXRvXq1Ut8BGxJ1rdP58+fH99++200atSoSJgdsWZ/fP/992Vqc12yjxR+7bXXSjV9ec+BtdWtWzf23nvvuO666+LDDz+MDh06xKeffhpPP/10qeZf1/m0atWqYq812fWcPHlyhX3Znj1Oso/gLs767ntl3Rbt2rWLY445Jh566KEYMWJERET84x//KPe+qAgb4xpUEdfxku452eHNmzdfZ+/siDXvFc8+Bj67LzdU9n23W2+9dZEAL6LsnzPW91kg4v8eOVzcfBty/JbHxrxHb2yNGjWKgw8+OG655ZaYNGlSNGjQICZMmBBvvfVWqeZf17VrwYIFFfr6juw+++ijj4r9scnq1avX+ZjvsirPZ4aKPhcqQnnWI/s30PLly3P7+IdKuh6tz9rv0V77/dlZ/fv3j+nTp8f48ePjww8/jGbNmhV5dU9Ff55b3zWnuOvNjymN90kA+CkSaAMAqdawYcM444wzImLNOwNL+lIma9y4cfHKK69ExJov5bNf0N16661Fpl22bFncddddERHF9krZWFauXBl33313keGTJk2KsWPH5h7xmpV9ZG22V9LaRo0alapAO1v3Y489VmxAc++99/7IFa3bK6+8Eu+8806R4f/4xz9i+fLl0bZt20IBXvZd7G+++WaReb799tt4+OGHi20nuw8r8jHYWZ06dYrtttsuvvrqq7jvvvtKPd+6jqsPP/wwnnzyyXXOt651Wdd2euutt8p9zO6///5Rs2bNGDlyZO59iT9VZb0OZK9Rd955Z7HvPL/lllsiYk0v5bI+cnd9+zQ7fvHixcVOc8MNN5SpvfXZb7/9okaNGvHaa6+V6pHK5T0HSlK7du3o2rVrRKzprVca6zqf7rnnnmKD1Q4dOsR2220XK1euzO2/DbXNNttEmzZtYvny5bn729rmzp0b//nPfyKidPe9sm6L7HvPly1bFl9//XVZSq9QjRs3jgYNGsSyZcuKDX2L2zbrUxHX8bvvvjtWrFhRZHj23et77bVXqZZz6KGHRkTEzTffXO5a1pZdty+++KLYoLGs53j2HbFTpkyJV199tcj4MWPGFPsqmYo+fktrY96jf0zNmzfPvS+5Iq5dN910U4X+WKlv375Ru3btmDlzZjz77LNFxo8YMaJCA/TseXLLLbeU+pUEFX0uVITsetxxxx3F3v+LU7du3dhll10iIuL2228vMv7zzz+Pxx57rFz17LjjjlFQUBBvvvlm7odO2UeNr/3fV1xxRZFxWeVZp3XJfl4q6e+MjfH3R3mvG2m5TwLAT5FAGwBIvaFDh8Yuu+wSn3/+eeyyyy7xz3/+s8iXH1OmTInTTz89Bg4cWOgRehdddFFErPmy+MEHH8wN/+abb+KYY46J+fPnR7t27WLQoEE/zsrEmvfPDRkyJPcYvoiITz75JI455piIWPMlz9o9LPv27RsRa97FtvYXwG+++WYcf/zxUVBQ8CNVvn577LFHbL/99vHll1/Gr371q0KP0n388cfj2muvrZDHo1aUvLy8OO6443I9ciIiXn755bj88ssjIuL8888v1HNrt912i4KCgnjrrbfi73//e274woUL47jjjosFCxYU2072C+bJkyev81Gb5XX99ddHJpOJ008/Pe66664i73b8+OOP4+qrry705WX2uLrtttsKhfpTpkyJww8/PPdu5B8qzbrsu+++EbEmfH3jjTdyw6dOnRrHHntsmV4dsLbNN988zj777Fi1alXsvffe8dJLLxUanyRJvPHGG3HqqaeW+FSGtCjrdeDII4+MNm3axOeffx7HHXdcod6L999/f9xxxx0REcW+lmB9mjZtGvXq1Ysvvvii2B5bDRs2jG233Ta+++67OOecc2LlypUREfH999/H9ddfH//6179KPF7Ko2XLljF48OCIWLMdRo0aVWj83Llzc1+UZ5XnHDj11FPjX//6VyxdurTQtGPGjIkXXnghIiJ69OhRqpqz59Nll11W6Lx45pln4oILLijxOp19dP7QoUPjlltuKfSe2qVLl8Zdd91Vpl50mUwmLrjggoiIGDJkSG49ItYEGIMGDYqVK1fGzjvvHLvttltuXFm2xeTJk+Pkk0+ON998s1Dgs2LFirj66qsjIqJt27bRuHHjUtdd0TKZTC7wPPfccwudL8OHD49//OMfZV5m9oc6Y8aMKff7uhcsWBAnnHBC7pHnSZLEbbfdFo899lhUr149zj333FIt56KLLopGjRrF8OHD49xzzy3y2Pqvvvoq/vGPf5T61QzbbrttbLbZZvHJJ5/E1VdfnVu/5cuXx1lnnRUTJkwo/UrGml7kJ5xwQkRE/PrXvy7U63by5Mlx7LHHFvtZoLzH74Za+0dYPzwH0mjQoEHx1FNP5a7FWY8++mi89957kclkYocddijVsrLXrvPOOy93niRJEvfdd1/84Q9/qNDPmPXr14+TTjopIiJOO+20Qte2d999N84888wK/Yx48sknR/v27ePFF1+Mo446KubNm1do/JIlS+Lf//53ofOuos+FinDIIYfEzjvvHB9++GEceOCBRZ4wsWLFinjqqafi+OOPLzT8/PPPj4iIP//5z/H444/nhn/55Zdx1FFHlbt3cH5+fuy0006xcuXKeOaZZ6JLly6F3oue7a2d7Yn8w8eNb8g6leSUU06J2rVrx6hRo2Lo0KG5H2J89913cdlll5X5dSSlkb1urP05LuuncJ8EgJ+kBADgJ+Cbb75JfvGLXyQRkUREUqtWrWS77bZLevfunbRq1So3fIsttkjee++9QvNefPHFufGtW7dOevXqldSpUyeJiGSzzTZL3njjjSLttW3bNomIZMaMGcXWk11ecWbMmJFERNK2bdtCw1988cUkIpL+/fsn+++/fxIRyVZbbZXssMMOSV5eXhIRSfv27ZN58+YVmm/RokVJ+/btk4hIatasmXTt2jXp3LlzEhFJly5dknPPPTeJiGTIkCGF5hsyZEixw0tT6/rWMUlK3kYTJ05MGjZsmEREUrt27aRXr15Ju3btkohIzjjjjNx8s2fPLnHZP3TssccmEZHcc889ZVrHe+65J4mI5Nhjjy12vtNPPz1p3bp1kpeXl3Tv3j23XSMiOfDAA5Pvv/++yDKvvPLK3DStWrVKevbsmdSqVStp3rx5MnTo0GLbS5Ik2X333ZOISOrVq5fstNNOyYABA5IjjjiiVOu/rv2U9Ze//CWpXr16ro2ePXsmvXr1Spo3b56r929/+1tu+lWrViU777xzEhFJ9erVk2222SbZbrvtkkwmk7Rs2TK56qqryr0uq1evTvbYY48kIpJq1aolnTt3TrbbbrukWrVqSf/+/ZNf/epXxe7Pkvbz2latWpUcffTRuXVq0aJFsuOOOybdunVL6tWrlxv+wQcflGrbJknJx3qargNJkiSvvfZa0qBBgyQikjp16iS9evVKWrdunavjsssuKzJPaa4DSZIkxx9/fBIRSUFBQdKrV69kwIAByYABA3LjR4wYkWQymSQikkaNGiW9evVKmjRpkkRE8vvf/77EbbW+bThgwIAkIpIXX3yx0PDly5cnBx98cG7dNt9886R3797JFltskavjh8p6DnTr1i2JiCQvLy/ZZpttkh133DFXb0QkRx999Dq32dpmzZqVNGrUKHd/6t69e+66t9tuuyVHHXVUicf2tddem1unBg0aJL169Uo6deqU1KhRo8i2KematrbVq1fnzrGISDp27Jj06NEjqVmzZhIRSZs2bZLp06cXmqcs22LChAm54Q0bNkx69OiR7LDDDrljs2bNmsnIkSNLve3Wd96XdIxklXSMffDBB0ndunVz50uPHj2Sli1b5o6Dsp7306ZNy23Dtm3bJv369UsGDBhQqO6S5s2uwxVXXJHUrFkzqVevXtKrV69k8803z9Vxww03FKllXefvyy+/nDsHa9SokXTt2jXZaaedkvbt2+eOp9LeY5Jkzfmz9nW1V69eSf369ZNMJpPceeedZd5eixYtSrp37567D2y//fZJ165dk0wmk/Tq1SsZNGhQEhHJfffdV2i+8hy/SbL+zyxJUvKx9v333yedOnVKIiJp3LhxsssuuyQDBgxIzjrrrNw06zsOS1p2eY/fda1X9lzLz8/PfRbOHtvZa3JpvfXWW0l+fn4SEUn9+vWTnj175o7LX//61yXWX97t8c033yQ9e/ZMIiLJZDJJ165dc589evTokTsu1vU54IfWdV384IMPki233DJ3HG6zzTbJTjvtlGy11Va5+8VOO+1UaJ7yngvrOwZL81mupGXMnTs32WGHHQqdFzvttFPSpUuX3LnRvHnzIvP99re/zc2z5ZZbJj179kwKCgqShg0bJpdeeul67ycl+f3vf59b7qmnnlpkfLNmzXLj33333WKXUZ51Wte+vvfee3PXvqZNmya9e/dOmjRpklSrVi254YYbcp+v1rYh++SKK65IItZ8ht5hhx1yn5vmzZtX4fdJAGANPbQBgJ+EunXrxqOPPhpjxoyJE044IVq3bh0zZ86MiRMnRpIksf/++8fdd98dU6ZMie22267QvNdee208+eSTseeee8aSJUvi3XffjSZNmsQpp5wSEydOjN69e/+o65LJZOK///1vDB06NFavXh2TJ0+Opk2bxqmnnhqvv/56tGjRotD09evXj5dffjmOOeaYqF+/fnz00UexcuXKOPfcc+PVV1+NevXq/aj1r8/2228fb731VgwaNChq1aoVkyZNinr16sVf/vKXuOWWW3I909JQd5MmTeKNN96IY445Jj7//POYMWNGdO7cOa6//vp47LHHolq1oh+XL7vssvjrX/8aXbp0ifnz58ecOXPisMMOi7feeivatm1bYlsPPvhgHHfccVG/fv14++23Y/To0aV+R3BpnH766fHOO+/EiSeeGE2bNo33338/pk6dGk2aNIkjjzwyHnnkkVzv34g1PYSfffbZOOOMM6J58+Yxbdq0WLhwYZxwwgnx9ttvR6tWrcq9Ltlj/Nxzz43NN988ZsyYEd9++21ccsklMWrUqA3qgZWXlxf//Oc/46mnnoqf//znERExYcKEmDdvXmy11VYxePDgeOmllyr0/aobQ1mvAxERO+20U0ycODFOPvnkaNKkSbz77ruxZMmS2GuvveKpp56KK6+8stz1/PnPf46zzjorWrRoERMnTozRo0cX6nV04IEHxtNPPx277rprLFu2LD766KPo2LFj3H///UV6S1eE/Pz8+O9//xsPPPBA/OxnP4vly5fHxIkTo1q1arHffvsV+2jxsp4Df/rTn+Kss87KPVUi+6SCvffeO0aMGFGmx5e3adMmXn311Tj00EOjZs2a8eGHH0ZBQUEMGzYsnnnmmXU+leDiiy+OV155JX75y19G7dq1Y+LEibF48eLo3bt33HjjjaXuJZ6VyWTi/vvvj/vuuy/69esXX3zxRbz//vvRtm3buOCCC2L8+PG5nmXl2RadOnWKO++8Mw4//PBo2rRpTJkyJaZOnRqtWrWKU045JSZPnpx7SkNl2nrrrWPMmDGxzz77RLVq1eKjjz6KLbfcMp588sk45ZRTyry8Dh06xJNPPhkDBgyIr7/+Ol5++eUYPXr0el+FsrZ+/frF2LFjo2/fvjFt2rT4+uuvY+edd47HHnss1zO5tPr06ROTJ0+O3/3ud9GlS5eYMWNGvPvuu1GtWrXYZ5994rbbbos///nPpV7e6aefHvfff3907949vvrqq5g2bVr06tUrRo4cGSeeeGKZaotY89llzJgxcf7558cWW2wRH374YSxevDjOOeecePHFF3NPUfjhZ4HyHL8bqlq1avHUU0/FYYcdFtWrV4833ngjRo8eXewrSdJg+PDh8dvf/jY6deoUc+fOjXfffTdq164dhxxySIwePbpM1+SePXvGmDFjYs8994zVq1fn3nl8yy23xPDhwyu89rp168ZLL70UF110UbRp0yY++uij+Oabb+Kcc86J0aNHR35+foW2t/XWW8fEiRPjuuuui969e8enn34a77zzTqxcuTIGDBgQf/jDH4q8Lqaiz4WK0LJly3j11Vfjtttui/79+8eCBQtiwoQJ8c0338SOO+4Yw4YNixdffLHIfLfffnvccccdsf3228fcuXNj9uzZcdBBB8Wbb74ZnTp1Knc9a/e6Lq4HdvYx440aNSryd9mGrlNJjj322Bg1alQMHDgwli1bFh9++GFsu+228cwzz8R+++0XERX7t8fFF18cQ4YMiY4dO8bkyZNzn5uWL1/+k7lPAsBPTSZJyvmsLAAAyuSll16K3XbbLQYMGFDkUclVxYIFC6JJkybRsGHDSn1v3NChQ2PYsGExZMiQGDp0aKXVQdXjOgBVz8CBA2P06NHx4osvxsCBAyu7nFTo2rVrTJo0KSZMmBDdu3ev7HKATdh//vOfOOyww+Lggw8u9Ph1AOCnRQ9tAAB+NPfcc09EROy6666VXAkAUBnefPPNmDRpUjRs2DC23Xbbyi4H2MRl//7o06dPJVcCAGyIKhtojxw5MvbYY49o1KhR1KlTJ3r06BG33nprrF69eoOXfdddd0Umk4lMJlNpjyMCAKgs7733Xvz973+PJUuW5IYlSRL3339//P73v4+IKNfjXgGAn45LL700Pv3000LD3njjjfjlL38ZERHHH3/8Br2CAiDrP//5T4wcOTK+//773LClS5fGhRdeGE899VTUqVMnfv3rX1dihQDAhir5RV6bsOuuuy4uueSSiIho37591K1bNyZOnBhnnnlmPP/88/Hf//632Pcllsb8+fPjoosuqshyAQB+UhYsWBAnn3xynHbaadG2bdto3LhxfPzxx7FgwYKIiDj55JPjwAMPrOQqAYCN6dprr41rr702WrRoEa1bt44vvvgiZs2aFRERvXr1imHDhlVyhcCm4r333othw4ZFQUFBdOjQIfLz8+ODDz6IZcuWRfXq1eOOO+6IFi1aVHaZAMAGqHI9tF999dW49NJLo1q1avHggw/G9OnTY+LEiTF+/Pho3rx5jBgxIv74xz+We/nnnHNOLFy4MPbff/8KrBoA4KejS5cuceGFF0bXrl1j0aJFMWHChEiSJH72s5/Fww8/HLfffntllwgAbGTXX399DBgwICIiJk6cGAsWLIiePXvG9ddfH6NHj466detWcoXApuLggw+OE044IVq3bh1z5syJ9957LzbbbLM44ogj4tVXX42jjjqqsksEADZQJkmSpLKL+DHtv//+MXLkyPjtb38bd9xxR6FxDz74YBx11FHRuHHjmDdvXpkfffX888/HnnvuGaeeemo0a9Yshg0bFieccELcddddFbkKAAAAAAAAAFVClQq0Fy9eHE2bNo2VK1fG66+/HjvuuGOh8atWrYomTZrE4sWL49lnn4299tqr1Mtevnx5dO3aNRYvXhwfffRR3HzzzeUOtFevXh1z586NevXqRSaTKdO8AAAAAAAAAGmWJEl88803sfnmm6/3VdBV6h3aEyZMiJUrV0ZBQUH06NGjyPgaNWpE796944UXXojXX3+9TIH2VVddFdOmTYvhw4dHw4YNN6jOuXPnRuvWrTdoGQAAAAAAAABpNmfOnNhiiy3WOU2VCrSnTp0aERFt2rSJvLziV719+/bxwgsv5KYtjQ8++CBuvPHG6NevXxxzzDFlrmvFihWxYsWK3P/PdpqfM2dO1K9fv8zLAwAAAAAAAEirxYsXR+vWraNevXrrnbZKBdpff/11RERsttlmJU6THZeddn2SJImTTz45Vq9eHbfddlu56rr22mtj2LBhRYbXr19foA0AAAAAAABskkrz+uV1P5B8E7N8+fKIiKhZs2aJ0+Tn50dExLJly0q1zLvvvjvGjh0bZ599dmy33XblquuSSy6JRYsW5f7NmTOnXMsBAAAAAAAA2JRUqR7aBQUFERGxcuXKEqfJPvq7Vq1a613e/Pnz46KLLootttgihgwZUu668vPzc0E6AAAAAAAAAGtUqUC7NI8TL81jybMuvPDC+Oqrr+KOO+6IunXrVkyRAAAAAAAAAEREFQu0O3XqFBERs2fPju+++y7y8oqu/scff1xo2nWZMGFCREQMHjw4Bg8eXGjckiVLIiLiwQcfjP/3//5fRER89tln5S8eAAAAAAAAoIqpUoH2DjvsEDVq1Ijly5fH+PHjY8cddyw0ftWqVfHmm29GRMROO+1U6uV+/vnnJY5btmxZqd/HDQAAAAAAAMD/qVbZBfyY6tevH3vssUdERNx9991Fxj/yyCOxePHiaNy4cQwcOHC9y3vnnXciSZJi/2XfqX3CCSfkhgEAAAAAAABQelUq0I6I+N3vfheZTCbuuuuueOihh3LDJ06cGOeee25ErHk3ds2aNXPjbr755mjXrl0MGjToR68XAAAAAAAAoKqqcoF2nz594sorr4zVq1fHr371q+jQoUN069YtevToEZ9//nnsv//+cd555xWaZ+HChTFr1izvwAYAAAAAAAD4EVW5QDtiTS/tJ598MnbfffdYsGBBTJs2Lbp27Ro333xzPPHEE1G9evXKLhEAAAAAAACgysskXu6cOosXL44GDRrEokWLon79+pVdDgAAAAAAAECFKUseWiV7aAMAAAAAAACQfgJtAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEglgTYAAAAAAAAAqSTQBgAAAAAAACCVBNoAAAAAAAAApJJAGwAAAAAAAIBUEmgDAAAAAAAAkEoCbQAAAAAAAABSSaANAAAAAAAAQCoJtAEAAAAAAABIJYE2AAAAAAAAAKkk0AYAAAAAAAAglQTaAAAAAAAAAKSSQBsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUkmgDQAAAAAAAEAqCbQBAAAAAAAASCWBNgAAAAAAAACpJNAGAAAAAAAAIJUE2gAAAAAAAACkkkAbAAAAAAAAgFQSaAMAAAAAAACQSgJtAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEilvMouADZ1Yw88sFLa7ffkk5XSLgAAAAAAAFQUPbQBAAAAAAAASCWBNgAAAAAAAACpJNAGAAAAAAAAIJUE2gAAAAAAAACkUl5lFwA/loVD/lbZJQAAAAAAAABloIc2AAAAAAAAAKmkhzZsoq55f0GltHvpto0rpV0AAAAAAAA2PXpoAwAAAAAAAJBKAm0AAAAAAAAAUkmgDQAAAAAAAEAqCbQBAAAAAAAASCWBNgAAAAAAAACpJNAGAAAAAAAAIJUE2gAAAAAAAACkkkAbAAAAAAAAgFQSaAMAAAAAAACQSgJtAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEglgTYAAAAAAAAAqSTQBgAAAAAAACCVBNoAAAAAAAAApJJAGwAAAAAAAIBUEmgDAAAAAAAAkEoCbQAAAAAAAABSSaANAAAAAAAAQCrlVXYBAAAAAPw07PfcFZXS7sg9L6+UdgEAgMqnhzYAAAAAAAAAqSTQBgAAAAAAACCVBNoAAAAAAAAApJJAGwAAAAAAAIBUEmgDAAAAAAAAkEoCbQAAAAAAAABSSaANAAAAAAAAQCoJtAEAAAAAAABIJYE2AAAAAAAAAKkk0AYAAAAAAAAglQTaAAAAAAAAAKSSQBsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUkmgDQAAAAAAAEAqCbQBAAAAAAAASCWBNgAAAAAAAACpJNAGAAAAAAAAIJUE2gAAAAAAAACkkkAbAAAAAAAAgFQSaAMAAAAAAACQSgJtAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEglgTYAAAAAAAAAqSTQBgAAAAAAACCVBNoAAAAAAAAApJJAGwAAAAAAAIBUEmgDAAAAAAAAkEoCbQAAAAAAAABSSaANAAAAAAAAQCoJtAEAAAAAAABIJYE2AAAAAAAAAKkk0AYAAAAAAAAglQTaAAAAAAAAAKSSQBsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUkmgDQAAAAAAAEAqCbQBAAAAAAAASCWBNgAAAAAAAACpJNAGAAAAAAAAIJUE2gAAAAAAAACkkkAbAAAAAAAAgFQSaAMAAAAAAACQSgJtAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEglgTYAAAAAAAAAqSTQBgAAAAAAACCVBNoAAAAAAAAApJJAGwAAAAAAAIBUEmgDAAAAAAAAkEoCbQAAAAAAAABSSaANAAAAAAAAQCoJtAEAAAAAAABIJYE2AAAAAAAAAKkk0AYAAAAAAAAglQTaAAAAAAAAAKSSQBsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUkmgDQAAAAAAAEAqCbQBAAAAAAAASKW8yi4AoCLs99wVldb2yD0vr7S2AQAAAAAANmV6aAMAAAAAAACQSgJtAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEglgTYAAAAAAAAAqSTQBgAAAAAAACCVBNoAAAAAAAAApJJAGwAAAAAAAIBUyqvsAgAAAAAAAICflv2eu6JS2h255+WV0i6VRw9tAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEglgTYAAAAAAAAAqSTQBgAAAAAAACCVBNoAAAAAAAAApJJAGwAAAAAAAIBUEmgDAAAAAAAAkEoCbQAAAAAAAABSSaANAAAAAAAAQCpV2UB75MiRsccee0SjRo2iTp060aNHj7j11ltj9erVZVrOhAkT4vLLL48BAwZEkyZNokaNGtGsWbPYd99947///e9Gqh4AAAAAAABg05dX2QVUhuuuuy4uueSSiIho37591K1bNyZOnBhnnnlmPP/88/Hf//43qlVbf9Y/ffr06NGjR+7/b7nlltGuXbv4+OOP45lnnolnnnkmjj322PjHP/5RquUBAAAAAAAA8H+qXMr66quvxqWXXhrVqlWLBx98MKZPnx4TJ06M8ePHR/PmzWPEiBHxxz/+sVTLSpIkWrZsGddff33MnTs3Pv7443jrrbfiyy+/jFtvvTUymUwMHz48brvtto28VgAAAAAAAACbnioXaF911VWRJEmceOKJceSRR+aGd+vWLRdkX3fddbFq1ar1LmuLLbaIadOmxYUXXhgtW7bMDa9WrVoMHjw4Tj755IiIuPPOOyt4LQAAAAAAAAA2fVUq0F68eHE8//zzERFxwgknFBl/+OGHR/369WPBggXx4osvrnd5BQUFUbt27RLH77XXXhERMWXKlHJWDAAAAAAAAFB1ValAe8KECbFy5cooKCgo9O7rrBo1akTv3r0jIuL111/f4PaWL18eERG1atXa4GUBAAAAAAAAVDVVKtCeOnVqRES0adMm8vLyip2mffv2habdEP/+978jIqJPnz7rnG7FihWxePHiQv8AAAAAAAAAqroqFWh//fXXERGx2WablThNdlx22vIaNWpUPP744xERccEFF6xz2muvvTYaNGiQ+9e6desNahsAAAAAAABgU1ClAu3sI8Br1qxZ4jT5+fkREbFs2bJytzN79uw46qijIiLitNNOi/79+69z+ksuuSQWLVqU+zdnzpxytw0AAAAAAACwqSj+udubqIKCgoiIWLlyZYnTrFixIiLK/97rr776Kvbdd9/48ssvY+DAgfHHP/5xvfPk5+fngnQAAAAAAAAA1qhSPbRL8zjx0jyWvCRLliyJ/fbbLyZPnhw9e/aMESNGCKoBAAAAAAAAyqlKBdqdOnWKiDWPBP/uu++Knebjjz8uNG1prVixIg4++OB4/fXXo0uXLvHMM89EvXr1NqxgAAAAAAAAgCqsSgXaO+ywQ9SoUSOWL18e48ePLzJ+1apV8eabb0ZExE477VTq5X733Xfxy1/+Mv73v/9F+/bt47nnnosmTZpUWN0AAAAAAAAAVVGVCrTr168fe+yxR0RE3H333UXGP/LII7F48eJo3LhxDBw4sFTLTJIkjjvuuBgxYkRsvvnm8fzzz8fmm29ekWUDAAAAAAAAVElVKtCOiPjd734XmUwm7rrrrnjooYdywydOnBjnnntuRERceOGFUbNmzdy4m2++Odq1axeDBg0qsryzzjorHnjggWjSpEk8//zzseWWW278lQAAAAAAAACoAvIqu4AfW58+feLKK6+Myy67LH71q1/FZZddFnXr1o1JkybF6tWrY//994/zzjuv0DwLFy6MWbNmRbt27QoNf/XVV+PWW2+NiIhatWrFSSedVGK7L7/8coWvCwAAAAAAAMCmrMoF2hFreml369Yt/vSnP8Xbb78dn332WXTt2jV+85vfxODBg6N69eqlWs6KFSty/z1nzpyYM2fOxioZAAAAAAAAoMqpkoF2RMQBBxwQBxxwQKmmHTp0aAwdOrTI8IEDB0aSJBVcGQAAAAAAAAARVfAd2gAAAAAAAAD8NAi0AQAAAAAAAEglgTYAAAAAAAAAqVRl36ENAJB2C4f8rVLafW/8yEppt9+TT1ZKuwAAAABAeumhDQAAAAAAAEAq6aENAEAqXPP+gkpr+9JtG1da2wAAAABAyfTQBgAAAAAAACCVBNoAAAAAAAAApJJAGwAAAAAAAIBUEmgDAAAAAAAAkEoCbQAAAAAAAABSSaANAAAAAAAAQCoJtAEAAAAAAABIJYE2AAAAAAAAAKkk0AYAAAAAAAAglQTaAAAAAAAAAKSSQBsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUkmgDQAAAAAAAEAqCbQBAAAAAAAASCWBNgAAAAAAAACpJNAGAAAAAAAAIJUE2gAAAAAAAACkkkAbAAAAAAAAgFQSaAMAAAAAAACQSnmVXQAAP20Lh/yt0tpuOOzUSmsbAAAAAADY+PTQBgAAAAAAACCVBNoAAAAAAAAApJJHjgNAGV3z/oJKaffSbRtXSrsAAAAAAFBZ9NAGAAAAAAAAIJX00AbgJ2vsgQdWTsPX3Vs57QIAAAAA61Rp3xlGRL8nn6y0tmFTpoc2AAAAAAAAAKmkhzYAAAAAAAAVauGQv1V2CcAmQg9tAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEgl79AGAIBKst9zV1RKuyP3vLxS2gUAAACAshJoAwAAAAAAwAa65v0FldLupds2rpR24cfikeMAAAAAAAAApJJAGwAAAAAAAIBUEmgDAAAAAAAAkEoCbQAAAAAAAABSSaANAAAAAAAAQCoJtAEAAAAAAABIJYE2AAAAAAAAAKkk0AYAAAAAAAAglQTaAAAAAAAAAKSSQBsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUkmgDQAAAAAAAEAqCbQBAAAAAAAASCWBNgAAAAAAAACpJNAGAAAAAAAAIJUE2gAAAAAAAACkkkAbAAAAAAAAgFQSaAMAAAAAAACQSgJtAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEglgTYAAAAAAAAAqSTQBgAAAAAAACCV8iq7AAAAAICfqmveX1Ap7V66beNKaRcAAODHpoc2AAAAAAAAAKkk0AYAAAAAAAAglQTaAAAAAAAAAKSSQBsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUimvsgsAAAAAAKByDBs2rFLaHTJkSKW0CwD89OihDQAAAAAAAEAqCbQBAAAAAAAASCWBNgAAAAAAAACp5B3aAAAAQIVYOORvldZ2w2GnVlrbAAAAbDx6aAMAAAAAAACQSnpoAwAAAD95Yw88sHIavu7eymkXAACgitBDGwAAAAAAAIBUEmgDAAAAAAAAkEoCbQAAAAAAAABSSaANAAAAAAAAQCoJtAEAAAAAAABIJYE2AAAAAAAAAKkk0AYAAAAAAAAglQTaAAAAAAAAAKSSQBsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUkmgDQAAAAAAAEAqCbQBAAAAAAAASCWBNgAAAAAAAACpJNAGAAAAAAAAIJUE2gAAAAAAAACkkkAbAAAAAAAAgFQSaAMAAAAAAACQSgJtAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEglgTYAAAAAAAAAqSTQBgAAAAAAACCVBNoAAAAAAAAApJJAGwAAAAAAAIBUEmgDAAAAAAAAkEoCbQAAAAAAAABSSaANAAAAAAAAQCoJtAEAAAAAAABIJYE2AAAAAAAAAKkk0AYAAAAAAAAglQTaAAAAAAAAAKSSQBsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUkmgDQAAAAAAAEAqCbQBAAAAAAAASCWBNgAAAAAAAACpJNAGAAAAAAAAIJUE2gAAAAAAAACkkkAbAAAAAAAAgFQSaAMAAAAAAACQSgJtAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEglgTYAAAAAAAAAqSTQBgAAAAAAACCVBNoAAAAAAAAApJJAGwAAAAAAAIBUEmgDAAAAAAAAkEoCbQAAAAAAAABSSaANAAAAAAAAQCoJtAEAAAAAAABIJYE2AAAAAAAAAKkk0AYAAAAAAAAglQTaAAAAAAAAAKSSQBsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUimvsgsAAAAAAIDKsnDI3yql3ffGj6yUdsded2+ltHvpto0rpV0Afvr00AYAAAAAAAAglQTaAAAAAAAAAKSSQBsAAAAAAACAVKqygfbIkSNjjz32iEaNGkWdOnWiR48eceutt8bq1avLtbxXX301Dj744GjatGnUqlUrunTpEldeeWUsX768gisHAAAAAAAAqBqqZKB93XXXxf777x8vvPBCbLbZZtGxY8eYOHFinHnmmXHIIYeUOdR+4IEHol+/fjFixIjIz8+PbbbZJqZNmxaXX3559O/fP5YuXbqR1gQAAAAAAABg01XlAu1XX301Lr300qhWrVo8+OCDMX369Jg4cWKMHz8+mjdvHiNGjIg//vGPpV7ezJkz44QTTojvv/8+brjhhpgzZ06MHz8+pk6dGp07d44333wzLrzwwo24RgAAAAAAAACbpioXaF911VWRJEmceOKJceSRR+aGd+vWLRdkX3fddbFq1apSLe/GG2+MFStWxF577RUXXHBBZDKZiIho27Zt/OMf/4iIiL///e/x+eefV/CaAAAAAAAAAGzaqlSgvXjx4nj++ecjIuKEE04oMv7www+P+vXrx4IFC+LFF19c7/KSJIn//ve/JS5v1113ja233jpWrVoVTzzxxAZWDwAAAAAAAFC1VKlAe8KECbFy5cooKCiIHj16FBlfo0aN6N27d0REvP766+td3uzZs2PevHkREdGnT59ip8kOL83yAAAAAAAAAPg/VSrQnjp1akREtGnTJvLy8oqdpn379oWmLc3y8vPzY/PNNy/38lasWBGLFy8u9A8AAAAAAACgqis+1d1Eff311xERsdlmm5U4TXZcdtrSLK9hw4a5d2eXZ3nXXnttDBs2bL3tsWEaDju1UtrtF5XVbuU4ddjySml35JDLK6XdiKi083fIkCGV0u4PVda5FeH8+rHM2vWGSml3p1eSSmk3wvlV1c6tiKp3/6rq966IiIVD/lYp7b43fmSltDv2unsrpd1Lt21cKe3u99wVldJuROXdv9Jyfvls+ONx7/pxpOXcinDv+jHNebROpbRbWX97jUzRcV5Z/O21afPZsPJUtXNrTdtVy8g9fTbkx1GlemgvX77mj72aNWuWOE1+fn5ERCxbtuxHW94ll1wSixYtyv2bM2fOetsGAAAAAAAA2NRVqR7aBQUFERGxcuXKEqdZsWJFRETUqlXrR1tefn5+LvgGAAAAAAAAYI0q1UO7NI//Ls1jyX+4vIULF0aSFP/okLIsDwAAAAAAAID/U6V6aHfq1CkiImbPnh3fffdd5OUVXf2PP/640LSlWd6KFSti7ty50apVqw1aHgCkUaW9C+eVynkXDgA/fZV174pw/wIAAICKVqUC7R122CFq1KgRy5cvj/Hjx8eOO+5YaPyqVavizTffjIiInXbaab3La9OmTbRo0SI+++yzGDduXPzyl78sMs24ceNKvTwAAODH0XDYqZXSbr+orHYBgNL625CCSml3v+cqpVkAgNSrUo8cr1+/fuyxxx4REXH33XcXGf/II4/E4sWLo3HjxjFw4MD1Li+TycQhhxxS4vJeeeWV+PDDD6NGjRpx0EEHbVjxAAAAAAAAAFVMlQq0IyJ+97vfRSaTibvuuiseeuih3PCJEyfGueeeGxERF154YdSsWTM37uabb4527drFoEGDiizvggsuiJo1a8aoUaPixhtvzL1Le9asWXH88cdHRMSJJ54YLVq02JirBQAAAAAAALDJqXKBdp8+feLKK6+M1atXx69+9avo0KFDdOvWLXr06BGff/557L///nHeeecVmmfhwoUxa9as+Oyzz4osb8stt4w777wzqlWrFhdeeGG0bt06evToEZ06dYqPPvooevbsGTfeeOOPtXoAAAAAAAAAm4wqF2hHrOml/eSTT8buu+8eCxYsiGnTpkXXrl3j5ptvjieeeCKqV69epuUdc8wxMXbs2DjggANi2bJlMXny5Gjfvn0MHTo0Xn755ahTp85GWhMAAAAAAACATVdeZRdQWQ444IA44IADSjXt0KFDY+jQoeucZtddd40nn3yyAioDAAAAAAAqwsg9L6+0toe9MqzS2gbYlFTJHtoAAAAAAAAApF+V7aENAAAAAAAA/LQMGTKkskvgR6aHNgAAAAAAAACpJNAGAAAAAAAAIJUE2gAAAAAAAACkkkAbAAAAAAAAgFQSaAMAAAAAAACQSgJtAAAAAAAAAFJJoA0AAAAAAABAKuVVdgEAQOn8bUhBZZcAAAAAAAA/Kj20AQAAAAAAAEglgTYAAAAAAAAAqSTQBgAAAAAAACCVBNoAAAAAAAAApJJAGwAAAAAAAIBUEmgDAAAAAAAAkEoCbQAAAAAAAABSSaANAAAAAAAAQCoJtAEAAAAAAABIJYE2AAAAAAAAAKkk0AYAAAAAAAAglQTaAAAAAAAAAKSSQBsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUkmgDQAAAAAAAEAq5VV2AQAAxRkyZEhllwAAAAAAQCXTQxsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUkmgDQAAAAAAAEAqCbQBAAAAAAAASCWBNgAAAAAAAACpJNAGAAAAAAAAIJUE2gAAAAAAAACkkkAbAAAAAAAAgFQSaAMAAAAAAACQSnmVXQAAAAAAQFU3cs/LK7sEAIBUEmgDAAAAAMXq9+STldLu2PcXVEq7AACkj0AbAAAAAFKu4bBTK7uEH9Wl2zau7BIAAEgJgTYAAABUkCFDhlR2CQAAALBJqVbZBQAAAAAAAABAcQTaAAAAAAAAAKSSQBsAAAAAAACAVBJoAwAAAAAAAJBKAm0AAAAAAAAAUkmgDQAAAAAAAEAqCbQBAAAAAAAASCWBNgAAAAAAAACpJNAGAAAAAAAAIJUE2gAAAAAAAACkkkAbAAAAAAAAgFQSaAMAAAAAAACQSgJtAAAAAAAAAFJJoA0AAAAAAABAKgm0AQAAAAAAAEiljRpof/311xtz8QAAAAAAAABswsodaH/00Udxyy23xMsvv1xo+MqVK+PMM8+MunXrRpMmTaJDhw4xatSoDS4UAAAAAAAAgKql3IH2X//61zjnnHNi8eLFhYYPHTo0/vKXv8TSpUsjSZKYMWNGHHzwwTFjxowNLhYAAAAAAACAqqPcgfbo0aOjoKAg9tlnn9ywFStWxG233Rb5+fnx7LPPxsKFC+P888+PFStWxE033VQhBQMAAAAAAABQNZQ70J43b160bt06qlX7v0W8/PLLsXjx4jj00ENjzz33jPr168dVV10VDRo0iNGjR1dIwQAAAAAAAABUDeUOtBcuXBgNGjQoNGzs2LGRyWRi3333zQ2rWbNmtG/fPmbPnl3+KgEAAAAAAACocsodaDdo0CA++eSTQsNefPHFiIjo379/oeGZTKa8zQAAAAAAAABQRZU70O7Ro0d89tln8eSTT0ZExLvvvhvjxo2LTp06RZs2bQpN+/HHH0fLli03rFIAAAAAAAAAqpRyB9qDBw+OJEnisMMOi169ekXfvn0jSZI4/fTTC0331ltvxcKFC6N79+4bWisAAAAAAAAAVUi5A+0DDzwwbrnllqhbt26MHz8+Vq1aFeeff36cccYZhaa76667IiJir7322rBKAQAAAAAAAKhS8jZk5sGDB8epp54aX375ZTRt2jSqVSuaj5911llx6qmnRqdOnTakKQAAAAAAAACqmA0KtCMiqlevHs2bNy9x/DbbbLOhTQAAAAAAAABQBZX7keMAAAAAAAAAsDFtcA/tUaNGxdNPPx0ff/xxLFmyJJIkKXa6TCYTL7zwwoY2BwAAAAAAAEAVUe5Ae+nSpXHooYfGc889FxFRYpCdlclkytsUAAAAAAAAAFVQuQPt3//+9zFq1KioX79+nHjiidG7d+9o1qxZVKvmKeYAAAAAAAAAbLhyB9qPPPJIVK9ePUaNGhU77rhjRdYEAAAAAAAAAFHu7tTz58+PTp06CbMBAAAAAAAA2CjKHWhvscUWkZdX7g7eAAAAAAAAALBO5Q60jzrqqJg8eXJMnz69IusBAAAAAAAAgIjYgED70ksvjb59+8bPf/7zmDBhQkXWBAAAAAAAAABR7meGn3LKKdG6det49dVXo3fv3tG9e/fo0KFD1KlTp9jpM5lM3H333eUuFAAAAAAAAICqpdyB9r333huZTCaSJImIiPHjx8f48eNLnF6gDQAAAAAAAEBZlDvQvueeeyqyDgAAAAAAAAAopNyB9rHHHluRdQAAAD+SIUOGVHYJAAAAAFAq1Sq7AAAAAAAAAAAoTrl7aP/QlClTYsqUKfHNN99EvXr1YquttoqtttqqohYPAAAAAAAAQBWzwYH2HXfcEddff33MmjWryLh27drFxRdfHCeddNKGNgMAAAAAAABAFbNBgfZvfvObuO+++yJJksjPz4/WrVtH8+bN4/PPP485c+bEjBkz4pRTTolXXnkl7rnnnoqqGQAAAAAAAIAqoNzv0H7wwQdj+PDhUbt27bjhhhti/vz5MWXKlBg7dmxMmTIl5s+fHzfccEPUqVMn7rvvvnjooYcqsm4AAAAAAAAANnHlDrTvvPPOyGQy8Z///CfOP//8qFu3bqHxdevWjfPPPz8effTRSJIk7rzzzg0uFgAAAAAAAICqo9yB9sSJE6N9+/ax1157rXO6vfbaKzp27BgTJkwob1MAAAAAAAAAVEHlDrSXL18eDRs2LNW09evXjxUrVpS3KQAAAAAAAACqoHIH2m3atIlJkybFl19+uc7p5s+fH++//360adOmvE0BAAAAAAAAUAWVO9A+6KCDYsWKFXHEEUfE/Pnzi53miy++iCOOOCJWrlwZBx98cLmLBAAAAAAAAKDqySvvjBdffHE8/PDD8dJLL0Xbtm3j8MMPjy5dukSzZs3iiy++iMmTJ8cjjzwSy5cvj9atW8dFF11UkXUDAAAAAAAAsIkrd6DdqFGj+N///hdHHnlkvP322/HPf/4zMplMbnySJBER0bt373jwwQejUaNGG14tAAAAAAAAAFVGuQPtiIiOHTvGm2++GS+88EKMGjUqpkyZEkuWLIm6devGVlttFXvvvXfsvvvuFVUrAAAAAAAAAFXIBgXaWT/72c/iZz/7WUUsCgAAAAAAAAAiooICbQAA+Cn725CCyi4BAAAAAChGtcouAAAAAAAAAACKU6oe2u3bt4+INe/MHjVqVKFhpZXJZGL69OllLA8AAAAAAACAqqpUgfbMmTMjIqKgoKDIsNLKZDJlmh4AAAAAAACAqq1UgfaMGTMiIqJGjRpFhgEAAAAAAADAxlCqQLtt27alGgYAAAAAAAAAFaVaeWccM2ZMTJw4sVTTvvvuuzFmzJjyNgUAAAAAAABAFVTuQHvgwIFx5plnlmras846K3bffffyNgUAAAAAAABAFVTuQDsiIkmSjTItAAAAAAAAAGxQoF1aCxYsiFq1av0YTQEAAAAAAACwicgr7YSLFy+OhQsXFhq2YsWKmDNnTom9r5ctWxajR4+OSZMmRbdu3TaoUAAAAAAAAACqllIH2n/605/iiiuuKDTsrbfeinbt2pVq/hNOOKFMhQEAAAAAAABQtZU60G7YsGG0adMm9/9nz54dNWvWjBYtWhQ7fSaTiVq1akX79u3jiCOOiKOPPnrDqwUAAAAAAACgyih1oH3WWWfFWWedlfv/1apVi969e8eYMWM2SmEAAAAAAAAAVG2lDrR/6J577onmzZtXZC0AAAAAAAAAkFPuQPvYY4+tyDoAAAAAAAAAoJByB9oAxfnbkILKLgEAAAAAAIBNRLkD7erVq5dp+kwmE9999115mwMAAAAAAACgiil3oJ0kyUadHgAAAAAAAICqrVp5Z1y9enWJ/5YsWRLvvPNOnH766VG7du24/fbbY/Xq1RVZNwAAAAAAAACbuI3yDu3atWvH9ttvH7feemv06tUrjj/++GjdunXsu+++G6M5AAAAAAAAADZB5e6hXVrHHntstGjRIq699tqN3RQAAAAAAAAAm5CNHmhHRLRs2TLeeeedH6MpAAAAAAAAADYRGz3Q/vbbb+Ojjz6KatV+lOwcAAAAAAAAgE3ERk2ZP/jggzjssMNi6dKl0adPn43ZFAAAAAAAAACbmLzyzti+ffsSxyVJEvPnz49ly5ZFkiRRt27duOaaa8rbFAAAAAAAAABVULkD7ZkzZ653mgYNGsTee+8dw4YNi86dO5e3KQAAAAAAAACqoHIH2jNmzChxXCaTiTp16kTjxo3Lu3gAAAAAAAAAqrhyB9pt27atyDoAAAAAAAAAoJBqlV0AAAAAAAAAABSn3D201zZ69Oh49tlnY8qUKfHNN99EvXr1Yquttoq99torBg4cWBFNAAAAAAAAAFDFbFCgPXXq1DjmmGPijTfeiIiIJEly4zKZTFx//fXRu3fvuO+++2KrrbbasEoBAAAAAAAAqFLKHWjPmTMn+vbtG/Pnz4+CgoI47LDDYptttonmzZvHF198ER988EE88sgj8cYbb0S/fv3irbfeitatW1dk7QAAAAAAAABswsodaP/ud7+L+fPnx5577hn3339/NG3atMg0N910Uxx11FHx3HPPxWWXXRbDhw/foGIBAAAAAAAAqDqqlXfGZ599NmrVqhUPP/xwsWF2RESTJk3i4Ycfjlq1asUzzzxT7iIBAAAAAAAAqHrKHWgvWbIktt1229hss83WOd1mm20W2267bSxZsqS8TQEAAAAAAABQBZU70O7QoUPMnz+/VNPOnz8/OnbsWN6mAAAAAAAAAKiCyh1on3TSSTFr1qx45JFH1jndo48+GrNmzYqTTjqpvE0BAAAAAAAAUAXllXfGM844Iz788MP49a9/Ha+++mqcdtpphXphT58+PW677ba47bbb4rTTTovBgwdXSMEAAAAAAAAAVA2lCrTbt29f4rjVq1fHn//85/jzn/8cNWrUiMaNG8eCBQti1apVaxrIy4uRI0dGhw4dYvr06RVTNQAAAAAAAACbvFIF2jNnzizVwlauXBnz5s0rNGzVqlUxc+bMyGQyZS4OAAAAAAAAgKqrVIH2jBkzNnYdAAAAAAAAAFBIqQLttm3bbuw6AAAAAAAAAKCQapVdAAAAAAAAAAAUp8oF2suXL48rrrgiunTpErVq1YqmTZvGwQcfHK+99lq5lvXYY4/FiSeeGNttt13UqVMnCgoKomPHjnHqqafGtGnTNsIaAAAAAAAAAFQNpXrk+O677x4Rax49fs899xQaVlqZTCZeeOGFMpZXsb799tsYMGBAvP3221GzZs3Ydttt44svvogRI0bEU089Fffff38MGjSo1Mu7+uqr46qrroqIiIKCgujUqVN8//33MXXq1Lj99tvjvvvui3/9619xwAEHbKxVAgAAAAAAANhklSrQfumllyIiYuutty4yrLQymUyZpt8YzjvvvHj77bdj6623jmeeeSbatm0bq1evjj/84Q9x0UUXxfHHHx99+vSJ1q1bl2p5SZLEbrvtFmeddVbss88+kZ+fHxERn3/+eRx//PExcuTIOPLII2Pq1KnRokWLjblqAAAAAAAAAJucUgXaL774YkRE1K5du8iwn4p58+bF3XffHRER//jHP6Jt27YREVGtWrW48MIL4/nnn4/nnnsu/vCHP8Sf//znUi3znHPOyfXQXlvz5s3j4Ycfjo4dO8YXX3wRDz30UJxzzjkVtzIAAAAAAAAAVUCpAu0BAwaUaliajRgxIr777rvYZpttYpdddiky/oQTTojnnnsuHn300VIH2o0bNy5xXL169WLnnXeOESNGxJQpU8pdNwAAAAAAAEBVVa28M15xxRVx5ZVXxsqVKyuyno3mtddei4iIPn36FDs+O3zu3LkxZ86cCmlz+fLlERFRq1atClkeAAAAAAAAQFVS7kD7yiuvjIcffjhq1qxZkfVsNFOnTo2IiPbt2xc7vlWrVrl1yU67IT7//PMYPXp0RJQcometWLEiFi9eXOgfAAAAAAAAQFVX7kC7efPmhd6pnXZff/11RERsttlmxY7PZDLRsGHDQtNuiHPPPTdWrFgRW221VRx88MHrnPbaa6+NBg0a5P61bt16g9sHAAAAAAAA+Kkrd6C9xx57xPvvvx+LFi2qyHo2muzjv9fVozw/Pz8iIpYtW7ZBbf3tb3+LBx98MKpXrx733ntv5OWt+1Xll1xySSxatCj3r6IeeQ4AAAAAAADwU7bupHUdhg4dGiNGjIjf/OY38cADD2zU90RfeOGFMWLEiDLPd88998Quu+wSEREFBQUREet85/eKFSsiYsPeef3//t//izPPPDMiIv7617/m2l+X/Pz8XJgOAAAAAAAAwBrlDrTHjBkTp5xyStx4443RsWPH+MUvfhHbbLNN1KlTp8R5jjnmmHK1NXfu3Pjoo4/KPN+3336b++/so8ZLepx4kiSxcOHCQtOW1ZgxY+KXv/xlfPfdd3HNNdfEySefXK7lAAAAAAAAALABgfZxxx0XmUwmkiSJefPmxV//+tf1zlPeQPv++++P+++/v1zzZnXq1CnGjRsXH3/8cbHjP/3001zv7U6dOpV5+W+//XYceOCBsWzZsrjwwgvjkksu2aB6AQAAAAAAAKq6cgfaxxxzTGQymYqsZaPaaaed4t57741x48YVOz47fPPNN4/WrVuXadkffPBB7LPPPrF48eI4+eST4/rrr9/gegEAAAAAAACqunIH2vfee28FlrHxHXTQQXHGGWf8f+zdedhUZf0/8PewPeyLoCCigkooKKDgigmouOKSS64pLt/M6pum5pYKWLlgpmZaViglLpVbbllgomZoaJa7aYkbm6KCsslyfn/4e+brIw8KCD0DvF7XNdfF3Oc+5/6cYc7MPPOe+5w8//zzGT9+/GLXth45cmSS5MADD1ym7U6cODGDBg3K22+/ncMPPzxXX331CqsZAAAAAAAAYE1Wr64L+G/p2LFjjjnmmCTJsccem1dffTXJR9fOvuSSSzJmzJg0btw4p5122mLr7rjjjuncuXNuueWWGu1Tp07NoEGD8uabb2bffffNr371q9Srt8Y8pAAAAAAAAAAr1XLP0N5oo42yzTbb5Oabb/7Mvocddlj+9re/5d///vfyDrdCXHrppXn88cfz5JNP5gtf+EJ69OiRadOm5c0330z9+vXzy1/+MhtssMFi673xxht59dVX88EHH9RoP++88/Lyyy8nSSZNmpQBAwbUOu5ee+2Vs88+e4XvDwAAAAAAAMDqbLkD7YkTJ6ZTp05L1XfKlCmZOHHi8g61wrRo0SKPPPJIRowYkZtuuinPPfdcmjdvnn322SdnnXXWYqch/yzz5s0r//vxxx9fYr9NNtlkuWsGAAAAAAAAWFMtd6C9LObOnZsGDf4rQ32mJk2aZOjQoRk6dOhSr7OkMH7UqFGr3LXEAQAAAAAAAFYVKz1lfvvtt/Pcc8+lffv2K3soAAAAAFZDyzIxAQAAWL0sdaD9q1/9Kr/61a9qtD399NPZeeedl7jOnDlz8txzz+WDDz7IQQcdtPxVAgAAAAAAALDGWepAe+LEiRk3blz5fqlUyowZM2q0LcnOO++ciy66aHnqAwAAAAAAAGANtdSB9pAhQzJgwIAkSVEU2XnnnbPFFlvkxz/+ca39S6VSmjRpki5duqRdu3YrpFgAAAAAAIBVgUtmAKwYSx1ob7jhhtlwww3L93faaaf06tUr/fv3XymFAQAAAAAAALBmW+pA+5N+/etfp3HjxkvVd9q0aZk7d2422GCD5R0OAAAAAAAAgDVMveVdsUuXLjn44IOXqu8hhxySjTbaaHmHAgAAAAAAAGANtNyBdlEUKYpimfoDAAAAAAAAwNJa7kB7WcycOTNVVVX/jaEAAAAAAAAAWE0s9zW0l8a8efPy4IMP5qmnnkrXrl1X5lAAAAAAAAAArGaWeob28OHDU79+/fItSR555JEabZ+8NW3aNHvuuWcWLlyYQw89dKXtBAAAAAAAAACrn6Weof3Ja2aXSqXPvC52kyZNstFGG+WQQw7JmWeeufxVAgAAAAAAALDGKRWflUovQb169bLjjjvmoYceWtE1rfFmzpyZVq1aZcaMGWnZsmVdlwMAAABUmBOHz62TcX86tHGdjAsAAKxeliUPXe5raA8dOjQbbLDBZ/Z78803c8MNN2T06NF56qmnlnc4AAAAAAAAANYwnyvQXpIPPvggt956a66//vqMGzfuM09NDgAAAAAAAACftNyB9ictWrQof/rTn3L99dfn97//febMmVMOsrfccssceeSRK2ooAAAAAAAAANYAnzvQfvLJJ3P99dfnpptuyrRp08ohdlVVVU455ZQceeSR2WyzzT53oQAAAAAAAACsWZYr0H7jjTdyww035Prrr8/zzz+fJCmKIm3atMnBBx+cn//852nTpk1+8IMfrNBiAQAAAAAAAFhzLHWg/cEHH+SWW27J9ddfnwcffDBFUaQoijRp0iSDBw/OEUcckT333DMNGzbMz3/+85VZMwAAAAAAAABrgKUOtNu3b5+5c+emKIrUr18/u+yyS4444ogccMABad68+cqsEQAAAAAAAIA10FIH2nPmzEmpVEqbNm3yk5/8JIceemhKpdLKrA0AAAAAAACANVi9pe3Yo0ePFEWRd999N0ceeWTWX3/9nHrqqXniiSdWZn0AAAAAAAAArKGWOtB++umn8+STT+bb3/52OnTokEmTJuXyyy/PNttsk27duuX888/Pyy+/vDJrBQAAAAAAAGANstSBdpL06tUrl156aV5//fXcd999OfTQQ9OkSZO89NJLGT58eLp165att956ZdUKAAAAAAAAwBpkmQLt8kr16mW33XbLDTfckKlTp+a6667LwIEDUyqVyqcgnzZtWnbZZZeMGjUq77///gotGgAAAAAAAIDV33IF2h/XrFmzHH300Rk7dmxee+21XHTRRdl8882zaNGiPPDAAznuuOPSoUOHHHbYYSuiXgAAAAAAAADWEJ870P64jh075vTTT89TTz2Vv//97zn55JPTvn37zJkzJ7/97W9X5FAAAAAAAAAArOZWaKD9cb17986PfvSjvPHGG7n33nvN0AYAAAAAAABgmTRY2QPUq1cve+yxR/bYY4+VPRQAAAAAAAAAq5GVNkMbAAAAAAAAAD4PgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUJIE2AAAAAAAAABVJoA0AAAAAAABARRJoAwAAAAAAAFCRBNoAAAAAAAAAVCSBNgAAAAAAAAAVSaANAAAAAAAAQEUSaAMAAAAAAABQkQTaAAAAAAAAAFQkgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUJIE2AAAAAAAAABVJoA0AAAAAAABARRJoAwAAAAAAAFCRBNoAAAAAAAAAVCSBNgAAAAAAAAAVSaANAAAAAAAAQEUSaAMAAAAAAABQkQTaAAAAAAAAAFQkgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUJIE2AAAAAAAAABVJoA0AAAAAAABARRJoAwAAAAAAAFCRBNoAAAAAAAAAVCSBNgAAAAAAAAAVSaANAAAAAAAAQEUSaAMAAAAAAABQkQTaAAAAAAAAAFQkgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUJIE2AAAAAAAAABVJoA0AAAAAAABARRJoAwAAAAAAAFCRBNoAAAAAAAAAVCSBNgAAAAAAAAAVSaANAAAAAAAAQEUSaAMAAAAAAABQkQTaAAAAAAAAAFQkgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUJIE2AAAAAAAAABVJoA0AAAAAAABARRJoAwAAAAAAAFCRBNoAAAAAAAAAVCSBNgAAAAAAAAAVSaANAAAAAAAAQEUSaAMAAAAAAABQkQTaAAAAAAAAAFQkgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUJIE2AAAAAAAAABVJoA0AAAAAAABARRJoAwAAAAAAAFCRBNoAAAAAAAAAVCSBNgAAAAAAAAAVSaANAAAAAAAAQEUSaAMAAAAAAABQkQTaAAAAAAAAAFQkgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUJIE2AAAAAAAAABVJoA0AAAAAAABARRJoAwAAAAAAAFCRBNoAAAAAAAAAVCSBNgAAAAAAAAAVSaANAAAAAAAAQEUSaAMAAAAAAABQkQTaAAAAAAAAAFQkgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUJIE2AAAAAAAAABVJoA0AAAAAAABARRJoAwAAAAAAAFCRBNoAAAAAAAAAVCSBNgAAAAAAAAAVSaANAAAAAAAAQEUSaAMAAAAAAABQkQTaAAAAAAAAAFQkgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUJIE2AAAAAAAAABVJoA0AAAAAAABARRJoAwAAAAAAAFCRBNoAAAAAAAAAVCSBNgAAAAAAAAAVSaANAAAAAAAAQEUSaAMAAAAAAABQkQTaAAAAAAAAAFQkgTYAAAAAAAAAFUmgDQAAAAAAAEBFWuMC7blz5+b8889P9+7d06RJk6y99trZb7/98uijj66Q7RdFkZ122imlUimlUil/+ctfVsh2AQAAAAAAANY0a1SgPWvWrOy4444ZOnRo/v3vf2ezzTZLVVVV7rzzzuy44465+eabP/cYI0eOzMMPP7wCqgUAAAAAAABYs61Rgfapp56aJ554Iptuumn+9a9/5e9//3tee+21XHzxxVm4cGGOPfbYvP7668u9/bfeeitnnHFGttxyy3Tq1GkFVg4AAAAAAACw5lljAu3Jkydn5MiRSZJrr702G264YZKkXr16Of300zNo0KDMmTMnP/zhD5d7jG9/+9t59913c/XVV6d+/forpG4AAAAAAACANdUaE2jfeeedWbBgQTbbbLNsv/32iy0/7rjjkiS33HLLcm1/7NixueGGG3L88cdnu+22+1y1AgAAAAAAALAGBdqPPvpokqRfv361Lq9unzRp0jKfdnzu3Lk58cQT07Zt21x00UWfr1AAAAAAAAAAkiQN6rqA/5aXXnopSbLRRhvVuny99dZLo0aN8uGHH+all17K+uuvv9Tb/v73v5+XX345v/zlL7PWWmstc23z5s3LvHnzyvdnzpy5zNsAAAAAAAAAWN2sMTO033333SRJmzZtal1eKpXSunXrGn2XxvPPP59LLrkkO+ywQ4499tjlqu3CCy9Mq1atyrdlCdMBAAAAAAAAVldrTKA9d+7cJEmjRo2W2KeqqipJMmfOnKXaZlEUOeGEE7Jw4cJcffXVKZVKy1XbWWedlRkzZpRvy3rKcwAAAAAAAIDV0SpxyvHTTz89d9555zKvd91112X77bdPkjRu3DhJ8uGHHy6xf/Vpv5s0abJU2x85cmQefvjhnHTSSenVq9cy11etqqqqHKYDAAAAAAAA8JFVItCeNGlSXnzxxWVeb9asWeV/V59qfEmnEy+KIu+9916Nvp/m3XffzRlnnJF11103559//jLXBgAAAAAAAMCnWyVOOT569OgURbHMt1133bW8ja5duyZJ/vOf/9Q6xptvvlmevV3d99O8+uqreeedd/Lee+/lC1/4Qjp06FDjVn3a8P322y8dOnTISSed9HkfBgAAAAAAAIA1yioxQ3tF2HbbbTNq1Kg88sgjtS6vbu/YsWPWX3/9pd7unDlzPvWa2++8806SZMaMGctQLQAAAAAAAACrxAztFWHfffdNgwYN8vzzz2f8+PGLLR85cmSS5MADD1yq7fXu3ftTZ4dvuOGGSZKHH344RVFk1KhRK2xfAAAAAAAAANYEa0yg3bFjxxxzzDFJkmOPPTavvvpqko+unX3JJZdkzJgxady4cU477bTF1t1xxx3TuXPn3HLLLf/VmgEAAAAAAADWZGvMKceT5NJLL83jjz+eJ598Ml/4whfSo0ePTJs2LW+++Wbq16+fX/7yl9lggw0WW++NN97Iq6++mg8++KAOqgYAAAAAAABYM60xM7STpEWLFnnkkUcybNiwdOnSJc8991zmzp2bffbZJw8//HCOOOKIui4RAAAAAAAAgP+vVBRFUddFUNPMmTPTqlWrzJgxIy1btqzrcgAAAIAKc+LwuXUy7k+HNq6TcQEAgNXLsuSha9QMbQAAAAAAAABWHQJtAAAAAAAAACqSQBsAAAAAAACAiiTQBgAAAAAAAKAiCbQBAAAAAAAAqEgCbQAAAAAAAAAqkkAbAAAAAAAAgIok0AYAAAAAAACgIgm0AQAAAAAAAKhIAm0AAAAAAAAAKpJAGwAAAAAAAICKJNAGAAAAAAAAoCIJtAEAAAAAAACoSAJtAAAAAAAAACqSQBsAAAAAAACAiiTQBgAAAAAAAKAiCbQBAAAAAAAAqEgCbQAAAAAAAAAqkkAbAAAAAAAAgIok0AYAAAAAAACgIgm0AQAAAAAAAKhIAm0AAAAAAAAAKpJAGwAAAAAAAICKJNAGAAAAAAAAoCIJtAEAAAAAAACoSAJtAAAAAAAAACqSQBsAAAAAAACAiiTQBgAAAAAAAKAiCbQBAAAAAAAAqEgCbQAAAAAAAAAqkkAbAAAAAAAAgIok0AYAAAAAAACgIgm0AQAAAAAAAKhIAm0AAAAAAAAAKpJAGwAAAAAAAICKJNAGAAAAAAAAoCIJtAEAAAAAAACoSAJtAAAAAAAAACqSQBsAAAAAAACAiiTQBgAAAAAAAKAiCbQBAAAAAAAAqEgCbQAAAAAAAAAqkkAbAAAAAAAAgIok0AYAAAAAAACgIgm0AQAAAAAAAKhIAm0AAAAAAAAAKpJAGwAAAAAAAICKJNAGAAAAAAAAoCIJtAEAAAAAAACoSAJtAAAAAAAAACqSQBsAAAAAAACAiiTQBgAAAAAAAKAiCbQBAAAAAAAAqEgCbQAAAAAAAAAqkkAbAAAAAAAAgIok0AYAAAAAAACgIgm0AQAAAAAAAKhIAm0AAAAAAAAAKpJAGwAAAAAAAICKJNAGAAAAAAAAoCIJtAEAAAAAAACoSAJtAAAAAAAAACqSQBsAAAAAAACAiiTQBgAAAAAAAKAiCbQBAAAAAAAAqEgCbQAAAAAAAAAqkkAbAAAAAAAAgIok0AYAAAAAAACgIgm0AQAAAAAAAKhIAm0AAAAAAAAAKpJAGwAAAAAAAICKJNAGAAAAAAAAoCIJtAEAAAAAAACoSAJtAAAAAAAAACqSQBsAAAAAAACAiiTQBgAAAAAAAKAiCbQBAAAAAAAAqEgCbQAAAAAAAAAqkkAbAAAAAAAAgIok0AYAAAAAAACgIgm0AQAAAAAAAKhIAm0AAAAAAAAAKpJAGwAAAAAAAICKJNAGAAAAAAAAoCIJtAEAAAAAAACoSAJtAAAAAAAAACqSQBsAAAAAAACAiiTQBgAAAAAAAKAiCbQBAAAAAAAAqEgCbQAAAAAAAAAqkkAbAAAAAAAAgIok0AYAAAAAAACgIgm0AQAAAAAAAKhIAm0AAAAAAAAAKpJAGwAAAAAAAICK1KCuC+DzKYoiCxcuzIIFC+q6FKBCNGzYMPXr16/rMgAAAAAAAD43gfYqqiiKvPfee3nrrbeycOHCui4HqDCtW7dOhw4dUiqV6roUAAAAAACA5SbQXkVNmTIl7733Xlq2bJmWLVumQYMGgisgRVFk9uzZmTZtWpJk3XXXreOKAAAAAAAAlp9AexW0cOHCzJgxI2uvvXbatWtX1+UAFaZJkyZJkmnTpmWdddZx+nEAAAAAAGCVVa+uC2DZzZ8/P0VRpFmzZnVdClChmjZtmuSj1wsAAAAAAIBVlUB7FeYU48CSeH0AAAAAAABWBwJtAAAAAAAAACqSQBsAAAAAAACAitSgrgtgxXtv6E/ruoS0Hn5iXZcAAAAAAAAArOLM0KbijBo1KqVSKY8//vgyrzt79uwMGzYs48aNW6b1pk6dmrPPPju9e/dOy5Yt06hRo3Tq1CkHHHBA7rzzzixcuHCZa1ke48aNS6lUWub6AQAAAAAAYHVkhjarldmzZ2f48OFJkgEDBizVOo8++mj23XffFEWRE088Mdttt12aN2+e1157LXfddVcOOOCAXHPNNTnuuONWYuUAAAAAAADAJwm0WaO999572X///dO8efM88sgjWXfddWssP/LII/PUU09l+vTpn7qdOXPmpHHjximVSiuzXAAAAAAAAFijOOU4q4QhQ4akefPmefnll7PXXnulefPmWX/99XPqqadm3rx5SZKJEydm7bXXTpIMHz48pVIppVIpQ4YMWeJ2f/GLX2Tq1KkZMWLEYmF2tZ49e2bgwIHl+9WnRP/Tn/6UY489NmuvvXaaNm2aefPm5eWXX84xxxyTrl27pmnTpllvvfWyzz775Omnn15suy+88EL22GOPNG3aNO3atcvXvva1vP/++4v1e/LJJzN48OCss846qaqqSseOHbP33nvnjTfeWJaHEAAAAAAAAFY5Zmizypg/f3723XffHHfccTn11FPz0EMP5Xvf+15atWqV8847L+uuu27uu+++7LHHHjnuuONy/PHHJ0k55K7NmDFjUr9+/ey1117LXM+xxx6bvffeO9dff31mzZqVhg0bZtKkSWnbtm0uuuiirL322nnnnXfyq1/9Kttuu22efPLJdOvWLclH1+zu379/GjZsmKuvvjrt27fPDTfckG9+85s1xpg1a1YGDRqULl265Kqrrkr79u0zZcqUPPDAA7WG3wAAAAAAALA6EWizyvjwww8zfPjwHHzwwUmSXXbZJY8//nhuvPHGnHfeeamqqkqfPn2SJJ06dcp22233mdt8/fXXyzOsP27RokVZtGhR+X69evVSr17NExrssssuueaaa2q07bTTTtlpp53K9xcuXJi99947PXr0yDXXXJMf/ehHSZLLLrssb731Vp588sn06tUrSbLnnntmt912y2uvvVZe/4UXXsj06dMzcuTI7LfffuX2L3/5y5+5bwAAAAAAALCqc8pxVhmlUin77LNPjbaePXvm1VdfXeFjnXLKKWnYsGH5tu+++y7W58ADD1ysbcGCBbngggvSvXv3NGrUKA0aNEijRo3y0ksv5fnnny/3e+CBB9KjR49ymF3t8MMPr3F/k002SZs2bXLGGWfkZz/7WZ577rkVtIcAAAAAAABQ+QTarDKaNm2axo0b12irqqrK3Llzl3ubG2ywQd56663Mnj27Rvupp56aCRMmZMKECUu8tnZt7aecckrOPffc7L///rnrrrvy2GOPZcKECenVq1fmzJlT7jd9+vR06NBhsfU/2daqVas8+OCD6d27d84+++z06NEjHTt2zNChQzN//vzl2WUAAAAAAABYZTjlOGu0QYMG5U9/+lPuvffeHHTQQeX29ddfP+uvv36SpFGjRrWuWyqVFmsbPXp0jjrqqFxwwQU12t9+++20bt26fL9t27aZMmXKYuvX1rbFFlvk5ptvTlEUeeqppzJq1Kicf/75adKkSc4888yl2k8AAAAAAABYFZmhzWqlqqoqSWrMhv40xx9/fNq3b5/TTz89kydP/tzjl0qlcg3V7rnnnrz55ps12gYOHJhnn302//znP2u033jjjZ+67V69euWyyy5L69at8/e///1z1wsAAAAAAACVzAxtVistWrTIhhtumN///vfZZZddstZaa6Vdu3bp3Llzrf1bt26dO+64I/vss0969eqVE088Mdttt12aN2+e6dOn56GHHsqUKVOyww47LNX4gwcPzqhRo7LpppumZ8+eeeKJJ3LJJZekU6dONfqdfPLJufbaa7P33nvn+9//ftq3b58bbrghL7zwQo1+d999d66++ursv//+2WijjVIURW677ba89957GTRo0HI9RgAAAAAAALCqEGivhloPP7GuS6hTI0eOzHe+853su+++mTdvXo4++uiMGjVqif232267PPPMM7niiityxx135NJLL82HH36YtddeO3369MkvfvGLHHbYYUs19hVXXJGGDRvmwgsvzAcffJCtttoqt912W84555wa/Tp06JAHH3wwJ510Uk488cQ0bdo0X/rSl/KTn/wk++23X7lf165d07p164wYMSKTJk1Ko0aN0q1bt4waNSpHH330cj0+AAAAAAAAsKooFUVR1HUR1DRz5sy0atUqM2bMSMuWLRdbPnfu3Lzyyivp0qVLGjduXAcVApXO6wQAAKzeThw+t07G/elQf18AAACf32floR/nGtoAAAAAAAAAVCSBNgAAAAAAAAAVSaANAAAAAAAAQEUSaAMAAAAAAABQkQTaAAAAAAAAAFQkgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUpAZ1XQAr3sP77FPXJeSLd91V1yUAAAAAAAAAqzgztKk4o0aNSqlUyuOPP77M686ePTvDhg3LuHHjlmm9qVOn5uyzz07v3r3TsmXLNGrUKJ06dcoBBxyQO++8MwsXLlzmWpbHuHHjUiqVlrn+leGUU05Jr169yvcfe+yxfOlLX8oGG2yQqqqqtG/fPttvv31OPfXUOqzysz333HMZNmxYJk6cuNiyAQMGZPPNN1/qbXmeAAAAAAAA/HcJtFmtzJ49O8OHD1+moO/RRx/NFltskV/84hfZd999c/PNN2fs2LG56KKL0rBhwxxwwAEZNWrUSqu5Ut1222058MADkyT33HNPdthhh8ycOTMjRozIn/70p1xxxRXp169ffvOb39RxpZ/uueeey/Dhw2sNtJeF5wkAAAAAAMB/n1OOs0Z77733sv/++6d58+Z55JFHsu6669ZYfuSRR+app57K9OnTP3U7c+bMSePGjVMqlVZmuf81EyZMyKuvvloOtEeMGJEuXbrkj3/8Yxo0+L+XjUMPPTQjRoyoqzL/azxPAAAAAAAA6oYZ2qwShgwZkubNm+fll1/OXnvtlebNm2f99dfPqaeemnnz5iVJJk6cmLXXXjtJMnz48JRKpZRKpQwZMmSJ2/3FL36RqVOnZsSIEYuFlNV69uyZgQMHlu9XnxL9T3/6U4499tisvfbaadq0aebNm5eXX345xxxzTLp27ZqmTZtmvfXWyz777JOnn356se2+8MIL2WOPPdK0adO0a9cuX/va1/L+++8v1u/JJ5/M4MGDs84666SqqiodO3bM3nvvnTfeeGOJ+3XVVVelXr16mTZtWrnt0ksvTalUyje+8Y1y26JFi9KmTZvFTht+6623plu3bunRo0eSZPr06WnXrl2NMLtavXo1X0Y6d+6cwYMH5+67786WW26ZJk2aZLPNNsvdd99dfvw222yzNGvWLNtss02tp5a/8847s/3226dp06Zp0aJFBg0alPHjxy/W7y9/+Ut22WWXtGjRIk2bNs0OO+yQe+65p7x81KhROfjgg5MkAwcOLD8nPjmTesKECfniF7+Ypk2bZqONNspFF12URYsWlZevCs8TAAAAAACA1ZFAm1XG/Pnzs++++2aXXXbJ73//+xx77LG57LLLcvHFFydJ1l133dx3331JkuOOOy7jx4/P+PHjc+655y5xm2PGjEn9+vWz1157LXM9xx57bBo2bJjrr78+t9xySxo2bJhJkyalbdu2ueiii3LfffflqquuSoMGDbLtttvmxRdfLK87derU9O/fP88880yuvvrqXH/99fnggw/yzW9+s8YYs2bNyqBBgzJ16tRcddVVGTNmTC6//PJssMEGnxpq7rrrrimKIvfff3+5bezYsWnSpEnGjBlTbnv88cfz3nvvZdddd62x/q233lqenZ0k22+/fR577LF861vfymOPPZb58+d/6mPzz3/+M2eddVbOOOOM3HbbbWnVqlUOOOCADB06NL/85S9zwQUX5IYbbsiMGTMyePDgzJkzp7zujTfemP322y8tW7bMTTfdlJEjR+bdd9/NgAED8pe//KXc78EHH8zOO++cGTNmZOTIkbnpppvSokWL7LPPPuXToO+999654IILknwU8lc/J/bee+/ydqZMmZIjjjgiRx55ZO68887sueeeOeusszJ69Ohyn0p/ngAAAAAAAKyunHKcVcaHH36Y4cOHl2fc7rLLLnn88cdz44035rzzzktVVVX69OmTJOnUqVO22267z9zm66+/Xp45+3GLFi2qMUO3Xr16i81E3mWXXXLNNdfUaNtpp52y0047le8vXLgwe++9d3r06JFrrrkmP/rRj5Ikl112Wd566608+eST6dWrV5Jkzz33zG677ZbXXnutvP4LL7yQ6dOnZ+TIkdlvv/3K7V/+8pc/db+6deuWTp06ZezYsTnssMPy4Ycf5uGHH863vvWtXHzxxXnttdeywQYbZOzYsWnYsGGNmv/5z3/m5ZdfrhFoX3TRRXnhhRdy5ZVX5sorr0zDhg2z9dZbZ5999sk3v/nNNG/evMb406dPz6OPPpr11lsvSdKxY8f07t07v/jFL/Lyyy+XH+9SqZT9998/Y8eOzT777JNFixblO9/5TrbYYov84Q9/KD/me+21VzbeeOOcccYZeeSRR5IkZ555Ztq0aZNx48aVxx88eHB69+6d0047LV/+8pez9tprp2vXrkmS7t271/qcmD59eu69995ss802ST76McC4ceNy44035qijjkpS+c8TAAAAAACA1ZUZ2qwySqVS9tlnnxptPXv2zKuvvrrCxzrllFPSsGHD8m3fffddrM/HA99qCxYsyAUXXJDu3bunUaNGadCgQRo1apSXXnopzz//fLnfAw88kB49epRDymqHH354jfubbLJJ2rRpkzPOOCM/+9nP8txzzy31Puyyyy4ZO3ZskuSvf/1rZs+enVNOOSXt2rUrz9IeO3Zstt9++zRr1qy83q233prOnTtnq622Kre1bds2Dz/8cCZMmJCLLroo++23X/71r3/lrLPOyhZbbJG33367xti9e/cuh9lJstlmmyVJBgwYUCMUrm6v/j988cUXM2nSpHzlK1+pEQw3b948Bx54YB599NHMnj07s2bNymOPPZaDDjqoRphev379fOUrX8kbb7xRY6bzp+nQoUM5zK62tM+rSnmeAAAAAAAArK4E2qwymjZtmsaNG9doq6qqyty5c5d7mxtssEHeeuutzJ49u0b7qaeemgkTJmTChAlLvGZybe2nnHJKzj333Oy///6566678thjj2XChAnp1atXjdNqT58+PR06dFhs/U+2tWrVKg8++GB69+6ds88+Oz169EjHjh0zdOjQzzzt96677prXXnstL730UsaOHZstt9wy66yzTnbeeeeMHTs2c+bMyV//+tfFTjd+yy231BrCJknfvn1zxhln5He/+10mTZqUb3/725k4cWJGjBhRo99aa61V436jRo0+tb36/3D69OlJan9sO3bsmEWLFuXdd9/Nu+++m6Ioltjv49v6LG3btl2sraqqqsb/V6U/TwAAAAAAAFZXAm3WaIMGDcrChQtz77331mhff/3107dv3/Tt27ccun5SqVRarG306NE56qijcsEFF2T33XfPNttsk759+y42g7lt27aZMmXKYuvX1rbFFlvk5ptvzvTp0/OPf/wjhxxySM4///xceumln7pvu+yyS5KPZmGPGTMmgwYNKrfff//9eeihhzJv3rwagfbzzz+f559/fomB9sc1bNgwQ4cOTZI888wzn9l/aVSHy5MnT15s2aRJk1KvXr20adMmbdq0Sb169ZbYL0natWu3QmpKVo3nCQAAAAAAwOpIoM1qpaqqKklqzHL9NMcff3zat2+f008/vdZwdFmVSqVyDdXuueeevPnmmzXaBg4cmGeffTb//Oc/a7TfeOONn7rtXr165bLLLkvr1q3z97///VNrWXfdddO9e/fceuuteeKJJ8qB9qBBg/LWW2/lRz/6UVq2bJmtt966vM6tt96ajh07Lnat6SU9NtWnx66eFf15devWLeutt15uvPHGFEVRbp81a1ZuvfXWbL/99mnatGmaNWuWbbfdNrfddluN/+tFixZl9OjR6dSpU77whS8kWfbnRG1WpecJAAAAAADA6qRBXRcAK1KLFi2y4YYb5ve//3122WWXrLXWWmnXrl06d+5ca//WrVvnjjvuyD777JNevXrlxBNPzHbbbZfmzZtn+vTpeeihhzJlypTssMMOSzX+4MGDM2rUqGy66abp2bNnnnjiiVxyySXp1KlTjX4nn3xyrr322uy99975/ve/n/bt2+eGG27ICy+8UKPf3Xffnauvvjr7779/NtpooxRFkdtuuy3vvfdeOaD+NLvsskuuvPLKNGnSJP369UuSdOnSJV26dMmf/vSn7LvvvmnQ4P9eBm655ZYccMABi80q3n333dOpU6fss88+2XTTTbNo0aL84x//yKWXXprmzZvnpJNOWqrH57PUq1cvI0aMyBFHHJHBgwfnhBNOyLx583LJJZfkvffey0UXXVTue+GFF2bQoEEZOHBgTjvttDRq1ChXX311nnnmmdx0003lfdh8882TJD//+c/TokWLNG7cOF26dKn1VONLUunPEwAAAAAAgNWVQHs19MW77qrrEurUyJEj853vfCf77rtv5s2bl6OPPjqjRo1aYv/tttsuzzzzTK644orccccdufTSS/Phhx9m7bXXTp8+ffKLX/wihx122FKNfcUVV6Rhw4a58MIL88EHH2SrrbbKbbfdlnPOOadGvw4dOuTBBx/MSSedlBNPPDFNmzbNl770pfzkJz/JfvvtV+7XtWvXtG7dOiNGjMikSZPSqFGjdOvWLaNGjcrRRx/9mfXsuuuuufLKK7PjjjvWuP74rrvuml/84hc1Tjf+73//O//85z9z+eWXL7adc845J7///e9z2WWXZfLkyZk3b17WXXfd7LrrrjnrrLOy2WabLdXjszQOP/zwNGvWLBdeeGEOOeSQ1K9fP9ttt10eeOCBGoFx//798+c//zlDhw7NkCFDsmjRovTq1St33nlnBg8eXO7XpUuXXH755bniiisyYMCALFy4MNddd12GDBmyTHVV8vMEAAAAAABgdVUqPn5eXyrCzJkz06pVq8yYMSMtW7ZcbPncuXPzyiuvpEuXLjVCSvg8RowYkR/+8IeZPHly6tevX9fl8Dl5nQAAgNXbicPn1sm4Px3q7wsAAODz+6w89OPWuGtoz507N+eff366d++eJk2aZO21185+++2XRx999HNt97333svQoUPTq1evtGzZMs2bN0+3bt1y7LHH5qmnnlpB1cPKc/rpp2fatGnCbAAAAAAAACrGGnXK8VmzZqV///554okn0qhRo/To0SPTpk3LnXfemXvuuSejR4/OoYceuszbffLJJ7PXXntlypQpqaqqyqabbpokee2113Lddddlq622Ss+ePVf07gAAAAAAAACs1taoGdqnnnpqnnjiiWy66ab517/+lb///e957bXXcvHFF2fhwoU59thj8/rrry/TNidNmpRBgwZl6tSpGTZsWKZPn55//OMf+cc//pF33nkn//jHPzJw4MCVtEcAAAAAAAAAq681JtCePHlyRo4cmSS59tprs+GGGyZJ6tWrl9NPPz2DBg3KnDlz8sMf/nCZtnvKKadk+vTpOe+88zJ06NA0a9asxvJevXqlR48eK2YnAAAAAAAAANYga0ygfeedd2bBggXZbLPNsv322y+2/LjjjkuS3HLLLUu9zTfffDO33HJLWrVqle985zsrrFYAAAAAAAAA1qBraD/66KNJkn79+tW6vLp90qRJef3117P++ut/5jbvvffeLFy4MAMHDkz9+vVz1VVXZezYsfnggw+y4YYb5oADDshee+214nYCAAAAAAAAYA2yxgTaL730UpJko402qnX5euutl0aNGuXDDz/MSy+9tFSB9hNPPJEkad++fbbZZps8/fTTNZaPHDkyX/rSl3LTTTelqqpqiduZN29e5s2bV74/c+bMzxwbAAAAAAAAYHW3xpxy/N13302StGnTptblpVIprVu3rtH3s0yePDnJR9fkfv7553P55ZfnnXfeycyZM/PLX/4yTZo0ye23356zzjrrU7dz4YUXplWrVuXb0oTpAAAAAAAAAKu7NSbQnjt3bpKkUaNGS+xTPYt6zpw5S7XNWbNmJUnmz5+fs846KyeddFLatGmTFi1a5LjjjstFF12UJLn66qvz1ltvLXE7Z511VmbMmFG+vf7660s1PgAAAAAAAMDqbJU45fjpp5+eO++8c5nXu+6667L99tsnSRo3bpwk+fDDD5fYv/q0302aNFmq7VdvM0lOOumkxZafcMIJOeusszJ79uyMGzcuBx98cK3bqaqq+tRTkgMAAAAAAACsiVaJQHvSpEl58cUXl3m96hnUyf+danxJpxMviiLvvfdejb6fpbpfu3bt0rZt28WWV1VVpUuXLnn22WczceLEZaj887ng2en/tbGW5Oweiz8eS2vUqFE55phjyverqqrSunXrbLbZZtltt91y3HHHZZ111lkRZX5u1bVOmDAhffv2rbXPxIkT06VLl1x33XUZMmRIuf03v/lNzj///PznP//J3Llz8+STT+avf/1rmjZtWqMfAAAAAAAArKlWiVOOjx49OkVRLPNt1113LW+ja9euSZL//Oc/tY7x5ptvlmdvV/f9LN26dUuST51dXb1s4cKFS7VN/s91112X8ePHZ8yYMbnqqqvSu3fvXHzxxdlss80yduzYui5vqa277roZP3589t5773LbW2+9la985SvZeOONc99992X8+PH5whe+kKuvvjqjRo2qu2IBAAAAAACggqwSM7RXhG233TajRo3KI488Uuvy6vaOHTtm/fXXX6ptVp/OfPLkyZk7d26NU5BXe+WVV5Ik66233vKUvUbbfPPNa8x6PvDAA/Ptb387O+64Yw444IC89NJLad++fR1WuHSqqqqy3Xbb1Wj717/+lfnz5+fII49M//7966gyAAAAAAAAqGyrxAztFWHfffdNgwYN8vzzz2f8+PGLLR85cmSSj0LTpdW/f/+ss846WbRoUa6//vrFlt9xxx159913U69evQwYMGC5a+f/bLDBBrn00kvz/vvv55prrim3P/7449l3332z1lprpXHjxtlyyy3z29/+drH1p0yZkhNOOCGdOnVKo0aN0qVLlwwfPjwLFiwo95k4cWJKpVJGjBiRH/zgB9lggw3SuHHj9O3bN/fff/8y11y9veqZ10OGDMmOO+6YJDnkkENSKpUyYMCAdO7cOc8++2wefPDBlEqllEqldO7ceZnHAwAAAAAAgNXFGhNod+zYsXxd5mOPPTavvvpqko+unX3JJZdkzJgxady4cU477bTF1t1xxx3TuXPn3HLLLTXaGzRokHPPPTdJcs455+SJJ54oL3vhhRdy8sknJ0kOP/zwpZ71zWfba6+9Ur9+/Tz00ENJkgceeCD9+vXLe++9l5/97Gf5/e9/n969e+eQQw6pcfruKVOmZJtttskf//jHnHfeefnDH/6Q4447LhdeeGH+53/+Z7FxfvKTn+S+++7L5ZdfntGjR6devXrZc889a/1BxLI499xzc9VVVyVJLrjggowfPz5XX311br/99my00UbZcsstM378+IwfPz6333775xoLAAAAAAAAVmVrzCnHk+TSSy/N448/nieffDJf+MIX0qNHj0ybNi1vvvlm6tevn1/+8pfZYIMNFlvvjTfeyKuvvpoPPvhgsWXf+MY38uijj+aGG27I1ltvne7du6d+/fp55plnsmjRovTp0ydXXnnlf2P31hjNmjVLu3btMmnSpCTJ17/+9fTo0SN//vOf06DBR0/p3XffPW+//XbOPvvsHHXUUalXr16GDRuWd999N88++2z5/3mXXXZJkyZNctppp+U73/lOunfvXh5n4cKF5R86VG+zc+fOOe+88zJmzJjlrn/jjTcuj9O1a9capyNv0qRJWrZsudgpygEAAAAAAGBNtMbM0E6SFi1a5JFHHsmwYcPSpUuXPPfcc5k7d2722WefPPzwwzniiCOWeZulUimjR4/Oddddl+222y6vvfZa/vWvf6VHjx654IIL8vDDD6d169YrfmfWcEVRJElefvnlvPDCC+X/uwULFpRve+21VyZPnpwXX3wxSXL33Xdn4MCB6dixY41+e+65Z5LkwQcfrDHGAQccUOO66C1atMg+++yThx56KAsXLvxv7CYAAAAAAACs0daoGdrJRzNghw4dmqFDhy71OhMnTvzMPkOGDMmQIUOWvzCW2qxZszJ9+vRsscUWmTp1apLktNNOq/V08Uny9ttvJ0mmTp2au+66Kw0bNvzUftU6dOiwWJ8OHTrkww8/zAcffJBWrVp9nt0AAAAAAAAAPsMaF2iz6rvnnnuycOHCDBgwIO3atUuSnHXWWTnggANq7d+tW7ckSbt27dKzZ8/84Ac/qLVfx44da9yfMmXKYn2mTJmSRo0apXnz5p9nFwAAAAAAAIClINBmlfLaa6/ltNNOS6tWrXLCCSdk7bXXTteuXfPPf/4zF1xwwaeuO3jw4Nx7773ZeOON06ZNm88c67bbbssll1xSPu34+++/n7vuuitf/OIXU79+/RWyP59UVVWVOXPmrJRtAwAAAAAAwKpGoE3FeuaZZ8rXuZ42bVoefvjhXHfddalfv35uv/32rL322kmSa665JnvuuWd23333DBkyJOutt17eeeedPP/88/n73/+e3/3ud0mS888/P2PGjMkOO+yQb33rW+nWrVvmzp2biRMn5t57783PfvazdOrUqTx+/fr1M2jQoJxyyilZtGhRLr744sycOTPDhw9frNY///nPtZ6afq+99lqmfd5iiy1y88035ze/+U022mijNG7cOFtsscUybQMAAAAAAABWFwLt1dDZPdrWdQkrxDHHHJMkadSoUVq3bp3NNtssZ5xxRo4//vhymJ0kAwcOzN/+9rf84Ac/yMknn5x33303bdu2Tffu3fPlL3+53G/dddfN448/nu9973u55JJL8sYbb6RFixbp0qVL9thjj8VmbX/zm9/M3Llz861vfSvTpk1Ljx49cs8996Rfv36L1XrGGWfUug+vvPLKMu3z8OHDM3ny5PzP//xP3n///Wy44YZLdQ13AAAAAAAAWB2ViqIo6roIapo5c2ZatWqVGTNmpGXLlostnzt3bl555ZV06dKlfDpsVpyJEyemS5cuueSSS3LaaafVdTmwXLxOAADA6u3E4XPrZNyfDvX3BQAA8Pl9Vh76cfX+SzUBAAAAAAAAwDIRaAMAAAAAAABQkVxDGz6hc+fOcSZ+AAAAAAAAqHtmaAMAAAAAAABQkQTaAAAAAAAAAFQkgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUJIE2AAAAAAAAABWpQV0XwIp34vC5dV1Cfjq0cV2XAAAAAAAAAKzizNCmoj311FM57rjjsvHGG6dJkyZp0qRJunbtmhNOOCGPP/74f6WGYcOGpVQq1Wjr3LlzhgwZslLH/etf/5phw4blvffeW2zZ/Pnzc80112TrrbfOWmutlaZNm2bDDTfMfvvtl9tvv73cb+LEiSmVSvnhD39Y6xg//OEPUyqVMnHixFqXH3DAASmVSvnmN79Z6/Jx48alVCqVb/Xr10/79u1z8MEH5/nnn1/mfQYAAAAAAICPE2hTsa655pr06dMnjz32WE466aTcfffdueeee3LyySfn2WefzdZbb51///vfdVLb7bffnnPPPXeljvHXv/41w4cPrzXQ/spXvpL//d//zcCBAzN69OjcddddOeecc9KgQYP88Y9/XCHjT5s2LXfffXeS5IYbbsjcuUue+X/BBRdk/PjxeeCBB3LGGWdkzJgx6devX958880VUgsAAAAAAABrJqccpyI98sgj+frXv5699947t9xySxo1alRetvPOO+cb3/hGfve736VJkyZL3Mbs2bPTtGnTlVLflltuuVK2uzReeeWV/OY3v8l5552X4cOHl9t32WWX/M///E8WLVq0Qsb59a9/nfnz52fvvffOPffck9tuuy2HH354rX27du2a7bbbLkmy0047pXXr1jnuuOMyatSofPe7310h9QAAAAAAALDmMUObinTBBRekfv36ueaaa2qE2R938MEHp2PHjkmSIUOGpHnz5nn66aez2267pUWLFtlll12SJGPGjMl+++2XTp06pXHjxtlkk01ywgkn5O23315sm/fcc0969+6dqqqqdOnSZYmn6q7tlOMzZ87Maaedli5duqRRo0ZZb731cvLJJ2fWrFk1+lWfwvv666/PZpttlqZNm6ZXr17l2dDJR6c5/853vpMk6dKlS/mU3uPGjcv06dOTJOuuu26ttdWrt2IO62uvvTbt27fPr371qzRp0iTXXnvtUq9bHW6/+uqrK6QWAAAAAAAA1kxmaFNxFi5cmAceeCB9+/ZdYmhbmw8//DD77rtvTjjhhJx55plZsGBBkuTf//53tt9++xx//PFp1apVJk6cmB/96EfZcccd8/TTT6dhw4ZJkvvvvz/77bdftt9++9x8881ZuHBhRowYkalTp37m2LNnz07//v3zxhtv5Oyzz07Pnj3z7LPP5rzzzsvTTz+dsWPH1rgO9z333JMJEybk/PPPT/PmzTNixIh86UtfyosvvpiNNtooxx9/fN55551ceeWVue2228qPQ/fu3VO/fv20bt06w4cPT7169bLbbrulc+fOn1rfokWLyo/HJ9tr89e//jXPP/98vvOd76Rt27Y58MADc8MNN+SVV15Jly5dPvPxePnll5Mka6+99mf2BQAAAAAAgCURaFNx3n777cyZMycbbrjhYssWLlyYoijK9+vXr18OiufPn5/zzjsvxxxzTI11vva1r5X/XRRFdthhhwwYMCAbbrhh/vCHP2TfffdNknz3u99N+/btM2bMmDRu3DhJsvvuu39mWJwkP/7xj/PUU0/lscceS9++fZN8dArw9dZbLwcddFDuu+++7LnnnuX+c+bMydixY9OiRYskyVZbbZWOHTvmt7/9bc4888x06tQpG2ywQZKPTm/+yRpuuOGGHH300TnhhBOSJG3bts3OO++cr3zlK9lnn30Wq++MM87IGWec8Zn7UW3kyJFJkmOPPTZJctxxx2X06NG57rrrcv755y/Wvzownz9/fh5//PGceuqpqV+/fg455JClHhMAAAAAAAA+ySnHWaX06dMnDRs2LN8uvfTSGssPPPDAxdaZNm1avva1r2X99ddPgwYN0rBhw3JY/vzzzydJZs2alQkTJuSAAw4oh9lJ0qJFi1oD4k+6++67s/nmm6d3795ZsGBB+bb77ruXTxX+cQMHDiyH2UnSvn37rLPOOkt9iu699torr732Wm6//facdtpp6dGjR+64447su++++eY3v7lY/5NOOikTJkxY7HbSSSct1veDDz7Ib3/72+ywww7ZdNNNkyT9+/fPxhtvnFGjRtU6q/uQQw5Jw4YN07Rp0+y0005ZuHBhbrnllvTs2XOp9gcAAAAAAABqY4Y2Faddu3Zp0qRJreHujTfemNmzZ2fy5MnlmdXVmjZtmpYtW9ZoW7RoUXbbbbdMmjQp5557brbYYos0a9YsixYtynbbbZc5c+YkSd59990sWrQoHTp0WGzM2to+aerUqXn55ZfLpy//pE9er7tt27aL9amqqirXszSaNGmS/fffP/vvv3+S5LXXXsuee+6Zq666KieeeGJ69OhR7tupU6fyzPGP+2TQniS/+c1v8sEHH+TLX/5y3nvvvXL7l7/85Vx44YUZM2ZMdt999xrrXHzxxdl5551Tv379tGvXLuuvv/5S7wcAAAAAAAAsiUCbilO/fv3svPPO+dOf/pTJkyfXuI529+7dkyQTJ05cbL2PX6O62jPPPJN//vOfGTVqVI4++uhye/U1nqu1adMmpVIpU6ZMWWwbtbV9UnUIf+211y5x+cq2wQYb5Ktf/WpOPvnkPPvsszUC7WVRfbrxk08+OSeffHKtyz8ZaG+00Ua1BuYAAAAAAADweQi0qUhnnXVW/vCHP+RrX/tabrnlliXOfP4s1SF3VVVVjfZrrrmmxv1mzZplm222yW233ZZLLrmkfNrx999/P3fddddnjjN48OBccMEFadu2bbp06bJctX5Sdc2fnLX9/vvvp1QqpXnz5outU30K9Y4dOy7XmM8//3zGjx+fAw88sNZTl3//+9/P73//+0yfPr3WWeYAAAAAAACwIgm0qUj9+vXLVVddlf/93//NVlttla9+9avp0aNH6tWrl8mTJ+fWW29NksVOMf5Jm266aTbeeOOceeaZKYoia621Vu66666MGTNmsb7f+973sscee2TQoEE59dRTs3Dhwlx88cVp1qxZ3nnnnU8d5+STT86tt96anXbaKd/+9rfTs2fPLFq0KK+99lr+9Kc/5dRTT8222267TI/BFltskSS54oorcvTRR6dhw4bp1q1bXnzxxey+++459NBD079//6y77rp59913c8899+TnP/95BgwYkB122GGZxqpWPTv79NNPzzbbbLPY8vfffz/3339/Ro8eXev1twEAAAAAAGBFEmivhn46tHFdl7BCfO1rX8v222+fK664IpdddlkmTZqUUqmUTp06ZYcddsj999+fnXfe+VO30bBhw9x111056aSTcsIJJ6RBgwbZddddM3bs2GywwQY1+g4aNCh33HFHzjnnnBxyyCHp0KFDvv71r2fOnDkZPnz4p47TrFmzPPzww7nooovy85//PK+88kqaNGmSDTbYILvuums6d+68zPs/YMCAnHXWWfnVr36VX/ziF1m0aFEeeOCB9O7dO6ecckr+/Oc/5/e//33eeuutNGzYMF27ds33v//9nHLKKalXr94yjzd//vxcf/316d27d61hdpLstdde6dSpU0aOHCnQBgAAAAAAYKUrFUVR1HUR1DRz5sy0atUqM2bMqHUG8ty5c/PKK6+kS5cu5VNjA3yc1wkAAFi9nTh8bp2Mu7r8iB4AAKhbn5WHftyyT+MEAAAAAAAAgP8CgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUJIE2AAAAAAAAABVJoA0AAAAAAABARRJoAwAAAAAAAFCRBNoAAAAAAAAAVKQGdV0AK95eY86v6xJy76Dz6roEAAAAAAAAYBVnhjYVZ9SoUSmVSrXeTjvttJUy5nPPPZdhw4Zl4sSJK2X7K8rTTz+dUqmUhg0bZvLkybX26dy5cwYPHvyZ25o4cWJKpVJGjRq1zHVMmjQpw4YNyz/+8Y/Flg0bNiylUmmZtwkAAAAAAACfZIY2Feu6667LpptuWqOtY8eOK2Ws5557LsOHD8+AAQPSuXPnlTLGivDLX/4ySbJgwYL8+te/zhlnnFEndUyaNCnDhw9P586d07t37xrLjj/++Oyxxx51UhcAAAAAAACrF4E2FWvzzTdP375967qMz2X+/PkplUpp0ODzH2rz5s3LDTfckF69euXtt9/OtddeW2eB9qfp1KlTOnXqVNdlAAAAAAAAsBpwynFWWb/5zW+y/fbbp1mzZmnevHl23333PPnkkzX6PP744zn00EPTuXPnNGnSJJ07d85hhx2WV199tdxn1KhROfjgg5MkAwcOLJ/evPpU3J07d86QIUMWG3/AgAEZMGBA+f64ceNSKpVy/fXX59RTT816662XqqqqvPzyy0mSsWPHZpdddknLli3TtGnT9OvXL/fff/9S7+8dd9yR6dOn5/jjj8/RRx+df/3rX/nLX/6yxP633357evbsmcaNG2ejjTbKj3/8488c4+WXX84xxxyTrl27pmnTpllvvfWyzz775Omnn66xn1tvvXWS5Jhjjik/XsOGDUtS+ynHFy1alBEjRmTTTTdNVVVV1llnnRx11FF54403avQbMGBANt9880yYMCFf/OIX07Rp02y00Ua56KKLsmjRoqV9qAAAAAAAAFhNCLSpWAsXLsyCBQtq3KpdcMEFOeyww9K9e/f89re/zfXXX5/3338/X/ziF/Pcc8+V+02cODHdunXL5Zdfnj/+8Y+5+OKLM3ny5Gy99dZ5++23kyR77713LrjggiTJVVddlfHjx2f8+PHZe++9l6vus846K6+99lp+9rOf5a677so666yT0aNHZ7fddkvLli3zq1/9Kr/97W+z1lprZffdd1/qUHvkyJGpqqrKEUcckWOPPTalUikjR46ste8//vGPnHzyyfn2t7+d22+/PTvssENOOumk/PCHP/zUMSZNmpS2bdvmoosuyn333ZerrroqDRo0yLbbbpsXX3wxSbLVVlvluuuuS5Kcc8455cfr+OOPX+J2TzzxxJxxxhkZNGhQ7rzzznzve9/Lfffdlx122KH8/1BtypQpOeKII3LkkUfmzjvvzJ577pmzzjoro0ePXqrHCQAAAAAAgNWHU45TsbbbbrvF2ubPn5/Jkydn6NCh+eY3v1lj1vGgQYPStWvXDB8+PL/5zW+SJAcddFAOOuigcp+FCxdm8ODBad++fW688cZ861vfytprr52uXbsmSbp3717ruMti4403zu9+97vy/dmzZ+ekk07K4MGDc/vtt5fb99prr2y11VY5++yz89hjj33qNl999dXcf//9+fKXv5w2bdqkTZs22WmnnfK73/0uP/7xj9OiRYsa/SdNmpQnn3wyvXr1SpLsueeemTZtWr73ve/l61//epo2bVrrODvttFN22mmn8v2FCxdm7733To8ePXLNNdfkRz/6UVq2bJnNN9+8vK+f9Xi98MIL+fnPf56vf/3rufLKK8vtW265Zbbddttcdtll+cEPflBunz59eu69995ss802SZJdd90148aNy4033pijjjrqU8cCAAAAAABg9WKGNhXr17/+dSZMmFDj1qBBg/zxj3/MggULctRRR9WYvd24ceP0798/48aNK2/jgw8+yBlnnJFNNtkkDRo0SIMGDdK8efPMmjUrzz///Eqp+8ADD6xx/69//WveeeedHH300TXqXbRoUfbYY49MmDAhs2bN+tRtXnfddVm0aFGOPfbYctuxxx6bWbNmlcP7j+vRo0c5zK52+OGHZ+bMmfn73/++xHEWLFiQCy64IN27d0+jRo3SoEGDNGrUKC+99NJyP14PPPBAkix22vZtttkmm2222WIz1Dt06FAOs6v17NmzxmniAQAAAAAAWDOYoU3F2myzzdK3b9/F2qdOnZok5es4f1K9ev/3O43DDz88999/f84999xsvfXWadmyZUqlUvbaa6/MmTNnpdS97rrr1lrvx2eKf9I777yTZs2a1bps0aJFGTVqVDp27Jg+ffrkvffeS/LRzOVmzZpl5MiRi53uu0OHDottp7pt+vTpS6zjlFNOyVVXXZUzzjgj/fv3T5s2bVKvXr0cf/zxy/14VY/3ycclSTp27LhYUN22bdvF+lVVVa20/y8AAAAAAAAql0CbVU67du2SJLfccks23HDDJfabMWNG7r777gwdOjRnnnlmuX3evHl55513lnq8xo0bZ968eYu1v/322+VaPq5UKtVa75VXXrnE03O3b99+ieOPHTu2HPrWFvY++uijee6559K9e/dy25QpUxbrV91W2zaqjR49OkcddVT5muLV3n777bRu3XqJ632a6vEmT56cTp061Vg2adKkWh9DAAAAAAAASATarIJ23333NGjQIP/+978XO733x5VKpRRFkaqqqhrtv/zlL7Nw4cIabdV9apsF3Llz5zz11FM12v71r3/lxRdfXKowtl+/fmndunWee+65fPOb3/zM/p80cuTI1KtXL7fddltatWpVY9kbb7yRr3zlK7n22mvzwx/+sNz+7LPP5p///GeN047feOONadGiRbbaaqsljlUqlRZ7vO655568+eab2WSTTcptn/Z4fdLOO++c5KOw/OOz6idMmJDnn38+3/3udz9zGwAAAAAAAKyZBNqscjp37pzzzz8/3/3ud/Of//wne+yxR9q0aZOpU6fmb3/7W5o1a5bhw4enZcuW2WmnnXLJJZekXbt26dy5cx588MGMHDlysdnGm2++eZLk5z//eVq0aJHGjRunS5cuadu2bb7yla/kyCOPzNe//vUceOCBefXVVzNixIisvfbaS1Vv8+bNc+WVV+boo4/OO++8k4MOOijrrLNO3nrrrfzzn//MW2+9lZ/+9Ke1rjt9+vT8/ve/z+6775799tuv1j6XXXZZfv3rX+fCCy9Mw4YNk3x0Ku999903w4YNy7rrrpvRo0dnzJgxufjii9O0adMl1jp48OCMGjUqm266aXr27Jknnngil1xyyWIzqzfeeOM0adIkN9xwQzbbbLM0b948HTt2TMeOHRfbZrdu3fLVr341V155ZerVq5c999wzEydOzLnnnpv1118/3/72t5fqcQQAAAAAAGDNI9BeDd076Ly6LmGlO+uss9K9e/dcccUVuemmmzJv3rx06NAhW2+9db72ta+V+91444056aSTcvrpp2fBggXp169fxowZk7333rvG9rp06ZLLL788V1xxRQYMGJCFCxfmuuuuy5AhQ3L44Ydn0qRJ+dnPfpbrrrsum2++eX76059m+PDhS13vkUcemQ022CAjRozICSeckPfffz/rrLNOevfunSFDhixxvdGjR2fevHk54YQTltjnq1/9ar72ta/lrrvuygEHHJAk6d27d4455pgMHTo0L730Ujp27Jgf/ehHnxkeX3HFFWnYsGEuvPDCfPDBB9lqq61y22235ZxzzqnRr2nTprn22mszfPjw7Lbbbpk/f36GDh2aYcOG1brdn/70p9l4440zcuTIXHXVVWnVqlX22GOPXHjhhZ96CnQAAAAAAADWbKWiKIq6LoKaZs6cmVatWmXGjBlp2bLlYsvnzp2bV155JV26dEnjxo3roEKg0nmdAAAAAAAAKtVn5aEfV++/VBMAAAAAAAAALBOBNgAAAAAAAAAVSaANAAAAAAAAQEUSaAMAAAAAAABQkQTaAAAAAAAAAFQkgTYAAAAAAAAAFUmgDQAAAAAAAEBFEmgDAAAAAAAAUJEE2gAAAAAAAABUJIE2AAAAAAAAABWpQV0XwIo3fPjwui4hQ4cOXa71brnllhx88MG5+eabc8ghh9RY1qtXrzz11FO57777svvuu9dYtvHGG6dVq1b5+9//vlTjDBkyJOPGjcvEiROXucZhw4Zl+PDheeutt9KuXbtP7XvBBReke/fu2X///Zd5HAAAAAAAAFjTmaFNRRkwYEBKpVIeeOCBGu3vvPNOnn766TRr1myxZW+88Ub+85//ZODAgUs9zrnnnpvbb799hdT8aS644ILccccdK30cAAAAAAAAWB2ZoU1FadeuXTbffPOMGzeuRvuDDz6YBg0a5Ljjjlss0K6+vyyB9sYbb/y5awUAAAAAAABWLjO0qTgDBw7Miy++mMmTJ5fbxo0bl6233jp77bVXnnjiibz//vs1ltWvXz9f/OIXUxRFrr766vTu3TtNmjRJmzZtctBBB+U///lPjTGGDBmSzp0712h77733ctxxx2WttdZK8+bNs/fee+c///lPSqVShg0btlidU6dOzWGHHZZWrVqlffv2OfbYYzNjxozy8lKplFmzZuVXv/pVSqVSSqVSBgwYkCSZPXt2TjvttHTp0iWNGzfOWmutlb59++amm276/A8gAAAAAAAArCYE2lSc6pnWH5+l/cADD6R///7p169fSqVSHn744RrLttpqq7Rq1SonnHBCTj755Oy666654447cvXVV+fZZ5/NDjvskKlTpy5xzEWLFmWfffbJjTfemDPOOCO33357tt122+yxxx5LXOfAAw/MF77whdx6660588wzc+ONN+bb3/52efn48ePTpEmT7LXXXhk/fnzGjx+fq6++Oklyyimn5Kc//Wm+9a1v5b777sv111+fgw8+ONOnT1/ehw0AAAAAAABWO045TsXp379/6tWrl3HjxuWwww7L9OnT88wzz+SSSy5J8+bNs9VWW+WBBx7IXnvtlddffz2vvPJKDj744Dz66KP5xS9+kUsvvTSnnHJKeXtf/OIX84UvfCE/+tGPcvHFF9c65n333Ze//OUv+elPf5qvfe1rSZJBgwalUaNGOeuss2pd57jjjst3vvOdJMmuu+6al19+Oddee21GjhyZUqmU7bbbLvXq1cvaa6+d7bbbrsa6jzzySHbbbbcaAfjee+/9uR43AAAAAAAAWN2YoU3FadOmTXr16lWeof3ggw+mfv366devX5KPAu/q62Z//PrZd999d0qlUo488sgsWLCgfOvQoUON7dXmwQcfTJJ8+ctfrtF+2GGHLXGdfffdt8b9nj17Zu7cuZk2bdpn7uM222yTP/zhDznzzDMzbty4zJkz5zPXAQAAAAAAgDWNQJuKNHDgwPzrX//KpEmT8sADD6RPnz5p3rx5ko8C7SeffDIzZszIAw88kAYNGmTHHXfM1KlTUxRF2rdvn4YNG9a4Pfroo3n77beXON706dPToEGDrLXWWjXa27dvv8R12rZtW+N+VVVVkixVOP3jH/84Z5xxRu64444MHDgwa621Vvbff/+89NJLn7kuAAAAAAAArCmccpyKNHDgwPzoRz/KuHHjMm7cuOy1117lZTvuuGOS5KGHHsq4ceOy9dZbp3nz5mnXrl35+trV4fLH1dZWrW3btlmwYEHeeeedGqH2lClTVuBe/Z9mzZpl+PDhGT58eKZOnVqerb3PPvvkhRdeWCljAgAAAAAAwKrGDG0q0k477ZT69evnlltuybPPPpsBAwaUl7Vq1Sq9e/fOr371q0ycODEDBw5MkgwePDhFUeTNN99M3759F7ttscUWSxyvf//+SZLf/OY3Ndpvvvnmz7UfVVVVnzlju3379hkyZEgOO+ywvPjii5k9e/bnGhMAAAAAAABWF2ZoU5FatmyZrbbaKnfccUfq1atXvn52tf79++fyyy9PknKg3a9fv3z1q1/NMccck8cffzw77bRTmjVrlsmTJ+cvf/lLtthii5x44om1jrfHHnukX79+OfXUUzNz5sz06dMn48ePz69//eskSb16y/fbjy222CLjxo3LXXfdlXXXXTctWrRIt27dsu2222bw4MHp2bNn2rRpk+effz7XX399tt9++zRt2nS5xgIAAAAAAIDVjUB7NTR06NC6LmGFGDhwYCZMmJAtt9wyLVu2rLGsf//+ueyyy9KoUaPssMMO5fZrrrkm2223Xa655ppcffXVWbRoUTp27Jh+/fplm222WeJY9erVy1133ZVTTz01F110UT788MP069cvo0ePznbbbZfWrVsv1z5cccUV+cY3vpFDDz00s2fPTv/+/TNu3LjsvPPOufPOO3PZZZdl9uzZWW+99XLUUUflu9/97nKNAwAAAAAAAKujUlEURV0XQU0zZ85Mq1atMmPGjMWC3CSZO3duXnnllXTp0iWNGzeugwrXHDfeeGOOOOKIPPLIIzWCc6h0XicAAAAAAIBK9Vl56MeZoQ3/30033ZQ333wzW2yxRerVq5dHH300l1xySXbaaSdhNgAAAAAAANQBgTb8fy1atMjNN9+c73//+5k1a1bWXXfdDBkyJN///vfrujQAAAAAAABYIwm04f8bPHhwBg8eXNdlAAAAAAAAAP9fvbouAAAAAAAAAABqI9AGAAAAAAAAoCIJtFdhRVHUdQlAhfL6AAAAAAAArA4E2qughg0bplQqZdasWXVdClChZs+eneSj1wsAAAAAAIBVVYO6LoBlV79+/bRq1SpvvfVW5s2bl5YtW6ZBgwYplUp1XRpQx4qiyOzZszNt2rS0bt069evXr+uSAAAAAAAAlptAexXVoUOHNGnSJNOmTcvMmTPruhygwrRu3TodOnSo6zIAAAAAAAA+F4H2KqpUKqV169Zp1apVFi5cmAULFtR1SUCFaNiwoZnZAAAAAADAakGgvYorlUpp0KBBGjTwXwkAAAAAAACsXurVdQEAAAAAAAAAUBuBNgAAAAAAAAAVSaANAAAAAAAAQEUSaAMAAAAAAABQkRrUdQEsriiKJMnMmTPruBIAAAAAAACAFas6B63ORT+NQLsCvf/++0mS9ddfv44rAQAAAAAAAFg53n///bRq1epT+5SKpYm9+a9atGhRJk2alBYtWqRUKtV1ObBKmTlzZtZff/28/vrradmyZV2XA6sNxxasPI4vWHkcX7ByOLZg5XF8wcrj+IKVw7HF8iqKIu+//346duyYevU+/SrZZmhXoHr16qVTp051XQas0lq2bOnNE1YCxxasPI4vWHkcX7ByOLZg5XF8wcrj+IKVw7HF8vismdnVPj3uBgAAAAAAAIA6ItAGAAAAAAAAoCIJtIHVSlVVVYYOHZqqqqq6LgVWK44tWHkcX7DyOL5g5XBswcrj+IKVx/EFK4dji/+GUlEURV0XAQAAAAAAAACfZIY2AAAAAAAAABVJoA0AAAAAAABARRJoAwAAAAAAAFCRBNoAAAAAAAAAVCSBNrBamjhxYkqlUjp37lzXpQAAsIoaN25cSqVSBgwYUNelQEUYMmRISqVSRo0a9V8bs1QqpVQq/dfGA2DVU4mf2SqxJlhZKvH5Xok18fkItIHl1rlz5/KXC6eeeuqn9r3iiivKfev6y4jqGsaNG1endbD6qj42PuuLvgEDBqRUKmXYsGH/lboqxa233lo+Dr/73e/WdTmsorbYYouUSqU0adIkM2fOrNNaqn9E9clb8+bNs/nmm+eUU07Jm2++Wac1wpKsCsdS/fr1s9Zaa+WLX/xirrrqqixYsKBO64Sl9fG/l6pvTZo0ycYbb5xjjz02zz77bF2XWOdGjRqVYcOGZeLEiXVdCquRSnpv+7gPP/wwP/3pT7PrrrumQ4cOadSoUdq3b5+dd945V111VebNm1fXJcJyWdrvQD6PYcOGLfd3J59nXVhZ/hvHTaVwDLKiCLSBFeLGG2/MwoULl7h89OjR/8VqgEp2/fXXl/89evToFEVRh9WwKvrHP/6RZ555Jkkyd+7c3HLLLXVc0f/p27dv+vXrl379+qVDhw554YUXctlll6Vnz57lmqFSrCrHUp8+fdKwYcP85S9/yTe/+c0MGjQoH374YV2XCEuta9eu5efzxhtvnDfeeCPXXXdd+vTpk7vuuquuy6tTo0aNyvDhwz810O7WrVu6dev23yuKVVqlvrc9++yz6d69e77+9a/n/vvvT5MmTdK7d+80bNgwDzzwQL75zW+me/fufugCSzB8+PAMHz58icubNm2abt26ZYMNNljmdYHPzzHIf4NAG/jcunXrlilTpmTs2LG1Ln/xxRfz+OOP+xICyPTp03PvvfemVCqlZcuWee211/LQQw/VdVmsYqp/FNG6desa9yvB7373u/zlL3/JX/7yl7z88svlLy/feeednHDCCXVdHtSwqhxLf/vb3zJlypTceOONqV+/fsaNG5df/vKXdV0iLLWzzz67/Hx+5pln8tprr2XXXXfNvHnzcswxx+SDDz6o6xIr2gsvvJAXXnihrstgFVGJ723//ve/88UvfjH//ve/M3DgwDzzzDN55ZVX8re//S1vvPFGHnvssWy11Vb5z3/+U+4HLJttttkmL7zwQn7961/XdSmwRnIM8t8g0AY+tyOPPDLJkmdhV/8B+ZWvfOW/VhNQmX7zm99k/vz52WGHHcqvHZXwJROrjoULF+amm25KkvzkJz9J/fr18+CDD+a1116r48pq161bt/z4xz9Okvz1r3/NlClT6rgi+MiqdiyVSqUcdthhOeCAA5JkiT+khFVB+/btc/3116eqqirTp0/PmDFj6rokWC1U6nvbkUcemXfffTe77LJL7rvvvvTo0aPG8m222Sbjxo1Lz5498+677/ruBACgFgJt4HPr379/1l9//dx+++2ZNWtWjWVFUeSGG25IkyZNyl9A1qYoitx8880ZNGhQ2rZtm6qqqmy00Ub51re+9alf/j/44IPZdddd07Jly7Rq1SoDBw5c7i+EhgwZUr52yaRJk3Lsscdm3XXXTePGjdOjR49cddVVn7r+hAkTcuSRR2aDDTZIVVVV2rdvnx122CEjRozIjBkzlqsm1lx//etfc8ABB6R9+/Zp1KhROnXqlKOOOirPP/98rf2rr72zpNM1Vl+v+5PXjp81a1bOP//89OzZM82aNUvjxo2z/vrrZ8CAAbnooosyf/78xbY1e/bsXHzxxenbt29atmyZpk2bpnfv3rnkkks+87pv1eH14YcfniOOOCLJR7Pw5s6d+6nr3X///dl5553TsmXLtG7dOrvsskv+/Oc/l6+32rlz51rX+zy1UpnGjh2byZMnp0OHDjn00EOz8847l99rqj377LMplUpZa621PvW0xH369EmpVMqdd95Zo31535OWZOutty7/+9VXX11s+fTp03P66aenW7duadKkSdq0aZMBAwbkhhtu+NRT8i/r68THXweeeuqp7LfffmnXrl1atmyZXXfdNY8//ni578MPP5w99tgja621Vlq0aJG99957ibPjnnnmmRxxxBFZf/3106hRo7Ru3Tpdu3bN4Ycfnvvuu29pHyb+y1bFYylJNtxwwyRZYj0LFizIz372s+y4445p3bp1GjdunE033TTnnHPOp15H9fbbb88OO+yQZs2apW3bthk8eHCNY+KTxo0bl1KplAEDBmTBggUZMWJEtthiizRt2rT8njRq1KiUSqUMGTIkc+bMyVlnnZWNNtooTZo0Sbdu3XLllVeWtzd9+vScdNJJ2XDDDcufPZd0Pb3lee+m8nTo0CFdu3ZNkrz00kvl9nvuuSd77LFH2rVrl6qqqnTp0iVf//rX8/rrr9e6nY9/BvzjH/+YAQMGpFWrVmnZsmUGDRqUhx9++DPXq82SPjsuyZw5c3LTTTfl0EMPTbdu3dK8efM0b948vXv3zve///3F/k6sPoYefPDBJMnAgQNrXGv848//6rbazJo1K9///vfLx0PLli2z7bbb5qqrrsqCBQsW6//xY3fRokW54oorsvnmm6dx48Zp3759jjvuuLz11ltLtc9Unkp8bxs7dmweffTRNGzYMCNHjkyjRo1qHa9Fixb52c9+liQZP3587r///lr7jRkzJgcccEA6duyYqqqqdOzYMQMHDlziNbhffPHFfPWrX80mm2ySJk2apG3btunTp0+GDh2ayZMnl/t9/D2rNh8/dpbUPn/+/AwfPjxf+MIX0rhx46y33nr5xje+kXfeeafWbbJmmjJlSq688srsvvvu6dy5cxo3bpw2bdqkf//+tf7YfdiwYTXeAz7+XvHx97HanqNLu251vyVd4/ezjo9l/RxZ7Z133sl3v/vdbL755mnWrFlatGiR7bbbLr/4xS+yaNGiz1yfNctrr72WE088MV26dElVVVXatWuXPffcM3/4wx9q7f/x5/WMGTNy8sknl7+z3mSTTfK9732v1s9KyUfvdT/72c/Sq1evNGnSJO3bt8/hhx+e//znP0s8HhyD/FcUAMtpww03LJIUDz/8cHHmmWcWSYrrr7++Rp+HHnqoSFIcdthhxeuvv14kKT750vPhhx8WBx98cHlZx44di169ehVNmzYtkhTrrrtu8eKLLy42/k033VTUq1evSFK0bdu26Nu3b7HWWmsV9erVKy666KIiSbHhhhsutl71OA888ECN9qOPPrpIUgwbNqzo0KFD0bhx42KrrbYqOnbsWF7n+9//fq2PxcUXX1yUSqUiSdGyZcuiT58+xcYbb1w0bNiw1rFYvVUfG9ddd92n9uvfv3+RpBg6dGiN9quvvrr8fFpnnXWKvn37Fq1bty6SFI0bNy7uvvvuJY75yiuvfOpYH38uzp8/v9huu+2KJEW9evWKbt26FX379i06duxYPrbefffdGtt54403iu7duxdJigYNGhSbbLJJsdlmmxUNGjQokhQ77rhjMXv27Fpr+Ne//lVe76233iqKoii6dOlSJCl+85vfLPFx+tWvflV+PNq1a1dsvfXWRdu2bYt69eoVl1xyyRKP9c9TK5Xr8MMPL5IUJ510UlEURTFq1KgiSbHZZpvV6LfFFlsUSYo777yz1u28+OKLRZKiTZs2xbx588rty/Oe9Morr5T713YMTp48ubz8qaeeqrHspZdeKtZff/0iSdGoUaNiq622KjbaaKNy/6OOOqpYtGjRYttcnteJ6teBiy66qGjSpEnRunXrok+fPkWrVq2KJEWLFi2KZ555pvjtb39bNGjQoFhnnXWKrbbaqrzva6+9djFlypQa23zssceKJk2aFEmKVq1aFb169So233zz8jb322+/Wh9/6t6qeCwVRVEMGDCgSFKceuqpiy2bMWNGsdNOO5Xf1zbccMNi8803Lxo1alTet6lTpy623sUXX1wed9111y369OlTNG/evKiqqiq+973vFUmK/v3711jngQceKJIUO+20U7H33nsXSYqNN9646NOnT9GjR4+iKIriuuuuK38O3n777Yv69esXPXv2LDp37lweb/jw4cXUqVOLrl27Fo0aNSq23HLLGp89r7322hrjLs97N3Xnsz4T9ujRo0hSXHzxxUVRFOW/qZIUnTp1Kvr06VM+Ztq0aVNMmDBhiWNceOGFRalUKtZaa62ib9++Rdu2bcvPk9/+9rdLXG9ZPjsWxf/9zfTJfXr44YfLn7k6depU9O3bt+jatWv5c9dWW21V43PX3//+96Jfv35Fy5YtiyTF5ptvXvTr1698u/fee8t9a/sbsiiKYtq0aeXXqHr16hU9e/YsNttss3L/QYMGFXPmzKmxTvWx279///LrYNeuXYsePXqUa+3Ro0cxd+7cWh8XKlslvrf9z//8zzJ9JurVq1eRpPjqV7+62LJvfOMb5bGrvwPZcMMNy6//nzyeR48eXX4PbNKkSbHVVlsVm266aVFVVbXYcVz9nnX00UfXWtfHj53a2j/+fti1a9eid+/e5WNqk002qfX9l9XH0n4HUhRF+bNVkyZNio033rjo27dvscEGG5Sf21/72tdq9B85cmTRr1+/8vKPv1f069evmDx5clEUtT9Hl3bdoUOH1vrdTLVPOz6W53NkURTFM888U6y33nrlvwO7d+9ebLzxxuW/8Q466KBa/w5k9bEsx82jjz5a/nu/WbNmRZ8+fYpOnTqVn3vnnnvuYutUP69PPvnk8ndhvXv3rvG3yPHHH1/reMcee2y5T5cuXYo+ffoUjRs3Ltq0aVOcc845tR4PjkH+GwTawHL7eKD97LPPFkmK3XbbrUaf6j/e7r333iUG2tVf3Gy55ZbFk08+WW6fPXt28fWvf71IUvTt27fGOm+88UbRvHnzIklx5plnFvPnzy+K4qM/ML/97W+Xg+TlCbQbNmxYHHTQQTW+DLz66qvLIcEnvyS84447iiRF/fr1i0svvbT48MMPy8tmzZpV/PznPy+ee+65z3g0WZ18nkD7ySefLP/hP2LEiGLhwoVFURTF3Llzy8dDq1atikmTJtU65rJ8KXnLLbcUSYpevXoVr7/+eo3+06ZNKy6//PJi1qxZ5baFCxcWO+ywQ5GkOPTQQ2sEW6+//nrxxS9+sUhSnHbaabXWcO655xZJir322qvc9t3vfrdIUgwePLjWdV599dXyF0TnnHNOsWDBgqIoPvpC/8wzz1zisf55a6Uyvf/+++Xnw9/+9reiKIpi5syZ5UD18ccfL/e98MILy0FSbYYNG1brH3DL8570WSHctddeWyQpmjdvXuOYWrRoUdG3b9/yH1gff57+4Q9/KJo1a1YkKa6++uoa21ve14nq14GGDRsWp5xySvkL2rlz5xb77bdfkaQYMGBA0bp16+LSSy8tb/fdd98tttlmmyJJcfrpp9fY5uDBg4skxdlnn13jC9+iKIoJEyYUN9xww2KPB3VvVTuW5s2bV/zrX/8qvvWtb5Wf3//5z38Wq+XQQw8tkhS77LJL8e9//7vc/s477xQHHHBA+YuJj/v73/9e1K9fvyiVSsVPfvKT8pcW77//fnHIIYeU32eW9AV+/fr1i3XWWaf461//Wl5WHaBVf/HSsGHDYosttqhR80033VT+Mne33XYrBg4cWOPL/h/84AflL2Wq3/uKYtnfu6lbn/aZcPLkyeVQ6dZbby3uuuuuIvkoEB49enS534wZM4ovfelLRZKic+fOi/0Yr3qMBg0aFKecckr5b5H58+cXp59+epF89IPbFfHZsSiWHGhPnDix+O1vf1u8//77i+3nQQcdVCQf/XB4acf5uNr+hiyKojjwwAOL5KMA+uWXXy63T5gwoWjfvn2t71vVx27Dhg2Ljh07Fo899lh52Ysvvlj+cvinP/3pEuuhMlXqe1v1D1d+9KMfLdV+/O///m+RpNhiiy1qtF9++eVFkqJp06bF9ddfX/6cVhRFMX369OLSSy8tpk2bVm6bMGFC+T3s9NNPLz744IPysg8//LC46aabiocffrjc9nkD7QYNGhQtW7Ys/vznP5eXvfrqq+WA/pPvv6xeliWYe/jhh4s///nPNT7fFEVR/POf/yz/KGncuHGLrbek94JqS3qOLs26yxumLe/nyA8++KDYeOONiyTFt771rWLGjBnlZc8++2z5deMnP/nJEmtm1be0x82sWbPKP/r48pe/XMycObO8bNSoUUX9+vXL371/XPXzumHDhsVOO+1UvPnmm+Vld955Z3m9559/vsZ6v/vd74okRVVVVXHHHXeU26dPn17stttu5ef10gTa1RyDrCgCbWC5fTzQLoqi2HLLLYv69euXvyyZO3du0bp162KdddYp5s+fX2ugPW3atKKqqqpo2bLlYl/KFcVHodTWW29dJCkeeuihcnv1r8G23nrrWmvr2bPncgfaHTp0qPHHXrWtttqqSFLcdtttNdqrZ4Cef/75tT9QrHGqj42lvX38A9sRRxxRJLX/gn/RokXlD1Wf/PXl8nwpWf1FzhVXXLFU+3XnnXeWj7vqH5F83KRJk4rmzZsXzZs3r3Xmc/Vs7I9/Sfvcc8+VvwD5+Bcw1aq/NNp1110/db8+eax/3lqpTNWzbDbZZJMa7dUzZapn4xTFR1+sl0qlolmzZrWGO5tuummRpLj//vvLbcv7nrSkEG7y5MnFtddeW/4l9Xe/+90a2xszZkz5D8XqXyZ/3IgRI8rP74//Mnh5Xyeqj5ctt9xysV8a/7/27jwsqnKPA/h3WGZYlVUERUhFUXEfxIRATUUtF+pKet0Sc7vlkpZ6LRPzZtrVRy95NdOywjLXNMO9R69LmZa44AqFippKJi6ADAy/+wfPeZthzpkZBpRBf5/nmcd6z/YePe9yfu8575HeRFLa744dOwgAtWrVyii9adOmBMDoBpDZv5pQlpR+iYmJJkEXorIgqFReDIM8kvz8fAoODiaVSkUXL14U6UOGDCEANGDAAJNtCgsLqU6dOmYD+NJgpBwp8KJSqejYsWMmy59++mkxqG0YYCIiKikpEW8MGG5b0babVS+lQOWNGzeoW7duBJS9AXr37l3x9oph+ZPk5+eTn58fAaBPPvlE9hitW7eWzYN0D/POO+/IbldVA9rmFBQUkFqtprCwMKuPY0guCHrhwgXxBo1c+Vq3bh0BZW8xGdYJlspuSkoKAaC+fftafX7MPthr2yb1A7ds2WLVeUgD197e3iKtoKBAzLrwxRdfWLWf3r17EwBKSkqyav3KDmgD8oP2UvusUqmMHjZjj5eKDGibs2fPHgJAo0aNMllmjwPatvYjpbYmISFB9ngnTpwglUpFDRs2VMwzq/msLTcrVqwgABQQEGAy8wwRiQeqnnnmGaN06bp2dXWVbbekB37L193SbFBys5T++eefol2zhwFtLoNPHv6GNmOsygwdOhR6vR5r1qwBAHz33XfIy8vDoEGD4OTkJLvNtm3bUFRUhPj4eNSvX99kuYODA55//nkAEN9XA4CdO3cCAMaNGye733/84x82n8egQYPg7u5uki59A/W3334TaVlZWThz5gzUajUmTZpk8zHZ4yksLAzR0dGKv1q1aplss2vXLgDA+PHjTZapVCpMmDDBaL3KCA4OBlD2rcaCggKL62/atAlA2ffm5cp0YGAgIiMjcf/+ffzyyy9Gyw4ePIjs7Gy4ubmhf//+Ir1Zs2Zo06YNSkpK8PXXX5vsc/fu3QCAESNGyOZJKb0yeWX2y/Ab7Iak77GvWbNGfAMqJCQEnTp1Qn5+vsm3D9PT03Hu3DkEBgYafd/J1jbJ0FNPPSW+BxUYGIikpCTo9Xq8/fbbmDNnjtG6UjkeMGAA6tata7KvsWPHQqPR4NKlSzh//rzJdrbWEyNGjDD5FmmTJk3g5uYGABg5cqTJNm3btgVg3AYCf9Uj69atkz0Ws081oSxptVrRXj799NMICQmBg4MD0tLS8Pnnn5t80+ybb74BACQmJsLT09Nkf25ubujWrRuIyOibwlI5ketTuri4ICkpSTZ/ktq1a6Nfv35m12nbtq0oQ4batGkDAOjVqxeCgoKMljk6OqJVq1YAjMtdRdtuZh/mzp2LmJgYxMTEICIiAsHBwdizZw+cnZ2xYsUKqFQq/PjjjwDk63Y3NzeMGjUKgHLdrnT/I6VL908PU2lpKbZs2YJXX30VvXr1wjPPPIOYmBh0794dKpUKmZmZVXbd7t69G0SEmJgY2fL14osvon79+sjPz8ehQ4dMlnt7e+OFF14wSZe752M1g722bffu3QMA2RiDHGk9aTsAOHToEG7duoWgoCBxPuYUFhaK+6ipU6daddzKUqvVeOWVV0zSW7VqhZiYGBBRldzDssfDvXv3sGLFCgwfPhw9evQQ7cX06dMBACdOnKjmHFrH1n6kFK+QKzNAWbkJDQ3Fb7/9hitXrlRRbllNJV1no0aNgouLi8nyiRMnAgB++OEH5Ofnmyzv2bOnbLsl1+e5d+8efvrpJwDy8TZvb2+jmF514zL45JEfYWKMMRsMGjQIb775JlJTUzF58mRxQzlkyBDFbU6dOgUAOHz4MGJiYmTXuXHjBgDg6tWrIu3ChQsAygbD5CilW6NRo0ay6XXq1AEA3L9/X6SdPXsWANC8eXPZ4Cl7ss2YMQMvv/yy4vLOnTsbBTvy8vKQm5sLoOyaktOiRQsAf5WByujfvz9CQ0Oxa9cuBAUFoWfPnnjmmWfQuXNncRxDUnldtmwZvvrqK9l9SvkyLK/AXwGmvn37mgRzBg8ejOPHjyM1NdUkiJuZmQkAIqhfnlJ6ZfLK7NPVq1exd+9eAKaByl69esHb2xs3b97Erl270Lt3b7HeoUOHsGbNGgwcOFCsLz149dJLL8HB4a/nO21tkwxptVpoNBqUlJQgOzsbN2/ehLu7Ozp37mwyiCxdg0rl3dPTE8HBwcjKysKFCxcQHh5eJfWEUjvn5+eHy5cvyy739/cHYNwGAsCkSZOwZ88ejBo1CgsXLkR8fDxiYmLQpUsX+Pr6yh6HVa+aUpbWr1+P0NBQo7QLFy5g8ODBmDdvHnQ6HRYuXGhyzG+++QY//PCD7D4vXbpkdMy8vDzcvHkTgO19yrCwMDg6OppdR6nMSeXK0nLDclfRtpvZh8zMTNGnUavVqFu3LmJjYzFlyhS0adMGx48fR2lpKTQaDRo2bCi7D0t1u6VruCr6jubk5eWhd+/eYmBeye3bt8UDVJVhqQ11cHBAeHg4rly5ggsXLqBnz55Gyytyz8fsnz23bZ6ensjLy5MdZJAjrWcYX5DiDh06dDDKk5KsrCwUFxfDy8sLTZs2teq4lVW/fn3FmEizZs1w8ODBh14PsZohPT0dzz//PK5du6a4zp9//vkIc2SbyvQjpfrknXfewdy5c2XX+eOPPwCU1Sdyg5HsyWGpzxMWFga1Wg2dTodff/3VJE5WkT5PVlYWiAi+vr4mD9xKlOJwjxqXwScTD2gzxqpM3bp10a1bN+zcuRP79+/H9u3bER4eDq1Wq7jNnTt3AAA5OTnIyckxu//CwkLx31JjKwX6ygsICKho9gWlJ6elG0ciEml3794FAHh5edl8PMYkhp1IqWNZnnRtGz6xbyt3d3ccOHAA77zzDjZs2IC1a9di7dq1AMo6yvPnzxdvGQB/ldeMjAyL+zYsr0VFReLtzfIBJqDsYZhp06bh6NGjOH/+vFHQRS6gY0gp3da8Mvv15ZdforS0FO3atTMJzKnVagwYMAAff/wxUlNTRaAyMTEREydOxI4dO3D79m14e3uDiMR1Xv56tLVNMmQ4CFdaWoqVK1di7Nix6Nu3L44dO2aUd6nMK5V3oKzMZ2VliTJfFfWE0kCCNOAut7z8YLzkueeeQ1paGt577z0cPnwY586dw3/+8x84OTkhISEBixYtQr169RTOjlWHmlKW5DRp0gSrVq1Cy5YtsWTJEkydOlVc79Ixs7KykJWVZdUxDcuTrX1Ka964s6XMGS437HtWtO1m9mHVqlVmH3I0vLdRqm8t1e2Pou9ozuTJk/Hjjz+iadOmmDt3Ljp27Ag/Pz+o1WoAZYNdV69eRXFxcZUcz9o2FJA/94rc8zH7Z89tW7169ZCXl4dff/3VqnOR1jPsP1U07lAdcQpbyyJ7suj1eiQmJuLatWvo3bs3pk2bhhYtWsDLywuOjo7IyspCWFhYlbUVD1Nl+pFSfWLNbHEcr2CW+jwqlQr+/v64evVqpfs8lmJwlpY9SlwGn0w85ThjrEoNHTpU/KnT6cT/K/Hw8AAAvPXWWyAis7/PPvvMZDvpLbXypCe0HjapEc/Ly3skx2OPN+m6BpSvYemp//IdSLmgtyGlNwLq16+PTz/9FH/++ScOHz6MefPmQavV4syZM+jfv7+Yasgwf9IUj+Z+hkHbrVu3ijLSt29fMR2z9Ktfv76YOlZ6k1sidbyV3pJRCorYmldmv6Rr49ixYybXkEqlwscffwwA2LJliwji+fn5oVu3btDpdGJKqUOHDuHy5cto3LixmGJLYmubpMTBwQGjR4/GhAkTUFBQgFdffVX2eObarPJlvjL1xMPSu3dvHDp0CLm5udi8eTPGjx8PLy8vrF+/Hn369KkRAaknSU0sS4YiIiLg6ekJnU5nNB2ldMwVK1ZYPGZycrLRNkD19ykroiJtN6sZDO9tlPpylup2S9dwVfUd5ZSUlIiHF7ds2YIXXngBQUFBYjC7pKQE169ft3p/1rClDWWPL3tu2zp16gRA+RMb5e3fvx8A8PTTT4u0isYdbIlTVLZOUKqDAOV6iD15jhw5gqysLISEhGDTpk2IjY2Fr6+vmO3G0sMiD4st139l+pHStpmZmRbrE8NPH7Ank6U+DxGJa7Cy9aylGBzwcB5O4jLIrMUD2oyxKpWQkAAPDw9cvnwZKpXK4vedpOlSrHmL0lCTJk0AAOfOnZNdLk3J9bBJU/+dOXOGnzZmlebl5SWeKjxz5ozsOqdPnwbwVxmQSJ1OpU6cpTcCnJycEBUVJd6UHjhwIPR6PT799FOxjq3lVQoweXp6IiAgQPbn4+MDAFi9erVRB1Y6z5MnT8ruW5omqDxb88rsU3p6OjIyMqBSqRSvoYCAAKjVahQWFmLjxo1iW+ntGmnqeenPQYMGmRznYV03M2fOhIeHB77//nvs27dPpEvXt1J5v3fvngjqSOtWpp542Hx8fNCvXz+kpKQgIyMDtWvXRnp6On7++edHmg+mrKaXJYnUThhOR2nLMb28vMSbDtXdp7SFNW03qxkaN24MBwcHFBUVKX672VLdrnStSulV3Xc0lJubi/z8fPj4+MhOb5yRkQG9Xi+7rdIb6ZZYakNLS0tFuX7U7SF7tOy9bRswYACAsm9wS5++UHL48GHxsNZLL70k0qW4w9GjR8WDwOZI08/m5eXh/PnzVuXTUp1gafaTnJwcxQEQpXqIPXkuXrwIAGjfvj00Go3J8ur6drYt139l+pEcr2AVYanPk5mZCZ1OB0dHR8Xpxa0l9Un/+OMP/P7777LrKMXhKoPLILMWD2gzxqqUm5sbpkyZgmeffRZjxoxBSEiI2fWfe+45qNVqbNu2TXxXzho9evQAAHz00Ueyy5ctW2Z9piuhUaNGiIiIgE6nQ0pKyiM5Jnu8xcfHAwA+/PBDk2VEJNKl9STS9xaPHj1qst3GjRtx+/btCuWjY8eOAGD0XasXXngBALB8+XI8ePDAqv3cunUL27dvBwB8++23uH79uuwvOzsbLi4uuHTpEg4cOCC27969OwAovsGnlG5LXpn9kh6KiI2NVbyGrl+/jilTphitD5Q9aOXq6op9+/YhJycHGzZsACAfqLS1TbLE19cXr7zyCgDgvffeE+lSOV6/fr3sm2vLly9HUVERQkJCjAYIbK0nHqWAgAA89dRTAGD2+3js0arpZQkoe8BJCpgbfms4ISEBQNmDUbdu3bJ6f1I7I9enLCoqqlGDw3JtN6sZPDw8xFuccnV7YWEhVq5cCUC5bl+6dKnZdOn+SVKVfUdXV1cAZdMcy03L+MEHH1jctqLTOfbo0QMqlQoHDx5Eenq6yfJNmzbhypUrcHd3R3R0dIX2zWoWe2/bunfvjqioKBQXF2PkyJGKM9fcu3cPY8aMAQBERUXh2WefFcuio6Ph5+eHq1evim98m+Pq6irK/IIFC6zKp1QnHD9+HCUlJUbLSktLsWrVKrPb63Q6fPLJJybpGRkZOHDgAFQqlWhz2ZNLqvOlGTQMFRcXY/HixRa3tWX6X0vbmmsT8/Pz8fXXX8tuZ2s/UopXpKSk8CcumEVS32/FihWy8S0pHh0dHW3V55DM8fT0RFRUFAD5eNudO3ewefPmCu+XyyCrKjygzRircsnJydizZ49Vg8pBQUGYNGkSiouLER8fb/TmGlAWmD9y5AjGjRtn9LbC2LFj4e7ujp9++gkzZ84UN1zFxcV48803xRsMj8K//vUvAGXnnZKSYnSDWlBQgJUrV9r12z3MvkyZMgVOTk7YsmULFi5cKJ7A1+l0mDhxonjrcdy4cUbb9erVC0BZwNAwwHL06FFMmDABzs7OJsdatGgRFi9ebHIzefnyZRE0bdeunUhPSEhAx44dce7cOfTp08fkCcmioiKkpaUhKSlJpH399dcoLi5GgwYNEBcXp3jetWrVQp8+fQAYB5nGjh0LNzc37Nq1C8nJyeLtnpKSErz99ts4ePCg7P5sySuzT3q9XgTuLH3GYsiQIQAggpJA2SBBnz59UFpaitGjRyM3Nxdt2rRBs2bNTLa3tU2yxuTJk+Hs7Iw9e/aIm7SuXbsiMjISRUVFGDRokNF0WLt27cLs2bMBANOnTzd6g83WeuJhGDhwINLS0qDT6YzSN2zYgFOnTkGlUqFt27YPPR/MssehLJ0/fx4jRowAAISHh0Or1YplWq0WiYmJuHXrFrp3724ywKXX67Fv3z4MHjwYRUVFIv3111+Hg4MD1q1bh48++kgENPLz85GUlGT0Frg9qGjbzWqOadOmASgbgJbeEgXKBrmGDRuG3NxchIaGYuDAgbLbZ2RkYOrUqeJepKSkBDNmzMAvv/wCT09PjB071mh9W/qOSry8vNCiRQuUlJTg9ddfF22CXq/H/PnzsXbtWjH9eHlSANPa6ZgljRs3FsHIYcOGGdUlx44dw4QJEwAAr732Gk9z/BirKW1bamoqvLy88P333yM+Pt4kXnH06FF07twZJ0+ehJeXl8lnmFxcXDBz5kwAwJgxY7BmzRqjAPzt27exaNEiozfbZs2aBWdnZ6xcuRIzZsxAQUGBWFZcXIy1a9ca3Uu1bt0aQUFB+P333zFr1iyx/wcPHmDSpEmKbwZKnJycMGvWLKOyfOXKFQwbNgxA2eBBZd8cZDVfx44d4eTkhEOHDuGLL74Q6Xfu3MHgwYNlB7oltrYX1mzbpUsXuLi44OeffxafKADKpu1/+eWXFR+WtLUfOWbMGDRs2BB79+7F4MGDTd6EvX//PtatW4fJkydX+FzZ42fQoEFo0KABbty4gZdfftloNozVq1dj+fLlAMriBlVBuu7mzJmDrVu3ivTbt29j4MCBZqcjV8JlkFUZYowxG4WEhBAAOnDggFXr5+TkEAAqX/UUFxfTkCFDxLK6detShw4dqHXr1uTp6SnSz549a7Td6tWrSaVSEQDy8/OjyMhI8vHxIQcHB5o3bx4BoJCQEJN8SPvbu3evUfrw4cMJAK1atUo2/7NmzSIANGvWLJNl77//vshL7dq1SavVUlhYGDk7O8seiz3epLKhdC1J4uLiZK+ppUuXiuspICCAIiMjycvLiwCQRqOh7777zmRfhYWF1KJFCwJATk5OFBERQU2aNCEANHDgQHEsw2tx4sSJojyEhoZShw4dKDw8nBwdHQkARUREUF5entFxrl27Rm3bthXbNW7cmKKioqh58+akVqtFniVRUVEEgP75z39a/HvbsmWLKEOFhYUi/bPPPhN/H/7+/hQZGUl+fn7k4OBAH3zwAQGghg0bmuyvonll9mn79u0EgFxcXEyuRznSv/n7778v0jZv3iyuAwA0f/58xe1taZOys7NFenZ2tuK+hw4dSgCoX79+Ii0zM5Pq168vyne7du2ocePGYn9Dhw6l0tJSk33ZUk/I1QOGpLpL6Rzk2vDatWuLY0ZERFBkZCQFBgaKdWfOnKn498EerZpWlrRaLUVHR1N0dDR16tSJQkNDycHBQfT70tPTTY5579496t69u9hHgwYNKCoqilq2bEmurq4i3bCNISKaO3euWBYUFERarZY8PT1Jo9HQnDlzCADFxcUZbbN3717ZdEOrVq0iADR8+HDZ5eb6lkTyfVNb2m5WfaztE0qmT58u/n2Dg4NJq9WSu7s7ASBvb286cuSI4jGk+xFfX1/RVwJADg4OtGbNGpPtbOk7EinfM3377beiXfLx8SGtVivyMHPmTMU2Zv/+/eKcmzRpQrGxsRQXF0fbt28X68i1P0REN2/epJYtWxIAcnR0pNatW1Pz5s3F+t26dTMp75bKrlQPyd1HMvtTE9o2ycmTJ+mpp54yqsMjIyNFP1BKO3HihOyxS0tLady4cWJdKQYSGhoq2oDy5Ss1NVXEJNzc3Khdu3bUrFkzcnFxkS3HqampYv/+/v6k1WqpVq1a5OHhQQsWLDDbHsbGxtJzzz0nynLbtm3JyclJ3Kv9/vvv5v9xWI0m1fEeHh7k6+ur+Dt16hS98cYbRn219u3bk6urKzk7O9OyZcsU6+B3331X1Pdt27aluLg4iouLE9eWufrd0rZEJPp8AKhevXoiXwEBAZScnKzYp7OlH0lEdPbsWVEnODg4ULNmzSgqKoqaNGkiynRUVJSt/ySsBqhIuTl8+LC493Z3dyetVkvBwcHi2nv77bdN9m/pXsPcvUpSUpLYd8OGDUmr1ZKrqyt5e3vTW2+9RQAoKSnJaBsug+xR4AFtxpjNqmpAW5KWlkb9+/enunXrkrOzM9WpU4fat29Pr732Gu3bt4/0er3JNnv37qUuXbqQh4cHeXp6UlxcHO3cudNsIELKQ1UOaBMR/fjjj5SYmEiBgYHk7OxMAQEB1KlTJ/r3v/9Nd+7cMfdXwx4zlR3QJiI6ePAg9e/fn/z9/cnZ2ZmCgoJoyJAhdPr0acX93bhxg0aOHEl16tQhjUZD4eHhtGDBAtLr9bJBybNnz1JycjLFxsZSvXr1SK1WU0BAAHXs2JE+/PBDKigokD3OgwcPaOnSpRQbG0ve3t6kVqspODiYYmJiaPbs2XTmzBkiIrpw4YIob+byLdHpdOTr60sAaN26dUbLdu/eTZ07dzYq67t27aKMjAwCQK1bt65UXpn9+vvf/04AaMCAAVatv3DhQgJAzZs3F2lFRUXk7e1NAEilUtGlS5cs7qcibZK1A9qnTp0ilUpFKpWKTp06JdJzc3PpjTfeoLCwMNJoNFSrVi2KjY2l1NRU2cFsSUXriYcxoL1582YaPXo0RUREkI+PD2k0GmrUqBElJCTQ//73P8W8s0evppWl8j8PDw9q1aoVTZ8+nW7cuKF4PL1eT19++SXFx8eTn58fOTs7U2BgIEVFRdG0adNkBwSJiDZs2EBRUVEiUNO7d286evSoYmCmuga0bW27WfWo6IA2EdHWrVupe/fuot8SEhJCY8eOpcuXL5s9RnZ2Nu3YsYNiY2PJ09OTPDw8qGvXrmbr4or2HYnM3zPt2LGDOnXqRK6uruTp6UkdO3ak1atXm+SzvK+++oo6dOggBu/L79/cPeT9+/fp3XffpYiICHJ1dSV3d3eKjIykDz/8kHQ6ncn6PKD9eKkJbZuhBw8e0JIlS6hr166i/+bv70+dO3emlJQUkwcwlI79/PPPk7+/P6nVaqpXrx517dqVli5dSkVFRSbrnz59mkaMGEENGjQgtVpNfn5+1L59e0pOTpYdZF63bh21b9+eXFxcyMfHhxISEuj06dNWtYc6nY6Sk5OpcePGpNFoKDAwkMaNG0e5ubkWz4vVbFIdb+mXnp5OpaWltHjxYgoPDxfXZJ8+fejw4cNm62CdTkezZs2ipk2bkkajMbn/Mle/W9pW8t///lc8AF+nTh0aOnQo5eTkWOzTVbQfKbl79y7NmzePoqKiqFatWqTRaCg0NJS6du1KCxYsMHtvyWq+ipQbIqKLFy/SmDFjKCQkhNRqNXl7e1OPHj0oLS1Ndv+VGdDW6/W0dOlSatmyJWk0GvL396fExETKzMykJUuWEACaOHGi0TZcBtmjoCLiSeIZY4wxVjNt3LgRf/vb39CvXz+bvuPDGGOMMVaThYaG4tKlS8jOzkZoaGh1Z4cx9oTZt28funTpgri4OJNp2BljjD1+xo8fjyVLlmDRokWYNGlSdWeHPWH4G9qMMcYYq7FWrVoFAIiOjq7mnDDGGGOMMcYYY4wx9ni6f/8+NmzYAIDjcKx68IA2Y4wxxuzaxo0bsW3bNuj1epFWUFCAqVOnIi0tDe7u7hg6dGg15pAxxhhjjDHGGGOMsZpv8eLFOH78uFHa1atX8eKLL+L69eto164dIiMjqydz7InmVN0ZYIwxxhgz59SpU5g9ezZcXFzQqFEjaDQanD17FoWFhXB0dMTy5ctRt27d6s4mY4wxxhhjjDHGGGM12ubNm/H666+jdu3aaNiwIYqKinDu3DmUlpbCz88Pn3/+eXVnkT2heECbMcYYY3atX79+uHLlCvbv34+cnBwUFhbC398fffv2xZQpU/ipUMYYY4wxxhhjjDHGqsDEiRPh7e2NY8eO4dy5cyAiNGrUCL169cLUqVNRr1696s4ie0KpiIiqOxOMMcYYY4wxxhhjjDHGGGOMMcZYefwNbcYYY4wxxhhjjDHGGGOMMcYYY3aJB7QZY4wxxhhjjDHGGGOMMcYYY4zZJR7QZowxxhhjjDHGGGOMMcYYY4wxZpd4QJsxxhhjjDHGGGOMMcYYY4wxxphd4gFtxhhjjDHGGGOMMcYYY4wxxhhjdokHtBljjDHGGGOMMcYYY4wxxhhjjNklHtBmjDHGGGOMMcYYY4wxxhhjjDFml3hAmzHGGGOMMcYYY4wxxhhjjDHGmF36P+WJPK8xmA+CAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -533,15 +565,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The magnitudes of learned model weights tell us about the correlations between the dependent variable `Price` and each independent variable. Zero weight means no correlation whereas positive weights indicate positive correlations and negatives the opposite. Since the network has more than one layer these weights might not be directly correlated with the price.\n", + "The magnitudes of learned model weights tell us about the correlations between the dependent variable `Avg House Value` and each independent variable. Zero weight means no correlation whereas positive weights indicate positive correlations and negatives the opposite. Since the network has more than one layer these weights might not be directly correlated with the price.\n", "\n", - "From the plot above we can see that attribution algorithms sometimes disagree on assigning importance scores and that they are not always aligned with weights. However, we can still observe that the top important three features: `LSTAT`, `RM` and `PTRATIO` are also considered to be important based on both most attribution algorithms and the weight scores.\n", + "From the plot above we can see that attribution algorithms sometimes disagree on assigning importance scores and that they are not always aligned with weights. However, we can still observe that two of the top important features: `MedInc`, and `AveRooms` are also considered to be important based on both most attribution algorithms and the weight scores.\n", "\n", - "It is interesting to observe that the feature `B` has high positive attribution score based on some of the attribution algorithms. This can be related, for example, to the choice of the baseline. In this tutorial we use zero-valued baselines for all features, however if we were to choose those values more carefully for each feature the picture will change. Similar arguments apply also when the signs of the weights and attributions mismatches or when one algorithm assigns higher or lower attribution scores compare to the others.\n", + "It is interesting to observe that the feature `Population` has high positive attribution score based on some of the attribution algorithms. This can be related, for example, to the choice of the baseline. In this tutorial we use zero-valued baselines for all features, however if we were to choose those values more carefully for each feature the picture will change. Similar arguments apply also when the signs of the weights and attributions mismatches or when one algorithm assigns higher or lower attribution scores compare to the others.\n", "\n", - "In terms of least important features, we observe that `CHAS` and `RAD` are voted to be least important both based on most attribution algorithms and learned coefficients.\n", + "In terms of least important features, we observe that `AveBedrms` and `AveOccup` are voted to be least important both based on most attribution algorithms and learned coefficients.\n", "\n", - "Another interesting observation is that both Integrated Gradients and DeepLift return similar attribution scores across all features. This is associated with the fact that although we have non-linearities in our model, their effects aren't significant and DeepLift is close to `(input - baselines) * gradients`. And because the gradients do not change significantly along the straight line from baseline to input, we observe similar situation with Integrated Gradients as well." + "Another interesting observation is that both Integrated Gradients and DeepLift return similar attribution scores across all features. This is associated with the fact that although we have non-linearities in our model, their effects aren't significant and DeepLift is close to `(input - baselines) * gradients`. And because the gradients do not change significantly along the straight line from baseline to input, we observe similar situation with Integrated Gradients as well.\n", + "\n", + "We also note that GradientShap behaves differently than the other methods for this data and model. Whereas the other methods in this tutorial are calculated on test inputs and a reference baseline of zero, GradientShap is calculated with a baseline of the training distribution which might be the cause of the behavior observed." ] }, { @@ -562,16 +596,15 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 103, "metadata": {}, "outputs": [], "source": [ "# Compute the attributions of the output with respect to the inputs of the fourth linear layer\n", "lc = LayerConductance(model, model.lin4)\n", - "lc_attr_test = lc.attribute(X_test, n_steps=100, attribute_to_layer_input=True)\n", "\n", "# shape: test_examples x size_hidden\n", - "lc_attr_test = lc_attr_test[0]\n", + "lc_attr_test = lc.attribute(X_test, n_steps=100, attribute_to_layer_input=True)\n", "\n", "# weights from forth linear layer\n", "# shape: size_hidden4 x size_hidden3\n", @@ -588,19 +621,17 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 104, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCEAAAIrCAYAAADROYOiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzde5xVZb348c+Xe6jIIJhkInIskeyCYXl3QE9qlmZmkpfEn3nJvJ7zKxMz8XqSMu1XWagFmnY7eU3NFGHI6+lA3lDSLBAtUhAQNeXm8/tjrRn37Nkzs2eYvQbl83695gV7rWc967vWXrf9Xc96VqSUkCRJkiRJqrUe3R2AJEmSJEnaMJiEkCRJkiRJhTAJIUmSJEmSCmESQpIkSZIkFcIkhCRJkiRJKoRJCEmSJEmSVAiTEFIuIq6KiBQRl3V3LN0lIj4SEZMiYlAX1zshX7fDu7Led4p8nb8t35ecf7f/p7vjeKeodl+JiIaIaCgkqG4SEQsiYlo3zr8+/y7qOzHtpHzaXu2U69JjbkRMi4gFXVFXXt/pEfHZCsOrWr51nHen138VdVd93KoUx9t1/3unn4sjYouIuDUilubLeXor5Vrd7/LpLqx9tN2js8eIWu6P2jCZhJCAiHgX8Pn84+G1vLBaz30EOBfo0iSE2nU1sEt3B9FJEwCTEHon+hPZfvmnGs6jq4+5FwAHd1FdAKcDLZIQ7wATWLfj1kn5n9Yv3wT2Ao4l23d/2Uo5r3Wkbrah/tCSyn0GGADcAXwS2A+4reggIqInECmlNUXPW81FRN+U0soi5pVSeh54voh5dZUi14/WDxvad55SWgE81N1xdERK6a/dHcOGIKX0ZHfH0Jq3637aRXFvDzyaUrqpK2KSVDu2hJAyRwPLyO6OvJ5/biEivhARf46INyLi8Yg4sFKzzIjYMSLujYjXI+K5iJgYEeeVN7nPm7ZdFBFfj4j5wCrgg/m4IRHx44j4e0SszOd7fIWY9omIh/OYnomIL1VqbpfP/08RsSIilkTEjIjYuWT8BGBq/vEveWxNzTYjoldEnJXHsTIi/hERl0ZEv7L5jIiI2yPiXxGxOCK+B/Rtc+2/NW1DRNyXL9Of8jrmRkSLO3sR8eG82eWyfD3fHxF7VKivocK0zZp5lzRR3TMi/jsilgP/UzL+yIh4NF/HSyLiZxExtEKd10XE+IiYFxGvRcTsiNi9iuVu8ThGY5PQiPjPiHg2Xxe3R8Tm+d+vI+LlfPs6s2za0uW5OSJejYiXIuKHeauf0rJDI+LafLlWRsRjEXFkG/U1rZ983e4F7FayvTTk0wyJiCkR8XQe+3MR8fOI2LLSskfE+/LlezVf3m9GRI+yskMi4oq8rpX5vz+LiL4lZarZLnaKiLvzdfJ6RPwtIq5o5zvqFxGX5dvjqxHxz4j4bUSMbGVd7RwR10e2v/0jIv5fV+4rrcTY7jGjE9/LDhHx+4h4Ffh1Pq5L99O83GmR7UNvRLbftChTYZqeEbE8Ir5RMuyDedz3lZV9PiK+XfK5f0RcEhHzI2JV/u/ZpdtcVG6G3zOy/XJRvtwzImJkXm5ShTC3aW27jvaPuadFdix5PV9/syut47LlbHbsj4jheZ0nRMT5edzL8233ve3UtQDYGjiiJLZp1S5fST1VncuqERGfiIg7Stb/3MiOkT3Lyh0e2Xnx1XwffDwiTsjHNdDKcasDcTQ7t5RsKwdGxA8iO54uieycMLBs2mrPpedFG+fssvl+NrJHShcDL3RwWcbndS/O19fDEXF0WZnHI6LFD/uS+e9XMqyaY/C0yPbJXSLigYh4HZjcRowREWdExFOR7a+L8vU8IB8/PLJzaD2wR/m+VFbXBNrY70rKnRrZceGViJgVER+oUNdnI+KhfFtcHtn5cVhry1EyXeMxdL+IeCRfTw9HxMfz7ePifBmX5utqo7Lp2z1v5+X2zrehNyLir437QIVy7R4PpS6XUvLPvw36D3gPsAb4Uf7558AbQF1ZuX8H3gRuJmstcTTwN+AfQENJucFkCY0nyB7x+AwwC3g22+Wa1ZmAvwP3AoeQtcB4N1mrjKeAhcBxwD7At4G1wCkl048CVubTfyaf3+P5dAvK5nU1cBQwFvgUWTPFVcAH8/FDyJryJuBzwM75X998/C+B18iaO+4DnAIsB24omUcf4K/5OjkGOAC4FXgur3d4O99FA7AoX3dH5uvj7vz72bak3I55LPflsX4yn89K4KNl9TVUmM8CYFrJ5wl5fM+RXQjtA+yXjzs+H/fLfD5fAl4EngY2LqvzWeB/85g+BTycr6OB7Sz3pFa2jWeB2/P1+H+AFcCdwP3AN/I4p+RlP1lheRYC3wE+kZdfVbbcG+XLsThfzv2B6/Npj29v/ZBtf38CHi3ZXkbl02wHfI9su94TGJ+vmwVAv/JlB+YC/5nX/b182DEl5eqAvwAvAWcAewNfyL+XTardLoCNgaX5evw02UXrBODKdr6jTcn2ofFkP2AOJts2lwFbVFhXfwHOz5fnHLJ997wu3ldKjzvVHjM6+r38FZgIjAPqa7SfHpvPa2pe18lkLYNepmR7bWU93ArMKPl8GvAvsm19o5JlTsD++edeZMfMl8geN9gbOJvsuH9pSV31+XT1JcMuJDsPXEJ2Tvg62T6UgEkd2a5p45gLHJGvz2+SHbM/mc/r2HbWxzRKjv3A8Lz+BWTntv3Jzl1LqHBsLKtrdP4931kS2791cL+tartsZf6V1v+J+fz2z9fLV4FXgG+VlNk9/44uz+f3CeBU4Mz01nmz4nGrA3E00Hz/aywzH/h+Ps9TyG5qXFNWX7vn0rxcm+fssvn+PS+/H/CZNpZlAmXHF7L9+6Q85n3IjlurgRNLypyUD3tPWX2/ILsOig7u89Py7+3ZfPnrgY+3EffFedw/APYlOwe8SrYf9yDbZ3bOv9M/UXb9UlZXe9c6jfvL74ED8zLzgWeAXmXbYgJ+mi/nYcC8vOwmVRy//0l2vTY+/36fJEsgXUV2LNyX7Pi0GphcMm215+3t8/V+P9n1YWN8z9H8GNHp46F//q3LX7cH4J9/3f0HfC0/sO6Sf943/3xiWbkHyC64omTYR/OyDSXDLs4P/O8tGfau/OSSyupMZD9C3lU2/Jz8BPC+suFXkV089so//zw/EfUvKTM0n3ZBG8vcMz/xPAV8r2T4hDymbcvK75EP/2LZ8CPy4R/JPx+Xf965pEwPsh8r1f6wWl263MDmZBesE0uG3ZOfTPuULdM84Oay+hoqzGcBlZMQl1VYTy8AM8uG756XP7WszmWUJK+AMXm5w9tZ7kmtbBtP0/yi57v58G+UDOtFlhSZWmF5flxW59n5unx//vlkKlxUANPzOnu2tX5K1vF9VexnPYGt8noOLl92Sn645MMfB+4q+Xx+HvvoNubR7nZR8p18qL2Yq1ie/mQX0mdUWPfnlZW/DXi65HNX7Culx52qjhmd+F5Oq+V+mi/zc8CdZfM4LJ//tNbWQV7uDLIfeo0/IG4GfkT2Q2jffNiJebwb55+Pyuves8L+sQrYPP9cT8n+QZYIexW4omy6/6D1JER723Xj9lJ+zP0B8KdObJfTqJyEaCgr93/z4e9pp74FwHUVhle7fJ3aLiut/wrjg+z4dzbZsbdHybItrWL/afe41VoctJ6EKE84/CBf/sYf6VWdS1vZTyudsxvne1OVy9K4vVU8vpDtj73y7+fRkuGbkCXBzykZNoTsWufrJcOqPTdPy+M4qIqYB+XzmVY2/Mi8jgNLht1Xvq23sx62rTAukSWRe5cM+1w+fNf888ZkSdKflk27Ddkx5PQqtr/VwIiSYQfm85heVvZGYH7J52rP29eT7WMblZTZKo+v9BjRqeOhf/6t65/NbKTsrtBfUkoP5p+nkyUGjm4skDf1HEN2pyI1Dk8pzSHLepfaGXgoZc/5N5Z7neyOdiV35uNL7Uf2OMD8vGler8g6y/w9sBnZnZzGed2RUvpXybwWkSVMmoms6fTMiHiJ7A7bauD9ZHcJ27Mf2cnoN2Xx3JWP3zP/dxfguZRS03PUKaU3yZtxV+kvKaW/lEz/ItmJdVi+HO8iuxP938CbJbEE2Xe3Z8sqq1be3HQ7sh9X15cOTCndR3YHZ6+y8g+mlJaVfH48/7fd5pmtuDs17x/kz/m/vy+JZQ3ZHZqtKkxfvt5/SXaR+bH8857A31NKDWXlriO7wBxVNrxDz9lGxJcje4zlVbJtbmE+qtI2V75/zKX5evsE8L8ppYdbmVe128VfyO46TonsMZtK66215fl8RPxPZI+jrCH7obtxlcvzeNnydMW+UqraY0ZHv5fWvvOu2k/fm/+VL/cNeWztmQH0A3bNmw7vlS/zfWStN8j/nZ1SejX/vB/Z/vtAheNZb7LjaiUfJLsL+d9lw3/TRnztbdet+V/gIxHx/fzY3b+KadpyR9nndT02NWpv+areLquRN0OfEhHPkp2TVpO1ThlIdqyGbN3VRfYoxKei7HGIGqu03/cla+EI1Z9LO3rO7nQfCJE9CveLiPh7Po/VZC3+muaTUnqF7LzwpZIm+hPI9uef5vV09Ny8mur63tqZrOXYdWXDf0m2XsrPw13h7pTS6pLP5fvLLmStfK4v+x6fIztPV3Md8nRK6W8ln1uc30uGvzciIv9c7Xl7F7Lrw9caC6SUniNrGVGqs8dDaZ2YhNAGLSLGkB2wb4yIgfnFyiZkmeedI+L9edHBZAfjFytUU/785dAqyzVaVGHY5mQnmtVlf40Xv5t1ZF4RsSPZReirZE2fdwZ2Imu62K/F1JXj6UP2o6s0nsZ5l8ZTaTk78ozq0grDVpbEOYjszso5tFw/J5NdfHb22Fb+XQxqZThkTSnLe9ZuFnt6q5OtatZxJcvKPq9qY3ileZSv98bPjc//D6L1ZWscX6pS2Yoi4hTgCrKLz8+SJT4aL2YqxVr+va8sK7cZbXfeWdV2kVJ6max58z/y+BZG9lz5Ie0sz6eBX5Hd0Tsc+DjZPrS4A8tT2t9DV+wrpao6ZnTie2ntO++q/bSxb5Vmy50n115qZd6lHsvLjSV7fGAA2eNvM4Gx+YV7PVmyotHmZH0dlMf1x3z8ZlTWGGv5Mbet76y97bo11wJfJtvOfg8sjYgbo/OvVqwUB1XG0tF6S+us9lzWrnx7uZWs6fqFZMmlnYCL8iL9AFJKs4BDyRKzNwGLI2J6RHyo6qXqvPbWc1Xn0k6cs6s+NpeKiI3JHqX6MNnjPnvk8/kpLfunuYLsR/gn8/3qeLIWGI2xd/TcvDiltLaKMCueh0uOEbV4w0U13yNkx9HyZf0g1W3XHTm/9yJbt1D9ebvac0xnj4fSOvHtGNrQNbZ2ODP/K/dFsmfpl5AdlDevUObdvHUnEbKTQ2vlKkkVhr1EdlFyWivTPNXBeR1Cdsfgs6XZ/YioI7sr3J6XyJqUttZZ3D9K4mnReVOFeNbFcrLnfX9IdqHeQn5HGbKYB1Qo0tpFS/l30XghskWFslsAc9qMtPu9m6x5f+lnyJ4fhmz5Kt1V26JkfKlK22prxgP3pJT+s3FARGzTgenLLeGt5EklVW8XKaVHgEPyuz1jgLOAX0fEh1NKc1upfzzwTEppQuOAiOhN5y+Au3pfqfaY0dHvpSPfeamqvo+IaLyYbrbc+XfT7sVvSilFxCyyH6SvAI+klJZFxAyyH6q7kd0dnFky2UtkLdg+X15fbkErwxtj3ZzK+1WXyVvcTSFrsVNH1hLoUrJE2Me7en41VO12WY1/I9tfj0opNd0VzxOEzaSUfkPW2mBjsiTUJcCdEfHekvNDd6j2XNrRc3Zn99NdyH6A7pG38GucT4vfBymluRFxL3AC2TJsm/+/UUfOzR2JufQ83LTflRwjKiVEa60xQTqB5seCRq/UcN7VnrcXUfnYVD6ss8dDaZ2YhNAGKyL6kHVs9z9kdwDKXQYcFRHnpJTWRsRssh8ukxofyYiIj5I9A1iahHgI+L/5xc7zebl3kXU8V607yTprWlhyl6GSh8juSvRvfCQjsrc27EbzTHl/sue1m076ETGO7K5G6eMkjdn+Zm9QyOM5E9g0pXRPG/E8CBwTETs3NjPP73y0dnLrsJTSa/mF0IfJnplu64LyWbLvrE9KaVUez55krV2q8RTZXYPxwE8aB0bErmQXbpd2YhGK9Hma3wEeT3aR2Pjmj1nAoRGxW0qptInm4WQ/HKp5Dd1KKq/P/mTPEJc6ppqgW3EX8I08UfBo+cgObheN06wBHoqIc8iex92erDl5Jf1p+XjAUbx1d6qjunpfqfaY0dXfS0Ud+D6eJ2vC/HnyZt25Q6j+GmUG2fF6LW9t73PI7jZPIruTWLp935nX/2pK6c9U7/G8zkNpntQ4tAN1lGvtmNskf8TrVxHxcZr/6CvCStqIrQrVbpfVaHwkpfRHeW+y/hQqyh/BuS0iRpB1nLkZWeul1o5btVbtubTac/a6qrRO64CDWil/BVmz/zqyxwmazi+dOQZX6SGyfXg8WZ8TjQ4jO0Y0dKLOdve7djxAlmjYNqV0TSfr6Kxqz9sPkl0fbtT4SEb++OFuvJXsgs4fD6V1YhJCG7IDyC5I/rPCs3VExBSyDs7qyS44zyX7IXRTRFxJ9ojGJLImcKUn2++SNaP9fUScR3ay+4/832oz/5eRnWDvjYjLyH4MbwSMJLtj0XiBcCFZh0m/j4jvkDWfPIfsh3NpTHeS9Xo8LSKmkj1Xeg5v3RFv1Hjy+kpEXEN2YfJYSqkhIn5Bdmfpu2TN9N4k6/Tsk2S9jj8NXEOW0LkxIiaSnRBPpHJrhHXxH8AfyJb7J2QJl8FkPXP3TCk1JpV+SdZk9KeRvVpum3zal6uZSZ58+ibZ3cjryC6+tiRr/vsXmv9oWh99MrLXEt5F1uz+XODakmf5p5HdobwxIs4m+0F4BFmv/ydU2VT2SeCkiDiM7E0Kr6SUniK/2M63gz+S3an+3Dosy2VkF1nTI+JCsh+Eg8kulk/Mn1lud7uIiE+RbRM3k13Mb0TWc/4rZBdtrbkT+Ey+P95Gdke2sVf7zujqfaXaY0ZXfy9taff7yFtDnAdcnR+bfkl2h/XrtEyWtGYm2eNye5Ld8W7cd/9A1nT/D2X97lxPlni5JyIuJWvi3ofsTvuBZG8X+Bdl8hYWlwMTI+IVsqbYO5I1l4fmx9xqVTzmknVo2LhNvkh2zD6Kt/oOKMqTZK88/BTZuW5JSmlBB6avdrusxjyyxPJFEbGWbF2dUV4oIs4nu9s7k+zH1nvJ9vFHUkqLS5ar0nGrpjpwLq32nL2uHiDbz34YEeeSfTeNrT83rVD+BrK3juxG9paSctWem6uWUlqa76dnRcRrZI+pbE92/XMfrfe31ZbWrnVWtTFNaUwrIuKrZOttCPA7suuKLcn6qGhIKf28E3FVYxrVnbcvJEuQ3pVfB/Qhu2YtfxyjU8dDaZ211Wulf/69k//IfoSsoOTNEmXjNyV71du0kmGHk11ErSRrgncw2WsYbyqbdkeyk+MbZBcN55DdhVlWVi4BF7Yy/zqyC7j5ZHcBXiR7jdLpZeX+HXgkj+lvZHfKbgIeLit3Sl7X62Qdd+1DhbdHkP1Q/Ttv3YUZng/vQXbiezRfrpfz/08mu6vTOP0IsouEf5HdcfpeHlOrPXKXTNtAhR7LKXubRT5se7IfLC/my/482fPCnywrdwJZwuB1sguuj5bXRxs9Zefjj8yXdSVZ08WfAUMrxFipF/lESa/5rdQ/icpvx7iwbFjFOMvXW0m5PYFbyJ4rXkrWTLb8TSxD8+VZki/fY8CR1cw3H7dF/n2/Qkkv/GR3mH6UbwOvkP1w36Z8ffBWL/u9yuqdRsvXzG4OXEl2YbuK7A76NZS8hq297YKsGeuvyPaFN/L47qCN18OVbP8Xkv2o+RfZ3ajR1W5LrXzH67qvlO+77R4z1vV7qeF+ehrZD8w3gNlkb6BpUV8b6+OflLwBIx92RvlylYzrly/jn/O4lpIdFyfx1tuH6mn5VoSeZEnIf5IdUxqAXSl7k0hr64/K23WLYy7Zo4INJettfv7dDmhnPTSrn7fejvGlsnItlq2V+kbm29C/KHlbSQeXr6pzWYV5V1r/HyE7t/4r35bOJ+tEsfRcdQBZPxqL8nX3HFlLtveU1FPxuNWBOBqo/HaMfcqmnUDZ/kz159J2z9mtzbeNZakUzziy65jXyRIyp1LheFVSfkpedrNWxre7z+fbyfPVxJyXD7L9+al8G1pEdj4bUFauqrdjtLbf5cMrnXuH58MnlA3/JFmya0W+TTbenGj1la8l2899rcyjfF+dRNm+RhXn7bzcPvl3W3p9OI2W+2injof++bcuf42vDJLUCRHxXrI3E1yUUrqgjXI9yd5dvSSltHeNY9o4j+n2lNKx7ZXXO09ETCB7z/j7UkrPdHM40jtaRHyOrKPFPVNK93Z3PFKt5P0wPAPcm1I6qrvjkfT25eMYUpXyfh2+S9YEdwnZXcyvkWW/ry4rewHZifpZskc+vgR8iCxr3tVxfZ/sDv8/gPeQ3WGpI7urKknqInm/DAeQ9avyBlnLqq+TPbd+XxuTSm9bETEA2IGsNehWrP/9IUlaz5mEkKq3lqwJ5w/IEguvkTUpPTSlVP66pAR8kywpkMiayn0mpfS7GsTVj+w56HeTNVP8I1nTzMdqMC9J2pC9SvaY01fI+u94Efg1cFayaaneuXYke+zgRbLHjh7p5ngkvc35OIYkSZIkSSpEj+4OQJIkSZIkbRjekY9jDB48OA0fPry7w5AkSZIkaYMzZ86cJSmlIZXGvSOTEMOHD2f27NndHYYkSZIkSRuciHi2tXE+jiFJkiRJkgphEkKSJEmSJBXCJIQkSZIkSSqESQhJkiRJklQIkxCSJEmSJKkQJiEkSZIkSVIhTEJIkiRJkqRCmISQJEmSJEmF6NXdAXS3lStXsnTpUl555RXWrl3b3eFINdGzZ0822WQTBg0aRN++fbs7HEmSJEkbqA06CbFy5UoWLlxIXV0dw4cPp3fv3kREd4cldamUEqtXr2bFihUsXLiQYcOGmYiQJEmS1C026Mcxli5dSl1dHYMHD6ZPnz4mIPSOFBH06dOHwYMHU1dXx9KlS7s7JEmSJEkbqA06CfHKK68wYMCA7g5DKsyAAQN45ZVXujsMSZIkSRuoDToJsXbtWnr37t3dYUiF6d27t32fSJIkSeo2G3QSAvARDG1Q3N4lSZIkdacNPgkhSZIkSZKKYRJCkiRJkiQVwiSEJEmSJEkqRK/uDmC9NmlSd0fQtvU9vk6aNm0axxxzDFOnTmXChAlNw4cPHw7AggULuiUugEmTJnHeeecxc+ZM6uvruy0OSZIkSXo7siWEmrnooouICCKCp556qmKZSZMmERE0NDRUHD9hwgQioluTBZ01bdo0IoJp06Z1dyiSJEmS9I5jEkJNUkpcffXVTW9QuOqqq7oljoMPPph58+Zx8MEHd8v823LyySczb948Pvaxj3V3KJIkSZL0tmMSQk3uuusuFixYwNFHH80WW2zBNddcw6pVqwqPY9NNN2XkyJFsuummhc+7PYMHD2bkyJH079+/u0ORJEmSpLcd+4RQk8aWD8cddxybbbYZl156KTfddBOHHXZYU5nhw4fz7LPPAjB27Nhm06eUmlpRAGyzzTZN/996662bHs+or69n1qxZrFy5km9961tcf/31LFiwgC984QtMmzat1T4hGr388sucffbZ3HTTTbz00kuMGDGCE088kVNOOaXZ/BsaGhg7diznnnsukyr0n1Hex0RjXADHHHMMxxxzTFPZ+fPnM3z48Db7hLjnnnv49re/zR//+Edee+01tt56az772c9y1llntUioNM5r9erVTJ48malTp7Jw4UI233xzDj/8cC644AL69OnTbJp7772XyZMn8/DDD7N48WLq6uoYPnw4+++/P+eee26L5ZO0nqt1vz7v0H6DJEnS25tJCAHwwgsvcOutt/L+97+fXXfdlQEDBnDppZdy5ZVXNktCnH766dx8883MmjWLo48+uumHfKNzzz2Xm2++mUcffZTTTjuNgQMHAjT9W+qQQw7hf//3f9l///35zGc+w+abb95unKtWrWKfffZh+fLljB8/nlWrVnHDDTdw2mmn8dRTT/HDH/6w0+tgwoQJDBw4kFtuuYWDDjqIj3zkI03jKsVfasqUKXz5y19mo4024tBDD2XzzTenoaGBSy65hN/+9rfcf//9Fes4/PDDuffee9l///0ZMGAAd9xxB5MnT+bFF19k6tSpTeXuvPNODjjgAAYMGMCBBx7IlltuydKlS5k3bx5XXHGFSQhJkiRJbwsmIQTA1KlTWb16dVPLgx122IGPfvSjzJw5k2eeeYZtt90WyJIQy5cvZ9asWUyYMKFFa4BJkyaxYMECHn30UU4//fQWSYpSzz77LHPnzmXw4MFVx7lo0SJGjBjB3Llz6du3LwDnnXceO+20E1dccQWHHXYYe+65Z4eWvVHjst9yyy185jOfqdgKo5Jnn32WU089lY033pg//vGPjBw5smncSSedxI9+9CO+9rWvceWVV7aY9q9//StPPPEEgwYNArKOQT/84Q9z7bXX8l//9V9sscUWQNZK5c0336ShoYEPf/jDzepYsmRJJ5ZWkiRJkopnnxBq6pCyR48efPGLX2waPmHCBFJKNeug8oILLuhQAqLRf/3XfzUlIAAGDRrEOeecA9Cs9UBRrrvuOlatWsXJJ5/cLAEBWVJhk0024Wc/+xkrV65sMe0ll1zSlIAA2GijjTjiiCN48803mT17dovy73rXu1oM68w6lCRJkqTuYBJCzJgxg7/+9a/8+7//O1tuuWXT8MMPP5w+ffowbdo0Vq9e3eXz7cwbJnr16sWuu+7aYnhji4yHH354XcPqsD/96U8AjBs3rsW4uro6Ro8ezRtvvMGf//znFuPHjBnTYthWW20FwLJly5qGHXHEEQB8/OMf58QTT+RXv/oVzz//fJfEL0mSJElFMQmhpscEyh8/GDRoEJ/+9Kd58cUXueWWW7p8vo2PGnTE4MGD6dmzZ6t1vfzyy+scV0c1znPo0KEVxzcOX0qi5ssAACAASURBVL58eYtxlfqJ6NUre0pq7dq1TcM++9nPcttttzF69Gh++tOfMn78eLbaaivGjBnD3Xffvc7LIEmSJElFMAmxgVu8eDE333wzAF/4wheIiGZ/N9xwA0DF/gzWVembLKq1ZMmSZj/OG/3zn/8EaPYWih49ss17zZo1FeuqlBTojMZ5NsZQbtGiRS1i64wDDjiAGTNmsGzZMu655x7OOOMMnnjiCT71qU/x5JNPrlPdkiRJklSEmnZMGRFbAZcB/w4EMB04PaW0sIppUyujRqeUHum6KDds11xzDatWreKjH/1os7dBlLr11luZPn068+fPZ5tttmlqiVApGQC0O35drFmzhgceeIA99tij2fCGhgYARo8e3TSsrq4OgOeee65FPc888wwvv/xyi5YInYl99OjR3HjjjTQ0NLD33ns3G7d8+XIeeeQR+vXrx/bbb191nW3ZaKONGDduHOPGjaOuro5vfvOb/O53v2PUqFFdUr8kSZIk1UrNWkJERH9gBjASOBo4CngfMDMiNqqymmnALmV/T3d5sBuwxk4nr7jiCq6++uqKfyeccEJT55UAm222GQALF1bOJbU3fl2dddZZzTp5XLp0KRdeeCEAxxxzTNPwkSNHMmDAAG655RZefPHFpuGvv/46p556asW6OxP7kUceSe/evfn+97/PM88802zcOeecw4oVKzjyyCObdabZUX/4wx8qtuh44YUXAOjfv3+n65YkSZKkotSyJcRxwAhgu5TSMwAR8RjwF+AE4LtV1PH3lNJDtQtxw9bQ0MDTTz/NBz/4wTY7iTz22GO56KKLmDp1Kueddx5jx46lR48enHXWWcydO7epxcE3vvENAPbee2++/e1vc9xxx3HIIYewySabMHDgQE4++eR1jnno0KGsXLmSHXbYgQMPPJDVq1fzm9/8hkWLFnHSSSc1ez1n7969Oe2007jgggsYPXo0Bx98MGvWrOHuu+/mPe95D+95z3ta1L/LLrvQv39/Lr/8cl566aWmviZOOeWUVh+nGD58OJdffjlf+cpX2HHHHfn85z/PkCFDmDVrFg8++CAjR47kkksuWaflPvXUU/n73//ObrvtxvDhw+nTpw9z5sxhxowZbL311owfP36d6pckSZKkItQyCXEg8FBjAgIgpTQ/Iu4HDqK6JET3mjSpuyOoqcZWEF/60pfaLDd8+HD22Wcf7r77bn77299y8MEHc8011/Cd73yHK664gjfeeAN4Kwmx7777cumll3LVVVdx+eWXs2rVKrbeeusuSUL06dOH6dOnM3HiRH75y1+yZMkSRowYwde//nVOOeWUFuXPO+88+vfvz1VXXcWVV17JFltswfjx45k0aVLFxxfq6uq44YYbOO+885g2bRqvvfYakLV2aKtPh5NOOoltt92W73znO9xwww3861//YquttuKrX/0qEydOrNgBZUdMnDiRm266idmzZzN9+nR69OjBsGHDmDhxIqeffnpTIkiSJEmS1meRUmtdL6xjxRH/BG5JKZ1QNvwK4NCU0pB2pk/AUmBjYC3wEHBuSune9uY9ZsyYNHv27HZjnDdvXpc9py+9XbjdS+uJWie63+GJdEmStP6KiDkppTGVxtXy7RiDgGUVhi8Fqrltex1wErAPcDywGTAjIuorFY6I4yNidkTMXrx4ceciliRJkiRJNVPTt2Osi5TSUSUf742IW4C5wIXA7hXKXwlcCVlLiEKClCRJkiRJVatlS4hlVG7x0FoLiTallF4Bbgd2Wse4JEmSJElSN6hlEuIJ4AMVho8CnlyHem3lIEmSJEnS21AtkxC3AjtHxIjGARExHNgtH9chETEA+BTwxy6KT5IkSZIkFaiWSYirgAXALRFxUEQcCNwCPAdMaSwUEVtHxJqI+GbJsP8bEVdFxOERUR8RRwP3A1sAZ9cwZkmSJEmSVCM165gypfRaRIwDLgN+BgRwD3B6SunVkqIB9KR5QuQp4OD8b1NgBVkS4tiUki0hJEmSJEl6G6rp2zFSSguBQ9ops4AsEVE67LfAb2sXmSRJkiRJKlotH8eQJEmSJElqYhJCkiRJkiQVwiSEJEmSJEkqhEkISZIkSZJUCJMQkiRJkiSpEDV9O8bb3aSGSd0dQpsm1U/q7hDW2Zo1a+jduzd7770306dPX6e6dt99dx566CHWrFnTRdFJkiRJkrqSLSE2cHPmzCEi+PjHP15x/C9+8Qsigohg/vz5Lca//vrr9OvXj/79+7Ny5cpah9ul1qxZQ0Swzz77dHcokiRJkrRBMAmxgRs9ejR1dXXMmTOHFStWtBh/zz33EBEAzJgxo8X4+++/n5UrV7L77rvTt2/fDs+/V69ezJs3j6lTp3Y8eEmSJEnS24pJiA1cjx49qK+vZ+3atcyaNavF+BkzZlBfX89mm21WMQnROGzvvffudAwjR45kq6226vT0kiRJkqS3B5MQakoglCcZFixYwPz589l7773Za6+9mDlzZotpW0tCXH/99dTX1zNw4ED69evHqFGjuPjii1m1alWzcm09EvGPf/yDo48+miFDhvCud72L0aNHc9111zF9+nQiggsvvLDi8qxevZoLL7yQbbfdlr59+zJs2DDOOussVq9e3VTm6quvpnfv3sBbrT0a/0rrvfnmmxk3bhxbbLEFffv2Zcstt6S+vp4f//jHra5PSZIkSVJldkwpxo0bB2Q/xks1fh43bhybbropN954I08++SSjRo0CYMWKFcyePZu6ujp23HHHpumOPvporr32WoYNG8bnPvc5Nt10Ux544AHOPvtsZsyYwe9//3t69uzZZkz//Oc/2WWXXVi4cCH19fXsvPPOLFq0iOOPP5599923zWnHjx/Pgw8+yH777ccmm2zC7bffzre+9S2WLFnCVVddBcCOO+7IOeecwwUXXMA222zDF7/4xabp99xzTwCuuOIKvvKVrzB06FAOPPBABg8ezIsvvsijjz7KNddcw4knnljN6pUkSZIk5UxCiO23356hQ4cyd+5cFi9ezJAhQ4CslcPGG2/MTjvtxIABA5qGNSYhZs2axdq1a6mvr6dHj6xRzdVXX821117LoYceyrXXXku/fv2a5nPOOedw4YUX8uMf/5ivfOUrbcZ05plnsnDhQiZOnMhFF13UNPzUU09l5513bnW6tWvX8txzz/HEE09QV1cHwEUXXcSHPvQhpk6dysUXX8yQIUPYcccd+dCHPsQFF1zAiBEjmDRpUou6pkyZQr9+/XjssccYPHhws3FLlixpM35JkiRJUks+jiEge5wipdTskYuZM2eyxx570KtXLz7wgQ+w+eabN3tko9KjGN/73vfo06cPV199dbMEBMC5557LwIEDuf7669uM5Y033uBXv/oVdXV1TJw4sdm4HXfckSOOOKLN6SdPntyUgADYeOON+cIXvsDatWuZM2dOm9OW6927d9NjG6XKkxKSJEmSpPbZEkJA9sjFddddx4wZM/j85z/PvHnzWLRoEWeccUZTmfr6eu6++27efPNNevTo0SIJ8corrzB37lze/e53893vfrfifPr168e8efPajGXevHmsXLmSXXfdlY022qjF+N13351p06a1Ov2YMWNaDGvs+HLZsmVtzrvUEUccwZlnnsmoUaM47LDD2Guvvdhtt91MQEiSJElSJ5mEEPBWIqGxH4jS/iAa1dfX8+tf/5qHH36YYcOG8fjjj7PlllsycuRIAJYuXQrACy+8wHnnndfqvHr1anuze/nllwF497vfXXF8a8MBevbsycYbb9zqPNeuXdvmvEt97WtfY/PNN+dHP/oRl19+OZdddhkRwdixY/n2t7/drB8MSZIkSVL7fBxDAAwbNox/+7d/45lnnuG5555jxowZDBw4kNGjRzeVGTt2LJA9hjFz5kxSSs0exdh0000B2GmnnUgptfpX+paKShr7n3jhhRcqjm9teC1MmDCB//mf/2Hp0qXcdtttHHPMMcycOZN9992Xl156qbA4JEmSJOmdwCSEmjQmFKZPn05DQwN77bVXU4eTACNHjmSLLbZgxowZFfuDGDhwINtttx2PP/44y5cv73Qco0aNom/fvjzyyCO89tprLcbfd999na67VOOyVdM6YuDAgRxwwAH85Cc/4aijjmLJkiVdFockSZIkbShMQqhJ46MXl112GcuWLWtq+VBq7Nix3Hvvvdx1111A8yQEwH/8x3/wxhtvcOyxxzY9VlFq6dKlPPzww23G0a9fPw499FCWLVvGxRdf3Gzcww8/3G7HltXq0aMHdXV1LFy4sOL4xtYepVJKvPjiiwD079+/S+KQJEmSpA2FfUKoybhx44gIHn/88abP5caOHcsvfvEL5s+fz3bbbceWW27ZbPzxxx/PnDlzuPLKK5k1axaf+MQnGDZsGEuXLuVvf/sb9957L8cddxw/+MEP2oxl8uTJNDQ0cPHFF/PAAw+wyy67sGjRIn71q19xwAEHcPPNNzdrpdFZe++9N7/5zW846KCDGD16NL169aK+vp7dd9+dT3/609TV1bHzzjszfPhw1q5dy7333svs2bP52Mc+VjFJI0mSJElqnUmINkyqn9TdIRRqyJAhfPCDH+Sxxx5j8ODB7LDDDi3KlP7wLm8F0WjKlCkccMABTJkyhbvvvpvly5ez2WabsfXWW/O1r32NI488st1Yhg4dyoMPPsjEiRO54447eOihhxg5ciRTpkyhd+/e3HzzzU19R6yL73//+/Tq1Yt77rmH2267jTfffJMLLriA3XffncmTJ3PXXXcxZ84cbr/9dvr168fw4cOZPHkyX/7yl9vtYFOSJEmS1FyUNzd/JxgzZkyaPXt2u+XmzZvH9ttvX0BE6kpnnnkmkydPZvr06a0mQtQ6t3tpPTFp0tu7fkmSpFZExJyU0phK4+wTQuutf/zjHy2GPfroo/zwhz9k8ODB7L777t0QlSRJkiSps2xPrvXWRz7yEbbffnt22GEH+vfvz9NPP80dd9zBm2++yU9+8hP69u3b3SFKkiRJkjrAJITWWyeeeCK33norP//5z3n11VcZOHAg++23H1/96lfZc889uzs8SZIkSVIHmYTQeuv888/n/PPP7+4wJEmSJEldxD4hJEmSJElSIUxCSJIkSZKkQmzwSYh34itKpda4vUuSJEnqTht0EqJnz56sXr26u8OQCrN69Wp69uzZ3WFIkiRJ2kBt0EmITTbZhBUrVnR3GFJhVqxYwSabbNLdYUiSJEnaQG3QSYhBgwaxbNkylixZwqpVq2yqrneklBKrVq1iyZIlLFu2jEGDBnV3SJIkSZI2UBv0Kzr79u3LsGHDWLp0KQsWLGDt2rXdHZJUEz179mSTTTZh2LBh9O3bt7vDkSRJkrSB2qCTEJAlIoYOHcrQoUO7OxRJkiRJkt7RNujHMSRJkiRJUnFMQkiSJEmSpEKYhJAkSZIkSYUwCSFJkiRJkgphEkKSJEmSJBXCJIQkSZIkSSqESQhJkiRJklQIkxCSJEmSJKkQJiEkSZIkSVIhTEJIkiRJkqRCmISQJEmSJEmFMAkhSZIkSZIKYRJCkiRJkiQVwiSEJEmSJEkqhEkISZIkSZJUCJMQkiRJkiSpECYhJEmSJElSIUxCSJIkSZKkQpiEkCRJkiRJhTAJIUmSJEmSCmESQpIkSZIkFcIkhCRJkiRJKoRJCEmSJEmSVAiTEJIkSZIkqRA1TUJExFYR8ZuIeDkiVkTEjRExrBP1fD0iUkTcV4s4JUmSJElS7dUsCRER/YEZwEjgaOAo4H3AzIjYqAP1jAC+AbxYizglSZIkSVIxetWw7uOAEcB2KaVnACLiMeAvwAnAd6us50fA9cB21DZeSZIkSZJUQ7V8HONA4KHGBARASmk+cD9wUDUVRMThwI7AWTWJUJIkSZIkFaaWSYgPAHMrDH8CGNXexBFRB1wGfC2ltLSLY5MkSZIkSQWrZRJiELCswvClQF0V038beBqYVs3MIuL4iJgdEbMXL15cdZCSJEmSJKkY6+UrOiNiD+CLwJdTSqmaaVJKV6aUxqSUxgwZMqS2AUqSJEmSpA6rZUePy6jc4qG1FhKlpgA/AZ6PiIH5sF5Az/zz6ymllV0WqSRJkiRJqrlaJiGeIOsXotwo4Ml2pt0+/zuxwrhlwBnA5esUnSRJkiRJKlQtkxC3At+JiBEppb8BRMRwYDfg6+1MO7bCsMuBnsApwDMVxkuSJEmSpPVYLZMQVwEnA7dExDeABFwAPEf2uAUAEbE18Ffg/JTS+QAppYbyyiJiOdCr0jhJkiRJkrT+q1nHlCml14BxZG+4+BlwPTAfGJdSerWkaJC1cFgvO8mUJEmSJEldo5YtIUgpLQQOaafMArJERHt11XdNVJIkSZIkqTvY+kCSJEmSJBXCJIQkSZIkSSqESQhJkiRJklQIkxCSJEmSJKkQJiEkSZIkSVIhTEJIkiRJkqRCmISQJEmSJEmFMAkhSZIkSZIKYRJCkiRJkiQVwiSEJEmSJEkqhEkISZIkSZJUCJMQkiRJkiSpECYhJEmSJElSIUxCSJIkSZKkQpiEkCRJkiRJhTAJIUmSJEmSCmESQpIkSZIkFcIkhCRJkiRJKoRJCEmSJEmSVAiTEJIkSZIkqRAmISRJkiRJUiFMQkiSJEmSpEKYhJAkSZIkSYUwCSFJkiRJkgphEkKSJEmSJBXCJIQkSZIkSSqESQhJkiRJklQIkxCSJEmSJKkQJiEkSZIkSVIhTEJIkiRJkqRCmISQJEmSJEmFMAkhSZIkSZIKYRJCkiRJkiQVwiSEJEmSJEkqhEkISZIkSZJUCJMQkiRJkiSpECYhJEmSJElSIUxCSJIkSZKkQpiEkCRJkiRJhTAJIUmSJEmSCmESQpIkSZIkFcIkhCRJkiRJKoRJCEmSJEmSVAiTEJIkSZIkqRAmISRJkiRJUiFMQkiSJEmSpEKYhJAkSZIkSYUwCSFJkiRJkgphEkKSJEmSJBXCJIQkSZIkSSqESQhJkiRJklQIkxCSJEmSJKkQJiEkSZIkSVIhTEJIkiRJkqRCmISQJEmSJEmFMAkhSZIkSZIKYRJCkiRJkiQVwiSEJEmSJEkqRE2TEBGxVUT8JiJejogVEXFjRAyrYrqtI+KWiHg2Il6PiCURMSsiPlnLeCVJkiRJUu3ULAkREf2BGcBI4GjgKOB9wMyI2KidyTcGlgDfAD4JHAu8AtweEZ+tVcySJEmSJKl2etWw7uOAEcB2KaVnACLiMeAvwAnAd1ubMKX0BFnioUlE3A7MB44BbqxRzJIkSZIkqUZq+TjGgcBDjQkIgJTSfOB+4KCOVpZSWgO8DKzpsgglSZIkSVJhapmE+AAwt8LwJ4BR1VQQET0ioldEbBER3wTeD/ygC2OUJEmSJEkFqeXjGIOAZRWGLwXqqqxjMvCf+f9fBcanlO6pVDAijgeOBxg2rN2+LyVJkiRJUsHW91d0Xg7sBHwa+B3w84j4VKWCKaUrU0pjUkpjhgwZUmSMkiRJkiSpCrVsCbGMyi0eWmsh0UJK6Xng+fzjbRHRAHwHuK0rApQkSZIkScWpZUuIJ8j6hSg3Cniyk3XOBrbtdESSJEmSJKnb1DIJcSuwc0SMaBwQEcOB3fJxHRIRPYDdgb92UXySJEmSJKlAtXwc4yrgZOCWiPgGkIALgOeAKY2FImJrssTC+Sml8/Nhk8ge27gf+CewBXAs8DHg8BrGLEmSJEmSaqRmSYiU0msRMQ64DPgZEMA9wOkppVdLigbQk+atMv4EnA6MBzYlS0Q8CuyRUrq/VjFLkiRJkqTaqWVLCFJKC4FD2imzgCwRUTrsVjrxyIYkSZIkSVp/re+v6JQkSZIkSe8QJiEkSZIkSVIhTEJIkiRJkqRCmISQJEmSJEmFMAkhSZIkSZIKYRJCkiRJkiQVwiSEJEmSJEkqhEkISZIkSZJUCJMQkiRJkiSpECYhJEmSJElSIUxCSJIkSZKkQpiEkCRJkiRJhTAJIUmSJEmSCmESQpIkSZIkFcIkhCRJkiRJKoRJCEmSJEmSVAiTEJIkSZIkqRAmISRJkiRJUiFMQkiSJEmSpEKYhJAkSZIkSYUwCSFJkiRJkgphEkKSJEmSJBXCJIQkSZIkSSqESQhJkiRJklQIkxCSJEmSJKkQJiEkSZIkSVIhTEJIkiRJkqRCmISQJEmSJEmFMAkhSZIkSZIKYRJCkiRJkiQVold3ByCtFyZNenvXL0mSJElvA7aEkCRJkiRJhTAJIUmSJEmSCmESQpIkSZIkFcIkhCRJkiRJKoRJCEmSJEmSVAiTEJIkSZIkqRAmISRJkiRJUiFMQkiSJEmSpEKYhJAkSZIkSYUwCSFJkiRJkgphEkKSJEmSJBXCJIQkSZIkSSqESQhJkiRJklQIkxCSJEmSJKkQJiEkSZIkSVIhTEJIkiRJkqRCmISQJEmSJEmFMAkhSZIkSZIKYRJCkiRJkiQVwiSEJEmSJEkqhEkISZIkSZJUCJMQkiRJkiSpECYhJEmSJElSIUxCSJIkSZKkQpiEkCRJkiRJhTAJIUmSJEmSClHTJEREbBURv4mIlyNiRUTcGBHDqphuTERcGRF/joh/RcTCiLg+IrapZbySJEmSJKl2apaEiIj+wAxgJHA0cBTwPmBmRGzUzuTjgQ8A/w/YH/g6sCMwOyK2qlXMkiRJkiSpdnrVsO7jgBHAdimlZwAi4jHgL8AJwHfbmPaSlNLi0gERcT8wP6/3mzWJWJIkSZIk1UwtH8c4EHioMQEBkFKaD9wPHNTWhOUJiHzYs8BiYMsujlOSJEmSJBWglkmIDwBzKwx/AhjV0coiYntgc2DeOsYlSZIkSZK6QS2TEIOAZRWGLwXqOlJRRPQCfkzWEuInrZQ5PiJmR8TsxYtbNKSQJEmSJEnd7O3yis4fALsCR6aUKiU2SCldmVIak1IaM2TIkGKjkyRJkiRJ7aplx5TLqNziobUWEhVFxLeA44GjU0p3dVFskiRJkiSpYLVMQjxB1i9EuVHAk9VUEBFnA2cCp6SUftaFsUmSJEmSpILV8nGMW4GdI2JE44CIGA7slo9rU0ScClwInJ1S+kGNYpQkSZIkSQWpZRLiKmABcEtEHBQRBwK3AM8BUxoLRcTWEbEmIr5ZMmw8cDlwJzAjInYu+evwmzUkSZIkSVL3q9njGCml1yJiHHAZ8DMggHuA01NKr5YUDaAnzRMi++XD98v/Ss0C6msUtiRJkiRJqpFa9glBSmkhcEg7ZRaQJRxKh00AJtQqLkmSJEmSVLy3yys6JUmSJEnS25xJCEmSJEmSVAiTEJIkSZIkqRAmISRJkiRJUiFMQkiSJEmSpEKYhJAkSZIkSYUwCSFJkiRJkgphEkKSJEmSJBXCJIQkSZIkSSqESQhJkiRJklQIkxCSJEmSJKkQJiEkSZIkSVIhTEJIkiRJkqRCmISQJEmSJEmFMAkhSZIkSZIKYRJCkiRJkiQVwiSEJEmSJEkqhEkISZIkSZJUCJMQkiRJkiSpECYhJEmSJElSIUxCSJIkSZKkQpiEkCRJkiRJhTAJIUmSJEmSCmESQpIkSZIkFcIkhCRJkiRJKoRJCEmSJEmSVAiTEJIkSZIkqRAmISRJkiRJUiFMQkiSJEmSpEKYhJAkSZIkSYUwCSFJkiRJkgphEkKSJEmSJBXCJIQkSZIkSSqESQhJkiRJklQIkxCSJEmSJKkQJiEkSZIkSVIhTEJIkiRJkqRCmISQJEmSJEmFMAkhSZIkSZIKYRJCkiRJkiQVwiSEJEmSJEkqRK/uDkCSamlSw6Ta1l9f2/olSZKkdxJbQkiSJEmSpEKYhJAkSZIkSYUwCSFJkiRJkgphnxBSAeyXQJIkSZJsCSFJkiRJkgpiEkKSJEmSJBXCJIQkSZIkSSqESQhJkiRJklQIkxCSJEmSJKkQJiEkSZIkSVIhfEWnJEmSpHXmK8klVcOWEJIkSZIkqRAmISRJkiRJUiF8HEOS9P/bu/toS6v6PuDfHw5qtCqgo6YqCOIykVJdzSQl1erEsCKmEUx8S6P4ttSkNa7YxJhYLblRjElUbFOX70a6QtWIkkCsMSg6KkZT0UbDWCsYBlFRR0EMyKvs/vGcK5fDHebOzH32uczz+ax11uE8b3ufH2fOPed79rMf9kOGRQMAG5GREAAAAEAXQggAAACgi1FDiKq6X1W9p6quqKrvVdUZVXXoGvf9g6o6u6q+U1Wtqp4xZl8BAACAcY0WQlTVnZJ8OMmPJXl6khOTPDDJR6rqzms4xPOT/EiS943VRwAAAKCfMSemfE6SI5I8qLV2YZJU1eeTXJDkV5Ocspv979Zau7GqjkzytBH7CQAAAHQw5ukYxyf51HIAkSSttYuSfCLJCbvbubV244h9AwAAADobcyTEUUnOXGX59iRPHLFdAAAA6MJlsffMmCMhDkly+SrLL0ty8Ho3VlXPrarzquq8nTt3rvfhAQAAgH2031yis7X25tbaltbals2bNy+6OwAAAMCcMUOIy7P6iIddjZAAAAAA9mNjhhDbM8wLMe/BSb4wYrsAAADABjRmCHFWkmOq6ojlBVV1/yQPm60DAAAAJmTMEOItSXYkObOqTqiq4zNcLeOSJG9a3qiqDquqG6rqpJU7V9Ujq+oJSY6bLdpSVU+YLQMAAABuY0a7RGdr7aqqelSS1yb5sySV5JwkL2itXbli00pyu9wyEPn9JI9c8fh5s9vyPgAAAMBtyGghRJK01r6S5PG72WZHVgkVWmtbx+kVAAAAsAj7zSU6AQAAgI1NCAEAAAB0IYQAAAAAuhBCAAAAAF0IIQAAAIAuhBAAAABAF0IIAAAAoAshBAAAANCFEAIAAADoQggBAAAAdCGEAAAAALrYtOgO0MfStqVxj7913OMDAABw22ckBAAAANCFEAIAAADoQggBAAAAdCGEAAAAALoQQgAAAABdCCEAAACAY3eIXgAAFK1JREFULoQQAAAAQBdCCAAAAKALIQQAAADQhRACAAAA6EIIAQAAAHQhhAAAAAC6EEIAAAAAXQghAAAAgC6EEAAAAEAXQggAAACgCyEEAAAA0IUQAgAAAOhCCAEAAAB0IYQAAAAAuhBCAAAAAF0IIQAAAIAuhBAAAABAF0IIAAAAoAshBAAAANCFEAIAAADoQggBAAAAdCGEAAAAALoQQgAAAABdCCEAAACALoQQAAAAQBdCCAAAAKCLTYvuADBxS0vjHn/ruIcHAADWzkgIAAAAoAshBAAAANCF0zE2CkPSAQAA2M8ZCQEAAAB0IYQAAAAAuhBCAAAAAF0IIQAAAIAuhBAAAABAF0IIAAAAoAuX6AQAgKkY87LwW8c7NLD/MBICAAAA6EIIAQAAAHQxaghRVferqvdU1RVV9b2qOqOqDl3jvnesqldV1aVVdXVVfbKqHjFmfwEAAIDxjBZCVNWdknw4yY8leXqSE5M8MMlHqurOazjE25I8J8lJSX4hyaVJ/qaqHjpOjwEAAIAxjTkx5XOSHJHkQa21C5Okqj6f5IIkv5rklF3tWFUPSfIrSZ7VWnv7bNlHk2xP8rIkx4/YbwAAAGAEY56OcXySTy0HEEnSWrsoySeSnLCGfa9P8ucr9r0hybuSPLqq7rD+3QUAAADGNGYIcVSS81dZvj3Jg9ew70Wtte+vsu/tkxy5790DAAAAeqrW2jgHrrouySmttd+dW35ykt9tre3yVJCqOjvJXVtrx8wtPzbJB5M8orX28bl1z03y3CQ59NBDf+Liiy9enycCsD8b83rxSZa2jnnspfEODvtgadvSuMe/rb/2b8PvO8Pxl8ZtgP2X1z4TUlWfaa1tWW3dfnOJztbam1trW1prWzZv3rzo7gAAAABzxgwhLk9y8CrLD5mt29t9k+SyfegXAAAAsABjhhDbM8ztMO/BSb6whn0Pn13mc37f65JceMtdAAAAgI1szBDirCTHVNURywuq6v5JHjZbd2v+KsmBSZ64Yt9NSZ6c5OzW2rXr3VkAAABgXGOGEG9JsiPJmVV1QlUdn+TMJJckedPyRlV1WFXdUFUnLS9rrf2fDJfn/K9V9eyq+tkMl+c8PMnvjdhnAAAAYCS7vELFvmqtXVVVj0ry2iR/lqSSnJPkBa21K1dsWklul1sGIs9M8ookJyc5KMnnkhzXWvvsWH0GAGBkI18hICNfnQSAfTNaCJEkrbWvJHn8brbZkSGImF9+dZLfnN0AAACA27j95hKdAAAAwMYmhAAAAAC6EEIAAAAAXQghAAAAgC6EEAAAAEAXQggAAACgCyEEAAAA0IUQAgAAAOhCCAEAAAB0IYQAAAAAuhBCAAAAAF0IIQAAAIAuhBAAAABAF0IIAAAAoAshBAAAANCFEAIAAADoQggBAAAAdCGEAAAAALoQQgAAAABdCCEAAACALoQQAAAAQBdCCAAAAKALIQQAAADQhRACAAAA6EIIAQAAAHQhhAAAAAC6EEIAAAAAXQghAAAAgC6EEAAAAEAXQggAAACgCyEEAAAA0IUQAgAAAOhi06I7AACwP1naurToLgDAhmUkBAAAANCFEAIAAADowukYAFO2tDTu8beNfHwAAG5TjIQAAAAAuhBCAAAAAF04HQOA0bhKAAAAKxkJAQAAAHQhhAAAAAC6EEIAAAAAXQghAAAAgC6EEAAAAEAXQggAAACgCyEEAAAA0IUQAgAAAOhCCAEAAAB0IYQAAAAAuhBCAAAAAF0IIQAAAIAuhBAAAABAF0IIAAAAoAshBAAAANCFEAIAAADoQggBAAAAdCGEAAAAALrYtOgOAADAelnaurToLgBwK0YbCVFVB1TVi6tqR1VdU1Wfq6rHr3Hfx1bVO6rqS1V1Y1VtG6ufAAAAQB9jno7x8iRLSV6X5DFJPpXk9Kr6+TXs+7gkD53t89WxOggAAAD0M8rpGFV1zyQvTPKHrbVXzxZ/pKqOTPKHSd6/m0M8p7V24+xY547RRwAAAKCvsUZCPDrJ7ZOcNrf8tCRHV9Xht7bzcgABAAAA7D/GCiGOSnJtkgvnlm+f3T94pHYBAACADWqsEOKQJN9trbW55ZetWL+uquq5VXVeVZ23c+fO9T48AAAAsI/WFEJU1bFV1dZw2zZyf3eptfbm1tqW1tqWzZs3L6obAAAAwC6sdWLKv03y42vY7vuz+8uTHFRVNTcaYnkExGUBAAAAJmVNIURr7ftJvrgHx92e5A5JHpCbzwuxPBfEF/bgWAAAAMB+YKw5IT6Q5PokT5lb/tQk57fWLhqpXQAAAGCDWuvpGHuktfatqjolyYur6p+SfDbJk5M8KsnxK7etqnOSHNZaO3LFssOS/OTs4d2T3FhVT5g9/nRr7eIx+g0AAACMZ5QQYuYlSa5M8htJ7p3k/yV5UmvtfXPb3W6VfvxMkrfPLTt9dv/MJKeua08BAACA0Y0WQrTWfpDk5Nnt1rbbusqyUyNoAAAAgP3KmCMhAAAASJKlpXGPv23k48M6GWtiSgAAAICbEUIAAAAAXQghAAAAgC6EEAAAAEAXQggAAACgCyEEAAAA0IUQAgAAAOhCCAEAAAB0IYQAAAAAuhBCAAAAAF0IIQAAAIAuhBAAAABAF5sW3QEAAAD2zdLWpUV3AdbESAgAAACgCyEEAAAA0IUQAgAAAOhCCAEAAAB0IYQAAAAAuhBCAAAAAF0IIQAAAIAuhBAAAABAF0IIAAAAoAshBAAAANCFEAIAAADoQggBAAAAdCGEAAAAALoQQgAAAABdCCEAAACALoQQAAAAQBdCCAAAAKALIQQAAADQhRACAAAA6EIIAQAAAHQhhAAAAAC6EEIAAAAAXVRrbdF9WHdVtTPJxYvux23cPZJ8e9GdmDD1Xxy1Xyz1Xxy1Xxy1Xyz1Xxy1Xyz1X5wp1P6w1trm1VbslyEE+66qzmutbVl0P6ZK/RdH7RdL/RdH7RdH7RdL/RdH7RdL/Rdn6rV3OgYAAADQhRACAAAA6EIIwa68edEdmDj1Xxy1Xyz1Xxy1Xxy1Xyz1Xxy1Xyz1X5xJ196cEAAAAEAXRkIAAAAAXQghAAAAgC6EEBtEVT2jqlpVfbeqDp5bt2m2bmlB3euiqg6uqrdW1ber6qqq+lBVHd2h3UnXvqruUlWvrqptVfW92fPd2rH9qdf/Z6vqtKr6clVdPbt/Q1Xds0PbU6/9T1TVB6rqa1V1TVV9o6reX1U/3an9Sdd/XlW9cfacT+vQ1qRrX1X3nz3H1W4HdWh/0vVfVlXHzN6Dvjv73PMPVfXLI7c56dpX1am38tr/Yof2J13/JKmqo6rqjKr6+ux1v72qXlhVm0ZuV+2rHjp7z7ly9pn/rKo6chF9EUJsPHdL8juL7kRvVVVJ/irJcUmen+TxSQ5M8pGqum+nbkyy9knunuRZSW5I8sEF9mOq9f+1DP8PTs7w+n9lkuOTfKqq/lmnPky19gcluTDJbyV5dIb3noOSfLSqfqpjP6Za/x+qqocleWqS73Vueuq1f2WSn567/VPH9idb/6r6d0k+luQbSX4lyQlJ3pLkjp26MNXavzy3fM3/+9m6szr2Y5L1r6p/nmRbkiOSvCDJY5P8ZZI/TvKKTt2Yau0fmOTjGZ7/U5I8M8n9k3ysxw9f84QQG8/ZSZ5fVfdadEeq6g4dmzs+ycOSnNhae2dr7QOzZQckeVGnPky19he31g5prR2b5A0d25031fr/x9baY1prb2+tfbS19tYMH4gOT/KkTn2YZO1ba+e01n69tfauWe1PzxBGtCQn9upHJlr/FW0emORNGT6AXt65+UnXPsk/ttY+NXf7Qcf2J1n/qrpLkrcneX1r7Rmttfe31j7UWvuT1tqpnboxydq31r48/5pP8sDZ6v/Rqx+ZaP2T/EKSeyR5Umvt3a21D7fWXpLk3Ume1qkPU6397yT5QZLHtNbObK29N8nPJzkkyQs79iOJEGIjOnl2/9LdbVhVh1fV/6yqnVV1bVX9fVX94tw2p1bVjlX23VZV21Y83jobhvRLVfWWqtqZ5Jsr1h9XVZ+sYbj4FVX1l1X1oFWOeW5VHVtVn62q71fV+fN92oXjk3y9tfaR5QWttSsyjI44YQ37r4dJ1r5tnEvkTLX+O1dZ/OnZ/X12t/86mWTtd+GqJNdmGBnUy9Tr/9tJbpfk1Xuwz3qZeu0Xbar1f2KSzUles4ZtxzLV2q/maUk+01rbvpf7742p1v/2s/v5UW/fTb/vpVOt/TFJPtla++7ygtbaV5Ocn6T73w0hxMZzaZLXJXluVR22q42q6n5J/i7JQ5L8pwxf4j+b5L1Vdfw+tP/fk1SGXwGfMWvruCT/K8mVSZ6c5D8k+RdJzq2q+S9JD0jy35KckuSXZs/n9Nr9+UZHZfhHMG97kkOrz7D0qdZ+o1D/mzxydv9/92LfvTHp2lfVAVV1YFUdmqEOyTAsupfJ1n+2zUszjAi6fh+ew96abO1nXllVN8w+8J5VHeZhmjPV+j88yWVJjq5hHogbquqSqvq9qrrdPjyfPTHV2t9MDaeCHZm+oyCS6db/9CTfTvK62Rf8u86+QJ+YfqHcVGv/gyTXrbL82iQPqKpep4INWmtuG+CW4UXYMrwRHpIhEfzT2bpNs3VLK7Z/W5KdSe4+d5wPJvn7FY9PTbJjlfa2Jdm24vHWWRt/scq25yW5IMmmFcsOT3J9klPmjnl9kgeuWHbPDC/6/7yb5/+lJO9aZfmzZ/26n9qPU/u59o6d9WWr137/+s/2u0uSLyb5wsp21X682id5z6wfLcOvEg/32u9T/1nfT1vxeMfKx2o/Tu2T/GiSN2b4APtvkzwnyUUZ5oP4cfUfvf4fSHL17Hn/1qw/J2cYgfVate/6N/dNGb6Y3WPs1736/3DbIzP8yLj8d/fGJCep/ejvO+9O8tUkB65YdpdZHVqSH+3xb2D5ZiTEBtRauyxDGvi0+WE4KxyX5P1JrqhhRtdNNcwq+zdJHlJVd93L5v9i5YOqunOSf5Xkz1trPxye3Fq7KMknctMvtssuaK1dsGK7byX5VpJD97I/Xan9Yk29/rPn8c4Mp2H88sp2xzbx2r8oyU9lmBD3/CTvq6ote/ok9sUU619VT03ykxm+hC3MFGvfWru0tfZrrbUzWmsfb629JckjMnwQfclePpe9MsX6ZxiJfMckL2utvaa1tq219tIMI7CeV1V328vns0cmWvuVbd4xw9xL72utfXuPn8E+mmL9q2pzkjMynPr4hCQ/kyGAe2lVdZsscoq1T/InGT5fvrGq7jMbBfL2JMujzW/ci+ey14QQG9drMwzVe9ku1t8zwzls18/dXjVbf/e9bPfSuccHZxgyNL88GWZ0PmRu2WWrbHdtdj/b8+WztuYdsmJ9L1Or/UYzyfpX1QEZhoMem+RxrbXPr2W/dTbJ2rfW/rG19unW2hlJHpPhj/nJu9ltDJOpfw2n2J2S5I+SXFtVB9VwacgDkhw4e3zgGvu/HiZT+11prV2S5NwMwVBvU6v/d2b381ekOjvDlcGO2s3+62lqtV/p+AxXROp9KsZKU6v/izJckeHRrbX3zgK4kzI8n5dX1T121/F1NKnat9bOTfK8DOHPVzOMPLxbhtf/dbs47mhGvR4re6+1dmVVvTJDSveqVTb5TobLrPzRLg7x9dn9NblpEpiV7p6b/gjerOm5x5fPlt17lW3vnfV7wW5P8nOrLH9wkq+01q5cp3Z2a4K131AmXP83ZjgP8AmttXPW+dhrMuHa39SR1q6rqs8neehYbdxK21Oq/z0yTMz3B7PbSvfL8OvkL2a4dNvoJlb73Znv0/gNTq/+u5sAsdsvkhOs/UpPzzA/wftHOPaaTLD+Rye5sLU2/+Pi/84QwB2Z4f/J6CZY+7TWXl9Vb8tQ5++11i6pqr9O8net87xMRkJsbK9P8rWs/ovcB5L8yyTbW2vnrXK7drbdxUnuNRv+lCSpqgck2dXQo5tprV2V5DNJnrhysqTZEJ5/k+HcpPVwVpL7VNUPhxzNhjk9Nn2v27xsSrXfiCZV/6p6TYb5T57ZWuvypetWTKr286rqTkm2JPnyWG3sxlTq/40Mw3Dnb99M8qHZf5+7Du3sianUflU1TMz68AxfBhZhSvVffp9/9Nzy4zJ8oVltou4xTan2y8e9V4b6v6P3l69VTKn+30hyZFXNj37+17P7r61TO2s1pdovt3dta237LIA4OsMI3DesZxtrYSTEBtZau7aqXpbkzausPinDB4WPVdXrMgypOTjDTKpHtNaeNdvu9CQvT3JaVZ2S4denF2fPUsb/kmHG1vdV1esznDv0+0muyPrNZHtWkk/O+vnbGVLBF2cYnvTH69TGmk2s9qmqxyS5c4aEOkkeORsSd1Vr7a/Xq521mlL9Z+dA/maSP01yQVUds2L1ztZa1y/DE6v9mzL8wnDerG+HJfn1DJP2nbgebeypqdS/tXZNVvlgVVXXJPlma+0W68Y2ldonPww+D8jwd3dnhg/LL87wC/wr1qONPTWl+rfWzq+qU5O8bHYq3mczfBF4dpKX9xz9OevPZGq/wlMyXBp4kadiJJlc/d+YofZnV9WrMowU2JrkhRkmbLxkndpZkynVvqrum+GqG3+b4fSNLbN+ntFae+d6tLFHWsdZMN1udcbSZ2Q2Y+vc8k0ZrhxxsxlbZ+vum+StGRK86zKcS/TBJE+d2+5xGVL1q5N8LsNpD9uy+oytx+6if8dl+LBydYZ/EGcmedDcNtuSnLvKvjuSnLqGGhyS4YvYZUm+n+ScJA9R+y6135GbZileeduh/uPWf7bvarVva/l/p/b7VPtnZfhj/J0Mvz5+Ock7khw99ute/XdZkx3pfHWMKdZ+9tr/dIbA//oMv06+Y74N9R/17+7tM/z6esns+XwpyW+ofZ/3nVn//qHH6139b7HdMRlOgbk0wwSV2zNcqvlH1H7U9/17ZRhp+O0MIcQXMkwMPeqV2HZ1q1mnAAAAAEZlTggAAACgCyEEAAAA0IUQAgAAAOhCCAEAAAB0IYQAAAAAuhBCAAAAAF0IIQAAAIAuhBAAAABAF/8f8AXY2HZUa1sAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbwAAAMECAYAAAB0b+NsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgUUlEQVR4nOzdd3gU1eL/8c+mh4SEXkILSK9JSChSVQS9iIqKUlSqCohdwfoVFK+oV0VB1CsqgoKKDQQUBKlKL9GISJNepSS0FJLz+4Pfzs2y2WTT2Di+X8+ThzBz5uyZ2Wn72ZMzDmOMEQAAAAAAAAAAf3N+vm4AAAAAAAAAAABFgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwCQp+joaDkcDu3atcvXTflHGz16tBwOh0aPHu3rpgBFxuFwyOFw5GuZzp07y+FwaMmSJcXTKJv6O263om7z3+U8WtKuuyWpPQU5Z5QUAwYMkMPh0JQpU1ymT5kyRQ6HQwMGDPBJu3zt73JcljSJiYm67rrrVK5cOfn5+RXZuXLJkiVyOBzq3Llzoev6J9m1a5ccDoeio6OLpL5/+nkBKKwAXzcAgD00a9ZMSUlJCgkJ0eHDhxUREeHrJtnOrl27NGXKFEVHR3Pjg3+sb775Rps2bdKNN96omJgYXzcHwD/Epk2b9M033ygmJkY33nijr5tTpJYsWaIlS5aoc+fOBFx5YFuhpDhy5IiuuOIKnThxQtWqVVOjRo3kcDgUGRmZ57Ljx4/XyZMn9eCDD6pMmTLF31gA8AF6eAMotE2bNikpKUmSlJqaqi+++MLHLbKnXbt2acyYMW69gvDPUaFCBTVo0EAVKlTwdVN85ptvvtGYMWO0adMmXzcFwCVQs2ZNNWjQQKVKlfJpOzZt2qQxY8bom2++uSSvd9lll6lBgwYKDAws9tdasmSJxowZ87fq+e8rxbWtIiMj1aBBA1WtWrVI64V9ffrppzpx4oRuuOEG7dmzRz/99JNWrFih2NjYPJcdP368xowZo5MnTxZ/QwHAR+jhDaDQpk2bJkkqU6aMTp48qWnTpmnQoEE+bhVgPyNGjNCIESN83QwAuGSmTp3q6yb4xKJFi3zdBFxCPXv2VM+ePX3dDPyNbNmyRZLUrVs3+fnRjxEALsaZEUChZGZmasaMGZKkiRMnyt/fX0uXLtWePXt83DIAAAAAsJ9z585JkkJDQ33cEgAomQi8ARTKwoULdfDgQVWpUkW9e/fWlVdeKWOMPvnkk1yXO3XqlEaOHKno6GiFhISodu3aGjVqlM6cOePxgT6SlJ6ern//+99q0KCBQkJCVK1aNQ0dOlRHjx71+MCb7NOPHj2qESNGKDo6WoGBgW5jYc+fP1/XX3+9KleurODgYFWvXl0DBw7Ujh07PK7Lxo0b1aNHD5UtW1bh4eFq06aNNayLpwcrJSUl6dlnn1Xbtm1VtWpVBQUFqWrVqrrpppv0888/u5Xv3LmzrrjiCknS0qVLrXo9PRhlzZo16t27t6pVq6agoCBVrlxZvXr10saNGz2ux+7du3X77berUqVKKlWqlJo3b6633npLxhiPy+Qm+4PGtmzZol69eqlChQoKDQ1Vy5Yt9fnnn+e6fH7ei7weruPpITIXT3/vvfeUkJCg0qVLu71vP//8s2666SZVrlxZQUFBql69uu688079/vvvxbL+OfG0j2d/qM25c+f0xBNPqE6dOgoNDVWDBg00YcIEq+yxY8f0wAMPqFatWgoJCVGTJk08DpOTfR3WrFmj7t27q1y5cgoLC9Pll1+e65/2G2P08ccfq1OnTipTpoxCQ0PVsGFDjRo1SsePH89xmezHy5dffqmOHTuqTJky1oPSHA6HPvroI0nSwIEDXY6D7Nskv8fXxdswLS1No0ePVt26dRUSEqIaNWro4Ycf1pkzZzyu7/79+/Xwww+rcePGCgsLU2RkpJo1a6ZHH31U27Ztcyt/9uxZvfTSS4qPj1dERIRKlSqlmJgYvfLKK0pLS8txe06dOtXaJkFBQapSpYpatmypkSNHat++fR7bdrFDhw5pwoQJ6tatm3UOLlu2rDp16mT9xc7FLj5WPv74Y8XHx6tUqVIqV66cevXqpZ07d3p8zV9++UU33HCDdZ5s3bq1Pv30U6/bnF/5PQcWdp85c+aMnnzySdWvX18hISHWuSj7MZucnKwHH3xQNWvWVHBwsOrWravnn39e58+f97geW7Zs0aBBgxQdHa3g4GCVL19e3bt3148//uhxmb/++kvDhw9XtWrVFBISogYNGuj5559XRkaG9xvw/3vggQfkcDj05ptvus1r2LChHA6HOnTo4DYvtwfQ5XedcntoZUHuCbLz9j2Jjo7WwIEDJUkfffSRy7kn+3XnzJkzeu6559S8eXOFhYVZ54/OnTtr3Lhx+XoPPD0ksqivLQ6HQ2PGjJEkjRkzxmXdPD0vZNWqVbr22mtVtmxZhYWFqUOHDrnuk8YYffrpp7r66qtVvnx5BQcHq06dOrr//vt16NChfLU3Nzt37tRLL72kzp07q0aNGgoODlbFihV1zTXXaO7cuR6XW7FihXr27KkqVaooMDBQ5cqVU6NGjTRkyBCtWrXKKleQbeUtTw+ny35/k5WVpTfeeENNmzZVSEiIKleurMGDB+vo0aMe6z1+/LieeuopNW3aVGFhYSpdurTatGmj9957T1lZWW7lT548qffff1833HCD6tatq9DQUEVGRqp169Z68803PZ6v8rp+F1RmZqZmzZqlQYMGqUmTJoqMjFSpUqXUqFEjjRw5Un/99Zdb+erVq8vhcGj9+vUe6x0xYoQcDocee+wxt3n5vX4Uxbrn557JeW5z3rtlvx/Ka1x55362e/duSVLt2rVd9uOczrOXYr/LTfZz+bFjxzR8+HBVr15doaGhatGihcu9xO7duzVw4EBFRUVZ58Tcjv0zZ85o7Nix1jk7IiJCrVu31ltvvZXrtXnp0qXq0qWLIiIiFBkZqSuuuEI//PBDnuuS33s/AIVkAKAQ+vbtaySZBx54wBhjzJQpU4wk06hRI4/LJCcnm9jYWCPJ+Pn5mWbNmpkmTZoYh8NhEhISTJ8+fYwk8+GHH7osl5GRYbp162YkGUmmQYMGJiYmxgQEBJjo6Ghz3333GUnm2WefdVnu2WefNZLM8OHDTc2aNY2/v79p3ry5ad68uRk0aJBV7oEHHrDqrlSpkomNjTURERFGkomIiDA//fST27r88MMPJjg42CoTHx9vqlataiSZ1157zarvYldddZWRZMqUKWMaNWpk4uLiTIUKFYwk4+/vbz755BOX8iNGjDBNmza1Xqddu3bWzy233OJS9rXXXjMOh8NIMuXKlTOxsbGmfPnyRpIJDAw0X375pVt7Nm/ebJUJCQkxLVu2NDVr1rS2W61atYwk8+eff3p8Xy/WqVMnI8n85z//MeHh4aZ06dKmZcuWpmLFitZ2mTZtWo7L5ve9WLx4sZFkOnXqlGN9f/75p5FkatWq5XH60KFDjSRTo0YNEx8fb8qUKWOVmzRpkrVNK1WqZM13bq85c+YU6fp74tyXL97HP/zwQyPJ9OnTx7Rt29bax6Ojo63XGjNmjDl8+LCpV6+eCQoKMrGxsSYqKsqa/8EHH3hch+eee84EBQWZ8PBwl31cknn11VfdlsvKyrLODZJMnTp1TFxcnAkKCrK2944dO9yWc5YfN26ckWQqV65sEhISTMWKFc3KlStNu3btTKVKlYwkU69ePZfj4P3337fqye/xlX0b9u3b13Ts2NE4HA7TpEkT06BBA+Pn52ckmauvvjrH92XhwoXW/hkYGGiaN29umjZtakqVKpXj+7Vv3z7TuHFjI8kEBASYunXrmkaNGpmAgAAjybRv396cPXvWZZlHHnnE2j41a9Y0CQkJpnbt2tY2/frrr3NsW06ef/55I8mEhoaayy67zMTHx1vHuyQzdOhQt2WyHyuPP/649XuLFi2sc2DVqlXN0aNH3ZZdunSpCQ0NdTlPVqlSxUgyL7/8ssfzZG6c++bixYvd5hXkHFiYfebWW281cXFxxuFwmEaNGpnY2FjTtWtXY8z/jtkHH3zQeo9jYmJcjs0hQ4bkuI6fffaZ9f6WLl3axMTEWNvN4XCYN998022ZgwcPmjp16lj7VkxMjKlXr56RZK677jrTsWNHj9stJ1988YWRZG666SaX6YcPH7baHxQU5La/XnHFFUaS+fHHHwu9Tp7e68LeE+TnPbnlllus7VipUiWXc8+IESOs9rRp08a6t2nQoIGJj483UVFR1jnkxIkTXm13Y4zH625RX1vatWtnatSoYV3/sq/bCy+84NaeCRMmmMDAQFO+fHnTsmVLExkZae1vOe1X6enpplevXlbboqKiTIsWLazzY9WqVc0ff/zhdXuN+d+14mKDBw82kkx4eLipX7++2/Vq3Lhxbst888031vtTvnx5ExcXZxo2bGjCwsJc7m/zs61y079//xzvcZ3nk/79+7tMz35/47yu1qtXzzRp0sS6ZjRp0sSkpqa6vVZSUpKpVq2adZw2btzYXHbZZdb58ZZbbjFZWVkuy0ybNs0qX6tWLZOQkGDq1KljbaPu3bubzMxMt9fK7frtzb2jp/ubvXv3WsdU1apVrfcnJCTESDLR0dHm0KFDLss88cQTRpK57777cnyttLQ065qQlJTkMq8g14/Crnt+75nef/99j/dDzvORJ/PmzTPt2rWzrtvx8fEu+/GGDRuMMZd+v8uNc9+4//77Td26dU1QUJCJi4uzXkOS+eijj8yWLVtMpUqVTKlSpUzLli1druE//PCDW71HjhwxzZo1s/av5s2bm0aNGll1Xn311ebcuXNuy82YMcPlnBEfH2/KlStn/Pz8rH3g4s8bxhTs3s/TeQGAdwi8ARTYqVOnrA8sa9asMcYYk5KSYgUb69aty3G5e++917qh27x5szU9KSnJ1KpVywQGBub4YeCVV16xbkCzB5579uwxsbGx1nKePtz6+/ubtm3bmr1791rznDcy77zzjpFkateu7fKB7fz582bs2LFGkqlevbrLjU9KSor1QX3gwIHWTUpWVpaZOHGidTOZ04eymTNnml9++cVlWlZWlvnmm29MeHi4iYiIMCkpKS7z8wp1jTHmu+++Mw6Hw1SoUMHtpnzy5MkmICDAlC5d2hw4cMDldePi4owk061bN3Ps2DFr3owZM0xgYKB1M1aQwDswMNCMGDHC2nZZWVlm1KhR1gff8+fPuyxXkPeisIG3v7+/CQsLM7NmzbLmOd/PjRs3Wuv/8ssvWx/0UlNTzfDhw40kExkZ6bJNC7P+uckr8A4MDDTNmjUzO3futObNmDHDSBfCza5du5orrrjCHD582Jr/wgsvWKHDxW1xrkNAQIDp3bu3OX36tLUOb775pjVv06ZNLstNmDDBCrQWLFhgTT948KBp166dkWRat27ttn7ZA7T//ve/1geijIwMk5GRYYzxHBZkV5DjK/s2bNy4sUsAs3LlSivQ/u6771yW2717txX43HnnnS7HT2ZmppkzZ46ZPXu2y7TLL7/cSDK9e/d2+aC+d+9e06FDByPJPProo9b0I0eOGD8/PxMZGWlWrFjh8vrnzp0zM2bMMImJiR63x8WWL19ufvzxR7f3OzEx0fqwt2TJEpd5zmMlICDAREREmHnz5lnzDh48aJo3b24kmVGjRrksd/r0aVO9enVr+5w5c8baDq+++qp13s7pPJkbTyFoQc6BxhRun/H39zf169d3uZ45j3fnMRsYGGg6duxo9u/fb5WZPXu28ff3N5LM77//7lJ3YmKiCQ4ONiEhIea///2vS8A0e/ZsExERYfz9/d2OvZ49expJJi4uzuzZs8eavmjRIlO6dGlre3sbeB85csRIMhUqVHAJKD7//HMjyQocsgfbaWlpJjQ01C0IL+g6eXqvC3tPkN/3JK/gwfnlQIsWLVzuM5zbcfz48db+7428Au9LcW3JqT2BgYHmxRdftOpPT083/fr183hed35BFhsbazZu3GhNP3v2rHUNjY+P97qtxngOvOfNm2dWrVrlFqYtW7bMVK1a1fj7+5vt27e7zHN2Jpg0aZLLNsvKyjKLFy92OX8b4922yk1BA+/AwEATFRVlVq9ebc37448/rPPr22+/7bLc6dOnzWWXXWYFhcnJyda83377zTRp0sRIMhMnTnRZLjEx0cyZM8ctyNyxY4f1hdmUKVPc1sub63duPG3XkydPmilTprhcW40x5sSJE2bEiBFGkhkwYIDLvG3btlnnrfT0dLfX+vLLL3Pc7wp6/Sjsuhf0nsmb+yFP8urIcqn3u9xkP2dffA/rDJirVq1qWrVqZXr37m1dqzMzM80999xjJJlWrVq51XvzzTdbwX3288LatWtN5cqVjSQzcuRIl2X27dtnwsPDjSTz+OOPW+9venq6eeihh6zrzsWfNwpy72cMgTdQWATeAArM2Zu7bt26LtOdPXmy94pxOnnypNUr4+Lgxpj/3WBdfAOXmZlpfbD++OOP3Zbbtm2b9SHV04fb4OBglw+2TmlpaaZKlSrG39/f6tlwMedN0dSpU61pzmC2YcOGOd7QOm9E8xvkPP3000aSW49CbwJvZ3CdPbjNztlL9LnnnrOmLVy40ApEc+qdef/991vrUZDAu0WLFm69gdLT060vC7Jv84K+F4UNvKWceyobY6wP8jfccIPbvKysLOvm/Zlnnin0+uclr8Db4XDkWF/btm2t9/jiY+D8+fPWsXXxss51qFSpUo69XG666SYryHTKysqyesC9/vrrbsvs27fP6rW0aNEil3nO98JTryxjCvcBzxjPx1f2bbh27Vq35R5++GHrA1x2zsDmqquu8qrH0uzZs40kk5CQkON548CBAyY8PNyEh4dbYeHKlSuNJNOzZ8/8rGqBOM8Hd911l8v0vI4V53o1b97cZfrkyZOtYDSn4OH6668v0sC7IOfAvOS1z0gy69evz3FZ5zEbGhrqFoIa879j6LXXXstx+htvvJFjvc6AJPtfKW3bts3qQXdxr0VjjMtfHXkbeBtjrC9Bstfp/OL6jTfecDsnLV++3EgXeqsVdp2Myfm9Lop7gvy+J3kFDy+++GKu65dfeQXel+LaklN7evTo4Tbv6NGj1pf8x48ft6YfOXLEBAcHm4iIiBy3dWZmpklISDCSzLJly7xub0HOGc5z0cU9sYODg03ZsmW9rsdXgbekHHsXO798vv7663Oc7um6kZiYaBwOh6lTp47Xbd++fbuRcv5rJ2+u37kp6HatUaOGKVWqlNv11Bkg5vTXT87rzsWha0GvH4VZ98LcM12KwLsk7HfZz9k53cM6w/eqVau6fal44sQJ63Nn9i9Ntm7dal0vczpXOr/UDQsLc/my23k/kJCQkGNbnV/+X/x5oyD3fsYQeAOFxRjeAArMOdZr3759Xab369dPkjRjxgy38c+WL1+u1NRU1atXT+3atXOrs3Pnzqpdu7bb9M2bN2v//v0KCwtTr1693ObXrVs3x3FEs+vSpYuioqLcpq9cuVKHDh1SXFycYmNjc1z2+uuvl3RhzDYn51htd9xxhwICAtyWcY736cmePXs0btw43XrrrbryyivVvn17tW/fXp999pkkKTExMdflL7Z7925t2LBBlSpVstrrzXrMnz9fkqxxQC82fPjwfLXjYoMGDXJ7enxgYKBatGghSS7j/hb0vSgKd955Z47TFyxYIEm677773OY5HA7df//9LuUulp/1L6zY2Ngct1tMTIwk6dprr3U7Bvz9/dW8efNc2zJ48GCFhIS4TXfuG859SJJ+//137d27VyEhIbrrrrvclqlWrZpuvvlmSZ63maf3Ij8KenzFxMQoPj7ebXpCQoIk9200a9YsSdJjjz2W43j9F/vqq68kSQMGDMjxvFG1alUlJCTo9OnT1vijNWrUkCStXr26yB4IfOrUKb333nvq37+/unbtqg4dOqh9+/Z6/PHHJeV+/hk8eLDbNE/bx7lvDB48WIGBgW7LFfb8kl1Bz4FOBd1nmjRpori4uFzbds0116h69epu03Pabunp6Zo3b578/f09jguc03osWLBAxhh17NhRTZo0cVtmyJAhCgoKyrWdOenUqZMkadmyZda0ZcuWqWzZshoyZIiCg4Nd2uEs17Fjx0KvkydFcU+Qn/fEG87jdO7cuTp79my+li2IS3ltyW7IkCFu0ypUqGCN75/9defNm6e0tDR169Ytx23t5+en6667TlLRXdOPHj2qN954Q3379lWXLl2s43j8+PGS3I/jGjVq6OTJk16Nv+tLZcuW1U033eQ23dP+6rzW5PR+SVLz5s0VHR2tnTt3uj0DIi0tTdOnT9ddd92lbt26WdeH/v37S8r9+lAU1++c/Pjjj3rooYfUvXt3dezY0Xpfk5OTdfbsWbdnZQwaNEiSrOd+OB09elTfffedgoKC1KdPH2t6Ya8fUsHWvSjumYrTpdzv8uLpHrZZs2aSpD59+qhUqVIu88uUKWN9rvzzzz+t6T/88IOMMWrfvn2O980333yzqlevrjNnzuinn36ypjvvaYYNG5ZjGz3d0xTk3g9A4bkfbQDghf3792vx4sWS3ANv54OMjhw5ogULFuhf//qXNc95Q+oM2HLSrFkzl5uS7Ms1bNjQ4wf25s2b5/iwFadGjRrlOP3XX3+VdOGhbO3bt8+xzMmTJyVdWO+L2+RpXXJbx48++khDhw5VamqqxzKeHuzniXM9UlNTPa6H8/Wyr8fWrVsled4+9erVU0BAQK4Pb8nNZZddluP0SpUqSZJOnz5tTSvoe1FYFSpUyDHsP3nypPVQnsaNG+e4rDNYcm7Hi+Vn/QvL02tVrFjRq/me2uJp33BOP3z4sFJSUhQREWFth5o1ayosLCzH5fLaZp5ez1uFOb7y836dOnXK2g/btGnjVduc+/jbb7+t6dOn51jGuV2cdVerVk29evXSzJkzVbduXV1xxRXq3LmzOnTooDZt2uT44Sk3Gzdu1HXXXacDBw54LONp+1SoUEGRkZFu0z3tz3mdXwr7XmdX0HOgVLh9xpt1yM9+tXXrVqWmpiooKMjl+pmd+f8PE87Pubx06dKqVq2a2/U1Lx07dtQ777yjpUuXatiwYTp+/LiSkpJ0/fXXq1SpUmrVqpVWrVqltLQ0l/DbGZQXZp08KYp7gqI+N994442Kjo7WggULFBUVpWuuuUYdOnRQ586dc/wCorAu5bXF29f9448/crymr1q1yuMxefjwYUlFc01fsGCBbr31ViUnJ3ssc/Fx/NBDD+nee+9V165d1bJlSysk79Spk0qXLl3oNhWV/L7fzm3/f//3f/r3v/+d47LOBz7u37/f+kJiz5496tq1q/744w+Pbcnt/rQoz+nShS/Lbrvttlwfkp1Tm3r16qX7779fc+fO1V9//WXd402fPl0ZGRm65ZZbVK5cOat8Ya4fTgVZ96K4ZypOl2q/K0xbvLnH/f33392us5Lne3s/Pz81bNhQ+/bt09atW3XNNde4LJffe5qC3PsBKDwCbwAF8sknnygrK0txcXFq0KCBy7ygoCD16tVL//3vfzVt2jSXD7dnzpyRpFw/ROQ0r6DLZefpRtL5wejo0aO5PnFcks6dO+d1mzxN37Fjh+666y5lZGTokUce0e23367LLrtM4eHhcjgcmjx5sjU/P5zrkZKS4tIbIa/1cN4AOm8YL+bn56cKFSro0KFD+WqPk6ft7uyZ5gw5pIK/F4XlqY3Zb46dN/cXq1y5sqQL4Wd+6s5p/Qvr4p4tTs6ex3nN99QWT+ueffqpU6cUERFhbTNPy0gF32beKOzxlZ/3KyUlxfo9pxA4J859PCkpKc+y2ffxqVOnqnHjxpo8ebIWLFhg9fSqWLGiRo4cqYcfftitt2dOMjMzdeutt+rAgQP617/+pVGjRqlJkyYqU6aM/P39tX37dtWrV6/A2+dieZ1fnPtCUSjoObC49hlvyuR2HkxPT89zPbIH9Hlta+nC9s5v4O0Mrp1B9rJly2SMsaZ37NhRy5cv15o1a9S2bVv9/PPPCggI0OWXX17odfKkOO8JCnpuDgsL0/Lly/V///d/+uKLL/TZZ59Zfx3QuHFjvfTSS1Zv5qJwKa8tBX1d5/u+d+9e7d27N9d6C3tNP3nypHr37q3k5GTdeeedGj58uBo0aKCIiAj5+flp4cKFuvrqq92O4+HDh6t06dJ69dVXtX79eq1fv14vvfSSQkJCdMcdd+iVV17x+vxenPL7fju3vTe9RbNv+wEDBuiPP/5Q69atNWbMGMXExKhcuXIKDAzU+fPnrX/z286CGjdunL755htVqVJFL7/8sjp27KgqVaooODhYktS+fXv99NNPbu9rWFiYbr31Vr3//vuaMWOG9Vd6zh7fF/+lSUGvHxe/Zn4VxT1TcbpU+503ivIet6DbvaD3NAW99wNQOAxpAqBAnMOZbNiwQQ6Hw+3nv//9r6QLf+6fPRRy3jjl1vMopxu6gi7njfDwcEkXhmIxF55t4PEne2+xvNrkqT2ff/65MjIy1Lt3b/3nP/9RTEyMSpcubd2Q5fWhMK/1aNeuXZ7rsWvXLrflPAXMWVlZOnbsWIHalF8FfS/yCmyd4UhB2yNJR44cybGMs3daSeoJVtQ87RvZpzvX37nNPG0vqXi3WXEdXznJ3v7cehRm59w+zj+nze0n+wfykJAQjR49Wvv27dPvv/+ud999Vz169NCxY8f02GOP6bXXXvPq9desWaPt27erVq1a+uqrr9SxY0eVL19e/v7+kop2+2RfX0/7UG77SUFfK7/nwEu5z+RnPapVq5bnemQ/5+W1raWCbe+oqChddtllOnTokLZu3erWgzt7IL5+/XqdPn1aLVu2dDl/FnSdPCnOe4LCqF69uj744AMdP35cq1at0rhx4xQfH6/Nmzfrxhtv1OrVqy95m3zJ+b4/9dRTeb7nU6ZMKdRrfffddzpx4oTatm2rKVOmqHXr1ipTpowVzOV2HN9xxx3atGmTDh48qE8//VSDBw9WQECA3nvvPd1+++2FapevOLf9tm3b8tz2nTt3liQdOHBAixcvVqlSpTRv3jx169ZNlStXtoajutTnQulCBxtJmjJliu644w7VqlXLCrvzatPFw5r8+uuv2rhxo6pUqWL12HUq6PWjsHx9z1TUCrLf+bKd+d3uBb2nKei9H4DCIfAGkG8bN25UUlKSHA6HKleu7PEnKChI586d05dffmktW79+fUnSL7/84rF+5599ZedcbsuWLR572eW0nDecf87mzbfuObXJ07p4ao/zRjl777fsPI2NmNf4wM71+P3335WVlZVr2eyyb9ucbN++Pd+9zQuqoO+FM/zwdAO6ffv2ArWnTJkyVi+OzZs351jmt99+k/S/7WhHv//+e67TK1eurIiICEn/2w579uzxGEYVZpvldRwU9PgqiIiICOvPcVetWuXVMgXdx7Nr2LCh7r77bs2ePVuTJk2SJL333nteLevcPi1btnQJDZyKcvtIeZ9fPO1bBVHQc+Cl3Ge8Ua9ePQUGBurgwYP5Gtoqr219+vTpfI+Z6pR9HO9ly5YpMjLSejbA5ZdfrsDAQC1ZsiTH8bulgq+TJ8V5T+CJN2P0OwUEBKh169YaNWqU1q5dq969eyszM1MffPBBkbapqORn3fKjKM533nIex23bts1xfbw5jqtUqaLbbrtNkydP1urVq+Xn56c5c+bo4MGDVpni2lZFrSDbfvfu3ZIuXGOyD/fhdKnPhVLu5+djx47lOvzD5ZdfroYNG2r9+vVKSkqyvlS5/fbbrS95nQp6/Sis4r5n8sQOx3xhOLelp3v7rKws61qafbsX9J7m77JdALsh8AaQb87e3R07dtShQ4c8/jzyyCMu5aULf3oYEhKirVu3auXKlW51L1u2LMc/t27UqJGqVaum06dP64svvnCbv3PnTi1fvrxA69OhQwdVqFBBiYmJuY73ebGrr75akvTxxx8rMzPTbb6n3kqhoaGS/tdzILstW7bo22+/zXU5T3/qVq9ePTVt2lTHjx/X1KlT82y/U9euXSVJM2fOzLEntzNQuxQK+l7UqVNH0oX9IKd1mDx5coHb1K1bN0nShAkT3OYZY6zpznJ29P777ystLc1tunPfcO5D0oVjtWbNmkpNTc1xux84cMD6Eqwg2yyv46Cgx1dB3XjjjZKkV1991avyzoc/vfvuu14N3ZAX59jhuY3HnV1u2ycjI8N6sFtRce4b77//fo7BZFGeXwp6DrzU+0xeSpUqpW7duikrK0tvvvmm18s5t/WyZcty/BA/efJkpaenF6hNzgB79uzZ2rRpk9q3b2/1nA0LC1NcXJxWrlxpPfgv+/jdhVknT4rznsCTvM49ucnvcXqpFWbdctO9e3cFBQVp3rx5bg8VLGq5HcfHjh3T+++/n6/6GjdubA1lkv19K65tVdSc15o333zT6+FtnOt25MiRHJd5+eWXi66BXsrtfX311VdzvP/OzvkA+ffff9/qLZ5TD9qCXj8Kq7jvmTwprv24IPudL3Tt2lUOh0MrVqzQxo0b3eZ/9dVX2rdvn8LCwtSuXTuX5STpnXfeybHet99+O8fpRX3vB8A7BN4A8iUzM1MzZsyQdOFPQHPj/DPQJUuWWH9yGBkZqcGDB1vLZ38ozubNm9W/f3/rTyez8/Pz04MPPihJuv/++116U+7bt0+33nprgXsrhISE6LnnnpN04SE3X3/9tdtNWlJSkkaNGuUyrl+fPn1UpUoVbd682eVhZ8aYXB9K4nwYzqRJk7Rp0yZr+tatW9WrVy+PD+ByPmV88+bNHnsyv/TSS3I4HLr33ns1efJkt3EWd+7cqRdeeMF6WrgkXXXVVYqNjdXZs2d1xx136MSJE9a8zz//XG+//Xa+H4pXUAV9L8qVK6dWrVopLS1NDz/8sBWsZWZmaty4cdZT1QvikUceUUBAgGbNmqVXX33V6vmTnp6uBx54QElJSYqMjPT4xHY7OHbsmAYPHmwNDWOM0aRJk/TVV1/J399fDz/8sFXW4XDosccekyQ9++yzWrRokTXv8OHD6t27t9LT09WmTRtdccUV+W6L88sN5zjCFyvo8VVQjz32mCIjI/XDDz9o8ODBLsdPVlaW5s2bpzlz5ljTevbsqTZt2mjLli3q0aOH218fpKWlae7cudafYkvSokWL9Nhjj7mFmKdPn9Yrr7wiSYqLi/Oqvc6HXP70008uH+qTk5PVr1+/HEOFwujTp4+qVaumffv26Z577rE+XBtj9MYbb2jevHlF+noFOQde6n3GG88//7yCg4M1duxYjRs3zi2UOHjwoN544w2XD91169bVDTfcIGOM+vfv79Kbe8mSJRo9enSO11dvOAPsOXPmKCsryy3Q7tSpk86ePauFCxfKz88vx4e+FWSdPCnOewJPnOeetWvX6uzZs27zX3/9dY0fP97tGNqzZ48VZHl7nF5qznX7+eefC/yA6pxERUXpwQcfVEZGhrp16+b2RbYxRmvWrNGwYcO0c+fOQr1Whw4dJF24b1m4cKE1/eDBg7r55ptzXK+UlBT17t1bS5YscenVm5mZqTfffFMnTpxQWFiYy7NqimtbFbV77rlHderU0eLFi9WvXz+XXurShevH559/7nL9btKkicqWLat9+/bphRdesK6xqampeuCBB3IMBoub81zyyCOPWD2gjTGaOnWq/vOf/ygkJCTX5e+8804FBARo4sSJOnz4sOLj4z0+RLYg14/CKu57Jk+c+7FziKqiUpD9zhfq1q1rhdB33nmny/lnw4YNuv/++yVJI0aMcBnSZOjQoQoLC9Pq1av1zDPPWPtIRkaGHnvsMas3/sUKcu8HoAgYAMiH7777zkgyISEh5uTJk3mWj42NNZLMiy++aE1LTk42MTExRpLx8/MzzZs3N82aNTMOh8PEx8eb3r17G0lm6tSpLnVlZGSYrl27GklGkmnYsKGJjY01AQEBJjo62tx3331Gknnuuedclnv22WeNJPPss8/m2tbHH3/cqrtcuXImISHBxMXFmXLlylnTv/vuO5dlfvjhBxMUFGQkmcjISJOQkGCioqKMJPPqq69a63jxerRp08ZIMv7+/qZRo0amadOmxuFwmKpVq5qxY8caSaZ///5ubbzyyiuNJFO6dGnTunVr06lTJ3Pbbbe5lJk4caLx9/e3yrVs2dLEx8ebypUrW+vx9ttvuyyTlJRkrWdoaKiJj483tWrVMpLM8OHDrd///PPPXLdhdp06dTKSzOLFi3Oc379/fyPJfPjhh27zCvJeLF682AQEBBhJpkyZMiY+Pt6UL1/eBAQEmAkTJhhJplatWi7L/PnnnzlOv9ikSZOMw+EwkkzlypVNQkKCKVOmjJFkgoODzZw5c4p0/T3xtC9/+OGHHveZ3JbLqy3OdXjuuedMUFCQKV26tImPj7f2cUnm5ZdfdqsvKyvL9O3b1ypTt25dExcXZx0rNWvWNDt27HBbzlk+N9u3b7fqqVWrlunQoYPp1KmT1faCHl95bcPFixcbSaZTp05u83744QdTunRpI8kEBgaaFi1amGbNmpmwsLAct/uBAwesc6Nz+7Ru3do0btzYWrfKlStb5b/++murbMWKFU18fLxp0aKFKVWqlHXuWb9+fa7bLbtHH33Uqq9mzZqmZcuWJjQ01AQGBpq33367wMeKp/fvxx9/NMHBwUaSiYiIMAkJCaZKlSrW/uPN+36x3I6v/J4Di2ufMSbvYy+3Or766ivrPQ4JCTExMTGmVatWpkaNGtZ6jBo1ymWZ/fv3m+joaGtfjI2NNfXr1zeSTPfu3U3Hjh1zPS/lpmbNmtbrrl692mXe3LlzrXlxcXEe6yjIOnl6r4vrnsDTe5KZmWnq1atnJJny5cubtm3bmk6dOpkHHnjAGGPMAw88YLUlOjratGrVyjRs2NDaF5s2berVfZOTp+tucVxbkpOTTdmyZY0kU7VqVdOuXTvTqVMnl3u3vO4Dcnufbr/9dmvbVKlSxbRq1cq0aNHCOm9KMr///rvX7fV0zrjllltczqsxMTEmICDAlC5d2owfP97tHH7ixAmrfFhYmGnRooWJj483FSpUMJKMw+Ew7733Xr63VW48vT+e9rvcrj3G5H5u/v33303t2rWte9FGjRqZ1q1bm/r161v7ZevWrV2WmThxost7FR8fbyIiIqxt4WnbF+Q8np2n43LdunUu14+WLVta9yB33HFHnseDMcb06NHDat/EiRNzbUdB7qELu+4FvWcqyLHuNHXqVOv1mjZtajp16mQ6depkNm7caIy59Ptdbgp6D+vkaR85cuSIadasmXXtb9GihWncuLG1Xbp06WLOnTvnVt/HH39sfSaoUKGCSUhIMOXKlTN+fn5m3LhxHrdLfu/9jPHuPgOAZ/TwBpAvzuFJevTo4dVT6529vLMPaxIREaFly5bp0UcfVfXq1bVlyxalpKTooYce0uLFi61vyy9+OEtAQIC+/fZbjR07VvXq1dPOnTt16NAh9e/fX6tXr7bGoy3oQ11efPFF/fTTT+rbt6/CwsKUmJioXbt2qXr16ho0aJDmzp2rq666ymWZLl26aOXKlerevbukC72vq1WrphkzZuiee+7xuB7z58/Xfffdp8qVK2v79u06efKkBg8erPXr16tatWoe2zh9+nQNGDBAERERWr9+vZYuXeo2dvC9996rTZs2aciQIapYsaJ+++03bdu2TRUqVFCfPn00c+ZM3XnnnS7LNGnSROvWrVPfvn1VqlQpJSUlKSIiQhMmTNDEiRMLtD0LoyDvRefOnTV//ny1b99e6enp2rp1q+Li4rRkyRJdd911hWrPsGHDtHz5ct14443KysrSpk2bVKpUKd1+++3asGGD9f7bVYcOHbR8+XK1b99e27dv14kTJ9SmTRt99dVXVs+k7BwOhz7++GNNnTpVHTp00JEjR/Tbb7+pVq1aeuyxx7Rhwward1F+XXbZZfr222/VqVMnnThxQitWrNDSpUutcT4Lc3wVVJcuXZSUlKQRI0aoVq1a2rJli/bu3avLLrtMjz32mNtfw1StWlUrV67UpEmT1LFjRx07dkwbN27UqVOn1KpVK40ZM0aLFy+2ynfo0EFvvvmmevToofDwcG3evFm7du1S3bp1NXLkSG3ZsiVfPUdffvlljR8/Xg0bNtShQ4e0e/dudenSRcuXL3d7kFdRuOKKK7Rq1Sr16NFDDodDmzdvVo0aNTRjxowc95/Cyu850Bf7jDd69uypzZs364EHHlB0dLT++OMPbd68WaVKlVLPnj310Ucf6fHHH3dZJioqSmvWrNHQoUNVoUIFbd68WcYYPffcc/r6668L1evZOaxJeHi42/7Wvn17a0zci8fvLuw6eVLc9wQX8/Pz09y5c3XLLbfI399fa9as0dKlS62/Chg6dKhGjx6tjh07KiMjQ5s2bdKJEyeUkJCgCRMmaM2aNV7dN/lCRESEFixYoGuvvVZpaWlauXKlli5d6nGc2vwICAjQtGnTNHfuXGsIqI0bN+rgwYOqX7++RowYoSVLlhTJ+MSffPKJnnnmGUVHR2v37t06dOiQbrnlFq1du1YtWrRwK1+6dGlNmzZNd9xxh2rUqKFdu3bpt99+U7ly5XT77bdr48aNGjJkiMsyxbmtilrDhg2VmJiocePGKSEhQfv379emTZuUnp6uTp066T//+Y8+/fRTl2Xuvfdeffzxx4qJidHx48e1fft2xcfHa968eW7b4lJo2bKlli1bpquvvtoaV7lSpUp68803rYdR5sU5rElQUJD69OmTa9mC3EMXVnHeM3lyxx136I033lDz5s21Y8cOLV26VEuXLtXJkycLXXdB9jtfqFixolauXKnnnntOjRo10tatW7V7927rnD1v3rwc/4KgX79++vHHH3XFFVcoNTVVW7ZsUbNmzfTdd9/ptttu8/h6+b33A1B4DmNK8OBKAP6RmjVrpqSkJG3cuNF6KJY3evTooTlz5ujrr7+2PlT50vr16xUfH68WLVq4/Jk88HfRuXNnLV26VIsXL1bnzp193RwA8FpJuycA4BvvvPOOhg0bpltuuUUzZ870dXMAAJcIPbwBlChr165VUlKSypQp43GMvZzs27dPP/zwg/z9/a2HQ/nahx9+KEkuDzsBAADFqyTeEwDwDecDS509vQEA/wwE3gB84sknn9T+/ftdpq1Zs0a33nqrJGnQoEE5Plxr7Nix2rZtm8u0P/74QzfccIPS0tJ0ww03qEqVKsXX8IssXrxYn376qdLS0qxpGRkZeu211/T222/Lz89Pd9111yVrDwAA/xQl7Z4AQMny5Zdfat26dapTp06xDNkFACi5GNIEgE84xxGtUqWKatSooSNHjmj37t2SpPj4eC1evFjh4eFuyznHZaxQoYKio6OVnJxsfditU6eOli1bdknHW50yZYoGDhyowMBA1a5dWxEREdq6datSUlIkXRiL2tvxSIGShiFNAJRkJe2eAEDJ0LlzZ506dUobN26UMUbTp0/Pc/xuAIC90MMbgE+89NJL6tSpkyQpMTFRx44dU8uWLfXSSy9p6dKlOYbdkvTMM8+oW7duCg4OVlJSkvbv368mTZroqaee0rp16y75B9sOHTpoxIgRql+/vo4ePapNmzYpJCREPXr00Pz58wm7AQAoJiXtngBAybB06VIlJiaqTp06mjRpEmE3APwD0cMbAAAAAAAAAGAL9PAGAAAAAAAAANhCgK8b8HeQlZWlAwcOqHTp0ta4wwAAAAAAAACAS8MYo1OnTikqKkp+fp77cRN4e+HAgQOqUaOGr5sBAAAAAAAAAP9oe/fuVfXq1T3OJ/D2QunSpSVd2JgRERE+bg0AAAAAAAAA/LOkpKSoRo0aVlbrCYG3F5zDmERERBB4AwAAAAAAAICP5DXkNA+tBAAAAAAAAADYAoE3AAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgJ83YB/EmOMMjIylJWV5eumALhE/Pz8FBgYKIfD4eumAAAAAAAA2B6B9yVw9uxZJScn69SpU8rMzPR1cwBcYv7+/ipdurQiIyNVqlQpXzcHAAAAAADAtgi8i9mpU6e0b98+BQYGqkyZMgoLC5Ofnx+9PYF/AGOMsrKydObMGaWkpOjkyZOqXr26Spcu7eumAQAAAAAA2BKBdzE6e/as9u3bp4iICEVFRRFyA/9QYWFhqlixog4cOKB9+/apVq1a9PQGAAAAAAAoBiXioZXz5s1Tly5dVK5cOYWFhSkuLk4TJkwo0FjXp06d0nPPPafY2FiFh4crKChINWvWVL9+/bRhw4ZiaL1nycnJCgwMJOwGIIfDoaioKAUGBio5OdnXzQEAAAAAALAlhzHG+LIB48aN0xNPPCFJqlOnjsLDw5WUlKSsrCxdf/31+vrrr+Xn510uf+TIEXXo0EFbt26Vn5+fateurfDwcO3YsUOnT5+Wv7+/pk2bpj59+uSrjSkpKYqMjFRycrIiIiK8WsYYo23btqlMmTKqVKlSvl4PgH0dOXJEJ0+eVL169fgiDAAAAAAAwEveZrQ+7eG9cuVKPfnkk/Lz89P06dO1Y8cOJSYmasOGDapcubJmz56t1157zev6nnzySW3dulUNGjTQb7/9pu3bt2vTpk06dOiQ7r77bmVmZmro0KFKSUkpxrW6ICMjQ5mZmQoLCyv21wLw91GqVCllZmYqIyPD100BAAAAAACwHZ8G3mPHjpUxRkOGDHHpdd2iRQsr6B43bpzXwdDcuXMlSa+88ooaNmxoTQ8LC9Nbb72lChUqKCUlRT/99FMRrkXOnMOxeNs7HcA/g7+/vyQVaMgmAAAAAAAA5M5naWxKSooWLlwoSRo8eLDb/F69eikiIkLHjh3T4sWLvarz3Llzki4MjXKxgIAA1apVS5J0/vz5gjY73xiyAEB2nBMAAAAAAACKj88C740bNyo9PV0hISGKi4tzmx8YGKiEhARJ0urVq72qs3nz5pKkn3/+2W3e8ePHtWXLFgUEBCgmJqbgDQcAAAAAAAAAlEg+C7y3bdsmSapZs6YCAgJyLOPsqe0sm5fRo0crMDBQjz32mD788EMdPnxYZ86c0U8//aTrrrtOZ86c0eOPP64aNWoUzUoAAAAAAAAAAEqMnJPmS+DEiROSpLJly3os45znLJuXK6+8Uj/88IOeeeYZDRo0yGVedHS0Pv74Y/Xr1y/PetLS0pSWlmb9/1I85BIAAAAAAAAAUDg+6+GdmpoqSQoKCvJYJjg4WNL/xub2xp9//qkjR47I4XCoVq1aatasmUJDQ7Vr1y5NnjxZu3btyrOOF198UZGRkdYPPcJxqQ0YMEAOh0PR0dE5znc4HHI4HBo9evQlbVdhde7cWQ6HQ507d/Z1UwAAAAAAAGBDPgu8Q0JCJEnp6ekeyzh7WYeGhnpV54svvqiBAwfK4XBo06ZN2rVrl3755RcdOXJEgwcP1pIlS9SuXTslJyfnWs8TTzyh5ORk62fv3r1erhVKmhUrVljhsMPh0LJly3zdJAAAAAAAAADFxGeBtzfDlXgz7InTkSNH9Nxzz0mSpkyZYj3AUpLCw8P1zjvvqHHjxjpw4IAmTZqUa13BwcGKiIhw+cHf09SpU3P9f06io6PlcDg0YMCAPMv+XXtaF6W8eqMDAAAAAAAAl4rPxvCuV6+eJGnPnj06f/58jg+u3Llzp0vZ3Kxbt06pqakKDw9Xq1at3OYHBASoc+fO2rx5s9atW1fI1hcTO4emPli3tLQ0zZw5U9KFLz1Onz6tmTNnasKECV7/1YCvTJkyRVOmTPF1M4rckiVLfN0EAAAAAAAA2JjPenjHxsYqMDBQqamp2rBhg9v8jIwMrV27VpLUunXrPOs7depUnmWMMZL+N3447G3WrFk6efKkJOmNN96QdOEBpLNmzfJhqwAAAAAAAAAUF58F3hEREerSpYsk6f3333ebP3PmTKWkpKh8+fJePeDO2Qv89OnTWrNmjdv88+fPa+nSpZKk+vXrF6Ll+Lv46KOPJEmNGzfWoEGD1LhxY0neDWsCAAAAAAAA4O/HZ4G3JD311FNyOByaPHmyZsyYYU1PTEzUww8/LEkaOXKkgoKCrHnjx49XdHS0evfu7VJXbGysFWgOGDBAv/zyizXv1KlTGjp0qDZv3ixJuv3224ttnVAyHDlyRAsWLJD0v/e7X79+kqQFCxbo8OHDbst07txZDodDu3fvlnQhMM/+wEuHw2F9+eIc59tpzJgxbmWzjwG+ZMkSa/qSJUuUlZWlDz74QFdccYUqV64sPz8/l/L5HRd74cKFuv7661W1alWFhISoTp06GjFihPbt2+dxmdGjR1ttys3Fbb94eecXC7t373bbBhfX7dzGeX2JtWLFCt1xxx2Kjo5WSEiIypQpo9jYWD399NM6evRovtr6+eef66qrrlLFihUVGhqqBg0aaOTIkTp+/Hiubdi6davuu+8+NW3aVOHh4QoKClJUVJRiYmI0aNAgffbZZ9aDdQEAAAAAAFAy+GwMb0lq166dnn/+eT399NPq27evnn76aYWHhyspKUlZWVnq3r27HnnkEZdlTp48qd27d7sFgQ6HQ9OmTVOXLl20ZcsWxcTEqFatWoqIiNC2bdt07tw5SdLYsWPVsmXLS7WK9uDFcDF5OnCgcMtHReWr+CeffKLz58/L4XBYQXe/fv309NNPKzMzU5988on1pcqllpqaqm7dumnhwoVFUt+YMWPcHpr5559/6q233tK0adP07bffqmPHjkXyWsUtKytL999/v9566y2X6Wlpadq0aZM2bdqkiRMnaubMmbr66qtzrSszM1P9+vXT9OnTXaZv3bpVr7zyir7++mstX75cVapUcVt25syZuv3225Wenu4y/eDBgzp48KASExP14Ycf6tdff1XTpk0LuLYAAAAAAAAoaj4NvKULvbxbtGih119/XevXr9ehQ4fUrFkzDRw4UCNGjJC/v7/XdcXFxSkpKUmvvvqqvv/+e/3555/av3+/KlasqH/961+69957dcUVVxTj2qCkcPY67tChg2rWrClJqlWrltq3b6/ly5dr6tSpboH3hx9+qDNnzqhbt246cOCAbrjhBo0dO9alTFhYmKQLvcTT09PVrFkzSdKwYcM0fPhwl7Jly5bNsW2jRo3SL7/8ouuvv14DBgxQrVq1dPjwYaWkpOR7PefOnat169ZZvZabN2+u5ORkzZw5U++9955SUlJ03XXX6ddff1WtWrXyXX9uhg8frltuuUVPP/20Zs2apaioKM2fP79QdT7++ONW2F27dm2NGjVKcXFxOnPmjGbPnq2JEycqOTlZ1113ndasWaMWLVp4rOv//u//9PPPP+vGG2/UnXfeaW3nt956S3PnztX27dv10EMPufx1iSQdPnxYAwcOVHp6uipVqqQRI0aoTZs2qlChglJTU7Vz504tW7ZMX331VaHWFQAAAAAAAEXP54G3JF133XW67rrrvCo7evRot96s2UVFRenVV1/Vq6++WkStw9/Nr7/+qsTEREnuw9fcfvvtWr58uRITE/Xrr79agbV0IWCVpMDAQElSmTJlPPbevXgc+EqVKnnd0/eXX37RM888o+eee867FcrFunXrFBcXp6VLlyo8PNyaftVVV6ldu3a68847derUKT366KOaOXNmoV8vu0qVKqlSpUoqU6aMpAvbrTC9nX/99VfruG3atKmWL19u1S1dGA6la9eu6t69u9LT03X33Xdr9erVHuv7+eefNXbsWD311FMu06+55hpdc801WrBggb744gu9+eabqlixojV/7ty5OnPmjCRp0aJFbuvUtm1b9evXT2+88Yb1IFwAAAAAAACUDD4dwxsoDs7e3cHBwerVq5fLvFtvvVXBwcEu5S61+vXr69lnny2y+v773/+6hN1Od9xxh6699lpJ0jfffKODBw8W2WsWh7fffltZWVmSpPfee88l7Ha65pprNGjQIEnSmjVrtHbtWo/1tWzZUk8++aTbdIfDYfXuP3/+vFauXOky/9ChQ5Iu9NDPLcAPCQlRaGho7isFAAAAAACAS4rAG7aSmZlpjdncvXt3t9C0TJky+te//iVJmj59ujIzMy91E3Xbbbfla6ie3DRr1izXMemd4fD58+ddHjhZEjnHNG/cuLHatGnjsdxdd93ltkxO+vbt6/GBnNm32c6dO13mVa1aVZJ04sQJzZo1K++GAwAAAAAAoMQg8IatLFiwwOrJfPFwJk7O6QcPHiyyB0fmR/PmzYusroSEhFznt2rVyvo9KSmpyF63qKWlpWnbtm2SpNatW+daNjY21hp2Jrd1atiwocd55cqVs34/ddFDWa+//nrri5KePXvqyiuvtJ4x4IsvSAAAAAAAAOA9Am/YytSpUyVd6MndvXv3HMtk7/ntLH8peXqYZUFUqlQp1/mVK1e2fj9+/HiRvW5RO3HihPV79jbnJDAwUOXLl5eU+zqVKlXK4zw/v/+d+i4OscuXL6/Zs2erWrVqMsZo8eLFevjhhxUfH69y5crp5ptv1pw5c3JtIwAAAAAAAHyDwBu2kZKSYg1BcfLkSQUHB8vhcLj9hISE6OTJk5IujG19cQ/f4lZUw5lI8jhkx9+ZN+tU3A+L7NChg7Zv366PP/5Yffv2VfXq1SVd2Me++uor9ejRQ9dcc43Onj1brO0AAAAAAABA/hB4wzY+//xznTt3Ll/LnD17Vl988UUxtaj4HT582Ov52YfxkFx7OTsfFpmTM2fOFLB13sve69350EhPzp8/b/XsvnidilJISIj69eunTz75RHv37tWOHTv05ptvqn79+pKk+fPn66mnniq21wcAAAAAAED+Bfi6AUBRcQ5PUrVqVb322mt5lh81apT27NmjqVOnauDAgdb0v1Ov6bVr13o9v2nTpi7zSpcubf1+4sQJa5iQi/3xxx+5vkZRbK/g4GDVq1dP27Zt0+rVq3Mtu3HjRmVkZEhyX6fiVKdOHd13333q37+/mjRpon379unzzz/X66+/fsnaAAAAAAAAgNwReMMW/vzzT61YsUKSdPPNN6t37955LrNu3Tq9+uqrWrp0qfbs2aOaNWtKutCzV7rwIMW8hISEKDU11auyxeHXX3/Vxo0bFRsbm+P8Dz74QNKFYVQ6d+7sMq927drW7+vWrVO3bt1yrGPGjBm5tiE/2ys3Xbp00bZt27R582atWrVKbdq0ybHc5MmTXZa51CIiIpSQkKB9+/bpr7/+uuSvDwAAAAAAAM8Y0gS2MG3aNGtc51tuucWrZZzljDGaNm2aNb1q1aqSpB07duRZR37KFpe77747x2FHpk+frnnz5kmSbrzxRqutTu3atVNAwIXvvF5//fUcx8UeN26c1q1bl+vrO+s9cuRIocZDHzZsmDXMyt13363k5GS3MgsWLND7778vSWrVqpUSEhIK/HqezJ8/XwcPHvQ4Pzk5WWvWrJHk+qUBAAAAAAAAfI/AG7bgDKwrVaqkDh06eLVM69atrYcRZg+8L7/8ckkXhgMZN26cEhMTtX37dm3fvl379+93qcNZdvbs2Xr33XeVlJRklT1y5Eih1ysv8fHxWrduneLj4zVlyhStX79eP/74o4YPH6477rhD0oWhS/7zn/+4LVuxYkUr9J8/f76uv/56ff/999q4caNmzZqlm266SU888YTatm2baxuc2yArK0tDhw7VqlWrtG3bNms7eKtZs2Z65JFHJF3ouR4XF6f//ve/Wrt2rZYuXapHH31U1113nTIzMxUUFKR3333X67rzY8aMGapVq5a6d++uN954Q4sWLdLGjRu1bNkyTZo0SW3btrX2g2HDhhVLGwAAAAAAAFAwDGmCv72ffvrJClZ79uzp8jDG3DgcDt10001688039ccff2j16tVq3bq1hg0bprffflvHjx/XE088oSeeeMJaplOnTlqyZIn1/0cffVRffPGF0tLSNHToUJf6+/fvrylTphR6/XLTvXt3de/eXWPGjHEZh9wpIiJCs2fPVnR0dI7Ljx8/XuvXr9e2bds0Z84czZkzx2X+rbfeqrvvvjvXoUOuvPJKtWnTRqtWrdL06dM1ffp0l/k59Rz3ZNy4cTpz5owmTZqknTt36p577nErExkZqc8//1wxMTFe15tfGRkZmjdvntVDPif33nuv7rvvvmJrAwAAAAAAAPKPHt7423M+rFK6MH53fmQv76ynWrVqWrNmjQYPHqy6detaY1TnJCYmRitXrlSfPn1Us2ZNBQcH57P1hTd69Gh9//336t69uypXrqygoCBFR0dr+PDh+u2339SpUyePy1auXFmrV6/WqFGjVK9ePQUHB6tcuXLq2LGjpk2bps8++0z+/v65vr6fn58WLFigp59+Wi1atFB4eHiBH2Tp5+ent956S8uWLVO/fv2sbRoREaGYmBg9+eST2rZtm7p27Vqg+r0xfvx4ffnllxo6dKji4+NVrVo1BQUFKTQ0VPXr19eAAQO0YsUKTZw40esvVwAAAAAAAHBpOEx+ul/+Q6WkpCgyMlLJycmKiIjwapnU1FT9+eefql27dq6B6d/CgQO+boEUFeXrFgBFwlbnBgAAAAAAgEvE24yW7okAAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYAoE3AAAAAAAAAMAWCLyBS2zKlClyOBxyOBzatWtXsbzGrl27rNeYMmVKsbwGAAAAAAAAUNIQeONvLzMzUxEREXI4HIqLi8u1rDFG5cuXt8LgDz74INfyn332mVV2/PjxRdhqAAAAAAAAAEWNwBt/e/7+/rr88sslSYmJiUpOTvZY9rffftPx48et/y9btizXupcvX2793rFjx0K29O/nUvRGBwAAAAAAAIpKgK8bgP8ZvWS0r5uQs1OnCl3F6JaPFEFDPOvYsaPmz5+vrKws/fzzz7r22mtzLOcMsP39/ZWZmekSaOdWPiIiQi1atCiStg4YMEADBgwokroAAAAAAAAA/A89vGEL2Xtf59Zr2xlg9+rVS5K0c+dO7d+/P8eyJ0+eVFJSkiSpXbt28vf3L6rmAgAAAAAAACgGBN6whVatWikkJESScu217ZzXs2dPNWjQINfyK1asUFZWlqR/5nAmAAAAAAAAwN8NgTdsISgoSK1bt5YkrV27VqmpqW5ldu3apX379kmS2rdvr/bt20vy3CM8r/G7f/jhB91+++2qXbu2QkNDrWFPRo4cqYMHD3psq7fjYv/yyy+64447VK1aNYWEhKhmzZq6/fbbtWHDBkkXhkZxOByKjo72WMfF7e3Ro4eqVKmi4OBg1a5dW8OGDbO2SXZLliyRw+HQwIEDrWm1a9e22u38WbJkictyW7du1X333aemTZsqPDxcQUFBioqKUkxMjAYNGqTPPvtMaWlpXrUXAAAAAAAAyC8Cb9iGM5ROT0/X6tWr3eY7A+w6deooKirKCrw99fB2BuGhoaGKj4+3pp85c0Y33XSTunbtqk8++US7du1SamqqTp06pV9++UWvvPKK6tevrzlz5hR4XT766CPFx8fr448/1oEDB5SWlqa9e/fqk08+UZs2bfTRRx/lq77HH39cXbt21Zw5c3T48GGlp6dr165deueddxQXF6fff/+9wG11mjlzppo1a6aJEyfqt99+05kzZ5SRkaGDBw8qMTFRH374oXr37q1t27YV+rUAAAAAAACAnPDQStjGxeN4d+rUyWW+M9h2Bt3Of3/77TcdP35c5cqVs8qeO3dO69evlyS1adNGQUFBkqTMzEz16NFDixcvlsPhUO/evXXTTTepdu3aysjI0Jo1a/Tqq69qz549uvnmm/Xzzz+rZcuW+VqPFStWaNCgQcrKylJoaKgeeughXXPNNQoODta6dev04osv6u6771aTJk28qu+9997Tzz//rE6dOumee+5R/fr1dfLkSU2dOlVTp07V0aNHNWjQIK1cudJaJiEhQb/++qtmzZqlp59+WpI0f/58RUVFudRdu3ZtSdLhw4c1cOBApaenq1KlShoxYoTatGmjChUqKDU1VTt37tSyZcv01Vdf5WtbAAAAAAAAAPlB4A3baNu2rQIDA5WRkZFjr23ntA4dOkiS6tatqypVqujQoUNasWKFrr/+eqvsqlWrlJGRIck1SB8/frwWL16swMBAzZo1S9dee63La7Rp00Z33HGHOnTooN9++00PPvhgrmOK52TEiBHKyspSUFCQFi5cqMsvv9ya16pVK91yyy1q27atNm7c6FV9P//8s+666y69++67cjgc1vSrrrpKQUFBmjx5slatWqWNGzcqNjZWkhQWFqamTZtq3bp1Vvn69et7HD5l7ty5OnPmjCRp0aJFatq0qcv8tm3bql+/fnrjjTdkjPGq3QAAAAAAAEB+MaQJbCMsLExxcXGSpJUrV+r8+fPWvKNHj2rLli2S/hd4S1K7du0kuY/jndP43RkZGXr11VclXQilLw67ncqWLatXXnlF0oXe2tu3b/d6HVatWqXExERJ0r333usSdjtVqlRJr7/+utd1Vq1aVRMmTHAJu50effRR6/f8BvPZHTp0SNKFdb847M4uJCREoaGhBX4dAAAAAAAAIDcE3rAVZzh9+vRplx7QK1askCRVrFhRDRo0sKZ7GsfbGYAHBQWpbdu2kqQ1a9ZYD6O89dZbvWqHJJehQvKyaNEi6/f+/ft7LNe9e3eVL1/eqzpvueUWBQcH5zivQYMGCg8PlyTt3LnT63ZerGrVqpKkEydOaNasWQWuBwAAAAAAACgMAm/YSvbe29l7bV88fvfF5Tds2GANyXH+/HmtWrVKkhQfH2/1SM4+vEfbtm3lcDg8/jhDZOl/vZ+9kZSUJEkKDg7Otae0v7+/YmJivKqzYcOGuc4vW7asJOnUqVPeNTIH119/vcqUKSNJ6tmzp6688kq9/vrrWr9+vTIzMwtcLwAAAAAAAJAfBN6wlQ4dOsjP78Junb3XtqfAOyYmRuHh4Tp//rzVEzt7+J29p/aRI0cK1KazZ896XfbEiROSpHLlysnf3z/XshUrVvSqzlKlSuU637m9ChNMly9fXrNnz1a1atVkjNHixYv18MMPKz4+XuXKldPNN9+sOXPmFLh+AAAAAAAAwBs8tBK2UqZMGTVt2lS//PKLVqxYIWOMzpw5Yw1vkr0HuHShp3SbNm20cOFCLVu2TF26dHHpGZ498M4eCC9ZssTrIUUqVapUmFX62+jQoYO2b9+uL7/8UvPmzdOyZcu0b98+paSk6KuvvtJXX32lbt266auvvsozhAcAAAAAAAAKgsAbttOxY0f98ssvOnbsmDZv3qz9+/crMzNTYWFhio2NdSvfvn17LVy40OoF7vzX39/feqilJJeAOygoKNchRwrKObzI8ePHlZmZmWsv76NHjxb56xdWSEiI+vXrp379+km6MC743LlzNXHiRG3dulXz58/XU089la+HbgIAAAAAAADeYkgT2E72XtnLli2zAuw2bdooIMD9Ox7nMCerV69WWlqafvrpJ0lSixYtFBERYZXLHpYvWLCgWNrepEkTSVJaWpp+/fVXj+UyMzO1adOmYmlDdg6Ho1DL16lTR/fdd5/Wrl2r6tWrS5I+//zzomgaAAAAAAAA4IbAG7aTPfBevny5x/G7nZxB+Llz5/TRRx/p2LFjbvU4ly9Xrpwk6Z133lFKSkqRt/2qq66yfp86darHcnPnzrXaWZxCQkKs39PS0gpcT0REhBISEiRJf/31V6HbBQAAAAAAAOSEwBu2U7lyZdWvX1/ShbG216xZI8l9/G6nsLAwxcTESJJeeukla/rFgXdISIgeffRRSdKhQ4fUu3dv6+GWOTl16pQmTpyYr7a3bdtWzZs3lyS99dZb+vnnn93KHD16VA899FC+6i2oqlWrWr/v2LHDY7n58+fr4MGDHucnJydb70Pt2rWLroEAAAAAAABANozhDVvq2LGjtm7daoWwAQEBatOmjcfy7du317p167Rz505JF4byyCkgHzlypBYtWqRFixbpu+++U+PGjTV06FC1bdtWZcqU0alTp/THH39oyZIl+uabbxQSEqIRI0bkq+1vvfWWOnXqpPT0dHXp0kUPP/ywrrnmGgUHB2vdunV68cUXdejQIcXExGjTpk2FHnYkN7GxsQoJCVFqaqqeeeYZBQQEKDo6Wn5+F74rq1atmkJDQzVjxgz16NFDV199tbp27aqmTZuqXLlyOnXqlJKSkjRx4kTt379fkjRs2LBiay8AAAAAAAD+2Qi8YUsdO3bU5MmTrf/HxsYqLCzMY/n27dtr/Pjx1v8bNWqkChUquJXz9/fXt99+q6FDh2rq1Knas2ePnnzySY/1VqpUKd9tb9++vT744APdddddOnfunF544QW98MIL1vyAgAC9/fbbWrZsmTZt2uQy7EhRK126tO6//369/PLL2rBhg7p16+Yyf/HixercubMkKSMjQ/PmzdO8efM81nfvvffqvvvuK7b2AgAAAAAA4J+NIU1gSzmNv52bi3tzX7x8dqGhofroo4+0bt06DRs2TE2aNFFkZKQCAgJUpkwZxcTEaPDgwfriiy/0+++/F6j9/fv317p169SvXz9FRUUpKChI1apV06233qoVK1ZoyJAh1hjikZGRBXoNb40bN07vvfeeOnTooHLlysnf39+tzPjx4/Xll19q6NChio+PV7Vq1RQUFKTQ0FDVr19fAwYM0IoVKzRx4kSrdzgAAAAAAABQ1BzGGOPrRpR0KSkpioyMVHJysiIiIrxaJjU1VX/++adq165drD1wL4kDB3zdAikqytctKHHq1q2rHTt26Pbbb9e0adN83Rx4yVbnBgAAAAAAgEvE24yWrpbA39DatWuth0jmNjY5AAAAAAAA8E9C4A2UQNu3b/c479ixY7rrrrskScHBwbrtttsuVbMAAAAAAACAEo2HVgIl0NVXX63atWurZ8+eat68uSIjI3XixAn99NNPmjRpkg4ePChJevrpp3N8uCYAAAAAAADwT0TgDZRAxhgtXrxYixcv9lhm+PDhevLJJy9hqwAAAAAAAICSjcAbKIE++ugjffvtt1q6dKkOHjyov/76SwEBAapSpYrat2+vu+++W5dffrmvmwkAAAAAAACUKATeQAnUqVMnderUydfNAAAAAAAAAP5WeGglAAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcC7mBljfN0EACUI5wQAAAAAAIDiQ+BdTPz9/SVJ58+f93FLAJQkznOC8xwBAAAAAACAokPgXUwCAgIUHBys5ORkXzcFQAmSnJys4OBgBQQE+LopAAAAAAAAtkPgXUwcDofKlCmjU6dO6cSJE75uDoAS4MSJEzp16pTKlCkjh8Ph6+YAAAAAAADYDl0Mi1HZsmWVnp6uQ4cOKSUlReHh4QoJCZGfn9/fK+wqCcOypKb6ugVAvhljlJWVpdTUVJ0+fVpnz55V2bJlVbZsWV83DQAAAAAAwJYIvIuRw+FQlSpVFBoaqpSUFP3111/KysrydbPy7+RJX7dAOnPG1y0ACszPz0+lSpVSVFSUIiMjfd0cAAAAAAAA2yLwvgQiIyMVGRmprKwsnT9//u8Xek+c6OsWSCNG+LoFQIH4+fkpICBAfn6MIAUAAAAAAFDcCLwvIT8/PwUFBfm6Gfl3+rSvWyCFhPi6BQAAAAAAAABKOLocAgAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYAoE3AAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtlAiAu958+apS5cuKleunMLCwhQXF6cJEyYoKyurwHV+/vnnuuaaa1S5cmUFBwerWrVquuaaa/TBBx8UYcsBAAAAAAAAACWFzwPvcePGqXv37lq0aJHKli2runXrKjExUffff7969uyZ79A7LS1NN9xwg2677TbNnz9f4eHhatGihfz9/fXDDz9o0qRJxbQmAAAAAAAAAABf8mngvXLlSj355JPy8/PT9OnTtWPHDiUmJmrDhg2qXLmyZs+erddeey1fdQ4cOFCzZ89Wx44dtWXLFu3YsUNr1qzRnj17dOjQIf373/8uprUBAAAAAAAAAPiSTwPvsWPHyhijIUOGqE+fPtb0Fi1aWEH3uHHjlJGR4VV933//vWbMmKGGDRvq+++/V4MGDVzmV6xYUV27di26FQAAAAAAAAAAlBg+C7xTUlK0cOFCSdLgwYPd5vfq1UsRERE6duyYFi9e7FWd48ePlyQ9/fTTCg0NLbK2AgAAAAAAAABKPp8F3hs3blR6erpCQkIUFxfnNj8wMFAJCQmSpNWrV+dZ37lz57Ro0SI5HA51795dS5Ys0eDBg3XVVVfp5ptv1vjx43Xq1KkiXw8AAAAAAAAAQMkQ4KsX3rZtmySpZs2aCgjIuRl16tTRokWLrLK5SUxM1Pnz51WtWjW99NJLGjdunMv8r776Sq+88ormzp2rmJiYQrcfAAAAAAAAAFCy+KyH94kTJyRJZcuW9VjGOc9ZNjcHDx6UJB05ckTjxo1Tjx49tGXLFqWlpWnNmjWKi4vTgQMHdMMNN+j06dO51pWWlqaUlBSXHwAAAAAAAABAyeazwDs1NVWSFBQU5LFMcHCwpAvDleTlzJkzkqSMjAzVqVNHX375pRo0aKCgoCAlJCRo7ty5KlWqlPbs2aMPP/ww17pefPFFRUZGWj81atTwdrUAAAAAAAAAAD7is8A7JCREkpSenu6xTFpamiR59QBKZ32SNHz4cAUGBrrMr1Klinr37i1J+v7773Ot64knnlBycrL1s3fv3jxfHwAAAAAAAADgWz4bw9ub4Uq8Gfbk4vokqWHDhjmWadSokSRp165dudYVHBxs9S4HAAAAAAAAAPw9+KyHd7169SRJe/bs0fnz53Mss3PnTpeyuWnQoIH1u6ew2jk9MzMzX20FAAAAAAAAAJR8Pgu8Y2NjFRgYqNTUVG3YsMFtfkZGhtauXStJat26dZ71Va9e3Rpr2xmUX8w5vVq1agVtNgAAAAAAAACghPJZ4B0REaEuXbpIkt5//323+TNnzlRKSorKly+vzp07e1Vnr169JElTp051m5eamqrPPvtMknTllVcWsNUAAAAAAAAAgJLKZ4G3JD311FNyOByaPHmyZsyYYU1PTEzUww8/LEkaOXKkgoKCrHnjx49XdHS09QDK7B577DGFh4frp59+0gsvvKCsrCxJ0rlz5zR06FAdPHhQZcuW1d13313MawYAAAAAAAAAuNR8Gni3a9dOzz//vLKystS3b19ddtllatGiheLi4nT48GF1795djzzyiMsyJ0+e1O7du3Xo0CG3+qpUqaLp06crKChITz/9tKKiotSqVStVrVpVH330kUqVKqVPP/1UFStWvFSrCAAAAAAAAAC4RHwaeEsXenl/++23uvLKK3Xs2DFt375dzZo10/jx4zVr1iz5+/vnq74ePXpo3bp16t27txwOhzZt2qSwsDDdeeedWr9+vbp27VpMawIAAAAAAAAA8CWHMcb4uhElXUpKiiIjI5WcnKyIiAhfN+fSGz3a1y0oGW0AAAAAAAAA4BPeZrQ+7+ENAAAAAAAAAEBRIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYAoE3AAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYAoE3AAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYAoE3AAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYAoE3AAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYAoE3AAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcAbAAAAAAAAAGALJSLwnjdvnrp06aJy5copLCxMcXFxmjBhgrKysgpd9+TJk+VwOORwODRkyJAiaC0AAAAAAAAAoCTyeeA9btw4de/eXYsWLVLZsmVVt25dJSYm6v7771fPnj0LFXofPXpUo0aNKsLWAgAAAAAAAABKKp8G3itXrtSTTz4pPz8/TZ8+XTt27FBiYqI2bNigypUra/bs2XrttdcKXP9DDz2kkydPqnv37kXYagAAAAAAAABASeTTwHvs2LEyxmjIkCHq06ePNb1FixZW0D1u3DhlZGTku+6FCxfqk08+0T333KP4+PgiazMAAAAAAAAAoGTyWeCdkpKihQsXSpIGDx7sNr9Xr16KiIjQsWPHtHjx4nzVnZqaqmHDhqlSpUr697//XSTtBQAAAAAAAACUbD4LvDdu3Kj09HSFhIQoLi7ObX5gYKASEhIkSatXr85X3WPHjtX27dv1yiuvqEyZMkXRXAAAAAAAAABACeezwHvbtm2SpJo1ayogICDHMnXq1HEp643ff/9dr7zyijp06KA777yz8A0FAAAAAAAAAPwt5Jw0XwInTpyQJJUtW9ZjGec8Z9m8GGN0zz33KCsrS5MmTSpw29LS0pSWlmb9PyUlpcB1AQAAAAAAAAAuDZ/18E5NTZUkBQUFeSwTHBwsSTp37pxXdb7//vtavny5HnzwQTVt2rTAbXvxxRcVGRlp/dSoUaPAdQEAAAAAAAAALg2fBd4hISGSpPT0dI9lnL2sQ0ND86zv6NGjGjVqlKpXr65nn322UG174oknlJycbP3s3bu3UPUBAAAAAAAAAIqfz4Y08Wa4Em+GPXEaOXKkjh8/rnfffVfh4eGFaltwcLDVuxwAAAAAAAAA8Pfgs8C7Xr16kqQ9e/bo/PnzOT64cufOnS5lc7Nx40ZJ0ogRIzRixAiXeadPn5YkTZ8+XXPmzJEkHTp0qOCNBwAAAAAAAACUOD4LvGNjYxUYGKjU1FRt2LBBrVq1cpmfkZGhtWvXSpJat27tdb2HDx/2OO/cuXNejwcOAAAAAAAAAPh78dkY3hEREerSpYukCw+bvNjMmTOVkpKi8uXLq3PnznnWt2nTJhljcvxxjuk9ePBgaxoAAAAAAAAAwF58FnhL0lNPPSWHw6HJkydrxowZ1vTExEQ9/PDDki6MzR0UFGTNGz9+vKKjo9W7d+9L3l4AAAAAAAAAQMnl08C7Xbt2ev7555WVlaW+ffvqsssuU4sWLRQXF6fDhw+re/fueuSRR1yWOXnypHbv3s0Y3AAAAAAAAAAAFz4NvKULvby//fZbXXnllTp27Ji2b9+uZs2aafz48Zo1a5b8/f193UQAAAAAAAAAwN+AwzCgdZ5SUlIUGRmp5ORkRURE+Lo5l97o0b5uQcloAwAAAAAAAACf8Daj9XkPbwAAAAAAAAAAigKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYAoE3AAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYAoE3AAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYAoE3AAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYAoE3AAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWygRgfe8efPUpUsXlStXTmFhYYqLi9OECROUlZWVr3o2btyo//u//1OnTp1UoUIFBQYGqlKlSrr22mv19ddfF1PrAQAAAAAAAAAlQYCvGzBu3Dg98cQTkqQ6deooPDxciYmJuv/++7Vw4UJ9/fXX8vPLO5ffsWOH4uLirP/Xrl1b0dHR2rlzp77//nt9//336t+/vz744AOv6gMAAAAAAAAA/L34NPlduXKlnnzySfn5+Wn69OnasWOHEhMTtWHDBlWuXFmzZ8/Wa6+95lVdxhhVrVpVL730kg4cOKCdO3dq3bp1+uuvvzRhwgQ5HA599NFHmjRpUjGvFQAAAAAAAADAF3waeI8dO1bGGA0ZMkR9+vSxprdo0cIKuseNG6eMjIw866pevbq2b9+ukSNHqmrVqtZ0Pz8/jRgxQvfcc48k6b333ivitQAAAAAAAAAAlAQ+C7xTUlK0cOFCSdLgwYPd5vfq1UsRERE6duyYFi9enGd9ISEhKlWqlMf5Xbt2lSRt3bq1gC0GAAAAAAAAAJRkPgu8N27cqPT0dIWEhLiMve0UGBiohIQESdLq1asL/XqpqamSpNDQ0ELXBQAAAAAAAAAoeXwWeG/btk2SVLNmTQUE5PzszDp16riULYzPP/9cktSuXbtC1wUAAAAAAAAAKHlyTpovgRMnTkiSypYt67GMc56zbEEtWLBA33zzjSTpsccey7N8Wlqa0tLSrP+npKQU6vUBAAAAAAAAAMXPZz28nUOMBAUFeSwTHBwsSTp37lyBX2fPnj3q16+fJGn48OHq2LFjnsu8+OKLioyMtH5q1KhR4NcHAAAAAAAAAFwaPgu8Q0JCJEnp6ekeyzh7WRd03O3jx4/r2muv1V9//aXOnTvrtdde82q5J554QsnJydbP3r17C/T6AAAAAAAAAIBLx2dDmngzXIk3w554cvr0af3rX//S5s2b1bJlS82ePdvqMZ6X4OBgr8sCAAAAAAAAAEoGn/XwrlevnqQLQ46cP38+xzI7d+50KeuttLQ03XDDDVq9erUaN26s77//XqVLly5cgwEAAAAAAAAAJZrPAu/Y2FgFBgYqNTVVGzZscJufkZGhtWvXSpJat27tdb3nz5/Xrbfeqh9//FF16tTRDz/8oAoVKhRZuwEAAAAAAAAAJZPPAu+IiAh16dJFkvT++++7zZ85c6ZSUlJUvnx5de7c2as6jTEaMGCAZs+eraioKC1cuFBRUVFF2WwAAAAAAAAAQAnls8Bbkp566ik5HA5NnjxZM2bMsKYnJibq4YcfliSNHDlSQUFB1rzx48crOjpavXv3dqvvgQce0CeffKIKFSpo4cKFql27dvGvBAAAAAAAAACgRPDZQyslqV27dnr++ef19NNPq2/fvnr66acVHh6upKQkZWVlqXv37nrkkUdcljl58qR2796t6Ohol+krV67UhAkTJEmhoaG66667PL7uihUrinxdAAAAAAAAAAC+5dPAW7rQy7tFixZ6/fXXtX79eh06dEjNmjXTwIEDNWLECPn7+3tVT1pamvX73r17tXfv3uJqMgAAAAAAAACgBHIYY4yvG1HSpaSkKDIyUsnJyYqIiPB1cy690aN93YKS0QYAAAAAAAAAPuFtRuvTMbwBAAAAAAAAACgqBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYAoE3AAAAAAAAAMAWCLwBAAAAAAAAALZA4A0AAAAAAAAAsAUCbwAAAAAAAACALRB4AwAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwG+bgAAAEBRGr1ktK+bIEka3Xm0r5sAAAAAAP849PAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBR5aCQAAis7o0b5ugdTZ1w0AAAAAAPgKPbwBAAAAAAAAALZA4A0AAAAAAAAAsAWGNAEAAAAA/GONXjLa103Q6M6+bwMAAHZBD28AAAAAAAAAgC3QwxsAAAAAAOD/o9c/APy90cMbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgi8AQAAAAAAAAC2QOANAAAAAAAAALAFAm8AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYCfN0AwBujl4z2dRM0urPv2wAAAAAAAADAM3p4AwAAAAAAAABsgcAbAAAAAAAAAGALBN4AAAAAAAAAAFsg8AYAAAAAAAAA2AKBNwAAAAAAAADAFgJ83QAAyK/RS0b7ugka3dn3bQAAeIfrBgAAAPDPQQ9vAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAAAAAAAAWyDwBgAAAAAAAADYQoCvGwAA+JsbPdrXLSgZbQAAAAAAAD5HD28AAAAAAAAAgC0QeAMAAAAAAAAAbIHAGwAAAAAAAABgCwTeAAAAAAAAAABbIPAGAAAAAAAAANgCgTcAAAAAAAAAwBYIvAEAAAAAAAAAtkDgDQAAAAAAAACwBQJvAAAAAAAAAIAtEHgDAAAAAAAAAGyBwBsAAAAAAAAAYAsE3gAAAPh/7d15uF3zoT/+98l0EpEQQ2kiESEkhgq95Ebo1VaIKSj6oNVqaF25ilIpSh2iprhB3dIWjV7UbSma3tKLXFQTY5BeQyNRJCISYyaZs35/nN853wznyHCGfbL7ej3Pfh5Za+3P/uzjfdbe573XXgsAAKAsKLwBAAAAACgLCm8AAAAAAMqCwhsAAAAAgLKg8AYAAAAAoCwovAEAAAAAKAsKbwAAAAAAykKbUk8AABqq6rGqUk8hVfuXfg4AAADwj84R3gAAAAAAlAWFNwAAAAAAZUHhDQAAAABAWVB4AwAAAABQFhTeAAAAAACUBYU3AAAAAABlQeENAAAAAEBZUHgDAAAAAFAWFN4AAAAAAJQFhTcAAAAAAGVB4Q0AAAAAQFlQeAMAAAAAUBYU3gAAAAAAlAWFNwAAAAAAZUHhDQAAAABAWVB4AwAAAABQFhTeAAAAAACUBYU3AAAAAABlQeENAAAAAEBZUHgDAAAAAFAWFN4AAAAAAJQFhTcAAAAAAGVB4Q0AAAAAQFlQeAMAAAAAUBYU3gAAAAAAlIUWUXg/8MADOeCAA7LZZpulY8eO2XPPPXPDDTdk+fLl6zXek08+mSOOOCJbbrllOnTokJ133jkjRozIwoULG3nmAAAAAAC0FCUvvK+88soceuihGTt2bLp06ZIddtghEydOzBlnnJGjjjpqnUvvO++8M/vtt1/GjBmTysrK9O3bN1OmTMmPfvSjfOELX8gnn3zSRM8EAAAAAIBSKmnh/eSTT+aCCy5Iq1at8utf/zqvv/56Jk6cmOeffz5bbbVVxowZk1GjRq31eG+++WZOPvnkLFu2LFdffXWmTZuW559/PpMnT85OO+2UZ599NsOHD2/CZwQAAAAAQKm0KeWDX3bZZSmKIt/+9rdz/PHH1y7ffffdM2rUqHzta1/LlVdemTPPPDNt27Zd43gjR47MokWLcuCBB+bcc8+tXb7tttvml7/8ZQYOHJhf/OIXueiii7LVVls1yXMCAAAAoDxUPVZV6imkav/SzwE2JCU7wnvOnDl55JFHkiQnn3zyauuPPfbYdO7cOR988EEeffTRNY5XFEXuu+++esfbZ5990qdPnyxZsiS///3vGzh7AAAAAABampIV3i+88EIWL16c9u3bZ88991xtfdu2bbPXXnslSZ5++uk1jjd16tTMmDEjSTJw4MA6t6lZvjbjAQAAAACwYSnZKU0mT56cJOnRo0fatKl7Gr169crYsWNrt12b8SorK9O1a9d6x1txWwAAAKAFqaoq9QyS/Us9AQAaomSF90cffZQk6dKlS73b1Kyr2XZtxtt0001TUVHRoPEWLVqURYsW1f57zpw5a3x8AAAAAKAJtYQPxVrCHPhUJSu8Fy5cmCRp165dvdtUVlYmSRYsWNCs411xxRW55JJL1viY/zBawC9y6WdAS+KCHS2MfQQrkgdaIK8brMoFyFiR/xctjPcStDD2ES1MS9hHeB/R4pXsHN7t27dPkixevLjebWqOsu7QoUOzjnf++edn9uzZtbdp06at8fEBAAAAACitkh3hvTanF1mb056sOt7HH3+coijqPK3J2o5XWVlZezQ4AAAAAAAbhpId4d27d+8kydSpU7N06dI6t/n73/++0rZrM96iRYvyzjvvNHg8AAAAAAA2LCUrvPfYY4+0bds2CxcuzPPPP7/a+iVLluTZZ59NkvTv33+N4/Xo0SNbb711kmTcuHF1blOzfG3GAwAAAABgw1Kywrtz58454IADkiS33nrrauvvvvvuzJkzJ5tvvnn233//NY5XUVGRo446qt7xxo8fn7/97W9p27ZthgwZ0rDJAwAAAADQ4pSs8E6SH/7wh6moqMgtt9ySu+66q3b5xIkTc/bZZydJhg8fnnbt2tWuu+6669KzZ88cd9xxq4137rnnpl27dnnooYcycuTIFEWRJHnrrbcydOjQJMkpp5xSeyQ4AAAAAADlo6SF98CBAzNixIgsX748J5xwQrbffvvsvvvu2XPPPTNz5swceuihOeecc1a6z8cff5y33nor77777mrjbbfddrn55pvTqlWrDB8+PN27d8+ee+6Z3r17Z9KkSfn85z+fkSNHNtfTAwAAAACgGZW08E6qj/L+wx/+kC996Uv54IMPMmXKlOy222657rrr8vvf/z6tW7dep/G+8Y1v5Iknnshhhx2WBQsW5JVXXkmvXr1SVVWVv/zlL+nYsWMTPRMAAAAAAEqpTaknkCSHHXZYDjvssLXatqqqKlVVVZ+6zT777JM//OEPjTAzAAAAAAA2FCU/whsAAAAAABqDwhsAAAAAgLKg8AYAAAAAoCwovAEAAAAAKAsKbwAAAAAAyoLCGwAAAACAsqDwBgAAAACgLCi8AQAAAAAoCwpvAAAAAADKgsIbAAAAAICyoPAGAAAAAKAsKLwBAAAAACgLCm8AAAAAAMqCwhsAAAAAgLKg8AYAAAAAoCwovAEAAAAAKAsKbwAAAAAAyoLCGwAAAACAsqDwBgAAAACgLCi8AQAAAAAoCwpvAAAAAADKgsIbAAAAAICyoPAGAAAAAKAsKLwBAAAAACgLCm8AAAAAAMqCwhsAAAAAgLKg8AYAAAAAoCwovAEAAAAAKAsKbwAAAAAAyoLCGwAAAACAsqDwBgAAAACgLCi8AQAAAAAoCwpvAAAAAADKgsIbAAAAAICyoPAGAAAAAKAsKLwBAAAAACgLCm8AAAAAAMqCwhsAAAAAgLKg8AYAAAAAoCwovAEAAAAAKAsKbwAAAAAAyoLCGwAAAACAsqDwBgAAAACgLCi8AQAAAAAoCwpvAAAAAADKgsIbAAAAAICyoPAGAAAAAKAsKLwBAAAAACgLCm8AAAAAAMqCwhsAAAAAgLKg8AYAAAAAoCwovAEAAAAAKAsKbwAAAAAAyoLCGwAAAACAsqDwBgAAAACgLCi8AQAAAAAoCwpvAAAAAADKgsIbAAAAAICyoPAGAAAAAKAstCn1BAAAAAAANgRV+1eVegqsgSO8AQAAAAAoCwpvAAAAAADKgsIbAAAAAICyoPAGAAAAAKAsKLwBAAAAACgLCm8AAAAAAMqCwhsAAAAAgLKg8AYAAAAAoCwovAEAAAAAKAsKbwAAAAAAyoLCGwAAAACAsqDwBgAAAACgLCi8AQAAAAAoCwpvAAAAAADKgsIbAAAAAICyoPAGAAAAAKAsKLwBAAAAACgLCm8AAAAAAMqCwhsAAAAAgLKg8AYAAAAAoCwovAEAAAAAKAsKbwAAAAAAyoLCGwAAAACAsqDwBgAAAACgLCi8AQAAAAAoCwpvAAAAAADKgsIbAAAAAICyoPAGAAAAAKAsKLwBAAAAACgLCm8AAAAAAMqCwhsAAAAAgLKg8AYAAAAAoCwovAEAAAAAKAsKbwAAAAAAyoLCGwAAAACAsqDwBgAAAACgLCi8AQAAAAAoCwpvAAAAAADKgsIbAAAAAICyoPAGAAAAAKAsKLwBAAAAACgLCm8AAAAAAMqCwhsAAAAAgLKg8AYAAAAAoCwovAEAAAAAKAsKbwAAAAAAykKbUk8AAACgOVXtX1XqKQAA0EQc4Q0AAAAAQFlQeAMAAAAAUBYU3gAAAAAAlAWFNwAAAAAAZUHhDQAAAABAWShp4b1w4cJceuml2XnnndOhQ4dsueWWOeKII/LUU0+t11j33ntvTjnllOy6667p2LFj2rdvnx122CGnnXZapkyZ0gTPAAAAAACAlqKiKIqiFA88f/78/Mu//EsmTJiQdu3aZZdddsmsWbMyffr0tG7dOnfccUeOO+64tR7voosuymWXXZYkad++fXr37p1ly5Zl8uTJWbJkSTbaaKP85je/yWGHHbbOc50zZ0422WSTzJ49O507d17n+wMAAAAAsP7WtqMt2RHe55xzTiZMmJA+ffrktddey/PPP5+pU6fmqquuyrJlyzJ06NBMmzZtrccriiJf/OIXc//99+fjjz/OX//617z88suZNm1aDjnkkHzyySc5/vjj8+677zbhswIAAAAAoFRKcoT3jBkz0qNHjyxdujTjx4/PgAEDVlp/4IEH5uGHH84ZZ5yR66+/fq3G/OCDD7L55pvXuW7u3LnZYYcdMmvWrIwaNSrf+9731mm+jvAGAAAAACidFn2E95gxY7J06dL07dt3tbI7SU4++eQkyT333LPWY9ZXdidJp06d8s///M9Jktdee20dZwsAAAAAwIagJIV3zUUpBw4cWOf6muXvvPPOOp3W5NMsXLgwSdKhQ4dGGQ8AAAAAgJalJIX35MmTkyS9evWqc323bt3Srl27lbZtiJkzZ+bxxx9PUn/JDgAAAADAhq1NKR70o48+SpJ06dKlzvUVFRXZdNNNM2vWrNptG+Lss8/OokWLsuOOO+aII45Y4/aLFi3KokWLav89Z86cBs8BAAAAAICmVZIjvGtOL1JzFHddKisrkyQLFixo0GPddNNN+fWvf53WrVvntttuS5s2a+74r7jiimyyySa1t+7duzdoDgAAAAAANL11PsJ7+PDhGTNmzDo/0OjRo2svUNm+ffskyeLFi+vdvuYI64acc/u///u/c8YZZyRJfvrTn9Z5gcy6nH/++Tn77LNr/z1nzhylNwAAAABAC7fOhfc777yTSZMmrfMDzZ8/v/a/a05lUt/pSoqiyMcff7zStuvqz3/+c7761a9m6dKlufzyy3Pqqaeu9X0rKytrjzAHAAAAAGDDsM6nNLnjjjtSFMU63w444IDaMXr37p0k+fvf/17nY0yfPr326O+abdfFhAkTcvjhh2fBggUZPnx4zj///HUeAwAAAACADUtJzuHdv3//JMm4cePqXF+zvGvXrut8KpFXX301gwcPzpw5c3LqqafmqquuathkAQAAAADYIJSk8B4yZEjatGmTV199NU8++eRq62+99dYkydFHH71O47755psZNGhQ3n///Zxwwgm58cYbG2W+AAAAAAC0fCUpvLt27ZpvfetbSZKhQ4fmrbfeSlJ97u6RI0fm4YcfTvv27fP9739/tfvuu+++6dmzZ+65556Vls+cOTODBg3K9OnTM2TIkPzqV79Kq1YleXoAAAAAAJTAOl+0srH8+7//e5577rm88MIL2XHHHbPLLrtk1qxZmT59elq3bp1bbrklPXr0WO1+b7/9dt56663MmzdvpeU/+tGPMmXKlCTVF9bcf//963zcQw45JBdccEGjPx8AAAAAAEqrZIV3p06dMm7cuFx99dW566678sorr2TjjTfO4YcfnvPPPz8DBgxYp/EWLVpU+9/PPfdcvdvtsMMO6z1nAAAAAABaroqiKIpST6KlmzNnTjbZZJPMnj07nTt3LvV0AAAAAAD+oaxtR+sk1wAAAAAAlAWFNwAAAAAAZUHhDQAAAABAWVB4AwAAAABQFhTeAAAAAACUBYU3AAAAAABloU2pJ7AhKIoiSTJnzpwSzwQAAAAA4B9PTTdb09XWR+G9FubOnZsk6d69e4lnAgAAAADwj2vu3LnZZJNN6l1fUaypEifLly/PO++8k06dOqWioqLU02EdzZkzJ927d8+0adPSuXPnUk+HFkAmWJE8sCqZYFUywYrkgVXJBCuSB1YlE6xIHhqmKIrMnTs3Xbt2TatW9Z+p2xHea6FVq1bZZpttSj0NGqhz5852JqxEJliRPLAqmWBVMsGK5IFVyQQrkgdWJROsSB7W36cd2V3DRSsBAAAAACgLCm8AAAAAAMqCwpuyV1lZmYsvvjiVlZWlngothEywInlgVTLBqmSCFckDq5IJViQPrEomWJE8NA8XrQQAAAAAoCw4whsAAAAAgLKg8AYAAAAAoCwovAEAAAAAKAsKbwAAAAAAyoLCmzXq2bNnKioqUlFRkfvvv7/e7Q444IBUVFTktttua7a5lYuFCxfm0ksvzc4775wOHTpkyy23zBFHHJGnnnqq1FOrk0w0rcceeyxXXHFFjjrqqHTr1q32Z/3222+Xemr1kommM3fu3Nxxxx35+te/nh133DEdOnTIRhttlF122SXnnntuZsyYUeoprkYems68efNy9dVX5+ijj85OO+2ULl26pF27dunWrVuOOeaYPP7446WeYp1konktXLgwvXv3brGvH/LQtGp+tvXdjjvuuFJPcTUy0TzeeeednHPOOenTp086duyYTTbZJLvuumuGDRuWt956q9TTqyUPTaeqqmqN+4iKiopst912pZ7qSmSi6T3++OM5+uij07Vr17Rt2zadO3dO//79M2rUqCxevLjU01uNTDS9Rx99NEOGDMmWW26ZysrK9OzZM8OGDWuRf3/WReHNOqmqqkpRFKWeRlmZP39+9t1331x88cV5/fXX07dv31RWVmbMmDHZd99981//9V+lnuKnkonGd+SRR+aCCy7I/fffn3feeafU01lnMtG4hg0blhNPPDF33nln3n333fTp0yfbbLNNJk2alGuuuSa77bZbnn322VJPs17y0Ljefffd/OAHP8i9996b9957L926dUvfvn0zd+7c/O53v8v++++fSy+9tNTT/FQy0fQuu+yyTJkypdTTWCvy0HQGDhxY561Pnz6lntqnkomm8T//8z/p27dvRo0alenTp2ennXZK9+7dM3Xq1Nx00035v//7v1JPsU7y0Lh69OhR775h4MCB2XjjjZMkAwYMKPFM6ycTje/aa6/N/vvvn3vvvTcLFizI5z73uWy22WZ55plncs4552S//fbL/PnzSz3NeslE47vqqqvypS99KX/4wx/SunXr7L777pkzZ05uuumm7Lbbbnn55ZdLPcU1Uniz1lq3bp2JEyfmd7/7XamnUlbOOeecTJgwIX369Mlrr72W559/PlOnTs1VV12VZcuWZejQoZk2bVqpp1knmWgau+yyS0466aTceOONee6550o9nXUiE03jyCOPzCOPPJIPP/wwL7zwQl577bVMmjQpe++9dz744IMcffTRWbBgQamnuRp5aHybbrppbrjhhrz22mv58MMP89JLL2XixIl5//33c/XVVyepftPfUj8EkYmm9+qrr2bkyJEZMmRIqaeyRvLQtP7yl7/Ueauqqir11OolE01j4sSJOfLII7Nw4cL89Kc/zQcffJDnn38+L730Uj7++OOMHz8+u+66a6mnuRp5aHxDhw6td9/w4IMPZtmyZUmSE088scQzrZtMNL433ngjw4cPT5KMGDEis2bNyoQJE/Lmm29m/Pjx2WKLLfLMM89k5MiRJZ5p3WSi8T3++OM5//zzkyTXXHNNZsyYkWeeeSbvvvtuzjrrrNq/P5cuXVrimX46hTdr7fjjj0+SXHLJJT49ayQzZszIrbfemiT55S9/mW233TZJ0qpVqwwfPjyDBg3KggULcs0115RymvWSiaYxbty4jB49Oqeddlo+//nPl3o660QmGt/111+f++67L1/+8pfTpk2b2uXbb7997rnnnrRr1y7Tpk3Ln/70pxLOsm7y0Pi22GKLnH766endu/dKy9u1a5dzzz03hxxySIqi+NSvdpaSTDStoihy6qmnpnXr1rn++utLPZ01kgdWJRNN49RTT83ChQvz85//PMOGDUu7du1q17Vq1SoDBgxIz549SzfBeshD87rnnnuyYMGCbLXVVhk0aFCpp1MnmWh8Dz30UJYuXZo999wzF154Ydq2bVu7bsCAAbnwwguTJA8++GCppvipZKLxXXfddSmKIoMHD84555yTioqKJNV/b1xzzTXZZZddMmnSpNx1110lnumnU3iz1oYOHZqePXvmpZdeym9/+9t1vv/f/va32jEqKyuz+eab59BDD83//u//1rl9zfmY6lNzzqY333yz3uWPPvpoDj744GyxxRapqKjIY489Vrvd1KlTc9ppp2W77bZLZWVltthiixx88MH17shrzndWVVWV2bNn56yzzkqPHj1SWVmZHXbYISNGjFjnT7jGjBmTpUuXpm/fvnV+bezkk09OUv3moyWSicbPxIZOJho/E5tttlm967p371771fTXXnttncZtDvLQ/PuImjx88sknjTpuY5GJps3ErbfemieeeCIXXnhhiyyvViUP3kesSiYaPxNPPfVUnn766fTu3Tvf/OY31+m+pSYPzbuPuP3225NUF4grHmTRkshE42ei5luivXr1qnP99ttvnyQt9vVIJho/E+PGjUuSHHPMMauta926dY488sgkWa+fd7MqYA223XbbIknxxBNPFDfffHORpOjbt2+xbNmylbb78pe/XCQpRo8evdoYv/nNb4p27doVSYpOnToV/fr1K7beeusiSVFRUVH85Cc/We0+SYpPi2jNvN544406l19++eVFq1atii5duhR77bVXsc022xSPPvpoURRF8dRTTxWbbrppkaTo2LFj8fnPf77YZpttah/zoosuWu3xLr744iJJcdZZZxV9+/Yt2rRpU/Tr16/o2bNn7f1OOeWUNf9AV3DSSSd96v2mTZtWO/bUqVPXaeymJBPVmiITdakZa9q0aQ0eq6nIRLXmysSKdtxxxyJJcf311zfquA0hD9WaOw/Lly8v9tlnnyJJ8Z//+Z+NNm5jkIlqTZmJWbNmFZtttlmx0047FYsWLVrp+be01w95qNZUeai573e/+91i0KBBxUEHHVScdtppxR//+Mdi+fLl6zxec5CJak2RiQsuuKB2zI8++qi48sori8MOO6wYNGhQMWzYsOKJJ55Yp/GagzxUa873EdOmTStatWpVJCkmTJjQKGM2Jpmo1hSZGDt2bJGk2G677WrfP6zovPPOK5IUp5566jqN29RkolpTZKJNmzZFkuLBBx+sc/2NN95YJCm22GKLdRq3uSm8WaMVdyRLliwpevXqVSQp7rzzzpW2q29HMnHixKKysrJo37598Ytf/GKlHdCYMWOKzp07F61bty5efPHFle7X0B1J69ati0suuaRYsmRJURTVRcDChQuL+fPnFz169CiSFF/96leLOXPm1N73tttuK1q3bl0kKR544IGVxq3ZkbRt27b4whe+UEyfPn2l51Fzv1dffbX+H+YqBg4cWLvTq8vy5ctrd8Bjx45d63GbmkxUa4pM1KWlFhYrkolqzZWJGi+++GLtz+C5555rlDEbgzxUa648zJ8/v5g4cWLx9a9/vUhSDBgwoPY5tBQyUa0pM/G1r32tSFI88sgjqz3/lvb6IQ/VmioPNc+zrtsXvvCFYtasWes0XnOQiWpNkYmDDjqoSFL84Ac/KLp3715nLoYNG9aiPgyRh2rN+b7yyiuvLJIUO++8c4PHagoyUa2pMlHzcxsyZEjxwgsvFJ988knx9ttvFyNHjizatGlTfPazn21RB+AVhUzUaIpMbL755kWS4pZbbqlz/Q9/+MPan8MHH3yw1uM2N4U3a7TijqQoimL06NFFkmKnnXYqli5dWrtdfTuSr3zlK0VS/9GHN9xwQ5GkGDp06ErLG7ojOfzww+u8X82nf1tttVWxYMGC1dYPGzasSFLst99+Ky2v2ZF06NChzj8ca57nqFGj6p3zqnbeeeciSXHTTTfVu81nPvOZIklxzz33rPW4TU0mqjVFJurSUguLFclEtebKRFEUxdKlS4v99tuvSFJ86UtfavB4jUkeqjV1HnbfffeVCouNN964qKqqKj755JP1Gq8pyUS1psrEI488UiQpjjvuuJWWt9TXD3mo1lR5GDx4cPHb3/62eP3114uFCxcWb7/9dnHDDTcUnTt3LpIU/fv3b9EfihWFTDRmJj73uc/VliGdOnUqbr/99mLu3LnF+++/X1x11VW1R/W21G+KFYU8NMf7yl133bVIUlxxxRUNHqspyES1psrEggULinPPPbfYbLPNVnpvmaT41re+1eLeRxSFTNRoikwMHjy4SFIccsghq61btmxZ7f4iSTFlypS1Hre5OYc36+zEE09M7969M2nSpNx5552fuu3ixYvzwAMPpHXr1jnppJPq3GbIkCFJqq8E25i+8Y1v1Ln8oYceSpJ8+9vfTvv27Vdbf+aZZyZJxo8fn/nz56+2fvDgwdlmm21WW77XXnslSf7+97+v9RwXLlyYJCtdOGZVlZWVSf7fubVaIplovEyUC5lo+kxccMEFeeKJJ9KpU6f84he/aPB4TUkemiYPe+yxRwYOHJjddtstHTt2zLx583L33Xdn/Pjx6zVec5KJxn0v8a//+q/p1KlTRo0atdb3a0nkoXH3EQ8++GCOPfbY9OrVK5WVlenWrVtOP/30PPLII2nbtm2efvrpFn+hKZlovEzUjL9kyZJcd911+frXv56NN944m2++eYYPH147l8svv7zFnqNXHpr2feWLL76Yl156Ka1atcrXvva1Bo3VXGSicTPx4Ycf5u233878+fOz8cYbp1+/funatWuS6uuO3X333es0XinIRONlYtiwYUmSBx54ID/+8Y9rLwa6ePHinH766XnppZdqt23JPVXLvBIBLVrr1q1z0UUX5Rvf+EZGjBiRE044od6LWrz22mtZuHBh2rVrl0MOOaTObWp+eaZPn96o8+zbt2+9c0qSnXfeuc71vXv3Trt27bJ48eK8/vrr+dznPrfS+pqLNqzqM5/5TJJk3rx5az3Hmh3Z4sWL691m0aJFSZIOHTqs9bjNTSYaLxPlQiaaNhM/+9nPcvXVV6dNmza566676n28lkIemiYPo0ePrv3vJUuW5Oabb84555yTwYMH59FHH82+++67XuM2B5lovExcdtllmTJlSq699tp89rOfXev7tSTy0DzvI/baa68cc8wxueuuu3LvvffmxBNPbJRxm4JMNP7fG126dKmzaPne976Xa6+9NjNnzswLL7xQW460JPLQtPuImotV7r///unevXuDxmouMtF4mXjvvffSv3//vP3227n44ovzwx/+MG3btk2SPPbYYznuuONy9tlnZ9myZfn+97+/1uM2N5lovEwcfvjhta8NF154YUaOHJmePXtmypQpmT9/fk488cTa/cbGG2+81uM2N4U36+WEE07Ij3/840yaNCm33357vvWtb9W53ezZs5NUF7o1V3qtT83Rzo2lY8eOdS6v+UWv+cVfVUVFRbbccstMnz49c+fOXetxW7Wq/sJEzY5xbXTp0iVJ8tFHH9W5viiKfPzxxytt21LJxOrWJxPlRCZW1xiZ+M1vfpN/+7d/S0VFRW677bYceuih6z1Wc5KH1TXmPqJt27YZNmxYFixYkO9///upqqrKI4880uBxm5JMrG5dMzF58uSMHDkyu+++e7773e+u1X1aKnlYXVO8jxgwYEDuuuuuTJkypdHGbCoysbqG/L2x/fbb11n+dO/ePRtvvHHmzZuXN998s0UW3ok81KUx9hHLli2r/cZHS/4QrC4ysbr1ycQVV1yRt99+O4MHD05VVdVK6/bff/9ce+21OeGEEzJixIicfvrpdR593FLIxOrWdz8xatSoDBw4MDfeeGMmTJiQSZMmZaeddsqwYcPyxS9+MbfffntatWpV73xbAqc0Yb20bt06P/rRj5IkI0aMqPfrbzWf9nTr1i1F9TnjP/VWl/qW1/U1jrVRM6dZs2bV+3jvvfdekqRTp07r9Rhrq3fv3knq/3rJ9OnTa4/+rtm2pZIJViUTje+BBx7IiSeemOXLl+c//uM/NpivnSby0FxqPgB5/vnnSzqPtSETDffyyy/XHunTrVu3bL311ivdauy5557Zeuutc8011zTZXBpKHppHzVF7LfXUFSuSicax0047Jfl/p0msS83pFZctW9akc2kIeWgaY8eOzYwZM9KhQ4ccffTRzfrYDSUTjeMvf/lLkuTLX/5ynesPOOCAJMmcOXMyefLkJp1LQ8lE4zr66KMzduzYfPzxx1mwYEFefPHFfOc738mECROSJH369MlGG23ULHNZHwpv1ttxxx2XnXfeOW+88UZuu+22Orfp3bt32rZtmxkzZuTDDz9cp/FrPqGq+aVe0ezZs/P++++v85yTZMcdd0ySvPLKK3Wunzx5chYvXpzWrVs3+WkC+vfvnyT1fqpYs7xr164bxNfLZIJVyUTj+fOf/5xjjjkmS5YsyRVXXFF7brUNiTw0vZo39htCmZXIRGOZN29eZs6cudqtxnvvvZeZM2e2+FNsyUPTe/nll5OkzvN8tkQy0XADBgxIkrzxxht1rp89e3btz61bt25NOpeGkofGV3NagiOPPLLkH8itD5louLqOFq5PYx/t3BRkoun97ne/S5IcdthhJZ3Hmii8WW+tWrXKxRdfnKT6/JFLlixZbZuNNtooBx10UJYvX56f/OQn6zR+r169kiTPPvvsautuueWW9ZhxtYMOOihJcvPNN9e5w66Z58CBA+v9WkhjGTJkSNq0aZNXX301Tz755Grrb7311iTZYD5tlwlWJRONY8KECTn88MOzYMGCnH/++TnvvPOa/DGbgjw0vfvvvz9J0q9fv5LOY23JRMMceeSRa3VE0rRp01IUxWpfVW5p5KFpzZw5s/ZCXjVH7LV0MtFwRxxxRCorK/POO+/k4YcfXm19zfUgOnXq1GJPZ1JDHhrX/Pnzc9999yXZ8E5nUkMmGq7mm+Rjx46tc33NfqNVq1bZYYcdmnQujUEmmtYzzzyTe++9N+3atcupp55asnmsDYU3DXLsscdmt912y1tvvVXvUcojRoxIZWVlLrvsslx55ZWrXcV1xowZuf766/Ozn/1speUHH3xwkuTCCy9c6SilP/3pT7n00kvrvQDBmhx//PHp0aNHZs6cmZNOOmmlo53uuOOO/PznP0+SZimUunbtWnteqaFDh+att95KUv11lZEjR+bhhx9O+/btW/TFIVYlE6xKJhpm0qRJGTx4cObMmZNhw4bl8ssvb/LHbEry0DCjRo3KXXfdtdrXJefOnZurrroql156aZJsUOdzlglWJA8Nc/755+fOO+/MJ598stLyiRMnZtCgQfnoo4/ymc98psX/kboimWiYLbbYIqeffnqS5PTTT8/rr79eu278+PG1rxtnnnlmiz43bw15aDz33Xdf5s+fn6222iqDBg1q1sduTDLRMDWnSPzTn/6UqqqqlQrixx57LGeffXaS6tPmtfTritWQiYa78cYbV3p+RVHkwQcfzOGHH57ly5fnoosuqi3/W6wC1mDbbbctkhRPPPFEnevvueeeIkntbfTo0attc++99xYbbbRRkaRo37590a9fv2LvvfcuunfvXnu/H/zgByvdZ9asWcXWW29dJCkqKyuLfv36FT179iySFOedd17tvN54440657vq8hU99dRTxSabbFIkKTp27Fj80z/900pzufDCC1e7z8UXX1wkKS6++OI6xxw9enSRpPjmN79Z7+PWZc6cOcUee+xRJCnatWtX7LHHHkW3bt2KJEXr1q2LO+64Y53Gaw4yUa2pMnH66acXm2++ee2tZg5dunSpXTZkyJB1GrOpyUS1psjEgQceWCQpKioqin322acYOHBgnbdbb711rcdsavJQrSny8M1vfrP29WHHHXcs9t5772L77bcv2rVrV5uTH/3oR2s9XnORiWpN9bpRn5q5TJs2rVHGayzyUK0p8nDEEUcUSYo2bdoUffr0Kfr371/06tWrdh5bbbVV8fTTT6/1eM1FJqo11T5i4cKFxRe/+MXa149+/foVffv2rZ3LwQcfXCxevHidxmxK8lCtqV8zat5jnnXWWet1/+YkE9WaIhPLly8vTjrppNrH7dSpU9GvX7/aTiJJsd1223kv8f/7R8hEURTFJptsUrRq1aro3r17sddee9U+5yTFGWecsU5jlYojvGmwr3zlK2v86vRRRx2VV155JWeeeWZ69uyZSZMm5ZVXXslGG22Uo446Kr/61a9W+6Rqyy23zLhx43Lsscdmo402yqRJk9KlS5eMHj06V1xxRYPm3L9//0ycODGnnnpqtthii/z1r3/NvHnzcuCBB+aPf/xjRowY0aDx10WnTp0ybty4VFVVZbvttssrr7yShQsX5vDDD88TTzyxQV2UroZMNMzcuXPzwQcf1N5qfPTRR7XLaq4svaGQifW3aNGiJElRFBk/fnzGjRtX523q1KnNMp/GIA/r74wzzsh5552XvffeO/PmzcsLL7yQd999N7169copp5ySZ555JpdcckmzzKUxyQQrkof1d9ppp+U73/lOdt1113z44YeZMGFC3n///ey1116pqqrKSy+9lL333rtZ5tKYZKJhKisr89BDD2XUqFHZbbfdMnny5EydOjV77713brzxxowZM6b2gqYbAnlouHfffbf2FBYb6ulMViQT66+ioiKjR4/O3XffnYMPPjjt27fPSy+9lNmzZ2ePPfZIVVVVXnjhhQ3m2g81ZKJhzjvvvAwcODCLFi3Kiy++mKT6Zzp27Nhcf/31zTaPhqgoinouLQoAAAAAABsQR3gDAAAAAFAWFN4AAAAAAJQFhTcAAAAAAGVB4Q0AAAAAQFlQeAMAAAAAUBYU3gAAAAAAlAWFNwAAAAAAZUHhDQAAAABAWVB4AwAAAABQFhTeAAAAAACUBYU3AAAAAABlQeENAAAAAEBZUHgDAAAAAFAWFN4AAAAAAJSF/w/LD8WJBVon+gAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -638,15 +669,22 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "It is interesting to observe that the weights and attribution scores are well aligned for all 10 neurons in the last layer. Meaning that the neurons with negative weights also have negative attribution scores and we can observe the same for the positive weights and attributions. \n", + "It is interesting to observe that the attribution scores for the 10 neurons in the last layer are spread between half of the weights and all have positive attribution scores.\n", "\n", - "We also observe that the neurons five and nine have very small attributions but relatively larger weights. Another interesting thing to observe is that the weights do not fluctuate much whereas attributions do fluctuate more relative to that and spike in Layer 4." + "We also observe that the neurons five and six have very small attributions but relatively larger weights. Another interesting thing to observe is that the weights do not fluctuate much whereas attributions do fluctuate more relative to that and spike in Neuron 0." ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -660,7 +698,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.10.4" + }, + "vscode": { + "interpreter": { + "hash": "4311c7dda575c081001492aac26d536ae97e4c13a1d6ad5cc980ffae203d70d8" + } } }, "nbformat": 4, diff --git a/tutorials/Llama2_LLM_Attribution.ipynb b/tutorials/Llama2_LLM_Attribution.ipynb new file mode 100644 index 0000000000..ed410a0576 --- /dev/null +++ b/tutorials/Llama2_LLM_Attribution.ipynb @@ -0,0 +1,612 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "9bdd6ea2", + "metadata": {}, + "source": [ + "# Understanding Llama2 with Captum LLM Attribution\n", + "\n", + "In this tutorial, we will demonstrate the LLM attribution functionality introduced in Captum v0.7, which makes it a breeze to applying the attribution algorithms to interpret the large langague models (LLM) in text generation. Please note that executing some of the cells in this notebook require Captum v0.8 or a manual install. The new functionalities include a series utilities that help you with many common tedious scaffolding required by LLMs like defining intepretable features in text input and handling the sequential predictions. You can also check our paper for more details https://arxiv.org/abs/2312.05491\n", + "\n", + "Next, we will use Llama2 (7b-chat) as an example and use both perturbation-based and grandient-based algrithms respectively to see how the input prompts lead to the generated content. First, let's import the needed dependencies. Specifically, from Captum, besides the algorithms `FeatureAblation` and `LayerIntegratedGradients` themselves, we will also import:\n", + "- perturbation-based and gradient-based wrappers for LLM, `LLMAttribution` and `LLMGradientAttribution`\n", + "- text-based interpretable input adapters, `TextTokenInput` and `TextTemplateInput`" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "inside-current", + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "\n", + "import bitsandbytes as bnb\n", + "import torch\n", + "from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig\n", + "\n", + "from captum.attr import (\n", + " FeatureAblation, \n", + " ShapleyValues,\n", + " LayerIntegratedGradients, \n", + " LLMAttribution, \n", + " LLMGradientAttribution, \n", + " TextTokenInput, \n", + " TextTemplateInput,\n", + " ProductBaselines,\n", + ")\n", + "\n", + "# Ignore warnings due to transformers library\n", + "warnings.filterwarnings(\"ignore\", \".*past_key_values.*\")\n", + "warnings.filterwarnings(\"ignore\", \".*Skipping this token.*\")" + ] + }, + { + "cell_type": "markdown", + "id": "6f2695ee", + "metadata": {}, + "source": [ + "## Preparation\n", + "\n", + "Let's make a helper function to load models through Huggingface. We will also add an extra step for 4-bits quantization which can effectively reduce the GPU memory consumption. Now, we can use them to load \"Llama-2-7b-chat\"." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "driven-privacy", + "metadata": {}, + "outputs": [], + "source": [ + "def load_model(model_name, bnb_config):\n", + " n_gpus = torch.cuda.device_count()\n", + " max_memory = \"10000MB\"\n", + "\n", + " model = AutoModelForCausalLM.from_pretrained(\n", + " model_name,\n", + " quantization_config=bnb_config,\n", + " device_map=\"auto\", # dispatch efficiently the model on the available ressources\n", + " max_memory = {i: max_memory for i in range(n_gpus)},\n", + " )\n", + " tokenizer = AutoTokenizer.from_pretrained(model_name, token=True)\n", + "\n", + " # Needed for LLaMA tokenizer\n", + " tokenizer.pad_token = tokenizer.eos_token\n", + "\n", + " return model, tokenizer\n", + "\n", + "def create_bnb_config():\n", + " bnb_config = BitsAndBytesConfig(\n", + " load_in_4bit=True,\n", + " bnb_4bit_use_double_quant=True,\n", + " bnb_4bit_quant_type=\"nf4\",\n", + " bnb_4bit_compute_dtype=torch.bfloat16,\n", + " )\n", + "\n", + " return bnb_config" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "exclusive-ministry", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ef21b44fb6dd43c38da954a23fa3d867", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Loading checkpoint shards: 0%| | 0/3 [00:00\n", + "inp = TextTokenInput(\n", + " eval_prompt, \n", + " tokenizer,\n", + " skip_tokens=skip_tokens,\n", + ")\n", + "\n", + "target = \"playing guitar, hiking, and spending time with his family.\"\n", + "\n", + "attr_res = llm_attr.attribute(inp, target=target, skip_tokens=skip_tokens)" + ] + }, + { + "cell_type": "markdown", + "id": "53921fcb", + "metadata": {}, + "source": [ + "With just a few lines of codes, we now get the `FeatureAblation` attribution result of our LLM. The return contains the attribution tensors to both the entire generated target seqeuence and each generated token, which tell us how each input token impact the output and each token within it." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "dc68909e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "attr to the output sequence: torch.Size([18])\n", + "attr to the output tokens: torch.Size([15, 18])\n" + ] + } + ], + "source": [ + "print(\"attr to the output sequence:\", attr_res.seq_attr.shape) # shape(n_input_token)\n", + "print(\"attr to the output tokens:\", attr_res.token_attr.shape) # shape(n_output_token, n_input_token)" + ] + }, + { + "cell_type": "markdown", + "id": "eacfb8f1", + "metadata": {}, + "source": [ + "It also provides the utilities to visualize the results. Next we will plot the token attribution to view the relations between input and output tokens. As we will see, the result is generally very positive. This is expected, since the target, \"playing guitar, hiking, and spending time with his family\", is what the model feel confident to generate by itself given the input tokens. So change in the input is more likely divert the model from this target." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "0aebdd52", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABp8AAAIcCAYAAAAAFbb8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVgUXRsH4N+CoIiEgIgooICIIEhJiGK36KdiK+prN3Yrit1id2B3oGAXFhjYLRZpozS7z/cHMrCEgoAgPPd17fW+zJ6dOXM8M3PmpIiICIwxxhhjjDHGGGOMMcYYY4zlApn8jgBjjDHGGGOMMcYYY4wxxhgrPLjxiTHGGGOMMcYYY4wxxhhjjOUabnxijDHGGGOMMcYYY4wxxhhjuYYbnxhjjDHGGGOMMcYYY4wxxliu4cYnxhhjjDHGGGOMMcYYY4wxlmu48YkxxhhjjDHGGGOMMcYYY4zlGm58YowxxhhjjDHGGGOMMcYYY7mGG58YY4wxxhhjjDHGGGOMMcZYruHGJ8YYY4wxxhhjjDHGGGOMMZZruPGJMcYYY4wxxhhjjDHGGGOM5RpufGKMMcYYY4wxxhhjjDHGGGO5hhufGGOMMcYYY4wxxhhjjDHGWK7hxifGGGOMMcYYY4wxxhhjjDGWa7jxiTHGGGOMMcYYY4wxxhhjjOUabnxijDHGGGOMMcYYY4wxxhhjuYYbnxhjjDHGGGOMMcYYY+wnsVic31FgjLF/Hjc+McYYY4wxxhhjjDHG2E+TJk1Cp06dIJFI8jsqjDH2zxIREeV3JBhjjDHGGGOMMcYYY7mHiCASifI7Gv+ksLAwPHz4EA0aNMjvqDDG2D+LRz4xxhhjjDHGGGOMMVZIXLlyBQAgEolARDx6J5uuXLkCLS0tbnhijLEc4sYnxhhjjDHGGGOMMcYKgVOnTqF27dq4fv063r59C5FIBBkZGW6AyiJvb2/Url0bt2/fltrO6ccYY9nHjU+MMcYYY4wxxhhjjBVAiYmJWQ6bkJCAOXPmAABWrVoFJycndOjQAd+/f4eMTNGsAsxO+iUmJmLKlCno0qULrKysAADXrl3Dt2/fhPTLzv7Y74nF4vyOAmMsDxXNJw9jjDHGGGOMMcYYYwXUly9fAADFihUDkLVK+jVr1uDq1auYP38+Jk6ciBMnTuDBgwdYsGBBnsa1IPqT9Fu1ahVevHiBKVOmAABev36Ntm3bYsyYMXj79q3U/tIiotyIdpEzadIkdOrUiUeWMVZIceMTY4wxxhhjjDHG/hhXGjKW+3r06AENDQ2cPHkSACArKwuxWJzp9fbhwwdMnz4do0ePxvDhw2FsbAwTExO4uLhg7969iIuLS/cbiURSaK/fP02/UaNGoUqVKhCLxdi+fTvCw8Px/PlzuLm5QUdHB76+vgBS7nvJjU4ikegvnFXh4+bmhr59+xbZkXmMFXZ8ZTPGGGOMMcYYY+yPDR8+HEOHDuWe/4zlksTERJQvXx6fP39Gs2bN0KJFCzx//hyysrKQkZHJcOq3+fPnQyQSoWfPnihWrJhwPUZGRkJTUxPFixcHkNRoEh8fj4iICMjIyEBGRqbQTX32J+k3ffp0qKqqYujQoQAgjBgbP348PD09sX//frRv3x6TJk1CZGSk0Fhy9epVjBkzBuHh4X/1HAuDK1euQEtLCw0aNMjvqDDG8gg3PjHGGGOMMcYYY+yPPH36FOvWrUPlypW55z9juaRYsWJYvXo1nj59itq1a8PHxwdVqlTByJEjERsbK0z9lpCQAAC4e/cuVq1aBQUFBZQqVQoikQgikQiPHj3CgwcPYGFhAQB4+PAhOnbsiMaNG6N27dro2bMnYmJiICsrm1+nmieymn7JjVABAQFYtWoVPDw8oK6ujpiYGMybNw/ly5fH7NmzYWZmBhkZGdSpUwchISF4/vw5vn79ip07d2L//v3Ys2cPoqKi8vOU/zne3t6oXbs2bt++LbW9sI7EY6yo4sYnxhhjjDHGGGOM/ZGxY8fC2toaffv2ze+oMFboVK5cGRcuXICPjw/KlSuHpUuXQltbG+vXrwcAyMnJAQBGjhwJMzMz1KlTBxEREcLvPT09ERsbi86dO+PJkycYPHgwJBIJFi9ejFWrViEkJARNmzZFSEiI1HELSwPA79IvuRHqypUrsLW1hYuLCwDg8uXL2LNnD5YsWQIgJT3evn2LqKgomJubQ1VVFdu2bcOyZctgZmYGfX39fDjDgiOj0WS/CjtlyhR06dIFVlZWAIBr167h27dvwoiy7OyPMVZwceMTY4wxVkDx1DWMMcYYK8h8fX3h7e2NmTNnQkFBQdgukUi4HMNYLhGJRGjSpAmCgoKwcOFCREZGon///qhevTr8/f1x/vx5+Pn5YcmSJahUqRKaN2+OAQMGwM7ODocPH0a3bt3g4OCA2bNn48GDB7h16xaICA0aNMD+/fvx9etXPHr0SOqYMjIyheYaziz9LC0tcfHiRQBJ6w6dP38e8vLy+PjxI0aNGgVnZ2c0adIEQFJ6BAcHY86cORg6dCjk5OTw5s0b6OjowNjYGI8fP4a6ujoCAwOljl1Y0vBXvnz5AiClIS8rUziuWrUKL168wJQpUwAAr1+/Rtu2bTFmzBi8fftWan+MsX8bNz4xxhhjBRRPXcMYY4yxvym7PdfHjh2LTp06oU6dOgCA6OhoxMTEQEZGBiKRiHuuM5aL5OXlMXLkSISFhcHV1RX379+Hvb09GjRogK5du8LBwQEzZszAnDlz8Pr1azg6OsLb2xsDBgzAixcv8PDhQwwcOBB9+vRB48aN0bhxY4jFYqipqeHatWsAgPfv32Pq1KmIjIwU3kUKy3pQadPv7t27aNy4MV68eAEAQgP69+/fER0djfnz50v9ftGiRRCJRJgwYQKApMZ3Pz8/zJw5E69evcLMmTPx6dMnqd8Uhftgjx49oKGhgZMnTwIAZGVlIRaLMx099+HDB0yfPh2jRo1ClSpVIBaLsX37doSHh+P58+dwc3ODjo4OfH19/+ZpMMbyiIiKQjN8PkhMTESxYsUQGxuLEiVK5Hd0GGOM/UOOHDkCb29vREVFIS4uDi4uLujcuXN+R4sxxhhjhdSXL19QunRp4W+xWPzbNWA8PT0xefJkBAQEoEqVKgCA+fPn48iRI2jRogUmTpyYp3FmrKi7d+8eLl26BGVlZdSqVQsVK1YUpixLKzQ0FEZGRjhz5gzs7Ozw8uVLuLu7Y/fu3RCLxfD394eNjQ2mT5+OFStWYNCgQTAxMUH79u0z3ee/7v79+7hw4QKGDh2aaRgigkgkQmBgIGrXrg1PT0/06tULgYGBmDRpEuTl5XHo0CGp3zx9+hTBwcF49+4dXF1dC3WHwsTERAwdOhRr164FADRr1gxLly5F5cqVhe/TjmAaMmQIfHx84O/vD3V1ddy9exdOTk4YPHgwOnfuDFNTU4wePRqXLl3CuXPnoKys/NfPizGWewrnEySfSSQSFCtWDHFxcahQoQJGjRqV31EqNArLvMOMMZZa8r0tPDwc7u7uaNOmDe7evYsSJUoIz5GaNWvi8ePH+RxTxhhjjBVGOe25DgAJCQkwMTHBoEGDsHPnTpibm+PJkyd/7RwYK2rMzc0xZMgQuLq6Cg1PRJThSKWSJUvC1NRUmGbOwMAAXl5eOHv2LBYtWgQrKyvcvXsXu3fvhkQiwdu3b7Fp0ybo6uoiKChI2E9m+/8XmZmZCQ1Pqe91qc9PJBJBIpFg1KhRqFChAnr16oWEhAScOnUKr1+/xpgxY4SwUVFR8PLyQr169TBp0iQsX74cmpqa2L59+987qb+sWLFiWL16NZ4+fYratWvDx8cHVapUwciRIxEbGys0PCWP/goICMCqVavg4eEBdXV1xMTEYN68eShfvjxmz54NMzMzyMjIoE6dOggODs70GVLYR5MxVphw41MeSB5MNnToUIjFYvj6+kJVVRVbt27N55j9+4YPH46hQ4cWiXlzGWOFQ1YKxsm9Cb28vDB37lyMGzcOV69exaZNm7B06VI8evQI9vb2mDx5MkJDQ/M6yowxxhgrQhITE1G+fHl8/vwZzZo1Q4sWLfD8+XPIyspCRkYmw7LM9OnToaKigmHDhgFIqqwNCwuDg4MDunbtigcPHkBXVxe7du1K91vuUMhY7kt+nxCJRBmOWlRRUYGLiwtWr14NLy8vxMXF4cuXL3BycsKIESMgIyODJUuWQFFREV5eXti8eTNOnjyJVatWQV1dHWfPnkVgYKCw/8LSAJUs9eiutOknIyODOXPmYM+ePQCSRooeOnQIdnZ2qFmzphDu8OHDcHd3h7OzM65du4abN2/C3d0dixcvFtYxSlbY1sWrXLkyLly4AB8fH5QrVw5Lly6FtrY21q9fDyBl/aYrV67A1tYWLi4uAIDLly9jz549WLJkCYCU58Pbt28RFRUFS0tLAEn1rOHh4Xj48KGwPyKCRCLhZwpjBRw3PuWy5OkJHj9+jA0bNmDlypV4+PAhli5dCg8PD/Ts2TPdHLAsa54+fYp169bB0NAQIpGo0BV2GGOFS3YXXr137x527NgBExMTzJkzR2p6AlVVVQwYMAAyMjLw9/fPu0gzxhhjrMjJSc/10qVL4/r162jfvj2aNm2K2rVrY9CgQQCAihUr4vHjx0hISAAAXL9+HbGxsYV2Ci/GCrrRo0dj7NixGD16NJo3b45+/frh5cuXAIBDhw7h3r176NixI5o3by78Rk1NDf/73/8wdOhQNGrUCM7OzoiIiPjttJyFCRHB1tYW5ubmAABFRUV8/foVjo6OQpgPHz7gyJEjSEhIwJ49e9ChQwe8efMGgwcPhlgsxoEDBwAkvROmXhevMDWciEQiNGnSBEFBQVi4cCEiIyPRv39/WFpaCiPu3NzccP78ecjLy+Pjx48YNWoUnJ2d0aRJEwBJDX3BwcGYM2cOBg0aBDk5Ofj7+2Po0KEwNzdHly5dYGxsDB8fH4hEIsjIyEBGRgYhISFo3ry51Cg9xljBwKW+LMrqkM7kB3Dfvn1Rr1491KtXDwDQs2dP7NixA0FBQThx4kSexbMwGzt2LKytrdG3b18AwO3bt1G6dGm8efMmn2PGGGPpZXf6mrdv3+Lu3bvw8PAAkPLcSZ4j3MjICDNnzhTmz05WmHrMMcYYYyz/ZKfnup2dHdq3b4+YmBhs2bIFYWFhmDp1KhYuXIgXL15AVVUV/v7+UFNTE37XsmVLzJs3T+qYyT3XGWN5K/k6GzhwIEJDQ9GxY0e0bNkSBgYGiImJwaZNm2BoaIg2bdoASOk49+TJE4SGhuLcuXO4desW5OXl0apVK2EESrLC/E6Ses0mIoKioiL69OmDvn37ws3NTVgXytfXF2vXrsXLly+RmJiI6tWrY8KECYiJiYGuri4AwNfXF61bt4aPjw8AFMrGeHl5eYwcORJhYWFwdXXF3bt30bhxY7x48QIAoKCgAAD4/v07oqOjMX/+fKnfL1q0CAAwbdo0AEnv1Q8ePMCECROwdetW9OzZE3369MHChQuFfD1jxgwEBQUhJCTkb50mYyyLCt9dLpdlp+d6ckXhoUOHcP36dYwdOxblypUDkPSAsrOzg5GREaZOnYrPnz/nccwLF19fX3h7e2PmzJkoWbIkAKBGjRrw8vKCnp5ePseOMcak/cn0Nc+fP4eioiLq1q0LsVicbmFWiUSCKlWqwMTERPgbSHoZ4jmvGWOMMZYbstpz/dy5c5CXl4eCggLevHmDSpUqCSMmTp06hf/973949+4dWrduDZFIBD8/P5QuXRrNmjUTjnX//n2h5zpjLG8lX2eJiYmQkZFBv3790KNHDwDA4sWL8fTpUzg7O8PQ0BBASsdqiUSC169f4+3bt9DV1cWmTZvQpk0baGlpSe0/eRRPYW9MTm6IGjVqFJ48eQI9PT18/PgRnz9/hpycHOTk5KCuro6DBw9iz549OHPmDBITE6GpqYno6GicO3cO169fx759+9CvXz+sWLECQMq7XWFqxNPQ0MCWLVtw9+5dLFy4UMhbySpVqoSXL1/CyMhIOO/AwECsX78eM2fOhIKCAmbPno0fP37Aw8MDbm5usLCwwPjx4zFu3Djo6elBRkYG165dg7e3NwYPHowaNWoAKFzpyNi/TkR8Rf5Sq1atcPXqVezYsUMYBioWi9MVkpN7OgCAjo4OmjZtisWLF0NJSUnq+x07dmDAgAG4ceOGUIGY9vdFQWJiYrqK1V+FtbKyQrVq1bBz504AwNWrV2FiYgJVVdVs748xxv6W58+fo0+fPrh8+TKApMqa2bNno0SJEgCk7127d+9Gv379cPPmTRgZGaXbV/JzIjo6Grt378bTp08hFosxY8YMoVGeMcaKsuTprxljuefjx48YPXo0tm3bBjk5OTx8+DBdBeLYsWNx+PBhrF27Ftra2jh37hxWrlwJMzMzYc2nlStX4siRI9iwYQNKlSqF9evXY8KECVi9ejX69+8v7IuvY1YQSSSSQtVImrb+6c6dOzh+/DgGDBgADQ0NAEBCQgLk5OQAAOPGjcPDhw8xfvx41KpVC1+/foWqqioiIyPx4sUL3Lx5Ew4ODjAzM8tw/4VN8ojNtPeqrl27QklJCWvWrBG2icVi3LlzB9bW1jhx4gRcXV1hZ2eHFi1aICEhAQsWLMDTp09RqlQpqd8kT8tX2KS+ltLe7yUSCRo1aoSQkBA8fvwYsbGxaNCgAWxtbTFjxgwoKSkJeSs2NlZ4p27YsCEUFBSwYMECGBsbAyj8eZCxf0nheXrmgez0XE8eETVz5kzExMRg4MCBQsMTkNKL4dWrV5CTk0s3WqeorGGU3TVQAGDVqlUICgoShty+e/cOjRs3xqRJk4Qw3PDECqLC3uuL/V5Wpq9J7gNSq1Yt6Onp4eDBg+lGMiUkJEAkEuHZs2fo0aMHhgwZguDgYFy/fh06OjrC1H6MMVaUJN8/k9dTlZWVLRK9rhn7m37Xcx0A5s+fj1atWmHQoEGYMmWKMM1U6ve1e/fuQUVFBbq6uliwYAHu3LkDAMI7c0xMDADp0RaM5afk8njy+jyFSdpKeUtLS0yePFloeAKAffv24caNGwCA/v37Q1FREVOnTkVsbKzQ8OTi4oKWLVti9erVsLe3R69evRAbG1voK/1FIhFkZWWFckjyf3v06IFjx46hQYMGOH/+PC5evIjExETY2NjgzZs32LFjB/T19XHixAkMHjwYbm5uCA4ORlxcHC5cuICNGzciMjISsrKyEIlEhXL0TuprKW3jnYyMDObMmYM9e/YAAOTk5CAvLw8g5VmRPMKuePHiAAAvLy88f/5cWAsqISEBgYGBhT4PMvYvKVxP0FyW1YVXExISUKxYMXz9+hXTp0/H1KlTpXp8JPeISEhIwNKlS9G8eXOh0eX8+fNYtmwZYmJihBtvYXzAJMvuGigfPnzA9OnTMWrUKFSpUgVisRgbNmyAgoIC5s6dCwBo3Lgx7t+//9fOgbFfSX5JSb2YclFoWGaZ+930NckvFhUqVECPHj2wevVqrFmzBmKxGNHR0QAg9Dp0d3fHp0+fcPDgQWzfvh1+fn7o1q0b1q9fn+7ZQUSF+nnCGGMikQgfPnzA2LFj0a5dO/j7+wsLTzPGcpeZmRmGDh0KQLphKPn/Fy5ciBs3bmDQoEHQ09NDq1atUK1aNSHc3r170bdvX0yaNAnBwcHQ1dWFgYEBOnbsCCCpw2HDhg2F9Xz5Omb5SSKRoFixYoiJiYGmpqYw5WRhlfadITIyEg8ePMCCBQsQEhICfX19eHp6wt/fH9evX0dMTAzGjBmDO3fu4MiRIzh37hxu3rwpTCeXVmF9H05u4Ej+b+PGjfH8+XPo6+tj6NCh2L17N96/fw8A8PHxwZ07dzB+/Hjh9/Hx8fDx8YGlpSXGjBmDjRs3okKFCli8eLHUfosKIoKtrS3Mzc0BJNUXGhoa4v3791KdM5NHhSUmJmLBggVo3Lgx6tSpAwCYNGkS7OzshI5JybhDA2P5h0t0WfC7nuvJlYK+vr4Qi8W4f/++8PBOnp5PIpFg+PDhEIvFaN++PZSVlfHt2zf4+/vj8OHD0NHRwbJly4TfFEZ/sgbK9OnToaqqKrzoPHjwAEuWLMHkyZOhpKSEwMBAPHnyBOHh4el+yw8X9rclv6TExsaiQoUKGDVqFAAUiYZl9nuZLbwaFBQk3PdHjx6NOXPmYPbs2WjYsCFGjhwJd3d3iMVinDt3DoGBgejSpQsaNWok7FdXVxePHj3Cx48fhW1xcXEQiUS8HhRj7J+T3XvWjx8/0KRJE+jp6aFBgwYYO3YsEhIS8ih2jDFAumFIRkZG6HCprKyMunXrYufOncKsFQBw+PBhKCgoCNPxubu7Q05ODu3atYOsrCw2btyIHTt2wMLCAnp6eujRowdev36dD2fGWJLk97YRI0ZATU0NZcuW/WW4f13aOihlZWUMGDAAkZGRsLS0xOjRo9GrVy8ASfVjt2/fxtatW7FlyxbUqFEDysrKqFq1KmxsbLB9+3YhXZI70hWV92GxWIySJUti/fr1OHXqFEaOHAkDAwPcvn0b3t7eMDc3R7t27YTwp06dwuTJk1GlShUEBATg6tWr2LRpEzZv3oxbt26l239hT7+M6kK7du0KPz8/9O7dG/fu3cO9e/eEuj4PDw+hjlVbWxtv377FunXrMHfuXKirq0ulF3doYCz/8NWXRVlZeLVTp04ICAjAjRs3oKurC09PT5w+fRoHDx7Ef//9hzVr1mDcuHGoX78+AEBFRQXjxo3D+fPn4enpidWrV+PIkSNSxy1MPdezOpIsudIhICAAq1atgoeHB9TV1RETE4N58+ahQoUKGD58OICkCtYSJUpAQUFB6lhExA8X9tclX6vJDc2+vr5QVVXFtm3bABTehmWWPWmnr6lUqRKAlAbzLl26ICQkBK6urrCysoKVlRVkZWXx9etXyMvLw8nJSXiBE4vFKF68OBITE4X8d/36dUycOBHTpk0TGkQZY6yg+5OpmX/8+AFlZWV06NABixcvxokTJ3D8+HHcvXs3XVjulMRY3knucJn87mpqaiqszSsWi3Hz5k2EhYXh2rVr2LhxI/T19REfH48SJUrgzJkzGDRoEDp16oTJkycjLCwMV65cwdWrV9Mdp7COnmAFS/I6NI8fP8a6deswZcoUGBgYAEipq0j+b2F9vyMi6Orq4tSpU1i5ciWCgoJgYmKCw4cPo3z58ti3bx+MjIzQokULYU10APj27RuUlJQgEonw7ds3zJ8/H507dxY6hRT25SZST/+rra2NypUrQyKR4OrVq7h27RpGjx4NICl9o6Ki4OPjg/DwcNy6dQtNmzbFnTt34OLiggoVKsDLyyvd/otix8K6deviypUrCAsLg4uLCwICAiAjI4PXr19jy5YtcHFxgb29PYCktcl0dXXRu3dvACnXZ/PmzYUpJBlj+YDYH/nw4QP16NGDRCIRycvL0/Pnz6W+9/LyIjs7O6pduzYpKyuTlZUVzZ07l4iIvnz5Qtu3b6dhw4bR6NGjhd+2bduWOnToIOzjx48ff++E/jKJREK+vr6kra1NIpGISpcuTevWrZMKs2TJErKzs6O4uDgiIjp58iTJyMjQyZMnhTCrV68mbW1tqd+dOnWKatWqRadOnUp3TJZziYmJ+R2FAik5XR4/fkwikYh27NhBREn3gnLlytHChQs5D7JMicVi4f8TEhIyDLNz504qUaIEffr0Sdj26tUrql69OvXs2ZOIkvKhn58fbdiwgRwcHKhcuXJ06NChPI07Y4zlBmdnZ1JXVydfX19hW2JiotT9MfX2U6dOUbVq1cjR0ZFsbW3J29uboqKiyNLSkrZt2yaE/fjxo9RvM9ofYyxvrVu3jgwNDcnb25uIiGJjY8nS0pI6d+5Mzs7O1KNHDyFsSEgIKSsrU0BAABHxOxzLPZmVsTPTpEkTcnR0FP5OrpcgIpo5cybNnj2bYmJiiKhw5tPM3vslEgl1796dnJ2dSSwWU3x8PBERXb9+napWrUrLly8nIqJr166RtbU1VahQgTZu3EgDBw6k2NjYvxb/gubChQtElJJXEhMTSVdXlzw9PSkxMZF69epFSkpK5ObmRhYWFrRw4UIiIrp06RKtX7+eZs2aJZV+acszhbV8kzofPnr0SMhvbdu2pXr16tGNGzeIiOjq1askKytLx44dI6KUdN6wYQOJRCK6du1aun0n74uIKCoqKs/OgbGijhufcujevXvk6ekp/J22QPP48WMKDQ2lL1++CNvGjBlDJiYm1LJlS2rfvj2pqanRqFGjqF27djRu3DhKTEykyMhIat68Oe3cufNvnUq+iIuLo0WLFpGsrCyJRCKysLAQHspERNHR0USU1NhXrVo1at26tdTv//vvP+revbvwYNmzZw+Zm5tTgwYNKDw8PN3xEhMTC2XB8G8aN24cdezYsdAWbtLK7kuKo6MjNWjQgN6+fStsc3NzIysrK/r8+XNuR48VIS9fviQrKytavHgxJSQkkJ+fH/Xv359Kly4tPGMkEolw3yQimjZtGjk4OFBkZGQ+xZoxxn4vISGBBgwYQCKRiEQiETVv3pyePXsm9X1qT58+pdq1a1Pjxo3pzJkzNGvWLNLU1CRra2uqWrWq0PgUHh5Offv2pWHDhkndG7kjTe7htGRZFRUVJVzLO3fuJJFIRE5OTjRixAipcsqGDRuoatWqUh0xHzx4QE5OTnTz5k2pffJ7HcuKtO9gv7pvJefRw4cPk0gkIiUlJZo+fbpUmBs3blDDhg2pdevWwjvxyJEjae3atbkc84Iho/f+HTt2kKmpKYWFhQnb6tevTy1atKAHDx5QXFwc9e3bl0qVKkUjR46kQ4cOUb169cjMzIxev379N6Of7zKrNwkPD6cKFSrQpk2bhG3Xr1+nevXqkZaWFh09epQiIiKoZMmS1KBBA6pRowaVLl2aVqxYIYSXSCT08uXLPD+H/Jb2mn3//j0ZGxvTggULhEbhRo0aUbNmzaTKjDExMaShoUHjxo0TGpq+fv1Kz549o+/fvwvhPn36RE5OTkKDH2Msd3HjUy5K/VDJrEATERFB9erVoz59+lBCQgLFxcXRzZs3ycDAgLS1tYWGrPj4eCpevDgdPXo03b4lEkmhK2j/biTZq1evSF9fn54+fUpESYVCiURC7dq1oxEjRpBEIqFVq1ZRqVKlaPLkyRQREUFERA8fPiRfX19auHAhBQUFCfsrbOn3N4WGhtKZM2fyOxp57k9eUnx9fUkkEtG5c+eIKOW6HT16NJUrV07Il6m/Y9nj6+sr3AeKom3btpGKigpZWFhQ6dKlqW7durR//34iItq1axc1bNiQ6tSpQ3369KHw8HAKDw+nSpUqCXkyrew2rjLGWF569uwZOTk5CY1QI0aMEHqVE6X0UH38+DEpKCiQn5+f8N2dO3fI0NCQLCwshG379++nqlWrkrGxMc2aNYt69+4t1QjFcq6odUpi2SeRSNK9y06bNo1EIhG5u7vTu3fviCilrL1mzRqqX78+ffjwgYiI1q5dS7Vq1SIrK6t0IxmTf8fvduxXsjqyNnU+Kl++PPXt25f27t1L5ubmVLFiRWE2gcmTJ1OtWrWkOs1evXqVFi9eXGQa5ENDQ6lBgwakpaVFHTt2JENDQ9LV1aXTp08TEdHx48dJRUVFqmHl3r17VKFCBal0SyYWi4vkdTxq1Chq06ZNuhFht27dou/fv9P+/fvJxMSEgoODiYho8+bNZGVlRZcvXyaxWEwfP34kR0dH6tOnT35EP1/Fx8cLz4TQ0FAyMDAgDw8PqTAjR46k8uXLU3BwMInFYvLz86Nq1aqRsbExlSpViubNm0dEKR0i/P39//p5MFYUcONTPmjfvj25uLgIf3/9+lVopQ8JCSEioiNHjpC1tTXduXNH6rehoaF/M6p/XdqRZBlJXaBTV1cnb29vGjduHNnY2ND48eOJKKlCdffu3VS5cmWyt7enBg0akKKiIk2aNClP41/Ypa7kKez+5CVFT0+P5OTkyNDQUGg4vnLlCqmrq5OLiwvFxsama4AqioXsP/Xjxw/S09Ojbt260b59+6R62hUlYrGYtm/fTr6+vsIUfO/fvyclJSVydXWlNWvWULt27UhVVZW6detGMjIyQg/DoKAgOnbsGG3evFlqn5wPWX5JbgBN3cDA/kxEREShaADIytTMb9++pRo1alCPHj0oJCSEHj16RFOnTiUlJSVh1oCnT59Su3btSFNTk+bOnUs+Pj5Ur149srOzEypxWM4VlU5JLPclT8GXLPkdr2fPntSpUyciIlq+fDnJycnRrFmzhOv2yZMnwhTD3759E37PZRmWkeyMrE3+/5kzZ5K6ujrdunWLiJKmiVy4cCFpa2uTsbEx2djY0KhRo4TfvX//XuqYRSkvenl5Uf/+/Wn58uX06tUrIiIKDg6mFi1aUM2aNaXCBgQEUKVKlWjr1q1ElHTNv3jxQmhoTt5WlNy8eZOMjY3JysqKjh8/TufOnZOa/u3u3bukqqpKI0aMEEaPnj9/nt68eUPbt28nAwMDUlZWFu6PqaeGLMwyyiedOnWiNm3aEFFSmfj06dMkKytLq1atIiKi7du3k5WVFTVp0oQuXLhABw8epDp16pCvry+ZmZkJDXhF6fpl7G/hxqd84OPjQxoaGlSvXj0aNmwYmZqaUrly5aTmpz948CAZGhpKjdbZuXMnmZiY0Pr164ko5aZYGCoaMvK7kWQXL14kBQUFcnBwICUlJTp58qQwPcO+ffvIwsJCqsBz+fJlMjExybSnDfu1Y8eOkUgkEgrhyQpj2v3pS0qZMmWEXm9qamqkoaFBampqZG1tTZcvX6bg4GBq0qQJtWnThu7fvy91TC7k/N6MGTOoZMmSVLduXerfvz8VK1aMFi1alN/R+qsyG6nk5eVFxYsXl5o+4Pjx4yQSiahv375ElFQRW79+fTI1NSUzMzPS0tIS1iZLlroSh7G8lvz8iI2NJXV1dRo5cmQ+x+jfJRaLqW3bttSuXbtCM83m76Zmvnv3LllaWlKtWrWoefPmJBKJqEWLFsL3y5cvpypVqtCBAweEbVevXiVNTU2hc1fq2QTEYnGRq/TKqaLUKYnlnl915IqOjqY6derQkiVLyMXFhezt7WnWrFlElHRPOH78OOno6JCNjY3wDljUyoLsz2R1ZO2nT5+oWLFiNHfuXGE0Suq1fY2NjcnJyYmePHlCREkj8zKqYyiM78ipZfa8jI2NpQ0bNlDp0qXp+vXrwvbo6GiaPHkyqampCel6//59mjRpEhkZGdGIESPS7asozdCQvDRHt27d0nVAP3nyJDVv3lyoB0x25coVkpeXpxIlStDw4cOLfBnmwoULpKurS46OjuTq6krFihWjhg0bUkxMDIWFhVHjxo2pR48eUiNop02bRlpaWqSioiLMfJP8TOL6GcZyDzc+5ROxWEzr1q2jadOmkY6ODnXv3l1qsbuBAwcKDSffv3+njRs3kqKiIk2YMIEePnyY4T6L2sMmNDSUHBwcyMbGRhjeTZRUedq3b18yNTWlsmXLUo0aNYTRK926dRMqYtMqalM2ZKcwl5CQQBYWFtS1a1dh29WrV+nr169/tL9/RU5fUry8vGjv3r3CCJ2XL1/Snj17aNCgQaSoqEjz589PV7g5cOAALVu2rFCmZ04EBQWRubm51Lodc+bMITs7O4qMjJS6fxZFN2/eJH19faFn15MnT2jOnDmkoKBAgYGBRER09uxZsre3F3qoL1u2jMzMzOjgwYPCfpo3b079+/cvcs8Tlj+S81nfvn1JVVWVTE1NSUVFJd3LNfu9M2fOkKOjY6Gcqz7t1Mxp1za4d+8ebd++nUQikXC/u3btGjVu3Jg6dOggFfbQoUNkYmKSbsRF2gY7X19fGj16NDfI/0LaTkmpF1AvSuXpnEpOq4ymkytqJBIJJSQkUP369alYsWJUuXJlunbtmlCJf+TIEbKysqKGDRsKv9m3bx9Vq1Ytw7WgOB+ytLIysnb9+vVkYGCQbhkAIqKNGzeSvb09LVmyhIiIvnz5Qk2bNqUOHToI4VO/w0kkkkJfpk7byPbu3TsyMjKi//3vf1Lbb9y4QcrKyrRgwQJhW3x8PL1+/ZpOnDhBNWvWJCsrK2G2htTXr6mpabprvLBInV8+f/4s1PWdOHGCZsyYQURJDXorVqygUqVK0aVLl4goafakyZMnU9myZencuXNkaWlJrVu3llprPu2Up0XFpUuXaOvWrSQSiejkyZNElPT8MDc3pz179kiF9fT0JJFI9Mv12gr7NczY38CNT/kg9QPm27dv5O7uLkzRRZT0AtyqVSuaOnUqERH9999/ZGtrK/QIjo+Pp8DAQJo+fToNHjw4Xc/1oiZ5qkKipAdDfHw8Va9eXeglN3bsWFJRUaH//vuPKleuTBMnTiSipIfSkiVLaNSoUVLTGRb2F5XsrGWUbNmyZVSqVCmhh1dQUBBpaWlR37596c2bN3kSz4LiT15SMirkhYeHSy2uunv3brKyshLmuSdKasTq3LmzVMGbJenUqRO5uLjQo0ePhG1HjhwRGgWHDx9OdevWpYCAgHyMZf7y9PQkFRUVatOmDdWoUYNEIpFwvyNKWgMvuRNDch719vamx48f09WrV8nCwoKKFSsm9FLkgjbLS8n56+HDhyQSiYTR31u3biV1dXUyNzcXpm9hvxYdHU2tWrWitm3bCo0ohbGyIe3UzGnvUUeOHCGipLL1tGnTqFq1alK9h8PCwmjQoEFkaWkpdGLYsmULdenShczNzal///5CWBcXF3J0dEzX+7gw+5NOSZ07dxa2xcfHS62nxZ1osi4iIoL+++8/atu2Ld24cSO/o/PXJXfsEovFdPHiRZKRkaHWrVtLrfEZGRlJgwYNovLly1Pp0qWpSZMmdPv2bSIiatq0KQ0fPlwIy1Pxsd/53cjar1+/Cnkn+V724sULat26NbVp00Z4n545cybZ2NjQvn37iCipM9jw4cOpQ4cOdOLECWF/RS0f+vv7SzWCfP36lbp3706VKlUStj179ozOnDkjXOc/fvwga2tr2rVrFxGlpPvEiROpVKlSwvVeGGXUSDR//nyqUqUKeXl5EVFSx0IrKyvh77Nnz1L58uVp/vz5wm9evHhBsbGxdPPmTal35qLyTpe63PH9+3fasGGDUC4+fPgwlSpVSirM169fqV27dlSlShVh2+fPn2nFihU0Y8YMWrNmzd+LPGOFHDc+5aOMCiGJiYn0/ft3atmyJXXt2pWmTJlCCgoKdOLECWE6pdGjR1OTJk2oYcOGNHHiRCpTpgw1bdqUwsPD//Yp5KvMXmojIyOpQoUKtHTpUmHb06dPqU2bNqStrU0+Pj705csXEolE1LBhQ2rYsCGVKlWK3N3d/1bU81VW1zJKFhERQWpqajRt2jQhrIeHB4lEIqpbty61adOGKlSoQD4+Pn8j+vkmOy8pRCmFvO/fv9PSpUupUqVKVKNGDbK1tSU/Pz969uwZ6erqSjWWrF69mhwcHGj16tV/78T+AZcvXyYbGxvauHGj1PamTZtSpUqVaOXKlXTz5k3q378/GRoaFrmGu7TT1dy6dYt69epFqqqq6dYJPHHiBDVu3Fjo3SUWi0ksFtO7d+9IJBKRgoKCVIMVY9mV3QrnJk2akKOjo9S2mJgYWrhwIT1+/Dg3o1ZorV27luzs7IRRjIWx4Smt1OeYtjwdGBhIpqamNHDgQKnte/fuJT09PeFZsnz5clJUVCRnZ2dauXIlOTo6kru7O61atYqsrKyKzLM4J52SkqckXrVqFXXo0IEsLS1p+vTpeRLPf0l274OvXr2iPXv20IgRI6hUqVI0ZsyYIjOiWywW0/r166ldu3bUuXNnqly5MvXv3194703dAKCrq0srVqygxMRE6tWrFykpKdHw4cPJwsKCFi9eTERJ01A1b96ctmzZUuQq/Fn2pR1Zm9Fop2Tu7u7k6OhIu3fvJqKkzjN2dnY0ZMgQ+vr1K4WEhJCRkRE5ODjQqFGjSFVVldq0aVPk6mgyuu727t1LIpGIjh8/TkRECxcupEqVKlH16tVJX19fGKVsZ2dHEyZMEH4XGhpKsrKytHTp0iJzT0xt3bp1pKKiQo6OjmRmZibUP8TExFDXrl3JxMREKvy7d++oSZMmVLVqVSpTpgy1bt1aaj2toiKjPHjixAnS09MT3i0kEgnt2LGDZGRkhM5LO3bsoDZt2lDVqlVpxIgRpKenR5aWllINeYyxP8ONT/ksowqC4OBgEolEVKZMGXJ2dpYaFRUQEEAikYgcHByEqby+fftGtWrVok2bNv21eBd0Hh4e1LhxY6keN0RJPWxiYmLo2LFjVKFCBaFn3IkTJ8ja2rrQL5icnbWMkg0ePJj09fXp06dPRJRUqaOsrEwTJkyge/fukVgsJjc3N7K2ti4S09Nk5yWFKGlaGhsbGxoyZAjduHGDpk6dSqVLlyZTU1NycHCgK1euEFFSb6aWLVuSi4uLsHYZS+pJXa1aNerbt69U4Xn37t1SlYhERM+fPydNTU06duxYfkQ136W+fp8/fy6kw4kTJ2jVqlUUHx9PMTExtGTJEipTpowwbQNR0ui9kiVL0rp168jIyIisra0pIiLir58D+3dlpwI7Oa8ePnyYRCIRKSkpcYX1HwoNDaX69etLjdphRA8ePJCaGvjFixfUrl07cnJyIqKk8qCSkhLNnTtXqKR4+vQp1axZk2xtbalHjx5SI5MLs5x2SgoICCBLS0tydXUlLy8vqlatGpmYmNDdu3f/RvQLlD9pyPv+/bvUlHuXLl0iExOTIjWS+9u3b9SmTRvq2LEj7d+/P8Mw4eHhVKFCBan33evXr1O9evVIS0uL9u/fT2KxmGbNmkXq6urk7OxMbm5uQj5l7FfSjqxN6/3799SwYUNq3769sG3AgAFUt25dOnv2LBElrUNYqlQpCg4OJiKit2/fUtOmTWnDhg15G/l/wOrVq6levXpElHS9q6mp0ZQpU+jOnTvk7+9PHTp0oGLFipGKioowTRoRUatWrcjGxobevn2bX1HPF6mfvwkJCeTp6UmbN28W1ow+ffo0lSpVSnhux8XFEVHSuvGqqqr09OlTevbsGbm4uJCxsXGhnbIwOyIiIsjGxoaqV69OXl5e1KdPH1JSUqKmTZsK35uYmJCuri75+/sLv3NxceE1aRnLBdz4VMAkz3Xt6upKrVu3TtfK3qBBA7K3t6fGjRuTqqoqeXh4EBGRm5ubsE4H9/JKqsi3sbEhAwMD2rFjBx0+fFjqxe7Fixeko6NDPXv2pA8fPpBYLKbLly8XmfnWf7eWUXLFoL+/P4lEImFqx+joaOrcuTNVrVpVan9HjhwhLS2tIjVVyO9eUpIdP36cVFVV6f3798K2I0eOkI6OjtQaWlOnTiV7e3uh5w1L8u3bNxozZozUukRisZiqV69OvXr1kkrXq1evkkgkoqCgoHyIacGR+hkgkUho7dq15ODgIFTofPnyhRwdHWnKlClElDTdY5kyZaR6Gl68ePHvRpr987JagZ06f5YvX5769u1Le/fuJUtLS9LS0uJ7YDaNGzeOatWqJTx/i8Kop99JWw5OSEig+fPnk6amplBJOGjQIDIyMkr32+rVq5OJiYkwhVJh96edkgwMDIQOIY8ePSIdHR06fPgwESU1pkyePJl27tz5d06iAMlOQ15iYiKdOnWKqlWrRo6OjmRra0ve3t4UFRVFVlZWwlSkRUnatXLSGjVqFLVt21ZYXzVZQEAAxcbG0rVr16hSpUpkZ2dHCxcuFKZxLerlQpY9mT1Hv3z5IkwRd+TIEbK2tiYPDw8hr37//p0aNGhAdevWFaaIu3TpktQ7dlGW3Bj/+vVrsrCwkJqlhoioatWq1LFjRyGNL168SCKRiPbv319k67cyG0U7duxYYaq41Pl1586dVLJkSWEK9e/fv9OkSZOKTB1XVkycOJGGDBlCtra2JCcnJ3Qknjx5MpmamlKjRo2EUbVESWuFOjg4FMkRZIzlJm58KsDSPmy+fPlC9erVExZpPHz4MJmYmFDlypXJxMSEunTpkh/RLNAWLlxIlpaW9L///Y+ePHlCMTExwpBtPz8/atWqVaFcnDsrsrKW0ZIlS8jOzk7oTXPy5EmSkZERXqqTCzuenp6kpKRUJIfDE/26su/27dtUsWJFGjNmDAUFBZGfnx+1a9eODAwMhFFPZ8+epbp166abIoilSP3SMW3aNDIzM5Oq3CEisrKyov/9739Sa06wJPPmzSNFRUVq2rQptWrViuTl5YWRUUOHDiU9Pb0iNy0Iyz3ZqcBO/v+ZM2eSurq6UEETGxtLc+bMofHjx6cbPcAydvfuXXJ0dOSe/Vmwdu1aoZwcGxtLVlZWwmi75Dx5584dUldXJzc3N4qKisq3uOaHrHZKSp6BIe16swMHDiQ7Ozvhufz69Wuhc0hRqTTMbkPe06dPqXbt2tS4cWM6c+YMzZo1izQ1Ncna2pqqVq1a5Nf0zcjNmzfJ2NiYrKys6Pjx43Tu3Dlher4PHz7QkCFDyNjYWKqSMHlWBm6YZzmRNv+MGzeOHB0d6dGjRxQVFSXMSPP8+XNydXXld7pUJBKJ1HMgPj6eXF1dSUdHh44ePUo7duyg3r17U8mSJYUpDYmSGqPatWsnzL5SVGX0DPX09CRDQ0Py9vZOF2b8+PHCc4WIhJmAisqzODOpRyInJCTQuHHjqF+/fsJ3I0aMoNatWxNRUj2hvb096erqUsOGDUlfXz8/osxYocKNTwWQWCzOdD0oe3t76tmzp7AtOjqaFixYQGXKlBF6OBT1BwuR9MMlLi5OePnz8fGhGTNmkFgspoSEBNq1axcpKCgU+vWKfuV3axklV+R/+PCBqlWrJjyUkwUHB5O2trYwioJf7tLz8/OjatWqkbOzM9nY2JBIJKIxY8YQUVIl2MCBA8nJyYmHxGfBjx8/qEqVKjR06FCpKZW2bdtGxYsXp3PnzuVj7Aqe1M+DT58+0fjx42nOnDlCr/7Xr1+TvLy8sHgtYznxuwrs5A4Knz59omLFitHcuXPT9WDP7lopRVViYiI5OzuTk5NTkavk/1PJ5ZPExETq0KGDsMZEsq5du1KdOnXo8uXL+RG9fJfVTkm2trZElDTFXPLUcMHBwTRs2DBq27ZtkW88zup98PHjx6SgoEB+fn7Cd3fu3CFDQ0OytLT86/H+l4wZM4ZMTEyoW7dudOfOHSIi2rVrF5mZmQmjKfh9hOW15PqFEydOkLu7u9Doefv2bdLU1BQ6DLOMzZw5k5o1a0a9e/cmOTk5GjJkiDBl4cqVK0lRUVHq/sikeXh4kIaGBu3evZt8fX2FTq1BQUHUo0cPqlOnTpFYEiE70jaEpv7/gQMHkoWFhfB3YmIibdiwgXR0dGjJkiVExM8VxnKCG5/+Mdu3b6eaNWummwecezRkLO1c6+vXryd9fX3hAfLu3TuqWrUqbd26NR9iV7D8bi2jV69ekb6+vjAUPtmIESOoQoUKUg0BLEnaAs6DBw9oxowZVLZsWaGycMeOHeTg4EAzZszIr2j+c6Kiouj169dS28qVK0dDhw7l9bIyIJFIMl13YurUqaSrq8vXbw4l97xmWavAXr9+PRkYGPx2zTyWuaioKOrevTuJRCKaN28er9H2C2mfxURECxYsoHLlytHhw4fp9OnTNH78eFJUVKTZs2fnUywLjqx2SvLy8qL//vuPQkNDiSipx3/FihWlpqEqqrJyH3z79i3VqFGDevToQSEhIfTo0SOaOnUqKSkp0d69e4mIK7rSSt054fPnz/Tw4UMiSsp7nTt3pgYNGgjfF/U8+Keio6M57X4j7XV5/vx5qly5MnXv3p3ev39PCQkJpKenJ7zbcXpKS/1OIhaL6dChQ1StWjVh2mWxWEzKyso0duxYns0iA6nzX0xMDD179oyWL19Ozs7OUtPRKygo0IEDB/IjigVeRu/Ft2/fJhsbm3TTf0dGRha50fCM5QVufPrHREdHU69evahkyZI0ePBg2rlzJ4+WyKZDhw6RtrY2Va9enapWrSo1TQjL2lpGyYXoO3fuUKlSpbjx7jdSF3AkEolQifPmzRvq1KlTusIiy57BgweToqKisAgry1hGlVh79+6lypUr84ixHAgNDSV7e3thCi+W5HcV2F+/fuUKmVywb98+KleuHFWsWJG2bt0qTJPLfm/27NlkbW1NnTp1IiUlJWrZsqXUNGlF3e86Jd2/f58cHBzIwsKCzp07Rz4+PlS9enUaOnRoPsW44PndffDu3btkaWlJtWrVoubNm5NIJKKWLVvmY4wLPolEkq48s3v3blJTU6NDhw4RUcYVi+z3xGIxDRkyhNq2bcvPkmwKCgqiBg0akKamJtnY2JCurq4wrTBLL+11/PHjR6EjV69evcjAwIAeP36cX9Er8NJ2LHzz5g01atSItLS0aPr06eTq6krFixcvUutx55REIqEpU6ZQiRIlqEePHnTw4EE6depUfkeLsUJDREQE9k8gIohEIgCAv78/5s+fDzU1Nbi6uqJWrVr5HLuCTyKRQEZGRvh7+/btKFasGBwcHKCnp5ePMSu4UqeZWCyGrKys1HeNGjVCaGgoHj16lF9R/KekzYPe3t4YM2YMhg4dikGDBuVjzP5thw8fxqdPn9C9e3fIy8vnd3T+OWPHjoWnpycWL17M+TCbEhIS0LZtW4SGhmLNmjWwsbHJ7ygVOB8/fsTo0aOxbds2yMnJ4eHDhzA0NMzvaBU606ZNw9y5czFy5EhMnz6d74W/kPpZnJiYiDNnzmDatGno2rUrhg0bls+xK3ju37+PCxcuYOjQoRl+P3bsWOzevRvly5eHrKws9u/fDy0tLan3lqIu7X3w8ePH0NfXF76/f/8+7t27h+7du+Pu3bswMzPj9Mumy5cvo3bt2vkdjX9aXFwchg8fDgBYs2ZNPsfm35H6meLv74+4uDgYGhqiXLly+Ryzgi+5KlIkEoGIEBsbCzMzMwwYMABubm4oVqxYPsfw37Jnzx5s3rwZ2traaNGiBdq0aSNV98B+7/nz55g8eTKio6PRsWNHdOvWLb+jxFihwI1P/xiJRAIAwkPk48eP0NDQyM8o/XMSExO5IJNL/P39UaJECZibm+d3VP5Zjx8/hqGhIeTk5PI7KqyISV2xFRYWhq9fv8LY2DifY/Vv+fLlC7y9vdGwYUOuZPiN31Vgs5yLjIzE3bt3uQI2i1JXGEZEREBOTg6lS5fO51gVbJl1Svry5Qu+fPmCcuXKQUFBIV1nG5Yk7X0wbceuY8eOwdnZmdMvG9I20nGjXc5x/su+tNcyy5moqCgoKirmdzT+GWnzH9d3ZR8RQSKRCOkYFhaGsmXL8vOEsVzCjU//KC4UsvzGL3c5w+nHCoK0BW3G/gYuw7CCInWva5Z9/Az5c6nvg1wmZIwxbjTJKW4EzTl+R2Esb3DjE2OMMcYYY4wxxhhjjDHGGMs13KTLGGOMMcYYY4wxxhhjjDHGcg03PjHGGGOMMcYYY4wxxhhjjLFcw41PjDHGGGOMMcYYY4wxxhhjLNdw4xNjjDHGGGOMMcYYY4wxxhjLNdz4xBhjjDHGGGOMMcYYY4wxxnINNz79o+Li4uDu7o64uLj8jso/i9MwZzj9co7TMOc4DXOG0y/nOA1zhtMv5zgNc47TMGc4/XKO0zBnOP1yjtMw5zgNc4bTL+c4DXOG04+xvCEiIsrvSLDsi4yMhIqKCr59+wZlZeX8js4/idMwZzj9co7TMOc4DXOG0y/nOA1zhtMv5zgNc47TMGc4/XKO0zBnOP1yjtMw5zgNc4bTL+c4DXOG04+xvMEjnxhjjDHGGGOMMcYYY4wxxliu4cYnxhhjjDHGGGOMMcYYY4wxlmuK5XcECiqJRIKQkBAoKSlBJBLld3TSiYyMlPovyz5Ow5zh9Ms5TsOc4zTMGU6/nOM0zBlOv5zjNMw5TsOc4fTLOU7DnOH0yzlOw5zjNMwZTr+c4zTMmX8h/YgI379/h7a2NmRkeDxJXoqNjUV8fHye7FteXh4lSpTIk30XRLzmUybev38PHR2d/I4GY4wxxhhjjDHGGGOMMYZ3796hQoUK+R2NQis2NhYKKlpA/Lc82b+WlhaCgoKKTAMUj3zKhJKSEgDgWVAQlJR4obk/ES+W5HcU/nnystyTIadiE8X5HYV/WolisvkdBVbERcYn5ncU/nmyBW8A9z9HtYR8fkfhn5bAZcIci0rge2FOcZkmZ8J+xOZ3FP55SsXl8jsK/7SvcXnTA70oUSzGVYA55fskNL+j8E8b7XE1v6Pwb0uMAa6OEeqsWd6Ij49PaniquQAoppC7O0+MQdjVMYiPj+fGp6Iueao9JSVlKCtz49Of4MannOPGp5yT48anHFHgihqWz4gbn3KMG59yTpkbn3KEG59yToYbn3KMyzQ580OG74M5xY1POZMYy41POVVKjqsAc0pB8Xt+R+HfltsV+UVUQVwepjASyZeEKJfzLMmIUNSmoOOabcYYY4wxxhhjjDHGGGOMMZZruNsDY4wxxhhjjDHGGGOMMcYYABkRkNuDzEgEFLX5mbjxiTHGGGOMMcYYY4wxxhhjDICsjAgimdxtfSIZUZFrfOJp9xhjjDHGGGOMMcYYY4wxxliu4ZFPjDHGGGOMMcYYY4wxxhhjAGREIohyed49yu15/P4BPPKJMcYYY4wxxhhjjDHGGGOM5RpufPpL1q1ZDROjylBTKgVHO1tc8fPLNOyRQ4fQsllT6GmXg5a6GurVroXTp05Jhdm8cQMa1auL8pplUF6zDFo0bYKbAf7p9hUSHIz/erhCR6ssNFSUYW9jjTu3bwEAEhISMHnCBNSwtEAZVRUY6OmiT6+eCA0JydVzzw0b1q5BdWMjaKkqo25Ne1z9Rfpdu3IFTerVhX75cihXWgW21c2wynNZpuEP7N2L0grF0bW9i9R28ypGKK1QPN1ntNswIQwRYe5MD1StVBHlSqugZeNGePzoUY7PNy/kdh5s2rABFOXl0n3atm4lhPG7fBku//sfDPR0oSgvh2NHjkjt41/Kg5vWroVV1SooX1oF9Ws64NqVzNMvtRvXrqKskiLq2tlKbd+2aSNaNqwPA20tGGhroW2LZrgdECAVZt5MD2iULCH1Mamol+4Yz548QVeXdqikpQk9TQ00qeOE9+/e/vnJ5pHczoNHDh1CLXs7aJfRQBlVFdjbWGPn9u1SYapWNswwn44YNlQIM2vGDFhWq4YyqirC/TTA/0bunnwuye009Nq2NcP0iY2NlQr3q2dJ8rFatWgO3XJaUJSXw93AwFw979yyZd1a2Jkao5K6KprUqokbv7mO4+LiMNd9GmpUNUJFNRU4mJlg17atUmGOHz6EOtaWqKimgjrWlvA5Kn2fu+7nB9f27WBpWAnapRTgc+xouuN8CA+HW/++sDSsBP0yaujyv1Z49eJFzk84D2xetxY2JsbQVVNFI8eauP6LNLxy6RLKKiqk+zx/+lQqnPfhQ6htbQmd0iqobW2JE2nScNmCBWhS2xH6ZcvARE8XPTq2x4tnz4TvExIS4DF5EurUsEHFMuowN6iEIX16Iyy04D1L1qxeDSMDAyiVLAm7GjXgd/lypmFDQ0PRvWtXmFatiuLFimHUiBHpwmxcvx716tSBpro6NNXV0bRxYwT4S5cH165eDSsLC6irqkJdVRW1HR3h6+MjFebQwYNo0bQpymlqQl5WFoEF9BoGcv8+CABfv37FiGFDoa+rAzWlUrAyM5NKo1kzZqS7T1bSqSC1jx8/fmDk8GGoXKki1JWVYGVmhvVr1+Teieei7FzHqflfuwpt5VKob28ntb1N08YZXutd27YRwthUrZJhmPEj3DI81uihQ1BWUQFrVyz/4/PMK+vXrIGZkRHKKCvByd7ul+8lRw8fQutmzVCpvDbKa6ijgVNtnMkgD6709IRVNVNoqiijqoE+xo8ene5ZnGzR/HlQLi6PcaNGSW2f7TED1mbVoFVaFbplNdGqadN094OCYufG9WhgaQZz7TJoW98JN69d/WX4Y/v2oLVTTVhUKIvaJpUxYchAfPn8Sfg+ISEBKxfMRSNrc5hrl0Frp5q4fPa01D7qW1SDsbpyus+MMSOFMB8jIjB+8ADUNjGCRYWy6NO+DV6/LHjP4+yUZ65eugTtUgrpPqmfxe2aNs4wTPd2KdewrUmVDMNMSHUNL5w1E7Utq8NAUx1VK5RDh5bNcTuDOoqCYNem9WhsZQbL8ppoX98Jt36TB3duXA9nhxqwqlAWLeyscWTPLqnvD+3aAVMNlXSfuFTXcWJiIpbN9kBjKzNYVSiLJtbmWLVgHiQSSYbHdB85HKYaKti2ZlXOTzgPbFu/Do5mJjDSVEMLJ0f4X72SadhRA/tBT0Ux3aehnY1UuBNHDqOBrTUqlymNBrbW8E1Tbv7x/Tumjx+DmtWMYVRWHW0a1cfdW7eQ1vOnT9C7U3tU0ykHk/Jl8b8GdRH87l3unHgOndy2BvP+a4uRDS0xrrk91o4biPA3r377O/+TRzHb1Rlu9cwxwdkRXjPH48e3L1Jh7pw/CY8uzTC8jik8ujRD4EXp501Wjh0bHYU9i6ZjUuvacKtrhhmdm+LSwZ05P/FcJCsjgkcvK7za3h7RJ1zx0qs9pnS3wK8GlGweWxt09r90nwcbU+5zfZob4dLS5vh8uCs+H+6K0/ObokYVjXT70tYoCa8JTvh4qAuijrviztrWsKqsLnzfppYefOc2xoeDXUBn/0N1A7VcPX/298iIABmZXP4UvYFPudv4VLFiRSxdujTX9vf69WuIRKIC/QKcFfv37sXYUaMwdvx4XPUPQM1atdDGuSXevc24ctjP7zLqN2iIg0ePwu/6DTjVqYv2bf6HwDt3hDCXLl5E+44dceLUaZy7dBk6Ojpo1bw5QoKDhTBfvnxBg7p1ICcnh0PHjuHW3XuYM38BVFRUAQDR0dEIDLyD8RMn4coNf+zauxcvnj9H+1QvigXBwX37MHHMaIwaNx4Xr9+AQ01HdPhfq0zTT1FREX0HDMTx02dxI/AuRo2fgFnT3bFl44Z0Yd++eYOpE8bDwbFWuu/O+V3Bk6A3wufQ8RMAgP+1bSeEWbZoEVZ5LsP8JUtx1u8qNMuWRdsWzfH9+/dcOvvckRd5cOfefXj59p3wCbgTCFlZWbRpl5I+UVFRMDM3x+KlGTf+/St58ND+fZg0djRGjB2H89duwMHREZ3+1/q3DTyR375hcJ/ecKpXL913Vy5fQtv2HXHY5yR8z19EhQo6cGnVEqGprmEAMDYxwcNXr4XPpYCbUt8HvXqJFg3ro3KVKjjiewoXb/hj1PgJKF68RM5PPBflRR4sraaGseMn4Nyly7hx6za69+iBAX37SFUsXrp6TSqfHvPxBQC0aZfS2GxYuTIWLVsG/9t3cPr8Bejp6aFV8+b48OFDHqXGn8mLNAQAZWVlqTR6+fYdSpRIyT+/e5YASde6g0NNzJg1K0/OPTcc2b8P08aNwbAx43DqynXY1ayJrm3/98vruL9rN/hdPI9Fq9bg8p17WLV5KwyNjITvb964jgE9usOlcxecvuYPl85d0N+1m1RFS3R0FEyrmWHWoiUZHoOI8F/nDngTFITNe/bh1JXrqKCji47OzREdFZV7CZALDu/fhyljx8Bt7DicuZqUhp3b/DoNAeBq4D3cfxkkfPQNDYXvAm5cRz/X7nDp1AXnrvvDpVMX9O3eDbdSpeE1v8vo1W8ATpy/iH3HvJGYKEbHVi0R9TN9YqKjcS8wECPHj8eZK9ewadduvHzxHK7t2+dNQvyhvXv2YNSIERg/YQL8b91CrVq14NyiBd5mcg3HxcWhTJkyGD9hAsyrV88wzMWLF9GxUyecOnsWl65cgY6ODpo3bYrgVM+S8hUqYNbs2bjm749r/v6oW68e2rVpg4cPHwphoqKi4ODoiFmzZ+fuSeeyvLgPxsfHw7lZU7x58wY7du9G4IOHWLFmNbS1taX2VdXEVOo+6X9b+l46bvQonD51Chu3bMXte/cxZPgwjHJzg/fR9A3O+elPr+PIb98wpG8f1K6bvkyzaeduqWv8YsAtyMrKwrlNWyGM7yU/qTB7jx0HAKkwyU4cO4rbAQHQKlcuh2eb+w7s24vxo0dh9Pjx8LvhDwfHWmjXyjnTPHjlsh/qNWiA/UeO4uK163CqUwcd27bB3cCU/LNn1064T56E8ZMnI+DuPaxYsxYH9++D++TJ6fZ36+ZNbNmwEdXMzNJ9Z1i5MhYuXYZrt27j5Pnz0K2ohzYtmuNjASvPnDh0AHMmjceAkaNx6LwfbOwd0K9jO4S8z7hi+Nb1axg3qD/ade0O7ys3sHTTNjy4cxtThqd0JFo2ywN7tmzG5LkLcPyqPzr1/A9DXLvi0b27Qpj9Zy7g8qPnwmfTgaSODk1aJ713EBEGd++M929eY9X2XTh43g/aOrr4r23rAvU8/pPyDABcvnMPgS+DhE/qZ/GGnbulvjvvn3QNt0x1ffpc9JMKszuDa1i/siFmLV6Cczdu4vCps9DR00Pn1s74VMDyoM+hA5g7aQL6jRiN/ecvw8qhJvp3csk0D+7etAFLPaZj0NjxOOJ3HYPHTcDMsaNx3le6I0cpJWVcePhM6lM8VZl6o+cS7N2yCZPmLsSxq/4YOW0GNq/wxI71a9Md8+wJb9y7fQuaWgXvPggAxw7sx4wJYzFk9Fgcv3wVtjVroodLm0wbeKbNXYCAZy+Fz/VHz6BaWg0t/pfy3n/L/waG9HJF246d4HPlOtp27ITBPbvjzs2UDprjhg7G5fPnsWTtBpy66g+n+g3Q9X8tEZaq8+qbV6/g0qQRDCobYbe3D3z9rmPo2PEoXqJ43iVINjy/EwCndt0wet1eDF22GRKxGMvd/kNcTHSmv3lx9ya2eYyFQ8v2mLzjOHrPXIY3j+9j55xJQphX9+9g01Q32DZtjQlbj8K2aWtsnOyGoIcp98GsHPvAstl4dP0yekxbiCm7fFC/Y0/sW+KBu5fO5E2C/IFxncwxwNkYQ5ZfQ9VeBzF2fQDGdDDD0DYmmf5m+Mrr0HLZJXwqdNyNT5Gx2HfxtRCmbvVy2HXuFeqN8oHDUG+8jfiBU/ObQFujpBBGtZQ8rixrgYRECZqNPwWT/w5i1Bp/fP0RL4RRLFEMVx5GYPwG6bobxooqERFRbu2sYsWKcHNzg5ubW67sTywW48OHD9DQ0ECxYn93earIyEioqKgg9OMnKCsr52hfdRxrwsLSEstWrBS2WZmZoWWrVlmuqLOpXh3t2rfHhAxeQoCktCqvWQaLli5D1+7dAQBTJk7E9WtXcfr8hSzH9dbNADjVrIknL15CR1c3y7/LSLw44x482dWwdi2YW1pgsecKYZudhTmaO7fCNI+ZWdpH944dUFJREWs3bRa2icVitGjUEF1dXXHtyhV8+/oVO/btz3QfE0aPwkmfE7j14BFEIhGICFX1K2LA4KFwGz0aQFJFkZGeDtxnzkKvPn3/8IxTyMvmTvvw38iDKzyXYeb06Xj59h0UFRXTfa8oL4fd+/bDuXXrXx4nN/MgAMQkinO8j8ZOtWFuYYGFnim9bx0sq6O5szOmzMg8D/Zx7Q4DAwPIyMrC59gxXLiRec8/sVgMA20tzFu8BB27dgOQNPLpd7/r49odcnLFsHrj5kzD5IRCMdlc2c/fyIMAUNO2Bpo2a46p06dn+P2YUSPhe+IE7j16nOncvZGRkSinoQ5v35OoV79+luL2N+RFGnpt24pxo0Yh5MPHTH+TnWfJm9evYWJUGVf9A1DdwiJLcfqdb/GJubKfFnVrw6y6JeYu8xS2OVlZoKmzMyZO90gX/vzpUxjY0xXX7j9CabWMe6v1d+2GH9+/Y8ehlJE6Xf7XCiqqqli9ZVu68NqlFLBx1x40c04ZIfry+XPUtjTHef9bqGKS9MIkFothXkkXE2fMRNeevf74nJPJ5lLvqqZ1asPcwhLzU6VhLSsLNG3pjMkz0qfhlUuX0LZZEzwLDoWKqmqG++zr2g0/Ir9j1+GUNOzUOikN125Nn4YA8PHDB5hW1MXhk6fhUCt95xEAuHPrJpo61catJ09RQSfnz5LSJeRzvA9HBwdYWlpixaqUHsxmpqZo1br1bxt9Gtavj+rVq2PRkowbMZOJxWJoqqtjqacnuru6ZhqurIYG5s6bh169e0ttf/36NYwMDOB/6xYscukaBoCEXCoT5sV9cMO6tVi6eDHu3H8AOTm5DH8za8YMHDt6BNdvpu9dLezXwgIu7dtj/KSUiiBHO1s0ados02dSdvxIyJ17YXav42T9enSHvoEhZH+Wac5dz3yE8NoVyzF/pgfuvQzKsEwIAJPHjMZpXx9cv/dA6nkcGhKMZnWcsPvIMXRr1wZ9Bw9B/yFDM9xHduVGmaZeLUdYWFhiyYqU9xIb86Q86D4za3nQ1qI62rZvj/GTkvLgqOHD8ezJExw7eVIIM3HsWNy6GYCT584L2378+IHadrZY7LkcC+bOgZl5dcxbtCjT40RGRqJCGQ0c9fFF3Vwoz4T8yHgkVnZ1aFQPJuYWcE/VKaO5vQ0aNG+JUVPd04XfuMITuzdvwOlb94RtXuvWYOPyZbhw/zEAoLaJEQaMHI2uffoJYQZ364ySiopYsDZ9B0QAmD1xHC6c8sXJgECIRCIEvXiOZnbWOHblBiobVwWQdE+tWUUfo6fNQPvuPXJ87srFM77HZEd2yzNXL12CS/MmePw+82dxWutXLseCmR4IfBGEkplcw1PHjsYZXx9cufsg0zL198hIVNEuiz3HTqB2Bp3xsutLbPzvA2VBp8b1YWJeHVMXpuRBZ4caqN+8BUZMcU8XvmuzRrC0tcPo6SnvfXMmjcfDwDvYfjzpuj20awfmTZqA668ybwQc1LkD1DXLwGNZyjNseM9uUFAoibmr1wnbwkND0LlxA6zbdxADO3dA9/4D4TpgUE5OWVBKLnfq1VrXr4Nq1S0wa0lKJ9P6NazQpEVLjHOf8dvfn/Q+hv7dOsPv3iNU+PnOP7inK75/j8S2A4eFcK5tW0NFVRXLN21FbEwMTMqXxfpde9GgSVMhTLNa9qjfpBnGTJkGABjSqweKyRXD0nUbc+Vc0/J+GPz7QNnw/ctnjG9hD7eVO1DZskaGYc7s3IjLB3di+v6zwrYL+7bh9I4NmHX4EgBg45ThiI36gcGLU857xYjeKKmkjP9mZFx+zOjYM7u2gHXD5mjWa7AQbm6vNjB1qAPnfm45PV0Mnpz5qP+sOjarIcK/xKLPwpRRn/un1Ud0XCJc517K0j5aO+rioHsDVOq6F28jMu5gICMjwpfDXTFk+XV4nU4aBTunjw0cq2nCye3Eb4+hV7YUXu/sAIt+h3H35ecsxeu3EmOAS0Pw7du3HNdVs8wltwmUarwGIjmFXN03JcTgx6kBRerfsEBPuycrKwstLa2/3vCUm+Lj43Hn9m00aNhIanv9Rg1x4/q1LO1DIpHg+4/vKK1WOtMw0dHRSEhIgFqqCrIT3t6wtLZGt06doFdeGw41bLA5g9E/qX37FgmRSJTlgmlei4+PR+Cd26jfQDr96jVoCP/r17O0j3uBgfC/cR2OtWtLbZ8/exY0NDTQPQsVe/Hx8di7exe69ugpFK7fvA5CeFgY6jdsKIQrXrw4HGvXznLc/oa/lQe3bt4Mlw4dMq1kyKqCmAfv3rmNeg0aSm3/XR7cuW0rXr96hTGTMm8oSS06OhqJCQlQLS1dyf3q5QuY6leCVdUq6OPaHa+DUobFSyQSnPb1gYFhZbRv1RLGejpo7FQbJwpYL+u/kQeJCOfPncPzZ8/SXeup47Fn5064prqOMwqzacMGqKiowMzcPEtx+xvyMg1//PgBY0MDVK5UEe3+1zrdyKg/eZYUNPHx8bh35w7qNGggtb1Ogwa4mcl1fOr4cZhbWmHV0sWwqqyPWhZmmD5xPGJiYoQwt/xvpNtn3YYNcfNG1p8B8XFxACDVM1ZWVhZycvII+M0UMH9TchrWTZuG9Rv89nwb1LSHmX4ltGveDH4XL0p9d+tG9tPwe2QkAEC1dObPpMjkZ0mqEXr5KT4+Hrdv3ULDRtLXcKNGjXD9Wtau4azIqDyYmlgsxp7duxEVFQU7B4dcO+7fkFf3wePe3rC1s8OIYUNRsUJ52FhYYMHcuRCLpTuvvHzxAgZ6ujAxqoweXbsi6JX0NDU1HWviuPcxhAQHg4hw8cIFvHj+HA0bS8c3P/3pdbxr2za8efUKoydOyjRMaju3bsX/XNpnWiaMj4/HgT270dm1h9TzWCKRYHDv3hjkNgLGJpn3Xs4v8fHxCLx9G/UbSZcJ6zdshBtZLPtLJBL8+PEDpVOV9xwcayLwzm3c/Dn9ctCrVzjl64MmzZpJ/XbU8GFo0qw56qX598ssrlsKaHnm4d1AONaTbgxzrFcfdwIybtC0tLVDWEgILp4+CSLCx4gInDx2BHUaN0m13zip5ygAFFcogVuZ5Ov4+Hgc3bcHbbt0F/JgfHxSw0bx4imjI2RlZSEvL49bWbzH5LU/Kc8ka+xoDwuDSujQohmupHkWp7Vr61a0btc+04an+Ph4HNi9G5269/hlmXr75o1QVlGBSQYj9fJLfHw8Ht0NRM00ebBmvfoIzGSayvi4OMinyV8lSpTA/du3kJCQIGyLjvqBhhbVUN+sKgZ17oDHqUbeAYClvT2uX7qE1z+nVn7y4D7u3LiO2g0bC2EkEgnGD+yHXkOGwfBnI2hBEx8fj/uBd1C7vnQ+dKpfH7eyOHX5Hq+tqFW3ntDwBAC3A27AKe0+GzQU9pmYmAixWCx1jQJA8RIKuPnzGpVIJDh3yheVDCuje5tWsDLQQ+v6dXDS+1i2z/NviYlKmjVHUVkl0zD6Zpb4+iEMD65eABEh8vNH3Dl/EtVq1hXCBD0IRFVb6U5ZJna18Or+HWQmo2MbVLfGvctn8fVDGIgIz25dR8S716hql3GHr/zgdz8CDSzLoXKFpIp7c3011DIrixM33md5H72bGeHM7ZBMG54AoGRxWcgVk8Hn73HCtlY1dXDz6UfsnVoP4fs74/aa1ujT3CjTfTDGstn4VLduXQwZMgRDhgyBqqoq1NXVMXnyZGQ2eGrx4sUwMzODoqIidHR0MGjQIPz48QNA0vQeysrK2L9feqTJsWPHoKioiO/fv6ebdu/ChQsQiUQ4e/YsbGxsULJkSdSsWRNP06wdMHPmTGhqakJJSQl9+vTB+PHjc7X3ZnZ8+vgxqRdqWU2p7WU1yyI8LDxL+1i2ZAmio6LQ1iXz6WOmTpoI7fLlpV5GgoJeYcPatTAwNMQR7+Po068fRo8YgR1eXhnuIzY2FlMnTUSHTp0KTOtrcvqV0ZROvzJlyyIiPOyXvzU10EdZFSXUc3RAn/4D4NrrP+G761evYvuWLVi2anWW4nH86FF8+/oVXbp1F7Yl//uljZumpuZv4/Y3/Y08eDPAH48ePkTP//7L8PusKtB5ME36ldHURER4xun38sULeEydgjWbt2S58dxjymSU09ZGnVQ9U61r2GLlho3Yd/QYlqxchYjwMDSvVw+fPyXNcf8hIgJRP37Ac9FC1G/UGPuOeqNFq1bo0bkjrlzOWo+fvyEv8+C3b9+gWVoVqool0a51KyxcuhQNGjbMcB/HjhzB169f0S2D0QA+x49Ds7Qq1JRKYYXnMhzz8YGGRvr5nfNLXqVhlSpVsHbDRuw9cBBbvLajRPESaFi3Dl48fy6Eye6zpCD6/Ckp/TTSPks0yyIiIuP0e/M6CAHXruLpo0fYuGsPps9bgOOHD2HiSDchzIfw8HT71NDUxIdM7g0ZMaxSBRV0dTFn2hR8/fIF8fHxWL5oASLCwxAeVnCeJclpmPHzOOPzLaulhYUrVmLTjl3YtGsXDI2M4NKiGa6lWh8lIjw8/T5/cX8lIkwdPw52NWuiqqlphmFiY2Mxa+oUtO3QEUoF5Fny8ec1XLZsWantmmXLIiwX/50nTZiA8uXLp7sP3r9/H6WVlVFKQQFDBg3CvgMHYFIAK/d/Ja/ug69fBeHwwYMQi8U4dPQoxk2YAM+lSzB/zhwhjI2tLdZv2owj3sexYvUahIeHoX4dJ3z6lLLmzMIlS2FctSoqV6oIVcWS+F/LFljiuRw1M5jaOb/8yXX86sULzJw6Bas2Za1Mc/tmAJ48eoiuPXtmGsbnWFK5ulO3blLbly9ahGLFiqHvoMGZ/DJ/CXlQM+11rJnl+/XyJUsQFRWFti4p0/+6dOiISdPc0aReXagplkT1qsaoXacuRo4ZK4TZv3cP7t65A/eZv571wef4cZRTK40yykpYudwTh0/4QL0AlWe+fPoEsVgM9TR5UL2MJj5mkgetbO2wYO0GjOjdC2Za6qhV1RDKyiqYPHeBEKZW/QbYsmoFXr98AYlEgivnz+Gczwl8yOSd7OwJb3z/9g1tOncVtulXNoK2ji4We0zHt69Jz+N1SxfjQ3h4pvv52/6kPKOppYUFy1di/Y5d2LBzFwwqG6FDy2a4nslaZXd+XsNdfnEN+x47ishvX9EhzTUMAKd9TsCwrAYqqati/Yrl2H3Uu0Dlwa/JebBM2jxYBh8zSUPH+g1wwGsbHgbeARHhwZ3bOLRzOxITEvD153NAv7IRZi1fjRXbd2HBuo2QL1Ec3Vo0wZuXL4X99Bk2As3btkNLBxtU11KHS73a6N5/IFqkmg58o+cSFCtWDN36DciDs88dyddxujJwmbJZKgOHh4XiwulT6OTaU2r778rVpZSUYGVrh+UL5iE8NBRisRgH9+xC4M0ARPy8B3/8kPR+vHrJItRp2Aheh46iSUtn9O/WGdf9cj7iJrcREQ56zoFBdWtoG2TegKFvZoUe0xZh09QRGOZkigkta0KhlDI6jJwihIn89BFKatLXmpKaBr5/znjay8yO3X7EZJSrZIhJrZ0wzMkUK0f2RsdR02BY3SbD/eSHebvvYde5V3iyuR3iT/bEnbWtsfTAQ+w+//u1swBAS00BzWwrYMOJZ78MN7dvDQR/jMaZWynTOuqXU8LAVsZ4HhyJJuNPYo33E3gOsUf3Roa/2BP7V8nKiPLkU9Rke0jR1q1b0bt3b9y4cQM3b95Ev379oKenh759008xJiMjA09PT1SsWBFBQUEYNGgQxo4di1WrVkFRURGdOnXC5s2b4ZKq8J38t5KSktQLXWqTJk3CokWLUKZMGQwYMAD//fcfrlxJWtxwx44dmDVrFlatWgVHR0fs3r0bixYtQqVKlX55XnFxcYiLS2nNjvzZqza3pO0RRESZ9hJKbe/u3ZjtMQN7DhyEZpoHcbLFCxdi35498Dl9RmqdDolEAitra0z/+ZJiYWmJx48eYcO6tcLUfMkSEhLQo2tXSCQSLF2+AgXNn6TfibNn8eNHFG7638D0KZNRSd8ALh074vv37+j/X08sXbUqywXh7Vs3o2GTJiiXZv7/jOOWfltBkJd5cOvmzTAxNYVNDds/jl9hyYNisRj9e/bA2ElTYFi5cpb27bl4EQ7u24sjvqekruGGTZqkClUNNnb2qGFqgt07tmPQsOHC4rRNW7bEwKHDAABm1avD//p1bNmwHo61nbJ5lnkrL/KgkpISrgXcxI8fP3Dh/HlMGDMGlSrpw6lOnXT72bplMxo3aZrhdexUty6uBdzEp08fsXnjRnTv0gUX/K5kmufzS26noa2dPWzt7IW/HWrWRE3bGlizaiUWLlkKIHvPkoIuw/RDxuknkUggEomwYuNmKKsk9QZ0nzMPfbt1wezFS6GgkDT8Pt3vs/hvkkxOTg4bduzCyEEDYaKjDVlZWdSuVx/1Gzf5/Y/zQzbyoKGRkdQaWTXs7BH8/j1WLVsqNV1edvL1hJEj8PjBfRw9czbD7xMSEtC/R3dIJBLMy2S9wfz0p9dwVixcsAB7du/G6XPnpJ4lQFJDc8Dt2/j29SsOHjyI3r164cz58/9cAxSQ+/dBiUSCMpqaWLF6DWRlZWFpZY3Q0BAsXbxYmJqvSdOmUvuys7dHNeMq2OG1DcPcRgAAVq1YgYAb/th38BB0dHVxxe8yRgwbCq1y5VA/CyNV/qpslGkG9uqBsZMnwyCLZZqdW7fC2MQUVjYZTx2UHKZ+4ybQKpfyPL575zbWr1qJM1evFshytJQ/zIP79uzGnJke2LX/gFQD4OWLF7Fw3lws9lwOG9saePXyJcaNGoV5s7UwbuIkvH/3DuNGjcLh48fTXdtpOdWtCz//AHz69AlbN21Ezy5dcM7PL12DY35Ll1y/SMMXT55g1vixGDxmHGrVb4CI8DAsmDYF7qPcMMszafqySbPnY4rbUDS3t4FIJIJOxUpo27krDu7akeE+92/fhtoNG6FsqnXF5OTk4LnFC5OHD4GdgR5kZWXhUKcunBoWnNGLybJTnkn7LLaxs0dw8Hus9lwK+wymrt318xq2/MU1vGvbVtRLcw0nc3Sqg9NXb+Dzp4/YsWUz+rt2w/Hzl9I1KuS37DxLBowai48REejStCGICOplNNG6UxdsWr4MMrJJ03lWt6mB6qnSzNLOHi71nbBjw1pMnDMfQNJaU9779mL+2g0wNK6KJw/uY+6k8SijVQ7/69QFDwPvwGvdGuw/e6ng3wfx58/j/Tu2Q1lFFY1bOmd7n0vXbsCYIQNha5w0DWy16hZo3b4DHtxNGmVGkqSO8Y2at0CfwUlTtpqaV8ct/xvYsWkD7GtlPENGftm7aDqCXzzFyDW7fhkuNOgF9i+diWa9BsPErha+ffyAQyvnY9f8aeg2MWXq5rT3AUqqnMrWsS/s80LQw7sYMH8N1LS08TwwAHsWTYeKRhkY13D8wzPNXR3rVUK3hgboMvsCHr7+CgsDNSwdbIeQT9HYdurFb3/fs0llfP0Rj8NX3mQaZkxHM3Sup4+6o04gLiFlNLyMSISbzz5i0sakqZgDX3yGqZ4qBrYyFqbmY4WHjEiU6/dj+gfu77kt241POjo6WLJkCUQiEapUqYL79+9jyZIlGTY+pV77qVKlSvDw8MDAgQOx6udc93369EHNmjUREhICbW1tfPz4Ed7e3jh9+vQv4zBr1izU+VmxOH78eLRo0QKxsbEoUaIEli9fjt69e6NXr6Sp1KZOnYpTp04JI64yM2fOHEzPhfnY01LX0ICsrGy6HpkRHyLS9dxMa//evRjUvx+279qd6Uvr0sWLsXDeXHj7+qabUkGrXDkYV5Ueql3F2BiHDx2S2paQkIDunTvj9esgnDh1usCMOAFS0i9tb8yPEREok6bXYVp6FZMaHE2rVcOHiAjMm+UBl44d8frVK7x98wad26Usjppcia9RqiQC7t1HJX0D4bu3b97gwrlz8Nq9R2r/ZbWSjh8RHi61IPKHD7+P29+U13kwOjoa+/fuxeRp0/44jv9EHkyTfh8/fMjwRf7H9+8IvH0L9+8GYvzPERISiQREhLJKith3zBtOqRbrXrF0CZYumI8D3idg+pspKRQVFVG1mile/ZyqQf3nenhV0kzJYGRsjBtXr/zJ6eaJvMyDMjIyMPi5YHJ1Cws8ffIYC+fPS9f49PbNG5w/exa79u7L8DiKioowMDSEgaEhbO3sYW5SFVs3b8aYceOyc6p5Jq+v42QyMjKwtrHBixcpBeesPksKMjX1pPRL2xvz44eITCvkymppQUtbW2h4AoDKVYxBRAgNDoa+oSHKlC2LDxHp7w3ZrWAxt7TCmWs3EPntGxLi46Fepgxa1K0Nc0vrbO0nL2WahhGZp2FGrG1tcWB3ykuuZgYjLjK7v04YNQInj3vj8Kkz0C5fId33CQkJ6Nu9K96+foMDJ3wKzKgnAND4eQ2nHeX0ISIi3WioP7F40SLMmzMHvqdOwTyDKbbk5eVh+PNeaW1jg1s3b2KFpydWrVmT42P/LXl1H9Qqp4VicnKQlU1ZD6iKcVWEh4UhPj4e8vLp1/tSVFSEabVqePnzXhkTEwP3KZOxe99+NG3eHABgZm6Oe3fvYtmSxQWm8Sm713FSmeY27t+9iwkjkxrZkss02sqlsOeoN2rXrSuEj46OxuH9+zB28pR0+0r27u0bXDp/Dpt27Zbafv3KFXz8EAGrKimV5GKxGO4TxmP9yhW4+fhp2l39dSnvJWmv4w/Q/M11fGDfXgzp3x9bd+5KN23ezOnu6NSlK3r8nEHAtJoZoqKiMHzQIIwZPwGBt2/jQ0QEnOxTOouIxWJcuXwZ61avwsfvP4T8K12esYOFiQm2bdmMUWMLRnmmtLo6ZGVl8TE8Qmr7p48f0o2GSrZu6SJY2dmj99DhAIAqptVQsqQiurZoguETp0BTSwtqGhpYuX0X4mJj8fXzZ2iWK4dF06ehgq5euv0Fv3uLaxcvYPnW9A1T1SwscfjiFXyP/IaE+ASoaWigQ6N6qGZhmQtnn3N/Up7JiHUN6WdxsujoaBw5sA9jJmV+Db9/+waXz5/Dhp27M/y+pKIiKhkYoJKBAaxt7eBYvRp2bduKoaPHZDl+eUk1OQ+mKb99/vgx3WioZCUUFDDTcyWmLVqKTx8iUKasFvZt3QzFUkoora6e4W9kZGRQzcISb16ljHxa5D4VvYePQPO2SZ2vjUxMEfLuHTYsXYz/deqCW9ev4fOHD2hokTKyWywWY8HUSfBauxqn79zP6enniuTrOG0+/PQx4rdlYCLC3u1eaNupU7rna5my6UdOfUpTrtbT18feEycRHRWF798jUVarHAb3dIWOnp4Qt2LFignrtiUzNKqCgAIyfWayvYtn4J7fOYxYtQOlNbV+GfbktjXQN7NCo659AADlDY0hr6CAJQO7wLmfG1Q0NKGsroHINKOcfnz5BKXS6TtcZ3bs+LhYHF2zGP3mrEA1x3rCsYKfP8aZnZsKTOPTgn41MHf3few5HwQAeBD0BXplS2FCZ/MsNT7917QyvE6/QEJixmuSjmpfDRO7mKPhGF/cf/VF6rvQzzF49Oar1LbHb7+hnVPFPzoXxn4nMTER7u7u2LFjB8LCwlCuXDn07NkTkydPhoxMgV5NSZDtWNrb20u1+jk4OOD58+fp5kUHgPPnz6NRo0YoX748lJSU4Orqik+fPiEqKmlOTVtbW5iammLbtqQFpb28vKCrqwsnp1/31k/9Ul3uZ6V/RERSAfbp06ewtZUefZH274xMmDAB3759Ez7v3r377W+yQl5eHpZWVjh39ozU9vNnzsLOPvO59vfu3o3+fXpj8zYv4SU2rSWLFmHe7Fk47O0NK+v0Q2DtHWri+TPpYaTPnz+Hbqp5dZMr/V+8eAFv35NQz6TwlF/k5eVhYWmF8+ek0+/CubOwTfUC9jtEhLi4pHm8K1epgis3b+PSjQDh06xFS9SuUweXbgSgfAUdqd/u9NqGMpqaaNxM+t9Br2IllNXSwvlU/7bx8fG4cvlytuKW1/IyDwLAgf37EBcXh05dumYa5lf+hTxY3dIKF85J97LPLA8qKSvjcsAtXLjuL3x69ukLQyMjXLjuD+tUo8OWL1mMRXPnYO+Ro7C0/n0lc1xcHJ49eYqyWlpC3CytbfDiufR1/vL5c6n5s/NbXufB1IhIWEMnNa+tW1FGUzPH+8kvfysNiQj37t6FllbKS0hWniUFnby8PMwtLXHp3Dmp7ZfOnYNNJvfrGvYOCAsNRVSqzisvXzyHjIwMypUvDwCwtrVLt8+LZ8/Cxu7PngHKKipQL1MGr168wN3bt9GkZcs/2k9eSE7Di2nT8Py5bJ3vg7uB0Cybkr+s7X6fhkSECSPdcOLIERw44Qu9ihXT7Te54enVi5fY530cagXwWWJlbY2zZ6Sv4TNnzsA+h2svLVq4ELNnzoT3iROwtsnalChJ5aKCc4/Liry6D9o71MSrly+FjkgA8OL5M2iVK5dhwxOQ9Dx++uQJtLSS3kMSEhKQkJAAUZoXQFlZWan95rfsXsdKysq44H8TZ6/dED49fpZpzl67Aasa0iMjjh44gPi4OLh06pxpHHZ7eUGjjCYaNZVez6h95y44fyNA6lha5cphkNsI7D5SMNbqkJeXh4WVFc6lGXl5/uwZ2P2i7L9vz24M7NMHG7duyzAPxkRHQybNFCyysrIgIhAR6tSvj+u3b+NKQIDwsbS2RofOnXElIECq4TStgnaty8vLw7S6Ba5ekM6DVy+ch2UNuwx/ExMTk65yRUY26e+00/8XL1ECZbW1kZiYiFPeR1C/WYt0+zu4czvUy5SRWjMqLSVlFahpaOD1yxd4EHgH9Zun309++JPyTEYe3A0U3idSO3Yw6Rpum4VruGGaazgzBTEPmlS3wNUL56W2X71wHha/qTeSk5ODlnZ5yMrKwufQQdRp3CTTij8iwpMH91EmVZknJiYaMqK017qM8Jxo1aETDl26igMX/ISPplY59BoyDOv2HvyT080T8vLyMLOwxOXz0vnw8vnzsLbN+DpOdt3vMl6/eomO3Xuk+86qhl26fV46dzbDfZZUVERZrXL49uULLp07g8bNWwpxM7eyxqs078dBL1+gvI5Ouv3kByLCnkXTEXjhFIYv3wYN7d/HKyEuFqI0zwkZGVlhfwBQqZoFHgdId0B97O8HfbOUxvPfHVucmAhxYvryjEhGFlSAyjMlSxSDRCJ9/xdLKN2zNCN1qmuhcgUVbPTJeMq90R2qYUo3CzQdfwq3nqWfjevKg3BU0ZFen8uogjLehP96wAP7N4lkAJlc/oiy2RIzb948rFmzBitWrMDjx48xf/58LFiwAMuXL8+bk84D2R75lFVv3rxB8+bNMWDAAHh4eEBNTQ1+fn7o3bu31KKMffr0wYoVKzB+/Hhs3rwZvXr1+u2QNjk5OeH/k8OmfrHLaKju7xQvXjzdwoW5ZehwN/Tp1ROW1taws7PHpo0b8O7dW/Tp1w8AMHXSJISEBGPD5i0Akl6S+/7XCwsWL0YNOzuhl6yCggJUfvbAXrxwITzcp2HzNi/o6lUUwpQqVQqlSpX6edxhqO/khAVz56KtiwtuBgRg84YNWP5znaPExER07dgRgYF3sP/QYYjFYmE/ampqmb5w/22Dhg3HgN69YGlljRp2dti6cSPev3uHXn2SRttNnzIZoSEhWLNxEwBg/ZrVqKCjA6MqVQAkre+0fOkS9Bs4CEDS4qAmadaJUFFVBYB02yUSCXZs24ZOXbulm+deJBJhwOChWLxgPgwMK0Pf0BCL589DSYWScOnYKdfTISfyIg8m27Z5M5xbtc6w0ejHjx9Cr2AAeP06CHcDA6GmpgYdXd1/Jg8OHDYMg3r/BwsrK9Sws8fWTRsR/O4dev7Mgx5Tk/Lgqg2bICMjk24dEo0yZVCieAmp7Z6LF2HujOlYu2UrdHT1hLUCFFNdw1MnjEeT5s1RQUcHHyM+YNG8ufj+PVJqjYQhbiPQx7UbHBxroVadujh36hROnjiOIydP5XWyZEte5MEF8+bBytoa+vr6iI+Px0lfH+zcvh3LVkhP2yiRSOC1bSu6duue7jqOiorC/Dlz0MK5JbS0yuHT509Yv2YNgt+/R5t27fI4VbInL9JwtocHatjZwdDQEJGRkVi9cgXu3b2LJZ6eqY7762cJAHz+/Bnv3r5FaGgoAAiNVWW1tKQasvJTvyHDMKxvb5hbWcHG1g7bN29E8Pt3cO2d1INw9rQpCAsJgef6jQCANh06Ysm8ORgxoB9GT5qCz58+Yebkiejk2kOYcq/PoMFo26QRVixeiCYtnHHy+DFcPn8Oh0+nVExG/fiBoFS9Xt+9eY0H9+5CtXRpVNBJasA7dvAA1DXKoLyODh4/fICpY0ejaUtn1G2Q8fpl+WXA0GEY0qc3qltawcbODl6bkp7HPfokpeHMqUlpuGJDUhquXbEcOnp6MK5qgvj4eOzfvQvehw9j086U3tb9Bg1G68aNsHzRQjRt6Qxf72O4dP6c1LR640e44eDePdi6Zx9KlSolzOuvpKICBQUFJCYmonfXLrgfeAfb9x+ERCwWwqgWoGfJcDc39OrRA9bW1rBzcMDG9evx7u1b9OvfHwAwaeJEhAQHY/PWrcJvktc9/fHjBz58+IDAwMCkirOf0+UtXLAA7lOnYtv27dCrmHF5cPKkSWjatCkq6Ojg+/fv2LtnDy5euADvEyeE43z+/Blv375FaEjSnPbPfq6nqlWArmEgb+6Dffv3x5pVKzFm5AgMGDQYL1+8wIJ58zBo8BDhuBPGjUXzFi2ho6ODDx8iMG/2HHyPjBSmHlVWVkZtJydMGj8eCgoK0NXVxeXLl7Bz+3bMXbAABUl2ruPMyjTF05Rpku3ctgVNnZ0zbfyVSCTY7bUNHbp2Tfc8VlNXT/c7OTk5aJYtKzVlWH4bMnw4+vXqBStra9ja2WHzz/eS//om5UH3yZMQEhKCdZs2A0hqeOr/33+YtygpDyaX90qkyoNNW7TAymXLYG5hAZsatnj18iVmuk9H85YtISsrCyUlJZiYVpOKh6KiItTU1IXtUVFRWDh3Dpq1dIaWlhY+f/6MDWvXICS44JVneg4agnED+6GapRUsbGyxd9tmhAa/R6ef6/MumuGOiNAQzFu9DgBQr0kzTB0xFLs2bUCt+g3wITwcsyeOg7mVtTBt3t2bAQgPDUVVMzOEh4Zixbw5kEgIfYYNlzq2RCLBoZ078L+OXTJcw8z3yCGUVteAdoUKePboEWZNHIcGzVuiVr2CMXoRyH55Zv3K5aigq4cqVU2QEB+PA3t24fiRw9iwI/3Ip11bt6BJy19fw3u2b0P7DK7h6KgoLFswD42bt0DZn3lw6/p1CA0OhnObthnuL7/0GDgY4wf1RzULS1SvYYt9W7cgNPg9OvZMyoNLPNwRERqKOavWAgBev3iB+7dvwdzaBt++fcW2VSvw/MkjzF6ZUhZeNX8uzG1soKdvgB/fv2PH+rV4+uA+Js9fJISp26QZ1i1ZhHIVdGBobIzH9+9h6+qVaNMl6d1OVU0NqmpqUnEtJicHDc2yqJTFqU//lj6Dh2JE/z4wt7SEla0ddm3ZhJD379D1v6R8OM99KsJCQ7Bk7Qap3+3x2gpLmxqoYpL+GdJr4CB0aNYYq5csQqMWLXH6uDeuXDiP/SdTOp1cPHMaBIK+oRHevHqJ2VMnQd+wMtqnWpu7/zA3DOnlCruateBQ2wkXzp7GGZ8T2HPcN49SI3v2LJyOm6ePof+81SheUhHfPiWNVlIopQT54klTqx5ZvRBfP4Sjx9SkMkQ1x/rYOXcyLh3cmTTt3qcP2L90FvRMzKFaJmnkbb0OPbBkUFec8loH89oNcO/yWTwJuCY1rd7vjq2gWAqVLW1xaMV8yBUvkTTt3p0A+PscRtthE/5mMv3SsWvvMKlrdbyN+IGHr7/C0lAdI11Msck3Zd3i2b2tUV5DET3mSa+F3buZEa4/isDD11/T7XdMRzN49LRCl9kX8DrsB8qWTnrn+xGTgKjYRADAkgMPcdWzJSZ0McfeC0GwNS6Dfi2qoN+SlIa/0kry0NUsBW31kgAgNFaFfY5B+JeYXE0LVvhdu3YNrVu3RosWSR1hKlasiF27duHmzZv5HLOsy3bj0/Xr19P9Xbly5XQ9rm7evInExEQsWrRI6A2yd+/edPvr1q0bxo4dC09PTzx8+BA9eqTvAZEdVapUgb+/P7qnWociv/9BXDp0wOfPnzB31iyEhYbCxNQUB48eg+7PocFhYaF4n2qk1aYN65GYmIgRw4ZhxLBhwvau3btjXXIDy9o1iI+PR9dOHaWONXHyFEyaOhUAYG1TA7v37cfUyZMwZ9ZMVKxYCfMXLUKnLl0AAMHv3+O4d1JPQoca0j1lfU6fyXDNlPzQtn17fP78CfNnz0Z4WCiqmppiz+EjQvqFh4VJpR9JJJgxdQrevn4N2WLFUElfH9M8ZgqNVdlx4dxZvH/3Ft0yyZfDR41CbGwMRrsNw9cvX5KmMPA+DiUlpT872TySF3kQSKpgvnrlCo6e8MnwuLdv3UKzRimVp+PHjJHaz7+SB9u4tMeXT5+xcM5shIeFwdjEFLsOHYaObsZ5MCs2r1uL+Ph49Ooi3bNwzMRJGPdzupqQ4GD069EDnz99hLpGGdjY2uLkhUvCcQGgRevWWOi5HEsXLsDE0aNgWNkIm3fuhn3NgjEkPlle5MHoqCiMGDYUwe/fQ0FBAUZVqmDjlq1w6dBB6tjnzp7Fu7dv4ZrBwsmysrJ49vQpdmz3wqePH6Gmrg5raxucPn8+XWN0fsuLNPz67SuGDhqI8LAwKKuooLqFBU6dOye1ftvvniUAcNz7GAb8rLgEgB7dkkZCpn4m5bfWLu3x5fNnLJk7GxFhYahiYortBw4LU/JEhIUhOFX6KZYqhd1Hj2Py6JFo6uSI0mpqaNW2HcZOdRfC1LB3wOot2zBvxnQs8JgBvUr6WLPVC1ap0u/u7dtwaZ7Su9p9fNLURx26dsPStesBJN1D3CeMw8eICGhqaaF9565wG19wXvCS/e9nGi6em3Iv3Hkw5V4YERaG4PcpaZgQH4/pEycgLCQEJRQUUKVqVew4cAgNU62fU8PeAWu3bsPcGdMxz2MGKurrY902L6lRolvWJ1VAtmnaWCo+y9asQ6fu3RESHIyTx70BAPUdpHvHHvQ5CcffjKj/Wzp07IjPnz9j1syZCA0NhWm1ajjq7Q295Gs4NDTdyHvbVKNib9+6hd27dkFPTw/PXyUtqLx29WrEx8ejU5r73uSpUzH153S4EeHh6NWjB0JDQ6GiogIzc3N4nziBho1S1jHxPnoUfXr3Fv7u9vP6Tr2fgiAv7oMVdHRw9MQJjBs9GnbWVtAuXx6DhwzFyDEpU0SFvA9Gz+7d8OnjR2iUKQNbWzucv+wnHBcAtmzfgWmTJ+G/Hq748vkzdHX1MG3GDPTp1z+vkyVbsnsdZ9XL589x4+pV7D3qnWmYS+fO4f27d+jimrP3vfzUrn0HfP70GfNmp+TB/UeOpsqD0mXCzRs2IDExEaOGD8Oo4Sl5sEv37ljzs6F+7ISJEIlE8JjmjtCQYGiUKYOmzVtg6owZWY5Xcnlm5/btQnnGytoavufOo2oGlbz5qXmbdvj6+TNWLpiHD+FhqFzVBGt370f5nx0yPoSHIST4vRC+bZeuiPrxHTs2rMO8qZOgpKwC+9pOGD0tJX3i4uKwbLYH3r15jZKKiqjTsDHmrV4HZRVVqWNfvXgeIe/foW3XbshIRFgY5k6eKEyt1rpjJwwcXTCmLEyW3fJMfHw8PCalPIuNjKvC68AhNGgivZbdy+fP4X/tKnb96ho+fw7B796hUwajVmRkZfHi6VPs27Ednz99Qmk1NVS3tsGhU2dQpYCtL9isTTt8/fIZqxfOT8qDxlWxZtc+aAt5MByh71PyoFgixpbVy/H6xQsUKyYH21q1sePEaZRP9U4W+e0b3Ee64WNEOJSUlWFsZo6tx3xgbpXyHJ80Zz48586Cx9hR+PzxQ1KZr0evApfHssK5nQu+fP4Mz/lzEREWBqOqJtiy76Aw+0ZEeBhCUqUhkJRGPkePwH1uxp0ybOzssXzTViyaOQOLZnlAt5I+VmzeJrX+2PfISMybPg1hIcFQKV0azVr9D2OmTJPqoN7UuRVmLVmGVYsXYdq40TCoXBlrvHaihkPNPEiJ7Lt8aCcAYOlg6ftQt0lz4dAiqaH226cP+BIeKnzn0KIt4qJ/4OKB7Ti4fC5KKinDyMoe/xs8Wgijb2aFXtOXwHvdEnivXwaN8jro7bEElUyrZ+vYvWYswdHVi7DFfRSiI79BTUsbzv1HoHabzEdE/m1Dl1+DRy9rrBpeE5qqJRDyKRprvZ9ihlegEKaceknoaipK/U5ZUQ7talfE8JXXkZFBrYxRXF4WB9ylOxy4b72D6dvuAABuPv2INtPOYk5va0ztboGg0B9wW3UDO8++EsK3qqmLLWNT3j/2TKmXbj/s3yAjQroRqzn2c3eRkZFSmzMbFFOrVi2sWbMGz549g5GREe7evQs/Pz8sXbo0d+OVh0SUlWFBP9WtWxe3bt1C37590b9/f9y+fRt9+/bFokWL0L9/f1SsWBFubm5wc3NDYGAgLC0tsXTpUjg7O+PKlSuYMGECgoOD8eXLF6j+HGkCAF27dsX+/ftRv359+PikVGK/fv0alSpVwp07d2BhYYELFy6gXr16Ur9PPk5QUBAqVqyIHTt2oG/fvli9ejVq1qyJPXv2YMGCBdDX18edO1m/yCMjI6GiooLQj58K1Poz/5J4ccEZlvuvkpf9N+bvLMhiEtNPCcqyTqFY5lO5MPY3fItPzO8o/PNki96aprmudImCMXrqX5XAZcIc+5HA98Kc4jJNzoT8iM3vKPzzlIvL/T4Qy9SX2Pj8jsI/r5Rcnk1+VGR4PwzO7yj80wZPvpzfUfi3JcYAl4bg27dvXFedh5LbBDRaroOMXMlc3bckIRofvful2z5t2jS4u7un205EmDhxIubNmwdZWVmIxWLMmjULEyYUvM6qmcn2k8fV1RUxMTGwtbWFrKwshg4din790ieahYUFFi9ejHnz5mHChAlwcnLCnDlz4Orqmi5s7969sXPnTvz3c5HVnOjatStevXqF0aNHIzY2Fh06dEDPnj3h7++f430zxhhjjDHGGGOMMcYYY6zwkpURZWktsexIXr/t3bt3Ug2ImS0FtGfPHmzfvh07d+6EqakpAgMD4ebmBm1t7RzPHve3ZHvkk4WFRa4P7dqxYweGDx+OkJCQPJmXv1GjRtDS0oKXl1eWf8Mjn3KORz7lHI98yjke+ZQz3EuY5Tce+ZRzPPIp53jkU87wyKec45FPOcdlmpzhkU85xyOfcoZHPuUcj3zKOR75lDM88imHeOTTX5HcJlC21fo8GfkUfrRvlv8NdXR0MH78eAwePFjYNnPmTGzfvh1PnjzJ1bjllXx98kRHRyMoKAhz5sxB//79c6XhKTo6GmvWrEGTJk0gKyuLXbt24cyZMzh9+nQuxJgxxhhjjDHGGGOMMcYYY4VV0ppPubzTbO4vOjoaMjLSAxNkZWUhkfw7nfvydVjF/PnzYWFhgbJly+baXIUikQgnTpxA7dq1YW1tjWPHjuHAgQNo2LBhruyfMcYYY4wxxhhjjDHGGGOFk8zPafdy+5Mdzs7OmDVrFo4fP47Xr1/j0KFDWLx4Mdq0aZNHZ537sjXy6cKFC7l6cHd39wwX08oJBQUFnDlzJlf3yRhjjDHGGGOMMcYYY4wx9jcsX74cU6ZMwaBBgxAREQFtbW30798fU6dOze+oZRlP+MoYY4wxxhhjjDHGGGOMMQZARiSCjCiX593L5v6UlJSwdOlSLF26NHfj8Rfl67R7jDHGGGOMMcYYY4wxxhhjrHDhkU+MMcYYY4wxxhhjjDHGGGMAZGSSPrm701ze3z+gCJ4yY4wxxhhjjDHGGGOMMcYYyys88okxxhhjjDHGGGOMMcYYYwyAbB6s+STK7TWk/gE88okxxhhjjDHGGGOMMcYYY4zlGh75xPLMl7iE/I7CP09DQT6/o/DPExPldxT+aSE/YvM7Cv88WZmi17MlNynLc1Elp2SLYO+q3BYVn5jfUWBFnHyuTzjPWPboqyrmdxT+eWIJv5fkBL8bs4LApbpOfkfhn9bmaJf8jsI/7XtkJKpoD8nvaBQZIpEIMrlcn0NF8N2ca3QYY4wxxhhjjDHGGGOMMcYAyIiSPrmJil7bE0+7xxhjjDHGGGOMMcYYY4wxxnIPj3xijDHGGGOMMcYYY4wxxhgDICOTB9PuFcFlGXjkE2OMMcYYY4wxxhhjjDHGGMs1PPKJMcYYY4wxxhhjjDHGGGMMgKxIBFlRLo9Uyu39/QN45BNjjDHGGGOMMcYYY4wxxhjLNTzyiTHGGGOMMcYYY4wxxhhjDICMTNInN1ERHAZUBE+ZMcYYY4wxxhhjjDHGGGOM5RVufPpL1q1ZDROjylBTKgVHO1tc8fPLNOyRQ4fQsllT6GmXg5a6GurVroXTp06lC/f161eMGDYU+ro6UFMqBSszM/j6+Ajfr1+7BrZWltBSVxP2c9LXN91+njx+jPZt2qCchjrKqpVG3VqOePf2be6ceC7x2rAOTuamMC6rjlZ1asH/6pVMw44Z2B/6qqXSfZrY2whhOrdommGY/zq0k9pXWEgIRvTrDatKujApVwYtajngfuAd4XsiwtI5s2BvbIiqWhro3KIpnj1+lPsJkAvWr1kDMyMjlFFWgpO9Ha7+Ig9eu3IFjerWgV45LWiqKMParBpWLFsmFWbLxo1oUr8edMtqQresJlo1bYqbAQFSYRITEzFj2lSYGRlBU0UZ5lWqYO6smZBIJBked/igQVAuLo+Vnp45P+FctnndWtiYGENXTRWNHGvi+pXM0+/KpUsoq6iQ7vP86VOpcN6HD6G2tSV0SqugtrUlThw9IvV9YmIi5kx3h42JMfTUS6OGaVUsmjNbSL+EhAR4TJ6EOjVsULGMOswNKmFIn94ICw3J/QTIBTs2rkc9i2owLaeB/9WrjYBrmV/HAHBk3x4413aAWXlN1KxqiHGDB+DL50/C912dm6GymlK6T5+OKddx3eqmGYZxHzNSCHPy2BH0avc/2BrqobKaEh7dv5f7J59LcvteCACbVq1EAxtLVNXSgKNpFXhMGIe42NgM97lq8ULoq5bCjPFjpbZH/fiBaWNGoqaJEapqaaCRrRW2b1yf8xPOZZvWroVV1SooX1oF9Ws64NovruPUbly7irJKiqhrZyu1fdumjWjZsD4MtLVgoK2Fti2a4Xaa+2BqSxfMh0bJEpg0ZrSwLSEhAdMnT0LtGtbQ1VCDqX4lDOrzH0JDCuZ1vGHtGlQ3NoKWqjLq1rT/7bOkSb260C9fDuVKq8C2uhlWeS7LNPyBvXtRWqE4urZ3kdq+cd1aONawhq6mBnQ1NdC4jhNOn5Quz5RWKJ7hx3Pxohydb27L7fRLSEjA/NmzYGliDC1VZdSytcGZUyelwnz//h0TRo+CmVFllCutgsZ16+D2zZtSYY4dPox2zi1gUEEbpRWK4/7du7l2zrktL/Lgt69fMdptGIwr6UFLVRl2FuY45esjFeZ3xy3qaZgss+v4it9ldGrXBlUrVURpheI4nqbMAwA/fvzAGLfhMDXQR7nSKrCzMMfGdWv/+DzzSnbK1EcPH0LrZs1Qqbw2ymuoo4FTbZxJ816XkJCAubNmwtzYGGWUlVDTxhqnT0pfx4vmz0Odmg7QVleDfoXy6OzSLl25kogw22MGjCrqQVNFGc0bNcTjRw9z78Rz0ZrVq2FkYAClkiVhV6MG/C5fzjRsaGgounftCtOqVVG8WDGMGjEiw3AHDxyAebVqKKWgAPNq1XD40CGp7yvr60NeVjbdZ9iQIUKY3r16pfu+Vs2auXPSuWjt6tUwrmwI1VKKqGlrCz+/X6dfj+7dYG5qgpLychg9cmS6MAkJCZg90wMmVYygWkoRtlZWOJXmObtg3lw42tujTGlV6GqXQ/t2bfEsTR4EkuoWXNr8D2XV1VCmtCqcHGvibQGrWwCylwcB4NLFi7Cr8X/2zjsux/V/4O9KkZDVpEIhMguVspOdvffmHHuWvTdlb9kr2ZvMaNDAcb7n2OOgwqFU9FD374/qqael9KT8zvV+ve5Xr677c3+u6/o81561KVywIBXNzNi0YUMqmVUrV2JRqRJFtLQoZ2LChHHj+JKiTf3q1Sv69u6Nvo4O2oUKUcvSksCAAPn70NBQBvbvj0np0mgXKkTrFi14+PChciKtZJSdj48cPoxNnTroFC9O0cKFqWVpye5du9LVuXjRIjTU1FLpkiSJObNnY1K6NEW0tHBo3Jj79/NeWZiV8YXk+PvcxLBIIRrbWCu4t2/umOYYRM8O7eUytSpVTFPGeewYuUxa7/W0NFnrukIp8VYm2zdtxNrCnLIlitLMvi5+37FhTEwMi2bNpHalCpQpro1t1crs27lD/v7vP/9kUI9u1KlcEcNCmmxeuzqVDl9vb/p07khNs7IYFtLkzInjqWQkSWLZ/HnUNCtLuZLF6Njckb//zJvjhIKMUVVRyZHnv0aenHx69uwZKioqBAcH53ZQlMKhgweZNH48k5yduel/i7r29rRv0zrdCR5v7+s0buLA4ePH8fb1o36DhnRu347goKRJD5lMRpsWzXn+/Dl79u8n+I/7rNmwHkNDQ7lMqVKlmTN/Add9fLnu40uDho3o2rEDfyareJ88fkzTRg2pULEiZy5cxPd2AM5TppK/QIEcs0dWOXn4EPNcJvP7hImcvHaDWrZ1GdC5A69evkxTfvqiJfj9/Vj+3Lj/N0WLFadF26RKd/3uvQoyZ338UVNTo2UymfCPH+jczIF8+dRxP3SY8763mTJ/AUW0teUyG1e6sm3dGmYtWc7RS1fR0dOjT3snIj99yjmD/ACeHgdxnjCeCc7OePv5Y2tnT0enNummwYJaBRkyfDhnvby4decuE11cmDdrJu5btshlrl+7SqcuXTl5/jwXr16jtLER7Vu15PWrV3IZ12VL2bZ5M0vd3Lh15y5zFi5g1YoVbFi7NpWfJ48d4/YtfwySpeG8wtFDHkyfNJExkyZz8aYv1nXr0r19O/55mXFH6mbwXe49fip/ypmZyd/d8vNlSJ/edOrWg0u+/nTq1oPBvXsRcMtfLrN6xXJ2bt3CwhWuXA8MZsa8+ax1c2XL+nUAfI6O5m5wMOOcnbl4w4dt+/bz+NFD+nTunDOGyAanDnsyf8pkho+bwLEr3tSyqcugLh15/U/a+fi2700mDR9Cp159OH3Tn1XuO7kXFMjU0UkDBGt37uHm/x7Jn9M34vNx8rzu6XVFQWb74fjGYXKZz9HRWFrbMGHG7ByKvXLIibLw6MEDLJk9g1GTXbjgF8Ci1es4dcSTJbNnptJ3JzCA/dvdMbeokurdvCnOXLt4kRUbt3DBL4ABv41g9qQJXDh1UnkGyCZHDnkwddIExk6azGUfP2zt7OjWru1383FEeDi/DxpI/UaNUr27cf0aHTp35eiZc5y9fJXSpY3o5NSaN8nKwUQCb99m57atWFStquAen4+DGO/sgtdNX3bs38/jh4/olWLgNi9w2MODKRMnMH6yM1d9/bCta0eXdk7p1iVaWloMHjacUxe88Au+w3hnF+bPnsX2rVtSyb54/pwZLs7Y2tmnemdYqhQz587j0o2bXLpxk3oNG9Kzcyf+l6wT99fT5wrPmo2bUFFRwal9+1T6coucsN+8WTPZvmULi1e44hsUTP9Bg+ndtQt3k7WhRw8fxpVLXmzYto0btwNo7OBAu1YtFOrrqOgorG3rMnPuvByLvzLICRvKZDLat2rJi+fP2b5nH/537uG2dj0GhqWy5O9/2YaJZJSPo6OiqFK1Gktc3dIN29RJE/G6cJ6N7u74Bd9h+MhRTB43ltNpDOzkFlltU9+47k2jJk04dOw4V318qd+gAV07tOdOssVsc2fOwH3LFpa6uuIffIcBg4fQs0tnBRnva9cZMmw4Xtevc+z0ab59i6Vd61ZERUXJZdyWL2PtypUsc3Pjys2b6Orp0bZlSz7lsX7JwQMHGD92LM4uLvgHBGBvb0+bVq3SnaCIiYlBR0cHZxcXqlWvnqaMr48PPbt3p2evXtwOCqJnr1706NYNfz8/ucxNPz9evHolf84kTPB17KRY3zZr1kxB7vjJvNOWAfA4eJCJ48cx2dkF31u3qWtvT7vWrdO1nywmhpIldZjs7EK1amnbb9aM6WzZvJkVbm4E3b3HoCFD6Nqpk8L4w/Vr1xg2fDhXvW9w8sxZYr99o3XLFgpp8MnjxzRp2IAKFSty7qIX/gGBuEydSoE8NLYAWU+DT58+xal1a+zt7fEPCGCyszNjx4zhsKenXGbvnj1MdXFh2vTp3L1/n42bN+Nx8CDTpkyRy3z48IGG9eqhrq7OiVOnuPPHHyxZuhTtokWB+AHrTh068PTpUzyPHME/IABjExNaODoq2DkvkBP5uHjx4ji7uHDtxg0CgoPp268fgwcO5HyKyXiA27dusXXzZqpWq5bq3bKlS1np6orbqlXc9PNDT0+Pls2a5amy8EfHFyLCwxkxeBD1Gqbul2zbu19h7OHqrQDU1NRo076DXObsNW8FmYMnTgEoyCR/f+/xU9zWb0RFRYVW7fJOmxrg2CEPZk6eyKiJkzl/I96GPTtkbMOhfXrhffUyy9dt4HrQXda578CsQgX5+8+fozEuW5Yps+eiq6efpo7o6CgsqlRl/nLXdP1Z67qcTWtWMX+5K6eveqOjp0c3p1Z5bpxQIPhZqEiSJOV2IFISGxvL27dvKVmyJPny5ePKlSs0atSIDx8+UDShYs5pIiIi0NbW5s279xQpUiRbuhrY1aVGzZqsXJM04G5ZtSqtnZyYM39+pnTUql6djp074zJtGgBbNm3EbcUKgu79gbq6eqbDUlpPl/mLFtG3/wAA+vbsST71fGzdvuM7X2ad0OgYpehp36QhFtWrM29F0irLpnUsadqqDZNmfn+w+PzJEwzv3YNrd+5Tytg4TZlt69bitnAevn89oqCWFgCLZ80gwM+Hg2cupPmNJEnYmJvRf/jvDBsTv4IsJiaGOuXLMXn2HHr0H5jVqKaipKZGtnUANLK3o0aNmriuWSN3q1UtPg3Ompe5NNizS2cKammx2X17mu9jY2Mx1tNlqZsbPXr1BqBzu3bo6umyduMmuVyvrl3QLFhQQc/rV69oXM+eIydP0rldO4aPGMnvo0ZlPaJp8PlbbLZ1NG9Qj2o1arJkZdKOLHvLGjRv3YZpc+amkr9x7RodWjTjwas38s5ESgb36UVkxCf2HU1a+dutrRPaRYuyccdOAHp27ICOri5u65NW1g3o0Q1NzYKs3botTb1BAbdpXr8eAX/9TWmjtNN7VoiI+ZZtHQAdHRphUb06c5a7yd2aWVvRtFXrNCd9tqxeyV73rVwKTNqFtHPTBjavcuP6H3+l6Yf7+rWsXDifm/97KM/HKZnnMpnL589y8XYwKilWnPzz4jmNalTh2NUbVK6auiPzo6ipKmdlS06UhTMnjuPR33+z5/gpudz8qS7cCbytUPZFRUbSpoE9c5a7snbpYipVrcaMRUvk75vb1qZV+46MnOQsd3NqYE/Dpo6MmzYjW/EuoqGc6ykd69ejWo0aLFuVtILNtmZ1WrZpw/Q56Q8WD+rTG1NTU1TV1Dhz4gRX/PzTlY2NjcXUUJ/FK1zp2rOX3D0yMpLGdW1Y6raS5YsXUbVadeYvXZaunsDbt3Gsb0/w3w+Uko/VlLS6yqGePdVq1mDFqqS6xLpGNVq2ccr0gHvvrl0oqKXFxm3ucrfY2FhaNXWgZ58++Ny4QfjHj+zxOJShnrKG+sxZsJDe/fqn+b5n505ERn7i2JnUAxa5RU7Yr1LZMoybPJnBw4bLZXp27oRWoUJsct/O58+fMdIpwR6PQzRr0VIuU8+6Ns1atGTaLMWy48XzZ1Q3r8g1X3+qpjM4lJvkhA23bd7EatcV+N+5l26bOiv+/hdtCFnLx8U087P7wEFaObVVcLe1qkmHTp2Z6JI0WNuwrg1NmzVn6sxZWYhl2iijPlZGm7pOjep06NwZ56nx/boKZUyYMNmZIcOT8nH3Th3RKlSILen00d69fUu50qU4c9ELu3r1kCSJCmVM+G3kSMZOmAjE90vMjEoze/4CBgwe/KNRllMgn1q2dQDY2dpSs2ZN1qxbJ3eramGBU9u2zF+wIMNvHRo3pnr16ix3VRz069GtG58iIjhx+rTcrXWLFhQtVozde/emqWv82LGcPnWKP//+W94mHNi/Px8/fsQzxa4pZREbl/2hl3p1balZ05JVyRbz1ahahTZOTsydn7H9HJs0plr1GixbobiDoayxEZOdXRj2229yt84dO1BIqxDuO3emqevt27cYGxpw4dIl7OvVB6B3zx6o51Nn2w7ljy2A8trUWU2DLs7OnDxxgnvJFvH+Pnw4d+/e5fqN+FMIRo8cyV9//cW5C0nt50kTJnDr1i0uX70KwBQXF3xu3pT/n5IHDx5QpVIlgu7excLCAogvW0vp67Ng4UIGDBqU/cgriZzIx2lRp1YtWrRsyew5c+RukZGR1KlVi9Vr1rBwwQIFXZIkYVK6NCNHj2bipPiTGmJiYihtYMCChQsZPHToj0RXgQ9fZNnWkdXxhUSG9O1NOVMz1BL6JZd8/dKV3bhmNUvmzeXu46dopdM3njZxAhfOnsH37h+p+saJ9O3amchPkXiePpPm+6wSq6QR6FYN61G1ek0WJbNhfcsaNG/ThimzU9vw8oXzDO/XB597f1KsePHv6q9TuSKDfx/B4N9HpitjWEiTrfsO0KKNk9xNkiRqmpVj0O+/M2Jc/GkXMTExVC9nwtQ58+g9MHv5+FNEBBUN9QgPD8/2WLUgfRLnBGr03YWaRkGl6o6VRRO8o/d/6jfMkzuf1NTU0NfXJ18+5Qw4Jefr169K15kRMpmMoMBAmjg0VXBv3NQBP1+fTOmIi4vjU+QnihUvJnc7dfIkdaytGTtqJGVKl6JWjRosXbSI2Ni0B9pjY2PxOHCAqKgo6ljbyPWePXOa8uUr4NSqJSalDGlgV5cTx1Ifg5FbyGQy/ggOol6jJgru9Ro1IdDPN1M6Du7aiV3DRulOPAEc3L2D1h06KgxYe505RdUalvzetxe1zcrQul5d9u9I6mS/fP6Mt6GhCmHLnz8/1nb2BPql3wj42chkMoIDA2nc1EHBvbFDU/x8M2fDO8FB+Pn6yjsWaREdHc3Xr18pViypIre1q8vVy5d5+OABAPfu3sHn5k0cmzeXy8TFxTFkQH9GjR1HpcoWWYnaT0Emk3E3KIiGTRTTYIPGTbj9nTTYpK4NVcuVpWPLFnin6GQE+PnRIIXOhg4OCjqtbW3xvnKZxwlHLdy/exe/mz40adYsXT8jwiNQUVFBW7toZqL3U5DJZNy/E4R9o8YK7vaNmhDon3ZesaxjTcjrV1y5cA5JkngXFsbZ40dp6Jh+3A/t3pkqH6cMx3GP/XTq2SvdxnVeJafKwlo2tvwRHMydgPgjuF48e8qVC+do5Nhc4duZE8bRyLEZ9mmssgOwsrHl4pnThLx+jSRJ+Fy7ytPHj6jXxCFN+Z+NTCbjTlAgjVKEp1ETB/wzKAf37tzBsydPmJgwQPg9oqOj+fb1K0WLKXZoJo8dTdPmLWjQuEk6XyryKSI8T+bj4KBAGjdRbM98z4bJuRscjL+fL3b16im4L1kwn5IlS6Y7kZSc2NhYPA8eJDoqitoJ7ZmUhIWGcv7sGXr1/b6+n0VO2S9GFpNqRXkBTU18b94E4o9vjY2NTSWjWSBJ5lchp2x45tRJalvbMHHMKCqYGGFrVZPlSxbL29TK8DevkFfycXrY1K3LmZMnef3qFZIkcf3qFR4/fEjjFP2o3EIZbeq4uDgiIyMV2ssxMRnn47QIDw8HkPcPnz19SmhICI0dksKWP39+7OrVy3Sf82cgk8kIDAjAoanib9q0aVN8fX48nH6+vjg4OirqbNYsXZ0ymYy9e/bQt3//VG3Ca1evUkpfn8rm5gwbMoSwsLAfDpeykY8tpLBfE4fs2U+WRhrU1NTkZgbHO0ckpsGEtBwXF8fZ06cpX6E8bVq2wNjQgHp1bTmeh8YW4MfSoJ+vL01Tyjs6EnD7tnx8qa6dHYEBAdzyj1+k9OTJE86cOUOLlkkLP06eOIGVlRXdunShlL4+ta2s2Lo56ZjqmJj4xbvJfws1NTU0NDS4cSPj48p/JjmVj5MjSRKXvLx48Pff1EtR34waMYKWLVvSxCF1P+Pp06eEhIQohC1//vzUq18fHyWFLbv86PjCvp07ef7kCROmTM2UP3t37KBdp87pTjzJZDI8D+yne5++6faNw0JDuXj2LD369s2Unz+LRBumHE9p0KQJt9Opj8+fOkW1mpasc1uBZfly2Neoyuwpznz+/FmpYXvx7BlhoSE0aKJYH9vY1/vu+JEg7yGO3VMOOTL59OnTJ3r27ImWlhYGBga4urrSsGFDxowZA4CKigpHjx5V+KZo0aJs374dUDx279mzZzRKOOqmWLFiqKio0K9fPwDOnj2Lvb09RYsWpUSJErRu3ZrHjx/LdSbqOXjwIA0bNqRAgQLs3r07J6KcLu/fvSM2NhZdPV0Fdz1dPUJDQjOlY6WrK9FRUXTolHSU1rMnTzl6+DCxsbEcOX6cyS4urHJzZcnChQrf/nHvHrrFilKskBajR/zOPo9DVKpcGYCwsDAiIyNZvnQJTR0dOX7qNG3atqN7l85cv3YtmzFXDh/evyc2NpaSuor2K6Gry9tMdATCQkK4evE8XfukX1neCbjNgz//pGuffgruL549Y8+2LZQxNWO75zF6DBjI7MkTObwvfvXc29D43y9l2Erq6vA2LHO/7c9AngZ19RTcdfV0CQ0JyfBb83JlKVm4EA1sbRk8bBh9BwxIV3bm1KkYGJaiUbIGwNgJE+nUpQu1qlWluFZB7OvU4beRI+nctZtcxnXZUtTU8jE82XnreYl/38fbTyfF76yjp0dYaNq/s56+PsvWrGXbnn1s27cPswoV6NSqBT7J7gQICw1NrVNXV0HnyPETaNe5C3Y1q1NKuzBN6tow5PcRdOjSNU1/v3z5wvwZ0+nQpSuF89AKCnk+1kmdV96lk1csrW1YvnErYwb2o7JecWzNTSmirc2MxWnvFrkTcJsH//uTzr3Tz+sXT50kIjycDt17pSuTV8mpsrBNx86MmzqNLs2bUqFkURrWqIpNvfoMHzteLnPC04M/7gZnuLtq5uJllK9oTt3KFaioU4z+ndozZ5krtW3zxj0JieWgjl7GeS45jx89Yu6M6Wxw357pxTBzp0/DwNCQBo2TJloPexzkbnAw0zNYxZicL1++MGf6dDp2zVv5WG7DNMvCjOsSC9Ny6GkXppGdLYOGDqNP/6S6xPfmTXZv387Kdesz1HH/jz8oXbI4etqFGTdqBLsOHMS8UqU0Zfft3kWhwoVp065d5iL3E8gp+zV2aMq6VSt5/OghcXFxXPa6yJmTJwgNeQNA4cKFqW1tw9KFC3nz+jWxsbEc2LeX27f85TK/Cjllw+dPn3L8yGFiY+M4eOQYEya7sHalG8sXL8q2v3mN3M7H32PxclcqVqqEhVk5dIsUopNTG5auXIWtnV229CqL7LSpE1nt6kpUVBQdkh311qRpU9asdOPRw/h8fOniRU6fOEHIm7TzqCRJTJk0EVs7OyonHIWbWJelClsW+pw/g3cJNtTTS2lDPUIyacO0CAkJQTdFutbV1U1X57GjR/n48SN9UgyoNmvenB27dnHu4kWWLF3K7du3cXRwkE8K5Dbv5GkwxdiCni6h6bRnMoODoyOrkqVBr4sXOHn8eIZpcPLECdS1s8OiSkIaTBhbWLZkCU0dm3Hi9Bmc2rWjW+dOXL+W9k6f3OBH0mBISAi6KeT19PT49u0b7969A6Brt27MmjOHhvXrUzB/fszLl6dhw4ZMmjxZ/s3TJ0/YuGEDZuXLc/LMGYYMGcLYMWPYlbC7zNzcHBMTE6ZNmcKHDx+QyWQsWbyYkJCQdH+L3CCn8jHET6wXK1IErQIFaNumDW4rVypMJB3Yv5+goCDmpbO7KrEsThk2PT29TJfTOc2PjC88efSIeTOms25b5volgbdv8def9+mZMHaaFmdOHCf840e69Uq/b3xwz24KFS5Mq7btvuvnzyTRhin7xjq6eoSlM77w/NlTbvnc5O8//2TrvgPMXryUU0ePMGXcGKWGLbE9ler31Um/3ykQ/H9H+VuLgHHjxnHjxg2OHz+Onp4eM2bMIDAwkBo1amRZl5GREZ6ennTs2JG///6bIkWKoKmpCUBUVBTjxo2jatWqREVFMWPGDNq3b09wcDCqqknzapMnT2b58uW4u7uTP3/+NP2JiYlRaFRGRERkOawZkXIlgSRJmVp5f3D/fhbMncMBz8MKjcy4uDh0dHVZs34Dampq1LS04s2b17itWCE/mg+gQsWK+Ny6TXj4R44ePsLQgQM4e9GLSpUrI8XFAdCqjRMjR48BoHqNGvj5+LBl0ybq1U9/l8vPJpWtJInMTBYf2rubItraNG3VJl2Zg7t2UKFyZapb1VL0Ii6OqjUtmThjFgAW1avz8H//Y8+2LXTo3iPdsElSGuHNC/xAGjzrdYmoqEhu+fkzc9pUypmaKkwcJeK2bBmHDh7g9IULCiu1PD0OcmDfPrbu3EmlypW5e+cOzhMmoG9gQM/efQgKDGT9mjVc9/XLmzZLThbsZ1ahgsLZwbWtbXj1zz+sW+mGrX3SPQjfKxeOHvLAc/8+1rtvp2Klyty/e5fpkyeib2BA1xSNxK9fvzK0b2/i4uJY7Jb+ReC5SVbyysO//mKey0R+nzCZek0ceBsSwuKZ05gxbjQLV69LJe+xeycVKqXOxyll6js0Rc/AIHsRyUWUXRb6Xr/G2uVLmbPclepWtXj+5AlzXCahq7eIkZOcef3PP8xxnsTOw8czvAtwx8b1BN2+xeZ9BzE0MubWTW9mTBiLjr5+urulcoPM1sWxsbEM7deXSVOnY1a+fKZ0r1qxnMMeBzl29ry8HHz1z0umTpyAx/GTmbrv4OvXrwzuE5+Pl7qt+q58bvAj7ZnTXl5ERkZx29+P2dOnUbacKZ26duXTp08MHdAPt3XrKFGyZIY6yleowDU/f8I/hnP86BF+GzyIk+cvpjkBtWfnDjp37Zbn7pgA5doPYNGy5Yz+bTh1qldDRUWFsuXK0aNPH/YmOyZp47ZtjBg6lMqmZVFTU6N6jZp06tqNu8nuk/mVULYN4+LiKKmji9vadaipqVHD0pKQN69Z7ebKpGSri3+0LZ8Xya18/D02rl3DbX8/9h7yxMjYhJve15k4ehT6+vo0zOTO0Z/CD6YFjwP7WThvLvsOeSoMSi1ZvoKRw4dRq1pVeT7u2acve5Jdgp6c8aNHc/+PPzh36XIaQUsRNvJmOs2J/JQVndu3baNZ8+YK9yUDdOmatMCrSpUqWNWqhVnZspw+dYr2HTqkVJNrKNt+y1a48tuwoVSvYoGKigrlTE3p07cfO3dsT1N+7KhR3Lt3D68rSZNKcQljC62dnBiVsOg4cWxh86ZN1Kvf4IfDlxNk1YZpySd3v3rlCosWLGD1mjXUtrbm8aNHjB87Fn0DA6YmjM/ExcVhVasW8xKuXqhZsyZ//vknmzZupHefPqirq3PAw4MhgwejV7IkampqNGnShObJTg3JS+REPi5cuDC3AgOJjIzk8qVLTJwwgbLlytGgYUNevnzJ+LFjOXX27HfbeL9EnZ2Ffsnw/n2ZNG0appnsl+zdsQPzyhZY1qqdoUxjx2boG6R/5/a+XTvp0LVrnmxTQzq/M2n/znFxcaioqLBmq7v8HvdZCxczuFcPFqxwk48z51jY8mh9LMgYVVVQU/K2HSlPnkGXsyh98unTp0/s2LGDvXv30iRhB4S7u3uqhl1mUVNTo3jCeZy6uroKdz517NhRQXbr1q3o6ury559/UqVK0oXoY8aMocN3GosLFy5k9mzlXzZfIqHRkHLFWdjbsFS7oVJy6OBBfhs6hN379tM4xXZSfQN98qmro6aWdPZ2RfNKhIaEIJPJ0NCIvytIQ0MDUzMzACytahEQcJt1a1azet16SiTcqVUpxcBNRXNzfDLYYv8zKVaiBGpqavJdRom8f/s21S6KlEiShMfuXbTr2l1uj5R8jo7mxGFPxrqk3rqso6ePWUVzBTfTihU5e+JYwvv41TRvQ0PR1U+6jDAzYfuZJKbBlCta34a9TbWCKyVlypYFwKJKVcLCQlk4d26qyadVK1awfMlijp05S5UU9+RMd3FJ2P3UVa7n5YsXrFiyhJ69+3DT25u3YWFUNjOVfxMbG8vUyZNYv2Y1fzx4+MPxVhbFS5RMMw2+CwtLtZolI6zq1MFz/z75/7pprGx69/atgs45U6cwcvwE2nfuAkDlKlV4+fIFq5YvVZh8+vr1K4N79+TFs+d4nj6Tp3ZLQLJ8HJY6H5dIJ69sdFuOZR0bBo8aA4C5RRU0tQrSvWUzxk6doZDnPkdHc+qwJ6PTyMeJvHr5gptXL7N2557sRygXyKmycMWCubTv2l2+89Pcogqfo6OZMmYkv0+YxB/BQbx/+xanhkmTprGxsfjfvMGuzRv5K+xfvspkLJszi/W799G4WXznuFKVKvx57x5bVq/ME5NP8nIwJOM8l0jkp08EBwZw704wzgmr4eLi4pAkCb3CWnicOEn9ZPFa4+aK29IleJ48jUXVqnL3O4FBvA0Lo4mdrdwtNjYWH29vtmxYz+uPEfJ6/OvXrwzs1ZMXz59x5PTZPJePk+qStMrCjOsSkzKJdUkV3oaFsXj+XDp17cqzJ0948fw53TsmtdESB69KFirIrbv3KFsuvn7Q0NCgnGl8e6amlRVBAbfZsHY1bmsUJ6Nvenvz8MEDtu7KW3k9J+wHUFJHhz0eh/jy5Qv/vn+PgaEhs6ZNxaRMGfn3ZcuZcurCRaKiovgUEYG+gQEDevXEOJnMr0BO2VBP3wB19XwKbeoK5ubyNnV2/M1r5HY+zojPnz8zd+YMdh04KL+frErVqvxx9y5r3FzzxORTdtrUnh4HGTF0KDv27lM4JQDi8/G+Q54K+Xjm1CkK+TiRCWPGcObUSc5c9KJU6dJy90T/Q0ND0E+2yOZt2Pf7nD+Tkgk2TLk74m1YWKqdCllBX18/1c6ft2/fpqnz+fPneHl5cfBQxncLAhgYGGBiYsKjR49+OGzKJNF+KeMaFvY21W6orKCjo4OH52G+fPnC+/fvMTQ0ZNoUF3lfMDljR4/m5MkTXLx0mdLJ0mDJDMYWbuahI+N+JA3q6+un2jUTFhZGvnz5KFGiBACzZs6kZ69e8nuZEhdI/zZsGC5TpqCqqoqBgUEq+5ibm3Pk8GH5/5ZWVtwODCQ8PByZTIaOjg52trZYWVllO+7KIqfyMYCqqipmCeNXNWrU4K///Y8lixbRoGFDAgMCCAsLw6Z20oRKbGws169dY93atUR+/oxeQh8xJCQEg2RlYVhY2HfL6Z9FVscX4vslgdy7cweXcWOBpH6JYZFCHDh+knoNG8rlo6OjOXrIg0nTpqcbhpcvnnPt8iW27dufrozvDW8ePXjAph27shjDnCddG75Nf4xGT18ffUND+cQTQPmK5kiSxJtXryiXkO6yi65efBoMCw1FTz8pDabX7xQI/gsofb7tyZMnfP36lTp16sjdtLW1qVixorK94vHjx/To0YNy5cpRpEgRyiY0jl68eKEgV6tW+ivhE3FxcSE8PFz+vHz5Uilh1NDQoKalJZe8Liq4X77ohbWNbTpfxe94GjpoIO47d9E82TnBidjY1uXJ48fyzh3Ao4cP0DcwSHeiBeIHIRN3eGloaGBVqxYPHvytIPPo4UOMjE0yFb+cRkNDgyo1auJ95ZKCu/eVS1imc9dDIn7e13n+5DFdevdJV+bUkcPIYmJol8ZuHisbG548eqDg9vTRI0olXP5uZFIGHT09hbDJZDL8bnhjaW393bj9LDQ0NKhhacmli14K7pe9LmJtk7ENkyNJEjKZ4uWaK5cvZ8nCBXieOIllGg3i6OhohV2IED+hnJhuu/XsiU9AADdu3ZI/BoaGjB43jiMnTmY6bDmJhoYG1WrW5OolxTR47fIlan0nDSbnjzvB8oYIgJW1NddS6Lzq5aWg8/Pnz6ntp6qmkO8TJ56ePHqMx8lTFE/oAOUlNDQ0sKhekxtXFFfo3rhyCcs6aeeVz2mlHdX4gcHElYaJnD56GJkshrbpHEcI4LlnNyV0dGjomDdXDn6PnCoLv0R/RiWFnVXVVJEkCUmSqNugIWdu+nHy+k35U7WmJW07d+Xk9Zuoqanx9etXvn79mkZeV1VIq7mJhoYG1WtacuWSYjl45ZIXddIoBwsXKcL1WwFc8fWXP/0GDcasQgWu+PpjVTupjbPadQXLFy3k4LHj1ExRDtZr1CiVnhqWVnTq1o0rvv6pJp6ePH6E58nTeTYf16hpyeVLiu2Z9GyYHvHtkPi6pHzFity4Hcg1v1vyp0Wr1tRr0IBrfrcoVdooQz2ymNQXPu/esZ0alpZUrVYtja9yj5ywX3IKFCiAYalSfPv2jRNHj9Cideod31paWugbGPDxwwe8Ll6gZRoyeZmcsqG1rS1PHj9RKK8eP3yIvn58m1pZ/uYF8lo+Tk56dYlqHqtLfqRN7XFgP8MHDWLrjp1p9usSSZ6Pjx05Sqs2SXlUkiTGjx7NiWNHOXH2XKpJgTJly6Knr8/lZGGTyWTcuH49wz7nz0ZDQwNLKyu8LiqmwYsXL2Jj++PhtLaxwevCBUWd58+nqXPH9u3o6urSslWr7+p9//49L1++RD/ZoqfcRD62kMJ+l7yyZ79EChQoQKmENHj0yBFap0iDY0aN4tjRI5w9fyFVGpSPLfyt2H9++PAhxiZ5Y2wBfiwNWtvYcDGl/IULWNWqhbq6OhDf703ZplZTU5O3qQFs69blwYPM2UdbWxsdHR0ePnxIwO3btHFyylpEc5CcysdpIUkSMQljEI2bNCHwzh1uBQbKH6tatejeowe3AgNRU1OjbNmy6OvrK4RNJpNx/do1bJUcth8lq+MLhYsU4Yr/bbx8/ORP34R+iZePH5a1FXc3Hff0RBYTQ6du3dMNw/5duyipo0vT5i3Sldm7YwfVa1pikcfa1JBkw5TjKdcuXaJWOvVxbRtbQt68ISoyUu72+NHD+InhUqWUFjbjMmXQ1dPn2iXF+tjX+3qWxo8EeQNx55NyUPrOp5Tbj1O6J75LOXiYeFFjVmjTpg1GRkZs3rwZQ0ND4uLiqFKlSqoB8vQu2EtO/vz50z2SL7uMHD2GQf37UdPKCmtrG7Zt3cLLly8YNGQIADOmTuX161dscd8OxE88DR7Qn6UrVlDb2lq+okRTUxPthFn6wUOHsmHdWiaOG8uw337n8aNHLF28mN9+T7o3Z+a0aTg2b07p0qX59OkThw4e5PrVqxw9eUouM2bcePr07IF9vXrUb9CQC+fPcfrUSc6maEjkJgN/H8H4oYOpWsMSyzp12Lfdndf//EPP/gMBWDJ7JqGvX7N842aF7w7u2kmNWrWpWNkiXd0Hd+/AsVVrihVPPdA34LcRdHZswtrlS2nVvgN3AgLYv8Od+W6rgfh03H/476xbvowy5UwpY2rKuhXL0CyoiVOnLkq0QPYZMXo0Q/r3x9LKijrW1rhv3co/L18yYHB8Gpw1bSqvX79m0zZ3ADatX4+RkRHlEyaNfW/eZLWrK0N++02u023ZMubNnsXWnTsxMTGRrwbTKlSIQoUKAdCiVSuWLV5EaSOjhGP3glmzciW9E85XL1GihHy1WCLq6uro6unL/c4LDBs5ihGDBlK9piW1rK3ZtS3efn0TVrbNmzGdkNevWbNlKwAb16zGyMQE80qVkclkHNq/j5NHj7Jtb9LOpyG//U5bx6asXr6M5q3bcPbkCa5dvsTxZIMGji1a4rZkMaWMjKhYqTJ/3Alm45pVdE+YRPj27RsDe/bgXnAQuw8dJi42lrCE36Fo8eIZTkT/bAb8NoKJwwdTpUZNatauw4Ed23nz6h+6J+TjZXNmEvrmDUvXbwKgcfMWTBszkj3btlCvcRPehoQwf6oz1SxrpTo279DunTRtmXY+hviVYZ57d9O+W480z8j++OFfXv/zD2EJ9588fRi/405HV0++wzEvkBNlYePmLdi2bg0W1apRw6o2z54+wXX+PBxatERNTY1ChQun+q5gwYIULV5c7l64SBGs7exZNGNq/KCFkTF+N7w5vH8fU+cvTOVnbjF81Ch+GziAGpaW1La2Yce2rbx6+ZJ+gwYDMHfGNN68fs26LdtQVVWlkoVivEvq6FAgfwEF91UrlrNozmw2bt+BkXHqcrBw4cKp9BTUKkjx4iXk7t++faN/j+7cDQ5ir+cRYmNj5XqK5bF8/Nuo0Qwb2J+allbUtrZmR0Jd0j/BhrOnx9tww9ZtAGzesJ7SRkZUSF6XuLkyZHh8XVKgQAEqp7CPdsIO9+Tuc2ZMx8GxGaWNSvPpUySHPQ7ife0ah46fUPg2IiKCY4c9mbtocY7EP7so234At/39efP6NVWrV+P1q9csnj+XuLg4Ro9LurfN68J5JEmifIUKPHn8mBlTXChfvgI9k90B9+Hff/nn5UvevHkNwMOEwTFdPT35KuK8QE7YcMDgIWxevw7n8eMY8ttvPH70iBVLlzDkt98z7S/8d22Y2XwcGRnJ02R38z5/9ox7d+5QtFgxjIyNKVKkCHb16jNjiguampoYGRtz4/p1DuzZw7zFS3LMHlklq21qjwP7GTpgAIuXx/frEsv3Asn6dbf8/Xnz+hVVq1XnzevXLJw7FykujtHjJ8j9HTdqFIcO7GffIU8KFy4s11NEWxtNTU1UVFT4beRIli9ZjGl5M0zNzFi2eDGaBQvSuVvqRXa5yegxY+jfty9WVlZY29qydfNmXr54wZChQwGYOmUKr1+9wn1H0rGDwcHBQHw6evv2LcHBwWhoaFA54S7jkaNG0bhhQ5YuWUIbJydOHD+Ol5cXV1LcYxwXF8fO7dvp1adPqjZhZGQkc2fPpn2HDugbGPD82TOmT5tGyZIlade+fQ5aJGuMGjOWgf36YmllhbWNDVu3xNtv0JB4+02fOoXXr16zNeE+bYA7CfaLiozi3du33EmwX+Jd0P5+frx+/Zrq1avz6vUr5s+ZQ1xcHOMmTJTrGDNyJAf278Pj8GEKFS4sH6PQTkiDAGPHT6B3j+7Y16tHg4YNOX/uHKdPnuRcignb3CaraXDI0KGsX7uWiePHM2DQIPx8fHDfto1de5J2Wbdq3ZqVrq7UqFGDOgnH7s2eOZPWbdrIFxuNHjOG+vb2LFq4kE6dO3PL358tmzezbsMGuZ5DHh7o6OhgZGzMH/fuMX7sWJzatqWpo+NPtND3yYl8vHjRIqysrChnaopMJuPsmTPs3rWLNWvXAvFH8iU/4Qjix/pKlCghd1dRUWHk6NEsXrgQMzMzzMqXZ/HChRQsWJBuPXqQV8jK+EJ6/ZL8KfoliezduZ3mbdqku5gtLi6O/bt20qVnz3Tvj/oUEcHxI4eZvXBRNmOacwwZMYpRgwdSzdKSWnWs2e2+lVf/vKTPwHgbLpgZb8NVm+PHaNp36Yrr4oWMHTaECVOn8+/798ybNoVuffrKyzCZTMaDv/4HwFeZjDevX/PH3TtoaRWirGn8Lu6oyEiePklqz7x8/ow/7sa3Z0obGaOiosKg339n9bKllDM1o6ypGauWLUFTU5P2GSyWFQj+P6P0ySdTU1PU1dXx9/fHyCh+pVtERAQPHz6kQYP4c351dHR4k+zCxIcPHxIdHZ2uzsSBl9jYWLnb+/fv+d///sfGjRupV68eAN7e3sqOjlLo1KUL//77nkXz5xPy5g2VLSw4fPyEfIVLSMgb/km202rbls18+/aNsaNGMXbUKLl7z9692ZTQESxtZMTx06eZPGEC1laWGJYqxe8jRjJuYlIDMSwslEH9+xHy5g1FtLWpUrUqR0+eoomDg1zGqV07Vq5dy/IlS5gwdizlK1Rg74GD1LVLOmIpt2ndoRMf/v2X1UsW8TY0hAqVKrPtoCeljON3IL0NCeH1P4o71SLCwzl74hgzFqXfWX3y6CG3fXzYceR4mu+rW1qxfvc+ls6ZyeolizAyMWH6wsW0S1ZhDB09li+fPzNjwljCP36khlUtdhw+RqHChZUQc+XRsXMX/n3/L4sXJKXBQ8eOJ0uDIQppMC4ujlnTp/H82TPy5ctH2XLlmDVvPgMGJw2ybNm0EZlMRu8UHVrnadOYMn0GAEtd3Zg3axbjR4/ibVgY+gaG9B80COep0/iVaNepMx/+/ZcVixYQGhKCeWUL9h4+Kt8hGBYSwqtkafCrTMbsKS6EvH5NAU1NKlaqxB7PIzgkO6+7to0tG3fsZNGc2SyeO4cy5cqxaecuhR0VC5avYNGc2TiPGc27t2/RMzCg94CBjHeZAsDrV684dyp+h1hjW8UdRIfPnMMuD93b1qpDRz5++Je1SxcTlpCPNx84JN9JGBaqmI879uhFVGQkuzdvZNH0KRTR1samXgMmzpyjoPfpo4fc9vXB3fNYun7fuHKZ1/+8pFPP3mm+9zpzGucRw+X/jxnUD4CRk1wY5TzlR6OsdHKiLBwxcTIqKiqsmDeXkDevKV6yJE2at2DCtJlZCtuqbTtYMnsmY4cM5OOHD5QyMmL8tJn0HDDoxyKbA7Tv1JkP7/9l2cKkfLzvSFI+Dk1RDmYG94RysH8PxZWFE6dMZXIGR10k5/WrfzibkI8b2tRReHf07Dns89AdCR06d+bff9+zZMECQkPeUMnCggNHj8nrkpQ2lOLimDNjOi+ePUMtoS6ZOXeewoB9ZngbFsawgQMIDYlvz1hUqcKh4ydo1MRBQe6wx0EkSaJjHu3Y5YT9YmK+MH/2TJ49fYpWoUI0bdacDVvd5YP/ABHhEcyZMY3Xr15RrHhx2rRtx7TZc+SrtQHOnDrJ70OS9A7sE3+06+Sp03DOZFr+GeSEDUsbGeF54hRTJ03EvnYtDAwNGfr7CMYkG/j/nr/w37ZhZggODKBNs6TB06mTJwHQvVdv1m3eAsDWnbuYM2M6Q/r148OHfzEyNmbarNnyiZ28QFbb1O5btvDt2zfGjx7F+NFJ/boevXuzIWHRUsyXL8ydmZSPHZs3Z5O7u8Jx81s3bQSgZVPFcm/95i307BO/KGnM+Al8/vyZcaNG8fHDB2rVqcPRU6conMf6JV26duXff/9l/rx5vHnzBosqVTh+8iQmiTZ88ybVKSR1ku0sDgwIYP++fZiYmPDwyRMgfkfJ7r17mTljBrNmzKCcqSl79u2jTorTKLwuXuTFixf0698/VbjU1NT44949du/axcePHzEwMKBBw4bs2bcvT9mwc5cu/Pv+PQvmzyPkzRssLKpw9MSJZPYL4eVLxZNgbGonnQQTGBjAgf37MDYx4e9H8QOoMTFfmD1zBk+fPKFQoUI0a96Crdt3KKTBTRvjJ0gcUxwbuWnLVvnCwrbt2rF67TqWLlnM+LFjqFChIvsOemBnn3fGFiDrabBs2bIcP3mSCePHs37dOgwNDXF1c6NDsmsgpkydioqKCrNmzODVq1fo6OjQqnVr5sybJ5epVbs2Hp6eTJs6lflz51KmbFmWr1hBj5495TIhISFMmjCB0NBQDAwM6Nm7t/zOqLxETuTjqKgoRo0YwT///IOmpiYVzc3ZvnOnwl1smWHCxIl8/vyZUSNG8OHDB+pYW3Pq7Nk8lY+zOr6QWR4/fIjfzZscPJ7+KTLXLl3in5cv6ZFsEVJKjhzyAEmSH/+fF2mbYEPXRQsICwmhYmULdnsepXRyGyZLg1qFCrH/+CmmTRhH8/p2FCteHKcOHZmUcMc7QOibNzjWTdqdtGGlGxtWumFrXw/Ps+cBuBMYSKeWzeQys5wnA9ClZy/cEhaB/j52PF8+f8Fl7BjCP36gZq3a7Dt2Ms+NEwq+j6qqCqqqyt2ppGx9vwIqUsotSEpg8ODBeHl5ye9gmjlzJufPn2fgwIG4urrSvXt37ty5w+7du4mLi2Py5Mlcv36dTZs20a9fP549e0bZsmUJCgqiRo0avHr1CiMjI9zd3WnZsiWampoULFgQXV1dWrRowcyZM3nx4gXOzs7cunWLI0eO0K5du1R6skJERATa2tq8efeeInns3oVfhdDomNwOwi9PSc28s+L9V+Xzt9jvCwnSJSLmW24H4ZdH7T/YuFAmRTSUvk7mP4faf3Brv0AgEKRE1MfZo0A+te8LCTIkNk7pQy//KUQeFuQFPnxJffyxIPPEimIwW3yKiKCioR7h4eFirDoHSZwTsBm8l3waBZWq+5ssGt/NPf5Tv6HS73wCWLFiBba2trRu3RoHBwfs7OyoVKkSBQoUAGD58uUYGRlRv359evTowYQJEyhYMP0fs1SpUsyePRtnZ2f09PQYMWIEqqqq7N+/n4CAAKpUqcLYsWNZunRpTkRHIBAIBAKBQCAQCAQCgUAgEAgEAsF/AFWVnHn+a+TIzqeUREVFUapUKZYvX87AgQNz2julIHY+ZR+x8yn7iJ1P2UfsfMoeYudT9hGrNLOH2PmUfcTOJ4FAIBD1cXYRO5+yj9j5lD1EHhbkBcTOp+whdj5lD7Hz6eeQOCdQb+g+8uVX8s6nmGiub+z+n/oNc2REJygoiL/++os6deoQHh7OnDnxd3S0bds2J7wTCAQCgUAgEAgEAoFAIBAIBAKBQCAQ5BFybDnxsmXL+Pvvv9HQ0MDKyorr169TsmTJnPJOIBAIBAKBQCAQCAQCgUAgEAgEAoEgW6iqqKCq5FNElK3vVyBHJp9q1qxJQEBATqgWCAQCgUAgEAgEAoFAIBAIBAKBQCAQ5GHERQoCgUAgEAgEAoFAIBAIBAKBQCAQCASAqmr8o2yd/zX+g1EWCAQCgUAgEAgEAoFAIBAIBAKBQCAQ5BRi55NAIBAIBAKBQCAQCAQCgUAgEAgEAgHizidlIXY+CQQCgUAgEAgEAoFAIBAIBAKBQCAQCJSG2PkkEAgEAoFAIBAIBAKBQCAQCAQCgUAAqKiqoKqq3J1KKkrW9ysgJp8EAoFAIBAIBAKBQCAQCAQCgUAgEAgAFRUVVJR8TJ6y9f0KiMmn76Cupoq6mjid8Ecoll89t4Pwy6P2HyyUlE0hdVHMZQdhv+zzXzzTV5loiDo428RKUm4H4ZcnNk7YMDuIfJx9VGPjcjsIvzxxIh1mC1VRDGYb9f/gamdlEifMl21EXZJ9ihXQyO0g/NJEyb7ldhB+ab6KtozgF0SMKgoEAoFAIBAIBAKBQCAQCAQCgUAgEAAqqvGPsnX+1/gPRlkgEAgEAoFAIBAIBAKBQCAQCAQCgUCQU4idTwKBQCAQCAQCgUAgEAgEAoFAIBAIBMRfoaDsaxT+i9cyiJ1PAoFAIBAIBAKBQCAQCAQCgUAgEAgEAqUhdj4JBAKBQCAQCAQCgUAgEAgEAoFAIBCQeOeTcncqiTufBAKBQCAQCAQCgUAgEAgEAoFAIBAIBLnKq1ev6NWrFyVKlKBgwYLUqFGDgICA3A5WphE7nwQCgUAgEAgEAoFAIBAIBAKBQCAQCAAVlfhH2TqzwocPH7Czs6NRo0acOXMGXV1dHj9+TNGiRZUbsBxETD4JBAKBQCAQCAQCgUAgEAgEAoFAIBAAqqoqqCr52L2s6lu8eDFGRka4u7vL3cqUKaPUMOU04ti9n8SG9eupYGpK4YIFsa5dG+/r19OVffPmDb179sSiUiXy58vH+LFjU8ncv3+fLp06Ub5cOTTU1Fi1cmUqmevXrtHOyQmT0qXRUFPj2NGjqWQG9u+PhpqawmNft2624poTbNm4germFdAvWoSGdW246e2drqzPjRs0a9SQcqUMMCimTZ3qVVm3StE+e3ftpJhm/lTPly9f5DI3vK/TrWN7KpUtQzHN/Jw6fiyVX2Ghofw2eBCVypbBsHhROjm15vGjh0qLtzLZtGE9lSuUp3jhQthZ1+FGBjY8duQIrVs0x8TQAP0SxWlUz54L588ryPx5/z49unShUnkztDTUWbMqdRr89OkTE8ePw9zMlBJFCtO4fj0Cbt9SkImMjGTc6FGUL1uGEkUKY1m1Kps3blBOpJWIsu23a+cOtDTUUz3J02Bm/P1V7Ae5Y8PNGzdQx7Im+iWKy/WcO3s2XX9H/jY83fScF9i4fj3m5c0oWkiLunXq4O2dcV3St3cvqllUpqCGOhPGjUsl8/XrVxbMm0vlihUoWkiLOpaWnD+Xvn2WLl6Epnq+VLpCQ0MZPGAAZY2NKF6kME6tWvLoYd4rC9evW4dpuXIU1NSkdq1aXM+gLga4evUqtWvVoqCmJmampmzYkH7e2r9/P2qqqrRv3z5dmUULF6KmqsrYMWMU3A8fPkzz5s3R1dFBTVWV4ODgrETrp6Ls9gzAYU9PqlWpQiFNTapVqcLRI0cU3m9cvx7LGjUoUbQoJYoWpZ6dHWfPnFGQOXL4MK2aN8dAVxcNNbU8a0Nl5+FdO3agqZ4v1ZO8HJw3Z3aq92VKl1LQk5YOTfV8rFi+THmRVxI5kY89PT2pYmGBZoECVLGw4EiKNFiubFnUVFVTPSN+/z1NP4cNHYqaqior3dx+OJ45iSRJzJozG0NjIzQLF6Jhk8bcv3//u995Hj5M5WpVya9VkMrVqnIkRd+ijJkpKur5Uj2/jxyZJb9jYmIYOXo0JfX10NIuglP7dvzzzz9KibsyyK265NWrV/Tu3RudkiUppKWFZc2aCkeuSJLE7FmzKF2qFFoFC9K4UaNM/a65gSRJzJo9C8PSpdDUKkjDxpkLq6enJ5WrWJBfswCVq6TOq9euXaONkxOGpUuhoqbK0TT6vypqqmk+S5ctBeDff/9l5KiRVKxkTsFCWhiXMWHU6FGEh4crJe7KIqdsCLBu/TrKmpajQEFNrGqnTuOZ8fvx48e079ABHT1dihTVpkvXroSGhmYv0kpE2fl48+bNNKhfnxLFi1OieHEcmzbF399fQebbt29MnzYN03Ll0CpYEDNTU+bOmUNcXJxcJq26Rk1VlWVLlyov8kriR+qS+/fv07FLZ3l94ZbGONa169do064thsZGqKjn4+ix1OMws+bMxryKBVraRSimUxKHZo74+fmlG84WrVulqyu3yEqbGuDa1atY165N4YIFqWhmxqYUafDr16/MmzsX8/LlKVywIFY1a6bq92amTR0aGsrA/v0xKV0a7UKFaN2iBQ/zYL8OlD9O2NqxaZrjhF3at5XLfPv2jXmzZlLdvAIGxbSpUakiSxbMV8jHv9I4oSD3iIiIUHhiYmLSlDt+/Di1atWic+fO6OrqUrNmTTZv3vyTQ5s9xOTTT+DggQOMHzsWZxcX/AMCsLe3p02rVrx48SJN+ZiYGHR0dHB2caFa9eppynyOjqZcuXLMW7AAfX39NGWioqKoVr06bqtWZRi+Zs2a8eLVK/lz/OTJrEUwhzns4cGUiRMYP9mZq75+2Na1o0s7J16mYz8tLS0GDxvOqQte+AXfYbyzC/Nnz2L71i0KcoWLFOGvp88VngIFCsjfR0dFUaVqNZa4uqXpjyRJ9OrSmWdPn7LH4xBXff0obWxMu5YtiYqKUlr8lcGhgweZNH48k5yduel/i7r29rRv0zpdG3p7X6dxEwcOHz+Ot68f9Rs0pHP7dgQHBcllPn+Opky5ssyZNx+9dNLg70OHcvmiF1vct+MfGEQTh6a0bt6c169eyWUmTxjPhfPn2bp9B4F37zFi9CjGjxnDyePHlWuEbJAT9gMoUqQIj1+8VHiSp8HM+Psr2A9yz4alSpVmzvwFXPfx5bqPLw0aNqJrxw78mUbH6MSxY9zy98fA0FC5kVcSHgcPMnH8OCY7u+B76zZ17e1p17p1unWJLCaGkiV1mOzsQrVqadcls2ZMZ8vmzaxwcyPo7j0GDRlC106dUtkZ4PatW2zdsoWqVaspuEuSRJeOHXj69AkenofxvXUbY2MTWjZvlqfKwgMHDjB27FhcpkwhIDAQe3t7WrVsma79nj59SutWrbC3tycgMBBnFxfGjB6Np6dnKtnnz58zaeJE6tWrl67/t27dYvPmzVSrVi3Vu6ioKOzq1mXBwoU/HsGfQE60Z3x9fOjZvTs9e/XidlAQPXv1oke3bvgnG0AoVbo08xcswMffHx9/fxo2akTH9u0VBjiioqKwtbNj/oIFyo20EsmJPAzx5eDTl/8oPMnLQYDKFhYK728FBSu8T/n9xs1bUFFRoX37DtmOtzLJiXzs4+ND927d6NWrF0HBwfTq1YtuXbsqDGL5+fvz6vVr+XMuYTFEp86dU/l59OhR/P39McyjdQnAkmVLWeHmxpqVq7jl44u+vj5NWzTn06dP6X7j4+ND1x7d6d2zJ3cCAundsyddundTsNMtH1/evPxH/lxIGPTq3KljlvweM24cR44dZf+ePXhfuUpkZCSt27YlNjY2B6yRNXKrLvnw4QP17O1RV1fn1OnT/HH/PkuXLVM4cmXpkiW4urqyavVq/Pz90dPXp5mjY4a/a26xZOkSVri6smbVam75+aOvp0/TZhmH1cfHh67du9G7Vy/uBAXTu1cvunRTzKtRUVFUr16NNatWp6vnzavXCs+2LVtRUVGhY4f4dPr69Wtev37DsiVLuXfnLtu3uXP23DkGDhqkPAMogZyy4YEDBxgzdixTXaYQFBBIPXt7WrRSTOPf8zsqKgrH5s1QUVHh0kUvblz3RiaT0aatk8IAbW6RE/n46tWrdOvWDa9Ll7hx8yZGRkY0b9aMV8n6vUsWL2bjxo2sWr2a+3/+yaLFi1m2bBlrViel1+R1zavXr9myNT59dujYkbzGj9Ql0dHRlCtblkXzMx7Hql6tGmtWpj+OVaF8BdasXMm9oGC8r1yljEkZHFu24O3bt6lk3VauREXZ52Zlk6y2qZ8+fYpT69bY29vjHxDAZGdnxo4Zw+FkaXDG9Ols2bQJ15UrufPHHwwZMoTOHTsSlKxf9702tSRJdOrQgadPn+J55Aj+AQEYm5jQwtExT/XrIGfGCXftP6AwPngzIAg1NTXadUjKf27Ll+G+ZTNLXN3wC77D7PkLWe26gk3r1gK/1jih4PuoqKjkyANgZGSEtra2/FmYzljAkydPWL9+PeXLl+fcuXMMGzaMUaNGsXPnzp9piuwhCdIkPDxcAqR3Hz5IstjYbD2169SRhgwdquBW0dxcmjh58ne/rd+ggTRy1KgMZUxMTKRlK1ZkKANIHp6eqdx79+kjtXFyynYc03o+fI5RymNVq7bUf/BgBbcKFStKYyZMzLSO1k5tpS7de8j/X7tps1REWzvT3wPS7gMHFdxu3b0nAdLNgCC527vIaKlY8eLSynXrlRL3KNlXpTy1ateWBg0ZouBWsaK5NH7ipEzrqFSpsjRtxsw03xmbmEiLly1TcHsXHiGpqalJnkePKbhXrVZNmuTskqS3soU0feYsBZkaNWtKk12mKC3+edF+G7ZskbS1tbPt769gv9y0YVpPsWLFpHUbNyq4PXz6TDIsVUq6FRScZnrOzvP56zelPLVq15YGDxmq4FbR3FyaMGnSd7+tV7++9PvIUanc9Q0MJNeVqxTcWjs5Sd2691Bwe/vho2RWvrx06uzZVLru3v9TAqSA4Dtyt8gvMVLx4sWldRs2ZjvesXFxSnnq1KkjDR06VMHN3Nxcmjx5cpryEydOlMzNzRXchgwZItnY2Ci4yb5+lezs7KRNmzdLffr2lZzatk2lKzwiQipfvrx07vx5qUGDBtKoUaPS9PPxkyfxtgwMVFq8Y+PilFav50R7plPnzlKzZs0U3BwdHaUuXbtmqK9YsWLSxk2bUrk/ePxYAiT/gACltmnyah7etGWrpK2tneG3U6dPl6pVq56lsLZ2cpIaNmqktPIrL+fjzl26SM2aN1eQcWzWTOrarVu64Rg1apRkamoqfYuNVXB/8fKlVKpUKenuvXuSiYmJtGLFCqXFXfr6TSlPnOyrpK+vLy1asEDu9iUyStLW1pY2rF2X7nddOneWmjdrpuDWzNFR6ta1a7rfjB4Zb6c42ddM+/3x3XtJXV1d2r9nr1zm1fMXkqqqqnT21KlsxT2vpsHM1CWTJk2S7O3t0w3Xt9hYSV9fX1q4cKHcLfrzZ0lbW1tat369ctJgrHKeuG/xYV20cKHc7Ut0fFg3rFuf7nddOneRmjdrruDWzLGZ1K1rtzTlAemI5+HvhqetU1upcePGGcoc3H9A0tDQkL7GyJRmh7xqwzp16kjDhg5VkDE3N5ecJ0/OtN/nzpyVVFVVpfAPH+Uy/757LwHShXPnfzjeebkuSfnIvn6VChcuLLlv3y53a9mqldS/f38FufYdOkg9e/VKV49T2/j0+f+lLkn+mJiYSK7LlmcoA0hHDnl+V1f4+38lQLp47pyCe/DtAKl06dLSm5f/ZFrX957caFOPnzhRqmhuruA2eMgQydrGRv6/gYGBtHL1agWZNk5OUvcePTLdpv7jf/+TACno7t2kNrBMJhUvXlzasHHj//txwpTPgiVLpcKFC0v/vPtX7ubYooXUq28/Bbk2bdvJ9eT0OOHz0LcSIIWHh+f2sPn/axLnBNpMPix1mHFOqU+byYclQHr58qUUHh4uf758+ZJmWNTV1SVbW1sFt5EjR0o2NjY/wxRKQex8ymFkMhmBAQE4NG2q4N60aVN8fXxyKVSKXLt6lVL6+lQ2N2fYkCGEhYXldpDkyGQygoMCadxE0X6Nmjjg7+ubKR13g4Px9/PFLsUqwqjISKpWKI+FaTm6dmjH3Swe0RMTIwOgQIH8cjc1NTU0NDTwvXkzS7pyEplMRlBgIE0cFG3YuKkDfr6ZS4NxcXF8ivxEseLFMu3vt2/fiI2NJX+K1deampr43Lwh/7+uXV1OnTzB61evkCSJq1eu8OjhQxwcm6ZUmSvkpP0iIyMxNzOlfNkydGzXVmG3SWb9zev2g9yzYUpiY2PxOHCAqKgo6ljbKOge2L8fY8aNo7KFRRZi9vOQ2zBFXdLEIXt1iSwmJtUOCU1NTW4my6MAY0aOpHmLFjRu4pBKR+L28OR6EsvCmzdupJLPDWQyGQEBATR1dFRwb9q0KT7p2M/X15emKezt2KwZt2/f5uvXr3K3uXPmUFJHh4EDB6br/4gRI2jZsiUODqnt96uQU+0ZP19fHFL+Ls2apaszNjaWA/v3ExUVhbWt7Q/7+7PJqTwM8eVgBdNymJYxoUNbpzTLwUePHlLW2Ajz8mb07tmDp0+epKsvNDSUs6dP07f/gGyFS9nkVD729fHBMYVMM0dHfNJpy8lkMvbs2UP//v0VVlLHxcXRt08fJkyYgEUerUsgfvV0SEgIjsnq5Pz589Ogfn1uZpAWfXx9Fb4BaNbUMd1vZDIZu/fuYUC/fnI7ZcbvgMAAvn79qvCbGBoaUsWiSobh+xnkZl1y4sQJrKys6NKlC/p6elhZWiocuZJo2+Rhy58/P/UbNEg3bLmFPB00VQxrg/oNvpMGfXBM0b5t1syRmz4/3u8KDQ3l1OlTDPxOeRceHk6RIkXIly9vXJmdUzZMTOPJ9QI4Nm0q15sZv2NiYlBRUSF//qR+coECBVBVVcX7RvrHYv0McjIfJyc6OpqvX79SvHhxuZu9nR2XLl3iwYMHANy5c4cb3t60aNEiTR2hoaGcPnWK/gPyVn0MP16X5AQymYxNWzajra1N9WQ7xaOjo+neuxdrVq5Kd5dVbvAjbWq/NNJgU0dHApKlwZiYGAoky3OQ0K9Lpz+WVps6o37djTzSr4OcHSdMzq4d2+nQuTNaWlpyNxtbO65evsyjh/H5+N7du/j63KRps+bArzNOKMgcqioq8nuflPYktIuLFCmi8ORPkX8TMTAwoHLlygpulSpVSnenZF5ETD7lMO/evSM2NhY9PT0Fd109PUJCQnIpVEk0a96cHbt2ce7iRZYsXcrt27dxdHBI96zJn837BPvp6OoquOvo6REWmrH9LEzLoaddmEZ2tgwaOow+yToV5StUZO3mLew95MnmHTspkL8AzRs3zNI5rBUqVsTI2IQ506fz8cMHZDIZrkuXEhoSQmjIm6xFNAdJtKGunqIN9XT1CA3J3LnbK11diY6KokOn1MfLpEfhwoWxtrFh8YL5vHn9mtjYWPbt2cMtf39C3iT9dstc3TCvVInyZctQVKsg7Vq3wnXVaura2Wfar5wkp+xXsWJFNm7ZykHPw2zftZsC+Qvg0LCB/J6czPqb1+0HuWfDRP64dw/dYkUpVkiL0SN+Z5/HISolq7yXL11Kvnz5+G3ESPIqiXWJboqyUE9PN1vn5zs4OrJqpRuPHj4kLi4Or4sXOHn8OCFvksqwgwcOEBwUxNz5aR9nVtHcHGMTE6ZPm8qHhLJw6ZLFhISEEJJHysL06mK9DOrikJCQNOW/ffvGu3fvALhx4wbbtm1j06ZN6fq9f/9+ggID8/yRet8jp9ozISEhqdK1rq5uKp337t2jWJEiFNLUZMRvv+Hh6ZmqEZ6Xyak8XKFiRTZv3cahw0fYsXs3+QsUoHGD+grlYO06ddjivp0Tp06zbsMGQkNCaFS/Hu/fv09T5+5dOylcuDDtMri/LDfIqXwcEhKCbhbS9dGjR/n48SN9+/VTcF+yeDFq+fIxctSorETrp5MYr1R20dUjJIO2dXq2TNdOx47x8eNH+vXpmyW/Q0JC0dDQoFgxxcUmenq6hGSyzZBT5GZd8uTJEzZs2EB5MzPOnD3LkKFDGTN6tPzIlfRtm7o8zW3SDatexmENCQlBTzeNtJON+O3YuYPChQvToUP6R4y+f/+eufPnMXTIkB/2R9nklA0zk8Yz47eNjQ1aWlpMdp5MdHQ0UVFRTJw0kbi4ON68yd22YU7l45S4ODtTqlQphYVHkyZPplu3blSuVIn8GhpYWVoyevRounfvnqaOnTu+nz5zix+tS5TJyVMnKVRUmwKFtHBduZILZ85SsmRJ+fux48dT18aWtk5OPyU8meVH2tRptVVSpsGmjo64ubnxMKFfd/HCBU4cP54qz2XUpjY3N8fExIRpU6bI+3VLFif063I57yYnp8YJkxNw6xb/u3+f3v0U34+ZMIGOXbpQp3o1dApr0cCmDsNGjKRT167ArzNOKPh1sLOz4++//1Zwe/DgASYmJrkUoqwjJp8SiImJSXXZlzJJecasJEl54tzZLl270rJVK6pUqULrNm04ceoUDx884PSpU7kdNAV+xH6nvby4dMOHFavXsH7Nag4dOCB/V9vamq7de1C1WjXq2tvjvmcvpuXLs2ndukyHSV1dnZ379sevJjbUx7B4UW5cv4pDs2aoqqllLYI/gR9Ngwf372fB3Dns2LM31aDZ99jivh1JkjArY0KxQlqsX7uGLt26oZbMPuvWrOGWnz8eh4/g7evHwiVLGDtqJJe8vLLkV06jbPvVsbahe8+eVKteHTt7e3bt24dZ+fJsSDgrOLP+/ir2g9yzYYWKFfG5dZsr3t4MGjKUoQMH8L8//wQgKDCAdWtWsynhvP+8jrLrkmUrXDE1M6N6FQuKFNRk7OjR9OnbT55HX758ycRxY9m2Y0eqHVKJqKurs+/AQR49eIihrg7FixTm+tWrNGveXCGv5wWyar+05BPdP336RJ/evdm4aZNCRzc5L1++ZOyYMezctStd+/1q5ER7JjM6K1asyK3AQLxv3mTIsGEM7N+fPxPy8a+Esu1nbZNUDtrb12PPvv2UL1+BdWuTysFmzVvQvkMHqlStSuMmDhw5fgKA3emcE75z+3a6du+RZ9OsMvPxj+jctm0bzVu0ULjTKSAggFWrVuHu7p7n6pI9e/dSqKi2/Pn6LX6F9I+kxax8s9V9Gy2aN0/z7qsf8Tuv9J3g59clEL+zztLSkvkLFlCzZk2GDh3KoEGD2Jjiwvm82Ofcs2cPhYoUlj+Jq/RzOg1mhm3u7vTskX55FxERQas2ralcqTIzZ8z8YX+yy8+2YXZldHR08DhwkBMnT1KoSGG0ixUlPDwCS0vLPNM2zIm6JJGlS5awf/9+Dnl6KqStAwcOsGfPHnbv2cPtgADct29n+fLl7NixI00/3d3d6ZFB+vyZKLMuURaNGjYi+HYAN69dp7ljM7r06C4/xef4iRNcunIZtxUrfkpYfgRlp8EVbm6YmZlRtXJltAoUYPSoUfTt1y9VnsuoTa2urs4BDw8ePnyIXsmSaBcqxLUrV2ieB/t1oPxxwuTs2uFOJQsLrGrXVnA/7OHBwX372Lx9J1d8/Fi3ZStr3FzZt3sX8OuNEwoyRkU1Z56sMHbsWHx9fVmwYAGPHj1i7969bNq0id9//z1nIp0D5I1943mAhQsXMnv2bKXrLVmyJGpqaqlWMLwNC0u10iEvYGBggImJCY8ePcrtoABQIsF+YSlWBb8LC0NHN2P7mZQpC4BFlSq8DQtj8fy58tUIKVFVVcXSqhaPH2ct3jUsLbnud4vw8HC+ymSU1NHBoZ49Nawss6QnJ0m0YcodJmFvw1LtREnJoYMH+W3oEHbv20/jJk2y7Hc5U1POeV0iKiqKiIgIDAwM6NOjByZlywDw+fNnZk2fxn6PQzRv2RKAqtWqcffOHVa6rvghP5XNz7KfqqoqVrVqyfNeZvz9FewHuWfDRDQ0NDA1MwPA0qoWAQG3WbdmNavXreeGtzdvw8KoaFpOLh8bG4vLpEmsXb2a/z3MG2VhYl2ScodEWNjbLE8KJ0dHRwcPz8N8+fKF9+/fY2hoyLQpLpQpG19+BgUGEhYWRl3rOvJvYmNj8b5+nQ3r1hIeFY2amhqWVlb4BQQQHh6OTCZDR0eHenVtsbKq9cNhUybp1cVhGdTF+vr6acrny5ePEiVKcP/+fZ49e6awmjLxEm0NdXX+99df3Lt3j7CwMGrXSrJDbGws165dY+3atXz+8iVPduTSIqfaM/r6+qnS9du3b1Pp1NDQwCwhH1vVqkXA7dusWbWKdSkGXvMqOZWHU5JYDma0k1tLSwuLKlV4nEZbz9v7Og/+/ptde/YqLUzKIifycaJMaCbT9fPnz/G6eJFDyS74BvC+fp2wsDDKJFuBGBsby4QJE1i5ciVPnj7NfESVjFObNljXSSrDE083CAkJwcDAQO4e9jYs1Y6I5KRny/TsdNHLi8Meh1Lp+J7f+vp6yGQyPnz4oLD7KSzsLXVz+ajN3KpLTE1NMTAwoFKlSgp6zCtV4vDhw3J/IC3bpi5PfzZOTk5YW1vL/083DYZlHFZ9ff1UOyrC3v54HXT9+nX+/vtvDuzbn+b7T58+0bxlCwoVKsSRw4dRV1f/IX+Uwc+yYWbSeLppLYXfjo6OPH74iHfv3pEvXz6KFi2KvqEBZRPamLlFTtUliSxftoyFCxdy/sIFqlWrpvBu8qRJTE7Y/QRQtWpVXjx/zuJFi+jbt6+CbGL63Lc/7fT5s1FWXaJMtLS0MDMzw8zMDBsbG8pXMmer+zZcJjtz6fJlHj9+TNGSir9Pxy6dqWdvzxWvSz8ljGnxI23qtNoqKdOgjo4OnkeOKPTrprgk9esS+V6b2tLKituBgQr9OjtbW6ysrJQSf2WQ0+OE0dHRHPbwYMr0Gam+nzHFRb77KVHPPy9e4Lp0Cd179QZ+jXFCwa9D7dq1OXLkCC4uLsyZM4eyZcvi5uZGz549cztomUbsfErAxcWF8PBw+fPy5Uul6NXQ0MDSygqvixcV3C9evIhNHryr4P3797x8+TLPnImroaFBjZqWXL6kaL8rl7yoY2OTzlepkSRJfvZqeu/v3bmDvr5BujIZoa2tTUkdHR4/ekhQYAAtW7f5IT05gYaGBjUtLbnkpWjDyxe9sLZJPw0e3L+foYMG4r5zl3xi40fR0tLCwMCADx8+cPHCeVq3ibfP169f+fr1KyqqikWRmpqavOOd2/ws+0mSxN07d+R5LzP+/gr2g9yzYUZyiR2m7j174RcQiM+t2/LHwNCQMePGc+xk3tkBKrdhirrkkpdy6pICBQpQqlQpvn37xtEjR+R5tFHjxtwOCsbvdoD8sbSqRbfuPfC7HZBq4kRbWxsdHR0ePXxIYEAArZ3yRlmooaGBlZUVFy9cUHC/ePEitunYz8bGhosp7H3h/Hlq1aqFuro65ubm3Ll7l8CgIPnTxsmJRo0aERgUhJGREU2aNEklU6tWLXr07ElgUNAvM/EEOdeesbaxwSvl73L+/Hd1Js/HvwI5nYcTkSSJO99pz8TExPDXX3+hb5C6rNyxzR1LSyuqVa+expe5S07kYwAbW1supJA5f+ECtnXrptK33d0dXV1dWrVqpeDeq3dvgu/cUcjrhoaGTJgwgTNnz2Y5rsqkcOHC8sE5MzMzKleujL6+PheS1ckymYyr165lOLlja2Oj8A3A+YsX0vzGfcf2eDulqLvLli37Xb+tLK1QV1dX+E3evHnDH/f/yPXJp9yqSwDq2tnJ74lJ5GGyI1cSbZs8bDKZjGtXr6Ybtp9FumnwomJYr167+p00aMuFCynS4PkL1LVNnVczw9Zt27CysqJ6GuVdREQEjs2boaGhwfGjx3J958nPsmFiGk+uF+DCxYtyvfJ8nEm/S5YsSdGiRbl06RJhYWE4tcndI9Byqi4BWLZ0KfPmzeP0mTPUqpV6AVZ0dHSm+23bMkifuYGy6pKcJHnb0HnSJO4GBhF8O0D+ALguW477lq25Er5EfqRNbZ1GGrx44QJWKdIgpOjXHT5Mm+8cO5hemzqxX/fw4UMCbt/+rp6fSU6PEx71PIQsJoYu3Xukevf5czSqKfKxajr5OC+PEwoyh4qKSo48WaV169bcu3ePL1++8L///Y/BgwfnQGxzDrHzKYH8+fOne7lXdhk9Zgz9+/bFysoKa1tbtm7ezMsXLxgydCgAU6dM4fWrV7gn224dHBwMxF8i/fbtW4KDg9HQ0JCfxSqTyeRbY2UyGa9fvSI4OJhChQrJVzFERkYq7AB49uwZwcHBFC9eHGNjYyIjI5k7ezbtO3RA38CA58+eMX3aNEqWLJmnzvn/bdRohg3sT01LK2pbW7Nj61b+efmS/oPiM9vs6dN48/o1G7ZuA2DzhvWUNjKiQsWKAPjevMlqN1eGDP9NrnPx/HnUqlMHUzMzPkV8YuO6tdy7e4elbivlMpGRkTx9/Fj+//Nnz7h35w5FixXDyNgYgKOenpTUKUlpIyP+/OMPnCdMoFUbJxqnuJA5txk5egyD+vejppUV1tY2bNu6hZcvXzAo4ezyGVOn8vr1K7a4bwfiB/0HD+jP0hUrqG1tLV+Vo6mpiba2NhCf7v6XPA2+fs2dhDSYuMvkwvnzSJJEhQoVePz4MVOdJ1O+QgV69+0HxF+wV69+faY6O6OpqYmxsTHXr19j7+7dLFq69CdaKGNywn4L5s6ltrU1ZmZmREREsH7tGu7euYPrqlWZ9vdXsR/kng1nTpuGY/PmlC5dmk+fPnHo4EGuX73K0YSJpRIlSqRasaiuro6evp68DMkrjBozloH9+mJpZYW1jQ1bt8TXJYOGxNcl06dO4fWr12zdvl3+zZ2EuiQqMop3b99yJ6EuSbzzyt/Pj9evX1O9enVevX7F/DlziIuLY9yEiUB8R9OiShWFcGhpFaR4iRIK7p6HDqGjUxIjI2P++OMPJowbS5u2bXFIcWF1bjJm7Fj69umDVa1a2NrasnnTJl68eMHQYcMAmOLiwqvXr+VHnwwdNoy1a9cyftw4Bg0ejI+PD9u2bWPP3vgdIQUKFKBKCtsULVoUQO6uoaGRSkZLS4sSxYsruP/777+8ePGC169fA8jPdNbX188zi0EgZ9ozI0eNonHDhixdsoQ2Tk6cOH4cLy8vrly7JtcxbepUmjdvTmkjIz59+sTBAwe4euUKJ0+flssk2vBNgg0f5EEb5kQenj93DnWsrTEzK09ERATr1qzh7p1g3JKVg86TJtKqdWuMjIwJCwtj8cIFfIqIoGfvPgrhi4iI4LDnIRYtyVv1R3KUnY8BRo0aRcMGDViyeDFObdty/NgxvC5e5Nr16wp+x8XFsX37dvr06UO+fIpdqPTqEn19fSrmsbpERUWFMaNGsWDRIsqblae8mRkLFi+iYMGC9Eh270iffv0oVcqQhQn3/Y0eMZL6jRuxeOkS2rZx4tiJ41z08sL7ylUF/XFxcbjv2EHf3r1T2SkzfmtrazOw/wDGT5pIiRLFKV6sOBMmT6Jqlao4NHEgt8mNugRgzJgx2NvZsXDBAjp36YK/vz+bN29mw8aNQLxtR48ezcKFCzErX57y5cuzcOHCeNv2SD14lpuoqKgwZvRoFixcGJ8OypdnQRph7dO3b3waXBB/Z+LoUaOo37ABi5cspq1TW44dP8ZFr4t4X0vKqyn7v0+fPVXo/yYSERGBxyEPli9dlip8nz59wrF5M6Kjo9m9c5fCkfw6Ojp5YuFITtpw3Jix9O7bh1pW8Wl80+b4ND5s6LAs+e3u7k6lSpXQ0dHBx8eH0WPHMHbMmDxRJuZEXbJ0yRJmzJjB7j17KFOmjLzvUqhQIQoVKgRA6zZtWLhgAcbGxlhYWBAUFISrqyv9+/dXCF9ERASHPDxYuix1+swr/GhdknIc69Xr749jPX2qmI+joqKYv3ABTq3bYGBgwPv371m3YQP//PMPnTt2AtJv/xkbG+f67jvIept6yNChrF+7lonjxzNg0CD8fHxw37aNXXv2yHX6+/nx6tUrqteowetXr5ib0K+bMHGiXCYzbepDHh7o6OhgZGzMH/fuMX7sWJzatqWpY97p10HOjBMmsmv7dlq2caJ4irYdQPOWrVixeDGljYyoVLkyd4PvsG7VSnomu+PyVxknFHwfVVUVVFWVe5SosvX9EkiCNAkPD5cA6d2HD5IsNjbbz6o1ayQTExNJQ0NDqmlpKXldvix/17tPH6l+gwYK8kCqx8TERP7+wePHacok13PByytNmd59+kiy2FgpPDJSatq0qaSjoyOpq6tLxsbGUu8+faTHz54pJc4fPsco7VnqtlIyMo63X/WaNaWTFy7K33Xv1Vuyq1df/v/i5Ssk88qVpYIFC0qFixSRqtWoIS1buUp6H/VZLjN8xEiptJGxpKGhIZXU0ZEaOzhI5y5fVfDzxLnzadqve6/ecplFy5ZLhqVKS+rq6lJpI2NpgrOLFBr+SWnxjpJ9VdrjumqVZJyQBmvUrCmd87okf9ezd2+pXv368v/r1a+fZtx79u4tl/nzwcM0ZZLr2blnr1S2XDlJQ0ND0tPXl4YOHy69fvtOIVyPX7yUevXpIxkYGkoFChSQKlSoKC1cskSKjJEpNf55zX6/jxolGRknpcEmTZtKl65dy5K/v5L9csuGffr1k/tZUkdHati4sXT89JkMw2lsYiItXrZMafH+/PWb0h63Vavl8alZ01K6cOmS/F2v3n2kevXrK8inZUNjExP5+/NeXpJ5pUpS/vz5pRIlSkg9evaSHj9/kWEY6tWvL/0+cpSC27IVrlKp0vFloZGxseQ8ZYoUHhWtlDjHxsUp7VmTrC62tLSULl+5In/Xp29fqUGDBgryly5flmrWrClpaGhIZcqUkdauW5eh/j59+0pObdtmKNOgQQNp1KhRCm5bt21L87eaMWOGUuKtjDo9p9ozsthYad+BA1KFihUldXV1qaK5uXTAw0Phfb/+/eV+6ujoSI2bNJFOnz2rILNl69Y0/Zo2Y4ZS4p1X8/CIZOWgjo6O5NC0qXT52nUFHZ26dJH0DQwkdXV1ycDQUGrbvr0UeOduqrCtWbde0tTUlELevVdqufUr5OMDBw9KFRPSoLm5ueRx6FAqmTNnz0qA9L+//spUOE1MTKQVK1YoLd7S129Ke+JkX6WZ06dL+vr6Uv78+aX69epJ94KCFWQa1K8v9e3dR8HNY/8BBTt5HvRIpfvc6dMSIP19/88f9vvzp0hpxG+/S8WLF5c0NTWl1q1aSS+ePM12vPNyGsxMXXLs+HGpSpUqUv78+SVzc3Npw8aNCu+/xcZKM2bMSLJt/frSnbt3lZcGY5X3xH2LlWamCOu9O3cVZBo0aCD17dNXwc3jgGJe9fQ4pPD+stelNMvNlHo2rt8gaWpqSh///ZAqbOnpAKSnj58o1Q550YZSbJy0NkUav3r5Spb9njxpkqSnpyepq6tL5cuXl5YvWybFfYvNVpzzcl1iYmLy3bbcx/BwadSoUZKxsbFUoEABqVy5ctKUKVOkz1++KOhavyE+ff774YNS45wX6pKnDx+laacG9evLZS5fvJh2Pk7Q8/lTpNS+XTvJ0NBQ0tDQkAwMDCSnNm0k/5s+GYYXkI4c8sx2vHOrTX3x0iWpRrI0uGbt2lTvk/frevbqJT17+TLLbeoVbm5S6YR+nbGxseQydaoU+fmz0uKdl8cJP3yOkW7dvScB0uGTp9L080XYO2nY7yOk0kbx+bhM2bLS+MnOCuOAOTlO+Dz0rQRI4eHhuTpm/v+dxDmBjtOPSd3mX1Tq03H6sf/cb6giSQm31AkUiIiIQFtbm3cfPlCkSJHcDs4vSZTsW24H4ZdHQ02cjCkQ/Oqo5pEL0n9VRDmYfWJFUy/bxMYJG2YHkY+zj2ps3jlO91clTqTDbKEqikFBLhMnmtTZRtQl2efrf3HXghIR44TZIyIiAhM9HcLDw8VYdQ6SOCfQacYx1AtoKVX31y9RHJrT9j/1G/5nWuDbt2//oXMVBQKBQCAQCAQCgUAgEAgEAoFAIBAIBJnnP3Pn07Nnz2jQoEFuB0MgEAgEAoFAIBAIBAKBQCAQCAQCQR5FRVUFFSXvdlS2vl+B/8zk07lz51i5cmVuB0MgEAgEAoFAIBAIBAKBQCAQCAQCgeD/Nf+ZyScfH5/cDoJAIBAIBAKBQCAQCAQCgUAgEAgEgjyMioqK0u/w/i9eCfSfufNJIBAIBAKBQCAQCAQCgUAgEAgEAoFAkPP8Z3Y+CQQCgUAgEAgEAoFAIBAIBAKBQCAQZIS480k5iMkngUAgEAgEAoFAIBAIBAKBQCAQCAQCQFUl/lG2zv8a4tg9gUAgEAgEAoFAIBAIBAKBQCAQCAQCgdIQO58EAoFAIBAIBAKBQCAQCAQCgUAgEAgQx+4pC7HzSSAQCAQCgUAgEAgEAoFAIBAIBAKBQKA0xM6n76Au+4q67GtuB+OXREtDPbeD8Mvz5Vtsbgfhl+ezsGG2UFP5763KUDbChtnjQ4yog7OLmkiC2Ua3QP7cDsIvzaev33I7CL88oj2TfUR9nD001MS61ewii43L7SD80sRKUm4H4ZdHlIPZ58MX0TfJDqIuyR6fZKJN/TNRUVFBRcnlprL1/QqIXC8QCAQCgUAgEAgEAoFAIBAIBAKBQCBQGmLnk0AgEAgEAoFAIBAIBAKBQCAQCAQCAaCqqoKqku9oUra+XwGx80kgEAgEAoFAIBAIBAKBQCAQCAQCgUCgNMTOJ4FAIBAIBAKBQCAQCAQCgUAgEAgEAkAFUPYVTf+9fU9i8kkgEAgEAoFAIBAIBAKBQCAQCAQCgQAQx+4pC3HsnkAgEAgEAoFAIBAIBAKBQCAQCAQCgUBpiJ1PAoFAIBAIBAKBQCAQCAQCgUAgEAgEgIqqCipK3qmkbH2/AmLnk0AgEAgEAoFAIBAIBAKBQCAQCAQCgUBpiJ1PAoFAIBAIBAKBQCAQCAQCgUAgEAgEgIpK/KNsnf81/t/ufGrYsCFjxozJ7WDIkSSJWfPmYli2LJrFitLQsSn3//wzw282b9tKvSaNKWagTzEDfRxatsD/1q1Ucus2bqSseUUKFNXGqq4t1729Fd6raBZI81m6YoVcJiQkhN4D+qNfxgStEsWxtLXh0OHDyom8Etiwfj0VTE0pXLAg1rVr4339eoby165exbp2bQoXLEhFMzM2bdiQSubjx4+MGjEC41KlKFywIFUtLDhz+rT8/bdv35gxfToVTE0poqVFRTMz5s2dS1xcnFxmYP/+aKipKTz2desqL+JKZPOGDVStUAGdIoWpb2PNzRTpJDk+N27QtGEDTAz00dUuglXVKqxZuVJB5vjRIzSwtcFIVwf9YkWxq12LfXt2Z9nfIvk10nxWLl+unIgrCfdNG6lV2Rzj4kVpalcX3xvp2+/GtWvoaWmmeh7+/bdc5q8//2RAj27UqlQRPS1NNq5ZnaauN69f8duA/pgblaJMyeI0trHmTlCg/H1a/uhpabLWdUWa+nKTbRs3YlmpIqWKadO4ri0+GdgwOX4+N9ErrEVD6zoK7ju3baW1Q2NMDfUxNdSnQ6sWBKZRRn7PX0mSWDxvLhblylK6eFGcmjXlr++Uz7nFlo0bqG5eAf2iRWhY1+a7+bhZo4aUK2WAQTFt6lSvyrpVK1PJrV+9itrVqmBQTBsLM1OmTJzAly9f0tS5YukSimnmx2XCeAX33wYPophmfoWnaf162YprTrB900asLcwpW6Iozezr4vedNBgTE8OiWTOpXakCZYprY1u1Mvt27lCQOXX0CA2salKmuDYNrGpy5vgxhfd1KlfEsJBmqsdl7Bi5TFRkJFPGjcGqginlShajvmUNdmzepLR4KxNll4Wnjh3F0d6O8ob6lNEpQWMbazz27k1X58qlS9HT0mTaxAkK7kvnz8OuZnXK6JSgQikDOrVqScAt/+xHOAeQJIlZs2dhWLoUmloFadi4Effv3//ud56enlSuYkF+zQJUrmLBkSNHFN7Pmj0LFTVVhUff0EBBJjQ0lH79+2NYuhQFC2nRvEULHj58qCDz+PFj2nfogI6eLkWKatOla1dCQ0OzH3ElkZX2zPGjR2jbogVlSxlSqmQJmtSvx8Xz5xVkvn79yqL586hmbo5OkcLUrWXFhXPnFGS2bNyIrZUlpUqWkOs5f/asgo4ZU1ywsayJfrGiVChjwpAB/Xnz+rVyI68klJ2PAU4ePUI9q5oYFdOmnlVNTqcoC328venVqSPVTMuip6XJ6RPHFd5//fqVudOm0qB2LcrolKCaaVlGDBpIyJu8Z0Nlt2f++vNP+nXvRk3zCpQsWIANabQJt23aRP06tSijp0MZPR2aN2zAxRTp9Fdqzyg7H7ds6pBmf6JT27Zymf9P+VjZaTA5hz0OUrJgAXp36azgvnjeXEoWLKDwVC5joiATFhrKiCGDsChXFqMSxeji1IbHjx5lPYI/gayUg8nx97mJYZFCNLaxTvVu45rV1K1RDZMSxahZwYzpkyamalN/r2936thRujq1oZJxafS0NPnjzp3sRTQHyYl0GP7xI5PGjKZy2TKUKqaNbc3qXEiWT92WLsHB3g4T3ZKYmxjRu0tnHj54oKDj5NGjdHZqTQWjUpQsWIB7edSGe7ZuplGNKlgYlKRdo3rc8rmRofwxjwO0qWdL1VK61K1kxuTfh/Hh3/cKMhHhH5k1cRx1K5lhYVCSZtZWXLmQVFdscF1GhyYNqGFsgHWFsgzv1Y0nDxXtJ0kSqxYtwK5yeaoY6tCzTQse/u9/you4Etm5eRN2VStTQbc4rerb4X8zfRuOHz4EE22tVI+Dda005Y8f8sBEW4vBPboquPvd8GZA107UrmiKibYW506eSPVtWv6YaGuxYaVr9iIsEPyi/L+dfMprLFm+nBWrVrHG1ZVb3jfQ19OnaatWfPr0Kd1vrly7RvcuXbl89hw+V65ibGSEY5vWvHr1Si5zwMODMRMnMHXyZIJ8/ahX144W7dry4sULucybp88Unm0bN6KiokLH9u3kMr0HDuDvBw857nGIe7dv06FtW7r27kVQcHBOmCNLHDxwgPFjx+Ls4oJ/QAD29va0adVKIY7Jefr0KU6tW2Nvb49/QACTnZ0ZO2YMhz095TIymYwWzZrx/Nkz9h88yB//+x8bNm7EsFQpuczSJUvYvHEjbqtWcff+fRYsWsSKZctYu2aNgn/NmjXjxatX8uf4yZM5Y4hs4OlxEOcJ45ng7Iy3nz+2dvZ0dGrDy3RsWFCrIEOGD+eslxe37txloosL82bNxH3LFrlMsWLFmeDszMWr17h5O4Ceffry2+DBCp3BzPj78PkLhWfdps2oqKjg1L59zhkkixw95MH0SRMZM2kyF2/6Yl23Lt3bt+Ofl2nbL5GbwXe59/ip/ClnZiZ/9/lzNCZlyjJ1zlx09fTT/P7jhw+0adIYdXV19h45yrWAIGYtXIS2dlG5THL99x4/xW19fP5u1S7v2A/gyCEPpk6awNhJk7ns44etnR3d2rX9rg0jwsP5fdBA6jdqlOrdjevX6NC5K0fPnOPs5auULm1EJ6fWvElWRmbG39UrlrN+9SoWr3DlwvUb6Orp07F1xuVzbnDYw4MpEycwfrIzV339sK1rR5d2TunmYy0tLQYPG86pC174Bd9hvLML82fPYvvWpHx8cN8+Zk+fxqQp0/ALvsPqDRs4cugQc6ZPS6Uv8PZtdmzdgkXVqmn618TRkb+ePpc/B48eS1Mutzh2yIOZkycyauJkzt+Iz8c9O2Scj4f26YX31cssX7eB60F3Wee+A7MKFeTvb/v5Mqxvbzp178EFH386de/B0D69CEw26XHmqjfBj5/Kn/0nTgHQpn0HucxM50lcuXiB1VvcuRoQzJARI5k2YRxn0+jM5CY5URYWLVacMZMmcerSFa743aJb796MHjaEyxcupNITFHCbXe5bqVwldRosZ2bGguWuXPG/zfELXhiZmNDVqQ3v3r7NfsSVzJKlS1jh6sqaVau55ecf3yZs5phhmePj40PX7t3o3asXd4KC6d2rF126dcXPz09BzsLCgjevXsufe3fuyt9JkkS7Du158vQJx44cJSggEBMTYxwcmxIVFQVAVFQUjs2boaKiwqWLXty47o1MJqNNWyeFxTe5RVbbMzeue9OoSRMOHTvOVR9f6jdoQNcO7bkTHCSXmTtzBu5btrDU1RX/4DsMGDyEnl06K8iUKlWKWfPmc+WmD1du+tCgYUO6d+rI//6MnzSMjo7mTlAwk6ZM4bqvH7sPHOTRw4d069ghVZhym5zIx7f8fBnSpzeduvXgkq8/nbr1YHDvXgoTwNFRUVhUrcrCFWkPvHyOjuZucDDjnJ25eMOHbfv28/jRQ/p07pymfG6RE+2Z6OhoTMqWZfrceem2CQ1LlWL6nHlc9L7JRe+b1GvQgN5dOilMLv0q7ZmcyMe7DxxU6E/4BQWhpqZG+44d5TL/X/JxTqTBRF6+eM5MFxds7OzSfG9euTL3nzyTP9du3Za/kySJPl278OzpU3Yd9OCSjx+ljY3p2KqFvI7JK/xoORgRHs6IwYOo1zC1DQ/t38f8GdMZ7zKF64HBuK7bwDHPQ8yfMV0uk5m+XXRUNHVsbZk6Z67S4psT5EQ6lMlkdGzdihfPn+O+dy++d+7iunYdBoaGcpmb168zcOhQzl25xqETp/j27Rud27RSSGPR0VHUsbFleh624anDnsyfMpnh4yZw7Io3tWzqMqhLR17/8zJN+du+N5k0fAidevXh9E1/Vrnv5F5QIFNHj5DLyGQy+nVoyz8vnrPafRfn/QOZv3I1egZJ9vO/cYOeAwfjce4S2w8f59u3b/Tv2I7oZPbbtMqVbevWMGPxMg5fvIqOrh79OjoRmcfqkhOeh5jjMokREyZx6vpN6tStS99O7Xn1Mm0bzly0lFsPHssf3z8fULRY8TTHTf558YL506dQp27qsjA6OopKVaoyZ2n6i32T+3PrwWOWrl2PiooKLZ3a/XB8BbmDqqpKjjz/NVQkSZJyOxA5QcOGDalRowZubm4/9H1ERATa2tqEh4ZRpEiRbIVFkiQMy5VlzO8jmDwhfqVuTEwMeibGLJ43j6GDBmdKT2xsLMUM9Fnj6kqfnr0AsK5XD8uaNVi/KmmFXKUa1WnXpg0L585LU0+7zp35FPkJrzNJK0gKlSzB+lWr6N2jp9ytRClDlsyfz8B+/bMcZ4CvGuo/9F1K7GxtqVmzJmvWrZO7VbWwwKltW+YvWJBK3sXZmZMnTnAv2Sri34cP5+7du1y/Eb8SYtOGDaxYvpx7f/6Junra4WzXpg26enpsSjbh0qVTJwoW/hHDMwABAABJREFULMj2nTuB+J1PHz9+xDPF6mNl8eVbrFL0NLK3o0aNmrgmmzirVa0qrZ2cmDVvfqZ09OzSmYJaWmx2356uTD3rOji2aMH0WbN/2N/unToS+SmSEylWc/4on5Vgw+YN6lGtRk2WrFwld7O3rEHz1m2Ylkaj9sa1a3Ro0YwHr96gXbTod/XXqlSRwb+PYOiIkQruc6dP45avD8cveGU6rH27dibyUySep89k+puMUFPSnmDH+vWoVqMGy5KVVbY1q9OyTRumz0m7rAIY1Kc3pqamqKqpcebECa74pb+TITY2FlNDfRavcKVrQhn5PX8lScKiXFmGjRjBqPFJ5XOlMsbMmDuPfpksnzNCWTZ0qGdPtZo1WLEqKT9Z16hGyzZOzEynvE9J765dKKilxcZt7gBMHDOaB3//xbEzSflt2uRJBNy+zRmvS3K3yMhIGtpas2zlKpYtWkTVatVYuCxpd+JvgwcR/vEjezwOZTeaqfgcq5wB71YN61G1ek0WJcvH9S1r0LxNG6bMTp2PL184z/B+ffC59yfFihdPU+fQPr2I/PSJPUeSJtp6tHNCu2hR1m/fmeY3MyZN4OLZM9y48wcqCWmjUW0rnDp2Yqyzi1yumX1dmjg2Y9KMmT8U3+SoKal9m9NlYSIOdW1xaN4c52Rxj4qMxMHOlkWuK3FbsgiLqtWYt3RZujo+RURgZqCHx8nTGQ60ZRbdAvmzrQMS2oSlSzFm9GgmT5oMJLQJDfRZvHARQ4cOTfO7rt26ERERobBDu3mLFhQrVox9CTvFZs2exdFjxwgODEpTx4MHD6hYyZw/7t7DwsICiC83dfX1WLxwEYMGDeL8+fO0aNWSD+//lbd/P3z4QPGSJbhw7jwODg4/FO9P37790HcpUUZ7pk6N6nTo3BnnqfGT7BXKmDBhsjNDhg+Xy3Tv1BGtQoXYsn1Hemow1tdj3sJF9Omfdjs54PZtGtnV5f7DRxgZG2cqbBmhjPYM5Ew+HtynF5ERn9iXbNFBt7bxZeHGHanLQj0tTdz3H6BlG6cMwxoUcJvm9esR8NfflDbKvg2VUR/ndHumpnkFho4YybAUbcK0MCtlwKz5C+jVr/9Pac9oqCln3WpO5OOUrF21igVzZvPg+Qu0tLTS1fOz87FMCW2anEqDsbGxODk60L13H3xv3iD8Yzi7DnrI3y+eNzfDtPvo4UNsqlfF+3Yg5pUry3WamxgxY+48evcfkJ1ox+tT0tBVVsvBRIb07U05UzPUEmx4yTdpAYjLuDE8+OtvhT7YTOfJBAXclvflstK3e/H8ObUrm+N105cq1av/SDTTJC/37dw3b2at2wp8gu+mO0aTkndv32JuYsTx8xeoa6946sKL58+wrGTOZR8/qirRhh++fM22jo4OjbCoXp05y93kbs2srWjaqjUTZsxOJb9l9Ur2um/lUmDSoqKdmzaweZUb1//4C4C97lvZsnol5/wCMm2/9+/eYlOhHHtOnqFOXXskScKucnn6DvuNoaPHAfF1iW1FUybOmkP3ftnPx8qqS9o2bkCV6jWY75p0skfj2pY0a9WaybPmfPf7cydPMLRXd7zv/knpZOV7bGwsXVo2o3PP3tzyuUFEeDib9x5IU4eJthab9uynWes2Gfo1uEdXIj99Yt+J0xnKZYZPERFUMTIgPDw822PVgvRJnBMY5HYeDc302xE/guxzFFvGOP6nfsP/1zuf4uLimDRpEsWLF0dfX59Zs2blSjiePntKSEgIjsk67Pnz56dBvXrc9PXNtJ7o6Gi+fv1K8WLxg2AymYyAoEAcmygOBDg2cUhXb2hoKKfOnmFg334K7vZ163Lg0CH+/fdf4uLi2H/wIDExMTSsXz/T4csJZDIZgQEBODRtquDetGlTfH180vzGz9eXpinlHR0JuH2br1/jGwonT5zA2saGUSNGUNrAgBrVqrFo4UJiY5M69nXt7bl86RIPErZx37lzh5s3btC8RQsF3deuXqWUvj6Vzc0ZNmQIYWFh2Y63MpHJZAQHBtK4qWI6aezQFL9Mpr87wUH4+fpiXy/t9CBJElcuXeLhgwfYJTT6fsTfsNBQzp05Q+/+/TIVrp+BTCbjblAQDZs0UXBv0LgJt/0ytl+TujZULVeWji1b4H31apb9Pn/6FNVrWjKoVw8qmxjTxNaGXe7b0pUPCw3l4tmz9OjbN8t+5SQymYw7QYE0SlFWNWrigH8GaXDvzh08e/KEiekMLKQkOjqab1+/UjRZGfk9f58/e0pYaAgNmyiWz3Xt63HrO7/vz0QmkxEcFEjjJopl2/dsmJy7wcH4+/liVy+pY2ZT147goCACEo4rfPb0CRfOncWxuWI5N3HMaBybt6BhY8V8kBzv69cob1yaWlUtGP3bcN7mobIwMR83SJmPmzThdjr2O3/qFNVqWrLObQWW5cthX6Mqs6c48/nzZ7lMgL9fKp0NHRzSLRtkMhme+/fTrXdf+cQTQB3bupw/fZI3r18hSRI3rl7lyaOHNPjBgf6c4GeUhZIkce3yZR49fICtnb3CO+exY3Bo1pwGjRtnKqy7tm2liLZ2ujv1counTxPahE0d5W758+enQf0G3EynXQPg4+uDo6Ni/m/WzJGbPjcV3B4+fIhh6VKUNS1Ht+7defLkifxdTEwMAAUKFJC7qampoaGhgXfC4pyYmBhUVFTInz9psq1AgQKoqqrincnjdHIKZbRn4uLiiIyMpFixpAnlmJgYBZsAFNDUxPfmzZSfA/GDEocOHiA6Koo6aRy7lEhEeDgqKipZmnjNaXIqHwf4Za0szCwR4RHxNky2KyA3+Vntme8RGxvLYY+DREdFUdvaBvjF2jM5kI9Tsmu7Ox07d0l34ulXzcc5mQaXLphPiZI69Mpg4emTx4+wKFcWy0oVGdSnN8+eJtUxsoQ6Jn+yxRpqamqoq2vg55N2eZob/Gg5uG/nTp4/ecKEKVPTfF/Hti53g4MIvJ3Ypn6K1/lzODRrLpfJat8ur5JT6fDcqZPUsrZm0pjRVCpjjH0tS1yXLFYYo0lJREQEQIblQV5DJpNx/04Q9o0U27T2jZoQ6O+X5jeWdawJef2KKxfOIUkS78LCOHv8KA0dm8llLp05Tc3adZg9cRw2FcvRsm4d1q9YmqH9IhPsV7RovP1ePn/G29BQ7Bsl5Y/8+fNTx86OIP+8VZfcCw6iXoq+af3GjQlIx4YpObBrB/YNGylMPAGsXLyQEiVL0q2PcsZU3oaFcuncWboqSZ/g56KiopIjz3+NfLkdgJxkx44djBs3Dj8/P3x8fOjXrx92dnapJiZympCQ+HPy9XR1Fdz1dHV5ns7xAmnhPH0apQwNcUgYeHn37h2xsbGp9erpEpLO2fw7du+mcOHCdGjXTsH9wK7ddO3dixKlDMmXLx8FCxbkyIEDmJYzzXT4cgJ5HPX0FNx19fQICQlJ85uQkBB0U8jr6enx7ds33r17h4GBAU+ePuX55ct079GD4ydP8vDhQ0aPHMm3b9+YNj1+a/zESZMIDw+nauXKqKmpERsby5x58+jWvbtcb7PmzenYqRPGJiY8e/qUWTNn4ujggN+tWwoDN7nJ+wQb6uqmtKEuoenYMBHzcmV59/Yt3759w2X6dPoOUFzpEh4ejnnZMsTExKCmpsaKVatpnDBY+iP+7t21i0KFC+OUh46M+/d9fDx0UuQzHT09wi6mnc/09PVZtmYt1WvUJEYWw6F9++jUqgVHzp7H1t4+zW/S4vnTp+zYspmhI0cxesIkggJuM23CePJr5KdLz56p5A/u2U2hwoVp1bZdluKY0ySmBR29FDbU1SUsnbLq8aNHzJ0xnRMXvMiXL3NV1dzp0zAwNJQPTmfG38S/qX5fXd3vHhvxM5HHJa10GJpxPrYwLce7d/H52HnadPokW3nasUsX3r97S4smjZAkiW/fvjFgyBDGTpwol/E8eJA7wUFc8k5/4MDBsRltO3TAyNiE58+esmDObJxaNOPKTd88URYm5uOSqX5nPcLC0k6Dz5895ZbPTQoUKMDWfQf49/17XMaO5uOHD7iu3wjA29DQVDpL6uryNp10ffbEcSLCP9KlVy8F97nLljNxxG9YVTAjX758qKqqsmzteqzTOOoht8jJsjAiPJzq5U2RJdQli1xXKgxkH/E4yN3gYM5dz3jy4/yZ0wzt24fP0dHo6etz8MRJSpQsmY1YK5/EtkvKdo2eni7Pn6df5oSEhKCXoj7V01VsC1nXsWbn9h1UqFCB0NBQ5i2YT117O+7f+4MSJUpgbm6OiYkJLlOmsHHDBrS0tFjhuoKQkBDevHkDgI2NDVpaWkx2nsyC+QuQJInJzpOJi4uTy+QW2WnPJLLa1ZWoqCg6dOokd2vStClrVrpR196ecqamXLl0idMnTqQarLn/xz0c6tfny5cvFCpUiD0HPTCvVDlNf758+cKsaVPp3K1bnlrRmFP5OCw0NM16NL06PjN8+fKF+TOm06FLVwrnERv+rPZMevz5xx+0aNSAL1++oFWoEDv2H6RipUrAr9eeUXY+Ts7tW7f48/591mxMfXfir56PcyoN+vncZM+OHVzxTX/Q1qp2HdZu2YqpWXnehoWyfPEiWjZqhHdAIMVLlKB8xYoYGRszb8YMlq9eQ0EtLdavWklYaEimf9ufwY+Ug08ePWLejOkcv3AxXRu279yF9+/e4eTQRN6m7jd4CKMmJLWps9q3y6vkVDp89uwpL69eoVPXbuw7fJQnjx8xeewYvn37xsQ0Jv0kSWL65EnY1K1LpYQd3b8CH96/j++X6KTsQ+jwLp1+iaW1Dcs3bmXMwH7EfPnCt2/faNKiJTMWJ50C8PL5U3yuX8WpUxe2HPDk2ePHzJ40jm/fYhk5yTmVTkmSWDDNhVo2tlRI2K34LuH3SxU2Hd10j7PLDeQ2TNkP09HjbejF734fGvKGKxfOs2qLu4L7LV8fDuzawRnv9BeEZRXPvXvQKlSY5m3afl9YkOdQUVVBRcnH5Clb36/A/+vJp2rVqjFzZvyRLeXLl2fNmjV4eXmlOfkUExMjXxEKSSsofoQ9+/YxdGTS2aunEo5kSzm7KUlSpmc8lyxfzr6DB7ly7nyq1ZlZ0btt5w56du2WSse0WbP48OEjF0+fpmSJkhw9cZzOPXty/aIXVatUyVQYc5Ks2i4t+eTucXFx6Orqsn7jRtTU1LC0suLNmzesWLZMPvl08MAB9u3Zw87du6lsYcGd4GAmjBuHgYEBfRJ2lnTpmnT5YJUqVbCqVQuzsmU5feoU7TvkrfPB+YH0d9brElFRkdzy82fmtKmUMzWlc9du8veFCxfG2/8WUVGRXL10mSmTJlKmbFnqNWjwQ/7u2rGdLt26p0qfeYIsxMOsQgWFe2FqW9vw6p9/WLfSLUuTT3FxcVS3tGTq7Pht41Vr1OCv//3J9i2b0uyg7Nu1kw5du+ZN+5H5fBwbG8vQfn2ZNHU6ZuXLZ0r3qhXLOexxkGNnf6yMTFOGvNco+JF65LSXF5GRUdz292P29GmULWdKp4Syy/vaVZYvWcyylauwql2Hp48f4zxhPPr6C5joMoV/Xr7EZeJ4PE+cyjBddUh2J0dlCwtqWlpRrWJ5zp85Q5sUix1yk6z8znFxcaioqLBmqztFtLUBmLVwMYN79WDBCjc0NTXjdab8PoPfZN/OHTRybIZ+srPXAbauX0vALX+2HzxEaWNjfL29cRk7Gl19feo3+v5On59KDpSFhQoX5pKPH1GRkVy/cpmZLpMxKVsWu/r1efXPS6ZNnMjB4ye+W7bZ1W/AJR8/3r9/x253dwb37sWZK9dSDTD9TPbs2cPQ4cPk/586EX8v5I/k5e990yLZzuyqVatia2uLaXkzduzcwbix41BXV8fT4xADBw+ieMkSqKmp4dDEgRbJdjrq6OjgceAgw3//jVWrV6Oqqkr3bt2xtLRETU0t6wbICX6wPe1xYD8L581l3yFPhTSxZPkKRg4fRq1qVVFRUaFsuXL07NOXPTsVj9wrX6Ei3v63CA8P5/iRwwwbNJAzFy+mGrj++vUr/Xv1JC4ujhXJjiPKU+RAPs5OPyclX79+ZWjf3sTFxbHYbeX3P/jJ5GR7JiPMKlTgsq8/4R8/cvLYEUYMGcTxcxfkE1Dphi0PtmeUnY+Ts8vdncoWFtSqXTvVu/8v+ViZafDTp08MH9Af17XrMlyw4dCsWbL/qlDL2obaFpXZv2c3v40ajbq6Ou579zNm+DDMShmgpqZGg0aNcXBslq7OXCULNhzevy+Tpk3DNIN8fOPaNdyWLGGR20osa9Xm2ZPHTJs4AT19fcYlHKuc1b5dXkfZZWFcXBwldXRYsXYdampq1LC0JOTNG9a4uqY5+TR57Bj+/OMepy5eSkNb3ie1/VK7JfLwr7+Y5zKR3ydMpl4TB96GhLB45jRmjBvNwtXx11PExcVRoqQO89xWo6amRpUaNQkLecOWNSvTnHyaPWk8f9+/z77T51O9U2adnpP8aDgP7dlNEe2iOCY7Li/y0yfGDB7IolVrKF5CeYvXDu7eRbsueXeMRiD4Gfy/n3xKjoGBQbpHoi1cuJDZs1OfrfojOLVujXWdOvL/Eye1QkJDMTAwkLuHvX2batdSWixzdWXB0iVcPHWaasmOjylZsiRqamqpdjmFhaWt97q3N38/eMCBXbsV3B8/ecyaDev5IyAQi4QVD9WrVeP6jRus3biBDavXpNL1s5DHMcVqqbdhYalWDSeir6+fanVVWFgY+fLlo0SJEkB8WlBXV1cYSDE3NyckJASZTIaGhgYukyczcfJkunaLn2ypWrUqL168YMnixfLJp5QYGBhgYmLCo0ePfjjOyqZEgg1T7o54G/Y21Q6xlJQpWxYAiypVCQsLZeHcuQqTT6qqqpgmXDhdrXoN/v77L5YvWUK9Bg2y7O9Nb28ePnjA9j17fiieOUXxEvHxSLmT4V1YWJYGNK3q1MFz/74s+a2nr08F80oKbhUqmnPq6NFUsr43vHn04AGbduzKkh8/A3laCElhw7dv07Rh5KdPBAcGcO9OMM7jxgDxjWlJktArrIXHiZPUT3bR7xo3V9yWLsHz5GmFI7Yy429iWgwLDUU/Wfn87u3bVKv5cpOk/JRWOsw4H5uUSczHVXgbFsbi+XPlk0/zZ8+mS/ce8t1QFlWqEBUdxdjff2P8ZGfuBAXyNiyMRnVt5PpiY2O56X2dzRvWExr+Kc0BaX0DA4yMjXmcR8rCdPPx2/TzsZ6+PvqGhvKJJ4DyFc2RJIk3r15RzswMHT093oalTl8pV+EB/PPiOdcvX2LL3v0K7p8/f2bRrJls3XcAh4RJgMpVqnL/3l02rHTLM5NPOVkWqqqqUtY0fqd1lerVefD336xathS7+vW5ExTEu7dhNLWvK5ePjY3Fx9ubbRs38PJDuDwNamlpUdbUlLKmptSqY41NtSrs3bGD0cl28v1snJycsLZOOtJJ3iYM+T/27jssiuONA/gXjl5tIEVBBSOCihQF7BVbxDRroqiJml9U7GJJjMaCJvaoKPZewV4pdrHRVCxUE6MiNsBKOd7fH8jKwaHA3XGHvp/nmSdhb25253V2ZnfndjdF8pgw9XGxxzVA3rFNSqHxNPVx8cdCQF48GjZoiPj4eGGZi4sLoiOjkJ6ejqysLJiYmMDNwx2uLi5CHk9PTyTGJ+DJkyfQ0NBApUqVYGZhjtrvjgmURZbjmcDduzBi2DBs3LYdbQs9aqmaiQm27wnE27dv8ezpU5hbWOD3qVNgXauWRD4tLS3hmMfZxQWRVyPg//cyLCnwTtLs7Gx49+uLf+7excHjJ1Tmbol8itqPTatXLzo+FTPGf0x2djaG9P8e/979B4FHjqrMXU+A4o9nPkZLSwt13vWVTi4uiIqIwKrly7Bw2fIKeDwj3/043+vXrxG4exemFPO+xIq+HyuiDVauXAX//vMPvv/u/Q8nc3Pz3k1V3VAfF2OuobaUp6Ho6+ujfgMHJBU41mvs7IxTly4j490YU83EBJ6tWqKxs7M8qi8Xpe0H82IYiesxMZg8dgyA9zG0MDLAzgOH0LJNG8ybOQM9+/YVHlto36ABXr96jfEjh2P0RF+oq6uX6txOlSmqL6xuZlbkGs0X9eyQ+uj9NZp8k8aOwbHDh3AwOAQWNWoopqIKUrlq3g+ACp9DPH38GFVNpPfXqxYvgHNTdwzxGQ0AsHNoAF19PfTt2gljpk6DqZkZTKoXjZ/NF/Xw+NGjIvH7w3c8Qo8ewbbDx2BuaSksr/auH36c+gimZmbvt+3JY1QzNZG57vIixLDQfvz0SarU87CCiAi7tmzGN336SMTkn+Qk/PfvP/ix9/sfVeb3hXWqGOHk1WhY16lTqu28fOE8EuPjsGx98e8QZapNTQ2Q941KKjiPq3Cf9DufCr9kT01NTeg8Cps8eTLS09OFdE+GW0oNDQ1ha2MjJPv69WFmZobg0PcvlszKysLps2fRzN39AyUBfy1ciJlz/XBs/wGJCwNA3sGzi5MzgsMkX1gZHBYqtdy1GzfAxdkZjoUm5V6/znt/hbq6ZHMQiUTFxqu8aGlpwdnFBaEhkrfOhoSEwN3DQ+p33NzdEVI4f3AwXFxdhTbh0awZEhMSJOoXHx8Pc3NzYQB6/fo11Av1Ch+LydOnT3Hv3j2YFRiolU1LSwuNnZ0RFiLZTk6GhsDtI+2vICJCVlZWCfJklmm9mzash5OzMxo2kt/LQOVBS0sLjZyccDpM8hdVZ06GwdWt5PG7ERMN0+qlaxdN3D2QGB8nsSwxPr7Ic4kBYNvGjXB0coZDof1bFWhpacHRyRmnCvVVp8JC0VRKWzA0MsLZKxE4dfGykAb+NAS2X3yBUxcvw6XJ+8n9vxctxIK5fti1/wCcpPSRH1uvda3aMK1uJpEnKysLF86dFd6joAq0tLTQ2MkZJ8Mk+7biYlgcIkJm5vv9+M2b10X7fnURiAhEhFZt2+H81UicuXRFSE7OLujZpy/OXLpS7J0Qz54+xf3//oOZuWr0hfn78ZnC+3FYGFyLiV8Tdw+kPHyIVy9fCssSE+Khrq4unKS5NHUrUubp0FCpfcOOzZtRzcRUmGDKl5OdjezsbKn/Dsoegwsqz76w4FjSqk1bnLp8FaHhl4TU2NkZ3/bug9DwSx+8G6dgOcpiaGgIW1tbIdnb2+cdE4YEC3mysrJw+sxpNCvmuAYAPNw9EBwsuf+fOBGMZh7NivlG3kTXrdu3JCa58hkbG8PExATx8fG4evUqengVfRRItWrVUKlSJYSFhSE1NRVe3b1KUmWFKevxzO6dO/C/n37C2o2b0Llr12Lz6ejowMLSEjk5Odi/dx+6df/wy6OJCJkF2lf+BevEhAQcOHpM+MGTKlHUfuziVvK+8EPyJ56SEhKx+9BhVFGxGCryeKYsCvZxFep4RoH78d49e5CZmYne/fqVaHsq2n6siDZYt169Ink6d/sSLVq3xqmLl2FZo6bUbcnMzETc7TuoLuW818jYGNVMTJCYkIDoyAh0+fJL+QRADkrbDxoaGRU5DvF+F8PQ8EtwfneH3ZvXb4ocy6mL1IVjaqB053aqTFF9oZu7B5ITEyWOfxMT4lHd7P01GiKC75jROLR/P/YePS78yK4i0dLSgoOjE86fOimx/PypMDg3lf4OujevpZ+zAe+f8uPi5o5/kpIk4pecmABTMzOJ+M2YOA4nDh3A5v2HUNO6lkSZNa1rwaR6dZw/9X7/yMrKwuXz5+HUVLXGkoaNnXD2pOR+fPbkSbgUE8N8F8+dxd2kRPTuL/mDcpsv6uFE+GUcPRcupI5du8GjZSscPRcO8zJMcu7cvBENGzvBvqHqXaNhrDx90nc+lYa2trbC3kuhpqaG0cNHYM5ff6KurS3q2tpizp/zoKerh34F7iIZ8ONgWFpYwG/mLAB5j9r77Y8Z2LZhI2pZWwt3/xgYGMDAwAAAMNbHB/1/HAxXZ2d4uLkjYO1a/HvvHn7+aYjENmRkZGB3UBAWzJ1XZPvs6tWDrY0Nho0Yjvl+c1G1ahXsO3AQwaGhOBS0VyExKY1Ro0djkLc3XFxc4ObhgbWrV+Pev/9i6LBhAICpU6bgwf37WL8x79cEQ4cNg//y5ZgwbhwG//QTLoWHY/26ddhc4I6aYT//jBXLlmHs6NH4ZcQIJMTHY56fH4aPHCnk6fbll5jr54eaVlawd3BAdFQUlixaBO9Beb9mevnyJWbOmIGvv/kGZubm+OfuXfz266+oVq0avvpadd5ZBAAjRo3C0EGD4OzigqZubli/di3+u3cPg4cMBQBM/3UqHjx4gIB1ec+8DfD3R82aNVG3Xj0AwMULF/D3okUY+ssvQpkL/pwHJ2cX1K5TB9lZWThx7Bi2b9mCRQXulPvYevNlZGRgX2AgZs/7U9GhKJOfR/pgxE8/wtHJGa5ubti8Lq8e3j/9BACYNe03pDx4gGVr1gIAVi37GzWtrWFX3x5ZWVnYs2M7Du3bh3Xb3v9KOCsrC3G3bgn/n/LgAW7ExEDfwEC4A2DYyJH4sl1bLP7rT/T45ltEXr2CzevXYX6huxFfZGTgwN4gzPCbWx7hKJP/+fjglx8Ho7GzM5q4uWPjurW4f+8eBr7rq2ZO+xUPHzzAijXroK6uXuS53dVMTKCjrSOxfOnCBZj7xwys2rARNa2shTse9Qv0kR9br5qaGn4eMQKL//oTNja2qGNri0V/zYOurh6+LdA/q4JffEbh5x8HwcnZBU3c3LDx3f406F1dZvyWF8OVa/NeXLx6pT9q1KyJLwrux4sXYej/3u/Hnbt2w4qlS9DIsTFcmzZBUmIi5vwxHV26fQmRSARDQ0PYF/q30NPXR5UqVYTlL1++xLxZM9H9q69hZm6Gf//5B39Mm4aqVauhm5QL2soydIQPfIb8iEbOznBt6oYt69fi/n/3MODHvP14zu95+/HS1Xn78de9emPRPD+M+Xkoxk/9Dc+ePsWsX6egzwBv4ZF7P/0yHN906ohlC+ejU7fuOH74IM6eDMO+YMmT8dzcXOzcsgk9v/++yHPuDY2M4NGiJWZOnQIdHV3UsLJC+Lmz2LN9K373KzpmK5Mi+sIlf/2Fxs7OsH43loQeP4bd27Zi3pKlAPIeyVe4P9DT10flKlWE5a9evcLiP+ehU7duqG5mhudPn2H96gA8vH8f3b9WrUfgqqmpYfSoUZjj54e6tnVRt25dzPHzg56eHvoVuFg6wNsblpYW8JvjBwAY5eODVm1aY96f89DDqwf2H9iPkNAQnDtzVvjO+Anj0f3L7rCyskJqaipmzZ6NjIwMeBd4wfHu3bthYmICKysrXL9+HaPGjMZXPb6Cp6enkGf9+vWoX78+TExMEB4ejlFjRmPM6NGo964vUabSHs/s3rkDwwYPxrwFC9HEzU0YJ3R0dWH87q7GK5cv4+GD+2jYyBEPHzyA38yZoNxcjBo3XljvjN9+RcdOnWFZowZevnyBwF27cPbMaQS9e4xiTk4O+vfpjZjoaOzauxdisVhYV+UqVSR+WatsitiPh/4yHD08O+LvBfPR+cvuOHboIM6cDMOBAhMMr16+RHJiovD3v3fv4kZMDCpVqYwaNa2Qk5ODH7/vh+vRUdiyJwi5YjFS38WwkgrFUBHHM1lZWbgjHBNm4+GDB7j+7pgw/06nWdN+Q/tOnfLa4IuX2Lt7F86fOYNd+w8AqFjHM4rYj/Nt2rAe3by8pE4afSr7sSLaYOE8xpWMiyyfNnkSOnXtiho1a+JJ6mMsmDcXL15koE+B91juDwpE1WrVUKNmTdy8EYupE8aha3cvtO1Qvu/c/pjS9IPFxVC7UAw9u3bFyr+XooGjI5ybNMXdxETMm/kHPLt1E34oU5Jzu+fPnuH+vXtIefeexYR3k1Wm1atL3ImibIpoh4OGDsXqlf6YMn4cfvrfL0hKSMDiv/7EkALnLhNHj0Lgrp3YvGs3DAwMhH3UyNhYOD5//uwZ/ismhtImS5Vh8C8jMOF/Q9CgsROcmjTFzo0b8PD+f+g76EcAwPw/fsejhw/xl3/eu+vade6CX0ePxNZ1a9CyXXs8TknB7KmT0MjZFdXf/cio36CfsHn1KsyaPBH9hwzD3aRErFw0HwOG/k9Y7/QJY3Fwz274b90BfQND4c4hQyMj6OjqQk1NDd4//4KVCxegVh0b1KpjC/9F86Grp4vu3/aEKvlp+EiMGfYTGjk5wbmpG7ZvWIcH/93D94Pz9uN506ch5eEDLFq1RuJ7OzdvhJNrE9Szl2yTOjo6RZblPwGj4PJXL1/ibtL745l7/9xF7LUYVKpcBZY130/Wv8jIwOF9e/HrLD/5VJgpBb/zST548qmcTBw3Dm/evsEvo0fh+fPncGvSBCcOHYKhoaGQ59979yR+zbAiYBWysrLwXb++EmX9PnUqpv+a916i3j174umzZ/hjzhw8TElBAwcHHNm3D9bW1hLf2bF7F4gIfXv1KrJtmpqaOLJvPyb9+iu6f/ctXr58CVsbG2xcswZdO3eWZxjKpFfv3nj27Blmz5qFhw8fwqFBAxw4dEioY8rDhxJ3qtWuXRsHDh3C+HHj4L9iBSwsLLBo8WJ88+23Qp6aNWviyLFjGD9uHFwaN4alpSVG+PhgwsSJQp7FS5di+rRp8BkxAqmpqbCwsMBPQ4cK74QSiUS4cf06tmzejLS0NJibm6N1mzbYun27xL+rKvi2Zy88e/oM8+bMRsrDh7B3cMCe/QdglR/DlBT8VyCGubm5mP7br/jn7l1oaGigdp06mD5rNgYPeT+p+erVK4z18cGD+/9BR1cXX9Srh9UbNuDbnr1KvN58gbvy2ud3Bd6hpUq++q4nnj97hoVz5+BRSgrs7B2wLWgfalrl1SM1JQX3/3sfv+ysLMyYMhkpDx5AR1cX9erXx9bAvehQYH9KefgQ7Qs8ymzFksVYsWQxmrVsib3H8p677OTiivU7dmL2tGlY6DcHVrVqYeaff+G7PpJ9wt49uwEifN2z6P6tKr7+rieeP32G+X7vY7h97/sYPirUBkti/bs+clChPnLClKnwfddHfmy9ADBy7Di8efMGE0aPQnraczg3aYI9Bw+p3H78Tc+eePbsKf6cMwePUh6ivoMDdu7bL+xPhWNIubn4Y9pv+PfuXYje7ce/z5wlTFYBwPhJk6GmpobZM37HwwcPULWaCTp364rfpv9R4u0SiUS4GXsDO7ZtRXpaGqqbmaNl69ZYt3mLSsWwx7v9eNHcOUhNSUE9ewdsCdyHGgX34wLx0zcwwI4Dh/Hr+LHo3Ko5KlepAq9vvsXEadOFPE3cPeC/YRPm/TEDf838A9a162Dlxs1wLvRr9jMnw3D/3j306S/9ka3+Gzdhzu/TMOLHgUh7/hyWNa3g+/t0DCj0QxJlU0Rf+Pr1K/iOGYWH9+9DR1cXtl98geVr1+Gr70p+gisSiZAQdwe7tm7Bs6dPUblKFTR2ccX+4BDY2Ut/kbwyTZwwEW/evMEvI4bnHRO6ueHEseOFjgn/lTgmbNasGXZs245fp/2G36ZNg42NDXZu3yHxSL///ruPvt/3w5MnT2BiYgJ3N3dcvBAucUz4MOUhxo4fh0fvHgU9oH9//Pauv8x3J+4OJk+dgmfPnqFWrVqYOmUKxoweo8CIlFxpj2fWr1mDnJwcjBvlg3GjfITl/fr3x8p3kyuZb99i5u+/425yMvQNDODZuTMC1q9HpUqVhPypqakYOngQUh4+hJGxMRo0aIigg4fQrkMHAMD9//7DkUN5F7CbF3rPzOETwZLvwlQyRezHTdw9sGrjJsz9YwbmzfwDterUQcCmzRJ39kRHRuKbLu/f/fL7JF8AQO/vf8DSgNV4cP8+jh/Oi2E7D8lfLQcdPY7mrVrJPxhloIjjmZSHD9C2QJ2XL16E5YsXoVnLljhwPO8uycepqfjlx8F4lJICI2Nj2DdogF37D6BN+w7C9yrK8Ywi9mMAiI+LQ/j589h3+IjU9X4q+7Ei2mBJPLh/H0O9vfHs6RNUrWYC16ZNcfzUGYlj6kcpKfjNd2LeI/LNzNC73/cYN3mK3LdFVqXtB0tijO8kqKmpYe4fM5Dy4AGqVqsGz67dMPn36UKekpzbHT98GKN+fv9DzWHeAwAA46dMxYSpv8pQa/lSRDu0rFETew4ewq8TJ6J1U1eYW1hg6C/D4VPgxyDrV+dNxvTo5Cnx3b9XBaBv/7xYHTt8CCOHvY/hkAH9AUieIypbt2++RdrzZ1j+1zykPkrBF/XtsXrnHljWzLsLLvVRCh4UaIPf9vsBr16+xJbVqzD3tykwMjaGe8vWmPD7+3M28xo1sH7PPsyeOglftvRAdXMLeA/7H4aOGivk2bYubyLmh+6ST2KYu8wf3/bLm0ge6jMGmW/eYvqEsUhPS4OjiyvW79kPAxUbS7p/+x2eP3uGpX/ORWpKXgw37A4S7iTMi+F/Et/JSE/H0QP7MX3uX2Ve77WoSPT58n38Zk7Je5/Wd/2+x4J3k4UAcDBwD4gIXqU4p2HsU6VG+fdofmLatGmDxo0bY/HixcKyr776CpUqVcKGDRs++v2MjAwYGxsj/VGqSj3nuSLJ1tL8eCb2QW9zxMrehArvDcdQJqLP8YG0csYxlM0bseo8eq6iEnETlJmpjmLujv9cvMjJUfYmVHh8PCM7Ho9loyX6pJ/YXy6y+JhGJuJP89JVueJ+UHbP32YrexMqNB5LZPMiIwMNapojPT2dr1UrUP6cwC/+odDWNZBr2ZlvXmLF/9p/Vv+Gn+ydT6dOnSqybF8Fe5EjY4wxxhhjjDHGGGOMMcZYRfPJTj4xxhhjjDHGGGOMMcYYY4yVhpp6XpJ3mZ+bz7DKjDHGGGOMMcYYY4wxxhhjTFH4zifGGGOMMcYYY4wxxhhjjDEAampqUJPzu/LkXV5FwJNPjDHGGGOMMcYYY4wxxhhjANTV1KCuLt/JIvXPcPKJH7vHGGOMMcYYY4wxxhhjjDHG5IbvfGKMMcYYY4wxxhhjjDHGGAOgpq4GNTnf+STv8ioCvvOJMcYYY4wxxhhjjDHGGGOMyQ1PPjHGGGOMMcYYY4wxxhhjjAFQV1NMkoWfnx/U1NQwevRoudSxPPDkE2OMMcYYY4wxxhhjjDHGmAq6cuUKAgIC0KhRI2VvSqnwO58+RksrL7FS01T2BnwCRJq8i8pKn2PIWIVmpOwNYAxArrI3oILjsVh2HEPGKj59PkFmrMKrrMPXB5nyZFC2sjfhs6KurgZ1Ob+jqazlvXz5Et9//z1Wr16NWbNmyXWbFI3vfGKMMcYYY4wxxhhjjDHGGFOwjIwMiZSZmfnB/MOHD0e3bt3QoUOHctpC+eHJJ8YYY4wxxhhjjDHGGGOMMQBqamoKSQBQs2ZNGBsbC8nPz6/Y7dixYwciIyM/mEeV8fMbGGOMMcYYY4wxxhhjjDHGoNjH7t27dw9GRu9fMqCtrS01/7179zBq1CicOHECOjo6ct2W8sKTT4wxxhhjjDHGGGOMMcYYYwpmZGQkMflUnIiICKSmpsLFxUVYJhaLcebMGSxbtgyZmZkQiUSK3FSZ8eQTY4wxxhhjjDHGGGOMMcYYADX1vCTvMkujffv2uH79usSyQYMGwc7ODr6+vio/8QTw5BNjjDHGGGOMMcYYY4wxxpjKMDQ0RIMGDSSW6evro2rVqkWWqyqefGKMMcYYY4wxxhhjjDHGGAOgpqYGdTX5vvNJTc7lVQQ8+cQYY4wxxhhjjDHGGGOMMabCTp06pexNKBWefGKMMcYYY4wxxhhjjDHGGAOgpq4GNXU53/kk5/IqAjm/Nkt52rRpg9GjRwMAatWqhcWLFyt1ewojIkyfMR0WNSyhq6+HNu3aIjY29qPfCwwMhH0DB2jr6sC+gQP27t1bJM8K/xWobVMHOnq6cGniirNnz0p8Pn3GdNjZ14e+oQEqV62CDp4dcenSpWK3s0vXrlATqWPfvn1lqquiKDOGH1v3s2fPMNJnJOrVt4OegT6salnDZ5QP0tPTZa+4nPivWAGbOnWgp6uLJq5F61jY6dOn0cTVFXq6urC1scHKlSuL5AkMDEQDBwfo6uiggYP02N6/fx/9+/eHSbVqMNDXh7OTEyIiIoTPiQgzpk9HDUtL6OvpoV3bkv27ljd5xy82Nhbfffcd6tSuDZG6OpZI6bP8/f3R2NERlYyNUcnYGM2bNcPRo0eFz7OzszHJ1xeOjRrB0MAANSwt4e3tjQcPHsilzvKmjBiWZL0idXWpaf5ff8lUX0VQxn6cH9/CacTw4UKeihJDVewHP/f9GJBPG3z58iVGjhgBq5o1oa+nBwd7e/j7+8un0nKkjPjNmD69SOwszM0l8lSUsRhQzf0YqDhtEFDddljQz8OGfXBsVyZVbYMFqXL8AOXFMN9cPz+I1NUx5t31g3xBQUHo3LkzTE1MIFJXR3R0dFmqp3Cq2AY/9+OZkpyXlKQf5LFE9r5w0KBBReLczMND9grLmSLil2/Hjh0Qqavj66+/lliek5OD3379FTZ16kBfTw+2NjaY+ccfyM3NFfJUlH4Q4LGEsQqDPhFPnz6ljIwMIiKytramRYsWyVReeno6AaD052lE4lyZ01w/PzI0NKTA3Xvoesw16t2rN5mbm1NGWnqx37lw7jyJRCKaM3s23Yq9SXNmzyYNDQ26eCFcyLNj23bS1NSk1asC6OaNWBrl40P6+vr0T/JdIc/WzVso+PgJSoxPoBvXrtOPgweTkZERpaY8KrLOhQsWUJfOXQgA7Q0Mkkvd5ZWUGcOPrft6zDX65utv6MC+/ZQQF0+hwSFUt25d+vabb2WqszhXPmnb9rw6rgoIoBuxseTzro7Jd+9KzZ+QmEh6enrk4+NDN2JjaVVAAGlqatKu3buFPOfO58V29uzZFHvzJs1+F9sL4eFCnidPn5K1tTV5DxxI4RcvUmJSEp0IDqa4+Hghj9+72O7es4dirl2jXr3zYpuWni63+qti/C5eukTjxo2jrdu2kZmZGS1cuLBIOfv276eDhw7Rrdu36dbt2zR58mTS1NSka9evkzg3l549f07tO3Sg7Tt20M1bt+j8hQvk5uZGLi4uSo+ZqsSwJOu9/+CBRFqzdi2pqalRfEKC0uOm6BiWZD9OefRIIj7HT5wgABQaFlahYqiq/eDnvh/Lqw3++OOPZGNjQ6FhYZSYlET+K1eSSCSioL17lR43Zcdv2rRp5ODgIBHDlEePJNZVEcZiZcawJMczFaENqno7zE+BQUHk6OhIFhYWUsf2zzF+JWmDFSF+yoxhfrp46RLVqlWLGjVqRD4+PhKfbdi4kaZPn06rAgIIAEVERio9XqoSPz6ekf28pCT9II8lsveFA7y9qVPnzhJxfvzkidJjpuj45aek5GSytLSkli1bklePHhKfzZw5k6pWrUoHDh6kxKQk2rlrFxkYGNCiRYuEPBWhH1RmG8xPyhpLnqel5V2rTk+Xw5V0Vpz8OYGpO8/TzIMxck1Td57/7P4NP5nJp4JUbfIpN0dMZmZmNNfPT1j29vUbMjY2ppUr/Iv9Xq+evahzp84Syzp5dqI+vfsIfzdt2pR+HjZMIo+dnR1N8vUtttz053mdVciJYInl0ZFRVKNGDXp4/4HKTT4pM4ZlXfeuHTtJS0uLsjOzlD751LRpUxo2bJjEMjs7O/L19ZWaf8KECWRnZyexbOjQoeTu7i783bNXL+rUubNEHs9Onah3nz7C3xMnTqQWLVoUu1054rzY+vn5Cctev8mL7Qp/f7nVXxXjVzBZW1uX+OJA5cqVKWD16mI/v3jpEgEo9qDrc4thadcrzs0lrx49qF27dkqPWXnEsCT7ceHk4+NDNjY2lCMWV6gYqmo/KC19TvuxvNqgg4MDzZgxQyKfs7MzTZ06VelxU3b8pk2bRo6OjsVuV0UZi5UZw5LsxxWhDapyO8xP/967R5aWlnTt+vVSHR996vEr6Vii6vFTZgzFubmUnpFBdevWpeMnTlDr1q2LXDDMT4lJSSp70VXV22DB9DkdzxRMxe17JekHeSyRvR0O8PYuMumiaklRbTArO5uaN29OAatXS41D127daNCgQRLLvv7mG/r+hx+KrFOV+0FltkFxrnLHEp58Kh/5cwK/7r5Asw5fk2v6dfeFz+7f8JN87F5h69evh7GxMYKDg8t3o95JTk5GSkoKPDt6Csu0tbXRulVrXAgPL/Z74RfD4enZUWJZp06euBB+AQCQlZWFiIgIiXIBwLNjx2LLzcrKQsDqABgbG8PR0VFY/vr1a/T9vh+WLf0bZmZmpa6joikzhmVdd3p6OoyMjKChodxXq+XXsaOnZB07duyI8GK2/+LFi+jYUTJunp064erVq8jOzs7LEx4Oz0J5Onl6IvzCBeHvgwcPwsXFBb169YJZ9epwcXbG6tWrhc/zY1tw27S1tdGqdetit628KSp+pSUWi7Fjxw68evUKHh94bEB6ejrU1NRQqVKlMq1HEZQVw7Ks99GjRzhy+DAGDR5conWUF2Xux4W3Y+vWrRg0aBDU1KQ/q1gVY6jK/aA0n9N+LK822Lx5cxw8eBD3798HEeHkyZOIi4uDZ6dOpa6rIig7fvHx8ahhaQmbOnXQt29fJCUlCZ9VhLEYUP39WNXbIKDa7RAAcnNz4T1gAMaPHw8HB4cy1VGRVL0Nqnr8AOW3wREjRqBr167o0KGDrFVRClVvg4V9TsczJfWxfpDHEvm0w9OnTsGsenXY1auHoUOGIDU1tUx1VQRFtsGZf/yBaiYm+PHHH6WW06J5c4SFhSEuLg4AEBMTg/PnzqFLly6yVKnc8VjCWMXyyUw+FWf+/PkYP348jh8/XqSjKS8pKSkAgOrVq0ssr17dVPisuO9VNy30HdPqwneePHkCsVgspdzqRco9dOgQDIwMoaOni0WLFyP4+AlUq1ZN+HzM2DFo5uGBHj16lL6C5UCZMSzLup8+fYqZs2dh2NChH6uawpWmneRLSUmRmj8nJwdPnjwR8pgWymNaqMykpCSsXLkSdW1tcfTYMQwdNgyjR43Cpk2bhDLyy5ZYl+mH/13Lk6LiV1LXr1+HkaEhdHV08Mv//ofAoCDY29tLzfv27VtMmTwZffv1g5GRUanWo0jKimFZ1rtp40YYGhrim2++KdE6yosy9+OC9u3bh7S0NHgPHFjstqpiDFW5Hyzsc9uP5dUGlyxdivr29rCqWRM62tro2qULli1fjhYtWpSmmgqjzPg1dXPDho0bcfTYMawKCMCjlBS0aN4cT58+FcrIL1tiXSo0FgOqvx+rehsEVLsdAsCf8+ZBpKGBkT4+MtVTUVS9Dap6/ADlxnDHjh2IiozEHD8/eVRFKVS9DRb0uR3PlERJ+kEeS2Rvh507d8bmLVsQEhqKv+bPx9WrV9GhfXtkZmbKVG95UVT8zp8/j3Xr1iEgIKDYdU/09UWfPn1gX78+tLW04OLsjFGjRqFv374y1qp88VjCyou6mhrU1eWcivkR76dMubdkKNjkyZOxceNGnDp1Cg0bNvxg3szMTInBKCMjo8zr3bp1K4b972fh78MHDwFAkV+JE1GxvxzPV5LvlCRP27ZtER0ZhSdPnmD1mtXo1ac3LoVfhKmpKQ4cOICwkycRFRFZsgqWA1WMYUnXnZGRgW7dv4R9fXv8Pu33D25beSpt7KTlL7z8Y2Xm5ubC1dUVs+fMAQA4OTnhZmwsVq1ciQEDBpR525RBEfEriXr16iEyKgppaWkICgzEoIEDcfLUqSITUNnZ2ejbty9yc3OxfPnyUq2jvCgrhqVZ7/r169GvXz/o6OiUah3lRRn7cUHr1q1D5y5dYGFhUew6VTmGqtwPAp/vfiyPNvj30qW4dPEi9u3fD2tra5w9cwYjhg+Hubm5Sv0qURnxK/hr1oYNG8LDwwN1bW2xaeNGjBk7tszbpiyquh9XlDYIqGY7jIiIwNKlS3E1IkIl211BqtgGK1L8gPKP4b179zBm9GgcO35cJY9PSksV22BBn+vxzMeUZDzmsUT2dti7d28hf4MGDeDq6oratWrh8OHDKvXjOHnG78WLFxjQvz9WBQRI/Mi8sJ07d2Lr1q3YsnUrHBwcEB0djbFjxsDcwgLe3t4y1EY5eCxhrGL4ZCefFixYgFevXuHq1auoU6fOR/P7+flhxowZclm3l5cX3NzchL/zJ7VSUlJgbm4uLE9NfVxk5r0gMzMzpDySnLVPfZwqfKdatWoQiURFZvZTU1OLlKuvrw9bW1vY2trC3d0ddet9gbXr1mLypMkIOxmGxMREVKpSWeI73/b8Di1btsSpsJOlqL18qFIM8x9DWJJ1v3jxAp27doGBgQH2BgVBU1OzxHVWlNK0k3xmZmZS82toaKBq1apCnkeF8jwuVKa5uTnq168vkceufn0EBQUJZQBSYvv4w/+u5UlR8SspLS0t2NraAgBcXV1x9epVLF2yBCtXrRLyZGdno3fv3ribnIyQ0FCV+nUhoLwYlna9Z8+exZ07d7B9x44SlV+elLkf5/vnn38QGhKCPYGBxW6nqsZQlfvBfJ/rfiyPNvjmzRtMnToVgUFB6NatGwCgUaNGiI6OxoIFC1TiYo0qxC+fvr4+GjRsiPj4eKEMQLXHYkC19+OK0AYB1W6H586eRWpqKmpZWwt5xGIxxo8fjyVLliApObnkFVUQVW6DFSF+gPJiGBERgdTUVDRxdRU+F4vFOHPmDJYvX443b99CJBLJXD9FU+U2mO9zPZ4pi8L9II8l8muHBZmbm8Pa2hoJ7+KsbIqIX2xsLO7evYseXl7C57m5uQAALU1N3Lp9GzY2NvCdOBG+7+5+AvImQf/95x/Mmzu3Qk0+8VjCyouamprcf9RTEX4kJG+f7GP3WrZsCbFYjF27dpUo/+TJk5Geni6ke/fulXndhoaGwkSPra0t7O3tYWZmhuCQ9++cysrKwukzp9HsA+9u8XD3QHBwiMSyEyeC0cyjGYC8i9IuLi4S5QJAcEjIB8sF8mbv8yd0JvlOwrXoGERHRgkJABYtXIj1a9eVvOJypEoxrF27donWnZGRAc/OnaClpYUD+/arzC8h8usYUuidZyEhIcW+O8jd3R0hIZJxCz5xAq6ursKEmruHB4IL5TkRHAyPZs2Ev5s1by48TzhffFwcrN+dGOfHtuC2ZWVl4czp0x98r1F5UlT8yoqIkJmVJfydf4KXEB+PE8HBMp0AKYqyYlja9a5btw4uLi4S78NTFcrcj/NtWL8epqamwsmwNKoaQ1XuB4HPez+WRxvMzs5GdnY21NUlD2tFIpFw4q1sqhC/fJmZmbh965Yw0VQRxmJAtffjitAGAdVuhz/074/omBhERkUJycLCAuPHj8fRY8dKXVdFUOU2WBHiBygvhu3bt0fMtWsS8XF1dUW/779HZFRUhblYqMptEPi8j2fKonA/yGOJfNphYU+fPsW9e/dgVuAHNsqkiPjZ2dkV6eO6e3mhbdu2iIyKQs2aNQHkvetdTcXbV0nwWMJYBUOfiNatW9OoUaOIiMja2poWLVpEFy5cIENDQ/rzzz9LXV56ejoBoPTnaUTiXJnTXD8/MjY2pqA9gXQ95hr17dOXzM3NKSMtXcjT/4f+NMnXV/j7/NlzJBKJaK6fH92KvUlz/fxIQ0ODLl4IF/Ls2LadNDU1ae3qNXTzRiyNHjWK9PX16W5SMpE4l15mvKDJkyZR+PkLdDcpmSKuXKUfBw8mbW1tunHterHbC4D2BgbJpe7ySsqKYUnWnZGWTm5ubtSwYUNKiIunh/cfCCknK7vMdRbnyidt255Xx9Vr1tCN2Fga9a6OScnJJM7NJV9fX/qhf38hf0JiIunp6dHo0aPpRmwsrV6zhjQ1NWnX7t1CnrPn8mLr5+dHsTdvkt+72F4IDxfyXLx0iTQ0NGjWrFl0Jy6ONm/ZQnp6erRp82Yhj9+72O4JDKSYa9eoT9+82Kalp8ut/qoYvzdv31JEZCRFREaSubk5jRs3jiIiI+lOXJyQZ9KkSXTq9GlKTEqi6JgYmjx5Mqmrq9Ox48dJnJtLmVlZ1N3Li2rUqEGRUVF0/8EDIb15+1bpcVOFGH5svfnpeVoa6enp0fIVK5Qeq/KMYUn2Y3FuLmXn5JCVlRVNnDix2O1T9Riqaj/4ue/H8mqDrVu3JgcHBwoNC6OExERau24d6ejo0LLly5UeN2XHb+zYsRR28iQlJCbShfBw6vbll2RoaCjRD1aEsViZMSzJ8UxFaIOq3g4LJ2tra1q4cKHSY6YK8StJG6wI8VNmDAun1q1bk4+Pj8Syx0+eUERkJB08dIgA0Lbt2ykiMpLuP3ig9LgpO358PCP7eUlJ+kEeS2Rrh+kZGTR27Fg6d/48JSYlUWhYGHl4eJClpaVKHdMoIn6F0wBvb/Lq0aPIMktLSzpw8CAlJiXRnsBAqlatGk2YMEHIUxH6QWW2wcKpvMeS52lpedeq09Plek2dScqfE5ix9yLNO3FDrmnG3ouf3b/hJz35RER07tw5MjAwoIULF5aqPHlPPuXmiOn3adPIzMyMtLW1qVWrVnQ95ppEntatW5P3AG+JZbt37qJ69eqRpqYm2dnZUeDuPUXKXr5sGVlbW5OWlhY5OzvT6ZOnhM/evHpNX3/1NVlYWJCWlhaZm5uTV3cvunzx0ge3VxUnn5QVw5Ks+2RoGAGQmpITk5Q++STOzaVlhep48tQp4bMB3t7UunVrifxhJ0+Sk5MTaWlpUa1ataReUN65SzK2u/fsKZJn/4ED1KBBA9LW1iY7OztauWqVxOc5YjFNKxTbmGvX5Fp3VYxfYlKS1PZSsJxBgwYJ6zQxMaH27dsLE08fKgMAhYaFKT1mqhDDj603P/mvXEm6urr07PlzpcepPGMozi3Zfnz02DECQLdu3y522ypCDFWxH/zc92N5tcH7Dx6Q98CBZGFhQTo6OlSvXj2aP38+5YjFSo+ZsuPXq3dvMjc3J01NTbKwsKCvv/mGrt+4IZGnoozFymyDHzueqShtUJXbYeGkqpMnqtoGK0r8lBnDgknaBcO169ZJHY+nTZum9JipQvz4eEa285KS9IM8lsjWDl++ekUdPT3JxMSENDU1ycrKigZ4e9Pdf/5RerzKI34Fk7TJp7T0dPLx8SErKyvS0dGhOnXq0JQpUyQmiCtKP6jMNlgwlfdYwpNP5YMnn+RLjejdG9YquDZt2qBx48ZYvHgxatWqhdGjR2P06NEAgDNnzqBr166YM2cOfHx8SlReRkYGjI2Nkf48TeWeU8w+H7mf36NAGWOMMcYYY4wxxhhjBWRkZKBypUpIT0/na9UKlD8n8Me+S9DRN5Br2W9fvcS0r9w+q39DDWVvgLycOnVK+P+7d+9KfNaqVSu8fPmyfDeIMcYYY4wxxhhjjDHGGGMVirq6GtTV5XtXgLzLqwjUP56FMcYYY4wxxhhjjDHGGGOMsZL5ZO58YowxxhhjjDHGGGOMMcYYk4W6el6Sd5mfm8+wyowxxhhjjDHGGGOMMcYYY0xR+M4nxhhjjDHGGGOMMcYYY4wxAGpqalBTk+87muRdXkXAdz4xxhhjjDHGGGOMMcYYY4wxueE7nxhjjDHGGGOMMcYYY4wxxgCoq6tBXV2+dyrJu7yKgO98YowxxhhjjDHGGGOMMcYYY3LDdz4xxhhjjDHGGGOMMcYYY4wBgALe+YTP8J1PPPnEGGOMMcYYY4wxxhhjjDEGQF09L8m7zM8NTz59RK5aXmKMMcYYY4wxxhhjjDHGGGMfx5NPjDHGGGOMMcYYY4wxxhhjANTU1aCmLt87UuRdXkXwGd7sxRhjjDHGGGOMMcYYY4wxxhSF73xijDHGGGOMMcYYY4wxxhgDoK4GqKvJ906lz/DGJ77ziTHGGGOMMcYYY4wxxhhjjMkP3/nEGGOMMcYYY4wxxhhjjDEGQE0NUJPzbTtyvpGqQuA7nxhjjDHGGGOMMcYYY4wxxpjc8J1PjDHGGGOMMcYYY4wxxhhjyHvfk/zf+fT53frEk0+MMcYYY4wxxhhjjDHGGGMA1NTVoKYu38kieZdXEfBj98qJ/4oVsKlTB3q6umji6oqzZ89+MP/p06fRxNUVerq6sLWxwcqVK4vkCQwMRAMHB+jq6KCBgwP27t1b6vUSEWZMn44alpbQ19NDu7ZtERsbK1tlFYDjJzuOoWxUNX4F/TxsGETq6liyeHGp61ceVDWGQUFB6Ny5M0xNTCBSV0d0dLRM9VQkVY0h78fcBotTXjGcMX067OvXh6GBAapWqQLPjh1x6dIl2SqrAKoaP26DHMMP4RhK4vjJjmMoG46f7FQ1hhXleAZQ3RhWlHaoqvEriK8vlD6G2dnZmOTrC8dGjWBoYIAalpbw9vbGgwcPZK8wYxUVVQCtW7emUaNGles609PTCQA9T0sjcW6uTGnb9u2kqalJqwIC6EZsLPn4+JC+vj4l370rNX9CYiLp6emRj48P3YiNpVUBAaSpqUm7du8W8pw7f55EIhHNnj2bYm/epNmzZ5OGhgZdCA8v1Xr9/PzI0NCQdu/ZQzHXrlGv3r3J3Nyc0tLTZa63vBLHj2Oo7KTK8ctPgUFB5OjoSBYWFrRw4UKlx6wixXDDxo00ffp0WhUQQAAoIjJS6fGqaDHk/ZjboLJjuHnLFjp+4gTFJyTQtevXafDgwWRkZEQpjx4pPW4VIX7cBjmGHEOOH8ewYsSQ4/dpx7AiHM+oegwrQjtU5fjlJ76+ULYYPnv+nNp36EDbd+ygm7du0fkLF8jNzY1cXFzkUu/naWkEgNLT08v1GvnnJn9OYNnZGFoblSTXtOxszGf3b1ghJp+ePn1KGRkZ5bpOeU4+NW3alIYNGyaxzM7Ojnx9faXmnzBhAtnZ2UksGzp0KLm7uwt/9+zVizp17iyRx7NTJ+rdp0+J15sjFpOZmRn5+fkJn79+84aMjY1phb+/0gcTjh/HUNlxU/X45ad/790jS0tLunb9OllbW6vkwaGqx1Ccm0uJSUkqe4KiyjHk/ZjboCrFMD/ln5idCA5WetwqUvy4DXIMOYYcP46haseQ4/d5xDA/qeLxTEWJoSq3Q1WPH19fkE8bzE8XL10iAMVOjJUm8eRT+eDJJ/mqEI/dq1KlCgwNDZW9GWWSlZWFiIgIdPT0lFjesWNHhIeHS/3OxYsX0bFjR4llnp064erVq8jOzs7LEx4Oz0J5Onl6IvzChRKvNzk5GSkpKRJ5tLW10ap162K3rbxx/GTHMZSNKscPAHJzc+E9YADGjx8PBweHslVSwVQ9hhWBKseQ92Nug6oWw6ysLKwOCICxsTEcHR1LXkkFqkjxU1UcQ9lxDGXD8ZMdx1A2HD/ZVaQYquLxDFCxYqiKVD1+fH1B/m0wPT0dampqqFSpUonqx1SHmppi0uemQkw+tWnTBqNHjwYA1KpVC3PmzMHgwYNhaGgIKysrBAQESOS/cOECGjduDB0dHbi6umLfvn1QU1NTyrNenzx5ArFYjOrVq0ssr169OlJSUqR+JyUlRWr+nJwcPHnyRMhjWiiPaYEyS7Le/P8WyWNqWuy2lTeOn+w4hrJR5fgBwJ/z5kGkoYGRPj5lq2A5UPUYVgSqHEPej7kNqkoMDx06BCNDQ+jp6mLx4sU4fuIEqlWrVvrKKkBFiJ+q4xjKjmMoG46f7DiGsuH4ya4ixFCVj2eAihFDVabq8ePrC/Jtg2/fvsWUyZPRt18/GBkZlbySjH1CKsTkU2ELFiyAq6sroqKi8Msvv+B///sfbt++DQB48eIFunfvjoYNGyIyMhIzZ86Er6/vR8vMzMxERkaGRJIntUJTm0RUZNnH8hdeXpIy5ZVH2Th+suMYykYV4xcREYGlS5di/fr1KhcvaVQxhhWNKsewIsRZleNXUahyDNu2bYvIqCicO38enTp1Qp/evZGamvqRGpUvVY5fRcExlB3HUDYcP9lxDGXD8ZOdKsewIhzPAKodw4pAFePH1xfk2wazs7PRt29f5ObmYvny5R+oCVNV6upqCkmfmwo5+dS1a1f88ssvsLW1ha+vL6pVq4ZTp04BALZu3Qo1NTWsXr0a9vb26NKlCyZMmPDRMv38/GBsbCykmjVrymVbq1WrBpFIVGQWPDU1tchseT4zMzOp+TU0NFC1alUhz6NCeR4XKLMk6zUzMwOAonkePy5228obx092HEPZqHL8zp09i9TUVNSytoaWpia0NDXxzz//YPz48ahTu3bZKy1nqhzDikKVY8j7MbdBVYmhvr4+bG1t4e7ujjVr10JDQwPr1q4tfWUVoCLET9VxDGXHMZQNx092HEPZcPxkVxFiqMrHM0DFiKEqU+X48fUF+bXB7Oxs9O7dG3eTk3H8xAm+64l91irk5FOjRo2E/1dTU4OZmZnwS5A7d+6gUaNG0NHREfI0bdr0o2VOnjwZ6enpQrp3755ctlVLSwsuLi4ICQ6WWB4SEgIPDw+p33F3d0dISIjEsuATJ+Dq6gpNTc28PB4eCC6U50RwMDyaNSvxemvXrg0zMzOJPFlZWThz+nSx21beOH6y4xjKRpXj90P//oiOiUFkVJSQLCwsMH78eBw9dqzslZYzVY5hRaHKMeT9mNugqsaQiJCZmfnxypWDihg/VcMxlB3HUDYcP9lxDGXD8ZNdRYyhKh3PABUzhqpElePH1xfk0wbzJ54S4uNxIjhYmNxiFY+6mppC0meHKoDWrVvTqFGjiIjI2tqaFi1aJPG5o6Mj/f7770RENGrUKGrXrp3E59HR0QSAoqKiSrzO9PR0AkDP09JInJsrU9q2fTtpamrS6jVr6EZsLI0aNYr09fUpKTmZxLm55OvrSz/07y/kT0hMJD09PRo9ejTdiI2l1WvWkKamJu3avVvIc/bcORKJROTn50exN2+Sn58faWho0IXw8BKvV5ybS35+fmRsbEx7AgMp5to16tO3L5mbm1NaerrM9ZZX4vhxDJWdVDl+hZO1tTUtXLhQ6TGrSDF8/OQJRURG0sFDhwgAbdu+nSIiI+n+gwdKj1tFiSHvx9wGlRnDjBcvaNKkSXT+wgVKSk6mK1ev0uDBg0lbW5uuXb+u9Lipevy4DXIMOYYcP45hxYkhx+/TjWFFOZ5R5RhWlHaoyvErnPj6QulimJmVRd29vKhGjRoUGRVF9x88ENKbt29lrvfztDQCQOnp6TJcZWcfkz8nEHDpBm2O/UeuKeDSjc/u3/CTm3zy9/enatWq0du3b4XP16xZo9TJJ3FuLi1btoysra1JS0uLnJ2d6eSpU8JnA7y9qXXr1hL5w06eJCcnJ9LS0qJatWrR8hUripS5c9cuqlevHmlqapKdnR3t3rOnVOsV5+ZSjlhM06ZNIzMzM9LW1qZWrVpRzLVrSh9IOH4cQ2XHq6LEr3BS1YNDVY7h2nXrCECRNG3aNKXHrKLEkPdjboPKjOGr16/pq6+/JgsLC9LS0iJzc3Pq7uVFFy9dUnq8KkL8uA1yDDmGHD+OYcWKIcfv04xhRTqeUdUYVqR2qKrxK5z4+kLpYpiYlCS1/QGg0LAwmevMk0/lgyef5EuN6N0b1lRYmzZt0LhxYyxevBi1atXC6NGjMXr0aOHzxo0b46uvvsL06dORkZGB2rVr48svv8SkSZPw77//YvTo0bh9+zaio6Ph6OhYonVmZGTA2NgYz9PS+NmcjDHGGGOMMcYYY4wxxpQiIyMDlStVQnp6Ol+rVqD8OYHVl29Az8BQrmW/fvkCQ5o2qND/hqmpqTAzM0Nubm6J8lfIdz59iJGREQ4ePIjo6Gg0btwYU6dOxbRp0wBA4j1QjDHGGGOMMcYYY4wxxhhjqsbPzw9NmjSBoaEhTE1N8dVXX+HOnTvK3iyoleLdVRoK3A65OXXqlPD/d+/eLfJ5dHS0xN/NmjVDTEyM8PfWrVuhqakJKysrBW0hY4wxxhhjjDHGGGOMMcYqOpG6GkTqJZ9kKWmZpXH69GkMHz4cTZo0QU5ODqZOnQpPT0/cvHkT+vr6ct220ijNg/QqxORTaW3atAl16tSBpaUlYmJi4Ovri169ekFXV1fZm8YYY4wxxhhjjDHGGGOMMVasY8eOSfy9fv16mJqaIiIiAq1atVLIOjdu3PjBz9PT00tV3ic5+ZSSkoJp06YhJSUF5ubm6NmzJ2bPnq3szWKMMcYYY4wxxhhjjDHGmAoTqalBVIrHy5W0TCDvvVIFaWtrQ1tb+6Pfz5/4qVKlily3q6AxY8Z88PPS3PUEAGpU2m98JvJfLvY8La3CvgCMMcYYY4wxxhhjjDHGWMWWkZGBypUqIT09na9VK1D+nMDGiJvQMzCUa9mvX76At4t9keW///47pk+f/sHvEhF69OiB58+f4+zZs3LdrtJ4/Pgxqlevjtzc3BLl/yTvfGKMMcYYY4wxxhhjjDHGGCstRd75dO/ePYkJxJLc9TRixAhcu3YN586dk+s2lVZp72NSV9B2MMYYY4wxxhhjjDHGGGOMVSjqampQV5dzejf5ZGRkJJE+Nvk0cuRIHDhwACdPnkSNGjUUXvf9+/ejRYsWqFq1KqpWrYoWLVpg7969wudqpZiU48knxhhjjDHGGGOMMcYYY4wxFUFEGDFiBIKCghAWFobatWsrfJ2rVq1C79690aBBAyxZsgSLFy9Gw4YN0adPH/j7+0NXVxfe3t4lLo8fu8cYY4wxxhhjjDHGGGOMMQbFPnavpIYPH45t27Zh//79MDQ0REpKCgDA2NgYurq6ct22fPPnz8eSJUswbNgwYVn//v3RuHFj/PXXX/jf//6HdevWlbg8vvOJMcYYY4wxxhhjjDHGGGNMRfj7+yM9PR1t2rSBubm5kHbu3Kmwdd67dw/t27cvsrx9+/a4d+9eqcvjO58YY4wxxhhjjDHGGGOMMcagGnc+EZFc118StWvXxoEDBzB27FiJ5QcPHkSdOnVKXR5PPjGFESthB/nUiHM5hky5tER8gyxTLh5LZMdjiexE6vI96WCstOR94vs54vFENtwGZcdtkCmbJng/llU2eD+WBZ+XyCZLnKvsTWCfgd9++w0DBw7EpUuX0KxZM6ipqeH8+fMICgrC+vXrS10eTz4xxhhjjDHGGGOMMcYYY4wBUFfAnU/qFeDHPP369UPNmjXx119/YdmyZSAi1K9fHyEhIWjdunWpy+PJJ8YYY4wxxhhjjDHGGGOMsc9cy5Yt0bJlS7mUxZNPjDHGGGOMMcYYY4wxxhhjyHv0urwfv/45Ps6dJ58YY4wxxhhjjDHGGGOMMcaQ975LeT92ryK8Q1MkEoFK+J7K3NyPv4eMJ58YY4wxxhhjjDHGGGOMMcY+Y3v37hX+/8CBAzhx4gQWLVoETU3NMpXHk0+MMcYYY4wxxhhjjDHGGGP4fO988vLyAgDs378f27dvh6WlJfbt24fNmzeXqTx1eW4cY4wxxhhjjDHGGGOMMcYYq3gCAwPRt29frF69GhcvXkRkZCRGjRpVprL4zifGGGOMMcYYY4wxxhhjjDEA6upqUFeX751K8i5PEXbv3o2BAwdi/fr16N27NwAgJCQEzZo1Q9WqVTFt2rRSlcd3PpUT/xUrYFOnDvR0ddHE1RVnz579YP7Tp0+jiasr9HR1YWtjg5UrV0p8HhQUhKZNmqBK5cowNDCAs5OT1Nvf7t+/j/79+8OkWjUY6OvD2ckJERERwudEhBnTp6OGpSX09fTQrm1bxMbGyqfScrTS3x9f2NjAUE8Pbk2a4NxH4nfm9Gm4NWkCQz091LO1RUCh+AFAWloafEaMgJWlJQz19NDQwQFHjxwRPs/JycG0337DFzY2MNLXRz1bW8yaOVPiZWqPHj3Cj4MGwbpGDRgbGODLLl0QHx8vv4rL0Sp/f9jVtUUlA300a9oU584VH8OHDx/Cu/8PaORgDz0tTYwfO7ZIns0bN0JXU6NIevv2rZAnYOVKNHFygmmVyjCtUhmtWzTH8WNHJcqZ9ccMODZwQFVjI5ibVEPXTp64fOmS/CouJ/KOH5DXBkePHInaNWugkoE+GjdsgGNH37fBFy9eYPzYsfjCpg4qGxqgTcsWuHrlikQZFSV+gPz7wYJ27NgBkbo6vv766yKffawffPnyJUaOGAGrmjWhr6cHB3t7+Pv7l72iCqSIGKalpWHE8OGwtLCAnq4uHOztcaRAXwh8OjEszVjy8OFD9P/+ezjUrw9tDQ2MGzOmSJ7Y2Fj0+u471K1TB1oiEZYuWVIkT/5nhZPPiBFCHiLCHzNmwLpGDRjp66NDu3YqORYDpesL9+3di26dO6GmuZkwBgSfOF4k396gIDg1aghjfT04NWqI/fv2lXq9RIRZf8xAbauaqGxoAM/27XBTBWOoiOOZpUuWwKF+fRjp66OOtTXGjx0rMRaXpA0W9MvPPxfbnlWBvGPYoV07qfHp8eWXEvnu378P7/79YWZiAmMDA7g6OyOyQD8orQwtkQgL5s+XX+XlRBnj8ZkzZ+Dl5YUalpYQqatjn5T9XKSuLjXN/+uvMtVTUeQ9lgBAUGAgGjVoAANdXTRq0AD7CjxrH8g7Jhw3Zgxsa9eGkb4+WrUoekwIALdu3cLXPXqgWuXKqGJsjBbNmuHff/+VrcIKIO82uHr1arRu1QpVq1RB1SpV4NmxIy5fviyRp07t2lLb14jhw4U8gwYNKvJ5Mw8P+VVcTngskZ28Y5idnY1ZM2fCrm5dGOrpwcXJCcePHSu2vHlz50JLJCrSJ7x8+RKjRo5EbSsrGOnro6GDA1ap4DE1kHfsNX3GdFjUsISuvh7atCvZtaTAwEDYN3CAtq4O7Bs4SLxbBMgbL7p7ecGihiXUREXHi+zsbPhO8kVDx0bQNzSARQ1LDPD2xoMHDyTyDft5GGzq2kJXXw8m1U3R46uvcPv2bZnrLS/KOJ5Z5e8P58aNUbVSJVStVAktmzfHsaOS12f2BgWhW+fOMDc1hZZIhOjoaLnVWd6UcY3mr3lz0dzdHSaVK8HKwhw9v/0GcXfuSJRRUc5LGCvOwIEDsWnTJmHiCQDMzc0RGhpatus8xKRKT08nAPQ8LY3EubkypW3bt5OmpiatCgigG7Gx5OPjQ/r6+pR8967U/AmJiaSnp0c+Pj50IzaWVgUEkKamJu3avVvIExoWRnsCA+lGbCzFxcfTokWLSCQS0ZGjR4U8T54+JWtra/IeOJDCL16kxKQkOhEcTHHx8UIePz8/MjQ0pN179lDMtWvUq3dvMjc3p7T0dJnrnSUWyyVt2baNNDU1aeWqVRRz4waNfBe/hORkqfnvJCSQnp4ejfTxoZgbN2jlqlWkqalJO3btEvK8fPOGXFxdqUuXLnTqzBmKT0qik6dP05XISCHPjJkzqWrVqrTvwAGKS0yk7Tt3koGBAS1YtIiyxGLKzMkhN3d3atGyJV24eJGu37xJPw0ZQlZWVvQ8I0MudX+TnSOXtGlrXgxXrFxFUdeu0/CReTG8k5gkNf/t+AT6ZcRIWrNuPTk6NqbhI32K5AlYs5aMjIwo+d5/Eqlgnj1799LeAwfoWuxNuhZ7kyZOmkSampoUER0j5Fm/aTMdPnaMbt6Jo4joGBo4aDAZGRnRvw8eyq3+qhi/9FevydnFlTp36UKhp07T7YRECjl5ii5djRDyfNuzJ9W3t6fgsDC6ces2Tf3tNzIyMqKEu/+UW/xk7QcU2Q/mp6TkZLK0tKSWLVuSV48eEp+VpB/88ccfycbGhkLDwigxKYn8V64kkUhEQXv3yq3+qhrDN2/fkqurK3Xp2pXOnD1LScnJdPrMGYqMilKZGCprLIlLTKQRI0fS2vXrybFxYxrp41Mkz4WLF2nsuHG0eetWMjMzo/kLFxbJcz8lhf69f19IR48fJwAUHBoq5Jn9bizeuXs3RcbEUM9evcjc3JyepqVV6LFk+EgfmuXnR2cvhNP1m7dogq8vaWpqUvjlK0Kek2fOkkgkoj9mzaLo6zfoj1mzSENDg06fO1+q9c6cM4cMDQ1p+67ddDUqmr7r1YvMzM0p9dlzudRdVY9nNmzaRNra2rRx82aKS0ykw0ePkrm5OfmMGlWqNpifdgcGUiNHR7KwsJDanpWdFBHDlMePJeITde0aiUQiWrN2rZDn0ZMnZG1tTQO8vel8eDjFJSbSsRMn6FZcnJCnYBn/3r9Pq9esITU1NbodHy+XuqvyWFKS8fjQ4cM0ZcoU2r1nDwGgwKCgIt+//+CBRFqzdi2pqalRfEKCXOqujDZYkrHkzLlzJBKJaObs2XQtNpZmzp5NGhoadO7CBSHPd++OCUNPnqSbd+7Qr9Om5R2H//uvkOdWXBxVqVKFxo4fT5euXqXb8fG078AB+u/hw0++Dfbt14+WLVtGEZGRFHvzJg0cOJCMjY3p33v3hDwpjx5JtK/jJ04QAAoNCxPyDPD2pk6dO0vke/zkidzqrqr9II8lssdw3IQJZGFhQfsPHqTb8fH097JlpKOjQ5euXi1S3oWLF6lWrVrUsFGjIn3C4HfH1MGhoRSXmEgr/P1JJBLRnqAgudSdxLlyS3PfHb8G7t5D12OuUe9eedeSMtLSi/3OhXPnSSQS0ZzZs+lW7E2a866/u3ghXMhz5NBhmjplCgXuzhsv9gYGSZSR9uw5dWjfgXZu30G3b96i8PMXyM3NjVxcXCTyrfJfSadPnqLkxCSKuHKVun/ZnWrWrEk5Wdky1VtV22BJjmeC9u2j/QcP0o1bt+jGrVvkO3kyaWpqUtS1a0KedRs20LTp02nlqlUEgC5HRMh1/6vo12g6enpSwJq1FBEdQ5euRlCXrl2pppUVPUlLL5fzkkdPnxEASk9PV/Zl809a/pxAyJ1kCn/wVK4p5E6yyv8b7t27t9jPYmJiSl0eTz4VQ56TT02bNqVhw4ZJLLOzsyNfX1+p+SdMmEB2dnYSy4YOHUru7u4fXI+TkxNNnTpV+HvixInUokWLYvPniMVkZmZGfn5+wrLXb96QsbExrfD3V4mD6yyxmJo0bUpDhw2TWFbPzo4m+PpKzT9uwgSqZ2cnsWzI0KHk5u4u/L1s+XKqU6cOvXr7ttj1du3alQYOGiSx7Kuvv6Z+339PWWIx3bh1iwBIDNRvsrKoSpUqtHLVKpUamF2bNKEhQ4dJLKtnZ0fjJ0786HdbtmpV7OSTsbFxqbelcuXK5L8q4KOD6ZHjx+VWf1WM39Jly6l2nTqU8fqN1O89y3iRd/F+/36J5Y0aOZLv5MnlFj95nWwrqh/Mys6m5s2bU8Dq1TTA27vIxa6P9YPi3FxycHCgGTNmSCxzdnaW6E9VISkihstXrKA6derQ28zMYter7BgqaywpmFq1bi31gmHBZG1tXaILLCN9fMjGxoYyc/ImNDJzcsjMzIxm+/kJeV68fk3Gxsa0fMWKT2YsyU/17e3pt99/F/7+tmdP8uzUSSJPR09P6tm7d4nX+zorm8zMzGjmnDnC52kvX5GxsTH9vXyFXOquqscz//vlF2rbrp1EntFjxlDzFi1K3AbzU/K//5KlpSVFXbtW4vZc3kkRMSyc5i9cSIaGhhI/JBo/ceIHYyotdffyKvJvI0tS5bGkJONxwVTc5FPh5NWjB7Vr105udVdGGyyYihtLvuvZkzp16iSxzNPTk3r17k1ZYjGlv3xJIpGI9h04IJGnkaMjTZoyRfi7Z69ewnmKIpKqt8HC7dHQ0JDWb9hQbB6fd31hToG6faztVsQ2yGNJ+cTQ3Nyclvz9t0Se7l5e1LdfP4llz9LTybZuXTp6/LjUPsHewYF+nzFDYpmTszNNnjpVLnUnOU085ebkXUua6+cnLHv7Ou9a0soV/sV+r1fPXtS5U2eJZZ08O1Gf3n2k5pc2+SQtXb54iQDQP8l3i80TExVNACghLl7pk0/KOp6RlipXrkyrAgKKLI9LTFTpySdlXKORlv598DBvIj4srFzOS3jyqXx87pNPRETXrl2j77//nurXr08ODg40YMAAunbtWpnK4sfuKVhWVhYiIiLQ0dNTYnnHjh0RHh4u9TsXL15Ex44dJZZ5duqEq1evIjs7u0h+IkJoaCju3LmDlq1aCcsPHjwIFxcX9OrVC2bVq8PF2RmrV68WPk9OTkZKSorEtmlra6NV69bFblt5y8rKQmREBDoUikfHjh1xsZhtvCQlfh09PRFRIH6HDh6Em7s7fEaMQA1zczRu1Ahz/fwgFouF7zRr0QInw8IQFxcHAIiJicGF8+fRuUsXAEBmZiYAQEdHR/iOSCSClpYWzp8/L2PN5ScrKwtRkZFoXygm7TsUH8OSevnyJb6wqQObWtb4pocXoqOiis0rFouxa+dOvHr1Cm7u7sVu69o1q2FsbIyGjRxl2jZ5UVT8Dh86CDc3d4weORLWlhZwaeyIP+e+b4M5OTkQi8US7QsAdHR1cKGY9qWK8QMU2w/O/OMPVDMxwY8//ii1nI/1gwDQvHlzHDx4EPfv3wcR4eTJk4iLi4Nnp05lqa5CKCqGBw8ehLuHB0YMHw5zMzM0atgQfnPmSPSFn0IMyzKWKGo7tm3dCu9Bg6Cmlves5/yxuOC2aWtro2WrViozFgPy6Qtzc3Px4sULVK5cRVh26eJFtO8gWWaHjp5CmSVZ7938GHYoGsPy/Pf9EEUdzzRr3hyRERG48u7xUklJSTh69Ci6dO1a7HYUboNA3r/NIG9vjB0/Hg4ODmWupyIpKoaFrV+3Dr1694a+vr6w7NC7frBPr16wNDNDExcXrC3UDxb06NEjHD1yBAMHDSpp9cqFMsfj0nr06BGOHD6MQYMHy6U8eVDUWHLp4kV0KPxv0qmTUGZxx4S6urrCMWFubi6OHjmCul98gW6dO8PSzAzNPTykPsZUmcrj3BgAXr9+jezsbFSpUkXq51lZWdi6dSsGFeoLAeD0qVMwq14ddvXqYeiQIUhNTS1p9RSOxxLZKSqGmZmZ0NHWlshTcB/N5zNiBLp27Yr2HTpIXVfz5s1xqMAx9amTJxEfFwfPQvuMsuUfv3p2lLyW1LpVa1z4QH8YfjEcnp6SsezUyRMXwi/ItD3p6elQU1NDpUqVpH7+6tUrrN+wHrVr10bNmjVlWpeslHk8U5BYLMbOHTvyrs+o4ONFP0RZ12ikyUhPBwDh/KYinJewklNXU4NIzkldTfXf+RQREQEPDw88evQInp6eSExMhJ6eHpo3b44LF0rfX/Pkk4I9efIEYrEY1atXl1hevXp1pKSkSP1OSkqK1Pw5OTl48uSJsCw9PR1GhobQ0dZG9y+/xJKlSyUGpKSkJKxcuRJ1bW1x9NgxDB02DKNHjcKmTZuE9eSXLbEuU9Nit628FRc/04/Ez/Qj8UtKTkZQYCDEYjEOHDqEyVOmYPHChfCbM0f4zoSJE9GrTx80tLeHnrY2mrq4YOSoUejTty8AwM7ODtbW1vh1yhQ8f/4cWVlZ+HPePKSkpCDl4UN5hkEm+TE0NTWVWF69uikePXpU5nK/qFcPq9euw56gvdi4ZQu0dXTQrnUrJBR659WN69dRrZIxjPX14DP8F+zcswf17e0l8hw5fAjVKhmjkoE+/l6yBIeOHkO1atXKvG3ypKj4JScnY29QXhvce+AgfCdPwZJFizDPL68NGhoaws3dHX6zZ+PBgwcQi8XYvnUrrly+XKTtq3L8AMX1g+fPn8e6desQEBBQ7Lo/1g8CwJKlS1Hf3h5WNWtCR1sbXbt0wbLly9GiRYuyVlnuFBXD5KQkBO7ZA7FYjEOHD2PK1KlYuHAh5syeLXznU4hhWcYSRdi/bx/S0tIwwNtbWPaouLG4enXhM1Ugj75w8aKFeP3qFb7t2VNY9kjKmG1aoO4lWW/+v2GRckyr49Ej1Yihoo5nevfpg+l//IE2rVpBT1sbdnXrok2bNpjo6yu1TGltEAD++vNPaIhEGDFyZFmrqHCKimFBVy5fRuyNGxhcaAIlOSkJq1auhG3dujh09CiGDh2KMaNHY3OBfrCgzZs2wdDQEF9/801pqqhwyhyPS2vTxo0wNDTENyoUQ0WNJSkpKUX6ONMC52OGhoZw9/DAnALHhFu3bMHlS5fw8N05R2pqKl6+fIm/5s2DZ+fOOHzsGHp89RV6ffcdzpw+XeZtkzdFnhsXNHnSJFhaWqJDMRf4973rC70HDpRY3rlzZ2zesgUhoaH4a/58XL16FR3atxd+dKhsPJbITlEx7OjpicWLFyM+Ph65ubkICQ7GwQMHhH0UAHbu2IGoqCjMKnDNobBFS5agfv36qG1lBX0dHXzZtSuWLluG5ipyTJ2v2GtJ1T98LSklJQXVTQtff5KtD3379i0mTZmMfn37wcjISOKzFf4rYGBkCAMjQxw7fhzBx09AS0urzOuSB2UezwDA9evXUdnICAa6uhjxyy/YHRgI+0LXZ1Sdsq7RFEZE8J0wHs2aN4dDgwYAKsZ5CWMfM3XqVAwcOBDBwcEYNWoUNDQ04O/vj9mzZ2Py5MmlLk9DAdtYIWVmZkocVGZkZMi1/MK/qCKiIss+lr/wckNDQ0RGReHly5cICw3F+HHjUKdOHbRp0wZA3i+PXF1dMfvdwY2TkxNuxsZi1cqVGDBgQJm3TRnkHb/c3FyYmprCf9UqiEQiOLu44OHDh1g4fz5+/e03AMCunTuxfetWbNqyBfYODoiJjsb4sWNhbm6OAd7e0NTUxM7duzF0yBBUr1YNIpEI7du3R+fOneVZdbmR97+zm7u7xB1MzZo1h0eTJlixfDkWLl4sLP+iXj1cuhqBtLQ07NsbhCGDB+NEaJjEBFTrNm1x6WoEnjx5gvVr1+KHfn1x5vyFIgcTyiTv+OXm5sLE1BTLV6583wYfPMDihQsw5de8Nrhuw0YMG/ITbKytIBKJ0NjJCb379EV0tOQdZhUhfoB89+MXL15gQP/+WBUQ8MGJtpL0g38vXYpLFy9i3/79sLa2xtkzZ/LuBDI3L/aihbIoqi9cFRAAkUgEl3ftcP78+fht2jQhz6cSQ2WPdxvWrUOnzp1hYWFR5DNlb1tJlXU7d+7Ygdl//IHdQUFF+qaSlCmvPMom73349KlTmDtnDv5etgxN3NyQmJCAcWPGwMzcHFN//bVIedLaYGREBJYtXYpLV6+qXLykUcQxdb7169bBoUEDNGnaVGJ5bm4uXFxdMevdxLyTkxNu3ryJgFWr0L/AMXW+DevXo2+/fkXuVFEVyhiPS2v9+vXop6IxVERf87Ey12/ciKE//YRaNWtCJBLBydkZffr2RdS7pw7k5uYCALp7eWHU6NEAgMaNGyP8wgUErFqFVq1by7R98qbI/fivP//Ejh07EHbyZLHtZ926dejcpUuR8bjgi7UbNGgAV1dX1K5VC4cPH1apiVAeS2Qn7xguXLwYPw8diob29lBTU0MdGxt4DxyIjRs2AADu3buHcWPG4PCxYx/s15b9/TcuXbqEoH37YGVtjXNnz8JnxAiYm5sXe7dUedi6dSuG/e9n4e/DBw8BKFt/KM8+NDs7G3369kVubi5WLF9e5PPv+32Pjh064uHDh5i/YAF69emN82fPqcTYoozjGQCoV68erkRGIj0tDUFBQfhx0CCEnDxZ4SagAOVcoylojI8Prl+/jtBTRX/kURHOS9jH5d+tJO8yVV14eDjmzZsH4H1fAwDdunWDbzE/TPkQnnx6x8/PDzNmzJB7udXeTUoU/gVDampqkV865DMzM5OaX0NDA1WrVhWWqaurw9bWFkDeycWtW7cwd+5cYfLJ3Nwc9evXlyjHrn59BAUFCesB8mbmzc3N36/r8eNit628FRe/xx+JX+FfixeOn7m5OTQ1NSESiYQ8dnZ2SElJQVZWFrS0tDDZ1xcTfH3Ru08fAEDDhg3x77//4s9584RfeTm7uOBqZCTS09ORlZUFExMTNPfwgIuLi9xiIKv8GBb+BUhq6mO5Tk6oq6vDxdUViQmSdz5paWnB5l07dXF1RcTVq1j+999Y5u8v5NHX14eNrS1sbG3h5u6OBvXtsHH9OkzwnSS37SsrRcXPzMysaBusL9kG69jYIDjsJF69eoWMjAyYm5vjh359UatWLYmyVDl+gGL6wdjYWNy9exc9vLyEz/MvvGhpauLW7duwsbH5aD/45s0bTJ06FYFBQejWrRsAoFGjRoiOjsaCBQtUZuJEUWOJ1L6wfn2JdvgpxLAsY4m8/fPPPwgNDcWuPXskllcvbixOTS3yizllkqUv3L1rF/43dAi27tiBdu0l20N1KWP24wJ1L8l6849nHhWK4ePHqTA1VY0YKup4Zvrvv+P7H37A4J9+ApB3rPLq1Sv88vPPmDxlCtTV3z/koLg2eO7cOaSmpsKmwNgiFosxcfx4/L1kCeKTkspcb3lSVAzzvX79Grt27sTvUs4HpPaDdnbY+64fLOjc2bOIu3MHW7dvL1G9ypMyx+PSOHv2LO7cuYPtO3aU6nuKpqixxMzMrEgf97jQ+ZiNjQ1CT0oeE/br0we13+231apVg4aGRpGnC9jVr1/s45qVQZHnxgCwYP58+Pn54URwMBo1aiS1vH/++QehISHYExj40e01NzeHtbV1kSc7KAuPJbJTVAxNTEwQuHcv3r59i6dPn8LCwgJTJk9Grdq1AeRNzqWmpsK9SROhDLFYjLNnzmDF8uV4+eYNsrKy8NvUqdgdGIiuBY6pY6KjsWjBAqVOPnl5ecHNzU34O/+H20WPXz98LcnMzAwphe7+SH1ctj40OzsbvXr3RvLdZISFhBa56wkAjI2NYWxsjLp168Ld3R2Vq1bB3r170ffd02yUQZnHM0De9RnbQtdnli1dihUrV5a1SuVOmddo8o0ZNQqHDh1ESNhJ1KhRQ6IMQLXPS1jJidTzkrzLVHVEJPWRnampqTAxMSl1eRWgyuVj8uTJSE9PF9K9e/fkUq6WlhZcXFwQEhwssTwkJAQexTxX1d3dHSEhIRLLgk+cgKurKzQ1NYtdFxEhq8DdW82aNxfeV5QvPi4O1tbWAIDatWvDzMxMYtuysrJw5vTpYretvGlpacHZxQWhheIREhIC92K20U1K/EKCg+FSIH4ezZohMSFBODkGgPj4eJibmwsDyuvXr4s8i1MkEkl8J5+xsTFMTEwQHx+PiKtX0b3ACbiyaWlpwcnZGWGFYhIWWnwMy4KIEBMTAzMz84/m+9ijK0qSp7woKn4ezZohMTFRsg3GxcOsQBvMp6+vD3Nzczx//hwhJ07gy+4fbl+qFD9AMf2gnZ0dYq5dQ2RUlJC6e3mhbdu2iIyKEp7l/bF+MDs7G9nZ2RIn1UDx+7qyKGosadasGRIK94VxcRJ94acQw7KMJfK2ccMGmJqaChcT8uWPxQW3LSsrC2fPnFGZsRgoe1+4c8cODP1xMDZs3oIuXbsV+dzN3R1hoZJlhoYEC2WWZL218mMYWjSG5fXv+zGKOp55/fo11KTse0Qk8Ss1oPg2+P0PPyAiOhpXIiOFZGFhgbHjx+PQ0aNlqq8iKCqG+fbs2oXMzEz0+/77IuV4NGtWtB+Mj4fVu36woPXr1sHZxQWOjqrz7sV8yhyPS2PdunVwUcEYKmoscXN3R2jhf5MTJ6SWWfCYMPjECeGcQ0tLC65NmiDuzh2J/PFxcbCysirztsmbIs+N5//1F2bNmoUjR4/C1dW12G3YsH49TE1NhR/MfMjTp09x7949mJl/+PymvPBYIjtFjyU6OjqwtLRETk4O9gUFCftou/btERkTIxEfF1dX9O3XD1ciIyESiVT6mNrQ0BC2trZCsre3h5mZGYJDJK8lnT5zGs0+0B96uHsgOFgylidOBKOZR7NSbU/+xFN8QjxCTgQXmYApjiqcJyvzeEYaVYhJaSnzGg0RYbSPD/bv24tjJ4KFCeZ8FeG8hLGPsbGxwc2bN4W/iQjnzp3DiBEj8NVXX5W+QGJSpaenEwB6npZG4txcmdK27dtJU1OTVq9ZQzdiY2nUqFGkr69PScnJJM7NJV9fX/qhf38hf0JiIunp6dHo0aPpRmwsrV6zhjQ1NWnX7t1CntmzZ9Ox48cpPiGBYm/epPnz55OGhgatCggQ8ly8dIk0NDRo1qxZdCcujjZv2UJ6enq0afNmIY+fnx8ZGxvTnsBAirl2jfr07Uvm5uaUlp4uc72zxGK5pC3btpGmpiYFrF5NMTdukM+7+MUnJVGWWEwTfH3p+x9+EPLfSUggPT09GjV6NMXcuEEBq1eTpqYm7di1S8iTePcuGRgY0C/Dh9ONW7do34EDZGpqSjNmzhTy9B8wgCwtLWnfgQMUl5hIu/bsoWrVqtG4CROEPNt27KDg0FC6HR9Pe4KCyNramr76+mu51f1Ndo5c0qateTFcGbCaoq5dpxE+PqSvr0+3ExLpTXYOjZ84kfp9/4PEdy5euUoXr1wlZ2cX6t2nL128cpUiY64Jn/86bRodOHyYbt6Jo4tXrtIA74GkoaFBZ85fEPJM8PWl4JMn6XZ8Al2JjKKJkyaRuro6HTp6lN5k59CTtHSa4OtLp86eo9sJiXTh0mUaOGgwaWtrU0R0jNzqr4rxi0tKJgMDA/r5l+F0LfYmBe3fT6ampjT9jz+EPAcOH6b9hw7Rrbh4OnT0KDVq5EiuTZpQxus35RY/WfsBRfaDhdMAb2/y6tFDYllJ+sHWrVuTg4MDhYaFUUJiIq1dt450dHRo2fLlcqu/qsbw7j//kIGBAQ0fPpxu3b5NBw4eJFNTU5o5c6bKxFBZY0mWWEyXIyLockQEObu4UJ++felyRARFX78ufP7yzRshj7m5OY0dN44uR0TQzTt3JMp5m51NVlZWNH7iRKnbNvvdWLxrzx6KjImh3n36kLm5OT1NS6vQY8mGzVtIQ0ODFi/9m5Lv/SeklCdPhTxhp8+QSCSimXPmUPT1GzRzzhzS0NCg0+fOl3i9b7JzaOacOWRsbEw7du+hq1HR1KtPHzIzN6fUZ8/lUndVPZ75ddo0MjQ0pM1bt9KdhAQ6cuwY2djY0Hc9e5aqDRZO1tbWNH/hQrntf8raj0sSw/zUvEUL6tmrl9T1Xrh4kTQ0NOiPWbPo5p07tHHzZtLT06MNmzZJ5Hvy/Dnp6enRsuXL5V53VR5LSjIep2dkUERkJEVERhIAWrBgAUVERlLy3bsS+Z6npZGenh4tX7FC7uOoMtpglvjjY8nps2dJJBLRbD8/uhYbS7P9/EhDQ4POXbgg5Dl05AgdPHxY2M8bOTpSk6ZN6dXbt0KeXXv2kKamJvmvXEk379yhxUuXkkgkopOnT3/ybXDu3LmkpaVFu3bvpvsPHggpPSNDYt3ZOTlkZWVFEydOLLJd6RkZNHbsWDp3/jwlJiVRaFgYeXh4kKWlpVzOjZXVBnksKZ8YnrtwgXbu3k234+Mp7NQpatuuHdWuXZtSnz4tdjtatW5NI318iiyzd3Cg4NBQupOQQGvWriUdHR36e9kyudSdxLlyS3PfHb8G7Qmk6zHXqG+fvGtJGWnpQp7+P/SnSb6+wt/nz54jkUhEc/386FbsTZr7rr+7eCFcyPMiPYOiIiIpKiJvvFi4YAFFRUTSP8l3icS5lJ2ZRV7dvahGjRoUHRlFD+8/EFLmm7dE4lxKjE+gObNn09XLV+if5Lt04dx56uHVg6pUqUKPHqbIVG9VbYP56UPHMxMnTaKwU6coLjGRIqKjyXfyZFJXV6cjx44JeVIeP6bLERG0/+BBAkBbtm2jyxER9O/9+3Kpe0W/RjN02M9kbGxMJ0JDJc5vnmW8KJfzkkdPnxEASk9PV/Zl809a/pxAeNK/dP1xmlxTeNK/Kv9v6OfnRyNHjiQiosTERBKJRCQSiWjw4MH06tWrUpfHk0/FkOfkkzg3l5YtW0bW1takpaVFzs7OdPLUKeGzAd7e1Lp1a4n8YSdPkpOTE2lpaVGtWrWKnIBNmTKFbG1tSUdHhypXrkweHh60bfv2Iuvdf+AANWjQgLS1tcnOzo5Wrlol8XmOWEzTpk0jMzMz0tbWplatWlHMtWsqc3Cdn5YWiJ+TszOFnjwpfNZ/wABq1bq1RP6QsDBqXCB+0i4CnDl3jpq6uZG2tjbVqVOH/pg1i95kZQmfP01Lo5E+PmRlZUU6OjpUp04dmjRlCr1880bIs3DxYqpRowZpamqSlZUVTZ46VeJzVRmY32Tn0OKlf5NVfgydnCk4LEz47If+A6hlq1YS+QEUSVbW1sLnI3x8qKaVFWlpaZGJiQl16NiRTp45K1GG98BBwjpNTEyobbt2wsTTm+wcev7iJXl99RWZW1iQlpYWmZmb05fdu9PZC+Fyrbsqxu9Ndg6dPHOWmjRtStra2lS7Th2aMXMmvXybKXy+edt2ql2nTl5szMxo2P9+kbhoWx7xk+dFH3n3g4WTtItdJekH7z94QN4DB5KFhQXp6OhQvXr1aP78+ZQjlt+FFlWO4bnz58mtQF84a9YsysrOVpkYKnMskbYfW1tbC5/HJSZKzVO4nMNHjxIAunHrltTtyszJm9DPH4tbtmpFkTExFX4sadmqldT4/NB/gESZW3fspC/q1SNNTU2qZ2dH23ftLtV632Tn0OusbJr6229CDFu0bElXo6LlVm9VPZ55nZlJv/3+O9nY2JCOjg7VrFmTfv7f/4pc7PpYGyycVPWCoSJimCUW041btwiAxMWXwmnv/v3k8K4frGdnR/4rVxbJs8Lfn3R1denxs2dyr7eqjyUfG49Dw8Kk9gcDvL0l8vmvXEm6urr07PlzuY+hymqDHxtLssRi2r5Tsh/cuXu3xOdbt2+nOgWOCf/3yy9S21nA6tXCOWIjR0faExT0WbRBa2trqXGeNm2aRL6jx44RALp1+3aRbXr56hV19PQkExMT4dxugLc33f3nnwrfBnksUXwMQ8LCyK5+fdLW1qaqVavS9z/8QHfv3fvgNkibfPr3/n0a4O0tHFN/Ua8e/Tl/PmXmyOdYhOQ4+ZSbI6bfC11Luh5zTSJP69atyXuAt8Sy3Tt3Ub13/Z2dnR0F7t4j8fnJUOnjRX45yYlJUj8HQCdDw4jEuXT/3n/UpXMXMjU1JU1NTapRowb169uPbt+8JXO9VbUNZok/fjwzcNAgYZ0mJibUrn37InnXrF0rNba/Tpsml3pX9Gs0xbW9gDVry+W8hCefysfnPvlUUHZ2Nt2+fZsyMzPLXIYaUaH7qBkAICMjA8bGxnielib12bHs48TctGQmzuUYMuXSqggPpGWfNB5LZMdjiexE6qr/Ylj2aasILydWdTyeyIbboOy4DTJl0wTvx7LKBu/HsuDzEtlkZGSgetUqSE9P52vVCpQ/J3A5+R4MDOUb55cvMtC0ds3P6t9QQ9kbUF42bNiAQYMGFXlmMWOMMcYYY4wxxhhjjDHG2OesTp06H5w/SU5OLlV5n83k0927d9G6dWtlbwZjjDHGGGOMMcYYY4wxxlSUupoa1OX8BAz1CnAn+ejRoyX+zs7OxvXr13H48GGMHTu21OV9NpNPx48fx5IlS5S9GYwxxhhjjDHGGGOMMcYYYyrFx8dH6vKVK1fiypUrpS7vs3mZR3h4OJo2barszWCMMcYYY4wxxhhjjDHGmIpSV1ODSM6pItz5VBxPT0/s3r271N/7bO58YowxxhhjjDHGGGOMMcYY+5D8CSN5l1lR7d69G5UrVy7193jyiTHGGGOMMcYYY4wxxhhj7DPm7OwMIhL+JiKkpKTgyZMn8Pf3L3V5PPnEGGOMMcYYY4wxxhhjjDGGz/fOp6+++krib3V1dZiamqJNmzb44osvSl0eTz4xxhhjjDHGGGOMMcYYY4x9xqZNmybX8njyiTHGGGOMMcYYY4wxxhhjDIBIXQ0idTnf+STn8ioCdWVvAGOMMcYYY4wxxhhjjDHGGPt08J1PjDHGGGOMMcYYY4wxxhhj+Hzf+SRvPPn0EeqUl1jpqedy4GSlqc43JzIlE+cqewsqPt6PZfMZHpzJm0jEMZSVOveFMskVcT/IlE8T3BfKhE/tZMfHNDLJ4rFYZnxMKAfcF8rkc3zkmDxx/FhFxGeCjDHGGGOMMcYYY4wxxhhjeH/nk7yTqvPy8sK+ffsgFovlUh5PPjHGGGOMMcYYY4wxxhhjjAFQV1dTSKoI+vbtixo1amDixIm4c+eOTGXx5BNjjDHGGGOMMcYYY4wxxthn7MCBA0hNTcWkSZOwYMECNGzYEC1atMC6devw+vXrUpfHk0+MMcYYY4wxxhhjjDHGGGMA1BXwyD31CvDYPQAwNDREx44doa6ujvv376NPnz5YtWoVzM3NMWTIEISHh5e4LJ58YowxxhhjjDHGGGOMMcYYYwITExOMGDECly5dwtWrV2FoaIiWLVuW+PsaCtw2xhhjjDHGGGOMMcYYY4yxCiP/biV5l1kRicViHDt2DFu3bsWhQ4fg6elZ4u/ynU+MMcYYY4wxxhhjjDHGGGNMMHLkSFhYWGDkyJGwt7fHzZs3ceTIkRJ/n+98YowxxhhjjDHGGGOMMcYYw+d751NUVBQCAwMRGBgITU1NPH/+HNu3b0e7du3KVB7f+VROiAjTZ0yHRQ1L6OrroU27toiNjf3o9wIDA2HfwAHaujqwb+CAvXv3Snzu7++PRo0dYVTJGEaVjOHRvBmOHj0qkefRo0cYOGgQLGpYQs9AH527dEF8fLxEnmE/D4NNXVvo6uvBpLopenz1FW7fvi17xeWIiDD9jxmwsKoJXUMDtGnfrmQxDAqCfaOG0NbXg32jhti7b5/E57VsbaCmqVEkDR85slTrTkxMxNfffQsTczMYVamMXn374NGjR3Kpuzwoqg1OnzEdaiJ1iWRmYS6RJygoCJ06d0Y1UxOoidQRHR1dZD2ZmZkY6TMS1UxNoG9oAK8ePfDff//JVGd5U2YMAeDWrVvw6tEDxpUrwdDYCO7NPPDvv/8Kn7dp17ZIOX369pW94nKizH0YeBe/r7+CcdUqMKxcCe7Nm0nGr327ImX0+b6fXOouL8psgwMHDSqSx72Zh0SexMREfP3NNzCpbgqjSsbo1bu3SvWD/itWwKZOHejp6qKJqyvOnj37wfynT59GE1dX6OnqwtbGBitXriySJy0tDSOGD4elhQX0dHXhYG8v8SuguX5+cGvaFMZGRjCrXh1ff/017ty5I3yenZ2NSb6+cGzUCIYGBqhhaQlvb288ePBAfhWXI3nHMCgoCE2bNEGVypVhaGAAZycnbN68WSLPixcvMGb0aNSuVQv6enpo0bw5rly5IpFHpK4uNc3/6y/5VFyOFNUXvnjxAqPHjoW1TR3oGhqgWcsWEnHKzs6G7+RJaNi4MfSNjWBhVRMDBg6U2tbCw8PRrmMH6BsboVK1qmjTvh3evHkjc93lQRH7cWBgIBo4OEBXRwcNHIr2kQBw//599O/fHybVqsFAXx/OTk6IiIgQPn/58iVGjhgBq5o1oa+nBwd7e/j7+8teYQWQdww3bNggdf97+/atkOfMmTPw8vJCDUtLiNTVsa9Q+wXyzlkGDRqEGpaWMNDXRxcp5yyqQlHj8ZkzZ9DdywsWNSyhJio+Th87twsICECbdm1hVMkYaiJ1pKWlyVJduVPmufH0GdNhZ18f+oYGqFy1Cjp4dsSlS5eEz+/evVvkeCc/7d69Wz4BkJEyxuIZ06cX2cctzCWPFSvSWLzK3x92dW1RyUAfzZo2xblzxcfw4cOH8O7/Axo52ENPSxPjx46Vmi8tLQ2jR45E7Zo1UMlAH40bNsCxo++PCQNWrkQTJyeYVqkM0yqV0bpFcxw/Jtk+hwweDF1NDYnUqnkz+VRazpQxHn/suBqoOGPJSn9/fGFjA0M9Pbg1aYJzH4jfw4cP0f/77+FQvz60NTQwbsyYInn2BgXBvWlTmFSpgkqGhnB1dsaWQvtxQfPmzoWWSFSkrD9mzEADe3tUMjSEadWq6OzpicsF+khVUpoYAsCZ06fh1qQJDPX0UM/WFgGF2mB2djZmzZwJu7p1YainBxcnJxw/dkwizx8zZkBLJJJINS0sJPIU/jw/LZg/Xz4VZ0zBXF1dceTIEYwcORIPHz7Eli1byjzxBACgz8T69evJ2Ni4xPnT09MJAKU/TyMS58qc5vr5kaGhIQXu3kPXY65R7169ydzcnDLS0ov9zoVz50kkEtGc2bPpVuxNmjN7NmloaNDFC+FCngP79tPhg4fozq3bdOfWbZoyeTJpamrSjWvXicS5lJsjJnd3d2rZsiVdvniJbt+8RUOHDCErKyt6mfFCKGeV/0o6ffIUJScmUcSVq9T9y+5Us2ZNysnKLnu9s3PkmubOmZMXw1276XpUNPXu1Ssvhs+eF/udC2fO5sVw1iy6df0GzZk1Ky+G584LeVIfPKSH9/4TUvCxYwSAToaElHjdL9PSqU6dOvT1V1/RtcgouhYZRT28vKiJqyuJM7PKXm85tD1Ft8Hfp00jBwcHenj/gZBSUx5JlLNpw0aaMX06rV4VQAAoKiKyyLp+HjaMLC0tKfj4CYq8GkFt27YlR0dH2dqgnJMyY5gQF09VqlShCePHU+TVCEqMT6BDBw7So4cpQp7WrVvTkJ9+kign7dlz2er9iezDCbfv5MVv3DiKvHyFEu/E0aH9++nR/QdCntatWtGQH3+SKCvtyVPZ6/6JtEHvAd7UuVNniTxPHz8RPn+Z8eJdP/g1XYuOoWvRMdTDqwc1adKExDLEQZwrn7Rt+3bS1NSkVQEBdCM2lnx8fEhfX5+S796Vmj8hMZH09PTIx8eHbsTG0qqAANLU1KRdu3cLed68fUuurq7UpWtXOnP2LCUlJ9PpM2coMipKyOPZqROtXbeOrl2/TpFRUdS1WzeysrKijBcvSJybS8+eP6f2HTrQ9h076OatW3T+wgVyc3MjFxcXudVdlWMYGhZGewID6UZsLMXFx9OiRYtIJBLRkaNHhTw9e/Uie3t7OnnqFN2Ji6Np06aRkZER/XvvnpDn/oMHEmnN2rWkpqZG8QkJcql7RegLe/XsSfb29nQ6LIzib92m33/7jYyMjOi/u/8QZedQ2pOn1KF9e9q5bTvdvhFL4WfPkVvTpuTi7FJkXUZGRuQ3ezbdiI6huJu3aPeOnfT25asy11mV2+C583l95OzZsyn25k2a/a6PvBAeLuR58vQpWVtbk/fAgRR+8SIlJiXRieBgiouPF/L8+OOPZGNjQ6FhYZSYlET+K1eSSCSioL17lb7vKjqGa9etIyMjoyL7YcFyDh0+TFOmTKHde/YQAAoMCpL4PEf8/pzl4qVLdPPWLRry7pwlv7+UeT+uAOPxkUOHaeqUKRS4Oy9OewODJMoo6bndooULyW/OHPKbM4cA0POnz+R+XKyK8fvYuTGJc2nr5i0UfPwEJcYn0I1r1+nHwYPJyMhIOO7JycqWONZ5eP8BzZg+nfT19elFeoZM9VbVfbgkY/G0d8eKBffxlEePJNal6LH4TXaOXNKmrdtIU1OTVqxcRVHXrtPwkXkxvJOYJDX/7fgE+mXESFqzbj05Ojam4SN9iuRJf/WanF1cqXOXLhR66jTdTkikkJOn6NLVCCHPnr17ae+BA3Qt9iZdi71JEydNIk1NTYqIjhHy/NB/AHl26kTJ9/4T0v1HqXKruyqPJSUZjz92XF0eY0mWWCxz2rItrw2uXLWKYm7coJHv4peQnCw1f1xiIo0YOZLWrl9Pjo0b00gfnyJ5gkNDadeePRRz4wbdioujBe/240NHjhTJe+HiRapVqxY1bNSoSFkbN2+mo8eP0+34eIq6do0Gvesj76ekyKXu8kqljeGdhATS09OjkT4+FHPjBq1ctYo0NTVpx65dQp5xEyaQhYUF7T94kG7Hx9Pfy5aRjo4OXbp6Vcjz67RpZO/gQP/evy+kwrEp+Nm/9+/T6jVrSE1NjW7Hx8tc7yfPn+ddq05PV8i1c5Ynf04g9dlzepsjlmtKfab6/4ZRUVFSl79584Y2bNhQ6vJ48qkY8px8ys0Rk5mZGc318xOWvX39hoyNjWnlCv9iv9erZy/q3KmzxLJOnp2oT+8+H1xf5cqVaU3AaiJxLt25dZsASBxw52RlU5UqVWj1qoBiy4iJiiYAlBAXX/a6y/FCTW5Wdl4M58wRlr19+SovhstXFPu9Xj17UudOnSSWdfL0pD69exf7nVEjfcjGxoZys7JLvO7jR46Quro6pT99JuR5lvqYAFDwsWNKv2ityDb4+7Rp5OjoWKLtSE5Mkjr5lPbsed7Av227sOz+vf9IXV2djh05Krc4VOQY9u7Vm374/ocP5mndujWN8vGRb90/gX2YsnOod69e9EO/7z+4ja1btaJRI33k2nd9Svux9wBv6uHVo9jPjx89ltcPFhg3nz15mtcPHj9R5nrL6yS5adOmNGzYMIlldnZ25OvrKzX/hAkTyM7OTmLZ0KFDyd3dXfh7+YoVVKdOHXqbmVni7Uh59ChvcvTUqWLzXLx0iQAUewKvrKSIGEpLTk5ONHXqVBLn5tLLV69IJBLRgYMHJfI4OjrSlClTii3Dq0cPateundzqrup94euMF3kXGPbvl8jj2MiRpk6eXGy5ly+EEwD6JzFJWObWtCn9OmWKXPtBVW6DPXv1ok6dO0vk8ezUiXr36SP8PXHiRGrRosUHt83BwYFmzJghsczZ2Vloy6qSFBHDtevWkbGxcYm3Qdrk063beecs165fF5ZlZeeds6wKCJDPflwBxuOCSdrkU2nP7U6Ghqnc5JMyz42lpfTnaQSAQk4EF5uncePGNHjQIJnrrqr7sLRUcCwW5+ZNPjk6OpZqW+U9FstrAsa1SRMaMnSYxLJ6dnY0fuLEj363ZatWUiefli5bTrXr1KGM129KtS2VK1cm/1UBEpNPX3p5ya2uipp8UtZ4XDgVPq4uj7FEHhMnTZo2paHDhkksq2dnRxN8fT/63VatW0udfJKWGjs50eSpUyWWPUtPJ9u6deno8eMlKit/suPYiRNKn3CSJYbjJkygenZ2EsuGDB1Kbu7uwt/m5ua05O+/JfJ09/Kivv36SUw+NXJ0LNW2dvfyorbt2sml3jz5VD7y5wSePk+jbHGuXNPTd8cdpf03XL58OdWqVYu0tbXJ2dmZzpw5o6DaE2VmZtK2bdtozpw5NH36dCGNHz+e1NTUhL9Lih+7Vw6Sk5ORkpICz46ewjJtbW20btUaF8LDi/1e+MVweHp2lFjWqZMnLoRfkJpfLBZjx44dePXqFTw88h6FlJmZCQDQ0dER8olEImhpaeHc+fNSy3n16hXWb1iP2rVro2bNmiWrpIIJMezwPh55MWz1kRhelPgOAHTq6Fnsd7KysrBl21YMHjgQau+ew1mSdWdmZkJNTQ3a2tpCHh0dHairqxcb5/Kk6DYYHx8PixqWqG1TB3369kVSUlKpti8iIgLZ2dnw9Hy/fRYWFmjQoEGx7b28KTOGubm5OHzkML74oi46de4MU7PqcPNwl/oolq3btqGaqQkcGjbA+Anj8eLFizLWWL6UuQ/nxe9IXvy6doGphTncmnlg3/79Rb6/dfs2VDOrDgfHRhg/cYLKxA9Qjf341OlTMDWrji/s6mHI0CFITU0VPvtwP3iu1PWVp6ysLERERKBjgT4GADp27IjwYmJ38eJFdOwoGTfPTp1w9epVZGdnAwAOHjwIdw8PjBg+HOZmZmjUsCH85syBWCwudlvS09MBAFWqVPlgHjU1NVSqVKkk1SsXiophQUSE0NBQ3LlzBy1btQIA5OTkQCwWSxzHAICuri7OFzO+Pnr0CEcOH8agwYNLXL/yoqi+sPg46XzwOCQ9Q7Ktpaam4tLlyzA1MUWzli1Q3dICrdu1xblzyt2HAcW1wYvh4fAslKeTpyfCL7zvIw8ePAgXFxf06tULZtWrw8XZGatXr5b4TvPmzXHw4EHcv38fRISTJ08iLi4Onp06lbnO8qbI/fjly5eoXasWrGrWRPfu3REVFVWqbfvQOUtx+7qylNe5nTRlObdTNco8Ny4sKysLAasDYGxsDEdHR6l5IiIiEB0djR8H//ixqimcssbifPHx8ahhaQmbOnXQ9yPnfKo6FmdlZSEqMhLtC8WkfYeOuPiB9vcxhw8dhJubO0aPHAlrSwu4NHbEn3P9ij0mFIvF2LVzJ169egU3d3eJz86ePg0rC3M0tK+PX4YNkzjeVgXKHI8LK3xcXRHGkqysLERGRKBDobp27ChbGyyIiBAWGoq4O3fQsmVLic98RoxA165d0b5DhxJt65rVq2FsbIxGxfSRylCWGF6S0gY7enoiokAbzMzMhE6Bc1kg75zjQqG2kxAfD+saNfCFjQ2+L0FfePTIEQwcNKjE9WOssJ07d2L06NGYOnUqoqKi0LJlS3Tp0kXiNRLy9MMPP2DYsGHYsWMH9u/fL6Tjx49DTU0N+/fvl3o9sjgqOfl07NgxtGjRApUqVULVqlXx5ZdfIjExEcC7ZzCrqSEoKAht27aFnp4eHB0diwxyGzZsgJWVFfT09PD111/j6dOnyqgKACAlJQUAUL16dYnl1aubCp8V973qpoW+Y1q9yHeuX78OAyNDaOvq4Odf/oe9gUGwt7cHANjZ2cHa2hqTp0zB8+fPkZWVhbnz5iIlJQUPHz6UKGeF/woYGBnCwMgQx44fR/DxE9DS0ipzveWp2BiaVkfKo4/EsEjci8Yw3779+5GWloaBA7xLtW53N3fo6+vDd/JkvH79Gq9evcIEX1/k5ubi4cPit6+8KLINujV1w6YNG3H86DGsXhWAlEcpaNaiean2uZSUFGhpaaFy5cofXJcyKTOGqampePnyJebOm4fOnTvhxLHj+Pqrr/DNd9/i9OnTQjnf9+2H7Vu34VTYSfw29VcEBgXhm2+/lbnu8qDMfViI359/orNnJ5w4cjQvfj2/w+kzheK3ZQtOhYTitylTEbh3L77p+V2p66ooyt6Pu3TujK2btyAsJBQL/pqPK1evol2H9sJJnrv7u35wku/7fnDihHf9oOR4U96ePHkCsVhcqrZUXNvLycnBkydPAADJSUkI3LMHYrEYhw4fxpSpU7Fw4ULMmT1baplEhHHjxqFFixZo0KCB1Dxv377FlMmT0bdfPxgZGZW2qgqjqBgCeRcOjAwNoaOtje5ffoklS5cKJ4eGhobw8PDA7Fmz8ODBA4jFYmzZsgWXLl0qtl1t2rgRhoaG+Oabb2SpskIoqi80NDSEh7s7Zs6e/T5OW7fi0uXLeFjMv8/bt28xacpU9OvTV2hr+SfP02f+gSE//oRjhw7D2ckJ7Tt5Kv19CYpqgykpKTAtlMe0UJlJSUlYuXIl6tra4uixYxg6bBhGjxqFTZs2CXmWLF2K+vb2sKpZEzra2ujapQuWLV+OFi1ayFRveVJUDO3s7LBu/Xrs278fW7dtg46ODlq2aFGqNpN/zjKlwDnLvLnSz1mUTdHndh9SmnM7VaXMc+N8hw4dgoGRIXT0dLFo8WIEHz+BatWqSV3v2nVrUb9+fTRrpvz37ihrLAaApm5u2LBxI44eO4ZVAQF4lJKCFs2LP+dT1bE4P4ampqYSy6tXN5XpPaXJycnYGxQIsViMvQcOwnfyFCxZtAjz/OZI5Ltx/TqqVTKGsb4efIb/gp179qB+gfbp2bkz1m/ahKMngjH3zz8RcfUqunh2FI63VYEyx+OCpB1XV4SxpLj4faiuJZWeno7KRkbQ19FBj+7dsXjJEokJmp07diAqKgqz5sz5QCnA4UOHUNnICIZ6eli6eDGOHj9ebB+pDGWJobT2VbgNdvT0xOLFixEfH4/c3FyEBAfj4IEDEm2nadOmWLdhAw4dPQr/Vavw6NEjtG7Roti+cPOmTTA0NMTXKtYXspIRqakpJJXWwoUL8eOPP+Knn35C/fr1sXjxYtSsWVNh75cNCQnB2bNnERMTg8jISCGFhoaCiBAZGVmqH5qp5OTTq1evMHbsWFy5cgWhoaFQV1fH119/jdzcXCHP1KlTMX78eERHR+OLL75A3759kZOTAwC4dOkSBg8ejF9++QXR0dFo27YtZs2a9cF1ZmZmIiMjQyKV1datW4VJHAMjQ2EWXa1QAyOiIssKK8l36tWrh+jIKFy8EI7//fwzvAcNxM2bNwEAmpqaCNy9B3HxcahSrSr0DPRx6tRpdOncBSKRSKKc7/t9j6iISJw+eQp1beuiV5/eEi8KLk9bt22DQSVjIWXnKDaG+dauX4cunTvDotALAz9WjomJCXbv2IGDhw/BoJIxjKtWQXp6OpydnIvEuTyUZxvs0qULvv32WzRs2BAdOnTA4YOHAAAbN22UuR4l2T5FUaUY5vd9Pbx6YMzoMWjcuDEm+U7Cl92+xMpVq4RyhgwZgg4dOqBBgwbo06cP9uzajZDQEERGRpYxCmWnSvvw+/h5Yczo0Xnxm+iLL7t1w8qAACHfkJ9+Qof27+LXuzf27NiJkNBQpcQPUK02CAC9e/dGt27d0KBBA3Tv3h1HDx9BXFwcDh8+DOBdP7hzFw6+u6BjXLkS0tMz4OysnH5QmtLGTlr+gstzc3NhamqKVQEBcHFxQZ8+fTBlyhSpL1AGgJEjRuD6tWvYum2b1M+zs7PRt29f5ObmYvny5SWuV3mSdwyBvImTyKgoXLp8GbNmzcL4ceNw6tQp4fONmzaBiFCzRg3o6uhg2d9/o2+/fsW2q/Xr16Nfv35F7gJShvLsCzdv2AgigqW1FbT19bB02d/o16ev1DhlZ2ejz/f9kJubixXLlgnL8/vLYUOGYNDAgXBycsKiBQtR74t6WLdhfekqryCKaIMfKzM3NxfOzs6YPWcOnJycMGzYMPz0009YVWBf/3vpUly6eBH79u/HlatXMX/+fIwYPhwhISGlr6SCyTuG7u7u+OGHH+Do6IiWLVti586d+OKLL7Ds779LvE2amprYvWcP4uPiUK1qVRjo6+PU6dPo3KXoOUt5K+9zuw8pzbmdqlClc+N8bdu2RXRkFC6cO4/OnTqhV5/eUu8uefPmDbZt344fVezuHWWMxYWPFQ8eyjtW3LRR+jmfKo3F0si6LxaWm5sLE1NTLF+5Es4uLujVuzcmTpqM1QXO1QDgi3r1cOlqBE6fO48hw4ZhyODBuFWgffbs1QtdunaDQ4MG6PZld+w7dAjxcXE4euRImbdNUZQxHhck7bhalceSwuTdBoG8/fhKZCQuXLqEP2bNwoTx43H63X587949jBszBhs2bfroftmmbVtciYzEmXPn4NmpE/r16aNyd+AB8m+DCxcvhq2tLRra20NfRwejfHzgPXCgRNvp3KULvnnXF7bv0AH7Dx4EkDfJJM2G9evRV4X7QqY8hecgivuRQf7dpp6F7jb19PTEhQ/cGSqL9PR01KhRo8jysvZTGvLYKHn7ttAv9deuXQtTU1PcvHkTBgYGAIDx48ejW7duAIAZM2bAwcEBCQkJsLOzw5IlS9CpUydMmjQJAPDFF1/gwoULOHbsWLHr9PPzw4wZM+Sy/V5eXnBzcxP+zm9AKSkpMDc3F5anpj4uMlNfkJmZWZFfwaY+Ti3yHS0tLdja2gIAXF1dceXqVSxZugSrVuYd6Li4uCA6Mgrp6enIysqCiYkJ3Dzc4eriIlGOsbExjI2NUbduXbi7u6Ny1SrYu3cv+vbtW4YoyMare3e4NW0q/F1sDB+nFvkFXEFmZmZFfvmQmlo0hgDwzz//ICQ0FEG79xQpoyTr9uzoicQ7cXjy5Ak0NDRQqVIlmNWwRO3atUpQY/kq7zZYkL6+Pho2aFiqX7uamZkhKysLz58/l7j7KfVxKpo1k/6YDEVTpRhWq1YNGhoasLevL5Gvfn27Dz5ixdnZGZqamoiPj4ezs3Ox+RRBlfZhIX71C8XProTxS0go9/gBqtUGpTE3N4e1tTXiE97n8fT0RGJ8gmQ/aGGO2rVrF1/RclCtWjWIRKIStyWg+LanoaGBqlWrAsiLgaampsQJiV39+khJSUFWVpbE3cM+I0fi4MGDOHX6tNQDuezsbPTu3Rt3k5MREhqqUnc9AYqLIQCoq6sLxzGNGzfGrVu3MHfuXLRp0wYAYGNjg5OnTuHVq1fIyMiAubk5+vTpg1pS2tXZs2dx584dbN+xQ5bqyk159oU2NjY4HXZSIk69+/VF7Vq1JL6XnZ2NXn37IDn5LsKCgyXaWv422deXvEugfn07/PvvvRLWWjEU1QbNzMzwqFCex4XKNDc3R/1CY4hd/foICgoCkHeBeurUqQgMChLOTxo1aoTo6GgsWLAAHUrwaJvyoMj9uCB1dXW4uroiPiGhVNvn4uKCyCjJcxYPd3e4FDpnKW/KHI+lKem5napQtXNjIO84x9bWFra2tnB3d0fdel9g7bq1mDxpskRZe/bswevXrzGg/4BS1loxlDkWF6avr48GDaUfK6raWFxQfgwL3+WUmvq4yN1QpWFmZiblmNCuyDGhlpYWbN7F2cXVFRFXr2L5339jWTG/Xjc3N4eVtTUSEpR793FByhyP833ouFpVx5J8xcWvuLqWRuH9+PatW/hz7ly0btMGkRERSE1NhXuTJkJ+sViMs2fOYMXy5Xj55o3Qfgv2kW7u7rCvVw/r162D77trrMpWlhhKa1+F26CJiQkC9+7F27dv8fTpU1hYWGDK5MlSzzny6evro0GDBkiQ0heeO3sWcXfuYOv27aWtIlMRaiCogeReJoAir7n5/fffMX369CL5y3K3qazWr18PQ0PDIsuNjY2xfn3pf5Coknc+JSYmol+/fqhTpw6MjIyEi1YFn2XYqFEj4f/zD1rzZ+Jv3bpV5LnOxT3nOd/kyZORnp4upHv3yn6CbWhoKHTUtra2sLe3h5mZGYJDgoU8WVlZOH3mNJp9YLs83D0QHCz5a8kTJ4LRzOPDt/wTETIzs4osNzY2homJCeLj43H16lX08OpRgnKUc3t3sTEMfR+PvBie+UgM3SW+AwAnQoKlfmf9xg0wNTVFt65dJZbXrl27VOuuVq0aKlWqhLCTYUhNTYXXl91LXG95UWYbzMzMxK3btyROJj/GxcUFmpqaCA5+v30PHz7EjRs3PtreFUWVYqilpYUmTZrgzp04iXxxcfGwtrIutpzY2FhkZ2eX6t9CXlRpH9bS0kITV9ei8YuPh7V1SeJn9sG6KooqtUFpnj59inv37sHcrGgeoR8Me9cPdvf6UFUVTktLCy4uLggp0McAebeTF3d84O7uXuSOheATJ+Dq6gpNTU0AQLNmzZCQkCBxZ3Z8XBzMzc2FiwxEhJEjRmDv3r0ICQ2VOhGXP/GUEB+PE8HBxV7QVSZFxVAaIkKWlOMPfX19mJub4/nz5zhx/Di8vIq2q3Xr1sHFxaXYd3eUN2X0hQXjdPzECfQosP/lTzzFJyQg5PjxIm2tVq1asLCwwJ24OxLL4+LiYW1tVaq6y5ui2qC7hweCC+U5ERwMjwKP2GrWvDni4iTHkPi4OGEMyc7ORnZ2NtTVJU+tRCKRRP+gbOW1HxMRYmJiYG5WtvGz8DmLV48Pn7MomrLP7YpT2nM7ZVF2/Io7Ny6ap+i4s3b9Onh194KJickHv19eVGEszpeZmYnbt6QfK6raWFyQlpYWnJydEVYoJmGhIXD/yDWjD/Fo1gyJiYmFjgnjYVbgmFCaj11zefr0Kf4r5nhbWZQ5HpfkuDqfqo0l+bS0tODs4oLQQnUNCZGtDUpDRMjMyuv/2rVvj8iYGFyJjBSSi6sr+vbrhyuRkR+8M0yZ1walKUsM3aS0wZDgYLhI6Qt1dHRgaWmJnJwc7AsKQncp5xz5MjMzcfv2bZhJ6QvXr1sHZxXtC5ny3bt3T2IeYvLkyR/Mr4i7JYszYMAAqWPXixcv8Pvvv5e+QFJB9evXJ09PTwoJCaGbN2/SjRs3CADt3buXkpOTCQBFRUUJ+Z8/f04A6OTJk0RE5OjoSDNmzJAoc/HixWRsbFzibUhPTycAlP48jUicK3Oa6+dHxsbGFLQnkK7HXKO+ffqSubk5ZaSlC3n6/9CfJvn6Cn+fP3uORCIRzfXzo1uxN2munx9paGjQxQvhQp7JkybRmVOnKTkxia5Fx9CUyZNJXV2dThw7LuTZtWMnnQwNo8T4BNoXtJesra3pm6+/ET5PjE+gObNn09XLV+if5Lt04dx56uHVg6pUqUKPHqaUvd7ZOXJNc+fMyYvh7j10PSqa+vbpkxfDZ8+FPP2//4EmTZwo/H3+9Jm8GM6ZQ7eu36C5c+bkxfDceYmyxZlZZGVlRb4TJpR53etWr6Hws+co4fYd2rxhI1WpUoXGjh4tW73l0PYU3QbHjR1Lp8JOUlJCIl28EE5fdvuSDA0N6W5SspDn6eMnFBURSYcPHiIAtGPbdoqKiKSH9x8IeX4eNoxq1KhBISeCKfJqBLVr144cHR0pJytbrnGoqDEM2hNImpqaFLByFcXfiaO/ly4lkUhEZ0+fIRLnUkJcPM2YPp2uXLpMyYlJdPjgIbKzsyMnJyfZYviJ7MNBu/fkxc9/JcXfuk1/L16SF7+Tp4iycyjh9h2a8fvvdCX8IiXHJ9DhAwfy4tfYiXLeZn72+/GL9AwaN3YsXTh3npITk+hkaBh5eHiQpaWlxLrXrVlL4ecvUEJcPG3euCmvHxwzRqY6/5+9u46KonvjAP6FJQQEDFoUEVQElZSwsMGO91Vs7Pip2IqNid2J3S0qtpSBgJIqFmCLlBKCSu39/YEsLCG1uLuvz+ece47M3L0z9/HOzJ25EzlcwaQTJ08yaWlptnffPvY0IoJNnTqVKSgosNdv3rAcLpfNnTuXDR02jJc/KjqaycvLs2nTprGnERFs7759TFpamp05e5aX5+27d6x69eps0qRJ7PmLF+yyhwdTU1Njy5cv5+WZMGECU1ZWZt4+PuxTTAwvpaWnsxwul2VkZrKevXoxbW1tFhIaypfnx8+fAqu/qMZw5cqV7MbNmywyKopFPHvG1q9fz6SkpNgeNzdenmvXr7Or166xqOhoduPmTWZsbMwsLS3Zz4wMvvVLSk5m8vLybMfOnQKvuzjsC29cvcquX7nCXr+KZLeuX2fGzY2ZZYsWLPP7D8ayslnWj5+sV8+eTFtbm4UFBbPPHz7yUkb6d145m9ZvYEpKSuzsqdMs8vkLtnD+fFatWjUW9eJlhessym3w3v3cfaSrqyuLePaMuf7aRz7w9+flCQgMZFJSUmzFihXs5atX7OixY0xeXp4dOXqUl8fW1pYZGRkxL29vFhUdzfYfOMCqVavGtu/YIfRtt6pjuGTJEnbt+nUWGRXFgkNC2IgRI5iUlBTzDwjg5UlJTWXBISEsOCSEAWAbNmxgwSEh7M3bt7w8p06fZl7e3iwyKopdcM89Z+nbr5/gtmMxOB5/S0llocEhLDQ4N04bN2xgocEh7N2bt7w8pZ3bsRwu+/wphoUGh7C9e9wYAHbX9w4LDQ5hXxIS/3j/+U/Gr7Rz47TUb2yeszPz93vA3r5+w4IfBbHRo0YxWVlZ9vTxE751jHz5iklISLDrV68JrN6iug2X5Vg8Y8YM5u3jw6Kio9kDf3/WvUduXzFvuXmpKo/FP7KyBZKOHD/BpKWl2W63vSz08RM22cmJKSgosBdR0exHVjabNWcOGzxkKN9vAh4FsYBHQczMzJw5DBzEAh4FsZDwx7z5r16/YdWrV2cT/jeJPY54xi5cusTU1NSYy7JlvDyz585lt3182IvIKPYoJJTNcXZmkpKS7Mr16+xHVjZLSEpmU6dPZz5377EXkVHspqcns7K2Zlp16rD4r0kCqbsoH0vKcjwurV/9J44lmTk5lU7HTuS2Qbe9e1n406fM6Vf8Il+/Zpk5OWz23LlsyNChfL95GBzMHgYHMzNzczZw0CD2MDiYhT15wpu/fOVKdu3GDfYiMpI9johga39tx7v37ClxPdra2rIpTk68v5NSU9kcZ2d2z8+PRb5+zQIfPWIjf+0jQx8/FkjdBZXKG8OXUVFMXl6eTZ02jYU/fcrc9u5l0tLS7NSZM7w89x88YKfPnmUvIiOZt68va9+hA9PV1WXxX77w8kyfMYN5enuzl1FR7P6DB6xb9+5MUVGRt9y8lJiUxOTl5dn2HTsEWu/EX9e/U1JSKnzNnZSONybw9Stj2dkCTSlfv5br/zAjI4NxOBx24cIFvulOTk6sbdu2VVF95uHhwRo1asRkZGSYhIREiamsRG7wKTExMbeDfPcub9q9e/fKNfg0aNAg1rVrV75yBw4cKNTBJ252DluyeDHT0NBgsrKyrG3btuxJ+GO+PLa2tsxxuCPftLOnz7DGjRszaWlpZmBgwM6fPcc3f9TIkUxHR4fJyMgwVVVV1rFjR76BJ5bDZVs2b2ba2tpMWlqa1atXjy1csIBl/PjJm//pw0fW1b4rU1NTY9LS0kxbW5sNHjSYvXj2vHL1FuCFGpaVzbiZWWzJokX5MWzThj0JDePLY9u2LXMcNpxv2tlTp/ljeOZskbJvXrvGALCXEc8qvOy5s2czdXV1Ji0tzRo2bMg2rF3HuJlZInPRuqraoMMAB6apqcmkpaWZlpYW69e3H4t48pQvz8H9BxiAImnJ4sW8PD/Sv7PJkyaxWrVqMTk5Odajew/2/u07gcZAnGPIcrhs/959TF9fn1WrVo0ZGxuzixfcefPev33H2rZty2rVqsVkZGSYnp4ec5oypfIXGf4j2zDLymb73fbmx6+5Mbt4/gJv3vvXb1jbNm344zd5CvsSF1/5uv8H2uD3tHTWpXMXpqqqyjuWOA53LLKNzp0zh38/uH4942bnVKrOgrxosX37dt4x08zMjPn4+vLmDXd0ZLa2tnz5vX18mKmpKZORkWH169cv9kLKfT8/ZmVlxWRlZVmDBg3YihUrWGZWFm9+cfs+AGz/gQMsh8tl0a9fl5jHy9tboPUXxRjOnz+ft13WrFmT2djYsBMnT/LlOXnqFGvQoAGTkZFhGhoa7H//+x/7mpRUZN127d7N5OTkip1X2SQO+8LTJ07yxWnSxP+x5MQvvPlvIqNKbGs+np58ZbmuXMm0tbWZvLw8s7G25g3UVzSJchvM4XLZ6TP8+8iz584VyXPp8mXWtGlTJisrywwMDNjuPXv45n+KiWGOI0YwLS0tVq1aNda4cWO2fv16lp2TI/TttqpjOHXqVFavXj3e+UjnLl3YfT8/vjxe3t7Ftr3hjo68PJsLnbMsWLBAoIPwTAyOxz5excepYDmlnduxHC5bsnhxseUc3H9AoHEQtfiVdm78I/0769unL9PS0mIyMjJMU1OT9erZiz0MCCyyjvOcnZm2tjbLEWBfTlS34bIciwc48PcV+/brx548fVpk3aryWCyowacfWdls89ZtrN6vGJqamrHb3t68eUOHDWdt2rbly1/c9lRPR4cvj8/de6yFpSWTlZVlug0asKXLl7O0nxm8+Y4jRvKWqaqqytp36MAbePqRlc2+pn5jnTp35vW369arx4YOG85evX4jsHqL8rEkh1v68bi0fvWfOJYIahBha4H4mZqZMS8fH968YcOHs7a2tnz5i6u3jo4Ob75zoe3Y2saGHTtx4rfrUHjwKTU9nfXu04dvH9mjZ0/2ICBA6INNgoihp7c3MynQBgsPDHl6ezODJk2YrKwsq127NhsydCh7++EDX57+Awbw7Qv79O3LNwiYl3bu2sXk5ORYwtevNPgkhkRp8IkxxiwtLdnEiRP5pjVp0oQ5OzsLuuqMMcYaNWrEJk2axC5cuMAuXbrES0eOHGESEhK8v8tKgjEm2JcXVlLex7u7du2KJUuW4P3793B2dsajR4/g7u4OExMT6OrqIjQ0FCYmJgCA5ORk1KxZEz4+PmjXrh0CAgLQsmVLrF69Gn369MGtW7ewaNEiMMaQnJxcpvVITU2FsrIyUpKSRe67C2JDhF4zIrYkRfLNmORvQttx5dF2XCncqnmSnJBykcyhfWFlcDm0HyTCJylSZ73kb0R9msrJpGNxpcnQ8bjSckTrEir5y6SmpkKlZk2kpKTQteoqxBsTSEwUeJxTU1OhrKJSrv/D06dPY9iwYdi9ezdsbGzg5uaGvXv3IiIi4refkqgoGRkZfPjwoch3puLj46GhoVHu14qL3JFHUlISp06dQnBwMJo2bYrp06dj3bp15SrD2toa+/btw7Zt22BiYoJbt25h4cKFVbTGhBBCCCGEEEIIIYQQQgj5T+ByqyaVk4ODAzZv3oxly5bBxMQEd+/exbVr16pk4AkAtLW1ISsrW2Q6h8NB/fr1y12eyD35JCroyScBoCcmKo+emCDCRttx5dF2XCl0lzARBfTkU+XQk09EFNCTT0TYqE9TOfTkU+XRk0+VR08+EWGiJ5/+DN6YQHx81Tz5pKb2V/0fSgl7BQghhBBCCCGEEEIIIYQQQkQCl+UmQZcp4pYuXVriPMYYXFxcylUeDT4RQgghhBBCCCGEEEIIIYT8xS5dusT3d3p6Ot69ewdpaWno6+vT4BMhhBBCCCGEEEIIIYQQQkiFVPAbTaWWKeJCQkKKTPv69SuGDh2K/v37l7s8euErIYQQQgghhBBCCCGEEEII4VOrVi24urpixYoV5f4tPflECCGEEEIIIYQQQgghhBAC/LVPPpWEw+Hg3bt3yM7OhpRU2YeUaPCJEEIIIYQQQgghhBBCCCGEFNG0aVNkZ2eX+3c0+EQIIYQQQgghhBBCCCGEEAIAOdzcJOgyRVyHDh3AGCt2HmMMvr6+SE5ORt++feHj41NqeTT4RAghhBBCCCGEEEIIIYQQAvy1r90zMTEpNY+0tDRMTU3LVB4NPpUiOTML3MwsYa+GWIpJ/ynsVRB7dRXlhL0KYi/pJ22/lZGWVf5Hagk/GUlJYa+CWNOqXk3YqyD2JCUkhL0KYu9d6ndhr4JYo+248ji0HVdaphjcaSrKflD8Kq26NEfYqyDWaBuuPI6ktLBXgfzlwuKThb0KYi3tW6qwV4H8BTZu3FhqHgUFhTLlA2jwiRBCCCGEEEIIIYQQQgghJBergief2N93IwUNPhFCCCGEEEIIIYQQQgghhPzFGjRoUOI3nwp78+ZNqXlo8IkQQgghhBBCCCGEEEIIIQQAuKwKvvlUtkEdYRo1ahQ2bNiAVq1awdraGgDg7+8PPz8/zJo1C0pKSuUqjwafCCGEEEIIIYQQQgghhBBC/mIRERFYsGABZs2axTd93bp1CAsLw/Hjx8tVHn0FnRBCCCGEEEIIIYQQQgghBMh96qkqkojz8PBA7969i0zv27cvLl++XO7yaPCJEEIIIYQQQgghhBBCCCHkL6akpIRbt24VmX7jxo1yv3IPoNfuEUIIIYQQQgghhBBCCCGE5KqKJ5XE4Mmn+fPnY/r06fDz8+P75tO5c+ewadOmcpdHg0+EEEIIIYQQQgghhBBCCCEAwGW5SdBlirjJkyfDwMAAmzdvxtatW8EYQ5MmTXDjxg107Nix3OXR4BMhhBBCCCGEEEIIIYQQQshfrlOnTujUqZNAyqJvPv0h+/bshrFBI2jUUEK7ltZ4cP9+iXn9/fxg174dGtTRhGZNZVgaN8POrVv48pw4egQ15WSLpJ8/f/LyZGdnY4XLEhgbNIJmTWWYNGmMtatWglvgET+PixfxT8/u0NPWQk05WTwJDxd43QXh5IG96GLWDKZ11NC/Q1sE+z/4bf4T+/eip00LmGmro7uVOS6dPlkkz5HdO9Hdyhxm2uro2NwQqxfMQ0ah+G1ZtRxdzJrBTFsddubNsXPdGr74FeQyYyqMVJRxZPfOylW2iuzdvRvNGjWCqpIi2lpb/bYNXr7ojt5du0K3jhbqqNRGx7Zt4FnofZ/dOneCkqxMkfRvMR+lA4ANa9dASVYGc2fOLLKsPt27o76WJpRkZfA4PKzSda0KR/a6oVUzQzRSq4XubVvh4QO/3+bPyMjA2mUuaNnUAA1Va6KNcVOcPnqYNz8rKwtb1riijXFTNFKrBftWVvD1LPpO1Tw7NqyDjrICljrP5pvOGMMm15Vo0VgPjdRrw6G7PV49f1apulaFoAd++N9gB7QzagwjFWV4XbtS6m8e+d1H/w5tYVpHDXbmzXH64P4ieW55XELPlpYw0VJFz5aW8LzqwTe/LNvx7SuXMbZ/X7RqpAsjFWU8f/K48hWuIsf370V7k6Yw0lRBn/Zt8Mj/9+3w0tnT6NnGBs3qqKFlE33MnTQBSV+/8OafPnwQg7p1gbluXZjr1oVj354IDw4qUk5sTAxmjh+DFnr10KyOGnq2bYmnYaHFLnPhdCc0rKWIg7t2VK6yVcBt9y4YNmqIWorV0crKEn6/2Q9ecndHj6720NHShEbtWmjfpjVuF/Pe44sXLsC8eXPUrK4A8+bNcfniRb75TRrqQ0FGukia7jSl2OVO+d9EKMhIY3uh476o2LNrFwwa6qNGdQW0tLTE/fv3Ssz7+fNnOA4biuZGhpCXkcasGTOKzZecnIxpU6ZAt642alRXgEmzprhx/Rpv/oplSyEnLcWX6mvX4Svjors7enbrCm0NdchJSyE8LEwg9RW0E/v3oqNpMzTXUkW/Dm0RVEp/5vg+N3SztoBxHTXYW5rh4qkTRfLcvHwJ3W1aoJmmCrrbtMDtK/z7wbRv37Bq/lx0MDaCcR01DLTvhCchwbz5WVlZWO+yGD1bW8O0rgbaGDbC3InjEPf5s2AqLWDl6c/4+/mhcztb6GhqQE1ZCebNmmL7Fv5t6/JFd9jaWKOumio0atZAqxYWOHn8GF+epo0aFtvnmeHkxMuTlpaGmVOnwqCBLtSUlWDRvBn27dkj2MoLiKD3hZfc3dHa2gpaqipQraEMawtznDjGH8Nv375h9swZMNDXQ20lRXRo2wbBQY/48qSlpWHGVCc01K2P2kqKMGvWDHv37BZcxQVEGOd1ZV3uyxfPMejffqinroq6qrXRuW0bfHj/XiD1FqRDbntgZWQA3do1YNe6JQL9So7hg7t3oVVdrkiKfPmSl+f0saPF5ikYw23r16Fr21ZoqKGKZvXrYeTA/oh69YpvWcWVoVVdDjs3bxR8ECpB0PvBQ/v3w65De9RTV0M9dTX0srdH0KNHRcoqbbnxcXGYMGY0GtXXgXoNZfTt0QNRkZGCqbSAHdizB2ZNGqNOTWV0aGkD/9+0wYIC/R9AXVEB7aws+aafPHoEKvLViqTC2/HnT58wYdQINNTWQt3aNdHOyhJhISG8+WtWLIe1SXPUU6kFPS0N9OveFcEPH1a+wlVg965daKSnB0V5eVi1aIH790ruEwLA3Tt3YNWiBRTl5dFYXx9uu4vu37du2QKjJk2gpKCABjo6mDVjRpFrXIsXLUIjPT0oKSigsb4+Vixfzndut2zpUjQ1NEQNRUWo1a4N+y5d8DAwUHAVF5DyxO/z588YNmQIjJo0gayUFGZOn15svgvnz6N506aoLieH5k2b4qK7O9/8e3fvok+vXtDR1oYMh4NLhc5bsrKyMM/ZGabGxqihqAgdbW2MdHRETExMpesraCH+DzBj+GB0MzGEpWZt+F6/+tv8Plc9MNmhH7oYNUL7hjoY1cMO/j7efHkm9OsFS83aRdL0oQN5ec4dPoDBHdqgfUMdXjkPvDz5yvmSEI+lUyehm4kh2uhqw2lQf7x/HS24ypM/J++1e4JOYuLnz5/48OED3r17x5fKiwaf/oALZ89i/uxZmDnXGXcCAmHTshUG9OlV4omAgoICxk6YiKu3vRAYFo6ZzvOwcqkLDu3fx5dPUUkJL96840vVqlXjzd+8YT0O7tuLtZs2IzAsHEtXumLbpo1w25l/QTD9ezqsbFpiyfIVVVN5Abjufh6rF8zDuOmzcM7nHsxsWmL8wH8R8/FDsflPHdiHzcuX4n9znHHpfgAmzZ2HFXNmwefGdV6eK2fPYNNyF0yc7QyPBw+xbMs23Lh4AZuWL+Xl2b91E84cOoAFq9fD48FDzFiyDAe3b8XxvUUvJHhdu4LHIcFQ09AUfAAE4PzZM3CeNROznJ1xP/AhbFq1xj+9epbYBv3u3Uf7jh1x7tJl3PEPQFtbWzj064vwAhebj50+g8h373kpMDQUHA4Hff/5p0h5wUFBOLRvP5o2a1ZkXnp6Oqxb2mDpipWCq7CAeZw/h2Xz5mDyrDm4eu8BLFu2hOO/ffHpQ/FtEAAmjRiGB3d8sXbbTngHhWHbgUPQa9SYN3/98qU4fnA/lq5bD8/AYAwZOQbjhgzC02IG38KDg3Hi0EE0adq0yLzdmzdi345tWLZuIzx87kJVTR1D+vRE2rdvAqm7oPz4/h2NmzbFgjXrypT/47u3mDioP8xsWuKczz2MnTYTq+bPxS2PS7w8YY8eYtaYkeg1wAEX7vih1wAHzBw9Ao8LDJ6UZTv+8f07TC2tMX2Ri8DqWxWuXjiPlfPnYuKMWbjkex8W1i0xZsA/Je4LgwIeYM7Ecfh36HBce/AQWw8ewZPQECyYOpmXJ9DvPnr80x9HL1/FmZue0KyjjZH/9EFsgROMlOQkDOzaGVJSUth35gKu+z/CvOWroKisXGSZt696IDw4COqaorcvPHfmDObMnIk5zs548PARWrZujb49e5S4H7x//x46dOyEC5cv435AINratkP/vn0QFpq/HwwM8MfwIYMxcMgQBAQFY+CQIRg2eBAePcw/wb37wB/R7z/wksf1GwCAvv/8W2SZHpcu4dHDh9DU0hJw7QXj7JkzmD1zBuY6z0PAoyC0bN0afXr0wPsSYpiZkQEVFVXMdZ6H5s2Ni8+TmYnu9vZ49+4tjp86jfCIZ9ixaze0tPgHlwyNjPDmw0deehQaxjf/e3o6bFq2xPKVqwRS16pwzf08XBc4Y8KMWXD3uQ8LaxuMcyh5Gz55YB82Ll+KyXPn4YpfIKY4z8eyObPgXaA/E/ooEDPGjECvAQNx6c4D9BowENNHOyK8wEX9RdOm4IGvD9bscsPle/5o1b4DRvbrjbhf2/nPH9/x7HE4/jdrDs5738O2w8fwNjoK/xsysMg6CVt5+zPyCvIYN3Eibnh54VH4Y8yeNw8rXJbg4L78PnXNmrUwy9kZnnfu4kFQMIYMd8T/xo7lu+nG1+8BX5/n0rXc/4OCfZ55s2fB89Yt7D14CI/CH2OS01TMnj4NVy9frqJoVExV7Atr1qqFOc7z4H33HgKDQzDM0RETxo7hG6SaNH48fDy9sO/gITwMCUXHTp3Rw94eMZ8+8fLMnTUTt2/dwv5DhxHy+AkmT3XCzGnTcEWEYiis87qyLPfN62h07dgBDRs1xpWbt3Hv4SPMmjePrxxRcOncWSyZOxtOs+fill8ArFq2xJB+ffDxw+8Hye6FPkZY9BteaqCvzzdfUUmJb35Y9Bu+uvvfv4cR4ybgivcdnPK4gpzsHAzq3QPf09N5eQr/fuOuPZCQkED33n0FG4RKqIr94L27d/DvAAdcuXULnnfuQrteXfTt3o1v+yxtuYwxDOr/L96+eYOT587jfuBD1KtXD727dUV6gRiLAvdzZ7FgzixMnzMXPv6BsGnVCgP79C61DaampGDSmNFo2759sfMVlZQQ8fotXyrYBpOTktCtY3tIS0njtPsl+IWEYtnq1VCukd+n1mvYEGs2bsLdR0G46umNuvV08G+vHkhMSBBM5QXkzOnTmDl9OpznzcPD4GC0bt0aPbt3L7FP+ObNG/Tq0QOtW7fGw+BgzHV2xvRp03Dh/HlenhPHj2PBvHlYuGgRHkdEYM/evTh75gwWzp/Py7Nu7Vrs3bMHm7duxeOICKxavRob16/Hju3beXkaNmyILVu3IiQ8HD5370JHRwfd7O2RIEIxLG/8MjIyoKqqCud589DcuPg+dYC/P4YMGoQhQ4ciKDQUQ4YOxeCBA/kG3tLT09Hc2Bibt24ttozv378jLCQE8xcsQGBQEM6cO4fIyEj069On0nUWtJ/fv6OhoRFmr1xTpvyhAf6wbNsOm4+fwuGb3rBo2RozHQfjZYEbT9fsP4xr4c946aSvHzgcDjr27MXLo66phUkLFuPQDS8cuuEFi1ZtMGvkUES/fAEgd184e+QwfHr3DusPHcOx2z7Q1K6LyQP64cd30doXElKSFy9eoGXLlpCXl4eOjg50dXWhq6uLBg0aQFdXt9zlSTDGRP9lg0KQmpoKZWVlvItLgJKSUqXK6tSmNZqbmmDj1vwDopVJc3Tr2avMgz7DHAZAXkEBew4cBJB7h9y82bPwLja+xN849OsDNTV1bNudf5F1+EAHyMnL88rJ8/7dWxgbNMbdgIdoVsLBrLxi0n+WnqkMBnbpAMPmxli8Pv+jZj1tWqBDt+7FXiwe0rUzTC2tMGtpfmxdFzgjIiwUx67eBACsmDsLr1+9xAH3/LuD1y5agCehwTh6JffC4P8GDUBtNVUs35I/WDd1xFDIyclj9S433rS4zzEY1KUj3M5ewMRBAzBs/EQMn/A/gdS9rqKcQMpp37oVTExMsalAp8yieTP06NULLmUc9LE0MUa//v3hvGBhsfN3bN2KVcuW4tW791BQUOBNT0tLQxsrS2zcug3rVruiWXNjrNmwocjv3719i2aNG+H+w4dobmxSvgr+RtLPrEqX0buDLZoam2Dlpvy7BDu0MINd9x6Y67KsSH5fz1uYMmoE7oU9RY1atYots0VjPUyeNQeOY8fzpo0d7AB5BQVs2XuANy09LQ3d27bCig2bsG39Whg2a4Ylq3MHcBhjaNFYD6MnTsLE6blPlGVkZMCioS6cXZZjyKjRla57WlZ2pcsozEhFGVuPHEfHbj1KzLNh6WL43rgOD//8C6hLZ07Dy4inOHEj986imaNHIC3tG/aczj9pGTegH5SUa2D9rxiWdTsGgE/v36GLWXOc87mHJs2aC6SuACAjKZj7PP7p1B5GxsZYtmEzb5qdlTk6d++BWYuXFsm/b9sWnDi4H94h+R3qI267sXfrZtx7+qLYZeTk5MBcty6WrF2PvgMHAwDWLV2MkMAAnLxW8pN5QO7TUf92bo+D5y5i7MB/4Tjhfxg5cVIFaspPq7pgLprZtmoJE1NTbNme3xbMmuXuB5etLNt+0MLYGP/07495C3P3g8MHD0bqt1Rc9Mh/kq93j+6oUaMmDhe66z/P7JkzcOPaNTx+9hwSEhK86TGfPsG2dStcunIV//TpjUlTpmCy09SKVLUIyQLLqYw2LW1gamqGrTvyY2jSrCl69upV6qBPl44d0NzYBOs38t89vnfPHmzauAHhTyMgLS1d7G9XLFsKj0uXERgcXOz8gt69fQuDhvoIeBQEYxOT0itVRu9Sv1e6jAGd28OwuQlcNuT3Z7pZW6Bjtx6YudilSP6B9p1gZmWNOQX6M6vmz8XTsFCc+LU9Th89AmnfUrH3zAVenjH9+0KpRg1s3HsQP3/8gLmOFnYcO4l2Xex5efrYtkK7LnaYtmBxsev6JCQY/Tu3h3d4BLS061a26gLbjgXRnxkyoD/kFRSw9+ChEvO0sbJEl65dscil6L4VAObOnIkb164h7Nkz3nZsZWqCfv37Y+78Bbx8ba2t0NnevsRyyoMjoO24KvaFxWlp2QL2Xbth8dKl+PHjB9Rr1cSZ8xdg360bL4+1hTm6duuOJcty+1IWJib4t39/OC/Ij2ErK0vY2XfF4qWVj2FmTuXvNBXWeV1Zljtq2FBIS0sXOc8TlB8CiB8AdG/XBs2MTbF6S/7Fz7ZmJrDv2RPzly4vkv/B3bv4t5sdnn/8DOUaNYot8/Sxo1gydzZefIot83p8SUhAM916uHDjNqxbty42z8iB/ZH+LQ1nrl4vdn55VZfmVLqMP7EfzMnJQT11NazbvBmDhw4r03IjX72CebOmCAwNRRNDI145DbTrYNnKVXAcNaqCNc4niG0YALq0bYPmJiZYv3Ubb5qNqTG69eyJRctK3o7HDB8GPT09SHI4uO7hAd/A/CeSTh49ggVzZuP157gSf79s0UI89H+AK57eJeYp7FtqKnQ11HDh6jW0bd+hzL8riZJs8X2t8mplYwNTU1Ns35n/1pdmRkbo1bs3Vq4q2iec5+yMKx4eeBIRwZs2aeJEPH78GPf8ct/kMHXKFLx48QI3b9/m5ZkzaxYePXoEnzt3AAB9evaEmro63AoMng7491/Iy8vj0JEjxa5ramoqVGrWxI1bt9ChAt8qqQrljV9BnTp0gLGxMTZs2sQ3ffDAgfiWmgqPa/lvD+jRtStq1KyJYyeKPjkvw+Hg7Pnz6F3KwFLQo0doaW2NqDdvUK9evTLU7vfC4pMrXUZhlpq1sfbAEbTr2r1cv3OwbYnOvftizIzZxc4/6bYbbutccS38GeTkFYrNAwCdmuhhyqKl6D14KN5FR6F/ayuc9PWDXmMDALn7QrtmjTF5wRL0GTKsXOtYWNq3VHRopIuUlJRKX6smJcsbE0h5HAElRUXBlv3tG5SbG4n0/2GrVq0gLS0NZ2dnaGpq8l23AIDmzct3vUysn3w6d+4cmjVrBjk5OdSuXRudOnVCeno6RowYgT59+mDp0qVQU1ODkpISxo8fj8zMzD++jpmZmQgLDUGHjp35prfv2AkPAwLKVMbjsDA8DAxAqzZt+Kanp6WhWaOGMNJrAId+ffC40CtmrG1a4Y6PD6Iic18n8OTxYwT4P0BnO3uIi8zMTDwLD0PLQh2tlu07IKyEx88zMzIgU+gOv2rVquFJSDCysnIHIsysrPEsPByPf7125sPbN7jneQttO3fh/cbU2hoBd+/ibVQUAODF0ycIDQxAm075ebhcLpwnjsPIyU7QN2hS+QpXgczMTISFhKBDZ/53dXbo1BmBZWyDXC4XaWlpqFmz+IEUADh66CD+6T+Ab+AJAGZOdYJd125oLyIdvfLKzMzEk7BQtOnAv/5tO3RA8MPiH9+/fe0ampmYYveWTbA00Ec7M2OsWDAPP3/8yC83IxOyskXbaVCAP9+0RbOmo4OdHVoXc7Lx4e1bJMTF8a2brKwsrFq1RvDDsv3fiqrwR4+KbPetOnRERFgobzsOC3qElu0K5WnfEWGP8vcNZdmOxUFmZiYiwkOLtIPW7TsipIR2aGZphdiYT/C9fROMMSTGx+PG5Yto18WuxOX8+P4d2dlZUK5ZkzfN6/o1NDUxw5QRw2DVSBe9bFvh9GH+C1tcLhezJ47FmClT0bCJ6O0LMzMzERoSgo6d+I/FHTp3QmChba4kXC4X39K+oWat/NgEBgagY6H3IHfq3LnEMjMzM3H6xAkMdxzB14HjcrkYPXIEps2YAUMjo7JW64/ixbAzfww7duqMAP+yxbA4V694wMrKGtOmTIFOHS2Ymxhj7WpX5OTk8OWLioqEbr26MGioj2FDBuPN69cVXqYw5G7DYWhVeL/WvgNCHxW/DWdmZkJWVpZvmmw1Ob7+TNijh0XKbN2hI6+PlJ2djZycnCLHG9lq1RAcWPJx4ltqKiQkJKCkVPQJR2ERRH8mPCwUgQEBaN2mbbHzGWPw9fZG5KtXaNW6TbF5MjMzcfrkCQwb4ci3Hdu0bIVrV64g5tMnMMZw19cXUZGR6NRZdI43VbUvLIgxBp+8GP46d+G1w0L9czk5OfgXeI1xy1YtcfWKBy+Gd/Ji2IV/fYVFWOd1ZVkul8vF7RvXod+wIf7p2R0N62mjU5vWuHr5EkRJZmYmHoeGwrbQeYFtx44IKiWGXVpZw0RPFwO6d4XfrwvRBaWnpaFFk0Ywb6SH4f/2w5NSXuWdmpoKAKhRs/i2nBAXB68bNzDQ0fG35fxJf2I/COQ+/ZCVlcU79yvLcjMzMwCA73jD4XAgIyPDt50LW2ZmJsJDQ9C+I39dStuOTxw5jLevX2N2CTdiArlt0KRxQzTT18Ogfn2LXJ+5cfUKjM3MMWrIYBjo1EV7ayscOVD0teIF1/Xwgf1QUlaGkQBvjKuszMxMhAQHo1OhPmHnziX3CQMDAtC5cP4uXRAcFMTr07Rs1QohwcF49KsP8/r1a1y/fh1dC9y00LJ1a/h4e+PVr1dmhoeH44GfH+y7di1xXfft3QtlZeUSnxj60yoSv7IIDAhApy78fY7OdnaVKhMAUlJSICEhgRolDP6LKy6Xi+9paVD6Tb0unzyGzr37lTjwlJOTg1sXL+DH9+9oZm4BAMj6dd25YB+ew+FAWloG4WJ+jYb8PcLDw7Fr1y7Y29vD2NgYzZs350vlJVUF6/hHfP78GYMGDcLatWvRt29ffPv2Dffu3UPeg1xeXl6oVq0afHx88PbtW4wcORIqKipYWcY7+gTlS2IicnJyoKqmxjddVV0d8XG/vzPLSK8BEhMTkJ2dDeeFizB8ZP7dQg0bNcaOvftgaNQU31JTsWfHdth3aId7Dx9BT78hAGDarFlITU2BpXFzcDgc5OTkYOHSZfjXwUHwFa0iyV++ICcnB7VV+eNXW1UVifHF31XUqkNHnD96BB27doehsQkiwkLhfuIYsrOykPzlC1Q1NNCt379I+vIFw7rbAYwhOzsbDiNHY+zU/O9RjHGajrTUVPSwseDFb+qCRehe4FVJ+7dugpSUFIaOm1A1ARCAvDaopqbON11NXQ1xsWW7O3Dbpk1IT09Hv3+LviYKyL0b5llEBLbv4X+S5NyZ0wgPDYXvg8p1eIQp6VcbVCm0DauoqiMhzrPY33x4+wZBAf6QrVYNbsdP4euXRCyaOR3JyUlYvyP33dZtO3bEvh3bYNWqFXR0G8DP1we3rl0Ft8AF18vnzuJpeBgu+xT//uf4X9uAaqH/WxVVNXwq5bURoi4xPg61VVX5ptVWVUN2djZvO87NU3jfoMa3byjLdiwOeO2wUH1V1EreF5pZWWPDnv2YNnoEMn7+RHZ2Njp27YbFa9aXuJz1y5ZAXVMLrWzzXyfy4d1bnDi4D6P+NxkTZszC45BgLJ83BzKysryno9y2bASHIwXH8RMFUFvB4+0H1fnjp66mDs/Yku9QLWjLpk34np6Ofv/2502Li40tum9VUy9x3+px6RKSk5MxdPhwvukb1q2DlJQU/je5+O9AiYJE3rGkUAzV1RAXV7YYFufNmzfw9fHBwEGD4X7ZA1FRUZjuNAXZ2dmYv3ARAKCFpSX2HTyEhg0bIj4+DqtXrUL7tm0QHP4YtWvXrlS9/pS8bbi2WjH7rBLi17p9R5w7dgQdu/WAkbEJnoaF4sKJo8jKykLSly9Q+81+MOHXfqG6oiJMWlhi54a1aNCoMVTU1HD1/Fk8Dg6CTgO9Ypeb8fMnNixzQY9/+qO6CN2NV5n+jEEDXSQm5Pap5y1aVOQO/JSUFBjo1kdGRgY4HA42bt2GDiV8YPfK5UtISU7GkGH82/HaTZswZeIEGDTQhZSUFCQlJbFt927YtGpVgdpWjaraFwK5MWxYX4cXw03btvEG5xUVFWFlbY01q1bCwMAAaurqOHPqFB49fAj9X+ctALB+02ZMmjAeDXXr82K4Y/cetGxV/FMpf5qwzuvKstyE+HikpaVh8/p1WLDEBS4rVsHz1i0MG+gAj5u30Oo3Aw1/0tcvicX2q1XV1Hn92sLUNDSwbtsONDM1RWZGBs6fPIkBPbri/PVbvCeW9Bs1wuY9e2FgZIS01FTs27kDvTt1gKf/wyKv5wNyB0ld5s2FpU1LGJRw08eZE8dQXVER3Xr1qVylBagq94MFLVmwAJpadXg3D5ZluY0aG6Cejg6WLlqIzTt2QkFBAdu3bEZcbCxiP5f9ibSqxtue1Au3QTXEl3A8jo6KwvLFi+Bx2wtSUsVfQmvYuDG2ue3N3Y6/pcJtxw5079gevoGPoPerDb578waH9rph4hQnTJs9ByFBjzB/1kzIysrCYchQXlk3r13DOMdh+P79O9Q1NHHO4ypqq6gIKAKVl9cnVFcv3B7UEVtCO4yNjYVaofzq6urIzs5GYmIiNDU14TBwIBITE9GubVuwX9doxk+YgDlz5/J+M3vOHKSkpKCZoSHv3G7ZihUYOGgQX9lXr1zB0MGD8f37d2hqauL6zZtQEZEYViR+ZREbG1ukn66mplapMn/+/IkF8+dj4KBBIvuERkUd370DP358R6cS9vERocGIfvEcCzcW/Q5v1PNnGN3DHpkZPyGnoIC1B46gwa+nnOrrN4Smdl3sWLUc89ZuhJy8PE7s2Ykv8XEl9vmJCKuKbzSJwTefGjdujISEBDQR0I3FYj34lJ2djX79+kFHRwcA0KzA92RkZGRw4MAByMvLw8jICMuWLcPs2bOxfPlySBbzCqSMjAxkZGTw/s67E0pQCj+ixhgrMq2wa15eSEtLR9DDQCxdtBC6DfR4A0ctrKzQwsqKl9e6ZUvY2ljBbedOrNmY+/jthbNncebkSew9dAQGhoZ48jgc82fPgqamJgYNrdyjnn9aeeI3YeYcJMbHY7B9JzDGUFtVDb0HDsaBbVsgycl91cHD+/ewZ9N6LFq7Ac3NLfD+zWu4znfGLvW1mDhrDoDcb01dOXsGa/fsg75BE7x4+gSrFzhDVUMTfQYORkRYKI667cY5r7ul/l+KhAq0QQA4e/oUXFcsx8lz54uc9OY5evAgDI2MYNGiBW/axw8fMHfmTFy8elXk3jVfEeVpg1wuF5CQwJa9B6D067s4GSszMHH4EKxYvwnV5OTgsmYdnJ0mo4OFKSQkJKCj2wD9hwzD2eNHAQAxHz9iqfNsHHW/XHr8Cq1GWf9vRV1xMf81o8Q8KFT30rZjcVM0JsXE4JfIFy+wYt5sTJo1F206dkJCbCzWLFmIxTOmwnXbziL53bZuwpXz53DM4xrf3emMy0VTE1PM/PWaU6Pmxoh88RwnDuxD34GD8TQsFIf37MJFn/si3+4qciwGgDOnTmHV8mU4ff5CkZO68pR5+NBBdLGz5/umU2hIMHZu34YHgQ9FPn5AxWNYEi6XC1U1NezYvRscDgdm5ub4HBODzRs38Aaf7OwL3s3aDFbWNjBq3AjHjhzB1BI+uCyqioTqN/H736w5SIyPw0C7jrz+TN+BQ7Bv22ZwOPmvbiptP7h2lxvmO02CbdPG4HA4MGxujB7/9Mezx+FFlpmVlYUZY0aCMS6WrNtYZL5IqEAbvOHljfT0NDwKfIglCxeggZ4e+jvkf9NKUVER9x8+Qnp6Gu54+2D+nNmor6uLNra2Rco6cvAQOtvZFfk22+7t2/EoMBCnz19AXZ168Lt3HzOdnKChoSlyT39Xxb5QUVER/o+CkJaWBl8fH8ybPRu6ug3Q9lcM9x08hInjxkK/vg44HA5MTE0xYOBAhBf4ftvO7dvxKPAhzl5wR9169eB3/x6mO02BhqamyLwqCRDOeV1py+X+upDRtUdP/O/XK1ubGRvjYaA/DuzdKzKDT3mKrUvhDu0v+o0aQb9RI97fFlbW+PTpI3Zt3cwbfDK3tIK5ZX4MW9i0RJdWNjiweydWrC+6L5s/YzqeP32Ci7e9SlzHU0eOoO8AB9E8j6mC/WCezevX49yZ07h2+3bRuv9mudLS0jh66jQmjx8HHQ11cDgctOvQUWTfulLW7TgnJwfjRzhizoJF0G/YsMj8PBaWVrAo0AatbFqig4019u3aCdcNuW2Qy+XCxMwcC5flvl6yuYkJXj5/joN79/INPrW2tYVPwEN8/ZKIowcOYMywIbh5516J5+LCUt59YUnndnnT7/j6YvWqVdi2fTtaWFkhOioKM6dPh4amJhb8es3rmdOncfL4cRw5dgyGRkYIDwvDrBkzoKmpieEFnlJs1749HoWE4EtiIvbv24fBAwfivr9/kWOXMAm6Ty3oMrOysjBk0CBwuVxsK/DK7f+Cm+7nsXf9Wqw/dBS1VFSLzXP5xHHoGTSBkal5kXk6evo45umLbykp8LnqgaVOk7D7wmU0aGwAKWlprN53CCtmTkWnJnrgcDho0cYWLTsUf1MTIaJo7dq1mDNnDpYvXw5TU9Mir8dXLub7378jtoNPxsbG6NixI5o1awY7Ozt06dIF//77L2r+emze2NgY8vLyvPw2NjZIS0vDhw8feINVBbm6umKpAN4lXlhtFRVwOJwid9EkxscXeVqhMJ36uR/xMmraFAnx8VizcnmJTy1JSkrCzNwC0dFRvGmL58/DtFmz8M+AAbxyPr5/j03r1orN4FON2rXB4XCK3Nn/NTGxyJ2+earJyWHF1h1YsmEzviTEQ1VdA2cPH4RCdUXU/HWH9LbVK9GrvwP+HZbbQWlkaIQf6d/hMnMqxs+YBUlJSWxwWYzRU6ejW79/eXliPnzAvs0b0WfgYAQH+ONrQgI6meTfLZeTk4N1ixfg6J5duB36pCpCUm75bZD/jpeE+IQidx8Vdv7sGUwePx6HT5ws8cLJ9+/fcf7sGcxfvIRvelhICBLi49HW2po3LScnB3737sFt104kfkvju3gmqmr+aoMJhbbhL4nxRe7azKOmoQENTS3ewBMA6DduDMYYPsd8gq6ePmqrqGLvidP4+fMnkr9+hbqmJlYvWYS6OvUBAE/CQpGYkIAetvl3++bk5CDQ7z4Ou+1BZEIS7+7DhLg4qGtoFli3hBLXTVyoqKkjMZ7/2wdfExMgJSXF+45Wbp7C/y8JfPuG0rZjccFrh4Xrm5BQ4r5wz+YNMLO0xlinaQAAA6OmkFOQx6Budpi+YDHUNDR4efdt24LdGzfgsPtlGBg15StHVV0D+r/u5Mqj16gxbnnkvsrnkf8DfElIgG3z/LticnJysHrRfBzevRO+4REQtrz9YFyhO/vjE+KLPAFQ2LkzZ/C/8eNw7OSpIhc/1TU0EFd435oQX+y+9f27d/Dx8sLJM2f5pvvdv4+E+Hg01mvAm5aTk4N5c+Zgx7ZteB4ZVbgooVDJi2GhfWF8fEKlTuQ1NDQgLS3NdzwwaGKA2NhYZGZmQkZGpshvFBQUYNS0KaKjRCM2ZZG3DSfG8e/XviQmFHkaKk81OTms2rYTSzduwZf4eKhqaOBMof5MSfvBgk9J1tNtgGMe1/E9PR1p375BTUMD00ePgHah/nBWVhamj3LEx/fvcOiih0g99QRUrj9TXzevT90M8fFxcF2+nO+iq6SkJO/O9ObGJnj58gU2rF1bZPDp/bt38PX2wvHTZ/im//jxA0sXL8LxM2d53zRq2qw5njwOx9ZNm0Rm8Kmq9oUAfwyNTUzw8sVzrF+7hjf41EBPDze9vJGeno7U1NTcC4WDB0NHtz6A3Bi6LFqIU2fP8WLYrHlzPA4Px5ZNG0Vi8ElY53VlWW5tFRVISUnBoNAdqo0aGyDgwYOyV7KK1aqtUmy/OjEhvlwX1s1bWOL8qZMlzpeUlISJuTneREcXmbdg5nTcunYF7jc9oVVHu9jfB/rdR3TkK+w+crTM6/QnVOV+EAC2btyIDWvX4NL1G2ha4DVvZV2uqZkZ/B4FISUlBVmZmVBRVUX71q1galb04q2w8OoSW7gNJhTbBtO+fUNYSDCehIfBecY0ALmDSIwxqCsq4KzHFbRt177I7/La4OsCfRV1DQ00MuDvUzdsbACPixf5pikoKKCBnh4a6OnBwtIKLZoZ4fjhQ5g2e04Fay1YeX3Cwk/UJMTHF3maJ4+GhkaRp/Pi4+MhJSXFe4rdZckSDBk6FKPGjAGQe3N5eno6/jdhAubNnw9JSUnMmzsXs+fOhcPAgbw879+/x9o1a/gGnxQUFKCvrw99fX1YWVvDsHFjHDxwAHOdnQUWh4qqSPzKQkNDo0g/PSEhoUJlZmVlYZCDA96+fYtbnp7/qaeebl9yx4oZU+G69wAs27YrNs/P799x69IFjJ89r9j50jIyqKube+5maGKKZ+GhOL3PDfN+3bjVxNgExz3vIC01FVmZmaipooKR3TqjiQC/bU7+kL/0yacuv17haW9vn38TeAHcctZBbL/5xOFwcPv2bVy/fh2GhobYtm0bGjdujDdv3vz2dyWN+s+bNw8pKSm89OHDB4Gsp4yMDExMzeDjzf96Ll9vL1gWuChfGsYYMjJK/mYVYwxPwsOhUeAC9I8f34s85SXJ4ZS7kQiTjIwMDI1N8MDXh2/6A18fmFha/va30tLS0NCqAw6Hg+vuF2DbxY4Xj5/fv0OimNgwxngb1o8f34t8pJ3DkeTFr9eAgXC/+wDnfe/zkpqGJkZOdoJbgQ9/C5uMjAxMzMzg7cl/Z5+PlyesftMGz54+hYljxmD/4SN8H4cuzP3cOWRkZMBhMP+FfNsOHRAQEgK/R494ydTcHAMGDYLfo0diMfAE5MavmYkp7vnwfxj2no8P3x2WBVlY2SAu9jPS09J4095ERUFSUhKaWnX48larVg0aWlrIzs7G9cuX0KVb7kcyW9m2wy3/h7h+35+Xmpuaoc8AB1y/7w8Oh4O69etDVV0d9wusW2ZmJgL97sPcsuz7F1Fk3KJF0e3exxtGJvl3XZhYtID/ncL7Bm+YtMjfN5S2HYsLGRkZGBmbwq9QTPx8vWFWQjv88b3oMYAjmbvdFexA7N26GTvWr8X+sxfQzNSsSDlmVtZ4ExXJN+1tVBS0tOsCAPo4DMSVewG4fOcBL6lramLMlKk4cM69/JWtAjIyMjA1M4O3F/+x2MfTC1bWNiX+7sypUxg/ZjQOHjla7H7Qysoa3l78+1YvT89iyzx6+DBU1dSKlDNoyFAEBofA/1EQL2lqaWHajJm4dOVqeapZpXgx9OSPobeXJ6xtSo5haWxatkR0dDTfNhn5KhIamprFDjwBuU+rv3jxAhqaGsXOF0W527AJHvjyH0se+PrAtEXx23AeaWlpaNTJ7c9cdT+Pdnb5/RmTFpZF9pV+Pt7F9pHkFRSgpqGBlOQk3Pf2QocCH2XOG3h69zoaBy9cRs1aovc6w4r2ZwpjjJX6HdjcPBlFph87krsd2xXajrOyspCVlVXsPleUjjdVtS8sDmMMmRlFY6igoABNTU0kJSXB8/Yt9OjZE0B+DAv3zzkidO4irPO6sixXRkYGpuYWiPz1HZQ80ZGRqCuAD8QLioyMDJqbmuKuN/++8K63NyzKEcOn4WFQ1yj5GMAYQ8TjcL4bbRhjmD9jGq5fvoSzV2+gXv36Jf7+5JHDaG5qJlLf2QGqdj+4ZcMGrHVdhfMeV2Bmzj9YVN7lKisrQ0VVFVGRkQgNDkb3X9u5KJCRkYGxqRl8vfnrUtJ2rKikhHuPguEb8JCXRowZC/1GjeAb8BDmLYq/JsEYw9PHj/naqaWNDaIjC22jUWXYRhnje0uPsMnIyMDM3BxehfqEnp4l9wmtrK3hWTj/7dswt7Dgndt9L+YaDafQNZrv34s7tyv9OMFEKIYViV9ZWFlbw+v2bf4yb90qd5l5A09RUVG4ceuW2Lziuixuup/HsmmTsXznHrT+zTegPT0uIiszE/b/9C8xT0El9RurKymhpooK3r+OxvPwMLS1K1sfiogQxs0fgBJUYqLRr/0dHx8fXvL19S2Syktsn3wCcgeSWrVqhVatWmHx4sXQ0dGBu3vuha7w8HD8+PEDcnJyAICAgABUr14d2trF390kKytb5KPOgvI/p6mYMHokTM3M0cLKCof378fHDx8wcsxYAMDSRQvxOSYGu/cfAADs3b0L2nXrolHjxrnr/uABtm3ehHET/8crc83KFbCwtISevj6+pX7Dnp078ORxONZtzn8fqX237ti4Zg2069ZFE0NDPA4Lx86tWzBkeP4dIUlfv+Ljhw/4/DkGAHgnLGrq6r/t0P9JjhMnwfl/49HUxBTGLSxx9vAhfP70EQ4jct9TvWm5C+I/f4brzj0Aci+KPgkJRnNzC6SkJOPIzu2IfPEMq3bs4pXZzq4rDu/agSbNmvNeu7dt9Qq0t+vKGxRpZ9cVbps2QFO7LvQNDPD8yWMc3rUDfQfnPhJfo1Yt3hMYeaSkpaGipg7d3zySLwyTp07FuJEjYWZuDksrKxz81QZHjR0HAHBZuAAxMTFwO3AQQO7A0/hRo7Bmw0a0sLLi3aVUTU6uyOOVRw4dRPdevYp0ShQVFWFY6AkKBQUF1KpVm2/6169f8fHDe3yO+Qwgvw2qq2uITBscM2kKpo8fg+ampjCztMLJQwcQ8/EDhozKvStrjctixH6OwaY9+wAAvfsPwNZ1qzHrfxMwff4CJH35glWLFmDA0OGo9mufFBr0CLExMTBq1jz3t64rweVyMX5q7iukqisqorEh/zvo5RUUULNWLd50CQkJjJ44CTs2rkd9PX3o6ulh+4Z1qCYnh979B/yp8JRJeloa3r95zfv747t3eP7kMZRr1oSWdt0i27HDiFE4uX8v1iycj3+HOyL80UOcP34U69zyP8o7dPxEOPbsin1bN6FD1+7wvn4VAXd8cfTqTV6e0rZjAEhO+orPHz8i4Vc7f/troEVFTR2qlbj7TNBG/W8yZk8ci6YmpjBtYYnTv/aFg0aOBpD7vaa4z5+xblfut9c62HfFwmlTcPzAPrTp0BEJsbFYucAZzc0soK6Ze0HLbesmbF61AhvdDkC7ng7vTmR5BQUoVK8OABg5cRIc7Dth18Z16NanH8JDgnH6yEEs37QVAFCzVu0iF6qlpHL3hQ0aNoKomDJ1GsaMHAFTc3NYWVnjwP59+PDhPcaMy90PLl6wADExn7Dv4CEAuRdbx44aiXUbc/eDeXcnyhXYD/5vymR06dABG9atQ4+ePXHFwwM+Xl7wLNQh43K5OHrkMIYMHVbkWwG1a9cusv+UlpaGuoY6rx8gKpymTcfoEY4wMzeHlbU19u/biw/v32PMuPEAgEUL5iPmUwz2HzrE+034r49tp6elIzEhAeFhYZCRkUETQ0MAwNjxE7Brxw7MnD4d/5s0CVFRkVi3ZjX+N3kyrwznObPRvUcP1K1bD/Hx8VjjugrfUlP5vrnz9etXfHj/ntefyfsQtbqGBjRE5Fgy4n+TMXfiODQ1NYOJhSXOHDmIz58+YuCvb79sWOaC+M8xWPNrG34TFcnrz6QmJ+PQru2IfP4Mq399OxAAho2fiGE97LF3yyZ07NodXtevwv+OL44X2A/e8/YEGIOufkO8e/0a61wWQVdfH/1+7Qezs7MxdcQwPHscjt0nzyAnJ4e3L1CuWbPEQUBhKG9/xm3XLtStWxcNC/apN23CuP/l96k3rF0DUzNz6DZogKzMTNy6cQMnjx3Dpm3b+ZbN5XJx/MgRDB46tMh2rKSkhNZt22LRPGfIycnlvjLu3j2cPH4Mq9auq8qQlFtV7AvXrVkDM3NzNGjQAJmZmbh54zpOHDuGLdvzY3j71i0wxtCoUSNER0djgfNcNGzUCMMcRwDIjWGbtm2xwDk3hvXq1cO9e3dx4tgxrF4nOjEU1nldacsFAKfpMzBq2BC0bN0abWxt4XnrFm5cuwqPm/wXI4Vt3GQnOI0djeZmZrCwtMKxg/vx6eMHDB+d269etWQRYmNisHVvbp9v745t0K6ng8ZNDJGVmYnzp0/i6qWL2Hc8/8mnDatWwtzSErp6+vj2LRX7d+1ExOPHWLVxMy/P/OnT4H72NA6eOovqitV5T/EoKinzrhkAwLfUVHi4X8CSVav/QDTKryr2g5vXr8eKpS7Yf+QIdHR0eOd+CtWro/qv/mBpywUA9/PnoKKiCu26dfHs6VPMnTUTPXr1QsfOnf9IbMpqopMT/jd6FEzMzNDCyhqHD+zHpw8fMOLX9rR8ce52vHPfAUhKSqJJoe+CqaiqoppsNb7pa1eugIWlFRro6+Fb6jfs3bkDTx+HY+2mzbw8EyY7oVuHdti0dg16//MvQoIe4eiB/diwPfeVZunp6di0ZjXse/SAuoYGvn75igNuexDz6RN69/un6gNTDlOnTcNIR0eYm5vDysYG+/fm9gnHjc/tEy6YPx8xnz7h4OHDAIBx48dj144dmD1zJkaNGYNAf38cPHAAR48f55XZvUcPbNm0CSYmJrD89dq9pUuWoEfPnrxrNN179MBqV1fUrVcPhkZGCAsNxZZNm+A4ciSA3Bi6rlqFnj17QkNTE1+/fMHuXbvw8eNH/FPC96uFobzxA4CwX33qtLQ0JCQkIOxXn9rwV596ipMTOrRrh3Vr16Jnr17wuHwZXl5e8L17l1dGWloaogo8jff27VuEhYWhVq1aqFevXu630Pv3R1hoKNwvX0ZOTg7vuF+rVi2R6hN+T0/DxwIPH8S8f49XT59AqUZNaGhrY8fKZYiP/Yyl23KvA950Pw8Xp/9h5vJVaGpuwXtzQLVqckWe9r904jhs7bsVud4HADtXLYdNh05Qr1MH39PScOviBYQ88MOWE/lPxXt6XELN2rWhUUcbUc+fYeOi+bC17wbrYp6SJEQUtW1b/OuaGWN4/77835cX28GnwMBAeHl5oUuXLlBTU0NgYCDvY1iPHz9GZmYmRo8ejYULF+Ldu3dYsmQJJk+eXOz3nqpav/798fXrF6xdtQpxsZ/RxMgIpy9eQr1frzuJi43FxwJPWjEuF8sWL8L7t2/BkZKCboMGWLJ8Bd/JRUpyMqZNmoT4uFgoKSujubExrt72gnmBb+6s2bgJq5a6YNbUqUhMiIeGpiZGjB6DOfMX8PJcv3oFk8bllzt6eO6FiLkLFsL517cWhK1r33+QnPQVu9avRUJcLBoaNMHuk2ehVTf3DqGEuDh8/viRlz+Hm4NDu7bhbVQUpKSkYdm6DY5fu4069fJfLzN+5mxISEhgq+sKxH/+jJq1VdDOzh5TF+TXeYHrWmxdvRLL58zE18QEqGlooL/jSEyclf/BS3HxT/8B+PrlK9asWonYz59haGSEc5cu89pgbKE2eHDfPmRnZ2PmVCfMnOrEmz542DDs3pd/8T/y1Sv4+/nh4tVrFV6361euYOLYMby/Rw7NbYPOCxdi/qLFFS5XkHr+8y+Svn7F1rWrER8bi0ZNDHHo7AVo/7pLLT4uFjEF2qBC9eo4dtEDS2bPRM92bVCzVi1079sPsxfmv5ow4+dPrF+xDB/evoG8QnW079IFm932Q7lGjXKt24RpM/Dz508snDkNqcnJMLFogWPul1FdUVEgdReUiLBQjOzTg/f32kXzAQC9Bw7Gqu27imzH2jr1sevkWaxZOA8nD+yFmoYG5q9agy49e/PymFpaYd3eA9i2agW2ua5Evfq6WL/vIJqbW/DylGU79rlxHQun5J+AzxqbeyH4f7OdMWlu8Y/aC0P3frn7wh3r1iA+Lrcd7j19DnXqFmyH+dvxP4OHIj0tDcf27sHqRfOhpKwM6za2mL1kGS/Pif37kJWZiSkjhvIta8qceXByzv0/am5mjh1HT2DDMhdsX7cG2vV0sGDlavTuX/zrgkTVvwMG4OvXL1i9Mn8/eOGyR4H94Ge+/eCBfXuRnZ2N6U5OmO6Uvx8cMmwY3H5dVLS2aYnDx45j2ZIlWO6yBA0a6OHI8RNoUehpNG8vL3x4/x7DR4yo+opWof4DBuDrly9YtXIFYj9/hpFRU1z08OC9zjj2cyw+fODvjFq3yN8eQ0KCcfrUSdTT0cHLqNxXIdWtWxce165jzqyZaGFmCq06dTBpyhTMLPBqmU+fPmH40KH4kpgIFVVVWFpZ4c59P77XKF/18MC4MaN5fw8fkvs07oJFi7Cw0GthhaVb33+Q/DV3G06Ii0XDJobYcyp/G06Ii0XMp/z9IDeHi4M7t+NNVCSkpKRh1boNTl73hHaB/oyZpRU27DuILSuXY6vrCtStr4uN+w7B2CK/P5iWmoqNy10QGxODGjVronOPXpi+cDHvTuPYmE/wvpF7HO9j24pvnQ9fugqr1m2qLCblVd7+DJfLhcuihXj39i2kfvWpXVasxKix+X3f9PR0zHByQsynj6gmJ4dGjRtj76FD+KfQTRw+v7bjob8GSwo7ePQYXBYtxJgRjkj6+hV169XD4qXLMHrcuGLzC0tV7Au/p6djutMUfPr4EXK/Yrj/0GH8OyA/hqkpKViyaCE+ffyImrVqoU/fvliybDnfO+QPHTuOJQsXYJTjcCR9/Yp69XSwZNky3gC3KBDWeV1pywWAHr17Y+O27di0bi2cZ86AfqNGOHLyFGxa8W/Xwtb73/5I+voVm1avQnxsLBobGuHY+Yu8fVt8bCw+FYhhZmYmli+Yh9iYmNxt1KAJjp53R8cC3xJKTUnG7CmTkBAXB0UlZTQ1NsaFm7dhWmBfeHhf7sD+P13573bftNsNDgVeSX/p3FkwxtBHxG7kylMV+8F9bnuQmZmJYQP5X8NX8HystOUCuf2A+XPmID4uDhqamhg4ZAjmFrj2ICr6/tsfSV++Yr3rKsTFxsLA0Agn3S+ibr3it+OySElJwYzJ/0N8XByUlJXRzNgYHrc9YVZgOzazsMDhU2ewYskirHddhXr162PF2nXoP3AQgNwneCJfvcKpQYPw9UsiataqDVNzc3jc9oLBrwEGUTHAwQFfv37FyhUr8PnzZxg1bYrLV64U6BN+5nubkK6uLi5fuYJZM2di186d0NLSwqbNm9Hvn/xBtfkLFkBCQgIuixfj06dPUFVVRfcePbBsxQpens1bt8Jl8WI4TZ6M+Ph4aGlpYcy4cVi4KPc6DofDwcsXL3DsyBEkJiaidu3aMLewgM+dOzAqNIgoTOWNHwBYFngiMSQ4GKdOnoSOjg4iX+fe4GnTsiWOnTiBJYsXw2XxYjTQ08PxkydhWeCbgsFBQehc4DW2s2fOBAAMGz4c+w8exMePH3HFwwMA0MKM/40Yt728YNuuneCCUEnPw8Mw8Z/8awObXXK/C9Z9wEAs2bIDifFxiPv0iTff/ehh5GRnY+28OVg7L/88Iy9/nnfRUQh/GIBtp84Vu9wviQlwmTIRifFxqK6oBH1DQ2w5cQZWtvkDS1/iYrHZZSG+JiRARU0d3fo7YPT0WQKrO/mDuKwKXrtX9DV2oigmJgbv3r3je1L669ev+Oeff+Dt7Q0JCQnYFvN93OJIsOJe3icGnj9/junTpyMkJASpqanQ0dHBlClTMHnyZIwYMQLJyckwNjbGjh07kJGRgYEDB2L79u1lfropNTUVysrKeBeX8J96v+mfFJP+U9irIPbqKsqVnon8VtLPLGGvglhLy8oW9iqIPRkh3PTwX6JVXQQ/9C1mCr+ehJTfu9Tvwl4FsUbbceVxaDuutMwc0X/NiSj7QfGrtOrS4vHacVFF23DlKclKl56JkCoUFp8s7FUQa2nfUtGhkS5SUlLoWnUVyhsTSHkUAqVfTwALrOy0NCi3MBPp/8OVK1diyZIlxX7vKQ9jrMyvxhbbJ5+aNGmCGzdu/DbP0qVLsXTp0j+0RoQQQgghhBBCCCGEEEIIEWt532kSdJkibseOHThw4AB6FnjtKQAkJCSgYcOGSEpKgkQ5bowT28EnQgghhBBCCCGEEEIIIYQQUnnx8fHo1q0batasyTf958+fkJCQ4H33taxo8IkQQgghhBBCCCGEEEIIIQQAclhuEnSZIm748OGQkyv6GRg5OTk4OjqWu7z/5ODToUOHhL0KhBBCCCGEEEIIIYQQQgghYuHAgQPFTldUVCxx3u/8JwefCCGEEEIIIYQQQgghhBBCyu0v/eZT+/btfzvfx8cHycnJ6Nu3L3x8fEotjwafCCGEEEIIIYQQQgghhBBC/mKmpqal5pGWli5TPoAGnwghhBBCCCGEEEIIIYQQQnL9pU8+bdy4sdQ8CgoKZcoH0OATIYQQQgghhBBCCCGEEEJIrr908ClPVFQUnj17BgkJCRgYGKBhw4YVKocGnwghhBBCCCGEEEIIIYQQQv5iKSkpGDFiBC5fvgwpqdyho6ysLPTs2ROHDx9GjRo1ylWeZBWsIyGEEEIIIYQQQgghhBBCiPjJe/JJ0EnETZ06FVFRUfDz88PPnz/x8+dP+Pv7Izo6Gk5OTuUuj558KkUNGWkoyUgLezXEkpIsxY0In4I07eYIIYRUTsOa1YW9CoSQSqomxRH2Kog1JWGvAPnrKdDlBULEnrl6TWGvglhLlaO+DKl6ly9fhoeHB6ytrXnTrKys4Obmhh49epS7PLoqSwghhBBCCCGEEEIIIYQQAgCsCp5UYqL/5FNmZiaqVy9686WioiIyMjLKXR69do8QQgghhBBCCCGEEEIIIeQvZmtrC2dnZ3z58oU37evXr5gzZw5sbW3LXR4NPhFCCCGEEEIIIYQQQgghhABi982nt2/fYvTo0dDV1YWcnBz09PSwZMkSZGZmlqucrVu34s2bN6hXrx5MTU1hZmaGunXrIjo6Glu3bi33etFr9wghhBBCCCGEEEIIIYQQQsTQixcvwOVysWfPHujr6+Pp06cYO3Ys0tPTsX79+jKXo6enh4iICFy+fBnPnj0DYwxNmjRBnz59wOGU/7tjEowxVu5f/QVSU1OhrKyMlKRkKCnR51Urgish7DUghBBCCCGEEEIIIYQQ8ZaamoqaNWogJSWFrlVXId6YwE0vKCkU/fZRpcpOT4OyXcc/9n+4bt067Nq1C69fv67yZZWEnnwihBBCCCGEEEIIIYQQQggBAC4T/GvyuLnPAKWmpvJNlpWVhaysrGCXBSAlJQW1atUq128OHz782/mOjo7lKo8GnwghhBBCCCGEEEIIIYQQQqpY3bp1+f5esmQJXFxcBLqM6OhobNu2DRs2bCjX76ZPn873d1ZWFr5//w4pKSnIy8uXe/BJsly5CSGEEEIIIYQQQgghhBBC/qu4rGoSgA8fPiAlJYWX5s2bV+JquLi4QEJC4rcpKCiI7zcxMTGwt7dH//79MWbMmHJV++vXr3zp27dviI6ORrt27XD69Olyh5GefCKEEEIIIYQQQgghhBBCCKliSkpKZf7m0+TJkzFw4MDf5qlfvz7v3zExMWjfvj1sbGzg5uZWmdXkK3/16tUYMmQInj17Vq7fityTTy4uLjAxMeH9PWLECPTp00do6yMojDG4LHWBlnYdyCnIo12H9oiIiCj1d+fPn4dhUyPIylWDYVMjuLu7F8mzc9dO6Oo1QDV5OZi3sMC9e/fKveyMjAxMcZoCFTVVKChWR6/evfHx48fKVVqAdu3cCb0GDSAvJ4cWFkXrWNidO3fQwsIC8nJy0NfTw+7du4vkOX/+PJoaGUGuWjU0NSoa27t376JXr17QrlMHHElJXLx4kW9+VlYWnOfOhXHz5lCsXh3aderA0dERMTExla5vVRBGDFe7usLK0hLKSkrQUFdH37598fLlS748Fy5cgL29PdRUVcGRlERYWFil61oVRLENAkBcXBxGjhwJ7Tp1UF1BAV27dkVkZGSl6lpVRDGGtB2XHsOyLFdc2qGoxm/kyJHgSErypZY2NpWrbBWhGFaOKO4HAfE5FgOi2waXurjAsEkTKFavjtq1aqFL584IDAysXGWriKjGUFzaIcWv8iiGlUPxqzxRjaG49GcA0Y2huLRDUY0ftcHKx7Bw/PLS+nXrKldh8udxuVWTyklFRQUGBga/TdWqVQMAfPr0Ce3atYOZmRkOHjwISUnBDf1ISEjgw4cP5f8hEzFLlixhxsbGvL+Tk5NZUlLSH1+PlJQUBoClJCUzlsOtdFrt6soUFRXZ+bPn2JPwx8xhgAPT1NRkqckpJf7mwX0/xuFw2KqVK9nziGds1cqVTEpKigU88OflOXXiJJOWlmZ797ixZ08j2FQnJ6agoMDevXlbrmVPGD+e1alTh92+eYuFBAWz9u3bM2NjY5admVXhOudwBZNOnMyt4x43N/Y0IoI5/arjm7dvi80fFR3N5OXlmZOTE3saEcH2uLkxaWlpdubsWV6e+365sV25ciWLePaMrfwV2wf+/rw8V65eZfPnz2dnz51jANj5Cxf4lvM1KYl17NSJnTx1ij17/pz5PXjArKysmLm5ucDqLu4x7GJnx/YfOMAeP3nCQkJDWbfu3Vm9evVY6rdvvDyHDh9mLi4ubI+bGwPAgkNChB4vUYlfaW0wOyeHWVtbszZt2rCAwED27PlzNnbs2CIxFoUkqjGk7bj0GJa2XHFph6Iavxwulw13dGR29vbsU0wMLyUkJgo9ZhTD/0b8StsP5nDF41gs6m3w6LFj7OatWywyKoo9fvKEjRo1iikpKbHYuDihx01cYigO7ZDiRzEUdqL4/bdjKA79GVGPoTi0Q1GOH7XBysewYOw+xcSwffv3MwkJCRYZFVXpeiclJ+deq05J+ePXyf8mvDEBj5uMed8XaErxuFll/4efPn1i+vr6rEOHDuzjx4/s8+fPvFQeFy9e5Evu7u5s586dzNDQkNnb25d7vUR+8ElYBDn4xM3OYRoaGmy1qytv2s/vP5iysjLbvXNXib8b0H8As7ez55tm18WODXQYyPvb0tKSTRg/ni+PgYEBc547t8zLTv6axKSlpdmpEyd5eT59+MgkJSXZjWvXhT74ZGlpycaPH883zcDAgM2dO7fY/LNnz2YGBgZ808aNG8esra15f/cfMIDZ2dvz5eliZ8ccBg4stsySLtYUTgGBgQxAiQc8YSVRiGEOl8ti4+IYAObj61tkXvTr1yLbORSF+BXXBp+/eMEAsMdPnvCmZWZlsVq1arE9bm5Cj5s4xLC4RNsxfwxLW664tENRjV8ON/ckr1fv3kKPEcXwvxm/gqm0/aAoH4tFvQ0WTnkXB27dvi30uIlbDEW5HVL8KIbCThS//3YMxaE/I+oxFId2KMrxozYo+D5hr969WYcOHQRSbxp8+jN4YwKXrjPmeVegKeXS9Sr7Pzx48CADUGwqD0lJSb7E4XCYpqYmGzp0KIuNjS33elXq2SvGGNauXYsGDRpATk4OxsbGOHfuHADA19cXEhIS8PLygoWFBeTl5dGyZcsir9xavXo11NXVoaioiNGjR+Pnz5988wu/dq9du3ZwcnLCnDlzUKtWLWhoaMDFxYXvNy9evEDr1q1RrVo1GBoawtPTExISEsW+ZuRPePPmDWJjY9GlcxfeNFlZWdi2tcUDf/8Sf+cf4I8uXTrzTbOz64IH/g8AAJmZmQgODuYrFwC6dO7MK7csyw4ODkZWVha6dMnPo6WlhaZNm/KWJSx5dezchb+OnTt3hn8JsQsICEDnzvxx62Jnh6CgIGRlZeXm8fdHl0J57Lp0gf+DytU3JSUFEhISqFGjRqXKESRRimFKSgoAoFatWuWuh7CIUvwKy8jIAADe47UAwOFwICMjAz8/vzKXU9VEOYbFoe04P4ZlWa44tENRjl+eO76+0FBXh0Hjxhg3dizi4+PLX9EqRDGsHHHbD4oicWiDBdd1r5sblJWVYWxsXPZKVjFxiqEoovhVHsWwcih+lScOMRTl/gwgHjEUZeIQP2qD+SrbBuPi4nDt6lWMHDWq7BUkpIJGjBgBlvugUZFUHjk5OXwpOzsbMTExOHr0KNTV1cu9XpUafFq4cCEOHjyIXbt2ISIiAtOnT8fQoUNx584dXp4FCxZgw4YNCAoKgpSUFEYV2ODOnDmDJUuWYOXKlQgKCoKmpiZ27txZ6nIPHz4MBQUFBAYGYu3atVi2bBlu374NAOByuejTpw/k5eURGBgINzc3LFiwoDLVrLTY2FgAKPIfpK6uxptX0u/U1Qr9Rk2d95vExETk5OQUU25+nrIsOzY2FjIyMqhZs2aJyxKWstSxsNjY2GLzZ2dnIzExkZdHrVAetd+UWRY/f/7E/HnzMGjw4DJ/NO5PEJUYMsYwc+ZMtG7dGk2bNq1odf44UYlfcQwMDKCjo4P58+cjKSkJmZmZWLN6NWJjY/H58+fSsp8AALSrSURBVOcyl1PVRDmGhdF2zB/DsixXHNqhKMcPAOzt7XH02DF4enlh3fr1CAoKQqeOHXkDe6KAYlg54rQfFFWi3gYB4MqVK1BSVIS8nBw2b96Mm7duQUVFpfyVrSLiEENRRvGrPIph5VD8Kk/UYyjq/RlA9GMo6kQ9ftQGBdsGjxw+DEVFRfTr16/sFSQig+VwqyT9baQq+sP09HRs3LgR3t7esPn18bkGDRrg/v372LNnD8aNGwcAWLlyJWxtbQEAzs7O6N69O37+/Ilq1aph8+bNGDVqFMaMGQMAWLFiBTw9PYs8/VRY8+bNsWTJEgBAw4YNsX37dnh5eaFz5864desWoqOj4evrCw0NDd46FB7hLiwjI4NvZ5qamlqBqOQ6fvw4xk+cwPv7qscVALkf5iqIMVZkWmFl+Y2g8hRWljx/SnnXv7j8hadXJCYlycrKwqBBg8DlcrFjx44KlVHVhB3DKZMn48njx7hbykcgRZWw41ccaWlpnD13DmPHjIFK7drgcDjo2KkT7Lt2LXMZf5IoxrAg2o5LLvN3ecSpHYpi/ADAwcGB9++mTZvCwsICuvXr4+rVqyJ3okIxrBxR3w+KA1FtgwDQvn17hISGIjExEfv27sVABwf4BwRATU2tlFr9WaIcQ3FA8as8imHlUPwqT1RjKC79GUB0YyguRDV+1AYF2wYPHjyIwYMH870lhIgRLjc3CbrMv0yFn3x69uwZfv78ic6dO6N69eq8dOTIEURHR/PyNW/enPdvTU1NAOA9svn8+XPewFWewn8Xp2CZeeXmlfny5UvUrVuXN/AEAJaWlqWW6erqCmVlZV6qW7duqb8pSa9evRAWEspLeXc8Fh4Jj49P+O3jahoaGoiNK/SbhHjeb1RUVMDhcIopNz9PXhx+t2wNDQ1kZmYiKSmpxGUJS1nqWJiGhkax+aWkpFC7dm1enrhCeRJ+U+bvZGVlwcHBAW/fvMHNW7dE6mkJQDRi6DRlCjw8PODl7Q1tbe3KVOePE4X4/Y65uTlCQkPxNSkJn2JicP36dXz98gW69euXq5yqJOoxBGg7LqhgDMu6XFFvh6Iev8I0NTWho6ODqMjIslXwD6AYVo447AdFnTi0QQUFBejr68Pa2hr79u+HlJQUDuzfX/7KVhFxiKEoo/hVHsWwcih+lSduMRS1/gwgfjEUNeIWP2qDFY/hvXv38PLlS4z+9cAFIX+rCg8+cX+N1F29ehVhYWG89OzZM953n4DcO6Lz5I0Ecys5ylewzLxy88qs6F0P8+bNQ0pKCi99+PChwuunqKgIfX19XjI0NISGhgZue97m5cnMzMSdu3fQ8jeDbTbWNrh925Nv2q1bt9HSpiUAQEZGBubm5nzlAsBtT09eubq6uqUu29zcHNLS0rxXFwLA58+f8fTpU96yhCWvjp63+evo6elZ4kCltbU1PD3543b71i1YWFjw2o61jQ1uF8pz6/Zt2LQsX33zLlhHRUbi1u3bvIOWKBFmDBljmDJ5Mtzd3eHp5QVdXV1BVOmPEvU2mEdZWRmqqqqIjIxEUFAQevXuXaFyqoKox5C245JjWN7limo7FJf45fny5Qs+fPgAjV837YgCimHliPp+UByIWxsEcvtBovSaGnGMoSih+FUexbByKH6VJ24xFLX+DCB+MRQ14hY/aoMVj+GBAwdgbm4uUt//JOXEuPlPPwkqsb/vySewCkpNTWWysrLsyJEjxc738fFhAFhSUhJvWmhoKAPA3rx5wxhjzMbGhk2cOJHvd9bW1szY2Jj3t6OjI+vduzfvb1tbWzZ16lS+3/Tu3Zs5Ojoyxhi7fv06k5KSYrGxsbz5np6eDABzd3cvc/1SUlIYAJaSlMxYDrfSabWrK1NWVmYXzp1nT8Ifs0EDBzFNTU2WmpzCyzNs6DDmPHcu72+/e/cZh8Nhq11d2fOIZ2y1qyuTkpJiAQ/8eXlOnTjJpKWl2f69+9izpxFs2tSpTEFBgb19/aZcy54wfjzT1tZmnrdus5CgYNahQwdmbGzMsjOzKlznHK5g0omTuXXcu28fexoRwab+quPrN29YDpfL5s6dy4YOG8bLHxUdzeTl5dm0adPY04gItnffPiYtLc3OnD3Ly3Pvfm5sXV1dWcSzZ8z1V2wf+Pvz8qSkprLgkBAWHBLCALANGzaw4JAQ9ubtW5bD5bKMzEzWs1cvpq2tzUJCQ9mnmBhe+vHzp8DqL84xnDBhAlNWVmbePj588UlLT+flSUhMZMEhIczjyhUGgJ04eZIFh4SwTzExQo+bsONXWhvM4XLZqdOnmZe3N4uMimIX3N2Zjo4O69uvn9BjJi4xpO249BiWtlxxaYeiGr+U1FQ2Y8YMdt/Pj0W/fs28vL2ZjY0Nq1OnDktOSRF63CiG4h+/shxLxOFYLMptMPXbN+bs7Mz8Hjxgr9+8YY+CgtioUaOYrKwse/zkidDjJg4xFJd2SPGjGAo7Ufz+uzEUl/6MKMdQXNqhqMaP2qBg2mAOl8uSkpOZvLw827Fzp0DrnZScnHutOiWlzNe3SfnljQkkn73EuFc9BZqSz1766/4PKzz4xBhjCxYsYLVr12aHDh1iUVFRLCQkhG3fvp0dOnSI+ZRh8OnUqVNMVlaW7d+/n718+ZItXryYKSoqVmrwKTs7mzVu3JjZ2dmx8PBwdv/+fWZlZcUAsIsXL5a5boIefOJm57AlixczDQ0NJisry9q2bcuehD/my2Nra8schzvyTTt7+gxr3Lgxk5aWZgYGBuz82XNFyt6xfTvT0dFhMjIyzMzMjN3x8S33sn+kf2eTJ01itWrVYnJycqxH9x7s/dt3laqzIHew2wvV0cfXlzdvuKMjs7W15cvv7ePDTE1NmYyMDKtfv36xO/zTZ/hje/bcOb75Xt7eDECRNNzRkeVwuSz69eti5wNgXt7eAq2/uMawpPjsP3CAl2f/gQPF5lm8eLHQYybs+JXWBnO4XLZ582amra3NpKWlWb169diCBQtEbtBElGNI23HpMSxtueLUDkUxfmnp6axzly5MVVWVF7/hjo7s7bt3Qo8XxfC/Eb+yHEvE5Vgsqm0w/ft31qdvX6alpcVkZGSYpqYm69mrFwsIDBR6vMQlhuLUDil+FENhJ4rffzOG4tSfEdUYilM7FMX4URsUTBvM4XLZrt27mZycHPualCTQOtPg05/BG3w6fZFxPW4LNCWfvvjX/R9KMPbrC2sVwBjDtm3bsHPnTrx+/Ro1atSAmZkZ5s+fDy6Xi/bt2yMpKQk1atQAAISFhcHU1BRv3rxB/V/fgVi1ahU2bdqEnz9/4p9//oG6ujpu3ryJsLAwAMCIESOQnJyMixcvAgDatWsHExMTbN68mbceffr0QY0aNXDo0CEAwIsXLzBmzBg8evQIDRo0wLp169CzZ0/cuHEDdnZ2ZapbamoqlJWVkZKULHLf/hAXXPH75iMhhBBCCCGEEEIIIYSIlNTUVNSsUQMpKSl0rboK5Y0JJJ++CCV5BcGW/T0dNRz6/FX/h5UafBIXfn5+aN26NaKioqCnp1em39DgU+XR4BMhhBBCCCGEEEIIIYRUDg0+/Rl5YwJJJy9UyeBTzUH9/qr/Qylhr0BVcHd3R/Xq1dGwYUNERUVh6tSpaNWqVZkHngghhBBCCCGEEEIIIYQQQkjF/CcHn759+4Y5c+bgw4cPUFFRQadOnbBhwwZhrxYhhBBCCCGEEEIIIYQQQkRZDjc3CbrMv8x/cvBp+PDhGD58uLBXgxBCCCGEEEIIIYQQQggh4oTLAK6AB4u4//mvHxUhKewVIIQQQgghhBBCCCGEEEIIIf8d/8knnwghhBBCCCGEEEIIIYQQQsqLcblgAn7ySdDliQN68okQQgghhBBCCCGEEEIIIYQIDD35RAghhBBCCCGEEEIIIYQQAuR+70ng33yiJ58IIYQQQgghhBBCCCGEEEIIqTB68okQQgghhBBCCCGEEEIIIQQAuCw3CbrMvwwNPpWCK5GbCCGEEEIIIYQQQgghhBBCSOlo8IkQQgghhBBCCCGEEEIIIQQA43LBcgT7jSb2F37ziQafCCGEEEIIIYQQQgghhBBCAIDLzU2CLvMvIynsFSCEEEIIIYQQQgghhBBCCCH/HfTkEyGEEEIIIYQQQgghhBBCCEBPPgkIPflECCGEEEIIIYQQQgghhBBCBIaefCKEEEIIIYQQQgghhBBCCAHAuFwwAT+pJOjyxAE9+UQIIYQQQgghhBBCCCGEEEIEhp58IoQQQgghhBBCCCGEEEIIAQAuy02CLvMvQ08+/SG7du6EXoMGkJeTQwsLC9y7d++3+e/cuYMWFhaQl5ODvp4edu/eXSTP+fPn0dTICHLVqqGpkRHc3d3LvdwLFy7A3t4eaqqq4EhKIiwsrFL1rCrCiN/du3fRq1cvaNepA46kJC5evFikDMYYlrq4QLtOHSjIy6ND+/aIiIioVF2rCsWwcoQRv127dsHE2Bg1lJVRQ1kZrVq2xPXr1/nypKWlYcrkyahXty4U5OVhZGiIXbt2Vb7CVYDaYOWJ6rFEXNohxa/yhBHD1a6usLK0hLKSEjTU1dG3b1+8fPmSNz8rKwvOc+fCuHlzKFavDu06deDo6IiYmBjBVFqARLUNjhw5EhxJSb7U0samcpWtIqIaQwB4/vw5evfujZo1akBZSQktbWzw/v37ile2iohqDOPi4jBy5Eho16mD6goK6Nq1KyIjIytX2Sogqv0ZcTmvA0SzX03HEupT/86f6M8AtB3TNa6SCSJ+S11civT3tDQ1S1zmhPHjwZGUxJbNmytUx6pG2zEhYoKJEB8fHwaAJSUlCXtVWEpKSu66JCezHC63UunEyZNMWlqa7XFzY08jIpiTkxNTUFBgb96+LTZ/VHQ0k5eXZ05OTuxpRATb4+bGpKWl2ZmzZ3l57vv5MQ6Hw1auXMkinj1jK1euZFJSUuyBv3+5lnvo8GHm4uLC9ri5MQAsOCSk0vUVdBJW/K5cvcrmz5/Pzp47xwCw8xcuFFmWq6srU1RUZGfPnWPhjx+zAQ4OTFNTkyWnpAg9bhRD8Y/fxUuXmMeVK+z5ixfs+YsXbN68eUxaWpo9fvKEl2f06NFMT0+PeXl7s+jXr9mu3bsZh8NhF9zdhR43UYjhf6UNCjOGZVmuOLRDip/4xrCLnR3bf+AAe/zkCQsJDWXdundn9erVY6nfvrEcLpd9TUpiHTt1YidPnWLPnj9nfg8eMCsrK2Zubi70mIlC/Mqy3OGOjszO3p59ionhpYTERKHHTJxi+CoyktWqVYvNmjWLBQUHs8ioKHbZw4N9jo0VetzEIYbZOTnM2tqatWnThgUEBrJnz5+zsWPH8m3ropBEuT8jDud1woxhaf1qOpZQn1rY/ZkcLm3HdI2rauO3ePFiZmRkxNffi42LK3aZ5y9cYMbGxkxLS4tt3LhR6DETlRgKeztOSk5mAFhKSoqwL5v/p+WNCSRu2ssydx8XaErctPev+z8U6uCTra0tmzp1Ku/vjIwM9vnzZ8blcoW3Ur8IcvDJ0tKSjR8/nm+agYEBmzt3brH5Z8+ezQwMDPimjRs3jllbW/P+7j9gALOzt+fL08XOjjkMHFih5Ua/fi2yB2Zhxa9gKq6DnZ2TwzQ0NJirqytv2vcfP5iysjLbuWuX0ONGMfxvxS8v1axZk7nt3cv728jIiC1dupQvj5mZGVuwYIHQ4yZqMRTnNijMGJZlueLQDil+4hvDwik2Lo4BYD6+viXmCQgMZABKPAH9m+JXluUOd3RkvXr3FnqMxDmGAxwc2JChQ4UeI3GN4fMXLxgAvhtsMrOyWK1atdgeNzehx03Y8SuYSrrwn5dE+bxOVGKYlwr3qwsnOpZQn7oq2+Dv+jO0HRcfQ7rGVbn4LV68mBkbG5e6fu8/fGB16tRhj588YTo6OiI5+PS3bsc0+PRn5I0JJGxwYxk7jwo0JWxw++v+D0XqtXsyMjLQ0NCAhISEsFdFYDIzMxEcHIzOXbrwTe/cuTP8/f2L/U1AQAA6d+7MN62LnR2CgoKQlZWVm8ffH10K5bHr0gX+Dx5UeLmiSFjxK4s3b94gNjaWb91kZWXR1tZWpGJMMawcUYlfTk4OTp06hfT0dNgUeBVSq1at4OHhgU+fPoExBh8fH7x69Qpd7OzKXdeqIioxLI44tEFA9I8lot4OKX6VJ0rbcUpKCgCgVq1av80jISGBGjVqlJjnTxL1NggAd3x9oaGuDoPGjTFu7FjEx8eXv6JVSJRjyOVyce3qVTRq2BD29vbQUFeHjbV1sa+lEiZRjmFGRgYAoFq1arz5HA4HMjIy8PPzK29Vq4Qo7QfFlajEsKR+dWF0LKE+NSDc/owoEuVjiTgQdhuMjIyEdp060GvQAIMGDcLr16/55nO5XDgOH45Zs2bByMioQnWsasKOYUHiuh0T8icJbfBpxIgRuHPnDrZs2QIJCQlISEjg0KFDkJCQQHJyMgDg0KFDqFGjBq5cuYLGjRtDXl4e//77L9LT03H48GHUr18fNWvWxJQpU5CTk8MrOzMzE3PmzEGdOnWgoKAAKysr+Pr6CqWeiYmJyMnJgbq6Ot90dXV1xMbGFvub2NjYYvNnZ2cjMTGRl0etUB61AmVWZLmiSFjxK4u8vEWWpaYmUjGmGFaOsOP35MkTKCkqQq5aNfxv4kScv3ABhoaGvPlbtm5FE0ND1KtbF9VkZdGta1ds37EDrVu3rnCdBU3YMfwdcWiDgOgfS0S9HVL8Kk9UtmPGGGbOnInWrVujadOmxeb5+fMn5s+bh0GDB0NJSalM9atqot4G7e3tcfTYMXh6eWHd+vUICgpCp44deQMCokCUYxgfH4+0tDSsWbMG9nZ2uHHzJvr06YN///kHd+7cqXilBUyUY2hgYAAdHR3Mnz8fSUlJyMzMxJrVqxEbG4vPnz9XvNICJCr7QXEm7BiW1q8uiI4l1KfOI6z+jKgS5WOJOBBmG7S0ssKhw4dx/cYN7HFzQ1xsLFq3aoUvX77w8qxdswYcKSlMcXKqVD2rEm3H5I/hcqsm/WWkhLXgLVu24NWrV2jatCmWLVsGAMV+jPL79+/YunUrTp06hW/fvqFfv37o168fatSogWvXruH169f4559/0Lp1azg4OADI/Wjy27dvcerUKWhpacHd3R329vZ48uQJGjZsWOz6ZGRk8J1gp6amCrS+hZ/mYoz99gmv4vIXnl6WMsu7XFElrPhVxboJC8WwcoQVv8aNGyMkNBTJycm4cP48Ro4YAR9fX96J8ratWxEYEICLly5BR0cH9+7exeRJk6CpqYlOnTqVv6JViNpg5YnqsURc2iHFr/KEvR1PmTwZTx4/xt0SPiiclZWFQYMGgcvlYseOHSVXREhEtQ3m9aEBoGnTprCwsIBu/fq4evUq+vXr97sq/XGiGEPur5PIXr17Y9r06QAAExMTPPD3x549e2Bra1tqvf4kUYyhtLQ0zp47h7FjxkCldm1wOBx07NQJ9l27lrFWf46w94P/BaLar85DxxLqU5clf+HpguzPiANRPJaIE2HEr2uBY2qzZs1gY2ODhvr6OHL4MKbPmIHg4GBs3boVQcHBYhFT2o4JEQ9CG3xSVlaGjIwM5OXloaGhAQB48eJFkXxZWVnYtWsX9PT0AAD//vsvjh49iri4OFSvXh2GhoZo3749fHx84ODggOjoaJw8eRIfP36ElpYWAGDWrFm4ceMGDh48iFWrVhW7Pq6urli6dKnA66miogIOh1NkpDw+Pr7IqHseDQ2NYvNLSUmhdu3avDxxhfIkFCizIssVRcKKX1nktdvY2FhoamrmLyshQaRiTDGsHGHHT0ZGBvr6+gAACwsLBAUFYeuWLdi9Zw9+/PiBBQsW4PyFC+jevTsAoHnz5ggLC8OGDRtE5qK1sGP4O+LQBgHRPpaIQzuk+FWeKGzHTlOmwMPDA7537kBbW7vI/KysLDg4OODtmzfw9PISmTvVAdFug8XR1NSEjo4OoiIjy1bBP0CUY6iiogIpKSkYNmnCl6eJgYHIvDIOEO0YAoC5uTlCQkORkpKCzMxMqKqqwsbaGubm5hWrsICJwn5Q3Ak7hr/rV+ehY0ku6lPn+9P9GVEn6scSUScKbTCPgoICmjZrhshf/b379+4hPj4e9XV0eHlycnIwa9YsbNmyBa/fvCl7RauQKMRQ3LdjUkZV8aTSX/jkk0h986k48vLyvIEnIPexyPr166N69ep80/LeSx8SEgLGGBo1aoTq1avz0p07dxAdHV3icubNm4eUlBRe+vDhg0DWX0ZGBubm5vC8fZtvuqenZ4nvl7a2toanpyfftNu3bsHCwgLS0tK5eWxscLtQnlu3b8OmZcsKL1cUCSt+ZaGrqwsNDQ2+dcvMzMTdO3dEKsYUw8oRtfgxxpCRmQkg9+Q4KysLkpL8u3IOh8O7C1sUiFoMCxKHNgiI9rFEHNohxa/yhLkdM8YwZfJkuLu7w9PLC7q6ukWWlXexMCoyErdu3+adRIoKUW6Dxfny5Qs+fPgAjQIXEIVNlGMoIyODFi1a4OWrV3x5XkVGol6BCzjCJsoxLEhZWRmqqqqIjIxEUFAQevXuXb6KVhFR7s+IC1GLYcF+NUDHkoKoT53vT/ZnxIG4HEtElShtxxkZGXjx/DlvwHjosGEICw9HSGgoL2lpaWHWrFm4fuNGuetaVWg7JkTMMCGytbVlU6dO5f3t4+PDALCkpCTGGGMHDx5kysrKfL9ZsmQJMzY25pvm6OjIevfuzRhj7NSpU4zD4bAXL16wyMhIvvT58+cyr1tKSkruuiQnsxwut1LpxMmTTFpamu3dt489jYhgU6dOZQoKCuz1mzcsh8tlc+fOZUOHDePlj4qOZvLy8mzatGnsaUQE27tvH5OWlmZnzp7l5bl3/z7jcDjM1dWVRTx7xlxdXZmUlBR74O9f5uXmcLksITGRBYeEMI8rVxgAduLkSRYcEsI+xcRUut6CSsKKX0pqKgsOCWHBISEMANuwYQMLDglhb96+5eVxdXVlysrK7Nz58yz88WM2cNAgpqmpyZJTUoQeN4qh+MfP2dmZ+d65w6Jfv2Zh4eFs3rx5TFJSkt24eZOXx9bWlhkZGTEvb28WFR3N9h84wKpVq8a279gh9LiJQgz/K21QmDEsy7FEHNohxU98YzhhwgSmrKzMvH182KeYGF5KS09nOVwuy8jMZD179WLa2tosJDSUL8+Pnz+FHjdhx6+05aakprIZM2aw+35+LPr1a+bl7c1sbGxYnTp1aD9YxuXmcLns3PnzTFpamu3es4e9fPWKbd26lXE4HHbn7l2hx01cYnjq9Gnm5e3NIqOi2AV3d6ajo8P69usn9JiJQvzK0p8Rh/M6YcawtH41HUuoTy3s/kwOl7ZjusZVtfGbMWMG8/bxYVHR0eyBvz/r3qMHU1RU5Itf4aSjo8M2btwo9JiJSgyFvR0nJSczACwlJaUCV+FJWeWNCSSs3s4yNu8XaEpYvf2v+z8U6uBT586d2eTJk3l/+whg8Only5cMALt7926l1k2Qg085XC7bvn0709HRYTIyMszMzIz5+Pry5g13dGS2trZ8+b19fJipqSmTkZFh9evXZzt27ixS5ukzZ1jjxo2ZtLQ0MzAwYGfPnSvXcnO4XLb/wAEGoEhavHix0A8mwo6fl7d3sbEZ7ujIy5Odk8MWL17MNDQ0mKysLGvbti0Lf/xY6PGiGP434jdy5EjeMlVVVVnHjh35Bp5yuFz2KSaGOY4YwbS0tFi1atVY48aN2fr161l2To7QYyYKMfwvtUFhxbC05YpTO6T4iWcMi9uGAbD9Bw6wHC6XRb9+XWIeL29vocdM2PErbblp6emsc5cuTFVVlUlLS7N69eqx4Y6O7O27d0KPl7jEMC/t3beP6evrs2rVqjFjY2N2wd1d6PESpxhu3ryZaWtr89rhggULROqivzDjV5b+jLic1wkrhqX1q+lYQn3qqo5haf2ZHC5tx3SNq2rjN8DBgWlqajJpaWmmpaXF+vbrx548ffrb9RTVwSdhxVDY2zENPv0ZNPgkWBKM/frCmhCMGzcOYWFhOHPmDKpXr47Hjx+jY8eOSEpKQo0aNXDo0CFMmzYNycnJvN+4uLjg4sWLCAsL400bMWIEkpOTcfHiRQDA0KFD4efnhw0bNsDU1BSJiYnw9vZGs2bN0K1btzKtW2pqKpSVlZGUnCxS73kmhBBCCCGEEEIIIYQQ8vdITU1FzRo1kJKSQteqq1DemED8qm1QqiYn2LJ//oDa/Cl/1f+hUL/5NGvWLHA4HBgaGkJVVRXv378XSLkHDx7E8OHDMXPmTDRu3Bi9evVCYGAg6tatK5DyCSGEEEIIIYQQQgghhBDyH5TDrZr0lxHqk0+ijJ58IoQQQgghhBBCCCGEECJs9OTTn8F78mn5lqp58mnR1L/q/1BK2CtACCGEEEIIIYQQQgghhBAiErjc3CToMv8yQn3tHiGEEEIIIYQQQgghhBBCCPlvocEnQgghhBBCCCGEEEIIIYQQAIzLrZL0J2RkZMDExAQSEhIICwv7I8ssCQ0+EUIIIYQQQgghhBBCCCGEiLk5c+ZAS0tL2KsBgAafCCGEEEIIIYQQQgghhBBCcuV980nQqYpdv34dt27dwvr166t8WWUhJewVIIQQQgghhBBCCCGEEEIIIRUTFxeHsWPH4uLFi5CXlxf26gCgwSdCCCGEEEIIIYQQQgghhJBcXJabBF0mgNTUVL7JsrKykJWVrVTRjDGMGDECEyZMgIWFBd6+fVup8gSFXrtHCCGEEEIIIYQQQgghhBACgOUwsByugFPu4FPdunWhrKzMS66uriWuh4uLCyQkJH6bgoKCsG3bNqSmpmLevHl/KkRlQk8+EUIIIYQQQgghhBBCCCGEVLEPHz5ASUmJ9/fvnnqaPHkyBg4c+Nvy6tevjxUrViAgIKBIWRYWFhgyZAgOHz5cuZWuIBp8IoQQUiJJAT9h/DfiSgh7DQghlUX7wsqh/SAhhBBCCCFErDAuwOUKvkwASkpKfINPv6OiogIVFZVS823duhUrVqzg/R0TEwM7OzucPn0aVlZWFVtfAaDBJ0IIIYQQQgghhBBCCCGEEDFUr149vr+rV68OANDT04O2trYwVgkADT4RQgghhBBCCCGEEEIIIYTk4lbBk0+CLk8M0OATIYQQQgghhBBCCCGEEELIf0D9+vXBmPDfH0+DT4QQQgghhBBCCCGEEEIIIQAYlwsm4CeVBF2eOJAU9goQQgghhBBCCCGEEEIIIYSQ/w568okQQgghhBBCCCGEEEIIIQSgbz4JCD35RAghhBBCCCGEEEIIIYQQQgSGnnwihBBCCCGEEEIIIYQQQggBwHIYWA4TeJl/G3ry6Q/ZtXMn9Bo0gLycHFpYWODevXu/zX/nzh20sLCAvJwc9PX0sHv37iJ5zp8/j6ZGRpCrVg1NjYzg7u5e7uWOHDkSHElJvtTSxqZyla0Coho/AHj+/Dl69+6NmjVqQFlJCS1tbPD+/fuKV7aKCCOGS11cirQvLU1Nvjx/axuMiIjAv//+iwa6uuBISmLL5s0VWm5cXBxGjhwJ7Tp1UF1BAV27dkVkZGSl6lpVGGNwWeoCLe06kFOQR7sO7REREVHq786fPw/DpkaQlasGw6bFb6s7d+2Erl4DVJOXg3mLonEqbdlv376FBEey2HT27NnKV15ARHlfmGfC+PG/bdPCJIz45W3jhdPkSZN4eS5cuAB7e3uoqaqCIymJsLAwgdS3Kggjht++fcP0adOgW78+FOTl0bpVKzx69IgvT3Ex5khKYv26dZWvtIAJc1944cIF2NnbQ0VNFRKc4tva+AnjoddQH3IK8lBVV0PvPn3w4sWLCtdX0IS1H8yz2tUVHElJTJ82rcg86hNWfDvOysqC89y5MG7eHIrVq0O7Th04OjoiJiZGMJUWIFE9lgB/bxssS796165dMDE2Rg1lZdRQVkarli1x/fp1vjziciwRRhvMzs7GooULodegARTk5aGvp4fly5aBW+D1QWlpaZgyeTLq1a0LBXl5GBkaYteuXYKptIAJ69zu06dPGDZsGFRVVFBdQQFmpqYIDg7my/O3bsdA6e1wtasrrCwtoaykBA11dfTt2xcvX77ky8MYw1IXF2jXqQMFeXl0aF+2ftafJqrXFwoS5fM6QPAx3Lt3L2zbtkXtWrVQu1YtdOncGQ8fPuTLU9rxWJz6M6R0jMutkvTXYWLk4MGDTFlZudR8AJi7u3ullpWSksIAsKTkZJbD5VYqnTh5kklLS7M9bm7saUQEc3JyYgoKCuzN27fF5o+Kjmby8vLMycmJPY2IYHvc3Ji0tDQ7c/YsL899Pz/G4XDYypUrWcSzZ2zlypVMSkqKPfD3L9dyhzs6Mjt7e/YpJoaXEhITK11nQSZRjt+ryEhWq1YtNmvWLBYUHMwio6LYZQ8P9jk2VuhxE4UYLl68mBkZGfG1r9i4OL5l/a1tMCAwkM2cOZMdP3GCaWhosI0bN5Z7udk5Ocza2pq1adOGBQQGsmfPn7OxY8eyevXqsdRv3wRSd5YjuLTa1ZUpKiqy82fPsSfhj5nDAAemqanJUpNTSvzNg/u57WzVypXsecQztupXOwt44M/Lc+pEbpz27nFjz55GsKm/4vTuzdsyLzs7M4t9/hTDl5a6uDAFBQX2LSW1UvUW5XYoqH1hXjp/4QIzNjZmWlpaxbbp/9p2XJb4xcbF8e3fbt66xQAwL29vXp5Dhw8zFxcXtsfNjQFgwSEhQo+XKMWw/4ABzNDQkPn4+rKXr16xxYsXMyUlJfb+wwdenoIx/hQTw/bt388kJCRYZFSUQOrO/iP7wiOHDrOlLi5s757cthYaHFJkWXt27WZ3fHzZm+jXLPhREOvZoyerW7cuy87M+mv3g3kpIDCQ1a9fnzVv3pw5OTnxzaM+YeW2469JSaxjp07s5KlT7Nnz58zvwQNmZWXFzM3NhR4zUYhfWY4lf3MbLEu/+uKlS8zjyhX2/MUL9vzFCzZv3jwmLS3NHj95wstT1ccSUY1fWdrg8uXLWe3atdllDw8W/fo1O33mDKtevTrbtGkTL8/o0aOZnp4e8/L2ZtGvX7Ndu3czDofDLri7Cz1uotAGE798YTo6OsxxxAjmHxDAol+/Zrdu32avIiN5ef7m7bgs7bCLnR3bf+AAe/zkCQsJDWXduncvcu7r+qufdfbcORb++DEb4JDbz0pOSRF63ITdBv8r53VVFcNBgwez7du3s+CQEBbx7BkbMWIEU1ZW5jvnKO14XNX9maTkZAaApaSkVOqaN/m9vDGBT5MXs28zVwk0fZq8+K/7PxSrwafv37+zuLg43t9LlixhxsbGRfKJ2uCTpaUlGz9+PN80AwMDNnfu3GLzz549mxkYGPBNGzduHLO2tub93X/AAGZnb8+Xp4udHXMYOLBcyx3u6Mh69e4t9AOHuMZvgIMDGzJ0qNBjJKoxXLx4MTM2Nv7tuv2tbbBg0tHRKbZDV9pyn794wQDwnTRnZmWxWrVqsT1ubgKpOxPQxVZudg7T0NBgq11dedN+fv/BlJWV2e6du0r83YD+A5i9nT3fNLsudmygw0De35aWlmzC+PF8eQwMDJjz3LmVWraJiQkbNXJkpesuyu1QUPvCHC6Xvf/wgdWpU4c9fvKkxDb9X9uOyxK/wsnJyYnp6emx7JycIvOiX78W6cEnYcQwLT2dcTgcdtnDgy+PsbExmz9/fonr2qt3b9ahQweB1Z39B/aFBdOb6NclDj4VTuGhYQwAi3oV+dfuB3O4XJaSmsoaNmzIbt66xWxtbYsMPlGfUPDbcUBgIANQ4oWkvyV+xaXijiV/cxssmMrTB6lZsyZz27u3xPmCPpaIavzK0ga7de/ORo4cyZenb79+fG3OyMiILV26lC+PmZkZW7BggdDjJgptcM6cOax169a/Xbe/eTuuyL4wNi6OAWA+vr4sh5t7c6aGhgZzdXXl5fn+I7eftXPXLqHHTdht8L9yXvcnYpjDzb22oqioyA4eOlRint+d2+UlQfZnaPDpz8gbE/j4v0UsdfpKgaaP/1v01/0fitVr9+Tk5KCmpibs1SiXzMxMBAcHo3OXLnzTO3fuDH9//2J/ExAQgM6dO/NN62Jnh6CgIGRlZeXm8fdHl0J57Lp0gf+DB+Ve7h1fX2ioq8OgcWOMGzsW8fHx5a9oFRHl+HG5XFy7ehWNGjaEvb09NNTVYWNtjYsXL1a4vlVBWDHMExkZCe06daDXoAEGDRqE169fF1ne39gGBbHcjIwMAEC1atV48zkcDmRkZODn51em5fwpb968QWxsLLp0zq+PrKwsbNva4kEJcQQA/wB/dOlSqJ3ZdcEDf/5ttWC5ANClc2deuRVZdnBwMMLCwjB61OjyVbSKiPK+EMjdHzoOH45Zs2bByMioYpWsQsLeDxZcj+PHj2PkyJGQkJCoaHWEQlgxzM7ORk5ODt9+DsjtE5a0n4uLi8O1q1cxctSoslfwDxHmvrAi0tPTcfDQQejq6qJu3boVLkcQhL0dT548Gd26dUOnTp2KLIf6hILfjgEgJSUFEhISqFGjRpnqV9WE3QYLrkfhY8nf3gbLKycnB6dOnUJ6ejpsSnjdtygeS4TZBlu3agVvb2+8evUKABAeHg6/+/fRtWtXXp5WrVrBw8MDnz59AmMMPj4+ePXqFbrY2VW80gImzDbo4eEBc3NzDBgwABrq6jA3M8PevXt58//27bi8+0Ig9zgBALVq1QKQ388quG6ysrJoa2tb4rr9aaJ8fQEQ/fM64M/F8Pv378jKyuK1r+LWoyzndqLWnyHkTxP64JOHhwdq1KjBe1dwWFgYJCQkMHv2bF6e8ePHY9CgQTh06BBvYz106BCWLl2K8PBwSEhIQEJCAocOHeL9JjExEX379oW8vDwaNmyIy5cv/8lq8a1HTk4O1NXV+aarq6sjNja22N/ExsYWmz87OxuJiYm8PGqF8qgVKLOsy7W3t8fRY8fg6eWFdevXIygoCJ06duRd1BY2UY5ffHw80tLSsGbNGtjb2eHGzZvo06cP/v3nH9y5c6filRYwYcUQACytrHDo8GFcv3EDe9zcEBcbi9atWuHLly+8PH9rGxTEcg0MDKCjo4P58+cjKSkJmZmZWLN6NWJjY/H58+eyVvGPyFvnovVRKzGOeb9TVyv0G7XybasVWfb+A/vRpEkTtGzZsrSq/RGivC8EgLVr1oAjJYUpTk4Vq2AVE+Z+sKCLFy8iOTkZjiNGVLAmwiOsGCoqKsLGxgYrV6xATEwMcnJycOzYMQQGBpa4nzty+DAUFRXRr1+/CtW1KglzX1geO3ftRHUlRVRXUsSNmzdx++YtyMjIlLscQRLmdnzq1CmEhoRglatrscuhPqHgt+OfP39i/rx5GDR4MJSUlCpUX0ET5WPJ394Gy+rJkydQUlSEXLVq+N/EiTh/4QIMDQ2LzSuKxxJhtsE5c+di4MCBMGzSBLIyMjA3M8PUqVMxaNAgXp4tW7eiiaEh6tWti2qysujWtSu279iB1q1bV6regiTMNvj69Wvs3r0bDfX1cf3GDYwbPx7Tpk7FkSNHANB2XN59IWMMM2fOROvWrdG0aVNeGXll8y1L7ff9rD9JlK8vAKJ/Xgf8uRjOc3ZGnTp1ir3xCCjbuZ0o9mdI2TEuq5L0t5ES9gq0bdsW3759Q2hoKMzNzXHnzh2oqKjwHVx9fX0xffp0vt85ODjg6dOnuHHjBjw9PQEAysrKvPlLly7F2rVrsW7dOmzbtg1DhgzBu3fvShyxzsjI4LvYnZqaKshqFhkFZ4z9dmS8uPyFp5elzNLyODg48P7dtGlTWFhYQLd+fVy9elWkOtqiGL+8AdNevXtj2q/2aWJiggf+/tizZw9sbW1LrdefJIwYFrwTrlmzZrCxsUFDfX0cOXwY02fMAPB3t8HKLldaWhpnz53D2DFjoFK7NjgcDjp26gT7AnEXluPHj2P8xAm8v696XAFQ/jiW9TeCygMAP378wImTJ7Fo4cLfrpcwiOK+MDg4GFu3bkVQcLDIP80jrPjlOXDgAOy7doWWlla51luUCCOGh48cwZjRo1FXWxscDgdmZmYYNHgwQkNCil3mwYMHMXjw4CJPWQiDKO4Ly2LI4CHo3KkzPn/+jPUbNmDAQAf43bsvEjH9023ww4cPmD5tGm7cvFli/alPKNjtOCsrC4MGDQKXy8WOHTvKXrE/RBSPJdQGy6Zx48YICQ1FcnIyLpw/j5EjRsDH17fYAShROpYUJow2ePr0aRw/fhzHjh+HkZERwsLCMGP6dGhqacHR0REAsG3rVgQGBODipUvQ0dHBvbt3MXnSJGhqapZ48VZYhNEGuVwuLCwssHLVKgCAqakpnkVEYM/u3Rg+fDhtx+Usc8rkyXjy+DHu3rtX6XUTBlG8viBO53VA1cZw3dq1OHXqFLx9fEo8DpR2bifq/RlC/hShP/mkrKwMExMT+Pr6AsgfaAoPD8e3b98QGxuLV69eoV27dny/k5OTQ/Xq1SElJQUNDQ1oaGhATk6ON3/EiBEYNGgQ9PX1sWrVKqSnp+Phw4clroerqyuUlZV5SVCvFlFRUQGHwyky+h4fH19k1D2PhoZGsfmlpKRQu3ZtXp64QnkSCpRZkeUCgKamJnR0dBAVGVm2ClYxUY6fiooKpKSkYNikCV+eJgYG+PD+fTlrWnWEFcPiKCgooGmzZoj8Tfv6W9qgoJZrbm6OkNBQfE1KwqeYGFy/fh1fv3yBbv36ZVpOVenVqxfCQkJ5SUVFBQCKqU/Cb9uMhoYGYuMK/SahfNuqhoZGuZZ97tw5fP/+HcOHDS9LVf8IUd4X3r93D/Hx8aivowMZaWnISEvj3bt3mDVrFhro6la80gIkCvvBd+/ewcvTE6NHi8arHMtLmDHU09ODj68vUr99w7v37xEQGIisrCzUL6Z93bt3Dy9fvsToMWMqVE9BE6V9YXkoKyujYcOGaNu2Lc6dPYsXL17A3d293OUIkrDaYHBwMOLj49HCwoK3j7tz5w62bdsGGWlp5OTkUJ9QgNtxVlYWHBwc8PbNG9y8dUuk7hIW5WPJ394Gy0pGRgb6+vqwsLDAKldXGBsbY+uWLUXyidqxJI8w2+DcOXMw99fTT82aNcOwYcMwbdo0rFm9GkDuzVsLFizA+g0b0LNnTzRv3hyTJk/GgAEDsGHDhkrXXVCE2QY1NTXRpNA2atCkCd7/2kb/9u24PPtCpylT4OHhAS9vb2hra/MtByimn5Xw+37WnyTK1xfE4bwOqPoYbli/Hq6urvh/e/cdFcX19gH8S1lAEFCUTsAaEQsqqKAoVsTeEruiKWoSe0cTS14jGjuxFzQmKhZQY1eK2LABgmIBQaM/FVsoCsrC7vP+gUxYWHCRXXaJz+ece47O3L0z9+HOnTtzd2ZPnDyJxo0byy3vQ9d2mjyeYYqTkhRSqZITSdVdrXKn9sknAGjXrh3OnDkDIsK5c+fQu3dvNGzYEOfPn0d4eDgsLS3h6OhYqjILdhBGRkYwNjYu8XdkfH19kZ6eLqRHjx59dH0K0tPTg4uLC0JOn5ZZHhISUuz7pd3c3ISnufKdPnUKrq6uEIlEeXnc3XG6UJ5Tp0/D/f0roj5muwDw6tUrPHr0CFbW1opVUMU0OX56enpo3rw57r5/73W+hMRE2Ds4lLKmqqOuGMqTnZ2NO7dvw7qE9vWptEFlb9fU1BTm5uZITEzEtWvX0Kt3b4W2oyrGxsaoU6eOkJycnGBlZYXTIf/WRywWI+JsBFqV0Ce5u7nj9OlC7ezUabRylz1WC5YLAKdDQoRya9asWaptb90WgF49e8Hc3Lz0FVcRTe4Lhw0fjuuxsYiOiRGSjY0Npk2bhuMnTnx8pZVIE/rB7du2wcLCAt27dy9LVdRGE2JoZGQEa2trpKam4tTJk+jVq1eRPAEBAXBxcYGzs3Op6qcqmtQXlgURqf11uOpqgx07dkRsXJxMH+fq6oohQ4ciOiZG+K1FHhOW/TjOv1FzLzERp06fLvXEgqppQvyKO5d86m3wYxERssXiIss17VyST51tMCsrC1rasrePdHR0hKd1cnJykJOTA+0S8mgCdbbBVq1bC7+ZlS8xIQEO74/RT/04VqQdEhHGjxuHAwcOICQ0FDULTYjkX/cV3DexWIyzEREl3gcrT5p8f6EiXNcBqo3hsqVLsXDhQhw7fhyurq7F7kNJ13aaPp5hrNyRBvjrr7/I1NSUYmJiyNzcnKRSKU2ePJlmzpxJo0ePpgEDBhAR0bZt28jU1FT43Lx588jZ2blIeQDowIEDMstMTU1p27ZtCu9Teno6AaDUtDSSSKVlSrt27yaRSESbt2yhm/HxNHHiRDIyMqLk+/dJIpXSzJkzadjw4UL+e0lJZGhoSJMmTaKb8fG0ecsWEolEtHffPiHPufPnSUdHh/z8/Cj+1i3y8/MjXV1duhgZqfB20zMyaMqUKXT+wgVKSk6m0LAwcnd3J1tbW0pLTy9zvZWVNDV+EqmU9gcFkUgkog0bN9LdhATy9/cnHR0dijh7Vu1x04QYTpkyhcLCw+leUhJdjIyk7j16kLGxMbdBqZTevntHUdHRFBUdTdbW1jR16lSKio6muwkJpWqDgXv2UGhYGCXeu0fBBw6Qg4MD9e3XT2l1J4ny0mI/PzI1NaXg/UF0IzaOBg8aTNbW1pSRli7kGT5sOM2aOVP4/4Vzee1ssZ8f3Y6/RYvft7NLFyOFPIG78uK0dfMWunUznia9j9OD5Pul2jZJpJR4N4G0tLTo+NFjSqu3JrdDZfWFhZODgwOtWLFCZcdkRYqfRCqlnNxcsre3pxkzZsjdtxcvX1JUdDQdPnKEANCu3bspKjqaHj95ova4aUIMjx0/TkePHaN7SUl04uRJcnZ2phYtWtC77GyZ/UtNSyNDQ0Nau26d0utO/5G+8NWLlxQTFU1HD+e1tcBduykmKpqePn5CJJFSUuI9WvTLL3TtylX6+/4Dunj+AvXu1ZvMzMzo2dOUT7YfLJw8PT1pwoQJMst4TFi24zhbLKaevXqRnZ0dRcfE0OMnT4T09t07tcdN3fGTSD98LvmU26Ai4+pZs2bRmYgISkpOpuuxseTr60va2tp04uRJmf1T5blEU+OnSBsc4eNDtra29Nfhw5SUnEz7g4KoevXqNH36dCGPp6cnNWjQgELDwuheUhJtDQggAwMDWrN2rdrjpglt8NLly6Srq0sLFy6kuwkJ9Meff5KhoSHt+OMPIc+nfBwr0g7Hjh1LpqamFBYeLnOeeJOZKeTxez/O2h8URLFxcTRocN44i+8v/Heu61QVw8WLF5Oenh7t3bdPpn2lZ2TIbLuk87GqxzOpaWkEgNLT00t9750pLn9O4MG3vvTPDwuUmh586/vJ/Q01YvIpLS2NtLW1ycfHh7744gsiIjp48CC1bNmSPv/8c1q7di0RFZ18+uWXX6hhw4ZFytO0ySeJVEpr1qwhBwcH0tPTo2bNmlH4mTPCuhE+PuTp6SmTPyw8nJo2bUp6enpUo0YNuYPfPXv3Ur169UgkEpGjoyPt27+/VNt9k5lJnb28yNzcnEQiEdnb29MIHx968Pffaj+RVIT45afNW7ZQnTp1yMDAgJydnSn4wAG1x0tTYjhg4ECytrYmkUhENjY21LdfP7px8ya3QamUkpKTCUCRVLicD7XBVatWkZ2dnRC/OXPmKPUmDSnxhqs0V0Lz5s4lKysr0tfXp7Zt29KN2DiZPJ6enuQzwkdm2b49su0saN/+ImWvLRSniPAzpd42SaTkO2sW2dnZkSQnV+Mmn9R1HCvSDgsnTb1IUVf8jp84QQDo9p07cvdra0CA3P5g7ty5ao+ZJsRwd2Ag1apVi/T09MjKyoq+//57+ic1tUg56zdsoEqVKsldV9ZE/5G+cNtW+W1t3ty5RBIpPX70P+rq3ZUsLCxIJBKRnZ0dDRk8hO7cuv3J94MFk7zJJ4mUx4RlOY6LGxcBoNCwMLXHTN3xk0g/fC75lNugIuPqUaNGCds0Nzenjh07Fpl4kkhVey7R1Pgp0gbT0tNpwoQJZG9vTwYGBlSrVi2aPXu2zHXH4ydPyGfkSLKxsSEDAwOqV68eLVu2jHIlErXHTBPaoEQqpUN//UUNGzYkfX19cnR0pA0bNxbZt0/1OFakHRZ3ntgaECDkyZVIaG6hcVZsXJza46UpbfC/cl2nihg6ODgodE1W0vlY1eMZnnwqH/lzAve/nkWvvpun1HT/61mf3N9Qi+j9L6ypmYuLC2JjY7F69Wr88MMPSE1NhaWlJXJychAfHw8nJyds374dkyZNQlpaGgBg165dGD16NM6fPw87OzsYGxtDX18fWlpaOHDgAPr06SOUX6VKFaxatQojR45UaH8yMjJgamqK1LQ0fjcnY+yTpa0RZ4iKTar5v9XKGPsA7gvLhvtBxhhjjDHGyiYjIwNVq1RBeno636tWofw5gftfz4KJnr5yyxZno+bWxZ/U31AjfvMJANq3bw+JRIJ27doBAKpWrQonJyeYm5sX+VHGfP3794e3tzfat28Pc3Nz7N69uxz3mDHGGGOMMcYYY4wxxhhj/ylSAik5QfrpfatRY5580jT85BNjjPG3/ZWBv/HPWMXHfWHZcD/IGGOMMcZY2fCTT+VDePJp1EwYK/nJp9fibNTctuST+hvqqnsHGGOMMcYYY4wxxhhjjDHGNAFJpSCpVOllfmo05rV7jDHGGGOMMcYYY4wxxhhjrOLjJ58YY4wxxhhjjDHGGGOMMcaAf3+nScllfmr4ySfGGGOMMcYYY4wxxhhjjDGmNPzkE2OMMcYYY4wxxhhjjDHGGPg3n5SFJ58YY4wxxhhjjDHGGGOMMcYASKUEqZJfk6fs8ioCfu0eY4wxxhhjjDHGGGOMMcYYUxp+8okxxhhjjDHGGGOMMcYYYwwASQmk5CeVlF1eRcBPPjHGGGOMMcYYY4wxxhhjjDGl4SefGGOMFUuqpe49YIwx9eO+kKmbhD69b0kyxlhB/3v9Vt27UOE5mBiqexcqvMycXHXvQoWmo8WD6rJ4lytR9y58UoikIKlU6WV+avjJJ8YYY4wxxhhjjDHGGGOMMaY0/OQTY4wxxhhjjDHGGGOMMcYY+DeflIWffGKMMcYYY4wxxhhjjDHGGGNKw08+McYYY4wxxhhjjDHGGGOMASCpCn7zScnlVQQ8+cQYY4wxxhhjjDHGGGOMMQZ+7Z6y8Gv3GGOMMcYYY4wxxhhjjDHGmNLwk0+MMcYYY4wxxhhjjDHGGGMApFIppEp+TZ6yy6sI+MknxhhjjDHGGGOMMcYYY4wxpjQ8+VRO1q9bh9q1asGwUiU0d3XFuXPnSswfERGB5q6uMKxUCXVq18aGDRtk1m/fvh062tpF0rt374Q8ubm5+OnHH1G7Vi0YGRqiTu3a+L+ff5aZZZVXho62NpYtXarcAJSRsuMHAGlpaRj3ww+wtbGBYaVKaODkhGPHjgnrz549i169esHO1hY62to4ePBgkTLevHmD8ePGwf6zz2BkaIgGTk5Yv359meurCsqOYXBwMFo0bw6zqlVhXLkymjVtij/++EMmz4L584u0LRtra5k8FSWG6jiGa9WsKTfPuB9+EPIEBwfD29sbFubm0NHWxvXr15Vab2VSdgw3b94Mz7ZtUc3MDNXMzODVuTOuXLkik0eRNljQ2DFjoKOtjdWrVn10PVVJHccxADx+/BjDhw+HefXqqGxkhGZNmyIqKkpYz8dx8cexIucSALh9+zZ69+6NqlWqwNTEBK3c3fHw4cMy11nZ1BFDRbb7qbbB+Ph4fPHFF8L5Ql7ftdjPDy1btICpiQmsLC3Rt29f3L17VyYPEWHB/Pmws7WFkaEhOrRvj/j4+DLXVxVUMSbMFxgYCB1tbfTt21dm+evXrzF50iTUrFEDRoaG8GjdGlevXi3y+YpyHG9Yvx6f164NY0NDtGzeHOc/EMOzERFo2bw5jA0NUa9OHWySE0P/1avRoH59mBgZoZaDA6ZNmVLkumTuTz/h89q1YWJkhHp16mDh//1fkW9/3r59G31790b1qlVhZmoKj1atNC6Gyo5fpw4doKejUyT17tFDbnlLFi+Gno4Opk6eLLP85wUL0NDJCVWMjWFRrRq8vbxw5fLlslVWRUoTw6dPn2L40KFoUL8+9HV1i9QbyOsLB3zxBerWqgU9HR34r179UdslIvy8YAEc7OxgYmSETh06aGRfqI42uHH9ejRr0gTVqlRBtSpV0KZ1a5w4flymnGfPnuHrUaPgYGcH08qV0aNrVyQmJiqv4kr0x5ZNaNu4ARwtq6GXpweuXLxQYv6De/egW2s3OFmbo2W92pj+/Vik/vNKWJ9w+xa+Gz4EbRo5oVaVyghYt7bU283JycHieT/Bu1ULNLCxgJtjHUwd8y2ePX2qnEormaaOCSvKmGbzhg1o9PnnMDcxRlu3lrh4/nyxeSMvXEDndp5wsLaChakJXBo1xBo5/dyhA8Fo7twY1Y0ro7lzYxw+dFBm/fJfl8CzlTtsqpmhlp0tBn/RH4mFxoRv3rzB1IkT4VirJixMTeDauBG2bNyolDor26YN6+H0eV2YGVdG65YtcKGEGB46cAA9unrDwcYaVtXM0L6NB06fOiWT51Z8PIYMGID6devASE+ENf7yzyVPHj/GVz4j8JmVJaqbmsDN1QUx0f9eGz979gyjv/4KtR3sUd3UBL17dMc9De0LWcnyf/NJ2elTU6Emn9q1a4dJkyYVu15LS6vYmzrqtGfPHkyePBm+s2cjKjoaHh4e6N6tW7EXUvfv30eP7t3h4eGBqOhozPL1xaSJExEUFCSTz8TEBI+fPJFJBgYGwvpflyzBxo0b4f/bb4i/dQuLlyzBsmXLsOa334Q8hT+/ZetWaGlpoV///qoJxkdQRfzEYjG6eHnhwd9/Y+++fbh95w42btoEW1tbIU9mZiacGzeGf4F4FTZl8mScPHkSO/74A/G3bmHipEmYOGECDh06pLwAKIEqYmhmZgbf2bNx4eJFXI+NxciRI/H1V1/h5MmTMmU1aNBApo3FxsXJrK8IMVTXMXz5yhWZdSffD46++PJLIU9mZiZat2qFRX5+Kqi58qgihhERERg0aBBCw8Jw4eJFfPbZZ/Du0gWPHz+WKetDbTDfwYMHceXKFdjY2Civ4kqkruM4NTUVbTw8IBKJcPTYMdyMj8fSZctQpUoVIQ8fx8Ufx4qcS5KSktC2TRs41quHsPBwxFy/jjk//ihTjiZQVwwV2e6n2gazsrJQq2ZNLPLzg5WVldxyIs6exXfff4+LkZE4eeoUcnNz4d2lCzIzM4U8S3/9FStXroT/b7/h8pUrsLSyQhcvL7x+/Vq5QSgjVbVBAPj7778xY/p0tGnTpsi6b7/9FiEhIfh9xw7ExsWhc+fO8OrcWeZ8U1GO47179mDq5MmY5euLK1FR8PDwQM/u3UuMYa8ePeDh4YErUVGYOWsWJk+ahOACMdy1cyfm+Prix59+Qlx8PDZu3ox9e/fix9mzhTxLf/0VmzduxCp/f8TFx2PR4sVYsWwZ1q5ZI+RJSkpC+7ZtUc/REafDwnAtJgaz58zRqBiqIn579+/Hw8ePhRQTFwcdHR30/+KLIuVdu3oVWzdvRqPGjYusq1u3Llb7+yM6NhbhZ8/CwcEB3by98eLFC+UFQAlKG8Ps7GyYm5tjlq8vGjs7y83zNisLtWrVwsJFi4rtCxXZ7rKlS7F65Uqs8vfHxcuXYWlpiW5dumhUX6iuNmhrZ4dfFi1C5JUriLxyBe3at0f/vn2Fm/pEhC/69cP9+/cRdOAArkRFwd7BAV29vGTON5rgSPB+LPSdiR+mTceRsxfg6t4KX33ZD48fPZKb/2rkRUwb+y0GDB+Bk5FXsWb7H7gREwXf8f9+IfDt27ewr1ETM+YvgLml5Udt921WFuJjr2P89Jk4HHEe6//YhftJ9/Dt4AHKD0IZafKYsCKMaYL27cWsaVMxbdYsnL98Be6tPdC/V088KiZ+hkaGGP3ddzgRGoqrsXGY7uuLhfPnYduWLUKey5cuYeTQoRg0dCguXr2GQUOHwmfIEFwt8OXM82fPYfTY7xB67hwOHTuG3FwJ+vToLnOM+k6fhpBTp7B523ZcjY3DDxMmYvrkSTj611+qC8hH2L93L2ZMnYoZs2bh4pWraOXhgb49exQbw/Pnz6FDx04I/usvnL90GW092+HLvn1wPSZGyPP2bRZq1KqJnxf+AstiziWpqano2M4TIpEIBw4fRlRsHPx+XQpT0yoA8vrCQV/0x4P797E3KAgXr1yFvb09enT11ri+kLFyQxWIp6cnTZw4sdj1T58+pXfv3illW+np6QSAUtPSSCKVlim1aNGCxowZI7PM0dGRZs6cKTf/9OnTydHRUWbZ6NGjyc3NTfj/1oAAMjU1LXG73bp3p1GjRsks69uvHw0dNqzYz/Tq3Zs6dOhQ5jorM6kifmvXraNatWrRu+xshfYBAAUFBxdZ3qBBA1qwYIHMsmbNmtGcOXPUHjdVx1Beatq0qUzd586dS87OziV+piLEUF3HcOE0YcIEql27NuVKJEXWJSUnEwCKio5We7zKK4aFkzgnh4yNjWnb9u2laoMSqZQePnpEtra2FHfjBjk4ONCKFSvUHjN1xFAiLXocz5gxgzw8PEr8DB/Hiu1DceeSAQMHlnhu1pSkrhgqst1PtQ0WTIr2XSnPnhEACj9zhiRSKeVKJGRlZUV+fn5Cnqy3b8nU1JTWrV+v9riVRwzFOTnUunVr2rR5M43w8aFevXsL695kZpKOjg79dfiwzGecnZ1p9uzZwv9VfRyLJRKlpOYtWtDoMWNkltVzdKTpM2fKzT91+nSq5+gos+zb0aOppZub8P/vvv+e2nfoIJNn0uTJ1NrDQ/h/t27daOSoUTJ5+vTtS0OGDhX+/+WAATL/18SkivgVTstWrCBjY2NKzciQWf5PejrVqVuXjp88SW09PWn8hAkl7uvL1FQCQCdOnVJ73MoSw4JJkXo7ODjQshUrSr3d7NxcsrKyol/8/IT1r7OyyNTUlNauW6f2uGlCGyycqlatShs3bSKxREI3b98mABQTFyesfysWk5mZGW3YuFEpdU9Oe6OU5OziSkO++lpmWe3PP6exk6fKze/7f7+QfY2aMsvmLVlK1ra2cvPbfmZPPy5aUubtJqe9oQNhEQSAzt24rZS6a/L5WBljwvIY02Rki8ucXJo3p6+/HS2z7PN69WjK9OkKl9Gzd28aOGSI8P9+X3xBnby6yOTp2NmL+g8YUGwZyf97TADoeEiosKy+kxPNmTdPJl+Tpk1puq+vUuqeKc5RSnJt3py+GT1aZlm9eo40dfoMhcuoX9+Jfpw7T+46ewcHWrJsWZHlU6ZNp1atWxdb5vWb8QSArsZcF5ZlvH1HZmZmtHbDhjLX++nLVwSA0tPTlXLvm8mXPycQ2200Jfcep9QU2230J/c3rFBPPn2IlZUV9PX11b0bMsRiMaKiotDZy0tmeefOnREZGSn3M5cuXULnzp1llnl16YJr164hJydHWPbmzRvUrFED9p99hp49eyKmwIw9AHi0bo2wsDAkJCQAAGJjY3Hh/Hl07dpV7nafPXuGY0ePYtRXX5W6nqqiqvgdPnwYbu7uGPfDD7C2skLjRo3gt2gRJBJJqfavdevWOHz4MB4/fgwiQnh4OBISEuDVpUupylElVbbBfESE0NBQ3L17F23atpVZl5iYCDtbW9SuVQuDBw9GcnKyzHpNj6E6j+HC+7Fz506MGjUKWlpaZahR+SuPNgjkPQGQk5MDMzMzmeUfaoNSqRQ+I0Zg2rRpaNCgQWmrVy7UeRwfPnwYLi4uGDBgAKwsLeHSrBk2b94s81k+jhU7juWRSqU4dvQoPq9bF97e3rCytIS7m5vGPcmtrhgqut1PuQ2WVnp6OgAIfeX9+/eRkpIis2/6+vpo6+lZ7L6pgypj+H8//4zq5ub4+uuvi5SRm5sLiURS5OmbSpUq4cKFvNclVaTjODoqCp0KxaRz5864VEwML8uJYWcvL0QViGGr1q0RHRUlfLs6OTkZx48fR9du3YTPtPLwQHih65KLFy7A+/11iVQqxfFjx1D388/R3dsbtlZWaO3ujkMaFENVxa+wbQEBGDBwIIyMjGSWTxg3Dt26dUPHTp0U2tctmzfD1NS02KeF1OFjYlhe283vCwvm0dfXR5u2bTWmL1R3G8wnkUiwJzAQmZmZaOnuDiDvCTUAMn2ljo4O9PT0hL5SE4jFYty8HoM27TvKLG/TviOiL1+S+5lmLVoi5cljhJ86CSLCi+fPcPzQQbTzUnyM8THbBYDXGRnQ0tKCiampwttSNU0eE1aEMY1YLMb16Gh06Czbl3fo1BmXLxXfFgqKvR6Dy5cuwaPNv9dsVy5fRodC54eOnTvjSgll5o8Jq5pVFZa5t2qNY0eO4Mn7MfXZM2dwLzERnTp7FVdMuROLxYiJjkbHTrJtqkPnTrh8SbG/s1Qqxes3r2XqrohjR46gqYsLhg0aBAdbG7g3d8W2rf8+gVZcXyjS08NFDeoLGStPFW7ySSqVYsaMGTAzM4OVlRXmz58vrCv42j2xWIxx48bB2toaBgYGqFGjBvzU8Fqqly9fQiKRwLLQo9eWlpZISUmR+5mUlBS5+XNzc/Hy5UsAgKOjIwK2bcPBQ4ewc9cuGBgYoI2Hh8w7lWfMnIlBgwbBqX596OvpwaVZM0ycOBGDBw+Wu90dv/8OY2Nj9OvXryxVVipVxe9+cjKC9u+HRCLBkaNHMXvOHKxYsQKLfvmlVPu32t8f9Z2cYP/ZZzDQ10e3rl2xZu1aeHh4lKocVVJVDIG8wYqJsTEM9PXRs0cPrPb3lxlUtmjZEtt//x3HT5zAxk2b8CwlBR6tW+PVq3/fj63pMVTnMVzQwYMHkZaWBp+RI8teqXKmyjZYkO+sWbC1tUWnAoNuRdrgr0uWQEdXF+MnTPjYKqqcOo/j5ORkbNiwAXXr1MHxEycweswYTJo4ETt27BDy8HGs2HEsz/Pnz/HmzRssWbIE3l264MTJk+jTpw++6N8fERERpayp6qgrhopu91Ntg6VFRJg6dSo8PDzQsGFDYTv5Zctsy8Ki2H1TB1XF8MKFCwgICMCmTZvklmFsbAx3d3f8snAhnjx5AolEgj///BOXL1/G0/e/w1HRj2OLD8TQ4gMxHDhoEOb//DPatW0LQ319ONati3bt2mHGzJnCZ6bPmIEBgwahkZMTDPX10cLFBeMnTsSg99cl+TFcumQJvLy9cfTECfTu0wcDvvgCZzUkhqqKX0FXr1xB/M2b+KrQROiewEDExMRg4aJFJe7j0SNHUNXEBMaGhvBftQrHT55E9erVFaleufiYGJbXdp8V1xdaWgrr1E2dbRAAbty4gaomJqhcqRLGff899gUFwcnJCUDe+dzBwQE/zp6N1NRUiMVi/LpkCVJSUpCiQb9ZlPrqFSQSCapbWMgsr2ZhgRfPn8v9jEtLN6zYvBUTvvJBPfOqaPl5bZiYVsH8X5erdLvZ797h1/lz0evLATA2MVF4W6qmyWPCijCmefW+HhYWhY9jiw/2NY61aqK6cWV4urvj27Fj4VPgi+PPUlJgYSnbvkoqk4gwe8Z0uLduDacGDYXlv65cCcf69eFYqyaqVTZCv549sNzfH+6tW5e2qiojxLBQfS0tLPEs5ZlCZaxeuRJZmZno98WXH85cwP37ydiycSNq16mDQ0eO4pvRozFt8mTsfP+7yfUcHWHv4IB5P/4o9IXLfv0Vz1JSNKYNMsXxbz4ph666d6C0fv/9d0yZMgWXL19GZGQkRo4cidatWxf5FoW/vz/++usv7N27F/b29nj06BEeFfMOXyBvdjp/hhoAMjIylLrfhZ9UIKISn16Ql7/gcjc3N7i5uQnrW7duDVcXF6z57Tes9vcHkPc+3J07d+LPnTvRoEEDXL9+HVMmT4a1jQ18fHyKbHPbtm0YMmSIRr1XPZ+y4yeVSmFhYYGNmzZBR0cHLi4uePrkCZYtW4af5s5VeL9+8/fH5UuXcPDQITg4OODc2bN5T1NZW8vcANcEyo4hkHdDJjomBm/evEFYaCimTZ2KWrVqoV27dgAg85Rdo0aN4O7ujrp16mDH779j8pQpACpODNVxDBcUEBAA765dNfb3iBShijaYb+mvvyIwMBBh4eEyfdiH2mBUVBT8/f1xLSqqQjxRpo7jWCqVwtXVFb+8v+HVtGlT3IqPx8YNGzBixAgAfBzn+9BxLI9UKgUA9OrdG5Pe/4h6kyZNcDEyEhs3boSnp6dC5ZQXdcXwQ9v9VNtgaY0fNw434uJwVs6Pgpd239RFmTF8/fo1Rgwfjo2bNpV4g/73HTvwzddf4zM7O+jo6KBZs2YYPGQIYqKjAfBxHHHmDBYvWoTf1qxB85YtkXTvHqZOngwra2vM+fFHAHm/U7N7507s+PNPODVogNjr1zFtyhRYW1tjhI+PEMOevXph4vvf+G3SpAkiL17Epo0b0VaDYqjK43hbQAAaNGyI5i1aCMsePXqEqZMn4+iJEx+8TmvXvj2uRkfj1cuX2LplC4YMGoTzkZGwKHTDW93U1d8ost2K0BeWdxvMV69ePVyNjkZ6WhqCg4Px9ahRCAkPh5OTE0QiEfbs24fR334Ly+rVoaOjg44dO8Lb2/tjqqhyRepOhOJCmHjnNn6eOR3jZ8xCmw6d8OJZCvx+moMfJ0/EkjXrVLLdnJwcTPhqJEgqxc/LVpZqG+VFU8eEH7NvavER+3giNAyZmW9w9fIVzPtxDmrVro0vBw4qUKTiZU6dOBHxN2/iZFi4zPINa9bg6uXL2BMUjM8c7HHh3HlMnTABVlbWaN+xo9yy1OVj/857AwOx6P9+xp6g4FKfH6VSKZq5uGDBwoUAgCZNm+L2rVvYsmkjhg4fDpFIhF179uC70aNhZ2kBHR0dtO/YEV4a2heykqlisognnyqAxo0bY968eQDyflR1zZo1CA0NLTL59PDhQ9StWxceHh7Q0tKCg4NDieX6+flhwYIFSt/f6u8HXoVnuJ8/f17k2xj5rKys5ObX1dVFtWrV5H5GW1sbrq6uSLx3T1g2c8YMzHz/9BOQd+P14d9/Y8nixUUmn86dO4e7d+9id2BgqeuoSqqKn7W1NUQiEXR0dIQ8jvXrIyUlBWKxGHp6eh/ct7dv32LOnDkICg5G9+7dAeS1z+vXr2P58uUac7NLlW1QW1sbderUAZB3g+D27dtYvHixcNO6MCMjIzRs1Ej49lJFiKE6j+F8f//9N0JDQrBfzg+kVwSqjuHyZcvg5+eHU6dPo7GcH+AuqHAbPH/uHJ4/f44aBc4REokE06ZNw+rVq5F8/77C9VQldR7H1tbWqF+/vkw5jvXrIzg4GAAfxwWVdByXtG+6urpwKhTj+o6OGvWaGnXFUJHtchtUzITx43H48GGciYiAnZ2dzHaAvG8LW1tb/7utFy+K3Td1UEUM4+Pj8eDBA/Tu1UtYnz8JoicS4fadO6hduzZq166N8DNnkJmZiYyMDFhbW2PQoEGoUbOmsG8V+Th+8YEYFv7WdOF2OH/ePAwdNgxfffMNgLxrjszMTHw/dix8Z8+GtrY2fGfOxPSZMzGw4HXJw4f4dckSjPDxEWJY//1TFPkc69fXmNfUqCp++bKysrB3zx7MK3RNGh0VhefPn8OteXNhmUQiwbmzZ7Fu7Vq8eftWuKYxMjJCnTp1UKdOHbR0c4NTvXrYFhCAmbNmfXS9leljYlhe27Usri98/rzIk0Pqoq42mE9PT08YM7q4uiLq2jWs8ffHug0bAADNXFxwLToa6enpEIvFMDc3R2t3d7i4uHxUfVWharVq0NHRwYtnsk9HvHrxAtXN5d+EXr9iOVxaumH0hEkAgPoNG6KSoSEGdvXC1B/nwuJ921HWdnNycjB+5HA8+vsBdh4+qlFPPQGaPSasCGOaau/r8fxZ4eP4xQf7mvxxR4OGjfD8+TP4/d//CZNPllZWRZ76Ka7MaZMm4fjRIzgeEgrbAmPCt2/fYsHcn7Bz7z54v391bsNGjXEjLhb+K1dqzORTfgwL1/f5i+dFnoYqbP/evfh+zGj8uTsQHT6iPlbW1nAsNN6r5+iIgwcOCP9v2swFl65FyfSFnq1boZkG9YXsv+3o0aP4+eefERcXByMjI7Rt21a4f6MOFe61e4VvLFpbW+O5nMeUR44cievXr6NevXqYMGECTp06VWK5vr6+SE9PF1JJT0mVhp6eHlxcXBBy+rTM8pCQELi/fz9yYW5ubggJCZFZdvrUKbi6ukIkEsn9DBEhNjYW1gUGPllZWdDSlv0T6+joCBfVBQUEBMDFxQXOGvROcEB18WvVqhXu3bsnE4vEhARYW1srNPEE5A0Kc3JyoK1gjNWlvNogkNcOxQWeICwsOzsbd27fFgaCFSGG6jyG823ftg0WFhbCTdWKRpUxXLZ0KRYuXIhjx4/D1dX1g/tSuA0OGz4c12NjER0TIyQbGxtMmzYNx0+cKG1VVUadx3Gr1q2F3+jIl5iQIHypg4/jf5V0HJe0b82bN8fdQjFOSEyE/Qe+OFOe1BVDRbbLbbBkRITx48bhwIEDCAkNRc33Ny7y1axZE1ZWVjL7JhaLcTYioth9UwdVxNDR0RGxcXEy54CevXqhffv2iI6JwWeffSbzWSMjI1hbWyM1NRWnTp5Er/eTVhXpOG7m4oLQQjEJCQmBWzExbCknhiGnT8OlQDss7pqDiIRvtmdlZUG70LeRCx6jenp6cG3eHAl378rkSUxIgL29fSlrqhqqil++/Xv3Ijs7G0OGDpVZ3qFjR0THxuJqdLSQXFxdMXjIEFyNjpb5Ml1hRCTzdg91+5gYltd28/vCgnnEYjHOnT2rMX2hutpgcYprX6ampjA3N0diYiKirl1DzwIT/Oqmp6eHhk2a4vyZMJnl58+EoVlLN7mfefs2S+4YA/j36R1lbTd/4ulBchL+OHQYVc1K/2UTVdPkMWFFGNPo6emhSbNmCAsJlVkeHhqClm7y26A8RASxWCz8v0XLlggPlS0zLCQELQqUSUSYOnEiDh86iMMnTgqTWfmKHVNra86YGsiLYdNmzRAWKtumwkNC0dKt+L/z3sBAjPnma2zb8YcwuVZabu6tkFj42jgxUe5YJb8vvJeYiOioKHTvqTl9IVMMSaUqSaoUFBSE4cOHY9SoUYiNjcWFCxcwZMgQlW7zg6gC8fT0pIkTJ8os6927N/n4+BAREQA6cOCAsC49PZ0CAwPpm2++IVNTU+rfv7/C20pPTycAlJqWRhKptExp1+7dJBKJaPOWLXQzPp4mTpxIRkZGlHz/PkmkUpo5cyYNGz5cyH8vKYkMDQ1p0qRJdDM+njZv2UIikYj27tsn5Jk3bx4dO36cEu/do6joaBo5ciTp6upS5KVLQp4RPj5ka2tLfx0+TEnJybQ/KIiqV69O06dPl9m/1LQ0MjQ0pLXr1pW5rqpIqojfg7//psqVK9MPP/xAt+/cob8OHyYLCwv6v//7PyFPekYGRUVHU1R0NAGg5cuXU1R0NN1/8EDI4+npSQ0aNKDQsDC6l5REWwMCyMDAgNasXav2uKk6hr/88gudOHmSEu/do/hbt2jZsmWkq6tLGzdtEvJMmTKFwsLD6V5SEl2MjKTuPXqQsbGxsN2KEkN1HcMSqZRycnPJ3t6eZsyYIXffXrx8SVHR0XT4yBECQLt276ao6Gh6/OSJ2uOm6hguXryY9PT0aO++ffT4yRMhpWdklKoNFk4ODg60YsUKtcesPGKoyHF86fJl0tXVpYULF9LdhAT6488/ydDQkHb88YeQh4/j4o9jRc4l+4OCSCQS0YaNG+luQgL5+/uTjo4ORZw9q/a4aUIMP7TdT7kNvn33Tmhf1tbWNHXqVIqKjqa7CQlCnrFjx5KpqSmFhYfL9JVvMjOFPH5+fmRqakr7g4IoNi6OBg0eTNbW1pSWnq72uKk6hoXTCB8f6tW7t8yyY8eP09Fjx+heUhKdOHmSnJ2dqUWLFvQuO1vIo+rjWCyRKCX9uWsXiUQi2rR5M8XevEkT3scwMTmZxBIJTZ85k4YOGybkv3vvHhkaGtLESZMo9uZN2rR5M4lEIgrcu1fI8+PcuWRsbEx/7NxJd+/do2MnTlDt2rXpiy+/FPIMHzGCbG1t6eBff1FCUhLt3b+fqlevTlOnTxfy7N2/n0QiEa3fsIFu3b1Lq97HMDwiQmn118T45afWHh705YABCu1HW09PGj9hgvD/1IwMmjFrFp27cIESk5Pp8tWrNOqrr0hfX59i4uLUHreyxFAskdCVqCi6EhVFzVxcaNDgwXQlKoqu37ghrH/z9q2Qx9ramqZMnUpXoqLo1t27Cm9XLJHQL+/7wr3791N0bCwNHDSIrK2t6VVamtrjpu42OGPWLAo7c4YSkpIo6vp1munrS9ra2nTsxAkhz67AQDodGkp3EhNpf3AwOTg4UJ++fZVW9+S0N0pJ/gHbSSQS0eLf1tGpy9do1Hc/kKGREZ2Lu0XJaW9o7OSp1HfgYCH/r2s3kK6uLv28fCWduX6D9p44TY2aNiNnF1chz53n/9CRsxfpyNmLZGFlRd+On0hHzl6ksOhYhbeb8DKNOnXtTta2tnT0XCRdvpskpDvP/1FK3TX5fDxPSWNCVY9pMrLFZU7b/vyTRCIRrd24ia5ej6Xvx08gIyMjupmQSBnZYpoyfToNGjpUyL9s1WraExRM0TfjKfpmPK3btJlMTExo2qxZQp7TZyJIR0eHFvzyC12LjaMFv/xCurq6FHruvJDn69FjyNTUlI6dDqHEvx8K6VlaupDHo21bqu/kREdPnaa4O3dp/eYtZGBgQCv8f1NK3TPFOUpJv/+5k0QiEa3btImiYuPohwl5MbydeI8yxTk0dfoMGjx0qJB/244/SFdXl1b6+1PSw0dCevLipZAn9U0mXbxylS5euUpW1tY0ccoUunjlKsXdui3kOXvxIunq6tL8n/+P4m7dpoDfd5ChoSFt3f67kOePXbvp+OkQunnnLu3ZH0T2Dg7Uu09fpdT76ctXBIDS09OVcJedFSd/TiC601eU2HWsUlN0p69U9jfMyckhW1tb2rJli9LLLov/9ORTQSdOnCAA9OrVK4W2pczJJ4lUSmvWrCEHBwfS09OjZs2aUfiZMzIXuZ6enjL5w8LDqWnTpqSnp0c1atQoMjE0ceJEsre3Jz09PTI3N6fOXl50/sIFmTxp6ek0YcIEsre3JwMDA6pVqxbNnj2b3r57J5Nv/YYNVKlSJfonNVUlNwo0MX4SqZTOX7hALVu2JH19fapVqxYtXLiQxDk5wvrQsDACUCSN8PER8jx+8oR8Ro4kGxsbMjAwoHr16tGyZcsoVyJRe8xUHcPZs2dTnTp1yMDAgKpWrUru7u60a/dumTwDBg4ka2trEolEZGNjQ3379aMbN2/K5KkoMVTHMSyRSun4+77r9p07cvdra0CA3HY6d+5ctcdM1TF0cHD4YN0VaYOFk6ZOPqkihoocxxKplA799Rc1bNiQ9PX1ydHRkTZs3Cizno/j4o9jRc4lEqmUNm/ZIvwtnJ2dKfjAAbXHS1Ni+KHtfsptMCk5WW77KliOvPUAaGtAgJAnVyKhuXPnkpWVFenr61Pbtm0pNi5O7fEqjxgWTvImn3YHBlKtWrVIT0+PrKys6Pvvv5c7blblcazMm9f+BWLYtFkzCg0PF9YNHzGC2np6yuQPCQujJgViuGbtWpn1WdnZ9NO8eVS7dm0yMDCgzz77jMZ+9x09f/VKyPMqLY3GF7oumTV7Nr15+1amrE2bNwsxbOzsTPuDg9V+s1/V8RNLJHTz9m0CIHMjv6RUePIpIzOTevfpQzY2NqSnp0fW1tbUo2dPunjpktrjpYwYyuvDHBwchPUJSUly8xQup6TtiiUSys7NpR8L9IVt2ral6NhYtcdLE9rgyFGjhG2am5tTh44di+RdsWoV2dnZkUgkInt7e/KdM6fIMV6WpKzJp+S0N7Rg2Qqy/Sxv/NHQuQkFHj0hrOs/eCi1bO0hk3/ekqVU19GRDCpVIgsrK+o9YCBdvJUgrD8bGy+3DRYup6TtFlcGANp1+JhGTT6p4nysrDGhqsc0ypiAycgW0/LV/mT/vh5Nmjal4yGhwrohw4eTR9u2wv9/XbGS6js5kaGhIZmYmJBzkya0wv83Snv7TqbMHbt3U93PPyeRSESf16tHf+7ZI7O+uPa1fvMWIU/i3w9p6IgRZP1+TF33889p0ZJfKf1dtkZNPmWKc2ilv2wMT4aGCeuGDh9Obdq2Ff7fpm1buXUfOny4kOdWQqLcPAXLyRTn0P4DB8mpQQPS19enevUcac369TLrl65YQbbv+8LP7O1ppu9sSn2TyZNPFUj+nEBUx1F0t8sYpaaojqNU9je8fPkyAaCAgABq0qQJWVlZkbe3N928eVPp2yoNLSIFnxPWAO3atUOTJk2watUqYVmfPn1QpUoVbN++HVpaWjhw4AD69OmDlStXwtraGk2aNIG2tjZ+/fVXHD16FI8fPy7yCKk8GRkZMDU1RWpaGkw07B27jDHGGGOMsU+HpOJcsjHGmEr87/Vbde9ChedgYqjuXajwMnNy1b0LFZpOoVfwstLJyMiAdfVqSE9P53vVKpQ/JxDVcRQq6yr20yyKepMrhkvoNjx69Ejmb6ivrw99ff0ylR0YGIjBgwfD3t4eK1asQI0aNbB8+XKcOnUKCQkJMDMzK+vuf5QK95tPiqpcuTKWLFkCV1dXNG/eHA8ePMCxY8cUmnhijDHGGGOMMcYYY4wxxtinR5W/+fTZZ5/B1NRUSH5+fsXux/z586GlpVViunbtmvDbbHPmzEH//v3h4uKCbdu2QUtLC/v27SuXmMmjq7Ytf4QzZ84UWXbw4EHh3wUf4vr222/x7bfflsNeMcYYY4wxxhhjjDHGGGOMlUzek0/FGTduHAYNGlRieTVq1MDr168BAE5OTjLl1qpVCw8fPizjHn+8CjX5xBhjjDHGGGOMMcYYY4wxpiokIZCWcl99TZK88kxMTBR+dWL16tVRvXr1D+ZzcXGBvr4+7t69Cw8PDwBATk4OHjx4AAcHh4/f6TLiySfGGGOMMcYYY4wxxhhjjDFA5jV5yixTVUxMTDB27FjMmzcPn332GRwcHLB06VIAwJdffqmy7X4ITz4xxhhjjDHGGGOMMcYYY4xVUEuXLoWuri6GDx+Ot2/fomXLlggLC0PVqlXVtk88+cQYY4wxxhhjjDHGGGOMMQaApASSKvm1e0ourzCRSIRly5Zh2bJlKt1OaWirewcYY4wxxhhjjDHGGGOMMcbYfwc/+cQYY4wxxhhjjDHGGGOMMYaK+eSTJuInnxhjjDHGGGOMMcYYY4wxxpjS8JNPjDHGGGOMMcYYY4wxxhhjAKRSKaRSqdLL/NTw5NMHaEuk0JZ8eg1DKbT5wTqmflItde9Bxab96T0RzDQMH8Nlx8exEnyCFwlKxWPCMtMGd4ZMzbgfLDvuC8vE0lBf3btQ4fGYsOwMdHXUvQsVmo4Wj2fKQsztj1VAPPnEGGOMMcYYY4wxxhhjjDEG/s0nZeHJJ8YYY4wxxhhjjDHGGGOMMQBEBFLyk99En97kEz/3zRhjjDHGGGOMMcYYY4wxxpSGn3xijDHGGGOMMcYYY4wxxhgDICWCVMlPKim7vIqAn3xijDHGGGOMMcYYY4wxxhhjSsNPPjHGGGOMMcYYY4wxxhhjjAGQSglSLSU/+STlJ58YY4wxxhhjjDHGGGOMMcYY+2j85BNjjDHGGGOMMcYYY4wxxhj4ySdl4SefGGOMMcYYY4wxxhhjjDHGmNIodfKJiDB69GiYmZlBS0sL169fV2bxgpEjR6JPnz7C/9u1a4dJkyapZFvKQkSY//MC2Nh/hkrGldGuYwfEx8d/8HNBwcFwatwI+kaGcGrcCAcOHpRZX6NObWiJdIukH8aPL9W2k5KS0PeL/jC3toKJWVUMGDwIz549U0rdlYWIMH/BfNjY2aKSkSHadWivWAyDguDUsAH0KxnAqWEDHDhwQGb9/AXzoaWjLZOsbKyF9Tk5OZg5ayYaOTeGkXFl2NjZYoSPD548eSJTzqZNm9CuQ3uYVDGFlo420tLSlFJvZVFV/PwW+6F5yxYwNjWBhZUl+vTti7t37xZb3pixY6Clo41Vq1cJy/755x+MnzAe9eo7wrCyEexrOGDCxAlIT0//6Poq2/p161C7Vi0YVqqE5q6uOHfuXIn5IyIi0NzVFYaVKqFO7drYsGFDkTxBQUFo2KABKhkYoGGDorEFgMePH2P48OEwr14dlY2M0KxpU0RFRQnr37x5g/HjxsH+s89gZGiIBk5OWL9+fdkrrAKqaoPr169H4ybOMKliCpMqpnBv3QrHjx+XyRMcHIwu3t6obmEOLR1tueenlJQUDB8xAlY21jAyroxmri7Yv39/meqsbKqKYUF+i/2gpaONSZMnFVl3+/Zt9OrdG6ZVq8DY1ARurdzx8OFDYb2mx1DZx/HmzZvh2bYtqpmZoZqZGbw6d8aVK1dk8iz280PLFi1gamICK0tL9JXTRwYHB8Pb2xsW5ubQ0ZbfPjWFOo9jRbat6edi4OPGhPHx8eg/4Eth3Ldq9Wq5+datX4+adevAoLIRXFq0wLnzxbfxMd99J7csTR8TqrMNzl8wH45O9WFkXBlVq5mhk1dnXL58WVhfEcYzgGrPJevWr0PN2rVgYFgJLs2L9rPPnj3DyFGjYGNnC8PKRvDu2hWJiYkyeTT9XAKoN4YFyRtXF97Prt26QUtHGwcLXUeqk6qujXNzc/Hj3J9Qs24dVDKujFqf18XPC/8PUqlUyCPv2llLpIuly5cJebKzszF+4kRUt7KEkakJevXtg//9739Kq78yqKoNnj17Fj179YKNnW2x7WbkqFFFrp/dWrkL6ytCX7hpw3o4fV4XZsaV0bplC1w4f77YvIcOHECPrt5wsLGGVTUztG/jgdOnThXJdzA4GC6NG6NqZSO4NG6MvwrF7peff4aRnkgm1fzMTlifk5ODH3190bxpE5hXMUVtB3t8M2oknha676Ap1HU+/q/cn9mwfj0+r10bxoaGaNm8Oc6X0Nc/ffoUw4cORYP69aGvq4upkyfLzRccFITGDRuicqVKaNywIQ6WcM23ZPFi6OnoyC3r9u3b6Nu7N6pXrQozU1N4tGolc82nKdRxbVerZk3oaGsXSeN++EHII2+9jrY2li1dqrzKs3JBUlJJ+tQodfLpxIkT2L59O44cOYKnT5+iYcOGyixesHr1amzfvl0lZavKr8uWYsWqVViz2h9XIy/BysoKnbt64/Xr18V+JjIyEgOHDMbwoUMRGxWN4UOHYsDgQTIXuVcjL+Hpo/8J6fSJEwCAL7/or/C2MzMz4dWtK7S0tBB26jQuRJyFWCxGzz69ZQbq6vbr0l+xYuVKrPH/DVcvX4GVpRU6d/H6cAwHD8LwYcMQG3Mdw4cNw4BBA2ViCAANGjTA08dPhHQjNk5Yl5WVhejoGPw050dEX4tC8P4gJCQmoFef3jJlZL3NgneXLpjt66vciiuJquIXEXEWP3z3PS5djMTpk6eQm5sLL+8uyMzMLFLewYMHcfnKFdjY2Mgsf/LkCZ48eYplvy7Fjdg4bA/YhhMnT+Lrb75RXgDKYM+ePZg8eTJ8Z89GVHQ0PDw80L1bt2IHYPfv30eP7t3h4eGBqOhozPL1xaSJExEUFCTkiYyMxOBBgzBs2DDEXL+OYcOGYdBA2dimpqaijYcHRCIRjh47hpvx8Vi6bBmqVKki5JkyeTJOnjyJHX/8gfhbtzBx0iRMnDABhw4dUlk8Ppaq2qCdnR0WL/LDtStXce3KVXRo3x69+/aRufjJzMxE69atsHiRX7HbGj5iBO4m3MVfBw/hRmwc+vXti4GDByEmJkY5AVACVfaDAHD16lVs2rwZjRs3LrIuKSkJHm3bwNGxHs6EhSM25jp+mvMjDAwMhDyaHENVHMcREREYNGgQQsPCcOHiRXz22Wfw7tIFjx8//jfP2bP47vvvcTEyEidP5fWR3l1k+8jMzEy0btUKi/yKb5+aQp3HsSLb1vRzMfBxY8KsrCzUqlkTi39ZBCsrK7l59uzdi0lTp2DOLF/EXL2GNh4e6Nqjh9w2fvDQIbnn44owJlRnG/y87udY4/8bbsTG4fzZc6jh4AAv7y548eIFAM0fz+RTVQz37NmDSZMnY47vbMRERee1we7/9rNEhD79+iL5fjIOHTiImKhoODjYo5NXZ5k+UZPPJfnUFcOCihtXF7Rq9SpoaWmVrbIqoKpr4yVLf8WGTZuwZvVq3L5xE7/6LcbS5cvx25o1Qp6C185PH/0PAZu3QEtLC/379hPyTJoyBQcOHUTgzp04fyYCb968QY/evSGRSFQTkI+gqjaYmZkJZ+fGWOP/W4nb9+7iLXP9fOzIUWGdpveF+/fuxYypUzFj1ixcvHIVrTw80LdnDzwqZkx4/vw5dOjYCcF//YXzly6jrWc7fNm3D64X6JMuX4rEiKFDMGjoUFy6FoVBQ4di+JDBuHpFdrxd36kBkh4+EtKV6H/LyMrKwvXrMZg1ew4uXL6C3Xv34l5iIr7s11c1gSgjdZ2P/wv3Z/bu2YOpkydjlq8vrkRFwcPDAz27dy/2uiQ7Oxvm5uaY5euLxs7OcvNciozE0MGDMXTYMFyLicHQYcMwZNAgXJFzzXft6lVs3bwZjYq55mvfti3qOTridFgYrsXEYPacOTLXfJpAXdd2l69cweMnT4R08v1E9BdffinkKbj+8ZMn2LJ1K7S0tNCv/7/3aVnFQESQKjkRfXqTTyAl+u2338je3l6ZRSrE09OTJk6cqNQy09PTCQClv/qHKCe3TEkqziErKytavGiRsOzdm0wyNTWlDWvXFfu5AV9+Sd5dusgs6+LlRYMGDiz2MxPHT6DatWuTVJyj8LZPHjtG2traMnX95/kLAkCnT5z4+LpLpEpL0lxJXj38/IRl77Le5tVj3fpiPzfgywHk3cVbZlkXry40aOAg4f/z5s4lZ2fnUu3PlUuXCQD9ff9BkXXhoWEEgFJf/aPUGGhq/Aqn5ynPCABFhJ+RWf6/h4/I1taWbsbdIAcHB1q5YkWJ+7w3cA/p6elRTra4THWXSMueWrRoQWPGjJFZ5ujoSDNnzpSbf/r06eTo6CizbPTo0eTm5ib8/8sBA6iLt7dMHq8uXWjgoEHC/2fMmEEeHh4l7luDBg1owYIFMsuaNWtGc+bMUUrdK2IbJImUqlatSls2bS6y/H5SMgGgmKjoIuuMjIxox/bfZZaZmZnJLUcdSdUxfJ2eQXXr1qXTJ0/lnVcnTJBZP3DAQBo2dFiJ+6iKGCqjHavqOC6cxDk5ZGxsTNu2by82T8qzvD4y/MyZIuuSkvPaZ1R0tNLq/V85jku7baWfi8s4FizrmLBgcnBwoJXLlhdZ3qJ5cxo7eozMMkdHR5o1Y4bMsv89+DvvfHw9tkhZmj4m1JRzSX5KT00jABRy6nSxeZQ1nqkIMWzRogWNHTNGJo+joyPNmjmTSCKlu7fvEAC6GXdDWJ8rziEzMzPavHGTsOxTPh9/KIb5SZFx9fXoGLKzs6Onj58QADoQFFy2uqu5H1Tk2rh7t2701chRMnn69e1Lw4YMLbbc3r16UYf27YX/p718RSKRiAJ37hKWPf77IWlra9OJo0fLVv8K0AYLpuLajc8IH+rdq3ep9lkZfWGmOEcpybV5c/pm9GiZZfXqOdLU6TMULqN+fSf6ce484f/9v/iSOnfpIpOnk5cXfTFgoPD/2T/+RI0aNy7Vvp69eJEA0J17SUqpe0Vrg/npQ+fj8rw/I5ZIypyat2hBo8eMkVlWz9GRps+c+cHPtvX0pPETJhRZ/sWXX1KXLl1klnl5edGAgQNllv2Tnk516tal4ydPyi3rywEDaMjQoUqpp7z0X7u2mzAh7x5sbgl169W7N3Xo0EEp9U5Nyxt7pqenK/UeOJOVPycQ0qAvRTYeoNQU0qDvJ/c3VNqTTyNHjsT48ePx8OFDaGlpoUaNGjhx4gQ8PDxQpUoVVKtWDT169EBSUpLwmQcPHkBLSwt79+5FmzZtUKlSJTRv3hwJCQm4evUqXF1dUblyZXh7ewvfKMzfVsHX7hX0888/o1GjRkWWu7i4YO7cucqqbqncv38fKSkp8OrUWVimr68Pz7ZtcTEystjPRV66JPMZAOjS2avYz4jFYvy5aye+GjlS+IabItvOzs6GlpYW9PX1hTwGBgbQ1tbG+QsXSl9hFRDq0dlLWJZXD88PxDASXl6FYtjFCxcjL8osS0xMhI2dLWrWroVBgwcjOTm5xP1JT0+HlpaWzBMomkzV8Sso/3UKZmZmwjKpVIrhPiMwfdo0NGjQQKF9Tk9Ph4mJCXR1dRXKrypisRhRUVHo7OUls7xz586ILCZ2ly5dQufOsnHz6tIF165dQ05OTl6eyEh4FcrTxcsLkRf/je3hw4fh4uKCAQMGwMrSEi7NmmHz5s0yn2ndujUOHz6Mx48fg4gQHh6OhIQEeHXp8tF1VoXyaoMSiQSBgYHIzMyEu7u73DzF8WjtgT179+Kff/6BVCpFYGAgsrOz0a5du1KVoyqqjuEP48ahe7du6NSpU5EypFIpjh47is8/r4su3t6wsLJES3e3Iq9i0dQYquo4LiwrKws5OTky/V9h8vrIikKdx/HHblvTfOyY8EPEYjGioqOLnFe8OnWWKVcqlWL4SB9MnzJV7vlY08eEmnQuEYvF2LR5E0xNTeFczLeQAc0Zz+RTVQzz+9mC5QKAV+fOMtccAGS+Pa2jowM9PT2Z9qWp55J86owhoNi4OisrC4OHDsEa/9+KfVpSXVR5bezRujVCw8OQkJAAAIiNjcX5CxfQrWtXuWU+e/YMR48dw9ejvhKWRUVHIScnR6Y/tbGxQcMGDTXmfFOe13bFORNxBhZWlvjcsR6+Hf0tnj9/XmJ+TekLxWIxYqKj0bFQW+rQuRMuX1Ls7yuVSvH6zWtUNasqLLt8+RI6FhpDd+rcuUiZSffuobaDPZw+rwufoUNx/4P3HTKgpaUFUw2776BJ52OgYt2fEYvFiI6KQqdCY7bOnTvjUhn6mMuXLqFT4WudLl2KlDlh3Dh069atSHsF8tr28WPHUPfzz9Hd2xu2VlZo7e6OQxr02lZAc67txGIxdu7ciVGjRhX7lPGzZ89w7OhRjPrqK7nrmWaTSkkl6VOjtMmn1atX4+eff4adnR2ePn2Kq1evIjMzE1OmTMHVq1cRGhoKbW1t9O3bt8hrO+bNm4cff/wR0dHR0NXVxeDBgzFjxgysXr0a586dQ1JSksITR1999RVu3bqFq1evCsvi4uIQExODkSNHKqu6pZKSkgIAsLS0lFluaWGJlGcpJX6uyGcsLYXyCjt46BDS0tIwcoRPqbbt1tINRkZGmOnri6ysLGRmZmL6zJmQSqV4+rT4/StPxdbD0qLYeOR/ztJCTt0LfKZli5bYsf13nDx+Aps3bkLKsxS08miNV69eyS3z3bt3mDXbF0MGD4GJicnHVqlcqTJ+BRERpkydCg8PD5nXbi75dQl0dXQxYfwEhfb31atX+L9fFmLM6NEK5Velly9fQiKRlOpYLO7Yzc3NxcuXL4U8FoXyWBQqMzk5GRs2bEDdOnVw/MQJjB4zBpMmTsSOHTuEPKv9/VHfyQn2n30GA319dOvaFWvWroWHh0eZ6q1sqm6DN27cQGUTY+hXMsDY77/DgaBgODk5lWof9wQGIjc3F9XMq0O/kgHGfDcWB4KCUbt27VKVoyqqjGFgYCCiY6LhV8xrCZ8/f443b95g8ZIl8PbuglMnTqJvnz7o90V/RERECPk0NYaqOo4L8501C7a2tnIn8IC8PnKqnD6yolDncfyx29Y0Hzsm/BChjVtYyJZraYGUAr/XtGTpr9DV1cWEAr8NWpCmjwk14Vxy5MgRVDYxhoFhJaxctQqnT55C9erV5W5Xk8Yz+VQVQ0X6WUdHRzg4OMB39mykpqZCLBZj8ZLFSElJwdOnT4XPaOq5JJ86YwgoNq6ePGUyWrm7o3fv3sXmURdVXhvPnD4DgwcOhGPDBhBVMkDT5q6YNGECBg8aJLfM3//YAWNjY/Tr++9rzVJSnkFPTw9Vq1aVyZv399WM378rr2u74nT19sbOP/5EWEgoli9dhqvXrqFDp47CBHNhmtQXvnp/nFlYFjpfWljimYJ/39UrVyIrMxP9vvj3NVvPUlJgUSi2FhaWeFYgtq4tWmBzwDYcOnIUa9ZvwLNnKejg2bbE+w5z58zGgEGDNO6+gyacj/NVtPszxfX1he8FlFZKSgosCo0DLSxk/x57AgMRExODhYsWyS0j/5pv6ZIl8PL2xtETJ9C7Tx8M+OILnC1wzadumnJtd/DgQaSlpcGnhHvNO37/Pe88069fsXkY+69T2uSTqakpjI2NoaOjAysrK5ibm6N///7o168f6tatiyZNmmDr1q24ceMGbt26JfPZadOmoUuXLqhfvz4mTpyI6Oho/PTTT2jdujWaNm2Kr7/+GuHh4Qrth52dHbp06YJt27YJy7Zt2wZPT0/UqlWr2M9lZ2cjIyNDJn2snbt2oXIVUyHl5ObNoheeCSeiD76DuzSf2botAF29veW+97ukcszNzbEvMBCHjx5B5SqmMK1mhvT0dDRr2gw6OjolV1ZFdu7cicomxkLK/yaCKmLYtWtX9O/fH40aNUKnTp1w9PARAMDvO34vUlZOTg4GDR4MqVSKdWvXflTdykN5xq+gcePHIe5GHHbv3CUsi4qKwmp/f2zftk2hd85nZGSge88ecKrvhHlz530wf3kpbezk5S+8/ENlSqVSNGvWDL8sWoSmTZtizJgx+Oabb7CxwA9j/ubvj8uXLuHgoUO4eu0ali1bhnE//ICQkJDSV1KJyrsN1qtXD9ejY3DpYiS+GzsWPqNGFjnXfMiPP/2I1LRUhJw6jWtXrmLK5Mn4cuAA3Lhxo1TlKEt5xfDRo0eYOHkS/tzxR7Hv8s7/0kjvXr0xedJkNGnSBLNmzkKP7j2wYeNGIZ+mxbAwVRzH+Zb++isCAwOxPyio2DiOHzcON+LisHPXLrnrNY0mHscfs211UuaYUBEllRsVFYXVv/2G7VsDit2Wpo0JNbENtm/fHtejY3Dx/AV4d+mCAYMGyv3Gv6aMZ8o7hiXlEYlECNq3HwmJCTCrXg2GlY1w5kwEunp3lWlfmnYu0aQYKjKu/uuvvxAWHo5VK1d9sG7loTyvjffs3Ys/d+3Crj/+RPSVq/g9YBuWrViB3wt8cauggO3bMXTwEIV+y0Sd5xt1XdsVZ+DAgejevTsaNmyInj174vjRY0hISMDRo0eL5NWUvrCwj43D3sBALPq/n/H7zl1FbvR/qMwu3t7o068fGjZqhA4dOyLo0F8AgJ1/FG2fOTk58Bk6FFKpFKt+W1NkfXnTxPMxUHHuz8ijirHgh675pk6ejO07dnzwmq9nr16YOGkSmjRpghkzZ6Jb9+7YVOCaT1Oo+9ouICAA3l27lvjbi9u2bcOQIYqdZ5jm4SeflEOlzzwnJSXhp59+wqVLl/Dy5UuhI3v48KHMN34L/rB5/kx0wVfnWVpafvAx7oK+/fZbfPXVV1ixYgV0dHSwc+dOLF++vMTP+Pn5YcGCBQpvoyS9evZEyxYthP/nfwMoJSUF1tbWwvLnL54X+dZHQVZWVkVm7Z8/f15kth4A/v77b4SEhiJ43/4iZSiyba/OXki6m4CXL19CV1cXVapUgZWdLWrWrKFAjZWvV69eaNmypfD/YmP4/IXceOSzsrIq8g265y/kxzCfkZERGjVshMTERJnlOTk5GDBwIO4/uI+wkFCN/laNOuI3fsJ4/HX4MM6eiYCdnZ2w/Nz5c3j+/DnsazgIyyQSCaZOm4ZVq1fjQfJ9Yfnr16/h3a0rKleujAPBwRCJRKWotWpUr14dOjo6Ch+LQPHHrq6uLqpVqybkeVYoz4tCZVpbW6N+/foyeRzr10dwcDAA4O3bt5gzZw6CgoPRvXt3AHn96fXr17F8+fJiv6FTHsq7Derp6aFOnToAAFdXV1y9dg2r/Vdj4wbFBslJSUlYs3YtbsbdEF5h4+zsjHPnz2PturXYsH7DB0pQvvKKYVRUFJ4/fw6X5q7CeolEgrNnz2LN2rXIfvsO1atXh66uLpycZNtj/fqOwquSNDGG+VR1HOdbvmwZ/Pz8cOr0aZkxTUETxo/H4cOHcSZCto/UZJp0HBc7nvnAttVNWWPCDxHa+DPZb20/f/5CeBrq3PnzeefjWjWF9RKJBFNnTMeq3/zx4F7eq7E1aUyoSW0wn5GREerUqYM6derAzc0Ndet9jq0BW+E7698fNNek8Ux5xVDRftbFxQXXo2OQnp4OsVgMc3NztHR3g6uLCwDNPJdoUgwVGVeHhYchKSkJVQq8EgwA+n/5Bdq0aYMzYYp9qVNZyvPaePqsmZg1fQYGDRwIIO+ewt8P/4bfr0vgM2KEzGfPnT+Hu3fvYs9O2S+EWFlZQiwWIzU1Vebpp+fPX6BVKV/prCzqvDZWhLW1NRwcHJB4T/b6WZP6wnzV3h9nhZ9yev7ieZGnoQrbv3cvvh8zGn/uDkSHjh1l1llaWeFZodi+ePG8yJsuCjIyMkKDhg2RdO+ezPKcnBwMHzwYDx7cx7FTpzXivoMmno8r0v2Zgorr6wvfCygtKysrPCs0Dnzx4t+/R/T7az635s2F9RKJBOfOnsW6tWvx5u1b4ZqvfqGnzBzr18dFDXj9cj5NuLb7+++/ERoSgv1BQcXu57lzeeeZ3YGBilSLsf8spT35JE/Pnj3x6tUrbN68GZcvX8bly5cB5L0Xs6CCg5CC34wruKzwq/o+tF19fX0cOHAAhw8fRnZ2Nvr371/iZ3x9fZGeni6kR48eKby9woyNjYWL0jp16sDJyQlWVlY4HfrvkwhisRgRZ8+WOIB1d3OT+QwAnAo5Lfcz237fDgsLC3Tv1k1mec2aNUu17erVq6NKlSoICw/D8+fP0atHT4XrrUzFxjDktJAnrx4RH4ihO06fLhTDU6fRyr1VsZ/Jzs7G7Tu3ZQZR+QObxHuJCDl1usjJSdOUZ/yICOPGj0PwgQMICwlFzZo1ZfIPHzYccddjcT06Rkg2NjaYPm0aTh4/IeTLyMiAl3cX6Onp4a+DhzTmmyF6enpwcXFByOnTMstDQkKKfe+0m5tbkSePTp86BVdXV6Fvc3N3x+lCeU6dPg33Vv/GtlXr1sI76/MlJiTAwSHvhkNOTg5ycnKgrS3blevo6JSqz1QFdR7DQF67zM4Wl5inoKysLAAoGktt9cWyvGLYsWNH3IiNkzlGXV1dMXTIUFyPjhF+j6N58+a4e1e2PSYkJMLBPq89amIM86nqOAaAZUuXYuHChTh2/DhcXV0LFwMiwvhx43DgwAGEhBbtIzWZJh3HwnimlNtWN2WNCT9ET08PLs2aFTmvnA4NEcodPmwY4qJjcP1alJBsbGwwfepUnDx6rEiZmjAm1KQ2WHKef181pWnjmfKKYX4/W7BcADgdEiK3XFNTU5ibmyMxMRHXrl1D7155r4fTxHOJJsVQkXH1rJmziuQBgJUrVmDb1oCyB6SUyvPaOCsrS+Fx8daAbXBp5lLkN9tcmrlAJBLJ9KdPnz7FzfibajvfqLsv/JBXr17h0aNHsLb69/pZ0/rCfHp6emjarBnCCrWl8JBQtHQrPnZ7AwMx5puvsW3HH/AudM8FAFq2dENYaKjMstCQkBLLzM7Oxt07d2BlJXvfYfjgwbh37x6OnDipMfcd1N0GC5+PK9r9mYL09PTQzMUFoYXGbCEhIXArQx/T0s0NoYWvdU6dEsrs0LEjomNjcTU6Wkgurq4YPGQIrkZHC9d8rs2bI+HuXZlyEhMSYG9v/9H7pmzqvLbLt33btrx7sO+/BCxPQEAAXFyKnmdYxSElUkn65JASrVy5khwcHIiI6OXLlwSAzp49K6w/d+4cAaADBw4QEdH9+/cJAMXExAh5wsPDCQClpqYKy7Zt20ampqbC/318fKh3797C/z09PWnixIky+zJjxgzq3Lkz9ejRg0aPHl3quqSnpxMASn/1D1FObpnT4kWLyNTUlIL37acbMddp8KBBZG1tTRn/pAp5hg8dRrNmzBD+fyHiLOno6NDiRYvo9o2btHjRItLV1aVL5y/IlC3JFpO9vT3NnD79o7cdsHkLRZ47T/fu3KU/tv9OZmZmNGXSpLLVWyJValrs55dXj/1BdCM2jgYPGpxXj7R0Ic/wYcNp1syZwv8vnDufF0M/P7odf4sW+/nlxfBipJBn6pQpdCYsnJLvJdGli5HUo3sPMjY2pgfJ94kkUsrJFlOvnr3Izs6OrkfH0NPHT4SU/fadUM7Tx08oJiqaNm/clNf2z0RQTFQ0vXrxUumx0KT4fTd2LJmamtKZsHCZ2GS9ySx2XxwcHGjlihXC/zPS0qlly5bUqFEjupeQKFNOrjinTPWWSMuedu3eTSKRiDZv2UI34+Np4sSJZGRkRMn375NEKqWZM2fSsOHDhfz3kpLI0NCQJk2aRDfj42nzli0kEolo7759Qp5z5/Ni6+fnR/G3bpHf+9hejIwU8ly6fJl0dXVp4cKFdDchgf74808yNDSkHX/8IeTx9PSkBg0aUGhYGN1LSqKtAQFkYGBAa9auVUrdK0Ib9J01i86eiaD7SckUdz2WZvv6kra2Np06cVLI8+rFS4qJiqajh48QAArctZtioqLp6eMnRBIpid9lU506dahNmzZ0OfIS3UtIpGVLl5KWlhYdPXxE7cevqmNYOHl6etLECRNklgXvDyKRSESbNmykxLsJ9Ju/P+no6NC5iLMqjaEy2rGqjuPFixeTnp4e7d23jx4/eSKk9IwMIc/Y931kWHi4TJ43mZlCnhcvX1JUdDQdPpLXPnft3k1R0dH0+MkTpdS9IrRBRY5jRbatsnOxEsaCZRkTZmdmUczVaxRz9RpZW1vTtClTKObqNUq8fUfIE7hzF4lEItq6aTPdirtBkyZMICMjI3pwL6nYfXFwcKCVy5bLLNP0MaG62uCbjNfkO2sWRV64SA+S71PU1Wv09Vdfkb6+Pt2Mu0EkUe14piLEMHBXXj+7dfMWunUznia972fzx9QkkdLewD0UHhpGSYn36GDwAXJwcKB+ffsJ6z/187EiMSycCo+r5SUAdCAouGz1VnM/qMi1sc/wEWRra0tHDh2i+4n3KHjffqpevTrNmDZNZvvpr/4hQ0NDWr9mrdz9Gzt6DNnZ2VHIyZMUfeUqdWjfnpwbO1Puu+z/fF/4Oj2DYqKiKSYqmgDQiuXLKSYqmv6+/0BYP3XKFLp4/gLdT0qm8NAwcnd3J1tbW2HbquoLM8U5Skm//7mTRCIRrdu0iaJi4+iH9+fL24n3KFOcQ1Onz6DBQ4cK+bft+IN0dXVppb8/JT18JKQnL14KeUIjIkhHR4d+/mURRcfdoJ9/yWufZ86fF/JMmDyZToSEUvzdBDpz/jx17dadjI2Nhe2mZ72l7j16kq2dHUVevSazrdQ3mUqpe0Vogx86H6v7/oxYIilz+nNX3pht0+bNFHvzJk1439cnJieTWCKh6TNn0tBhw2Q+cyUqiq5ERVEzFxcaNHgwXYmKous3bgjrI86dIx0dHfrFz4/i4uPpl/exPX/xYrH70dbTk8ZPmCCzbO/+/SQSiWj9hg106+5dWvX+mi88IkIpda/o13YSqZRycnPJ3t6eZsyYUez+paalkaGhIa1dt05pdc4vFwClp6eX+j43U1z+nMCxz3tRRP3+Sk3HPu/1yf0NVTb5JJFIqFq1ajRs2DBKTEyk0NBQat68eblNPiUkJJCOjg7p6OjQpUuXSl0XZU8+ScU5NO+nn8jKyor09fWpbZs2dCPmukwez7ZtyWf4CJll+wL3UL169UgkEpGjoyMF7d1XpOyTx44RALobf+ujtz1z+nSytLQkkUhEdevWpeW/LiWpOEdjBtckkZI0V0Lz5s79tx5t29KN2DiZPJ6enuQzwkdm2b49e2VjuG+/zPqBAwaStbU1iUQisrGxoX59+1H8jZvC+vtJyQRAbgoPDRPyzZs7V26ebVsDlB4LTYpfcbEpqd6FL5LDQ8OKLed+UnKZ6q2sk/yaNWvIwcGB9PT0qFmzZhR+5oywboSPD3l6esrkDwsPp6ZNm5Kenh7VqFFD7qBjz17Z2O7bv79InkN//UUNGzYkfX19cnR0pA0bN8qsf/zkCfmMHEk2NjZkYGBA9erVo2XLllGukgZ2FaENfjVqlPC3MTc3p44dO8rcsCaJlLZtDZDbvubNnSvkSbhzl/r17UcWFhZkaGhIjRs3ph3bf1f7sVseMSyc5E0+kURKWzdvoTp16pCBgQE5OzvTweADMutVEUNlDtaVfRw7ODjIbVdz584V8hTXt20NCBDybA2Q3z4LlsPHsWLbVtm5WIk3XT9mTHg/8Z7cenm2bSvzubX+v/3bxps2o4iwsBL3Rd7kk6aPCdXVBt9mZlHfPn3JxsaG9PT0yNramnr17EVXLl0W8qhyPFMRYkgSKa0t1M9GhJ+RWb961Sqys7MjkUhE9vb29OOcOTI3C0nC5+MPxbBwqoiTT6q6Ns74J5Umjp9A9vb2ZGBgQLVq1aI5vr6UnZklk2/juvVUqVIlSnv5Su7+vX39hsZ9/wOZmZlRpUqVqEf37vQw+X7Z614B2mBx/Vh+OVlvMsmrsxeZm5sLx7HPCB96+ODvD5ZR1r5QWZNPmeIcWunvT/bvj7MmTZvSydAwYd3Q4cOpTdu2wv/btG0rty5Dhw+XKfPP3YH0+ed5sa1Xz5F27dkrs/6LLweQ1fv7DtY2NtS7T1+6dj1WWH8rIbHYuB0/HaJxk0/qOh+r+/6MMiZgxBIJ+Rfo65s2a0ah4eHCuuEjRlBbT0+Z/PLq4uDgIJNn95499Pn72NZzdKQ9+/aVuA/yJp/EEglt2rxZuOZr7OxM+4ODlVbvin5tJ5FK6fiJEwSAbt+5U+y+rd+wgSpVqkT/pKYqtc48+VQ+8ucEjtTpSeH1+ik1HanT85P7G2oRKe95r1WrVmHVqlV48OABgLxHHidMmIDk5GTUq1cP/v7+aNeuHQ4cOIA+ffrgwYMHqFmzJmJiYtCkSRMAwJkzZ9C+fXukpqaiSpUqAIDt27dj0qRJSEtLAwCMHDkSaWlpOHjwIACgXbt2aNKkCVatWiWzP23btsWrV68QHx9f6rpkZGTA1NQU6a/+qTDvjtU42ip9qyNjCpFq7u/QVwjaSjtDMPZx+BguOz6OlUDNr46s8HhMyFjFx/1g2XFfWCZZEom6d6HCM9TRUfcuVHg54IF1Weho8cVdWWRkZKBqlSpIT0/ne9UqlD8n8FetHjDSUe7vFWZKctAr+cgn9TdU6uSTJiEiODo6YsyYMZgyZUqpP8+TT0rAg2umAfjGddnwTWumbnwMlx0fx0rAN13LhseEjFV83A+WHfeFZcKTT2XHk09lx5NPZcOTT2XDk0/lgyeflEtX3TugCs+fP8cff/yBx48fY9SoUereHcYYY4wxxhhjjDHGGGOMVQBSEKRKfmZH+glOYP8nJ58sLS1RvXp1bNq0CVWrVlX37jDGGGOMMcYYY4wxxhhjjH0y/pOTT//RNwkyxhhjjDHGGGOMMcYYY0yFpFJS+pNKUumnN2fBLx1mjDHGGGOMMcYYY4wxxhhjSvOffPKJMcYYY4wxxhhjjDHGGGOstPjJJ+XgJ58YY4wxxhhjjDHGGGOMMcaY0vCTT4wxxhhjjDHGGGOMMcYYYwBIBU8+ET/5xBhjjDHGGGOMMcYYY4wxxtjH4yefGGOMMcYYY4wxxhhjjDHGABARiJT85JOSy6sIePLpA6Q62pDq8ANiH0P70zuemAbidsgY+9RJtdS9BxWftjaPBZl68XFcdjwmLBu+JmbqZqCro+5dqPi4HywzHS0+ITP2qZCq4LV7Un7tHmOMMcYYY4wxxhhjjDHGGGMfj598YowxxhhjjDHGGGOMMcYYAz/5pCz85BNjjDHGGGOMMcYYY4wxxhhTGn7yiTHGGGOMMcYYY4wxxhhjDICUCFKSKr3MTw0/+cQYY4wxxhhjjDHGGGOMMcaUhp98YowxxhhjjDHGGGOMMcYYA//mk7Lwk0+MMcYYY4wxxhhjjDHGGGMVVEJCAnr37o3q1avDxMQErVu3Rnh4uFr3iSefGGOMMcYYY4wxxhhjjDHG8P7JJxUkVerevTtyc3MRFhaGqKgoNGnSBD169EBKSopKt1sSnnxijDHGGGOMMcYYY4wxxhgDICVSSVKVly9f4t69e5g1axYaN26MunXrYvHixcjKykJ8fLzKtvshPPlUTtavW4fatWrBsFIlNHd1xblz50rMHxERgeaurjCsVAl1atfGhg0bZNbHx8fjiy++QK2aNaGjrY3Vq1YVKWPB/PnQ0daWSTbW1jJ5nj17hlGjRsHO1haVjYzQtWtXJCYmlrm+qkBEmL9gPmzsbFHJyBDtOrRX6OAJCgqCU8MG0K9kAKeGDXDgwIEiedatX4eatWvBwLASXJoX/fuMHDUKWjraMsmtlbtMnuzsbIyfMB7VLcxhZFwZvXr3xv/+97+yVVqJ1Bm/4OBgdPH2RnULc2jpaOP69etytxUZGYkOnTrCyLgyqphVRbsO7fH27duPqq8qqDOG8xfMh6NTfRgZV0bVambo5NUZly9fFtY/ePCgSBvNT/v27St75ZVAVfE7e/YsevbqBRs7W2jpaOPgwYMftW1NP4YB9bbBZ8+eYeSoUbCxs4VhZSN4FzpfVIQ2qOxzMZAX24YNGqCSgQEaNiga29evX2PypEmoWaMGjAwN4dG6Na5evSqTp/C5Oj8tW7q07JVWMnXEUJHxTEFjx4wpdmykCdTZFxY0ZuwYaOloY9XqVTLLk5KS0LdfP5hbWsCkiikGDByIZ8+elbaaKqOufjAnJwczZ81EI+fGMDKuDBs7W4zw8cGTJ0+K3c+u3bop9Lcob+q4Llm/fj2aODujiqkpqpiaonWrVjh+/LiwPicnB7NmzoRz48YwrlwZdra28CkhvuqmzvOxItvetGkT2nVoD5MqptDS0UZaWlqZ6qts6miDAPD48WMMHz4c5tWro7KREZo1bYqoqCiZPLdv30bv3r1RtUoVmJqYoJW7Ox4+fFim+iqbsuO3efNmeLZti2pmZqhmZgavzp1x5coVmTyL/fzQskULmJqYwMrSEn379sXdu3dl8gQHB8Pb2xsW5ubQ0S7+mk8TqCOGiowJC/pUxzNA2a+NAc2/tlNHG8zvIwuncT/8IOR58+YNxo8bB/vPPoORoSEaODlh/fr1yqu4EqniuiQtLQ3jfvgBtjY2MKxUCQ2cnHDs2DFh/dmzZ9GrVy/Y2dpCR7v4ew8L5s+Hna0tjAwN0aG9YscGY2VVrVo11K9fHzt27EBmZiZyc3OxceNGWFpawsXFRX07Rkyu9PR0AkCpaWkkkUrLlHbt3k0ikYg2btpEN+PjacKECWRkZET3HzyQm/9eUhIZGhrShAkT6GZ8PG3ctIlEIhHt3bdPyHPp8mWaOnUq7dy1i6ysrGjFihVFypk7dy41aNCAHj95IqSUZ8+E9bkSCbm5uVGbNm3o0uXLdOv2bfr222/J3t6eMl6/LnO9SaLctNjPj4yNjSlo3366ERtHAwcMJGtra8pISy/2MxfPXyAdHR1a9MsvdDv+Fi365RfS1dWlSxcjhTyBu/L+Pps3bqJbN+Np4vu/z9/3Hwh5fEb4kHcXb3r6+ImQXr14KbOtsWPGkK2tLZ0+eYqir0VR+/btydnZmXLFOUqPRUWL347tv9OC+fNp88ZNBIBioqLlbsvExIT8Fi2im3E3KOHOXdq3Zy+9y3qr9thpQgx3/vEnnT55ipIS79HNuBv09VdfkYmJCT1PeUYkkVKuOEemfT59/IQWzJ9PRkZG9Do9Q+2xU2X8jh05SnNmz6agffsJAB0ICv6obWv6MazONijN/fd8ceXSZbpz6zaNfn++eJPxWqVtsKznIlWei89fyIvtL7/8QvG3btEv72N7MTJSyPPlgAHk5ORE4WfO0N2EBJo7dy6ZmJjQw0ePhDwFz9OPnzyhLVu3kpaWFiXeu6e0+lfkGH5oPFMwBQUHk7OzM9nY2MgdG2nCmEadfWF+OhD0b5xWrlghLH+T8Zpq1apFffv0pbjrsRR3PZZ69+pNzZs3J0lOrtr7QFXG70P9YNo/qdSpYyfaszuQ7ty6TZEXLlLLli3JxcVF7jZXLF9OXb27fvBvoWjS5ONYkeuSg4cO0eEjR+j2nTt0+84d8vX1JZFIRHE3bpBEKqV/UlOpY6dOtDswkG7dvk0XLv4b30/pOFZkTKjItleuWEF+ixaR36JFede0r/755Nvgy1evyMHBgXxGjqTIS5coKTmZTp0+TQmJiUKehMREMjMzo2nTptG1qChKvHeP/jp8mJ6mpCit/poYv8FDhtCaNWsoKjqa4m/dopEjR5KpqanMWMWrSxfaGhBAcTduUHRMDHXr3r3IfYPtv/9O8+fPp42b8q75oqKj1R4vTYqhImPC/PQpj2eUcW1MEtVd21XkNpjy7JnMePrkqVMEgELDwoQ8X3/9NdWuXZtCw8IoKTmZ1m/YQDo6OhR84IBKj0tNiOHbd+/I1dWVunbrRmfPnaPk+/cp4uxZio6JEfIcOXqUZs+eTfv25423g4KDi2zL7/2xsW//foqNi6MBA/OOjbT09DLXOzUtjQBQenq6um+b/6flzwlsqdKOdlXtpNS0pUo7AkCPHj2i9PR0Ib17904p+/6///2PXFxcSEtLi3R0dMjGxoZiYmKUUvbH4smnYihz8qlFixY0ZswYmWWOjo40c+ZMufmnT59Ojo6OMstGjx5Nbm5ucvM7ODgUO/nk7Oxc7H7dvnOHAAgXfRKplMQ5OWRmZkYbN20qc71JiQMbaa6ErKysaLGfn7DsXdZbMjU1pQ3r1hf7uQFfDiDvLt4yy7p4daFBAwcJ/2/RogWNHTNGJo+joyPNmjlT+L/PCB/q3at3sdtJ+yeVRCIRBe7aLSx7/Oh/pK2tTSeOHVdqLCpi/PLT/aTkYiefWrZsST/OmaP2WGl6DPNTemreoCPk1Oli8zRp0oS+GjVK7bFTdfwKJnk3+RTZtqYfw+pug3dv550vbsbdENbnivPOF5s3blJpG1TWBYoqzsVfDhhAXby9ZfJ4delCAwcNIolUSm8yM0lHR4f+OnxYJo+zszPNnj272H3t1bs3dejQQWl1r8gxVGQ8k58ePnpEtra2FHfjRrFjI3WPadTZF+an/z3Mi9PNuLw4FZx8Onn8BGlra1N6apqw7J+XrwgAnT556pPuB+WlK5cuEwCZG2IkkdL16Biys7Ojp4+faNzkk7quS+SlqlWr0qbNm4tdf+lyXnyLu5H0XzyOP9QOS7vt8NAwjZt8UlcbnDFjBnl4eJS4bwMGDqShw4Ypra6qSKqOn0Sad0/A2NiYtm3fXmyelGfPCACFnzlTZF1ScrJGTz6pI4alGRN+6uMZZVwbq/LarqK2QXlpwoQJVLt2bcqVSIRlDRo0oAULFsjka9asGc2ZM0dp7VBTY7h23TqqVasWvcvOVmgf5E0+5Uryjg0/Pz9hWdbbvGNj3fr1Za43Tz6Vj/KYfCqc5s2bV+z+zJs3T+5nCqarV6+SVCqlXr16UdeuXen8+fMUFRVF3333Hdna2tKTJ0/KL4CF8Gv3VEwsFiMqKgqdvbxklnfu3BmRkZFyP3Pp0iV07txZZplXly64du0acnJySrX9xMRE2NnaonatWhg8eDCSk5OFddnZ2QAAAwMDYZmOjg709PRw4cKFUm1H1e7fv4+UlBR4df43jvr6+vBs64mLxcQRACIvRcLLSzaWXbp44WLkRQD//n0KlgsAXp07Fyn3TMQZWFhZ4nPHevh29Ld4/vy5sC4qKgo5OTnwKvB3trGxQcOGDYVtqZMmxK8kz58/x+XLl2FhYYFWHq1haW0Fz/btcP78eYXLUDVNiqFYLMamzZtgamoKZ2dnuXmioqJw/fp1fP3V1wrVT9VUFT9lbVvTj2FAvW2wpPPF+WLOF5rUBlV1Lr4UGQmvQnm6eHkh8mJebHNzcyGRSGTiBgCVKlUq9jz77NkzHDt6FKO++krxCpYDdcUwX0njGQCQSqXwGTEC06ZNQ4MGDT6qjuVBnX0hkBen4T4jML2YOGVnZ0NLSwv6+vrCMgMDA2hra+P8BfWfkzXpXAwA6enp0NLSQpUqVYRlWVlZGDx0CNb4/wYrK6vSVE/l1H1dkk8ikSAwMBCZmZlwd3cvNp+8+GoCdbbDj922plBnGzx8+DBcXFwwYMAAWFlawqVZM2zevFlYL5VKcezoUXxety68vb1hZWkJdzc3jXptZnnFLysrCzk5OTAzMyt2X9LT0wGgxDyaSF0xVHRM+KmPZ5R1bazJ13aachyLxWLs3LkTo0aNgpaWlrC8devWOHz4MB4/fgwiQnh4OBISEuDVpUtpqqlSqorh4cOH4ebujnE//ABrKys0btQIfosWQSKRKLxv+cdGwX3T19dHW0/PYveNaS6plFSSAODRo0dIT08Xkq+vb7H7MW7cONy+fbvE1LBhQ4SFheHIkSMIDAxE69at0axZM6xbtw6VKlXC77//Xl5hK4Inn1Ts5cuXkEgksLS0lFluaWmJlJQUuZ9JSUmRmz83NxcvX75UeNstWrbE9t9/x/ETJ7Bx0yY8S0mBR+vWePXqFQDA0dERDg4OmD17NlJTUyEWi7Fk8WKkpKTg6dOnpaypauXHqmhcLIqNY/7nLC0Kfcbi39gr+vfp6u2NnX/8ibCQUCxfugxXr11Dh04dhRuyKSkp0NPTQ9WqVYvdljqpO34fkn8Tcf6CBfj2629w4thxNGvaFB07d9KY3yDThBgeOXIElU2MYWBYCStXrcLpk6dQvXp1udvdGrAV9evXR6tWrRSroIqpKn7K2ramH8OAettg/vnCt8D5YvGSks8XmtQGVXUuTklJgUWhPBYFyjQ2Noa7uzt+WbgQT548gUQiwZ9//onLly8XG7cdv/8OY2Nj9OvX76PqqirqiiHw4fEMAPy6ZAl0dHUxfsKEMtVT1dTZFwLAkl+XQFdHFxPGy4+Tm5sbjIyMMHPWTGRlZSEzMxPTZ0yHVCrViLGhJpyL87179w6zZvtiyOAhMDExEZZPnjIZrdzd0bt3b8UrVk7UeV0CADdu3ICJsTEqGRjg++++Q1BwMJycnOTmfffuHWb7+mLwENn4agJ1tsOP3bamUGcbTE5OxoYNG1C3Th0cP3ECo8eMwaSJE7Fjxw4AeV+Ge/PmDZYsWQLvLl1w4uRJ9OnTB1/074+IiIhS1lQ1yit+vrNmwdbWFp06dZK7nogwdepUeHh4oGHDhh9RE/VRVwwVHRN+6uMZZV0ba/K1naYcxwcPHkRaWhp8Ro6UWb7a3x/1nZxg/9lnMNDXR7euXbFm7Vp4eHgoWEPVU1UM7ycnI2j/fkgkEhw5ehSz58zBihUrsOiXXxTet2KPDYuKcZ5m5cfExEQmFfzyX2HVq1eHo6NjicnAwABZWVkAAG1t2ekebW1tSKVSldanJDz59F52djYyMjJkkjIV/CYBkDdgK7zsQ/nlLS9J165d0b9/fzRq1AidOnXC4SNHAOTd2AIAkUiEffv3IzEhAdWrVUNlIyOciYiAd9eu0NHRUXg7qrBz505UNjEWUv43EUobR0U/86E8AwcORPfu3dGwYUP07NkTx48eQ0JCAo4ePVrithXZP1XQtPh9SH4nOGb0aIwaNQpNmzbFyhUrUa9ePQRsC1C4HGXSxBi2b98e16NjcPH8BXh36YIBgwbKPIGX7+3bt9i1eze+VuOTE+UdP0V8TDnqOoYBzWqDIpEIQfv2IyExAWbVq8GwshHOnIlAV2/55wtNaIPyqOJc/KEyf9+xA0SEz+zsUMnAAGt++w2Dhwwp9jy7bds2DBkypMg3YzWFOmL4ofFMVFQU/P39sW3bNrUdr8XRpL4wKioKq/39sb2EOJmbm2Pfnr04/P6GjmnVKkhPz0CzZs3UMjbUpH6woJycHAwaPBhSqRTr1q4Vlv/1118ICw/HqpWrPlg3dVLHdQkA1KtXD9ExMbgYGYmxY8di1MiRuHXrVpF8OTk5GPw+vmsLxFddNLEdKmtspC7qaINSqRTNmjXDL4sWoWnTphgzZgy++eYbbHz/g/P51yO9evfGpMmT0aRJE8ycNQvde/TAxo0bFd5OeVBl/Jb++isCAwOxPyio2LHI+HHjcCMuDjt37SrtrmsMdcTwQ2NCHs+ULo+i18al3b/you7jOCAgAN5du8LGxkZm+W/+/rh86RIOHjqEq9euYdmyZRj3ww8ICQlRqF7lSdkxlEqlsLCwwMZNm+Di4oJBgwZh9uzZ2PD+PKHKfWOaiYggVXLKb3eq4O7ujqpVq8LHxwexsbFISEjA9OnTcf/+fXTv3l1l2/0QXbVtWcP4+flhwYIFSi+3evXq0NHRKTLD/fz58yIz4fmsrKzk5tfV1UW1atU+el+MjIzQsFEjmSdJXFxcEB0Tg/T0dIjFYpibm8PdzQ0uLi4fvR1l6NWrF1q2bCn8v+ATRtbW1sLy589fFBtH4H0snxWK5Yt/Y/8xfx8AsLa2hoODAxLvJQrbEYvFSE1Nlfl2zfMXz9GqVfGvE1EVTY9fYfn75FRf9tuv9R3r4+HDRwqXo0yaGEMjIyPUqVMHderUgZubG+rW+xxbA7bCd5bs47n79+9HVlYWRgwfUYoaK1d5xU8R+a89KmnbmnYMA5rXBl1cXHA9WvZ80dLdDa5yzhea0AYLUtW52MrKCs8K5XlRqMzatWsj/MwZZGZmIiMjA9bW1hg0aBBq1KxZZJvnzp3D3bt3sTsw8KPqqUrqjGFhhccz58+dw/Pnz1HDwUHII5FIMG3aNKxevRrJ9+8rXlEl06S+8Nz5vDjZ15CN09Rp07Bq9Wo8SM6Lk5eXF5IS7+Hly5fQ1dVFlSpVYGVjjZpy2qyqaVo/CORNjAwYOBD3H9xHWEiozFM5YeFhSEpKQhUz2W9a9//yC7Rp0wZnwsIVqbbKqPu6RE9PD3Xq1AEAuLq64tq1a/BfvRobCtzYz8nJwcCBA/Hg/n2EhIZqxFNPmtQOFRnTaDJ1tkFra2vUr19fZplj/foIDg4W9k1XVxdOhfLUd3TUmFfSqzp+y5ctg5+fH06dPo3GjRvLLW/C+PE4fPgwzkREwM7Orgy1UQ91xvBDY0Iezyjv2lgTr+3yacJx/PfffyM0JAT7g4Jklr99+xZz5sxBUHCwcKO6cePGuH79OpYvX17sU1TlTVUxtLa2hkgkkvnClWP9+khJSYFYLIaent4H963Y8/SLinGeZhVb9erVceLECcyZMwcdOnRATk4OGjRogEOHDhX7kx3lgZ98es/X11fmXYuPHinnhreenh5cXFwQcvq0zPKQkJBi33Hu5uZW5FsFp0+dgqurK0Qi0UfvS3Z2Nu7cvi3TAeYzNTWFubk5EhMTce3aNfRS86tCjI2NhYFEnTp14OTkBCsrK5wO+TeOYrEYEWcj0KqEd8W7u7nj9GnZWJ46dRqt3PNeA5X/9ylYLgCcDgkpsdxXr17h0aNHsLbKi6WLiwtEIhFOF/g7P336FDdv3hS2VZ40PX6F1ahRAzY2NribcFdmeUJiAhwc7BUuR5kqQgyJSBj4F7R1WwB69ewFc3PzD9ZTVcorfoqoWbPmB7etaccwoLltsPD5onevoucLTWiDBanqXOzm7o7ThfKcOn0a7nJeNWhkZARra2ukpqbi1MmT6NWrV5E8AQEBcHFxUevAsDiaEMN8hcczw4YPx/XYWETHxAjJxsYG06ZNw/ETJ0pdV2XSpL5w+LDhiLsei+vRMUKysbHB9GnTcPJ40ThVr14dVapUQVhYGJ4/f45ePYu2WVXTtH4wf+Ip8V4iQk6dLnLDZ9bMWUViDAArV6zAtq3qeZK7IE26LgHej2PEYuH/+RNP9xITcep00fiqiya1Q0XGNJpMnW2wVevWSEhIkFmWmJAAh/c3+vX09NC8eXPcLZQnITER9gUmA9RJlfFbtnQpFi5ciGPHj8PV1bVIOUSE8ePG4cCBAwgJDVXLFxKUQZ0xzFfcmJDHM8q7NtbEa7t8mtAGt2/bBgsLiyJPQuTk5CAnJ6fIK7t0dHTU+squwlQVw1atWuHevXsydU1MSIC1tbVCE0/Av+fpgvsmFotxNiKixN+5ZJpJlb/5pCqurq44efIkXr16hYyMDERGRqJr164q3eYHEZMrPT2dAFBqWhpJpNIypV27d5NIJKLNW7bQzfh4mjhxIhkZGVHy/fskkUpp5syZNGz4cCH/vaQkMjQ0pEmTJtHN+HjavGULiUQi2rtvn5Dn7bt3FBUdTVHR0WRtbU1Tp06lqOhoupuQIOSZMmUKhYWH072kJLoYGUnde/QgY2NjYbsSqZQC9+yh0LAwSrx3j4IPHCAHBwfq269fmesskUqJJMpNi/38yNTUlIL3B9GN2DgaPGgwWVtbU0ZaupBn+LDhNGvmTOH/F86dJx0dHVrs50e342/RYj8/0tXVpUsXI4U8gbvy/j5bN2+hWzfjadL7v8+D5PtEEim9Ts+gqVOm0MXzF+h+UjKFh4aRu7s72draymx77JgxZGdnRyGnTlP0tSjq0KEDOTs7U644R+mxqEjxI4mUXr14STFR0XT08BECQIG7dlNMVDQ9ffxEyLNyxQoyMTGhfXv2UuLdBPpxzhwyMDCgewmJao+dumP4JuM1+c6aRZEXLtKD5PsUdfUaff3VV6Svr083427I7GPi3QTS0tKi40ePqT1e5RW/1+kZFBMVTTFR0QSAVixfTjFR0fT3/Qel2ramH8PqbIMkkdLewD0UHhpGSYn36GBw3vmiX99+RfZR2W1QGecjVZ2Lz53Pi62fnx/F37pFfu9jezEyUshz7PhxOnrsGN1LSqITJ0+Ss7MztWjRgt5lZ8vsX2paGhkaGtLadeuUVmdlJ3XFUJHxTOHk4OBAK1asUFrdldGW85M6+8LCycHBgVauWCGzLGDLVoq8cJHuJSTSH7/vIDMzM5oyebLa+z9Vx+9D/WBOtph69exFdnZ2dD06hp4+fiKk7Lfvit1fAHQgKPg/3Rcqcl0ya9YsOhMRQUnJyXQ9NpZ8fX1JW1ubTpw8SRKplLLFYurZKy++0TEx9PjJEyG9ffdOKXX/L7RDRbf99PETiomKps0bNxEAOnsmgmKiounVi5efbBu8dPky6erq0sKFC+luQgL98eefZGhoSDv++EPIsz8oiEQiEW3YuJHuJiSQv78/6ejoUMTZs0qrvybGb/HixaSnp0d79+2TOfbSMzKEPGPHjiVTU1MKCw+XyfMmM1PI8+LlS4qKjqbDR/Ku+Xbt3k1R0dH0+MkTtcdNE2Ko6JiwYPoUxzPKujZW1bVdRW6DEqmUcnJzyd7enmbMmCF33zw9PalBgwYUGhZG95KSaGtAABkYGNCatWtVfmyqO4YP/v6bKleuTD/88APdvnOH/jp8mCwsLOj//u//hDzpGRnC+QYALV++nKKio+n+gwdCHr/3x8b+oCCKjYujQYPzjo209PQy1zs1LY0AUHp6uhrvmP/35c8JrK3kQQGG7ZSa1lby+OT+hp/M5NNvv/1GHTp0UDi/MiefJFIprVmzhhwcHEhPT4+aNWtG4WfOCOtG+PiQp6enTP6w8HBq2rQp6enpUY0aNYrcjEpKTiYARVLBcgYMHEjW1tYkEonIxsaG+vbrRzdu3pQpZ9WqVWRnZ0cikYjs7e1pzpw5GnmBRxIpSXMlNG/uXLKysiJ9fX1q27Yt3YiNk8nj6elJPiN8ZJbt27OX6tWrRyKRiBwdHSlo3/4iZa8t9PeJCD8jrMt6k0lenb3I3NxciJPPCB96+OBvmTLeZmbRuB9+IDMzM6pUqRL16N6jSB51JnXFjyRS2rY1QG57nTd3rkw+v0WLyM7OjgwNDcnd3Z3ORZxVe9w0IYZvM7Oob5++ZGNjQ3p6emRtbU29evaiK5cuFynHd9YssrOzI0lOrtrjVV7xCw8Nk9u+CpajyLY1/RhWZxskiZRWFzpf/Dhnjtwbrspug8q8SFH2uVgildKevbKx3bd/v8z63YGBVKtWLdLT0yMrKyv6/vvv6Z/U1CLlrN+wgSpVqiR3nSYldcRQkfFM4aTJN2vU2RcWTvImn2bOmEGWlpYkEomobt26tHzZMpLmStTe/6k6fvSBfvB+kvyxNwAKDw0rdn81bfJJFcexItclo0aNErZpbm5OHTt2FCaeSioDAIWGhSml3v+FdqjotufNnSs3ltu2BnyybVAildKhv/6ihg0bkr6+Pjk6OtKGjRuL7NvmLVuoTp06ZGBgQM7OzhR84IBS666J8XNwcJAbv7lz5wp5ijs+twYECHm2Bsi/5itYjqYkdcRQ0TFh4XI/tfEMfaAfVPTaWFXXdhW5DUqkUjp+4gQBoNt37sjdr8dPnpDPyJFkY2NDBgYGVK9ePVq2bBnlSiRKq7umxlAildL5CxeoZcuWpK+vT7Vq1aKFCxeSOCdHWB8aJn+8PcLHR8iTK5HQ3ELHRmxcnFLqzJNP5YMnn5RLi0iFv3SlQebPn4/t27fjwYMHCuXPyMiAqakpUtPSNOJd4xWR9ifRshhjjKmSlH+XlWkAHtMwdeO+sOz4OC4bboOMVXzcD5Yd94VMnTIyMlC1ShWkp6fzvWoVyp8TWKPfGpW0dJVa9lvKxbjsC5/U3/CT+c2n+fPnKzzxxBhjjDHGGGOMMcYYY4wxxj6OcqfvGGOMMcYYY4wxxhhjjDHGKigpEaRQ7iOj0k/jBXQyPpknnxhjjDHGGGOMMcYYY4wxxpjq8ZNPjDHGGGOMMcYYY4wxxhhjAKRSglSLn3wqK37yiTHGGGOMMcYYY4wxxhhjjCkNP/nEGGOMMcYYY4wxxhhjjDEGfvJJWXjyiTHGGGOMMcYYY4wxxhhjDHkTRVLw5FNZ8Wv3GGOMMcYYY4wxxhhjjDHGmNLwk0+MMcYYY4wxxhhjjDHGGGN4/+STkp9UUvaTVBUBTz4Vg943royMDDXvScWl/ekdT4wxxpRMqqXuPWCMxzRM/bgvLDs+jsuG2yBjFR/3g2XHfSFTp/x71PQJvrpNHd5BUiHK1HQ8+VSM169fAwAc7O3VvCeMMcYYY4wxxhhjjDHGPnWvX7+GqampunfjP0tPTw9WVlaYmxKlkvKtrKygp6enkrI1kRbxdKlcUqkUT548gbGxMbS0+KsNjDHGGGOMMcYYY4wxxsofEeH169ewsbGBtra2unfnP+3du3cQi8UqKVtPTw8GBgYqKVsT8eQTY4wxxhhjjDHGGGOMMcYYUxqeJmWMMcYYY4wxxhhjjDHGGGNKw5NPjDHGGGOMMcYYY4wxxhhjTGl48okxxhhjjDHGGGOMMcYYY4wpDU8+McYYY4wxxhhjjDHGGGOMMaXhySfGGGOMMcYYY4wxxhhjjDGmNDz5xBhjjDHGGGOMMcYYY4wxxpSGJ58YY4wxxhhjjDHGGGOMMcaY0vw/W3OXn4NdGH8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "attr_res.plot_token_attr(show=True)" + ] + }, + { + "cell_type": "markdown", + "id": "4f039697", + "metadata": {}, + "source": [ + "However, it may not always make sense to define individual token as intepretable features and perturb it. Tokenizers used in modern LLMs may break a single word making the tokens not intepretable by themselves. For example, in our case above, the tokenizer can break the word \"Palm\" into \"_Pal\" and \"m\". It doesn't make much sense to study the separate attribution of them. Moreover, even a whole word can be meaningless. For example, \"Palm Coast\" together result in a city name. Changing just partial of its tokens would likely not give anything belongs to the natural distribution of potential cities in Florida, which may lead to unexpected impacts on the perturbed model output.\n", + "\n", + "Therefore, Captum offers another more customizable interpretable input class, `TextTemplateInput`, whose interpretable features are certain segments (e.g., words, phrases) of the text defined by the users. For instance, our prompt above contains information about name, city, state, occupation, and pronoun. Let's define them as the interpretable features to get their attribution. \n", + "\n", + "The target to interpret can be any potential generations that we are interested in. Next, we will customize the target to something else." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0673a936", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHCCAYAAAAZw0bLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZVQVSwDA8f8FAeluQbHFAFuwu+vZ3V3Y3YEtYnd3d3dgoGJ3ByUgSNe+D+jVKyEKCOL8ztnzvLMzs7PzlntnZ2ZnZZIkSQiCIAiCIAg/pZTeBRAEQRAEQfhbiIaTIAiCIAhCMomGkyAIgiAIQjKJhpMgCIIgCEIyiYaTIAiCIAhCMomGkyAIgiAIQjKJhpMgCIIgCEIyiYaTIAiCIAhCMomGkyAIgiAIQjKJhpMQj1hMXhAEQRASJhpOQjwymQyA2NjYdC6JIAiCIGQsouEkKJgwYQIbNmwAQElJCUmSRA+UIAiCIHwhGk6C3KFDh9i9ezcdOnQgZ86cnDp1CplMJu+BEgRBEIR/nWg4CQB8+vSJ7du3Y2VlxYMHD+jVqxfNmjVjzJgxREVFiV4nQRAEQUA0nIQvtm/fzuPHj6lWrRr58+dn6NChLFmyhK1bt/Ly5UvR6yQIgiAIiIaTALx8+ZIDBw6QM2dOBg4cKA/X1tbmw4cPXL16VR4mep4EQRCEf1mW9C6AkP42bdqEu7s7ampqPH36lDx58hAcHIy7uzuxsbEUKlRIHlcmkxETE4OSkpLohRIEQRD+OaLh9I+7fPkyZ86coUaNGhgbG1OsWDGKFSuGiooKbm5utGvXjqJFi7JgwQJ8fHwYOHAgBgYGQFzvk2g8CYIgCP8SMVT3D4uOjmbr1q3ExsbSt29fZs+ezZ07dyhcuDDm5ubMnz+fWbNm8f79e5SVlblx4wY5c+Zk/vz5AAqNpoiICE6ePJlepyIIgiAIf4RMEpNW/lmXLl2ie/fu1KtXjxkzZijsi4iIQE1NLV6a3bt3M3z4cNavX4+Dg4M8/PTp01SrVo3jx49TrVq1NC+7IAiCIKQH0XD6x924cQMLCwvMzc3lK4UrKcV1RAYFBdG/f3/CwsJQU1NjxIgR2NraUrlyZapVq8bo0aOBuKUMmjVrhkwm4/jx4+l2LoIgCIKQ1sQcp39c8eLF5f/+2mD6OnepQ4cO3Lhxgy5duvDmzRvKlClD69atefHiBVmyxF06sbGx7Nu3j9OnT3Pnzh15+tjYWJSVlf/8CQmCIAhCGhI9TkKCvL29sbS0ZNu2bTRp0gSAW7du0bBhQyRJ4u7du+jp6fH69WuqVatGlSpVWLZsGZGRkaiqqsrzERPIBUEQhMxETA4XEqSiokLlypU5ceIEAIGBgURHR/P582d69uyJnp4e0dHRrFq1Cl9fX2bPng3EPaXXqFEjXrx4AXxbvkC0zwVBEITMQDSchAQZGBgwcOBA9uzZQ7ly5ejfvz9ly5bFysqKnj17AnD//n1cXFyYMGEC2trafPz4kaNHj7J//37OnDnDsGHDeP78OcrKyqLXSRAEQcgURMNJSFSdOnXw9vZmyJAhNGzYkOjoaMaNG4ehoSFhYWHMmDEDS0tLnJycALh+/ToLFy6kYsWKBAcH4+vrS/HixTl69KhCvtHR0elwNoKQMBcXF/bt25fexRAE4S8hJocLP9WoUSOCgoKYPHky9evXB+D8+fPs2rWL/fv3A/D69WuWLVtGnjx5OHPmjDyth4cH7u7uVK5cmUePHmFnZyefWC4I6c3T05Nly5bRoEEDGjZsmN7FEQThLyAmhwu/LCgoiOLFi5MtWzbOnDlDZGQkmzdvpn///hw5coSyZcsC8PbtWxo0aEB0dDT58+fH09OTgIAAduzYga2tbTqfhSBA586d+fTpE5MnT6ZgwYLExMSIp0EFQUiSGKoTfpmOjg4TJkxgzZo1ADx+/JgVK1ZQr149eaMJ4OjRo3h6etKzZ09cXV05ffo0NjY2zJo1K72KLghy7u7u3Lp1i1q1alGwYEEAlJWViYmJSeeSCYKQkYkxE+G3tGnTBoDIyEj27t2Lm5sbO3fulO+/ffs2+/fvx8HBgT59+sjD1dTU8PLyIjY2FplMJiaNC+kiJiaGkSNHUqRIEZo3b86bN294/fo15cuXR1lZWf4UqLg+BUH4kWg4pTE/Pz/09fXli0tmNqqqqnTt2pW8efNibm4OxDWmjhw5wtOnT1m9erU87pMnTwgJCaFIkSLExsYme66TaGQJqW3Hjh2EhITw33//oaWlxdKlS9m/fz+hoaHMnz+fihUrpncRBUHIoDLnr3kGERsbS/fu3bGwsMDFxSW9i5NmzM3NadGihfzz6dOn2b59O7Vq1cLR0VEevnnzZgIDA6lYsSJZsmRJdG2n27dvc/ToUTZt2sTDhw9RUlJCJpPJXwkjCCkRHBzM7NmzcXR0pHr16mTJkoXevXuza9cuGjZsSNu2bdm0aZNCGjEVVBCEr0TDKQ2dPn0aHx8fqlSpgqurK/ny5ePixYvpXaw0p6Ojg7q6OoMGDZKHnT9/nnPnzlG0aFHq1q0LfBsG+Tqn5O3btwwYMAAHBweaNWvG0qVLKV++PG3atCEoKCjT9toJf9bMmTPR09OjS5cueHt7s2/fPg4fPoy5uTkTJ06kcuXKnDlzRqGxJHo7BUH4SvwSpZGwsDAWLFiAiYkJmzdv5sWLFzRr1oyuXbuyevVqJEnKtHexjo6OnD9/HmtrayBu6G779u3IZDK6dOkCoNB79PUppt69e7N9+3aGDBnCmzdv2LJlCwcPHiQ0NJTKlStz69atP38yQqby4sULDh06RO3atQkPD8fOzo5x48Yxa9YscuXKxc6dO3FwcODKlSvyBv3w4cPj3fBk1r9dQRB+TjSc0siGDRvw9vambdu2QFxDYcKECXTq1Inly5fj7++fqe9iv3+k+8qVK5w+fZoyZcrIXyr8tffo64/Tli1bOHToEN27d2fixIno6+uTLVs2ypQpw7Zt27C3t2f37t1//kSETGXFihVoa2vTsmVLFixYQP78+Tl37hyHDx/GycmJQYMG0adPHxo2bEiWLFl48+YN169f59SpUwpP24mhY0H4d4mGUxrw8vKS/9g3btwYiGsoZMmShZYtW/Ls2TNWrVqVzqX8cypUqMC6devkK4wn1Ns0Z84cHBwcaNWqlfz9dl+pqqrStm1beQ+WIPwuZ2dnVqxYgaWlJdHR0VhbW6Onp4epqSn9+vWjRYsWZMuWje7duwPIV8DPly8fysrKPH78mDlz5hAYGCiGjgXhHyWeqksDLi4uREVF0blzZ0DxqbDs2bOjrKxMSEiIQpqYmBj5JOjMqGTJkvJ///iD8+TJEwICAqhfvz758+cHiLcIYeXKlXFwcIiXb3R0tFiJXEiWr4tb5smTB0A+Ebx3795UrlyZQ4cOsXnzZqZNmyZvpF++fBkfHx9atmwJxA0nnzlzhsDAQCZNmpRu5yIIQvoRt0yp7M6dO1y8eJFKlSpRqlQpQLGhcPDgQQCMjIyQJIkLFy7w+fNn+Ytw/8XF9ywtLfH396dYsWIACdZBbGwsWbNmJTQ0lIcPH3L27FmAJJ/OE4Tv/dgYb9KkCTdu3MDLy4u3b9+yfv16KlSoQOfOneU3MBs3bqRHjx48e/aMAQMGcOvWLapUqULNmjXl+Vy7dk3+78w8dzG9iCFRIaMRDadUFBMTw5gxY9DQ0GDw4MHysK89TsHBwezevRtVVVWqVq3K1atXWbhwIYULF2bixIlA/C/3zC4mJgYVFRWKFCnC1q1bCQ4OVqiDr1+aSkpKPH36lEaNGlG9enW6dOlC7ty5OX/+fKbtpRPSjiRJxMTEYGtry+7du+nWrRv58+enW7duGBgYAHDjxg1MTU1RUlJi1qxZBAQEMGXKFPLmzYuBgQGBgYFMnjyZMmXK8PLlSwICAsR6Y6nI19eX2NhYMSQqZDjiikxFERER6OrqcvLkSXbt2kV0dDTKysryP3xXV1eOHj1KkyZNsLW1pWDBgixbtoz58+eze/duWrVqRWBgoEKemf1uS1lZGVVVVQYPHoy3t7f8pcFffa07f39/GjduTExMDPPnz+fq1as0btyYfv368eHDh/QouvAXk8lkKCsry/++tLW1efDgAc2bN5fHCQ4O5vXr18ybNw9lZWUmTJiAtrY2L168oECBAsyYMYN9+/axZs0abGxsaNWqFevXr0+vU8pUYmNj6dmzJ82bNyc4ODi9iyMIiiQh1W3fvl0yNzeXChUqJLm4uEgTJ06UevToISkrK0vNmjWTvL29JXd3d2nr1q3S06dPJUmSpGvXrkk2NjbSw4cP07n06cfZ2VlSV1eX2rZtK508eVJasWKFFBQUJEmSJM2YMUMyNDSUPnz4II/v5eUlmZubS+vXr08wv+jo6D9SbuHvFxUVFS9s7Nixkkwmk8qUKSN9/vxZkiRJKlKkiLR+/Xpp3rx5UuHChaVFixbJ42tqakpbt26VJEmSYmJiFPKKjY1Nw9JnPidPnpTKli0rzZ49O8H9P9avIPxJoscpDTRr1owPHz7QuXNnTp06xdmzZ7l27Rrz5s1j7NixzJkzh5IlS7J48WIqVapEz5490dDQQF9fHw8PDwDu3r2Lk5NTpu9x+t6IESN4+vQpMpkMV1dXjhw5gpeXFwALFy6kT58+mJubExkZCYC+vj5RUVFoaWnJ83Bzc+PEiRMA8neOSWLOSarw8/PLtNdjQg8YtGzZkj59+rBkyRK0tLRwc3NDVVUVDw8PBg8ezMSJE+UPgJw+fZrcuXNToEAB4FtP6atXrwCxgOav+LoGnoWFBZ06dQIU5z2GhoaK4TshfaV3yy2zi4iIkEJDQ+WfPTw8JJlMJu3fv1/y9/eXrly5IlWpUkXKkiWLpKmpKQUEBEiSJElTpkyRChcuLPn7+8fL81/oSfHz85PCwsIkSZKkN2/eSPnz55dWrlwpSdK3u/dFixZJJUqUkA4ePChJkiQFBwdL3bt3lwoVKiTZ29tLbm5u6VP4TCgmJkb677//JFNTU2nevHnpXZw0l1AP0datW6UsWbJI1tbW8jr42vNx8eJFKWfOnNK9e/ckSYrrwVq5cqVkbGwsbdiwQSFP0VuStJUrV0q5c+eW9uzZI0lS3Pfd1++8+/fvS6amptKlS5ckLy8ved0Kwp8kmu1pTFVVlaxZs8o/f/z4EVNTU2xtbdHX16d06dLMmzcPVVVVRowYgZ6eHrGxsUiShImJCWpqavHy/BcmkBsYGMjrzcrKijx58sh742QyGc+fP2fHjh3Y2tpStmxZADQ1NZk1axZubm5UrlyZDh06cOnSpfQ6hUzl+9cHzZ8/n1y5cnHy5Mn0LlaaSWiBS01NTXR0dHBycoq3Jtm5c+fQ0tKiYMGCREREMG7cOMaNG8eQIUOoUaOGPE+Iv/ir8I2XlxcbNmzA39+fvn37snHjRpSVlVFWViYsLIwlS5YQGxuLg4MDKioqLF68mCNHjqR3sYV/TXq33P41Xl5eUvny5aUCBQpIu3fvlmbOnCmVKFFCMjMzk/ewSJIklS1bVurTp4/8c3h4uLRp0yapRYsWUkhISHoUPV18vUvfuHGjpKOjI7Vq1UoaOnSoZGRkJFWtWlW6evWqJEmSdOLECWnBggXSmjVr5GnLlCkjjRkzJsF8/4Veu9QSGhoqNWzYUGratKkUGRkpSZIkTZw4UZLJZNK4ceP+qR6U4OBg+d/f1/OOioqS+vXrJw0YMEB69uyZVL9+falo0aLy+U+xsbHSiRMnpCFDhkjt27eXli1blm7lz+iGDx8uVahQQbp48aK0YcMGydLSUipZsqR09epV6cmTJ5KKioq0e/fu9C6m8I8TKwf+Yaamppw/f57Ro0ezZcsWIO6x561bt8p7WF6+fElgYCAVKlSQpxsxYgSXL1/G0tISDQ2NePl+Xdwvs/l6l96mTRtKlizJqFGjeP/+PR06dGDKlClkzZqV2bNnM2fOHPLmzUtwcDDTpk1j7Nix5M2bF0mSiIyMRFVVlfDwcPz9/bGwsFB4okrMl0ja5s2buX//PrNmzUJFRYXY2FjGjRtHt27diI6OZvHixWhoaMjn+2RGkiQRGxuLpqamPExJSYnY2FiyZMlCbGwshw8f5uPHjzx69IjDhw9jY2MDQP/+/bl16xZWVlYUKVKESZMmsW3bNjZv3oypqWl6nVKG83UNvKpVq1K2bFnKli1LzZo1mTFjBrVr1yY0NJRy5crRuHFjZs2axevXr3F1dZUvASFJkphLJvwZ6dxw+6dFRkZKK1askPLly6cQ/ujRIyl//vzSxYsXpQ8fPkjDhg2T1NTUpK1bt8rnS928eVM6deqUdODAAXm6f+XJne+fgHrz5o1UoUIFqWvXrlJkZKTk4+MjLVy4UNLT05NMTU2l+fPnS5IkSQ8ePJDKly8vlShRQipXrpx08+bN9Cr+X8XT01OqWLGiZGBgIFlYWMSbU3Lnzh2pSpUqUu3atRN8Mi2z+v5vLTQ0VCpUqJAkk8mkUaNGSdeuXZPvO3/+vCSTyaRSpUpJ79+/lyQprteqYsWK0rp16+Ll+y/13n0vKipKql+/vlSrVi3p9evX8rCvpk+fLslkMunhw4fS48ePpTx58kitW7dOMC/RmyykNXGrnY5UVFTo2rUr7u7uAERFRQFxPU6enp7Y2trK5+msXbuWFi1aEBgYyJw5c6hZsyaTJ0+mf//+FClShJs3b/4zd1vfPwGVLVs2oqOjMTIyQkVFBWNjY1q0aEGlSpXImTOnvBfk67vHpkyZQvHixalSpQpTpkyRzzO5cOECc+fOJSIi4s+fUAbm4uKCJEns37+fGTNmMGzYMBwcHHjz5g0AmzZtIjIyksGDB8t7Xv4FMpmMkJAQJElizJgxREZG0q9fP6ZOnarweqFRo0ZRvnx5rKysyJ8/P6NGjUJTUxMbGxtu3bolf+Lz6tWrwL87/ykyMpI8efJQp04drK2t5T15AB8+fGDt2rX06NGD/Pnzs3TpUkJCQli5ciUAly5dYvXq1Rw7dgxAoTdZENJEOjfchASMGDFCMjAwkMqUKSPZ29sr3MFOmjRJsrCwkBYuXChJUtwdaq9evaQaNWpI4eHh6VXkdPH1rn/evHlS1qxZpT59+kizZs2SHB0dJRMTE3nvSEBAgFSlShWpd+/e8rRr166VXFxcJB8fH+nQoUPS8OHDJQsLC+nFixfpci4Z0e3bt6WyZctK48aNk4f5+PhIzs7O0uPHj6WLFy9K5cuXlwYOHJiOpUwfK1eulGQymVS6dGlJR0dH2rdvX7y5Tz4+PpKdnZ183t2xY8ekokWLShYWFpKtra38evzw4YMkk8kkV1dX6fnz5+lyPhnF17/pr71G0dHR0pQpUyRtbW3Jz89POnv2rGRsbCy5uLhIkiRJO3bskHR0dKTKlStLJiYmUrly5aRHjx6lW/mFf4NoOGVAmzdvlpSVlaXatWtLPj4+8nB3d3epQoUKUs6cOSVdXV35xOeIiAgpe/bs0rlz59KryOnu5s2b0oABA6Q+ffpImpqaUsuWLRX2nzhxQrK1tZWmTJkihYSESMHBwZK3t7f06dMnqUyZMpJMJpPat2+fTqXPeBIaOvl+GCk0NFTq2rWrVKlSJen+/fvx9v8Ljh07Jm3YsEF+/j+KioqSypcvL3Xp0kUeFhkZKS1dulQ+FC9JktS/f39JJpNJderUkRwcHCQ7Ozvp1atXf+QcMrpbt25J2tra0oIFC6Tw8HCpSZMmkr29vXx/hw4dpFatWkmhoaFSaGio1K5dO6lKlSrSu3fv0rHUQmYnGk4ZlK+vr/yP/+tY//nz5yUjIyPp9u3b0sWLF6VixYpJNjY20oIFCyQtLa1Ev8D/Ja9fv5Zq1aolnTp1SpKkuDoLDAyUJEmSVq1aJTk6Okr79u2Tx/fy8pLat28v5cyZU9LW1pbs7e3lc1H+ZSEhIdKgQYMkV1dXSZK+9QR8/e/atWulMmXKSLNmzUq3Mv4NVq9eLTk4OMRbU+zrivhXr16VlJWVpaFDh0pubm7Su3fvpJkzZ8qfFv3XrVu3TrKyspJiY2OlzZs3S/r6+tLJkyclSYrrjVq0aJGUNWtW+VzPDx8+SIcOHZI+ffqUnsUWMjnRcPqL7NmzR9LS0pL8/PwkSYrraVqwYIFkamoqlSpVSnrz5k06lzBjeffunVS/fn1px44d8rDu3btLtra28qUfvt797927V5IkSRo1apR0/PjxdClvRvR9g+lrj9Lr16+l//77T2rQoIHk6+srSdK/19uUXJGRkVLPnj2lrFmzSh07dpTWrFkjubu7y/dXqlRJqlq1qsIPfXR09D810f5ngoODJX9/fylPnjxStWrVJEmK++77asKECVKjRo2kGzduxNsnCGlBTA7/i1SvXh07Ozs2b94MxC2u2bdvX+7du8eiRYuwsLBI5xJmLMbGxtja2tKrVy+GDh3KjRs3ePz4MTY2NkiSxO3bt9m/fz/58+enYcOGAEydOpWqVaumc8kzjq8PHMhkMvnE5S1btuDt7U3r1q0xMjISb7BPhCRJqKiosGTJEtzd3ZEkifv37xMeHg7A9u3buXjxIlOnTkVXV1eeTllZOcFXwPyrNDU10dfXZ+7cuaxevRqARYsWcejQIQA6deqEqqoqffr0ITAwEFVV1fQsrvAvSOeGm5BMX+/8XVxcJB0dHalnz57SrVu3pCtXrqRzyTK+S5cuSSVLlpRKliwpVa9eXf4qB2dnZ6lAgQLyYRRxl/9zb9++lUqUKCEZGxv/8xOZkyMmJkahN+7rsHFYWJhkZmYm9e3bN72K9tf69OmT1LhxY6l+/frya3DHjh1SwYIF5a+8EYS0JJMk8QbUv83du3cZNGgQvr6+VK9enQkTJigszCck7OXLl2TPnh0lJSW8vb2pW7cuJUqUYOnSpWLxvF9w79492rZty9u3bxkyZAi9e/dW6DER4vuxV+7KlSs0bdqU8+fPkzNnznQs2d/Jz8+Pnj17cvToURo3bszVq1cxNzdnw4YNWFlZpXfxhExONJz+Ynfv3sXAwABLS8v0Lspfx8/Pj2LFirFo0SLq1asnhpt+w7p16xg8eDDa2tosX76c6tWrp3eR/ipfV7QXft/FixfZs2cPBQsWpHjx4tjZ2YmbICHNiYaT8E+KiIhg2LBhLF26lNmzZ9OvX7/0LtJfa+TIkYSGhjJv3jzR+EymzPqKJEH4F4iGk/BPO3ToENeuXaNv374YGxund3H+WlFRUaioqIi7fUEQMj3RcBIEQRAEQUgm0a8uCIIgCIKQTKLhJAiCIAiCkEyi4SQIgiAIgpBMouEkCIIgCIKQTKLhJAiCIAiCkEyi4fSXioiIYMKECURERKR3Uf5aog5TRtRfyok6TDlRh8KfJpYj+EsFBQWhq6tLYGAgOjo66V2cv5Kow5QR9Zdyog5TTtSh8KeJHidBEARBEIRkEg0nQRAEQRCEZMqS3gXIqGJjY/nw4QPa2toZ8hUSQUFBCv8Vfp2ow5QR9Zdyog5TLqPXoSRJfP78GQsLizR9l2N4eDiRkZGpkpeqqipZs2ZNlbwyIzHHKRHv3r3DysoqvYshCIIgZAJv374lW7ZsaZJ3eHg46rpmEBmYKvmZmZnx8uVL0XhKhOhxSoS2tjYAb89fQkdLK51L8/e6oq6d3kX4q3m89k/vIvz1hk+7kt5F+Ov1bWub3kX4a0WGhbB8QH35b0qaHCMyMq7R5DgLsqinLLPoMLwuDyUyMlI0nBIhGk6J+Do8p6OlhY6W+PH/XZoaou5SQl0zdbre/2kp/SERUFMXN48p9SemfMhUNZCl8HqXlGSIYaikiYaTIAiCIGQCSjJIaftMkkFM6hQn0xJP1QmCIAiCICST6HESBEEQhExAWUmGTCllXU6Skkz0OP2EaDgJgiAIQiagJJOleC6VlAGX38loxFCdIAiCIAhCMokeJ0EQBEHIBJRkIEthd4gkOpx+SvQ4CYIgCEImoCSTpcr2K86fP0/9+vWxsLBAJpOxd+/eJOOfPXsW2Zchxe+3R48epeDM/yzR4yQIgiAIwm8JCQnBzs6OTp060aRJk2Sne/z4MTo6OvLPxsbGaVG8NCEaToIgCIKQCaTWU3W/onbt2tSuXfuXj2NiYoKent4vp8sIUrXhlCNHDpycnHByckqV/F69eoWNjQ23bt3C3t4+VfJML5IkMXHBfJZv30pAYCCl7exZNH4iBfPkTTTNim1bWb93N/eePgGgeMFCTBs0lFJ2dvI4569fY9bK5dy4fw9PHx/2LFpKo+o1FPIJDglhxOyZ7D15Ar9PAeSwzEb/9h3o1botAP6fPjHe1YXjly7w1tMTI319GlWrwWSngehq65AR7F63mi1LF+Hn402OvPkYMGEKdqUdEox77vBB9mxYy7P794iMjMAmb346DxpK6UpV5HEOb9/CtEH946U99ewtal9eMxAaHMyKWc6cP3qYgI8fyVuoMAMmTqWAfdEEjztz+GD2b1pP/wmTad61Zyqcdeq6sGczp7asIsjPF7McuWnSfxS57EokGPfprass6N8hXvjojYcxzZ4zXviNk4dYN3EwhctVpZvzInn48Q3LuHP+BN6vX6CilhWbQkVp0Gswptbf8ogIDWH/sjncuXCK0MBPGJhbUqFJO8o3bpUKZ506yhc2ZWiLwhTPY4SFkQaNxp1k36U3SaZRVVFiXLuitK2WCzN9dd59DGHqptusOfpUHue/8tmZ3KkYucx1eO4ZxOhVN9l76bV8v5Z6FiZ3Kk7jctkx0cvKrWd+DFh0FffHHxWONb59UbrXzYe+tipXH/rSx9WNB68/pWodpAaPkzu5fmgDIYF+GFrmpHLbgWTLl/Df09FlE7l/8VC8cENLGzpO3wZATHQ01w6s5f7FQwQH+GJgZk35lv2wKfLtuyE2JprLu1fw8PJRQgP90dQzpGD5epRp2BnZl5fuRoaHcmHbIp7dOEd4cCA6xuYUrd4c+2pN06AW0k5qPlX340uT1dTUUFNTS1He3ytatCjh4eHY2toyZswYKleunGp5p7UM3eNkZWWFp6cnRkZG6V2UFJu5Yhlz16xm7fSZ5LWxYcriRVTv1J7HR0+inci78M5eu0KrevVxLFqcrGpqzFy5jBqd23P/0DEszcwACAkNxS5/ATr915Qm/XonmM/AaVM4c/UKG2fPJYdlNo5fvEDvieOwMDGlYbXqfPDx5oOPN7OHj8I2d25ev39Pz/Fj+ODjzc4Fi9OsTpLr1P49uE4Yw+CpMyhcsjT7Nq5jSLuWbDhzCTPL+C/N9LjqRsnyFekxfDRaOjoc3r6F4Z3asvzAUfIWKiKPp6mtzeZzbgpp1b57N9P0oU68ePyIsfMXYWRqxrHdO3Fq1YSNpy9hbG6ukO780cM8uHUDI1OzVD771HHz1GF2uzrTbNA4chYuxqX921gytDujNhzEwNQi0XRjNh0hq+a361NLzyBeHH+v9+xdPDPBRtgzj+uUb9wa6wKFiY2J4eDyeSwe1JVRGw6ipq4BwO4F03l66yrtx87EwMySR9cvsWPuJHSNTChSvmoqnH3KaaqrcPu5P2uOPmX3xOSVafvYypjqq9Nl9kWevQ/CRC8rWZS/TSstY2vMtrGVGbvmJnsuvqZxuexsH1eZcgMOce2RLwArB5ejkI0+7ZzP8cEvlLbVcnNyZi1su+zmw8dQAIa1LMygpgXpOPMCT94FMqatPSdm1iJfx50Eh0WnfmX8pkdXTnBm41yqdhyGZR477pzZw+5ZTnScvg0do/h/N5XbDaZ8iz7yz7GxMawf3Ya8pb7V/6WdS3h4+SjVO4/CwCIHr+64sd9lGC3HrcQ0Rz4Arh1cz+3Tu6ndYzyGljnxfvmQoysmo6ahRbGaLQE4u2kebx/coE6viegYmfP67lVOrpuJlr4xuYtXTOOaST0yJVBK4czl2C/pf3zJ/fjx45kwYULKMgfMzc1Zvnw5xYsXJyIigg0bNlC1alXOnj1LhQoVUpz/n5ChJ4crKytjZmZGliwZun33U5Ik4bJuDaN79ea/mrUolDcf62bOIjQsjM0H9yeabtMcF3q3aYe9rS35c+VixRRnYmMlTrldlsepXbESUwYO5r+atRLNx83jFh0a/0el0mXIkS0b3Vu2wi5/Adzv3QWgUN587Fq4hPpVqpLLOjtVHByZOnAIB06fJjo6/b94ty5fSr2Wbajfuh058uRlwMSpmFhYsnf9mgTjD5g4lTa9+1HAvihWOXPRY8QYstnk5NKJ4wrxZDIZhiamCttXEWFhnDt8kN6jx2FfxpFsNjnpMngY5lbW7NmgeFxfT0/mjRnBuAVLyaKikvoVkArObFtLmbpNcKzfDLMcuWjSfxT6JmZc3LMlyXRa+oboGBrLNyVlZYX9sTExrJ80lDqd+2FoHr8R23vOSkrX+Q9zmzxY5s5P65HOBHh/4O3j+/I4r+57UKpWI/IULY2heTbKNmiBRa58vH18L3VOPhUcvfZO3sBJjpolLaloZ0adUcc5dfMDr72Duf74I24PfORxnP4ryIkbH5i+5Q6P3wYyfcsdTt38gFOTggBkVVWmSYUcDFt+nQt3vXn+4TMT19/ipddnetXPr5DP1M232XPxNfdffaLDjPNoZFWmddVcqVsJKXTjyGYKV2xAkUqNMLS0oXLbQWgbmnL71K4E46tpaKGpZyTfvF48JDzkM4Uq1JfHeXDpCKXqdySnfVn0TCyxr9aU7IVLc+PIJnkcz2d3yV2sAjnty6FrbEHeUlXJUag0Xi8fyuN8eHoX2/J1sSpQHF1jC4pUaYyxdR68v4vzr3n79i2BgYHybeTIkamSb758+ejWrRvFihXDwcGBxYsXU7duXWbPnp0q+f8Jv9RwqlSpEn379qVv377o6elhaGjImDFjkKSEXwk4d+5cChcujKamJlZWVvTu3Zvg4GAgbkKZjo4OO3fuVEhz4MABNDU1+fz5M69evUImk+Hh4QF8m41/6tQpSpQogYaGBo6Ojjx+/FghjylTpmBiYoK2tjZdu3ZlxIgR6TrU9/LtW7x8falRrrw8TE1VjYqlSnP55s1k5xMaFkZUdBQGerq/dPxyxYuz/9RJ3nt5IUkSZ6648eTVS2p+V54fBX7+jI6WVro3WqMiI3ly9zYlK1RSCC9ZoRL33K8nK4/Y2FhCg4PR+WE8PSwkhCali9K4RBGGdWjNk3t35PtiYmKIiYlBVU3x7eBqWdW5c+2qQt6TB/SmVc8+5MyXn4woOiqSt0/uk79UWYXw/CXL8vLerSTTzuzSmDENy7NwQEee3LwSb//RtYvQ0jPAoV7yhjTCQz4DoKHz7RrOWaQY9y6d5pOvN5Ik8eTmFXzfviJ/qXLJyjMjauBgjftjP4a1KMK7bS14vK4Js3qUJKvqt4ang60Jx93fK6Q75v4ex4ImAGRRlpFFWYnwSMV1nMMiYyhXKK6Rb2OujbmhhkI+kVGxnLvtJc8nI4iJjsL71SOyFy6tEJ69UGk+PL2TSCpF987tJ3vBUugYfevtjYmOJIuKqkK8LKpZef/ktvyzRV573jxwx98zrtHr8/oJ75/cxsbOUR7HMp8dz2+e57O/D5Ik8eaBOwFeb8heuMwvn2t6UpKlxpN1cXnp6OgobKk5TPejMmXK8PTp059HzCB++Vdx3bp1dOnShatXr+Lu7k737t3Jnj073bp1ixdXSUkJV1dXcuTIwcuXL+nduzfDhg1j8eLFaGpq0rJlS9asWUPTpt++dL9+1tbWxs/PL8EyjB49mjlz5mBsbEzPnj3p3Lkzly5dAmDTpk1MnTqVxYsXU7ZsWbZu3cqcOXOwsbFJ8rwiIiKIiIiQf/5xfDclvD7GdbubGioOOZoaGvH6w/uEkiRoxOyZWJqaUc3x135QXMeMp9uYUWSr4EiWLFlQkimxcqoz5UqUTDC+X0AAkxcvoEfL9J9jEujvT0xMDAY/PHFhYGyMn69PIqkUbV22mPDQUKrUbygPs86Vh1FzF5CzQAFCP39mx6rl9GpUj7XHz2CVMxcaWloUKl6StS5zyJE7L/rGxpzcu5sHt26Qzebb/JxNi11RzpKFZl26p84Jp4GQwABiY2LQ1jdUCNfWN+Sz/8cE0+gYGtNy6CSs8hUkOiqS68f2s8ipE/1c15PbPu66eXHnJm6HdjF89d5klUOSJPYsnE7OIsWxyPltbl+TAaPZOnMs4/6riJJyFmRKMloNm0KuIsV/74QzgJzm2pQrbEJ4VDSNx53CSDcriwc4YKCtRpfZFwEwM1DHOyBMIZ13QBhm+nFvtw8Oi+byfW/GtrXn4ZtPeAeE06pKTkrnN+bp+7jvp69x4+cTTnZTzbQ+zWQL+/wJKTYGDR3Fa1BT14BXgQl/z38v+NNHXt5xo27vSQrhOQqX4cbRzWTLXxQ9k2y8vn+d5zfPIcXGyuOUqteeyNBg1gxvjpKSErGxsZRr2osCDjXlcaq0G8LxVVNZPqAeSsrKyGRK1Ogymmz57FN24n+YspIMpRRODk/p5PLfcevWLcx/mP6Qkf1yw8nKyop58+Yhk8nIly8fd+/eZd68eQk2nL6fJG5jY8PkyZPp1asXixfHzZvp2rUrjo6OfPjwAQsLCz5+/MjBgwc5ceJEkmWYOnUqFSvGjTuPGDGCunXrEh4eTtasWVmwYAFdunShU6dOAIwbN47jx4/Le7oS4+zszMSJE3+lKhK1af9eeowbI/98aPkqgHiT9iRJSvZEvpkrlrHl0AHObthM1l9s+btuWMeV27fYv3QF2S0sOH/9Or0njsPc2JhqZRUbYUHBn6nbvQu2ufIwvm/8ydPp5Xfr7sTe3ayeOwvn1evRN/rW+CpUvASFin+bk1O4ZGk616rCrjUrcZrsDMDY+YtwHjyARiUKo6ysTN5CRajeqIm8Z+rRndvsWLWc1UdOp3hC5p8Qrw7jAhOMa2qdU2ECt02hogT4eHJ662py25ckPDSY9VOG0mrYZLT09JN1/B3zJvPh+WMGLNqsEH5u5wZe3b9Nt+mLMTC15Pnt6+yYOxFdI2PylXBMJLeMTUlJhiRBm2nnCAqJAmDQkmvsHF+FPq5u8l6kHzvrZTKQ+BbYzvk8q4eW48P2VkTHxHLzqR+bTz+nWB7FBkiC+SQ8EJCufrzcJElK9Br83v3zB1HT0CJ38UoK4ZXbDub4qqmsGdYcZDL0TCwpWL4+9y8ckMd5fOUEDy4foW6vyRhmy4nv6yec2TQXLX0jCpavB8DNY9vwfHaPRgPnoGNkxrvHtzi5biaaekZkL1QqxeedmQUHB/Ps2TP555cvX+Lh4YGBgQHW1taMHDmS9+/fs379egBcXFzIkSMHBQsWJDIyko0bN7Jr1y527Up4yDYj+uWGU5kyZRS+gB0cHJgzZw4xMfFfC3jmzBmmTZvGgwcPCAoKIjo6mvDwcEJCQtDU1KRUqVIULFiQ9evXM2LECDZs2IC1tfVPJ4gVKfJtgu/XVqqPjw/W1tY8fvyY3r0VJ0mXKlWK06dPJ5nnyJEjGTRokPxzUFBQvMlxydWgSjVK29nLP0dERgJxPU/mJt+6z338/eL1QiVk9qoVTFu6mJNrN1Akf4FfKktYeDij5s5mz8Il1K0c91RZkfwF8Hj4gNmrVyo0nD4HB1OrSye0NDTYs3gpKhlgvo6ugQHKysr4+Sj2LgV8/IiBUdLrfpzav4fpQ5yYvGwlJcsnPcFTSUmJAnZFefvyhTzMMocNC3ftJyw0hJDPnzEyNWNcr66YW1kDcOeaGwEfP9KktL08TUxMDAsnjWf7yuXsvJL8Ydi0pKmrj5KyMkE/9C4FB/jF64VKSo6C9rgfj5uT9/H9W/w937N8RC/5/q93+U6VCjJ60xGMLa3l+3bOm8y9S6cZsGAj+ibfJgJHRoRzcLkLXacuoKBjJQAsc+fj3dNHnNqy+q9tOHn6h/L+Y6i80QTw8M0nlJRkZDPW5Nn7ILz8wzAzUFdIZ6KnjndAuPzzC8/PVBp0BI2sWdDRUMHLP4ytYyrx0jPuRtDrS0+TmYE6Xv5h3+WTFe9Pir1Q6UldWw+ZkjIhP/QuhQYFoKkT/4GD70mSxL3zB7AtWxvlLIrfSRo6+jQaOJvoyAjCggPR0jfmwraF6Bp/e+Dh3FZXStXrQH6HuKeNja1yE/TRk6sH1lGwfD2iIsO5uGMxDZ1mktM+7vvQ2DoPPq+f4H5441/VcIobqkthJr+Y3t3dXeGJuK+/ox06dGDt2rV4enry5s23J1AjIyMZMmQI79+/R11dnYIFC3Lo0CHq1KmTwoL/OWk2geX169fUqVOHnj17MnnyZAwMDLh48SJdunQhKurbl0nXrl1ZuHAhI0aMYM2aNXTq1Omnd+/f/6B/jRv7XddsQr0TP5Oaj1pqa2kpPCknSRJmxsacuHSRorZxEz8jIyM5d+0qM4YOTzKvWSuXM2XxQo6tXkeJwkWSjJuQqOgooqKiUPrhUQtlZWWFOgsK/kzNzh1RU1Vl/9IVv9yrlVZUVFXJW9iO6xfOUbF2XXm4+4VzlKuR+IT4E3t34zx4ABMWLcOxao1E430lSRJPH9wjZwINU3UNTdQ1NAn69Ilr587Qa9R4AGo2aU6JcooNskFtmlOzSTPqtmid3FNMc1lUVLHKW5DH1y9jV6G6PPzR9csULlcliZSK3j15gI5hXGPV1DonI9YpPthwaMV8IkJD+G/AKHnjSJIkdrpM5s75k/RzXY+hheIE8pjoaGKio+SPhX+lpKyEJMXyt7p0z4dmFWzQzJqFkPC4ByzyZtMlJiaWd74hALg98KF6cQtcdn2bKF+jhCWX78cfgg4NjyY0PBo9LVVqlrRk2HJ3AF56fsbTL5TqxS3xeOYPgEoWJSramTF8hXtan2ayKWdRwTRHfl7fu0aeEt9+ZF/fu0buYknfKL97dJNP3m8pXLFhonGyqKqhbWBCTHQ0T6+fIW/pavJ90ZHh8X4TZErK8OX6io2JJjYmGtkP7ypRUlJO1m9HRqKUCkN1v9ryqlSpUpL1tHbtWoXPw4YNY9iwYb9TsgzjlxtOV65cifc5T548KP/wtI27uzvR0dHMmTNH/qO9ffv2ePm1bduWYcOG4erqyv379+nQIf7aMb8iX758XLt2jXbt2imUJT3JZDKcOnRi2tLF5Mmegzw5cjBt6WI01NVpXa+BPF77oYOxNDXFeUjcRTVzxTLGusxj89x55LDMhpdv3FwpLQ0NtDTj5i8Eh4Tw7PW3J31evnuLx4MHGOjpYm1hiY6WNhVLlWbozOmoZ81KdgtLzl2/yvq9u5k7cjQQ19NUo1MHQsPD2Dh7LkHBwQR9Gdo0/tLjk55adu/J5AF9yF/EjkLFS7J/03q837+jUbuOACx1noyvlxdj58etH3Ri726mOPVhwMSpFCxWHD8fbyBuYrfWl5VqV8+dRcFixclmk5PQ4M/sWL2Cp/fvMWjKDPlxr549jSRJWOfKzftXL1k0ZQJWOXNTt0Xc3C9dfQN09RXvlrOoqGBoYoJ1rtxpXS2/pHKLjmyYMhyr/IWwKWjP5f3bCfDxpFyjuMex9y+dQ+BHH9qNiTv/M9vXYWhmiZlNbmKio7h+bD+3zx2nyxRXAFTU1BTmKQGoa2kDKITvmDuJGycP0nXaIrJqaBLkF3cNZ9XSRlUtK+qaWuS2L8m+xbNQUVPDwNSSZx7XuH50H436jkjzekkuzaxZyG35bU0zGzNt7HIZ4P85grc+IUzrUhxLI006zDgPwOZTzxnb1o41w8ozft0tjHTUmNWjJKuPPpUP083f/YDzLnUY1rIw+y69oWFZa6oVs6DcgG9rF9UoYYlMBo/fBpLbUodZ3Uvy+G0Qa44+kcdx2X2fUa2L8PRdEE/fBzKqtR2h4TFsPvX8D9VO8hSv3ZojS8djalMAi9yFuXNmD5/9vLCr+h8AF7YtIjjAh9o9FadM3D23H/NchTCyiv+UoOezewQH+GKcPS/BAT647V6BJMVSsu637/9c9uW5un8tOkZmGFrmxOf1Y24c3Sx/Ok9NXYts+YtxbosrWVTV0DE04+2jWzy4eJiKrQekYY0If6tfbji9ffuWQYMG0aNHD27evMmCBQuYM2dOvHi5cuUiOjqaBQsWUL9+fS5dusTSpUvjxdPX1+e///5j6NCh1KhRg2zZ4j/S/Cv69etHt27dKFGiBI6Ojmzbto07d+6QM2f8Rfv+pGHdehAWHk7viePkC2AeX71OoWfqjecHhZ6hxZs3EhkVSdN+fRTyGt+3PxP6OwHgfu8uldt9690Y5DwVgA6Nm7B2xiwAts5zZeScmbQZPBD/wE9kt7Bk6sDB9GzVBoAb9+9x9bYHALmrKS5C9vL0eXKk8P9JSlVt0JjAgADWuszBz8cbm3z5mbV+C2bZ4oZS/Xy88X7/Th5/38Z1xERHM3f0cOaO/tajV7tZC0bPWwhAcFAgM4cPxt/XB01tHfIWKsSiXfuxLVpMHj/4cxDLpk/F1/MDOnp6VKxdj+7DR2fYJQeSUqxqHUKCPnFs7SIC/Xwxt8lDz5nLMDCzBCDIz5cA7w/y+DFRUexdPJNAX29U1LJiZpObHjOXUdDh19a0ubg3brmDBf3bK4S3GTmN0nXifjA7TpjLgWVzWT9pKKFBgeibWVC3m5O8UZcRlMhnxNm534YS5vWOezps7bGndJp5AXNDDaxNvk3GDgmPpvqwYyzoVwb3xQ3wCwpn+7lXjFl9Qx7H7YEPLaecZUqnYkzuWIznHz7TYvIZ+RpOALqaqjh3LU42I038P0ew68IrRq++QXTMtzv8mVvvoq6ahcUDHOQLYNYYfjRDreEEkL9MdcKDA7mydxUhnz5imC0X/w2ZJ39KLuTTR4L8vBXSRIQG8/T6aSq3HZxgntFRkVzcuZRA3/eoqKmT086R2j0nklVTWx6nSvshXNq1jJNrZxIWFICmvhFFKjfGoXFXeZx6faZwYftiDi8ZR3hwENpGZpRt1hO7qsl/hUhG8DvvmovnL5ivmd5k0i/0RVaqVImCBQsSGxvL5s2bUVZWpkePHkybNg2ZTBZv5fB58+Yxa9YsPn36RIUKFWjTpg3t27cnICBAYan106dPU7VqVbZv306zZs3k4T+uHH727FkqV66skN7Dw4OiRYvy8uVLcuTIAcDkyZNxdXUlPDyc5s2bo6WlxbVr13BzU1zsMClBQUHo6uoSePM2OlraP08gJOiShqi7lLj58udPHAlJ6z/+UnoX4a83uFPh9C7CXysiLJiF3asQGBio8G621PT19yp701UoqWikKK/YqFBe7+ySpuX92/1yj5OKigouLi4sWbIk3r5Xr14pfB44cCADBw5UCPt+CO0rT09PDA0NadhQcQw7R44cCmOnCY2l2tvbxwsbO3YsY8eOlX+uXr06uXNnrKETQRAEQRD+Pum6umFoaCgvX77E2dmZHj16oKqq+vNEychz6dKl1KxZE2VlZbZs2cLJkyd/usSBIAiCIPzNlFNhqO5vWFolvaXrK1dmzpyJvb09pqamqbacu0wm4/Dhw5QvX57ixYtz4MABdu3aRbVq1X6eWBAEQRD+UjKZTP5k3e9uouH0c7/U43T27NlUPfiECRNS5aWB31NXV+fkyZOpmqcgCIIgZHSpsY6TJNpNP5WhX/IrCIIgCIKQkaTvG1wFQRAEQUgVqbEAppQO76r724iGkyAIgiBkAsoyGcpiHac0J4bqBEEQBEEQkkn0OAmCIAhCJqCkFLelhCS6U35KNJwEQRAEIRNIjVeuSGKo7qdE21IQBEEQBCGZRI/Tz0THQHTGelnm3+T2m4D0LsJfrWoB8/Quwl9POtYhvYvw13sXFpneRfhrfQ4KYuEfOpZ4qu7PEA0nQRAEQcgExFDdnyEaToIgCIKQCSgpgbKYHJ7mRBUJgiAIgiAkk+hxEgRBEIRMIDWG6lKa/l8gGk6CIAiCkAmkxuTwlKb/F4ihOkEQBEEQhGQSPU6CIAiCkAkoyeK2lOYhJE00nARBEAQhE1CWyVBO6TpOYo7TT4mhOkEQBEEQhGQSPU6CIAiCkAmIp+r+DNHj9IdIksSEha5YVCyHetHCVOrQlvtPnyaZZsWObZRv2wr9MiXQL1OCap07cO3ObYU4S7Zupkij+uiULIpOyaI4tGrOkfPnFOJ4f/xIx1HDsahYDo1iRajVvQtPX71SiPP8zRsa9+uNcdnS6JQsSvOBA/D++DFVzj01nN+1iXFNqjCgUiGmd2rMM4/ricZ9cvMqfRzzxtu8Xj2Xx7m0bxtze7ViSM0SDKlZAtf+HXj14Ha8vH523ISO08cxLyc2rUy9k08lW1avoEaxwhS1NKFZlQrccLucaFxfLy+Gdu9C3dLFKWSsh/PoEfHidGxQl4JGuvG2Xi2bKcTz9vzA8J7dcMyTg+JWZvxXqRz3PW4BEBUVxZyJ42hU3oES1uZUKpiPkb174OPpmbonn0okSWLCpIlYWFuhrq1FpapVuH///k/T7dq9G9sihVHT1MC2SGH27N2rsP/8hfPUb9QQC2srZCpZ2LtvX7w8goOD6du/P9lyZEddW4sChQuxZOlShTg9evUiV768qGtrYWxuRsP/GvPo0aMUnXNqWrdiGY6FC5DbWJ86FRy5evlSonG9vTzp27kjFYvZYa2ryYThQ+PFefzwAd3btsKhUH6sdDRYuSjpl5ssnDMLKx0NhbyioqKYNm4M1cqUJK+ZEcXz5sSpe1e8PD/8/ommEyWl1NmEpGXKKlq7di16enoKYcuXL8fKygolJSVcXFz+eJlmrlrB3HVrWDhmLNe378LMyIjqXTvxOSQ40TRnr12jVd16nFmzHrfN27A2t6BGt8689/aSx8lmasb0gYNx37Eb9x27qVK6DA379pY3yiRJolG/3rx4+5Z9Cxdza9desptbUK1LR0JCQwEICQ2lRrdOyGQyTq9Zz6VNW4mMiqR+nx7ExsambcUkw42Th9g5fxo1O/Rk5Nq95LYrwaLB3fD3SvqLbdzWY0w7cEm+mVjlkO97cusaJarVY8CC9QxZtg19UwsWOnXmk++3uk3Ocb/Pf9qBS7Qd5YxMJqNopRqpXg8pcWTPLqaPHkn3gUPYeeYCxRwc6dGyKR/evU0wfmRkBAZGRnQfNIR8hQolGMdl3QbO3n8i3/ZdvIKysjI1GjaSxwn8FEDbOjXJoqLC0m272H/pKsMmTUFbVxeA8LBQHt65Tc/BQ9lx6jzz123k1fNn9G3bMtXrIDXMnD2LuS4uLJzvynW3K5iZmVG9di0+f/6caBo3NzdatG5FuzZtuH3jJu3atKF5q5ZcvXpVHickJAS7IkVYON810XwGDh7M0ePH2LhuHQ/v3mNg/wH0cxrAvv375XGKFyvGmpUreXj3HscOHUaSJGrUqU1MTEzqVEAK7N+1k4kjhtFvyDCOXHSjlENZ2jdpxPu3iVyDEZEYGhnRb8gwbAsXTjBOWGgo1jlsGDFhMiampkke3+OGO5vXrqZAIcW8wkJDuXfbgwHDRnDkwmVWbNzKi2dP6fzDDYAgfCWTJElK70KktrVr1+Lk5MSnT58ACAoKwsjIiLlz59KkSRN0dXXR0NBIMo+goCB0dXUJvHYTHS2tFJVHkiQsKpbDqX0HhnftDkBEZCSm5R2YMWgoPVok70ciJiYG/TIlWDhmHO0bNk40nkGZkswaOowuTZrx5NVL8tWpyb19hyiYJ488H5NyDswYPISuTZtz/NJFavfoSsAVd/m5BgQGYuBQkhMr11DNsexvn/viT7+dVG5m16ZY5StIq6ET5WGTWtXCrkI1GvYaEi/+k5tXmd+3HbOOuaOhrZOsY8TGxDC0ZgmaDx5H6dqNf+u4AMuG9yI8NIQBC9b/yikmqlLepH8MkqtljSrYFrFj3Ox58rD6DiWpUqcuA8dOSDJtxwZ1yVe4MCOnTk8y3vqli1k4fRpn7z9GQ1MTgLmTxnPr2lU2HDya7LLevXmDljWqcMLjHhbZrJKdLjG2upopzgO+/B1bW+HUvz/Dhw4DICIiAlNLC2ZMc6ZH9+4JpmvRuhVBQUEcOXhIHlarbh309fXZsnFTvPgylSzs2bmLRg0bKoQXsrejRbNmjB09Rh5WvFQp6tSuxeSJkxI89p07d7ArXoxnjx6TK1euXz7nr1LjJb/1K1egkL09zvO+NQ4rlyhKzXr1GTEh4fJ/1axOTQoWLsKEGbMSjeNQKD9devWla5++8faFBAdTu7wjU+e64Dprxk/z8rjhTv3KFbhy/zGWVim7Bj8HBWGbzYzAwEB0dJL3ffSrvv5eVe2zjSxqSf+2/Ux0RCinFrVI0/L+7TJlj9OP3rx5Q1RUFHXr1sXc3PynjabU9vLdW7w++lLDsZw8TE1VlYolSnHZ42ay8wkNDyMqOhoDXb0E98fExLD18EFCwkJxsCsKxDXQALKqqcnjKSsro6qiwsWbN+RxZDIZaqqq8jhZ1dRQUlKSx0kv0VGRvH18nwKlFBtvBUqV48XdW0mmnd6xESPrl2V+v/Y8uXElybiR4WHEREejoaP328cN8v/IvcvncKyfse5UIyMjeXDbA8fKVRTCHStXwePatVQ7zu5NG6jd+D95owngzNEjFLQrysDO7SmfPxdNKpdjx/q1SeYT/DkImUyGzpdeqYzi5cuXeHl5UaNadXmYmpoaFStU4LKbW6Lp3K5cUUgDULN6jSTTJKScY1n2HzjI+/fvkSSJM2fP8OTpE2pWT7h3MyQkhDXr1mJjY4NVCn/8UyoyMpK7HreoUKWqQniFKlVxv5r032ZqGDN4IFVq1qL8D38DifkclDGvwZ+RfVkAMyWbTKxH8FMZsuH0+fNn2rRpg6amJubm5sybN49KlSrh5OQEQEBAAO3bt0dfXx8NDQ1q167N00TmC61du5bCX7p5c+bMiUwm49UP83vSmteXuUKmRoYK4aZGhvJ9yTFi7mwsTUyp5uCoEH73yWO0itujZl+InhPHs8d1Eba5cwOQ3yYn2S0sGTlvDgGBgURGRjJ9xTK8Pvri6esLQBk7ezTV1Rk+ZxahYWGEhIYydPYMYmNj5XHSS/CnAGJjYtAxMFII1zYwJMg/4brTNTSm9fDJdJ22gG7TFmJqnRPX/h14eivxeVH7lsxG19iU/CUcf/u4Vw/vIauGJvYVM9Yw3Sc/P2JiYjA0NlEINzQ25qOPd6oc487NGzx9+IAm7ToohL97/Ypta1eRPWculm/fTYsOnXEeNZx927YkmE9EeDjzJk2gbpNmaCWzt/BP8fKKG8Y1/WFIyNTEFK/vhs8TShcvjampPL/kcnVxwbZAAbLlyI6qhjq16tZl8YKFlCtXTiHe4iVL0NLTRUtPl6PHj3PiyFFUv7spSg/+fh+JiYnB2ESxHoxMTPD1Tp1rMDH7du7g7m2Pn/ZqfRUeHo7zhLE0atYC7b+sx0Umk6XKJiQtQzacBg0axKVLl9i/fz8nTpzgwoUL3Lz5rWemY8eOuLu7s3//ftzc3JAkiTp16hAVFRUvrxYtWnDy5EkArl27hqenZ4J3XxEREQQFBSlsv2vTgf1oFbeXb1HR0QDxLkhJkpJ9kc5ctYIthw6x23WhQu8RQL4cNnjs3seVLdvp1aIVHUYN58GzZwCoqKiwa/4Cnrx6iYFDSTSK23H2+jVql6+A8pdZgMYGBuyY58qBs6fRKmGPbuniBH7+TDHbgigrK/92PaSuH+pJihciZ5o9J2UbtsA6X0FyFi5Ky6ETKOhYiVNbViUY/8TGFbifOER354Wo/FC3v3Jct4M7KVmzfgJ5ZAwpuf5+ZvfG9eQpYEuRYsUVwmNjY7EtYofTmPEUKGJH846dadquA9vWxP9/ERUVxZBunYmNjWXsrDmpUq6U2LR5s7wBoqWnS1R03PfL79RjatS968IFXLl2lf179nDj6jXmzJxF7359OXnqpEK8Nq1bc+u6O+dOnyZP7tw0b9WK8PDwXzpWWpGRdtdgQj68e8eE4UNxXbGKrFmz/jR+VFQUfTq1R4qNZepclzQrl/B3y3DLEXz+/Jl169axefNmqlaN69Zds2YNFhYWADx9+pT9+/dz6dIlHB3jegc2bdqElZUVe/fupVkzxWESdXV1DA3jenqMjY0xMzNL8LjOzs5MnDgxwX2/qkGVKpQuYif//HW4zMv3I+bf3fX7+PljamgYL/2PZq9exbTlSzm5ai1F8uWPt19VVZXc2bMDUKJQYa7fu8v8DetYNnEyAMULFsJjz34CP38mMioKYwMDSrdoSonvJv3WKFuO58dO8THAnyzKWdDT0cGsvCM2ltl+rxJSiZaePkrKygT5K/Z8fQ7wQ/uH3qCk2BS059qx+E8qndy8imPrl9Jv/losc3+r21897jOP63i/eUnnyS7JLtOfomdoiLKycrzeJf+PH+P1Qv2OsNBQjuzZTd8Ro+LtMzY1I1fefAphOfPk5cSB/QphUVFRDO7SkXdvXrNmz4EM0dvUoH59SpcqJf8cEREBxPUgmZuby8N9fH0wNUl8LpqZmVm83iUfH594vVBJCQsLY9SYMezZuZO6deoCUKRIETxu32b23LlUq1pNHldXVxddXV3y5MlDmdJl0Dc2Ys/evbRqmX4T7g0MjVBWVsbHR7Ee/Hx9MTJJ+TWYmDseN/no60OdCt+G3GNiYrh66SJrly/l+cdP8pvDqKgoenVoy9vXr9l24PBf19sEIFOK21Kah5C0DFdFL168ICoqilLffWHp6uqSL1/cl+/Dhw/JkiULpUuXlu83NDQkX758PHz48LePO3LkSAIDA+Xb20Se9EgObU0tcmfPLt9sc+fGzMiYE27fHr2NjIzknPs1HO2LJZnXrFUrmbx0EUeXr6JEoYSfLPmRJElERMWfzKmrrY2xgQFPX73C/f49GlapFi+Okb4Bejo6nL7iho+/Hw2qJG9OQFrJoqKKVb6CPLqm+Oj8o+uXyFm4aLLzefvkAbqGil/QJzat5MiaRfSZu4rsBRTr9lePe/ngTqzzFyJbngLJLtOfoqqqiq2dPZfPnlEIv3z2DPbf/Z39rqP79hAZGUH9Zi3i7StaqjQvnz9TCHv1/DkW3/X6fm00vX7xnFW79qFnYJDiMqUGbW1tcufOLd9sbW0xMzPjxHc9PJGRkZw7fx5HB4dE83EoU0YhDcDxkyeSTPOjqKgooqKiUPrhWXFlZeWfPvkqSZK80ZdeVFVVKWxflAunTyuEXzhzmhKly6TZcctVrMyJK9c5eumKfCtStBiNm7fk6KUr8RpNL58/Z8v+g+gn44Y2I/q6jlNKNyFpGa7H6etDfgl1bX//34TSpaTLV01NDbU0GmKRyWQ4te/AtOVLyZM9O3my52Da8qVoZFWndb168njtRwzF0sQU50FxT2zNXLWCsa4ubJ41lxwWlnh9mW+kpaGB1pcJuKPmzaF2+QpYmZvzOSSErYcPcfb6NY4u/zYUsuPoEYwNDLA2N+fukycMcJ5Ko6rVqFH229yINbt3USBXLoz1DXDzuMUA56kMbN+RfDY506ROfkXVlp1YN2kY1gUKkbOQPRf3bcff25NyjVoBcfOTPvl602Fc3FMyp7etxdDMEvOceYiOiuL6sX14nD1Gt2kL5Hme2LiCgytc6DhhLgbmlgT6xdWtmroGWTU0k3Xcr8JCgrl1+ij/9Yu/1lFG0aFXH0b07kEh+6LYlSzFjnVr8Xz/jhYdOwMwb/IEfDw9cV68TJ7m4d07AISGBBPw8SMP795BRVWV3D/0eu7etIGqtesm2OBp37M3bevUYPm82dRs2Ji7N2+yc8NaJsyZD0B0dDQDO7Xn4Z3bLNq8jZiYGPmcF119/XSfm/M9mUyGU//+TJs+nTy585And26mzZiOhoYGrVt9uybad+yIpaUFzlOnATCgbz8qVKnMjFkzaVi/AfsO7OfkqVNcPPttvbXg4GCePfvWwHz58iUeHh4YGBhgbW2Njo4OFStUYOiIEairq5PdOjvnzp9n/cYNzJ01G4i76dy2Yzs1qlXH2NiY9+/fM2P2LNTV1alTu/YfqqXEdevbH6fuXShSrBjFS5Vm05rVvH/3lraduwIwfcI4vD58wGX5tzXQ7n9Zty4kJBi/jx+5f+c2Kqqq5M0fd4MSGRnJ00cP5f/28vzA/Tu30dDUwiZXLrS0tclvW1ChHBqamugbGMjDo6Oj6dGuNfdue7B2+y5iYmLw+TJnTU/fIENdg0LGkOEaTrly5UJFRYVr167J5yIFBQXx9OlTKlasiK2tLdHR0Vy9elU+VOfn58eTJ08oUCDj3e1/NaxLN8LCw+k9aSIBQYGULmLH8ZWr0db8ttTBG09PhTvKxVs2ExkVRVOnfgp5je/dlwl9+wPg7edHuxHD8PT1QVdbmyJ583F0+Sqqf7eEgKevL4NmOuP90Q9zY2PaN2zE2J69FfJ8/OoFI+fNwT8wkByWlozu0ZOBHTqlRVX8suLV6hIS+IkjqxcR5OeDec689J69AkNzSwAC/XwJ8P62YGJMVBS7F84g0NcbFbWsmOfMTa/ZyynkWEke5/zuzURHRbFytGLd1uncl7pd+yfruF/dOHEQSZIoUb0eGVXtxk34FODPktkz8fX2Ik/+AizdsgMLK2sAfL298Xz3TiFN08rl5f++f9uDQ7vi4p+4dVce/urZM25ecWPFzj0JHrdwseLMX7cJlykTWTJ7JtmsszN8ijP1mjUHwPvDe84cPQxAk0qKk5zX7D1IqXLl4+WZnoYNGUpYWBi9+/UlICCA0qVKcfzwEbS1teVx3rx9o/B37OjoyNZNmxkzfhxjx48nV65cbNu8RaHX3P2GO5WrfesBHjQ07uapQ7v2rF29GoCtmzYzcvRo2rRvj7+/P9mzZ2fqpMn07NEDgKxZs3Lh4kVcXF0JCAjA1NSUCuXKc/n8BUzScDgsuRo0aUqAvx/zZzjj4+VFPltb1u3cQzbruGvQ28uL9z+sK1ar3Ldeubu3brF3xzayWVvjdi9uUU9vT0+FOMtcXVjm6kKZcuXZcfhYssrl+f49Jw7HLRVRs6xi79f2Q0dxKF/h1082ncQN1aWsx0gM1f1chlzHqVu3bpw6dYpVq1ZhYmLC+PHjOX78OF26dGHevHk0atSIp0+fsmzZMrS1tRkxYgTPnj3jwYMHqKioxFvHycPDg6JFi/Ly5Uty5MiRrDKk5jpO/7LUWMfpX5Za6zj9y1JrHad/WWqs4/Sv+pPrONUZshMVtZRd71ERIRye3VSs45SEDNm2nDt3Lg4ODtSrV49q1apRtmxZChQoIH8qYs2aNRQvXpx69erh4OCAJEkcPnwYFRWVdC65IAiCIAiZWYYbqoO4SZmbNn1bUTckJISJEyfS/cvKvPr6+qxfn/jKzB07dqRjx47yz/b29onOjRIEQRCEzODrIpYpzUNIWoZsON26dYtHjx5RqlQpAgMDmTQpbuGyhj+8gkAQBEEQhDipsYClWADz5zJkwwlg9uzZPH78GFVVVYoXL86FCxcwMkr+uj2CIAiCIAipLUM2nIoWLcqNG+n7jjRBEARB+JsoyVJhqE70OP1Uhmw4CYIgCILwa8TK4X+GaDgJgiAIQiYg5jj9GaJtKQiCIAiCkEyix0kQBEEQMgGxHMGfIRpOgiAIgpAJyGRxW0rzEJImhuoEQRAEQfgt58+fp379+lhYWCCTydi7d+9P05w7d47ixYuTNWtWcubMydKlS9O+oKlI9Dj9xCszM7TF+3p+WxkD8Y6rlNBSEX+igiAkj0xJlgov+f219CEhIdjZ2dGpUyeaNGny0/gvX76kTp06dOvWjY0bN3Lp0iV69+6NsbFxstJnBOJbWRAEQRAyAZlMluJ1mH71qbratWtTu3btZMdfunQp1tbWuLi4AFCgQAHc3d2ZPXv2X9NwEkN1giAIgiAoCAoKUtgiIiJSJV83Nzdq1KihEFazZk3c3d2JiopKlWOkNdFwEgRBEIRM4OtQXUo3ACsrK3R1deWbs7NzqpTRy8sLU1NThTBTU1Oio6P5+PFjqhwjrYmhOkEQBEHIBJRkcVtK8wB4+/YtOt/N71VTU0tZxt/5cThQkqQEwzMq0XASBEEQBEGBjo6OQsMptZiZmeHl5aUQ5uPjQ5YsWTA0NEz146UF0XASBEEQhEwgPZ6q+1UODg4cOHBAIez48eOUKFECFRWVND12ahFznARBEAQhE/j6rrqUbr8iODgYDw8PPDw8gLjlBjw8PHjz5g0AI0eOpH379vL4PXv25PXr1wwaNIiHDx+yevVqVq1axZAhQ1KtHtKa6HESBEEQhEwgPV654u7uTuXKleWfBw0aBECHDh1Yu3Ytnp6e8kYUgI2NDYcPH2bgwIEsWrQICwsLXF1d/5qlCEA0nARBEARB+E2VKlWST+5OyNq1a+OFVaxYkZs3b6ZhqdKWaDgJgiAIQiYgIxXeVZcqJcncRMNJEARBEDKB9Biq+xeJyeF/yIaVy6lQpCD5TQ1pULEc1y5fSjSuj5cXA7p2omqJouTS12bSiGFJ5n1g1w5y6mnRo3VLhfDo6GjmTJlIhSIFKWBmREW7QrjOcCY2NlYex8V5KtVKFqWghQn22bPRtmE9PNyvp+xk08D2NauoX9Ieh+zmtKlRmVtX3BKNe/rQAXo3b0xV2zxUyG1Nx7o1uHzmlEKc548eMrRLe+qVsKO4mQGbly+Jl090dDSLp0+lfkl7HHNY0KBUUZbPmalQf36+Pozv34eadrY42ljSt1VT3rx4nnonnorWr1hO2cK25DUxoG6Fskleg95envTr0pHKxe3JoafFxBFD48XZsnYNTWtVp7C1JYWtLWndoC4eN9wV4kRHRzNr8sS445oaUq5IQeb/cA3Oc55KlRJFyW9uLM/nVga8BiFuvZkJkyZiYW2FurYWlapW4f79+z9Nt2v3bmyLFEZNUwPbIoXZ88OLUJ1nTKdkmTJo6+thYmFOoyb/8fjxY4U4u/fsoWad2hiZmSJTySKfjPu95StWUKlqFXQM9JGpZOHTp08pONvUt27FMhwLFyC3sT51Kjhy9SfXYN/OHalYzA5rXU0mDI9/DT5++IDubVvhUCg/VjoarFy0MF6c9SuXU92hFAUsTSlgaUrDqpU4c/yYQpyQ4GDGDB5Iyfy5yW1iQOUSRVm/cnnKT1jIlETD6Q84uHsnU0YOp8+QoRw8f4kSDo50bvYf79++TTB+ZEQEhoZG9Bk8lAKFCieZ9/s3b3AeO5qSDo7x9i1zmcvm1auYMGsOJ67eYPikyaxYMJ91y741Emxy52HCrLkcuXyV7UePk806O+3/a4jfR9+UnXQqOr53N3PGjaKz0yA2nzhL0dJl6Ne6OZ7v3iUY/+aVy5SuUBnXTdvYePwMJcqWZ2D71jy6e0ceJzwsDEvrHPQbMw5DE9ME81m3cD47169h2LSZ7Dx/hf5jJ7Bh8UK2ror7QpUkicEd2/L+zSvmrt3I5hNnMc9mRa9mjQkLCUn9ikiBA7t2MmnkMPoOGcahC5cp5ehIh6aNk7gGIzE0MqLvkMSvQbeL52nQpBlbDx5mz8nTWFhZ0a5xA7w+fJDHWTJvLptWr2LS7LmcunaTkZOmsMzVhbUK12BuJs2aw/HL19h17ATZrLPTrnGDDHUNfjVz9izmuriwcL4r192uYGZmRvXatfj8+XOiadzc3GjRuhXt2rTh9o2btGvThuatWnL16lV5nHPnz9OnVy+uXLzEiSNHiY6Opkad2oR8dx2FhIRQ1tGR6VOnJXqs0NBQatWsyagRI1LnhFPR/l07mThiGP2GDOPIRTdKOZSlfZNGP70G+w0Zhm3hhK/BsNBQrHPYMGLCZExME/47Nre0ZOSESRw6e5FDZy/iWLEiXVo15/HDB/I4E0cO4+zJE7iuWM2Z67fo2qcv44YO5tihAwnmmVGl5srhQuJkUlKzuv5hQUFB6OrqcvvNB7RTuAhY46qVKGhnx5S58+Vh1UsVo3rd+gwbPzHJtK3q1qJA4SKMmz4z3r6YmBha1q1F09ZtcXe7TFBgIMs2b5Xv79KiKUbGJsxYuFge1qtda9TVNZi7fGWCx/scFISdtQUb9h2gbMXKCcb5FQHhkSnOo33tauQvbMeomXPkYU3Kl6ZSrbr0Gz0uWXk0q+BA9YaN6T44fu9dvRJ2tO7ek9bdeymED2jbEkNjY8bNWyAPG9qlPVnVNZi8cCmvnz/jv7Kl2H72ErnyFwDi/p9UL5SXfmPG07hNe1LKSD11VuttWKUihezsmTrv2zVYpWQxatatx/AJk5JM26JuLWwLF2b89FlJxouJiaFIdksmzZpDk1ZtAOjUvAlGxibMWvStodSjbWvUNdRxWb4qwXw+BwVRyMqcTfsOUq5Syq9Ba43UqUNJkrCwtsKpf3+GD427jiIiIjC1tGDGNGd6dO+eYLoWrVsRFBTEkYOH5GG16tZBX1+fLRs3JZjG19cXEwtzzp0+TYXyFRT2vXr1Cps8ubl13R17e/sE0589d5bK1aoR4PsRPT29Xz/ZH7wLS/nfcf3KFShkb4/zPFd5WOUSRalZrz4jfnINNqtTk4KFizBhRuLXoEOh/HTp1Zeuffr+tCyFrC0ZM2UqLdt3BKBq6RLU/68JTsNHyuPUqeBI5eo1GTp2/E/zS8rnoCBss5kRGBiYJgtKwrffq85zj6GqrpmivCLDQlg9qGaalvdvJ3qc0lhkZCT3PG5RvnJVhfDylaty8+qVFOXtOsMZQ0NDWrTvkOD+EmUcuHzuLC+ePQXg4d27uF9xo9IPL1j8vqxb161BW0f3pz1df0pUZCSP7tymzA8/oGUqVubO9WvJyiM2NpaQkGB09fR/6dj2pctw7cJ5Xj9/BsCT+/fwuHqVslWrA3H1BaCaNas8jbKyMllUVPH4rjchvUVGRnLX4xblqyhegxWqVOHGtdQrZ1hoKFFRUejpG8jDSpZx4PL5b9fgg7t3cL9ymco1aiZa1s1rV6Ojq5toL0N6efnyJV5eXtSoVl0epqamRsUKFbjslvjQsduVKwppAGpWr5FkmsDAQAAMvqvLv9nXa7BCvGuwKu4p/B78FTExMezbuYOw0BCKlSotDy/l4MCJw4fw/PAeSZK4fP4cL549o+IP/98EAcTkcLmIiAiFtz8HBQWlSr4Bfn7ExMRgZGKiEG5oYoKvj89v5+t+xY0dG9dz8MLlROP0dBrE56AgqpcshrKyMjExMQweO54GTZsrxDt19AgDunQkLDQUEzMz1u/dj4Gh0W+XLTV98o+rP0NjY4VwQ2MT/HyTV38blywkPDSU6g0a/dKxO/YdQHBQEE3KlUZJWZnYmBh6jxxDrcZx643kyJ0H82xWLJw6idGz5qGuocHGZYvx8/Hmo4/XT3L/cxK7Bo2MTfH1Pplqx5k+YRxm5haU/a6R22vgYD4HBVGlRFH5NTh07HgaJnAN9u3cQX4NbtxzIMNcg199fU1EvBeUmpjy+s3rJNMl9FLTH1878ZUkSQwaOoRyZctSqFChFJY6Y/D3+0hMTAzGPwyLG5mY4OvtnebHf3j/Ho2qVSYiPBxNLS1WbNpK3i+9xAATZ85heL8+lMqfhyxZsqCkpMTMBYsplcAUiIxMTA7/M0SP0xfOzs4Kb4K2srJK1fzjrcYqSb/92Gjw588M6t6VafMXJvnjcnD3TvZt34rLytXsP3eR2UuWs3KBK7s2Kw4POJSvwMELl9l5/BQVqlanX8f2fExmo+RPSfClkMmowKN7drFs9kycl63C4IfG188c37ebI7u2M3XJcjadOMtE18VsXLKQA9u2AKCiosKsVet48+I5lfPnpKyNJTcuX6RslWooKyn/0rH+hITqMLVeqrnUZS77d+5g2cbNZP2uB+7Arp3s2b4V15VrOHT+EnOXLmf5Ald2bt6okN6hfAWOXHBj94nTVKxand4d26X7Nbhp82a09HTlW1R0FPB79fgrafr278+du3cTHcb7m8lIu2swKbny5OXoxSvsO3WWdl26MbBnd548eijfv3rpYm5ev8bqbTs4fP4SY6c6M3qwExfOnE7zsqWm9Fg5/F8kepy+GDlypHzFU4jrcUqNxpO+oSHKysrx7qr8fH0xMjZJJFXS3rx8ybs3r+nWspk87OtTSnkMdTnpfovsNjmZPm4MPZwGUb9JXLz8BQvx/u0blsybTZPWbeRpNTQ1yZEzFzly5qJoyVJULmbH9g3r6T0o/ZfA1zOIq7+PP/TO+X/0xdAo6YbQ8b27mTSoPzOWr6F0hUq/fOz5k8bTsa8TNRvF9TDlKWCL57u3rFngQv0WrQAoYGfPllPn+RwURHRkJPpGRrSvXQ1bu6K/fLy0kug1+NEnXi/U71jm6sKiubPZtPdgvCHeaeNG02vgYBo0/XYNvnv7lsVz59C0dVt5PA1NTXLkykWOXLkoVrIUFYsWYdv6dfQZHP9Jqj+lQf36lC5VSv75a4+0l5cX5ubm8nAfXx9ME3nAABJ/qemPvVAA/QYMYP/BA5w/fYZs2bKl9BQyDANDI5SVlfH5oSfWz9c3Va7Bn1FVVcUmVy4A7IoV5/bNG6xesojp8xcSFhbGzInjWbFpK1Vr1QagQKHC3L97h2WuLpSvXCXNyyf8XUSP0xdqamryt0Gn5luhVVVVKWRflItnFe9cLp49TbHSZX4rz1x583Lk8lUOXrgs36rVrkuZLz1H5pZxX7hhoWEoKSn+L1ZSViY29ifPA0gSkd8NW6YnFVVV8hex4+q5swrhV8+dpUjJUgknIq6naYJTX6YuXk756gnP6fqZ8LAwZAnUn/Tdo/RfaevooG9kxJsXz3l424OKX76AMwJVVVUK2xeNd/d84cwZin83z+N3LJ0/jwWzZrBu116KFCsWb39YaBhKMsU6VFZSUliOICGSJMnnkKUXbW1tcufOLd9sbW0xMzPjxKlvw5uRkZGcO38eRweHRPNxKFNGIQ3A8ZMnFNJIkkTf/v3ZvXcPp4+fwMbGJvVPKB3Jr8HTP16Dpynxm9+DKSFJEhERcddXdFQUUVFR8b4rlZPzXZnBiKfq/gzR4/QHdOnTl8E9ulHYvhjFSpViy9o1fHj3jjadugAwc+J4vD98YM6yFfI0D+7EPTofEhKCv99HHty5g4qqCnnyF0Ata1by2RZUOIaOri6AQnjVWrVZPGcWFtmsyJu/APfv3Gb1ogU0bRv3tFdoSAiL5syiWu06mJiaEeDvz8ZVK/D88J46jRqnaZ38irY9ejO2Xy9s7ewpUqIkuzeuw+v9e5q27wTAgqmT8PX0ZNLCuCe3ju7Zxbh+vRgy2ZnCxUvw0Seup0Utq7r8CcmoyEhePIlbJycqKgofT08e37uLhqYmVjY5AShfvRar58/BzDIbufLl59G9O2xaupiGrb711p3Yvxd9QyPMsmXj2cMHzB4zkkq16+BQKWPdpXbt04+BPbpSpGhRipUqzZa1q/nw7i1tOncFYMaEcXh5fmDesm9PW96/cxuIW+PG7+NH7t+5jYqqqnxuyFKXucyZOpn5K9eQzdoaH++43gRNTS00tbQAqFa7NgvnzMTC6ts1uHLRQpq3bQfEXYMLZ8+kWp26X65BPzasXIHXh/fUzUDXIMQNgzj178+06dPJkzsPeXLnZtqM6WhoaNC6VSt5vPYdO2JpaYHzl2UDBvTtR4UqlZkxayYN6zdg34H9nDx1iotnz8nT9OnXj81bt7Bv9260tbXlPVS6urqoq6sD4O/vz5s3b/jgGbfcw+MnT4C4Hi0zMzMgrjfMy8uLZ8/i1hK7e+8u2lraWFtbY2CQvhPNu/Xtj1P3LhQpVozipUqzac1q3r97S9sv1+D0CePw+vABl+UJXIMhCV+DkZGRPP0y5BYZGYmX5wfu37mNhqaWvIdp+sRxVK5eEwvLbAQHf2b/rh24XTjPht37gLibnjLlyjNl7GiyqqtjaWXNlUsX2LllM+OmTf9j9ZMaZDJIabtHjNT9nFiOIBGpuRwBxC2AuXy+C77eXuQtYMuYadMpVbYcAEN79eDdm9dsOXRUHj+nnla8PCytrLlw90G88K95/LgcQfDnz8ydOpnjBw/g99EXUzNz6jdtSr9hI1FVVSUiPJwBXTtx+4Y7AX5+6BkYUKRocfoMHYZdseIpPmdIneUIIG4BzPWLXPno402u/AUYPHEqxb5M3Bzfvw+eb9+wfE/cmivdG9fnhlv8hfXqNW/FRNdFAHx484b6pezjxSnuUFaeT0jwZ5bMmMaZw4cI8PuIkakZtRo3odugoaioqgKwZeUyNixe8GXIwZS6zVvQbeC3/SmVWssRQNwCmMtc5+HjFXcNjnOeQekv1+DgXt159+YN2767BrPrxn+sOZu1NZfuxv1QlS1cgHffvbzzK6cRoxg4cjQQdw3OmTqJYwcP8NE37hps0LQZA4bHXYPh4eH079IJjxvX5degXbHi9BsyHLviqXMNptZyBBDXUzFx8iSWrVhBQEAApUuVYpHrAoVJ3JWqViFH9hysXb1aHrZz1y7GjB/HixcvyJUrF1MnTea/xt8ahjKVhO9h16xcRccOcU/Nrl23jk5du8SLM37sWCaMi3tkfsKkiUycPDnJfH5HaixHAHELYC6dH3cN5rO1ZZzzTMp8uQYH9uzOuzev2XH42+KUVjoa8fLIZm2N271HALx9/RrHwgXixSlTrrw8nyF9enLp3Fl8vLy+PDFciF5OgxSe8PPx9mL6hHGcP32KTwEBZLOypnWnznTr0y/Fc37+5HIEPRefQi2FyxFEhIWwtHdVsRxBEv6ZhtPatWvp1KlTki8j/F5qN5z+VanVcPpXpWbD6V+Vmg2nf1VqNZz+RaLhlPn8M0N1r169omLFiuldDEEQBEFIE0oyUEphD5mY4vRz/0zD6dixY8yfP//nEQVBEAThLyRTittSmoeQtH+m4eSWxCq9giAIgiAIyfHPNJwEQRAEITNLjQUsxQKYPycaToIgCIKQCSjJUuGVK6Lh9FNiNFMQBEEQBCGZRI+TIAiCIGQCqbHyt1g5/OdEw0kQBEEQMgGlVFg5XLSbfk4M1QmCIAiCICST6HESBEEQhExASSkVJoeLLqefEg0nQRAEQcgExHIEf4ZoOP1EDrUs6KiJavpdNjdupXcR/m5ZxLWXYrlzpHcJ/npBavFftiskT3BU1B87luhx+jPEHCdBEARBEIRkErezgiAIgpAJiHfV/Rmi4SQIgiAImYBMJkvxyt9ijtPPibalIAiCIAhCMokeJ0EQBEHIBMTK4X+GaDgJgiAIQiYgVg7/M8RQnSAIgiAIQjKJHidBEARByATEUN2fIRpOgiAIgpAJKMlSYQFM8VTdT4mhOkEQBEEQhGQSDac/RJIkJkyZjIWNDer6elSqUZ37Dx78NN2uPXuwLWqPmq4OtkXt2bNvX6JxnWfNRKaeFachQxTCg4OD6evkRLZcuVDX16OAvR1Lli9XiOPl5UW7zp0wy5EdTUMDijmUYefu3b93smlEkiQmrFuNRfNGqNeuSqVB/bj/6mWSaXZfOEeJXl3Ra1AbzbrVse/eiQ0njirE+RwaitMiV7K3aop67ao49uvF9UcPFeJ4+/vTccZULJo3QqNONWqNGMzTd2/l+195eSKrWj7Bbce5M6lXCSkgSRIT1qzE4r/6qFevSKUBvbn/8kWSaXafP0uJ7p3Qq1sdzZqVse/Sng3HjsSL997Xh7ZTJmBYvyYaNSph36U9Nx4/SjDPHrOnI6vogMuOrfH2ud27SxWnvmjWrIxe3epUGtCbsIjw3zvhNCBJEhPmzMaimD3quWyo1PQ/7j9+nGSa+48f06RbF3KULonM0hyXFcsTjPfe05O2/fpgWNAWjVw22Fevxo07twGIiopi+NQpFK5aGc3cObEoZk/7/v344OUVLx83d3eqNGuKZu6c6BXIR6Wm/xEWFpbyk08FW1avoEaxwhS1NKFZlQrccLucaFxfLy+Gdu9C3dLFKWSsh/PoEfHidGxQl4JGuvG2Xi2byeNER0czf9pkahQrTLFsptQsXoTFs2YQGxsrj3Pi4H66NWtM2bw2FDTS5eHdO6l74n/I13fVpXQTkpZpG06VKlXCyckpvYshN3POHOa6urJw3jyuX7yEmakZ1evW5fPnz4mmcbtyhRbt2tKudWtuX7tOu9atad62DVevXYsX97q7O8tXraJI4cLx9g0cNpSjJ46zcc1qHnp4MLBfP/oNGsi+Awfkcdp16czjJ0/Zv2Mnd93d+a9hQ1q0a8stD49UOf/UMHPrZubu3MbCfgO5vngFZvoGVB82kM+hoYmmMdDWYXSb9rgtWMKdFWvpVLMOnWZO59j1q/I4XefM4MSN62wYOYa7K9dRo0RJqg0byHtfXyDux7LRuFG88PRk3yRnbi1bTXYTM6oNHUjIlx8kK2MTPHfsVdgmduiMZlZ1apcqnbYVk0wzt2xk7vYtLHQazPVlqzEzMKT64AF8Dg1JNI2Btg6j23bAbdEK7qzeQKfadek0YyrHrl2Rxwn4HETZvj1QUc7CkZlzebBuC3N690NPSytefnsvnOPqwwdYGBnF2+d27y61hg2kRslSXFu6iuvLVtO3cVOUMtBSxjMXL2Lu8mUsnDKV64eOYGZsQvVWLfgcHJxomtCwMHJaZ2f6qNGYmZgkGCfg0yfKNmqAShYVjmzcxIOz55kzbjx6OrryPG7evcvYAQO5efQ4u1es4smLFzTo1EEhHzd3d2q1bU2NihW5dugI1w8doW/HzigppX8dHtmzi+mjR9J94BB2nrlAMQdHerRsyofvbkC+FxkZgYGREd0HDSFfoUIJxnFZt4Gz95/It30Xr6CsrEyNho3kcVa5zmP72tWMnj6bA5evMWj8JNYsdGXTimXyOGGhoRQtVYaBYyek5in/cUpKqbMJSZNJkiSldyHSQqVKlbC3t8fFxeW30gcFBaGrq0ugtw86OjopKoskSVjktMGpT1+Gf+kNioiIwDS7NTOmTKFH124JpmvRti1Bn4M4sm+/PKxWg/ro6+mxZf0GeVhwcDDFHMqweP58pkyfjn0RO1xmz5bvL1S8GC2aNmXsyFHysOKODtSpWZPJ4ycAoGVkyBJXV9q1biOPY2hpwcypU+nSsdPvn/zl67+f9juSJGHRvBFO/zVneKu4MkZERmLatCEzuvWkR/2Gyc6rWI/O1C3jyOROXQmLiEC7Xk32TZ5G3TKO8jj23TtRr4wjUzp348nbN+Tr2IZ7q9ZTMIcNADExMZg0acCMbj3pWrd+gscp2qMzxXLnZdXQ+HfKyZZKL/mVJAmL/+rj1KwFw1u3A77UX+O6zOjRmx4NGic7r2JdO1DXwZHJXXoAMGLZYi7dvcOFhUuTTPfe14fSvbpybJYLdUcMxqlpC5yatZTvL9OrK9VLlJTnm2pS6SW/kiRhUcwep67dGN6nL/Dl79i+CDNGjaZHu/Y/zSNH6ZI4de2GU7fuCuEjpk3l0vVrXNiTeI/yj657eFCqbm1eX7uOtWU2AMrUq0v1ChWYPGz4L5zZzz1IhZf8tqxRBdsidoybPU8eVt+hJFXq1P1pg6Vjg7rkK1yYkVOnJxlv/dLFLJw+jbP3H6OhqQlA71bNMTQxZvL8RfJ4Azq2RV1dg+lLFHv/3r95TY1iRdh55gIFChf5xTNMWPDnIErbWBEYGJji35LEfP29mrT3Klk149+w/IrwkGDGNSqdpuX924m25R/w8tVLvLy8qFGtmjxMTU2NiuXLc/nKlUTTuV29Qo2q1RTCalarHi9NH6cB1K1Vm2pVqiaYTzlHR/YfPMT79++RJIkz587y5OlTalarrhBn286d+Pv7Exsby9bt24mIiKBShQq/c8qp7qWnJ17+/tQoUVIepqaqSkU7ey7fv5esPCRJ4tRNdx6/e0uFwnYARMfEEBMbQ1ZVVYW46qpqXLwX110f8eXt5t/HUVZWRlUlizzOj248eYzHs6d0qVM3+SeZhl56fsDL348aJUrJw+LqryiX791NVh6SJHHqxnUev31DhSJF5eH7L12gRP78NBs3CpOGdSjapT0rDig2AGJjY2k3dRJDW7ahoE3OeHn7BPhz9cF9TPQMcOzdDdNGdajYvxcXvwxVZQQv37zBy8eHGhUrysPU1NSoWMaBy+7uKcp7//FjlChiR7Pu3TApUoiiNaqzYtPGJNMEBgUhk8nkvVI+Hz9y9dZNTIyMcGxQH1O7wlRs0piL164mmc+fEBkZyYPbHjhWrqIQ7li5Ch4J9KD/rt2bNlC78X/yRhNA0TJluHL+PK+ePQPg0b273Lp6hfLVaqTacYV/S6ZuOMXGxjJs2DAMDAwwMzNjwoQJ6VIOLy9vAEx/6KY3NTHBy9s78XTe3j9Ns3X7dm56eOA8eXKi+bjOmYttgfxky50LVR1tajVowOL58ylXtqw8zrYNG4mOjsbQ0gI1XR169OvLnm3byJUz1y+da1rxCvADwFTfQCHcVF9fvi8xgcHBaNWtgWrNytQdNZwFfZ2o/qUBpq2hgYNtISZvXMeHjx+JiYlh44ljXH30AE+/uHzzW2cnu6kZI1cuI+DzZyKjopi+ZSNe/v54+id87FVHDlLAOjuOBeMPnaYHry/lNDX4sf4M8PL3TzJtYHAwWrWqoFq1PHVHDGFB/0FUL/mtAfbC8wNL9u0hTzYrjs2aR8+GjenvOpf1Rw/L48zYvIEsysr0b9I8wWO8+PABgAlrV9KtXkOOzpxHsbz5qDqon8JcsvTk5eMDgKmRsUK4qbERXr4+Kcr7xZs3LNmwnjw2NhzbvIWe7drRf9xY1u/YnmD88PBwRjhPpXXjxuhoa8fl8fo1ABPmzKFbmzYc3bSZYoUKU7VFc56+SHouW1r75OdHTEwMhsaK32eGxsZ89En8O/BX3Ll5g6cPH9CkneLwZdf+A6nzXxPqOZTAzsyQppXL065HL+o2aZoqx81IlJRkqbIJScvUDad169ahqanJ1atXmTlzJpMmTeLEiRMJxo2IiCAoKEhh+12btmxBy8hQvkVFx/VY/DjpTpKkn07ESyrN27dvGTB0CBtXryFr1qyJ5uG6aBFXrl1j/85d3LjsxpzpM+g9YAAnT5+SxxkzYQIBAZ84efgw7pcuM6h/f5q1acPde8nrzUltm04eR6tuDfkWFR0NwI/VlZw61NbQwGP5aq4vXsHUzt0YtGQhZz1uyfdvGDkGSZKwbNEYtVpVcd2zi9ZVqqH8ZbBfJUsWdk2YwpN3bzFoVAeNOtU5e/sWtUuVQVlJOd7xwiIi2HzqJF1q10thLfy+TSeOoVWrinz7Vn8JXU9J56WtoYHHynVcX7aaqV17MGixK2dv3ZTvj42NpVievEzr3ouiefPRo0FjutVryJJ9ewC48fgR83dtZ+3IMYn+v4qV4ibq9qjfiE516lE0bz7m9XUin5U1qw8fSDBNWtu0exdaeXLJt5T8Hf9MbGwsxQoVZtrIURQtVJge7drTrXUblqxfHy9uVFQULXv3JDY2lsXTpivkAdCjbVs6tWhJ0UKFmTdxEvly5WL1ti0pKl9qSYu6+2r3xvXkKWBLkWLFFcKP7NnFwR3bmblsJTtOn2faoqWsWbSAvVs3p8pxMxIxx+nPyNTrOBUpUoTx48cDkCdPHhYuXMipU6eoXr16vLjOzs5MnDgxVY7boF49Spf6dkceEREBxPUgmZuby8N9fH3j9Sh9z8zUNF6P1Pdpbty6hY+PD8UdHeT7Y2JiOH/xIguXLiEiMIjIyEhGjR/Hnm3bqVu7NgBFChfG485tZru4UK1KVZ6/eM7CpUu4d+MmBW1tAbArUoQLly6xaNlSli5YmMIa+XUNHMtRuoCt/PPX4TIvf3/MDb9NLPb59AlTPYN46b+npKRE7i9zQOxz5+Hhm1c4b9lAJfu44aZcFpacm7eQkLAwgkJDMDc0osXk8dh89/+qeN58eCxfQ2BwMJHRURjr6VO6T3dK5M0f73g7z58hNCKc9jVq/n4FpFCDsonUn5/fD/UXEK8X70dKSkrkzmYFgH2evDx8/QrnTeupVLQYAOaGRth+mfv1VYHsOdh1Pu5pwgt3PPAJCMC6+bd5VDExMQxevACXndt4tW2PvEwJ5fMmiV7ZtNSgRk1KfzlHiJsTBuDl64O5qak83OejX7xeqF9lbmKCbd68CmEFcudh1+FDCmFRUVE079mdl2/ecnr7DnlvEyAvU0L5vHn/PkXlSyk9Q0OUlZXj9S75f/wYrxfqd4SFhnJkz276jhgVb9+cCePoMmAgdf6L62HKa1uQD2/fstJlLo1atk7xsYV/T6ZuWxYpoji5z9zcHB+fhLvUR44cSWBgoHx7+/b3hwe0tbXJnSuXfLMtUAAzMzNOnPrWwxMZGcm5CxdwLFMm0XwcSpfhxHe9QgDHT52Up6lauTJ33W/gcfWafCtRrDhtWrbE4+o1lJWViYqKIioqKt5TNcrKyvI71NDQuCfDkorzp2lraJDbMpt8s82eAzMDA07c+DbZPDIqinO3PXAsmPATN4mRpG8Nie9pqqtjbmhEwOfPHLt+jYaO5ePF0dXSwlhPn6fv3uL+5DENy5aLF2fVkUM0cCiLsZ7+L5UrNWlraJI7m5V8s81hg5mBISfcf6y/WzgW+rXhREmSiIiKlH8uW6gwj9+8UYjz5N0bspuaAdCuRm3urN6Ax8p18s3CyIihLdtwbJYLADnMzLEwMuLx29eK+bz9ls+fpq2lRW4bG/lmmzcvZiYmnDh/Xh4nMjKSc1fccCxRIkXHKluyFI+fP1MIe/LiOdm/NPjhW6Pp6cuXnNy2DcMfhl1zWFlhYWbG4+fPf8jnhUI+6UFVVRVbO3sun1VcmuPy2TPYf3eT+buO7ttDZGQE9Zu1iLcvLCw03qKOyspK6fbdlpbEcgR/RqbucVJRUVH4LJPJEv1jUVNTQ01NLU3KIZPJcOrTl2mzZpInd27y5M7NtJkz0FDXoHWLb08Vte/SGUsLC5wnTwFgQJ8+VKhejRmzZ9Owfn32HTjAydOnuXjqNBDXQCtUsKDCsTQ1NTA0MJSH6+joULF8eYaOGom6elayW1tz7sIF1m/axNwZMwHIny8fuXPlokffPsx2no6hoQF79x/gxKlTHNy9J03q5FfJZDKc/mvOtM0byZPNijyW2Zi2eQMaWdVoXfVbD2L76VOwNDLCuWtPAJw3b6BE3vzksrAkMjqKw1fdWH/iKEsGDJanOXb9KpIE+aysePb+PUOXLyaflRWdatWRx9lx7gzGunpYm5hy9+VzBixypVHZ8gqTrQGevX/H+Tu3OTxtVhrXyK+RyWQ4NWvBtE3ryJMtG3myWTFt4zo01LLS+rtJsu2nTsTS2Bjn7r0BcN64jhL5CpDL0pLIqCgOX3Fj/bEjLBk0TJ5mYLOWOPbpzrQNa2leuSrXHj5g+YF9LB8S9zShoa4uhrq6CuVRyZIFMwMD8llnl5dvaMs2jF+zErtcebDPnYd1xw7z6M1rdk6altbVkywymQynrt2YtsCVPDY25LHJybQFrmioq9O68X/yeO3798PS3AznkaOBLxOjnzyJ+3dUFO+9vPC4dw8tTU1y28T1sA3s1h3HhvWZ5jqf5vUbcM3jFss3bWT5zLjrKDo6mqbdu3Hz7l0OrltPTEysfM6VgZ4eqqqqcXXYsxfj58zGzrYg9gULsm7Hdh49f8bO5Sv+ZFUlqEOvPozo3YNC9kWxK1mKHevW4vn+HS06dgZg3uQJ+Hh64rz42zIBX9dTCg0JJuDjRx7evYOKqiq58yn29O7etIGqteuiZxC/97RSzdosnzcH82xW5M6fn4d377BuySIat24rj/MpwB/Pd+/w/bIu1qtnTwEwMjHF+LvexYwuNeYoiTlOP5epG04ZybDBgwkLD6O30wACAgIoXbIkxw8eRPu7rvY3b98q9Po4Ojiwdf0GxkycwNhJE8mVMyfbNmxUGAZMjq3rNzBy3FjadOyEf4A/2a2tmTphIj27xS2DoKKiwuG9+xgxZgz1mzYhODiY3LlysW7lSurUqpU6FZAKhrVsTVhkBL3nzyHgczClCxTg+Iy5aGt8e1T6jY+3wt1lSHg4vV3n8s7XB3U1NfJbZWfjyLG0qPztCcTAkBBGrlzGu4++GGhr06R8JaZ27obKd0sBePr5MWjJQrwD/DE3MKR9jVqMbas4CRVg9ZFDWBoZKzz9l1EMa9WWsIgIes+bTUDwZ0oXsOX4bBe0Nb49gfTGx1vhGgwJD6f3vFnf6s86OxvHTKBFlW9Pe5YsYMueKdMZuXwJk9avwcbMHJe+TrSp/mtDlU7NWhIeGcnAhfPx/xyEXa7cnJjjSq507i353rDefQgLD6f3qJEEBAZSumhRjm/eivZ3a1a9+fBeoQ4/eHtTtOa3xv3spUuYvXQJFR0cOLszbpHZkvb27Fm5mpHTpzHJZR42Vla4TJxEm/+aAPDO05P9x48BYF9D8UnbMzt2UckxbikNp27dCY+IYOCE8fh/CsDOtiAntmwlV44caVIfv6J24yZ8CvBnyeyZ+Hp7kSd/AZZu2YGFlTUAvt7eeL57p5CmaeVvvb73b3twaFdc/BO3vj0J+urZM25ecWPFzoRv8kY7z8R1+lQmDxuM/0dfTMzMaNahE72GfFuy4czRI4zp11v+eUi3uMZc76Ej6DN8ZMpPXshU/ql1nBo1aoSenh5r1679afrUXMfpn5ZK6zj9s1JpHad/Wiqt4/QvS411nP5Vf3IdpxlHb6CewnWcwkKCGV6ruFjHKQniW1kQBEEQMoHUeCpOPFX3c5m2is6ePRtv1fC9e/cmq7dJEARBEITkWbx4MTY2NmTNmpXixYtz4cKFROOePXs2wQnpjx4l/G7LjEj0OAmCIAhCJiBTkiFL4eTuX02/bds2nJycWLx4MWXLlmXZsmXUrl2bBw8eYG1tnWi6x48fKwwFGhunbEmPPynT9jgJgiAIwr9ESQZKMlkKt1875ty5c+nSpQtdu3alQIECuLi4YGVlxZIlS5JMZ2JigpmZmXxTVo6/mHBGJRpOgiAIgpAJyGQgU0rh9qXh9OObNL4u5Py9yMhIbty4QY0aiu/9q1GjBpcvX06yrEWLFsXc3JyqVaty5syZJOP+CT4+PvHWMkyMaDgJgiAIgqDAysoKXV1d+ebs7Bwvzscv7/c0/WGtK1NTU7y+rIn1I3Nzc5YvX86uXbvYvXs3+fLlo2rVqpz/bmHZ9JLcxT/FHCdBEARByAS+DrelNA+Iexfq93OQklog+lfeQZgvXz7y5csn/+zg4MDbt2+ZPXs2FSpUSEnRUyy5qzOJhpMgCIIgZAKpOTlcR0fnp+s4GRkZoaysHK93ycfHJ14vVFLKlCnDxo0bf72wv2DdunVJ7g8MDEx2XqLhJAiCIAjCL1NVVaV48eKcOHGCxo2/vcT7xIkTNGzYMNn53Lp1C/PvXqqeFgYOHJjk/l9ZC1w0nARBEAQhE0iPd9UNGjSIdu3aUaJECRwcHFi+fDlv3ryhZ8+494WOHDmS9+/fs379egBcXFzIkSMHBQsWJDIyko0bN7Jr1y527dqVonL/jL+/f5L7fX19k91LJhpOgiAIgpAJyGTfnopLSR6/okWLFvj5+TFp0iQ8PT0pVKgQhw8fJnv2uBd4e3p68ubNG3n8yMhIhgwZwvv371FXV6dgwYIcOnSIOnXqJHaIP+JXepwy7bvqUkr+rrqAT+J9PYIg/NN8wuM/ii4kz+egIHKbm/6Rd9UtungbdS3tnydIQljwZ/qUs8uU76rbt28fs2bN4uHDhwAUKFCAwYMH07hxY3x8fDA3NycmJuan+YjlCARBEAQhE/g6VJfSLTNatmwZLVq0oFChQsyfPx8XFxcKFy5My5YtWbJkCerq6nTo0CFZeYmhOkEQBEHIBFJzOYLMZvbs2cyfP58ePXrIw9q1a4e9vT2zZs2iV69erF69Oll5iR4nQRAEQRAytbdv31K1atV44VWrVuXt27e/lJdoOAmCIAhCJvB1HaeUbpmRjY0N+/fvjxd+4MABcubM+Ut5iaE6QRAEQcgEZDJ++SW9CeWRGY0dO5aOHTty9epVHB0dkclkXLp0id27d7NmzZpfyks0nARBEAQhE1BWkqGcwpZTStNnVK1bt8bKyopZs2axcOFCJEmiQIECnDx5kooVK/5SXqLhJAiCIAhCple+fHnKly+f4nxEw0kQBEEQMgFlmQzlFI61pTT9v0A0nARBEAQhExANp8QpKysne3Xw2NjYJPeLhpMgCIIgCJnanj175P/ev38/x48fZ968eaioqPxyXqLhJAiCIAiZgJIsFV7ym0l7nBo0aADEvXZly5YtWFpasnfvXjZs2PDLeWWadZwqVaqEk5MTADly5MDFxSVdy/MjSZKYMHECFtksUdfUoFKVyty/f/+n6Xbt2oVtoYKoqWfFtlBBhVYzwPnz56nfoAEW2SyRKSuxd+/eeHns3r2bmrVqYWRijExZCQ8Pj3hxnj9/TuP//sPY1AQdPV2at2iBt7f3755umkjPOkzOsZcvX06lKpXR0dNFpqzEp0+fUnK6qS6t6g9g8ZLF2OTKSVYNdYqXLMGFCxd++dj/8jUIP6/DCRMnkN+2AJraWugbGlCtRnWuXr0q3+/v70+//v3IVyA/GlqaWOfITv8B/QkMDEz5iaeSNcuXUcI2P9YGelQv68iVSxeTjH/5wgWql3XE2kCPkgULsG7lCoX9UVFRzHGeRqlCtlgb6FG5dClOHz+uEGftiuVUKlWSXGYm5DIzoU7lipw6dizRYw7p1xdTTXWWLVzw+yeaTr4O1aV0y6x27dpFq1atWLFiBVeuXOHmzZsMGDDgl/PJNA2n3bt3M3ny5PQuRqJmzprJ3HnzWOi6gOtXr2Fmakb1mjX4/Plzomnc3Nxo0aol7dq25fYtD9q1bUvzli0UvixDQkKwsyvCQtfE/8hDQkIoW9aR6dOcE91fo1ZNZDIZp0+e4tKFi0RGRlK/YYOfjvX+SelZh8k5dmhYKLVq1mTUyJGpc8KpLK3qb9u2bTgNHMjokaO4deMm5cuVo3bdOgpvRP/Zsf/1azA5dZg3T14Wui7g7u07XDx/gRzZs1OjVk18fX0B+PDhAx8+eDJ75izu3r7D2tVrOHrsGF26dk27CvkFe3fuYOywoTgNG87Jy1co7ehIq8aNePf2TYLxX796Rev/GlHa0ZGTl68wYOgwRg8ZzMG93xqd0ydOYP2qlUybPZfzN27RoWtXOrVqwd3vbg7NLS0ZM2kyxy9c4viFS5SrWIkOLZrx6MGDeMc8fGA/N69fx8zcPNXPX0hfO3bsoH379qxZs4bWrVtjYGDAyZMn2b9/P5MmTfq1zKRMKHv27NK8efNSlEdgYKAESIEBnyQpJjZFW2x0jGRmZiZNd3aWh4WHhkm6urrS0sVLEk3XvFlzqVbNWgphNWvUlFq2aJlgfEDas2t3ovm9fP5CAqRbN24qhB87clRSUlJSOFf/j34SIJ04djzF558aW3rW4a8e+8yp0xIgBfj5p3u9/Yn6K1WqlNSzRw+FOPnz55dGDB+e7GP/69fgz+owoS0w4JMESCePn0g0zvat2yRVVVUpKiIyRefuHRKW4q1oiRJSh67dFMLy5Msn9Rs8JMH4fQcOkvLky6cQ1r5LV6l4qVLyz6ZmZpLz3HkKcWrVqyc1adEyybLo6etLcxcvUQjzePpMMrewkM5dvyFZWVtLk2bMTJXzfubpHfdbEhiYOj9wSfxe7bz9RDr8wjNF287bT9K8vOlBQ0ND2rlzZ7zw58+fS2ZmZr+UV6bpcfp+qO5Ha9asQVdXlxMnTvzZQn3x8uVLvLy8qFG9hjxMTU2NihUqctnNLdF0blfcqFGjukJYzZo1uOx2OVXLFxERgUwmQ01NTR6WNWtWlJSUuPiTrvQ/JT3r8HePnZGkVf1FRkZy48YNhXwBalSvLs83Ocf+l6/B5NThjyIjI1m+Yjm6urrY2dkleuzAwMD/27vvsCiONw7g36MXAUWEA6UpTRQERJoFG8UaNbHXGEs0FowKEqNiomIXFRv23rvGAoqVolIsWH4WVBSPplSl3vz+QE6OeshRfT/PM09yc7Mzu+Me997s7CyUlZUhJVWz01mzs7PxICICnYs8K8yxazfcCw0pcZt7d0Lh2FW4fJfu3XE/PBw5OTmCemXl5ITKyMnJ404pn++8vDycPHoEnzMyYG1jK8jn8/n447ffMNltBkxMTSt8fLWFhBgu09XXOU779+/Hzz//XCy/efPmuFTGpduS1JvAqTQrV67ErFmzcOnSJTg5OZW/QRXg8XgAAA0NDaF8DQ11wXulbaehXmQbdY0yt/kednZ2UFRUhMccD3z+/BkZGRmY7T4bfD4fHz58EGtb36sm+/B7265Nqqr/EhMTkZeXV0K938qI0vaPfA6K0ocFzp07hwbKSpBTkMcaHx/4X7oMNTW1EttNSkrCv4sXYeKECaIdYBX6mJR/jE3U1YXym2hoIL6UeWzxcXFoUqRPmqirIzc3Fx8TEwEAnbt1x5b16/DqxQvw+Xxcv3IFl86fQ1yRfnv86BH01dWg3UgF7tOnYefBwzBu2VLw/vpVqyAlJYXxk/8Qx+GSWqhfv354+PAhRowYAVNTU7Ru3RqjR4/Gw4cPYW5uXqG66nXg5OnpidWrV+PatWuws7Mrs2xWVhZSU1OF0vfav38/GigrCVLBryNOkUieMVYsr6jv2aaimjRpgqOHj+Ds1z/KKo0aIiUlFVZWVpCUlBRrW6KqjX1YHf8W4lLd/VfZMnQOilamS5cuiAyPQNCt23B1ccGgIYMRHx9frL3U1FT06tMbpi1NsWD+grIPtDpVsO84KF4+v5r8/EUrVkK/RQu0t2yDZg2V4TlzBoaMHFXsnDEwMsLV4FD8d+06Ro8bj2kTx+PZkycAgPsR4di6cQPW+fnV2s+zqAoeuVLZVB+FhYXB3t4ecXFxcHZ2xsuXL6GgoID27dsjKKhiV3Hq7XIEq1atQkZGBu7duyfSk4+9vb2xcOFCsbTdt29f2Np+GwbOysoCkP/LU7PQpMP4+IRivzIL43K54MUJ/3KKT4gvc5vv5ezsjJfPXyAxMRFSUlJo2LAhuFqa0NfXF3tboqhNfcjlcr+r7ZpUXf2npqYGSUnJYiMj8fHfyojafz/qOShKHxZQVFSEgYEBDAwMYGdnB0NjI2zfsR2ec77dkJCWlgbXnj3QoEEDnDxx4rvWqRE31cb5x5hQZHQpMT6+2ChUAXUNDcQX6bfEhARISUmhUePGAAC1Jk2w+/BRZGZm4tPHJHA1tbBo3t/Q0dMT2k5GRgb6LVoAACys2iIyLAxbN27AyvW+CLl9G4kJ8bAyNhKUz8vLg5fnHGzd4It7T55V9vCrDS2AWbq5c+dizJgx8PX1RXR0NLZv345NmzbB1NQUnp6euH79ush11dsRp44dOyIvLw9HjhwRqbynpydSUlIEKSYm5rvbVlJSEvxxMzAwgKmpKbhcLvwDvs2xys7OxvUb1+Fgb19qPfZ29vD3DxDKu3zZHw72Dt+9b+VRU1NDw4YNcfXqVcTHx6Nvn75V1lZZalMf6uvrf1fbNam6+k9GRgZt27YVqhcA/AMCBPVWtP9+tHNQlD4sDWNMENAB+SNNzq4ukJGRwZlTpyFXZP5PTZGRkYG5pSWuX70qlH8j8CqsbUu+GmBtY4sbgcLlr125gjZWVsWCQTk5OWhqNUVubi7OnT4Fl169y9wfxhiyv/bbwKHDEBh6F1eCQwWJq6mJyW4zcOj02Yoeao2i5QhKFxwcjPHjxwOA0ArivXr1wt27dytUV70dcbKxscHUqVPh4uICSUlJzJ49u8zysrKyQhNTxYnD4cBt+nQs8faGoYEhDA0NscTbGwoKChg2bJig3KjRo9G0qRa8vy4bMH3aNHTq7Ihly5fhp74/4fSZ0wi4EoBbN76t75Keno4XL14IXke/jkZkZCRUVVWho6MDIH99l7dv3yI2NhYA8OxZ/i8oLpcrGA3YuXMnWrZsiSZNmiA4OBjTZ7hhhpsbjI2Nq6RPKqom+1DUtnk8Hng8nqCuhw8fQklJCTo6OlBVVa3qLipTVfbfn24zMHL0KFi3tYa9vT38tvrh7du3+H3i7xVq+0c+B8vrw4yMDCxeshh9+/SFpqYmkpKSsHHTRrx79w4DfxkIIH+kydnVBZ8/f8a+PXuFphw0adKkxi55Fvh96jRMGfcb2lhawdrWFnt3bMe7mBiM/rpcwqL588CLjYXvtu0AgFHjxmP7ls2Y7+GOEb+Oxb3QUBzYvQubd+0W1Bl29w54sbFoZd4GvNj3WLF4Mfh8PqbM+FNQZvGC+ejm7AytZtpIT0vDqWNHEXTzBg6dOgMAUG3cGKpfR7AKSEtLQ11DAwZGRiD1A2MMioqKxfLj4+PRpEmTCldWLzg6OrLp06czxoSXI7h16xZr0KABW716dYXqE+dyBAW3Mi+YP59xuVwmKyvLOnXqxB7efyBUxtHRkY0eNVoo7+jhI8zY2JhJS0szExMTdvzoMaH3C259L5oK17Nz+44SyyyYP19QxsPdnWloaDBpaWlmaGjIVq1cyfi5eTV+C3ht6UNR2l4wf36J9ezcvqPG+64q+4/l8dkGX1+mq6vLZGRkmJWVFbseeK3Cbf/I52B5ffgl4zPr368/09LSYjIyMkxTU5P17dOX3QkJLfc8BsCiX76q1HGL47b8uIwvbOkaH6ato8NkZGSYuYUlO3XJX/De4OEjmEPHjkLlT168zMzaWDAZGRmmravLlq9dV+x9IxMTJisry1QbN2YDhw5j91+8FCozdNRoQZuN1Zqwjp27sCNnzpW5n3V1OYJLT6PZrfeJlUqXnkbXy+UILCws2OnTpxlj+UsQKCoqsps3b7K2bduyadOmVaguDmMiPvWuluvcuTMsLCzg4+MDPT09uLm5CZYnuHHjBnr27IklS5Zg2rRpItWXmpoKFRUVpHxKhrKychXuOSGE1G7xmVnlFyIlSktNhYGmhmBpiKpQ8H0V8CwaikqVayMjLRXdjfWrdH9rwtKlSxEbG4t169bh1atXMPo6mjh69GisX78eCgoKItdVbwIncaPAiRBC8lHg9P0ocKp9cnNz8fLlS+jr60NGRqbC29fbOU6EEELIj0RCDJO76+sCmIVJSUlVau4kBU6EEEJIPUDLEZSuefPmKOsCW3R0tMh1UeBECCGEkHqt6CPZcnJy8PDhQ5w/fx5//vlnyRuVggInQgghpB6QlMhPla2jPirtxrDNmzdXeB2netpFhBBCyI+FFsCsOGdnZxw9erRC21DgRAghhJAf0tGjR9GoUaMKbUOX6gghhJB6gCaHl87KykpocjhjDDweD4mJidi0aVOF6qLAiRBCCKkHJDgcSEjQcgQl6devn9BrCQkJqKuro3PnzoLFMEVFgRMhhBBSD9A6TqWbP3++2OqiOU6EEEIIISKiEady8Dn5iRBSN0nQQ6UqTU1etqZ3oc6Syam+vqM5TtWDAidCCCGkHqDAqXrQpTpCCCGEEBFR4EQIIYTUA5ISHLGk+qhv3744deoU8vLyKl0XBU6EEEJIPUArh5dt6NChaNasGdzd3fHs2bPvrocCJ0IIIYTUa2fOnEF8fDzmzJmDVatWwczMDB06dMCOHTvw+fPnCtVFgRMhhBBSD9CIU9mUlJTg5OQECQkJvH//HkOGDMGWLVugqamJ8ePHIzg4WKR6KHAihBBC6gEJCY5Y0o+gSZMmmDJlCkJDQ3Hv3j0oKSmhY8eOIm1LyxEQQggh5IeTl5eHixcvYv/+/Th37hycnZ1F2o5GnAghhJB6QEIMl+nq6yNXipo6dSq0tLQwdepUmJqa4vHjx/jvv/9E2pZGnAghhJB6gBbALF1ERASOHz+O48ePQ1paGp8+fcLBgwfRtWvXCtdFgRMhhBBSD1DgVDpra2u0adMGU6dOxfDhw6GiovLdddWJS3WdO3eGm5tbTe9GpWzauBEtmjeHgrw82llb4+bNm2WWv379OtpZW0NBXh4GLVpg8+bNxcocP34crVu1grycHFq3aoWTJ09WuF3GGBZ6eaFZ06ZQVFBA1y5dEBUVVbmDrQLUf5VXW/vwxIkTcHV1hXqTJpCUkEBkZGSljrMqMcbgtdALWs2aQl5RAZ27ivbvffz4cZi2bgVZeTmYti65nzZu2gj9Fs0hpyCPtu1KPtfKazsrKwtTp02FmnoTKCo1QN+ffsK7d+8qd9BiVBvPwZycHMzx8EAbc3MoNWiAZk2bYvTo0YiNja38AZNaIywsDOHh4Zg8ebJQ0JSZmYndu3dXrDJWByQlJbHU1NRqbTMlJYUBYJ+Sk1ken1+pdODgQSYtLc22+PmxR1FRbNq0aUxRUZFFv35dYvkXL18yBQUFNm3aNPYoKopt8fNj0tLS7MjRo4Iyt27fZpKSkmzx4sUs6vFjtnjxYiYlJcWCgoMr1K63tzdTUlJiR48dY/cfPGCDBg9mmpqaLDklpdLHLa5E/Ve/+3DX7t3My8uLbfHzYwBYWHi4WI+d5YkvLf3673386DH28P4DNnhQ/r93anJKqdsE3crvpyWLF7MnUY/Zkq/9FBIULChz6EB+P23d4sceP4pi07/205vo1xVq+/eJE1nTpk2Z/6XLLPxeGOvSpQtr06YNy83OqdRx1+dz8OOnT6xb9+7s4KFD7PGTJ+x2UBCztbVlbdu2Fctxf0pOZgBYSkpKlX9fxX/8xDJz8yqV4j9+qvD+btiwgenp6TFZWVlmZWXFbty4UWb5a9euMSsrKyYrK8v09fXZpk2bKtsF5crKymIHDhxgS5YsYV5eXoI0a9YsxuFwBK9FUScCp5ogzsDJxsaGTZw4USjPxMSEeXh4lFh+9uzZzMTERChvwoQJzM7OTvB64KBBzMXVVaiMs4sLGzxkiMjt5ublMS6Xy7y9vQXvf/7yhamoqLCNmzaJ5Y+GOBL1X/3tw8Lp5atXtTpw4ufm/3sv9fYW5GV+zv/33rxxU6nbDRo4iLm6uArluTi7sCGDhwhe29jYsN8nThQqY2JiwuZ4eIjcdvLHT0xaWpodOnBQUOZ9zDsmISHBLv53ocYDp7pwDhakkNBQBqDUoK4iqToDp6RPySwnj1+plPSpYvt76NCh/KB/61b2+PFjNn369Pyg/82bEsu/evWKKSgosOnTp7PHjx+zrVu3MmlpaXbs2DFxdkkxAwcOZEpKSszc3JxZWloKkpmZGZOQkGCWlpbMwsJCpLrq3KU6PT09LFmyBGPHjoWSkhJ0dHTg5+cnVD4oKAgWFhaQk5ODtbU1Tp06BQ6HUyOXALKzsxEWFganIrc5Ojk5lbrYVkhICJycnITynF1ccO/ePeTk5OSXCQ6Gc5EyLs7OCA4KErnd6Oho8Hg8oTKysrLo5Ogo8kJgVY36r/Jqcx/WJQX/3s5Owv/ejp0cEVTG8QSHBMPZuUg/uTgjKFi4nwrXCwDOTk6CekVpOywsDDk5OUK3VGtpaaF169aCtmpKXTsHU1JSwOFw0LBhQ5GO70e2evVq/Pbbbxg3bhxatmwJHx8faGtrY9OmTSWW37x5M3R0dODj44OWLVti3LhxGDt2LFauXFml+xkQEICbN2/i/v37CA8PF6QrV66AMYbw8HBERESIVFedCJyKWrVqFaytrREREYHJkydj0qRJePr0KQAgLS0Nffr0gZmZGcLDw/Hvv//Cw8Oj3DqzsrKQmpoqlMQhMTEReXl50NDQEMrX0NAAj8crcRsej1di+dzcXCQmJgrKqBcpo16oTlHaLfhvsTLq6qXuW3Wj/qu82tyHdUmp/94aZf9783g8aKgXPUfEdK4VapvH40FGRgaNGjUqta2aUpfOwczMTPzl6Ymhw4ZBWVlZ9IOsBcS5cnjR78OsrKxi7QmC/iKBqbOzM4KCSg7Wg4ODi5V3KRIQV4WUlBQ0a9asWD5jDJwKToivk4FTz549MXnyZBgYGMDDwwNqamq4du0aAGD//v3gcDjYunUrTE1N0aNHD8yePbvcOr29vaGioiJI2traYt3nov8w5f1jlVS+aL4odYqrTE2j/qu82tyHtdH+/fvRQFlJkAr+qH/P8dTkuVab+ru2n4M5OTkYOnQo+Hw+NmzYUMaR1E4cMLEkANDW1hb6TvT29i7WXlUFxFVh586dUFJSKpavoqKCnTt3VqiuOhk4mZubC/6fw+GAy+UiPj4eAPDs2TOYm5tDTk5OUMbGxqbcOj09PZGSkiJIMTExYtlXNTU1SEpKFjuJ4uPji508BbhcbonlpaSk0LhxY0GZuCJlEgrVKUq7XC4XAIqXSUgodd+qG/Vf5dXmPqzN+vbti8jwCEFSU1MDUMK/d3zZ/95cLhe8uKLniJjOtUJtc7lcZGdn49OnT6W2VVPqwjmYk5ODwYMH43V0NC5dvlznRpvELSYmRug70dPTs9SyVREQi9uoUaMgIyNTLD8tLQ0LFiyoUF11MnCSlpYWes3hcMDn8wGU/A9W8I9SFllZWSgrKwslcZCRkUHbtm0R4O8vlB8QEAB7e/sSt7Gzs0NAQIBQnv/ly7C2thYcu529PfyLlLns7w97BweR29XX1weXyxUqk52djRvXr5e6b9WN+q/yanMf1mZKSkowMDAQJFNTU3C5XPgHCP97X79xHQ5lHI+9nT38/Yv002V/ONgL91PhegHAPyBAUG/BuVZW223btoW0tDT8C/X3hw8f8OjRI0FbNaW2n4MFQdOL589x2d9fEJjVOXy+eBJQ7PtQVla2WHNVFRBXhXPnzsHY2BiysrKQkJAQJHV1dbx580bwWiSVn6te9RwdHdn06dMZY4zp6uqyNWvWCL3fpk0btmDBAsYYY5s2bWJqamosMzNT8P62bdsYABYRESFym1WxHMHWbdvYo6gowV0Hr6KjWR6fzzw8PNiIkSMF5Qtuw3Vzc2OPoqLY1m3bit2Ge/PWLSYpKcm8vb1Z1OPHzNvbu9TbcEtrN4+ffzu9iooKO3b8OLv/4AEbMnRorbudnvqvfvdhQmIiCwsPZ2fPnWMA2IGDB1lYeDh7HxsrlmNnYl6OQEVFhZ04dpw9vP+ADR0ytNiSACNHjBTcDcfy+Oz2zfx+WurtzZ5EPWZLv/ZTScsRbN+6jT1+FMXcvvbT61fRFWr794kTWbNmzVjAZX8Wfi+Mde3atdYtR1DbzsGs7GzWp29f1qxZMxYeEcHex8YK0pfMzEofd3XeVZeSmMhYdnalUkpiYoX218bGhk2aNEkor2XLlmzOnDkllnd3d2ctW7YUyvv999+ZnZ3d9x28iIyMjNgff/zBTpw4wU6fPi1Ie/bsYRwOR/BaFPUucEpJSWGqqqps1KhR7PHjx+zixYvMxMSEAWCRkZEitynOwCmPz2e+vr5MV1eXycjIMCsrKxZ47ZrgvVGjRzNHR0eh8lcDA5mlpSWTkZFhenp6bMPGjcXqPHzkCDM2NmbS0tLMxMSEHT12rELt5vHzb6mfP38+43K5TFZWlnXq1Indf/BALMcszkT9V3/7cPuOHQxAsTR//nyxHDcTY+DEz81jC4r8ez+8/0CojKOjIxs9arRQ3tHDwv10/OixYnVvKNJP1wOvVbjtLxmf2ZQ//mCqqqpMXl6e9e7Vm719/abSx12fz8GCZTBKSleuXq30Mdf3wKlgOYLt27ezx48fMzc3t/yg//Vrxhhjc+bMYSNHjhSUL1iOYMaMGezx48ds+/bt1bIcgbS0NOPxeMXy4+LiGIfDqVBdHMZEuI5Vwzp37gwLCwv4+PhAT08Pbm5uQiuJW1hYoF+/fvDy8gKQvxxBwZ12ZmZmmDlzJoYNG4anT5/C2NhYpDZTU1OhoqKCT8nJP/y1bkLqMola/xeu9uPXjrnldVJqaioaNWyIlJSUKvsuKfi+SomPr3QbqampUFFXr9D+bty4EcuXL8eHDx/QunVrrFmzBp06dQIAjBkzBq9fvxbcwAXkrwg/Y8YMREVFQUtLCx4eHvj9998rtd/lad68OcLDw4stMZGUlIR27drh1atXItdVJwKnytq/fz9+/fVXpKSkQF5eXqRtKHAipH6gwKnyKHD6ftUaOPHixBM4cTWqdH/runr5kN89e/agefPmaNq0Ke7fvw8PDw8MGjRI5KCJEEIIqXMKTe6uVB310MKFC0t9jzEmuGIlinoZOPF4PMyfPx88Hg+ampoYOHAgFi9eXNO7RQghhJAacPr0aaHXGRkZePPmDaSlpWFgYECBk7u7O9zd3Wt6NwghhJDqQyNOpQoPDy+W9/HjR4wYMQIDBw6sUF11ch0nQgghhBSRxxdP+kGoqqrC29sbixYtqtB2FDgRQggh5IckKSmJN2/eIDc3V+Rt6uWlOkIIIeSHQ5fqKqx169YVCpoACpwIIYSQ+oGJIXBi9TNw6tq1a6mPX2OM4dq1a0hOTkb//v0RGBhYZl0UOBFCCCGkXrOwsCi3jLS0NCwtLcstR4ETIYQQUh/wmRgu1dXPFWNXr15dbhlFRUWRylHgRAghhNQHNMepWlDgVA6JPD4kfqDbM8Xt3Zfsmt6FOk1eim58rSxFafozV1nxn7NqehfqrLS0LzW9CwT5z6oT9Qlz0dHRZb5Pf1EIIYSQ+oBGnEo1duxYrFq1Cu3bt4ednR0AIDg4GLdv38asWbMq9Fw+CpwIIYSQ+oDPKj9HqZ7OcYqKisLcuXMxa9YsofwVK1YgMjIS+/fvF7kuug5ACCGE1AcFI06VTfXQ2bNn8dNPPxXL79+/P86cOVOhuihwIoQQQki9pqysjMuXLxfLv3jxYoUu0wF0qY4QQgipH2iOU6n++usvzJgxA7dv3xaa43Ts2DGsWbOmQnVR4EQIIYTUBxQ4lWrKlCkwMTGBj48P1q1bB8YYWrZsiYsXL6Jbt24VqosCJ0IIIYTUe927d0f37t0rXQ8FToQQQkh9QCNO5crMzERCQgL4RY5TV1dX5DoocCKEEELqA3rIb6mePn2KsWPHIiQkRCifw+GAMVYskCoLBU6EEEIIqdd+++03yMjI4L///oOmpiY4HM5310XLEVQTxhi8/lkILR1tyCs1QOduXREVFVXudsdPnICpuRlkFRVgam6Gk6dOCb3vvWwp2tnZQalRQ6hraaLfzwPw7NkzoTJe/yyESetWUFRRRqMmauju4ozQ0FChMp27dQVHWkooDRk+rNLHLS67t26Bg1lLGDRphJ6dHBAadLvUsnG8D5gydgwcrdpAR0URXh6zi5U5sGsHBrh0R2sdLbTW0cLQvr0Qce9uqXX6rloBbWWFYnVdOHMKw/v1hbmeNrSVFRD14P73H2QV27FlC6xaGqNpIxV0dbBH8O1bZZa/ffMGujrYo2kjFbQ1NcHOrVuF3u/r4gQ1BbliaUj/foIyaWlpmDt7FiyMDdFMtSF6dOmM8Hv3hOpJT0+Hxww3mBm0QDPVhrC3bIMdfn7iOmyx2bJpE0wMDdCwgSIcbGxw69bNMsvfvHEdDjY2aNhAES2NDLF1yxah90+dPIn2trbgqjVGYxVl2LZtiwP79pVa34plSyEvLYVZf/4plD9+7FjIS0sJpU7tHb7/QKvQnq1+aG9mCiN1VfTq1B53yvkcT/1tDLq0tYBewwZYOKf45/jCmdPo7dgBZjpaMNFsgh4d7HDi0IFi5XixsZg+fiza6GnDmKuGHh3s8DAiQvB+Rno65s36E7YtDWGk0Rhd21lh77atxeqp9Qoe8lupVD8XwLx//z42bdoEV1dXtGnTBubm5kKpIihwqibLV67Aah8f+K5dh7vBIeByuXDq4Yq0tLRStwkODsbgYUMxcvhw3A8Lx8jhwzFo6BChoOf6jRv4Y9IkhNy6Df8LF5Gbmwvnnj2QkZEhKGNkaATftWvxMCISt65dh56uHpx79kBCQoJQe+N/G4cPMe8EacvGTeLviO9w5vgxLJzjjqmz3HHhVjBs7Ntj1M/98D4mpsTy2VnZaKymhqmz3GFqZlZimeCbN/HTLwNx+NwFnAoIhFazZhjRvy8+xL4vVjYy7B4O7NqBlq2L1/U54zPa2dnBc+E/lTvIKnby2FHMdZ+FGe4eCAwOhX379hjS7ye8i3lbYvk3r6MxtH8/2Ldvj8DgULjNdsdfs/7E2VMnBWV2HzyMqFevBenWvXBISkripwEDBGXcJk/CtatXsHH7Dty4G4bO3brh59498eH9t37+2302rvpfxqYdOxAUEYnfp0yF58wZ+O/s2arrkAo6euQIZs/8Ex5zPBFy9x4cOnRAv9698fZtyf33Ojoa/fr0gUOHDgi5ew/uHnMwc4YbTp44ISijqtoI7p6euHbzFu6GR2Dk6NGYMO43+F++VKy+e3fvYvu2bTAzK/kPvLOLC6Jj3gnSqbPnxHPgYnT2+DH84+mOKbPccf5mEGwcHDD6l/7lfo6nzJpd4mcPABo2aoQps9xxwv8qLt0OxcDhIzFr8u+4HuAvKJPy6RN+dukGaWlp7D5+EgGhYZi7yBvKKiqCMv94euB6gD98/Lbjyp1wjJs8BQvcZ+Ly+drXj2WiBTBLZWxsXOw773txmKhPvfvBpKamQkVFBSlJHyu8OFZRjDFo6WjDbdo0eMx2BwBkZWVBo6kWli3xxsQJE0rcbvCwoUhNTcWFc+cFea69eqJRo0Y4uK/k5eETEhKgrqWJ61evolPHTqUfW2NVBFy6hG5d82/D7NytKyzaWMBn9erKHGox4njIb58undDawgLea9YJ8rpYW8Kldx/M8So7YBnY0wWtzMzhtWxFmeXy8vLQWkcL/65YjV+GDRfkZ6Sno0dHByxe7YN1K5aVWlfMmzdwMGuJi7eC0cq8TQWPsHTiesivc6eOMLewwMp16wV59pZt0LNPH8z7Z1Gx8gv/nouL588hOOLbCNrMqVMQ9fAhLl67XmIbm33XY+m//yDq1WsoKiriy5cv0FNXw94jx+Dco4egXGdbGzj36IG/vBYCADpYW6Hfz79gludfgjJdHezh5OICzwVelT10sTzkt6ODPSwtrbBuwwZBnoVZa/Tp2xf/Ll5SrPxczzk4f+4cIh8+EuRNnTwZDx7cx/VbpY+y2LdrB9eePbCgUCCenp4Oe5t2WLt+PZYuWQLzNhZYWehzOn7sWCSnJOPo8RMlVSkW4njI709dHdG6jQUWr1kryOvazgouvXrDo5zP8eBerjA1M8OCpWV/jgGgZ0cHdHVxxay/5wMAli6Yh3uhITh20b/UbZzsrNF7wC+Y7j5HkNerU3t0cXYR1PO90lJT0VpbEykpKZX+LimN4Psq9B6UGzSoXF3p6VCxta7S/a0JV65cwdy5c/Hvv//C0tIS0tLSQu+rFAqky0MjTtUgOjoaPB4Pzt2dBHmysrJw7NQJQcHBpW4XHBIitA0AuDg5l7lNSkoKAEC1kWqJ72dnZ8Nv21aoqKigTZEv+P0HD0CNq4FWbcwxy312maNh1SU7OxsPIyPQqavwOhudunbDvdCQUraquC+fPyMnJwcNGzUSyv975gx0dXFFxy5dxdZWdcvOzsb9iHB06SZ8G26Xbt1xJ6TkPrwbGlKsfNfuTogMD0NOTk6J2+zfvQv9fxkIRUVFAEBubi7y8vIgJycrVE5OXh4hwUGC17b2Drh4/jw+vH8PxhhuXr+Gly+eo4uT8LlfU7KzsxERHo5uRfanW3cnhJTyWQwNCUG3Ip/d7s7OCA8ruf8YYwi8egX/+98zdOjYUeg9t6lT4dqjB7p2K/026pvXr0NHSxNmpi0xeeJExMfHi3p41aLgc9yx2Oe4K8LuhJayVcUwxnDrWiBevXgOW4f2gnz/C//B3NISk0aNgFULXfToYI+Du3YKbdvOzgEB/50HLzYWjDEE3biO6Jcv4FhGn9dKeUw8qR5ydnbG3bt34erqCnV1dTRq1EgoVQRNDq8GPB4PAKChoSGUr6GugTdv35S5XbFtNDQE9RXFGMOfs2ehQ/v2aN26tdB7586fw5Dhw/H582doamrC/8JFqKmpCd4fPnQY9PX1wNXg4lFUFDz/nov7Dx7A/2LxywbV6WNSIvLy8tBEXbgf1NTVkRAXJ7Z2vBfMA1dTCx0KBUinjx3Fw/uROHet7LkstV1S4tc+1FAXym+iro74UvowPi4OTdSLlNdQR25uLpISE8HV1BR6L/zuXTyJisLajZsFeUpKSmhna4eVS71haGwCdQ0NHD9yGGF376C5gYGgnPeq1ZjxxySYGbaAlJQUJCQk4LNxE+wKffnVpMSv/adepD80NNQRV0r/xcXFQaNIf6ur5/dfYmIiNL/2X0pKClro6iArKwuSkpJYu95XKOA6cvgwIiMicKuUABcAnF1dMeCXn6Gjo4vXr6PxzwIv9HB2QlDoHcjKypa6XXX6lJSEvLw8qBXpQ7UmGkiIC6hU3akpKbBtaYjsr33476o1QgFazOto7Nu+DeP+mIo/Zs7C/bAwLPCYBRlZGfw8NH902Wv5SsyZ9gdsWxoKzsFl6zegnX3tnCtWKlqOoFSBgYFiq4sCp6+ysrKQlfVtODo1NfW769p/4AAmTp4keH3+6wMEi87iZ4yVO7O/IttMmTYNDx4+xK0SLqV06dwFkffCkJiYiK3bt2PQsKEIvR0k+DIYP26coGzr1q1haGAAaztbhIeHw8rKqsx9rA4cVLzvRLXJZzVOHzuKo/9dhJycHAAg9t07eHnMxv5TZwR5dV1Fz7+SypeUDwD7du9Cy1atYNWunVD+xu3bMe33iTAzaA5JSUmYW1ji58GD8SAyUlDGb+MG3LtzB/uOHoe2jg6Cb93CbLfp0OBy4di1Yiv6VqWq6D8lJSWE3gtDeno6AgOvwmP2LOg310cnx86IiYnB7D9n4Ox/F8o8BwcOGiT4/1atW8OqrTWMWzTHhf/+Q7/+/St0jFXte/4GlqeBkhIu3AxGRkY6bl+/hkVzPaGjpw/7r1MV+Hw+zCyt4L4g/9Jw6zYW+N/TJ9i7fZsgcNq5eSMi7t7F9kNH0VRbG6FBt/H3zBlQ1+AK/Ziq9ShwKlWnTiVPXWGMlTpXsTQUOH3l7e2NhQsXiqWuvn36wNbGRvC6ICDj8XiCX5oAEJ8QD40iIymFcbncYqNL8fHxxUahAGDq9Ok4c+4sblwNRLNmzYq9r6ioCAMDAxgYGMDOzg6GLU2wfecOeHrMKVYWAKysrCAtLY3nL17UaOCk2lgNkpKSiI8X7oekhIRiv16/x+Z1PvBdtQIHTp8TmoD6IDIciQnx6Nnp26hHXl4eQm/fwi6/zXiZmAxJSclKt18dGqt97UOe8OhIYkJCsVGlAuoaGsVGoxLjEyAlJQXVxo2F8j9//oyTx45izrzic0H0m7fA2csByMjIQFpqKriamvht5Ajo6OoBAL58+YLFC+Zj96EjgnlQrczM8PDBfWzw8akVgZPa1/4rOroUH59QbBSqQP7IsHD5hIT8/mtcqP8kJCTQ4uvoWxsLCzx78hQrli1DJ8fOiAgPR3x8PBxsv/0tycvLw62bN7F54wakZHwu8RzU1NSEjq4uXrx4/t3HLG6NGjeGpKRksVHipMT4Sn+OJSQkoNeiBQCglXkbvHj2DBtXrxQETupcLgyNTYS2MTAyxoUzpwAAmV++YMU/Xtiy/xC6ubgCAFq2NsPjBw/gt35t3QqcSJliY2Px5s0bZGd/m3v78eNH/Pzzz7h69So4HA4cHR3LrYfmOH3l6emJlJQUQYop5U4PUSgpKQmCFAMDA5iamoLL5cL/yrch6ezsbFy/cQMO9val1mNvZye0DQBcDvAX2oYxhinTpuHEqZO4etkf+vr6Iu0jY0xohK2oqKgo5OTkQFOTK1J9VUVGRgZmFpa4efWqUP7NwKuwtrWrVN2b167BuuVLsff4abSxaiv0XgfHLvAPuYuLt0MEydzSCv0HDcHF2yF1JmgC8vuwjaUVrl29IpR/7eoV2NiV3IftbO2KlQ+8EgALq7bFJlWePn4M2VlZGDhkaKn7oKioCK6mJpI/fUJggD969O4NAMjNyUFOTg4kJIT/FElKSoJfSxbik5GRgaWVFa4GCH8Wr14JgF0pn19bOztcLfLZveLvD6u2xfuvsMKfyy5du+JeRCRC74UJklVbawwZOgyh98JKPQeTkpLwLiYGmlzNEt+vCYLPcWDRz3Eg2trYirUtxpjQF2NbWzu8KhJERr98jqbaOgCAHME5KDzyJSkpWaFFEWsFuquuVIsXL4aOjg46dOiArl27CtIvv/wCDoeDbt26oUuXLiLVRSNOX8nKylbZfAAOhwO3adOwZOlSGBoYwtDAAEuWLYWCggKGDf32ZTNqzBg0baoF76936UyfMhWdunbBshXL8VOfvjh99gwCrlwRuhT3x9SpOHDoIE6fOAElJSXBCJWKigrk5eWRkZGBxd5L0Ld3H2hqaiIpKQkbN2/Gu3fvMPDnXwAAL1++xP6DB9DTtQfU1NTw+MljzHR3h6WFJdrXgnkm46dMg9uE32BuZYW2NrbYv3MH3r+LwYix+ZcXl3rNBy82Fj5+2wTbFKynlJGRjqTEREQ9uA9pGRkYmbQEkH95buWif7B++y4009VBfFx+vykqNoBigwZooKQEE9NWQvuhoKiIRqqqQvmfPn5E7LsYxH34AAB4+Tz/D3QTDQ2oa9Rs0FnYpGnTMPm3sbCwskI7Wzvs3rEd72NiMGbceADAv/P/xofYWGzctgMAMGbcOGzfvAl/e7hj1K9jcTc0BPt374Lf7j3F6t6/exd69OlbbCQKAK76+4MxBgMjQ0S/fAmvv/6CgaERho0aDQBQUlaGQ8eO8JrrCTl5OWjr6CDo5k0cObAf/yxdXoU9UjHT3GbgtzGjYdW2LWzt7LB921bEvH2LcRMmAgDmzf0Lse9jsX3XLgDA+AkTsXnjRrjPmomxv41DaEgIdu3cgd2F7oZdsWwprNq2RfPmLZCdnY2LFy5g/769WOebf+eekpISWhWZq6ioqADVxo0F+enp6Vj0z0L06z8AmpqaePPmNeb//Tcaq6mhb79+Vd8xFTDuj6mYMXEczC0tYWVji4O7diD2XQyGf/0cL/OaD96HWKzZUsLnOL3kz/GGVStgbmkFXf3myM7JRuDlSzhx6AAWrf525964yVMxwLkrfFeuQO/+AxAZfg8Hdu2E99r8O0yVlJVh16EjlsybCzk5eTTV1kHo7Zs4fugA5i1eWl3dIx50qa5UGzZswI4dO9CnTx+hHx0JCQkwNDTEp0+fRL5sTIFTNXGfNRtfvnzB5KlT8OnTJ9ja2ODyfxegpKQkKPM25q3QL28HBwcc2n8Afy+Yj3kLFqBFixY4fOAgbG2//ULbtCV/Mm7nIk933rltO8aMHg1JSUk8ffYMu/fuRWJiIho3box21ta4GXgNrVrlBwAyMjK4cvUq1q5fj/T0dGhra6NXj55YMG9erRhZ6fvzL/j0MQlrl3kjnseDsakpdh87iWY6+b8Y43g8vH8nPELo2uHbSMDDiAicOnoYzXR0EPzoKQBgzzY/ZGdnY+JI4UU+Z8z5C3/+9bfI++Z/4TxmTpooeP3Hr6O+q56q1v+XgfiU9BErvZcgjseDiWkrHDx5Cto6+c9niuPx8K7QKKuunj4OnjyFv93dsWPLZnA1NbFk5Wr06Sc8Z+bF8+cICQrCsVLWDUpNTcGi+fMQ+/49GjZSRZ9+/TDXa6HQqMvW3XuxaP48/P7rr0j+9BHNdHTwl9dC/Dp+fBX0xPcZOGgQPiYlYcniReB9+IBWrVrj1Nmzgudb8T7wEFNoTSw9fX2cOnsW7jNnYcumTdDU0sKqNT7oX2iNq4yMDEyfOhXv372DvLw8jIyNsWP3HqE5S+WRlJRE1KNHOLBvH5KTk8HV1ISjY2fsPXBQ6G9LbdDn51/w6eNHrFu+FPE8HoxammLX0ROCz3F8HA+x794JbdOz47fJ2Q8jI3D66BE009HB7YdPAORfJv575gx8iH0POTl5tDAygo/fdvT5+qMQANq0bQu//YewbOF8rFvujWa6eljgvRz9Bw0RlFm/YxeWL1yA6ePHIvnTJzTT1sHseQsw4rdvcz9J3RYfH4+ePXsWu4MuMzMTHA6nQssR0DpOpRDnOk4/MnGs4/QjE9c6Tj8ycazj9KMTxzpOP6pqXcfpynUoK1ZyHaeMdKh0c6x36ziNHTsW69evFyyXUiAtLQ3Tp0/Hjh07RK7rh/mrvGvXLrHdhUUIIYTUOjTHqVQ7duwoFjQB+ZfEKxI0AT/QpbrXr1+LNFueEEIIIfVLeRO/AwMDkZycjP79+5e75tMPEzhdunQJa9euLb8gIYQQUhfR5PBSWVpalltGWlpapHI/TOAUXMZjSgghhJA6j8/EEDjVz2nPq0V4DquioqJI5X6YwIkQQgghP7YXL17g8ePH4HA4MDExgaGhYYXroMCJEEIIqQ/4rPIjRvV0xCklJQVjxozBmTNnICWVH/rk5OSgT58+2L17Nxo2bChyXT/MXXWEEEJIvUZ31ZVq+vTpePHiBW7fvo3MzExkZmYiODgYL1++xLRp0ypUF404EUIIIfUBTQ4v1ZkzZ3D27FnYFXrMlK2tLfz8/ND76yOgREUjToQQQgip17Kzs9GgQfHFQZWUlMp8bmtJKHAihBBC6gGWxxdLqo8cHR0xZ84cJCUlCfI+fvwId3f3Cq/xSJfqCCGEkPqALtWVat26dejVqxd0dHRgZGQEDoeDZ8+eoWnTpvjvv/8qVBcFTuVJ+ghk59T0XtRZzWp6B+q4NNVG5RciZZLLza3pXajzXqak1/Qu1FkZaRk1vQsEQIsWLRAVFYUzZ87g8ePHYIyhZcuW6NevX4UfZk+BEyGEEFIfMDGMOLH6OeIEAJKSkujfvz/69+9fqXoocCKEEELqA1rHqVS7d+8u8/3Ro0eLXBcFToQQQgipcp8+fcK0adNw5swZAEDfvn2xfv36MhefHDNmTLGgx9bWFiEhIRVqe8aMGUKvc3Jy8PnzZ0hJSUFBQYECJ0IIIeRHw/h8sEpeqqvs9mUZNmwY3r17h4sXLwIAJkyYgJEjR+Ls2bNlbufq6oqdO3cKXsvIyFS47Y8fPxbLe/36NSZOnIiZM2dWqC4KnAghhJD6II+fnypbRxV48uQJLl68iJCQENja2gIAtm7dCnt7ezx79gzGxsalbisrKwsulyv2fdLT08PSpUsxfPhwPH78WOTtaB0nQgghhFSp4OBgqKioCIImALCzs4OKigqCgoLK3PbatWtQV1eHkZERxo8fj/j4eLHtF4fDQUxMTIW2oREnQgghpD7gMzGs45Q/OTw1NVUoW1ZWFrKyst9dLY/Hg7q6erF8dXV18Hi8Urfr0aMHBg4cCF1dXURHR2PevHno2rUrwsLCKrQ/p0+fFnrNGMOHDx/g6+uLDh06iH4goMCJEEIIqRfEOcdJW1tbKH/BggXw8vIqVt7LywsLFy4ss867d+8CyB/dKdYeYyXmFxg8eLDg/1u3bg1ra2vo6uri/PnzGDBgQJntFla0LIfDgbq6Orp164aVK1eKXA9AgRMhhBBSP4hx5fCYmBgoKysLsksb3ZkyZQqGDBlSZpV6enp48OAB4uLiir2XkJAADQ0NkXdPU1MTurq6eP78ucjbAEBeXl6FypeFAidCCCGECFFWVhYKnEqjpqYGNTW1csvZ29sjJSUFd+7cgY2NDQAgNDQUKSkpcHBwEHm/kpKSEBMTA01NTZG3ETeaHE4IIYTUBwULYFY2VYGWLVvC1dUV48ePR0hICEJCQjB+/Hj07t1b6I46ExMTnDx5EgCQnp6OWbNmITg4GK9fv8a1a9fQp08fqKmpVXr178r4YQKnXbt2lbnIVlVjjMFr5QpoWZhDXl8XnQf0R9Szp2VuE/XsKX7+bSz02lmDo6kBH78tZZb3XrcWHE0NuM37Wyj/xPnzcBkyGGqmLcHR1EDko0fFtvXbuwedB/SHsmELcDQ1kJySUvGDrGI12YeitJ2VlYWpcz2hZtoSis310Hf0SLyLjf2+g60CWzdvhpmREZooK6GTnS2Cbt0qs/ytGzfQyc4WTZSVYG5sjO1+fkLv79+zB8qyMsVSZmamoExubi7+WTAfZkZGUFdRhrmxMZYuXgR+ocsJJdWhLCuDtatWibcDxIAxBq9F/0JLXx/yjRqis7MTokS4jfn4yZMwtbSArIoyTC0tcLLIRNXCvFcsB0deDm6zZgnljxk/Dhx5OaFk16mTUJnOzk7FygwZOfL7DrYKnN6zE8PaW8PFUAcTezrhQWjpixjeuHAes4cNRH8LU/Q2bYEp/Xri7vVAoTIzBvVHVx2NYslzzHChcgm8D1gyfTL6mZugh5Eexrt2xf8e3Be8/yUjA2vneWKQjQVcDXUxpmsHnN67S6zHXh0Ynw+WV8lUhes47d+/H2ZmZnB2doazszPMzc2xd+9eoTLPnj1DytfvH0lJSTx8+BA//fQTjIyMMHr0aBgZGSE4OBhKSkpVtp/l+WECp5q2fIMvVm/ZDN/F3rh74SK46k3gNHgQ0tJLf3jm5y9f0FxXF0vnzgW3hLsRCrsbGQG/fXthbmpa7L2Mz5/R3sYGS+fOLbMt1y5d8Ne06aIfVDWryT4UpW23+fNw8sIFHNq8GbdOn0V6RgZ6jxoh1mvr3+v40SOYM2smZs2Zg1uhd2DfvgN+7tsHMW/fllj+dXQ0fvmpL+zbd8Ct0DuY6eEB9z9n4PTJE0LllJWV8fzNW6EkJycneH/NyhXYsXUrVvj44O79B/jHewnWrV6NzRs2CMoU3X6j31ZwOBz0rcFflKVZvmoVVq9bB981a3D31m1wNbhw6tULaWlppW4THBKCwSNHYOSwYbh/5y5GDhuGQSOGI/TOnWJl7967B7/t22FuZlZiXa7OzvgQ/VqQ/jt1qliZ8WPHCpXZ4uv73ccrToFnTmHDwnkYPsUNfv8FwMzGFnNGD0Xc+3clln8QGoy2HR3hvXs/Np/3h4V9e8wdOxLPHz0UlFnotwPH7j0UpO3+1yEhKQnHXn0EZdKSkzFtQB9ISknDe88B7LxyA5P+9oKisoqgzIaF83D32lX8tXYDdl29iV9+m4D18//C7csXqq5DfkCqqqrYt28fUlNTkZqain379hUb0GCMYcyYMQAAeXl5XLp0CfHx8cjOzsabN2+wa9euYhPXqxvNcaoGjDH4bPXD3OluGNCrFwBg99r10DBvjQMnTmDiqFElbtfOwhLtLCwBAHMWLy61/vSMDAz/YzK2rlyFRT4+xd4fOXAgAOB1TMlfkgDgNmEiAOBa0G2Rjqm61WQfitJ2Smoqth88gL3rfdG9kyMAYJ/vRmi3tUTAjRtw6dKlsl1QKb5r12LUmF8xeuxYAMCyVatwxf8ytvttgdei4v2yY6sfmmlrY9nXUR/jli0RERaGdWvW4Kf+3+5O4XA40ChjYbo7IaHo1acPXHv2BADo6unh2OHDiAgPE5Qpuv35s2fQybEz9Js3//4DrgKMMfhs8MVcdw8M6NcPALB72zZo6OrgwOFDmDhufInb+fj6wqlbN3jOdgcAeM52x/WbN+Hjux4H93z7tZ2eno7hv47B1o0bsWjp0hLrkpUpfyFABXmFKlkssLKObtuMHoOHodfQEQCAKV6LcO/GNZzZuwvj5/xdrPwUr0VCr8d5zMXty5cQHHAZhq3zA0vlho2Eylw9cxJy8vJCgdPBTeuhrqkFj1VrBXlcbR2h7R6H34PLL4NhYd8eANB7+Cic3b8Xzx7cR3vnHpU46momxsnhpHS1csTp4sWL6NChAxo2bIjGjRujd+/eePnyJYD8JdI5HA5OnDiBLl26QEFBAW3atEFwcLBQHbt27YKOjg4UFBTQv39/JCUl1cShAACi374BLz4ezo6dBXmysrJwtLdH0L27la7/D8856NWtu+ALuz6qyT4Upe2wB/eRk5MjVEaLy0VrExOx7F9lZGdnIzI8HF2dugvld+3uhNBSnvd0JzQUXbs7CeV1c3ZCRFgYcnJyBHnp6eloZWgAk+b6GNivH+5HRghtY9/eAdcDA/H8f/8DADx8cB/BQUFwdnUtsd34uDhcunABI38dU9HDrHLRr6PB4/Hg3P1bP8rKysKxY0cElfHcrODQEDh3E+57l+5Oxbb5w206ern2QPeu3Uqt69rNG1DX0YaRWWuMnzypxIUA9x8+BLVmTdHKyhKz5swpczSsuuRkZ+N/Dx/AulNnoXzrjo6ICrsnUh18Ph9fMtKhVMaUiwuHD6BLn36QV1AU5AX7X4aReRt4/T4OAyxNMaFHN5w7IHx5yKydLYL8LyGB9wGMMUQE3cK76Jdo16lmf/BUWEHgVNlEylQrR5wyMjLw559/wszMDBkZGZg/fz769++PyMhIQZm5c+di5cqVMDQ0xNy5czF06FC8ePECUlJSCA0NxdixY7FkyRIMGDAAFy9exIIFC8psMysrC1lZWYLXRRf/qgxefAIAQKNJE6F8DbUmePOu5GFqUR06dRLhDx/g7oVLlaqntqvJPhSlbV58PGRkZNCoyB91DbUm4IlxldvvkZSYiLy8PKirC9/yq66hjrhSFp6L4/Gg7ix8aVNdXQO5ublISkwEV1MThsbG2LRtG1q1bo201DRs8l0P586dcfvuPRgYGgIAZsyajdSUFFibm0FSUhJ5eXmY/88/GDi45NuXD+zdiwZKSujbr/ZdpuPx8m+l1ihyyVdDXR1vSrnkCQC8uLgSt+EVujX70JEjCI+MxN1bpY/49nB2wcABP0NXRwfRr19j3j8L0bWHK8KCggW3ig8fMgT6enrganDxKCoKnvPn4f7DB/A//1+Fj1ecUj5+BD8vD43UhD9DjZo0wccE0T4fR/w2IfPzZ3Tu3bfE959EhiP62VPMWrFGKD825g3O7NuNgeMmYviU6XgaGQHfBX9DRkYWzr8MAgBMWbgYqzxmYrCNBSSlpCAhIYGZy1bDzMa2pKbID65WBk4///yz0Ovt27dDXV0djx8/RoMGDQAAs2bNQq+vl00WLlyIVq1a4cWLFzAxMcHatWvh4uKCOXPmAACMjIwQFBQkeLBgSby9vctdxEtU+48fw0T32YLX5/fuB1B88a/yFv4qT8z795g+729cPnREaF5JfVAb+/B72mao3P6JVQX3v6TjLZxvY2sLm8KPT3BwQEdbG2zZuBEr1uR/eR0/egSHDx7E9j170NLUFA/u38ecWbPA1dTE8JHFL6/u3b0Lg4YMrRXn8/6DBzFx6hTB6/Nf7/T5nvOgrG1iYmIwffYsXD57rszjHvz1kjsAtG7VCtZWVtA1NsL5CxcElw7Hj/1NqIyhgQGs2zsgPCICVpaWZe5jdSjaTaJ+fq+cPoE9a1bg3227iwVfBS4cOgB9YxO0tLASboPPh5F5G4zzyJ/jadjaDK//9xRn9u0SBE4ndm7D44gwLNq+BxrNmuFBaAjW/u2BxurqaNux7ozk1/aH/NYXtTJwevnyJebNm4eQkBAkJiYK7sB5+/YtTL9O3DU3NxeUL1jPIT4+HiYmJnjy5EmxWxXt7e3LDJw8PT3x559/Cl6npqZ+9wS0vi6usLVqK3idlZ0/ksWLj4dmoYW+4pMSi41iVETYg/uIT0xEW5dvl1Ty8vJwIyQYvjt3IOtNDCQlJb+7/ppUm/qQq96k3La56urIzs7Gp+RkoVGn+MREOFi3++79E4fGamqQlJREfJzw6FJCfALUS1l4ToPLRRxPeLG6hIR4SElJQbVx4xK3kZCQgJW1NV6+eCHIm+fpiRmzZuOXQfmr/7ZqbYaYt2+xevnyYoFT0K1beP6//2HX/v0VPsaq0Ld3b9h+XW8GgGBEmhcXJ7SGTHxCQrERpcK4GhpCo0tFtwmLiEB8fDzaOtgL3s/Ly8ONW7fgu3kTslJSS/wca2pqQldHB88L9XdRVpaWkJaWxvMXL2o0cFJRVYWEpCQ+JiQI5ScnJpYaCBUIPHMKK2f/iQWbtpYaxGR++YzAs6cw5k/3Yu+pqmtAz9BIKE/H0Ag3LpwHAGRlfsH25Uvwj99O2HXL/zvQomUrvHz8CEf8NtWpwEksywlU0XIE9UmtnOPUp08fJCUlYevWrQgNDUVoaCiA/LkaBaSlpQX/X/CLpSDAKvhlXBGysrKCBb9EXfirNEoNGsBAX1+QTI2MwVVXh/+N64Iy2dnZuB4cXKkv1W4dO+Fh4DVEBlwRJOs2Fhg+4GdEBlyps0ETULv6UF9Ht9y225q3gbS0tFCZD3FxePT0aY0HTjIyMrCwssLVgCtC+YFXAmBrZ1fiNja2tgi8EiCUd9U/AJZt2wp99gpjjOHB/fvgan6bmPz582dISAj/mZGUlBRajqDAnl07YWllBTPzNiIdV1VTUlKCQYsWgmTasiW4XC78r3zrx+zsbFy/eRMOpfQjANjb2sH/qnDfX74SINimW5cueHgvDJGhdwTJ2qothg8ZgsjQO6V+jpOSkhDz7h00NUufCB71+DFycnLKLFMdpGVkYGRmjrCb14Xyw27eQKu21qVud+X0CSybOR1z128UBDUluXbuDLKzs9F9wC/F3mtt3Q4xX+fIFnj36iU0mjUDAOTm5CI3JwecIuephETJ5ykhtW7EKSkpCU+ePMGWLVvQsWNHAMCtctabKcrU1BQhRSZeFn1dnTgcDtzGT8CSdWthqN8chs31sWTdWijIy2NYoefnjJo6BU25XHjPzb/DJDs7G4+/TqrNzsnGex4PkY8eoYGiIgz09aHUoAFam7QUaktRQQGNGzUSyv/46RPevn+P2K8jDs9e5v9C5aqrC27R58XHgxcfjxfR0QCAh0+eQKlBA+g0bQrVRsJ3rtSEmuxDUdpWUVbGb0OHYeZCLzRu1AiqDRth1j9eMGvZEt2LrLVTE6ZMn44Jv/4Kq7ZtYWNri53bt+NdTAzGjp8AAPD6ey5iY2Pht2MnAGDs+Anw27QJnrNnY8zYsbgTGoo9u3ZiR6E1V7wX/Yt2NrZoYWCAtLRUbN6wAQ/v38eqtesEZXr06oWVy5aimbb210t1kfBduxYjR48W2r/U1FScOn4ci5ctr4be+D4cDgduf0zBkhXLYWhgAEMDAyxZvgwK8goYVmjO1qjfxqKplha8/82/K2z6H3+gk1N3LFu5Ej/16YPTZ88i4OpV3LpyFUB+gNa6VSuhthQVFdBYtbEgPz09HV6LFuHnfv2gqcnF6zdv8Nf8BVBrrIb+fX8CALx89RL7Dx1CTxdXqKk1xuMnTzFzjgcsLSzQ3l70lZmrysBxv8N7xhQYm7eBqZU1zh3Yi7jYd+gzIv9c2Lp0ERJ5PHj65C+fcOX0CSydMRVTvBbB1NIaH7/OFZSRk0ODIj9sLxw6gA7OrlBppFqs3V/GTcTU/r2x39cHnXv/hKeR4Th/YC/+XJr/fDJFJSW0sXPAlsULISsnB42mzXA/NBiXjx/FpPnimb5RbfL4+amydZAy1brAqVGjRmjcuDH8/PygqamJt2/fCuYqiWratGlwcHDA8uXL0a9fP1y+fLnMy3TVwf2PKfiSmYnJnh74lJICW0srXD50GEpf52wBwNv374V+ncfG8WDp9O0Om5WbNmLlpo1wtHfAtRMnRW77zOVL+NXt2/pMQ37PX3pgwcxZ8JqVP49o857dWLjq24MOO/XP/2O802ctxpQykbe61WQfitL2moX/QEpKEoMmTsCXL5no1rEDdvmsqxUjfz8PHISPSR+xbMli8D58gGmrVjh2+gx0dHUB5D+5/F1MjKC8nr4+jp0+A8/Zs7B18yZoamph+WrhpQhSklMw/Y/JiOPxoKyiAvM2Frhw5Sqs230bYVuxxgeLvLwwc/o0JMTHg6uphV/HjcOcucK3nx8/cgSMMfxS6IGetZH7zJn4kvkFk92m49OnT7Bt1w6Xz50TWozvbUyM0DnoYG+PQ3v24u+FXpj3z0K0aN4ch/fuE7oMWB5JSUk8jHqEPQf2Izk5GZpcLro4OuLw3r2CtmWkZXAlMBBrN2xAeno6tJs1Qy/XHlgwd26tOAe79O2H1ORP2LN2NT7Gx0HPyATeuw+A2yx/SsTH+HjEx74XlD+3fy/ycnOx9u85WPv3t+8Al18Gw2P1t+A85tVLPLwbiuX7jpTYrkkbS/zjtxPbli3GnrWroamtg8kL/kX3/t9Gp+b5bsHWZYuxeNpkpCUnQ6NZM/zm7om+I0aXWGdtxfhMDHOc6FJdeTjse65rVbGAgABMmzYNr169grGxMdatW4fOnTvj5MmTsLCwgL6+PiIiImBhYQEASE5ORqNGjRAYGIjOnTsDAHbs2IEFCxYgKSkJ3bt3h6OjI/79918kJyeLtA+pqalQUVFByv9eQLkGVyglP7Y01Zof7avrlOhyS6UFJtS+JwnUFRlpaejTygApKSmVmgJSloLvq4QVm6EsL1+5ur58QZPZv1fp/tZ1tW7ECQC6d++Ox0UeY1A4visa6zVs2LBY3tixYzH262J/BWbOnCnmPSWEEELIj6RWBk6EEEIIqSBaObxaUOBECCGE1AdMDIETo8CpPLVyOQJCCCGEkNqIRpwIIYSQeiD/rrrK3e9Fd9WVjwInQgghpD6gdZyqBV2qI4QQQggREY04EUIIIfUB3VVXLShwIoQQQuoBxueLYeVwCpzKQ4ETIYQQUh/QiFO1oDlOhBBCCCEiohGn8vDigfTPNb0XdVbK7tM1vQt1mvSKij3gmpTg3v2a3oM6r4t5y5rehTorlZNTfY3xWX6qbB2kTBQ4EUIIIfUAy2NglVxOgOVR4FQeulRHCCGEECIiGnEihBBC6gN6Vl21oMCJEEIIqQ/orrpqQZfqCCGEEEJERCNOhBBCSD1AC2BWDwqcCCGEkPqALtVVC7pURwghhBAiIhpxIoQQQuqB/HWcKrcOE63jVD4KnAghhJB6gOY4VQ+6VFdNGGPw2rwRWs7dIG/fDp3Hj0XUyxdlbrP1xDF0HDsajRzbo5Fje3T/fTzuPHooVCYtIwNuK5ZBt6cL5O3bwWHMSNyNeiRUxmvzRpgM6AtFBxtBPaEPHwiV6Tx+LDhW5kJpyBx38Ry8mDDG4B1yFSbbloPruxC9jm3Hk6S4crfbGBEE690+4PouRKvtK+B5/T9k5n57DIJ3yFU0XDtPKBltXSZ4PycvDwtuXYLDvvXQ2vAPTLYtx8RLx/AhPVVQ5lPmZ8y+dg7Wu32gueEftN6+Eu7XziMlK1O8nVAJfps3wdTIEKpKDdDe1ga3b90qs/zNGzfQ3tYGqkoN0MrYCNv8tgi9v3fPbijKSBdLmZnCx1xWuzk5Ofjb0xPtLC3QpKEKWujqYNyvY/AhNlZ8By5GjDF47dgKrX69IN+tEzpPnYSo6FdlbnPieiCsx41Gwx7doOjkCItfR2Dvxf+KlXufEI8R/yxA415OUOjeCRa/jkDYsycVbjv40UN0nT4Zik6OaNijGzpPnYQvteQ8ZIzBy3sJtIyNIK+hjs69eiLqyZNytzt++jRMbdpBtokaTG3a4eTZs0Lv65m1BkdFuVj6Y+afQuWePHuGvkMGQ0W7GZSaasGuW1e8jYkRvO+3cyc69+oJ5WZNwVFRRnJysliOu7owPhNLImWrl4HT69evweFwEBkZWdO7IrB8906s3r8Xvh6euLv3ALiN1eA0aSLSMjJK3eZa2D0Mde2BQL/tCN61DzpcTThP/h3v478FC+P+8YJ/aAj2/rsYDw8fh7OdPbpPmiBUxkhXF74ef+HhkRO4tWM39LS04PzH70j49FGovfH9f8aHy1cFacvceWLvh8pYG3YTGyOCsLxzL1wd8js0FBug/8ndSMvOKnWbI0/vY+Ftf3jYdkHoqGlY370/Tj5/hIW3/YXKtWysjmfj3AUpaPgUwXufc3NwP/4DZtt0xvVhk7C311C8TE7C0LP7BWU+pKeBl56Gfzu6Imj4FGxwHoArb55jasBJ8XfEdzh25AjcZ86E+5w5CLpzFw4dOqB/n96Iefu2xPKvo6MxoG8fOHTogKA7dzHbwwOzZszAqRMnhMopKyvj5dsYoSQnJydyu58/f0ZkZATm/DUXt0Pv4OCRI3jx/DkGDuhfdZ1RCcsP7MXqwwfgO2MW7m7dCa6qKpxmTEXa59I/x6rKypg76lcEb9qGB7v249eevfHr0kW4FBoiKPMpLRXtJ0+AtJQkLqzwweO9h7Dqj+lo2ECpQm0HP3oI11nT4dzOFnf8duKu305MGfALJDi140/9ch8frN6wAb4rVuJu4DVw1dXh1O8npKWllbpN8J1QDP51DEYOHoL7t4MwcvAQDBozGqH37grK3A28hg//ey5I/qfyn5E5sN+38+jlq1fo4OIME0MjXDt3Hvdv3cY8d3eh8/Xzl89w7dYdf/05swqOntQXHMZYvQsvX79+DX19fURERMDCwuK76khNTYWKigpSbgRBuUGDSu0PYwxaLt3gNmwEPMaMBQBkZWdDo3sXLJvmhom/DBSpnry8PDTq3AG+Hp4Y1bsvvmRmQqmjPU6vXoteHTsJylkMGYjeHTth0R9TSz629HSodHJAwCY/dLO1A5A/4mRhZAyf2R6VOtaixPWQX8YYTLYtxyRLe7hZ5x9rVm4uDLcuw8IOzvjVrF2J280OPIdnHxNw5udfBXlzb1xAeNx7XBg4DkD+iNP5l09wa/gfIu9POO8duh7egoe/zoS2csMSy5x6/ggTLh1D7OR5kJKQFLnuwsT1kF/H9g6wsLTEWt8NgjwrMzP07tsX/yxeXKz8356e+O/cOYQ//DbCOe2PyXj44AECb+aPGO3dsxseM2ciNiFRbO0CQNi9u+jk4ICnL15CW0enwsdalEJoeKXrAL5+jvv1gtugIfAYPgrA18/xTz2w7Pc/MPGnASLXZTV2FHo5OODfcb8DAOZs3oDbD+/j5ga/SrVtN3EsnNrZCOoVGzE85JcxBi1jI7hNmgyPGTMAAFlZWdAwNMAyr4WYOHZsidsNHjMGqWmpuHD8W9DuOqA/GjVsiIM7dpa4jdscD5y7eBHPIyLB4XAAAEN+HQNpaWns9dta7r5eu3kTXXr3wqc3b9GwYcMKHqmw1NRUqGg3Q0pKCpSVlStVV5ltqKgg5ve/oSwrV/4GZdWVlQntzYuqdH/rutrxM6Sei37/HrzERDjb2QvyZGVk4Ni2LYIeRIpcz+fMTOTk5kJVWQUAkJuXh7y8PMjJyAiVk5eVxa3IiBLryM7Jgd+JY1BpoIQ2RsZC7+2/8B/UunZCq1/6Y9aalWWOhlW3N6mfEPc5HV10DAR5slJSaN9MD6EfSh41AQA7LR1ExscijPcOAPA65SP8X/8PznpGQuVeJSfBZNtymO9chbEXDuN1yseSqhNIzc4CBxyolPFHKjUrE0oyst8dNIlLdnY2IsLD0a27k1B+V6fuCA0JLnGbO6Eh6OrUXSivu5MzwsPCkJPz7TJneno6TAxawFBfDz/3+wmREd/Ou+9pFwBSUlLB4XCgUskvLHGL/hAL3sckOLezFeTJysjA0cISQUUuoZeGMYYr9+7iWcwbdGpjKcg/c+sGrI1bYuA8T6j3cYXl2JHYeuZUhdqO//QRoY+joN5QFQ6TxkGjryscp/yOWxX4G1OVol+/Bi8uDs5duwryZGVl4di+PYLuhJa6XfDdO0LbAIBLt24IunOnxPLZ2dnYd/gwxo4YKQia+Hw+zl++DCMDA7j07wf1Fs1h27ULTp07J4Yjqz34jA8+v5KJHrlSrhoLnPh8PpYtWwYDAwPIyspCR0cHi7/+An348CG6du0KeXl5NG7cGBMmTEB6errQtv/88w+aNWsGWVlZWFhY4OLFi2W2NX78eBgZGeHNmzdVfmxF8ZLyf5FrNG4slK+h2hi8xCSR65mzzgdNm6ij+9dRIiVFRdibt8G/2/wQmxCPvLw87Dt/DqGPHuJDYoLQtuduXEeD9raQs7PGmv374L9pC9QaNRK8P7xHTxz0XoZrftsxb/wEHL8SgAGzZnzvIYtdXEb+v7+6gvDon7pCA8RnpJe0CQDgZ2NzzLXvBtej26C2fgEsdq1Bx2bNMaPdtxE6a24zbHL+Gcf7jcK6bv0Ql5EO5yNb8fHL5xLrzMzNgdftyxhobFbqr7uPXz5j+Z1r+LV1ySNh1SkpMRF5eXlQ11AXytdQ10Acr+Q5YnG8OGioawjlqWuoIzc3F4mJ+eezsbExtmzbjiPHT2DX3n2Qk5VD986OePH8+Xe3m5mZiflz/8KgIUNq3a9dXlL+Z1VDVVUoX6ORquC90qSkp6OBc2fIdGmPXh5/Yr3bTDgVCoJefYjFptMnYNhMG5dWrcXvP/XHtLWrsefrXChR2n4V+x4A4LVzK8b3/gkXV66FlZExurlNwfOY0n9cVBdefDwAQEO9yPnQRB28uNLnKvLi4opvo176NqfOnUNySgrGDB8uyItPSEB6ejqWrlkD1+7dcfnkKfTv3QcDRgzH9XLm+hFSVI3dVefp6YmtW7dizZo16NChAz58+ICnT5/i8+fPcHV1hZ2dHe7evYv4+HiMGzcOU6ZMwa5duwAAa9euxapVq7BlyxZYWlpix44d6Nu3L6KiomBoaCjUTnZ2NoYNG4aXL1/i1q1bUC/yASyQlZWFrKxvc2VSU1NLLCeK/f+dx8TF/when1+Xf5mCA45QOQYGjnBWqZbv2oGDly7gmt8OyMnKCvL3/rsEYxfOR1OX7pCUlISVSUsMc+2J8KfCEy67tGuHyINHkZj8CVtPnsAgj1kI3bMf6qr5wdz4Ab8IyrY2MIShti6sRwxB+JPHsGppWqHjF4cjT+9jxtUzgteH+44AAMEvyAKMld2HN99FY9Xd61jVpTfacpvhVfJHeF7/DxqhDeBu2wUA4FRk9KmdpjYsd63BgScRmGLVXui9nLw8jL1wBHzGsLJLnxLbTM3KxKAze2Giqg6Pr23UBiX3XRmdV0L5wvXY2NrB5msQDwD2Dg5wsGmHzRs3YOUanwq3m5OTg9HDh4PP58Nnva9Ix1SV9l++iIkrlwpen1+2GkAJn2NW/BiLUlJQQOSOvUj/8gVXwu7iT9+1aK7VFJ0t2wLI/3FnbdISSyZOBgBYGhkjKjoam04dxyjXnoJ6ymqb/3VS78S+/fFrrz6Ceq6E3cOO82fh/bvol6LFYf+Rw5jo5iZ4ff7IUQDfcR5WcJvte/egh5MTtDQ1BXn8r3eK/dSzJ2b8kT9/0cLcHEF3QrF5x3Y4dugg2kHVcuKY3E2Tw8tXI4FTWloa1q5dC19fX4wePRoA0KJFC3To0AFbt27Fly9fsGfPHigqKgIAfH190adPHyxbtgwaGhpYuXIlPDw8MGTIEADAsmXLEBgYCB8fH2zY8G0uRXp6Onr16oUvX77g2rVrUFFRKXWfvL29sXDhQrEcX1/HzrBtbSZ4nZWTDSB/5EmzSRNBfvzHj8VGoUqycs8uLNmxHQGb/WBuJPwl30JbG9e37UTGl89ITc+AZpMmGOwxG/pNmwqVU5RXgIGODgx0dGBn3gaGP/XG9lMn4Tl2XIltWrVsCWkpKTx/+7ZGAqcezU1gzW0meJ2VlwsAiMtIA1fx24TZhC8ZaKJQ+hy0JcFXMNikDUa1tgYAtFLj4nNuNtyunMEsG8cSJ80qSsvAtLEGXiULjyLk5OVhzIXDeJP6CWcHjC1xtCktOwu/nN4DRWkZ7Os9FNKSNXuZDgAaq6lBUlKy2ChPfEJ8sdGgAhpcDcTF8YTyEuITICUlhcalnLMSEhJoa22NFy9eVLjdnJwcjBw6FK9fR+O/y/61YrSpb4eOsDVtJXid9fUSJe9jEjTV1AT58ckfi40EFSUhIQGDZtoAAAtDIzx5/Rree3cLAifNxmow1dUX2qalrh6OXw8EAHC/9nlZbWs2zs831StSj54e3saXf/epuPXt0RO2ba0Fr7Oyv/4djIuDJpcryI9PTCg2olQYV0Oj2OhSfELJ27x5+xYB167hxL79QvlqjRtDSkoKpiYmQvktjYxxq4zLxnVNfuBU2eUIKHAqT41cqnvy5AmysrLQrVu3Et9r06aNIGgCgPbt24PP5+PZs2dITU1FbGws2rcXHglo3749nhS5rXXo0KFIT0/H5cuXywyagPwRsJSUFEGKKXSLakUpKSoKghQDHR2YNm8Brpoa/At9QLNzcnA9LAwO5hZl1rVi9078u80PF303wrrQH/GiFOUVoNmkCT6lpuJScBB+cix7pIMxJvhDVpKoly+Qk5sr9Ee6OinJyKJ5w8aCZKKqDg2FBrj29qWgTHZeLm6/ew1bzdInEH/OzYFEkV+mkhwJMMZQ2m0RWbm5+N+nBGgUCtAKgqZXyUk43f9XqMorFNsuNSsTA07uhrSEJA72GQ45KekKHnXVkJGRgaWVFa5eCRDKDwy4AttC8+4Ks7G1Q2DAFaG8KwH+sGrbFtLSJR8XYwwP7t8H9+uXoqjtFgRNL168wLmLl0oNzKqbkoIiDJppC5Kpnj64qo3hf/fb3JrsnBxcj4yAQ6EfSqJgYIJADADam5njWYzwNIL/xbyF7te+1NfUKrdtPU1NaKk1KbkeDS6qm5KSEgxatBAkUxMTcDU04B8YKCiTnZ2N67dvw8HGttR67NvZCG0DAJevXoWDjU2xsjv374N6kybo5eIilC8jI4N2VlZ49vUycoH/vXwBXW3t7zk88gOrkREneXn5Ut8rawi2cL4oQ7c9e/bEvn37EBISgq5FJhcWJSsrC9lCl8DEicPhwG3YCCzZsR2GOrow1NHBkh3boCAnh2E9vg3Dj5r3F5qqa8B76nQA+Zfn5m3agANLlkJPqyl4X+eWNFBQQAOF/C/uS0G3wRiDsZ4eXsTEYLbPahjr6eLXvj8BADK+fMbibVvR17EzNNWaICklGRuPHsa7+DgMdHIGALyMicH+C+fRs0NHqDVsiMevXmHm6pWwNDFBewtL1AYcDgeTLO2x6u4NNG/YGC0aNsbqu9ehIC2NX4zNBeUmXjoGrQbKWNA+/9hc9Y2xMSII5k000ZarjejkJCwOvoIezU0gKZH/u+Hvmxfhqm+MZkoNkfglHSvuXEdadhaGtsw/9lx+Hkb9dwgP4mNxqO8I5DE+4jLyb59uJCcPGUkppGVnYcCp3fickwM/l2FIy84SLJOgJq8oaKumTJ3uhnG/joFl27awtbXDju3bEBPzFuMmTAAAzJ87F7Gx77Ft5y4AwLgJE7Bl00Z4zJ6FX8f+htDQEOzeuRO79u4T1Lnk33/RztYWBgYGSE1NxaYNvnhw/z7WrFsncru5ubkYPngwIiMjcOzkKeTl5YHHyx/pUlVVhUyRGx9qEofDgdugIViybxcMtbVh2EwbS/bugoKsHIY5ffuiHrXIC03VmggujXnv3QVrk5Zo0bQZsnNy8F9wEPZc/A+bZn67g3XGoKFwmDQOS/bswqCu3XDnyWP4nT0Fv9meIrfN4XAwe+hwLNixFW1aGMLC0Ai7L57H0zdvcOxf72rsqZJxOBy4TZqMJatXwbBFCxi2aIElq1ZCQV4ewwZ+u7N41MQJaKqpBW8vLwDA9EmT0KmHK5atWYOfevXC6fPnEXDtGm5duiRUP5/Px879+zF66DBISRX/aps9bToG/zoGnRzao0vHjrh4JQBnL1zAtfPf1tTixcWBFxeHF6/y18d6+PgxlBo0gE6zZlAtZ1SxVhDHOkw04lSuGgmcDA0NIS8vjytXrmDcOOFLRaampti9ezcyMjIEo063b9+GhIQEjIyMoKysDC0tLdy6dQudOn2b4BsUFASbIr9AJk2ahNatW6Nv3744f/48HB0dq/7gSuE++ld8yczE5KWL8Sk1FbatzXB542YoFRpZe8vjQaLQF+zGo0eQnZODX2YLrymyYMLv8Po9fy5ESno6PH3X4l1cHFRVVPBz1+5Y/MdUwaiApIQknr5+jd3nZiIx+RMaqzREu1atcHP7LrRqkX+Hmoy0NK7cCcXag/uR/vkztDW46NWxIxZMmATJWnCpqcD0th3xJTcXswLPIjkrE225zXCi32goyXwLeN+lpQhdfptt4wgOgEXBV/AhPRVq8opwbW6Mvx2+3TEWm56CcRePIunLZ6jJK8Caqw3/QROg83WZgffpqbjw6ikAoOOBjUL7dPbnsejYTB+R8bG49/XOPcvda4TK3P/1T+gqN0JN+mXQIHz8mISlixeD9+EDTFu1wokzZ6GjqwsA4PE+4F2hUVY9fX2cOHMWHrNmwm/TJmhqaWHlmjXoN+DbLffJKcmYOnkS4ng8KKuooI2FBS5fvQrrdjYit/v+3TucP5e/mKF9u2+XdQDggn8AOtXgZ7Yk7sNG4ktWFiavWo5P6WmwbdkKl1evg5JCoc9xXJzQOZiRmYnJq5fjXXwC5GVlYaKri33zFmJwt293G7ZraYqTi5fD028j/tm9HfqaWvCZOgPDnV0r1LbboKHIzM7GDF8ffExNRRsDQ/ivWYcWTb9d9q5J7m5u+JL5BZNn/olPycmwtbbG5ZOnoKT0bXT37bt3Qn8HHWxtcWjHTvy96F/MW7wILfT1cXjnLthaC994ERAYiLcxMRg7ckSJbffv0web1/jAe/UqTPNwh7GhIY7v3YcO9t9GPzfv2I6FS7/Na+vUI7//d27cJDTZvLailcOrR42t47Rw4UKsXbsWPj4+aN++PRISEhAVFYWhQ4fCwMAADg4O8PLyQkJCAsaNG4eOHTsKJof7+PhgwYIF8PPzg4WFBXbu3InVq1cLJocXXcfJx8cH8+bNw4ULF9BBxEmA4lzH6UcmrnWcflTiWsfpRyaudZx+aGJYx+lHVZ3rOL0aPVvoh+T3SMvOQvPdK2gdpzLU2F118+bNg5SUFObPn4/Y2Fhoamri999/h4KCAi5duoTp06ejXbt2UFBQwM8//4zVq1cLtp02bRpSU1Mxc+ZMxMfHw9TUFGfOnCl2R10BNzc38Pl89OzZExcvXoSDg0N1HSYhhBBSLeiuuupRL1cOFwcacRIPGnGqHBpxqjwacRIDGnH6btU54vRi+J9iGXEy2L+aRpzKUGMjToQQQggRHz6fCdbzqkwdpGz0yBVCCCGEEBHRiBMhhBBSD9Acp+pBI06EEEJIPcAYX7AkwXenKnzI7+LFi+Hg4AAFBQU0FPEh3owxeHl5QUtLC/Ly8ujcuTOioqKqbB9FQYETIYQQQqpcdnY2Bg4ciEmTJom8zfLly7F69Wr4+vri7t274HK5cHJyQlpaWhXuadnoUh0hhBBSD9T2S3UFz4MtWJOx3H1hDD4+Ppg7dy4GfF18d/fu3dDQ0MCBAwcwceLEqtrVMtGIEyGEEFIPVPoyXaGVx1NTU4VSVlZWtR9PdHQ0eDwenJ2dBXmysrJwdHREUFBQte9PAQqcCCGEECJEW1sbKioqguTtXf3POyx4bqWGhoZQvoaGhuC9mkCBEyGEEFIPFFyqq2wCgJiYGKSkpAiSp6dniW16eXmBw+GUme7du1ep4+JwOMLHyVixvOpEc5wIIYSQeoDP54NfyYf0FmyvrKws0srhU6ZMwZAhQ8oso6en9137wuVyAeSPPGlqagry4+Pji41CVScKnMrBNzcFn5ad/25KFq1rehfID47fvl1N7wL5gfGr8Pb+2kBNTQ1qampVUre+vj64XC78/f1haWkJIP/OvOvXr2PZsmVV0qYo6FIdIYQQUg+I81JdVXj79i0iIyPx9u1b5OXlITIyEpGRkUhPTxeUMTExwcmTJwHkX6Jzc3PDkiVLcPLkSTx69AhjxoyBgoIChg0bVmX7WR4acSKEEELqgfzAp3IjXFUZOM2fPx+7d+8WvC4YRQoMDETnzp0BAM+ePUNKSoqgjLu7O758+YLJkyfj06dPsLW1xeXLl6GkpFRl+1keDmOM1lcvQcHTpj8lJ9MTogkhhHyX1NRUNGrYECkpKVX2XVLwfRXpOh5K0jKVqistJxsWF7dW6f7WdXSpjhBCCCFERHSpjhBCCKkHavvK4fUFBU6EEEJIPVB45e/K1EHKRpfqCCGEEEJERCNOhBBCSD3AGAO/spfq6H6xclHgRAghhNQDdKmuetClOkIIIYQQEdWJwKlz585wc3Or6d2olE0bN6JF8+ZQkJdHO2tr3Lx5s8zy169fRztrayjIy8OgRQts3ry5WJnjx4+jdatWkJeTQ+tWrQSrrVakXcYYFnp5oVnTplBUUEDXLl0QFRVVuYOtAtR/lVdb+/DEiRNwdXWFepMmkJSQQGRkZKWOs6rU1v6jc/DHOQfLw/KYWBIpB6sDkpKSWGpqarW2mZKSwgCwT8nJLI/Pr1Q6cPAgk5aWZlv8/NijqCg2bdo0pqioyKJfvy6x/IuXL5mCggKbNm0aexQVxbb4+TFpaWl25OhRQZlbt28zSUlJtnjxYhb1+DFbvHgxk5KSYkHBwRVq19vbmykpKbGjx46x+w8esEGDBzNNTU2WnJJS6eMWV6L+q999uGv3bubl5cW2+PkxACwsPLzG+6su9R+dg7X7HPyUnMwAsJSUlCr/vrrTYQR73HlspdKdDiOqfH/rujoRONUEcQZONjY2bOLEiUJ5JiYmzMPDo8Tys2fPZiYmJkJ5EyZMYHZ2doLXAwcNYi6urkJlnF1c2OAhQ0RuNzcvj3G5XObt7S14//OXL0xFRYVt3LSpxv/QUv/V/z4snF6+elVrA6fa2n90Dtb+c5ACp/qnzl2q09PTw5IlSzB27FgoKSlBR0cHfn5+QuWDgoJgYWEBOTk5WFtb49SpU+BwODUy/JqdnY2wsDA4OTsL5Ts5OSE4OLjEbUJCQuDk5CSU5+zignv37iEnJye/THAwnIuUcXF2RnBQkMjtRkdHg8fjCZWRlZVFJ0fHUvetulH/VV5t7sO6oDb3H52DP8Y5KKra/pDf+qJOBE5FrVq1CtbW1oiIiMDkyZMxadIkPH36FACQlpaGPn36wMzMDOHh4fj333/h4eFRY/uamJiIvLw8aGhoCOVraGiAx+OVuA2PxyuxfG5uLhITEwVl1IuUUS9UpyjtFvy3WBl19VL3rbpR/1Vebe7DuqA29x+dgz/GOSgqCpyqR51cjqBnz56YPHkyAMDDwwNr1qzBtWvXYGJigv3794PD4WDr1q2Qk5ODqakp3r9/j/Hjx5dZZ1ZWFrKysgSvU1NTxbrPHA5H6DVjrFheeeWL5otSp7jK1DTqv8qrzX1YF9Tm/qsrfVyb+7A+4PP54FdyOYHKbv8jqJMjTubm5oL/53A44HK5iI+PBwA8e/YM5ubmkJOTE5SxsbEpt05vb2+oqKgIkra2tlj2VU1NDZKSksV+3cTHxxf7FVSAy+WWWF5KSgqNGzcWlIkrUiahUJ2itMvlcgGgeJmEhFL3rbpR/1Vebe7DuqA29x+dgz/GOUhqlzoZOElLSwu95nA4gii5pF8STISVUD09PZGSkiJIMTExYtlXGRkZtG3bFgH+/kL5AQEBsLe3L3EbOzs7BAQECOX5X74Ma2trwbHb2dvDv0iZy/7+sHdwELldfX19cLlcoTLZ2dm4cf16qftW3aj/Kq8292FdUJv7j87BH+McFBVdqqsm1TYNvRIcHR3Z9OnTGWOM6erqsjVr1gi936ZNG7ZgwQLGGGObNm1iampqLDMzU/D+tm3bGAAWEREhcptVsRzB1m3b2KOoKDZ9+nSmqKjIXkVHszw+n3l4eLARI0cKyhfchuvm5sYeRUWxrdu2FbsN9+atW0xSUpJ5e3uzqMePmbe3d6m34ZbWbh4//1ZmFRUVduz4cXb/wQM2ZOjQWncrM/Vf/e7DhMREFhYezs6eO8cAsAMHD7Kw8HD2Pja2xvutLvQfnYO1+xyszrvqbrUdxCJthlcq3Wo7iO6qK0e9C5xSUlKYqqoqGzVqFHv8+DG7ePEiMzExYQBYZGSkyG2KM3DK4/OZr68v09XVZTIyMszKyooFXrsmeG/U6NHM0dFRqPzVwEBmaWnJZGRkmJ6eHtuwcWOxOg8fOcKMjY2ZtLQ0MzExYUePHatQu3n8/NuZ58+fz7hcLpOVlWWdOnVi9x88qPE/stR/P04fbt+xgwEolubPn1/jfVYX+o/Owdp9DlLgVP9wGKv9T/Tr3LkzLCws4OPjAz09Pbi5uQmtJG5hYYF+/frBy8sLQP5yBAV32pmZmWHmzJkYNmwYnj59CmNjY5HaTE1NhYqKCj4lJ0NZWbkKjooQQkh9l5qaikYNGyIlJaXKvksKvq9uWA1EA0np8jcoQ3peDjqFH63S/a3r6sRdddeuXRP8/+vXr4u9X3R9JgcHB9y/f1/wev/+/ZCWloaOjk4V7SEhhBBSs/h8Bj6ncmMhfJrjVK46EThV1J49e9C8eXM0bdoU9+/fh4eHBwYNGgR5efma3jVCCCGE1GH1MnDi8XiYP38+eDweNDU1MXDgQCxevLimd4sQQgipMjTiVD3qZeDk7u4Od3f3mt4NQgghpNowPgOrZOBEyxGUr06u40QIIYQQUhPq5YgTIYQQ8qNhjIFfyRvl68CN9jWOAidCCCGkHqA5TtWDAidCCCGkHqDAqXrQHCdCCCGEEBHRiBMhhBBSD/DFMMepstv/CChwIoQQQuoBulRXPShwKocEy0+E1AQ+p6b3oO6jz2/lZfL5Nb0LdVZ2HvVdfUOBEyGEEFIP0IhT9aDAiRBCCKkH+BDDHCdQ4FQeuquOEEIIIURENOJECCGE1AN8Pqv0iBFdqisfBU6EEEJIPUCBU/WgS3WEEEIIISKiESdCCCGkHmBiGHFiNOJULgqcCCGEkHqAMQZWybvqKrv9j4ACJ0IIIaQeoDlO1YPmOBFCCCGEiIhGnAghhJB6gEacqgeNOFUTxhi8FnpBq1lTyCsqoHPXLoiKiip3u+PHj8O0dSvIysvBtHUrnDx5sliZjZs2Qr9Fc8gpyKNtO2vcvHlT8F5OTg485njArI05FJUaQKtZU4waPRqxsbGCMh8/fsTUaVNh3NIECg0UoaOni2nTpyElJUU8By8mNdWHAJCeno4pU6egmY425BUV0LKVKTZt2iR4vy704aaNG9GieXMoyMujnXXxYyzq+vXraGdtDQV5eRi0aIHNmzcLvR8VFYVffvkFzfX1ISkhgbU+Pt/Vbnp6OqZOmQIdbW0oKiiglalw39YmVXUO3rhxA3369oVWs6bgSErg1KlT39V2VlYWpk6bCjX1JlBUaoC+P/2Ed+/eVeqYxWnLpk0wMTRAwwaKcLCxwa1bZZ+DN29ch4ONDRo2UERLI0Ns3bJF6P0d27ahW2dHaDZRg2YTNfR0ccbdO3eEyhgbtIC8tFSx5DZ1aoltTpk0CfLSUli/dm3lDrYG8BkDn/ErmShwKg8FTtVk+YrlWL1mDXzXrcfd0DvganDh5OKMtLS0UrcJDg7G4KFDMHLECNyPiMTIESMwaMhghIaGCsocPnwYbjNmYK7nX4gIC0fHDh3Qo1dPvH37FgDw+fNnhIdHYN7cvxF+Lwwnjh3H/57/D337/SSoIzY2FrGxH7By+Qo8vP8Au3bsxMVLl/DbuHFV1yHfoab6EABm/DkDFy9dwr49e/Ek6jFmTHfD1OnTcPr0aQC1vw8PHz6MGTNmwPOvvxAWHo4OHTqgV0/hYywsOjoavXv1QocOHRAWHo45np5wmz4dx48fF5T5/PkzmuvrY4m3N7hc7ne3++eMGbh06RL27N2LqMePMd3NDdOnfevb2qSqzsGMjAy0aWMO33XrK9W22ww3nDx1CocOHMStGzeRnpGO3n37IC8vTzwdUAlHjxzB7Jl/wmOOJ0Lu3oNDhw7o17t3qefg6+ho9OvTBw4dOiDk7j24e8zBzBluOHnihKDMjevXMWjwEFz0D8C1m7egra2DPj174P3794Iyt4JDEB3zTpDOX7wIABjwy8/F2jxz+jTu3rkDTS0tMR89qVcYKVFKSgoDwFI+JTOWx69U4ufmMS6Xy5Z6ewvyMj9/YSoqKmzzxk2lbjdo4CDm6uIqlOfi7MKGDB4ieG1jY8N+nzhRqIyJiQmb4+FRar13QkIZAPYm+nWpZY4cOsxkZGRYTlZ2pY9fHKmm+7BVq1bsn4ULhcpYWVmxv+fOrdI+zOOLJ9nY2LCJEycK5ZmYmDAPD48Sy8+ePZuZmJgI5U2YMIHZ2dmVWF5XV5etXr36u9pt1aoVW7hwoVAZKysrNnfuXLEce104BwsnAOzk8RMVbjv54ycmLS3NDh04KCjzPuYdk5CQYBf/u1CpY/+Sk1vpZN2uHRs/YaJQnrGJCZvl7l5i+T9nzWLGJiZCeePGT2A2traltpGemcWUlJTYth07Sy3zx9RprHmLFuxzdo5Q/ovXb5hW06YsLPI+09HVZctXrhLLccclfcz/LklJqfLvqz1q3dgxdZdKpT1q3ap8f+s6GnGqBtHR0eDxeHB2chbkycrKwrGTI4KCg0vdLjgkGM7OTkJ5Li7OCAoOAgBkZ2cjLCxMqF4AcHZyKrPelJQUcDgcNGzYsMwyysrKkJKqHdPgaroPO7RvjzNnz+L9+/dgjCEwMBD/+9//4OLsUmrbtaUPC47RyVn4GJ2cnBBcSt+FhITAyUm435xdXHDv3j3k5OSItd327dvjbAl96+xSet/WhKo6B8XVdlhYGHJycuBcqL+1tLTQunXrCrVVFbKzsxERHo5uRc6pbt2dEFJK34WGhKBbd+Hy3Z2dEf71OEvy+fNn5OTkoJFqo1L349CB/Rg9Zgw4HI4gn8/n47cxozHjz5kwbdWqIodWq/D5TCyJlI0Cp6+ysrKQmpoqlMSFx+MBADQ0NITyNTTUBe+Vtp2GepFt1DUE2yQmJiIvL6+EejVKrTczMxNz/vLEsKHDoKysXGKZpKQk/Lt4ESZOmFD2gVWjmu7DdWvXwbSlKZrpaENGThauPXtgo+8GdOjQocR2a1Mffs95wuPxSiyfm5uLxMREsba7dt06tDQ1hY62NuRkZdGzRw/4bii9b2tKVZ2D4mqbx+NBRkYGjRoJBw0VbasqFJwL6urqQvkaGuqIi4srcZu4uDhoaAiXV1dXL/McnPfXX9Bq2hRdu3Uv8f0zp08jOTkZI0aNFspftWI5pKSk8Ecp854IKYwCp6+8vb2hoqIiSNra2t9d1/79+9FAWUmQCn4dFf6FA+RP9iyaV5Qo24hab05ODoYMHQo+n4+NGzaU2F5qaip69ekN05amWDB/QZn7VpVqWx+uW78OIaEhOHPqNMLu3sOqlSsxecofCAgIKNZebenDoiradyWVLym/su2uX7cOoSEhOHX6NO7eu4eVK1diyh8l9211qu5zUBTfU8/3tlUVqvIcXLVyBY4cPoRDR45CTk6uxPp279wBF1dXaBWawxQeFoYN69fDb/uOWtNP34vPmFhSVVm8eDEcHBygoKBQ5hWPwsZ8HR0snOzs7KpsH0VRO67D1AKenp74888/Ba9TU1O/O3jq27cvbG1tBa+zsrIA5P8i1NTUFOTHxycU+wVZGJfLBS9O+JdifEK8YBs1NTVISkoW+zUZHx9frN6cnBwMGjwY0a+jcTXgSomjTWlpaXDt2QMNGjTAyRMnIC0tLeIRi19t6sMvX77gr7lzcfL4CfTq1QsAYG5ujsjISKxctQrdu3/7dVub+rBARc6TAlwut8TyUlJSaNy4sdja/fLlC+bOnYvjJ4r37aoifVvdquscFEXB5Puy2uZyucjOzsanT5+ERp3iE+Lh4GAvcltVoeBcKDq6FB+fUGwUqkD+yKRw+YSEhBLPwTWrV2HF0qU4f/ESzMzNS6zvzZs3uHrlCg4dPSaUf/vWLcTHx8Ooub4gLy8vD3PcZ8N3/To8e/FS5OOsaXxW+UttVRk4ZWdnY+DAgbC3t8f27dtF3s7V1RU7d+4UvJaRkamK3RMZjTh9JSsrC2VlZaH0vZSUlGBgYCBIpqam4HK58A/wF5TJzs7G9RvX4WBf+h80ezt7+PsL/+q+fNkfDvYOAPJPnrZt2wrVCwD+AQFC9RYETc9fPEfAZf8Sv/hSU1Ph7OoCGRkZnDl1utRfbNWlNvVhTk4OcnJyICEh/HGRlJQEn88XvK5tfVig4BgD/IWPMSAgAPal9J2dnV2xER//y5dhbW0tcjAoSrui9m1NqK5zUBT6+vrltt22bVtIS0vDv1B/f/jwAY8ePapQW1VBRkYGllZWuFrknLp6JQB2pfSdrZ0drl4RLn/F3x9WX4+zwOpVK7F08WKcPnceba2tS92Hvbt3QV1dHT169hTKHzZiBO6GRyD0XpggaWppYcbMmTh7/r+KHiopw8KFCzFjxgyYmZlVaDtZWVlwuVxBUlVVraI9FFG1T0evI8R5Vx3L47Ol3t5MRUWFnTh2nD28/4ANHTKUaWpqstTkFEGZkSNGCt3JdfvmLSYpKcmWenuzJ1GP2VJvbyYlJcVCgoIFZQ4dOMikpaXZ9q3b2ONHUcxt+nSmqKjIXr+KZiyPz3KyslnfPn1Zs2bNWGR4BPvwPlaQsr5kMpbHZ6nJKczW1paZmZmxF/97LlQmNztHbHcl1dU+ZHl85ujoyFq1asUCr1xlr168ZDu372BycnJso++GKu1Dcd1Vd+Bg/jFu3baNPYqKYtO/HuOr6GiWx+czDw8PNmLkSEH5Fy9fMgUFBebm5sYeRUWxrdu2MWlpaXbk6FFBmS+ZmSwsPJyFhYczTU1NNnPmTBYWHs6e/e9/Irebx//Wt1euXmUvXr5k23fk963vhg1iOfa6cA6mpaSyiLBwFhEWzgCw1atWsYiwcKE7X0Vp+/eJE1mzZs1YwGV/Fn4vjHXt2pW1adOm0p9jcdxdtmf/ASYtLc02+21lEQ8esinTpjFFRUX29MVL9iUnl81yd2fDho8QlH/yv+dMQUGBTZ0+nUU8eMg2+21l0tLS7MDhI4Iyi7y9mYyMDDtw+AiLjnknSAmfkoXazsjKZto6Omzm7Nki7WtdvavOT9mR7VPpVqnkp+zIALCYmBiWkpIiSJmZmWLb3507dzIVFRWRyo4ePZqpqKiwJk2aMENDQzZu3DgWFxcntn35Hj9M4LR+/XrWtWtXkcuLO3Di5+axBfPnMy6Xy2RlZVmnTp3Yw/sPhMo4Ojqy0aNGC+UdPXyEGRsbM2lpaWZiYsKOHz1WrO4Nvr5MV1eXycjIMCsrK3Y98JrgveiXrxiAElPglauM5fFZ4JWrpZaJfvmqRoKk2tSHLI/PPryPZWNGj2FaWlpMTk6OGRsbs1UrVzJ+bl6V9qG4Aqc8Pp/5FjnGwGvXBO+NGj2aOTo6CpW/GhjILC0tmYyMDNPT02MbNm4Uev/lq5LPraL1lNVuHp/P3sfGstFjhPt25cqVLDcvTyzHXRfOwdLOn8L1iNL2l4zPbMoffzBVVVUmLy/Pevfqzd6+flPp4xZHAPElJ5f5rFvPdL6eC5aWVsz/6lXBeyNGjmIdO3USKn/5yhVmYZF/Durq6bF1vhuKBTgl9dvcefOEyp397z8GgD2IelyvA6ctSp3YHuWulUpblDqV2KcLFiwQ2/5WJHA6dOgQO3fuHHv48CE7c+YMa9OmDWvVqpVYA7mK4jD2YywT6uXlhV27duH169cilU9NTYWKigpSPiVX6rIdIZXBr9tzVWsFiR/iL1zVyqzhy6Z1WWpqKjQaqwqWJ6mqNlRUVLBJsSPkOZWbuvyF5WJSxk3ExMQI7a+srCxkZWWLlffy8sLChQvLrPPu3buwLnQZddeuXXBzc0NycnKF9+/Dhw/Q1dXFoUOHMGDAgApvLw4/zORwLy8veHl51fRuEEIIIbWeqHN9p0yZgiFDWZNYXAAAAiFJREFUhpRZRk9PT0x7BWhqakJXVxfPnz8XW50V9cMEToQQQkh9xucz8DnVe1edmpoa1NTUKtVmRSQlJSEmJkbo7tLqRnfVEUIIIfUA4zOxpKry9u1bREZG4u3bt8jLy0NkZCQiIyORnp4uKGNiYiJ4CHZ6ejpmzZqF4OBgvH79GteuXUOfPn2gpqaG/v37V9l+lodGnAghhBBS5ebPn4/du3cLXltaWgIAAgMD0blzZwDAs2fPkJKSAiB/WZKHDx9iz549SE5OhqamJrp06YLDhw9DSUmp2ve/AAVOhBBCSD3AZwx81N4FMHft2oVdu3aVWabw/Wry8vK4dOlSle3P96LAiRBCCKkHamKO04+I5jgRQgghhIiIRpwIIYSQeoBGnKoHBU6EEEJIPVDb5zjVF3SpjhBCCCFERDTiVIqCmf2pqak1vCfkR0aPXKk8euRK5dEjV75f2tfvkOp4utlnllvpEaNM5Ilpb+ovCpxKkZaWBgDQ1tWp4T0hhBBS16WlpUFFRaVK6paRkQGXy8V8XphY6uNyuZCRkRFLXfXRD/OQ34ri8/mIjY2FkpISOBz62U8IIaTiGGNIS0uDlpYWJCSqbnZMZmYmsrOzxVKXjIwM5OTkxFJXfUSBEyGEEEKIiGhyOCGEEEKIiChwIoQQQggREQVOhBBCCCEiosCJEEIIIUREFDgRQgghhIiIAidCCCGEEBFR4EQIIYQQIqL/A7zQ9jLtESEmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "inp = TextTemplateInput(\n", + " template=\"{} lives in {}, {} and is a {}. {} personal interests include\", \n", + " values=[\"Dave\", \"Palm Coast\", \"FL\", \"lawyer\", \"His\"],\n", + ")\n", + "\n", + "target = \"playing golf, hiking, and cooking.\"\n", + "\n", + "attr_res = llm_attr.attribute(inp, target=target, skip_tokens=skip_tokens)\n", + "\n", + "attr_res.plot_token_attr(show=True)" + ] + }, + { + "cell_type": "markdown", + "id": "56535322", + "metadata": {}, + "source": [ + "We know that perturbation-based algrotihms calculate the attribution by switching the features between \"presence\" and \"absence\" states. So what should a text feature look like here when it is in \"absence\" in the above example? Captum allows users to set the baselines, i.e., the reference values, to use when a feature is absent. By default, `TextTemplateInput` uses empty string `''` as the baselines for all, which is equivalent to the removal of the segments. This may not be perfect for the same out-of-distribution reason. For example, when the feature \"name\" is absent, the prompt loses its subjective and no longer makes much sense. \n", + "\n", + "To improve it, let's manually set the baselines to something that still fit the context of the original text and keep it within the natural data distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "lined-eating", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHCCAYAAAAZw0bLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVgVSx/A8e/hUIp0I6BYlI0Bdndfu1vvtTuvr+21sbs7sLsbUcLuRkkRSSX3/QM9egQUBQVxPs+zz/Xszs7Ozl3O+e3M7KxMkiQJQRAEQRAE4ZtUMrsAgiAIgiAIvwsROAmCIAiCIKSRCJwEQRAEQRDSSAROgiAIgiAIaSQCJ0EQBEEQhDQSgZMgCIIgCEIaicBJEARBEAQhjUTgJAiCIAiCkEYicBIEQRAEQUgjETgJyYjJ5AVBEAQhZSJwEpKRyWQAJCYmZnJJBEEQBCFrEYGToGT8+PFs2LABABUVFSRJEi1QgiAIgvCBCJwEhYMHD7Jr1y46depEvnz5OHnyJDKZTNECJQiCIAh/OhE4CQC8ffuW7du3Y2VlxZ07d/j7779p0aIFY8eOJS4uTrQ6CYIgCAIicBI+2L59O/fv36dGjRrY2dkxbNgwlixZwtatW3n69KlodRIEQRAEROAkAE+fPmX//v3ky5ePQYMGKdZra2vj5+eHh4eHYp1oeRIEQRD+ZKqZXQAh823atAlPT080NDR4+PAhBQsWJDIyEk9PTxITEylcuLAirUwmIyEhARUVFdEKJQiCIPxxROD0h7t06RKnT5+mVq1aGBsbU7JkSUqWLImamhru7u506NCBEiVKsGDBAoKCghg0aBAGBgZAUuuTCJ4EQRCEP4noqvuDxcfHs3XrVhITE+nbty+zZs3ixo0bFClSBHNzc+bNm8fMmTN59eoVcrkcLy8v8uXLx7x58wCUgqaYmBhOnDiRWaciCIIgCL+ETBKDVv5YFy9epGfPnjRo0IDp06crbYuJiUFDQyPZPrt27WLEiBGsX78eFxcXxfpTp05Ro0YNjh07Ro0aNX562QVBEAQhM4jA6Q/n5eWFhYUF5ubmipnCVVSSGiLDw8Pp378/7969Q0NDg5EjR+Lg4EDVqlWpUaMGY8aMAZKmMmjRogUymYxjx45l2rkIgiAIws8mxjj94ZycnBT//hgwfRy71KlTJ7y8vOjWrRsvXrzA2dmZtm3b8uTJE1RVky6dxMRE9u7dy6lTp7hx44Zi/8TERORy+a8/IUEQBEH4iUSLk5CiwMBAcufOzbZt2/jrr78A8PHxoXHjxkiSxM2bN9HT0+P58+fUqFGDatWqsWzZMmJjY1FXV1fkIwaQC4IgCNmJGBwupEhNTY2qVaty/PhxAMLCwoiPjyciIoLevXujp6dHfHw8q1atIjg4mFmzZgFJT+k1adKEJ0+eAJ+mLxDxuSAIgpAdiMBJSJGBgQGDBg1i9+7dVKhQgf79+1O+fHmsrKzo3bs3ALdv38bV1ZXx48ejra3N69evOXLkCPv27eP06dMMHz6cx48fI5fLRauTIAiCkC2IwElIVb169QgMDGTo0KE0btyY+Ph4xo0bh6GhIe/evWP69Onkzp2bgQMHAnD16lUWLlxI5cqViYyMJDg4GCcnJ44cOaKUb3x8fCacjSCkzNXVlb1792Z2MQRB+E2IweHCNzVp0oTw8HAmTZpEw4YNATh37hxubm7s27cPgOfPn7Ns2TIKFizI6dOnFfteu3YNT09Pqlatyr179yhWrJhiYLkgZDZ/f3+WLVtGo0aNaNy4cWYXRxCE34AYHC58t/DwcJycnLC0tOT06dPExsayefNm+vfvz+HDhylfvjwAvr6+NGrUiPj4eOzs7PD39yc0NJQdO3bg4OCQyWchCNC1a1fevn3LpEmTcHR0JCEhQTwNKgjCV4muOuG76ejoMH78eNasWQPA/fv3WbFiBQ0aNFAETQBHjhzB39+f3r17M3/+fE6dOoWNjQ0zZ87MrKILgoKnpyc+Pj7UqVMHR0dHAORyOQkJCZlcMkEQsjLRZyL8kHbt2gEQGxvLnj17cHd3Z+fOnYrt169fZ9++fbi4uNCnTx/Feg0NDQICAkhMTEQmk4lB40KmSEhIYNSoURQtWpSWLVvy4sULnj9/TsWKFZHL5YqnQMX1KQjCl0Tg9JOFhISgr6+vmFwyu1FXV6d79+4UKlQIc3NzICmYOnz4MA8fPmT16tWKtA8ePCAqKoqiRYuSmJiY5rFOIsgSMtqOHTuIioqiWbNm5MqVi6VLl7Jv3z6io6OZN28elStXzuwiCoKQRWXPX/MsIjExkZ49e2JhYYGrq2tmF+enMTc3p1WrVorPp06dYvv27dSpU4dy5cop1m/evJmwsDAqV66MqqpqqnM7Xb9+nSNHjrBp0ybu3r2LiooKMplM8UoYQUiPyMhIZs2aRbly5ahZsyaqqqr8888/uLm50bhxY9q3b8+mTZuU9hFDQQVB+EgETj/RqVOnCAoKolq1asyfPx9bW1suXLiQ2cX66XR0dMiRIweDBw9WrDt37hxnz56lRIkS1K9fH/jUDfJxTImvry8DBgzAxcWFFi1asHTpUipWrEi7du0IDw/Ptq12wq81Y8YM9PT06NatG4GBgezdu5dDhw5hbm7OhAkTqFq1KqdPn1YKlkRrpyAIH4lfop/k3bt3LFiwABMTEzZv3syTJ09o0aIF3bt3Z/Xq1UiSlG3vYsuVK8e5c+ewtrYGkrrutm/fjkwmo1u3bgBKrUcfn2L6559/2L59O0OHDuXFixds2bKFAwcOEB0dTdWqVfHx8fn1JyNkK0+ePOHgwYPUrVuX9+/fU6xYMcaNG8fMmTPJnz8/O3fuxMXFhcuXLysC+hEjRiS74cmuf7uCIHybCJx+kg0bNhAYGEj79u2BpEBh/PjxdOnSheXLl/PmzZtsfRf7+SPdly9f5tSpUzg7OyteKvyx9ejjj9OWLVs4ePAgPXv2ZMKECejr62NpaYmzszPbtm2jePHi7Nq169efiJCtrFixAm1tbVq3bs2CBQuws7Pj7NmzHDp0iIEDBzJ48GD69OlD48aNUVVV5cWLF1y9epWTJ08qPW0nuo4F4c8lAqefICAgQPFj37RpUyApUFBVVaV169Y8evSIVatWZXIpf51KlSqxbt06xQzjKbU2zZ49GxcXF9q0aaN4v91H6urqtG/fXtGCJQg/atq0aaxYsYLcuXMTHx+PtbU1enp6mJqa0q9fP1q1aoWlpSU9e/YEUMyAb2tri1wu5/79+8yePZuwsDDRdSwIfyjxVN1P4OrqSlxcHF27dgWUnwrLkycPcrmcqKgopX0SEhIUg6Czo9KlSyv+/eUPzoMHDwgNDaVhw4bY2dkBJJuEsGrVqri4uCTLNz4+XsxELqTJx8ktCxYsCKAYCP7PP/9QtWpVDh48yObNm5k6daoiSL906RJBQUG0bt0aSOpOPn36NGFhYUycODHTzkUQhMwjbpky2I0bN7hw4QJVqlShTJkygHKgcODAAQCMjIyQJInz588TERGheBHunzj5Xu7cuXnz5g0lS5YESLEOEhMT0dTUJDo6mrt373LmzBmArz6dJwif+zIY/+uvv/Dy8iIgIABfX1/Wr19PpUqV6Nq1q+IGZuPGjfTq1YtHjx4xYMAAfHx8qFatGrVr11bkc+XKFcW/s/PYxcwiukSFrEYEThkoISGBsWPHkjNnToYMGaJY97HFKTIykl27dqGurk716tXx8PBg4cKFFClShAkTJgDJv9yzu4SEBNTU1ChatChbt24lMjJSqQ4+fmmqqKjw8OFDmjRpQs2aNenWrRsFChTg3Llz2baVTvh5JEkiISEBBwcHdu3aRY8ePbCzs6NHjx4YGBgA4OXlhampKSoqKsycOZPQ0FAmT55MoUKFMDAwICwsjEmTJuHs7MzTp08JDQ0V841loODgYBITE0WXqJDliCsyA8XExKCrq8uJEydwc3MjPj4euVyu+MOfP38+R44c4a+//sLBwQFHR0eWLVvGvHnz2LVrF23atCEsLEwpz+x+tyWXy1FXV2fIkCEEBgYqXhr80ce6e/PmDU2bNiUhIYF58+bh4eFB06ZN6devH35+fplRdOE3JpPJkMvlir8vbW1t7ty5Q8uWLRVpIiMjef78OXPnzkUulzN+/Hi0tbV58uQJ9vb2TJ8+nb1797JmzRpsbGxo06YN69evz6xTylYSExPp3bs3LVu2JDIyMrOLIwjKJCHDbd++XTI3N5cKFy4subq6ShMmTJB69eolyeVyqUWLFlJgYKDk6ekpbd26VXr48KEkSZJ05coVycbGRrp7924mlz7zTJs2TcqRI4fUvn176cSJE9KKFSuk8PBwSZIkafr06ZKhoaHk5+enSB8QECCZm5tL69evTzG/+Pj4X1Ju4fcXFxeXbN2///4ryWQyydnZWYqIiJAkSZKKFi0qrV+/Xpo7d65UpEgRadGiRYr0Wlpa0tatWyVJkqSEhASlvBITE39i6bOfEydOSOXLl5dmzZqV4vYv61cQfiXR4vQTtGjRAj8/P7p27crJkyc5c+YMV65cYe7cufz777/Mnj2b0qVLs3jxYqpUqULv3r3JmTMn+vr6XLt2DYCbN28ycODAbN/i9LmRI0fy8OFDZDIZ8+fP5/DhwwQEBACwcOFC+vTpg7m5ObGxsQDo6+sTFxdHrly5FHm4u7tz/PhxAMU7xyQx5iRDhISEZNvrMaUHDFq3bk2fPn1YsmQJuXLlwt3dHXV1da5du8aQIUOYMGGC4gGQU6dOUaBAAezt7YFPLaXPnj0DxASa3+PjHHgWFhZ06dIFUB73GB0dLbrvhMyV2ZFbdhcTEyNFR0crPl+7dk2SyWTSvn37pDdv3kiXL1+WqlWrJqmqqkpaWlpSaGioJEmSNHnyZKlIkSLSmzdvkuX5J7SkhISESO/evZMkSZJevHgh2dnZSStXrpQk6dPd+6JFi6RSpUpJBw4ckCRJkiIjI6WePXtKhQsXlooXLy65u7tnTuGzoYSEBKlZs2aSqampNHfu3Mwuzk+XUgvR1q1bJVVVVcna2lpRBx9bPi5cuCDly5dPunXrliRJSS1YK1eulIyNjaUNGzYo5SlaS75u5cqVUoECBaTdu3dLkpT0fffxO+/27duSqampdPHiRSkgIEBRt4LwK4mw/SdTV1dHU1NT8fn169eYmpri4OCAvr4+ZcuWZe7cuairqzNy5Ej09PRITExEkiRMTEzQ0NBIluefMIDcwMBAUW9WVlYULFhQ0Ronk8l4/PgxO3bswMHBgfLlywOgpaXFzJkzcXd3p2rVqnTq1ImLFy9m1ilkK5+/PmjevHnkz5+fEydOZHaxfpqUJrjU0tJCR0eHgQMHJpuT7OzZs+TKlQtHR0diYmIYN24c48aNY+jQodSqVUuRJySf/FX4JCAggA0bNvDmzRv69u3Lxo0bkcvlyOVy3r17x5IlS0hMTMTFxQU1NTUWL17M4cOHM7vYwp8msyO3P01AQIBUsWJFyd7eXtq1a5c0Y8YMqVSpUpKZmZmihUWSJKl8+fJSnz59FJ/fv38vbdq0SWrVqpUUFRWVGUXPFB/v0jdu3Cjp6OhIbdq0kYYNGyYZGRlJ1atXlzw8PCRJkqTjx49LCxYskNasWaPY19nZWRo7dmyK+f4JrXYZJTo6WmrcuLHUvHlzKTY2VpIkSZowYYIkk8mkcePG/VEtKJGRkYq/v4/nHRcXJ/Xr108aMGCA9OjRI6lhw4ZSiRIlFOOfEhMTpePHj0tDhw6VOnbsKC1btizTyp/VjRgxQqpUqZJ04cIFacOGDVLu3Lml0qVLSx4eHtKDBw8kNTU1adeuXZldTOEPJ2YO/MVMTU05d+4cY8aMYcuWLUDSY89bt25VtLA8ffqUsLAwKlWqpNhv5MiRXLp0idy5c5MzZ85k+X6c3C+7+XiX3q5dO0qXLs3o0aN59eoVnTp1YvLkyWhqajJr1ixmz55NoUKFiIyMZOrUqfz7778UKlQISZKIjY1FXV2d9+/f8+bNGywsLJSeqBLjJb5u8+bN3L59m5kzZ6KmpkZiYiLjxo2jR48exMfHs3jxYnLmzKkY75MdSZJEYmIiWlpainUqKiokJiaiqqpKYmIihw4d4vXr19y7d49Dhw5hY2MDQP/+/fHx8cHKyoqiRYsyceJEtm3bxubNmzE1Nc2sU8pyPs6BV716dcqXL0/58uWpXbs206dPp27dukRHR1OhQgWaNm3KzJkzef78OfPnz1dMASFJkhhLJvwamRy4/dFiY2OlFStWSLa2tkrr7927J9nZ2UkXLlyQ/Pz8pOHDh0saGhrS1q1bFeOlvL29pZMnT0r79+9X7PenPLnz+RNQL168kCpVqiR1795dio2NlYKCgqSFCxdKenp6kqmpqTRv3jxJkiTpzp07UsWKFaVSpUpJFSpUkLy9vTOr+L8Vf39/qXLlypKBgYFkYWGRbEzJjRs3pGrVqkl169ZN8cm07Orzv7Xo6GipcOHCkkwmk0aPHi1duXJFse3cuXOSTCaTypQpI7169UqSpKRWq8qVK0vr1q1Llu+f1Hr3ubi4OKlhw4ZSnTp1pOfPnyvWffTff/9JMplMunv3rnT//n2pYMGCUtu2bVPMS7QmCz+buNXORGpqanTv3h1PT08A4uLigKQWJ39/fxwcHBTjdNauXUurVq0ICwtj9uzZ1K5dm0mTJtG/f3+KFi2Kt7f3H3O39fkTUJaWlsTHx2NkZISamhrGxsa0atWKKlWqkC9fPkUryMd3j02ePBknJyeqVavG5MmTFeNMzp8/z5w5c4iJifn1J5SFubq6IkkS+/btY/r06QwfPhwXFxdevHgBwKZNm4iNjWXIkCGKlpc/gUwmIyoqCkmSGDt2LLGxsfTr148pU6YovV5o9OjRVKxYESsrK+zs7Bg9ejRaWlrY2Njg4+OjeOLTw8MD+HPHP8XGxlKwYEHq1auHtbW1oiUPwM/Pj7Vr19KrVy/s7OxYunQpUVFRrFy5EoCLFy+yevVqjh49CqDUmiwIP0UmB25CCkaOHCkZGBhIzs7OUvHixZXuYCdOnChZWFhICxculCQp6Q7177//lmrVqiW9f/8+s4qcKT7e9c+dO1fS1NSU+vTpI82cOVMqV66cZGJiomgdCQ0NlapVqyb9888/in3Xrl0rubq6SkFBQdLBgwelESNGSBYWFtKTJ08y5VyyouvXr0vly5eXxo0bp1gXFBQkTZs2Tbp//7504cIFqWLFitKgQYMysZSZY+XKlZJMJpPKli0r6ejoSHv37k029ikoKEgqVqyYYtzd0aNHpRIlSkgWFhaSg4OD4nr08/OTZDKZNH/+fOnx48eZcj5Zxce/6Y+tRvHx8dLkyZMlbW1tKSQkRDpz5oxkbGwsubq6SpIkSTt27JB0dHSkqlWrSiYmJlKFChWke/fuZVr5hT+DCJyyoM2bN0tyuVyqW7euFBQUpFjv6ekpVapUScqXL5+kq6urGPgcExMj5cmTRzp79mxmFTnTeXt7SwMGDJD69OkjaWlpSa1bt1bafvz4ccnBwUGaPHmyFBUVJUVGRkqBgYHS27dvJWdnZ0kmk0kdO3bMpNJnPSl1nXzejRQdHS11795dqlKlinT79u1k2/8ER48elTZs2KA4/y/FxcVJFStWlLp166ZYFxsbKy1dulTRFS9JktS/f39JJpNJ9erVk1xcXKRixYpJz549+yXnkNX5+PhI2tra0oIFC6T3799Lf/31l1S8eHHF9k6dOklt2rSRoqOjpejoaKlDhw5StWrVpJcvX2ZiqYXsTgROWVRwcLDij/9jX/+5c+ckIyMj6fr169KFCxekkiVLSjY2NtKCBQukXLlypfoF/id5/vy5VKdOHenkyZOSJCXVWVhYmCRJkrRq1SqpXLly0t69exXpAwICpI4dO0r58uWTtLW1peLFiyvGovzJoqKipMGDB0vz58+XJOlTS8DH/65du1ZydnaWZs6cmWll/B2sXr1acnFxSTan2McZ8T08PCS5XC4NGzZMcnd3l16+fCnNmDFD8bTon27dunWSlZWVlJiYKG3evFnS19eXTpw4IUlSUmvUokWLJE1NTcVYTz8/P+ngwYPS27dvM7PYQjYnAqffyO7du6VcuXJJISEhkiQltTQtWLBAMjU1lcqUKSO9ePEik0uYtbx8+VJq2LChtGPHDsW6nj17Sg4ODoqpHz7e/e/Zs0eSJEkaPXq0dOzYsUwpb1b0ecD0sUXp+fPnUrNmzaRGjRpJwcHBkiT9ea1NaRUbGyv17t1b0tTUlDp37iytWbNG8vT0VGyvUqWKVL16daUf+vj4+D9qoP23REZGSm/evJEKFiwo1ahRQ5KkpO++j8aPHy81adJE8vLySrZNEH4GMTj8N1KzZk2KFSvG5s2bgaTJNfv27cutW7dYtGgRFhYWmVzCrMXY2BgHBwf+/vtvhg0bhpeXF/fv38fGxgZJkrh+/Tr79u3Dzs6Oxo0bAzBlyhSqV6+eySXPOj4+cCCTyRQDl7ds2UJgYCBt27bFyMhIvME+FZIkoaamxpIlS/D09ESSJG7fvs379+8B2L59OxcuXGDKlCno6uoq9pPL5Sm+AuZPpaWlhb6+PnPmzGH16tUALFq0iIMHDwLQpUsX1NXV6dOnD2FhYairq2dmcYU/QSYHbkIafbzzd3V1lXR0dKTevXtLPj4+0uXLlzO5ZFnfxYsXpdKlS0ulS5eWatasqXiVw7Rp0yR7e3tFN4q4y/82X19fqVSpUpKxsfEfP5A5LRISEpRa4z52G797904yMzOT+vbtm1lF+229fftWatq0qdSwYUPFNbhjxw7J0dFR8cobQfiZZJIk3oD6u7l58yaDBw8mODiYmjVrMn78eKWJ+YSUPX36lDx58qCiokJgYCD169enVKlSLF26VEye9x1u3bpF+/bt8fX1ZejQofzzzz9KLSZCcl+2yl2+fJnmzZtz7tw58uXLl4kl+z2FhITQu3dvjhw5QtOmTfHw8MDc3JwNGzZgZWWV2cUTsjkROP3Gbt68iYGBAblz587sovx2QkJCKFmyJIsWLaJBgwaiu+kHrFu3jiFDhqCtrc3y5cupWbNmZhfpt/JxRnvhx124cIHdu3fj6OiIk5MTxYoVEzdBwk8nAifhjxQTE8Pw4cNZunQps2bNol+/fpldpN/WqFGjiI6OZu7cuSL4TKPs+ookQfgTiMBJ+KMdPHiQK1eu0LdvX4yNjTO7OL+tuLg41NTUxN2+IAjZngicBEEQBEEQ0ki0qwuCIAiCIKSRCJwEQRAEQRDSSAROgiAIgiAIaSQCJ0EQBEEQhDQSgZMgCIIgCEIaicDpNxUTE8P48eOJiYnJ7KL8tkQdpo+ov/QTdZh+og6FX01MR/CbCg8PR1dXl7CwMHR0dDK7OL8lUYfpI+ov/UQdpp+oQ+FXEy1OgiAIgiAIaSQCJ0EQBEEQhDRSzewCZFWJiYn4+fmhra2dJV8hER4ervRf4fuJOkwfUX/pJ+ow/bJ6HUqSREREBBYWFj/1XY7v378nNjY2Q/JSV1dHU1MzQ/LKjsQYp1S8fPkSKyurzC6GIAiCkA34+vpiaWn5U/J+//49OXTNIDYsQ/IzMzPj6dOnInhKhWhxSoW2tjYA/9txGs2cuTK5NL+vyvammV2E35qeunpmF+G3Z55LfPmnV+ORhzO7CL+t+NhoLq3upvhN+RliY2OTgqZyM0E1R/oyi39HwKVhxMbGisApFSJwSsXH7jnNnLnQ1BKB04/KpS2eckkPbQ0ROKWXjgic0k1VI2dmF+G39yuGfMjUcyJLZ+AkqcgQ3VBfJwInQRAEQcgGVGSQ3vhMkkFCxhQn2xJP1QmCIAiCIKSRaHESBEEQhGxAriJDppK+JidJRSZanL5BBE6CIAiCkA2oyGTpHkslZcHpd7Ia0VUnCIIgCIKQRqLFSRAEQRCyARUZyNLZHCKJBqdvEoGTIAiCIGQDoqvu1xBddYIgCIIgCGkkWpwEQRAEIRvIqKfqhK/L0BanvHnz4urqmmH5PXv2DJlMxrVr1zIsz8xyYc9mJrWuwbCaxZjd8y8e3/BMNe0jnysMqmKfbAl8/kSRJiE+jqPrFjG5bS2G1SzGzG5NuOtx/ruPG/HmNZunjeJ/f1VieO0SLBvWg+CXzzLsvDPK1tUrqeNUlFKWprSqXhkv90uppg0OCGBEr+40dC5FMRN9po8ZmSxNXFwcS2dNp17p4pSyNKV5lfJcOHlCKU18fDwLpk6mjlNRSluZUbdUMZbOmk5iYqIij7kT/0ezSuUok8eC6oXtGN2nF0EB/hl78hlk3YpllCtiTwFjfepVKofHpYuppg0M8Kdv185ULlkMa10txo8YlizN5rWraVa7BoWtLShsbUGbRvXx8byqlMalsB1WOjmTLWMGD1SkiYqMZOyQQZS2K0ABEwOqlirB+pXLM+y8M8qSxYvJny8fOXPkoHSpUpw/n/zv7XNnz56ldKlS5MyRgwL587N06dJkadzc3Cjs6EgOTU0KOzqye/fuZGlevXpFhw4dMDYyIpeWFiVLlMDLy0uxPTIykn59+2JtZYVWzpw4OjiwZMmS9J9wBiuSz4DJ3cuwbUItTro2onwRs6+mr1DUnBl/u+A2uTb7/qvLgoEVKGVnrJSmdhkrTro2SraoqSr/tDUqn5eN/1bn8Mz6LBlSiSL5DBTb5CoyejS0Z8XwKhyYXo9tE2oxol0JDHU0Mu7kfxEVmSxDFuHrsnRXnZWVFf7+/hQuXDizi5IuPqcOsWfhf9Rs34uhK3eRr4gTy4f3IjTQ76v7jdpwiAlu5xSLsWUexbZDq+bhvn87zfqPYcS6A5Rr1Io1//bj5cM7aT6uJEmsGtuXEH9fuk1ZxNAVu9A3s2DJkK7EvIv+OZXxA47s3sWMsaPoMXAo20+do6SzC/+0boH/S98U08fGxqBvaEiPQUOwdUz52lk4bTI7161l1NQZ7LngQYtOXRnUuT13b1xXpFk935Ud61YzetpM9lz0YNC4iaxduIDNK5YB8P5dNHdvXKfX4GFsO3mWOWs38PzxY/q3b5PxlZBO+9x2MmHkcPoNHc7hC+6UcSlPx7+a8Mo3lTqMicXQyIh+Q4fjUKRIimncz5+ncfMWbDtwmD0nTmNhaUn7po3w93ulSHPgzHm8Hj5RLJv3HgCgQdNmijQTRg3nzInjzF+xmtNXfejepy/jhg3h6MH9GVgD6bNt2zYGDRrEqNGj8fL2pkKFCtSvV48XL16kmP7p06c0qF+fChUq4OXtzchRoxg4YABubm6KNO7u7rRp3Zr27dvjc+0a7du3p3WrVnh4eCjShIaGUrFCBdTU1Dh46BC3bt9m5qxZ6OnpKdIMHjSIo0ePsn7DBm7fucOAgQMZ0L8/e/fu/Wn18SNyaKjy2C+cBW4305S+aH4DvO4HM3qZB3/POse1h6+Z3L0sBXIrv8Yp8l0czf89qrTExScqtlcpYcE/TQuz+fhDes06y80nIUzr5YyJXtKrSTTV5RS01GPjsQf0nn2W8auvYmmsxaTuZTPu5H8RmQqopHP53sHl586do2HDhlhYWCCTydizZ89X0585cwbZh7FYny/37t378RP/xbJ04CSXyzEzM0NV9ffuUTyzYx1l6zXDuUELTPPkp2m/0eiZmHFx79av7qetZ4iOobFiUZHLFds8j+2jRrueODhXxsjCivKN22BbugJntq1N83GDXz7j+Z3rNB/0P6ztimBibUPzgeOIeReNz8mDP6UufsT6pYto2q4Df3XoSL5CtoyY8h9muXOzfc3qFNPnts7DyKnTadSqDbl0Un5X3oHt2+g+cDAVa9bCMm9eWnXpRrmq1Vi/ZJEizQ3Pq1StU49KtWqT2zoPtRo1xqVKVe5c9wFAW0eX5Tv3ULtJU2wKFKRYqdKMmjaDO9evpRrUZZYVC+fTqmMn2nTqQkFbO8ZPn4lFbks2rFqRYnqrPHmYMGMWzdu2Q1tHN8U0C1atoVOPXjgWLUaBQrbMWLCYxMRELp45o0hjaGSMiamZYjl55DB5bPLhXKGiIo3XlSs0b9sOl4qVsMqTh3ZduuFQpAg3vL0ztA7Sw3XuXLp27Ur37t2xt7dnrqsrVlZWLE2lZWfZ0qVYW1sz19UVe3t7unfvTpcuXZgze7Yizbx586hRsyYjR43Czs6OkaNGUa16debNm6dIM2P6dKysrFi9ejVlypQhb968VK9enfz58yvSXL58mY4dO1KlShXy5s1Lz549KVasGF6eqbdqZ4Yrd4NYc+geF26krUV28e7bbDv1iPu+b3n1OopVB+/xKjgSl8LJW6pCI2KUls81r5Kfwx4vOHT5BS8CI1m8+zZBb9/RsEJeAKLexzN8iTtnr/nxMiiKu89DWeh2C1trPUVwJaQuKiqKYsWKsXDhwu/a7/79+/j7+yuWggUL/qQSZrzvCpyqVKlC37596du3L3p6ehgaGjJ27FgkKeVXAs6ZM4ciRYqgpaWFlZUV//zzD5GRkUBSZevo6LBz506lffbv34+WlhYRERHJuuo+RqonT56kVKlS5MyZk3LlynH//n2lPCZPnoyJiQna2tp0796dkSNHUrx48e851QwTHxfLy/u3sS1dXmm9benyPLvt89V9Z/VoxrhmFVk8uAsPfTyUtsXHxaKqrtyUrKahwZObXmk+bnxcXNJ+n+WjIpcjV1Xjyc2s8aMVFxvL3evXKFelqtJ6lypVuXbVI5W9vi02NgZ1DeX609DMgY+Hu+JzibLOeJw/y7PHjwC4f+smPlcuU6FGrVTzjQwPRyaToa2bcrCRGWJjY7l5zYdK1aorra9UrTqeHpcz7DjvoqOJi4tDT18/1XLs2raVVh06Kj35U8bFheOHDuLv9wpJkrh07ixPHj2ico2aGVa29IiNjcXLy4uatZT/v9esWRN3d/cU97l8+TI1ayqXv1bt2nh6ehL34e/usrs7tb5IU7tWLdwvfeqG3r9/P05OTrRs2RIzU1OcSpZkxQrlYLd8+fLs37+fV6+S6u/06dM8ePCAWrVr//A5Z0UyGeTQVCU8KlZpfQ51OZvH1WDr+JpM6VFGqUVKVS6jkKUunveClPbxuheMY96Ur1MArRyqJCZKRL6Ly9iT+MlUZBnRXfd9x6xbty6TJ0+mWbNm3078GRMTE8zMzBSL/LOGgazuu1uc1q1bh6qqKh4eHsyfP5+5c+eycuXKlDNXUWH+/PncunWLdevWcerUKYYPHw6AlpYWrVu3Zs2aNUr7rFmzhubNm6OtrZ1qGcaMGcPs2bPx9PREVVWVrl27KrZt2rSJKVOmMH36dLy8vLC2tk5Tf39MTAzh4eFKS0aICntLYmIC2vpGSuu19Q0Jf/M6xX10DI1pOXQCnSfOo+uk+ZhY5WXJ4C48vv5p/Ihd6Qqc2bGW4JfPSExM5L7nRW5dPEX4m+A0H9fU2gZ9UwsOrJhLdEQY8XGxnNi0gog3rxX5ZLbQNyEkJCRgaGyitN7Q2ITXQUGp7PVt5apWZ8PSxTx//JjExETcz5zmzJFDBAcGKtJ07T+Quk2b09ilNCXNjWhZrRLte/5NvWbNU8wz5v17XCeNp95fLcilnXJLV2Z4E/KahIQEjE1MldYbmZgonW96Tfvfv5iZW1CharUUtx89sJ/wsLe0aNdeaf2EGbMpZGdPGbuC5DPUpUOzxkyZ7UoZl3IZVrb0eP06qf5MTZXrz9TUlICAgBT3CQgISDF9fHw8r1+/VqQx+SKNyRd5PnnyhKVLl1KwQAEOHzlCz169GDhgAOvXr1ekmTd/PvYODlhbWaGpoUG9unVZuGgRFSpUSNd5ZzUtquQnh7oqZ699GuLwIjCSGZuvMXblFaas9yI2LpF5AyqQ20gLAF0tdeRylWStUKERMRjoaKZ4HDVVFbo3cOCU9yuiY+J/3gn9BHIVWYYsQLLfw5iYmG8c/fuUKFECc3NzqlevzunTpzM075/tu/vArKysmDt3LjKZDFtbW27evMncuXPp0aNHsrQDBw5U/NvGxoZJkybx999/s3jxYgC6d+9OuXLl8PPzw8LCgtevX3PgwAGOHz/+1TJMmTKFypUrAzBy5Ejq16/P+/fv0dTUZMGCBXTr1o0uXboAMG7cOI4dO6Zo6UrNtGnTmDBhwvdUxXdJNt5OkpCRcmhvYm2DibWN4nNexxKEBgVwetsa8hcrDUDTfqPZNnMc0zrWR4YMw9xWlKnblCuHlQeXfu24clU1ukycz9YZYxnT0BkVFTmFnFywL1uRrObLuUkkSUrXfCUjpvzHhMH9aVyuNDKZDMu8NjRu3Y69Wzcp0hzZs4sDO7fz37KV5Le14/6tm8wYOwpjMzMat26rlF9cXBzDe3YlMTGRMTNm/XC5fqYvr7f01uHnlrjOYe/OHew4dARNzZR/kLauX0fVmrUwM7dQWr966WK8r15h9bYdWFpZ43HxAmOGDMTEzIyKqQRhmeF7r8GU0n+5/lt5JiYmUqpUKaZMnQok/djcuX2bZUuX0rFjRwAWzJ+Px+XL7Nm7lzx58nD+3Dn69umDubk5NWrU+IEzzXqqlsxNxzq2jFt1hbeRn1qc7j4P5e7zUMXnW0/fsHRoZZpUsmHRrlupZygjxZ4SuYqMfzs5oSKDeTtuZOg5/G6srKyUPv/vf/9j/Pjx6c7X3Nyc5cuX4+TkRExMDBs2bKB69eqcOXOGSpUqpTv/X+G7AydnZ2elP2wXFxdmz55NQkLy1wKePn2aqVOncufOHcLDw4mPj+f9+/dERUWhpaVFmTJlcHR0ZP369YwcOZINGzZgbW39zcorWrSo4t/m5uYABAUFYW1tzf379/nnn3+U0pcpU4ZTp059Nc9Ro0YxePBgxefw8PBkF86P0NLVQ0VFnqx1KeLtG7QNDNOcT16HYnge/zRYNpeeAd2mLCQuJoao8LfoGplwYPlsDMxzf9dxrWwdGbZqN+8iI0iIjyOXngFz/26Fla3jj5xuhtM3MEQul/M6SLll5M3rYAyNjVPZ69sMjIyYt34zMe/f8zb0DSZm5rhOGk9u608D8OeMH0e3/gOp2/QvAAo5OOLv68uqeXOVAqe4uDiGde/MqxfPWblrf5ZqbQIwMDRCLpcTFKTcOhISHIyRiUkqe6Xd0vmuLJw9k817D2BfOOWB5C9fvODCmVMs37RFaf27d++YMeF/rNi0lep16gJgX7gIt2/eYNl81ywROBkZJdXfl61LQUFByVqVPjIzM0sxvaqqKoaGhoo0gV+kCf4iT3Nzc+zt7ZXS2Nnbs2vXLiCp/saMGYPbrl3Ur18fSPp+vHbtGrNnz84WgVOVEhYMbV2MiWs98X6Qciv9R5IE91+8xdI4qcUpLCqWhIRE9LWVu+X1c2kka4WSq8gY17kUZgY5Gbro0m/X2gQfu+rSmcmH/X19fdH5bIyohkbGPGVoa2uLra2t4rOLiwu+vr7MmjXrtwmcftrg8OfPn1OvXj0KFy6Mm5sbXl5eLFqUNPD2Yx8/JLU6feyuW7NmDV26dPnmXbCampri3x/TfnxE/PN1H6U2ButzGhoa6OjoKC0ZQVVNHUtbRx54Kj8+/8DzEnkdS6Q5n5cP76JjmDxQUNPQQM/YlMSEeG6cPU6R8tV/6Lg5cmmTS8+A4JfP8L1/i8LlqydLkxnU1NWxL1Yc97NnlNZfPnuG4qXT/9SLhqYmpuYWxMfHc2L/PqrUqafY9v5dNDIV5T8RFbkc6bNr7WPQ9PzJE5bv3IuegQFZjbq6OkWKl+D8FzcP50+folRZ53TlvXTeXObP+I8NbnspVtIp1XTbN67HyNiY6rXrKq2Pj4sjLi4OlS/qWS6Xk5j47b/bX0FdXR0nJydOfNESfuLECVxcXFLcx9nZmRMnlKe3OH7sGKVKlVJ8fzm7uHD8izTHjh/HpdynLspy5cvz4MEDpTQPHzwgT56kAD/uq/WXyO+uasncDG9TgqkbvPG4k7au+fy5dQgJTwqK4hMkHrwMw8lW+bvTydaY288+tVR9DJpyG2sxbLE74dG/19imj1RUZBmyAMl+DzMqcEqJs7MzDx8+/Gn5Z7TvbnG6fPlyss8FCxZMNrDL09OT+Ph4Zs+erfij3r59e7L82rdvz/Dhw5k/fz63b9+mU6dO31skJba2tly5coUOHToolSUzVWnRiU1TR2JlW5i8jsW5tH87oYH+lGvUCoADy+cQ9jqQdqOnA3B2xzoMzHJjZlOA+Lg4vI7v58a5Y3SZ+Olpm+d3rhP2OhCLAvaEvQ7k6NpFJEqJVGvdLc3HBbh25gi5dA3QMzXH/8kDdi+YSpEK1bH7YlB5ZurYuw+j+/TCsVhxipUuw871a/F/+ZIWnZO6Y+dNmkBggB9TFy1T7HPvZlIze3RUFKEhIdy7eQM1dXXy29oBcMPLkyB/P+wKFyXQ348lM/8jUUqkS7/+ijwq16rDirmzMc9tSX47O+7dvMGGpYto0jZpjE58fDxDunbk7o0bLNy0lcSEBF5/GDOkq6+Pmrr6L6mftOjRtz8De3ajaMmSOJUpy6Y1q3n10pf2XbsD8N/4cQT4+eG6/NN4xdsfpmaIiook5PVrbt+4jpq6OoXsklpAlrjOYdbkiSxYtRbLPNYEBSa1nmhp5UIrVy5FPomJiWzftIHmbdsne0JWW0cH5woVmfzvGDRz5CC3lTWXL55n55bNjJv630+tk+8xcNAgOnXsiFOpUri4uLBi+XJevHhBr969ARg9ahSv/PxYt24dAL1692bRokUMGTyY7j164O7uzurVq9m0ebMiz/79+1OlcmVmTJ9Oo8aN2bd3LydPnODcZ/NDDRw4kArlyzNt6lRatGzJlStXWLFiBUuXJV3rOjo6VK5cmRHDh5MjRw7y5MnD2bNn2bBhA7M+e4IvK9BUl5P7Q0sQgJlBTvLn1iEiKo6gt+/o1sAeI11Npm9KenilasncjGxXgkW7bnHnWaii1Sg2LoGo90mtQR1qF+Lu81BeBUeRU1OVppXyUSC3LvN3fpryYOeZx4xsV5IHvm+58yyU+i55MNHPwf6Lz4CkYON/XUpR0FKPMSs8UFGRKY4VER1LfELWCOCzMx8fH0Xv0e/guwMnX19fBg8eTK9evfD29mbBggXMTuEPNH/+/EkTCC5YQMOGDbl48WKKE8Dp6+vTrFkzhg0bRq1atbC0tPyxM/mgX79+9OjRg1KlSlGuXDm2bdvGjRs3yJcvX7ryTY8S1eoRFf6Wo+sWE/4mGHObgvScvhQDs6RutfCQYEIDPz2iGx8fx74lMwl7HYiahiameQvQ47+lODhXVqSJi43h0Kr5hPj5opEjJ/bOlWg3ejo5Pusm+tZxPx5776LpRISGoGNoRKlajanV8e9fUCtpV6dpM96GvmHZ7BkEBwZSwM6eRVu2Y2FlDUBwYAABL18q7dOy2qcm3zvXr3HIbQcWVlYc8U76Qo19/56F06bw8vkzcmppUaFGTaYuXoaOrp5iv1H/zWDhtClMGTGEN69fY2xmRvOOXeg9NOkBh0C/V5w5chiAFlWVx4Wt2rOf0uWzzlixRn81J/RNCPOmTyMoIABbBwfW7dyNpXVSHQYGBPDqiykU6lT41Jpy08eHPTu2YWltjfutpPlW1q9cTmxsLL06KI/3GjRyNINHj1V8Pn/6FK98fWnVvmOKZVu0Zh3/jR9Hv+5deBsaiqWVNcPHjadDt+TjJjNLq1ateBMSwuRJkxRzyx04eFDR8uMfEIDvZ3M62djYcODgQYYMHszixYuxsLDAdd48/vrrL0WacuXKsXnLFsb9+y/jxo0jf/78bNm6lbJlP7Wkli5dGrdduxgzejSTJk3CxsaGOXPn0q5dO0WazVu2MHr0aDq0b8+bN2/IkycPkydPpveHoC6rsLXWY07fTzdk/zRNmmPt6JUXzNh8DUMdDUz0Pz3+36BcHlTlKgxoUZQBLT4Nz/iYHiBXDjUGtyyGvo4GUe/iefQqjEELLnL/xVtF+jM+fujkVKdDbVsMdDR45h/BqGWXCQp9B4CxnibliyT9aK8YXkWpzIMXXuT6o5CMrIafKkMmsPzO/SMjI3n06JHi89OnT7l27RoGBgZYW1szatQoXr16pXigwdXVlbx58+Lo6EhsbCwbN27Ezc1NaY6zrE4mpaUf64MqVarg6OhIYmIimzdvRi6X06tXL6ZOnYpMJiNv3rwMHDhQMSh87ty5zJw5k7dv31KpUiXatWtHx44dCQ0NVZrA7dSpU1SvXp3t27fTokULxfpnz55hY2ODj48PxYsX58yZM1StWlVp/2vXrlGiRAmePn1K3rx5AZg0aRLz58/n/fv3tGzZkly5cnHlypVUHx1OSXh4OLq6ukw7eBVNrVzf3kFIUXXH3+cuIivS18g6rVa/K4tcKQ9WF9Ku5qCsMxnp7yY+JppzS9sQFhaWYUNAvvTx9ypP81WoqOVMV16JcdE839ktzeX9+Lv8pU6dOrF27Vo6d+7Ms2fPOPNhfrcZM2awfPlyXr16RY4cOXB0dGTUqFHUq1cvWR5Z1XcHTsWLF8/Q16pA0hQCAwYMwM/PD/Wf0L1Rs2ZNzMzM2LBhQ5r3EYFTxhCBU/qIwCn9ROCUfiJw+nHZPXD6E2XqlNzR0dE8ffqUadOm0atXrwwJmqKjo1m6dCm1a9dGLpezZcsWTpw48c0pDgRBEAThdybPgK66jJqiJDvL1FeuzJgxg+LFi2NqasqoUaMyJE+ZTMahQ4eoWLEiTk5O7N+/Hzc3t2zxWK4gCIIgpEYmS/8TdSJw+rbvanE689k7qDLC+PHjM2RCrc/lyJEj2WPAgiAIgpDdZcQ8TpKIm74pS7/kVxAEQRAEISvJ1DFOgiAIgiBkjM8nsPxRUrqnHs/+ROAkCIIgCNmAXCZD/ovncfoTia46QRAEQRCENBItToIgCIKQDaioJC3pIYnmlG8SgZMgCIIgZAMZ8coVSXTVfZOILQVBEARBENJItDh9w9vQ92jEiGr6USNmXMjsIvzWNkwQE7em1/v4hMwuwm+vUbNCmV2E39b7qEjOJX+//U8hnqr7NUREIAiCIAjZgOiq+zVE4CQIgiAI2YCKCsjF4PCfTlSRIAiCIAhCGokWJ0EQBEHIBjKiqy69+/8JROAkCIIgCNlARgwOT+/+fwLRVScIgiAIgpBGosVJEARBELIBFVnSkt48hK8TgZMgCIIgZANymQx5eudxEmOcvkl01QmCIAiCIKSRaHESBEEQhGxAPFX3a4jA6Re5eng77nvXERH6GhOr/NTqOpQ8DiVTTLt3wTiun96fbL2xVT7+nucGgPfxXVw/c4DgF48AMM9vT7V2/chdsLAifWJCPGe2LePWuUNEvg0hl74Rxao2pFLzHsg+e4V28MsnnFw/j+d3vJESEzG2yk/zodPRNTbPyCr4YYVtDPircj4KWOpiqKPJpHWeuN8OTDW9vrYGPRrYU8BSFwtDLfZdfMby/XeU0shVZLSslp8aTpYY6mjyMjiKNYfu4fUgWJFGRUVG+5oFqVIiN/raGrwJj+GEly9bTz5CkpLS6OVSp0s9O0oWMkZLU41bT0NYuvc2fq+jf0pdpMfqZctY6DqHwIAAbO0dmDJzJi7lK6Sa/uL5c/w7YgT3797BzNycvoOG0KVHD6U0SxcuYM2K5bzy9cXA0JCGTZvx78RJaGpqpum4cXFxTJ0wnhNHj/D86VO0dXSpXK0q/06cjLmFxc+piB+0fOkSXOfMIcDfH3sHB2bMnkP5CqnX3/lz5xg5bCh379zB3MKCQUOG0L1nrxTT7ti2jc4d2tOgYSO2ubkp1kdERDBx/P/Yv3cvwUFBFCtenJlz5uBUqjSQVH8Txo3j6JHDPHv6FB1dXapWq8akKVOzXP0BXNi9mVNbVxP+JhizvAVo2ncU+YuVSjHtQ58rLBrYKdn6UesPYponHwALBnTk8bWrydI4OFei5/RlAExoVZ3QAL9kaSo0aUPzQeMAiHjzmn3LZnP/6kXeRUaQv1gp/howBmPLvD96qplCRSVpSW8ewtdly8Bp7dq1DBw4kLdv3yrWLV++nEmTJvHq1SvmzJnDwIEDf1l5bl84ytE1M6nXYxRW9sXxPurG5sl9+WeeW4rBSe2uw6jevr/ic2JCAssGt8LepaZi3bNbnhSuUAcru2Koqqlzac86Nk74m7/nuaFjaALAxd1r8Tq6k8b9JmJinR+/R7fZt3A8mjm1KdugLQBvAnxZO7orxWs0oXLrv9HMmYvgl09RVdP4ybWSdprqcp76h3Pc8yVjOzp9M72aqgphUbFsPfmIphVtUkzTsbYtVUvmZr7bDV4GRVKykDFjOzkxZNElnviFA9CiSn7qOudhzrbrPA+MoKClLoNaFiP6XTx7Lz4D4N9OpUhISGTiWk+iY+JpWtGGqT3K0mvWOWLiss470nbv3MGY4UOZ4TqPsi7lWLdqJa2bNOaitw+WVtbJ0j9/9pQ2TZvQoUtXlq5eg4f7JYYPHICRsRENmzQFYMfWLUz6dyzzli6jjLMzjx8+pG/PngBMmTEzTcd9Fx3NjWs+DBk5CsciRQl7G8qYYcNo36I5Jy9e+nUV9A07t29n+JAhuC5YgLNLOVatXEHThg3wun4DK+vk9ffs6VOaNWpI527dWLV2HZfdLzGwXz+MjIxp0qyZUtoXz58zeuSIFIOwPr16cef2bVauWYu5uTlbN2+mQZ06eF2/gUXu3ERHR3Ptmg8jR4+hSNGivH0byvAhQ2jRrCkXLnv8tPr4Ed6nDrF74X80H/QvNoVLcmn/NpaN6MWodfvRN009yBu98RCaOXMpPufSM1D8u+uk+STExSk+R4W/ZWa3phSrUkexbsiyHSQmfPpb9H/6kCVDuinSSJLEyjF9kauq0n3KIjS0cnFm+1oWD+7KyHUH0MiRM0POX8g+/ojYMjw8nL59+zJixAhevXpFzw9f7r+K+/6NlKjehJI1m2FsmY/a3Yaha2iG59EdKabX1NIml76RYvF7fId3UeEUr9ZIkabZoKmUrtsSMxtbjCxtaPD3v0iSxNMbn74sX96/gW2ZyhQqVRE9EwscytUkX3Fn/B5/an05vWkhBZwqULPjQMzz2aFvZkmhUhXR+uzLKbN53g9m/dEHXLoVkKb0QaHvWLbvDqe8XxH1Pj7FNNWccrP91CM87wUT8OYdhy6/wPt+MM0q5VOksc+jx+XbgVy9F0RQ6Dsu3gzA50EwBS11AchtpIV9Hn0W7r7Fw5dhvAqOYvHuW2iqq1KlRNa6218yfz7tOnWmQ5euFLKzY8rMWVhYWrJmxfIU069duZLcVlZMmTmLQnZ2dOjSlbYdO7HI1VWRxtPDgzIuLjRv1RrrPHmpWqMmzVq25Lq3V5qPq6Ori9uBQzT5qzkFCxWiVJmyTJs9h+s+3rz0ffFT6+R7LJjnSqcuXejctRt29vbMnD0HS0srVixblmL6lcuXY2VlzczZc7Czt6dz12507NyZeXPnKKVLSEiga6eOjB03jrw2ykH+u3fv2LN7F5OnTaNCxYrkL1CAMePGkSdvXsVxdXV1OXD4CH+1aEEhW1vKlHVmtqsrPt7e+L7IOvUHcGb7OsrWa4ZLgxaY5c1Ps36j0TM248LerV/dL5eeITqGxopFRS5XbNPS0VPadt/zEmoamhSvUvuz/Q2U0tx2P4NRbmsKFE9qtQt++Yznd67TYvD/sLYvgqm1DS0GjSPmXTTeJw/+nMr4ST521aV3Eb7ujwicXrx4QVxcHPXr18fc3JycOX/dHURCXBz+j++Sv5iL0vp8xZ3xvXc9TXn4nNxDvqJl0TNJ/cc4LvY9iQnx5NDWVayzsi/O0xtXCPF7DkDA0/v43r1GwZLlAZASE3nodQFDc2s2TvyHWZ2rsXJEB+55nP7e0/ztqMlViI1PVFoXE5+AY159xefbT0MpXsCQ3EZaANiYa+OQ14Cr95O689RUk/58YuM+5ZMoQXxCIg6f5ZPZYmNjue7jTdXqNZTWV61egyuXL6e4z1WPy8nSV6tRk2veXsR9uMMvW64c13188L6a1FXy7OkTThw9Qs06dX/4uAAR4WHIZDJ0dfW+6zx/ltjYWHy8valeo6bS+mo1a+Bx2T3Ffa54XKZaTeXzrlGzFt5en+oPYNrkyRgZGdOpS9dkecTHx5OQkIDGZ92eADly5MD90sVUyxsWFp5Uf3p63zq1XyY+LpaXD25jV7q80nq70uV5dsvnq/vO6t6McU0rsmhQFx56f70VzeOgGyWr1Uu1lSg+Lhav4/spW7cZsg8BQnxs0v8PNfVPrewqcjmqqmo8uen9zXPLSmQfJsBMzyIT8xF8U5YMnCIiImjXrh1aWlqYm5szd+5cqlSpouheCw0NpWPHjujr65MzZ07q1q3Lw4cPU8xr7dq1FClSBIB8+fIhk8l49uzZLzoTiI4IRUpMSNaCo6VrSNTbkG/uH/EmmEfeFylRo+lX053cMB9tAxPyFS2rWFe+aRcKV6zDon5NmdyiNMuHtqFsg7YUrpj0wxYV9obY99Fc3L2GAiXK0f5/S7ArW5XtM4bw7LbnD5zt78P7QTBNK9pgYZQTmQxKFDTC2cEMA51PX547zjzm7DU/lg2tzL5pdVkwoCJ7Lzzl7LWk8RK+QZEEvommS11bcuVQRVUuo0WV/BjoaGKgrZnaoX+5kNevSUhIwNjURGm9sYkJQYEpjxULCgzE2OSL9KYmxMfHE/L6NQDNWrRk1Lj/Ub9GNcx0clHK0YEKlSozYOiwHz7u+/fvmfjvv/zVqhXaOjo/dL4Z7eN5mHxxHqYmpgQGpHwegQGBmJqYKq0z+VB/rz/Un/uli6xbu4aFS5emmIe2tjZlnZ2ZPnUK/n5+JCQksGXTJq5euUKAf8qtr+/fv2fcmNG0bN0anSxSfwBRYW9JTEhA28BIab22viHhb16nuI+OoTGthk6gy6R5dJk0HxOrvCwe3IXH15OPaQJ4fvcG/k8f4tygearluHn+JO8iIyhT99P3qWkeG/TNLDiwfC7REWHEx8VyYtMKwt+8JjwkONW8siKZTJYhi/B1WXKM0+DBg7l48SL79u3D1NSUcePG4e3tTfHixQHo3LkzDx8+ZN++fejo6DBixAjq1avHnTt3UFNTU8qrVatWWFlZUaNGDa5cuYKVlRXGxsbJjhkTE0NMTIzic3h4eMaeVLKLUUphXXLXT+9DU0sbuzJVU01zcfdabl04QqeJK1D97K7p9sWj3Dx7iGaDpmJslZ/Ap/c5unoW2gbGFKvaCElKaimxLVMF54btATCzseXlvet4Hd1JXseUB21mB0v33WHAX0VYNrQKSBL+b6I54elLjVJWijSViplTtWRuZmzx4UVgJPksdOjZ0IGQ8Pec9HpFQqLElA1eDGhRlO0TapOQkIjPo9dcvReUeSf2FV9+IUqS9NUvyZTSf77+wrmzzJ0+nRmu83AqXYanjx8zetgQTM3MGDpq9HcfNy4ujh4dO5CYmMhM1/nfd3K/wPfW35d/35/XX0REBN06d2bhkqUYGRmltDcAK9es5e+ePSiQNw9yuZziJUrQsnVrrvtcS5Y2Li6OTu3akZiYiOuChWk/sUwkkXodmlrbYGr9qfvSpnAJ3gYFcGrrGvIXK50s/eWDbpjbFCSPfdFUj3f5kBv2ZSqia/QpCJarqtF14ny2zBjL6AbOqMjlFHJywb5sxXScmZCdZbnAKSIignXr1rF582aqV68OwJo1a7D48ITIx4Dp4sWLlCtXDoBNmzZhZWXFnj17aNGihVJ+OXLkwNDQEABjY2PMzMxSPO60adOYMGFChp9PTm19ZCpyokKVW5eiwt6gpfv1cUSSJHHt1F6KVq6P/IuA8KNLe9ZzwW0VHcYvxTRvIaVtJ9a5Ur5ZFwpXSBoEaZqnIG+D/bmwaw3FqjYip7Y+KnJVjCzzKe1nZJmPF3e/3nz+uwuPimXSei/UVFXQyalGSHgMXeraEfjm09Nw3erbs+P0Y85d9wfgWUAEJno5aFm1ACe9XgHw6FU4/VwvkFNTFVW5CuFRscztW46HL8My5bxSYmhkhFwuJ+iL1pHXwcHJWpU+MjE1TdYq9DooGFVVVQw+/D39N3ECLdq2pcOHbiaHwoWJio5iSN8+DB4x8ruOGxcXR7f27Xjx/Bm7Dx3JMq1N8Kn+vmxdCgoOStYK9ZGpmSmBgcqtQsEf6s/Q0JA7t2/z/NkzWjRtotiemJh0I6OTQ5Nrt26TL39+8uXPz9GTp4iKiiI8PBxzc3M6tm1LHpu8SnnHxcXRoU0bnj17yqFjx7NUaxOAlq4eKnI5EV+0LkWGvkFb3zDN+eRxLIbnseRPHMe+f4fPqUPU7dov1X3fBLzigZc7XSclD8qtbB0Zvmo37yIjSIiPI5eeAXN6t8La1jHNZcsKZCpJS3rzEL4uy1XRkydPiIuLo0yZMop1urq62NraAnD37l1UVVUpW/ZTl5ShoSG2trbcvXv3h487atQowsLCFIuvr++Pn8Rn5GpqmOe358l15TEdT65fxsqu2Ff3fX7bizf+vpSo3iTF7Zf2rOP8zhW0+3cRFgWS/4HHxbxPdjenoqKC9OELWq6mhkUBB8UYqI9C/J6jZ5I1piL42eLiEwkJj0GuIqN8ETMu3/n046ihJifx47wDHyRKUoqvJIh+H094VCwWRjkpYKn31ekSfjV1dXWKlSjJmVMnldafOXWSMs7OKe5TuqxzsvSnT56geEknRatudPQ7VL54dlkulyNJEpIkpfm4H4OmJ48f4XbgkCIwyyrU1dUpUbIkp06eUFp/+sRJyjq7pLhPmbLOnD6hfN4nTxynpFNS/dna2XHF2wf3q56KpX6DhlSqUgX3q55YWlkp7ftx2EJoaCgnjh+jQcOGim0fg6ZHjx5x4MhRxY1iVqKqpo5lIUfueyo/KXnf8xJ5C5dIcz6vHt5F1zB5j4HP6SPEx8VSqmbDFPZK4nF4N9p6Bjg4V041TY5c2uTSMyD45TN879+icIXqaS5bViAGh/8aWa7F6cvugC/XS1/8kH2+PT19sxoaGmho/JxH8F0atmf3/LGYF3DA0rYo3sd2EfY6AKdaSX3xJzfOJyIkiCYDJivt53NyD7kLFsEkT4FkeV7cvZYzWxbTbNBU9EwsiAxNupNT18yJ+oeBkYVKV+L8zlXoGJljYp2fgCf3uLx/I8WrNVHkU65xJ3bOGUEeh5LkLVyKRz6XeOB5jk6TVvyUuvgRmupyLAy1FJ9NDXKSz1yHiHexBL99T+c6thjqajJ726fB9vnMk+64c2jI0c2lTj5zHeISEvENigTA1koPQ11NnviFYaijSbuahZDJZOw881iRh8fdQFpXK0Dw2/c8D4wgv4UOTSvacOzqS0WaCkXMCIuKJfjtO/Ka6dCrkQOXbwfg8zDlcRuZ5e/+/fmnW1eKlyxJ6bLOrFu9ile+vnTunjQv06RxY/H382PxytUAdO7enVVLlzB2xHA6dunKVY/LbFq3luXr1ivyrF2vHksWzKdIsWI4lS7N08eP+W/iBGrXb4D8w5NP3zpufHw8Xdq24cY1Hza77SYhIYHAgKSWGn0DA9TV1X9lNaWq34CBdO/SmRJOTpQt68zqVSvx9X1B9w9P6I4bMwY/v1esXLMWgO49e7JsyWJGDBtKl67d8PC4zLo1a1i7YSMAmpqaOBYurHQMXb2kBzs+X3/82DEkSaJQoUI8fvyYMSNHULBQITp06gwk1V+7Vq24ds2Hnbv3kJCQQMCH+jPIQvUHUKVlJzZNGYmVbWHyOhbH/cB2QoP8Kd+oFQD7l88hLDiQ9mOmA3BmxzoMzHJjblOA+Lg4PI/v5/rZY3SZNC9Z3h4H3ShSoTpauik/lJGYmMiVw7soXacJctXkP3vXTh9BS88AfVNz/J88YNeCqRSpUD3ZYHZBgCwYOOXPnx81NTXFeCRIGm/08OFDKleujIODA/Hx8Xh4eCi66kJCQnjw4AH29vaZWfRUOVaoTXREGOe2Lycy9DUm1gVoO2aB4im5yNDXhL1WbtZ/HxXBXfeT1Ok2LMU8PY9sJyE+jh0zlbdXatmLKq17A1Cn+wjObF7M4eVTiQoPRVvfmJK1mlO5xafpGOycq1G/1xgu7lrNkVUzMLTIQ8vhM7G2T/td4M9W0FKX6b0/3dn3bOgAwHFPX+Zuv4G+jgbGejmU9lk4qOJn++tRtUTupIHc/yU9MaimpkLH2oUwM8jJu9gEPO8FMWvbNaXpC5buvU2HWrb0aeqIbi4N3oS/57DHCzaf+PQggoGOJj0aOqCXS4PQiKSxT1tOpvygQmZq2rwFoSFvmDVtKoEBAdg5OLJl9x6srPMAEBgQwMvPWlnz5LVhy+49jB0+nNXLlmJmbs7UWXMUczgBDBk5CplMxrQJ4/H388PQyIja9eozZvyENB/X79VLjhw8AEAV50+tzAB7jhylQqXUWwd+peYtW/LmTQj/TZlCgL8/Do6O7Nq3H+s8SecREOCvVH95bWzYtW8/I4YOYfmSJZhbWDBr7txkczh9S3hYGP/7dyyvXr5E38CAJk2b8r+JkxStfq9evuTggaSuK5fSymMSDx8/QaXKWaP+AEpWq0d02FuOrl9MeEgw5jYF6TV9KQZmuQEIDwkmNMhfkT4hLo59S2YSFhyImoYmZnkL0HP60mQtRkG+T3ly04u/Z61M9dgPvNwJDfSnbL2U6z8sJJg9i6YTERqCjqERpWs3plbHvzPgrH+tpK669LUYia66b5NJqTXhZKIePXpw8uRJVq1ahYmJCf/73/84duwY3bp1Y+7cuTRp0oSHDx+ybNkytLW1GTlyJI8ePVIMDv9yAsxr165RokQJnj59St68edNUhvDwcHR1dRmx8Twan02+Jnyfq+6vMrsIv7UNE2p8O5HwVTlU5d9OJHzVCvdHmV2E39b7qEhG1itNWFjYTxt79vH3qt7QnahpaH17h6+Ii4ni0KzmP7W8v7ssGVvOmTMHFxcXGjRoQI0aNShfvjz29vaK1zisWbMGJycnGjRogIuLC5IkcejQoWRP1AmCIAiCIGSkLNdVB0nzl2zatEnxOSoqigkTJihm/NbX12f9+vWp7U7nzp3p3Lmz4nPx4sVTHRslCIIgCNnBx0ks05uH8HVZMnDy8fHh3r17lClThrCwMCZOnAhA48aNM7lkgiAIgpA1ZcQElmICzG/LkoETwKxZs7h//z7q6uo4OTlx/vz5r04UJwiCIAiC8LNlycCpRIkSeHl5fTuhIAiCIAjAh3mc0ttVJ1qcvilLBk6CIAiCIHwfMXP4ryECJ0EQBEHIBsQYp19DxJaCIAiCIAhpJFqcBEEQBCEbENMR/BoicBIEQRCEbEAmS1rSm4fwdaKrThAEQRAEIY1Ei9M31CtrRS5t8b6eHzWorkNmF+G3Fh4b/+1EwleJd9Wl3z8VCmV2EX5b4eHhjPxFx5KpyDLgJb+iyelbROAkCIIgCNmATCZL9zxM4qm6bxNddYIgCIIg/JBz587RsGFDLCwskMlk7Nmz55v7nD17FicnJzQ1NcmXLx9Lly79+QXNQCJwEgRBEIRs4GNXXXqX7xEVFUWxYsVYuHBhmtI/ffqUevXqUbFiRXx8fBg9ejT9+/fHzc3tR045U4iuOkEQBEHIBlRkSUt68/gedevWpW7dumlOv3TpUqytrXF1dQXA3t4eT09PZs2axV9//fV9B88kosVJEARBEAQl4eHhSktMTEyG5Ovu7k6tWrWU1tWuXRtPT0/i4uIy5Bg/mwicBEEQBCEbyMiuOisrK3R1dRXLtGnTMqSMAQEBmJqaKq0zNTUlPj6e169fZ8gxfjbRVScIgiAI2UBGvqvO19cXHZ1PU/FoaGikK9+UjvGRJEkprs+qROAkCIIgCNlARr5yRUdHRylwyihmZmYEBAQorQsKCkJVVRVDQ8MMP97PILrqBEEQBEH4JVxcXDh+/LjSumPHjlGqVCnU1NQyqVTfRwROgiAIgpANyPj0vrofXr7zmJGRkVy7do1r164BSdMNXLt2jRcvXgAwatQoOnbsqEjfu3dvnj9/zuDBg7l79y6rV69m1apVDB06NGMq4RcQXXWCIAiCkA1kZFddWnl6elK1alXF58GDBwPQqVMn1q5di7+/vyKIArCxseHQoUMMGjSIRYsWYWFhwfz583+bqQhAtDj9MtvXrKJh6eK45DGnXa2q+Fx2TzXtqYP7+adlU6o7FKRSAWs616/FpdMnldLs2riObo3rUcXWhiq2Nvzdoim3vL2U0kRFRjDr31HUdypKubwWdGlQm9s+3kpp/te/D05mBkpLp3o1M+7EM8jKZUspZlcIMz0dqpRz5tKFC19Nf/H8OaqUc8ZMT4fi9rasXrFcaXuDWjXRz6GRbGnZtHGK+c2ZOQP9HBqMGjpEsS4uLo7/jRlNuVIlyW2oj71NXnp364q/n1/6T/gnWL9iOeWLOFDIxID6lcpz5dLFVNMGBvjTr1tnqjoVJ69eLiaMHJYszeF9e2lQuQJFrC2wMzembgVndm3drJRm7rQp5NHVUlpKFbRJlqZaqRLYmRtTxDo3bRvVx8fzasacdAZavnQJDoUKYqCdi/Jly3DxG9fg+XPnKF+2DAbauXC0LcTK5ctSTbtj2za01NVolcKPx7eOK0kSUyZOJH8eawx1tKlTozp3bt/+sZP8yZYuWUKh/PnRzpmTsqVLc+H8+a+mP3f2LGVLl0Y7Z05sCxRg+RczTK9asYKqlStjYmiIiaEhdWrV4uqVK0ppli1ZQsnixTHU08NQT4+K5ctz5PDhZMe6e/cuTRs3xkhfHwNdXSqUK6f0gy+krEqVKkiSlGxZu3YtAGvXruXMmTNK+1SuXBlvb29iYmJ4+vQpvXv3/vUFTwcROP0Cx/bsYva40XQdOJjNx89Qoqwz/dq2xP/lyxTTe1++RNlKVZm/aRsbj52mVPmKDOrYlns3byjSeF26SO0mf7HMbR9rDhzFLHdu+rT+iyD/Tz/akwYPwOPsGSYtXMq20xdwrlyVv1s2VUoDUK5qdY7euKtY5m/a/nMq4gft2rGD0cOGMmTESM5e9sClXHlaNmmEbypfas+fPaVlk8a4lCvP2cseDB4+gpFDBrNv925Fmg1bt3Hv6XPFcsnLB7lcTpNmyX+4vD09WbdqJY5Fiiitj46O5sY1H4aNHM0Z98us37qNxw8f0rZF1rtz2u+2k4mjhtN36HAOnr9EmXLl6NS8Ka98fVNMHxsTi6GREX2HDsO+cJEU0+jp69N36HB2HT/F0YsetGjXgaH/9ObsCeXxC4Xs7bn64LFiOequ/MNmU6AAE2fO5tilK7gdPY6ldR46NG1EyOvgjDn5DLBz+3aGDxnC8JEjuXTlKuUqVKBpwwapXoPPnj6lWaOGlKtQgUtXrjJsxAiGDhrEnl27kqV98fw5o0eOoHyFCj903DmzZrFgnitzXOdx7pI7pqZmNKxXl4iIiIyrgAywfds2hgwaxMhRo7ji5UWFChVoWL9+qsHJ06dPadSgARUqVOCKlxcjRo5k0MCB7PpshumzZ8/SqnVrjp08ybmLF7GysqJenTq8evVKkSa3pSVTpk7F/coV3K9coUrVqvzVtCm3PwsuHz9+TNVKlbC1s+P4qVN4+vgweswYNDU1f16F/ASZMXP4n0gmfXwOUFASHh6Orq4uZx8+I5d2+p4s6Fi3BnZFijF6xmzFur8qlqVKnfr0GzMuTXm0qORCzcZN6TlkeIrbExISqGprw/CpM2jQsjXv372jUgFrZq/dRMWanyYba1O9EhVr1uafkWOApBaniPAw5qzdmI4zTF0+Xa1051GjYgWKlijOnPmfpvQvW7wo9Ro24n+TJidL/78xozly8AAe1z4FmoP69eH2jZscO3suxWMsWTCfaZMmcvfpc7S0PpU5MjKSKi5lmTVvPrP++48iRYsybdbsFPOApCCresXy3Lj/ECtr6x85XSXhsfHpzgOgcbXKFC5WnClz5ynWVStdktr1GzBi/MSv7tuqfh0cihThf//N/OZx6lUsR7XadRg6Num6njttCscO7ufwhctpLmtEeDiFrczZtPcAFapU/fYO32CUQz3deVQuX47iJUowb+EixbqSRYrQoFEjJk6Zkiz92FGjOHTgAN43byrW9e/zDzdv3OD0+U8tRgkJCdSuXo0OnTpx8cIFwt6Gse2zwOBbx5Ukifx5rOnTrz9DhiW1CsbExGBjmZtJU6fSrUfPdJ87gJo8/ffY5V1cKFGiBAsXL1asK+LoSKPGjZkydWqy9KNGjuTA/v3c/CzA6fP339y4cYPzF1NuLU1ISMDE0BDX+fPp8Nm4mi+ZGhnx3/TpdOnWDYB2bdqgpqbG2vXrf/T0UhUeHo6Rvj5hYWE/5Sm1j8fQ1dWl65yjqOdI33du7LsoVg+u/VPL+7sTLU4/WVxsLPduXMf5ix8A58pVuXH1Sip7KUtMTCQqKhJdPf1U07x/F018fDw6H9IkJMSTkJCAhqby3Bsamppc81D+EfO6dIEajoVoWq40k4YM4E1w1rnTj42N5ZqPN9WqK3cfVq1egyuXU/4xvurhQdXqNZTWVa9RCx9vr1Rnpt2wbi3NWrRQCpoAhg0cQK06dalSrXqayhseHoZMJkNXTy9N6X+F2NhYbl7zoeIX51CpWjW8rnhkyDEkSeLCmdM8efSQsuXKK217+vgxpW3zU76IA327dOLF06dfLevmtavR0dXFoUjKLV2/WmxsLD7e3lSvoXwNVqtZA49UutyveFymWk3la7BGzVp4eylfg9MmT8bIyJhOXbr+0HGfPX1KYEAA1Wt8OpaGhgYVKlbisnvqwwF+tdjYWLy9vKhRU/lcatasmWo5PS5fpuaX6WvVwusrM0xHR0cTFxeHgYFBitsTEhLYtnUrUVFRlHVxAZK+Xw8fOkTBQoWoX6cOuc3MKO/iwt40vKxW+DOJweEfxMTEKE0pHx4eniH5vn0TQkJCAobGxkrrDY1NCAkOSlMeG5cs5H10NDUbNUk1zYLJEzE2M6dspcoAaOXSpmip0qycMwubgoUwMDbh6G43bnl7YZ0vv2K/8tWqU6NhY8wtLfHzfcGS6VPp3bwxG4+dRj0DJzz7USGvX5OQkICxiYnSemNTU4ICA1LcJygwAGNT5Sn9jU1MiI+PJ+T1a8zMzZW2eV29yt3bt1mwRHkMitv27Vy/5sOpC5fSVNb3798z4d+xNG/VOkvdqYWGJF2DRl/UoZGxKcGBJ9KVd3hYGGXtCxIbE4NcLmfS7LlKAVrxUqWYs3QF+QoU4HVQEAtmzaBZrWoc9/BE3+DTnC0njxymb9dOvIuOxsTMjI2792NgaJSusmWUj9egialy/ZmamHIiIDDFfQIDAjE1UZ4d2cTURDE7srm5Oe6XLrJu7Rrcr3r+8HEDP/wNfDkTs4mpSZYan/P6w7kkL6dpsjl9PgoICMDkKzNMm3/xdwwwZtQocufOrRRIAty8eZNK5cvz/v17cuXKxQ43NxwcHICkOYQiIyOZOX06EyZNYsp//3Hs6FFaNm/O8ZMnqVS5cnpO/ZfKjMHhfyIROH0wbdo0JkyY8NPyT3Gm1DTMknpktxvLZs1gzrqNGHwRfH20buF8ju5xY/mu/Wh81ic/ceFSJg7sR53ijsjlcuyKFKNOs+bcu3FdkaZWk2aKfxewd8C+WHEalCrGhRPHqFa/4fee5k+TUv19bZbZ75mZdsO6Ndg7OuJUurRi3UtfX0YNG4Lb/oNpGucQFxdHtw7tSUxMZNa8+d9Mnxm+tw7TIpe2NofPuxMVFcnFs2eYPGYU1nltcKlYCYCqNWt/SuwIJcuUpVLxwuzcvIkeffsrNrlUrMTh8+68eRPClrVr+KdzB/aeOoORscmXh8w0311/X7kGIyIi6Na5MwuXLMXI6OsBYpqO+xP+3/4MP/PveNbMmWzbupXjp04l+5u1tbXlqrc3YW/fsmvXLrp16cKJ06dxcHAgMTERgIaNGjFg4EAAihcvjvulSyxftuy3CpwycuZwIXUicPpg1KhRiscoIanFycrKKt356hkYIpfLeR2k3Lr05nUwhkYpB0IfHduzi4mD+zN9+RrKVqqSYpr1ixewev4clmzfTUEHR6VtVnltWLHnAO+iooiMjMDY1IyRPbtiYZ0n1WMam5phbmnFiydP0naCP5mhkRFyuZygQOU7+9dBQRh/cUf/kYmpGUFf3MW+Dg5GVVUVgy9mpo2Ojk4afP6v8liz6z7eBAcFUbWcs2JdQkICly6cZ8XSJQSGRSCXy4GkoKlLu7Y8f/6MfYePZqnWJgB9w6RrMPiLOgx5HZSsFep7qaiokDd/UgumY9FiPLp/n8VzZikCpy/l1NLC1sGRZ48fJ1ufN39+8ubPT8nSZahcoijb1q+jz5DkT/P9ah+vwcAvWpeCgoOStQZ9ZGpmqmgN+ig4KFgxO/Kd27d5/uwZLZo2UWz/+AOuk0OTa7duY2ll9c3jmpqaARAYEKDUAhMcFIxJOv/fZiSjD3X4ZetScFBQslaoj8zMzAhM4wzTc2bPZvq0aRw5doyiRYsmy0tdXZ0CBQoA4FSqFF6eniycP5/FS5MCV1VVVew/tEB9ZGdvz6VUxlIJfzYxxukDDQ0NxRTzGTnVvJq6OnZFi+Fx9ozSeo+zZyhaukyq+x3Z7cb4gX2Zsni50uDuz61fNJ+Vc2excMsOHIqXSDWvHFpaGJuaEf72Le5nTlGlTt1U075984ZAv1cYpfJl9qupq6tTvERJTp9S7lI6c+okZZydU9yndNmynDmlPH3DqZPHKVHSKdnMtHvcdhIbE0PLNm2V1leqWo2Lnt6c87iqWEqUdKJF6zac87iaLGh6/PgRew4eThaYZQXq6uoUKV6C86dPKa0/f/o0TmXKZuixJEkiNjY21e0xMTE8enAfEzOzdOXzK6mrq1OiZElOnVS+Bk+fOElZZ5cU9ylT1pnTJ5SvwZMnjlPSKekatLWz44q3D+5XPRVL/QYNqVSlCu5XPbG0skrTcfPa2GBqZsapk5+OFRsby4Xz53B2SblsmUFdXZ2STk6cPKF8LidOnEi1nGWdnTnxZfrjx3H6Yobp2bNmMXXyZA4cOoRTqVJpKo8kSYqhGerq6pQqXZoH9+8rpXn44AHWGfCAx68knqr7NUSL0y/Qvtc//NvvbxyKFadoqdLs2riOgFevaN6xCwALpkwk2N+fiQuXAElB07h+fzN00jSKOJXidVDSHaeGZg60PwR06xbOZ8mMqUxZvBxzK2tFmpxaWuTUygWQNPeTJJEnf0F8nz1h3sT/kSd/ARq2bgdAdFQky2ZOp3qDhhiZmOHn+4JF0yahZ2BA1Xr1f2kdfc0//QfQu1sXSpR0onTZsqxbtYqXvr506d4DgAn/jsXfz4+lq1YD0LVHD1YuXcKY4cPo2LUrVz082Lh2LSvXbUiW94a1a6nXsFGygEdbWxsHR+UWvJxaWhgYGCjWx8fH06lta677XGPrrt0kJCQo7pD1DQxQV0//01wZpXuffgzq1Z2iJUpQskxZtqxdjd9LX9p17Q7A9PHjCPD3Y+6ylYp9bn/o0o2KjCTk9Wtu37iOmro6hezsAVg0eyZFS5Qkj00+YuNiOX3sKLu2bmbynE9P7k0eM4oadethYWlFyOtgFsycTmREBH+1+XgNRrFw1gxq1KuPiakZoW9C2LByBQF+r6jfpOmvqp5v6jdgIN27dKaEkxNlyzqzetVKfH1f0L1n0lNr48aMwc/vFSvXrAWge8+eLFuymBHDhtKlazc8PC6zbs0a1m5IenpVU1MTx8KFlY6hq6cLoLT+W8eVyWT06defWdP/o0CBAuQvUICZ06eTI2dOWrZu87Or5bsMGDiQLp064eTkRFkXF1atWIHvixf07NULgDGjR+P36hVr1q0DoGevXixZtIhhQ4bQtXt3PNzdWbN6NRs2bVLkOWvmTMaPG8f6jRvJkzevokUrV65c5MqV9D04dswY6tSpg6WVFREREWzfto2zZ85w4NAhRT6DhwyhXZs2VKxYkcpVq3Ls6FEOHjjAiVPKNxtZnUwG6Y17RE/dt4nA6Reo1aQZb0NDWTFnJq+DAslvZ8/8Tdsw/9AV+DowkIBXn+Z02rV+LQnx8UwfNYzpoz51VTRo2YYJ85MeS96xdhVxsbEM795Z6Vg9hwyn17CRAESGh7Nw6iSC/P3Q0dOnev2G/DNqrOJuTUVFzqN7dzi4YxsR4WEYmZhSqnxFpi1bhVYu7Z9ZJd+lWYsWvHkTwoypUwkM8Mfe0ZFte/ZinSepyzEwIICXn81HlCevDdv37GX08GGsXLYUM3Nz/ps9h0ZNlX+IHz18wOVLF9l14OAPlcvv1UsOHzgAQKWypZW27T96jAqVss7YiIZ/NSf0zRvmz/iPoIAACtk7sHbHLiw/3FEHBQbg98W8YvUqllP8++Y1H/bu2I6ltTUXb94Fkro5xw4ZhL/fKzQ1c5C/UCFcl6+i4V/NFfsF+PnRr1tnQkNCMDAyokSpMuw+cVpxXBW5nEcPHrBzyyZCQ0LQMzCgWEkndhw+TiF75a6TzNS8ZUvevAnhvylTCPD3x8HRkV379iuuwYAAf6VrMK+NDbv27WfE0CEsX7IEcwsLZs2dS5NmzVI7xA8dF2Dw0KG8f/eOgf378TY0lNJlyrDv4CG0tbPO3zBAy1atePPmDVMmT8bf3x/HwoXZd+AAeT7Wob8/vp/VoY2NDfsOHGDokCEsWbwYCwsL5rq60uyzSUKXLVlCbGwsrVu2VDrW2HHjGPe//wEQFBhIl06d8Pf3R1dXlyJFi3Lg0CGlJ/yaNG3KosWLmTF9OoMGDqSQrS3bduxIcW6trCwjWoxEi9O3/THzOK1du5YuXbqQ1tPNyHmc/mQZMY/Tnyyj5nH6k2XEPE5/uoyYx+lP9Svnceq9+CQa6ZzHKeZdFEv/qS7mcfqKP6bF6dmzZ1T+jZ6OEARBEITvoSIDlXT2tYkGp2/7YwKno0ePMm/evG8nFARBEITfkEwlaUlvHsLX/TGBk3sWmkVXEARBEITf0x8TOAmCIAhCdiYmwPw1ROAkCIIgCNmAiiwDXrkiAqdvEr2ZgiAIgiAIaSRanARBEAQhGxDzOP0aInASBEEQhGxAJQNmDhdx07eJrjpBEARBEIQ0Ei1OgiAIgpANqKhkwOBw0eT0TSJwEgRBEIRsQExH8GuIwOkbCp8+j06OnJldjN/W0g6zM7sIv7XeW0ZkdhF+e6pmRpldhN+fuWlml+C3pRYZ8cuOJVqcfg0xxkkQBEEQBCGNRIuTIAiCIGQD4l11v4YInARBEAQhG5DJZOme+VuMcfo2EVsKgiAIgiCkkWhxEgRBEIRsQMwc/muIwEkQBEEQsgExc/ivIbrqBEEQBEEQ0ki0OAmCIAhCNiC66n4NETgJgiAIQjagIsuACTDFU3XfJLrqBEEQBEEQ0ki0OP0ikiQxafd2Vp4+TmhUFGXyF2R+p+44Wlqnus+6c6fovmJRsvURq7agqa4OwMRd25i0e7vSdlNdPV4uXKX4rNbhrxTz/691B4bUbwJATFwcw7esY5v7Bd7FxlLNsQgLOvfE0sDwe0/1p8nXtDKFezXG2MmWHEZ6bC3emdfXH35zP3XdXDhP6Un+ZpXR0Ncm/Kk/F4cs5Plh92RpnUZ2wGVab665bufCoHmK9dXXjMG+cz2ltAGXb7PTpScA2nnM6PTMLcXjH24xlsc7T3/Pqf4UkiQxyW0rK08eTboGCxRifpdeOFp95Ro8e5LuS+cnWx+xbofiGlx6/DDLjh/m+esgABwsrRnbrBV1ijsp7XP3lS+jN6/j3N3bJEqJOFhas2XAcKyNjAFYcfIoWy+ew+fZYyLevSN45Sb0tHJl1OlnCEmSmLBuNcsP7CU0IoKy9o4sGjAYR5t8qe6z69wZpm5az6NXr4hLiKdgbkuGtGxDh1p1FGniE+IZv3Y1m04cI+BNCOaGRnSuXZexHTqjopJ0fxv5LpqRy5ew58J5QsLDyGtmTv9mLfi7cVNFPsv372XzyeN4P7xPRHQ0ofuPoJdL++dVyHeSJIkJC+ezfPs2QsPDKFu0GIvGjcexYKFU91mxfSvr9+7h1sMHADg5FmbqoCGUKVpMkWbJlk0s2bKZZ69eAuBYoCDj+vSjbqXKijSdRw5n3Z5dSnmXLVaMy9s+/d1W6dCWs1evKKVpVa8+W+fM43cg3lX3a2TbwKlKlSoUL14cV1fXzC4KALMO7sH18H5W9exLQTMLpu3dSd3pE7k9YwHaOXKkup9OjpzcnqH8w/XxB+sjx9xWHBn5P8VnuYpyQ6LvgpVKn4/c8KHnysU0Le2sWDd442oO+niyqc8gDHJpM3zzOhrPnsqVSTOQq8i/+3x/BjUtTfwv3uTRjtNUWzkyTfuoqKnS+Lgr74JCOdx8LFEvg8hlZUpsRHSytCal7HDs2SjVYOz5YXdOdpmq+JwQG6f4d6RvEKvNGiqld+zZmBLD2/Li8OU0lfVnm7V/F66H9rKq9wAKmlswbfd26k4dx+05i9H+yvsYdXLk5PacxUrrPr8GLQ0MmdqmI/nNzAHYcO4UzWZN5eq0uYqg7HGgP1XGj6JLlRqMa94W3Zw5uffqJZpqaop8omNiqF2sBLWLlWDM1g0ZeeoZZsbWTczZsZW1I8ZQyMqayRvWUnPYQO6v34J2Tq0U9zHQ0WFM+07YWedBXVWVA+6X6DJ9KiZ6+tQuUxaA6Vs2sXTfHtaNHIujjQ2e9+/RZfoUdLVyMaB5SwAGLZrPaR9vNo4ZR14zc45dvcI/rrOxMDSicYWKAETHvKdOmbLUKVOWUSuW/ppK+Q4zVi5nztrVrJ02g0J5bZi8dBE1u3bm/uFjaOdKOUg+c+UKbeo3oFyJkmhqaDBj5QpqdevM7QOHyW1qBoClqRn/DRlGAes8AKzbs4vGfXrjs2uvUlBWp2Il1kydrvis/tn191GPFq2Y2H+g4nMOTc2MOPVfQkUlaUlvHsLXZdvAKSuRJIn5Rw4wqvFfimBlda9+5O7blS3u5+lZrVaq+8pkYKan/9X85XL5V9N8uW2/1xWq2Bcmn0nSl05YdBRrzp5ibe/+VC+cdBe37u8B2AzoxclbN6hVtESazvNnu7/xKJDUupNW9l0boGmgg1u5XiTGJwAQ8SIwWTo1rRzU2vQ/TvWYTumxnVLMKyEmjujANylukxITk23L17QSj7adJC7qXZrL+7NIksT8w/sZ1aQFTcu4ALD674Hk7t2JLRfP0bNGnVT3lclkX72+GjiVUfo8qVUHlh0/gsej+4rAady2jdQp7sR/7Tor0uUzVf7/OKBeIwDO3rn5Xef2q0iShOvO7Yxp34lmlaoAsG7kWEybNWTzieP0atQkxf2qFC+p9HlA85asO3aYC7euKwIn99u3aFy+IvVdygGQ18ycLSeP4/ngnmI/99u36FS7riK/ng0bs2z/Xjwf3FUETgObtwLgzDXvDDvvjCJJEq7r1zKm9z80q1UbgHX/zcC0vDObD+ynV+s2Ke63adYcpc8rJk1h59HDnHR3p2OTpNa2htWqK6WZMmgIS7Zu5vL1a0qBk4a6OmbGxl8tZ84cOb6ZJqsSLU6/hogtf4GnwYEEhL2lRuFPTcsaampUsnPE/eH9r+4b+f49+Qf2Im//HjSePRWfZ0+SpXkU4I91v+4UHPQ37RbO4UlQQKr5BYa95dB1b7pU/vRF4/30CXEJ8dQs8ql8FvoGOFpafbN8WZ1NowoEuN+i8qIhdA3YT5ubG3Aa1RHZF7dVlRcN4dlBd16e9Ew1r9xVStA18ADt72+h6vIR5DDWSzWtcUlbjEsU4s6qAxl1KunyNCiQgLeh1CjyKQjWUFOjkr0j7p/9OKck8v078vfrTt4+XWk8YxI+T5Nfgx8lJCaw7dI5omLe41zQFoDExEQO+XhSyNyCetP+h0WvjpQbO5S9V7NGS1xaPfX3I+BNCLVKfQoUNdTVqVysOJdupy3YkySJk16e3Pd9QaWixRXrKxQpyklvTx74vgDg+qOHXLh1g3plXZTS7Lt0gVfBwUiSxGkfLx68fEHt0mUz5gR/sqcvfQkIDqZW+QqKdRrqGlQuXYZLPmkP9KLfvSMuPh4DXd0UtyckJLD14AGioqNxKa5803fmigcm5cpQqHYNevw7mqCQkGT7b9q/FyPn0jg2qMPQ6dOIiIxMc9mEP0O2bnFKTExk+PDhrFy5EnV1dXr37s348eN/eTkC3r4FksYefc5ER5cXIcGp7mdrYcmqnn0pbJmHiPfRLDh6kMqTxuA1ZTYFzSwAKJO/IGt696OgmQVBYW+ZuteNShPHcH2aK4baycc2bDh/Bm3NHDQt9enLNiDsLeqqquh/MZ7EVFePgLC3P3LKWYZuPgu0q5XkwaZj7K83FL2CllReNAQVVTlXJ60BoGCr6hiXLMT20t1Tzef54cs82nGKiOcB6NhYUHZSD5qcWsA2p64kftZl95FDtwa8ufOUAPdbP+3cvkdAWCgApl/82Jjo6vHiw9iklNhaWLKq9wAKW+ch4l00Cw7vp/L4EXj9N4+C5haKdDdfPKPiuBG8j4sll2YOdg4ehcOH8XtB4WFEvn/PjH1uTGjZjqltOnHsujct5v7HibGTqeRQ+CecccYLeJPUomiqr9z6ZqpvwPPA1G9WAMIiI8ndogkxcbHIVeQsHjiEmp8FYCPatCcsKhK7Tm2Rq6iQkJjIlG49aVO9piLN/H6D6DHrPyxbNkFVLkdFRYWVQ0dS4bMbnqwsIPg1AKaGRkrrTQ2NeO73Ks35jJwzk9ymptQoV15p/c3793Fp04L3MTHkypmT3QuX4FCgoGJ73UqVaVGnLnkscvP0pS//znelWuf2eLntQUNdA4B2DRthY2mFmZExtx4+YNScWVy/f4/jq9f96Gn/UioqGfBUnZiO4JuydeC0bt06Bg8ejIeHB+7u7nTu3Jny5ctTs2bNZGljYmKIiYlRfA4PD//h426+eI5/1ixTfN43ZDSQvAlUAmSkfpE6FyiEc4FPzczlCtpR+t9hLDp2GNeO3QCoU+yzbgCrPDgXsMV2aB/WXzjNoLqNkuW59txJ2pSrmGycVEokScq0ZttCbWtRZdkwxef9dYfif+H6d+cjU5HxLiiU0z1nICUmEux9Hy0LI0oMa8vVSWvIZWlCxXkD2VtrEAkxsanm82j7ScW/39x+SpDnPTo9dyNv/XI82X1WKa1cU51CbWtyddLa7y5vRtl84Qz/rFyi+Lxv+L9ACtegJH39Gixoq2g5AihXyJ7Sowez6OgBXDv3VKy3tciN53+uvI2KZPcVd7oumcfJcVNwsLQmMTERgEZOZRlYrzEAxfPmw/3BPZafOJJlA6dNx4/Sa85MxeeD05L+nfzv+Nt/J9o5c3Jt5Voi30Vz0tuLwYsXkM/CQtHttu30STYeP8bmseNxzGvDtUcPGbhoHhaGRnSqk/RQwvxdO7h89zb7pkwnj6kZ525c4x/XWZgbGlLDqXRGnnqG2LR/L73+96/i88GlK4Afq7+PZqxczpaDBzizfhOaGhpK22xtbLi2ex9vwyNwO3aETiOHcXbDZkXw1KpefUXawoUKUapwEfJUr8zBM2cUXYc9WrZWSlMwT15KNW+C9+1blHTMmtfp58QYp18jWwdORYsW5X//Sxo0XbBgQRYuXMjJkydTDJymTZvGhAkTMuS4DUuWpsxndzoxcUktEgFvQzH/bKxIcHgYJl+0Qn2NiooKpfIV4FGgf6pptDQ1KWxpzaOA5Gku3L/DfX8/NvUZorTeTFeP2Ph4QqMilVqdgsLDcPnsR/NXerrvAoEetxWfI1+l3jL3NVH+ISTGxSN9+PEGeHP3OVrmRqioqWLsZEtOUwNaeX16ClFFVRWLSsUp2rcZSzSqKu37UXRACBHPA9AraJlsW4HmVVHNqcm99Ud+qMwZoaFTGcoU+PT/7tM1+BZzfQPF+h++Br+4vtRV1SjwYXB4qfwF8XzykAVHDrCk+z8Y6eigKpdjn9tKaR+73FZcvH/ne0/tl2lUvgJlHRwVn2NikwLrgDdvMP+s1SQoNDRZK9SXVFRUKJA76VopXqAQd58/Y9qmDYrAadjSRYxs057W1WoAUCRffp4HBjBt8wY61anHu5gYRq9cxu6J0xTjoIrmL8C1Rw+ZtW1LlgycGlWtTtnPnnxT1N/rYMxNTBTrg0JCkrVCpWTWqpVMXbaEE6vXU9TWLtl2dXV1CuTJC0CpIkW4eusm89avY9nEySnmZ25iQh4LCx4+f5bqMUs6OqKmpsbD589/i8BJ+DWyfeD0OXNzc4KCUu6WGDVqFIMHD1Z8Dg8Px8rKKsW036KdI4fSk3KSJGGmq8fJWzcokTfpseXY+DjO3bvN1FYd0pyvJElcf/6UwlZ5Uk0TExfHPb+XVLC1T7Zt9ZmTlLTJT7EPXy4flbTJh5pclRO3rtOibFLzt//bUG6/9OW/1mkvX0aKi4wmLDL5k2/fy//iTQq1rZk0yl6SANArZEWU32sS4+J5edKLzYXbK+1Tfc0YQu89x3v6xhSDJgBNAx1yWZkQ5Z98jIRDtwY83XeB96/fprv8P0o7R06lJ+UkScJMT5+TN69Rwuaza/Dubaa26ZjmfNNyDSal+xSsqauqUSpfAe77K3fHPPR/RR4jk5R2zxK0c2opPSknSRJmBoYc97xKiQ8DjmPj4jh7/RrTe/79XXl/Xj+Q9DScyhe3+nIVFRI/XLNx8fHExccn60aRq8hJlFK+RjObdq5cSk/KSZKEmbExxy9dpMSHgDQ2NpazV68wfcjwr+Y1c9UKJi9ZxNGVayhVpEiaji9JkiJYS0lIaCi+/v6YG6d+Dd5++JC4uDjMf5PB4mJw+K+RrQMntS8eNZXJZIpugy9paGig8UXTb0aRyWT0r9OA//a7UcDMnAKm5kzf70ZOdQ3auFRUpOu8dD659Q2Y0irph3zSru2ULVCQAmbmhL97x8Jjh7j+4hnzO/VQ7DN88zoalCiFlaERQeFhTNu7k/B37+hQsYpSGcLfReN2xZ0ZbZM/MaabU4sulasxfPM6DHNpo6+VixFb1lPYyprqhYsmS59ZNPS10bY2Q8si6e5UzzZpDE10QIjiibYa68YS9eo17qOTHsW+tWQ3Rfs1p9K8gdxYsBPdgpaUGt2R6/N3AEkB2pvbT5WOEx/1jvch4Yr1alo5KDO+K4/dzhDlH4JOXnOcp/bi/eswnuw+p7Svbv7cWFQqzv56Q39eRfwAmUxG/7oN+W/vTgqYm1PAzILpe3aSU12dNuUrKdJ1XjyX3PqGTPkQTE3auZWyBQtRwMyC8HfRLDxygOvPnzK/Sy/FPmO3bqBO8ZJYGhoR8e4d293Pc/bOLQ5+NkXGkIZNaTtvFhXtHKniWISj17054H2VE/9OUaQJeBtKwNtQRWvWLd/n5NLMgbWRMQZZYC4imUzGwOYtmbppPQUtLSloacXUjevJqalB2xqfWrE7Tp1EbmMjpvVICqambVpPKVs78lvkJjY+nkOX3Vl/7DBLBn26Rhq6lGfKxnVYm5jiaGODz8MHzNmxja51k7qXdLS0qFysBMOWLiKHhgZ5TM04e92H9ccOM+ef/op8At6EEPAmhEcf5jO6+eQx2jlzYm1ihoGOzq+oplTJZDIGduzM1GVLKJgnLwXz5GXqsiXk1MxB2wafpvLoOGIouU1MmTYkqat+xsrl/DtvLptnzSVvbksCgpNan3PlzEkuraTAdvScWdStVBkrM3MioqLYeugAZ654cGTFagAio6IYv3A+f9WqjbmxCc9evWT03NkY6evT9MP/u8cvnrNp/z7qVaqCkb4+dx4/Ysj0aZRwcKB8SeU5ybIqMcbp18jWgVNWMrR+E97FxtJv7XJCo6Mok68gh4aPU2qZ8g15rTTd/dvoKP5evZSAsLfo5shJ8bw2nBoziTL5P3UDvnoTQvvFc3kdEYGxjg5l8xfkwvhpye7kt7lfQEKitUsFUjK7XRdU5XLaLJydNAGmQxFWDR6VZeZwArBpVJEaa8coPtfZNhGAK+NXcWVC0hektrUpUqKkSBP5Moh9tQZSYe4AWt9YR9Sr11yftwPv6RvTfNzEhAQMi+THtmNdNPRyEeUfwqvT3hxtNY64L1rF7Ls2IPJVMC+OXUklt8wztGGzpGtw9TJCoyIpk78Qh0ZPUGqZ8n39GhXZp5aPt9GR/L1yMQFvQ9HNqZV0DY6bSpnPxt4Fhr2l8yJX/N++QTenFkWs83Bw5P+o8dlTY01Ku7Co29/M2LeTQetWUMgiN9sHjaSCnYMizfITR5jktlXxueqEpLGBK3v3p1Nl5cfNM8vw1u14FxPDP66zP0yA6cCxma5KLVMvggKVfnyi3r/nH9fZvAwOIoeGBnbWedg4ehytPnTLASzoP4h/V6/gn3mzCAoNxcLIiF4NGzOuYxdFmq3jJjBqxVLaTZnAm/Bw8piaMaVbL3p/Ng3C0n17mLButeJzpQF9AFgzYjSd63wa45NZhnfvybv37/ln4v8IDUuaAPPYqrVKLVMv/PyUrsHFmzcRGxdH8wF9lfL6X59+jO83AIDAkNd0GD4U/+AgdLW1KWprx5EVq6n54Qk+uVzOzQf3Wb93N28jIjA3NqZqGWe2zZ2nOLa6mhon3S8xb/06IqOjsDI3p37lqvyvTz/k8qzzPShkPpkkSdK3k/1+UpoAs0mTJujp6bF27dpv7h8eHo6uri4hyzeg85XJAYWvW9phdmYX4bfWe8uIzC7Cb0/V7NvjZ4RvMDfN7BL8tsIjI9AtVYKwsDB0flKr38ffq+lHvMiRztn230VFMqKO008t7+9OtDgJgiAIQjYgnqr7NbJt4HTmzJlk6/bs2fPLyyEIgiAIQvYhYktBEARByAZkKrIMWb7X4sWLsbGxQVNTEycnJ86fP59q2jNnziie/vt8uXfv628wyEqybYuTIAiCIPxJVGQoPWD0o3l8j23btjFw4EAWL15M+fLlWbZsGXXr1uXOnTtYW1unut/9+/eVxlAZ/yZTPoBocRIEQRCEbEEmA5lKOpfvDJzmzJlDt27d6N69O/b29ri6umJlZcWSJUu+up+JiQlmZmaKJbOfXAwKCko2l1pqROAkCIIgCIKS8PBwpeXzV5J9FBsbi5eXF7Vq1VJaX6tWLS5duvTV/EuUKIG5uTnVq1fn9OnTGVr2H5XWyT9F4CQIgiAI2YCKTJYhC4CVlRW6urqKZdq0acmO9/r1axISEjA1VZ6uwtTUlICAlF98bW5uzvLly3Fzc2PXrl3Y2tpSvXp1zp07l2L6XymtszOJMU6CIAiCkA386ODuL/MA8PX1VRqD9LU3a6T48vBUWm9sbW2xtf30Hk0XFxd8fX2ZNWsWlSpVSnGfjLBu3bqvbg8LC0tzXiJwEgRBEARBiY6OzjcnwDQyMkIulydrXQoKCkrWCvU1zs7ObNyY9rc5/IhBgwZ9dfv3zAUuAidBEARByAZ+9bvq1NXVcXJy4vjx4zRt2lSx/vjx4zRu3DjN+fj4+GBubv5d5fxeb968+er24ODgNAd7InASBEEQhGxAJvv+p+JSyuN7DB48mA4dOlCqVClcXFxYvnw5L168oHfv3gCMGjWKV69esX79egBcXV3Jmzcvjo6OxMbGsnHjRtzc3HBzc0tfwdNJtDhlINUWDVEV7+v5YX1bp/2uQ0iBeP9B+iUmZnYJfnuJcnEd/qjE8PDMLsJP1apVK0JCQpg4cSL+/v4ULlyYQ4cOkSdPHgD8/f158eKFIn1sbCxDhw7l1atX5MiRA0dHRw4ePEi9evV+eln37t3LzJkzuXv3LgD29vYMGTJE0VqW1qfqsu1LftPr40sTw0Lfihcdpof40UofETiln7gG000ETj8uPDwcfT29X/KS3yWXbpAjl3a68noXGcHf5Ypmu5f8Llu2jAEDBtC5c2cqVKiAJElcunSJ1atX4+rqSvv27RkwYACrV6/+Zl6ixUkQBEEQsoHPpxNITx7Z0axZs5g3bx69evVSrOvQoQPFixdn5syZ/P3332kKmkDM4yQIgiAIQjbn6+tL9erVk62vXr06vr6+35WXCJwEQRAEIRvIrJf8/g5sbGzYt29fsvX79+8nX75835WX6KoTBEEQhGxAJvv+l/SmlEd29O+//9K5c2c8PDwoV64cMpmMixcvsmvXLtasWfNdeYnASRAEQRCyAbmKDHk6I6f07p9VtW3bFisrK2bOnMnChQuRJAl7e3tOnDhB5cqVvysvETgJgiAIgpDtVaxYkYoVK6Y7HxE4CYIgCEI2IJfJkKezry29+/8JROAkCIIgCNmACJxSJ5fL0zw7eOI35n4TgZMgCIIgCNna7t27Ff/et28fx44dY+7cuaipqX13XiJwEgRBEIRsQEWWAS/5zaYtTo0aNQKSXruyZcsWcufOzZ49e9iwYcN355Vt5nGqUqUKAwcOBCBv3ry4urpmanm+JEkS4yeMx8IyNzm0clKlWlVu3779zf3c3NxwKOyIRg5NHAo7KkXNHy1eshib/PnQzJkDp9KlOH/+vNL28RPGY+dgj5Z2LvQNDahRqyYeHh6K7c+ePUMmV0lx2bFjR/pPPoNIksT4iROwsLYih3YuqlSvlrY63LULh6JF0NDKiUPRIuzes0dp+7nz52jYpDEW1lbI1FTZs3dvsjxkaqopLjNnzwKS3rzdb8AAbB0dyKmjjXU+G/oPHEhYWFiGnHtGyMxr8HuOLUkSdevVQyZXYc8X/68yW2Zeg+MnTsCusCNaujroGxtRo3at5H/HqVynO3buTPe5Z4QlixeTP18+cubIQelSya+TL509e5bSpUqRM0cOCuTPz9KlS5OlcXNzo7CjIzk0NSnsmPz6nDB+PHIVFaXFwtxcsT0uLo6RI0ZQrGhRtHPlwjJ3bjp16oSfn1/GnPQv9LGrLr1LduXm5kabNm1YsWIFly9fxtvbmwEDBnx3PtkmcNq1axeTJk3K7GKkasbMGcyZO5eF8xdw1eMKZqZm1Kxdi4iIiFT3cXd3p1Wb1nRo357rPtfo0L49LVu3Uvqy3LZtGwMHDWLMqNH4eHlTsUIF6tavp/RSxUIFC7Fw/gJuXr/BhXPnyZsnD7Xq1CY4OBgAKysr/F/5KS0Txo9HS0uLunXr/rxK+U4zZs1kjqsrC+fN56r7ZczMzKhZt86367BtGzq0a8d1L286tGtHyzatleowKiqKYkWLsnDe/FTz8fd9qbSsXrESmUzGX02bAeDn54efvx+zpk/nps811q5axZFjR+nWs0fGVUA6ZeY1+D3Hdp3nmuaXbf5qmXkNFipYiIXz5nHT5xoXzpwlb5681KpXV/nv+IvrdML//pf0d1ynTsZVwg/atm0bgwYNYtTo0Xh5e1OhQgXq11O+Tj739OlTGtSvT4UKFfDy9mbkqFEMHDAANzc3RRp3d3fatG5N+/bt8bl2jfbt29O6lfL1CeDo6MgrPz/Fcv3GDcW26OhovH18GDN2LJ5eXux0c+Phgwc0aSxeUJ6d7Nixg44dO7JmzRratm2LgYEBJ06cYN++fUycOPH7MpOyoTx58khz585NVx5hYWESIIWFvpWkhMR0LYnxCZKZmZn037RpinXvo99Jurq60tLFS1Ldr2WLllKd2nWU1tWuVVtq3aq14nOZMmWk3r16KaWxs7OTRo4YkWq+YaFvJUA6cex4qmmKFy8ude3SJd3nLsXFZ8iSGBuXVIdTpyrWvY+MSqrDRYtT3a9lixZSndq1ldbVrlVLat2qVYrpAWn3Trdvlqdxo0ZStapVv5pm+5at0v/bu++wJpI+DuDfAAEBAUFKQBRUBMQGgjQLNsCK7exdT73zLFiR87UX7HL23u7svRdQrIAixQJ2sRtARUBBAmTeP4BICIFgQhF/n+eZ547d2WnuJpPZ2VlVVVWWkfbtx+sub/uXg3OwOHlHRUQyU1NT9v7tu+x/i8NH6ByUEpI+fsq+js+flxrHtpEtGzZkqNx1zxIK5Q6Ojo5s1KhRYtusra2Zj49PgfGnTJnCrK2txbaNHDmSOTs7i/7u2asX82zXTiyOh6cn692nj+jvmTNnskaNGhWrrKE3bzIALPbFC7nrnfg5+/M2KSlJMV9whXxfHbrzmJ15/l6ucOjO4xIvb1nQ0NBghw4dktj+7NkzxuPxipVWhRlxynurLr/t27dDR0cHAQEBpVuoHLGxseDz+fBw9xBtU1NTg1sLNwSHhEg9LiQ0BB4e7mLbPD09EBwSDAAQCAQIDw8XSxcAPNzdpaYrEAiwafMm6OjooFGjRgXGCQ8PR1RUFIYPGy5T/UqDqA3bfm+P7DZsUUQbhoodAwCe7h6FHlOUuLg4nD5zBsOHDis0Xu7bxVVUyn4qYVmeg7LmnZqair79+2HNqtXg8Xg/XtkSUp7OQYFAgE1bNmdfxw0LuY7vRGH40KE/nI+i5J4n7h7i54m7uztCpLRDaGgo3N3F283D0xO3b99GRkZGdpyQEHjki+Pp4YGQ4GCxbU+ePIFptWqoXasW+vbti+fPnxda3qSkJHA4HFSpUkWW6pUbSgq4TVdR5zjt3r0bPXr0kNheq1YtnD9/vlhpVZiOkzTLli3D5MmTcf78eYmLsLTw+XwAgJGRkdh2IyND0T5pxxkZ5jvG0Eh0zIcPH5CVlVVAukYS6Z46dQqVtbVQSUMdK/39EXD+AvT19QvMd+u2rahbty5cXV1lq2ApkNqGhkbgxxXRhjK0T3Hs/HcXtLS00L1bN6lxPn78iHkLF2DUiPJxq64sz0FZ854wcQJcXVzQpZzeIikP5+Cp06dQuYoOKlXWxMp//kHA2XPSr+Pt28vNdVycz6pc0totMzMTHz58EMUxzBfHMF+ajk5O2LFzJ86eO4eNmzYhjs9Hs6ZN8fHjxwLz/fbtG/729UXffv2gra1d7LqS8qlr1664d+8eBgwYABsbG9SvXx+DBw/GvXv30LBhw2KlVaE7Tr6+vlixYgUuX74MZ2fnQuOmp6cjOTlZLPyo3bt3o7K2lijk/jrKP2+DMVbkXA5ZjpElTqtWrRAVEYng6zfQztMTvfr0Rnx8vER+aWlp2LN3L4YPK3w0paTt3rMHlavoiEJGZsm2YXFs27ED/fv2Q6VKlQrcn5ycjI5enWFTty5mzZj5w/nIozyeg4XFOXHiBC4FBcF/pX/hFStF5fEcbNWyFaJuhyP46jW08/BEr359pV/H+/aWi9GmvIrbDgXFz7+9qDTbt2+PHj16oEGDBmjbti1OnjoFANi1c6dEfhkZGejbty+EQiHWrl0rY63Kj9xXrsgbKqLw8HC4uLggLi4OHh4eePbsGTQ0NNC0aVME5xuhLErZ30MoIcuXL8fXr19x+/Ztmd587Ofnhzlz5igkby8vLzg5OYn+Tk9PB5D968g4z9Mc8fEJEr+o8uLxeBK/ZOMT4kXH6OvrQ1lZWeIXW3x8vES6mpqasLCwgIWFBZydnVHHyhJbt22F7zRfsXiHDh1CamoqBg0cVIwaK55X585wcnQU/S21DRPiJUZE8uLxeDK1j6yuXb+GR48eYf/uPQXuT0lJQbuOHVC5cmUcPXT4h9YIUYTydA7m3nYrLO9LQZfw7NkzVNHTFUunR8/f0Lx5c1y+FCRbxRWoPJ6DEtdxXWts3b4Nvj7TxOIdOnw4+zoeMLDYeZSE4nxW5ZLWbioqKqhataooTly+OAlFtK2mpibqN2iAJ0+eiG3PyMhA79698SI2FoEXL/6Uo020AKZ006dPx5AhQ7BmzRrExsZi69atWL9+PWxsbODr64srV67InFaFHXFq3rw5srKycODAAZni+/r6IikpSRRev379w3lraWmJPtwsLCxgY2MDHo+HgMDvc6wEAgGuXL0CVxcXqem4OLsgICBQbNuFCwFwdckeeldVVYW9vb1YugAQEBhYaLpA9q+y3C+CvLZu3wavzl4wMDAosp4lSWobXvzeHtlteLWINnQWOwYALgQGFNk+0mzdth32je0LnB+WnJwMj/btoKqqihNHj0kdkSoN5ekcrFmzZpF5T/OZhrtRdxAVESkKALByxQps37pNjpb4ceX1HMyr8Ou4c5lfx7lyz5PAfPNMAwMD4SKlHZydnREYKN5uARcuwMHBQfSDxNnFBQH54lwICIBLIbcn09PT8fDBA7HOb26n6emTJ7gQECDqmP1saDkC6UJCQjAiZ+oEy7OCeMeOHREWFla8xH5wgnq54+bmxsaPH88Y+/5UXXBwMNPS0mJLliwpdnqKfKqOZQnZIj8/pqOjw44cOszu3bnL+vbpy4yNjVny5yRRnIEDBoo9DXfj2nWmrKzMFvn5sQfRMWyRnx9TUVFhocEhojj79uxlXC6Xbd28hcXcj2be48czTU1N9uJ5LGNZQvYlOYX5TpvGQm4EsxfPY1l42G02fNgwpqamxu7fvSdWxiePHjMOh8POnj6jsKe5FPVEE8vIZIsWLsxuw4OH2L3IKNa3T5/sNvyUKIozsP8ANm3qVNHfN65czW7DhQvZg3v32aKFC7Pb8PoNUZyUxM8sMuw2iwy7zQCwFUuXsciw2+zls+cSTzFpaGiw9WvWSpQt+VMic3J0ZA3qN2BPHz5i71+/EYXMb+ll/lRdWZ6DsuadP6CcPVVXlufgl89JzNfHh4Vcu85ePH3Gwm/eYsOH5lzHUXfEyvjkwcPs6/jUKYXVWxFP1e3Zm32ebN6yhd2Pjmbjc86T57GxLEsoZD4+PmzAwIGi+E+fPWMaGhrM29ub3Y+OZpu3bGFcLpcdOHhQFOfa9ezz08/Pj0XHxDC/nPMzOCREFGfixInsUlAQe/rsGQsOCWEdO3ViWlpaonzTBQLW2cuLmZqasojISPb23TtRSPv2Te56l+ZTdWdjnrOrrxPkCmdjnlfIp+q0tLTYkydPGGPZT9JVrlyZMcZYSEgIq1GjRrHSqtAdJ8YYu379OqtcuTJbsWJFsdJTdMdJmJnFZs2cyXg8HlNTU2MtWrRg9+7cFYvj5ubGBg8aLLbt4P4DzMrKinG5XGZtbc0OHzwkkfbaNWuYmZkZU1VVZY0bN2ZXgi6L9qV9TWXdunZjJiYmTFVVlRkbGzOvzl7sVuhNiXR8p01jpqamLEuRX9gK/NISCjLYrBkzvrdh8+bsXmSUWBy3Fi3Y4IGDxLYd3LdfvA0PHBTbHxQYyABIhPzpbFy3nqmrq7PPHz5KlE1aGgBY7JOn5aLjVFbnoKx55w/lseNUVudgWsoX1q1r13zXcWd2KzhEooy+Pj7Z13G6oFx1nLKEQrYm33kSdPmyaN+gwYOZm5ubWPxLQUHMzs6OqaqqMnNzc7Z23TqJNPcfED8/Dx46JLa/V+/ezNjYmHG5XGZiYsK6de/O7t2/L9r/7PlzqdfuxUuX5K5zaXaczj+MZdfffpArnH8YWyE7Tra2tuz48eOMseyOk6amJrt27Rqzt7dn48aNK1ZaHMZkfOtdOdeyZUvY2trC398f5ubm8Pb2Fi1PcPXqVXTo0AELFy7EuHHjZEovOTkZOjo6SEr8/FPe6y43inhZIimCUoW9m1566ByUm1CZzsMflZycDN0qVUTLk5RUHjo6Ogh8FAtNLfny+JqSjLZWNUu0vGVh0aJFePfuHVatWoXnz5/D0tISADB48GCsXr0aGhoaMqdVYTpOikYdJwWhLy35UMdJfnQOyo06Tj+OOk7lT2ZmJp49e4aaNWtCVVW12MdX2KfqCCGEkF+JkgImd1fUBTDzUlFRgZWV1Y8fr8CyEEIIIaSM0HIE0tWqVQuF3WCLjY2VOS3qOBFCCCGkQsv/SraMjAzcu3cPp0+fxsSJE4uVFnWcCCGEkApAWSk7yJtGRSTtwbANGzYUex2nCtpEhBBCyK+FFsAsPg8PDxw8eLBYx1DHiRBCCCG/pIMHD0JXV7foiHnQrTpCCCGkAqDJ4dI1btxYbHI4Ywx8Ph8fPnzA+vXri5UWdZwIIYSQCkCJw4GSEi1HUJCuXbuK/a2kpARDQ0O0bNlStBimrKjjRAghhFQAtI6TdDNnzlRYWjTHiRBCCCFERjTiVAQhJzuQH1RRn20lPw0lem0N+UXQHKfSQR0nQgghpAKgjlPpoJ9ihBBCCCEyoo4TIYQQUgEoK3EUEioiLy8vHDt2DFlZWXKnRR0nQgghpAKglcML17dvX5iammLq1Kl49OjRD6dDHSdCCCGEVGgnTpxAfHw8pk2bhuXLl6NBgwZo1qwZtm3bhtTU1GKlRR0nQgghpAKgEafCaWlpwd3dHUpKSnj79i369OmDjRs3wtjYGCNGjEBISIhM6VDHiRBCCKkAlJQ4Cgm/AgMDA4wZMwY3b97E7du3oaWlhebNm8t0LC1HQAghhJBfTlZWFs6dO4fdu3fj1KlT8PDwkOk4GnEihBBCKgAlBdymq6ivXMlv7NixMDExwdixY2FjY4OYmBicOXNGpmNpxIkQQgipAGgBTOkiIyNx+PBhHD58GFwuF4mJidi7dy9at25d7LSo40QIIYRUANRxks7BwQGNGjXC2LFj0b9/f+jo6PxwWj/FrbqWLVvC29u7rIshl/Xr1qF2rVrQUFdHEwcHXLt2rdD4V65cQRMHB2ioq8Oidm1s2LBBIs7hw4dRv149qFeqhPr16uHo0aPFzpcxhjmzZ8O0WjVoamigdatWiI6Olq+yJYDaT37UhvJjjGH2nNkwMa0GdU0NtGwtW1kPHz4Mm/r1oKZeCTb1C26ndevXoWbtWqikoQ77JgW3U1F5p6enY+y4sdA3NICmVmV4demCN2/eyFdpBaJzkJSV8PBwREREYPTo0WKdpm/fvmHnzp3FS4z9BD5+/MiSk5NLNc+kpCQGgCV+/syyhEK5wp69exmXy2UbN21i96Oj2bhx45impiaLffGiwPhPnz1jGhoabNy4cex+dDTbuGkT43K57MDBg6I412/cYMrKymzBggUsOiaGLViwgKmoqLDgkJBi5evn58e0tLTYwUOH2J27d1mv3r2ZsbEx+5yUJHe9FRWo/agN5QksS3FhUU5ZDx88xO7duct698oua/LnJKnHBF/PbqeFCxawB9ExbGFOO4UGh4ji7NuT3U6bN25iMfej2ficdnoZ+6JYef8xahSrVq0aCzh/gUXcDmetWrVijRo1YpmCDLnqTefgj4fEz58ZAJaUlFTi31fxnxLZt8wsuUL8p8Ril3ft2rXM3NycqampscaNG7OrV68WGv/y5cuscePGTE1NjdWsWZOtX79e3iYoUnp6OtuzZw9buHAhmz17tihMnjyZcTgc0d+y+Ck6TmVBkR0nR0dHNmrUKLFt1tbWzMfHp8D4U6ZMYdbW1mLbRo4cyZydnUV/9+zVi3m2aycWx8PTk/Xu00fmfDOzshiPx2N+fn6i/alpaUxHR4etW79eIR+WigjUftSG8gSmoE6TMDO7rIv8/ETbvqVml3XDuvVSj+vVsxdr59lObJunhyfr07uP6G9HR0f2x6hRYnGsra3ZNB8fmfP+/CmRcblctm/PXlGct6/fMCUlJXbuzNky7zj9qudgaXacPiZ+ZhlZQrnCx8TilXffvn3Znf7Nm1lMTAwbP358dqf/5csC4z9//pxpaGiw8ePHs5iYGLZ582bG5XLZoUOHFNkkEnr27Mm0tLRYw4YNmZ2dnSg0aNCAKSkpMTs7O2ZraytTWj/drTpzc3MsXLgQw4YNg5aWFmrUqIFNmzaJxQ8ODoatrS0qVaoEBwcHHDt2DBwOB1FRUaVedoFAgPDwcLjne8zR3d1d6mJboaGhcHd3F9vm4emJ27dvIyMjIztOSAg88sXx9PBASHCwzPnGxsaCz+eLxVFTU0MLNzeZFwIradR+8qM2VIzcsnq4i5fVrYUbggspa0hoCDw88rWTpweCQ8TbKW+6AODh7i5KV5a8w8PDkZGRIfZItYmJCerXry/Kq6zQOVhxrVixAsOHD8fvv/+OunXrwt/fH9WrV8f69esLjL9hwwbUqFED/v7+qFu3Ln7//XcMGzYMy5YtK9FyBgYG4tq1a7hz5w4iIiJE4eLFi2CMISIiApGRkTKl9VN0nPJbvnw5HBwcEBkZidGjR+PPP//Ew4cPAQApKSno3LkzGjRogIiICMybNw8+Pj5Fppmeno7k5GSxoAgfPnxAVlYWjIyMxLYbGRmBz+cXeAyfzy8wfmZmJj58+CCKY5gvjmGeNGXJN/e/EnEMDaWWrbRR+8mP2lAxpJbVqPCy8vl8GBnmr5+C2ilP3nw+H6qqqtDV1ZWaV1mhc7B0KHLl8Pzfh+np6RL5iTr9+TqmHh4eCA4uuLMeEhIiEd8zX4e4JCQlJcHU1FRiO2MMnGJOiP8pO04dOnTA6NGjYWFhAR8fH+jr6+Py5csAgN27d4PD4WDz5s2wsbFB+/btMWXKlCLT9PPzg46OjihUr15doWXO/w9T1D9WQfHzb5clTUXFKWvUfvKjNiye3bt3o7K2lijkfqj/SFnLsp3KQ1vmonOwZHHAFBIAoHr16mLfiX5+fhL5lVSHuCRs374dWlpaEtt1dHSwffv2YqX1U3acGjZsKPp/DocDHo+H+Ph4AMCjR4/QsGFDVKpUSRTH0dGxyDR9fX2RlJQkCq9fv1ZIWfX19aGsrCxxEsXHx0ucPLl4PF6B8VVUVFC1alVRnLh8cRLypClLvjweDwAk4yQkSC1baaP2kx+14Y/x8vJCVESkKOjr6wMooKzxhZeVx+OBH5e/fgpqpzx583g8CAQCJCYmSs2rrNA5+PN5/fq12Heir6+v1Lgl0SFWtEGDBkFVVVVie0pKCmbNmlWstH7KjhOXyxX7m8PhQCgUAij4Hyz3H6Uwampq0NbWFguKoKqqCnt7ewQGBIhtDwwMhIuLS4HHODs7IzAwUGxbwIULcHBwENXd2cUFAfniXAgIgIurq8z51qxZEzweTyyOQCDA1StXpJattFH7yY/a8MdoaWnBwsJCFGxsbMDj8RAQKF7WK1evwLWQsro4uyAgIF87XQiAq4t4O+VNFwACAgNF6ea2U2F529vbg8vlIiBPW75//x73798X5VVW6BwsJUKhYgIg8X2opqYmkV1JdYhLwqlTp2BlZQU1NTUoKSmJgqGhIV6+fCn6WybyzlQvDW5ubmz8+PGMMcbMzMzYypUrxfY3atSIzZo1izHG2Pr165m+vj779u2baP+WLVsYABYZGSlzniWxHMHmLVvY/eho0VMHz2NjWZZQyHx8fNiAgQNF8XMfw/X29mb3o6PZ5i1bJB7DvXb9OlNWVmZ+fn4sOiaG+fn5SX0MV1q+WcLsx3B1dHTYocOH2Z27d1mfvn3L3eP01H7UhvIEpuDlCHR0dNiRQ4fZvTt3Wd8+fSWWBBg4YKDoaTiWJWQ3rmW30yI/P/YgOoYtymmngpYj2Lp5C4u5H828c9rpxfPYYuX9x6hRzNTUlAVeCGARt8NZ69aty91yBL/aOViaT9UlffjAmEAgV0j68KFY5XV0dGR//vmn2La6deuyadOmFRh/6tSprG7dumLb/vjjD+bs7PxjlZeRpaUl++uvv9iRI0fY8ePHRWHXrl2Mw+GI/pZFhes4JSUlMT09PTZo0CAWExPDzp07x6ytrRkAFhUVJXOeiuw4ZQmFbM2aNczMzIypqqqyxo0bs6DLl0X7Bg0ezNzc3MTiXwoKYnZ2dkxVVZWZm5uztevWSaS5/8ABZmVlxbhcLrO2tmYHDx0qVr5ZwuxHcWfOnMl4PB5TU1NjLVq0YHfu3lVInRUZqP2oDX80MAV2nISZWWxWvrLeu3NXLI6bmxsbPGiw2LaD+8Xb6fDBQxJpr83XTleCLhc777SvqWzMX38xPT09pq6uzjp17MRevXgpd73pHPzxUNE7TrnLEWzdupXFxMQwb2/v7E7/ixeMMcamTZvGBg4cKIqfuxzBhAkTWExMDNu6dWupLEfA5XIZn8+X2B4XF8c4HE6x0uIwJsN9rDLWsmVL2Nrawt/fH+bm5vD29hZbSdzW1hZdu3bF7NmzAWQvR5D7pF2DBg0wadIk9OvXDw8fPoSVlZVMeSYnJ0NHRweJnz8r7LYdIaT0KZX7T7jyT/hzzZEuV5KTk6FbpQqSkpJK7Lsk9/sqKT5e7jySk5OhY2hYrPKuW7cOS5Yswfv371G/fn2sXLkSLVq0AAAMGTIEL168ED3ABWSvCD9hwgRER0fDxMQEPj4++OOPP+Qqd1Fq1aqFiIgIVKlSRWz7x48f0aRJEzx//lzmtH6KjpO8du/ejaFDhyIpKQnq6uoyHUMdJ0IqBuo4yY86Tj+uVDtO/DjFdJx4RiVa3p9dhXzJ765du1CrVi1Uq1YNd+7cgY+PD3r16iVzp4kQQgj56eSZ3C1XGhXQnDlzpO5jjInuWMmiQnac+Hw+Zs6cCT6fD2NjY/Ts2RMLFiwo62IRQgghpAwcP35c7O+vX7/i5cuX4HK5sLCwoI7T1KlTMXXq1LIuBiGEEFJ6aMRJqoiICIltnz59woABA9CzZ89ipfVTruNECCGEkHyyhIoJvwg9PT34+flh/vz5xTqOOk6EEEII+SUpKyvj5cuXyMzMlPmYCnmrjhBCCPnl0K26Yqtfv36xOk0AdZwIIYSQioEpoOPEKmbHqXXr1lJfv8YYw+XLl/H582d069YNQUFBhaZFHSdCCCGEVGi2trZFxuFyubCzsysyHnWcCCGEkIpAyBRwq65irhi7YsWKIuNoamrKFI86ToQQQkhFQHOcSgV1nIqQnJ4BpGeUdTF+WqrK9OCmPKI/Jpd1EX56TapolnURfnoCFfqq+FGCX+jx/vKsVq1aUuc45RcbG1vofroaCCGEkIqARpykGjZsGJYvX46mTZvC2dkZABASEoIbN25g8uTJxXovH3WcCCGEkIpAyOSfo1RB5zhFR0dj+vTpmDx5stj2pUuXIioqCrt375Y5LbqPQgghhFQEuSNO8oYK6OTJk+jSpYvE9m7duuHEiRPFSos6ToQQQgip0LS1tXHhwgWJ7efOnSvWbTqAbtURQgghFQPNcZLq77//xoQJE3Djxg2xOU6HDh3CypUri5UWdZwIIYSQioA6TlKNGTMG1tbW8Pf3x6pVq8AYQ926dXHu3Dm0adOmWGlRx4kQQgghFV7btm3Rtm1budOhjhMhhBBSEdCIU5G+ffuGhIQECPPV08zMTOY0qONECCGEVAT0kl+pHj58iGHDhiE0NFRsO4fDAWNMoiNVGOo4EUIIIaRCGz58OFRVVXHmzBkYGxuDw+H8cFq0HEEp2bJxAxpZW4JXRRstXZ0RfP16ofFvXLuKlq7O4FXRhm1dK2zbvElsfycPd+iqq0mEXt3E16l49/YtRg4dglrVjGGiVwXNnZogKiJCLM6jhw/Q97fuqGFkgOoGVeHeojlev3qlmIoryKYN62FjWQd6WpXR1MkRN4pov2tXr6KpkyP0tCqjnpUltmzaKLb/3107oanKlQjfvn0Txbl+7Rp+69oVtc1qQFOVi5PHj0vkwxjDgrlzUdusBqpqa6Fd2zaIiY5WTKUV7NCOrejiaIdm5iYY5NEakaEhUuMGnT6JMb27w6OeJVrVMcOwTp4ICbokEWeQZ2u0tqqJFrWqo39bN5w5uF9qmjtWrYSjcVWsmPG32PaPCfGYM/4vdLC1QfOaphjXtydePX8mX2VLCGMMs+fPg0nNmlDXrYKWHu6Ijokp8rjDR4/Cxs4WajrasLGzxdECzqVcfkuXgKNeCd75FurLa9SYv8BRrwT/1avFtqenp2PshAnQN60Gzap68PqtB968eSN7BUvYxvXrYV3HAlUqa8LV0RHXr18rNP61q1fg6uiIKpU1UdeyDjZvFL+Ojx09iqZOTuDpV0VVHW042dtjz3//SaTz9u1bDB00CNWMDKGnrQUne3tEhIeL9sfFxWHEsGGoWaM69LS14NWxA54+eaKYSpem3Jf8yhUq5gKYd+7cwfr169GuXTs0atQIDRs2FAvFQR2nUnDk4EH8PWUyJvlMw5XQm3BxbYpeXb2kdk5evohFr65d4OLaFFdCb2LiVB9MmzQRJ44eFcX5d99+PIx9KQrB4ZFQVlZG1+49RHE+JyaiXetW4HK5OHjsBEIjozB/0WLoVNERxYl9/gzt27RGHUsrnDofgGu3wjDZ1xeVKlUquQYppkMHDmDqpEmYOm0agm+FwbVZM3Tr3Elq+72IjUV3r85wbdYMwbfCMMXHB5MnTMCxI0fE4mlra+PZq9diIW+9v379igYNG2KF/z9Sy7Zi2TKs/scfK/z/wdXgEBgZ8dC5Q3ukpKQopvIKEnD8KFbMnI6h4yfi3wtBsHVyhnf/3uBL+VKNDA2BY4uW8N+9DzvPX4KDazNMGtwPj+7dFcXR1tXF0PETsfXkOey5dBWde/fDvAljJTpYABATFYGj/+2ChU09se2MMUwZOhBvX77Esh3/4b+AIBibVseYXt2RlvpVsY2gAEuWL8eKVauwZuVKhF2/AZ4RD+4dOxb67x0SGoreAwdgYL9+uHMrDAP79UOvAf1x89Ytibhht29j09ataNiggdT0jp04gZthYTAxNpHY5z1lMo6eOIF9u3bh+sVL+PLlCzr16I6srKwfq7ACHTxwAFMmTYTPNF+Eht2Ga7Nm6NqpE14Vch137Zx9HYeG3cZUn2mYNMEbR/Ncx3p6upjq64vL164jLCISAwcPxsjfhyPgwnlRnMTERLR2awEul4tjJ08h8u49LFq6BFWqVAGQfQ726tEdsbHPcfDwEYSG3UaNGmbo0M4TX7+Wv3OwULQAplRWVlZISEhQSFocJutb734xycnJ0NHRwcu4hGIvjpVf2+bN0NDOFitWrRFtc7JtiA6dvTBr3nyJ+LOm/41zp0/hZtT3L6kJY/9C9N17uHDlaoF5rF+9Cn7z5uJB7Etoama/1HT2/6bjZkgIzl6U/CLLNWzgAHC5XGzctv1Hq1coRbzk162pK2zt7PDPmrWibY0bNEAnLy/MXbBAIv7/fH1x5tQpRNy7J9o27q/RuHf3LoKuZY9U/btrJ3wmTcK7hA8ylUFTlYt9Bw+hc56VZxljqG1WA3+NHYdJU6YAyP7FX9O0GuYtXIjhI0b+UH3zUtRLfod2cIdVg4aYtni5aFuv5s5wa9cBf02fKVMavd1c4d6lG36fOEVqnIHurdC0rTv+8Pk+qpT69QsGerSGj98SbPNfAct69TFx3kIAwMtnT9GzmRP2Xr6B2lbWAICsrCx4NrDCmOmz0LX/wB+prhhFveSXMQaTWjXh/dcY+OSMBqWnp8PIrAYWz5+PUb+PKPC43gMGIDklGWePf1+duJ1XZ+hWqYK9u/4Vbfvy5Qsauzhj3T//YP6iRbBt2Aj+y5aJpfX27Vs4tWiB8ydPomO3rvAeMxbeY8cCAJKSkmBQ3RT/bt2G3j17AgDevXuH6nUscObYcXi6u/9w3b8p4CW/zV1dYGfXGKvWfr+ObRvUR2cvL8xbsFAi/nTfaTh96hSi7t0XbRs7ejTu3r2DK9dvSM3HpUkTtOvQHrPmzAUA/O9vX4QEB+Pi5SsFxn/y+DEa1rNBeNQd2NTL7thnZWWhhokx5i/0w9Dhw3+ovrmSk5NhVFUPSUlJcn+XFJaHjo4Okm7ehnblyvKl9eULdJwcSrS8ZeHixYuYPn065s2bBzs7O3C5XLH9Ojo6Uo6URCNOJUwgECAqMgKt24h/aLVq0xa38k1SyxV28yZatRF/ZLJNWw9ERoQjIyOjwGP+3bkD3Xv2FHWaAODc6VOwa9wYQ/r1RZ0apmjh7Iid27aK9guFQgScOwuLOnXQo3NH1KlhirbNm+H0Cem3EUqbQCBAZEQE2rQVb7/W7m1xU8qtpls3Q9HaXbz92rp7ICJcvP2+fPkCa4vaqFPTHD26dkFUZGSxyvYiNhZxfD7a5Hm8VU1NDc2at0BoiPTbYKUtQyDAw7t34OTWSmy7k1sr3L0dJlMaQqEQqV++QDvnV3p+jDHcunYFL589hZ2zi9i+Jb5T0bSNOxxbtCywbEB2u+VSVlYGl6uKO7cKvj7KSuyLWPD5fHjk+/d2a94cwVKuZQAIuRkKj3zXs2dbd4lj/vIej47t2qNt64LXlBEKhRg4fBimTJiAejY2EvvDIyOQkZEhVj4TExPUr1cPwYXcli0Nous4X+etTVt3qdfKzdBQieu+rYfkdZyLMYagSxfx+PEjNGveXLT99KlTaGxvj359eqOGiTGcHRywbcsW0f709HQAEBttVlZWhqqqKoJvSO+glUtZTDGhAvLw8EBYWBjatWsHQ0ND6OrqioXioMnhJezjhw/IysqCgaGh2HYDIyPEx/ELPCY+jg8DIw/x+IaGyMzMxMcPH8AzNhbbFx4WhgfR0Vi9Xvz+/4vYWGzbvAmjx43HxKk+CL8dhmmTJkJNTQ19+g9AQnw8vnz5Av9lSzF91mzMnr8QgRcuYGCf3jh5/gKaNm+hgBaQT277GRqJt5+RoREC+XEFHhPHj4ORoZHYNkOj7Pb78OEDjI2NYWVlhY1btqJe/fpISUnButWr0balG0Jvh8OiTh2ZyhaX8+9nZCSZl7TbD2Xh86ePyMrKQlUD8TbUMzDAx4SC2zC/3RvWIi0tFW29uopt/5KcjI529SEQpENZWRlT/ZaKddAuHDuCR/fuYsfZwALTNbeoA2PT6li7cB58l6yAuoYG9mxch4/xcfgQJ1vZSgs/53wzMsx/LhriZSH/3vy4uAKP4eep374DBxARFYWwQkZSFi9fBhUVFYz76y+p5VNVVZX4EsifV1n4kHsd528HI0PESSlbXFwcjPJd94aG4tcxkD3SVtusBtLTs8/Bf1avEetwxT5/js0bN2Kctzem+kzD7bAwTJrgDTU1NfQfOBBW1taoYWaGGf+bjjXr1kNTUxP/+K8En88Hn/9ewS1Rwmg5AqmCgoIUlhZ1nHKkp6eLfnkA2UOfipR/Bj9jrNBZ/QXFL2g7APy7czvq1qsH+yZNxLYLhULYNrbHzLnzAAANbW3xMCYG2zZtQp/+A0SPX7bv1Bmjx40HADRo1Ai3boZg2+bN5aLjlKu47Yci2s/RyRmOTs6i/S6urnB1bIIN69Zi2Ur/4haueGUrKwWVE0WX8/zRw9i8bAmW7fgXevoGYvs0KlfGf4GXkfb1K8KuX4X/7P+hmpkZ7F2bIe7tW6yY8TdW7TsENSlz5lS4XCzasgPzJ41H27q1oaysjCbN3eDaWv5F6uS1e+9ejBo7RvT36Zw5hsU+F4s45vXr1xg/ZTIunDwldW5heEQE/lm7FhHBIcU+t8rT+VgSn4NaWlq4eTscX758QVDQJfhMmYyatWqihVtLANmfg43t7TF3fvZtfVs7O8TExGDTxg3oP3AguFwu9u4/gD9HjoSJoQGUlZXRuk0beLZrp4gqly7qOEnVokXB32eMsWL/0KWOUw4/Pz/MmTNH4elW1deHsrIy4vP9qvoQHw+DfKMiuQyNeIjni49GfUhIgIqKCvSqVhXbnpqamj35fIbkPBUjnjGs69YV22ZpbY2Tx46JyqaioiIZx8oaocHBMtWvpOW2X1y+0aX4hHiJUahcRjwj0WhQroT47Parmq/9cikpKcHewQFPnz6VuWxGRjwAQByfL/r1m5tX/l/WZamKXlUoKyvjY7x4GyZ++AA9g8LLGXD8KOZPHA+/zdsKvNWmpKSE6jVrAQAs6zdA7JPH2LHKH/auzfDgbhQ+fUjAYM/WovhZWVmIDA3Gwe1bcP3leygrK6NuI1vsDryCL8nJyBAIoKuvj6Ed3FG3ka3cdZeHV6dOcHJ0FP2d+8OKHxcn9u8dn5AgMaKUF8/ISGLEJ+8x4ZGRiI+Ph73r91ucWVlZuHr9OtZsWI/0pGRcu3ED8fHxqGFZRyzOpGk+8F+zGi8ePQaPZwSBQIDExESxUaf4hAS4On//kVAW9HOv4/ztUMi1YmRkJBrly5WQIHkdKykpobaFBQCgka0tHj14iKWLF4s6TjxjY9StK35r09raGseOfp9k3tjeHjfDw5GUlASBQAADAwM0d3WBvb3DD9eZlD/v3r3Dy5cvIciZIgAAnz59Qo8ePXDp0iVwOBy4ubkVmQ7Nccrh6+uLpKQkUXj9+rVC0lVVVYWtXWMEXRK/VXH50kU4Svkwa+LkhMuXLoptu3QxAHaN7SUmtB07fAiC9HT06ttPIh0nFxc8efxYbNuzJ09gWqOGqGx29g4FxqmeE6esqaqqwq5xY1y6KN5+QYEX4ZRvLk0uRydnBAWKt9/FwAA0tpdsv1yMMdy9cwc8Hk/mspnXrAkjHg+XLn7PSyAQ4Pq1q3B2KbhsZYGrqgrrho1w6+plse23rl5GQ4cmBR+E7JGmud5jMG/dRjRr6yE1Xl6MMdG8pSbNW2Bv0HX8F3hFFOo2skW77r/hv8ArUFZWFju2srY2dPX18er5Mzy4E4UWnh2KV1EF09LSgkXt2qJgU7cueDweAvL9e1+5dq3QjomLkzMC8l3PFy4Gio5p06oV7t0OR9TNW6Lg0Nge/fv0QdTNW1BWVsbAfv1wN+y2WBwTYxNMmTAR50+eAgDY2zUGl8sVK9/79+9xPzoarlKuldIiuo4Dxa/jSxcDpV4rTs7OEtf9xYDCr2Mg+xzMe/fAxdUVjx8/Eovz5Mlj1CjgM05HRwcGBgZ4+uQJIsLD0cmrc5F1K1foqTqpFixYgBo1aqBZs2Zo3bq1KPz222/gcDho06YNWrVqVXRCoBEnETU1NbEJqoo0etx4/DF8KOwa26OJkxN2bt2KN69fY2jOUzhzZvwP79+9w4at2wAAw0aMwJYN6zF96hQMGjYMYTdv4r8dO7Bl578Saf+7Ywc6dPaSGIkCgNFjx8GzlRuWL1mMbj16IDzsNnZu24qVa9aJ4oybMBHDBvaHa7NmaO7mhsALF3DuzGmcPB9QIm3xI8aO98bvQ4fAzt4eTk7O2LZ1C16/foXfR2Y/tTZz+nS8e/cWW7bvAAD8PnIkNq5fB58pkzF02HDcvBmKndu3Y8e/39d3WThvHpo4OcHCwgLJyclYv3YN7t65g5WrVonifPnyBc/yjEC9eBGLO1FR0NPTQ/UaNcDhcPDX2HFYtngRLCwsUNvCAksXL4a6hgZ69elbOo0jo36jRmPW2D9Rt5EdGtg74Oh/u8B/+xbdBw0FAKxdMBfx/PeYs3o9gOxO0+xxozFp3kLUt3fAh5zRqkqV1FE550mbHatWom4jW5ia10SGQIAbFwNx5uB++CzKfhJMs7IWaluLj2aqa2hCR1dPbHvgyePQrVoVvGqmePogBitm/A23dh3g3FK2D7HSwuFw4P3XGCxcugR1LCxQx8ICC5cshoa6Bvr17iOKN2j4MFQzMYFfzhOz4//6Cy3c22LxsmXo0rkzjp88icBLl3A952lXLS0t1K8nvkyDpqYGqupVFW2vWrWqxGgpl6sCnpERrCwtAWR/6Q8fMgSTpvmgalU96OnqYbLvNDSoXx9tW7dGWRvnPQHDhwxGY3t7ODk7Y+uWzXj96hV+HzkKADBj+t949/Ydtu7YAQAYMXIUNqxbh6mTJ2HY8N9xMzQUO7Zvw87/dovSXLp4ERrb26NWrdoQCAQ4d/Ysdv/3L1bleQJ37LjxaNWiOZYs8kOP33oiLCwM27ZswZr1G0RxDh86BAMDfVSvXgP379/H5IkT0LlLF7R1l+0HQ7lBt+qkWrt2LbZt24bOnTuL/WhLSEhAnTp1kJiYKPMtbeo4lYLuPXvi06ePWLJwIeL471G3Xj3sP3YcNXLejRPH5+NNnhEuM/OaOHDsOP6eOgVbNm4Az9gYi5avgFe3bmLpPn3yGKHBN3Dk1OkC823s4IB/9x/A3JkzsHThApiZm2Ph0mXo1ff7l3qnLl2wYvUarFy6BNMmTYSFpSV27d0Hl6ZNS6AlfsxvvXrh06ePWLRgAfjv38OmXj0cOXFS1H58/nux9jOvWRNHTpyEz+RJ2LR+PYxNTLBs5Up07d5dFOdz0meMHf0n4vh8aOvooJGtLS5cugSHJt9vzUSEh6N9nqfzpuUsOdB/4EBsyunkTpw8Gd/S0uA9biw+JyaiiaMjTpw+Ay0trRJtk+Jy79INSYmfsHXFUnyIj0Ntq7pY+d8+GFevDgD4EB+HuLdvRfGP/rsTWZmZWOI7FUt8p4q2d+zVB7P+yf5SSktNxRLfqYh//w5qlSrBzKIO5q7ZAPcu4udpUT7G8eE/+3/4lJAAfUMjdOjZG8MnSF/8sSxNnTQJad/SMNp7PBITE+HUpAkunDol9u/96vVrKCl9H8x3dXHBvl3/4n9zZmPG3DmoXasW9v/7n9htQEVZuWQpVJRV0GvAAKSlpaFNq1bYsWmzxOheWejZqxc+ffyIhQvmg//+PerVq49jJ0+K3hHGf8/H69ff55qY16yJYydPYuqkydiYcx0vX+mPbnmu469fv2L82LF4++YN1NXVYWllhW07d6Fnr16iOA5NmmD/oUOYOf1/WDh/Psxr1sTS5SvQt9/3UXr++/fwmTIZ8XFx4Bkbo/+AAfCd/r9SaBVSWuLj49GhQweJhye+ffsGDodTrOUIaB0nKRS5jtOvTBHrOP3KFLWO069MUes4/coUsY7Tr6pU13G6eAXamnKu4/T1C3TauFW4dZyGDRuG1atXiy3ZAwApKSkYP348tm3bJnNav8y32o4dO8rNkyWEEEKIwtEcJ6m2bdsm0WkCsm+VF6fTBPxCt+pevHgh02x5QgghhFQsRU38DgoKwufPn9GtW7ci13z6ZTpO58+fxz//SH/nGCGEEPJTo8nhUtnZ2RUZh8vlyhTvl+k4hZSjV2AQQgghCidkCug4VcxpzytWrCgyjqampkzxfpmOEyGEEEJ+bU+fPkVMTAw4HA6sra1RR8ZXbOVFHSdCCCGkIhAy+UeMKuiIU1JSEoYMGYITJ05AJecp0YyMDHTu3Bk7d+5EFSkvMC/IL/NUHSGEEFKh0VN1Uo0fPx5Pnz7FjRs38O3bN3z79g0hISF49uwZxo0bV6y0aMSJEEIIqQhocrhUJ06cwMmTJ+Gc5/VITk5O2LRpEzp16lSstGjEiRBCCCEVmkAgQOXKkouDamlpib3bUBbUcSKEEEIqAJYlVEioiNzc3DBt2jR8/PhRtO3Tp0+YOnVqsdd4pFt1hBBCSEVAt+qkWrVqFTp27IgaNWrA0tISHA4Hjx49QrVq1XDmzJlipUUdpyJUEaRDW1C8YTySB73jSi5N9MrXy4J/SpmZZV2Cn963zKyyLsJPi9qufKhduzaio6Nx4sQJxMTEgDGGunXromvXrsV+CTZ9qxFCCCEVAVPAiBOrmCNOAKCsrIxu3bqhW7ducqVDHSdCCCGkIijn6zglJiZi3LhxOHHiBADAy8sLq1evLnQNpSFDhmDnzp1i25ycnBAaGlqsvPOnkd/gwYNlTos6ToQQQggpcf369cObN29w7tw5AMDIkSMxcOBAnDx5stDj2rVrh+3bt4v+VlVVLXbeEyZMEPs7IyMDqampUFFRgYaGBnWcCCGEkF8NEwrB5LxVJ+/x0jx48ADnzp1DaGgonJycAACbN2+Gi4sLHj16BCsrK6nHqqmpgcfjyZX/p0+fJLa9ePECo0aNwqRJk4qVFi1HQAghhFQEWULFBADJycliobhrHeUXEhICHR0dUacJAJydnaGjo4Pg4OBCj718+TIMDQ1haWmJESNGID4+Xq6y5DI3N8eiRYvg7e1drOOo40QIIYQQMdWrV4eOjo4o+Pn5yZUen8+HoaGhxHZDQ0Pw+Xypx7Vv3x67d+/GpUuXsHz5coSFhaF169Zyd+RycTgcvH79uljH0K06QgghpCIQMgWs45Q9Ofz169fQ1tYWbVZTUysw+uzZszFnzpxCkwwLCwOQ3UnJjzFW4PZcvXv3Fv1//fr14eDgADMzM5w+fRrdu3cvNN+8jh8/LpHv+/fvsWbNGjRr1kzmdADqOBFCCCEVgiLnOGlra4t1nKQZM2YM+vTpU2gcc3Nz3L17F3FxcRL7EhISYGRkJHP5jI2NYWZmhidPnsh8DACJThaHw4GhoSHatGmDZcuWFSst6jgRQgghFUEZrByur68PfX39IuO5uLggKSkJt27dgqOjIwDg5s2bSEpKgqurq8z5ffz4Ea9fv4axsXGxypmVpbiFSGmOEyGEEEJKVN26ddGuXTuMGDECoaGhCA0NxYgRI9CpUyexJ+qsra1x9OhRAMCXL18wefJkhISE4MWLF7h8+TI6d+4MfX19uRexlAd1nAghhJCKIHcBTHlDCdm9ezcaNGgADw8PeHh4oGHDhvj333/F4jx69AhJSUkAslf6vnfvHrp06QJLS0sMHjwYlpaWCAkJgZZW2b2O6pfpOO3YsaPQ1UlLGmMMs/0WwsTKEupGhmjZsQOiHzwo8rjDx4/DxrEJ1Az0YePYBEfzLRRm3qA+ODraEuGvSRNFceLi4zHkzz9gYmUJDZ4R2nXvhifPnoqlw4+Lw8CRI8CrYwFNYx4aN2+OQ8eOKaTuisIYw+wF82FSuxbUq+qhZTtPRMfEFHnc4WPHYGPfGGq6VWBj3xhHTxyXiPP23VsMGDYMVaubQkO/KmydnRAeGSHaP3vBfFjb2ULTQB+61UzQtmNH3Ay7JZZGeno6xk6aCP0a1aFpoA+vnr/hzds38ldcQRhjmD1vLkzMzaCuo42W7m0RHRNd5HGHjx6BTaOGUNOqDJtGDXH0+DGx/es3bkRD+8bQ1q8Kbf2qcGnRHGdzFrjL68GDB/Dq3g06BvrQqqoH5+bN8OrVK9H+UaNHo7a1NdR1tGFQzQRdenTHw4cP5a63IpXUOTh7wXxwNDXEAq+muVic/Ptzw9KVK0Vxyvs5uGXjBjSytgSvijZaujoj+Pr1QuPfuHYVLV2dwauiDdu6Vti2eZPY/k4e7tBVV5MIvbp1EcVZsXQJWjd1RXWDqqhTwxT9e/6GJ48fSc3Te8xo6KqrYf3qVfJVtgwwoRAsS85Qgi/51dPTw3///Sda4uC///6T+F5mjGHIkCEAAHV1dZw/fx7x8fEQCAR4+fIlduzYgerVq5dYGWXxy3ScytoSf3+sWLsWa5YuQ1jQZfAMDeHetQtSUlKkHhNy6yZ6Dx2Cgb374M6NYAzs3Qe9hgzGzdthojhhQZfx/vETUQg4lv2B3LNr9jAmYwxd+/XF8xcvcHzPXkReuw6z6jXQtksXfP36VZTOwJEj8ejJE5zYtw/3gkPQ3aszeg8dgsg7d0qoRYpvyYoVWLF6NdasWIGwq9fAMzKCe+dOhbfhzZvoPWggBvbpizuhNzGwT1/0GjhQrNOTmJiIpm3agMtVwdmjRxETHoHlfotQRaeKKI6lRR2sWb4C926F4XpAIMzNasDDywsJCQmiON5Tp+DoiRPYt2MnrgcE4suXr+jUo4dC763LY8nyZVjxzz9Y4++PsODg7Pbr0KHw9gsNRe/+/TGwf3/cCbuNgf37o1e/frh563v7mVarhkXzF+B2cAhuB4egdcuW6PJbD7FO2bNnz9CsdStYW1nhckAA7oTdxgzfv1GpUiVRHPvGjbF982Y8uHMX50+dBmMMHp06lpv2A0ruHASAenVt8P7Zc1G4dytMbH/efe+fPce29RvA4XDQo2tXUZzyfA4eOXgQf0+ZjEk+03Al9CZcXJuiV1cvvM7Tec7r5YtY9OraBS6uTXEl9CYmTvXBtEkTcSLnNg4A/LtvPx7GvhSF4PBIKCsro2v3HqI4wdeu4vc//sCFK9dw5NQZZGZlonunTmKff7lOnziO8LAwGBubKL4BSIXBYYyV3LhcObJjxw54e3vj8+fPMsVPTk6Gjo4Okl6/kenJgsIwxmBiZQnvP0fDJ2fZ9/T0dBjVscDi2XMwatiwAo/rPWQIklOScfbwEdG2dt27QbdKFezdtr3AY7yn+eDUuXN4EhkFDoeDx0+fwMreHvdDb6Je3boAsifJGdauhcVz5uL3nGXmK5sYY/2KFRjYp68orarmZlgydx6GDxr045VXUczzB4wxmNSuBe+/xsAnZ5XX9PR0GNU0x+J58zBq+O8FHtd70EAkJyfj7LHvv/DbdfGCbhVd7M15d9G0GTNwIzQE1wICZS5PcnIydIx5CDx1Gm1atUJSUhIMzGrg3y1b0fu33wAA796/Q3VLS5w5chSe7u4/VnFFtp+5GbzHjoXP5CkActqvuikWL1iIUSNGFHhc7/79kJycgrN5RjrbdeoEXd0q2Pvvf1Lz0+MZYanfIgwfOhQA0GdAf3C5XPy7fYfMZb577y4aOTjgacwD1K5dW+bjJGRm/vixeZTkOTh7wXwcO3kSUaE3ZS5P1969kJLyBRfPnAGAkjsHAXxWKt7b4wvStnkzNLSzxYpVa0TbnGwbokNnL8yaN18i/qzpf+Pc6VO4GXVXtG3C2L8QffceLly5WmAe61evgt+8uXgQ+xKampoFxvmQkIA6NUxxKiAQTZs1F21/9/Yt3Fs0x6GTp9C7W1f8OWYM/hw77kerK5KcnAwzIwMkJSXJ/V1SWB46Ojr4uGEXtNU15EsrLRVV/xhUouX92ZXLEadz586hWbNmqFKlCqpWrYpOnTrh2bNnALKXSOdwODhy5AhatWoFDQ0NNGrUCCEhIWJp7NixAzVq1ICGhga6deuGjx8/lkVVAACxL16AHxcHj9atRdvU1NTg1rQpgm9J/6AMCbsldgwAeLZpg+BbtwqMLxAI8N/+/Rg2YKBoXYz0dAEAoFKeNTiUlZWhqqqK66Hf26yZszP2HzmCT58+QSgUYt+hQ0gXCNCymOtblBRRG7ZpI9qmpqYGt2bNEFzIl03IzZvwaNNWbJtnW3cE3/z+gsgTZ07Dwa4xeg7oD0MzM9i5OGPz9m1S0xQIBNi0bRt0dHTQqEEDAEB4ZCQyMjLEymdibIL6NvXE8iorsbGx4PP58Gj7vS3U1NTg1rw5gkNDpB4XcvOm2DEA4OnujmApL9jMysrCvgP78fXrV7g4Z68QLBQKcfrsWVjWqQPPjh1haFoNTs2a4thxyVumub5+/YrtO3ehpnnNMh+Wz1WS5yAAPHn2DCa1a6GmTV30GTwIz2NjpaYZFxeH0+fOYXie92uV53NQIBAgKjICrduId95atWmLW1LOpbCbN9EqX7u1aeuByIhwZGRkFHjMvzt3oHvPnlI7TQCQnJw9f0ZXV0+0TSgU4o/hwzB2wgTUtbGRqU7lUu5TdfIGUqhy2XH6+vUrJk6ciLCwMFy8eBFKSkro1q0bhHn+QadPn47JkycjKioKlpaW6Nu3LzJzflnevHkTw4YNw+jRoxEVFYVWrVph/nzJXzR5paenSywxryj8nOXhjfKtmmpkYAh+AetaiI6Li5M8xlD6McdOncLnpCQM6d9ftM3a0hJmNWrAd84cJCYmQiAQYNGKFeDHxeF9ntVa92/fgczMTFStaQ41A32MmuCNo//tRu1atYpd35KQW2cjI9nbI/e4otrweWws1m/ZjDq1a+P88eP44/ffMW7yZOzavVvsuFNnz6CyoQEq6eli5ZrVCDh5UvQYLj8uDqqqqtDV1S1W+UqLqP0MxddLMTI0Ap9fSPvx+ZJtbiS50u+9+/dQWU8XalqV8ceYMTh64CBs6mZ/AcXHx+PLly9YtHQp2nl44MLp0+jWpQu69+6FK1fFRw7WbdiAynq6qKyni3MXziPgzJkfeqFnSSjJc9DJoQl2bd6C88dPYPOateDHxcG1dSupP/h27t4NLS0tdO/yfS5PeT4HP374gKysLBjkawcDIyPExxW8anR8HB8G+db3MTA0RGZmJj5++CARPzwsDA+iozFwSMEj+ED2qOF0n6lwdm0Km3r1RNv9ly+DiooyRv01pjjVIr+octlx6tGjB7p37446derA1tYWW7duxb179xCTZxLm5MmT0bFjR1haWmLOnDl4+fIlnj7NnvD8zz//wNPTE9OmTYOlpSXGjRsHT0/PQvP08/MTW15enl+5uw/sR2UTY1HI/XWUf3XUolZMLe4xW//dhfbu7jDJs74Fl8vF4V3/4vGzp9AzN4MGzwiXr19De3d3KCt/H37/3/x5SPz8GYHHT+D25SuY+Ndf6DlkMO5FFz15uCTs3rcPlQ0NREHUhiioPQpPq6g2FAqFaGxri4Vz5sLO1hajhv+OEUOHYv2WzWLHtWrhhqiQUARfCkI7d3f0GjiwyHcmyfJvXBJ2790j6oBU1tOVfg5CMeeglaUVom6FIfTadfw5ciQG/z4cMQ+yr9fcHzxdOnfGhPHjYdvIFtOmTEWnDh2wId9k3/59+yLy5i1cCbyIOhYW6NW/H759+1b8BlCA0jwH23t6okfXrmhQvz7atm6N0zm353fm67zn2vbvLvTv3Vtsjpg0ZXUOFqS4n4EFxS9oOwD8u3M76tarB/smTaSmN2XCeETfu48tO3eJtkVFRGDj2jVYu2lLuWmnH5W7AKa8gRSuXHacnj17hn79+qFWrVrQ1tZGzZo1AUDsCZyGDRuK/j93IazcL7EHDx7AxcVFLM38f+fn6+uLpKQkUSjuu2vy8mrfAVHXrouCftWqACDxqy/+Q4LEL9G8eEZGksckFHzMy1evEHj5Mn4fNFhin72dHaKu38DnV6/x/vETnDtyFB8/fUJNMzMAwLPnz7Fm0yZsW7sObVq2RKMGDTBrmi8cbO2wdvNmifRKg1fHjogKCRUFqW2YkCAxipKXLG1ozOPBxtpaLE5dKyu8yncOaGpqwqJ2bTg7OmLr+g1QUVHB1pw5KjwjIwgEAiQmJhaaV2nx6tQZUbfCREFfP7f9xH/dx8fHS4yg5MXj8SRGpOLjJVf6VVVVhYWFBRzs7eE3fwEaNWiIf1Znz2XR19eHiooKbHLm2OWqa20t0cY6OjqoU6cOWjRvjkP79uPho0cST/GVltI8B/PT1NREg3r1JZ5+BYBrN27g0ePH+H3wEIl8ytM5mFdVfX0oKysjPl87fIiPh4GUtjM04iE+38jmh4QEqKioQC/n3yJXamoqjhw8iEFDhkotw9QJ3jh76jROnj+Paqamou0hN64jIT4eDSwtoF9ZA/qVNfD61Uv8b5oPGlpZFreqZaucL0dQUZTLjlPnzp3x8eNHbN68GTdv3sTNm9nzBwQCgSgOl8sV/X/ur4TcX7Y/Mt9dTU1NtMS8rEvNS6OlpQWL2rVFwcbaGjwjIwQEBYniCAQCXLlxA66OTlLTcWniKHYMAFy4dAmuOauu5rV9938wNDBAx0JG1nR0dGCgr48nz57idmQkunToCABITUsDACgpiZ8OyspKYrdHS5NEG9atm92Gly6J4ggEAly5fh2uzoW0oZMTAi5dFNt24WIgXJ2cRX83dXbBo3zL9z9+8hRmNWoUWkbGGNIF2S+atLezA5fLFSvf+/fvcT8mWiyv0qKlpQULCwtRsKlrAx6Ph4DA720hEAhw5do1uDpL/1Hh4uSEgIv52i8wEK7Ohdcpb9uoqqqiiYMDHj1+LBbn8ZMnsrVxuqDQOCWlNM/B/NLT0/Hg0UMY83gS+7bu3Al7Ozs0yvPjESh/52BeqqqqsLVrjKBL4g9gXL50EY5SzqUmTk64nK/dLl0MgF1je7HPfwA4dvgQBOnp6NW3n0Q6jDFM8R6PU8eP48S5czAzrym2v3e//rgeFo6rN8NEwdjYBGMnTMThfMu/EAKUw1eufPz4EQ8ePMDGjRvRvHn2Ew/Xi1jrIz8bGxuE5ptwmP/v0sThcOD952gsXLEcdWrXRp3atbFw+TJoqKujX8+eoniDRo1ENWMT+M2eDQAY/+efaNG+HRavXIkuHTvi+OnTCLx8GdfPnxdLXygUYvvu3Rjctx9UCngK6+DRozDQ10cNU1Pci4nB+Gk+6Nqxk2gSqbWlJSxq1cIo7/FYNn8+qurq4djp0wgICsKpAwdKrmGKgcPhwPuvMVi4bCnqWNRGndoWWLh0aXYb9vr+EshBv/+OaiYm8Js7FwAwfvRfaOHhjsXLl6NLp044fuoUAoOCcD3w+wf4hLFj4Nq6NRYuXYJe3Xvg1u3b2LR9GzbljJh8/foVC5YshlfHTjDm8fDx40es27wJb96+Rc9u2e8/0tHRwfDBgzHJdxqq6ulBT1cXk//+Gw3q1UPbfBP8ywKHw4H32LFYuGQx6tSxQB0LCyxcvBgaGhrol+c9U4OGDc1uv/kLAADjx4xFizatsXjZUnTp1BnHT51E4KWLuB50WXTM3zP+h/ae7VDd1BQpX1Kw78ABXL56BedOnhLFmTJxInr3748WzZqjlZsbzl24gJOnT+NyzpOMz58/x/5DB+HR1h0G+vp4++4dFi9bCnV1dXRo1650GqkIJXkOTvb1RecOHVCjenXEJ8Rj/uLFSE5JweD+A8TKkJycjINHj2B5AW+qL+/n4Ohx4/HH8KGwa2yPJk5O2Ll1K968fo2hv2c/0Tlnxv/w/t07bNia/WDGsBEjsGXDekyfOgWDhg1D2M2b+G/HDmzZ+a9E2v/u2IEOnb0kRqIAYLL3OBzavx97Dh5C5cpaiMsZxdLW0YG6ujr0qlaVOE6Fy4WRkRHqWFpJpFeuZQmzg7xpkEKVu46Trq4uqlatik2bNsHY2BivXr3CtGnTipXGuHHj4OrqiiVLlqBr1664cOECzhWwIF9pmurtjbRvaRg9aSISP3+Gk4MDLhw9Jrb66as3b8RGfVydnLBv23b8b/48zFgwH7Vr1sT+7Tvg5CB+Dz8wKAivXr/GsIHiH7K53sfxMXH634iLj4cxj4dBffpgxlQf0X4ul4szhw5h2qzZ6Ny7N758/QqLWrWwc8MGdPAofG5YaZo6cWJ2G3p7Z7dhkya4cOJkvjZ8Ld6Gzs7Yt3MX/jd3DmbMm4vatWph/65dcGryfdSuib0Dju7bB9+ZszDXzw81zc3hv2QJ+ud0KJSVlfHw8WPs3N0XHz5+RFU9PTSxt8e1gADUy/MEzsrFS6CiooJegwYiLS0NbVq2xI5Nh8XmkpWlqZMmIy0tDaPHjUNiYiKcHB1x4fRp8fZ7na/9XFyw77//8L9ZszBj9uzs9tu9G055Rj3j4uMxcNhQvH//Hjo6OmhYvwHOnTwF9zxP43Xr0hUb1qyF35IlGDdxAqwsLXF43340a9oUAFCpUiVcu34D/qtXIzExEUZGRmjRrBmCL1+BYRnfZsqrpM7BN+/eou+Qwfjw8SMM9PXh7OiI0KDLEiNy+w4dBGMMfXv2KrB85fkc7N6zJz59+oglCxcijv8edevVw/5jx1EjZ8pAHJ+PN3lu3ZqZ18SBY8fx99Qp2LJxA3jGxli0fAW88r1q4+mTxwgNvoEjp04XmO+2Tdnz6Dp5iD/Rt3bTZvQbKMdSK+UQEzIFvOSXbtUVpVyu4xQYGIhx48bh+fPnsLKywqpVq9CyZUscPXoUtra2qFmzJiIjI2FrawsA+Pz5M3R1dREUFISWLVsCALZt24ZZs2bh48ePaNu2Ldzc3DBv3rwyWcfpl6agdYh+WdR+8lPQOk6/MkWs4/SrKs11nBKWboC2urp8aaWlwWDKH7SOUyHKZcepPKCOk4LQF798qP3kRx0nuVHH6cdRx6nioU9lQgghpCJQxAKWtBxBkajjRAghhFQETAEdJ0Ydp6KUy+UICCGEEELKIxpxIoQQQiqA7Kfq5Ju2TE/VFY06ToQQQkhFQOs4lQq6VUcIIYQQIiMacSKEEEIqAnqqrlRQx4kQQgipAJhQqICVw6njVBTqOBFCCCEVAY04lQqa40QIIYQQIiMacSrCp5mrkKGqVtbF+GnpdW9T1kX4qXGqm5R1EX5+BlXLugQ/vcoXrpZ1EX5awtTUUsyMZQd50yCFoo4TIYQQUgGwLAYm53ICLIs6TkWhW3WEEEIIITKiESdCCCGkIqB31ZUK6jgRQgghFQE9VVcq6FYdIYQQQoiMaMSJEEIIqQBoAczSQR0nQgghpCKgW3Wlgm7VEUIIIYTIiEacCCGEkAogex0n+dZhonWcikYdJ0IIIaQCoDlOpYNu1ZUSxhgW376Cev+uhOkWP3id2IWHn+ILPSYjKwtLw6/CYe8aVNuyEG4HN+Liq6dicfwjr6PtkS0w27YY1juXY+D5/Xjy+YNYnFPPH6Dn6d2w3LkM+hvn4d4HvkResUmfMOj8AVjtXA7zbYsxPOAQ4lO/yF9xBWKMYfa/21Gtbw9odPZAqynjEf0iVubj912+CCXPlug2e7rY9vUnj6PRH8Og060DdLp1gKv3aJwNuynan5GZCZ8tG9Fw1FBU9mqHan17YPCShXj3UbydW00ZDyXPlmKh78I58lVagRhjmL1mFUzcmkHdrgFaDh6A6CdPCj1m88H9aD6gL3SdHaDr7IC2wwbj1t07YnFmr1kFjo2lWOA1dy123s9evUK3saNh0NQJ2k3s0GvCeMR9EG/jssYYw+wli2FS3wbq1auhZRcvRD98WOgx0Q8foseQwTBvbAuOQVX4b9ggEcfPfyWauLeBlnkNGNa1QtdBA/Do6ff2ycjIgM/c2WjQohk0zarDpL4NBv31J97x34uls2nXTrTs4gXtmmbgGFTF56QkhdRbURhjmHt4H2r8NQxaQ3qjzfz/IfrNq0KP2XnlErj9u0mEbwJBgfEXHz8Mbv9umPjvVrHtwzaskkij6Uwf0f5PX1Iwfudm1Jv8F7SH9katcSPgvXMLklK/yl/xUsKETCGBFK5CdpxevHgBDoeDqKiosi6KyOo7wVh/NxSLm7ZDQPfhMNTQRI/Tu5EiSJd6zMKwIOyMiYBfU0/c6PUnBtvYY/CFg7j74fuHZfC7VxherwnOdx2KQ536I1PI0PP0HnzN+P6hkpqZAUdedcxwLPi9cV8zBOh5Zg84AI52GoAzXYZAIMxC/3P7IWTl5yJacmAvVh45iNV/jcet1RvA09WDh+9kpMjwLqiXcXxM2bwezes3lNhnamAAv2EjEbZ6I8JWb0SrRo3RdfZ0UacsNf0bIp8+xv/6DUL42k04PHMuHr99jS6z/pZI6/f2nfBu72FR2DB+kvwVV5AlWzdjxc7tWPO/GQg7cBg8fX24/z4UKV+ld5Av37qFvh07IWj7LoTs2Y8axibwGDEMb+PEO9/1LOrg/ZUbonDv+Kli5f01NRUeI4aCw+Hg0vZduLF7HwQZAnT+axSE5egX8JLVq7Bi/TqsWbQYYRcCwTM0hPtv3ZHyJUXqMalpqahlbo5FM2aCZ2hUYJwrwcH4a9hwhJ67gICDh5GZmQWPnr/h69evOWmkIeLuXcyYOBkRFy/hyI6dePzsGbwG9BfPKzUN7Vq3xt/eExRXaQVaduoo/M+cwD9DRiBk3hLwdHTR3m82UtLSCj1OW10Dr9duEwuVVFUl4oU9e4ItQRfQoIZ5gel4NrQTS+Pk1P+J9r1L/IT3iZ+wuN8QRC7yx9ZRY3HhbgRGblorV51JxUO36koBYwwb7t3CxMbN0KlWXQDA2lZdUHfXChx+eh9DbOwLPO7Ak3uYaNcM7jXqAACG1XNA0JtnWHcnFBvadMuO07Gf2DGrW3aG9a4VuJPwHq4mZgCAXpbZnYVXKZ8LzOcW/zVepXxGUI8R0Mp5ofHqll6w2LEM197Gws20lnwNoACMMfxz7BD+7jMA3Zu1AADsmOwLXp9u2BMUiFEdvaQem5WVhQGL52P2wKG4fv8uPn8R7yh0dhYfHVkw9HdsOHUcoQ9jUM+8JnQ0K+PCouVicVaNHg+ncX/gVXwcauT5MtRQUwNPr/y9VJYxBv9dOzF91J/o7u4JANjptwRGzV2w59QpjOrdp8Djdi8Vr/fmufNx6MI5XAwNwaAu3UTbVZSVwTMw+OG8b0RG4MXbt4g8fBzalSsDALYvWAQ9lya4FBqCtq5N5W4DeTHG4L9xI6ZPmIjunToDAHauWQsjG2vsOXwYowYPKfC4JnaN0cSuMQBg2ry5BcY5d+Cg2N/bV62GYV0rhN+5gxaurtDR1kbAoSNicVb7LYKjhztevXmDGqamAADvP/4AAFy+cf2H61lSGGNYde4UfLv+hm5NXAAA2/4Yh2qjh2Bv8FWMbOMp9VgOB+BV0S00/S/f0jB43Ups+H00Fh47WGAcNS5Xajr1q5vhgPf3EajaRsaY26s/Bq/zR2ZWFlSUlYuqYplTxIgRjTgVrUKOOJU3L1M+Iz71C1rm6YCoKavA1dgMYXFvpB4nyMqCmop437aSMhc3+a+lHpOcM4KlW0ld5vKlZ2WBA0A1zweDmrIKlDgchBaSV2mK5b8H/9MneNg3EW1TU1WFWwNbhMREF3rs3N27YKBTBcPbdSwyn6ysLOy7fBFf07/BpW49qfGSvn4Bh8NBFc3KYtv3BAXCoKcX6o8Ygsmb1sk0GlYaYt+8Bv9DAjxcm4m2qamqws3BEcFRETKnk/otDRmZmdDTqSK2/cmrlzBxa4aa7q3RZ5I3nr/+fvtFlrzTBQJwOByo5RlFqKSmBiUlJVyPCC9udUtE7MuX4MfHwaNlK9E2NTU1uLm6IvjWLYXmlZScDADQ05XeWUhKTs4+B3W0FZp3SYlNiAP/cyLaNrAVbVPjctHCuh5CnhR+u/PLt2+oPW4kzMf8ji5L5yPyxXOJOGN3bEJ7Wwe0qd9IajpXHtyHyZ+DYTNpNEZtXov4pM+F5puUmgptdY2fotMEAEImhFAoZ6BXrhSpzDpOQqEQixcvhoWFBdTU1FCjRg0sWLAAAHDv3j20bt0a6urqqFq1KkaOHIkveUYJhEIh5s6dC1NTU6ipqcHW1hbnzp0rNK8RI0bA0tISL1++LPG65Zc7V8hAXfxL1kBds9B5RK2q18L6u6F4lvQRQsZw+c1znHv5CHFSjmGMYUbIBTjzqqOunqHM5XMwqgYNrirmhl5EakYGvmYIMDs0EELGpOZV2vifPgEAjPJ9kRjq6oKf+EnqcTei72Hb+dPY5D250PTvxT6HVpd2qNTJHX+uWoEjM+fBxsy8wLjfBOnw3bYJ/Vq1gbampmh7v1bu2DNtBoKW+uN//QfiyPWr6DF3how1LFn8nLlCRvrio2FG+lVF+2QxbcUyVDM0QluX76N0Tg0bYZffEpzfvBWb58wD/8MHuPbrg4+fE2XO27mRLTTV1eGzfClS09LwNTUVU5YthlAoxPuEhOJXuATw47PnJBoZio+sGRkYivYpAmMME2fOQDMnZ9SvW7fAON++fcO0eXPRr0cPaGv9HB0n/ufPAACjfJ1uQ50qiMvZVxArk2rYOmosjkzyxX9jJqISVxVuc3zxhP9OFGd/yDVExj7Hgt4DpKbTrlFj7Bo9ARf+nosl/Yfi9vOn8Fg4E+kZGQXG/5iSjIVHD2JEaw+Z60h+DWXWcfL19cXixYsxY8YMxMTEYM+ePTAyMkJqairatWsHXV1dhIWF4eDBgwgMDMSYMWNEx/7zzz9Yvnw5li1bhrt378LT0xNeXl54UsBEV4FAgF69euH27du4fv06zMzMCixPeno6kpOTxcKPOvjkHsy2LhKFjJw5Gpx88RgAjsTW7xa6eqKWjh5c9q+H8eYF8Ll+Fn0tbaGsVPAxPtfPIeZjPDa16V6s8uqra2Jb2x44/+oJzLYtQq3tS5AsSEdDfR6UOdLLV5J2XwqAVpd2opCRlQlAsr0YY1JbMCU1FQMXL8Am7ynQz/dhnZ+VaXVErtuCkH/W4Y9OXTBkmR9iXr6QiJeRmYm+C+dCyBjWjhGfRzKiQye0beyA+ua10KdlGxycMQeBkeGIePJY1morzO6TJ1DZ3lYUMjJz2o9TQPvJ+G+8ZOtm7D19GkdWrUElNTXR9vYt3NDDwxMNLK3Q1rUpTq/fBADYeeyo2PGF5W2gp4eDK1fh5OVLqOxgCx0neySlpKCxTT0ol9Gv/d2HDqKyWQ1RyMj5gi3wHFTgdTLGZyruxkRj76ZNBe7PyMhAn5G/QyhkWLdkqcLyVbQ9N66gyrC+opApuobFFdV+znWs0L9ZSzQyq4lm1jbYO24y6vBMsPb8GQDA648fMHHXVuwc7V3gvKdcvVyaoYOdA+pXN0Onxk1wauoMPH7/HmeibkvETU5NhdfSBahbzRQzuvcufuXLCE0OLx1lMscpJSUF//zzD9asWYPBgwcDAGrXro1mzZph8+bNSEtLw65du6CZ82t+zZo16Ny5MxYvXgwjIyMsW7YMPj4+6NMne17G4sWLERQUBH9/f6xd+30i35cvX9CxY0ekpaXh8uXL0NHRkVomPz8/zJmjmCeg2plZwv63aqK/BTkfGPFpX8DT1BJt/5D2FQYamhLH59JX18S/nr3xLTMTiemp4GloYe7Ni6ihVUUi7rTr53Du5WOc9BoEk8rF/wXaqnpt3O47Bh/TUqGipAQdtUqw2bWiwLxKg5dzUzhZff+1nfurkJ/4CcZVv49cJHz+DCNdvQLTePb+LV7E8eE101e0LXeyO7d9azzc+i9qm2T/O6lyubColj1PxMHSGrcfPcQ/xw5jY57J3RmZmei9YDZi+XxcXLJCbLSpII0tLMFVUcGTt2/QuI5lcaovN6/WreHU8Psti/ScJ5D4CR9gbPB9NDL+4ycYVS16TtaybVuxcNMGBG7dgYZW1oXG1dTQQANLSzzJGd3l6evLlLdH02Z4dv4iPiR+goqyCqpoa4PX3BU1c/5dSptXu3Zwavx9/qGoDePjYczjibbHf0iAkZT5XcU1dpoPTpw/h6snTsHUpJrE/oyMDPT6fRhiX73CpSPHyvVoU+fGjnCs/f28T8/MuYaTPsM4zzWbkJwEw0I+m/NTUlKCQy0LPM0ZcYqIfYb45CQ4/e/7qHKWUIhrD2Ow7sIZfN15AMpKkp1vY109mOkb4Gm+JxNT0tLQcclcVK5UCYcmTANX5eeZCpzd8ZF3OQLqOBWlTM6IBw8eID09HW3aSD7l9eDBAzRq1EjUaQKApk2bQigU4tGjR1BXV8e7d+/QtKn4ZNGmTZvizh3xx6T79u0LU1NTXLx4ERoaGoWWydfXFxMnThT9nZycjOrVq/9I9aClqiaaZA1k/6Iy1KiMy29i0VDfGED2/KXg9y8x06ngJ93yqqSiAmMVbWRkZeFU7EN0qWUjlva0G+dwOvYRjnsNhJl24RMoi1JVPbudrr6NRULaV7QzL90v/FxaGhrQyvNvxhgDT08PARG3YWeRPVlekJGBK/eisGj4qALTsK5eA3c3bhPbNmPHVqSkpcH/zzGobiD9diYDIMjzZGJup+nJ2ze4tMQfVbWL/qCPfhmLjMxMsY5eadHSrAytPPOvGGPg6RsgIOQG7Gyyzx+BQIArt29h8cQphaa1dOsWzN+4Duc3b4ND/QZF5p0uEODB82dobu8AAKhpWr1YeevnfKleCg1B/KeP8GrdWrZKK5hWZS1oVf7+Q4cxBp6hEQKuXIZdw+wHLgQCAa4EB2PxzFly5cUYw9hpPjh65jQuHzuBmgWMjOd2mp48f46go8dRVa/gHwzlhZa6OrTUv8+1ZIyBV0UXF+/dgZ159nxPQWYGrj6MxsI+g2ROlzGGO69eoH71GgCA1vUaInKRv1ic3zetgZVxNUzp3K3AThOQfSvu9acPYpPFk1NT0WHxHKhxuTg66e9CR7DIr6tMOk7q6tInLhc2bJt3uyy3HDp06ID//vsPoaGhaF3Eh6+amhrU8tx+UCQOh4M/GjjCP/I6auvooZaOHlZGXoe6Chc9LOqL4o2+dAzGmlqYkdOZCo97i/dfk1Ffn4f3X1Ow5PYVCBnDWNvv80umXj+Lw0/v41/P3qjMVRPNSdJWVYO6ChcAkPgtDW++JIGfmv3I9NPPHwEAhhqVYaSR/eW652EULHX1UbWSBsLi3mB68AX80dAZdarol0ibFBeHw8H4rr/Bb99/qFPNFHWqVYPf3t3QUKuEfq3aiuINXrIQJvr68Bs2EpVU1VDfXPyJwCo5T2zl3f73ts1o38QJ1Q0MkJKWhn2XL+Hy3Sicnb8EAJCZlYme82Yh4uljnJzrhyxhFvifsttQT0sbqlwunr17i92XAtHB0Qn62jqIefUSkzetg51FHTS1qY+yxuFw4D1oMBZu2oA6ZmaoY2aOhZs2QKOSOvp16iSKN2jaFFQzNILfxOxf70u2bsaMVf7Ys3QFzE2qgZ8z36iyhgYq5/y4mbxkETq3ao0axsaI//gJ8zeuQ/KXLxic89SdrHlvP3IYdWvXhoGuHkKiIjHebwEmDBoCq5pl/1QnkFOPUaOw0H8l6tSqhTq1amOh/0poqKujX48eoniD/voT1XjG8JsxE0B25yrm0SPR/7/lv0fUvXuorKkJi1rZdfvLZwr2HD6M47v+g1blyuDHxQEAdLS1oa6ujszMTPw2bAgi7t7Fqd17kZWVJYqjp6sL1ZwveH5cHPjx8Xj6PHspjXsxMdCqXBk1TE0LnWheGjgcDsa164RFJw7BgmcMC54xFh8/DA1VNfR1bSGKN2T9P6imq4cFfQYCAOYd3g+nOpaw4BkjOTUNay6cwp2XsVg1ZASA7A5a/eriHU1NNTVU1dISbf/yLQ1zD+9HN0dnGFfRw8uEePzvwH/Qr6yNrg7OALJHmtovmoNUQTp2jvZGcloqktOyH+4w0NaW2gErVxRxq41GnIpUJh2nOnXqQF1dHRcvXsTvv/8uts/GxgY7d+7E169fRaNON27cgJKSEiwtLaGtrQ0TExNcv34dLVp8v9iCg4Ph6Ogoltaff/6J+vXrw8vLC6dPn4abm1vJV06KsY1ckZaZiSnXzyIpPQ2NDavhUMf+YiNTb74kQylP5+9bViYWhl3Gy5REaHJV0ba6Bda17godtUqiONtjsp846nJyl1h+q1t6oa9V9q2acy8fY+zlE6J9Iy5mP9Y8xb4FfByy2+Rp0kfMv3UJielpqK5VBRMaN8OfDZwU3ArymdqrL9IE6fhrzUokpqTAydoG5/2Wio1MvUqIg5KUOWDSxH1OxKClC/D+0yfoaGiiYc1aODt/CdxzRkzeJCTgROgNAIDdaPHz9dKSlWjZyA6qKlxciorAqmOH8eVbGqrrG6CDkwtm9R9cZnN08ps6fATSvn3D6LlzkJicBKeGjXBhyzaxkalX799DSen71Md1e/dAkJGB37zHiqU1a/QYzB4zDgDwJo6PvpMn4kNiIgz0dOHcyBahew/CrNr3W02y5P3oxXP4rlyOT0lJMK9WDdNH/YEJg4eWVHP8kKljx2XXY+pUJCZ9hlNje1w4eFhsZOrVm7dQ4nxvw3d8PuxatxT9vWztGixbuwZurk1x+Xj2dbl++3YAQMuu4stqbF+1GkP69sObd+9wIucBGNtW4p9jQceOo2XT7CcWN+zcgTlLl4j2tfDqJJZOWZvcqRvSBAKM3bEJiV+/wLF2HZyZNktsZOr1xwSxz8HPqV/x55b14CclQkdDA7ZmtXBpxnyx24BFUVZSwv3XL/Hf9SB8/poK4yq6cLOpjz1jJ4vyjoh9hlvPsucjWk8cLXb8E/+NMC9khLq8oJXDSweHsbJZ4XDOnDn4559/4O/vj6ZNmyIhIQHR0dHo27cvLCws4OrqitmzZyMhIQG///47mjdvjh07dgAA/P39MWvWLGzatAm2trbYvn07VqxYgejoaNSpUwcvXrxAzZo1ERkZCVtbW/j7+2PGjBk4e/YsmjVrVnjBciQnJ0NHRwexQ6eKdW5I8eh1L/pWJJGOU92krIvw8zMof+tq/WwyL1wt6yL8tJJTU1F1RH8kJSVBW7tk5qTlfl89HzxF7u+rFEE6au1cWqLl/dmV2ay3GTNmQEVFBTNnzsS7d+9gbGyMP/74AxoaGjh//jzGjx+PJk2aQENDAz169MCKFStEx44bNw7JycmYNGkS4uPjYWNjgxMnTqBOnToF5uXt7Q2hUIgOHTrg3LlzcHV1LTAeIYQQ8rOiBTBLR5mNOJV3NOKkGDTiJB8acVIAGnGSG404/bjSHHF62n+iQkacLHavoBGnQtDK4YQQQkgFIBQyhYSSsmDBAri6ukJDQwNVqlSR6RjGGGbPng0TExOoq6ujZcuWiI4u/G0RJY06ToQQQggpcQKBAD179sSff/4p8zFLlizBihUrsGbNGoSFhYHH48Hd3R0pKdJfrF3Sfp6VvQghhBAiVXmf45S7yHTug15FloUx+Pv7Y/r06ejePfuNGDt37oSRkRH27NmDUaMKXsOvpNGIEyGEEFIBMCYULUnwwyHnJb/5X0GWnp5e6vWJjY0Fn8+Hh8f39wWqqanBzc0NwcHBpV6eXNRxIoQQQoiY6tWrQ0dHRxT8/PxKvQx8Ph8AYGRkJLbdyMhItK8sUMeJEEIIqQAU+ZLf169fIykpSRR8fX0LzHP27NngcDiFhtu3JV+kXBzyvJy8JNAcJ0IIIaQCUOTK4dra2jItRzBmzBj06dOn0Djm5uY/VBZezsu0+Xw+jI2NRdvj4+MlRqFKE3WcCCGEEPJD9PX1oa9fMu80rVmzJng8HgICAmBnZwcg58XaV65g8eLFJZKnLOhWHSGEEFIBKPJWXUl49eoVoqKi8OrVK2RlZSEqKgpRUVH48uWLKI61tTWOHj0KIOfF2t7eWLhwIY4ePYr79+9jyJAh0NDQQL9+ZffuRRpxIoQQQioAoVAIoZy36uQ9vjAzZ87Ezp07RX/njiIFBQWhZcuWAIBHjx4hKSlJFGfq1KlIS0vD6NGjkZiYCCcnJ1y4cAFaWlooK/TKFSlyl7BP/PyZlp0n5CemRJ9wchOW3Tzcn15ycjJ0q1QplVeu3PP6A1pcOV+5kpGOBic20CtXCkEjToQQQkgFUN4XwKwoqONECCGEVADZHSd5n6qjjlNRqONECCGEVAA04lQ66Kk6QgghhBAZ0YgTIYQQUgHQiFPpoI4TIYQQUgEocuVwIh3dqiOEEEIIkRGNOBFCCCEVAGMMQnlv1dHSjkWijhMhhBBSAdCtutJBt+oIIYQQQmT0U3ScWrZsCW9v77IuhlzWr1uH2rVqQUNdHU0cHHDt2rVC41+5cgVNHBygoa4Oi9q1sWHDBok4hw8fRv169aBeqRLq16snejFicfJljGHO7NkwrVYNmhoaaN2qFaKjo+WrbAmg9pMftaH8GGOYPWc2TEyrQV1TAy1by1bWw4cPw6Z+PaipV4JN/YLbad36dahZuxYqaajDvknB7VRU3unp6Rg7biz0DQ2gqVUZXl264M2bN/JVWoHoHCxZLIspJJAisJ/Ax48fWXJycqnmmZSUxACwxM+fWZZQKFfYs3cv43K5bOOmTex+dDQbN24c09TUZLEvXhQY/+mzZ0xDQ4ONGzeO3Y+OZhs3bWJcLpcdOHhQFOf6jRtMWVmZLViwgEXHxLAFCxYwFRUVFhwSUqx8/fz8mJaWFjt46BC7c/cu69W7NzM2Nmafk5LkrreiArUftaE8gWUpLizKKevhg4fYvTt3We9e2WVN/pwk9Zjg69nttHDBAvYgOoYtzGmn0OAQUZx9e7LbafPGTSzmfjQbn9NOL2NfFCvvP0aNYtWqVWMB5y+wiNvhrFWrVqxRo0YsU5AhV73pHPzxkPj5MwPAkpKSSvz76lazASym5TC5wq1mA0q8vD+7n6LjVBYU2XFydHRko0aNEttmbW3NfHx8Cow/ZcoUZm1tLbZt5MiRzNnZWfR3z169mGe7dmJxPDw9We8+fWTONzMri/F4PObn5yfan5qWxnR0dNi69esV8mGpiEDtR20oT2AK6jQJM7PLusjPT7TtW2p2WTesWy/1uF49e7F2nu3Etnl6eLI+vfuI/nZ0dGR/jBolFsfa2ppN8/GROe/PnxIZl8tl+/bsFcV5+/oNU1JSYufOnC3zjtOveg5Sx6ni+elu1Zmbm2PhwoUYNmwYtLS0UKNGDWzatEksfnBwMGxtbVGpUiU4ODjg2LFj4HA4iIqKKvWyCwQChIeHw93DQ2y7u7s7QkJCCjwmNDQU7u7uYts8PD1x+/ZtZGRkZMcJCYFHvjieHh4ICQ6WOd/Y2Fjw+XyxOGpqamjh5ia1bKWN2k9+1IaKkVtWD3fxsrq1cENwIWUNCQ2Bh0e+dvL0QHCIeDvlTRcAPNzdRenKknd4eDgyMjLgkactTUxMUL9+fVFeZYXOwdKRuwCmvIEU7qfoOOW3fPlyODg4IDIyEqNHj8aff/6Jhw8fAgBSUlLQuXNnNGjQABEREZg3bx58fHzKrKwfPnxAVlYWjIyMxLYbGRmBz+cXeAyfzy8wfmZmJj58+CCKY5gvjmGeNGXJN/e/EnEMDaWWrbRR+8mP2lAxpJbVqPCy8vl8GBnmr5+C2ilP3nw+H6qqqtDV1ZWaV1mhc7B0UMepdPyUHacOHTpg9OjRsLCwgI+PD/T19XH58mUAwO7du8HhcLB582bY2Nigffv2mDJlSpFppqenIzk5WSwoEofDEfubMSaxraj4+bfLkqai4pQ1aj/5URsWz+7du1FZW0sUckc5fqSsZdlO5aEtc9E5WLKEQqFCAincT9lxatiwoej/ORwOeDwe4uPjAQCPHj1Cw4YNUalSJVEcR0fHItP08/ODjo6OKFSvXl0hZdXX14eysrLEL5f4+HiJXzi5eDxegfFVVFRQtWpVUZy4fHES8qQpS748Hg8AJOMkJEgtW2mj9pMfteGP8fLyQlREpCjo6+sDKKCs8YWXlcfjgR+Xv34Kaqc8efN4PAgEAiQmJkrNq6zQOUgqkp+y48TlcsX+5nA4ol5yQb8Scn+lFMbX1xdJSUmi8Pr1a4WUVVVVFfb29ggMCBDbHhgYCBcXlwKPcXZ2RmBgoNi2gAsX4ODgIKq7s4sLAvLFuRAQABdXV5nzrVmzJng8nlgcgUCAq1euSC1baaP2kx+14Y/R0tKChYWFKNjY2IDH4yEgULysV65egWshZXVxdkFAQL52uhAAVxfxdsqbLgAEBAaK0s1tp8Lytre3B5fLRUCetnz//j3u378vyqus0DlYOuhWXSkppUnocnFzc2Pjx49njDFmZmbGVq5cKba/UaNGbNasWYwxxtavX8/09fXZt2/fRPu3bNnCALDIyEiZ8yyJ5Qg2b9nC7kdHs/HjxzNNTU32PDaWZQmFzMfHhw0YOFAUP/cxXG9vb3Y/Oppt3rJF4jHca9evM2VlZebn58eiY2KYn5+f1MdwpeWbJcx+DFdHR4cdOnyY3bl7l/Xp27fcPU5P7UdtKE9gCl6OQEdHhx05dJjdu3OX9e3TV2JJgIEDBoqehmNZQnbjWnY7LfLzYw+iY9iinHYqaDmCrZu3sJj70cw7p51ePI8tVt5/jBrFTE1NWeCFABZxO5y1bt263C1H8Kudg6X5VN11+14syrG/XOG6fS96qq4IFa7jlJSUxPT09NigQYNYTEwMO3fuHLO2tmYAWFRUlMx5KrLjlCUUsjVr1jAzMzOmqqrKGjduzIIuXxbtGzR4MHNzcxOLfykoiNnZ2TFVVVVmbm7O1q5bJ5Hm/gMHmJWVFeNyucza2podPHSoWPlmCbMfxZ05cybj8XhMTU2NtWjRgt25e1chdVZkoPajNvzRwBTYcRJmZrFZ+cp6785dsThubm5s8KDBYtsO7hdvp8MHD0mkvTZfO10JulzsvNO+prIxf/3F9PT0mLq6OuvUsRN79eKl3PWmc/DHA3WcKh4OY+X/jX4tW7aEra0t/P39YW5uDm9vb7GVxG1tbdG1a1fMnj0bQPZyBLlP2jVo0ACTJk1Cv3798PDhQ1hZWcmUZ3JyMnR0dJD4+TO0tbVLoFaEkNKgVO4/4co/4c81R7pcSU5Ohm6VKkhKSiqx75Lc76urjXuisjK36AMK8SUrAy0iDpZoeX92P8VLfnOfmAOAFy9eSOzPvz6Tq6sr7ty5I/p79+7d4HK5qFGjRgmVkBBCCClbQiGDkCPfLwUhzXEq0k/RcSquXbt2oVatWqhWrRru3LkDHx8f9OrVC+rq6mVdNEIIIYT8xCpkx4nP52PmzJng8/kwNjZGz549sWDBgrIuFiGEEFJiaMSpdFTIjtPUqVMxderUsi4GIYQQUmqYkIHJ2XGi5QiK9lOu40QIIYQQUhYq5IgTIYQQ8qthjEEo54PyP8GD9mWOOk6EEEJIBUBznEoHdZwIIYSQCoA6TqWD5jgRQgghhMiIRpwIIYSQCkCogDlO8h7/K6COEyGEEFIB0K260kEdpyIoMXrXlTwyQI0nD2UOvSSMlL0sGoX4YdR2FQ91nAghhJAKgEacSgd1nAghhJAKQAgFzHGiuwRFoqfqCCGEEEJkRCNOhBBCSAUgFDK5R4zoVl3RqONECCGEVADUcSoddKuOEEIIIURGNOJECCGEVABMASNOjEacikQdJ0IIIaQCYIyByflUnbzH/wqo40QIIYRUADTHqXTQHCdCCCGEEBnRiBMhhBBSAdCIU+mgEadSwhjD7DmzYWJaDeqaGmjZuhWio6OLPO7w4cOwqV8PauqVYFO/Ho4ePSoRZ936dahZuxYqaajDvokDrl27JrZ/9pzZsLapC02tytCtqoe2Hu64efOm1HK279ABHGUlHDt27IfqWhI2rF8Py9q1oaWhAacmTXA9Xx3zu3rlCpyaNIGWhgasLCywacMGsf3R0dHo9dtvqFOrFlSVlbHqn38k0pg7Zw5UlZXFQnUTE4l4Dx48QLcuXaCvqws9HR00c3XFq1ev5KtwCVi/bh1q16oFDXV1NHGQPE/yu3LlCpo4OEBDXR0WtWtjQ742BLLPz/r16kG9UiXUryd5fqakpGCCtzdqmptDU0MDzZo2RVhYmFicI0eOoF27djA0MICykhKioqLkrmtJKcvrOK9Rf4wCR1kJ/v/4i7a9ePECHGWlAsPBgwd/qL6KVhbXcV6LFy2CqrIyJk2YINqWkZEB32nTYNeoEapoacHM1BRDBw/Gu3fvfryiZUTIGIRMKGegjlNRqONUSpYsXYIVK1dizarVCLt5CzwjHtw9PZCSkiL1mJCQEPTu2wcDBwzAncgoDBwwAL369Bbr9Ozfvx/eEyZguu/fiAyPQPNmzdC+YwexL27LOpZYs2o17t25i+tXr8HczAwe7TyRkJAgkaf/P/7glLMXyx7Yvx+TJkzANF9f3AoPR7NmzdC5Y0epnZPY2Fh4deqEZs2a4VZ4OHymTcMEb28cOXxYFCctNRW1atXC/IULwePxpOZtU68eXr19KwoRd+6I7X/27BlatWgBK2trBFy6hNuRkfh7+nRUqlRJMZVXkP3792PChAnw/ftvhEdEoFmzZujYoUOhbdipY0c0a9YM4RERmObrC+/x43E4TxuGhISgb58+GDBgACKjojBgwAD06S1+fo4YMQKBgYHYuWsX7ty9C3d3d3i4u+Pt27eiOF+/fkVTV1cs9PMruQZQkLK8jnMdO3YMN2/dgkm+Tnz16tXx/u07sTBn9mxoamqiffv2imuEH1SW1zEA3A4Lw9bNm9GgYUOx7ampqYiKiMDf06fj5u3bOHDoEJ48eYLuXbvKXWcibsGCBXB1dYWGhgaqVKki0zFDhgwBh8MRC87OziVb0KIwUqCkpCQGgCUlfmYsSyhXEGZmMR6Pxxb5+Ym2fUtNYzo6OmzDuvVSj+vVsxdr59lObJunhyfr07uP6G9HR0f2x6hRYnGsra3ZNB8fqekmJX5mAFjghQCx7VERkczU1JS9f/uOAWBHDx+Ru+6CrCy5QxNHRzZy1CixbVbW1myKj0+B8SdNmcKsrK3Fto0YOZI5OTsXGN/MzIwtW7FCYvv/Zs5kDRs1KrRsPXv1Yv3691dIPQsKWUKhQoKjoyMbNWqU2DZra2vm4+NTYPwpU6Ywa2trsW0jR45kzs7Oor979urFPNu1E4vj4enJevfpw7KEQvbl61emrKzMTpw8KRanUaNG7O+//5bI89nz5wwAC4+IUFi9s4Tynb/l7Tp+8+o1q1atGrt/9x4zMzNjK1esKLTMtra2bNjQob/0dSzIymKfkpKYRZ067Oz586yFmxsbO25coWUNDg1lANjT2Fi56/0hMTH7uyQpqcS/r3bpt2GHDD3lCrv025RYeWfOnMlWrFjBJk6cyHR0dGQ6ZvDgwaxdu3bs/fv3ovDx40eFl604aMSpFMTGxoLP58PD3UO0TU1NDW4t3BAcEiL1uJDQEHh4uItt8/T0QHBIMABAIBAgPDxcLF0A8HB3l5quQCDAps2boKOjg0aNGom2p6amom//flizanWRv9xKk0AgQER4ONq6i7eDu7s7QqXU8WZoKNzzx/fwQPjt28jIyChW/k+fPIGZqSksa9dG/7598fz5c9E+oVCIs2fOoI6lJTq2a4dqPB6aurjgeDm6xQl8P0/cPcTPE3d3d4RIacPQAtrQw9MTt/O0YWhICDzyxfH08EBIcPb5mZmZiaysLInRN3V1ddy4cUOuOpWFsr6OhUIhBg4ehCmTJ6NevXpFljc8PBxRUVEYPmy4TPUrSWV9HY8bMwYdOnRAm7ZtZYqflJQEDocj86hIeSEUMoWEkjJnzhxMmDABDRo0KNZxampq4PF4oqCnp1dCJZQNdZxypKenIzk5WSwoCp/PBwAYGRmJbTcyMhTtk3ackWG+YwyNRMd8+PABWVlZBaRrJJHuqVOnUFlbC5U01LHS3x8B5y9AX19ftH/CxAlwdXFBly5dil/BEiStjoYF1DEXn8+HYQFtkpmZiQ8fPsict6OjI7bt2IFTZ89i/caNiIuLg1uzZvj48SMAID4+Hl++fMHSxYvh0a4dTp87hy5du6LXb7/h6pUrxaxpySnOeZKLz+cXGD9vGxbUznn/XbS0tODi4oIF8+fj3bt3yMrKwn///YebN2/i/fv3iqpeqSnr63jxksVQUVbBuLHjZCrv1m1bUbduXbi6usoUvySV5XW8f98+REZGYv7ChTLF//btG6b//Tf69O0LbW1tmfMhJefy5cswNDSEpaUlRowYgfj4+DItD3Wccvj5+UFHR0cUqlev/sNp7d69G5W1tUQh99dR/rlDjLEi5xPJcowscVq1aoWoiEgEX7+Bdp6e6NWnt+jkO3HiBC4FBcF/pb/MdSxtxW27guIXtL0w7dq3R/cePdCgQQO0adsWx0+eBAD8u2sXgOwRAADo7OWF8d7esLW1xVQfH3To2BGbNm6UOZ/SUhJtWFSaO3ftAmMM1U1NoV6pEtasXo2+/fpBWVn5h+tRWsrTdRweHo5/Vq3Cju3bZTqH09LSsGfvXgwfNqzIuKWptK/j169fY9KECdixa5dM8w4zMjLQv29fCIVCrF67VqY8ypPsyeHyBwASAwnp6ellUqf27dtj9+7duHTpEpYvX46wsDC0bt26zMoDUMdJxNfXF0lJSaLw+vXrH07Ly8sLURGRopA7spP/l1V8fILEL7C8eDwe+HH5jkmIFx2jr68PZWXlAtKNl0hXU1MTFhYWcHZ2xtYtW6GiooKt27YCAC4FXcKzZ89QRU8XKqpcqKhyAQA9ev6Glq1b/UALKI60OiYUUMdcPB4PcQW0iYqKCqpWrfrDZdHU1ET9+vXx9MkTUdlUVFRQ18ZGLJ513bpynT+KVpzzJBePxyswft42LKid8/+71K5dG0GXLyM5JQUvX71C6M2byMjIgHnNmoqoWokqT9fxtevXEB8fjxrmZqJr9OXLl5g0eTLMa0m25aFDh5CamopBAwcVv+IloKyu44jwcMTHx8O5SROoq6pCXVUVV69cwZrVq6GuqoqsrCxR3IyMDPTt3RsvXrzA2fPnCJAZFAAAB31JREFUf8rRJiFTwK26nI5T9erVxQYT/KQ8vDF79myJydv5w+3bt3+4Tr1790bHjh1Rv359dO7cGWfPnsXjx49x+vTpH05TXtRxyqGmpgZtbW2x8KO0tLRgYWEhCjY2NuDxeAgIDBDFEQgEuHL1ClxdXKSm4+LsgoCAQLFtFy4EwNUle+hdVVUV9vb2YukCQEBgYKHpAtm/3HJ77NN8puFu1B2xLwkAWLliBbZv3SZ7xUuAqqoqGtvb42KgeDsEBgbCWUodnZydEZg/fkAA7B0cwOVyf7gs6enpePjwIXjGxqKyOTRpgsePHonFe/L4MWrUqPHD+Sha7nkSGCB+ngQGBsJFShs6F9CGARcuwCFPGzq7uCAgX5wLAQFwKeDWkKamJoyNjZGYmIgL58/Dy8tLniqVivJ0HQ8cMFDiGjUxMcGUyZNx/uw5iTy3bt8Gr85eMDAw+OH6K1JZXcet27RBxJ07CIuIEAV7Bwf07dcPYRERopHP3E7T06dPce7CBbl+YFUUr1+/FhtM8PX1LTDemDFj8ODBg0JD/fr1FVYuY2NjmJmZ4UnOD9gyUQYT0n8KinyqjmUJ2SI/P6ajo8OOHDrM7t25y/r26cuMjY1Z8uckUZyBAwaKPUVz49p1pqyszBb5+bEH0TFskZ8fU1FRYaHBIaI4+/bsZVwul23dvIXF3I9m3uPHM01NTfbieSxjWUL2JTmF+U6bxkJuBLMXz2NZeNhtNnzYMKampsbu370ntbwoR0/V/bdnD+NyuWzT5s3szv37bFxOHZ88f84EWVlsio8P6z9ggCj+o6dPmYaGBhvv7c3u3L/PNm3ezLhcLtt34IAozpe0NHYrPJzdCg9nxsbGbOKkSexWeDiLefRIFGfCxIks8NIl9ujpU3Y9OJh16NiRaWlpifIVZGWxA4cOMS6Xy9Zv2MBiHj1i/qtWMWVlZRZ05Uq5eqpuz97s82Tzli3sfnQ0G5/Ths9jY1mWUMh8fHzYgIEDRfGfPnvGNDQ0mLe3N7sfHc02b9nCuFwuO3DwoCjOtevZ56efnx+LjolhfjnnZ3BIiCjOmbNn2ekzZ9jTZ8/YufPnWaNGjZijoyP7lp4uipPw4QMLj4hgJ0+dYgDYnr17WXhEBHv77p1C6q6I67esr+OCgrSn6p48esw4HA47e/qMwur9M1/H+UP+p+pS09NZp86dmampKQuLiGCv3r4VhS9paT/VU3WbtN3Yfzpt5AqbtN1KvLzbt2+X+am6/D58+MDU1NTYzp07FVuoYvhlOk6rV69mrVu3ljm+ojtOwswsNmvmTMbj8Ziamhpr0aIFu3fnrlgcNzc3NnjQYLFtB/cfYFZWVozL5TJra2t2+OAhibTXrlnDzMzMmKqqKmvcuDG7EnRZtC/tayrr1rUbMzExYaqqqszY2Jh5dfZit0JvFlre8tRxEmRlsVV56mjXuDG7GBQk2jdw0CDWws1NLH7gpUvM1s6OqaqqMnNzc7Zm7Vqx/Y+fPWMAJELedHr26sWMjY0Zl8tlJiYmrGu3bizq3j2Jsm3avJlZWFiwSpUqsYaNGrFDR44orN6KfCx/Tb7zJOjyZdG+QYMHMzc3N7H4l4KCmF2eNly7bp1EmvsPiJ+fBw8dEtu/d98+VqtWLaaqqsp4PB4bPXo0+5SYKBZn67ZtBf5bzJw5UyH1VlTnoSyv44KCtI6T77RpzNTUlGVlZJarjlNZXcdFdZykpQGABVy8+FN1nDZqtWC7tFvLFTZqtSix8r58+ZJFRkayOXPmsMqVK7PIyEgWGRnJUlJSRHGsrKzYkSNHGGOMpaSksEmTJrHg4GAWGxvLgoKCmIuLC6tWrRpLTk5WePlkxWHs11gmdPbs2dixYwdevHghU/zk5GTo6OggKfHzT3mvu7zIkHP5/1+dcjlbjPRnpESnoNzoOv5xycnJ0NfVRVJSUol9l+R+X63XbA51jnxvUktjmfjz67USKe+QIUOwc+dOie1BQUFo2bIlgOyJ/9u3b8eQIUOQlpaGrl27IjIyEp8/f4axsTFatWqFefPmyfUAl7x+mY5TcVHHSTHoA1c+1HGSH3Wc5EfX8Y+jjlPFQy/5JYQQQioAoZBByJHzJb80llIk6jgRQgghFQATMjA5O050E6potBwBIYQQQoiMaMSJEEIIqQCEjEEo53w0ulVXNOo4EUIIIRUAzXEqHXSrjhBCCCFERjTiRAghhFQANOJUOqjjRAghhFQANMepdNCtOkIIIYQQGdGIkxS5a1kkJyeXcUl+brTisHxo5XD50crh8qPr+Mel5HyHlMb6SKksU+4Ro2/IUlBpKi7qOEmRkpICAKhuVqOMS0IIIeRnl5KSAh0dnRJJW1VVFTweDzP54QpJj8fjQVVVVSFpVUT0rjophEIh3r17By0tLXDoVz8hhJAfwBhDSkoKTExMoKRUcrNjvn37BoFAoJC0VFVVUalSJYWkVRFRx4kQQgghREY0OZwQQgghREbUcSKEEEIIkRF1nAghhBBCZEQdJ0IIIYQQGVHHiRBCCCFERtRxIoQQQgiREXWcCCGEEEJk9H/UBd7herSnRwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "inp = TextTemplateInput(\n", + " template=\"{} lives in {}, {} and is a {}. {} personal interests include\", \n", + " values=[\"Dave\", \"Palm Coast\", \"FL\", \"lawyer\", \"His\"],\n", + " baselines=[\"Sarah\", \"Seattle\", \"WA\", \"doctor\", \"Her\"],\n", + ")\n", + "\n", + "attr_res = llm_attr.attribute(inp, target=target, skip_tokens=skip_tokens)\n", + "\n", + "attr_res.plot_token_attr(show=True)" + ] + }, + { + "cell_type": "markdown", + "id": "c34f5712", + "metadata": {}, + "source": [ + "The result represents how the features impacts the output compared with the single baseline. It can be a useful setup to have some interesting findings. For example, the city name \"Palm Coast\" is more positive to \"playing golf\" but negative to \"hiking\" compared with \"Seattle\".\n", + "\n", + "But more generally, we would prefer a distribution of baselines so the attribution method will sample from for generosity. Here, we can leverage the `ProductBaselines` to define a Cartesian product of different baselines values of various features. And we can specify `num_trials` in attribute to average over multiple trials\n", + "\n", + "Another issue we notice from the above results is that there are correlated aspects of the prompt which should be ablated together to ensure that the input remain in distribution, e.g. Palm Coast, FL should be ablated with Seattle, WA. We can accomplish this using a mask as defined below, which will group (city, state) and (name, pronoun). `TextTemplateFeature` accepts the argument `mask` allowing us to set the group indices. To make it more explicit, we can also define the template and its values in dictionary format instead of list." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "breathing-sound", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHCCAYAAADoyB1GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCrklEQVR4nOzddVgU2xsH8O8u3SGxgIgiKiIqigEWoWB3d8c1seOaVwUVu7AxfnZ3IQqiWGB3IGJQiovkAnt+fyCjK6DgLrnv53nOc92zZ86cOZeZfefMmRkeY4yBEEIIIUTO8Iu6AYQQQgghRYGCIEIIIYTIJQqCCCGEECKXKAgihBBCiFyiIIgQQgghcomCIEIIIYTIJQqCCCGEECKXKAgihBBCiFyiIIgQQgghcomCIJINPUScEEKIPKAgiGTD4/EAAGKxuIhbQgghhBQcCoKIhLlz52LXrl0AAD6fD8YYjQwRQggplSgIIpzTp0/jyJEj6N+/PywtLXHp0iXweDxuZIgQQggpTSgIIgCAr1+/4sCBAzA3N8eTJ0/wzz//oGvXrpg5cybS0tJoNIgQQkipQ0EQAQAcOHAAz58/R7NmzWBtbY3JkyfDx8cH+/btQ1hYGI0GEUIIKXUoCCIICwvDyZMnYWlpifHjx3P5Wlpa+PjxI27evMnl0YgQIYSQ0kKxqBtAit7u3btx584dqKio4OXLl6hUqRISEhJw584diMVi2NracmV5PB4yMjLA5/NpdIgQQkiJRkGQnLt+/TouX74Md3d3GBoaonbt2qhduzaUlJQQHByMvn37olatWlizZg2io6Mxfvx46OvrA8gcFaJAiBBCSElFl8PkWHp6Ovbt2wexWIzRo0dj6dKlePDgAapXrw4TExOsWrUK3t7e+PDhAxQUFBASEgJLS0usWrUKACQCoNTUVPj5+RXVphBCCCH5xmM0yUNuXbt2DcOGDUObNm2wePFiie9SU1OhoqKSbZkjR45g6tSp2LlzJxwdHbl8f39/NGvWDBcuXECzZs0KvO2EEEKItCgIknMhISEwNTWFiYkJ94RoPj9zgDA+Ph5jx45FcnIyVFRUMG3aNNjY2MDFxQXNmjXDv//+CyDz9vquXbuCx+PhwoULRbYthBBCSH7QnCA5Z29vz/07K/jJmuvTv39/hISEYPDgwXj37h0cHBzQq1cvvHnzBoqKmX86YrEYx48fh7+/Px48eMAtLxaLoaCgUPgbRAghhOQRjQSRHEVFRcHMzAz79+9H586dAQB3795F+/btwRjDw4cPoauri/DwcDRr1gyurq7YuHEjRCIRlJWVuXpo8jQhhJDiiiZGkxwpKSnBxcUFFy9eBAAIhUKkp6fj27dvGDFiBHR1dZGeno6tW7ciJiYGS5cuBZB5t1mHDh3w5s0bAD9uqadYmxBCSHFDQRDJkb6+PsaPH4+jR4+iUaNGGDt2LBo2bAhzc3OMGDECAPD48WOsXLkSc+fOhZaWFmJjY3Hu3DmcOHECly9fxpQpU/D69WsoKCjQaBAhhJBih4IgkqtWrVohKioKkyZNQvv27ZGeno7Zs2ejTJkySE5OxuLFi2FmZgYPDw8AwO3bt7F27Vo4OTkhISEBMTExsLe3x7lz5yTqTU9PL4KtISRnK1euxPHjx4u6GYSQIkATo8kfdejQAfHx8Zg/fz7atm0LAAgMDMThw4dx4sQJAEB4eDg2btyISpUq4fLly9yy9+7dw507d+Di4oJnz56hZs2a3KRqQorap0+fsHHjRrRr1w7t27cv6uYQQgoZTYwm+RYfHw97e3uULVsWly9fhkgkwp49ezB27FicPXsWDRs2BABERESgXbt2SE9Ph7W1NT59+oS4uDgcPHgQNjY2RbwVhACDBg3C169fMX/+fFSrVg0ZGRl0VyMhcoQuh5F809bWxty5c+Hr6wsAeP78OTZv3ow2bdpwARAAnDt3Dp8+fcKIESOwevVq+Pv7o0KFCvD29i6qphPCuXPnDu7evYsWLVqgWrVqAAAFBQVkZGQUccsIIYWFrkuQv9K7d28AgEgkwrFjxxAcHIxDhw5x39+/fx8nTpyAo6MjRo0axeWrqKggMjISYrEYPB6PJkyTIpGRkYHp06ejRo0a6NatG969e4fw8HA0btwYCgoK3N2M9PdJSOlGQVAB+/z5M/T09LgHEZY2ysrKGDJkCCpXrgwTExMAmYHR2bNn8fLlS2zbto0r++LFCyQmJqJGjRoQi8V5nhtEARORtYMHDyIxMRGdOnWCpqYmNmzYgBMnTiApKQmrVq2Ck5NTUTeREFIISucvczEhFosxbNgwmJqaYuXKlUXdnAJjYmKC7t27c5/9/f1x4MABtGjRAg0aNODy9+zZA6FQCCcnJygqKub67KD79+/j3Llz2L17N54+fQo+nw8ej8e91oMQaSQkJGDp0qVo0KAB3NzcoKioiJEjR+Lw4cNo3749+vTpg927d0ssQ1MnCSmdKAgqQP7+/oiOjoarqytWr16NKlWqICgoqKibVeC0tbWhpqaGCRMmcHmBgYEICAhArVq10Lp1awA/LjVkzcGIiIjAuHHj4OjoiK5du2LDhg1o3Lgxevfujfj4+FI7mkYK15IlS6Crq4vBgwcjKioKx48fx5kzZ2BiYoJ58+bBxcUFly9flgh8aBSSkNKJflUKSHJyMtasWQMjIyPs2bMHb968QdeuXTFkyBBs27YNjLFSe3bZoEEDBAYGoly5cgAyL48dOHAAPB4PgwcPBgCJUZ2su3FGjhyJAwcOYNKkSXj37h327t2LU6dOISkpCS4uLrh7927hbwwpVd68eYPTp0+jZcuWSElJQc2aNTF79mx4e3ujYsWKOHToEBwdHXHjxg0uOJ86dWq2k5fSuu8SIm8oCCogu3btQlRUFPr06QMg80d/7ty5GDhwIDZt2oQvX76U6rPLn28zvnHjBvz9/eHg4MC9sDVrVCfrh2bv3r04ffo0hg0bhnnz5kFPTw9ly5aFg4MD9u/fDzs7Oxw5cqTwN4SUKps3b4aWlhZ69OiBNWvWwNraGgEBAThz5gw8PDwwYcIEjBo1Cu3bt4eioiLevXuH27dv49KlSxJ3jdHlWUJKBwqCCkBkZCT3w92xY0cAmT/6ioqK6NGjB169eoWtW7cWcSsLT5MmTbBjxw7uydI5jQItW7YMjo6O6NmzJ/e+sSzKysro06cPN7JEyN/y8vLC5s2bYWZmhvT0dJQrVw66urowNjbGmDFj0L17d5QtWxbDhg0DAO7J51WqVIGCggKeP3+OZcuWQSgU0uVZQkoBujusAKxcuRJpaWkYNGgQAMm7mywsLKCgoIDExESJZTIyMrgJwKVR3bp1uX//+uPx4sULxMXFoW3btrC2tgaAbA+sc3FxgaOjY7Z609PT6QnUJE+yHoRYqVIlAOAmQY8cORIuLi44ffo09uzZA09PTy7gvn79OqKjo9GjRw8AmZdsL1++DKFQiP/++6/ItoUQIht0KiNjDx48QFBQEJydnVGvXj0Akj/6p06dAgAYGBiAMYarV6/i27dv3EtG5fFBbWZmZvjy5Qtq164NADn2gVgshqqqKpKSkvD06VNcuXIFAH57lxkhP/s1sO7cuTNCQkIQGRmJiIgI7Ny5E02aNMGgQYO4k5H//e9/GD58OF69eoVx48bh7t27cHV1RfPmzbl6bt26xf27NM/1Kyp02ZEUJAqCZCgjIwMzZ86Euro6Jk6cyOVljQQlJCTgyJEjUFZWRtOmTXHz5k2sXbsW1atXx7x58wBkP1CXdhkZGVBSUkKNGjWwb98+JCQkSPRB1gGQz+fj5cuX6NChA9zc3DB48GBYWVkhMDCw1I6ekYLDGENGRgZsbGxw5MgRDB06FNbW1hg6dCj09fUBACEhITA2Ngafz4e3tzfi4uKwYMECVK5cGfr6+hAKhZg/fz4cHBwQFhaGuLg4ep6VDMXExEAsFtNlR1Kg6K9LhlJTU6GjowM/Pz8cPnwY6enpUFBQ4Hbi1atX49y5c+jcuTNsbGxQrVo1bNy4EatWrcKRI0fQs2dPCIVCiTpL+1mQgoIClJWVMXHiRERFRXEvZM2S1XdfvnxBx44dkZGRgVWrVuHmzZvo2LEjxowZg48fPxZF00kJxuPxoKCgwO1fWlpaePLkCbp168aVSUhIQHh4OFasWAEFBQXMnTsXWlpaePPmDapWrYrFixfj+PHj8PX1RYUKFdCzZ0/s3LmzqDapVBGLxRgxYgS6deuGhISEom4OKc0YkbkDBw4wExMTZmtry1auXMnmzZvHhg8fzhQUFFjXrl1ZVFQUu3PnDtu3bx97+fIlY4yxW7dusQoVKrCnT58WceuLjpeXF1NTU2N9+vRhfn5+bPPmzSw+Pp4xxtjixYtZmTJl2MePH7nykZGRzMTEhO3cuTPH+tLT0wul3aTkS0tLy5Y3a9YsxuPxmIODA/v27RtjjLEaNWqwnTt3shUrVrDq1auzdevWceU1NDTYvn37GGOMZWRkSNQlFosLsPWlj5+fH2vYsCFbunRpjt//2r+E/C0aCSoAXbt2xcePHzFo0CBcunQJV65cwa1bt7BixQrMmjULy5YtQ926dbF+/Xo4OztjxIgRUFdXh56eHu7duwcAePjwITw8PEr9SNDPpk2bhpcvX4LH42H16tU4e/YsIiMjAQBr167FqFGjYGJiApFIBADQ09NDWloaNDU1uTqCg4Nx8eJFAODeAcVojoZMfP78udT+PeY0ub5Hjx4YNWoUfHx8oKmpieDgYCgrK+PevXuYOHEi5s2bx9384O/vDysrK1StWhXAjxHMt2/fAqCHLeZH1jPWTE1NMXDgQACS8wSTkpLoEhmRnaKOwkq71NRUlpSUxH2+d+8e4/F47MSJE+zLly/sxo0bzNXVlSkqKjINDQ0WFxfHGGNswYIFrHr16uzLly/Z6pSHEY7Pnz+z5ORkxhhj7969Y9bW1mzLli2MsR9n1evWrWN16tRhp06dYowxlpCQwIYNG8ZsbW2ZnZ0dCw4OLprGl0IZGRmsU6dOzNjYmK1YsaKom1Pgchq52bdvH1NUVGTlypXj+iBrRCIoKIhZWlqyR48eMcYyR5a2bNnCDA0N2a5duyTqpFGM39uyZQuzsrJiR48eZYxlHu+yjnmPHz9mxsbG7Nq1aywyMpLrW0L+FoXTBUxZWRmqqqrc59jYWBgbG8PGxgZ6enqoX78+VqxYAWVlZUybNg26uroQi8VgjMHIyAgqKirZ6pSHydP6+vpcv5mbm6NSpUrcKBmPx8Pr169x8OBB2NjYoGHDhgAADQ0NeHt7Izg4GC4uLujfvz+uXbtWVJtQqvz8CphVq1ahYsWK8PPzK+pmFZicHoaooaEBbW1teHh4ZHvmVUBAADQ1NVGtWjWkpqZi9uzZmD17NiZNmgR3d3euTiD7g0LJD5GRkdi1axe+fPmC0aNH43//+x8UFBSgoKCA5ORk+Pj4QCwWw9HREUpKSli/fj3Onj1b1M0mJVlRR2HyJjIykjVu3JhVrVqVHTlyhC1ZsoTVqVOHCQQCbuSDMcYaNmzIRo0axX1OSUlhu3fvZt27d2eJiYlF0fQikXX2/L///Y9pa2uznj17ssmTJzMDAwPWtGlTdvPmTcYYYxcvXmRr1qxhvr6+3LIODg5s5syZOdYrD6NpspKUlMTat2/PunTpwkQiEWOMsXnz5jEej8dmz54tVyMbCQkJ3P6Xtd1paWlszJgxbNy4cezVq1esbdu2rFatWtx8IbFYzC5evMgmTZrE+vXrxzZu3Fhk7S/upk6dypo0acKCgoLYrl27mJmZGatbty67efMme/HiBVNSUmJHjhwp6maSUoSeMlfIjI2NERgYiH///Rd79+4FkHkr7r59+7iRj7CwMAiFQjRp0oRbbtq0abh+/TrMzMygrq6erd6sB8GVNllnz71790bdunUxY8YMfPjwAf3798eCBQugqqqKpUuXYtmyZahcuTISEhLg6emJWbNmoXLlymCMQSQSQVlZGSkpKfjy5QtMTU0l7gyi+QW/t2fPHjx+/Bje3t5QUlKCWCzG7NmzMXToUKSnp2P9+vVQV1fn5seURowxiMViaGhocHl8Ph9isRiKiooQi8U4c+YMYmNj8ezZM5w5cwYVKlQAAIwdOxZ3796Fubk5atSogf/++w/79+/Hnj17YGxsXFSbVOxkPWOtadOmaNiwIRo2bIjmzZtj8eLFaNmyJZKSktCoUSN07NgR3t7eCA8Px+rVq7nHEjDGaO4Vyb8iDsLkmkgkYps3b2ZVqlSRyH/27BmztrZmQUFB7OPHj2zKlClMRUWF7du3j5tfFBoayi5dusROnjzJLScvd6D8fCfPu3fvWJMmTdiQIUOYSCRi0dHRbO3atUxXV5cZGxuzVatWMcYYe/LkCWvcuDGrU6cOa9SoEQsNDS2q5pconz59Yk5OTkxfX5+Zmppmm4Px4MED5urqylq2bJnjHVal1c/7WlJSErO1tWU8Ho/NmDGD3bp1i/suMDCQ8Xg8Vq9ePfbhwwfGWOZokpOTE9uxY0e2euVpVO1naWlprG3btqxFixYsPDycy8uyaNEixuPx2NOnT9nz589ZpUqVWK9evXKsi0Z5SX7QKXARUlJSwpAhQ3Dnzh0AQFpaGoDMkaBPnz7BxsaGm9eyfft2dO/eHUKhEMuWLUPz5s0xf/58jB07FjVq1EBoaKjcnAX9fCdP2bJlkZ6eDgMDAygpKcHQ0BDdu3eHs7MzLC0tudGJrHdBLViwAPb29nB1dcWCBQu4eRlXr17F8uXLkZqaWvgbVIytXLkSjDGcOHECixcvxpQpU+Do6Ih3794BAHbv3g2RSISJEydyIyLygMfjITExEYwxzJw5EyKRCGPGjMHChQslXhEzY8YMNG7cGObm5rC2tsaMGTOgoaGBChUq4O7du9ydizdv3gQgv/OFRCIRKlWqhFatWqFcuXLcCBsAfPz4Edu3b8fw4cNhbW2NDRs2IDExEVu2bAEAXLt2Ddu2bcP58+cBQGKUl5A/KuIgjORg2rRpTF9fnzk4ODA7OzuJM8v//vuPmZqasrVr1zLGMs8c//nnH+bu7s5SUlKKqslFIutsfMWKFUxVVZWNGjWKeXt7swYNGjAjIyNu1CIuLo65urqykSNHcstu376drVy5kkVHR7PTp0+zqVOnMlNTU/bmzZsi2Zbi6P79+6xhw4Zs9uzZXF50dDTz8vJiz58/Z0FBQaxx48Zs/PjxRdjKorFlyxbG4/FY/fr1mba2Njt+/Hi2uULR0dGsZs2a3Dy18+fPs1q1ajFTU1NmY2PD/T1+/PiR8Xg8tnr1avb69esi2Z7iImufzhrNSU9PZwsWLGBaWlrs8+fP7MqVK8zQ0JCtXLmSMcbYwYMHmba2NnNxcWFGRkasUaNG7NmzZ0XWflLyUBBUDO3Zs4cpKCiwli1bsujoaC7/zp07rEmTJszS0pLp6Ohwk35TU1OZhYUFCwgIKKomF7nQ0FA2btw4NmrUKKahocF69Ogh8f3FixeZjY0NW7BgAUtMTGQJCQksKiqKff36lTk4ODAej8f69etXRK0vfnK6PPHzpZqkpCQ2ZMgQ5uzszB4/fpzte3lw/vx5tmvXLm77f5WWlsYaN27MBg8ezOWJRCK2YcMG7nI3Y4yNHTuW8Xg81qpVK+bo6Mhq1qzJ3r59WyjbUNzdvXuXaWlpsTVr1rCUlBTWuXNnZmdnx33fv39/1rNnT5aUlMSSkpJY3759maurK3v//n0RtpqUJBQEFVMxMTHcjpx1bTwwMJAZGBiw+/fvs6CgIFa7dm1WoUIFtmbNGqapqZnrwViehIeHsxYtWrBLly4xxjL7TCgUMsYY27p1K2vQoAE7fvw4Vz4yMpL169ePWVpaMi0tLWZnZ8fN3ZBniYmJbMKECWz16tWMsR9n6Fn/3b59O3NwcGDe3t5F1saSYNu2bczR0THbM6uynoR+8+ZNpqCgwCZPnsyCg4PZ+/fv2ZIlS7i7HuXdjh07mLm5OROLxWzPnj1MT0+P+fn5McYyR4nWrVvHVFVVubmRHz9+ZKdPn2Zfv34tymaTEoSCoBLk6NGjTFNTk33+/JkxljkCtGbNGmZsbMzq1avH3r17V8QtLF7ev3/P2rZtyw4ePMjlDRs2jNnY2HCPI8g6Kz927BhjjLEZM2awCxcuFEl7i6Ofg5+skZ7w8HDWqVMn1q5dOxYTE8MYk79RoLwSiURsxIgRTFVVlQ0YMID5+vqyO3fucN87Ozuzpk2bSvxop6eny9Uk8z9JSEhgX758YZUqVWLNmjVjjGUe+7LMnTuXdejQgYWEhGT7jpA/oYnRJYibmxtq1qyJPXv2AMh8EOPo0aPx6NEjrFu3DqampkXcwuLF0NAQNjY2+OeffzB58mSEhITg+fPnqFChAhhjuH//Pk6cOAFra2u0b98eALBw4UI0bdq0iFtefGRNtufxeNyk3b179yIqKgq9evWCgYEBvek7F4wxKCkpwcfHB3fu3AFjDI8fP0ZKSgoA4MCBAwgKCsLChQuho6PDLaegoJDjazzklYaGBvT09LB8+XJs27YNALBu3TqcPn0aADBw4EAoKytj1KhREAqFUFZWLsrmkpKmiIMwkkdZZ+QrV65k2trabMSIEezu3bvsxo0bRdyy4u/atWusbt26rG7duszNzY17HL+XlxerWrUqd6mCzr7/LCIigtWpU4cZGhrK/STevMjIyJAYJcu6NJucnMwEAgEbPXp0UTWtxPr69Svr2LEja9u2Lfc3ePDgQVatWjXutSWE5BWPMXq7ZEnz8OFDTJgwATExMXBzc8PcuXMlHuJGchYWFgYLCwvw+XxERUWhdevWqFOnDjZs2EAPWsuHR48eoU+fPoiIiMCkSZMwcuRIiZEMkt2vo2U3btxAly5dEBgYCEtLyyJsWcn0+fNnjBgxAufOnUPHjh1x8+ZNmJiYYNeuXTA3Ny/q5pEShIKgEuzhw4fQ19eHmZlZUTelxPn8+TNq166NdevWoU2bNnRJ5y/s2LEDEydOhJaWFjZt2gQ3N7eiblKJkvUkc/L3goKCcPToUVSrVg329vaoWbMmndCQfKEgiMil1NRUTJkyBRs2bMDSpUsxZsyYom5SiTV9+nQkJSVhxYoVFEjmUWl9zQ0hJQ0FQUSunT59Grdu3cLo0aNhaGhY1M0psdLS0qCkpERn4YSQEoWCIEIIIYTIJRq7JoQQQohcoiCIEEIIIXKJgiBCCCGEyCUKggghhBAilygIIoQQQohcoiCohEpNTcXcuXORmppa1E0psagPpUP9Jz3qQ+lRHxJp0C3yJVR8fDx0dHQgFAqhra1d1M0pkagPpUP9Jz3qQ+lRHxJp0EgQIYQQQuQSBUGEEEIIkUuKRd2A4kosFuPjx4/Q0tIqlq8BiI+Pl/gvyT/qQ+lQ/0mP+lB6xb0PGWP49u0bTE1NC/TdeikpKRCJRDKpS1lZGaqqqjKpq7ijOUG5eP/+PczNzYu6GYQQQkqBiIgIlC1btkDqTklJgZqOABAJZVKfQCBAWFiYXARCNBKUCy0tLQDAxfuPofH93yT/qqXL5syEkL+mSG9rl9ZjUB/+rcRv3+BWsxr3m1IQRCJRZgDUwBtQVJOusvRkRF6fDJFIREGQPMu6BKahpQVNLbrj4G9pp9Ntq6SIKdJhTlqaFARJrTCmVfCU1cGTMghifB7k6fIQHR0IIYSQUoDPA6SNtRgPyJBNc0oEujuMEEIIIXKJRoIIIYSQUkCBzwOPL91QEOPz5GokiIIgQgghpBTg83hSzz1ixfCRMAWJLocRQgghRC7RSBAhhBBSCvB5AE/KoQ0mXwNBFAQRQgghpQFdDss/uhxGCCGEELlEI0GEEEJIKSCru8PkiUxHgsqXL4+VK1fKrL63b9+Cx+Ph3r17MquzqOzbtgUt7GugTlljdG/qhJDg67mW9Tt1AsO6dICTdUU4VjBHn5ZuuOZ/SaJMWloaNixdjFZ17VCnrDG6ODdE0CU/iTL7fbeis1MDOFYw5+q56ndRoszn6GjMHP0Pmtpao145E4zo1hnhr1/LbsNliDGGuUu9YWpXA2oVLODcqSMeP3/222U2/28XGrdvBz3rytCzroxm3brg1t1QiTJeq1ehbovm0LKyhJGtDToM6I/nr15lq+vpixdo178vdCpbQcvKEg6tW+Ld+/cAgLcR78AzMc4xHTx5QnadIAXqP+kxxjB3yWKY2tpAzdwMzu3b4fGz3/fh42fP0HlAf5SvbQeeYRms3LAhW5n09HTM9FyICva1oGZuBss6tfHfUm+IxWIAmfv71P/monqTRtCwMIeprQ36jfoHHyM/5drOlt27gWdYBsfOnJZ6u2WFjoMFi8/jySTJk2J9Oczc3ByfPn2Cra1tUTdFKueOHsGSmdMx1GMSDvgHoraDI0b26IpP7yNyLB8SfB0OTi5Yt/cg9vldQd2GjTGmTw88fXCfK7PWawEO7diO6Z5LcCzoJrr2H4TxA/pIlDE2NYXHzLnY63cZe/0uo16jJhjXrxdePXsKIPNAOa5/b7wPf4tVu/Zgv38gTM3NMaxLeyQlJhZsp/yFJevWYvnGDVi70Au3z56DwMgQbt274VtCQq7LXLl+HT07dsTlQ0cQfPI0ypmZwb1Hd3z49OPHIyA4GKMGDsSN02dwcf9BpGekw71HdyQm/eiD12/folGHdrC2qoQrh4/i/iV/zBo/AaqqKgAAc1MzfLr/UCLNmzwFGurqaOnatOA6JR+o/6S3ZM1qLPdZj7WLFuP2BT8IjIzg1qUTviV8y3WZpOQkWJYvj0WzZkNgZJxjmcWrV2HDju1Y67UYT68FY8nsufBeuwZrNm/+XkcyQh88wKwJkxB6yR9Htu/Ai9ev0a5P7xzrW7lxQ6G8piE/6DhY8Hh8gC9lknZidUkj07fIly9fHh4eHvDw8JBVlUUmPj4eOjo6uP7mndTvDuvVvCmq1qiJWd7Lubz2DerBtWVrjJs1J091dGzkgOYdOmLEpKkAgKa21hg6fiJ6DB7KlRnXrxfUNTTh5bMp13oaVSqPCXP+Q6c+/fD29Su0c6iDI1eDYWVdFQCQkZEB56pW8Jg1D5379vubzZVQXUbvDmOMwdSuBjyGDsPU0WMAAKmpqTCuYYvF/87C8H55a2tGRgb0rCtj7UIv9OvWLccyMbGxMKpeDQFHjqGJoyMAoMeIYVBSVMKutevy3OZabk1Ru3p1bF2+Ms/LFBS57j8ZvTuMMQZT22rwGD4cU8eOA/C9D22ssXj2HAzvP+CPdZSvbQePYSPgMWKERH6bXj1hbGiIratWc3mdB/SHuroadq3PPnIEALfvhqKeuxvC795HuZ/eTn7/0SO06d0Tty/4wcTWBkd37ESHVq3/Yot/eCiDd4fJ63Ew4Vs8GliWg1AohLZ2wbyHMuv3Sr/1JvCVpHt3mDgtGV9ODyvQ9hYn+Yr5nJ2dMXr0aIwePRq6urooU6YMZs6cidziqOXLl6N69erQ0NCAubk5Ro4ciYTvZ52JiYnQ1tbGoUOHJJY5efIkNDQ08O3bt2yXw65cuQIej4dLly6hTp06UFdXR4MGDfD8+XOJOhYsWAAjIyNoaWlhyJAhmDZtGuzs7PKzqTKTJhLh6f17aODsIpHv6OyCe7dv5qkOsViMxIQE6OjqcXkiUSqUVVQkyqmoquHuzeAc68jIyMDZo4eRnJSEmnXrZdaRmhmgqKj8eFOwgoIClJSUc62nqIS9C0dkdDTcnZy5PBUVFTg5OuL6ndt5ricpORlp6enQ19PNtYzwW+ZZfVYZsViM035+qGxZEc17dIeRrQ3qt2qBY2fP5FpHyP37uPfoEQb3zPlMvbBR/0kvLDwckdFRcP9pX1ZRUYFTgwa4fuuWVHU3ql8fl64G4sXrzMuI9x89QtCtm2jVzC3XZYTx8eDxeNDV+fFDlZSUhJ7Dh2LtosUQGOc86lQU6DhYOPg8WVwSK+qtKFz5HvjasWMHFBUVcfPmTaxevRorVqzAli1bcq6cz8fq1avx6NEj7NixA/7+/pgyZQoAQENDAz169ICvr6/EMr6+vujSpQu0tLRybcO///6LZcuW4c6dO1BUVMSgQYO473bv3o2FCxdi8eLFCAkJQbly5eDj4/PH7UpNTUV8fLxEkoW4L5+RkZGBMoZGEvllDI0QGx2dpzp2rF+L5KREuLfvyOU1cGmKXRvWI/z1a4jFYgRfuYwr584gJipKYtkXTx6jvoUZ6pgZYcGk8Vi5/X+oWMUaAFChUmWYmptj1YJ5iP/6FWkiEbauWoHY6CjE/lJPUYuMjgEAGBsaSuQbGxgiMo/9CADTFi6AmUCAZo2b5Pg9YwwT5s5Go3r1Yfv9rDA6NhYJiYlYtHY1Wri44MK+A+jYshU6DR6EgOs5z2nYuncPqlaqjAZ16+a5bQWJ+k96Wf1kbPRLHxoa5asPczJ17Dj07NgJ1o4OUDIxRi1XZ3gMG46enTrnWD4lJQXT5v+HXp07Q/unkerxs2aiQd16aN+ylVTtkTU6DhYOBT5PJkme5DsIMjc3x4oVK1ClShX07t0bY8aMwYoVK3Is6+HhARcXF1SoUAGurq6YP38+Dhw4wH0/ZMgQnD9/Hh8/fgQAxMbG4tSpUxJBTU4WLlwIJycn2NjYYNq0abh+/TpSUlIAAGvWrMHgwYMxcOBAVK5cGbNnz0b16tX/uF1eXl7Q0dHhkrm5eV67JE9+vT7PGMvTNfszRw7Bx3sRvDf7osxPP2BTFy5COUtLtG9QF/amhvCcNhnte/SGgoLksHUFq0o4ePkq/nfOD90GDMbMMf/g9ffJsEpKSljuuwvhr1+hUaXyqFfOBLevBaFRUzfwFaQf/pbG7sOHoFmxApfS0tIA/H0/AplzYvYeO4ojW7dBVVU1xzKjZ0zHgydPsdfnxyWIrMmp7Vu0wPjhI2Bna4tpY8aijZsbNuzaka2O5ORk7Dl6BIN79cpTuwoC9Z/0dh86CE2Lclzi+hB/34e52X/sKP536CD2bNyE0EuXsWPtOixdvw479u3NVjYtLQ09hg2BWMywfok3l3/i3Fn4X72KlQsWStWWgkTHQVLc5PtiuYODg8QfraOjI5YtW4aMjOyvXLt8+TI8PT3x5MkTxMfHIz09HSkpKUhMTISGhgbq1auHatWqYefOnZg2bRp27dqFcuXKoUmTnM8ys9SoUYP7t4mJCQAgOjoa5cqVw/PnzzFy5EiJ8vXq1YO/v/9v65w+fTomTJjAfY6Pj5dJIKSnXwYKCgqIjZY8o/gSGyOxM+fk3NEjmOsxBku3bIfDT5cxAEDfwACrdu5BakoKvsZ9gZHABCvnz4VZOQuJckrKyihnaQkAqGZXC4/uhWL3pg2YvWwlAMCmph0OXgnCt3gh0kRp0DcwQK/mTVGtZi3pNlxK7Zq3QP3a9tznVFHmkHVkdDRMfhrmj/4cm210IydLfdbDc/Uq+O0/iBo21XIsM+bf6Thx4TwCjx5DWVNTLt9AXx+KioqwqVRZonzVSpURdCv7UP6hU6eQlJyMfl26/rFdBYX6T3rtWvzahyIA3/tQIODyo2Nj8tSHvzN57hxMGzsOPTp2AgBUt7FBeEQEvFatRP8ePblyaWlp6DZkEMLevYP/kWMSo0D+V6/i9dsw6FpZStTdeeAANHZwxJXjRXeXHR0HC0fm5TApK5GvgaCCuzssPDwcrVq1gq2tLQ4fPoyQkBCsW5c5KTLrjArIHA3KuiTm6+uLgQMH/vHMQElJift3Vtmss82f87LkZe63iooKtLW1JZIsKCkro2pNOwQHXJHIvxFwBXZ16+e63JkjhzBr7Egs2rAZTdyb595uVVUYm5giPT0dfidPwLnF74fBGWPcNfCfaWnrQN/AAOGvX+PJvbtwKeLhdC1NTVhVqMAlm8pVIDAywsXAAK6MSCRCQHAwGtT5/SUT7/XrMH/Fcpzbsxd1cpgbxhjD6BnTceTMGfgfPIwKvxxAlZWVUdfODs9/uWX2xevXsPhpQmqWrXv3oJ17cxgaGORji2WL+k96WppasLK05JJNlSoQGBnj4k/7skgkQsD162hQr55U60pKTgafL3k4VlBQgFj849iVFQC9fPMGfoeOoIy+vkT5aWPH4UHAVdy7HMAlAFgxfwF8V6+Rqn3SouNg4eDzeTJJ8iTfI0E3btzI9rlSpUrZhh/v3LmD9PR0LFu2jNu5f74UlqVPnz6YMmUKVq9ejcePH6N///75bZKEKlWq4NatW+jbt69EW4pSvxGjMGPUcFSraYeadevh0M7t+PT+PboOGAgAWDV/HqIiP8Jz3UYAmTv+zFEjMGXhItSwr8tdl1ZRU4WWtg4A4EHIHUR/+ghr2xqI+vQRPt6LIGZiDBwzllvvqgX/oVHTZhCYmSExIQHnjh7BnWtB8Nl/mCtz4fgx6BmUgYmZOV4+fYzF/06DS8vWaODiWljdkyc8Hg8eQ4fBc/UqVKpgiUqWFeC5ehXU1dTQq1Mnrly/MaNhJhDA69+ZADIv4cxashh71vmgvHk5bu6GpoYGNDU0AACjpk/DnqNHcNx3B7Q0NbkyOlpaUFPLvNNi8j+j0H3EMDRxcIBLw0Y4d9kfJy9ewJXDRyXa+SosDIE3gnHmf3sKvE/yg/pPejweDx7Dh8Nz5QpUsrREJcuK8Fy5IrMPO/+Yu9Nv1D8wE5jAa9ZsAJmB0pPvN2+IRCJ8iPyEew8fQlNDA1bfRyfaujfHwhXLUc6sLKpZW+PuwwdYvsEHg75fEkxPT0eXQQMQ+uABTu3ei4yMDER+Py7o6+lBWVkZAmPjHCdDlytbFhUsLLLlFzY6DpLiKN9BUEREBCZMmIDhw4cjNDQUa9aswbJly7KVq1ixItLT07FmzRq0bdsW165dw4YcHhKmp6eHTp06YfLkyXB3d0fZHM4M82PMmDEYOnQo6tSpgwYNGmD//v148OABLC0t/7xwAWnRsRO+xn3BxmVLEBMVBSvrqli39wBMzcsBAGKiIhH5/aFxAHBohy/S09PhOXUSPKdO4vLbde+JBWszJ3mLUlKw1msh3oe/hbqGBho1c4Pn+o3Q1tHlyn+Jica/o4YjJioKmtraqGxTDT77D8Pxpzs0YqIi4T37X3yOiYahsTHaduuB4ROnFHCP/J0po0YjOSUFI6dPRZxQiPq1auPCvv3Q0tTkyrz78EHijHr99u0QiUToMnSwRF1zJk7C3EmTAQA+O7YDAJw7d5Qo47tyFQZ07wEA6NiqFTYsXgKvNasxdtZMVKlYEYe3bEWj+pJnsdv27oGZiQncnZ1ltdkyQ/0nvSljxmb24ZQpiBN+Rf3a9rhw8DC0NH/cyPHu/Qfwf3rYysfISNRydeY+L123FkvXrYVTg4bcJao1ixZhlpcXRk6djOjYWJgKBBjerz9mf+/j9x8/4sS5cwAAOxcniTZdPnYczg0bFdQmywwdBwueTB52WMyeL1XQ8vWcIGdnZ1SrVg1isRh79uyBgoIChg8fDk9PT/B4vGzPCVqxYgW8vb3x9etXNGnSBL1790a/fv0QFxcHXV1drl5/f380bdoUBw4cQNeuP+YBvH37FhUqVMDdu3dhZ2eHK1euwMXFRWL5e/fuoVatWggLC0P58uUBAPPnz8fq1auRkpKCbt26QVNTE7du3UJwcN5vd5Tlc4LkmayeE0TIX5PRc4LkmSyeEySvCvM5QRZdtoKvpC5VXeK0JIQfGiw3zwnKdxBkZ2cn01djAJm3tY8bNw4fP36EsrKyTOsGADc3NwgEAuzatSvPy1AQJBsUBJEiR0GQ1CgI+nsUBBVvRXp0SEpKQlhYGLy8vDB8+HCZBEBJSUnYsGEDmjdvDgUFBezduxd+fn64ePHinxcmhBBCSigFGVwOK26vWyloRfqWkCVLlsDOzg7GxsaYPn26TOrk8Xg4c+YMGjduDHt7e5w8eRKHDx9Gs2bNZFI/IYQQUhzxeNLfGSZvQVC+RoKuXLki05XPnTsXc+fOlWmdampq8PPz+3NBQgghpBSRxXOCmHzFQMX7LfKEEEIIIQWFZgwSQgghpYAsHnbI5OxhiTQSRAghhJQCCjyeTFJeeXl5oW7dutDS0oKRkRE6dOiA598fDFpSUBBECCGEkHwLCAjAqFGjcOPGDVy8eBHp6elwd3dHYmJiUTctz+hyGCGEEFIK8PmZSRosH8uf+/4U8yy+vr4wMjJCSEjIH1+EXlxQEEQIIYSUArJ4bQb7vnx8fLxEvoqKClRUVH67rFAoBADo//Jy3+KMLocRQgghRIK5uTl0dHS45OXl9dvyjDFMmDABjRo1gq2tbSG1Uno0EvQHj2KEUEsWF3UzSqwaYy4VdROInBvYtmJRN6HEc3UvX9RNKLGSE74V2rpkeXdYRESExGsz/jQKNHr0aDx48ABBQUFSrb+wURBECCGElAKyvBymra2d53eHjRkzBidOnEBgYCDKli0r1foLGwVBhBBCSCnA5wMKhTgxmjGGMWPG4OjRo7hy5QoqVKgg3cqLAAVBhBBCCMm3UaNGYc+ePTh+/Di0tLQQGRkJANDR0YGamloRty5vKAgihBBCSgFZXA7Lz/I+Pj4AAGdnZ4l8X19fDBgwQKp2FBYKggghhJBSQBYTo/OzPGNMqnUVB3SLPCGEEELkEo0EEUIIIaUAn5eZpK1DnlAQRAghhJQCCjweFKR9TpCUc4pKGrocRgghhBC5RCNBhBBCSClQ2HeHlQYUBBUSv727cNp3I4Qx0TCzqow+02ajin29XMuniVJxzGc1rp08BmFsDPQFArQbNhpOnboBAN6/eoHDa5bj7ZOHiP34Ab2nzkKLfoMl6jixeR3uXDyPT2GvoaSqikp2tdFjwjSYVJB8jcCH16+wf/kiPLtzE0wshplVJYxetg4Gpmay74h8mtazBjo1soB1OV0kp6bj+pNoTN10Gy/ex/95YQANqhkhYEUrPAqLQ63hx7n8Ia0qo5+7FWzL6wEAQl58xoytd3D7eWyu7fAaUgcrDz/G+PU3uXzfKY0xoHklibI3nkTDccyp/G5qgaE+lF7k6/t45L8Pse9fIDn+M1wHzYdF9cZ5WjbqzUOcXTcOeoIKaD95a45l3oReQsCu+Shn2xBNBy/k8tNSkhB6divCHwYhJSEO+maVUL/jGBiWs86xnmsHluFF8EnU6zAK1Zy65n9DCxgdBwuWLN4iL+3yJU2pDIK2b98ODw8PfP36lcvbtGkT5s+fjw8fPmD58uXw8PAotPbcOHsS/1v0HwbMmo9Kterg8oHd8B4+AItOXMx1B1s7YRSEn2MxZP5iGJezQPznz8jIyOC+FyUnw8i8HOo1b4Xdi+fnWMez2zfRrGdfWFaviYz0dBxavRSLh/bDohMXoaquDgCIeheOBX27oEmn7ug02gPqmtr4+OYVlP7wnpjC4lRDgHUnnuL2s1goKvCxcHBtXFjSAjaDjiApJf23y2prKGHntCa4FPoRxnqSD+5yrmmCvf5vcP1xNFJEGZjSvTouLGmOaoOP4mNskkTZOlUMMKx1Fdx//SXH9Zy99R4Dl1zlPovSM3IsV1SoD6WXLkqBnllFWNVvicu+s/O8nCg5AVf3eMGkkj1SvuW87QlfInH7hA+MLWtk+y5ovze+fgpDk94zoK5dBq9DLuK8z0R0nLodGrqGEmXDH15FbPgTqOsY5G/jCgkdB0lxVCqDoF/Fx8dj9OjRWL58OTp37gwdHZ1CXf/ZHVvg1LkbnLv0AAD0mT4HD68H4tL+/6H7+KnZyj+4egXP7tzEsnNXoamrCwAwNDOXKGNZvSYsq9cEABxYsTjH9U7ZtFPi89AF3hjV2B5vnzyEdZ36AICDq71Rs4kLek6azpUzMi/3V9tZEFpOvyDxeeCSIMQc6QX7SmVw9WHUb5fdOL4h9lx6gwwxQ4eGktvUxytA4vPQ5dfQpUl5NK1lil0XX3H5GqqK2D3DCUOXX8PM3jVzXE9qWgai4pLzs1mFivpQemWr1kfZqvXzvdz1g8tgWbspeHw+3j3M/mJJsTgDAf9bgFotBiLqzQOIkhO479JFqQh/EICmgxZCUDGz32q1GIh3D4Pw7Ppx2LcawpVN/BqDG4dXwX24N/w2T/uLLSx4dBwseHQ5LP/kYuDr3bt3SEtLQ+vWrWFiYgL179F/YUgXifD2ySNUbyA5dG7boDFe3gvJcZnQy36oUK0GTm/bgLEu9TG5lQv2eC+EKCVFqrYkf8t8m7GGji4AQCwW437AZQgsKmDJ0L4Y2dgec3q0x51L56VaT0HS0VACAHz5lvrbcgOaV0JFEy3M23k3T/WqqyhASZGfrd514xxx+kYELoV+zHVZ55oCRB3qiec7OmPThIYw1FXN0zqLCvVh4Xh58yy+xX6EXfP+uZa5f34nVDV1UdmhdbbvmDgDTCyGgpKyRL6Ckgqi3zz8qZwYgbs9YevSA3omxfPdTXQcLBy87w9LlCbx5Owe+WIZBH379g29e/eGhoYGTExMsGLFCjg7O3OXsOLi4tCvXz/o6elBXV0dLVu2xMuXL3Osa/v27ahevToAwNLSEjweD2/fvi2kLQG+fY2DOCMD2mUkh651yhhCGJvz3Ino9+/wIvQ23r96gXGrNqL3tNm4feEMdiyY9dftYIxh95IFqFy7LswrVQEAxH+ORUpSIk5u9UH1Rk6Yumkn6jRtjtXjRuDp7Rt/va6CtPyf+rj6MBKP337NtYyVmTYWDa2D3l4ByBDn7Ymmi4bWxYfYJPiF/Pih7u5SAbWtymD6lpwP0kDmZZzengFwnXQWEzfcQt0qBvBf2hLKSsVy1wJAfVgYhDHvcefUJjTpMxN8hZwH3KPePMSLm6fRsNukHL9XUlWHYflquH9hJ5KEsRCLM/D6zgXEvHuKpPgfl9Ye+u8Fn68AmyadC2RbZIGOg4WDx+PJJMmTYnk5bMKECbh27RpOnDgBY2NjzJ49G6GhobCzswMADBgwAC9fvsSJEyegra2NqVOnolWrVnjy5AmUlJQk6urevTvMzc3RrFkz3Lp1C+bm5jA0NMy2ztTUVKSm/jiDjY/P26TRvPr174oxli3v5+/A4+GfxSuhrqUNAEibMgtrxv+D/jPnQ1k1/2fJOxbMRsSLp5i165DkegDYu7ihZf/MoXWLqtXw8l4o/PfvRtW6DvleT0FaO9YRNSz10Gjc6VzL8Pk87JnhhDnbQ/EyjxN/J3evjp4ulnCeeAapaZnzDcoaamDVKAe4TznP5eXkwJUw7t+P337FneexCN/TDa3rm+NoUHget6zwUB8WPLE4A4G75qNWiwHQMTLPsUxaShICdy9Ew+6Toaqpm2tdTXrPQNC+Jdg/twt4fD7KlK0My9pN8fl95klfbMRzPAk8hHYTN5eIHy86DpLiptgFQd++fcOOHTuwZ88eNG3aFEDmy9hMTU0BgAt+rl27hgYNGgAAdu/eDXNzcxw7dgxdu0reEaGmpoYyZcoAAAwNDSEQCHJcr5eXF+bNmyfz7dHS1QNfQQHC2BiJ/PgvsdAuk/MERl0DQ+gZCbgdHwBMLa3AGMOXqE8QWORvyHvnwjm4e8UP/+44AH2BiUTbFBQVYVpR8s4cU8uKeBF6J1/rKGirRzugnaM5mow/gw+/TLr9mZaaEupaG6JWpTJYO9YRwPfr5Hwe0i4MgPuU87h87xNXfmJXW8zoVQPNJp/DwzdxXL595TIw1lNDyIZ2XJ6iAh9NaggwukNVqLTYAXEOIySRX5IRHpWASmW1s31X1KgPC0daahJiI57j84eXuHFkFYDvP7SMYftEV7iPWAoVdS0kfImE35Yfc1Cyfoy3T3RFp+m7oG1gBm0DM7QavQppqclIS0mCuk4ZXN4xD1r6mftx1JsHSE74igP/dftRj1iM28d98CTgELrO3l+IW547Og4WDh4/M0lbhzwpdkHQmzdvkJaWhnr1ftw2qaOjgypVMocunz59CkVFRdSv/2OSYpkyZVClShU8ffr0r9c7ffp0TJgwgfscHx8Pc/Ocz+LyQ1FZGeVtbPHoehDqNGvB5T+6HoTarm45LlOpVh3cunAGKYmJUNXQAABEhr8Bj8+HvrFJjsvkhDGGnQvnIOTSeczYvg9GZSW3R1FZGRVsayDy7RuJ/MjwsGJ1W+iaMQ7o2MgCzhPO4m1kwm/LxieJYDv4iETeyHZV4VrLBF3m+SPsp+UndbPFzN52aD7tPEJefJZY5lLox2z1+E5ujGcRQize9yDHH28A0NdWgbmRBj59Ll6TfKkPC4+yigY6TNkmkffs2nF8ehkKlwHzoKlvAh6fn61M6JmtSEtNRv2Oo6GhayTxnZKKGpRU1JCa9A0fn91CnbYjAAAV67jDtLK9RNkLG6egor0bKtVvWQBb93foOFg4aGJ0/hW7ICjrbOjXod2s/NzeWps5rPr3//NUVFSgUkC3Q7bsPwQbpk1ABdsasKpZG5cP7sHnTx/RtHtvAMD+FYsRFx2FEV7LAQANWrfH8Y1rsGnmZHQeNR7fvn7BvqVecOrYjRsCTheJ8OF15pB4eloa4qKjEP70MVTVNWBsUR4AsGP+LASfOQ6PNZuhqq6BrzHRAAB1LW2untYDh2HtxDGoYl8PNvUc8SAoAHevXMIM330F0hf5tW6sI3o1tUT7WZfwLSmNu01bmChCiijzEovnYHuYGWig/+JAMIZsc12iv6YgRZQhkT+5e3XMH1AbvTyv4G1kAldvQnIaElPSkZCcnq2exJR0fI5P5fI1VBUxt38tHL76Fp8+J6O8QBOeg+0RK0zF0aC3BdEdf4X6UHppqUmIj/3AfU74HInPH15CRV0bmnrGuHNqE5KEsWjSewZ4fD70TCwlllfV1IWCorJE/q9llNU0s+V/eHYLjDHoGJVDfOwH3DnhA22jclyAo6qhA1UNybtd+XwFqGnrQ8eoeN3dRMdBUhwVuyCoYsWKUFJS4ubvAJmjMi9fvoSTkxNsbGyQnp6OmzdvcpfDPn/+jBcvXqBq1apF2fRcObRsi4SvX3HMZxW+xsSgbKXKmLTBFwamZQEAX2Oi8fnTjwOsqoYGpm7ehZ2eczG7e1to6uqhfvPW6DL2xwTKuJgozOzy446SM76bcMZ3E6zr1se/2zOHwC/t/x8AwHNAD4n2DF3gjSYdMy8b1mnWAgPnLMTJzeuxy2suTMpbYuxKH1Sxr1swnZFPI9tn/j8NWNFKIn/AkkDsOJ95G7ZJGXWUM9LIX73trKGirIDDc5tK5M/dcTfPd0NliBmqV9BDPzcr6Goq49OXZFy+9wnd519BQvLvn79TmKgPpRcb8Rzn1o3nPt86vg4AYFW3ORr3mo7k+M9IjPv94wb+hig5ESGnNyPxawxU1LVgUbMJ7FsNyXWydXFGx8GCl3k5TLqRHHm7HMZjuQ2tFKGhQ4fi0qVL2Lp1K4yMjDBnzhxcuHABgwcPxooVK9ChQwe8fPkSGzduhJaWFqZNm4ZXr15xE6N/fVjivXv3UKtWLYSFhaF8+fJ5akN8fDx0dHSw6eZDqGlqFdzGlnJ9x1wq6iYQOTewbcU/FyK/5epevqibUGIlJ3zDsPrVIRQKoa1dMPPcsn6vWk06BCWV/J3M/CotNRFnlnYp0PYWJ8Uy5lu+fDkcHR3Rpk0bNGvWDA0bNkTVqlWh+n3o0tfXF/b29mjTpg0cHR3BGMOZM2ey3RlGCCGEEJKbYjmmqqWlhd27d3OfExMTMW/ePAwbNgwAoKenh507d+a2OAYMGIABAwZwn+3s7HKdS0QIIYSUBlkPPJS2DnlSLIOgu3fv4tmzZ6hXrx6EQiH+++8/AED79u2LuGWEEEJI8SSLhx2WhOdNyVKxDIIAYOnSpXj+/DmUlZVhb2+Pq1evwsCgeL4YkBBCCCElT7EMgmrVqoWQkNwfs08IIYQQSVkPNZW2DnlSLIMgQgghhOQPPTE6/ygIIoQQQkoBmhOUf3IW8xFCCCGEZKKRIEIIIaQUoFvk84+CIEIIIaQU4PEyk7R1yBO6HEYIIYQQuUQjQX/QqXJZuXh/SkHpc7x7UTeByDtl5aJuQYmXpqhQ1E0oseLj4zGskNbF4/Nk8AJV+RoKoiCIEEIIKQV4PJ7Uz/mhu8MIIYQQQuQAjQQRQgghpQBdDss/CoIIIYSQUoDPy0zS1iFP6HIYIYQQQuQSjQQRQgghpQBdDss/CoIIIYSQUoDeHZZ/FAQRQgghpQC9NiP/aE4QIYQQQuQSjQQRQgghpQAPMnh3mExaUnJQEEQIIYSUAnQ5LP/oclgh2eDjg8oVK0JLXR3169ZF0NWrvy0fGBCA+nXrQktdHVWsrLBpwwaJ77du3gwXJycYlSkDozJl0MLdHbdv3cpWz4cPH9C/b18IDA2ho6mJOrVrIzQkhPv+v3nzYGtjA10tLa6eWzdvymajZYwxhrmeC2FayQpqhgZwbtkCj58++e0yj58+QefevVC+mg14WppYuW5djuXWb96ECrbVoGpQBvaNG+HqtWsS3w8YPhw8LU2J5ODiIlFm07ZtcG7ZAtqmJuBpaeLr169Sba+sUf9JjzGGufP/g2l5C6jpaMPZrRkeP3n8x+UOHz0Cm5o1oKKlCZuaNXD0+LFcy3otWQyeijI8Jk6UyB8wZDB4KsoSyaFxI4kyqampGOPhAQNTE2jo6aJdp454//79X21rQaDjICluKAgqBAf278fE8eMxbfp03AoJQaNGjdC2dWu8e/cux/JhYWFo16YNGjVqhFshIZg6bRrGe3jgyOHDXJmAgAB079EDFy5dQuC1azA3N0erFi3w4cMHrkxcXBycGzeGkpISTp4+jfuPHmGJtzd0dHW5MpUqVcKq1asRev8+LgcGwsLCAq1atEBMTEyB9cffWrJiBZavXYu1S5fhdkAABMbGcGvXDt++fct1maSkZFiWr4BF8+ZBYGycY5n9hw/BY+pU/DtpMu4GXUPjBg3QsnMnvIuIkCjXws0Nn1695tKZn/5/AEBScjJaNHPDjImTpN/YAkD9J70ly5Zi+apVWLtyJW5fv57Zh61a/bYPg2/cQPfevdG3d2/cv30HfXv3RrdevXAzhx/r23fuYNOWrahRvXqOdbVwb45P4e+4dOb4CYnvPSZOxNETx7Fv1/8QdPkyEhIT0aZjB2RkZEi34TJAx8GCl3WLvLRJnvAYY6yoG1EcxcfHQ0dHB7FxcVK/Rb6hoyNq1aqFtevXc3nVq1VDu/btsdDTM1v56dOm4dTJk3j4+McZ5qh//sGDBw+ynWFnycjIgFGZMli5ejX69usHAJgxfTqCr1/H5YCAPLc1Pj4eBnp6OHfhAlybNs3zcrlRSkqWug4g8wzctJIVPEaOwtQJEwBknvUaV7TE4v/+w/BBg/9YR/lqNvAYOQoeo0ZJ5Nd3cUbtmjXhs3IVl1fVvjY6tGkLr3nzAGSOZHwVCnFs374/rufK1UC4tGqFuIj30P3pQFuU5Lr/ZPQWecYYTMtbwGPMGEydNBnA9z40L4vFCz0xfOjQHJfr3rsX4uO/4ezJk1xeizZtoKeni727/sflJSQkoHb9eli/eg0WLPKCXY2aWLlsGff9gCGD8fXrVxw7JBk8ZhEKhTA0M8UuX19079oNAPDx40eYV7TEmeMn0Nzd/a+3XRZvkZfX42BWXUKhUOrfkt+tQ0dHB4OWn4eymoZUdYmSE7FtQvMCbW9xQiNBBUwkEiE0JATN3Nwk8t3c3HAjODjHZW7euAG3X8u7uyPkzh2kpaXluExSUhLS0tKgr6/P5Z06eRL29vbo0a0bzAQC1LW3x9bNm3/b1i2bN0NHRwc1atbM6yYWirC3bxEZFQX3nw5IKioqcGrYCNdv/P2wtUgkQsjdu3B3lTzQuTdtius3b0jkXQm6CqMK5VHZzg5DR49GdEz0X6+3sFH/SS8sLAyRkZFwb9aMy1NRUYFT48a4fiPnfRkAgm/elFgGAJq7ueH6Dcn+GTVuLFq3bIVmv/nRvRIYCKOyZqhczQZD/xmB6OgffRgSGoq0tDS4N/tx7DA1NYVttWq/bV9hoOMgKa4oCPouNTUV8fHxEkkWYmNjkZGRAeNfLiUYGRsjMjIyx2UiIyNh9Et5Y2NjpKenIzY2Nsdl/p0+HWZmZmj608E27M0bbNywAVaVKuHU2bMYNmwYxnt4YNfOnRLLnj51Cnra2tBSV8fqlStx9vx5GBgY/M3mFpjIqCgAgLGRkUS+sZEhIqOj/rre2M+fM////FqvoREio378wLR0d8PuLVvhf/o0lnl64nZoCFxbt0Zqaupfr7swUf9J70cf/rJvGhkjMjL3PoyMjISx8S/9Y2wksf/vO7AfoXfvwmvBglzradm8OXZv3wH/8+exbPES3L5zB67N3bk+jIyKhLKyMvT09PLVvsJAx8HCkTUxWtokTygI+s7Lyws6OjpcMjc3l2n9vz6FkzH22ydz5lQ+p3wAWOrtjf379mH/oUNQVVXl8sViMWrVro0FCxeiVq1aGDp8OAYPGYJNGzdKLO/s4oLboaEIDAqCe/Pm6NWjh8QZZlHYvX8/NAXGXEpLzzzzy94vsnnCabZ6wSRuNe3euQtat2gBW5tqaNuqFc4eOYoXr17h9LlzUq+7IFD/SW/33j3Q1NfjUtboQ87b+vs+/N3+HxERgXETJ+J/27dL7L+/6t61G1q3agXbarZo26YNzp44iRcvX+L02TO/XfefjjWFiY6DBSvridHSJnlCQdB306dPh1Ao5FLEL5M6/5aBgQEUFBSyne3EREdnOyvKIhAIEPVL+ejoaCgqKqJMmTIS+cuXLcNiLy+cOXcONWrUkPjOxMQEVatWlciztrZGxC8TETU0NGBlZYX6Dg7YtGULFBUV4bttW762U9batWqFe9euc8ng+3ZnnY1niY6JgbGhUU5V5IlBmTKZ/39yqtco93pNBAJYlCuHl69f//W6CxL1n/TatWmLe7duc8nAIKsPs++bv470/EwgEGQbiYmOjuH2/5DQUERHR8PewQGK6mpQVFdDQGAgVq9bC0V1tVwnNZuYmMCinAVevnqVuR5jAUQiEeLi4iTXFfP79hUGOg6S4oqCoO9UVFSgra0tkWRBWVkZte3tccnPTyLfz88PDo6OOS5T38EBfr+Wv3gR9nXqQElJictbtnQpPBcswKkzZ2Bfp062ehwbNMCLFy8k8l6+fIlyFha/bTNjrMgvU2hpacGqYkUu2VhXhcDYGBf9/bkyIpEIAdeC0MCh/l+vR1lZGfa1auHiZX+J/Iv+/mhQ3yHX5T5//oyI9+9hIhD89boLEvWf9LS0tGBlZcUlm6o2EAgEuOh3iSsjEokQcPUqGjjkvC8DgGP9+rh46ZJE3gU/PzRwyOyfpq6ueBgainu3b3Opjr09evfsiXu3b0NBIedJyZl9GMH1oX3t2lBSUsLFSz+OHZ8+fcKjx49/277CQMfBwkF3h+UfPSyxEIzz8MDA/v1hb2+P+o6O2Lp5MyLevcOw4cMBAP/OmIGPHz7Ad8cOAMCw4cPhs24dJk+ciEFDhuBmcDB8t23Drt27uTqXentj7uzZ2Pm//8GifHnuDEtTUxOamprceps0aoRFXl7o0rUrbt+6hS2bN2P992dtJCYmwsvTE23btoXAxARfPn/GBh8fvH//Hp27dCnMLvojHo8Hj5Gj4LlsKSpVrIhKVhXhuXQp1NXU0Ov7nTAA0G/YUJiZmHJ3JYlEIjx59oz794ePH3HvwQNoamjAqmJFAMCE0aPRd+hQ1KlVG4716mHTdl+8e/8eIwZn3jGVkJCAuZ6e6Ny+PUwEArx9F44Zc+fBoEwZdGzbllt3ZFQUIqOi8Or1GwDAw8ePoaWlhXJly0pM1CwK1H/S4/F48BgzBp5LFqNSJStUsrKC5+LFUFdXR68ePbhy/QYNhJmpKbwWLAQAjBs9Bk2aumLxUm+0b9MWx0+dhJ//JQRdvgIgM9iyrWYrsS4NDQ2U0S/D5SckJGDu/Pno3LFjZh+Gh2PG7FkwMDBAx/YdAAA6OjoYPGAgJk6dijL6ZaCvr4dJU6ehuq3tbydbFxY6DhY8Hg+QNoaRs6thACM5EgqFDACLjYtjoowMqdPqtWuZhYUFU1ZWZrVq12aXLl/mvuvbrx9r4uQkUd7P35/Z1arFlJWVWfny5dnadeskvrewsGAAsqWZs2dLlDt6/DirZmvLVFRUWBVra+azYQP3XXxiImvfoQMzNTVlysrKzMTEhLVp25Zdv3FDJtssyshg7FuCzJI4/hubM306ExgbMxUVFdakYUP28OZNiTJOjRqx/r16c5/DHj3OsZ+cGjWSWG7d8uXMolw5pqyszGrb2bGAs+e475KiY5h706bM0MCAKSkpsXLm5qx/r97s3dNnEnXMmT49x3X5+myQaT9Q/+UzpYpklsQpqWzOzJlMIBBk9mHjxuxhaKhEGacmTVj/vn0l8g7u3cuqVK7MlJSUmHWVKuzw/v2/XY9TkyZs3Ogx3Oekr0Lm3syNGRoaZvZhuXKsf9++7N2r1xLLJQvj2eh/RjJ9fX2mpqbG2rRqla3M3yRZHQ/k8TgYGxfHADChUFjgv1cj1l9i43xvSJVGrL9U4O0tTuTmOUHbt2/HwIEDkdfNleVzguSZrJ4TRMhfk9FzguSZLJ4TJK8K8zlBI9ZfgoqUzwlKTU7EhpFN5eY5QXJzOezt27dwcnIq6mYQQgghBYLPA/hSXs+SsylB8hMEnT9/HqtWrfpzQUIIIaQE4vEzk7R1yBO5CYKCc3kqKSGEEELkk9wEQYQQQkhpJouHHcrbwxIpCCKEEEJKAT5P+tdeSDunqKSRs6t/hBBCCCGZaCSIEEIIKQVk8cRnemI0IYQQQkocvgyeGC1nMRBdDiOEEEKIfKKRIEIIIaQU4PNlMDFazoaCKAgihBBCSgG6RT7/KAj6A6Xnr6H0/W3EJP/2Nhpd1E0gcq6rz5iibkKJp1S9SlE3ocRSSkgotHXRSFD+0ZwgQgghhMglGgkihBBCSgF6d1j+URBECCGElAI8Hk/qJz7L25wgOYv5CCGEECIrgYGBaNu2LUxNTcHj8XDs2LGiblK+UBBECCGElAJZT4yWNuVHYmIiatasibVr1xbQVhUsuhxGCCGElAJF8cToli1bomXLltKttAhREEQIIYQQCfHx8RKfVVRUoKKiUkStKTh0OYwQQggpBWR5Oczc3Bw6Ojpc8vLyKuKtKxg0EkQIIYSUAnyeDB6W+P3usIiICGhra3P5pXEUCKAgiBBCCCG/0NbWlgiCSisKggoJYwzz1q/FpkMHEBcfj/rVa2DdzNmoZlUp12WOXLwAz80b8SriHdLS01GpnAUm9h+Ivu3ac2XS09Mxd/1a7D59EpGxsTAxNMSA9h0xc/g/4PP5SEtLw8w1q3DmagDevH8PHU1NNHNogEXjJ8DUyJirJ1UkwqSli7H3zGkkp6aiaX0HrJ85B2UFggLtl7ziKSqgxsyBMHWrB00LAUTxSYgKCMX9eVuRHPk51+Uq9muJ8j3coFu1PADgy72XuD9/G76EPufK2IzvgbJtGkG7kjkyUlIRe+sJ7s3dgm+v3kvUZTu1Lyr2bw1lXU18DnmGO5PXIP5ZOABAWVcL1af3g8DFHupmhkj9Eo/3p6/hoed2pMUnyb5D8on6TzYYY5h/eB+2XDqPuMRE1LOqjNUDh6Oaeblcl2n6378IfPooW35LO3ucmDobAJCekYH/Du3F3msBiPz6FSZ6eujXxBUzOnYDn8/P87pT09Iw5X++2H89EMlpIrhWq4E1g0agbBkDGffE36HjYMGid4flX6mdE+Ts7AwPD4+ibgZnybYtWL5zO9bOmIXb+w5CYGAIt6GD8C0x9/fK6Ovo4N9hIxD8v314cPg4BnbohIGzZuD8tatcmcVbt2DDgX1YO2MWnp44jSUTJsHbdyvW7P4fACApJQWhT55g1vCRCD1wGEdWrsGL8LdoN3qkxLo8Fnni6CU/7PNejqCdu5GQlIQ2o0YgIyOjYDoknxTVVaBfwwqPvP+Hc84jEdRvHrQqlkXjPf/9djmjRjURfvgyLrWdjAvu45D0PhouRxZBzaTMjzINauDllhO44D4WlztNA09RAS5HFkFBXZUrU3Vcd1iP7IyQKWtxoelopER/gcuRxVDUVAMAqJmUgZqgDO7O3oSzDYfh5khvmDSti3qrJxZMh+QT9Z9sLD15BCvPHMeqgcMRvHApBLq6aOk5G9+Scw/UDk6Yhgif7Vy6t2QNFPh8dHZoyJXxPnEYm/zOYdWA4Xi4bC28evXHslNHsfb86Xyte8LOLTh+5wZ2j52EK3MWISElBe29FyBDXDz2YzoOFiw+XzYpPxISEnDv3j3cu3cPABAWFoZ79+7h3bt3st/AAsBjjLGibkRBcHZ2hp2dHVauXPlXy8fHx0NHRwfCG3egLeULVBljMHVpAo++/TB18FAAmWccxk4NsXj8RAzv1iPPddXu2gmtmzhh/phxAIA2I4fDuIwBts5fyJXp7DEG6qpq2LVoSY513H74EPV6dkX4RX+UMzGF8Ns3GDZugF1ei9G9ZSsAwMfoKJg3c8EZn41o3rDx3256gb5AVb9WZTT3X4fj1Xsh6X1Mnpbh8fnoHHYEd6asxdv9fjmWUSmjg06vDsGv9QTEXH8IAOjwdB+ebziKp6v2AwD4ykro+OIA7s3dgtfbT+dYj3n7JnDcOBUHzdqCZYj/YgsLlrz0n6xeoMoYQ7mRAzG2ZVtMbtcZQObIi9mI/vDs2Q/DmrXIUz2rzpzAvEN7ELF+OzRUMwPF9kvmw0hHF5uH/2hrtxWLoKasgh2jxudp3cKkRJgM64ftozzQzTFzn/345TMqjB6Ck1Nnwb1m7b/edkUZvEBVXo+D8QkJ0HGoA6FQWGCXl7J+r/47dhOqGtL9XqUkJmB2h/p5bu+VK1fg4uKSLb9///7Yvn27VG0pDKV2JKg4CXv/HpGxMXBv8OPMT0VZGU516uL6vbt5qoMxhks3gvH8bRia2Nfh8hvVtselm8F48TYMAHD/2TMEhYaiVZMmudYlTPgGHo8HXa3MP/CQJ4+Rlp4m0T5TI2PYWlXC9bt5a19RUNLWABOLIRIm5nkZBXUV8JQUIfr67bf1AoAoLrOMhoUAaoIyiPS/w5URi9IQfe0BDOvZ/LaetG9JxTIAAqj/8issOgqRX+PQrHotLk9FSQlNqlZD8Itnea7H94ofujk25gIgAGhYpSouP3qAF58+AADuh4fh2rMnaGlnn+d1h755jbSMdLj9VMZUvwyqmZfLV/sKCh0HSydnZ2cwxrKlkhAAAaV8TpBYLMaUKVOwZcsWKCsrY8SIEZg7d26htyMyNvMs27hMGYl84zJlEP7x42+XFX77BjNXJ6SmiaDA52P9zDlw+2knnTp4KITfvsG6bSsoKCggIyMDC8d6oGerNjnWl5KaimkrlqFXqzbcCFdkbAyUlZSgp6OTrX2Rn2Pzvb2Fga+ihJpzhiD8kD/Sv+V9zkjNOUOQ/CkWkVdCcy1Ta+EIRAc/hPDpWwCAmrE+ACAl5qtEuZToOGiYGyMnynpasJ3cG69yGeUoatR/+RcpjAMAGP+ynxjp6OJdbHSe6rj16gUeR4Rj0zDJEdLJ7TpDmJQE24mjoMDnI0MsxvxufdCjYZM8rztSGAdlRUXo/TJybayji0jh17xtZAGi42DB4/NlcHeYtE9bLGFKdRC0Y8cOTJgwATdv3kRwcDAGDBiAhg0bws3NLVvZ1NRUpKamcp9/fVBUfuw+dRLD583hPp9evwFA9glnjP15EpqWhgbuHT6KhKQkXLoRjAnei2BZtiyc69UHAOw/ewb/O3USexYvRTUrK9x79gweiz1hamSE/u07StSVlpaGHpMnQMwY1s+ak9PqsrcPRbNDWHR1Rd3lHtzngG4zEBOcObmUp6iAhlv/BY/Pw+1Ja/JcZ9Wx3WDR2Rn+bSdBnJqWYxl77zHQrVYBfi3HZ/su25VjHi+zk36hqKUOp/0LIXwejkeLd+W5fbJE/Se9PUFXMHKLD/f5xJRZAHLaj1me9xPfK36oZm6BelaVJfIPBF/FnqAr2DV6AmzKlsP98DBM3LkVJnr66OfkypX7m3Vnlil8dBwsfH8zpyenOuRJqQ6CatSogTlzMv/IK1WqhLVr1+LSpUs5BkFeXl6YN2+eTNbbzsUF9WvU4D6nikQA8P2uBSMuP/rL52xnRb/i8/mwKmcBALCzroqnb97Aa8smbuefvMwb04YMRY9WrQEA1StXQfinj/Daskli509LS0O3ieMR9v49/Ldtl5jnJDAwhCgtDXFCocRZUPSXz2hgZ/eXvSCdD2eD8fnOjyH85E+ZZ2I8RQU09J0JDQsB/NtNzvMohvXoLrCZ0BOXO0zF18dhOZaxXzwKZi0dcKnVRCR//HHmlxz1BQCgZqSHlO//BgBVQ12kxMRJ1KGoqQbnQ55IT0zG1T5zwdKLZkIl9Z/02trXQz2rH3NhUtMyA7/Mu7f0ufyYeCGMdHT/WF9SaioOXL+KOV17Zftu2u7tmNy+M7o3yBz5qV6uPN7FxGDJiUPo5+QKgY7eH9ct0NGDKD0dcQkJEqNB0fFCOFa2zvuGywgdB0lJUKpjvho/7YAAYGJigujonIetp0+fDqFQyKWIiIi/Xq+WhiasyllwyaaiFQQGhrgYfJ0rI0oTIeDObTSwq/WbmrJjjHEHEwBISkkGnyf5v1GBz4dY/GMeRdaO//JdOPy2+KKMrp5EeXubalBSVJJo36eYaDx69RINauWvfbKSnpCMhLCPXMpIEXE/4FoVzXC5w1RuzsmfWI/pimqT++BKlxn4cu9FjmXsl4xG2TaN4N9uChLfRUp8lxgeieTIzxC42HN5fCVFGDWsgZhbT7g8RS11uBxeBLEoHYG9Zuc6WlIYqP+kp6WmDiuBCZdsyppDoKuHSw/vcWVE6WkIfPo4T0HGwRtBSE1PQ+9GTtm+SxKJctmPM0fKKhgZ/3HdtS0rQklBEX4/lfkU9wWPI94VSRBEx8HCl3WLvLRJnpTqkSAlJSWJzzweT2Kn+FlBvheFx+PBo28/eG7eiErlLFDJwgKemzdCXVUVvVr/uGbdb/pUmBkZwWt85m3BXps3ok41W1Q0LwdRWhrOXA3AzpPH4TPzxxBuW2cXLNy8AeVMTFDNygp3nz7F8p3bMahj5h0k6enp6DJhHEKfPMGpdRuQIc7grs3r6+hAWUkZOlpaGNypMyZ6L0YZXV3o6+hg0tIlqF6pMpo5NCiQPskvngIfjXbMhl5NKwT2mAWeAh+qRpkHMVHcN4jT0gEADj5TkPwpFvf/2wYg8xJO9Rn9cX2oFxLfRXLLpCcmIz0xBQBQZ+kYWHRxRWCvOUhPSOLKpMUnIiMl80D7fMNR2EzoiW+vP+Dbmw+wmdAT6UmpCD/kDyBzBMPl8CIoqqsgePgiKGmpQ0lLHQCQGisEy+XvrrBQ/0mPx+NhbMu2WHT8EKxMTGAlMMXiY4egrqyMng1/TMAdsH4FzPTKYGHPfhLL+172Q/s69VFGK/sdN61r18WiYwdRrowhbMzNce/tG6w8cxwDnJvled066hoY6NIMU/63DWW0tKCnoYWpu31hW84CTavXLMCeyRs6DhY8mhOUf6U6CCpOpgwaguSUFIxc8B/i4oWoX6MGLmzaCq2fbmd89+mjxB9gYnIyRi74D++jIqGmogrrChXwP68l3O2bALBmxkzMWrMaIxf8h+gvn2FqaIThXbtj9j+Zz794HxWJE5czf2jsunSQaNPlbTu44eQVU6dDUVEB3SZ6cA8J277WBwoKCgXVJfmibmqIsq0yD0Qtr26U+O5Sm4mIvvYgs1xZIzDxj3kmVoPbQkFFGY13Sl77f7hoJzffpNLgdgCAZqeXSZS5MdIbYXsvAACertoPBVVl1Fk6Bsq6Wvgc8gxXOk9DekIyAEC/ZiUY1K0KAGh7d6dEPSdq9EFiRNTfb7wMUP/JxqS2nZAsEmHMto2IS0xAvYqVcWbGPGipqXNlImJjs41KvPj0AdeeP8HZ6Tlfcl81YCjmHNiDMb4bEC0UwlRPH0ObNsfMzt3zte5lfQdDka+Anqu8kSxKhattTWz9ZywU+MVjP6bjIClu5Oo5QR06dICurm6ebt2T5XOC5FlBPieIkLyQ1XOC5JksnhMkrwrzOUGLz4VATcrnBCUnJmBqC/sCbW9xQiNBhBBCSClAd4flX6kNgq5cuZIt79ixY4XeDkIIIYQUT6U2CCKEEELkCY/PA0/Kic3SLl/SUBBECCGElAJ8HsCX8hZ3OYuBSvdzggghhBB5weMBPL6UqYQHQdHR0eDnY2ITBUGEEEIIKTXy88BHuhxGCCGElAJ8Hk8Gl8NK+FAQcnhP4W9QEEQIIYSUAvIwMXrHjh2//V4oFOarPgqCCCGEEFIijB8//rff5/f5zxQEEUIIIaWAPLw77MuXL7/9PiYmBsbGxnmuj4IgQgghpBTg8aS/u6ukTwmikSBZq2IFyMH7UwpKz5hzRd0EIu/k7T0ApHiJjy/qFpQ6x48fh7e3N54+fQoAqFq1KiZOnIiOHTsCyN/dYXR0IIQQQkqBrMth0qbibOPGjejevTtsbW2xatUqrFy5EtWrV0ePHj3g4+MDNTU19O/fP8/10UgQIYQQUgrIwy3yS5cuxapVqzB8+HAur2/fvrCzs4O3tzf++ecfbNu2Lc/10UgQIYQQQkqEiIgING3aNFt+06ZNERERke/6KAgihBBCSoGs5wRJm4qzChUq4MSJE9nyT548CUtLy3zXR5fDCCGEkFKAx5P+BajF/GoYZs2ahQEDBuDmzZto0KABeDwerl27hiNHjsDX1zff9VEQRAghhJQCCnweFKSMgqRdvqD16tUL5ubm8Pb2xtq1a8EYQ9WqVeHn5wcnJ6d810dBECGEEEJKjMaNG6Nx48YyqYuCIEIIIaQUUODxoCDl9Sxply9pKAgihBBCSgF5CIIUFBTy/FRosVj8xzIUBBFCCCGkRDh69Cj37xMnTuDChQtYsWIFlJSU/qo+CoIIIYSQUoDPk8ELVIv5SFC7du0AZL46Y+/evTAzM8OxY8ewa9euv6qv1DwnyNnZGR4eHgCA8uXLY+XKlUXanl8xxjB33lyYljWDmoY6nF1d8Pjx4z8ud/jwYdjYVoOKmipsbKtJRMFZ1vusR4WKllBVV4N93Tq4evWqxPc8BX6OyXupt0S54OBguDZrCg0tTejq68HZ1QXJycnSbbgMMcYw9795MC1nDjUtTTg3dc1bHx45Apsa1aGioQ6bGtVx9Ngxie+9Fi9CXQcHaOnpwsjUBB06d8Lz588lygwYNAg8JUWJ5NCwgUSZ169fo2OXzjA0EUBbXw/devZAVFSU1NstK9R/0iuo/TgwMBBt27WDaVkz8BT4OPZLHwPAgIEDs+3DDg0cJcqkpqZizNgxMDAyhIaWJtq1b4/3799Ltc2yRMfBgpV1OUzaVNwdPnwYPXv2xObNm3Hjxg2EhoZi3Lhxf1VXqQmCjhw5gvnz5xd1M3K1xHsJlq9YgbWr1+D2zVsQGAvg1twd3759y3WZ4OBgdO/ZA3379MH9u/fQt08fdOvRHTdv3uTK7N+/Hx7jx+Pf6TNwNyQUjRs1QsvWrfDu3TuuzKcPHyXSti1bwePx0LlTZ4l1tWjVEu5ubrh14yZu37yF0SNHgV+MXj65ZKk3lq9cibWrVuN28A0IBAK4tWzx5z7s1RN9e/fG/ZBQ9O3dG9169pDow4DAQIz65x/cCLqGi2fPIT09He6tWiIxMVGirhbNm+NTxHsunTl5ivsuMTER7q1agsfjwf/CRVwLCIRIJELbDu3zdF26MFD/Sa+g9uPExETUrFkDa1ev+e36WzRvIbEvnzl1WuJ7j/EeOHrsGPbt2YugwKtISExAm3ZtkZGRId2GywgdB4m0Dh48iH79+sHX1xe9evWCvr4+/Pz8cOLECfz333/5r5CVQhYWFmzFihVS1SEUChkAJoz7yliGWKokTs9gAoGALfLy4vJSkpKZjo4O27DeJ9flunXtxlo0byGR19y9OevRvQf3uV69emzE8OESZaytrdm0qVNzrbd9u/bM1dVVIq9+/fps5r//Sr2t2VJaukySWJSW2YeenlxeSkJiZh+uW5/rct26dmUtmjeXyGvu7s56dO+e6zLRHz8xACzA35/L69+3H2vfrl2uy5w/c4bx+Xwm/PyFy/sSHcMAsIvnzsmsH6j//iLJ6G+5IPfjnxMAdvTwkWz5/fv1Z+3btc91PV+/xDElJSW2b89eLu9DxHvG5/PZuTNnZb9vF6P+K87HQWHc18zfEqFQJr9vv/u9OnT/BTvz5pNU6dD9FwXeXmmoq6uzQ4cOZct//fo1EwgE+a6v1IS3P18O+5Wvry90dHRw8eLFwm3Ud2FhYYiMjIS7mzuXp6KiAqcmTrgeHJzrcsE3guHu7iaR17y5O64HXwcAiEQihISESNQLAO5ubrnWGxUVhdNnTmPwwEFcXnR0NG7evAkjIyM0aNQQxiYCOLk4IygoKL+bWmC4Pmz2oz8y+7DJH/rwhsQyANDczf23ywiFQgCAvp6+RP6VgAAYmZqgsk1VDB0+HNHR0dx3qamp4PF4UFFR4fJUVVXB5/MRdO1a3jayAFH/Sa+g9uP8uBJwBUYCY1S2roKhw4ZK9GFISAjS0tLg7v6jfaamprC1tf2rdckaHQcLHl8Gl8KK+5yg3bt3o3PnztnyLS0tcf78+XzXV2qCoNwsXboUkyZNwvnz5+Hm5vbnBQpAZGQkAMDY2Fgi39jYiPsut+WMjX5ZxsiYWyY2NhYZGRk51Guca707du6AlpYWOnXqxOW9efMGADB33jwMHTwE586cRe1atdDUrRlevnyZx60sWLn2oZExIqP+0If56B/GGCZMnoRGDRvC1taWy2/ZogV279wJ/wsXsWzJEty+cweu7m5ITU0FADjUd4CGhgamTp+OpKQkJCYmYvLUqRCLxfj0Kff2FRbqP+kV1H6cVy1btMDuXf+Dv98lLPNemtmHzZpyfRgZGQllZWXo6elJva6CQMdBIgsdOnTAw4cP0adPH9jY2MDW1hb9+/fHw4cPUaNGjXzXV6qDoOnTp2P58uW4cuUKHBwcfls2NTUV8fHxEulv7d69G5raWlxKS0sDAPB+ibAZY9nyfpWXZfJT7zZfX/Tu1QuqqqpcXtaci+HDhmHgwIGoVasWVixfgSpVqmCb77bftq+g7N6zB5q6OlxKSy/YPswyeuxYPHj4EHv/t1siv3u3bmjdqjVsbW3Rtk1bnD11Ci9evMDpM2cAAIaGhji4bx9Onj4FTV0d6JTRh1AoRO1ataGgoJCvbZcF6j/pFfZ+/Cfdu3dH69bf+7BtW5w9fSazD0+f/u1yf7MuWaDjYOHLem2GtKk4CwkJgaOjI6KiouDu7o7Xr19DXV0dDRs2xPXr+R/xLLW3yC9btgyJiYm4c+dOnt4s6+XlhXnz5slk3e3atUP9+vW5zz+fqZmYmHD50dEx2c5efiYQCLKdpUfHRHPLGBgYQEFBIdvZTnR0dI71Xr16Fc+fP8f+vfsk8rPaZFPVRiK/qnVVvHsXkWv7ClK7tm1Rv1497nOufRgTne0s8WcCgSDP/TNm3DicOHUSgf6XUbZs2d+2z8TEBBYWFnj56scZorubO14/f4HY2FgoKipCV1cXgrJmqFCh/G/rKgjUf9IrrP34b/3ahwKBACKRCHFxcRKjQdEx0Wjwy11khYGOg4VPHh6W+O+//2LAgAFYu3YtwsLCsHXrVvj4+MDGxgbTp09HQEBAvuortSNBjRs3RkZGBg4cOJCn8tOnT4dQKORSRMTf/9FraWnBysqKSzY2NhAIBLjo92NOkkgkQkBgABo45n5wcnRwxMWLfhJ5Fy5cRAPHzFuLlZWVYW9vL1EvAFz088ux3q3btsHe3h41a9aUyC9fvjxMTU3x/IXkbc0vXr6AhUW5vG20jOXah5d+9EdmHwb+oQ8dJJYBgAt+FyWWYYxh9NixOHLsKPwvXESFChX+2L7Pnz8jIiICJgKTbN8ZGBhAV1cX/pf9ER0djXZt2uZlk2WK+k96hbUf/61f+9De3h5KSkoScx8/ffqER48eSb2uv0HHwcInD7fIBwcHY+jQoQAg8eTo1q1b4/bt2/mvMP9zs4snJycnNm7cOMbYj7vDrl+/zrS0tNiSJUvyXZ8s7w5jGWK2yMuL6ejosCOHDrOH9x+wnj16MhMTExb/VciV6dunr8TdDNeuBjEFBQW2yMuLPX38hC3y8mKKiorsxvVgrsy+PXuZkpIS27p5C3vy6DHzGDeOaWhosLdvwrLdoaCurs581q3PsX0rli9n2tra7OD+A+zl8xds5r//MlVVVfbqxUvptl2Gdzgt8vTM7MODh9jDu/dYzx49MvvwSxxXpm/vPmzalCnc52sBgZl96OnJnj58xBZ5emb2YdA1rsw/w0cwHR0dduXSJfYp4j2XkuK/MZaWzr7FfWUTx49n1wOvsrCXr9hlPz/m6ODAzMzMJNa9bfMWFnw1iL169pzt2r6D6evrswkeHkV+Z5jc958M7/QpqP34mzCe3Q0JZXdDQhkAtnzZMnY3JJSFh73lvp84YQK7HnSNhb1+wy5f8meOjo6ZffjTukcMH87Kli3L/C5cZKF3QpirqyurWbMmSxelybQfilv/FefjYGHeHXb2yRsWGBEjVTr75E2xvjtMS0uLvXz5kjGWeUeYpqYmY4yx4OBgVq5cuXzXV6qDIMYYCwoKYpqammz58uX5qk/WQZA4PYPNmT2bCQQCpqKiwpo0acIe3n8gUcbJyYn179dfIu/g/gOsSpUqTElJiVlbW7PDBw9lq3vd2rXMwsKCKSsrs9q1a7OAy1eyldnos4Gpqamxr1/icm2jl6cnK1u2LFNXV2eOjo7sakCg9Nsuwx9xsSiNzZk160cfNm7MHt69J1HGqUkT1r9vP4m8g/v2S/bhgYMS3wPIMflu2cpYWjpLiv/G3N3cmKGhIVNSUmLlypVj/fv2Y+/ehEnUM3XyZGZsbMyUlJRYpUqV2LIl3kwsSivy4Efu+0+GP+IFtR9fvuSfYx9m1ZOUkMjc3dwl+7Bff/bubbhEPcmJSWz0qFFMX1+fqampsTat22QrU5RJHo+DhRkEnX8WxoI+xEqVzj8LK9ZBkJ2dHTt+/DhjLDMI0tDQYFevXmX29vZs7Nix+a6Px1ge30RWzDk7O8POzg4rV65E+fLl4eHhwd0yHxgYiFatWsHT0xNjx47NU33x8fHQ0dGBMO4rtLW1C7DlpVwxetAdkVP0oDtShOLj46GjpwuhUFhgvyVZv1d+z8OgoSXdOhK/xaNZlQoF2l5pLFq0CB8/fsTq1avx5s0bVK5cGQDQv39/rFmzBurq6vmqr9QEQbJGQZCMUBBEihoFQaQIURBUcNLT0/H69WtUqFABysrKf1VHqb07jBBCCJEnfBlMbC7uD0v8maKiIqpUqSJdHTJqCyGEEEKKkDzcIm9paYnfXcAKCwvLV30UBBFCCCGkRPj19VhpaWl4+PAhTp8+jQkTJuS7PgqCCCGEkFJAgZ+ZpK2jOMvt5qYNGzb81XOCivnmEkIIISQv5OFhiblxd3fHwYMH870cBUGEEEIIKdEOHjyY7eXBeUGXwwghhJBSQB4mRteuXVtiYjRjDJGRkYiNjYWPj0++66MgiBBCCCkF+Dwe+FK+Bb643yLfoUMHic98Ph9GRkZwdnbmHpyYHxQEEUIIIaWAPDwnaPbs2TKtj+YEEUIIIUQu0UjQH4h5mYn8HT69soAUMdp/SVEqzL8/eZgTJGsUBBFCCCGlAAVB+Uen6YQQQgiRSxQEEUIIIaWAAp8nk1SctWvXDseOHUNGRoZM6qMgiBBCCCkF5OWJ0T179kTZsmUxZcoUPH/+XKq6KAgihBBCSIlw4sQJREdHY9q0aVi2bBmqV6+ORo0aYdu2bUhKSsp3fRQEEUIIIaWAvIwEaWlpwc3NDXw+Hx8+fECPHj2wceNGmJiYYOjQoQgODs5zXRQEEUIIIaUAn8+TSSpJDA0NMXr0aNy8eRN37tyBlpYWGjdunOfl6RZ5QgghhJRYGRkZOHfuHHbv3o1Tp07B3d09z8vSSBAhhBBSCvBlcCmsuL8241djxoyBqakpxowZAxsbGzx58gRnzpzJ8/I0EkQIIYSUAvLwsMS7d+/i8OHDOHz4MJSUlBAXF4e9e/fC1dX1r+qjIIgQQggpBeQhCKpTpw5q1qyJMWPGoHfv3tDR0ZGqvhJxOczZ2RkeHh5F3Qyp+Kxfj4qWllBXU0PdOnVw9erV35YPCAhA3Tp1oK6mBquKFbFhw4ZsZQ4fPgzbatWgpqoK22rVcPTo0XyvlzGGeXPnoqyZGTTU1eHq4oLHjx9Lt7EFhDGGufPmwrSsGdQ01OHsmre2Hj58GDa21aCipgob25z7ab3PelSoaAlVdTXY1825n/607tTUVIwZOwYGRobQ0NJEu/bt8f79e+k2Woao/6RD+7D0qA+JtEJCQhAaGoqRI0dKBEApKSnYsWNH/itkJcDnz59ZfHx8oa5TKBQyACzu61eWIRZLlfbs3cuUlJTYxk2b2KPHj9nYsWOZhoYGC3v7Nsfyr16/Zurq6mzs2LHs0ePHbOOmTUxJSYkdOHiQKxN07RpTUFBgCxcuZI+fPGELFy5kioqK7HpwcL7W6+XlxbS0tNjBQ4fY/QcPWLfu3ZmJiQn7KhRKvd0ZYjFjGbJLi7639fDBQ+zh/Qese7fMtsZ/Fea6zPWgzH7yXLiQPX38hHl+76cb14O5Mvv2ZPbT5o2b2JNHj9m47/0UHvY2X+seMXw4MzMzYxfPX2Chd0KYi4sLq1mzJksXpcm0H6j/8pdk8Xcsz/uwrJK89mHc168MABMKhQX+exX9JY6lpGdIlaK/xOW7vevWrWPly5dnKioqrHbt2iwwMLDAtjU1NZXt2bOHeXp6srlz53Jp0qRJjMfjcZ/zqkQEQUVBlkFQvXr12PDhwyXyrK2t2dSpU3MsP3nyZGZtbS2RN2zYMObg4MB97tqtG2veooVEGffmzVn3Hj3yvN70jAwmEAiYl5cX931ScjLT0dFh6318ZHLgYzL6ARenZ7Z1kZcXl5eSlNnWDet9cl2uW9durEXzFhJ5zd2bsx7de3Cf69Wrx0YMHy5Rxtramk2bOjXP6/76JY4pKSmxfXv2cmU+RLxnfD6fnTtztsgDIHnuP1n8HcvzPiyrJK99WJhB0Oe4rywtQyxV+hyXv/bu27cv8yRo82b25MkTNm7cuMyToPDwAtnWrl27Mi0tLVajRg1Wq1YtLlWvXp3x+XxWq1YtZmdnl+f6StzlsPLly8PT0xODBg2ClpYWypUrh02bNkmUv379Ouzs7KCqqoo6derg2LFj4PF4uHfvXqG3XSQSISQkBG6/3LLn5uaW6wOdbty4ATc3N4k89+bNcefOHaSlpWWWCQ6G+y9lmru7I/j69TyvNywsDJGRkRJlVFRU0MTJKV8PmyoMWW11d5Nsq1MTJ1z/TVuDbwTD3f2XfmrujuvBkv30c70A4O7mxtWbl3WHhIQgLS1N4tZMU1NT2NracusqStR/f4/2YelRH5Zey5cvx+DBgzFkyBBUrVoVK1euhLm5OXx8fApkfX5+frh69Sru37+P0NBQLl26dAmMMYSGhuLu3bt5rq9EBEG/WrZsGerUqYO7d+9i5MiR+Oeff/Ds2TMAwLdv39C2bVtUr14doaGhmD9/PqZOnfrHOlNTUxEfHy+RZCE2NhYZGRkwNjaWyDc2NkZkZGSOy0RGRuZYPj09HbGxsVwZo1/KGP1UZ17Wm/XfbGWMjHJtW1HJta3Gv29rZGQkjI1+3T4Z9dNP646MjISysjL09PRyXVdRov77e7QPS4/6sHDI8onRv/4epqamZlsfdxL0S5Dp7u6O69cL5uRFKBSibNmy2fIZY+D9xaTuEhkEtWrVCiNHjoSVlRWmTp0KAwMDXLlyBQCwe/du8Hg8bN68GTY2NmjZsiUmT578xzq9vLygo6PDJXNzc5m2+df/OX/6H5ZT+V/z81KnrMoUtt27d0NTW4tLWWd+f9PWouynoupL6j/Zo31YetSHBYsHJpMEAObm5hK/iV5eXtnW9zfBrbR8fX2hpaWVLV9HRwe+vr75rq9EBkE1atTg/s3j8SAQCBAdHQ0AeP78OWrUqAFVVVWuTL169f5Y5/Tp0yEUCrkUEREhk7YaGBhAQUEh2x9EdHR0tj+cLAKBIMfyioqKKFOmDFcm6pcyMT/VmZf1CgQCAMheJiYm17YVlnbt2uFe6F0uGRgYAMihrdG/b6tAIEBk1K/bJ6N++mndAoEAIpEIcXFxua6rMFH/yQ7tw9KjPix5IiIiJH4Tp0+fnmvZwgwg+/XrB2Vl5Wz53759w5w5c/JdX4kMgpSUlCQ+83g8iMViADl3ftbZw++oqKhAW1tbIsmCsrIy7O3t4XfxokS+n58fHB0dc1zGwcEBfn5+EnkXL1xAnTp1uG13cHTExV/KXLh4EY4NGuR5vRUqVIBAIJAoIxKJEBgQkGvbCouWlhasrKy4ZGNjA4FAgIt+km0NCAxAg9+01dHBERcv/tJPFy6igaNkP/1cLwBc9PPj6s3qp9+t297eHkpKSrj4U19++vQJjx494tZVmKj/ZIf2YelRHxYSsVg2Ccj2e6iiopJtdX8T3Err1KlTqFKlClRUVMDn87lkZGSE8PBw7nOeSTVNu5A4OTmxcePGMcYYs7CwYCtWrJD4vmbNmmzOnDmMMcZ8fHyYgYEBS0lJ4b7fsmULA8Du3r2b53UWxC3ym7dsYY8eP+Zmz78JC2MZYjGbOnUq69O3L1c+69ZQDw8P9ujxY7Z5y5Zst4ZeDQpiCgoKzMvLiz1+8oR5eXnlemtobuvNEGfeGqqjo8MOHT7M7j94wHr07Fmsb5HX0dFhRw4dZg/vP2A9e/TMdpt13z59ubuSWIaYXbua2U+LvLzY08dP2KLv/ZTTLd5bN29hTx49Zh7f++ntm7B8rXvE8OGsbNmyzO/CRRZ6J4S5uroWu1vk5bH/ZPF3LM/7sKySvPZhYd4dJoyNZUwkkioJY2Pz1d569eqxf/75RyKvatWqbNq0aQWxqaxy5cps1KhR7MiRI+z48eNc2rlzJ+PxeNznvCp1QZBQKGT6+vqsX79+7MmTJ+zcuXPM2tqaAWD37t3L8zplGQRliMVs7dq1zMLCgikrK7PatWuzy1eucN/169+fOTk5SZT3v3yZ1apViykrK7Py5cuzdevXZ6tz/4EDrEqVKkxJSYlZW1uzg4cO5Wu9GeLM20Nnz57NBAIBU1FRYU2aNGH3HzyQ2YGPyfBHXJyeweb80taH9x9IlHFycmL9+/WXyDu4X7KfDh88lK3udb/0U8DlK/led3JiEhs9ahTT19dnampqrE3rNuzd2/AiD37kvf9k9bcsr/uwLJM89mFpD4KybpHfunUre/LkCfPw8Mg8CXr7tkC2VUlJiUVGRmbLj4qKYjweL9/18RjLw7WiIubs7Aw7OzusXLkS5cuXh4eHh8QTpO3s7NChQwfMnTsXQOYt8ll3jFWvXh0TJ05Er1698OzZM1SpUiVP64yPj4eOjg7ivn6V2aUxecQv9n9dpLQTl6y5raSUiY+Ph56uLoRCYYH9lmT9Xgmjo6VeR3x8PHSMjPLV3vXr12PJkiX49OkTbG1tsWLFCjRp0kSqduTG0tISoaGh0NXVlcj//Pkz6tatizdv3uSrvhIRBElr9+7dGDhwIIRCIdTU1PK0DAVBskFBEClqFASRolSoQVBklGyCIIFxgba3OCmVL1DduXMnLC0tYWZmhvv372Pq1Kno1q1bngMgQgghpMT5aWKzVHUUY/Pmzcv1O8YYd0Uor0plEBQZGYnZs2cjMjISJiYm6Nq1KxYuXFjUzSKEEEKIFI4fPy7xOTExEeHh4VBSUoKVlRUFQQAwZcoUTJkypaibQQghhBQeORgJCg0NzZb35csX9OnTB127ds13fSXyOUGEEEII+UWGWDaphNHX14eXlxcWLFiQ72UpCCKEEEJIiaagoIDw8HCkp6fna7lSeTmMEEIIkTtycDksN7a2tvkOgAAKggghhJDSgckgCGLFOwhydXXN9VVYjDFcuXIFX79+RceOHXH58uU/1kdBECGEEEJKBDs7uz+WUVJSQq1atfJUHwVBhBBCSGkgZjK4HFa8n3C7fPnyP5bR0NDIUzmAgiBCCCGkdJDjOUF/i4KgP8hgDBml/80iBYZfzM8qSOnHT0oq6iaUeGmaGkXdhBKLfj9ky9LSMtc5Qb8KCwv7YxkKggghhJDSQA5GggYNGoRly5ahYcOGcHBwAAAEBwfj2rVrmDRpUr7fd0ZBECGEEFIaiJn0c3qK+ej948eP8e+//2LSpEkS+d7e3rh37x52796dr/roYYmEEEJIaZA1EiRtKsZOnjyJ9u3bZ8vv2LEjTpw4ke/6KAgihBBCSImgra2NCxcuZMs/d+5cvi+FAXQ5jBBCCCkd5GBO0IwZMzB+/Hhcu3ZNYk7QoUOHsGLFinzXR0EQIYQQUhrIQRA0evRoWFtbY+XKlVi9ejUYY6hatSrOnTuHpk2b5rs+CoIIIYQQUmI0a9YMzZo1k0ldFAQRQgghpYEcjARlSUlJQUxMDMS/tNfCwiJf9VAQRAghhJQGcvAC1WfPnmHQoEG4ceOGRD6PxwNjLFtQ9CcUBBFCCCGkRBg8eDCUlZVx5swZmJiYgMfjSVUf3SJfSDb4+KByxYrQUldH/bp1EXT16m/LBwYEoH7dutBSV0cVKyts2rBB4vutmzfDxckJRmXKwKhMGbRwd8ftW7ckyixetAiO9etDX0cHZgIBOnfsiOfPn0uUUVZQyDEtW7pUNhsuQ4wxzP1vHkzLmUNNSxPOTV3x+PHjPy53+MgR2NSoDhUNddjUqI6jx45JfO+zYQNq1KoFbX09aOvrwbFRQ5w9d1aizJGjR9G8VUsYCIzBU1LEvXv3sq0nMjISffv3h6CsGTR0tFG7bl0cOnxYmk2WKeo/6THGMNfLE6ZVKkPN2AjOrVvh8dOnv13m8dOn6NynD8pXtwVPRxsr16/LVsZr2TLUdXaClpkpjCpaokOvnnj+8qVEmQH/jABPR1siOTR1lSjz+s0bdOzdC4aWFaBd1gzd+vdHVHS09BsuI3QcLGBZL1CVKhXvhyXev38fPj4+aNGiBWrWrIkaNWpIpPyiIKgQHNi/HxPHj8e06dNxKyQEjRo1QtvWrfHu3bscy4eFhaFdmzZo1KgRboWEYOq0aRjv4YEjP/0gBAQEoHuPHrhw6RICr12Dubk5WrVogQ8fPnBlrgYE4J9//sHV69dx5vx5ZKSno3WLFkhMTOTKvPvwQSJt3rIFPB4PHTt1KrgO+UtLlnpj+cqVWLtqNW4H34BAIIBbyxb49u1brssEBweje6+e6Nu7N+6HhKJv797o1rMHbt68yZUpW9YMizwX4s6Nm7hz4yZcXVzQvlMniQAhMTERDRs0wKKFnrmuq++A/nj+4jlOHDmKh3fvoVPHDujeqyfu3r0rmw6QEvWf9JasXInl69ZhrfdS3L58BQIjI7h1aP/bPkxKSoJl+fJYNGcuBMbGOZYJuBaEUUOH4YbfJVw8dhzp6elw79hBYl8FgBbNmuHTi5dcOnPwEPddYmIi3Dt2AA88+J88hWvnL0CUJkLb7t3yfYmgINBxsBDIwcMSq1SpgpiYGNlVyEiOhEIhA8Bi4+KYKCNDqlS3Xj02bPhwibwq1tZs8tSpOZafOHkyq2JtLZE3dNgwVt/BIdd1JItETEtLi2319c21zIfISAaAXbp8Odcybdu1Yy6urlJvc1ZiaekySWJRGhMIBGyRpyeXl5KQyHR0dNiGdetzXa5b166sRfPmEnnN3d1Zj+7df7s+PT09tmXjpmz5YS9fMQDs7u072b7T0NBgO323S+Tp6+vnWE9hJ7nuP2G8TJL4q5AJjI3ZornzuLyU6JjMPlyxMk91WJQrx1Z4ef2xXPTrNwwACzhzlsvr36sXa9+6da7LnD9ylPH5fCaMeM/lfXkbzgCwi8eOS7XtsjgWyOtxMDYujgFgQqGwwH+vhDfvMPb4mVRJePNOgbdXGn5+fqx+/frswoULLCYmhn39+lUi5ReNBBUwkUiE0JAQNHNzk8h3c3PDjeDgHJe5eeMG3H4t7+6OkDt3kJaWluMySUlJSEtLg76+fq5tEQqFAAC9XMpERUXh7JkzGDBwYK51FJWwsDBERkbCvdmPflFRUYFTkya4nks/AkDwjRsSywBAczf3XJfJyMjAvv37kZiYCMfvD+LKq0YNG2L/wQP48uULxGIx9u3fj9TUVDg7OeWrnoJA/Se9sLdvERkVBXfXH5egVFRU4NSwIa7fuvmbJfMva1/V19OTyL8SFASjipaoXLsWho4Zg+ifzohTRSLweDyoqKhweaqqquDz+Qi6kfv/48JAx8FCksFkk4oxd3d33L59Gy1atICRkRH09PQkUn7RxOgCFhsbi4yMDBj/MgxuZGyMyMjIHJeJjIyE0S/ljY2NkZ6ejtjYWJiYmGRb5t/p02FmZoamuTw7gTGGyRMnomGjRrC1tc2xzK6dO6GlpVUsh4Cz+urXfjQ2Mkb4u/DfLpdtmRz6/uHDh3Bs3AgpKSnQ1NTE0UOHYGNjk6827t+zF9179UQZYyMoKipCXV0dRw8dQsWKFfNVT0Gg/pNe5Pe5NcZGRhL5xoZGCI/I+ZLO32CMYcK/M9DI0RG2P/Vhy2Zu6NqhAyzMyyEsPByzFi6Aa9s2CAkIhIqKChzq1oWGhgamzpkNz9lzwBjD1DmzIRaL8SkySmbt+xt0HCwkcnCL/OXLl2VaHwVB36WmpiI1NZX7HB8fL9P6f53Bzhj77az2nMrnlA8AS729sX/fPlz094eqqmqO9Y0bMwaPHj7E5cDAXNe53dcXPXv1yrWOwrR7zx4MH/kP9/n09xfj5bcf87pMlSpVcO9OCL5+/YrDR4+g/6BBCLjkn68f8pmzZyMuLg5+58/DoIwBjp04jq49euDq5SuoXr16nuuRBeo/6e0+sB/DPTy4z6cPHATwd32YH6MnTcSDx48RdO68RH73zp25f9va2KBOrVqwsK2G0+fPo1O7djA0MMDB7Tvwz4TxWL1hA/h8Pnp26YLaNe2goFA8Bv3pOFjA5CAIatKkSY75jLFc55f9DgVB33l5eWHevHkyr9fAwAAKCgrZznZioqOznRVlEQgEiPqlfHR0NBQVFVGmTBmJ/OXLlmGxlxfOXbiQ68x4j7FjcerkSVy6cgVly5bNsUzQ1at48fw5du/dm9dNK1Dt2rZF/Xr1uM9ZAWpkZKTEGWB0TDSMjXLuRyCzL3/t++gc+l5ZWRlWVlYAgDp16uD2nTtYtWYNNvr45Km9r1+/xtr16/Do3n1Uq1YNAFCzZk1cDQrCOh8fbFi/Pk/1yAr1n/TatWyF+vZ1uM+pIhEAIDIqCiYCAZcfHRuTbXTob42ZPAknzp5F4JmzKGtm9tuyJgIBLMzN8fL1ay7PvWlTvL7/ALGfP0NRQQG6uroQVLJCBYvOv6mp4NFxkMjSx48fER4eDtH3fRIAvnz5gs6dO8Pf3x88Hg9OebyMXjxOD4qB6dOnQygUcikiIkIm9SorK6O2vT0u+flJ5Pv5+cHB0THHZeo7OMDv1/IXL8K+Th0oKSlxecuWLoXnggU4deYM7OvU+bUaMMYwbswYHDt6FOf9/FChQoVc2+m7bRtq29ujZs2a+dm8AqOlpQUrKysu2djYQCAQ4OKlH/0iEokQEBiIBrn0IwA4OjhILAMAF/wu/nYZILPvfh4Z/JOkpCQAAJ8vuUspKCgUyZ051H/S09LSglXFilyysbaGwNgYF38ajheJRAi4dg0N6tWXal2MMYyeNBFHTp6E/8mTqFC+/B+X+fzlMyI+fICJIHsQYVCmDHR1deEfEIDomBi0a9VKqvZJi46DhUQO7g5buHAhypUrh0aNGsHV1ZVLXbp0AY/HQ9OmTeHi4pL3CqWdqV1ayfLusP/t2cOUlJTYps2b2f1Hj9jYceOYhoYGe/nmDRNlZLDJU6ey3n36cOWfv3rF1NXV2TgPD3b/0SO2afNmpqSkxPYdOMCV8Vy0iCkrK7N9Bw6wdx8+cOmLUMiVGT5iBNPR0WF+/v4SZYQJCdnuXlBXV2dr162T2V1hsr47jKWls0WenkxHR4cdOXiIPbx7j/Xs0YOZmJiw+C9xXJm+vfuwaVOmcJ+vBQQyBQUFtsjTkz19+Igt8vRkioqK7EbQNa7M9KlTWeDlyyzs5Sv2IPQumzFtGuPz+ezC2bNcmc9R0ezu7Tvs9IkTDADbt3sPu3v7DvsU8Z6xtHQmSkpmVlZWrHGjRuzmtevs1bPnbOmSJYzH47HTJ04U+d1hct1/Mro7jAnj2aK58zL78H+72cPgG6xnly7MRCBg8e8/cGX69ujBpo2fwH1OjYlld68GsbtXg5iJQMAmjRnL7l4NYi9D73Jl/hk8mOno6LArp8+wTy9ecikpMooxYTz79uEjmzh6DLt+8SILe/CQXT51mjnWq8fMTE0l1r1t3XoW7OfHXt29x3Zt2sT09fTYhNGjpd5uWRwL5PU4WKh3h/lfZezWXamS0P9qsb47zMTEhO3YsYN9+fKFCYVCLr169YrxeDz29evXfLWdgqBcyDIIEmVksNVr1zILCwumrKzMatWuLXF7Zt9+/VgTJyeJ8n7+/syuVi2mrKzMypcvn23HtLCwYACypZmzZ3NlcvoeANuydatEXet9fJiamhqL+fKlWAdBYlEamzNrFhMIBExFRYU1adyYPbx7T6KMU5MmrH/ffhJ5B/ftZ1WqVGFKSkrM2tqaHT5wUOL7QQMGcv9vDA0NWVNXV4kfcJaWzny3bM2xL+fMmsWVefHkKevUsSMzMjJi6urqrEb1Gtlu+S7KJLf9J8MgSPxVyOZMm8YExsaZfdiwIXsYfEOijFOjRqx/r17c57AHD3PcdqdGjbgyue2rvut9GBPGs6TIKObu6soMDQyYkpISK2duzvr36sXePX4ise6pHuOZsZERU1JSYpUqVmTLFnoy8VdhsQiC5PU4SEGQbCkoKLCYmJhs+VFRUYzP5+e7Ph5jrHjfD1dE4uPjoaOjg9i4OGhraxd1c0ospWL+9FEiB75faiN/L01To6ibUGLFx8fDQE8PQqGwwH5Lsn6vhJcCoK2hKV1diQnQaepUoO2VxqBBg7BmzRpoaEj+TX779g3jxo3Dtm3b8lWf3MwJ2r59u0zv4CCEEEKKFTmYE7Rt27ZsAdD/27vzuJjzPw7gr5EaHdOE1HTooEhIzpQjocMV1rpveziWhCV+u5S1DNaRY1ksi3XtkmvXLpWbYl05yjrLsRklzESpNJ/fH+nLdGmaqZma9/Px+D4e5juf6/vW9zvv+XyPAfKu4VM2AQJ06O6wpKSkUl8tTgghhBDt87GLno8fP46XL1+ib9++pXqmkM4kQUeOHMGKFSs0PQxCCCGkfOjAc4KaN2/+0TL6+vqlKgfoUBIUW8JPAxBCCCGVXv6vyKvahhZbtmzZR8sYGxuXqhygQ0kQIYQQQqqGu3fvIiEhATweDy4uLnB2di5TO5QEEUIIIVWBnKk+k6PlM0FSqRSjRo3CwYMHUb16XgqTk5ODXr16YcuWLTAzM1OqPZ25O4wQQgip0nTg7rDJkyfj7t27OHv2LN68eYM3b94gNjYW9+7dQ1BQkNLt0UwQIYQQUhXowIXRBw8exB9//IG2bdty6zw8PLB+/Xr07NlT6fZoJogQQgghlUJ2djZMTAo/EFIgECj1e4X5KAkihBBCqgCWK1fLos28vb0xc+ZMpKWlceueP3+OGTNmlOlZgHQ6jBBCCKkKdOB02MqVK9GjRw/Y2dmhQYMG4PF4uHXrFmxsbPDXX38p3R4lQR+h/zYX+m9zNT2Myot+t4loWhFT50Q5dAwsO4qdetWvXx/x8fE4ePAgEhISwBhDo0aN0KdPH+jp6SndHiVBhBBCSFXA1DATxLR7JggA9PT00LdvX/Tt21fltigJIoQQQqoCHXhO0JYtW0p8f+TIkUq1R0kQIYQQQiqFKVOmKLzOyclBRkYGqlevDiMjI0qCCCGEEF3E5HIwFU+HqVq/vD1//rzQuqSkJIwdOxbTpk1Tuj1KggghhJCqIFeet6jaRiXj4OCAhQsXYujQoUhISFCqLj0niBBCCCGVGo/Hw6NHj5SuRzNBhBBCSFUgZ2p4TpB2Xxh94MABhdeMMTx58gSrV69G+/btlW6PkiBCCCGkCtCFa4I++eQThdc8Hg8WFhbo0qULlixZonR7lAQRQgghVYEOPDE6N1e9D5+ka4IIIYQQopNoJogQQgipCnTgYYnqpjMzQZs3b4aZmZnG+meMIWzed7B2sIeh0BSdfLsiPiH+o/Ui9u2FazM38AUmcG3mhn0H9hdbVrx4EXh8AwR/8KyEnJwchPxvFpq2aA7jmmawdrDHiDGjkZyczJV5/vw5JgUHo2GTxjAyE8LOqT6CpkyBVCpVaZvVjTGGsIViWDdygaGVCJ169kD8zZsl1om/eRP9RgyHg1tT8GqaIXztmkJl1m7cCLd2XjC1qwtTu7rw9PPF31FRCmV4Nc2KXH5YuRIA8PzFC0yaMR0NW7eCkbUV7Jo0QVDIDK2KIcVPdYwxhH03F9Z2dWEoMEGnLp0RH1+K/XjvXri6NQXf2Aiubk2xb/9+hffFixaiddu2ENQ0g4W1Ffr0+wS3bt1Squ/nz59j0uTJaNjYFUamAtjVc0RQcLBWxZCOg+WLydXwK/JafjpM3XQmCdK0xUuXYNmKFVgdHo4LMTEQWVrCt3t3pKenF1sn9tw5DBw6FMOHDsXVCxcxfOhQDBgyBOf/+adQ2QsXL2L9zxvh1rSpwvqMjAxcvhKH2f/7Hy6fO4+9v/2O23fuILDf+4vLkp8kI/lJMpYsXITrly5j84afcTjyCD4b+6X6AqAGi1eswLI1a7B68WJcOHoMIgtL+H7St8QYZmRmop69AxaGhkFkaVlkGVtraywMDcPFY8dx8dhxdO7QEb2HDlFIEJ78e0th2bR6NXg8HvoFBgIAkp88QbJEgiXfzcP1szHYvOZHHD56FJ8FTVJvEFRA8VPd4iU/YFl4OFavWIkLsecgEong2y2g5P04NhYDhwzO248vXc7bjwcPwvnz57kyJ0+dwlfjx+PcmbOI+vsw3r59C7/u3fD69etS952c/G4/XrQI16/EYfPGjXn78ZdflF9AlETHQaJteIwxnZj72rx5M4KDg/Hy5ctSlZfJZBAKhZCmPoOpqalKfTPGYO1gj+BJkxDy9XQAQFZWFizr2mLR/AUY+0XRB6mBQ4dAJkvH33/8wa0L6NkTNWuaYeev27h1r169QguPNlizchW+XyiGu1szhC9dWux4Lly8iDbtvPDgzl3Y2dkVWWZ3xB4MGzUKr1+8RPXqKpw1VdOvyDPGYN3IBcHjxiMkOBjAuxg2cMaisLkYO3r0R9twcGuK4PHjETx+wkfL1nJ0wA/ffYfPho8o8v0+Q4cg/dUrHD1wsNg2du/fj2Fjv8Tr/5JVi6Ea6HT81PQr8owxWNvVRXBQEEKmzwDwLoY21li0QIyxXxb9YTlwyGDIZDL8/echbl1Aj+6oWbMmdm7bXmSd1NRUWFhb4eSxY+jYoWOZ+969Zw+GjRyB11KZajFUw+yArh4HZTIZhHXMIZVKVf4sKbEPoRBpP22FqaGRam1lZqD2uBHlOl5topUzQYcPH0b79u1hZmaG2rVro2fPnrh37x6AvMdj83g87N27Fz4+PjAyMkKzZs0QGxur0MbmzZthZ2cHIyMj9O3bF2lpaZrYFABAYmIiJBIJ/Lp25dbx+Xx4d+iAmHOxxdaLPX9eoQ4A+Pv6IubcOYV1X00OQo9u3dG1S5dSjUcqlYLH45V4elAqlcHU1FTjH975Eh88gOTpU/h19uHW8fl8eLdrh5h/zpdQUzm5ubnYFRGB1xkZ8GzdpsgyT1NScCgyEp8NG15iW1KZDKYCgVbEkOKnuvf7sS+3js/nw7tjR8TElrAfnzunUAcA/H39SqyTfwqmVs1aKvWd/0GmDTGk42AFyL87TNVFh2hlEvT69WtMnToVFy5cwNGjR1GtWjX07dsX8g/+c7755ht8/fXXiIuLQ4MGDTB48GC8ffsWAHD+/HmMGTMGEyZMQFxcHHx8fPD999+X2GdWVhZkMpnCoi6Sp08BAJYWiqcTLC0sIZE8Lb6eRAJLSwvFOpYWkEgk3Otdv/+Gy1euQPyR7cv35s0bzPz2GwwZNKjYLD8tLQ3zxAsw9vPPS9VmReBiWKdAPCwsIElJUbn96/HxMLG1Ad/SAuOmTsG+X7fB1cWlyLJbdu6EwMQEn/TqVWx7ac+fY94PizF21MdnWCoCxU91+fudpWUR+/FTSVFVuHqF6lhaKuzHH2KMYer0r9G+XTs0adKkzH2npaVh3oL5xc6wVDQ6DhJtpJVJUL9+/fDJJ5/A2dkZ7u7u2LhxI65fv67wmyBff/01evTogQYNGmDu3Ll48OAB7t69CwBYsWIF/P39MXPmTDRo0ABBQUHw9/cvsU+xWAyhUMgtdevWLfP4t+/cAZNaNbklJycHQN5DnT7EwAqtK6hQHfa+zqNHjzB52jRs27wZNWrU+Oi4cnJyMGjYUMjlcqxZuarIMjKZDD369IarSyOEfjv7o22Wl+2//w4TWxtuyXlbTAzZx2NYGg2dnRF36jTORUVj/JjPMHLCeCT8+2+RZTdt34ah/fsXG3OZTIYeAwfAtaELQkNCVB5bWVD8VLd9xw6YmAm5RZUYKlNnYlAQrl2/XuSpstK2I5PJ0COwF1wbNULo7Dkljq280HGw4uU/LFHVRZdo5RzfvXv3MHv2bJw7dw7Pnj3jZoAePnwIV1dXAICbmxtX3srKCgCQkpICFxcX3Lx5E3379lVo09PTE4cPHy62z1mzZmHq1Knca5lMVuZEKLBnL3h8cCogKzsLACB5KuHGmj/egt9wPiQSiQp9Q0pJSeW+DV66fBkpKSlo2bYt935ubi5OnT6N1WvXICv9FfT09ADk7fgDhgxGYlISjh2JLPLbT3p6OgJ69YSJsQn27d4NfX39Mmy9egR26waPVq2411lZ72KY8hRWIhG3PiU1FZZ16qjcn4GBAZzq1QMAtGreHBeuXMaKn37CuvBwhXKnY2Jw684d/LZxU5HtpKenI+DTT2FibIx927ZpLIYUP9UF9uoFjzYf7Mf5MZQU2I9TUwrNbnwobz9WnK3J2/cL15k0eTIO/vkHTh07DltbW4U2Stt3eno6Anp0h4mJCfbtidDc3yAdByse3SKvNK2cCerVqxfS0tKwYcMGnD9/nruLIjs7myvz4R9m/jeC/GSpLNd68/l8mJqaKixlJRAI4OTkxC2ujVwhEokQFX2UK5OdnY2Tp0/Dq61nse14engg6uhRhXWR0dHwerezd+ncGdcvX0bchQvc0qplSwwdPBhxFy4U2vHv3L2L6L8Po3bt2oX6kslk8OvRHQYGBji4d2+pvlGVJ4FAAKd69bjF1cUFIktLRB0/wZXJzs7GybNn4dXGQ+39M8a4g/aHNm77FS3d3dGswN0nwLsY9vsEBgb6OLhjp0ZjSPFTXaH92PXdfnw0miuTnZ2Nk6dOwcuzhP24bVuFOgAQGR2lUIcxholBQdi7fx+ORUbB0dFRobyjo2Op+pbJZPDrFpC3H+/br/m/QToOEi2ndTNBaWlpuHnzJtatW4cOHToAAM6cOaNUG66urjhX4KK5gq8rEo/HQ/CkSViweBGcnZ3g7OSEBYsWwcjICEMGDeLKjRgzGjbW1hB/Px8AMHniJHTs0hmLlvyA3j174cCffyD62FGcefdBJhAI0KRxE4W+jI2NUbtWbW7927dv8emggbgcF4c/9+1Dbm4u9620Vq1aMDAwQHp6Ovx6dEdGRga2/bJZ4ZqoOnXqcAcRTeLxeAgeNx4Lli2Fc/16cK5XHwuWLcuL4aefcuVGjBsLGytriENDAeQdZBNu5Z2Wyc7JwX/JTxB3/RpMjE24mYv/ffcdunXtirq2NkhPf4Vde/fixJkzOLwnQmEMMpkMuw8cwNJ5ha87SE9Ph1+/T/JiuG49ZOnpkL277beOubnGY0jxUx2Px0NwUBAWLFwIZyfnd/vxwrwYDh7MlRsxahRsbKwhnr8AwLv9uLMPFv2wGL17BeLAHwcRffQozpw4ydX5atIk7Ni1Ewf27oVAIOD2UaFQCENDw1L1nZ6eDr9uAcjIyMS2LVu1bj+m42AFyJXnLaq2oUO0LgmqWbMmateujfXr18PKygoPHz7EzJkzlWojKCgIXl5eWLx4Mfr06YPIyMgST4VVhBnTvkZmZiYmBAXhxYsX8GjTBpGHDkEgEHBlHj56hGrV3k/OeXl6Yte2bfg2NBSzw8JQv149/LZ9u8IU/cc8fvwYB//8EwDg3rq1wnvHI6PQydsbly5f5p654eTaSKFM4q3bcHBwUHZzy8WMyZOR+SYTE77+Gi9evoRHy5aIjNirGMPHjxVimCx5guYdO3Kvl6xehSWrV8G7XTuceHfL8tPUFAwfNxZPnj6F0NQUbo0b4/CeCPj6vL+TCgB27d0LxhgG9+tXaGyXrsbh/MWLAACnFs0V3ku8ehUOdvaqB0BFFD/Vzfh6et5+PGni+/34r78L7McPFfdjLy/s2r4D34bOwezQUNSvXx+/7dgJD4/3M3Br1/0EAOhU4M6mX37eiFEjR5aq70uXL73fj10aKrSTeOeuVuzHdBwsX0zO1PADqrp1OkwrnxMUHR2NoKAg3L9/Hw0bNsTKlSvRqVMn7Nu3D+7u7nB0dMSVK1fg7u4OAHj58iVq1qyJ48ePo1OnTgCATZs2ITQ0FGlpaejatSu8vb0xb948jTwnSKep6TlBhJSZmp4TpNN07GJZdarI5wSl/vATTA0NVWsrMxN1po8rl/HOnz8fhw4dQlxcHAwMDEr9eVyetDIJ0gaUBKkJJUFE0ygJUh0lQWVGSdB7oaGhMDMzw+PHj7Fx40atSIK07nQYIYQQQspAHQ87LMeEd+7cuQDyHmasLSgJIoQQQqoCpoYkiOXVL/jAYD6fDz6fr1rbWkgrb5EnhBBCiObUrVtX4QHCYrFY00MqF5QEEUIIIVVA3t1hqi9A3pO4pVIpt8yaNavIPsPCwsDj8UpcLr6781Mb0ekwQgghpCpQ43OCSvvQ4IkTJ2LQB895Koo2P16AkiBCCCGElIm5uTnMzc01PYwyoySIEEIIqQq0/O6whw8f4vnz53j48CFyc3MRFxcHAHBycoKJhh5lQUkQIYQQUgWo41fgy/NX5OfMmYMtW7Zwr5s3z3s6/IcPOq5odGE0IYQQUhXkzwSpupSTzZs3gzFWaNFUAgRQEkQIIYQQHUWnwz7mcTIgSNf0KCqvN1maHgHRdY0aaHoEld+DR5oeQeWVXoGfH3KWt6jahg6hJIgQQgipAlguA1PxFnmWq1tJEJ0OI4QQQohOopkgQgghpCpQ42+H6QpKggghhJCqQMufE6SN6HQYIYQQQnQSzQQRQgghVYC2PyxRG1ESRAghhFQFdDpMaXQ6jBBCCCE6iWaCCCGEkCog7zlBqj3nR9eeE0RJECGEEFIF0DVByqPTYRWEMYawFeGw9vKAYWMXdBoyCPG3b5dYZ++Rw2jVJxBmzd1g3NQV7r2649d9exXKnPrnPHp98RmsvTzAc3LE/qjIQu2ErQiHi18XGDd1Rc0WzdB1xDCcj7tSqFzs5cvoPGwIjJu6wqy5GzoNGYTMN29U23A1Yowh7MdVsPbpAMOWzdBp1HDE371TYp29UZFoNaAfzDxbw7h1c7j364NfDx5QKJP++hWCFy6AvW9nGLZsBq+hg3Dh+nXu/ZycHIQsW4KmfXvBuHVzWPt0wIhZIUhOearQTlZ2NiYtmAfz9m1h3Lo5AieOx2OJRH0BUBHFT3WMMYTNDYO1rQ0MjY3QqbMP4uPjP1ovIiICrk0ag29YA65NGmPfvn0K7586dQq9AgNhbWsDnl417N+/v1Abr169wsRJE2FrVxeGxkZo1NgVa9euLXac3bp3L7YtTaHjYPlicqaWRZdUySQoKSkJPB4PcXFxmh4KZ/H6dVi2aSNWh87FhX0HIKpTB76jhiP91ati69QSmuGbCV8hdvdeXPvzb4zu1x+jZ87AkVMnuTKvMzPRrFEjrA6dW2w7DRwdsTp0Lq4fOowzu3bDwcYGfqNGIjUtjSsTe/kyAsaMgl/7DvgnYj8u7DuAicNHoBqPp54AqMHiTT9j2dbNWP2/2biwazdE5nXg+8UYpL8uKYZCfPPlOMRu24VrEQcwus8nGD37fzhy9jRX5vM5sxEVG4NfxYtwfd9B+Hm1Q9cvRuO/p3kf0hlv3uByQgJmj52Ay79HYG/4Ktx+kITAiRMU+gpeuAD7jkZj1w/LcGbrdrzKyEDPr8YhNze3fAKiJIqf6hb/sBjLli/H6pWrcOH8PxBZiuDr74f0En4fKjY2FgMHD8LwYcNw9Uochg8bhgGDBuL8+fNcmdevX6NZMzesXrmq2HamTJ2Cw0eOYNvWX3EzPgFTJgdj0uQgHDhwoFDZ8BXh4GnRvpuPjoNE2/AYY1Uu7UtKSoKjoyOuXLkCd3f3MrUhk8kgFAohvXINpgKBSuNhjMHaywPBo8YgZOw4AEBWVhYs27bGohkzMXbwkFK31SKwJ3r4+GDelGmF3uM5OWLf2nXo4+tXYhuy9HQIm7sheus2dPFqBwBo268vfNu3L7JdlajpB1QZY7D26Yjg4SMQ8tkXAPJmDiy922HRlGkYO2BQqdtq0f8T9OjojXmTJiPzzRsIPFriwMof0cO7E1fGvV8f9PTuhO+Dgots48L162gzuD8eRB2DnZU1pOnpqNPBC7+KF2Fgt+4AgOSUp6jb1Qd/rV0H/3Ydyrzt6qDT8VPTD6gyxmBta4PgyZMRMiMEwLv92EqEReKFGDt2bJH1Bg4aBJlMhr//+otbF9CtG2rWrImdO3YUKs/Tq4Z9EXvRp08fhfVN3Jpi4IABmP3tbG5dy9at0L1bN8z7bh637urVq+gZ2AsXzv8DKxvrIttSWuID1epDd4+D+f1IpVKYmpqqrV2FPt59Xj0a9y1M+TVUayvrDer+9H25jlebVMmZIG2T+OgRJKmp8Gv//kDO5/Ph3cYDMZcvlaoNxhiOxpzFrcT76Ni6TZnHkp2djfW/7YRQIEAzl0YAgJS0Zzh/NQ4WtWvDq38/WHq0gvfggThz8UKZ+1G3xMePIXmWCr93BysA4BsYwLtVa8QUMaVdFMYYjp6Lxa2kRHRs2QoA8Db3LXJzc1GDz1coa1iDjzMl/N9IX6WDx+PBTJB3kLiUEI+ctzkK47O2sEQTJ2fEXCnd+MoTxU91iYmJkEgk8Pvgw5XP58O7ozdiYmOLrRd7LhZ+fr4K6/z9/RATG6NU/+3btcPBP/7Af//9B8YYjh8/jtu3b8Pfz58rk5GRgcFDh2D1ylUQiURKtV/e6DhY/uRMDrlcxUXHfjZDY0mQXC7HokWL4OTkBD6fDzs7O8yfPx8AcP36dXTu3BmGhoaoXbs2vvzyS7z6YLpULpfju+++g62tLfh8Ptzd3XH48OES+/riiy/QoEEDPHig+jcaZUmepQIALM3NFdZbmptDkppaYl1pugwmbo1h0KgBenw+BqvmhMG3vfLfiv88dhQmbo1Ro7ELlv+yCVFbfoV5rVoAgPsPHwEAwlauwBcDB+Hwpi1o0bgJugwfhjtJiUr3VR64GNaurbDesnZtSJ49K7GuND0dJq1bwKB5U/SYMBarZn0L33cftgJjE3g2c8e8n9YgOeUpcnNzse2Pgzh/7RqePCv6/+ZNVhZmLl+KId17wtTEhBufgb4+agqFhceXVvL4KgLFT3WSd9cnWVpaKqy3tLTg3iuunqVFgToWliXWKcrKFSvh2sgVtnZ1YVCDj4Du3bBm9Y9o3749V2bK1Cnw8vRE7969lWq7ItBxkGgjjSVBs2bNwqJFizB79mwkJCRgx44dsLS0REZGBgICAlCzZk1cuHABu3fvRnR0NCZOnMjVXbFiBZYuXYolS5bg2rVr8Pf3R2BgIO7cKXyRZ3Z2NgYMGICLFy/izJkzsLe3L3I8WVlZkMlkCktZbT+wHyZujbklJycHAAqdo2eMffS8vcDYBHEHD+HC3gOYP/VrTF3wPU6cO6f0mHzaeiLu4CHE/B6BgA7eGBA0ESnvPlzyM/+xg4Zg9Kf90bxxYyz/djYa1nPEpt27le5LHbb/+QdMWrfglpy3bwEUFcPC6woSGBsjLmIfLuzajflBwZj6w0Kc+Of99Ri/iheDgcGmszf4LdywcvuvGNK9J/Sq6RVqKycnB4OmT4WcMayZHfrR7WAM4KHiryeg+Klu+/btMDEVcIsq+3FZ6hS0ctVKnDt/Dgf3H8ClCxexdMkSTJj4FaKjowEABw8exLHjxxG+PFypdssLHQcrHl0YrTyN3CKfnp6OFStWYPXq1Rg5ciQAoH79+mjfvj02bNiAzMxMbN26FcbGxgCA1atXo1evXli0aBEsLS2xZMkShISEYNCgvOsYFi1ahOPHjyM8PBw//vgj18+rV6/Qo0cPZGZm4sSJExAW+Jb5IbFYjLlzi7+oThmBXbrCo5k79zorOxsAIElNhZWFBbc+JS2t0LeigqpVqwYnBwcAgLurK27euwvxT2vQqW1bpcZkbGQEJwcHODk4oG3z5nDu4oONv/+OWeMnwKpO3phcnZwU6jSq74SHT5KV6kddAn184OHmxr3mYvjsGTdeAEh5nlZodqOgatWqwckuL/l1d2mEm/fvQ/zzenRq4wEAqG9nh5Obt+F1RgZkr1/Bqo4FBk6bAkcbW4V2cnJyMGDaFCQ+foxjmzZzsxgAIDKvg+ycHLyQShVmM1Kep8GrjNelqYLip7rAwEB4eHhwr7Oy8q5vk0gksLKy4tanpKQWmh36kEgkguSp4qxPSmpKiXUKyszMxP+++Qb7IvaiR48eAAA3NzfExcVhydKl6Nq1K44dP4Z79+7BrFZNhbr9+n+KDh064MSx46XuTx3oOFjx8pIYVW+R160kSCMzQTdv3kRWVha6dOlS5HvNmjXjEiAAaNeuHeRyOW7dugWZTIbk5GS0a9dOoV67du1w8+ZNhXWDBw/Gq1evEBkZWWICBOTNTEmlUm559OhRmbdPYGLC7WhODg5wdXaGqE4dRH1wR012djZO/nMeXi1aKtU2Y+8PJqpgjHHtONjawtrSErcS7yuUuZ2YCHtrG5X7KguBsQmc7Oy5xbW+E0TmdRD1wXUU2TnZOHnxArzcmyvV9ofb/iFjIyNY1bHAC6kUR2LOoHfnztx7+R/gdx4+QPTPv6C2meIHTUvXxtCvrq8wviepKbhx9w68mis3PnWg+KlOIBDAycmJW1xdXSESiRAVHcWVyc7OxslTJ+Hl6VlsO55tPREVFa2wLjIyCl6eXqUeS05ODnJyclCtmuIhW09PD/J3H3ozQ2biWtxVxF2+wi0AsHzZMvyycVOp+1IXOg6SykAjM0GGhobFvlfS1OiH60szpdq9e3ds27YN586dQ+cPDshF4fP54Be4uFNdeDwegkeNwYK1a+Ds4AhnBwcsWLsGRoaGGNIrkCs34uupsLEUQTx9BgBAvHYNWjVtivp29sjOycFfJ45j6/69WDv3/Z0gr16/xt0PrnNKfPQIcQkJqGUmhJ21DV5nZGD+mh8R2KUrrCzqIO3FS6zZ/iseS56g/7u7cHg8HqZ//iVCV4SjmUsjuDdyxZZ9Efj3/j3sWb2mXGKiLB6Ph+DhI7Bgwzo429nD2d4eCzasg1GNGhjSoydXbsSsENhYWED87u4O8YZ1aNW4CerXtcuL4emT2PrHAaz99v2pmCNnT4MxoKGDI+4+fIDpS39AQwdHjO7zCQDg7du3+HTqZFxOSMCfP/6EXHkud31DLaEQBvoGEAoE+OyTfpj2wyLUNjNDLaEQXy9ZjKbODdC1bek/7MoLxU91PB4PwZMnY4FYDGcnZzg7O2OBWAwjIyMMGfL+zqYRI0fCxsYa4gViAMDkoCB07OSNRYsXoXdgbxw4eADRR6Nx5tT7ZODVq1e4e/cu9zoxKRFxcXGoVasW7OzsYGpqCm9vb0wPmQFDQ0PY29vj5MmT2Prrr1i2ZCmAvBmnoi6GtqtrB0dHx/IKS6nRcbACqON0lo7NBGkkCXJ2doahoSGOHj2Kzz//XOE9V1dXbNmyBa9fv+Zmg86ePYtq1aqhQYMGMDU1hbW1Nc6cOYOOHTty9WJiYtCmjeLdAuPHj0eTJk0QGBiIQ4cOwdvbu/w3rhgzvhyLzDdvMCF0Nl5IpfBo5o7IzVsh+OCUwMPkZIVveq8zMzAhdA4eS57AsEYNuNSrj21Ll2PgBx9aF69fh8+wwdzrqQu+BwCM/KQfNi9eAj09Pfx7/x627IvAs+cvULumGVo3dcPpXb+jcYP3tw4Hjx6DN1lZmDL/ezyXvkQzl0aI2vIr6hdzDZUmzBjzeV4Mv/8OL2RSeLi5IXL9RgiMP4jhk2RUq/Y+GX6dmYkJ33+Hx08lMOTXgIujI7aJF3O3YQOANP0VZoUvw+OnEtQSmqGfry/mB02Bvr4+AODxUwkOHj8GAHD/tI/CmI5v2sKdFloeMgvVq+thwLRgZGZloYtHW2xevRZ6eoWvjdEEip/qZkyfgczMTEyY+BVevHgBDw8PRB4+AsEHj9F4+Oihwn7s5eWFXTt24ts5szF7zhzUr18fv+3cpXCq7eLFi/Dp8v6L2tRpeUnoyBEjsfmXXwAAu3bsxKz//Q9Dhw/D8+fPYW9vj/nff49x48aV92arDR0Hyxc9MVp5GntO0Ny5c7FixQqEh4ejXbt2SE1NRXx8PAYPHgwnJyd4eXkhLCwMqamp+Pzzz9GhQwds3rwZABAeHo7Q0FCsX78e7u7u+OWXX7Bs2TLEx8fD2dm50HOCwsPDMXv2bPz9998Kd1KURJ3PCdJpanpOECFlpqbnBOk0NTwnSFdV5HOC7o+cDoGBamc00rOzUG/LDzrznCCN/XbY7NmzUb16dcyZMwfJycmwsrLCuHHjYGRkhCNHjmDy5Mlo3bo1jIyM0K9fPyxbtoyrGxQUBJlMhmnTpiElJQWurq44ePAgnJ2di+wrODgYcrkc3bt3x+HDh+HlpR3T64QQQoi6qOPuLl27MLpKPjFaHWgmSE1oJohoGs0EqY5mgsqsImeC7g6dqpaZIKfty2gmiBBCCCGVh1zOIFdxJkfV+pUN/WwGIYQQQnQSzQQRQgghVQBdE6Q8SoIIIYSQKoAxNdwiTz+gSgghhBBS9dFMECGEEFIF0Okw5VESRAghhFQB9MRo5dHpMEIIIYToJJoJIoQQQqoAOh2mPEqCCCGEkCpALpdDruLpLFXrVzaUBH2Mgx2gA48OJ6SqkvM0PYLKr5pj5fgVda0kk2l6BKQElAQRQgghVQCdDlMeJUGEEEJIFZCXBKl6dxglQYQQQgipZGgmSHl0izwhhBBCdBLNBBFCCCFVAM0EKY+SIEIIIaQKoCdGK49OhxFCCCFEJ9FMECGEEFIFMMYgV/V0GKPTYYQQQgipZOh0mPLodBghhBBCdFKlSII6deqE4OBgTQ9DJYwxhM0Ng7WtDQyNjdCpsw/i4+M/Wi8iIgKuTRqDb1gDrk0aY9++fYXKrFm7Bo7166GGkSFatm6F06dPK913VlYWJgVNgrlFHRgLTBDYuzceP36s2karGcVQNRQ/1axdswb169WDkaEhWrcqvI0FnTx5Eq1btYKRoSGc6tfHTz/9VKhMREQEmjRuDMMaNdCkcdGx/Vi/jDHMDQuDrY0NjI2M0NmndP+vmkB/g+WL5TK1LDqFVQJpaWlMJpNVaJ9SqZQBYNIXLxnLlau8LBSLmUAgYBG797DrV6+xgQMGMisrKyZ7KS22TsyZs0xPT48tmD+f3YxPYAvmz2fVq1dn52JiuTK7duxk+vr6bMO69SzhRjybHBTEjI2N2YPEJKX6Hjd2LLOxsWFRRyLZ5YuXmI+PD2vWrBl7m52jlu2nGFL8NBW/XLnqy46dedu4bv16diM+ngW928bEpKQiy9+9d48ZGRmxoKAgdiM+nq1bv57p6+uz33fv5sqcOZsX2/nz57P4hAQ2/11sY2JjlepX/C62u/fsYVevXWMDBubF9qVUqpZtz5XT36Aqf4PSFy/zPkuk0nL/vPqn/TCW0GmMSss/7YeV+3i1SaVIgjRBnUmQ/G0uE4lEbKFYzK17k5HJhEIh+2nN2mLrDeg/gAX4Byis8/fzZ4MGDuJet2nTho0bO1ahjIuLC5sZElLqvl8+f8H09fXZrh07uTL/PXrMqlWrxg7/9bdaP4gphhS/io6fOpKANm3asLFjxyqsc3FxYSEhIUWWnz59OnNxcVFY9+WXX7K2bdtyr/sPGMD8AwIUyvj5+7OBgwaVut+3uXmxFYvF3PsZmXmxXbN2rVq2XV1JkK7+DVISpN0q3ekwBwcHLFiwAGPGjIFAIICdnR3Wr1+vUD4mJgbu7u6oUaMGWrVqhf3794PH4yEuLq7iBw8gMTEREokEfr5+3Do+nw/vjt6IiY0ttl7suVj4+fkqrPP390NMbAwAIDs7G5cuXVJoFwD8fH25dkvT96VLl5CTkwM/v/dlrK2t0aRJE64vTaMYqobiV3b52+jrp7iNvr6+iC0mdufOnYOvr2Lc/Pz9cfHiReTk5OSViY2FX4Ey/n5+iI1RjG1J/ebH9sMyfD4fHb29ix2bptDfYPnLf1iiqosuqRRJUEFLly5Fq1atcOXKFUyYMAHjx4/Hv//+CwBIT09Hr1690LRpU1y+fBnz5s1DSEiIRscrkUgAAJaWlgrrLS0tuPeKq2dpUaCOhSVX59mzZ8jNzS2i3fdlStO3RCKBgYEBatasWWxfmkYxVA3Fr+xKs40FSSSSIsu/ffsWz54948pYFChjYamm2FqU/P+qCfQ3WP4oCVJepUyCunfvjgkTJsDJyQkhISEwNzfHiRMnAADbt28Hj8fDhg0b4Orqim7dumH69OkfbTMrKwsymUxhKavt27fDxFTALfnf/Hg8nkI5xlihdQWVpo66yhRUmjLlhWKoGoqf+ik7/qLKF1yvydiWN/obrHhyuVwtiy6plEmQm5sb928ejweRSISUlBQAwK1bt+Dm5oYaNWpwZdq0afPRNsViMYRCIbfUrVu3zOMLDAxE3OUr3GJubg4Ahb5NpKSkFvpm8iGRSATJ0wJ1UlO4Oubm5tDT0yui3fdlRCLRR/sWiUTIzs7Gixcviu2rolEMVUPxU5/SbGNBIpGoyPLVq1dH7dq1uTJPC5RJTVFTbFNL/n+tCPQ3SCqDSpkE6evrK7zm8Xhc9lpU1p7/Dawks2bNglQq5ZZHjx6VeXwCgQBOTk7c4urqCpFIhKjoKK5MdnY2Tp46CS9Pz2Lb8WzriaioaIV1kZFR8PL0AgAYGBigZcuWCu0CQFR0NNeuo6PjR/tu2bIl9PX1ERX1vsyTJ09w48YNrq+KRjFUDcVPffK3MTpKcRujo6PhWUzs2rZti+hoxbhFRUaiVatW3PGrracnogqUiYyKgqeXYmxL6jc/th+Wyc7OxqmTJ4sdW0Whv8GKR6fDyqCCLsBWibe3N5s8eTJjjDF7e3u2fPlyhfebNWvGQkNDGWOMrV27lpmbm7M3b95w7//8888MALty5Uqp+yyPW+SFQiHbuyeCXb96jQ0eNLjQ7ZnDhw3n7mZguXJ29vQZpqenxxaKxexmfAJbKBYXe2voxg0/s4Qb8Sx48mRmbGzMku4nKtX3uLFjma2tLYuOjGKXL15inTt31qrbuymGFL+yLuq8RX7Dzz+zG/HxbPK7bbyfmMhy5XIWEhLChg0fzpXPv0U+ODiY3YiPZxt+/rnQLfKnz+TFViwWs/iEBCZ+F9uibpEvrt/8W+SFQiHbExHBrl67xgYNHqzVt8jr2t9gRd4ddqblABbXZqhKy5mWA3Tq7rAqlwRJpVJWq1YtNmLECJaQkMAOHz7MXFxcGAAWFxdX6j7VnQTJ3+ay0DlzmEgkYnw+n3Xs2JFdv3pNoYy3tzcbOWKkwrrdv/3OGjZsyPT19ZmLiwuL2L2nUNs/rl7N7O3tmYGBAWvRogU7efyE0n1nvs5gE7/6itWqVYsZGhqynj16sodJDyrsA5piSPErr/ipKxFYXWAbj584wb03YuRI5u3trVD+2PHjrHnz5szAwIA5ODiwH9esKdTmb78rxnb3nj1K9Zt/m/ycArG9eu2a2rZbnUmQLv4NUhKk3XiMaf+vpXXq1Anu7u4IDw+Hg4MDgoODFZ4g7e7ujj59+iAsLAxA3i3y+XeMNW3aFNOmTcOQIUPw77//omHDhqXqUyaTQSgUQvriJUxNTcthqwghFUFeOa5p1WrVtP5TQnvJZDIIa5pBKpWW22dJ/ufVqRb9YaKn//EKJXiVm4OOl3eX63i1SaX4AdX8O78AICkpqdD7BZ//4+XlhatXr3Kvt2/fDn19fdjZ2ZXTCAkhhBDNkssZ5DzVMla5jl0TVCmSIGVt3boV9erVg42NDa5evYqQkBAMGDAAhoaGmh4aIYQQQrRElUyCJBIJ5syZA4lEAisrK/Tv3x/z58/X9LAIIYSQckMzQcqrkknQjBkzMGPGDE0PgxBCCKkwTM7AVEyCdO0W+Ur5nCBCCCGEEFVVyZkgQgghRNcwxiBX8YbvSnDDuFpREkQIIYRUAXRNkPIoCSKEEEKqAEqClEfXBBFCCCGkXCUlJeGzzz6Do6MjDA0NUb9+fYSGhiI7O1uj46KZIEIIIaQKkKvhmiBV6xfn33//hVwux7p16+Dk5IQbN27giy++wOvXr7FkyZJy6bM0KAkihBBCqgBtPh0WEBCAgIAA7nW9evVw69YtrF27lpIgQggpL/S7V4RoJ6lUilq1aml0DJQEEUIIIVWAOmeCZDKZwno+nw8+n69S2x+6d+8eVq1ahaVLl6qtzbKgC6MJIYSQKkAOxl0XVOYFeUlQ3bp1IRQKuUUsFhfZZ1hYGHg8XonLxYsXFeokJycjICAA/fv3x+eff17ucSkJzQQRQgghRMGjR49gamrKvS5uFmjixIkYNGhQiW05ODhw/05OToaPjw88PT2xfv16tYxVFZQEEUIIIVWAXP5+JkeVNgDA1NRUIQkqjrm5OczNzUvV9n///QcfHx+0bNkSv/zyC6pV0/zJKEqCCCGEkCpAnUmQuiUnJ6NTp06ws7PDkiVLkJqayr0nEonKpc/SoCSIEEIIIeUqMjISd+/exd27d2Fra6vwniZ/r0zzc1GEEEIIURmTs7zZIBUWVk4zQaNGjQJjrMhFk2gmiBBCCKkC1JFUaDopqWiUBBFCCCFVgDZfE6St6HQYIYQQQnQSzQQRQgghVQDNBCmPZoIqCGMMYXPDYG1rA0NjI3Tq7IP4+PiP1ouIiIBrk8bgG9aAa5PG2LdvX6Eya9augWP9eqhhZIiWrVvh9OnTSvWdlJQEnl61Ipfdu3ervvFqoskYhs0Ng4trIxgLTFCzdi109fPF+fPnC7UTGxuLzl27wFhgArNaNdGpsw8yMzPLvtFqRPFTnSZjOGr06EL7Z1svz2LH2a17d/D0qmH//v1l2tbyQMfB8pX31Ge5iotuJUFgpEhSqZQBYNIXLxnLlau8LBSLmUAgYBG797DrV6+xgQMGMisrKyZ7KS22TsyZs0xPT48tmD+f3YxPYAvmz2fVq1dn52JiuTK7duxk+vr6bMO69SzhRjybHBTEjI2N2YPEpFL3/TY7hz35L1lhmRsWxoyNjVm6VKaW7a/sMdz+6zYWdSSS3btzl924dp19NmYMMzU1ZSmSpwp9mZqaMvGCBezGtevs9r+32O7ffmdvMjI1HjuKX+WP4cgRI1mAf4DCfpqW+qzIPpctXcq6BXRjANi+iL0aj5s2xE9Tx0Hpi5d5nyVSabl/Xm2z6Mr2igJUWrZZdC338WoTSoKKoc4kSP42l4lEIrZQLObWvcnIZEKhkP20Zm2x9Qb0H8AC/AMU1vn7+bNBAwdxr9u0acPGjR2rUMbFxYXNDAlRqW93d3c2ZvRojR80tSGGJR3YoiOjuHUeHh7s22++0XisKH5VM4YjR4xkvQN7f3SccZevMFtbW/bkv2StSoJ09ThYkUnQVvMubI+Fv0rLVvMuOpUE0emwCpCYmAiJRAI/Xz9uHZ/Ph3dHb8TExhZbL/ZcLPz8fBXW+fv7ISY2BgCQnZ2NS5cuKbQLAH6+vly7Zen70qVLiIuLw2djPlNuQ8uRJmNYUHZ2NtZvWA+hUIhmzZoBAFJSUnD+/HlYWFjAq307WFqJ4O3TCWfOnCnL5qodxU912hDDEydPwEJkiQYuDfHFl18gJSVF4f2MjAwMHjoEq1eu0uhTeItCx8Hyp+ozgvIXXUJJ0DtZWVmQyWQKi7pIJBIAgKWlpcJ6S0sL7r3i6llaFKhjYcnVefbsGXJzc4to932ZsvS9cdNGNGrUCF5eXh/btAqjyRjm+/PPP2FiKkANI0MsDw9H1JFI7jdz7t+/DwAImzsXX3z2OQ7/9TdaNG+OLr5dcefOnTJssXpR/FSn6Rh2CwjA9l+34Vj0USz9YQkuXLyIzl27ICsriyszZeoUeHl6onfv3mXbyHJEx0GijSgJekcsFkMoFHJL3bp1y9zW9u3bYWIq4JacnBwAAI/HUyjHGCu0rqDS1FFXGQDIzMzEjp078dmYMSWOq7xpYwx9fHwQd/kKYs6cRYC/PwYMGsh9E5fL5QCAsV9+idGjR6N58+ZYvmw5GjZsiE2/bCrlVqsPxU912hbDgQMHokePHmjSpAl69eqFvw/9hdu3b+PQoUMAgIMHD+LY8eMIXx6u1HaWF22LnzJ9a8txUFlyxtSy6BK6Rf6dWbNmYerUqdxrmUxW5kQoMDAQHh4e3Ov8b2oSiQRWVlbc+pSU1ELfTD4kEokgear4LSUlNYWrY25uDj09vULfZFJS3pfJnxIvbd979uxBRkYGRgwfUaptLS/aFMN8xsbGcHJygpOTE9q2bQvnhg2wcdNGzJo5ixuTayNXhTqNXBrh4cNHpd1staH4qU4bY/ghKysr2Nvb487dvJmyY8eP4d69ezCrVVOhXL/+n6JDhw44cex4SZurdtoUv8p6HFSWnKl+OkvXkiCaCXqHz+fD1NRUYSkrgUDAHeydnJzg6uoKkUiEqOgorkx2djZOnjoJL8+ib3EFAM+2noiKilZYFxkZBS/PvOlZAwMDtGzZUqFdAIiKjubadXR0VKrvjb9sQmCvQNSpU0f5DVcjbYphcRhj3IHdwcEB1tbWuHX7lkKZ23duw97e7uMbrGYUP9VpewzT0tLw6NEjWInyPtRnhszEtbiriLt8hVsAYPmyZfhlY8XPpmlT/CrrcZBUgAq+ELvSKI9b5IVCIdu7J4Jdv3qNDR40uNCtocOHDVe4G+Ts6TNMT0+PLRSL2c34BLZQLC721tCNG35mCTfiWfDkyczY2Jgl3U9Uqm+WK2d3bt1mPB6P/X3oL43fSaJNMXwlS2ezZs5ksWdjWNL9RHbpwkX22ZgxjM/nsxvXrnPtLF+2jJmamrLdv/3O7ty6zb795htWo0YNdvf2HY3HjuJXuWOYLpWxaVOnspgzZ1nivfvs+NFjzNPTk9nY2JR4ezm06O4wTcavtH2zXPUfByvy7rD1pt5sm7CLSst6U2+dujtMZ5KgVatWsc6dO5e6vLqTIPnbXBY6Zw4TiUSMz+ezjh07sutXrymU8fb2ZiNHjFRYt/u331nDhg2Zvr4+c3FxYRG79xRq+8fVq5m9vT0zMDBgLVq0YCePn1C6b5YrZ7NmzmS2trYsN+etxg+W2hTDzNcZrG+fvsza2poZGBgwKysrFtgrkP1z7nyhdsQLFjBbW1tmZGTEPD092emTpzQeN4pf5Y9hxqvXzM/Xj9WpU4fp6+szOzs7NnLESPYw6UGJ49W2JEgXj4MVmQStE3RkW007q7SsE3TUqSSIx5hunAAMCwvD5s2bkZSUVKryMpkMQqEQ0hcvVTo1RgghRHfJZDIIa5pBKpWW22dJ/ufVWuMOMOSpdqlvJnuL8a9Pl+t4tYnOXBMUFhZW6gSIEEIIIVUf3R1GCCGEVAFyOYOcR3eHKYOSIEIIIaQKYHIGpmISpCNXyHB05nQYIYQQQsiHaCaIEEIIqQLkjEEOOh2mDEqCCCGEkCqArglSHp0OI4QQQohOopkgQgghpAqgmSDlURJECCGEVAF0TZDy6HQYIYQQQnQSzQQVI/9ZCTKZTMMjIYQQUlnlf4ZUxPN3MthblWdy3iBXTaOpHCgJKkZ6ejoAoK69nYZHQgghpLJLT0+HUCgsl7YNDAwgEokwR3JJLe2JRCIYGBiopS1tpzM/oKosuVyO5ORkCAQC8Hg8TQ+HEEJIJcQYQ3p6OqytrVGtWvldgfLmzRtkZ2erpS0DAwPUqFFDLW1pO0qCCCGEEKKT6MJoQgghhOgkSoIIIYQQopMoCSKEEEKITqIkiBBCCCE6iZIgQgghhOgkSoIIIYQQopMoCSKEEEKITvo/1Q0YJGvh7K8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "baselines = ProductBaselines(\n", + " {\n", + " (\"name\", \"pronoun\"):[(\"Sarah\", \"her\"), (\"John\", \"His\"), (\"Martin\", \"His\"), (\"Rachel\", \"Her\")],\n", + " (\"city\", \"state\"): [(\"Seattle\", \"WA\"), (\"Boston\", \"MA\")],\n", + " \"occupation\": [\"doctor\", \"engineer\", \"teacher\", \"technician\", \"plumber\"], \n", + " }\n", + ")\n", + "\n", + "inp = TextTemplateInput(\n", + " \"{name} lives in {city}, {state} and is a {occupation}. {pronoun} personal interests include\", \n", + " values={\"name\": \"Dave\", \"city\": \"Palm Coast\", \"state\": \"FL\", \"occupation\": \"lawyer\", \"pronoun\": \"His\"}, \n", + " baselines=baselines,\n", + " mask={\"name\": 0, \"city\": 1, \"state\": 1, \"occupation\": 2, \"pronoun\": 0},\n", + ")\n", + "\n", + "attr_res = llm_attr.attribute(inp, target=target, skip_tokens=skip_tokens, num_trials=3)\n", + "\n", + "attr_res.plot_token_attr(show=True)" + ] + }, + { + "cell_type": "markdown", + "id": "documented-harvard", + "metadata": {}, + "source": [ + "One potential issue with the current approach is using Feature Ablation. If the model learns complex interations between the prompt features, the true importance may not be reflected in the attribution scores. Consider a case where the model predicts a high probability of playing golf if a person is either a lawyer or lives in Palm Coast. By ablating a feature one at a time, the probability may appear to be unchanged when ablating each feature independently, but may drop substantially when perturbing both together.\n", + "\n", + "To address this, we can apply alternate perturbation-based attribution methods available in Captum such as ShapleyValue(Sampling), KernelShap and Lime, which ablate different subgroups of features and may result in more accurate scores.\n", + "\n", + "We will use `ShapleyValue` below because we essentially only have three features now after grouping. The computation is tractable." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "iraqi-gibson", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHCCAYAAADoyB1GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC++0lEQVR4nOzdd1gTyRsH8G8IRUrovSggKGIDRQEbWMByds/ey52evZe7n+0s2MXe+9l7PRVsiGKh2LCcBRULRYEgNUDm9weyGgElJhAg7+d59rnLZHZ2diSbN7MzszzGGAMhhBBCiJJRUXQFCCGEEEIUgYIgQgghhCglCoIIIYQQopQoCCKEEEKIUqIgiBBCCCFKiYIgQgghhCglCoIIIYQQopQoCCKEEEKIUqIgiBBCCCFKiYIgkg8tIk4IIUQZUBBE8uHxeAAAsVis4JoQQgghxYeCICJh1qxZ2LVrFwBARUUFjDHqGSKEEFIuURBEOKdPn8aRI0fQv39/2Nvb48KFC+DxeFzPECGEEFKeUBBEAABJSUk4cOAAbGxs8PDhQ/zxxx/o2rUr/ve//yErK4t6gwghhJQ7FAQRAMCBAwfw5MkTtGjRAk5OTpg0aRLWrVuHffv2ISoqinqDCCGElDsUBBFERUXh5MmTsLe3x7hx47h0gUCAd+/e4ebNm1wa9QgRQggpL1QVXQGieLt370ZoaCg0NDTw9OlTODo6IiUlBaGhoRCLxahRowaXl8fjIScnByoqKtQ7RAghpEyjIEjJXb9+HZcuXYKvry9MTExQp04d1KlTB2pqaggJCUHfvn3h6uqKVatWIS4uDuPGjYOhoSGA3F4hCoQIIYSUVXQ7TIllZ2dj3759EIvFGDlyJJYsWYJ79+6hZs2asLCwwIoVK7B48WK8ffsWfD4fYWFhsLe3x4oVKwBAIgDKzMxEYGCgok6FEEIIkRqP0SAPpXXt2jX8/vvvaNu2LRYuXCjxXmZmJjQ0NPLtc+TIEUyZMgU7d+6Ep6cnl37x4kW0aNEC58+fR4sWLYq97oQQQoisKAhScmFhYbC0tISFhQW3QrSKSm4HYXJyMkaPHo309HRoaGhg6tSpcHZ2RtOmTdGiRQv89ddfAHKn13ft2hU8Hg/nz59X2LkQQggh0qAxQUqubt263P/nBT95Y3369++PsLAwDB48GK9fv4aHhwd69eqFFy9eQFU1909HLBbj+PHjuHjxIu7du8ftLxaLwefzS/6ECCGEkCKiniBSoNjYWFhZWWH//v3o0qULACAiIgIdOnQAYwz379+Hvr4+Xr16hRYtWqBZs2bYsGEDRCIR1NXVuXJo8DQhhJDSigZGkwKpqamhadOmCAgIAAAIhUJkZ2fj06dPGDZsGPT19ZGdnY0tW7YgPj4eS5YsAZA726xjx4548eIFgC9T6inWJoQQUtpQEEQKZGhoiHHjxuHo0aNo1KgRRo8ejYYNG8LGxgbDhg0DAERGRsLf3x+zZs2CQCDAhw8fcPbsWZw4cQKXLl3C5MmT8fz5c/D5fOoNIoQQUupQEEQK1aZNG8TGxmLixIno0KEDsrOzMWPGDBgZGSE9PR0LFy6ElZUVxo4dCwC4ffs2Vq9eDS8vL6SkpCA+Ph5169bF2bNnJcrNzs5WwNkQUjB/f38cP35c0dUghCgADYwmP9SxY0ckJydjzpw5aNeuHQAgKCgIhw8fxokTJwAAr169woYNG+Do6IhLly5x+965cwehoaFo2rQpHj9+jNq1a3ODqglRtPfv32PDhg1o3749OnTooOjqEEJKGA2MJlJLTk5G3bp1YW1tjUuXLkEkEmHPnj0YPXo0/v33XzRs2BAAEB0djfbt2yM7OxtOTk54//49EhMTcfDgQTg7Oyv4LAgBBg0ahKSkJMyZMwfVq1dHTk4OzWokRInQ7TAiNV1dXcyaNQvbtm0DADx58gSbNm1C27ZtuQAIAM6ePYv3799j2LBhWLlyJS5evAg7OzssXrxYUVUnhBMaGoqIiAi0atUK1atXBwDw+Xzk5OQouGaEkJJC9yXIT+nduzcAQCQS4dixYwgJCcGhQ4e49+/evYsTJ07A09MTI0aM4NI1NDQQExMDsVgMHo9HA6aJQuTk5GDatGmoVasWunXrhtevX+PVq1do3Lgx+Hw+N5uR/j4JKd8oCCpmHz9+hIGBAbcQYXmjrq6OIUOGoEqVKrCwsACQGxj9+++/ePr0KbZu3crl/e+//5CamopatWpBLBYXeWwQBUxE3g4ePIjU1FR07twZOjo6WL9+PU6cOIG0tDSsWLECXl5eiq4iIaQElM9v5lJCLBbj999/h6WlJfz9/RVdnWJjYWGB7t27c68vXryIAwcOoFWrVmjQoAGXvmfPHgiFQnh5eUFVVbXQtYPu3r2Ls2fPYvfu3Xj06BFUVFTA4/G4x3oQIouUlBQsWbIEDRo0gI+PD1RVVTF8+HAcPnwYHTp0QJ8+fbB7926JfWjoJCHlEwVBxejixYuIi4tDs2bNsHLlSlStWhXBwcGKrlax09XVhaamJsaPH8+lBQUF4cqVK3B1dcUvv/wC4MuthrwxGNHR0RgzZgw8PT3RtWtXrF+/Ho0bN0bv3r2RnJxcbnvTSMlatGgR9PX1MXjwYMTGxuL48eM4c+YMLCwsMHv2bDRt2hSXLl2SCHyoF5KQ8om+VYpJeno6Vq1aBVNTU+zZswcvXrxA165dMWTIEGzduhWMsXL767JBgwYICgpCxYoVAeTeHjtw4AB4PB4GDx4MABK9OnmzcYYPH44DBw5g4sSJeP36Nfbu3YtTp04hLS0NTZs2RURERMmfDClXXrx4gdOnT6N169bIyMhA7dq1MWPGDCxevBiVK1fGoUOH4OnpiRs3bnDB+ZQpU/L9eCmvn11ClA0FQcVk165diI2NRZ8+fQDkfunPmjULAwcOxMaNG5GQkFCuf11+Pc34xo0buHjxIjw8PLgHtub16uR90ezduxenT5/G77//jtmzZ8PAwADW1tbw8PDA/v374eLigiNHjpT8iZByZdOmTRAIBOjRowdWrVoFJycnXLlyBWfOnMHYsWMxfvx4jBgxAh06dICqqipev36N27dv48KFCxKzxuj2LCHlAwVBxSAmJob74u7UqROA3C99VVVV9OjRA8+ePcOWLVsUXMuS06RJE+zYsYNbWbqgXqClS5fC09MTPXv25J43lkddXR19+vThepYI+Vl+fn7YtGkTrKyskJ2djYoVK0JfXx9mZmYYNWoUunfvDmtra/z+++8AwK18XrVqVfD5fDx58gRLly6FUCik27OElAM0O6wY+Pv7IysrC4MGDQIgObupUqVK4PP5SE1NldgnJyeHGwBcHtWrV4/7/2+/PP777z8kJiaiXbt2cHJyAoB8C9Y1bdoUnp6e+crNzs6mFahJkeQthOjo6AgA3CDo4cOHo2nTpjh9+jT27NmD+fPncwH39evXERcXhx49egDIvWV76dIlCIVC/P333wo7F0KIfNBPGTm7d+8egoOD4e3tjfr16wOQ/NI/deoUAMDY2BiMMVy9ehWfPn3iHjKqjAu1WVlZISEhAXXq1AGAAttALBajQoUKSEtLw6NHj3D58mUA+O4sM0K+9m1g3aVLF4SFhSEmJgbR0dHYuXMnmjRpgkGDBnE/Rv755x8MHToUz549w5gxYxAREYFmzZqhZcuWXDm3bt3i/r88j/VTFLrtSIoTBUFylJOTg//973/Q0tLChAkTuLS8nqCUlBQcOXIE6urqaN68OW7evInVq1ejZs2amD17NoD8F+ryLicnB2pqaqhVqxb27duHlJQUiTbIuwCqqKjg6dOn6NixI3x8fDB48GA4ODggKCio3PaekeLDGENOTg6cnZ1x5MgR/Pbbb3BycsJvv/0GQ0NDAEBYWBjMzMygoqKCxYsXIzExEXPnzkWVKlVgaGgIoVCIOXPmwMPDA1FRUUhMTKT1rOQoPj4eYrGYbjuSYkV/XXKUmZkJPT09BAYG4vDhw8jOzgafz+c+xCtXrsTZs2fRpUsXODs7o3r16tiwYQNWrFiBI0eOoGfPnhAKhRJllvdfQXw+H+rq6pgwYQJiY2O5B7LmyWu7hIQEdOrUCTk5OVixYgVu3ryJTp06YdSoUXj37p0iqk7KMB6PBz6fz32+BAIBHj58iG7dunF5UlJS8OrVKyxfvhx8Ph+zZs2CQCDAixcvUK1aNSxcuBDHjx/Htm3bYGdnh549e2Lnzp2KOqVyRSwWY9iwYejWrRtSUlIUXR1SnjEidwcOHGAWFhasRo0azN/fn82ePZsNHTqU8fl81rVrVxYbG8tCQ0PZvn372NOnTxljjN26dYvZ2dmxR48eKbj2iuPn58c0NTVZnz59WGBgINu0aRNLTk5mjDG2cOFCZmRkxN69e8flj4mJYRYWFmznzp0FlpednV0i9SZlX1ZWVr606dOnMx6Pxzw8PNinT58YY4zVqlWL7dy5ky1fvpzVrFmTrVmzhsuvra3N9u3bxxhjLCcnR6IssVhcjLUvfwIDA1nDhg3ZkiVLCnz/2/Yl5GdRT1Ax6Nq1K969e4dBgwbhwoULuHz5Mm7duoXly5dj+vTpWLp0KerVq4e1a9fC29sbw4YNg5aWFgwMDHDnzh0AwP379zF27Nhy3xP0talTp+Lp06fg8XhYuXIl/v33X8TExAAAVq9ejREjRsDCwgIikQgAYGBggKysLOjo6HBlhISEICAgAAC4Z0AxGqMhFx8/fiy3f48FDa7v0aMHRowYgXXr1kFHRwchISFQV1fHnTt3MGHCBMyePZub/HDx4kU4ODigWrVqAL70YL58+RIALbYojbw11iwtLTFw4EAAkuME09LS6BYZkR9FR2HlXWZmJktLS+Ne37lzh/F4PHbixAmWkJDAbty4wZo1a8ZUVVWZtrY2S0xMZIwxNnfuXFazZk2WkJCQr0xl6OH4+PEjS09PZ4wx9vr1a+bk5MQ2b97MGPvyq3rNmjXMzc2NnTp1ijHGWEpKCvv9999ZjRo1mIuLCwsJCVFM5cuhnJwc1rlzZ2ZmZsaWL1+u6OoUu4J6bvbt28dUVVVZxYoVuTbI65EIDg5m9vb27MGDB4yx3J6lzZs3MxMTE7Zr1y6JMqkX4/s2b97MHBwc2NGjRxljude7vGteZGQkMzMzY9euXWMxMTFc2xLysyicLmbq6uqoUKEC9/rDhw8wMzODs7MzDAwM4O7ujuXLl0NdXR1Tp06Fvr4+xGIxGGMwNTWFhoZGvjKVYfC0oaEh1242NjZwdHTkesl4PB6eP3+OgwcPwtnZGQ0bNgQAaGtrY/HixQgJCUHTpk3Rv39/XLt2TVGnUK58/QiYFStWoHLlyggMDFR0tYpNQYshamtrQ1dXF2PHjs235tWVK1ego6OD6tWrIzMzEzNmzMCMGTMwceJE+Pr6cmUC+RcKJV/ExMRg165dSEhIwMiRI/HPP/+Az+eDz+cjPT0d69atg1gshqenJ9TU1LB27Vr8+++/iq42KcsUHYUpm5iYGNa4cWNWrVo1duTIEbZo0SLm5ubGzM3NuZ4Pxhhr2LAhGzFiBPc6IyOD7d69m3Xv3p2lpqYqouoKkffr+Z9//mG6urqsZ8+ebNKkSczY2Jg1b96c3bx5kzHGWEBAAFu1ahXbtm0bt6+Hhwf73//+V2C5ytCbJi9paWmsQ4cO7Ndff2UikYgxxtjs2bMZj8djM2bMUKqejZSUFO7zl3feWVlZbNSoUWzMmDHs2bNnrF27dszV1ZUbLyQWi1lAQACbOHEi69evH9uwYYPC6l/aTZkyhTVp0oQFBwezXbt2MSsrK1avXj128+ZN9t9//zE1NTV25MgRRVeTlCO0ylwJMzMzQ1BQEP766y/s3bsXQO5U3H379nE9H1FRURAKhWjSpAm339SpU3H9+nVYWVlBS0srX7l5C8GVN3m/nnv37o169erhzz//xNu3b9G/f3/MnTsXFSpUwJIlS7B06VJUqVIFKSkpmD9/PqZPn44qVaqAMQaRSAR1dXVkZGQgISEBlpaWEjODaHzB9+3ZsweRkZFYvHgx1NTUIBaLMWPGDPz222/Izs7G2rVroaWlxY2PKY8YYxCLxdDW1ubSVFRUIBaLoaqqCrFYjDNnzuDDhw94/Pgxzpw5Azs7OwDA6NGjERERARsbG9SqVQt///039u/fjz179sDMzExRp1Tq5K2x1rx5czRs2BANGzZEy5YtsXDhQrRu3RppaWlo1KgROnXqhMWLF+PVq1dYuXIltywBY4zGXhHpKTgIU2oikYht2rSJVa1aVSL98ePHzMnJiQUHB7N3796xyZMnMw0NDbZv3z5ufFF4eDi7cOECO3nyJLefssxA+Xomz+vXr1mTJk3YkCFDmEgkYnFxcWz16tVMX1+fmZmZsRUrVjDGGHv48CFr3Lgxc3NzY40aNWLh4eGKqn6Z8v79e+bl5cUMDQ2ZpaVlvjEY9+7dY82aNWOtW7cucIZVefX1Zy0tLY3VqFGD8Xg89ueff7Jbt25x7wUFBTEej8fq16/P3r59yxjL7U3y8vJiO3bsyFeuMvWqfS0rK4u1a9eOtWrVir169YpLy7NgwQLG4/HYo0eP2JMnT5ijoyPr1atXgWVRLy+RBv0EViA1NTUMGTIEoaGhAICsrCwAuT1B79+/h7OzMzeuZfv27ejevTuEQiGWLl2Kli1bYs6cORg9ejRq1aqF8PBwpfkV9PVMHmtra2RnZ8PY2BhqamowMTFB9+7d4e3tDXt7e653Iu9ZUHPnzkXdunXRrFkzzJ07lxuXcfXqVSxbtgyZmZklf0KlmL+/PxhjOHHiBBYuXIjJkyfD09MTr1+/BgDs3r0bIpEIEyZM4HpElAGPx0NqaioYY/jf//4HkUiEUaNGYd68eRKPiPnzzz/RuHFj2NjYwMnJCX/++Se0tbVhZ2eHiIgIbubizZs3ASjveCGRSARHR0e0adMGFStW5HrYAODdu3fYvn07hg4dCicnJ6xfvx6pqanYvHkzAODatWvYunUrzp07BwASvbyE/JCCgzBSgKlTpzJDQ0Pm4eHBXFxcJH5Z/v3338zS0pKtXr2aMZb7y/GPP/5gvr6+LCMjQ1FVVoi8X+PLly9nFSpUYCNGjGCLFy9mDRo0YKamplyvRWJiImvWrBkbPnw4t+/27duZv78/i4uLY6dPn2ZTpkxhlpaW7MWLFwo5l9Lo7t27rGHDhmzGjBlcWlxcHPPz82NPnjxhwcHBrHHjxmzcuHEKrKVibN68mfF4PObu7s50dXXZ8ePH840ViouLY7Vr1+bGqZ07d465uroyS0tL5uzszP09vnv3jvF4PLZy5Ur2/PlzhZxPaZH3mc7rzcnOzmZz585lAoGAffz4kV2+fJmZmJgwf39/xhhjBw8eZLq6uqxp06bM1NSUNWrUiD1+/Fhh9SdlDwVBpdCePXsYn89nrVu3ZnFxcVx6aGgoa9KkCbO3t2d6enrcoN/MzExWqVIlduXKFUVVWeHCw8PZmDFj2IgRI5i2tjbr0aOHxPsBAQHM2dmZzZ07l6WmprKUlBQWGxvLkpKSmIeHB+PxeKxfv34Kqn3pU9Dtia9v1aSlpbEhQ4Ywb29vFhkZme99ZXDu3Dm2a9cu7vy/lZWVxRo3bswGDx7MpYlEIrZ+/XrudjdjjI0ePZrxeDzWpk0b5unpyWrXrs1evnxZIudQ2kVERDCBQMBWrVrFMjIyWJcuXZiLiwv3fv/+/VnPnj1ZWloaS0tLY3379mXNmjVjb968UWCtSVlCQVApFR8fz32Q8+6NBwUFMWNjY3b37l0WHBzM6tSpw+zs7NiqVauYjo5OoRdjZfLq1SvWqlUrduHCBcZYbpsJhULGGGNbtmxhDRo0YMePH+fyx8TEsH79+jF7e3smEAiYi4sLN3ZDmaWmprLx48ezlStXMsa+/ELP++/27duZh4cHW7x4scLqWBZs3bqVeXp65luzKm8l9Js3bzI+n88mTZrEQkJC2Js3b9iiRYu4WY/KbseOHczGxoaJxWK2Z88eZmBgwAIDAxljub1Ea9asYRUqVODGRr57946dPn2aJSUlKbLapAyhIKgMOXr0KNPR0WEfP35kjOX2AK1atYqZmZmx+vXrs9evXyu4hqXLmzdvWLt27djBgwe5tN9//505OztzyxHk/So/duwYY4yxP//8k50/f14h9S2Nvg5+8np6Xr16xTp37szat2/P4uPjGWPK1wtUVCKRiA0bNoxVqFCBDRgwgG3bto2FhoZy73t7e7PmzZtLfGlnZ2cr1SDzH0lJSWEJCQnM0dGRtWjRgjGWe+3LM2vWLNaxY0cWFhaW7z1CfoQGRpchPj4+qF27Nvbs2QMgdyHGkSNH4sGDB1izZg0sLS0VXMPSxcTEBM7Ozvjjjz8wadIkhIWF4cmTJ7CzswNjDHfv3sWJEyfg5OSEDh06AADmzZuH5s2bK7jmpUfeYHsej8cN2t27dy9iY2PRq1cvGBsb05O+C8EYg5qaGtatW4fQ0FAwxhAZGYmMjAwAwIEDBxAcHIx58+ZBT0+P24/P5xf4GA9lpa2tDQMDAyxbtgxbt24FAKxZswanT58GAAwcOBDq6uoYMWIEhEIh1NXVFVldUtYoOAgjRZT3i9zf35/p6uqyYcOGsYiICHbjxg0F16z0u3btGqtXrx6rV68e8/Hx4Zbj9/PzY9WqVeNuVdCv7x+Ljo5mbm5uzMTEROkH8RZFTk6ORC9Z3q3Z9PR0Zm5uzkaOHKmoqpVZSUlJrFOnTqxdu3bc3+DBgwdZ9erVuceWEFJUPMbo6ZJlzf379zF+/HjEx8fDx8cHs2bNkljEjRQsKioKlSpVgoqKCmJjY/HLL7/Azc0N69evp4XWpPDgwQP06dMH0dHRmDhxIoYPHy7Rk0Hy+7a37MaNG/j1118RFBQEe3t7BdasbPr48SOGDRuGs2fPolOnTrh58yYsLCywa9cu2NjYKLp6pAyhIKgMu3//PgwNDWFlZaXoqpQ5Hz9+RJ06dbBmzRq0bduWbun8hB07dmDChAkQCATYuHEjfHx8FF2lMiVvJXPy84KDg3H06FFUr14ddevWRe3atekHDZEKBUFEKWVmZmLy5MlYv349lixZglGjRim6SmXWtGnTkJaWhuXLl1MgWUTl9TE3hJQ1FAQRpXb69GncunULI0eOhImJiaKrU2ZlZWVBTU2NfoUTQsoUCoIIIYQQopSo75oQQgghSomCIEIIIYQoJQqCCCGEEKKUKAgihBBCiFKiIIgQQgghSomCoDIqMzMTs2bNQmZmpqKrUmZRG8qG2k921IayozYksqAp8mVUcnIy9PT0IBQKoaurq+jqlEnUhrKh9pMdtaHsqA2JLKgniBBCCCFKiYIgQgghhCglVUVXoLQSi8V49+4dBAJBqXwMQHJyssR/ifSoDWVD7Sc7akPZlfY2ZIzh06dPsLS0LNZn62VkZEAkEsmlLHV1dVSoUEEuZZV2NCaoEG/evIGNjY2iq0EIIaQciI6OhrW1dbGUnZGRAU09c0AklEt55ubmiIqKUopAiHqCCiEQCAAAsw9fRgVtHQXXpuwaZqau6CoQZWdprugalHnrI14rugplVkZqCmZ28ea+U4qDSCTKDYAaLAZUNWUrLDsdMdcnQSQSURCkzPJugVXQ1oEmBUE/TVegoegqEGVHM4ZkRtdA2ZXEsAqeuhZ4MgZBTIUHZbo9REEQIYQQUg6o8ABZYy3GA3LkU50ygWaHEUIIIUQpUU8QIYQQUg7wVXjgqcjWFcRUeErVE0RBECGEEFIOqPB4Mo89YqVwSZjiRLfDCCGEEKKUqCeIEEIIKQdUeABPxq4NplwdQRQEEUIIIeUB3Q6THt0OI4QQQohSop4gQgghpByQ1+wwZSLXniBbW1v4+/vLrbyXL1+Cx+Phzp07citTUa4e3YNZ3ZpjfPNaWDS4M57fDf1u/tvnT2LBgA6Y0MIF/+vQGLvnT0OqMJF7/+6V81g8pAumtK6HiT6uWDiwI26dPS5RxpmtqzC6sZPE9leHRhJ5GGM4s3UV/texMSY0r42Vo/rifdRT+Z24HDHGMGuFPywbuEOzuhO8e/VA5H//fXefI+fOwq1je+i71oJ2TWe4tGuDXUePSOQJunUT7X4bDMsG7uA52OFYwPmfOnZMfDz6ThgHc4960K7pjDrt2+LQv2dkP3E5ofaTHWMMs+bOgaWdHTQN9OHt64PIhw9/uN/ho0fh7OoCDT1dOLu64Ojx4/nyvH37Fn0GDoCRlSW0DA3g4l4fYeHhAICsrCxM+esv1HSrC20jQ1ja2aHf4EF49+6dRBmZmZkYNW4cjK2toG1kiPa/dsGbN2/kc/JyQNfB4qXC48llUyal+naYjY0N3r9/jxo1aii6KjIJv3AGR1b6wbfvMEzechSVa7th3aTfkRD7rsD8z++F4Z95U+DZtgv+3HkKA+f44/XjB9i7cDqXR0tXD779hmHcun2Ysv043Nt0xp4Ff+LRzasSZVnYOWLusavcNnX7CYn3A/dsxqX929F13HRM2HQQuoYmWDNuEDLSUuTfEDJatHEDlm3dgtUzZ+P20eMwNzGBz4C++JRSeF0N9fTx1/ARCDl4BPdO/YuBXbpi4NTJOBd0hcuTmp6O2tWqYfXM2TIdu+/EcXgS9QInNmzC/dNn0bllS3QfMwoRkZHyaQAZUfvJbtHSpVi2ciVWL1+O28HXYG5mDp9ffsGnT58K3Sfkxg1079sHfXv1wt1bt9G3Vy9069MbN2/d4vIkJiaiYbOmUFNTw7/HjuNhRASWLlgAfX09AEBaWhrC70Rg+tRpCA+5gSP79uG/p8/QvuuvEscaO2kijp44gX07dyL4wkWkpKSgbZfOyMlR/MovdB0sfjwVQEXGTdaB1WVNqT5dPp8Pc3NzqKqW7bt2l/Zvh8cvXdCgXVeY21ZGl9F/wsDUHMFH9xaY/2XkHRiaW8Hr134wsrRG5Vp10aB9N7x+8oDL4+jqjtpNfGBuWxkmVhXh3bUfLO2r4sX9cImyVPh86BqZcJvAwJB7jzGGKwd2wrffMNT28oWlfRX0/msBsjIzEBZwqnga4ycxxuC/fSv+Gj4CnVu2Qo0qVbFj0RKkpadjz8kThe7n7eGBTr4tUc3BAZUrVcKYAQNRq6oTgsO+/AJt7eWNueMnonPLVjIdOyQiAqP69kf92i6wr1gR/xsxCvq6ugiPfFBguSWJ2k92jDH4r1mNvyZPQeeOHVGjenXs2LwZaelp2LN/X6H7+a9eDZ/mzTFt0mQ4Va2KaZMmo3nTpvBfvYrLs3DpUthYW2Pbxk2oX68ebCvZonnTZqhsXxkAoKenh4DTZ9Dt119RtUoVeLi7Y9WyZQgLD8fr17kPNxUKhdiyfTuWLliAFs2aw9XFBf9s3Yb7Dx4g8OLF4m2cIqDrICmNpAqCvL29MXLkSIwcORL6+vowMjLC//73PzBW8OPWli1bhpo1a0JbWxs2NjYYPnw4Uj7/8ktNTYWuri4OHToksc/Jkyehra2NT58+5bsddvnyZfB4PFy4cAFubm7Q0tJCgwYN8OTJE4ky5s6dC1NTUwgEAgwZMgRTp06Fi4uLNKcqN9lZIkT/Fwmn+g0l0p3qNUTUg4gC97Gr4Yqk+BhEhlwBYwzJCR9w5/I5VPf0KjA/YwxPQkMQFx2FyrXdJN6Lf/MK/+vYGLO6Ncf2mePx4V00997H92+QnBAPp3pf6qamro7KLvUKrZuiREVHIyY+Hr6NGnNpGhoa8KrvjuvhYUUqgzGGC9ev4UnUCzSpV1/ux25U1w37z5xGQlISxGIx9p06iUyRCN7uHkU+VnGh9pNd1MsoxMTEwLdFCy5NQ0MDXo0b4/qNG4XuF3LzBnybt5BIa9nCR2KfE6dPwa1OXXTt1QumFW3g6uGOTVu3fLc+wmQheDwe9PX1AQBhEeHIysqSqJ+lpSVqVK+O6zdCpDlVuaPrYMlQ4cnjlpiiz6JkSd3FsmPHDgwePBg3b95EaGgofv/9d1SqVAm//fZbvrwqKipYuXIlbG1tERUVheHDh2Py5MlYu3YttLW10aNHD2zbtg2//vqlSzfvtUAgwMePHwusw19//YWlS5fCxMQEw4YNw6BBg3Dt2jUAwO7duzFv3jysXbsWDRs2xL59+7B06VLY2dl997wyMzORmZnJvU5OTpa2aQqUKkyEOCcHAgMjiXSBgRE+JXwocB/7mnXQb/pibJ85DlkiEcQ52ajRqBl+Hfs/iXzpKZ8wvbMXskUiqPBV0HX8TIkPsq1zbfT5awFMbWzxKfEjzu1Yh+V/9MSfO09CW88AyR/jAQC6hpJ10zUwQkJMwV3UihLzIbeuZsbGEulmxsZ49fbtd/cVfkqGVUNPZIpE4KuoYO3sOfD56gtZXsfev3IVuo8eBSM3V6iqqkKrgiaOrl2PypUqFflYxYXaT3YxMbEAADNTU4l0M1NTvPrcG1PgfrGxBe4TExvLvX4RFYV1mzZi/OjR+HPyZNwKvY3REyZAQ0MD/Xr3yVdmRkYGpk6fjl7du0NXV5ern7q6OgwMDL57LEWg62DJ4KvwoCJjFCPrwOqyRuogyMbGBsuXLwePx0PVqlVx//59LF++vMAgaOzYsdz/29nZYc6cOfjjjz+wdu1aAMCQIUPQoEEDvHv3DpaWlvjw4QNOnTqFgICA79Zh3rx58PLK/TUwdepU/PLLL8jIyECFChWwatUqDB48GAMHDgQAzJgxA+fPn+d6oArj5+eH2bMLH9Mgq2/XbmC5iQXmfR/1DIdXzEOrASPgVL8Rkj/G4fjaxdi/ZBZ6TZ3H5dPQ0saUrUeRmZ6G/8JCcGz1AhhbWsPR1R0A4OzRRKJc2+ou+LuHL27+ewzNegz8unaSdWOF162k7D5+DEOn/8W9Pr0p91dxvnZk7IfrYgi0dXDnxGmkpKXhwvVrGD9/LuxtKsLbQ7oehh8d+3/LliIxWYjAnf/A2MAAxwIC0HXUCFzddwA1qzpJdSxZUfvJbvfevRg6aiT3+vTRowB+rg1/tI9YLIZbnbqY//ccAICriwsiHz7Cuo2b8gVBWVlZ6NG3L8RiMdauWPnD8yhK/UoKXQdJaSN1EOTh4SHxh+zp6YmlS5cWOPDu0qVLmD9/Ph4+fIjk5GRkZ2cjIyMDqamp0NbWRv369VG9enXs3LkTU6dOxa5du1CxYkU0adIkX1lfq1WrFvf/FhYWAIC4uDhUrFgRT548wfDhwyXy169fHxd/cE982rRpGD9+PPc6OTkZNjY2392nKLT1DKDC5yP5m187KYkf8/0qyhPwz0bY16yD5r0GAwCsHKpCXVMLK0b0xi9DxkDPOPdXpYqKCkysc38lWztWQ8zLFwjYtZH78H9LQ1MLlvZVEP/mFQBA18gk91wTPnBlAsCnpI/5fhWVtPbNW8C9tgv3OlMkApA7g8jiq1/VcR8/5uth+JaKigocbG0BAC7Oznj0/Bn81q8t8pe4ubHJD4/9/NUrrN61Ew/OnEP1KlUAALWrOeNq6G2s+WcX1s+Zl7/gYkTtJ7v2bdvCvf6X2355PcUxsbHcdQcA4uLj8/X0fM3czCxfT8y3+1iYm8O5mmSgV83JCYePHZNIy8rKQrfevRH16iUu/nuW6wUCAHNzM4hEIiQmJkr0BsXFx6OBlAGrvNF1sGTk3g6TsRAli/uKbWD0q1ev0KZNG9SoUQOHDx9GWFgY1qxZAyD3g5xnyJAh2LZtG4DcW2EDBw784a8WNTU17v/z8orF4nxpeQobs/Q1DQ0N6OrqSmzyoKqmDpsq1fHk9nWJ9Me3r8OuhmuB+2RlpoOnIvlPo8K9/t65MGRniQp9N0skQsyr59yH3sjCGrqGJhJ1y84S4fmd24XWraQIdHTgYGvLbc6OjjA3MUHAtS+zPkQiEa7cuokGdepKVTZjX4KCorCzsfnhsdMy0gF8/e+Ui6+iIvG3WVKo/WQnEAjgULkytzlXqwZzc3MEXLjA5RGJRLhy9ep3gwxPdw8EXLwgkXb+QqDEPg09PfHkmyUD/nv6FJUqVuRe5wVAT58/Q+DpMzAykvyCrutaB2pqahL1e//+PR5ERqKBh6d0Jy9ndB0sGSqfb4fJuikTqXuCbnwzAPDGjRtwdHQEn8+XSA8NDUV2djaWLl3K/eEeOHAgX3l9+vTB5MmTsXLlSkRGRqJ///7SVklC1apVcevWLfTt21eiLorUtPsA7Jo7BTZONWBX3QXXTxxAYtx7NOrYAwBwYv1SCD/Eoe//FgIAajRoir2LZuDq0b2o5t4IyR/icWTVfFSqVgt6xmYAgPO7NqCiUw0YW1VETlYWIkOu4NbZ4+g2YSZ33GNrFqJ6g6YwNLPMvRe+cx0yUlPg3rojgNxg0atbPwT8swEmNpVgYl0JAbs2QE2jAur6tC3ZRvoBHo+HsQMGYf66tXC0tYOjrS3mr1sLLU1N9GrXnsvXb+J4WJmZw2/SZACA37q1cKtZE5UrVoIoKwtnLl/CzmNHsG72HG6flNRUPHv1insdFR2NOw8fwlBfDxUtrYp0bCf7ynCoZIuh0//Ekql/wkjfAMcCziPgWjBObfr+ANeSQO0nOx6Ph7EjRmL+4kVwdHCAo4MD5i9aCC1NLfTq3oPL12/wIFhZWsJvzlwAwJgRI9DEpwUWLlmCDu3a4fjJkwi8eBHBF770To8bNRoNmnpj/qKF6NblV9y6fRsbt27BxtW5Pxyzs7Pxa6+eCI+IwKkjR5GTk4OYmBgAgKGhIdTV1aGnp4fBAwZgwtQpMDIyhKGBISZOm4qaNWqgRbNmJddQhaDrICmNpA6CoqOjMX78eAwdOhTh4eFYtWoVli5dmi9f5cqVkZ2djVWrVqFdu3a4du0a1q9fny+fgYEBOnfujEmTJsHX1xfW1tY/dyafjRo1Cr/99hvc3NzQoEED7N+/H/fu3YO9vb1M5cqiTvM2SE1OwrntayD8GA8LO0cMW7QBhuZWAIDkj/FI/GqtDPc2nZGRloqrR3bj2JqF0NQRoEodD7T/YyKXR5SRjoPL/kZSXAzUNCrAtJId+k1fhDrN23B5kuJisWP2BKQKk6CjbwDb6rUxfv1+7rgA0KLXEGRlZuDg0r+RliJEpWq1MHzZFlTQ0imBlpHO5N+HIj0jA8NnTkeiUAj32i44v30nBDpf6vr63TuJ3oTU9DQMnzkDb2LeQ7NCBTjZV8Y/S5ej+y9fLm6h9++jaZ+e3Ovx83O/vPp37oLti5YU6dhqamo4s2Urpi5ehHa/D0FKWhocKlXCjkVL0Ma7abG2S1FR+8lu8oQJSM9Ix/CxY5CYmAj3evVw/tQpCAQCLs/r6GiJNmzg6Yl9O3fhf7NnYfrfs1HZ3h77d/0jcautnpsbju4/gGkzpuPv+fNhZ2sL/8WL0btnbru+efsGJ07lTtd2cZecmXfp3Dl4N8kdI7l80WKo8lXRrU8fpKeno3nTpti+cVO+H6mKQNfB4ieXxQ6VbBwUjxXlXtFn3t7eqF69OsRiMfbs2QM+n4+hQ4di/vz54PF4sLW1xdixY7kB0cuXL8fixYuRlJSEJk2aoHfv3ujXrx8SExO5aZ0AcPHiRTRv3hwHDhxA165dufSXL1/Czs4OERERcHFxweXLl9G0aVOJ/e/cuQNXV1dERUXB9vO4hTlz5mDlypXIyMhAt27doKOjg1u3biEkpOjTRJOTk6Gnp4eFZ0OhqV22PgilySgLDUVXgSg7K4sf5yHftSr0paKrUGalp6ZgSis3CIVCuQ2z+Fbe91WlX7dARU1LprLEWWl4dWhwsda3NJG6J0hNTQ3+/v5Yt25dvvdevnwp8XrcuHEYN26cRNrXt6nyvH//HkZGRujQoYNEuq2trcR4Hm9v73zje1xcXPKlTZ8+HdOnf1lV1MfHBw4ODt8/MUIIIYQoFYUuxZyWloaoqCj4+flh6NChUFdXl0uZ69evR8uWLcHn87F3714EBgb+cNo9IYQQUpbx5XA7rLQsp1BSFPrYjEWLFsHFxQVmZmaYNm2aXMrk8Xg4c+YMGjdujLp16+LkyZM4fPgwWrRo8eOdCSGEkDKKx5N9ZpiyBUFS9QRdvnxZrgefNWsWZs2aJdcyNTU1ERgYKNcyCSGEkNJOHusEMeWKgUr3A1QJIYQQQopL2X48OyGEEEIAQC6LHTJaLJEQQgghZQ2fxwOf1gmSCt0OI4QQQohSoiCIEEIIKQdUVOSzFZWfnx/q1asHgUAAU1NTdOzYEU+ePCm+EywGFAQRQggh5UDeYzNk3YrqypUrGDFiBG7cuIGAgABkZ2fD19cXqampxXiW8kVjggghhBAitbNnz0q83rZtG0xNTREWFoYmTZooqFbSoSDoByJCY6BeQVvR1SizeGdeKLoKRMnNHF1H0VUo86KeJSm6CmWWKKPkekUUPTtMKBQCAAwNDWWqQ0miIIgQQggpB+TxFHn2ef/k5GSJdA0NDWhoFP5AbMYYxo8fj0aNGqFGjRoy1aEk0ZggQgghpBxQUQH4Mm55A6NtbGygp6fHbX5+ft899siRI3Hv3j3s3bu3BM5UfqgniBBCCCESoqOjoaury73+Xi/QqFGjcOLECQQFBcHa2rokqic3FAQRQggh5YA8bofl7a+rqysRBBWEMYZRo0bh6NGjuHz5Muzs7GQ6tiJQEEQIIYSUA/IYGC3N/iNGjMCePXtw/PhxCAQCxMTEAAD09PSgqakpUz1KCo0JIoQQQojU1q1bB6FQCG9vb1hYWHDb/v37FV21IqOeIEIIIaQcUOHlbrKWUVSMMdkOVgpQEEQIIYSUA3weD3xZ1wmiB6gSQgghhJR/1BNECCGElAPynB2mLCgIKmZVrfTQup4NbM0EMNDRwIrjDxD+7EOh+Z2s9TGtu0u+9KnbbuF9QhoAwMpIC50a2MHWTAATvQrYfekZzoe/kfq4HT1t4e5kCiOBBrJzxHgZm4JDwS/wIuaT7CcuJ1N71kLnRpXgVFEf6ZnZuP4wDlM23sZ/b5J/vDOABtVNcWV5GzyISoTr0OMS7+lpq2Pe4Lro3KgSDATqiHqfggnrb+HfW7ltqaOpijkD66JTo0ow1a+AiGcfMWbNTYQ+kWxHp4p6WPhbPXjVMoeKCg+RLxPRbc4lRMeVjocIUhvK7lVkGK4f3Yl3zx8iJfEDuk9dBiePpt/d5+WDUJzfugxx0c8hMDRBw0794daqq0SejJRPuLB7NR7fuIj0lGQYmFnBd8A4OLo1BgCIc7Jxed8G3L9yBilJH6FjYAyXZu3QpOtv4H1e1e7y3vV4EHwOyR9iwFdVg0XlamjWZySsq9Qsnsb4SXQtLH7SPgW+sDKUSbkMgrZv346xY8ciKSmJS9u4cSPmzJmDt2/fYtmyZRg7dmyJ1EVDjY/o+FRcfRCD0R2KvpT45K03kZGZw71OThdx/6+uyke8MB23/4tHL+/KP33cmMQ07LrwFPHCdKirqqBlXRtM+rU2Jm+5iU/pWUWua3HyqmWONSce4fbjD1Dlq2De4Do4v6gVnAcdQVpG9nf31dVWw86pTXAh/B3MDCSna6qpqiBgUUvEJWXg19kX8SY+FTamOviU9uW8N09ohBp2BujrdwXvPqahTwsHBC5qBefBR/DuQ+5F2N5CgOAVv2DLv/9h5o5wCFOzUK2iHjJEOSgtqA1lJ8pIh5ldFbg0b48DCyf+MH9i7FvsmTMKdXw6o9O4uYh+fAenN/hBS9cAzg1aAABysrKwa9YwaOsZouvkxdA1MkXyh1ioa2px5QQf2Y7Qs4fQcczfMLWpjHfPI3F85SxoaAng0a4XAMDIshLa/D4FBmbWyBJl4saJf/DPrOEYte44tPVKzzOc6FpISqNyGQR9Kzk5GSNHjsSyZcvQpUsX6Onpldix771MwL2XCVLv9yktC2mZBX9BRcV+QlRs7i+Uro3tf/q4Nx7HSbzec/kZvGpawMZEGw9fJ0ld5+LQetp5idcDFwUj/kgv1HU0wtX7sd/dd8O4hthz4QVyxAwdG1aUeG9QK0cY6mqgwehTyM7JneHw+qtehwrqfHRpYosO0wO548zeGYGODSvij3ZOmL4tHAAwb3BdnLn5BlM2hnL7Rr0vXb8eqQ1l51i3ERzrNipy/tCzh6BnYoFWQyYBAExs7PHu2UOEHN/JBUERF44h/VMyBi3YDr6qGgBA39RSopw3T+6han0vVPncM6RvZokHQWfx/tlDLk9Nr9YS+7QcNAERgccQ+/Ip7Gu7S3+yxYSuhcWPbodJTyk6vl6/fo2srCz88ssvsLCwgJaW1o93UrC/+9bFiqGemPxrbTjZ6Bf78fgqPDStZYnUjGy8ji8dtyAKoqed+2WR8Cnzu/kGtHREZQsBZu+MKPD99g0qIuRhHNaMboCYQz1xf3MnTOtVi1soTJXPgypfJV9vRLooB41qmAEAeDzgF3cb/PdGiLMLfBF7qCdurG6HDt8EC6UNtWHxe/PkLuxdPCTSKrs2wLtnj5CTnduz8OTWFVg71cKZDQuwpH9zrB39K64e3AJxzpf2qljNBVH3buHj21cAgJioJ3j96A4c6jYs8Lg5WVkIO38EGlo6MLerUkxnV7LoWlh0vM+LJcqy8WSdY1/GlMog6NOnT+jduze0tbVhYWGB5cuXw9vbm7uFlZiYiH79+sHAwABaWlpo3bo1nj59WmBZ27dvR82auffG7e3twePx8PLlyxI6E+klpWZi6/knWHUiEitPRCImMQ1TutZGVavi6b2qbW+EDaMaY/PYJmhZxxqLD91FSinu/l32hzuu3o9B5MukQvM4WOliwW9u6O13BTnigtexsLcQ4NcmtuDzeWgz7Tzm7r6DCV1r4K/etQEAKenZuB4Zi+l9XGBhpAkVFR56t6gMdycTWBjlBtGm+poQaKlhao9aOHv7LXynnMPR4Fc4Mqs5mtQyl/u5ywu1YfFLSfoIHT0jiTQdfUOIc7KRlpwEIPeW2cPrgRCLc9Br+io06ToEISd24eqhzdw+DTsPRI0mrbB6ZCfM6VIPG8b3hHu7XqjZRLL357/bQZjfowHmdnPHjRP/oO/s9dDSNSj28yxOdC2UHo/Hk8umTErl7bDx48fj2rVrOHHiBMzMzDBjxgyEh4fDxcUFADBgwAA8ffoUJ06cgK6uLqZMmYI2bdrg4cOHUFNTkyire/fusLGxQYsWLXDr1i3Y2NjAxMQk3zEzMzORmfnll3FyctEGjcpbTGI6YhLTudfP3yfDUKCB1vVs8OStUO7He/Q6EdN3hUKgqQavmhYY0c4Zs3eHl8r74KtHe6KWvQEajTldaB4VFR72/OmFmdvD8fQ7A39VVHiIS8zA78uuQSxmCH/6EZZGWpjUrSbm7LoDAOjrF4Stkxrh3YGeyM4RI/zpR+y5+Bx1HI0+l5Fb1vHrr+F/OBIAcPd5AhpUN8Wwdk4IuhcjnxOXI2rDEvTNd0neunJ5XzKMiaGtZ4h2w6dDhc+HpYMzPiXE4/qxnfDqPhQAEBl8Dvcvn0GX8fNhYlMZMVFPcG7rEggMTeDSrD1Xtm3Nehi2fB/SkpMQdv4IDi2ejCGLdkFbv/SMCZIWXQtJSSh1QdCnT5+wY8cO7NmzB82bNwcAbNu2DZaWuffK84Kfa9euoUGDBgCA3bt3w8bGBseOHUPXrpKzLzQ1NWFklHvBNTExgbl5wb8u/fz8MHv27OI6LZk8f5+MBtXMiqVsUbYYcUnpiEtKx/P3yVg4qD68alrg1K3XxXK8n7VypAfae9qgybgzePt5QG1BBJpqqOdkAldHI6we7Qng831yFR6yzg+A7+RzuHTnPd5/TENWNoP4q16OR6+FsDDSgpqqCrKyxXjx/hO8x/8LrQqq0NVSQ0xCOvb9zxtR71MAAB+EmcjKFuPhqySJOjx6ncTd7ilNqA1Ljo6+EVKSPkqkpQoToMJXhaYgtydDYGAMFb4qVPh8Lo+xtR1SEj8gJysLfDU1BGz3R8MuA1GjcSsAgJmtI4Tx7xF8eJtEEKReQROGFhVhaFER1lVrYdUf7REeeBSNfx1cAmdbcuha+H08ldxN1jKUSakLgl68eIGsrCzUr1+fS9PT00PVqlUBAI8ePYKqqirc3b8M+DMyMkLVqlXx6NGjnz7utGnTMH78eO51cnIybGxsfro8eapkKkBSqujHGeWAh9xxHKXJqlEe6NSoErzH/4uXMSnfzZucJkKNwUck0oa3r4Zmrhb4dfZFRH3e/1pkHHo1sweP9+UXehVrXbz7kIasbLHE/mkZ2UjLyIa+jjpa1rPC5M8DeLOyxbj9JB5VbSS756tY6+FV7PfrWdKoDUuWddXa+O/2FYm053dCYOlQjRsEbePkgvtB/4KJxdx094/vXkPHwBj8zz3aWaKMfLcneCoqYEyyfb/FWO74oPJG2a+FP0IDo6VX6oKgvGeRfPvBz0sv7FkljDGZ7mVqaGhAQ0Pjp/cvtFw1Psz0v0wtNtGtgIomOkjJyELCp0x0bWQHAx0NbDz7GADgW8caH5Iz8PZDKlT5PDSoZoZ6VUyw8vgDrgy+Cg9WRtoAcgefGuioo6KJDjKychCXlF6k46qrqqC9RyVEPP+IpJRM6GiqobmLFQwEGrj9n+RMCUVaM9oTvZrbo8P0C/iUlsVN0xamirgBt/MH14WVsTb6LwwCY8g31iUuKQMZohyJ9HUnHmNUR2esGOGBVccewtFKF3/2qo2VR77MuvF1swKPBzyJFsLBSheLf6+HJ9HJ2Hb2Py7P4v0PsH+6N4LuxeDSnfdoVc8a7Txt4D3+3+JrFClRG8pOlJ6GhPfR3OvEuLeIefEEmgJd6JlYIHDXSnz6GIdOY+cCANxa/YrbZ/bh3NYlqOPTGW+e3ENE4DF0Ge/HleHWqitund6HfzcvgvsvPfHx/WsEH9qC+m17cnmquDXB1UNboGdiAVObyngf9Rg3TvwDl+Ydc+uVkY6rBzejan0v6BgYI/2TELf/PYDkj7FwbuhTMo1TRHQtJKVRqQuCKleuDDU1NW78DpDbK/P06VN4eXnB2dkZ2dnZuHnzJnc77OPHj/jvv/9QrVo1RVa9QHZmAokFv3o1dQAAXH0Qg83nHkNPWwOGuhW491X5PPRoUhkGOuoQZYvx9mMqlh65h3tRX6Z4GuhoYE4/N+51m3oV0aZeRTyKTsKCA3eKdFzGAAtDLTRyNoeOphpSMrIQFfMJ8/dF4O3Hwm+VlLThHXL/Ta8sbyORPmBREHacewYAsDDSQkVTbanKfROfCt8pZ7H8D3fc29QRbz+kYcWRSCzcd5/Lo6etDr8hdWFtrI2ET5k4fPUl/toaxk0HB4Bj115hmP91TOtZCytHeuBJtBBdZl3EtQffn3pekqgNZffu2UPsmP4b9/r81qUAgNpN26HjmL+RkvABwvgv45cMzKzQa/oqnNu6FLfPHIDA0ASth0zmpscDgJ6JOfrMWotzW5di3dhu0DU0hXvbXmjYeQCXp/XvU3Bp91qc2TAfqcJECAxMULflr/Dq9jsAQEVFBR/evsTdhSeRlpwETYEerByrY+D8rTCtWPC6OYpC18Lil3s7TLaeHGW7HcZjpfAxsL/99hsuXLiALVu2wNTUFDNnzsT58+cxePBgLF++HB07dsTTp0+xYcMGCAQCTJ06Fc+ePeMGRn+7WOKdO3fg6uqKqKgo2NraFqkOycnJ0NPTQ4+5p6BeQbovB/LFzjMvFF0FouRmjq6j6CqUeVHPkhRdhTJLlJGKff9rC6FQCF1d3WI5Rt73VZuJh6CmIdv3VVZmKs4s+bVY61ualMqYb9myZfD09ETbtm3RokULNGzYENWqVUOFCrm/ErZt24a6deuibdu28PT0BGMMZ86cyTczjBBCCCGkMKXudhgACAQC7N69m3udmpqK2bNn4/ffc7uADQwMsHPnzkL3HzBgAAYMGMC9dnFxKXQsESGEEFIe5C14KGsZyqRUBkERERF4/Pgx6tevD6FQiL///hsA0KFDBwXXjBBCCCmd5LHYIS2WWEosWbIET548gbq6OurWrYurV6/C2NhY0dUihBBCSDlRKoMgV1dXhIWFKboahBBCSJmRt6iprGUok1IZBBFCCCFEOrRitPQoCCKEEELKARoTJD0li/kIIYQQQnJRTxAhhBBSDtAUeelREEQIIYSUAzxe7iZrGcqEbocRQgghRClRT9APrB7RUCmen1JcdoxqqOgqECWXJKbV4mWl3Y6+Kn5WcnIy9v2vZI7FU+HJ4QGqytUVRH/ZhBBCSDnA4/FkXueHZocRQgghhCgB6gkihBBCygG6HSY9CoIIIYSQckCFl7vJWoYyodthhBBCCFFK1BNECCGElAN0O0x6FAQRQggh5QA9O0x6FAQRQggh5QA9NkN6NCaIEEIIIUqJeoIIIYSQcoAHOTw7TC41KTsoCCKEEELKAbodJj26HVZC1q9bhyqVK0OgpQX3evUQfPXqd/MHXbkC93r1INDSQlUHB2xcv17i/S2bNqGplxdMjYxgamSEVr6+uH3rlkSehQsWwNPdHYZ6erAyN0eXTp3w5MkTiTx/z56NGs7O0BcIuHJu3bwpn5OWM8YYZs35G5a2laCppwtvnxaIfBj5w/0OHz0C59q1oCHQgXPtWjh6/Fihef0WLQRPQx1jJ0yQSJ8152841awBbQN9GJiZokWrVrj5TXtv3LwZ3j4toGtsBJ6GOpKSkn7mNIsNtZ9sNm9Yj9pOVWCurwvvBh64HhxcaN6Y9+8xpH8/1KtVA4ZaFTBt4oQC8504ehQerrVhpieAh2ttnDp+vNAyly1eBANNjXxlMcawYO4cVLOzhYWBHtr6+uDRw4c/d5LFjK6DpLShIKgEHNi/HxPGjcPUadNwKywMjRo1QrtffsHr168LzB8VFYX2bduiUaNGuBUWhilTp2Lc2LE4cvgwl+fKlSvo3qMHzl+4gKBr12BjY4M2rVrh7du3XJ6rV67gjz/+wNXr13Hm3DnkZGfjl1atkJqayuVxdHTEipUrEX73Li4FBaFSpUpo06oV4uPji69BftKipUuwbMUKrPb3x+3r12FuZgafNm3w6dOnQvcJuXED3Xv3Rt/evXH3dij69u6Nbr165fsCBoDboaHYuHkLatWsme+9Ko6OWO2/AvfDwhF86RJsbSvB95c2Eu2UlpaGVr6++HPKFPmcsJxR+/28IwcP4s9JEzFhylRcuXETng0aolvH9ogu5DMsEmXC2NgYE6ZMRY1atQrMc+vGDQzq2xvdevXG1Vu30a1Xbwzs0wuhBbRteGgodmzZjOoFtO2KpUuxduUKLFrujwvB12FqZobOv3z/31UR6DpY/PKmyMu6KRMeY4wesVyA5ORk6Onp4UNiosxPkW/o6QlXV1esXruWS6tZvTrad+iAefPn58s/bepUnDp5Evcjv/xKH/HHH7h37x6uXrtW4DFycnJgamQE/5Ur0bdfvwLzxMfHw8rcHBcuXULjJk0KzJOcnAxjAwOcPX8ezZo3l+Y0C6SWnSNzGUDur11L20oYO2oUpkycBADIzMyEmY01Fs6bj6G//Vbgft1790Jy8if8e/Ikl9aqbVsYGOhj765/uLSUlBTUca+PtStXYe4CP7jUqg3/pUsLrU9ycjL0TIwR+O9ZNG/WTOK9y1euoKmvDxJj46Cvry/DWcuPMrefPJ4i36JxI9RydcGylau5NHeXWmjTrj1mzpn73X3b+vqgZq1a8Fsi2R6D+vRG8qdkHDr+pW1/bd8WevoG2LJzF5eWkpICb093LFmxEksWLJAoizGGava2GDZiFMZOnAgg99+1SiUbzJo7DwOHFPzvKi1tddlHTijrdTCvLKFQKPN3yfeOoaenh0HLzkFdU1umskTpqdg6vmWx1rc0oZ6gYiYSiRAeFoYWPj4S6T4+PrgRElLgPjdv3IDPt/l9fREWGoqsrKwC90lLS0NWVhYMDQ0LrYtQKAQAGBSSRyQSYfOmTdDT00Ot2rULLUcRoqKiEBMTA98WLbg0DQ0NeDVujOs3Cm5HAAi5eVNiHwBo6eOD6zduSKSNGDMav7RugxZFuOCJRCJs3LwZenp6qF3Ir/zShtrv54lEItyJCEez5pKfyabNW+DWN+0gjVs3b6JZc8m2bdbCJ1+Zk8aOgW+r1vBulr9tX72MQmxMDJp98+/asHFjmeomb3QdJKUVDYz+LDMzE5mZmdzr5ORkuZT74cMH5OTkwMzMTCLd1MwMMTExBe4TExMD02/ym5mZITs7Gx8+fICFhUW+ff6aNg1WVlZo/s0XVh7GGCZNmICGjRqhRo0aEu+dPnUKfXr1QlpaGiwsLPDvuXMwNjaW5jSLXUxsLADAzPSbdjE1w6tCutOB3LY0MzOV3MfMVKLt9x3Yj/CICNy+XngwAACnTp9Gj759uHYKOPNvqWunwlD7/byPnz/DJqaS7WBiZoa42II/w0URFxsDk2/+PUxMJcs8fOAA7t6JwMXg6wWWERsT+3k/ybqZmpoWeqtOEeg6WDJoYLT0qCfoMz8/P+jp6XGbjY2NXMv/dhVOxth3V+YsKH9B6QCwZPFi7N+3D/sPHUKFChUKLG/MqFF4cP8+du3ene8976ZNcTs8HEHBwfBt2RK9evRAXFzcD8+pOO3euwc6hgbclvfLL1+74PvtWOA+X7V9dHQ0xkyYgH+2by+07fI09fbGnVu3cf1KEFr5+qJbr14Kb6fCUPvJn7SfYVnLfBMdjWmTJmDD1h+3bf5ySufKv3QdLF55K0bLuikTCoI+mzZtGoRCIbdFR0fLpVxjY2Pw+fx8v3bi4+Ly/SrKY25ujthv8sfFxUFVVRVGRkYS6cuWLsVCPz+cOXsWtQq5tTB29GicOnkS5y9cgLW1db73tbW14eDgAHcPD2zcvBmqqqrYtnWrNKcpd+3btsOdW7e5zdg497xjYvO3y7c9FV8zNzdHzOdfy1/2iefaPiw8HHFxcajr4QFVLU2oamniSlAQVq5ZDVUtTeTkfBnTlNdOHu7u2LJhI1RVVbFl+zZ5nbJcUfvJj9Hnz3BcrGQ7fIiLy9eTIw1TM/N8PUkf4r+UeTciHPFxcWjawAPGOlow1tHCtatB2LB2DYx1tHJ7Vsxz835bt/h42eomb3QdJKUVBUGfaWhoQFdXV2KTB3V1ddSpWxcXAgMl0gMDA+Hh6VngPu4eHgj8Nn9AAOq6uUFNTY1LW7pkCebPnYtTZ86grptbvnIYYxgzahSOHT2Kc4GBsLOzK1KdGWMStwYVQSAQwMHBgducqznD3NwcAYEXuDwikQhXrl5FA4+C2xEAPN3dEXDhgkTa+cBANPDwAAA0b9YM98PDcef2bW5zq1sXvXv2xJ3bt8Hn8wstuzS0U2Go/eRHXV0dLq51cOmi5Gfy8sULqP+5HX5GfXd3XLoo2bYXLwRyZTZp2gzXQsMRdPM2t7nWqYuuPXoi6GZu21aytYOZuTkuXfhSN5FIhGtXr8pUN3mj62DJoNlh0qMxQSVgzNixGNi/P+rWrQt3T09s2bQJ0a9f4/ehQwEAf/35J969fYttO3YAAH4fOhTr1qzBpAkTMGjIENwMCcG2rVslunCXLF6MWTNmYOc//6CSrS33C0tHRwc6OjoAgNEjR2Lf3r04fPQoBAIBl0dPTw+amppITU2F3/z5aNeuHcwtLJDw8SPWr1uHN2/eoMuvv5ZkE/0Qj8fD2FGjMH/RQjg6OsDRwQHzFy6ElpYWevXoweXrN2ggrCwt4Td3HgBgzMhRaNK8GRYuWYwObdvh+KmTCLx4AcGXLgPIDRZqVJccG6CtrQ0jQyMuPTU1FfMW+KF923awMDfHx4QErN2wHm/evkHXLl24/WJiYhATG4Nnz58DAO4/eACBQAcVbSp+d6BmSaD2k83w0WMwbPBAuNapi3ru7tixZQveREdzs69mT/8f3r97h/VbvvQc3L97FwCQmpqCDx8+4P7du1BTV4dTtWoAgKEjRuIXn+bwX7IEbdq1xZmTp3Dl4kX8e+ESgNy2da5eXaIeWtraMDQ05NJ5PB6GjRiFZYsXobKDI+wdHLBs0UJoaWrh1+49UJrQdbD48XiArDGMkt0NoyCoJHTr3h0JCQmYN3cu3r9/j+o1auDEqVOoVKkSgNyF1b6+/WZnZ4cTp05h4oQJWLd2LSwtLbHc3x+dv/rC2LBuHUQiEXp06yZxrP/NmIEZM2fm5vm8sFiLb6Ygb96yBf0GDACfz8eTx4/xz86d+PDhA4yMjFDXzQ2XrlxB9W8uvqXB5AkTkZ6ejuGjRyMxMRHu9evj/OnTEAgEXJ7X0dFQUfnSwdnA0xP7/vkH/5s5E9NnzUJle3vs370b7vXrF/m4fD4fj588wY5//uHaqV7durh68RKqO39pp/WbNmL23C/TpZs0z233bZs2Y0Ah03VLErXfz+vctSsSEj5i0fz5iI15j2rVq2P/seOo+PkzHBsTgzff3EJv4vGlje6Eh+PQ/n2wqVgJ9578BwC5gcDOfzBv9kzM/3sW7OztsXXXbrhJ0bYAMGbCBGRkpGPi2NFISkxE3Xr1cfiU5L9raUDXweInj54cZesJUpp1grZv346BAweiqKcrz3WClJm81gki5GfJY50gZSePdYKUVUmuEzRs7QVoyLhOUGZ6KtYPb6406wQpzV/2y5cv4eXlpehqEEIIIcVChQeoyHg/S8k6gpQnCDp37hxWrFih6GoQQgghxYKnkrvJWoYyUZogKKSQVUkJIYQQopyUJggihBBCyjN5LHaobIslUhBECCGElAMqPDk8NkPJgiAlu/tHCCGEEJKLeoIIIYSQcoDWCZIeBUGEEEJIOaAihxWjlSwGotthhBBCCFFO1BNECCGElAMqKnIYGK1kXUEUBBFCCCHlAE2Rlx4FQT/AP3cZfC3ZnsWizGIOX1R0FYiSM1/9P0VXocwTB1xRdBXKLH5aaokdi3qCpEdjggghhBCilKgniBBCCCkH6Nlh0qMgiBBCCCkHeDyezCs+K9uYICWL+QghhBBCclEQRAghhJQDeStGy7pJIygoCO3atYOlpSV4PB6OHTtWPCdXTCgIIoQQQsqBvBWjZd2kkZqaitq1a2P16tXFc1LFjMYEEUIIIeSntG7dGq1bt1Z0NX4aBUGEEEJIOSDPB6gmJydLpGtoaEBDQ0Omsksjuh1GCCGElAMqPB63YOJPb59nh9nY2EBPT4/b/Pz8FHx2xYN6ggghhBAiITo6Grq6utzr8tgLBFAQVGIYY/h77y5sOn8GiSkpcK/ihFXDRqJ6RdtC92n250RceXAvX3prt/o4NWMuACDowT0sOXoQ4c+f4n1CAg7/ORMdPRpK5J+9Zyf2X72M6A/xUFdVQ10HR8zpMwDuVatxeTaePY19QZcQ/vwZPqWn4eOeI9DX0ZHLucvL6VdPsOu/O7j3MQaJmekIaDcQNQzNirz/saiH+CPoBFraOGJ7sy5c+pI7V7H07jWJvCYVtHGv+yjutcWOBQWWOb1uUwyv4Q4A6Hx2N0JioyXe72BbDeu9OhS5jsWJ2k92jDHM9puPjdu2ITEpCe5ublizbBmqV3P+7n6Hjx/D9Dlz8DwqCpXt7DBvxkx0at+ee//Tp0+YPncOjp48ibj4eLjWqo0VixahXt26XJ7YuFhMmT4D5y9eQJJQiCYNG2LV4iVwdHDg8mzcuhV7Dh5A+N27+PTpExKj30BfX1/u7fCz6DpYvOT57DBdXV2JIKi8KrdBkLe3N1xcXODv76/oqgAAFh85gOXHj2DrmImoYmWFeQf2oOWMqXi0disEWloF7nNo2gyIsrO51x8/JcN19DD82rAJl5aamYHadvYY0Lwlui74u8ByHK2ssXLoSNibWyBdlAn/40fQauY0/LdhO0z09AEA6ZmZaFnHDS3ruOHPnVvld+JylJadhfqmVmhXyQkTQ/6Vat/oFCH+Dr0Ed1PrAt+vqm+MA749uNcq3yyberfbSInXF9+8wPjrZ/BLpaoS6b0da2Oya2PudQV+6fmIUfvJbtHy5Vi2ejW2r1uPKo4OmLtoEXzat8eT8AgIBIIC9wm5eRPd+/fHnP9NR6d27XD05El0698PwecD4F6vHgBgyMgRePDwIXZt3ARLCwv8s38fWrRvh4e3Q2FlaQnGGDr26Ak1NVUc37cfugIBlq1exeXR1s59vmFaejpatfBBqxY+mDZrZom1S1HRdbB4qajkbrKWoUxK1xWmnGKMYcWJo/izW090btAIALB97CRY9OuOPUEXMbRV2wL3MxRIRuH7gy5DS6MCujb88iXRum59tK5b/7vH7+XVTOL10sFDsTXgLO69jELz2q4AgDEdOgMALt+/K93JlaCulWsAAKJTkqTaL0csxoirJzHRpRFuxkZDKMrMl0eVpwJTzcJ/8X373tnop2hoXgmVBPoS6Zqqat8tR5Go/WTDGIP/2jX4a+IkdO6Q2zu1Y8NGmFW2x56DBzB00OAC9/NfuwY+zZph2sSJAIBpVaviyrVg+K9dg73btiM9PR2Hjx/H8X370aRR7vVh1p9/4dipU1i3eRPmzpiJp8+e4cbtW3hw6xbX67R2uT9M7eyw9+BBDBkwAAAwdsQIAMDlq0HF2RQ/ha6DxU8RT5FPSUnBs2fPuNdRUVG4c+cODA0NUbFiRZnqUhKULOZTjKjYGMQkJsDH5UvXtoaaOppUr4WQRw+LXM7WwLPo3tgL2hU0f7ouoqwsbDp3Bnra2qhtZ//T5ZQly+5dg5GGJno51i40z4tPiXA5sBr1D6/DsCvH8epTUqF549NTceHNc/R0rJXvvSMvIuG8bwW8jm3G7NsXkZKVP2Aoa6j9ckW9fImY2Fj4Nm/OpWloaMCrYSNcv3Gz0P1Cbt2Cb7PmEmktm7fA9Zu5+2RnZyMnJwcVKkiOudCsoIngkBAAQObnwLOCRgXufT6fD3V1NS5PaUfXwfIpNDQUrq6ucHXNDSTHjx8PV1dXzJgxQ8E1K5py3RMkFosxefJkbN68Gerq6hg2bBhmzZpV4vWISUwAAJjpG0ikm+nr41V8XJHKuPXfYzx49RKbRo3/qTqcun0DvRbPR1pmJiwMDHHu7wUw1tX7qbLKkltxb7D36T0EtBtYaB5XY0usbPQLKusaIj49Df73rqHdmV243GEIDAu40B54fh86aupo882tnM721VFRRx+mmtp4nBSP+eFX8DAxDvu/uk1U1lD7fRETGwsAMDM1lUg3MzXBq+jognbh9su/jylXnkAggGd9d8xZuBDVqjrBzNQUew8exM3Q23CsnDvex6lKVVSqWBHTZs3EhhUroa2tjWWrViEmNhbvY2PkeZrFhq6DxS9vhpesZUjD29sbjDGZjqlI5bonaMeOHdDW1sbNmzexaNEi/P333wgICCgwb2ZmJpKTkyW2n7X78gXodmvPbVk5OQCAb3sZGQAeivYHtzXgLGpUskX9Kk4/VaemNWsj3H8dghf6o2UdN/RYOBdxSYk/VVZJOPwiEpV3L+W2G7GFf8kUJiUrEyOvnsRiz1YwqlDweAMAaG5dGW0rOaGagSmaWNrin+ZdAeR+WRdk79N76GzvnG+8Sp8qLmhiaQsnAxN0tHPGJu9OCHr/Evc+lvyXFLWf7Hbv3w8dczNuy8rOApD/dgFjP76FkO+zz5jEPrs2bQJjDFZVHKFhZIiV69ehV7du4PNzL9Fqamo4/M9u/PfsGQwr2kDL1ASXg6+ita8v+Hy+HM5W/ug6WPLyxgTJuimTct0TVKtWLcycmTs40NHREatXr8aFCxfg4+OTL6+fnx9mz54tl+O2r+8J968+pJmfL54xiYmwMDTi0uOSkmBWhJkbaZkZ2H/1Mmb36v/TddKuoAkHSys4WFrBw6kaqg4dgK0BZzG1a8+fLrM4tbRxQB3jQdxrcy3px4m8/JSE6BQh+l88xKWJP/9isd65EMEdf4etrkG+/bTU1FHNwARRyfkvjjdio/E8OQEbijBjqZahGdRUVBCVnIhaRuZS118W1H6ya9+mDdzd3LjXebekYmJjYWH+pT5x8fEwMzHNt38eczMzxMRK9nTExcdL9A5VtrfHlbPnkJqaiuRPn2Bhbo7u/fvBrpItl6euqyvuXA+BUCiESCSCiYkJ3Jt6w+3zbYjShq6DpCwo90HQ1ywsLBAXV3C367Rp0zB+/Jcu1uTkZNjY2PzUcQVaWhIzHRhjMDcwROCdcLh+7t4WZWUhKPIe/PoXPJjyaweCg5CZlYXe3s1/mLeoGAMys7LkVp686ahpQEdNtnUpHPSMcKm9ZPsuiAhCapYIc+q3gKV2wdM/M3Oy8VT4Ee5m+WdC7X16F7WMzFG9CFPLnyR9QJZYDFNN7Z87ARlQ+8lOIBBIzPhijMHczAwBFy/CtXbu+CiRSIQr14Kx8O+CZyQBgGf9+gi4dBHjRn6ZIXf+4gU0cHfPl1dbWxva2tpITEzEuQsXsOjvOfny6Onl3r55+uwZQsPDMed/03/6HIsTXQdLniIGRpd15ToIUlNTk3jN4/EgFosLzFucS4LzeDyMad8Jfof2wsHSEo6WVvA7uA9aGhro1eTLjIX+yxfBytAI87+5IGwLOIsOHg1gVMCaDSnp6Xj2/h33+mVsDO68eA5DgQAVTUyRmpGO+Qf2ol19T1gYGuLjp2SsO3MSbz7G49dGX6aYxiQmICYxkSvr/qsoCDS1UNHEJN/sDEVJzEzH29RkxKalAACeC3PHGJhqanMzikZdPQlzLQH+quuNCnxVOBmYSJShp577b/x1+uzbF+Fj4wBrbV18yMgd0/IpKxNdK9eU2PeTKBMnXz3BTDfJWSYA8DI5EUeiItHMqjKMKmjiv6SPmBV6ETUMzVC/kGnlJY3aTzY8Hg9jh4/A/KVL4Fi5MhwdKmP+kiXQ0tREr67duHz9fv8NVhaW8Pvcszzmj+Fo0qolFi5bhg6//ILjp08j8NIlBJ//cmv+XGAgGGOo6uiIZy9eYNL//kJVR0cM7NuXy3Pw6BGYGBujorUN7kdGYsyUyejYtq3EQO2Y2FjExMbi2fMXAID7kZEQCASoaG0NQ0PD4m6i76LrYPFTxJigsq5cB0GlyaTO3ZCemYmR61cjMeUT3Ks44exsP4lfStHxcdyS5Xn+e/sGwQ8f4OzsgpcsD332H5r/NYl7PWHLBgBAv2Y+2DZ2EvgqfDx+E42dFwPwITkZRroCuDlUxZUFyyQWKNvw7yn8ve8f7rX3tAkAgC1jJmJAc1+Zz18ezkc/xdhrZ7jXw4KOAwAm1G6IiS6502Xfpibna8MfeZ/2CcODTiAhMw1GGlqoY2KJU236wUZHcsDksZePwBhDJ7tq+cpQ4/Nx9f0rbH4UitSsLFhqC9DcujIm1G4Efim5yU7tJ7vJ48YhPSMdw8eP4xZLPH/8uESP0evoaIl1khp4eGDf9u34399/Y/rcOahsZ4f923dwawQBgDBZiGmzZuHN27cwNDBAlw4dMG/GTIkfcu9jYjB+2jTExsXBwtwc/Xr2xPQpUyXqt37LZsz+6vEGTVq1BABsW7ceA/r0kXt7SIuug6S04bGyPKz7OwpaLLFjx47Q19fH9u3bf7h/cnIy9PT0kLjvKHS1FNMdXx7EHb6o6CoQJWe++n+KrkKZJ750XdFVKLOS01Jh0KMThEJhsa3AnPd9tfBsGDS1ZVtnKz01BVNa1S3W+pYm1BNECCGElAO0YrT0ym0QdPny5Xxpx44dK/F6EEIIIaR0KrdBECGEEKJMeCo88GQc2Czr/mUNBUGEEEJIOaDCg9QTGwoqQ5ko2d0/QgghpHzi8QCeioxbGQ+C4uLioCLFwCYKggghhBBSbkiz4CPdDiOEEELKARUeTw63w8p4VxAg1QNdKQgihBBCygFlGBi9Y8eO774vFAqlKo+CIEIIIYSUCePGjfvu+9Ku/0xBECGEEFIOKMOzwxISEr77fnx8PMzMfvyA5jwUBBFCCCHlAI8n++yusj4kiHqC5K1VU0AJnp9SXMxb539iOCElStmeA1Ac2rZQdA3KruRkRdeg3Dl+/DgWL16MR48eAQCqVauGCRMmoFOnTgCkmx1GVwdCCCGkHMi7HSbrVppt2LAB3bt3R40aNbBixQr4+/ujZs2a6NGjB9atWwdNTU3079+/yOVRTxAhhBBSDijDFPklS5ZgxYoVGDp0KJfWt29fuLi4YPHixfjjjz+wdevWIpdHPUGEEEIIKROio6PRvHnzfOnNmzdHdHS01OVREEQIIYSUA3nrBMm6lWZ2dnY4ceJEvvSTJ0/C3t5e6vLodhghhBBSDvB4sj8AtZTfDcP06dMxYMAA3Lx5Ew0aNACPx8O1a9dw5MgRbNu2TeryKAgihBBCygG+Cg98GaMgWfcvbr169YKNjQ0WL16M1atXgzGGatWqITAwEF5eXlKXR0EQIYQQQsqMxo0bo3HjxnIpi4IgQgghpBzg83jgy3g/S9b9yxoKggghhJByQBmCID6fX+RVocVi8Q/zUBBECCGEkDLh6NGj3P+fOHEC58+fx/Lly6GmpvZT5VEQRAghhJQDKjw5PEC1lPcEtW/fHkDuozP27t0LKysrHDt2DLt27fqp8srNOkHe3t4YO3YsAMDW1hb+/v4Krc+31q1di8r29tDS1EQ9NzdcvXr1u/mvXLmCem5u0NLUhEPlyli/fn2+PIcPH0aN6tWhWaECalSvLhEhF/W4jDHMnjUL1lZW0NbSQrOmTREZGSnbyRYTxhhm/T0blhVtoCnQgXfzZkWq6+EjR+BcqyY0tLXgXKsmjh47JvG+38IFqOfhAYGBPkwtLdCxS2c8efJE6mM/f/4cnX7tAhMLc+gaGqBbzx6IjY2V+bzlhdpPdowxzJo9C5bWVtDU1oJ3s6J9Xg4fPgznGtWhoVkBzjUK/qyuXbcWdpXtUUFLE3Xrff8aMXTYUPD4KvBf4Z8vvbKjAzS1tWBiZooOHTvi8ePHUp9ncaHrYPHKux0m61baHT58GD179sSmTZtw48YNhIeHY8yYMT9XGCsnPn78yJKTkxljjFWqVIktX75cpvKEQiEDwBKTkliOWCzTtmfvXqampsY2bNzIHkRGstGjRzNtbW0W9fJlgfmfPX/OtLS02OjRo9mDyEi2YeNGpqamxg4cPMjlCb52jfH5fDZv3jwW+fAhmzdvHlNVVWXXQ0KkOq6fnx8TCATs4KFD7O69e6xb9+7MwsKCJQmFMp93jljMWFa23LYF8+czgUDADh84yO5H3GHdu3VjFhYWLDkhsdB9rgddZXw+n82fO5c9uv+AzZ87l6mqqrIbwde4PC19fdm2zVvYgzt32Z3QMPZLmzasYsWKLCVJWORjpyQJmb29PevUsSO7Fx7B7oVHsA7t27N6bm4sJ1Mk13ag9pNyyxHLbVvw+fNy+OAhdv/uPda9W+7nJTlJWOg+14NzP6vz581jjyIfsvmfP6s3rodwefbtyf2sbtqwkT18EMnGfP6svop6ma+8o4ePsNq1azNLS0u2fNkyifc2rFvPrly6zKKev2Bht0NZu7btmI2NDcsWZcl03vK4FijrdTAxKYkBYEKhUMZvuR9/X+2/84SdfP5Opm3/nSfFXl9ZHDhwgGlpabF9+/Zxae/evWO2trZs9uzZUpdXboKgr5W2IKh+/fps6NChEmlOTk5sypQpBeafNGkSc3Jykkj7/fffmYeHB/e6a7durGWrVhJ5fFu2ZN179CjycbNzcpi5uTnz8/Pj3k9LT2d6enps7bp1crnwyesLXCzKYubm5mzB/PlcWkZKKtPT02Pr16wtdL9uXbuyVi1bSqS19PVlPbp3L3SfuHfvGQB25eLFIh/73JkzTEVFhQk/JnB5EuLiGQAWcPaswgMgpW4/OQVA4uzcz8sCPz8uLSMt9/Oyfu26Qvfr1rUba9WylURaS9+WrEf3Htzr+vXrs2FDh0rkcXJyYlOnTJFIe/M6mllZWbEH9+7nXue+CYK+3e5G3GEA2LP/nio8CFLW62BJBkGH7v7Hzrx4L9N26O5/pToI0tLSYocOHcqX/vz5c2Zubi51eeXydti3tm3bBj09PQQEBJRspQCIRCKEhYXBx9dXIt3HxwchISEF7nPjxg34+PhIpPm2bInQ0FBkZWXl5gkJge83eVr6+iLk+vUiHzcqKgoxMTESeTQ0NNDEy6vQuilKXl19W3w5Zw0NDXg1aYLr36lryI0bEvsAQEsf3+/uIxQKAQCGBoZFPnZmZiZ4PB40NDS4PBUqVICKigqCr12T4kyLB7Wf7Ljz8JH8vHg18fpBG4bA1/ebNmzpi+shkp/Vr8sFAF8fH4lyxWIx+vbvh0kTJ6J69eo/rG9qaiq2bd8GOzs72NjYFOkciwtdB0uGihxuhZX2MUG7d+9Gly5d8qXb29vj3LlzUpdXboKgwixZsgQTJ07EuXPn8n2gSsKHDx+Qk5MDMzMziXQzMzPExMQUuE9MTEyB+bOzs/Hhwwcuj+k3eUy/KrMox837b748pqaF1k1RCq+rGWJiC69rYW1Z2PkxxjB+0kQ0atgQNWrUKPKxPdw9oK2tjSnTpiEtLQ2pqamYNGUKxGIx3r9XfFtS+8mu0PMw+/7nJSYmBmamBZy7FJ9VAFi4aCFU+aoYPWr0d+u5dt1a6OgKoKMrwNlz5xBw7jzU1dV/fILFiK6DRF46duyI+/fvo0+fPnB2dkaNGjXQv39/3L9/H7Vq1ZK6vHIdBE2bNg3Lli3D5cuX4eHh8d28mZmZSE5OltjkifdNdM0Yy5f2o/zfphelTHnlKWm79+yBjr4et2Vl5/7y+5m6SrPPyNGjce/+fez9Z7dU5ZiYmODgvn04efoUdPT1oGdkCKFQiDqudcDn879/ssWA2k92u3fv5oIJHV0B1/tQXG34vTxhYWFYsXIltm/b9sNj9e7VGxFh4bhy6TIcHRzRrUd3ZGRkfHefkkLXweKV99gMWbfSLCwsDJ6enoiNjYWvry+eP38OLS0tNGzYENc/9wBKo9xOkV+6dClSU1MRGhpapCfL+vn5Yfbs2XKvh7GxMfh8fr5fFHFxcfl+eeQxNzcvML+qqiqMjIy4PLHf5In/qsyiHNfc3BxA7i8hCwuLL3ni4wutW0lp364d3OvX515nZmYCKKiucfl+ZX+tsLYs6PxGjRmDE6dOIujiJVhbW0uUUZRj+/r44vmT//DhwweoqqpCX18f5tZWsLOzLeJZyw+1n+zat28Pd3d37nWhbRj3/c+Lubl5vt62uHjpPqtXg68iLi4OFW0rce/n5ORgwsSJ8F+xAi9fRHHpenp60NPTg6OjIzw8PGBgZIijR4+iZ8+e0jaB3NB1sGQow2KJf/31FwYMGIDVq1cjKioKW7Zswbp16+Ds7Ixp06bhypUrUpVXbnuCGjdujJycHBw4cKBI+adNmwahUMht0dHRcqmHuro66tati8BvxiMFBgbC09OzwH08PDwQGBgokRZw/jzc3Ny4BaE8PD0R8E2e8wEB8GzQoMjHtbOzg7m5uUQekUiEoCtXCq1bSREIBHBwcOA2Z2dnmJubI+DCl3MWiUS4EhSEBt+pq6eHh8Q+AHA+MEBiH8YYRo4ejSPHjuLi+QDY2dlJ5M9rp6Ie29jYGPr6+rh46SLi4uLQvm07qc9fVtR+siu0DQMlPy9Xgq78oA09ERDwTRueD0ADT8nP6tflAkBAYCBXbt8+fXHvzl3cCY/gNktLS0yaOBHn/j373fNgjHEBnKLQdbBkKMMU+ZCQEPz2228AvvQMAsAvv/yC27dvS1+g1EOpSykvLy82ZswYxtiX2WHXr19nAoGALVq0SOryimOK/KbNm9mDyEg2ZswYpq2tzV5ERbEcsZhNmTKF9enbl8ufNzV07Nix7EFkJNu0eXO+qaFXg4MZn89nfn5+LPLhQ+bn51fo1NDCjpsjzp0aqqenxw4dPszu3rvHevTsWaqnyOvp6bEjBw+x+xF3WM8ePfJN8e7buw+bOnky9/ralSDG5/PZgvnz2aP7D9iC+fPzTfH+Y+gwpqenxy5fuMDeR7/htrTkT1Ide+umzSzkajB79vgJ27V9BzM0NGTjx45V+MwwpW8/OU+R19PTY0cOHWb3795jPXv0zDdFvm+fvhKzuq5dzf2sLvDzY48iH7IFnz+rBU2R37JpM3v4IJKN/fxZffkiqtC6fDs77PnTZ2z+vHks9NZt9irqJbsefI11aN+BGRoastj3MQqfHaas18GSnB3278MXLCg6Xqbt34cvSvXsMIFAwJ4+fcoYy50RpqOjwxhjLCQkhFWsWFHq8sp1EMQYY8HBwUxHR4ctW7ZMqvLkGQTliMVs9erVrFKlSkxdXZ3VqVOHXbp8mXuvX//+zMvLSyL/xUuXmKurK1NXV2e2trZszdq1+crcf+AAq1q1KlNTU2NOTk7s4KFDUh03R5w7PXTGjBnM3NycaWhosCZNmrC79+7J5ZzlHQSJRVls5vTpX+rauDG7H3FHIo9Xkyasf99+EmkH9+2XaKfDBw5KvA+gwG3b5i1SHXvKpEnMzMyMqampMUdHR7Z00WImFmUpPPhR+vaTYxAkzs5hM7/5vNy/e08ij5eXF+vfr79E2sH9kp/VwwcP5St7zTef1SuXLn+3Lt8GQW+j37DWrVozU1NTpqamxqytrVmvnr3Y44ePZD5veV0PlPE6WJJB0LnHUSz47QeZtnOPo0p1EOTi4sKOHz/OGMsNgrS1tdnVq1dZ3bp12ejRo6Uuj8dYEZ9EVsp5e3vDxcUF/v7+sLW1xdixY7kp80FBQWjTpg3mz5+P0aO/P7MiT3JyMvT09JCYlARdXd1irHn5ppLz4wfYEVKsVMrtXf8SIy7dd0hKteTkZBjo60MoFBbbd0ne91XgkyhoC2Q7RuqnZLSoales9ZXFggUL8O7dO6xcuRIvXrxAlSpVAAD9+/fHqlWroKWlJVV55SYIkjcKguSDgiCicBQEyYyCoJ9HQVDxyc7OxvPnz2FnZ/fTy0CU29lhhBBCiDJRkcPA5tK+WOLXVFVVUbVqVdnKkFNdCCGEEKJAyjBF3t7eHt+7gRUVFVXoewWhIIgQQgghZcK3j8fKysrC/fv3cfr0aYwfP17q8igIIoQQQsoBvkruJmsZpVlhk5vWr1//U+sElfLTJYQQQkhRKMNiiYXx9fXFwYMHpd6PgiBCCCGElGkHDx6EgYGB1PvR7TBCCCGkHFCGgdF16tSRGBjNGENMTAw+fPiAdevWSV0eBUGEEEJIOaDC40FFxqfAl/Yp8h07dpR4raKiAlNTU3h7e3MLJ0qDgiBCCCGkHFCGdYJmzJgh1/JoTBAhhBBClBL1BJHiRY8sIISQEqEMY4LkjYIgQgghpBygIEh69DOdEEIIIUqJgiBCCCGkHOCr8OSylWbt27fHsWPHkJOTI5fyKAgihBBCygFlWTG6Z8+esLa2xuTJk/HkyROZyqIgiBBCCCFlwokTJxAXF4epU6di6dKlqFmzJho1aoStW7ciLS1N6vIoCCKEEELKAWXpCRIIBPDx8YGKigrevn2LHj16YMOGDbCwsMBvv/2GkJCQIpdFQRAhhBBSDqio8OSylSUmJiYYOXIkbt68idDQUAgEAjRu3LjI+9MUeUIIIYSUWTk5OTh79ix2796NU6dOwdfXt8j7Uk8QIYQQUg6oyOFWWGl/bMa3Ro0aBUtLS4waNQrOzs54+PAhzpw5U+T9qSeIEEIIKQeUYbHEiIgIHD58GIcPH4aamhoSExOxd+9eNGvW7KfKoyCIEEIIKQeUIQhyc3ND7dq1MWrUKPTu3Rt6enoylVcmbod5e3tj7Nixiq6GTNatXYvK9vbQ0tREPTc3XL169bv5r1y5gnpubtDS1IRD5cpYv359vjyHDx9GjerVoVmhAmpUr46jR49KfVzGGGbPmgVrKytoa2mhWdOmiIyMlO1kiwljDLNmz4KltRU0tbXg3axodT18+DCca1SHhmYFONcouJ3WrlsLu8r2qKClibr1Cm6nHx07MzMTo0aPgrGpCbQFOmjfoQPevHkj20nLEbWf7KgNZUPXQSKrsLAwhIeHY/jw4RIBUEZGBnbs2CF9gawM+PjxI0tOTi7RYwqFQgaAJSYlsRyxWKZtz969TE1NjW3YuJE9iIxko0ePZtra2izq5csC8z97/pxpaWmx0aNHsweRkWzDxo1MTU2NHTh4kMsTfO0a4/P5bN68eSzy4UM2b948pqqqyq6HhEh1XD8/PyYQCNjBQ4fY3Xv3WLfu3ZmFhQVLEgplPu8csZixHPltCz7X9fDBQ+z+3Xuse7fcuiYnCQvd53pwbjvNnzePPYp8yOZ/bqcb10O4PPv25LbTpg0b2cMHkWzM53Z6FfVSqmMPGzqUWVlZsYBz51l4aBhr2rQpq127NssWZcm1Haj9qA1Lug3lcS1Q1utgYlISA8CEQmGxf1/FJSSyjOwcmba4hESp67tmzRpma2vLNDQ0WJ06dVhQUFCxnWtmZibbs2cPmz9/Pps1axa3TZw4kfF4PO51UZWJIEgR5BkE1a9fnw0dOlQizcnJiU2ZMqXA/JMmTWJOTk4Sab///jvz8PDgXnft1o21bNVKIo9vy5ase48eRT5udk4OMzc3Z35+ftz7aenpTE9Pj61dt04uFz5ZLrxfb+Ls3Lou8PPj0jLScuu6fu26Qvfr1rUba9WylURaS9+WrEf3Htzr+vXrs2FDh0rkcXJyYlOnTCnysZMSEpmamhrbt2cvl+dt9BumoqLCzp75V+Ff3tR+1IaynLs8rgXKeh0sySDoY2ISy8oRy7R9TJSuvvv27csN4DdtYg8fPmRjxozJDeBfvSqWc+3atSsTCASsVq1azNXVldtq1qzJVFRUmKurK3NxcSlyeWXudpitrS3mz5+PQYMGQSAQoGLFiti4caNE/uvXr8PFxQUVKlSAm5sbjh07Bh6Phzt37pR43UUiEcLCwuDzzZQ9Hx+fQhd0unHjBnx8fCTSfFu2RGhoKLKysnLzhITA95s8LX19EXL9epGPGxUVhZiYGIk8GhoaaOLlJdViUyUhr66+PpJ19WrihevfqWvIjRD4+n7TTi19cT1Esp2+LhcAfH18uHKLcuywsDBkZWVJTM20tLREjRo1uGMpErWf7KgNfx5dB8uvZcuWYfDgwRgyZAiqVasGf39/2NjYYN26dcVyvMDAQFy9ehV3795FeHg4t124cAGMMYSHhyMiIqLI5ZWJIOhbS5cuhZubGyIiIjB8+HD88ccfePz4MQDg06dPaNeuHWrWrInw8HDMmTMHU6ZM+WGZmZmZSE5Oltjk4cOHD8jJyYGZmZlEupmZGWJiYgrcJyYmpsD82dnZ+PDhA5fH9Js8pl+VWZTj5v03Xx5T00LrpiiF1tXs+3WNiYmBmem35yendvrq2DExMVBXV4eBgUGhx1Ikaj/ZURv+PLoOlgx5rhj97fdhZmZmvuNxAfw3Qaavry+uXy+ewFsoFMLa2jpfOmMMvJ8Y1F0mg6A2bdpg+PDhcHBwwJQpU2BsbIzLly8DAHbv3g0ej4dNmzbB2dkZrVu3xqRJk35Ypp+fH/T09LjNxsZGrnX+9h/nR/9gBeX/Nr0oZcorT0nbvXs3dHQF3Jb3y+9n6qrIdlJUW1L7yY7aUP7oOli8eGBy2QDAxsZG4jvRz88v3/F+JriV1bZt2yAQCPKl6+npYdu2bVKXVyaDoFq1anH/z+PxYG5ujri4OADAkydPUKtWLVSoUIHLU79+/R+WOW3aNAiFQm6Ljo6WS12NjY3B5/Pz/UHExcXl+8PJY25uXmB+VVVVGBkZcXliv8kT/1WZRTmuubk5AOTPEx9faN1KSvv27XEnPILbjI2NARRQ17jv19Xc3Bwxsd+en5za6atjm5ubQyQSITExsdBjlSRqP9lRG8oPXQfLnujoaInvxGnTphWatyQDyH79+kFdXT1f+qdPnzBz5kypyyuTQZCamprEax6PB7FYDKDgxs/79fA9Ghoa0NXVldjkQV1dHXXr1kVgQIBEemBgIDw9PQvcx8PDA4GBgRJpAefPw83NjTt3D09PBHyT53xAADwbNCjyce3s7GBubi6RRyQSIejKlULrVlIEAgEcHBy4zdnZGebm5ggIlKzrlaAraPCdunp6eCIg4Jt2Oh+ABp6S7fR1uQAQEBjIlZvXTt87dt26daGmpoaAr9ry/fv3ePDgAXeskkTtJztqQ/mh62AJEYvlswH5vg81NDTyHe5ngltZnTp1ClWrVoWGhgZUVFS4zdTUFK9eveJeF5lMw7RLiJeXFxszZgxjjLFKlSqx5cuXS7xfu3ZtNnPmTMYYY+vWrWPGxsYsIyODe3/z5s0MAIuIiCjyMYtjivymzZvZg8hIbvT8i6goliMWsylTprA+ffty+fOmho4dO5Y9iIxkmzZvzjc19GpwMOPz+czPz49FPnzI/Pz8Cp0aWthxc8S5U0P19PTYocOH2d1791iPnj1L9RR5PT09duTQYXb/7j3Ws0fPfFOE+/bpy82oYTlidu1qbjst8PNjjyIfsgWf26mg6clbNm1mDx9EsrGf2+nliyipjj1s6FBmbW3NAs8HsPDQMNasWbNSNcWb2o/a8Gc3eVwLlPU6WJKzw4QfPjAmEsm0CT98kKq+9evXZ3/88YdEWrVq1djUqVOL41RZlSpV2IgRI9iRI0fY8ePHuW3nzp2Mx+Nxr4uq3AVBQqGQGRoasn79+rGHDx+ys2fPMicnJwaA3blzp8jHlGcQlCMWs9WrV7NKlSoxdXV1VqdOHXbp8mXuvX79+zMvLy+J/BcvXWKurq5MXV2d2drasjVr1+Yrc/+BA6xq1apMTU2NOTk5sYOHDkl13Bxx7vTQGTNmMHNzc6ahocGaNGnC7t67J5dzlncQJM7OYTO/qev9u/ck8nh5ebH+/fpLpB3cL9lOhw8eylf2mm/a6cqly1IfOz01jY0cMYIZGhoyTU1N1vaXtuz1y1cK/+Km9qM2lPW85XU9UMbrYHkPgvKmyG/ZsoU9fPiQjR07NjeAf/myWM5VTU2NxcTE5EuPjY1lPB5P6vJ4jBXhXpGCeXt7w8XFBf7+/rC1tcXYsWMlVpB2cXFBx44dMWvWLAC5U+TzZozVrFkTEyZMQK9evfD48WNUrVq1SMdMTk6Gnp4eEpOS5HZrTBmplPq/LkLIj4jL1vjgUiU5ORkG+voQCoXF9l2S930ljIuT+RjJycnQMzWVqr5r167FokWL8P79e9SoUQPLly9HkyZNZKpHYezt7REeHg59fX2J9I8fP6JevXp48eKFVOWViSBIVrt378bAgQMhFAqhqalZpH0oCJIPCoIIKfsoCPp5JRoExcTKJwgyNyvW+pYm5fIBqjt37oS9vT2srKxw9+5dTJkyBd26dStyAEQIIYSUOV8NbJapjFJs9uzZhb7HGOPuCBVVuQyCYmJiMGPGDMTExMDCwgJdu3bFvHnzFF0tQgghhMjg+PHjEq9TU1Px6tUrqKmpwcHBgYIgAJg8eTImT56s6GoQQgghJUcJeoLCw8PzpSUkJKBPnz7o2rWr1OWVyXWCCCGEEPKNHLF8tjLG0NAQfn5+mDt3rtT7UhBECCGEkDKNz+fj1atXyM7Olmq/cnk7jBBCCFE6SnA7rDA1atSQOgACKAgihBBCygcmhyCIle4gqFmzZoU+CosxhsuXLyMpKQmdOnXCpUuXflgeBUGEEEIIKRNcXFx+mEdNTQ2urq5FKo+CIEIIIaQ8EDM53A4r3SvcLlu27Id5tLW1i5QPoCCIEEIIKR+UeEzQz6Ig6AdEOWKIyuCUwdKigqIrQAiRmUjRFSjD6PtDvuzt7QsdE/StqKioH+ahIIgQQggpD5SgJ2jQoEFYunQpGjZsCA8PDwBASEgIrl27hokTJ0r9vDMKggghhJDyQMxkH9NTyscERUZG4q+//sLEiRMl0hcvXow7d+5g9+7dUpVHiyUSQggh5UFeT5CsWyl28uRJdOjQIV96p06dcOLECanLoyCIEEIIIWWCrq4uzp8/ny/97NmzUt8KA+h2GCGEEFI+KMGYoD///BPjxo3DtWvXJMYEHTp0CMuXL5e6PAqCCCGEkPJACYKgkSNHwsnJCf7+/li5ciUYY6hWrRrOnj2L5s2bS10eBUGEEEIIKTNatGiBFi1ayKUsCoIIIYSQ8kAJeoLyZGRkID4+HuJv6lupUiWpyqEgiBBCCCkPlOABqo8fP8agQYNw48YNiXQejwfGWL6g6EcoCCKEEEJImTB48GCoq6vjzJkzsLCwAI/Hk6k8miJfQjasWwcnRwfo62ijQf36CA6++t38V4OuoEH9+tDX0Ua1Ko7YtGFDoXkP7N8PTTVVdO3SWerjzv17NmrXqA4jPV1YmBijTUtf3Lp58+dOspgxxjDr79mwrGgDTYEOvJs3Q2Rk5A/3O3zkCJxr1YSGthaca9XE0WPHJN5ft349arm6QtfQALqGBvBs1BD/nv2Xez8rKwtTpk1FTRcXaOvpwrKiDfoNGIB3795JlPP8+XN0+rULTCzMoWtogG49eyA2NlYu5y4P1H6yU1QbfmvoH3+Ap6YK/xUruLSXL1+Cp6Za4Hbw0KGfPmd5outgMct7gKpMW+leLPHu3btYt24dWrVqhdq1a6NWrVoSm7QoCCoBBw8cwKQJ4zFl6jTcuB2KBo0aoWPbtnj9+nWB+V9GRaFju3Zo0KgRbtwOxeQpUzFh3FgcPXIkX95Xr15h2pTJaNio0U8d18GxCpavWIHQiDu4cPkKKlWyRbs2rREfHy+/BpCTRUsWY5m/P1avWInbITdgbm4On9at8OnTp0L3CQkJQfdePdG3d2/cDQtH39690a1nD9z86gJnbW2FBfPnIfTGTYTeuIlmTZuiQ+fO3JdbWloawiMiMP2vvxB+6zaOHDiI/57+h/adOnFlpKamwrdNa/B4PFw8H4BrV4IgEonQrmMHqbtniwu1n+wU1YZfO3b8OG7eugVLS0uJdBsbG7yPfiOxzZ45E9ra2mjdqpX8GuEn0XWwBCjBYolVq1aV778LIwUSCoUMAIv9mMDSs7Jl2tzq1WO//T5UIq2qkxObOHlygfnHT5zIqjo5SaQN+e13Vt/dXSItJSOTeTZowNZt2Mj69O3H2rZvL9Nx07OyWezHBAaAnTl3TubzTs/KZkxOm1iUxczNzdmC+fO5tIyUVKanp8fWr1lb6H7dunZlrVq2lEhr6evLenTv/t3jGRgYsM0bNhb6/q3rIQwAe/X8BWNZ2ezcmTNMRUWFCT8mcHkS4uIZABZw9qzc2oHaT7nb8M3LV8zKyoo9uHOXVapUiS1fsvS7ZbjUdmGDBgyU+dzlcS1Q1utgXllCobDYv6+EN0MZi3ws0ya8GVrs9ZVFYGAgc3d3Z+fPn2fx8fEsKSlJYpMW9QQVM5FIhIjwcDT38ZFIb97CBzdCQgrc5+aNG2jeQjJ/C19fhIeFISsri0ubP3cOjE1MMGDQILkcVyQSYcvmTdDT00PNWrWLdH4lJSoqCjExMfD9ql00NDTg1aQJrhdyPgAQcuOGxD4A0NLHt9B9cnJysG//fqSmpsLz80JcBREmC8Hj8aCvrw8AyMzMBI/Hg4aGBpenQoUKUFFRQfC1a0U5xWJF7Sc7RbehWCxG3wH9MWn8BFSvXv2H9Q0LC8Odu3cweODAH+YtbnQdLCE5TD5bKebr64vbt2+jVatWMDU1hYGBgcQmLRoYXcw+fPiAnJwcmJqaSqSbmZkWOt4hNjYWZmaS+U1NTZGdnY0PHz7AwsIC169dw/Zt23AzNEzm4545fQr9evdGWloazC0scOrfszA2Npb2VItVTEwMAMDMzEwi3czUDK9ev/rufvn2MTPjystz//59eDZuhIyMDOjo6ODooUNwdnYusMyMjAxM/fMv9OrRk1um3cPdA9ra2pgybRrmz50LxhimTJsGsViM9+9jCiynJFH7yU7Rbbhw8SKoqqpi9KhRRarvlm3bUK1aNTRo0KBI+YsTXQdLiBJMkb906ZJcy6OeoM8yMzORnJwsscnTtyPYGWPfHdVeUP689E+fPmHQgP5Yu379Dz+kRTmul3dT3AwNw6Wgq/D1bYk+vXoiLi7uh+dUnHbv2QMdfT1uy8rO/eUnbTsWdZ+qVaviTmgYbgRfwx9Dh6L/oEF4+PBhvrKysrLQo3cviMVirF29mks3MTHBwX37cPL0Kejo60HPyBBCoRB1XOuAz+dLde7yQO0nu9LUhmFhYVixahW2b9lapNkw6enp2LNvb6noBfoaXQeLmRKMCWrSpEmBW+PGjaVeIwigniCOn58fZs+eLfdyjY2Nwefz8/3qiIuLz/frJE/ur0TJ/PHx8VBVVYWRkREeRkbi1cuX6NKxI/d+3uBRnQoauBf5ENY2NkU+rra2Nio7OKCygwPcPTxQo5oTdmzbiklTpv7sacusfbt2cK9fn3udmZkJIPdXtYWFBZceFx8HM1OzfPvnMTc3z/eLOy4uLt8vc3V1dTg4OAAA3NzccDs0FCtWrcKGdeu4PFlZWejWsweiol7iYkBAvof1+fr44vmT//DhwweoqqpCX18f5tZWsLOzle7k5YDaT3alqQ2vBgcjLi4OFe3tuPw5OTmYMHkS/FetxMtnzyXKOnT4MNLS0tCvT18pz7p40HWQyNO7d+/w6tUriEQiLi0hIQFdunTBxYsXwePx4OXlVaSyqCfos2nTpkEoFHJbdHS0XMpVV1eHa506uBgYKJF+8UIgPDw9C9zH3cMDFy9I5r8QEIA6detCTU0NVZ2cEBpxBzdDw7jtl3bt4OXtjZuhYbC2sfmp4+ZhjHEXfEURCARwcHDgNmdnZ5ibmyPgq3YRiUS4EhSEBt85H08PD4l9AOB8YMB39wHyt0HeF/jTZ88QeO4cjIyMCt3X2NgY+vr6uHjpIuLi4tC+bbsfna7cUfvJrjS1Yd8+fXAvPAJ3QsO4zdLSEpMmTMC502fy7btl21a0b9cOJiYm0pxysaHrYAlRgp6gefPmoWLFimjUqBGaNWvGbb/++it4PB6aN2+Opk2bFr1AWUdql1fynB22c/cepqamxtZv3MQi7t1nI0ePZtra2uzxs+csPSubTZw8mfXq3YfL/+i/p0xLS4uNGjOGRdy7z9Zv3MTU1NTYnv0HCj1GQbMifnTcD0lCNmnKFHb5ajB7/Ow5u37zFhswcBDT0NBgYXfulqrZYSwrmy2YP5/p6emxIwcPsfsRd1jPHj2YhYUFS05I5PL07d2HTZ08mXt97UoQ4/P5bMH8+ezR/Qdswfz5TFVVld0IvsblmTZlCgu6dIlFPX3G7oVHsD+nTmUqKirs/L//MpaVzbLSM1j7du2YtbU1uxMaxt5Hv+G2zNQ0rpytmzazkKvB7NnjJ2zX9h3M0NCQjR87VuGzmqj9yn4bFrQVNjvs6aPHjMfjsX9PnZLbecvjWqCs18ESnR128SpjtyJk2oQXr5bq2WEWFhZsx44dLCEhgQmFQm579uwZ4/F4LCkpSaq6UxBUCHkGQelZ2cx/5SpWsVIlpq6uzlxd67CAixclPriNmzSRyH/+wgXm4uLK1NXVWSVbW7Zy9Zrvll/Qh/9Hx038lMLad+zILCwtmbq6OjO3sGBt27VjV6+HyOWc5R0EiUVZbOb06czc3JxpaGiwJo0bs/sRdyTyeDVpwvr37SeRdnDffla1alWmpqbGnJyc2OEDByXeHzRgIKv0uY1MTExY82bNJL58op4+YwAK3C4FBnL5pkyaxMzMzJiamhpzdHRkSxctZmJRlsK/uKn9yn4bFrQVFgRNmzKFWVtbs5xMkdzOW17XA2W8DlIQJF98Pp/Fx8fnS4+NjWUqKipSl8djjJXu+XAKkpycDD09PcR+TMg3doEUXQVFV4AQIrMMRVegDEtOTobZ54H+xfVdkvd9JbxwBbraOrKVlZoCveZexVpfWQwaNAirVq2Ctra2RPqnT58wZswYbN26VarylGZM0Pbt22V+xgghhBBSainBmKCtW7fmC4CA3DF80gZAgBLNDnv58mWRR4sTQgghpPT50aDnS5cuISkpCZ06dSrSmkJKEwSdO3cOK7562CAhhBBSrijBYomurq4/zKOmplakfIASBUEh31nWnhBCCCnz8p4iL2sZpdiyZct+mEdbW7tI+QAlCoIIIYQQUj48e/YMDx8+BI/Hg5OTExwdHX+qHAqCCCGEkPJAzGTvySnlPUFCoRADBgzAiRMnoKqaG8JkZWWhXbt22LFjB/dQ5qJSmtlhhBBCSLmmBLPDxowZg2fPnuHatWvIyMhARkYGQkJC8Pz5c4wePVrq8qgniBBCCCkPlGBg9IkTJ3Dy5El4eHhwae7u7ti4cSPatm0rdXnUE0QIIYSQMkEkEkFHJ/+CkAKB4Kee9UZBECGEEFIOsByxXLbSzMvLC1OnTsXHjx+5tISEBEyePPmn1gKk22GEEEJIeaAEt8NWrlyJX375BRUrVkSVKlXA4/Hw5MkTWFlZ4cyZM1KXR0HQD6jzVaDOpw6zn5aapugaEGWnpaXoGpR56vTEoZ9G3x/yVblyZURGRuLEiRN4+PAhGGOoVq0aOnbsCD6fL3V5FAQRQggh5QGTQ08QK909QQDA5/PRqVMndOrUSeayKAgihBBCygMlWCdox44d332/f//+UpVHQRAhhBBCyoRx48ZJvM7KykJaWhpUVVWhpaVFQRAhhBCijJhYDCbj7TBZ9y9uCQkJ+dJevnyJoUOHYsKECVKXR0EQIYQQUh7kiHM3WcsoY2xtbbFgwQL07t0bDx8+lGpfGrZOCCGEkDKNx+MhOjpa6v2oJ4gQQggpD8RMDusEle6B0cePH5d4zRjD+/fvsXr1ajRq1Ejq8igIIoQQQsoBZRgT1LlzZ4nXPB4PpqamaN68OZYsWSJ1eRQEEUIIIeWBEqwYnZOTI9fyaEwQIYQQQpQS9QQRQggh5YESLJYob0rTE7R9+3bo6+sr7Pjr1q5FZXt7aGlqop6bG65evfrd/FeuXEE9NzdoaWrCoXJlrF+/Pl+ew4cPo0b16tCsUAE1qlfH0aNHJd63t7MDX0Ul3zZyxAguT0Hv81VUsGTxYvmcuBwxxjBr/jxYOjpA08QY3q1bIfLR96dDRj56iC69e8G2ujN4Ah34r1mTL09QcDDade0KS0cH8AQ6OHbypMT7WVlZmDJ9Omq614e2mSksHR3Q7/ff8O79ey5PQkICRk2cgKqurtAyNUHFak4YPWkihEKhfE5eDqj9ZMcYw6zZs2BpbQVNbS14N2uKyMjIH+53+PBhONeoDg3NCnCukf+zGhQUhHbt28PS2go8vgqOHTuWr4wjR46gZatWMDY1AY+vgjt37uTL492sKXh8FYmtR8+eP3u6ckfXweLFxHJ4inwpvx0mb0oTBCnS/v37MW7cOEz780+EhYejUaNG+KVNG7x+/brA/FFRUWj7yy9o1KgRwsLDMXXaNIwdMwaHDx/m8oSEhKBnjx7o06cPIu7cQZ8+fdCje3f8v737Dmvq6uMA/g2QsIQoIARUUEGliIKCCjhwlFGtWmtVtAq11WJti7xWpdSq0Kpx1boHuN9ia11dWgs4qApaBzhwvA5wYWRUEnCwct4/kCthCSQhSH6f5zlPm5tzzzn3h/fk5Nx7bk6fPs3lOf3PP3iQkcGlv2JjAQDvjRrF5Sn//oOMDGzavBk8Hg/vjhyppmjU35Lvv8fyNWuwZtl3OJOQAJGVFXyGDUNeXl61+zx9+gzt27bDoshIiKysqszz5OlTuHRxxppl31VTxlOcv5CCOWFhOH/8BPbF7MT/btzEsDGjuTwZkofIePgQyxYswKVTp7FtwwYciovHR59OVe6gVYjip7wlS5dg+fffY82q1Thz+h+IrETw8fOtMYZJSUkYMzYAE8aPx4XkFEwYPx6jAxTP1SdPnsDFpSvWrFpdbTlPnjxB795eWLRQXGMbJ0+ahIcPMri0sYqBgyZQP0gaIx5jTCvmvrZt24bQ0FDk5ubWKr9MJoNQKMTj3FyYmpoqVbenhwe6deuGdevXc9s6Ozlh+PDhWCiu3KF9GRaG33//HanlHvr0yZQpuHjxIk4mJgIAAgICIJPJcPDgQS7PW2+9hRYtWmDnzp1VtuM/oaE4cOAArv/vf+Dxqv5Z6BEjRiA/Lw9x8fH1OtaKdFT0K/KMMdh0cEDo1E8RNn06AKCgoABW9u2x+JtvEPzhR68so21nJ4RO/RSh5b4BVsQzaYb9O3/EO0OH1ljWmXPn0LO/N+5cuQrbNm2qzLN7/z6MnzQJTx5lQk9Ps1eetTp+KvoVecYYbFq3Qui0aQibFQbgRQytRVgsXoTg4OAq9xvz4lz9s9y56v/iXP2xinOVp6uD/Xv34Z133qmyvPT0dLSzb4/kc+fh6uqq8F7/gQPg6uKCFd+vqNcxVkeugl+R19Z+UCaToUXz5pBKpUp/ltRUh1AoRM6GHTA1VO7fu+zZU5hPCVRrexuTRjkTdOjQIfTp0wfNmzeHubk53n77bdy6dQtAaQfA4/Gwb98+DBgwAEZGRnBxcUFSUpJCGdu2bYOtrS2MjIwwYsQI5OTkaOJQUFhYiHPnzsHH11dhu4+PT6U2lzl16hR8fHwUtvn6+eHs2bMoKioqzZOUBN8Kefx8fZH0onOoqh0xMTGYOHFitSf+o0ePcPDAAUz88MNaHVtDSktPh+TRI/gOGsRt09fXh3fvPkg8dbqGPdVDKpOBx+OhuVBYfR6pDKYmJhofAAEUP1VIS0uDRCKBr8/Lc1lfXx/e/byRWM25DABJp5Lg61vhXPXzRWJS1eeqsmJ27oSFZUt07uKMGTNn1DhL1VCoH2wgZavDlE1apFEOgp48eYLp06fjzJkzOHz4MHR0dDBixAjIy/1xZs+ejRkzZiAlJQUdO3bE2LFjUVxcDAA4ffo0PvzwQ0ydOhUpKSkYMGAA5s+fX2OdBQUFkMlkCkkVsrOzUVJSAqsKlxKsrKwgkUiq3EcikVSZv7i4GNnZ2Vweywp5LGso85dffkFubi6CPvig2rbu2L4dJiYmlZ7D0BhIHj0CAFhZWipst7JsCUnmowZty/Pnz/HlvLkYN3p0td+UcnJy8O2SxQhuJB0pxU95ZedW5XPTstrzrmw/K8sK+1hWf64q4/2x4/BjzE4cO3IUc2Z/jb379jWKSzrUD5LGqlEOgkaOHIl3330XHTp0gKurKzZv3oxLly4p/CbIjBkzMGTIEHTs2BGRkZG4c+cObt68CQBYuXIl/Pz88OWXX6Jjx44ICQmBn59fjXWKxWIIhUIutalmir6+Kn7rYIxV+02kuvwVt9elzC1btsD/rbdgY2NTbZ1bt27FuHHjYGBgUG2ehhKzaxeaiay4VFRc+s2v8jFX3qZORUVFCPjgA8jlcqxb/n2VeWQyGYa89x6cHB0xL/yrBmtbeRQ/5cXExKCZqQmXymYf6nou13ef+pg8eTLefPNNODs7IyAgAHt+3o34w/E4f/68yuuqD+oH1avsYYnKJm3SOOaZK7h16xbmzJmDU6dOITs7m5sBunv3LpycnAAAXbt25fJbW1sDADIzM+Ho6IirV69ixIgRCmV6enri0KFD1dYZHh6O6S/ulQBKO2JVDIQsLCygq6tb6ZtJZmZmpW85ZUQiUZX59fT0YG5uzuV5VCFPVjVl3rlzB4fj47Gn3A2FFR0/fhzXr1/Hjz/9VKvjUrdhgwejl7s797qgsABA6YyGtUjEbc/MyoJVS8tK+6tDUVERRgdOQNqddBz540CVsxh5eXnwHzECzZoZY//OH8Hn8xukbRVR/JQ3bNgw9OrVi3tdUPAihhIJ1+cAQGZmVrXnMvDifH5U4XzOqv78V6Xu3buDz+fjxo0b6N69u9rrqw71gw2ElsjXWaOcCRo6dChycnIQHR2N06dPc3f6FxYWcnnKd45lo/6ywVJ97vXW19eHqampQlIFgUAANzc3xMfFKWyPj4+Hp6dnlft4eHggvsINeXGxsXB3d+eO28PTs9JNe7FxcfD08qpU3ratW2FpaYkhQ4ZU284tW7bAzc0NLi4utToudTMxMYGDvT2XnBzfgMjKCnFHjnB5CgsLkXDyBLw8etVQkmqUfYDfuHUL8b/9znXC5clkMvgOHw6BgI/fdv2s0W+SFD/lmZiYwMHBgUtOTk4QiUSIi395LhcWFiLh7wR4VXMuA4Cnhyfi4iqcq7Fx8PKsfK6qWmpqKoqKihQGbZpA/SBprBrdTFBOTg6uXr2KjRs3om/fvgCAEydO1KkMJycnnDp1SmFbxdcNKfQ//0FQYCDc3N3h6emJ6Kgo3L17F8FTpgAAvgoPx4OMDGzfvh0AEDxlCtauXYsvpk/HpMmTkZSUhC1btiCm3GqHkJAQ9Pf2xpLFizFs+HD89uuvOBwfj78rPHdDLpdj27ZtCAwMrPYGU5lMhj27d2NpPX53paHweDyETv0UC79bhg729ujgYI+Fy5bByNAQ40a9XGod+PFktLK2gTgyEkDph9SVa9e4/3+QkYGUixfRzNgYDvb2AID8/HzcvH2bKyPtzh2kXLwIsxYtYNumDYqLi/He+PE4fyEFf+zegxK5nLvHxqxFCwgEAuTl5cF3+HA8ffYUP2zaBFleHmQvbkht+eJbsCZR/JTH4/EQOm0aForF6ODQAR06dMBCsRhGRkYYN24cly8wKAitWtlA/GIp+7SQEPTr743FSxZj+LDh+PW3XxF/OB4n/n55rubn53OX8wEgLT0NKSkpMDMzg62tLYDSZyndvXsXGRkZAIDr168DKJ0NEYlEuHXrFmJ2xmDwW4NhYWGBK1eu4IuZM9CtWzf07t1b7fF5FeoHG0CJvDQpW4Y2YY1MSUkJMzc3Z+PHj2c3btxghw8fZj169GAA2P79+1laWhoDwJKTk7l9Hj9+zACwo0ePMsYYS0pKYjwejy1evJhdv36drV69mjVv3pwJhcJat0MqlTIA7HFuLiuRy5VOa9asYXZ2dkwgELDu3buzo8eOce8FBgUxb29vhfxHjh5l3bp1YwKBgLVt25atXbeuUpm7fv6ZderUifH5fObo6Mh279lTKc+fhw4xAOzqtWvVtm39hg3M0NCQ/fv4sUqOtXxiefkqS3JZHpsXHs5EVlZMX1+f9evdm106fVohj3efPixo3Pvc67TLqQxApeTdpw+X5+jBg1XmKSunujIAsKMHD9ZYBgCWdjlVpXGg+NUxlchVluTFJWze3LlMJBKVxrBfP3bpwkWFPN7e3iwoMEhh2+5diufq3t17FN4/evhI1TEsV87WzVuqzDNv7lzGSuTsbvod1q9fP2ZmZsYEAgGzt7dnIZ9/znKyspU+blX1B9rYDz7OzWUAmFQqVeVHZZWfV1nfRbGCdf9VKmV9F6W29s6fP595enoyQ0PDOn0eq1OjfE5QfHw8QkJCcPv2bXTq1AmrVq1C//79sX//fri6uqJdu3ZITk7mnpGRm5uLFi1a4OjRo+jfvz+A0mnNefPmIScnB2+++Sa8vb3x7bffauQ5QdpMVc8JIqTeVPScIG2miucEaauGfE5Q1tINMDU0VK6sZ8/QcuYUtbR33rx5aN68Oe7fv4/NmzfX+vNYnRrlIKgxoEGQatAgiGgcDYKURoOg+qNBUGV1fXixOjW6e4IIIYQQUg+qeNjhi/0rPitPX18f+vr6ypXdCDXK1WGEEEIIqSOmgqdFs9JBUJs2bRSenSeu4qdNmgIaBBFCCCFEwb179yCVSrkUHh5eZb6IiAjweLwa09mzZxu49bVHl8MIIYSQJoDJGZiSDzss27+2z8v77LPPEBAQUGOetm3bKtUmdaJBECGEENIUaOA5QRYWFrCwsFCuTg2iQRAhhBBC1O7u3bvcQz9LSkqQkpICAHBwcECzZs000iYaBBFCCCFNgQpXh6nD3LlzuSeCA0C3bt0AQOEZfw2NbowmhBBCmoDG/ivy27ZtA2OsUtLUAAigmSBCCCGkaWjkM0GNEc0EEUIIIUQr0UzQK+hcuwkdDd2w1SQ8ytJ0C4iWu9/DTdNNeO21vntX0014benk5zdcZXJWmpQtQ4vQIIgQQghpAlgJA1NyiTwr0a5BEF0OI4QQQohWopkgQgghpClgKrgxmmnXjdE0CCKEEEKaAlodVmd0OYwQQgghWolmggghhJAmQBUPO1TnwxIbIxoEEUIIIU0BXQ6rM7ocRgghhBCtRDNBhBBCSBNQ+pwg5Z7zo23PCaJBECGEENIE0D1BdUeXwxoIYwwRa1fDZkBfGLq5oP8HE5B680aN++yLi4X76JFo7tkDxj26wXXkO/jvb78q5CkuLsbXq1agnd8gGLq5oL3/m/hm/VrIy/1D5jk7VpmWbtnM5YnavQv9P5gA015u4Dk7IlcmU20AVIAxhojtW2Az+h0YvjUI/ad/jtT0tFful5ufh09XLof1qOEw8B+ENyaOx8HTSdz7f19MwdDZYbAZ/Q54g/rilxN/Vyrjg8ULwBvUVyF5fBaskKf/9M8r5Qn4dp7yB64iFD/lbI/eCK8ub8ChZQsM7ueF04knq837SPIQn334Aby7u8BWaIyIsJmV8hQVFWHFooXo3bUzHFq2gK9XLxyNi61zvU/y8/H1F/9BD0cHOFiaYYB7N+zYFKX8AasB9YPqxeRMJUmbNMmZoPT0dLRr1w7JyclwdXXVdHMAAEu2bMLyHduwbb4YHdu2xfyNG+Az+UNc/+NPmBhX/dtkZkIhZn88BY7t2kPA5+OPhGOYOOcrWJqbwa93XwDA4s2bsOHnn7B9wSJ0dnDA2dTLmPj1VxA2M8G0CYEAgIfHjiuU++fxv/HR3K8x0seX2/b0+XP49+kL/z59Eb5iuZqioJwlP+3E8j27sG3WV+jYug3m/7AdPrP+g+vbdsLEyKjKfQqLiuAzazosmzfHnnnfonVLS9zLzFTI/+TZc7jYO2Ci/2CMjPi62vr9e/TC1lnh3GuBHr9SnslDhuKbDz7iXhsK9OtzqGpB8au/3/buQeSXs7Bg+Qq4e3giZstmBI58B0f+OY9WbdpUyl9YUAhzCwt8PmMWNq1bXWWZS7+NxL5dP2LJqrWw79gJCYfjMPn9APwSdwTOLq61rjcyfBYS//4bq6K3oLWtHf4+Eo/Z00NhZW0NvyFD1RaT+qB+kDQ2TXIQ1NgwxrDivzsw++MpePfFCbd94SJYeffGzgN/IHh0QJX79e/ZS+H1tAmB2P7bLzhx/jx38iddSMbwAYMwxLs/AKBtq9b48eABnE29zO0nsmipUM6vR49gQM9eaF+u8w6dEAQAOPbPaeUOVk0YY1ix72fMHheId/t6AwC2h82G1XvDsfNwHIKHDq9yvy2HDuBfmQyJq9aDr1f6z93OSqSQ561eHnirl8cr26DP50NkZl5jHiN9g1fm0QSKn3Ki16zCmMAgjA2aCACIWLwUCYfj8d/N0fgy4ptK+dvY2SFyyTIAwK4fdlRZ5t6fduLzGbMw0M8fABA46WMkHI5H1OpVWLVpS63rPffPP3hv3Pvw7NsPAPD+xI8Qs3UzLp4/36gGQdQPqp8qZnK0bSaILoc1gLT79yHJzoKvV29um75AAG/3HkhMSa5VGYwxHD6VhOvpaejn5s5t79PdDYdPJ+F/Ly5rXLh2DSfOn8fgfv2qLOdRdjYO/J2Aj94dqcQRNby0hw8h+fdf+Lr34LbpCwTwdnFFYrmOrqLfEk/C06kzPl21HFYjh8H5o0AsjNmBkpKSOrfh2IUUWI4cio6BYzH5u8XIfPy4Up6Yw7GwGPE2On84ATM2rEXe06d1rkcdKH71V1hYiEspyeg3cJDC9n4DB+Hs6VP1L7egEAYGBgrbDAwMceZUYp3q7enpibiDB/Aw4wEYY0j8OwG3b96E95s+9W6bOlA/qH5yJodcrmSin81oGHK5HEuXLkV0dDTu3bsHKysrBAcHY/bs2bh06RKmTZuGpKQkGBkZYeTIkVi+fDmaNWvG7Tt//nxERUUhKysLb7zxBhYtWgR/f/9q6woODkZCQgLi4uJgZ2fXkIcKSXYWAMDKXPEbrpW5Oe5kZNS4rzQvD60GeqOgqBC6OjpY9/U8+JTrRMI+mgxpXh4chw6Grq4uSkpKsCAkFGMHv11ledt/+wUmRsZ4903fKt9vrCSPcwAAVi3MFLZbtWiBO48k1e53+2EGjiRL8P4gHxwUL8WN+/fw6arvUVxSgrmBE2td/1s9PTDKewDsrERIe/gQc7ZtwsAZ03Bu/SboCwQAgPcH+aCdyAYiMzNcTruN8M1RuHDrJuKWfl+PI1Ytil/9/ZuTjZKSErS0tFLYbmFpiaxHj+pdrvegNxG9ZjV6efWBXfv2OHHsKGIP/gH5iwFmbeuNXPIdwj7/FD0dO0BPTw86OjpYsnodenp61btt6kD9IGmMNDYICg8PR3R0NL7//nv06dMHDx8+xLVr1/D06VP4+/vDw8MDZ86cQWZmJiZNmoTPPvsM27ZtAwCsXLkS3333HTZu3Ihu3bphy5YtGDZsGFJTU9GhQweFegoLCzFu3DjcunULJ06cgKWlZZXtKSgoQEFBAfdapsQNcTF//I7gyJc3dB5YtwEAwOPxFPIxVnlbRSbGxkjZux/5T5/i8KkkTF+6CO1bt+amiHf9eRA//PE7di5ehs4ODki5dg2hixfCxtISQcNHVCpvy/69eP/tt2Gg3zjutahOTHwsgr9fxr0+sHAxAKBiuBhjNcZQLpfDskVzRE2fCV1dXbh17ISMnGws/fnHOn2Ijxnw8tu4c7v2cO/UCXbjRuHA6STu8tLkIcMU8nRo3Qbun0zC+f9dR/eOnWpdlypQ/FSPh4rnb82xe5XIJUsx6/NP0d/dFTweD3bt2mP0+xPwc8x/61Tvlg3rcP7MP9iyazdat7HF6ZMnMPuLUFiKROg7YGC926cs6gcbHl0OqzuNDILy8vKwcuVKrFmzBkFBpddg7e3t0adPH0RHR+PZs2fYsWMHjI2NAQBr1qzB0KFDsXjxYlhZWWHZsmUICwtDQEDpNeTFixfj6NGjWLFiBdauXcvVk5+fjyFDhuDZs2c4duwYhEJhtW0Si8WIjIxUyfENGzAAvbp25V4XFBYCACTZ2bBu+XIQlvlvTqVvRRXp6OjAwbZ05srV8Q1cvX0b4k1R3Mk/87ul+HLSZAQMHgIA6NKxE+48zIB4U1Slk//4ubO4npaGXY1gZuJVhnn1Qa83nLjXBUVFAADJv//C2tyC256Zmwur5maV9i9jbW4Ovp4edHV1uW1v2LaF5N9/UVhUBAG/8s25tWFtbgE7KxFu3L9fbZ7uHTqCr6eHGw/uN/iHOMVPdczMLaCrq4vMTMUZs5ysLFhU86WqNswtWmLzjz/j+fPnePxvDkTWNhDPmwNbu7a1rvfZs2dYEjkP0TE/YZD/WwCAN5y7IPXSRWxctUKjgyDqBxte6SBI2SXy2jUI0sg9QVevXkVBQQEGDRpU5XsuLi7cAAgAevfuDblcjuvXr0MmkyEjIwO9e/dW2K937964evWqwraxY8ciPz8fsbGxNQ6AgNKZKalUyqV79+7V+/hMjJvBwdaOS072DhBZtERcUiKXp7CoEAlnz8DLtVudymaMcZ0JADx9/gw6PMU/o66OjsLS0DKb9+2Bm1NnuDg61vGIGp6JkREcWrXmkpNdW4jMzBB37gyXp7CoCAkXUuDV2bnacnp37oKbDx4oxON/9+/B2ty83h/gAJAjleJeZiasa+i8U9PTUFRcXGMedaH4qY5AIEAX1244fuSIwvbjR4/AvRY3hL+KgYEBrG1aobi4GAd//QU+Q4bUut7ioiIUFRVBR6dCH6CrC7mGP8yoHySvA43MBBkaGlb7Xk1TzOW3V55Srbzf4MGD8cMPP+DUqVMYOLDmb0T6+vrQV9PUKI/HQ+iEQCyM3ogOtnboYGeHhdEbYWRggHFDXl6zDgwPQytLS4j/8wUAQBy9Ee6dnWHfxhaFRUU4eDwBO37/Feu/fjnFPLT/ACyI3gBba2t0dnBA8tWrWL5jGz4coXjDnyw/H7tj/8J3M8KqbKMkOwuS7GzcvHsXAHDpxv9gYmwMW2trmAmbqzgidcfj8RD67mgs3PkDOrRugw6tWmPhzv/CyEAf4wa9vAE0cNF8tLKwgHjSFADAJ8Pewepf9mLa2pX4/J2RuPHgPhbu/C9C3n2P2yf/2VPcfPCAe50meYiUmzdgZmIKWysr5D97iojtWzGyrzeszc2RLpHgq81RsBAKMaJP6Y2XtzIeICY+FoN7ecJCKMSVO+n4YsNadHPogN6duzRQlKpH8VPO5M9CEPrxR+javTvcevZCzNYteHD/HsZ/OAkAsChiLiQZGVgRtYnbJ/XiBQDAkyf5yMnORurFC+ALBOjo+AYAIPnMP5A8zIBTFxdIHmbge/ECMCbHJ9Om17peE1NTePTpi/lzZsPA0BCt2tji1Mnj2PPjTsxduKihwlMr1A82AFU850fLZoI0Mgjq0KEDDA0NcfjwYUyaNEnhPScnJ2zfvh1PnjzhZoNOnjwJHR0ddOzYEaamprCxscGJEyfQr9yd/4mJiejZs6dCWZ988gmcnZ0xbNgwHDhwAN7e3uo/uGrM+nASnj1/jqnzv8FjmRS9unZFbNRmhWdj3H2YAR2dlwO5J8+eYer8b3D/kQSG+gZwbNcOP4iXYMxbg7k8q7/6GnNWr8LU+d8g898c2LS0RPCoMZj7yVSF+n/68wAYYxj7Yrq4og27fkLk+peXEvsFjQcAbJ2/EB+8865KYqCsWQHj8KywAFNXfofHefno9cYbiF28XOGZNXczH0Gn3GC4jaUVYhcvx3/Wr0bXyRPRysIC0959D2EB73N5zl6/jgFfhHCvp69fAwAI8vXHtrDZ0NXRxaW0W9gRdwi5+fmwNjPHANdu2DUngqtboKeHw8nnsHLfHuQ/f4Y2LS0xpJcn5gVOVLiUpEkUv/obNvI9PP43BysXi5EpkaCTkxO279mP1ra2AIBHEgke3FecPfbv48n9/6XkZPyyexda29oi6fI1AMDzggIs/fYb3E1Pg5FxMwz09cOKqE0QNm9e63oBYO3W7VgUMRefT5qI3MeP0bqNLWbNjcCEjyarMSL1Q/2getETo+uOxxjTyLAvMjISK1euxIoVK9C7d29kZWUhNTUVY8eOhYODA7y8vBAREYGsrCxMmjQJffv25W6MXrFiBebNm4eoqCi4urpi69atWL58OXdjdMWHJa5YsQJz5szBn3/+iT59+tSqfTKZDEKhENJTZ2HarOqHeJFaeJSl6RYQLXe/h5umm/Daa/1iZoTUnSw/H0IPd0ilUpiamqqnjhefV7eDZsJEyQeM5hUWoP32pWptb2OisdVhc+bMgZ6eHubOnYuMjAxYW1tjypQpMDIywl9//YVp06ahR48eCkvky4SEhEAmk+GLL75AZmYmnJyc8Ntvv1VaGVYmNDQUcrkcgwcPxqFDh+Dl1biWjhJCCCHKotVhdaexmaDGjmaCVIRmgoiG0UyQ8mgmqP4acibo5vvTVTIT5BCznGaCCCGEEPL6kMuZ0qsCNb2qsKHRz2YQQgghRCvRTBAhhBDSBNA9QXVHgyBCCCGkCWBMBUvktewHVOlyGCGEEEK0Es0EEUIIIU0AXQ6rOxoEEUIIIU0APTG67uhyGCGEEEK0Es0EEUIIIU0AXQ6rOxoEEUIIIU2AXC6HXMnLWcru/7qhQdAryB0dINeCR4eri84bHTXdBKLlWmu6AU2A3InO4/qSy2SabgKpAQ2CCCGEkCaALofVHQ2CCCGEkCagdBCk7OowGgQRQggh5DVDM0F1R0vkCSGEEKKVaCaIEEIIaQJoJqjuaBBECCGENAH0xOi6o8thhBBCCNFKNBNECCGENAGMMciVvRzG6HIYIYQQQl4zdDms7uhyGCGEEEK00msxCOrfvz9CQ0M13QylrF+3Dvbt28PI0BA93N1x/PjxGvMnJCSgh7s7jAwN4WBvjw0bNlTKs3fvXjh37gxDAwM4d+6M/fv317lexhgiIyLQulUrGBsZYeCAAUhNTVXuYNWEMYaIyAjYtG4FQ2Mj9B9Yu7bu3bsXTs6doW9oACfnquO0bv06tLNvDwMjQ7j1qDpOr6q7oKAAn4d8DgvLljA2aYZhw4fj/v37yh20ClH8lEcxVA71g+rFSphKklZhr4GcnBwmk8katE6pVMoAsMe5uaxELlcq7fzxR8bn89nGqCh2OTWVhYSEMGNjY5aWnl5l/pu3bjEjIyMWEhLCLqemso1RUYzP57Ofd+/m8pw4eZLp6uqyBQsWsNQrV9iCBQuYnp4eS0xKqlO9YrGYmZiYsN179rALFy+y0WPGMGtra5YrlSp93CVyOWMlqkuLXrR17+497NKFi2zM6NK2ynKl1e6TeKI0TgsXLGBXU6+whS/idCoxicvz087SOEVvjGJXLqeyaS/idCctvU51TwkOZq1atWJxf8Wy82fPsQEDBjAXFxdWXFik0jhQ/CiGDR1DVfQF2toPPs7NZQCYVCpV++fVP33Gsyv9P1Qq/dNnvNrb25i8FoMgTVDlIKhnz54sODhYYZujoyMLCwurMv/MmTOZo6OjwraPP/6YeXh4cK9HjR7N/Pz9FfL4+vmxMQEBta63uKSEiUQiJhaLufefPnvGhEIhW7d+vUo6PmU63vJJXlza1kViMbft+dPStm5Yt77a/UaPGs38/fwVtvn5+rGAMQHc6549e7IpwcEKeRwdHdmXYWG1rjv338eMz+ezn3b+yOV5cO8+09HRYYcO/qnxD2+KH8VQmWNXRV+grf0gDYIat9fucljbtm2xcOFCfPjhhzAxMYGtrS2ioqIU8icmJsLV1RUGBgZwd3fHL7/8Ah6Ph5SUlAZve2FhIc6dOwcfX1+F7T4+PkhKSqpyn1OnTsHHx0dhm6+fH86ePYuioqLSPElJ8K2Qx8/XF0mJibWuNy0tDRKJRCGPvr4++nl7V9s2TSlrq6+PYlu9+3kjsYa2Jp1Kgq9vhTj5+SIxSTFO5csFAF8fH67c2tR97tw5FBUVwbdcLG1sbODs7MzVpUkUP+VRDOuP+sGGUfawRGWTNnktBkEVfffdd3B3d0dycjKmTp2KTz75BNeuXQMA5OXlYejQoejSpQvOnz+Pb7/9FmFhYRpra3Z2NkpKSmBlZaWw3crKChKJpMp9JBJJlfmLi4uRnZ3N5bGskMeyXJm1qbfsv5XyWFpW2zZNqbatVjW3VSKRwMqy4vGpKE7l6pZIJBAIBGjRokW1dWkSxU95FMP6o36wYdAgqO5ey0HQ4MGDMXXqVDg4OCAsLAwWFhY4duwYACAmJgY8Hg/R0dFwcnLCW2+9hZkzZ76yzIKCAshkMoWkSjweT+E1Y6zStlflr7i9NmWqKk9Di4mJQTNTEy6VffOrT1s1GSdNxZLipzyKoepRP6hecrlcJUmbvJaDoK5du3L/z+PxIBKJkJmZCQC4fv06unbtCgMDAy5Pz549X1mmWCyGUCjkUps2bVTSVgsLC+jq6lb6RpGZmVnpm0cZkUhUZX49PT2Ym5tzeR5VyJNVrsza1CsSiQCgcp6srGrb1lCGDRuGlPPJXLKwsABQRVsza26rSCSC5FHF41NRnMrVLRKJUFhYiMePH1dbV0Oi+CmPYqg61A+Sxuq1HATx+XyF1zwejxu9VjV6L/v2UJPw8HBIpVIu3bt3TyVtFQgEcHNzQ3xcnML2+Ph4eHp6VrmPh4cH4uPjFbbFxcbC3d2dO3YPT0/EVcgTGxcHTy+vWtfbrl07iEQihTyFhYX4OyGh2rY1FBMTEzg4OHDJyckJIpEIcfGKbU34OwFeNbTV08MTcXEV4hQbBy9PxTiVLxcA4uLjuXLL4lRT3W5ubuDz+YgrF8uHDx/i8uXLXF0NieKnPIqh6lA/2DDoclg9NNAN2Erx9vZm06ZNY4wxZmdnx77//nuF911cXNi8efMYY4ytX7+eWVhYsOfPn3Pvb9q0iQFgycnJta5THUvkozdtYpdTU9m0adOYsbExu52WxkrkchYWFsbGT5jA5S9bGhoaGsoup6ay6E2bKi0NPX7iBNPV1WVisZilXrnCxGJxtUtDq6u3RF66NFQoFLI9e/eyCxcvsoCxYxv1EnmhUMj27dnLLl24yMYGjK20RHjC+AncihpWImcnj5fGaZFYzK6mXmGLXsSpquXJm6M3sSuXU1noizil306rU91TgoNZ69atWXxsHDt/9hwbOHBgo1riTfGjGNY3qaIv0NZ+sCFXh51wG81Ser6vVDrhNlqrVoc1uUGQVCplZmZmLDAwkF25coUdOnSIOTo6MgAsJSWl1nWqchBUIpezNWvWMDs7OyYQCFj37t3Z0WPHuPcCg4KYt7e3Qv4jR4+ybt26MYFAwNq2bcvWrltXqcxdP//MOnXqxPh8PnN0dGS79+ypU70l8tLloXPnzmUikYjp6+uzfv36sQsXL6rkmFU9CJIXl7B5Fdp66cJFhTze3t4sKDBIYdvuXYpx2rt7T6Wy11aIU8LRY3Wu+9mTp+yzTz9lZmZmzNDQkL095G12N/2Oxj+4KX4UQ2WPW1X9gTb2gzQIatx4jDX+X0vr378/XF1dsWLFCrRt2xahoaEKT5B2dXXFO++8g4iICAClS+TLVox16dIFX3zxBcaNG4dr166hU6dOtapTJpNBKBTicW4uTE1N1XBU2kGn0f/rIoS8ivz1uj+4UZHJZGjRvDmkUqnaPkvKPq/+7j4KzXT5r96hBvklReh3frda29uYvBY/oFq28gsA0tPTK71f8fk/Xl5euHDhAvc6JiYGfD4ftra2amohIYQQollyOYOcp9w3T7mW3RP0WgyC6mrHjh1o3749WrVqhQsXLiAsLAyjR4+GoaGhpptGCCGEkEaiSQ6CJBIJ5s6dC4lEAmtra4waNQoLFizQdLMIIYQQtaGZoLprkoOgWbNmYdasWZpuBiGEENJgmJyBKTkI0rYl8q/lc4IIIYQQQpTVJGeCCCGEEG3DGINcyQXfr8GCcZWimSBCCCGkCZDLmUqSOqSnp+Ojjz5Cu3btYGhoCHt7e8ybNw+FhYVqqa+2aCaIEEIIaQIa843R165dg1wux8aNG+Hg4IDLly9j8uTJePLkCZYtW6aWOmuDBkGEEEIIUSt/f3/4+/tzr9u3b4/r169j/fr1NAgihBBCiHLkKrgnqGx/mUymsF1fXx/6+vpKlV2RVCqFmZmZSsusK7oniBBCCGkCVHlPUJs2bSAUCrkkFotV2tZbt25h9erVmDJlikrLrSuaCSKENGn0u1eE1N29e/cUfjusulmgiIgIREZG1ljWmTNn4O7uzr3OyMiAv78/Ro0ahUmTJqmmwfVEgyBCCCGkCVDljdGmpqa1+gHVzz77DAEBATXmadu2Lff/GRkZGDBgADw9PREVFaVUW1WBBkGEEEJIEyCHCu4JQt32t7CwgIWFRa3yPnjwAAMGDICbmxu2bt0KHR3N35FDgyBCCCGEqFVGRgb69+8PW1tbLFu2DFlZWdx7IpFIY+2iQRAhhBDSBMjlrM4zOVWVoQ6xsbG4efMmbt68idatWyu8p8mnVGt+LooQQgghSmvMT4z+4IMPwBirMmkSDYIIIYQQopXochghhBDSBDAVXA5japoJaqxoEEQIIYQ0Aaq4vKTpy1MNjQZBhBBCSBPQmG+MbqzoniBCCCGEaCWaCSKEEEKaAJoJqjuaCWog69etg3379jAyNEQPd3ccP368xvwJCQno4e4OI0NDONjbY8OGDZXy7N27F86dO8PQwADOnTtj//79inWuXw9XFxc0FwrRXChEby8v/Pnnn9XWOSU4GLo6Oli5YkW9jlHdGGOIiIyATetWMDQ2Qv+BA5CamvrK/fbu3Qsn587QNzSAk3PlOAHAuvXr0M6+PQyMDOHWQ/HvU1RUhLAvw9DFpSuMTZrBpnUrBAYFISMjQ6GM/gMHgKero5ACxo5V/sBVhOKnHE2cw7Wpd+LEidDV0VFIXp6eyh2smlA/qF6lvyIvVzJp1yAIjFRJKpUyAOxxbi4rkcuVSjt//JHx+Xy2MSqKXU5NZSEhIczY2JilpadXmf/mrVvMyMiIhYSEsMupqWxjVBTj8/ns5927uTwnTp5kurq6bMGCBSz1yhW2YMECpqenxxKTkrg8v/z6K/v9jz/Y1WvX2NVr11h4eDjj8/ns4qVLlercu28fc3FxYTY2Nmz58uVKH3NZYiWqS4vEYmZiYsL27t7DLl24yMaMHsOsra2ZLFda7T6JJ0rjtHDBAnY19Qpb+CJOpxKTuDw/7Sz9+0RvjGJXLqeyaS/+PnfS0hkrkbPcfx+zNwe9yXb9+BO7duUqSzqZyHr16sXc3NwU6vL29maTJ01iDx9kcCn338cqjQHFr+5JFf+ONXUO16bewKAg5ufvzx5kZHApKztbJcetyqSt/eDj3FwGgEmlUrV/Xv1g+SbbJ/JXKv1g+aba29uY0CCoGqocBPXs2ZMFBwcrbHN0dGRhYWFV5p85cyZzdHRU2Pbxxx8zDw8P7vWo0aOZn7+/Qh5fPz82JiCgxra0aNGCRUVHK2y7e+8ea9WqFbt46RKzs7NrlIMgeXEJE4lEbJFYzG17/vQZEwqFbMO69dXuN3rUaObv56+wzc/XjwWMCeBe9+zZk00JDlbI4+joyL4MC6u23H9OnWYAuA969uJDfFpIiMYHOxQ/1Q+CNHUO16bewKAgNmz4cJUcpzqTtvaDDTkI2mExiO2x9FMq7bAYpFWDILocpmaFhYU4d+4cfHx9Fbb7+PggKSmpyn1OnToFHx8fhW2+fn44e/YsioqKSvMkJcG3Qh4/X18kJSZWWWZJSQl++uknPHnyBJ7lpsrlcjmCAgMxY8YMdO7cuc7H11DS0tIgkUjg6/Myjvr6+vDu543EauIIAEmnkuDrWyFOfr5ITCqNU9nfp3y5AODr41NjuVKpFDweD82bN1fYHrNzJywsW6JzF2fMmDkDeXl5tT1EtaL41Z+mzuG61Jtw7BhEVlZw7NQJH0+ejMzMzLofqBpRP9gw5I34idGNFd0Y/UJBQQEKCgq41zKZTCXlZmdno6SkBFZWVgrbraysIJFIqtxHIpFUmb+4uBjZ2dmwtraGRCKBZYU8llWUeenSJfT28sLz58/RrFkz7N23D05OTtz7SxYvhq6eHj4PCVHmMNWu7Lgqx8USd+7crXE/K8sK+1i+jFN9/j7Pnz/Hl1+FY9zYcTA1NeW2vz92HNq1aweRSITLly8jfPZXuHDhIuJiY2t/oGpC8as/TZ3Dta3X398f7733Huzs7JCWloZ5c+fizUGDcObsWejr69f7uFWJ+kHSWNEg6AWxWIzIyEi1lc/j8RReM8YqbXtV/orba1Nmp06dcD45Gbm5udi3dy8mfvABjh47BicnJ5w7dw6rVq3C2XPnamyLJsTExCD4kync6wO//wGg7nGs7T61LbeoqAgBY8dCLpdj3dq1Cu9NnjyZ+39nZ2d06NAB7j174Pz58+jevXuNbVQ1ip/qaeocflWeMWPGcP/v7OwMd3d3tGvbFgcOHMC7775b0yE1OOoH1UvOmNI3Niu7/+uGLoe9EB4eDqlUyqV79+6ppFwLCwvo6upW+maSmZlZ6VtOGZFIVGV+PT09mJubc3keVciTVUWZAoEADg4OcHd3x0KxGC4uLli1ciUA4MTx48jMzERbOzsI+HwI+HzcuXMHM2bMQPt27ZQ6bmUNGzYMKeeTuWRhYQEAVcQlq9o4Ai9i+ajCPlkv41SXv09RURFGjxmDtPQ0xP0VqzCLUZXu3buDz+fjxo0bNR+sGlD8VEdT53B96gUAa2tr2NnZ4aaG41Ye9YMNQ85UcDmMBkHaSV9fH6ampgpJFQQCAdzc3BAfF6ewPT4+XuGadHkeHh6Ij49X2BYXGwt3d3fw+fzSPJ6eiKuQJzYuDp5eXjW2hzGGgsJCAMD4CROQcuECzicnc8nGxgYzZszAn4cO1ek4Vc3ExAQODg5ccnJygkgkQlz8yzgWFhYi4e+EGpcDe3p4Ii6uQpxi4+DlWRqnsr9P+XIBIC4+XqHcsg/wGzdvID42juuEa5KamoqioiJYW1vX6phVieKnOpo6h+tTLwDk5OTg3r17EGk4buVRP0garYa+E/t1oY4l8tGbNrHLqals2rRpzNjYmN1OS2MlcjkLCwtj4ydM4PKXLQ0NDQ1ll1NTWfSmTZWWhh4/cYLp6uoysVjMUq9cYWKxuNLS0C+//JIdS0hgt27fZikXLrDw8HCmo6PDDv31V7Vtbayrw1hJ6RJvoVDI9u3Zyy5duMjGBoyttMR7wvgJCquSTh4vjdMisZhdTb3CFr2IU1VLvDdHb2JXLqey0Bd/n/TbaYyVyFlRQSEbNnQYa926NUs5n6ywhLvg2XPGSuTs5v9usMiICHbm9D8s7dZtduD3P5ijoyPr1q0bKy4s0vjqMG2Onyr+HWvqHH5VvVKZjE2fPp2dOHmS3bp9mx0+coR5enqyVq1asVypVGXn8escQ033gw25OizK1Jv9IBykVIoy9daq1WFaMwhavXo1GzhwYK3zq3IQVCKXszVr1jA7OzsmEAhY9+7d2dFjx7j3AoOCmLe3t0L+I0ePsm7dujGBQMDatm3L1q5bV6nMXT//zDp16sT4fD5zdHRku/fsUXh/4sSJXJ0tW7ZkgwYNqvHEV/XJXyJX7Ye4vLiEzZs7l4lEIqavr8/69evHLl24qJDH29ubBQUGKWzbvUsxTnt376lU9toKf5+Eo8e499Ju3WYAqkxHDx9hrETO7qbfYf369WNmZmZMIBAwe3t7FvL55ywnK1vjgx9tj5+q/i1r4hx+Vb35T54wH19f1rJlS8bn85mtrS0LDApi6XfuqOy4VZm0sR9syEHQRpN+bIfpQKXSRpN+WjUI4jGmHRcAIyIisG3bNqSnp9cqv0wmg1AoxOPcXJVdGtNGOlrxr4s0ZvLX+15X8pqTyWRo0bw5pFKp2j5Lyj6v1hv3hSFPufVOz1gxPnlyXK3tbUy05p6giIiIWg+ACCGEENL00RJ5QgghpAmQyxnkPFoiXxc0CCKEEEKaACZnYEoOgrTkDhmO1lwOI4QQQggpj2aCCCGEkCZAzhjkoMthdUGDIEIIIaQJoHuC6o4uhxFCCCFEK9FMECGEENIE0ExQ3dEgiBBCCGkC6J6guqPLYYQQQgjRSjQTVI2yZyXIZDINt+T1Rj+bQTSNfjaDaFLZZ0hDPH/nKStWeibnOUpU1JrXAw2CqpGXlwcAsLO11XBLCCGEvO7y8vIgFArVUrZAIIBIJMJcyTmVlCcSiSAQCFRSVmOnNT+gWldyuRwZGRkwMTEBj0dfJQkhhNQdYwx5eXmwsbGBjo767kB5/vw5CgsLVVKWQCCAgYGBSspq7GgQRAghhBCtRDdGE0IIIUQr0SCIEEIIIVqJBkGEEEII0Uo0CCKEEEKIVqJBECGEEEK0Eg2CCCGEEKKVaBBECCGEEK30f631SDfvOLhuAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sv = ShapleyValues(model) \n", + "\n", + "sv_llm_attr = LLMAttribution(sv, tokenizer)\n", + "\n", + "attr_res = sv_llm_attr.attribute(inp, target=target, skip_tokens=skip_tokens, num_trials=3)\n", + "\n", + "attr_res.plot_token_attr(show=True)" + ] + }, + { + "cell_type": "markdown", + "id": "objective-america", + "metadata": {}, + "source": [ + "Let's now consider a more complex example, where we use the LLM as a few-shot learner to classify sample movie reviews as positive or negative. We want to measure the relative impact of the few shot examples. Since the prompt changes slightly in the case that no examples are needed, we define a prompt function rather than a format string in this case." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "powered-seating", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvEAAAI8CAYAAAB4TvSLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADmWUlEQVR4nOzdd0BO/fsH8PfdLg0UGRUVimzJiIYdsvfej7333iM8ZjaPzWNUJJERSUYRGUWTSiFNad739fuj3310V9b3oZTr9c/zdJbzOae7+zqfc32uj4iICIwxxhhjjLFiQ66oT4AxxhhjjDH2YziIZ4wxxhhjrJjhIJ4xxhhjjLFihoN4xhhjjDHGihkO4hljjDHGGCtmOIhnjDHGGGOsmOEgnjHGGGOMsWKGg3jGGGOMMcaKGQ7iGWOMMcYYK2Y4iGeMMcYYY6yY+SlBfFRUFJ49eyb8LJFIQEQ/49CMMcYYY4yxPH5KEL9jxw7MmzcPoaGhSE5OhpycHEQiEcRi8c84PGOMMcYYYyyX/xzE37lzB+Hh4WjdujXKlCmDunXrYsCAAcjOzoa8vDyAnJ55xhhjjDHG2M/xn4P4gwcPAgA6dOiAsmXL4uTJk4iJiYGmpiZ27dqV84/IyYGIOMWGMcYYY4yxn0BE/zGyDg0NRXBwMDp06CCzfPHixVi5ciXq1KmDDRs2oG3btgByeuXl5Hg8LWOMMcYYY/+r/xRNExGMjY2FAD47OxsAkJCQACJCnTp1YG1tje7du6NFixZ4//495OTkkJ6e/t/PnDHGGGOMsT/UfwriRSKRzM8KCgoAAE9PT7i6uqJ///7YunUrgoKCYGBggHXr1uH58+eoU6cO3N3d/8s/zRhjjDHG2B/rP6fTSBERRCIRXr16hUWLFiE0NBTXrl2DioqKsE18fDz27duHRYsW4d27d9DS0voZ/zRjjDHGGGN/lJ+WnC7tlb906RJ8fX0xadIkqKioCCk2ABAZGYmVK1di/fr10NLSQkZGBg92/Y1ER0fL1PtnjDHGGGO/p58SxEsD8UePHuH8+fOoWbMm+vXrBwBCmcmUlBTs3LkTOjo66N+/P5KTk6GsrAyRSMSB/G/C0dER8+fPzxfI8/1hjDHGGPu9/OcgXppGk5GRAXd3d4SGhmLu3LkAcga6SnvofXx8cOTIEWRmZmLFihXQ19fHunXrAOTPrWeFT1rv39bWFrVq1QIAuLq6QiKR8P1hjDHGGPvN/OcgXhrgXb9+HceOHYOdnR0sLCxARMJA1w8fPmDZsmVo0qQJXFxc4ODggAMHDmDz5s148ODBfz0F9hNI6/23bdsWIpEI169fx/jx4+Hg4FC0J8YYY4wxxvJR+FkHMjQ0RLVq1TBjxgwAOfXg5eXlQUQ4c+YMfH19ERgYiGrVqgEAGjZsCFVVVfj4+KBRo0b5jicWi4VUHPbrzZ49Gy9evICZmRkAYM+ePWjQoAHatGkD4PMbF8YYY4wxVvR+WhBvamoKFxcXALIB+KtXr7Bq1SpMmTIF1apVEyZ7SkxMxKtXr1C3bl3hGB8+fMD79+9RtWpVoaoNTw7160nr/RsZGQEADh8+jJcvX2LYsGEwNzcH8PmNizSYT05OhkgkgoaGRpGdN2OMMcbYn+qnRcdisVj4f2kAn5WVhXXr1iEzMxOrVq3K+Qfl5JCdnY2lS5fC3Nwc1tbWSExMhIODAxo2bIgxY8agSpUq2LBhg7A9+7VEIhHEYjFEIhESExNx6NAh1KpVC926dQMgO7BVGsz/+++/aN68OadDMcYYY4wVgZ/WE19Q6otYLEZERAQWLVoEZWVloRf3woULuHDhAjw9PQEA8+fPh5eXFzZv3oz27dvj/PnzWLlyJUQikZCew34t6cOSo6MjPn78CHt7exgYGADI3wv/8uVLXL9+HWXLli0wFYoxxhhjjP1aPy2IL4iKiorMzKwikQhJSUlYvnw5+vXrBysrK9y9exe7du2Curo69u/fj0aNGqFfv36IioqCm5sbpk6dyrnxv5g0ZSkwMBDnz59H06ZN0bFjRwCyufDScqAXL16Ev78/Nm/eDIDHLzDGGGOMFbZfmquSO8VGav/+/Xj06BHWrl0LADh06BBatWqFS5cuoXTp0jAzM8OMGTNgbGyMtLQ0vHnz5ovH5/rlP0fuXvhSpUqhW7du0NDQkAngpdf63r17cHV1RZMmTdChQwcAn3vqC7rfjDHGGGPs5/ulQXxBvbNDhgyBi4sL9PX1AQBly5ZFamoqmjdvjqNHj8LNzQ1+fn7o2bMnsrKyhO2kJBKJ8P88UdTPc+nSJbi6uqJVq1awtbUFkD+NJiUlBefPn0dsbCzmzJkj7Cu9B9L7zcE8Y4wxxtivVaijRokIOjo66NKli7Csbt26SE9PR3h4OADAysoKN2/exJEjR3DkyBEAskGhtNd469atCA4OlukF5oD+f1e/fn2MGjUK9vb2AAoezHrjxg14eHiga9euqFWrFpKSknDy5EkMHz4cnTp1wunTpwEU/PDGGGOMMcZ+HhEVceT77t079OnTB+np6diwYQNq1KgBDQ0NqKqq5ttW2iN8/fp1TJgwATVr1sSoUaNgbm6O8uXLF8HZl3zSax4dHY2lS5fi8ePHuHLlCrS0tNC9e3c8f/4cRkZGMDc3x44dO9CjRw84OjpCSUmpqE+dMcYYY6zEKvL6jeXLl8f169fRqFEj9OrVCxMnTsTGjRtl0mYA2ZSOo0ePIjIyEqmpqTh37hwqVKiAnTt3CtsBnNLxo770LCfthb969Sp8fHwwevRoaGlp4dixY3Bzc8OmTZvg6uqKFStW4MSJE7hz5w5evnxZmKfOGGOMMfbHKfKe+NyVTaKjo+Ht7Y169erB1NS0wFlCDxw4gO3bt6NTp05YsWIFAGDVqlVwdXXFnTt38OnTJ5QqVQoATxT1szx58gSTJk1CqVKl4ObmBgAwNjaGnZ0dNm/eDAWFnCJH7969Q+XKlXH16lVYW1tj48aNMDQ0RI8ePYry9BljjDHGSpxfWmLye8jLy4OIIJFIULlyZfTt21dYJw3gpcF4eHg4XF1dYWhoiGnTpgnbqaio4P79+1iyZAlev36N8PBwbNmyBfXr1y/s5pRIFStWRJUqVTBo0CAAwKNHjwAAnTp1goKCgvCw5e3tjVq1aiEtLQ0AEBISgps3b6Jdu3ZQV1eXOSY/YDHGGGOM/e9+iyhKJBIJwXxBpMHeqVOnEBsbi759+6Js2bIAgJSUFLi5ucHExAQmJiaYMmUKDA0NMWrUKERFRRVaG0oyHR0dHDp0CG3btgUA6OnpCRN5ATn37927d7h27RpKly6NevXqAQCCgoKgr68PdXX1fOlRHMAzxhhjjP3vfqtIKm/qTG537tzBqVOnULt2bfTp00dYvmPHDnz69Alz587FwIED0aBBA8yZMwdPnz4Vgvi8DwecL/9j8l4vTU1NtGrVCufOnUNgYCBevnyJOXPm4M6dOxg4cCAqVqyI8PBwhIaGolOnTgBygvasrCwsW7YMq1evLopmMMYYY4yVGL9VEP811apVg62trZDSAeSkazg7O6NRo0bo2rWrsPz27dvQ1NSEkZERgJyHg6ysLERGRgLISeHJ2zPMvixvyUglJSWsX78eCgoKaNq0Kbp3745r165hzpw5GD16NAAgJiYG5cqVE3rcY2NjMW3aNGzcuBEaGhrIyMiQOaY0pYoxxhhjjH1bkQ9s/S/Gjh2LkJAQzJs3D61btwYApKamonHjxmjVqhU2bdqErKws7N69G8ePH0dycjIqVqyI3bt3w8TEpIjPvvjKnc/+5MkTZGZmQl9fX6bMp5ubGwYNGoS3b98iIyMD7du3h5KSEkaNGoVBgwYhPT0d0dHRCAgIQNWqVdGgQYN8x2aMMcYYYwUr8oGt3ytvcBcZGYlHjx7B0tJSmGEUAFasWAE5OTkMHDgQEokEK1euxM6dOzFhwgQ0b94c58+fR6dOnXDy5EmYm5sL++WuksO+Tk5ODmKxGHJycqhTp06B27i6uqJXr164efMmNm3ahLi4OFy5cgVVqlSBRCJBnz59EBERATU1NYSEhMDKygr79u0TxjowxhhjjLEvKzZdnnl7Z/X19XH9+nVMmzZNWPfy5Uv8+++/6Nu3L5o2bYoLFy7gxo0bmDVrFlauXImOHTvCwcEBSkpKuH//PgAgPT0dAM8y+qPk5eW/OIYhPT0dRIT79++jd+/e0NfXx6lTp1ClShW8ffsWixcvxoULF+Dh4YG7d+/iwYMHSE5OhoODQyG3gjHGGGOseCo2QXxeYrEYampq0NPTE5ZNnDgR5cqVQ+fOnSESiXDjxg2IRCKMHz8eAJCdnS3kyvv6+gIAnj17BktLS8THx3+xOg77MUpKSlBTU8OTJ08wZMgQbN++XSj3GRERgR07dqBChQpo0aIF/vnnH1SpUgULFy7EgQMHEBcXl+94YrFYyJdPSEgozKYwxhhjjP2Wik06TV4F9ZxPnjwZycnJQorHvXv30KxZM5QuXRrZ2dlQUFBAWloarl+/jq1btwrbhIaGFpjGId0nMzMT6enp0NTU/LWNKiHk5OSwadMm/PXXX6hevTrk5eWFa3n16lVoaWkhPDwc27dvx8KFC3HkyBE0atQItWvXhpqaGgAgLS0NISEhUFVVRbVq1QDkTCY1c+ZMZGdn4/jx40XZRMYYY4yxIlVse+IL0rlzZwwYMAAKCgrIzs6GmZkZ3r59CwDCrKIzZsxApUqVYGdnB4lEgtevX8Pa2hpJSUlCKcWPHz/K7PP69Ws0atQITk5ORdCq4kcsFoOIYGpqKjxsSa/lp0+foKuri/T0dEycOBH+/v4wMzPDvn37oKysDBUVFVy7dg12dnbo2rUr6tSpg2HDhiEtLQ1+fn64dOkSrK2tAeQvHcoYY4wx9qco1tVpvuXcuXMYNWoUJk2ahJo1a8LDwwP79+/H2bNnYW9vDwUFBfTo0QPKyso4ceKEsN/48eMRGBiI/fv3C2Uq/f39Ub9+/a/Wsmff5ufnh2HDhmHfvn1o2rSpsPzZs2coVaoUEhMTMWTIEFSpUgXTp0+HpqYmVq5cCRsbG9y9exeRkZHw9vYuwhYwxhhjjBW9YptO8z26du0KDQ0NzJgxA2fOnIGBgQH279+P7t27A8hJ2bh79y42b94MAAgPD8fatWvh5uaGGTNmwMjICPfv34eioiIaNGjAPb//ERGhZs2aaN68Oezt7bFgwQK0aNEC5cqVg5mZGQDAzs4OpqamWLp0KWrVqgUA6NmzJ+bPn48PHz7g2rVrAAquJkRE/JDFGGOMsT9CiQ3ipQF3q1at4O/vj1evXqFKlSoy2zx69AgGBgaoXLkyXr9+jWnTpuHFixc4fvw4rKys8PbtW8yYMQOJiYl48uSJTIDI9cx/nEgkQqlSpbBnzx60bt0aq1atgouLC/r374/Bgwfj8ePHiImJQe/evYUAHsgZKBsVFYWJEyeiadOmIKICx0Q4OjrizJkzuHLlChQVFQuzaYwxxhhjharEBvHSgFvaYysN4IkIRAQ5OTkoKCggLCwMMTExmDZtGsqWLQtHR0dYWVkhIyMDFy9exPPnz3Hu3Ll8x5cG8Fxf/sdIr1ffvn3Rt29f3Lt3D1WrVoWamho0NTXx6tUr1KtXT9g+ISEB9+/fR9myZbFkyRIAX+5xHzZsGAwMDGQCeH7YYowxxlhJVGKDeKm8AbZIJBICQHd3d8TFxWH//v1QVVXF+fPnoaSkBCCn5vyOHTvQtm1btGjRAunp6QgMDMSFCxfw9u1btGzZEn379uUA/gdJr5c0mG/SpImwTiQSQUtLS6bMpIeHB44fP45p06ZBW1v7iw9N3t7eaNGiBbp06QIAeP/+PcqVK8cBPGOMMcZKpD86wrGzs0ONGjXQokULHDp0SAjgP378CBcXF4SFhWHTpk0AgPnz52PevHnw8vKChoYGJk6cCHt7+wLrmrNvKygQNzIygrW1NQYMGICNGzdi0qRJGD9+PMqUKYMFCxYAyD/pF5AzWNbKygru7u7CstGjR6NXr16/rgGMMcYYY0WoRFen+V55e3d9fHwwcOBADBo0CCtWrMDt27fRsmVLWFpawtnZGTo6OkhISEDnzp0xduxYDB48uAjPvuQ5cuQIvL29kZKSgpMnT8Ld3R3t27cXas3n1b59e0gkEly6dAm3bt3C+PHjERwcjPv376NBgwbIysriHHnGGGOMlSh/dE98dnY2ANle4ffv32PLli1QVFTEihUrAADz5s1Ds2bNoKKigho1amDNmjUoU6YMGjRogLt37wp10dl/I63TP3jwYOzevRt9+/aFra0t2rdvDwAFBvBnzpzBtWvXsHz5csjLy8PAwABhYWFQUFDAgQMHIJFIOIBnjDHGWInzRwfxBQWFqqqqyM7OxsKFCwEAb9++hUgkQu/evXHlyhXs27cPhw8fhqmpKa5fv47U1FTIy8t/sbShRCL5pW0oSaQPU9Jr1rVrV3h4eAD4HODnlpaWhrlz52LEiBFo1qwZiAgeHh6QSCT4999/cffuXbRo0QLR0dGF1wjGGGOMsULA6TTfkJWVhebNm6NBgwbYs2cPgJxZR7dv346NGzfi4sWLaNSoUb4qKKGhoZCXl0fVqlWL6MyLN+mv5dfqvq9ZswYbNmzAgwcPULVqVYSFhcHKygr9+/fH+vXrAeSUEa1fv35hnDJjjDHGWKHhID6PgqqfHD58GHv37sWWLVvQsGFDYXliYiJKly4tU/JQun/Pnj0RExMDHx+fbx6f/biIiAiYmppi9erVmD59OrKzszF79mwcO3YMkZGRUFJS+u7Jn6T3hO8NY4wxxoqLPzqdpiAFBXE9e/aEoaEhrKysMGXKFJw4cQL+/v4oXbo0ANneYnl5eSQkJCA0NBRDhw4Vlj9+/PiLx2c/ztfXF4aGhhg2bBgA4NWrV9i1axc2bNgAJSUliMXi7569VXpPbG1tsWvXrl91yowxxhhjPw0H8d9ARChVqhQOHz6Mq1evIjo6Gjdu3EBaWtoX9/Hz84OWlhZq1KiBzMxMuLi4oEGDBhg9ejQyMjKE7Thf/n/Xu3dvPHz4EGXLlgUAnDt3DhoaGhg8ePAXZ3T9EunLqKVLl6JOnTr5ljPGGGOM/W5K/GRP/5VIJBKC7aZNm+LMmTOIi4uDjo5Ovm2l6RuRkZHChFCOjo4ICgoCAJQqVQrKysqQSCTIzMyEiopKobalpJDOuquqqios09PTg6amJpydndG9e/fvPo508q8XL16gVatWwrr4+HjhAYExxhhj7HfDPfHfQU5ODnJyckKFlIIC+NwOHTqEbt264fLlyzhz5gzMzMygra2NIUOGAABOnTqFHj164Ny5czL7FVSBheUnEonyTfrUp08fjBo1CkOHDsX27dtl1n2pR116vefNm4e6devi7du3wjpjY2M4OTn95DNnjDHGGPs5OIj/AV9L0ZD26gYHByMiIgLZ2dkYPnw4Zs+eDS0tLdjZ2cHExAQBAQFYtWoVdHV1Ubt2bQDAmzdvhONLJBJOs/lB0iB9zpw5ePPmDezt7SEWi3HlyhUABVe4kUgkUFBQQFJSErZt24aFCxdCV1cXCxYsQP369aGqqopu3boJ2zLGGGOM/U44iP9JpIHiw4cPERkZiatXr2Lq1Kmwt7dHYmIi1NXV8fjxY/Tq1Qt169bF8uXLYWxsjKioKIwfPx6dO3fGnTt3hF5/9v1EIhGICFlZWVBXV0flypVx4MABtG/fHufPn//qvuPHj0fVqlUxcOBAAICBgQECAgKQmZkpvCnh+8EYY4yx3w1HJz+Zvr4+9PT0MHHiREyZMgUAcOvWLTx79gwHDx6EtrY2jh07Bn19fQA5degHDRoEMzMztGvXDvPnzxdmkmXfTyQSCTOzOjo64uzZs1i5ciW6dOmSb1uxWAw5OTk8fPgQJ06cwPz581GlShUAgIeHB5o0aYKZM2di2LBhmDBhAvfEM8YYY+y3w3XifwGJRILs7GwoKSnhxYsXqFWrFoyNjdGqVSv89ddfaNCgAcRiMZKTk5GSkgIDAwMAwJUrVzBjxgycOnUKpqam+Y7JPcLf78OHD9DW1gbw5Wtnbm4OXV1dHDx4EOXKlYO7uzs6d+6MK1euoFWrVkhOTsaLFy/QuHHjfDXn+X4wxhhjrChxFPKTSXt5lZSUAACBgYEgIpiZmWHSpElo0KABsrKysH//flhYWKB3795o0KABLl68iHr16iElJQXR0dH5jisnJ8f58t9B+kwqDeAB2XQY6fXbt28fnj9/jlmzZqFcuXIgIsyePRv9+vWDjY0NAEBTUxONGzcGkNPTn3vgMQfwjDHGGCtKXGLyJ8s7+LVbt27w9PSEubk5SpUqBQC4ffs2/vnnH7Rs2RJjx46Fp6cnRowYgdKlS6NcuXLIysoCAAQHB8PDwwMvXrzA6NGjhRrm3zsT6Z/oW9dFGnyfO3cOvXv3Rr169QAAe/fuxevXr+Hk5PTFAF16b8ePH48ZM2bA2NhYWMf3pOhFRUUhKSkJZmZmAHIe2KQlRBljjLGShtNpfqEvpWDcuXMHdnZ2uHnzphBEenl5YeTIkahZs6YwGLNy5crQ1dWFgYEBrl69ikGDBmHLli1QVlYukvaUNElJSdDS0gIAWFhYwNTUFIcPH/5qQO7v74+RI0diypQpMjPyAhzIF7X58+fj6dOn2LRpE8qVKwdNTU0AOW/HeKZkxhhjJQ3nBPxCeQM6aQ9vuXLlUKlSJTg6OiI8PBy+vr7Yt28fxGIxxo0bBwC4d+8esrOzcfLkSbi4uOD27dt4/PgxTpw4UejtKGmkA4elAXx6ejpatGiBsLAwfPjw4auB+Pv375GWlib09t64cQOOjo4Avv0WgP06d+7cQXh4OFq3bo0yZcqgbt26GDBgALKzs4UAnlPRGGOMlSQcxBeBatWq4d9//4W/vz/Gjx+P6dOn4+jRo2jXrh3s7OwAANWrV0fVqlUxYcIEhIWFoV69eti8eTPatGlTxGdf/CkoyGaRqaioYN68eVBRUUGdOnXg5+eXbx9pPvzZs2eho6MDc3NzxMTEYOTIkZg0aVK+UpYcMBaugwcPAgA6dOiAsmXL4uTJk4iJiYGmpiZ27doFIOchWjrbL2OMMVbccTpNEchd2eTFixe4dOkSli1bhjt37sDExERI83jx4gWWLFkCAwMDODg4APh2ygandPy43NfMz88PZmZmUFVVzbddcnIyzM3NsXjxYtStWxfLli2Dj48PGjdujO3btwtVhp49eyb01LPCERoaiuDgYHTo0EFm+eLFi7Fy5UrUqVMHGzZsQNu2bQFwdSHGGGPFH3+LFQE5OTmhZ9fExARTpkzB2bNnYWJiAj8/P6xevRpJSUmoUaMGxo0bh717934xZSNvj690fe5KKuzrpJVniAjm5uYFBvBATupMo0aN8PLlS2zduhWlS5fG8uXLoaenB3V1dURHR2PAgAFo2bIlUlJSZPbl+/HrEBGMjY2FAF6aLpWQkAAiQp06dWBtbY3u3bvDysoKsbGxHMAzxhgr9vibrIjkzdO1tbUFkJNz7eTkhDVr1iArKwstW7ZEzZo18f79+wKPIw1GXFxcsH79ehw5ckTm+AA4feA7yMvLf/ENhvT6JSYm4vnz50Kv+7p16xASEgIVFRWoqqpi2bJlePHiBS5evAgNDQ2Eh4fDy8tLOD7AaTa/Qt77Jk2X8vT0hKurK/r374+tW7fixYsXqFSpEtavX5/vIYsxxhgrbjid5jd0//59jBw5EqmpqdDR0UFycjIWLFiAwYMHC9tIU0CePHmCtWvX4vTp02jZsiWCg4NRtmxZ/PvvvzAxMREqc7x9+xbbt2/HwIED800kxb6PnZ0dLl++jAEDBuDo0aP49OkT9PT0cOPGDWzevBlhYWGYNGkSevbsibS0NBw4cADnz59HWFgYVq1ahT59+hR1E0o86efi1atXWLRoEUJCQnD9+nWoqKjk2yY7OxtycnLcK88YY6xY4jrxvxHp85SFhQWePHkCFxcXJCYmonnz5jA0NJTZRiQSITk5GXv37oW/vz9u376Nhg0bQiwWo3Pnzti3bx/Wr18v9AA7OTnh9OnTKF++PAfx/6Pp06ejZs2amDdvHgDg/PnzqFatGnbs2IFTp07B09MTDRs2BACoqqpi2LBh6N+/P44dO4ZZs2bh1atXmDVrVlE2ocST9spfunQJvr6+mD9/PlRUVBAaGgoPDw/cuHEDGRkZmDdvHpo0aVLgMThfvuhER0cjMTGRx5Qwxth34CD+N5I7n11eXh7dunUT1uUO3qW8vb3h6+uLkSNHonHjxpBIJFBSUkKjRo1w8+ZNfPjwAdra2ggMDISbmxvMzc0xatQo4Xg8APbHtG3bVhgYmZmZidDQUPj5+SExMRGnTp0SZncNDQ3Fy5cvERcXh549e2LSpEl4//49PD09MXXqVCgoKMhce65j/nNIf6cfPXqE8+fPw9TUVHh71bNnT2RlZcHc3BzlypVDq1atsHz5csyYMUPmGGlpaV8cE8F+PUdHRwQEBMDR0RH6+vr8MMUYY1/BQfxvSBrQ5Q60C5o0KiYmBlFRURg/fjyAnMBSRUUFioqKQgAPAMePH8eHDx8wduxYqKqqIjs7GwoKCtzj+INyXy8lJSWoqqqiUqVKWLZsGTp27AgACA8Ph42NDVRVVVG2bFnMnz8fs2fPhqWlJfbt24eEhASUL18eQM7AyzJlygj3m4P5/530s5KRkQF3d3eEhoZi//79AIBp06YhLi4O58+fF96UVK9eHWfOnMHgwYOF+xEcHIz69evj4cOHMDExKbK2/Kmktf7btWuHKlWqwNHREZ8+fcKsWbO404ExxgrAQfxv7EtfWtJA8tWrV1BVVYWqqiokEglUVFSQmZmJHTt2YMqUKQCAK1eu4NatW2jUqBE6d+4M4PPAPw7gf0ze6zV9+nQMHz4c6urqwrIDBw5ALBbj9u3bkEgkuH79OlauXInAwED06tUL5cuXR3R0NPbs2QMfHx98/PgR8+fPh729PQfw/4H0s3L9+nUcO3YM7du3h6WlJeLj47Fz505s374dDRo0ELavWbMm/Pz8hP06duyIkJAQtGzZEiYmJpBIJBCJRBw4FiJprf/WrVsDAHx8fPDw4UPMmjUr333goJ4xxrg6TbHWrVs3yMnJwcPDA3JycggPD8ewYcOgqamJkSNHIjMzE05OThCJRBg1ahTS0tJw+vRprFmzBqNGjUJ6enpRN6HYkkgkICKUKVMGioqKwnIigqGhIcqWLQtdXV30798fkydPhqqqKubOnQsAOHbsGM6fP48WLVqgS5cuGDJkCIYOHcoVU34CQ0NDVKtWTRh74OnpCX19fVhaWsoEfQEBAahdu7ZQ9UldXR0RERF4/fo1njx5Ajk5OQ4SC9ns2bMxePBgIR/e3d0dEyZMAPC5qpP0M8L3hjHGOIgv1urXrw97e3vY29ujbdu2sLGxwe3bt3HkyBFUqlQJZ8+eRUBAAO7evQsHBwfo6upizZo1iIiIgK6uLkJCQoq6CcXWl4K8jh07IjAwEH379oWLiwvGjh2LOXPmYNiwYUIqh5aWFlJTUzF79mzMmzcP169fR5kyZRAaGlrYzShxTE1N4eLiAj09PQA5Qf379+8RHx8vbPPo0SPcu3cPhoaGqFWrFtLT0+Hr64vhw4fDxsYGjRs3xr59+2SOy3X+fy1prX9pWtqxY8dQunRp1K1bF0DO5+3hw4do1qwZxo8fj6ysrKI8XcYY+y1wOk0xJicnh/Xr12PEiBE4c+YMxo4dCxMTE9SuXRtRUVFwdnZGqVKloKamhrJly8LX1xfVqlXjtI1fqHnz5ggMDMTMmTMRGBgIJycnVKxYEXPmzBG2sbe3xz///IO//voLS5cuRf369aGgoMBVg36CvOMK9PT00LBhQxw6dAj6+vp49+4dlixZgri4OKxduxYAsGLFCqSmpmLx4sWoXLkyZsyYASUlJQA5PfZ169aFvLw8iAhExGlov4BIJBJSZMRiMV6+fIly5cqhYsWKAABnZ2d4eHjg9evXePToUYHzLXCKDWPsT8N14osxaUpHQUH5unXrcO7cOcyZMwfh4eG4fv06zp8/L6z/ni+8vNvwl+S35Q4iMzMz0alTJ9jY2GDBggV49OgRdHR0oKenBy8vL/z999+oV68eli1b9t3H5jSPH/f06VMMHjwYsbGxUFZWRqVKlbBw4UJ07NgRERERqFWrFtauXYvJkycL+2RkZMDDwwM7d+7Eu3fvsGLFCtjZ2RVhK/4M0sHjtra20NXVxcmTJxEdHQ0rKyssWLAAixcvxrRp04SqQhKJBLGxsahUqVIRnzljjBU+7lIqxuTk5CAvL5+vVyouLg4+Pj4oU6YM7OzsUKNGDTx79gyJiYnCNj8SCLq6uiIzM5ODx++Q+34oKSnhypUrmDt3LrKzs3Ho0CGcOnUKAGBlZYWePXti+/btuH379hePl56eDn9/f8THxwuzynJqx/cjItSuXRv+/v44e/YsLly4gCtXrghpGwsWLECtWrUwYsQImX2UlZXRsmVLODg4oGfPnhgyZAiWL18ubJOdnQ0A2LFjB/r374/MzMzCbVgJJH3L8ebNG9y8eRNjx45FSEgIBgwYgNatW6N+/frQ19cX7h0AXLhwAc2bN89XKpQxxv4EHMSXAHlf7+vo6ODEiRPYuHEjlJSUULt2bXz8+BFBQUHfdTzpy5mEhAQEBARg2rRpWLlyJQcq30l6P6SBnry8PBQUFGBubo6NGzdi8ODBePLkCdLS0pCdnS1sVxA/Pz8cOHAADRs2FFJyOB3q++V+6GnevDlq166NUqVKAQDi4+Nx7tw5jBkzBurq6sLv9/v37/H06VP4+vrCzMwM8+bNw4oVK3DlyhUkJCRAIpEIFZ4WLVqEUqVKffUesu8j7SQ4ePAg2rZtixcvXmDVqlXQ09PDjh07EB0dDUNDQ+Hz5e3tjcWLF6NGjRqYOnUqAB67wBj7s3AQXwJJJBKoqakJOdYGBgYwMTGBm5sbgM9BekF5pcDnL9PNmzejdevWKF26NAYNGgQlJSXhS/LBgwe4devWr25KsSYN9KQGDhyI27dv4/379+jevTuOHDkCe3t7WFtby2yXO8PNwsICS5Yswa5du+Dp6Yk2bdogLi6uUM6/pPjSQ49EIkGLFi3g4+MDAEIefO/evdGjRw/MnTsX1apVw7///os2bdrg/v37yMzMFILImTNnolSpUpgxYwbU1NQKpzEl3KdPnxAbG4usrCwsX74cenp6mDNnDhQUFHDv3j2IxWKYmJggODgY/fv3h4GBAVatWgV9fX1IJBKZORcYY6zEI1aiSSQSIiJycXGhMWPGUHp6+jf3EYvFRER0+vRp0tXVJVVVVWrRogWFhIQQEVFiYiKZm5tTo0aNft2JlzASiYSys7OFn4OCgujDhw+UkZFBRCSzTsrX15ecnJwoKCiIiIjCwsLI1NSUvLy88m1b0P7s23x9falatWpkYWFBmZmZtGnTJtLV1aULFy5QWFgY7dq1i4yMjEhJSYnatWtHiYmJRET0+vVrkpOTo23btlFmZmYRt6LkSExMJDMzMxKJRNS3b1/69OmTsE5XV5c8PDzo8ePH1KxZM6pbty4lJCQQEZGXlxdt2bKF3N3dhe2lf/sYY6yk4iD+D7Rz505asmRJgeukX3ypqanUoUMHGjhwIN2/f5969uxJ/fr1I7FYTIcPHyZlZWV68uSJzD7s274VbEsfoKZPn06lS5cmCwsLMjAwoIEDB1JGRgYZGRnRrl27hO1fvHhBSUlJws9ZWVm/5sRLoNy/tzdu3CAiot27d1OtWrUoNjZWWOfk5ETly5enPXv2CAF7hw4dqEmTJhQVFVW4J/0HcHd3p7/++ovev38vLHNxcaH27dvTrVu3qF69emRjY0OhoaGUmppKPXv2JA0NDWrcuDHp6OiQjY0NRUdHF2ELGGOscHAQ/wfJzs6mY8eOUZkyZWjMmDGUlpaWbxtpYPP333+Tubk5/fPPP8K6tLQ0ioqKomrVqtH48eOF5WKxWAg+2X/35s0bEolEdOjQIQoLC6N79+5Rz549SSQSUenSpSk8PJyIiDIyMsjU1JT69etHERERRXvSxVTeh5779+9T+fLlaejQoXT79m3atm0b6enpUadOnSgwMJCIiDw8PEgkEtG5c+f4AfYXk0gkJJFIaMuWLdS+fXsqX748tW7dmvz8/CgrK4tmzpxJOjo65O/vT8nJyZSYmEhNmzal5cuX5zsWv61ijJU0nBP/B0lKSkJUVBSWLFmC3bt3Q0VFRWa9dKr5iIgInDlzBo0aNUKXLl2E9fLy8jhx4gRCQ0NRu3ZtTJo0CTdu3ICcnBzXzv6J3r17hypVqkBbWxuGhoawsLDA6dOnoaGhgVGjRkFbWxsAcPz4cbx48QLBwcGYNWsWjI2NhXEP7PvkHbfQuHFj3LlzBzExMbh48SLWrVsHFRUVjBgxQhhjMmHCBPTt2xdWVlYFVmyKiIiAp6cnANnxDez75B6rIxKJIJFI8ODBA3h4eKBcuXI4dOgQGjVqhHv37sHV1RULFixA/fr1oaamBi0tLVhZWcHNzU2Y3TUhIQHA57ERXxoLxBhjxQ1P9vQHKVu2LGbPni0M+pLWZJaS/v+RI0cgEonQs2dPlC1bVqgPHxgYiDVr1qBp06ZITU2FtrY2OnfujNWrV8vU2Gb/jbGxMWrVqoWpU6ciKysLr1+/xsWLF6GiooIBAwZAQ0MDiYmJmDdvHgYPHowRI0bA3NwcK1aswOzZs9GwYUNhkhz2Y8RiMYyMjHD58mV8/PgRT58+RdmyZdG4cWMAwJYtWxAbG4spU6agdOnS+faVl5eHr68v+vbti7S0NCgrK+dbz74ub4eAvLw8Zs+eDXl5eYwbNw6VK1cGAPj6+iI5OVmoTJOVlQV5eXlkZmYiMzMTGhoayMrKwubNm/H8+XPs2LED5cqVg5ycHN8LxliJwEH8H0QajEu/vL7Ue56ZmQlFRUW0bdsWQE5vWFpaGhwcHFCuXDl4enoKwUlUVBRu3bqFCRMm5JuIKO9DAvs+6urqcHNzw9KlS+Hk5AQ1NTV4eHjg77//Rs2aNQEAy5cvh6KiIlavXi0ENX369MHu3bvx5MkTDuL/R/Ly8kKAp66uDhcXF0RHR6Ny5crIyMjA3LlzMXPmTNSvX7/AfYGcNyR9+vSBsrIyJBIJXrx4AT09PWhoaBRya0oGIoKZmRkOHDggszwyMlKY5CkrKwsqKipISEjAiRMnMG3aNAA5JVpv3LiBZ8+e4dChQ7h79y7Wr18PQ0PDL/5bPB8GY6y44AjrD/K9X05GRkZ48uQJNm7cKCzz8vLCiRMnsGXLFpneRS0tLTx9+hQikSjf8eXk5CCRSPj19Q+SvilZunQpDh06BAsLC5iYmMDOzg4qKioICgqCo6MjlixZgsqVKwvXNzIyEmlpaWjYsGFRnn6xl7dMofQhycXFBTo6OhgwYEC+VDSp4OBgJCQkoF27dgAAd3d3tGnTBo0bN0Z0dLTMtvy5+D7SlJq8unXrhuTkZDx48ACKiopIS0vDiBEjULlyZXTt2hVpaWk4e/Ys7t27h7Fjx6JmzZpQV1eHjY0N/Pz8ZI7l5eUl/FuMMVZsFGlGPvttubq6kra2Nvn4+FB8fDxZWVlR586dZbaJiooiXV1dWrZsGRERvXv3ji5cuEDLly+nMWPGkJ+fX1GceokgHdAnlZiYKAwetrW1pZYtW1JqaqrMPtWqVaORI0d+1/Gzs7N5UOb/ICkp6auDuG/evEl169al58+f07lz52jAgAFkZmZGrVu3po8fPxIR0du3bwvrdEu0T58+0fDhw0lNTY06d+5MNWrUIG1tbaHSkKurK9WrV4+WLl0q7PPhwwfS09Oj48ePC8vu3r1LNjY2tGPHDpnj8+eDMfa74554JkMikYCI0LlzZ8TFxaFZs2ZwcXHBrVu3sHnzZplt//77b4hEIsyePRsAMGLECGzZsgVBQUEQi8WwsrLC/PnzeTbL/4H0zYb0fmhpaUFOTg6xsbEICwvD/PnzoaamJgyc3LBhA+Li4oT84IKkpKTA1dUVb968gby8vMxspuzriAgSiQSampoFpohJr6O/vz9SUlKgoaGBkSNHokePHsjOzoa1tTVKlSoFf39/DBo0CKtXr5bpXeb78ONUVVVx4MABXL58GSYmJli4cCGuXbsGa2trvH79GqdPn4aamprw9wnIGXSsq6uLt2/fCsvOnj0LExMTYdzDrVu38OjRI+6VZ4z9/or2GYL9rnKX3ktLSyNnZ2ci+lzH/PHjx6SsrEx79uwhIqI1a9aQSCSiv/76S9jP29ub6tevL9STZ79GfHw8lSlThlauXPnVMnrOzs40cOBAqlChAk2cOJF7Gn+BZs2aUdOmTWnAgAE0adIkevXqFTVp0oRevnxJ2dnZVKdOHerduzd5eHgQEVFMTIzMZ43LIH4/sVj8xd/hnTt3Up06dejYsWPCsk+fPpGDgwMZGhrS8+fPiYjIzc2NWrRoIfTMp6SkUN26dalbt2705s2bX98Ixhj7D0REXAONfRkVMNArOzsbHTp0wKdPn+Dj44PExERUr14drVu3xpMnT5CZmYmNGzfC3t4eVlZWGD16NIYMGVJELShZsrOz85VFHDBgAK5fv46HDx8KA/2kct8/afUOb29vzJ07F/r6+ti7dy80NTUL7fxLsgcPHqBly5bQ1tbGoEGDsGzZMri5ueH69euwtbWFi4sL7ty5A29vb+jq6iIlJQVLly6Fl5cXBg0ahClTphR1E4qlvAPoY2NjMWLECKSmpuLmzZvCcm9vb0yZMgXNmzfHtm3bAOR8Ptzd3VGvXj1ER0ejbdu2UFRUxD///AN7e/tCbwtjjP0Irk7DvqqgV8rx8fGIjIzEzp07AQAhISHQ1dXFhAkT0LJlSzg4OGDkyJGoUaMGgoODvzmAr6AHBVawvAE8AEyZMgXDhg3LF8ADOffv06dPuHDhAuLi4mBhYQErKyts3LgRgwYNwrt37/IF8VxV6H9jYGAAc3NztGrVCuPGjYOSkhJiYmIQEBCAt2/fIi4uDmfOnIGuri6AnAG0nTt3Rp06dbB8+XK4uLjg5MmTwnr2ffL+rlaoUAH79+8X6sQDOX+zXFxckJycjOXLlwP4/EDcsWNHAICOjg40NTWRkZGBkSNHYsWKFfjrr7/47xNj7PdVhG8BWAkRHh5OampqdOLECWFZVFQUjRgxgqpXr/7dx+FUgh/3rZSYN2/eUJcuXUhNTY06dOhAlStXpt69e5OXlxeZmZnRhQsXiIgoNTWV3N3dKS4uTtg372ym7Pvkvif169cnkUhEAwcOFK51VlYWpaSkUEBAAH348IGIclKiGjduLDPgUopnQ/4xBV2vEydOUMWKFWn79u1EJPu3Rrr9pEmTqHHjxnTnzh3av38/GRgY0KdPnwrnpBlj7H/A3W3sh+UdqFqlShWMGjUKzs7O+PDhA4Ccsnz79+/HvXv3ABQ8cC8wMBArV67EwYMHAYAnX/kffKuHMDg4GK6urrhz5w6cnJxw9epViMViWFtbIz4+Hp06dQIAPHr0CKNHj8bMmTPx8uVLAAX3+rMvk34upPckNDQUQUFB0NHRwZIlS9ChQwcAOZOptW3bFgMGDECTJk0wZ84clClTBvLy8ggODs53XGlPMw9+/T4FvUUqV64catWqhQkTJshsIxaLIScnh8ePH8PJyQk9e/ZEvXr1MGLECISEhEBVVbXAgflcHpQx9jvgIJ79sLzBnUgkwsSJExEREYF69eph3bp1OHbsGGJiYlCmTBkA+QP07OxsJCUlISsrC2vXroWZmRnu3r1baG34U3z69An6+vpQU1ODqqoqTE1NMX36dMjJyWHZsmUAgLi4OJw+fRrv3r3D69evMX/+fOjo6ODSpUsyx+LA5evyfi6MjY3x6tUreHp6onr16pCXl0dkZCQOHjyI6tWrw9HRERs3bsTt27dRunRppKamokKFCgCAjIwMODg4YOzYsfjnn38A5HyGKM8Qprw/s4K1bt0aV65cAZATuEsftKR/lxYvXgwzMzN07NgRqqqqkEgkUFRUBPD5vuZ+iJI+BPD1Z4wVqSJ+E8BKgNzpA0eOHKHOnTvTzJkzKTY29ovbEcm+9h41ahS1a9eOX1//ZG/fviUbGxuqWrUq7d27l6ZPn05VqlQhMzMzYRs3NzfS1NQkBwcHio6OJiKi0aNHk62tLRERV0/5H0mvlfT3XiKR0Pv376lOnTrk4OAgbJeRkUFWVlbUokULoZLTwIEDqVSpUjRlyhSqXLkyNW7cmB49eiTs8+LFC3r58mUhtqZ4+1pK0tWrV6lKlSp0+PDh76rY1L59ewoMDPyuYzPG2K/EPfHsP8tdb3zQoEFwdXXFvHnzoKurK9NTJe3JPXPmDCZNmoRevXphxYoVAIBNmzbh/v37ePz4MYD8PVycSvC/KV++PDw9PTFlyhQ8fPgQkZGReP36NbZv3w4AePXqFfbt24caNWpg1qxZwuDYcuXKITg4GA4ODpgxYwaGDx+O5ORkTnn6AdJrJe31FYlE0NDQQPXq1fHvv//C19cXPj4+mDdvHiIjI9GpUyfUrl0bWVlZuHfvHnbs2IHNmzcjPDwcNWrUwP79+yEWi5GWloaDBw+iT58+CAgIKMomFhtfG6idmpqK0qVLo0GDBl+cO0GaUnPs2DF4eHjg7NmzWLp0KYKCgngQOGOsyPBfH/ZTSAMWaaBetmxZAJ8DGCKCvLw8YmJiMHr0aERERKBu3bpwd3dH1apVsWTJEgBA1apVZfZLTk4Wji+RSPKldOQN9pksaUAydepUODo6ok2bNmjVqhVsbGyQlZWFmzdv4urVq9i4caOwT2RkJEJCQpCWlgY5OTnY2dkhOjoa9vb2ePfuXVE1pURQVlbGqVOn0KBBA0yfPh2rVq3C3r17YWZmhpEjRwIAFBUVYW9vj0WLFuHixYtQVFTEvHnzMHHiRERFRcHa2hqHDh1Cq1atULduXQD8OfgvTExM8PHjRyxatAhRUVH5HlQlEgkUFBQgFosxadIkaGtrIy4uDhEREejYsSN8fHxktufJ7RhjhaZI3wOwP87OnTupUqVKwuvo7OxsOnDgAIlEIho2bBglJycTEZGHhwf16NGDWrVqRW3atKFbt27JHIcnKvoxua9XZmYmERH5+/tTrVq1qH///jLb7t27l2rVqkUHDx4Ull2/fp00NTUpJCQk37HFYjGnFHyn3OlICQkJdPLkSapduzYdOnSIiHImfyLKmZhozpw51KtXL4qKihL2ycrKok6dOpGamhrp6OjQ0aNHC7cBJVR8fDxZWlrSnDlz8q2T3rPx48dT5cqVydPTU1j3/PlziouLo+TkZHr8+LGwXCKR8N8oxtgvxz3xrFA1btw4XxWOhIQEVKxYET169ICGhgZOnDiBHj16ICMjA23atEH9+vXRoUMHLFiwQOjl8vf3x4IFC/Dp0yfuhfwOIpEIEokERCQM2NPQ0ICqqiocHByE7QICAnDu3DlUq1YNQ4cOFZY/ePAAJiYmSEtLAwBkZmbC29sbkZGRkJOTg5ycHKc8fYfcb5RKly6Nvn374uTJkxg4cCBiYmKwdetW+Pv7Q1VVFZMnT8abN28wYcIEZGZmAshJ50hMTMSKFSuwfv16zJ49G7dv3wbwuTdeLBbzZ+IHiMVilClTBt7e3li7di2Az28UxWIx5OXlERISgp07d2LRokVo1qyZsG9SUhLWrFkDU1NTjBgxAqamprh27RpEIhHXlmeM/XJcQ44VqoYNG6Jv377o2bMnhg8fjocPHyIgIACjRo2Cra0tQkJCsGvXLrRp0wbOzs7Cfm3btoWPjw8iIiIQFBQELy8vbNq0CQsWLOAvy++UN3fX2NgYfn5+ws+ZmZm4cOECwsPDsWfPHmH5ixcvcPPmTZiYmMDY2BgA4OPjg9OnT+P8+fPo2LEjtm3bBiUlpcJpSDGXu7KJSCSCmZkZACA9PR0+Pj7w8/PD33//jdq1a6NatWqIiYmBkpISIiIicP78eZQtWxZDhgyBjo4OevfujVKlSgGAEOgrKysD+ByAsq+Tl5cXrpX0nkjvkfS/0onsunTpIlxfABg7dixMTU1x9uxZmJiYYMuWLZg0aRIcHR1ha2tbJO1hjP1BivI1APtzhYSEkI+PD9nY2FDdunXpxo0bRER0+vRpKl26ND1//pyIPr/KzsjIoOfPn1NSUhI1atSIRCIRjRgxosjOvyTIW2kmKCiIGjRoQIMHD5ZZvmTJEmrSpAmdPXtWWJaVlUWpqal0+/ZtsrW1JRsbG3rz5o3MfpxO8ONSU1NpyJAhpKGhQTY2NqSmpkaOjo5ERLRhwwaysLCgY8eOCdtLJBIKDQ2lzp07k52dHZmZmdHKlSuL6vRLpAsXLpBIJCI3NzeZ5YsXLyaRSESampo0d+5cYXmbNm1o8eLFRJS/cg1Xd2KM/UwiIn7vygqPNKVD2kN4+/ZtvHjxAn369IG6ujpmzZqFGzduwNfXt8DpzuPj4zF+/HjcvXsXSUlJ0NfXx/nz54UBsey/efHiBcqWLYty5coBALy9vbFkyRKYmJhgx44dAAAPDw+8f/8e1atXh4WFBaKiomBra4v9+/fDyspK5njSyXT4bcm35e45DwwMREBAAExNTVGvXj28evUKY8aMgZ6eHvbt2ydcz8uXL2Pt2rXQ1tbGpEmTEB0djdWrV8PMzAz//PMP1NTUirJJJUJcXBzOnj2Lvn37onTp0gBy5l9o0aIFOnToAGtrayxduhQRERFYuXIlXr9+jbCwMBw4cEBIXUtOToampiaAz6k6XNWGMfZf8V8RVqjk5ORkXvFbWlpixIgRUFdXBwDUrVsX8fHxCA0NzRf4icViuLm54eLFizh58iQSEhLQp08fPHnyJN+/wxUifhwRwcTERAjgs7KysHPnTnz69AkjRowAAEyZMgWdOnXCnj170LdvX9jb2yMzMxMqKipCedC4uDgsX74cERERkJeXh0gk4vvxHXLny9esWRN9+/ZFvXr1AOTci+DgYHTq1En4XMTFxeHQoUPw8/PDhw8fYGZmhgEDBuDff//Fixcv8OrVq6JsTolARNDR0cFff/0lBPDSTghVVVWIRCK0b98et27dwvLly7FmzRqsWLECdevWhaKiIi5fvoyePXuie/fuaNu2Lby9vYUxJIwx9l/xXxJWpPK+CLK0tISGhgYcHBwQGxsrlJgEIOTLt23bFk2bNgUALFy4EPb29ggLC4OTkxP+/fdfAPlnz2TflvehSVFREW3atEGHDh1gbm6OmJgYbNu2DceOHcPZs2fh7u4OLS0tVKtWDcHBwRgwYAAAQE1NDe/fv4eRkZEwzb30fkiD+WvXrhViy4oPaYCX93Ohrq6OsmXL4ujRo3jz5g0AICIiAv7+/pg1axZq1KgBQ0NDTJgwAWZmZoiPj0dQUFBRNKFEEYlE+e6FSCSCsrIy6tati4iICGRlZUFBQQGjR4/G3bt3sWvXLkybNg2nTp1Cz549hQH6DRo0gJ2dHebPn88PtYyxn6Oo8ngY+5Jnz56RhYUF6enpkYODA4WGhlJWVhatX7+eypQpQxERETLb7969mypVqkRGRkZUrVo1MjAwIC8vryI6+5JHmtv+8OFDqlq1Krm7uwvr4uLiSEdHRyjNlzsP/u7du2RpaUna2tp04MABYXl2djZ17tyZFixYQBkZGYXUiuIvLi6OrKysqF+/fkSUc32VlJQoNTWViIi8vb2pRYsWJBKJSFVVlYKCgr55TC4N+r/z9vYmAwMDGjJkCL18+VJmhurnz5+TtbU1de3aVWYfDw8PWrRokTAzcm6cL88Y+1GcE89+KxKJRHjVfP36dSgqKqJp06bIyspCnTp10KVLF2zatAkSiQQikQgeHh7o2rUrli1bhh49esDY2Bjjx49HREQEXF1dhZxUgKt1/CjKMyYhNTUVw4YNg7e3N9asWYO3b9/C1dUVISEhuHv3LqpWrQoigkQiEa5zaGgoRowYgVu3bsHDwwNt2rQRjvf+/XshdYd9Xe7f3aSkJKirqyMyMhLt2rXDsmXL0L9/f2Hbf//9F5GRkRgyZAjKly//XcfmcQv/m5CQEIwZMwavXr2ClZUVOnTogL59+8LJyQmjRo3C7du3UbNmTeH+ZWRkIDQ0FLVq1QIAvH79GsnJyahduzYA2b9/jDH2LRzEs99OQcH2mzdvYGlpCUdHR3Ts2BFEhIyMDHTr1g2ZmZm4fv26sO2dO3fQoUMHXLlyBRYWFsjOzhZyswH+ovyvtm3bhjt37kBHRwfbt2/Hzp078ddffwnr4+PjcffuXWzevBm+vr5o2bIlmjRpggULFsDPzw/Hjh3DmjVroKKiAoAfrr5XQddpwoQJuHfvHjZt2gRLS0tkZGRAVVU137a5H8hu3bqFBw8eICoqClOmTIG+vn6htqOkyP135N69e4iOjkarVq1QunRpzJ49G9evX5cp4Zrbo0ePsGfPHpw7dw6KioooX748Dhw4IATzjDH2XYruJQBj3y8zM5Pmzp1LIpGINmzYQERE4eHhJBKJ6O7du0SUM8slEdGdO3dIVVWVXr9+TUREnp6e1KxZM/L19RWOx+UPf1ze1/3Ozs5kYmJCaWlplJ6eTl5eXtS/f3/S09MjU1NTGj58ON2+fVtmn3bt2pGFhQUFBATkOz7fk//N1KlTSVNTk7p160bTpk2juLg4mfXS65qamkrLli2jUqVKUdOmTalVq1akrKxMW7duldlO+t93794VYiuKpy+lwBw5coSMjIwoODhYWCa9rvHx8WRlZUUtWrSgvXv30rNnz+ivv/4ic3NzCg0NlTkOpzsxxr6GuyNZsaCoqIg1a9bgxo0bSEpKQnx8PF6/fg1dXV2hx1FVVRUAsHXrVtjY2EBRURHJycm4dOkS7t69i2vXrmHMmDG4cOGC0CtJRDy75XeSXmdpibxu3brB398fKioqWLRoEaytrZGSkoJt27bBz88PBw4cQPPmzYXtT5w4gRcvXmDy5MmoU6cOAKBTp04ICAgA8HlWWen27Ouk12nTpk14/vw5GjVqBCsrK2hraxe4/b59+3Dx4kXMmTMHd+7cwbVr17Bjxw4cOHAA0dHRwmdCJBLhxIkT6NixI2rXro2tW7cWWpuKmy+9QWrevDk0NTXh4OCAmJgYJCcnC9d33bp1EIvFmD9/PkaNGoVatWph4cKFCA8Pz1dpK/fEYIwxlhcH8axYkAZ3VlZWWL58OcqWLYsGDRpAT09PmHYeAA4ePAg/Pz906dIFFSpUwN27d7Ft2za0bdsWKioqKFWqFBYsWICkpCQAEKZH52oR309aPUUikQgPTh07doSpqSkCAwNRpkwZYRbRrKwsyMnJQSKRYO3atWjdujUsLS0BAM7OznB3d8e5c+ewbNkyBAQEcPm9HyC9D2KxGJUrV8bChQvRrVu3fNuJRCLExMTg0qVLqFevHsaNGyesq1WrFt69e4ewsDAQEdauXYtNmzZh+fLlaNKkCSZMmIDjx48jKiqqEFtW/BkZGeHYsWN4/PgxLCwssGvXLoSFhQmpZs2aNUPLli2F7eXl5WFsbIzo6Ghh2fDhw/HixQsAOfdQLBZzMM8Yk8F1+FixkHeqeolEAg0NDQwbNgwzZ87E5cuXkZmZCU9PT8ydOxf9+vVDfHw8tm3bhmrVquHy5csyx3N2dsbTp08hLy+P+fPnc0nKHyR9+JGysbHB8+fPsWTJErRv3x5WVlbYvn07atSoAQBYtWoVsrKy0LNnT2FirnHjxkFXV1d4oGrYsCHWr1+PadOmFXp7iiuRSAR5efkCJ0bLTSwWIyQkBAMHDoSOjo6QM1+qVCkkJCRALBZDJBIhPT0d8+fPh7a2NpYsWYJy5cph7NixPOj1B0kkEtSqVQv37t2Dp6cnFBQUoK+vDwUFBcTGxkJXV1eYG0MsFuPFixd4/vw5DAwMAABnz57FoUOHoK2tjYoVK6JLly6oXr16UTaJMfYb4i4vVqxIgwlpUD9hwgQEBgbC2NgYrVq1wsmTJ7Fq1SpoaGjg3LlzuHnzpjDTaGZmJgDgypUr6NmzJwIDA3Hq1ClUqlRJqC/P/jfSNxnLli3D+/fvoaCggMmTJwMAoqKicOjQIfTs2RNNmjQBAMyaNQsAcPr0aWzYsAEbNmzAokWLcP78eSQmJuY7PqfYfN23guyMjAyEhYWhcuXKAD6ngTg6OsLAwAA2NjYAADMzM1SoUAGGhobQ1dWFs7PzV4/NPcMFk5OTg1gsBgDY2tqiZcuWUFRURHp6OqpUqYKEhARh21evXmHt2rWoWbMmOnfujIyMDCxbtgza2tpITU3F69evYWJigl27dsn8G9LjM8b+XNz9yIotaUpH1apVsW3bNpl1T58+xd69e2Fvbw9LS0sQEZSUlAAAly5dQtu2bXH8+HEAwIYNG+Do6IgmTZoIvcTsxygoKAipHRoaGrh48aIwUdeUKVOgpqaGTp06QVtbG9HR0di0aRM2bNiAxo0bC8coU6YM/P39oaGhke/40qCISyH+b/T09NCtWzccO3YMLVu2RHR0NK5cuYI9e/bAyckJAPDkyRPs27cPjRs3xrlz53Dnzh2YmJgIx5D29mdmZiI6OhqGhoZ8L76ioHx5VVVV9O/fH5MnT0Z6ejp0dXVx9uxZvHv3Di4uLgCApUuXIisrC46OjujTpw+AnIfky5cvY8yYMXj37h0qVKjwXW9gGGMlXBEMpmXsp8pbwSE7O5vWr19PIpGI3rx5k2+bCxcuUKlSpWj9+vWUmZlJCQkJ5O3tTenp6QUen6um/BixWCxzzS5fvkyHDx+mtLQ0IiLq2rUrWVhYCNWDpExNTWnkyJHCz97e3rRs2TIaOXIkvXjxQub47MfdunWLqlSpQiYmJlSjRg2qVq0azZw5k4hyKtesX7+eKleuTA8ePPjiMcRiMYWHh5OBgQH9/fffhXXqJc7t27fJysqK2rRpQ5MnTyZvb28iInr58iUZGBjQ0qVLKSkpSdh+4cKFJBKJaPz48dSjRw+qU6eOsA9j7M/FQTwrkbKyssjDw4OIPpeBS05OFtYfOnSI7OzsyNXVtcD9OVD8NW7cuEEikYjOnj1LEolECPbXr19PFStWJB8fHxKLxbRy5UoqU6YMNW3alNq1a0fa2tp05syZIj77kuHIkSN08OBBevHihfDZuHHjBjVq1IgmTpxIRAX//ovFYlq2bBkZGRmRrq6usFz68Hv79m1h9lhWMIlEInNtExISZNYPHDiQrK2tyc/PT2YfbW1t6t69O127do3ev39PI0aMoObNm9PHjx9l9udZXxn7s3AQz0qcvAGINFB0dHSkgwcPEhFRSkoKzZ07lypUqEDh4eFfPNb69evp/v37BR6P/bjExETasWMHffjwQViWlJRE5cqVozlz5hBRTpBpYWFB8+fPF7Y5duwYTZgwgaytrenmzZuFft4lQVZWVoHL3759SzNmzCATExOKj48noi8/xB45coREIhGpqanRxo0bZdaNGDGCRo8eTSkpKT/3xEuggoLtq1evkoKCAu3cuVNm/dSpU8nAwIAeP34sLHN2dqby5cvTo0ePiIgoIyND5ljcCcHYn4EHtrISJ2+JQpFIhIyMDLx8+RIbN26Eq6sr1NXV0axZM2hqasoMMsstISEB3t7e2L9/v8wAPml1HPZjiAhaWloYN24cypYtKyyfMGEC9PT0MHToUHz8+BFnzpyBqampTCnEatWqYffu3bh79y5q1qxZFKdf7H2pAlNISAj279+PESNGoEyZMsLYg7xiYmJw5coV1KlTBy4uLti2bRsmTpwofDb279+PVatWCVVX2JcVlC9fv359rF+/Hq1btxbWv379Glu2bMGsWbNkfu+fP38OeXl51KtXDwBw/fp1NGvWDIGBgQAglHUlHnjMWInGQTz7IygrK2Pz5s0YOHAg+vfvDxsbG4wZMwa1a9f+YtAhkUjg7+8PS0tLiEQiBAcH459//kFaWhrXMv8fiESifEFFYmIi7t27hwEDBsDQ0BDp6ekIDQ1F8+bNoaenJ2z/6dMnSCQSbNy4EeXKleOHqJ+oefPmcHFxwezZswHkfwgGcj4LN2/ehIuLC1avXo22bdsiMDAQS5cuxdu3bzFmzBgkJiaiXLlyALhyyv9CW1sbU6dOlSklOWTIELRo0QLdu3eHoqIigJyHKQcHB0ydOlX42c3NDffu3cO1a9cwaNAg+Pj48CBwxv4ERfkagLHCkvv1cmJiIu3atYsuXLhAsbGxX9z24MGDVK5cOWF57969SSQS0bx582S25/Sa/06aGxwREUHy8vJ08eJFYV18fDwNGTKEjI2NC9y3oOvPucH/my/9LgcHB5O1tTV17NiRiHKur3TboUOHUo0aNej27dvffTyWX95rFR0dTdra2nTq1CmZdSNHjqQaNWpQYmIiERGdOXOGFBUVqW/fvnTo0CGaO3cuaWhokIuLi8zxvpROxRgrvrjEJPsj5J5lVEtLC3/99ddXtwUANzc3DBw4EG/evMGaNWtw/fp12NraypRFfPr0KWrXrv3Lz7+kys7OhoKCAkqXLg0AqFSpEuzs7HDs2DFYWVnh3bt3OH36NI4cOQJnZ2cAOb3CuXuLpWUP79+/D7FYDGtra8jLy0MikeSblIq4JN9XfenaeHp64uHDh3j06BGAnJl4VVRU4OXlhatXr2LhwoVo2LAhAKBfv34YM2YMWrVqJbx9ISJ+e/UNea99pUqV8PbtW2RlZQnrfH19cfToURw+fBhaWloIDw/Hjh07YGlpiZMnTwr7Xrx4UXiL+OTJE9ja2vKEdoyVQPypZn+M753dEsjJE1ZWVkZ6ejr279+PgIAAHDhwAMeOHRMmzNmwYQNmz54NPz8/NGzYUAgu8waZ7MsUFBSE6/X27VtoaWlh4cKFGDhwIGxtbaGnpwcXFxfY29uja9euAPKne4SEhGDFihXw8vKCSCSChoaGUO+c/j8dJy0tDaqqqhzA/48uXLgAW1tbGBkZISMjAyoqKgCAxYsXw8LCAlZWVlBRUcHdu3dx6tQplC9fHjdv3kTr1q1hZWXF1/1/IH3AzZ0/P2bMGDRo0AB9+vRBZmYm3Nzc4Ovrizt37gjbhISEQCKR4NSpU3jy5AkSExMxePBgnDlzBk2bNi2KpjDGfhGONNgf53tmoJT27F66dAlxcXHYunUr0tPTERISAgsLC2zfvh1bt27F7t27hR5IaXAp/S/nBX8f6fXavXs3Tp48iSZNmiAkJAR///03WrRoAZFIhA0bNgAoeIbQDx8+wNvbG/v27UNgYCDatGmDAQMG4OLFi8K97tq1KzZt2sS59P8DIkK1atUQFRWFR48eQVlZGQBw4MABvHr1Cn379kWtWrUAAKNHj4aWlhays7MhEonQtm1bLF68WOa+SWf3ZV9XUM/5+vXrsXfvXgCfJ+caPHgwzMzMAOTcKzc3N8TFxWHp0qU4fPgwrl27hqZNm8LR0bFQz58x9utxTzxjuUiDPicnJwQHB8PCwgLTpk1D1apVMWnSJMyfPx87d+7EsWPHMHz4cIwePRpisRiHDh3C/fv38fbtW7Rv3x5jx44tsAIF+zJdXV3MmDEDnp6eGDBgAFxcXODu7o4ZM2agevXqX33DERkZicjISCgrK2Pjxo0wMjKCiYkJ3NzccPLkSQQGBmLUqFFCZSF+U/L9RCIRNm7ciNGjR6Nz5844f/48atWqhc2bN8POzg6WlpYAAEdHR4SFheHMmTOws7MDAGRkZODBgwdISkpCamoqKleuzGkd/0GbNm0A5KQzOTs7IyAgALdv3xbW379/H66urmjbtq0w2yuQcx+ysrKQlZUFeXn5fL//0l5/xlgxU0S5+Iz91h49ekR9+vQRZq/09/enrl270rhx40hJSYl2794t1MPu168fNWnShGbOnEkbN24kPT09at++vUwtdPZ9nj9/Tu3atSNzc3OysLCgJUuWCOukg/uk/809eHXv3r1kY2NDx48fJyISZrt8+PAhqaqqkoqKCjk6OhZSK0qW3IPC379/T2KxmObMmUN6enp05coVIsq5F5qamjRnzhyZCYj+/vtvUlBQoE6dOtHgwYOpcuXKdPr06UJvQ0n08eNHun79uszPixcvppo1a9KTJ0+E5Q8fPqTWrVvT/Pnzhc9OREQEeXl5fXGyO8ZY8cBBPGPfwdPTk9TU1EhZWZnWrVsnLD906BCJRCKytram9+/fE1FOpRVLS0s6f/58vuPwJCzfJzIyUpgJlKjg6+bu7k5ubm6UlZVF8fHxNH/+fDI1NaXAwEBhm40bN5KJiQlNmDCBSpUqRXXq1KGMjAzheFw95fuIxWKZe3Dnzh3avXu38KA6YcIEMjIykrn2qampVL16derevTt5enpSWloaLV26lExNTSkuLq7Q21CSFPR5cHJyIlNTU1q4cKHM8lmzZlGzZs3I29ubiIi2bt1KNWvWpHr16lGtWrXIyMiIrl69WijnzRj7ufidMmMFyJvP/vHjR2RmZmLq1KlCPW0AWLduHbp37w49PT0YGRlh/vz5KF26NFRUVPD06VMAQHp6Oq5evQrgc/435wV/nZ6enpB7DeQfzJqdnY3o6Gj8/fffuH//PsqUKYNVq1YBAE6cOAEgp372tm3b0L17d2zdulXIE1ZSUhKOJ02f4vvxdXJycjL3oGnTphgzZgzKli2LsLAw7NixAzNnzkS1atWEbTZv3oz4+Hg4ODjAxsYGKioqaNSoEVJTUxEUFFTgv8P34fsUlA5maGiI6tWrY/r06cKyS5cu4c6dO2jZsiUsLS3h7OyMhQsXYujQoXj06BGePXuGPn36YOnSpYiLi5M5Ho/pYawYKOqnCMaKi/j4eKGeORFRWFgYVapUSXilffnyZWrYsCFpa2tT9erVaf369URE5OPjQyKRiP755x8KDQ0tilMvkT59+kRjx44ldXV1GjFiBI0dO5ZEIhFdvnyZiIhGjBhBTZo0oTt37sjsFx8fT2vWrKGJEyfSli1biuLUiz3pGwyxWEyZmZm0fft2io6OFtZHRUWRhoaG8BmQbrt9+3bS0tKi5ORkYfm7d+8oICCgwOOz/11SUhINGzaM2rVrR8+fPyciIisrK9LW1qbSpUvTpEmTKDMzk4iIKlSoQCdPniQiEpZJ8dtDxn5f3BPP2DcQEcRiMcqUKSPUMwdyBmJWqlQJHh4eAIB27drh3r17WLt2LfT19dGuXTsAwLZt2wAA7u7u6NWrF8zMzPDmzRuhUgpPj/7jiAiqqqrYuXMnbty4gdTUVKioqGDXrl1o164dfH19cfXqVQwaNAgNGjQQ9nNyckLPnj2xevVqZGVlYcuWLWjYsCHCwsKKsDXFj/QNhpycHBQVFTFhwgRUqlRJWD916lQYGhpi1KhRwrKIiAisXbsWI0eOhIaGBh49eoQFCxagXr16GDNmDAwNDYW5AAqqIMWVhb4u7/V5/Pgx/Pz80LJlS9SsWRMhISG4desWrl69Ci8vLzx48ABVqlTB8uXLUaVKFWG2XW9vbzRr1gz+/v4AZOfYYIz9Zor2GYKx4m3Dhg3UvHlzun//PhF97kFMS0sjIqLTp0+TSCSi7du307Nnzyg6Opp27NghzBSbexZFnmX0x+TN087de7tgwQJq3LgxPX36VFiWmJhI5ubmNHDgQAoODiainN5Ka2trmXEOBQ2cZV+Wt9c8MTGRTE1NhUHGREQZGRk0Y8YM0tHREXp6W7RoQXZ2duTp6UnJycm0fv16MjExyTfTqPSY7MeFhIQIA/C9vLyoYsWKwsy6YrGY/vnnH6pevToZGBiQt7c3paWl0YwZM0gkEtHmzZtp6NChdO3ataJsAmPsK7gnnrH/YPLkyahduzasra0xZMgQ7N69G8+ePYOKigpiY2OxYsUK9O7dGxMmTECtWrVQqVIljBs3DpcvX8aUKVPQt29frF69GgC4JOUPkuZpS3sIc/fe1qxZE4mJidDQ0BCW7dy5EyKRCMOGDRNytzU1NaGlpYWAgABkZmYCAKKioiCRSIT7wbnBX5e311xLSwuBgYHo16+fsOzRo0fYu3cvVq9eDUVFRWzduhW3b9+Gt7c3Tp8+DUVFRcycORP169cX3mzR/7+devv2LfT19XH58uXCa1QJQEQwNjaGuro6AKBly5aoW7curly5AiDn8zNs2DD4+vri4MGDsLS0xM2bN+Ho6IiuXbtCVVUVRkZG6NGjB/bs2VOUTWGMfQEH8Yz9jyQSCRQVFbF79248ePAAqqqqiI+PFwadHT9+HC9fvsSWLVuEfcRiMRYtWoSVK1dCQUEBtra2OHLkCMzNzfH69euiakqxVtAgvy5dusDc3BxVq1bFqVOnAADx8fHQ1dWFlZWVsN3Hjx+hpaWFpKQkKCkpAQB69eqFcePGITQ0FMDnhytOJ/g+0sGp0uA+IyMDS5YsQdmyZYV5FZycnDB27FicP38eQUFBqFy5MrZs2YImTZogKioKaWlpwv6rV69GmTJlZNKi2LflfriSPhANGTIEW7ZswaBBg3D//n0EBARAS0sLtra2iIqKwrZt21CnTh04OztjzJgxWLx4MWxsbHD//n0A+T8DYrGYPxeMFaUifhPAWLGWN6Xj06dPRET07NkzKlWqFK1cuZKIPqdmXL58mTQ0NKhGjRoyg1zt7Oxo165dBR6f/Zjc6R2enp709u1bIsoZ6Nq4cWOZbb28vEhNTY0OHz5MRESnTp0iBQUFMjExod69e1PDhg3Jz8+v8E6+hAoICBBSmzIyMqhjx440evRoYf3x48epVq1aJBKJaMKECcLyx48fk4KCAh09epSIPt/bqKgomVQp9v3CwsKoc+fOZGZmRrNnz6bAwEASi8W0b98+0tDQkBkI/vHjRxo2bBi1bdtWJr0s91wARDl/p5YvX06enp6F1QzGGHGdeMZ+irzB9rVr16h69erCz9IvwA4dOpClpSVNmDCB1NXVadSoUURENHToUBozZgwR5eTJ37x5kzIyMoT9c+fOs2/L/XAlDfwuXLhAZmZmdOXKFcrIyCBnZ2dq1aoVWVhYEFHONa5Xrx6Zm5vTgQMHKCAggDZs2EAjR46kxYsXU2pqapG1pzgrqNLMggULqFOnTkK+NhFRSkoK7dy5U2ZZu3btyMbGRmbOAOn+NWvWzFd5iB96v0wikcgE4s+ePaOgoCAiyplkzcLCggYPHiyzz71796hs2bJCFaeXL1/Sli1bqEOHDtSmTRvh+l+8eJHq168v8wDGFYYY+/U4iGfsF5EG3tLAIiEhgUxMTOiff/4hIqK7d++SjY0NaWpqUvXq1WnmzJlElPOFqqKiQosWLaKwsLAiOfeSasaMGaSsrExNmzalUqVKUa9evYQJihYuXEg1a9bMN7DS29ubTExMyM3NLd/xePDr/+bx48dUo0YN6t69Oz19+lQY6E30Ofjz8PAgFRUV8vHxkVnu4+ND7du3Fx6A2Y/J+zubnZ1Na9euJZFIJLy1IsoZTDxo0CAyNDQUltWtW5dq165NI0eOpHHjxlHdunXp/PnzQilL6Wcp70MXY+zX4CCesV8gb4+gRCIhiURC9vb2NHDgQJl1p06dotatW9OlS5eIiGjatGkkEomoc+fO1LZtWzI2NhZmW+Terf9N7uv26tUrOnz4MPn4+AhVT8LDw8nAwIAWLlxISUlJRPS5XvaNGzdIXV1dSJX6VuDO9+j7vHnzhjp37kwGBgY0ePBg2r9/v8x6fX19Gj58uMwysVhMU6ZMoRYtWgjBPVHODLLm5uYUExNTKOde0mRkZNCVK1eI6PPvr5ubG8nJydGFCxeIiGjSpEmkp6dH/v7+wn6LFi2iNm3aUOvWrWnjxo1ElNNZMXbsWE6tYawQcBDPWCE6cuQINWzYUAjYpQGhNGC8ffs2KSoqkoODAz19+pSys7NpyJAhZGtrK5Ne4+fnRxs3bqSkpCThS5eDx6/Lm06QW+/evcna2rrA/PdFixaRnZ2dkE6TnZ1NT548oY4dO1JsbKxwzHPnztGTJ09+XQNKkNz3wd/fn06dOiXTG//p0ycKDw/P9zbr3LlzZGlpSQsXLpQ5XufOnWnEiBEyk0ix71NQClJkZCTVrVuX2rZtS0RE79+/JyUlJdq3b5/MdmfPniU5OTnq0aOHMBHevn37yN7eXpg8ijH263B1GsYK0aBBg2BnZ4du3bqhR48e2LlzJ+7fvw9FRUUkJSVhxYoVsLCwwKxZs2BmZgZ5eXnY2toiODgYISEhAICUlBRcv34dhw4dQnp6ulCFoqAJcthnIpEI8vLy+SbWio2NxZMnT9CpUyfUq1dPWC6tuiEnJwd5eXmoqKgAADZt2oShQ4fi06dPEIvFkJeXh0QiQbdu3bB3716hVGXe47DPpNeMiFC/fn307t0burq6AIDXr1+jRo0aiI+Ph4KCAoCcexAfHw93d3fo6urKTCJ14MABBAUFYerUqTIlRfPKe99ZjoKqOxERMjIy4OjoCAC4cuUKqlatipYtW8psd+3aNRgYGGDEiBEoXbo0goKC4ObmhsaNG6NTp07CsRhjvwYH8YwVEumX2cqVKxEWFgYDAwPExsYKX6KXLl3C5cuXsXXrVgCfg7+wsDAQEWrVqgUA8PHxwdWrVzFjxgyUL18esbGxGDlyJG7cuFH4jSqG8j7sVKhQAQEBARgxYgQUFBSE+yS9L+fOnUPLli0hJyeHZcuWYd26dejZsyeuXbsmzFI6efJkGBsbY+zYsUKpyoSEBJnjMFlycnIFPnj6+flBTU0NhoaGMssTEhLw4cMHtGvXDlWqVBHuU2pqKkaOHAkTE5Ov/nv8kPv99PX1ERQUhOrVqwMADA0N8f79e6SkpAjbeHp64unTp2jfvr0QsCcmJkJLSwuWlpZQV1cHEX31unOAz9h/IyL+FDFWaOj/py+X1h5PS0uDqqoqYmJi0KRJE7Rr1w779u0TvvyCg4PRuHFjrFixApMmTUJaWhr27dsHJycneHp64vTp07h16xZ8fHwwffp0DBgw4JtfnEyWtDe9IJGRkRg7diw6deqE69evIzAwEAsXLkT//v2FbcLDw2FsbIwdO3Zg5MiRUFRURGpqKmbMmIGkpCScOHGisJpSYkg/FxKJBHJycoiOjgYAlCtXDiKRCIqKijK/59LtcpMuCw4OxvLly9GrVy907dq10NtSHGVnZwtvQYCctyNdunRB48aNMWvWLERERGDOnDlQUFCAo6MjLCwshPuRlZUFRUXFAo+bkZGBkydPIjs7GyNHjiys5jBWchV2/g5jLH8eakBAAFWpUoXev38vLJNIJDR48GCqVauWTD48EdHr16+JiGjZsmUkEomoatWqFBUV9etP/A+TkpJCNWvWJJFIRB07dhTGMhB9HoPQrl07atmyJUVHRwvrfHx8yMTEhDw8PIiISx9+L4lEUuC1mjx5MjVp0kSofpJ7+29ZuXIlycvLU4UKFbja03/g7+9P9erVo27dupGZmRlpaWnR2rVrhfVfune5PXz4kFq0aEEikYgOHDjwq0+ZsRJP4dthPmPsZ8vba1inTh1EREQAgNCj5eXlhVOnTuHs2bNCioa0d1FfXx8AkJ6ejoYNG0JLSwv6+vr4+++/MXXq1MJsSomTuxfS2dkZL1++ROfOnXH8+HFhCntp772bmxvu3buHs2fPCqk18fHxWLZsGRo0aIC2bdsCyH+/pfe4oB7kP5lIJCrwLVKbNm2gqKgIU1PTfNsXRHpdb9y4AV9fX5iamiImJgbly5f/Jedd0tH/j1149OgRgoODsXfvXnh6emLAgAEAPl/vgu6H9Hc9OTkZrq6uePLkCQAIn5evvQljjH0dB/GM/QZyf5GJRCJkZmZi0qRJaNKkiZBvCuQEg9IvTDc3N3h5eaFdu3ZYvXo1bt26heTkZP5S/A+ys7OxY8cOPHr0CMrKyjh27BiWLVuGkSNHQl1dXbi20usbHR2N0aNHo0WLFsIxNDU10bBhQ/z1118AZFM9pAGNNNiRk5MT8oI5BerL7O3t0blzZwAFp87kRkSQk5NDVlYWTp8+jY8fP6JFixYIDQ1FVlaWsI27uztCQ0MxadIkTkH7BpFIJPzuV69eHQ4ODnjw4AH09fWF6/21fQHg4cOH2L17N0aOHImwsDC8e/cOAITP0pYtWzBlypRf3xjGShDOiWfsN3Xjxg0YGBjAyMhIWJa7V2vy5MmIioqCo6PjNwf1se/36NEjDBs2DI0aNYK1tTWGDBkis17aU3/58mXUq1cPFSpU+OKx8gaH0n03b94MBwcHHDhwAB06dADw7eD0T/YjQbZ029OnT2PDhg3o27cvGjRogH79+iE4OBiampp48+YN7O3tIRKJ4Ofn94vPvmT5X35P3717h9mzZ+Phw4d4+PAhdHV1cfz4cbRv3x4AsHHjRsyaNQvPnj1DzZo1f8VpM1Yi8TcGY78pGxsbmQAe+Nyr5eLigpCQEHTp0gUmJiY/VOUhOzv7p55nSSNNG9izZ48QwOcuE6mgoID09HTY2dlh//79EIvFMvvn3jZ34CmRSKCgoICMjAwsWbIEFStWRO/evdGqVStERkZyAP8V3xvASyQSiEQivH37Fk5OTtDW1sbw4cMRHByMqlWrQlNTE+np6XB2dsaTJ0/g5OQEAPnuIfuyH/09JSJ4eXnBxcUFy5cvR1ZWFsqVKydc86SkJKxcuRLLly9HjRo1fsUpM1Zi8bcGY8VMeno67t27ByLC0KFDAXy9VFtkZCTOnz+P48ePA4CQ7831y78ud0pS7sBFIpFARUUFO3bsQL9+/fKlLn0pyJHeo4kTJ0JXVxcXL17E69evUbFiRbRv3x7Pnj37Ba34s0iv/b///ovw8HB07doVZcqUgbKyMuLi4pCeno7Xr1/DwcEB48ePh4GBQb70Mw7of66wsDDs2rULFhYW6NatGzIzM/H69WuULl0aAIRSucOGDRPug/SzwveCsa/jIJ6xYkZFRQUSiQRaWlrQ0tIC8OXA0dXVFR06dMDYsWMxd+5cVKlSBcHBwV/dh32d9LqNHTsWxsbG37WPNFB8/vw59u/fj9mzZ0NTUxNlypTB2rVrkZ6eDnd391952iWeNPB79OgRPDw8UL16deEh9/nz56hWrZpQEjE5ORmbN28GkPOwlpqaitDQUOFnypnNvEjaUZKkp6fj4sWL8Pf3x5YtWwAAL1++ROXKlaGlpYXHjx/jwIEDWLRoESpWrCjsJ61HLw3qucOBsYLxtzhjxdDgwYPx/PlzVK9eXaihndfLly8xePBgtGnTBq6urggPD8fw4cOxb98+LFu2DO/fvxe25YDlx/zo9ZIGI7NmzULt2rUxatQoqKqqAsiZWCcuLg7x8fEyx+Z78mOkKTe+vr4IDg5G3759hVl2DQ0N8e7dO3h5eeHAgQNYtWoVAODJkydYv349zMzMMGjQIJiZmeHq1atfrJLDfsybN2+wbt06dOnSRch119fXR1RUFEqVKoUFCxbA2toavXv3BhHh/v37aNWqFfr06YP69evj6NGjALjDgbEv4eo0jBVDzZs3R0REBPbs2ZMvx1068GzNmjUwMDDAxo0bhRSaDh06wN7eHmXLloWxsTEGDRoE4HMAxFU6vs+PXCPpYFZnZ2e4u7tDXV0dPXv2xJ49e6CmpoalS5dCLBYL5ROlxxaJRPkm3WHfNnr0aFhYWKBevXrCsufPn0NJSQn79+9H5cqVMX78eADA/PnzkZWVhW3btqF+/fr4559/MG7cOKxfvx7dunUrohaUHEZGRjh16hQaNmwoLAsKCkK9evVw5MgRuLu7w9PTE8rKyjhy5Ag2bNiANm3aoEuXLnj69Cnmz5+PZ8+eYfXq1fx3ibGCFEItesbYT5aVlfXV9YmJiaSsrEynTp0iIqL09HQiypmwRV5enmbOnElJSUlERDRjxgy6fPmysK9EIvmuSXTYt+W+jpUrV6YxY8aQr68v9erVi0QiERkbG5NIJKJZs2ZReno6eXl50datW2nLli1FeNbFV97JhqQ/Ozg4kLKyMolEIvLy8iIioo0bN1Lp0qVJVVWVFi1aJOzTv39/mjJlSoHHy87O/oVnX7JJr2VwcDCVKVOGRCIRTZ48mYiInj9/Tm3atCF5eXkaM2aM8Pfq1KlTZGlpSfHx8cJnSfpfvheMEfE7KsaKoW/1zoaFhaFChQooVaoUAEBZWRkA8Pfff6Nx48awt7eHpqYmAgMDsWPHDuzfvx9btmzBrVu3OJXgJ6L/T4lZsGABsrOzMXbsWJibm+P06dMICgrC9OnT8eDBA4wcORLLly+HtbU1Tp8+jd27d6NSpUq4efNmEbegeMmbdiH9WU1NDZmZmejbty9atmyJT58+wdvbG/b29jh69Cg8PDxQoUIFHD9+HFZWVvDz80NmZqaw/9u3bwF8zpdnP056LRMSEpCYmIhKlSphzJgxAIDAwECEhoZi8+bNePPmDXR1dbF582a0a9cOAQEBePfunfA3KSMjAwDyDYJl7I9UxA8RjLFfICMjgxo0aECrVq0Slp06dYqqVq1KK1euFJZ1796dlJSUqGPHjjR9+nTS0dGhTZs2yRyLe7z+m+zsbGrQoAHNmzeP0tLShGW5rVy5kkxNTen48eNCT+OYMWOoW7du+Y7Hb0n+N3fu3BHePhERdezYkYYPH05ERJmZmbR3714yNDQkkUhE06ZNIyKiGzduUL9+/ah27dpkbm5O3t7ewv78ufjfBQYGkqurq9DjvmvXLqpYsaKw3snJiWrWrEkikYgMDQ2JiCg+Pp727dtH9vb2ZGlpSadPnxa257eH7E/FyZaMlTAJCQkoU6YM/vrrL4wfPx5BQUFITk7GlStX0Lx5cyHX9/Tp07h37x6WLFmCuXPnQk5ODhMnThQqQYSHh8PQ0FCmQgQPMPtx8vLyePjwIVJSUoSBlvLy8sL1fPDgATw9PdG+fXv0799f2K9Zs2ZYuXIlXr58KVM/W9ojyfny30f6+9y0aVOZ5fXq1cPjx4+RkpICDQ0NjBo1Ct26dcPp06dhZ2cHf39/dO3aFc2aNcOoUaMQExODFStWYOPGjdDT0xMqQ7EfIx3/IR0DAgA1atSAiooK7t27hyZNmqB79+6ws7PDoUOHhJ724cOHIygoCHXr1oWtrS3mz5+PjIwMdOzYEWXKlCmq5jBWtIr6KYIx9vNkZWWRs7Mz3bx5k4iIwsPDycPDgwYOHEgNGjSgffv2Cds2aNCAhgwZQuHh4cKyd+/e0cGDB6lKlSpkbW1NBgYGMvuwH/el8QvSnsPbt29TmTJl6Pnz50REQm/92bNnqVSpUpSQkEBEREeOHKFFixbly5eXHif3fWTf5u/vT9WrV6ehQ4dSeHg4xcfHC+vevXtHHTt2JHNzc5l9Ro4cSRUqVCBra2uKjIyUWZc3f559v5SUFOrUqRPZ2dlRUFAQZWVlyVzP48ePk6KiIl25ckV4A3L48GGytLSk1q1b07lz52SOx/eC/Sm4W42xEoT+v0zbwIEDcerUKSgrK0MikcDLywstW7ZEhw4dAADr1q1DWloa+vbti6pVqwr7r1q1Cjt37sTChQtx8uRJLFiwAOvWrcPff/9dRC0q/r7UWy7tUY+OjkZWVhZ0dXUBQOitX716NTp27IjSpUtj3759GDJkCCIiIuDo6Ihq1arhypUrwnGys7Nx9OhR2NjYIC0trRBaVfzVr18f7u7uePXqFWxtbTFu3DgcOHAAABAcHAx3d3fs2bMHwOc87Jo1ayItLQ2dOnVC2bJlAeTMOArk5HxLJBKuaf4/UFdXx9GjR6GmpgZLS0sMHDgQa9asQWZmJgBg7ty5mDRpEmxtbYU3g5aWlggICMCnT5+Ev2HS7eXk5EBEPFkUK/mK+imCMfbzbd26lSpVqkTGxsakrq5OAwcOpNDQUCIiiomJIVVVVZo1a5bQy0tEdO3aNSpXrhypqanRgAEDKDExkYiI1q5dS3Z2dgXmAHNe8H8XExNDDRo0oB07dhAR0evXr2np0qVUqlQpun//PhER9evXj4YNGybsM2fOHOrQoQO9f/9e5lh37tyR+ZnzhL8sd2/trVu3aM+ePcL1nD9/PtWtW5eIZH/HmzZtStbW1hQUFERERG/evKHZs2fToEGD6NGjR4V49iVL7nvh7+9Pixcvplu3bhERka+vL1WpUoVu3LhBRJ9/pzdv3kwVKlSgnTt3ElHOOCAnJyeaMGECXb9+XTgefwZYScY98YyVQJMmTUJERAR2796NJ0+e4OjRozAyMgIA6OjowMHBAd27dxemPgcAd3d31KlTBydOnEBqaioMDAywatUqNGvWDCEhIXjz5g0AICIiAl5eXgB4RsWfoUKFChgxYgSmT58Oa2tr2NraYs+ePdi5cycaN24MAGjbti1Onz6NAwcOgIgwdepULFq0CDo6OggLC8OxY8eQlZUl5H3fvHkT2dnZXGXoK+Tk5ISe2hYtWmD06NHQ0dEBABgbGyM9PR0xMTHC7/ihQ4cQHByM0aNHw8TEBACQmpqKRo0aoVSpUmjRogXmzp2bb94G9m2532LUr18fy5YtQ4sWLQDkfD6ysrIQExMDIOfNU2hoKK5cuYKmTZuiX79+AHLeiMjLy0NeXh69e/dGz5498eHDB/4MsJKtqJ8iGGNFS9oLNm/ePJkc4AsXLlDDhg1JJBJR8+bNiSgnX9vR0ZHat29PxsbGdPLkyW8el32f9+/f05o1a+jQoUNCr27uNyWbN2+mTp06kY+Pj8x+27dvJ01NTbp69SplZ2dTSEgIWVlZ0ciRIykjI6Mwm1Bs5e2tff78OVWsWJHGjRtH9+7dow0bNpCmpiYNHDiQoqKiiIjo06dP9PHjR2EfLy8vMjExkalgQ5STu71nz55f34gSIu/fjYyMDOrQoQO1b9+eAgMDycfHhzp37kzVq1en48ePE1H+N4JRUVHUqFEjcnBwkFmekpJCGzdu/LUNYKwQcRDP2B/mS6+Xjx49SvXr16ewsDBhWWZmJu3fv5/u3bsnLPv48SN9+PCBtm3bRgYGBrRu3TqZ42ZmZtK7d+9+YQtKFolE8sVUpdWrV5OzszMR5QT0w4cPJ1NTU3r79i0RET148IDs7Oyod+/eRES0Y8cOqly5MpmZmdHt27eJKOd+EBFFRETITOrF8vvw4YPwkPTo0SNq1qwZzZ8/nypVqkRmZmZ07do1IiIKCAigpk2bkq2tLVlZWZG7uzsREVlbWwslWiMiIujo0aNkbm5OXbp0ISJOP/tRERERlJKSQrGxsWRjY0Pt27cna2trUlFRob/++kvYbtKkSdS7d2/q0KED/fPPP0REtG3bNmratCmlpKQQEdHDhw9pxYoVJBKJKCoqisRiMafasGKP02kY+8N86fVymzZtoKamhtGjR+Px48dITk4GEWHEiBGwsLBAeHg43N3d4eTkBGVlZUycOBHDhw/H9evXkZmZCZFIBCJCbGwsKlWqhBs3bhRuw4opkUhU4CRCnz59wrNnz7B27Vp4eXmhdOnSaNKkCeTl5ZGVlYW0tDRcuHAB4eHhmDlzJgDA0NBQSDdYsGABXr9+DUVFRQDA3bt3sWTJEh74+hVv377Fpk2bcPToUdSrVw8+Pj7o27cvsrKy0KdPHzRq1AhpaWkYM2YMsrKyMH78eNja2mLw4MGwtbVFcHCwMDA5MjISgwcPxtOnTzFr1iwAn9PP3N3d0aVLF2FQLMuPiLB//36sXr0aurq68PT0xPHjx2FkZITmzZtj8ODBAIANGzbgwIEDqFKlCiwtLbF06VJYWVnByckJ6urqUFdXx6dPn9CmTRssXrwY06ZNQ+XKlSEnJweRSIS3b99iypQpePr0aRG3mLH/QdE+QzDGficpKSk0YMAAKl++PPXq1YuWLVtGRDk9YgYGBlStWjVq0qQJ6enp0ZYtW8jDw4MqVKhAsbGxRJRTgq9GjRpUs2ZNIvpyLzP7frNmzSJVVVVq06YNaWtr09ChQyk5OZlu3LhBFhYWNGXKFCLKuXejR4+mNm3akKenJ/Xs2ZM6duwok/Ih7ZVnX+bg4EDq6urUsWNH6t27N6mrq5OdnR2FhIQQEVFYWBgpKioKvfJEREFBQWRkZETGxsbCMj8/P9LX1ycLCwsSiUQ0fvx4oec3JSWFduzYQREREYXbuGLmzJkzVKFCBWrZsiUtW7aMmjZtStWqVZMps9qkSRPq16+f8HNmZiYNHDiQVFRUyMXFRVjeo0cP0tPTIwUFBerUqZNMqtqWLVvo0KFDhdImxn4mDuIZY0Qk+6o/MDCQdu/eLdQuX7hwIVWoUIHevXtHsbGxdOLECTIzMyORSES9evUS9lu8eDGJRCLS1dWlixcvCsujoqLoyZMnhdeYEiD3/YiKiqIdO3bQ5cuXKTU1lVJSUmjChAnUoEEDiomJISKigwcPUtOmTWn16tXCfgkJCZSZmUnt27cnLy8vYTmPV/i6d+/e0dSpU2ncuHG0atUqmYef2NhYsrW1pf79+1N8fDyFhYXR3r17SUlJiQ4cOEBEORWHRo0aJQT1z549o3nz5lFqaiq9ePGiSNpUXGVmZtK0adPIzs6O+vfvTzdv3hTGemRnZ9Py5cupTp06FBsbS2lpaRQZGUmNGzcmOzs7io6OJiKiK1eukEgkolu3blFUVBQNGDCAXF1dZR5wpTjFhhUnHMQzxgRisbjAAG/RokXUtGlTmYmL9u7dS6qqquTr60tEOcGNpaUl2dvb07Zt26hMmTK0atUqIsoZNNulSxfhoYB9ny+9ydi3bx8ZGhrS1q1biYjo1atX1Lt3b+rUqZPwVkR6r/bs2UMikYgCAgKIKOcBjX2f3AFd7s/FgwcPyMzMjMzNzalnz54kEonI2tpa2MfZ2ZnKlClDJ06ckDnehw8fSENDgzZs2PDFf4cVLD09vcDlMTEx1KpVK9LR0aFp06aRtrY2aWtrk4eHh7BNgwYNqFevXvneRE2cOJG6du0qM9EXP+Cy4oSDeMZYPnmDijt37lDZsmWpR48e5OzsTGPHjqXSpUvTmDFjhG0cHR1JUVFRmDk0Li6O3r59S8+ePaO+ffvS5s2bC7MJJYr0fkj/e+PGDerWrZuwfu/evdS4cWM6evQoEX3uxf/w4QOVK1eOFi5cSEREbm5upK2tTc+ePSvM0y9Rcn827t+/T05OTiQSieju3btElFPnv2PHjmRjYyNsJ70fEydOpMaNG9OdO3coPj6eVq9eTUlJSYXbgBIk973w8fGh4OBgEolENGnSJKHm/65du0hNTU14EygN0i9fvky2trY0btw4IsqpxhUcHFzILWDsvyl4KkHG2B8t7+DXpk2bIjAwEDNmzMDz58/h7OwMXV1dzJs3DwAQHh6O1atXY8qUKahatSqys7Ohra0NAFiyZAmICO3btweQM2CNazf/GOn1kv7X2toa1tbWwvqUlBSkpqZi4MCBMvutWLECampqmDhxIoCc2WP19fUL6axLJpFIBLFYDHl5eTRu3BiNGzfGyZMn0aRJEwCfZ3v18/MDAKSnp0NFRQUPHz6Es7Mzpk2bhnr16uHDhw9wdHSEgYFBvvsmkUggJ8d1J74l971o1qwZAGDfvn1o1KiRUPN/8eLFGD9+PGrXrg0igpycHFJTU3Hq1CkAwNixYwEA27Ztg0gkgru7u8y/wX+v2O+Mg3jG2DeJxWKUL18eR44cQWZmJm7evAlra2tUqVIFQM4Xp0QiwZo1awDkBItSs2bNwsuXL2Fqagrgy9Vx2PfLG+RVqFABHz58wNatWzF58mTIy8vj2bNncHR0xJ49e6CrqwsAuHPnDtLS0lCrVi1h3+zsbNy7dw+WlpaF3o7iSlplRhrg9enTR1j35s0bGBsbw8zMDACEajWLFi1C3bp10a5dO6iqqiIyMhJxcXHo2LEjACArK0uoJMQB/PeT3gupESNGCP8fGhoKHR0dmJuby2xz5swZPHv2DD169EDdunXx6dMnhIeHY/r06QCAzMxMKCkpAeC/V+z3xn8pGGPfJC8vL8zKqqSkhMuXL2PWrFlCWcl///0XI0eOhIKCArKysoT9iAhGRkbo0KGD8DP77/IGef3798fu3buxYsUKODs7AwDmz5+PZs2aoW/fvsJ29+7dQ+fOnYWfAwICMHHiRLRs2RJhYWEAPs++KxaL+X59Q0EBnpWVFcqXL4+qVavC29sbQE7Q+OTJE/Tv3x916tQBAFy+fBktWrQQjqGoqIj3799jwIABiIyMLLxGlGB6enqwsrLC6NGjceTIEYhEIrx69Qrnzp2Drq6uEPCHhIRAR0cHWlpaACAE8Js3b8b9+/eL7PwZ+xYO4hlj30UaOEqnlZf2Gn78+BFNmjSBn58fEhIShOVA/iCHe7V+Pmmg3bVrV7x//x4dO3bE5cuX4erqiuXLl0NVVRVATsqNRCIRApXo6Gj0798fr1+/hrOzM4yMjADk3OesrCzIy8sL6Qrs+xkYGOD27dtYsGCB8GC0fPlytG/fHq1atRK2k/b2lipVCgDg6uqKLl26wN/fH7GxsfmOK/3cse+nrKyMnTt3wtHREU5OTiAiHD9+HO/evUO/fv2ElD85OTk8fPgQjRo1AgAkJiZiwYIFWLZsGU6fPp3vuPyZYL8LEXFXC2PsP4qNjUWfPn2QlJSEU6dOwcTEpKhP6Y+TnZ0tpDGlpaXh9OnTGDJkiLA+KSkJOjo6ePToEWJiYrBkyRIAwKlTp1C5cmUkJydj+vTpSEhIQHR0NLp164a5c+cWSVuKM2mOtpS3tzcGDx6MzZs3o2vXrsJyMzMz9OvXD4sWLcKpU6ewaNEiNGzYELt27YKWlhaSk5Px6tUrxMbGom3btkXRlGIv771ISUlBz549oa6uDicnJ2H58uXL4erqCl9fX7x69QrLly+Hm5sb9u7dC3t7ewA5E4HFx8ejevXqwueMxy6wosa/fYyx/0QikaBChQrw8vLC8ePHYWho+NVt2a8hDSyICKqqqjIBPAB4enqiZs2acHd3x+DBg1GnTh2cPXsWlStXxsOHD9G3b1+EhISgf//+GDduHA4dOoROnTohOTm5KJpTbOXN0W7RogUePHggE4g/f/4cGhoaqFmzJrZv344xY8agT58+2LRpE7S0tHDp0iV06dIFPXr0wJw5c6Cvrw8XF5dCbknxJ70X0r87GhoaOHPmDNatWwcgJ8jPyspCZmYmqlevjsDAQPTp0wevXr3C5s2bYW9vj7dv32LNmjVo1KgR/vrrL+jp6WHbtm0AeOwC+w0URUkcxljJ8q1ZWe/du0efPn0qpLNhBTlx4gSJRCISiUS0du1aYcbKxMREmjVrFpUqVYqsrKyEmtmRkZFkbm5OPj4+RXjWxV9BdcefP39O5ubmVLVqVbK1taUFCxYI6549e0ZVq1YVZuYlIlq7di3Vr1+fJ0z7j/LeC+nPXbt2pcqVK9OgQYOodu3aFBsbK6wbPHgwNWjQgM6dO0cfP36kQ4cOUc2aNWn79u2Ffv6M5cWPkYyx/yxv72Nufn5+GDNmDBYuXJhvHXE2X6Hp168fNm7ciC1btmDOnDkoXbo0gJwxDefOncPQoUNRs2ZNGBgYYNKkSdDT08PHjx8RGBhYtCdezBXUWyuRSPDgwQPExMRg8eLFWLBggbBu69atiI2Nxblz5zB9+nR8/PgRc+bMgUgkgqura2GeeomT917IyckhLS0NgYGBePPmDfT19XHy5Eno6upCTk4O169fx9GjRxEaGopDhw4hJSUFQ4YMQZ8+feDm5lZErWDsMw7iGWO/lJGREVq2bAkbGxsAOa+wpQP3eKBr4ZA+LE2bNg2TJk0C8HlwXlJSEiIiIrBw4ULs2rUL7u7u8Pf3h5KSEt6+fQsDA4MiO++SyszMDElJSfD19YWNjY1QhjIjIwPHjx/Hzp074e3tjbCwMBgaGmL16tUwMTGBmppaEZ95yaOqqooXL17g3LlzWL16tVAaFAAOHz6Mjh07wt3dHQoKCqhRowbmzZuHWrVqITk5ucAByIwVJg7iGWO/VNmyZbFt2zZhgFhQUBCaNGmSL8eX8+V/HWkp0NykZUN1dHRQvXp1nD17FkBODre3tzcOHz6MkSNHomrVqkVwxiVbdnY2NDQ0hHKT0ofZt2/fonLlysjKyoKZmRmuXbuG7du34/jx4zh79iyUlZWL8rRLJGnVH+nfJ+DzQ2/p0qXx6dMnNG/eHP/++y+cnJxw8+ZN9OvXDwoKCqhQoUKRnDNjUhzEM8Z+qbzB+YcPHyAvLy8zuZBYLOZBYr9YQW895OTkUL58edjb2+PQoUO4ffs2gJzyh/369cPq1atRrVq1wj7VEi/3ZGi5GRgYoGnTpvD19RWW9e3bF/fv38epU6cwZsyYwjrFP0ZB90L6Walfvz5SUlIQFRUFAGjTpg28vb3xzz//YP/+/QA4JZAVLS4xyRgrdLnLIV66dAnbt2/Hpk2bUL169SI+sz/XtGnTsGfPHrRv3x516tTByJEjOZWmENH/z/567do1DB48GE2aNMGCBQugoaHBJVuLyJs3b9CrVy/Iy8vDwcEBxsbG0NLS4jci7LfBXV+MsUIlFotler8uXbqEd+/eIT09vQjP6s8lfVOyadMmBAUFoVatWjAyMoKGhkYRn9mfRdr727p1azx8+BAikQj9+/fH1q1bcfXq1SI+uz9TpUqVcOPGDZiamqJHjx6YPHkyNm/eXNSnxZiAe+IZY0Xu9evX3OtbhIgIEolEqDKUd5IcVnhyX/ugoCAkJyfDzMxMmNmVFZ7c9yIiIgL37t1Do0aNUK1aNeHNCWNFiYN4xliR4WDx98IzUP4eJBIJRCIRB4m/AembKv5csN8RB/GMMcYYY1/BPe/sd8SPlowxxhhjX8EBPPsdcRDPGGOMMcZYMcNBPGOMMcYYY8UMB/GMMcYYY4wVMxzEM8aKVEZGBpYuXYqMjIyiPpU/3v+1d99hUR1tG8DvBQGpa0FYVBTsXREjgr2hxm7yKRbURI0mNuwajTFGg4nGFiOW2GOLsRujgl0BC9jNq9GooIKAINgosvP9ga4uLLLLHmAX7991zfW+zJmZM2cn6z47O2cOx8JwcCwMB8eCDBV3pyGiApWUlAS5XI7ExETY2dkVdHc+aBwLw8GxMBwcCzJUnIknIiIiIjIyDOKJiIiIiIxMkYLuABHljlKpxMOHD2Fra2vUexgnJSWp/S8VHI6F4eBYGI7CMhZCCDx9+hSlS5fO0yfQJicnIzU1Ve92zM3NUbRoUQl6VHhxTTyRkbp//z6cnZ0LuhtERGREIiMjUbZs2TxpOzk5GZZyBZCaqHdbCoUCd+7cYSD/HpyJJzJStra2AIDIexG82YqIiN4rKSkJzuXLqT478kJqampGAO81FyhimfuGXr1EdPAEpKamMoh/DwbxREbqzRIaOzs7BvFERKSV/Fh+KTO3gkyPIF6YyMBlIjljEE9EREREkjGRAfp8VxAyIF267hRa3J2GiIiIiMjIcCaeiIiIiCRjaiKDzCT3U/HCRMaZeC0wiCciIiIiyZjIZHqtvRdGvG1yfuJyGiIiIiIiI8OZeCIiIiKSjIkMkOkxTSw4Ea8VBvFEREREJBkup8kfXE5DRERERGRkOBNPRERERJKRYncayhmDeCIiIiKSDJfT5A8G8UREREQkGZkJYKLHgm0lF3trhS8TEREREZGR4Uw8EREREUnGRJaxpCbXuJpGKwziiYiIiEgypiYymOhxc6o+N8V+SLichoiIiIjIyHAmnoiIiIgkk7GcRo8GOBGvFQbxRERERCQZEz2X0+j3DeDDweU0RERERERGhjPxRERERCQZE5lMz91pOBOvDQbxRERERCQZEz0f9sR1Itrhy0REREREZGQ4E09EREREkjHVczmNjMtptMIgnoiIiIgkI5PptzuNYBCvFQbxRERERCQZffeJF4zhtcI18URERERERoYz8UREREQkGX0f9iT4sCetMIgnIiIiIsmYymQw5T7xeY7LaYiIiIiIjAxn4omIiIhIMvo+7ElwilkrfJmISCdCCMz4bgZKly0DS2srtGjVEteuXcux3vbt21GjVk1YWBZFjVo1sXPnzixllgYshWvFCihqZQn3jxrg5MmTOp87JSUFI0eNhL1DKVjb2qBL1664f/++fhdtoDgWhoNjYTg4FgXP5PU+8fokyhmDeCLSyU9zf8L8BQuwZPEvOHfmLBSOCrRt542nT59mWyckJAS9evvAt18/XLpwEb79+qGnTy+cOXNGVWbr1q3wGzMGU6d8jQth4WjapAk6dPwYEREROp3bb4wfdu7ahS2bNuPUiZN49vwZOnXpjPT09Lx5QQoQx8JwcCwMB8eCPhiCiIxSYmKiACASE54Ika7Ml6R8lS4UCoWY4++vykt+8VLI5XKxbGlAtvV6/l9P0b5de7W8dt7thE8vH9XfDRs2FMOGDlUrU61aNTF50iStz/0kPkGYmZmJLZs2q8o8iLwvTExMxIH9f+fb68Sx4FhwLDgWhjYWiQlPMj4zEhPz/HOp3oANwn3I9lynegM25HlfCwPOxBOR1u7cuYPo6Gh4t/VW5VlYWKB5s+YIDgnJtl5IaAi8vduq5bVr543gkGAAQGpqKsLCwtTaBQDvtm1V7Wpz7rCwMKSlpcHb+22Z0qVLo1atWqpzFRYcC8PBsTAcHAvDwOU0+YM3thIZiZSUFKSkpKj+TkpKyvc+REdHAwAcHR3V8h0dHXDvXoSmKqp6jg6Z6jg4qtqLi4tDenq6hnbfltHm3NHR0TA3N0fx4sWzPVdhwbEwHBwLw8GxMAwmJoApb2zNc3yZiIyEv78/5HK5Kjk7O+f5OTdu3AgbO1tVSktLAwDIMs2SCCGy5GWmTR2pymSmTRlDx7EwHBwLw8GxoA8Zg3giIzFlyhQkJiaqUmRkZJ6fs0uXLrgYfkGV7O3tASDLjFFMTGyW2ad3KRQKRD/KVCc2RlXH3t4epqamGtp9W0ahUOR4boVCgdTUVCQkJGR7LmPFsTAcHAvDwbEwTFxOkz8YxBMZCQsLC9jZ2amlvGZra4tKlSqpUo0aNaBQKBAYFKgqk5qaiuMnjsPL0zPbdjwbeSIwMEgt79ChQHh5egEAzM3N4e7urtYuAAQGBanadXV1zfHc7u7uMDMzQ2Dg2zJRUVG4evWq6lzGimNhODgWhoNjYZhMTGR6J9JC/t5HS0RSKYjdaUS6Uszx9xdyuVzs+HO7uHLpsujt01s4OTmJpCeJqjK+/XxVOzaIdKU4ffKUMDU1FXP8/cU/166LOf7+okiRIiI0OERVZsumzcLMzEysWvmbuH71mvAbPVpYW1uLu//d0encw4YOFWXLlhVBhwJF+Pkw0apVK1G3bl3xKjWtwHfO4FhwLDgWHIuCGov83J2m0ZBNosnwXblOjYZs4u40WmAQT2SkCiqIV75KF99Ony4UCoWwsLAQzZo1E1cuXVYr07x5czGg/wC1vG1b/xBVq1YVZmZmolq1amL7tj+ztP3rkiWifPnywtzcXNSvX18cP3pM53O/fP5CjBg+XJQoUUJYWlqKTh07iYi79wo8sOBYcCw4FhyLghyL/Azivb7YJJqN2JXr5PUFg3htyIQQouB+ByCi3EpKSoJcLkdiwpN8WVpDRETGKykpCfLixZCYmJhnnxlvPpeaDt2MIhZWuW7nVcoLnFzeO0/7WhhwTTwRERERkZHhPvFEREREJBl9d5jh7jTaYRBPRERERJIxMclI+tSnnPFlIiIiIiIyMpyJJyIiIiLJcDlN/mAQT0RERESSken5wCYZH/akFQbxRERERCQZmUwGmR6z6frU/ZBwTTwRERERkZHhTDwRERERSUZmkpH0qU8548tERERERJJ5c2OrPik3li5dCldXVxQtWhTu7u44efJktmV37NiBtm3bolSpUrCzs4OnpycOHjyY20suEAziiYiIiMiobd26FX5+fpg6dSouXLiApk2bokOHDoiIiNBY/sSJE2jbti3279+PsLAwtGzZEp07d8aFCxfyuee5JxNCiILuBBHpLikpCXK5HIkJT2BnZ1fQ3SEiIgOWlJQEefFiSExMzLPPjDefSx3G/QkzC+tct5OW8hx///ypTn318PBA/fr1ERAQoMqrXr06unXrBn9/f63aqFmzJnr16oXp06fnqt/5jTPxRERERCQZmUz/BGR8KXg3paSkaDxfamoqwsLC4O3trZbv7e2N4OBgrfqsVCrx9OlTlChRQq9rz08M4omIiIjI4Dg7O0Mul6tSdjPqcXFxSE9Ph6Ojo1q+o6MjoqOjtTrXzz//jOfPn6Nnz5569zu/cHcaIiIiIpKMiZ4Pe3pTNzIyUm05jYWFxXvrZd5fXgih1Z7zmzdvxowZM7B79244ODjkoscFg0E8EREREUlGqoc92dnZabUm3t7eHqampllm3WNiYrLMzme2detWDBo0CNu2bUObNm1y3eeCwOU0RERERGS0zM3N4e7ujsDAQLX8wMBAeHl5ZVtv8+bNGDhwIDZt2oSOHTvmdTclx5l4IiIiIpKMiUzP5TS5mMUfO3YsfH190aBBA3h6emLFihWIiIjAsGHDAABTpkzBgwcPsH79egAZAXz//v2xaNEiNGrUSDWLb2lpCblcnuu+5ycG8UREREQkmYJ4YmuvXr3w+PFjzJw5E1FRUahVqxb279+P8uXLAwCioqLU9oxfvnw5Xr16heHDh2P48OGq/AEDBmDt2rW573w+YhBPRERERJKRak28rr766it89dVXGo9lDsyPHTuWq3MYEq6JJyIiIiIyMpyJJyIiIiLJSLXFJL0fg3giIiIiksy7T13NbX3KGZfTEBEREREZGc7EExEREZFkZCYyyPRYEqNP3Q8Jg3giIiIikoxMJsvVXu/v1qeccTkNEREREZGR4Uw8EREREUmGy2nyB4N4IiIiIpKMiSwj6VOfcsblNERERERERoYz8UREREQkGS6nyR8M4omM3b//ATY2Bd2LD96SGgMLugv02v991rygu0DvcBz6aUF3gQDg+bN8O5VMJtNrhxnuTqMdBvFEREREJBkTExlM9JhN16fuh4Rr4omIiIiIjAxn4omIiIhIMjIA+qyI4Ty8dhjEExEREZFkuJwmf3A5DRERERGRkeFMPBERERFJhltM5g8G8UREREQkGZlMzzXxjOG1wuU0RERERERGhjPxRERERCQZ3tiaPxjEExEREZFk+MTW/MHlNERERERERoYz8UREREQkGe5Okz8YxBMRERGRZGQyQJ84nKtptMMgnoiIiIgkw5n4/ME18URERERERoYz8UREREQkGRMZYKLHmhhOxGuHQTwRERERSUZmkpH0qU8548tERERERGRkOBNPRERERJLhw57yB4N4IiIiIpKMiUwGEz0Wtuuznv5DwuU0RERERERGhjPxRERERCQZ7hOfPxjEExEREZFkTPR8YitjeO1wOQ0RERERkZHhTDwRERERScbERM8bWzkVrxUG8UREREQkGW4xmT8YxBMRERGRZDgTnz+4Jp6IiIiIyMhwJp6IiIiIJCMzyUj61KecMYgnIiIiIsnIZDK9nrrKNfHa4XcdIiIiIiIjwyCeiHQihMCMJYtRunkTWLrVRosB/XDt339zrLf90EHU6NQBFnVrokanDtgZdCjbsv4rlkFWowr8/Ger8tLS0jDp57mo3bUTrN3ronTzJug/eQIexjxSqxsdGwvfSeOhaOoFa/e6qP9JN/x58EDuL9jANfz2c3z2YDeGvTiC7kd/QYkaru8tX2NwZ/Q4sRSD4//G4Pi/0TVwIRw+qq5WRmZqCo/vh6D/f9sw7MUR+N7+Ax998xnwzuxY6zVTMUKcVkufhqxQa6fFsgnwvfUHhr04gkEx+/DxrjkoVrWcdBdvQIQQmHvhJOpu+QUu6+ei+98b8b+E2PfW+V9CLAYd2YEG25ZCscYfK66d1Vgu6vlTDD++B9U3LYDr+rlovXsVLsVFqY6POrkPijX+aunjfeuy7WfvQ1uhWOOPv+/dzP0FGzAhBGasXI7SndrBsrkXWnz5Ba79dzvHetuPHEYNn09h0bQRavh8ip3Hjqgdn7FyOWSN3NWS4mNvtTLPXrzAiHk/omznDrBs7oXqvT5BwPZtamVW7NqBFl9+AbtWzSBr5I4nT5/qf9EG5s0TW/VJlDMG8ZSvWrRoodp66uLFiwXdHYOxdu1a1evi5+dX0N15r59WrcT8dWuwZNo3OPfHdijs7dF28Gd4+vxZtnVCLl5Ar3F+8O3SFZd27oFvl67oOdYPZy5dylL23JXLWLHtD9SpWlUt/0VyMsKvX8M3w75C+J87sWPxEty8exddhn+pVs538gTcuHsHe34NwJVde9GjrTd6jfPDhevXpXkBDEj9iX1Rb6wPjo+Yjz8+GoTn0fHoGrgQZjZW2dYp06I+bm4OxK6Wo/Cn51A8jXiErocWwLq0/dt2J/VFrWHdcHzEfGys3gfBE5fCbUIf1Bn5qVpb9/4OwWpFZ1Xa+/E4teOxYTdw+LPZ2Fi9D/a0GwuZTIauhxZAZlL4PnqWXAnF8mtn8UMjb/zdeSAcLK3R6+AWPEtLybbOy1dpKGdbDNPcW8DB0lpjmScpL9F5/wYUMTHBxra9cLz7EMz4qDXk5kXVyrUsUwGXe41UpY1te2psb8X1cyjs4dFPG9Zh/uaNWDJuEs6tXg9FyZJoO+orPH3+PNs6IVcuo9c3U+Db4WNc2rAZvh0+Rs+pk3Hm6hW1cjUrVETUXwdV6crGrWrHxyz8GQdCg/H7jO/xz+Y/MaZ3X4ycPxe7TxxTlXmRnIz2np74euBnkl63IXnzxFZ9EuWs8P1LSjoZOHCgKng0MzNDhQoVMH78eDx/zz92+hoyZAiioqJQq1Yttfx169ahYcOGsLa2hq2tLZo1a4Z9+/apjo8cORKVK1fW2OaDBw9gamqKHTt2AHi7R23mtGXLFgDAsWPH1PJLliyJVq1a4fTp02rtzpgxA/Xq1cvxml6+fInixYujRIkSePnyZZbjLi4uqnNZWVmhVq1aWL58uep4r169EBUVBU9PzxzPVZCEEFi4fh2mDv0SPdq2Q63KVbDO/ye8SH6JTe+MVWYL169FW08vTPliGKpVqIgpXwxD60aeWLhhrVq5Z8+fo+/E8Vj53fcobidXOya3tUXgqrXo2eFjVHWtgEZ16+GXqd8g7NpVRDx8qCoXcvEiRvb1RcM6dVHBuRymDfsKxWztEP7PNUlfC0NQ168nzs9eh/92Hkf8tTsIGjALRawsUKVP22zrBPb7DlcDdiLu0r94ciMCR4f8CJmJCcq2bqAq4+RZC3d2n8S9/SF4ei8at7cfQ+Shs3BoUE2trfSUNLx4FK9KKQnqM4rXVu7Bw5OX8PReNGIv3ETotBWwLaeArYuTtC9EARNCYOX1cxhdxwsdXaqievFSWNy0E16mp2HH7ey/PLqVKo1vP2qFbhVqwNxU8y1qS66Eooy1LRY17YT6pUqjnG0xNC3tAhe74mrlLExN4WBlo0rFLSyztHUt/hGWXz2LhU066nfBBkwIgYVbN2HqwM/Ro2Ur1KpYCeumf4cXycnYdCj7X+QWbtmEth95YMqAz1HNxRVTBnyO1h81xMKtm9XKFTE1haKkvSqVKq4+DiFXr2DAx53Qwr0BXEqXxhfdeqBupco4/8/b/w78fPpgcv/P0KhmbWkvnj44DOIJ7du3R1RUFP777z/MmjULS5cuxfjx4/PsfFZWVlAoFChS5O2H1vjx4zF06FD07NkTly5dwtmzZ9G0aVN07doVS5YsAQAMGjQIt27dwsmTJ7O0uXbtWpQsWRKdO3dW5a1ZswZRUVFqqVu3bmr1bty4gaioKBw7dgylSpVCx44dERMTo/M1bd++HbVq1UKNGjVUXyQymzlzJqKionD58mV069YNw4YNw9atGbM4lpaWUCgUMDc31/nc+enO/UhEx8XC26uJKs/C3BzNGzRE8MXwbOuFXLwI78ZN1PLaNW6C4AsX1PKGz/oOHZu3QBuvxlr1J/HpU8hkMhSzs1PlNXF3x9a/9yP+yRMolUps2b8PKampaPGRh1ZtGgs719KwdrJHxKG3SzCUqWl4cPwinLy0Dw6KWBWFiVkRpMQnqfIenrqMsq0boFhlZwBAyTqV4NSkDu7tD1GrW6aFGz5/tA/9bmxGyxWTYFmq2HvPU/2zjkj87wGeRT7Ktpwxinj2BDEvn6NFmbdLmSxMi8DTsRzOxdzXq+2DEf+ibkknDD66EzU3L0Kb3avx+42LWcoFR0eg5uZF8Nq+DONO70fsS/WJmBev0jDs2G780MgbDlY2evXJkN15+ADRjx/D26ORKs/C3BzN3dwRfCXrL39vhFy9rFYHANp5eGap829kBEp3agfX7p3hM20K/nugPr5N6tbDnpMn8CAmBkIIHA07h5uREWjnYdgTNFLjcpr8wSCeYGFhAYVCAWdnZ/Tp0wd9+/bFrl27AAApKSkYNWoUHBwcULRoUTRp0gTnzp1T1U1ISEDfvn1RqlQpWFpaonLlylizZo1O5w8NDcXPP/+MuXPnYvz48ahUqRKqV6+O2bNnw8/PD2PHjkVkZCTq1auH+vXrY/Xq1VnaWLt2Lfr37w8zMzNVXrFixaBQKNRS0aLqP0E7ODhAoVCgdu3amDZtGhITE3HmzBmd+g8Aq1atQr9+/dCvXz+sWrVKYxlbW1soFApUqlQJs2bNQuXKlVWvszZSUlKQlJSklvJbdFwcAMDRvqRavqN9SdWx7Oo5lrRXy3MsaY/ouLdrhrfs34fw69fhP2Zc5uoaJaekYPKCn9GnY2fY2bwNSrb+vBCv0tNR0qshLOrVwtAZ07Hzl19RsVzhWottpSgBAHj5KEEt/+WjeNUxbXjOGYZnD2IRGXRelRf+4+/4d3MQ+v5vE75MPQ6fC2twaeEf+HdLkKrMvb9Dcajvd9jVaiROjVsCh4+qo9uRX2BibqbWfq0vu+OLp4EY9vwwyrX3wO62Y6BMe5WbSzZYMS8yAuZSmZbElLK0zhJM6yri2ROsuxGOCnbFscW7F/pXdcO0M4H449bbZR6tylTAr8264M/2fTDjo9a4GBeFTw9sQkr629f52zNB+MihLNqXr6JXfwxd9OPHAADHEpn+jSpRQnUsu3qOJdTfN5nreNSshfXTZ+LgwiVYOWUaoh8/hteQz/E48YmqzOKxE1DD1RVlu3SAeRMPtPcbiaUTJqNJPTcJrs54mMhkqgc+5SpxdxqtMIinLCwtLZGWlgYAmDhxIrZv345169YhPDwclSpVQrt27RAfHw8A+Oabb3D9+nX8/fff+OeffxAQEAB7e/v3NZ/F5s2bYWNjg6FDh2Y5Nm7cOKSlpWH79u0AMmbjt23bhmfP3q6/Pn78OG7duoXPP/88t5eMFy9eqL58vPtFQBu3b99GSEgIevbsiZ49eyI4OBj//fdfjvWKFi2qep214e/vD7lcrkrOzs469TM3Nu7dAxv3eqqU9iojKMi8/ZcQIsctwd5XJzIqCqP9Z+P3H+eiqIVFjv1KS0uDzzg/KJVKLJ0+Q+3YtEULkJCYiKBVa3H+j+0YO+Az/N+YUbhy80aO7RqyKn288cXTQFUyMcv4JUsIoV5QJsualw23CX1QpXdb/N3ja6SnpKryK/dqjSr9vHGozwz8Uf8zBA2YBbfxvVGtfwdVmVt/HMa9/SGIv3YHd/edxt4O41CsijNcOnqpnePmxkPY6vYZdjT7Con/3kf7P2bC1MKwf3HKyfbbV1FhwzxVShNKAIAs02pzAQF9YxGlEKhdQoGv3VugdkkF+ldzQ98qdbHuf29/+epWoQbaOldC9eKl4F2uMja17YX/kuIRFJlxM+fBiH9xKuoevvdoo19nDNDGA/th07KJKr39N0q9nL7/RgFAB6/G+KRVa9SuVBltGnrgr/mLAADr/nq7lHDxH5sRevUq9sxdgLC1G/HzqDH4au4cBJ3VfXKIKCfcJ57UnD17Fps2bULr1q3x/PlzBAQEYO3atejQIePDe+XKlQgMDMSqVaswYcIEREREwM3NDQ0aZKyndXFx0fmcN2/eRMWKFTUuJSldujTkcjlu3szYRaFPnz4YN24ctm3bhs8+y7gpaPXq1fD09ESNGjXU6vbu3RumpqZqeZcvX0aFChVUf5ctWxZARhAvhIC7uztat26tU/9Xr16NDh06oPjrtZHt27fH6tWrMWvWLI3lX716hd9//x1XrlzBl19+qbGMJlOmTMHYsWNVfyclJeV5IN+lVSt41Kmr+jslNSPQi46Ng1MpB1V+zON4OJYsmaX+Gwp79Vl3AIiJf6yanQ+7dhUxjx/D/f96qI6np6fjxPlzWLLpd6RcvKoay7S0NPQcOxp3HtzHkTXr1Wbhb0dEYMmm33F191+o+fr+ibrVquNk2Hn8umkjls2YmduXosDd2XMKj868Xdf/JhC2UpTAi+i3s4WWDsWzzM5r4jauNxp83R+72/jh8RX1nTu85g5H+Jzf8e/WwwCAx1f/g215Bdyn+OJ/6//W2N6L6Md4ei8axSqXVctPTXqO1KTnSLx1H9Gh1zAk4QAqdG+mNqtvbNqVq4z6pUqr/k5JTwcAxLx8Bsd3lqrEvXwB+6Kab1jVloOlDaoUU58YqVzMHn/dy/5LqaOVDcpay/FfUsZky6mou7j7NAFVNs5XKzfo6A54ODpjZ4e+evWxIHVp2hwe76wtT0l7/W/U48dwsi+lyo9JSMgy0/4uRcmSWWbqc6pjbWmJ2hUr4d/ICADAy+RkfB3wK3b+OA8dGzcFANSpXBkXb97AvE0b0KZh4VrS9z5v7gHTpz7ljEE8Yd++fbCxscGrV6+QlpaGrl274pdffsHt27eRlpaGxo3frk82MzNDw4YN8c8//wAAvvzyS3zyyScIDw+Ht7c3unXrBi8vr+xOlSvvzoYUK1YMPXr0wOrVq/HZZ5/h6dOn2L59OxYuXJil3oIFC9CmjfrMU+ag9+TJk7C2tsaFCxcwadIkrF27VqeZ+PT0dKxbtw6LFi1S5fXr1w9jxozBd999p/YlYtKkSZg2bRpSUlJgbm6OCRMmaPz1ITsWFhaw0GKWWkq21jawtX4blAghoLAvhcCQ03B7/aUpNTUVx8+fxY9jJ2Tbjme9eggMPo0xA97uxnDo9Cl4uWX8xNza0xNXdqvfGPvZ1Mmo5loBkwZ/kSWA//fePRxduwEli6nfVPYiOeOmYpNM6ylNTU2hfD1baqzSnr1A4rMXannPo+Lg3PYjxF3M2OLTxKwIyjSvh+BJAe9ty218HzSYNgB72o1FTNj/shw3syoKoVR/vUS68r3rVIuWsIONswOeR2W/ZAEAIJMZ/Uy8jZkFbMzevheFEHCwtMbxh3dRu6QCAJCano6QRxGY5t5Sr3M1dCyL20nqr+l/ifEoay3PpgYQn/wCD18kqb5QjKztiT5V6qmVabnrN8xs2BptnTVvFmAsbK2tYWv99ouSEAKKkiURePYM3Kpm3IidmpaG4xfC8OPwUdm241mrDgLPnsGY3m+/0Bw6Ewqv2nWzrZOSmop/7t5B09ebH6Slv0Laq1cwyfS4UVNTUyiVxv3vj65MTDKSPvUpZwziCS1btkRAQADMzMxQunRpVRAbFZWxD/H7fmLs0KED7t27h7/++gtBQUFo3bo1hg8fjnnz5ml9/ipVquDUqVNITU3NMhv/8OFDJCUlqe1KM2jQILRu3Rr//vsvjh8/DiBjd5fM3qw/fx9XV1cUK1YMVapUQXJyMrp3746rV69qHSwfPHgQDx48yHL+9PR0HDp0SPULBgBMmDABAwcOhJWVFZycnIxypkEmk8Gv/wD8sGIZKpcvj8rlXfDDimWwKmqJPp06qcr1nzwBZRwc4T824wbp0b4D0Kx/X/z42wp0bdUau48cRlBoCE5tyNj5wdbaBrUqq6/Vtba0QslixVX5r169wqd+oxD+zzXsW7oc6enpiI7NmN0vIZfD3Nwc1VwroFK58hg6YzrmTZiEksWKY9fhQAQGn8a+pctR2Fxa+AcafN0fif/ex5N/I9Hg6/549SIFNzcFqsq0WTcNzx/EIeTrZQAyltA0+n4IDvX5Dk/vRsHKMWOmMe3ZS6Q9z/gSdGfvaTSYOgBPIx4h/todlHKrgnpje+H66r8AAGbWlmg443Pc3n4Mz6Mew87FCY1+GIrkuET8t/MEgIwbbyv3ao2IQ2fxMvYJbMrYo/6kfkh/mYJ7+4Pz82XKczKZDENqfITFl4NRwa44XO1KYPHlYFiamqFHxbe/EI44sRdOVraY2qAFgIxA/+aTjHtJ0tLTEfXiGa4+fgRrMzO42mWMyxc1PkLnvzZg0aVgdHGthguxUdhw8yLmebUHADxPS8XcCyfRyaUqHCxtEPksEf5hx1HCwgofv17//mbHmszKWMtR3rZYHr4y+U8mk8GvVx/8sG41Kjs7o7JzOfywbjWsihZFH+/2qnL9v5uOMqVKwf+rkQCA0b16o9mXQ/Dj+rXo2qw5dp84jqBzZ3Bq+dt7nMYvXoDOTZqhnEKBmPh4zFqzCknPn2PAxxkbKthZ26C5mzsmLFkESwsLlHdywvHwMKz/+y/MHzVG1U704zhEP36MW/cjAQBXbt+CrZUVyjkqUEKe/ZczY8KZ+PzBIJ5gbW2tMditVKkSzM3NcerUKfTp0wdAxkzo+fPn1fYyL1WqFAYOHIiBAweiadOmmDBhgk5BvI+PDxYvXozly5dj5MiRasfmzZsHMzMzfPLJJ6q8li1bokKFCli7di2OHj2Knj17wtbWVserzsrX1xczZ87E0qVLMWbMmJwrIOOGVh8fH0ydOlUtf86cOVi1apVaEG9vb5/jlwpjMHHQELxMTsZXM79DQlIiPOrUxaHfVqvN2EdERcHknakUL7f62DJvAaYtXoBvFi9CxXLO2PrzAnjUzX6WK7P7j6Kx52jG8o56PbqqHTu6dgNaNPSAmZkZ9i9bickL5qHz8GF49uIFKpUrh3X+P+Lj5i30u3ADFP7TRhSxtEDzpeNgUdwWj85cx25vP6S9M2NvW84RQvl2jXztr3rA1MIcHbbPVmvr7IxVOPtdxk3jJ0YugMf3Q9B86XhYORTH84dxuLp8N87NzLhvRJmejpK1K6Jq/w6wKGaD51GP8eBoOA72mq46d3pyKpya1kVdv56wKG6LF4/i8fDEJfzpNQwvY5/k8SuT/0bUboTk9FeYHHIQianJcLMvjS3tfNRm7B88T1K7YS/6xVO02fP2Rv2Aq2cQcPUMPBXlVEtc3EqVxurWPfDD+eOYf+kUytkUw/cN2+CTihlb9JrIZPhfQiy23b6KpNRkOFjaoLFTeSxv0U3t3B+Sib4D8DIlBV/NnYOEp0/hUbMWDi36VW3GPiI6Wm0svOrUxZbvf8C05UvxzYoAVCxTFltnzYFHrbdLde7HxKD39K8R9+QJShUvjkY1ayN01VqUd3q7ZeqWWT9gytIl6DtjGuKTklBeocDsoV9hWI+3z1hYtmM7vlv19sFozYYNBgCsmfYtBnbqkievCRVOMqHtHVBUKA0cOBBPnjzJdpcUPz8/bNu2DatWrUK5cuXw008/Yc+ePbh9+zaKFy+O6dOnw93dHTVr1kRKSgomT56MmJiYbHd4adGiBerVq5dl+Yufnx+WLVuG2bNno1u3bkhLS8Pvv/8Of39/LFy4MEtwP2vWLMyfPx8JCQk4deqU2pIfIONb/Jo1a9C+fXu1fFtbW1hbW+PYsWNo2bIlEhISUKxYMdXxX375BbNmzcKdO3dgZWWFGTNmYPPmzaqtIN+wsbGBXC5HmTJlsGfPniznCQwMRMeOHfHgwQOUKlUKLi4u8PPzy/FBTtm9PpokJSVBLpcj8Wy42rpwKhhLagws6C7Qa//3WfOC7gK9w3HopzkXojyX9PwZ5K2bIzExEXbvbMsr6Tlefy7N2nMWRa1z/7mU/PwZpnVpmKd9LQy46ojea86cOfjkk0/g6+uL+vXr49atWzh48KDqJk5zc3NMmTIFderUQbNmzWBqaqp6oJIuFi5ciKVLl2LLli2oXbs23N3dcfz4cezatStLAA9kfPlITExE1apVswTwb3z22WdwcnJSS7/88st7+/H5558jLS1NtTc9kHHjrZubm1oaPHgw1q9fD2tra403wrZs2RK2trbYsGGDjq8EERGRcXuzJl6flBtLly6Fq6srihYtCnd3d43PlXkjKioKffr0QdWqVWFiYmLwT0vXhMtpPnBr16597/GiRYti8eLFWLx4scbj06ZNw7Rp0yTpy+eff671NpFly5ZF+usdITTJ6QemFi1aaCxjbW2t2j4TyHhi64wZM7JtZ9w4zXuaFylSBI/f2eng7t277+0PERER5d7WrVvh5+eHpUuXonHjxli+fDk6dOiA69evo5yG54SkpKSgVKlSmDp1KhYsWFAAPdYfZ+Ip3y1duhQ2Nja4cuVKzoU/EBs3boSNjc17Zw2IiIiMwZsbW/VJALI84DAlJSXbc86fPx+DBg3C4MGDUb16dSxcuBDOzs4ICNC8W5eLiwsWLVqE/v37Q26kNxRzJp7y1caNG/HyZcYOGJq+GX+ounTpAg+PjD2E312jT0REZGzePHlVn/pA1m2hv/32W42/jqempiIsLAyTJ09Wy/f29kZwcOHaDetdDOIpX5UpU6agu2CQbG1tJdlhh4iIqLCIjIxUu7E1u+2f4+LikJ6eDkdHR7V8R0dHREdH52kfCxKDeCIiIiKSjp77xON1XTs7O512p3nfc20KIwbxRERERCSZ/H5iq729PUxNTbPMusfExGSZnS9MeGMrERERERktc3NzuLu7IzAwUC0/MDAQXl5eBdSrvMeZeCIiIiKSjMxEBpkeN7bmpu7YsWPh6+uLBg0awNPTEytWrEBERASGDRsGAJgyZQoePHiA9evXq+pcvHgRAPDs2TPExsbi4sWLMDc3R40aNXLd9/zEIJ6IiIiIJGMiA0z0WIuem/i/V69eePz4MWbOnImoqCjUqlUL+/fvR/ny5QFkPNwpIiJCrY6bm5vq/4eFhWHTpk0oX7680TzbhUE8EREREUlGJgNkeizYzm38/9VXX+Grr77SeEzTwy1zejCkoeOaeCIiIiKiAhYTEwMTHe7q5Uw8EREREUnGRCbTczlN4d0WMie6bInJIJ6IiIiIJFMQN7YWFros8WEQT0RERESUx9atW/fe44mJiTq1xyCeiIiIiCRjYiKDiR6z6frUNWRjxox573Fdb7RlEE9EREREkpHJcr/DzJv6hVF8fPx7j8fGxur0hFnuTkNEREREVMB0nYlnEE9EREREknmznEafVFjt3r0bTZo0QcmSJVGyZEk0adIEO3fuVB3XZXcaBvFEREREJJk3W0zqkwqj5cuXo1evXqhVqxYWLVqEhQsXonbt2vDx8UFAQAAsLS0xYMAArdvjmngiIiIiojw2b948LFq0CEOHDlXl+fr6ol69epg7dy6+/PJLrF69Wuv2OBNPRERERJJ5s0+8PqkwioyMROvWrbPkt27dGpGRkTq3xyCeiIiIiCQjkwEmeqRCupoGrq6u2LNnT5b8vXv3okKFCjq3x+U0RERERCQZUxMZTPWYTdenriH75ptvMHDgQJw5cwZeXl6QyWQ4ffo0duzYgTVr1ujcHoN4IiIiIqI81qdPHzg7O2Pu3LlYsmQJhBCoXr06goKC0Lx5c53bYxBPRERERJIxlclgqseaGH3qGrqmTZuiadOmkrTFIJ6IiIiIJMMgPn8wiCciIiIiymOmpqZaP5VVqVTmWIZBPBERERFJxkSm31NXC+vDnt59MuuePXtw6NAhLFiwAGZmZrlqj0E8EREREUmGy2k069KlCwBg9+7d2Lx5M8qUKYNdu3Zhw4YNuWqP+8QTEREREeWD7du3o3fv3li5ciVCQ0MRHh6O0aNH56otzsQTGbvKFQA7u4LuxQdvRPqpgu4CEVH2kpLy7VScidds27ZtGDhwINasWYNevXoBAIKCguDl5YWSJUti+vTpOrXHmXgiIiIikozJ6yA+t6mwrokfOHAg1q9frwrgAcDJyQmHDx9GQECAzu1xJp6IiIiIKI9t3LgR3bp1y5JfoUIFHDx4UOf2GMQTERERkWRMTWQw1WN3Gn3qGrJu3brhypUr+PHHHxEeHg4TExO4u7tj/PjxqFOnjs7tcTkNEREREUlGn6U0+q6nN2RhYWHw9PTEo0eP4O3tjdu3b8PKygqNGzdGcHCwzu0xiCciIiIiyTCI12zq1KkYOHAgAgMDMXr0aBQpUgQBAQGYPXs2pkyZonN7DOKJiIiIiPJYSEgIhgwZAgBqT27t2LEjzp07p3N7XBNPRERERJIxMdHzia2FdE28EALW1tZZ8mNiYlCqVCmd2+NMPBERERFJxlSm75Kagr6CvFGxYkVcv35d9bcQAqdOncKIESM07lqTEwbxRERERER5rFevXggKClL9nZycjBYtWqBu3brw9/fXuT0upyEiIiIiyZjoeXNqYX3Y0+TJk1X/v1y5crh27RpcXV1hbm6eq/YYxBMRERGRZPTdYaaw7k7zriJFiqBq1ar6tSFRX4iIiIiIKBsVKlRQ25Umszt37ujUHoN4IiIiIpKMqUlG0qd+YeTn56f2d1paGq5cuYK//voLY8eO1bk9BvFEREREJBkup9Fs1KhRGvOXLVuWq33iC+l3HSIiIiIiw+ft7Y1t27bpXI8z8UREREQkGc7E62bbtm0oXry4zvUYxBMRERGRZExkej6xtZAG8fXr11e7sVUIgejoaMTFxSEgIEDn9hjEExEREZFkuE+8ZpmfympiYgIHBwe0aNECVapU0bk9BvFERERERHls+vTpkrbHIJ6IiIiIJMM18fmDQTwRERERSYZBfP7gFpNEREREREaGM/FEREREJBlTExlM9didRp+6HxLOxBMRERGRZN4sp9EnFUZdunTBrl27kJ6eLkl7DOKJiIiIiPJB7969UbZsWUycOBE3btzQqy0G8UREREQkGc7Ea7Znzx7ExMRg8uTJ+Pnnn1G7dm00adIEq1evxosXL3Ruj0E8EREREUnGxESmdyqsbG1t0bZtW5iYmODBgwfw8fHB8uXL4eTkhCFDhiAkJETrthjEExERERHls1KlSmHEiBE4c+YMzp8/D1tbWzRt2lTr+tydhoiIiIgkY6LnkhiTQrqcRpP09HQcOHAAGzduxL59++Dt7a11Xc7EExEREZFkuCZeOyNHjkTp0qUxcuRI1KhRA9evX8f+/fu1rs+ZeCIiIiKSDJ/YqtmFCxewfft2bN++HWZmZkhISMDmzZvRqlWrXLXHmXgi0okQAjO+m4HSZcvA0toKLVq1xLVr13Kst337dtSoVRMWlkVRo1ZN7Ny5M0uZpQFL4VqxAopaWcL9owY4efKkzudOSUnByFEjYe9QCta2NujStSvu37+v30UbKI6F4eBYGA6OBRmqBg0aYP/+/Rg5ciSioqLw+++/5zqABwAIIspR8+bNxejRo7M9vmbNGiGXy/OtP0IIkZiYKACIxIQnQqQr8y3N8fcXtra2Yvu2P8WVS5dFr569hJOTk0h6kphtneBTp4Wpqan4YfZs8c+16+KH2bNFkSJFRGhwiKrMlk2bhZmZmVi5fIW4fvWaGD1qlLC2thb37tzV6dzDhg4VZcqUEYEHD4nw82GiZcuWom7duuJValq+vk4cC44Fx4JjYUhjkZjwJOMzIzExzz+XYuITRPKr9FynmPiEPO9rQbhw4YLG/JcvX4q1a9fq3B6DeCItPH78WCQlJQkhhChfvrxYsGCB2vEXL16IR48e5WufCiKIV75KFwqFQszx91flJb94KeRyuVi2NCDbej3/r6do3669Wl4773bCp5eP6u+GDRuKYUOHqpWpVq2amDxpktbnfhKfIMzMzMSWTZtVZR5E3hcmJibiwP6/Czy44FhwLDgWHIuCGov8DOIfJzwRaenKXKfHuezrr7/+KlxcXISFhYWoX7++OHHixHvLHzt2TNSvX19YWFgIV1dXERAQoM/l5yglJUVs2rRJ/PDDD2LGjBmqNH78eCGTyVR/a4vLaYi0UKJECdja2mZ73NLSEg4ODvnYo4Jx584dREdHw7vt27vnLSws0LxZcwS/Z2/bkNAQeHu3Vctr184bwSHBAIDU1FSEhYWptQsA3m3bqtrV5txhYWFIS0tTu7u/dOnSqFWrlupchQXHwnBwLAwHx+LDtXXrVvj5+WHq1Km4cOECmjZtig4dOiAiIkJj+Tt37uDjjz9G06ZNceHCBXz99dcYNWoUtm/fnmd97NevH4YOHYotW7Zg9+7dqnTw4EHIZDLs3r0bu3bt0ro9BvFEWmjRogX8/PzQokUL3Lt3D2PGjIFMJoPs9c03a9euRbFixQAAN27cgEwmw//+9z+1NubPnw8XFxcIIQAA169fx8cffwwbGxs4OjrC19cXcXFx2fYhJSUFSUlJaim/RUdHAwAcHR3V8h0dHVTHsqvn6JCpjoOjqk5cXBzS09M1tPu2jDbnjo6Ohrm5OYoXL57tuQoLjoXh4FgYDo6FYZBqd5rMn3kpKSnZnnP+/PkYNGgQBg8ejOrVq2PhwoVwdnZGQECAxvLLli1DuXLlsHDhQlSvXh2DBw/G559/jnnz5uXJawIAQUFBOHnyJC5duoTw8HBVOnz4MIQQCA8Px4ULF7Ruj0E8kQ527NiBsmXLYubMmYiKikJUVFSWMlWrVoW7uzs2btyolr9p0yb06dMHMpkMUVFRaN68OerVq4fz58/jwIEDePToEXr27Jntuf39/SGXy1XJ2dlZ8uvLbOPGjbCxs1WltLQ0AFB9eXlDCJElLzNt6khVJjNtyhg6joXh4FgYDo6FYZJB6J0AwNnZWe1zz9/fX+P5VL+UZNpj3dvbG8HBmn/hCAkJyVK+Xbt2OH/+vOq/I6klJiaibNmyWfJzO/7cYpJIByVKlICpqSlsbW2hUCiyLde3b18sWbIE33//PQDg5s2bCAsLw/r16wEAAQEBqF+/Pn744QdVndWrV8PZ2Rk3b95ElSpVsrQ5ZcoUjB07VvV3UlJSngfyXbp0gYeHh+rvN7Mg0dHRcHJyUuXHxMRmmX16l0KhQPQj9VmmmNgYVR17e3uYmppmmYmKiXlb5s3r/b5zKxQKpKamIiEhQW2mKyY2Bl5entpfuAHiWBgOjoXh4FgUbpGRkbCzs1P9bWFhobGcNr+UZBYdHa2x/KtXrxAXF6c2hlJZs2aNxqW5crkca9as0bk9zsQT5QEfHx/cu3cPoaGhADJmi+rVq4caNWoAyFgXefToUdjY2KhStWrVAAC3b9/W2KaFhQXs7OzUUl6ztbVFpUqVVKlGjRpQKBQIDApUlUlNTcXxE8fh5Zn9B5BnI08EBgap5R06FAgvTy8AgLm5Odzd3dXaBYDAoCBVu66urjme293dHWZmZggMfFsmKioKV69eVZ3LWHEsDAfHwnBwLAyUUql/ArJ85mUXxL+h668gmsprypdK//79YW5uniX/6dOn+Pbbb3VvUP97bYkKv3e3mNS0O42mLSbbtGkjRo4cKYQQonLlymLevHmqY+3btxc9evQQ//77b5b07NkzrfpUkFtMyuVysePP7eLKpcuit0/vLFuo+fbzVe3YINKV4vTJU8LU1FTM8fcX/1y7Lub4+2e7fduqlb+J61evCb/Ro4W1tbW4+98dnc49bOhQUbZsWRF0KFCEnw8TrVq1KtRb6XEsDCNxLAwncSw0p/zcnSYxLk6I1NRcp8S4OJ36mpKSIkxNTcWOHTvU8keNGiWaNWumsU7Tpk3FqFGj1PJ27NghihQpIlJTU3P3AuRg7969okqVKsLc3FzIZLJsk7YYxBNp4d0gPnNALoTmIH7NmjXCwcFBBAcHCxMTE3H//n3Vsa+//lpUrVpVpKWl5bpPBRXEK1+li2+nTxcKhUJYWFiIZs2aiSuXLquVad68uRjQf4Ba3ratf4iqVasKMzMzUa1aNbF9259Z2v51yRJRvnx5YW5uLurXry+OHz2m87lfPn8hRgwfLkqUKCEsLS1Fp46dRMTdewUeWHAsOBYcC45FQY5FYQ7ihRCiYcOG4ssvv1TLq169upg8ebLG8hMnThTVq1dXyxs2bJho1KiR7heupSpVqojhw4eLHTt2iN27d6vS+vXrhUwmU/2tLZkQr387IKJstWjRAvXq1cPChQvh7e0NS0tLLF26FBYWFrC3t8fatWvh5+eHJ0+eqOokJSXB0dERVatWhb29PYKC3v5U+/DhQ9SrVw/NmzfHhAkTYG9vj1u3bmHLli1YuXIlTE1Nc+xTUlIS5HI5EhOe5MvSGiIiMl5JSUmQFy+GxMTEPPvMUH0uxcTodY6kpCTIHRx06uvWrVvh6+uLZcuWwdPTEytWrMDKlStx7do1lC9fHlOmTMGDBw9U96bduXMHtWrVwtChQzFkyBCEhIRg2LBh2Lx5Mz755JNc9/19zM3NERkZmWUtfkxMDBQKBZSvlxFpi2viiXQ0c+ZM3L17FxUrVkSpUqWyLWdnZ4fOnTvj0qVL6Nu3r9qx0qVL4/Tp00hPT0e7du1Qq1YtjB49GnK5HCYmfFsSEZERUwr9k4569eqFhQsXYubMmahXrx5OnDiB/fv3o3z58gAy7j14d894V1dX7N+/H8eOHUO9evXw/fffY/HixXkWwANA2bJlNa7rNzU1hYuLi87tcSaeyEhxJp6IiLSVrzPxD6P0n4kv7ZSnfS0MuMUkEREREVEe++6777I9JoTAjBkzdGqPQTwRERERSeedbSJzXb8Q2r17t9rfz58/x71792BmZoZKlSoxiCciIiKiApSuzEj61C+EwsPDs+TFx8ejX79++L//+z+d2+MddEREREREBaBEiRLw9/fHrFmzdK7LmXgiIiIikg6X0+jE1NQU9+7dw6tXr1CkiPahOYN4IiIiIpKO0DOIFx9WEF+rVi28evVK53oM4omIiIiI8lirVq2Q3c7uQggcO3YMT548Qffu3XH06NEc22MQT0RERETSUQo9l9MUzkcY1atXL8cyZmZmcHNz06o9BvFEREREJB2uiddo/vz5OZaxtrbWqhzA3WmIiIiIiIwOZ+KJiIiISDqcideoQoUK2a6Jz+zOnTs5lmEQT0RERETSUQr91rUX0jXxn3/+OX7++Wc0btwYjRo1AgCEhITg9OnTGD9+POzs7HRqj0E8EREREUmHM/EaXbt2DVOnTsX48ePV8ufOnYuLFy9i48aNOrXHNfFERERERHls79696Nq1a5b87t27Y8+ePTq3xyCeiIiIiKTzZiZen1QI2dnZ4dChQ1nyDxw4oPNSGoDLaYiIiIhISlxOo9HXX3+NMWPG4PTp02pr4v/8808sWLBA5/YYxBMRERER5bERI0agWrVqWLhwIRYvXgwhBKpXr44DBw6gdevWOrfHIJ6IiIiIpMOZ+Gy1adMGbdq0kaQtBvFEREREJB2hZxAvCm8QDwDJycmIjY2FMtNrVL58eZ3aYRBPRERERJTH/ve//+Hzzz9HaGioWr5MJoMQIktQnxMG8UREREQkHaXQczlN4XzY06BBg2Bubo79+/fDyckJMplMr/YYxBMRERGRdLgmXqNLly7h3LlzqF69uiTtcZ94IiIiIqI8VrVqVcTGxkrWHoN4IiIiIpJOutA/FUI//fQTJk6ciMDAQMTFxSExMVEt6YrLaYiIiIhIOlxOo5G3tzcAoH379hAi6xcV3thKRERERAWHQbxGR48elbQ9BvFERERERHmsWbNmGvOFEIiIiNC5PQbxRERERCQdzsRn6+HDh7h37x5SU1NVefHx8fjkk09w5MgRyGQyNG/eXKu2GMQTERERkXQYxGs0e/ZsfPvttxrXw8tkMrRu3Vqnhz4xiCcyci/S01EkPb2gu0FkMKz+u1fQXaB3xDiXKeguEICnySkF3YUP3q+//orVq1ejc+fOMDU1VeXHxsaicuXKSEhI0OkBUAziiYiIiEg6Qs+ZeFE4Z+JjYmLw8ccfo3jx4mr5ycnJkMlkkMvlOrXHIJ6IiIiIpMPlNBr1798flpaWWfItLS0xYMAAndtjEE9ERERElMdWr16tMd/W1jbbY+/DIJ6IiIiIpMOZeI1atmz53uNHjx7FkydP0L17d632lGcQT0RERETSUQo9g/isu7cUBm5ubjmWMTMz06ocwCCeiIiIiCjPzZ8/P8cy1tbWWpUDGMQTERERkZSUQr/Z9EI6E//GrVu3cP36dchkMlSrVg2VK1fOVTsM4omIiIhIOlwTr1FiYiIGDhyIPXv2oEiRjBA8LS0NnTt3xrp161CsWDGd2jPJgz4SERER0YfqTRCvTyqERo8ejVu3buH06dNITk5GcnIyQkJCcPv2bYwaNUrn9jgTT0RERESUx/bs2YO9e/eiUaNGqjwPDw+sWLECnTp10rk9BvFEREREJBmRroRIz/1suj51DVlqaipsbGyy5Nva2iIlJUXn9richoiIiIikw+U0GjVv3hyTJ0/G48ePVXnx8fGYOHEimjdvrnN7nIknIiIiIspjixcvRseOHVGuXDlUqVIFMpkMN27cQJkyZbB//36d22MQT0RERETSEXrOpovCORNfsWJFXLt2DXv27MH169chhED16tXRrVs3mJqa6tweg3giIiIikg73ic+Wqakpunfvju7du+vdFoN4IiIiIqI8tm7duvceHzBggE7tMYgnIiIiIskIpRJCj+U0+tQ1ZGPGjFH7Oy0tDS9evECRIkVgZWXFIJ6IiIiIClC6MiPpU78Qio+Pz5J39+5dDB06FOPGjdO5PW4xSURERERUAFxcXDBnzhz4+fnpXJcz8UREREQkHaXQb3eaQnxjqyYymQyRkZE612MQT0RERESS4Zp4zXbv3q32txACUVFRWLJkCZo0aaJzewziiYiIiEg6+j51tZAG8T169FD7WyaTwcHBAa1bt8a8efN0bo9BPBERERFRHktPT5e0Pd7YSkRERETSefOwJ31SHklISICvry/kcjnkcjl8fX3x5MmT99bZsWMH2rVrB3t7e8hkMly8eDHP+qcLBvFEREREJBmhVEKk65HycDlNnz59cPHiRRw4cAAHDhzAxYsX4evr+946z58/R+PGjTFnzpw861ducDkNERERERV6//zzDw4cOIDQ0FB4eHgAAFauXAlPT0/cuHEDVatW1VjvTZB/9+7d/OqqVhjEExEREZF0JLqxNSkpSS3bwsICFhYWuW42JCQEcrlcFcADQKNGjSCXyxEcHJxtEG+ouJyGiIiIiKTzJojXJwFwdnZWrV2Xy+Xw9/fXq1vR0dFwcHDIku/g4IDo6Gi92i4InIknIiIiIoMTGRkJOzs71d/ZzcLPmDED33333XvbOnfuHICMbR0zE0JozDd0DOKJiIiISDJSPezJzs5OLYjPzogRI+Dj4/PeMi4uLrh8+TIePXqU5VhsbCwcHR1z19kCxCCeiIiIiKSj7zaROta1t7eHvb19juU8PT2RmJiIs2fPomHDhgCAM2fOIDExEV5eXrnqakHimngi0tqKZQGoUaUyStjaoLFHQ5w+deq95U+eOIHGHg1RwtYGNatWwW8rlmcps2vHDrjXqYPiNtZwr1MHe3btUjtevXIlWJubZUljRo1Uldm9cye6dPwY5ZwUsDY3wyUD2cM3LxnqWAghMHvmTFQsXw4l7WzRvk1rXL92TZJrNmRCCMz4ZRFKN/WCZd2aaOHbB9f+vZljve0HD6BGx3awqF0dNTq2w87AQ9mW9V8eAFm1SvD7YZZa/o5DB9Fu0EDYN/oIsmqVcPGf62rH4588wcjvv0PV9m1hVa8WyrVsilGzZiLx6dPcXayBW7NiORrUqIZyJYqhbWMvhJ5+/3sj+ORJtG3shXIliuGjmtWx7reVasf/d/06Pu/jgwbVq8LR2hLLl/ySpY03xzKnyWP8VGX+2r0Lvbp0RvVyZeFobYmrly5Jcr2kverVq6N9+/YYMmQIQkNDERoaiiFDhqBTp05qN7VWq1YNO3fuVP0dHx+Pixcv4vr1jPfWjRs3cPHixQJfR88gnoi08ucff2DiuHGYOHkygs+eg1eTJujeuRMiIyI0lr975w56dOkMryZNEHz2HCZMmoTxY8Zg144dqjJnQkPQv28f+PTti9DzYfDp2xe+fXrj3NkzqjIngkNwOyJSlfb+fQAA0P2TT1Vlnj9/Dk9PL8ycPTuPrt6wGPJYzJ83D78sWoj5CxfhRHAIHB0V6PxxBzwtpAHjGz/9tgLz167Gkm++xbltO6EoVQptPx+Ip8+eZVsn5EI4eo0dDd8u3XBp9z74dumGnmNG4cyli1nKnrtyGSv+2Io6VatlOfb85Qs0ru+OOePGazzPw5gYPIyJwbyJk3Flz19Y6/8TDpw8gUFTJ+f6eg3Vrj+34ZuJE+A3cRKCgkPh4eWF3t274X6k5vfGvbt30adHN3h4eSEoOBSjJ0zE1PHjsG/X2wDu5csXKO/iiqkzv4eDo0JjOwdOnMKV23dU6Y+9fwEAOnfvoSrz4vkLNPT0xNSZ30t4xQYqXal/yiMbN25E7dq14e3tDW9vb9SpUwcbNmxQK3Pjxg0kJiaq/t6zZw/c3NzQsWNHAICPjw/c3NywbNmyPOunNmRCiLx7LBYR5ZmkpCTI5XJExT3Was2gvpo39kI9NzcsWvKrKq9+7dro1KWLxuB52pQp2L9vH8KvXFHljRr+Fa5cvoyjJzNmxvr36YOkp0nYtXefqkzXTh1RrFhxrPv9d439mDBuLA7s34/L1//JciPSvbt3UaNKZQSfPYe69erpc7kGzVDHQgiBiuXLYfjIURg3YQIAICUlBa5ly+D7H37AoCFfSHL9ObH6716+nOcNIQRKN/OCX/+BmDRkKAAgJTUFjo0b4cdxEzHUp7fGer3GjELSs2f4e+VqVV77wZ+huJ0cm+cvVOU9e/4c9Xt0xdJvv8OsgF9Rr3oNLPx6Wpb27t6/D9c2LXBh5x7Uq17jvX3edmA/+k0Yh+cXrqBIkbxdWRvjXCZP239X++ZNUaeeG35atFiV16R+PbTv1BnTNATP30+bioP7/8Kp8IuqvAmjRuLalcvYf/R4lvINqlfFkOEjMHTEyCzH3jVtwngEHvgboZevZvl3KuLePXxUoxoOB4eiVt26Ol5h7j1NSkIlJ0ckJibm2WfGm8+l2J9XwM7SMvftvHyJUuO+yNO+FgaciSeiHKWmpuJCeDhat2mrlt+qbRucCQ3RWOfsmVC0attGLa9NW2+Eh4UhLS0NAHDmTChat8lcpm22baampmLrpk3oP2CgUe4kIAVDHou7d+7gUXS0WjsWFhZo0rQZQkM0t1MY3LkfiejYWHg3bqLKszC3QPOPGiL4Qni29UIuXlCrAwDtmjRF8EX1OsNnzkDHFi3QxquxZH1OfPoUdjY2eR7A56fU1FRcvnABLVq3Vstv3qo1zp8J1Vjn/NkzaN5KvXzLNm1wKTxc9d7ITT+2b92C3v0HfLD/Tkm1xSS9H4N4IiORkpKCpKQktZRfHsfFIT09HQ6O6vvrOjo44lF01jv9AeBR9CM4Oqjf7e/g6IBXr14hLi7udZloOGQu4+CIR9msM9y7ezeePHmCfv375/ZSjJ4hj8WjRxllM+/y4ODooHFHiMIiOjbjNXQsqX5jnWNJe0THxWZfLy5Oc53Yt3W2/LUP4devwX/sBMn6+zghAd8H/IqhvTT/QmCs4h9nvDdKZdoHvJSjI2Ky+e8v5tEjlMr032sph4z3Rvzr94au/t67B4lPnsCnX79c1SfSFoN4IiPh7++v9tALZ2fnfO9D5lmlHPfW1VA+czu6tLlu7Rp4t2sPp9Kldel2oWTQY6Fr34zMxr27YVO/jiqlvcqYsc3y+iHn635fnciohxj9w/f4fe7PKKrHUyrflfTsKToOG4waFSvh2+HvXxJitHT870+GnN8buti0bh1aebeDwukD/neKM/H5ovD8jkZUyE2ZMgVjx45V/Z2UlJRvgXxJe3uYmppmmemNiY3JMiP8hqPCUTUz+0ZsTCyKFCmCkiVLvi6jyFomNgYOGvbrjbh3D0cPH8bmP7bpcylGz5DHwvH1TX+PoqPh5OSkdi5NT0k0Vl1atoZHnbdrmVNSUwEA0XGxcHrnOmMeP84y0/4uhX3WmfqYx4/h+HqrvLBr1xDz+DHcP+mmOp6eno4T589hycYNSLl8Haamplr3++mzZ2g/+HPYWFlj55IAmJmZaV3XGJQomfHeiM006x4XE5Nldv4NB0dHxGT67z4uNuO9Ufz1e0MXkRH3cOLoEazevEXnuoWK0DMQFwzitcGZeCIjYWFhoXrwhbYPwJCKubk53OrXx5HDQWr5R4MOw6ORp8Y6DT0a4WjQYbW8w0GBqO/urgoePDwa4cjhzGWCNLa5Yd06lHJwQPuPP9bnUoyeIY+Fi6srHBUKtXZSU1Nx6uQJNPLU3DdjZGtjg0rlXVSpRqXKUJQqhcDg06oyqampOH7uLLzc6mfbjmc9N7U6AHDo9Cl41cuo07qRJ67s2Y+LO/eqUoNatdG3cxdc3LlXpwA+6dlTeA8aCHMzM+xZulyymX1DYm5ujjpubjh+5Iha/omjR9DAo5HGOg0aeuDEUfXyxw4fRt369XP1JWfLhg2wL+WAtu076FyXSFeciScirYwc7YfBnw2Em7s7PDwaYfWq3xAZGYHBX2TsODJ96lQ8fPgAv61ZCwAY/MUXWB6wFJMmjMdnnw/CmTOhWLdmDdZueLvTyVcjR8C7VSv8PHcuOnXujH179+Lo4cMIOnZM7dxKpRIb1q9D336+Gm/Ei4+PR2REBKKiogAA/97M2J/bUaGAQqF5SzhjZqhjIZPJMHzkKMz7cQ4qVaqEipUqYe6PP8LSygo9s9mhpTCQyWTw6z8QPywPQOXyLqhc3gU/LA+AVVFL9OnUWVWu/6TxKOPgCP9xGevbR/sORDPf3vhx5XJ0bd0Guw8HISgkGKc2Zszi2trYoFaVKmrnsra0RMlixdXy4588QUTUQzyMiQEA3LhzBwCgsC8FRalSePrsGbwHDcSLl8n4fe7PSHr2DEmvt74sVaKETl8GDN2wkaMwYvAg1HWrjwYeHtiwehXuR0ZiwODBAIBZ079B9MOHWPLbKgBA/8FDsGr5MkyfNBH9Pvsc58+cwaZ1a7Fs7TpVm6mpqbj5zz+q/x/98CGuXroEaxsbuFasqCqnVCqxZcN69OzbV+O/Uwnx8XgQGYno1/9O3Xr9HAEHR0c4FLJ/p4RSQOjxsCd96n5IGMQTkVY+7dkT8fGPMWf2bERHRaFGzZrYsWcvypUvDwCIjo7C/chIVXkXV1fs2LMXk8aPw4qAADiVLo15CxagW4+3+yY38vTCut83Yua33+L7Gd+iQoWKWL9xEz5q6KF27iOHDyMyIgL9Bw7U2Le/9u3FsNcf0gAwoF9fAMDX077B1OnTpXoJDIYhj8XY8eOR/PIl/EaNxJOEBHzUsCH2/LUftra20r8QBmTi4C/wMjkZX838FgmJifCoUxeHVq2FrY2NqkzEw4cwkb39Adyrfn1s+Xkhpi1agG8WL0RF53LYOn8RPOrW0+nce44cxmdfT1L97TN2NADg2+EjMWPkaIRdu4ozrx8sVMlbfSeWO0HH4FK2rK6Xa7C6ffp/SIiPx/w5P+BRdDSq1aiJTTt2wblcxnsjJjoaD+6/fW+Ud3HBph27MH3SRKxZsRyOTk6YPe9ndOrWXVUmOioKrb3ezuQvXbQQSxcthFfTpth54O3DuU4cOYL7kZHo03+Axr4d/OsvjB72dpvVoQMybgof//VUTJiadctQo6bvXu95uE98YcJ94okMyJIlS7Bz504czrSsQZP83ieeyFjk9z7x9H75uU88ZS8/94mP+X4R7IrqsU988ks4fDOa+8TngDPxRAYkLi4Ot2/fLuhuEBER5Z6+O8xwdxqt8MZWIgMyY8YM3L17t6C7QURElGtCqdQ7Uc44E09ERERE0uFMfL7gTDwRERERkZHhTDwRERERSUcpMpI+9SlHDOKJiIiISDIiXUDosU2kSGcQrw0upyEiIiIiMjKciSciIiIi6Qg9b2wVvLFVGwziiYiIiEg63J0mX3A5DRERERGRkeFMPBERERFJRt8HNvFhT9phEE9ERERE0uFymnzB5TREREREREaGM/FEREREJJmMfeJzv9c794nXDoN4IiIiIpIM18TnDwbxRERERCQZoRQQSj1m4vWo+yHhmngiIiIiIiPDmXgiIiIikgxn4vMHg3giIiIikoxSKKHUY127UnBNvDa4nIaIiIiIyMhwJp6IiIiIJMPlNPmDQTwRERERSSYjiNdni0kG8drgchoiIiIiIiPDmXgiIiIiko6ey2nAmXitMIgnIiIiIsnwia35g8tpiIiIiIiMDGfiiYiIiEgy3J0mfzCIJyIiIiLJcDlN/mAQT0RERESSUSoFlHrMputT90PCNfFEREREREaGM/FEREREJBmuic8fDOKJjJyZqQnMTPmjGtEbaZVdC7oL9A57maygu0AAzNMs8u1cQui5Jl5wTbw2+MlPRERERGRkOBNPRERERJLhcpr8wSCeiIiIiCTDLSbzB5fTEBEREREZGc7EExEREZFkuJwmfzCIJyIiIiLJKJVKKPVYEqNP3Q8Jl9MQERERERkZzsQTERERkWS4nCZ/MIgnIiIiIslkBPH67E7DIF4bDOKJiIiISDKcic8fXBNPRERERGRkOBNPRERERJLhTHz+YBBPRERERJLhE1vzB5fTEBEREREZGQbxRERERCQZIQSUytwnIfJuOU1CQgJ8fX0hl8shl8vh6+uLJ0+eZFs+LS0NkyZNQu3atWFtbY3SpUujf//+ePjwYZ71UVsM4omIiIhIMm+W0+iT8kqfPn1w8eJFHDhwAAcOHMDFixfh6+ubbfkXL14gPDwc33zzDcLDw7Fjxw7cvHkTXbp0ybM+aotr4omIiIio0Pvnn39w4MABhIaGwsPDAwCwcuVKeHp64saNG6hatWqWOnK5HIGBgWp5v/zyCxo2bIiIiAiUK1cuX/quCYN4IiIiIpKMSBcQMj12p0nPqJuUlKSWb2FhAQsLi1y3GxISArlcrgrgAaBRo0aQy+UIDg7WGMRrkpiYCJlMhmLFiuW6L1LgchoiIiIikoxUy2mcnZ1Va9flcjn8/f316ld0dDQcHByy5Ds4OCA6OlqrNpKTkzF58mT06dMHdnZ2evVHX5yJJyIiIiKDExkZqRYoZzcLP2PGDHz33XfvbevcuXMAAJlMluWYEEJjfmZpaWnw8fGBUqnE0qVLcyyf1xjEExEREZFkpHrYk52dnVaz3SNGjICPj897y7i4uODy5ct49OhRlmOxsbFwdHR8b/20tDT07NkTd+7cwZEjRwp8Fh5gEE9EREREEsrvJ7ba29vD3t4+x3Kenp5ITEzE2bNn0bBhQwDAmTNnkJiYCC8vr2zrvQng//33Xxw9ehQlS5bUqX95hWviiYiIiEgySqVS75QXqlevjvbt22PIkCEIDQ1FaGgohgwZgk6dOqnd1FqtWjXs3LkTAPDq1St8+umnOH/+PDZu3Ij09HRER0cjOjoaqampedJPbTGIJyIiIqIPwsaNG1G7dm14e3vD29sbderUwYYNG9TK3LhxA4mJiQCA+/fvY8+ePbh//z7q1asHJycnVQoODi6IS1DhchoiIiIikkx+L6fRRYkSJfD777+///zvPDHWxcUlT58gqw8G8UREREQkGSGEXk9dNdSg2dBwOQ0RERERkZHhTDwRERERSUYpBJR6zKbrU/dDwiCeiIiIiCSjVAooZXoE8Xm4Jr4w4XIaIiIiIiIjw5l4IiIiIpIMZ+LzB2fiiUhrywICUKViRdhaWcHjo49w6uTJ95Y/cfw4PD76CLZWVqhaqRJWLFuWpcyO7dtRp1Yt2Fhaok6tWtj1+gEbb/w4Zw48PTxQQi5HGYUCn3Tvjhs3bqiVMTc11Zh+njdP/4s2UIY6Fu/6atgwmJuaYvGiRbm7SCNiqOPxIb43ApYuRcUKFWBlaYmPGjTAyRzG4vjx4/ioQQNYWVqiUsWKWKZhLLZv345aNWvCsmhR1KpZU/UgoDfm+PvDo2FDyO3soHB0RHcNYyGEwHczZqBsmTKwtrJCq5Ytce3aNf0v2AC92WJSn0Q5YxBPRFr5Y+tWjBszBpOnTMHZsDA0adIEnTt2REREhMbyd+7cQZdOndCkSROcDQvDpMmTMcbPDzu2b1eVCQ0JQd/evdG3Xz+cv3ABffv1Qx8fH5w9c0ZV5uTx4/jyyy9xMjgY+w8eRPqrV+jYvj2eP3+uKhPx4IFaWvnbb5DJZOjeo0fevSAFyJDH4o3du3bh7NmzKF26tPQvgIEx5PH40N4bW7duxZgxYzDl668RFh6OJk2aoOPHH793LDp17IgmTZogLDwck6dMgd/o0dj+zliEhISgt48P+vXrhwsXL6Jfv37w6dULZ94Zi+MnTuDLr75CcEgIDh46hFevXqF9u3ZqYzH3p5+wYMECLP7lF5w5exaOCgXaeXvj6dOnefeCUKEmE9yMk0gvL1++RMmSJREeHo5q1arl23mTkpIgl8sRl5AAOzu7PD9fY09PuLm5YcnSpaq82jVrokvXrpj9ww9Zyk+ZPBn79u7FlXdmmoZ/+SUuX76Mk6dPAwD6+PjgaVIS9u7fryrTqUMHFCteHL9v2qSxH7GxsSijUODw0aNo2qyZxjKfdO+OZ8+e4WBgYK6u1dAZ+lg8ePAATTw9se/vv9Gtc2eMHD0ao0aP1vu6DZWhj8e7CuK9YSqT5du5PBs1gpubG5YGBKjyataoga5du+IHf/8s5SdPmoS9e/fi2vXrqrwvhw3D5cuXcfr10zh9fHyQlJSE/e+MRYcOHVC8eHFses9YKBwdcfTYMTRr1gxCCJQtUwajR4/GxEmTAAApKSlwUijgP2cOhg4dKsn1v09SUhKKFyuGxMTEPPvMePO5FFSzO6xNzXLdzvP0NLS5tjNP+1oYcCaeSEcJCQl49uyZ6u/AwEA4OzvnGMAnJycjNjY2r7uXJ1JTUxEeFoY2bduq5bdt2xahISEa65wJDUXbzOW9vRF2/jzS0tJUZdp4e6uXadcu2zYBqB6FXbxECY3HHz16hL/378fAzz57/0UZKUMfC6VSic8GDMDY8eNRs2ZN7S/MSBn6eLzrQ3hvhIWFoW3m161tW4Rk87qFahgL73btcP6dsQgNCYF3pjLtvL0R8jrI1+TNWJR4PRZ37txBdHS0Wt8sLCzQrHnzbPtmzJRKoXeinDGIJ9LCq1ev8Ndff6Fnz55wcnLC7du3Vcd2796NLl26AAAuXbqEli1bwtbWFnZ2dnB3d8f58+cBZHyAlilTBt26dcPOnTuRmpqqUx9SUlKQlJSklvJLXFwc0tPT4ejoqJbv4OiI6OhojXWio6PhkKm8o6MjXr16hbi4uLdlHBzU23RwyLZNIQQmjBuHxk2aoFatWhrLbFi/Hra2toV2uYChj8Xcn35CEVNTjBg5UudrM0aGPh7v+lDfG445jIWm8lnGQofxFUJg3LhxaPLOWLwpm+Vc7xlTY8YgPn9wdxqi97hy5QrWrVuH33//HWlpaejZsyeOHj2KunXrAsiYddy3b59q/WTfvn3h5uaGgIAAmJqa4uLFizAzy/hJsXz58ggJCcH69esxdOhQKJVK9OnTBwMGDIC7u3uOffH398d3332XdxerBVmmn8WFEFnyciqfOV+XNkePHImrV67g6IkT2Z5z7Zo16N2nD4oWLZptmcLAEMciPCwMSxYvxpnz59/bl8LIEMcjM743tC+fOV+XNkeOGIErly/jhIYbanXtG9H7cCaeKJPHjx9j8eLFqF+/Pho0aIBbt25h6dKliIqKQkBAADw9PVVlQ0NDoVQq4eXlBQCIiIhAmzZtUK1aNVSuXBn/93//pwr4AcDd3R2LFi3Cw4cPsWbNGkRFRaFx48aoXbs25s2bh0ePHmXbrylTpiAxMVGVIiMj8+5FyMTe3h6mpqZZZoxiY2KyzCy9oVAo8ChT+ZiYGBQpUgQlS5Z8WybTNcfGxmps02/UKOzbuxeHDh9G2bJlNZ7z1MmTuHnjBj4bNEjrazM2hjwWp06dQkxMDCq6uMDS3ByW5ua4d+8eJo4fj8oVKuTqeg2dIY/Huz7k90ZMDmOhqXyWsdByfEeNHIm9e/fi8JEjamOhUCgAIOu5shlTY/fmia36JMoZg3iiTH755ReMHj0aNjY2uHXrFnbt2oUePXrA3Nw8S9ndu3ejU6dOMDHJeCuNHTsWgwcPRps2bTBnzhy1ZTfvKlKkCDp37oxt27bh7t27cHJywoQJE+Cv4carNywsLGBnZ6eW8ou5uTnqu7vjcFCQWn5QUBAavfOl5l0ejRohKHP5wEC4N2ig+nXCo1EjHM50g13QoUNqbQohMHrkSOzauRMHg4Lg6uqabT/XrF6N+u7ual+cChtDHou+/foh7OJFnAsPV6XSpUtj7Pjx2Pf337m+ZkNmyOPxrg/lveHu7o6gzK9bUJDa5Mu7GmkYi8BDh9DgnbFo5OmJwExlDgUGwvP15A2QMRYjR4zAzp07EXT4cJaxcHV1hUKhUOtbamoqThw/nm3fjBmX0+QTQURqHjx4IGbNmiUqV64sbGxsxIABA0RQUJBIT0/PUrZatWpi586dank3btwQ8+fPF23bthXm5uZix44dWeoplUpx/PhxMXjwYCGXy4WLi4uYPn26uHfvntb9TExMFABEXEKCSE1Pz/P0+6ZNwszMTKxYuVJcunpVjBo9WlhbW4t///tPpKaniwmTJom+/fqpyt+4dUtYWVmJ0X5+4tLVq2LFypXCzMxMbPnjD1WZ4ydPClNTUzHb319cvnZNzPb3F0WKFBGngoNVZYYOGybkcrkIOnJERDx4oEqJz56p9S8uIUFYWVmJJb/+mi+vR0EmQx+Ld1P58uXFvPnzC/w1+5DHo6DfG+lKZb6lTZs3CzMzM7Hyt9/E1WvXxOjXY/HfnTsiXakUkyZNEv18fVXlb92+LaysrISfn5+4eu2aWPnbb8LMzEz8sW2bqszJU6eEqamp8Pf3F9euXxf+r8ciOCREVWbY67E4cvSoePDwoSo9e/5cVcbf31/I5XLx5/bt4tLly8Knd2/h5OQkniQm5strk/DkiQAgEhMTdf5c1PVzaV+lzuJo1R65Tvsqdc7zvhYGDOKJ3uP06dPiiy++EHK5XJQtW1ZMmjRJXL16VQghxM2bN0XRokXF8+fPs63v4+MjOnfurPr7xo0bYtq0acLFxUXY2NiIgQMHiqNHjwqlUqlz3/I7iE9NTxeLlywR5cuXF+bm5sKtfn1x+OhR1THf/v1Fs+bN1coHHTki6rm5CXNzc+Hi4qIxiNi8dauoUrWqMDMzE1WrVRNbt21TOw5AY/pt1Sq1cksDAoSlpaWIjY8v8KDuQx+Ld9OHEMQb+ngU9HsjP4P4dKVSLHlnLOrXry+OHjumOtZ/wADRvHlztfJHjh4Vbu+Mxa9Ll2Zpc+sff4iqr8eiWrVqYtuff6odz24sVq1erSrzKj1dTJ8+XSgUCmFhYSGaNWsmLl2+nG+vS34G8XsqdBKHK3fPddpToRODeC1wn3giLSQnJ2PXrl1Yt24dAgMDceHCBRw8eBDHjx/H3r17AWTsFz9hwgR8+umncHV1xf379zFgwAB88skn+PHHHxEREQFXV1e0aNFClW9tbZ3rPuX3PvFERLmRn/vEU/byc5/4XRU6wtpEj33ilWno9t9f3Cc+B9ydhkgLRYsWhY+PD3x8fPDw4UPY2Nhg9+7dGDBggKqMqakpHj9+jP79++PRo0ewt7dHjx49VDvK2Nvb486dOyhXrlxBXQYREREVEgziiXRUunRpxMXFITQ0FNu2bVPlm5ubY/PmzdnWs7KyYgBPRESFnlIpoETuF3ooeWOrVhjEE+VCfHw85s+fr9o2jIiIiDIwiM8fDOKJcqFKlSqoUqVKQXeDiIiIPlAM4omIiIhIMkLPmXjBmXitMIgnIiIiIsmIjC3M9apPOWMQT0RERESS4Zr4/GFS0B0gIiIiIiLdcCaeiIiIiCTDmfj8wSCeiIiIiCSjFAJKodSrPuWMy2mIiIiIiIwMZ+KJiIiISDJcTpM/GMQTERERkWQYxOcPLqchIiIiIjIynIknIiIiIslk3Niqx0w8b2zVCoN4IiIiIpKMUgi9lsQwiNcOl9MQERERERkZzsQTERERkWSUSgGljDPxeY1BPBERERFJRgj9dqcRDOK1wiCeiIiIiCTDmfj8wTXxRERERERGhjPxRERERCQZzsTnDwbxRERERCQZoRQQegTxXBOvHS6nISIiIiIyMpyJJyIiIiLJKPXcnYbLabTDIJ6IiIiIJMM18fmDy2mIiIiIiIwMZ+KJiIiISDKcic8fDOKJiIiISDJcE58/uJyGiIiIiMjIcCaeyEi92Uf3aVJSAfeEiCh7pjJZQXeBACS9/qzIjz3YX4hXes2mJyNdwt4UXgziiYzU06dPAQCu5csXcE+IiMhYPH36FHK5PE/aNjc3h0KhwPToML3bUigUMDc3l6BXhZdM8LFYREZJqVTi4cOHsLW1hYwzXURE9B5CCDx9+hSlS5eGiUneraZOTk5Gamqq3u2Ym5ujaNGiEvSo8GIQT0RERERkZHhjKxERERGRkWEQT0RERERkZBjEExEREREZGQbxRERERERGhkE8EREREZGRYRBPRERERGRkGMQTERERERmZ/wfp5DC9VH8OAQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def prompt_fn(*examples):\n", + " main_prompt = \"Decide if the following movie review enclosed in quotes is Positive or Negative:\\n'I really liked the Avengers, it had a captivating plot!'\\nReply only Positive or Negative.\"\n", + " subset = [elem for elem in examples if elem]\n", + " if not subset:\n", + " prompt = main_prompt\n", + " else:\n", + " prefix = \"Here are some examples of movie reviews and classification of whether they were Positive or Negative:\\n\"\n", + " prompt = prefix + \" \\n\".join(subset) + \"\\n \" + main_prompt\n", + " return \"[INST] \" + prompt + \"[/INST]\"\n", + "\n", + "input_examples = [\n", + " \"'The movie was ok, the actors weren't great' Negative\", \n", + " \"'I loved it, it was an amazing story!' Positive\",\n", + " \"'Total waste of time!!' Negative\", \n", + " \"'Won't recommend' Negative\",\n", + "]\n", + "inp = TextTemplateInput(\n", + " prompt_fn, \n", + " values=input_examples,\n", + ")\n", + "\n", + "attr_res = sv_llm_attr.attribute(inp, skip_tokens=skip_tokens)\n", + "\n", + "attr_res.plot_token_attr(show=True)" + ] + }, + { + "cell_type": "markdown", + "id": "aa2739bf", + "metadata": {}, + "source": [ + "Interestingly, we can see all these few-shot examples we choose actually make the model less likely to correctly label the given review as \"Positive\"." + ] + }, + { + "cell_type": "markdown", + "id": "c715ba4c-bd02-4e32-a9a8-f531187d5e3e", + "metadata": {}, + "source": [ + "# Gradient-based Attribution\n", + "As an alternative to perturbation-based attribution, we can use gradient-based methods to attribute each feature's contribution to a target sequence being generated. For LLMs, the only supported method at present is `LayerIntegratedGradients`. Layer Integrated Gradients is a variant of Integrated Gradients that assigns an importance score to layer inputs or outputs. Integrated Gradients works by assigning an importance score to each input feature by approximating the integral of gradients of a function's output with respect to the inputs along the path from given references to inputs. To instantiate, we can simply wrap our gradient-based attribution method with `LLMGradientAttribution`. Here, we measure the importance of each input token to the embedding layer `model.embed_tokens` of the LLM." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "bf080c0a-9c51-4c1b-8ca6-a01da213a4fc", + "metadata": {}, + "outputs": [], + "source": [ + "lig = LayerIntegratedGradients(model, model.model.embed_tokens)\n", + "\n", + "llm_attr = LLMGradientAttribution(lig, tokenizer)" + ] + }, + { + "cell_type": "markdown", + "id": "a9f383cd-1246-4695-a96c-a0a31490cd37", + "metadata": {}, + "source": [ + "Now that we have our LLM attribution object, we can similarly call `.attribute()` to obtain our gradient-based attributions. Right now, `LLMGradientAttribution` can only handle `TextTokenInput` inputs. We can visualize the attribution with respect to both the full output sequence and individual output tokens using the methods `.plot_seq_attr()` and `.plot_token_attr()`, respectively." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "9121ab1b-8102-4aa9-9dc8-bd28b9c0144c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvwAAAG/CAYAAAAkfAPQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWP0lEQVR4nO3deXhM5/vH8XtiiSURu8RaSyqCSIgSal+KUhWqpbW0pUqVoNRSe1FL7bV3sVZR2lKUovaqXVUt7ddORInEHpncvz9y5fwySZBJJtvxfl1XrjZnZs65TWbO+ZznPOd5LKqqAgAAAMCUnNK6AAAAAAAph8APAAAAmBiBHwAAADAxAj8AAABgYgR+AAAAwMQI/AAAAICJEfgBAAAAEyPwAwAAACZG4AcAAABMjMAPAAAAmBiBHwAAADAxAj8AAABgYgR+AAAAwMQI/AAAAICJEfgBAAAAEyPwAwAAZHBWqzWtS0A6RuAHAADI4IYMGSJvvPGGREVFpXUpSIcsqqppXQQAAEBGpKpisVjSugwJDg6Wv/76Sxo0aJDWpSAdooUfAADATrt37xYREYvFIqqapi3ru3fvFnd3d8I+HovADwAAYIdNmzZJrVq15Pfff5cLFy6IxWIRJyenNAn969atk1q1asmhQ4dsltO1B7ER+AEAwDMtMjIy0c999OiRjBs3TkREZs2aJbVr15a2bdvK7du3xckp+bHKnloiIyNl6NCh0r59e6lcubKIiOzdu1fCwsKMWuxZX2rjRuPUQ+AHAADPpNDQUBERyZw5s4gkLoDOmTNH9uzZIxMmTJDBgwfL+vXr5fjx4zJx4sRUr2XWrFnyzz//yNChQ0VE5Ny5cxIYGCj9+/eXCxcu2KwvrvRwCyc3GqceAj8AABkYYSnpOnXqJPnz55dffvlFREQyZcokVqv1se/p9evXZeTIkfLRRx9J7969xcvLS7y9vaVNmzayYsUKefjwYbzXREVFJepvlNRa+vXrJ2XLlhWr1SpLliyRa9euyZkzZyQoKEiKFSsmGzduNOoQ+f+gnx5uNA4KCpKuXbs65MoInox3GACADKx3797y4YcfposW24wkMjJSihQpIjdv3pSmTZvKyy+/LGfOnJFMmTKJk5NTgl1hJkyYIBaLRTp37iyZM2c23vPw8HApWLCgODs7i0h0uI6IiJCQkBBxcnISJyenJ7bYJ6WWkSNHSu7cueXDDz8UETGuMgwcOFCmT58uq1atktdee02GDBki4eHhRqjes2eP9O/fX65du5bs9zA5uNE4dRH4AQDIoE6dOiXz5s0TT0/PdNFim5FkzpxZZs+eLadOnZJatWrJhg0bpGzZstK3b1958OCB0RXm0aNHIiJy9OhRmTVrlmTPnl1cXFzEYrGIxWKREydOyPHjx8XX11dERP766y95/fXXpXHjxlKrVi3p3Lmz3L9/XzJlypTsWmKC//79+2XWrFkyevRoyZcvn9y/f1/Gjx8vRYoUkbFjx0rFihXFyclJ6tSpI1euXJEzZ87IrVu3ZNmyZbJq1Sr57rvv5O7duyn47j4ZNxqnPgI/AAAZ1IABA6RKlSrStWvXtC4lw/L09JTffvtNNmzYIB4eHjJ16lQpXLiwzJ8/X0REsmTJIiIiffv2lYoVK0qdOnUkJCTEeP306dPlwYMH0q5dOzl58qR88MEHEhUVJZMnT5ZZs2bJlStXpEmTJnLlyhWb7SYUbp9WS0zw3717t7zwwgvSpk0bERHZuXOnfPfddzJlyhSbdV+4cEHu3r0rPj4+kjt3blm0aJFMmzZNKlasKKVKlXLYe/gs3WicYSmAZ1ZUVFRalwAgiTZs2KBOTk66ZcsWm+VWq5XvdhI9fPhQP//8c82UKZNaLBb18fHRffv26datWzVr1qy6Z88eHTp0qBYuXFi7deumL7zwghYqVEhnz56tqqodOnTQfPnyaYkSJfTAgQOqqhoWFqY+Pj66efPmeNt70t8pbi2+vr7622+/GY/fu3dPVVWvX7+uFSpU0JYtW9q8/tKlS+rh4aGDBw9WVdVz585ply5dtFy5clqyZEnNmzevHj58ONH1JOTmzZs2v0dGRj71NdOmTVMXFxc9efKkqqqePXtW3d3dtWvXrnr+/Hm7to/EI/ADAJAOPHr0yK7nVqxYUdu3b2+ErLt37xoh0N71wdb169e1U6dOarFYjJ+3337beHzhwoX60ksvaZ8+fXT//v2qqnrmzBmtXLmyfvLJJzp69GjNmzevNmrUSG/evKl169bVUaNGqarqxYsXdejQoRoWFmas70lBOXYtWbNm1TNnztg8/r///U9LlSqlp06dslnep08fLVy4sN6+fVtVVefMmaNeXl76/fffq6rqrFmz9Ndff423PXs+Ny1atNB8+fLpxo0bbf4tVqs1weeHhIRo3rx5dfjw4cZzR48erRaLRevWrautWrXSokWL6oYNGxJdAxKHwJ8EMV+G+/fvp3ElQNL88MMP2qVLF23Xrp0GBgbqsmXL0rok4JmV1FZSV1dXo5VUVXX8+PFao0YNHTNmjMNrfFYdPXpUZ8yYoQsXLtR///33sUFWVfXKlSvq4uKiv//+u6qq/vPPP/rWW29p5syZ1WKxGCcGI0aM0Pz58+uwYcN0+fLlT1xnbMeOHdPp06c/8TkxLfSHDx9WFxcX/eqrr4zfmzVrpq+++mq815w8eVK3bNmi33zzjV0t/I8ePdL333/fOCFq1qyZnj592ubxuD744AMtVaqU/vfff6qqeuTIEc2VK5cOGjRIjx07plarVfv06aNVqlSxOSFC8hH47RTzxXzw4IHmy5dP+/btm8YVPV5idyIwv5jPQnBwsA4fPlwtFotWrVpV3377be3Vq5d6eHhoQECAnjhxIo0rBZ49SW0lHTFihLEsIiJC165dq0uWLNHy5ctrxYoV9e+//07x2p8lMX+PqKioBE/Kbt26pdWqVdPx48fbLN++fbtOnjxZrVarHjlyRL28vDRv3rzauXNnbdy4sRYpUkT/97//Gc9/3PoTqkU1/gmi1WrV+vXrq5eXl6pGfzbGjx+v3t7eunv3buN5d+7c0UWLFqmHh4dWr15dq1Spovnz59fFixcn8h2Jdvr0aa1du7YR/Pv06WPTIBoT/P/44w+1WCy6dOlSVY3uktSuXTstV66czfp++OEHdXd313379iW4Pa5cJQ2B304xX6yuXbtq7ty51dvbW93c3PSbb75J48ri69mzp/bs2ZO+nCZnz85v4sSJ6uzsrAMHDjReFxUVpaGhodqnTx8NDAzUK1eupFSpAOJIaitpyZIljSsDkZGReuHCBaPVVFX15Zdf1mHDhsV7LQ1BKWvixIn63HPP6aJFi/TBgwfxrt506tRJq1Spoj///LOx7Mcff9SwsDD99ddfbfrUJ+ZKz+Ps27dPjx49qqqq165d0+rVq9t0SVJVXbJkiZYqVUrfe+89Y9nMmTPVz88vXl/6p90XEhUVpRs3btTChQurxWLRPHny6Lx582yeM2XKFK1WrZo+fPhQVVV/+eUXdXJyMk50Yz6b06dPV1dXV42IiDDWHRwcrMePH7fZntVq5fNsBwK/HWK+fCdOnLA5S/3666+1dOnS2qlTJ5sdblo6efKkZs2aVadOnaqqydtxIH2ytxvA0aNH1dfXV/38/GyWx+zET506pW3atNEffvjBsYUCeCp7W0mXLFmiqqp79+7VVq1aqbe3t5YrV067d++uqtEnBa+99poRmvbu3Us31FQya9YsLViwoNavX1/btGmj//zzj6qqrl69Wv38/HTChAk2z9+5c6fWq1dPy5Urp/nz59fmzZvrtWvXkrz9uMH8zp076uXlpQsWLDCWhYSE6GuvvabFihVTNzc3fe211/TcuXOqqurj46OTJ09W1ejjSuz7Qp4WsB11o/HHH3+sqtEnLh988IEWLFhQfXx8tGzZsrp+/Xqb11y+fFmbNm1qc5UE8RH41f7LQzVr1tT69evbtIT+/vvvWrt2bV20aJGjy0uSV155RQMCAvTu3buqGn2QyJ07t/GFRsZnbzeAtWvXqsVi0XXr1qlqwp/7kydP6l9//WWzjCtEQOpIbCtp9erV9eHDh3rv3j3t1q2bBgQE6PLly/Xnn3/WRo0aqZubm1atWlW7detmfH/z5ctn0wUoZnu0kDpO7PfSarXq3Llzjav/9+7d0+bNm+trr71m3HQb00gzf/589fLy0qtXr+r58+c1MDBQq1WrZtOirZq0fXHMayZNmqQWi0V79+6tUVFRev36dXV1ddX169frf//9p61atVI3NzcdOHCgenp66qpVq1RVdd26ddqoUaN4IftpknOjsYeHh3Fi4OXlpXXq1NEpU6bo4cOHddy4cVq4cGGdOHGi8X5369ZNvby8dNeuXXa/P8+SZzrw29NCGhOOVq9erZkyZbIJWTFfqC5duuhzzz2nN27cSIFqE+9xQ7WtXbs2jSqCoyWlG8DkyZPVxcVF79y5k+BnPe6BP/bv9JkEUk9iW0lVVZs0aaLt27e3eX2nTp3U3d3dCGk7d+7UMmXK2PSJPnbsWAr/K55dCe0vP/30U/X09EywUXDu3LmaLVs24+9z69Yt/eyzzxLsMZCcbiynTp3SyZMna0hIiJ46dUrz5s1rM1Toxo0b1d/fX0uWLKk7duzQu3fvat++fdXV1VXffvtt7dq1q86YMcOoQ/XpJyFJudH4yy+/VFXVMWPGaNGiRXXHjh02z582bZquWLFCVVX37NmjRYoU0RkzZhhdhWikStgzHfgT20Ia+8NTtGhR7dKli4aHh8d7fMmSJeri4uLwFtKkDNXWrl07Y9nu3bs1NDQ0SetD+pbYbgCqqt9++626urrGa1GJEfM5vXv3rn755Zc6YMAA7devn3GVCEgquhQmzdNaSVVV+/fvr56enrp161Y9efKkzpo1S8uXL69vvPGG8ZyZM2dqo0aN9Pz583rjxg397LPP1GKx6Jw5c2zWxd/JPk8K3nGP+4cOHdLRo0fr9evXjWUx3a1UVQcMGKAvv/yy7ty5U1XVOGaHhYXpwYMHde7cuTYnafbkisfdBNy+fXvt1q2bzbLIyEjdv3+/RkVF6bp16zRv3rzatGlTnTlzpk6ZMsVmmM/Yr0lMPfbcaHz//n2tUaOGBgUFGXkrZhuxj3ENGjTQ5s2b29ygTuBP2DMb+O1pIY35/9GjR2u+fPn04MGDNuuK+eCOGjVK8+TJo3fu3Im3vaTsSB0xocWFCxc0Z86c2qNHD7u3j2jp/ZL307oBxOz8Ll68qBUqVNBx48bFO+mLOfDE9OPPnj27vvnmm1qzZk3NmzevzUkx8DQxn7nYLZTcYJd0T2sl7devn3p5eelrr72mbm5uWqpUKf3zzz+Nx9977z1t06aNqqoOHDhQX3/99XijpcTG3+nxYvadcd+zpFi6dKkxhOe///6rbdu21Xr16hmBNiwsTBs1aqQeHh7q6+urOXLk0M6dOyf5XoyY72XMf3/55RctXLiw1q9fX7du3aq//fabPnjwQFWjJ8Nq166d+vv7x1vPf//9p9u2bdMFCxbYDJ2Z3KAd+0bjyMhIrVu3rgYFBdk8J/bNw4sWLdLixYsbw0pHRETEm0gM/++ZDfwxntZCGhOEQkNDNXPmzDpt2jSbO8djdowRERGaN29effPNN40vwNatW3Xq1Kk2OwZ7vhCOmNBi2LBhmj9/fuMMuVGjRlzKTYSE5lpI761fT+oGEPO5mzhxohYvXlxnzJihkZGR8Vrv27Vrp/Xq1bOZ9KRXr17aunXreJ/dqKgoWlLwWCEhIfrOO+9oYGDgY4fXg/3i9hOPERYWptu2bVMfH594ISl37tz6yy+/6ODBg7VDhw7av39/LVOmjLFPmzRpkjZo0IB7vJ4i5v2+d++euri42HSzepq4+8qwsDAdNGiQtm7dWi9fvqyq0cMm58yZU7dt26b37t3T9957T/Pnz69//PGH3rx5U0+cOKFeXl4JdgtK6vHp7t272qVLFy1fvry+//77xg3Gs2bNUi8vL6Mvv2r0MWb9+vVarFgx9ff314CAAHV1ddXPP/88SduOLaFjSZcuXbRNmzYJ9kqI6c3QpUsX4/3r37+/Zs2aNV5XKE5goz3zgV81cTdKffvtt2qxWLRLly5GP7EYVqtVu3fvrm5ubsYIJzF98OrWrav58uUzRstJLEdNaOHq6mps+/Dhw1qsWLEEp/fmC/H/Yt6L+/fvJzjXQnoPuXG7AcQduWDp0qXq4eGhdevW1W7duunw4cM1MjJSt2zZouXKldP58+fbHDwmTZqk5cqV05CQEGNZTCuQKl3EnhX2/p3/97//6Xfffad9+vRRFxcX7d+/v00XBjhG3Btvjx8/btOFc82aNcaoJ25ubvrvv//q4MGDjVFQFixYoH5+ftqvXz9VVe3YsaOePXs2Nf8JGUbMfrFbt25avHjxx85zkNhjxPnz57VRo0ZasGBB7devnzZt2lRz5syply5d0l27dqmzs7MxyELMtt966y1t3LixTRfMpGw79jpVo0e6ickYBw8e1GbNmmnbtm1tnr927VqtXLmyNmzY0Fi2cuVKrVChgh44cCDe+pN7rNy2bZu6u7trx44d9ejRo3r06FHjsz5s2DD19vbWX375RVWj30s3NzdjdKH0fpxOCwT+WJ52o9SBAwe0YsWKWqhQIZ02bZpu2rRJv//+eyNcjR071qZvf4ylS5dq2bJl4w13mJgWUkdOaPH777+rp6dnvDvZ+WLYitkJvvfeezZzLSxcuDCNK7NP3G4AcU/qvvrqK507d67++OOPqqr6/fffa6VKlWz6+EdGRuqMGTPU09PTGCZu79692rdvXx02bBgnis+ApHQtvH37tk0r244dO9Tb29uYaTQ2PkOOkdDxJDIyUocMGaIWi0Vr165ttNZ+9NFHOnz4cN28ebNmzZpVx48fr6GhoXr16lUtXbq0cRyJu65nWdxhuefPn2+cwMYch+05KY79t1q5cqUGBgZqv379jAa53r17a8WKFY1tx3xPWrRooa1bt1bV6IbF4cOH6xtvvGFzMm3P3ypuVzur1aozZszQPHny6B9//GHUeufOHe3Ro4cWKVJE8+TJoy+99JIeOnRIVaNvHO/du3eC609ug9C///6rjRs3Vk9PT2NY0bNnz2rx4sV12LBhRo+KN954QytWrBhvdt6mTZsa3aaedQT+BDztRqnFixdrtWrVtFatWporVy6tXLmyfvbZZ6oa3fVnyZIl2qtXL/3oo4+M1wYGBtqcLSfUz/9xkjOhRczZr6rq7NmztXDhwjav27Rpk7744ou6adOmeNtMb1LjgBOzjb///tvmBGrx4sXq4eGhkyZNSpfvzdMkZsSdZcuWabZs2WxGmfrf//6nlSpV0s6dO6tq9Puza9cuXbBggQYEBKiHh4euWbMmRWtH2rKna2FkZKRu2rRJK1SooDVr1tQXXnhB161bp3fv3lU/Pz+brghcdk8d8+bN0zJlyhgtxQ8ePFA/Pz9t166dtmjRQjt16mQ898qVK5orVy7jxCwj7uvsZW8gfemll7RmzZrG77Gv+H/66ac6duxYo1Huae/f445pUVFR2qFDB23RooVarVYjzP/+++9arlw5Y6ScvXv3apUqVbRo0aL65Zdfavfu3W2uviZH3O6gkZGRWrx4cZ0+fbpGRkbq22+/ra6urhoUFKS+vr46adIkVY0+uZ8/f76OGTPGppYnjQL3OLHfnxMnThjvQ2BgoNarV8/oKrhnzx7NlCmTMRJhTM0LFixQi8Wie/fujbfu2CdIz8rAFAT+J4jbQhp3x/D333/r1atXbS6f9u/fX729vY3xdvPmzav9+vXT1q1b68cff6yRkZEaHh6uzZo1M240SazkTmjxzjvvaIcOHYwvw3fffac+Pj7aoEGDBCf5SOyd96nl448/1tdffz1JwSApcy00aNBAL1y4YCwLCgrSypUrx2vxNIt///1XK1eurJMnT9ZHjx7prl27tFu3bponTx7jMx4VFWVzT8rw4cM1ICAgwStbyPjs7Vp46tQprVWrljZu3Fh//fVXHTNmjBYsWFCrVKmi5cqVMwL/tWvXtGvXrtqrVy+bz1N6bEVOjzXZ6+7du8bfatmyZUaLf58+fWy+uwsWLNBy5crZNEgdP35ca9euHa/LRno6NiRFUobl/uGHH9Risairq6uOHDnS5jn79u3Thg0basuWLY1jVN++fXXu3LlPrSWhY9rSpUu1fPnyGhwcbCyrX7++vvzyy3r8+HF9+PChdu3aVV1cXLRv3766Zs0arVevnlasWDFZ92I87vh67do1LVq0qH711VfGst9//13r1aun7u7u+tNPP2lISIjmyJFDGzRooFWrVtU8efLozJkzjedHRUXpv//+a1c9cf8uly5dUi8vL504caJxstWoUSNt2rSpzf7o/v37mj9/fv3444+NcH/r1i09ffq0zShDN27c0Nq1axsnLGZG4E+kJw0nFSMkJETr1aunXbp00UePHunDhw/1wIEDWrp0aS1cuLBx8hAREaHOzs76008/xVt3Yrr52DuhxaNHjzQqKkpbt26tffr00aioKJ01a5a6uLjoJ598YvTN/uuvv3Tjxo06adIkmz6c6WXHfvXqVf3111/tek1SduobN25Ui8WiW7duVdX///t89NFH6uHhYdOXPT20Sm7cuPGxQ23aa9GiRerm5qa+vr6aJ08erVu3rtEN4Ntvv9WGDRtqnTp1tEuXLnrt2jW9du2alixZ0niv4qJ/vzkkdnCDv//+W7Nnz27TbfDw4cNapkwZ9fX1NZatWrVKy5Urp15eXjpmzBh99913HTLqSUpITkNDWovbvz8qKkqHDx+uFotFR4wYoRcvXlTV/98vzpkzR+vXr28MHTl37lx98cUXtXLlygmOCZ/eGoXskZRhuYsUKaJdu3bVFStWqI+Pjz733HPGFc5PPvlEX3zxRZtGuD179ujkyZOTdNJ49epVbdCggbq7u+vrr7+uZcqU0eLFixtdfn7++Wd1c3OzCeDHjh3TokWLJngzcezRbZKqX79+2qpVq3hXEQ4ePKi3b9/WVatWqbe3t3ET7ddff62VK1fWnTt3qtVq1f/++09r1qypXbp0SVYdERERxucxphva6NGjbZ7Tt29fLVKkiF6+fFmtVqvu2rVLK1SooF5eXuri4qLjx49X1f8/AY7pvmRmBH4He+2114zhz1Sjzyhjzj5jZub98ccftUqVKvGGj7p69apd20rMhBaxdzT58uXTdevW6ccff6z+/v46cOBAVY0OZcuXL1dPT0+tXr26NmjQQHPmzKlDhgyxq56UlNQZ9JKyUy9RooRmyZJFy5QpY5yU7d69W/Ply6dt2rTRBw8exAv9aXXQu3PnjpYoUULfeustXblypU1rUFJZrVZdsmSJbty40ejec+nSJXV1ddWOHTvqnDlztHXr1po7d25966231MnJyWhROnv2rK5du1a//vprm3Vm1FCQkhIaCSo9CAkJSTDcJqZr4YULF7Rq1araqVMnvXLlip44cUKHDRumrq6uxhXNU6dOaevWrbVgwYL62Wef6YYNG7RevXparVo1IyikJ0lpaEjvYrr3xIg5TnTu3NkYv3/GjBmaJUsWHTNmjPF3OXnypNGlz5HDMaa2pAzL/emnn9oMy/3gwQOdNGmSFi5cWL28vNTf39+48Vk1ep8ZW1Lfo8WLF2u3bt10xowZxgAMly9f1pdffllr1Khh89z9+/dryZIljfvNIiMj9Z9//rEZ+z85V6wOHDigXl5eWrlyZf35559169atNt1hjh49qrlz59Y+ffoYV5W2bdum58+f1yVLlmjp0qU1V65cxucp7gAoiZFQ/W+88Ya2atVKVaP3X5s3b9ZMmTLprFmzVDV6jqTKlSvrSy+9pL/99puuXr1a69Spoxs3bjRG+lHNeJ9jexH4HWzDhg2aP39+rVevnvbq1UvLly+vHh4eNn1XV69erWXKlLFpRV+2bJl6e3vr/PnzVfX/P3iJbVV62hWI7du3a/bs2Y1htH755Rfjsu3KlSvV19fXZuexc+dO9fb2fmxLQWpau3atWiyWePMfPK2OpO7UCxQoYLTM5M2bV/Pnz6958+bVKlWq6M6dO/Xy5cv60ksvaatWrWzGulZN/R3GqFGjNEeOHMaIO5kzZ07WEGmPa5FfvHixOjs721wK/fnnn9VisWjXrl1VNTrI1a9fX8uXL68VK1ZUd3f3eDf/xb2h6lkV89l98OBBgiNBpRWr1aqBgYHaunXrx3bTelrXwqNHj6qfn5+++OKL2qxZM7VYLPryyy8bj8+YMUPLli2r33//vbFsz549WrBgQaMRJPaVTqvVmmbdapLa0JBePamh4969e1qnTh2dMmWKtmnTRqtXr65jxoxR1ei/+c8//5wiwzGmpcReubpx44ZmzpxZP/vsM6N1O/b9Xl5eXlq7dm1j/pu5c+cmePy059j5uM/8gwcPdMGCBZonTx6bm1Hv3bunn3zyiebNm9eo8c8//9QhQ4bo888/r3369Im3rqRegY3puvzWW2/Fa7j85ZdftFmzZkaWibF7927NmjWrZsuWTXv37u3Q7/Rvv/2mxYsX15o1a2rHjh01c+bM2rBhQ71//74GBwdr48aNtVOnTjZXqYYPH67u7u7q5uZm9ASIO0+B2RD4U4DVatV58+bp8OHDtVixYtqhQwebG0S6d+9uhOvbt2/rl19+qTlz5tRBgwbFm6U3RnK/HFevXtWAgAD19/e3GZYzLCxMu3btquXLl9dChQpp1apVjdbwt956ywhzCdWT1C+FvTMH+/r66ptvvmks27Nnj966dSvR60vuTn3x4sW6YsUKo/X833//1e+++0579OihOXPm1AkTJsTbUXz//fc6bdq0FO3ScvbsWfXx8bHpBz1u3DitVq2ahoeHO3QIxAMHDmipUqWMFpOTJ0/quHHjNHv27HrkyBFVVd2yZYtWr17daA2dNm2aVqxYUVevXm2sp1mzZtqtWzdT9ItOjph/f9euXTV37txavnx5dXNzi3eQTG2//vqr1qxZM1H9WeN2LYzbN/fYsWO6ZMkStVgsxmdk79692rhx43jD/a1Zs0a9vb3jtTzHPenYuHGjfvTRR6ly4hi3oSH2zYtpFQgSmtDMUet99OiR1q9fXzNnzqyenp66d+9eI6D++OOPiR6OMaPNz5GYK1fz58/X0qVLJzjT8ZdffqnVq1fXKVOmqGr0wB1NmjTRtm3bGs+PfRx43Ky3jxP3JOHixYv6/PPP66uvvmqzfN++fZorVy6dOHGisSwiIkLPnTun69ev1xo1amjlypWNq7Gx/0bly5dPcFjNuGL/O27evGnklfXr1+uoUaNUNfqEZObMmeri4qI7duxQ1eieDp988okWKlRIt27dqn5+ftqyZUub+x/jdj9Lih07dujChQvVYrEYA5b8+OOP6uPjo999953Nc6dPn64Wi+WJ91iY7ThF4Hew2F+IsLAwHTFihNEtRDX6APbKK6/osGHDVDX6RtoXXnjBaOGLiIjQI0eO6MiRI/WDDz5IcHi05IjpVqQa/WGOiIjQSpUqGS05AwYMUDc3N33nnXfU09NTBw8erKrRX6QpU6Zov379bLoe2bNjd8TMwWfPnlV3d3ft2rWrnj9/PtHbTspOPaGdz7Vr12xuiFq+fLlWrlzZ6AurGn3i0K5dO5uda0p44403tE2bNnrixAlj2Y8//mic1PTu3Vvr1q2b4FCISTF9+nR1c3PTVq1aadWqVdVisRifD9Xoe0BiTlxj3rt169bp33//rXv27FFfX1/NnDmz0Spltp1pYsX8u//66y+1WCzG1b+FCxdqvnz51MfHJ97cCanh3r17+sorr2hgYKARtBNzAI7btTDu3zVm2NewsDAdPny4VqhQwaZVMDg4WHv06KF+fn7Gies333yj7du3Vx8fH+3WrZvx3DZt2mjNmjWTNJtmUhoa2rVrZyyLiIiwuc8gre5PceSEZjENH1arVbdv365OTk7asmVLm3uCwsPDEz0cY0bu5vO0K1e3bt0y/k0xf/t//vlHW7Zsqa1atTKOb59++qn6+/vrypUrVTW6saR3797atm1bXb9+vbG+5Lw/f/zxh01YvnXrlnbo0EFLlixpLDt9+rT++uuvxt/yzp07WqVKFf32229t/g2DBw9WFxcX42/6NAkF8wkTJmjZsmV18eLFqhrdIFS5cmXj9y1btmiRIkV0woQJxmv++ecfffDggR44cMDmGJaU40Ls7+Lt27d1wYIFxj7shx9+UBcXF5vn3Lp1S1u3bq1ly5Y1lt28eVNnzpypo0aN0jlz5thdQ0ZA4E8hCX2ZIyMj9fbt29q8eXN98803dejQoZo9e3Zdv3690VXio48+0pdeekkbNmyogwcP1gIFCmiTJk0SHEXHHo87OIWHh2vRokVtJgY7deqUtmrVSgsXLqwbNmzQ0NBQtVgs2rBhQ23YsKG6uLjoiBEj7K7BETMHjx49Wi0Wi9atW1dbtWqlRYsWtZkV9mns2anHbFM1eicydepULVmypFatWlVfeOEF3bVrl54+fVqLFy9uE6pnz56tAQEBOnv27ETXZa+dO3eqv7+/fvnllzbLmzRpoiVLltQvvvhCDxw4oN26ddMyZcok68Qj7mX/gwcP6ttvv625c+eOd9/J+vXrtXHjxkarScwYzxcvXlSLxaLZs2e3OUkwk+QO76caHcAmTZr02Al9UtLcuXO1WrVqxhWZpLS2xb1BNLYjR45o+fLltXv37jbLV6xYoSVKlDA+yzNmzNCcOXNqixYt9IsvvtCaNWvqiBEjdNasWVq5cmW7v1fJaWiI6QI4a9Ysbdu2rfr5+cUbnSW50mpCM6vVqvPnz9fWrVtru3bt1NPTU7t162Yci2KH2+LFi+vMmTNthmPs3bu3+vr6GhMd7d69W5s1a6bffPNNhgv7sT1tUIzYRowYoTVr1tTly5eravRJfLVq1bRnz55669YtvXLlij7//PMaEBCg/fr109y5c2urVq2SdTxP6L1dsWKFWiwW/fnnn1U1erLEkiVLaqVKlbRUqVLGFbVq1arpoEGDjNddvXpVM2XKpFOnTk32FeF58+apm5ub1qxZUytWrGgcW+/fv69vvvmment72zz/4sWL+tJLL2m5cuW0QIEC2rJlS5t7DZIiofdm/fr1WqJECWOfGhUVpUuXLlUnJyejMWLp0qXaqlUrLVeunPbp00dLlCihfn5+NiciZkDgT0EJHTAvX76sFotFCxQooC1atLBp/d+/f79aLBYNCAgwuo+EhYXpiy++aHMnvqONHj1aGzdubNNioBrdQnD//n1du3atFi1a1Gi9Wb9+vVapUsWuG9mSM3NwzI2jR44c0Vy5cumgQYP02LFjarVaNSgoSKtUqWL3JX57duqq0Zf3/f39tWfPnrpv3z4dNmyY5smTR8uXL68BAQG6e/duVY1u2WjevLm2adPGrrkW7BEREaEVKlTQrl272uwgly9fbhOcVFXPnDmjBQsWNMYnTo7Yf6MzZ84Y61y/fr3OmjVLIyIi9P79+zplyhQtUKCAcTlXNfrqSY4cOXTevHn6/PPPa5UqVWxufM7IHD28X1q4evWq1q9f36Y1PSUcP37cpjveP//8o61bt9batWuravQ+x9XVVT/77DPj4H3q1CmtUaOGvvDCC9qpUyebq2mJkdyGhv3796ufn5927NhRFy9erBUqVFBvb289evSoXXXEldITmiVGWFiYtmrVSl9//XVjNK64njYc46pVq9RqteqYMWM0X7582qJFCw0KCjLev4zqaYNiXLp0SRs2bKivvfaasez999/XunXr6pYtW1Q1+n4WFxcX4ybVCxcuaJMmTYwJpBxl9uzZWq9ePVWN/pvmzZtXhw4dqocPH9Y//vhD27Ztq5kzZ1Y3NzebuXleeeUV9ff3txl+2l5x53iZPn26fv3118b9bZs3b1YXFxfj+xdzo+7q1as1d+7ceurUKT19+rS2adNGvby8EtW1yB4hISHq7++vlSpV0sWLF2uXLl3U1dVVmzRpYjzu7e2txYsXtxmpp02bNunm3ipHIfCnoph+kh07dtSWLVvGO3ts0KCBVq9eXRs3bqy5c+c2hpkKCgoy+j2nRMvJyZMn1d/f35hh8YcffrA5qPzzzz9arFgx7dy5s16/fl2tVqvu3LkzSf1IHTlzsGp0dwF3d/ckX9pOzEhHqtE3qObOndtm5IUff/xRixUrZnN/wbBhw7R69epGy0FKCAsL0/79+9v0jbdarVqpUiV9++23bWrcs2ePWiwWmxvEkyv2ZzAqKkrnzp2rAQEBRmAIDQ3VmjVr6tChQ1U1uotTgQIFbFqWtm/f7rB60lpyh/fz8/NTd3f3FP3MPM3HH3+sL774ovE9Sokb8+Puux49eqQTJkzQggULGgGpR48e+vzzz8d7baVKldTb29voJpFYSW1oKF26tHEyfeLECS1WrJgxU/rt27f1k08+sXselbgcNaFZ5cqVbQaFSIq4fczj6tevnwYGBsYbjnH//v364MED3bt3r5YsWVKrVaumkyZNMrqnOXK/k5Ye930IDQ01uszEjL43evRo4z28ffu2NmjQQOvWrWt0mdmxY0eKjMwVc8J47tw59fX1tblqr6parlw5ff311416t2/frhaLRVetWuWQXPG4K1UDBgwwus7Efh+XLVumOXLkMLp43r59W4cMGeLw+1NiDB48WHv27KkvvPCCZsmSxWjk++STT7R8+fLaqFEj48qVavR9RQEBAcm+6pCeEPjTSNwvR2hoqNarV8+44eaHH35Qb29v9fT0VG9vb23fvn2K1zRp0iT18/PTV199VU+ePKn37983LvPt2rVLX3nlFYdMTpGcmYNjDo4xO47p06erq6urQ25QfVLIOXTokD733HPav39/PXv2rO7atUtbt26tpUuXNlr3t2zZonXr1o3XZSGlxN5JDx8+XCtWrGgTHlRVK1eurK+++mqKj3E+fvx4zZkzpzZp0kRfeeUVzZo1q3EF4MMPP9QSJUoku1taepSc4f1iAsCDBw903LhxOnDgwDSZ1O3o0aNas2bNNGmRnTt3rrFve/DggVauXNm44hHzfh0+fFjz5cunQUFBSZ4RM7ENDTFXWePeO9W9e3etVq2a8f06d+6ccWKdlLDk6AnNHH2vV1wJDccY0/Xn+vXr2rNnT/Xy8rIJRzFXXTPi/AWJEfff9fHHH2vNmjX1xIkTevfuXeMq/ZkzZ7Rjx44pdlyIe5N0RESEduzYUYsVK6Y//fSTLl26VN99913NkSOH0fVINfoEoHXr1jYzqzuilrimT59uM9Nz7OcMHDjQ+Eyrqs0Ej44S+8rZo0eP9OOPP9b33nvPeKxPnz7GJKW7du3S6tWra/HixbVhw4ZaqlQph9WRHhD4U9njxmyPjIzU6tWra+fOnY1l9+7d04kTJ2qBAgWMs+CUaOGP/YV4+PChceDZsGGDjho1Sq1Wqz569Ei//fZbzZ49u1195p8kuTMHX758WQsXLmy0JKf0gSVm4o4WLVqov7+/WiwW7d+/v6pGh5Xu3bsnOCNlSrtz546WLVtWP/zwQ5vuEosWLVJnZ+fHTorlCLE/jzdu3NCBAwfquHHjjJbYc+fOadasWY2bt8wqOSNBxUiLm0AjIyO1RYsWWrt27WQF2OSI+d5GRkZq27Zt443g8+abb2qdOnV0586dydpOYhsaXnjhBVWN7nIT01Xm8uXL2qtXLw0MDHToSZkjJjTz8/NzWD1Pk9BwjN9++61WrFjRaFE2a8BPjJhj5/r163XEiBHGCdChQ4e0YMGCNiPopLRPP/1UmzZtqu+++65myZJFe/bsaXQt+uKLLzRnzpypNuzs6NGjNX/+/Lp8+XLduHGj0Uh29uxZ7dSpk9apUydFR96Ke1IU+/+7d+9uMylgZGSkLliwQIsVK2aMvGSWzzSBPx1ZsmSJ1qhRI15/zJQ4601I3D6k8+fP11KlShkf+osXL2q5cuWMST0cxd6Zg2P06dNHixYtahNyU0LcncXx48d11KhRWqhQISMkLV26VAMCAoyhyVLb3bt3492Y6+HhoR9++GGK3UsQ40nDzA0bNkyLFy+e4n8je8SeS8CRkju8X1q4e/eudujQQS0Wi44fPz5V76tIaPjGiRMnqoeHh/7www+6efNmHThwoObMmVPHjh3rsO0mtqFh8eLF+s477xg3pp85c0afe+45my4bjpDcCc1WrFihqikbSh43HOOZM2e0Xbt22qBBA5t/T1q7d+9eqtYR973ftm2benp6aocOHfTSpUv66NEjLVGihHF8SMnaYu+LrVarrlmzRitUqGB0GbRarZorVy4dMGBAil/5jf2+3L9/X0+fPq0zZszQFi1a2HQ9zZ49u828HCkloePUoUOH1N/fP16XyvDw8CRfUUyvCPzpyL179/Ttt9/WHDly6AcffKDLli1L9dbiuNasWaOFCxfWSpUqably5WwuaztaYvrTx+woDx8+rC4uLg4/+XiS2DuLqKgoIyScP39e33jjjXg7sbT0wQcfaM6cOeNNDJaSEgocK1asUE9PzxS9ymCPq1evavXq1VP0Rll7R4JKD1auXKkeHh763HPP6cKFC5M0A6ajjB07VqtUqaJvvPGGurq6avPmzW26uzjK0xoa/vzzTw0ICFBfX1/dunWrbtiwQStVqqQffvihw2tRTdqEZs2bN0+RWhKS0HCMy5cv17x58+qaNWtUNX0MtWu1WrVnz54aGBiYpp/js2fPaoMGDbRgwYLq7++vxYsXT/TQl8kV92/133//GQ0db7/9tpYuXTrVRgKL2yB0/vx5bdSokbq7u+vIkSO1Y8eO6uzsnOwhZpNT39ChQzVbtmzaqVMnXb16tW7atClNaklpBP50InYA2Ldvn7Zu3Vq7du2a7MvYSRV3x7548WL99ttvU3Rc+cdtP+5BxGq1av369ePdwJta4r43a9euVS8vL/3iiy/SpJ6ErFmzRhcsWJCmB7wY/fv3V2dn5zR/fyIiIrR58+ZapUoVh81N8CT2jgSVHgwbNkyzZs2qAwcOTPXPTtzRPjZs2KAvvPCCTps2LUW3+7SGhv79+2uxYsW0evXqWrNmTaPFP6VO2uyZ0OzYsWMpWktixB6NKz148OCBduvWLcVHnHqS2J/lffv26Y4dO2zmwEktsa+iRUVF6b1797R06dI6ceLENJtHIsby5cv1pZde0rffftsY6SktnT59Wtu2bavNmzc3bRdUi6qqIF2IiooSEREnJycREfnvv/8kf/78aVmSREZGSubMmdO0hoT88ccfki1bNvHx8UnrUkRE5O+//5YyZcpIlixZ0rqUdENVxWKxiIhIcHCw3Lp1S7y8vNKsntDQUFm3bp00bNhQPDw8Um27f/75p/z222/y4Ycfpto2kyM8PFyOHj0qtWrVSpPtR0VFGfvAkJAQyZIli+TJkyfVt221WiVTpkwiEv3ZCQ0NFQ8PD8mePbvN81JK3M9N7HpERNauXSstWrRIlVoSEvv7ndDvaS2t3pcYcf9e6cndu3clZ86cabLtuO9LWmcMVZWoqCijpuDgYClUqFC6+iw7CoE/HUrrHVV6l54OLOmplvQo7s70Wcd3O3FiDktp/d1KL5/f2J8b9jlIqrQO17GltxOiZ2HfTOAHAAAATMzcpzMAAADAM47ADwAAAJgYgR8AAAAwMQI/AAAAYGIE/nTq4cOHMmLECHn48GFalyIi6aue9FSLSPqqJz3VIkI9GaUWEerJKLWIpK960lMtItSTUWoRoZ7Uxig96VR4eLi4ublJWFiY5MqVK63LSVf1pKda0ls96akW6sk4tVBPxqklvdWTnmqhnoxTC/WkPlr4AQAAABMj8AMAAAAmlj6mXEtBUVFRcuXKFXF1dc1QsxOGh4fb/Detpad60lMtIumrnvRUiwj1PEl6qkWEep4kPdUikr7qSU+1iFDPk6SnWkSox1FUVW7fvi2FCxd+4mzBpu/Df+nSJSlWrFhalwEAAACkiIsXL0rRokUf+7jpW/hdXV1FJPqNMONNGAAAAHg2hYeHS7FixYy8+zimD/wx3Xhy5cpF4AcAAIDpPK3bOjftAgAAACZG4AcAAABMjMAPAAAAmBiBHwAAADAxAj8AAABgYgR+AAAAwMQI/AAAAICJEfgBAAAAEyPwAwAAACZG4AcAAABMjMAPAAAAmBiBHwAAADAxAj8AAABgYgR+AAAAwMQyp3UBSF1N+q1L9W1u/Lx5qm8TAAAA0WjhBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxAj8AAAAgIkR+AEAAAATI/ADAAAAJkbgBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxAj8AAAAgIkR+AEAAAATI/ADAAAAJkbgBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxAj8AAAAgIkR+AEAAAATI/ADAAAAJkbgBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBi6Sbwjxs3TiwWiwQFBRnLVFVGjBghhQsXluzZs0vdunXlr7/+SrsiAQAAgAwmXQT+/fv3y7x588THx8dm+YQJE2Ty5Mkyc+ZM2b9/v7i7u0ujRo3k9u3baVQpAAAAkLGkeeC/c+eOvPnmmzJ//nzJkyePsVxVZerUqTJkyBAJDAyUChUqyMKFC+XevXuybNmyNKwYAAAAyDjSPPB/8MEH8vLLL0vDhg1tlp89e1aCg4OlcePGxjJnZ2epU6eO7Nmz57Hre/jwoYSHh9v8AAAAAM+qzGm58eXLl8uhQ4dk//798R4LDg4WEZFChQrZLC9UqJCcP3/+sescN26cjBw50rGFAgAAABlUmrXwX7x4UXr37i1LliyRbNmyPfZ5FovF5ndVjbcstkGDBklYWJjxc/HiRYfVDAAAAGQ0adbCf/DgQQkJCZEqVaoYy6xWq+zYsUNmzpwpp06dEpHoln4PDw/jOSEhIfFa/WNzdnYWZ2fnlCscAAAAyEDSrIW/QYMG8ueff8qRI0eMH39/f3nzzTflyJEjUqpUKXF3d5fNmzcbr4mIiJDt27dLjRo10qpsAAAAIENJsxZ+V1dXqVChgs2ynDlzSr58+YzlQUFBMnbsWPH09BRPT08ZO3as5MiRQ9q3b58WJQMAAAAZTpretPs0AwYMkPv370uPHj0kNDRUqlWrJps2bRJXV9e0Lg0AAADIECyqqmldREoKDw8XNzc3CQsLk1y5cqV1OWmuSb91qb7NjZ83T/VtAgAAmF1ic26aj8MPAAAAIOUQ+AEAAAATI/ADAAAAJkbgBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxAj8AAAAgIkR+AEAAAATI/ADAAAAJkbgBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxAj8AAAAgIkR+AEAAAATI/ADAAAAJkbgBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxAj8AAAAgIkR+AEAAAATI/ADAAAAJkbgBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxAj8AAAAgIkR+AEAAAATI/ADAAAAJkbgBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxAj8AAAAgIkR+AEAAAATI/ADAAAAJkbgBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxAj8AAAAgIkR+AEAAAATI/ADAAAAJkbgBwAAAEyMwA8AAACYGIEfAAAAMLE0DfyzZ88WHx8fyZUrl+TKlUsCAgJkw4YNxuOqKiNGjJDChQtL9uzZpW7duvLXX3+lYcUAAABAxpKmgb9o0aLy2WefyYEDB+TAgQNSv359admypRHqJ0yYIJMnT5aZM2fK/v37xd3dXRo1aiS3b99Oy7IBAACADCNNA3+LFi2kWbNm8vzzz8vzzz8vY8aMERcXF/n9999FVWXq1KkyZMgQCQwMlAoVKsjChQvl3r17smzZsseu8+HDhxIeHm7zAwAAADyrMiflRVu2bJEtW7ZISEiIREVF2Tz21VdfJakQq9UqK1eulLt370pAQICcPXtWgoODpXHjxsZznJ2dpU6dOrJnzx7p1q1bgusZN26cjBw5Mkk1AAAAAGZjdwv/yJEjpXHjxrJlyxb577//JDQ01ObHXn/++ae4uLiIs7OzvP/++7JmzRrx9vaW4OBgEREpVKiQzfMLFSpkPJaQQYMGSVhYmPFz8eJFu2sCAAAAzMLuFv45c+bIN998Ix06dHBIAWXLlpUjR47IrVu35Pvvv5dOnTrJ9u3bjcctFovN81U13rLYnJ2dxdnZ2SG1AQAAABmd3S38ERERUqNGDYcVkDVrVilTpoz4+/vLuHHjpFKlSjJt2jRxd3cXEYnXmh8SEhKv1R8AAABAwuwO/F26dHniTbPJpary8OFDKVmypLi7u8vmzZuNxyIiImT79u0OPeEAAAAAzMzuLj0PHjyQefPmya+//io+Pj6SJUsWm8cnT56c6HUNHjxYmjZtKsWKFZPbt2/L8uXL5bfffpONGzeKxWKRoKAgGTt2rHh6eoqnp6eMHTtWcuTIIe3bt7e3bAAAAOCZZHfgP3bsmPj6+oqIyPHjx20ee1Lf+oRcu3ZNOnToIFevXhU3Nzfx8fGRjRs3SqNGjUREZMCAAXL//n3p0aOHhIaGSrVq1WTTpk3i6upqb9kAAADAM8miqprWRaSk8PBwcXNzk7CwMMmVK1dal5PmmvRbl+rb3Ph581TfJgAAgNklNucma+KtS5cuyeXLl5OzCgAAAAApyO7AHxUVJaNGjRI3NzcpUaKEFC9eXHLnzi2jR4+ONwkXAAAAgLRldx/+IUOGyJdffimfffaZ1KxZU1RVdu/eLSNGjJAHDx7ImDFjUqJOAAAAAElgd+BfuHChLFiwQF555RVjWaVKlaRIkSLSo0cPAj8AAACQjtjdpefmzZvi5eUVb7mXl5fcvHnTIUUBAAAAcAy7A3+lSpVk5syZ8ZbPnDlTKlWq5JCiAAAAADiG3V16JkyYIC+//LL8+uuvEhAQIBaLRfbs2SMXL16U9evXp0SNAAAAAJLI7hb+OnXqyOnTp6VVq1Zy69YtuXnzpgQGBsqpU6ekVq1aKVEjAAAAgCSyu4VfRKRw4cLcnAsAAABkAIkK/MeOHZMKFSqIk5OTHDt27InP9fHxcUhhAAAAAJIvUYHf19dXgoODpWDBguLr6ysWi0VUNd7zLBaLWK1WhxcJAAAAIGkSFfjPnj0rBQoUMP4fAAAAQMaQqMBfokQJ4//Pnz8vNWrUkMyZbV8aGRkpe/bssXkuAAAAgLRl9yg99erVS3CCrbCwMKlXr55DigIAAADgGHYHflUVi8USb/mNGzckZ86cDikKAAAAgGMkeljOwMBAEYm+Mbdz587i7OxsPGa1WuXYsWNSo0YNx1cIAAAAIMkSHfjd3NxEJLqF39XVVbJnz248ljVrVqlevbp07drV8RUCAAAASLJEB/6vv/5aRESee+45+eijj+i+AwAAAGQAds+0O3z48JSoAwAAAEAKsDvwlyxZMsGbdmP873//S1ZBAAAAABzH7sAfFBRk8/ujR4/k8OHDsnHjRunfv7+j6gIAAADgAHYH/t69eye4/IsvvpADBw4kuyAAAAAAjmP3OPyP07RpU/n+++8dtToAAAAADuCwwL9q1SrJmzevo1YHAAAAwAHs7tLj5+dnc9OuqkpwcLBcv35dZs2a5dDiAAAAACSP3YH/1VdftfndyclJChQoIHXr1hUvLy9H1QUAAADAARiHHwAAADAxuwO/iIjVapU1a9bI33//LRaLRcqVKyctW7aUzJmTtDoAAAAAKcTuhH78+HFp2bKlBAcHS9myZUVE5PTp01KgQAH56aefpGLFig4vEgAAAEDS2D1KT5cuXaR8+fJy6dIlOXTokBw6dEguXrwoPj4+8t5776VEjQAAAACSyO4W/qNHj8qBAwckT548xrI8efLImDFjpGrVqg4tDgAAAEDy2N3CX7ZsWbl27Vq85SEhIVKmTBmHFAUAAADAMRIV+MPDw42fsWPHSq9evWTVqlVy6dIluXTpkqxatUqCgoJk/PjxKV0vAAAAADskqktP7ty540221bZtW2OZqoqISIsWLcRqtaZAmQAAAACSIlGBf9u2bSldBwAAAIAUkKjAX6dOnZSuAwAAAEAKSFTgP3bsmFSoUEGcnJzk2LFjT3yuj4+PQwoDAAAAkHyJCvy+vr4SHBwsBQsWFF9fX7FYLEa//dgsFgt9+AEAAIB0JFGB/+zZs1KgQAHj/wEAAABkDIkK/CVKlBARkUePHsmIESNk6NChUqpUqRQtDAAAAEDy2TXxVpYsWWTNmjUpVQsAAAAAB7N7pt1WrVrJDz/8kAKlAAAAAHC0RHXpia1MmTIyevRo2bNnj1SpUkVy5sxp83ivXr0cVhwAAACA5LE78C9YsEBy584tBw8elIMHD9o8ZrFYCPwAAABAOmJ34GeUHgAAACDjsLsP/6hRo+TevXvxlt+/f19GjRrlkKIAAAAAOIbdgX/kyJFy586deMvv3bsnI0eOdEhRAAAAABzD7sCvqmKxWOItP3r0qOTNm9chRQEAAABwjET34c+TJ49YLBaxWCzy/PPP24R+q9Uqd+7ckffffz9FigQAAACQNIkO/FOnThVVlXfeeUdGjhwpbm5uxmNZs2aV5557TgICAlKkSAAAAABJk+jA36lTJxERKVmypNSsWVMyZ7Z7gB8AAAAAqczuPvz169eXmzdvxlt+48YNyZQpk0OKAgAAAOAYSbppNyEPHz6UrFmzJrsgAAAAAI6T6H4506dPF5Ho2XQXLFggLi4uxmNWq1V27NghXl5edm183Lhxsnr1ajl58qRkz55datSoIePHj5eyZcsaz1FVGTlypMybN09CQ0OlWrVq8sUXX0j58uXt2hYAAADwLEp04J8yZYqIRAfwOXPm2HTfiblpd86cOXZtfPv27fLBBx9I1apVJTIyUoYMGSKNGzeWEydOSM6cOUVEZMKECTJ58mT55ptv5Pnnn5dPP/1UGjVqJKdOnRJXV1e7tgcAAAA8axId+M+ePSsiIvXq1ZPVq1dLnjx5kr3xjRs32vz+9ddfS8GCBeXgwYNSu3ZtUVWZOnWqDBkyRAIDA0VEZOHChVKoUCFZtmyZdOvWLdk1AAAAAGZmdx/+bdu2xQv7oaGhMmPGDPH19U1WMWFhYSIixgReZ8+eleDgYGncuLHxHGdnZ6lTp47s2bMnwXU8fPhQwsPDbX4AAACAZ5XdgT+2X3/9Vdq1ayeFCxeWCRMmSJ06dZK8LlWVvn37yosvvigVKlQQEZHg4GARESlUqJDNcwsVKmQ8Fte4cePEzc3N+ClWrFiSawIAAAAyOrsH079w4YJ8/fXX8vXXX8udO3ckNDRUVqxYIa1bt05WIT179pRjx47Jrl274j0We1ZfkeiTg7jLYgwaNEj69u1r/B4eHk7oBwAAwDMr0S38K1askMaNG0u5cuXk+PHjMm3aNLly5Yo4OTlJuXLlklXEhx9+KD/99JNs27ZNihYtaix3d3cXEYnXmh8SEhKv1T+Gs7Oz5MqVy+YHAAAAeFYlOvC3b99e/P39JTg4WFauXCktW7ZM9rj7qio9e/aU1atXy9atW6VkyZI2j5csWVLc3d1l8+bNxrKIiAjZvn271KhRI1nbBgAAAJ4FiQ7877zzjsyaNUuaNGkic+bMkdDQ0GRv/IMPPpAlS5bIsmXLxNXVVYKDgyU4OFju378vItFdeYKCgmTs2LGyZs0aOX78uHTu3Fly5Mgh7du3T/b2AQAAALNLdOCfN2+eXL16Vd577z359ttvxcPDQ1q2bCmqKlFRUUna+OzZsyUsLEzq1q0rHh4exs93331nPGfAgAESFBQkPXr0EH9/f7l8+bJs2rSJMfgBAACARLCoqiblhWfOnJGvvvpKFi1aJHfu3JGXX35Z2rRpY4yXn16Eh4eLm5ubhIWF0Z9fRJr0W5fq29z4efNU3yYAAIDZJTbnJnlYTk9PTxk3bpxcvHhRlixZIvfu3ZN27doldXUAAAAAUoDdw3LG5eTkJC1atJAWLVpISEiII2oCAAAA4CDJmngrroIFCzpydQAAAACSyaGBHwAAAED6QuAHAAAATIzADwAAAJhYkgL/rVu3ZMGCBTJo0CC5efOmiIgcOnRILl++7NDiAAAAACSP3aP0HDt2TBo2bChubm5y7tw56dq1q+TNm1fWrFkj58+fl0WLFqVEnQAAAACSwO4W/r59+0rnzp3lzJkzki1bNmN506ZNZceOHQ4tDgAAAEDy2B349+/fL926dYu3vEiRIhIcHOyQogAAAAA4ht2BP1u2bBIeHh5v+alTp6RAgQIOKQoAAACAY9gd+Fu2bCmjRo2SR48eiYiIxWKRCxcuyMCBA6V169YOLxAAAABA0tkd+CdNmiTXr1+XggULyv3796VOnTpSpkwZcXV1lTFjxqREjQAAAACSyO5RenLlyiW7du2SrVu3yqFDhyQqKkoqV64sDRs2TIn6AAAAACSD3YE/Rv369aV+/fqOrAUAAACAg9ndpadXr14yffr0eMtnzpwpQUFBjqgJAAAAgIPYHfi///57qVmzZrzlNWrUkFWrVjmkKAAAAACOYXfgv3Hjhri5ucVbnitXLvnvv/8cUhQAAAAAx7A78JcpU0Y2btwYb/mGDRukVKlSDikKAAAAgGPYfdNu3759pWfPnnL9+nXjpt0tW7bI559/LlOnTnV0fQAAAACSwe7A/84778jDhw9lzJgxMnr0aBERee6552T27NnSsWNHhxcIAAAAIOmSNCxn9+7dpXv37nL9+nXJnj27uLi4OLouAAAAAA6Q5HH4RUQKFCjgqDoAAAAApAC7b9q9du2adOjQQQoXLiyZM2eWTJky2fwAAAAASD/sbuHv3LmzXLhwQYYOHSoeHh5isVhSoi4AAAAADmB34N+1a5fs3LlTfH19U6AcAAAAAI5kd5eeYsWKiaqmRC0AAAAAHMzuwD916lQZOHCgnDt3LgXKAQAAAOBIdnfpef311+XevXtSunRpyZEjh2TJksXm8Zs3bzqsOAAAAADJY3fgZzZdAAAAIOOwO/B36tQpJeoAAAAAkALs7sMvIvLvv//KJ598Iu3atZOQkBAREdm4caP89ddfDi0OAAAAQPLYHfi3b98uFStWlH379snq1avlzp07IiJy7NgxGT58uMMLBAAAAJB0dgf+gQMHyqeffiqbN2+WrFmzGsvr1asne/fudWhxAAAAAJLH7sD/559/SqtWreItL1CggNy4ccMhRQEAAABwDLsDf+7cueXq1avxlh8+fFiKFCnikKIAAAAAOIbdgb99+/by8ccfS3BwsFgsFomKipLdu3fLRx99JB07dkyJGgEAAAAkkd2Bf8yYMVK8eHEpUqSI3LlzR7y9vaV27dpSo0YN+eSTT1KiRgAAAABJZPc4/FmyZJGlS5fKqFGj5PDhwxIVFSV+fn7i6emZEvUBAAAASAa7A3+M0qVLS+nSpR1ZCwAAAAAHszvwv/POO098/KuvvkpyMQAAAAAcy+7AHxoaavP7o0eP5Pjx43Lr1i2pX7++wwoDAAAAkHx2B/41a9bEWxYVFSU9evSQUqVKOaQoAAAAAI5h9yg9Ca7EyUn69OkjU6ZMccTqAAAAADiIQwK/iMi///4rkZGRjlodAAAAAAewu0tP3759bX5XVbl69ar8/PPP0qlTJ4cVBgAAACD57A78hw8ftvndyclJChQoIJ9//vlTR/ABAAAAkLrsDvzbtm1LiToAAAAApACH9eEHAAAAkP7Y3cLv5+cnFoslUc89dOiQ3QUBAAAAcBy7A3+TJk1k1qxZ4u3tLQEBASIi8vvvv8tff/0l3bt3l+zZszu8SAAAAABJY3fgv379uvTq1UtGjx5ts3z48OFy8eJF+eqrrxxWHAAAAIDksbsP/8qVK6Vjx47xlr/11lvy/fffO6QoAAAAAI5hd+DPnj277Nq1K97yXbt2SbZs2RxSFAAAAADHsLtLT1BQkHTv3l0OHjwo1atXF5HoPvxfffWVDBs2zK517dixQyZOnCgHDx6Uq1evypo1a+TVV181HldVGTlypMybN09CQ0OlWrVq8sUXX0j58uXtLRuAiTTpty7Vt7nx8+apvk0AABzB7hb+gQMHyqJFi+Tw4cPSq1cv6dWrlxw+fFi++eYbGThwoF3runv3rlSqVElmzpyZ4OMTJkyQyZMny8yZM2X//v3i7u4ujRo1ktu3b9tbNgAAAPBMsruFX0Skbdu20rZt22RvvGnTptK0adMEH1NVmTp1qgwZMkQCAwNFRGThwoVSqFAhWbZsmXTr1i3Z2wcAAEDypPZVV6642i9JE2/dunVLFixYIIMHD5abN2+KSPSY+5cvX3ZYYWfPnpXg4GBp3LixsczZ2Vnq1Kkje/bseezrHj58KOHh4TY/AAAAwLPK7hb+Y8eOScOGDcXNzU3OnTsnXbp0kbx588qaNWvk/PnzsmjRIocUFhwcLCIihQoVslleqFAhOX/+/GNfN27cOBk5cqRDagDw/2jBAQAgY7K7hb9v377SuXNnOXPmjM2oPE2bNpUdO3Y4tDgRiTerr6o+cabfQYMGSVhYmPFz8eJFh9cEAAAAZBR2t/Dv379f5s6dG295kSJFjFZ5R3B3dxeR6JZ+Dw8PY3lISEi8Vv/YnJ2dxdnZ2WF1AAAAABmZ3YE/W7ZsCfaLP3XqlBQoUMAhRYmIlCxZUtzd3WXz5s3i5+cnIiIRERGyfft2GT9+vMO2AwAA8CQMBYyMzu4uPS1btpRRo0bJo0ePRCS6y82FCxdk4MCB0rp1a7vWdefOHTly5IgcOXJERKJv1D1y5IhcuHBBLBaLBAUFydixY2XNmjVy/Phx6dy5s+TIkUPat29vb9kAAADAM8nuFv5JkyZJs2bNpGDBgnL//n2pU6eOBAcHS0BAgIwZM8audR04cEDq1atn/N63b18REenUqZN88803MmDAALl//7706NHDmHhr06ZN4urqam/ZAAAAwDPJ7sCfK1cu2bVrl2zdulUOHTokUVFRUrlyZWnYsKHdG69bt66o6mMft1gsMmLECBkxYoTd6wYAAACQxIm3RETq168v9evXd2QtAAAAQJJxv0XCEt2Hf9++fbJhwwabZYsWLZKSJUtKwYIF5b333pOHDx86vEAAAAAASZfowD9ixAg5duyY8fuff/4p7777rjRs2FAGDhwoa9eulXHjxqVIkQAAAACSJtGB/8iRI9KgQQPj9+XLl0u1atVk/vz50rdvX5k+fbqsWLEiRYoEAAAAkDSJDvyhoaE2E15t375dmjRpYvxetWpVZrUFAAAA0plEB/5ChQrJ2bNnRSR6AqxDhw5JQECA8fjt27clS5Ysjq8QAAAAQJIlOvA3adJEBg4cKDt37pRBgwZJjhw5pFatWsbjx44dk9KlS6dIkQAAAACSJtHDcn766acSGBgoderUERcXF1m4cKFkzZrVePyrr76Sxo0bp0iRAAAAAJIm0YG/QIECsnPnTgkLCxMXFxfJlCmTzeMrV64UFxcXhxcIAAAAIOnsnnjLzc0tweV58+ZNdjEAAAB4MiaXgr0S3YcfAAAAQMZD4AcAAABMjMAPAAAAmBiBHwAAADAxAj8AAABgYgR+AAAAwMQI/AAAAICJEfgBAAAAEyPwAwAAACZm90y7AADAfJi9FTAvAj8AAEh3UvsEhJMPmBldegAAAAATI/ADAAAAJkaXnlTAZUkAAACkFVr4AQAAABMj8AMAAAAmRuAHAAAATIzADwAAAJgYgR8AAAAwMQI/AAAAYGIEfgAAAMDECPwAAACAiRH4AQAAABMj8AMAAAAmRuAHAAAATIzADwAAAJgYgR8AAAAwscxpXQCAhDXpty7Vt7nx8+apvk0AAJCyaOEHAAAATIzADwAAAJgYgR8AAAAwMQI/AAAAYGIEfgAAAMDECPwAAACAiRH4AQAAABMj8AMAAAAmRuAHAAAATIyZdpGmUns2WWaSBQAAzxpa+AEAAAATI/ADAAAAJkbgBwAAAEyMPvwAkEypfS+KCPejAAASjxZ+AAAAwMQI/AAAAICJZYguPbNmzZKJEyfK1atXpXz58jJ16lSpVatWWpcFAOkSw90CAGJL9y383333nQQFBcmQIUPk8OHDUqtWLWnatKlcuHAhrUsDAAAA0r1038I/efJkeffdd6VLly4iIjJ16lT55ZdfZPbs2TJu3Lh4z3/48KE8fPjQ+D08PDzVagUAwB5cjQGQGiyqqmldxONERERIjhw5ZOXKldKqVStjee/eveXIkSOyffv2eK8ZMWKEjBw5Mt7ysLAwyZUrV4rWi4zvaLW3UnV7lfYtSdXtAakttb9TIk/+XvEdB2Am4eHh4ubm9tScm6679Pz3339itVqlUKFCNssLFSokwcHBCb5m0KBBEhYWZvxcvHgxNUoFAAAA0qV036VHRMRisdj8rqrxlsVwdnYWZ2fn1CgLAAAASPfSdQt//vz5JVOmTPFa80NCQuK1+gMAAACIL10H/qxZs0qVKlVk8+bNNss3b94sNWrUSKOqAAAAgIwj3Xfp6du3r3To0EH8/f0lICBA5s2bJxcuXJD3338/rUsDAAAA0r10H/hff/11uXHjhowaNUquXr0qFSpUkPXr10uJEiXSujQAAAAg3Uv3gV9EpEePHtKjR4+0LgMAAADIcNJ1H34AAAAAyUPgBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxAj8AAAAgIkR+AEAAAATI/ADAAAAJkbgBwAAAEwsc1oXAABAaqm0b0lalwAAqY4WfgAAAMDECPwAAACAiRH4AQAAABOjDz8AIMXQZx4A0h4t/AAAAICJEfgBAAAAEyPwAwAAACZG4AcAAABMjMAPAAAAmBiBHwAAADAxAj8AAABgYgR+AAAAwMQI/AAAAICJEfgBAAAAEyPwAwAAACZG4AcAAABMjMAPAAAAmBiBHwAAADAxAj8AAABgYgR+AAAAwMQI/AAAAICJEfgBAAAAEyPwAwAAACZG4AcAAABMjMAPAAAAmBiBHwAAADCxzGldAJCeVNq3JK1LAAAAcCha+AEAAAATI/ADAAAAJkbgBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxAj8AAAAgIkR+AEAAAATI/ADAAAAJkbgBwAAAEyMwA8AAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxDKndQEpTVVFRCQ8PDyNKwEAAAAcJybfxuTdxzF94L99+7aIiBQrViyNKwEAAAAc7/bt2+Lm5vbYxy36tFOCDC4qKkquXLkirq6uYrFY0rocAAAAwCFUVW7fvi2FCxcWJ6fH99Q3feAHAAAAnmXctAsAAACYGIEfAAAAMDECPwAAAGBiBH4AAADAxAj8AAAAgIkR+AEAAAATI/ADAAAAJvZ/SDV4U9ifQoIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "inp = TextTokenInput(\n", + " eval_prompt,\n", + " tokenizer,\n", + " skip_tokens=skip_tokens,\n", + ")\n", + "\n", + "attr_res = llm_attr.attribute(inp, target=target, skip_tokens=skip_tokens)\n", + "\n", + "attr_res.plot_seq_attr(show=True)" + ] + }, + { + "cell_type": "markdown", + "id": "3c2d579e-4c40-491c-b1b9-2b5e7d284d0f", + "metadata": {}, + "source": [ + "Layer Integrated Gradients estimates that the most important input token in the prediction of the subsequent tokens in the sentence is the word, \"lives.\" We can visualize further token-level attribution at the embedding layer as well." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "788d8ad3-b546-47af-943d-0b4d82f353d1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABqMAAAG/CAYAAADcuq2XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVgUXRsH4N8uIQ1SAhJSgiBKqICtKHZ3YXdh62uL3d2N3Q12F3Z3S9ogIbD7vH8gA0soCAjCc1+X1/cxOzN75ryzc86c54SIiAiMMcYYY4wxxhhjjDHGGGOM5QBxbieAMcYYY4wxxhhjjDHGGGOM5V8cjGKMMcYYY4wxxhhjjDHGGGM5hoNRjDHGGGOMMcYYY4wxxhhjLMdwMIoxxhhjjDHGGGOMMcYYY4zlGA5GMcYYY4wxxhhjjDHGGGOMsRzDwSjGGGOMMcYYY4wxxhhjjDGWYzgYxRhjjDHGGGOMMcYYY4wxxnIMB6MYY4wxxhhjjDHGGGOMMcZYjuFgFGOMMcYYY4wxxhhjjDHGGMsxHIxijDHGGGOMMcYYY4wxxhhjOYaDUYwxxhhjjDHGGGOMMcYYYyzHcDCKMcYYY4wxxhhjjDHGGGOM5RgORjHGGGOMMcYYY4wxxhhjjLEcw8EoxhhjjDHGGGOMMcYYY4wxlmM4GMUYY4wxxhhjjDHGGGOMMcZyDAejGGOMMcYYY4wxxhhj7CeJRJLbSWCMsXyHg1GMMcYYY4wxxhhjjDH20+jRo9G6dWtIpdLcTgpjjOUbIiKi3E4EY4wxxhhjjDHGGGMs+xARRCJRbifjnxQSEoIHDx7Aw8Mjt5PCGGP5Bo+MYowxxhhjjDHGGGMsn7h48SIAQCQSgYh4dE8mXbx4EQYGBhyIYoyxbMbBKMYYY4wxxhhjjDHG8oFjx46hUqVKuHLlCt6+fQuRSASxWMwBqQw6dOgQKlWqhJs3b8ps5/xjjLGs42AUY4wxxhhjjDHGGGN5UHx8fIb3jYuLw7Rp0wAAS5cuReXKldGyZUtERERALC6YTYCZyb/4+HiMHTsWbdu2hbOzMwDg8uXL+Pbtm5B/mTkf+z2JRJLbSWCM/UUFsyRijDHGGGOMMcYYYyyP+vLlCwBAXl4eQMYa7ZcvX45Lly5h5syZ+O+//3DkyBHcv38fs2bNytG05kV/kn9Lly7F8+fPMXbsWADA69ev0bRpUwwbNgxv376VOV9KRJQdyS5wRo8ejdatW/PIM8YKCA5GMcYYY4wxxhhj7I9xIyJj2a9jx47Q1dXF0aNHAQBycnKQSCTp/t4+fPiAiRMnYujQoRg4cCBsbW1hZ2eH5s2bY8eOHfjx40eqY6RSab79/f5p/g0ZMgQ2NjaQSCTYtGkTQkND8ezZM3h7e8PExAT+/v4Akp57iUEokUj0F64q//H29kb37t0L7Mg9xgoa/qUzxhhjjDHGGGPsjw0cOBD9+/fnkQGMZZP4+HgULVoUnz9/Rp06dVCvXj08e/YMcnJyEIvFaU4VN3PmTIhEInTq1Any8vLC7zE8PBz6+vooVKgQgIQgSmxsLMLCwiAWiyEWi/PdVGl/kn8TJ06ElpYW+vfvDwDCiLKRI0di4cKF2LVrF1q0aIHRo0cjPDxcCJ5cunQJw4YNQ2ho6F+9xvzg4sWLMDAwgIeHR24nhTH2l3AwijHGGGOMMcYYY3/kyZMnWLlyJaytrXlkAGPZRF5eHsuWLcOTJ09QqVIl+Pn5wcbGBoMHD0ZMTIwwVVxcXBwA4M6dO1i6dCmUlZWhpqYGkUgEkUiEhw8f4v79+3B0dAQAPHjwAK1atYKnpycqVaqETp06ITo6GnJycrl1qTkio/mXGJS6du0ali5dCh8fH+jo6CA6OhozZsxA0aJFMXXqVDg4OEAsFqNKlSoICgrCs2fP8PXrV2zZsgW7du3C9u3bERkZmZuX/M85dOgQKlWqhJs3b8psz68j9RhjCTgYxRhjjDHGGGOMsT8yfPhwuLi4oHv37rmdFMbyHWtra5w5cwZ+fn4wNDTE/PnzYWRkhFWrVgEAFBQUAACDBw+Gg4MDqlSpgrCwMOH4hQsXIiYmBm3atMHjx4/Rt29fSKVSzJ07F0uXLkVQUBBq166NoKAgme/NLwGB3+VfYlDq4sWLKFeuHJo3bw4AOH/+PLZv34558+YBSMqPt2/fIjIyEqVKlYKWlhY2btyIBQsWwMHBARYWFrlwhXlHWqPNfrXv2LFj0bZtWzg7OwMALl++jG/fvgkjzjJzPsbYv4ODUYwxxlgexVPdMMYYYywv8/f3x6FDhzB58mQoKysL26VSKddjGMsmIpEItWrVwqtXrzB79myEh4ejZ8+eKF26NAICAnD69GlcuHAB8+bNg7m5OerWrYtevXrB1dUV+/btQ/v27eHu7o6pU6fi/v37uHHjBogIHh4e2LVrF75+/YqHDx/KfKdYLM43v+H08s/JyQlnz54FkLBu0enTp6GoqIiPHz9iyJAhaNCgAWrVqgUgIT8CAwMxbdo09O/fHwoKCnjz5g1MTExga2uLR48eQUdHB7dv35b57vySh7/y5csXAEmBvYxM+bh06VI8f/4cY8eOBQC8fv0aTZs2xbBhw/D27VuZ8zHG8hcORjHGGGN5FE91wxhjjLG/KbM924cPH47WrVujSpUqAICoqChER0dDLBZDJBJxz3bGspGioiIGDx6MkJAQeHl54d69e3Bzc4OHhwfatWsHd3d3TJo0CdOmTcPr169RoUIFHDp0CL169cLz58/x4MED9O7dG926dYOnpyc8PT0hkUigra2Ny5cvAwDev3+PcePGITw8XHgXyS/rSaXMvzt37sDT0xPPnz8HACGgHhERgaioKMycOVPm+Dlz5kAkEmHUqFEAEoLxFy5cwOTJk/Hy5UtMnjwZnz59kjmmIDwHO3bsCF1dXRw9ehQAICcnB4lEku7oug8fPmDixIkYMmQIbGxsIJFIsGnTJoSGhuLZs2fw9vaGiYkJ/P39/+ZlMMb+EhEVhDB9LoiPj4e8vDxiYmKgpKSU28lhjDH2D9m/fz8OHTqEyMhI/PjxA82bN0ebNm1yO1mMMcYYy6e+fPmCwoULC39LJJLfriGzcOFCjBkzBteuXYONjQ0AYObMmdi/fz/q1auH//77L0fTzFhBd/fuXZw7dw4aGhqoWLEiihUrJkxxllJwcDCKFy+OEydOwNXVFS9evMCECROwbds2SCQSBAQEoEyZMpg4cSIWL16MPn36wM7ODi1atEj3nP+6e/fu4cyZM+jfv3+6+xARRCIRbt++jUqVKmHhwoXo3Lkzbt++jdGjR0NRURF79+6VOebJkycIDAzEu3fv4OXlla87GMbHx6N///5YsWIFAKBOnTqYP38+rK2thc9TjnDq168f/Pz8EBAQAB0dHdy5cweVK1dG37590aZNG9jb22Po0KE4d+4cTp06BQ0Njb9+XYyxnJM/S5RcJpVKIS8vjx8/fsDY2BhDhgzJ7STlG/ll3mLGGEsu8dkWGhqKCRMmoEmTJrhz5w6UlJSEcqR8+fJ49OhRLqeUMcYYY/lRVnu2A0BcXBzs7OzQp08fbNmyBaVKlcLjx4//2jUwVtCUKlUK/fr1g5eXlxCIIqI0RzKpqKjA3t5emJbO0tISvr6+OHnyJObMmQNnZ2fcuXMH27Ztg1Qqxdu3b7F27VqYmpri1atXwnnSO/+/yMHBQQhEJX/WJb8+kUgEqVSKIUOGwNjYGJ07d0ZcXByOHTuG169fY9iwYcK+kZGR8PX1RbVq1TB69GgsWrQI+vr62LRp09+7qL9MXl4ey5Ytw5MnT1CpUiX4+fnBxsYGgwcPRkxMjBCIShwddu3aNSxduhQ+Pj7Q0dFBdHQ0ZsyYgaJFi2Lq1KlwcHCAWCxGlSpVEBgYmG4Zkt9HmzGWn3EwKgckDjbr378/JBIJ/P39oaWlhQ0bNuRyyv59AwcORP/+/QvEvLuMsfwhIxXlxN6Gvr6+mD59OkaMGIFLly5h7dq1mD9/Ph4+fAg3NzeMGTMGwcHBOZ1kxhhjjBUg8fHxKFq0KD5//ow6deqgXr16ePbsGeTk5CAWi9Osy0ycOBGampoYMGAAgITG25CQELi7u6Ndu3a4f/8+TE1NsXXr1lTHcgdDxrJf4vuESCRKc1SjpqYmmjdvjmXLlsHX1xc/fvzAly9fULlyZQwaNAhisRjz5s2DqqoqfH19sW7dOhw9ehRLly6Fjo4OTp48idu3bwvnzy8BqUTJR3+lzD+xWIxp06Zh+/btABJGku7duxeurq4oX768sN++ffswYcIENGjQAJcvX8b169cxYcIEzJ07V1gHKVF+W1fP2toaZ86cgZ+fHwwNDTF//nwYGRlh1apVAJLWf7p48SLKlSuH5s2bAwDOnz+P7du3Y968eQCSyoe3b98iMjISTk5OABLaWUNDQ/HgwQPhfEQEqVTKZQpj/xgORmWzxOkMHj16hNWrV2PJkiV48OAB5s+fDx8fH3Tq1CnVHLIsY548eYKVK1fCysoKIpEo31V+GGP5S2YXcr179y42b94MOzs7TJs2TWY6Ay0tLfTq1QtisRgBAQE5l2jGGGOMFThZ6dleuHBhXLlyBS1atEDt2rVRqVIl9OnTBwBQrFgxPHr0CHFxcQCAK1euICYmJt9O+cVYXjd06FAMHz4cQ4cORd26ddGjRw+8ePECALB3717cvXsXrVq1Qt26dYVjtLW10bhxY/Tv3x81a9ZEgwYNEBYW9ttpPPMTIkK5cuVQqlQpAICqqiq+fv2KChUqCPt8+PAB+/fvR1xcHLZv346WLVvizZs36Nu3LyQSCXbv3g0g4Z0w+bp6+SmQIhKJUKtWLbx69QqzZ89GeHg4evbsCScnJ2FEnre3N06fPg1FRUV8/PgRQ4YMQYMGDVCrVi0ACYG/wMBATJs2DX369IGCggICAgLQv39/lCpVCm3btoWtrS38/PwgEokgFoshFosRFBSEunXryoziY4zlTVwLzKCMDgFNLJC7d++OatWqoVq1agCATp06YfPmzXj16hWOHDmSY+nMz4YPHw4XFxd0794dAHDz5k0ULlwYb968yeWUMcZYapmd7ubt27e4c+cOfHx8ACSVO4lzjBcvXhyTJ08W5t9OlJ961DHGGGMs92SmZ7urqytatGiB6OhorF+/HiEhIRg3bhxmz56N58+fQ0tLCwEBAdDW1haOq1+/PmbMmCHznYk92xljOSvxd9a7d28EBwejVatWqF+/PiwtLREdHY21a9fCysoKTZo0AZDUke7x48cIDg7GqVOncOPGDSgqKqJhw4bCCJVE+fmdJPmaT0QEVVVVdOvWDd27d4e3t7ewrpS/vz9WrFiBFy9eID4+HqVLl8aoUaMQHR0NU1NTAIC/vz8aNWoEPz8/AMiXwXlFRUUMHjwYISEh8PLywp07d+Dp6Ynnz58DAJSVlQEAERERiIqKwsyZM2WOnzNnDgBg/PjxABLeq+/fv49Ro0Zhw4YN6NSpE7p164bZs2cL9/WkSZPw6tUrBAUF/a3LZIz9ofz31MtmmenZnthwuHfvXly5cgXDhw+HoaEhgIQCy9XVFcWLF8e4cePw+fPnHE55/uLv749Dhw5h8uTJUFFRAQCULVsWvr6+MDMzy+XUMcaYrD+Z7ubZs2dQVVVF1apVIZFIUi30KpVKYWNjAzs7O+FvIOHliOfMZowxxlh2yGjP9lOnTkFRURHKysp48+YNzM3NhREVx44dQ+PGjfHu3Ts0atQIIpEIFy5cQOHChVGnTh3hu+7duyf0bGeM5azE31l8fDzEYjF69OiBjh07AgDmzp2LJ0+eoEGDBrCysgKQ1NFaKpXi9evXePv2LUxNTbF27Vo0adIEBgYGMudPHOWT34PLiYGpIUOG4PHjxzAzM8PHjx/x+fNnKCgoQEFBATo6OtizZw+2b9+OEydOID4+Hvr6+oiKisKpU6dw5coV7Ny5Ez169MDixYsBJL3b5aegnq6uLtavX487d+5g9uzZwr2VyNzcHC9evEDx4sWF6759+zZWrVqFyZMnQ1lZGVOnTsX379/h4+MDb29vODo6YuTIkRgxYgTMzMwgFotx+fJlHDp0CH379kXZsmUB5K98ZCy/ERH/Qn+pYcOGuHTpEjZv3iwMG5VIJKkqzYk9IQDAxMQEtWvXxty5c6Guri7z+ebNm9GrVy9cvXpVaFBMeXxBEB8fn6qh9Vf7Ojs7o2TJktiyZQsA4NKlS7Czs4OWllamz8cYY3/Ls2fP0K1bN5w/fx5AQuPN1KlToaSkBED22bVt2zb06NED169fR/HixVOdK7GciIqKwrZt2/DkyRNIJBJMmjRJCNIzxlhBljhdNmMs+3z8+BFDhw7Fxo0boaCggAcPHqRqUBw+fDj27duHFStWwMjICKdOncKSJUvg4OAgrBm1ZMkS7N+/H6tXr4aamhpWrVqFUaNGYdmyZejZs6dwLv4ds7xIKpXmq6BpyvanW7du4fDhw+jVqxd0dXUBAHFxcVBQUAAAjBgxAg8ePMDIkSNRsWJFfP36FVpaWggPD8fz589x/fp1uLu7w8HBIc3z5zeJIzpTPqvatWsHdXV1LF++XNgmkUhw69YtuLi44MiRI/Dy8oKrqyvq1auHuLg4zJo1C0+ePIGamprMMYnT+OU3yX9LKZ/3UqkUNWvWRFBQEB49eoSYmBh4eHigXLlymDRpEtTV1YV7KyYmRninrlGjBpSVlTFr1izY2toCyP/3IGP/svxTmuaAzPRsTxwxNXnyZERHR6N3795CIApI6uXw8uVLKCgopBrNU1DWQMrsGioAsHTpUrx69UoYovvu3Tt4enpi9OjRwj4ciGJ5UX7vFcZ+LyPT3ST2CalYsSLMzMywZ8+eVCOd4uLiIBKJ8PTpU3Ts2BH9+vVDYGAgrly5AhMTE2EqQMYYK0gSn5+J67HKyckViF7ZjP1Nv+vZDgAzZ85Ew4YN0adPH4wdO1aYlir5+9rdu3ehqakJU1NTzJo1C7du3QIA4Z05OjoagOxoDMZyU2J9PHF9n/wkZSO9k5MTxowZIwSiAGDnzp24evUqAKBnz55QVVXFuHHjEBMTIwSimjdvjvr162PZsmVwc3ND586dERMTk++DACKRCHJyckI9JPF/O3bsiIMHD8LDwwOnT5/G2bNnER8fjzJlyuDNmzfYvHkzLCwscOTIEfTt2xfe3t4IDAzEjx8/cObMGaxZswbh4eGQk5ODSCTKl6N7kv+WUgbzxGIxpk2bhu3btwMAFBQUoKioCCCprEgcgVeoUCEAgK+vL549eyasJRUXF4fbt2/n+3uQsX9Z/ipRs1lGF3KNi4uDvLw8vn79iokTJ2LcuHEyPUISe0zExcVh/vz5qFu3rhCEOX36NBYsWIDo6GjhQZwfC5xEmV1D5cOHD5g4cSKGDBkCGxsbSCQSrF69GsrKypg+fToAwNPTE/fu3ftr18DYryS+tCRfnLkgBJpZ+n433U3ii4axsTE6duyIZcuWYfny5ZBIJIiKigIAoVfihAkT8OnTJ+zZswebNm3ChQsX0L59e6xatSpV2UFE+bo8YYwxkUiEDx8+YPjw4WjWrBkCAgKEhawZY9nLwcEB/fv3ByAbKEr8/7Nnz8bVq1fRp08fmJmZoWHDhihZsqSw344dO9C9e3eMHj0agYGBMDU1haWlJVq1agUgoQNijRo1hPWA+XfMcpNUKoW8vDyio6Ohr68vTFGZX6V8ZwgPD8f9+/cxa9YsBAUFwcLCAgsXLkRAQACuXLmC6OhoDBs2DLdu3cL+/ftx6tQpXL9+XZh+LqX8+j6cGPBI/F9PT088e/YMFhYW6N+/P7Zt24b3798DAPz8/HDr1i2MHDlSOD42NhZ+fn5wcnLCsGHDsGbNGhgbG2Pu3Lky5y0oiAjlypVDqVKlACS0F1pZWeH9+/cynTUTR43Fx8dj1qxZ8PT0RJUqVQAAo0ePhqurq9BRKRF3cGAs7+AaXgb8rmd7YiOhv78/JBIJ7t27JxTmidP5SaVSDBw4EBKJBC1atICGhga+ffuGgIAA7Nu3DyYmJliwYIFwTH70J2uoTJw4EVpaWsKLz/379zFv3jyMGTMG6urquH37Nh4/fozQ0NBUx3Jhw/62xJeWmJgYGBsbY8iQIQBQIALN7PfSW8j11atXwnN/6NChmDZtGqZOnYoaNWpg8ODBmDBhAiQSCU6dOoXbt2+jbdu2qFmzpnBeU1NTPHz4EB8/fhS2/fjxAyKRiNeTYoz9czL7zPr+/Ttq1aoFMzMzeHh4YPjw4YiLi8uh1DHGANlAkVgsFjpgamhooGrVqtiyZYswqwUA7Nu3D8rKysL0fRMmTICCggKaNWsGOTk5rFmzBps3b4ajoyPMzMzQsWNHvH79OheujLEEie9tgwYNgra2NooUKfLL/f51KdugNDQ00KtXL4SHh8PJyQlDhw5F586dASS0j928eRMbNmzA+vXrUbZsWWhoaKBEiRIoU6YMNm3aJORLYse6gvI+LJFIoKKiglWrVuHYsWMYPHgwLC0tcfPmTRw6dAilSpVCs2bNhP2PHTuGMWPGwMbGBteuXcOlS5ewdu1arFu3Djdu3Eh1/vyef2m1hbZr1w4XLlxA165dcffuXdy9e1do6/Px8RHaWI2MjPD27VusXLkS06dPh46Ojkx+cQcHxvIO/jVmUEYWcm3dujWuXbuGq1evwtTUFAsXLsTx48exZ88edOnSBcuXL8eIESNQvXp1AICmpiZGjBiB06dPY+HChVi2bBn2798v8735qWd7RkeaJTZCXLt2DUuXLoWPjw90dHQQHR2NGTNmwNjYGAMHDgSQ0OCqpKQEZWVlme8iIi5s2F+X+FtNDDz7+/tDS0sLGzduBJB/A80sc1JOd2Nubg4gKYDetm1bBAUFwcvLC87OznB2doacnBy+fv0KRUVFVK5cWXihk0gkKFSoEOLj44X778qVK/jvv/8wfvx4IUDKGGN53Z9M5fz9+3doaGigZcuWmDt3Lo4cOYLDhw/jzp07qfblTkqM5ZzEDpiJ76729vbC2r4SiQTXr19HSEgILl++jDVr1sDCwgKxsbFQUlLCiRMn0KdPH7Ru3RpjxoxBSEgILl68iEuXLqX6nvw6uoLlLYnr2Dx69AgrV67E2LFjYWlpCSCprSLxf/Pr+x0RwdTUFMeOHcOSJUvw6tUr2NnZYd++fShatCh27tyJ4sWLo169esKa6gDw7ds3qKurQyQS4du3b5g5cybatGkjdBLJ78tTJJ8u2MjICNbW1pBKpbh06RIuX76MoUOHAkjI38jISPj5+SE0NBQ3btxA7dq1cevWLTRv3hzGxsbw9fVNdf6C2NGwatWquHjxIkJCQtC8eXNcu3YNYrEYr1+/xvr169G8eXO4ubkBSFjbzNTUFF27dgWQ9PusW7euMOUkYywPIPZHPnz4QB07diSRSESKior07Nkzmc99fX3J1dWVKlWqRBoaGuTs7EzTp08nIqIvX77Qpk2baMCAATR06FDh2KZNm1LLli2Fc3z//v3vXdBfJpVKyd/fn4yMjEgkElHhwoVp5cqVMvvMmzePXF1d6cePH0REdPToURKLxXT06FFhn2XLlpGRkZHMcceOHaOKFSvSsWPHUn0ny7r4+PjcTkKelJgvjx49IpFIRJs3byaihGeBoaEhzZ49m+9Bli6JRCL8/7i4uDT32bJlCykpKdGnT5+EbS9fvqTSpUtTp06diCjhPrxw4QKtXr2a3N3dydDQkPbu3ZujaWeMsezQoEED0tHRIX9/f2FbfHy8zPMx+fZjx45RyZIlqUKFClSuXDk6dOgQRUZGkpOTE23cuFHY9+PHjzLHpnU+xljOWrlyJVlZWdGhQ4eIiCgmJoacnJyoTZs21KBBA+rYsaOwb1BQEGloaNC1a9eIiN/hWPZJr46dnlq1alGFChWEvxPbJYiIJk+eTFOnTqXo6Ggiyp/3aXrv/VKplDp06EANGjQgiURCsbGxRER05coVKlGiBC1atIiIiC5fvkwuLi5kbGxMa9asod69e1NMTMxfS39ec+bMGSJKulfi4+PJ1NSUFi5cSPHx8dS5c2dSV1cnb29vcnR0pNmzZxMR0blz52jVqlU0ZcoUmfxLWZ/Jr/Wb5Pfhw4cPhfutadOmVK1aNbp69SoREV26dInk5OTo4MGDRJSUz6tXryaRSESXL19Ode7EcxERRUZG5tg1MMZkcTAqi+7evUsLFy4U/k5ZwXn06BEFBwfTly9fhG3Dhg0jOzs7ql+/PrVo0YK0tbVpyJAh1KxZMxoxYgTFx8dTeHg41a1bl7Zs2fK3LiVX/Pjxg+bMmUNycnIkEonI0dFRKKSJiKKioogoIfhXsmRJatSokczxXbp0oQ4dOggFzfbt26lUqVLk4eFBoaGhqb4vPj4+X1YU/6YRI0ZQq1at8m1lJ6XMvrRUqFCBPDw86O3bt8I2b29vcnZ2ps+fP2d38lgB8uLFC3J2dqa5c+dSXFwcXbhwgXr27EmFCxcWyhipVCo8N4mIxo8fT+7u7hQeHp5LqWaMsd+Li4ujXr16kUgkIpFIRHXr1qWnT5/KfJ7ckydPqFKlSuTp6UknTpygKVOmkL6+Prm4uFCJEiWEYFRoaCh1796dBgwYIPNs5I412YfzkmVUZGSk8FvesmULiUQiqly5Mg0aNEimnrJ69WoqUaKETMfM+/fvU+XKlen69esy5+T3OpYRKd/BfvXcSrxH9+3bRyKRiNTV1WnixIky+1y9epVq1KhBjRo1Et6JBw8eTCtWrMjmlOcNab33b968mezt7SkkJETYVr16dapXrx7dv3+ffvz4Qd27dyc1NTUaPHgw7d27l6pVq0YODg70+vXrv5n8XJdeu0loaCgZGxvT2rVrhW1XrlyhatWqkYGBAR04cIDCwsJIRUWFPDw8qGzZslS4cGFavHixsL9UKqUXL17k+DXktpS/2ffv35OtrS3NmjVLCBLXrFmT6tSpI1NnjI6OJl1dXRoxYoQQePr69Ss9ffqUIiIihP0+ffpElStXFgKAjLGcxcGobJS8kEmvghMWFkbVqlWjbt26UVxcHP348YOuX79OlpaWZGRkJAS2YmNjqVChQnTgwIFU55ZKpfmu4v27kWYvX74kCwsLevLkCRElVBKlUik1a9aMBg0aRFKplJYuXUpqamo0ZswYCgsLIyKiBw8ekL+/P82ePZtevXolnC+/5d/fFBwcTCdOnMjtZOS4P3lp8ff3J5FIRKdOnSKipN/t0KFDydDQULgvk3/GMsff3194DhREGzduJE1NTXJ0dKTChQtT1apVadeuXUREtHXrVqpRowZVqVKFunXrRqGhoRQaGkrm5ubCPZlSZoOtjDGWk54+fUqVK1cWglKDBg0Sep0TJfVgffToESkrK9OFCxeEz27dukVWVlbk6OgobNu1axeVKFGCbG1tacqUKdS1a1eZoBTLuoLWSYllnlQqTfUuO378eBKJRDRhwgR69+4dESXVtZcvX07Vq1enDx8+EBHRihUrqGLFiuTs7JxqpGPicfxux34loyNvk99HRYsWpe7du9OOHTuoVKlSVKxYMWG2gTFjxlDFihVlOtFeunSJ5s6dW2AC9MHBweTh4UEGBgbUqlUrsrKyIlNTUzp+/DgRER0+fJg0NTVlAi13794lY2NjmXxLJJFICuTveMiQIdSkSZNUI8Zu3LhBERERtGvXLrKzs6PAwEAiIlq3bh05OzvT+fPnSSKR0MePH6lChQrUrVu33Eh+roqNjRXKhODgYLK0tCQfHx+ZfQYPHkxFixalwMBAkkgkdOHCBSpZsiTZ2tqSmpoazZgxg4iSOkgEBAT89etgrCDiYFQuaNGiBTVv3lz4++vXr0IUPygoiIiI9u/fTy4uLnTr1i2ZY4ODg/9mUv+6lCPN0pK8gqejo0OHDh2iESNGUJkyZWjkyJFElNDAum3bNrK2tiY3Nzfy8PAgVVVVGj16dI6mP79L3uiT3/3JS4uZmRkpKCiQlZWVEEi+ePEi6ejoUPPmzSkmJiZVQKogVrr/1Pfv38nMzIzat29PO3fulOmJV5BIJBLatGkT+fv7C1P2vX//ntTV1cnLy4uWL19OzZo1Iy0tLWrfvj2JxWKhB+KrV6/o4MGDtG7dOplz8n3IcktiQDR5wIH9mbCwsHwREMjIVM5v376lsmXLUseOHSkoKIgePnxI48aNI3V1dWFWgSdPnlCzZs1IX1+fpk+fTn5+flStWjVydXUVGnVY1hWUTkos+yVO2Zco8R2vU6dO1Lp1ayIiWrRoESkoKNCUKVOE3+3jx4+FKYm/ffsmHM91GZaWzIy8Tfz/kydPJh0dHbpx4wYRJUwrOXv2bDIyMiJbW1sqU6YMDRkyRDju/fv3Mt9ZkO5FX19f6tmzJy1atIhevnxJRESBgYFUr149Kl++vMy+165dI3Nzc9qwYQMRJfzmnz9/LgSeE7cVJNevXydbW1tydnamw4cP06lTp2Smi7tz5w5paWnRoEGDhNGlp0+fpjdv3tCmTZvI0tKSNDQ0hOdj8qkk87O07pPWrVtTkyZNiCihTnz8+HGSk5OjpUuXEhHRpk2byNnZmWrVqkVnzpyhPXv2UJUqVcjf358cHByEgF5B+v0ylls4GJUL/Pz8SFdXl6pVq0YDBgwge3t7MjQ0lJnffs+ePWRlZSUzmmfLli1kZ2dHq1atIqKkh2R+aHhIy+9Gmp09e5aUlZXJ3d2d1NXV6ejRo8J0Djt37iRHR0eZCtD58+fJzs4u3Z447NcOHjxIIpFIqJQnyo9596cvLXp6ekKvOG1tbdLV1SVtbW1ycXGh8+fPU2BgINWqVYuaNGlC9+7dk/lOrvT83qRJk0hFRYWqVq1KPXv2JHl5eZozZ05uJ+uvSm8kk6+vLxUqVEhmuoHDhw+TSCSi7t27E1FCw2z16tXJ3t6eHBwcyMDAQFjbLFHyRh3Gclpi+RETE0M6Ojo0ePDgXE7Rv0sikVDTpk2pWbNm+WZazt9N5Xznzh1ycnKiihUrUt26dUkkElG9evWEzxctWkQ2Nja0e/duYdulS5dIX19f6OyVfLYBiURS4BrBsqogdVJi2edXHbuioqKoSpUqNG/ePGrevDm5ubnRlClTiCjhmXD48GEyMTGhMmXKCO+ABa0uyP5MRkfefvr0ieTl5Wn69OnCaJXkawPb2tpS5cqV6fHjx0SUMHIvrTaG/PiOnFx65WVMTAytXr2aChcuTFeuXBG2R0VF0ZgxY0hbW1vI13v37tHo0aOpePHiNGjQoFTnKkgzOCQu5dG+fftUHdKPHj1KdevWFdoBE128eJEUFRVJSUmJBg4cWODrMGfOnCFTU1OqUKECeXl5kby8PNWoUYOio6MpJCSEPD09qWPHjjIjbMePH08GBgakqakpzIyTWCZx+wxjOYeDUblEIpHQypUrafz48WRiYkIdOnSQWTyvd+/eQiAlIiKC1qxZQ6qqqjRq1Ch68OBBmucsaIVPcHAwubu7U5kyZYTh4EQJjandu3cne3t7KlKkCJUtW1YY3dK+fXuhYTalgjbFQ2Yqd3FxceTo6Ejt2rUTtl26dIm+fv36R+f7V2T1pcXX15d27NghjOB58eIFbd++nfr06UOqqqo0c+bMVJWd3bt304IFC/JlfmbFq1evqFSpUjLrfkybNo1cXV0pPDxc5vlZEF2/fp0sLCyEnl+PHz+madOmkbKyMt2+fZuIiE6ePElubm5CD/YFCxaQg4MD7dmzRzhP3bp1qWfPngWuPGG5I/E+6969O2lpaZG9vT1pamqmetlmv3fixAmqUKFCvpzrPuVUzinXRrh79y5t2rSJRCKR8Ly7fPkyeXp6UsuWLWX23bt3L9nZ2aUakZEygOfv709Dhw7lAP0vpOyklHxB9oJUn86qxLxKa/q5gkYqlVJcXBxVr16d5OXlydrami5fviw06u/fv5+cnZ2pRo0awjE7d+6kkiVLprmWFN+HLKWMjLxdtWoVWVpaplo2gIhozZo15ObmRvPmzSMioi9fvlDt2rWpZcuWwv7J3+GkUmm+r1OnDLq9e/eOihcvTo0bN5bZfvXqVdLQ0KBZs2YJ22JjY+n169d05MgRKl++PDk7OwuzOST//drb26f6jecXye+Xz58/C219R44coUmTJhFRQoBv8eLFpKamRufOnSOihNmVxowZQ0WKFKFTp06Rk5MTNWrUSGat+pRTpBYU586dow0bNpBIJKKjR48SUUL5UapUKdq+fbvMvgsXLiSRSPTL9d7y+2+YsdzAwahckLzA+fbtG02YMEGY0oso4YW4YcOGNG7cOCIi6tKlC5UrV07oMRwbG0u3b9+miRMnUt++fVP1bC9oEqc2JEooKGJjY6l06dJCL7rhw4eTpqYmdenShaytrem///4jooRCat68eTRkyBCZ6Q/z+4tLZtZCSrRgwQJSU1MTeoC9evWKDAwMqHv37vTmzZscSWde8ScvLWlV+kJDQ2UWa922bRs5OzsL8+QTJQS12rRpI1MRZwlat25NzZs3p4cPHwrb9u/fLwQJBw4cSFWrVqVr167lYipz18KFC0lTU5OaNGlCZcuWJZFIJDzviBLW0Evs1JB4jx46dIgePXpEly5dIkdHR5KXlxd6MXLFm+WkxPvrwYMHJBKJhNHhGzZsIB0dHSpVqpQw3Qv7taioKGrYsCE1bdpUCKrkx8aHlFM5p3xG7d+/n4gS6tbjx4+nkiVLyvQuDgkJoT59+pCTk5PQqWH9+vXUtm1bKlWqFPXs2VPYt3nz5lShQoVUvZPzsz/ppNSmTRthW2xsrMx6XNypJuPCwsKoS5cu1LRpU7p69WpuJ+evS+zoJZFI6OzZsyQWi6lRo0Yya4SGh4dTnz59qGjRolS4cGGqVasW3bx5k4iIateuTQMHDhT25an72O/8buTt169fhXsn8Vn2/PlzatSoETVp0kR4n548eTKVKVOGdu7cSUQJncMGDhxILVu2pCNHjgjnK2j3YUBAgExQ5OvXr9ShQwcyNzcXtj19+pROnDgh/M6/f/9OLi4utHXrViJKyvf//vuP1NTUhN97fpRW0GjmzJlkY2NDvr6+RJTQ0dDZ2Vn4++TJk1S0aFGaOXOmcMzz588pJiaGrl+/LvPOXFDe6ZLXOyIiImj16tVCvXjfvn2kpqYms8/Xr1+pWbNmZGNjI2z7/PkzLV68mCZNmkTLly//e4lnrIDhYFQuSqtSEh8fTxEREVS/fn1q164djR07lpSVlenIkSPC9EtDhw6lWrVqUY0aNei///4jPT09ql27NoWGhv7tS8hV6b3khoeHk7GxMc2fP1/Y9uTJE2rSpAkZGRmRn58fffnyhUQiEdWoUYNq1KhBampqNGHChL+V9FyV0bWQEoWFhZG2tjaNHz9e2NfHx4dEIhFVrVqVmjRpQsbGxuTn5/c3kp9rMvPSQpRU6YuIiKD58+eTubk5lS1blsqVK0cXLlygp0+fkqmpqUzwZNmyZeTu7k7Lli37exf2Dzh//jyVKVOG1qxZI7O9du3aZG5uTkuWLKHr169Tz549ycrKqsAF8lJOb3Pjxg3q3LkzaWlppVpn8MiRI+Tp6Sn0/pJIJCSRSOjdu3ckEolIWVlZJoDFWGZltgG6Vq1aVKFCBZlt0dHRNHv2bHr06FF2Ji3fWrFiBbm6ugqjHPNjICql5NeYsj59+/Ztsre3p969e8ts37FjB5mZmQllyaJFi0hVVZUaNGhAS5YsoQoVKtCECRNo6dKl5OzsXGDK4qx0Ukqcwnjp0qXUsmVLcnJyookTJ+ZIOv8lmX0Ovnz5krZv306DBg0iNTU1GjZsWIEZ8S2RSGjVqlXUrFkzatOmDVlbW1PPnj2F997kAQFTU1NavHgxxcfHU+fOnUldXZ0GDhxIjo6ONHfuXCJKmLaqbt26tH79+gIXAGCZl3LkbVqjoRJNmDCBKlSoQNu2bSOihM40rq6u1K9fP/r69SsFBQVR8eLFyd3dnYYMGUJaWlrUpEmTAtdGk9bvbseOHSQSiejw4cNERDR79mwyNzen0qVLk4WFhTCK2dXVlUaNGiUcFxwcTHJycjR//vwC80xMbuXKlaSpqUkVKlQgBwcHof0hOjqa2rVrR3Z2djL7v3v3jmrVqkUlSpQgPT09atSokcx6XAVFWvfgkSNHyMzMTHi3kEqltHnzZhKLxUJnps2bN1OTJk2oRIkSNGjQIDIzMyMnJyeZwB5jLHtwMCqXpdVgEBgYSCKRiPT09KhBgwYyo6auXbtGIpGI3N3dham/vn37RhUrVqS1a9f+tXTndT4+PuTp6SnTI4cooQdOdHQ0HTx4kIyNjYWec0eOHCEXF5d8vwBzZtZCStS3b1+ysLCgT58+EVFCI4+GhgaNGjWK7t69SxKJhLy9vcnFxaVATGeTmZcWooRpbMqUKUP9+vWjq1ev0rhx46hw4cJkb29P7u7udPHiRSJK6O1Uv359at68ubD2GUvoaV2yZEnq3r27TGV627ZtMo2KRETPnj0jfX19OnjwYG4kNdcl//0+e/ZMyIcjR47Q0qVLKTY2lqKjo2nevHmkp6cnTPNAlDC6T0VFhVauXEnFixcnFxcXCgsL++vXwP5dmWnQTrxX9+3bRyKRiNTV1bkB+w8FBwdT9erVZUb1MKL79+/LTCX8/PlzatasGVWuXJmIEuqD6urqNH36dKHR4smTJ1S+fHkqV64cdezYUWbkcn6W1U5K165dIycnJ/Ly8iJfX18qWbIk2dnZ0Z07d/5G8vOUPwnsRUREyEzRd+7cObKzsytQI72/fftGTZo0oVatWtGuXbvS3Cc0NJSMjY1l3nevXLlC1apVIwMDA9q1axdJJBKaMmUK6ejoUIMGDcjb21u4Txn7lZQjb1N6//491ahRg1q0aCFs69WrF1WtWpVOnjxJRAnrGKqpqVFgYCAREb19+5Zq165Nq1evztnE/wOWLVtG1apVI6KE37u2tjaNHTuWbt26RQEBAdSyZUuSl5cnTU1NYVo1IqKGDRtSmTJl6O3bt7mV9FyRvPyNi4ujhQsX0rp164Q1p48fP05qampCuf3jxw8iSlh3XktLi548eUJPnz6l5s2bk62tbb6d4jAzwsLCqEyZMlS6dGny9fWlbt26kbq6OtWuXVv43M7OjkxNTSkgIEA4rnnz5rymLWM5gINReUziXNleXl7UqFGjVFF4Dw8PcnNzI09PT9LS0iIfHx8iIvL29hbW+eBeYAkN+2XKlCFLS0vavHkz7du3T+ZF7/nz52RiYkKdOnWiDx8+kEQiofPnzxeY+dp/txZSYkNhQEAAiUQiYSrIqKgoatOmDZUoUULmfPv37ycDA4MCNbXI715aEh0+fJi0tLTo/fv3wrb9+/eTiYmJzBpc48aNIzc3N6FnDkvw7ds3GjZsmMy6RhKJhEqXLk2dO3eWyddLly6RSCSiV69e5UJK847kZYBUKqUVK1aQu7u70MDz5csXqlChAo0dO5aIEqaH1NPTk+mJePbs2b+baPbPy2iDdvL7s2jRotS9e3fasWMHOTk5kYGBAT8DM2nEiBFUsWJFofwtCKOifidlPTguLo5mzpxJ+vr6QqNhnz59qHjx4qmOLV26NNnZ2QlTLuV3f9pJydLSUugg8vDhQzIxMaF9+/YRUUJwZcyYMbRly5a/cxF5SGYCe/Hx8XTs2DEqWbIkVahQgcqVK0eHDh2iyMhIcnZ2FqYuLUhSrrWT0pAhQ6hp06bC+qyJrl27RjExMXT58mUyNzcnV1dXmj17tjDta0GvF7LMSa8c/fLlizCl3P79+8nFxYV8fHyEezUiIoI8PDyoatWqwpRy586dk3nHLsgSg/OvX78mR0dHmVlsiIhKlChBrVq1EvL47NmzJBKJaNeuXQW2fSu9UbbDhw8XppZLfr9u2bKFVFRUhCnXIyIiaPTo0QWmjSsj/vvvP+rXrx+VK1eOFBQUhI7FY8aMIXt7e6pZs6Yw6pYoYa1Rd3f3AjnCjLGcxMGoPCxl4fPlyxeqVq2asOjjvn37yM7OjqytrcnOzo7atm2bG8nM02bPnk1OTk7UuHFjevz4MUVHRwtDvC9cuEANGzbMl4t9Z0RG1kKaN28eubq6Cr1tjh49SmKxWHjJTqz8LFy4kNTV1Qvk8HmiXzf+3bx5k4oVK0bDhg2jV69e0YULF6hZs2ZkaWkpjIo6efIkVa1aNdWUQixJ8peQ8ePHk4ODg0xjDxGRs7MzNW7cWGbNCpZgxowZpKqqSrVr16aGDRuSoqKiMHKqf//+ZGZmVuCmEWHZJzMN2on/f/LkyaSjoyM02MTExNC0adNo5MiRqUYXsLTduXOHKlSowD3/M2DFihVCPTkmJoacnZ2F0XiJ9+StW7dIR0eHvL29KTIyMtfSmhsy2kkpcYaGlOvV9u7dm1xdXYVy+fXr10JnkYLSiJjZwN6TJ0+oUqVK5OnpSSdOnKApU6aQvr4+ubi4UIkSJQr8msBpuX79Otna2pKzszMdPnyYTp06JUzn9+HDB+rXrx/Z2trKNBomztrAgXqWFSnvnxEjRlCFChXo4cOHFBkZKcxY8+zZM/Ly8uJ3umSkUqlMORAbG0teXl5kYmJCBw4coM2bN1PXrl1JRUVFmAKRKCE41axZM2F2loIqrTJ04cKFZGVlRYcOHUq1z8iRI4VyhYiEmYIKSlmcnuQjlePi4mjEiBHUo0cP4bNBgwZRo0aNiCihndDNzY1MTU2pRo0aZGFhkRtJZixf42BUHiSRSNJdT8rNzY06deokbIuKiqJZs2aRnp6e0AOioBc0RLKFzY8fP4SXQT8/P5o0aRJJJBKKi4ujrVu3krKycr5f7+hXfrcWUmLD/ocPH6hkyZJCIZ0oMDCQjIyMhFEW/LKX2oULF6hkyZLUoEEDKlOmDIlEIho2bBgRJTSK9e7dmypXrsxD6DPg+/fvZGNjQ/3795eZgmnjxo1UqFAhOnXqVC6mLu9JXh58+vSJRo4cSdOmTRN6/b9+/ZoUFRWFxXAZy4rfNWgndlj49OkTycvL0/Tp01P1cM/sWisFVXx8PDVo0IAqV65c4Br9/1Ri/SQ+Pp5atmwprFGRqF27dlSlShU6f/58biQv12W0k1K5cuWIKGFKusSp5AIDA2nAgAHUtGnTAh9Mzuhz8NGjR6SsrEwXLlwQPrt16xZZWVmRk5PTX0/3v2TYsGFkZ2dH7du3p1u3bhER0datW8nBwUEYbcHvIyynJbYvHDlyhCZMmCAEQW/evEn6+vpCB2KWtsmTJ1OdOnWoa9eupKCgQP369ROmOFyyZAmpqqrKPB+ZLB8fH9LV1aVt27aRv7+/0Mn11atX1LFjR6pSpUqBWEIhM1IGRpP//969e5Ojo6Pwd3x8PK1evZpMTExo3rx5RMTlCmPZiYNR/5hNmzZR+fLlU80jzj0e0pZyrvZVq1aRhYWFUKC8e/eOSpQoQRs2bMiF1OUtv1sL6eXLl2RhYSEMnU80aNAgMjY2lgkMsAQpKzz379+nSZMmUZEiRYTGw82bN5O7uztNmjQpt5L5z4mMjKTXr1/LbDM0NKT+/fvzeltpkEql6a5bMW7cODI1NeXfbxYl9sxmGWvQXrVqFVlaWv52zT2WvsjISOrQoQOJRCKaMWMGr/H2CynLYiKiWbNmkaGhIe3bt4+OHz9OI0eOJFVVVZo6dWoupTLvyGgnJV9fX+rSpQsFBwcTUcKIgGLFislMW1VQZeQ5+PbtWypbtix17NiRgoKC6OHDhzRu3DhSV1enHTt2EBE3fKWUvLPC58+f6cGDB0SUcO+1adOGPDw8hM8L+j34p6KiojjvfiPl7/L06dNkbW1NHTp0oPfv31NcXByZmZkJ73acn7KSv5NIJBLau3cvlSxZUpimWSKRkIaGBg0fPpxnu0hD8vsvOjqanj59SosWLaIGDRrITF+vrKxMu3fvzo0k5nlpvRffvHmTypQpk2q68PDw8AI3Wp6xv4GDUf+YqKgo6ty5M6moqFDfvn1py5YtPJoik/bu3UtGRkZUunRpKlGihMy0IixjayElVqpv3bpFampqHMz7jeQVHqlUKjTqvHnzhlq3bp2q8sgyp2/fvqSqqios6srSllaj1o4dO8ja2ppHlGVBcHAwubm5CVN+sQS/a9D++vUrN9Bkg507d5KhoSEVK1aMNmzYIEyry35v6tSp5OLiQq1btyZ1dXWqX7++zLRqBd3vOindu3eP3N3dydHRkU6dOkV+fn5UunRp6t+/fy6lOO/53XPwzp075OTkRBUrVqS6deuSSCSi+vXr52KK8z6pVJqqPrNt2zbS1tamvXv3ElHaDY3s9yQSCfXr14+aNm3KZUkmvXr1ijw8PEhfX5/KlClDpqamwjTELLWUv+OPHz8KHbs6d+5MlpaW9OjRo9xKXp6XsqPhmzdvqGbNmmRgYEATJ04kLy8vKlSoUIFazzurpFIpjR07lpSUlKhjx460Z88eOnbsWG4ni7F8S0REBPZPICKIRCIAQEBAAGbOnAltbW14eXmhYsWKuZy6vE8qlUIsFgt/b9q0CfLy8nB3d4eZmVkupizvSp5nEokEcnJyMp/VrFkTwcHBePjwYW4l8Z+S8h48dOgQhg0bhv79+6NPnz65mLJ/2759+/Dp0yd06NABioqKuZ2cf87w4cOxcOFCzJ07l+/DTIqLi0PTpk0RHByM5cuXo0yZMrmdpDzn48ePGDp0KDZu3AgFBQU8ePAAVlZWuZ2sfGf8+PGYPn06Bg8ejIkTJ/Kz8BeSl8Xx8fE4ceIExo8fj3bt2mHAgAG5nLq85969ezhz5gz69++f5ufDhw/Htm3bULRoUcjJyWHXrl0wMDCQeW8p6FI+Bx89egQLCwvh83v37uHu3bvo0KED7ty5AwcHB86/TDp//jwqVaqU28n4p/348QMDBw4EACxfvjyXU/PvSF6mBAQE4MePH7CysoKhoWEupyzvS2yKFIlEICLExMTAwcEBvXr1gre3N+Tl5XM5hf+W7du3Y926dTAyMkK9evXQpEkTmbYH9nvPnj3DmDFjEBUVhVatWqF9+/a5nSTG8iUORv1jpFIpAAiFysePH6Grq5ubSfrnxMfHc8UmmwQEBEBJSQmlSpXK7aT8sx49egQrKysoKCjkdlJYAZO8oSskJARfv36Fra1tLqfq3/LlyxccOnQINWrU4EaH3/hdgzbLuvDwcNy5c4cbZDMoeQNiWFgYFBQUULhw4VxOVd6WXielL1++4MuXLzA0NISysnKqzjcsQcrnYMqOXgcPHkSDBg04/zIhZdCOg3hZx/df5qX8LbOsiYyMhKqqam4n45+R8v7j9q7MIyJIpVIhH0NCQlCkSBEuTxjLIRyM+kdxJZHlNn7ZyxrOP5YXpKx4M/Y3cB2G5RXJe2WzzOMy5M8lfw5ynZAxxjiIklUcFM06fkdh7O/gYBRjjDHGGGOMMcYYY4wxxhjLMRzyZYwxxhhjjDHGGGOMMcYYYzmGg1GMMcYYY4wxxhhjjDHGGGMsx3AwijHGGGOMMcYYY4wxxhhjjOUYDkYxxhhjjDHGGGOMMcYYY4yxHMPBqH/Ujx8/MGHCBPz48SO3k/LP4jzMGs6/rOM8zDrOw6zh/Ms6zsOs4fzLOs7DrOM8zBrOv6zjPMwazr+s4zzMOs7DrOH8yzrOw6zh/GPs7xAREeV2IljmhYeHQ1NTE9++fYOGhkZuJ+efxHmYNZx/Wcd5mHWch1nD+Zd1nIdZw/mXdZyHWcd5mDWcf1nHeZg1nH9Zx3mYdZyHWcP5l3Wch1nD+cfY38EjoxhjjDHGGGOMMcYYY4wxxliO4WAUY4wxxhhjjDHGGGOMMcYYyzHyuZ2AvEoqlSIoKAjq6uoQiUS5nZxUwsPDZf6XZR7nYdZw/mUd52HWcR5mDedf1nEeZg3nX9ZxHmYd52HWcP5lHedh1nD+ZR3nYdZxHmYN51/WcR5mzb+Qf0SEiIgIGBkZQSzm8SU5KSYmBrGxsdlyLkVFRSgpKWXLufIDXjMqHe/fv4eJiUluJ4MxxhhjjDHGGGOMMcYYw7t372BsbJzbyci3YmJioKxpAMR+y5bzGRgY4NWrVxyQ+olHRqVDXV0dADBotT8Kqajmcmr+TRaWWrmdhH9eI6uiuZ2Ef57Sk+e5nYR/2meLYrmdhH+ethz3WMqKBxFRuZ2Ef569smJuJ+GfF6PIeZgVStnUq7BAi4/P7RT8+7gBIEtufInI7ST88/SV+R7MivC4uNxOwj9PQ0Eht5Pwz+P7MGuefvme20n4p0V//47eVcoJbdYsZ8TGxiYEosrPAuSVs3ay+GiEXBqG2NhYDkb9xMGodCROzVdIRRWFVNRyOTX/JmU1fjhmlYaGRm4n4Z+npMa/36yI43swyzQ4GJUlalxVyTINFQ6kZJUiB6OyhINR2YCDUVnHDQBZohaf96au/9eoq/A9mBXSWA4CZJW6Igejsorvw6xRieOyJDvkxeVk8iORogpEWQxGkVgEnpJOFrfwMMYYY4wxxhhjjDHGGGOMARCLgKzG/UgESLInOfkGd9dmjDHGGGOMMcYYY4wxxhhjOYZHRjHGGGOMMcYYY4wxxhhjjAGQE4sgEmdtaBSJRTwyKgUORjHGGGOMMcYYY4wxxhhjjAEQi0RZXp+LeH2vVHiaPsYYY4wxxhhjjDHGGGOMMZZjeGQUY4wxxhhjjDHGGGOMMcYYALEIEGVxGA/xwKhUOBjFGGOMMcYYY4wxxhhjjDEGnqYvp/A0fYwxxhhjjDHGGGOMMcYYYyzH8MgoxhhjjDHGGGOMMcYYY4wxAHJiEUTiLI6MyuLx+VG2jowqVqwY5s+fn23ne/36NUQiEW7fvp1t58xpbx7cwNbJAzGnc01MbOyEx1dOC59J4uNwfMMCLBvQAlNbuWNO55rYO38MIj6H/fKcjy6fxMohbTG9bSVMbeWO5d6tcOf0oQx/b6IzW5djcd8mmNrKHTPaVcbGcT3x/uk9mX0+B7/D9mmDMcurGqa1qYidM4fj+9dPWciRrBlUswI62BdL9W+9z9g0939y4xomtWuG3uUd0cXZBsPrV4ffhtUy+1w77o9xLRugp5sDupYpgdFN6+DCgT0y++xZMi/Vd/arXEZmn7TS1cG+GA6vXZG9mZBNVixbBltrK2ipqaJ8uXK4cOF8ho67dPEi1JQKwdXFRWa7p0d1KCvIp/rXpGEDmf0CAwPR2csLRYvoQ1tDHa4uLrh544bw+b69e9Ggbh0YGxSBsoI87vwjv/eek8ZDVMoO8303/nbf+b4bYdOgLpTLOsGkZnUMmjkdMT9+CJ9HREbCe8Y0mNXygHJZJ5Tv0BbX7sv+NvecOI5avbpDt3J5iErZ4fbjRzKfvw4MhKiUXZr/dh7zz56LzoJLF86jbbOmsLcwh66KEo4cOJDhY69evoQi6qqo6lpOZvuhffvgUaE8LAyLwFRXG1Vdy2HHls2pjl+7YgWcS9igaGFNVC/vjssXL6Ta5+njx2jXvBnMDfRhpq+LWlUq4/27t5m/0BxGRJjgMwlGxcygrKmBqjVr4MHDB7897uvXr+g7YAAMzUyhpKGOEqUccMTPT/h8gs8kiAopyvwzMDVJ93w9+/SBqJAi5i9cKLN95erVqFqzBjR0dSAqpIivX7/+8bVmp+3r1qBZlfJwNzeBu7kJ2tepifMnjmfo2FtXr8DJQActqlZM9dnxg/vRuIIrXIrqo3EFV5w8fFDm8/j4eCyaOhm1XUqhrIkB6pQpjeWzZ0AqlQr7lNLTSvPfusULU35dnkBEmDBlMowsLaCso42qtWvhwcOHvzwmLi4Ok6ZNhWVJeyhpF0ZpV1f4Hzsms098fDzGTJwAc7sSUNbRhoW9HSZNmyqTVxOmTIatkyNU9XRRuKgRatSrh6vXAmTO8+LlSzRp3Qp6ZqbQMCiClh3aIzQ0NPsyIIuyuyz23bAhzbI4JiZGZr/flcWhoaHo3qULzE1NoK2hjob16uL5s2dZv+AcsGf/PtRq2BC6piYQqarg9p07GTpu9759sHNxRqHCWrBzccbeA/tlPj934QIaNG8GI0sLiFRVsO9g2uXUo8eP0bBFc2gaGkC9iD7cqlbB23fvhM9Xrl2DqrVrQcOgCESqKnnmOZjcngMHUKtJY+iaF4NIUwO379797THrN2+GSFMj1b+U99rSVatg7uAAJX09uFSujPOXLsl8PmHaVNiWcYGqoQEKm5qiRsOGuHr9mvD56zdv0vwekaYGdu7dmz0ZkA1yqjxetmIFSrk4Q0NXBxq6OnCvXAl+/unX49Iqjz9//oz+3t6wKWkPFS1NmFpZYsCgQfj27VvWLjoHrF84D+UMdTB37H/p7nP68EH0a9UUnvbFUc3aDF3q18Ll06fS3f/Yvj0oZ6iDoZ3ap/ps1/o1aFTOCRWLGcHLszpuXbmc6rv6t26OmnbWKGeog6cp6uN5wZI5s9CgaiXYFS0CZ0szdG/bCi+ePf3lMdcuX0JTTw+ULmaC4kV0UL2ME1YvWSSzj9+B/ahfpSIcTI1ga6iHOhXdsGfbFpl9rl68gC6tmqOsjSXMNFVx9JBsvSfRsyeP0bV1C5Q0MYRd0SJo7FEVgcmek7kpJ+qEcXFxWD57BuqWdUQZ4yJoXrUCLpw8kanvjYuLw7xJ49G0cnmUMzOCR0lb/Ne3J8JCgrN+0dnsT+5BvwP70a5RfThZmMHe2ACNa1TD2RT5HhcXhwUzpqFS6ZIorq+N2hVcceaEbH3xe0QEJo4chvIlbVG8iA6a1KyOO8nqMwBgpqma5r/lC+ZlTwZkUW69l9R2dkjznWPK8KHCPp/CwjCmX294lLRFOVND9GrZDG9evMjaBeeQz6HBWDh0ALq4OqB9aWsMa1QLL++nX595cPUyWtqYpPoX+OK5zH6R4d+weuJo9KjognYOVhhUpxpunk0qc/auWIxRzerBy8kW3dwdMbNPVwS9TD+PVo4biZY2Jji8fnW6+7C8SywSZcs/JitPj4wyMTFBcHAwdHV1czspGRYbE40i5sXh6NEQO2YMlfks7kcMQl4+QuWW3VHEvDhivofDf81sbJ3ijR5ztqRzRkBZTROVWnSDbtFikJNXwNPr57F/0QSoamnDyqn8b783kY6RGer2GIHCRYwRF/sDVw5swqYJfdB/2X6oamojNiYamyb0QRHz4vCatBIAcHrLUmydMhDdZmyESPz3Z3WcuP0ApBKJ8Pf7508xo1t7uNaqm+b+hVSUUbOtF0xsSqCQsjKe3ryOtRP/QyFlFVRv2RYAoKapiYY9+sLQ3AryCgq4ffYkVo0ZBg1tHZSqWEU4V1Gr4hi5epPwt1hOTua7Fp2RbQC7e+EMVo8dgbI162T5urPbzh07MGzIYCxYtBju5ctj9apVaFy/Pm7evQdTU9N0j/v27Ru6demMatWrIyxUNmi6becuxMbGCn9//vQJ5Vyc0bRZc2Hbly9fUL1KZVSpUhX7Dh6Cvr4+Xr58AS0tLWGfqMhIuJcvj6bNmqNPr57Zd9E5aN+pE7h67y6M9PV/u+/mwwcxcsFcrJ04GeUdnfD0zWt0+vnCPW/4SABAtwljcf/5M/hOmQEjfT1sOnQQNXp0xcO9B1G0SBEAQGR0NCo4OqFFzVroPnFcqu8xMTBA8KmzMttW7tqJmevWoE7FSlm95CyLioxCSQcHtO3ghU5tW2f4uPBv39C3W1dUrlYNH1Lcg1rahTF4+AhY29hAQVEBx/z80L9nD+jq6aN6zZoAgL27dmL08KGYOX8BXN3LY8Oa1WjduBEu3rwFY5OEe//VyxeoV6M62nXshBFjxkJDUwNPHz9BoUJK2ZcB2WTmnNmYu2AB1q9ejeLW1pg8bRpq1q2LJ/fuQ11dPc1jYmNjUbNuHejr6WPX1m0wLloU796/h7q6msx+9nZ2OOGX1OAll+KZl2jf/v24ei0ARkZGqT6LiopCbU9P1Pb0xKgxY7JwpdmriJERvMdMgImFBQDgwLatGOjVFjtOnYOVbYl0j4sI/4bR/XrBtVIVfPoge//duRaA4d27oO/I0fCoVx8nDx/CsG6dsf6QP0q5JHReWLtwPnZuWIvJi5bB0tYWD27fxrgBfaGmroH2PXsDAE7dfyJz3gsnj2O8d3/UrN8wO7Mg28ycOxdzFy3C+hUrUNzKGpNnzkDNBvXx5PaddO/BMRMnYtO2rVi1eAlsbWxw9MRxNGnTGpdOnoKToyMAYMbcOVi+Zg02rFwJ+xJ2uH7zJjr36glNDU0M7NsXAFDcyhqL58yFhbk5oqOjMW/xIng2bIjnd+9BT08PkZGR8GzYAKUdHHDq8BEAwFifSWjQojmunDkLcS7UY5LLibIYADQ0NHDngWxAUEkp6fn1u7KYiNCyWVMoKChg5+490NDQwML581G3di3cunsPqqqq2ZMB2SQyMgoV3N3QomkTdP95b/zO5atX0cqrA3zGjkOThg2x98ABtOzQARdOnIBr2XI/zxuJ0g4O6NyhA5q1bZvmeV68fImKNWugq1dHTBw9Bpqamnj05DGUChUS9omKikbtGjVRu0ZNjBqfurzOCyKjIlHBzQ0tGjdB9wH9M3ychoYGnlyXbfRLfq9t370b3qNGYumcuajg5oYV69aiTvNmeHg1AKYmCR0ciltZYfGs2bAoVgzRMTGYt2QJPJs0wfNbt6GnqwsTY2MEP5UNhK5cvw4zFyxAnZ9le16QU+WxcdGimD55CqwsLQEAGzb5olHzZrgVEAB7O3uZ86VXHgcFByEoOAizp8+AXYkSePP2LXr164ug4CDs2rY9m3Pizz28fRN7N22EVYrrSunWlcsoV7kq+owaAzUNTRzatgVDOrbFusPHYONQSmbf4HfvsHDSODi6uqc6z/H9ezF33GgMnzYLpcuWw17fDfBu1wrbz16CgbExACA6Kgqly7nCo0EjTB3qnW3Xmp2uXrwAr+49UNrZBfHx8ZjlMxEdmjTEias3oJLO81pZRQUde/RECfuSUFZRxbUrl/Cf9wCoqKiibecuAACtwoXRb+hwWBYvDkUFRZw86oehfXpBR1cPVWok/PaioiJRoqQDWrTrgF4d0n5Ovnn5Es1r1USrDl4YNGo0NDQ08ezpExRSKpTm/n9bTtQJF0+bjMM7d2D83AUwty6Oi6dPYlCn9th4+ChKlCqdoe+NiY7Co7t30HPwMBQvWRLhX79i5phRGNC+DbadOJMzmfGH/uQeDLh0AZWqVcfwcROhoaWJnZt80bV1C+w7eQYlSzsCAGb7TMTeHdswfeFiWFnb4OzJE+jRrg32HDsp7DOif188efQQ81asRhEDQ+zdsQ3tGtfHias3YPDzWXjtqWxg4MzxYxjerw/qNmycU1mSKbn1XrLl2GmZtrXnjx+hR/PG8GzUCEBCfXBgx3aQl5fHAt8tUFVXh++yJejRvBH2Xria7n/b3PD921eMbdMU9q7u+G/VRmho6yL03RuoaGj89tj5/mehopZU7mpo6wj/Pz42FpM7t4WGji4GL1gOHQNDfAoOglKy/R8GXEGtdh1h6VAaEokE2+bNxOSu7TD38CkoqajIfFfACX88u3MLhfWLZMNVs9wgEgNZfYWU8gJJqYiIiLLrZMWKFYO3tze8vb2z65S5Jjw8HJqamhi55TwKqaj9/oA0TGzshFYj58LWrVq6+wQ+e4DVw9rDe9URaOoZZvjcKwa3gbVLRVRvl/olPCPfCwA/or5jettK6DBxOSxKu+LFrcvY7NMPIzadFa45+ns4Zravgg4Tl8GitFuG0wcAVtaFM7V/RmyaNhG3zp7CbL8zGV5EbsHAniikrIJe09PvCTOmeT04Vq6O5gOGAEgYGXXj5DFM2eOX7jEpzevfHTGRkRi1Nv3AYmY1L26cLeepVN4dTk7OWLhkibDN0aEkGjRsCJ8pU9M9rkO7trCysoKcnBwO7j+Aqyl6HSW3aMEC+EycgFfv3gsNV2P+G4XLly7h5Jmz6R6X6M3r17C1tsKVa9dR+mfjZHZQevTrXlqZFRgaCtd2rXF0+UrU69cb3u284N3BK939+02djEcvX+Dk6nXCtiGzZyDg3j2c37AJ0TExUHcvi/0LFqNe5aRgqGOLJqhfuSom9x8oc77XgYEwr1MTt3bshuMvKqsA4NSyKZxL2GHNxMl/eLXAJyuLPz42PboqSti4bQfqNvx9Y3s3rw6wtLSEWE4OfgcP4szVgF/uX83dDZ61a2PU+AkAAM/KlVDK0RGzFyb1/nR3Ko26DRpg7KTJwncoKMhj2Zp1aZ0yy3Tksqf2QUQwKmYG7/79MWLoMADAjx8/UMTEGDOmTEXP7t3TPG75ypWYNXcuHt+7BwUFhTT3meAzCfsOHMDta9d/mYbAwEC4VqqIo4cOoV7jxvDu1x/eAwak2u/M2bOo5lkTX0LDZILPf+JeeFSWjk9PRetiGDx+Epq2T//3O7x7F5haWEAsJ4fTRw5j55mkUXXDunXG94gILNu+S9jWq2UzaGhpYebKNQCAfm1bQUdPDxMXLBb2GdSpA5RVlDF16co0v3OgV1tEfv+O1XsyPnrwdxxUFLPlPEQEI0sLePfthxFDEsrLHz9+oIh5Mczw8UHPrt3SPM7I0gKjhw9H3569hG2NW7WEmqoaNq1dCwCo36wpiujrY82y5cI+zdq2gYqyCnzXrEnzvOHh4dA0NMCJQ4fhUa0ajp04gTpNGuNLYBA0fr6MfvnyBdrGRXH84CHUqF79j689RjHreZgTZbHvhg0YNmQwQj6mP4r9d2Xxs6dPUcreDjdu34GdfUKjsEQigamRISZPnYbOXbtm9lJTUUrWeSW7vH7zBuZ2JXDr0mU4li79y31beXVAeHg4/PYljYaq3aghCmsVxtYNG1LtL1JVwd5t29C4gWw51bqjFxTkFdK9J5M7c+4cqtWpjS+BQVl+DgIA4uOzfo4UXr95A/NSDrh1/gIcS5X65b7rN2+G96iR+Po2/dENrtWrwbm0I5bNS6pzlyhbBo3r1ce0CRPSPCY8PByaJsY4sf8APKpWTXMfp4oV4Vy6NNYk++38EaXs6WSSk+VxWrQNimDWtOno2rmzsC2j5XGinbt3oX2nToj88hXy8n/WH/Xa54g/Oi4tUZHf0cGzOkZMm4m18+eiuH1JDPZJ/zmYUqsq5VGzURN0GzxM2CaRSNCrSQPUb90Wt69eRsS3b5i9PqljYee6NWHjUAojZ8wRtrWs5IYqteui72jZwHHQu7doXM4Jm46fQfGSDlm4UllFVLK/o9Onjx/gbFkMO44chWuF1KMl0tOjXRuoqKpg/sr0n2d1K5VH9Vq1MXRM6sC6maYqVm7ehlr1ZWfF6Ne5I+QV5H953j/1LTYu288JZL1O6FHSFt0HDUHrrkm//YFebaGiqoZpy9Ku72Xke+/fuom2ntVx9NY9GBqnP2NBZmgqZvzZk1F/eg/WcC2DBk2bYeCIUQCAsjaW6Dd0ODp2T+qg2r1tK6ioqmLBqrWIiY6GXdEiWLV1Bzxq1Rb2qVPRDdVr1cGwsePT/J7ubVvhe0QEth488odXKCsn7sO/8V6S0ozRI3Hu2FEcCrgJkUiE1y+eo6FbGew5f1kIikkkElQtYQXvsRPR7BdtHpnxOBvKks2zp+HJzWuYtGXP73f+6cHVy5jo1RLrrt2HqoZmmvsc2+qLg2uWY57fGchnsJwO//wJ3dwdMWHTTtiVTWoz/RwajP9aNMToNZswvWcn1PXqinqd0n5Xyoyo7xHo5GKHb9++Ce87LPslxgS0662EWEE5S+eSxkXj8+Ee/N8smUy1kFWtWhX9+vVDv379oKWlBR0dHYwZMwbpxbPmzp0LBwcHqKqqwsTEBH369MH3798BJPQ+1NDQwK5du2SOOXjwIFRVVREREZFqmr4zZxICECdPnkSZMmWgoqKC8uXL48kT2V7FkydPhr6+PtTV1dGtWzeMHDkSjtnYuJ2dfkRFACIRlFTT7kGXEhHh5Z2r+BT4Gmb2Lr8/IB2SuDjcOLYHhVTUYGBeHAAQHxcLQAQ5haQGF3kFRYjEYrx9ePuPvyu7xMfG4uKhfajStGWGA1GvH93Hs1s3YFvGNc3PiQgPrlxE8OuXsCkjOwVYyNvX6F+1HAZ5VsTiof0Q9ospu759/IA7506jStNWGb+gvyQ2Nha3bt6ER4repB41auLK5cvpHAVsXL8eL1+8xOixGevVu2HdOrRo2UqmB/XhQ4fg7OKCtq1bwdTIEG5lymDt6n93eLJUKkWH/0ZiWKcusLeyztAxFZ2ccePRQwTcSxgy/vL9Oxw5f14IPMVLJJBIJFBK0dCpXEgJF27d/OO03nj4ALcfP0bXJs3++By5bcvGDXj98iWGjf79CBsiwrnTp/Di2VO4V0x4CYqNjcWdWzdRzaOGzL7VPGog4MoVAAn/TY/7+8HSyhotGtaHrZkJPCtXytQ0gn/Lq1evEBISAs8aSddTqFAhVKlUCZeupP9bPnDoENzdXNF3wAAUMTFGSSdHTJ0xHZJkPeMA4Nnz5zAqZgbz4sXRun07vHz5UuZzqVSKDl06Y9igwal6Z/9LJBIJ/PbuTuj9XLZcuvvt27IJ716/Qq9hI9P8/M71ayhfTbbTR4Xq1XHn2lXhbydXN1w9fxavf07/8OT+PdwKuIKKNTzTPOensDCcP34MTdp1yOxl/RWvXr9GSGgoPD08hG2FChVClYoVcenK1XSP+xEbKzN6AgCUlZRx4XLS9F0V3cvj5JkzePpzarg7d+/iwqXLqFurVprnjI2Nxcq1a6GpqYnSDg4/v+cHRCIRCiUbpaKkpASxWCzzXbkhJ8vi79+/o7ilBSyLmaFpo4a4feuWzOe/K4t//Jw2Nvl/Izk5OSgqKuLSxYuZus686vLVq/BMURbUqlETl65eyfA5pFIpDvv7o7i1FWo1bAh9MzO4Vqmc7nR++dH3799hVtIexiVsUb9lC9xKNkVibGwsbty+Dc8UQV/P6tVxKSDt50NsbCxWrl8v8ztO6catW7h97y66emVPI1h2yOnyOJFEIsG2HdsRGRkJd7ekd5k/KY+/fQuHhobGHweistvMUcNRwaMmylWumuljpVIpor5/h0aKIO+aubOgpaODRm1TT88XFxuLx3fvwLWKbLntWqUa7iabJvJfFPEtHEDCyKaMun/nNm4GXIFrhbRnTyAiXDhzGi+fP4Nr+QoZPq9UKsWpY/4wt7JGhyYN4WxphkbVq6Q7nV9uy646YWzsDygWkh35VUhJGbeupv08yOj3fg8Ph0gkgrpm2g3necWf3INSqRSR3yOgmeyY2B+xqWamUFJSwvWfz9X4+HhIJBKZeh6QkNfX03n2fggLxamj/mjl1THDafub/uZ7SXJxsbE4vGsHGrdtL7Stxf6sDyb/byAnJwcFBcV07+Xccv3UcViULIW5A3qhm7sjhjeujRM7MtYpfHjjOuhR0QWTOrbG/Suy7wc3Th2HtaML1kwag+7lnTCkvgf2LF8kM6IspaiIhPtfTVNL2CaVSrFomDcadu0FE2ubzF8gyzPEouyYqi+3ryLvyXRtdMOGDejatSuuXr2K69evo0ePHjAzM0P3NHqAicViLFy4EMWKFcOrV6/Qp08fDB8+HEuXLoWqqipat26NdevWoXnzpGm9Ev9WV1fHp09p9/IcPXo05syZAz09PfTq1QtdunTBxZ8vy5s3b8aUKVOwdOlSVKhQAdu2bcOcOXNgbm7+y+v68eOH8DIOJERBc1p87A+c2LgQDpXr/Hb0VUxkBOZ2rQVJXBxEYjHq9RwFS8fMjVQCgKfXzmHXnJGI+xED9cK66DBxOVQ0EioAxjYOUFRSxokNC+DRoR+IgBMbF4CkUkR8+fhH15idbpw6hqiIcFRq3Py3+w6o7oaIz58hkcSjaR9vVG0uOy1YVEQ4BlRzQ3xcLMRiMTqOnQyH8kmVcctSjug1dS4Mipnj26eP2L9iESa1a4ppB45DXSt1Jev8/t1QUlFFmZppN5rlpo8fP0IikUA/xZRyRYrop7uOxvNnzzB29H84cfpMhl5arwUE4MGD+1i2Urbn16uXL7FqxQoM8PbG8BEjcf3aNQwZ5I1ChQqhXYe82dj6KzPWroa8vBwGtEv9kpue1nXq4sOXz6jYsT0ICZXo3i1bY+TPnnPqqqpwL+0In5XLUcLCEkV0dLDV7zCu3rsLa1OzP07rmj27UcLCAuUdnf74HLnpxfPn8Bk3FgePn/zlPRj+7RscrCzw48cPyMnJYeb8Baj6s8Hx0897X6+I7L2vp6+PsJ/3/oewMER+/46Fc2Zj1PgJGOczBaeOH0PHNq2wz/8oKlSqnHMXmUkhP9NcJMUw/yL6RfDmbfrB8pevXuLUmTdo16YNjuw/gGfPn6HvwIGIj4/HuJ+BPtey5bBx7VoUt7ZGaGgYJk+fhvJVq+DBrdvQ0UmYumDG7FmQl5PHgH79cugKc9bThw/QoY4nYn/EQEVVFfPXb4KljW2a+7558QLzJ0/E+oN+6d5/H8NCoa0ne29p6+njY1jStBldBnjje3g4GrmXhZycHCQSCfr/NxZ1m6Zdju3fvhUqamqoUa9Bmp/nNuEeTPGbKqKvjze/GC1Ry6MG5i5ahMoVKsLSwgInT5/G/sOHZBpgRwwZgm/h4bB1chTyasr4CWjTsqXMuQ75HUHrjh0RFRUFQwMDHD94UJjO2a1sOaiqqmLEmDGYOnEiiAgjxo6BVCpFcEhIdmXDH8mpsri4jQ1WrVkL+5IlER4RjiWLFqF6lcoIuHETVtYJnSZ+Vxbb2NrC1MwMY8eMxuKly6CqqooF8+chJCQEIXlwrYo/ERIaiiIp815fX7inMyIsLAzfv3/H9DlzMHnceMzw8YH/8eNo2qYNTvv5o0ql3J8SNyfZFrfG+mXL4GBnj/CICCxYtgwVannizsWLsLa0wsdPnyCRSFLns17qfD7k74fWXbok/Y737oOujg7SssZ3I0rY2KC8a9ody3JDTpbHAHDv/j24V66MmJgYqKmpYe+OnbArYSd8ntny+NOnT/CZNhU9u2W9R3Z2OLZvD57cu4v1fid+v3MaNi9fgujoKNRINuXWnYCrOLB1EzYdT3sE6NfPCfenTqpyWw+fPuSddQUzi4jgM3okyrqXh00GApOuJazx+eNHxMfHw3vUaLTp2Enm8/Bv3+BawhqxP+vVPnPmoVJ1j7RPloaPHxLq1cvmzcHQMeMwcqIPzp44jp7t22DbIT+45YGpw4HsrxOWr+YB3+VL4eJeASbm5rh67izO+B9JFWjOzPf+iInBfJ8JqNusBdTU825P+szeg4lWLlqAqMgo1G/SVNhW2cMDq5csgmuFCjAzt8DFM6dx7MhhIRCgpq4O53KuWDRrBqxtbKGrr4/9u3bg9vVrMLe0SvN7dm/ZDFU1ddRu0ChrF5rNcuO9JLlTRw4j4ts3NGqTNN2muXVxGJmYYMHkiRg3Zz6UVVSwcdkSfAwLxcc8tP4qAIS9e4vjWzehXuduaNKrH57fvY11k8dBQVERVdJpLyysp48ePjNgYe+A+NhYnNu/Gz6dWmO87w5hRFPou7f4cOUSKjZojFErNyD4zSusmTQG0ngJmvfzTnVOIsKGaZNg61IWpsWT/vvtX7UUcvJyqOPVJUeun/09cmIRxFmMJok4GpVKpoNRJiYmmDdvHkQiEWxsbHDv3j3MmzcvzWBU8un6zM3N4ePjg969e2Pp0qUAgG7duqF8+fIICgqCkZERPn78iEOHDuH48V8v3jdlyhRUqZIwqmDkyJGoV68eYmJioKSkhEWLFqFr167o/HMag3HjxuHYsWPCiKz0TJs2DRMnTsxMVmSJJD4Ou2aPBBGhXs9Rv92/kLIqes3bhtjoaLy8exVH185B4SLGKOZQJlPfW8yhLHrN24ao8K+4cWwPds0ajm4zfaGqpQ1VTW20GDYTh5dPxdXDWyESieFQqTYMLUrk+joLAHB293aUqlg1Q/Otjtm4Ez+iIvH8zi3smDcDRUzN4F4vqQKipKqGKbuPICYqEg+uXsKWmT7QNzZBiXIJ84uXrpTUq8QEgFVpZwytXRkX9u1GnTSG1p7buwPl6zeGYh5cYyZRytFkRJTmCDOJRIKOHTpgzLjxsC5ePEPn3rBuHeztS6JsOdnePFKpFM4uLpg0eQoAwNHJCQ8fPsTKFcvzfDBq8+GD6DlpgvD34SXLsWCzL25u353hkXkAcOZaAKasWoGlo8fB1aEUnr97i4EzpsJwhR7G/lwzxnfqdHQZNwZFa1SFnJwcnEvYoW3derj56OFvzp626JgYbPE7jLE9ev1+5zxIIpGgZ6eOGD56rNCYmh41dXWcvhKAyO/fce7MaYwdOQJm5uaomGzKw1/d+1KpFABQu3599O6fML2NQ+nSCLhyBetXr8rVYNTmrVvQM9l6KId/Ti+V6nqQ9m85kVQqhb6+PlYuXQY5OTm4ODsjKCgYs+bNFRq/6tROmurCoSTg7uYGyxK22ODri8He3rhx8yYWLF6Mm1euZur+z0vMrayx8/R5RIR/w4mDBzCmf2+s3X841YufRCLByF7d0Gf4KBRL58U2Uaq8SPFc9d+3B4d27cD0FathaWOLJ/fvYeaYUdAzMECj1qnXWti3ZRPqNWuBQtk0lVRWbd62DT2TrSdzeHfCVBgipPWbSv88C2bNQvd+fWHr5AiRSARLCwt07tAB63x9hX2279qFTdu2Ysu69bAvUQK3796F94jhMDI0RMf2SR0AqlWugtuXr+Djp09YtW4tWnbogKtnzkJfXx96enrY6bsJvb0HYuGypRCLxWjToiWcHR3TXQPtb8vustjVzQ2ubkmdk8qXrwD3smWxdMkSzJ0/H8Dvy2IFBQVs3b4DvXv0gJG+HuTk5FDdwwO1kj0XckvKe9Bv7z5UqpDxXvrJZTTv0yOlhPKiUb36GNQ/IU2OpUvj0tUrWL56dZ4NRm3esR09k72T+e3ajUrly2f6PG5ly8EtWa/tCm5ucK5cCYtWrMDCmbOE7akfi6nzuVqlyrh9/gI+fv6EVes3oGWnTrh66hT09fRk9ouOjsaWXbswdtjwTKc3O/3N8hgAbIrb4HbANXz99g279+5Bx25dcfbECdiVsMt0eRweHo56jRvBzrYExo8Zm9lLz3ahgYGYO/Y/LNy264/KuqN7d2PV7JmYvd4X2roJ90vk9wiM69cL/82aD610gpqCtJ4D+DfrNQAwduhgPH5wH7v8MxbY2+l3HFGR33Hr2jVMnzAOxSws0Kh5UqcPNXV1+J2/jMjI77h49gwmjx4F02LmcM9gfZikCTPm1KxbD936Jjwn7UuVxo2Aq9i8dnWeCUZld51wxJTpmDh4ABqVLwuRSATjYuZo1Lod9m/b/EffGxcXh+E9ukAqlWL0zNnZd+E5ILP3IADs37UD86dPxeot26GbLIAyYcYsjBzQD9XLOEEkEsHM3AIt2nXAzs1J9cX5K1ZjWL/eKGebMH1xydKOaNSiJe4nG6mb3I5NvmjcslWqEfq5LTfeS5Lbu9kXFTxqQN8gaakQBQUFzF3ni/ED+6GidTHIycnBtXJVVPTIO+s1JpKSFJYlS6Ht4ISRYuZ2JfHu+VMc2+qbbjDKyMISRhaWwt/FnVzwMSQYB9esEIJRRFJo6Oigp88MiOXkYFGyFL6EheLAmhVpBqPWTBqDt08fy0wX+PL+XRzZuBYz9hz5Z9+bGctpmQ5Gubm5yfyg3N3dMWfOnDSnFzh9+jSmTp2Khw8fIjw8HPHx8YiJiUFkZCRUVVVRrlw52NvbY+PGjRg5ciR8fX1hamqKypV/XdkplWxOc0PDhIdnWFgYTE1N8eTJE/Tp00dm/3LlyuHUqVO/POeoUaMwePBg4e/w8HCYmGTPvLwpSeLjsGvWCHwNC4TXpJUZWpNKJBZD2zBhcWsDCxt8fP8KF3avzXQwSlFJGdqGptA2NIWxTSks6t0QN0/sRaXmCesBWDq5Y8CKg4gK/wKxWB5KauqY3akG7IsUzfyFZqOPQe9x/8pFDFyw/Pc7A9D/OaeySXFbfPv0EXuWLpAJRonFYhQxKwYAMCthj6CXz3Fw1VIhGJWSkooKjIvbIuTtq1SfPbkRgOBXL9F39uI0jsx9urq6kJOTS9XzOizsQ6oe2gAQERGBmzeu487tWxg0MKFxXiqVgoigplQIh/z8ULVa0hQsUVFR2LljO8b+XKMnOQNDQ5RI1pMTAGxtbbFvb8bn9s0tDatWh2uyRZF3HjuKsM+fYVorqXegRCLBkDkzMX/zRrxOpwI+dvFCdKjfEN2aJVSKHIoXR2R0FHpMmoDR3XtCLBbD0sQUZ9dtRGRUFMIjI2Gop4dWwwbDvOifrRm26/gxREVHwyuP9QDLqO8REbh98wbu3bmNkYO9ASTdg0XUVbHz4CFUrpoQMBaLxbD4uci3Q+nSePr4MRbMnoWKlatA5+e9HxYie+9//PABej/vfR1dXcjLy8MmxfpbxW1tcfVS7k5P1bB+A7gma/j7EZswejckNEQo+4CE8i/lSJXkDA0NoSCvINMYX8LWFiEhIYiNjYViGmvhqKqqwsG+JJ49T5he7vyFCwnlrFVSBV4ikWDIiOGYv3gRXqdYbD4vUlBUhOnPhYLtHZ1w//ZNbF65HOPmzJfZL/J7BB7cvoXH9+5i2siEtSgS7z8nAx0s37kHrpWqQFe/CD6Fyd5bnz9+gE6yxtS5E8ah6wBv1Pk5XWZxO3sEv3uHNQvmpQpG3bh8Ca+fP8OsVWuz+9L/WMN69eBatqzwd+II8pDQUNl78MOHVCMEktPT08O+7TsQExODT58/wcjQCCPHjoV5sWLCPsNG/4eRQ4agdYsWAACHkiXx5t1bTJszWyYYpaqqCitLS1hZWsKtXDlYl3LAmg0bMGpYwn8rzxo18OL+A3z8+BHy8vLQ0tKCgXkxmJsVQ27K6bI4kVgshkuZMnjxPOk3mZGy2NnFBVdv3MC3b98QGxsLPT09VCrvDheXzNUzs1vKe7Doz8XJM8ugSJFUo3MS7tv0n50p6eoklBd2JWQbikrY2Ob6NJC/0rBOXbgm++/4p3mYklgsRlknZzx7kbBQvK6ODuTk5BASKtsLO+xj6nyW+R2XLQdrJ0es2bgRo36uRZdo1/59iIqKglebNtmS5j/1t8tjRUVFWFklNDqWcXHBtes3sGDRYqxYujRT5XFERARqN6gPNVU17N25M1PrVOWUR3dv4/PHD+hYK+n5JZFIcOvKJexctxoX3gSn23ng+P69mDx4IKatWiszvV/g69cIfvcWQzomlauJnY3cjfWx88JVFDEqCjk5uVTl9pePH1ONJvhXjBs2BCf8DmPHkWMwLJqxd3XTn+WurX1JfPgQhvnTpsoEo8RiMYr9rFfblyqN50+eYOnc2RkORhXW0YG8vDysU9SrrYrb4NovprD827K7Tqitq4sFG7fgR0wMvn75DH0DQ8z3mYCiKWa5yMj3xsXFYVi3Tgh8+war9xzM06Oi/uQePLh7F4b364OlGzahYop6jI6uHlZt2Y6YmBh8/fwZRQwNMX38WJgkq8OZWVhgx5GjiIqMREREOIoYGKJvJy+YmKWeUSTg0kW8ePYUi9elXhsyt+XGe0mioHdvceXcGcxb75vqM7vSjth55gIiwr8hLjYO2rq6aFvLA/al89ZsK4X19GFsKdtp1djCClePZm5dsOKlnXD+wF7hby09fcjLK0CcrBwqamGNrx/CEB8bC/lk781rfcbixqnjmLhpF3SSBfUeXQ9A+KeP6FMtqbOYVCLBxhk+OLJxDZacyjvPQvZ7CdP0ZfEkHJNMJccmjX7z5g3q1q2LXr16wcfHB9ra2rhw4QK6du2KuLikBf+6deuGxYsXY+TIkVi3bh06d+782+hx8op0yt7tybclSm9Nq+QKFSqUau7ZnJAYiPoU/BYdfVZCRUPrj85DRD/XeMoaooT1o1JKnLrv1d0ARH77DJtyVVLt8zed27sTGto6cKz8B4uPEyE+9sdvdiHE/SI/42J/IOjlc9g4l0312Znd22Fu7wAzW7s0jsx9ioqKcHJ2xqkTJ9CocWNh+6mTJ1C/QeqpoDQ0NHD91m2ZbSuXL8eZM6exZdt2FEsx5eXunTvx48cPtGnXLtW53MuXx9Onsmu6PXv2FKampn9+QX+Juqoq1JOtf9WjeUs0SDHPfK3e3dGhfkN0btQk3fNExcSkGlkoJ5YDEaV6NqmqqEBVRQVfwr/h6KWLmDlItlEmo9bs3Y2GVatDT1v7j47PbeoaGjh/7YbMtrUrV+D82TNYt3mr8CKdJiKhwVxRURGlnZxx5tRJ1GuUFJg7c+ok6tSvL+zj5FIGz589lTnNi2fPYJzL96m6ujrU1ZPWEyQiGBgY4PiJk3D6Of1ibGwszp4/jxlT0l/0u4K7O7Zs3w6pVCrci0+fPYOhoWGagSggIejw6MljVKqYMAKhQ7t2qOEh+/ytVb8+OrRti855dA723yEiYW705NTUNbD7nGzD8vZ1axBw/hzmrN0gNCyULlMWl8+cQYdeSb3lL50+jdJlk6aSiomOgijF718sJwdKVmdJtHezL+xKO8ImGxdKz6o078EiRXD81Ck4/VyLMzY2FmcvXMAMH5/fnk9JSQlFjYoiLi4Ou/fvQ8umSVOzREVHp/mslKaRV8kRkdAwnFzi1H2nzpxB2IcPaFiv3m/Tl5NyuixORES4c+cOSpYsKWzLTFms+XNdiufPnuHmjRsY/xdnDUhLynvwT7m7uuL4qZPCiCYAOHbyBMq7ZnzKa0VFRZR1ccGTFMH3p8+fwcwk79ZrsisPUyIi3L53Fw72CdMyKSoqwsXREcdPn0KTZPf08dOn0ajur39/6f2O1/j6omGdutD7+XvOLblZHid+X2L+ZLQ8Dg8PR6369VCoUCEc2LMnz4wKKFupMraeviCzbZJ3PxSzsoZXv4HpBqKO7t2NyYMHwGfpylTrLppZWac657LpUxAV+R1DfKahiFFRKCgqwrZUaQScO4NqdesL+wWcO4PKtepk09X9HUSEccOG4OihA9h+2P/X9eLfnCc2A+/IsbEZb3NQVFREKWcXvExRr3714jmK5lBH3+yQ1TphokJKSihiaIS4uDicOHgAnr94R0zrexMDUW9evsSavQehlUff5f70Hty/aweG9e2NRWvWw6NW+qOvlZSUYGCUkI9+B/bLTOWXSEVVFSqqqvj25QvOnTqBURMnp9pnu+8GODg6wS5ZB9O86m+8lyTat3UztHX1UOkXS0yoayTUB9+8eIGHt2+h38jRf3RdOcXGuQyCXr2Q2Rb0+iX0MtmZ99WjB9BK1iHBxrkMLh7aL1NOB79+icJ6+kIgioiw1mcsAo77Y4LvTuinqANWbtQMDuUrymyb0rU9KjdqhmpNZacfZ3mfOBum6eNFo1LLdDDqypUrqf62trZOVXG8fv064uPjMWfOHOFHvGPHjlTna9++PYYPH46FCxfiwYMH6Ngxa41aNjY2CAgIQIdkU4Bdv349S+fMjNjoKHwOTlo34UtYIEJePoGyugbUtfWwc+YwBL94jDZjEtZi+v5zLSZlNU3I/Qyy7Z0/Buo6+qjRIaEn7Plda2BkZQ9tA2NI4uPw7MYF3D1zGPV6jcrQ92rqGSI2Jhrnd66GTbkqUCusi+iIb7jmtwPhn0JhVyFp2O2tk/uhZ2wOFY3CeP/kLvzXzIJbg3bQLVosJ7Ptl6RSKc7t3YVKjZpBLsUcudvnzcCXsFD0mjYXAHB8y0boGBoJw2+f3ryGI+tXoWbbpPvqwKolMLcvhSImZoiPi8Wdc2dw8cAedBqbVIHZMmsKnKp6QMewKMI/f8T+5YsR/f07KjVuJvP90d8jEHDsCNoOy1uFc0oDvAeha6eOcHZxgaubG9asXoV3b9+iW4+eAICxo/9DUGAQ1qxfD7FYDPtkjVgAoKevB6VCSqm2A8D6dWvRoFEjYV2Z5PoPGIhqlSth5vRpaNa8Ba5du4a1q1dj8bKkEW6fP3/Gu7dvERwcBAB4+jTh5aWIgQEMDAyyLQ+ySkdLCzopFkpWkJeHgY4ubJI1Cnr9NxJFi+hj2sCEkZYNqlTFXN8NcLItIUzTN3bJQjSsWk14bh69eAFEBJti5nj+7i2GzZ0FG7NiMkGuz9++4m1wMII+JPQ4fvL6NQDAQFcXBrpJPZ6ev32Dczeu48iSjI0i/Fu+f/+OVy+SKoxv3rzGvTt3UFi7MIxNTOEzbgyCg4KwdPVaiMVilLCXnXNcVy/hHky+ff6smXB0dkYxCwvExcbh+FF/bN+yGbMWLBT26T1gAPp07QJHZ2eUdXXDhrVrEPjuHTp1S5patp/3IHTzag/3ChVRsUpVnDp2DEePHMb+o8dyMEcyTyQSwbt/f0ydOQPW1lawtrLC1BkzoKKigratk9bF8+rSGUWNjDDt55RcvXv0xKKlSzFw8GD079MHz54/x9SZMzAg2ZRDQ0eMQIN69WBqYoKwDx8wedpUhIeHo2P7hLJUR0cn1W9cQUEBBkUMYGOTtChrSEgIQkJD8Pznf+t79+9DXV0Npiam0M7FF+oFkyehokcNGBQtisjv3+G/dw+uX7yAZdt3J3zuMxGhIUGYumQFxGIxrFOMItHW1UWhQoVktrfr0QudG9bF2oXzUa1OXZz2O4Kr585g/SF/YZ8qnrWxat4cGBY1hqWtLR7fuwvf5UvQOMXi6t8jwnHs4H4MTeNFOi8RiUTw7tsPU2fPgrWVJawtrTB11iyoKCujbctWwn5e3bol3IOTJgEArl4LQGBQEBxLlUZgUBAmTJkCqVSK4YOSRqQ3qFMXU2bOhKmJCexL2OHWnduYu3gRunTwAgBERkZiyswZaFivPgwNDPDp0ycsXbUS7wMD0SJZI8W6jRtRwtYWerq6uHz1KgYOH4ZB/frDJoPTzuaknCiLp/hMQjlXV1hZWSM8PBxLFy/G3Tu3MX9h0nMwI2Xx7l27oKenCxMTU9y/fx9DBw9Cg0aNUKOmbKNvXvD582e8ffcOQcEJ61k9eZYQHDIoUkSoN6S8Bwf26YvKnjUxY84cNKpfH/sPHcKJ06dx4UTSqObv378Lzy4AePX6DW7fuQNtbW2Y/mxEHebtjVZeXqhcsQKqVa4C/+PHcPDIEZzxPyocl/AcDMXzlz+fgw8eQF1NDaYmJrn6HEzu8+fPePv+PYJC0sjDIgmjHL169kBRQyNMmzABADBx+jS4lSkLa0tLhEdEYOGK5bh97x6WzJkjnHdw337o0LMHyjg5w71cOaxcvw5v379Hry4JayZERkZiyuzZaFi3DgyLGODT589Yuno13gcFoUVj2Ubb5y9e4NzFiziya1dOZ0em5WR5/N/YMahTqzZMjI0R8T0C23bswJlzZ+F/8BCAjJXHERER8KxXF1FRUdi0bj3Cw8OF9ZD19PRyddpSVTV1WKYYNaOsogrNwtrC9iVTJiEsJBgTFy0DkBCImjCgD4b4TEVJlzL4+LP3v5KSMtQ0NFBISSnVOdV/BtaTb2/bsw/G9++NEqWd4OBSBns3bURIYCCaenUW9vn25QtCA9/jQ2jCOoNvXiSMENfW14duBqaK/xvGDBmEA7t2YNWW7VBVU0PYz7RqaGhCSVkZADBjwjiEBAdh3orVAIANq1agqLEJLH+WhdcuX8KqRQvQMdmU3kvmzEIpJ2eYmVsgNi4Wp48dxZ5tWzB57gJhn8jv3/H6ZdJz8t2b13hw9w60CmsLwaaeA7zRr7MXXMtXhHulyjhz8jhO+B3B9sNJ9aPclBN1wrs3riMsOAi2JUshNDgIy2ZNh5Sk6PxzCvCMfG98fDyGdPHCo7t3sXjzNkglEmGdHs3ChaHwi4D13/Yn9+D+XTswuGd3jJ8+C05lywrHKCkpQ+Pn7/XW9WsICQqCvUOphGOnJdQXew4cJHz32RPHQSBYWBXHm5cvMHXcaFhYWaNFe9klACLCw3F4316MmTwtx/Mjs3LrvQRIaFvbv3UzGrZqk+b6U8f270NhXR0YFjXBs0cPMGP0SFSrUw/l0xiNn5vqdeyGsW2aYM/yRShfpz6e372Nkzu2oMekGcI+W+ZMx+fQEPSbOR8AcHj9augZG8PEygbxcbE4f2Avrh49giGLktY992zjBX/f9Vg/ZTxqt++MkDevsHfFYtTpkFROrJk4GhcO7cfwpauhrKqKrz/bZ1TU1aGopAz1woWhXlh2nXl5BQVo6erJTBPIWEGW6WDUu3fvMHjwYPTs2RM3b97EokWLMCfZS0giS0tLxMfHY9GiRWjQoAEuXryI5ctTN44WLlwYTZs2xbBhw+Dp6Qlj4z+blipR//790b17d5QpUwbly5fH9u3bcffuXVj8HAKb04KeP8SGsUmNnMfWJuRN6WoNULV1LzwJSFhUdcWg1jLHdfRZJUy59+1DCESipN7BcT9icGTFVIR/CoO8YiHoFi2GJoMmo2TFpJ4Mv/rexgMnQSwW42Pga9yZcRBR4V+hrK6Jotb26Dx1LfRNkx6InwJf46TvIkR//wYtfSNUat4Vbg1lG83+tgeXL+BTcCAqp9GL4OuHMHwKDhT+JpJix/yZ+BD4DnJy8tA3MUXLQcNRvWXSqJ0fUdHY4DMWn0ODoVhICYYWlug1fR7c6iT14vwcGoylwwYg4ssXaGhrw7KUEyZs2QtdI9n78/KRgwAR3Os2zIErzz4tWrbE50+fMHXKZIQEB8PeviT2HTwIs5/D2UOCQ/DuXfoLLqfn2dOnuHTxIg75+aX5eZmyZbF91y6MGz0GUydPRjFzc8yaMxdt2iZNo3H44EH06NZV+NurXcJno8eOxZhx4zOdptz2NiRYpnf/mB69IBKJMGbxAgSGhUGvcGE0qFINU/oPFPb59j0CoxbMx/vQEGhraqJZDU9M6T9QZhTogTOn0XlsUtCz9fCEUVPje/XBhD5JC1iv3bsHRfWLwLP8n62pkVNu37yBxrWTnlljRySs/9C6fXssXrkaoSEheP/uXXqHpykqMhLDvAciODAQSsrKsC5ug2Vr16FJ8xbCPk2at8CXT58xe9pUhIaEwNbOHlv37oNJsp6M9Ro1wuyFizB/9iz8N3QIrKyLY92WbXDLY3kIAMOHDEV0dDT6DBiAL1++wLVcORw7fFimx/bbd+9k7kETExMcO3wEg4YNRakyLihqVBQD+/XDiKHDhH3eB75HG68O+PjxI/T09OBWrhyunD8vPCMyavmqlZg4OSmgUvln7+11q1ajk5fXn152ln3+EIbRfXviQ2go1DQ0UNzOHsu274b7z+keP4SGIOT9+0yd07GcK2asXIvF0yZj8fQpMClmjpmr1qJUsumwRk2ficXTpmDKiCH4/PEj9AwM0NyrM3oNlV3/xH/vHoAIdZo2S/k1ec7wwYMRHRONPt7e+PL1K1zLlsWxAwdl78H3svdgTMwPjJk0CS9fvYKamhrqetaC75rV0EoW4F80Zw7GTpqEPt7eCPvwAUaGhujZpQvGjfoPACAnJ4fHT59iw+Y2+PjpE3S0tVHWxQXnjx+HvV3Sy/iTZ88wavw4fP7yBcXMzDB62HCZ0TC5KSfK4q9fv6Jv794IDQmBpqYmSjs64vip0zJrOGakLA4JDsaIYUMRFhoKA0NDtGvfHqOSrWGTlxw4fBide/UU/m7dMeHZMv6//zDhZ5pT3oPl3dywbcNGjJk0EWN9JsHSwgLbN26UmXrt+s2bqFYnqaf24JEjAAAd27XH+pUJDRVNGjbC8gULMW3ObAwYOhQ21tbYvWULKiZbg2n5mtWYODVpdExlz4ROX+uWr0CnPLJe5gE/P3Tu01v4u3WXhEaW8SNHYsLP39zb9+9l8vDrt2/o4T0QIaGh0NTQgFOpUjjn54dyyZ55rZo1w6fPnzFp5gwEh4SgZAk7HNm5C2Y/R+EJv+OtW5J+x87OOO/nD/sSssGEtZs2oaiRETyreyAvyqnyODQsDB26dEZwcDA0NTVRqqQD/A8eQs0aNTKcths3b+JqQAAAwMpONl9fPXmKYn84kuZv+RgWitDApPe7vb4bIImPx8xRwzFzVFL5Wa9la4xfsCTD563ZqAm+ffmMNXNn4WNYKCxtSmDepm0wTDZi5/wxP0zyTiozRvdKWCu425Dh6DF0RFYuK9tsWrMKANCqnuzIktlLl6NFu4RnTFhoCIKS1WukUilmTByHd2/eQF5eHqbFzDFi/CS065L0DhYVFYUxQwYhOCgQSkrKsCxeHPNXrkGDZknrr9y9dROt6yeNJPP5L2G9luZt22HOsoTnZO0GDTFl3gIsnTsH40cMhaW1NZb7bkFZ98yvVZcTcqJOGBsTg8XTpuD9m9dQUVVFxRo1MXXpCmhoamX4e0ODAnHGP+GdukU12bW11uw7iLIV8sZ6W8Cf3YNb1q1FfHw8xg4dhLFDk4JLye+dHzExmD15Et69fgUVVTVU8/TE/JVroJmsvhgRHo4ZE8cjJCgQmoULo07Dxhg2dnyqaUgP7t4FIkLDZO+FeUVuvZcAwJWzZxD8/j0at0u7je9DaAhmjRuNTx/CoFekCBq0bI2eQ3J33ca0WJVyxNDFq7Bl7nTsXrIA+sYm6PjfBFRqmNSx5cuHUHxM1lYYHxcH3xmT8Tk0BIpKSjCxKo6RKzfAuUpSoE3X0Ahj1m7GhmkTMayhJ7SLFEEdry5o3D1pKZhjWxOmN5zQQbZ9ss+0OajKI5/yHbFIBHFW1/7itcNSEVFG5rD7qWrVqrC3t4dUKsWWLVsgJyeHnj17YurUqRCJRChWrBi8vb3h/XOR3Hnz5mHWrFn4+vUrKleujHbt2sHLywtfvnyRaYA4deoUPDw8sGPHDrRokVRYvH79Gubm5rh16xYcHR1x5swZVKtWTeb427dvw8nJCa9evRIq1j4+Pli4cCFiYmLQsmVLqKmpISAgAJcvZ3xuzvDwcGhqamLklvMZWtOJpWZlXfj3O7Ffal48a8FZBig9evr7nVi6Pln9nUB+fqYjJ/79Tixd98KjcjsJ/zwHlbzTm/ZfFZOHeiT/i5QyMc0TS0d8fG6n4N+XR6aq+1dd+xyR20n45xVR4XswK77Fpl5egGWOpmLurx33r+P7MGsec1mSJVHfI9DJxQ7fvn2DhkbeXVPuX5cYEzBrvgZiBZUsnUsaF4U3u7ryf7NkMj0ySkFBAfPnz8eyZctSffb657RRiQYNGoRBgwbJbOuQRo/A4OBg6OjooFGyNT0AoFixYjJrqlStWjXVGiuOjo6pto0dOxZjx44V/q5Zs6awCCxjjDHGGGOMMcYYY4wxxhj7ezIdjMpOUVFRePXqFaZNm4aePXv+cuHWzJxz+fLlqFWrFuTk5LB161acOHECx48fz4YUM8YYY4wxxhhjjDHGGGMsv5LLhmn6RDxNXyq5OnfQzJkz4ejoiCJFimDUqFHZck6RSIQjR46gUqVKcHFxwcGDB7F7927UyMQ824wxxhhjjDHGGGOMMcYYK3hEIhHE4qz942BUapkaGXXmzJls/fIJEyZgwoQJ2XpOZWVlnDhxIlvPyRhjjDHGGGOMMcYYY4yx/E8sSviXFcSxqFR4VXXGGGOMMcYYY4wxxhhjjDGWY3J1zSjGGGOMMcYYY4wxxhhjjLG8InGqvaygrA6tyoc4GMUYY4wxxhhjjDHGGGOMMQZATiSCXFbXfOI1o1LhafoYY4wxxhhjjDHGGGOMMcZYjuGRUYwxxhhjjDHGGGOMMcYYYwDE4oR/WUE8DCgVDkYxxhhjjDHGGGOMMcYYY4wBEItEEGdxmj3iafpS4fgcY4wxxhhjjDHGGGOMMcYYyzE8Muo3ela3gbqGRm4n45909+O33E7CP09JKs3tJPz7LIvldgr+acrycrmdhH/e8+8xuZ2Ef5qyHN+DWRWloJDbSfjnce+tLOL6TJZFKSvndhL+eSpxcbmdhH+aS5HCuZ2Ef96XmNjcTsI/LTpekttJ+OfFSrg8zipLTdXcTsI/zUGb21ezIjw8HJ1yOxEFiFgsglicxZFRWTw+P+JgFGOMMcYYY4wxxhhjjDHGGHiavpzCwSjGGGOMMcYYY4wxxhhjjDEAYjEgl8UpMoin2EiFs4QxxhhjjDHGGGOMMcYYY4zlGB4ZxRhjjDHGGGOMMcYYY4wxhuyZpi+rx+dHHIxijDHGGGOMMcYYY4wxxhgDIBaLIBZnMRiVxePzI56mjzHGGGOMMcYYY4wxxhhjjOUYHhnFGGOMMcYYY4wxxhhjjDEGQCxK+JfVczBZHIxijDHGGGOMMcYYY4wxxhgDICcSQS6L0STiNaNS4Wn6GGOMMcYYY4wxxhhjjDHGWI7hkVGMMcYYY4wxxhhjjDHGGGMAxCIRxFkc2ZTV4/MjHhmVwy5dOI+2zZrC3sIcuipKOHLgwC/3v3DuLHRVlFL9e/bkibDPxrVrUL9GdVgaGcDSyABN69XBzWvXZM4zf9ZM1KhYAWb6urA1M0GHli3w7OlTmX369eiW6ntqVamcfRefDdbPnYXqpkVk/jVzKfnLY+5cuYSedWuilrUp2lUoiwO+G1Lts2v1CnhVLY/a1mZo5eqEJRPHIjYmRmafDyHBmDqwDxqXskWd4sXQvXZ1PL17R2afN8+eYnSXDmhgb4V6JSzQt1EdhAa+z/qF5wAiwgSfSTAqZgZlTQ1UrVkDDx4++O1xX79+Rd8BA2BoZgolDXWUKOWAI35+MvssXb4c5sWLQ0lDHS5urjh/4YLM59+/f0e/gQNhbGEOZU0NlCjlgGUrVqT6rstXrqB6LU+oFtaClr4eqtasgejo6KxdeDbas38fajVsCF1TE4hUVXD7zp3fHwRg9759sHNxRqHCWrBzccbeA/tT7RMYFIj2XbpAx8QYKro6cHRzxY1bN4XPv3//jn6DB8HY2grKOtoo4eyEZatWpvl9RIQ6jRtBpKqCfQd//cz5m1YuXwa74tbQVldDBddyuJjiPklp25YtcHVxhq6mBixMTdCzW1d8+vRJ+Hz/3r2o6OYKIz1d6Glpwq2MC7Zs2iRzjhLWVlBVVEj1b9CA/sI+oaGh6NG1CyzNTKGrqYFG9evh+bNn2XvxWbR83mw09agCR1NDuBY3R+/2rfHy2dNfHjO8b09Ya6un+lfHvaywT1xcHBbNnI7qzqVgb6iLBpXcce7E8V+mw1pbHZNHjZDZ/jEsDMP79kSF/9m7y7AqmoaB439AUERAkE4DTFRKCTvA7u6u28TuVkzsDsQEu7tBMACx71vsImwEA5Xzfjh44HBAQUDweed3XfuBs7M1zO7MTm1pa8qaGtC9ZTMe3b+XuYvOQr8TfwBfvnzBa/oUqpUrTWmjQtS0L8eOzRtl69MTf9++fcNrxlRq2NpgY6JPDbuyLJkzi4SEBLlw9/77lz7tW2NnaYqthTEt3Wrw4tnTrImALJTV9zHA3t27cShXDp0CGjiUK8f+vXvl1s+dPZsqLs4Y6upgaWpCmxYtuJusXATSZ+TQwYOwLlKYQlqa2Jcty5pVK7PkmrPSqhUrKGltRcECGrhWrEhAgH+6tgu8cIEC+fLi5OAg9/smHx/UVfMoLJ+TlWmmT52isL6wmancfiQSCdOnTqGIhTk6mgVwr1WT27d+XUbICbv37aNO0yboWVqgpFmAsOvXf7nNrTu3adGhPYXLlEZJswALly1TCLNi7RrKOTuhZWKMlokxLjVrcuT4cbkwUdFRdO3TBxNrK/Ib6FO3WVPC76X+rJNIJNRr3gwlzQLsPXDg9y42m2TkPu7do3uq+ahj+fKyMOnJj9NzH+/bs4fGDepjYWyEhpoq18LCsvS6s1J2lQlXrFlNuYoV0TIyRMvIEJca1Tly7FiGjv3o8WOUNPKnuuzYvTtT151VVixfTrGiRcmvrk4FR0f8/X/+LDx37hwVHB3Jr66OVbFirFwp/3y/desWLVu2pGiRIqgoK7No4ULFY65YgW358hTU1qagtjaVXF05kuKdRkVZOdVl3ty5mb7mrJLR+oWLgReoX7M61mYmmOkWxNm2HCuWLJYL8/XrV+bOnIFjmVKY6mhTzakCp1I8/9Jz3OioKAb07kmZokUwL6RD68aNuJ/GMzKnbFu/lsZVXHCwNMXB0pQ2dWpx/uTxn25z+UIAzWtWpZyJPrXty+HrvU4hzLH9+2jgUoGyxno0cKnAiYPyz/2atjaULKSlsEwdMVQWJrX1JQtpsW7Joqy5+Czyu+XqfTv8aFTFhbKmBriWsmJU/768ffM61bAHd+3EWleTfh3byv2ennJ1XGwsU0YOo3KZEtiY6FPHyYEt69dm7qKzQXaUqX/Y4eeHhpoqbVq0kPs9Pe/GM6ZOxc7GBv2C2pga6NOgbh2uXL6U+QvOBhKJhMlTJmNiZoq6Rn6q16zBrXSUX3ft2kVpmzLkVc9HaZsy7NmzRyHM8+fP6dipE4X09chfQANbeztCQkJk65VUlFNd5s6T5hePHj1KM8yOHTuyLhKEbKWsnDWLIO9/Mko2bNhAwYIF5X5bvXo15ubmKCsrszCVwml2+Rj3EZuyZZnttSBD2128doNbDx7JlqJWVrJ1F/zP07xVG/YeOcbRM+cwMzOnZeOGRDx/LgsT6O9Pjz59OHb2PDsPHOLbt2+0atSAuLg4uePUcnOXO47vnr2Zut7sULh4CXYG35At646fTTNsxJPHjOnSnrIVnVh9+CTtBwxm6eRxnD98UBbm5J6drJk9gy5DhrHhtD/D5y7g7IF9rJk9Qxbmw7t3DGreCJU8qnhu3Ir3qfP0Gz8ZDS1tWZjnjx4xuEVjLIpZ4+W3hzVHT9Np0FDU8ubNlnjIrDnz5+G1aBFLFy7kSmAgRoaGuNWvz4cPH9LcJj4+Hrf69Xj0+DE7t/ny342brFmxElNTE1kYvx3bGTJ8GONGj+bqpctUqVSZeo0b8eTJE1kYjxHDOXr8OJu9N3Dn2nU8Bg1moMcQ9iV7iQm6eJG6jRriXrs2ly9c4MqFQAb064dyLnpyx8V9pJKLM7OmTk33NkGXLtGmcyc6tW3HtYuX6NS2Ha07deLSlcuyMG/fvqVSrVqoqubhyJ493A4JZb7nLApqF5SF8Rg1kqMnTrB53XruhF7FY8AABg4bxr6DihVcC5cuRSmX9b7YuX07I4cNY+To0QRevoJr5co0a9SQp8nSSXKBFwLo1b0bXbp1IzjsGpu3bSMkOIT+ffrIwujo6jJy9BhOn/fnUkgonbp0oW+vnpxI9vJ8PjCI+0+eypYDR44C0KxFS0BagG3bsgWPHj5k+65dBF6+goWFBQ3r1VV4Xuakyxcu0KFHL3YcO82G3fv59u0b3Vo05eNPznGC5xwC79yTLedv/EtBHR3qNWkmC7NgxlT8fNYzcfZcjgRdoW23HvzTuT23ritWql0PDcHPZwMly8h3CJBIJPTr2Janjx6xYrMv+84GYGJuTpdmjX96fn/S78QfwODunQk8d5aZi5dx/HIoC9asp5h1cdn69MTf6kUL8PVex8Q58zh6MZiRk6exbukiNq5Oqkh7/PAB7eq7U9S6OJsPHGb/+UD6jxhF3rz5sj4yMiE77uNLF4Po3KE9bTt04GJwCG07dKBT+3ZyL70B/ufp3a8fZ/wDOHD4CN++f6Nxg/py9+io4cM4cfw46zb4EHr9BgMGD2LYkCEc/EUl3Z+0Y/t2RgwbyqjRY7h4JRjXypVp2rChXH6Zmvfv39Ozezdq1KyZ6notLS0ePn0mt+TLJ592SpcpI7f+ytUwufXz581l8cKFLFi0mICgixgaGdGgXt2flhFyStzHj1RydmbWlPTnxR8/fqJo4SLMmjIFI0PDVMOYmZgya8pUgs+dJ/jceWpWq0qTtm24dec2IH3WNW3bjgePHrLP14+rARewNDenduNGqeYXC5cty3V5MWT8Pp7rtUAuH7374CG6uro0S1bBlZ78OD33cVxcHC4urkydMYPcLrvKhGampsyaOpVg/wCC/QOoWa0aTdq05tbt2+k+trmZGRH3H8gtU8aPR0NDg3ru7r9/0VnEz88PDw8PxowdS0hoKJUrV6ZB/fppPgsfPnxIwwYNqFy5MiGhoYweM4Yhgweza9cuWZiPHz9StEgRZnp6YmRklOp+zMzMmOnpyeUrV7h85Qo1atSgWdOmchWXz1+8kFvWrluHkpISzVNU6OakjNYv5M+vQY++/Thw/CSBV8MYOmo0nlMm47MuqXJ+5pTJ+Kxbh+f8BVwIvUqXHr3o0rY115M1CP/quBKJhM5tWvPo4UM2bd/B6aBLmFlY0KJBvVxVpjY0MWXYxMnsPHWWnafO4lylGv07tiP83zuphn/2+BF92rbE0dmFPWcC6OMxjBljRnIsWUPy1SuXGNqzK41bt2XfuUAat26LR48uXAtO6jC88+RZ/G+Hy5b1u6Tb10lWLk++3v92ODMWL0dJSQn3Ro2zKTZ+z++Uq4MvBjKyX29aduzM4cDLLPbeyI2roYwbPEAh7POnT5g1cRyOLq4K69JTrp45bjTnT51k/qq1HL0YTLd+/Zk2ajgnk9UJ5bTsKFP/8OTxY8aOHkWlypUV1v3q3RjAytqa+YsWcTn0KifOnMXS0pLG9evz8uXLLLr6rDNn7hy8Fixg6eIlXLl0GSNDI9zquP+0/BoUFESbdm3p1LEj166G0aljR1q3bcOlS0nvHm/fvqVSlcqoqqpy5NBhbt+8xfy58+TqmSOev5Bb1q+V5hctmkvzC3Nzc4UwUyZPlubF9eplW5wIwt9ASSKRSHL6JLLahg0bGDJkCO/evQMgJiYGPT09vLy8aNGiBdra2uTPn/+n+4iJiUFbW5uHkdFoamllyXnp5c/HRt/t1G+cdmEi4Pw5mtatw/0XkWinaFBLy/fv3ylmYsRsrwW06dAx1TCvXr6kpKU5+4+fwLVyFUA6Mur9u/ds2p49rfLXX73P9D42eM3lwvEjrDl6Ol3hV8+cRuDJY2w4ndSrZMGYEdy/c4ulew8DsGjCGJ6E32W+b9ILzIppk/g37CqLdkkrrVZ7TuNW8BXZ36mZ1r83KnlUGbtIsXdtVqlhqJMl+5FIJJgUtmTIwIGMGj4CkPb4NzQ3Y/aMmfTp1SvV7VauXs1cLy/+vXEDVVXVVMM4Va6Eva0dK5Yulf1WqlxZmjZujOd0aWWCjZ0tbVq1YsLYcbIwDs5O1K9bl2mTpwDgXKUybrVqyf7OMt++Ze3+kPY4LVK6FFcDg7BN1jM4NW06dyImJoYje5NeWOo2aYxOQR22+UhH7Y2eMIELF4PwP3Eyzf3YODrSpmULJoweI/vNoZIr9evUYdrESbLfrl2/TsOWLbhy3h/jYkXZ4+tL00y8wHxM4/+eUdUquWJrZ8eipUn3i33ZsjRs3DjVSqeFXl6sXb2Km/8m9ZpesWwpC+bP5+6Dh2kex7ViBerWq8/EKamnoxHDhnL08GGu376DkpIS4XfvYmtThitXwyhdpgwgfaYWNjVh2syZdO3e43cvWeZF7OdfB8qg169e4ly8KFsOHqGiq+KLRmpOHDpA/84dOBN2E1NzCwAqlbam39ARdOzZWxauX8e25NcowPxVSZUUcbGxNK1RmclzF7B8/hxK2ZRjvOdsAB7eC8e9oj2HL1zGulQpQBqHzsWLMGLSVFp37ppFV5110hN/50+eYEjPbpy+ep2COrqphklP/PVq2xI9fQM8lyyXhenfuQPq+fMzb+UaAIb06EoeVVXZ31nNpEDWNGplx33cuX17Yj7EsPdAUgVBk4YNKFhQB58UIyt+ePnyJYVNTTh26jSVq0jLNI62trRs1YrR45LymUpOFalTt16az4OMyIrpFaq4umBnZ8/iZKNybMva0KhxY6bNmJnmdp06tMfKygoVFRUO7NvPpWS9Mjf5+DBi2FAiX6XeMxakI6NSbpecRCKhqIU5/QcNYviIkYC0jGBpasL0mZ707N071e0yIt/nrH8OPnr8mCI2Zbh6IRDbcuXSvV3hMqUZ8k9/hvTv/8uwuhbmzJ02nR5dunA3PJwS9nbcvHyZMqVKA9JnnUGRIsyeOpWeXbvKtrt24wYNW7XkyrnzGFsVY8/WbTRt1CjD15jcxyzq7JTR+zilA/v20a51K27fDcfC0jLNcL/Kj1O7j394/OgRpYtbE3j5CuVtbdN3YemQ/+vXLNvXD1ldJkyNrpkpc2fMoEeXrr99bDsXZ+xtbVm34vdHjCaoZ01e4uLsjJ2dHctXrJD9VqZ0aZo0acJMT0+F8KNHjeLAgQNyDXL9+vbl+vXrXAgMVAhftEgRBg8ezOAhQ355LnqFCjF7zhx69Ei9vNesWTNiP3zgxMm0y+gZ8fZzfJbs54f01C+kpkvbNuTXyM+Kdd4AlClahKEjR9Gjb19ZmE6tW6FRQIOV6zek67j3wsNxLl+WgOBQSpZOekaWtDRn4rTpdOrW/TeuUN6rT1kbfz84FbNgxJTptOzYWWHdvMkTOX30MIcvBst+mzRsCP/evIHfsVMAePToSuyHGNZsTxp52LNVM7QKFsRrjXeqx5w5dhRnjx/l2JWwNDsu9O/YjrjYWDbszbrRtSrZ0EkiPeXqtUsWsdV7HadDk0Yzb1y9kjWLF+J/81/Zb9+/f6dDw7q0aN+RKxcD+fD+PSs2+8rWp6dcXd+1IvWbtWDAiKSZHJrWqEK12u54jJuQ6evNinJ1dr0bf//+nTq1atKpSxcuBATw/t17/JI13KeU8t04NTExMRjrFeLg0WNpdozKiPwqKpneByTWcZmZMmTwYEaNlP6vv3z5gqGxEbM9Z9EnlYY6gDZt20rz4sOHZb/VrVcPHR0dtm3dCsDoMaO5EBiI/7nz6T6fps2a8SH2A6d+Uqdj52CPvZ0d69Yqjq5Mr5iYGLR1CvL+/Xu0sqiuWlD0o02gVn8/8uT9efvBr3z78pFTy9qI/1kyuWfIQTZ68uQJX79+pUGDBhgbG/+yISo3qOHiROkihWlWvy7+587+NOzHjx/59vVrmpVlIL2RAHRShLngf56SluZULGfDkH/68TI6OtPnntWeP3xAK8dytK/kyLT+vXnx+FGaYW+FBuNYpZrcb47VavDf9Wt8S3wBLVuhIndvXudOmHQKtBePH3HpzCmcataWbRN04jjFy5Vnct+eNLcrTe96tTi4dZNsfUJCAhdPn8S8aDFGdmxDc7vS/NO4LgHHDpMbPXz4kMjISNxrJ11j3rx5qValCoEXg9Lcbv/Bg7g4O9F/0CAMzc2wsbNl5uxZfP/+HZCOnAoJDcXdrbbcdu613Qi8eFH2d2XXSuw/eJDnz58jkUg4c/Ysd8PDqeMm7Z0ZHR3NpcuXMdA3wLVaVQzNzahWuxYBFy5kZTTkiKBLl3CvJR8/dWq7EXgpKX72Hz6Eo509rTp2wMDSEjsXZ9Z4r5fbprKrC/sPHeL5i8Q4PHeOu/fuUae2myzMx48fadetK0u9vNLsFZoT4uPjuRoaSq1k5wpQ0602l9JIf84uzjx/9oyjR44gkUiIiopi7+7d1E2jF5FEIuHM6dOE371LpRSVWsnPw2/rVjp36SorbH/58gVAbhSBiooKqmpqBObi9Beb+EwvWDDt535KOzZvxLVaDVlDFED8ly/kTVHBmTefOiEp/i9TRg6lultdKlWvobDf+HhpxYBavqT9/IjD4EtpP19yUnri79TRw5S1s2PN4oVULlMctwq2zJowls/Jpg5NT/w5OrsQdP4cD+9Jp368c/MGIZeCqJb4/EtISODsiWMULmZFtxZNcSpehBa1a3DiUO6a1iu77uNLly5Sq7b8M7K2m1ua+wSIeS/t7KKjk9Rhw7WSK4cOHuBFYj5z7uxZ7oWHU9vdLa3d/FGy+HOTP59atd24GJT2tW7csIEH9x8wbsLENMPExsZSvFhRihW2pHmTxoRdvaoQ5t69cIpYmFPS2opOHdrz8MED2bpHiWWE2sn+t3nz5qVK1ao/Pbf/Zd+/f8d35w7pSB2nigB8iU/ML/LK5xdqaqoEJIsnWV48b36ao7Byyu/cxyn5eHtTo1atNBui0pMfQ+r38f+69JQJk/v+/Tu+OxLTYUWn3z5uyNVQwq5fV2jMygnx8fGEhITglmKElpubG0FpPG8uXryIW4pnp3udOgQHB/P1NxsYv3//jq+vb+JoPJdUw0RFRXH40CG6dc98I0pucj0sjCsXL8o6qALEx38hbz758kw+9XxcSqWxLy3xiWXqvCnLg6pqXApK/37+pO/fv3No904+fvyIrWPFVMOEBV+mUg35CvjKNWpxK+yqLP2FXUklTM1ahF2+TGri4+PZv8OP5u07pdkA8Co6mnMnjtGiY6eMXtYfl55ytX1FJyJfPOfsiWNIJBJeRUdzdP9eqrvXkQu3dM4sdPX0aNWpS6r7+VW5GsDB2YXTRw8T+eIFEomEi/7neXT/HlVq1crspWaJ7Hw39pw+HT09fbqko/E3tXfj1MKsX7sWbW1tymag48+fIKvjSva/z5s3L9WqViPwJ+XXoItBuKd4P6hTx53AZM+p/QcO4OjgQKvWrTEwMsTOwZ41a9LuNBgVFcWhw4fo8ZN4DwkJISwsjB5Z0NlV+HOUlJVQzuSipJz7ZkrIabmyMerDhw906NABDQ0NjI2NWbBgAdWrV2dIYu+mt2/f0rlzZ3R0dMifPz/16tUjPI3ve2zYsIGyZcsCULRoUZSUlHj06NEfupKMMzQyxmvpMry3+uLj64uVdXGa169H4E++KTBtwniMTUyolkYvBYlEwoRRI3F2daVUYs9/gFrudVi5fgN7Dh9lqudswkJCaFa/rqxyNjcoZWfP6AVLmb3Zl2Gz5vPm5UsGNm/I+7dvUg3/9mU0Ovr6cr/p6Onz/ds33r+RblOzcTO6DRvF4BaNcStqSscqTti6VKJ9/0GybV48fcz+zT6YFSnC7E1+NOrQhaWTxnN853YA3r16xae4OLYtX0yF6jWYs3k7levUZ1Lv7ly7mPsK25FRUQAYGshXihgaGBIZGZXmdg8ePmDn7t18T/jO4X37GT9mDPMXLmTGLGmvxVevXvH9+3fF/RoaEBkZKft78YIFlC5VCrOiRVAroEHdRg1ZvngxlStVSjyOtDfP5OnT6NW9B0cPHMDe1o5adeukeW//LSKjojA0MJD7zdDAQPY/Aen1r1i7ButixTi2bx99e/Zk0PDhbNyyRRZm8bz5lC5ZCjNra9QKalO3aROWL1hIZdek6Qs8Ro3E1cmJJg0z1/s6q71OTCcGhinjwZCoNNKfs4sr63020qVDewpq5KeouRna2gWZv1B+zvT3799joFOQghr5adGkMfMWLlSo2P7hwL59vHv3jo6dk3o9lihZEgtLSyaNH8/bt2+Jj49n3pw5REVGyqXh3EQikTBz/BgcnV0ontjz9FeiIyM5f/IErVO82FWuWZv1y5fy6P49EhISCDhzmlNHDhEdlXTtB3ft5Na1awyfODnVfRe1Lo6puQXzp07m/TtpHK5aOJ+XUVG8/MnzJaekN/6ePnpE8MUg7t65zbKNWxk3czZH9+9jcrK5/dMTf70HD6Vhi5bUcXKglIEOTapVomvff2jUohUAr1++JC42ltWLvKhaqzbeu/bh3rAh/Tt34NKFn88d/ydl130cFRmJQYo8xMDAkKg07j+JRMLoESNwrVSJMjZJU0bOW7CQkqVKYV2kMAU18tO0YQMWLF6Ca6X0jRzMbj/yS4OU+YGhAVFRqcffvfBwJowby4aNG8mTJ0+qYYqXKMGadevZuXsPPps3kzdfPmpWqyr33bsKFSuy1nsDBw4dZvnKlURFRlKjahXZdwZ+POsMDFP5P0Tlzudgdrlx6yYFjAzJW0iXvkOGsGfrNkqXlI74LFm8BJYWFoyZPEmWX8yaP5/IqCgiksWTx+hRuDo506Rhw5y6jDT9zn2cXEREBMePHaVrKpUtGcmP07qP/9elp0wIcOPmTQoY6JNXpyB9Bw9izzZfSieOPP4d63x8KFWyJK7Ozr+9j6wie3cwTPnuYJhmuSsyMjLV8N++fePVq1cZOv6NGzfQ0tREPV8+/unXj127d1M6jbLARh8fNDU1ad68eYaOkVuVtSqGSUEtald2pXufPnIjlWrUrs2KJYu5f09anjl76iRHDx5MMy9OjXWJEphbWDB94kTeJT4jF82bS3RUZIb28yf8d/sW9hbGlDPWY/IwD5Zu3IJVyZKphn0ZHUUhffn7tpCBAd++feNtYj76KrUw+ga8jE79uXrq8EE+vH9Ps3Yd0jzHvb5b0ShQAPeGuWuKvpTSW662d3Jm/qp1DOnRldKGuriULIaWtjYTZ8+ThQm5GMSOzRuZvnBJmvv5VbkaYMKsuViVKEEVmxKUNtSle6tmTJ7rhaOz4rR/OSG7ytRBgRfw2eDN0pXpGwGb2rvxD0cOHcJApyC6mgVYungRB44cQU9PLwNXmf1+5BmK+YPBT9/jIyMj06gXS9rmwYMHrFi5EmtrK44dOUrf3n0YNGQwGzduTLk7AHw2/jq/WLd+HaVKlcLVNXekQyF9lJSUsmQR5OXKxqihQ4dy4cIF9u/fz4kTJ/D39yc0NFS2vmvXrgQHB7N//36CgoKQSCTUr18/1Z5Rbdq04WTisPrLly8TERGBubm5QrgvX74QExMjt+QE6+LF6dy9B+Xt7Kjg5MzcRYtxq1uPZWl852qx13x279jOhm1+Ct8H+GGUxxBu37zB6g3yD85mLVvhXq8epcqUoW6DBvju3cf98HBOpPiQa05yqlGLqvUbUrRkaRyqVGPmBumUPT8ahVKjRIobPXEmyh8PgLCgC2xZupDB02ex6vAJpqz25uKpE2xa5JW0SUIC1jZl6TlqHNY2ZWnUsTMN2nVg/+YNALIPZLq616VVz75YlbGhff9BONdyY//mtKfZ+FO2bNtKAV0d2fLj3kj5EJQg+emDMSEhAQMDA1YvX4GDvT1tW7dh3KjRrFi9Wi6cwn4l8vtdvHQpFy9dYv+u3YRcvMj82XP4Z9AgTp46JTsOQJ+ePenWpQt2tnYsmDePEsWLs95nw2/HQ2Zs8fWlgIG+bPHPxCiZX8VPQkIC9ra2zJwyFTtbW/r06Emvbt1YsTap983i5cu5eOUy+3fsICTgAvM9PfnHYwgnT0unsNx/6CCnz51j4Zzc84HllH4VD8nduX2b4UM9GD1uPAEXL7H34CEePXrIoP7/yIXT1NQk6Eow5wODmDR1GmNGjOD8uXOp7tNngzfudepibJL0zTNVVVW2+vkRHn4XM0MD9LS18D9/Dve6dVHJoikEstqUkcP479atNKf9SM3ubZvR0tamdgP5ytHxnrMpXKwYdZwcKG2oy9RRw2jRvqPs2iOePWP62JHMW7WWvGnkMaqqqiz12czD+/dwLGpBOVMDLgUEUK22e66Mw/TGX0JCAkpKSnitXkd5B0equ9VhzPSZ7N62RTY66lfxB3Bo9y72bffDa/V69p4NYM7yVaxbupjd27bIjgNQq14Duv0zgNJly9FnyDBq1KnLtlQ+kJ3TsuM+zsg+hw4exM2bN9iwSX4Kv+VLl3Ll0mV27N5DwMVLeM6Zg8eggZxOzGdyi/Re6/fv3+nSqRPjJ07CunhxhfU/ODk7065DB8qVL0/lylXYss0Xa+viLE82FWCduvVo1rw5NmXLUrNWbfbsl46625zihToj/4c/ZYufHwWMDGVLZvLi9ChhXZywC4FcPH2Gfj160qVPb24nfkdEVVWVXZu3cPfePXQtzMlvoM/ZAH/quSc96/YfOsTp8+dZOHt2tp5nZv3u/3rzxo0ULFiQRk2aKKzLSH6c1n2cW/3JMiFAieLFCQu6yMWzZ+nXs5c0Hd5J/Xs2v/Lp0ye2bt9Oj86pjzLIKRlNg6mFT+33XylRogShV68SGBRE37596da1K7eTTf+XnLe3N+3bt0/zHftvc/DkSU4GBDJv8RJWLVvKru1+snUz586naDErXGzLYaytyaihHrTr1DlD5ThVVVW8t/pyPzwcK1NjzAvpcOH8eWq710FFOXeVB4tYWbPnbAC+x07RtlsPRvfvy71//00zvEI6SyX9pRYmrfS5c/NGqtR2w9DYOM1j7tqyiYYtW6dZ/s4t0luuDv/3X6aPGUH/4aPYc8af9Tv28OzxYyYOHQxA7IcPDO/bixkLl6BbKO1Gj1+VqwE2rlpBWPAVVm71Y88Zf8ZMm8nkEUO5cPZM1lx0FsnKMvWHDx/o0bUrS1esTHejUWrvxj9UrV6doCvBnD5/Hjd3dzq1b090Ds+itGXLFgpoacqWNOu40lGmSVf9jL09M2fMxM7Ojj59+tCrZ09WrEq9oW+9tzcdfpJffPr0ia3bttHjf2ykrSD8rtS7WeagDx8+4OPjw9atW6mVOIzW29sbk8QHZHh4OPv37+fChQuyFuUtW7Zgbm7O3r17adWqldz+1NXVKVSoEAD6+vppTl3l6enJlCz4pkB2cKxYkR2+2xR+X7pwAQvnzmHXwcOUSRz9ldLooR4cPXSQAydOYmJm9tPjGBkbY2ZhwYP797LkvLODen4NipYoxbOHD1Jdr6NvwJuX8pnk29evUMmTB63EaUC8583GrXkrGrSTfl+raMnSfP74Ea/Rw+kwcAjKysroGhhS2Fq+8sfCujjnjxwCQFtXF5U8ebBMEcbSqjg3rlwipzVu2AinCklTDfyYWiYyKhLjZIXe6OhoDFP0yEnO2NgY1Tyqci8ipUqWJDIykvj4ePT09FBRUSEyRc/p6OiXsh4qnz59YuzECezZvoMG9esDUK5sOcKuX2PeggXUrlUL48T7MmWvz1IlS/Lk6dPfiYJMa9ygAU4VKsj+Nk2lkJYeRoaGCj1eo1++lOsZa2xkROkUvfFKlSjBrr17gcQ4nDyJPb6+NKgrHYpfrmxZwq5fZ96ihdSuWZPTZ89x/8EDCprIv9S0aN+eKpUqcfbosd86/6xQKDGdpOzpFf0yWqFH2A/z5szGxcUVj2HDAChbrhwaGvlxq1GDiVOmytKxsrIyxaysAChva8t//95h3pzZVK0mP13nk8ePOXPqFNtS+Uaenb0DF4NDeP/+PfHx8ejr61Otkiv2Dg6ZvvasNnXUcE4dOczWQ0cxNjVN1zYSiYSdWzbTpHU71NTU5NYV0tNnxWZfvnz+zNs3bzA0NmbulImYWUinX7p57SqvX76kWY2kqVy+f//OlcALbF67iluRr1FRUcHG1o4D5wP5ECONw0J6+rSoXYOydnZZd/FZICPxZ2BkiKGxCZpa2rLfihUvgUQiIfLFcwoXs/pl/AHMnjSePkOkvTgBSpQuw/OnT1m1cD7N23VAp1Ah8uTJg1UJ+WdAseIlFKZLzEnZdR8bGhkpjL55+TJaYZQOwLAhgzl08CDHT53GNFmZ5tOnT0yeMB7fHTupm5jPlC1XjuvXrrFogRc1c8G0LD/yy5SjoKKjXyqMlgJpeTg0JJhrYVfxGCwduZ2QkIBEIqFAvrwcPHKE6jUUR8QrKyvj4OjI/XtpjyrW0NCgjI0N9+9Jy3s/ysZRkfJlhJcvoxVGrf1pjevXx8nRUfb37+bF6aWmpoZVsWIAONrbcyU0hEXLl7NqsbSXtoOdHWGBQXL5hVON6jgmPutOn0/Mi83kny8tOnagiqsrZxM/FJ5Tfuc+/kEikbDJZwNtO3RQyEsg/flxWvdxbvYny4SQMh06cCUkhEXLl7FqyVIyaueePXz8+JHO7dv/1jlnNdm7Q2TKd4dohd7tPxgZGaUaPk+ePLL3/PRSU1PDKjGdOjo6EhwczOJFi1i5apVcOH9/f/777z+2+fqmtpu/kmXhIgCUtrHhZXQ0c2ZMp0XrNgDo6euzafsOPn/+zNvXrzEyMWHqhPFYFC6coWPY2ttz9tJlYhKfkXr6+rhXrYKtvX1WX06mqKmpYVlUeo+VtbPn5tVQNq5ewVSvRQph9Q0MeZVihNPrly/JkycPBXWl09LppRbm1Uv09BWfq8+fPiHo3FmW+GxRWPdDcFAgD++Fs2Ddhoxe2h+VkXL1qoXzsa/oTK9BQwAoWcYGdY38tKtfB49xE3n1MppnTx7Tp31r2TY/OmyV1C/IscuhWBYp+sty9edPn/CaPoVlm7ZSw72u7Fh3blxn3dLFqU45/qdlR5k6OiqKx48e0apZU9k2P+JPSz0fYTdvUTQxX4GfvxuDtKxYzMqKYlZWVHRyplzpUvh4ezNi1KhUw/8JjRs3xskpacraHzM6RUamrON6mWZ+Aol5Ssr6q5fyeZCxsXEqdVOl2LV7Nyn9yC/8tqWdX+zcKZ0OtHMnxVFoQu6mpCxdMrsPQV6ui5IHDx7w9etXKlZMqkjX1tamRIkSANy5c4c8efLIPYQKFSpEiRIluPObPcYAxowZw/v372XL0xyqAE/NjWvXMEzRiLZkgRfzZ3myfd9+7FKpMJVIJIzyGMLBffvYc+SYrPD5M29ev+bFs2cKx8pN4r984fG9cAqlUTlSxt6REH/5jwwGnz9LiXLlyaOqCsDnT59QTvE0UFZRRiKRyHrZ2ThW4On9+3Jhnj24j2HiS7OqmholytsqhHn6MClMTtLU1MTKykq2lC5VGiMjI06cTOohHh8fzzl/f1ydU58nHaCSiwv3HtyXFWQA7oaHY2xsjJqaGmpqajjY28vtF+DEqZOyqUC+fv3K169fUVaWj3MVZRXZfgsXLoyJiQn/3b0rF+ZueDiWFhbkBE1NTayKFZMt6urqv7UfFycnTpyWj5/jp07i6pQ0VUolZxf+SzEd4d3we7Jrl8VhinSroqJCQoI0zY4eNozrly4TFnRRtgAsmD0H75XyL9h/mpqaGnb29pw+Jf8xzzMnT+GURvr79PGTYpr50SiaeJ+mRiKRyOasT26Tjw/6BgayiurUaGtro6+vz73wcEJDQmjQKPdMiyGRSJgychjHD+5n076DmFsWTve2ly8E8PjBfVql8lHmH/Lmy4eRiQnfvn3j2IH91K7fAACXqtU5FHCJ/ecCZUtZO3sat2rD/nOBCj1mNbW0KaSnz6P797gZFkqteg1+63qz2u/En31FZ6IjI4iLjZX99uj+PZSVlTEykX/hTiv+AD5/+oiSQlpWlj3/1NTUKGtnL5v7PvmxTMxz5vmXmuy6j52cnBVGL506eVJunxKJhKGDB7Fv714OHztO4SLyZZofz0jFeFaRy79ykiz+TsrH3+lTJ3FO5XslWlpaBF8N41JwiGzp1bsPxUuU4FJwCBXS+H6MRCLh2rVrGBml3dv6y5cv/PvvvxgZS8t7hYsUwcjIiFPJ/rfx8fH4nz+f6rn9SVmVF/8uiUTCly/xCr//yC/C790jODSUJomjTkcPHcb1ixcJCwyULQALZs3Ce0X6ps3JTr9zH//gf/489+/do0vXbuk6Vsr8+Ff3cW72J8uEqUkrHabHuo0+NG7QAP0U05jnFDU1NRwcHDh54oTc7ydPnkzz203Ozs6ymU5+OHH8OI6Ojqgmvt/9LolEwpd4xbhdv349Dg4OlC9fPlP7z63SKi/ny5cPY1NTvn37xsG9e6jX4PemG9XS1kZPX5/79+4RFhpCvVw4bWlyacUHgK1jRQJTjKi5cOY0ZWztZOnPtkLqYWyT1Wn9sHvrZgrp61MtxbeSktu5eSNlyttR0ib1Dsc57XfK1Z8+fky1PuDH/opZF1d456hVrz7OVaqy/1wgxqbSOpZflavTem9Wzo1lwiwsU5coWZLLoVcJuhIsWxo0bCQb4WSWYnao9LwbJ/eze+RPUajjKv2jjispP4mPj+fc+XO4/qT86uLswokT8nF//PgJXF2Sps+r5Foplbqpu1im8r3MdenIL9Z5r6dxo8a5Ji8W0k9ZSSlLlozw9PSkQoUKaGpqYmBgQNOmTfnvv//kwkgkEiZPnoyJiQnq6upUr16dW7duZeWlZ6tcNzIqrSH3P36XpFEJmdmpRPLmzavwEfKsEBsby8NkDRaPHz/ixrVr6OjqYGZuwbSJ44l48YLla9cDsHLpEiwsLClRujRf4+PZ4buVA3v3sGFrUiv7Yq/5zJo6hVUbfDC3sJTNwaxRoAAFChQAYOSQweza7sem7TsoUKCALIyWtjbq6urExsYyZ8Z0GjVtiqGREU8eP2bGpEnoFtKjfmPFqTdyyorpk3Gt7Y6BiSnvXr9i0+IFfIz9gHtLaY+ZNbOm8yoykjELpT0FG3XszF6fdSyfOpEG7TpyOzSYI35bGb8kqQLApbY7O9euxMrGhlK29jx/9AjvebNxdUuaZqVlzz4MbNaQLUsXUr1hE/4NC+XQ1k0MnZU0p3GbPv2Z1r835ZycsXOtzOWzpwk6eZwFfnv+YAylj5KSEkMGDmTmnNlYW1thbWXFzNmzyZ8/P+3btpWF69y9G6YmJnhOnwFAv959WLJ8OYOHDmXgP/8Qfu8eM+fMZlD//rJthg4eTKdu3XB0cMDFyYnV69bx5OlT+vbqDUgr1KpVrcqIMaNRV1fH0sKCc/7+bNyyGa/EKeWUlJQY4TGUSdOmUr5cOWzLlcdn8yb+/e8/dv6kh8mf9ubNG548fcqLiAgAWQOSkaGhrGd55549pXE4dSoAg//pT1V3N2bPn0+Thg3Zd/AgJ8+cISDZS7XHwAG41qzJzLlzaN28BZeDg1ntvZ7ViT1gtbS0qFalCiPGjZOPw61b8Zo1S3oORkapjvy0MDejSAZ7NWaHgYOH0LNbV+wcHHBycmb9urU8ffqEnr2l6WTiuHG8ePGctd4bAKjXsAED+vZlzaqV1HZzJzIygpHDhuFYoYJsKoG5s2dj7+BA0aJFiY+P59jRI2zdvJlFS+V7DickJLBpow8dOnZK9bsru3fuRE9fH3Nzc27dvMmIYUNp1LgJtVN8LDsnTR4xlAM7d7Biiy8aBTR5mdizWlNLi3yJlWLzpk4iKiKCuSvkp9HcsXkj5R0cU53HPSz4ClERLyhVthxRES9YMtuThIQEWa/FApqaCtup589PQR1dud+P7N2Drp4exmZm3L19i+ljRlG7fkOq1Mz5ESnwe/HXqGVrls2bw+gB/Rg0ehxv37xi9qTxtOzQSbbNr+IPoEbdeqyYPxcTMzOsS5bi9vVrrF++lJYdkj5I3XPgYIb06EoFF1ecq1Tl/KmTnD56hM0HDv+hGEqf7LiP/xk4APeaNZk/dy4NGzXi4IEDnDl1ipNnz8qO6zFoINt9ffHbtZsCmpqyHvLaiWUaLS0tqlStyrjR0nzGwsICf//zbN28mVlzc8/UpYOGeNCjaxfsHRxwcnZm3do1PH3yhJ69+wAwYdxYXjx/wboNG1BWVlb4lo6+gT758uaT+33GtKlUdHLCysqamJgYli9dyvVrYSxcvFgWZvTIETRo2BBzcwuio6OZ7TmTDzExdEjsnamkpET/QYOYO2sWVlbWWFlZMWf2LNTz56dNu3Z/IGYy5s2bNzx59ixZXiytLDAyNMQosVdr5969MDU2wTNx1oP4+HhuJ07BFB8fz/MXLwi7fp0CGhqyEShjJ0+mnpsb5mZmfIj9gO/OnZz19+fonr2yY+/Ysxt9PT0szMy5cesWg0eNpGnDhrgnjr5Lfg7JWZiZ54q8GDJ+H//g472eChUrpvqNp/Tkx7+6j0H6v3365AkRif/b8MSKIMM0yjg5KbvKhGMnTaSeex1pOvzwAd+dOzjrf56je/dl6NgA9+7f53xAAId35653kyEeHnTp3BkHR0dcXFxYs3o1T548oU/fvgCMHTOG5y9e4OMjnfq8T9++LFu2jGFDh9KzVy+CgoJYv349W7Zule0zPj5eNt1efHw8z58/JywsjAIFCshGQo0bO5a69ephbm7Ohw8f8PP15ezZsxxOMUV9TEwMO3fsYO68eeRGGa1fWLdyJabm5lgndu69FHiBZYsW0qtvP9k+Qi5fJuLFC2zKlyPixQvmzJhOQkICA4cOS/dxAfbt3kUhPT3MzM25ffMW40YMo36jxtSonXvK1F7TplC1thtGpqbExcZyePcuLl/wZ8126YiH+VMnEx3xgtmJ5cG23bqzZd1qPMePoXWnroQFX2bXlo3MW71ets9OffrRqWFd1ixaQK16DTh15BBB586y5ZD8zBQJCQns2bqFpm3ap/ktyNiYGI7t38uoqTOyJwKywO+Uq2vWrcf4IQPZsn4tVWrW4mVkJDPGjaacvaNsusKU7xya2toKv/+qXK2ppUXFSpWZPWk8+dTVMTE35/KFAPb6bWPMdM/sjZgMyI4ydcr8Wbugdqq//+zdOC4ujjmenjRo1BAjI2Nev3nNmpUref7sGc1atMiOqPhtSkpKDBk8mJmenlhbWWNtbc1MT09pHVey0cCdu3TB1NQEz5nS///gQYOoWr0as+fMpknjJuzbv4+Tp04ScN5fto3HkCG4Vq7ETM+ZtG7VmsuXL7N6zRpWp+jkGxMTw46dO5g/N+384t69e5w/f57DBw9lcQwI/6vOnTtH//79qVChAt++fWPcuHG4u7tz+/ZtNDQ0AJgzZw5eXl5s2LCB4sWLM336dNzc3Pjvv//Q1NTM4Sv4tVzXGFWsWDFUVVW5fPmy7NtOMTExhIeHU61aNUqXLs23b9+4dOmSbJq+169fc/fuXUpl4sOu2SUsNISmdZN6vUwYNRKAth07snT1WqIiI3mWbBRWfHw8k8aOJuLFC/Kpq1OyVCm27d6LW926sjDeq1cRHx9Pt/byFQQjxo5j1PgJ0jBrpJl+kzrucmGWrFotm//5zq2bbN+6hffv3mFoZETlatVYu2lTrkq4ryJeMH1AX96/fYO2biFK2zuwdO9hjMykaeNNdDTRL57LwhtbWOLps5VlUyeyb6M3hQwNGTB5BlXrJ/XG6jTIAyUlJdbPncWryEgKFiqES213eowYIwtTsrwdU1d7s3b2DDYu8sLY3IJ/Jk2jdrOWsjBV6tbHY+Ycti5bzNJJ4zEvVowpq9ZRNo3eyjlt5LDhfPr0iX8GDeLt27c4VazI8UOH5P7fT54+letxY25uzvFDh/EYMZxyjg6YmpgyeMAARg0fIQvTplVrXr9+w9SZM4iIiMCmTBkO79sv12vEd9NmxkwYT4euXXjz5g2WFhbMmDKVvomFLYAhgwbx+ctnPEaM4M2bN5QvV44Th49QLNlw8py2/9AhuvXtI/u7bRdpRd6ksWOZPG48AE+eycehq7Mzvj4bGT91ChOmTaVY0aL4bdwoN41iBQdH9vj6MmbiJKZ6elKkcGEWzplDh2QNhb4bfBgzaSIdunfjzdu30jicNJm+PXtl92VniZatW/PmzWtmzZhBZEQEpcuUYff+A1gkppPIyAi5Z2Gnzl2I/fCBVctXMGbkSLQLFqRa9epMn5n0EvExLg6PQQN5/uwZ6urqFC9RgnUbfGjZurXcsU+fOsXTJ0/o3LVrqucWGRnB6JEjiI6KwsjYmPYdOjJ63Lisj4RM2Lp+LQAdG9WT+33W0hW0aC+dcjQ6KpIXz+RH9X6Iec+xA/sYPzP175d8+fKFBTOm8fTxIzQ0NKjmVoe5K9agpV0wQ+cXHRXJzPFjeP0yGn1DI5q2aUf/ETk3jUNKvxN/GgUKsGH3PqaOGkHzWlUpqKNL/abN8Bg3URYmPfE3cdY8Fs6czuThQ3n96iUGRsa07dqdASNGy8K4N2zMlPkLWbXQi2ljRlLEypqlPptzzYeWf8iO+9jZxRWfzVuYOmkS0yZPomjRYmzcslVu5M+axOmT6taWb9xcuXYtnRK/g7Jh8xYmjR9H9y6defvmDRYWlkyaOlXW0JMbtGrdmjevXzNzxnQiIyIoU8aGvQcOyPLLyIhInj59kqF9vnv3jv79+hEVGYm2tjblbW05cfoMFZL1xn7+/DmdO3bk9atX6OnrU9HJiXMBF+Ty6WHDR/D50yeGDBzA27dvqVCxIgcPH8lVZcIf9h8+TLd+fWV/t018tk8aM4bJY6XP7idPn8r1in4REYFdpaT7ad7iRcxbvIhqlSvLps6Lio6mU+9eRERGoq2lRTkbG47u2YtbzaTpECMiIxk6ZgxR0dEYGxnRuV07JoxKupf/Bhm9jwHev3/Pvj17mOvlldou05Ufp+c+PnTwAH179pSt69KxAwBjx09g3MSJ5CbZVSaMio6mU88eielQW5oO9+7DLdl0o+k5NsD6jT6YmpjgXrt2Fl995rRp04Y3r18zfdo06buDjQ0HDx2SPZMiIiN5+iTpWVikSBEOHjrEsKFDWb58OSYmJixctIgWySpGX7x4gUOyqeDmz5/P/PnzqVatGqfPSEesREVF0aVzZyIiItDW1qZcuXIcPnIEtxSdj3x9fZFIJLTLhY3xkPH6hQRJAtMnTeDJo0eo5MlD4SJFmTB1Ol2T3Wufv3xm5tTJPH74EI0CBahdpw7L165Hu2DBdB8XpNO9Thg1kpfR0RgaGdGmfQeGjRmbHdHw216/jGZkv968jIpEU0uLEqVtWLN9N5USp759GRXJi+fPZOHNLAuzyncns8aPYeu6NRgYGTPOcw51knXgta/oxPy13iyaMY3FntMxL1wEr7UbKO9YQe7YgefO8OLZU5p36Jjm+R3aswuJREKDFi3TDJPTfqdc3aJ9R+JiY9m8ZhWzJoxFS1sb5yrVGDFpaoaOnZ5y9cK1G5g3dRLD+vTg3du3mJqbM3TcRNp36/G7l5zlsqNMnV4/ezdWUVHh7n//sWXzJl6/eoVuoUI4ODhy4swZSpcp89vXm11GjhgpreMa0F9ax+XkxPGjx1LUcT2Rz4tdXfHduo3xEycwYeJEihUrht82X7nZtypUqMCeXbsZM24sU6dNo0iRIiz0WkCHDh3kjp+e/GK993pMTU1xd3dPM4yQe0mn6cvcN3QzOk3f0aPy03p7e3tjYGBASEgIVatWRSKRsHDhQsaNG0fz5s0B8PHxwdDQkK1bt9KnT+55/02LkiStoUY5qFevXpw6dYp169ZhYGDApEmTOH78OD169GDBggU0bdqU8PBwVq1ahaamJqNHj+bevXvcvn0bVVVVNmzYwJAhQ3j37h0AYWFh2NnZ8fDhQwqns1diTEwM2traPIyMRlNLK/su9n/Y9Vfvc/oU/no1DHVy+hT+ft++5fQZ/NU+ZnL6EwFexH7O6VMQ/p8zKZC7P379N8jo9AqCvHyfxXMwsz5mwwwO/9/kT/zYufB7EtRFXpJZbz//3nSLgtSrTyL+MktFlGcyTZSrMyd/imnehYyJiYlBW6cg79+/R0vUVWebH20C9YfvRDWvRqb29fVLHIfnteTp06dy/7P0ztB27949rK2tuXHjBjY2Njx48IBixYoRGhqKXbJvdDdp0oSCBQvKRpbnZrnum1EAXl5euLi40LBhQ2rXrk2lSpUoVaoU+fJJH/re3t44ODjQsGFDXFxckEgkHD58ONNzRguCIAiCIAiCIAiCIAiCIAiCIGQFc3NztLW1ZYun569HNkokEoYOHUrlypWxSZxy88dU14YppgY3NDSUrcvtct00fSD9MN2WLVtkf8fFxTFlyhR6J07ppaOjw8aNG9PcvmvXrnRNNuTU1tY2zW9NCYIgCIIgCIIgCIIgCIIgCIIgACgrK6GcyWn6fmyf2sioXxkwYADXr18nICBAYZ1SipGuEolE4bfcKlc2Rl29epV///2XihUr8v79e6YmfvS1SZMmv9hSEARBEARBEARBEARBEARBEATh9ygpKWW6gefH9lpaWhmaWnHgwIHs37+f8+fPY2ZmJvvdyMgIkI6QMjY2lv0eHR2tMFoqt8qV0/QBzJs3j/Lly1O7dm3i4uLw9/dHT08vp09LEARBEARBEARBEARBEARBEAQhy0gkEgYMGMDu3bs5ffo0RYoUkVtfpEgRjIyMOHHihOy3+Ph4zp07h6ur658+3d+SK0dG2dnZERISktOnIQiCIAiCIAiCIAiCIAiCIAjC/yPKSlkwTV8GR1b179+frVu3sm/fPjQ1NWXfgdLW1kZdXR0lJSWGDBnCzJkzsba2xtrampkzZ5I/f37at2+fqXP9U3JlY5QgCIIgCIIgCIIgCIIgCIIgCMKfpqQsXTK7j4xYsWIFANWrV5f73dvbm65duwIwcuRIPn36xD///MPbt29xcnLi+PHjaGpqZu5k/xDRGCUIgiAIgiAIgiAIgiAIgiAIgkDWfjMqvSQSSbr2OXnyZCZPnvybZ5Wzcu03owRBEARBEARBEARBEARBEARBEIS/nxgZJQiCIAiCIAiCIAiCIAiCIAiCACgrZ8E3ozK5/f8i0RglCIIgCIIgCIIgCIIgCIIgCIIAKClJl8zuQ5AnpukTBEEQBEEQBEEQBEEQBEEQBEEQso0YGfULut+/ofX9W06fxl+pZteDOX0Kfz3JgXY5fQp/P2XR5p4Z+b9/z+lT+Ov9++ZDTp/CX81ap0BOn4IgoCKmV8iUBI38OX0Kf7383xNy+hT+eh9VVXP6FP5qyiINZpp6HpWcPoW/mk4+cQ9nVgFVUQWYWZ++iffjzFBVEfUzmfEVSU6fwv8rSspKKGXyPTCz2/8vEjmRIAiCIAiCIAiCIAiCIAiCIAgCoKSkhHIm59lTEvP0KRBN0oIgCIIgCIIgCIIgCIIgCIIgCEK2ESOjBEEQBEEQBEEQBEEQBEEQBEEQENP0ZRfRGCUIgiAIgiAIgiAIgiAIgiAIggAoK0mXzO5DkCem6RMEQRAEQRAEQRAEQRAEQRAEQRCyjRgZJQiCIAiCIAiCIAiCIAiCIAiCgJimL7uIxihBEARBEARBEARBEARBEARBEARASUkJJaVMNkZlcvv/RaIxShAEQRAEQRAEQRAEQRAEQRAEAVBWVkI5kyObMrv9/yLxzShBEARBEARBEARBEARBEARBEAQh24iRUYIgCIIgCIIgCIIgCIIgCIIgCIASkNlZ9sS4KEWiMUoQBEEQBEEQBEEQBEEQBEEQBAExTV92EdP0/SG79+2jTtMm6FlaoKRZgLDr13+5zRpvb6q4u6FjboaOuRm1GzXkcnCwXJhv374xfuoUitiUQV1fj6JlbZg6y5OEhARZmK59+qCkWUBuca5RQ+F4QZcuUbNBfTQMDShoZkr1enX59OlT5i8+A0a3K8flZY2IOdCJqJ3t2DO1FsXNtOTCaOTLw5KBzjz1bcPHw525vb45fRuV/OW+tTXUWDrIhRfb2/LpiHS7ehXNMnRs75FVkJzqLrcELWmY5jEPe7ojOdWdJpUsMhgTWW/3vr3UadwYPQtzlDTyE3btWrq227V3L6Ud7MmrU5DSDvbs2b9PIczy1asoUroU+XR1cKjkiv+FC3LrJ8+YTkk7WzT09dAxNaF2gwZcunJZLkyfgQMoZlMG9UK66Fta0KR1K/7977/fv+BsIJFImDx9GiZFiqCuU5Dq7m7cun37p9tUd3dDST2fwtKgWVNZmBWrV1OugiNaBvpoGejjUq0aR44dy/Cxv3z5wkAPD/TMTNEopEvjli149uxZll1/ZmVX/HnOnUOFSpXQ1NfDwMKcpq1a8d/du3L7SW0fSur5mOvlJQvTZ0B/ipUuhbpOQfTNzWjSqmWuSYNbF82jkZWJ3NLJufxPtzm0yZt+darSokxR+rpV5vSeHXLrA48dxqNpXdralaRl2WIMalSb03t2yoXpUa2iwnEbWZmwYtKYVI+5dPxIGlmZsM97TeYuOIttW7+WxlVccLA0xcHSlDZ1anH+5PGfbnP5QgDNa1alnIk+te3L4eu9Tm59p8b1KVlIS2Hp07alLMy3b99YOGMqtezKUt7UgNr25Vg2d5ZcHp3aPkoW0mLdkkVZGwlZZPXKFZQubo2uZgEqOVXkQkBAmmF79+iOhpqqwuJYXj7tvnv3Do9BAylqYY6uZgHsy5bl6JEjcmFePH9O9y6dMTcyRE9bC2dHB66GhsjW79uzh8YN6mNhbISGmirXwsKy9LqzysoVKyherBia+fPjVKECAf7+aYbds3s39dzdMTE0pFDBglSpVInjKfKGjRs2oKaiorB8/vw5Q8eNioqiR7duWJqZoV2gAA3r1SM8PDzrLjwLrVi+nGJFi5JfXZ0Kjo74/yQOIyIi6NChA6VKliSPigoeQ4YohKlZowYqysoKS8OG8uW79Bz3zp07NGnSBJ2CBdHW0sLVxYUnT55k+pqzmkQiYfLUKZhYmKOuWYDqtWpy69atn26zZu1aqlSvho6+Hjr6etSu487ly/JluRUrV1LOzg4tXR20dHVwqVyJI0fl7+XJU6dQ0qYMGtpasv1cunRJLkz1WjVRUs0jt7Tt0D5rLj4LZPVzcN+ePVR2dsJEXw/9gto4OzqwdfPmNPc5d/ZsNNRUGTFsqNzvf8tzEGDVihWUtLaiYAENXCtWJCAg7fsYpGXcSRPGU7xYUbQ18lO6RHF8vL1l6/fu2UMlJyeM9ApRSFsLJ4dfxeEs1FXzMHyofByqq+ZJdfGaPy9zF5zFMpIGAXy3bsXJwR49bS2KWpjTp2cPXr9+LVuf3jT4q7w4tfRevXKlrLvwLBIUEEDHli0oV6wIhhrqHD6w/5fbfPnyhZmTJ+FQsjjmOtpUtCnNVh8f2fpmdd0x1FBXWDo0bya3n4gXz/mnezdKmptSWE+Xms5OXLsaKlsvkUiYO2M65YoVwbKQDs3quvPvL96XckpWp8Pkdvj5oaGmSpsWLeR+D/D3p2XTphSztEBDTZUD+xTrJmZMnYqdjQ36BbUxNdCnQd06XLl8SSFcTgoM8Kd9i+aUKVoEvfz5OLz/52kw4Pw59PLnU1jC03hX3b1jO3r589GpdSuFdetXrcK+VAlMdbSp6epC0IW0/29DB/RHL38+Vi5dkrEL/EOyulydnJ+vL2oqKrRoJn8Pr1qxAntbWwoVLCjbT8r3FolEwtQpU7A0M0NLQ4PaNX9dzhKE/09EY9QfEvfxI5WcnZk1ZWq6tzkb4E+7Vq04c+gwQSdPYWFmjnvTJjx/8UIWZvYCL1auW8fSefO5ExzCnGnTmLtoEUtWrpDbV103NyLu3Zcth3ftklsfdOkSdZs3w71mLS6fPcuVs+cY0KcPysp/NolUK2fEsv13cB5wALeRx8ijosTxOXXJny9pEN+Cf5yoW8GMjp7nKNVtNwt23WLJQGcau6bd4KOaR5kTc+pQ2LAALaecpkSXXfTyusDzVx8zdGyAI5efYdRym2ypPzb1Cs0hLcogkUgyGSNZJy7uI5VcnJk1Nf1pMOjSJdp07kSntu24dvESndq2o3WnTnINSX47dzJk5EjGjRzJ1cAgqrhWol6zpjx5+lQWpriVNUvne3Hj8hUCTpyksKUF7o0b8/LlS1kYBzs7vFeu4k7oVY7t3YdEIsG9cSO+f/+eNRGQBebMn4/X4sUsXbCAKwEXMDI0wq1BAz58+JDmNrt9/Yh4+Ei23AwJRUVFhVbNm8vCmJmaMmvadIIvBBJ8IZCa1avRpFVLuYaa9Bx7yIjh7Nm/H9+NGwk4dZrY2Fgatmiea+Iwu+LvnL8//fv24eK585w4eIhv37/h3rABcXFxsjDJ9xHx8BHrV61CSUmJFskatRzs7PBevZo7YWEc239AmgYbNsg18WdhXYKNQWGyZemh02mGPbzFB595nrQfNIxlR87QfvBwVk4ey+VTSc8rTe2CtP5nMHN3HGDJwVPUbtGWRaM9CD1/VhbGa/cRuWNO8/EFoHK9RgrHDDpxhLvXQtE1NMq6i84ihiamDJs4mZ2nzrLz1Fmcq1Sjf8d2hP97J9Xwzx4/ok/bljg6u7DnTAB9PIYxY8xIjiVrjF/isxn/2+Gy5cCFS6ioqFCncdILy9pFC/DdsJ4Js+dyKOgKwydPZd2SxWxes1IWJvk+/G+HM2PxcpSUlHBv1Dj7IuQ37dy+nZHDhjFy9GgCL1/BtXJlmjVqyNM0Ktvnei3g/pOnsuXug4fo6urSLFnFQnx8PI3q1eXx48ds8fUl7OYtlq5cgYmJiSzM27dvqVW9Gqqqquw5cICQa9fxnDMXbe2CsjBxcXG4uLgydcaMbLv+zNru58cwDw9GjxnD5ZAQKleuTKMGDdJsrAjw96eWmxv7Dx7k4pUrVKtenWZNmnD16lW5cFpaWjx5/lxuyZcvX7qPK5FIaNm8OQ8fPmTXnj1cDgnBwtKSeu7ucs/R3MDPzw8PDw/GjB1LSGgolStXpkH9+mnG4ZcvX9DX02PM2LGUL596A/7OXbt4/uKFbLl+4wYqKiq0bJnUsJye496/f5+qVapQskQJTp85w9WwMMaNHy/3v8gt5sybi9fChSxdtJgrQRcxMjLCrV7dn+bHZ8+do12btpw5cZIg/wAszC1wr1+P58+fy8KYmZkya+YMgi9eIvjiJWrWqEGT5s3lKmCKWxdn6aJF3LgaRsDZcxS2LIx7/XpyZUKAXj16EvH0mWxZtVz+3SanZMdzUEdXl5Gjx3D6vD+XQkLp1KULfXv15MRxxXeMkOAreK9bi03Zsgrr/obnIMCO7dsZMWwoo0aP4eKVYFwrV6Zpw4Y/bbjt2K4tZ06fZuXq1Vy/dRufTZspXqKEbL2urg4jx4zhrH8AV0Kv0qlLF3r37MGJ44oVjcFXrrBu7VrKli2nsO7h02dyy6o1a1FSUqJZs+YKYXNKRtNg4IUAenXvRpdu3QgOu8bmbdsICQ6hf58+sjDpSYPpyYsB3OrUkUvzu/cfyJZ4yIyPcXGUKVsWT68F6d6mV6eO+J89g9fylVwIu87KDT5YlyguW79+qy837j+ULeeuhKCiokKjZGnn3du3NKpVE1VVVbbu2cv5kKtM9pwlF4dLveazcsliPL0WcPR8APqGhrRu1IDYnzyfc0J2pMMfnjx+zNjRo6hUubLCuri4OMqWK4fXwrQ7bVlZWzN/0SIuh17lxJmzWFpa0rh+fYV8Jid9jPuITdmyzM5AGgS4eO0Gtx48ki1FrawUwjx98phJY8bgXEmxIXjPzh2MGzkcj5GjOBN0CZdKlWjbtAnPnir+3w7v30/olSsYGZsorMsNsqtcDfD48WNGjxxJ5SpVFNaZmpkxY+ZMgi5fJujyZarXqEGLZs3kyjrz5s5l0YIFLFy8mMBLlzA0NKR+nTo/LWcJuZOSslKWLII8JUluqi3PRWJiYtDW1ub98xdoaWn9eoN0evT4MUVsynD1QiC25RQLwD/z/ft3dMzNWDpvPp3bS3sHNmzZEkMDA9YtXy4L16JDe/Lnz8+mNWsB6ciod+/fs9fXN819O9eogVvNGkybMPE3rip1Sk38Mr0PPe18vNzdnqpDDuF/IwqAG2ub4Xf2AdM3J43sCV7RmMOXnjFxQ2iq++nTsAQj2pSlZNddfPueviSf2rG9R1ahYAE1mk089dNtyxXV5eCM2lT45wCRO9vRdOJJ9l3IeM9YyYF2Gd7mVx49fkyR0qW4GhiEbRoVMz+06dyJmJgYjuxNqoCt26QxOgV12JbYE8ypWlXsbW1ZsWixLEwpezuaNmyEZxoNXzExMWgbG3Hy4CFqpTJKD+D6jRuUd3bi3o2bFCtaNKOXmSSLGlQlEgkmRYswpP8ARg0fDkgruQwtLZg9fTp9evZK134WLlnCxGlTiXj4CA0NjTTD6ZoYM3fmTHp07ZauY79//x59czM2rVtPm1bSHlAvXrzA3NqKw3v3UcfNLZMxkDl/Mv5evnyJgYU5506coGplxQIkQNNWrfgQ+4FTR46meazrN25QvmIF7t26RbGixdJ1fqk5+PzNb2/7w9ZF87h48iiLD5xMV/gRrRpRyqEC3UcnPdPXTJ9I+I1rzPFT7EH4w+DG7lSoUZuOHiNTXb9m+kSunD7JqlMXUEo2efLryAiGtWjIFO+tTO3VicZde9GkW/r+p79irVMgS/aTklMxC0ZMmU7Ljp0V1s2bPJHTRw9z+GLSaORJw4bw780b+B1L/fnvs3IZiz1n4n/7LvkT02afdq3Q0zdgxuJlsnADu3REXV2dOStTHz3Wv2M74mJj2bA36ypvzDXVs2Q/1Sq5Ymtnx6KlSddjX7YsDRs3Tlfl54F9+2jXuhW374ZjYWkJwNrVq1jo5cXVGzdRVVVNdbsJY8dyMSiQE2fO/vIYjx89onRxawIvX6G8rW26ris9VFUyn5dUcnHBzs6OpcnKbGXLlKFxkybMmDkzXfsoX7YsrVq3ZvyECYB0ZNSwoUN5+Sbt58yvjnv37l1sSpXi6vXrlClTBpCWOU2NjJjp6Un3nj1/53LlqGR2svVELs7O2NnZsXxFUsNEmdKladKkCTM9PX+6bc0aNShfvjwLFi78abhFCxcyadIknr94Ictn0nPcdu3aoaqqysaNG3/z6n5O+XvCrwOlg0QiwcTCnCGDBjFqhPRZ/+XLFwxNTZg905M+vXunaz/fv39HR1+PpYsW07lTpzTD6RroM3fWbHp0757q+piYGLQL6XLy2DFq1awFSEdG2Za3ZWGy0ctZ4WMWvPZmx3MwNa4VK1C3Xn0mTpki+y02NpZKFSuyYMkS5njOpGz58sydrxhH2fUcVM6i+7iKqwt2dvYsXpYUh7ZlbWjUuDHTZig+C48fO0rnDh24fTccXV3ddB/HpUIF6tavx6RknUFjY2NxqViBRUuWMGvmTMqVt2XeT9JZqxbNif3wgSPHT6T7uD+TkANpcKGXF2tXr+Lmv0kjKFYsW8qC+fO5++BhmsdJmQbTkxf37tGd9+/e45ei42tWif36Lcv3aaihjrevH/V/0gno9PHj9Onamcs3b6OTzjS4aukS5kyfxvX7D2V5ybQJ47lyMYj9J1IvS0okEsoVK0rv/v0ZOCzpfcmmiCUTpk2nc4/M58cFVLPmSx3ZlQ6/f/9OnVo16dSlCxcCAn6anjTUVPHdsZNGTZr89FxjYmIw1ivEwaPHqFGzZkYvVcGnb1nbUVEvfz42+m6nfuO002DA+XM0rVuH+y8i0S5YMM1w379/p7F7bdp16szFwAu8f/eeTduTZsdwr1qFcra2zFucNNLJxa489Rs1YsLU6bLfIp4/x71aVXbsP0C75k3pM2AgfQcMzNyFJtLKm3p5P6Oyo1wN0jisVaMGXbp0ISAggHfv3rFrz56f7sdQT49Zs2fTrUcPJBIJlmZmDBw8mBEjk8pZZsbGzPT0pFcqDbAZERMTg56ODu/fv8/SumpB3o82ge5ex1BTT7veLj3iP8Wxfmgd8T9LRoyM+ot8/PiRr1+/oqujI/utsosLp86d5W7iVCrXbtwgICiI+u7uctueDfDHoEhhitva0mvAAKJfRsvWRb+M5lLwFQz09XGtVQvDokWoVrcOAYGBf+bCfkJbQ5pRvfnwRfZbwM0oGrtYYKKXH4DqtkYUN9PmWPDzVPcB0NjVgqDb0Swb5ErkznbcWNuMMe3L/XTuztSODVC9vBFRO9vxn08LVg+thH5B+R6v6nlV2Da+GgOWXCTq7Z+d5jCrBV26hHut2nK/1antRuCli4C0R3vI1au416olF8a9Zi1ZmJTi4+NZvX492tralE+lVydIezx5b9pEkcKFMTczSzXMn/bw0UMiIyNxr50UH3nz5qValSoEXkz9WlOzzmcDbVu1SrMh5fv37/hu3y7t3erknO5jh1wN5evXr3JhTExMsClThsCLQRm61uzwp+IP4H1MDAC6Oqm/LEZFRXHo6BF6dOma5j7i4uLw3rgxMQ2ap/v8stOLRw/p4mpHj+pOzBncl8gnj9MM+zU+HrW88s8mtbz5CL8exrevXxXCSyQSrgX68/zhfcpUcEpzn2f27aJ2y7ZyDVEJCQl4DR9E8179sCxeItVtc5Pv379zaPdOPn78iK1jxVTDhAVfplIN+ZfVyjVqcSvsKl9TiT+AnZs3Ub95C1lDFICDkwtB58/x8J40j/735g1CLwVR1c091X28io7m3IljtOiYdsVuTomPj+dqaCi1ass3bNd0q82ldD5jfLy9qVGrllwF7KGDB6no5ITHoIEUNjPF0daWubNmyY1IPHzwIHYODnRs2xZLUxNcKjjivW5t1lzYHxIfH09oSAi1U3QMcHNz42JQ+uIvISGB2A8fFCpjY2NjsSpShCIWFjRt1Eiuh2d6jvvli7Sck3wEj4qKCmpqalxIMe1uToqPjyckJAS3FGVcNzc3gtIZh+mxfv162rRpI8tn0nPchIQEDh86RHFra+rWrYuRoSEuzs7s3bs3y84rqzx8+CM/TkoTefPmpVrVqgRmIB5l7yW6Oqmu//79O75+ftLyjLNzqmHi4+NZvXaNtExYTr6D1JZtW9EzMqRM+XIMHzkiV/Qmzq7nYHISiYQzp08TfvculVL0yPYYNJA69etRM0W5+28ii8MUz6RatdN+Fh46cBB7Bwe85s2lqKUFZUuXYvTIEWlOJy+Nw1PcvfufQq/2IQMHUrdePWqmeL9JTVRUFEcPH6ZLt9QbUnPC76RBZxdnnj97xtEjR5BIJERFRbF3927q1quXavi00mB682L/8+ewNDWhfOnS9O/bh+joaIUwf5tjhw9R3s6epQu8KG9VFJfyZZk8ZvRPP2mw1ceHpi3l31mOJ+6nZ8f2lLa0oJaLM5u818vWP370iOioSKrXkn9fcqlchSsZeF/KbtmZDj2nT0dPTz/L7rv4+HjWr12LtrY2ZTPYGTw3quHiROkihWlWvy7+584qrJ87cwaF9PTp2LWbwrr4+HiuXQ2lRornX41atbmcLH0lJCTQr2d3Bnh4ULJ06Sy/hqyQneXq6dOmoaenR7cePX65j+/fv+Pn60tcXBxOLi5AUjkr+bnlzZuXKlWrZml5VRD+ZlnTLeJ/wJcvX2Qv4yBtBc1tRk+aiKmJCbWTjSQZNXQo72NiKOlgj4qKCt+/f2fGxEm0a9VaFqaeuxutmjXD0sKch48eM2H6NGo2aECIfwB58+blwcNHAEye6cm8GTOwLVeOjdu2UqtRQ25euox1KkN//xSvfk7434jk1qN3st8GLb3ImmGVeO7Xlq/fEkhIkNBzfgAXbkaluZ+ixprUtDNmy6kH1B9zHGszLZYNciGPijLTNoWl+9hHLj9jx7mHPI6KpYixJtO62nN6Xj0c+u0j/qu0x+qCf5wIvBXN/sDc942AjIqMisLQwEDuN0MDAyKjpHH96vUrvn//jqGBoXwYQwMiT8r/Pw4eOUzbLl34+PEjxkZGnDhwAD09Pbkwy1evYuT48cTFxVGyRAlOHDiImppaNlxZxkVGSq8ntfh4nM7vQVy+coWbt26xbsVKhXU3bt7EpXo1Pn/+TIECBdjjt53SpUql+9iRkVGoqamho6OjEObH/ysnZXf8/SCRSBg6aiSVXV2xSezhn5LP5s1oamrSvGlThXXLV61i5LixSWnw0KFckQaL29rjMXcxpkWK8u7VS/yWLWJE68YsO3IGrVQa3eyrVOf49q04u9WlWJmy3Lt5nZM7ffn29Ssxb9+gm3jPxn2IoWsle77Gx6OsrEK/KTOxq1wt1XO4eOIocTEx1GrRWu73XauWoayiQqMuvy6w56T/bt+iXd3afPn8mfwaBVi6cQtWJVP/3uDL6Cgq68un1UIGBnz79o23r19jYCQ/FeH1kGDC79xmxqKlcr/3GuzBh5gY6js7yvLoIeMm0rCF4vztAHt9t6JRoADuDXPfFH2vX0mf9waGKe9hQ05G/voZExERwfFjR/HeuEnu90cPHnLu8RnatGvHnv37uRd+j6GDB/Ht2zfGjB8PwMOHD1i7ahUDBw9h+KhRhARfYbiHB2pqeenwkxEZucmrxPgzNJTPLw0MDYmMjEzXPhZ4eREXF0fLVknpp0TJkqxdvx6bsmX5EBPDksWLqV6lCsFXr2JtbZ2u45YsWRJLS0vGjx3L8pUr0dDQYOGCBURGRhIZEZHJK886aV2LYQbi8FcuX77MzZs3WbM2qYI1PceNjo4mNjaW2bNnM23aNGbNmsWxo0dp2aIFp06fplq11J+rOeHHOStcj4Ehj3/SySGl0WPHYmpqSu0UlVo3btzApUrlpPLMzp2UTlGZdfDQQdp26CAtExobc+LIUbkyYYd27SlSpDBGhkbcvHWLMePHce36dU4cTfvbDn9Cdj0HAd6/f491YUu+fPmCiooKC5YsoVayDjw7/PwIu3oV/6DcUyH9O37cTwYpy4OGBkSlUV59+PABgRcukC9fPvx27OT161cMHjiQt2/esirZvfr+/XuKWVrI4nDRkqVyleXbE+MwIJ2V+ps3bURTU5OmKb4XkpN+Jw06u7iy3mcjXTq05/Pnz3z79o0GDRsxP8U0Z79Kg+nJi93r1KV5i5aYW1jw+NEjpk6eRH13dy5cukTevHmzODb+nMcPH3I5KJC8+fLh7evHm1evGe0xmLdv37Jo5SqF8KHBV/j39i0WJBtN+2M/PmvX0GfgIAYPH8nVkGDGDx9GXrW8tO7QgZdR0uezfor/r76BAc9y0fcHsysdBgVewGeDN0FXglPdR0YcOXSILh2l+YyRsTEHjhxRqHv4mxgaGeO1dBnl7eyJj//C9q1baV6/HvuOHcc1cSaQS0GBbPHx4ezF1L+P9eP/llr6ik72/F08fx558uSh9z/9s++CMim7ytWBFy6wYf16roSmPuPSDzdu3KBqpUqyss6OXbtkZZ2otMpZhoY8eZz+cpaQOygrK/10EEN69yHIE41RiTw9PZmSbBqEzNji50efwYNkfx/ZtZsqqczXmhFzFixg286dnD18RK7nqt+unWz282Xr+vWUKVWKsOs3GDJqFCbGxnTp0AGANi2S5ry3KV0GR3t7LEuX4tDRozRv0kT2IfU+3bvTLbEgaVe+PKfOnmX9pk14ZlG8ZNTSQS6UK6pD5cGH5H4f1Kw0zqUMaDT+BI+jYqla1ojlg12JePOJU6EvUt2XsrIS0W8/09vrAgkJEkLDX2NSKD8jWpdNtTEqrWNvP5s0hPzWo3cE//eKx1tb08DJnD0Bj2nkYk5NW2Ps+qQ9DdafsMXXlz6DkoZRH9mz97fToFKKKTkkEonCb+kJU6NqNcKCLvLq9WvWeK+Xfnvq7Dm5l9EObdriVrMWEZGRzFu0kNadOnLh1Okc+d7Clm3b6DNwgOzvQ4lDs9NzrWlZ57MBmzJlqFihgsK6EsWLE3bpsnQY+N49dOnVk3PHT8gapH732Bk5v6z0p+PvhwEeQ7h+4wYBp9L+ntL6jT50aNM21XTVoW1b3GrVIiIygnkLF9K6Y0cunD6T49/8cKyWbJROiVKUtHOkV00XTu/eQdMeikP92wwYwttX0Qxv2RCJREJBPX1qtWjNrtXLUVZRkYVT1yjAov0n+PwxjmuBAaybOQUjc0vKOrsq7PPEjm04VK1BoWTfhLp38zr7fdaycN+xHElnGVHEypo9ZwOIef+e4wf2M7p/XzbtP5Jmg5TC9SROrZPade7csgnrUqUp5+Ao9/vhPbs4sMOPeavXYVWyFP/euM7McaMxMDKiWbsOCvvZtWUTDVu2Jm8u/MbMD797D2/euJGCBQsqTKWSkJCAvoEBS1esREVFBTt7ByIiXrDQy0vWGJWQkIC9gwNTpkunD7G1s+PO7dusXb3qr2mM+uF348932zamTZnCrj175PJNJ2dnnJKNOnGtVImKjo4sX7qUBYuSKnh+dlxVVVX8duygd69eGOrpoaKiQq1atahbt+5vXWN2y0w+8ivr163DxsaGihUVR03+7Lg/ytKNmzRhiIcHALa2tgQGBbFq1aocbYzasnUrff7pJ/v7UOJH0jMTj3PmzWWbny9nT55SyB9LlChBWHBI4rQ2u+nSvTvnTp2Wa5CqUb0GYcEhvHr1ijXr1tG6fTsuXQiUpe1eyaaGtLGxwdrKCkdnJ0JDQ7G3t89YBGSDrH4OAmhqahJ0JZjY2FjOnjnDmBEjKFKkKFWrVePZ06eMGDaU/YcO53h5JKtkJA4TEhJQUlLCe+MmtLW1AZg99wvt27Rm4ZIlqKtLp6LV1NTkUnAIsbGxnDlzmlEjhlOkaBGqVqvO06dPGTHUgwMp3qV/ZuOGDbRp1z5XxnlG4u/O7dsMH+rB6HHjqe3mRmRkJONGj2JQ/39YsTppyuCfpUFIX17csnVSh6UyNjbYOThQyqoYRw8fpkkuatTLqB9pcMV6b7QS0+CUL7Pp0aE9sxYslKXBH7b6+FCydBnsHSso7Ke8vT3jEqeOLGtry793brNh7Wpad0gqFyqRfflcVsrKdPjhwwd6dO3K0hUrs6TRqGr16gRdCeb161d4r1tHp/btORtwQaEh/G9hXbw41sWTvlFWwUk60mzZwoW4Vq7Chw8f6Ne9GwuWLafQL+LvZ/+3sNBQVi9bxqnAoFyZ5lLKynL1hw8f6Nq5MytWrfplGixRogRXQkN5/+4du3fvpke3bpw8c0aurJOd5VXhz1FSUsr0/0383xWJxqhEY8aMYejQobK/Y2JiMDf/vamZGtevj5NjUoWUqUnmPvg3b9EiZs6fx8n9ByhnYyO3bsT48YweOpS2LaWt+WXL2PD46RM858+TNUalZGxkhKWFBeH378v+BiidokKuVIkSPHn2NFPn/rsWD3CmsYs5VT0O8/zVR9nv+dRUmNnDgWaTTnH40jMAbjx4i62VLsNb2aTZGBXx+iNfv0lISEiap/vOk/cYF8qPah5lvn5Lmoc/rWOnJvLNJx5HxWJtJp33s6adCcVMtHi3v6NcuF2TauJ/I4oaw45kLCJ+U+MGDXBKVmH/u2nQyNBQYVRN9MuXstEteoWklVaRUfK9T6KjXyqMgNHQ0MCqWDGsihXDuWJFrMuVZZ2PD2NGjJCF0dbWRltbG2srK5wrVkTH1IQ9+/fTrrX8SIw/oXHDhjglq4z6MXIyMioKY2Nj2e/J4+NnPn78iO+OHUxN47tsampqWBWTfpfI0cGBKyEhLFq2lFVLl2FkZPjLYxsZGRIfH8/bt2/lRkdFv3yJaxrT42SnPx1/AAM9PNh/8CDnT57ELI3pHf0DAvjv7l38Nm1Odb18GnRCx9iIPfv20a5Nm1+e45+UL39+CpcoyYvHqc/1nzefOoNnLaD/tDm8e/USHQNDjvluRl2jgNxIKmVlZUwKFwGgaGkbnt4PZ8fKJQqNUdHPn3Et0J8xy+SnY7l15RLvX7+ie9Wk503C9++s95zC/g1rWHfuclZdcqapqalhmfjtr7J29ty8GsrG1SuY6qX4AWR9A0NeRcs/+16/fEmePHkomGIqh08fP3J49y4GjRmrsJ+5kybQa7AHDZpLO4WUKF2GF0+fsnqhl0JjVHBQIA/vhbNg3YbMXGa2KZTYSBEVmTJPiFboGZuSRCJhk88G2nbooDDS0MjYiDyqqqgkayQtUbIUUZGRxMfHo6amhpGxMSWTNcxLw5Rk7y/mb89N9BLjL2VvzZfR0Qo9J1Pa7udHn1692ObnJ9dLPTXKyso4OjpyL3H65vQe197BgeDQUN6/f098fDz6+vpUcnHBwcEhI5eZrdK6luh0xGF6fPz4ET8/P4XOaek5rp6eHnny5JHrQAJQqmTJHJ/qsHGjRqnnx5GRKfLjaIWR7qmZ5zWfmbNmcfLoMcqlMuWRmpoaVomzKjg6OnIlOJhFS5awKtkIAQ0NDaysrLCyssLZ2RnrUiVZ572eMaNGp3pMe3t7VFVVCb93L0cbo7LrOQjSe7dYYryVt7Xlv3/vMG/ObKpWq8bV0FBeRkdT2TlpGt3v378T4O/PquXLeRsbJ/cMzc1+3E8pR0FFR79Ms5LYyMgYE1NTWUMUSEd0SiQSnj97hpW1NZBKHN75l7mzZ1O1WnWuhoYSHR2Nq1PSvfAjDlcuX8b7uI9ycRgQ4M/d//5j05atWXbtWeF30uC8ObNxcXHFY9gwAMqWK4eGRn7catRg4pSpsufAz9Ig8Ft5sbGxMRaWlty7d+/3LjiXMDQywsjERNYQBWBdQpoGI54/p2iymWQ+fvzI3p07GDl+Qqr7KV5SPg6LlyjJocQpXfUTO3xFR0VhmOz5/OrlS/RzUSNKdqTD6KgoHj96RKtmTWXb/OjooaWej7CbtyhaLP3f8NXQ0KCYlRXFrKyo6ORMudKl8PH2ZsSoURm82tzLsWJFdvhuA+DRgwc8efyYDi2by9b/iD9DTQ0uXruOqZk5KioqRKf4vyVPXxcDL/DyZTS2Jaxl679//87E0aNYtXQJV/+9m92XlS7ZUa6+f/8+jx49olmyDiM/4lBdTY2bd+5QLDENJi/rODg6EhIczNLFi1m+ciWGifWrCuWs6GgMsqC8Kgj/C8Q3oxLlzZsXLS0tueV3aWpqyirdrYoVU+gpkxFzFy5k2pzZHN29B8dUXr4+fvyEsrL8v1FFWUWu0SWl169f8/TZM1kjVGFLS0yMjfkvXD5juXvvHpbmFr997r9ryUBnmlexpObwozyKjJVbp5pHGTVVFVJe3vcEyU+HPl64FY2VqSbJG6SLm2nx4tVHuYaonx07NbpaeTE30CDitXS+6FnbrlOu1x5se++VLQAeKy7Tba7/L/eXVbIqDbo4OXHitPwHVo+fOolr4reM1NTUcLCz48Rp+VEoJ86cloVJi0Qi4Uv8l1+H+fLzMNklZRyWLlUKIyMjTpxKio/4+HjO+funq7Fn+66dfPnyhY7t2qXr+MmvvUjhIr88toOdtKImeZiIiAhu3rqFq7NLuo6Zlf5k/EkkEgYMGcLuffs4ffQYRRIbV1KzzmcDDvb2lE/nnOHpSac54euXLzy9dw8d/Z+/mOZRVUXP2AQVFRXOH9xHhZq1FfIMORIJX+PjFX4+udMX7UJ6VKiRYo7xpi1YcugUiw+ckC26hkY069mPKd65qwInJYlEQnwazxdbx4oEnj0j99uFM6cpY2uHqqr8R3eP7N1DfPwXGrVSbLD89OmjQnwrq6iQIElQCLtz80bKlLejpE3q39LLaWpqatjZ23P61Em538+cPIXTL54x/ufPc//ePbqkMn+9s4srD+7fl73sAdwLv4uRsbGswtbZxZXwu/JllPDwcCws/nwZ5Xepqalh7+DAqZPy8Xfy5EmcXdKOP99t2+jZvTsbN2+mfoMGvzyORCLh2rVrGCW+/Gb0uNra2ujr6xMeHk5IcDCNfvIx7T9NTU0NBwcHTp44Iff7yZMncflJHKbX9u3b+fLlCx06yncoSs9x1dTUqFChAv+lSKd3w8PT/DbQn6KpqSlr+LGysqJ06dKJ+XFSmoiPj+fc+fO4/iIe586fx7QZMzh68BCOjo4/DftDespyvwpz69Ytvn79irGxUZph/oTseg6mJnkeVb1mTS6HXiXoSrBssXdwoE27dgRdCf5rGqIgWRymeCadPpX2s9DF1ZWIFy+IjU16NwsPD0dZWRnTn3xbNnm6qlGzJsFXw7gUHCJb7B0caduuPZeCQxTi0Ge9N/b2DpQrXz61XeeY30mDn1KrL/hxvZK06wxSlpN+Jy9+/fo1z54+xcgoZ+/dzKrg4kJURARxydLg/XvSNGhsaioXdv+uXcR/+ULLtorvLBWcXbifos7lfng4ZolxaFm4MAaGRpw7Lf++FBTgT4Uc6FyYluxIhyVKllR4zjVo2Eg2wsnsNzuK//Czcv/f6sa1a7KGD+sSJfC/EsLZi5dlS90GDalcrRpnL17G1MwcNTU1ytvZczZF/c7Z06eomJi+Wrdrz/nLwXL7MTI2YYDHULbvP/jHrzEt2VGuLlmyJKHXrnElNFS2NGzUiOo1anAlNPSngxXk6m6KSOtukp9bfHw8/ufPZ0l5VfizlJSVsmQR5ImRUX/ImzdvePLsGS8S597/0fBjZGiIUWLreOfevTA1NpFNizdnwQImTJ/G1vXrKWxpKRuhUkBDgwIFCgDQqF49Zsydi4WZOWVKleLqtWt4LV1C906dAelHrSfPnEmLJk0wNjLi0ZPHjJ08Bb1ChWjWqBEgHTI4YvAQJs2cQfmyZbEtWw6frVv49+5ddqYxeiC7LBvkQvtaRWky4RQfPn7FUEfaiPI+Lp7P8d/58PErZ8MimNu7Ap++fONxVCzVyhvR2c2KoSuSeuD7jKrK81dxjF0XAsCK/f8ysGlpFvV3Zsne21ibajG2fXkW776d7mNr5MvD5C527PJ/RMTrTxQ2KsDMHg68ev+FPQGPAIh6+4mot4ofMn0SHZuuxq3s9ObNG548fZosDUp7TRsZGspeEDr37ImpiQmeU6VTBwz+pz9V3d2YPX8+TRo2ZN/Bg5w8c4aAZBnr0IGD6NSzB4529rg4ObF6/XqePH1K38QpVuLi4pgxZzaNGzTE2MiI169fs3zNap49f06rZtKeOw8ePsRv507ca9dCX0+f5y9eMNtrPurq6tSvU+ePxdHPKCkpMaT/AGbOnYO1lRXWVlbMnDOb/Or5ad+mrSxc5x7dpXE4bbrc9us2bKBpo8YUKlRIYd9jJ06gnnsdzM3N+PAhFt8d2zl7/jxHk02l86tja2tr06NrV4aNHkWhQrro6ugyfMxoytrYULtmTYVj/mnZGX/9hwxmq58f+3bsQLNAAVkPKW1tbbmG2JiYGHbs3s38WbMV9vHg4QNpGqxVG309PWkanP8jDeb8VFXrPKdQsaY7+iamvH/9Cr9lC/kY+4FazaWjBn3mzuR1VCRD5y0G4PnD+9y9FkYJWzti379n7/pVPAn/D4+5SaOAdqxYglXZchhbFObr13hCzp7m9N6d9JviKXfshIQETu7yo2azVqjkkS82aOnoKnyzKk+ePOjoG2BWNOe+N5iS17QpVK3thpGpKXGxsRzevYvLF/xZs303APOnTiY64gWzV6wGoG237mxZtxrP8WNo3akrYcGX2bVlI/NWr1fY964tG6ldvwE6uopps0adeqz0moexmRlWJUtx5/p1NqxYSov28lPLxcbEcGz/XkZNnZH1F5+FBg4eQs9uXbFzcMDJyZn169by9OkTevbuDcDEceN48eI5a703yG3n472eChUrUibF6G6AXn36sHL5MkYM9aDvP/25f+8ec2fP5p/+SdN8Dhw8iJpVqzJ31iyat2xJ8JUreK9dy5LlSSMt3rx5w9MnT4hIzON+VJgZGhnlmkqwwUOG0K1LFxwcHHBycWHdmjU8ffKE3n2kU22OGzuWF8+f4+3jA0hfmLt37YrXwoU4OTvLnm3q6uqyEQLTpk7FyckJK2trYmJiWLZkCdfCwli8ZEm6jwuwc8cO9PX1Mbew4OaNGwzz8KBxkya4ubv/qehJlyEeHnTp3BkHR0dcXFxYs3o1T548oU/fvgCMHTOG5y9e4JMYhwBhYWGAtEz88tUrwsLCUFNTU/iOkff69TRp2jTVfOZXxwUYNnw47dq2pUqVKtSoUYNjR49y8MABTp85o7C/nKSkpMSQQYOYOWsW1lbW0vx49izy589P+2QdPjp37YqpqQmeM2YC0qn5JkyaxNZNmylcuLAsPRYoUED2XjJ2/Djq1a2LuZk5Hz58wHe7H2fPnePoIem013FxcczwnEnjho0wNjaWlglXruTZs2e0SpxW/P79+2zZtpX6deuhp6fH7Tu3GTZyJHa2dlRyzdy051khO56Dc2fPxt7BgaJFixIfH8+xo0fYunkzi5ZKv0OoqampsJ2Ghga6hQrJ/f43PAcBBg3xoEfXLtg7OODk7My6tdJnUs/e0mfShHFjefH8Bes2bACgTbt2eM6cQe+ePZgwcRKvX79i7OhRdOnaTVbOmzt7VmIcFiM+Pp6jR46wZfMmFi9dBqQVh/kV4hCk5cXdu3Yya87cbI6J35PRNFivYQMG9O3LmlUrqe3mTmRkBCOHDcOxQgWME2fP+FUalB7353lxbGwsM6ZNpWmzZhgZGfP48WMmTxhPIT09GqfyndacFBcby8PEWWIAnjx6xM1r1yioq4OZuQXTJ04g8sULlq5dB0CL1m1YMMuTwX17M2LcBN68fs3UcWNp17mL4hR9GzdQt1EjdFPJS/oMHEjDmjVYOHcOTZq3IDT4Cpu81zNviTSelZSU6N2/P4vmzaWolRVFilmxaO4c1NXVad46d83SkB3pMOW9qF1QW+H32NhY7icbaffo0UOuhYWhq6uLuYUFcXFxzPH0pEGjhhgZGfP6zWvWrFzJ82fPaNaiRXZGSYbEpkiDjx8/4sa1a+gkpsFpE8cT8eIFy9dK3z1WLl2ChYUlJUqX5mt8PDt8t3Jg7x42bPUFIF++fJRK8b3kH/GX/Pd+gwbxT4/u2NrbU8HJGZ/163j+9Clde/YCQLdQIYW0q6qaBwNDQ7lpAnODrC5X58uXD5sUabBgwYIAcr+PHzeOunXrYmYuLets9/Pj3NmzHDx8GJDexwMHD2a2p6e0I5C1NbM9PcmfPz9t27fP7mgRspiSEmS2LUnM0qdINEb9IfsPH6Zbv6QX1rZduwIwacwYJo8dB8CTp09RVkrqLbJ87Rri4+NpmaKHZvJtlsybx4Tp0/hnqAfRL19iYmxMn+7dmTh6DCDtbXLj9i02btvKu/fvMTYyokaVqvj5+KCpqSnb55D+/fn8+TMeo0fz5u1bytuU5cS+/RQrWjRb4iMt/zSRDls/t6C+3O9d55zH55i00NF2+lk8ezqwZWw1dDXz8jgqlnHrQ1h54F9ZeAsDDRKS9fR69jIO91FHWdDPietrmvL81UcW7b7FbN8b6T729wQJZYvo0NnNioIF1Ih484kzYRG0mXaW2E/fsjQessP+Q4fo1jep4qltF2mD5aSxY5k8TvpdjifPnsr1WHJ1dsbXZyPjp05hwrSpFCtaFL+NG3GqkDTFRZuWLXn95jVTZ3kSERmJTenSHN69B8vEHl4qKir8e/cuPlva8er1awrp6lLBwQH/Eycok1gRlC9fXvwDL7Bw2TLevnuLoYEBVStVJvDU6Vw1r/PIYcP49PkT/wyRfrDWqUIFjh88KHcvPXn6VKHX193wcAICAzl+MPXeRFHR0XTq0Z2IyEi0tbUpZ2PD0f37cUv2UfD0HHvBnLnkUclD644d+fTpE7Vq1GDD6jW5psdsdsXfitXSBoTqKSpNvVevpmtiwzyA747tSCSSVKd9zJc3H/4XLrBw6VLevk1Mg5UrE3jmbK5Ig68jI5jn8Q8xb9+gpVuIErb2zNt5EANTaY/gNy+jefniuSx8wvcE9q5bybOH98mTR5Wyzq7M2b4PQ7OkHl2fP31kxaSxvI6MQC1fPsyKFmPY/CVUaSD/LYuwC+d5+eI5bq3a8rd6/TKakf168zIqEk0tLUqUtmHN9t1UqiFtqH0ZFcmL589k4c0sC7PKdyezxo9h67o1GBgZM85zDnUay8fNw3vhhFwMYt3Ovaked/ysuSz2nM7UEcN4/eolBkZGtOnSjX9GyE9FdWjPLiQSCQ2SfeMxN2rZujVv3rxm1owZREZEULpMGXbvPyAb+REZGcGzp/LT+75//559e/Yw18sr1X2amZuz//BhRg0fjpODPSampvQfMJChyaZwdXCsgO+OnUwcPw7PGdMpXLgIc+bPl3uhO3TwgKwTBECXjtJpEMeOn8C4iWlP7/kntW7Thjdv3jBj+nQiIiIoY2PD/oMHsfwRfxERPE0Wf2vXrOHbt28MGjCAQQOSGuc6de7MOm9vAN6/e8c/ffsSmZh/2NracvrsWSokm5btV8cF6VQiI4cPJypxKtUOnToxLvGbXblJmzZtePP6NdOnTSMiIgIbGxsOHjoku5aIyEiepvjIu0OymQVCQkLYtnUrlpaWPHiYNM3p3bt3CQgI4OixY791XIBmzZqxfMUKZs+axZDBgylRogQ7du6kcuXKRVbBHwABAABJREFUWRkFWWLk8BF8+vSJfwYOkObHFSty/PCRFPnxE7n8ePnKldL3kjbyeeikCROYPHESAFFR0XTq2pWIiAhpeaZsWY4eOoRbbTcgsUz433/4bNrEq1evKFSoEBUcHfE/c5YyiZVlampqnDp9mkVLlhAbG4u5uTkN6tVn0oQJuaI8kx3PwY9xcXgMGsjzZ89QV1eneIkSrNvgI/f9nfT4G56DAK1at+bN69fMnDGdyIgIypSxYe+BA8mehZE8fZp0HxcoUIBDR44ydMhgKjk7oVuoEC1atmTy1GmyMHFxcQweKB+H63020uo3pvre4eeHRCKhddvcWe7JaBrs1LkLsR8+sGr5CsaMHIl2wYJUq16d6TOTOh+lJw3+Ki9WUVHh1s2bbN28mffv3mFkbEzVatXYuGWr3LMlNwgLDaV5vaQOj5NGS6dua9OhI4tXryE6MpLnyT5XoFGgANsPHGLssKHUqVIJHV1dGjdvwehJk+X2ez88nEuBgWmOILFzcMTb148ZEyfi5TkTi8KFmTZnrtwoqgFDh/H582dGDRnC+3dvsa9QAb/9BymQy+IwO9JheoSGhFDPLekdeXRiebFDp06sXrceFRUV7v73H1s2b+L1q1foFiqEg4MjJ86coXSKxpqcFBYaQtO6SWlwwqiRALTt2JGlq9cSFRkpF3/x8fFMGjuaiBcvyKeuTslSpdi2ey9uGfy+Z7OWrXj7+g3zPGcSFRlJydJl2LZnL+YWOTuK+3dkR7k6PaKjoujWpYusrFO2XDkOHj5MbTc3WZjhI6TlrEEDpOWsik5OHDp6NNc9C4Vfy4qRTWJklCIlieQnY7P/H4uJiUFbW5v3z19kasq+/8+Umvjl9Cn89SQH0jelm/ATP5uSTBD+gIPP3+T0KfzVrHUK5PQp/PXMNX9/umBBSlVF5CWZoSK6BGaa8nfF6T2FjPkoXnszRVncx5mWINJgpsR+zf0dQHO7AqqiP3pmffr2PadP4a+mlVf114GENMXExKCno8P79+9FXXU2+tEm0Hf5KfKqa2RqX18+xbHyn1rif5bM/5s36w0bNqAkCtCCIAiCIAiCIAiCIAiCIAiCIKRBWUnaGSdzS05fRe7z/6ZbxKNHj6hWrVpOn4YgCIIgCIIgCIIgCIIgCIIgCLmUkrJ0yew+BHn/bxqjjh07xqJFi34dUBAEQRAEQRAEQRAEQRAEQRAEQcgy/28ao4KCgnL6FARBEARBEARBEARBEARBEARByMWUlJQy/ckf8ckgRf9vGqMEQRAEQRAEQRAEQRAEQRAEQRB+RllJCeVMfvRJWTRGKRAzFwqCIAiCIAiCIAiCIAiCIAiCIAjZRoyMEgRBEARBEARBEARBEARBEARBAJSUlVDK5MiozG7/v0g0RgmCIAiCIAiCIAiCIAiCIAiCIADKStIls/sQ5Ilp+gRBEARBEARBEARBEARBEARBEIRsI0ZGCYIgCIIgCIIgCIIgCIIgCIIgAMrKSihncmhTZrf/XyQaowRBEARBEARBEARBEARBEARBEAAlJSWUlDL5zahMbv+/SDRG/cqrN/Dla06fxV9p+wr3nD6Fv969L99z+hT+ehpq4sGfGTp5VXP6FP56DS0NcvoU/mofEhJy+hT+evlVVHL6FP5+sbE5fQZ/t/z5c/oM/n7x8Tl9Bn+9/GpqOX0Kf7UEFTHDf2bFff2W06fwV9NSE+8lmfVVlKsz7btEktOnIAjCHyJGRmUPUaIUBEEQBEEQBEEQBEEQBEEQBEEQso0YGSUIgiAIgiAIgiAIgiAIgiAIggAoKUuXzO5DkCcaowRBEARBEARBEARBEARBEARBEJB+70lZfDMqy4n2OUEQBEEQBEEQBEEQBEEQBEEQBCHbiJFRgiAIgiAIgiAIgiAIgiAIgiAIgJKyEkrKmRwZlcnt/xeJxihBEARBEARBEARBEARBEARBEARAWUm6ZHYfgjwxTZ8gCIIgCIIgCIIgCIIgCIIgCIKQbcTIKEEQBEEQBEEQBEEQBEEQBEEQBMQ0fdlFNEYJgiAIgiAIgiAIgiAIgiAIgiAAykpKKGeyMUlZSTRGpSSm6RMEQRAEQRAEQRAEQRAEQRAEQRCyjRgZJQiCIAiCIAiCIAiCIAiCIAiCACgpKaGUyZFNmd3+f9H/7Mio6tWrM2TIkJw+DZnJCxdQsnZNNMqURMe2LLU7tudS2NV0b+97YD9KRS1p2qeX3O+Fq1RCqailwtJ/4nhZmN1Hj1CnSyf0HGxRKmpJ2O1bCvu///gxzfr2Rt/RDq1yZWg94B+iXr78/QvOQm+iIlg8fBDdncrSsbw1I5rU4cHN6z/d5mv8F7YtmM0/NZxpb1OMgbUrcXqnr2z9peNHGN28Pl0dy9DJtjgjmtTh/N5dGT72u1cvWTbagz6VHehY3poZPToS8ehh1l18Fli5YB7Na1XD1sIYp+JF6NexLQ/C7/5yu307/GhUxYWypga4lrJiVP++vH3zWra+Q6N6WOtqKiw927SQhVk8a6bCepeSxeSOc+zAPrq1aEpFK0usdTW5fePn/9uccDEggM6tWmBnVQSTAuocObD/l9t4r1pJVXtbiurpUNmuHDu2bpFbf3jfXupWqURJUyOKGRSitosTO7dtlQvz7ds3Zk+ZjFOZkhTV08HZphRenjNJSEiQCxf+7790ad2SEiaGWBvp07BGVZ49fZL5C89iq1asoKS1FQULaOBasSIBAf5phj1/7izqqnkUlv/+/VcWZu+ePVRycsJIrxCFtLVwcnBg6+bNcvspYVUs1f0MGThQLty/d+7QsllTDAvpoq9TkKqVXHnyJPfFoUQiYfLUKZhYmKOuWYDqtWpy65biMz25NWvXUqV6NXT09dDR16N2HXcuX74sF8Zz9iwqODujqVMQAxNjmrZozn///aewrzt37tC4WVO0C+miqVMQ51TiKSgoiJputdHQ1qKgXiGq16rJp0+fMn/xWWDNypWULV4cfS1Nqjo7ERgQ8NPwq1eswLFcWQy0tbC3KcPWzZsUwixbvBh7mzIYaGtRqlhRRg8fzufPn2XrZ06bilZeNbnFysJcbh8zp03FoawNRjoFsTA0oHHdulxJ8T/KLSQSCZOnTMbEzBR1jfxUr1njl2kQYNeuXZS2KUNe9XyUtinDnj175NZ7zvKkglNFNLW1MDAypGmzZgppMDY2lgEDB2BmYY66Rn5KlSnNihUr5MLcv3+fZs2bo29ogFZBbVq3aUNUVFTmLzwL7d6/nzrNmqJXpDBK2lqEXf91vrdhyxaUtLUUluRp7fyFCzRq0xqTEsVR0tZi78GDP91nn8GDUdLWYuHyZXK/V29QX+E4bbt1/a1rzQ6/8xxMztfPDyXVPDRt0Vzu9/P+52nUtAkmFuYoqeZh7759CttGRUXRtXt3TCzMya+lSd0G9QkPD5cLU71WTZRU88gtbTu0/72LzSYSiYTJM6ZjUqwo6oV0qV63Drdu3/7pNl+/fmWq50yK2ZQhn64O5Z2cOHr8uFyYFWtWU65iRbSMDNEyMsSlRnWOHDsmFyY2NpYBQz0ws7ZCvZAupeztWLFmtVyYyMhIOvXogVGRwmjo62Hv6sLOFM+MnPY76XD3nj04OjlRUK8QGtpa2Do4sClFuQVg+YoVFLG2Il8BDRwqVsQ/RXkpZfr6scydP08uXG7Oj1csX06xokXJr65OBUdH/P3TLhMCnDt3jgqOjuRXV8eqWDFWrlwpt37NmjVUq1qVQrq6FNLVxd3NTaGsU7RIEVSUlRWWAf37y8LExsYycMAALMzN0cifnzKlFfOZnHbB35/WzZpSvLAlWnnVOJjKsyq5yIgIunfuhL1NGbTz5WXUsGGphtu3ZzcVypdDT7MAFcqX48C+vXLr58+ZTTVXF0wK6VLUzJR2LVsQniKflkgkzJw2leKFLTHQ1qK+W23upFL3kBtk5L0E4MuXL0yaMJ7ixYqirZGf0iWK4+PtnWrY7X5+qKvmoVWKfCa5ubNnoa6ah+FDh6YZZkC/fqir5mHJokXpu6g/JKNpECDg/HmqOjuhr6VJuRIlWLd6dZphd273QyuvGu1atlBY9+L5c3p27YKlsRGGBbWpVMGRq6GhsvXRUVH07dmD4oUtMSyoTbOGDbmXIp/ODYICAujYsgXlihXBUEOdw7+oXxjUuxeGGuoKS1VHe1mYf2/fpnv7tjiWKoGhhjqrli5R2M+PdSmX0R5D5MLd/fdfOrVqiZWxIUUN9alXPXfWL6xcsYLixYqhmT8/ThUqEPCLvOSHwAsXUFdTw9HeXu73Pbt341yxIvq6uhTU1MTR3p7Nm+Tf/6yLFkVNRUVhGTRggNx+GtSti7GBAWoqKoSFhWX6WoWcoaycNYsgT0TJH1K8SBGWTp7KjSPHCdi+i8JmZrh37sTL169/ue3j588Y7jmDKhUqKqy7snc/EZeuyJYTG6UV3q3qN5CFifv0iUoOjswaOSrV/cd9/Ih7l44oAac3b+PC9l3Ef/1Ko149FCq9/7TY9++Y0K45eVTzMHbNRrwOnabz6Ank19L66XYLBvfjZtAF+s6Yy8KjZxnstRTTolay9QW0C9K830Cm++1l7v7j1GjemuVjhxHmfzbdx5ZIJMzt35Pop08YsXwdc/YcRd/UjGnd2vH548fsiI7fcvnCBTr06MWOY6fZsHs/3759o1uLpnyMi0tzm+CLgYzs15uWHTtzOPAyi703cuNqKOMGJ2WwyzZuIfDOPdly+MJlVFRUqNekmdy+rEuWkgt3MOCi3PpPHz9i7+TM8IlTsvbCs9DHj3GUsSnLjPkL0hXeZ81qPCdPZNjYcZy5EsrwseMZO3QIxw8fkoUpqKPL4BEjOXDqLKcuXqFtx0549O3N2ZMnZGGWec1n47q1zJi/gHMhYYyfNoMVixawfsVyWZhHDx7Q1L0WVsWLs/PIMU4GXWbIqDHky5sv6yIgC+zYvp0Rw4YyavQYLl4JxrVyZZo2bPjLBp/rt27z8Okz2WJlbS1bp6urw8gxYzjrH8CV0Kt06tKF3j17cOJ4UsVXQNBFue0PHT0KQPNkLzcP7t+nVvVqFC9RgmMnT3E5JJQx48aRL1/uikOAOfPm4rVwIUsXLeZK0EWMjIxwq1eXDx8+pLnN2XPnaNemLWdOnCTIPwALcwvc69fj+fPnsjDnzp+nf79+XAy4wIkjR/n27Rvu9esRl+w5cf/+fSpXr0bJEiU4e/IU10JCmZAinoKCgqjbsIG0EigwiCtBFxnwT3+Uc0EJbNeO7YwePozho0cTcOkyLpUq06JxI56mkQbXrlrFlAnjGTNhApeuhjF24kSGDx7MkWQV/H7btjJ5/DhGjx/PlWvXWbpyFbt37mDy+PFy+ypVujThj5/IloshoXLrraytmbdwEUEhoRw7cwaLwpY0a1CfV7mkU0hyc+bOwWvBApYuXsKVS5cxMjTCrY77T9NgUFAQbdq1pVPHjly7Gkanjh1p3bYNly5dkoU5d+48/fv9w8XAIE4cOy5Ng3XryKVBj6EeHD12jM0bN3Hn1m08Bg9h4OBB7EusBImLi8O9bh2UlJQ4ffIUF/wDiI+Pp1GTxjlenkku7mMclZydmTU5Y/melpYWEXfD5Zbk91/cxzjK29iwdO68n+xFau/Bg1wKCcbE2DjV9b26dJU7zqqFuaci7Heegz88fvyY4aNGUqVyZYV1cXFxlC9XjqWLFqe6rUQioWmL5jx4+IB9u3Zz9UowlhaW1E6RTgF69ehJxNNnsmXV8txVmT3HywuvJUtY6uXFlfP+GBka4tao4U/jcPyUKaxat44l8+ZzOySUvj170KxdW64mq2AxMzVl1tSpBPsHEOwfQM1q1WjSprVcQ5fHqJEcPXGCzevWcyf0Kh4DBjBw2DD2HTwgC9OpZ0/+C7/L/h07uHH5Cs2bNKFN505yx8ppv5MOdXV1GDdmDEH+AVwPvUq3Ll3o1rMHx5KVW/y2b2fIsKGMGz2Gq1eCqVK5MvVSlJeSp62Ip89Yv2YtSkpKtGiWVPGdm/NjPz8/PDw8GDP2/9g766gom7ePfwEpaaRTJUWklRAElUZBfezC1t/zKGIr2IWKgYndgWK3EgYKImkriFggYYGgsgjz/rGwsLAgscjiO59z5hyY+7pn7rn2mi4/JCQmwtbWFh7u7jW2CdPT09HLwwO2trZISEzE3Hnz4Dt1Kk6dqlhIeOvWLQwePBgRkZG4Gx0NdXV1uLq4sLV1Yu/fR0ZmJstdK5tM7T9gAEtm+rRpuHbtGg4eOoQnT59iqq8vpvpU1DO8QGFhIQyNjLA2KKhO8kVFRZCTk8fMuXPRyciIo0zsvXsYNWwYBg8bhui4eAweNgzeQ4eyLYy5czsKEyb9DxFRUTh3+TJ+/SpBn14ebOVf0Lq12LpxI9YGBeFmdDQUFBXh5e5ep/L5T9KQfsnwIYNxIzIS23fuxMMnT3Hg0GHo6ulVk3vz5g3mzZmNrhzqmXLi4+KwZ/dudOrE+fcAgPPnziHu/n0oq6jUL3F/gPra4Ov0dPT38oR1V1vcib2PGXPmYPb0aTh35nQ12bdv3mD+3Lmw4aC/L1++wLm7AwQFBXHq/AXcT36AFavXQEpKCgCznh4yoD9ep6fj2MlTuBN7HxoaGvCq0qfhBb4XFqJjp04IWF+38YXlgWvxKC2d5ZJSUiEjK4velcr9Hz++Q7NtO/gvXQYFRSWO4Vy9fYctnBMXmOMTlcN5/eoVPJ16QkdXF2euXEPkvfuYPncehHlsfOHE8eOYMW0a5s6bh/sJCbC1tUVvD4/fji/k5eVhzKhR6NGjR7VnsrKymDtvHm7fvYuE5GR4jxqF8WPH4nqlhTXRsbF4m5HBcuWLbv7p358lU1hYCOuuXbFi5UoupZbSXJTvjGqso7DDRwghzf0RTYGDgwNMTEwQVMcKsir5+fmQkpJC3oPHkJSQ4O7HAcj/9g1SxoYIP3QEPbvW3FApKSmB/eCBGN1/AKLi4/A1Px9nd+yqUd536RJcvBGB1Mhb1Qz+9ft3aNfNFkkXL8PEoCPL/3rUbbiN9saXpIestH7Jy4OsqRHCDh6BYy0NqdoILW58Z+fI2gC8SIzD0qPVGyo1kXz7BoKmT8aW8DsQl5ap83tz+rrB1L4HBvvOqlPcmemv4Otqj3UXw6Guw2yIlpaUYJyNCYbN9EPPAUPqHHdNmMpLNzqMqnz6mAsr3fY4cvEKuthw/m13b96Io/v2IDKxYrX2wZ3bsWtTEKIeP+f4zr7grdgYsALRz1LRWkwMAHNnVNjli7hwO/q33/X+7Rt0NzHEuVt3YVBLw7y+iAlx9zRSFXFR7Dl2HG69PWuU6d3TAZ2trLFwRQDLb+HsmXiQlIhzYZE1vufc1RqOLq6YvXARAGBk/36QU1DA+m0Vqz/HDR0M0datsXn3XgDAJO8REBQUZP3PbWSEBbkSjp2NNUxNzbBpa8UKfJNOhujt6YllK6o30m7fugkXR0d8yP0IaWnpOsdj3bkzXN3dsGjJUo7PZ06fjiuXL+Hxs+esMnLEsKEQbCWIvQcO1C9RdYRbzXZCCFQ01OHr44M5s2YDYA4wKKqqYPXKAEycMKFO4ZSUlEBGXg5bNm7CyBEjOMrk5uZCQUUZtyIj0c2uGwBgcJmeDtWiJ6uuNnBydMSyGvTfEL5xaRKhu21XmJiYYsOWLSw/C6NO6OXpicXLV1STd7TvBitrGyxftYrlN2fGDCQlJuD6jZsAgBlTpyLl+XNcqNRB8Zs9GwnxcbgWeQMAc9fTpfPncTcuvs7fmp+fDzV5OZy/chUOHDpK9UWiFXfKQUIIVNRU4Tt1KuaULXApKiqCorISVgeswsSJEzm+N2jwYOTn5+PK5cssP1c3N8jIyODY0aMc38nNzYWCkiJu3biJbt2YNmho1AmDBg7EgvkLWHLmnS3g7uaGZUuX4fr163DzcMeXT58hWbZw5MuXL5CVa4Owa9fh6OjY8MQXFDT83Rp4/eYN2hl1QlLUHZjUMEBYzv4jR+A7by6+vn1Xp7D5pCRx5shR9OnVq9qzjMxMWPbsgWunz8Bj4AD4/u9/8P23YmeAg4c7TDp1QtCq1fVLUG20bs2VYBpTDpaUlMC+R3eM9h6FqDt38DXvK86e4tzG4xNshTMnT6GPlxfLLyUlBXodDfA4+QE6duzIClNBRRmrVwZg3NixAJg7o0yMTRC0fj1X0syCweBKMIQQqGi1h+9/k1k7JIqKiqDYri1WL1uGiWPHcXxPRas9/GfPxn8TJ7H8+gwaCHExcRzeW3MbRFZNFYErVmCs9ygAgKGFBQb1/wcL5s5jyZh3tYG7iwuWlbV/xBXkERy0ESOGVuwoa6OuhjXLl7PCaRBCQg1/txLcqo8BwKxzZ3i4u7HqTUsba5iZmiG4UnupQydD9PH0RACH9hIA9PmnH759+4aI6xULmpqiPi4V4M5ElrWVFUxNTbGt0o6jjgYG8PLywsqAgGryc+fMwYULF9gmNf83aRIePnyIu9Gc+xglJSVoIyuLTZs3Y+TIkRxlpvn64tKlS3iRksJqExp16oSBAwdi/oKKeqazhQXc3NywdNmyBqW3MoXFvxodRmUkhYVw9EQoelUqq2rD3ckRnYyMsXrdOjb/UcOGIj//G05fqJgU7turF6RlpLHvUPXdewDwMTcX7dVUcSU8Al3t7EAIgW5bTfw7ZQqmzWT2p4uKiqCtroYlK1ZizPjxHMOpD4Jcmkytb7/k+rWrGDlsGJ6mpEJWVrbGcEtKSuDUoztGeo/C3bJ6JrRKPVNQUADrLp2xcfNmrFq5EkbGJlhbpb7IyMhAt642uHDpMvp6eWLyFB9MmTq1kalmUszlxTl1scGFfvNw+eJFxD98xPLz/e8/PHr0EBG3K3aylJSUwM2xJ4aP9Eb03TvI+/oVx05WTDov8vfDvZgYVhu7KqkpKTDvZIjYpCR0MKiop9urqWLpipXwHjOmsckFAPz4VcKVcMpRFBPFvpDjcK9lfKEqly+cx5ghgxH39BnUNTSrPbfooIfx/03GxMlTOLxdwfxZMxF29QruPXzMKgcneI+AYCtBbN3TROMLItypi7taW8PU1BRbtlUs1O3UsSM8vbxqnQQaNmQItHV0ICAggPPnziE+MbFGWQDoYmEBN3d3LFnKuT6dMW0aLl+6hKcvXlQfg339GrpaWrifkAATE5O6J64W8vPzIScjg7y8PFZ/h8J9yucElp6NhYiYeKPC+llYgIV9LOlvVonmXxrVhJSWlmL27NmQlZWFkpISFi9e3NyfBABgMBjYGXIUUhKSMO5gUKvs0k0bId+mDcYOGlyncA+fO4Mx/QfWa+a1iMEAHx8fhCt10ESEhcHPz4878XF1DqcpiI8MQ3tDI6z3mYRx1iaY3ccV4Sc4D1xVfkfL0Ajndm/HRDsLTHXphoOrl4Hxk/OxFIQQPIq5g8z0NBh0tqxz3L8YRQAAQWFhlh+/gABaCQrheQJvHq8EAAX5+QAAaemaG9JmXSyRlZmBm2HXQAjBx5wcXD1/Fg7OLjW+c/LwQfTq9w9rIqqcN6/S0NVAB91NDOE7dhTe8tgxhk0Bo4hRbWeSiKgokuPjUVxcXE2eEIKoGzeQlpoCy0qTv52trXHn5g2klR0t8OTRQ9yPiUGPst+htLQUEdeuor22DoZ49UanthrwcLCr0zGCfxIGg4GkxET0dHJi8+/p6IR7MTG1vmvV2QLt1NXg5uyEWzc5dzwApg5vREYgJeUFbO3savyOkKNH4D1qFKuMLC0txdXLl6Gjq4Pe7m7QUFGGnY01zvPQCthy0tPTkZWVBWfHCj0KCwvDvls3RP9Gj5X5/v07iouLIStb82R9Xl4eAEBWhllOlJaW4tLly9DV1YGLuxsUVJRhaWPNdoxVTk4OYu/fh4K8AmzsbKGoqgL7Ht1x5zdH4f0JGAwGkhMT0cOJfTKih6MTYu/d4/xOURGERYTZ/ERFRZAQF8fKx9ZdbZCclIj4OGZdmf7qFa5fvQIXNze299JevoRuW0100tXFqOHDkP7qVa3fun/3bkhJSdW4grm5YNmgkzPLj2mD9rXaYMy9GDg7s+d/FxdnRMfUvFCBZYOVBn1su3bF+QsXkJGRwczzN24gJSUFLmVlYlFREbM9U6leFhERYbZn7ja/HTaWgoICaBp2hFoHffQaOABJDx7UO4zS0lKMmDABs3x80LFDhxrljpw4Abl2bdHRsgtm+vvzzKr2xpSDS5cvg7y8PMY2cDCqqIjZ7qu8G01AQABCQkK4c/cum+yRY0chp6SIjsZGmDl7Fs/oDwDSX79GVnY2nHv2ZPkJCwvD3tYW0fdia3yviMGotmNYVEQUd2rIxyUlJQgJDWWuDu5S0b62tbHG+UuXkJFZlo9v3ULKy5dwqfSb2lpb4/ipk/j8+TNKS0sREhqKoqIiOJQtjmhuuFEfE0IQERmBFykv0K2s3cJgMJCQmAjnKu0lZ0enGsPNzs7GpcuXMXZ0hV3zen2ckJAAJ2dnNn8nJyfE1JDGe/fuwamqTlxcEF9Duxqo3Nbh3N9hMBg4cuQIRo8ezdZv7tq1Ky5wqGecXWruA/0N3I+NRY8qCzZ6Ojnhfg1tJKCinpYpa0++Tk9HdlYWWzjCwsLoameH2Ht1b6c2NQ3pl1y6cBFm5uZYvzYQ7TU10MmgA+bOnlXt2MuVy5dBTl4eo2qpZ3ynTIGrmxt69OS8QKa0tBRjR3lj2vQZMOjYkaNMS4NpX1X07eyEpIQEtjy8asVyyMnJYeTo0RzDuXzxIkzNzDFyyGC0V1OFbZfO2L9nD+s5o2x8pvIOnvJ6Oib6brXwWjJHDxxAt+49OE5E1RUGg4FTx0MwZKQ3W984/OpVaOnoYJBnbxhoasDV3u63xwj+aRgMBhITEuBYJR87OdU+vnBg3z68evUKCxYu/G0chBBERkQg5cUL2NUyvnD0yBF4V6lLKH8P/Px8XHEUdv7qyagDBw5ATEwMsbGxWLNmDZYuXYqwsDCOskVFRcjPz2dz3OZiRATEDTtApIMuNuzdg7CDhyFXy8qau/Fx2BN6HLtWrqpRpjJnw67ja34+RvUf8HvhSliZmEJMtDXmrF6F7z9+oPD7d8wKWIHS0lJ8yM2pV1jcJufdW4QdOwyltm3hv+cwnAYPx77lC3Hr7Mka38l+9xbPE+LwLvUFZm3dBW+/xYi9dhm7l7Afm/T9Wz5GmOphqGF7rJowCqPnL4VR14pO7u/iVmmvDXlVNRxdtxoFeV/xi8HA2Z1b8TU3B1+bWW81QQjByvnzYGFlDV2DmidCzSytsG7HHviOHQUDRVlY62tBUkoKC1dzPvrnQUI8Up49xYAR3mz+xuYWWLNtJ/aePIvlQZuRm5ONQa6ObHdP/Y04ODri6IH9eJiUCEIIHiQmIOTgQRQXF+Pzp48sufy8PGgrykFTRhIj+/fF8rXrYd+jYnBo8vSZ6DNgILqZGUNDWgLONlYY/99k9B04CADwMTcHhQUF2LJ+Lbo7OeHY+Qtw7e2JcUMHI6aO5yX/CT5+/MhcPa6gwOavqKhQ410uSkrK2Bq8HceOn8CxE6HQ1dWDm7Mz7kTdZpPLy8uDnLQUJFuLoq+nJ9YHbUTPKp2dcs6fO4evX79i+MgKO83JyUFBQQHWrlkDJ2cXXLh8BZ59+mDwgP6Iun2rkSnnLllZWQAARUVFNn9FBUVkZWfVOZy5fn5QVVWFYw2dYEIIps+aCduuXWFoaAigQk+r1qyBq7MLrl++gr59+qDfgP64VaanV2UTLIuXLcX4seNw9eIlmJmaoqeLc7U7Vf40n1g2yK47BUUFZGdx1l1PJycc3LcPSYnMfJyYkIBDBw6guLgYnz4y83H/gYPgv2gxXLo7QFasNYw76MPO3gHTy1bKA4BF5y7YsXcvzly8iE3BwcjJzoaTgz0+VTmm98qlS1CWlYG8pAS2bt6Es5evoI2cHHcV0UhqtEFFBdazmt5TVOBgtzW8QwjB9BkzYGtry7JBANi0cRMMOhhATUMdQiLCcHV3w7YtW2FbNolvZWUFMTExzJk7B9+/f0dhYSFmzZ7FbM98+NCgNPMK+ro62B8cjPPHQnBsz16ICIugq4szUtNe1iuc1Rs2oFUrAfhM+l+NMsMGDMSxPXtx89JlLJg1G6fOn0e/4cMbmwSu0NBy8O7du9izbx92bd/R4Lj19fWhqamJefP98eXLFzAYDKxasxpZWVn4kFVhX8OGDMWxw4dxMzwCC/z8cerMGfQb0L+WkP8sWWX1rqJilTpZQYH1jBMuPR2xfvNmpL58idLSUoRFRODcpYv4UCUfP3r8GOIK8hCWkcakqT44cywEBpUmPjetXQcD/Q5Q09GBkLQUXPt4YduGINja2LBkjh88hF+/fqGNuhqEZaQx0WcKzhwLgVb79txQQaNpTH2cl5cHcWkpCLUWhYenJzYHbYRTWbulvL2kyKG9VNNvc+DQQUhISKBf34pjsnm5PmalsVo9UnOdkJWVxVH+169f+PjxI8d35s2dy2zr1LAj9uzZs/j69Su8R41i89+4aRM6GBhAQ10dIsLCcHdzw5atFfXM30p2VhYUqpQJtbWRCCHwmz0L1l27wqBjWVuxzEartbUUFJGdxTt3NzakX5Ke/grRd+/i6ZMnOB56EoHr1uHM6dNsd9BG372L/fv2YVst9cyJ48eRnJTEcfdVOesC16BVq1b4b0rtO1paEhztS4GZh8vb1Peio3Fo/35sDt7OKQgAzAnPPTt3QEtbG2cuXsSY8RMwe/o01p2uunr60NDUxJIF81n19PrANcjOykLWh7r3lXid7A8fEHn9GoZVKb/qy5UL55H39SsGV2rjfcxhji9sWsccXzhx/gLce3tizJDBiObB8YWqdYNCLXVJamoq/P38cODQIbSq5dSIvLw8yEhKQkxEBF69eyNo48Zqk17lnCurS0Z6e3N8Tmn5NMedUbdv30bv3r2hoqICPj4+nD17lu05IQSLFy+GiooKREVF4eDgUK/7c3mBv3oyysjICIsWLYKOjg5GjhwJCwsLREREcJQNCAiAlJQUy6mrq3OUqwtHzp6BuGEHlosqO2u5u7U1ki9eQfTJ03DtZo+BU/5FTg0N6G8FBRg+3Re7Vq6qdcKqMntOHIebvQNUqhTIv0O+TRuEbt2GC5HhEDfsACljQ+R9+wYzQ0MINPO54qWkFO06GmLo9LloZ2AIp8HD0XPgUFw/Vv0S+XIIKQX4AJ+1m6BtZAoz+x4YOXchbp0JZdsdJSImjsCzVxFw8iIGT5uFg6uW4UlsxSqK38XdSlAQMzbtwIfXrzCmSycMN9HFk9gYmHbrDn5+gaZTSiNYMnsGXjx5gvW7OF+2Wk7q8+dYPm8W/ps5B2duRGFv6Bm8f/MGC6dzPh4g9PBB6HYwgLG5BZu/vZMzXD29oGfQEV0dumNXCHMi78yx2ne3tXR858xDd2dn9OpuDw1pCYweNAADyxp5ApVsQ1xCAmHRsbh8+w7mLFqMJfPmIPp2xWTLuZOhOBVyDFv37se1OzHYuHM3tm8KwokjzOMyyu9AcfHohQmTfWBoZIwpM2bB0c0dB/fUfJxnc1F1tRAhpMYVRLp6ehgzbhxMzcxgZW2NjVu2wM3dvdqxRxISEoiNT8CdmHtYvGwZ5syaidu3bnIM88C+vXBxdYVKpbPXy3XYy9MTPr6+MDYxwazZc+Du4YFdtVys+yc4cvQoxKWlWK74F3PlYH30WJU1awNx7HgITp8IrfFOrMk+Pnj46BGOHT7C8ivXk5enJ6b5+sLExARzZ89BLw8PbC/TU7nMxPHjMXrUKJiammLDuvXQ09XD3v21lzl/jHrobrafP5xcXNDTzhayYq0xpP8/GFZ2rKGAADMfR926hbWrV2H9ps2Iio3FkRMncO3KZaxeWXHsn7OrK7z69kNHw07o3rMnQs8yd5Mdq3IZbjcHB9y5H4ewW7fh6OyMUUOHIjeneRc2HDlyBOKSEixXvnq1ITZYn3cmT5mMh48e4tgR9rpi0+ZNuBd7D+fPnkNCXDzWrV2Lfyf/h/DwcACAvLw8Qo+fwIWLFyEuKQEpGWnk5eXDzMyM9Zv9aY6cOA5xFWWWi6rhSKnfYdW5C4YPGgzjTp1gZ2ODEwcOQFdbG5t31H1yJSEpCRu3B2N/8PZaf6/xo0bBsXt3GBoYYHD//jh58CDCb95AYjPc18ONcvDbt28YPsobu7Zvh1wjJngFBQVx6vgJpKSkQlZBHq0lJXDz1i24ubqy2df4cePg2NMRhoaGGDxoEE6GHEd4RAQSf3MMTFNxJCQE4gryLMfKx+Ckw5rD2RgYCB0tLeibmkBIWgqTZ0zH6BEjquUtPV1dJMfcw72bN/G/cePhPXECnj57xnq+ads23Iu7j/OhoUi4cxfrAgLw7zRfhEdWHGM8f+kSfPn6FeEXLyE+6g6mT5mCASOG49Hjx1zQSP3hZn0sISGB5PgExMXcw4plyzB91kzcrNJuqU+4e/fvx7AhQ9nq9JZQH9dXd5zkOfkDQOCaNQgJCcHJU6dqbOvs3bsXrm5ubG1CANi8aRNi793D2XPnEBcfj7Vr12LyfxX1zN9MfX6TGVOn4snjx9h7sHqfvFo4qHs79U9Sn/SWlpaCj48P+w4eQucuXeDq5o7VgWtx6OAB/PjxA9++fcOYUd7YVks98+7dO8yaPg17Dxyo0S4TExKwdfNm7Nyzlyd11hhqy8Pfvn3D+FGjsGlbcK0LsUpLS2FsaopFy5bD2MQUY8aPh/eYsdhT1hcRFBTEoZDjeJmaCk0lRShKSyHq1m04ubg2WzuwKQg5fBhS0tK1XhtQF44eOIAezi5QUq7UNybM+sPVoxcmTfGBobExfGbOgpObOw7sbrnjCyUlJRg5fDgWLloEXV3dWsOUkJBAXGIiomNjsXT5csyaORO3bt7kKLt/b/XxBQqlsRQWFsLY2BhbKl0vUJk1a9Zg/fr12LJlC+Li4pj3ljo58dRJDL+Du5ep8BhGVY63UVZWRk4NAzvz5s3D9OnTWf/n5+c3eELK09EJliamrP9VlZiXB4q1bg3ttm2h3bYtrEzNoNPdHntOHMe8Suf0l5P29g1ev3+P3uPHsvzKOxatdNrjRfgNaGlWbMl9k/Ee4Xfv4HRww1Z8Ott1Q9rNKHz8/BmtWglAWlIKSl0s0K5XwyfluIGMvALUtHTY/NTaayP22uUa3gCk5RUhq6iE1hIVZ3GqammDEIJPWVlQbtsOAMDPzw8lTebfbTt0REbaS5zduQUdLa3rHHd7QyMEnruG79/y8au4GJKybeA3oDfaG/LW0UoAsHTOTERcuYyjl65CWVW1VtkdQetg1sUK4318AQD6HQ0hKtYaQ9xdMM1/IRSUKi7E/PH9Oy6dPoWp8/x/+w2txcSg26EjXr9Ka1RaeB1RUVFsCN6BNZu2IDcnG4pKyji8dw/EJSQgW6mBzc/Pj3ZaWgAAQyNjpL54gc3rAmFTdj/Ksvl+rN1RANDB0BDv377F5rWBGDhsOGTbyKFVq1bQ1Wc/aklHTw/3azn+6k8jJycHAQGBaqsNc3Jyq61KrI0ulpbV7pfh5+eHlrY2AMDYxAQvnj1H4OrV6GbvwCb35s0bREZEICSUfVelnBxThx2qHFelp6+P6LvNe5yDZ+/esOzShfV/+RFRWVlZUFZWZvnn5OZU23XCibXr12HlqlUIv3qtWv1YzpSpU3H+4gXcjrwBNTU1ln+5ngyq6KmDvj7reKrybzKocvxshw76eFvHe26aijZlNphTZcV6bk4uFGpYwCEqKoptO3dh49ZtyMnOhpKyMvbt3g0JCQlWR3n5ksUYPHQY6wz6joadUFhYiKn//otZc+dxvCheTEwMHTsaIu3ly2r+Wtra0NLWRhdLS5gYGODg/n2YUXY3U3Pg6ekJS8uK47VqtMGc3GorEyujpKRUbbdATm4Ox3em+EzB+QsXcPvmLTYb/PHjB/z8/XHm1Gl4eHgAYLbzkpOTsXbdOtbqd2dnZ6SlvsTHjx/RqlUrSEtLQ0lFGe3atWuABhqPp5s7LCst1FDlUmeVn58fnU3NkJpW9/o0KiYaObm50OhYkUdLSkoww98fQcHBeP2I80C/mYkJBAUFkZqWBjMunXdfV7hRDqalpeH169fo3acPy4/VphYRxosnT6FVVhf/DnNzcyQnJCAvLw8MBgPy8vKwtLGGRZXFOJUxMzNj6u/lS5iZmdUpHm7i6eEBy86dWf+zdJidXUWHubXWJfLy8jh7/AR+/vyJT58/QUVZBXMXLEC7tm3Z5ISEhKBdpk8LM3PEJSRg47at2LF5CzMfL16EMyEh8HBlHmdq1KkTkh8+xNqNQXDs0QNpr15hy/bteBwXj45lu/iNjYwQdTcaW3fuwPZNm7mil/rAzfqYn58f2mXtFhMTEzx79hwBq1fDwd6B1V6qugsqJye32m4pAIi6E4UXL17geJWJe16uj1lprLJyPSeHc50AlNUhHORbtWqFNm3asPmvW7sWAQEBuB4WVmNb582bN4gID8fJU6fY/H/8+AF/f3+cOl29nllXqZ75G1FUUqq2e6mmNtJMX19cuXQRV8IjoFqpni6Xzc7OglKlfJGbk1NtV0xz0pB+iZKSMlRUVSElJcXy09fXByEEGe/fo7CwEG9ev8Y/HOoZcRFhPHzyFI8fP0ZOTg5sLCvKkpKSEtyJisL2bVuRV/gdd+/cQU5ODnTbt2OTmTt7FrZs3oQXL1tmH5qjfeUy87BsmzZ49vQJ3rx5jUH9KnZ4lutPprUoEh49RnstLSgpK0OfQ5/t/NkzrP9NzcxwNy4eeXl5KGYwICcvj+62XWFqZt6EKfxzEEJw7NAB9B88BEKNuAfx3ds3uH0jEnuPhbD5s8YXquhZV08PsTw4vlC1bsitoS759u0bEuLjkZyUhKk+PgCYNkYIgaiQEC5fvYruZff0Vq2nnz97hjWrVsHewYEtzDdv3iAiIgInTtZ8ahOl5cPHx9foxQH1fd/NzQ1uVY79L4cQgqCgIPj7+6Nfv34AmKfCKSoq4ujRozXe4cxr/NU7owQFBdn+5+PjY1VqVREWFoakpCSbaygS4uKsSSfttm0hWsPKFwKCohouI9bX0sKjK9eRfPEKy3k6OqG7FXN3lXqlBh4A7AsNhUKbNvDo3riLzuVkZSEtKYXI6LvI+fQRnjUcd/Wn0DOzQGY6e6Mr8/UryKuq1fAGoG9mgS852fhZWMjy+5D+Cnz8/GhTaRKlKoQQFFf6PeoTd2sJSUjKtsGH1+lIe/wQnXs6V5NpLgghWDJ7Bq5fPI9D5y5CXbPtb9/58f17tUHU8h095auYyrl89jQYjCJ4lR0dVxtFRUVIS3kBecWaf4e/CUFBQaioqkFAQADnTobC0dWN4+B0OYQQMMoGOADg548f1X8HAQHm7j8wB3yMzc2RlprCJvMqNRVq6hpcTEnjEBISgqmZGSKrrCqNjAiHlbV1ncNJTk6GUi15GGDqsKiSDss5dGA/FBQU4ObuXu3bzC0skPKCXYepqanQ0Gz4GdzcQEJCAtra2ixnYGAAJSUlhEVU6JHBYODW7duw+Y0eA9etxbIVK3D14iVYWFQfNCWEYLKPD06fPYPI62HVBu6FhITQ2cICL6roKSU1FZplemrbti1UVFTwIuUFu0xKKjQ1m9cehYSEYGJmhshw9t3RNyLCYWllVeu7goKCUFVj5uNToSfg4u7OypfMspK9ccnMo6RaWVlOUVERXrx4DkXlhtnyn6RGGwyvOPKYaYO3arVBaytrhIWx5//r18NgY11xLBchBJOnTMbpM2cQGR5RzQaLi4tRXFzMsUzk1LaTk5ODtLQ0IiMjkZOTA89Grh5tKBISEtDW0mI5UVFRroRLCEHyo4dQ/k2ZWJkRgwfjYXQMku/cZTkVZWXM8pmKa6fP1Pjek2fPUFxcXK+4uAU3ykF9fX08SkpGcnwCy3n27o3uDg5Ijk9o0OIzKSkpyMvLIzU1FfEJCfDy7F2j7JMnT5j6+02ebyqq2qBBhw5QUlREWKWdSAwGA7fu3IGNlWUtITERERGBqooqfv36hVPnzsKrbNC+JphlGbN9zcrHfJzyMbPM/P79OwDUOa//CbhZH1elclkvJCQEczMzhFVpL4VFhHMMd8/efTA3M4exsTGbP6/Xx+bm5givcnR+eHg4rGvQnZWVVbWdSWHXr8PCwoKtv782MBDLly/H5StXOLZ1ytm/bx8UFBRYE07l1Lee+ZvoYmmJG1VOkIkMD0eXSm0kQghmTJ2KC+fO4sLVa2hbpZ5u264dFJWUcKNSW4vBYOBuVBQsreqXL5qShvRLrG1s8CEzEwUFBSy/1NRU8PPzQ1VNDXr6+ohPSkZsfALLefTuDXsHB8TGJ0BNXR3de/SoJmNmboHBQ4YiNj4BAgICGDp8OOISk9hklFVUMG3GDFy4VPNiXF6HaV9V9B0WDlNzcwgKCkJXTx/3EhNxNy6O5dx79UI3ewfcjYuDWlk9bWltjdQU9r7Iy9RUqGtUL9ekpKQgJy+Pl6mpSEpg/h5/A9FRUUhPS8NQ71GNCifk0CHIySvAyZV9wFtISAgm5uZIq6LntJe8N75gZm6OiCr5ODyccz6WlJRE4oMHiEtMZLkJEydCV08PcYmJ6GJZc/uHEM7jtgf2M8cX3H/TDqK0bLh5Z1TVq4Ea0tdn3Vta6e5NYWFh2NvbI7qBJ3A0B3/1ziheofD7d6zYugWejo5QVlDApy9fsO3wIbz/kIUB7hUF18gZ06CqqISA2XMgIiwCQz09tnCkyybIqvqXlpZi38lQePfrz/Hs089fv+JtZgYyy1b/vCg7R1xJXh5K8szVP/tCT6CDtjbkZdsgJikBU5cuwbQxY6HXvm4rRZsKD+9xWDCkL05v3wwbt154+TAZESeOYsLS1SyZo+tW4XN2FiavCQIA2Pbqg1PbNmLbvBkY6DMd+V8+43DgCnT/ZxCERJiDQGd2bIGWoREUNTTxi1GMpNuRuH3uFMYtXlmvuGOuXISkbBvIqajg7Yvn2L9yMTo7usDY1v7PKKgOLJ41HRdOhiL4SAjExCWQW2YHEpKSECkbFFu7dBGyP3xAYDBzi3sPVzfM952CI3t3w65HT+RmZWGF/1wYmVlAscpE6MnDB+Hk3gsysuwrEwFg1QI/dHd1h4qaGj7l5mLbujUo+PYN/YYMZcl8/fIZme/fI6fsvoX0srPs5RUUIV/PIyebisKCAqRX2s317s1rPH74ANIyMlBT18DKRQuQlZmJTbuYF6impaYiOSEephadkff1C3Zs3oQXz55i487drDA2rw2EkZkZ2rZrDwaDgcjrV3Hy6BEEBG1iyTi5uWNT4GqoqqtDr4MBHj9Ixo7NmzB45EiWzL9Tp2GS9whYdbWFTTd73Ai7jrArl3HyyrU/oJm64+M7DWNHecPM3ByWVlbYs3sX3r19i3ETmCs3Fvj7ITMjE3v27wcAbN64EZpt28LAwAAMBgPHjh7B2dOncexEKCvMwNWrYGZujvbttcBgMHD1yhUcOXwIm7ZsZYu7tLQUBw8cwLARIziWkdNmzMSIoUNga2cHewcHXL92DZcvXsS1cM7HujYXfHx88PXxwcpVq6CjrQMdbW2sXL0KrVu3xtAhQ1hyI0eNgqqqCgLKzqNfszYQCxYtwtFDh9G2bVvWCjJxcXGIi4sDAP6bMgVHQ47h3OnTkJCQYMlISUmxBs9nzZiJQUOHoJudHbo7OODqtWu4cPEibpbpiY+PD7Omz8CipUtgbGQME2NjHDh0EM9fPMfJ48f/mJ5qYvLUqZgwejTMzM3RxdIS+/bswft37zBm/AQAwOL5/sjMzMTOvcwjjFJTUpAQHweLzl3w9etXbNkYhKdPnmD77oqLkl09PLB140YYmZjAonMXvEpLw/LFS+DeqxfrOBD/OXPg5uEBNXV15ObmIjBgJb7l52PocOaRf4WFhVi7KgBuvXpDSUkJnz9/xu4d25GZ8R59//nnD2updvj4+OA7dSpWBgQwbVBHBysDApg2OLSiXB/p7c20wZUBAICpPj7o5mCP1WtWw8vTC+fOn0N4RDju3K44e/6/yf/h6LFjOHfmLEcblJSUhL29PWbNmQ1RUVFoamri1q1bOHjoENavXccKZ9++fejQoQPk5eURExODqdN8Mc3XF3pV2k7NyefPn/H2/XtkltV7L8rqPSVFRSiV1XsjJ06AqrIKAhYvBgAsWRUAK4vO0NHSQv63b9i0YzuSHz3C1nUVaS8oKMDLsjYeAKS/eY3khw8hKyMDDXV1tJFtgzZV6mpBQUEoKSpAT4e5Ezzt1SscCT0BdydnyLVpg6cvnmOGvz9MjYzR9TcTt3+ChpSDIiIibHePAYC0lDQAsPkXFBTgZaUdi+np6UhOToasrCw0yga6Qk+ehLy8HDTUNfDo8WNMnT4Nfby84OzE7BCmpaXhyLGjcHd1g5ycHJ4+e4oZs2fD1MQUXW26NpVa6gUfHx98/5uMlWsDoaOtBR0tbawMDERrUVEMrbSwaOS4cVBVUUHA0qUAgNi4+8jIzISJkTEyMjOxeAXzftnZ0ypOlvBbtBBuzi5QV1PDt2/fEHIyFDejbuNq2fGkkpKSsLezwyx/f2Y+1tDAragoHDx6FOtXMe/I1dfTg7aWFib6TMHalSvRRrYNzl64gLDICFw8yb6TpbloaH0csHoVLMzNoVXWbrl85QoOHj6E4Ertlum+0zBilDcszM1hbWWFnbt34e3bt5g0gX2la35+PkJPncS6NYEcv4+X62PfadPgPXIkzC0sYG1tjV07d+Lt27eYOGkSAMBv3jxkZGbiwIEDAICJkyZh69atmDF9OsaNH4+YmBjs3bsXRyrtlg9cswYLFy7E4SNHamzrAMw24f79+zFy5MhqbcLyembObPZ65tChQ1hbqaxtbgoKCvCq0n2Br1+/xsMHyZCRkYW6hka19gwAPHyQDIDZp/n4MRcPHyRDSEgI+mW75/43eQpce/bAhrWB8OjVG5cuXsDNyAhcu3GTFcZ0Hx+cPB6CYydPQUJCgnWflGRZPc3Hx4d/p0zBujWroaXD3Om9dvVqiLZujQGDBze9YupBffslg4YMQcDKFZgwbiwWLFyET58+wm/uHHiPGs1qJ3esoZ4p9xcSEqomIybWGrJt2rD827RpU223n6CgIBQVlaDLQ+2Y+trgmPETsDM4GPNmzcKoMWNwPzYWB/fvw96yI6tFRERYd4+VIyUtDQBs/v/5TIWTfTesXb0Kff/pj4T4OOzfsxsbt21jyZw5dRJycvJQU1fH08ePMWfmDPTy9ETPGu78aS4KCwqQXml3+9vXr/H4wQNIyzLHF5YvZI4vbKnU7wCAowf2w6xzZ3To2LFamAwGAyllx+IyGAxkZWbi8YMHEBMXZ53GAjDLwZBDBzFw2DCOfeP/fKdhwsgRsLK1hW03e0SGXcf1y5dx5ipvjS9M9fXFaG9vmJubw9LaGnt2MfPxhLKdIf5+fsjMyMC+AwfAz89frS0or6BQrY24etUqmJubo71WxfjC4UOHsGUrh/GF/fsxnENdApS19d++xYfMTABAygvm4hAlJaXfLq6l/L1UXQC3aNEiLC7r69WVmu9wVsSbN28a9X1/EjoZ9QcQEODH87SXOHD6JD5++YI20tLobGSMqOOh6FjpvNK3mZm17pqoifC7d/A2MwNjyo7yqsr58DCMnj2T9f9gn8kAgEU+vljsOw0Ac4JqXuAafM77iraqavD/dzKmjR1X72/hNtpGJpi5ZReOrl+FU1s3QkFNHd5+i2HnWbGF+0tuNj5+yGD9LyImhvl7j2Lv8oWY+48HJKRlYO3WC4N9Z7Fkir5/x+4l/viU9QFCIiJQba+NKYEbYePuWc+4c3Bw1VJ8/fQRMvIK6Ob1D/r/y/lepebi6F7mBMjw3uyrXlZtCcY/Q5n3GOVkZyHzfcWxHf8MHY7CggIc3rUDqxb4QVJKClZ29pi1aClbGOkvUxF/Lwb7Tp3jGHdWZiamjx+NL58+QVZODsbmnRF6PRKqlVbVRFy5jLmTKy5S9x03CgAwZfY8+Mz1a3jCuciDxET0d3dh/b94LvPYrIHDhiNoxy7kZGUh412F/kpLSrB900akpaZAUFAQNt264Vz4DahX2mnzvbAQftOm4kNGBkRERaGlq4vNu/fCq/8AlszyteuxZtkSzJs2FZ9yc6GorIwRY8Zi2rwKvbh5emHVxs3Ysi4QC2bNQHsdXew6cgyWPDLoVc6AgQPx+dMnrFyxHFkfPqBjR0OcvXCBtasm60MW3r17y5JnFDMwb85sZGZkQFRUFB0MDHDm/Hm4ulXsbCosLMTUKVOQ8f49REVFoaunh70HDmLAQPayMDIiHO/evoX3qNEcv82rTx9s3roNgWtWY8Y0X+jq6uHYiVB05cHLqmfPnIUfP37g3ymT8eXLF1h26YLrl69AQkKCJfP23Vu2umTb9u1gMBjoP4hdL4sWLMDihYsAAME7mJcFO/TsySazb/cejCq7kLVvnz7YvnUbAtashs80X+jp6uHUiVC2S719p07Fz6KfmDZzBj5//gxjIyOEXbla5yOwmpJ/BgzE50+fsXrlCmR9+ACDjh1x8tx51g64rKwsvK+Sj7cEBSE1hZmP7eztEX7zFjQrHUk1e54f+Pj4sGzRYnzIzICcvDxc3T2wcGlFWZmR8R5jRo7Ap48fIScvj85duiAiKooVr4CAAFJevMDRw4fx6eNHyLZpAzNzc1yNvIEOBtU7ms3N7FmzmTY4+T+mDVpa4vrVa7XaoI2NDUKOHsP8hQuwYOFCaGlp4fixELYjAIO3l9lgj+5s8e3bsxejyi5oDjl6DPP8/DBsxHB8/vwZmpqaWLF8OSaVDWACwIuUF5jn74fPnz+jbdu28Pfzw7Sytg6vcP7KFYz+t6LeGzyGWTYtmjsXi8vK97fv37Pp8GteHib4TkVWdjakJCVhamSE21euoEul4+Hik5LQvVfFIqfpfsywvIcOxf5aLgSvjJCQECJu3cLG4GAUFBZCXVUVHi4uWDRnLs/ct9CQcrAuxCfEo3ulY7imz2K2nb1HjMT+vXsBAB8+fMD0WTORXXbE3cjhw7HAfz7rHSEhIURERmLj5s0oKCiAuro6PNzcsWjBAp7RHwDMnj4dP37+wL++vvjy9SssO3fG9fMX2HX4/h2bDn/+LML8pUvxKj0d4uLicHd2waE9uyFdNmAIANk5ORgxbiw+ZGVBSlIKRoaGuHr2HJwq1S0h+w9g3qKFGDZmND5/+QJNDQ2sWLQYk8aNB8AceL18+gzmLlyA3v0HoKCwANrttXBg5y64u7o2vXLqSEPssLCwEP9OmYL3Ze0WfT09HD5wEIMqtVsGDRyIT58+YemK5fjw4QMMOxricqX2Ujkhx4+DEIIhNQzy83J9PGjQIHz+9AnLly1jptHQEBcvXWKl8UNWFt69rWgTtmvXDhcvXcKM6dOxbds2qKioIGjjRvxTacFGcHAwGAwGBg4YwBbXwoULsajSQE94eDjevn2L0WXH61bl6LFj8PPzw4jhFfXM8ir1THOTlJAAD+eKgXW/2cw+7tARI7B9955q7RkAsK10zGRSYiJCQ0KgoamJxynMxRCW1tbYd/gwli1ahOWLF6Nd+/bYf+QIOld6b89O5nUA7k7sxxUG79qNYWUL5XxnzMSPHz8w3ccHX798gUWXLjh76RJbvuAF6tsvERcXx6UrVzHddyq6WllCtk0b/NO/PxYvXdZcSWhW6muDbdu1w8lz5zFv1kzs2h4MZWUVrFm/AV59+9UrXnMLCxw5EYolC+Zj9YoV0GzbFqvWrsOgSgtdsz5kwW/2bNYR24OHDcMcv99fJ/CnSU5MRD+3ivGFRWXjC4OGDcemnWXjC+/Z83F+Xh4unTuLZYFrOYaZ9eEDetpULBzatjEI2zYGwcbODmeuXmf5346MxPt37zB0pDfHcNw9vbBm42ZsWheI+TNnQEtHF3uO8t74wsBBg/D582esWM6sLzsaGuL8xYuV8vEHvHtXv6NpCwsL4TN5Mque1tPXx/6DBzFwEPspQBFldcmo0ZzHFy6eP49xYyuuXBletmhv/sKFWLhoUb2+idLMcOGYvvJLWd+9e8d2CpuwsHAjgmz4PeK8AB+p6RyZFo6DgwNMTEwQFBTE8uvTpw+kpaWxv2yFS23k5+dDSkoKeQ8eQ5LHGk8thdDiv/oUyD+Cqbx0c39Ci0dMiM65NwYZYcHfC1FqhfNBrZS68u0vPxrnTyDBYcUepZ5UOpqH0gBat27uL2j51HC0N6UeNOJ+DQpQKkD7do2lsPhXc39Ci0awAQt3KewU03Z1o/nxq6S5P6FFIyNC6+LGkJ+fDzkZGeTl5TXqehlK7ZTPCQReT4ComPjvX6iFH4UFmOVs3qDfjI+PD2fOnEGfsjsJX716BS0tLSQmJsLU1JQl5+XlBWlpadaucl7nrx2duHnzZjW/s2fP/vHvoFAoFAqFQqFQKBQKhUKhUCgUCoVCaQjt2rVj3lsaFsaajGIwGLh16xZWr179m7d5h792MopCoVAoFAqFQqFQKBQKhUKhUCgUCqU+8PHzgY+/ccff1ff9391j6+vri5UrV0JHp+wO55Urq93hzOvQySgKhUKhUCgUCoVCoVAoFAqFQqFQKBQA/HwAfyPvYqrvXFZ8fDy6d6+4R3n69OkAAG9vb+zfvx+zZ5fd4fzvvxV3OF+/znP3M9YGnYyiUCgUCoVCoVAoFAqFQqFQKBQKhUIBwMcH8DXyusL6zmU5ODiAEFJLeHxYvHgxFi9e3LgPa0boDZAUCoVCoVAoFAqFQqFQKBQKhUKhUCiUOpOTkwN+/rpPMdGdURQKhUKhUCgUCoVCoVAoFAqFQqFQKGAe0df4Y/oa935Lga8e6aSTURQKhUKhUCgUCoVCoVAoFAqFQqFQKAD4+PnAV99LnziE8f+B2o4WrAqdjKJQKBQKhUKhUCgUCoVCoVAoFAqFQqGwOHDgQK3P8/Ly6hUenYyiUCgUCoVCoVAoFAqFQqFQKBQKhUIBwM/PB/5G7mxq7Pu8wLRp02p9Xp9dUQCdjKJQKBQKhUKhUCgUCoVCoVAoFAqFQgEA8PExXWPDaOl8/vy51ue5ublQVFSsc3h0Mup3yMkCkpLN/RUtEsvSvyDHNTMKrYWb+xNaPCK/fjX3J7Roiv+CVRzNzfvCoub+hBaNmkBzf8FfAD9/c39By0dEpLm/oGVDbbDxlJY29xe0fKgdNgr+IkZzf0KLR0JIqLk/gfL/HCEBWg42lpLS+u0AoLBTyKDjM42B6o/Ci9R3ZxStiSgUCoVCoVAoFAqFQqFQKBQKhUKhUFBxTF9j3d/AuXPnYGtrizZt2qBNmzawtbXFmTNnWM/56rEFjE5GUSgUCoVCoVAoFAqFQqFQKBQKhUKhAODn4+OKa+ns2LEDgwYNgqGhITZu3IigoCB06tQJgwcPRnBwMERFReHt7V3n8OgxfRQKhUKhUCgUCoVCoVAoFAqFQqFQKBQWa9euxcaNGzFx4kSW34gRI2BiYoLAwED873//w969e+scHt0ZRaFQKBQKhUKhUCgUCoVCoVAoFAqFAoCPn48rrqXz7t079OzZs5p/z5498e7du3qHRyejKBQKhUKhUCgUCoVCoVAoFAqFQqFQAPDxAfyNdH/BKX1o164dzp8/X83/woULaN++fb3Do8f0USgUCoVCoVAoFAqFQqFQKBQKhUKhABDg54NAI3c2NfZ9XmDBggUYNWoUYmNjYWNjAz4+Pty9exenT5/Gvn376h0enYyiUCgUCoVCoVAoFAqFQqFQKBQKhUKhsBg6dCjU1dURGBiILVu2gBCCDh06IDw8HPb29vUOj05GUSgUCoVCoVAoFAqFQqFQKBQKhUKhABDg44NAI8/Za+z7vIKdnR3s7Oy4EhadjKJQKBQKhUKhUCgUCoVCoVAoFAqFQgGdjGoq6GQUhUKhUCgUCoVCoVAoFAqFQqFQKBQKhYWAgAAIIXWSLS0t/a0MnYyiUCgUCoVCoVAoFAqFQqFQKBQKhUIBwM/HB37+xu1s4v8LdkadOXOG9ff58+dx/fp1bNiwAYKCgg0Kj59bH0apndPnzsGljxfkNDXAJyGO5IcP6/SORTc7SKupQkxRASY21jh07Fg1uW27dqKdYUeIyLWBuZ0tou7eZXvOJyHO0QUGBbFkioqKMGXmDMhpakBMUQGeAwfifUZGo9PdWLauC0RvBzsYqCrCTEsT44cOQlpqSq3vxMVEo59zTxi3VYeuYhv0sDDF7q2b2WSO7d+H/q5O6KShik4aqhjq6YHkhPhqYR3ctRNdOxlAV0EWHt264n40u25zc7Ix438T0FlPC3pKchjZzwvpaS8bn/AmYEdwMPR1tCEtLgabLl1w505Und6LvnsX4iLCsDQ3Z/M/dOAARAVbVXM/f/6sV7yEECxfugTtNNQhIyEO55498PTJk8YltokghGDx8mVQadcOojLScHB2wpOnT2t9x8HZCXyiItWcR98+bHIZGRkYPnoU2qiqoLWsDEwsuyAhMbHeccfcu4ceri4QayMLaSVFODg74cePH1xJf2PZHhwMXS0tSLRuDcvOnXEnqu42KCokBAszMzb/M6dPw6pLF8jLykJaQgIWZmY4fOgQm0zU7dvo4+kJTTU1CAkI4NzZs9XCHzt6NIQEBNicrY1Ng9PZFGxZFwgPe1voqyjApL0mxg4Z+NuyMDvrAyaPGQV7M2NoSIlh8ZxZHOUunzuLHp3NoCUnjR6dzXDlwjm25+tXLoe6ZGs2Z6bdtsZ4506dDHXJ1ti9dUu90/knIIRg8YrlUNFqD9E2snBwdfltPi4uLsbSgJXQMuwIEVkZGFta4ur162wywbt2wqhLF0gqKUJSSRHW3R1w5do1NpnFK5ZD39QEYvJykFFVgaOHB2Lj7rPJ7Ny7Bw6uLpBUUgSfWGt8/fqVG8nmGoQQLF66BCoa6hCVEIdDzx548psy+/SZM7CwtIS0XBuISUnCxNwchw4fria3LTgY7XS0ISIuBvMuXRBVpb44feYMXNzdIKekCD7BVkhOTq4WRlpaGvr2/wfyykqQlJXBwCGDkZ2d3ag0cxtCCBYvWwqVtpoQlZKEg5MjnjytXYf7Dx4En7BQNVe1zi0nYM1q8AkLwXfGjGrPnj17Bs9+fSElLweJNrKwsrPF27dvAQCfP3/GFF9f6Bl2RGtpKWhoa8Fn2jTk5eU1PuFcghCCxUsWQ0VNFaJireHQo/tvbRAATp06BQPDjhAWFYGBYUe2ThUA3L59G709PaGipgo+AX6c5VBfAGX68/KClIw0JKQkYWVjzdIfADj06A4+AX42N3jIkEalmds0Vb/k9p076D1gAFR0tMEnIY6zFy5UC2fxyhXQNzOFmKICZNTV4Ni7F2Lj4thkdu7dCwc3V0iqKINPQpznykGg6exw8ZLF1exHSUW5moy+QQeISYhDpo0sHJ2dEBsbyybD63bYkDY1AARt3gw9o04QlZGGurYWps2aVa0c3LZjB9rp60FEWgrmNtaIunOH7Xl2djZGjR8HlXbt0FpWBq6evZH6kr3/tnPPbjg4O0FSQR58oiL/r2ywLmXhqNGjq9mXlY01m0yLsMF66u/Jkyf4p39/tG3fDnwC/AjaGFRNJjg4GEYmxpCUloKktBSsu9rgypUr9Y574qSJ0NLRhqhYa8grKsCrTx88f/680enmJsHbtkGrfXu0FhVFZwsLRNXStzt9+jScnZ2hqKAAaSkpdLWxwbUq7eQnT56gf//+aN+uHQT4+bGx0ngVK87gYJgYG0NaSooVTlX9CvDzc3RrAwO5km5ucPdOFAb/0xcd2rWFjKgwLp0/V6t81ocPGOc9Ep2NDCHbWgTzZlZv3x09dBAyosLVXOUycs/OHeja2RwaCnLQUJCDs303hF27yhZOQUEBZvlORUet9lCWkYKliRH27NzBnYRzkfrq8MLZs+jr4QZtdVVW2iPC2Ptzz54+xcjBg2CkpwsZUWEEb95ULZxVy5dV07FeWw02mZzsbPw7fhw6tGsLFVlp9PfshbSXqY1PNOWPU35MX2NdS8fT0xOenp4ghODYsWMQERHB2bNnWf6VXV34ayajHBwc4OvrCwBo27YtgjhUXM1J4ffv6GplhVVLltb5HVlZGfjPnIWY8Ag8jLmH0cOHY/T/JuFaeDhL5vipk/CdMwf+M2ch6c5d2NnYwO2ffnj77h1L5sPLNDa3d1sw+Pj48I+XF0vGd85snLlwASH7D+DO9TAUFBag14D+KCkp4Y4CGkjs3TsYOX4CzobfwOGzF/Dr1y+M6OuJ74WFNb4j2ro1vCdMROiVa4i4n4jJs2Zj7fKlOLpvL0sm5s5teP4zACEXL+NMeCRU1NUxoq8nsjIzWTIXTp3E0nmzMXnmbFyKikYXGxt49++LjDLdEkIwfuhgvH39GruPnsDlqGioqmtgmFevWr+vOQg9cQKzZkzHnLnzcC8uHja2tujTqxfb4Akn8vLyMG7MaHTv0YPjc0lJSaS/e8/mRERE6hXvurWB2BQUhA0bN+FOzD0oKinBw80V3759407iuciadeuwftMmbNmwAXF37kJJUQlOHh61fuvpkOP4kP6a5R4nJEJAQAAD+vVjyXz58gVde3SHoKAgrpw9h6dJSVi3ahWkpaXqFXfMvXtw9fKEc09H3I+6g7g7dzF50v/Az9/8Rf2J48cxY9o0zJ03D/cTEmBra4veHh51ssExo0ahBwcblJWVxdx583D77l0kJCfDe9QojB87FtcrdWwKCwthZGyMoE3VG5KVcXFxwduMDJY7f/FiwxLaRNy7EwXvCRNxLuImjp67gJJfvzCsT+9ayxpGEQNt5OQwZeZsGHTqxFEmITYW/44agX6Dh+BadCz6DR6Cf71HIKnKBIluBwMkpL5iubB7cRzDu3rxPJLi46CorMzxOS+wZv16rN+8GVvWr0fc7SgoKSrCqXevWvPx/CVLsGPPHmxeuw5PExIxadxY9B0yGEmVJkPUVFWxaulSxEfdQXzUHfSwt4fXoIFsg2u62jrYsm49Ht2Pw52wcLTV1ICzpydyc3NZMt+//4CroxP8ZnKePGxu1qwNxPqgIGzZuAlxMfegpKQEp9+U2bKyMvCfNw8xUXfwMDEJo729MXrcWFy7XpFXj584Ad8Z0+E/dx6S4uJhZ2sLtyr1RWFhIbra2GDVipUc4yksLISzuxv4+PgQeT0Md2/dBoPBQO8+XnU6LuBPsWbdWqzfuBFbgoIQFx3NtEF399/We5KSkvjw5i2bq1znlhMXH4+du/fAiEO+T0tLg22P7tDX08PNsDA8iIvHgnl+rHAyP2Qi80Mm1q5ajUcJidi/azeuXr+GsRMncCfxXGBN4Bqs37ABWzZtRlzsfWZ96OJcq/5iYmIwaMhgjBg+HA+SkjFi+HAMHDyIbQC/sLAQxsZG2LJpc43hpKWlwbabHfT19XAz8gYeJCVjgf/8ar/D+HHj8CEjk+V2bN/e+IRzkabqlxR+/w7jTobYsnZdjeGwysF7sbhz/TraamjCuY8Xezn4o6wcnDGzYQn8AzSVHQJAx44d2ezn0QP2yUJdHV1s2bQZjx48xJ3bUWirqQlnVxc2HQK8bYcNaVMfOXYMcxfMxyI/fzxLTsae7dtx/ORJzFuwgCVzPDQUvrNmwn/OHCTdi4WdTVe49fFi1SWEEPQZOBCv0tNxLjQUSfdioamhAUd3NxRWalN9//4Drk7O8Js1u+mU0EiasywEAFcXVzb7unzxUjUZnrbBBujv+/fvaN++HVatDICSkhJHGTU1NaxaGYD4+3GIvx+HHt27w6tvH7bJprrEbW5mjn179uLZk6e4duUqCCFwdnVp9vGZco4fP45p06Zhnp8fEhITYWtrCw939xr7dlG3b8PJ0REXL11CXHw8HBwc4OXpiaSkJJbM9+/f0b5dO6wMqF2/KwMCcD8uDvfj4tC9e3f07cOu34zMTDa3e88e8PHxod8//3BXCY3ge2EhDDsZYc2GoDrJMxhFkJOTw4w5c2FoZFSjnISkJJ6nv2FzldsoKqqqWLRsOSLvRiPybjTsHBwwbEB/PKvUX/GfPQsRYdexY98+xCY/wP+m+GDO9Gm4fOF8g9PbFNRXh9F3ouDQoydOnDmHG9ExsLW3x5B/+uFhpf7cj+/fodmuHRYtWw7FGmwQAPQNDNh0fDcugfWMEILhAwfgdXo6joSexK17sVDT0EAfd3e2eoZCaWmcOnUKQ4YMwa5du3Dv3j0kJiZi6tSpDQuM/CV8+vSJ5OfnE0II0dTUJBs2bGhUeHl5eQQAycvIJORbAddc+uMnBABJuhvdoPdNjY3J/NmzWf93sbAgk8aOZZPR19Ulc6fPqDEML49epIe9Pev/r+8ziKCgIAnZv5/ll5GSSvj5+cnVM2cbnNY3eYVcd4lprwkAcuLytXq959LLk/QdNLjG568+5xNxCQmyfvtOlp+JuQUZPmYcm5yWrh75d9oM8iavkNxISCYASNi9OLZwpGVkyapNW7mS3h/Fv7jiLDp3JuMnTGTz09PXJzNnz671vf4DB5K5fn7Ef8ECYmRkzPZs5+49REpKqlHxfmcUEyUlJbJs5UrW868FhURKSops3rqNK2knP35yxZV+/0GUlJTIqmXLWX4/v+YRKSkpsn3z5jqHs2FNIJGQkCAFHz+x/ObMmElsbWwaHbdl5y5k/ty5XEsz+fGTMEpKuOI6d+lCJkycyOanp69PZs2ZU+t7AwYOJPP8/cn8hQuJkbHxb+MxMTUl8/z9OT4DQEJPnarmP2LkSNLb05Nraa3q3uV/57pLfvWGmZ4r1+skb2VrR8b+779q/r36/UMcHJ3Y/Ox7OhLPfwaw/p82148YdOr02zjuP08lSioqJDw2nqhpaJBFAWu4klZSyD1XWlBIlBQVyaqly1h+Pz9/YealTZtqfE9ZSYlsWb+ezc+rVy8ybNDgWuOTkZEhu7dtq/F53ocsAoCEX7xU7dmNK1cJAPIlI7PxaS/+xRVXWlZmr1q5kuX3s6zM3r51W73CMjUxJfP9/Fj/d+ncmUyaMJFNRl9fn8ydPbvau+mpL5ltqbh4Nv9rly8Tfn5+kvfpM8vvc04us66+erVx6S9icMWV/ixi6nDFCpbfz/xvTB1u2Vrje/t27SZSUlK/Df/bp89ER1ubhF2+Quy7dSNTJ09hez5owAAyfOjQen3ziaNHiZCQECku/N7wtJeUcsWV/iph6i8ggOX38/sPpv62Bdf43sABA4mriyubn4uzCxk8aDBHeQDkzKnT1fwHDRxEhg8bXus32tvbk6k+PlxLM8txsT/SVP2Syg4AOXP02G/DyMvIZJaDFy5Ue3bj8mVmOfjuPXfS3ALscNHChcTY2Lhe35P35StTh9fDmtYOm7lN/d/ESaSHgwOb33SfqWxt6C4Wncmk8ePZZPT19MjcmTMJ+fGTvHj4iAAgjxMSWc9/FRQSWVlZsmvbtmpx3rh2jWmDH7K4k/4WYIN1KQu9R3oTL0+v5ikLm1F/lZ2mpibZsH59nWRlZGTI7p27GhX3gyTm2MPLlNRGpb2klDuuS5cuZOLEiWx++vr6ZM6cOXUOw8DAgCxevJjjM01NTbJ+/fo6hSMjI0N27tpV43NPLy/So0cPrqX9y48irjoA5PDxE3WW72rXjUz6b3I1/607dxFJKal6xy8tI0M2BW9n/a9vYED8Fi5ikzE2NSUz587jetqbS4estHboQOYtWMjxmbqGJlm5JrCa/xz/+cTQyKjGMOPK6pnohCSW38eC70RGVpZs3Bbc6LS+yWb2bfLy8ho5ik6pjfI5gZMPUsjlVx8a5U4+SGnxv9mJEydI69atSUhICMsvMzOTtG3blixZsqTe4TX/cnkuISsrCwkJieb+jCaDEIKImzfwIjUV3braAgAYDAYSkpLg3KMnm6xzz56Ijr3HMZzsnGxcunYVY0d6s/wSkpNQXFzMFo6KsjIMDQxqDKe5+JaXDwCQlpGp8zuPHyQj8f49WHa1q1Hmx/fvKC4uhrSMLACmbh8lJ8Guim679eiBhPvMlWOMoiIAgLBwxUoTAQEBCAoJIv5edJ2/r6lhMBhISkxETycnNv+ejk64FxNT43sH9+/Hq7RX8F+wsEaZgoIC6Gq1h1ZbTfTz8kRypZVNdYn3dXo6srKy4OhYISMsLAy7bt1q/bbmIP0181udHR1ZfsLCwrC3s0P0vbrnkz0H9mPwgAEQExNj+Z2/dBEWZuYYMHQoFDTUYWpliV1799Qr7pycHMTG3YeCvAJsHBygqKkBeydH3KlybGdzwGAwkJiQAMcqtuDkVLsNHti3D69evcKChTXbYDmEEERGRCDlxQvY2dWc12vi9q1bUFVSgoG+PiZNmICcnJx6h/EnyW9AWciJxPux6NbDkc3PvqcTEu6z23R6WhrMddvDplMH/DtqJN6kp7M9Ly0the+EcZjkMw16HQwa9U1NSfrr18jKzoZzz4qyXVhYGPa2toi+F1vje0UMRrWdD6IiorgTw7msLykpQUhoKAoLC2HdxZKjDIPBwM69eyElJQXjGnau8Rrp6eVlEXuZbd+tG6LrWGYTQhARGYEXKS/QrSyvMhgMJCQmwrlKGeHs6FTncAHmkcN8fHwQFhZm+YmIiICfn58nykKgsg45lee1p7WgoACaOtpQa98Ovfr0QVJyUjWZ/6b6wMPNHY49e1Z7VlpaiktXrkBXRwcuHh5QUFOFpW1XnD1X+7EmeXn5kJSURKtWzX/VLEt/Ts4sP6YN2tdqKzH3YuDszG5fLi7OiK4hD3OitLQUly5fgq6uDlxcXaGgpAhLayuOR1gdOXoUcgry6NjJEDNnzeTJ3d6NgVO/pCEwGAzs3LePWQ4atoxyEGh6O0xNTYWKmiraabXH4CFD8OrVqxrDZDAY2LlrJ1OHxsZsz3jVDhvapra1sUFCUhLulx3r+Cr9FS5fuwoPVzcA5X3jRDj3ZG/XOPd0ZIVbVNZ/ExGpqCcEBAQgJCSEO9G803/7Hc1ZFpZz89ZNKCgpQldfD+MnjOfYduZZG2yg/upLSUkJQkJCmO1Ba+sGx11YWIh9+/ehXbt2UFdX59r3NRQGg4GEhAQ4OTuz+Ts5OSGmjvorLS3Ft2/fICsr2+Dv4KTfqmRnZ+PypUsYPWZMg+NpSRQWFKCTrg46arXHoH592Hb9VKWkpASnTpzA98JCdLa0Yvlb2djgysWLyMzIACEEUbduIi01FT0cnWoMqyXCtMGCBvWnX718iQ7t2sJYXxdjRgzH6/SKerqoiAGAcz1zrwXVMxQm/Fw4ou9vuDNq1KhROHjwIAYNGsTyU1ZWRkREBIKDg+sd3l8zGVX5mL6q7Cvr5ISFhf3Zj+ICeXl5EFdShJCsDDz698fmwLVwKjuu6uOnTygpKYGiggLbO4ryCsjK5jyQeuDIUUhISKBfpXMcs7JzICQkBJkqhbCiggKyeOieBUIIlvnPRWdrG+gZdPytvGUHHejIy6C3gx1GjJ+IId6japRdtXghlJRV0NWhOwDgS5lu5aroVk5eEbllOtHS1YOahgZWL1mEvC9fwGAwsG39WuRmZyMnK6vhCeUyHz9+RElJCRSq2omiQo33aLxMTcUCfz/sP3iwxsEnXT097NqzFydPn8GBw4chLCKCHvbd8DI1tc7xZpXpSUFRkU1GQUER2dm8o0MAyMpifnO1/FaPfHI/Lg6PnzzBuFGj2fxfpacjeNdO6Ghr4dr5C5g0bhx8ZszAwSOH6xz3q7LJgcUrlmP8mNG4eu48zExM0dPdrdo5+H+acltQrPo7KyqybKAqqamp8Pfzw4FDh2odAM3Ly4OMpCTERETg1bs3gjZurDbp9TtcXF1x4NAhXAsPx5rAQMTHx8PZ0ZE1YMFrEEKw1G8OOlvbQL8OZWFt5GZnVy/nFBRY5RwAmFp0RtCO3Th85jxWb9qK3Jxs9HXqji+fPrFktm1YBwGBVhjzv38b9T1NTXl+UVSsXz526emI9Zs3I/XlS5SWliIsIgLnLl3Ehyr2++jxY4gryENYRhqTpvrgzLEQGHTowCZz8cpliCvIQ0RWBhu2bEbYhQuQk5PjUgqblvL8WjUvKyooIus3ZXZeXh7EpaUg1FoUHp6e2By0EU5lnVpWGcGhvqhPO8TK0gpiYmKYM28evn//jsLCQsyaMwelpaX48IE36hSWDSpw0GFWzWnV19PD/t27cf7UKRw7eAgiIsLo6uCA1NSK8+dDThxHYlISApYv5xhGTk4OCgoKsCowEK7Ozrh+6RL6enmh36CBuHX7Nsd3Pn36hGUBKzFx3Lj6JrVJqNEGFRVqrE/K3+Os87rbBUt/q1fD1dUF169eQ98+fdCv/z+4desWS27YkKE4duQobkbewAL/+Th1+jRPHQ3UGGrrl9SHi1euQFxJESJybbBh6xaEnTvfYspBoGnt0LKLJQ7uP4BrV65i146dyMrOgo1tV3yqVOcCwMWLFyEuKQGR1qLYEBSEsGvX2XTIy3bY0Db14IEDsWzhItj27AFBCXFoGRigu7095s5iHmtbl7pEX08PmhoamLdgIb6U9d9WBQYiKyurWp3OyzRnWQgAbq6uOHLoMCLDI7AucC3i4uPRw7EnW9uZt22wYfqrK48ePYK4pASERUUw6d//4cyp0zAwMKh33NuCt0FcUgLikhK4eu0awq5dh5CQUKO/r7HU1LdTrKVvV5X169ahsLAQAwYOrHf8jx49gqSEBERFRPDv//6HU6cr9FuVgwcOMMe/Kh2R/7eio6uHrbt24+jJU9h14CBEhEXg2sOh2l1FTx4/hpqcLBSlJDDdZzIOHT8B/Ur9ldXrNkCvQwd01G4PBUlx9PfsjcCNm2DdteufTlKTsiVoA75/L0Tff/rX6z3zzp0RvHsvTl64iI3bgpGTnQ2X7g74XFZP6+rpQV1DE0sXLMDXsnpmQ2AgsrOykJ31oQlSQqE0PUeOHME/HOrw9u3bV7v/ry78NZNRNbF27VrMnDkT165dg1MtA5RFRUXIz89ncw3lyPHjEFdSZLmoRqzGlZCQQPLdaMTduo0VCxdhut883IxiHzDgqzLLSkBQ08Tr3kMHMWzgQI53DFSFEFIt7OZkwczpeP7kMTbv2V8n+dArYbhwMworN2zC3m1bce7kCY5y24PW4/zJUOw4fLSaXqrptpJOBAUFsf3gUaSnpcKorRr0leRw704UHJycwS8gUP8ENjG1paUyJSUl8B4xAvMXLoKOrm6N4VlaWWHIsGEwMjaGra0djhwLgY6OLrZt3VrveOv6bX+SI8eOQVyuDcsV/yoG0Lhv3XNgPww7dkSXzp3Z/EtLS2FmYoqVS5fB1MQEE8eNx/jRYxC8cxebXG1xl9+HMnHsWIwe6Q1TExNsCAyEnq4u9h7YX+d0NyX1scGRw4dj4aJF0K3FBgFmGRmXmIjo2FgsXb4cs2bOxK2bN+v1XQMHDYK7hwcMDQ3Rq3dvXLh0CakpKbh8qfrZ97zA/BnT8PzJY2zdu58r4VX7Dar8Lt2dXeDu1QcdOhrCrnsPHAg9DQAIPXYEAPAwKRF7g7di/fYdzZ5vq3IkJATiCvIsV1xclo/ByRZrDmdjYCB0tLSgb2oCIWkpTJ4xHaNHjIBAlbJeT1cXyTH3cO/mTfxv3Hh4T5yAp8+escl072aP5Jh7iI68AVcnJwwcMYJnd+IdOXoU4tJSLNeYclBCQgLJ8QmIi7mHFcuWYfqsmbh56yabTGPrAnl5eYSGhODCpYsQl5aCVBtZ5OXlwczUrNpv9ac4cuwoxGVlWI5lgxzbbjWn1crSEsOHDoOxkTHsbG1x4ugx6OroYPO2bQCAd+/eYeqMGTi8f3+NbbzyesKrd29MmzoVJsYmmDtrNnq5u2P7rp3V5PPz8+HRxwsG+h2waP6Cas//BEeOHGENxIlLStSsvzrYSmPti6U/Ty9M850GExMTzJ0zF708emH7joqLvcePHw9HR0cYGhpi8ODBOHkiFOER4UhMTKxzXNzkT/dL6kL3bt2QfDca0eERcHV0wkDvkcjJ5c1yEPizdujm5oZ//vkHnTp1gqOjIy5dYN5heeDgAbb3unfvjuTEJETfuQtXFxcMHDyIrS7hJTvkVpv65u1bWLFmNbZt3IjEmHs4HXIcFy9fxrIA9nsEf9d/O3UsBCkvUyGroozWsjK4GXUbbi4uzVZP1AVeKgsBYNCgQfAoazv37t0bVy5dRkpKCi5VajvzlA1yUX91QU9PD8mJSbgXHYP/TZoE79Gj8LTSnTx1jXvY0GFISkjErRs3oaOtg4GDB+Hnz5+N/j5u0VD9HTt2DEuWLMGxkJBqC1frgp6eHhKTkhAdE4NJkyZh9Kjq+i1n3759GDp0aJ3Gv1o6nS0tMWjIUHQyMoKNrS32HTkKLR0d7CxrK5ajo6uL27H3EXYrCmPGT8C/48fheaX+yo6tWxB/PxZHT57Cjeh7WLZqNWZN9cHNyIg/naQm4+Tx41i9Yjn2HjoM+XraoJOLKzz79kVHQ0M49OiJ42fOAgCOHT4EgFnPHDwWgpcvU9FORQkqstK4G3ULji4uPDlOSKkdAX4+rriWTp8+ffDo0SMMHz4cBgYGMDQ0hLe3Nx49egSjWu6xq4nmP2+jCZk3bx4OHDiAmzdvotNvjsAJCAjAkiVLuBKvp7s7LC0sWP+rqqg0OCx+fn5oa2kBAEyMjPDsxQsErFsHB7tukGvTBgICAtVWkOXk5lZbEQYAUXfv4kVqKo4fOMjmr6SoAAaDgS9fvrDtjsrJzYWNJefjhf40C2fNQPiVSzhx+TqUVVXr9I5G27YAAP2OhsjNzUFQwEp49WdfebNjUxC2rl+LI2cvokOl40FkynSbW0W3nz7msO0i6GRqiit37iE/Lw/FxQy0kZOHVw97dDI1a2BKuY+cnBwEBASq7YLKycnl2Pj79u0bEhPi8SA5CdOm+gBgDsAQQiAuIoyLV67AoXv1VbD8/Pwwt7BgrbypS7zlF5NmZ2VBWVmZJZObmwOFKqv2/jSevXrBsksX1v/lK/2ysrPZvrWm/FaV79+/IyQ0FEs5HHuorKQEgw76bH4d9PVxquzoHyUlxd/GrazM1GXVXRgd9PTx9t27335fU1JuC1VXyuXm5FRbUQcwbTAhPh7JSUmY6sNug6JCQrh89Sq6l63E5ufnh7a2NgDAxMQEz589w5pVq2Dv4NDg71VWVoampiZeNvOOMk4smDkdYVcu4eSVMCirqjU6PHlFxWrl3Mfc3Gq7pSrTWkwM+h0NkZ7G1M/96Gh8zM2FlYEeS6akpATL/OdiT/AWxDx+3ujvbCieHh6wrDT5W3s+rrnMkZeXx9njJ/Dz5098+vwJKsoqmLtgAdqV1TPlCAkJsepsCzNzxCUkYOO2rdixeQtLRkxMDNpaWtDW0oJVly7QMeqEPQcOYF7Zym5ewrN3b87lYJUyOyc3p1b9AdXz6rNnzxGwejUc7B0qyggO9UVdytfKODs5I+1FCj5+/IhWrVpBWloaSmqqaNeubb3C4RaevXrDsnMlHTLKbbCKDnNyqu3Yqw1+fn50trBg7XxNSExETk4OzK0qjlkpKSnB7agobAnehqJvBZCTk0OrVq2q1xP6+tWOp/r27Rtce/eCuJg4zoSGQlBQsO6J5iKenp6wrNQWrdEGc3I51iflKCkpVdu9l5PLuQ6qCZb+DKror4N+rcdAmpmZQVBQEKmpqTAz+/Ptwz/VL6kP1cpBE2PsOXAQ82bObPC3NSXNaYdiYmLoZNiJbRdkub+2tja0tbVhZWUFHT1d7Nm7B/PmzuMYTnPaIbfa1AuWLMGIIUMxbjTzuK1OhoYo/F6ICf/9B/85c+tcl5ibmSE59j7y8vLAYDAgLy8PSzs7WJjzTv+tKrxUFnKivO2cWmUHRmWa1Qa5pL+6IiQkxGrzWFhYIC4+Hhs3bcSO7TtY/d+6xC0lJQUpKSno6OjAysoKMm1kcebMGQwZMqTR39gYaurb5dTQt6vM8ePHMX7cOBw/cQKOjo61ytZEVf3Gx8dj08aNbAtDACAqKgovXrzAsZCQBsXT0uHn54eZuQXS0tj7tEJCQmivxdSfqbk5khLisX3rZgRt2YYfP35g2aKFOHT8BFzc3AEAhp064fHDh9gStAEOPaofA93SOB0aCp//TcS+I0e5kh4xMTEYdOzIpmcTMzNExcYhLy8PxQwG5OTl4WhnCxMermconCk/aq+xYbR0EhISYG9vD2trazg7O2PHjh2ws7ND165dcfXqVdjY2NQrvL92Z9S6deuwY8cO3Llz57cTUQBz4iovL4/l3jVi8FZCQoLVwdLW0oKoqGiDw6oKIYTVeBISEoK5qSnCbkSyyYRFRsKm0pmv5ew5eBDmpqbV7qYwNzGFoKAgWzgfsrLw+OlTjuH8SQghWDBzOq5eOIdjFy6zJpgaEg6DwX7k1vaNG7A5cDUOnDoLoyoNYiEhIXQyMUVUFd1G3bgBcw73f0hKSaGNnDzS017iYVIinN09GvSdTYGQkBBMzcwQGR7O5h8ZEQ4rDmcrS0pKIj4pGbHxCSw3fsJE6OrpITY+AZ1ruP+EEIIHDx5ASUm5zvG2bdcOSkpKiIiokGEwGIi6fZvjt/1JquZjgw4doKSkhLCIihVBDAYDt6KiYGP1+3xy4tRJFBUVYTiHzkNXa2u8SElh80tJTYWmhgYAoF3bdr+Nu61mW6goq1QP52VFOM2FkJAQzMzNEVHFFsLDa7bBxAcPEJeYyHITJjJtMC4xEV1qmSQnhKCIwWjU93769Anv3r1jdRZ5AUII5s+YhisXzuH4hSsNLgurYtbFElE32Fe53Y4Mh3mXmm26qKgIqS+eQ1GRqZ9/Bg/B9Zj7uHr3HsspKitj0tRpOHzmPFe+s6FwzMeKigiLrCjbGQwGbt25Axur3y++EBERgaqKKn79+oVT587Cy6P2sp5ZZ9duj0yb5c0jISUkJFiDndra2jAwMCgri9jL7Fu3b8OmnmV2tfaMmRnCqpQRYRHh9Q63HDk5OUhLSyPyRiRycnLg2at3g8JpLNV02KFMh+GcyvO6p5UQguQHD1gLEXr26IFHiYlIjotjOQtzcwwbMgTJcXGss+o7W1jUWt8AzB1Rzh7uEBISwvnTp5t1NXGNNhhecfQ20wZv1Wor1lbWCAtjt6/r18NgY133jpOQkBA6d+6MFy+q6C8lFZoamjW+9+TJExQXF7MNOv5J/lS/pNHh8Gg5CDSvHRYVFeHZ82e/tZ/f/RbNaYfcalN///ED/PzswxcC/AIghIAQUtY3NkNYldX7YZERHMOVkpKCvLw8Ul++RHxiArx69WpkSpsOXioLOVHedlZWqtm+mt0GuaC/hlK5PdiurP/bkLi5VeY2FiEhIZibmyO8yjUY4eHhNd7dBDB3RI0ZPRqHjxyBx2/a0PWhpv7f3r17YW5uXu0+vf8vEELwqNL4TG1yjDL7LC4uRnFxcbWyll+An7VDvCVz8vhx/DdhHHbtP8CabGssRUVFSHn+gqOepaSkICcvj7SXqUhKTIB7M/VHKA2nsfdFcWMyixfw9/fHqFGjEBYWhqlTp6JVq1YIDg7GihUrMG8e54VQtfHX7oyys7PDpUuXcOLECcydO/e38sLCwmwXXnObz58/4+3798j8wDwj9EUqsyOrpKgIpbLVIyMnjIeqsgoCynZoBaxdCwszM2i1awcGg4HL16/j4LGjCN4QxAp3+uTJGDF+PCxMzWDdpQt27t+Ht+/fY9LYsWzx5+fnI/TsGaxbyX6MAcAsIMeOHIkZfn5oIysLWRlZzPT3Q6eOHeHYvXtTqKPOzJ8xDedPnsCuo8chJi6OnLKVXJKSUhAp60yvXrwQWR8ysWHHbgDAgV07oKqmDq2y473iYqKxa/NGeE+YxAp3e9B6rFuxDBt374OahgYrXDExcYiJiwMAxv03BdMmjoORqSnMulji2P69yHz/DsPGVNybcOnMacjKyUFVTR3Pnz7Bkrmz4OzRG916NmyVT1Ph4zsNY0d5w8zcHJZWVtizexfevX2LcRMmAgAW+PshMyMTe/bvBz8/PzoaGrK9L68gDxFhETb/FcuWooulJbS1dZCfn49tW7bg4YNkBG3aVOd4+fj48J+PDwJXrYK2tg60tbWxZvUqiLZujUHNvOKrKnx8fPD9bzJWBq6BjrY2dLS1sXLNarQWbY2hgwaz5EaOHQNVFRUELGO/s2PP/v3o09sTbdq0qRb2tCk+sOnugJVrVmPgP/1xPy4OO/fuwc4tW+scNx8fH2ZNm4ZFy5fBuJMRTIyNceDwITx/8QInjx5tOsXUkam+vhjt7Q1zc3NYWltjzy6mLUyYyLQFfz8/ZGZkYN+BA+Dn54dhNRtUgIiICJv/6lWrYG5ujvZaWmAwGLh65QoOHzqELZWOiiwoKGDb4fT69WskJydDVlYWGhoaKCgowLIlS9C3Xz8oKSvjzevXWDB/PuTk5NCnb98m1krd8Z/ui3MnT2D3sRMQk6goCyUkpVgDi6sWL0RWZiaCdu5mvffk4QMAQGFhAT59/IgnDx9AUEgIuvrMlf1j//cf+rs6YduGdXD26IXrly7izs0bOH2tYqBimf88OLq5Q1VNHZ9yc7ApcDUKvn1D/6HDATB3kspUsWtBQUHIKyhCS6f2Yxb/NKy8tDYQOtpa0NHSxsrAQLQWFcXQgRWXcY4cN46Zj5cuBQDExt1HRmYmTIyMkZGZicUrVqC0tBSzp01nveO3aCHcnF2grqaGb9++IeRkKG5G3cbVs+cAMC+fXrFmNTw9ekFZSQmfPn3Ctl078T4jAwP6Vpxjn5WVhazsbLx8lQYAePTkCSTExaGhrt6oS565AR8fH3x9fLBy1SroaOswy6LVq9C6dWsMrVRmjxw1CqqqKghYwWxzBKxeBQtzc2i1Z+bVy1eu4ODhQwjeUpFXp/tOw4hR3rAwN4e1lRV27t6Ft2/fYlJZfQGUtaXevkXmh0wAYE2qKCkpsSaP9+3fjw76+pCXl0fMvXuYOn0apk2dCj29ip17zQkfHx98p0zByjWroaNTVp6vXs3U4eBKdcmY0UwbXL4CALBk+TJYdbGEjrY28r/lY9PWrUh+8ABbNzLrXAkJCRh2ZC83xcTE0Ea2DZv/rOnTMWjYMHSztUN3e3tcvX4dFy5dws2ywclv377B2cMd379/x+F9+9mOrpaXl2/2Y6z4+PjgO3UqVgYEMG1QRwcrAwKY+hs6lCU30tubaYMrAwAAU3180M3BHqvXrIaXpxfOnT+H8Ihw3LkdxXqnan2R/jqdrb4AgFkzZmLQkMHoZmeH7t274+q1q7hw8QJuRt4AAKSlpeHI0SNwd3OHnJwcnj59ihmzZsLU1BRdeeiuhabqlxQUFODlq4pLvNPfvEHyw4eQlZGBhro6sxwMDISnuzuzHPz8Gdt27SorByvq3KzsbGY5mMYM69GTJ5CQkICGmlqzl4NA09rhzFkz0btXb2hoaCAnJwfLV6xAfn4+vEd6AyirS1augGdvTygrKzPrkuBteP/+PQb0HwCA9+2woW3q3u7uWL9pE0yNjWHZpTNepqVhwdIl8PToxSqbpvv4YMTYMbAwM4O1pRV27tmDt+/eYdK48axwQ0+dgry8HDTU1fHo8RNMnTkDfXp7wtmx4kh/Vl2cVlYXP37MtEEeqIuB5i0LCwoKsHjJYvzT7x8oKyvj9evX8JvvDzk5OfQty8ctwgYboD8Gg8E6Do7BYCAjIwPJyckQFxdn7dTx8/eDm6sb1NXVme3B4yG4efMmrl6+Uue4X716heMnjsPZyRny8vLIyMjA6jVrICoqCnd37gygNxbfadPgPXIkzC0sYG1tjV07d+Lt27eYOIk55uI3bx4yMjNx4ADziNFjx45hlLc3goKCYGVlxdpVJSoqCikpKQB106+/nx9c3Sr0ezyEqd/LV66wfV9+fj5OhoYicO3aP6KP+lJQUID0svIFAN68fo1HDx5AWkYG6hoaWLJgPj5kZmL7nr0smUcPKvp1Hz9+xKMHzH5d+X1Pq1csh0WXLtDS1sa3/G/YsW0rHj18gMCgjawwli5cAEdnF6ipq+HbtwKcDj2BO7dv4+T5CwCYi0K72nXDQr95EBUVhbqGBu5GReH4kSNYvnrNn1BNnamvDk8eP47/jRuDgLXrYNHFEtllNihSxQZflB1ZWMxgIDMzE48ePICYuBhrN9mCuXPg6uEBNXV15ObkYu3qAHz7lo/Bw4azvuXsqVOQk5eDmro6nj5+jLkzZ8Kjtyd6ONbvbmsKhVeIiYnB6tWrATAnsMvx8PDAnDlz6h8g+Uuwt7cnU6dOJYQQoqmpSTZs2ECio6OJhIQEWbNmTb3Dy8vLIwBIXkYmId8KGu32BW8nAKq5RfPmsWTsbW2J99BhrP/9Z80i2lpaREREhMjIyBDrLpYkZP/+amFvXb+eaGpoECEhIWJmYkJuXblaTWbHxk1EVFSUfH2fwfH7fuR+JJMnTiSyMrJEVFSU9HJ1I2+fPW9Umt/kFTbacdIZALJ223aWTP+hw4iVrR3r/8Vr1hLdDh2IaOvWREJSknQ0MibL1wWR9C/fWDJqGhocw/Wd68cW/7K1G4hamW4NjU3IicvX2J4vXh1IlFVViaCgIFFVVydTZs0hqblfuJL2N3mF5EfxL665oE2biYamJhESEiKmpmYkLDKS9Wz4iJHErlu3Gt/1X7CAGBkZs/lN9vEh6mW6kZeXJ45OTuTG7ah6xfuj+Bf5zigm/gsWECUlJSIsLExs7exIfFIy19JNfvzkmiv9/oMs8vdnfWs3W1vyKD6BTcbezo54Dx/O5vfi4SMCgFy/eLHGsC+cOk0MO3YkwsLCRF9Pj+zcurXecZMfP0nA0mVETVWVtG7dmlhbWpGo8IhGpZlRUsI1t2nLFqJZbgtmZiTixg3WsxEjR5Ju9vY1vjt/4UJiZGzM5jfXz49oa2uzykgra2ty+OhRNpmwiAiOeX3EyJGEUVJC8goKiJOTE5GXlyeCgoJEQ0ODjBg5kqS9fs21dL/L/95oV1NZuC54B0um/9DhxMrW7rfvqWlosMlsP3iEaOnoEkFBQaKtq0d2Hj7K9rx3v/5EQUmJCAoKEkVlZeLm6UUi7ifU+r1qGhpkUcAarqSdFHLXlRYUkkV+fkRJUbEiL92PY5Oxt7Mj3sOGs/6/efUa6aCvT4SFhUmbNm3IiCFDScbLl2zvjBk5klUXy8vJk54O3cn18xdYz398+kz6enoSFWVlIiQkRJSVlIinhwe5f/s2WziL/Pw4/m77tu9oeLqLf3HNlTKKyaJKZXY3OzvyKCmZTca+WzfiPWIk63//efPY8qq1lRUJOXK0WthbN21mlRFmpmbkVmQk2/N9u/dwbkstWMCSmTNrFlFUVCSCgoJER0eHrFsTSEoZxY1PexGDa670ZxFZNH8+uw4TE9lkmDocwfrfd4oP0ahU5zo7OpHoW7drjce+WzcydfKUav57duwk2lrM38PYyIicDT3JenbjeliN5U36i5SGp7uklGuu9FcJWbRwYYX+unUjjx48ZJOxt7cn3iO92fxCj58genp6RFBQkOjr65NToSfZnt+IiOSY7qrh7Nm1m2XPxsbG5OzpM6xnb1+/Id26dSOysrJESEiIaGlpEZ8pU8in3I+NTzsX+iNN3S+5cfkyZx2WhfMj9yPp27s3ezno7kHu37zFFs6iefM4l4PB2xuX9hZgh4MGDiLKyspEUFCQqKiokH59+5Enjx6znv8o/E769ulLVFRUmDpUViaevT3J/XuxTW+HzdymLv5WQBbPn0+02rcnIiIiRF1Njfw7cSL58iGL7b2tQRsr+sampuRWWBjb841r1xG1sv6bhro6mT93LinKy2eTWeTvz9kGd+5sXNpbgA3+riz8XlBInJ2c2drO3iO9ydvXb/5MWdiM+ktPe8VRN/b29iyZMaNHs9oy8vLypGfPnuT61Wv1ijvj3Xvi5upGFBQUiKCgIFFTUyNDhwwlz58+a3S6S0q557ZU6tuZmZmRGzdvsp6N9PYm9vb2rP/t7e056m6ktzdLJu1VzfotlxnNQb9Xr12r9m3B27cTUVFR8vnLF66muaS0lHz5UdRod+HadY5pHTJ8BPnyo4gMGT6CdLXrxvYOJ3l1DU3W8/9NnkLU1Jlln5y8POnh6Eiu3bjFFsZw71FEXUOTJWPfvTs5ffESm8zz9Ddk6IiRRFlZhYiIiBAdXV2yfNVq8vn7T66knVuuvjrsatetVvkvP4rIg+cvOMpUDqdv/wFESYlZTysrq5DeXn1ITGIy27etWruOqKiqMfOvugaZOXceyc77xpV0v8nOZY5V5+VxaTSdwonyOYFrz9PJnYyPjXLXnqe3+N9MQkKCpKamEkIISUtLI+Li4oQQQmJiYoiGhka9w+MjpNKUVgvGwcEBJiYmCAoKQtu2beHr6wtfX1/cvXsXrq6uWLp0KaZNm1bn8PLz8yElJYW8jExISko24Zf/vbwtbflbEZsbhdZNt1vv/wsiv3419ye0aIqFmueekL+J7MLmP06jJaNG73ltPEJCzf0FLZ+/4GiSZqXVX3sYw5/j+/fm/oKWT+vWzf0FLZtGHoNMAa2PKc0OHaJpPPlFxc39CZT/x+Tn50NTUR55eXl0rLoJKZ8TCH+RDjGJxum58Fs+HPXatejfzNTUFEuWLIGnpydevXoFIyMjXL16Fb6+vujatSs2btz4+0Aq8dfeGVVO165dcenSJSxYsACbKh0fRqFQKBQKhUKhUCgUCoVCoVAoFAqFQqnOoEGDEF7pfuefP3/CwcEBxsbGCAgIqHd4f80yxZs3b7L+fv36Nduzbt26oaCg4M9+EIVCoVAoFAqFQqFQKBQKhUKhUCiUFgU/Hx8E+Bq3pZS/ke/zAnPnzmX9raGhgSdPnqBdu3YQauCO779mMopCoVAoFAqFQqFQKBQKhUKhUCgUCqUxCHBhMqqx7/MarVq1gp6eXuPC4NK3UCgUCoVCoVAoFAqFQqFQKBQKhUKhUP4C2rdvD0JIjc/T09PrFR6djKJQKBQKhUKhUCgUCoVCoVAoFAqFQgEgwM90jQ2jpePr68v2f3FxMR49eoRLly5h+vTp9Q6PTkZRKBQKhUKhUCgUCoVCoVAoFAqFQqGAHtNXjo+PD0f/7du3Iy4urt7h/QXzcxQKhUKhUCgUCoVCoVAoFAqFQqFQKJSmxtnZGaGhofV+j+6MolAoFAqFQqFQKBQKhUKhUCgUCoVCAd0Z9TtCQ0MhIyNT7/foZBSFQqFQKBQKhUKhUCgUCoVCoVAoFAoAfj4+8PM3bjKJ/y+YjDIzMwMhhPU/IQRZWVn4+PEjgoOD6x0enYyiUCgUCoVCoVAoFAqFQqFQKBQKhUIBcyKpsTub/obJqD59+rD9z8/PDwUFBTg4OEBXV7fe4dHJKAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqLhQsXcjU8Ohn1O1q3ZjpKvVFr+ZO/zQ4/+b0MpXZKhYWa+xNaNILUBhuNirhIc39Ci6a0uT/gL4DWJVyAn7+5v6BFU0rbhI2Gn/ZHGg21w0ZC29SUZoa2Zyi8gKSwYHN/AuX/M9T+/ij0zqimgU5GUSgUCoVCoVAoFAqFQqFQKBQKhUKhgE5GNRV0mSeFQqFQKBQKhUKhUCgUCoVCoVAoFAqlyaA7oygUCoVCoVAoFAqFQqFQKBQKhUKhUAAI8PNBgL+RO6Ma+f7fCN0ZRaFQKBQKhUKhUCgUCoVCoVAoFAqFgopj+hrrWjqenp44e/YsSkpKuBIenYyiUCgUCoVCoVAoFAqFQqFQKBQKhUKhsDFkyBCoqalh9uzZePHiRaPCopNRFAqFQqFQKBQKhUKhUCgUCoVCoVAooDujyjl//jxycnIwd+5crFu3Dp06dYKtrS327t2L79+/1zs8OhlFoVAoFAqFQqFQKBQKhUKhUCgUCoUCgJ+fjyvub0BCQgJOTk7g5+dHRkYGBg8ejB07dkBZWRnjx49HTExMncOik1EUCoVCoVAoFAqFQqFQKBQKhUKhUCiUGpGXl8fkyZMRGxuL+Ph4SEhIwM7Ors7vt2rCb6NQKBQKhUKhUCgUCoVCoVAoFAqFQmkx8HPhmD3+v+CYPk6UlJTg6tWrOHLkCC5evAhnZ+c6v0t3RlEoFAqFQqFQKBQKhUKhUCgUCoVCoYDeGVUTU6ZMgYqKCqZMmQIDAwM8ffoUly9frvP7dGcUhUKhUCgUCoVCoVAoFAqFQqFQKBQKwJXJpL9hMiopKQmnTp3CqVOnICgoiC9fvuDYsWPo0aNHg8JrETujHBwc4Ovr29yf0SgIIVi8ZDFU1FQhKtYaDj2648mTJ79979SpUzAw7AhhUREYGHbEmTNn2J7fvn0bvT09oaKmCj4Bfpw9e7ZaGKNGjwafAD+bs7KxZpOZOGkitHS0ISrWGvKKCvDq0wfPnz9vVJq5SfC2bdBq3x6tRUXR2cICUVFRtcrfunULnS0s0FpUFNpaWti+fTvb89OnT6NL586QlZGBhLg4zExNcejQoRrDWxUQAAF+fkyrZIfFxcWYO2cOjI2MICEuDjVVVXh7eyMzM7NRaW0qmsoGAWBb8Da002oPkdaiMO9c++8zcdJE8AnwI2hjEJt/Wloa+vbrB3lFBUhKS2HgoEHIzs6udzqbCm7b4JMnT9C/f3+0b9cOAvz82BgUVC2M27dvw9PTE2qqqhDg55y/AeDZs2fw8vKCjLQ0pCQlYWNtjbdv3zY0qU1Gc9rg6dOn4eLqCjkFefAJ8CM5ObnW73Rzd6+xTG1OuG2HAFO/hh07QlREBIYdOev3d/GePn0arq6uUJCXhwB/7fptTnhVf9nZ2Rg9ejTUVFUhLiYGNzc3pKamNi6xTURz5uO6xF1UVIQpPlMgpyAPMQlxeHp54f37941LNJfhdR0CQExMDHo49oSYhDikZWXg0KM7fvz40fBEcxFezcctpRwEeLtN+PnzZ0zxmQK9DvpoLS4Gjbaa8Jnqg7y8vAaltSngVRscPXo0BPj52ZyNtXW1cHiB5tJhRkYGRowYAXk5OYiLicHM1BQJCQms5y0lH/OqDRYUFGDK5MnQUFeHWOvW6GhggODg4MYltong9X4Jr4/PAM1jh6sCAmDZpQukJCWhpKiIvn374sWLF2wyLaUs5FX9taR8zKs6bCl1CYVSVywsLHD58mVMmTIFHz58wOHDhxs8EQUAIC2AT58+kfz8/D8aZ15eHgFA8r58JaSktNFuVUAAkZCQIKdCT5JHDx6SQQMHEWVlZZL/Na/Gd6Lv3CUCAgJk5YoV5NmTp2TlihWkVatW5F50DEvm8sVLxN/Pj5wKPUkAkDOnTlcLx3ukN3F1cSUfMjJZ7lPuRzaZHcHbya0bN0l62iuSEBdPevfqTdTV1ckvRnGD01xSyh139NgxIigoSHbs3EkeP3lCfHx8iJiYGEl//Zqj/Mu0NNK6dWvi4+NDHj95Qnbs3EkEBQXJidBQlkxEZCQ5eeoUefzkCUlJTSUbNmwgAgIC5PKVK9XCuxcbS9q2bUuMjIyIj48Py//zly+kp6MjORYSQp4+e0buRkcTS0tLYm5uzrW0c8P2mtoGQ44yf59dO3aSp4+fkKllv8+b9NfVwjtz6jQxNjYmKioqZMP69Sz/gvxvpH379qRvn77kYfID8jD5AfHy9CKdO3cmJcW/GpVuXrXBe7GxZMaMGeTI0aNESUmJrF+/vlo4Fy9dIn5+fiT0JDN/nzp9uppMSmoqkZWVJTNnziTxCQkk9eVLcv7CBfIhK4vaYCUbPLj/AFmyeDHZtWMnAUCSEhJrjHP9unXEzdWtxjK1OWywqezwzl2mflesWEGePH1KVpTpNzompl7x7j9wgCxevJjs2MnUb0JiItfS/bfr71dJCbGysiJ2dnbkXmwsefrsGRk/fjzR0NAg+d++cSXtjbXhyq4583Fd4p40cSJRVVUlYdeuk8T4BNK9e3dibGzcqPYMtx2v6zD6zl0iKSlJAlauJI8fPiIpz1+Q0OMnyM/vP2g52Izl4N9ig+WupjbhowcPSb++/cj5s+fIy5RUEhEWTnR0dMg//f5pdLr/dhsc6e1NXFxdSUZmJsvlfvzIVTtsyTr8+OkT0dTUJN6jRpGYe/dI2qtX5HpYGElJTWXJ0PZM42xw7NixREtLi0RERpK0V69I8PbtREBAgJw+c4YraSd/STlYl35JU4zPkL+gPnZ2cSF79u4lDx89IolJScTdw6Nam7kllIW8rL+mzsf/H3TYlHXJl69fmWPVeXl/dIz8/xvlcwI5n7+Qn79KGuVyPn+p92+2detW0rZtWyIsLEzMzMzI7du3mzC1vycpKYmj/48fP8j+/fvrHV6LmIxqDrg5GVX6q4QoKSmRVQEBLL+f338QKSkpsn1bcI3vDRwwkLi6uLL5uTi7kMGDBnOUr20yysvTq17f/CApmQAgL1NSm72h06VLFzJx4kQ2P319fTJnzhyO8rNmzSL6+vpsfhMmTCBWVla1xmNqakr8/f3Z/PLy84mOjg65dv06sbe3Z5uM4uTuxcYSADVWgPV1jbW9P2GDXbp0IZMmTmST0dfXJ3PnzGHze//2HVFVVSWPHz4impqabAMP165cJfz8/Gz57fPHTwQACbt2vdkb3E1tg5qamhwnoyq7miajBg4aRIYNH86VdP7tNkhKSkl62qtaJ6OSE5OImpoa+ZCRyXOTUU1hhwMGDiQurq5sMs4uLmTQ4MENijft1SueHbzhVf09e/6cACAPHz1iPWcUFxNZWVmyY+dOrqT9dzZaV9ec+bgucX/9/IUICgqSkKPHWDIZ794Tfn5+cvXyFa7p4W/WISkpJZaWlmS+vz9X0/235+M/UQ7+DTZY7mprE3JyJ0KOEyEhIVJcxGh2O+RlGxzp7U08vby4andN4ZpLh7Nnzya2trZ1+kbanmmYDXbs2JEsWbKETcbMzKxaH7uhjvxF5SAp+X2/pLLjxvgM+Qvq46ouKzubACA3bt5k+bWEspCX9dfU+fj/gw7LXVPUJXQy6s9QPifw6ctXUlxS2ij36Uv9frOQkBDmooZdu8jTp0/J1KlTmYsa3rxp4lTXTFFRETl69ChZuXIlWbx4McvNnDmT8PHxsf6vKy3umL62bdti5cqVGDNmDCQkJKChoYGdO3eyyUdHR8PExAQiIiKwsLDA2bNnwcfH12xbI9PT05GVlQVnJ2eWn7CwMOy72SM6JqbG92LuxcDZ2YnNz8XFGdEx0fX+hpu3bkJBSRG6+noYP2E8cnJyapQtLCzEvv370K5dO6irq9c7Lm7CYDCQkJAAJ2dnNn8nJyfE1KC7e/fuwcmJXW/OLi6Ij49HcXFxNXlCCCIiIvDixQvYdevG9mzy5Mlwd3eHo6Njnb43Ly8PfHx8kJaWrpP8n6KpbLD896kcLgA4OzmxhVtaWooR3iMxa+ZMdOzYsVo8RUVF4OPjg7CwMMtPREQE/Pz8uHP3Tv0Sy2X+hA02lNLSUly+dAm6OjpwdXWFkqIirK2seO5oOaD5bbAufP/+HUOGDcWWTZuhpKRUr3ebmqayw3sxMXCuIuPi7IyYaHb91ideXoSX9VdUVASAWeaVIyAgACEhIdy9e7e+SW1SmjMf1yXuhIQEFBcXw7mSvlVUVGBoaNigtlNTwOs6zMnJQWxsLBQUFGBj2xWKykqw7+6AO3eaty4GeDsftySauz7+XZuQE3l5eZCUlESrVs173XFLsMFbN29CSVER+np6mDC+9j5fc9BcOgSACxcuwNzcHAMHDoSSoiLMzcywa9cubiTrj8HrNti1a1dcuHABGRkZIITgxo0bSElJgbOLS8MS3EQ0dzlYX3hpfAZo3nxclfIjXGVlZdn8ebks5HX9tYR8zOs6pFAaw/r16zF27FiMGzcOHTp0QFBQENTV1Zv1uMzhw4dj4sSJCAkJwblz51ju2rVr4OPjw7lz5+o1DtkiJqOqsm7dOlhYWCApKQn//vsv/ve//7HOz/327Rt69+6NTp06ITExEcuWLcOcOXN+G2ZRURHy8/PZHLfIysoCACgqKrL5KyoqsJ7V9J6iQpV3FBRrfYcTbq6uOHLoMCLDI7AucC3i4uPRw7EnawCsnG3B2yAuKQFxSQlcvXYNYdeuQ0hIqF5xcZuPHz+ipKSEg+5q1kNWVhZH+V+/fuHjx48sv7y8PEhKSEBEWBi9e/XCxk2b2CqnkJAQJCUmYmVAQJ2+9efPn/CbNw9Dhg6FpKRkXZP4R2gqG6zr77N6zWq0EmgFnyk+HOOxsrKCmJgY5sydg+/fv6OwsBCzZs9CaWkpPnz4UPeENgFNaYONJScnBwUFBVi9ejVcXVxw9do19OnTB/3/+Qe3bt3iWjzcoLltsC5Mmz4NNtbW8PLyqtd7f4KmssOsrCwoVJFRUGwa/TYnvKw/fX19aGpqws/PD1++fAGDwcDqVauQlZXV7OVfVZozH9cl7qysLAgJCUFGRqbGuJobXtfhq1evAACLlyzB+LHjcPXyFZiZmqKnk2Oz32PGy/m4JdHc9fHv2oRV+fTpE5atWI6JEybUSb4p4XUbdHV1xaHDhxEeEYHAtWsRHx8Px57V+3zNSXPpEGCWb9u3b4eOtjauXL2KCRMnwnfqVBw8eJAbSfsj8LoNbty0CR0MDKChrg4RYWG4u7lhy9atsLW1bViCm4jmLgfrCi+OzwDNm48rQwjBjBkzYGtrC0NDQ5Y/r5eFvK6/lpCPeV2HlL8HAT4+rjgA1eYcOJVJrEUNVSZanZ2dEV3LpGhTEx4ejqioKDx48ACJiYksFxERAUIIEhMTkZSUVOfwWuRklLu7O/79919oa2tjzpw5kJOTw82bNwEAR44cAR8fH3bt2gUDAwO4ublh1qxZvw0zICAAUlJSLNeYFSdHjhxhNRrEJSVYs+x8ZQZYDiGkml9VGvJOVQYNGgQPDw8YGhqid+/euHLpMlJSUnDp0iU2uWFDhyEpIRG3btyEjrYOBg4ehJ8/f9YrrqaivnrgJF/VX0JCAolJSYi9fx/Lly/HzBkzWHb07t07TPP1xcFDh9hWq9dEcXExhgwZgtLSUmzdurWuyWoy/rQN1iaTkJCAjZs2Yf++fTXGJS8vj9DjJ3Dh4kWIS0pASkYaeXn5MDMzg4CAwO8T/AdoChtsLKWlpQAATy8v+E6bBhMTE8yZOxcevXphx44dXIunIfCSDdaF8+fPI/LGDQRtCKrzO81BU9jhn9Avr8CL+hMUFEToyZNITUmBXJs2EBcTw81bt+Dq5tbs5R8v5uOGxN2c9trSdFher0ycMAGjR4+GqakpNqzfAD09Pezdt7fW7/tT8GI+5mV4yQbr0iasTH5+Pjx694JBBwMsWrjot/J/Cl61wap9vkuXOff5eIHm0GFpaSnMzMywYuVKmJqaYuLEiRg3bhx2cLjAntfhVRvcvGkTYu/dw9lz5xAXH4+1a9di8n//ITw8vA6pajp4qRysD7w8PgM0nx2WM2XyZDx6+BBHjh5l828pZSGv6o9X8zEneFWHlL8HPhCuOABQV1dnm3cI4LDxgVcXweXl5UFNTa2af0Prt+Y966CBGBkZsf7m4+ODkpISa9vtixcvYGRkxDaB0KVLl9+GOW/ePEyfPp31f35+foMnpDw9PWFpacn6v3y2MysrC8rKyiz/nJzcagZWGSUlJWRlsxtbTm5Ore/UBWVlZWhqaiL1JfsK1/IMoaOjAysrK8i0kcWZM2cwZMiQRsXXGOTk5CAgIFAt0+Xk1KwHJSUljvKtWrVCmzZtWH78/PzQ1tYGAJiYmODZs2dYtWoVHBwckJCQgJycHHS2sGDJl5SU4Pbt29i6dSt+/PzJGiQsLi7GoEGD8Do9HeERETyxK+pP2WBdfp+oO1HIycmBRltN1vOSkhLMmDkTQRs34vWrdADMmf601Jf4+PEjWrVqBWlpaSipKKNdu3YNUQHXaEob5Ma3tWrVCgYdOrD5d9DXb/bjvXjJButC5I1IpKWlQVqWfUfFPwP6w87ODjcjb9Q5rKagqexQSUkJ2VVkcnO4r9/mhtf1Z25ujsSkJOTl5YHBYEBeXh7WVlYwNzdvWIK5BC/l4/KjM2uLW0lJCQwGA1++fGHbHZWTmwMbG+u6J5yLtDQdlvsbdDBgC6eDfge8ffuuDiluOng9H/MqvGSDdW0TAszTLlzd3SAuLo4zp09DUFCwvknnOi3NBsv7fC+beVdjZZpLhwBTHx2qtJn1O3TA6dOnG5yePw0v2+CPHz/g7++PU6dPw8PDAwBz3CY5ORnr1q2r87H3TQEvlYP1gRfHZ4Dmzcfl+EyZggsXLuDmrVscB0grw2tlIS/rj5fzcWV4WYcUSk28e/eObby48jUlVeG1RXD79u2DhIRENX8pKSns27ev3uG1yJ1RVTsjfHx8rJWcnH6g8tnu2hAWFoakpCSbaygSEhLQ1tZmOQMDAygpKSEsPIwlw2AwcOv2LdhY1zw4Ym1ljbAw9tUH16+HwcbapsHfBjCPu3j37h2UlZRrlSOENPtWZiEhIZibmyM8LIzNPzw8HNY16M7Kyqraqo2w69dhYWFRa0eWEAJGWXp79uyJBw8fIjEpieUsLCwwdNgwJCYlVZuIepmaiuthYVydaGgMf8oGy3+fyuECQFh4OCvcEcNH4GHyAyQnJrGciooKZs2ciWtXrlaLU05ODtLS0oiMjEROTg48e3s2WA/c4E/aYEO+rXPnzniRksLmn5KaCg1NzRre+jPwkg3Whblz5lazUwDYsH499u1p/t0ATWWHVtbWCKsicz0sDNY27PqtT7y8SEvRn5SUFOTl5ZGamor4+Hh4NvORkbyUj9u1a/fbuM3NzSEoKIiwSvr+8OEDHj9+3Oi2U0NpaTps27YtVFRU8CLlBVs4Kakp0NTUaIAGuEdLyce8Bi/ZYF3bhPn5+XB2dYGQkBDOnz1Xp1MK/gQtzQbL+3xKyrX3+f4kzaVDALDp2hUpVdrMqSkp0GzmNnN94GUbLC4uRnFxMfj52YeYBAQEWGM1zQUvlYONgRfGZ4DmzceEEEyZPBlnzpxBeEREnRau8lpZyMv64+V8XBle1iHlL6O0lDsOqDbnwGkyilcXwY0cOZLjMbHfvn3DokUNOL2AtADs7e3J1KlTCSGEaGpqkg0bNrA9NzY2JosWLSKEEBIcHEzk5OTIz58/Wc93795NAJCkpKQ6x5mXl0cAkLwvXwkpKW20WxUQQKSkpMjpk6fIowcPyZDBQ4iysjLJ/5rHkhkxfASZO2cO6/+7UXeIgIAAWRUQQJ49eUpWBQSQVq1akXvRMSyZb3n5JCkhkSQlJBIAZP26dSQpIZG8SX/Nej5j+nQSfecuSU97RW5ERBJra2uiqqrKijst9SVZuWIFib8fR96kvybRd+4SL08vIisrS7I/ZDU4zSWl3HFHjx0jgoKCZNfu3eTxkydk6tSpRExMjLxKTyclpaVkzpw5ZPiIESz5l2lppHXr1sTX15c8fvKE7Nq9mwgKCpIToaEsmRUrVpCr166R1JcvyZOnT8natWtJq1atyI6dO2v8Dnt7e+Lj48P6v4jBIL09PYmamhpJTEoiGZmZLPfj50+upJ0bttfUNhhylPn77Nm1mzx9/IT4lv0+r1+l1/gtmpqaZMP69Wx+e3fvITF3o8nLlFRy6MBBIisrS6ZPm9bodPOqDf74+ZMkJCaShMREoqysTGbMmEESEhPJi5QUlkxefj5LBgBZt24dSUhMJOmvX7NkTp46RQQFBcn2HTvIi5QUsmnTJiIgIEBu3b5NbbCSDX7K/UiSEhLJpQsXCQAScvQYSUpIJB8yMmv8XgDkzKnTPGGDTWWHUXeY+g0ICCBPnj4lAWX6jY6JqXO8JaWlJPfjR5KQmEguXGTq9+ixYyQhMZFkZGZyLf1/s/5Cjh8nEZGRJPXlS3L6zBmiqalJ+vbrx7W0N9aGK7vmzMd1iXvSxIlETU2NhF8PI4nxCaRHjx7E2NiY/GIUc1UPf7MON6xfTyQlJUno8RMk9UUKme/vT0RERMjLlP9j767Donj+OIC/AWkBQWkEFRRQFAkVkLDAxu7A7k7sFru7uxu7wEREwg7K+KqICQpK3M3vj4OV5Y7yjtDf5/U88zwwOzu7M7e7M7uzEUnHwWI8Dv4r22D2kL1PmPgtgdWpU4dVr16dRb2IZO/fvuOCtPvxv7wNJiQmsjFjxrCbt26x6JgYduXq73O+bwkJMtsH/+Y6vBMczEqVKsXmzp3Lnr94wXbv2cPU1NTYrt27uTTUn5HuOOjh4cGqVavGrly9yqKio9nWbduYiooKW7N2rUzKzv6R42Be5yWFdX2G/QPt8aBBg5iWlha7GhDAu/7yIymJCYR/z7GwpNZfUezH/w91WJhtyddv30TXqhMS/vgaO8kbNybw6RNjqalShYRPnwr0m9WuXZsNHjyYF2dtbc18fX0Lo6j54u/vz6pUqcKUlJSYnJxcjiG//rnBqISEBKajo8N69uzJnjx5ws6fP8+srKwYABYREZHvZcp6MEqYLmAzpk9nBgYGTFlZmbm7u7OH9x/w0nh4eDCfnj68uMMHDzFLS0umqKjIrKys2NHDR3jTA65cZQDEQmY+yT+SmJenF9PV1WWKiorM1NSU+fT0Ya9fvuLyePvmP9a0SVOmp6fHFBUVmYmJCevapSt79uRpiejoCIRCtmbNGmZmZsaUlJSYvb09CwgM5Kb19PFhHh4evPRXAwKYnZ0dU1JSYhUqVGBr163jTZ88eTKzsLBgKioqTFtbmzk7O7N9+/fnug7ZB6OiY2Ik1j0AduXqVZmUWxbbXmFvg0wgZGuz/T7XAgJzXRdJg1ETJ0xg+vr6TFFRkVWuXJktXbKECdMFUpe7pG6DOW0/WfO5clXy/t3Tx4eX1+YtW7jt2dbWlh07flxm5f5XtsHtW7dJrMsZ06fnuL4lbTCqMLZDgVDIDh7i1+/hI0cKtFyBUMi2bpNcv9OnT5dp+f/V+luxYgUzMTHh2ukpU6bI7KaGf2k/zs+yfyYls2FDhzIdHR2mqqrKWjRvwevzlIRQ0uuQCYTMb/58ZmJiwtTU1JizszO7ce06HQeL+Tj4r2yD2UP2PmFO5zYAWGx0TInYDkviNvgjKYl5evHP+Xr6+LCXr17JrNz/wn588tQpZmNjw5SVlZmVlRXbsHEjbzr1Z6Q7Dr5994759OrFjIyMmIqKCrO0tGRLlixh6QKBTMrN/pHjYF7nJYV1fYb9A+1xTu3D1m3bmED4dx0LS2L9FcV+/P9Qh4XZltBgVNEozsGoAwcOiG5q2LqVPXnyhI0aNUp0U8PLl4Vc6pxVqVKFDR06lB07doydPHmSC7t27WJycnLc//klx1g+3mFXzOrVq4eaNWtixYoVqFChAkaNGoVRo0Zx02vWrInWrVtj5syZAIDbt29j8ODBePbsGapXr46xY8eia9euePbsGSwtLfO1zMTERGhpaSHh67cS8Q2gv5Gw5H/TucSTL/F7Z8lH26F0aBuUHm2DpLjRfkyKGx0HpUf7sfRoOyTk70bHQenRcZCQv1tiYiK0y5RBQkICXasuRNyYQHy81PWcmJgILT29Av1m69atw6JFi/D+/XvY2Nhg+fLlcHd3l2o9pKGkpIQ3b96IvSowPj4eBgYGBX6NZylZrlxhCQwM5P5++fKl2PSIiAje/y4uLrh//z73/969e6GoqAhT0+J91z0hhBBCCCGEEEIIIYQQQkowIRMFafMooCFDhmDIkCHSLVeGTExMJH7jSkFBARUqVChwfn/FYFRB7dq1C5UqVYKxsTHu37+PiRMnomPHjlBVVS3uVSOEEEIIIYQQQgghhBBCSEklFIqCtHn85WJiYiTGly1bNsdpufknB6Pi4uIwffp0xMXFwdDQEB06dMC8efOKe7UIIYQQQgghhBBCCCGEEEJKvFmzZuU4jTHGfTYpv/6Kb0YVB/pmlPTofcTSo/diS4+2Q+nQNig92gZJcaP9mBQ3Og5Kj/Zj6dF2SMjfjY6D0qPjICF/N/pmVNHgxgT+eyubb0aZGP/Vv5m9vT3v/6SkJLx69QqKioqwsLBAeHh4gfL7J5+MIoQQQgghhBBCCCGEEEIIKTCBUBSkzeMvFxYWJhb35csXdO/eHR06dChwfvKyWClCCCGEEEIIIYQQQgghhBDy79LR0YGfnx/mzp1b4HnpyShCCCGEEEIIIYQQQgghhBAAEApFQdo8/lEKCgp49eoV0tPTUapU/oeYaDCKEEIIIYQQQgghhBBCCCEEAJgMBqPYvzsYZWNjg/T09ALPR4NRhBBCCCGEEEIIIYQQQgghhNOgQQMwxiROY4whMDAQ3759Q5s2bRAQEJBnfjQYRQghhBBCCCGEEEIIIYQQAgBCJoPX9EkexPmb1KxZM880ioqKsLOzy1d+NBhFCCGEEEIIIYQQQgghhBAC0DejMixbtizPNOrq6vlKB9BgVN5kseH9n5KXly/uVSCESEkoV9xrQP7fyf/9NxKRfwAdC6Ujn1bwd4mTbArwUWAiGbUn0qHjICl2dF1Gegp0jYYQQkjxorMaQgghhBBCCCGEEEIIIYQQgJ6MylCpUqUcvxmVXWxsbJ5paDCKEEIIIYQQQgghhBBCCCEEyPhmlJSP1v8D34zq06cPli5dirp168LJyQkAEBQUhFu3bmHcuHHQ1NQsUH40GEUIIYQQQgghhBBCCCGEEALQk1EZHj9+jClTpmDcuHG8+MWLFyMiIgJ79+4tUH70wlhCCCGEEEIIIYQQQgghhBDC8ff3R6tWrcTi27Rpg1OnThU4PxqMIoQQQgghhBBCCCGEEEIIAX4/GSVt+Mtpamri4sWLYvHnz58v8Cv6AHpNHyGEEEIIIYQQQgghhBBCiAi9pg8AMHnyZIwePRq3bt3ifTPqyJEjWL58eYHzo8EoQgghhBBCCCGEEEIIIYQQwhk2bBisrKywYsUKrFq1CowxWFtb4/z582jYsGGB86PBKEIIIYQQQgghhBBCCCGEEICejMqiUaNGaNSokUzyosEoQgghhBBCCCGEEEIIIYQQAGAyGIxi/8ZgFAD8+vULHz9+hDBbnZiZmRUoHxqMIoQQQgghhBBCCCGEEEIIIZxnz56hT58+uHPnDi9eTk4OjDGxwam8yMty5UjOGGOYOXsWjEzLQ1WjNOo1bIDHjx/nOs/mLVvgVs8D2rrloK1bDo0ae+Hu3bu8NDNnz4KcYileMDAxzjHPgYMHQ06xFFasXJnjejZt0RxyiqVw4uTJghe0EDHGMHPWTBiZGENVXQ31GtTPsw4B4OjRo6hqUw3KqiqoalMNx48fzzGt3wI/yCnIY9ToUbz4Dx8+oFfv3jAyMYZaaXU0adoUkZGR3PSXL19CTkFeYjh8+PAfl1mWCqv+1q9fjxo1baFZRguaZbTgXNcF586d46XJq/4AICUlBcNHDEc5PV2oa5SGd6tW+O+//6QvuIysX7cO5pUqQU1VFbUcHXHjxo1c01+7dg21HB2hpqoKC3NzbNiwgTc9LS0Nc2bPRmULC6ipqsKuZk2cP3+elyY9PR3Tpk6FeaVKUFdTg4W5OebMns070DPGMGvmTJgYG0NdTQ0N6ufvdy0Osq7DzZs3w8PdHWV1dFBWRwdenp5ix8j169ejpq0tymhpoYyWFuq6iG+fCvLyEsOSxYtlU3AZKkgdvn//Ht26dYO1lRVKKShg9KhRYmka1K8vsewtWrTgpXv79i169OgB3XLlUFpdHfZ2dggNDeWmHzt2DE2aNIGeri4U5OUREREhqyLL3J8cCx8/fox27dujQqWKkFOQx4qVK8TSZE7LHoYOGyoxz4GDBkrMq6QfCwur/rLKqS0GgKdPn8K7VStoaZeBhpYmnFyc8fr1awB/R1ss63348ePHaN++PSpVrAgFeXmsXLFCLM3169fh7e0NE2NjKMjL48SJE2Jp/qa2hDGGmXNmw6iCGVS1NFHPsxEeP8l9XXfs2gU5ZSWx8OvXL4np/RYthJyyEkaNHcuL//DhA3r16wujCmZQK6OFJi1aSO7PjBqFckaGUNcuA++2bUrUPgwUXp9w5qyZYvuegZEhL82PHz8wbPgwmJiWh6q6GqyrVcX69et5aTZt2oR6DepDs4wW5BTk8e3bN6nLLGuFeV6ybv06VDSvBBU1VTjU4h8n0tLSMNF3Iqrb1oC6RmkYmRijp48P3r17x8ujXoP6Yr9F5y5dpC+4jMi6T7hjxw6J/Zms+3jmcTJ7GDaU304/ffoUrVq1gnaZMtDS1ISL8+92pqSQdf1ldeDAASjIy6NNmza8+Py0Jb179xarXxdn5z8qY2ErrOsz6zdsQA07O2jqaENTRxvOrnVx7jz/3KNXnz5i13Cc6rqILS8oKAgNPBtBXUsTZcqVRb2GDfDz50/pCy8jst4O83Nekp/9eNbMmahqbQ2N0qW5c8Tg4GDZFl4GCmM/XrliBaytrKCupgYzU1OMGT2adxzM69w4LS0NvhMnwrZGDWiULg0TY2P4SGhjSgpZ96vzc43m+/fvGD1qFCpWqAB1NTW41q2LkJAQXh5/Ux2SPAjZ71f1/XFgxV0KqfXt2xdKSko4e/YswsPDERERgYiICO7vAmNEooSEBAaAJXz+wlhautRhwfz5TENDgx09dJg9DI9gnTp2ZIaGhizxy9cc5+nauQtbu2o1Cw+5x54+fMR6+/RiWlpa7L+Xr7g0M6ZNY9WqVWPv3/zHhfh37yXmd/zIUWZbw5YZGRmx5UuWSkyzbPES1rRJEwaAHT9yVLpyC4QyDQv8/ER1ePgIe3j/AevUsZOoDr8l5DjP7Zu3mIKCAps/bx57+vgJmz9vHitVqhS7cztILO3dO8GsQoUKrEaNGmzkiBFcvDBdwJycnJibmxu7eyeYPXvylA3o35+ZmpqyH4nfGRMIWXpqGnv/9h0vzJo5k6mrq7PvCYkyr4uSVH+nTpxkZ/xPs+dPn7HnT5+xyZMmMUVFRfbowcN81x8TCNmggQOZsbExu3ThIgu7F8rq16/PbG1tWXpqmlTlFgilD/v272eKiops46ZN7NHjx2zEiBFMXV2dxb58KTF9VHQ0U1NTYyNGjGCPHj9mGzdtYoqKiuzQ4cNcmvHjxzMjIyPmf/o0i4yKYmvWrmUqKirsXmgol2bOnDmsbNmy7JS/P4uOiWEHDx1ipUuXZsuXL+fS+GX8roePHGH3HzxgHTuJftdvCQkyKbusQmHUYZeuXdmaNWtYaFgYe/zkCevVS3SMfP3mDZfmxMmTzP/0afb02TP29NkzNilj+3zw8CGX5u27d7ywZetWJicnxyKjooq93qSpw+iYGDZ8+HC2fccOVrNmTTZixAixNB8/feKV/cHDh0xBQYFt3baNS/Pp82dmZmbGfHr1YkF37rDomBh28dIl9iIykkuzY+dONnPmTLZx0yYGgIWGhcms3KwEHAvv3glm48aOZfv37mMGBgZs+bJlYmni4z7w2oBLFy4yACzgylWxtMePHmO2thntcba8CutYWNLrL2taSW0xEwhZ1ItIpqOjw8aPG8fC7oWy6MgodvqUP/vwPo4xQeG2xSV1H74THMzGjh3L9u4T1e2yZcvE0pw+c4ZNnjyZHT5yhAFgR48dE0tT2G0JS0mVWVgwb55oGzx4kD0MC2OdOnQQbYOfPuc4z/bNW5impiZ7/+o1L0hKe/fWbVbBrAKrUb06GzlsOBcv/JXCnOrUYW6uruzurdvs2YOHbEDffqL+zJevXLpB/QeI9uGz51hYcDCrX68es61Rg6Un/5Su7MW8H+enTzhj+nTReUmWfTA+7gMvn359+zJzc3MWcOUqi42OYRvXb2AKCgrsxLHjXJrly5Yxv/nzmd/8+QwA+/r5S7Ef+4qqDg/sEx0nNm/cxJ48esxGZhwnXsW+ZEwgZN++fGWNGjZiB/cfYM+ePGVBt26zOnXqMAcHB96yPDw8WP9+/Xi/xbcvX4v9OPgnx8L89Am3btvGNDU1xfp0WfOJ+/CBN+3CRVE7feXqVS7Ni0hROzNu3Dh2LzSURUZFsVP+/ux9XJzMyl8S6y8zxMTGMmNjY+bm5sa8W7XiTctPW9LTx4c1btKEV88fP32SWdllcV2msK/PnDp+nJ05dYo9f/yEPX/8hE329RWdG0fc59L49OjJmjRuzLuG8/lDPG9Zt6/fYJqamsxv3jz2KOI+e/HkKTt84CD79SNJqnKX5O0wP+cl+dmPd+/Zwy5cvMgio6LYg4cPWZ8+fZimpiaL+/Ch2Pffwqy/Xbt3M2VlZbZ7zx4WHRPDzp0/zwwNDdnIkSO5NHmdG3/5+pU1bNSI7T9wgD15+pTduv27jSnuOpO2DvPTr87PNZoOHTuyqlWrsoDAQPb8xQs2ffp0pqmpyV2DKOw6/Prtm+hadUJCsV4z/9dxYwLB9xh7/EyqkBB876//zdTV1dmTJ09klh8NRuVAloNRwtQ0ZmBgwBbMn8/F/fqRxLS0tNiGtevynU/6rxSmoaHBdm7bzhuMsq1hm+e8/718xYyNjdmjiPvMzMxM4mBUxL1QZmJiwt6/+a/EDUYJ0wWiOvTz4+J+Jf8U1eG69TnO17FDR9akcRNeXGOvxqxzp868uO8Jiaxy5crs0oWLzMPDg3cB7PnTZwwAN7jCBKILXjo6Omzzxk05LrtmzZqsT+/exX6yXBT1lz1oa2uzLZs257v+vn35yhQVFdmBffu5NG/f/Mfk5eXZ+bPniv3EuXbt2mzgwIG8OCsrKzZx4kSJ6cePH8+srKx4cQMGDGBOTk7c/4aGhmz16tW8NN6tWrGu3bpx/zdr3pz17t2bl6ZN27asW/fuTCAUsnSB6Hf18/Pjpif/FP2u69avl0nZZRUKow6zh9S0NKahocG279iR67poa2uzTZs35zjdu1Ur1qBBg2KvM2nrMGvw8PCQ2OHOHpYtW8Y0NDRY4vfvXNyECROYq6trvtYxOiamRA9G/emxMGswMzPLdTAlM4wcMYKZm5szYbqAF//f6zei9vjBQ7G8CvNY+DfUX25tMRMIWaeOnVj3bt0LtM6yaov/hn3YzMxM4mBU1iDpAmJRtCWyGogS/koRbYPz5nFxvxK/i7bBNWtzHYzS0tLKM//vn7+wyhYW7NLZc8zD3Z03GPX84SNRfyY8nItLT/4p6s+s38BYSir7Fv9RtA/v2cOleRv7UrQP+58uEYNRhdknnDF9OrO1tc11+dWqVWOzZ83ixdnb27OpU6aIpQ24crVEDkYVZh3Wrl2bDRo4kJfGysqK+U6cmGO+d+8EMwDcgBUTCCUeQ6UNsmrXC6NPuHXbNqalpVWg9RiR0U6nCwRcXMdOnbh+dkkNhdWnTk1LY3Xr1mWbNm9mPX18xAaj8mpLBEJhnvNJG2Q1EFWY12ckBW1tbbZl4ybeYFQrb+9c56lTuzabOnmyzMos68Gooji3k3Rekp/9OHvIvHh/8dKlYt9/C7P+hgwZInYOO3r06DzP4/I6N74TLGpjchrk+VvqMGvIqV+d1zWaH0lJTEFBgZ3y9+elsbW1ZZMnTy6SOqTBqKJBg1F89vb27Nq1azLLj17TVwRiY2MRFxcHr0aeXJyysjI83N1xOygo3/kkJycjLS0NOjravPjIqEgYmZZHxcoW6NytK2JiYnjThUIhevTywfgxY1GtWrUc8+7SozvWrFwFAwODApSuaHB16OnFxYnq0CPXOgy6EwQvL09eXOPGXrgddJsXN3TYMDRv1gyNGjUSyyMlJQUAoKKiwsUpKChASUkJN2/dkrjc0NBQREREoG+fvnkXrggUdv1lEggEOHDgAJKSkuCc8UqG/NRfaGgo0tLS4OX1e/2MjIxgY2OT47KKSmpqKkJDQ+GZZd0AwNPTE0E51N2dO3fg6cmvN6/GjXHv3j2kpaUBENWLcpY6AQBVVVXcunmT+9+1bl1cvXoVL168AADcv38ft27eRNOmTQH8/l2zrpuysjLcPTxyXLfiUFh1mN3vY6SOxOmSts/sPnz4gLNnzqB3nz55FatI/Ukd/olt27ahU6dOUFdX5+L8/f3h4OCAjh07wkBfHw729ti8ebPMllmU/vRYWFCpqanYs3cv+vTuDTk5OS5eKBSih09PjB83TmJ7XJKPhUDh119ubbFQKMSZs2dQpUplNG7SBHoG+qjj7CTxNUGZSlJbXFT78J/4W9oSIGuf+vc2oqysDA83N9y+k/u6/vjxA2aVLWBSqSJatG6N8IhwsTRDR45A86bN0KhhQ7FpKakZ/RllCf2Z2xn9mbAw0T6cpc9vZGQEm2rV8ly/olLYfcLIyEgYmRijonkldO7SRey8xLVuXZzy98fbt2/BGENAQABevHiBxl6NZVC6olFYdZh5nMiaLwB4eXrmmm9CQgLk5ORQpkwZXvzefftQTk8X1arbYNz4cfj+/Xt+i1hoCrNP+OPHD1SsUAGm5cujZcuWCA8X38ezrsfevXvRO0s7LRQKcfbMGVSpXBlNmjSBgb4+nJ1yb2eKWmHW35zZs1FOVxd9+0rXZl4LDISBvj6sLC0xoH9/xMfHS5VfYSjs6zOZBAIBDhw8KDr3cHLiTQu8dg16RoaoUtUa/QcO5NVTfHw8gu/ehZ6uHlzcXKFvbASPBvVxM8t5YnEqqnM7Secl2dcj+34sKc3mTZugpaUFW1vbvIpWJAqr/uq6uiI0NJR7dWRMTAzOnTuHZs2aScwzP+fGQM5tTHEqrH51Xtdo0tPTIRAIeNe2uDQ5XBsESmYdknwSMNmEv9yiRYswYcIEXLp0CZ8+fUJCQgIvFBQNRhWBuLg4AIC+vj4vXl9PH3Ef4vKdj+/kyTA2Nkajhr9PwOvUro1d23fgwpmz2LxhA+Li4uDi7obPnz9zaRYuXoRSpUphxPDhOeY9euxYuDg5o5W3d77XpyjlWIf6ety0nObT15NQ71nmOXDgAMLCw+A3309iHlZWVjAzM8OkyZPx9etXpKamYsHCBYiLi8P79+8lzrN121ZYW1vDxUX83c/FoTDrDwAePnyI0poaUFZVwaAhg3H86DFUrVoVQP7qLy4uDkpKStDW1s5zWUXt06dPEAgEEuou53WLi4uTmD49PR2fPn0CIOo8rli+HJGRkRAKhbh06RJOnTzJ26YmTJyIzp07o6q1NZSVlOBgb4+RI0eiS8Y7/3M+tuT+uxa1wqrD7Cb5+oqOkdkuZD98+BCaGhpQVVHBkMGDcfTY7+0zu107d0JDQwNt27bNb/GKxJ/UYUHdvXsXjx49Qt9+/XjxMTEx2LBhAypbWODc+fMYMHAgRo0ciV27dslkuUXpT4+FBXXixAl8+/YNvXx68eIXLlqIUgqlMGL4iBzXr6QeC4HCrb+82uL4+Hj8+PEDCxYuRJMmjXHx/AW0ad0abdu3w7Vr1yTOU5La4qLYh//U39KWAEDchw8AkEPf5EOO81lZWmLHli04dfQo9u/aDRUVZdStV4/3vacDhw4iLDwcfnPn5pBHRn9m2tTf/ZnFizL6M3EZ65fbPpzz+hWlwuwT1qldB7t27MSFc+exeeMmxH2Ig4trXd55yaqVq1DVuipMTMtDSUUZTZo1xbo1a+Hq6iqL4hWJwqrDPzlO/Pr1C76TJ6Frl67Q1NTk4rt16Yr9e/ch8GoApk2ZiqPHjqFtu3b5L2QhKaw+oZWVFbZt344TJ09i7759UFFRgZurq9g33TJlttM+vXpxcZntzMKFC9GkcWOcv3ABrVu3Rvt2ObczRa2w6u/WrVvYtm0bNm3aJNX6NWnSBLv37MHlK1eweMkS3Lt3D40aNuRuTiwpCvP6DJBxblxGC8rqahg0dAiOHznCO/do2qQJ9u7ahasXL2HpokUIuXcPDbw8uXrKHMSfOWc2+vfth/Onz8Dezg4NG3vluE0XpaI4t8vpvCQrSftxptOnT0NTQwNqqqpYsWIFLly8iHLlyuWjdIWvsOqvc+fOmD17Ntzd3KCspITKFhaoV68eJvr68uYryLnxr1+/MHnSJHTpym9jilth9avzukajoaEBZ2dnzJs7F+/evYNAIMCePXsQHByc47XBklqHJJ+k/l5URvjLeXl5ISQkRPSdcD09aGtr80JB0WBUhpSUFCQmJvLCn9q7bx9Kl9HiQlq66E6F7HdrMMZyvIMju0VLFmP/wQM4dugwbxS+aZOmaNe2LapXr45GDRvhzCl/AMDOjIuEoaGhWLl6NXZs3Zbjsk75++NqYABWLFtW4LIWlr1796K0pgYXMu/2+JM6zG2eN2/eYOToUdiza7fY3Q2ZFBUVcfTwEbyIfAGdcmWhVlodgYHX0LRJUygoKIil//nzJ/bt34++xfhkRVHVXyZLS0tEhIXjzu0gDB40CD69e+HJkycACl5/BV2/olLQupOUPmv8ihUrYFG5MqpaW0NFWRkjhg9Hr169eHVy8OBB7N27F3v27sW90FBs37EDS5cuxc6dO6Vat+Ii6zrMavGiRThw4ACOHD0qti9bWloiLDwct4OCMGjQIPTu9Xv7zG779u3o2rVrjseD4laYv/W2rVthY2OD2rVr8+KFQiHs7e0xb/582NnZYeDAgejXrx825vLx65JClsfCgti6bRuaNmkKIyMjLi40NBQrV63Cju3bC7ys4tqni6r+8tMWCzM68a28W2H0qNGoWbMmfCf6okXzFtiwcaNY+pLQFktSko/XJXHd9u7fh9I62lzIcRtE7uvqVKcOunftBtsatnBzdcWhfftRpXJlrF63DkDGNjh2LPbs2JF7f/DAQbyIjISOgT7Uymgh8Np1NG3cpET3Z4qyT9i0aVO0a9dOdF7SqBHO+J8GAOzc9bvfsmr1KtwJvoNTJ04iNOQeli5ZgiHDhuLy5ctSlbMwFXW/Or/5pqWloXOXLhAKhVi3di1vWv/+/dGoUSPY2Nigc+fOOHLoMC5fuYywsLDcC1tEZN0ndHJyQvfu3WFraws3NzccPHgQVapUwZrVqyXmt23bNjRpym+nM9sZ71atMGq0qJ2Z6OuL5i1aYKOEdqY4ybL+vn//jp49emDjpk1SX6zv1KkTmjdvDhsbG7Rs2RJnzp7FixcvcObMGanylVZRXp8BMs6N74Xizs1bGDxwIHz69OGde3Tq2BHNm2XUU4uWOHf6tKiezp4F8HtbHNi/P3r36gU7OzssX7oMllUssW3H9j+uB1krzHO7nM5LeGkk7MeZ6tevj7DwcNy8dQuNGzdG506dStxTerKuv8DAQMyfPx9r1q7FvdBQHDl6FGfOnMHcOXN48+X33DgtLQ1dMtqYtdnamJJC1n3X/Fyj2blrFxhjKG9iAlUVFaxZvRpdunaV2Bf8G+qQ5IEGowAAAQEBXAgMDBQLBVVK9qv4d/Lz88OsWbNkkpd3y5aok6XRzLzDJS4uDoaGhlx8/Md4sbvjJFmybCnmL1iAy+cvoEaNGrmmVVdXR3UbG0RGRQEAbty8ifj4eJhWqsilEQgEGDthPFasXoWXUdG4GhCA6OholClXlpdXu44d4ObqisArV/MutIx5e3ujTp063P851mH8R7G7IbIyMDAQu7sp/mM8N09oaCji4+PhUMuRmy4QCHD9+nWsWbsWKT9/QUFBAQ4ODogIC0dCQgJSU1Ohq6uLOs5OcHRwEFvmkSNHkJycjJ49ev5Z4WWgqOovk5KSEiwsLAAAjo6OCLl3DytXrcTGDaITt7zqz8DAAKmpqfj69StvVD3+YzxcXHJ+ZLwolCtXDgoKCmJ32MTHi9dDJgMDA4npS5UqhbJlRfuZrq4ujh8/jl+/fuHz588wMjLCJF9fVKz4e1+dOGECJmY8HQUA1atXx+tXr7BwwQL4+Phwr9QUP7bk/rsWtcKqw0xLlyyBn58fLl66JPEYmX37vHfvHlatXCl2AfvGjRt4/vw59h84UOAyFrY/qcOCSE5OxsGDByW2g4aGhrC2tubFWVlb49ixY1Ivt7DJ6lhYEK9evcLlK5dx7MhRXvyNmzdE7XEFMy5OIBBg7LhxWLFyJV7GxJa4Y2FR1V9+2uJy5cqhVKlSqFqVvy1aW1tJfGVuSWiLsyrsfVgaJbkt8W7REnVqZelTZ7wqL+5D9m0wHvr6evnOV15eHrUcHbn+cmhYmGgbzPIaJYFAgOs3bmDN+nVI+f5D1B+0t0dEyD1+f8a1LhztM/oz+rnsw878VzQVlaLuE2YlOi+pzt3J//PnT0yeMgXHjx5D8+bNAQA1atRAREQElixdKvEVnSVBUdVhQY4TaWlp6NipE2JfxuLq5St53m1tb28PRUVFREZGwt7ePte0hamw+4SZ5OXl4ZhlH8/q1atXuHL5Mo4c5bfTXDuTrc9jbWWV6+uXilJh1N/jx4/x8uVL3htSMgdDlBQV8fTZM5ibm//R+hoaGsLMzAxRxfw0T1Ffn5F4brx6NTauXy8xv8x6ioyK5P4HgKrW/KdVrK2t8Pr1mzzXr7AV9n6c23lJppz240zq6uqwsLCAhYUFnJycYFmlCrZt3QrfSZPyU8RCVVj1N2P6dHTv3h39Mp4mq169OpKSkjBo4EBMnjIF8vKiZxHyc26clpaGTp064WVsLC5fybuNKWqF1a/OzzUac3NzBAQGIikpCYmJiTA0NETnzp1RIUsaoOTXISEF4e7uLjGeMYbXr18XOD96MirDpEmTeO87fPPmzxt5DQ0NruGzsLBA1apVYWBggEtXft/xl5qaimvXr8Mll3ezAsDipUswZ948nD99Bo6OjrmmBUQdq6fPnsHQUHRhoUf37ngQFo6Ie6FcMDIywvixY3HhjOjOG98JE8TSAMDyJUuxfcvWP60GqeRYh5cvcWlEdXgt1zp0dnLGpUv8Oy0vXrwEF2fRK3saNmyIh/cfICIsnAuOjo7o1rUbIsLCxe5u0NLSgq6uLiIjI3Hv3j208m4ltsyt27fBu6U3dHV1pakCqRRV/eWEMYaUlFSx+Jzqz8HBAYqKirh06ff6vX//Ho8ePcpzWYVNSUkJDg4OuJxl3QDg8uXLOb5b2cnJSewO30sXL8LR0RGKioq8eBUVFRgbGyM9PR3Hjh2Dd5YTweTkZMjJ8w/TCgoK3AlixYoVYWBgwFu31NRUXL92Ldf3Phe1wqzDJYsXY+7cuTh77ly+jpFAxvaZKr59btu2DQ4ODiXmfeJZ/UkdFsShQ4eQkpKCbt27i01zqVuX+25ZpsgXL2BmZiaWtqSR1bGwILbv2A49PT3uQmumHt174EHEfV57Y2RkhPHjxuHCufMASt6xsKjqLz9tsZKSEmrVqoXnz/nb4osXkTAzFd8WS0JbnFVh78PSKMltidg2aJ25DV7h0qSmpuLajRtwccr/ujLGEHH/PtdfbtigAR6GhSEiJIQLjg4O6NalCyJCQnLvD4aGolXLlgAAh4wL/ln7/O/fv8ejx48LtH6yVJx9QtF5yVPuwmpaWhrS0tK4C2KZsvZtSqKiqsPM40TWfAHg0uXLvHwzB6IioyJx+eKlHAdksnr8+DHS0tJ4F96LQ2H3qzMxxnD//n0YSvgW8o7tkttprp3J1ud5ERkJ0xLS5ymM+rOyssL9Bw8QFh7OhZbe3tyTJeXLl//j9f38+TPevHkDg2Le7orz+gyQeW6c86sKM+vJ0EBUTxUqVICRkRGev3jOS/fiRSTMzEzztczCVNj7cW7nJZly2o9zktdvUJQKq/6Sk5Mltq+MMe4pKkmynxtnDqJERUbi4qX8tTFFrbD71bldo8mkrq4OQ0NDfP36FRcvXOCl+RvqkOQTPRnFeffuHYKCgnDt2jUunDhxAhUrVkRgYGDBXmnMiEQJCQkMAEv4/IWxtHSpw4L585mWlhY7dvgIexgewbp07swMDQ1Z4pevXJoe3boz3wkTuP8X+vkxJSUlduTgIfb+zX9c+P71G5dm7OjRLPDKFRbzIpLduXmLtWjenGloaLCXUdE5rouZmRlbvmRprusLgB0/clS6cguEMg0L/PxEdXjkKHt4/wHr0rmLqA6/JXBpenTvwXwnTuT+v3XjJlNQUGAL/PzY08dP2AI/P1aqVCl253ZQjsvx8PBgI0eM4MUdOnCQBVy5yqIjo9iJY8eZmZkZa9umrdi8kc9fMDk5OXbuzFmZl7+k1t8kX192PfAai42OYQ8i7rPJkyYxeXl5dvH8hQLV36CBA5mJiQm7fPESC7sXyho0aMBsbW1ZemqaVOUWCKUP+/bvZ4qKimzzli3s0ePHbOTIkUxdXZ3FxMYygVDIJk6cyLr36MGlj4qOZmpqamzUqFHs0ePHbPOWLUxRUZEdOnyYS3M7KIgdPnKERUZFscBr11iDBg1YxYoV2ecvX7g0PX18mLGxMTvl78+iY2LYkaNHWbly5dj48eO5NH4Zv+uRo0fZ/QcPWOcuot/1W0KCTMouq1AYdbhgwQKmpKTEDh0+zN6+e8eFhMRELo2vry8LvHaNRcfEsIj799mkjO3z/IULvPX7+u0bU1NTY2vXrSv2upJVHQqEQhYaFsZCw8KYg4MD69K1KwsNC2MPHz0Sy9vV1ZV17NRJ4nLvBAezUqVKsblz57LnL16w3Xv2MDU1NbZr924uzcdPn1hoWBjzP32aAWD79u9noWFh7O27d1KXm5WAY2HKz18sPDSMhYeGMUNDQzZu7FgWHhrGIp+/4B9v0tKZqakpmzhhQr7WxczMjC1ftqxIjoV/Q/1lDZLa4mNHjjJFRUW2acNGFvn8BVu9ahVTUFBgN65d56UrjLa4pO7DP3/94tIYGhqysWPHstCwMPb8xQsuTUJiIpcGAFu6dCkLDQtjsS9fcmkKuy1hKakyCwvmzRNtg4cOsYdhYaxLp06ibfDTZy5Nj27dmO/48dz/M6dNY+f9T7Pop89Y+N27rLePDytVqhQLvnkrx+V4uLuzkcOG8+IO7dvHAi5eYtFPn7ETh4+I+jOtW/PSDOo/QLQPnzvPwoKDWYN69ZltjRosPfmndGUv5v04P33CsWPGsMCrASwmKprduR3EWjRvIToviYnl7dvVqlVjAVeuspioaLZ96zamoqLC1q1Zy6V5//YdCw8NY5s3bmIA2PXAayw8NIx9/vip2I+BhV2HB/aJjhNbN29hTx49ZqMyjhOZdZiWksq8W3ozExMTFhEWzt6/fceFlJ+/GBMIWdSLSDZr5kwWEnyXxUbHsDP+p5mVlRWzs7OTqi0prv5MfvqEM2bMYGfPnWORUVEsNCyM9erVi5UqVYoF3bnDW3ZauqidnjBhgsR1O3JU1M5s2LiRPX/xgq3KaGeuXb8us/KXxPrLHnr6+DDvVq14cXm1JQmJiWzMmDHs5q1bLDomhl25epU5OzszY2Nj2bUlMrguU9jXZyZNnMiuBwSw2Mgo9iAsnE329RWdG587x1haOvv+9RsbO3o0u339BouNjGIBly8zZycnZmxszFv28iVLmaamJjt84CCLfPqMTZ08mamoqLCoZ8+lKvffsB3mdl6S136c+P078/X1Zbdu32YxsbEs5N491qdPH6asrMwePHxY7PtvYdbf9OnTmYaGBtu7bx+Lio5m5y9cYObm5qxDx45cmrzOjVNSU1lLb1EbExYezjvH/vnrV7HXmzR1KBDm3a/OzzWas+fOsTNnz3J1bGtry2rXrs1+paQUSR1+/fZNdK06IaE4L5n/87gxgas3GLsbLlVIuHrjr//N5s6dyxQUFJi8vHyOQU5OLt/50WBUDmQ9GCVMTWMzpk1jBgYGTFlZmbm7ubGH4RG8NB7u7synR0/eoBEAsTBj2jQuTaeOHZmhoSFTVFRkRkZGrG2bNuzx/Qe5rsvfOhglTBewGdOn/65Dd3f28P4DXhoPDw/m09OHF3f44CFmaWnJFBUVmZWVFTt6+Eiuy5F0AWzlihXMxMSEKSoqMlNTUzZ1yhTuhC9rmOTry0xMTJigEMpfUuuvT+/ezMzMjCkpKTFdXV3WsGFD3kBUfuvvZ1IyGzZ0KNPR0WGqqqqsRfMW7PXLV1KXW1adnTVr1nDltLe3ZwGBgdy0nj4+zMPDg5f+akAAs7OzY0pKSqxChQpigxxXAwKYtbU1U1ZWZmXLlmXde/Rgb/77j5fmW0ICGzFiBDM1NWUqKiqsUqVKbPLkybxOTLpAwKZn+13vP3ggs3LLMsi6DnM6Rk6fPp1L01vC9pl9IEogFLL1GzYwVVVV9uXr12KvJ1nWoaT6MTMz46V5+uwZAyCxXjLDyVOnmI2NDVNWVmZWVlZsw8aNvOlbt23L87f408BKwLEwNjpGYvk8PDx48104d54BYM+fPsvXukgajCqsY+HfUH/Z88jeFjOBkG3dvIVZWFgwFRUVZmtry04cOy6WpjDa4pK6D0fH5Fy3mWmuXL0qMU1PHx8uTWG3JbIcjBL+SmEzpk7l96nDwsQGknx69OD+HzVc1JZmtgVejTzZ7WvXc12OpMGolUuX8fszkyaxlO8/eGl+JiSyYYOH/N6HmzVjr6OipS97Me/HTJB3n7BTx07ZzkvasscPH/HSvH/7jvXy6cWMjIyYiooKs7S0ZEuXLGHCdAGXZsb06RK32e1btxX7MbCw65AJhGxttuPEtYDAPI+nAFjAlauMCYTs9ctXzN3dneno6DAlJSVmbm7ORgwfLvVgXnH2Z/LqE44cOZK3j3t6ebGbt26JLffceVE7/fTZsxzXbfMWfjtz7PhxmZa9JNZf9iBpMCqvtuRHUhLz9PJiurq63DGyp48Pe/nqlczKLcvBqMK6PtOnV7ZzjwYNuIEolpbOkhO/My9PT149+fToyV7HxIqto9+8eczExISpqakxZycndiMgUOpyl/TtMD/nJbntx0nJyax1mzbMyMiIKSkpMUNDQ9bS25vdCQ4u9v22sOsvJTWVzZgxg5mbmzMVFRVWvnx5NnjwYN5ASl7nxjn1KwGwK1evFnudSVuHefWr83ONZv+BA6xSpUpMSUmJGRgYsCFDhvCuIRR2HdJgVNGgwSg+Q0NDtnPnTvblyxeWkJDAhaioKCYnJ8e+fftWoPLJMZbL85r/xxITE6GlpYWEz1/o3Z5/Sp7eAkmKn7BkfBeeEPKH5KmXQkoAakukI5+WXtyr8PcrRZ/6JcWLjoOkuMkL/o1XHRUnoQJdoyHkb5aYmAjtMmWQkJBA16oLETcmcOUaNNVLS5dX0g9oNfT4q3+zUqVKIS4uDuXKlePFx8fHw9DQEAKBoED5/d+0RDt27ICcHPWgCSGEEEIIIYQQQgghhBCSA/pmFACgZ8+eUFVVFYtXVVWFj49PgfP7v7nF7uXLl/Dw8Cju1SCEEEIIIYQQQgghhBBCCCnRtm3bJjFeQ0Mjx2m5+b8ZjLpw4QJWrlxZ3KtBCCGEEEIIIYQQQgghhJCSShZPNv0DT0bVr18/1+kBAQH49u0b2rRpg4CAgDzz+78ZjAoKCiruVSCEEEIIIYQQQgghhBBCSEkmZDIYjPr7P4JtZ2eXZxpFRcV8pQP+jwajCCGEEEIIIYQQQgghhBBCSN6WLVuWZxp1dfV8pQNoMIoQQgghhBBCCCGEEEIIIUREyKR/sukfeDIqU1RUFJ48eQI5OTlYWVmhcuXKf5QPDUYRQgghhBBCCCGEEEIIIYQA9M2oDAkJCejVqxdOnTqFUqVEQ0lpaWlo2bIldu7ciTJlyhQoP/lCWEdCCCGEEEIIIYQQQgghhJC/T+ZglLThLzdy5EhERUXh1q1b+PXrF379+oWgoCBER0djxIgRBc6PnowihBBCCCGEEEIIIYQQQgghnFOnTsHf3x9OTk5cXJ06dbBp0ya0aNGiwPnRYBQhhBBCCCGEEEIIIYQQQggAJhCCCaR7skna+UuC1NRUlC5dWixeQ0MDKSkpBc6PXtNHCCGEEEIIIYQQQgghhBAC0Gv6Mnh4eMDX1xefP3/m4r58+YIJEybAw8OjwPnRk1F5SU0VBVJwSkrFvQZ/v/T04l6Dv578p895JyI5M9Av7jX4+31LKO41+Kt9Vlcv7lX466krUnePFC8l2gallpiSVtyr8NdTkJcr7lX4qwmErLhX4a9XRkmxuFfhr5ZG+7DUFIp7Bcj/PXlqSqRC9UeKw6pVq9C8eXOYmpqiSpUqkJOTw/Pnz2FsbIyzZ88WOD86MySEEEIIIYQQQgghhBBCCAEAJoMnm9jf/2SUubk5Hj9+jFOnTuHJkydgjMHa2hqtW7eGgkLBb3OgwShCCCGEEEIIIYQQQgghhBAAEDJRkDaPf4CCggLatGmDNm3aSJ0XDUYRQgghhBBCCCGEEEIIIYQQzs6dO3Od7uPjU6D8aDCKEEIIIYQQQgghhBBCCCEEABMKwaR8TZ+085cEo0eP5v2flpaG5ORklCpVCmpqajQYRQghhBBCCCGEEEIIIYQQ8kcEQlGQNo+/3JcvX8TiXr58iYEDB2Ls2LEFzk9eFitFCCGEEEIIIYQQQgghhBBC/l0VKlTAggULMGrUqALPS09GEUIIIYQQQgghhBBCCCGEAICQAdK+Zk/IZLMuJZCcnBzevHlT4PloMIoQQgghhBBCCCGEEEIIIQT0zahMJ0+e5P3PGMP79++xZs0auLq6Fjg/GowihBBCCCGEEEIIIYQQQggBRE9FSf1k1N8/GNW2bVve/3JyctDT00PDhg2xZMmSAudHg1GEEEIIIYQQQgghhBBCCCGEIxAIZJqfvExzI4QQQgghhBBCCCGEEEII+VsJmWxCIZk3bx5cXFygpqaGMmXKSEzz+vVrtGzZEurq6ihXrhxGjBiB1NTUQlun/KDBqCJy7OQJNPb2RjnT8pBTV0PE/fv5mu/oiROo6mAPZe0yqOpgj+OnTuaY1m/xYsipq2HU+PFcXFpaGiZOnYrqtWpBXbccjMwroWe/fnj3/h1v3oHDh8HcphpUy+pA18wUrTp2wLPnz/+ssIWEMYaZs2fByLQ8VDVKo17DBnj8+HGu8xw7fhyOdeqgTLmyUNfSRE0HB+zes4eXZubsWZBTLMULBibGYnk9ffoU3m1aQ6usDjS0y8Cprgtev34NAPjy5QuGjxwJy2pVoaapAdNKFTFi1CgkJCTIrgKkxBjDzLlzYFSxIlS1y6CelyceP3mS6zz1vDwhp6oiFpq3ac2lWb9pE2rUcoSmni409XTh7OGBcxcu8PL58OEDevXvB6OKFaGmo40m3i0RGRXFS7Np6xbU8/KEpp4u5FRV8O3bN1kVXSbS0tIwcf48VG/UEOpVLGDkYI+eo0bgXVxcnvPNXrEc5nVdoGJRCbZejXA+IEAs3dv379F9xHCUrV4NapXNUbOxJ0IfPOCm/0hKwrCpU2BSywGqFuawru+B9bt28vKIfvkSbfr1ha5tdWhaW6Lj4IH48PGjbCpABopzH/7x4weGjRgBkwpmUNUoDevqNli/YQMvTb2GDcTy6dytq2wKLwNpaWmYOHsmqru7Qt2sPIxsqqLn0MF4F/c+z3mP+p9C1brOUDY2RNW6zjh+5jRv+vcf3zFqymSY2dlCtbwxXJo1QUh4GC+NnG5ZiWHxmtVcmpSUFAz3nYhylpWhblYe3t274b93b2VSfmndvnkDXdu1RbVKFVFOTQVnT53K97zBQbehr6GOenVqi03bsGY16thWh4lOGdSobI4pE8bj169f3PQVixehkWtdmOmVg5VZefTo2AGRL17kuKwxw4ainJoKNmSp15Jk4/r1sKpsgTKl1eFSuzZu3ryRY9rr1wKhqlhKLDx/9oxLk5aWhvlz56CqZRWUKa2O2vb2uHjhfI55Ll64AKqKpTBuzBixac+ePkX7Nq2hX1YHutpl4J6lnS4piqv+8lruiePH0bJZU5gY6ENVsRTuR0TIrMyytn7dOphXqgQ1VVXUcnTEjRs51+H79+/RrVs3WFtZoZSCAkaPGiWWJi0tDXNmz0ZlCwuoqarCrmZNnD/Pr8P169ejpq0tymhpoYyWFuq6uODcuXO8NL1794aCvDwvuDg7y6TMsnLr5g10btcG1hUrQFtVGWdyOa8AAP8TJ9CmeVNYlDeGqV45eHm448qli7w0O7dtRdOGDVDBUB8VDPXRulkThIaE8NLUsKwCbVVlsTBu1Ajestq1bA5zEyNoqyrjYT7PlYrarRs30LFNa1SpYAZNZSWcPpl7HQLAzevX4e5UB7qaGqhhaYmtmzaJpVm7ahXsbapBT0sT1uaV4DtuHK8tAYB3b9+iXy8fmBkaQL+MFurWckR4mKitTktLw/TJk+BkbwcD7TKoUsEMA/r0xvt378SWVdwKuh0G3bqFxvXroZKxIQy1tVDbtjrWrVoplu7U8eNwsrOFvpYGnOxsc/1tli1eBG1VZUwaN1Zs2vNnT9GlfVuY6uuivG5ZeLq74U0Ja0uAjH71rJkwMjGGqroa6jWon2e/+vHjx2jXvj0qVKoIOQV5rFi5QizN9evX0dLbG0YmxpBTkMeJEyfE0hw7dgyNmzRBOT1dyCnII0JCm1GvQX3IKcjzQucuXf6wtLK3Yf16VDE3h4aaGurUqoWbubQlx48dQ1MvLxjp66NsmTJwq1sXF7Od72Z18MABKCkooF2bNmLT3r59C58ePWCgqwut0qXhaG+PsNBQbvqPHz8wcvhwVDQ1haa6OqpXq4aN69dLV9hCUpD2GACuXbuGWo6OUFNVhYW5OTZkOxc7duwYateqBR1tbWiULg17Ozvs3r07x/wW+PlBQV5erG1njGHWzJkwMTaGupoaGtTPe98oDrKuPwD49u0bhg0dCmMjI6ipqqJa1ao4e/YsN32Bnx/q1K4NLU1NGOjro02bNnie5bpfWloafCdOhG2NGtAoXRomxsbw8fHBuxLYlgCFdxwEgHXr16GieSWoqKnCoVbuv8/AQQNzzCsoKAgNGjWEukZplNHRRr0G9fHz58+CFJMUIyYUggmkDIX4mr7U1FR06NABgwcPljhdIBCgefPmSEpKws2bN3HgwAEcPXoUY8eK93+K0v/NYNSOHTtyHCUsCklJyajr7IQFs2fne56g4GB06tkDPTp3wf07wejRuQs69uiB4JC7YmlDQu9h0/ZtqGFTnRefnJyMsIgITPP1Rdit2zi2/wBeREXCu0MHXjoHOzts37ART8PCceHESTDG4OXdUuaP4klj0ZLFWLZiBdasXIWQoDswMDCAZ9Mm+P79e47z6OhoY8qkSQi6cRMPwsLR28cHvfv1xYWL/M5jtWrV8P7Nf1x4GB7Bmx4dHQ3Xeh6wsrRE4OUruB8ahmlTpkBFRQUA8O7dO7x7/w5LFi7Ew/AI7Ni6FecvXkDfAf1lXg9/atHSpVi2ahXWLF+OkJu3YKBvAM/mzXOtv2MHDuJ97EsuPAoNg4KCAjpkeV+oibExFsyZi3u3buPerdtoUM8DrTq05wa6GGNo3bEjYmJjcfLwYYTfCYaZqSkaNWuKpKQkLp/k5J9o4umFyeMnFF4lSCH550+EPXqIaSNHIuzceRzbvBkvYmLg3ad3rvNNXbwIG/fsweo5c/DkSgAGde+BNv37IfzRIy7N12/fULdtayiWKoVzu/bgydVALJ02HWU0Nbk0o2fNxPnAQOxZtRpPAwIxul9/DJ8+DSczToSSkpPh1a0r5OTkcPXAIdw6dgKpqWlo2bsXhCXkHbXFuQ+PHjsW5y9ewJ6dO/H04SOMHjESw0eNxMlsAxL9+/bj5bNxXck5+Uv++RNhDx5g2phxCLtyFcd27MSL6Gh4d++W63xBISHo1L8fenToiPuB19CjQ0d07NcXwaH3uDT9Ro3CpWuB2L12PR5euwGvevXRqF1bvM1y48L7R094YdvKVZCTk0O7Fi25NKOmTsbxs2dwYNNm3PQ/gx9JP9Cia9cS0ZYkJyXDpnp1LFy2vEDzJSYkYGi/vnCvX19s2uED+zFn2lSMnzwFt8MjsHL9Bpw4cgRzpk/j0ty+cQN9Bw7EhcDrOOJ/Bunp6ejQsjnv+Jfp7KlTCAsJgYGhUcELWAQOHzqE8WPHYKLvJNwJuQcXV1e0btEizwGfB4+fIPbNf1ywqFyZmzZz+jRs2bwZy1asQPiDh+g3YAA6tW+PiPBwsXzuhYRg65YtqF69hti0mOhoNKzngSqWlrhw+QruhoZhUpZ2uiQorvrLz3KTk5Lg7OKCOfPmy77gMnTw4EGMHj0akyZPRmhYGFxdXdG8WbMc6zAlJQW65cph0uTJsLW1lZhm2tSp2LRpE1auWoVHjx9jwMCBaNe2LcKz1KGJiQnm+/nhbkgI7oaEoH79+mjTurXYBY/GTZrg7bt3XDh95ozsCi8DyUlJsKleA4uWr8hX+ts3b6Beg4Y4dPwkAm4HwdXDA13atcWDLBeeb16/jnYdO8L//EVcDLwGk/KmaNuyOd69/X0jwtWbt/As9hUXjp8RXRhr3bYdlyYpOQl1nF0wY85cmZS1sCQlJcGmRg0sWbEiX+lfxsaifStvONd1xc3guxg7cSImjBmNk8ePcWkO7t+HmVOnwHfqVITcf4A1Gzbi2JHDmDl1Kpfm69ev8KpfD4qKijh6yh93I+5j3sJF0NLSAiA657sfHoEJkyfjxp1g7Dl4CFGRkejcrm32VSp2Bd0O1dXV0X/QYJy5dAXBEfcx1ncS5s2aiR1bt3Bp7t65gz49uqFj1264cTcEHbt2Q+/uXXHvrvh5c9i9e9i5dQuqVa8uNi02JhpNGzZA5SqWOH3hEm7cDcG4SZNKVFuSadHiRVi2fDnWrFqNkOC7onO7xl659quTk5NRqVJFLJjvBwMDA4lpkpKSYGtbA2tW5XxTTFJSEurWdcGC+X65rmP/fv3w/u07LmyUcPG8OBw6eBBjR4+G76RJuBsaCldXV7Rs3jzHtuTmjRto6OmJU6dP405ICDzq1UObVq147USmV69ewXfCBLi6uYlN+/r1K+q5uUFRURH+Z87g/qNHWLR4MbSyXKcaN2YMLl64gB27duHB48cYOXIkRo0ciVP5GPguSgVtj2NjY9GieXO4uroiNCwMvpMmYdTIkTh69CiXRkdHB5MmT8at27cRcf8+evXqhb59+uCChIG/kJAQbN68GTVqiPcJFy9ahOXLl2PV6tUIvnsX+gYGaOyV+75R1Aqj/lJTU9HYywsvX73CocOH8fTZM2zctAnGxr9v0rx2/ToGDxmC20FBuHDxItLT09GkcWPuvCQ5ORlh4eGYMnUq7oWG4sjRo4h88QKtW7Uq3Ar5Q4V1HDx48CBGjR6NKZMmIzw0DG6urmjaXPLvc+LECQTfvQsjI/Hzt6CgIDRp1hRenp64eycYIcF3MWzIUMjL/99ciieFbNasWRg9ejSqS+jTAMDFixfx5MkT7NmzB3Z2dmjUqBGWLl2KzZs3IzExsYjXNgv2f2L79u1MS0sr3+kTEhIYAJbwPo6xpGSZhdgnTxkAFn47KM+0Hdu1Y008PXlxjRs1Yp3bd+DFff8QzypbWLBL/qeZh5sbGzlkaK753r1+nQFgr549zzHN/TvBDACLevjoz8ubli6zIExNYwYGBmzB/Plc3K8fSUxLS4ttWLuuQHnZ1bRjUydP5v6fMW0as61hm+s8nTp2ZN27divQcg7tP8CUlJRY2s9ff172n79kEoTJP0X1N2cuF/frW4Ko/lavznc+yxctZhoaGuzHp8+5ptPW1mZb1q9n7Ocv9vzBQwaAPQoN46an/0hiOjo6bPO6dWLzBly4wACwr+/jZFP+N28LLdz1PyPal+7czTGNoZ4+WzNnHi+ulVdj1q1NW+7/iUOGMtdatXNdVrUqlmz22HG8OPvq1dnUESMZe/OWXdizj8nLy7OEJ8+46V8ePmYA2KV9+/+8nP/IPlytWjU2e+ZMXpy9nT0vHw93dzZy+AiZHrtYWjpjHz8XWrh78ZJoGwy/n2Oajq1asyYNGvLiGtdvwDq3acvYx88s+fV/TEFBgZ3eu5+XxraaDZsyekyO+bZq2pQ1cHPj/v8WHcsUFRXZgU1buLi3Dx8xeXl5dv7g4T8u46fkXzIPANiuA4fylbZ1+w5s7ERfNn7yFGZTvQZvWt+Bg5hbvXq8uMEjRjInF5cc83v26g0DwE5dvMSLfxgZzQyNjNnNe2GsvKkpm7tosczK+zMtXSbBsVYt1n/AQF6cpZUVGzdhgsT0Fy5fZgDY+4+fcszTwNCQLV+5ihfXwtubde7SlRf38es3ZlG5Mjtz/jxzc3dnQ4eP4E1v37Ej69K1m8zKWhihuOqvIMt9FhnFALA7IfdkWnaBUCiTULt2bTZw4EBenJWVFZs4cWKe83p4eLARI0aIxRsaGrLVq1fz4rxbtWJdu3XLNT9tbW22afNm7v+ePj7Mu1UrmZU1e/j6M0WmAQDbc/BQgeezsrZmk6ZNz3H6px/JTENDg63fsjXHNIOGDmMVK1ViX5J/iU27/+w5A8Cu37kr8zInpqTKNABg+w4dzjXNqLFjWRVLS15cn379Wa06dbj/+w8azDzq1eelGTZyFHOuW5f7f/S4cbz/8xMCbt1mANjjyCiZlFfWv4c022EL71asY5eu3P9t2rVnDb28eGkaenqyth068uLefPzMzC0s2PEzZ1ldN3c2aOgw3vQ27Tvw8pV1YAKhTIIwXSDqV/v5cXG/kn+K+tXr1ucrDzMzM7Z82bJc0wBgx48ey3F6bHSM6NpGaJjYNA8PDzZyxAiZlZkJhCxVIJBJqFW7NhswcCAvztLKio2fODHfeVhXrcqmz5zJi/uZmspc6tZlGzdtYj169mQtvb1508dNmMDqurrmmm/VatXYjFmzeHF29vZs0pQpMil7cbXH48ePZ1ZWVry4AQMGMCcnp1yXY2dnx6ZMmcKLS0hMZJUrV2YXLl4Ua9vTBaJ9w8/Pj4tL/inaN9atXy/ztrkk1d/adetYpUqV2K+UlHyvR9yHDwwACwgMzDHNnWDRtcHYly9lUnZJ+/afhMI8DtauXZsNGjiQF2dlZcV8J07kxf33+g0zNjZmjx48lJhXnTp12NQpU2R6HEz4+k10rTohoZCunhPGfo8JfN6wi6XtPCJV+LxhFwPA3rx5wxISErjw69cvma1vTmMe06ZNYzVq1ODFffnyhQFgV69eldnyC4qGY0uwoOBgeDVsxItr3MgTt4Pv8OKGjh6N5o2boFGDBvnKNyEhEXJyciiTcSdddklJSdi+ezcqVqiA8iYmf7byMhYbG4u4uDh4NfLk4pSVleHh7o7bQUH5yoMxhitXr+D5i+dwz3anUmRUJIxMy6NiZQt07tYVMTEx3DShUIgzZ8+iSpXKaNysKfSMDFHHxRkn8rg7KSEhAZqamihVqlQBSlo4Yl9m1t/v7UlZWRkebm64fedOLnPybd25A507dIC6urrE6QKBAAcOHUJSUhKc6zgBEN2VDAAqKspcOgUFBSgpKeHm7dt/UpwSI+F7xr6U5Qmm7FJSU3hlBwBVFRXczPKE46lLF+FYowY6DBoAvZo1YNfEC5v37eXN41q7Fk5duoS379+DMYaA27fwIiYGjT3qccuRk5ODspISN4+KsjLk5eVxM9vrcopDce7DAODqUhen/E/j7du3ovoLDMCLyBdo7OnFS7d3/z6UM9BHNdsaGDdhfIm6g06ShMTM43nO22DQvRB4ZXuqp3GDBridsQ2mC9IhEAjEt1NVFdwMDpaY54f4eJy5dAl9u3Xn4kLvRyAtLY23LCMDQ9hYW3PL+tvs27UTL2NiMH7KVInT67i44H54OMIy9rGXsTG4fOE8PJs0zTHPzDuQtLV1uDihUIjB/fpg2OjRsKpaVYYlkJ3U1FSEh4WhoacnL75hI0/cyWMfdqrliIrlTdDUyxPXAvmvKU1NSRG741xVVRW3b9/ixY0aPhxNmjZFg2z9IkBUf+fPnkXlKpXRsllTmBoZws3FuUTdRVxc9SfNckua1NRUhIaGwtOLf9z29PREkBRlSUlJgbKEOrx186bE9AKBAAcOHBD1dbK9hu9aYCAM9PVhZWmJAf37Iz4+/o/XqyQSCoX4/v0Hymhr55gmOTkZaWlpOaZJTU3FoQP70c2nF+Tk5AprVUuMu8HBaNAo2/7n5Ynw0FCkpaUBAJzruiAiPAz3MtqS2JgYXDx/Do2b/m5Lzp4+DTt7B/Ts0hmVTIzhWrsWdmzdmuuyExMSICcnx3vq4l/wICICd4PvoG6WvuDd4GCx9qFBI0/czXaeM37USHg1aYp6DRqK5SsUCnHp/DlYVK6Mdi2bo7KpCRq5ueb5GsHiwPWrs/RjRf1qj3z3q4vC3n37UE5PF9Wq22Dc+HElol+dmpqKsNBQNMrWLnp65r9dFAqF+PH9O3R0dHjxc+fMQbly5dC7b1+J853294eDgwM6d+wIYwMD1HJwwNbNm3lp6tati9P+/tw5S2BAACJfvIBXtravOP1Je3znzh14Zqtzr8aNce/ePe5YmBVjDFeuXMHz58/h5u7OmzZs2DA0a9YMjRqJ9wkz942s66asrAx3Dw+p+gqyVFj15+/vDydnZwwbOhSGBgaoUb06/ObPz/UNFZmflci+LWdPIycnV6xvmpKksI6Dmb+PV7brBF6enrx8hUIhevj0xPhx41CtWjWxfOLj4xEcHAw9PT24uNaFvqEBPOrXw80c+pekhBIKZRMAlC9fHlpaWlzw88v96WJZiIuLg76+Pi9OW1sbSkpKiMvjkyOFqUQORp0/fx6urq4oU6YMypYtixYtWiA6OhoA8PLlS8jJyeHYsWOoX78+1NTUYGtrK3bQ3rFjB0xNTaGmpoY2bdrg8+fPuS4zJSUFiYmJvFDc4j58gL6eHi9OX08PcR8+cP8fOHwYYRER8Mvn6/9+/foF3+nT0LVjJ2hmu4C+btNGlNbTRWk9XZy/fAmX/E9DKcuF7eKUuZNk34n09fQR9yH3HSghIQGly2hBSU0Vzb29sXrFSnhmOSmsU7s2dm3fgQtnzmLzhg2Ii4uDi7sbt83Ex8fjx48fWLBoEZp4NcbFs+fQpnVrtO3QHteuX5O4zM+fP2PO/HkY2L9kvKYvLk60zeS1PeXmbkgIHj1+jH69xF9L9/DRI5QuVxbKWpoYNGI4jh88hKrW1gAAK0tLmJmaYtK06fj69StSU1OxYPFixMXF4X0xHvyk9evXL/j6+aFr6zbQ1NDIMV1jj3pYtnkTImNjRCe516/j5MULeJ/lAlXM69dYv2c3KleoiAt79mFQ9x4YMX06dh05zKVZNWsOqlapDJPajlCqVAFNenTHunnz4Vpb9A0bJ3sHqKupYaLfPCT//Imk5GSMnzcXQqEQ7+Pz9xsXpuLchwFg1YoVqGptDZMKZlBSU0WT5s2xbvUauLq6cmm6demK/Xv2IPDyFUybPAVHjx9H2w7tZVH8QvHr1y/4zpmNru3aQVMj58GouPh46Ovq8uL0dXURl7ENapTWgHOtWpizdCnexb2HQCDAnsOHEBwaivc5/DY7Dx6ARunSaNu8BW85SkpK0M52opJ1WX+T6KgozJk+DRu278jxpoK2HTpi0vQZaN6oAQw0S8OxWlW4untg5LjxEtMzxjBt4gQ4ubjAOstJy6qlS1CqVCkMGDK0UMoiC58+fYJAIIBe9nZEXw8fcmhHDAwMsXb9Buw/eAj7Dx1GlSqWaOrlhZs3rnNpGnl5YdXKFYiKjIRQKMSVy5dw+tQpxL3//S20QwcPIiI8PMdXyGW200sWLYKnV2P4nz0H79at0blDe9zIoZ0uasVVf3+y3JIqsyxi7Yi+vlQnU16NG2PF8uWIzKjDS5cu4dTJk3j/nv89vocPH0JTQwOqKioYMngwjh47hqpZBo+bNGmC3Xv24PKVK1i8ZAnu3buHRg0bcjfl/AvWrFiO5OQktGmXc9s4a9oUGBoZSbzYDwBnTp1Cwrdv6Nq9R2GtZonyIS4Oevr8/U9PTx/p6en4/OkTAKB9x06YMmMmGtevBx11NdhaW8HNox7GZHl19cvYWGzdtBHmFhY4fvo0+vQfgAljRmPfHsnfU/n16xdmTp2CDp07i53z/a2qmVeCvpYG6td1Rr+Bg9Czdx9uWvyHOOjq8Y8Nunr6iM/Sjzl66BDuR4Rjeg6vgvyY0ZasWLIYDT29cMz/DJp7t0KPzp1wK8txtyTIsV+tr1esF5ey6talK/bv3YfAqwGYNmUqjh47hrbt2uU9YyHLqS3RK0BbsnzZMiQlJaF9lk8f3L51Czu2bcMGCd+EyxQbE4ONGzbAonJlnD53DgMGDMDoUaOwe9eu33mvXAlra2tUNDWFuooKWjRrhlVr1qBulnOW4vYn7bGkC6L6+qJj4aeMYyGQcUOvhgZUlJXRskULrFy1ijcIc+DAAYSHhWF+Dhdxcz7nLDn7RmHVX2xMDI4eOQKBQIDTZ85g8pQpWLZsGebPmycxT8YYxo4dC1dXV9jY2EhM8+vXL0yeNAldunYtcW1JYR0H8/v7LFy0EKUUSmHE8BHZswAA7ubYmbNmoX/ffjh/9hzs7ezQ0LMRIiMj/3j9yN/rzZs3SEhI4MKkSZMkpps5cybk5ORyDffu3ZM4rySSbv5ijBXrTWHF/8iGBElJSRgzZgyqV6+OpKQkTJ8+HW3atOF9GHPKlClYsmQJKleujClTpqBLly6IiopCqVKlEBwcjD59+mD+/Plo27Ytzp8/jxkzZuS6TD8/P8yaNUsm67/3wAEMHDGc+//c8RNwq1v3j/LKvnFk3WDe/PcfRo4fj4unTuXrPdZpaWno7NMTQqEQ6yS857xbp87wbNAQ7+PisGTlCnTs0R23rlwtlndk7923DwOH/P4A25mM77rkVh850dDQQMS9UPz48QNXAq5izPhxqFSpIuplPFHSNMsd7NVRHc5OzjC3rIKdu3ZhzOjR3Pd2Wnl7cx/HrFmzJm4HBWHDpk3wcPfgLS8xMRHNvVuiqrU1Zkyb/kfll9be/fsxcPgw7v8zx48D+LP6y7R15w7YVKuG2rVqiU2zrFIFEcF38e3bNxw9cRw+/fvh2sVLqGptLXq3/f4D6Dt4EHSMDKGgoIBGDRqgaePGUpSw8O09fgwDfSdy/5/btQdudeoAyNiXhg6BkAmxLo/va6ycNRv9J4yHVT0PyMnJwdzMDL07dsL2Qwe5NEKhEI41amC+r6gxsrOxweMXL7B+9y70bC86yVm1bRvuhIXh1LbtMDMxwfXgYAyZMhmGenpo5OYO3bJlcXj9RgyePAmrtm2DvLw8urRqBfvq1aEgryDr6slTSdqHAWDVmtW4czcYp44fh5mpGa7fuIEhw4fB0NAAjTLupO3frx+Xj42NDSpbWMDRqQ7CwsJgb2//55Xxh/YeOYyBWT4see7AQbhl3IWflpaGzgP6QShkWLdocZ555VXvu9euR5+RI2Bc3QYKCgqwr1EDXdu1Q9iDBxLz27ZvL7q1a5+v9qG4Ozp/QiAQYGAvH0yYMo33fZ7sbl6/huULF2LRipVwqFUbsdHRmDx+LPQNDDBu0mSx9BNHj8KTRw9x5vJVLi4iLAyb1q7FldtBf0U9FWQfrmJpiSqWltz/Ts7O+O+/N1ixbBlc3UR3uS5ZthxDBg2ErU01yMnJoZK5OXr69MKunTsAiDrt48eMhv/Zczlub5ntdAtvb4zIaKdta9ZEcFAQNm/aBLds7XRxKur6+5PllnSyLsuKFSswYMAAVLW2FrXT5ubo1asXduzYwUtnaWmJsPBwfPv2DceOHkXvXr0QEBjIDUh16tSJS2tjYwNHR0dUrFABZ86cQdu2Je+7PQV15OBBLJw3F3sPH4FutsHNTCuXLsHRQ4fgf+FSjvvrnp3b0ahxYxhK+LbCv0rSNps1/sa1a1iycAGWrVoNx9q1EBMdjYljx2LhfANMnDwFgOg4Z+fgwH1Ty7amHZ4+eYKtmzaJDeylpaWhd/duEAqFWJbLd3/+NmevXMGPH0m4dzcYs6ZNRcVK5mifZb/L7djw35s3mDR+LI76n8mzLWnaoiWGjBgJAKhua4u7wUHYtnkz6rq5S5yvKOzduxcDBw/i/j/jfxpAyT62989yU6aNjQ0qV64Mx9q1iq1fnd2f1t2B/fsxZ9YsHD1+nLvR4/v37+jVsyfWb9yIcuXK5TivUCiEg6Mj5mYMDtjZ2eHJkyfYtHEjevTsCQBYs3o1goODcezECZiameHmjRsYMWwYDA0N0VDCk0DFqaB1mNexEBCd94WFh+PHjx+4euUKxo0di0qVKqFevXp48+YNRo8ahfMXLuR5DlKS941Msq4/oVAIPT09bNy0CQoKCnBwcMD7d++wZMkSTJsufl1q+LBhePjgAa7fuCFxeWlpaejSpQuEQiHWrl1boLIVhqI+DuaWb2hoKFauWoWwe6E5LiuzTRk4YAB69xbd0G1nZ4crV69i2/Zt8Mvjm3ukZGBCIZiU32DPnF9TUzNfg7rDhg1D586dc01ToUKFfC3bwMAAwdnedvP161ekpaWJDbgWpRI5GNUu2x0zW7duhZ6eHp48eYLSpUsDAMaNG4fmzZsDEH2wq1q1aoiKioKVlRVWrlyJxo0bw9fXFwBQpUoV3L59G+fPn89xmZMmTcKYMWO4/xMTE1G+fPk/Wn/v5s1RJ8sFe+M/PNky0NcXe2ol/uNH7umW0PAwxH+Mh4Pr74EugUCA6zdvYs3GDUj5+g0KCqKL0GlpaejYoztiX77C1bNnJe4AmY8KVrawgFPt2tA2NsLxU6fQpWPHP1p/aXi3bIk6GU98AL9f9RYXFwdDQ0MuPv5jPPT1ct+B5OXlYWFhAUA0iPT06TP4LVzIXcjOTl1dHdVtbBAZFQUAKFeuHEqVKsU96ZPJ2soKN2/xXyP0/ft3NGneDKVLl8bxI0ehqKiYvwLLmHeLFpLr78OHbPX3UexpKUmSk5Nx4PBhzM5hcE1JSQkW5uYAAEcHB4SEhmLl2jXYuEbUaXGwt0dE8F0kJCQgNTUVurq6qOPmBkeH4j8RyYm3pxfq1LTj/jfO+LhlWloaOg4ehNg3r3H14KFcn4oCAN2yZXFi6zb8+vULn79+hZGBAXz95qOiqSmXxlBPD1UrV+HNZ21hgaNnRR/4/vnzJyYvWoDjm7egecbASQ3rqoh4/BhLNm5Eo4yTYy8PD0Tfuo1PX76glIICymhpwcC+Jm9ZRaUk7cM/f/7E5KlTcfzIETRvJmo3atSogYj797Fk2TJuMCo7e3t7KCoqIjIqqlhOmr2bNEEdewfuf+OMektLS0PHfn0Q+/o1rh47ketTUQBgoKcn9mRS/KdPvKelzCtWxLVT/khKSkLi9+8wNDBAp359UdHUTCy/G0FBeB4VhYOb+a8HMtDTQ2pqKr5++8Z7Oir+0ye41KqNv8mP798RERaKh/cj4DtmFADRCQVjDPoa6jjsfxru9epjwexZ6NC1K3pk3J1d1cYGSclJGDtsKMZM9OV9nNZ3zGicP3Ma/pcuwyjLK3Dv3L6Fjx/jUdPy96CXQCDAdN+J2LhmNcKfvSiaQuehXLlyUFBQEHuaJj7+o9hTN7mpXacO9u/bx/2vq6uLw0ePiY6Rnz/DyMgIUydPQoWKFQEA4WFhiI+Ph0ud39uQQCDAzRs3sGHdWiQkJXPttHW2dtrSygq3s7XTxaW46k9Wyy0JMsuS/W7X+Ph4qU6mdHV1cfz4cV4dTvL1RcWMOsykpKTEtUWOjo64d+8eVq1ciQ0bN0rM19DQEGZmZoj6B+5+PXb4MEYMHojte/fl+MTT6uXLsGzxIpw4cw42OXxE+fWrVwi8ehW7DxyUOP1fpG9ggA9x/P3v48d4lCpVCjplywIA5s6aic5du8Gnj6gtqWYjuiFz5JAhGO87CfLy8jAwNISVhGPcqRPHeXFpaWnw6doFr16+hP+FiyXuTnZpmFUQ7ZPVbGzwMT4eC+fN4Qaj9PQNeE9BAcCnj/Hc01L3w8PwMT4e9V2cuOkCgQC3b97A5g3r8SHhO8pmtCXZ67mKpRXuFPOrxb29vVEn46Y4IJd+dfzHYr24lBuuXx0ZWayDUTm1JR/z0ZYcOngQA/v3x/6DB3kDQ9HR0Xj58iXatGrFxWVeiFZVUsKjp09hbm4OQ0NDsb6KlZUVjh87BkB0zjJtyhQcPnoUzZr/Pme5HxGB5UuXlpjBqD9pjw0MDCSmL1WqFMpmHAsBSed9T7FgwQLUq1cPoaGhiI+PRy1HRy69QCDA9evXsXbtWvz89QsGGefs4uecJWffKKz6MzQ0hKKiIncNEACsrK0RFxeH1NRU3luPRgwfDn9/fwReuwYTCZ/mSEtLQ6dOnfAyNhaXr1wpEW1JUR0H8/P73Lh5A/Hx8TCt8PtcWSAQYOy4cVixciVexsRy61TVmv8Kdmsra7x+/eaP148UMSETBWnzKIBy5crlemNDQTg7O2PevHl4//49t01evHgRysrKcHBwyGPuwlMiX9MXHR2Nrl27olKlStDU1OROBl+/fs2lqVGjBvd3ZoVmvpf96dOnYu9wz/5/dsrKytwoZX5HK3OioaEBC3NzLqiqqv5RPs516uDS1Su8uItXLsMl41s8DevVx8O7IYgIusMFR3t7dOvUGRFBd8QGoiKjonH59GleY58bxlixvVpEQ0MDFhYWXKhatSoMDAxw6cplLk1qaiquXb8Olzx+2+zyKldKSgqePnsGQ0NRR0ZJSQm1HB3x/Dn/guCLyEiYmf1ufBITE+HVtAmUlJRw6viJYnmiLFP2bbCqtXVG/f3enlJTU3Htxg24ODnlkpPIoaNHkJKSgu5duuRr+TnVsZaWFnR1dREZFYV7YaFo1aKFhLlLBo3SpWFRsSIXVFVVuYGoyNhYXN5/EGW1c363cnYqKiowNjREeno6jp49i1ZZ3kFc17EWnme8ijTTi5gYmJkYAwDS0tORlpbGu7ANAAoK8tyJTlbldHRQRksLV2/dRPynT/DO9n7polCS9uG0tLQc6k9BYv1levz4MdLS0rh8ippGaQ1YVKrEBW4b7NcHkTExuHzkGMrm8n7vTM6OtXApMJAXdzEgQOIAkbq6OgwNDPD12zdcCLiKVlm+V5Fp6949cLC1hW221zk42NaEoqIib1nv4+Lw6OnTv24wSkNTEzdCQhF45y4XevXrD4sqVRB45y4cMsqTnPxT4nbFGOPuVmSMYeLoUTh98iSOn7vAXUzL1LFLV1y/e4+3LANDIwwbPQaHTp0umgLng5KSEuzs7XH18mVe/NUrl+FUgH04IiKCu1CQlYqKCoyNjZGeno4Tx4+jRcuWAID6DRrgXngEgu+FcsHewRGdu3RF8L1Q7huEDo6OeJGtnY6MjISpmfiAanEorvqT1XJLAiUlJTg4OODypUu8+MuXL+fZz8+PrHV47NgxeHt755qeMYaU1NQcp3/+/Blv3ryBQZYLJH+jIwcPYuiAfti8YycaN20mMc2qZUuxeIEfjpz0h10uJ7b7du+Crp4evHLI519Uu04dBFzJtv9dugw7BwfuprWfycmQl+ffWZ29Lanj7IzIF/xjXFRkJMpnueEocyAqOioKp86dz/c5399I1Bf8vf/VrlMHAdnOm69euYzaGec57vUb4Na9MOC39UAAAJc+SURBVFwPDuGCnb0DOnTuguvBIVxbYufgKFbP0dnquTjk2K++/Pt4KOpXXytwv7qo/O5XF+8xUUlJCfYODriSrV28fDn3dvHA/v3o16cPdu3Zww0UZbKyskLY/fsICQvjQouWLVGvfn2EhIVxNzk7u7jgxYuc+yp/es5S1P6kPXZycsLlbHV+6eJFODo65noDL2MMqRnnfQ0bNsT9Bw8QFh7OBUdHR3Tt1g1h4eFQUFBAxYoVYWBgwFu31NRUXL92TSZ9BVkorPpzcXFBVFQUb1uJfPEChoaG3EAUYwzDhw3D8ePHcfnKFbEbb4DfA1FRkZG4eOlSiWlLiuo4mPn7ZM0XAC5dvszl26N7DzyIuI+IsHAuGBkZYfy4cbhwTvQQRIUKFWBkZITnL57z8nkR+QJmZsXbppB/x+vXrxEREYHXr19DIBAgIiICERER+PHjBwDAy8sLVatWRY8ePRAeHo4rV65g3Lhx6N+/f7EOMpfIJ6NatmyJ8uXLY/PmzTAyMoJQKISNjQ1Ss5zwZW2wsj6WCvx+XLUk+fLlC16/eYN3Ge+ff55xl6SBvj53UaFnv34wNjLivv80cshQuHt5YuHSpWjVogVOnj6NywEBuJnRCGloaMAm24fy1NXVUVZHh4tPT09H+25dERYRgdNHjkIgEHAj/Do6OlBSUkJMbCwOHjkCr0YNoVtOF2/fvcPCZUuhqqqKZiXkVWpycnIYNWIE5i9YgMoWlVHZwgLzFy6AmpoaumYZIOnZqxeMjY3gl/HqNL+FC+Do4ADzSuZITU3F2XPnsGvPbqxf8/sx43ETxqNlixYwLW+K+Ph4zPWbj8TERPj06MmlGT92HDp17QJ3NzfUr1cP5y9cgP/p0wi8LDrp+f79O7yaNkFy8k/s2bmL990xXV1d3t0pxUFOTg6jhg7D/MWLUNnCQlR/ixZCTVUNXTv9fvyzZ98+om0w27vUt+7YgdYtvSV2RCZPn4amXo1RvrwJvn//gQOHDyHw+nWcz3gtGwAcPnoUurrlYFq+PB4+eoyR48aidUtveGX57k9cXBziPnxAVMagzMNHj6ChoQHT8uVz/aBmUUlPT0f7gQMQ9ughTu/YKdqXMgbAdcqU4Tp4PUeNgLGBIfwyXrkXHB6Gt3FxqFm1Gt7GxWHm8qUQMiEmDB7C5T26X3+4tGmF+atXoWOLlrgbEYFN+/Zi08JFAABNDQ14ODlj/Ny5UFVRgZmxCa7dCcKuI0exLMsj99sPHoR1ZQvo6pRFUFgoRs6YjtH9+sPS3KKoqilHxbkPa2pqwsPdHeN9faGqqgozUzNcu34du/bsxrLFSwCIboLYu38fmjVpinLlyuHJ0ycYO2EC7Graoa7Ln71mVdbS09PRvk8vhD14gNN794u2wYynHXQyPkIJAD2HDhZtgxlPMo4cMBDu3i2wcNVKtGraFCfPncPl69dw8/QZLu8LV6+CMQZLCwtExcZg/MyZsLSwQO8uXXnrkPg9EYf9T2HpLPHvFGppaqJvt24YO2MayupoQ6eMNsbNnI7q1lXRyKP4X5P248cPxGYZ9H316iUe3r8PbR1tmJQ3xZzpU/H+3Tus2yJ6zaV1tva1nK4uVJRVePGNmzXD+tWrUN3WFg61aiE2OhoLZs9C4+YtuOP+hFEjcfTQQew+dBilS5fGh4w2WFNLC6qqqtApW5a7Oz6TomIp6Onro3IV/hOTxW3EqNHo28sH9g4OqOPkhK1bNuPN69foN2AgAGDalMl49/Ydtma83mz1ypUwq1ABVatWRWpqKvbv24sTx45h/6Hf38O7GxyMd+/ewdbWFm/fvcW82bMhFAoxJuO7WxoaGqiWbeBTXV0NOmXL8uJHjx2HHl27wNXNDR716uHihQs4e/o0LlzmX5wsTsVRf/lZLiDqp755/Rrv378DAO5imb6BgcTBr+IyavRo+PTsCQdHRzg7O2Pzpk14/fo1Bg4SvbZl8qRJePvuHXbu3MnNk/ma7x8/fuDjp0+IiIiAkpIS93q94OBgvH37FjVr1sTbt28xe9YsCIVCjJ/w+3s9UyZPRpOmTVG+fHl8//4dBw8cQGBgIM6eO8flPWvmTLRt1w6GhoZ4+fIlpk6ZgnLlyqFNmzZFVDt5EzsOvhQdB8toa6O8qSlmTRMdBzds3QZANBA1uF8f+C1ZCsfadbjjl4qqKrS0tACIXs03f/YsbN6xC6ZmZlwa9dKluTdaAKLztL27dqFzt+4Sv8P39csX/PfmDbcNZg4I6OnrQ78EbYM/fvxATHQU9//Lly/x4H4EtLV1UN7UFDOnTsG7d++wadt2AECf/gOwaf16TBo/Hr369MHd4GDs2rEd23b//tZTk+bNsXblStSoWROOtWojJjoac2fOQrMWv9uSoSNGwtPDHUsWLkCbdu0Rei8EO7Zuwcp16wCI+gg9OnfC/YgIHDp+HAKBgPsttDPO+UqKgm6Hmzesh0n58txrS+/cvo3VK5ZjQJa+9MChw9DcsyFWLFmCZi1b4Kz/aVy7ehXnrgQAELUlVbO162rq6tDR0eHFjxg9Bn16dIOLqyvcPDxw+eJFnD97Bv4X+Bcli5ucnBxGjRyJ+X5+on515cqY7+cn6ld3/d136+njI+pXZ7wOKjU1FU+ePOH+fvv2LSIiIlC6dGnuaZQfP34gKur3Nh77MhYRERHQ0dGBacag3JcvX/D69Wu8eyfaX58/F11sNchoM6Kjo7F33140a9pM1K9+8gRjx4+DnZ0d6v7h5wtkaeSoUejt4wMHBwfUcXbG1s2idnHAQFG7OGXyZLx7+xbbM9qSA/v3o0+vXli2YgXqODlx11NUM46FKioqYt/cKZPxloCs8SNHjYK7qysW+PmhfYcOCLl7F1s2b8a6DRsAiM5Z3D084DtxIlRVVWFqZoYb165hz+7dWLxkSWFXS4EUtD0eOGgQ1q5di7FjxqBf//4ICgrCtm3bsDfL094L/Pzg4OgIc3PRed+5s2exe/durM04zmloaIjVM3f9KyNeTk4OI0eOhJ+fHywqi/YNPwn7RnErjPobNHgw1qxZg1EjR2LY8OGIjIyEn58fhg///QmRYUOHYv/+/Th+4gQ0NDS4bVkr47wkPT0dHTp0QHhYGE75+0u8flhSFOZxcMyo0ejh0xOODqLfZ9Nm0e8zaKDo9ylbtqzYtTFFRUUYGBjAMqOtkpOTw/hx4zBj5kzY1rBFzZo1sXPXTjx79gxHsvTlSQknEIqCtHkUkunTp/POe+zsRG93CggIQL169aCgoIAzZ85gyJAhqFu3LlRVVdG1a1csKe42hZUwnz59YgDY9evXubgbN24wAOz48eMsNjaWAWDh4eHc9K9fvzIALCAggDHGWJcuXVjTpk15+Xbu3JlpaWnlez0SEhIYAJbwPo6xpGSpw/YNGxkAsTBj8mQujYebG/Pp1p033+E9e5lllSpMUVGRWVlasqP79uW6HA83NzZyyFDu/9gnTyUuFwALOHeesaRk9jYqijX18mJ6unpMUVGRmRgbs64dO7Fn4RHSlTstXaZBmJrGZkybxgwMDJiysjJzd3NjD8MjeGk83N2ZT4+e3P9TJk1iFhYWTEVFhWlrazNnJyd2YO8+3jydOnZkhoaGTFFRkRkZGbG2bdqwx/cfiC1/66bNXF62NWzZiaPHuGkBly/nWM+xkVF/Xu6fv2QWhMk/2YwpU37Xn6sre3gvlJfGw82N+XTvzot7/uAhA8Aunj4tMd8+Pj7MzNSUKSkpMV1dXdawfn2xtCuXLGUmxsZMUVGRmZYvz6b6+rKUhERemhlTpkisv+2bNklX9jdvZRJib9/JeV86dJhL5+HkzHzad+D+Dzx0hFlXrsyUlZVZWW1t1qNdO/Y2JFQsf//tO5iNpRVTVlZmVhYWbNPCRbzp70PDWa8OHZmRvgFTUVZhlubmbOm06Uz4+j8uzcQhQ5m+ri5TVFRklStWFJv+R+Ef2Yffv/mP9erpw4yMjJiKigqztLRkSxctZsLUNMbS0tnrmFjm7ubGdHR0mJKSEjM3N2cjhg1nnz/ES1/2j59lEmJDw3PeBk+c5NJ5uNRlPp068+Y9vHU7s7SwELUllSuzo9t38KYf3LyVVapQgSkpKTEDPX02tE9f9i06VmwdNi5dxlRVVSVOYx8/s59v3rJhffsxHW1tpqqqylp4NWavIx5IVe5Pyb9kEk6cvyCx7jp3784+Jf9inbt3Zy5ubjnOP37yFGZTvQYvLi7xB5swZSqrWKkSU1FRYcYmJqzPgIEs+l0clyan32z1xk05Lqu8qSmbu2ixzMr+My1dZmHFqtXM1MyMKSkpMTs7e3bp6lVuWvcePZmbuzv3/1w/P1bJ3Jzbf13q1mXHT53i5XfxyhVmZW0tOkaWLcu6duvOol+9znUd3Nzd2dDhI8TiN2zazMwzjhc1atiyQ0ePybTsf3P95bbcn2npbNOWrRK30ynTpsmk3AKhUGZhzZo1zCyjLPb29iwgMJCb1tPHh3l4ePDSSyqXmZkZN/1qQACzzlKH3Xv0YG/++4+XR+/evbll6urqsoYNG7LzFy5w038kJTFPLy+mm9EGm5qasp4+Puzlq1cyK/fXnylSB/8LFyXWR5fuPdjXnymsS/cerK6bO5e+rpt7rum//kxh5U3NJKaZOGUqb9lH/U8zACzkwUOJ67Z20+Z85SNNSExJlTqcuXhJ4np27dGDJaaksq49ejBXd3fePGcvXWa2NWsyJSUlZmZWgS1fvYY3/UtSMps0bRqrWEm0v5uUL8/6DRzEXn+I56U7eOw4q1qtGlNWVmZVLC3ZqnXruWkPn7/Isb05c/GSTMouq9+hoNvhwqXLmFXVqkxNTY1paGqyGjVrsiUrV7HPST95+e7Yu59VzjhvrmJpyXbtP5jretR1c2eDhg4Ti1+9YSN37LWpUYPtPXRYZmVnAqHMgjBdwGZMn/67X+3uzh7ef8BL4+HhwXx6+nD/x0bHSKx7Dw8PLk3AlasS02TNZ/vWbZKvbUyfzphAyF6/fMXc3d35/erhw9nnj5+kKnOqQCCzsCpLW2Jnb8+uBARw03r07MncPTy4/909PCSWt0fPnjnm36NnT9bS21ss/vjJk6yajQ1TVlZmllZWbP2GDbzpr9++ZT19fp+zVLG0ZIuWLGEp6ekyKXdxtsdXAwKYnZ0dU1JSYhUqVGBr163jTZ88eTL/vM/Zme3bvz/XdfDw8GAjRozgxaULBGx6tn3j/oMHMi17Saw/gVDIbt66xerUqcOUlZVZpUqV2Ny5c1lqWho3Pad2Yuu2bUwgFLLoGMnHCADsytWrMim3NMeA7KGwjoNMIGRrs/0+1wICc10XMzMztnzZMrF4v/nzmYmJCVNTU2POzs7sxrXrUpU54es3BoAlJCT80TV3kj+ZYwIfl25iKet2SxU+Lt1Ev1k2coyVrMeIMj+617RpU8yYMQOvX7+Gr68vQkJCcPz4cdSsWRMVK1ZEeHg4atasCQD49u0btLW1uZG/O3fuwMXFBQsWLEDr1q1x8eJFTJs2DYwxfPv2LV/rkZiYCC0tLSS8jysR70f9K5Wguyb+Wunpxb0Gf79Pn4t7Df5uBiXj3dp/tW8Jxb0Gf7XP6urFvQp/PXXFEvkgPPk/oqRQIt8M/ldJTEkr7lX46ynIS/9B8/9nAmm/mUBQRql4vif8r0gDbYPSUpCj4yApXvK0G0slMTERWtplkJCQQNeqC1HmmMDHxRug+Yef3uHy+vkTuuMH0W+WRYk7M5SXl8eBAwcQGhoKGxsbjB49GosXLy5QHk5OTtiyZQtWr16NmjVr4uLFi5g6dWohrTEhhBBCCCGEEEIIIYQQQgjJSYm8VbZRo0bcOzwzZX2AK/vDXGXKlBGL69OnD/r06cOLGzt2rIzXlBBCCCGEEEIIIYQQQggh/wyhUBSkzYPwlMjBKEIIIYQQQgghhBBCCCGEkCLHZDAYxWgwKrsS95o+QgghhBBCCCGEEEIIIYQQ8u+gJ6MIIYQQQgghhBBCCCGEEEIAMCEDE7K8E+aRB+GjwShCCCGEEEIIIYQQQgghhBAAEAhFQdo8CA+9po8QQgghhBBCCCGEEEIIIYQUGnoyihBCCCGEEEIIIYQQQgghBACEQlGQNg/CQ4NRhBBCCCGEEEIIIYQQQgghAJhQCCblYJK08/+LaDCKEEIIIYQQQgghhBBCCCEEoCejCgl9M4oQQgghhBBCCCGEEEIIIYQUGnoyihSeyJjiXoO/ntDKorhX4a/3SUenuFfhr6ZKd3FI7aeaWnGvwl9NT1mpuFfhr5cGVtyr8NcTCKkOpSEvoLZEWmXk5Yp7Ff56aaUUinsVCCFSSKO2RGoKdByUWmJKWnGvwl9NXYkuQ0uDzuuKmJCJgrR5EB46ChBCCCGEEEIIIYQQQgghhABgAgYm5Y0QTECDUdnRa/oIIYQQQgghhBBCCCGEEEJIoaEnowghhBBCCCGEEEIIIYQQQgCACQFpP13B6BWz2dFgFCGEEEIIIYQQQgghhBBCCCAaiJJ2MIq+wy6GXtNHCCGEEEIIIYQQQgghhBBCCg09GUUIIYQQQgghhBBCCCGEEAKACYVgUj7ZJO38/yIajCKEEEIIIYQQQgghhBBCCAHoNX2FhF7TRwghhBBCCCGEEEIIIYQQQgoNPRlFCCGEEEIIIYQQQgghhBACgAkYmIBJnQfho8EoQgghhBBCCCGEEEIIIYQQ0DejCgsNRhFCCCGEEEIIIYQQQgghhABgQgYmlPLJKCnn/xf9k9+MevnyJeTk5BAREVHcq8JhjGHmvLkwMq8E1bI6qNekMR4/eZLrPGlpaZjtNx/mNtWgoqMN2zp1cP7iRV6amfPmQk5djRcMKlbgpek1YIBYGqd6HmLLCwoORoOmTaGuWw5ljAxRr0lj/Pz5U+qyF4aBM6ZBrmoVrNi1I9d0xy5dgGOHtihTxwHqDrao2cYbu0+d4KVJT0/H1JXLUdGzAVTtqqOSVwPMXrcGwiyj14wxzFyzCkYerlC1q456Pt3xODKSl0/cx4/oMXEcDNxcoO5gC/t2rXHkwnlZFVlq69etg3mlSlBTVUUtR0fcuHEjx7Tv379Ht27dYG1lhVIKChg9alSueR84cAAK8vJo06YNL/769evw9vaGibExFOTlceLECbF5P3z4gN69e8PE2Bil1dXRtGlTRGar2+IWdPMmurdvhxrmFaGvroqz/qfynCclJQXzZ86Ag1UVlNfWQm2bqti3cyc3fff2bfD2bIgqxoaoYmyI9s2bIexeCC+P9PR0+M2aCceqVjArq41a1ayx1G8+b9vMatzwYdBXV8XGNaulK3Ah2bxhA6pXqQJdTQ24O9XB7Zs3c02/af16ONaoDj0tTdjbVMO+Pbt505t5NoKmspJYaN+qVYGWe+rEcbRu3hwVjAyhqayEB/cjZFJeWSroNjhiQH/oq6uKBXdHe166hG/f4Dt6FKpXqghTnTJwta+Jy+clH7dWLl4MfXVVTB0/jhef9OMHJo0ZhZqVzWFWVhuu9jWxY/Mm6QpciBhjmDlrJoxMjKGqroZ6Derj8ePHec539OhRVLWpBmVVFVS1qYbjx4/zpl+/fh0tvb1hZGIMOQXJxzsAePr0KbxbtYKWdhloaGnCycUZr1+/BpDRf1GQlxgOHz4sddllYcP69ahibg4NNTXUqVULN3NpS44fO4amXl4w0tdH2TJl4Fa3Li5euCCWxql2bejq6KCMhgYc7e2xZzd/X589axaUFBR4obyRkVg+zZs0gaGeHpQUFEpUHzCrjevXw6qyBcqUVodL7dq4eTPn+gNEbcmMaVNRxbwStNTVUNWyCnZu3y4x7aGDB6GqWAod2rXlxS9euAB1nZygq10GpkaG6NCuLV48f85L079PH6gqluIF97ou0hW2kDDGMHP2LBiZloeqRmnUa9ggX/twpgMHD0JOsRRaZ6un9Rs2oIadHTR1tKGpow1n17o4d/6c2PxPnz6Fd5vW0CqrAw3tMnCq68Ltw5mCgoLQwLMR1LU0UaZcWdRr2KBE9akZY5g5ZzaMKphBVUsT9Twb4fGT3Otwx65dkFNWEgu/fv3i0vgtWohaLs7QKKsDPRNjtG7fDs+zbWu9+vUVy8PJzZWXJjo6Gm06tIeusRE0y5VFx65d8OHDB9lVgJQKchy8dfMmPNzcYKCrC011ddhUrYqVK1aIpTt29Chq2NigtKoqatjY4ES2NqZypUpix0ElBQWMGDaMS/O3HAeBgtVhVrdv3YKqkhIc7fn9mcePH6Nj+/ZcPa1auVJs3vT0dEyfNg1VzM2hqa4OSwsLzJ0zR+ycb/asWTAzMYGmujoaNSjY8aUoFVZ/xm+BH2rVqQ0NLU3oGeijdZs2YvvxsWPH0LhJE5TT04WcgnyO21pQUBAaNGoIdY3SKKOjjXoN6peYY+GmDetRtUpl6GiURt06tXErj/OSA/v2oY6DPcppaaKSaXkM7NcXnz9/5qZv37oFnvXrwVhPF8Z6umjepDHuhdzl5bF44UK4OTtBX0cbZsZG6NSunVh7nNXwIYOhrqSINavEt+eSoCDXFwDg2rVrqOXoCDVVVViYm2PDhg286Tt27ICCvLxYyNrOrF+/HjVtbVFGSwtltLRQ18UF587x2+revXuL5eHi7Cy7gsvArZs30LldG1hXrABtVWWcOXUy1/T+J06gTfOmsChvDFO9cvDycMeVS/xrg2lpaVg0fx7sqlrBoIwmXGs74vJFfr/7+/fvmDRuLKpXqQxDbS141fNA2L17vDTxHz5gSP9+sK5YAUY6ZdDeuwWio0rW9ZlMsm6P09LSMHfOHFhVrgwNNTU42NnhQrZz43+tPSakOPyTg1El0aJly7Bs9WqsWbYMIddvwEBfH54tW+D79+85zjN11ixs3LoVq5csxZPQMAzq1xdtunRGeLYDWTXrqngfHcOFh3dDxPJq4unJS3P2GL/TGRQcjCatW8GrYUPcvXYdIddvYNjAQZCXL3mbyInLlxD84D6M9PTyTKujVQZTBg5C0L6DeHDcH73btkPvKZNwIcvFn4VbNmPDwf1YM3Uanp4+h0VjJ2Dxtq1Yvff3xbBFWzdj2c7tWDN1GkIOHYVBuXLw7Ncb35N+cGl6+I7H85exOLV2PR6e8EdbTy90GjsK4XkMOhaFgwcPYvTo0Zg0eTJCw8Lg6uqK5s2aiV08yZSSkgLdcuUwafJk2Nra5pr3q1evMGH8eLi5uYlNS0pKgm2NGli1WvLgCGMMbdu0QWxMDI6fOIHQsDCYmZrCy9MTSUlJBS9oIUlOSkK16tXht2x5vufp36M7bgQGYNm6DbgV8QAbduxEZcsq3PTb16+jTYeOOHb2PM5cDYRx+fLo5N0S79+95dKsXrYUu7Zugd+y5bgRFoHpc+dh7Yrl2LJ+ndjyzvqfQlhICAwMDaUrbCE5evgQfMeNxThfX9wMvgvnuq5o590Sb3LYBrds3IhZ06Zi0rRpCA6PwOTp0zFu5EicO32aS7Pn4CFEvnrNheDwcCgoKKBNu3YFWm5SUhKcXJwxa+68wqsAKRV0G5y7eAkeRsdyIfxFJLR1dNCyze+Lr6mpqejYsjnevHqFrXv34lbEfSxdsxaG2S7yA0B46D3s3r4VVW2qi02bNnECrl66hLVbt+NGWAQGDBuOyWPH4Nxp/z8vcCFatHgRli1fjjWrViMk+C4M9A3g2dgr1/Y4KCgInbp0Ro/u3XE/PAI9undHx86dEBwczKVJSkqCrW0NrFmV82BwdHQ0XN3dYGVlicCrAbgfHoFpU6ZCRUUFAFC+fHm8f/uOF2bNnAn1jIH64nbo4EGMHT0avpMm4W5oKFxdXdGyefMc25KbN26goacnTp0+jTshIfCoVw9tWrVCeHg4l0ZHRwe+kybh+q1bCI2IgE+vXujft6/YoFXVatXw+u1bLoTdv8+bnpSUBOe6dTFv/nzZF1xGDh86hPFjx2Ci7yTcCbkHF1dXtG7RIsf6A4DuXToj4OpVbNi0CQ8eP8HO3XtQxdJSLN2rV68waeIE1HV1FZt24/p1DBo8GNdu3sLpc+chSE9Hi2ZNxdpZr8aNEfvmPy6c8D8tlldJsGjJYixbsQJrVq5CSNAdGBgYwLNpk1z34UyvXr3CuIkT4CahnkxMjLFg/jzcuxOMe3eC0aB+fbRq25Z3cTc6Ohqu9TxgZWmJwMtXcD80DNOmTOH2YUB0vGjSojm8PD1x93YQQoLuYNiQoSWqT71o6RIsW7kSa1asQMjt26LzkmbN8qxDTU1NvH/1mheylv3a9RsYOmgw7ty4gUtnzyI9XQCvFs3FtrUmXo15eZw9+fsGi6SkJHg1bw45OTlcvXABtwIDkZqaipZt2+R4M05RKuhxUE1dHYOHDMGVwEA8ePwYkyZPxoxp07Bl0++bNu4EBaFbly7o1r077oWHo1v37ujauTPuZmljbgcH846B5zKOke3at+fS/A3HQaDgdZgpISEBfXr1QoMGDcSm/UxORqVKlTB3/nwYGBhInH/xokXYvHEjVqxahQePH2P+ggVYtmQJ1q5Zw6VZsngxVi5fjhWrVuF2cDD09fXRrHHjfB1filph9WeuXbuOoYOH4M7tIFy6cBHp6enwatKYtx8nJSWhbl0XLJjvl+uymjRrKjoW3glGSPDdEnMsPHLoECaMHYsJvr64fTcELq6uaNOyRY7nJbdv3UT/Pr3h07s37kXcx579+xF6LxRDBw7k0ly/dg0dOnXC2YuXcPX6DZQvXx7ezZrh3dvf53Y3b1zHgMGDEXDjJvzPnkO6IB3ezZtJPO/1P3kSIXfvSuyXlwQFvb4QGxuLFs2bw9XVFaFhYfCdNAmjRo7E0aNHeek0NTXx9t07XsjazpiYmGC+nx/uhoTgbkgI6tevjzatW4sNxDZu0oSXx+kzZ2RfCVJITkqCTfUaWLR8Rb7S3755A/UaNMSh4ycRcDsIrh4e6NKuLR5kuTY4d+YM7NiyBQuXLced8Aj07tcfPTp15KUZOXgQAq9ewYZt23DrXigaNGqE1s2bctspYwzdO3bAy9hY7D18BNfuBMPE1BStm0neTotTYbTH0zP+X75yJe4/eoQBAwagQ7t2vHOXf6k9JnnLfDJK2kD45Bhj/1ytvHz5EhUrVkR4eDhq1qz5R3kkJiZCS0sLCe/joKmpKdX6MMZgZF4Jo4YOw8SxYwGILvbrV6yAhXPmYGDffhLnMzKvhCkTJmDowEFcXOtOHVFavTT2bNsGQPRk1Al/f0TcCZaYByB6MupbwjecOHgoxzRO9Tzg2aAB5kyf8SdFlOzVf7LLK8PbD3Go07kDLmzahuaDB2BUTx+M6tmrQHnYt2uN5h71MGfEKABAi8EDoF+2HLbO/d1QtBs5DGoqKti9cIno9/NwxaiePpjYbwAAICU1Ffpuzlg4ZjwGduoMACjtUBPrZ8xED+/WXD5lnWtj0bjx6Nuuwx+VV2hl8UfzZefs5AQ7OzusW7+ei6tWtSpatWqF+X45n0QAQIP69WFra4vlEu7iFAgEqF+vHnx69cLNmzfx7ds3sbvrMinIy+PosWNo3bo1F/fixQtYW1nhwcOHqFatGpengb4+/BYsQL9+kveNgvj0M0XqPLLSV1fF9gMH0ayld45prl68iIG9euLuoyfQ1tHJV74CgQBVjA3ht3Q5OnbrBgDo1q4tdPX0sGL977vG+nTtDFVVNazduo2Le//uLZp6uOPASX90b9cG/YcOw8Bhw/+whHyqpRRkkk9917qoWdMOy7Oc8DvWqI4W3t6YKWEQqJGHO5ycXTB3wQIubuLYsQgPC8XFgECJy1i7ahXmz56FF69eQ11dvcDLffXyJapbVsHNu3dRw7amFKXl+5kukFleQP62wezO+p9Cny6dEfLkKcqbmgEAdm7ZjLUrluNW+H0oKirmOG/Sjx9oVNcZC5avxIpFC1Cteg3MXbyEm+7u6IDW7dtjjO8kLs6zrgsaNm4MXxm0KXoqylLnkYkxBiMTY4waORITJ0wEkNEeGxpgod8CDMxyUSGrTp07IzExEefOnuXimjRtCm1tbezft08svZyCPI4f5R/vAKBzly5QVFTE7l278r3Odg72sLezw9YtW/M9T3ZpkE1Xr66zM+zs7LBm3e8B8erVqsG7Vat8n2zZVq+ODh07Yuq0aTmmqe3oiKbNmmHW7NkARE9GnTp5EvfCwvLM/+XLl6hibo67oaF/3AeURCCDkwg3F2fY2dlj1dq1XFzN6jZo6e2NOfPE6+/ihfPo2a0bnryIhE4ubYlAIIBng/ro6dMLt27exLeEbzh89FiO6T9+/AhTI0NcunoVrm7uAERPRuU1nzRU8k6SL4wxGJmWx6gRIzBx/AQAGfuwsREWzvfDwAEDcpxXIBDAo0F99PbphRsZ9XQij/Lq6Oli8YKF6NunDwCgc7euUCyliN1ZnnTOzqmuCzwbNcKcWbP/oIS5kNFADGMMRhXMMGr4cEwcNx5ARh2WN8HCefMxsH9/ifPt2LULo8aNxbf4j/le1sePH6FnYoxrl6/APeOmpV79+uLbt284ceSoxHkuXrqEpt4t8fVDPHcO9vXrV+gY6OPS2XNo1LBhQYrLkyaDPo0sjoMd2rWDuro6dmS0BV07d8b3xET4Z2ljWjRtijLa2tgjoY0BgLGjR+PsmTN48vw55OTkeNMK6zgoK39ah926dIFF5cpQUFDItU2oXKkSho8ciREjR/LiW7dsCT19fWzasoWL69i+PdTU1LBj1y4wxmBmYoLhI0di/ITfxxcTQ0PM9/ND/xz6CAWhCLm8E+VDUfVngIz92EAf1wIC4e7uzpv28uVLVDSvhPDQMLFtzcnFWXQsnD1HipLyJQtk06f2qOuCmnZ2WLnmd3tsX110fjB7nvh5yYply7Bl00Y8evb7Kab1a9dg+dKleBETK3EZAoEAxnq6WLpiJbr16CExzcePH1HB2AgXrlyFa5YbO9+9fQsP17o4efoM2rVuhaHDh2PYiJES8ygoFRmd2xX0+oLvxInw9/fnvR1o8KBBePDgAW7dvg1A9GTUmNGj8eXr1wKtS7myZbFw0SL07dsXgOjJqNyuS0grMSVNpvlpqypjz8FDaO7dKu/EWTjb10Sb9h0wYfIUAIB1xQoYM3Ei+g8azKXp1qE91EuXxqbtO/Dz50+U1y2LvYePoHHTZlwatzq10LhpM0ydOQtRkS9Qq0Z13A4Nh3XVqgBE23JlUxPMnDsPPXv3kbq86kqy+VpMYbTHZiYm8J08GYOHDOHStGvTBqVLl8bObG9uyFTU7XFiYiLKaWsjISFB6mvVJGeZYwKvBk6GppJ0ZzKJqb9gtnE+/WZZFNttKUKhEAsXLoSFhQWUlZVhamqKeRkN/8OHD9GgQQOoqqqibNmyGDBgAH78+MGbd/bs2TAxMYGysjJq1qyJ8zm8Vigzff/+/VGlShW8evWq0MuWXezLl4j78AFeWU6elJWV4eHqitu5DCKlpKby7gIBAFUVVdwMus2Li4yOhpF5JVSsao3OPj0REyveIQq8cQN6ZmaoYlsD/YcOQXx8PDctPj4ewSEh0NPVg0uD+tCvUAEejb1w8/ZtsXyKk1AoRA/fCRjfpx+qVa5c4PkZY7gSdBvPX8bC3bEWF+9q74Ard4Lw4qWo3u4/e4qbYaFo5l4PABD73xvEffoIL5ffd9EqKynBw7E2bkf8PglydXDAwXNn8eXbNwiFQhw4exopqamoV6vOH5ZYNlJTUxEaGgpPLy9evKenJ4KCgqTKe87s2Sinq8t1/AoqJUU0UJR1O1dQUICSkhJu3bol1boVpwtnz8DWzh5rli+DrUUlONtWx8xJvrm+luJncjLS09JQRkebi6vj7IybgQGIznht4eMHDxB8OwgNGzfm0giFQgzt2xdDRo2GVUaHsaRJTU1FRFgYGng24sU3aOSJ4Dt3JM+TkgLlbIMQqqoqCA0JQVqa5BOA3Tu2o12HjtxA1J8s91+1b+dOuNdvwA1EAcCFM2fgWLsOfEePQrUKZnB3dMCKxYsgyHai7zt6FBo1bgIPCXciA0AdFxdcOHMa79+9BWMMN69dQ3RUJOo3aiQxfXGKjY1FXFwcvDx/Hw+VlZXh4e6B27kcD4PuBMHLy5MX17ixF24H5b+dFAqFOHP2DKpUqYzGTZpAz0AfdZydcnydHwCEhoYiIiICffv82TFWllJTUxEWGopGnvx68PT0xJ18tiVCoRA/vn/PcWCFMYarV67gxfPnYk/bRkVGwszEBFXMzdGtSxfExMT8WUGKSWpqKsLDwtAwW/01bJRz/Z3xPw17BwcsW7IYlcxMUb2qNXwnjBdrS+bPnYNyurro1Sd/FwgSExIAANra/N/hxrVrMDUyRPWq1hgycCCvr1hScPtwo9/1KNqH3XPdhwFg9tw50NXV5QaWciMQCHDg4EHRna1OTgAy9+Gzon24WVPoGRmijoszTpz8/Wqd+Ph4BN+9K+pTu7lC39gIHg3q42Yer38qSr/r8PcxWllZGR5ubrh9J/c6/PHjB8wqW8CkUkW0aN0a4RHhuaZPyNjWdLL0bQAg8Pp16JkYo0q1qug/eBBvW0tJSYGcnByUlX/3AVRUVCAvL4+bt4u3byiL42B4eDjuBAXxLuoH37mDRtn76f9r776jorjePoB/6U3AQhfBghGxAyrYsAJqxJI3dkVN1BTFLpbYkigasfeGvSua2KXYRSNNsVIU9SciVsAGuPu8fwAryy64sLvsYp7POfccdvbuzNyHO3PvzJ3i5VXkPLOzs7Fr5074Dh0qceJL3ZU2hls3b8b9+/cxY+bMUi+7RatWOBMejvj4eADA9evXcfnSJXjn3Xmcv20UXDc9PT20btNG7mMmRSvL/szn7Vi2C+yAvH3h1auwsLBAi1YtYWltBY92bdViXyhqjzuKx6F9p464WsQ+0M3dDU/+9z+cPHECRIRnz57hcHCwqO5I8/79e+Tk5BQbt8/t8ed9pFAoxA9Dh2Ds+PFwyrtYU92U5vzClStX0KnQdu/p5YXIyEixY7u3b9+iRvXqsKtWDd26dRO7I6UwgUCAPXv25LbVhR7Dd+7sWVhZWsKxTh2MGD5cLfs08hAKhcjMfIuKBepOVnaWxPlDfQMDXMk7r/fp0ycIBAKp5xjz82RlZef+rsBxeP75mStqdH5QWe1xVlYW9PUKn4MwwOUizk2V5/aYMVVS2WDU1KlTsWDBAsyYMQO3b9/Grl27YGlpiffv38Pb2xuVKlXCtWvXsH//foSGhmJUgedvLlu2DIsWLUJgYCBu3LgBLy8v+Pj4SH3PTHZ2Nnr37o3IyEhcvHgR9vb2EnmA3J1ORkaGWFKU1LxnnFtaij9WztLCQvSdNF4dOmLxihVISEyEUChESFgY/j52FE9TU0V5mrs2xbYNG3Hq73+wYeUqpD57hhbt24k9v7izpyd2BgUh/PhxLAoIwLWoKLTv0kU0EHA/ORkAMHveXAwfMhQnDx+Gc6PG6NC1CxISExUVBrkt2Lge2lpa8Bs4uES/S8/MRAWXxtBtVA9dfx6BFdNmoFOLlqLv/X8cgX5dusKxqzd0GjqhyXc9MHaQL/p1/RYAkPriBQDA0qyK2HwtzaqIvgOAvYuW4pNAgCotmkGvcX2MnD0Th1asQi07u9IWWSFevHgBgUAAS0tLsemWlpZILVCXSurSpUsICgrC+vWlfzeMo6Mj7O3tMW3aNLx+/RrZ2dlYMH8+UlNT8fTp01LPV9UePniAfyMu4+7t29i8Zy/+WLAQRw8fwpRxY4v8zZ8zZ8DKxgZt2n0+4T96wkT0+L43WjZphKqmxujQwg0jfh2FXr37iPKsWLQI2traGP7Lr8osklxe5tVBCwvxOmhhaYFnRdTBDp06YdvmzYiJjgYRIToqCtu3bkVOTg5eFtju8kVeu4bbt25hcIGTjKVZ7tfo2dOnCD99CgOGDBGb/jD5AY4ePgSBQIBdhw5hnL8/1i5fhqV/LRDlObR/H27ExmJ6MVe1zg1chG8c66JxbQfYVjRBvx4+WLBkGZoX2M+qi/x9nuT+0KLY/WFqaiosC9UjS4uS7UPT0tLw9u1bzF+wAN7eXjh98hR69uiBXv/3Hc6dOyf1N5uCNqFu3bpo0UL17+4pqi2xKEFbsmTxYrx79w7/97343cLp6emoZGICI319dO/WDUuXLRM7uGzWrBmCtmzB0RMnsGbdOjx79gwerVqJ9XXU3QvR/qhQX9DSosh34Tx4cB+XL13C7Vu3sHf/ASxctAiHgoMxdvTnO18vX7qELZs3Y/XadTKtBxHBf9JEtGjZEvXq1xdN9/T2xuZt23DidAjm//UXoiIj0dmzk6ivqC6K3IYtLJH6rOh6eOnSJWzavBkbvhCnuLg4VKhoCj0jQ/z06y84dOAAnPIu9BBtw3/9BW9PL5w+fiJ3G/7+/3DufO42nD9IOvuP3zH8hx9x8ugxODdpgg5enmrzPkzRcYnUfVrRxyWOdepgy8aN+OfgQezeth36+npo2bZtkeUiIoyfPAmtWrZE/Xqf61pnLy/s3LIV4adOYdGCv3AtMhLtvTxFdc2teXMYGRnBf9o0vH//Hu/evcOkKVMgFArx9Klq22559oM17OxQwcAA7s2a4adffsGwAnf/p6amSuwbLCyKbpf+PnwYb968wWBf31KWRHVKE8OEhARMnzYNW7dvh7Z26a+onzR5Mnr37YsGTk4w1NNDMxcXjB4zBn379QMAUd9Q2jGTuvUby6o/Q0QYP2ECWrVqhfoF2owvEe0L58zJ3RceP5G7L+zUUeX7QtHxgcS5GUs8K2If6ObeAkFbt8F3QH9UNDJEzWq2MDWtiEVLi36X08zp02BTtSraFXE3JxFhyqRJEu3xooULoa2tjV8U9JQLZSjN+YXU1FSp+T99+oQXecd2jo6OCNq8GYf//hs7d+2Cvr4+WrdqJVFn4uLiYGJsDAN9ffzy8884GBwsaqsBwNvbG9t37EBoWBgWBgYiMjISHTt0ULs+jTxWLl2C9+/foed3nx8N175jJ6xevgxJiQkQCoU4ExaKE0eP4Flq7nkVY2NjNG3uhoUBAXiakgKBQIC9u3ch8tq/ojzf1KmDanb2+H3GDLzJOz+zZOFCPEtNFeVRB8pqjzt5emLp0qVISMiNYWhICI7880+R56bKc3vMZMOP6VMOxdwfWUKZmZlYtmwZVq5cCd+8jbZWrVpo1aoVNmzYgA8fPmDbtm2iq9tXrlyJbt26YcGCBbC0tERgYCD8/f3Rt2/u49EWLFiAM2fOYOnSpVhV4NEnb9++RdeuXfHhwwecPXsWpqamRa5TQEAA5syZo5Dy7dyzByP9PncejuU9AkSj0G35RITiBs+XLVyI4aN+hWOTxtDQ0ECtmjUxdNAgbC5we2jnAndINADg3rw5atWvh607d2K8nx8AoE+BZ5fWr1cPrk2cYV/XEcdOnkCv7j1Ez18fOWwYhg7OHehp0rgxws6eRdC2bQj4XcGPGZHBziP/YOTsz1e+HVu7Hsu2b0P0wUMlvuLA2MgIscF/4+37dwi7EoHxfwWgZrVqaNss946lvSeOYcfRf7Br4SLUc6iN2Lt3MDZgHmwsLODb4/P7VQovN/f/93nab8uW4HV6OkI3bYFZpUo4HBaK78f54cL2XWjwjeT7Hcral9a/JDIzMzF40CCsW78eZmZmpV4nHR0d7D9wAMN//BFmVapAS0sLHTp2LPYqs/JAKBRCQ0MDa4I2wyRvvzMnawF+GNAf85cshYGBgVj+lYsX4dD+fQg+cUrsSqXDB/bj4J7dWLN5C+rUdcKtGzcww38SrKyt0WfgQFyPicaG1asQevly+bgSpwR1cPK06Xj27Bk6tG4FIoKFpSUGDBqEpYsWQUtL8vES2zdvhlO9enBt2lRyZgqs++XRnh07YFqxIjoXeqyfUCiEmbk5Fq1cBS0tLTRq4oxnT59i1dKlmDB1Gp787zF+mzQJ+/45InEFXUEbV69C1LV/sW3/AdhWs8OVSxfhP24MLKysirybqqzs3LkTI3/+/KjbY3nvwCnN/lDefWh+W9vdpzvGjR0HAGjcuDEuX47A2nXr4OHhIZb/w4cP2LV7N2b89pvMyygLpY3Dnt278cecOTh46JDESVdjY2Nci47G27dvcSY8HJMmTkSNmjXh0bYtAIi3CQ0awM3dHY61a2P7tm0YO26c3GUqSyWJX35bsnnbdlEfdsHCLPTv0xtLV6zAp0+fMGyIL1avXStzWzzOzw9xcXEIOys+APp9796iv+vVrw9nF1fUqVUTJ44fR4+ePUtSRIXauWsXRv7y+XEzx/7JfbdQSeKYmZmJgUN8sUGGONWpUwexkVF48+YNDh4Khu+wYTgXFg4nJ6cC27APxo0dCyBvG46IwNr16+HRxuNzn3r4cAzNuwCgSZMmCAs/g6AtmxEg5XGMyrZz9y6M/PXzBSvHDufeySURQxS/Lbs1bw635p/v9m/ZogWcmzfDitWrsXyJ5PsMR40Zgxs3b+Ji+Bmx6X2+/1zX6terD1cXF9jXdsCxE8fRq0dPmJubY/+u3fh59GgsX7USmpqa6NenD5ybNJHa/qtCafaD4efO4e3bt/j3yhVMnzYNtWrVEg2ClHSeW4KC4OXtDRs1fZeMLGQtr0AgwOCBAzFz1ix88803Et+XxL69e7F7505s27EDTvXq4XpsLCaOHw9ra2uxE4mKPGZSFFX1Z0aNHoUbcTdw8fwFqd8XRbQvHDECQ4cOBZC/LwxH0OYgBBTzrqmyUpI43Ll9GxPHj8OU6b+hY6dOSE1NxfQp/vD79ResWb9BIv/iwEDs37sXJ0JCi+xDjx/jh5s34xBa4PHjMdFRWL1yBS5f/VfldU4WJa1/0vIXnO7m5ga3vLuRAaBly5ZwdXHByhUrsGz5ctH0OnXqIDomBm/evEHwwYMYOmQIzpw9KxqQ6tPn84Wb9evXh6urK2pUr45jx46hV6/P53fKqwN792LB3D+xc/8BmBfoU88PXIQxv/yMZo0aQkNDAzVq1kT/wYOxq8DjwdcFBWHUyJFwqlUj9/ivcRP8X5++uJF3p7OOjg627d6D0T+PRA0bK2hpaaFt+/boWOC8ozpRdHu8eOlS/DRiBBo4OUFDQwM1a9WC75Ah2Lpli9R5fQ3tMSte7mCSfI/K5sEoSSoZjLpz5w6ysrLQQcpVInfu3EGjRo1EA1FAbiMkFApx7949GBgYICUlBS1bil9x3bJlS1wv9DLrfv36wdbWFmFhYTA0NCx2naZOnYrx48eLPmdkZKBatWqlKR58unZF8wInRPOvwEh99gzW1tai6WnPn0tcmVSQubk5Du/dh48fP+Llq5ewsbbBlBkzUKN69SJ/Y2RkhAb16iMhqeg7mqytrWFvZ4eExKTcz3kveXVyrCuWr65jHTx6/LjogiqRT/v2aN6wkejz/lMnkPbqJew6tBVNEwgEmPDXfCzdthXJoWekzCWXpqYmHPLuiGtc1wl37ichYMM60WDUpMC/MOXHEejbJfdOqAbf1MHDlBQEbFgH3x69YJV34iL1+QtYm39u7NNevoJlldy7pZIePcLKXTtw8+9jokcINnKsiwtRkVi1ayfWzi77Ab18ZmZm0NLSkrhCJC0tTeJKElklJSUhOTkZ3X0+n9zOP+jQ1dHBnbt3UatWLZnm5eLiguiYGKSnpyM7Oxvm5uZwd3ODi4tLqdZNHVhaWcHKxkY0EAUAtes4gojw9MkT1HT4/C6w1UuXYFngQuw/egz1GjQQm8/v06dh9ISJ6Jl34sapfn08fvwIyxctRJ+BA3Hl0iW8eJ4G5zqfD84FAgFmT52CDatWIvLOPaiDKnl1MK3QVevP057Doog6aGBggNXrN2DZqtVIe/YMVtbW2LxxI4yNjVGl0MnE9+/f4+D+fZhW6P1EpVnu14aIsHv7Vvxf337Q1dUV+87Sygra2jpiJ/dq13FE2rNUZGdn43pMDF48T0OnVp/vyhEIBIi4eBFB69bi8evcbXbe7FnYvGcvOnnnDhjUa9AAN2/cwJplS1U+GOXj44PmBU6eitrj1FTx9jjtebH7QysrK4m7LtKel2wfamZmBm1tbTg5FWpr6zriopRHPxw4cADv37/H4EEluxtYWYpqS57L0Jbs27sXI4cPx+69e9FByuMbNTU14ZC3X2zcuDHu3rmDv+bPFw1GFWZkZIT69esjUU3uNJFFfvwK3wWVlvZcYnAun5WVNWyqVhW7mMrRMbctefK//+Hdu3d4mJyM7wq8myy/La6gr4cbt26jZoG2eNyYMTh69AhCw8/A1ta22PW1traGnb09EhNVG2Ofbt3QvFkz0ecit+HnaUX2qfP7LN2kxElbXw/3bt0W9Vl0dXVFddHV1RXXIiOxbMUKrFuz5vM2XLdwf/nzNpy/Tk51xR+bW7euIx49UlGf+ttuaN60QAyz849LCu8H0ySe4lAcTU1NNHV1lfoUhdFjx+KfY0dxPjRMprpmb2cvNh/PTp2QdPcuXrx4AW1tbVSsWBFWdtWKPQYqC/LsB2vUqAEAaNCgAZ6lpeGP338XnfyysrKS2Dc8fy69XXr48CHCwsKw78ABeYqiMiWNYWZmJqIiIxEbE4MxeRdaCoVCEBEMdHVx/ORJtJOxrzHV3x+T/P3RJ++C1gYNGuDRo0f4a8ECDPb1hWXeMbFkHyFN5f1GVfRnRvuNxj9HjuD82XNf3I4LK3Jf6FhXZfvCfPnHB4Xvgkp7niZxt1S+wL8WwN29Bcblvf+7QcOGMDIyRKd27TBzzu9i/4OlixcjcMF8HD15Eg0aNpQ6vwljx+DY0aM4HRaOqgVie+niRTxPS0OdWjVF0wQCAaZOnoxVK1bgToJ6PLWmNOcXrKyspObX1tZGlSpVpP5GU1MTrlLamcJtdWRkJJYvW4a166Tf/WxtbQ17e/ty1W8sSvD+/fD7eSQ279yFtu3Fz6eamZtj5/4D+PjxI169fAlrGxvM/m067Au0nTVq1sKxkFC8e/cOmRkZsLK2xrCBA2BXIE9jZ2dcuHoN6enpyMnOhpm5OTq2boXGLs5lVMovU1Z7bG5ujoOHDuWeg335EjY2Npg2dSqq5/2moPLeHjOmSip5TF/huwIKKm4ku+B0WUbAu3Tpghs3buCKDO8G0dPTg4mJiVgqLWNjYzjUqiVKTnXrwsrSEiHh4aI82dnZOHfxIlq4ffl9Qvr6+qhqUxWfPn3Cwb8Po3vXrkXmzcrKwp17d0UDTNK8fPkSj//3P1Ge6vb2sLG2xr2EeLF88QkJsLcr3YCcvIyNKsDB3l6URvTugxuHjyA2+G9RsrGwwKRhP+DUhpK91J0o931c+d5/+AhNTfFNQUtTE8K80esattVgZWaOkIjPJwuzs7NxLvJftGic2yC//5j7/gZNTfE6qKWlBSEp5oXTpaWrqwsXFxeEhoSITQ8NDZV4trKsHB0dcf3GDUTHxIhSNx8ftGvXDtExMaUayDU1NYW5uTkSEhIQGRkJn+4le4GnOmnq7o5nT5/iXYF33SUlJkBTUxPWVauKpq1ashiLF8zH7sN/o7Gz5ODbhw8fpNRNLdFJtO/79ceZq9cQFnFVlKysrfHL2HHY8/cRJZWu5HR1ddHY2RnhoWFi08+EhaJ5gavfpNHR0UFVW1toaWnh4P598OrSRSImhw4cQFZWFvr076+w5X4tLl+4gAdJSejvO0Tiu6Zu7ki+nySqT0BuPbW0soKuri7atG2Hs/9GitWvxs7O+K5PX4RFXIWWlhY+5eQgJycHmhqF6qmWlth8VcXY2BgODg6i5OTkBCsrK4SEft4fZmdn49z5c2hRzP7Q3c0dISGhYtNOnw5BC3fZH5+nq6uLpk2b4t69Qm1tfALs7SQfIbxpcxB8uvnA3Nxc5mUok66uLpxdXBAWKh6H0NBQuBUTuz27d+PHYcOwbccOdCmm/1IQEYm104VlZWXh7t27sCpw8kfd6erqoomzM8ILxS88rOj4ubdogacpKWLvTU1IyG1Lqtraoo6jIyJjYnE1MkqUunbrBo+2bXE1Mgq2eW0xEWGsnx/+PnwIJ0+HSD2gLuzly5f43+PHsLZSbYyL3IbDPscxdxs+X+Q27OjoiLiYWMRGRomST7duaNe2LWIjo4rtsxCR6KSvrq4umrq6Sm7DCQmix4BXr14dNjY2uBcvfjFIfHwC7O1V89hmiRjWzd8Pfm4bs7Ozce7CBbRwk71fSESIvX4d1tZWYtNGjRmD4L8PI/zkKdEJn+LkHpc8lnrsYmZmhooVKyL8zBmkpaXB59tvZV4/ZSjtfrAwIkJ2gcdFNXdzQ1jhfvrp01LnuXXLFlhYWMi8P1U3JY2hiYkJoq9fx7XoaFEaMXIkvqlTB9eio9Gs+ZePpfO9f/8emhpSjtXy+is1atSAlZWV2LplZ2fjwvnzpT5mUpSy7M8QEUaNHoXgQ4cQHhom03ZcWJH7woR4le0L84na4zDxOJwJDUPzIvaBH95LOSbLv5iLPl/xvmTRIiyYNxeHjx6Fs4urxHyICOPH+OHvw4dx/NRpifa434CBuBoVjYhrkaJkbWODseMn4O+jx0pTXKUozfkFNzc3hBba7kNOn4arqyt0dHSk/oaIcP369WLPbeXnK67f+PLlSzx+/Lhc9RulObB3L34d8SM2bNkKr85disynr68Pm6q55w+PHD6Ezt92k8hjZGQEK2trvHn9GmGhIegiJY+pqSnMzM2RlJiAmOgoqXlURVntcT59fX1UzYvh4eBgdPPxkchT3ttjJiNFPKKP74ySoJI7o2rXrg0DAwOEhYXhxwLP5wQAJycnbN26Fe/evRPdHXXp0iVoamrim2++gYmJCWxsbHDx4kWxF81dvnwZzQpcOQkAP//8M+rXrw8fHx8cO3ZM4hE4ZUVDQwNjfx2FeYELUduhFmrXcsC8hQthaGCA/gXe/TL4xx9R1cZG9Fi8q9f+xZOUFDRu2AhPUlIwe+5cCIVCTB73+Q6uiVOnoluXLrCrVg1pz9Pw54IFyMjMhO+AgQByH1U4e+5cfNejB6ytrJD88CGmzZ4FsypV0DNvh6qhoYFJY8dh1tw/0ahBQzRu2BBbd+7A3fh4HNi5qwwjVbQqFSuhSkXxlx/raOvAyswcdWp8vnJo8JRJqGphiYDxEwEAAevXwrV+A9SqVg3ZOTk4fv4ctv1zGGtmzhb9plu7dpi7bg3srK1Rz6E2Yu7cxuKtmzGsV+7jDTU0NDB2sC/mrV+L2vb2qG1fHfPWr4WhvgH65x0UO9aoCQc7e4ycPROBk/xRpWIlHA4LQcjlSzi6Wrb3OCjT2HHj4Dt4MFxcXeHu7o4N69fj0aNHGPlT7uMepk2diicpKdi6davoN7GxsQBy69DzFy8QGxsLXV1dODk5QV9fX+K54RUrVgQAselv375FYoErmZIfPEBsbCwqV64Mu7x3ae3fvx/m5uaws7NDXFwcxo0di+49esCz0AtRVend27d4kJQk+vwoORk3r19HxcqVYFvNDn/OnIHUlBSs3Jg7MPpd7z5YMj8AY34agUnTZ+DVy5f4ffo09BvsKxqMX7l4ERb88TvWbN4COzt7pOVd1WNUoQKMKlQAAHh27oKlfy1A1WrVUKeuE25ej8W6lcvRL+9OicpVqqByoSvJdHR0YGFpCQc5H2WiaKPGjMGIoUPh7OKCZs2bY/OmTfjf48cYNnwEAGD2b9ORkpKC9UGbAQAJ8fGIirwG16bN8ObNG6xcthS3b93C2o2Sg8/btmxGVx8fqVfVfWm5APDq1Sv87/EjPE15Klo2AFhaWomuklW1ktbBfLu2boFz06aoK+UFyEOGD8emtWswfdIE/PjTL7iflIhlCxfix19+AQBUMDaW+J2hkREqVa4smm5sYoIWrVtjzvRp0DcwgK2dHSIuXMD+XTsxZ/4CiWWqmoaGBsaOGYN5AQGo7VAbtWvXxryAABgaGqJ/gcHMwb6+qFrVRvQYmTF+fmjT1gML/lqA7j7d8fc/fyM0LFTssTWF93cPkiX3d5MmTESffn3RpnVrtGvXDidPncSRo0dwttBjrBITE3H+/HkcV6MTDwAwZuxYDPX1hYuLC5q7u2PThg14/OgRRowcCQCYPm0aUp48wea8tmTP7t0YNmQIFi9diuZubqKrFw0MDD4/dm7+fLi4uKBmrVrIzs7GyRMnsGP7dqws8Nhl/0mT0PXbb1HNzg7P09Iwb+5cZGRkYNDgz3eNvXr1Co8ePcLTlBQAQPy93BNgVlZWsFKT7dhv7Dj8MMQXzi4uaO7mhk0bc+P344jc+M2YPg0pT1KwKe9RIH369UPAvLkY8eMPmDFzFl6+fIFpU/zhO2SoqC2pV7gtNq0oMX3s6NHYu2c39gcHo4Kxsej/YGpqCgMDA7x9+xZ//j4HPXr2grW1NR4+TMbM335DFTMz+BS4m0gdaGhoYKyfH+bNn5+7DTs4YN6C+bnbcIFHng0eMiR3G547T3qfJS9OBadP+206Ont7o5ptNWRmZmLPvr04e+4cTh77vB1OmjARffr3y92G27bFyVOncOToUZzNG9jR0NDApPETMOv3OWjUsBEaN2qErdu34e69uziwd68SIyM7DQ0NjB09GvP+WoDatR3yYrggN4Z5d4wAwOBhQ3OPS/6cCwCY8+cfcGvWHLUdHJCRmYHlq1Yh9vp1rFr2+dFJv/r5YdfePfj7wEEYF1HXZv/xB77r2fPzccnMGTAzM0PP7j1E89m8dSvqOjrC3MwMEVevYMyECRjnNwZ16qj+sdcl3Q+uWb0a1apVQx1HRwDA5YsXsWTRIvxS4H3Io/380L5tWyz86y908/HBkX/+QVhYGM6ePy+2bKFQiG1btmDg4MFS351UHvaDQMliqKmpKbH9mltYSGzX2dnZuH37tujvlCdPEBsbiwoVKojuoOj67beYHxCAanZ2cKpXD7ExMVi2ZAl88x4jp6GhgdFjxmBBQEDuoE/t2liQ10foW+iCJ1VTZn/m11G/Ytfu3fj70GGp2zHwua6l5NW1e4XqmoaGBiZNnIhZs2fn7gsbN8bWbVtx9+5dHNi3v0xiVJzRY8bix6FD0MTFBc2buyFo00Y8fvwIP47IPT6YOX06UlKeYOPmLQCAzt92xaiffsKGdWvRsZMnUlOfYvKECXBt2hTWeY/nWhwYiD9mz8LmbdthZ19dFLcKFSqgQt6x3Ti/0di3Zw/2HpTeHlepUkXieEZHRweWVpb4Rg32fwWV9PzCyJ9+wqpVqzBh/Hj8OHw4IiIiEBQUhJ27Pp9v+n3OHDR3c0Pt2rWRkZGBFcuXIzY2FitWrhTlmT5tGrw7d0a1arlt9d49e3D27FkcP3ECQG5/fM7s2ej13XewtrZGcnIyfps+PbedUeFjhwt7W+jY7mFyMuKuX0fFSpVQzc4Oc2b8hqcpKVi7KQhA7kDUzz8OQ0DgIrg2ay56j51+gT515L//4mlKCho0aoiUJylYMPcPCIVCjBk/QbScsJDTICLU/uYb3E9KwsxpU1G79jcYMPjzo0oPHzwIM3Mz2Farhts3b2LKxIno2s0H7Tt+fp+rOlBGe/zv1at48uQJGjVujJQnT/DH779DKBRi4qRJYsv+Wtpj9mUkFCrgMX2qv0hX7ZCKzJ49mypVqkRbt26lxMREioiIoI0bN9K7d+/I2tqavvvuO4qLi6Pw8HCqWbMm+fr6in67ZMkSMjExoT179tDdu3fJ39+fdHR0KD4+noiIHjx4QAAoJiZGlL9ChQp04cIFmdcvPT2dAFD601Sid+/lTsK372jWtGlkZWlJenp61KZVK4r795pYHo/Wrcl3wEDR57MnT1FdR0fS09OjKlWq0KB+/elJYqLYb/r83/+RtZUV6ejokI21NfXq3p1uRUaJvn//4iV5duhI5mbmpKOjQ3bVqpHvgIH06F68xDoGzPmdbKtWJUNDQ3Jv3pwuhITKV+7b8UpN9jZVacmUaWLTPJo2I98ePUWfp4/8mRzs7ElfT48qmZiSe+MmtGfRErHfZFyLpjGDfMnO2ob09fSoZrVqNH3kz5QVe1OUR3jrHs36ZRRZmZmTnq4utXFtSnF/HxWbT/zx09SrkydZVKlChgYG1LBOHdo2/y+5yigQChWWVq5cSfb29qSrq0vOzs505uxZ0XeDfX3Jw8NDLD8AiWRvb1/k/Af7+pJP9+5i08LCw6XOZ7CvryjP0qVLydbWNrd+2tnR9OnT6cPHjwor97N3H+ROwSdOSS1HnwED6dm7D9RnwEBq0bq12G8uRsdSm3btycDAgGyqVqWfRvtR8otXou+r2dlJnefEadNFeZJS02j4L7+SbbVqpK+vT/Y1atDYyf70+HV6ketazc6Ofl/wl0LK/ezdB8rIylZYWrRsOdnl1cHGTZrQidAw0Xf9Bw2iVm3aiD5fi71ODRs1IgMDAzIxMaGu3bpR1I04iXlGxd0kAHT42PFSLTcjK5vWbNgo9X8x5bffFFJuVdXBhJRUMjAwoMCVq4qc79HwM+TctCnp6emRfY0aNHX2HErJeFtk/hatW9PwX34VmxaX9ID6DhxEVtbWpK+vTw7ffENzAuZT6tv3Cik7CYQKTcJPApo1cyZZWVnltsdt2lDc9RtieTw8PMh3sK/YtP1791GdOnVIR0eHHB0d6eD+A2LfnwmTvr8rPJ9NGzaSg4MD6evrU6NGjehw8CGJdZw6ZQrZ2tqSIOeTQsqcLRAoLC0v0JY0cXamsDNnRN8NGjyY2nh4iD638fCQGpNBgweL8kyZNk0Uj0qVKpGbuzvt2LVLbJnf9+5N1tbWuX0dGxvq0bMnxcbFieXZuGmT1GX9NnOmQsr9IeeTQtLS5StE+6MmTZwpJDxc9N3AQYOpdZs2Yvlj425S+w4dyMDAgKra2pLf2LH0KiOzyPkPHDSYvvXxEZsmLS4AaP3GTfQh5xO9ysikjp06kbl5bl+xmp0dDRw0mOLvP1BYuUmBSZidQ7NmzPi8DbduTXExsWJ5PNq0Id9Bg4uch++gwdTdx0ds2rAhQ0V129zcnDq0b0+nT5yQ+O2m9Rs+b8MNG9Hhg8ESeQLmziVbW9vcPrWbG104c1b+smdlKywJP2bRrN9+E49hdLRYntwYDhJ9Hjvaj+zs7ETx8ezYiS6fOy/2m6Lq2uYNG4mysun9m3Ty7Pi5rtnZ2ZHvoEH0KDFJbD7+EyeSpaUl6ejoUG0HB1q04C8SfsySu9yq2A8uWbaMnOrVI0NDQzIxMaHGTZrQipUr6WNOjtg8d+/dS9/ktTF1HB1p7/79Ess9duIEAaCbd+5IXS9l7wdV1ZYUTr/NnEkNGzUSmxaflCS17AXn8/LNGxrtl1uP9fX1qWbNmjRl2jR6++GDKE/Wp0/0W4E+Qus2bSj6+nWFlbs89GeK3I43BYnybN4UJDXPrJkzxeYVMG/e532huztdOHderjK/y85RWFqyXPz44FRYuOi7AYMGUes2bcTyBy5ZQnXrOpGBgQFZWVtTn379KOFBsuh7O3t7qTGZ9tsMUZ6iYrt248Yi19PO3p4WBAYqrNyqPL8QfuYMNWnShHR1dal69eq0avVqse/HjBkj1s508vSki5cuieUZOrRQW92hA508dUr0/dt376iTp6dYOzPY15eSHz5UWLlff8iSOx05dVpqXeg3cBC9/pBF/QYOopat24jyt2zdptj8rz9k0dHTIVQn7/xh5SpVqE//AXQ76YHYcoO276TqNWqQrq4uWVpZ0Y8jf6Lk1DSxPPMDF5FN1dzzM7bV7GjilKn0LD1TIeV+/SFLZW2JLO1xaHg4OdatKzoHO2DgQEp+/Fit2uMXr1/nnqtOT1fMyXkmVf6YwH3fSfR8+G9ypfu+k/h/VogGUYH7isuQUChEQEAANmzYgJSUFFhbW+Onn37C1KlTERcXhzFjxiAiIgKGhob47rvvsHjxYtEVJUKhEH/++SfWr1+PtLQ0ODk5Yf78+fD29gYAJCcno0aNGoiJiUHjxo0BAIsXL8bs2bNx8uRJtGjx5cfqZGRkwNTUFOlPU+V6ZN9/2sP/qXoNyj2ho8OXM7Fivfggeds1k52Btnq8LLw8+/BJoOpVKNcs9PVUvQrlXg740QDyEvDjFeQi/fXtrET4qkq55XCfhqmYDqS/joDJ5r2A+9Ty0uf9oNwysnJUvQrlmpGuSh7Q9dXIyMiAWaVKSE9P53PVSpQ/JpA0aCKMdeU7H5GZnYVa2wP5f1aAygaj1B0PRikAD0bJjQej5MeDUfLhwSj58WCUfHgwSn48GCU/HoySDw9GKQAPRsmNB6OYqvFglHx4MEp+PBglPx6Mkg8PRsmHB6PKRv6YQOKA8QoZjHLYuZj/ZwXwXoAxxhhjjDHGGGOMMcYYYwyAUEgQynlRory//xppqnoFGGOMMcYYY4wxxhhjjDHG2NeL74xijDHGGGOMMcYYY4wxxhgDQEICyXlnk7y//xrxYBRjjDHGGGOMMcYYY4wxxhgAIiFIzve2EvF7Xwvjx/QxxhhjjDHGGGOMMcYYY4wxpeE7oxhjjDHGGGOMMcYYY4wxxsCP6VMWHoxijDHGGGOMMcYYY4wxxhgDQEIFPKZPzt9/jfgxfYwxxhhjjDHGGGOMMcYYY0xp+M4oxhhjjDHGGGOMMcYYY4wx8GP6lIUHoxhjjDHGGGOMMcYYY4wxxgAIhUII5XzMnry//xrxYNSX6OvnJlZydRxUvQblniYPoMvNzEBP1atQrnEdlJ+RDje18uCum/x0SEPVq1Du6WhyDJmKafLT1eWlxZsxUzHu08hHX1tL1avAGEz0dFS9Cuw/TEuDOzOs/OMzZIwxxhhjjDHGGGOMMcYYY+DH9CkLD0YxxhhjjDHGGGOMMcYYY4whfzBKvvuaeTBKEg9GMcYYY4wxxhhjjDHGGGOMge+MUhZ++DhjjDHGGGOMMcYYY4wxxhhTGr4zijHGGGOMMcYYY4wxxhhjDHxnlLLwYBRjjDHGGGOMMcYYY4wxxhgAEgoV8M4o+X7/NeLH9DHGGGOMMcYYY4wxxhhjjKm55ORk/PDDD6hRowYMDAxQq1YtzJo1C9nZ2WL5Hj16hG7dusHIyAhmZmbw8/OTyFPW+M4oxhhjjDHGGGOMMcYYY4wxAEQEobyP6SPlPKbv7t27EAqFWLduHRwcHHDz5k0MHz4c7969Q2BgIABAIBCga9euMDc3x8WLF/Hy5Uv4+vqCiLBixQqlrJcseDCKMcYYY4wxxhhjjDHGGGMM6v2YPm9vb3h7e4s+16xZE/fu3cOaNWtEg1GnT5/G7du38fjxY9jY2AAAFi1ahCFDhmDu3LkwMTFRyrp9CT+mjzHGGGOMMcYYY4wxxhhjTMEyMjLEUlZWlsKXkZ6ejsqVK4s+R0REoH79+qKBKADw8vJCVlYWoqKiFL58WfFgVBkhIsyeMxs2tlVhYGSItu3b4datW1/83cGDB+FUvx70DPThVL8eDh06JJFn9ZrVqFGrJvQNDeDS1BUXLlwQ+z44OBhe3t4wszCHhpYmYmNjJeaRlJSEnr16wdzSAiYVTdG7Tx88e/as1OVVBlXGcPac2XB0qgsj4wqoVKUyOnp2wtWrVyXmExERgfYdO8DIuAIqVq6Etu3b4cOHD6UvtAKpKn45OTnwn+KPBo0awsi4Amxsq2Kwry9SUlLE5tG2fTtoaGmKpb79+slfcAVZs3o1atWsCUMDAzR1lawjhZ07dw5NXV1haGAAh1q1sHbtWok8Bw8eRP169WCgr4/69SRjOz8gAM2bNYOpiQmsLC3Rs2dP3Lt3TyxPcHAwvL29YWFuDi1N6du3ulDlNizrstV5GwZUUw8Lmh8QAC1NTYwbO1Zsenmph6qKX0mW+9PIkdDS1MSypUtLXL6yUB624/y8nbt0gYaWJg4fPlyqsioLx1A+6t6nBtS/LVH3PvX69evRtn07mFQ0hYaWJt68eSNXeRVNFW3J+fPn4ePjA9uqVaGlKX2b1NLUlJoCFy6Uq7zKoK796rdv32L0qFGwq1YNRoaGqOfkhDVr1shfYAVT1/gNHTpUov61cHeXv8BKoK7bcXnpUwPqWw/nzJ4Np7p1YVyhAqpUrgzPTtLP3agax09+6rodF6Tux3aseCQghSQAqFatGkxNTUUpICBAoeualJSEFStW4KeffhJNS01NhaWlpVi+SpUqQVdXF6mpqQpdfolQOeDh4UFjxowp02Wmp6cTAEp//YZIIJQ7zQ8IIGNjYzq4/wDFXb9BfXr3IWtra8p4k17kby5fvERaWlo0b+5cunPrNs2bO5e0tbXpyuUIUZ49u3aTjo4ObVi3nm7fvEVj/PzIyMiIHj5IFuXZtmUrzZk9mzasW08AKCYqWmw5bzMyqWbNmtSzR0+6EXudbsRep+4+3alp06YkyPmkkPKX9xju3L6DQk6dpqSERLp5I45+GDaMTExMKC31mdiyTExMKGDePLp5I47i796j/Xv30cf3H1QeO1XG782r19SxQ0fau3sP3b19hyIuXabmzZuTi4uL2LI8PDxo+I8/0tMnKaL05tVrucstEMqfdu3OLeO69evp5q1b5JdXxgfJyVLzJyYlkaGhIfn5+dHNW7do3fr1pKOjQ/v27xfluXgpN7Zz586lW7dv09y82F6OiBDl8fTyok1BQXQjLo6iY2KoS9euZGdnRxmZmaI8W7ZupdmzZ9O69bnbd1R0tELKnJ++hjoo67KVtQ0r6n+hqnqYn65cvUrVq1enhg0bkp+fn9h3yq6H5Tl+JVnuweBgatSoEdnY2NDixYsVVnZ56m/hpO7bcX5avGgRdfbuTADo0MFgpbSrHMP/Xvy+1KfOX5Y69wdVHUNZ+tRLFi+mgHnzKGDePAJAr1++Uki5y3NbcvTYMZo2bRrtP3CAANDB4GCJZT1JSRFLGzdtIg0NDUpITFRI2ct7eyxLv/qHH36gWrVqUVh4OCXdv09r1q4lLS0tCj50SOVxKw/xG+zrS17e3mL18PmLFyqPmbrEUJbtuDz0qdW9Hm7fsYNOnT5NCYmJdCMujobltTOpz56pPG4cv/IfQ1m24/ykjGO712/e5J6rTk8v03Pk/zX5YwL/thpIt9sOkyv922ogAaDHjx9Tenq6KH38+FHqsmfNmkUAik3Xrl0T+82TJ0/IwcGBfvjhB7Hpw4cPJ09PT4ll6Ojo0O7duxUXsBIqF4NRL1++pIyMjDJdpiIHo4SfBGRlZUXzAwJE0z6+/0Cmpqa0dvWaIn/X+/ve5O3lLTbNy9OL+vbpK/rcrFkz+mnkSLE8jo6ONMXfX2J+D5LuSz1wPnXiJGlqaoqV9dWLlwSAQk6dVvkBszrFMD+lv85tAEJPh4imNW/enH6bPl3lsSoP8fv3ylUCIHZywsPDg8b4+Sm87Ipo8Js1a0YjR44Um+bo6Ej+/v5S80+aNIkcHR3Fpo0YMYLc3NxEn7/v3Zu8vL3F8nh6eVGfvn2LXI/UZ88IAJ05e1biu6T799V6MEqVdVDWZStrG1bU/0KV9TA9I4Nq165Np06fJg8PD4nBKGXXw/IcP1mX++jxY6patSrdiIsje3t7tRyMKg/bMQmEFBsdQ7a2tvT0SYraDaRwDMtv/AqmovrUJFDv/qA6xTA/SetT56czYeFqNxilDn3CL538yk8+3btT+/btFVLur6E9Lpyk9avr1atHc+bMEcvn7OxM06dPV3ncykP8Bvv6kk/37iqPUXmI4Ze2Y3XuU6tLDIuqh4VT/sn70yEhKo8bx+/rimFx27Gyju14MKpsKGMwStb/2fPnz+nOnTvFpg8fPojyP3nyhL755hsaNGgQCQQCsXnNmDGDGjZsKDbt1atXBIDCw8PlD1QplYvH9FWuXBnGxsaqXo1Se/DgAVJTU+HZyVM0TU9PDx5tPHA5IqLI30VciYCnZyexaV5enrgccRkAkJ2djaioKLH5AoBnp07FzrewrKwsaGhoQE9PTzRNX18fmpqauHjposzzUSZ1imF2djbWb1gPU1NTNGrUCACQlpaGq1evwsLCAi1atYSltRU82rXFxYscP2nS09OhoaGBihUrik3fuWsXzCzMUa9BfUycNBGZmZmyFlFp8svYyVO8jJ06dUJEEWW8cuUKOnUSj5unlxciIyORk5OTmyciAp6F8nh5eiLi8uUi1yU9PR0AxJ4BW16osg7Ksmx134ZVXQ9HjRqFLl26oGPHjvIWRSVUFT9ZlysUCuE7eDAmTpyIevXqla6QZUDdt2MAeP/+PfoN6I+Vy1fAysqq9IVVEo6hfNStP1OYurclgHrFUFqfWp2pui0uiWfPnuH4sWMYOmxYqeehDOoUQ2n96pYtW+LIkSN48uQJiAhnzpxBfHw8PL28ZC+kEql7/ADg3NmzsLK0hGOdOhgxfDjS0tJkK1wZUacYllfqFMMvHR9nZ2djw3r1amc4fvJTpxhKU16O7diXkZAUkkrCzMwMjo6OxSZ9fX0AwJMnT9C2bVs4Oztj8+bN0NQUH+Zxd3fHzZs38fTpU9G006dPQ09PDy4uLvIHqJTKxWBU27ZtMTbv/RTVq1fHvHnzMGzYMBgbG8POzg7r168Xy3/58mU0btwY+vr6cHV1xeHDh6GhoaGy5+3mP4ex8HMaLS0tin1GY2pqKiwtCv3GwlL0mxcvXkAgEEiZr2WJnv3o5uYGIyMj+E/xx/v37/Hu3TtMmjwJQqFQrMKqkjrE8OjRo6hgYgx9QwMsWboUIadOw8zMDABw//59AMDsOXMw/IcfcfL4CTg3aYIOnToiISGhFCVWLHWIX76PHz9iyrSp6N+vP0xMTETTB/Trj907d+Fs+BnMmP4bDgYHo9d338leSCUpTRmlPZfV0tISnz59wosXL0R5LArlsShmnkSECRMmoFWrVqhfv35pi6MyqqyDsixb3bdhVdbDPXv2ICY6GvMU/EzjsqSq+Mm63L8WLICWtjZG+/mVroBlRN23YwAYN34cWri7o3v37iUpWpnhGMpHnfoz0qh7WwKoRwyL61OrM3XpE8pi29atMDY2Rq9evUo9D2VQlxgW1a9etnw56jo5wa5aNejr6aFL585YuWoVWrVqVeKyKoO6x8/b2xvbd+xAaFgYFgYGIjIyEh07dFDKS9pLS11iWJ6pSwyLOz4+evQoTIyNYWhggKVLl+LUafVpZzh+8lOXGBalvBzbsS9TxWCUrFJSUtC2bVtUq1YNgYGBeP78OVJTU8Xqq6enJ5ycnDBo0CDExMQgLCwMEydOxPDhw8XOx5a1cjEYVdiiRYvg6uqKmJgY/PLLL/j5559x9+5dAEBmZia6deuGBg0aIDo6Gn/88Qf8/f2/OM+srCxkZGSIpdLauXMnKpgYi1L+KLuGhoZYPiKSmFaYLL8pzXwLMjc3x/69+3Ak78DQtFJFpKdnwNnZGVpaWjLPR5HUMYbt2rVDbHQMLl+8BG8vL/Tu20d0pZdQKAQAjBwxAkOHDkWTJk2wZPES1KlTB0Gbg2QsteKoY/wAICcnB3379YNQKMTqVavEvhs+fDg6duyI+vXro2/fvjiwbz9Cw0IRHR1dfGHLSEljJy1/4eklmefoUaMQd+MGdu7aVaL1VhV1rIPF5VG3bbgoZV0PHz9+jHFjx2Lb9u2iq2/KM1Vtx8XliYqKwvLly7F58+YStd1lobxtx//88w/Cz5zB0iVLiy9YGeIYykcd41ccdWxL1DGGxfWpywNV9wllsXnzZvTv319t225Vx7CofvWK5ctx9coVHP77b1yLjERgYCBG/forQkNDv1yoMqSu8evTpw+6du2K+vXro1u3bjh2/Dji4+Nx7NixLxeqjKk6hl8DVcewuOPjdu3aITomBhcvXYKXlxf69lG/dobjJz9Vx1AadT62YyUnFAoVkpTh9OnTSExMRHh4OGxtbWFtbS1K+bS0tHDs2DHo6+ujZcuW6N27N3r06IHAwEClrJOstFW69FLq0qULfvnlFwCAv78/lixZgrNnz8LR0RE7d+6EhoYGNmzYAH19fTg5OeHJkycYPnx4sfMMCAjAnDlzFLJ+Pj4+aN68uehz/pVAqampYpUiLe25xMh8QVZWVkh9Jj4Cn/Y8TfQbMzMzaGlpSYzSp6WlFTtfaTw9PZGUkIgXL15AW1sbFStWhJWNNWrUqFGi+SiKOsbQyMgIDg4OcHBwgJubG2rX+QabgjZh6pSponVyqusk9pu6jnXx6NFjWYutMOoYv5ycHPTu0wcPkh8gPDTsi6Pwzs7O0NHRQUJCApydnYvNq0yl2c6srKyk5tfW1kaVKlVEeZ4VyvO8iHn6jR6NI0eO4Oy5c7C1tZWnOGVGnepg/mOmilu2um3DhamqHkZFRSEtLQ1NXV1F3wsEApw/fx6rVq3Ch48fVXbRQkmoKn6yLPfihQtIS0tDdXt70fcCgQATJ07EsmXLcP/Bg1KUWDHK23YcfiYcSUlJqFi5kth8vvv+/9C6dWucDT8jW8EViGMoH3WKnyzUsS1RxxgW16dWZ+rQJ5TFhQsXcO/ePezes6dUv1cmdYhhUf3qDx8+YPr06TgYHIyuXbsCABo2bIjY2FgsWrRILR5VrM7xk8ba2hr29vZIVJM7QwH1iGF5pw4x/FI9LNzO1PnmGwRt2oQpU1XfznD85KcOMSyKOh/bsa/LkCFDMGTIkC/ms7Ozw9GjR5W/QiVQLu+MatiwoehvDQ0NWFlZiUbp7927h4YNG4pdBdasWbMvznPq1KlIT08XpcePS3/AaGxsLNpxOzg4wMnJCVZWVggJDRHlyc7Oxrnz59DC3b3I+bi7uSMkRPwqrNOnQ9DCvQUAQFdXFy4uLmLzBYCQ0NBi51scMzMzVKxYEeHh4UhLS4NPN59SzUde5SGGRCQ6oK9evTpsbGxwL/6eWJ74hHjY29t9ucAKpm7xyx+ISkhMQOjpEFFjX5xbt24hJydH7ESJKuSXMTREvIyhoaFwLyJ2bm5uEldQhpw+DVdXV+jo6OTmcXdHSKE8p0NC4N6ihegzEWH0qFE4dOgQQsPCVDY4XBrqVAdr1KjxxWWr2zZcmKrqYYcOHXD9xg1Ex8SIkqurK/oPGIDomJhyMRAFqC5+six34KBBiL1+XSzGNjY2mDhxIk6cPFn6QitAeduOp/hPwY3Y64iNjhElAFiyeDE2b1LNXSkcQ/moU/xkoY5tSXmIYcE+tTpTZZ+wJIKCguDi4qJW7/fIp8796pycHOTk5Ei8b0FLS0tpVzWXlDrHT5qXL1/i8ePHsFLx8VxB5WU7VmflrR7m/05d2hmOn/zUeTtW52M7VnLq/Ji+co3KAQ8PDxozZgwREdnb29OSJUvEvm/UqBHNmjWLiIjGjBlD7du3F/s+NjaWAFBMTIzMy0xPTycAlP76DZFAKHeaHxBApqamFHzgIMVdv0H9+vYja2tryniTLsozaOAgmuLvL/p86cJF0tLSovkBAXTn1m2aHxBA2tradOVyhCjPnl27SUdHhzZt2Ei3b96isWPGkJGRESXffyDK8/L5C4qJiqZjR44SANqzazfFREXT0ycpojxBGzdRxKXLlBifQNu3bqPKlSvT+HHjFFJ2RSVVxfBtRiZNnTKFIi5dpuT7DyjqWiT9MGwY6enp0c0bcaL5LFm8mExMTGj/3n2UcC+efps+nfT19SkxPkHlsVNl/HKyssmnmw/Z2tpSbHQMPX2SIkpZHz4SCYSUGJ9Ac2bPpmtX/6UHSffp2JGj5OjoSE2aNKFP2TlylVsglD/t2p1bxg0bN9LNW7doTF4Z7z94QAKhkPz9/WngoEGi/IlJSWRoaEhjx46lm7du0YaNG0lHR4f27d8vynPhYm5sAwIC6Nbt2xSQF9vLERGiPD/99BOZmppS+Jkz9CQlRZTevnsnyvP8xQuKio6mI0dzt+9du3dTVHQ0PUlJUUjZv4Y6KOuylbUNK+L/oMp6WDh5eHiQn5+f2DRl18PyHL8vLVdasre3p8WLFyus7PLU38JJ3bfjwgkAHToYrPQ2lmP434ifLH1qde8PqjKGsvapnz5JoZioaNqwbj0BoPNnz1FMVDS9fP5CrnKX57YkPSODoqKjKSo6mgDQokWLKCo6mh4kJ4ut3+s3b8jQ0JBWrV6tkPJ+Te2xLP1qDw8PqlevHoWFh1NiUhJtCgoifX19Wrlqlcrjpu7xS8/IoPHjx9PFS5co6f59CgsPJ3d3d6patSq9SU9XedzUIYaybMfloU+tzvUwIzOTpkyZQpcuX6b7Dx7QtchIGpbXztyIi1N53Dh+5T+GsrbHBZMij+1ev3mTe646Pb0UZ9eZrPLHBC669KbYZgPkShddevP/rJCvbjBqzZo1ZGZmRh8/fhR9v3HjRpUPRgk/CWjWzJlkZWVFenp61KZNG4q7fkMsj4eHB/kO9hWbtn/vPqpTpw7p6OiQo6MjHdx/QGLeq1auJHt7e9LV1SVnZ2c6d+as2PebNwURAIk0a+ZMUR7/yZPJ0tKSdHR0qHbt2rQoMJCEnwQqP1hWhxh+ePeeevboSTY2NqSrq0vW1tbk082H/r1yVWI+AfPmka2tLRkaGpK7uztdOHde5XFTdfweJN2XWv8A0JmwcCKBkB4lP6Q2bdpQ5cqVSVdXl2rVqkV+o0fLfdKBBIrr7KwsVMYzZ8+Kvhvs60seHh5i+cPPnKEmTZqQrq4uVa9eXepJgb37xGO7/8ABse+LitumoCBRnk1B0rfvmTNnKqTcX0MdlHXZpKRtWJGdblXUw8JJ2mCUsutheY9fccuVltR5MKo8bMcFk7oNpHAMy3f8ZOlTk0C9+4OqjKGsfepZM2dKjfPmTUFylbs8tyVh4eFSYzLY11cs35q1a8nAwIBevX6tsPJ+Le2xLP3qJykp5DtkCNnY2JC+vj7VqVOHAgMD6ZNAoPKYqXv83r57R508Pcnc3Jx0dHTIzs6OBvv6UvLDhyqPl7rEUJbtuLz0qdW1Hr57/5569BRvZ7r5+NCVq1dVHi+O39cRQ1nb44KJB6PKHx6MUi4NIlL7+8Xatm2Lxo0bY+nSpahevTrGjh2LsWPHir5v3LgxevTogdmzZyMjIwM1atTAt99+iylTpuDRo0cYO3Ys7t69i9jYWJkfV5CRkQFTU1Okv37zxXfbMMbUl5DfGSkXTbVvIdQf10GmarwdM8YYt8eMMcYYK98yMjJQqWJFpKen87lqJcofEzjv/D0qaOnINa+3ghy0id7P/7MCyuU7o4pjYmKCI0eOIDY2Fo0bN8b06dMxc+ZMABB7jxRjjDHGGGOMMcYYY4wxxlhBQiEpJDFx2qpeAVmcPXtW9HdycrLE97GxsWKfW7RogevXr4s+79y5Ezo6OrCzU/1L6BljjDHGGGOMMcYYY4wxxv5LysVgVElt27YNNWvWRNWqVXH9+nX4+/ujd+/eMDAwUPWqMcYYY4wxxhhjjDHGGGNMTQmFBKGGfHc28Z1Rkr7KwajU1FTMnDkTqampsLa2xvfff4+5c+eqerUYY4wxxhhjjDHGGGOMMabGSEggOQejiAejJHyVg1GTJ0/G5MmTVb0ajDHGGGOMMcYYY4wxxhhj/3lf5WAUY4wxxhhjjDHGGGOMMcZYSRERhCTnnVFy/v5rxINRjDHGGGOMMcYYY4wxxhhj4HdGKQsPRjHGGGOMMcYYY4wxxhhjjIEHo5RFU9UrwBhjjDHGGGOMMcYYY4wxxr5efGcUY4wxxhhjjDHGGGOMMcYYAKEC3hkl7++/RjwYxRhjjDHGGGOMMcYYY4wxBn5Mn7LwYNSXCIW5iTEVEGrxkzTlpcn7fbkINVS9BowxefF2LD9uSxhj/3W8H5Qft8fy4TooP66DjDHGVI0HoxhjjDHGGGOMMcYYY4wxxsB3RikLD0YxxhhjjDHGGGOMMcYYY4wBEEIB74wCD0YVxs8AY4wxxhhjjDHGGGOMMcYYY0rDd0YxxhhjjDHGGGOMMcYYY4wh7zF9ct7ZxI/pk8SDUYwxxhhjjDHGGGOMMcYYY+DBKGXhx/QxxhhjjDHGGGOMMcYYY4wxpeE7oxhjjDHGGGOMMcYYY4wxxgCQAu6MIr4zSgIPRjHGGGOMMcYYY4wxxhhjjAEgIhDJORgl5++/RjwYxRhjjDHGGGOMMcYYY4wxBn5nlLLwO6MYY4wxxhhjjDHGGGOMMcaY0vCdUYwxxhhjjDHGGGOMMcYYY+A7o5SF74wqI0SE2b/PgY1dNRgYV0DbDu1x69atYn+zYeNGtG7rgUrmZqhkboaOXp74999/i8wfsGA+NHS0MXb8eNG0nJwc+E+dggaNG8PI1AQ2dtUweMgQpKSkiPK8evUKo8eMQZ16TjA0MYZdzRrwGzsW6enp8hdcgZQVw4AF89HUzQ3GlSrCwsYaPb7rhXv37hU5z5E//wwNHW0sXbZMbPr6DRvQtkN7mFSuBA0dbbx586bUZVWGNatXo1bNmjA0MEBTV1dcuHChyLxPnz7FgAEDUNfREdpaWhg3dqxEng0bNsCjTRtUqVwZVSpXhmenThKxPX/+PHx8fGBbtSq0NDVx+PBhifkEBwfD29sbFubm0NLURGxsrJwlVR4iwuw5s2FjWxUGRoZo277dF+vgrVu38N3//R+q16wBDS1NLF22VCJPZmYmxo4bC/sa1WFgZIgWrVri2rVrYnmGDB0KDS1NseTWwl1iXhEREWjfsQOMjCugYuVKaNu+HT58+CBXuRWlJHUQAM6dO4emrq4wNDCAQ61aWLt2rdj3stTBmjVqQEtTUyKN+vVXUR5p32tpaiJw4ULFFV5BFB3DnJwc/PH776jt4ABDAwM0adwYJ0+eFMsjSwyHDh0q8X0Ld8n6qWqKjl/7du2kxubbb7+Vebk5OTmY4u+PRg0bwrhCBdhWrQpfX1+xdlqdKDqGwcHBaNa0KSpXqgTjChXg3KQJtm/fLpZHljoIAHfu3EH37t1RqWJFmJqYoIW7Ox49eqSYgitQadoSADh48CCc6teDnoE+nOrXw6FDhyTyrF6zGjVq1YS+oQFcmkr+f4KDg+Hl7Q0zC3NoaElvc1NTUzFo8GBY2VjDyLgCnF1dcODAgVKXV9GU1RYDX45f4XY4Py0M/NxeJCUloWevXjC3tIBJRVP07tMHz549k7vciqSsOvjp0yf8NuM31KhVEwZGhqjpUAu///E7hEKhKM+XYpicnFxknv379ys2EKWk6D41kBvb+vXqwUBfH/XrSY/tjN9+Q62aNWFkaAiHWrXwx+/isS0vbTGgvDoYMD8ATZs3g7GpCSysLNGjZ0+J47rZc2bD0akujIwroFKVyujo2QlXr14Vff/q1SuM9huNOnUdYVjBCHbV7eE3xk+tjo2VUQfz7dmzB1qamujZs6fYdFnq4Nu3bzF61CjYVasGI0ND1HNywpo1a+Qqq7Iosy1+8uQJBg4ahCrmZjCsYITGzk0QFRUl+l6WtkTd22JA8X1C4Mv7wjVr1qBxo0aoaGqKiqamaNmiBU6cOCExn/LQJ1TGdvzmzRuM+vVXVLWxgaGBAeo5OeH48eNS884PCICWpqbEvJ49e4ahQ4fCtmpVVDAyQufOnZGQkFDaYiqVMupgPnn2heXp/AIrnpAIQhLKmXgwSgIxqdLT0wkApb98RZTzSe40f948MjY2poP79lNcTCz16d2brK2tKePV6yJ/079vP1q1fAXFXIukO3E3aajvEDI1NaX/JT+UyPvv5QiqXr06NWzQkMaM9hNNf/PiJXXs0IH27tpNd2/eoogLF6l5s2bk4uwiyhMXE0u9evakfw4dosS79yjs9GmqXbs2fderl0LKrqikrBh6eXrS5o2b6GbsdYqNjKKuXbqQnZ0dvX2TLjG/QwcOUqOGjcjGxoaWBC4S+25J4CIKmDuXAubOJQD0+vkLucssEAoVknbt3k06Ojq0bv16unnrFvn5+ZGRkRE9SE6Wmj/p/n0aPXo0bd6yhRo3bkx+fn4Sefr1708rV66kqOhounX7Ng0ZkhvbR48fi/IcPXaMpk2bRvsPHCAAdDA4WGI+W7ZupdmzZ9O69esJAEVFRyus3AKhkEiguDQ/ICC3Du4/QHHXb1Cf3n1y6+Cb9CJ/8++VqzRxwgTavXMXWVlZ0ZLFiyXy9P6+Nzk5OdG5M2cp4V48zZo5k0xMTOh/jx6L8vgO9iVvL296+iRFlF4+fyE2n8sXL5GJiQkFzJtHN2/EUfzde7R/7z76+P5DqcusqjqYmJREhoaG5OfnRzdv3aJ169eTjo4O7du/v0R1MPXZM3qSkiJKp06fJgAUFh4uylPw+ycpKbRx0ybS0NCghMREhdZFdYzhpEmTyMbGho4cPUoJiYm0ctUq0tfXp8ioqBLFcLCvL3l5e4vle/7ihcpjpuz4PX/xQqzMN+LiSEtLizYFBcm83FevX1OHjh1p9549dPvOHbp0+TI1b96cXFxcVB6zsohhWHg4HTh4kG7eukXxCQm0ZMkS0tLSouMnTpSoDsYnJFDlypVp4sSJFBkVRQmJifTPkSP0NDVVIWUnFbclly9eIi0tLZo3dy7duXWb5s2dS9ra2nTlcoQoz55duf+fDevW0+2bt2hM3v/n4YNkUZ5tW7bSnNmzacO63DY3JipaYlkdO3Skpk2b0tWIK5SUkEh//P47aWpqUnRklELjUJbxk6UtliV+Bdvgp09SKGhjbnuRlJBIJBDS24xMqlmzJvXs0ZNuxF6nG7HXqbtPd2ratCkJcj6pPHbKroN//vEHValShY7+c4QeJN2n/Xv3UYUKFWjpkiUyx/BTdo5EnjmzZ5ORkRFlpmfIVW5V7Adl6VNfvJQb27lz59Kt27dpbl5sL0dEiPL8kRfbf44coaT792nvvtzYLlmyRJRH2W1xeaiDXp5etHlTEN28EUex0THUtUvX3OO6jExRnp3bd1DIqdOUlJBIN2/E0Q/DhpGJiQmlpT4jEggp7voN6tWzF/1z+G9KjE+gsJDQvGPj7+Qut7rWwfx0/8EDqlq1KrVu3Zp8uncX+06WOvjDDz9QrVq1KCw8nJLu36c1a9eSlpYWBR869J+pg69evCR7e3sa4juErkZcoQdJ9yn0dAglxifIvB8kgfLaYkXtD5TRJ5RlX3j477/pyNGjdOfuXbpz9y5NnTqVdHR06EZcnCiPsvuE6rodf/j4kVxdXalzly50/sIFuv/gAZ07f56iY2Ik8l65ejX3/GHDhmLz+iQQkJubG7Vu3ZquXL1Kt+/coeHDh5OdnR1lZGaqPG7KroP5Sd59oTLPL7x+8yb3XHV6uorPmn/d8scEdlh0pGArb7nSDouO/D8rhAejiqDIwShhdg5ZWVnR/HnzRNM+vn1HpqamtHbVapnn8+ljFhkbG9PWoM1i0zNfv6HatWtTyMmT5NGmjdhglLT07+UIAkAPk+4XmWff7j2kq6tLOR8+qnwQqixiWDClpTwlAHQuPFxs+v+SH1LVqlXpZux1sre3lxiMyk9nQkPVbjCqWbNmNHLkSLFpjo6O5O/v/8Xfenh4FHvQkp+yc3LI2NiYNm/ZIvX7ogajCnaw1HkwSvhJkFsHAwJE0z6+/5BbB1evkWke9vb2EifA3r99R1paWnT0nyNi0xs1akTTp00TffYd7EvdfboXO//mzZvTb9OnK/RATVV1cNKkSeTo6Cg2bcSIEeTm5lbqOigQCsnPz49q1apFnwSCIvP4dO9O7du3V1jZ1TmG1tbWtGLFCony9x8woEQxHOzrK9FRV7dUFnVw8eLFZGxsLHawVpr975WrVwlAkQdTX3MMBUIhNWnShKZPn16iOti7Tx8aMHCg0spOKm5Len/fm7y9vMWmeXl6Ud8+fUWfmzVrRj+NHCmWx9HRkab4+0vM70HS/SIHo4yMjGjblq1i0ypXrkwb129QaPtSlvErmKS1xSWNX37q7pPbXuR/PnXiJGlqalL66zeiaa9evCQAFHLqtMrjp+w62LVLVxo2dKhYnl49e9HAAQNljqG01LhxY4n5liapYj9YMBXVp/6+d2/y8vYWm+bp5UV9+vYVfe7StSsNHTpULE/PXr3E9nvKbovLQx0snNJSn+Ue1505W2Se9Ne5J/ZCT4cUmWffnr25x8ZZ2V9lHRQIc/vRLVu2pPUbNkitS7LUwXr16tGcOXPE8jg7Oxfbpn9tddB/8mRq1apVidZH2n5QWW2xovYHyugTyrIvlJYqVapE6zdsEH1Wdp9QXbfjVatXU82aNeljVlaxv0/PyKDatWvTqdOnJeZ15+5dAiA2uJedk0OVK1emdevXqzxuyq6D+eWVd19YOCny/AIPRpWN/DGBbWYd6ICFl1xpm1kH/p8Vwo/pKwMPHjxAamoqPDt2Ek3T09ODR5s2uBwRIfN83r9/j5ycHFSuXEls+q+jR6Nr587o2KGjTPNJz0iHhoYGKlasWHSe9HSYmJhAW1s9Xium7BgWlP8IhsqVKoumCYVCDBrii0njJ6BevXqlKIHqZGdnIyoqCp08PcWmd+rUCREliN2XfI5t5S9nLodEdbDT5zjm1kGPEtXBwj59+gSBQAB9fX2x6QYGBrh46ZLYtLPnzsLCyhLfONbB8BHDkZaWJvouLS0NV69ehYWFBVq0aglLayt4tGuLixcvlnrdFKU0dfDKlSvo1KmT2DRPLy9ERkYiJydH6m++VAezs7Oxc+dODB06FBoaGlLzPHv2DMePHcPQYcO+VKwypawYZmVlQU9K3btURL0pLobnzp6FlaUlHOvUwYjh4vVT1cqqDgYFBaFPnz4wMjIq9XKB3HboS+10WSuLGBIRwsLCcO/ePbRu06bI9ShcB4VCIY4fO4ZvateGt7c3rCwt4e7mJvXRsKpW2rYk4koEPD3FY+nl5YnLEZcBfP7/FJwvAHh26lTiNqpVy1bYu28fXr16BaFQiD179iArKwtt27Yt0XyUQVltcWni9+zZMxw7fgw/DP3cXmRlZUFDQwN6enqiafr6+tDU1MTFS6pvjwHl1UEAaNWqJcLCwxEfHw8AuH79Oi5euogunTtLnae0GBYWFRWF2NhY/DDsB5nKp0zK6lNfiYiAZ6F9pZenJyIuF4hty5YILxTbSxcvonOh2KpzW5xPmXWwMNFxXTF9w/Ub1sPU1BSNGjUqdj7qcGyszOO6P37/HWbm5vjhB+nbmix1sGXLljhy5AiePHkCIsKZM2cQHx8PTy8vudZN0ZRZB/85cgSuLi74vndvWFhZoomLMzZs2FDkPIvaD6pzW6ysPqEs+8KCBAIB9uzZg3fv3sE975Gk5aFPqKzt+MiRI3Bzd8eoX3+FtZUVGjZogIB58yAQCMTyjRo1Cl26dEHHjpLnD7OysgBA7NyElpYWdHV1canQuQlVUuZxiSL2hQWp6/kFJhuhkBSSmDgejMqTlZWFjIwMsaQoqampAABLS0ux6ZYWlkh9lirzfKZMm4aqVauKDTrt2bsX0TExCJg7T6Z5fPz4EVOmTUf/vv1gYmIiNc/Lly/xx7y5GDl8uMzrpmzKjGFBRITxkyaiVcuWqF+/vmj6goV/QVtbG36jR5di7VXrxYsXEAgEkrGztBTFVRGmTpmSG1spnZqvQZF10NJCrjgaGxvD3d0df8z9EykpKRAIBNixYweuXr2Kp0+fivJ19vbGzu07EB4ahkULA3EtMhLtO3YQdRjv378PAJg9Zw6G//AjTh4/AecmTdChU0eVP+O5NHUwNTVVav5Pnz7hxYsXUn/zpTp4+PBhvHnzBr5DhhS5rtu2boWxsTF69epVTInKnrJi6OnlhaVLliAhIQFCoRAhISH45++/xepeQUXF0NvbG9t37EBoWBgWBgYiMjISHTt8rp+qVhZ18N9//8XNmzfxw48/yrXcjx8/YtrUqejXv3+R7bQqKDOG6enpMDE2hr6eHrp9+y2WLV8ucbCYT1odTEtLw9u3b7FgwQJ4e3nh5KlT6NGjB/7vu+9w7ty5UpZYOUrblqSmpsLSQkofKO83imzr9+7Zg0+fPqGKuRn0DPQx8uefcOhgMGrVqlWi+SiDstri0sRv6zbJ9sLNzQ1GRkbwn+KP9+/f4927d5g0eRKEQmGR+9Wypqw6CAD+k/3Rr29fODrVhY6eLpq4OGPsmDHo16+f1HlKi2Fhm4I2oW7dumjRosUXy6ZsyupTp6amwqLQPC0KzXOyvz/69u0Lp7p1oaerCxdnZ4wpFFt1b4vzKbMOFkREGD9hAlq1aiV2XAcAR48eRQUTY+gbGmDJ0qUIOXUaZmZmUufz8uVL/DH3T4wcMeKLZVM2ZdXBS5cuISgoCOvXry8yjyx1cNny5ajr5AS7atWgr6eHLp07Y+WqVWjVqlWp100ZlFkH79+/jzVr16J2bQecOnESP40YCb+xY7Bt2zap8yxqP6jObbGy+oSy7AsBIC4uDibGxjDQ18cvP/+Mg8HBcHJyAlA++oTK2o4f3L+PgwcOQCAQ4OixY5g2fToWL16MeXPnivLs2bMHMdHRmBcQIHUejo6OsLe3x7Rp0/D69WtkZ2djwfz5SE1NVZt+DKC8OqiofWFB6np+gTFV4sGoPAEBATA1NRWlatWqlXpeO3ftQoWKpqKU8yl3lL3wVeREVOTV+YX9FbgQu/fuQfC+/aKrFB4/fowx48dhx9atEndVSJOTk4O+A/pDKBRi9cqVUvNkZGSgq083ONWti1kzZsq0bspQVjEsbJSfH27ExWH3jp2iaVFRUVi2YgW2bAqSeVnqSJ7YfcnCv/7Cnj17cODgQZnqYnmwc+dOVDAxFqX8q2WUEcftW7eBiFC1mi30DPSxfOUK9O/XH1paWqI8ffr0QdeuXVG/fn1069YNJ44dR3x8PI4dOwYAohdmjhwxAkOHDkWTJk2wZPES1KlTB0Gbg+RaP0Upaeyk5Zc2HZCtDgYFBcG7c2fY2NgUuczNmzejf//+aluPFR3DpUuXwqF2bTjVrQt9PT34jR6NIUOGiNW9goqKYeH6eey4eP1UF8qsg0GbNqF+/fpo1qxZqZebk5ODfv36QSgUYtWqVUUXRIWUEUNjY2NEx8Tg6r//4s8//8TECRNw9uxZqfOTVgfz938+3btj7LhxaNy4MfynTEHXb7/FunXrSlQ+RVNkWyLLbxTRRv024ze8fvMaoadDEPnvNYwfNw7f9+mNuLi4Es1HEcqyLS7pfIM2b8aAQu2Fubk59u/dhyN5J7pNK1VEenoGnJ2di9yvKltZ1sG9e/dix86d2LVjJ6Ijo7B18xYELlqErVu3Sp2ftBgW9OHDB+zavRs/qNnVxMqof7LEdufOndixcycio6KwecsWLCoUW3Vti8t6P5hv1OhRuBF3A7t37pL4rl27doiNjsHli5fg7eWF3n37SL2LLCMjA127fQunuk6YNXNWsetWlhRZBzMzMzF40CCsW7++yAE5QLY6uGL5cly9cgWH//4b1yIjERgYiFG//orQ0NBSrZuilGUdFAqFcHZ2xry589CkSROMHDkSw3/8EWvWrZU6v6L2g+rUFhdFGX1CWeZZp04dRMfE4HJEBH766ScMHTIEt2/fBqDefcLCFN2WCIVCWFhYYN369XBxcUHfvn0xbdo0rF2bW/ceP36McWPHYtv27UW2uzo6Oth/4AAS4uNhVqUKKhgZ4ey5c/Du3Fll/ZjiKLIOKnJfWJC6n19gxRMSKSQxcerxDDY1MHXqVIwfP170OSMjo9QDUj7duqF5gZNR+VejpaamwtraWjQ97XmaxJU10gQuXoR58+cj9OQpNGzYUDQ9KjoaaWlpcGn+eVkCgQDnL1zAytWrkPXuvajByMnJQe9+ffHgQTLCQ0KkXm2dmZkJ765dUKFCBRw6cBA6OjolL7yClFUMCxo9Zgz+OXoE58PPwNbWVjT9wsWLSEtLg13NGqJpAoEAEyZPwtIVy5GcmFTi8pUlMzMzaGlpSVwhkpaWJnFlSGksCgxEQEAAToeEFBnb8sjHxwfNmzcXfS6yDqY9lzuOtWrVwrkzZ/Hu3TtkZGTA2toaffr2RY3qNYr8jbW1Nezt7ZGQmCD6DABOdZ3E8tV1rItHjx7LtX7yKk0dtLKykppfW1sbVapUEZsuSx18+PAhwkJDceDgwSLX88KFC7h37x5279kjS7HKlLJiaG5ujkOHDuHjx494+fIlbGxsMHXKFNSoIVn3ZIlhvvz6majiu/LyKbsOvn//Hnv37sWcOXNKvdycnBz06dMHyQ8eIDQsTK3uigKUG0NNTU04ODgAABo3bow7d+5g/vz5Eo+iKaoOmpmZQVtbG05164pNr+voqPJHiiiqLbGyspK4Ezzt+efYK6qtT0pKwspVq3DzRpzoscSNGjXChYsXsWr1KqxdI/1kmrKUVVtc0vjltxd7d0u2F56enkhKSMSLFy+gra2NihUrwsrGWup+tSyUVR0EgEn+kzEl74phAGjQoAEePnqIgAXz4evrK/bb4mKY78CBA3j//j0GDxosQ0mVT1l9aisrKzwrNM/nhebpP3ky/AvF9tHDh1gwXzK2+dSlLS7LOphvtN9o/HPkCM6fPSd2XJfPyMgIDg4OcHBwgJubG2rX+QabgjZh6pSpojyZmZnw7tI599g4OFilx8b5lFEHk5KSkJycjO4+PqJp+Sf0dXV0cOfuXdSqVeuLdfDDhw+YPn06DgYHo2vXrgCAhg0bIjY2FosWLVLp0zPKsg5aW1tL6Y/UxcHgYIn5FbUfVLe2uDBl9Qll2RcCgK6urqjf6OrqisjISCxftgxr161T6z5hPmW1JdbW1tDR0REbNHKsWxepqamix9qlpaWhqaur6HuBQIDz589j1apV+PDxI7S0tODi4oLomBikp6cjOzsb5ubmcHdzg4uLS6nXTdGUUQdv3bqlkH1hQep8foHJRkjyP2aPB6Mk8Z1RefT09GBiYiKWSsvY2FjUuXVwcICTkxOsrKwQEvb5iqDs7GycO38eLfKebVuUhYsC8cfcuTh59BhcCzQaANChfXvExcQiNjJKlFxdXDGgX3/ERkZJDEQlJCYi9NQpiZNoQO7gm2dnb+jq6uKfQ4dVPmpfVjEEcq+GGOXnh+DDhxB+OkTiZMGggQNxIzpGLM42NjaYNGECTh07rpgCK5Guri5cXFwQGhIiNj00NFT0bOXSCly4EH/++SeOnzghNbblWZF1MPRzHHPr4Lkv1kFZGRkZwdraGq9fv8ap06fEOkKFvXz5Eo8fP4a1Ve4BVPXq1WFjY4N78ffE8sUnxMPe3k4h61dapamDbm5uEldRhpw+DVdXV7GTAbLWwS2bN8PCwkJ0cCxNUFAQXFxcin1ngKooM4ZA7nPBq1atik+fPiE4OBg+UuqeLDHMl18/rQoc4KuSsuO3b98+ZGVlYcDAgaVabv5AVGJCAk6HhEhtp1VN2TEsiIiQLeWxUkXVQV1dXTRt2hT38p7dni8+IQF29vbFlkvZFNWWuLu5IyREPJanT4eghXvuo8vy/z8F5wsAIaGhJWqj3r9/DyB3gLAgLU0t0QF5WSqrtrik8dskQ3thZmaGihUrIjw8HGlpafDpVnSbrkxlVQeB3PqjqVGo7mhJrzuyxHDT5iD4dPOBubn5F8tZFpTVp3Zzd0dIoX3l6ZAQuLcQj61G4e2yiNjmU5e2uCzrIBFh1OhRCD50COGhYTIPAhOR2OMMMzIy4OntlXtsfPhvlR8b51NGHXR0dMT1GzcQHRMjSt18fNCuXTtEx8SILtD9Uh3MyclBTk6OZPvxhXpaFsqyDrZs0VJKfyQe9lL6I0XtB9WtLS5MWX1CWfaF0hARsrKzReumrn3CfMpqS1q0aIHExESxOpIQHw9ra2vo6uqiQ4cOEtu6q6sr+g8YgOiYGIk7n0xNTWFubo6EhARERkbCp3v3Uq+boimjDipqX1iQOp9fYEyliEmVnp5OACj95SuinE9yp/nz5pGpqSkF7z9AcTGx1K9vX7K2tqaMV69FeQYNGEhTJk8WfV4QEEC6urp0YO8+evr4f6KU+fpNkcvxaNOGxoz2E33O+fCRfLp1I1tbW4qNjBKbT9a790Q5nyjj1Wtq3qwZNajfgBLv3hPL8+ljlkLKr84x/HnkT2Rqakpnw8LE8rzPyCxyXezt7WlJ4CKxaU8f/49irkXShrXrCACdP3OGYq5F0stnaaUus0AoVEjatXs36ejo0IaNG+nmrVs0ZswYMjIyovsPHpBAKCR/f38aOGiQ2G+ioqMpKjqaXFxcqF///hQVHU1xN2+Kvp8/fz7p6urSvv376UlKiiilZ2SI8qRnZIjmA4AWLVpEUdHR9CA5WZTn+YsXFBUdTUeOHiUAtGv3boqKjqYnKSkKKTsJFJfmBwTk1sEDBynu+g3q17dfbh18ky7KM2jgIJri7y/6nPXhI8VERVNMVDRZW1vTxAkTKCYqmhLuxYvynDx+gk4cO073E5Po9MlT1KhRI2rWrBllf8wiEggpMz2DJowfT5cvXqIHSffpTFg4ubu7U9WqVcWWvWTxYjIxMaH9e/dRwr14+m36dNLX16fE+IRSl1lVdTAxKYkMDQ1p7NixdPPWLdqwcSPp6OjQvv37S1QHBUIh5Xz6RHZ2djR58uQi1+/1mzdkaGhIq1avVliZFZ2UEcPLERG0/8ABSkhMpLPnzlH79u2pRo0a9PLVK5ljmJ6RQePHj6eLly5R0v37FBb+uX6+SU9XedyUGb/81KpVK+rdp0+plpuVnU3dfHzI1taWomNixOryh48fVR43Zcdw7ty5dPLUKUpITKRbt29TYGAgaWtr07r162WugwKhkA4cPEg6Ojq0dt06uhcfT8uXLyctLS06d/68QspOKm5LLl24SFpaWjQ/IIDu3LpN8wMCSFtbm65cjhDl2bMr9/+zacNGun3zFo3N+/8k338gyvPy+QuKiYqmY0dy29w9u3ZTTFQ0PX2SQiQQUvbHLHJwcKDWrVvT1YgrlBifQIELF5KGhgYdO3JUoXEoy/jJ0hbLEj8SCCn9dW57sWbVaqnrF7RxE0VcukyJ8Qm0fes2qly5Mo0fN07lcSuLOug72JeqVq1KR/85Qg+S7lPwgYNkZmZGkydNKlEMSSCkhHvxpKGhQSeOHVdYuVWxHxQIv9ynvnAxN7YBAQF06/ZtCsiL7eWICFGewb65sf3nyBFKun+fDhzMje2kSZNIICybtrg81MGff8o7rgs/Q0+fpIjS+7fviARCepuRSVOnTKGIS5cp+f4DiroWST8MG0Z6enp080YckUBIGW/SqXnz5tSgQQNKjE8Qm8+n7Jyvsg4WToN9fcmne3eJacXVQYFQSB4eHlSvXj0KCw+nxKQk2hQURPr6+rRy1ar/TB3898pV0tbWprl//kkJ9+Jp5/YdZGhoSDu2bZd5P6jMtlgR/4fS1ENZ+oSy7AunTJlCZ8+do6T79yn2+nWaOnUqaWpq0slTp0R5lN0nVNftOPnhQ6pQoQL9+uuvdOfuXfrnyBGysLCgP/74o8j18PDwID8/P7Fpe/bupbDwcEpITKTgQ4fI3t6eevbqpfKYlUUdLJxKuy8UCJV3fuH1mze556rT01V6zvxrlz8msN7Eg3aYdpArrTfx4P9ZIf+ZwagVK1ZQ+/btZc6v6MEoYXYOzZoxg6ysrEhPT4/atG5NcTGxEgNJvoMGiw14AJBIs2bMkHkw6kFCotR5AKAzoaFEOZ/oTGhokXkeJCSqfBBK2TEsquybN24q0WDUrBkzSjyfshqMEgiFtHLlSrK3tyddXV1ydnamM2fPijWoHh4eYvmllcXe3l70fVGxnTlzpihPWHi41DyDfX1FeTYFBX1xPvIkUuBBi/CTgGbNnPm5DrZpQ3HXb4jl8fDwIN/BvqLPD5LuSy2fh4eHKM/e3XuoZs2apKurS1ZWVvTrL7/Qm1evRd+/f/uOPDt5krm5Oeno6JCdnR35DvalR8kPJdYxYN48srW1JUNDQ3J3d6cL586rxQFLaepg+Jkz1KRJE9LV1aXq1atLdORkqYMCoZBOnDxJAOjO3btFrtuatWvJwMCAXr1+rdAyKzopOobhZ85Q3bp1SU9Pj6pUqUIDBw2ix//7n8Ryi4vh23fvqJOneP0c7OtLyQ8fqjxeyo6fQCikO3fvEgCxg+CSLDfpvvR9BAAKCw9XecyUHcNp06aRg4MD6evrU6VKlcjd3Z127d5dojqYnzZs3CiaV6NGjSj40CGFlZtU3JaQQEj79+6jOnXqkI6ODjk6OtLB/Qck5r2q0P/n3JmzYt9v3iS9zZ01c6YoT/zde9SrZy+ysLAgQ0NDatiwIW3bslWhMSjr+MnSFssSPxIIad2a3PaiYDtdMPlPnkyWlpako6NDtWvXpkWBgST8JFB53MqiDma8Sacxfn5kZ2dH+vr6VLNmTZo+bRplffhYohiSQEhTp0whW1tbEuR8Uli5VbUf/FKfWiAU0t594rHdf+CA2Pdv0tPJr1Bsp02bJrpooSza4vJQB4s8rtsURCQQ0od376lnj55kY2NDurq6ZG1tTT7dfOjfK1dF8zgTJv34BQA9SLr/1dbBgknaCdgv1UGBUEhPUlLId8gQsrGxIX19fapTpw4FBgbSJ4HgP1MHSSCkI3//Q/Xr1yc9PT1ydHSk9WvXSeT50n5QWW2xoupgaeqhLP3qL+0Lhw4dKlqmubk5dejQQWofXJl9QnXeji9eukTNmzcnPT09qlmzJv3555+UnZNT5DpIG4xaunQp2draitqS6dOnq90FcsqsgwVTafeFAqHyzi/wYFTZyB8TWGfchraZtJcrrTNuw/+zQjSI/hsPL5w9eza2bNmC5ORkmfJnZGTA1NQU6S9fqd17G9h/h1CLn6QpL83/xB5OeYTyvw+eMcbKPW5LGCv/uE8jH94Pyo/roHy4DsqP6yBj5VtGRgYqVayI9PR0PletRPljAmuMWsNAQ1uueX2gT/j53QX+nxXwnznTPXv2bJkHohhjjDHGGGOMMcYYY4wxxphiyDe8xxhjjDHGGGOMMcYYY4wx9pUQCglCDfluyxX+Nx5IVyI8GMUYY4wxxhhjjDHGGGOMMQaAhASSczDqP/J2pBL5zzymjzHGGGOMMcYYY4wxxhhjjJU9vjOKMcYYY4wxxhhjjDHGGGMMuY/YE4If06doPBjFGGOMMcYYY4wxxhhjjDEGfmeUsvBj+hhjjDHGGGOMMcYYY4wxxpjS8J1RjDHGGGOMMcYYY4wxxhhj4DujlIUHoxhjjDHGGGOMMcYYY4wxxsDvjFIWfkwfY4wxxhhjjDHGGGOMMcYYUxq+M6oIlDdymZGRoeI1Yf9lQi0eL5aXJl+EIBehhqrXgDHGVI/bEsbKP+7TyIf3g/LjOigfroPy4zrIWPmWf46a+G6bMvGePsl9Z9NHCBS0Nl8PHowqQmZmJgCgWo3qql0RxhhjjDHGGGOMMcYYY/95mZmZMDU1VfVqfLV0dXVhZWWFmalRCpmflZUVdHV1FTKvr4EG8XCqVEKhECkpKTA2NoaGBl8+whhjjDHGGGOMMcYYY6zsEREyMzNhY2MDTU1+kpIyffz4EdnZ2QqZl66uLvT19RUyr68BD0YxxhhjjDHGGGOMMcYYY4wxpeFhVMYYY4wxxhhjjDHGGGOMMaY0PBjFGGOMMcYYY4wxxhhjjDHGlIYHoxhjjDHGGGOMMcYYY4wxxpjS8GAUY4wxxhhjjDHGGGOMMcYYUxoejGKMMcYYY4wxxhhjjDHGGGNKw4NRjDHGGGOMMcYYY4wxxhhjTGl4MIoxxhhjjDHGGGOMMcYYY4wpzf8DwyPpxiXyLCwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "attr_res.plot_token_attr(show=True)" + ] + }, + { + "cell_type": "markdown", + "id": "f388ff5e-ac5c-4391-9f9a-375df969cf4e", + "metadata": {}, + "source": [ + "Keep in mind that the token- and sequence-wise attribution will change layer to layer. We encourage you to explore how this attribution changes with alternative layers in the LLM." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/Resnet_TorchVision_Interpret.ipynb b/tutorials/Resnet_TorchVision_Interpret.ipynb deleted file mode 100644 index b031a5a084..0000000000 --- a/tutorials/Resnet_TorchVision_Interpret.ipynb +++ /dev/null @@ -1,466 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Model Interpretation for Pretrained ResNet Model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This notebook demonstrates how to apply model interpretability algorithms on pretrained ResNet model using a handpicked image and visualizes the attributions for each pixel by overlaying them on the image.\n", - "\n", - "The interpretation algorithms that we use in this notebook are `Integrated Gradients` (w/ and w/o noise tunnel), `GradientShap`, and `Occlusion`. A noise tunnel allows to smoothen the attributions after adding gaussian noise to each input sample.\n", - " \n", - " **Note:** Before running this tutorial, please install the torchvision, PIL, and matplotlib packages." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "import torch.nn.functional as F\n", - "\n", - "from PIL import Image\n", - "\n", - "import os\n", - "import json\n", - "import numpy as np\n", - "from matplotlib.colors import LinearSegmentedColormap\n", - "\n", - "import torchvision\n", - "from torchvision import models\n", - "from torchvision import transforms\n", - "\n", - "from captum.attr import IntegratedGradients\n", - "from captum.attr import GradientShap\n", - "from captum.attr import Occlusion\n", - "from captum.attr import NoiseTunnel\n", - "from captum.attr import visualization as viz" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1- Loading the model and the dataset\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Loads pretrained Resnet model and sets it to eval mode" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "model = models.resnet18(pretrained=True)\n", - "model = model.eval()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Downloads the list of classes/labels for ImageNet dataset and reads them into the memory" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [] - } - ], - "source": [ - "!wget -P $HOME/.torch/models https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "labels_path = os.getenv(\"HOME\") + '/.torch/models/imagenet_class_index.json'\n", - "with open(labels_path) as json_data:\n", - " idx_to_labels = json.load(json_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Defines transformers and normalizing functions for the image.\n", - "It also loads an image from the `img/resnet/` folder that will be used for interpretation purposes." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "transform = transforms.Compose([\n", - " transforms.Resize(256),\n", - " transforms.CenterCrop(224),\n", - " transforms.ToTensor()\n", - "])\n", - "\n", - "transform_normalize = transforms.Normalize(\n", - " mean=[0.485, 0.456, 0.406],\n", - " std=[0.229, 0.224, 0.225]\n", - " )\n", - "\n", - "img = Image.open('img/resnet/swan-3299528_1280.jpg')\n", - "\n", - "transformed_img = transform(img)\n", - "\n", - "input = transform_normalize(transformed_img)\n", - "input = input.unsqueeze(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Predict the class of the input image" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Predicted: goose ( 0.4569324851036072 )\n" - ] - } - ], - "source": [ - "output = model(input)\n", - "output = F.softmax(output, dim=1)\n", - "prediction_score, pred_label_idx = torch.topk(output, 1)\n", - "\n", - "pred_label_idx.squeeze_()\n", - "predicted_label = idx_to_labels[str(pred_label_idx.item())][1]\n", - "print('Predicted:', predicted_label, '(', prediction_score.squeeze().item(), ')')\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2- Gradient-based attribution" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's compute attributions using Integrated Gradients and visualize them on the image. Integrated gradients computes the integral of the gradients of the output of the model for the predicted class `pred_label_idx` with respect to the input image pixels along the path from the black image to our input image." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Predicted: goose ( 0.4569324851036072 )\n" - ] - } - ], - "source": [ - "print('Predicted:', predicted_label, '(', prediction_score.squeeze().item(), ')')\n", - "\n", - "integrated_gradients = IntegratedGradients(model)\n", - "attributions_ig = integrated_gradients.attribute(input, target=pred_label_idx, n_steps=200)\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's visualize the image and corresponding attributions by overlaying the latter on the image." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU0AAAFlCAYAAABvD7qfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9f2zb9Z0//gi4wxze4UEQmZZtZmQiCO/IIGhBZCIbORHpggg/ThTRiWwDUUQRPehEEZ3o1E50ohydyIlMdGonOjUSZWRqJsI1G941p3qrWXNqplqqt3qrT/Wp3upbjOoR0/f3D9/jlefr6df7bTvp4POV/JCqxvb7x+vn8/X8/WzzPA8ttNBCCy00hgs+6ga00EILLfz/CS2i2UILLbTQBFpEs4UWWmihCbSIZgsttNBCE2gRzRZaaKGFJtAimi200EILTSC0kpvb29u9WCwGAFhcXITnefjYxz5mfn///fdx4YUXms/ybxfo/tTW1lbz/blz56zv9d+Li4vm2gsuuAChUKjmGa57Pc/z/fzBBx/g/fffRzgc9m0XAFQqFQDAqlWrfNvc1tZm3X/u3DmcO3fOtLNUKiEUCpl3+bWdz9Ltfv/9983fbIful7z3zJkzAICPf/zjWLVqFT744AMA1Tk6d+4cyuUyAOCCCy6oaRPf9f777+OCCy7AuXPnAACRSAQffPAB3nvvPQDA3//939f0RYPzdsEFF+CDDz4w6+evf/0rLrhg6UznOOk5cLWL1/J+PVbEf/3XfwEALrnkEnR1dZkx+sMf/oBLLrkEAPDHP/4Rn/nMZ/DHP/4RANDZ2YmLL74YkUjEesf8/DwAoKuryzmHxNzcnPn7qquuwqWXXoq//OUvps8XXXSRNW7/+7//i9OnTwMAYrFYzbrmPIXDYfzlL38xv//d3/0d3nvvPfzud78DAHzmM59BNBrFwsKC+Z3rtlKp4JJLLjHtuOiii/Cxj30scKz//Oc/W/3kez/2sY/h/fffN/N47tw5LCws4L//+7/N711dXeY+ea3G4uJizZ5aXFw0Yx4KhWquOXfunLUf2QfP8/Dee++ZeQOAd999t+B53hW+nfTBiohmLBZDKpUCAOTzeZTLZZCIAkAul7MaGY1GA5/HzuqFUalUDFExDRd/h8Nh5PN5ANVFFIlE0N7e7nx2pVKxJrtSqVjPkp+LxSJyuRy6u7ud7SqXywiFQigUCgCAjo4O3zaHw2Hr/lKphHK5bNo5OzuL9vZ28y7ddrafz9Ltzmaz5nN7eztCoZD1u9xclUoFExMTAIDBwUF0dHSgWCwCqM5RqVRCOp0GUCWEuk3ZbBbA0vyWSiUAQH9/P4rFIpLJJABgaGiopi8anLdwOIxSqYTOzk4AQCaTqVk7uk8auVzOXMu2A7VzTHC+ent7MTU1ZcZo7dq16OvrAwA8+uijeOaZZ/Doo48CAJ544gn09PSY3/kOjtG+ffuccyj7QebhpZdewvDwMGZmZkyfu7q6MDg4aK6fmprC+Pg4AGD37t0165rz1N3djenpafN7b28vkskk7r33XgDA9u3bMTIygkQiAQDo6ekx67ZQKKCvrw/T09MAqoTfRaAl9uzZg3g8DqA6vnxvLBZDLpcz81gqlZBIJLBp0yYA1UNnamrKPEdeq5HP52v2lKQp7e3tNdeUSiWzltvb281eL5fLSKVS6O/vN9e2tbX9wbeDAWhbiXP7DTfc4P3mN78xn2dnZ9Hb2wsANadtuVwOPIFdkBs9m82aidEEsxFIonA+US6XzeLLZrPm+VxQhD4QCoWCIfD8XW+IIJRKJYuoFItFQ8y6urqs31zgYcf52r59OwBgw4YNpi9AdRMEzd3c3JwZ297eXmzdutU8o729HbOzs8hkMgCA0dHRmvtJ6Eg0uQHC4bAhIn59TqfTFoFiO4rFonV4a+TzeUQikbpjBMAcMEeOHAEAPPzwwzVEcWpqCnfccQcA4Pjx40ilUli9erX1PgBIJBK4//778eabbwIARkZGat63Y8cOM9aRSATxeBw9PT2mvxwPebADVYLb29uLdevWAQDGxsaQSCTMety9ezdee+01087du3ebd2azWcRiMdNOSYSAJe6Y7QCq80Yie+zYMbz44ovWPfxtYGAAk5OTuP/++81vmuZMTk6a+ZLv0EgmkyiVStahUqlUrHWfSqXM+Ok9qNHW1vau53m9gRe57lsJ0ezp6fFmZ2cBVCe4UqkYMSUajaK9vd25MIvFokW8SqUS8vm8OXHYaXIwfAYXSLlcNn93dXXVcFSlUsnc67d5/LhaiXQ6jY6ODvP+UCiEyclJ08eRkRFrYnK5nGm7iwAWCoVAwqi5aT5Lc0p6cZOosc+lUslwm/LZAHwJBRdeoVAwhFS3Leh+YnZ21pzmhUIB0WjUcJ7ylOcz2Ue2dceOHQCA9evXo1QqGYLr2kypVMp8HwqFzLWpVMo6ODSRS6VSuOmmm3DllVcCWBpPcnyxWMwQp3379mFoaMiMj2sjXn755RYxisfjuOaaawAAb7zxhnVg33bbbfj5z39u7t28eTM2b95sPlN9Itsq50POUzabNZwkJY19+/aZ8XOhEeahVCohl8uZg7VSqdQceJLD04cXsDSWJHAk0uvXr8c999yDH/7wh+baRCKBgYEB866gPTk7O2veyznaunUrABhulu/u6OjwlRIrlQpWrVr14RPNG2+80fvBD34AYIlIkP2/9957kU6nzWbjoPiBhBOodlASOw4kOU/JoUnuAqiy/6FQyHwOh8MNcRSyHZKlz2azZhLa29uxZs0ac/KGw+FAUUyK1GyTXqwkwJ2dndZhIFUMxWLR4vTK5bLFDezZswdr1qwxn/kevj+Xy1kcnAbVDGynHo9sNmsRC85DJpNxEhGKX5FIJHDeJUFwjY3eQFxLfLarH+xjMpnEAw88AAB45pln8NBDD5nrpqen0dvbawjbn//8Z9xyyy1GnfDtb38bjzzyCIAqUUulUhgeHjb3r1271ojMU1NTGB4exuTkJIDqQTo2NobHH38cQC1Xlc1msW3bNgDAunXrEI/HzXoqFArYtGmTOWT4fklUScgikUgNw6AJbD1QQtIH+caNG9Hd3W0IHg9hed3U1JRZS5Lz021wid+XX345nnnmGQBVyUaubznnZKQ4tkNDQwiFQubg4N6TYw/YUpIf8vk8PvnJTy6LaLas5y200EILTWBFnGZvb69HzjKbzaK7u9ucEuVyuUaZT06gvb0d0WjUnJo9PT01HFA6nTYnW6FQQGdnZ8M6qFAoZHElQH2x0oV8Po90Om1EQM0JUZ8nuSlyDbFYLFAEyuVyiEajFlcbiUR89Uq8BgAmJiYwOjpqRJ6ZmRnEYjEjpqRSKUsfGI/HzbxoQ1g+n7dEec3dFYtFS5co+7R582asXr3aiITd3d249957sXPnTgDAQw89hImJCaPfy+VyyGQydaUOYn5+3nALlUoF0WjUcObkcKmL7ejoMO9NJBLI5/Pm2sHBQWzcuNFweOy3a4w1xsbGsHbtWjMmWs8K2NzVjTfeiHfffdf6nfo9crKcx4svvriGE9X647a2NmzZsgVAVfzUomgjXBXBuQRswySNmXyG1h3LNgOw9gTBdp04cQIPP/ywMZRpDAwMGGnUBap02C4ARu3S2dlZQyfqifMalOQKhQI+//nPf/jieW9vr0fCp1FvUdISBiyJgJyo/v5+pNNpM3jlctlaqOVy2YjMfX19aG9vrxHdKJpKXSnvLRaL5nc/y12jGB8fNxtGi0blctkstuUYoDg+JGrsI8VzWk65aDhG5XIZa9euNRuro6PDsvCHw2HTLj+LNMeH+uGgceKzSKikKCsxPDxsWU4lCoUC8vm82bj5fB6FQsH0qVAooKOjwxCJnp4eTE1NWbpWv/cCS2I0sKQKkO3u6OjAxRdfDAC48847jcg3Pz9f16AgiZmG1lFKjI6O4kc/+hFOnjwJwL0W29racPbsWQBVQseDoVgsGoMbsETMeTBs3LgRgD9RzeVyhoB0d3cjk8kEqpoKhYJZJ1zL0i5Ab4xMJmPWHbFz5048/PDDAJbUFRzfrq6uwPEtFAp4/vnnAVQ9Gfbt22dULfUMp9PT05ZHiST0hUIBV1xxxUdDNKl/KZVKTgswN75cEOQg5Gk2Oztr6UNLpVKgfoYLPplMoqenx5pISYDT6TT6+/stf0hJVCXBIMcmCXQ6nTYTPDAwgFAoVKOY57slYSTHUI84EVqnF+SKoccAaNyLQD4fcG/UcrlsxqcRDt3PuMCxDuIUZHsk0SRR47Pld0B1c/pxM0899RQeffRRM487duxAV1eXkQKSyWSN28vU1BTWrl0LoCot+FlxK5UKZmZmAt2phoaG8PbbbwMAnn32WbPJY7EY0um0ITDr1q3DFVdcYRFVvQ6SyaSzn9PT04hEIsa4RulCcvXbtm0z1nRNEOfn581eJXNDRqRYLBrPB2CJq6VudfPmzZbb2po1a8y92WzW0h+XSiVMTEwYg1U0GkVbW1vNQcF5zeVy5lmcDxqhurq68NJLL+FPf/qTNV6c11KpZB2cY2NjeOeddwAAN998M9asWWMxcsu1nrd0mi200EILTWBFnOY//MM/eL/4xS/M51AoZJ2S2WzWnCDypKPrDX+rVCqIRCJGhIxGo8hms5YL0uTkpDndg7gqrRYoFotIpVLGwuey0vqBVj35PqnTmpubQyaTMdxRe3t7Q7qlRtCIeiOIc9XuPNKyrNUG2srvcvDns+idIK/lsxrhSpvx1y2Xy4YjDtIjArYzfKVSsTjo6elpiwtrb2/H1NSU4eDa29sxMzNjWYGfeuopAMC//Mu/IJ/PW++qZ6XWIjm5H3K35P7i8ThGRkZq5lnOB7DkNdCMiqejowP/8z//YzwIduzYgTVr1hhu0Y9LJ7Zv345vfetbAICDBw+iv7/fcHR07+K8r1692tdjolgsIpFImPGanZ21fFjZNkojUn9MmiHdGqPRqLXHEomEaVexWLQ8Debm5ownQqVSQVdXlyUhfCR+mjfccIP3k5/8BIBbEb1v3z4jAmjlv3TGZiSRXDza9yudTtfo7oIgRcZKpVLzWRINKaoGEaNisWi5R7C9XNS5XM70l3pWuZGlEYafqZfM5/MYGhoK9KPz+43OyRpcMDKqx9U37XIk253P55FIJEy/BgcHaza1fmaQMctlZCCkj6cfGvUX1ZiZmTHtSSQS2LBhg5mLzZs3Y/369VbYIEMX29vbUalUzKbWYu7k5CSi0ahZ3319ffjVr36Fl19+GcASgSQ4z0CVWPT39xtxVjqcA1XmQh7KoVDIzAPVBGwPr+F6uvbaawEA1113HYAl1zYJjuXMzEyNo30qlTLzHI/HUSwWzfiFQiHr3VrFw/3k+s2F2dlZY9CbnJw0BDgajWJubs7M9ejoaNOGH2LHjh04evSo5R/aEs9baKGFFj4ErNgQxFPBT5TULhJArXij47CB6inLk46x0S7uy49zcYmc/FtCGht0H2gQ0W5BftCiZ7FYtKKJ9LXz8/OG2+7r6zMWZCA4bpsW7XouM41EPTVyjb5Oivoa9cRvGUdfT0xPp9OGU6FbzHK8HZLJpAnFBapjOz8/b1yBent7EY1GzVrds2ePrygcjUYt49SOHTuwfv16K+BBrmOXhZdcYTabtbjbJ598Ev/4j/9ozf3s7KyxkieTSdMHiqo0nvb19WFsbMxYzcPhMP7617+a5zz99NOWy5XE1q1bnRZvcs+U7DhvjODhmpmfnzcc7sjICLLZrCUNuty0ghDkRtWMekdLYJpLXS6nCc/zlv3vxhtv9IjFxUVP4ujRo57ned6ZM2e8M2fOWL+dOnXKW1hY8I4fP+4dP37cO336dM39GkePHvX279/v7d+/3ztz5ox3+vRp7/Tp087nLxdnz571Tp482fD1+trTp09bn119CmrvwsKCd+LECe/EiRPWvWfPnvU8zzO/nTx50jt79qy3uLjoLS4u1rzX9Vy+l8/S2LVrl7dr1y7z+emnn/aefvppz/M876WXXvJeeOEF74UXXqi57+DBg6YdJ06cCGyL37tdOHr0qPWshYUF780332zoXraJfd67d2/NvQsLC773Hzp0yNu7d6/5d/r0ae/YsWPesWPHaq7V373++uu+z33nnXeszy+88IJX3YLBAFBz3ZNPPmnmR15H7Nq1y9wHwHvkkUes8eT+lJBrU67t48ePW9e55pH3HjhwoGasn376aW9hYcGMuR6zoLnwPM/s9aNHj3onTpzw3UPs32OPPeY99thj3oMPPuj7zLNnz3oAUt4y6N6KshxJaCpOLkj7dPG3IGU6dYPyRInH45Y+UHIC9bikXC5njEzS0VuDRh+/k47Zf9huzfUw6wr7qDncIH0eUOUe2EfJpZLj9TMyzc3NWUYMBgZI30yOl58rE/VQExMTGB4eNvOXz+eRyWSM+0c2mzWK+b6+PpPQwzVe9SC5Bi1JaN89V4INnUWK6O3tNW4zQNVQId2zNBKJhJV9Z82aNebvrVu3olAoGH3jtm3brLZ2d3eju7vbcFr33nsvisWi4fg2btxo6SSBJWf3eDzu9OEk19re3o7Ozk688MILAKrGKSbG+M53vmO5Rm3fvh379+83zxgdHUUsFjNuQTT8UDcrOb9EIoFKpWKtIblGOjs7rXBOF6fHdR6LxWr0p2vWrDHrKxQK4dprrzVt7enpQaVSMYEu3d3dlgQ1Pz9vOPuenh7jv8tnyTXB+eZa1bp3iaD1UA8tnWYLLbTQQhP4m0UEMduQ1OnUs3zyRCFXxhOtkTyc9bhNcg79/f010SBSdyrbRl0rvwuHwzWcmk6oIDE0NGT0U8w6I/WBhULBerZEsVg0XGssFgvU4+RyObz00ks16bmC8pP6jdf09DTy+bxxRpZWdMDW+3KOyBnF43EriQddhrgGOI/kyiQHrPVPepz9LPIyH6deJ3wPOS5a5ru6ujA+Pm6sv4xAY7u1Di6dThtOaXBwEJFIBLfffjuAahaje+65B/Qi4X5iApU9e/ZYz5Fcqew/UNXjS70tQx39otuA2kTTXIuJRCIwXFFjZmbG6DBDoRDm5ubMWu3r68O6deswNjZmrpdeJKVSyeyvvr4+zMzMWF4DLj0kue1SqYSBgQFz/+joqBmfbDaL/v7+ZYVA+0HuiY/E5SiIaAbBT5nLDaDTmrmgM7ToyBtXjO1KoeO06YfKzZ7L5cxvLlE1nU4bAtPV1YWenh7jFtTb21szJn5ZaBqB9MXUWZE0JicnLZcTV0SMzKnIeWL0lTzc5Lvo2qXHQrpOyVjgjo4OK1l0sVg0xIsuamxXPp9HKpUyRCQoDyNQNWy89dZbAICvf/3r2LhxoxXKp9tHYkY3MxJYZgA6cOAAAOCHP/yhlU+T+8mVNZ/rnn2enZ3F8PCwGdvu7u4aY6M84ILWcSwWw8aNG43q6KabbqoR/bURTh+q2vWOBJiGIraLqgdicnLSrGOqL4hGfEvleNdTYWnUY5i4VkulEqLRqMWkfOREk2GUUu8o/5cD4Uo/FkTcXByTzPUnHXW1HiObzaJSqdT41/E6l0Vc/pbP5y3roeQA8/k8BgcHA0MSJeRhUalUDKH4W0Fy9i5dFlBt88zMjOkzdYEcL21ZlU7giUQCuVzOcFU65C8oKz6wlBAFqPrxSl/KeDyO6elpy5Is9VC5XM7qi3x2vfWUSCTwla98xSIqMrGIjJ/es2cPQqGQ0eOWy2UMDg7innvuAQB88pOftDgwvp+6xLm5OUMQ/OLTyeG5OMNMJmPGRCedDkpc7Yp5f+qpp4zD+uTkpNH9ybh83Q8iEolYiVgAm/unHSCRSGB0dNR3T7gSwtQ71PX9ZCaY9lGvKXnIyCzukUjEkvRafpottNBCCx8C/mbiOUUzmQxYp3xqFIxYcSWklZxgI9Dsv6v2kBRh8vm8pbuRSY35Pa2Fkptl/6V4IvVAzSbYkKCfnBTfZeQEU+/5oVAoGNFUJlcAquLVQw89ZDgYPV4yvHNsbAwbNmywksS6wPGhjltmnJec0sTEhMncPjU1hVQqZZ7NpL+Etrbn83kj5up27NmzB+3t7eb7QqGAnTt3WmJmPB43HPSOHTtw+eWXAwC++93vGo4sCBTHn3vuOcRiMcN9h0IhY3mPRCIYGhoy4zkzM4OZmRmjP6boLqOitm3bZtYV/Un5rH379pl9oDOrt7W14ZFHHjHjtnr1ahw+fBhf+9rXzGdKH8PDw5aEptMHusB72UfOYyQSwdzcnPmsOU2X+O0nYjNCTIZJ9vf3LyuslJDSysUXX/zRiOcUW/zcEEg0GV8OuA1BeuB0aJ8Wu3WGn3qEWMe5u0DWn9cyjZq+Rjt6cxL9nOPZRtfCdBlp+Gz9Pb8jgWzmsPBDPp+3Fp/Oxq5LdFQqFSOqAlX1B0U7l6i4e/du0+41a9ZYRduy2ayV2T8WixkH7GQyicnJSUMw5D2E1pVyI0ciEXR0dJhsOSMjI6ZWDfug53V8fNwQ9/Xr1xv1T0dHhxUCLMV4oEqc7r77bmMI+uxnP4tsNmvl0OQeGB4exuzsrCFka9euRU9Pj5W5PZfLWfrZoaEh8yzANiSmUilr/LQ4Ld36tLje1tZmKpLSdYfP5pw3erDLygChUMg6WBOJhJVlTKsCdFWGRt6pw4kbVY9JlMvl/zeJJtBYxIkkkPJaV7kI/axQyF32djmg8UQapHS5DE28pQU8SIHNBS3b7mq3LDQmC2xJ5PP5miJktPQD9Ss3VioV67SuVCqmz52dnTXcwPT0tLECS2uwq4863V+hUDBGpomJCQwMDDSlx5Vp9yTBdOW5JPGhXo336ms3b96M6elpo4vcu3dvjeeB30bcuXMn5ubmsHfvXgDVUhkLCwuGY2cCZNezbr31Vvzud7/z1WG6dLHS+8C1XqTPIg8WwpXcmwfHXXfdZcoU79692xihgCpHW8/AIpkWrVOUYzY1NYWBgQGzLnh46Ui5ICOw7KNMMMPrOI6RSASdnZ1WOWVp0NOHbEun2UILLbTwIeC8JSGmZVhbS4mg7OCue/k9UOUUZPSQPOX0vY3EUPtdQ45XqxT8OEgt2jbC8Uo3IFchMZ6SMs0e26DbLcUUaTWUkUW8Tlf/lJxmULtZoliKX0EolUqGM5DlE/gsGakE2CJ9sVg0XOlDDz2E4eFhY4VmpnJZAqFcLhsOki5IQFUMvu222/DGG2+YPkowo45Mdyf9bUdGRqyqmBKJRAKxWMyKidfP7unpseLcea2flVqOXbM+idIrQvq60hXMj6vPZDKWP+jOnTvNvdSd+onMLJshS2pL6VAn9o5Go00VfJOQGckAtzTnF8Gn0ytms1krSu7Tn/70R1ONUtdDkahHoIh6Wc1dpW+l/kbrC+uJprzG73ftjhR0rfQJbUTBLZ8tw0GpGpCuWs3k08xms5aBJUhJ7vKjk+Picg3i50Z8RnUdH2Jubg6JRMI4PjMvI9skN9bWrVsxMDBgpeHr7Oy0xObZ2Vnj4qTHeX5+3hAF7VRPMY4ol8vo7e01DtaxWMz8TSLHvvz2t7+F53lmDD/xiU9YukI/Qwf7tGHDBitgQPqmUrenP/vNJUNcAVjiNaEPRL91PD8/jy984QumH1xLmlguJy0f1UaypLardLNef0Htdb1D/i33jSb858MQtGKv76DsQToiSN5Tj1BKUI8hjSqcOPqHSqJJR1ZXu/y+k79pblk+27UIXaesdLZ39Zntl1yXK6pFP5eQpyiJu45z12V/Zf9ku+TzXTpbubFdkDq8UChUQ+y5qHt6elAqlYwhaWBgwNeYpbPuyPbwnb29vda4+BFgQvvqSq4/mUzWeAkASwSFuO+++2r8R6WRJZ/PY2pqyuJQ2UZyssT09DRisZhpayQSQS6XwyuvvAIAePHFF61CY8DS/GSzWeRyOavNUuJiIAa5sCCPivHxcXieZ/Sdw8PDztjs5doONCFz7X29dgG3dVyvVfmsYrFYQ3R1m8+H/aOl02yhhRZaaAIr4jTPnTvny7XpaBftbhMUKQLUhlpK7tEVWqZPXI0g8dMP2qWIpyBPYakTApaiNOR7XBFRfu9yWcmBJWu4FO2llVFb+LXvqYQWU3hS+0kMzFwu1QZy7OU8RaNRzM7OmnGRvnt8Z19fX+DYy1hyqXahKkOHS/J3mQ3HpdZIJpPme+q+eD05LIrg/f39xsJNC7sUwanH5/dtbW3GT/PQoUNYv369UVGMj48bNyodxz8+Pm4KpBHt7e145plnzHjpKCjey/BUWSImFApZnGWlUmnILY1lijm2rDyp16Of3pLfyf+154cUk13ug3LPNpJrQrZHivrnM2zaDyvWaf7nf/4ngKWG++k9ZFJhrUfzIyjSt1IPrJwMl7uS1mVIwtcMiy4d9CXRAqqbTxpZpGhBR/Z6Dv1SRAT8F4xfP9muoIVCFYZ8vl7EQffL0DXpU8f0d/I9AGrC3LTYK/varIOyDgelC1RHR4el2xoYGLCezXpOQFVMl/pW6klJkHSCbBlCGI1GjTM6MTs7iy9/+csAgMXFRYRCIUOIR0ZGDJENh8OIx+NGpzs+Po6ZmRnTF9Zf0jpNeSjLQAqX6ou/Uyep91Yj5VRSqRT6+/uXJco2ypBI3XSzBjA/A5VOGl6vHS2XoxZaaKGFDwEfWpYjHUgvT1Bd8VGDnKZLhGyWc/RTBbAdfu8Gljg26Qrkdz9FZL+28VnyXlfddHl9vdNYcnjy3doq71ef3A86/FNHY8nx0dyP7oeMuJJZZxrlUDQkd8v+53I5DA0NmfcyckZydLp/fhyvzO7kwsTEBObm5ow4TwMRxfW7774b3/ve9wAsleyo534TxEnJAA+K5IQ2KgLBa1TDT0pcjiuUbrfes9INrZmE4s1A7i9X+z/yLEf1IK25chMDtWFcjUQXyY0KLC99Gu/XorGeOB2eRlDnpDOpSAS5PLierXVCwFLUUaML1+W5oN2oXO8H3IeQXPSFQsHakK5FLnWx+Xy+xn9Ojgk3eiQSsSoeagTp0Vz9KhaLlkphfn7eKtkr+059uew317UmcK60efXgl+JPE6NUKmVVDnVBVz6VrjyZTMaoIDo6OpDL5SyCFIlEfHunGWcAACAASURBVGPC5bMbWWc656he57LSbCi0FJuez+ctly+6N2kbhQvNqLL4P/vk6u//M0RTK3nr+UvKz5qA+BFPrSCXiR+060w99yZNvDVnpJ1rJadWKpUsn8dwOBxIvCXB0X3TPnokIkDtQmsUjRhv6Kis/Rb1GEi3Dj5XlpPlsxuBHxFZDrfp59gsQydd18jD0jVnNACVSiVs3LgRt912GwDg5z//OYClTSjL1fqBRHBubg7FYtG4I61fv76m/ng6nTbtCiLOJAgce8lJE5lMxvSNKRI5vh0dHc5cCfxf5jrVhkcguEAe1xRQHZ9KpWIOH9eeZno4/t6Mj3GjATSu31s6zRZaaKGFDwHn1TYf5Ahe82KHXlGy3UH3Sj0anan9XJqoPwmy0EuOQ7dLul7wROT1OhFsPVen9vb2Gv0oobPKSLchqbpoBjpMle1ggg+2WT9bl8qVFl35XEKm/wsS7SjSudLOJZNJdHd3WwkWJCcxPz+Prq4uy5MhFos5xXmGWFJUjcViNfMapO6Yn583CTgYckkOE6hyadKh/6mnnsLDDz8MALj22mtx5513Gg5y48aNJhKpra0Nzz33nLHEu97PrOn14LID6EJzUsJiQUGpOpGQe0arqVxj7Ce9kYOXTvgyK5S8jqBTOmDrbf2c23VCc5dExecuJ31cPZx3h6Yg3YSfzpLElh10+XL5udiwHIGcaKlcli4ILuiNHiQeUvkuiZE0ZrjgJ7rqz6w+KQkl73UZLsrl+tmuG8ndyf7L7Epy43L89IYCauP+6+nC9O+yXX19fVaGIFmvBlgSVfkMirF+maLGx8ex+f8icKQ+lghSo0h3pE2bNuHqq6/G7373OwBVgiqrLWYyGaxatcqI4J7n4amnnnLGmL/22mvo7+93qqbYTq3j7OzsbDgrVCQSsYxhACwVT6VS8VXxuNZ9kG3Bb5/wgKcqRLvlsS2yT9KIpyPu5D5gXgOuEc5T0J7VfqznA+ed09S6MCKXy1lxxFYj/o8Y8fTRhEZPklRwa+ugNk7UG6hmBlI70+pCbLIdPBH1eLBv5FL9Ej/Ua5scQ3omaMIWdEj5BQ64DiE/kEtt5jR3SQFAdd5k3kq2i9DjHGQsmZycxObNm32JjSzvCywRf8abj4+Pm78zmYzhIoHaePo9e/bUpIJ78cUXnZJBOp1GX1+fNT+ac5KgHlCOkZ8OV0PWVgKq4y71p6lUyiRHbm9vNweMhJ57csyusZd6ajm2W/+vXIosjSE5UTILUprj2tR0gHubfUqn04FFB2mI5LPqMVCNoqXTbKGFFlpoAuc9y5Gfvku6wJDl9vOXpIgtf/c7IWSSVkK6JLk4wSBreiPQIYh+10g1A++hnq29vb1pazhBi75fNp0gKyJ/k9yLFp/052w2WxMS6Qedcky+m14AktOS8yrvJcfB9lK64OdGXMx0aB9RL3rttttuw3e+8x0AVW4vmUxaXLDMulUqlfDxj38cJ0+eBLCkSqF4PjY2VpcrJKjb457R6yOdTpvoIl3eotHnk4NmOQ6g2t877rijJg2eH3R5ZQ05PtznQWtTzruWXFx0QqocpMcKuXYtlQIw6062Y7nW8xWJ57JMKVDrfyk7wHApYGlxBOm49HP9CBT1b1rnKTeGS3HcDNH0E7mDFPZ8jw7f1HHZEvWciKW47fJZ9NP7yrbSwVp+1rk25eKiwUV+9juQOD4U1dhXOohLP0H2Q94riSgrHGrxSouG0i3GpfbhNa7143foSKMPsOSuw/fIgzoSieDEiRPGcMTSFKw/NDs7W3PgyPjwTCZjiCrnQYr7pVLJ+Ix2dXVZxNK1jqUYLNVBVOGQ+EvXsZ/97GcNia2cV+1byXEBluZUBgXImHm6Osl7Y7GYuX92dtaMgyyTISFVc/X2sVaFLMegqrFiTvOXv/wlgOZySTL+mAO8XI7LhUqlYlnjaCleblE3GSvtyjEY1A5g6aSjoWs57ahUKlYdlkbaoKN29PMkt+zys9OEVJYjCNJhlstlq5a7PDhc8yyJnnSCBqqclbT6683GtgHBHPDk5CTK5XKNFVceBNqxXusRSdh27tyJhx9+GA8++CAAGL0g0d3dXVN2gmM3ODiIPXv2GKNWLpezJDD+zzWTSqXQ09NjcarSL1RHVGUyGXOouMqByH7IZ3FemvW3JaTVntyfPsDqSUHygGNtJ+p/g+aWyUWA+kRUMiWVSgWrVq1q+Wm20EILLfytsSJO84YbbvB+/etfA3C70PhxJJlMxjr1Ojs7z4tVC6hVEcgIG35uxpXCz62lEcjICHK/PIGbtTjLzOx+J+9yOAX2mRyfLngFVEUmOVcaWm9ETE9PIx6P+0oS0lLKSozklFhuod7YN+JGlE6nMTMzY7ILEUx0PDIyYrn2yHIgHR0dmJycNGU4CF7b19eHyclJMwb79u2zygFLsNyFdIMJEhfpXcCkzclk0qSZIyi6p1IpZ6nhIJ9HgomO/dZNsVhEIpEwa4PlMBpdb83uIelipCulRqPRmvBgyaU24orHaz/xiU98+DrNDz74wFe/FTRJoVAIXV1dDSvIG4E2zkh3JUlEdUZzea/LfaaZpBku/amspihdaJrRq3LxBBl+/Hz/9O8u8VaqDehDJ11VQqFQTZglAKd6ZXp62oond42XPEi4BkKhEFKplKksuHHjxsCNJsvTArACB3RNqY6ODsvwwQN969atzmfrwINvfvOb5tkU8bWbEdt98OBB9PT0OInV8PAwksmkcf2hI3iQi5xM8DE4OFgjUvM3WakTWDLWuHLQanC/BBHBkZERIzbPzMxgeHjYyqfglwOiXC4jnU4bQtYIQXP5BPN7fcjItgY57PMzsRImbUWc5vXXX290mvU4J1dmHJcurZFnBaEeMeKGYXvS6bTZ2PX0da5aRRJyA7gMTnJx1YueCYr/JnH2S/ZBDkUarGS7gt6l38uSCkF1avRG2LdvH4DqBolGo5ZuLZ/PW/pRbv5UKoXu7m4zJn6JMXQSXqJYLBqObGhoqKaf9Sy+bAMArFu3zuTp7OrqwtjYGB5//HEAdjJiF2688UZ8/vOfNwXhgKU49mKxiEwmY/SgU1NTGBwcNPNGbwvpr6wjf/w2ez6fxwsvvGBKEadSKcRiMSv2XI5XPp+vsdIHSTCpVKomTt4F177O5XKGqHd1dTVVwlmiXuYwYMmJH3AHhcg9slxOs6XTbKGFFlpoAit2OZKx1K6TyqVfbDQ/XzM6Ohn/7BJBdTuk1bZRVp0lBPwsuLJf9Sx55Cr8rpHtLZfLFkfHd+hsQVJFUaksZVuXep56kUfhcNhyqXHl+ZSZziX3sWfPHgwNDZnM5q55JvfJZxM6BRu5BHJsQ0NDlopCcyvz8/NW6KIUg/k8+si6XJcAGHF906ZNJqImnU5j3bp1hotlUTX6O+7btw8/+tGPDAf67rvv1mTtYVuPHDlitZvtldnoJSeVyWSQTCZNjk7pFaIlno6ODnzrW98yngt9fX1WRqDOzk5MTU1ZHhhctxwLXk8XK45BJBKxxtI1r1JPqyHdDbmuZQq7ehKXdNvTaQ1d7ZD7QUpn0m96JX7a563uORvlSiIA2MTML3yMopckPC40kxRVV6tkyis5mJzw7u5uZ/vrTaqf6KtTvQX5OGoEEVRdb51uK3Jhagdjvq+RA6JYLBrCGIvFrLZms1njUiMrMrK/8vn8fD7ULolEoibMUqNeiCH7xI0o/SP99HLpdNqat7179+LFF180+r2Ojg5kMhm89tprAGBqrbtcocrlMj71qU/hT3/6E4CqCkLmFO3p6bEMlel0Gtls1jJCMe49Go2iUCg0FH/tQjKZNPttZGQEqVTKjM/IyAiKxaL5nUTVLyxXI5PJ1Bzw0s9V+0v61RLTzuv8nX31SzFIMERT3ivb3koN10ILLbTwIWDFnCbFFibkldbiegYZ7fSsg/glNyitlUHJGjSkwhtY4vik07TkQoNOUd0uffJqsbYZ0T/I8COvAaoGhPb2dl/OiyGHUh2ileL1Cs1J67k+6clpaudpoMpl8HSn9CFdQpqZO83l6+TJOtxOWpZ1MpAg6NrizJQPLIWQUpxkNU2dvGLHjh2mHRs2bDDPmpiYsJzqt23bZqKFgOr6JIfc3d1dM97ZbNZyy+K1w8PDKJVKRhxnWkPOCR3j5RpyGe1kn2+//XYAwG9+8xu8/PLLpt3NVEVoRLqQ46vXntznOthBY35+3iqo14w3zkpcjlZMNOlqkclkEAqFTMMbFZ/lvTL0sauryypXIF12Gok+ks+WVma62MgYZ6ljk/kl+bcWv4P0In6Zefz8VqXYInMJyizclUrFIv7xeNxJkGW7dYZrCa1zk2oVivVcvPl8vsaKTeJEsVbmFw2Hw6btmUzGqg3FCo0kKnJDuManUqkYXSIPCBIrHUWjfSv1eAQhm81aHgL1RF1tiW9ra/O1qieTSTMXa9euRTKZNO1ybfJUKmXaG4/HMTAwgKuvvhoA8MMf/tD4aR44cAA/+9nPTLgixXaGcwLVMaGlnr6oQWAIaCwWs+wAPT09dcdQRlfpkFWpHqM6QhLNIHtIkP93JpOxGKBmIvYKhQKuuOKKD59ofvGLX/TefPNNANUOrsRJvVwum4mXrhL8DfBPlQ8E68s4uLKdmksBaokisKRXAZaMO1ov6XJQZmkLP32Mq/9+Llg6ltuVOksSXBINmSxFu3zxGrmYgerm0/pm6ZQvlemMKea18/Pz6O7u9q1NHgqFsH37dpw6dQoA8Oijj1p+mnym7KuMYZbuONFoFPPz86bdOkS1GT9YoDr+0r+0Uf3r0NAQ3n77bSthx+zsLPr7+801l19+OQDg85//vFUzXb6bfZeuaNFoFNls1rRLJofmwSRjul37gwcVUPXzDGJm2DZKBI0maVkJKBVJ46bcM3R5A9x7XO5PEtBG29vSabbQQgstfAhYEafZ09Pj8SSTJ/1yIHVS5D60K4+0xMmwP5clXkKKbvX0JFpUkKIs2+CnJpifnzfcDd1H5HubTdhLUDT30we6Ih8kR6z1WnK8mLVJc63y9J6dnTXco+bQZahbJpNBLper0bWSg+no6EAsFjN6OcnBut4ruVg9buVy2VifeT25sGadp2nNlZFhUpTVusDNmzdj8+bNzmfNzs4iHo+b9qbTaeNOxXBV7hkdmgnUFg5j+4BqJA5df/R4MHGFthPoDF0S0tWpGVB0d61ll8QkE3qQG9RBH7I0sRTds9mspbIKcmvkemxUB/uRpYarx8JLEZED5VdzhM+gHowTTvZdGjbqDYwkAn7hfK57NNHUIqHMY6mJk9QDRSIRS13BTVnPTYKQERzRaNQaM8ahS2OWBuN02U6tR5N+rWw73yUXfShUTSfGXIu9vb0mJNG1cWS0FXWr3OiMAXfFZadSKcvvk4RKjzVVOMx4pOcGqK1WSn15UBih7LOem7m5Ocu96uDBg87nAEvuWhwX6aNI6P7zEGHWI74rnU4b4xBQNQDy4AyFQpienjY+sSRGMn1bf39/oLqMbaQ6IUhXL/WS3H+N+jxK1x99EHDsXRmmaE/QVRokZCYsVxZ3nVOBWImf5oqIpgs62F4648pT1AVJYKQymT50MtmFPF3kYtGlfJtpc7lcrtFBArBOPr0ZC4WCObEjkYhlUda+f3Lx0NKuJ5k6PL9x4XvqWfllO6U/HwDr9GYNFz8iTqMHHbElAZBO2GyXjFufmZlBe3u7pQ8dHBw010vjVldXF4aHh60kzdr3VOoaOZ7SSMe/XQdBPUgCzL4Q0mAzOTlp5dscHR210sPNzs7ijjvuwIkTJ2ruBWDpYfP5vJXQpLOzs6YksAwnjcfj1lhqX8dyuWyIqnRe1/2RfWYb0+m0mQtXuKQ03ujADcmJ63VZKBQshkmDgRtynKTngktXy37n8/ma8hryd6nf1DRF52poBi2dZgsttNBCEzjv5S6IesH1LOfqgiu9mzwlqBsClvxB/fSMfFaQKKvfIz/rqB59P8vFArYFU/oqEsVi0enqJNtKUS0cDpvTlzof2QfX2Er9lZ/OiW3SKgi/cXH5+2nITOQujobJLzo6OhCPxw03KbmbNWvWWKWYOWcyI5KM4mHECsdTWlmb1dER0nJPV6f+/n4Ui0VTdre/vx+9vb1mPPbs2WNlUKpUKli1apX57HmekR5cOjk5r+FwGPPz86bP8j1AbdIbVwIZyWWl0+nAZBx+EVRcD0GqJO2KRys+1SDyXpnNn1IS310sFtHT02NJFEGSgc4Upr08+D3bGBRV+PGPf/yj8dNkZhiNei4fQY62gE04OTjS2V27/WhRWhLd5eovSKx4v3bYJ1EN0pdK3aHUCxUKBXR1dVl9BJZcSOigLcEFMz8/j87OzoYz3lNEAvw3SD249FflcrW2uMvJ3YV8Pm/pfaXRiOPopyejoVD6jw4MDNTUMgL8ibdEvYxVBOefxhtJIOV7Oc8UpRmbPjw8bNrc19dnhSu6wnbZNvaDfQeq885729vbEY/HLeZhfHzczIUOcSW4b+SaIKHjYVYqlZwliOXcUDTmZ1kCOijXAV3xOFflchm9vb0mtV48Hq87L9K4KnX/4XDYapcOm5R9KJfLHz3R5OaTjQriNBuBzpFJSOOMDuJfDvw2KomCVmI3YwFnHzKZDObm5sxiGhgYaJoANwsaTVxETfZZJ/KVBEX7HEpks1lkMhnLsNFMFJRuj0xnp/W4TOHHdgeVbm3WR1NDcmhMYBIUbdLW1obLLrsMAExcuQuzs7O48847rWuSyaSZHxqQNDMhjTvaQ4BcbCKRQKlUMhb5Rg8yPxQKBUPI+vr6nKVGZP0meYDL8ddzwUNTzl2xWLSionSCGL98Flwz8t266B1B2iT3V8tPs4UWWmjhQ8CKdZq/+tWvANi+k8CS5Uq6gSy3uFkQtK9gI9drEVOfirp9Miu2zBAu3S4Ad78Y9kednAz1kyI23ZEaEbkb5aR0dA3gLrilIU/3RsVYF/ysn43CxeX6RYdJPa3OESCvAWB0bLJf8/PzJgmxtPh3dnYinU4bNUKlUsGePXuM+MpnMOvRW2+9ZRIB+0HqrScnJ02MN9ewFs+lWoaWbc6RjJiSGahYlGy5cOn3tTjvtwal+kynLZS5A/jcet4gfqBrmV8/pYsfvQvOB6d53ogmUKtDkP5yyxGjObCsFOg3sNpYEwS60GjFNJ/jWgxS36gJSDOTLSvtZTIZrF69uib7uBRPOXbZbBahUKgpA4cfMddEk6KozFQ+ODhYE55KghKPx61nB403dbhyjHK5nJVhXYtifC/9TDWBlzph6X8rCX2pVMLk5KSV11PPG+v1EJlMxsqxyjYyuQbfm8lksG/fPhOnvXbtWkvPqcdXip49PT3WnqhXnkE+E7BF7lwuh1wuV+MeJPWSrsz3QSDBZQITPfZ+lVUbQZChxy/23E/VI3N31mMe/FR8wEdINFnuws95OChuvJ6Vi5NUKBQsollvslyLT0dGcCE3G+QP2NbEZvRnMoNLOp1GPB63fEDls6QPY6OZgUiQy+UyBgcHTb90qQNthZW5Ezs7O5HP5w3RGB0dRSaTMX12jb3kxEOh2npCcnwTiYTZzDSGBUHG38t6OdRRSb2VbNvc3JwVeBEUycTr5RqRc9rX11cz97LMrFy76XQa1157rW8Cj6DkHkCwDk9GoyWTyRon+VwuZ3xGu7u7EYvFfKOkmpEgyGjISC6uE6BWp6khpdBMJmMlnPZzpGcbXcZi7SnjZ5NwEWNpeL344otbOs0WWmihhb81VqRcPHfuXI3LjKb2flycqwSFvleeJC73Ab97tR8nsMSxUA8pY5brpRCT+hkdsbGcyCMAJg+g9PGUz6pXBoCx2WxDR0eH4TxSqZSlH9VZmGQ/6QJCbjabzWJsbMxyWXG5P0lI7liHncq0c/pZOuZd90+G0NGqLPVq4fBSKQ7pjqQzLVUqFSuyRj5XQmZckuobmYGLuk2/0L7u7m4cOnTIxNtra/CVV15ZE3vOZ3N8pN5PZ+2R6ohSqWQ43p6eHszOzhrOnaoJQme+165aMiOXa6/JaDmZ1YrjJrMtaciIM5Zq5vulexJQP9zaBbnXZVUD1/6RXjfLxYrrnv/Hf/wHgCWxohGn6WKxiPn5edO5rq6upnSDfm4MgFt81Nf75bb006Fog0oziQ40UZB1eyRBiUQiSCQSRnfY1dVlCJcr1NIveQFQFRH9dKCZTAbhcNhK/FypVIyOLhqNOpMba5Fewi+wgNUXuWF03Hs6nTZt9NNP0e1Ft8kVhqqdtYM2soYsM+taG6ywqYmRHk8NrTvduHGjuZZ12OX46dpGjZT5IHbs2GFyBGhoUVV+JuMgGQsZmsxDRucU4HjH4/GaZDsS6XTa3Eu9rk5vSDC3LlB/f+l67VThuNIFapTL5ZZ43kILLbTwYeC8GYIAO6zJzxADLImE/M51SrsU1ZJrq2dE0hlvZPSCtrS6AvyDIFPWLbeGM9umOSWKbBs2bHBGnzSCejW+ZeGrubk5S5HP0/18RFStBIVCAZXKUumHiYkJRCIRo4KIRCIoFouGG9LRVYwOAZY4TVabHB4ebtiyTA5Muv2USqXAuZHRbi5pi21mwg6CET9+0TzNYHx8HBMTE4ZTD4I2jFG9w3YPDg4aLg5YyjqmUyjyN6A2fJh7TK8vGeUH2B4qLrcxDenGR0NZowbjjyw1HOGK+QZqs4wDS4Mu/To1y67Zdk1gpP+VhnTrcMVZA7ZVVutD/cRPegjIbC/1ECQiythq6s4ostUjmC5VgrRuShQKBeuAkn1ghhkpCpVKJaMmyGQyiMViznRu+Xwe5XI5MFpmudE5+sCkp4FcV1r8krHQiUSixh1n06ZNge+UG1+WKZbqn76+vrpW546ODmPFHh0dNd+vW7cOY2Nj5v6pqSl84QtfwN69e027WQmS7WgGmUwGY2NjAKrp61atWmVcyaLRqDM0ku+VKqve3l5kMhmzBubm5ixrvc7673LnkaGicp9w3fL6XC5n7XXJuNRbN8x0L/dWUArA84UVc5pMk+U6FSTxk0p/7e7h5x+p4Xe/BH02db0Yv2dJAsv2ai6N/muVSgXxeDwwkYFUNOuwrWYhdafr1q0zi1iWJQCWxl5eLxP4uhZtENLptOkzYPvWaReb5UCWapZGNlm6QOZ6BOB0cg8yDE5MTJhnDA8PY35+3jfdm5+OeyXgXEn3mkgkgq6uLmf6P6A635lMxuiXN2zYYOXjlO13SWIyzJLcth4/acisF0jBNTA9PY1KpWKIbnd3N7LZrJk77RIXpP9m27RNQjvDB0FzqbrIXT3DLtEKo2yhhRZa+BCwYj426IR2JdoAahOkNstSB71TcrRALRehxQOpWyV3qEsOyCJfpVLJN8xNZ5dfib6zVCoZHVyxWMT+/ftrkkHIsDtpLa9UKlbqPZlAtpGTXDqok1Mi9xPEZabTaZN9KAhyXOTz2tvbzXsYBeZSCwC1iYYjkYjhYKenpzE0NGSeBVTFe+mMLeGSXFyhiy6sW7cO2WzWVNhk36kqkZzmnj178Nprr5nP27ZtQy6XMyJ1V1eXpZvVGd8l5ubmMDg4aPq0Y8cObNiwwVJRADZnGZSOUSKXy6Gjo8Nwbt3d3Ugmk2beWHaYv+vnSsu7i9uT6RR7enosp30NLVG4JAwpNei5/VtgxUTTz8/OhUbdivxELxcBJqHTPp/SnUJmTHe1XxISWQM7l8tZfmSxWAyRSMQsFuq6pP5GK7aXi3K5bDbgzMwMPvjgA/Pb7t270d3dbTYz/flkbD/rcwNVEZeLNB6PW9cSMlVXNBq1ypRI1yg5lolEwiJq4XDYVI3kswA7t6if7pv3S72bHkPpw6dDa6enp808DgwMoFgsWjV4pJ8m75clKTTYTr+Dj+L32NgYdu/eXeMaxfHcuHGjVSX0xz/+sXnGwMAAbr75ZlOWNxQKYc+ePZYrHrDkDynzmnLNsX1aZGZ1A2lU0gRT69s5b67xkGnsqMeWPsYa0n1JPrtcLlslPGi0lKHKuj0Skga47AWaDi1XPxyE86ox1RvAFfQPBOskAX8C7GfRdelDpfVc/l6PuAdxYjKBMP/v6OgwkyZ9xFwLT3Kp2nii84tWKhXzmb531N2sWbPGcrju6OhwJqOVBEom4JAWWxITtodJNmSccTqdtoqn8bkkmDJphC6iJedZh71J30impCNcOTElJ8+x58YZGhqy/D9jsViNA7ckmjqsUq8Ljq1f2Cidynt7ezE6Omp0hwQJNktJAFWudHBw0OgX+/r6cOTIERPfPjY2ZhVlI8cn/YM5L6Ojo0gmk9ZnjUwmY+5lG3j94OCgtW61TUJLa+3t7WZMSqUS+vr6zDNdulZpRZfP1v9r31hJQ1y5LOR33Ne8hyn8ZD+CDuzloqXTbKGFFlpoAitOQkxLLlCfiyMnIcsWEFKXyMxDMnDfJVIuF1pc1wmNZYkFGV7GdmqxkwjKtpTNZlGpVOrqlKRlWSeCkFl4pLuN1q2WSiXrPfPz82a8dbu02EqQI2E7/OZWR7ykUimjx9P+ojraBaj1WZSZxYOsu2NjY+jr6zNtl6UvOAYcr3w+b+kW6dunOXupziA3Ho1GkUwmjcfCQw895ORY6M5EPbQERfl9+/ZZHHGhUMDk5KR5F8X0oGdpkMsPhUI1WYkSiYSly5brWLtvueDnucC2y2QzGkHZhQC74qQsuijnsR5nSG8LmQxEu8/J92l3wo/ETxNo3PFZiq6uzCMs2+t6drMGlXpuNdIPTxNFfgdURWwdty0d6zXkOykOULeVTCZN3kTAXynvR3T1Ig2HwzUHDxcin+tye9FwEcx6OTf5nqmpKev+mZkZ612a6JFg7tixA0C1jw899BCAJcIvx16OETcwx2B0dNQqRSLfNTY2hsHBwZpnEi7Dg1x7Urxku9l2hrry85e//GVcdNFFxt0LqI4pz/hLvwAAIABJREFU+zgwMGDazhBVjtnq1asxNzeHn/3sZwCqBLmrqwtnz55FPYyPj6O3tzdwbgFbVy1VIFLV4Qeugfn5ecvpvKenp2bPaLeoevYLtisSiVjPcqWQ1IZWP9E+FotZTI0k2NovfCVYEafZ09PjsRaKX00QIoiQpdNpK+dhvVx9jfga1lMAB52yJKilUqmhtGxBDuwcn3K5bBkmtMGIGzkoykJyKPIZfvG+jaaUawbpdNoQ476+PnR1dfn2IZPJIJvN+lrAv/nNb+Kqq64CUN/x3A+MCZf1chiXT+6QhiGZq7QZyPU2MTGB3bt3G6KYzWZrInhc+mmgenD29/ebtXfxxRfj8OHDZrz0fA0MDGBiYsI8K5FIYPPmzQBg5UAlmHOAYyDHp1AoYGhoyOgl29vbDeGnnlon7OA6SyQSuPfee2v8ISUBlsauIFQqFRQKBUM0ZZ17AE6JUkqCcu5ce1z6aGtbhmY8Vq1a1fLTbKGFFlr4W2NF4vmFF15opQVjeKQLrtNdurXocCv5uz55GuEU6okeMmRTRyfIEDp5+jMdlxZNXH2m3pQnL8Uo2S4ZN+vyVdX91oXdZGXGTCZj2tre3m65dTSiQnGVxnBBZvRhIlrpFSGt9uFwGIODgzVeEwy/ve+++3yz8rgwNjZmhTP29fWZrENTU1OGi6Jll2M/MzOD3bt3m9DGZpBMJo0rFVAVqdPptNElrl69umYNaW6Lv2np5oILLrDE6wsvvNByLVu3bp3Rg7ItlFbWrl1boyPWeksAVoSQ5LZTqZSRULTFORQKWfpojrHmhKWVP0j/qFVctL4TUg2jredBnjau7/3S/gG2WmYllvTzVu6CrK/05aoX9iUhA+05aTrIn3CJ537itm6X1iVqY4UM6WLmaE5CvUmUoB+gVHB3d3fXKLylbk0bfwiXAcV1DXVQfAY3dqFQMAuefW1E3ykhiaoUy0qlkiFW3d3dphYL4Qrlk07SxObNmy09LfW/JJITExN46aWXcMUVVwCo+mUmEglMTEwAqIrnjNfPZrOIx+NW2Onw8LCvEU6vCb1Wx8bGTJtJQEhEY7EYNm3aZMaRmdvvvvtuAMAbb7xhnjMyMmJyaRKbNm3Cd7/7XfNZ78c9e/aY8aT+1w9ynbAeuza4SHcv6SpGH2QiyK+Vz/PLSSvzkba3t1uMSHd3t1Ofz+ulnzTFcb0n9AHfaNikFN3D4fCyU8OdN+u5y6lUDnK9+F5JNAuFAvL5vJm0evdWKhWjv2KEgURQrsR62XzkBGuOQibCAIK5tGw2a5LyAks+ZTJhr26XjKCqB63DZM5NwI6WARozrPlloaF/JK/RfnTy9//LWYjHHnsMAHDo0CG8++675nppFNmxY4floN7R0YFUKoWdO3ea90pfyCC/u507d2JwcLCmxIffODJphMz3yWfPzs5a0TEsDcK2rF692hrfjo4OpNNpE+XD/4HqwUCdJJFMJs27JicnsW3bNt/ACLYFWGIkrr76agDA73//eywuLvpKFbOzsxan2d3dbfTts7Oz2LFjRyBTI9cjdYXS20U7s0uCDNSXZOTBWo8I6rUsy60EJY+RaOXTbKGFFlr4kLDizO2//vWvAfiXKyDqeeRns1krj15QHkLXiSgty5r1l3kXeVLzenlixmIxp3+o9MssFosNldn1g4xecImL0jIu2+WC5G60xZYZxQHUqB+C/OpcXLrkYKXbBt/pJwX09fVhw4YNlt7xjjvuML9fdNFF5r2JRAL9/f2WjjyTyTh9BIGquN7X12fGZnJy0rSDlnSOb7FYxCc+8YnAgmZ+2LlzpyUWz87OWrpDuvFIkXJ6etq0S+sB66la2tracPz4cQAwLmta7SLbQhVELBYLDBt1gRza+Pi48RF1wU+1JrNqaclEuvRFo1HLR1uv++npaSuLVqO6eE1T6Lepren8X/uMfmT5NBtN5xYU/01CJEVAvRHL5XIg0fRj6TlYMqxLxizLshulUsli9ZniX4rJkUikxvWiGcj3ynowuVzOOOcCsMIA2QdtGJMHgFyY7e3tiMViVl8Ilsbls7ix/OZGL3DpTKz9Gefm5rBx40bjPpRMJi31BZ3gXcQrHo/XGFOk7yNQ3RTSHUz2ORQKmfWTzWYxOTlp+vTMM8/g0ksvdfYPWBLddbkMoFaP2NXVhampKTMGGzZssJz/165di8nJSctI9+yzzwIA3n33XYyPjxtCJ/MYAEsVLnXyC7+56e/v9z1UmjH+rV27NvA6P7E9KFBDhkXq/Vcul4343tnZaYUiN9p2oHbNyrBawFYp6P+bdTuTaInnLbTQQgtN4G9mCCJcHCC5N3lSZLNZy9NfP0+GxbnEYz+Wvhm3G75HtlW61PDdMpmFbEu900sbI3TkzdTUlOFyZEo6wK5d7pcNXdelJkcjOYVsNouurq6Go630u5hEAqhyuDK884477rC4yKGhIUSjUePq40rp9Yc//AHAEvdJzvG+++7DXXfdZTgHhhTSQh6JRLBu3TozfrlcDp/+9KetZ0lII0xfXx+SyaR51yOPPII33njDeAEkk0kzZlLkBarcoJ+zvh9ocAmHw/jHf/xH872rnW1tbXjiiScALEVOkeMOhUJmDRQKBaRSKTMXlBi4BvwqiNIwNTMzY5zj/TjZZtxzZIKcet4lhULBPJtlTep5h/jBVSBOcpO6csRHLp7LEr4uYiXdc2RnXKVJdToy+TnI/9N0RLyfIgGf1YxPltaRSOJOMUwSIZnVBwgmnNL9Jh6P14j3UiQvl8uWxVGKjHSFkpCiCFUQdIMZHx837xoYGEA+nzcEg9Zuv4Wu51US8vb2dsvaed1111nXRqNR4xIkIcukEFu3bsWmTZvM2H7wwQdWuGtbWxs8z6uJgpHt2rJli/M3AJbVemZmBlNTU4Yg0y1Ixn4z85Ammvv27UM4HLbE4kqlYq4jgZSWZRmbLwllPp/HJz/5Sdx6660Aqnrd66+/Ht///vcBLBFNjuGaNWusTENDQ0OmD6lUyqhlgsC1zPIhErr2FddTvbBa6XKksxW59oPUCbPsbjOQBFq6CKbTafT29lqZjYjzWQJjRU/yPK8mmbB5sMPJlJ3xcxLXaaN0eil5v5+fJjkjqUvTnxvVZ2ijkfTfZH9kuQzNAcvaMnRL0a5PMjGGLIUqDwr6knKsZWE0Vx+j0Sjm5ubMQh8ZGbGu5+nO8ZJwuYbIFGPUicprpJ5Wjs/ExATy+bz5fmpqytp8TzzxhCEM1HFRX7xnzx7Lpem6667DmjVrrHBLuv8AwJYtW4w7UzKZxM0332yuI6Gi7+fExASGhoYwPj5urpFuRFNTU8af0pUEVxOmhx56yMSP33jjjXj33XfNGG3bts0QYGlUBKrr65JLLgGLE7a1tWHv3r24//77zWfP8wxnG4vFjGudDt2tJzHMzc0hEolYKeS0bl6Gv0YikZr64ZrzlHtOQ46ZTMaj93y9kGkJzoXmHiVzJd97vlLBabR0mi200EILTWBFOs0vfvGL3jvvvGM+B6UQA2qrOkpI3aHm2LRebTlcYyNoJBGIPDXJZWqOi9fJ/+ulOtOQLiN+7dLZ66nDpGsF36dPd1bx498yK7fr2cCSqDg5OWlEUYZA1ktlpsVxuebIhX3ve9/DSy+95BtWmc1msX79esuVh/pZAM6KmfK9fvpDoBrO+G//9m/Gijw+Pl5jUaZecXZ2tibhr3wP3aj43ZVXXmm4wmw2i+HhYfz2t791tqmtrQ2f/exnjV6SnKa8n7o/lvTQkoHkumZmZsx4MfzVVZqFETwyQbZrvQV5rxB+a1Vzteyj9GRpFDILvJRGGtm750OnCc/zlv3vxhtv9BYXF73FxUVvYWHBW1hYMJ89zzP/a5w6dcr8vri46J05c8Z5HbG4uOidPXvWvMOFs2fPmmsawenTp73Tp0/XPMOvzcSxY8e8w4cPe4cPH/Y8z/MOHz7snTp1yvSJYDt0m+X41Gsrn3vkyBHvxIkT1r0ahw4dstrB+44cOeIdPnzY3HvixAnr2XrsT58+7Z06daqheQTg3XnnnYF94HUAvCuvvNL6/oknnrA+P/3009bn48ePewcOHPAOHDhg2vHKK694r7zyivn99ttv926//XbvwQcfNO/RbeL3fu36xje+YcbFhddee833t8OHD3uf+9znvFdffdV79dVXne/S3508edI7efKks0179+411993332+7XrnnXe8119/3XvnnXe8d955x/O86nhIvPLKK9b685tH/b3eF81C7lXXGj9+/Lh35syZuvve9dxjx46Zvc7vCP0u0g1eo/sJIOUtg+6tOPac+hgab3QijEasaqVSydL31dNFSD2i9GUEllLz17vf71SShiNpUOI7wuGwKdg1MDCA+fl5cwKzMJaE1j1JBbnUTbpyjJKLcJV+0P3RzvKucrgSQWFtQTqo6elpwy3Mzc3hrrvuMhxTNpvFVVddhYWFBdOn2267DSzzPDo6ijVr1hh/ROlQTa6KGB4exsDAgOGUBgcHEY1GcdtttwEAVq1aZRVOW79+vTGgAFXruzRCaa4znU4bbkendpO455578MEHHxhd7L333ouenh7zPL1/XN/zu8suuwx//vOfcfr0aQDVsZ2amjLGLT+jmXwW9cOUJnQiaoIO6XK91cv/ICH3GIvLcS8wBR3nRu5zXa+LUhDXLz9zz9Dgu5wihNLwyc86YXiQX2arhG8LLbTQwoeAFYdR/uY3v7G+01l7+FlmfnZxPq4EvPUSCANLFkkZBuhyf5Injp8bkk44wXv9wjlTqZTFXebzecOhuaKF5Amby+XQ29sb6AvXaPYWXTzOBRny1ghYXbGrqwudnZ2GW9q1a5fR6c3PzyOTyZg+PfTQQ1i3bp3p+7p169DT02Os1DfffDOuu+46wy0BtRwgXXkGBwcRj8dNCKZGW1sb7rvvPqNH7e/vr3FdYbKPqakpRKNRk5C3v78fb7/9Nl5++WXTTmDJLek73/mOecarr76Knp4e3HTTTaaNLl0pv3vwwQd9U9DRL1VzoUF7sK2tDc8995zVPqCqW43FYkZS0Fykzt6lpaug/TU7O4v5+XkzF11dXda9jFzjmpJrPZvNWqVEdDVKRsL5cbyupDj1uGM/W4l0B3Ttj49Ep9nT01OjG5S6sjNnzhi9xtmzZ821Z8+etX5z6Ru0fkLqdhYXF73jx48bHQ71b9StSl2GS4/DdrDdvPbkyZOWnuXEiROWLvHMmTPesWPHzO+yDwsLC97Ro0ed+k3P87wjR45Y+hdXu+TvEgcPHjR6vOVC6pCOHDnifPfZs2e9w4cPe6+//rp38OBB7+DBg2aMXnrpJe+ll15yPvvo0aPe0aNHPc/zvFtuucXo7Dyv2k/5u8STTz7pq2/csmWL99WvftX3d4J628cee8z04ZJLLrGuof6Zz7r00kutMdiyZYt3zTXXmH/UERIHDhwwulOCz9L/NL70pS+Z8bjlllu8vXv3+vZF33/ixAnr2Q8++KD57eTJk5au9cyZMzW610OHDpm/9+/fXzPvcq0eO3bM27Jli7dlyxbv1Vdfta47fPiwtTZduki5nxYWFry33nrLe+utt5w6Td2OhYUFa31yvx05ciRQv3ry5Mka/ahsJ/d/gE7+w9dp9vb2euRI6IfIE8UV1SNrd7hOwiBOU1/vB0asBHFdLEsLwPIbZHy7TNyqo2GkxZa5JGnllvHP0WgUHR0ddctusB3JZNJZhpXIZDLmWXRal0lHGvVJSyaTlsXSVV5gdnbWSumlEzHLGt/hcNjyfxwdHTW1v0dHR2u4stHRUfzoRz8yn2+88UYAwE9/+lMkk0mLs9T30hmcnzkugLumdz09GTnPf/7nf7aeyb4BVY57amrKWPkll+zXTmDJk+Db3/42LrnkEgDAe++9V/MeYCnPKP1E9fP4+ZprrjHPZSE6thOozg31vC+//DJuuukmS28cVPgvCCw9Lf1T5d5gAnJgSSrSkUl6nqTlXnPB7MPg4KClL9USV7FYrEmgo+lIkLTW0mm20EILLXwIWDGnSd9AAFZWmo6ODt/TjLGnjSYM9Yu15rOkzoPp3PRpIzPKN6rbcYGcGlBbSQ9Y4hY6Oztr4n9TqZQV7RSLxQznorO4B3HVTNIsM9vX6wP1fclkEoODg3Wz6uuiWhKyMNjx48drUtAxvnndunU1XNO+ffucnB1Q5Wqvv/56AMCf/vQnADCROdu3b8fOnTsN18sY7aNHjwIAfv7znxuuilyhH3RUzcjICL75zW+a2PXNmzebCKXt27fXhG4y5NOFtrY23H333XjxxRcBAFdddVWN3vO+++4DsGQtlxb3iYkJExF06NChwJjsQqFg9MUjIyNIJBI4ceIEAJj3a19MSjY9PT1WpYR6kH7DxWLRqshZz7OjGT/MXC5n1mIoFEI6nbbyC0iPAVdUoN+7XHThI9NpLsffynW99PX0PK/G59MPWg9I/Yi+V+tTiSNHjhj9i9afuHSTfnpH+Tt1gwcPHvS97tixY0bPRB3P6dOnjR41CNQRU1fodz19HIP0QtTLys9Hjx6tGb/9+/d7+/fvdz5j165d3q5du5y/ad9LCeo9+XzPq/puPvHEE0a/R33gV7/6Ve/NN9/0fZbnecZn8ZprrnH+hv/TDfo9p9G1DMC77rrrvOuuu66hax944AHvgQce8DzP89566y3vtdde81577TXvsssuc17/5ptvOtv49NNPm/Fhn+Q8aV1skD7f85b6e/LkSee1fvp5z3PvO+7ZepD36rUp1+Lhw4cDfZmlHlP6aLvohstnFB+VTpOnti59ANgZcVy/y1yI0Wi0pp5JEOplYJEnrOYmZUy41MPqpAR+elTqa8LhsFWWQyOXyxlOiRZaIp1Oo1AomFM+k8lYNV0qlUpd7lHqa5LJpOkHdWQuzkuPBZMMU0+Zz+et+uxANVEEa3G/8cYbNXoijtGaNWvwve99ryYphZ9usZ7lGIDhpEZHRxEOhw1X5irtQP3eL3/5S+u5mzZtwtatW+t6EJCj/NrXvlbXok2cOXMGlUrFjB8TUDAbE9C4F0RbWxsee+wxq0SG37td7du+fbsZ68HBQWvc6WHSjFRFNCuN1btfS45yjTAvBeAfeSQj8uT+17H99fS2LZ1mCy200MKHgBXHnh88eBCAm6pLPymduV1yUvSjlDGljXKa9LnUGZYkgnQdUs+Yy+UQj8eb0rXKchAu3RB1vq4SxbKM6szMDDo7O30zcS8H0n+NulPqUnVsuc5aTm4nHA5jdHTU3M9IIqAataPjymXmIhdXFA6H8de//tV8lr8FcZ76N34ml08dpOtaRiWxj4lEAl//+teta/bt22d0t7JPl1xyCd577z28+eabAJZSxV144YUAqukRAeDAgQMAqhze+vXrzXXSuq2xY8cOK9aeelp+18g65DytXbsWpVLJ6NRpXef4MOO+XwmV2dlZo6PM5/PIZrPWWiwUCoabvvfee41eHbB1+9Sdai+SIKTTaSOtyCJt5Nr1/dojRbYjiA4Adk6Ij6Qa5Y033uj99Kc/BbDEGuvEudIFgWKRdnjV+TXz+bxvOVtgSSEMLDmtSkNPNBq1BkeLJbLCpE5+nEqlLJcjPzcLCZkqThPnemoEioRr1qypW/q2XsIEumqEQiHfRLmJRAKRSMQq3UtHaaAqamcyGbzyyisAgLvuugs7d+40bWD1RWJqasrKFynR1taGCy64wKrlrQkaRebBwUH09fU5Qwld9w0PD5vclfp3/s0DK5fLYWRkxDz7gQcewLXXXut0HyKYsOMHP/gBgKqTO1B14JdJSzR4KGgCT3zuc5/D73//e/NZE/df/OIX5vMTTzyB73//+85n6X3LWkY8PHg4anBNRSIRS62USqXMmqjnYJ5KpawgEln2xFWnJwhkemigchFZmZKxEbdDqQ7RqhFpbP34xz/eEs9baKGFFv7WWDGn+fbbbwNYKhPBE4kniHRo164+PKmYpkpXRPSrJFculw1LHo1GLeduqgR04hAJfXLSWDM0NIRwOGxE0HK5bBkNXOGXsgyH7H89Vws/5Tq5odWrV5vxyGazNRUhtWJdunvxWvZDOggz+Ue9OtQU1WQ1SaDKGVPkzOfziMVi5neKb+SG9u/fb3Gh27dvR39//7JKG2zfvh379u0z7kJ8j2v97ty5E2vWrKkZf47t/fffj1dffdWsr1gsZiXtIIcMVDPI+zmb87PE3NwcvvjFL1rfa4mBaMQdh8lNgGpQA8deJ/kYHh62xnXfvn3o7OysGWuXobFeZnau+2ZLxwC2VCfB/VssFn1T0en9Nj8/j0qlYnHIMjkI94VfZVWZgCcUCn10qeFkCKLLTUimZgr6TrsFNOK6wHs8z3afcF2j2+VyS2BYJp917NixGnccF4LeTbh+e/PNN40LyKFDh6xQw8OHDxuXIroAEWfPnq1JA8Z+LiwseLt27fKOHTtWk96Nf/u5kbggQ/E8rxomKXHnnXcaV55jx455Bw4c8HUVe+6553zfI0MEPa82pPCtt96qCVfU4X5B93ueZ1x95DNcYHq8U6dOmdBE3uN65zXXXGM9Uz/7+eef955//nnf90lcdNFFvr/peTt58qR3/fXXe9dff73nedUxktiyZYtZP3R/c82NdlUi6P7mctc5fvy4FUJMtz2GMPMzUS+to7xOut0tLi76hmp73tLek3uz0TSRWKbL0Xkrd+EXuug6QfxOV8lhNloznSdgUBq0Rp1gu7q6rOQfdLSVXKx2XZK6HVkWQvfBxdHF43Hzrng8jr6+PsNZyHZ0d3dbzsSFQsEqPUyXLSao4HeSM5f9rZeQ5J577jHhijQ0kLs6dOiQde1Pf/pTi6tqpqzxjh07jN5RJ7mQya2B6tz80z/9k6XHfPjhh/Hwww8DsDk+jqHW/9EN6Gtf+1pNWzS3xTHiPfL5Eq56R57nGR3dtddea77fsGEDdu7ciUcffdS6nrWVmJyYHPtXvvIV3HDDDcbRX5ZkZqE4Gt0Am+sql8smUTOwtAcoYRQKBaPD9JuzRusNAUuSCded5nB1qZqgEhXUyzLcV0qFOqGOlrikFCmlRtb2Oh+1glo6zRZaaKGFZrAc9pT/brjhhmVFBGkwG4lfVAFZfonlvpfRNPr5LpXCkSNHvAMHDhhxgJma5HW6TQRFe5lZ2wUZaXPy5Env9ddf915//XWTrZztk2AUEKOJ+HdQlup6gMrW86Uvfcn70pe+5B0+fNg7c+aMaZfnLUWVoI6Y63m2SHn48GHvuuuus6Kg6oHZlfyiq1xt4HfMWsTxpcgIn+zurmccPXrUZEa69NJLa97//PPPOzMd6c9+bf/sZz/rXXbZZd5ll13mXXDBBda9VIVwrT/55JOmaoDrud/4xjfMvcyKtXfvXm/v3r3mM58lxe56YiznqpEIPY16EXQya1gj0NFvi4uLZn+eOnXK6guzlsl9KfuAZYrnKyaafvDTWxKnT58O7JDn1epBGgnVanZSg0DdoSSa/N/VNzmBhw4d8hYWFkwKO79QRpnizvOWQgFPnTpVk8KOIYU6zdqRI0dqDhB9DcfOddBcd911ZrNp3evdd99tEThJDG699dbAA8Hzqno1DZaGOHjwoGnX3XffXaOz0/fefffdVkii51V1rLfccotFRJ599lkPgEnnxlRx1Gm6wiw1EXrhhRe8F154wXv11Ve9Rx55xBwid999d819QQTy1ltv9RkZt95VEntXCCrDKPlcHero1xaWZZFoJGSXOHbsmEkXSCyHiPqBe8pFFAmXLt6l2ycWFhbM+Jw8ebLm2R8J0ezp6bHyZUqcOXPGl6MjcZEcR6O1fTSWw20GGWwk6i0IcsAk/rK/rkniPcwV6IrBlURSbojjx483VLeH97EeENvA53Lhy2e9/PLLgf3ctWuXtRn5XADWvG3ZsqWukenll1+2CB9r/vhxZHwn4601QWCctr7/2Wef9Z588knvySef9FyHO+PbeR9zbrpAzo7/ZJ5PP8J36623BhJMVx/5Lyjmm/kE9JxpzlLvi4WFBRNj7heTfuzYMe/YsWPeqVOnvOPHj5sD3I+wymcFMRL6s673RQ6xHg1wtTto/2tO+vTp0xa9Wi7RbOk0W2ihhRaawIrDKPfv3w+gasVyFQdzWatmZmasqBQ/i5b25qfFTfop0i8ryN8tm81a6aSWm7jAhWKxaBV4khbHbDZrJSKQ72wkCQJ92Wi1p48ifR9lAmhpidfF5phii20KKiTmB1pp29vbTUjhT37yExw/fty8Z8eOHSbBhgvbt2+3fA1l0mGWtzh16hQA4F//9V+tew8cOIDBwcEaX8Grr74aAPD73//eWLj37NljJcxIJBIYGBgwbaP1Wq79gYEBM565XM5KuwcsWeQHBwcti/nLL7+Mxx9/3Dwrl8vh05/+tAmrLBQKNQlQJFzWd8K1N++55x4A1bG/6KKLrJBUADh27BiA6nrTiWRk1I/GzMyMlUxbJiwulUro7Ow0Y6CjofL5vLF4+60tetkwIbEs1y33hkzCQa+YIIu3y2eZkAl3XM9Yrp/miohmT0+PRxcQhhDKcEYAvk7mOqZUhlx2dHQ4nd0ZRijfAywRU8AdYihz9OVyOcRiMWcd9VKp1HQly7m5Oat97FMsFrNcpYrFohVK2kzm7OnpaXR1dVlO9NoZuVQqmUXd09NTk8uTBJiuF40im82iWCyaZ2/YsMH6LRaL1cStEzrvJMdDHgbS8VkTkFtvvdUQMv5Oojo0NGTFm0tcffXVuPnmm40D+OjoKHbv3l3z/MXFRQBVYi/71dbWZoVNSiSTSdx8883ms+cFO7vfc889eOONN6zvNPF21QAiisWiqcD57rvvmnfdfvvtVjXOtrY2PPvss4ag9fb2YuPGjaYaQHd3t2+9HWYW0pUVuH78snhJ6PpM3AdkKnTQC+GqjiArW+rNXpx6AAAgAElEQVS4dumgThrht57rZe//SIjmDTfc4P37v/87gKXIHMLFZWougacPk3nwxCgUCqhUKoExqDKBqpyEen5YTAwiibnfvY1EbMjY9UKhYPzC+vv7rRh4LkTNwfhBL/DZ2VkTUcJY/XrJlLmpXKe/ngtdapicKZMp0JcvnU4bbmVyctLitDWBIeg/6vqdfqCPP/44PvWpT1kJQSS0HyUJG9/96KOP4vDhwwCqBENeT0LD5DJf/vKXsXfvXmcKPAD48Y9/bBG/p556yiT1LRQKuOKKK2qIIwkhY9ZlO/322LZt26zkvn7Jkxkj74ra8XuvfD8AnDp1yiq/AizNfSQSwebNmw3BjUQi1vpMp9OIRCKGa6Pk5pKU9J5hpCDfS+ZKE0Z5PZkjMiHS71ISXb2X60HTpFZquBZaaKGFDwErdo/3E79dHJ/+jicGY9SlCKm5zFKpZEQ1v6w6jUAXq5ecpn6n6wTT/ZQiqRSJE4kERkZGLBVDvQwtMj2eFjnkaaxP+Gw2a3GmjJmXacn+P/a+Pzauq8r/Y3Alow7CqK46CKMMYL4dVJe6sStc4Qov9QqjplovDcKoRg1pEKkaKW4b1HRJ1VQJalYNS1BcNWzDJiiuailma4hLjeoSd+vdGjolRhkps8qwGSkjZVBG6kgZlEEZeN8/Zj/X555333szdkj2jzlSFM/Me/fde9+9556fn0OpPp/PO5FkKOHxe0qpEroMqElxfE/9/f1OdZ/gxxs2bEBHR4eRkDOZDD772c8aiU+W0rh48aLVjkZjmpqawvLysskI0tKblLQWFhbwd3/3d/j4xz8OADh27Jhl4wRgSZkHDhxAtVq1pDBJ3/rWt8zfWtpjnjpVcEp2zPL51Kc+ZV2/a9cufP/73zef9Th6enrw+9//3nw+fvy4U1OIxWL405/+ZGynUYDOX/jCF/CHP/zB7KGRkRFjvhgcHLRMAyyjwTmNxWI4fPiw2Q/j4+OBWg4lTWIhUGPkvtAaHvejxqFgW7okdyNapYvkfl8trdmmKQEUGqkF4iJuXJ06Bfgx96KIk1MsFn0wc6VSyQL8kKmgum0NOBBWr0i+EJoYgtIqs9msBalF+4xeXKR0Om36JlM7AfhU2jC0eTJ5qt9Uu+XvtFXWQxImLZPJYHp6OrB+TrFYxJNPPol77rkHQM2Eoc0UfBdjY2P49Kc/jfvvvx9AbWMfPnzYpF2GOZyAmi3x5ptvdl47ODiIeDxuwC4OHDiA+fl5vPbaa+aaoH2xuLiIe+65xwB6EE8z6D5tR/385z+P3/zmN4HPIAgKAJ+T59KlS+a979+/H9/97ndNG/F4HLfddhvefPNNACsOT84XDx+Ch/T395tqnJ2dnahWq+aQPXToEB555BF873vfA1CzTdOZJkn6AuRBrveHaz3JNEqZMqwZpK7vxbG5PrMv9fCHUqmEj370o9fepinLXURx/XrKh0p8TcnMpCG5XtJSAye2UChYedkdHR0WmlB3d7evH42caNJZI19moVCwQJlppOZiCmPGejyNlOwFap5RWVpE/k+JQ0picpFXKhUsLy9bdiUy5XQ6jWKxaG0m6RjSlMlkUK1WjbS2vLxsNrXL3jk2NoaXX34ZAPD444/jBz/4QaB9NMwZMzAwgMHBQVP+tqWlBbfddhtuvfVWALUSHpL5u6S2m266CQBw++23W86pIOJ8ZzIZc0iwzSDHmfTgS3IhUm3btg0vvPBCaE68/G15eRnFYtHgrB4+fNi8U46bzr6BgQFr7S4uLiIej1vOHTJawLZjasmRJBmsLnCmKQyDNp1OW4KItIlqyZR9IWnn72pBiJs2zSY1qUlNaoCuaglfSTxtpO1QxhHWEycZhXounxNEuVwO+XzeqKGlUskKU5BS29LSElpbWy27FYun8W/pgdT2FmAFiVxGA7AfEgk+SlIsl8uW2aAR0ioKve3ASlkIKeHyHj6rvb3doA6Vy2Vs27bNKp0RNN/5fB6jo6Pm97feegtnz5617KmMKgBqdkpKXUGeY/b7z3/+M44dO2bUzM7OTqMZAH41+PTp06aYnS60RtKlhuU1bO/IkSPYtGlTqCRbqVRMyBKlPxfK/uzsLDo6OgLxRFtaWvD666+b+err60MikXCqoXNzcxgaGsINN9wAoBYvKov3bd261WnCYL++853v4KmnnjLPAaIjKijxUvPj9RLDklqcxsLlZ5dNU/bLVf1AUqFQsMIHpdSqI06iSl+s1nu+dpwkRRrkVBp4SbKsQxhF1VMGViZb2/GkQ0W2E4/HrZg0qWZ0d3dbhmiGQmk1Kozhc/yEmSMFAa1qkkwsKOQqqh2OlzarwcFBc0+9AMCycmMQkCxp//79AGpzSZsZsALuzJAaHe83OjpqxRq6SKp1i4uLJvwmmUzi9ttvx1e/+lUANiM7evQobr/9dvM5SDCgih8E7wasOMR0GzRL9ff3o62tzTDgF154AS0tLaZ+++7du/GP//iPAGpOHT3/YcyYxHchD/OvfOUrePzxx809vb29SKVSxukWZPPl+vzZz35mqeN9fX2mb6VSCcvLy76DTO6xQqFgCUFBzFAzS1KQU9hVLkbuXymosNaVFGJ0G0GAxGuhpnrepCY1qUkN0FV3BDUCiR8WWO4iV0BspVJBqVSy1G3AbzyXUhpVdMCv+rKoG7BSGa+RlEtt5JfzUS6XjcoTJLlJr6IrLMrVZ5Ies0tFrFarWFpastTxnp4eE8b12muv4eTJk6FVFCVJSXFoaOiqgLwCtXlgdVCgJjnl83kTBsOU1SCpu6WlBevWrQNQeycyCaFcLlvAu52dnbj11ltNUbMwD/inPvUp/OEPf7C+e+aZZ0zITktLiw8sWddJl+tJ/nblyhULpNjzaiDf9PK7nF+yr/Pz80bSl/0B4AzmD6JqtYp0Om2k+o6ODhQKBdPvwcHBhvYEi60BMAkfjawTGYrY3t5u1jlBhblnXJpZWBjkdVHPXQxXqrb1pCTynnpegkvU58TocCV5jc4akM9iaBD/1htK2mv0BnW9fDJLjeoOwFlhU9tt2ReZluZaDNLEwBK9mtHJ+ZdxmAMDA+bz2NgYhoeHzWbjO5X2vuXlZbNx9+3bZ/W5s7PTMDZ9wORyOUxNTRmP8I033ojvfve7Jj6Qz3CRtnvrjJdkMonW1tbQipLSVOAKoWJ6IqMDyGA0M5Kpkv/zP//jU6mTySSeffZZ8502FbGtzs5Oa0wHDhzA+fPn8YlPfAJAbVMPDw/jvvvuM9ek02mDTv/tb38bzz//PAA7nZXU3d1tTDKsEfTFL34RQE3Fr1cAaG1tRTKZtMwpmUzGKgOtSZfVlcKCXr8uhklhQ86drBIL1PaEDOMrFouhJYKZQcS2rtaBvuZWtM2AjCXM7kankC6KxDaCBueyS3BipOSoA67D0jur1aphUIlEwtRaBlZy1oMCYsNegrbFEDxABo9LhiPHA9QWSJA0ynAmOuFisZhv4aTTabOQBwYGfBuZn8nQ6BTYsGEDuru7zRwwUJybFYAF3CD7qDdTIpFAd3e3zzYmDyVKP6VSCVNTU/joRz8KADh//jw6Ozt9cYakTCaD7u5upzQ9MTGBL37xi4HJBHQY3HXXXebe6elprF+/HgDwu9/9zlcqY/v27QBqjO6BBx7AY489ZvWF1NLSgh//+MfmfUxNTZnfmSggme74+Dj27Nlj2kkmk5aUurS0ZALkf/Ob31jjPH78uGFk2WwWIyMj5iDigUUmSsFE+hy4fmdmZtDd3W3WogbsiMViSCaTgetR2jfpZJV7Q6aKuojMj8+WJMOZZMgTsKI1BjFNWfSwUWdqGDVtmk1qUpOa1AitBoST/2S5i9UAhBIYlwCp/Mf7wpDaJaBxGEI8S2lohPSwfhGM1fNq4L/sFwGHw8CAJfCpRk8PoytXrvjAkcPKcHieH7Vbkyy1wT6dPHnSmq+zZ886AXW/973ved/73vcMGK2s+seSC64x6PIFslrlq6++6nme50MA97wVhPOHHnrIe+ihh0z1Rj5r8+bN1hx89atfDVxfjz/+uO+7MJBhz/N8aO6bN2825SNk6RHPcyOuy7IlvAb/WybjnXfe8d555x1nSQ39WVf/bJR09VLXXHueZ6oQyPXD9RYEWCz3o173umIkwZJldUkJZtxIuRpZ7VWCa5NXsF9yn7oA0PVnrBKEeM0oR7/85S8BuO11QLCNM5vNGrG7o6MDxWLRqs2tVT0ppkelMsowBIrlYTGfQfFpdBixL/WkFgalK+bzefT19QXalMrlsq8WNcfb1dWFmZkZY7MMakM+e2lpyVyXTCZ9iEdUFSuVSmRKYhBp5KG9e/diaWnJUi9dxGf/6Ec/wpe//GUA8IUeFQoFZLNZE0KjYeVc6hbnhyYHrdprlbseamlpwZ49e0xqaFSON4lreffu3SY29le/+pUzFlR/R5tm2Dzee++9+OlPfxpodpmbm0N3d7d5Bs0dkqjaSyQhYEX91eGCMvYSqC9tmrGUEhqutbXV53Pg2g0Lbcvn85ibmzNr2GV+iQqPk6a2G2644fpAw/3iF78AABNkGpYHKp0cOvg7n89bsZU6iLpYLFovUzMw6WGTz+3o6DAMib/XG7M1MzODDRs2+NKv+ILDytWSyfO52WwWra2toS9UMyFJ27ZtC3SccLyy9On8/Lzpn7YHHj161MzXxYsXDeyZJMZeDg8PB/YJsCHr6iHa7YAakye4x86dO7Fr1y7jJAJqTIOxgy6nYjKZNBvf4Rk1f3/+85/H0tKSL2c5iAFPT09bAdQyxZRMU3vP+Z6///3v+5iqLOfr2m9BqaEEzZApmXKu5Vzu378fyWQSR44cAQAfhuf+/ft9ziO2y7a4Niko6MM5KAZTfuciRrgAtbnW3nRX20Dt0NPYscvLy+Z9xeNxZLNZc+Bu3LjRepfS1sy4aZnu2YSGa1KTmtSka0BrjtMkl9eZObFYzCTnA7BSKhlvFQREqsmVQeTKHOD/UuJdS5gBQTakdOhCUXF5eKNQozUVi0UzL5okTBdQU72q1ao5YePxOLZs2RL4vGKxaCS4RCKBoaGhwNCnVCqFSqVixtLR0WGh6vN5QHQKayqVQj6ft8ojaCQojjeXy2FhYcFoEFTBKA1SVefnYrHok4AZFvWNb3wDAIzHf2FhwanqanWeRCQjAHjyySexb98+Z4kLAPiHf/gHy3SysLBggIoBOy5z165dBjQEsMGNwyjIrKBDiMIQfnbv3m3Bv8l70+k0urq6rJRG2S691FLCDDIRESA8bP9JVCNeI00AjUSlMFsKWMkW0nHJ8jmynQ9/+MPXF+Uon89bE8s4OhdVq1UTMhJG3CA6hCHqniD7ahCFBeQvLS1ZqW8SWdqlwjD+kfFpEjqvv7/f3JvL5dDR0WEYEBcuxzwzM2NKFbjCiWKxmDET7NmzB7/+9a9N6MquXbss2w7z7wHUpUrL9xg2jwzdkSmFwAoTYrwfnx0WdkJkJYYz9fX14dChQxazltiexAWlei7NPTpON4rK5TJmZ2cNswVWSmFwHsjsgmDvyNho/9RzQtq2bZtRwzkfzBnftGkTOjo6DIPn9xKdnSFEGzdutOZn06ZNmJ2d9WHNytIik5OTFuMkUTXnwekKG2KMJLAS1hdEcu1pdHVttmL4oa6fxWtdMcraHqr74gpD4xhke9el3IUG7JAZL21tbVbuuQTYbW9vt+DDEokE8vm82aCcQJ4ihUKhbrsZX4LMGKoXby+qvEWYzZHP5oLv6elBIpEwY+CL5IJIJBJWDCgPEkJ31TNOuViSyST++7//GwBw4sQJVKtVHDt2DABw9913O4OhJclccxdJJhB0yJRKJUxOThopsaury2eDAlaKtG3bts1aH7K9XC6HQ4cOWTVuABiJeefOnRaOqHw3hUIBmUzGSH+5XM5nLx0YGLCC3+U6lhqDS8rbtGkTfvrTn5rPX/ziF/HWW29Z1z3xxBMAYEmSLS0teP755w2jv+mmm6wCcuvXr8d7770HTeyDC0yZv33kIx+x4ANzuRymp6fNWOrJ8JKaoPQpcF+TCdUD06iD3cOg4RrNEJJJHeVy2cynTh6IxWIWA6UWBdTef9Om2aQmNalJ14DWJGn29vZ6+mSkpFmpVKzyD6VSyZw+RB6SqY/S/gnYKunU1FRk3qyWcElRSM4u6ZJSR1dXF9rb20Oh4BYXF4105rIphiETRQEza3ue7qMsuQqswL719PQgm82a+e3q6jJ9CzrR64HhI0kkJg22LENC2CeplstwMKlG14t8RYrH4/jjH/9oSYCUltPpNPr7+82YtT0UqHnIqe3s2LEDxWLRwOEdOHDACjN77bXXcMsttwCovZPFxUUjuS8tLfkkpb179+Lpp582n/UeY8TAU089hZdeesnnNQ8KlXK1RWppacEXvvAFS3rev3+/sScvLi4aqb0ecmmN9a4NDWvoWnO6pEW9NDs7a+ze1CykNJnL5azIGfm81tZWMz+xWAx33nnn9Qk5+u1vfwugMcCNTCZjbSQapSVABWstA36R3sUI+YKpnvNe2k/C+qfVzXoZSDqdxvz8vGEC2l60GkxMbmRpfyF8HdtiXKtWk6RjTfdfQunpcC/Z9927d/tqviwvLzsh5TSDrIei4uhI09PTpn6Q7CPXyMTEhC9mkkwvFothdnbWjEniAQA1Rjc0NGTaWl5eDjWLSFthNptFe3t7qIpKZxAAfO1rX4uM65RMMpPJGBvmtm3b8JnPfAbvvPMOgJqZReaeS7T5Bx54AP/+7/+OzZs3AwB+/OMfA1hZ0+Pj48YsAtghRlEHKR21UWFFrrZoz9R4rHKPlUoly5EcZrN0CTlc7+l0Gh0dHYHlXhKJhGUm+8xnPnPtmWZvb6/HeieuCZU2p87OTh/WpiQZjE0gXGljkSDGrkkJknCBlXo8JPns2dlZw/RSqRS2bdsWuKk1sy4Wi0ilUsaLvW/fPvNCXYxdevpcz5B2ueXlZStuVTJdejODnFC8RsbASYlOglzIfHjOx4YNG0IlZLng9aKW485ms5icnDSSFdt8+OGHAQD333+/5VmPooWFBcNgNm7ciEQiYQGLkFKplGWX1M48XXYj7FDlwUcHTHd3t9M++MADDwAAnn32WcvuPTMzY/A09V5zOW40eDAjONhvzu3g4KDljZ+dncX27dvxhz/8wdy7vLxs9kqhUMDU1JT5vHXr1roRyTRQBkl6pqWm4BI2uJc10+S+pLCg7w2rPcTnap+Fqx9ayEin07j99tubNs0mNalJTfqb02pyL/mvt7fX5HJevHjRmSPuyiGVOaqe55mca5mzLXNHL1++7L3xxhuRudakU6dOeceOHfOOHTvmnTp1ynvnnXdM28x3Za7swYMHfTnvqyWZa37p0iXvjTfeMG1zHMwNZk68pHfeeceZ13327NnIcb///vsmx9nzvNDr5W96zMxr17nEkph77HqGK6c5iC5duuTdcsst3i233OJt377de/DBB70jR454R44c8TZv3uytW7fO5HAfPHjQ2S/+/tBDD5nveK2k48ePmzXgIplffvDgQdPu888/b113xx13eM8884z3pS99yfvSl75kvr/xxhu9G2+80eT6S4Ijt9/zPJOPLnOln3zyycD52759u8lx37Nnj/fVr37V+v3555836x6A98wzzzjH6nmed+7cObNeTp8+7Z04cSL0vYXhPxCT4f333zfjkFgFnudZY7x8+bJ5j/zOlc/O/co9wbz4ILpy5UrgHtb3Xbp0adW552uChvvLX/5i/g6ql0MRmSq3i3K5HGZmZoz4PDw8jGKxaFTuvr4+xGIxE/bS3t5uqUgy1KK9vR09PT0mpi+RSCAejxv1jPF9fFY8HrfUjlKpZNKvOjs7fSqJS+3m82XsKUFy5f1tbW2WfU2qNG1tbYGlKFyqvLYNtre3G1WVThAavQcGBqxnSTgt1qiWOADSFuuy3cl4vUqlYlTXsbExpFIpX3+D1MAdO3aYeMgDBw5g69atpsb4yZMn8c1vftN6z9IpB6zgYQIr9kygpqqPjY2Zud67dy82btxozYekVCoVmBJLhw9NCgsLC9Y63rRpE4aHhy21MIzk+unv78f69evN3D/xxBP405/+ZN5NLpfD7t27zdh+9KMf4eDBgwBqe29qasrMwZtvvmnwTQG/KWBubg6bNm2ykgO4n/r6+gzQMLASB8z1GBWKJ+Muea00B2k8W34PwOAJuKDhOE/S1BLmZ9A57bLf+r61lL9oqudNalKTmtQIrUY85b/169dbIq+GBTt9+nQgBNTFixcNfNSFCxcsaLhz5855Fy9etOCkTp8+7YOXCiNCwVFlpurx6KOPWtdpKK7nnnvOe/XVV71XX33VB9WmKQqyLowuXbrkXbhwwYyJsHW8V8/ZlStXjJpy8eJFo0Z7nue99NJL1hgJBeZSR8+fP2+efeHCBaNmU306f/689R7PnDljmUqkanz58mXvyJEjRvUkNBrfK1U//q6h8qQZ4syZM94rr7wSqEJfunTJO3bsWOic8jnsIwLUYk2vv/667zvOz5e+9CXf/WfOnDH9vOOOOzwA3oMPPug9+OCDvr7gf+HeqIrL9afbBWDBuD333HPebbfdZl1z3333effdd5+3bt067wMf+EDouI4fP27BqJ08edJ78cUXvRdffDH0Pv2eTpw4EWne0Gs+aB8Q2k2arSQFQc+5KAruT7erCddDPW9pabFUr0KhYKk5QUXhqVpSfdIlQuk5l2peGEKzi7SKSC8jQ2QYs7Z3717j2VtcXMSWLVuMSsoc2aAQB5c3r5HMBubp8r7l5WWjIkmVL51O49ChQ/jgBz8IALjnnnusmDuG5mgYPJmFIdVx/V7kvFK9k+hBbW1tFiKO9J5v2rTJF/9HtW96ehrLy8tGVdy6dSt+/OMfm8/5fN7MV09Pj7V2isUicrmcCU2LxWK+bJhsNmvVsWG7jJbg597eXrS0tODy5ctmDgA7PVETVfn33nsPDz30kPn+6NGjGB0dNXN79OhR7NmzBy+//DKAmiq5ceNGZ5gRv5OefmBlrrdv326ZQ3bu3ImdO3cac1GhUDDmCZlRR9q/f7/5vbu7G0NDQyYttVgsYtu2bcbcISMGpqamkEwmzTqQ5UuAFdOajAwpl8tmv/b19fnWvQsJid8zzMhF8ntZ8hqomVHi8bh5bhjKmGwD8MPbNRoXLGnNIUdvvvkmgBqjO3TokAmh6Ozs9Ln5mZNcKpXQ3d1tMbZcLmeCs0dGRpDP5y0mIHO+w3KYSZyUubk59PT0mM/JZBLz8/PmZXR1dVlMUG5kncOuazi7YtJ0TJmMX9NtFYtFKxQjLH5RQrBNTEygq6vLLOJjx47hJz/5ifVcyegl7B7DsRi6Uy6XI1PsCCYC2HZFnSKnD5fDhw/j29/+tg8vMmjN5fN5Yx/t6uryhePoPmlAGB44QamuvHZkZARTU1M+GyfDn1h6mDQ+Po63334bAJxpjmH3hlFLSwvOnj1r3rtmCv39/ZiamrIYj4T7m5yctA6S3t5e3H///QBqe6RUKlkHmpz7WCxm4jb7+vqsPcXAds6XtutzfXHtyhRoFxZuGJVKJcumSTs54F9PZO7kKewXDxUJOuIizcBXi6fZtGk2qUlNalIDtOaMoP/6r/8CUDsVFhcXrYBsKQ0BK2ALfX19KJVKxivGQk48+XV2xuzsrOVBy+Vy5nTmqSMBJ0qlkvnc19dnBcbTWydVcB0EK6UqF0kRX1a5c6WEyWp4Lg9kIyWPJbHELbBiBtHVJ6VqI09vSrlyjFJd0eDQWtKg+n3gwAEDxwa44e20ZDk8PGwk2x07dlhzx5REoDYvjWYbaXQbzj3fd1jhPtc4STMzM6ZtnfLoogceeMDM/Q9+8AMj1etIjeHhYR+aO2CvZUIsuqizs9OsgUKhgJmZGdO/1tZWX8ZWPp83bblUW111oBGitBcEtB2UEFEsFi1JVd6rAa5p1pOajpSICdAhzU1aK5J0XVCOent7PaK7kCloNGyq3DItst6yEbxOVlZk23Jyw6rZEbU9qtKlbEsyN4n2osMnwrKgXKmK9RAXXz32Gm6uAwcOWKjui4uL6OnpMQv16NGjRtWVWTAkbR+Tc8s66fKQIoP98Ic/bG34w4cPY2Jiwiz0rq4uPPbYYz6mQFT4rq4usya6urpQLBbNZ42xyhAtVz4xiXPPMsycH1YV5b00u5DhDw8PW+aT0dFR8+50KRBX+ioQvjklbdiwwdigN23aZNk3JyYmsLCwYJlL9KFDlPeRkRHcfPPNoSmaO3fuNNlYEuW9HnKhU5HCSgFrIYDXUiDKZDLWwaPbkunDzCOXIW7lctl3qEiBIOj95PN5a/20t7dfH6a5fv1673e/+531HU/VUqmE+fl544BZa83hVCpl2gjKLyWF5auGAXgwB5YTq9M9aUPTxmWZ1x3WL0lk9NJpIxenPo05bpIG5JDPlemnQG2ByMXsShtkW2yHuJGDg4MYGhqySkToQ4+bcePGjRbILkmWd9WbjYfq1NQUhoaGfFoGmREZt2ToGpyZY5SYprx348aNllQmyyhkMhlf/ewgAJiFhQX09PT4xhGEV6AxHOVa7O3txXvvvWcOylKphAcffNBKhRwbG7Mg7QjecenSJezcuRMvvPACADeQx+zsrJnPiYmJQHjA6elpVCoVYx+l1kfmTU2Q87mavcw1MD8/j4GBAcuWH7VnpKReqVR8kizflXRWkfTeIfPu6+vDhz70oaZNs0lNalKT/ua0mjgl/rv11lut2Mmw8qNBqZNhJOO15P1XrlwJLE3qIqZuXrx40aR6MeaM6YxMB2Pq1vvvv+9MKZMlfMPKB9eTRuh5nq/cqCyjqmPddJwqS/Ru3rzZKh976tQpK87z+PHjVlycjFk7d+6c6QP7oWNk33jjjYZiZDU9//zzVjoi4xYvXrxoxSaWttcAACAASURBVIseP348tB05pydPnjQlgaOI5YFd7Xhebc71+gyKFXR9p2MAdfygTo1lTOcbb7xhpX96Xi2NUtJtt91mxZpu377d2759u/kddcSh8rpTp06Z93jp0iVvz5493p49e7xXX33VxPp6Xm1NutJBryYFpVRrku9Kz6suk61jQKPaxvUo4ZtMJj1ZolaL2XNzc0Y83rBhg1Fp5ufn0d/fH5rK5FKjpYpJOxzLSkTVFZHlgXVbVAE1NL/GiuQ1YYg4fI6sgcTnuFLJ5DWVSsXMl1SBaeCWJYzz+bxRU4JS3KRhn38zBlbW5tEOCm0X0pUMJZ6my7ZFFUjieJIkrqqcE1d9pGKx6EO+Z7+Y4keEqWQyGWor17bC6elpfO1rXwPgLm9LWl5eRmtra2AYky7xq2l2dtasl4GBASSTSWNnZNqpdHK6kI90f4CaHVumjgIr8HBArcqofIe7d+/Gs88+i3PnzgGwTSVtbW0+81AmkzGfo2DhJAXtjyATTVQlBdmeXPPAiulDQkrKMehUY20/Xa1Nc02GRjlYzYyWlpZ83s8waDd5L5mJnkxXXiq/D4Myc9UMkm3pMqKua1zf6eB3ae/kcyWAMe8BaosykUiYz8zTl32R98qYRNYm4u9BTJPfaycAY2qBlcBlmVggN5ssGwHUbGM8KOm4kM4clg9m2xqEWEN96fciYycPHz5s4h7psacjhEyTTARYOWgmJiZ8AeS7du2yYlP37t3rswNyDqampowzKxaLoaury/IOl0olM59HjhyxYiElxiVQW+s6BlIyRRnZ0dbWZv3mimllW9xbPDS+8pWvAKiVK+Y8joyMmFjM3bt3Y8OGDeZd6QObThaOMSrmkW3weolFS+hCYKW+l9wjYTnhkujY4bW0aeq66zISZnl52bybcrlsrae1+lVITZtmk5rUpCY1QFe1sJo8vbSqJU8XLUmGVa10/V6pVCwkaB3LthYEkzAvoe4PP1MKkcC2UqUAYIXSyOc0UjVRE72GTDF1ATsDNXMIT+MNGzZYCFL9/f0mLIv9C4uV09IPw3mA2sk+NzdnvLD5fB7Dw8Pm8/DwcGQ2F/vc09ODwcFBYxZgmE5vby+AWmZOsVg04UtUednHZ555xiC3Dw4OYmZmxsyPSxIFbPR6TZRYenp6TKwvKR6PmxRXifwVRFyr+Xw+NAxoZGQEnZ2dRpKdm5szkujCwgIee+wx63rP88x6m5iYsOakWCxa0SAuNZnSoZRGAb8mQzOWlPik1Fkul405SJoe5P2rlfokAhfg1iI1SrwkGa50XdRzF8mXIhmQnCj+HYX2rK/nS5V50LRB6vCa1b6UIGgp9ker8JLJ6MUD+E0RMkWzUdIxnFL91umNhw4dwiOPPAIAuHDhgnleqVRCpVIxKrcrpEamlrL/ZHyaYcpaT/F4HGNjY1beuqzpwjLP0jYrzRaVSsVstrm5OYyOjlolL1KplK+vsiYO6fTp0+ju7jabp7Oz0zIXkWGSAb322mt47rnnDAOWTJP2XQ0nx7b57n/+85+b3yYnJ83h0N3dbVUGkDXnk8kklpeXrcBuydATiQQGBgYM48lkMia29J//+Z+xbt06X4wt39f4+LhlKpAqLAAr3I2Mp5E1GXXYSxOPtiW69qa0c0f1Qwo1si3u+7D79Tyshq5a7jltcJJ56VrGutxFo8HfnFh50ujgdcCuk74WSU4+A1iREqMCewH3wigUClasKeDHApWkC2zRftXT04N4PG6VrWDwLlDbfDKYW+Zl0+Yo4yFlwHBPTw8mJyfN5927d2N5eRl33nkngBrTpNNjbGwMS0tLZqPWU35Y2mqlDZhlnckEy+WyFYPZ1taG/fv3G0P/0NCQb77IUL7xjW/UVVpCS4eydAYPFeIlSNJ2S+lkkkXQAODVV181c7lr1y7fZpU2XzpF9Di0tiKJvxWLRUuK54EWtFaPHj1qDl9m75HCgtclBYFfaGGpVCrVVRcqinjgs2+cL3kIl0olKxie5HJUN0v4NqlJTWrSNaA1ZwT94he/ALByCvBE0TnN0ksoJVLA72EjheVlayRyKQ3G4/G60ybDSOeWB5G0B0rVwVVlT2eOULLq7u52htwAfvT0XC6HQqFgvNQDAwNO76DMupDQWDLbA6hJTpz74eFhn8e7paUF69evB1CzJcqcbolGJb2WnD/Zdx1eos0fhULBqJvVahUDAwNG+tu7d69lRwT8tkne+/DDD4MaUBgR3V9WaQRq8+lS+4EV1fv222+3vicKEgvXUdU/cOCAqSb5sY99zArdWlpawo4dO3zPorT6gQ98AH/5y1+MVDs1NWUk37m5ORw4cMDaIxMTE5a5wwV5J4n3FgqFujPZ5L06koQkzVRBWXJRmAxBz5H9du1LjXwVRtcljfLOO+/0Tpw4AWAlRlEb+l2TQ0eEDKlJJBKrytUmSVVV1tMOatOVK8xNLZmgVCG1TZNGb3m97IOkxcVFq0qmXkg6pkyq2/IQkL+z7/yN6ntbW5vFFLVqsmHDBrz22msAVmyUUn2XVTELhQJ6enp8DIs0PT1twn9k5UO2VS9phsoSs3Lhb9261TCQnTt34ve//71hSP39/YaBXr582YLK0zieQcTSEb/+9a/Ntcylp8pM50oYFqcmyQTfeustHDlyBADw93//9xgdHTXXTU1NYXR01Mc0SRoKTlKlUsHU1JRxGjFvW4YCtra2mjTXbdu2mUPVtb7YBu9NJBI+H4N0qkhVXbZFASnMzhhm1ooqtSFt5BRKNGaBbFu21VTPm9SkJjXpWtBq0oj4r6enx6QnMiVOpp9duHAhsNyFrDJ36tSp0CpzMk0qLHWRz7xw4UJkNcUwkmmF+t/p06etMcq0Sj1O15jYr6iyAbLCnyt9UaZ7yvvYD5bPYB9Z/kN+9/777zv78cYbb5jfX3nlFas8gkxbe/HFF30VEV2prTJ1r54yBi46f/689+Uvf9n6bt26daH3HD9+3Dt+/Lh3yy23WPe++OKL3h133GE+HzlyxLvjjjuclUD/t2qhL11RpjPqMhznzp0zJT88z/Mef/xx7/HHH/c8r1ZaQ6etktiOvN7zPO/RRx/1lWl5++23rXURlYJKOnPmjHfmzBnv2LFjJg3XRadOnTKVU7mPuYbOnj3rnT9/3uy1y5cvB5bRYEpwEB/wPM9KZQ4jVwVXPYcyPZvpsToFm21glWmUa2Kavb29Jodbbz7mlboWhx4Ay/+yHVddET3xQe3yXp237frb9ZIuX75sNrnr95MnT5p7z5075x0/fjx0jJJ0DaWwRRLWx0uXLll52662yBBdTFEuXtfvP/zhD83f58+ft/KhDx486K1bt85bt26dd8stt3ibN282v7EmkM5TZz+Z6+8iPTe8T5JkyBcvXnTe43k1pvjqq6+aMrthpWw9r8ZwdKleSXv27PF952Kk9RAA7/XXX/def/11U75X00c+8hHvIx/5iPn80EMPeQ899JD35JNPGkam+8v6RPxdky6tS2ZIpqfXz8mTJ33rWuIEyHXzyiuv+Eoay7164sQJ79SpU1ZdK0lS8ForSaYpBQ/XPlot07yqwe2SdBhCPaE/USE7QfcE5UDLa2Ral+6ftNXIfupcdMDG+cxms8hms1a66OzsLICa3XC144m6vlKpWE4mlt3VOJiuNsISBvj99PS0ZWsLMvpzXmSQfSN1W6LmRMKqEUBXtl+pVEzs6rFjx0wueX9/PyYnJ00/E4mELxyKoTqAO5RHhw5xnzBuU/4etodSqRRefPFFADUbpow7veGGG6z7x8bG8PLLL2Pz5s0AYOyydBTdc889OHbsmLkWsIO1WQKE/ZSB5bT16bRewH73gD/2OYpyuZwP9JtJCtwHQc4c+Vz922qcuFEx2rLtpk2zSU1qUpOuAf3NJE1SGJDGWkgDzTbiqZVUKBSMpORK8ctms0ay1AC+5XLZ8sjJUCoZXgT4vfguhGmdbUSSyPH8v62tzUIukm1FIT5pcGX2B6hJrTrkKIoYuRCEBCRLazDiALClnSgJYe/evVZKoRwP26J0PDY2hp6eHkuC3LVrlxMgmf2TiPRzc3NGIvvWt74FwJYm9+7di6effhoAcPz4cUt6ZGA4Q446OzvN+mKIE9/bJz/5SXieZ6Syu+++G+fPn7fWND3qQC0d1BVsL0mWlJHVPJkpxzkvFArmb0qg0gvdKMm1HlaUDaiFWvH6wcHB0PcelvyhiSA4OquPpMMHr0saZbVaNSgzQZss6AVEhRLwGlcbMnUsKL6MzJy/y7hNHRvIvqdSKeTzeSvbQ4ZWkHmSCTAbQaOu8JowRuCC5JcMxRUfqhc1VdVSqYR0Om19JoPSpNGWXO8gqLwqifGhW7ZsQWdnp6kgSaKJoq+vD/F43DdWqQ4GxdTRDMK5TSQSlskAqL0vue5kfr3s59DQkMUwdVjK9PQ0ksmkWVcnTpwwqvGmTZtw+PBho457/5sRxawoiaoOrGxsxmM+8cQT+Jd/+RfTv7GxMbOOyIjvvvtu67N81oYNG8x8aYaps5xk7O6GDRvQ1tZmVXSVZiqZJdbV1dVQuB/jl12piNVq1bm2Jcl1HhUj2ki/GAstwwm5vpjCG3SwN0JrljRpb9Gbb35+3gQoA9FBrK6ys1zEnZ2dFlZiWBGsVCrlw6KUhdj4wlxxY0FADpKJaGYWNiYZw0lQkaBFEIYrGDbeMJIHWhDYCG3CcqFHSd/SHjg9PW0kKE0sR6Fj+GRfGFi+bds2azMRzELbvvQ4ZIohmQpjVHn4VatVzMzMWO8tlUoZe+jIyAgWFhZM+Vsg3E4ZVobYRZQkmfMv4cqkJDkyMoKf//znVtu5XM7crw+No0ePWpI3JS0+U5dmjgr8DirZoYlx1lyTck1TS4nKJed7JGYq++UC+GiEuJ4BfwkZSfl8Hp/4xCeaNs0mNalJTfpb05olTZ6CrpMrn89b1RmlaKwhx2QqZDwet+weLILFE1qqz/J+YCV1T/ZHS3G62BWBbvv6+iwblEYAYvscczKZ9BVDY595n0SFD1KZAXf5W/17kNoT9pvsN8fE/gDBkjd/Z6aSHhfgL0imtQWdhjo3N4dqtWqplBIYeHBw0IfqLudLA0lUq1VjT5UScalUwvLysnnO/v370dPTYzKXNBWLRezYscOYGaS9b25uDouLi5Z6T3g9YEWKrJckklMikcCHPvQhvPLKKwBqAB233HKLWX/avLNz506jCVHK4/OZUUdTEgDr3eh1JyHWWltb0dHRYam1+tl6z+gKsEFpkS57t25LVjyQKb/1mPCiiNqEtnUWCgV87GMfu/ZplNIRJJkDsMK8gupph1Eul7NqlycSCVMrHaipAFr14CJOp9O+36KIamwsFrNqSVOl1zXDwxiyVh+5mGho16WGg/LLJemUuHpJ9sWFsr0ayufzZiNks1nLnJHJZCxTRk9Pj8/OGzSGw4cPo1gsWrnVvAeo2Q43btxopY5OT0+b9oeGhoyqeujQIcvp0dbWhgMHDpjf29vbLbWYxHHFYjFjH56amnIe0vXS2NiYSbmMxWLYtGmTCX+KxWIYHBw0Y1pcXEQqlTKMcGpqCktLSxaz57zoypwkqWJrs448dCQepr4ul8sZ+yCwgqMg8SQ0spg+lOXhJ5GJGM6k171OXW6EwpxFul/SH7HaapRrhoZ77733nJ3U9cOlLasem4nEz9QMQ0upksrlMubn583JFgVJJT3eXGjyBUfFf2omKvN5JTG2MsjG4ooJZVuVSmVVNk1SuVy2FksjzLdcLmNpaclIch0dHZFADxokVmoMqVTKsoVxLbjqcofZ4CgpyThOOl+GhoYsj7brHX7605/GPffcAwC+Wjvlchnr1q0DALz11lvo7u72SUwsuyFreJNkuenl5WULOi/KHlosFs27ko49PY6ZmRmL4UaRSwvQIDdy70p7oJYeyUCDDmLdttwj0jEFrPAF1x6qd51KgS3sHoIKAbW1+NGPfrRp02xSk5rUpL81rSnkSGdNAP4sEUooMsShWCyiVCr5Ck5JiY/38H95GvX19QUCs1K1CgubkepIe3u7sXuwMJgLDdpF+nstecnTPcxeyd/1c3XhqCjSaEyc787OTjOn+Xze8kgXi0VL+tXqYCwW82XTaNODJBeArdQsOjs7zRxJjzbtj5QyZNkMSRptXBKRiEj0zI+Ojvok/JdfftkXLkTK5XL41a9+BWBFsuSYDh8+bNlegZqkync1OjpqeYCr1apRqTmP7Kc2DwCwbIskSrlSu3r77bdDQZ81SpRWecvlsi/agNeUy2XLBqirQkqzh4tkFdd647QlRKJe71LS1oXVpHeeXn3ZP7mnZHWD/xPI7YBtJ3GVbuXCS6fTyGaz5mW1t7f7jMNRwc5kdK7aOMViMfTFuhwK/D/q5ep+VatVY3vt6Ojw2SzDSNc6igrLkvfVc50MbeEiyeVyVuB9sVhEd3e3VSl0dnbWvJsdO3YYm5yLisWiVckykUgYp8nIyIjlAOB7Yd9nZ2fNvQxNoj1vYGAgNAzL9VtYnahUKmV+d23MKCIk3FNPPYUnn3zSgojbuHGjaTudTmNubs7ggE5OThomSnWbqj1LpdSDeA/U3juD5nXJYK4JGcoTlvCQy+V80IOu+Fl5vbQnBwkWrnTNesKbJGOUf8/Ozpr5i8fj1oHCtmWIUZRwwvkpl8urVs/XJGl6nme8n7FYzOed1KU6eWLmcjmfcb1arVqbz+XNlZPPBcicZFnDWW5MF+mXGMTgXMxJ225ofwXqlwhJsga4BvCVhnZKjmGno5SeGRhOyUSOI5lMIpvNWhuG3lNe29raag6lG2+80XrO9PS0Odz6+/stZ58uyEWGyYWq52doaMiS9lpbWy1JXa8ByQhczDTMVt7X12fWaiaTwcTEhCWZVqtV49V22cF37txp/c+2iKfJftGLzQPLJS3TDprNZrFjxw7z7js7O5HNZs0a0DGyjz76qMmvZ1kHLRxwLboiNaSNOB6Pm8NeH/Sudb+4uGiNRZZM0Y5RnUVHez4Aw5z1u5IlLCTTy+VyRgshzqsu4iYZcJQwIedntdS0aTapSU1qUgO0Jknzr3/9q1XdLp1OW3GAOq6LJ5uWMufm5tDZ2elDIieFqWmsqifLj0r7qLaHAsH2FZ3jXa1WLenGVa4hKKRDk8s7rCXqbDZr2pNqB6UGjUitbYUknvIuRHnARtpmO9r2Q2nrrrvuArASDyjDRSYmJjA+Pm49e9++fb6sqiBJvq2tzfI+5/N5K5uLtkCgNteywqROaZVSbJBph2regQMH0NHRYXnEt2zZYiQal6RJyfKuu+7CpUuXjCTZ19eHqakpc28sFsPAwIAJY9O0sLBg1kg8HsfQ0JBR1zdu3OhL81tcXDSRAIVCwWgA3G/yelnQzLXGtQquTSdh9kcdxhcUzZHL5RCPx817yuVyViRMW1sburq6DC/gO6WWqffItm3bjAZQLBYtMwHHJMcsTYRrCa0LozXZNG+99VaPObpdXV0oFApmwXFDc/Ky2axP3ZDq+vDwcOAgXWmEnBjaZnivDmIlI5NMQtszXQ4dwM5dBdwbVNpi67E1ShumdhRlMhnr2Ww3Ho9b6nmU7ZPXhm0gtqVtUPF4HPfee68phzE/P28Fo8t3sbCwgLm5Oau+9ujoqFF7o+zSmmRVR6Bm85Rlil0prnLMLgwAkgxTCwrmr6evTNeUjLWlpcWCcws6PJeWltDX12dsxJs2bWqobC7jdQG3+i2dJK52XbXNSXJ9ue6V6ymTyVhCjn6GjMvkPdrGyc9kgvKwlCSrS7LCpjTRuObAFfYYAP/XDDlqUpOa1KS/Na1J0vx//+//eb/97W8BRBtWNdyYzMggmCxFcy0p6KJjkiYnJ9Hd3W39HlXESafmUbrTzpig01pK0RJEIurZmpaXl62sp0KhYACNXcbysKweLY1LySBMgioUCpZErcNQdFSDi6haFQoFJJNJK9xEA3RoogrOcfPa+fl59Pf3B66revoV9tworYDqdSKRQKlUsiShe++911ftkn0h8pMsuMb5mZycxNDQUMOgFNIBqNNZ+ZlSJFXuRlMQdaG+Ru/XaZRyT4RFpbiyiyTNzc2ZfvX391uOV13xlhKs1CoplbrW0XWpRunC03RlLwA1kV4iaUtVg6jT2msmGaG0Le7atct47lgBU97b1tYWqGKTJMwW2+3o6LDy1huBr+NzdQgRiepPGFNlGh1Q23zahintx3ohFgoFy4sfVFI1ajwSmZ59GhgYMMw9FoutiVnp67RKTfuVhDXjteVy2fwumXMQaRxPSUePHsXu3bsB1NRmCREoqVAoYGZmxrS1a9cuZLNZ097U1JQpocy2ZBTJww8/bFXGLJVKeOKJJwCsILPTTLVv3z4MDw/7PO5B81kqlazSzHI+5ufn0dPTY0VFRM0X9wyjKbTwIDPUZDyzZLi6j0HPlG3Lcbj2jDQzua7VJi+OQ4YAuui6MM3Pfe5z3j/90z8B8AfqaoBeYCW2Mp1OY2RkxJzALntGKpWyaqjn83mDFQjAgsSSNZ43btxo2cVcsP2FQsEKk3GFZgDwSWouR1GYfVHaiaJSMgG/tFgv83Hl1xYKBSN17Nu3z4TK8PCRJTqkw0VL9YzZpOMjnU4bpsBkAEnSnsckhqhUVo61tbXVZzeWwMtBwMkALLusLv1B4mZaWlrCrl27zDOigH2BFcZG0Aw5f5LInHj4dXd3m/eyvLyM2dlZw2DT6TReffVVPPbYYwBg2Y5J8rB0gVbrEDjuKTrONPHwm5+ft6ThyclJS3iQtsPp6Wm8++67eOqppwDU3nsmk7GkuLCwPZdmFCRchTF3jlc7NsOwIMKoadNsUpOa1KRrQFcVsENzeYYfALYdrlQqWSDD+oSlCO6y2wE1iUGnqkk7hg4v0ieXhOeSKYYuSqVS5jTUUikDd2WYVZT9cLVlOcJOYAbJU2KvVCq47777jN2tp6cnMATm6NGjKBQKRlNgG5SskskkUqmUkS7T6bTlzZyenjYSi5ZsiHQVRkEShx4zpaggb6hG8MlkMr6QGo5pcHAQc3NzRh3X72Rubs5In5VKxaRjkmgHBmDATPh5bm4Ow8PD5p7x8XErdc8lmfPd9PX1OcPtZBZMGHCLy16v55VtpdPpQNCbdDrt9I7LPSYjZaT0F2WC0vszl8sZs9jVoKB9ks1mTeYT6f+MTZPEF1ivLa0eqgcCymVUlvY99inoxUrbaTqdtl4Ca/HwpTNcgtcXi0WzAQYHBw2cGdCYg4h9lsy4VCr5FhZVrdbWVl/Gxv79+w3qD9uQ45fvQ2aKMGeZ9r59+/bh4Ycfxje+8Q0ACE35ozrOsU5PT2N6etpSf7PZrFGT9abV9lSJfM/3TRMPbZ4aLYd/sz+8ViLcaNW9XC4jk8mY+ZycnDQlO5h2GnTYbdq0Cbt27TJtUp2WmTpBFSMTiQQqlYpR5ROJBOLxuOm3zNQC6jt0tS1bkmaqEtdTk449DWtHCi1Ux4PQqWRYFNuWn13qtxxTo/uI5FLb/88xzXpIB1/LyXLZIjVwLrBystVbdoKevaDJ7+3txSOPPAKgtiEYnEuilxuo2aikbatQKFhBunoMYfYWafDWY6SR37UJeG3UhiKzqVQqPifK8vKyYUr5fB5TU1Mmd5oB1LR7Dg4OBs51Pp+3MAWWlpYMI3CRzFun1Kch2IKAWTS5HASyz8BKPR8G1Ms6NRJWrKOjwzC6bDaL/v5+7NmzB0Ct7G5fX585DF3S3BNPPIFnn30WQG2TS+Yt04k5RiYOUJoPgkaLsteFMUz+LkE5NNgvmWg+n7cONMLbBUmDnD8+V85lUConv9cMOGqPFIvFyLVAUPF4PB4IPA00bZpNalKTmnRNaE2S5p133umdOnWq4ftcgLtA9ElJqUOG1Oj0QheFpTeGEU9gSpZA7fSSJTxcEiCwcvo2Ch4s7UYkqniMI3Wp2FFldylpJpNJTE9PW3MpUXooIVDS1Fk4lUrFqNuUshnVQJg9mgkqlQqy2awF3BFk89Vee43Sw3IounyDDC3TUQ56DC6PNlALC3rhhResMid8ztLSEqrVqlFh9ftMpVKRcZeyJExfX58z2gFYmXv5roCVfSFtqdJ+K8fcCAXFI7tso/Ial/Qow5Gq1aplT46SJrUEHBQtINuX18rUY92vsLaui3re29vr/ed//icAty2R3wNu7EkXujmvDVsEMj3KhfwMwLIjuVQRSUGLR6ZksV+6tEVYP6Oq/zVCcnNmMhkrjrWrqwupVMrYU9955x089dRThkmMjo6a98BQEc49x8A5WFxctEwOmUwGra2tFkNjW3Nzc84wGU3anupK9cvn8z4HH+BX1zVD0Rii8jnabsvftRPk6NGj6OnpcR46LswA3gPUQtzCDm3pcHr00Ufx1FNP+caobYtk3nxHnAM5Jlc4ER1gQb83SlxPdDJK26euk84+M15Y58TrmGLOGUPFXCm/UXuGCEcS4axeAalYLOLmm2++9tBwgL9Ql6agfNagut/y/yDS97qulzY6CeXvulZ6aOVL01Bs2oHE64P6G3SauoiM3eXQmpqaQi6XM5uNDig55319feZ32uy4sSWwQyKRcEoN/K6jo8N4gPlZxszKZw4PD4eOi9KjZGYaD5HEKAYtdWmnjaskBuCPFdR9kmU36IDhNZs2bXICKvNal51NSpwLCwuW9Dg4OGjmvrV1Bd/xz3/+sxP3QDti9DX1SOp8ViM4CFEUprloLASdeSMTC2SGEPuotUrtDOIzosYro2x0LLTrvV0Nx3TTptmkJjWpSQ3QmtTz9evXm9zzoBPBpfq6VHYdv6VRuOtNAcvn85b640Jpb0RV1lknWhKNMiWEkVRL9P/SHrN3715MTEz4Tsmw4l71ErOQZOaNlPji8TgWFhasmFrZx46OjsB3c+jQIWzZsiUw3pbtc9z1vBuqn7FY/4VHEgAAIABJREFUzGSKAX4JNIyCpDAZrSAl8LDIhKmpKczOzhpvelTlylKpZOayVCqhWCwaD6/L/i0hFV0g3zTBtLe3R6rkja79IJJpi8DqM3IkRfkzXBSUmuySWl20WpvmmmawpaXFUr9dEyY3mMtuAaw4hmRutU6Li2JO0v4jbYka2MDVTliqnhT/g/JqwwA+gojjlQ6ZRCJhYNbks8gU5bwtLS35MA6pTvX29lr5zmGbhTVppF1IB2EPDg6aMI6bb77ZVFOUlRZd9O6772J0dNSaU8mwNJiH7CNzuGXJDgAmfnJ8fBytra1OZqmZnAaF0Oogn8/vtBNK1u0pl8uYnJw0zq54PI69e/f6VOygoP3W1lbznqrVqmWLlsj7bDso8JuO1KAAddc7j4LP09fqfpNoR+QYZYVSDQmpP0elE4fBGOrfuGaCUm+1WQBYeS9rUc/XLGn+8pe/BODPqqiHKB2Wy2Vr83EyONGUyDjwqBxcF2kgDU6sDqDWm9eV5cQJd41ZlsqtJ3bUBVQA1JgG+9jX1+dbbNJBkc1mrUMmmUwGzgmZllxMi4uL5vPg4CCq1aoVW9je3m429qFDhwweJG2rEm0mlUqZjawXrJ7LsIOUErBkPktLS+Y96iB7CeCcyWQse5wuOTs9PY2xsTHjXR8ZGbGkbdmXXC6H+fl5Mx9DQ0OYm5uzavRohKAgcjkpGpX+wrzlYQeB/K6e57qkcclwZPRLtVo1h1tXVxdisZh1QIWNQ+Pb6jFGSY2ucYQxTUnNOM0mNalJTboGtCb1/AMf+IDvZK0ng4NSVpR0KiW6sFORaYaA2yvvOo34WXpdXZlJ+rSLwuqUEFlMwwTgCzPRoVKMaZSljxnfJ2MdSVItZSqnnM9CoWDmQuaO8/SlnYzeWb43hpKw3wsLCxgdHTXq+cTEhMms2bdvH3bv3m3seVQXGSLDPrEtWSVUzpmLiJAuTRCu7A5Z/oHrRXt9tTQbi8UwPz/vi0GVOeBSnWtvb7fsxtLOzXbD0nKpbus1oG1yxWLRuS9kCFJQlpwcJ78Pkybr0cy0lMi1PTs7a4WaLSwsWFUGdHabJvm7S1XXmXH6PpepQFJQ2NLViCgArgI03L/+678CWFnQXHhdXV3W5gurbxOUy+qK59MUZO8IC4GSQdKaJAOWm8xFUUbvvXv3WuC09RCZWWdnp6X+SMCNekBsZTzk0tKSUWc519rwLm1QrnExoD2bzQaOReeOayIjD7Or6fcZhE8K1EwFDEnS6vro6KhpY2BgwNnnlpYWAIBrD9QbmsLaOtI0IA80af8MoqBnuYBrwvola+0Atq2xUqmEvhvdDuAugwzU1tO2bducJi4+U/sBZL+JUQCslA+Wz9Q2ytX4DFykD5imet6kJjWpSdeA1qSe33DDDT7RmKeZRi+RKk09welhJ7yWBrUUKw3uPLmo4rAudRiFGbHT6bRVTVBmDcl618lkEqOjo+a5R48exdjYWKjaIsFPZFA3Myzkya7h7XQaoey7lNoXFxdRKBTM/I2MjPggswB/ah/VZO2xl3OdSCRCVULOl+ybXBflctknDW3fvh0A8G//9m8AgNtuuw1A7T0MDQ0531EikcADDzyAe+65x4xR0+TkJK5cueIbC2Cr+lrq1hUg29rarMqWeh6jAJiDMo7YD0k62QKAJUlyPbBfUgJkP4Ik1aBMLUnUcLTpTQa3AzYaGRHgZWSCDtuLxWImfG58fNxqS0LjhQF5sB8uKVf202WCa5TWxDT/+te/+haFfIkuhiZ/0xSmUktPWDqdNmqvnkjpueMzZancKGbserZ8CdKjSzWXi7tQKJhN39bWZpgI++Xy8snfw9RuuRC5MOSYpG1Mz6/EAaV3nIu0VCr5wnNisZgVCqWJ6ubk5KRv/peXl0PHUa1WLXVLet71s3K5nEGc+slPfoKjR48a84WL2bCMBAB885vfDM1okSoz59N1mE5MTGDnzp2+jDLtleXvskYPUDs8WWWAWUKSXAeMFAj0enWF3bA/yWQy9FDOZrNWaBkpiFkSE3RoaAhdXV0Wnm1Y5px+j/Ldch/o8hhBJh+5n4MOZImboBljkC9jLUxzzSFH//Ef/wFgxRYWFMso4zAbtU3owQfVFHFdq0mHn0gwDh1y5ErvorEe8L+kKGfVWgKLU6mUxdwkricZkbQVSgbAVFJXHw8cOICBgQHD6CiVElZNBrPLe4CaVLBz504DQswDQ8YZuux0QRIx+8rfqtVwwJPJyUkj+erruru7jdTPudAxn0GMz4VNwGuXl5ctaTtIUuSz4vG4ATQhMEqYbTGfzxsmEI/HI9MCg6iewG/5nXaw5PN5E5K1c+dOZ1gQDzBZzCwoblQ67OLxuFkjXAOuMCG5xldLmoHK9po2zSY1qUlNuga0Zmi4t99+G8DKiSEzJ/TpX69H0uVd5zP4OeoE4j2pVMqXhSFtfEFlFthPmR3CiplhwbQknVXCvlB94+kaBBaiKZ/PWxKwzrIBVqTmXC7nsz0GUSqVQqWyUoSLmR600RUKBYyMjBipIplMWmaW5eVlI0Vs3brVhFoBcJZMkKTfozRXzMzMYHR01PzO0q0MrGehOGYIyRAYlxdfF+rT/ZBrziVZj4+PA4AvDIr9ljBv9YTTSWII19jYmFXSo570YU1SkpSmpXrD/NiGDCPi2pDJJnJv1yMBSyAaqXVSspRaKPtMDWk1sI58po7UuBqS5pqR22UlwyD8O8CuQRxE0h4a9RLqUYld14UxYKruOvxGLpZYLNYwRiYpzKzQCHGR0onCdmXKWlDpYiA4xY79mp+ft9Qt1iAH3FlQVKkzmYwV+uOqSCqf5XrPXC/M6mFa6c6dO5FOp82zhoeHLcTw5eXlSJg6WR5EZjKxT9JWrctJc+3Snsd+t7e3h+amLy8vm3bJbDlGYqCyX93d3VYsKxmKNB/o9Rs0t7S3S/OYK6YxiGTFAq73evZcpVKxynFLeySpXpMa61GF2aYbIf2c65J7/te//jWw3jHjIWUOuJbI9ETK0yiy4wFSpw6A1faqarXqy3kmMbBbbmTJjOpxcsgTUzuRXM6geklKx8QvlHWqZayb614ylLm5ORQKBbMRJicnMTIyYo15aGjIxIXGYjGnXVMS2+rs7LSkjiB8Vbblgs7TGgCvXVxcxN69e61ywwQIBmAC7IHahl9aWvKVlX7xxRcBAE8//bRVaoMeWh4MkrEQ/JiSK9exvIZFu0gLCwsmMWHnzp3Yv38/AODEiRP44x//aA6WkZERFAoFyyYaFlniWtea5Pc6yFv2WUrMrlz9qLbDyCWFBgFycEyu/djV1RXYlzByMeioYP9GqGnTbFKTmtSkBmhNbLelpSUwfZHhEkHoQtIjqUV412kQZPPTareWYl1qTBCSeyKR8JVdAFaQs3t6eqxxulR9fcpJ6W+1thkAVjVFtiu9jLIyI6VQqjW6H1LSZPlfLRWyr7lcDp/85Cfx6KOPAoAFUQes2H3ZjygbXGtrqxUPKftVKpWM13nDhg0oFAoGDHnXrl2WlElVU0pp09PTAGoSiky5XFxcRH9/Pz772c9a4+O7zOVygQW4OC+yrIZe6wMDAybGliWNpd2TVUFTqZQZH1BbV9LzHIvFnGp+EApXlMpbra6Aami7o/Ry83sZ6sS90Cjp96+1DqK2SxON5g2yrdWkPYZJ4fWa9cLoqlWjZMC1VK/CBiztUUE2QjmxQHCoUpTYLWMDV8O4tLMhbLFqSDBdniGKXE4lMjY+Kx6PY3p62qiM/f39ThVLBt3LMbCuNUkuzs7OToyNjVm2Sfm3LLuRSqVQKBTqKnkB1OYtn89bMXthZWQ1KpB2nM3NzZk54biAmm0wl8uZuMitW7eiWl1BbmKKatB60g47YKWyZU9PD+bn502cp157rL/E3zWDJXoTSQZ7V6s17AIyK510ELbuNOmQo7AyENo0wkNVV8m8VtTIOOtty9XOdXME0ZuZSCTQ0dFhNkG5XLYyJ1zFlEhB0iFtTsy6WAuFYWbKPrqCrKUkJaVJ1wmpg/ulTdWVpaO/095iYMXTHsbwZT1t2pD4WW5S/qYPNHqjN2zY4Iy1m5qaAlBjGvIAmJqaMu0nEgnrWdlsFtPT00bS0nO1sLBgGDDnSs4tMTXl9ZTgSqUSNmzYYDzPiUTCOrAOHDhg+tnT02MdKLRdcw7S6TQ2btxoJFUXmC8ZSFdXl7U+MpmMiT0kLS4umlx9CSG3tLSEZDIZ+B71+mcEhtwrlHiZsCDjEIPWEtvSB0UQQ1krsMVabIerATEOY4x/C6bZtGk2qUlNalIDtGZJk9khiUQCra3+wk66bEUQSfWJOco8VTs6OhpGRSdVKhWfaquvlZ51eqKDKCpHt95YVJKUYgkm7OpnGNH7K8NgpHSSTqfN+Ht6enwxpPl83rqXbfI3ibgkVT7GQ8rKn5oWFhbMs4OyRdhHl4Qn7bS6/U2bNlmpibQXZrNZFItFA/3G+GEt4UlcgPHxcfNe0+m0kYBZboISNO22UhvK5XK+sclMM2nz1u9VIhMlk0lfSWAttVEj2Lp1qzPjShPfTVtbGzKZjOmnzsKR1SVpL5YxnmtFGNLEdZ9Opy37r0vKjbJDrsZOWa1WccMNN1x79Xz9+vUegRTi8XjdG90lvmtm5HIUuSZFq1psXxuaoxh2UPuSdPhEFLRZLpczcxK0cSXlcjnTlzCgB5fxPEwlilKXZCogYyul08kFywb47WQ68HtmZsYCy+D1tD0Ctq13rfYrqsIjIyPo6ekx7TG2MsqezZjQ0dFRY2Pl3JF5l8tln7Mwk8mY6122WYnmPz8/bxiwK/5QH2iZTMasIYmgPz09jb1795rr9KFD+zGZZnt7O/r6+kJrdrkODVK9pXE11Xtf2B7UZicZdrUWU8B1idOUgac6K4UvWtY/0TGLkoK8bpJ0/ir/lkTmGwXQIZFTpIc/KLaQ12rbkfxd2pj0mJnRE4YyE8ScNKVSKfT09AQCGbjsp9JOJjWAtrY2nx1S9rtYLKJYLDrjU/Xcs27Rww8/DABWnSLODwOWAUQCTDRClUrFSJZ67fX09FiAJyTOAUGeKcVpR0QmkzHX9vX1+YSDeDxuSU5bt261vORkgvv37zcaGeBnkK4sstbWVuzZswcA8IMf/MDsN46H+41Mk1Lr/Py8Fc1A+7FMgJBzB6ysSWZ9SZt6owxTIxMFMcV6BBa9zsN8CteCmjbNJjWpSU1qgNaknvf29nrvvfde4O9UZQBYJ6wLeSXoBGI7UWV4GwlTkKmRUmrQmUhBqkK9qr5U4xgCJKXWIPRtwI1UTjpw4AC2bNni6wcjF6rVqjXfLqJ0waJgUsI5fPiwUbMTiYQ1/1IN1KpXOp2OVLdlllipVLLSE3UmFq/hfETZ7+j9jsViGB4eNmNkHrvsgywHwpRNGcXBvi8tLVmSdzabxcDAgJEsl5eXfajxeo0wXKm7u9uCFtQZYozZlNlQO3fuNGYDYMWmye9kmBWwYgrQGUBhxHeitQtqIKv1ZrMfYaQh96QpRD+XJjuOyyV58jreH9aX6xZyxDhN2hHZyWKxGAmvHySauxiTjkMMUonrzVvXNjt5v6S1hF5IBkEmyo0qje4ALObBz1ELLgyCTat6YSUD8vm8CSJPp9O46aab8MILLwCo5Uu3t7eHOr90GYSgZ7FPZBqlUsmyHUpmpeMMg8JJNNMBaoxNmhMGBgawuLhohSTpA03OXy6XMwyDoU+c640bN6K1tdWUynjllVcwOjpqQoz6+/uRy+Wsw4P1lTQYcqVSsZxMrjTblpYWZzmOeihsXxSLRWPu6u7udjJYWZH0apWa0MkodNLy+VE2UJcJQz9HvmedeCLfczPkqElNalKTrgFdNSsqjbIytU+f4NJJRDQUABayOuCWZoIABfhcnTUUZWB2pVe6PuvMGk1h3rug1EQAVogHsCJdy5CtKElTS/IcM9tylW9wUTwetzzav//97y2JWEYBsH0+r1qtGomN31Oy6u7utsqLsE32S/afEh0dHZS6wt6j/F0G/7M0CMc8Pj5ulfhob2+3nq0rLzLJgf0ol8smtIlq/sGDB63P7J/2PLtAiim1MpROZ5FJev/990N/DyM5Z3otdnR0mH4S0Ug7XNaaUCIpyPTl2m90ZhFBSiIm1dOnKDhC+fzV0Jptmr/5zW/M56jMArnZstmslRtdD9VrK5GqPDeE9BCG3VutVg1z571SVdPXapFfwsiFlR7WJoilpSUrl1oz40wmY/pBlCNSZ2enrwaTtJ/KGEet3hCeLKz0Mm2AnANZMkGm37W2tiKXyxl1vbOzM7TsbjKZbCiuNSxTxaW2SROMhHfjGuCYi8Uiuru7Tds61RHwrz3aT4eGhtDe3u5LBw0bl5wvmbkVxBBkdMdazEWuPkhin+sxrYWRfk9h781lYtFMj3PLw18zvqBwQ5fZTT7rusRpSpsm4C+rsJYYKhe57Jgu46+L5KQF9ckVliKZYlDbugiZvFdKQrFYzJSKGBwc9IXx7N6928zfwMCAZc8rl8uR+et8lpYM5QEVRFHMi2OUm412V96bSqVQrVaN1NrW1oYtW7aYRc+aQDK3ut6UQsC/oaS0Lp1K7JNMk2xvb/dBlklpMmiTa9sqv4s6eOXvlLyHh4d98zs7O2sYlCu4v1FajSSVy+VQKpWs5/+tQnnqcbZqCgvTc4XTueAqq1U/0HTTptmkJjWpSdeCPM9b9b/e3l7v/fff995//33P8zzzv+d53pUrV7zz5897Lrpy5Yrz+zDS9/C58pny2suXL3uXL1/2Lly44Gzv0qVL3qVLl6zvLl++7J0/fz6w3bB72ad66dixY95zzz1nfXf27Fnv3Llz3rlz5zzP87wLFy54Fy5c8M6cORP6XD77zJkz3pkzZ7yTJ096ly9ftn4H4AHwzpw54504ccJ3/8WLF72LFy8G9lc++8qVK2aO5WfP87wjR46Yey5fvuydPn3aaufRRx8NfMaJEye8d955x3vnnXd8z7106ZLvXer55nyRZL/C6Ny5c9a8utYa2z59+rQ1t2fOnIl8Btci6e233/befvttb/PmzdZYV7MvGqGzZ886v7948aJ37Ngxa/44d/wXtO4apdXu/XrvI98h75H36vUNIOWtgu+tST3/3Oc+5/36178GsIIAFKW2SIoSzeu5PioEAbDtgfWEI4Vl1wD1xVLWU+fc9dww22K9tLi4aOVC6zk6evSoKSsbFOKhS37UG5uqkYkmJibMvXxmkDlDk8vhF0TSNMTrw7JQisViaNpvmJornZhhdmvXffl83mQLERV/NXZKlsUIupfvTMcsuux9gL3uXeqwfBfMFuIcyJTSqMwfHVrG9OJ6ysBo81mjjjFdwuO6xGlGBbe7GBBJbwK5eV1BrNJmJalSqSCXy5kX3NbWFroZ6jFKXw0Pm4S14/9BMZLAin1Q4n6yH2T6epEQrm10dNS38KrVqikdWy6XzQIntqSEemttbfXZS+uxAQM2Q967dy927txprtee43Q6jVgsZjkZZJ2jRCJh2U5pA5Uk341MUujo6LCiM6KYpl6b2v4V5sDTmz4oiJ8UdVBzDTCqpJ77XE5I1zVBIOHS4anBo13jl7ifYQ4pvXejiHGacqyyjLOO/CgWi2ZMnZ2dzphrDTXJ32QCRSwWa9o0m9SkJjXpWtCavecEZw07mQF3ES2SRmjRKiM9nXxGe3u7FWKjAY1dEmlQOl492URBRaEA+NRRSa4QqaDMiNbWViwuLlqgvDqMRaruhw4dMmqRTuPTNDMzY7z2zFxhdsrMzIwlEfI0ltlGQWo0pVuOpbe3F1rzqFarRh0dHBx0ltd1UVC2j4wl1O+RgMSDg4NWQTwtLTPMR2a8SDVbth0kda5WG5FaEfsoJavl5WWjKdGMQImwEXMPx1lvKBcle8Cdkach61xhWUG02iganWUYFXLl2lthfOnDH/7w9Q05Im4lXzBDXCTWokRCkqoYNyU3VxDuYljapY7D0uoBYwN1mItcIEG2OxlXKNVRhteQ4bvUwKgXKMc0NzdnGLAsB+IKRXHZcrU9lOq5ZAg7duzA7Oysz24lVdvZ2dnQEhb6PZDBplIpqyokDz8ddhUWrC1jS+Vnmf/N72WtI1c7QXY1fs9+ZDIZFItFk28vGQgZaFjZEheDD7PR6bbC0k6z2ayZ38HBwYZwVl0UtIdYUgVYOaQ1Ypnum0xWkGaoRnwbUcxUm/TC7tEJI67kEdmH1cZprjkYiy+UAdQaB1JubA4ikUg47THyhAX8k8OXqKVJORkuG5ME2c3lcuju7jbX6Il0nc56Y0oGLeHNpN2nnswknU8/NDRkrpuZmTGOE9e1cvzsMw8wSn88lKQkuri4aOVd828ysMOHD2PLli2+vkqSDoPW1tZALElmU+k5kXPDjVqtVi3mzjlmP7V9tLW11Qrqd0GqybmXQNRcIxyz1hTks2SWlSSue83MgWgHRVS8rbRDynExYYIUVm+dFHQ46jWts/KAcCBs2S893jBGKCHnoq6V/Sa5gvKD+iGv1/Hca6GmTbNJTWpSkxqgNUua5Nzd3d2WLYxqWJgNQp9sPP2YbxrkPaQnDFjxOvNaV862LEfQ2dmJyclJY9OTzwiSEOQ1Li9k0G8a5UiSy35aLBZNet709LQlaZZKJaPWJRIJPPHEE3j66acB1KSxiYkJK9pA51fLdu699168+eab5l4pDQalUVJi0ZqDtlEuLi4a0wy99LSjHjp0yJcGF2Qv7erqcnqg+R1h6Jh9JBHjSVLKctnIJbIUzUvsNwGMKRVq6VBHAEhVNSr3OUy9bG9v992vUzPZjo4YcJHef+ynttOvJXtPo6mH0dUom+GCkwuioGs0mlkjtGamKcuxArA2rs5hlQzVtVnCNm7Q91pcp72UlEqlfAue5VUBWHBtjeAPArBUfqC2uPVGDVIn2trasLCwYNTPzs5OxONxgz4unV2EU5NM8+6777bUXt4niWpnuVw2zKVYLBqGKftCkvWSAJgDiap/f3+/dX0ikTBMcXBwEAMDA9Z8bNq0yWL+i4uLZoNHOYSy2axhCsPDw6hWqxZ6f3t7u2F0LS0tOH/+vJlLVn7kGCSVSiVrLUmcAsDGYczlcigUCqaNqHK2rjUUhXsgYQIl09Xqt4xTZDtBzFI7d/SzNNXDMINskfIg/FtQUIyn7kc9xMMwrF5VFK2ZaepFInHxNLR/EPAFPZm8t5Gg1dbWViwsLJjFrNumzUnHHUrnBZFqwhxNgL/MLBe1tLXqRUrnlmY2QI3J0FFWKBSQSqWMA2ZsbMxiRkQMAmobZceOHea5hUIBhULBwkeUziPpSY7Kb+Y7IsOuVCpIJBJWrSNNUsqrVqum38PDw4jH4yb3GqhJbBxH1ILv6ekxOJ/Dw8PWe+T/1BhOnDhh2a0ymYzF4ORm4xi1Q4pzlE6nzVwODQ0hHo+bd55Op7G8vGzu3bZtGzo6OgKTEnR0hmv+pLNQojWR2HYj1NbWhmKxaNa5673r9R6FP1CPRBdEYTGzUffWyxjD2uLz18IsSU2bZpOa1KQmNUBXFbldV5CU8XESykxCiwErNiYXOokkqTpqGxs/6/Kj+l7eL7E8gyRbHYumM4by+bwpB8FnS1XPZb+REpyWSkqlksFtHB8fN1IoS+hStSgUChgcHDRSbFtbGwYGBkx1wqeffhof//jHG5JQ2Db7LO3L1WrVgqVrhOpJcyWNj49b8aSDg4NmPuLxOIaHh33SIeOE+/v7zXuZn583EmojfWokFIYk4Q5lvyScWb2aU1CYFNdBMpm03qm2++dyOcvH4LJbyjTKIJU6KDRutTbPtdDVKul7NUOOrmoapc5flWFFxWLRDIbOm6g4OlKYcT3oHi6uarVq2c6Cyt/yfxdTIMMn7iKJJgVXLKarz+l02jBVXd6C37sM+0GBxNxM6XTaKqUwMzODvr4+My4NuBuLxQzzLhaLSCaTlokhn8/71DmXvU/PFxe4DBrPZrNG1W1tbbXiOAuFAiYmJgDUykjIejh0JkknElM/JfG7XC5nQqu+853vWEH29QRiBzm7gBXMUZI0By0vL1sMO51Oo6ury1ki17XeZSgUYKfPcn5danM+n0ehULACzmdmZsxhoUtX61Af3a5moPJaPX+6hLEmyaxd5gYdv+yaGxcFOb30/EgTjk4tluNrplE2qUlNatI1oDXJ25cuXfKBJJB0GIP2JEedLFKc5omsK1KGtaPBPqSUG/ScoLZk0L0+RcM8eTJ4u6OjA4lEwkoGcBW0cqn0QVED7Nfk5CQ6OzuN1DEyMuIEVGb72WzWqloog6ZnZmYsry2fI/sVFMbBzBm2TWmfaySVSiGfz5t3sWPHDlNdsa2tDXNzc0Z65rP5vkZHRy21mplYnE+2A9TevQxQ7+zsxPz8vJEW9Rqg5BQUDtPe3m45eqTjixKnLmFBmp+fD0xzLZfL6OjoMPcy4F5LYUHOI2nyAvyF26Q0yWQHuR+5RqKQmjo7Oy3pUgNl6HmTmpyr3dV6vzVyE+dFhodJgA89b1fLvLAm9bynp8ej+hRlt2kklqse0ql5+jdpJqgXel/3U6fpZTIZq+9hKoqLpCrGWFSZkhlmy2WZWZJUZbdt24a+vj7zDrLZLLZu3WrSKPVmKpVKhjl1dHT4slpkqYxKpWKVqZUMNQrGTucry+cD4WtG31soFDA5OWnma2hoCPl83mQvyRpHuVzOQkiSJpOo52rie+FBQDg22dbMzIyZY8Z7sj+Li4vYvXt36DNkW9IvENXPKMi+oLG4vg/CXXDdK9cGYKu+q4nDlAzYFZYlBSRp421vb0c8HrfKgbjMfi6anZ3F/ffff/3LXVxLY3EQzBwD6l3Q+IC/dK6L4cqQokQiYU501ryWNXCy2ayx/2l7FO1bfI62AcrTO5VKob29vS5GXCqVTO1zju3FF1/E97//fdNuZ2cWgCQeAAAgAElEQVSncRRt2LAhMJykVCqhWCya37u7u+t+j1GB3JoYE8s+zM/Pm7+HhoacwC0y9XF8fNyqv37TTTfhu9/9LoDw1MQwUBUXhTEj1kuSMcUTExOmn4888ghOnDhh5e7rTU9yzXE6nQ4t6atJCw/SnixrQ0WRXPeu+M4wh55eL43wgUZqRNXzXPm/FpYkDmpXV1fTptmkJjWpSdeC1ixpyrAXIBz6TJMOiWgkPSoKJDfIo0aPbtgJHFWkTdpxZUaRlgxkwL4M8idJuyQA7Nq1y4QNhdH8/Dza29tNFtDExISlys7Pz6O7u9uoiC6bmgSikGVSW1vt1MYwqSsIMEIChySTSWNzamtrQzKZtNZEFIq7BMaYmpqysrkkaQ+vNsO4IOmCtI/W1mgIMhlIn8vlrHC4MKm20YqajZCWYl2mKbm3oswrVIMJnSevD5IsXdEpjfSdIYP8TqZiU1tzSZccUxCxX3LvXjeUI8mUtN0jrBwE7wH8qms9OICaseosHY32LBdjV1eXtXGlTUmqJgyTCgpxyOfzocxXI9S4GJKk7u5utLS0AAC+/OUvmzz0YrFopQVOTk7i6NGjpl/PPfccXnjhBXP9yMiIrzwBx3T48GFs2LDByr6SKrYrjRKAlX1E26qeF75/tse5YRss2cvN19XVFckkyOhyuRzGxsZMdtHBgwfx7W9/22Rz6Y0/NTVlfmN2miQXg+L7iEIOkmua88qDwYUQFVR/Xh9Ia60zrtX/MEeIdLJpM4sMPwNWHD8UkHhwkakWi0VzULhiKoPsqLJP/F86evhZtqnbqtd8wTauRi33q2bTpIdanhJ6ArVUEQQM3Ajl83mnrUjCkLlsb66E/Ww2azFcDW0mnTZBYwyiarVqOZK4CLdu3WpdR4bETejq8+joKA4cOIBPfvKTAICzZ89iYmLCbFh6lclEs9ksDh06BKAmhcbjcWM7nJ+fNxIhnyHninGXLmafTqfR0dERenDoekVyHFFzpzeclCaXlpZw9913m988z/PFkkqGPzExgfHxcQD11bM6fPgwAD8T1Pe5JPGgQ981nnQ6bZiUrNvEcVBiBPzzFQazFhX4Xe818rp6Yiqz2ayVTrywsOBzRIaRtK0Cjds6CTAN1N6zTD7QPKBp02xSk5rUpGtAaw454onMAl1hJKG3Ojo6LE+fy26mTzZX2QmdrRFEQXbKUqkUmAmikcaJdiMlq0bsUKVSydj7tJ2xnvCRubk5AEBfXx/K5XIgStD+/fsxMjLi6ycQrJ5QKh0eHnZWMXQV6KoHBFeSlrTm5+dNHzkW7WmOshGTxsfHzZz29/fjySefxF133QWgVkwuk8mY7KHW1lbs2rXLiu+Lkmj0/MnPsl/FYhHlcjlQ+taSXm9vL/785z8DgIVEBbhTbXW4z9WAWquHdBqyNr3pdFJ5n9ZcZHtRIMNRXvkojSHMT7JaSXNNdc97enpMTWpdZ7seYj1o1iPm56Aax3yW/F3X4ia5ah8HtXvs2DHv2LFjkbWdWf9aPlvX3n7ppZe8l156yTt//rz3+uuvW7+xfrmLTp486Xme5x08eNA7ePCgByC0FvkPf/hD8/eNN94Y2u/XX3/dV3tb07vvvuu9++673pkzZ6xa40G16z3PMzW7X3nlFe+VV17xPM/z9uzZY821rHuu5/ell14yc08Kqzl/5coVU5v7woUL3ubNm63feS9rr7/++uve66+/7n3nO9/xjePKlSve2bNnA2uB6z7z2vfff9+7cuWKeZa+n2vk61//uvf1r3/dO3HihKlz7lpf+n69RnTdeM7thQsXTL32oHXL2vSr2ZtB7bn+rZXkervafSa5+olV1j1fkyPogx/8oJXbWiqVLCNuVKaBPmWCTnueJi5A31gshqWlJXNC0X5GiUDXw2Zb0i7JDI8oSVkGj/N6ncNLG1i5XPaBRmg76tGjR41tkTZFesSHh4dx8803A6gdbABMMHupVMK+ffuM0yiKhoeHLYi6fD5vxtDX14dUKmVJfLLoWCKRwPLyshm7BChpb2/H9PS05S3WYCnZbNZIkZRWmRDR2dlp5ohSK+fIZYeWjrTW1lb85S9/MfGQs7Oz5nraBtk2JVAWXhsbG8Ps7Gygra1QKJjEgJ6eHitziwHo/DwzM2NJlXQm3njjjeY76aTUEujk5KQV/K7jTTUGgJxbbX93xeBKp1uYVKrr/EhqJD9ck95v5BFS65Q2dfkc2my1jXe1/o+rRU2bZpOa1KQmNUBXNSOI3mb+LcMapFfMhf4jvVv1IHpLtHWXh5b2IWa4yHzVoJNKV09s9GSVJygrOkqAWx1KIXPAXbF9lCSD3pH+nbbd9vZ2I83JvvG5kqrVKpaWlsycs1jZk08+CQD4yU9+AgDG+75161ZjC+TziFS0bds2A+kWRHNzc6YvEvFobm7OJ5nLXGlXdowutkY6cOCA8ZQDNdtppVIxUukDDzyAn/3sZ+Z3FwoSJfFqtWo9Q8ch8v0xFEp72zdt2mTg7UiEswNq0QU7duzwjYH9lumx7A/gX5vats/QLgm4XCqVrIJxug0Jlxi29sPs7/WEC0oPN+APK9IU5vuoN/uI/EfG5K62hO+abJq9vb2B9ofLly/7bFPSBnLp0iVjs6ONKsymee7cOaudM2fOGPsPbWukIDugbof91LaZRm01LrvSmTNnfOM/f/68GWsQvfHGG94bb7zh/f/2vj42ruvK7/dqYjsu6JaFx8UUZRp2w42ZeJzQClMzCNMwCb0gAmZj2PKagZWKiVNIrhUIsWVEgRVAaBRYqeVKrrQQHTKlUgsVN6IjJmRWNMyExIoGmWoATpfj1bgcL6floGKWk2gCDcpJOc7tH8Nzee6d+75IipLi+wME8c177777ee6551MIIQDIfxznz59X7lOb9uzZI/bs2SOfM8lEFxYWxNzcnKcsbH5+Xpw/f15+RwghZmdnxezsrNIvJIvUZc26rJDkpbt37xZCBO/fhYUFZW7o4HJd07s6RkZGxMjIiJQfBwHNMd5GXvby8rK4fPmy6/urq6vi+PHj4vjx4+Lxxx9X7vX19Sl9LIQQAwMDnnJdDr6GaEwJehlXrlypko9euHBBXLhwQbaLjwvNX1M9gtTND/QtohN8PoaRaXrV0/RN/jc2KNPcNNHcDLgAmBMvUwdwJYAQ6wtzcXGxSphuWpDUsbOzs1KYT2WS0ogPnp9SSIiKkN6NAF69elWpx/LysrJAdCWREJWF/sgjj4hHHnlECCHE6dOnxenTpyXRpMVH7xLR3L9/v2z36upq1SaiL+pz585J4jw/P19FYK5du1ZFcPmC0okin+T6ZOfXly5dEkKYN5mRkZGq73gRo+vXrysbBMf8/LyiUJmYmFDaQsSYgxSBVC/aJKidfEPn4zo3N+e5AZw8eVIMDAyIgYGBqjZfu3atimg+/fTTihJTB+9rXp5JISXEen/Ss7QO+LhMTExU9cf58+eV/jC1kcpeXFwMxWhwAk3toX+Li4uhFUE60Qzy/maIppVpWlhYWITAloYkMmk8vTwQdA8GuuZeRfw+L9vLC8Uk46B3SRvJYwn6eahw7V2xWJQyqp07dyKbzRptFfXfamtrlSRsMzMzaGxsVNrR0NCgtJG8hZ566ikAUOR0HJOTkyiXy7JsXT6qt4tiUwKQHincf56HCSP5E5dN632v9w9vO/82+cfzLJ56ZBo+dnV1ddKutampSdGclkolKWfVwRP6AesWFTTOupvt+Pg4du3apchqeXSq4eFhqYEnbS9ppXWvHF2mF4/HFblsubyeaoViF/B3ST5MyOfzclzj8bjS/lwuJ2WUbhGN9LXAM13SmOoy6EKhgObmZmMMVf05oDKHqG8p9bKbzFOXLVLZPLSc2zrUY0bQtU5zqH/r6+tdPYI2E41t00ST+yqbwrF5Bd/gQT5M97lpC3+egzouqGseDyEH+AuhgXVf3FKphObmZkWBUVNTo5iyEHTlQjKZVPzY9+7dq6SoHRwcREdHB+68886q7+/ZswdAJaAHABnU4/LlywCAj3/84+jp6VGC7u7du1chEseOHQMAqXTQFwylpGhqakI+n5eTnhRnpvBm1JfcDIgrOWhD0k1ZaFJPTk5KYhSPx5W4lATuDssRjUYVRRD/jmlzPnPmTJWbIvUP1YF/Q4+fyTeRXC6H48ePAwDuv/9+NDY2SpMu3Wmhv79fIe58UxkeHlZCyFGqEZoTtInSNV8nFPyEQAo8nkaFKz1pM+QuwTz3EO+XpaUlpWy3dCH0La7A000PdebBjXHiGwtB34D0FMf5fF7JJkvgzBY3idwq2OO5hYWFRQhs2uSIcxabYXn5MScSiSjmO3qeakDN/qdHKuIg10fufre0tKSYRvFoPHpwY792cVMqv4AKpmc4BgcHJcd3+PBh2aa2tjYMDg7KI2EymVTSO0xNTSkG6LFYDN/85jfxs5/9DEDF/Ik4J+KEyDzFLaweryePls2TsPHMm8C6GRXNiV27dmFwcFByjxQYl9xBifMj8IAmjY2NWFpakvWm7Iq8XseOHVPMdfxOG2SGVVNTo5iolctl9Pf3VwVPAcwiJ87h9vb2IhqNyr6g34kLo6hS1F+Uo57qy0UpqVRKZjjlZXmB+prCtfGo+pw7pIA6fI3p85vmHmUUIO65ubl5wxk1SbzDv2tKFufn5svBHSA4507im6ABdTbqRrmldpqbgZ7Hx8tDgUf0douxxyPcuIUwA9ZTI9B3AdWP1i96Nl9UJlkO2YvW1dX5ZkTUQTK2mpoaxTPEzT7RC+R33d7ejiNHjsgjVUtLi8xICUDatPLJa4pF6YZUKiXHyyRjo2hPgOrtUi5XUh4QQaGFS9fJZBKRSESKE3p7e6uInJs939mzZ1EulyXxDhNtnurm5wMd5B5QmSMkzqH6c4JRKpXkWJE3ku5/D5j90pPJpPwtm80aU43Q+5lMRpZLz/F6FAoFSZC90iEHAbff9ltPOoGl9/k1gRgiXRfC46JyX32dIN8Uoqmn8N0s9JSiXP5YKpWMChfdTQswpwDmC8qNeNGAcUGy2/dM9V5aWnIlwG6xRel+JpPB6OiolFuavksExGSIzY2wjxw5go6ODoWLoTaRrIuIIBF1qi+VTcounRv0w9LSkjT0bmtrQzwel/V+/vnn8dJLL8nJbTJoJ246k8mgvb1d1pvnKaL6HTt2TMkNpM8B4o7dlIa0KZXLZRkEBViX/wGo2kDcjLfpVMDDEgZBJpORLpvxeBzHjx/HF77wBQDmviduubW11TM2ZzqdlgodaiOlb6F6up3OisUiisWiLJ/LEKmtPAfTdrk16sFxaJPlSkz9GR7EWt/4NhqE2Mo0LSwsLELgljmec1BGP66x5Mf1IMdcHj6faxGLxaLCLejaOsB959TNbwh6GDWgWj7KnwP8ZTcUoBaoHI94Mq+hoSG0t7crHBQXExBnTlxbPB6XHEqpVDIGqqBxbGhoUOo2Pj6OdDotA4no4PUCKlwJHetaW1sxODiIEydOAKjI33gSt0QiIetCsmEerCESiSimYfQcsH6aIG5yZmbGNRUG1ZPqsXPnThQKBcnhdXd3Ky6I/f39xuDD/Lte8AoXaJIXEzfU2NgoA0zzNuvvA5Uxjkajipippqamam1w6xbdOiBsFHOeqsUkHvCCW/+5JULk7+kh6Hg7crmcPDF0dXUppw0uH6Zv8XLvueeem3M8f/PNNwGEY9FNRxxTHD5ayG1tbTKXDVCZXG6TN5PJoLa2VjFV4WXTIGxGabVRUFRrIBjhpwlPbaJ3uQ+xF7j/PSdUup8+EI4o0CKn3DFumw3Zj/JjNZ/0fOHqi4GIq95Pzz77LADgpZdeArCuvOBzgsQsVJ9du3bh2LFjclNxS1Ni6gMym+NziOeJ1xHE99oNpu+7xTLN5/OYmpoKFRVdrydXBOXzeSMjwRE0BXIYGXhYkBwTWO8PLh5raGiQ875YLEq5OWV44OO+UZnmpiiH4ziBE1Bls1nFQNr0HhcWcyJBciLinDjBoE6ksknryrk/3YjepCHfKnhxq3zA9MWVz+cVY2VAFWjr+WX4+zrBIdtVmrinTp2ShMtEMHm90+l0FbfJwXfvdDqNcrmsEDadEOrpg91y4uibm+n75XIZDzzwgPw22ZTS89xelJdFihc90AhhdHQU7e3tRmLBNb1UNrWTvsu5/HQ6XWVDGRQ1NTVVY8mVnhzRaBSdnZ1yA6MxIc67vr7ec23ye5lMBnV1dcZgGFQvfp3JZJQg2DoR5QSTTiJU9mbXm1cwEXI0IUJJykUgmCVCUFiZpoWFhUUI3FCZJjcf4GHvaQfQ7an0nY52Td0tDlB3+nQ6La919y83+KUA3gi4zaZfuX7HuFQqpZhVcW4unU4rnFWQ4xBPv+qXWmN8fBznzp0DAHz5y1/G4OCg5GgGBwcVziKVSimmQ1wWnclkpBcVbzf1fRjTn4cffhiXLl3CO++8I9/l5k08pB+X9fH28/6sra2VMk0KKqy7eRK4vWhNTY3CtSQSCSXbZTQald5dQPXc9UoRotuE6vK8qakp2ZfZbBbxeFyukcnJSXzta1/z5DT18tysC/zSShSLRcW8icQ0/Fka47GxMcWDzmT36gVOJ4DKuicxAaUp2Wgox1vW5MhktEqRwbl5jh47kQTd/B23hT4zMyOJQnt7u6eAmwuDgWALN+igpNNpWcewNpkEPukJbu6pGyX2fOLSpHTr27vvvhsvv/yyp5KFYFpsTz75pPz7oYceqnJ54+AEhcZb73tyIdVNs/gRmnzneV34xkKLOkw+d6oHV9pwcOZhfHxccT7Qy9Hz+/A26nEmeb31mJn8Hm1WPOc8N7qnZ6h8XaQSxJ2Yl5PP52XZ3AbSz06V1ojX+vBbb1zJy2P2kvKQaAGPkzA8PIxoNKqIp266cbveUD9uhjTiwPrOz+G1I6XTaTlgpmf8gqRymWpQo2WqE7df01MRZzIZo0GxF0i5RZ4NXn2mc+a0AIiL54EggkLneMfHxxXFTSqVQiaTkcRi3759oYj1+Pi45OjGxsaMqYmpTabTRBgNL40DWTh4KRtrampcZZxh0N/fr3Bauu85sJ4Qz5T+xESodMIZdNPm9shu1gQm7rK3txc7d+507Wt9LXLbY2qH7r2ng3uR5XI5JTg3P514cbgmcIVWPp9X4jvo5ekBP2wKXwsLC4ttwJZzmtwPWzcjctsxTFFU9ORewPrRqFgsSrkS52z5d924DDc/ccA/HTDZePJdkWvjTaYoxGXV19cbNXg8wZQu19U18dTGfD4fyKQjiD+vfhQtl8tV9m3Aet9Ho1GjFYOpvmHMb8h908099tChQ6ivr5fcU21tLY4ePSo5O87hJxIJ5WhKcyKovNkL+ilGT7UyPj6Ohx56SElRonOaOicZ5JumZ+l4CqxbmNCz6XQ69KmH17empqbKVIz7icdiMeWYrJ/4aI7EYjGcPXtWzhVy29W9jdygzyGvazpFclENn/t6nIibfjynSumGqLofKQcPmsE7z8Rmuyk7yIibnvWbhH7yQL4o3Oz2OIH2+56eD5qLBbxc2Uz1pncTiYTSF16G1PybQGUxTU5OShdL0yYxMzNjzFnkBi4n1sfRlEue14dvGvoE56ZD+XweZ86ckcR7586dyqJOp9PyXmdnp6eIplAoYHh4WI7rww8/7Bn/kcsa9XihOu644w78/ve/d83rxH2+g2x8RHyASt9SG/P5PGZmZqQRvt7PYXLS05zmQW3K5bIUX+TzebS1tSkKPjfXVFpfPKwjOVsA68dxziTxkIBc8WNyPTaNK3eR1te26bhP2Kgb5ZYaKeoVDOqDa1J08HeXlpZQX19vJGKRSEQZQD+hth/nw79L3A+fTLrjv1/wDJ1z5LaXZH9pAsmAgMqC4Dv90tISZmZmZPQc3cjXLdAJUOEOa2tr8b73vQ8AcN999yn+20DFk4e4o2QyiVOnTkkFTE9PT5VtoFsbKAAFD55SX18v5Wr79u2T39Gh2wbW1tYqypUjR44gFovJ/ozH43IcTIn2gHVumQKgBOHERkdH0dHRoRhQZ7NZ103l3XffRVNTkzEpnonYuMWqpLbHYjFZb6o7UFF4Njc3S8UPafWJUJo2Up3gULkkY+T+8/X19fJa90jzCgBO73Nuj88PkwKO15VHIDOtKxNN4Ub63ItMn5ebcTzgsDJNCwsLixDYNt9zN9svYH0HdPPUCRNzj+QWQXcUE7vPzUtKpZJih2iKJkM7Inf1pNBmerncFzhsRBy9LN29TufE9biXHPyY19LSgqGhIQDraXW5bOzAgQPSqyaIKZWbDI4i0lD9pqamJNcS5Ch55MgRGU4tGo0imUxKrrW1tVWRLW9EnrdRez/TacMv/TJhZmZGztXm5mZfbTG3t81ms4p9Mg9zqHuQhbGPLBaLyukjjKjG5A6tz1W/OU+h8cg8zW9c9HnO+4hgWue3hEzTD25h0nQlDclEdENf3jleE0tP16DXoVwuGydQEPMGQA0DNjo6qoTw8hpgOu5TWdxMSPf7DXOM+NznPofXX3+9qk/p6NvR0VFV3ujoKIBKf3R3d0uf7kKhIHOdA6jKY+53xDH1IU3iQqGgbEB+4OIMNxEED5wbxtQKgNwoWltblQWmKwxMIAVfR0eHtAEE3N1UCalUSqa/0PMB+Rm3c9OcmZmZqm+FiVsZBDwtCTdQJ7htjlR3gl4PnhvKdNSndZ5KpYwmXEH1AH7r2ZocWVhYWGwDbqhHkM6qE0g7p2ul9Wc2slPqbldUVhDOjYIIc+257gLHg4MAFW6BdktThGt9NyauiwdxpW+RogRQNdIUBII03SZuTz9+lMvrKSpqa2slRxaNRhWNOTdTASrBLXbt2iUDCcdiscDHM1Jq6GIUXg83btCPKxgbG8MTTzyBX//61/I3P+N3nSPh4fEikQj6+/sBVMZNNwR3OzFQP9MJi8QAPGjz4cOHZeZQPsbPPvssXnrpJcnhPvbYY77Hdx1uhvK8fkBlztTX1we2QOGWHEtLS0oAY9P68dPO60GcTc4vwPq6MAXypjVB68stkLeOoGKWW+547rcIghyBgpblB53IJBIJOWh6+lKew6WxsbFKi8/NYGjSUB+Y0onqx0kvOWMY5PN5uYDa2tqMi4FPHopxyeNbAhWPljNnzsh8MFRnvvHoxJhgOnaR+x4HEeD6+npPWaOXmVCxWMRdd90liUyQOUEmMxR1iOSydXV16OrqkiKJt99+G4ODg4oWVt/Q/UQSjz/+OADg29/+trIpnT17Vlo5HDp0CN3d3fJY7TgORkZGlIyUPBpYMplEW1ubUUaXSCQwPj6uyKB187H+/n5cvHgRAPCDH/wAY2Njnm6svD18A3fra9MxOZVKIZvNSqKuh9bTRWPUtybb1VKphHw+H9ol+bYhmn4+zPQMsD4pgzbOa9Ka/Ij54qMYlkQUisUi2traAoWKIntI7p7X3NwsB5h2QU5IOJE0yW292spNUrzksnqZeipWL5gIW7lclmmCn3vuOTQ1NXnKq+ge5XWi68bGRmNdyVSotrYWO3fulH3gZ7qiIwjxAqrTNGezWTQ3N8uNo7e3F4cOHZLfb2howK5du6RZlW4g7ZZT3PTtnTt3yk0CqMiOqR46N5tKpXD//ffjk5/8JICK4uPgwYPyOT2veyKRkJvOwYMHZQ4hoEK4uEMIEVvy0e/u7la4U69Nx+0UGCRQcDqdRl9fn0zZ0dLSYvRNd+M8OcjOW18HfjJNr2A8/Dt33XWXlWlaWFhY3GhsWqZJaWLJUNsvMglB3228dj7SGpruk8aQjr06t0VRVYjT9DqeUBpcOuoWi0Xkcjm5c8ViMcWUw2TG4SUL46ZQbh5S3LzKL5I2IZvN4sSJE8qxmxtNm4693CWTvDSA6lBmpVIJMzMzsl0mbSaHHioOCKbtpEjtxJFshREyN95ua2uTXFg6nVY0z08++STeeust8HTUPJhMTU2NlIfq4hwdiURCuqICMGqdObq6umSfkhxUdx7gc8orVTV3q8zn80ilUpJrpQDXJLLQXZFNY0P1KJVKRpdZaiPnwqempuQ6ASDlmZyj5OPsx8VS3d3q6eVpqP+tBz/ZqEfQpo/nRIz0o7nXQnGz2eReIJuRYXK3Lb/UECbbSSIo5J7J89OY/MtN7qD6UdJNCE+DqIfCA6qF5TThKa0rXS8tLeHo0aPSDEa309Rt9hKJhJSHHjp0SKlrKpVCfX29Mm65XE4u/qGhIVcZ09DQkC+R0EGh415//XUMDw+7yjyD2N9SeycnJ2WKFKDSj16y1EgkgrNnzyp114mkl2mT7v/M68g3kVOnTqG1tbWqLiRrLRQKVbmY9LQUpLwi90mduBOBSSaTKBQKcnMwzT2ezrexsVGKeWKxWKh0FRtZr15HaG6/rd/nzJdbDAY3ubtez43KNCGE2PC/HTt2iNnZWTE7OysWFxeFjpWVlarfTLh27Zpyvbq6Gug9E7761a+KixcvyuuFhQVx5coVsbKyIuvjVf7Kyoq4du2auHbtmmv9V1dXxerqqrh+/bq4evWqfH55eVksLi6KxcVFMT8/L4QQ4vr16+L69euu36N3TfW6dOmSuHTpkrx+9dVXxauvvirOnTunPNfX1ydOnjwpAAgA4o033lDuX7lyxfNab9vy8nLV77wuy8vLYnl5WayurorTp0+7lrW8vKzUdf/+/aIy5dZBdX7hhRfk903js7KyotRLnzNCrPfP888/71onIYR44oknlOsHH3xQTExMyOtz587Jf1uJkydP+j6ze/du8cILL8j+4O3k43b+/HkhhFDmNcfKyoq4fv161X26XlxcFAsLC2JhYUHeGxgYEAMDA1XzZzNYWFiomk9e68EL+txYXV0VKysrVb/7rV8CgITYAN2zMk0LCwuLMNgIpaV/999/v9y53LgDDj+ui3YMExfBy+flTk9Pi0uXLqonXl4AABNYSURBVMndZW5uruoby8vL8tuXLl0ycsVUv4WFBWV3Nu1WVNbAwEDV73qd9d189+7dYvfu3VVlLi4uiosXL0ouTgghRkZGxMjISNWz9957rxBCiImJCTExMVHV95/+9KeruKTLly+Ly5cvG9ttgr5733vvvfK7HE888YSYn5+XnPXc3Jy8Nz09LTkiISoc8dNPP62839fXJ/r6+qrKXVhYcB0nIYS4evWqcs2f1e8JoXJpIyMjVdzmlStXJNcLxg0vLCyIZ555xpWjM8GLk5+enpZlraysGMeETm+nT58WExMT4sqVK65lzs3Nibm5OTlWNDfdTlP8ZEOg0wXNJxpL/RnT3ybo9/lpTIdXn9Ic5HNRL3szp1JskNPcMuN2si8jWUXYnMocJhkJN3qleIlARdbU3NwshdFuPrZcmKznkPEyB9Ij00xOTsprUwY/Ep4fPXoU0WhUmrEAFfkhycg6OjqMShNTWbrcZmhoCLW1tYoJiV7Pu+++G6+88goAszKCy6+8zIroHsnG3nzzzSqDbHIHjMfjaG1trZI7kvy0t7dXMcfxan8ymVSUf7FYTLHnIwNzN1nl6Oio9GEul8s4cuSIlP8VCgUkEgklapIem5OUQqREojmlt61QKCCdTrs6AJTLZSW/EI9PEI/Hq/QAPBRcd3c3urq6lPxMhMOHD+Pw4cPyOpPJoFAoyHp3dXXJPiOQEobqoq8TqqcpSlgymZRjlU6nUSwWlTZ7KXRorgEVpZGfHzytRy7PdSvb9G5Q+epNsdPcsWOH+NGPfgRgXYO2FcbbeqceO3YM0WhU+nj39vZKQkJhq/j3KB4n1YMCbwBmW0ZOQHT7Sl2Bo2sCeYIurlk+duwYDhw4IK+XlpYUX9p0Ou3pL10qlWTQhIaGBoyNjcl66D7HMzMzKJVKVT7iBD7ZiBjpdofcG6Spqcl1I9G9cJLJpHzWL0hGJpNBLBbDsWPHAEBZ9DrGxsZkimAAOHDgANLptByrzs5O7NmzBy+//DKAykIngkGLmfr2V7/6FYQQUjvd29urhBADNh82jBtv+5VDts2UF5421traWgwPD8t6nzx5UuZ33whyuZycQ52dnUilUnIDa2lpUZRcXLPspwRKpVLS8ByozHsi9nqSNQCK9UUsFvNN5BZEo84RJkkin9fW99zCwsJiG7ApTvMjH/mI+P73vw/AHD4qzO6dzWalKcuBAwdw9OhR5V2dw+EcbbFYlCYhFDKLjj3xeFwJTWWyJXXjygA1MhFxv/StVCqFpqYmGa5sdHTU9dhRLpflsQaocLzcllJ/78SJE9KmNBaLoVQqSQ5F5zSTySQikYg0k+np6UEkEpGcVaFQwA9/+EMAwHe+8x3s27fPtZ5HjhxBOp2WZjDUP7xfqL0HDx5EoVCQ99xMux599FEAwGc+8xns27fPlYvNZDLy+E6cJXEwHR0d6O3tlaY29C71Xy6Xk8ft733ve4oIwXEc5fruu+/Gb37zG7z44ovyW4A6p/SIW8RVkcmZnuWRng8iliIOb3x8HD09PfKkwgNPu8Ev5BwXX2SzWekq+q1vfQvlclmJfE/zmFIQ87npBd38q1wuy7nX2tqqcK3kKUhtc8tE6eWey22Ko9GoPG3wdMaAP4esm2/dlOP5Bz/4QXk898vo5yXHSKVSmJqakosxk8ngxIkTVaGzTKDgAjyEmFtQAsAcJZ7AOzRoO/hCb2xslGH7CTQxc7kcOjo6JPEulUrGozkPO8ftVk1yR5qIJAuj/qL6UF2amprk+OjG/el0GjU1NfLIpIsj/LKKUh9Q+4F1GWZzczNisVhVcAsO3SVVB3/XlMOJt/Ho0aMAKkT9lVdekYSFUnzQ/Nq7dy+mpqaqItYTjh49KpmA9vZ2TzmZX+AKPl/C5vzW4TgOZmdnAayvN9qQHnroIdk+DnJ4WFxcxHe/+13FMYPmT6lUUmKbmoKBPProo/j6178OwGzgT5sbzzJJMDFPboyKniInSNoOk28+QQ8ew8Uod9555/bbaX7oQx8S09PTYnp6Wly5ckVq8Uijtby87Ko141hYWFDs5IQQYn5+Xpw/f16cP3/e831uM2iyMSR7NV1z76ap99LYzs3NGetCGnJuU0l44403xBtvvCGmp6eV71I9eX9xTeLi4qKvvdnx48fF8ePHhRBCnD59Wjz44IPiwQcfdK2/Caurq8Y2Q7OfJO25yYZTby/XpguxruH1ArVx//79Yv/+/fJ3sh0kvPjii+LFF18UQlTsKansRx55RClvdnZWaoN1cI0+B40jALFjxw6xY8cOee/ChQviwoULQgihaJppfvF2uI3X3NxcVf/Nz8/LcSQNOdnE6m3SrTX6+vrkOL3//e93bZcQQly8eLFqnMmm+PLly9JyhFt6EK5fvy76+vrkWheiMm/4tRtM1jLcflS30pidnTXWkep+7do15doEWje6xYGuaYe107SwsLC48di0TPPHP/4xgAprzI+UFIrfTaOaTCaVI09DQ4NrlrlyWc1MyWVM5CJIR41sNouWlhZFMxomtBRPYMYjt1Adi8WijIeoH4d4DEsKI0cgOSSPssL7q6amxlcGTDLKxcVFvPbaa0qdSUZK2LVrlyKX1N1aqf8AsxyOjmAkq6KIO93d3VJLnUql8PDDDyvHurGxMTkWxWIRjY2NrhYV3EyqWCxifHxc9jXJJ6nfpqamMDMzg0984hMAKiekSCQiRQnpdFq+SzI5Got4PI7f/e53VXJAkoUdPHgQnZ2d8kgejUZln4yNjUkLDaDivkhR7zloXDOZDOrq6uTxs76+Xt7T259IJNDY2CjHjUx6SJu+tLSEfD6vmBrReJTLZaVsfZ3xDI9uoHKbm5ur5JimjKRcXuontqFjcC6XC5TigsCj0/NygOpUzBTZX1/f5NpdW1vrKjYslUobPp5vmZ0mBc7gi9ItEADBLfWrH6hsoDpfeFA7LZPwmCaCvshpkXR1dclACMA6YeH+v34xQnlKX95fkUikKr0Dl8eQWQjVa2ZmRr574MABJavjo48+iueee06Z9Ly9+/btkwSYNoKg/c9jbSYSCQwODsqyWltbFaVIJpNRMjNOT0+jpaVFjg9PvVxTU4M77rhDjsc777xTZXva2dkp20F5ee677z4AwGuvvabIcs+cOSNN1IaGhvDYY4/h5MmTACpZMA8ePCi/1drailgsJglSPB6XBOzMmTOIRCKB4lAC5uAyXJ6uZ8ocHh6W3yL/byKA3d3d6OnpkWPT1NSEj33sYwCAt956qypwN7Aen4AHnuGgjSUSici+bG9vVzbsTCaDYrEo6+UWKMdtjvN5TME5+Lz2U7z6xeHl9/3ShLthM0TTHs8tLCwsQmDTxu2/+MUvAEDRENL/+k5Hx7qGhgZfjZhuHrDZyEcE4iZ5BBzdfIQ4PDo6cW4ok8nIevAQckCwPO/cEJdzbfpu6bfb6sbvsVjMNY1Ce3u75KKAihaWInq3trairq5ORhviSdWAClcWxIoBqBwdk8mk5Dypr2jciVvjUaF4qLypqSkMDAwAAL70pS9haWlJCdzb1dUlj2K9vb34wAc+gK985SsAKt5W/ESgp/E4ceIEvvGNbwAAJiYm0NLSIvvPK51HqVTCqVOnpKmTzpHrYg/yNuKODtyaIJfLyXmTSqVQKBRkPQ4cOIBisYh77rkHADA3N1flMUVc+2c/+1n8/Oc/VyJ05fN5WY+6ujolRB0QzCQHMHN/3OTPFHHKLVJRLpdDLpdzTZ0R1qmArxlyRNHDTvLkcvr4bIVx+6aI5gMPPCCmp6dlJXjHbcRzxM1+TyeYOmHzKksPuaYPEifOJCulMlOpFOrq6nxlol7eIJxImtqmgy90KtcvvB59g4gb2R2SjV42m1VkoBxka0oEJ5FIoL6+XsprHcfBM8884+qZUigU5DGvubkZjuPg6tWrAKpleKZUt15xKvP5vCQgNE+51088Hnc1G9JtM4F185tkMomDBw8GinTvB5L96XOXy1fdjqMkyqBnTZksh4aG5O+xWEyGhqurq1PcYykuqj7/aJ0kk0kUi0WjnNMv1xJQmUM6Qfaay1zExV2g9ZxAJJYKuj64TNPvHb86bpRobop1u+OOO1x3CX0QKE+LZ2VcdisCVzDo4fMJxEnSb7p9Fo97qH9X5zp5qH0TaAC9ZCq8bkEmBC9Db79erp4igLttJhIJmYTs5Zdflom/yuWy5JqonGQyKRdTS0sL9u/fL4mmEEIuVBPq6urkYqLndGLJA0D39vYqOXGIIOj2eLlcDoVCAR/96EcBrBNc4gqLxWJV7EmC4zh49dVXq34nDjgMdIUHcYdUb0okp29sfK7TOE5NTSk2kFNTU4hGo3LMx8fH0dzcrATo1TlNGruzZ88im83KDatYLCr9CqjuxG1tbYHXqqkPIpGIJ2epnx74syaHEq84l16xIHT7Zf6//s5WnExNsDJNCwsLixDYtPb8Jz/5CQB/sx6vDIcErx2Gs+VkegAgkObXtBPRzsiz3dGOulU7lNfxIMi3wgYuICQSCZl2AQAWFhbkMbezsxOZTEZyPDwBHVDR5haLRSkL4ik0gEp/EXeji1l6e3ulayVQ3X7yXiG5KR83PxOW/v5+9PT0SO46lUpVHWeJo/3Upz5VdTQ3eRNtBPl8Hul0WnKAtbW1yOfzoVITU59GIhF0dXXJ+5OTk6ivrzce0+nbxBX29PSgqalJidTEUSwWq05OG4V+otI5PR4xHqicNMKsIV1OafqbvsOv6WTmRTe8cFNkmo7jLAP4XxsuwMLCwuLm4f1CiHvCvrQpomlhYWHxXoOVaVpYWFiEgCWaFhYWFiFgiaaFhYVFCFiiaWFhYREClmhaWFhYhIAlmhYWFhYhsCkr7s7OTrG8vAxgPQI8/1u/Dvs3v95sudtdlul3CwuLWwqvCyGqc3v4YFNEM5/P45e//KX0GOC+oKZ/bve28p1buax33313M91tYWGxtfDPgmeAPZ5bWFhYhIAlmhYWFhYhYImmhYWFRQhYomlhYWERApZoWlhYWISAJZoWFhYWIWCJpoWFhUUIWKJpYWFhEQKWaFpYWFiEgCWaFhYWFiFgiaaFhYVFCFiiaWFhYREClmhaWFhYhMBmU/imAJS2rjq3BaIA8je7EtuM91qb32vtBd6bbY4IIeJhX9pUaDgApY0kW7+d4ThOwrb5DxvvtfYC7902b+Q9ezy3sLCwCAFLNC0sLCxCYLNE8/tbUovbC7bNf/h4r7UXsG0OjE0pgiwsLCzea7DHcwsLC4sQCEQ0HcfpdBznbcdxMo7jHDTc/4eO4/zl2v1fOo7TsNUV3W4EaPMzjuP8reM4f+M4zs8dx3n/zajnVsGvvey5nY7jCMdxbntNa5A2O47z52vj/JbjOP9tu+u41Qgwr/+l4zgTjuPMrs3tz9+Mem4VHMf5L47j/P2aeaTpvuM4zn9e64+/cRxnh2+hPM2s6R+AOwC8A+CPAfwRgP8B4MPaM/8eQO/a390A/tKv3Fv5X8A2fwbAP1r7+6nbuc1B2rv23F0A/hrADICWm13vbRjjPwEwC+Cfrl3/s5td721o8/cBPLX294cBZG92vTfZ5n8DYAeAlMv9zwO4CMAB0Argl35lBuE0/zWAjBDi74QQ/w/AIIAvas98EcAP1/4eAvA5x3GcAGXfqvBtsxBiQgjxf9cuZwDUb3MdtxJBxhgAvgPgP+IPw6EhSJv/HYC/EEJcAwAhxN9vcx23GkHaLAD847W//wmA/7ON9dtyCCH+GsBvPB75IoD/KiqYAVDnOM4/9yozCNH8FwAW2XVu7TfjM0KIMoDfArg7QNm3KoK0meNJVHar2xW+7XUc5wEA7xNCjG5nxW4ggozxBwF80HGcNx3HmXEcp3PbandjEKTNhwHschwnB+CvAHx9e6p20xB2rQfyCDJxjLrKPcgztxMCt8dxnF0AWgB8+obW6MbCs72O4/wDAMcB9GxXhbYBQca4BpUjejsqJ4lLjuPEhRCFG1y3G4Ugbf4SgDNCiJccx/kEgFfX2vz7G1+9m4LQtCsIp5kD8D52XY9qll0+4zhODSpsvRdLfKsjSJvhOE4HgOcB/JkQ4nfbVLcbAb/23gUgDmDScZwsKrKfn97myqCg8/onQohVIcQCgLdRIaK3K4K0+UkAPwIAIcQ0gAgqful/qAi01jmCEM3LAP7EcZx/5TjOH6Gi6Pmp9sxPAexe+3sngF+INSnrbQrfNq8dV19BhWDe7rIuz/YKIX4rhIgKIRqEEA2oyHD/TAixId/dWwRB5vUwKgo/OI4TReW4/nfbWsutRZA2/28AnwMAx3E+hArRXN7WWm4vfgrg365p0VsB/FYIcdXzjYAaqM8D+J+oaN6eX/vtP6CycIBKx54HkAHw3wH88c3Wmm2B1s2vzeMAfgUgufbvpze7zjeyvdqzk7jNtecBx9gB8J8A/C2AOQDdN7vO29DmDwN4ExXNehLAn97sOm+yvecAXAWwigpX+SSAvQD2sjH+i7X+mAsyr61HkIWFhUUIWI8gCwsLixCwRNPCwsIiBCzRtLCwsAgBSzQtLCwsQsASTQsLC4sQsETTwsLCIgQs0bSwsLAIAUs0LSwsLELg/wPajidiTB85ZgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "default_cmap = LinearSegmentedColormap.from_list('custom blue', \n", - " [(0, '#ffffff'),\n", - " (0.25, '#000000'),\n", - " (1, '#000000')], N=256)\n", - "\n", - "_ = viz.visualize_image_attr(np.transpose(attributions_ig.squeeze().cpu().detach().numpy(), (1,2,0)),\n", - " np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),\n", - " method='heat_map',\n", - " cmap=default_cmap,\n", - " show_colorbar=True,\n", - " sign='positive',\n", - " outlier_perc=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us compute attributions using Integrated Gradients and smoothens them across multiple images generated by a noise tunnel. The latter adds gaussian noise with a std equals to one, 10 times (nt_samples=10) to the input. Ultimately, noise tunnel smoothens the attributions across `nt_samples` noisy samples using `smoothgrad_sq` technique. `smoothgrad_sq` represents the mean of the squared attributions across `nt_samples` samples." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAE7CAYAAADQCfvFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9f4xe13nn9zk/7o/3xwyH5MgeR5N4vDu7YTf0lrXpgCnolkbZDY0wC6FQEQFREBmwAaGxEQVQ4H8chIEFxF4Itf9QEQMr1MY6LpxChW1AizC1kAqwsFYTOmFbNuXuThwmHkdjaUwOOe+87733/Oof5547d14PKddWUMCYRxBIvu/9ce45573ne77P93keEULgyI7syI7syI7syI7sJ8nk/98NOLIjO7IjO7IjO7Ije6vtCOAc2ZEd2ZEd2ZEd2U+cHQGcIzuyIzuyIzuyI/uJsyOAc2RHdmRHdmRHdmQ/cXYEcI7syI7syI7syI7sJ86OAM6RHdmRHdmRHdmR/cSZftCXRVmE0cIA5zwAIQSEEN3fQSA7iCSQUiCEJARBCAHvYwh68B4ECEF3frSDIepCCASiu14Xwi56nwoRryHi9/EQkU6BACFAIOx/3rUdBKE9yHfnpPtIKRHst1GI9lohtTS113fNF1IgpUIImW6EDxCC7JqUzvNdn2mEkPvniLZVIeCcI3jT3UMQQHh88BDCfp+EgFKybWMgEHpPK3o9G/t0/5lSvwWE7J/RtjKkByfeM/Vd6hDCgWvRXlukzkpD0Y5lQOB9wHlH8K67Xq/ze+MMhHiPQCBTGaPhKI6NkIg0pCF0z5fu3Y2bEByYYr37HJhvgrZ9cYCDT9+F7v/9DAqhvZdESMW9yYzJ3vTgHULAeQ9CMBgWCNWbex4QoR1vQTcrQiAEj2/7pj8PlVYIofA+4L3fb3s7F4P3hDSHAdHO3RA8QgiklPSbH8L+M0kp9se+HW/RPl9qm5QKhGjncmxD6g8pM6SQ3P3+97ZDCA/N9/aPYsvLy+Gd73wn02ns1+Fw2M1VAOccsn3ZiLkB7h8Hsb1SSu6XAmP+/P5x/WvNHzd/Tv9d+KBj58857Pr3a8OD2tS/3vw5/fPm2zff9ji/QCnF7u4ui4uLeO+7z9NxWmustYQQyLIMAGMMWZZhjEEphXOuOyfPc7z38Z3Wu6fWmtdee413vOMdWGuRUnZjm67XNA1SSrTWP9A/zrmuLQB3797l+PHjGGOQUmKM4c6dOwAsLi4yGo2o65rpdMpwOOzaUNc1AN578jzv7uW9ZzabcezYMW7fvo1SCoCiKMiyjN3d3a4PUhu01kynU0ajEUVRoJRiZ2enG4dvf/vbnD59Gu9913dN06C1ZjKZoLVmOBx2/dc0DXmek+c5r7/+evf8ZVmyu7vLyZMnuXPnDseOHeval+d514+z2YzBYHDg96O13l9j2s9TW/rjPN/PaQ5JeZAPqeuaoiiYt3QNa23Xp8nSZ4f9XtJ9lFI/MN+/9a1v/UjvmgcCnMGo4L/6l+8neNk9kJCCcjAgeIV3AmOa9rspQnpGgxFZNsQ7SV1XseFYXGgwtkGK0D20EDKCAxkQeEZlyaCMEzBISfAC7wXWBWZTA4CzjixX3UtcKdW9rIVUhADOeQI+vvSF3L+XANvMqPamVNMZEBcTHxwBh2xf9ErHCZMVOUIplNJ4bwk+/iAQAe8dEBgMx4zGC2Q6reyK4DO8G+CcwtiGuprEPqruoJRmMBiTZQV5MWqfdQGvjhFEgbGeupliqtsAmNn3sWaKR6F1RjW7G2/j91hc8Dhf4VzVviRiv7oQFzytdAd7VMJSIdAYgzENAd9N2jwrEELhnEdKhVQaWpBmrGdW1QgJSguKPE0biTFx8S1zTa4FSseJqbRCyQLEgMp4ptNdqib2g3eOTBdomSGRVFXV9k9FQJBnGq00P/XQw/zsO38WgAKNCAEh9xdriC+WLMsiOBUCnSnyPKedePFH4z3WNgQcIcQXiJaqG+cQPM7E+YW3BNsQgsU71wK79mmzAWqwxP/177/Di//2f8UmjCwEJwvJ3t6UN6opp87+HOOTC3EOyQxrGowzZDpDKkWL83AuYGzNbLZH01Qk2BYQaJUDmqZumO7tYJqq+85bj20M1pgOdJRlSZZJvDP4YJFaomTWPp/Ae4sQngBkecZ4FOeeQKOUphwUOBuw7UMNhwssLC6Rl4v4kBNQBGK/ZvlxkAP+zb/6zb/lLbKf+Zmf4Wtf+1q3YCwvL6O15sUXX+TSpUtorbv3RlVVlGXZ/Wmt7RaT5eVlIL5Iy7Lsrm+t/YHP0rzrf5aOBQ59Od/P+seml/j88f32z18zPU96zvk2pLb3Fw1rLVVVMR6P2dnZYTwed+el4/7wD/+Qy5cvH+iXdN3JZPIDbZ9MJozH4wPH3rhxgzNnznRtn0wmLC0tAbC1tcXy8jJLS0tde9JYlGWJ1pqyLLl161bXhqWlJW7cuMHp06e7Z+73w87OTves29vbAKyurnL9+nXOnDnDrVu3GI/HXRvSuQkobG1t8YUvfAGAJ554gvF4zIsvvsjly5e5evVq9/nm5mY3Fqurq2xsbADw/ve/nz//8z/nfe97H1/5yldYX1/v+qksS65du8a1a9dYXl7mtddeA+B973sfa2trWGu7vkjtun79OhcvXuSVV16hqiouXboEwObmJlevXuXJJ59kPB6zubnZPdNkMuHGjRusr6/z8ssv87GPfQyA3/3d32V1dZXnnnuOz3zmM5w7d+7A2FZVxa1btzh9+jTW2m4sU5/2+6v/TP0+T8ft7OygtWY8HjOZTLr5UlUVy8vL3TOmv6fv0j23t7cP/LbS/NRac/369a7dWmtWVla65y7L8sB5LSD6kd41Ry6qIzuyIzuyIzuyI/uJswcyOMF7gnMMWjRVKMXu7j1mTY3McnReoNsdu/eCEBSzWU1dO/JMk7UbaSUltVVYE3eT0Q0RkZnSCh8sxhimM9cyI6CzHK1zQpB4v09vqkyS5Y6ikEgJQvZcD0HgvEdgsc7hncK07jVnPd7HP3EOF9JOJ7INWmnyPAMCQbQsRK7QWY5SRcvgtDtiaowxWGPxwRLCFOMik2WMR6kSSY6UGUJ5goi0u9QOrSGIXQIzROfq0iixSNAaoSSZslQh7iyUNViZo/MlBsNl9mbxWnfvvs69vdsEJEplDPOMQRnpQoclCItWEm8MdV1RtwyFtxZrHNbZrs1xLDLyrESqHCE8dmaRKj5vVgxAOVxwBBcITaIXNR6FBKyLLpjGxX51UxvZBZkhhMR5ixbtzkEFCE3bh/So8MiyIaDIS5ZPrCCF6uai9w4hJErpzgkX6cyWdpcHKdbQ+hetbbC2Au86N17QkQ1RWuC9R/ZcfzZ4fHKdCYFqWa4AyOBYXBiR5SWhZVVECDxUlIxtw25ekpUZsnPnQF4UKKcJwWOaiulsr72VRwiJziVZeYwysZceqlnFdLILoaEoNMHHn6ppLMmFZ5ynnapUTYNHkWUaKRRSQtH+brM8x1lD01QY52is4V67GxNBApJFv0BZjtAtZa3zHKkke9M96nqPolgky+L1ZJEhpOKtNO99t3sFuHXrFisrK1y6dKnbifaZgWSJcZhnYSDuQNM1+6xH2kWmcxKL0D8uHdv/92GMzjwrlI5L5yaGI90nHXsYG5M+618ztS19l47t36vPZPW/29nZ4fHHHz/AfqU+K8uS8XjM9vZ2t3tOu+8+mwJw+vRptra2WFpa6nbl6Xqrq6sHnmE8Hh9gqBLjs7293TEkq6urnDp16kC/z/dreubNzU0gsh3Ly8vdvCjLkpdeegmAM2fOdONcVRVLS0ucOnUKgFdffZVHH32Uxx9//MBYTCaT7jlfeuklLly40N3rD/7gD/j4xz/ON7/5TXZ2dnj3u98NwNe//nU2Nzc5deoUt27d4tSpUx27k+5748aNrn2JRdra2mJtbY0zZ87w3HPPdeesrq7y5JNPdkzNzZs3OXfuXHe906dPU5YlGxsb/Mqv/ErXNysrK1y5coXt7W2stVy/fh2As2fPArC+vv4Dvxlrbce8pbFM8wciq5bG49atWwCsrKx0rFh/bqXf2+bmJisrK2xtbXVzKLE+qT/6c/nWrVsdy7W+vt7199raGlrr7tx5Ru/HMfGgUg1LJxfD+3/x52mauBAG56irGh88QmpU74ejlEDp6NaI/nKBbn2DWiuEjHqCprEkfUmeabJMEURchAgg5kglneUonaFaH4tSAa0DSqpO59JXT3jnqZuaEDxSDjDt731WNTS1x3tLkQky3Z4bIm2vlKbIsnieTm4tBUJTDsYIIZhO7rXX2qWpHSFIigIGQ1A6AgjrHEFI8qxECYEzNdamxXhI8AV7swqdFyyMTsbP9RIyO4HQAwQF3kzZ2/s7AEw1QWclRXkMocZ4EVFj4xxVU1E3Nd7VSDmlzOI4lXKCM7dxtsI7h3EG4+p2wC3eQt00WGc7F5XSAqU0eV6QZTlV1VA3LdjUOSrLUVogRMC1IMZ7QV4MyfKMTEq8s51bsrE1ztpOe+W9Q4ak70iuQ8VsZmhMnA+ZyKOuSMLysbfznn/2Pga6RcnOIQQoHf31qgW8snVVSrXvsuxemj6ClKraw9kabw26XZil0kjVgpfgo04MEHisq7GmxjuP1gql06I/IMtHfO+e4d/8z19jtrsbz/GWf/FTD7E52+X2O97G4tIiSu/PY2c9xsY5Pp1NsDaORV5opMygda2q5GI0hlk1xdsGJQVFWSBQbfui5shZR1U1PR1XdJVJJfDBQfDkrSuxKAqkFPEllVx2Ji2WHmscSiqKfAgyb/snY2FxibIYY21AiJJMRwCW50sgB/yP/+qj3wohnOUtsPe+973ha1/72gHaOtHi6aXXB0DpmPgM+4t6Whznv3sQcJkHDP9f7IdxZz3oXoe5seaBz2HHHXbOYe6r5DLp33++j9IimMDNYS67PpC6fv16t0j3AVFqS78NOzs7bG9vMx6Pu8/TwptcG6md6Zzl5eUfaHs6Lv29v3hPJpPOxdJfbGHfTbK1tcXq6mr33cbGBl/4whc4e/Ysly9fZmlpqbvezs5OB5zX1ta6+966datr57PPPsunPvWp7pmuXbvG9vY2586dY21tjZs3b3bf3bx5k7Nnz3b92HeTWWt5+eWXOX/+fAc4UxtSH/THY2Njg/Pnz/Pqq69y4cIFyrI84Grsg+HNzc1unBLYvx9onwfY/bFPLqq+i2seWCfrj2v/GrAPoNO5ydIc6m8A5gGOEOJHetc88NcshCDgUVl8icpcMRiXICTWeJra0JhWl2I8Sgu0igKixjqEaAVIXqPIOi1AAjizqqKpPHmRofOcECJAiQ/oqOoKIWE4GpJl7QveBqSBXBdIWbQaiX0xciCgtICgUEogVLtI5zlKltT1DGdrQhLDBUlVW1zV4AeCMs/Is0EckNqidIYQGikk3sc2NI1GiAEL4wUQFcbc60CWzofoYoggp5rWVBOLsfFeUgmcl1g7QDYO2w7ycFCjstvoXKP1ECFysjz+sD05zlv2qilBGIYLcQEYlYuMhkv4YPDOUtUVu3e/D8Dte3dw1QRFg8wzPLoT+ErhcMbRGIFSBXkRJ5DSrRZKgvOgdMEgCVFFC2Az2QLNFnQIhQ+Cuq7Zsx5nLIH2PlIgZGTZQvA450k6Xuk9UkUNTFZorG+ZpOCQOpDnOSsPnWSQF0gv2n6IbYvicg8tsyOk6JibJFbsBGwSgtsXEVtj8SIxhAFMQEoBYZ/ZyTKFsw5rbKcR60Q4ITINWkqCtRgTr/WPRjn/6FgJxwdM8py96d4+KJKK4ME4cF6gdE45iL+LosgQIsO62LaqFdjOpnv7gJSogeqGwjsQIYLRrCCp/EMA76NoWRCQig6IzmYOJSVaKXKVIZSk9i2jZ2oGRU5RDtF6QBCtTqRxVJVhPNIMygxnPFLENimxd0Cg/lbZjRs3uHDhQrx/+7Lr7yyTPWixP0xjA28OXA4DCT+MHQay+rvQw/Q0b3b+PFDpt29+cUgLU9oB9xmidF6fyeq3Ly3ibwbG0r3TYnbq1KnuuLS4JpCxvr7eta+qKqqqYmVlpWNg0rFJp5Hakv6d9DWJAeizdun5E+PSZ5GuXbvGhQsXuHHjRsecAVy6dKljSFZXVw/oiq5cudKxUvMga319naeffppnn332AJOVGI6PfvSjVFXFE088AcCTTz7J+vp6d2y/H55++mnOnz/fMSOPPvpo1z87OztcunSJzc1NJpPJAYCfgMXm5iZf+cpXAPjQhz4E0D1/AkQQwdzZs2fZ3t5me3ub1dXV7vuVlZUDc7w/tn1NWx9Qpc1F0k/Ns6B96zNB/X/352sfQM0D4XTf1JZ5gP+j2gPPlFKytHQMkQBEsCACjXXUwrcMR3yRO2eRIiBViKxMEF0UVVU3iGCjqNIYTOsuqespEkuRZywuLkZhcdrlC9lFk1hrMI1p2yTi7jhXFIVmOqtpmlYNT2h38a36Pgh0KyRVWU7TQDWtaappt/MtihFaZijhyVSO0pqmZS6sdUgVqKoapTKKIgpHi/IYIAnB0pga0YK3eI7GB42WA2QYI8UiECeD0gNGgzG4ht0736Pei66KUmdkssHMDA2KbLCEyKIINBscwzmJQKB0RqYTolUEIVChRImAkiVaxYVTENh1BbmWlMMhUsDe5HUAJrvfwbsGHzTeSaxLE7GgKHKkDTgfw5VUGwmUZQGtBUUZkFoj2kWwaTzVtObe7oyqMgghKIs4H8oiileFCK2oOEOGOBbRJSUikMskrgWOMgR0JpACRoMhSshepJBHBIHwINR+VFiM3Ds8WkQKSSCKoKVoXaVVnCvOWoQQ5HkEf8nlJfA4a/A+ROF4H3RjEdJhjCVYh25dfOdOnuChUcG3JwY5q5k4g8ziOWU5JFMaiFEpUmSE9npNFYGVR2JMwLvkui2iO0jEH7hpamZNFMVbUxFCjG4o8gHG7m8IYp96hPQg/H5UFpFNzbOcIitxjm6OT6czlNYsLgnyXFAUkaUZZhlKC0w1YWocwVuKVrxdFFNkXvNWmhCC8+fPdy+ztOPu7+rmAUv/xddfCOcX+dg/+4LceTvMPdW3H+Yl2wcyqZ3zbMwPe35aWNIz9IHL1atXOX/+PEC3G06uh+Xl5QOsRgIvhy1IfbDUd6ElYNFvQx+ozT9Lf/e9trZ2QIB869atziWyurratW1jY4Nz584dWPjS39NCnNqTxisxCFprLl682Llc0neXL1+mqipOnTrF2toaN27cAOCrX/0q58+fP7CAQwQ+Ozs7PP/88zz55JN84Qtf4LHHHgPoXC+f/exnuXHjRtf3q6urnWsrCaSTnTlzhpdeeqljL5577rmu7c888wxLS0usrq6ytrbWga+bN2+yvr7O1atXWVtbY3t7m1deeaVr3zPPPMMnPvEJXnjhhQP9PR6PuX79OufPn++ATPquLwDuMzj9PuyzPqlP5pm0/jxJYzL/++vPrTS2yeXZZwPnfw9pHFMb+oDmMHfvj2MP1uAEMLUjUylcpKGxFY21eA9CanTn6lF0rqc8I88L6rplama21cBYmsZ04XlKaXwIzGqLmlZxx6/2myQQVHWNMTWtt4u80AzKAeQFWVawO5lxZ+de24bAcDggzzOsMVjtka1Lp6oDTZ0RXN5G0sSBrEPdAgeBkCbugFvtybAo43MYh3O2jWyJ4MK6CmMm1M0eWZaR5y0gyTMQEi00qigY5gXGxD7SeYlUAtM0qKUxvtUBZZkjhBkKGdky2YBcjN/pBbRUCCQyhG4nT2gQGITYRbCLlIFsENuXP5SxfPKnGRQDtNQQKvZmaTc/AWYIKUGU7O4md1NOWQxbjVNG8B7n4sSUqkYpQwiCxlqMTXxVRpYPGZQSaFBKkecpPN7RmBpTV1jrkWStWieG0Os8I9MDtM6QrfbE2YYQGjJdMiqP453r5pQUoARRVyRA7HuAupDgjr3ppRcIwSOFwLXRdekH3FTRfWYa1UXPxWcF01Q4b7E6i4xNCqUUHmNM66a1rB+LTN/PLWmGhSavAwtVzT0vcC1Ymc4a8A3OOaxtou4qJDYtac1KrAfrElOkYuinFGgEIrhO/6WURLXuOClUFyZgXU1dV4RgUMpHoNi64yLbk1HkBVJrnADvWrdp674yTRWZqzqxikM0QyyGvcke1jYMW+bJNg3DYz+eb3zeQgid3gDuz2LAPoDo7wTngcs82OjrQ+Zp8P5L9M30OIe5mO63+B/W/vmF4rDrJ1dCak8fRCS3xP3u0e+HBAKS2yJ9ltwI/UUmfZd22X1mJ7U56U7m75u0IOmcxBqkxTUBptS29fX1A20CDrQvjefOzs6BNiQWqKoqtra2urZsb2/z3HPP8fjjj3fzJ12v7+La2Njo2v3CCy9w+fJlnnjiCZ577jmefvrpri3nz59na2uLF198kQsXLnTPcfXqVdbX17l+/XoX2ffMM88AcOrUKTY2NphMJly9epUPf/jDB0DbtWvXOsCewJfWmpdffpmLFy+yvb3N8vJyx2ACPPbYYzz00EN85zvf6YDPzZs3WVlZ6bQsk8mET33qUwBcuXKFmzdvds+9vr5+wP3YB7z9/u67//ouvn40XX/up7HZ3t4muY6TnubUqVMHgMv93Iwp6i9Zuv4rr7xyoA9+XAbngRqcYyeWwn/+gZ9Hyrh7NM0EF2qEUgxGQ5QqqWZJZBwIwZIXmtFoSJ6XOBtf2LPKUM0aTNPE8OSW2clzDSrgrCPPMpTSXegueIyNx3sXkK1qsygzxuMhZTFAqhzvBJPdyIQ0xjAcDAkQGZ+gUDouQlk2xDlFNZ1R1xXOxt23VIFymDEcZYDDB9eJKcvBgKLIcN7SNHUUKEObO8QhpcNZH9mTVisSRBZdOiLgncfUpmO5EJKAQQpHkQ/IWsDUmJrptEGrkqIco8oTkMWQfy9LkAEZBNI7go+Tx/kdEFt4/wbB34UgyPNjsd3lInkxRkmNt4q6stzZibuGvep1hKjJck2WjWia9KJSFEXGoMzRGppmyt50t/3O4AktiM0ILeMSiHlTvBM47/DedzloRAgEZ7HOYh0QJKGdD9bE45RqGbnWzeKcRSjF2088xNl/+s8ppNrPaRM8SqrIyAmQrSYr6W4guke1kl24tRQSW1ddKPb03oS7uxEM26ZGichShbl8H9bU5FqSlwXFoCQv4xxSMiNkA/7u72/zykv/G//y4QhC33OsQC0c55s1fHfi2BCekLc/XldjXMzvMdndwZhZl1ohOEdeFJHlyQqSmsyYhrqJTE2W644Vix3ryXQrxkbiQ7voG0/TNATXkCmH0nSeNec8wgUGxYDFY0tk5YBZy+Ds7c3Y240apUwpijYyIG/F9YNyEURG3VQUrTvTecni8bfzP/0P//1bpsF5z3veE/70T/+0ewGmhSyBgvuBi/T3ZIcBkfsdf5j7Z/7zvj3oZXu/7x7kerqfgHLeBTXvRuo/U1+jNH+NPqDqL1YPYsK2t7d/QKuRduHpuyS0hX1R6fxOvf/n/H0T0Oz3QTo2LXypzQks9QFScl2lf29sbFCWJcvLy0wmE27dutUt9IndSAvxPBAcj8cdcEnfnT17lo2NDZaWltB6XzNz+fJlNjY2OH36NNevX2d1dfXAGG5tbTEej1leXubmzZvd9TY3N3nsscfQWndthTjHUwh9ci+lcxITUpYlTzzxRMfavfjii1y5coX19XXG43Enuu7Phxs3bjCZTDh79uyB+dYPH59nRa21bG1tHXCt9dmW9O/+nOnPyT6QSted33Qkl9q8Dmd+w9HfhKRr/KganKMw8SM7siM7siM7siP7ibMHi4yR1DPBvZ3IGsyqewjpyYqcpZMl5cB1WY6zLIZ0ByeoqxjW20VEBREjbbI8CihbPUFWKITUNDTRTdTPJuk8QiqyrGgTuaVsm9EV0RhHqGPWS5W0JybDGo0PDu90m9yvjRKS4MyMogyMxyOcbRkXDEqHKDoVGcYpbKv7mNUzjK3jUdbQ1FEHZOoZ1s5AOIIXjIbHGBTRj103NdY3KGnxPoZip+slQWiuNAujQKlb/UTTkCkVk8CJHKUWEK1rTXkDbga+JoQJQbaiMrEDogJR0xhLYzyZbRmX4BgGS5EV5HqAHo7Y3Y1IOLhdyuECZZlHka9KkWiKLBfkmSQ4z25lqGdtZJHICSStiyTTiZFSGGsRCLTM2mi4pF8ykakTmqLIUTJHtBqcye6UyWSXppkBttMvhTY787HRYhzvXpZqKWN0lQ8eJSRK7ouMk7hYSXHAReWdJcg2mWNj2ZtMeOP72+1cnsWkkzJEjXrbBh8swUORDxgOLCMfGLbzeDAqsDbwf/8ff8WKF/yT1mUTvECZPRanhr/4+wlLDz/MHd8m5hM1KhPkRUZeHMfZxU6YH4JFZ0U7R2UnChZKIDOFswatJOWgJM9V1z7vHFLGiLIkZh55QWAEBJyt2b13j7295H4QaCGpm5qqmiGUYti6BfEBnEfKEZmSnRhdC8lgWDIajXC+YHonULn4vAsLx9H5Am+lCSEOiEPnBZfwg4xL0nvM7yTnBZHpzzdzIc1/Pm/zLND8jvZ+5/T/Pu8im2c5IO74E/PQTwCYvu/vvvvsToq8ATodxrxLLN2/r4NIu++lpaXOndC/btJuLC8vH9B8pLbMh773mZrEvPT7KO3ir127xunTpzudTv8aSXuU2pDmQhIh96OytNbduJdl2YWgp7avr6937qjU1ueff57nn3+ezc1NLl++fEDntLGx0d1jZWWlExK/8sornfYmCa372pM//uM/5n3vex+nTp3izJkznXbm4sWLfPWrX+XUqVMsLS0dYK02NjZYX19na2urY4AgurWSW+0Tn/hEFwr+3HPPMZlMuvMSW5TGb3l5mdOnT3d9n/ooJRJM3yU3WYoSW1pa6rQ2h+nUDmNPU9h9CgZIczexWInx68/x9O++K3h+Xs8zTD9OqPibiIwFgzKnbl+GjW0QErKswPuCupbYVjDsnGFQlhRF0epyAp1+Qkbhqmk8jaELPxbasDAekQ1jeHCRl52odK+aYV3UtORaoVttR15olJQ4B3k+QgrFveLL4pQAACAASURBVDZnzGxaUVcxX4rHk2cCY+J3mRZo7RAyoFRA6XbAgkVpQTkckGUjKuNoWheCc2Y/i62U5Hns6GA0jVHs7U3wPqBlTp63gtwiQ4tYtsI7iWwkMpi2DRlK5jgbxblGxM/HwxHHj70NYzNqJ1HCIkKMiLLNNsZs48IEIesuLTdBI1UBIcc0krqaUtex3dXMMNEVg7JkYXiMMg/kefzu+FLJYJhRliVSZsyqCAam0xlNXRGcAi/AC1yb3NdYQ12bVo+iO1dFUZRxiF2gHAxQUrE3iZFAxhka42iMIdOOohAUrasnG2pk4+PiikO3mqdc52gpOLZwIgqEvetAspIKqWQn+JVyH/h0/wtBCK5zOaW03zIEKmPZ3NvhDm3E1lAzKHIEitnE0FQppXlFMPfIZndZmA3x9gSizeSdl4vsGcNff+c7LE6n3J3EBf/YoERoxTsHGWO3x7iU7BFBzMRMUd6DGsa8NCInt617TQeKfBC1MrH+QvxdiCiYrqsGayxSRG0QgDcxPYG1jsZUDIbxt7QwGuERNMaRF0NUpsnavEiEgPSBMi8YFEUEge3gKkEEoEqR5xrXzv2mbvA+oHSBkIssnFgga0X2g3JElpJcvUUmhGAymXSuj83NzQML5jxV3nfd9F+IaSFMxx0GYuZfmg+K2Jj/7LC/HwZUDrtv+vzmzZucOnXqB9qUzllbWztA+acFpZ+1uG8pSqqfDyj1SdLH9PPEzIOm5OJIoDHd4zDB52HAMQGgdO2kx1hZWel0O33wmnLnJFF5X5hcVRUvv/wyQOeWgZgN+OzZs11W4kuXLh0ARSl78SOPPEJZlqytrQF0OXgeffRRzpw5082PNLfOnDnTaXuee+45gM79c/78edbW1njjjTcA+OAHP8iTTz7JmTNn+MIXvsCXv/zlTi/y9NNP8wu/8Ausrq5y48aNA6HSOzs7PPLII0wmE7785S93YubkfrPW8vGPf5yvfe1rXf8+++yzPPbYY5RlyWc/+9kOZF29erUb6xs3bvDII490z5qea153le51+fLlbh71+yG5BNNYzGtv+uPdt35UWt/11xc797+bB+pp/FIm7OS27Iek/7h5cN5UvVMMckau3f3rFHlUUJQD8rxgXwRqyQqBlgHnY+I+2y1GCq1L8rwkK49xdxJflNY5JrNIbBSFBK3wPr6UK1fgXEAEARKkaBcmEZBaIlTUz2glWFhsE5BJSVMHZrMGIUIrTG53xcJirWM2abC2wbURMNZVKCU5cWKZ4ydyMimRSVSaaaxraEzUa4zGrXBtQePsMfYmNcZ4dJZ3K5ALAh8kEoUxNmqO2oXL1QZFhTOBqjIdu7TwzuNYVzDZa0A2CHmXQNx9G3cH42cY51otS2yaswZrBMZamqbC2Wo/2k1ohFDkmWY8usfi+HibxJAYCRPAGQ/ad3lhlBSYytFMa6qZYW9vxqQFK7UxWGdxPqC0ohxEoDIcLqDaRH7KGkQuyYq48A0VaKNRdUMIAp1lXWhxURY89LaH8P54FN22/SB9DNk+uXQcGUIMd05lOMR+DpgDNcvaPI+pDlNMnrefGSn4gEBw18z4zt4Ovi2pkec52UAzHi9QnhzQBrSxs3OPyd1AqHfYm864V9/mRN3uZGvB32y9wfbOXV6bTvmTzTgf/tu1FU5Yx/Es51/8s3dxe6Hk9t02wkMK8BLnDUIKlLIUeVtmQoGSNZnWZHpfpB/nraKucqqZxDSm0+04W8X8PVoxnXpub8eaO9N7uwwHZSwVIjRS65jGoB1bXJvMULZaqTb83pj9aJTReEym4+/PBMFuLWACxbhkvLRInsdxl0LtC7nfIku1juajadLiNQ8g+lqbfi6Ow46b//x+7M79tAY/jN1PHzSvtZlMJp1AtH/e/Is8LQ4JaMzrIvr3SoBkPk9QCtGeTCbdYpLATD/sOoUv95mvfsK+PsBaWlri+vXrHRBN47O9vd2JWtOCW1VVJ8pdWlo6ADoS87Ozs8P169e7dj322GM899xzrK6uHmA0xuMxFy9e5KWXXuqErElQvLy8zNmzZ7uorZRsDyJQ3t7e7sBISg746KOPdqUaUpmGp556CohC3g9+8IM8/PDDPP30012ZipWVFZ5//nnOnz/PZDLhypUrHQi7fv061lpWV1cZj8cdiE3tS4D9ySef7ADqysoK29vbfO5zn+OP/uiPDozrxYsX+Y3f+A0+8pGPcPnyZZ599lkAvvSlL/GNb3yDsiy7shV9INHXQ21vb3fszrlz5w6Al/SbT0xRAkbzjGg/5P/atWsAPyACTsJ12Bd1H5auoa+dSv0OdGH6aRMzP/d+HHugyPjEQw+F//qXf5mmDdGurYvvteDbGk05KblJYApMCK5qE+2xn6tEaLJ8iNIlUo/wIjJCQo0gKAgGcEil0a0oWOohzgVm09vU0zdQIdZgGg0deREQwpPpvHVVtKJSlSEouXe34u6dOzRmis5aZkWXOKeoK0FVzbA2dqB3NXkuGQwKFhYGDIeDDqzkRUFRZpEVCL5dhAAZyHSJN5pZHagbhxcpfDsHCUJ4did7EeCIuHCZqmbvzm1m93YQwXHyZEz0949/9ufwjGM4vbpNUU6gzTnShIra+NYN5bpQYtc4grNtFuga39iOufAyFn1USlDkJaPhUnev8XBAwHfZoWUb8o3QWGvYvTdl5+6M3d1JF36vlCDIgAugM0XZMThDlMzwLn5e9FyMMfNcm4E4hDhXOnDmwNMW4rM0bU6i4B1Yx8++82c49Y53RHG5SIn5JELEGmRKqY7J0lp3qQGEiKCov/jGQp+ef3fjL/irNzYpWpfOYFCipEUJi9YlRXkcgMks543Xd5ntVWTSMMgcchbnitmd8e2/vsXt3T1sZRm2heZ+Zf0dXHrXcU4OxogTx2lOHOPftcU4/2yyhzEe4wyCBohzHSJ7ImQE6Xmmu0hBrRUehWkU3mqqvRmTvXtttzboHIpySFMrtt+Iv4vdu/fQUjAcDRiORowWFyhbBsc7h20aqqqisTMUOYNyob3XkFnVYH1AyByh2t+mHFAWY4ajE5Sj4+RlgUxFVpGA53O/+9+9pYn+vvWtbx1wp/TzZjxIkHo/luVHjcA4TIz8oOskl0t/F9u/Rtqp9xmn+TpK9wNZ/TbNA65+6HTatfcXhvT5vCi4f+++m6W/uPX7uw+wtra2mEwmB5LpzTNt87lX5qPG+q661MZ+6PRkMuHSpUvcunXrQDRUcokkpiq1NQG09fX1LrInLcarq6sdWPr93/99fu/3fq8bi42NDV544QVOnz7NI4880jFHf/iHf8gTTzzBuXPneNe73sU3v/lNILIn1loeffRRyjImPPzX//pfA/A7v/M7HRu2vLzMq6++2vXRmTNnOsCRXDpp/KyNif5SBGFidxJTtb29zW/91m/xyU9+suvTBCifeuoplpeXO6B3+vTp7pqJlUpAJmULTm24n8D+sPHqz8HU7n7tscQCAQdYmDRO6dp9sDQ/1+/nPk5//gMl+pOo8jhlcr/4+JkQYFFYdJs6HmxzF99IvFM4BkiVRWYDAInUMUOu1CVZEX9gebmIloJgJthmAkJ0EStkYzyCssyZqJzb34uLwt3br5HpKePRgKIQOF91DInOMnTm8U6j9CKZLinaCJRCFTQzSzFWLI6PM2mzEt/deQM7M+xNp9x7fQehBKpdwI8/dIITJ0/EbMDVrIvk0plGyZoyH1EOj5EXBbaNZjGNwQdB0CXDYyeBDNueF1xgOHydO9lfo5ix8o6HAXAhxwVFljmM2cG7Gt/qVRwSFUChECFg2+RyxlgkHik9WQZeiK4oKlJhrcNbQWUdwU8Rbfj9bDqNie8IaJ2R8gQJBELlyLykXMyxQqNb1kAQOpAmFd05UrYOJCmQBETwpBrWQoiY8ZqAs4bd3WlX+DP4lBtHR2Di2x+bcnhvsPUMvG8zH/eqaIvQVm7fr5wcyzH4qNkSHi32AW8ItO6phu/v3MY0Fb6NnlMSFhYGFHlBCArfZsUusjEPPbSCPTHEYwl+l/re9wC4c/c/MnEWHzxBwd22f174D9+h8YZf/qcFb6saRqbhPxnEeXfzbsXfzyqMAyErAg2+1dpoYaKWRkkoc3SbULOpPcbAdCoxjY/Ar53jWSFRQtI0UNscWbwtXmt0AmMsVgiklvHvrdZHBk8Ioi2YWVI7QX0vvmzyPJAXA4bDMagFhIqReIPBEsPBMGZRbn/zyaLM6R8mPmGezu6/COdfvP1on8OAwWGg5DBGJ30+/1I9DFTMXye1Yz6qpH+dvqZhPB6ztbXFxsZGly+kb4dpDvqujr7mZb6vDltMgAPusBSd1ndVHXbvvpug7z5Leot+QcWkl0rgLTEKN2/eZG1t7QBTA3Sh7n0wlkBKYmq01gcKYCZ2KIVbnz17tmMnkj6ozxQkEPfqq69y6dIlqqriYx/72IGSAteuXeOpp56iqqoDmYcTMEuh2VeuXAHg8ccf5/z587z44otdXptf+7Vf6/q1z6SkkgsQQ9LLsuTs2bNMJpNOm7O+vs7p06d59NFHqaqKixcvdv2ws7PDmTNn2NnZ4Ytf/GJ3n89//vP8zd/8DZ/+9Kc75iQxIZPJpBvDxCSlMUy6rvmIvL5r6rBMx/MsXurffvbkNL7puwSi0jzra7LSn/Purz6w6s/j9P2Pam+yvYnJ2NK7LFMBITOybIQXBRYIo5QR+BjYFYydYpr6QFl4KQS59LHytyq60G2lBMpXNHaHZvp9lC6Q7a5TqSGeHF2UhLKgTrvRWmMaTyUswRlynSFIKC+GCatMsXBsRJkvQMrZYisqcRctchCapRb4vG007Fxqe9M9Gu+QLTCTDNjbdRGV1jWdOy4EvPcUZc3S20qGiyOEbIXOUkKQqGxEUS6Q6VGX/0W6BlPCMJsgQ8OxpRgKXjMmhBG2aahtRr1XI0mD6nChibmHHNCWNVBBxHpJQka3Qmb2c8M4zWTicE6ispwgNdO2hpVpZMsWZBhnUK0oWElAGITOKfISfWyANa0Q24cYgixMrBLeTr7gFc4EED5KcXwgmFT7y1E3NVoVBC/Z220w7UQNwaMVhDJDBIdtBbnHl4Z4BNbGUhtK6KT9RRAXVtWKitOC751pWZ6YxdfL0AmQfXDgJY1p8KFmVO6Lzp3bZTrbw9kBZXGMlM9J60CeeYLweDKMGZNnsY+GC5piqLh18yazewZazdMd2/C//PUbzKzkv/nnmp8eDHjoZMyL9J8OFtm6t4P0FhE8wVu8bcXq0iEDWDxYRfpNO+eoa8HeFGorgLzTKWUuR+kBQi+g8iVOvP0EAA/pHNPMqKevU8/eoJndQ0vTPpOnKEYUxQK6zWxdm1ZzhMSokiw7zmh0nOEwApxMF11pjpQ88UFs749rQoj7gob+4jpvhwGLZD+ssPhBIOaHEQ+/2fd94JR2+QlA9NuRdr19cJHykqSFq//dfP/M36uf1K2vq0ifJxHoYblJ+p8nxindu88I9cdpPg9OEhIncW1a9Puh7encixcvAvDyyy8fYL3SfTY2NjoXV19blNqdQpxT2HVyNz377LMdwHjkkUc6UHTq1KkuDP3xxx/nkUce6QDKI488wtbWFs888wy/+Iu/yJ/8yZ8AMUw8Jdi7fv16pyOCCPSSuyixQ6ntqXRDArcpk3EqI9FnIvsC7gR2zpw50zFFzz77LB/96EfZ2Nhga2uLCxcudMAxPVNy6SaGBfZdk6mKe58F3dnZYWVlhatXr3Lu3LlufiU2TGt9QBw9zxqm0hZp3vVdpX0gm0Lf5zcO6RopBUFf2/PjioyPwsSP7MiO7MiO7MiO7CfO3pzBkfsuBCl93MGrlva2pq3mHbOlCjmiyDS+MECI4kbAmBprK7x3FBq8T64PhxQBj6e2JlaCyKPac6AKtF5ACBgWkJ2MO4vF8jjTGRDagps9kaoQAR88WgYKqZDmHr6KIenCQY5qqylbQlu8MCsXkD6ghpLRSY2DrqK59YLptMJ4iSHgW92O8/F8G0qoMhiNKIkMjtQyaoPyAVLnkRmpYkRUNdlkMt3G2JqiGBLamld5cRzhCxwZ071AVb0OPrrQnLtHsDO8i32a3C9CQsChncQYiQ++q3llrcW5EpWNUTpmi2713pSFQulYmMB5h0+sipYQNLap8a6tvN26pZwzWNuABCVLlGjdiCpG81gbhdQzH9jX9yqk1HGMZWBxqWgTA7a1qaynqRpM1RBCWz5hPECKjKqyBC+QqoveRsnI4OB9KzSmnZMg8XjnuvHv3GQhRtTd27vDG7e/RxVqtEpsn6LONE3hMKXHtFFmUt9BZZoQBMIphJMULVukhoJi/e1kyvHa373GXps+YXdnwsxa/u3ffpd7wfLYu3PeNYzz9b1vf5hvzww3vn+PxsdwdVvFOT5r9rDW4LxHUHcZk4XMyIYPsXDsHYwGY6TUXSoEpRSFzshVrI8mVRJbO2xeMxMZu0ZSmxzTsmm7uxOEgNFoQDYoGS8u8/Z2RyezEchY9FZJ1elsYq31+zM2/ZIYb5XNU+f9CKIHMSaHMRj3u35f//GgY+AHK36/Wdt/WLbnfm6oPjPTd7ckmn88Hh/QyfSvMe++Sv12GP2fjp0vrtk/NrkZ0uepzTdv3jyg7UgC577ro88opMinfsZkrWNE1ebmJjdu3ODRRx/tXFGJ3eonAwT44he/yAc+8IEu6qmfRgDgqaee4nOf+xxax9DrlJk46W82NjbY3NzsxuLFF1/kkUce4Td/8ze5evUqL7/8cse4XL9+nZs3b/LhD3+YT37ykxSt1u7ZZ5/lwoULvPrqqx1T8fzzz3djmkK3+5FSEBmc5eVlrl69ytmzZzu9UX/ckqA69ZO1sebXzs4OL7/88gFhb99t108pkETgiW1J/07XAzp9UIp0u3z5cnefVPAztaHPzs3/NtN8SPOnzwil+ZHmRJ8V7Fti6VJ7rbVd2PqPIvQ/zN70TAEdUJHEaAxHTaCJKedTct8gY94a6UEGQthfnHSmQZQEIUFm+y9O4QlSILMh+eAkxgdcKyqNVallKxptkG30SzYYMcgk3nrw0TUiVIruKhmMjlMUi1F7sfsGri0q6HyBlUNkUVAUJbLNPOw8uMZSZCVZUeB7LgTnHPmCQ+UZUga82a95FaRGqQFaj8iLASp1BDFqLJYPgGBNJ9ad1DOmjaQxI5wokNPY7lJpdJYzXMiQxbuoqhVmrah0Nt2lru9hwgRrdnE+Lo6BBoUhmCnOTHEWrGuBnirIc40WHkeFzgRFW6m6ahzGCJyjraLeLt4yIIQhBBkj4EyFa6te26aO+qg8wzU11bT128uSIGI5A6ViriPRjl9wAYHDeRM1KzhIOh4kQuhWm7NfXVspxbHjywSp4twR+4usQKHa0gsh7Gc/liK6pvA2HitEB1AhasbuTmfs7Kbq6W3Ifq4pB2UMR3f3qNr+tsYjM4XKCyADn0GbuTnLS1zQ5Es/zU8NH8buRLff9/7mP/L6nU2cl3zjb29TNf8Pv9L6df/Jz63zX6y/BxYcWy6jdp7Z3ajpUXs7bdFXgdKaomgBb14yGp9kODreCtaJJTcAicU3OzSz29TTCc63NaGExTQVjTGx0KbKcAnEjxeRsgRdgtJ49t2M5aBAqlgKRPRC1QOB0EauBVJOomj/UJ6q/sssiSV/FPfR/c57kKtr/pg3s/u5hg477n73mAcewA/oFfoRR8n9089cm8BHX4PS/26+H9KCMy827be1755Kn/fDfpM7CPbdQ/2svmfPnu3aPj+eEEFMqsF06tQprl271l27H4GVimoCvOtd72Jtba0DeX1h6/b2dleuIIUpJ7CSjk/lEJKLamVlha9+9at87GMf49atW3z961/vgNnFixf55Cc/yUc+8hG+9a1vHagyvrGxwZUrV7oMwgls9PPpXLhwgRdeeIG//Mu/7Prz05/+NGtra13uH9jPZJy0M30AkAqUJk1Sf14kt1SKWEvzoaoqvvzlL3fXT3/251qKXkrfpXsmF2Rfb7W5udmJk/vzQ2t9AAgld2hqX/+66fv++f2IrWQJkPWB81thb/prDmE/kkXLjFiOMLT/get+H448b0WnQSGU6ur7CJmhcwXE4ouyBQMCj7UG43JQixS5JM9TvSeJdXEH7pzAEaM7rMqwoY4ROgQkCqVa8W+ZI7IFgl7CBo8vS2TZRlhlJUU2QMmsLZkQWxeLD/h2oQzgbAdWlK+RzqGyAq1z0hMFZKxiLeQ+igv76fSliOn/nWlikJhqRdVDTTGKRTOlFNBGMEk9QAqFkJ7RIEa4LB2LP3jvPI03WGewTUPT1vFqmorZ7jZvbH2b6d7rCHwXxpvlGXkpGY4VC0sl5UBiTMsazGrqOlBNA9aAaqut51lDUYS2DECMSEph/o2Noe+msUgZKMp2oRhJ8jKnKDWjwZCyKDFtjqPJ5DbBN0iVYa1kdzJjttdWyA6KTGXUlaWuG2wLKGfVjEUCeZFF8IvoNDOi1di0A7AfMRZaFkdEobOU4kAenECgNpLaLWKMIW+1NphhTGA3U/G67bWNmSGzksXjb6ccnSArBijZJl3MCkpVcCwfxTFsgdny8sOM/+p/x093mE72+Ob2Nnf/7P8E4NLE8r6f/8/4L3/6IV69J9nxJbRja0IgCBeTKEqBSlFKwaFbUGFthQoWnVINNLtUk9domrsY01A1bTQgEITGhQxkQTEadVq3PF9o634V5GpEludk7e9MSh11TdACHNn1qxeBgG9D8PuoJhZjfautr6d5EHvTZyYepLOZP+dBURsPatNh5/wwzNKbXeswcJFe9PMaofkSFunY9Gdfm9O/XhKipgXjsMUltatf3HReaJpAURK/HpbOf541SOemhTp9/sorr3Dq1CmefPJJ4CD4uXXrFpubm5w7d4719fUusinlsNnY2Oj6YD7UOWlf+m3ol2z44he/yJe+9CUAXnrppQ4YXblyhd/+7d/urvf444/z7ne/u8vX84EPfACAX//1X+c73/kOFy5c6MBJAkWXLl3qNDUf+MAH+OQnP8l3v/tdAN797nd3uXv6/ZqqnPdF4gmspDHq1yGDCL7KsuT8+fN89KMfPZAXaWVlhfPnz3dtS9oW2P89pZwzh4n5+8kT01zr50Wa3yC8GQiZZw+Tbmc+8WNqR7r2YfP/R7U3Z3Ck6vKXIERcvIl5XpTWBN3BGKQUuBArMwvPfl0iISDICGiaexGgAGUxQmeLFEqjBoC3vUKEsfBmQKBy1wESEQIixOy5SI0QINvkbd5OccHj3BSdLVAunOwa4YNIyVS6vCkQd6MRqMTwYinzXqXqEqXjnUU6PzaiBTYyfg77EUIhRPFvgCBiLaVWH0qpFpBKUOQ5HoXv1mvZLsbRuRKFnYmhUFFsSwlDuu1zAEz9MMdOvJ3b3/8u1XQHJVMFaxiUjiybkRd1LFLZhstrhlRoIrHlELRuN2dijaiWBREiR8pWJJ4FlIQij66irM2pMxxrilJQZAKtHNZMqKqYTbma7eCdx1pFCAWmyWNdLsDZmhkNzsY+km2FdGvg3p0px3OQQXTC4ji79gGOCAFQ3ecCEcPIgyDyay0Y8B4E6OIkb/uZ92GMZVzGH6UqhmT5gEzH4qu2zYvknUFnBaPhApnOI7hPGDbs5+KJtEpsw9v+8c+RFYqtf/8XLA530Lv3+A+7twF47Vt/xo3t23zw/HneeeKnmLqAb4Ft0CBRuCRCb13BpqoxwaCExNtY4Naatl+rO1TVLtbWNN7RNGmuZghZoLMheT6myEZkWdwUFMWYXA9QKmuj0PbnkbMeQuuKFvtzPP6u2p4MHtUWNI1zb99V+g9lfZbjsO8e9P2DrnfYOW8GVO73/Twzchit/qB73Y+d6oOfvhsgWR9c3I+V6l/3sHMhLv4pg23/2LTAzO+4V1ZWDuz0gQOi2AQ60sLXz+UzmUw6MJDExl/+8pe5ePHigYUysTQJyCR3TiqUaa3thL79auIpE/Da2lonAIb9XDO3bt1qxftx7Xn/+9/PL/3SL/GpT32Ka9eu8fLLL3P58uXuOd773vdy7do1Xn31VX71V38ViIzIE088wTPPPMOTTz7J1tYWn//854H9IpNaa77xjW9w8+bNLloqXbssS06fPn0g9D0t9kk0PT9P+xmZ01gksHHlypUuIzHAZz7zGT70oQ8dcHPNC9yrqjpQUDN9Ni82T+1LrM/S0lLHVvVZnT7jkyzN19QfhxXV7M+v1M4+W/lW2ZuEie9XJIbozvFSENr8KTFctEVaQraFJrP9ZGsiZWaNOgnnHE01ZTqLycnMyDJcPBHdVj7ggt+vli3bdPwiYI0ntNmA8QbnHAiJzgcI9rMpW+sJQsRq0yq61hILEaC9XlJo7Icfp6Rx87oCIWVvn9pTJIT2FR/2F9hOG0O7AAgQug1ZTouGVKj/l703jq3rOO8FfzPn3MtLirKubTpl3tLNTUu9x7ZcgN1HYIkNA3AbZsG0MqAACqIC2sbeKm8VlEYcVGkcxEZsxEUEREAFWN24iNIIqADHiICqCAMICIsSa2JBIMwL06ovTELX3AXTZRImoSRSuuQ9Z2b/mPm+852551xStpR2A44hk7znnJk5c+ae+c3v+33fF2tYFcGkYF0MpyRQEMgr65PiBVbUpRR0dzfeUft1PNLX73bzTZ9SY3sDd2//GLdubkOrHVS7DCpdPsCdriKOulE71IPWnV3sbrvnZ3YM0qrFbrcCbASbdkP72D6HDyt0H0pRraYw6bbT6AAwyQ6SnW7sbkdo3gF2W5bNTUnact5tVjsgDA14F2RYCx1VUD3Ujd6ohtu/+AkA4ObWLXR1PwwVHXEAVznXc5pDHv25OCw2M0PBKmc+hQFgcqAoVUAUd2Ggv4GdnV0oD4y6umqoVKqIdAxo54LuilvoLY03XGoQnh8UZsca56UFIIHGQ/2/CV05MESiRQAAIABJREFUhPUffBvvUBEe8cEQf7y1jbkfrODHt7bwRx/4fdQf+u/w09SxJwaOHVUu3CESH3wvRezdsCNYXUWiq2h5DY7peghxJUFkgS4dZ6lIoth5KaoI1WqXZ1uJ/dLZ/LIGnqh0fU9cT7Q2zgNQFAULrazb1PiUFzwn8WDKW9W7hKzG/WxzL1MYlaK2y5ijInd1uWstYmPCv+Uuvcj1VrZZ5P5N7uPh7ll69si+SHaNPqPzZDRlcq+emJhgDx2pmaF0C8ePH8+ZxQCnf2k0GqxJoQWcvJyovenpaWaArl69imeeeYb1NwsLC2zaunjxIhqNBsbGxthsRcVF3XeeUB/96EfZtHbz5k28//3vB+CiF7/55pvct1rNRUleXV3F6OgoPvaxjwEAu7RPTU0hSVwcGrq3Y8eOYW5uDmNjYxweAHBAgZJvSvd1IGPNZOwkKgQSKOji9PQ0AODpp5/Gyy+/jPe+970YGxtrC9q3vr6Oer2eCw4ogQrNDxlVWs4dMh9S+1KnJU2sBMolCyv7Hn5GhbRIMuDk22FvgAMvqoNyUA7KQTkoB+Wg/AqWjpGM+37tP9gn/vC/sPcLkxHKm3VgYGiHHVUBVYVSkQv6hoRjuShYKB3BoopW2sLdphNnQlfR1X0EOqrC+IBtFEwP1mtZ0sTlk+KPHY2uohgqqkDBwHghsTGpY110BVXlkm1S/6C034FSckkSOueZEjkc4Tm5IsxcgBdgi+tsWBlcYLw4jmCNRZJa1jsAyner/VlYa9lTjf7m/vpLLFxMHErWmOzuonn3Npo7t7HjPdhs6sZcmRZUVEVUO4y42gN408furTVE6haiqoGNDyHSDyNSbge3mzbRSm5it3kLNt1CV8XrmpSGRQXNlkbSiqARQ2lKLJoAGkhaFUSRM5dUKq6+7u7DqFS6UK32IK50YX3d7ZC2bt/G479+FP1HqviP9W0cipIs95RyZigoDR1H7A0VaZe2waV0sG4OEEdnnInln/+f23jjx3fR3NlGK3H1dcU9qFZ6UOnqRdzTi6jbmXOiqktz4cyGGkmawpLZVHsmxAIwlr0LDZRnKTXubv0C//K9b+HOv/4AANBjdnFrp4mNWzfxv/z3o/jN/+l/xhs7DwEAYp0CsWc95RyzXg8G5QOFi0CLsN6/STnTEmvAjDdzGq+hyphXkL6M6xdzm+ZYOPetYyYVtNfNWfbYijSgI4X/44X//b5FMh4dHbUUffZBlLdqhrrffaBSZroK+yE/D1kfeb7UVAB501boAUPMD5miiuor6pvMTxWavSSTFLZF7A2xE9QOaW+I4aG26HOZCJTYJgrcJ/sizTsDAwNYWFjg9ArEWN24cQPj4+M8Pn/yJ3/C0Ye/+MUv4qmnnsJ73/teAC6Y3sbGBkZGRnIanG9961tIkgSXL1/G2bNnOQ0E4NiRqakpZi2IiZD3S6Ye8mCilB1knpEmOTLt0HG6ZnNzE0NDQ+w9tbq6yszK+vo6ZmdnMTY2huHh4TZ2jp6FNCOG0aulbkfqvShmEtUlo2gXzU36TJq+5DEZ8VpqtqQHlywPJJIxYGHNLmtwlFJQNoU1PgmlrkLDu7bCiYYVFJS1iLVhsa6yKaBiWFWB1V3o9gudUdrR595bA7mIqd5MoBWiqnj5KwVo7b07FBRilwaAOkHyAHpbc7oIBWHhYbMUezX7BcW97DPNUWlR2Q9rXX5K+Te3bzMTR6Q0YOAysFuVBVBj+0t2E7wgqcx0FkbwtcaDPTjdDkUYjuMaunu6YG0fUgsXIJBTajhdilZOL3X3rgv1b4zCbvMWEmOgbYwoPoy46hbiqqoiSVLsdm1jd3c7c5dXQBRX0V2rwKQtpOkO4E2JURwhrh5CtXIEXbU6KnEXD2ekAWtTKLgEmwMD/4mHtdJ1CBVswSa3YWwLxqdxUFoDKoaKXH4yrQhkCfOgkFkBgI4jlxn91k/x0/V/hdYWkb+nbZWiae8iat1CvNuNw8qlsuip/JozGXlTDqwl/bF359YejypYr6VRSN181Bq1I+/Ab/wPE/iBj8j9L/+4gO5kFyqK8X8uL6PrP/1nVB/p88/CwkDzfM3DW+WgDOnBSHNktTPBgsx2BOCdmYu92Jzs2M9Bmo5uUxKWbH7lAbT7SljCcxzEUUh1/l2UTosylXsxQxWZj95KH8KQ9FRnET1fVJ88PwQiYbthWzIsvtRJhCasEADJNqXug0wORe3Tz9Ari66jwHO0aM3NzWF8fJx1NrK+5eVljI6OYmZmBo1Gg81KZLIZGxtj4XSYD4s0IhIQNBoN9jz70z/9Uzz99NMAgPe///3o7e3F0tISPvnJT2JlZQU//OEPAQBHjx7Fq6++ypoeCrK3ubmJ+fl5NvOsrq6ynqher2NxcRFTU1PcJ2nGkyJsqXlKkoTTSvT19eVSahAQaDabDDoajUYueN7Q0BCb8er1Ot58801MTEzg3LlzOHHiBGukCERRP6TJkp43Pa8wSSaAtj6Hc6EoPUcYKZvui4BTUVJP6p+cew9MZOwW0YTt/DZNvdt1Cl2pQekY1qcosNZlc4a1Lvux0hI9+N9JxErMhffGoneuUrllHvCeSqqCbNnyL2tFyoJsYVCsfVSwSux0Ada0kI6FEjJawcSYAjZLfiIjuhJoyWSXWc8ZiHiwRAkjoRXSNHULhkLWB16ILIt8sx29hbWKx5ZFxjbrj/GLYybfcTtvgoGI/BDCsT0OBFgYG6NScZP5UO+RDHjB40gCbVpDebjqPJRooXMrbWoMTOpyYZHHndOEVL2uw6dtYJEw9cQiijRiYtWUSwhprEZqDFK0GIjqSEP5rOHO6ykDNS5zuwGgvBhWsD6xhtLA7u4ueg4/gsPv+E13rOdRxFEFFRUBJstOnqQaWjkQapBC6YjvqZ3d4wFygChNAAXU4hp++7f/R/dsjMbKt2ehDRAdPoLb+hAOgbQ2Ge9nRXUWPp6QFWiN5opKWefFmMWPJqHsTGMmWSEh8ArASRmLq4gipPv1fTAPXmNcymR0OkeWcKEPGYf74SpeVvbyAJEgZz/siVx8wuMSfMgdewhkqFCsFsn8SNdcKQAtSiNRdD9yLMOEjvPz8xgfH8+F85eePY1Go1AXRAkmJWAgEfPg4CC2trY40m+9XucIwvT3tWvXADhAcO3aNZw6dQpPP/00e1VRGoQkSfDVr34Vx48fZ+3QN7/5TVy5cgUnT57Mxc7p6+vD8PAwNjY2OMYPgapazaViWFpawvDwML74xS/i+eefB+D0OcScUNJNutetrS0MDw+z6/2VK1cAuGSgpHOp1Wrslk8ib3KVD5Nt/uhHP8LFixdx7NixHHtSq9VyrIgUEkvWRgJeCULkXJJza2VlJZcck5572XwlEBxmDJfsUX9/Px+TEaHfStnjm6yg4kMw9IL3bqOwQKorUKjwKqgQIeUXN5BYA23ItTVBHKeoxDsANCKf1gCgXWcGNJj4EP9veyOLowaGg5NZqzKvbb+IZlVoATxEnX6HqrgTSghO/SlK5xYBKUYOFwfLomN3Y4558EDEx+2B3x1bsUjT1SxwFfdurUsa6XJCyXazHb4SCmXlvbiysVMM8JQfE6uUd6/2sVJQda3aDHjlQaW8L+Q+t/TgbMaM0VjAuv5rAqt+zBkIKsAHF3CMngUS24WdRKMWGf6CkJeP83gzbDYyBojITY3Bq+L2NRSq1W4ceqgf73jnILofdjuaNKq6vnmig56FsS7WjrEKBhrKagFElQce1gWr9N6AWndBoQprXWoJgxTKezD9x9/+z6iZO7BK4+H+30BX/deQkJjXtmCUgrIuDg1bRGEBlcJrmv0YMgzPPRsj2Cv6Ainw4/btZGC57atEtQl2sOw4zy/B9DyoEr4YO3kxdQIk4bHQnbpTKQJZYb10TlF/O7E1ne5HtksLIy1Ea2trud102I4M9BemeQDA5gy5qNC1sh1pAirK7rywsADAeUSFgE3+TmahWq3G14yMjGBra4sXfmn+kGN94sSJtp299OyR3mSbm5v8GYEmwAmQT5w4gfn5eYyOjjIYWFhYYOB16tQpXL58mdseGRnBxsYGXnjhBZw9e5ZBzB//8R/jxRdfxPPPP4/BwUF8/vOfx2uvvQbAmYeee+45XLhwAQsLC3j66afZTHb9+nUADkwMDQ0xyFpfX88JuldXV/Hkk08CALvWU3BFGh8aXzLrNRoNZqv6+/vxyiuvYGlpiQGfBPqhOYyeOY1r0Rzei20khqjou1F0PYEmycxQH8isR4Ce6t8P41lW9vCiimCjQ7A+yBi8qzRhB28/yV1jaVdvUx/EDHAB0+AdYlNQ7ijYOLeYF70ziyKmhrlxQmo/O0f0jxcxlaPYCdzI3bDc6SpptsqtGhJYkEkA3C9rLSLtEiNmi2cGW7SSa41CZiIj9oQYIuW90nxrDGhIa6FgjWXA42vPQCOzZXLsQtMFHXPu8vwZD4MSWFGFA+6NiSp/TNwPiEeT66xkw1TLf6yRKg2LFnbTFEZ0PdLunhSNBY2pSZG0aOEmzUgGKLXS6OnpxcOPVV1m+JbPyp0CSsUuLpKOXIZzADbdhbG7nnnrgU27MuYiuQPYbSjcRfPuzzjIXlfXQ6hU61CqBmW6oOGC6QFAd6xw9OhvoYUItcOPwUBn1lNEMLaSMZjkGaYsgAhWpcgGvhiZSECpVP68bLZZZgRL8I0HsJ2JGfnMHkQkY1nKNCn7uQ4oBj+S6eh0nTxexsZ0MmNJoCKzdxcBmKJ2wjb7+/t5ESQTQFGbsl5aBEM3Y9kPyUzQNbS7llGCw6B/W1tbuWSSBIZo8QyTKgIOUElzjrxWArYbN25gdHQ0t/gBYI8dcmsfGRlhBkcyEEmS4OMf/zi+/OUvcx9u3LjBQIwC3FHsnKtXr4ISXRKD09vbi5deegkzMzPY3Nzka7797W+jv78fv/iF8wJ+8cUXuQ/EwFDy0bm5OTYdra6uYmBggDN8ExtDx8j7rEiDs7KywswQjQfFpyE9jxy/3t5ejIyMcNyiIpBKYIKevdRjhRqqIqBOz5me+fLyMt+TNJdK8ym1S89Ibgrk9yNkXunzt1o6X6kUoGJoWvmVU9nAAmLDmZ0OF2yN2QnSD0QVv/ZZr23wQdqUMyso6123BXMSLsxhS9Q9Xlhz3VbZebxY02cakBoXvwgziyPFvhaZDiLInpwHBgoh6NJas4u9If2LVYAmQWe2m6bYKm5YLMdbobszgUkPAKzSLjI03ZXSkE+Eht9mW3vunxMoK1AgPLoHR7hlTEuR4FqJeySKQdHY5QCTApncyjb7xBpQ5nSNyBvCDAybPMmsZTzz5CJFszHTuDmlvDbLmCyGkDEugJ9Nd3D71o9w+9YqC2V1FCOKK+jq6kVXrdtl9AZgzV2krR0oXYVVvTAmRpJQkMSb0GoHWqUwtoUo8kLeZBepvYlWy/EpWkfweAkmNdC2BdgUNu1FXKnD6m4/phEq2iWftaoG4+MOWWhoq5AigoEBRHDMcK7nlTuK51ZI4CiK3VSyiaCvHmNQ2jyo7BzJ2vyyGJyyl1sZALoXNqfsWCcgIs+hRaFMxwKgTZeyH7NakQkrFIPK88KfQOa+LRejov4XfSbvDcjMQ9SX8H7lbjzUd8i/peZCjoUcD3LV3tjYYHMa4FzOSYty7do1nDhxgkFYs9nEyMgIVlZWsLW1haeeeooBAWXwBsCmLTmuZ86cwVe+8hU88cQTuHjxItfXaDQ4qB71l4DFRz/6UWxsbDADQ+0Q0CAzFgGc4eFhTgUhtUjUbwpu2Gg0uK3+/n6OEF00D+RzlQCCEmSSoDn8HklhtyzSzTuMpk2glv6WcyFJEgwODub+lu7lRd/PUFNGhYDyysoKg8qi79a9lAM38YNyUA7KQTkoB+Wg/MqVvbkfBUjXat4tMzbKm20oyqlVEZRIBAgYJEb5OjzboRLAetMDp0i8l3LvNHlGrxcYtixcbEKt8gdsZxxIbrZAxh5p7bxt0tRwxGKA6g91OyZrg8yAwpvFtUHnZnoQehZCHZG1o9gwJO8wGLL8cdr9G4uc6TEzXjiGIjN3KG/G8xqhknGShFr2matT6+xetd1FlNxEkt5CGm971sGdnyQtJxrWLvikYqYsiyxsYWGMyT2LBCnu7N7GneZPUa2C01nouAJgF63dHShVw6FDhwAAUVWjElfctWYbrVYCeBNaT7eBiqpIU4PUVFiYrOIYWmtE1sCaXVgtmafEcVLKwKSbiM02B3hsJSliHaFW64VSNWay4qgLquthRPHDgO3i75Qc8/b5EWrEyGyYFakPC88Pv0lsts2xneHzu7+lk8g23OmHbEeoQSkrZYku9zI/lQl8y86Xf0vGIqTpw36Epcg8UHY/8jyZZFHmhAr1OlKYTOeHgmViCWgHPzs7i8nJyVwdJDhtNBpt40ZMg4yES6aWGzdu5HbpAwMDbIo7duxYzhuM+tbf34+FhQW+x1dffRXPP/88a0mkCWxxcRH1ep31PlJ8PDo6itOnT+Oll17C4uIinnvuOQDO3ER1SiZrYWEBW1tbGB8fx9raGq5cucKiYHqeg4OD2NzcxMDAALc1MDCAiYkJNitJcTSlsqDrpbmQzEdJkuS8q6Tpsa+vjz2Y5DMKTT3EpFF9oYs2zU3JMAGZaFzOIaqP2pFsYJJkruFlrKacN7KPlLaC3PPluL7VsocXlaPL8wF3FVBgPiIzi/HvVWXB4lFSqBjvBh55PjxCAlgLgypSVXGv3/DFqcCmEOpU7oWr21+0zuMjfGlTwsCSRdjfm7UWiny+CYhwaob2P21gJlPW8sJsTB7cuL55s07OsqD4vnixEWOs2IaWjanm9vKqC4DAkF/k/GIXyGpyn4XFK5XEOGfmKQdG20YW4ad585d1Jhofr0ibHUSmCaAFGylAeXtO6w5azZ+jabew01OFUnU2Z6ZpCzp2+cysNSL+i4aOIkSR+zyxhu9SKQVtNR5+5Ah+Q73bC3EJrDuXfaU0IhVx8k4oDcTujrtig66KhvGRhxOTIjUGSZrCWAvDdh0HOrTWgO5CFEU41CXCE0DBappbKY+UMYa1U7utTc4zZio9MJUUXSpCpA4h3dlBBDdGke5GGteQ6ixNiB9UP+7IPLDEc4M3S0KFT53AU/v3SIkz6F4eZCkCFCGwCY/Tdft9CcpovfvpR9hWWT8kbS/pfGpzrxKamULPJqon1NmEmqIiDRLpTcL7k7Fn6HNagPv7+3P3IBe9iYmJwgVoaGiozZuGhLAA+KdMCUCaonBB3tra4rxSgAMJ5C01MDDA7sYA8NGPfpTHmISqZB6SJp7NzU1885vfBAA8//zzWFxcxOTkJFZWVnLmHBIfU/ybL3zhCwDcAjwxMYHz589jcnISZ8+eZcEwgRoSBJOuR4735uYmjh8/jtnZWb7Xra0tzM7OstcUFTIVkVeWFIfT8Xq9ntN4ye8MeYiF4u04jlnATOXGjRsMKqRLuixyDoWbjvC7SP0MTZ1STC7nOI0Xga7QLPV2TFQdA/092v+4/f3/9c9yu3kUgRD4hVYpUGIEBfAumwL4WZ8aOfYv2Vil0NYiQYwEkbuKd/vkOpzXCLT1twDguB6U7ExNATgr2AW7ut2Ncaj7sqKz/kE5N3lYePGvaE/gtFwSCG7f+8QonRvj/Yg6afxz90HMhhf6+tqY7SmDOCYAgVksFlO4mzcKUMYyC0atWKWgVAKV3oTa/RnSlv/itLZRsS3oSEFXu1hMbFWCyKZoIcFjcTfe9dBhF0MJDiRVKi4IH+DCrNM9au0AjtZASgIxPw7GAKubt/HGz38OYyxI957YFGmSwKQptFKo0BdUR1CRdv+U9SJxd/9JmsIY67Jve70PAKRJy2cwt1AqdfF2CIjqyGl1tEvqaYzJwJSlDUHFadu8Bqe7pw9RpQ4D4O7dLWzd2gCsy5XVVelGlFahox6g+igSH4fKWMNhDhwgLgAzBHoUAgZHMITB823nOrNy+fNn/n8T6O/tlP0AnCIAsReQ2qtNWV/ZCz8EbEXiTKnBCXfcIaiUO3l6HoODg4VeTtTexsYGAwmZBJOErbJOIIsLQ/ok6YpNCyl5RYUZp2lh3NjY4AWR+khiYsno0aJK903sCcWPGRoawuzsLMbHxxl4ELtUq9Vw5swZTvh59epVTE5OYnh4GAsLC2g0GjlgtbGxwekpQs0KMWLSTbzRaLAYmHJm0f2urq6yN1ez2eR+j46OMgMTesjReFP/5bwt0lbRmIbzQMagkQxdeI7cgEjAG4JsCYwkIA+DUob9oL+TJEGlUnkQgf7aF9eyhdatoTaPA9hWEPnl1Lm7pnyN9vyQ9zYSS26xpJJ2xLb8rRu23dbJvUsmrMTe4Aae0fGVa09zUPJMKZZmd2p3Zr5bni2jpjIPMSXMCtlNZPF8fCasoIt0NXtFcVbucMkqure8MJjmQBEgstZm4FPUphQQ4S506ydQyU9gzBZ01YGTRKfY2t4GUotabBnEtNIW0lYLqbZ4uDuGMQYx50dKvUs4coLXKIq8qN3A2sxcJfsN+OzYFmwehXVRkVvpLnZbuww6Ym+aiSoxtB9finlkrIVJDZRWMMZyDrRWsos03UWaJlDIx4CKIo0oihBFFURxjDiOUIl9dnIdAVqh1v0QumtHoGPnWq51jw+ZmaBajfHQkT5mAu/e3cYvNn8EmAQP970L1Z7HAQC7ScULugXDKXCu9aDHhTzI04pl4EZUkQPnD6qEL+ROL74y0LEfMHKvx8rakceK2Ke9wE3IxpSZySRoCWPOhIuI7HMILAAXSI8EnEVMEy1QzWaTz6NFUx6X/ZPMknRNLhOT0iJeFDF3bW2NPaWIhaBCMV9mZ2cxMTHBQtn5+Xk0m02MjY1xXiwyh62trWFkZASLi4sYHR3NmfPq9Tq++tWv4tixY/iLv/gLHD16FIADEZubmxgcHGThMeBi09y4cYPBSKPRYG+kMAmpTGhJ90jP69y5cwCAl156iRknEiWTqJoE0WR2k0Ck2WyyOUd6x8nzZQA/erZkwpKsD423PJfqpKCERYClKEgfFRJAh/nR6Hwg84qjIsXS4Zx/YCYqADmg0IlFyGQWik1E/KlyGg0ycdEaY3xSB8UxakoWauFeTe7f0qtnrz7RdTkio+iewpe4zXQI0gzlWB1xmrXIYvkppNbA2JLxosW3U2fRzqKEnacYMtabjBTkAqVA8YrYrNjWmAAEhaWYNZKgoXBB5EsM0t0tmLvreKi3hZbSaKXEasSIqlUYm6BldnmBNVYhjqpI1S7uJjtIjUFMIQq8yYyCLMq2nY6HQF++r8YapLYFrV2qgSgmDysNiwhxJYLeydzEjbFITIrd3ZYDN0oj8mkhVBTBQCFpGbRaCZLEZ0c3xiWitQqRgvP4Ip1SmgJJgki3UKnGiGyMinFt9VR7UKsdQc+hd6DS9RBSz/YliXZgylpAOWBEGTBqPRFsRWO3eRutVgtxy78IhC7Oh3cUQQDdcWtoFnOecDpa6hXFAPGBw5t2Gz19JneA9Jl8iZbVUVZ/2Uv5rfY3ZGr2U1eRdwl9Hmp16DiNBb38pUeN3KHTdWEWZyALpEfuxUXjK80/dG2ROYmuoQVVLqb0k/oogcrCwgKDDUq8SXXKBJMAGED09/czKzE+Pg4gW4jJ7EJu03EcM6M0MDDATMTm5iabepaWlnLmpDfeeAOf/OQnAYAjLDebTQwNDXEfBgcH8cUvfhGf+MQncObMGVy4cIHHaXl5GY1GA5ubm+wWHnoq0XidP3+e77Ver3OqCUqvALg5RcCHPMcA4PTp0zkzUzjvksRlWx8aGuJrAefJRfNDXhMygGTSlP0NGUQ6T/4MQRCB3jAqMZ0nmbnQzCV/L/qO30s58KI6KAfloByUg3JQDsqvXNlDg/Pr9vf/6M+ykyUr01aRYBV4lx+e60W0/LEzlxADYcTpMmpu2MMwJkeRCc0Zvgr6aYr1JdaWXMDnZAeNMl5jlN1FpLOdrrHGRcFVLp5JdvvWRa5FsenNnWK9FinTkWRnG6GryD7XSrncSMKeYH2IXqNoLIVomW+4XVzqhOLEwOVLmQYnu73smDEWrd1t3L75f6NL30S92yCKEt/zFEaRt1YWKThSCt1RjJa2qKUp3tV9GN0Vz54ol9bBaVqyGENRHKFScSaf1KReH5MlmmwlKb63/hOsbGwAWkH7/FHap31QUZSxJX50UmORWCCOYlTjGipxt2+rAqtcuErDQl742E7OwErmymxOWihjoVUKqwGrFGKvI6rqCipxjEr8EKyNmVUxAFJPRhmK2kxaJACpgRNspwmMdd5fLeO8sKxxXxir0J6kVSTnzHRaNA/KSz56djZXL//5/U+2WWaS2o/3036P3a/ydjQ2FPOj6HrJeIQRh8PdtmRuZF1lHlCS8aFC47S+vo5ms9kWe0VeV6TF6O3t5SB24U6f+iVjulCMHjIbUUwZwDENYRwdqoeC9g0PD7POBQDHkJGsntT7UHqHY8eOsclpYGAAzWYT8/PzHGxPBuCr1+u4cuUKFhcX8cILLwBwpjBixubm5rC0tITp6WkAwKlTpzA7O4ulpSWcPXsWtVqN2R2Kl0MsErEXZKbZ3NzE9PQ0Ll26xONHY7m0tMRjRM8zjmPW4IQMB3lqUZA/yQTKKMJh4lNiW4oC/dExaUKS8zFkIss0aXL+FjEz0qRJ19M5DyjZJhBHGpYD1UF4DQEIXuTG20Rk8j5ZioP3UWoC5N+zWbV+QRZGMC0WYLLT0OnWtZM5nWcv8nbJMR32QfJCDREkeJK6BaHK9HUb1sk4MMGeMioAQqJLeezjwIZBXmAc3kPRYtT+qfG6Cw1t88fJIc2i+HmwOaNA2GyUTzLJ905j4k0jOeBpoXQVuvJr+MWtFDutJnoqbtKmzduIIgBxFYd6e1GtuAU/NU3cae0CiKC1QtMm6E7dFDURoJMUqssJjbNghE6NZFhmAAAgAElEQVQPE0Xa5clSitNPaK1hIgdUoqgCJ3GivmqnazEtpCYz2ERao6f7CGqHHoVVNSgVi3njTGQxlNNLCW2U9bob1qLReItx11r7+UweTy3strbRurOBCBF0l9PgIO4CDLCzewe7O3ews93MqlQK29tNWEToPXwYlS62jXqg6OawyrUufvMSrLyIXQGqPQlnuLl40F5UQLl5Ry7eoQdH0XXSfBRe/1ZKUTthnffSVijalUW2IYEILY6h2So0G1EhvYU0+dDiSJoQWSgsPi1CMj+RXCilCY1+kk5EmtBIfBzHcU5HUq/XWQtEAl8ZtE8+Wwm+SNdy6dIlnDhxgvtNYGJpaYlzO5EXFaVLANCWqmF0dJSjJk9MTOCll17ia+I4xunTp/Hss89yKoTp6emcbqjRaHB0ZvKEmpiYyKWTAMCZv2lcKQgh6VuSJMGFCxewtLTE/d3c3MT6+jqbmkIwQBolCSppvEKQR0WaC6WbOYm6i8yi9KzLzLpFOhuqI5wP0k2dghJSH+h4mUnsrZY9GZwn/ujP2O9G6jk4BopkHvYhSN6PYLmwCIADRWICz4WEwh1IlkgAHOXPlXFpmGny9xG86Iv66PIHWbF4yZ0yMU8ZC5OLEivFu6V4SwiQhTDJ7cgzAEFtcSyc4FGSxqYIFt1ruH2nbzFBCB+quR0oOa8e4zQtyS7S1g5u3XS7tI3/902kO1uIVQsD7zyCRx9zL3uDXRibIIoiVGOFd/V04xEvyDUwqCqNqFpBXKki9roY64FDFGXiWdLMaK2RwOLNn93Eys9+DkSaU2AopXkKWZtFhbaqC5VKD3TcjdToQCgeMRiwIlaAtd4V3BIfGbAd/LtPheE1ONtbN3F744e4u/2vqFYiPNrnYl0crr8bO2mKn/zsFrbvtmBTi0rVvXy6unqgdYQ4qqJarSGKy59h2/wyFmFMJwal+wA4YXkQDE5YQuExsH+wUmbXDxfp/Vz/dkonoTQVeY8SsEixapFoNxSRSg0HaWOK0lPMz89zbJYwoaLc1Yf9DrU+W1tb6O/vx9raGkcAlm7GSZLkRMSyb1IvJOO/kGeWvB/qA7EsxP7QGJG+JkkSrK6u8nmXL1/GJz7xCXz84x/PxdUZHR3F1atXcfLkSczPz2NxcRFXr14FAHz/+9/H66+/jqWlJQwODnIMmpdffhkf/OAHsby8zJqgUA/V39/P407zmfrV19eH1dVVBpYyozqdT8CMWCB6PtK1ntoiAFSmgwkLPbeiuU/1EcsW1lM074rmofw79OwLmZ4iEBMCHPouPCAGxwVO44WahLrwNDz2NhV1rP0eF9l8z5DBLkWCY8rz0256yTpm3XpsguN+Zyu5n9J6QiCBzKSWux/bfj19UgRuqBuwhkFlG1CTcm6VLaS5ZJj7KJ0ExMoDOEnBOSij/UcZo9d2f+yqrBGrCDZKEesaTKUHcdWZU3p6+tC6u42trQ3cSbdQ99fUahUo1YU0AUyS4m4LsJVsZKx3q7bGwmgjPvfz1PeLxL9RFEEBqFViVKMIiZLhKS0i7UTESlcQeSC127JoNW8hSTdhjEUcVxHXKFfKIUBXfNJZ4aEFYkF89npJR3pTlpwyBEzjSjcq9QHctQmau7dw8/bP/bOpQVUP4ZEjD6P+cC9SkUSWBO5ZHCQB/K30Q2w3KeX8weU5iqd//pj4fa9knL+Msh9gI1+8RYCijPF4K8LjvQSQsr2iNsr6IJkVWkRDN28AOYAA5EWcq6urbHIIwV2tVmN346JFq8w8KF2DiYGiXTmZSyQoqdfrWFlZwdLSUi52Tnjvst80phTkjuLMJEnCQfRqtRp7MgGOqZqfn2fX8sHBQb5uamoKy8vL7PV09uxZAM4U9p3vfIddscfGxphZec973oOZmRmsr69jamoK7373uwEAX//61wGA00Ksr6/j2LFjAFysnDfeeANXrlzB9evX0Wg0WNBM40fZ0+neZWb3Wq2G8fFxrg/IwIwUcEuwS3NDBvcrA6ZyvhTNSQKnoSBcMkKyhNeHYKUooKU0eRXNAekVWBS88q2UPQCOyi9yHXDDXqXUvbwDDtlvvZlLtfG7bSVPkD/8Z4AimYaBXxSI9RFu2aWdKDAT0RqSOxSCKLeMWLSDu1wsQZuF9zHCbFYECDt6tilyV5cmqpLnIOsuAZ4WlFYzD2pzrsnic5/6ElZZaGWgqw6tdMUPo9XTC919CDt3NvGzWy7AXbx1FzbdQqVi0NtbRTOJkHhIEkcKMNoRcNZApf65RhppmgJwLI7LqeU9omwKbYHIGtz8xc+huxzrQf0z2vVP6ZRdvo01UEhQiQAda+jIwpjbAIDdZhNR3I04rkHHMejBuOxZHuBwgD13jEyEBhbWGq/XcvdUqfSg51AXHn24D7tpi0c1AmB2WoAG4lhBG6/5QcYQebqI8YrDLoonYF4H5M9B+Zxm70d61ir4bv0bg5u9ShhTIzRx7AVoivQlReeFx8pKGWAKIw8X9SHU5sRxjLm5OYyPj5cCA1qY6G8KukeuxHQdmSSk+Sr0cgk1F8Qg0CInd/pSh1GkEaLkj0Dm9USanf7+fg5kR8fINZxiuZCrOmlpyLx29epVBgP9/f3sHdZoNHD9+nXO4H3p0iWcPXsW6+vreOGFF9iDiXJKXb58GadPn0a9Xsc3vvENAMCRI0fw3HPPYWRkBOvr6/jhD38IwGUFv3HjBs6ePYvJyUlcvHiR2arHH38c3/72t3Hp0iW88sorOHv2LGcon5mZ4Vg2FKSQxpuCKhLYkezX+vp6LnEpkMX1IWYvBAz0LELzELE+pGGSczfUxYRMZ8giddLZUH1FoEjGBZLHa7UaFhcX+VnLut8ui7qnieoPPvKpXMRUq+SLs3ixbds5osNCTOHuw7rE79JMk5moVAF+8Nm4paBW7HzlPpXbs85EAWYupLnKQYMQWBivuOFPlM0YF1G3sroYwAVAka6x1uaSG9Kp0lTQNo6SQbPZOVaopglQ5QekvQQYsO15OuF2jovIAZz8OBGToxgYZRyUAaXssEkLOzvui3PnziZ2795CsnsHPT0x+nsS/Ha/m9yHumJEVkPFFhVojk0TVWJYSwJklROxW1ggNfjZ3Sb+4Z/+G2w1xqHew74PEWBdMk5jLFqUHVNpxNUIcRwhjiuoVrp4zHZ2DRRqqFYfAnQVKnKATcUuI7lSwv3aj5kWLI+C9UlD/WdGI7UUGjN7ftYCiQWsjQBVhU01WrsetPG8VdnkQDZ/SKdVQK45EF3mDm4pvIP/QOeffVF50CaqcKcXvsjfrq4mLG83MN/9MGeV9aNsMQl37HK3TIsWARp5PYEbWbdcDMPs4xJAlQE30nJIlmFmZgbHjx8vXIhrtRrrU6g9YlEajUbOBESLPWlZpBZJCmaXlpZyZpbV1VU2BVG0YcABveXlZSwtLeFjH/sYXn/9dRYgDw4Oor+/H1NTU7kIuwQQLl26hCtXruQAJmlKZBs0DhsbG6w56u3tZfB14sSJXMLOJEn42rNnz+L06dOs05GardDcJ/VL8lnLWDM05gRUQ1alqJSdI/U18jw6JoFSCOhpjsgwBLIUxb96OyaqAzfxg3JQDspBOSgH5aD8ypX9MTiF3k++ggKTyb0k5ws/tyHD0n5FTnQbMiSZmaUo3QHENjkfSdgqQFsFXYD5LOtOiAWxvHvey0REbXPf97Dx7ZmSQTA7nc50jIrKXUMl8AcDkDENzhOoKI60glGpS8kQ6ozYNSt/jCJOO2ZKZ2JbzxTQqBiRsMsagzRNkaYJavYmfueRnwEAjlQARECMCFEEZnAqlYpz91YKWnvTmNCMtdIU2zu38X/94A3cbqWoVp3WBlHFa7YsWq3EJdV0A+EC8innQRhpnWUDsTEqUQ1RFGOnZaC6nKao+6Ffg4p7oK27N2ttNlUoGWjSwp3bm9i+vQnvS4fEauwkQKXWg66eXmifqkHZCNaniLBwpjkyURmSRlkFGBXMca9DUk4In7GV4imGLI78HkgvvX2Yon8ZIuOysl+h8P0sZaLl+3F9mWizyHQmEyXSjpe0EqFJbj9iTukZRMeKgheSaYEi3NLn5M69sLCAsbExZmO2trYwMDCAc+fO4cknn2TR7dTUFKdrkGJZIO8+v7m5ifn5eQBZfihphqFC0YCpH2TKAjKGI45jLCws8HWkuaF8Th/60Ifw+uuvAwDe+9734m/+5m8wPDyMmZkZvPnmmwCAJ554gsd/aGgIjUYDjz/uIol/61vf4vQKSZLg6tWrmJqaApBPdEnPjcaZ3LpJbyRd9GkMQraj2WyyOJk836hI9qTIzV7WQX2jv0P9layraO6WsYrhOSGrmCQJmybl9UX10c8H5ia+VykSGRdFui0TI5cCrH28YN+yJqjAbkTRaWTG5bzyUpjbAGn78v/avVDKMoK3e6co8f/OhSLKWjh9x34A1n5K+3MIr7Vhp6kRkYdL5TVIyulvoCjRY9ieG2AtvcaUgo4iVFBFDRapdcJbY1yKhLALxhgPcDIdkRxvpTUqlSqa2wrrG008+qgDET09Ebq7u6EjjV21gzTycWaiGEnSQrLTRFctQq1a49QiaauF3d0tmLSFOI5x2AOcrmoFLUTYTVrYvnUT27du87PuPfwQeg714tbmLfzLG2/g1uYtHDr8KACg1n0Ela5eHIoOQe92u9QNAKRpEXIu8qd+zqnwuWUaHJWbu/6oNGHmvPGQn/P/RqXTS7TILNIJYOzlUVLWbqfSSSDcqc0QrJTVXWRqouulWUCaK6QGRgISaYKShRY6qZuRwEa6f0t3b1roarUaL65U6BpKcUDtknns1KlTba7mcRxjenqa9S+UWgHIa37IG4oSQm5sbGBlZQWjo6MMpObm5jhVw8DAACYnJ9kMRKDmIx/5CF588cVcAkzy+KrVanj99dchAXaz2cTv/u7v4nOf+xz++q//GgDw6U9/Gh/+8Idx9OhRXLx4EZcuXcLv/d7vAXBeaX19fVhYWMDk5CQmJiZyz2NpaYlj0JD3FwEIMr8NDw/nxpzyYVGUZuo31SN1VPKYnDNyfslzw42B1O1IIFakhQlNleHvVF+oC6NxBZxGjJ4fRWyWCU/vV9mzNuu9M2TJB+vz57EYsbyutxxHIyfIaf+8LHWA1IRkzI67UC6CmrQ7uXNyEodcg8QG2T0ARtttqCwYn9TFKOXr6TB2UsNCfeC82UViUqo/6CNjwgIvqfA+228gfyyX80jls1wVS4+yMc+a18jykYfnRzCGUisYRE65g9QoaE+rRJHP2m1doD9jDCoVze3AWsS2gsOH3wVzaxcbd9x1lSTCw/oIoljj5z/fwO6uEzpXNLC9dQe3b95Gb08NjzzShbjLsT53tlvYuZsgbSWo1DT6EweWHjFdgI5xp9nExk+buHvHIordsV1TwU5Swa55FA//hx7U32lQ7aLAgV2o+LhHQnHFP92UsLmBUZ7BzCRVmeaJ55Osiq7zY87pG6w4oODZIPCc+LcWFUuPnhAUFO0Oi47v9RmVe3mp7hc4FZ0X5ucp07MA7YH6JDgo23UTI0D1yLGTwIWAx+bmJpaXlzmWC9VB/SoKxBbHMUZHR7GwsADAMSHLy8vo6+vj5I8yS3kcx8zQUDtra2sYHBzknEy0wAHIBa8jzx7A6WLkIt1sNvG+970PAPCNb3wjBwCI7aG/e3t78dprr2FtbQ3PPPMMAOD8+fO5IIif/exn8Zd/+ZcAgDNnzuDKlSv4zGc+g+npaU4NcfToUXzuc5/D4uIivvvd76Kvrw/b29s8PmNjY1hdXUUcu1hDFD+nv7+fmZ1ms4lnn30WAPDss8/iypUr6Ovrw+TkJFZXV9lNnMDL1tYWRkZGcoCE0ltI5o6uCcXhcl6ROFmCUwlgwhAAMiih/FyK0UkMTiygBFgyyCM9ZzlXZU4y+WxDZvaBiox//yPP8vs1DxgKKlOdTTD7iUBMpcz0ZG12kCK1SoAjTVRF9Wb9oN910CegHWnoHDPhYuW4ey0OBBi2Rf10Hl50C7kFyTerxHWyGH9i+LzCvEx0rTHERLXfv0Y2VnJJLXfbt4yalDgnBLVifXSiV5Utui7vWMY+STaBs87TcY9+urCDd1XeAADUKwkqVbgowEqxJ1I1jhHHPr6Mz8YekfhXa6TGwqYpfnDrMH54sw5jPSBCi+4aSZqwmSwxGsYaJEmKSCvEUQRKBOUCAzrmJIoUKj7eTiWK3ZgjReLd9bNs8fQUHLuiMogJJ9nW/v5NxqqQqUhndWSHlJhpeeSfi2cjTE+ZeJnqtMIM6c8x2lOC4tw9yv02UUkTQqcihYqhKWU/bEwZO3QvZqdO58pj0mxEbYW7XXmMivS0kWAlfPlL1215rMiMINuQQlVaICmXk8y+TcelOSxJkpyLNplSent7sby8nIsITG2FphbypKJ7pIV9aGiI81E1m00GUoODg2g0GlhaWmLhLd3Ds88+iwsXLnD/KJIv4FyxCeRQvB4ah5GREczPz2N5eRmjo6MMppIkwezsLP7pn/4J3//+99m76jvf+Q6Wl5fxpS99CS+++CKGhoY40/jQ0BDni6J4O2R2W1paYqA3Pj7OfSOgJz2lyL2d7rG3txdLS0sMDknMLIGyNOdIs6MUi0t2Jpy3MqK0BCFFgBzIgE/oMUelbO6F8zNke8oCCibJA84m3rmIHSSKllNRF12RW0Tphbu/olBoYerUWnE9YuercsxE3iOq/NrOYI6KCcATjadup4cK2SIAQgMktDJUIcLxdFdqZpioEjHCPsidhTRVeJOHNzO5fhIws3x+0X0TWMv3zTM1KOgv9ZnaUPIiQMEBFgONXeOnqN0BKMqz0ISlJoU2lhAaoJR3Gwcq2mUCNypFdyVFHFmePFZVva7Foqqrwai788iUoyyZjDwwUAHjpKzXr8SIgrmjyJ2bvfg015dxXu7zPLA2PB4ZJxf+DvE7acyENxUBG5WbTfm+i3v491DkblQW+eKL47gwLQAdC68r+zwENrRL3Q9gCgFS2D8q+92JhhoJaeaRSTVlHUXAQe7IZf8lQ0J9kfodOreoLjJLSb2HvC8yH9GiLgETMTq0i6drw7GWC6Vsj8w5xFTQwk+RiwHkUhyELu2NRoPZAvk5aW8WFxdx7NgxTm0AgL2hnnrqKfT19TGIWVtbQ61Ww6c//WnU63W88MILnKqhVqvh+eefx1e+8hVMT0/j5MmTDPTiOMbQ0BBHbibtycTEBAf3m5iYYBBGz5YA/MDAAFZXV/n+iDGRHlLhMw+zhm9tbTHbEs5xiokUan2k6UteI1mdEMh00plRPQRmwmOkGQo1Vm+Hwdnzyg58jP+RJ9dze8rcxSUvVvn23Q9wUcSBiCoCrY9bBPOsQJEBRFzklDceuMh4NHLtzQwJBYwRnaZUjh2R0M34CrO1pPyG8yCrnfVSNhALCxMXMyKeCQhbcSCRYrYIFo0XVAJT4nxjXBTgki5nZhbff78wyycl19BsMc7fn9Pt+DZthB3rzDnW3Iabrl6szNNPw5hspB04c184lQKxrgBxFQ9VgFhZtITWRBOwte0AO4s+nc3PDGdSH8TToS6pfNwhGmKKYuzATsrXKRvRhZAjyOF0cuOJ3L17Si37nYeQQI64HnAaJmlWFAcpPo4MWPnLNlNJHUnRy1GWst0osLe7d5FZqGjhlseKNAZ7vYTL9DZFoKss5H1R+HoJpMgsJAGaPIeuJ9ARggopRKU61tfXcywI4IDCxsYGFhcXMTk5mTOTyTg28p6J1SFWgBZQCsgn65ApFUicTOcCwLVr19Df34/x8XEkiRMmE4AgcTMxEXKsNjY2EMcxbty4gc3NTZw6dYrrXV5exsTEBINlugcaU9IG/eEf/iEA4NVXX8Xy8jJu376Np556CiMjIzhz5gwAx9p89rOfxfj4OOr1OkZGRhiU/O3f/i3+/M//HDdu3GBxMt33ysoKpqam2HxE/aY+LC4uYmJiImfmAcAsWzg3CUCErvR0bajNkuBlZWWF+0b1yXlE7FeYq6yIvaFrAOT6TgCmyH1cmqdkmIKDbOIH5aAclINyUA7KQTkoouwjm/inClmK8Hdi0vNaFXmNPyG3sXRqBShTIOjN7yL3K+ZtN9dEHc9p36l2cIkXW3kpEHalvZ8WFrao39Z6jUa+LQOxy5Y5g8gkUjIGZWOkSx6tzYXrE/0NtDAZg+MZkjbmSXG/0XY3yB0r67dSSph1DCxSKEVMl8ZD1qH/RnUd3bUIWruzOdCfVtDEHul8D6JII45iWKWw3ariv/64F7eSQ9x1ipUnTatKMiUW8gG7M4Xpjj8VpwgljatPZWPlCDWT14zZ4vlmldmTRXHjZ33PBIuJtq8S35tBeX1F9XcqD9JNvMwWD+wd6K/I5XUvYfLbKWU6lyIvEslahDR9KOKU9RHD0Gk32ylDczhWxNyUjbEsxOTMzMzg5MmThUHeiI0gASwANsWEUXUpeJ5kd8jssbCwwDt9SihJdZCpbWtrC41Gg/U5k5OTzH6sr69jZWWFoxxTpOD5+flc3iaKHkwB/z7wgQ/ga1/7GrfV29uLV155BVNTU8xcJIlz/37mmWcwNzeXm0v1eh2nT5/m9ur1Or761a9yff39/Th+/Dg2NzcxOzsLADh58mTOdERsE5AJr4lxkcH7BgYG2OuoVquxbofGm/olzVhSPxWygSTyJU+30OspnCch6xfqacrmU8j40DGp9QnNV9TfB+omXiYMzh3T7a9UFS4OKLNwKJDmoFM05MIrS46HHlFl52cRfunc4kjNLuWBvIeiWDHZuZSqIO82TT+zmDCyXxIryfunMPpvJ3cXV63CpuWzzfUob5pp04HkjyA4UvY3IMZH+TrZPJJCpbuoKgVlFHZVhJZ1+pgEsXMVV85URvUaY6G0szdppUS93sNKKVhjUNEJeuMEt1O6awsFHehTuINuMFSBKbDgjsiM5XRI+ejVIUZwQvN2c1B7pR2O0Rgie5hkobT+GFS+p7mEr2j7Wohm8+bXe91g3K/SSTMDFGcXp9/l9WVmordSOulxyoo0u5FmhhamEIDtB7DJ86RWgQCQND9Rf5vNJutIJiYmch4woct52CcgM4scO3aM4+DQdTLTtVx4Zd/pXum8q1evYnJyEr29vSxslW2tr69z7igyh1y7dg3Hjx9nU0ocx2yiorxbS0tLbKKSQCGOnWcVZRun50L5rEZGRvDNb34zZ545evQovv71r2NlZYX7Njg4iGeffRbHjx/HwMAA1tbW+JqZmRmcOXMGMzMzmJ+fx9raGpvdkiRhjdK1a9dw8uRJAMDy8jJfPz8/j5GRkVw6AzLrSc80ipRM80qKmek6IK/dCudSOPek1kY+d3pmoa6rCKgUfR/LzL6yLiBzRw/ruB9lXyYqFSwce5yc/+l/5es7aDg6/b2fa9qO0yK9V1V+N5+5v3vtijUutD6ME9oq2jF3fumXfs7/0ULXfj7ljspdZ/21Yb2iTy7Ine9f8Kwceab4n9rrn6agefQYNUjg6wLqaQ6uJ//p/dTdNo8UZUxAKzFo7qbYaqbY3rFopQaJqiJRVaQemRmTOm8pm6WHSI1Lt+AAUPu9KKURRSl6KgZGkSOUew6RpedB81NBiXtz46Wzf5H2x7N/bpB8gEGVP9Z+7/I6cCDA/L/8XCoat2weqQxMi++eFc9cQh2eg6XPI5hi/rgc7wdRqN6Q8aAS7hTpXDomz5NurPJz6dG0nxdo2FYRI1N0blGf6aVPi3l4rOzeJYiRIfYBtC1UlJuoaKzGxsYwNjbGbdNuXXphUQZvIMsJRczLpUuX+HxadAnoyPxJjUaD/1E7xBDU63XU63VMT0+j0WiwS3XIYvX19aHRaDBbs7W1hampKQZTpNGRAfTq9ToajQbm5+eRJAnW1tawtrbGzz1JEhYsA+D0EMT8XLlyhe8pSRJ84QtfwNDQEAYGBnDhwgVcuHCBwQWlVyBAt7GxgfHxcUxPT2Nubg4f/OAHMTY2xv2TARLHxsaYkdna2uJ+TkxMtM2zlZUV9oSisSMwQ0CvKPaRHFP5O4Gb8PtRJPilv6W2Kpyr9LNI0yZ/l+Na9r0rYjLDz99K2dfV7UwMMQmF+/Msv1TBizMM+Mb7TuvPl4SKfNG3rfoqn6Ay14LoG7/0wSaH3N0o2s0XFNpFh4aM3KJg/e5dBGejRcqbObRgt3KmLbnTR5ZBS5rrCBRS90Pzh+L+ZRWStJfMONKU4UyC8qzcDbuIzv5IFisF2bX5D+SPtmJ9JZ3Aq2MivLkpriGKKv46z4ooL0QzVaR2B5GJkErWxwMrKOWE00qzYNZaA2W1CxxoDbq7DOK7/phxYMPlbc/mRMboKL6HHEDw4KhIQE8nSIhKLJVkW6hurSP3uzfbyojXmr8nRfV5k1QAFBXIe85KRzMoatrylW2lE3Nqrc2FI3gQDlfhHJHsA71wy1ga+Rl9XvRiLHKtDduUJTRphTvR8OUuBb5FC0zRNbItqoPMBkBmqiBgVNRHKTAO4+WQ51AI1ooWMWojBC61Wg2nT5/mvFHNZpOFowMDA7kAbY1GIydolhnGyUNobW0NCwsLGBwcRL1ex+LiIrNEQ0NDmJ+fx/j4ONbW1nLCX+o3Bfkj09nQ0BDW19c57xRFNQYcS0Ku1UNDQwwkrl27hsnJSSwtLbE4mUTBBFySJO+tRWDr2rVrmJqawtzcHN/3xMQEzp49i+HhYXzmM5/hGDaAM6EtLy9jbW0NU1NTbFpbWFjAmTNnMDc3h4WFBTQaDY4NND09zW77oQCamLpwPshYNPS5jHpdZi4KQxnIeSLnfMiwlJmmyky2oSmKvi9JkuQ8s2QsnwcMcLLdGxC8T9vPBFAEOPYqRWqQvUvu1R686FlcIV/S4qJSfkUFmgdvTjBpgjRNEVN8lUgCHLeAGbm75h20Y1UyZYtlUCI7ksGnbGHLA6ECMEJB/JZqK2AAACAASURBVLRmaCM1MkplfbNWLEqizXZznWeWfAJIea7DrSrHMFEdpc8tZ4oqOkzmzazfWseAZ2hSAFa5Kbpru2D1HadZUYrd74k10toxK3Qf7qcBrIXVCtpYdFeBiu9KS6RzCGZP7hcHDkKAnwfguRqUuNifT7H0CvVYXFk7yJDHiopR4ES4cja6eoI4Nwy8VCHopHYLNyWdvvj3uYQLfWiLl+dQKdKr3A+djQRZYf/Ctot2rUXnSn2E1MvIxUKamijSLnk2FQG9IhNdWE/RAkQLtjRRUGyWubk5jr1CbVIcmUaj0WbWIHZqc3OToxITgJFZsQHgueeew5UrV5hhGRsbYxNavV7HxMQEgynSqwwODjJg2trawurqKoOshYUFjI+PY3R0FGtra7nM1wMDA+jt7WVGiO59aGgIi4uLzAqNjo4yyLp48SJOnTqF97znPfjnf/5nvPOd7wQAfO9738P8/DyGh4fZ3PXpT38aAPC1r30NZ86c4WjExFwBwCuvvIJTp05ha2srl4zzySefxPr6OtbX1zE6OoparcZBBWdnZ7G8vIw4jjE8PMxpHzY2NrCwsIDh4WE0Gg3OQg5kwQHpWdAYhs89/H7QfAxDL3T6nkkALQEJ0A6EqIRpH+i8tbU1Tv9RBGzejrnqwIvqoByUg3JQDspBOSi/cmUPL6p32T/4yKfygldFO7oSs4NnHNoaos/IO6WoMyEL0mHDK6n7/HU6RyPRr8Q2WFjosPfKm4jaGvQMjklhjUGkParU2pudRKReMmcJRoD9W8T4UUA8ZQGracfuOqGVjIBbXIgFkKJjBbeTZ7104Y47s/1RAD55GrMerLloZ7q0bzP3+JRg7+5Rn1HEGFib+XgZABEcen/M/hjvrP0YXRrQUcR9Jz1QpLX/XGV0lbXuOakIkbW4aXrwjz95GACwbbrY1NRRRJ/vnPg0M1nKcTcZT0LD42aqbRfQd2gIYaThcIzc+GR501R4XO19PRV5zzLxqTy/jd0E8JWX/ssvJZJxmYdGp3NCoeO91Nvp86L6y+oOg/fJ6yS70qk+YnpC0TD1r4jhkvdArEcYxA3ITAZSZ0Fi3ZGRETbN9Pf3s1iX9C1UnxTHhmyXDJxH+hgAGBkZ4b7OzMww0yP70GhkeaLoPqS+CACblEhDQnFmSCNE40cmK2JQqL56vY7h4WEsLi4ijmO+38HBQVy/fh2rq6s4d+4cM0XE2oyOjrIWR+qPyLQ2NDTE0ZEBx1CQoLnRaPD5xHSdOHEC586dw8TERG5cyIQ2Pj6ea4c0SOR1RXWSOZCeBeW5ArK4OWE6hiLTlZw79DexQ0B7XBp5Df1NRZqiJJsYMpxSnF70vVAP0osqlwzR2iL8kpUApLQdFhqcTh4aHZdKVezdQWJLlC4kFCo/0BjQ3wFAsN5sEEUREMUIDGPubrw7LwXXU7l2LQMG7h/VLa0ayotPkYEF7ptcXJQTzZYNUDgWwdHsMm86y51iMqueXMYBuPQMyFyMc2PnTShFi3a4KOY81pAXxWYNUuZxrwXyx+6abrQSi0rFJzjwJibWGcGZ62AtbJpFGrYKiLWCgUHFttClWwCAO6ab73Avs0zmWq2Eg70ca4DIUO1BU+ZubsQ5aPudxyb4XSba6ARIlLxIHu9gFuxkMgy1N7K9omP3s5QBmP2Ym4pMNJ2uLRIhd7omdEsPNS+ybXopF7l0Sz2PbCfMIUWFFitKoSCFxhIQheCIhKnUTpn+Qnry0PW0GJLbMYl9ST8h9TlkTkqSBI2GixpMiyqZIchcIiPvNptNrK6uYmpqKmcmO3bsGGZnZ3OLNd0P6U/IDEPu0Y1GAzdu3GBAQQk5AacrGhwcZNdy+pxSIJBL+IULFzho3+bmJk6fPo3FxcWcCWhiYgI3btxAo9HAtWvX0Nvby8k7ycRy/vx5XL58GfV6nQEY3TdpkMh9nAL8zc3NYXNzE6urqzndDmmKVldXWbdDWbhPnTrFZjcCEGRepPkgQTTNh+Xl5UKvqzJTcAhy5HVSTyPnVgjui6J5h9+xGzduYHJykq8tMq2+lXLPV2drUjnK2a/NvpP4FMjrRMpetm1tCc1C7hjt+FV+0SBGRJX0J/tIQVr0MkLKsTzt4MJBghDwyfuRolK6YVtQl1VCv0H9FvU5cKW4HunplXEIGa/k8EWwQAnFNoNArsHXr/IanJz0pICJCQuDs7AeeQ4zVPQo3Zi3bBWtFqCqWS4tIGMcjLVQkXaCY3nr1oFGFWlUrUFX7BmKFJ7BEdnjS0oGxCzXl2NZrBaaJ+TzdYlkoiEqDXOgMXdCoJH/LNgA2DChyP0HHJ0Yp1+WLude9TT71eDc60u0SGAc5s6RzE+nPshFI6xfCobl55QmIdRByMSKIWMlAVe4Y6fUBLQg0nlJkrCQmBbb06dP4/r165xmoL+/nxfr9fV1BkikcSFA0Gw2sby8zHmn6DwS4Ep26erVqwAcc0F9u3r1KvdtamqKGRMCejIz+MDAAGZmZnD8+PE2cEmZxSVDAgAvvfQSrl69yiJqEuQSOKDxJ30QgcX3vOc9eO2117CwsIDf+q3fAgC8+eabeOaZZzh2z7lz5/jZPffcc6xzkYzL7/zO7+C1117D7OwsxsfHWQtEz4I0QiScBoALFy6wKJiYHAKbw8PDOSAZhg0AnPZIapHoXNIthWAkBDVUV1nkbZrbUgQdMo5F3xeKUH2/S8dvNi3p/KINd97yXJUth4VeFipjbzruSIPdaSiG3QsUObABMBjhvEFiucyxN4oBCXvQ5HCHMNnkmiIUZf117qD2e28LBYMIeVMBgZo8ONMQfjz+R/4qtC1xSvxUwTOx/I/6UlAsPVkBfOh+/bXMVigA1vBYcX1sCWpPwMn9zPXLHzOZ/UsygtQbrbz50WagMlUaLWhYm8AiyqAmMVvEFon6lFJQRsEggbZdsFGK7i73JYp2UiSKgJ/iqIjkks+AWo6QVdnoWCBz9Vcs9hXD4vsAL1IuBwlhgEUnCpfMX9YJMk0yvBH4RvHxtqZ4fIpMTWF/8n1Cx2vuVymqfz9A5V7MTLK+MtNR6BlSBlaKdqJl8WnkNXLRCRcUcsOWLI0UJstgbUXjsLGxkctlJEGTZEJqtRrnZqLrAHB6hnC3fvHiRU4UubCwwHmiaBxnZmZw7NgxXLx4EcePH+frKMYMuVRTf27cuIFarYaRkRFsbW3hxo0bzKysrq4ywJqYmGCzxczMDMbGxpiVIrMPHevr62OBbzj+m5ubOHbsGBYWFjip5/j4OK5du4b5+XkGHSTwfeyxx/CpT30KJ0+ezKWhII+xL3/5y3j/+98PAHjkkUcAOPNUf38/nn32WSwsLODYsWM8hpRt/fr165x/CgCef/55fOhDH8JXvvIVduGnMaJgheQ9Jlk2Anp0v3IOkMmR3MGpDzKJqkyFEc4xmjs0V8qYSOnJVWQKpnsJGclOYmRpjpWfvx0Wp6MGp6//XfbYRz6V8/5w7LcC2TI6m0Xyn+8VqK7QVKXKj3W6TiECckxG8fmWgRBpWfK1hGAkK8IMYi3Qcg9Ym1uA3kUaH4KqHClcbMISeVWQNN8ZsegjWGyy3mVmDNlvA+s8bJQCJUMqfs4h0CAGAjmg4M60sAVRofl4AbApm1vE3mRRm7NWMqhnc8CggrsYwBt4pGsbFR2xaUr5gD06ihBH2j1NwfZpHUNVLCLVDasTrDcPAwCWN47grophrYI2CtZnDI8KdPfFi302t1xyUH9uME0oQWc+Gk17vQRIuR2b/97wc1LE/rm/ZbTp0BxYpi3q9Fz2Okce++vPffSBRTKmUqZloWNAOYgJzw3Po+vv5YXayWNLMiZlIGavvst6i+qSpVM/Q4ZI1k0LSZLkoyPLmDXSC4h291LPQsfIs4o0IZubm2wCIQ0IsUbSLRjItCnkaUV9IFZheXmZQUxvby8zHRTXRiYOJT0K9UcmmSTTzczMDF9D8WtOnDjBDBP1b2FhAZOTkwxsSDt04sQJjmocMmznzp3D3/3d3+HVV1/lPFmU92ppaSnnAUbPbWRkJDfG8/PzDMCefPJJ9p6TXmH0vKRHHdVH4QRkMD+Z9Z3mfCcNTWg2pWCMMpqyNFcWzTsZJZvmDc0VaYIq+y6FOqDe3l48GA0Og5nsg7yW4N5oajKp7JfyzredldxiXNqHTkkCMuCiBcNBiwr3zy/yYW+tAEMKCibZwZ2fvQEA6IkSxJUqdm2Car0XiKNcX9k0ZjOjUSjalqYxK4LXhQuWthlYYAGNO5gHJ1IxbLOc4Jmxy/3k/gQ3bDyzEw6E7BPfY9aqZy8sg0fR+4ydkxdZsDHNHbOg52hUhFRVYAyQ2pTbjfz90j+llE++CUADKnKAxZgUShkcrrhQxrWohaapuBpUyp2Qwl1xo+KuAGgPV3JUDY2bu18yX2Wu2f6+VQ6v+nFS/rlkqNYBZ/B3kMGPdToyN97FbFmZlkae91bMTg8yqrEM9AfkGZL9JNuTNHiRYFfuTot2lkUv1yIAUQamQnNR0flhPaHJSdYbLqBFddH1ZRGQZV3UJ2pPMkWSwQmD58lCWhoJQsgktb6+zqwAAQMyP83MzCCO45z5hcBVGM+Fgu8NDAywOQVwrA8xO6urqxgbG8vFCiJgRYBAJgolM874+DiPIbl7U93Xr1/ne1paWkKj4UTO/f397KoOuICJS0tL2NjYwPPPP4+vf/3rfM3nP/95Fl0nSYL3ve99AFxMmytXrmB5eRmf+9zn8Fd/9VcAnOnvwoULrK+J45hTTJDrO4EZGcmYBMtApuuhsZPxgmQ2camZ6cR2hvObnqF8RrKeorQoktmR8yhsJ2SMZITsMqb1XsuBm/hBOSgH5aAclINyUH7lyp7GrXYWJdtlhhFW99rh3evntPsvOn/P3aZXaUptULbNDsPXe90FmRzE5jZjO8LtumLzkVEKqtch6VRXoOIKKpUYqGrnnVSyW85HyM3iEcuiBbvT6Z6tEgQOvMlDmH/kpeQmL/VANCqurnx/NRSM7WDaUO4cCFYKXKv4LCMhsvaU8ECTF5MZy3shWRUhRRXWKicfCrRa8PdjIJkGF7VZq8j13yjUlNtFHKrsYutuF1Id+45lpkrkWJYSlkS0y8JvkfiSTVU0/j7VRf4+M4YqH+k4R2oBoHmQMUJlEYfpM6cXsrnKHFu2t3kqrLft3h+AHqfT3A6ZiiKGpYypCZmQMnNRmVmrSEws25Q71SKzVCgYLmKoitqV14fsUnjfZAaS9yd31tIVmOogkwzpSgDH4KysrKDRaLCWRd7D2toa1tfX0d/fz2wNaSeATNci3cNrtRpGR0dZ80PX9Pb2sgZHuqovLy9jYmKCA9qRuStJEpw8eRJXrlxhhiQcMxqHpaUlFjqTXojG7OWXXwYAfPCDH0Sz2cT09DSee+45nD9/nrUxS0tLeOKJJ/DhD38Yq6urOH/+PPctSRJMTU1hdnYWr776KmtjpqamMDQ0hGazyYECn376aQAu99bKygqWl5fx2GOP8b2ePXsWIyMjOH/+PAYGBjA8PMwmquHhYdbuEGsFIBelmcyIUjCcJAmbr6SZMTQ90d/Sy6qIqZHzTI61ZG+KTE10niySSSwS+dM83YuVvJfSGeBYwFiXBJNKzrW3QFNzvzQ5ciEpq5/6sT/C3AEFF48k/znR/UVmr3ZDgDD5KG+uqlTQVXk0O04Lfqr8upktV3kNR9YKpfK0/p6yTOA+HlBookK+z7n++f9JrVSmF5EnFS1W1i3UUuTqFE0wql1j0laPEMxK3y3qNeB0I1mqUgVVZE70bVNcoFRFSG0EQLs8WVrnzgO8J5UCVOyPRdoDPQdsrYqg/cD2Vi027qYwNoVScIJwcU/SKFUWkyaLZCwAY2A64rlVcD2bJmmzIMx8OWm4gqgzX3+hzsabw+QVYT37NUcVlQfpQVWkk5FeGXRO0QJXVIcERdKcVASOikCMbDdsQ77gQ5o+jBAcXl9kmpLi2LBPRSJQKgQ2QgGn1DGE90TmKGmG2tzc5JgwEpBQfqitrS0MDg7ilVde4YUdyLQ0MzMzANCW5bter2N+fj6XHJPcqvv6+nKi6omJCVy5cgXDw8PY2NjgOk+dOoXLly9z/0OdRqPRwOzsLKampjA4OMjPvdFosFt7s9nEBz7wAR6zxcVFXL58Gaurq5iZmcH09DQA4Pz585iensbq6mrOw2tychKNhsuh9b3vfQ9///d/n/OUInPdd7/7XYyPj7N258knn8Tc3ByGh4dx+vRpfl4XL17EzMwMZyCXZj5K1kkmNwJ69Hccx+yZRvolOY6kXyrTh5GWqL+/PzeeoYmWAKwE8EUasdBTiua/BDJyTspM5+Emgq6nY6Gp9F7KniLjP3jyUyhKDFm2w3O7xKJVcG/WpbSTtFADkkDifXdRve25vt3OXFu/k87RNG4p1m1rfTGDZPxixDoYZUD5lBQf156h0EGVFhS7n8PsK5fnR4mFlYFEhzFTnneSAIaOWFFHkeZCAVBCiGqMEfGOtFevEijy3kg89sRYuDEiYS4xWuC/8osvxZArU0fRwm4tuddbMUYWj+DHeGf0I1RiII4cIHFBE40XFGtEceziFoECAmoW8God+fxPwM+bNfzjzw4jsVUYRDD8mEgwnMWvkUBBKQWYYqZK/sXjQPqjUk8zXfBZVp9rPw9srR8jycDB+hhJopqc3ou/PyVgLZgf+xEZf+mF/+2+i4zlizPUxMjSCZSUAaFO+poygLSfNsIi0zAULRhFwmIgAyJSVEq6BHmeFI7SGK2vr3MwPrqOdvByJ0+5ler1eptmhoK5FWWhpvMef/xx3L59O9d/Es8ODAww6yDHcn19PSdMJpblxIkT7DlG/V5bW8Pp06fxyiuvoLe3lxmNsbEx1uCErBx5XtHYEstEfabFloTK8hlRGofe3l4cPXoUAPDhD38YzzzzDFZXV1k4DQCjo6NoNBr4zGc+gw996EMAwKBtY2MDzzzzDE6ePMmxdwh4rK+v49ixY4jjGCsrKwwuxsfHsbKywiyNfO4vv/wyPvaxj2Fubg59fX04ceIEAGBxcZH1QY1Go80LT4ISArHyWVB6DCo0h+jaMCEtxc8p+u500riVCdzpZ9l3uuz7UalUHozI2C165SxNW/G70U5mp85u5tl5pd0KlJqFQf+oHbErzp1D64/OrQlhQ4V9y1zCCdRlu/+cWS24zXzcmzx4InDYBnBy3RG8grXM+mR4Las/ZJ5y9+DBFISpwxjjPZIyAJhbWCMFnQvUQo9AZ2Li3DNTbLJxHI0VsXxQstjn+yphg4IzU6moAq1Sca5zdyevIQtwnipFjA5oHmTRng9VLLpjg5uJm9/apr5NnTVIfbkHk0wRkJT3VFZCEy9/T5QXXdv2810RALrknKxphpAd2//3VkKGpAiMFAkli87rJPotapdKGHk1fElLaj/M0VMkFC7KVSWFwPKa0O2ZAIT0hpJJGOkaEgwvLi5yXila+CibtlyMlpeXOSieBEWy/MM//EOu3ysrKxgaGmKxcrPZZJfvra0tFgp/6UtfYnEt1T85OYnLly/j4sWLnGQySRJcu3aNzVuUHHN1dZXNV0mS4Ny5c3wNmaAWFxfZ1TscPwKA9PnY2Bjm5+f/P/bePzaP6s73f52ZeR4/SZzEFGcxi3frtubiqq7WbI1uUFPhdB0liHAbqlQYkahJbxBBBBVao4Yv8N0gEpUr2E2umopwE5pUSUUqrCarBCUVua1XyQoj0lv34i6+3/W27uJsnGKoAQf/eGbmfP848znPmfE8Tkrh/rHKkSCP58eZM2fOzHmf9+f9+Xzo6Oigr6+Pqakp7r33XgCee+45fvzjH7Ny5Up++tOf8vrrr9t29/T08MADD7BmzRr27duXApuHDx+mtraW3t7elNeRJPwUF2jXvCcCYgErAnBuvPFGWltb2b59u81ZBYaRam5utuJxecbybLNsiSvelkCCbswZOV6YNteMJO9Sdgy7Qn05zi2uCataWIO84kZZrvae/rHlo6mFS3zAnWXw5Ziw5jpOC51PRZeQPU9rnYq+nKpDC5uU7Lf2nOptyn78feVRcUzKCcwH1p1XZeLgWNClHA1OzrziAoA8UJgFLM5aHsM+qIQZAnenmeKU/Vv6yfOKgMbzFYVCQE1NAT8x9cSRZqYcomNNGMZE4qWUIQNSz8kBcMZMlH9v2ftI7Xf6VqOJtUekfbJ3qzwPHUeVvnCYizjWeL6Hp/zk/s15NX7EouIM74Xzk+3auSYmK3kCsew4S/rS5nKd47ldPlsp9+LEA9JUUoE4TI4cL5A9L8aRZY+cxmnx0HIAZ+qcuUDm/yXQI9dx9QVZ2jy7ApzLzJT3Uc0Clrk8lLJ1ZvU/eSVbh8SZyas7qzHIpm5w63Q/+nnAQ1be7qTjTlLt7e0pYCXmGUlO6QZ7c+uQyVsm5aNHj7JmzZqUeaGpyUQRrq2tZWhoiFKplAoCWF9fbz2phLkIw5DDhw+zdu1aWlpa6O7utvqXoaEh66Ld19dnJ3Y3ym1vby+dnZ22faIpWrp0acrbCCqpJCRZp6sB2bBhA2vXruWnP/0p//Iv/8L69ettn95yyy1cd9117Ny500YePnPmjGVSHnzwQb72ta/xwgsv2L47efIkpVKJ4eFhzp49a4GMgJLbb78dgEcffRSArq4uBgcHmZqaor+/n87OTg4dOgSYiM5hGLJ7927279+fivQsbvDZ8AlBELBr1y42bNhAY2NjylNMWK36+nprypO+k/bneSzleRy674U7LuV42Zd9T+U9EmCercdlsD4qgHPFi+pKuVKulCvlSrlSrpT/cGVuDc61n9S3b/x/KgdfhmlJIv6ntjtpANxzlJqdUNNZqFa9ZiKGuHRbqqyi3YScwrjEaPwcKWjuPTuaE5PTKbMiVsJaZMwVLsOhQOm0tkk5Xk+SiDN7fkpUauUukmOrovsw1/CMwLayyaY5EPGrTryUagoBixbVclXdYhbML1FTLCQsgql1aqbMTDlkamqa9yY+AOAP4+9RLkco7eXEXonJmkKEezDWrByzIqTuQ6u40kcKauN3uLYwyoIgpJC0zfcV6MhogTwPvIq3ku8HRnfjJ4k48VLXPf/BPN4YX5ywQi4vosAzsWwMU5N+FhLhpkKSpDU42fuqVrKB9So6mcpVssc5V5BB5LShwvhVK3OZovK2z7Xtf/ztxo9cg5MX/yXPLp/H4mT3u3qC7HHu31lx71z6mjx9jyuqdI8Tc9DlmNaqbRf2Jq/d2b6RgGxyT67JS9iOkZERWltbU8yQq3sSM4eYTbJtEU8qSV+wbNkympqMkHfJkiXs3buXV155BYAdO3YwPDzM0aNH2bJliz1n1apVjI2NsW3bNrZu3crBgwctu/Hggw/ymc98hltvvZWpqSnLQPT19VnGIwiCVMLOvr4+WltbrWZEIiWD8UYSM8nQ0BBtbW0AVodUX1/Pt7/9bVasWMH9998PwPe//33uu+8+28d33303YPRLkiurq6uLUqlkNT1nzpzhxz/+MXv37gXgjTfeYPny5YAZy8JGLV261DJFp0+fZsuWLWzevNlGiXYZl/b2dsbHxxkaGkqJsOU5uh5Vch1XbyT6I6gE2RsaGrJ9BZX4Qg0NDbNYTdcbTYIOQoXtyTIwgDW5uQysq/GSsSltle15DK38BlAfMtDfpQHONx5N2RcuZWIS7Ydx5XY3VhEZZydymaOrNdiZBHR2W86xWapd3LNVYrKwgfJUxWPHqSDVJuwkaCbCiog3PVFpVcFzyg3T705gSlXCFSd/psL95+G6jB7EipI1gAMokuvEDpDznEvLTSkFdYtNZN9rllzNglKBwFMUfJ8gqMC92ByNh6IcR0xOJ0r49yd4+513ee/9SaJIzGJSvWmPc/cpgCOGRvc2MwYuJNWE3OzC+D0agvMsCGYcgAOKGHRMwfeJVSUdZuAHiQlO4wcBXiZh6mQ0j1+9vZCLMwGxKph+sv2fgBZVScNg7yPp9ErS8grA+WOBjZyT9obCgCsHiFbOlb5KzI85AKfadeZqTzXg838b4EjJBhCbywvKLdW8jfJczKt5Rf0xImM5N1vcurLtyNsn7XH3Q8UbS0wM2X0iCJbzs/eX1WK4OgfJbp3VDslxMiGJSUE8eKCSMHLNmjU2ErEksHQ9fsSzyBX4gnGRPnz4MCdPnuT8+fMsXGi+Q0uXLk3lvpKEmmvWrLEZvJubm1M5mIIgoL6+ntHR0VnAd2BgIBUN2X0+vb291iX9wIED1vx0xx13cPDgQdavX8+3vvUtvvSlLwHGfCZRlJuamqwHEmDTMxw4cIAtW7bQ1tZm+6inp4cf/vCHvPbaa/T29vLwww8DsHPnTpYuXUpLSwt9fX2pvGDSj2fPnrU6IcBmKm9ra6OhoYHBwcFU0tGpqSmbHsMd41lNWJ65V35nM5DPJQrO7nNBUtbDSs6R4gKc7CIj+059WIBz6Tg4pvbsxXJ/u+ekV+YqNZOldRcZxqcyn6XOr8QYyVxLZdxhVUVhoJzfFbDipe5HZY530zvYU2Ild5Vsz2gZHEAjJIzUa1ItCqOi7T7A5j+yORtd/OIwWFmWw/xb0Q3pdA8kxbMrfAFk5tiKcmPRwgWUCmZKn/jDGDWfuIrSggVGFBzGlWeBMvesFH4cM6+QgKZFC/CURscx712cIopxsqprtwNTbVOeYdFMrCKdeqgqEQJ7xLjY0MSWCdAqINYzRKK5QaOUTpgpcxmbxiEBhCaKscLzfJvwM9aa+X6Z2mKZiZkCvhbGxHf6VcaU3FOll7OABC3eUpnHkCmaFK61rGGegFx+59djLqSzA8apwy3Z+i9Ha/ZhwNKfWrIrt2qpDqqxLnl1XOpac8XIydZTjXHJc/HObs+rL8+N3b2OfPzdUPtyTjZcfhAEKW+pvDZLvilxvXVj6MhEJLFwRCwswmPR2dTWfeFibwAAIABJREFU1tqIuxJnZu3atfT29tLS0sKuXbsA49rd3NxsWQJhhILAROxdtWoVx48fT8V52bBhA3v27KGvr4/29vZZruqSO0rAmXvvMjE3NDTY+gBuuukmXnzxRQtMpH86OjrYs2cPQRDQ1dVlryUszJtvvsm+fftSmdNPnTpFb2+vZZDkmY2OjtLT08OqVavYvXs33d3dbN++HTD6oRdeeIGBgQEefvhhq9txBeNtbW2pFBN1dXXs3buXhx9+mCAILJPiao0EPAqgHB8fp6+vLzWOXRAo3maSWkO2u89chM9ucSMiy7OoFpPKdffOxo/KvqeuTkyerwD5Sy0gLrdcksH5L994dPZJcwCcavvmMm/l5psyNh67PY/RSHamzR0Z0Wq2DSpxE88KXeVfVcExCBxAVsspTiOBDclqPk5dtiIm9nQFgAl0Mk7plYldAKFWyR7HzOC21WCvivvy3MVLtani6aVROqJUU6B2QYkE33DVoloWLlhAHEfEcYTveRQKBbebHVauApYiDZNTM/zbv/+et9+dIIpdlku8mqTxldZIvxmuQlzsjdu90rExO6kYtGl3rBTz9Ac0FP+dxWoGHwNwPB0ZM6Hv4ReMWU0AaCWxauJC7gdYcbmCwC/y24uLGHqnSKSLyWYv8azTFabmUl1N8syZDcBnHUcSRkDuN1NHpYviS4IKYcLy2pItWYCT/V3NTdwFPVmz4kfN4PT19dlVXdZVOQsawjBMxdnIc8WuxrzkiYHzVo15x1/udfKC+7mlWhsky7awDm7drteUlKy42D3W7cNsXqmhoSGam5tTZpswDC0waGxstABHtnd2dhIEQcoVXOLLNDY28qlPfYojR46k7kkmX3F3ltLX18f58+dZsmSJFRAD3HXXXQAcO3aMlpYWa9ZqaWnhyJEj1nW6sbHRxsVZvXq19aQSN3K5J3GLrq2t5ezZszauTldXF8eOHeOmm26yE+u+ffsAw0719vba+5J4Nl1dXYyMjHDgwAEmJye56aabLHuybds2zp49S319PceOHWPJkiW89dZbAPzgBz+w9/2tb33L9vF9991nzVwdHR2pJJjHjx9nw4YN9Pf309ramvKicsdLVuA7Pj7O4OBgKpWFW7LniBk3D5wLoHYTeLr1VFtIyDjOjn33XXHrc5lZuZ4LVuFjY3DyzUpze4q4AfMq9WTPTf3Oq0aRaGUyq80ME+Q68ijHc0prnfrbvZ9ZmhkqZiWX7Ug7bleYG7NyTtchZIwFMRa8ZQAXzsTm3ouWc2ebOhQZfJBsczdVW5XrDCCqKQZcfdVVfKJuEcXAN0ACAwZmZqaJ45A4CgkCnyiaSbXF94xnVlAwYMD3TQScwvwC1zf9OaULbzM6Zl6qmZnQsHMJhxV4ivk1BqwsmF9i3rwSge8RhmUmp811JqfLTM9ETJc9othDE+FZvVOcgANF5LnPxTwlH40XlVFaWQARewF+osnRWhOGZRsjxze2LRbXRNR4ZT6Ia6THbN0VGFKZ4MVDz3WiV857kn0CFhw47FzaFKodU5wDKmY9SSr7LoO1mYuNyfv7j9k+V4DOP7VUC8znMiHCaOR5HuV9QPOKW/+ljoPZbuZZxijr0SIaA9c8JMU1J2UnDXEndk1XrmdZtg0SQ2VwcHBWVGJXg+Sam9zAbfX19RbISMA8wGptwEwyzc3NDA4OMjo6amO3gGEn+vr62L59O9/73vesPgWMa/eNN94IwCc/+Ul+97vfAfCd73yH5uZmli5dSnNzM278o7feeot9+/bR1tbGmTNn7D1LxOGBgQGbpFJc31etWmWBhgCznTt3ArB+/Xp27dpFV1cXv/zlLy3z1NLSYgMQ3nfffbz88ssWTK1evZru7m5GRkaYmJiwpqb//t//O/v377eZwtevX28jI4vWpL29na997WsEQWAzjn/nO9+xQGvFihW2rStWrOCXv/wla9as4cyZMzQ1NdmoyWvXrrV6qLNnz1qwIl5qQRCwfft21qxZY13j3TEk41H6b/v27YyPj9Pd3Z0C0AL+ZKy4bI3LwmS9tVwPwayXYXZcZ8GUbMsuFtz33AXDf0q5BIPTpL/yX9MMzixGZNaHrppLc3U2R6cwQLL6FnAilhjXbOAALM3sD3vqGqn7U3jKn328gpjYeNeqikhVcnznF/ee0v7SOnVP+ee7UX5d81He8Sr1uzK5ict8PrBRidg5olgIWHKVGbRL6q+iJvBQsU5/eJVieuoDdFzGUwrf9/F9MfV4aB3jK02xpkRQKCXbEwiYTN4zkebfRt8G4N9Hxwhjc0++iqmvW8ifXb0YgJqCcev2EsgSx6YdURwTxhDhMxPCB5PTTE+bD/3FmRm8mRmu9n/PIn+SIGFwAhXjYaIUoxS+Lts4Ob4fEAQF8BSizPESBscvFPCCIqGu4X//vshbU/ICx0igQy3MnsiKbYgBeQKVYoNEqpw4M9plbTIAR1UXE+vM2DX/V0l08XwxcTWmJlvvpfQ2s0Xjs7OTf5SB/r7whS/oX/ziF/ZvV7QrH9LspO/S5tVWk9UYF7dkV61zMTmXI0DOO8+9lnzIsytc1xSVNQFk+0PqygI/+S3ZtcV0IyaOwcHBVNC7zs5Oe609e/YwNjbGli1bGBoasskxDx8+THt7OwMDAwwMDFitClQScLpu0QKYnnjiCY4dO0ZXVxcXL160iSmbm5vp7Ozk3LlznDhxYpauSCIIj4yM8OabbwLwwAMP2GPOnj1LqVSiv78fqERMbmlpYWBggPb2dut2Pjg4SFOTCeTX3NxstSyyrb+/n/Pnz3PHHXfYe5L4PZKeQtzbm5qaGBsbo7+/n66uLr75zW/adAxNTU1s3rzZsj8nT55k69atAJw8eZKOjg4OHz5MR0dHCoy1t7fbZy7HAJZxam1tpbu7m+7ubnvO0NAQa9asSWVgd8eWCIIHBgYsCHTBizuORSycDU6ZHbtulOVs+IOsoN0d71nAJMfkjWc3rs9HJTK+4iZ+pVwpV8qVcqVcKVfKf7hySQZnzabH0kvVjIloNluT3j/rRIeOsaT8XAwOSH5Ms9+p19XOZK+TuYLdZ8Wt7nGKJP+SBvzKPWgTTNCsXrO6F/c6lZ0qWcGnTGeO3ieveI5RrKJzcNIfOF3kmkvixKjlKWP0qjBBsdHyKM38eSX+4s+vobZk9DRxOEMclYnL5pigaMxNOo4JAh/fiyGO0VFshbzK8xB5U1Ao4Ac1yXaFn6Sk8JL7nkyQ9/nf/4GRC+OUo5B5xYC/bFhC7bzEU8lTxOEMUThDFJbRiSlM67JhinyfUs08lFcgTIIKhipAUSTQF01UZcdM4yVeTDqeIZp6Hz1l6FwvukjRC/E98O3wS9g5vwCFIgEFhi/O41/+YFZBkRYWTXRf7hhyn0aGp3GYRle1o6iwHzJ+XAZHUxFzzxofYt4ylTrjIIliPQeDk9Vxpaud25U8ry157M7Hmaohq23Jio3zGB75Xe38ajobt8zF4GSv47JIeaxLnjkr2zY3Em7eyjXL9uQxUKLbEXOVnC+mrfr6+pSJQ/IijY+P09jYmErk6PaB9K/c5/DwMGEYcvLkSXvthoYGBgYGWLVqFaOjo5w6dYrz588DRmPy7LPP8rOf/YyDBw9aLyoJvDcwMEBzc7PVAoHxotqzZ48VmnZ2dgImP9S6detSq3zxbnr99dcJw9Car7q6umyU45aWFg4dOkRHRwfLly9n8WLDIu/ZsweAo0eP0tbWRlNTk9X/gHEND8OQdevWWRd2gP3799PY2MiKFSt49tlnLcs1MDCQyu81OjrKwYMHAVi4cCGjo6OsXbuWxsZGKz5es2YNPT09dHV1cfr0aR566CH7/MIwtMk3hR0Co/VpaWmhtraWhQsX8vrrr9vnVFdXZ1mb8fHxlNebiMnF/JMX8VrGmlvGx8dnee/JezQXY5llJqHCFmWvEQSBFT6LGStrjv1YNDjKfJ3TZhpNVcGv69I6lxmq8rUWE0B189Xsc53tOQJJY4LIAQqOmNiYbsx+H2Nf8WRiyrQn7aqb1k6kfjqTVFxtwqpWLHoSBU+lfZX0Bq7/E1ajpJLJXdkc4aIaiVlQU6TxmquZ70M4aWLXRFEZPwgIikXi2AAbc06M0lCeKRNHIcpLPKkAlIfneSg0URiTSHAo1pSMBtjTaOWh8KyHVeM1n8DzYLocmtg6BZ+iTBxK88HFaeI4SrRSAnyKQIyOY6any3gBFAOzz49DtBfjF2vwCzUUi/ICFIkiTRTHBEHR3H08DUA8Pc7ku6OEk2PUxO/j6RlIclHFsUbFEXgFPjEvpDhhwNwH5YJxC1ex6W3tJOF0HvisMWkxiEqeQPIsEi8xV1SeAjRKJakl8vUyxhPMs/ovpRKwXdV0WimySPgwpqzZruv5Gcw/yuLqVVxxbJ5pJuuh4Rb5iObZ+aWePN1N9oOdBTRZk5LrfZTVKLi0+1zmM5e+zzNb5Ykxs6BtcHCQ9vb2WW7ess/V9NTW1tqJbmRkJCVQlt8SR0bMOSKAra+vZ3BwkFWrVlkz1e9+9zu+/OUvs2nTJs6cOcPSpUvttZqbm+nt7WXlypU2RQCYZ3r77bezc+dO+ywFjI2OjrJu3TqeeuopVq9ebU1NY2Nj7Nu3z0723/72t20fyWTe0tLCyMgIu3btsm3funUrBw4cYHx8HM/zbByZ2tpamyLiC1/4AnEcc+eddwKwYMECLly4wEsvvURbWxtf//rXAfjhD3/Ixo0bufPOO9m5cyeNjY0WgP3N3/wNvb29PP/88+zevZvm5mYuXrwIwJIlSxgZGWFsbIyGhgY2bNgAwAsvvMDnPvc5GhsbefzxxxkZGbGRjLu6ujh69CgtLS2cOXPGeqadOnXKJt984403UmBhfHyclpYWq90RYAIG6E1MTFggIc/cBUQCQPLASZ4wWcygrtZnamoqZQbLvmvZtCPue5B1YZeSB6Qut8zJ4Cy5tkmv+a+Ppba5H/Y8wbArLE7pa6uIledyWc1t8CU+rhLEr9rHWITJLsCxEiGdPRYkSKGZi9L3K54zKeyTHBMrB7dUa2tqVZ6ddJKVuKfssZYtSv513e+N91VyhFLMr/G47s+uYkFRoeKQcjJIPD+gNG8BWvtEUZk4KifXKxOHM8ZmGQT4foCOEgZHx8RRjI7LKKXwfTMA58+vJQaCmpKJOaM8m9agHM5QjiLKsWZq8gOKSluvrKmpKcrlaSKpP/Hw8jwPHRuneuUZysgXgBP4KM8jjCM85VEqzTNtmDffMD1hjKc8QsftvOAV0DqkPDPBzAe/J544RzF8F4BAafAUBVXDTFBi8B3zEp6/WCDWAYoYT8UQe7MYFvk37aUmz165W1JMU7UxGSUjslpRzji6HPZFSvZ6bvurMTSXC2K01h8Lg+N+ULOgJKtlkVLN22quD6O7knSBQTbAoKuLyavfTXKZx9jktSerncnb5u6T7VnwJ9sk/svo6KgVCUNFaDw1NVVVr+H2a319PV/84hd57rnnaG9vt+ccPXrUerZMTk5y++232yB2zz77LCdPnmTDhg3ccccdfPe73+WRRx4B4Bvf+AYrVqzgrrvu4vTp09aDSXJKdXR0MDo6ytatW3nwwQcB2LVrF6VSiaVLl9LX12f1L+fOnePll1/mzJkzPPHEE+zfv99qWTZt2sTY2JhlhEZHR+19im5E8mFJvJ1jx47x0ksv2b7au3evvSeAX/7yl/z93/89p0+ftp5hV111FY8//rg95sknn7QMTl9fH3v27GHPnj1WHyT9cPr0aSYmJti2bRsAr776qq3je9/7ng1GGASBFUEHQcANN9zAxo0bGRsbsyxbR0eHDcw3PDxMbW2tvUeJjzM1NWUBqZwnQuEsgBbBspxTV1dn+7yurs564lV7/6qFcZCSx166OjT3OGGLsu8gfPhkm5cFcFJHZL571UHObGAx6+IqJ5LxJQHMbLo93QZvFlDJnm/AR2IKS4BL2m1cDnZZGq8KwEmvpWOLdswErVN1JBO31rO8oqBi4jCHVsCKxHMhdtqWsDY6ATmGAzCMy/x5JRquXsT8IMaLy5TLZVQiGJ43byHF4jw0ijiaoTxjmJ2pyYv4vpcEx/PROmR68j1zT9Ek6Ag/uW/xTvMSL7dCoYTnFSjULKC4wFDAYRgZtqdmHjMz01x8b5y4PJn08TQQoeMYT/koX4IuJs8nsVsqVcBPBM1eUEPNvBJBwSehngDwPZ/ivPn4QQkdK8rRNGFiWisENShiIq1RnsILLzI9fsF03we/x9cXCTT4xYALk+Y6/zxWYCauMfBRRTYpqe31Od4XA57TpquK+DiHJcEA2TiJvTQrdg2zXrfLBjiXioOT/S31/jEszUftJi5JCmF2tGL3Q5qNGpxX8tidasDjUse4K9FLmZ/y6nZjkbj3l8cQyW8BF26maUivgN0+ERAjxwnoEu8qKXKOG8xN7kEmNmEAxNV6YmKC48eP09zcbD2DVq5cCVQmVd/3uXDhAq2trRZ4rF692jIQzc3NFsScOXPGJqA8e/as9eyRPhoZGaGvr4/77ruPJ598EjBskJjQXC8uMCyEMDPS1yLWFcG0ZA2XvmtoaLAMVhgaN3hhSZYtW8Yrr7zCzTffbBOIggFJS5cu5fHHH+eaa67hwoUL7N+/HzBC4mXLltk+b25u5pe//CUAy5cvZ/fu3Xzuc5/jBz/4AadPnwaMWPqhhx7irbfeIgxDWlpaePddswB75ZVXCEOTRLWvr8+62/f19dHY2MjY2JgN9uf2Q11dnU1+6iZZFY8wATnyrCWqtTu+XbBfDci44z77zrjjf3Bw0LZdrpHncu6a5vLes48N4Hzlvz42yyvkj42DU5XeVmr2F7xaQ3PARX4bFFWjJidFUikAs9IzGK+kSltTmiCd1mQb4IEBLO4EohQmy7ZKQIcLnpTVVlRaLE7C2pkIk0SXKgEV9jpybYjFt91ToDS1C5JVyzWfINAzxOVJYq3wC0UKiV2pEBSNDimOiMNpwrIx50Rx2VxT+egoNH0Ql5P2xWgdQqxNUksbwjdG6wh0GR8fzy/hF80Hdn7tYjy/iPILoBQzM5O8P/57AKYujoMO8bQxA1n3e6UScGW0UnEcUSiZFZfy51MozadUU8LzPXTCPJXLM/jFEoWaBXh+AUVMLGY3JSa9GB+F5wfoBEzFk+8y/d4IXHyXmsI0IabvfjXq8/50kVD5QJSYli5fi69VJZs5uAAnnnWsmJ9iVUmZAQnQwzNmwwSMuyPG/dvli1ywn8fQzLVvru9AtX0fJcD5whe+oF999dVcD465NCx5Jc+sIyULnLIlu901m821UgVmsUBZ5kU+3AIgqn3kszoFmTRkknGTTNbX19Pf3289fFw2Znh4mPb2duuuDgZ0HD9+3AbSC0OTvRuM/kXirtTX11uXZUneODw8zKFDh+jq6rL1LV++nGuuuYbPfe5zfPazn6WlpYWf//znAFy4cIG2tjZWrVrF7bffbpmQPXv2sGbNGpsw02XQxM38+uuvZ+fOndZ1e926dZRKJavXcV3ih4eHGRsb49SpU9TX19PZ2ZlibsQjqampyZ6zefNmtm3bZhOHCjME8NWvfpWbbrqJbdu2cerUKXp6egADikZHR61+6fjx43zmM58BDMv1zjvv8J//83/m1Vdf5eDBg2zatAkwXl4nTpzg+eefZ+PGjTYlREtLi2VcBEyI59WyZcvo6OjIjQfV2NhIqVSyuiVh7SSmURAENu2DCxxGRkasqUoAoptlPWtqdWMnQTrysLwnMr6zx+ZFL3b/zQuACZVYPtlggx9Wg/NHu4mj8q3/cwGdvL9l2xxky5znzX1sRbSbh6BE+wCVjOSVCSBOnSLbzX/iuu7GPUlAkGVekuvKsSn7VaK10KRsV648GFxdhgFLdn/GTKaVybCtUCycX+C6az4BQDHQoGOUUnhBAeUX7HkmkJ4mjkKiqGyZEJXEltHax/O0CZgnd6NNYEI/CPA9hRteSMcx0zNTTE1dJCzPoBOXbz8oUrvwampK84liI4oVc9jEe39gevJddDgFcRmlQ9uvqEoKAkWZODFfBcWFFIqLqCktIAyniMsz8tAJahYQ1MwnKBQNiIklNLS5D88P8LwA0ASJ2tgLatDxNNPvvU35g9+jtGnbufGI4Xc8QoooQvOocoBtCjAkSwAZV9Zs6Tx5Kw5XWXChrFjc1k8lPYTULq9pnAlJoDL/Vuqdm+XJsji5x8/apFObP45Af9mV26XATLZkgdHlgpg8zUCeYNkFIVLcVa787Z6TJwrOC6Wfzckjx8qkIQDGBW/Spuy1wtDkHWppabGACMwkffLkScuIuPvEHVw0Oy4w6+vro6OjgxUrVrBz5057r4ODg/T397Np0yYGBwc5f/48O3bssPe0b98+zp8/z9/93d/ZybuhocEClLa2Nk6ePGnr27FjB9/61reIooizZ8/yT//0T4DRq5w5c4Zly5bR2NiYStXQ1dXFM888Y7N9S+A+6bPm5mZOnTrF6tWrU8/oO9/5Dk888QTf/OY3ef7553nsMSPH2Lx5MyMjIxw9epTu7u5U5OggCDh16pQ1pQmD0tLSwn/7b/8t9ZwXLFgAwMWLF3n00Uc5ceIEn/3sZ/nRj34EwG9/+1ub1X3z5s20t7fbXFSHDh1icnKS559/flbaDBGHy9+iN5IM5HlxZ+rq6jh+/DhhGKbi5jQ2Ns7Spsk5kgdLnlf23cwLZllNaC/tccG/e447drMsEHx4gHPFTfxKuVKulCvlSrlSrpT/cOWPZ3DkxDmYlbnMQ9W8q/6Ycy5XgKyUSvJIXX5dSlVi1FY9NqPHcT2nKsd5s84zfS1JKSv7JaCgTkw2qIy3lNWBqNSK3bijewS+z1801LGwlHj8KI8gKOAFQaKXMUcDxFGE0hodRcQ6Spv6MO7mnqdARzaSMToiCPykndrmc/I9Iyz2g4AyMDNTtrmoiCPCOGTevHkEfsG4nDus1gcT73Jx4g/4julGeUGSTiFpbwxhYiaL0fh+Db5fYPriu6iEKVLKwy+U8IrzqV14FV4QUE7YHWP+Uni+TzEoJOPBtC8o+vh+wZiD4hmmJv4AwB/ef5d/PjfFB2WPgJhYeZmkmnkMTiWQn31SmddKJaxUlsGJkbrSx3u64gGlHS8rrXSFgRSRe075MCapWV5TcX798oZ81CaqX/ziF7NYkA9bhNFwowBnmZ1LaXJcryah1N3VcdYM5upmZDXsUvWSZ0fMIi5b43qxVGvH+Pj4rFV5GIbW5CBCY2nD2NiYbbtQ/kNDQ9Ys1Nvby6pVq+x12tramJiYsGYdMQ+JSWj79u0sWLCA3/zmN/YcieQ7MjLC3r17eeedd/jGN74BGPOVpBno7u62gtyuri7q6+s5efIk9fX1KTZmbGyMs2fP8qMf/Yif//znlp1oaGigvb3d5qJatmyZ7f/h4eGU2LtUKqUSUE5MTNDQ0MCmTZtsOgaJ3nvTTTdxyy230NbWZk1KZ86cob29nVOnTtHW1mbNOfIMxsbG2Lp1K//n//wfm7fqnnvuYefOnezZs4cHH3yQAwcO2OckLNTixYupq6vjb/7mbwATybiuro7a2lqOHDnCkiVLbEBGYU7Onj3LunXrrFhYtESlUokDBw7Q2dlp7/Xll1/m+eefZ2BggNbW1tQYlQCI4+PjDA8P2+tIRnIRGbs6McldlTUXyXvlJsnMsjFiFhXhcPZ8qM7y5L0HH4ubuAgfL9ct1HXFTho15/ESRfhy673c7elriIjSMStlNDyp9jjO2Fnzk/zIXlIpleLCJG6Jkn2p/pBrOPeeElRUjGu2DWiZz7LTKApN4MX4vokvA6C8Ap7nGwFvEvdHTF7K84xXlFao2EeiMIflMr7n4/mg45CZmUm7Dx0zOXkRHUV4nsJPbFSBb1IhFGtKFObV4ntF68nlFxQ1vok/E0Vlpj+YwAuSFA+FIvNrF1OaV4vve3Y7yrTZ3FuM1spofwClYnzfRJCJwyWUp41geWryIpNTU8SxZt78WvxCgclJ455ZnplKNEIajYenAtvZ8cw0qgjKK6IK85l/VaKHKNWy6P0LTL89YcYMFRdtyJh2Uk8isy0LLtRsMB/PsbiwT3kWyHbGwGW+l3lAJ7sYyXpRybi370C6RnLsV39SkXbkmYVku/zOiozzTFHydzUtjluy18xS7y6wkeK6Xsu5rvBVPvIuUGtqSiczdNvkusm6Xk8NDQ3U1tZaU1J9fb11nW5vbycIAuuW6wIZAVEDAwO2fqmvubmZ8fFx1q1bZzN+yz3JvR49etQKd5ubm1m+fDknTpzgxRdfZMeOHTZmzJ49e3jqqad44IEHuOWWW+ju7rai0meeeYbW1lZbv0zSkvCzr6+PTZs2sXTpUnt/o6OjLFu2jN27dzM1NWVFxs8995ydmBsaGqzuCODAgQPU1tbS1tbGsmXL6O3ttdeUrNyHDh1KPa/Dhw/T1NTEbbfdZr2SxETV0dFhzUC33norjz5qFvk7duzgzjvvpLu7mz179rB8+XLuuecewIALSbL5yiuvEASBBTaPPvoozzzzDO+++y7vvvuu3f7SSy+xefNmnnjiCZ588klWr15tozN3dXWxYcMG/vEf/9FmbJfnf/LkSR5++GHOnz9PX1+fdVV/7bXXbNJM13VbzpMxJ+AOsFqwUqlk9U8CNl0BMlDVhJT92zWTZY9zNW1ZgOMm2vxTFjduuUQt1cW6eeDichicWXVgv/rVjvrQ10h9mB2QMvuD7a6g3emqorNxm6LtOcoKWdMYqMK2eBrrEeV6QSmlRf5iRc+KtOanUqWaNZ9UghXGFIsFagpBJe4JFTGzjqOMF3uSriLWxESWSSoUauz1tdb4QdEKX7WOKfpFw4igCARIKU0UlpmamUzEuz7aIr3AAATfY16hhNIx02E52Rclx2qmZ8rU1hhbdeAXqSDFGKU0SgUPrW/cAAAgAElEQVS2DyRZpvbNfQMsDMtMTk0SlUMKxRq8wGdBsAiAmamAqckJ4tjE1kFFtv/jEJgJCWoSzU8iPp6/oI7mvywwPf1b3p+YJk4Jux3Wzj4D403mYfo7nTc9fY6AE6uvSv5nnrczXnXO+2V/XxpY5MWHsmP1MpibvO2polwu8aMrea6o2SB3UHHrzrq8Sh1y7lx15x0j27IeS+65WSFxNgePbKsmZq7mlSIlGwQNKmyR1CU6DQF64+PjFjhlg6qJKNVlxtwkjCMjI5bFkRQJYNy1ZfI+ffo0ixcvZnBwkL/4i79gw4YN/NVf/RVgWJ/bb7+dmpoa9u3bx+DgoBW/Hjp0iM7OToaGhjh8+DCf//znAaxX1WOPPcbIyIgVwIJhNZ5++mmro3n44YdT/SLajbq6Ol588UXABMyTeC4S90biyTQ1NbF161YOHz5sA+/JORMTE9ZV/BOf+ATvvPMOYMTWPT09nDx5khtuuMECPREFj42N2Vg2d999t62vu7ubMAy59dZbufXWW+04am5u5tChQ2zfvp1f/epXlskaHx/n4MGD3HnnnTz++OO0t7dbzyvpny1btrBhwwarXxodHWXNmjV0dXVZwbeA2EceecSybWEYWqbO7TfpO9ezTtqyZs0aID22s2Na6nIZTVcU7LKdrhZNxp78JwBLShAEFtxcSsz/x5Q/CSZlP8JZBkfKZQGeWYApQ5dnTVtVPtSXAl0CKtKTB7OX4FSAgrAn1Vgke0DmfGMeclzCxfSScQnWGpSnEnFthtSytM1stismxlcxixYuoBAExIl7NJ5MvpEYnWz74ti4TetYcm/JZYz3USwAyytYpsbzPHMvOrbMlNkOhVIEaHwVMDNTJk4Yl1jFCWDRKC9g/oJFFBKAE0VhBezpmCjZXigUk/Fj7reSQcrcfqy0YXJ0xcTnBTXU1taYiMiQuNUbsFJTmk/g+5RnpvGAYsG3fTQxdRE9E1NS8ykU5+En5yhPsaRuAZ+7oYlf/8ubvPf+JNnEquZROs9DYZOlJqNmTtORO3IlvlGambH/c0+sXKvaOHTalvduZvdXa58ck8/eUEHjH2PJixOTNSnluWjLPsj3gHJp+6y4Ms9byy15YCW7GnXbnv3Au3VmV7jZD7sbRHBqaoqxsTE7cWUF2G4bXAYnDEPrji0AQgLujY2NcfLkSbq6ulIRjwcGBpiammLbtm187Wtfs+1599137QQ0PT1t2ZOTJ09y77338txzz9nAdAIuLl68yIkTJ7j55pv5/Oc/b6MIS+wVSfq5YcMGtiUxYvbu3UtraytPPvkky5cvt2yQXHtwcJB9+/bR1dXFtddea9sn97dp0yZ6e3ttBvDrrruO2tpaenp6eOedd2w05d27d3Pu3Dn2799PGIbcc889PPvss4CJwHz//fdz/Phxuru7rWv8X/3VX7Fu3Tqam5vp6OggDEMrGF68eDG9vb0MDQ2xcuVK3n77bRt9uKenxx4H2N8vvvgiX/va1/jNb37DNddcw+DgIOfOnQMMmJL4QIcPH07l3RobG7P3Nzw8bAFrNlnq8PBwSgQtZiNX4Ds1VcksnwUebr3u+yHBIvPAj4zJvKCBfX19NqigRMaWZyul2kLiw5ZLAxyd+ZbZ5Wz1FV7KtXp2dZklbvLPrFVrzkFVyuXqgcQ7J+W0Ih/rnMvadbbj0SIHpan92YyQ2ZcwIFbEgV39ulIMBY7XTPZfOSlxp5ZgfgljUFMTsKi2BDoiTvQlfuJ2bGICkeyLkvM0Ok5inkTauJgnbZ0pTxMEAYWghPI9CyIqk7lnGYfkLzyvgKd0Ykibtokzw1BRCHy8wLfAzbfxbjRRHKKjGIUiTDQzZd9PQI5PrDVR4gkGxtvNOEfFCYjRqbZ5niJCo3Vk+1ZpMwZrikU8rfA8RZCYw+YtiJn84D0uvvcWxZr5LFx4jblOUMDzoH7RAlr/018y+Jt/4+3xqaQ+lQyf2AKA5IYsWPRmgSH3BcoB5R6Q1Kucc1MgSOUk8JyjVAvi55ZqYRfSLJW2/WvYver38VEU94OYjXOTXQlC+sObx9zkeUq5QfvyqPKs+UsARlYXINeUdmVjhMwFwNz7kWMOHz7M2rVrU6HzpS5JASCB2FywJm7dAtzEfCXbmpubOX78OOvWrbP1ycp+1apVKcbo1KlTDAwMUF9fT0NDg2UTxsbGuPfee2lra7N6D4lps2fPHo4fP261OIODg5ZRALjpppsA+O53v5vq5+HhYbq6uhgeHmbLli02CODQ0BBvvPEGDz/8MOPj41YrMjw8TH9/Px0dHZw5c4bHHnvMegNNTEzQ2dlJf38/dXV1HDt2zMbw2bZtG4cOHeLEiROAATYA3d3dPPTQQ2zcuJGvfvWrvPjii5Z5Wrx4sfW4amtr46c//SkAv/rVr/jVr37F/v37OXnyJBcuXOCv//qvAfj+97/P4OAgGzdu5Ac/+IEdO2DMTQ8++CC1tbUMDQ3Z1A9yzzU1NVy4cIGHHnqIp59+GjAxcpqbmzl69Chr1qyxJrze3l6WLVvG0NAQmzZtsp5ygA2S545H+Vf0WAJO5Dm2tLSkzIiSYBQMi+QCa7dkGZhspGw5xn0vpJ1yvJu80zU/Z9+lud6jS5UrXlRXypVypVwpV8qVcqX8hyuXDvT3jdleVBK/pprIN9ebSY7NERbbQHY559rz7R85N3GZbVBKVYLAxTmxTVSadYrRxHGMh0on/8yay6gk13T1M9X6VsxGs8wGyUpdOUJndIzxPtKgYtygcwpovPZqPrFongnOp8WkZJgTzzNaG3Ql+F0sHjTJ8/ASlqYczVCemaFUKlEIakApfD+T8DOjDfKV8bjylQZiJqc+IAzFg0lRLBSYN28evu+nWILpaZOmIQpDonJooywXSzXU1JTwvIA41sRK2/Z5vueIVipebCZeT2JGUx5RHBFHiTA5jpN8VzGB8kw7kucYxmWmPnif8XcuUCrVsGixoUn94jwKvg9KEaJ494Mp/r9hs6L5/dh7xNoHHc/BKer0v0p+K2ueSo8Kc18epMycWSKoMsLmZk2zv+XvamLiuc6Z62+lFM/9vxs+8jg4eaJiSK/y5vKGku3VIqa6x1QTMGevk03sKfuqtSN7Hff6EuQv60kCWBGtG7APmGUeENOBXNfVKrnXPXv2LHV1ddZjS64hq/n29nYrWgVsZNxt27bx4osvWk3Kd7/7XU6ePMmuXbu48cYb+fSnP23NLOLts2HDBjo7OwnDkK6uLqDClnR2djIwMGAZ3Pvuu4/e3l7L0LS0tHDzzTcDJoLvoUOHaGlpYc2aNdY0EwQBx48fp7Oz00ZsFobpwoULrF27lm3btqV0OIBNOdHf3099fb1lEQYGBjh//jznzp2joaGBuro6tmzZAhjt0NmzZxkfH6empob77rsPgMcee4zR0VEbbRjgO9/5jq1PRLpNTU02aKCU6667zrJGUu69917LZEjsIMmH1dDQQHd3t41ALM9P2LWdO3fypS99ibGxMcu4SAwgifQ8OjpqmSxIJ2UV81BLS0vKHDQxMWGZrLa2tpQXVDYQpQSdlFhDsk/+FQ+/rD4n613lsqDV4kx9LF5U8jH+sOb2XJFj/oH2KrlUua4kN8xTN1QXQ87W7dh6kxCzSideRgmwcD1bLNjIaBpEiCv35KZrMOamWbc16/pZV12lFLGOnXorFRpTl07MQ5UJ9M+uWswn6hbh6ZBYVUCY5yXZveME2Chlc1r5yieKzKTv+b51m9YagkLB5IPSJoVCBdmkb0SyYcv9e54BrYUgsFm7tY4h1hBrYh05E730rNxzhErAl44DwvIMSkWgkpQQyXOyiT8BiJznmLi1o1A+BJ7HTNmY46Jy2T7DGGOy88WTXgUsWFBHHJUJw7INDhiFZQJP4auAAoq6UpHWT18HwD+jOD/2vjFHOZqoynPUzPIPtw9R7KAZ7ZVszQris5GP3d2XIwTOlD/luMvd9qeWLEjIgoM8kXAeuMkCFPd3XrRgVwyc1eK4Zq08UOMKkd1Ir9nrS3GFwNl7EW+orHnONTmImUHuRbylgiCwWgop4lk0NDRkJ5mOjg4GBwcJw5C+vj5Wr15tw/k/+uij3HzzzaxevZpNmzZZr6Jly5YRhiE33ngjd955Zypg3qlTp3jzzTc5d+4czc3NVnQMcOTIEWtia29vtzqbMAzp6Ojg0KFDHD16lNOnT1tvqa6uLg4cOMDIyAhPPfWUfRZdXV1s3ryZ/v5+O/HeeOONgJn0n3rqKfbt28ezzz6but/a2lo6OzutZkZMeLW1tZw7d46f/vSnPProo3R1dVmg0NfXR1tbG+3t7SmTzfbt26mrq7OaHMAKtJ9++mniOOaHP/whTz/9NG+88YZN/VBXV8fhw4c5duxY6rn29/ezZcsWTp06xf3338/Q0BA//vGPAeN+v3XrVtt2N9jjxMQEd911F6dOnbJJVgHrQSVZuV2TkAuSgiCw40R0UDL2gyCwIuixsTGrtZEknTLu5D3JAmh3zGYjI8s4FlCcB+Kz79mfWi7tJp71Ykq4hWqeGtltqdqsUDLLgGAZBffYuVzDq3l+SIl0JoZHMptIzBnbVhWnsibGOh0HZ67JJB1DxrkZqyvSmbiz1cusPksRABqTRkHbVX6pJqBhyVX4JpIKnu8n0XpFIApRnEQzNj7kQJLQsly2wMfzTX0FjNeU6RuAmMimPADl+QiUs/qmpJ1aa3zPp6ZYBG3aEEdlZmZmiGNJ5qktAFOeidQbRdqkY0hQh9IxcVhGeeIF5hHFFTDlJaJt2yVgIjlrz7Bf2oA7Seo5HRoxs+d7iLu9jAoZQ4vq6pmcnHD6OyKKTEJPlIeHprbG6Hb+06euY6b8O94Zv2iExznu06K7So1JLZ52op+qPGTlMpvO9lk1293VmRhhiKwH3aXew5xyuR6QH0fJJt/LE/7KvmpuqVnhsAs68sLH5/3OuolXCyufBVPVXNez57r35U46bmwcV9Mgk6zogFw3c5mERkZGaGpqspNxU1MTbW1tXHfddfziF7+wq/KBgQGamippHdxs7cuXL2fVqlWEYchnP/tZXn75ZQD2799vdSXCcIkG5/XXX+d//s//yRNPPGE1PJ/+9KcBo8dpbW2lqanJpkoAM+F/9rOfBWDnzp10dHRY8a8Alc7OTjvRggFSO3bs4NixY5bt+cpXvgLAP/zDP/DKK69w00038d3vfjc1sff39zMxMcHWrVvZtWuXZZV27drFsmXLLJDr7e21nkqrVq3imWeesbF2JBZPf38/P/zhDzl27Bj79+/n+uuvt2zaI488wo4dO/jKV75CEAQ8/fTTts/AfHe/8IUvcPDgQSs+fvXVV1OJN2+44QZqamoAeOCBB9i/fz/t7e08+eSTtq4TJ07Q39/P6tWraWxstNoigPXr13P27FmCIKCtrY2enh7rAebG8smKjOvr663ruDtWJUaOm9BTxiSkx3h2vLrMohR5R13WSOpxz3FL9l3/Y8slAv19Uv+XKiaqS1acYyKyxVOzts8KjJYFQZbBITUZVANCceXoSn2KRBCbTZGp7CQkpjdzjpeYk7Jtc9qlTToA241KzjP7YnRm8lIZUXGlfQIc00dbuGXOSxiNv2i8hmuuWkhcnkYpReAHSCA9rTXEhg2KtcIvFi3AMdaphClCoZIJOYqMONdTmHNVZZL1fQ/PMzF1PFUxrRWCIBH/RngeFAMvMVeZ3FZTkxcrQBIIkszg2gsIo5jJix8w/cEE8+ebl7qmVEJJ7B4NOmWK8hIzVKWfwbhoqyTYoAq8lLmTSBOWp00boxg8hVcIbH1RGOP5oHREHCbt1mV8r4CSgINaJ7F5jHXwrfcu8r8Hh3n/g3KKySIBxhbSuqJxZZgb4xCXHg8qlrHmAB9djQmaDU5SLufOfqXdrXPXI2Dvcpkaadqev/3oTVR5pZoHVZ4pKOtBNdfHMe9jmi2u6SePYarWFvfDn7dPgunJh16En/Lxz2ubxLkRwanEOnHzDUn+KHFZHh0dpbGx0U7So6OjTE1NsXr1aoLA5CxyPW1GRkZsniWpt6WlxbI+3//+99m/f78VFV977bU888wzbNiwgaamJstASDly5AhPPfUU3d3dFpi5CTuFDZI27Ny5k7vuuoupqSnWrl1rgdDdd9/NsmXLrAnvrrvu4otf/CJgUivU1dXZQH6HDx/mlVdeAeDzn/+8BYgHDhyweaVWr17Nl770Jb761a+yceNGenp6LKD6+c9/zk9+8hMADh48aJ//6OiozaPV0dGRSvpZX1/Pt7/9bR555BEOHTrE1q1bU1m5BwcH2bp1KxcvXrR9s3jxYvucsiYtKSdOnCAMQ5vf6+2332bTpk22T5ubm+116uvrrXeSiNHdsSvedJIZHoyQOJu0VUBbQ0ODHYtZNkZKNoSDKwrOY0PFg6oaWytCf5ddraur+3hMVFDdRFXNRfyy/rYf9WQVPAdTIyWdlDufSUkDnRz9dLLq1o65RKeQE6l6qjJOlZkIVGpasweoRDcTZ5mkpP0Gbzl6H2FPEqOFE98XT/pIxSxKwMCSxbUQGdNKUKhBKa8y2SV1aaWIRG8jfY6fsDHG8ymOku2eZ1oTa3SiranEwTHxdAx+0pVoxVqB8vF9jzCcJlI+XlDJNO57HuXyNMrzCIrzUIkHk4400UyZaGaawK+AGAM4HNbMc5504qKu48yzDiQ/mIbIsflgdDs1Xok4jpgpT6K0IhC2yNMoTxOGEcUgoFiTaHPKikhHJtGo8gDf9quvNH9WV0tz05/zz/8yzHS5Aj09C2+EXZR9zjjKAwtye9qJcqzyj3WLHfNOPWaYCLNU6Yg8HvFPY2o+evNUtgSBySotH0P3YymrymosSTUX07m8m/I+tsIC5ellLsezI8/VXdovZiU3Jk1LS8ssBkcAjJgKxGvKbauwOOPj45ZZET1PfX094+PjqczgkjRScgyJy3GpVGLfvn0sW7aMxx57zIKlRx99lOuvv57rrjOm2o0bN/LlL38ZMMHqOjs7aWlpYXR0lKefftrGrvnkJz9Jc3Mze/bsseYkgPvvv58NGzZQW1vL3XffzXPPPce9994LwOOPP24TYZ45c4bXX38dMG7Po6OjBEFgIyyLCW10dNSyQ8ePH6e9vd2aYF5//XWam5vZsmVLSg/yzW9+k9OnTzMyMkJDQ4P1MgNjmrnjjjtsAEABA+K9JYzZoUOHrImqo6OD//W//hf9/f10dXVx8803W7fzoaEh2tvbuXjxInfeeacFgWIafOKJJ7jlllt4/fXXre5JSl9fH6dPn+ZnP/sZYNzop6ameOaZZ6yWxWVnZFwKEBYwXCqVaGpqsuPOZWRcACORld198g64IMjtS7dk3x8ZmzL23Lg5Lusj9cp+t315Jt3LLZcGOLGeNfnPJVTMM+lkAcOsv7n0J3OuD3KeuWrWAliDpGFIXU+L6ULMInPXb67hWVwmKRZS9WkTr8XqjlI4qWJicaTJySLfTnfWlGIFp9pEK/6zJVcDUPA9yjNigvKIo9i2M441nlKUwxA/KKQBlqpImLWOLXgTLVGsItu+yv2bhiit8TyMpgaIQk1EiO8rdBwSRXESLTiZXpUBU4VCEb9QtIkzozikXA6Jdcz8+TXUFGuSC3mmfZ4RJeM57sumwZZpsKJvew/aAjsBtxqTViLwAwphITGZmfo8bQIHGsulZ89Rvo8uh8mzTR5A0ifECk/BtVcv5u13FvJvF94z96MrYyAmM4YSRjAlDU+BddPObLiBudwb3fcvxS8mrJzWaZCVt0LJXxTMLnPFzPk4ivvRcyPruivDvKSUc4l/pVQzRWWFkVKyQfxcU9hcVHqW1XE/+GLKEqGsGwOkmkjZ1S1IBnD3Htw6RGMi6Q+kLTJJ19bWWjduEd4KYBocHLTZrZctW2ZNNu+88w6vvvoqp0+ftsyGTFpvvPGGBV21tbU8/PDDllkRV/Xx8XH++q//2gYOfO2116x+ZP369QwNDfH973/f3m9vby+7d++mq6vLBgc8cuSITePQ3NzMbbfdZpmLkZER9uzZQ09PDz09PXz729+umKmnp9m5cydQSfIJcMcdd1gNye7du1mzZo3VCG3ZssVGV+7r67Osz0svvcTatWsZGxujoaGBzZs3W2bsb//2b1m5ciUNDQ0MDw/z9a9/3T6TRx55hL1791rwJ+zX+Pg4jz/+OJ/73OdYtWoV//iP/2jP+fKXv8zPfvYznnjiCT75yU/ae7jnnnu4//77OXPmDNu3b6e1tZU9e/YAWP3N0qVLLaARgCMmSgExLlhxmZ6sWF3Gjxv9GCpgKi/zt8vquGk46uvrLaCU8e9eR64rMY/cfR+2XHETv1KulCvlSrlSrpQr5T9cuQxopOdkyy+H6q4mzr3UuXnurXmeWLmsUS4Vg11Rp8xfCBOjU94x1Uocxzbvk5yd7SNTv/xXMR1Vb7fwKsKo2IMSJ6aYRbXzWbRwfnJCnAiLPaIoIiyXHRGvTxybCMq+5yX35LBDccWoVmGXvESkqiqsg5xjmYKIODYJO00/mDxPse/je0niSF+YFVNnsWYenucTx0b4DVAOjeeS7yvmzSvhe2a15SnfWL2SvlOeZ9unkyjLJPoiT9yhNCZxKNoc7/u4uaPi2AiLijU1BEFAuZyki4giAuUTqLS7vud5+L6XPKu0O7jWHiqOqVERTddeze/feR+Ai9Mmt5flY/J0YXrWD9M+GRvMLpcjEq78Vom+ymVXK/qeaqWaWL8aSytt/ThSNbilt7fXer7A7Ei/WZYmaz6aS6AsRViNxsbGWToASLuH57lhV2N+8lI8uNcOgkpYepd+F2bKPU+8X2TVKyYnMCtd0SuUSiXq6uosmyPeLSIcdbUiYv5bunQpZ86csav8I0eOcPHiRbZu3cratWttvqmXX36ZFStW8KUvfQmA2267jY0bNwJG67N161b27t1rzSiSa6m7u5u+vj6eeeYZmpubbXC5v/u7v7M6n+bmZsIwtOLftrY23njjDVasWMHmzZutYPmOO+4AsC7qtbW11hw3MDBAQ0MDhw4dor29nTiOret7T08Pra2ttLW1pUxZ27dvp7a2lqVLl7Jq1aqU19Hw8DA9PT00Nzdz8OBBHnjgAQDraXXo0CGb4uGFF16w+/r7+zly5AgPPfQQ7e3t1kR1//3309bWxqFDh7jtttusSVBMVb/+9a955JFHuOWWWyyLc+HCBTsufve736Xcvevq6njwwQdtYlRh4A4fPmw9z8IwTEUyrq2tZXBw0LrESxEX+tWrV6eYHHccC1MoY3VgYMB61mU9qLK/3fdmbGzMjsM85tId927utT+Fwbm0iaqKlqaaN1M10W+1uuU8tw5336zr56iC8mJ0SLTZyy6JVkY59quY9OSQAlmpa1ZOqrQ/A1ScO6icUzEPVaqLAUdMm9yvB9RfXUfBl8O0ERajiHQZLWkakhqiMAIUcRQR+G57JfGmZE1y7Y+Vtmg0UVzRjmgvRseh8TKTmDpRCMT4XkAYRklOJlMKhRr8wCcEZiJNHIVECcCbmZpER9PU1BQoBAEqMV0p5RElMXs8zzPZrMWElmh1dAJybB4ozIuhNfhBYFzkbawgbXRIcYzv+wRewQKc8sw0nioa7ZHyrE1ToQiCAmF52uqOJL6QJk60UppFpSJ/Xm9yXv3rv/+BSKeiF9l+FZOaO1xmacsS06U75mMq42wuT0ULUGUhosQ8qGa9Q3nAqJrnYz6IqrT5j4msfLnFNS8tW7ZsVg4mocizups8Otv1EsmeI/tkspPjs4DEvbYLPtx6spqD7LUElEh90iZX2yPb3Da43l+SX0jMHzIRC5AT2l+Ey4DVicik7rqui+eU5IQSs43oaA4cOJDSBq1evRow4tvly5dzww032P2bN2/mmWeeYeHChRw7doyxsTEOHz4MGBOMxH05d+6c1auEYci+ffuYnJy0/dfd3Q3AjTfeyHXXXceSJUv49a9/bQEOGK8pmcAnJiYsiPnUpz7F6dOn6evrY2pqir1791qzEhiQU1dXx7PPPmu9kY4cOcLRo0dT4FE0RuKuLWYiEQa/+uqr7Ny5kwcffJDW1lYbGwiMWau1tZUHHniAf/3Xf+XAgQPWJDcwMMD4+Djvv/8+L730EitXrgSMyLirq4vnnnvO9tdrr70GVCJAf/GLX+Sf/umfUtGhJycn2bhxIy+//DIjIyMW4AwNDdnnWyqVUuLy1tbWFPCWsShu9K4ZVsalpPsAAzjkfWlsbLQu6dn3y9XniJhe9uWlJ5EiY17eszwA9GHKJb2obvv61srBOYBhtrdUtWPnBhtx4tIswaDmuo6blTlXf+O42lTHOMJOZM+pFK0qOhur3QRRc6ZWsTZXVoJ1NCaIntW6QMIsaAtZJBWCnJZwQYBn49ZIQxbUKG5obqSQTMS+8oynDwZoTE1OWuChPYWONZ7nUyjUmHg3SVs9LyDSJoCh8io+YuZ3bBgZ0bskTI2OQ3wPPGZQcWX1Xg4n8X3jTSWTqKcMGzNv/gI0MBNFlMOIcCa0aRzicBqfmMWLF1GsKWEVKhrCOKRcnjF9pH1837wMfiHALxTwfR/fq+SUUmjKMzNMT09RrClSCApYPY3ybBBBlAlcODNpXsgPLk4wf/48UBh7vbBfygdMsMCoXDZeWkl9sYrRaDztEYUhE6Fpw2tv/BvjE6EzQCpQR8anZxk9R3RukKRNturGvhEglx54yUjR4g6eZnDSMZZw0I/OBTypIvuc67vnpPRpybbntm38SL2ozpw5k0pDkBUXSxFBZDX2Jk9wnGVHBHxAZZWYl8DT3e6Kht02yHFuhmZp11xJNbN6IZl4xAvGbbfLPrisj3t/o6OjqWuJmHlwcNACkpaWFgua5DxJGSBB5IaGhjh27Jj1YJLUAEuXLqW+vp4bb7yRI0eOANhUAj09PWzZshLPJzEAACAASURBVIU9e/bY7Nbr16/nxIkTbNiwgQsXLtggdq2trZw5c4atW7fa+5KJuKmpyaZhaG5uthO7sDDSR5JcE4z4NwxDhoaGbAwbERlPTEywZs0a+vr6GB8ft95K3/ve92wm9aamJsbHx21fPvHEE3zrW9/i7//+7wFsjJ6RkRGWLVvG+vXreeONN1i7dq0FhwsWLODzn/98yuNK5rLrr7/eTvxHjhxh/fr1tr+Hh4fZv38/jzzyCP39/TYA3+rVq7nvvvt49NFHbRBAKV/5yle4+uqrrX5JUlZIslS5H7k3qLjsC+B2Pa8gnSPN9cobHh627KCbHy0rOs7q24R5zKY4keIC6KyGJ5suJQg+rkB/eraZqJrosHJMlpGwtc061i02E7ZjxkkzN7LR/E9bTxG3vQ67lLACVT1IHDftakyPl6ysZ2M1Z5uIilNiTxItabqNWmsn95O2Ltqu27rOiGvlPufX1FAgNvmjAC/wiOOQOE48nIit+JdIgTZu0VFk2A2J4IsXoxPGg5gKyNI+yjPd4qnEZCUgSysTb0cHKGLC8jQAUx+8z8JFtXhKERSLaA1RlLA7cUw5jimHIWF5hpmpaZS0j5jSwgXUzCsBHnEySZTDMuWZMmEYojyF7wU2ooCOPFQgRIsiSESEKtaooqIcltE6JoxC+yx8v5Bkc9cWaAY15rxafxHEEeXyNJ7SeH5iJvO9BJwGRCpKxMMus2JAhx8UuWq+GWN/ee1VvP+vbxuzYGJ0ciC2Ba5xZjwoNJEnY9SBy8l7p01HpsaWAX4J4I6xo1sbVG3uV2u0im2NKnkebsm6k1cMWpX9FXNvGmTFzHq5P7KSBSQwW7TrxrfJMiFZT6usu7YrHHY/7q5ZK3tOdtXrti/brmw7XFdwt50SkdidJCDtEQQm/ktTUxN1dXUMDQ1Z13CorNjr6uo4dOgQHR0dKfdf6afm5mYLIIIgsCYdYULE/BEEAT09PZZREJPT+fPn+clPfmID933605+2fbdmzRqOHj3Kj370I1555RXq6uqslxOYiXXt2rW0t7fb+29ra6Ovr4/BwUE6Ozs5depUyrS2e/dujh49yurVqy070dTUZPt0cHDQXl/6cnR01Ma7efrppy3r9MILL1ivnIceesjGzmloaKC1tZW+vj7q6uro7++38Wn6+/ut19fKlSutcPvNN9+krq6OgwcPcvfdd9Pd3W2fxbZt27jxxhvp7+9n2bJl1NXVWTB14sQJC2Y2btxoTV4AX//61/nNb37D7t27qa2tteY9MYEJ+JTy8ssvc+rUKc6cOZMSjMuY6+/v56233mLHjh02CrLcr4CKsbGxFLiH2QH/ZExKnip3nLvvJmA9n6Q+N4J4FvjLO+a+m1nPQRfw/CkeVPAhsonPpQu4nAB8c5VZsW+0A5zsRvevHH2AXYnGjidM9pj09rl1CC6V765m0yYmO9U4TdOzNDhJZnHXSkVaz6CTBsqEpDGAY968GojDivksNuYcrWMbsVhWDHEcGY+mOKqYyhLAF5djwnLZtMXziJMYL75vqATTZ7GJK5OwHwqFik3E4TD+gKlJ48oYhzNEMzUUijUUizWUw5gwMiag6fKMYW7K08RRmag8lZjUYPHiOhYuqqVQKBCGEaHE4pkpE0cR80ql5F6UoysC4hCtYmPqiiuBCz3Po1goonVoWSwA5WsLmL1kjpb6CjU+M1OT+L6fsFnyjGI8zwcFvucThTGSgl5bhsXD8z2Ea2y85hO8eeFd3nu/7DxLYY4AHRMTJqDFc9J+GHOaH0coylbxE2nfuOInerMsRE+brmS8J+xgxapozW6XhUcyDE5lc7pe0w/VvwMftkh92cBg1eJmZL06ZJ9M6m7AMdmeZXCyH888E5VcL/uRz2OPsvvkQ++arNw2ZVep4hE1MTFh762jo4OpqSl27dplQ/HLPjc8/urVq9m3b591d5Y0CBJ63zWTCWMlLIis5hsbG+nv7+e1117jpptusmDgJz/5Cb/97W85fPgw69at4/bbb7cmoLVr13L48GFWrlxpk1Lu3bsXMB4/R48eZd26dSxdupQNGzYAxtTz9NNP09HRwdGjR3nhhRcsGBBzXFNTEz09PdYcNzU1ZRNNiiuz6F+EafnmN7/JwMAAO3bs4MUXXwRg4cKF3H///VY/9JnPfAYwbIdkPxewI95Nq1atYnx8nL1793LPPfdYl/jrr7+eAwcOsGvXLq699lp6enpsWoqmpiYef/xxDh48yPr1623mdIBbb701xQjJdaampqxLPRgdjwCcu+++m4mJCf7hH/4Bt6xYsYIFCxawcuVKev5/9t4/ts7qTvf9rPfH/mHvJJvgOQmDObjguTjTIDJgLkYENaBUDbfhkLRBpAIONEoE3MAFOvQmiKAUNdwEgSCo4YQqKSQiKEH1lCBckR48jVFcEVQzGGGmZsYQo5qDKSY4yba99/tjrfvHetfa795xgHbK+WOUJUHs7f3+fvdez/t8n+f5dnayYMECC1APHz7MihUrGBwctLk/Zv9MuWrRokXTasvSzE06oiANwtMl4nqAfiqtXL3zMP0ZNqAovS/m9+lckX/JOO2iOj1Oj9Pj9Dg9To/T4z/d+NJWDXCyILH+Z/vuaQTJ6fFVXFP1701rDGr/+TJ2SNP+J4k7rWDUHBNVej6tMAYdsJfsg5OGgsqsd/r9rf5cG9uvk4NNzSWlxUjLbeqfjJUuh2U8R4fPmaf8yPqgQNWdWylBxchY4QhNVxn2IY4kxDFKSpTj2PYOul9UollKmmfaUDwk5YnjOLLCVOkTylO62VxD4xnEUYgyrQ1UlUUKwpCwUiYKpnCI8R04c7amHmfMOgPHcQijiEqlTFCp2F1vbGggk8kgEnGwLa0ovc+mTpVUwpCOm6QZK2Qc6wwge7Hc5HokQmKqDKPu7qVZviiKSSpeyWuaPRLCAQFRFKauhQBP99AyYuYZeZ+zmgpMlMYQykUpm2VJFFWQUZmpSkhYqeA5EbOL2gnnuYq4fBQVVZDCJfZnAOBkz8B1Gm2Zr7bkhWWU0q07nIRVkQKr0UnfSqd8kjElqqSUJ1OfdVXH6qR7rH0dImOofUpMsyT1T3JpWrue7q6n0OvHdKLg+ifP6d5br88x7FL9+qZLLzbbqXdHpdmddFy+OQ+mGePtt98+bY8r03cpiiKWLVt2UkKt6Tdl1mdyZhYsWMArr7xCR0eHjfPftm0bIyMjbNiwgXPPPdc6WR599FGb+fLAAw9w1lln2e0XCgVWrlzJwoUL+c1vfsN3vvMdqwk5dOgQ1113Hb29vTbHB7SmpaWlhXnz5vH666/T3Nxsz/3IyAhRFHHvvfdy6NAhW65ra2tjz549bN++nffee4+dO3faJpgXXnghURSxZs0aNm7cSG9vr93HXC7HH//4R3bv3g3Ae++9B8CVV15JqVTiwQcfZNasWZTLZevK6urq4p577uHb3/42r776qj2nN998M7fddpvto/TSSy9xwQUXAJrJamxstOGIGzZsYM+ePQC8/fbbvPnmm1x88cW8++679rw+9NBDVrB9++23s2vXLjZv3gxgs2ruu+8+HnvssRomZ2Jiwvb7MmJ8c+727dtnmb1ly5ZZdm7u3LksWrTINsg07zHidsN4Dg8P2/vLlAKLxSKtra32PJRKJes8nI6NNMN8Ps3xjo6O2v5e6WTk+lJtWsxvQi7/0vGVuJ9TgZnp3vNVSlR/URnLcu/UAoKvsK/6jTq7F/sFbhYw63ROOiaVglEq1a+qCk00NKpaws2upmtjqWOFBODUbafufMiTzo/CdRSoyAI0qZQJZsZN7OJWZGzKFVI3uVTSsZIjLfRNtCKqeoQqjohkrIGC1A0nTehfVD7B5ImjBOXjyGjCWuRjP4PnNxAHZWQUJq6n5JjiEOIAZIDjQkO+AT9pk4CMiaWkUi5TqZTtpc3n87bhp5RS29+TG90AR+nqRpvGJu6gUI4HCruMSs5RHDu4ng9CAw4H1x6vVEkZL7nKBkg5QhDLGM/1NbAVjk1uVnGEEg64HlJFxFLvgy88zjpzFh999CcqgQYkblLyQkxy9PMjlEt/QsQBEYqjkxrgNDQUCMMQiUeheDaONzvZtzwq1hDMEQkoTt1PwtxMdcBWktLu1A0J1QTq9LAAx4CiKqg3wL+20PrXL09B9TjqwcCp+t6cSoCcBkT1gKXe/v1lScfT0ePp39NdktPDAJX6/Uvbwk14nxGpGsq+WCzW9AQyGotiscjo6ChjY2O2bLNz504rqDW6CgNWjD7HWO3N+pYtW8a2bdsoFotcf/31XHTRRXbyb2trY8WKFfT393PJJZfYcsmPf/xjbrnlFo4dO8bGjRtpaWmxE2R/fz9TU1P09fWxdu1annrqKStOvu666/j1r3/NwMAAixcvttqcBQsWcMkll/DKK6/Q2tpKT0+PnYjb29sZHh5m7969NSXEnTt3MnfuXJ555hnb/mHFihUAtn8W6En5nnvusbqZu+66i7Vr1/Lb3/6Wl19+2V6zwcFBTpw4wfe+9z0uvfRSFi5caIXTjz32GENDQ+zdu5c9e/bY++TZZ5+lr6+P/v5+uru7a1KbN2/ezK9+9StefvllCoUCY2Nj1mG1ZMkStm7dSi6XY/369dZNZhKKzzvvPNauXcvDDz9s9++OO+5g8+bN1o5fPzZs2MBHH33E2WefbW3nnucxf/58Fi9eTF9fH83NzfYcmvKUSTeerqGrSbk2x2uiBowAOx01YOIJ6uMO6oXzpiQKVR1V+jMN1biDXC73hY1q/5LxhS6qM+f+V/V//fd107iTplnRV3JYTfMekgaKov71uiQba52qTqKafRHphb54O5ahSfE/Qme/1DdhNKOmc3b1QGoYnDTAMROxEI7u56SqWSpGblqnKkqEvtVXJbVMmOsoLjinyKysQqGpBqmEFrUKEqeRqIIBGRFFgWZUhIfr5xCuSRGOsVsTWKEzMiSOAlwXosoJ/XswBUBYPoGKyygVajdVIshVXoEZZ/wtiCz5/AyE69mjmpqaREYVPEfiug5eJkcmmwcgny8gcJgKKkgpyeb0677n43m623mlXNGTv+nyHcd4jqOBjai67Tzfx/USu3ysHVhmGd/38TxfXw9Hu6GEUz3PYVDGdTSFZ0TYjusihI/jukRhQBwFiMT9FVTKoCReNofw3ITpgZybYUrG9A38G8cnQy2QTgQ6ngg48fkoUxPHiaWgNCk5MaXPUsOMMyjOLOJlswjPs/stY5UA7gRYpD4e5m6d7nMrlSJOepClEUlVLEwtrZOcCOv4ItXbKgWU7Lbr2J1dD9/2V3dR1etYzEjrBqbTvtQ3yIRaJqVeC2BeSy8/nYMq/b761+o1PWkd0HSahLSrqt4qPjo6WqM1SrtMDKNTrz0y6zGTj+d5NSDC2MfTT8sjIyPkcjnrPFq8eLF17oyMjNhu3VB1urS3tzM4OMiSJUss+DAJw+3t7Vx55ZUcOXKE73//+3z22Wfs37/f7ruZ1FevXm1fKxQKbNmyhZtuuskyFYap6erqYuXKlWzbto2bbrqJnyTpwkbQWywW6ezsrDnfixcv5sCBAyxcuJCRkRE8z+Mf//EfAf0d8N5777F27VqmpqasTXz79u2W6RseHmZsbMy6skxjUJPobFKJi8Uid9xxBzt37uSNN97gnXfesdk+hoUYHx+npaWF4eFhe0+2tLRw/fXXs3HjRjo7O21CdC6XY3BwkC1btjAxMWE1P6DB4YIFC3j55Zf5l3/5F041Dh48aK9TS0s1DsAckxFpFwoFhoeHaWlpqRFpm3+NNTsNVox427A10wn761nM+jYp9Q8M6c9M+nVz7uoBjnnv1+Ki+sJRR0R8Wf6NEIKTLa/pX+u/Tr/oZ/MlbNZdu4b0F3F1n6psS7q1QtrsnX6CBY2pYrQw2EnttqwBJ+bpOiX2TPBOWiQNevKw4Ky+rJRan1P3ugCU1CF71ByrwnU9HbwnANNCQYYJExMjFbgq0mUrQEUBkhgVB8ThJMGUbjfgiwhHSCbDCMdJmlgm2/cyHkrmiaWLK3RODEAsBFE4hZfxKU+dQLhuUgrSLaICwkQEDELFhEEAQMaPyGZzOgPHce3N7AhBFOgu5HEUoeKoWqISgONooJIug0ottHZcD9/xcV3HfsiklEipGR/rWEt1JxeoBNgI2+NKgx1t8RdOkqfkVMFUGGiQI5RjbfQSfc6y2Rx+mAD25D6KZYZc49+RaYiJFcxE2C7t0gh4MZlLyb65puWCuYeqd792hUlOlh4nt12N8zAFwJOSqBTJI4VK368ns6+nznz6ehgcM04FKurLUOmS0anEv9PR5qcaXxYiON360tbxNJAxT6PTsTj1pTczQZqnW/MlXw/G0vtknvLT7zXUvikP9ff32+wcU6oCrNW6o6PD7kN/fz+ghailUsmWfky5ZNOmTSxbtsz2qHr//fd5//33AT1BvvXWW/T09HD//fdTLpdtKcOck5UrV9YwAOPj42zYsMGKW9PnqLW1leHhYZYtW8aSJUv48MMPAc2CzJ8/35awhoeHLSAxZbrm5mb279/Prl27bFDejTfeyHvvvUepVKpxdz366KM89NBD/PCHP2THjh1EUWRZJFPSGxsbY3x8nA8++ACAiy++mG3btvH2228DcODAAXtMAwMD3H777XR1dXHw4EHef/9968rasmULr776KuvWreOCCy6wrNwjjzzCFVdcwcTEhHV7NTY22nvroYce4oEHHjglwPnmN7/Jvn37rOvtnXfesW0k2tra7DFA1RFVLpetsNqMNHBJDwPW6tsqmMDAeiYGqAHo9QyneRCoF/ibZQwg/3M+t182vpTBSefgwFdjZabdUA3YqA7DhNSzRErWvj8NZqo6EXTJJl1uIuFohP3ennZfUr9ZZsXmkZhtiupmHFLcizDb+CJmy+SqnFyOM7ufzuuBpG8VJwMoT8B5c/PMygtkgklVIh5yHZO6Wz1JYRRArHtHKRnUMF1SSlABcXACFZURUutLPKFLIjgOjpfBcXzrwFJCA6w4DkBK64ZyPB+cDNn8TBAujusxc4Z2D3i+T6l0nCgoa5dTJoef1R/exsYZiY7DgF69+zKOqVQqiZZGIlG2FOW6OhNHAxLTzFSDIuEmPazQGqIgAVJhFGKylQRCs0BJmcxM3L6fMCfJsbqOi3A186NURKU8ZYGM4wgqU7pEJxzX6pf8jEcsXAb+/SPGTwQghNXgSHR5TF8aA/BNKVEilW6SKlO27Gq5SF8SRfU+1Poafa3UNMvUr8f+awBOso40K1O/nvS/05Wezc+7/7/b/2oMziWXXKLefPPNGuYjXZKazg5eDxamG+kvVzOmY3DSv6eXNZNvve08zSjVP71+kQYonZ8z3cRQv+60FsdQ+GYfzORlQv3MUzjoCdd0Jh8bG7PA5+mnn2ZgYIBHHnkE0LZjM7HdfffdPPLIIxQKBS6//HK++93vAti+TAsWLODAgQMUi0X+/d//3e77D37wAwuk0kCiubnZ6jc6Ozsti9PS0kJPTw/FYtGClnRZpFwuMzQ0xKZNm6zraXx8nOeff55cLkd/fz+9vb08+OCDgO5AfvjwYVpaWlixYgVdXV013bmvvvpqzjnnHObOnWsdXr/4xS/o7u5mamqK5cuXW+bInDvP87jjjjtqylCmUeZ1111nNTEbN26056ipqYl169bx4IMPUi6XbenIgC+TDJ3N6t5727ZtY82aNaxatYpnnnmGiy++mBkzZtj9PvPMM3nzzTctyDvVOHToEKBZQBMBADofyJTJBgYGyOVy9m/m3jGgdjodmmFmjA7GAECoasOMm8oAvTSoTzsgYfoSsHndrLM+qsG8z/f9r6mb+BcIf/9cG/iXP/lNl59jtp1eD8mTtnkh9Y8wQOTLt6X/nwrbU9V1mN9FEjWbfj1d4poeuFUBSxrgmPebCaa6nFMHlmrPefoVlbA0Uukk4ygqJ+sCIz51lNSi6DikUjnGiRNHaWjQwCPXUMTzG4lxiJ0sAn1zOUmncERivRbVcEDTjNSTWeI4rrIJrgvC0cF9fpaGfIF8Po9ZYaFxJsfCABRkMhkyGd1NXMYxUazt2K7rEcdJDk4Y2gA/x9HZOuZGNyUm05iyyi9hW09Ur4U+W1JqoKSUh+NoRsboh4RwiOMoYXhSOTNKaebIdfAcF9/3CeKqZd/zM0xNnsARTvV4XAhljAzHyTgC4TWgjC1fuMSSJBXanE/TJkOipAZaUqWapdYADgNC0seaXJV6gJMSUFfvpQTUCqE1OIZpneYz/GUmga9zCCFqJvy0eDidJWNG/ZfkF5Wd0utMl4umK4dNB4QMPZ8WO06nr5kOKKUzQXK5nM25Mbkj9enGZtl0VP3KlSvZt2/fSZbvUqlEf3+/jd9/7LHHbCLw/Pnz6erqYnx8nKVLl9pgv/HxcRYuXMjKlSvp6uqqCYp74YUX6O3tpaOjg3Xr1lk9z/DwMEeOHOEf//EfKRaLltEAOPvss1m0aBGrV69m9erVrFy50jI4ixYtsm0Fdu7cyZYtW+y+HT58mJUrV9onelOiGh4e5oorruCzzz6jUCjU5N309/dTLBY5fPgwhUKBdevW2fPd3q7nvvQkbMaCBQt44403mD9/vj2mpqYmG4pnGoJeddVVgC5f9ff38/LLL/PEE09w8cUX2+v37LPPcuDAAW655RZ2795t988c5+rVqxkZGanZ787OTm6//XZefPFFGy5o7quzzz6bZ555xpavDFuzefNm7r//fm688UY+/PBD1q5dC2Cbkl599dXMmzePqakpuru7AW0zN2Lsjo4ONm3aZD83BuwaxjGdAWU60RswMl08QhRFVi9m3muAurmvoQruDbuY/lzUM5ymtJbuLG4+H//R/BszTtvET4/T4/Q4PU6P0+P0+E83/iwNTs0TnTCCx+nKTl+9H1XN++ocRtX1mP/AaGn0DgjS8fa64pFeR23UvPlbjespfUiJPqG+5DU9Q3Pqspt+zQTRnbwPiXM7NVK6ElHbXsIwOLHSLIrpiySQOMRIFSNljJM+ECkJgwmmSkeJKhM4SFScSdZXBNcHT4t/jaPac3UBwxWglC7BpEWqUkUoGeP5KulBpZcx2irfc8lls9XEZOHi+Rlcx0s0JEKLdIFYSmIJnueTy+UJkieaTDZDJpelUi7jOC6O51Yt347Qyb1S98JKsy6OEMSxbj2B0GnEoOPTK+WyDjYUAtdzEcqUqHTZSySidaOzITb3te7l5Xk+gdAlL6lU0u/KIQzKeF7iaIt9iCXHPxuiEpTIZmfhZ/TTfiYzC9fNIz0fiYvEJ072QbuetIZIqmq4o0w0Ypp9MiWm5NKKWq1Y+l+zvEh+Nn+zYYkJy2NCBNPL14YHVu89854/l639S0ZayJguwxidyXTMiHF+pNdhRvopMV3Xn855NV07hjQjY55ev8q+p7eVfjoFLFORLr+BfnLdt28f69evr3GTdHZ2smfPHqIosloIs+zhw4dtKwZjAzZjfHzcim+NLsNs74orruCFF16wDRONyHjPnj385Cc/obe3l+Hh4Zp2Du+//z5xHPPkk09y7bXX8vLLLwPaWfR3f/d3rFq1iptvvpm2tjbrEtq5cyerV6/mzjvvZGRkxJaACoUCra2tNes3LMRjjz3G7373O8rlstUlgS7nLF68mLlz59LS0mLLPWZcdNFFLFy4kIGBAf74xz/a/Vu5ciWPP/44L7/8MgcPHuSaa64BNNOzc+dObrjhBn7wgx+wbNkyex6Mtf6mm27i2LFjPPvss4DW3LS06FYSRmRthrl2Q0NDHDp0iOXLl9sWC7Nnz+a5557j0ksvrelfZVKey+Uy/f39vPvuu3Z9jz76KADPP/88r7zyit3v2bNnc/ToUVpaWhgZGaFcLtu+VYODg+zbt49PP/2UJUuWcPjwYatTMvdPLpejp6fHMl7mvujr66O9vb2GpUy3SwHs9TL38NjYmC0dT5dCbFqF1Cd5T6cvM0ztdDq3/8j4i5KMDUAQTFPCSmlLTtLrfOH6SAkNqKswpbNlqitTZnJKbc+KIhNNRbXrN+kFUzUvs6xZPgWlarQ21fXozBdsOUwIYXtRVUGP+V2dNNEAOKoWHNWcK5EuM5CIjKWuQCVlqKyfIQhD7ZaKdZsCZUo9kS69KOHgZ/NJQ8fkUrsuSgi8bB5X5PG8ROMiBI7QjSSljGomVaUUSrq6TOW5BBXtrtJWaIXjeOTzM/C8LKQaXQq0w8scmgFGURTh+hnyDXlcz8dJQmgcxwWl8LO5VFkuue5Sd0FHaYAj00HByf/TDjZzvn3ft0nPcRQTOXofXE/fS46jM20ymUTb5GgggFRIFdeUc1zHwREK3/eJw6DaRkK3N8VRgsrkBMHkJAJN2TpeDs/P4mcLZLMNeH4DGVd/aB03hxQ+kfCIcIlMWSsFbKSUKBlbEbRyHKRKhPLpEhW6jOdI/ZoU4iQQZLU3dUBGr0eiVF32TfK/euDzdY202ydd+6/X2BihbVpzMp2LytDv6VFf3zcjXUZKv7f+5/rtpEtM9emw0wmgzaRhbN9m/1pbW61GJZ3QvGzZMgu66rueL1q0iP7+flpbWxkfH2fBggXWOn348GH2799Pe3s7o6Ojdh9GRkZ46qmnWLBggW2EaMphr776Kh0dHezcuZOFCxfalgKbN2/mtdde4+yzz+aWW27huuuus8f95ptv8sADD9Db28vvf/97tm/fbp1Azc3NDAwMcPfdd3PNNdfw8ccfA7oFxE9/+lP6+vpYuHAh8+fPtyUTU067/PLLeeutt2yuTFtbG/v376e5uZm2tjYuuOACW45bs2YN3d3dXHDBBTz88MPs3r2bJ5980p6HAwcOUC6XqVQq1t7e09PD1NQUv/nNb3jqqadsXyzAdurev38/V111lXVknXXWWTavBnSbhbRraXBwkFwug7zAjwAAIABJREFUx6WXXmr7TYHOrfntb39LsVhk/fr11mVm9nH79u0MDAxw44032mv7wgsvcMUVV7Bs2TLWr1/PqlWrAKwLLI5jXnrpJa644oqae/ixxx5jeHiY0dFRC3LMvRdFEW1tbXR0dFjAXi6XLRg2rUDM/WCAvQHW6UgDoCZVO13yGhgYsCA2PdL3bl9fn3XrmX1LOwfrP0t/6fiLNDjJH2oFuco0W6wFA/XLfnH4X1WnkF5FmpXRbxcooYxIpqpPSZ5aHSd5MudkACEw9tvkd8foZZL3pHopaNFvVbNBzfrM+/WajHvIAhxzKKdgeESqY7hevhYUKgP2DODS9AVR0g3bEQLfdZCxIIpjXBUSJbZux8uSyZ1BGDbqHBpZdQJl/DyOn8d1fDyvGmAopNShgCpGxHp7aQ2HUk4i2HW0awsQQr/H87Nksg0Ix0+hQ6X1QkIDgzRr5Xs++cYCJI4iz9XsUibjAwLXjbRQOGE39D4oqzNSqpbB0a44bTHToX/Ve811PXxfJTqfKstBpPtxGSCQzWSTc+cio9hKz1HV4EDHcRBK4rqebqRqnGkyAuXi5/+WeMInk3WRsWZ9psIYEXk4UYw4cRTX+Qw/EWnnMnn8TAP4WYTfSNbLJ+fVIxIOUjhI5aKkb3t8KaXbbyicpLN7GpAo+5pKHWtaSDwd86N/Nq6tlA6IKutTv8zXMTyvtgGmAQn1X3JfJCqGKogZGxurAThmufpmfunl6vcn3eEYqAFgaZFzevm0aNPzPOuUMq0TmpqaLLhJAyfjqpo/f34Nk2UycgYGBiwwSZ+jwcFBWltbufXWW1m2bBmgGZyOjg46Oztpb2+3E93cuXPp7e21mqL58+fb/Vu2bBk7d+6kvb2dtrY222Ry0aJF7N27l3379tHc3ExHR4e9Th9++CEPP/ww5557LqOjo9x777024G7p0qVceeWV3HDDDQwMDFhg0N/fT0dHB0eOHCGKIgYGBmyLiZGRETo6Onjuuefo7++3up3x8XHGx8e58sorueyyy3jvvffshLh582aGhobYvXs3hUKB2bNnc9FFFwFw+eWX09zczI9//GMaGxt5/fXXAfjkk084evQoR48eZdasWbS0tNgJ/IEHHuChhx4iiiL+8Ic/2K7l3d3d/PrXv2Z8fJwbb7wR13UtWOnp6aGlpYWWlhbuv//+GnFypVJh3bp1lnkymp5Zs2bR3NzMHXfcwfe+9z3y+bw9Dy+88AK/+93vKJVKnH/++fbcpe/VzZs388tf/rJGOGw0PosWLeLw4cPceOONgGaCTH7S8PCwvR8WL15sNWEmA8eAeANgzH1qGJy2tjZ73xlGMe2YMgyP0fyk/2Y+T21tbTWCfcMCpSMPzDGlGdo/d/xZAAdqAUnaQmqbZeqFrCNIvzH5i6IO0Ey/XqprSn5Kg5UEhAhVBRN166gtRZnh2HWkWR1bNkovm6pe2beKVEPMaUpUbv1rCQBSdfWoKrtTD3CqbFAaI1ZZMQ1sokhPnMgIP+OTcT083ycKpgiDxO6XyRNLgXKyOMJDiJAo1DdtUJ6kwcviO0nDxria0qscBTLGdjoX5trq+8D3daZM5GXtfru+RyaX144qqE76KiYKtYtJdzNPGBogk83hCJNn4+O4Ijm2KCkXOdrdpCRhAuhInFNxHJ/ympvEYgM2zX1nJgkpI+uwklKzS3qb1WuucayiEiS0quvpbuMkPb4iDZSiOIRAA72sUCgnz3jF4ZMJH7/i4nt6Qvb9DH42i4xjwkoJFVVQgT4mMTWFJ6ZwPcj4Hg25xCLqN+D4WVwvi3KyKCeDtM1otSvL/KcSUbZKSphKgnISgJMGMdIwPiTvq+tcjnFyJbeXATb/mwCOWWe6Y7EZ9Tkz0wGU+rybKNLNNKcTAte7n04lVJ7OGj6d06p+GEeRWZ+ZWMzfzL6lj9MAnFwuV+OEMX8bGRmxTE0aFJnJYmxsjF27dtUAwaeffprVq1fXvLZ69WpuuOEG23/pwIED1hYOutSzePFi1q9fz5133glokAB6Qv7+97/PwYMHrYNp7969dHV18fzzz7Nv3z56e3vZt28foIHMZZddxqJFi/j000/ZuXOnfd2s1/M8Wltbbdmmp6eHpUuXWuGxcSItWrSIQqHAnDlzeOONNwBsmF9HRweDg4MUi0V++tOfcvnll9uO5oODg/z85z/n0KFDXHnllZY1efbZZ6lUKrS1tVnXk0kyvv766zlw4ADLli2zacYAW7duZfv27ZRKJZYsWcLg4KBNTB4dHWXBggUMDg6ybt26miaY69at49VXX+XSSy/ltttuq2Gr+vr62LZtG++99x6PPfaYBXSzZ8/m2muvZffu3bS1tdn9Nqza888/z6FDh2rs8v39/QwMDFjWrqmpybrJOjo66OvrY9GiRRaYgAbs+/bts1b+/fv321LnwMCAdUqls4oMGEmXEOvLTsPDw7bha7pElX5gMe81DxBGVJ52GNZ/hv/c8aU28Wtu/n9rF6hjGk5pG69jL74o9+ULd9Bupzpp2WdWA05OuUwtwDHskqipUJmylADhUMv6kAAVEmbI7EPKeSWEdudUX6nukwEr9fsmNMAxAMI1x1Fzjmp1O7MyIbOyAZMnPtevK824CCFQcUgweZSpSZ1pU5g5h8iZRaZhJkIp4mCSKJpM1udRmDGLTCaL63m4yTF5roMjoDw1ST6XRwinmqPiaPDg+z5KUXU9RRGO4zBjxsyTJk5pQ/fixOLt4xpbdaLVcV0PKasTsZRS63Z836YYW11KMkFHyTatrmQakFv/tziudjE3gElKmVjBJY7jVBuVokFNUKmgVDUsUB9TTBxWCMMpSqXPbYuJ4sxZuPkCL/72Xxg8MoonHOvycj2PbD6Hn83geS6uW92Wg4MvFJ4bg5pERUnLijgi57qJJimPn23UTA8g3DxKaC2PEq5luBQSJZXWKKlpbOd1v8s6gGP+MxEFBgyltTzV9+tl/8cD//2vGvS3f//+GsbF0OXmKTFtw04DgvqSU5pdqf8CHh0dteAhDXBOxcjUP2WmwVB9S4a0rsawLibnBarBeeYpNV3iMtZk44hKszRjY2O2LDc0NFRTFjPHZCYi4yLq6enhwQcf5MiRIzXJyENDQ3Y5U+Izk926dev44Q9/SF9fH08++aRtCnnXXXdx99138/LLL/PBBx9w5MgRy9J0dHQwPDzMmjVr+Na3vsXOnTstO9Da2srIyAjbtm3j/PPPt+WVG264gdtvv91qRl577TV7Dt966y1KpZJtGWDA0urVqykUCgwNDbFmzRp+9rOf2XtldHTUusay2Sw//OEPrUbmtttuo7m5mZGREWtJB126OnHiBI888ghdXV1WBwNYAPW9732Pq666qqb794033sjzzz/PDTfcwOLFi2us+kYPdeTIEXusAHPmzOGKK66gWCzWvH7BBRfY1hEbN27kueeesy7Ud999l1deecWWy+bMmQNQk4lzwQUXsHr1arZt2wZoDVVzc7PVVZnzZUZ7e7sNMUyXhwwI6erqYunSpfY+HRoaYv78+XieR3d3t9XtFItF+vr6mDt3Lq2trTWfk7GxsZpIA+AkIGPCGM3nsL6ca0BQepl8Pv+/L+jvi8W1nAxukgn/q5WpTn5dMyHV152kdKSSMpSYZhldrqg+mYNhbpwagFM/OYqTLNvYTtNpDY09JicBRXZ9etunZhkSkJU6RcYIXsMm2QqVSsLt9A1gbOKukITBFFE4STh1gmDiOI7SX9hTMsJtkHgNuWQik7plAZppiiqTqHCKQmEmWT+fHJukUpkil3FxHUkUhQgDSPycZXUcR5epAMpBRZeGZIyMYzuxggZBSkk7oXspwbCSEWGkUKqc6GD0667no2SMIW3Sk6tSygKVNIuTZuNqQCjVdQRBkACf+ntNWbBkthOEAcLX29KApApSHUdLj8MownU9CoUkgTlbAMfljJkzUPEIpXIZNwHBruswkdjKPc/Hy2TI5pJeVL6H72juz/Py+LZEFSGRTExM4pQm8P3PyWaTMl42Sy4/Cz87E+HmUE7SREu4KJcE5FBbopLVNgzGZp8+PzUlLGOxt685J2lwlKo9x3+NoZSaVpCYFtWmLd5pK+qpetWkWR+zjAEWabBSv8x0ep703+FkhslkwKS3W68fMk/CpVKJkZEROxkBNYnDIyMj9pi6urpYvHixBXSmtQFgJxeTUmvYEMBORnv27GHx4sWWCVmwYIGNxr/qqqv40Y9+ZFsr3HXXXQwMDFi2wBzrZZddxty5c60It7+/3wqJR0dHbSDga6+9RqlUsum5oCe8RYsWsXDhQj777DNAM1qmXLFlyxa6u7sty3XgwAHuv/9+5syZY8P6zDabm5vZsGEDP/vZz7jrrrt455137D4YpmV8fLwmNdmwNxs2bODnP/855513HqBD9kqlku3OvWDBAsswlUolqw8y5TszjBC3WCzS0tJSo2264447mDNnDnv27KkBMp988gnXXHMNO3fuJJvNUkkejN577z1uuOEGBgcHeeihh1i1apU9R++++66NEmhqarIiYwNwTNfyuXPn0tXVZc/DPffcw/r16ykWizWJxYZNWbJkCaVSqSZgcnx8nFKpxNKlS2vKscbO397eXqOnMe9pbW2tEddDNTvnvvvuY8uWLbadg7kXzH2VttGbvmzTPbD8RzU4p23ip8fpcXqcHqfH6XF6/KcbX4nB+SoW0ZPLQrXlqS96b72DKHmx9j31ywIIXXY6iYURImmiKFOlKA8c3enZ6lwwLhplxak160qYGMfqYkT1dSeJ+k/KWDJhT+JY4XsZXA8tmBA6oA4AJSwTkj4oR4AQMmG+HIQSCGlKVApUGaUSW3LCxARRGeGAQ4iQAUJJ244gmioRxJ+Qyedw3ByucBGOZgA810HJClF5kmNTR5ny9HbC8jGmSp/juA7C8RGOT+OsvwFgZnEuXnYGjudbPQ5AGEzh+RmCICCMouR4khJQrBCO7tckABlL4sjoXyRhrIshvucjvCQwL9JOMOF5KOGiPdsJCxFLZBRpIS2y2prM8TVrYUpNAhsWGMmYOIwIg0rSYyrlYnN0o05R12RVSZmU1GLLBpn1CaWbXzpC4LkZGvINdrlYwd//Hy18ODLKn/40zvgxTfNKEeMIF9/PEgUBbrlCeWJCL+Q6uMLFcVzN7lg3mcD3XTJuA0J5NHquvR8qEyVKk1P43udks3lbuvIzOTwvi+NmUJ6PxEFKo4uTlsGJU8JjAFdpWzrKSfQ9aQbHvJfEvZYWIH89QuP6YL50Y800e2JSWY0LJE2Hm2XqWZrpwgDrx3TOqVOJmg3jYsTM9c6P6bRC5ik13bbADPPetDvFNJIcGRmhu7u7JrTPaE88z2NkZITR0VFbgikWi3z88cesXbuWtrY2y5A0NTVx6623smTJErZv387ChQtrLM9XX301jY2N3HbbbVabM2fOHEZHR9m9ezflcpnly5fzxBNPAFqkumjRIs466yzbvdowCqax5PDwMKVSyWo7br31VoaHh2lra6O5uZmbbrrJ9mdasWIF5513Hv/0T/9Ed3e3feqfP38+xWLRMhmPPvqotW9feOGFPProo9x0003kcjn27dtnGYru7m48TzcdTZfJxsbG2Ldvn20Qet9991nh9H333cf69evp7+8niiLbPmFiYsJ2+O7u7qazs9OWelpbW3niiSdsb66rr77aWtk3b95sGZI33njDdiBvb2/nlVdeYd68ecyZM4cZM2bUMD9m+VWrVlnLuRk333wzF110EQcPHmTTpk0AVktj7rtt27bZctuhQ4es/ixdWjUuPNMhPf1ZMufQsIRmmf3799PR0cHIyAhbt25l06ZN9n4dHx+nubmZTZs2sXbtWn7+85/XtIIYHBxkwYIFJ/WWM0xQfaDm2NjYl0Y0fNH4UoBzahHvl7x3mvdNt/ypftZO7i/W+dQLhNOvqSgkjCp2kvJ8B1d44Jy8jIpDlJO4ZFBWK2I0NKbUVV0kRiSiaR3zjy0pOSrGU4pocoo4DsjmGmxpRbuQPBzPRTg+jkgmNOEjhKcnH6VwRYQiocBlADIkkiHKz9gNuZ5PLANd4nE9MpkcMtbUp4pCJsZHEY7DGXNaEK6HV7VLEQQVDYwImJo4oTdTOQbhBDJQOF4e4fpMjmtAUpn4HC/TgO9nQElc14AsiV+cTSksIdAgMYoTYOZ5uK5uCGoFrOZ8AxItMBYyS5zUpHQZy8WJPaRwEoCkT7qMQ1RSBovi0JaASGzuevsQBQFBqM+DlBEylkmpxmw9uXd8bUnXAKqq29G5PSIFbmobgEmpcIRLLEM76fmei1Awd/ZMzizm+dOnRy1YCWOJcJwkqVgDYScp8bjKRTpVm3ZoBOSA6zlaII5iogyNeS3sbsjNwHMlURwyOXUUxJjdh2wmSz5bIJefietrgbk+2CRxGqEzgkT1dMhUCUqXGJNDTYCPUub+FlqETjWn5+scaa1LusxkXquv65uR1rVMt85TOajqMznMuk61nbRYOe2GgipIGxoasr2f0vtvfja2Yqhaqtva2mz3ZrPd0dFRW3oZGhqyVnDTV6inp4cVK1YwPDxsJ4f+/n4OHDhApVKht7fXlo06OzvZtm0be/bsoVgscuGFF3L33XcDVT1Nf38/jz/+OG+99Rag9Tz33nsv5513HpVKhbVr19rz0tXVxeWXX843vvEN2tvb6ezstBNuumw2OjpqE5O3bdvGokWL6OjosADPALDu7m5eeuklC1RNdo45zzt27KClpYXt27dbK/bY2Bg7d+6kp6eHefPmsW/fPusme/7552ltbWXx4sWMjo7yjW98A9Dgq1wuc/755+M4DocOHbKAYuvWrcydO5d9+/bVlGbmzJlDa2sr3d3drFmzhoMHD1qN0OLFi2lqarK2eNd1rV3+sssuo6WlhXvuuYcf/ehH/OIXvwC0cPr111+3XduffPJJzj33XEC704zGxtjr60dLSwu+71vn1dDQEK2trVZwvWHDBgukh4eHLcDs7++nJREMt7S00NTURG9vLwsWLKgBP62trbS0tNh2DOZebW1ttZ3KN2zYUAOKzPYKhQK/+MUvTtLTtLS02HyqdGkr3fKhPjfqaxUZp7uJw/SgomaFJ+lNTv6bGVUxqPnbyUxO1ZV08rpOCXAg+QKPU1obVzt3HMPeVJeRMkY4OidF903SjII5NUIInUViwIUQyORJ33F0nyPXBA7GFeKoRBiWtKXY85DJhCbRk3YcK7LZLNmkN5PjZPG8jLYAxxGoABlqUbCMyxqAKcmZsxoRZhJ0PIQKCcvHiSuTyKBCFCTLRFMcP3oUSYZz/74dL1e0AXxRFKJUiC9CZDCBCjWbICsnUGGgXU2ZvO4YnriehOkDJbSI1XWzyYnx8DyfY5/9L3xZRqjQMkXKcZFRiIxCfeSuwM3NBCA740ycbAEnMwPcvO3p5DgujutrEOi4uJ5vr1IQBCD0v76fsfdONpPFM6LkMCIIylYEraj2mBKOo6+VuefQrSY839fAzd4o+j1xFNobwPSD9xwHFUUElQkmJydxE/dXLpvVYuRsjn//6FP2/89e/JxujVE6fpwgqBBGMZ7n4wg3AX1m9TLRAbk1nx0cjb1Uou+yYnDHJZd1acj7NGQ9XDcRUMsAoWJ8R5LL6t5fnm+cDVlcP4/n5VFuDi2Sd5NzpPtmKSRSKuI0m0ViwU8AfBX8aDZn8/+z7K8qMu7r67M6j/RTmwEa6S++U9nGT8XOfBHwqRcWp7+Q69eZ/rJNZ9+Y36d7vX759PGY7RoLuBGImtdNDonR7BSLxZqJId1oMw3CBgcHLVjq7Oy0+2OEo4sWLeLCCy/knXfeqekdZdZxzTXX2L5Nvb29tvGimYSNkHh0dJT9+/fT2tpKU1MTIyMj1sFk2ILx8XH27NljXVnGpt7d3c3WrVutkBw0WGlqaqKnp4cDBw5YPU1TU5MVzu7du5c1a9bY8xBFkW3jUB9WZ65Ff39/zXXp7Oy0OprBwUEWL15swUxvb6+dqNMuoN7eXtv+4tixY9xwww1WmLxr1y66u7t58MEHefHFF1m+fDmzZ88GtFvspptuYteuXfzmN7+x7Jfnebz44ov89re/ZdasWbiua8HOvHnzuOyyy/jJT37CNddcY/NuisUiK1eutODOiJ1Bg8MXXniBHTt2WHbMiMENCDLXxDBjpoWDiWgwei6zfwbgGM2UeT1t/a7PgEoL8tNZT1EU8cQTT7BmzRpaWqrtGNIPFfUMjvm7+Au7iX8JwDlXffeWdScJN79MZHwqpmZ6gHNyo830+08W/Do1DiWBkyodkTAt1U5FthpkJ7qqjVsPhUAn9cZRjOd5Nd28a/YxRe/LWOIIXeZASeIwaYo3+TkqLuNnPRw/QyRdW0bw/AZcN0ccS5SK8S2QihNb9RRxMEUUBkSJnTmOIpQKkFLQ/F+KNGb09cr4eYRQVMrHUVFEXJmwncGJQ4LSMaYqEbPPPp8ZZ56NndAEZHwHEZeJwwlU4q6SlUkrdlWZLI7jW7DiOD6O56EcgeNmcBObuO/naMjnKZc+57OP/41wcgxXJBOu0v2iRMKSpIWqws3gN8wmM/NvIFPATcS1rp/VKctJ2cZNXcfEv42UUjvAjBPJ0S6pSqVCFIa6SaeqckUCoYGSEAinmves2TQXz8uQyWbMpUW4nhYuK6mt3WFAkFjsfS+D73lMlkpMlafIJCyN73nk83kymQxTUvDcS/+TseN6hX9TPJOYiHKlQiUIkUpY0OV5PlJJojCCxAWl97rqhJIWZFfvV0e4+K6H53pks3ofGvMZ8jnwKENcxnUi/CRp2fd9PDeD7+XxsgW8TB7HglRfZ+pgAI0BX8LuR1KhqrGQS6XY9H//t796s816kfF0bqX076cSAk/31FfPzNQzMmZyTYuM0+WuNPipDwQ0y5uRZnXS4mgjHDWuHjNBGobFOKbSfXvS5az0ZGCSZMfGxmhtba1hagx7ZELXzL6YMsz1118PwLe+9a0aRsjzPO69994aMezevXutHbm5uZnh4WHLvNx333089thjDAwMsGLFipq+RGNjYwwNDdHS0mKFuYCdRE0/KFOKNOeqVCqxYsUKnn76aX75y18CcMcddxBFEdu2bWPlypXkcjlbHurq6mLZsmW2lNfb22tF1qa7eVdXF62trVYcHUURW7Zs4b777rPn2+x3d3c3jY2NXHjhhTQ3N/Ptb38b0EGIZvI2Al6zzKZNm+jt7WVsbIy9e/cyb948m4OzatUqenp6+OCDD2rycTZu3MhDDz1kAY/J0gHN5uzYsYOBgQFGR0ct+3L48GGWLFnCpk2bmD9/Pi+88ILNK5o/f761c/f09FjQCVUGx5xrA0j6+/vtPWPKwKbEWCgUaG9vt8L3tLXc3F8GwKS7lhshf1NTk73+ZqRzrkyp1fM8K7gfGxujJSXeNuNrabYpRFK2+YqABVHrlvoy5iethakyNcnvTM/Q1O+PVsKYZWrXky5zJaG7uvM0CmEn4hjhCDJOFpERSXKx/pNO9zW272odKpgY5/OjnxBMlSg0ZAmDCuUJDXDiqEysJDPOaCI3o4DfMNumHAexwE10NlIpgimjSYl1RstkCRlOEoRlm28ipdZNBBVJVPmY887SN5nKROQaGnE9l0pQppx8GYEGc58fm+D48RLFuedoECOSp/mMj5ARMg7xXGF1Gng+npfBzTQiHK3lEIlDx/EcrQ1y8wg3g5ME87lehkg6ZGfOZU4ux9jIv+GGJ5JroZ1AQtMDyVO/YRsk0dQxgqkTOJ6P16C/+LzcDM0eeTkQLgoHJwnFc70MKAfX85EyYHJChxqGYWh1VCboLoqq7qFMJoNwBCpJjjbAyPM1OxTHEUGlCvJdJUE4KBkxNTXJ1OQJojhhDpTgjNlNZDIuYZi+dzXIllKREdDW+g3+5V+1FqIyNYmX85g5cxblckCkIAiTiVVBxstTmOkjUJZ5iqOIOEkw1p3VYwvAZBKPIBVMRQEVqe+hyaCMP+HTkPNpzM4iJyKiUJ+jShDgOyG+G+BVyvjZBtvZ3fV1QKMS2uVm7lUlTCaO0OBHVPU5jnJSn7q/zhCittnmdCDEjPSkP53LIp2Xk356rB/1bE/6qd383YAcQ8PXW7SNpmBkZMS6RcwkaEBAOiPEJBi3tLRYYAKaUWhra7N2Y/O0nO72XCqVaGlpsU/Yvb29rFixAhPC1t7eXjMxGGYmXZ7o6+vj3nvv5Wc/+xldXV0sXLiwJvekVCrx4osvsmDBAlvO+cEPfsCqVau4//77efnlly2bA7qstXfvXt5//308z2Px4sU2YXjXrl3s27fP6nTSYXUGmA4NDdW0s9i/fz/Lli1j27ZtNSUl4zxbsmQJe/bssRoZ0A60sbExuru76ejooK2tzebQzJ8/n02bNrFz586TWLw//OEPXHXVVfz+979nfHzcnlfQjrKhoSEGBgZs2chc7/7+fpYuXUoURfbc7d+/nzvvvJPh4WHuvPPOmvvtrLPOYsaMGdb9ZcZDDz3Ec889x/r169mwYQMvvfQSe/fuBTTAMSWujRs32vukqamJV155hQULFlAoFCzoAg0o29vbKZVKVldjmNA001cqlWpyeqDaUsRk/Jj1meVaWlpqWms0NTXVZDKlG3GOjo5ah9XcuXNtvtDWrVvt+nK5XM2+mfvWPBgYLdl/RH8Dp11Up8fpcXqcHqfH6XF6/CccX1iiajrrXPXfVj1wCqExlrFJ/pL8rdoP6CsxOA42R0akxJ7VbZnlTA0h1WsIYZ0wAArHQjalFJEMbWaLh6NLHq5DWB5n4vifAMh6EEuXwhl/i+vljCCoeowq2T8lcRLW58TnI5RLn5PzPFzXA9dHJKyGk81TjgRBqBDCxctUhcGRjGwYWxRXQ+xQijAIkOUTCBkyVSlbhuJEaZJKUCEKIzIKyqe9AAAgAElEQVSO4u/P186mlv+SozBzNlE8BTImLAfVHJzjnzP4r//KvPnzmVk8g7HPPmP23+jEzYyfQQhJNucilEQm5RclI/xMA05mJq6bQ3g+JMdkzonr5BFuVotW0RoWRwkgwnMipo7/SYuVAaEiYpm0a5CSOI6RCdsg4wglI1QcEYchkUnjReh+TfkzIFPAy+SsDihG4HlZspkcEqhUqnoMrQ9y9f44bqpthmtTfIXjWc2UXsZJ8nEcHLfaWNR1dZ8xGUeUy8cpVyaSdh4QRTEzZ57BjBmzKJUmbSkzk8ng+z6+7xPIkOHRT3n33/6X3m8VUglCcBrIZBpA+JSTBORAKqRyiEKdb2RYEZWIeIMwJAyCqviFJN8GSRTHqFhW85KEFlrr6+SSz/o05vVTUWMOMk6IQwQxCFfgJk9MjpvFdbNkcw1kso2IpE+WSkqCOhFZb0DZ/QOUYONt3/2ranAOHz5cw76kXRamfGR+TyeiTqd5mY79MU/waR1M+v1mPdOVvOpD+6DK4hinR5qxMU/K6SRWsz2TJJt2U5mnapNKnE5yHRkZoaWlhQMHDtDV1cVPfvITQGevtLW1USgUGBgYYGxsrEa0a3QOaXeVEYgaXU57e7stL/T19dlz09PTY4W6nuexZs0abrnlFm699VZGRkZqWKnly5fz6quv2utkjtO0iDDbMYySyVDZv38/hULBMjCgRaWGeSsWi3Y7XV1dTE1Nce+999LW1sbQ0JBlFEZGRiwD097eTktLNQF5eHiYzs5Ourq6bHnEnAcTmmhYA6MrWrp0KW1tbWzdutVmwaTvofvvv5/f//73bN26lVtvvdVeJ8PCdXV10d/fb/tovfjiizzzzDPMmjWLYrHIhx9+CMA3v/lNxsfH+eijjwAdSmjKReVymc2bN3Pvvffa6w+wZcsWbrrpJnp7e3n77be5+OKLWb58ub0PN2zYYB11TU1Ntow3MDBgdVymvATV/CVzX5qgSagKf829nGZT0p9JU1ZM35P1Cd1mH0x2k1nO3PuGITXlL3MezP34lwb9fQnAaVHLVm+ovjldGhL1rzlVge8p9DNOqu9TdT21ouR6J5b5m7UFC3C1CRZHKJSTsRMumDTdmLg8BcLBy+SryzkO4BHHIeXEaaMQeK5L1vcRjpfQ8om4VMSJnSRGxSFx0tZgslzi+NFPIJxg4vhRGgsFZs/RAVJOdhZB5OoSA7EGM4kwOAgCVNLBUyiFMP55GRKFFSaOj3Ps2OecOHGcMDIR/LrrtZsECs5s0Cfikr//W876mzPI5XyiSpQIq/Uxff7JH5k6cYxsvpFP//QZZ81p4sQJDTxi5XLW2efg53yteUmCAx0VkslkyeQKeJkCwstB0m4A10dJAVLhuD6OadXg6P1SSuEQQDRp98FBEUuI4xAZB0RWcAyxjIjjSP8ehcgo6TIeVVASsvmZOLkZ4GUgESDHSperPNdHCc8G/DmuFo+7XgY/k7WCXYCMnyWKQiqBXq+TOKRAl6bCMEw0Df5JVnF9IwQE4ZRt7xDHiny+kVmzziAIQkzCsdbyeGQyGSrBJJ+VJujtHwbg+GQJV0JDJo/rVBBujHC0JkuJArHngXAol0Mq5TC55oIwlkiUddbJ5H6oVCpEcYhUsqa/VxzHqcRmkpYV+piyvkMhn6GxIatTkwmtKN51HTJeFj/TgOs34Bnhu5dJgh6FFbLVf1V8HQDHTMTGtgonl6Gma3iZBhdpXc50ouN6IJMGQ9NZx6FadjLDiHrTHZenA2dpIGU6oBuAk55cjNXcBASmg9iMFd2AnXQSczphdnh42E6EIyMj9PT0cM899/D0009bl9LTTz/Nli1b6O/vZ9GiRXR2dtqAO2OdLhQKtkM1wI4dO2y5ZNasWfT09Ng2CeVymbvvvpunnnqKw4cPs3r1agskBgYGbLBc+rp1d3fz5JNP8vHHH7N//37bMgLg4Ycf5tlnn+W5557jqaeesmUoExg3NjZGV1cXhw8ftu0dmpub2b59Ow899BD9/f2Mjo7a473yyit57rnnWLx4MX19ffb+amlpobW1lcOHDzM+Ps78+fNrQhfNRG2Sec35MaXF2267jd27d9v7buPGjVx77bU0NTVx11138cQTT3DvvffW3EPp5OL0+NGPfsTjjz/O2WefbcEOwMUXX8xnn33GJZdcwq9+9SsA1q5dy5IlSxgYGLA9rwwYGB4eZunSpZxzzjm8+uqrtLS0WADd19dHW1ubbaFg7k8DVk0K8+joqAV099xzjwUyRuwO1XKW53kMDw/bJrBmpHuxGQCZfj0NnMz6RkZGLOhJa7LMsl9LkrEQxiJdq3mxzMt0jExaO5OO9xVqehBzCjAEyZd30kjRSb5dPRXhixBP6IaLgXDtJB2XTzBx9BNKJ45C1qXYdA65xF6ryCCFAiKEL8j65gvTQSlBpBTEMunabVw4muVQ8STlyc9xEseKGwbkHQjcHJE7k7EJQXBUa08yWRepNIiKVUW7e4Jqe4A4TrJdooAg0A6mylSJqckJgiDQNmVH4Lmpc+d4uG4GHJ8wYajGyz5zhYdSDq6XxRGCsJw4rGJFVC7zycejnH++jkufcaaO+v7G+fNQTpYZxSK+5xMnQC+cOo6QIVEQo+IJ/GyMSM6rinMo4aPimEoQ4Lj6eHL5Br2/KDxXkMvPAPQEiVKoKCYIK8RRmSgMiL0UwJGxBo5RTBxppiiqTBEFFeKoQpYcwslYTYjruBZQGau/vUm0pxkVSyuKBZiaKhEEQdJSQeB5GbJZfT/IOCKWEY4UxLGosfILATKKiGUFlN42mH5hmh30jfsqNaSUONKlMhXz6adavH28rMF2EH2OIyoUspJiQZ8j38shXb0epRRZY01XiVNPuMQ4SCmIkuOVnotC2oaotqeUVLoth2lpQbV/WxDAiYkKvjdFPucxa0aeGQ2mv1ZEEEIoA0Sg8BL9UibXqMGs8BJhf6rZrKM/z3/tkc68SOfD1IOONAsDJ6cKpxmc+mWNs8MAAajtPVVv904Lhaf7m/nXCIDNGBoasm0Q0hNDFEWWpUhrQpqbm+2TsGE4oNquwkzu6XYMhUKBxYsXMzg4aFkP8zcDYIx13GzHPCG3tLSwZ88e5s+fb0XGhw4dolgsWsBz9tln22P95S9/yfXXX4/ruoyNjdntDA8P8+CDD9LW1kZTUxPPPvusBUNtbW2USiV6e3tpa2uraZOwY8cOy7qY94EGATt37mRgYIC+vj7rFtqxYwf9/f2Mj4+zZMkSPv30U3tMq1ev5u233+baa69l+fLlrF271jIUb731FlEUsWvXLlasWGEt8S+99JLVihjmwIhr651FaTahVCrR3t7OP//zP1MqlbjyyisBDXBWrlzJ8PAwhw4dYunSpfZecByH3bt3MzIywuHDh3nppZfs3771rW/x+OOPA/DRRx9Zt1R7ezv9/f0sX76cQqFgAc5TTz3F0NAQIyMjfOc737EJz2b/hoeH2bFjh73X0kB527ZtVh+VTsM2epqRkRHb3T09TKsLA4rqBfZp0G1AoGHE0mndRoy8b98+Ojo67DKm11qhUGDLli2WhTJ/my7W4auOLwY4gFcXkGbBSF3svWPs10olYl/sF6xmYKpAaTpXVrp/kB5V9w0yAhKmQUS4RDhCaPt1LEkaLROQIcieiRAzyfkZcAoEccLuCO0TUSqdfwKCUAtTk7yP2DZURAuQZYiQIZWKJIyTUgUNxCqLFJJMYQaejKmEen1TlWNEkSSOQqQMk9KMCauL9GthmbAyQZh0/5YyQioQjofwXB2FL0xjyixetsGWwryk5Pb5JFQil0xW4Lp63abT+IljJwjCmLnN3+DIx8f4xgX/J9+Ypz/wfn4GnpdBKEUU6P3QJ8KDuKL7IcUVZFjGS57yHU834pSurzuYJ+cuKJdwyOB7Dr4AFcYECVsVhyEyqtjzIFMlOZn0QlJKapcVJqsoi+sI4ihksjSOECWyjRrBu9kZSCWII5kENpogRFczUUIBMVEsiQPDfmkQ7Dj6gyKEIAgSoXhQQQiHGA12zH0XxjFRFOAIQcb3dCko2T8/Y+z8JOUu/bppHSGlBCFx3ZA40ozZsfESEOHgEgYRRz8LOaI0GHZdRd5xyOcyzDpjJjNnJsJfV+AKBxmBjARKapYFQPh622EIQSBrPktKSQvAhEgF9aEFw3ElpFx2OFEq05DVH/2ZMxo5oziLmTNmMjU1SSXQ934lKiWuMR/H9TSbY2IDZNrV9dcZSqmTejCZYQLA0l90acv1dE+Jp2Jk0qWuNLAxzE+aqUkzR/VgKV3mMmyOYTWM3duIk80ElLbMmjYOBsiZLBtj4zXbNZ3CzVOtic6Hau6J2XfD8EC1pYDneezZs8f2e3rllVd49dVXmTdvHitWrOC+++6z53zlypUsWbLEtkj4zne+A8DBgweZmJjgrbfeYt++fXR1ddl9uOeeexgdHWXr1q02W8ZMor/73e84cuQICxcurFnmjTfeYOnSpQwMDNDT08OSJUtsOcy8vmHDBvr6+njxxRftdezs7GT9+vV0dnby8MMPW6bh7bffZt26dezatYtXXnmF1tZWey0MmFy6dCmdnZ088sgjAJb1M0xaT09Pjb09l8txzjnncN555/HBBx8A8NOf/pQHH3yQxsZGJiYmeP31121WkAEW//AP/8CmTZs4duwYBw8eBOD222/n5ptv5rvf/W6NuPfIkSN0d3fX9OIywNa0y3jttde4++67WbVqFQDPPPMMhw8fZsOGDfz4xz9m8+bN9n4eGxvjW9/6Ft/+9rcZHh6mu7vb9qmKooh77rmHbdu2cfvtt9vtFYtFmz9TD2zSJSTTJDZ9HxtQX98/zgjim5ubawCOAbtLlixhZGTElhjb29utaHr9+vU1oBJqH2D+3PHFQX9CVIELVbeIdRYJgW5PCCbtTqCBgoNb7RPkoIPbEk2NU/ftaJkfqqDIRIkJFNpZm0wmuIRAiEukdLnC6G4c32HGGTltcVX6iz2QprFRgmlkhbg+lTV5Eo5lTBxL+zQvY4WMQ51LoyA0JiCly1VSapZCRhFBwvrIOETJ5ElQ6vKWAR5BZZIwmiKOQxJjkj5G18NzMgg/QzZfwHFyiOTSCMfF933y+Ty5hgb7JSvLJzg2EeO5Ek+EEGrwBJBpyHHm2f+VfLGZC6/8O/INM3D9JFzOzyDiGKIAx3ORMrGPqyxxEOMIiZfxcV2F55llfNxMFkmWKFY22TeOAggncK0dPMZTRlcU4bgSzxEo6RFLp7qc1I4hKQUqVVbRbJoLrsIRMUpOEZX1dQqjkNjN4Pg5HJGxgMR1AaWIo5AoCmoYHH1Pmp5QHkLAxGSSIaJUci4TZ1AyeUslk1wkR7NMwsFPwEU2m9U5PUnyclqPZtx9QQxSCoJkO66S5AsFpiYr5HIZPFdQnkiYrP+fvfcPsqsq834/a/88p/t0upM0phl7xpbpGeNre2mn8Mq8ZMqosUheQ02YCZd4jTVgYYmXUOAUFljEIpaxdG5QsYAiFhmFmqSIl4xkiniBa+4Qr7EMZTRNGV/CS6uttBKgSbrTp/uc/Wut+8fazzr7NBl9X4f5562sqpDQp88+++y99l7P/j7fH1lB0xQ02xkzcwuEvsi6A/r7++jtaxDFMb5vCINyfmXGPlxEHoYAv5T/51lm53SXV00naVzrAm0KMIq8UKSJ3ff5hUVePTPHsmXLWDm4giiy8ytptWnpFmEQEsWWk+UJb8fzXncN/3uHHMulvjIiqa7eKIUvszSbSv5d9S5Z+rRZvRkLaiCqpaUcGylSRJq9FCmSkEt5TRZwQWnk86SAaDQarmCp+tpA54ldFmR5uq2GJ46OjrJ27douxYk84Qp6s1TVsmPHDtrtNjfddBNglVcf/ehHqdVqHDlyhC1btjiDO8mcuu666xgfH3c/f+SRR9i9ezfvete7+P73v8/Y2JgrzJrNJqdPn+ayyy5zraMq+ibp1CJ7ls85ceIEe/bscfJqScQeHBzk7rvv5tprr+V973ufOz5BEDj+T7PZ5L777nPf8bHHHmNkZIRjx465cyKvnTp1irGxMW688UZ27NjhlFJyvqR4XrdunZt7YqwoHjOiKjp06BAvvviiQ9mCIHDf6eMf/7hDJ5rNJu9///vZvt3SO+677z6uu+468jznV7/6FR/5yEfcvo2OjvKJT3zCmT7Kov/5z3+eL33pSywsLDhlkow77rjDvW94eNjxgIaHh7n//vtdmvjmzZtdwXvHHXewd+9eTp065TgwMofkHEpbuJoZJQV/FV2tSsJXr179ugeKatEvSCbY1t/mzZtdC1HObVXdJW1W+b7tdvvfpaT6nRycVW8eMVs+ucNC0lC673oWrFYA2oU/GlMSJRX4ysPDs54mgPECUP55n/ocIfl1gq7Sg8N9TmcxkaRjY7By8I5BR8e7wyh0aV5m98+UrraWF+NSr0tIv8hz+7Re8Wsp8qIsevJuJMYU5QJdYPKsbGfo8j0ZeZ5Yya/ReDp33B2tCwuLKY8g8Ilrlh+EH6PCGoYQ3w+pRRH1srVWi2qEcZ00TWm1F10adpa0+YvVf8QfDRSYdAFlDGl7rtw/n5G3/2d6l10EWhGEEfLwaYzGFCk6S0kW55yUOC9SdJ7gmRyFIfQ9auVi54cBBsjTjNdee42FUhKfZzkKjWcy227SHVKI8izSENdq1Hp6iGt1R2yVNGuj7TGtcpQwhjAI8ZUiyxbISjQm7lmBifpIKY0VBU1Qful6HDiDQM955HioMsXcJpFnNJuz7hz6foAxCk/5jl9i0Q/lEBo/CBjoX1F+J0VR2MIozzLCsNwHY00fle/RbrX4zcxZHjn4/wDw6mtN/DCiVq8Txz0UhXEp5MqzhXY7S0nabYqSixTYg44fhhad6F/ORStW2uNQi2ilC6R5QaEVgWfnUJLkJGlqfXXKVmgnnLRE0Iq8g3yV15NXPnT4vk8cR/QPWDPGlYMrieIai60U37PnsWou5fmK+z/z0TfcB0eG3PSqUQ1LJdrVJ8NqsSMoiHBk4PVuw//WWOqNs9SHp/rZss3zefXIzwX6h45bb3W/l/JzhJRcbQFJLIUcA3lP9UlaWj1/+7d/C8DVV1/N+Pg4V111FWD5HGClyUEQsGHDBh555BHWr1/vnugHBgbo7e3lqquu6vKtkVZDEATcdNNNfPnLX3aLlvi03HzzzXzkIx9xsnaw7RSJQnjkkUe6krePHTvmvHB27NjhFvZms+lIs0888YTj4AgCMTEx4UwRpc3YbDY5duwYAwMDzqdHjtHQ0JDjlXzhC19wnjPj4+MuiuG5557j5ptv7kIsGo2Gk+F/6UtfAqwlRVEUbNy4kYMHD7Jlyxb32g033MCNN97o3I+npqYcWiPntdFocPjwYYcU7d69m82bN7Nz506effZZHnvsMcdF+vrXv87HPvYxvvGNb/De977XoTzf/e53+eAHP8iqVatYv349AwMDrh02OTnJJz/5SZ577jkOHDjQZV4oyOXx48dpNBoO/RoZGXHS+4GBAdasWdNFIJeCsTqqESVyPmW+CqIjHLdqi+n06dNdDwqy3aoDt8zvalv3+PHjbNiw4Q+611yQiV8YF8aFcWFcGBfGhfE/3fjvyKKq2N2rolT+WL6DJTlKyGRqEQvfR5UW+8a1mcr/itxUiJFgSyxjxa/VYeT98mTtwnM6qIs8jXaQFSvBltet42oHqXE/LwrXohJkRv5UkZrCmazZFpb7nDwpzdhyjC5QlWBCpTxq9YZVwBQZJk/xJazRUyjfx/NCgqhGHFs1TVTrIar30ltvEPge7bTFQikTPzvfJj07i+95REFAVJKP+5b1sGKgQRS1SfIEjCauWw5HT99F1BrLMXgEfimlLzOi8rxNli6i84Rf/+K/0luz7ZYVKy/C+D66lG/nac5c0yIN7Xab5kKT5uxrzM+fcxV5FMWEUYQuj69XRejSgqwoWJg9a4MwfY84tmhDb6NBT08dP7B8KFUen9i3yIzWBUVeoDREkn+UzhF4Hj1xP7kXupaSwocy4kGVKilV4XMZ0zHQ07pwOWNpVuB7isC3yE9ack+U5+Mp635ci2OU5xGUZOKiKPA87ZDKDqDhobUNdg2CkFZrkdMv/RKAVttQ71lmYxR8nyjuJRCis9Gk7TaRH1Dv7XOZXFnSIkkSkiTFoGgvnua1V1+157anzsDAMuo9PURBRFHGgBTGENdr5EWBTlP7t+lcU0EQgO+X0QsGLcckL92fC0WeJ7Rblhw9e3aWZf0DLF95EXlRMP/aa8R1e/7CSmvvjRpLjf6qbSgh8i5Fbqqtmip6spSfI++pojBLCcHSGqrKuqvtqWqcAHSyqaoIjqAQkukjvyefJW0pkZwLSgDWME84O2L2BzjVzszMTBfKI99bJLarV68mz3O+/vWvu+87OjrKI4884txvwZKP9+/fz4MPPsjY2BhTU1N861vfAuBDH/qQ4+6ISR/Y9saHP/xhvvrVrzIxMdHFV7nmmmtcm0ZaaT/60Y8AuOKKK1i3bh1Hjx4lz3Nncvf0008zOjrKli1beOyxxxgbG3OfNT09zQMPPECj0WB4eNihNEeOHGH//v0MDQ059EaQp/vuu49arcbhw4e59dZbGRoacuRaIeFedtllnDhxwp2X6elpNm/eTBAELntKiLcbN25kZmbGISHScrvjjjvYtm0bk5OTbNq0if379/Od73wHgFarxcsvv+y4O+9///sd0fmd73wnV111Ff/0T//E0aNHeeKJJwC46qqreOihh3j22WcBa4QnxoFg+TbC+5HxwQ9+kMcff9xJ+qG7DXvttdeyY8cOdu7cSZ7nXWaIp06dYnh4mImJCYcmTk1NcejQIUf0rZ5bmUOCziydd2JaKaipfA50rp3qNV1tDy/lxolyUM63bEfMI//Q8XsLHGMy1z5SmvImWRY4lqIJUJJ+AaPtjbUC+wscXm6wK+PJZlUKbwNk2bBeIGIVb7paCJIeLR4nLgFZG/e60ZrCVF+zkL1rjxTdhc/SP+6zygVS59ZVFqykGlMQKIUKAjQQlm0RP4pQQYQpZelhGLvMIlUGHirPWu375cIZhjF+EGB0UbrmapY1bPHzpsEGHpn9PkWKzi382xt79DUial4IWqN1SrtpL95z5xa5yKhyITYUaYukjGTIsxyvpM0WyQJnz1lCYc23jretZBGlDK2FeaIS38uyMnQzbROEAUFUyqPDwIY3osq07s6ibzwf7RXWd8XYYnCxbA81Z89gjCaMQnp6emj09QEQ12J0YadA5PtoL3TFSZotki4URAbyoOHclD1P4eFhyDGFLu0KhNzknGXceixFVhjFtmBRPr4fUp6+sp0XEscR9XoPSil3MRpjyLKcOAqt6s4JuQwoO0+MVjZ7qiSQZ4mdN1naJk3bRPVleKWCzwtCwigiwsP3AnRYKpiiHmq9Ka12G13Yc5iV83Vuvsn84iJxGNPf38+Ki/4IgMGLBmkuNFmYWyQvNDZyhPKc2/ZcliYl8Vo5kj3lQ4DRoLS21gjYm1ur3ebs3BzLV6yk0dfHQpmCbnRBbyVJ/Y0YxpiuwkOKBylyqtB2lWMDr49mkKJEyJMy/q0WlQQHVlVMMqSQqW5n6WdK8SMLWpUPJIsKdBYG2T9ROsnvVj1DqtlM4tK7adOmrhZVlZ+0VGkyMzPDtm3b+Na3vsXtt9/ujtfIyAibN29mzZo1nDx5kna77Yi8W7Zs4YknnmDt2rVdBFWJdTh48CBaaz73uc+57Z04cYJ3vetdgF0Af/jDH7q22KlTpzh27Bhf+tKXCIKgi5C7du1aRkasX01V0TYyMsLq1atddIJIwSVVXRxyT5486dpDQRBw3333uaT1yclJx7UZHBxkYGCA8fHxriiNwcFBdx7EDboaa1Cr1bj44os5ffq0I0Bv3bqVH/zgB9x9993Oq0WiJEQy/Zd/+ZfceeedfOELX+DnP/85YMnWN910E0NDQ9xwww1uPz71qU9x++23uyLpe9/7nmtFXXLJJXz5y19231/GpZde6o4vwL333uv8dtatW8fExATPP/88mzZtcuGmYIvARx99lKeeeoqRkRFXbEgh8eijj/KP//iP7N+/3xVMBw4cYOPGja5Il3MubSu5viYnJ13BJGT4aoFfJSdXCdFCRt+xY4ebx8IFqrbJ/j3j97zb4JnchSHahcKUC5lvi5PyCVJ5oQ12VrZc0aYSqWDoQmgcZ0ZAGa0rBUz5t7ZFjnUDMR1TPLoRHFuA6M57S66NFEFFF7pjiZZmCQdHuApS/DgEp3wql7BPQZGKMqcIwAsD/DCAMtaAIMaPQvp6e+jtiYmiTmCk5weEUc3GICi/I0UpC8PQ8/DVWRbmXiIquU3kC+SeIexZiWYZSWK5GFHgEwY1wsB67rQXXuPcrOXg+EFmi7DCkm+tGk48UQLypMXi3Dl02iYsT+38/CuoIMILwzLk0ccvOSZ5nlEUObVa3UqYhWTrB3ilRB3oKnC0r1G6wCt8tM7wiswWPID2LTKWpRmvzL/CK69Y08Uoiuip12n01gmCEC/0CUtydBwE5NoQkBHHEVqV8n8/dGxtsShw5HZHRJawUN8ed3A8nXbbSvlrJfrV39/v3hPHsaUpVzg9vqeIIuvD4xDE3AaBep5Prgvm5ubJMkEvfRSaLGlZy4C8oN63vPwMjzQx+EFE4Pv09pYqqsAnK3JqmS1KsrZVo9mpYtPNjVLMLbSZW/iVPT71On19faxYvoJCa5rNeVrle6Ioore3B4whyzLa7XZne7pEpQrtTATtzzUqK2xqepaw0OxjYKDkIimfM2fO8B85ZCGvFhLVJ9WlYZtLh3AOlqI9grgsLZjkd6qEZUGOqjyZ6mfK70vhUvW+EcSlWmRNTU05AjLg1FFgEQXhLlR5C0IGls9cqiQTjoXwG2QMDg5yxx13sHVVz6AAACAASURBVH79ekZHR92+Dw0Ncdlll3H06FHWrFnD4OCg42OIDPvUqVMcOHDAFRDQyU265ZZbXKEFuPf+zd/8Dffffz+33HKLUwDJ54nKTZCQRqPhyMerV69m586dDiUQFZXIzoVAW1XrSM6SjIMHD7J//35uuOEGhoeHWbt2bZenzcGDB52q5+KLreHpj370I0fqFtWULNIPPfQQl19+OS+99BI//vGP3THfsWOH4yG9733vY3R0lAceeACwxeuXv/xlJ3d+xzve4QoMIWCLr4yQjwGn6gJ4//vfz7/+678C8Itf/ILt27fzs5/9jOp49tlnec973sMzzzxDb28vzWbTyc5XrlzJPffc4wqO06dPO1Rx27ZtzqNoZGTEFTZynX3ta1/j5MmTbNq0yc1JiaMQHowcHynYZa5KQVqdl1XkVGwH1q5d6xCfgYEBN78kv6o694WDI/v5h47fXeAYQ56lRLWSLGxMicb4GKWsdNRZY9jFxRUQSuEoPlVEhEqBg72RCmm4WsTYAsfecKvtKGM6rSiH7rhipVP0WMfgootkbJEgSzR2CLsQinWBLiXuktzsKWWLGV2glEcYdI6DCQP8ICSOajQaNeq95Q0p7qEeh4QqpTn3MjpZ5OxZW3hoo4hrdXr7Bkgy5RbmRmMZeZZg0gXQ8ywbaBDWLKqRFikQk3m9FCYmC+3+RrFPENXxfZ+6ZzBFG78ssky+SDL/ClFopexZktBasEGcZ8++xkJzFqNzAkUn68k3eL6m2VqkFvey8k1D5IlFfQLfI01aFDrCaENQVkVeEBHFNXBOz16nlViia+JYrHVOXnR8cJQBHefE9Rq66MyPJElYbDZLlRPUSyJ2rV4nCCN8ApuOXrMIQlEiaIL+ecpzLSpKdEcpK8W327EXXhTVyLKMRiMmK0M6wRazcRyjAF0UeL7XSfKOYwLfKwM+NXmJbBmsB49F8TStNCWuW7JuluRgMtudxbaGkrIN5PkhfQMr6elpkOcFWVl0+FHAssYAylOk7YSk3XZeSnmZLF8U5Xwt0VGjDXNz52wbo95DvV4nLMNAm815Zufm8ZTB9wJ7zqU4Q1myt+fbcyUtXZGcZzlFlpMlKcmi3e/GsgHqPaXf0Rs4/i2vGfm3DEE72u22Ky6WPvFV1TfynmrBUv2cpe0sGXKjl5YSnD9hXFAf+dnx48cZGxtzCihZ2CWccamJmbxW/bdsa2pqis2bNzM7O8vk5CRr1qxxEujJyUnWrl3rMq2azaZ7LQhsEvSaNWu6VFniYbNx40aOHz/eJbGX9tjatWtdeKbs5+c+9zkuueQSVwTdcccdgA3BvPPOO5mcnGTXrl3UajVeeOEFoEP+HRsb47LLLnPJ1uKSLDlUtVrNyYKl3Xbs2DEuv/xy933Er0aUUuvXr3fnYmxsjFOnTvGd73yHPM/ZtGmT+06Dg4OsW7fOtRmlfSZo0J49exgaGmLjxo1dBWyj0eDTn/40MzMzrs0jqqcvfOELDkV8+OGHAdi7dy9XX301TzzxBBs2bOA973kPW7Zsccfv9OnTrhCRFtWKFSu6HhTkepXxs5/9zEnSr732WgC+9a1v8cwzz/AXf/EX/OQnP+lCv77xjW9w0UUXueyopYaRMu+azaZDkUT+fT50tOrQPT4+7o6PXG+COFavG3ntnnvuYfPmzYyMjLgk82azyeTkpCvyqyiPIHYyB6uE76Xp4v8j43eqqN70R39i/reP30EQlk/LhpLr4ANeKbEWma1kJFjlkgZX/JgqUkOFT1MiLq5tVC18lvxMZOOC9kgBRLX4waIrpnQKrraiRB1jSr6PyJO11ihPWa8PfKs+KeXWRZ5ZM7gwpKfeR29Z6IV+iB8Y6pFHpBYI1at4RRlR4GmKIqHIFmktNimKkHMLpeFaFuGp0BmJRGW7xKiIQivStMAPPC6+eIhlA28CwI+WsZBktBbnKXLjfHD6ewL+05+91S64piBPFpidsfEA52Z+S54XDAwMsNhskrYX6KlLWylGBRF+GFOv1aiVyM7ZV18kT5q0WovowrDqzSP0lWhGkSWkWWEjBrTutNy8km+lbGyGb/XSdj64E2/VUoXOKMSdWYsnUdkSFJVZUdjFNi/KRPUWRekijNb4nkfPsj5WDL0Fv2FbM3lYA2NsPIPn2X1yCqsKiuh7xHEvjYa9WIpCu/ZTEAQOBcyy1BaNtRphEJTeNnYXFF7JYYE0S1hYKINFdUaRZ0RRjaTIePT//n/5wYn/BthCyvcUeVG+X/lEpbt2FNeJag16enrpbTQsJ6mck56vqMUxQbkPaVngZKVRZJ5nJFnqjqnShkLbFqynfKKy/Qe2qCvygtmzZ2guLDhrBACTaxuloUu+WdkSNKbklmltbRWMldqDLWxrPb38f9/a9YaqqJ555pku19tqCGO1KKnC3tIeWhqQCd2OwtUhRcnS3xNUp+rFU0VFjhw54uTMotCSG3J1cVzqcVP9uRRL4mcj2xdPFtmXaotqdnbWFXRVabnwRzZu3OjQH1nQ5NhVbfTBughL4XL48GHyPHf/32w2efLJJ1m/fr1zqAXYtWsX3/jGNxyKAziPlyeffJLR0VEOHDjAtm3buPHGG13rQWIOBgYGuOyyy1w75+1vf7vjG91www0cPnzYFWCNRoPVq1e7Ikqe/g8fPuxiBprNJnv27HEF09GjRzlw4ABbt24lz3OGhoZcAvhPf/pTDh8+7ByV5Zzcd9997Ny50xW9d9xxh2v1HD16lNOnT9NoNNi4cWOXRFu8iD7zmc/wsY99zLkVi3JL2nIbN250HKG7776bdrvN448/7hAasHJ5kUZv3bqV7373u/zxH/8xQJc3zvnGO97xDn72s585VdX5Xt+6daubr6Ojoy5Go8rxkrlVLb7lvC99OJAh0RFyDpciq1IwSWFdRUClTVVFRqvHV86R7Ldsu6+v74KK6sK4MC6MC+PCuDAujAsD/jt8cK79P3aA6ahSRBFlwBF4ZVQRFdvRV+7nXaqnCoJTfa0bwem0rsB0Wk0l4VgQHFUhLWsM2rOtKqWN5YY4To9tNRms9b4vrFJK92Kdgy5AqU5wZhQRRQH1wGNFw6PmnbWf05oGM49n2nhFimcKCt8+cZlwAIJe0Dk6W8QPPDJVtit0jI+Bok2hM5JE1BoGvJienn7CMEJrjR+W/iaZx9xCQqvVJss6uYvDqwZ47//65wSBh20GFuSpfdrNFs6RpgnaFCjykqhbGvphUY4wiojCiEhZZGDqueMUrbMonaOKhCiu0b/cci76VqzC77uIxUQ8XAS1swoi37NBpmjTQXDcXDFQ8lXcfCn5Uao8L4WEcOYZprCk3CJNybM2RWqVXDpLKLKEJE2o969kePR/sTMxbqCtTsxySJRyCI7nBXjKOnGHYUxvbz9ByR9K0pQw8PGDgMAPqJcKIeV5JEmCLgqiJZBxEPpkWVpyaXLSxBKJk9Y8Os8IwphChTzx/Qn+66/tk2Lc00etFtNOE+abTTCKoOS01ePYhr/mGWAsTwao1+vWz8fziMOIeq2GV6I7eZHTarUs8oUiL9tarcVFsiwnzzPyPMfknWsp8H1qtZgoDEiKohPiSYmaFYLg5I5bZgnT5bmoqA4B5xP0zOO73/AsqiqMLkoj6LZsX5oLBZ2nzaVRDdVRbVNVW0rVsZRLI34f8uQraMj5VF7VdppkSy0lQy/9XWl/jI6OulZGlXdQJWYGQdBlnFaNexBuhTwNy77LZwqyMzw8zMmTJ7n88svZvXs31113nTt2e/fudYTrgYEBRy4WtODNb34zW7du7eKNfOQjH+HWW2/l3e9+N7fccosLUwTLuRC+zac//Wn3ni9+8YsAfOYzn+Hzn/+8I7LKdzp58uTriK3C8zhy5Ajj4+Pcdttt7j1C0gVr+tdoNBzJWKIVRkZGOHz4cJfj9bFjxxgfH2ft2rUcO3bMHdcdO3awbds21qxZw+TkJAcPHnT7cOjQIWe4WM1nEmfk48eP8+qrr/KNb3zD7dPtt9/eZZx4vhHHMUnpj/X7xqWXXuqUV4Azcbz//vt57LHHmJ6e5sSJE3zuc59zHKnp6WnWr1/v5quglGIOKS3Aaq6boDlL0VTxvalybapt2Oo1UjUOnJ2ddfElQuSWn1fbVNWWlKgGly9f/sZnURkUha6APKWRnn1xaUFSLUDKIqTyWvV1WeiWFjavL3Je/3P7twJTkjxNd2SE0Rrf9/B9RZF3pLJ+4BMHsU2G1oo8FwddTRwGeEENvxZQjz16fXuB9qg2nn6Z9uKLeLNnyDNb4BT5AsrzCOM6xm9AsALll6Z9wQCJehOFV6eVt/AyjQ46qhml26iiSXtxDl0uQmHUQ723n3ZmmJttkSQZWdkqyLQllIZhRNxXI47t+RhY2WMDR41dlKke78AjChqOqB2YjiFjURQEvs2PMsYumGCLi8XmOepxROwZVN6i+ZoNfgt9j4H+FTSW9ZPnDVqtMlDTVwSelXZ7KMsJcaaQni0+VRnDUTlHYtaoizJ00/GkNCbPrSFjkWGydkWNtECRtojSNkXS5OVfWPJd/6ph4mUXobya/ewqkRjfuWOHYc0S48uDFAUhnqcIfSstl3gOPwiI44g8taZevu+RlMXA3LlFwFCv11HKSC2H0rkNY1UemeeD7/OmVTb1vbce0VfzgR6a7Qa59ohL/pAxhjQvyrrQpyh3Lk1TPCAKQ4LA7l9YFt39vb1kvYaFZhNFD2Fsi9CsKGi3M7TOybKENMtJksxtrzCGdm4obJ8Zr1TwKU9j/AJV5BjjOy6Sr7U7Pyov21fSjtZFR4X1Bg1jDCdPnnScguoCJzdSWbSqBcBS3gx0Fzkylkq/l3J6ZAjRUbad5zZZWwiXsqhKa6q6TRnCG1i6D8JbkLZaEATuu4hbrYQ+LuUSCd9BFgj5nrItIWZKe+Hw4cMMDg7SbrcZHx/vkvgKAXXdunVMTk52LVzj4+McPXq0ixO0atUqxsfHabVajI6O8uCDDzpuzNjYGJOTkzz++OPs2bOH8fHxLpmxyHzvuusuJ1WXc7x27VqX/yQLZJ7nfPSjH+WXv/wlGzduZPfu3YDlv6xZs4Y1a9YwMTHB5s2bHW/nbW97Gw899BBnzpzhyJEj+L7vWj1SEMqCKp89OTnJxo0bCYKAQ4cOdRkHbtmyhaGhIZrNJocPH3bmezt27ODUqVPs2LGDu+++m2az6dpxEi1x3XXXMTU1xVNPPcW2bdsAW8gBrvgQufzScM3zBXQuLWaArv//6U9/6si69957L1dffTV33XUXzz//vEtyl3MrhGIJtgQct0bIvzJnoHOdictwtQiVtpa0e2XeSdvq7W9/O2fPniUIgq65JO1bsQGQIdeQPFDIZ4kj+B86fi/JWBedG5s2FRt8UVOVRFnxinEISxXdMZXChw4H5/zITfe/O7yZ8mfKxjAoZdUtyuCeLgPPI/RDq4zSmii2KAWIJL2w7/V9avVSnRP71GoBvmrhJS8RptOwYFU9Jpsj0S00Adpbjgrfanei5qNUg9TEFF6EF64kM5Z0mSxkLC62yXWKplwwyuwhD4PveejCsNjUpG1L2syyOdLitxTG2GwlP8IrXaCjeg89vb2lcsdQtO22GmHd5mR5IR5WBq9LR+AoqqM1KONhtLbp07qDrPieJd5GgWHhNUty09kivT11vCAgy30KkxOX52Lu1d+i/JCBt/wngriBHwjfwdoEeMoSbwPPwy9RD8/3LdncGOsoXD3vUGYm6e4Cx/oM2POkNSbLyDJ7saXJInl7AZOlFGnLoScvv/gC/Svn6elfhYp60L7vFG2+8lDKJ6rZiIswCivztbDnQmvCsJMmniRtDIbA9zEU5b6qzhwv97ko8g55XufYwFdDni8y0F8j8exrgUox+SJKeyyL64RxSFGUMQ5K4/XGKL+GNhGZFu5QSJImZOWFXWicGrCVJPjKp1Hvxfc8Mm2LzXqtl+V9DfIip50skGdtjLZFd17AQjsnLQrn2C2FbZHbn+nCd2iNXHta+RYF8wpynUP5HguT/tvI7x86JMMJOot3lWhcveHKzfp3+d1UeSRLf6ca9VBFe86H+ghHpZqAXOX2VLcrf4unTvVzpIATZ2BBF2QbMzMz50WWpqenXRBiVcYui0410VkUOtu2bXOFXLvddsUh2MV9cHDQKZHkiXt4eJj77ruP3t5ex4EAm8gt3BsJfbz33nsB2L9/P9u2beO+++5j+/btXWnU11xzDZdeeiljY2McPnzYbU/It3v37uWGG25wEmvZl6effpq3vvWt/OhHP3LqqtnZWfbs2cOmTZsIgoAnn3zSFVmbNm3i4MGDJEnCyMhIl5PxxMQEQ0NDHD9+nD/90z91x2779u3ceOONbNq0iZmZGQ4cOMANN9wA4Ai6zWaTbdu2uUJKVEZ79+7l6NGjjI6OOmd5KVquu+46rr/+esevqQ5JQr/00ksBW6j09/czNzdHkiQOKaqOZ599lmuvvZZXSx+s8fFx3vnOd7pIC0GhwErpb7/9dm688Uampqa60uplnp08edIlh8vPDx8+7AJPh4aGXEEihYtci1KEimO0XEdVl3D5WZZlDpmR16rOxYcOHXIcJXkgkCJ0bGzsdcjnHzp+N4JjrG+KrixMUqC4MGHVkZWaCsLzugJHCaqzFI0pN1MugVWvOEFmPM/rQoNUGQCqS+KpH0m7ybY+ojDCD0o1jZY2GYRhRBAF1KOQum8PoJe/hkl+SzL/K7J0ntzz0KFVMFF7E6heirxGmnkkbTuZ221I06JsA6Vok2HKRVUpr9xHRRAGpEmGLhO7jbFE2yy3eV15ac2fFwVGefaGFAf0Leuhp2HbWkmWkySLtM4tkGYptdB+n94/H8IzNpjRoNF5Tly2tbTBhi0q2ypUuhOTUZgMkxWYbIG5ud9Aai/C0Icgim3bQyvSvGOYV/M0zbOvEjSm6Rt8Kz09Fp3INRR54uz+Pa/THlKeQnkK3/fsudWdItUFq1IWrxXlDga0Kc0VC0NULqphmlDkqSUsF4UNBQXytMliq8X8zAwXDb3Zeuk42biPH8TUaj2EYWgl+5I5JYuIsiGZsk+e75GlCYUpytc8p24Y6F9ehrEmZEXuzmueptaPR8G5+YSpqRcdolePY86agOb8An0Nj4suajhU0RQFXjEP3iJ5blxhVqv3EfXUUV6drFCkWUFR2M8qCmWLtsCHQFMq+YkDQ1GkBL6itx7T1Alp2b6K4zq13gZpXpClKWmWOQQzy61KShd2YZUbdp4XFL7G1zauhCx17Ue0wSXcvoGjSvyVwmCpQR90YheqxVDV2l2eBqsBgdUiRp465T1ysz5fW6taoFSh8+rN+/Tp013tNIHiT58+zfT0tFsgpUATuW31PSKdXUoMlifdoaEhTp48yejoaBfacfDgQYaGhhgeHubo0aNu0ZAF7Oqrr+all15yn/nAAw/wj//4j+zevdt5mMhniYHdhg0buoirIlPftWsXzz33HEmSuMJDDBJvvfVWms0m11xzDT/84Q8Bm6e0Zs0apqam2LRpk2t53XrrrQ7t2Lp1K0eOHHFIzXXXXcfk5CTf/OY33bmCjhHisWPHXFr5I488AsCePXv4xS9+wXve8x73PeT7C1L24osvcs8993S1lC6//HLe/va3c+LECaanp915HhkZ4dChQ6xdu5bp6Wl3vD/84Q9z6aWXsnv3bg4fPszp06d55zvfCeAMAA8ePMjHPvYxNmzY4L5vdTz11FO8//3vB+Atb3kLv/qVtXm44oor/k1isRgxAl0kZbAFjxSqExMT3HbbbRw4cICHH36Y1atXO9RMMrckVFNiJE6ePMnQ0FAXIllVDIr9QFVdVW3FCplYRvVaFM+iqj2AvG9p4Kcov0RJtfSh4Q8dv6dFZawj6vmKlnK4UExLyunwa6rbMZIpdf7hCpkK57nadgJKQzncgqRQxHHNITNg2yK1sG5bFWW7RBauKAyIA4+ARbz0JYqmVRwl2Wu2YIsuQkV/QlrUaKX2s1uLijTRpGlOnnYWhdyIrFiDNhT5uQ7SkNsQTkUZ4OiFbt+NsUoapTx83yOKS++V3l56e3vxVIYxOXlhSEp0R+uAwBjSLCVdXKTWX/I0euo2e0l5tJI26CXtIY/SJM76rUgDSymNTuaZn3mRZH4GXVjUx/MMvgrI05Q8y/H9EKPsgpuZgjgISJpn6ekbRIWlk3F9GZmnyu/qlWibnHOrPrI5YwovtEUQ5e96osTThds3QebE20hXiqKwzP4C8JRPUHJSrL+Nod1qkaZt237xRO0Tlhdnnd6eBmFcc/tHEJY5YwXGdAoc5YEXheRZ5pApkbFT+vwYXVBkNnHdnqOCwijyouCXv/41v33x186VOAhCwmWrSPKAl06f5ee/PM2yZbaA7untwQsUgaeJfQWmLLpn5/FKNVgU151Ls70OQowXkmYe7ZZxirY0zq3qqjQ37G+sQC2TAFFbRMehJo9CCq3JyuTYLMtI04wsS8iyjKAs5oqiIMtt5lqe5+B5eKKwKor/EASnmh0l/XvhBFSzkZbe9KoeKUuNAas341OnTjE0NOQURzLOlyMlf1e5NtWiamBgwBUcshAIn6ZWqzl5rXAY5D0zMzMMDQ1x6NAhZ14HOE8WUZhUW2izs7PMzs4yNjbW1V4QddDevXuZnZ1l7dq1bmFfu3YtBw4c4N577+Xo0aNOZvzP//zPfPzjHyfPc44fP87U1JRzyn3ppZecud+GDRu6pMnXXnut49F86EMfcg7MO3fuZHBwkHvuuYeBgQHuvfde/vIv/xKwSitRFB05csQlYk9NTTE+Ps7x48c5cOAAhw4dcnlKgmKBVTrNz1vE+vrrr2fv3r2sX7+ep59+2gWCgi08Hn/8cTZv3syWLVuI49jxcq644gpGR0f5yU9+wsmTJ11L7Pnnn+d973sfl1xyCe9617s4ceKEU2WtW7eO/fv385nPfIYnnnjCLdhXXnklzWbTFT379+93C/WhQ4d4+OGHufPOO/na177WxcH5u7/7Ox5++GEOHDgAvL5IAWsGeL4hWV7ikbV9+3b27t3r/HEmJiYcOjMxMcE111zDV7/6VW6//XZeeOEF58Vz5MgRbrzxRte6rOaiiYOx5HhVkb1Go+EK9mrRXS3wl3pVjY2NuaJpqTFlu91+nbeNFF+CmlVfP99Dx//I+J0k45VDf2L+y0dvp9KYel2R09WyMnQZ4kmRIrybpUWL/I5LJjfGtQNkwZQ/hRQxyj5RW2v3wgZDRrYN5YeRDUTMMzxliPyIqDSXC2haDk0yD0WbvFy0WplPs6VYTD3aiSbLDULPyYuULGuTZ5mF8eXGV2TWG8fYiHJVQZ60Uhjl43k+fhDih7Uu2XItrhPXbfCkLKpaWwRGF4Y4qlGv1ymM/ay5uVkW5xcJlAZP8/a3jQDwgf98KcvqNbI8o520bcEXWTm/8nwnwfaVh0aTlDfZdPEMr/7mpzRnXiYI64SlKzEmx+QZCo3K0y4OVZFnxKFPY1kfK4aG6VlhJdpBz5uIav023sDvSJzt35aw6nmWD+X7fidQVSmCwJ5Do3F8IwwEYUBRWN8hzwucf02W5Z35YzruwlEUl/PBFid51vF0QFnDviiKCMMYT/ldrteo0uixnC9gW3jGFGRpgqes43Eiu2c0Ok/JkgWS1gJoaRXMo/2Qswsp3z74HebOLdBbInDaaJK8IFUNPD+m3U47xoSeB4FP4Hl4uiCQGI5GD/39DcLQRiIY07EHiGo1avVlKC/CmLBsotnvEwYRcUmMl7YgWP5ZFAYoFKkx5EXu5r9FFC1yY//uLO7uZ3nuiNX2XFh+0r8+/Pk3lGR89OjRLrLi0nbNUg+aKroii1AVXl8atlkd0v6S7U5OTnbxCGRUf2dpIQS2+JBCTOIGhMwp+1olSss2pfiS18QE8MiRI7TbbdcuqXrFCEdBvv/k5CQTExNMT0+zbds2pqamXNtGYgikPSVto61btzojvampKU6dOuUKM/Hu2bBhw+vOj/BFrrjiCnZUwjGFn/Iv//Iv7Nq1i6NHj7rvtG/fPq688kp27NjRVbhIATg1NeXI43K8BE2bmJig0Wi47a9bt46xsTF27tzJ6Oioa/NBh9MzPDzsDP++//3vA7B8+XKHEMzOzrpiQCTof/3Xf82+ffs4fvy4C+I8c+YMf/3Xf82xY8d4+eWXee973wt0S7dXrVpFrVZz5+nAgQN84AMf4Ctf+QoPPvggzz33HF/5yleADkkbeF30QnVUjf6W/vyZZ54BbEvpe9/7HldeeSVPPfUUb3nLW1xr69SpU86t+J577mFwcNAVgULMn56e5tChQ44fJO+7/PLL3VyWa6jafqqS/KsxDEtbVNW5LX9keyK9r5LtZXuCYMr1upQjV6/XL8jEL4wL48K4MC6MC+PCuDDg95KMseTC34FGS+tJMjgVWIWV6v4dh9LQ3X6qojQKhfQQlOq0l5RSxFGpRFKeRVCMIQpDoihCQneyvEAVBaEyeGjIzpKkpeQtTdCZJtUFZ1twznJUSVuJbTMZhSm0lf+Wyp08T9DSGinJsnYnrIux73mlg7PnpOUqiAhLDhBo/DBkWWnNX6/3UBSaxVaLJEuR+jIIQ1RYs4ZuWcLMy79GUpSiKKaxvJ8oDOiJYeSPLXxXjyM0iqKw7rRKeXilBNra8Cp8VaqICpstBXD25WnOzZ4linuIe5ZTCP8lz9AkBB7kCrI8cSZySZKhi0WCuQVameFPytZarkM8LyKqNwiDqIzuKHkOYYAXdYi52nT66UrgFpTlSpXojyA3QWDROz+IMFqk2lk5T7AhpjIplcbzy216EPkhtXokMw/wyjamAaUJhGTseSWqaH8tadmcJQ9Tok0WAUuTgrAMRc1yTZ6nZfvKBlza7+PTTgsmf/UbcpS1AigRR+OFaFPQbp8jjHvxvIBW6RBtQCSp3QAAIABJREFUTIFPQQZ4Xui4Q2fm5vBf8qjXavQt66W/fxm9PXb+LywscObMWZSnqNVjgnLeGROSRj3MtyKM8qhFET2la7Of+9BqEYUhca1G4AcYBBkxKGVbnV55TqrXpSBghdakpZrM93337zdqCDJcfXqEzhNhlQNQlWfLqLacqu6nQl6VJ/eq6kjm48zMDCMjI13GZtWxlGNQ/Z2qJFzIs6dOnWL16tUONaia+VWDQauOskKO3bRpE0ePHnW/Mzg46NCbqampLrRDPkPCIQcHBx0hWsInpW1VVcA0Gg0mJiYYGxtjdnbWRSuIzPub3/wmU1NTjlgM8Jvf/Ibvf//7nD59mg9+8IOOR/KpT32Kq666il27drF9+3aSJOGuu+5y79uyZQuHDh1ysRBgkSdpXX3xi1/k/vvvdy0vkbEfOnTIGeSBjYTYtm2by7Vat26dUzAdPXrUIST9/f287W1vc+iJOP6CzVv627/9WwC+9rWvMTExwVVXXcXx48f57Gc/6xCcAwcO8C//8i/ccsstzM7OOrdiyZh64IEH+OQnPwnwOjTG8zw+/vGPu8gXsJyj6elpdu/ezWc/+1ne8Y53ALBmzRoXjgqvb13Fccz69ev50z/9U9fCEhTpqaeecmiQtCU//OEPs2vXLr797W8zNjbG2NgYfWXO39ve9jbHk1q/fn2XIeRll13m5mYVIRQEUH4mc7Wq8Kty5mR+VQ0tq9urGmBWUVKxRqjmh8n4D+fgaG2gSgZeUpycb9gFDCcNll+rFjny/6KUUkqhTCf3R2544leTZ/JFbRZQEAYYY2i1W075ARD5GmNSivwsuihIMruAN1uK+QXDYmIDE4XPQZGR5wlZnqKzvGyJCNfDs2GMQVxyO8p98wI8PyQIQ0tcDiJ8CaD0fDxPEQXQ21sj7llGa9EuBq1WShSGLFu2HEMnAyvPMstTyg2Bb+jvW05v6cuyfOBNmHyBXBd4ylAvCdVeYMMiEQVTFLnWB9hiTBfWa6bIUubOvAjAudlf233v7SdXiiIXgq+hQKH8AD8eQBUFScsWeiZfIM0UaWH45a9eIs3tPgy/FQoDfZ7Cw8eoEKPl/Hr4cUgtCDCmk8oOHZKxlqK4nBMiiVbKRiEYrV36d70WuLBU3/M7oVflXOniGZWFo+44MQEFeZq6+aS8EJ3b4st6FrXK6ZBCXMMPY7SBrEzmBishpyRAK9UhvodxzOR/O8VvX3qVlasu5kxRuAgF7fei4gYhCdp4hFGNRhm22WovoDD4Sln/mbLY9DDkacq5JGX+3DyvvnKGnrIHv3ygn+XLe4lCRZJmtBbLm1HUg29SsiKj0JpF32e+5NNEUUS9VicNC1pJaj2QIlG72fMTBF6XV5HkedlzYY97KAUqyuWPvZGjqqYRlRF09+gBF01Qhcrl5js8POxukHmeu8JGfre6DXmPSLOlMJGbqnBohPwsPjTQKTzyPHd8GxnVG/TQ0JD7nKUy3aokV9Q+tVqNNWvWuAVfPkPIpFUCphyfmZkZVq9e3UWUFXt9iWWoLhQnT55kfHycU6dOMTs768i6Ivu9/vrrOXHiRBcJ+7Of/Sx33XWXu2dJ4OPMzAxf/OIX2bNnD7feeivr1q1zBNZHH32UPXv2uKJECLm7du1i7dq17Nmzh/vvv9/xh8BKsS+77DL27dvHwMCAk5yL9874+DiHDx+m2Ww68rYUCXEcMz4+zkUXXeS+609+8hPHgbnmmmtc8dVoNLj++uu56667+OxnP8uuXbucRPuJJ57gtttuI89zLr/8cqcAO3jwIA888ABDQ0OOG/P5z38esIWOyLevuOIKVq1a5RRnQooGSyyWYmz//v28+uqrfPvb3+bOO++k1Wq5wgxsW07iHWRceumlbN++nWuuuca1I7/73e8ClkC+c+dO+vv7GRwcZO/evS4WIs9zxsbGXLJ7VdkkRGORii/NqZJ5tZRsX21DLeW0VX+n+lAgmWvVIS3GKvem+oDz71FR/U4OzopVf2w++L//feWXS+VLyReVEErAFUGeEaKr6lqE8Cq2+ZX3WAt4z3FvTAXBsQobhef5BL4kOmvStEWWZ2htCyJRkgQqITALKJOSZB7z8ylz81Z90kralk9TpOiscPtrjLL+K2iLeCivJMTam7/nRXhBiB+ETrodBjX8IED5Cj8IqUU9RCVqUItjenrqKFMwf26OdmoJu2CLnyRJSbME5UFUIi5R4FGLPfprAXE4T67P0k7sIn2uqUBFtNu28Lp0tZWqv2P0klLCrwnCqCy+Sj5GUVhfmjyl1Vpk9tWfM/vqlD1GUYjvx+TalGqa0genKDlGyhDFMVEQuZiLdqvFubNnWVy0C3IUdlRrF626mHdetobegTdhVI0wkJRvG0IaxZFVV2mLfoA1VvS8jgmjm19KEYahCzy1pGMhidfcYmv9aSRDywNlybamVGG5eYayBG9lpdzthXOoUo3khT2ooI5RHnm6SFpmdaWLc4RhRNjTR5Yb0BkykdMss3EIWpdya3vsXnntLEefOU471fStXEVUW8ZvfmuPt/IbtOijubhI2l5E4VGvN8pjpFhYnCdZbON7ClNGhGidYQrjth/HkSvVsqIgDEJ66jVWrFxO/4ANX1VexPziIq12RuiHFDp315IQduM4LjOqAqcMq/f0uEgKS+7upImneVaaB+ZorSvkW0s+/r+++qk3NKrhxz/+sfuMqakpRkZGutQdMs6XMC7jfIZ/8p6lZMhqIVPdXjUmoVqEVMm/VY8eQUVEWSTHW0IKhbQ5ODjI7Oyss7qXbcrfu3fv5oYbbuji+gjBU2S0VbK1yGpPnz7Nnj17mJ+fd+onyXqSQkb4KrLAHDp0yC14wtMQFVWz2eRd73qXk4LffPPNfOITn+DrX/86V155JYODg+zYsQOAP/uzP+POO+90PJCqYd1DDz1EEAT80z/9E1/5yldccTE4OMjatWvdMTp9+rQ7RnfddZdLJz969Kgjwx45coTt27czMzPD5s2bufLKKx060Wg0uP/++90c+Pu//3v27dsHWHWTyOyr5OMkSdi1axfT09MuTfx973tf11y65ZZbHK8KbOEiRYvneVx88cVdPjbV8eY3v9nNo+eff/68vyNFEljDxH379nUd8+oQkvFtt93G+Pg4w8PDvPvd7+bpp592+/j1r3+dBx980Cnvqryn1atX8+STTzIwMMDQ0JA7ridPnmRmZoaxsTFH/pb9rqIv1bkvKr+pqSn3QLA0EqVKzF/Kq5Prqlr4S1SEXCPVa7588P2D7jW/v8D58Kddu8R6l2A7K0se4JTnNDL2/8t2gntfWbB4lUIHyg2aMhNKdZQ2dmGzDqtplpKULr061yh8wiAgCgNCL8X3OjLs1oKhOZcxvzBLkiZukTBag8kRFxYxg1Oej6dClO/jBQY/CAl8O5m8KMaPQ8IwsK6/JZm5XosIgpg47qGnt0bgGeccq7UhyTKyPCMvNLmorYDAUwS+ohb4+KaNEX8c07bGe9onyTRZ6pMU5VO+zgk9Y02Wdca7L/0zAP5k1UqKPCeKI1QQWD+gsiDRRYYiZeHcIrOv/ZrZs78iKIusvv4V5EVBkaVkRU67bY9dliYlSmZs8RXGrojQeU6atJk7c5YkabtzH4cWcRlYcRFvueTPeMvo2wniMo077LEp2WFoCbKV41CU2VOCWHTmgyEoDfjyXBZoO598PyTwA0d2lfdEUVQSjK3cXIFz47WqJxuYanRGtniOZN6aNRrl07NsEC/qJUvbtJvWD6ho26BPv96HH9UxRYYu5dZJ0qYog1fzXJOViNThp7/H6VdmWLasnxUreqn1DzDXtq+9+socfQN/RBb0MjeX0Ww2KbDHPKr1UAvrZGlKq91yCFeWtdFZyyrJigKKilu3hL9iQ2HrZd7Usv7lLBtYDsqn2WySplmJatkhN6o4junra7icKt/3CcOIer1uHzRU50Gj0Jo0y0jTlKxaDGuLPu77P7e94VlU1aJD2khLUZoq6RZe72wsv191ZZVtVYuZpX4yS9tPUiDJ+6oF1VLVVvWpWNppYjJXLboEiVoaVFhVpMjvyvar+yIFD+Dk6dImE9k32OJnzZo1Ls1cUBUpGqvHrSr5Hh4eZmJiokvCLgXHN7/5TefdU20dHTp0iB/84AfcfvvtXHfdde48TU5Ocv3113PLLbewfv16t99HjhxhaGjIBYVW9+nYsWOsXr3a5U5Vz4m45A4ODnLxxRc7P5mtW7cyNTXFxMQE27Ztc60rsIWeFBE33XSTk7AvLCywbds2br75Znbt2uWKQbD+PHEcu1BQKWpuuukmh4Q8+eSTXQ7K0FFLSaK67N+LL75IURTMzdm8QmnvbdiwgYmJCVeM9fb2usJR5NfDw8PcfPPNjui8fv161qxZw549e1i3bh0HDhxwx3XLli1OtSfO1jK/JiYmGB8fp1arucRzmSdBEDiJdtWJWnKhBKWstk3FsFKKk+oQ8rEUPksfOoQgLvstnj3S6hWVFnSu9T+0wPk92I/BU4Uj2tgFp/xjFMJvACq+OPZP1e+GUl0FnZuj257utKiMMRWlRk47ScvFyhCWqEEUhoS+R+RnBP4iOi+YPdtxml1sNcnyDFXYQMeOl46PUgHK91B+4KTEKggJgpggrOFHdaK4RlwWMkHkEcURjZ469Thy1v1+UCMIPXxP21Tp1FCEZXtBF4RY9VAMKFUQqrKNoBfwigXQNrgyzewC1NY1Ul3DeBGKgjgsqJXbC3NNlmnaWUYUaBeaqUvHZvFfsU/fpXlb1iJLF1mcP8O5136B7wU0ltvwzsIYcl0+kacpWfm0JQuYxGxkmXZojFKGwkCjr5+s0KQlEhMGEcv6GszPvcbU8wvkyQIDF18CwEUXX0IQhK4i9sPABTkGSrkUeSvnr8y4siMqiEJYGjUGpeMw2AvFtZqUsoGoqFJiXjjllXU7lMLabsOZoRct8vY8nlYYCut7A5gyHNRkGcqPbDq5FGa5Nd8Lwhr4Pi+dfhmAmddeA2NoLc5zLjQEMaysW4fh2sXLyT2fMK7TF6foi/pRni0CW2mBCizStdhuMT+/UF5C1gohSRJ0bl2Ss8Qe8yzPLV+qyMFo0rIF+8qrM8zOzbOsv5++Zcuo9/a4FkarbDWGYUiapcycOYNf3kBqtTrL+vrIssx5BUHZGlaKwPNRUUToBy7tPMvPH3Pw7xlybquqp+qCXx2yaANOWVT1wamiH1XXXzHgk/+XIUXC0qKjivIsfUKtFlxLpd3y7/P59Yjcdnp62sUPyL6KRLZq5icLuyhQxEUW6CqiBOGpmqlVv0PVMbm6bxMTE05KnOc5R48eZWBggBtuuMEttmDjBsA+8csf6Mib/+7v/o6pqSlmZmb4q7/6K/e+xx57jFOnTnHfffe5lpKgS7fddhvbtm3j5MmTbr/Xr1/PQw895BAGKdi2bNnCyZMnGRgYYOfOnZw9e5blyy23cXh4mOeee45f/OIXbn9kf//hH/6BRx99lJERG9UgfBygy0X5hRdecK2uL37xi859uFrE3H///Vx66aVkWcbo6Ci33HKLM0Tcv3+/4+p87Wtf4xOf+ISbayLvF/6McG1efvllNm3aBMCDDz7I8PCwazsJV2fjxo28+c1vdu/duXMnx44dY2Zmhna7zY4dO1wBOjU1xXXXXUetVmN8fLzLk2b16tXu/6vXQZ7bZO/p6WlGR0e7uG6Dg4OuYBKkUOadtG1lW1VkU65J+Ty5VqWAufzyy7uu7ZGRkfMWUbK9f8/4vUZ/7XbbFRdhFBH4HooCg4/WHWt3IQnnZaKxgQ7Ko8AUxvXyZQjvpigKkiSxN3ThxiiF5wXUwoha6FPanuD7OcpLSds5r72Sc26hTZrZhUHrDKUVnvIh8PF8z6EQyg8tvySICKKIsJRUh1FEXKtTr9WIwhph6OP59jvVIp/eeg9xFFsTw/K74kOepbTThLQ9T1G0MbrtDpopCsIgIM81SaFolV85zTVJGrDQ0uRFTBSU5oCeR9Tj0R/HmDSn3TrH2ZZFFFqLmSWgFhkr+2u24ASMzghrddI0wWCf5pUs0kajtOLc3G/RnseKlcPk5cmwEndDq52QLC66YlOe0nVZcOaeJi+Pg+97FtXwfRrLBmi37YLphwEEEY3+5cyfeZUXp35OWh6iJGmzfOXF9PUP0tOzDE9FTupcFAbPt/4y2uiunCOjbHK2MbosersN5aqcLRme52FM6cJrLDoFkGeJdSsuZeWeHxIIQXohIV08R2Agqvc6x+uiyEmzBXSW4oc1tMkx5faKLLEIYlQnSTN+XN4s55tNgsAWB81zbbI8oP/icpHsX0EjgnRhDm3miWoFnm+f5C7qH8KEy0kLWDU4wGJJBNd5jiEkK6CdpiTtRRcX0W4lNg8rS51pH4Au7IPHufkmzcVFavW6W5T7+vpot9u0Wi2yPLck6pIH1U4T2jPtEtnpo6fHcr+CICAMbE5X4PtopRwvJ/B9kmpV+gYMebj5twi+UhxUR/UmWXU5rhYl1e1J4bFUbl5FfKqE4jzPmZycdDfgKtwufBkprsT3AzgvzA508Xfk6bqK+giiIn9kSKEmnCB5rdFoODRFUClZaC6//HKCIGDPnj1s2bLFkUrHxsa6jA43bNjgODjiZnv11Vfz+OOPdx3vU6dOOR7MiRMnXIEzPT3Nnj17CIKA/fv3c/ToUS65xD7k7Nu3j9OnT7t4haoEeHp6mn379rFv3z6ee+65rmO+bt06jh075hAosAXO7t27+dKXvsSWLVtoNpv88pe/BHBSefHw+dCHPsQLL7zgtikeNeLrI+Opp54C4Ic//CGvvfYaK1bYhxJxDQa68qF6e3t59tln2b59O1u3buWee+5xRaC0oT72sY/xne98p4s8/Nhjj3H33XfzkY98hEOHDjkkR9qwd955J4cPH2ZiYsJtR1AlOeZCgL7tttu47bbb2LFjB7Ozs3zgAx/gyiuvBDpI1tjYmON0iUnj5s2bneVA9SFA5pNwcKAbnZTztTQ1fGlsQ5VsLNeEtMOqDy2CLlWRHymqqmjtGzUuyMQvjAvjwrgwLowL48L4n278XvzH93102aJqtzPytE3abuL7EVGtt2Nx71kliNGlnNr3nIw2t6mPLptIUJwsy8jT3LVWlOfZtgaWKxBGHgEZNT9zfJ75hYJz59q0kjZ5kYEpnJFe4Id4XtmO8n3L/wgtUhOENYIophaH1Gp16nXLQajFIYGvUCYj0Am+pwlLBVMQeRTFAs35OZQXOnd6XRRkySJKJ3gqJ/AMnme/Q1oovLhBM4HmYsZiO3chikr5hH5AvdHA9zTkpRw9XSBfXOBM6wxRFJNlGbV6SaDr6yFNCvK0xcjIxc5B1i9JxYUuXFSCc5xWHqdf/hW+77PiTX+O8TzSRfvUUBS2xZEkSSmJlxaVNX/T2qALmy+FPXTkuW3deJ5H6Af09trq3Q8DPD8gqPWyMu7h7Mwr/Orn9gnk4nSRdqtJkrQYWP4m+vr6qcVlYreyBGPf963cu+IpYCXfnVamPEEprFzZ930XJ2DnnVc6RXdaXi4I0mjyLCcIIrLctg2NJyToiKJIydMFUAZTlOiStooyXWToIkVnGZScIV8pihJZ/OXUJNO/ebH8PgGF1iwsLhLVaiTzbRaxT0MrvT5MT0xv7wB+VMdXhla7We7eHFHQS6BiVJHTE4jmq4XR83i1BroRo00vacnxaqc5SZL8/+y9e4xe1X3v/VlrX5/L2GN7gCGeJKZxi31wGqdxT8yLI5zKCOeNUQw1ilFAIakRrSAKUKIYhapEgKCKTyAHSxDhJkTQE6KQ4KhUEMUt7os5TF6m4DYmDMEJTjBgw9gezzyXfVl7r/ePtdeaPU+c9Lwt+adiSRHOM89l39dvfX/fC0makqSJU8GprEDlRg2Yq5wsz91Ksdls0Gy0GBoaQhUFnU6XXt9I1T3PI45iPM83CE91bBsNg2oSVGhORf42x85z5O+3e9RVTjZqYRCmHiQQn2oMGvydiitT53fUUZw6qmJRjenp6XntHLtS9X3fETrrSdUWkalzhayZmt2uQcTKIiswFz5pt8/K2Ad5Ort27WJsbIy1a9fOMza0xoU33ngjW7du5brrrnP7ND09zfnnn8/tt9/OM8884zg4H/zgB3nyySd5+eWXGR8fd/EJYHgk55xzjmuJWPTEStSHh4e5+eabOXDgAN/73vcAXLyEDfa0HJd620JKyeTkpFO72TRxm+RtEZLt27czPj7Ojh07OHTokHORhjmTxPPOO480TQmCwJ2LhQsX8q1vfYt77rmHz33uc/NaV5dccgnf//73OXr0qFM2AXz1q1/ljDPO4OjRo7RaLXe8T548ydlnn82ll17K+eefz0MPPeRaVC+99BIXXnghK1eu5NixY3ie56Tk+/bt4+mnn+bFF1/kQx/6EEePmtb2Cy+8wPT0NLfffjtg1FC2tXjVVVdxww1G4HP11Vc7IvHmzZud+m3Xrl0cP37cmfZddNFFfPGLX2TZsmXzglbtMbfBqPXr+OGHH2b16tWupVVHMe01Pki2HyTj19ta9v6pc2/qqj97Ldd5c5bL83ajN/B/UOAUGoRTNkn8MMIPQkPD0aCrvrwgoXvidXqd4ywYahHHDXy/KhSiIXJikiw3uTqVv4onPUIJIgQhYqQXEobmwRn4ksAryLKCt4516XSrNkFRmGgFIZGe8WHxpHUyFni+wPMahFGDKI4I4+oghw0aUYNGHNCIImRpHvBp7w1Enpi06TBGIylS0/Lqd2YMYTjPjGKrIiY3QkEoDVelKAN6qWSmax7+3X5GVhxHej6tZotGq4lftXqagUcUhPS60/iyQIQVSVILlErR5ERBxFBrCZ2e7ZF2OW04ZFFrAe0gRWoz4c/MztBsxEauLABfujqhM/sWBZrRd72PJNX0+jMUha6OnyJPEpP0DaQVt0Mp41VjeDhQlpnjXAhp+C3Sk5RB5BQ4wvPwMI7D7QXDLBw5gxNTZmJ/41e/ZPrNo5B1acUeXaHdeQ+CyBQmlQy/wF4Ppg1iLnxNt9ubI8oKXcm1NX7g/VoApuXd+F5AVlkKiCo+oShTSl0Rp6ttV0GELkp0pa4LQnOtFhRo2wIrS0pwoZel8BBhwLHpE/zbgZ8Qx1X2Vykr9VmAKnLCMIbMXENHX/0ZR4JhpN9g8fACFg83UZVaShUJ2fQRQBAFEk+ah0TeP0kzGiYWBdMnp9DkDFtn5DhEhTH+6YtR4gyS1JzXNFMkSd94LKUpucpdQrouS5NQnyv8KGJ48WIWYfgLvV6PbrdLkqdEQUgs5hRjZVmShyFxHBMJgV/xnnzf2DS8nUMIMa9gqfvhDEpFLSxuCaeDrqeWA2DfC/NzcGxhMWghP9jSqhOSR0ZG2LBhwzyeTZ2zUw82rD/k7ffbz9jfqBOY7X7WberrPIgjR444CXtdGeP7vpO4j4+Ps2bNGjex24Lo4MGD7Nixw7UfpqenWbZsGbfffrtre9lJ8NVXX6XdbrsIBxufsHPnTs466yzuuusuLr30Uj75yU86rsjY2BiXXXYZYHg4dqIEM3nacMzR0VEnt16xYgXDw8P89V//tbPu//SnPw3A3/7t37JixQpXrNkiy6aUL1++nB07drBhwwa++93vArBy5UreeOMNvva1rzll1R133AGYouT3fu/3XBFnWz433HADX/3qVx0x+Etf+hIPPPAAYDhrH//4x/nGN75Bt9udd50miWnnjo+Pk6apk7GDaXn98Ic/ZOnSpQwPD7vWUVmWfPazn+Xcc88lSRKnkHr88cdZvnw5q1evZtWqVZx55pl86UtfAgyH6Lvf/a5zRbYeSw888AC7d+9menqaffv2sWXLFqfIs5JwmCuy7Xm3hO79+/czMTHhzvmmTZucPUD9HoE5PlvdqdgeA+t1UxcC1MepipVBd+96K3mwTWXHv7eQ+ffGv/NJ4UIwgbnMnmoilQj8iqyr84K42SYQRpEzk3XJ82oVIt8kaJ2OKiWFllAVCnEgyLtHKXTB2Hv+G2G8wBFO036P48em6XR6JNkcd0cKkIGPF4R4XoDney4/JwibBFGDMPZpNZoMRT5xVVxI3QdxkjDwUVkPVSEXQVlS4NHNJWVWotIUqoRmXZYIaYi8WkJWnZDZEzn9bmaiHQqB8CJHTA7jiFbbc6hQSIa0FBOlyfKEUily6eNVMRKtBgTBIjLlk6sEod9idLjyMJExBSXT08dRvmRx03BISiQ6DCmldqhXnlYTZJ6yaPESclUlX6vcBTyWhQlPLErjB2RRKVUUlKVGqQIhREU6nkNKfN/D83x0Ocdd8DyfWAo8KUBK4maL95xlVlXFu97F8Tde5fWfH2DmrdcZec9KTh8zCrBme7EhdPsQULoQR40AbU35TAEdVlwp3/PJshyEIQzbC0VrXYV6G0l4lmeoijOT9LpoXSB9k+VUlCVxbJA7lTfRWY6nM0rVR1f8Eq0q5ZVJLDXoYKVA831JP8l45v99ltdff4NFixZj7wRVZEigEbZAgqyMKZELmO4X6CCl8+ZxXn9LsmiheQgPD51BKFJK3cf3Gqi8gsz8mDIM6JU5C0fOQoiIvFupvHqvkeVTlEkDPzid04bebba72SQrh+irBXTSnDRRJH1zHSdpnzRLUConz0wIp/W0CcOIKIqNUjFN6VWE5DRJicIQFZvJOAsCR7KPosiRvN+uYe/vekFSVxDViYx1Tw6LetS5MwcPHmT9+vXzuAH2QWkl2oMPX1vkKKXmcRHs6tVyaurk31P92+7DYCFjX7cPfqXUvO+bmJhwxn0wV+DZScRuw8GDBx3acfjwYfbv38+GDRucUZotcOyKvdPpMD4+7iZBq7S67bbbeO211/jJT34yjxszNTXFmjVrWL58Obt27QJwnjzWJ+Y73/mOC4B88MEHefXVV9m3bx8/+tGP2LCpJkd+AAAgAElEQVRhg/O7efTRR5mamuKJJ57gtttuc0WRNRjcuHEjw8PD7N27l9//ffNssMjd4cOHWbNmjTs+Bw8eZM+ePUxOTnL55ZcDOIn2F77wBR577DHGx8d58skneeSRR9xxXLx4MWmaOq8Yi4pYv5nh4WH+5E/+hImJiXmS72984xuu6Km/vmnTJh555BGOHj3KhRde6KIkvv3tb3PZZZdx3nnnOdm5ze4COHbsmPPDsRylG2+8kZ07dzIxMcHk5CS33norzz//PAA///nP+fKXv0ySJHz1q191fjvbtm1zKIw16asjjtbEcdOmTfPuGXv9bNiwwSFedlg0zF6TFj2sX6uD2Wj2/qyjhvYzMMd3G7wH6wGd9vWpqSm3iBhUNP5OScYWpplLe9amDYUpdqwZG4DUBYHXRrYDgsrDJLKcXA0FJZEMwDPGeGBaNn60jCAQaD+g25+hc9I8yLN+ivBCgjBG+AopKlfWIMCLJH4YEARR9YA2D9tm2KIRRURhgl/OUiZvUSYz1eeaCL+NzkM8Atc2KsoSrSWhAPySxMvcCrtE0u1ndHqKTlKiymoFKwNCv0VrQURrKMQPBV5F8KUskKIkDCS6KiKcCFoXSBkQhQopMuLGEneYJSntKEWLACWG6KTmt14/qciVRipoylnOGNPVvmqSrE8YNwySlKUkVUCnzS8qypKiqNRRpS1SQZfGSM8YHlYtDlVQFHPEXimFU5r5vle1FqEoyjnDw0q5lWcZot8zwZfVRRs0hzltWZvezBR55wTHfnmAfPYYACNjf0B7yVJkexiERJcWwdHgeUZZ5QnCKJ7LdBQCP/Do9TrGHK+68KX0jGxcClRpijxdFa9p0qMsFK1W20zIWrvuVdhcSCB9spMpRaoAUxQJ6VeqP99kkgmJrvb31dde58XJl3jttdeJ44Zrz7ZbQ5RaUZYCz/cJozalrMjMYUxr8TDTvT5FqZHC58SsefhOz/aJPFOYNZo4REjogOMdgdYx7aGIKArQolLBNYaRYRc/0PgUlFl1zmVGFMQEYUjTk6hGRDZk7rNuEtLrN+gnGUlFTratqDzLTV6Yb5yTy9LaHZh7OMsylFLkQUBeFdJZljnLhLdz1GFvmIO+rWqqXlDAnPS77qhaJxHDfLm1RQvqD137t/p7LYpivxvmq7Pq2zcI19e3u96Ksd9nV6+D/j3r1q1zk8mgJN5OOPv27XNFi93O9evXMzY25vK06sTNBx54gC1btrB+/fp5x+7uu+/m7LPPZsuWLfPSoEdGRlyhVHdgvuKKK9x2Wr+Wz3/+84DJojp48KBzPT7ttNPcZLxnzx6WLVvmkBGLQoCZVK16Z8WKFa4AO3DgABdeeCH/8A//4BRdYBAcqzRbt24d4+PjjlT8xBNPsHv3bjZt2kSSJK7AsPt08OBB1+L5x3/8R7cNl1xyiWuF1dVStnV1++23c+utt7oQzpdeemme384Pf/hDdxwsirV+/XpuvfVWVq5cOe/8tttthxrZ42kL1p07d7Jr1y7iOHb7dM4557B69Wpuu+02PvWpTzk07eDBg+5as6qnulprcnKSdevWsWPHDi6//HJ3PVjSMRgDQataO3DgAGvXrnVeSfV7w7YerRrKfqaOMp6KTL9v3z7XAqvfZ3WUpl7E2Huyfh8NtpH/o+O3+uAMnzam1//pNW5ytCoos2quih7rkVMWCFEitSAKBXFYUnVgjOmciFBaojExBwDSEwgpyNOc3myHtNczPitAqnK0FxDFVaspqlbyYYQfNojDiGYU0oxCotBsSyh7iOI4RT5FWXQRDAFGklv6Q+A3QIak/T5FhU4Uukt39k3STh+lWyjdop9VHKFSoJEEYUDUMP8DiIOC2JMEgFeFQhbV6jZNOuRJh1IphPDw4pio4gGpvKBQJVEY4MucVJmJOFOQp9BNFP1M4fux8zdBaLJegk67tGSP8/67sfnOkpRGq8HCJSMgJSpLUWnlxqv6FfrikWWJKXyqIiLP+mRpQr/Xo9/rklQr9jxXBEGA1posSynL0km0B92n56prj1a7ZS5iIWk0WzQrhCmQmP2M28RxRNbr0J026oRSC4ZPfw+nL11OEA85pVsYeOiiMAiB71WBqhVaJD3QiqljR2nMa1kIet0enh9QlgopcMch7c5Q5qlRyDWaCD9yrSi8wLg896fpnnjdxCsAwvPp5dArBI3mECXw4oumP/+v/7qfMIrQpSn0igr+Cn2fqNVABi2yArxgAWlpip9jsydRtPDDFmmWGR+fitOTZSlFDkFkDCObTdOGasaRc3OWXkEYNAg8s91hKNGiAEoCT7KgaY5DFAgC30QuaF0iPA8hq5gLLyLPBf00p59l5mFScZuyLEcVilIXlRJrTvooRfU/KfA8w78C07KUUvK3t171todt1hGc3wRVD4Ze+r7vCoK6SRnMcVns99UfnPUiw0Ljg5JX+1uD8LltUdWLnMGiaXAFW5et21FfLdvPjY6OugBMyzPZt28fU1NTrF+/fp5iZWpqyk36Vjps/2ZdauuIlQ3ftHyI4eFh9xvXXXcd73vf+1x6ud22iy66iIcfftgFPrZaLTeBXXfddaxZs4b169ezadMmxsbGXLGyb98+9u3b59RG1q7gn/7pn3j++efpdDp885vf5Atf+MI8ab9NTt+zZ8+8iXJqasqpt1avXj1Pfrx7926WL1/Onj172LZtm2tR3XTTTezYsYONGzfymc98xh33e+65h0cffZSXXnqJW265hWuvvXaeYsqOxYsXc/z4cbff9913H1dcccW81/+9cckll9Dtdlm6dClf+MIXXBEzNjbGyy+/zPDwMLt37+bcc891RaANnrRqIytpv+mmm3jllVe4++672bx5M0mSOIWcjcO47rrr+MEPfsArr7wyL5LBFq1r1651ij6LItpis656qhc2dcRn0AhzkEdmC/S627cddS5c/TV7LQ4Oe138R31w3lFRvTPeGe+Md8Y7453xzvgvN/4dBGepXveJv3BtqKIsjXdJWVQhhdoFXYIm8CWtyMcnJ+vPkGVVlebFRK0FNFpt056qECGlctJ+RpKaDJ26okZKD+0LwjgiDho0Kvg+jmLiwCP0O0g9S0SGVxmxKX2SNOsg5UIKbwxFRKYrfxN8tND4WpOlPbonrZtnj9luSqYUfhjgRw3CKlyx1WqyYKhFFATked8obgChJdIT4EnyXKMKjVflCzXDAKESSp0AikJlqNygJ74fo8uCEs1sTzPdqfx7ipwiyxBogjCoQivNoWu3hxA6J5k9Tqg7fPiPjFnWM08/zYqVK/jv555HiQnLzKsQxzJPmO3MEAYxUJJmfaMGAqTUdGdnDLG0ppoRQhBHkQlC6/cJo8hVz0VROtWWKlQtBBXCKCCMIqSQNOImw5X5lvR8hJQMNZvEcQPhh2RV3lOeJhR5waLTxlh8xllEFS8mCnygNP4rgVktSxtRkOegFceOHUUAzUrJVRYFSdJHCk2e56RpRnfGnFutMoYaEY3YEKOF5yM9g6bJMAYvRGtFcvIIwh47AakIyAjxw5jnnvsXJl/8KQBDrZZRC5YQRjH9nkW/UoQfEC84Ha+9lGMzKcqinlqQKZMZJqRHnuVz5G0BnvCIY89Ef7h+nMb3Y+JGAEhmZmfoV+3HIIgJgsiEmQqNTcQKA5+4EdNqNk3Yqyic71BQ5ZSVukTlgixXJNZXJ8lIs4xMmbZVXl2rZVmabDghK4K5cHEpSNOu/l9/8/Y7Gdth0ZRTedpYR9/BwE37tzonZpCDY/9t32uOwdyqchDlqb/fenvYYUnOdsVqofsvfvGL/I//8T8c7D4YSBjHMZOTk6xatcrxfaxKJUkSRkZGHCnWBoNaHlKdiGwdadvttmsr2TZCncNz+PDheWTTiYkJt5rfv3+/Qw0sF+S6665ziBEYJGbPnj1O/XPhhRc6kqqNgli9ejUXX3wxd911l8uVuu+++9iyZYtDX5566inA8FEmJyeJ45gNGzbM8+l58sknGRoa4sorr/w1tMvGTExNTc0jR3c6HSYnJ925W7t2rWsrrVu3zn3GoiB2X210iW0ZWqO+T3ziE8RxzJVXXsk111zDL37xC8B43HzjG9/gE5/4BFNTUzz99NOO2Puxj32MP/qjP+KFF14gTVPOOecctm3bBsDdd9/N5Zdfzo4dO3jooYccgrNq1SpGR0d59NFH+djHPjbPBdoqydrtNnfeeSdXXnklMOf6a6+NOj9meHjYtYfa7fY8pZl1NrbXYf3an5qacm3OU3lRDXJwBu85OLXzdv16rL9mUaPB1nAdOR28B38nUQ0LR96l137szxxB1QQpakpMK0pKD78Kf2xEAYGEZPYYnW6HQviEFeTeaC0gCnxDEEa7IMI0zUnSPlmRU2pB4AeOrBvEEUEjJgobNHxN6JlJIZQZsughygzpF5TFnJtroQNybwGJGkJpbQjQ1W/104ROd5Zep0dWMxSUQUAYRwRRRKPRotlsEEWVSghZhY1CoRVhNbH7Asqyiy4StJZ4fkRZ0ZlU2kWrPr4n0VqSZQmlzqtt8JnuZOSlCWP0qu8LAs/A356myHsUKkdXJ1gKSaM9RJYXtMKSJVXn6un/Zy9/sGIFl2zZYooOILHKqywhTXvMZVMpV4eqLOHkyWnj1luRqMG0H5Nez0QJ5IV53UZtCIHvByhVoPJ8jqNUlni+R7vZRAhJGIYsqFJ0oyjG8zyk5zE0tJAwiuZiM4ocQYEftTl96UrihrlOwtAn8CV5luJ7slLiVUWWMm2UtN8l6XXwQ/t6QdqdZeroqwwtWEReSo4eNaTA2eNTnH3W+xhZsggoQJiE8urEg/RBSrKkS55UxasfoIOY0ov42cGDPPO/n3ZqpEYc02g0EFIyvGgR0ydM7EOZ5+D5tIbHCJechQiHXASGlhJVSjqdjgl0LUt6fdtGSNFFRtY9ybE3fknWrUj5usD3Q4KoQXvhCO3h09EV0bmf9smz3ORs+RJRWYj7nokTieOYVrNF3IhcsnszbhCHIVEAYdSglD6quu+zVJFniqSKZLAp4UVRVFJ9s6DR4K4VzzPp9Q9/5Zq3tUU1Pj7u/r99qNr070EVleUe1NVKMMeLGXQstg91+6AfbCnV3ztoADhIILa/E8cxhw4dYvny5W7SBX4N0h/kNFhSpW1D2PfUH/p1FVldTlt/+FvSsv3e++67z8mq7XF57LHHXAvL/o4lKtuMpjpvZ//+/UxPTzs5MjAvo+m8885zkme7fSMjI+zdu9e15GwhsXHjRseJsYUWGD6I5X3YEFH7W3v37nXk44MHDzpHY3t89u/fz/79+7n88svnRU7s27ePTZs2uTbiJz7xCQAuvfRSNm/ezNTUFHv37p1HwrbXyk033cQ3v/nNeS2su+66yx17m7NlSdKPPPIIF110EQ8++KDj0zz++ON87GMfc2aCW7Zscdyjyy+/nMsuu4ylS5fy2muv8dnPfhYw4Z033XQTu3btYteuXUxOTroi5NChQ9xxxx384Ac/YHp62hWodZXg2NjYvHaPJenaInhqampeDIe1XbD7b8+f5bBZuf5gq9USf+vO3fW26yDp326j5aHVi5z6ewYtE+r7N0gy/p1ENWityVU2lylVpWz6UuB5nuFYVGKKpDPDTK+Dkh5RczHNuInnWQ6HRGUmGFJI4eTCRVmifYkfNPBESByFNJrmQIVR08QmSB9RnESUljOgwV+AECV5d5bZvKAozKyfpZpSFLQXlgQy5uTsNNMnT1R/UwYZkQVRI6QZG65Is9k0RU0jRvomWdnzzA7HoY+HB9JDS6+KfwA1e5xenuNHTcIgpt+ZQeXGhbbXT0lyTVlIylKQlSV5ak5eECiGFy2gEYcUeQ+tq4OnzYRfFgIvXkAQ+uQ2wToIEdqnLRRnDIdMv2b8J4z0t4+qJiZB6TxtSpUTxzFpatxrKUuGhsz+5mmCEMKkh5clvrRqGIEfhAwNLTB5WknmCpJGq0meK3QBWmpUhfpoDYHwKsRJ4QfGb8bsa4n0jF9KUWpyNaeEU1mBLjN6yXFaQ8eIInPO0yRDBz79XqciBZfOcbqoAh6lEGg0eaWU0mVJUaQk/WmOvfkaQ4vfxU+qPv2LP32J4x/qcv7/9WEakcCTOEKz9DK0DJBhk6DRRoaVuqosUVpw4IVJ/uW5fyHPTGEFJr+mKApa7TadzizNlvlMv5ehvZhStsgLDXlG4FeJ5qVCZQWhpymVJs8KguqmKQJhiMlxi5HT302WG9J5iSZLUopSkRQFRbdDqW1CugkU1WWJTksK5/RcYtyCjJeUIeDbeJMQqTWNyGPh8BLioSGEk3kbpaTJpAoc32quwDH/VVUAqvmb4tfC6P6TQ2s9rzCpFy22yLCv2VWnnQzqY3A1aIddpdfJyNZzZHR01D3A6wjNoJS8nmhut8nmKFkpNODyeyxBs14wWdSnvl0w52prv7e+bXaf7WRWR4SsRHzjxo0cOXLETUKWvLtu3bp5r4+OjjofkiRJuPLKK90E7vs+K1ascNwO+zt1vkm/3+f+++93hdTmzZvdZLpnzx527tzpUANLWn3ssccYHh6eF5y5efNmnnjiCTZv3syRI0fcebeoh0VlLBfJBnTaotDmWdl93bhx47xJ2lpZDA8Ps3LlSn70ox+xevVq93233367C7tcuHDhvOLmmmuu4YEHHuDIkSMOtbLj4x//uPv3FVdc4dRZF1xwAffccw9PPvkkl112GY888gh33nkngFN3HTp0iM985jN84xvfAAxhe/fu3QwPD/ORj3yE888/n40bNwKGkG15RtYbCEzR2Ol02L17t4tlsMWh9UKy19z+/fvddTQxMeFiIawqD0yhYwtei4jZwqNOCq4X7Hv37mXt2rUuK6v+t/qCwPLJ7LActEGxgL3vbF5W/W/wnyMa/7sFjolcqJALz8P3DJwuKSmLjE5SrcqlR7TodOIqsM9gPXPKorI0E2qpjH8KgF9V0L4v8f2IIPKIgrppn6YQGUJG6Iq0KTyF1BqlSjLvNHRZIqtVbDvK0UVG98RxOqmi0BI/MJNQI5Y0opBWK8L3NUJUgYe+xPMgVR1EERL4sZO+F2nKbKeL0pJSeq5dotMO3X6HJJ0mzyVKFRDaOIuYKPQZCiGWCSrp0jzjNHMcvBhFRp73aAw1rfoYXUIzHML3YkpRkuSKfloVU4VECkWRl4TS46033wBMqykKQ1SeUhQ5WZJQqLlJXwiT49Tv941ZYzU5pWlmEuEr4G4uFwykH4Lwyft9ExJqW1HSo9QKzw/wpF+1qwyW50uBJz2EZ1pVVtaNkIZk7YeUZUmWK3f8lCrp9br00wTkLxlaYFCfXq9fpYxb6XtJUBUynvRQKjctqVRRVATtdrOJ1pJ2e5iXX/o5x146zP4D5oZvtRbz818d5T3LjrDi98aQFK6lI03/hVJrkKEzpUzyhP37/5Wf/+IXgJGsq2LuOgaTYK81oMz+DLWGUEKQqRlETyOloCitmd9xhnxNXmoWN9vIdgvPq9omJSAbCNmkFItJC3PsMuVTFJpCQVEKlNZGIg/kmSIvlEHS8r5rd9mUdV1olyfmYhyA2A9YMLyQRkOT9I6TVsaBQdRCCM8EktZMOO2/hTCEYl9K99AxRU91TN7mUW8p1WWlwLxJ2raGTvXws5+1BQDMkYzroZb2IW/fa98zaGhm5eWn8rqxq816CKb9e52wDHOmgwcPHiSO43mTQ125VZ+ADh8+7N5nW1F1xOW+++5z/jf33XefW5lbhKbdbrNs2TI3CY6MjLjMqDiO2bNnj5s8161bR6fTcUWKtfk/fvw4V199NdPT03znO99h7dq1rogZHx9ndHSU3bt3c8sttziUCXCFkyXK2iLmtttu4/Dhw2zatImHH37418IaDx8+jFImssGSYW1uly1u60WgLeLa7TYrVqzg0KFD3HbbbYApHD/1qU+577Hn77Of/SwbN27kxRdf5HOf+xwXX3zxPBPA+rjmmmvcdWIjIL70pS+xZs0al94OJgH83nvv5dJLL+Xee+91cvn777+fj370o0RRxFe+8hUnH7cxFXv27GHXrl2Mj4+77bak3/Xr17NixQpn1Dg7O8vnPvc5Z4OglHIZXxZNs/fJ8uXLnYx927ZtTmGYJImT/q9fv961R6003x5X2yqtx5LYz9jzaqNM7PhtBp0wn9xfP+9KKZYvX87ExIQzT7TvH2yZ/f8Zv7XAEcJMXnHVsok8CVrRT2fJ04wiz90EqcoCVRYIFJ40WU021VkICAIj+/VDI2UFiMIh2mGLIPQJGxEybLoJSGfTUGp8r0mSzZD2TCUtix5lKVBiCKIlRhVVBSBNneiSpF086dNsxgwFimalVR9qN4CcyM/ROkYVhtOT9BL6ZYr2QvAkSXLCOcCmaZ84jAjjFgpNv+LMZGlCiUJInyBo0Gg3GKoyfBa223g6Q2UnQZT0oyGO9cxk3AihGQpazYi46RnfF0z7pcimUamk0MLwJXrmt3wpaUQLyETGSwd+wi8PGUVPkuWEoUehcuNkrEv6lSmV53sk/ZwoDtGlJivm3KJVYdpPRVGQ57lLVdcaVFGSJClpklQ8GBvsaWTkcaOFFND27eq6oN/pkClF6EWAnEu9Lo2s3BgIFgYFERbByUmygqIsmZk5yZE3jCOwyXOKEEJSlgVFmRNVfjJhGFEo4+KrdeECMFWe4/shcXuYQ0eO868/+ZlDO04/471oGfBvP/0ZK89eji5TtFNLRWjpIzyPvMiZPmkevpMvTfLKoVfI8wSlMoQnaVScLInBLaTng5Ck1Y0n0pQo9omERua5UdVVRXwZLCaTHp6QFCqnIEGJnjtPnoAyO44sZhiuivFSByhdUngCGS/Eb5yJ8Iaq+0yC1yDJIcszx3NL04wkTcnynDzPybKcLLf5aFAIwdT0NOJkSZoqhx42WyWNRhMruKqniYNxms2yzIR86jkJeV1Z93aMwbBNa/5V58UMoid2nMrvxn6HHRY9qfMM6sWP/R6YX2TVX6+3iyziUt9WO+xEbAsSWwzY71yxYoXj1NQ/Uy9e6u2uw4cPMz09/WthiI899hgbNmyY17Kyk5v9rG3z2fbf8uXL8X2fb3/721x//fXs2rXLreynp6dJkoT169czOTk5L8/pxhtv5NChQ7z88svceeedLpX7y1/+8rwWVr3wWLt2LQcOHHBtD/v61NSUOyabNm1iYmLCndvdu3czNjbGpk2bOHDggJu84zjmwIEDtNtttm3bNq+gtEGjSinX1qqrh7Zv384TTzzB6tWrHTfnxhtv5OGHH+ayyy5jYmKCZ555hnPPPRcw7sdxHHPjjTfy4osvuuNz9913c9ppp7Fv3z527tzJ2Wef7fZ7dnaW3bt3c8UVV/CBD3yAZ5991v3tyJEjPPjgg9x3330sW7aMD3/4w4Ax7bPH/PDhwyRJ4tpaSiknjX/kkUfc69PT00xNTbmibmxszF0rlt9ikbNOp8Of//mfu+NgW0lWpWaHLXqs0sq2lOr3X/36rreQ6rwe+9/6fVRXKlpEc1DBaPfXXjP2N+zrvzMERwpJO4RkxqAGM91pwtBD+j6CApXOojKzoQJFK/IJw5AgmEseBoii0EhryxSlTpJVLZupGcVbpSZJu5z5rvfxe3/wYYq8kmjPHkGIPr00IekX5NWmJgVkpUTQw/MKikLQS+dQpCAMGGq1WdQKyPtvkHWMD04ZvodcNXirX3CyM0NecXPCyMQnSArychaNJmqbyaS1YCFJL2Gm0yHXmkbVShlZsIBGIyBuRiwaXkjoe+SV305ZFkgvRDOKLDVDnV+hFxgUIgoXIryIUih0CYFvJrQiL/G8PuhpOsd/Ra/3FkUV4yDw6EVDdHo5L73wC/pdSxZuGtmuNsha4PtEsUEAdBVX0O32UCpH6LnQyjxLSHrm9VJryjKrvs+n309Mu0uAFiayAaCTdpF+gB/4FEq5ya8oChOB4PuAJMtygqBqrfkhWV5AnhjPmqq1ZPYJ4mabRryEuNEkqNol0hMUZY421swgSipKCErlVQyIIFcpFBVXJO3j+z5h3CBRJd0kdX4yRZkx28s4fuJNjh0/weIFEZ4N1ZQ+GklnpsNbJ6Z5tTLzmpmdZdHwEL2ez+IliynUnKw77ScGWSk0/TTH9m6TXFGcSMmykkIIlPZJlSkg0hwoPdApRZHQaESOQd5qDDF8+pnErbMJwoi0+r6oWRKHmlIpKD2k9Enzk9W5hTiCKGojvSVUHUHSXJFmGf1+QrffJ00z8grRK4uSIlMICqQvaUTSCQc0Bf2sg1+aGAzbnvV9gRQlghIRSDSec3Q27cO3v0VlCxCYe1jDnD/OYFFTd1GtPxBPFVo5CLXXW171gshGHMAcnwfmJgg7TkXYtHwHy1GwKNGpirFB7xzr9WONCOuFXp03UU9OtwZ/ExMT+L7PQw895Fo8U1NTLjl6bGzMrbotSfWv/uqvePjhh9m6datbzY+NjblQzP379zszPDAI05VXXslzzz3HBRdc4Nx4x8bGePbZZ50Hz8GDB12RtWrVKneOduzYMc+gcGpqiomJCVfMWKRh8+bNxHHM3r17OXTo0LzJzfr07Nu3z4WMwlxRbInbFp0CU9Bt27aN9evXc8EFF/Doo4+6bdi2bRv33HMPH/3oRzn33HP5wAc+4M61Rc1WrlzJli1bALjzzjs5cuSI8/ypJ5M/8sgjTE5OcsMNNzg3ZTumpqZYtWoVt912m5PU23MexzGbN292CMYgn8ySpuscF8tZsbymwWJ4dHSUgwcPMj09Pa99VXcftteUvR5si7V+Pdt7afny5fPk6LaNZLen3jYdDMSt34P1105l5PmbUNn/DILzjkz8nfHOeGe8M94Z74x3xn+58ds5OGXGW4f+xQVJNlshWhToQhhFSeiRW3t5qjwo4ZHnmYHKKxSn2+3gSfCDEM9v4h7gzNcAACAASURBVAiK2kiDm0GTlkzpvvlTjh03ZN1O9yTCl7SHTmN40RnQN1V6kaSAhxARSSYQXszI4oowHEMj6hHIKbqzJzj+VoGOTUX55hs5gQdxGDI0PGzZQWSpyVzyfUEYhghvruYrhaY9PMRpp40Q+xoqXkXk5QR+jzDIkEVGb6aPCA2PRMgFCBkSeII0yciCd1OqSg6uPKIiR2ev0eucpDNrKu+Zk2+S5R3QgpnpafKs59o5/SSn28vo9TLyTKBys31hWHDi+DGKvJKXBwGtVkUkznMygVG/6ZI0y7CZDLos0UKSlx5BGBFZVRGSuCUpC2XCIMvSkYn9IKQ5NERRmEDOvMp6oizwgwjPk5Rao4oSVWVeZXlRRR0ICgVBGDh7/zAMnROw582hfTo3hHRPeviejxBQVOhJkibV6yaHyrZLPA+kLDlxbJrjbx5DlxBVZn5pkqKFpsgLXn31NYKxYeKWOU+zJzqoouTEiRk0JpASQJUKIQStljHm6/f6JInluZQopdFCmsiLYg4V6yeJaccVJSemZ+n0DXoSRk3TJswTkJIoiuhXQZeBJ8jSFK85RGvRGQwNmeiHIi9ZvGSY009fglIBwm/gV+hc4PmEfUkQ5shgZi70UhvuUhyGhL5P3lTuuJZFga5yvHpJz7QOK+VhWRrX6sDTRNFcOzpPO8yceJMo8mi2mghdEFXEaem1yLO3F8GBuYwpmE8s/E2ZTjBHtD2VaZ99rx31lWY93sFyBpIkcRlO9WEh+kGDQdvmsr9XV5bY1bCVkNvfsflANhOqHgpa/55B7k6dzGyRLfv+AwcOMDY2xrXXXutaEjfffDPj4+PO1M0er+HhYSYmJhwasnfvXoc87du3z0mlB8fExATbtm3jyiuvZGRkxCmKbrnlFu6++25GR0f55je/yVlnnTXvfFkTu3Xr1rkW1ZYtW3j/+9/PM888w9133z3PsfhDH/oQX//611m3bh2+7zvUYPny5a4FZ00N7XGdnJxk7dq1jI+Ps2rVKpIkcYTmI0eOcOWVVzI6Osp73/tex8VRSrFnzx4+8pGPAIZTY5G7drvNFVdcwb333suzzz7rKAs2PPOTn/yki6qww0YdXHXVVXz6059mbGzMqaWs6d22bdscMgVziN/evXu59tprnYrNft/OnTt55plnuOmmm+aF0AIuUHPlypWOO7R69ep5MSMw1/KZnJxkamrKkYPt71h0SCnlELD6PWiRyjiO5yE39hiequVk75NBe4S6AmwQKbKoVF2FBcxDdf8j47fKxEdOf5c+74ILKapgylLnpEkXKX08zzjNWg6H71UKDF2QpgndXpfCxhegkUDcGOLMpX9AGBpZcHfmON3jR0wuUWsxIh4ibphJOhQC4XkoFdDrF3Nwuy6Rvkej1SCMI8IwJJSWt9MlS3v0+hkzJzPyssSrvs8LYnwp8YKg8hCpHtClecgjNKHvE0a+y9yJI5P+TDmL0AmiavPIeIiiDMjSkn6aoVRBWCVlt1ptpChBlIBHXihkJasW6UFO/Op/c+LIEd54603SavIuhaAUJWUOWb9E5aArHokqCtIMdCEoi9IQmjEX34c+9CE2bdpEFMXGN8iSePOUJOmjdUmeZqRJn6xy981VSRgPMfbe5SxZMlrLFBJG8VQojh45zJE3DnNs6mj1WxohNXlWxU7oWrGkNULKyml6jrwchiF+GNBsNimKgiAM5xQukXmAa60pVOmKFd/3aTaaeJ40FgSedHwtgQSMg7YuFWVuisakP0u73ebY8Rnu/p9fp9NXLBkxsQbtdhvKklZriCWLF9AMcuLKETvVgsAPiaOIhcMLCcJqYi8KtDZZXFma4nkes92quFYFICm18YGx5yJXynkXKRmRlBEnq/BVGcVoURIijQJMzHkcUfGtpPAMkbu6JvNCISVEoY8nAwQmSgEMwRnPw/M9Qt9zhG/PNwWkJ02BiMARgQtlUuP7SY9+v4vv+fh+5K6voaEWUhaoPHMqM/KyOs99ejNvIaTEi8xDUwQtpBfz4FdueNt9cOq8l8HCYVBKCqcmIVoeSJ37ArgJ8Dc9MH9bv9/+rZ7yXZevD352sOiyr9Uf7vXPWNmyJePaz9pCyPJLrGIJzCRXL1bq8Qp79uxxHJzx8XEnE7etv8OHD/Poo4/y/e9/3/laWSHC4Hjve9/LL3/5Sz784Q/z4x//2CmCAFcU7Nmzx50n69kyPj7OyMjIPCIuGB+d/fv3s2LFCv75n/+ZBx980BUyU1NTbN++nfXr17N161anKrJto7q6rM77ePjhh9m4caNzb7aco8cff5znnnuOH/3oR4yOjroCYPny5TzwwAN8+ctf5pprrsH3fcdLsZlRAM8++yz33nsvYFSUtr104MCBebENZ5xxBnfffTedTseldj/55JOAybWyHkA2I8yeC9siqhdvYK7rs846i6eeemqeFHxsbMwVFIO2AbZIseorG6Vgf2v58uUMDw//WiSClXOPjo66qAf7mbrKb5BL9ptax/Z82VZxXQ5ut7de4Nj9qRc6dthr6ncjE5ceC8c+gKfn5KG6LCoLdxNRIL25AsdIThVFlewsbIAhGpWblGZERL8iBedRC7VkFCF9dBjhR8L5feQYYzl8j3ihINLWF8YQHyWCIi+Y6RzHr5AVmZ2ge/IYhYZWe5jmkt+nZ4+VJ5AyMoofXRi1DhA3jUeI74PvSTwpHGoAKUJ49LOQTElnjpYem0VrQakFQkLcCCgqGfuJEz2CsEmpIc+6eNk0+clfAnD8tWfpdo+R6ZKT/Z7LRdJ4KIUxYUtLMpUTRQZpeM/Y2az8b+/n9NNGmJk+zmuvm6r/tdcOM9vp89Zbb3L6aUvwvNAFZwqhK/l0URWhc/4vCxePsPQ9v08Yt9EaZiritFKKUpcMtYc4c+kyRs8c4/CrRpL+q1+9TL83Q5FnoLUrivI8JwwjSgRZZpCP+srTyozDKKoKk7liuigKREVKtq9LIdDaIA1al2T5nMorDE0CudYFQhfkLpbCoCyvHPoVnW6fIGqyaNiYDaqiZGjhIvw45ldHjxHKgkbDXPLNZgvKWXwpmO3MugRyPMMzGht7N2EYobWeexhkmVH3eWa75xLNTQnv+z6NhYtJypLM3gNeg4IGUbwQPJ8SDzuPKJWT5hlFZvhF2kq0dZX6nivKKhXcJtn7QYAMTH6V0NKhSFZFhdZG+C3mQnIRGiFNSGYcBVCWxJXaLS8Kekmffj+l0Bm23m3FDbKkz8mpV0mTPsOLR4kbi6v9lcThqSfD/+yoP/QGc2nq7zkVylL/t30Y11+3eU/29To5t46KDI5TEZ3tA3lQOg5zhnT199rfsdtuC5p61lVdBl7n/lhehfWLsUWFRaHGxsbmoTVgCoXbbruNxx57jE2bNrnXL730Urdfl1xyCeeccw4vvGCEC9dccw3bt28njmNuu+02vva1rwGGS7N161Y6nQ4//vGPefDBB53U+cILL2TFihVs2bKFTZs28Wd/9meOyPv8889z2mmncc455zA9Pe2UQCMjI4yMjLhMqyuuuMIZ5v3oRz9ifHycO++805nP2X194IEHnOpn7969Lgx0+/btLn/KHl/LBRkaGuL+++9nx44drF+/fl6BOjY2xpe+9CV3Dm1h89RTT3HgwAEOHz7M3r17Hd/Ivu/973+/IxhbhdWqVau47LLLuPrqq1mxYgWf/vSnnRrrxRdfZO/evWzatInJyUknH7/55pvnqZR27drl0smTJOHFF1908ul6PIK9DnzfZ2xsjD/90z8FTAjqunXrHLG8vjgYGxubxyOrc3BsAny73XY8KZh/n9UVf4O2DfU8rDpCaq/nwXurfs/Y77O/b32Z/jOoTX38VgRn8Rljev2lf0GuzMPMl8aQLgzDKpdGuELB83zTwlAK6ZlVrl3hloVGKUGhc6jaEgCBLwg9Dyk9hOdVGVcVQuFpk8OUFkCBFr77Ll8qRJHQnTlGd+p1YmuwKjVJmtDpdvFbCxhdvpYwNqqEUHoIaZTPvo9JwMYYn3mej1IZaZLQ6/dconI/V6S5olQFUnhOPu55IZ5XBSv6IWWpDCEUkKFHoQq8oodUb/Laz/eSnXzdfF+a0Ms0pQ7IC02WVrJuLcgSkwVUCo8zRsfYsOH/BuCP15zL8PAidFEgrGwfmO7M8tMD/8bs9Ou8d+x0Wq02qrAx74JSFaZoqSTaYWSQrNNH3wsiIE0zKDX9frc6dsI4E4fGlbg9tIB25Z3zq1/+nJde/Fd6s1NEUegCGaWULFq8mDQrHFHYtbU8Q0YPwsCsGio0BEybJQhCpJQEQeDk454na+fIAymRwiZYx5TaoDeB0PRnjb+RLhVe0ORb/+u7/HTyFzQaLX7/bBN01xpaSLfbp9ObphH5xEHgWn9BEKALBZT4fuCCRbMS0JrTRkZoxDFSYkjNQDOKiYKQNE8RUroCp59kCM8zx1B20foYqjhenduCIFzI4jP+mKjxLgodUlanKVcJhfYQfkhRSrSurvFSmFZgIVEqI88zVG7l2wpfVJlwfoSuCh9jzWDCcUUVjDo3KrKwhKLUnDw2RaNCrKI4RPqBIZxrQZrbtvIsU28eocgUcdwijnzi0Gz4wnaDKFR87da/ftsRnHqBUfd+GUwTt6vAutIDfrOsdBBdGVz5Dq4m7b/t++rtLbttMB9CrxOa6yRK+3qd4GlbXvUVr13VDjo4+74x85ucnHSkUzAtpXa7zerVq53C6IMf/CBgkIt2u83o6ChPPPGEm7jGx8e5/vrrXaAkwCuvmIXM4cOHOXToENu3b2f79u1uv2zS+eTkpFM32e177LHHePrpp/niF7/I6tWr3XeA8WwZHx/n8ccf59ixY1x77bWAQV9sq+zaa6/l8OHDrrW2dOlSrr/+enbu3MmGDRv49re/DRi1lk0ZV0o5mTkYNKVuHbB7925HDN6zZ49rtdiwUjC+NZ/+9Kf51re+xdVXX82qVatcy2jnzp10u13uuusu1qxZ46Tb+/bt4+GHH0YpxcUXXwwwD/36yle+4n7n1Vdfde0v6/ezYsUKR2QHI323Lbw4jp0hIsDVV1/NVVdd5ST+dn/AoEDWM6Yuv7fXkb2+lFIuZNRmmNlrue6DU297Wql5/b6w98Qg6lO/9wbvmcHXBsegoGBkZMQ5hQ9mVSmlaDQavwujP/C9kDCsHHf9wBQjopqStGlbAPRVAsJA6EmS0EtSx9XQWiA8YeTgXkj1bKUVB4RhExn4aK1RuULl9qGTkauCQgnyvCCrODi96Tcp+kdY2Bb4HjRj6ZQkCxefTlsELMGnNXwmOl7kuDaIAgiQQqDynJ5NUz7ZrSTTyri4VvsA4MmAOPTQkSYMIzw5p/YRBW5VrfEIqkRzpKQhOhw/Ok6kZ0k7M7w5XfUgU0GWQlYk6EJT2HaABo1Zlb/73e/jok9cxh++/w/Nn1TKibferNRNnjO+k4HPH67+EC88X9CdmUGWOUFk4wsEhSor5ZQgCFssWrIUgJnZPll6kjxNydI+pXUX1iVhFNKIYgpd0u3MUCjj33Pm6FK6nVl+9tPjeL5HaSM4tAlKlVKSpRkLhtqkc/0XPCnwpaTIFb6QDqkpUeBJgiBElHPyY4EgQKKLklJ7IAV+VKEaeR+hS3Sh6Ksc7QIrc2ane7zxxlHCKKTUmiNvGNVf75VXAM3wwiaji0ZpxjGiCnoVQpLnCWVZoApcYrjvSaIwpiih0+0BBVHlmnxipsubb/2KEydO0GwGnHXWuwFoLxyi05+lKBSF1mRFAPr0ap8K8pk+b81OEMUtlPadGilNT1KkikzlBGHMkmGz6ly8aCkiWELkRzSaDfAWUNrilQzJW/RPvkEQLyXDPJjS3KSZ2/tSSpwKDiBPe/hSEcQ+C4ZCkq4p4ruzfePmrEqiqOU8f3wE7176HgJP4nsZoewR+5VyTR2rWrBv37DBqvV+PcxXOA22r+rtnkEEp1682GEfxoMryPpnTvX+uqLL/r2uarGv221vt9vz2kV21Fey9UnIft4iP5ZXA4YjYV9ft26dS9QG06J65JFHXHvhyJEjzmH4nHPO4e/+7u/YuXMnK1ascBLob3/723z84x/n+9//Pn//93/PyMgIZ511FmBM7LZv3+44IRaJ+cu//EvOPfdczjjjDJYtW0Ycx055tWHDBp5++mn+5m/+hqeeeoq1a9fOCz4dHh7mkUceYevWrW7/N27c6Hg7hw8fJo5jp/6yfKPVq1czNTXltvsjH/kId9xxB2vXruXIkSNs3ryZ7du3A0bynSQJe/fuZd26dfOiH8bGxpxs2rojgykALfqyefNm9u/f77av2+1yww03uGLQuhP7vs/ExARf/vKXueuuu7j++uv53ve+BxgkZGxszCnZDhw4wPXXXw8Yzs5f/MVf8OCDD7Ju3Tp3XJMkYfny5WzdupUjR464+AqAr3/96xw6dIgDBw5w8803u9bYQw89xHXXXcfGjRudvN4WlGvWrHHXhi306hYA1kW7zvFatmyZa9vZ2I/BgsneY/WWoP2NQfNJ+7o9XoOtKKscq99/tiizrbrBBcqpoiH+T8c7Kqp3xjvjnfHOeGe8M94Z/+XGb21RLRl9t7542034vnUBk5Ql5JkhYNoWCBjyb1GWFHnFBZDCGKIBnu/j+Z4JN4sjfFkRMCmR0nA4Cm1QhKJS4ahcUaicPM3pnjxBb9bAh4GXEIgSgSQvAxqtRURNw1fxoyG0FyK8AI2B4y0PKPJNK8SQdlNK62jreca8DVHxROYiBQSCRrNJGBtvH2tCWGoBZYH2NAUaX/uutabykulfPM5rLz/LiV5Bf6bvuDtKlSbuQoLwoajQKiklCEF74QibL/4Uf/zH55F0ja9O2p0l7fUptEZ6nos1yJWi1R4i6XQ59IvnaDc0cWVI50UxAo+sUCR5wcJFS5HStJtOHD9BmvZI+z3DNar2NYoifN9DKVXFV7RYuNBU2QsWLiIvcp6b2EdZ9lGZbUMFFRHYcGyazWatejctG9/3EcKr8qxsrogJZg2DAL+KZADTNvSk8VnRAoIwci05T0pExTFJ+z2HIPTTnB8/d4CnnvkXkAFKzV1DQgiazZjTRxbxnqVnsmDhArScW3HrUqHRCC8gqXhhWlcGl0Lg+4ao25k1JPsTsz3yAjwv411nGuIyQCkUIjDbjO+j/QDwqnMbIIWPzgvysk8pJWli20DTJL0+qsgrlVK10pGSoeZpnPmuDxC2hmk0TnOu0klRkqcnKGZ/hRc0EPG7AOglJSUCCuPWbF1uzH8KsmSGXvckzcZCVGHuDYCk30OIkvaCITwZ4HuW05MR+g2KsqQz8wae6KOyfnXsCpTK+bv7Hnhbs6gmJiacodmWLVtOSTS2586uDgfh7N+koDrV+09l7FfnE1ivkcHVpv3bqfKs7G+dimQ82CYD5qEdNidrsEVV3y/f953DMJg2x9atW7nlllvYuXOnawNPT0/z0Y9+lImJCa677joefPBBAC666CIuvvhibrjhBm666SbuuOMO19Z67LHH2Lp1q1PO2G2z/ilbtmzh5MmT3Hrrra49NDExwVVXXcUzzzzj2iuWY7Jt2zauuOIKnn/+eXzf5/zzzwfghRdeYN++fU7pVFe0XXDBBVx44YXs2LGDgwcPupbSjh07WLVqFSMjI6xbt855ygDOvXfjxo089NBD89o5Bw8eZPfu3Vx77bVMTk46DtL999/vODc33HADV111FStXmtb25z//ebZu3epaVna/brnlFl6r/LJ+07jjjjtYs2aNy4oCg8Jde+21bNiwYZ7JoeVJWZdhwO3TQw89xIYNG/j85z/PZz7zGXe87bVhyeY2KBPmQlxXrFjhWkB223fs2MHNN9/srk2LZFk1Vj0E0+732NiYaxvZe8F+5jeZaw6O33QPWtTRHt8672wQjYXfEclYSkkgfMqKg5OpnF6SkqYJujSaHVvg6Ir86wcBQRgiPRPGCRBGEVEUmqwboMgNpyEvSgqdGNltRUi1fAwpNIHMCKOcmewoviUFN86gMbQQL2igFHTSlF7FCQ60wg8lkfCIw4hG4LuYCa0KyqIwMuQgxGmHpDAW92iCwMcTAVGltInCAD+QqLJA68IRXj0vIorbFAKyJMVTCc3InMjuzM/46fPPM32sQ2vRAvp5j9yi+VLi+x6+9MizzPFLfOnjhSHvW34OK1d+gM7JGY4dNRdZmWfMnpxGSJMV1WgYtZYfBDSikCCMODGTkPb7LGqb4+qnEVEUm/OTa/Is4fgJwwnpzHaAkl531hzzKj261fr/2Hv3GDuO+97zU9XP85j3kBxKI2skUzZtMzfMXSYhNnJAL5gbCpE3QiAjCiwjiiNf2IADy4KM0FgblhF5LcPaxEEUiIEFWIEVSIEJWIZoREEEWNkwK/qaiJkrJuZaY2lkjsXXcObMnFc/q/aP6qrpORrJubHu/hGo/tBQ55zurq6u7vr17/d9NE2Akhuhv8D3GVRBltIlU9MzTE/v5Cc/+dFmWUsZIUKVlnjSJ02GbuzQ2thzFAWI0gRxykr9ZxRSoKIQX3pOlViiCAMfHfgI6TFMUoLAlv5AFcaLKh0m9Crs0A9++BIvL11AaRj2e5TKlFUBGo2IyckJ8jxnkKZM+oFju5VKmxKdKsHz8asAVSvI0iFpkZBlBVlWOir2/Nt20BqPyIp1fC9HeVaROEB4BsitZYD2fBNsYPA0CEnUbOCrmCTLnBBhGLbxdviUpSDPE/q9KwAkaYek/yryYsqu6bfTjtpUzh2EskmZRwyTiECXeL655kadWFHkKYEUiKLAq8bOOIMHBP4MSvj4sY+o7tvYD8jTAcmgpCxyBoNKUFAVKCCKI7KsIM9Kh53zhIfg35823q5prSmKwjFw4LV+VK8HLB4Ncuzvf1obDWzsw9+m7Ofn51lYWGBxcdGJnY0yPOr9qgdM29FhR5tdqMDgNCx7pV4qs5iIOvOkLhT38MMPMzs7y+TkJPfff7/DXLTbbW677TYXHFrxuePHj/OHf/iHfPSjH3XBiV3Q9u3b50Cuvu+70kev1+P48eNOUffw4cPOhuHAgQN8+MMfdhL9zzzzjDunlZUV/uRP/oSPf/zj7N+/3wUXlo5vcSRWmA5wBpYf//jHWVpackHQkSNH3ALZ6/VYWFjYIulvAcGHDh3i9ttv55//+Z8BE7zceuutnDlzhnPnznHjjTe6fv/8z/88R48e5dixY3z3u9916sO2vGj7+7WvfQ0wzKt6gPOJT3zCBYEHDx7kwIEDriQ4Pz/vvnvyySddAHfy5EmHcdm7dy9PPvkkJ06c4JlnnmHPnj3u+j3wwAPMzs7yqU99ypUmbZudnXWg8jqTL0kS9u3b51h49bKuPab9zAZZo0D+OI5dgFtXi7ZsPtvqJdrtAnf7ne2X3cb+vg5argfxo2Xi17t3/q3tp+jgaDY2us5AMS0KirJECoknJRqNV1GqDcNFI4VHGAX4vuceiEIYHE2a5EgE0rNy8JJSl5RlbvQ4hERV2IpO5xL9Xo/W2AyFmCCttHjSPKDXVXheQiAlfhTRrBbVZqNBGBo2V5krkmFCXmFthK4UfqXRZtm0FFDkeW4k/6UgiiIXyORlgOordKkrM8JKM0bndPo9ylzRikuK4St0L5oJ2B8oZOMaonZAgEczzEmrgE5Ig/FoNBqsdladiakfBnhBxNuufztS+KytXmBj/arpQ5ox6HfxfUOdThPThzCMaTYayCAGEfBPZ/6JX9r/bgACmZIFA8I4JvCbJN0er543dgh5XtBsNVFlQakURaWVkmYenm+ua57lbGysURZmYnqeQBXjNOKmYT1Ze46ixMMniCJHMZZWlqV06CeCwDcg2AqIrIuMQmiEyiiFdMGrFBpPB2Spxg9C4iAg75vs16DI0FrSH6T8+CevcvGyeXj005y40aTVajIYDvH90JlZjo2NMX/tNVy6dBEpPTqdDbLCgJObzaYJltIELwhY7xr9pbJIaTYatNtttJK0x8bQ0ly/XnKebj+taPmxk3MqtfmP0lVmriixdCQ/CBFCogX4fkhYFmSVSjVKInVIFI0xvvM6+n2THXjlx+cQoaZQKf3hCq3+Ghv9QXXPZCiV0lm/QBw2aZVmX5E2ulMe4OMTNqio++AFTYRsIP02hRRkRUmWVRTyPKTIYlQp0VrQGJuoxiGvMFyaRmm8sIpyU53cEx5vZhNCvKZeP4p3eb1MTf1tsp71GcXT1AHLoxgcG7xYQKrdxiqs2jfiOnCynkmy+AXYxGPYftRVietYhrqU/ZEjR1x/T58+7ejR9913Hw8++OCWY9v9zc7OuqzA3Nwcjz32mHubt/L/hw8fZnZ21gWOJ0+e5OWXX3YLmX2DB7PgPvPMMxw/fpxHH32UZ599FjAA1fn5efbs2cOBAwecVQKYQOGGG25w42eZQmAyP4cPH3ZGoH/2Z3/mztv3fQ4fPsypU6eYnJx0mQsbgC0tLXHo0CHXB2sSakHGd911l7v+Fy9e5NChQ6ysrHD27FmeeuopF4AtLCywtLTE4cOHefzxx9mxw+AKjx07xuOPP06v12NxcZGbb77ZuaAnScLBgwd5/vnnueOOO7YYccKmo/qf/umfOvbXLbfcwje+8Q2OHj3KwsICDzzwgMu6nDt3jkOHDjE3N+fwNrDpDr+wsMA999zDxYsXueOOO9xxrDeUdX23422ZSceOHePIkSNuvlrGnVXStsEgGKaZDR7qDCg7j0cBxHa+2t9s9xIBm8D50SCnDmiu36ejAYzdv/1+FNv2s7Y33EupFINh4hZ8ZenhSISQLlABQ1P1g4DAC1BK0esNaxkPo93hSw9qTCAhBFopA/TMC4a9PkVlAlgqidIxnY0E4XkElXhbHEWGASUkYRQTx03H5MqSjI2NrhExU8qUxaoB8zyTNUnT1AQ01SALIQgDk7UJfB8pJU47TZXookDlP0oVeQAAIABJREFUQ5TOKIQ1rByQDq6CkmwELTqrrzoArfBn2L3nF1hdeQmd9YmKWXoDM8nCKDB6QHFMGU4hhKXxekxMznL9De+it7HBpQvLJEPzABkOE/I0IQgM2yxNTUA5PiEZJANIE7obXfoJnDz9AgA7p8bZMT1Be6zF5I4GSTrgRz8yvjLJMOU973mPEeHDsGjMOGiKIkcGPr4fm6xKRc1XZU6/t4HvCZJBDypdn0D6pGVBkWYobajdg24FxBYmmAuCAB36SClQWZVN0wXoktL3icLIgW7HxlpGQE8pIxqY5/SqwGNlbY3lV1cotKQoc6LYlOMmmiEawcrqGr7nMTE56YLXiYkJfN9j/tprjQ5PENKqEO5ZmjIY9JFC4AmYv8a8qbSaTdY7PTrra7THQsLGkCQ12a+xdoTnNRHSq4xozbwTUhgX8jJDIhDCp1DW+wuiqGGo2gLSXpfOmtEXShNF0J5lbNxDyCat1i4AZmcKNtYukRV9VlYT+r0fUGozhzbWhwT+OLlW9PrniWITaLTGm0SNBpNTO/CjFsqPKKtMlvB8pPAoSCuNJZxBrQwEEhPACBE6uw9oGPd4Xbh71nmO6kpE8k1uo6DbUS+b0VYPMH4ai8q2OpOp/hCtH3v0c0vvHmVb2b+jD/9RUbbRYMpuZ1Pz9lyKwogCHj582J33bbfd5gwI7bHq2ia9Xs9RpEctGSwz6Ny5c84KwQYrjz32mHOmrp/3gQMHnNhb/e3/xIkTfP/73+cLX/gC58+fdxkhG+wcP36cTqfD3/3d3/FXf/VXgAmmHnzwQY4fP87Zs2edxcGJEye4/fbbnWWD9eay5zQ3N8eBAwcctdqOoQ0Mzp49y+LiogMmW1r4U089xdzcHEtLSw7g++KLLzrG09NPP8373/9+YFOrZ3FxkZ/85Cfcf//9WyjO1ijzxhtv5Ld+67cAs8bdfffdLtt29uxZt8073/lOnn/+eafB8+STT7ogy5bZ7HW0Qajv+zzzzDMsLCw4ET57jpbZZPVn6h5jNgN288030263HSA9SRLnX2WDExsYjWpC1bVpbMBv77k6Nd8G73WPKnssCxau33N1BmEdTG/Pyd5LVvxwdH+2bXcv/nvaG2JwJmev0e99/3/FPspMUOOhK2dwhDEMtB0plaLIcpQu8SoMhtkQ0BKJYWAhLUJAUabGQLEsS4o8R7k13yfwpREQlAJZ0cTDwCOKAjw/pFSavMjcAqlKkJ5Ri42DkEJDf1Ahv/s947btS0PvrgTkmlFMqxHTasVEgUKXfXTlczQc9CmVIGxM0GxNEFflDco++eAKUm1QKk0QTeM3Z6sBHScpNJ1el0FvnY3uBkVevbHrkiLLyJIBw/5VkqEpAZWl4pr5PfyXQ4foXj7PhfM/orNhMg1FkYMq0EoTBj6NpqV772ZsfJq8LDh16rusbXTYWDcLsaczgjBk59xuED579rzDae5sbHTZtWsOTwi6vQ36lYhdmqaEgRHmi8IQQVlJAcD0zDSt9jjC8/juP36HLKkCtsBcc62osDZiU3jOMy7t7WbDCAIqBbYUJQSlVpSlkRRoVZmGOIrxg5DuYEhvmDBIMzodMw7DYYoWPtILCcPAZSdKrSlLxXCYcOXqKp7nM1ZlIcbGxrj+unmyzNw8vuc7inuhCgI/oBHHBKHv1IovXeowSDYYG/eYnAnw/AIhLabHQyOr4EY7o0t835SmpE9ZGBdwad0rfR8Z+IRejPR8+t1VknXzsOq8epVwYidz17+DEg9Pmz5Mj8UMNtbZ6HR4+aVX6Pb7lFW6b2x8JxPjE0a12hOoKpGihWZqcpK40cKTMSV+jSouKFQOKCS+8QWzruHKqC8nWUaaKuLYPNwaQdvoFFFQalOmE9ZdXhh3+of/j7veVAzOqVOnXvNg+2m1/dHAw343ut0bUcdfD9Nj972d1s3oceqLCmzqgNTpsKOiaL1eb8uifeutt77mDfvcuXNcvHiR/fv3uzfl+j5s9mZlZYXJyUmXPbH7twadNsCxSrY2mNq3bx/33XcfYBhRS0tL3HrrrUxOTjqm1P79+12/HnvsMScYB2Zhevzxx5mbm+Nb3/oW3/ve9zh+/DgAZ86c4bHHHnOeUlb9eO/evczNzTmWVf18bKnKYkKsSu+nPvUph92wir9WWffAgQMOK/Lcc8/R6XRcAGMzNt/4xjd49NFHXb//+q//mt/4jd9wjKszZ87w7W9/GzB4xGuvvZaXXnqJb37zm1vYb+9973v5+te/zvz8PO973/v4/ve/D8Cdd97JY489tkXryAYe1hDVBqj1bInNzliNJhvY2uxNXfcIDM1///79jrpvrzPgBCFtAFHPKlqPMzuf7XGsD1VdhsFej/q8rwfj7XbbzTf7+3q5yd5Hdiy2w6ltdz/aslu9/U/F4GhAoZ2YWFFmhiYuhaE2CyjKGmBPgEFSKIpUuaBEIvHCEukLQ8Ou0ttZphgMh5SlUbP1woiwUmw1Evw+Qvj4XuSwGL4PJZokLyh0SYhHu1Vld+IIL/ApC0WSJZR5TlSZP7Zm2oRBg0YY4YUSgcFwRGIdv7yAX2rKzK/efA14tDV5HVpGBGFcZSPMuBTZgLA1QehPgowR3jRFhVMqZAGeZiJo0243kF7Bxqo5FmWOKAco1afV8Gk3TFCkNOyYbSNEwaDfI88yQ1nH4EGKLKvKPBBUE8MK07VaY7xj717++b+/wOwOkwG4unKZolQsX1ijzDOmp3a4t4hrr5UMh0OyJEEKSZaaRdWTPoFvTVEV2XDgwL9KKaTnMTWzAyE9t01eZJRKGaCwpwm9gLhZ4V+iCMqCJBmglMKXPqLK+OVKkxcC4Y8xPjbJxE6TPelubPDq5YtcXbnCRncd4fuE1XUP4xZhGKO06V+SmPHxfI9SKeJGg/H2GEoppicnqvnQYH29g9YlrWaDVqvpTCLTIqffG9JdX8ELJEl1TiUpkzMB45MB0s9RZUHlR0qpTAAupURLyKuATSgJQiOFIIwjwHOO5kWp8ITE8wWeL4njBivnTcD7oxdfwuMVil6PoNGkVwWbxfy1rK/26CWKXIwhmk1iq7SsS4bDLrLMkM02rQnzJj01NU6aZ7x68QKN1jjN5pjT9pHSN3g44SGFZ/SGnGSSybzFKiTLFf2eKcdt9HN8GSI9WQFXyy2SAha8/2a27cpKrxfg1Ov122EAtsO+vNH+YHvq9ygFdpQWXjfVrJeQ6piFUcl62+ou5I888ghHjhzhzJkzzM7ObsFIHDx40PXdLlC2L0tLS24/9s0eNt/cbVBlF0lbLnnuuec4cOAAzzzzDPfffz+wKfpWFMbGwGYgiqJg37597Nmzh8OHD7N3714nsnf77bdz+vRpkiTh+9//vjPltM0urLCJA+n1ejz77LMOc2QxNfY31iT08ccfd5miW265hc997nNMTk66oMxmIewiap3E4zh2mjtPP/00i4uL/M3f/A1/+7d/y65du1zfvv3tb/Ptb38bKSX33HOPC3DSNOXq1at88Ytf5Omnn+ZDH/oQYKjqL774Ir1ej+XlZX7lV37FjfNTTz3lKNbnzp3jwIEDLgA5efIkR44ccc7htt9WvdhmsOpGqhb7ZRWb7TY2AKi7gdu5cuzYMTf2lhZv74e7776bxx9/fItlhx270fui/nJh76N6FrIeDI1ifUa1nuptNONaP2av13MWHPV76WfN4LxFE3+rvdXeam+1t9pb7a32H669YXiklKI3GLiygxXjkp5nlGuF2MTnKEv19Qg8H+EppLQ0VQ14FEWJ0gVlRSsSSOJWkygy5QOjDkv1ncAPfPzAQ6CxmnhSG3ZWMB4SNgRR4CEqNlKaK5I0QYqSMIrxtCCsskhj7SZ+qMmGl0jWXkIWpjzk+xF+awcynsNXbZQSDtfghwGKkFJEgI+waX1myFVGqQQCgdSlAygUJWghaPgCSFCtED83eJGN9QEyFjTaUxRKEsaVT5YQzOyYQSlFUWT0+z2Gg2F1LGOhUBQFYRg6ei8IGo0mYRyzY8ccQbBIVlRUYhWS5wlpWpAnCVcuXyZ1EXHAsD8gTVPSdJPRMzU1RVkUDIYDhkmCKkpU5f/VbOb0+32mZ3ZQKljvWW+ywjDnfEmQ5URRhBLWM8lnOBhyZeUKwyRlOMxceWjhhj0c/F8Pcf0NNxG32g6onucZ6aDP6tUVXnnlZV588RzDisnlewIvMBimUHqVFYGpiwcYM8+NjXWSwZDVVQPQ3rVrF6rUzMxMMTbWJggC8oo11oibhEFMPhbghwrhVzgu1UPKEqUNTivLc8eIKsvSMMO0Ii8LbK5BawnSUMN96RM1xhDBpoeWGhaosiCUIf2VVV58wZQRehspjeYYP37lJzTHJ+ilpm9RWxM3r2FyZoxdrTZhM8YPq3tQDWH1Am1fQnOM//6iMc27dKln2H7SozkcR028jfExk573Ip8oio2vl5BGcdnOIqkxCVlzf4ZB5YG01qfIS3wJutQOYwWVarJ68zM427EnXu+zOoC3Tu2uy8fXGVE2FV/PEo1mi+wxtgMzbweMrIOG6xiCuiR+HctST+nb7WxWw5pc1k0i6/2xGaOiKLawm2zmw5Zs7BhZurkFstpyzvHjx0mShK9+9atbsC52f7a8c+uttzqgswW1njlzhoMHD3L27FkHCrYmnxas+wu/8AsOeDs3N+csAlZWVtw47Nmzh4WFBU6cOMFtt922JTtQZ2AdOXLElXn27t3LgQMHXEbj5MmTWzIN73vf+5wQ4LPPPuvMMI8cOcJdd93F1JSxb7l06dKW63jvvffygQ98wInv2ba+vu6wSrZ94xvfcJiTdrvN0tKSYz0dPXqUm266ifPnzzM/P79FLK/T6XDmzBnHcLJ4mlOnTnHrrbe6jMXy8rLLtBVF4dhz9fLe/Pw8+/fvd9gZCyoGk02z5SNrd2BLlrfeeusWanZ9vm+nHAyboPh6Vga23lv1bIvdxn6+HYuqni0aBd/XS2I/i7hfvf3U/I/n+e5hKCuzSiGM8SNCb5lkupKJB4EnGgSV/1EY+MbjSevKgLPSXglCGu0mge8hKY10fmXQKaTEC5pIL6wcsCvarU7xRUnkB0Y/J8/IK7aP1oqGl+HJBL9MEeVV8sTIkPfX1iiSBCESorhFGJqgo8gVydolFD9ACwn+GIyZlF/kXUee9yCYBL9BhX/GC3JkAL4MEEVBnlxhkBj8S6s1wTBJSCnJ0pR0kJGXpn8yauH7swgvJPSbCK8CQAtNa6wNmIBR6U1z0aLIKn+skqAoGLNKxlVAGAQRUZRTlCXnX/kxAJkqociM+q8qGQx6DCugcxTHRHFQOXWXBFVw0Yhj0ixjzPPoD3r4YQCluX79fuUrUhZcuHSZl6rjKFUghQQErXaLmZkZrq6ZclyWL9PtdknSBK0EYdTgF3/JpKRvueV/Z9fcHHmRMRj0UBumLKKVQnoBO3bu5prrbmDn7us49Y9/DxhTTSGNmaShylvrAmPAub6xgSck7VaTyJZzsoTpqWkaFWU+jiN8v9IyUhrlFXS6qyS9VUT1uecbmQOttTEfVZLcmlYqRZqlDJMEhHDO6aZsmxk1auGhtMav5pcnfLQClQtKhugid2auYRC6a55nCeNNUxptRBHx1DjjU9M0mxFFPsQPzPzvrvWQWY+J9jg9vQHCzK2oERCVkiJN0b2rdMt1hj0zvxrNWXbtupHQmyQIG2g8bPK2KBSZKlEqN3IJ1YuKlAFZkTJMjf+YXwHwgdcQDN6MZjFBo4HN6wUXsNXKYTsgL2wumHaf26XiR5keo59vB3is/64O0qz/ztLL68ev/63vwzJgRrE+dsHo9XpO38QGQUtLS24xOXToEEmSuODHLnpW48RiWyzb6GMf+5g7N9tHyyY6c+bMFlzFwsICd999N1/5ylcAowdj+20XVBs4fec733FGl+12m1tvvdWZbtr9nTp1ioWFBQ4dOuQYZ3axS5KExx57jHvuuYelpSUXfC0vL7sSz9LS0hZbg06nwzvf+U4+/elPA4bl9LnPfQ6A3/u933MsqHvvvZe/+Iu/AIxaMcAf//Ef88d//Md8/etfd2P/hS98geuvv57l5WUeeuihLYFZHQP08MMPu0BvZWWFp59+2mkZraysuPKVLTFaV3f7+blz57jzzjudXUJ97pw9e5YkSVhcXOTw4cNbsCnWjd7KGNj+2XG0AZi1dLDX9vDhw66cagPoUbZT/V6zOKg66NjOKQvsHgUH1wP/UZCxDc4XFha2YHps4P5v0dX5H21vuBcrzmbBwsaxGqhwCKY+bzEzgTmpyKcRxcS+xNNVFqLso2QMXpOs8ByQuCwyPCFphJJIFgiVO+ZOrjRpkaBUgEQS6cpNvOxTqpJMNvDDMYTSxL59OILUgPJRZYoqAtqhecDlvSFadtGlQgjjDm4GwENqQaF88BsGp1Bd5I3ORQha+F4Dj9ABdUWhUGSUIeRJxqAzcBYTq5fOEkVNxqZ2MMg9ekVErkymphCSRtyi2WySFBlJRWGPPPMWHVQAac/znJ6M1gV5ntOIYjzPd1YNURTjeQFSSuJGRJoOsXMikB5pPwcKkMro4KwajZWx8XGiqGGYXEqRV1gfPzDXL89zg2spMtJhhc/xPPzApyzLanG3DtZVtkYKsjzn8soK0rO2HiGhH4I2wcR1113Hr77vfwOgNWHe6NJBj153nbyiqltGm5Ae0zOzvP3t73AsqjP/9N8IQkEchfh+QJqaoChJhrTbbYSALDP2IJsLyJCpiUnCMCRNU4qypNUyNf0g8I38gRZIEVOUVuhPopSuTEpBa5/YM1ku7WkiWdCOFF7gI6sBV1qRlxl5maJK0GWBX51TEHgEjQiVF3R7PfrDLrJZ+UBlDdpjM2jfyCioCoPTvXKBuR3TTIaaQa9Dv7NK56p563tl8YfsHm/xjvlfZfnKBWZ2GKE/KTRCl2hVIESJL0p3b/qhIBteJE/XmJjYiZAxiopNVipDc1dVhqbCDildIqREitDYd4lNaQWNpsw3KeNvVtuOpWT/XV9wt6vjj3rh2P29Hg7g9TJDow/r+u/r29Qp5/U3UNh0TbYP8rq3Tx0/M9p/i4GpL0D2LXzv3r3ubdueqw147Pb1/c/Pz9PpdJw0f/3NPUkSl1GI49hlSWygc/DgQXbv3s3TTz/t9vXoo4/yla98xXkq2UzD3Nwc+/fvJ45jvva1r7G8vLxFaK/dbrOwsOCYT2BAwXZMRqX+z549y913382xY8c4dOiQY1HdeeedLC4u8pWvfIWVlRVOnjzp/KuKonB+UT/4wQ/YvXu3u1aWOfXNb36TXq/nMCr79+/nIx/5CN/85je54447+NCHPsTv/u7vun6/8sorXLlyxdHMAefp9eCDDzrdGztm999/v8P9fOYzn+Gee+5x2RMbEFy8eJHl5WUXrFjMjr3udTD4oUOHXBanziCz/18HCo/O3zp1ux6k2qxOPbiom2LW57ztn92vvVb2/+3vtjPFtPN6OwZkXZRwdH/1bNGb1X5qgBNGAVQlKonxDwoCnyCQhEFIXC1yvpchZAECVLaGyjK80HQ09yYoRIhEE8oCUWVpvKYHJOgsp59exSvXSYeGNRNHGp3lRI1JRDiOVtVx4imEnKTMBVnpoUVEs/IKkqogL4dGW8WXiDJnvfMjALL+ZUJfo3RE6M8hQjPQpWyjvCbDIqBUIZqAXFZp7vYkXhBSCkGaZpTVoqVVYdRpVYYortKMVulXtOBW0yOIffCnIAiJKGiY+IY4NkwaVWhkEBDF1QOzUCRpgW75RLEJXCyQt8gKfM9o4Eg/pNEyfWs2m3jSuEbnRUnUbLIwbdKwukhZufgqWdoHFINhj3/5F/MQm7/uOmZmZtkxu4tWK8Ybr7QOrAFqEBhF6iIzFGGgLANa45MkSUq/36+xaSxS1ThhK62x0WtRFqiKeRNHIft+/gDt8RkAVq5eJR306HauUmQJWV4Fr1rjCYkvJXnSZ05q3vEO49p74fJlLl34McVwSJ6uOxac9DzSPGPnzl20W21WV1fd/JVSEjViwjg2Gk2edGWWwbBLezzi+oVdIEp83waUpaHQCw+NMBo2zl5LoXRJbzhgkCV0qqzYMM1otySzrZA8Ewz6Hr5vF8oASoUU0GiElDpmpmJ2dHSHXTt30JqcJmw12dgwIntXLv6Ev//7EwRCIIqSdNDf4gMjrp3nH858l77QZMIa2uZIrY2mkDAAf1kxHIXXJQpDoihidf0KYdAmqlSvs1JTKIEvJL4ImKj8sKYmW4iNnKLQhjVZbgpdqlK5cXwz23aBxxuVqGzbLpCBrWnuOi11u+23AyrXjzlqoFn/vm6YOdqf0X7VF6f6g/zs2bNusawr+9rykn3w1xeGOmMHzBu3ze6MUnjtOdmMjxVas2UfMGWuW265hV//9V/n+eefdxo0vV6PgwcPEkUR7Xabo0ePbqE6P/vss8zPz/OBD3yA2dlZl+m566673JifOXNmS5llbGyMbrfrMkB1ldzl5WXuvvvuLVmQffv2cfvtt3P27FkuXrzI5z//ee69914A3ve+97nsk+/77Nu3z43J3NwcTzzxhPP0suN688038+KLL3LTTTfxxBNPMDs7y6/92q+56/H88887sLMd04WFBZ577jkef/xxnn32WWZnZ/nMZz4DGBDvRz/6Ue644w4eeughkiRxoom9Xo+zZ8+6EqK9fvv27XuNz5ml+VsW1oEDBxwjyu7LXs+6ACSw5Tc2ELK6OjZ7VFcMtse0c9EytOpzvC7O92+5Z+rnNyrzUN+mrrJcD6R+2nH+R9sbbul7HjsnJzcXkzDE8zRSp/hZD5VfcIug701S0kYJiYxnkVEDJSwtOKNV2QIEcUCeV2yaIqcoCxIVo/Q1lHqSeMwYGGqvJIjXGaZDGt400fhuAEoRUg43UGWfRjNA+T7DxCy4WZ4j1Rpxfonuxv9LOrxAGJobrDlziNybIiliejogrzRZkrxAa0HoB7THxxkfbztl3TTVeEWJ55egh/hepZ1DCnmGLgZkyRpZmZB7lcBWtgPVD5BFifRTgiCgUWm2eJ7HcDg06XhP41fBofADMp2TFIpG00xCO+ZlnprsThDQaMSMtcy+Go0YrRVK5Syff4WZ6c0U+er6FYQoCQOPvFQUWcnVVRM4pllBHDdptQdIIWhWyshaQhjFSOEZfE5SuoXd80ImJqZ46eWXSdN0M7CpipdaaagCHFvi0Bq8St1aSI8gjOl3TVo4GQ7od9dZWzUBTunYOdpYMqBRZYYfRVz7NqM8umtuNyuXXyX0JIHnO0VnpQqSNCHLzFhPTU25cWg0GuRFwaUrl410QBw79s+Pf/wS73zXDUQNTVnmzkXb6BkJPD8wVh/epqDdYNCnNxxQKM16f4gXjVUDNE5WwsWVFbLBBu3mBHleiSRKRZKm9Ho53X6PYdInrTI1nhQETZ/GeMxat0OmTVZq1/W7ybIZimRIf2OdciCIU3OrNnWDMtKoUDDeHiO1QUdRkGcZZZlX0g2awipOFYqiSCiygjD0yGRJUmXnIr9NI2iRlzlrGxsUlZBkUniUIkJWgZ8UAlF70LyBusS/q9lscb18U38LHc3o1Gmqr/dArFNst9O+2a69XoBlH9bbBVb2Dbj+MB/N/my3P0vxhk2JfrvfOhYDNrMA2+3PHqee+am7M9exDbZ88tWvfpUgCJifn3cZHPu5ZXPZUpNVGv7IRz7iMD229PHkk0868Tk7DjZTc/r0aXcedQuIffv2cf78eZIkcdfRjkN9MV1cXHTHueeee/j4xz/OwYMH3aJ90003AYal9KUvfYn3vOc93HHHHVuuk8222Eya7YMtJX3ve9/jueeeY2lpiUceeQQwtO6zZ886HZo6Y8kK7/m+z549e1wA5vtGuNDaWoxqulhNok6n49hpd999tytN2rlQv7YHDhx4DUbGYn8sJqpOIbfBkj326dOn3byy5z8apNcDklHWn2W6bZfJGS23jt6f9eB7uwxQPWirBzajOJ2ftVT1hlsHvmBm2jcgSkCJDJV0ILlspOlbu1CxmZiliPDLAl2mRhRMJAhtFocigfVUk+U5WmdGVrjqfBA08AQIVRIi0ZVrcr/0yfMZg4dQPnmlU6Lzq+hiA03ExqCFYtMeINIvka9+l36SkPrT6Pav0PVNgLMyaJAXPhKF0R00fWs3mrTaLYIoRJUFyaDvyjZZnhu9H62RaLQtY/jgC0FvLaOzVjDMQASXAWiOt2iPTTEmYybGGkgROFf1dJAaewStTBmkyvKrskRqWPcUs80WrXbbAEKB4VBUi7IgimK3sAd+4MpCL/7whwjPM95SgCfB9z1KFFIrwshnfMJkd/bt28fbb3w7G90NsmGfskjd9VZaIYSkSHKydOgWsfHxcdqtMRYXF43sv7AlSwmYrIgQNqNTid8h0EjAoyw1P1k+z84dxtE8DALSZEh3o0uRDYkrscHSCMigVUmeBgz7PQeObkSRw34NhwOGQ1P+bLVMuU1KiSoVRVkySMx3pVbuwR5WGQxLv2+12iRpBp6H9D2KKjArlQnsVJ4ZzE/pOXzIcDis9Igirr9uJ4Fvgs08lyRJyo8vrdBZGfLS+hWsF9XExLQBOLeaRKVAE+BhzndyYozW1CQFmsnpGdIKS+Z7ggYGUzZ9zS6Ggx79nsnulHlKFDZojE8QxA3CKmMmhaGhK1Wa+wzlMmNFnqHzAqk1RV8zSENKz1DpG60xGnGDvISCMQbdCkjsgy9L/DJzXml1zaw3Ob4BtmJS6tiA7UCQdUxHPYtSDyysvYJt2wVL27VRzI9tVocFNine2wUvo+Ws+n7rmRkLfLbnbj+v+wtZNVoLELUYh/p42VLBM88847IGdhGxb/L1DA4Yjai61g3AJz/5SV544QUWFxeZn5/nne98pzvOwsKCC0JuuukmPvjBDwImW/Dnf/7nvPDCC3xMivzaAAAgAElEQVTiE5/gYx/7mBPgO3LkiAMXWyq5Hbter8eJEycckLkOyrV9fPTRR92/P/vZz3LjjTeysrLCl7/8ZZ5++mk3DgsLCzz55JPs27fPuZDbrMudd95JURQuGBjFKFkg8YULF1z29zd/8ze5++67mZubcyrW9jj2fObm5jh58qSjurfbbQ4dOuQW6XqQY0Hwtjxl+2YDAQsArweitqRl9YJsv63H1eLiosuA2OsyNzfnAhk7BrbvdS2jOmDYzh+LjakH6jfffPNrSkn27+h9WX8xqQf99hj17Xx/K+28noF8M8tT8BZN/K32VnurvdXeam+1t9p/wPbTWVQ6x2p6pYWP8GYRjQlyFHnhozcqnIYuycukokmbt/HMpv1LhVe5NOsKHwPgK02YF3heivAzhAhRymQo0rRgkA0RpSJUTVTfvJXnw5SiCJChT6vZZyzMkVf/FYCst0jm7yCJ/zOdQYPBak6WVpRm2cePPDw/IAxDJicmqjNU9Hrr6G6JKkrjlF759BSqRAtT6ojjiMa4KUmUWclGZ42NpKTwIsJW09Gto6hFO44IPFi53CfNetj3XUPOtQUwgVf9KwyoHK3Bn2jQaLQ2mTZhhCcAIYgbTeJGhcFpT1AUCi0C3v3un2MwHLpo/UKpDEU8K/H9mN27r+E//8L/Ahhlz8Ggjyc9wiBGVXgorRW9jXXDSipLVKmIG3G1zSyXrlzm5ZcNI63OpjFGlJUPmdyMl2WVdTKlq5KlpR9x/dveDsDc3G4XyeeZoWSCYYz5nk8Y+EaUT5XkmckwjbVajLXb5GmfPM/cuXqeYKO7wXA4NFkctYkNSdOUXq9nQNK+77I4YCwquhsJ/aGhmFtDTaW1y0RpXeJ5EAVmm4n2DIVSlAryboaSleBhVvLqqyss//gyWZ7heZHxowJ+9NIrzMzMMLZzhiCMmZjc6Vy5lUoZ5hkNPyRJEgfaFpjynkJSKEUUtbDvIkkyQCNY6/bwekN8K4QYBYSljx/4tJqNihBQZRxVQZGmpIMhF85fpbvRJQhNyVJmM4zPXY/faAMhwr7zCFkx1Eq0Vq70SDWb3+wMjtZ6W6l2++9RPM7od9uBiYEtGSH7/3Yb+6Zax8yMgpTr21hsg/2u/hY7yr4aPYbdj8UejBpx1t/YrYuz7Xccx+zZs2fb/a2srLCwsOD8mOoZJlvysOBN27djx45x7Ngxdu/ezV/+5V/y4Q9/GDA0aLvfOI752Mc+Bhgn6rvuustlES5cuOD6vbi4SBzH/NzP/RyPPPIIk5OTLkNx7tw5lpeXHYh2FGB6xx13cM899/DAAw9sGbu9e/fy0EMP8a1vfYtPfOITAHz3u9/l85//PPPz8ywvL3P69OktpbCLFy+yZ88ejh8/7qjXgMOx2CzF0aNHAQMYjuOY22+/nccff5xz587xO7/zOwCOOWTxRtZ64pvf/Cb79u3jueeeY9++ffz+7/8+//iP/wiY7MOXv/xlPvKRj3Dq1CkOHDjgSnwHDhxwAoV17FWv13NMJJv5sMDkJElek4G0zWbUbDbJztNOp8Py8jJ79uxx9G07rnUz1/r9Us92bgeyHy232bad11S91T/fTrRvOwxPXXbhZy1N2faGVg07r7lef+C/fobCAkeLkqIwKfAyL8iLnFJbN3GBJwO00KiiRJel0w+Rvu8YQo14U61YqxSkQhQ+ndU+q501ysrGIWq1aTRaaK3Ik9TZRbQaDSbbgti7Ar1FVJ4xwAQrG8kkvX5IkqQGe4JCVeUUXxqfrFZ7grHxMdwjWgiElBRFSZlnaF0SVDTjZuTTajXIC41GklYaKsP+gGGakJclaE3k+zSalcR9HKN1itIlGs+UtbSlE0ujGBwZV/C40l5RZR+U8dm6Zirm4kv/yks/+iEA3Y0OvieZnt3Bwtv38q73/CcApmd3Gvq8Ngu51ppeRX28ePkSSy8t8qMf/oDx8Rbvfte7mK50IKzGTpYlZFnmgKNlWZAmQ6QQFEVuQIrT0wC87fob+Pv/+x/4f55/HlAIR9HGBQZmKE1AUw0rAjO20tNEYYtD77sFgGuvnWdt9QobnVU2NjqOwj4cDPA8CL2AXbt2sfuaa3nbjSZNnpaa//bdkxT5kOGg70CuRZnjeQY3pFRZaQnZoG1zbgspDR6o6l8YRkSxsXzwatfP0s5LXSKFMMBk6z2vFbpUZHlBXihazbia+wo/Gqc9di1e1GZ1dY3VFaO30et1WF9fI2wEJlgJJO2m6Veu+rQnx5manDV6OdUsL8sCISWl0mgtoNSkaWX3IRVZnpPnGUIp/IopFYahkWPwfPAkUnj4Fcg4CCRSG3+29bUhr/64y2Bo5vjOt93E+Oxu0O6qmvGq/iO2JHk3r7sW8Jf/50ffdKsG+2CrWxyMBjZ1vIJ9IP5bKKavV/KC1y9f1R+2y8vLW7Ai9X3VF5rtgJL28/pno6W1N2Kf2N+PyudbzMfS0pIrZ9h+W4p4HexZB6meOnWK2267zTGLvvKVr3Dq1Cnm5uYcMBZMaebgwYNucV5cXNxyLgcOHODYsWMsLCw4S4nR61a3kNi/fz+Li4ssLy+zf/9+Tpw44YKVj370o/R6PX7xF3+RP/qjP3JB0QsvvMB73/teZ1thTTrBMI6OHj3KbbfdBrBFCdp6W9k5YwHQX/jCF/jOd77D4uKiC4ZsH4qicOaXNmgA3BjYhb+uK2OVg62ytDVbBQOwtn21gQRslq6KYlNnqI6Z6fV6W8Dc9TGtH79um2H7Ycfc4ofqvmj1OVafL3bb+m9HNWxsX+r9qQdt9ZcRO06j88FuXwcZj2LWRu/D/ylWDUVRcunKKoV1184L8/AvjBO10cOwBooarYfOoyoMAmd0GUUhcRjhecYfpzc0b+X9fp/eRpd+t0sQ+IxPThFUeIysyBn0e3hS0mwGtEPzgA/Vy3i9dVI1RiqvozsMWe1W+xtm6LKHVMpYd0vjOwUQhDFj7THCKCLPc/xKxj4rM/LcLPRxo8nkeBudV9TL3lWGfUlzfIZCQXej+nyYmLHQBhfTbI3THqt8qlBkiXmrj+OAyekphLaZmhAvMOaSaZoxrDJF6AitSoLAaARJ33N5HqVKhB/QHp/k7Te9k6hhcB+dtQ5ZbsxDszRDCkkcmfG+/voFbrzhJt797v9EOtgAndFZM5O221mnn2RkWUKepW7SSWEybWVZ4PuS0PeN3QKwvrpGb2ODuV076fa6pElazY8KdG2iGUOtrrI4LmdVZZ9mdu5kanrGzSOEIAhCpPSdp1OSpTTikEKVlFpX2kdmfxMT42gEFy9cqGjpSbWvnLGxMRpVtklrXQvaSjSi0rQRBGHgJAqKsiBTijLL8MsSVYkchVGM8H2sFJ5Wm8BpKTwkPs3GOAU+ZSX1d/Xqq6xvXGZickijPUVrYoY9e01dPfIy+r0VZJmgRIOJiQkuvmoe9otL/0qytkG3VMTNiEbbZAijMMSQsT20hjLPkJWjeRRp4miK4bCkLJQlOOIJUeGeBEqY62klF5JhzuqVDS6eX6fX92mPzzE9Z8D8YXMapQTSq/KLYpMhZ3FVwsWJteDVAc3fnKYrrZ36A3W02YdenT1SxwjUfwO8JkNi/74R+Bde+yCGrQGX3ffrvcVaHMTow7qOVxilR9ezSaNu5/VFtY6fmJ2ddUHX/Py8w+vYvp87d84BR+uLjBXls15Hx44dA3BByvz8PE8++SR33nmn22ZpaYm9e/fS6XRcRgRM0NdoNHjiiSdcZqAOvJ2cnHRA5zogdn5+fgsQ2mKHjh49ygMPPMAHP/hB4jh2Gja//du/zbFjx7j99tt57rnn+PSnP80Xv/hF17+5uTlOnDjBgw8+yJkzZ9wibbNcFpdiz+mOO+5gaWmJJ554gi996UtbBOvuu+8+2u02e/fudeNhj2PHv91uO+wMmGCi3W476n1dgC+OY4dvsQGXnVP2OiZJsiVzZ/E9oyKSFpRtqf91IUnrc2Xni71e9etvz6M+J+11s8eoZylf796y83LUEsJuZ+fZ64Hi7Rja39v9bedM/rNkc95wy7woWF1ZwdprmyDGPPDL6t/2QacxlF3P9wiDiCAM3XdZlpEOE4oip8hL0qEFPxZ4IYxNTTpQbVFRsRuRT6td0BQdZHEJWX2e6WkuJTfR6SmSZIhWGWX1pi48gedH+J7x3vH9gLhpAo9mu0UQBEjhUeYFRVU+C/yAMAiJohDpiQqoW/kptXeClFxeWaPb6+FV4xA3G8xMTjEx0cb3BHmW0a0ovkprxlotxicm0Fqzvr5BXh0rjIyjdVGYsl9WAaeTQQJK07x2nDITFHmGCxGEwIsirlu4EekHXL50xY1pURSsr69TFgWeFK6UODUzy/jEFDPTM+RjLV55+UWuVNt1165SKE2aJ6CMczdg/JKkRCuN50dIoLduz2mdt127m5mpKS5eusRPLrwKwGA4RNWKFdLbVBhWaCSiEgKERtymVZlgFoVC+hFa9AkC35X3DJtKAxKljNaPtOXMwEcrA2YOggBVLd79fp/z588zPm5Ak41Gw5WhjFaOoNFo0Gg0aTQbJsMBFGVJodRmwJ6ZaxGHIVHD0MrXNzpopdw2BIAXkSvNenedvIqWksxj0B+QbLxgfKLCmFbbZMwCz6fVniQeH2dmegY/jbn+JvMisvuaBZL+CldWLvDK0iJxowImT04yNrkTP5AGPI5AKzMnKTUUglYYQ6hc1kegscLh3W6Xi1fW6WyYQK/b0+RFyOTEO3nbtbtotjfVo4UnKIVCV8rENkA18o0CYe9zvbU0qdSbW6SyKum21cXz6tkLeC2jabsgop4RsfuzD+PRrI/9/ei/6/2pqyXDVuPM+lszsAUAvd0Duk69rbfRN3t7nFE2im02S2MDifqx6n/rQn8HDhwgjmP3tyg2WU+33XabW4hffvnlLX2wJp11tovt67333uvo5tYTCkzm59y5c+zZs2cLE+nZZ591ZSybYbIZlwceeIDFxUWOHj3KysoKv/zLv+x+d+zYMVZWVnjqqaf43Oc+50pmjz76KI8++ignTpzg7NmzW8QdARdk2SACTFbl/e9/Py+//DInT57kQx/6EN/73vcAA661Jab5+fktwcHS0hKzs7N87nOfY8eOHU6nx5YJ5+fnXWnOBgpW6M9S9C393jrEWwHD+rhah/hRnRp7vW2gUxeHtHOo/pJQn+Oj2jf29/WyUP2+eL2sig2qbOZpdE7W58boC4f9vJ7xrP9+NNv5s5aq3nBrrRTpcLD5MKs5Cmuo9ELMg9HzPHxP4nk+RZ6Tpamj5AoEHobVU+gcEZnPG62YRtgiCEI8UTLWlMTCRJxi8COKjasQTZIFb2OtZybZ1fWUQWYWZ19IPD9yeJUgDM1FjSLnOO1X5SaNJq9Ka54UeFG1YEiBJ32yNAUh8f2A3sAsdv1el2EyoChz2u0WO3cao7bG+LjBExU5uiyIoyZRbN6+lTJ2EatrnSoL4FEU5nwHwz6CPp4nkEJQrd00Y0kjksyMhxRJl0F/Y8vD7Nq3Xc+OuTm63S5rq5VRW7dnFh4gSfrkWUpQTQYpYH1tjcnpGaZmZmi0JpzJpC8Fge8RBU0C33dmqWliylxRIySOG3hCkAwMfkkIQeR7tKanGG+3aLeNsM9qp0O316Pb7ZIVOUopx06TVUbB93ykJ2k2mviVsrUfeKAUusjJs6GbJ1J6FHlKa6xFGIT4fmhMIjGZrMGgz3A4xPM8t9i2222jBJzndLtdlFJMVPiqIAgoS0WapiTDlLW1Dr51TDUHJMszmlFsDEOB9c4axUrOcDggTYdIzzNlImCYK0RjGqU8RD5k2DcihN3OGlHskww3aDQC8u4KeW4wLqUfU5YF3W6PpX89QzA2wfV7f8n0PZ6g1byWqWuuozl5E7owC4oqh5Q6I800QSQpledUr7UqSdMc3zPzrHN1ver3gMGgQMsmSnkE3ixjk0YEcOf8NFErwg9CBNqwxKp7uixLVFmS69LWHNnSlKrmmXAvH4Bzc38zW/3hWM+YjD7k7EJQX/TrwU/9d7ZZTMXoQ9W210uPX7x40W1bp9jWAxS7eI4+lEf3Ve9vPQNl+2cXxfqbcz3As9Ryu6jUZfHtOdVLUbZfKysrLoCwi9O5c+dcecP26eTJk8zOznLy5Ek++clPun7X3+hnZ2c5ceKEy7h0Oh0++9nPUhTGoPPgwYNb7DKWlpa2UODB0LCPHz/OoUOHHNPHBiUPPfQQR48e5dSpU+zdu9dZKNjF7+TJk9x11108/PDDjq114sQJHnroIVZWVpzeje2zXbTPnTvn+ggm8/TII49www038OUvf5l/+Id/cDo9999/P8eOHeO+++7bojJsS0IHDx5kYWGBP/iDP3iNzYTVmzl48KDD4Fi1Znt9bHBXz1jUM0D1+WKvoc3sWMyVDV6svYY9J0stt9uPMqDsZ3Z/9vrXM4rbZRrr2dVOp+P2Y0ts9ppbhtx2JeN6xqZ+nLpo5+iLx8/a3mJRvdXeam+1t9pb7a32VvsP194QZNyamNXvOvibm8BR6SG9wJSiKsBmXdVWaWvKZxg11ufI9z18D4SM8P2YdtO8yceRxPcTdPoqG5f/hZlxgagK/iK8ln55Pat9n96wT1oBRyUQSEHgRQRhgB82iCr7gkYjohEHBL6P8H2KsiSvokSlKu0ZJGVROGsFISV+4AOaXrdPv9cnq8oVaEV7rMn0zDS+5zOssCdJXuAHPmPNJkWeURYFwtvMDGjMGBQVtkNXTCXKAlFmCJ0TehqJ+TwONO2Gx/R4k+FGhwuvnufixQvV3iTvPfzrtNqTXHj1IhsbJmvQ7/dpxDGekOR5SjIcEFVZqZmZWbSGqakZZueuwfMDXjj9PACrF18GrfCDgDAMCILQ7a8oCprNFlEUVm/5m1gWKT2kFHh+CFW2oyiNB9TV1VVWVq8yHA5JKgsFXWnqeFLiBx4LN7yDX/nV/wJAGDZReU5n7TKXL56n0zH6E4N+D60LGlHM3Nxu9rzj3eyevx6ArCx44vG/RJcJcSOmqDR/bB+TZEiSJGit3VtVs9k0GJayNNkjIZAV9qpQRnXblFw1WfV2Mhz20SpHoI343dpaJf4HYTxLe+4d9LvryOQKvrZ6SRlRHHL58mVakU8Yx8hos+Saaw8RtomicfyojV+pCOOHCBGC8AnCJnEFdG7GTSIvQHqCINaUZZeNjikLvnTuBYqspNWcRBPi+8a/amJyJ5OzOxibnKbZahOFHqIqrSmhKVVOWUJZ5JSFwe8AqFJTlopCG3ydvV/Kwvw/Qmze67XsTlmWPPl/feJNBRk/++yzWzApo2+B9ezLKNuinjWpl7derwz0RkBk22wpYBTbMNrq5TPYincY3ffrYYzsW689rzr4czSjY9/Y7XY2W1Hv39mzZzl48CCnT59mz549DpNSxzjYcp01jLztttvcW7nNFtn92gyW/d72z2ZLrACgfYOvb9fr9dizZ4/T3FleXnbZijoQ2o6lzbTVFZ3rflU2U3PfffcBsLa2xi233OIwLHU8zfLyshOrO3ny5BbvqNOnT9Pr9VzWw+7f6tVYnSCLY5qdnXXjsry8bIgYI1ipc+fOuWPYuWTxUfZa1rMdZ86ccdkrKyAIpuRlx66epbNlSYu9Gi3V1gUt6yWiOmas3rd61m+0NDuqtj1asq1/Vgc/18dku2xMPcMzetz/X0HGGhCeUaIFkDI0QY6kciQWKMui0hpPBIauGkWEYei8cASaIApohh5NfwPSFwFQ/Uv4+VW0KPDbU/itd5GWpgy01tV0s5RCa4KgRaOqKBmad0wcRzQbTaLYJwpsKSyhzAuk1GRFhlamNGb6Z0C0aZ7he5K42mGSZqysrpBmKaIQeEimJyuw1c5ZgqhFbzBkbcO4KwOm/OUF9Pp9pDAXyPopZVlGkqYURWZE8dBQlYF8lTMeC6ZaPu1YEFSBQuBJfE+T9Tr0NjoM+323AO3YuYPA91l+ZYmVlasO8SKlRKuCrFRoZWT0rT9Tt7dRAY4VqAIpAryK6pwXGk9qlAKE59zJgyCkLDWDwZBhkuB53pYABw2e7xGFMWEFZg7DiF07djAzM8Ps2iyrq6usrXeqPnQpitLgeihZWblEZ9WIIU5OzuIJz5SFxGbpQ6mCssgoKo+zMAodiPbyhQtMT08y6K8jPcHY+KSbd0VeEEURUm6YOVnhirI0I4wiGo0mUdwAIUmr4FUoCWhKpfCCTYB2UWZsrHeJI+Pz1R5rI6uFvSg9JAXD3hp57yq+Z8au1YpJ8oQgakDcRIUe2XDg7qKoNYmIJwiakwyTAeMVu0n5YyjtURQF2TAlrdzE0zglbrYIwxiRS6RsIwKj6Dx/0zU044i40cSLIlda86S5Vz1fImRJXkp09dDRogQUQvtIESGDEq/qu1YaVRaoStBQhVXpSpXmZaUCaSulXFBZ5IUDcr+Zrf7QqwcotkwzSiN/PcDw65W2bNsOr1P/rv7AtwuL7d9oCWi7vm8H4hzdR/287PlakHD9OKNpfFsmss1ii6yzeB1rAzjQax18bEsUs7OzDjwMhm5dF4SrL6p2/G3QZ8d4dnaWs2fPsm/fPs6ePcvy8rIT73v22WedKnBdFO/o0aM89NBDjrFjWVuwyfaxrLD6uNoFf25ujqeeesqV3Wwwd/z4cWdXUQdXW+PKm2++eQtd/siRI5w+fZq9e/eysrLixs76eD3zzDMu6LNjbUHRFuRbt5K4ePEit956qxs/e6z6dT19+rQr7z388MPcfvvtW9hL24k41jFF9r6wWJx6EGMDaBuMW7+x0blbD5Dtb0dxY/bvdriu7b6z+67PmTqgur79di8Aoy8Wb1Z7wz1JIYkabQeutQUtpQUaD+lpYktTjZvErZhWFBkwr9QIXb3VlGvo9CcE3Uvo/KqjlgfNnXgTP48Or2GYjdFJNJk9UV/R8pt4IsD//9h7t1jLjvvM71erat327Vz7QrJJNsWWTVuSLcecmEBooAegMRqAyACBgvBBAQzEDwKiBxswAgHWgx78oAcDnjwMrAB68AMfhEBBNIiAKAkDMA4904NwZpi4x9O2e+yW1CT7ci777Mu6V1UeatXqOlu7W7JMvwy6APL0OXuvtWrVqrXqv77/9/++3uHZHSchyQSxMqSRRQkQ9GTdsqJrSgwRRBlSZrS9MnLbugqlPE1odctJf5HbRiPjmDyTTFPJ/m5CFDk0pmosD5fHlE1LBExG3q9IsF6vsRjarqWqKvQwKVp34YVj4MRSMuoDsFkmuHIhZ5pHxDIaFI611ljtalRGec7hwUUuXHL8ieevvshiMefo6B5HD46HBfq5558Ha8hHKcXK8Xp8QKm7jnSWkvTqzJE15D2RV8YJiXLIVVU1Q78dwqWxGFfZVLfDguY8r5wuCrZ+xN8wGpUkxHHC4f4Bs9mMnbnjnhwdHzvLh7qmbhqqquIv/v2fAfALr3yO2XQHgSaWUe9A70wqTdf1lXMj8lHG3bs/AOBP/q93OTs9pixWCOkIyACz2Q5KxiiVsrtzyGiUDzdbWZYYbTHSEilFlo7IUjf3FmdzxzlKM1ScPHrj+9HHzGYTrHBBepIKkh6NSdIcbTSXfuEaQv4cZePJ4xOEdL5XeTZDd5rlyiFtVVFgjWVdLxFRgtaGyPt+CVBZ1nPbJF37CFVpqxqMcRwgHunORCpGi4i669zNq9xclUoQYek6g9YNkbDI3g9LRDHWRlhaTK9b5MEYERlkpFBp2qOng/EWRhunDdU5JNSjq9LPhb/HthkYhAuGRx58MBKWb4cIxSaRcRsnJtz/5t+3VX9s4+74t+NtaFFY5eIDom198Uq7fj8hwde//XsExQcBWZZx48YN3nzzzXM8Dt981dV8Ph9Kvr3X0bVr11itVnznO98ZysR90OatAEJNHc+7AM4t7CGHx5eI+3vp+vXrAzpz5cqVwRn829/+9qAEHOq5ALz99tu8/vrrvPbaa0OZtj+OHwNvQRCq9L733nu89tprvP322/zjf/yPefjw4blrsc2t/Xvf+x5vvvnmML7hYvy1r32Nt956a0DwgEHV2FeEhYGmHyfP2QrLrf0YeNXiMHj12+zu7g6O8PAowAn5TJvzChwvKCRsh+iQN2j12/j7JUT9NgPezTF7EqqyyXHz/fZ93SR7h4Hytv39fbQnBzhSusqX/sFmtMFqRziME8V4nDAdu4VzHAvQD9B6ga2W6OI+VeEucF0t2Z0kZLvPIHY/B/3bKPJ5ljqiWJe0dYOgIx2ixZQ4USRZRBxbsl5ULdH30NUJUZJi4z1aG2F0v7DbBBvt0WmBbg1t1Q3O19bAarVguV7SNJq8F8zL8xECy3icEKuao5MVJ6euJH1dVWgMaZqTJznVqu7Hxble275SKI3dogMuoBEZoDWpkuyOYg5mboGcZoY8NqBbuq7B25MrwBqBNZZYKkaTMbKfJHc/vofRLYuzOX/+726yLlzf0jRlb38PbTpE5CqFPBJSN07nZnF2itFuIo17DyutDVq4S1rVNW3jHcMjrHEBW5oJp4vSiw954cY4dsGmR0jqukEbi240MnYCfXuz3gIgTVmXJav1mqOjE6q65t59h+C8+OKa3Z0ZumuoynKwmPCEV2fmKum6mhv/0sHaP/rh37Azm/aChGua1D0QZZxjTEuSpggLNoqJ8Povzt7BElEWNWXZkvUpudF4irGGs7MFZTVnsexJqqMdPnXtFabTqRMrFGIgTgtcOkfKCGw7aNBEKu8hFIWJRoh0l/3nZn3/Uqqm4PT4Hl3T0Val8zIDlmdHNMUp+XiPNN2lG5BISyQtkXRCg9qYc9VqCIHREUWpWfXE5EleYcQZdbOiKRZgOuKk90BTI5oW9vYusrN7DdgfKsAa3dAZhwJi5EBGF1gQFimdFEQSK/I+FSyiCPv3YNYQEnfD4AQeWSP474WBha/8gUcQuX+AbsvKarEAACAASURBVD5Ew1TQT3pr9KmYcF9+0QoXiG0okm9hSiJcZMI3amDQTfHH2yQz+4X5zp07w6J/5coVrl+/PhCPQ90SH5D4bX1/w/SPUmpwwIZHRqCHh4fcunVrQDS+8IUvDP313/EIiTfi3LSTgEd6Rd7Y01c9vf/++7z55puDl5O3GIBH1gp+3PzY+XH3HlIeIfDj6t24v/SlL/HFL35x8Ht68803h6Dw6OhocDr3JfG+ysuTd8EFWf/8n/9zvvKVrwxBJDB4WmVZxje+8Q2++tWvDtfl7t27w/Zh3/y4etTFp/KAwRQ0DBL9z9u3bw9VVuF88AGCvxdCL7FQ78f3YzMwms/nXL169Ryi57fdRtTfphkVzvPN9JafJ36edV03BMrhfZpl2TBG/nw2533482dtT9xaSkWW58MbeywkWapJkpqEAqrbJGu3aOlmRVmvaaqGujLYKGW84wb68MpnyHdexsSXaEQ+pD66RqPbDqUkscqJREaP3hPLhkwcI+q7sDxC9UFWaWOi6XMIcuqzgijbw0buQV62hrpt6UyLMIK27ah7JdyqKKirijhJGOc5RL2juWyZTUYUy4KH8xV1Uw2+RELEJBEoY1BCM9t1pb9RFDml5qbB9OfgkSeBIFGC6TjlcCdnf2QZ+fSaBUxE00Z02kA/DgIDkUQTMV8V3Pqrv+Th8TEAaZbxK7/8Ga5evcrFw0sDDygfjXu+kwHjOD/ee0hKSdM0rNdrdKdJ03xQtS2rmmVTICKBUvFQpdR0HUJAJBVNq9G6I/JaMNaljKKoT2P088FYg6VD2w7RRMSxRPSL/jjPmIzHLoAUMZ2xvPTSSwA888xldNe6VFxbDzozgj71KQRJrDC64+FDd3N0bQV2zHQ6xRrLpA+klIyJkhhjLa3WzBdLRD+usZLkeY6ME4xxTtu69xMztCRJwsHhoSt79lIDwvbzpnLnIxi82MBgdIc1zpzVWIeepNMDuiimqi1tB7bu0L2CdhI35JllktQksxipdqmqBQCz3QnCjhmN95HJZAg6ogi07XoejEZEMMpc5VqauHskwqXmHt53SFG5PkFQkMYGmUicIGcvoLg6oq5Ljh7+O5L4Bgf7LzCdOuha6xlCaYcqRTFd7x9Xdx26s0REEDmlCNVXu8XyxwOHT6I9CV3ZfMj673jNGd82y1Y322awEbbNY2zTDnkcv+ZxnKFNROlx5eld1w0BSlh2vpmmC7Vk/Hn7RXd3d3dYjH1qwgd0IS+k67phQc6yjO9973uACzy+/vWvc+vWLV555ZVz6YYrV64MSMu9e/d+rOTYa79scnzClIn/u1ccvn79+uCVFQYyPjCbz+fnzFJ9xVAY+PjmF3bPk/HpK596eu+99/jsZz87BHSHh4dcvnyZDz74YEhF/t7v/R4Av/7rv84f/dEfcfXq1XP+Xl44zwtShhVWflxCx+4wVRoGm36bN95441zput8eGLSGNgOa8Br6eRGKGoaVgmHA66+L5wOF98Hj0El/7bchN/5Ymykqv58Q1QwDv/AeCee4/7ntpeTv0p5IMj64/Lz9z//r/xbZv3HK7h66uAPVA2JVoztYl65zZd1i9Ag13mXn0suMDl+B3ujS6hgTCSKjoNOYnlxrhe1Lpg2KFSkP6SpHrm2Lj9H1MXE6Q2QvYhO3ONbtiLIyLKuazkaYrqIo3OAaFHESY01HW1Zu0e5J0NPJlPF4hDU1hpasF8yLRMLx0RllUTg+T5IQ9YIi49GYcZ4iI4NUiq5HBlZrx9NYr5xycJZlJIm7KKMsYSePOZjG5MoFRvQXULcNZghEzICEaCOoOjieL7n55/+O0/kp47wvw7WaT7/8Ip//5V9Gd2ZAVVptaJoGATS9JYEngfoy7jzLGY/GHFy4OAR6/+pP/4RyvcRiXIDTI09SusVcKYmUCiEixj06p6KIru0QQtA07RAk4BGOwYxRI2UvAZDnJGlGoy2dEVy8/CyzmUM1TNeyPDvj+Og+ZyfHrAs3jlq3SAH7+/t8+udfYTLb4U/+9E/c/KpKsiQjiVPKqsT2wZexAhk7ArHuWjqt8VRYrZ3Oz3Q6cWRyKZF4WYOILM8c6ViI4EYtadveYNJ0DsXoP4uVs3uIpEREinjk5neUX6DWGtMWxMkEme5Q9cKBxrSIrqBZ/BUvXL0AKsW/VzTVAhUZop647Ye1qRvWxZK6LiiLJUWxwPQoVxS5VKuM3EtB2gc+2jRoY2hNRFc1GNPS9lpBTVuj6xLTVOi2RlsNvfr3pYtXKOpjhBVMpmNGIyfGmKUXSdNDKp2yqgRFrQc1Zd06ftn/8j/83idKMvZlupttM/DY1IgJv/Mkfs0mbyBsj0tXhQ/sxz18NwOw8K03JF2GKE/4lvuk/YXH3NxmMxgK00jhAhKWlod6K5tkYv+7T0+FpeV+YfLBlO/DjRs3BsE7j3B5pManXDx64wMmjwB9+ctf5utf//q5Rf/GjRscHR3x5ptvDqkbgO9+97v85m/+5oASbQZZ3kjz2rVrA2Lgr4VSirt373Lv3r0B2fnd3/3dcwuxHwNgsIPwXJsQjfHXM0RJfPN8H5/+8/PUWy54RDBMMYYpqFAZ+XFzxKMmPsAK74E7d+6QZdm5wNS30LphG68mnJshyuLbtvsmnBfhsTbvwfBabPLTwmOH6OZm+1lJxk/LxJ+2p+1pe9qetqftafuPrj3Zi+rigf0v/sl/im1cusSINca2RDam1YayqpE9yTGfXWRy+J+gxp+h1pLOGOKerJvIGC1brMWhNb3fVGQ01eoI2x6jxIq2OqPu33wbM6EzE1ZVTNFoGu3fiAW6MxitsXQIIqzwZcuuuiNWijzNiJNk8LBKkoTpdEKWOd+ieV/tU9cWIRRRZBmnMaMM0sSXpCvKumZZlsznBVWPVhksSrqSeSljZqOci7sOcbl0sMPeOCOVBnRHVTsVZ4DlckFZF6g4IkKgkqw/15jbdx+yKgoWZydY0xKZPpquS3Z3x/zD69dJ4hTveaitGLyVlmdzmqZmOu0hUSlpmpZRnjMej9nbP2Ddi/bdeO9PqNZL4iQmjtNBpVf0JdNxHDOZjBHC0jR9GXRTI4UT19NdxyPdR0HbdUgpkTLC6K5XI3bjPZrMmO7ss3twgUhK6r6yaL1asjg7pS4LYhWh+5TScrkAa9nZ2eGZZ59ld2efjx44RG+5XpMlKUrGCCkpqx5N0Mb5NmlNVRUURTUQYOumxoqINM3QpqOpKlSPMMVxSpalSCnJshzTK/m2XUskBFLJXlBQDOXWMk4hUrSdxoocmTpxR6R1ytlCUpQGK1PnUwYsTx5w/8O/JDFzXvr0RdLJI3HF1jTQc3riNEH2CtrWghHGEYBlnz7znJm6wViIkCiVD2goQiOEBCRad1gjBx82bWpMW0LX9tcqAdGXsWvDYjkHBdqsqUuX8pIIxtk+ewefRajnEXJC3Styl3VFWVX8j3/4258YgvOrv/qr9l//6399Dp0IuTI/DfISNp8OCt9QQyRkE7Hxn4dvneEb9GZp62Y5++Zb9iYKBOcrr0KyZbjN4yD/becccmm27c+nEXzqKOx3lmXcvHnzHC/iu9/9Lm+++eY5gixwDjHx6aZwP1/96lf5xje+wb17984hR++///5Agvaml+G1yTKnevzGG28MIntKqcGU0vtsAQOa4km/IYfJp9v8OISkc3hEkg4J0MCQYgr5VOH82EyZbKKCXsDP98FznTZLyEOuyibS56+TT1+FHKoQ2drWN7+/cJ937tw5N4abad8nkXs3P9ucU49r29BPj+aF6eNt+w/7tW1/vv39eFE1a5anf4lKehXcJHE6OCJypdL5lHjsdEqi2edoo2dpG4mULSlrTOMelhoNIiaOYmRk0V2v5VItWRctTdNRFJpVMWHt7QvaAm0KhJBO6dZX2lhBpBzZVWBpTee0WYDReIyUAoFBScVoNGE67XPyFuaLMx4eHznfpz4oSiNDmjRMRznYluOTOfOF40jUrcaaCGmlW0hEP9mSnGk+YjYZM5um7E9gd9yXTkuIzJqiaOk6V7pdlm4xLoo16/XKLZoRxD1p80cfP+Duwzm600QYrOnQvddShOXw4DmSWKGUBO+h1WqsFUilGI2nTCYTRr0fU1XX5EqRJM4yQ0r5yCBTCA4uXublT3+a2Wxn8AubTiccPTzi/v0HrJZzzuZzil6p12hn6pjnI0QUDT5NkZSkKkZ3ba97I4by9lZ0xGnKzu4epm05eXif5dKp7rZNTRxL9vd22JlNB/7Lar3qNWsUdV3z4MGDwTNsf3cPKZxhJiIi6cnCWjvz17qpSeIEMYrOWWNIldIZ55ReVyXCu4knvf+WNThz0clwTpGMIBIYK6g7zbKHmpflnGxyyGiyh1QxoufZNNWc+/d+SFk0HOw/C1Lw0Y+c8/pYJkRC8fBkhRYTRjsJL718oT/fJav1PepqiYpgb8eZm07Gu1gki3mBjRRpNiPvU1EybWmrNUJBQ43pieURveJ0nCKEodRrZE9oU5FApooojZEyIVIpun9hkLrjMD0AG9GaXerMpQvromR5dsp8/qdkk4tMp7tcuvhpd58lY8Te+YqLv2vzZefbFvxt6acn5el/2gen/8xrkXjyakhm9j+3GUiGwU0YiGxC/SEBc7Mvm4tn13Xnqop8+W64SG7uJwxmwnPzC2boSu0Dops3bw7b/v7v/z7gCL5+UQ6rqLwFwdtvv83169fP8YDu3bvH1772Nd59910+//nPD7o7wLDIfutb3+LrX/863//+9wGGMm4fUL3zzjsDZ8hXSfl9eKKzL18PAzpfyeU1dnwaxnM+4FFKTSk1lNTDo+CkqqqBuOzb+++/z+uvv867777L9evXz11zzwXyZOywf55oHdprbM6VyWTC17/+dQC+8pWvDGrSYaDjjxO2sA8h1ynknPlKKB+UbxLZ79y5M/DCQhPPx5GIt2nkbG6z+fIRptA8eXqzauxxLyo/6b7+WdoTEZzDg5H9J29+GoXXugEjErooJZk8TzJ5BaOecV+OUqLEkEQCTIPpXMk2gNU1bbugrlvqyrLszTFX64Z1XdNUDVrb/m30kbGhe9N0/kb+xCMpsSJy5c5Jhoyd8KAbJEkaR8RSYIXGaFgtXR+apkPJGGshSQw7s74CRiiKtWZ+Nqcs1jSNe/sF54KejjNGkxnj8Q47O463M04MUbeEtiJTit1Rhuzfluu6ousajBZOe8da2p78e3p6ymq1JB/lRJHjzgDcf/CAprMkSeK8lpQaUI1YST79c9fY29t3iEuP+jiBGOXMJfv9e8uKtmlI06QX8ouZTGc8eODKJh8+fMhnfulzPPvcc8RS0fbcHGdkJSjWBT+48wP+4tYtFn3Jt4osXV1hRcRoNCaO3bVI0wwhLOvVEiHcIlU3VT9XBM+98CKz6Yz1csFquRiIznGSkKWx84jKMh+7Ujd1Xzrv7AR8RQ/03lZCEEXSmUp68UkhejsF0BjW63UgNijQxtUfNVXFcnU2uJBHkbupkjQjSUdMpr7qSdG2HUJKjo6OefjwY4qVG7t8PCFSEcbWKCUGJKuq15TlklF+wM7sOUS6Q94HK4v7H/Lw7m0uXnqBC89/DpHscbif9fPrjOOTH7I4PaIqFrRdb40RWeI0xxCh4jGjySFR1ItjJgki0iwWD1kuT6Fz52o651/mKr06jB9DnG2GEhFJpJCx05GK+3kklSJLExe0CkHbI4cykljd0rWtMz9t1hwfOUFGKwUvvvQP+KPf/+8/caG/zQf7Twpq/rZvpPBosQkX/aOjo6Gs9kkBUvjZtoe//z2swNq2gPhF9XEB2DbUx/++SRDdRuQN+xv+zRN1fQAUCvP57/nAyPchRD5C7o5vd+/e5YMPPhh0ZvxnPlDwHKA//MM/BOA3fuM3ODo64vr160NVlufteCK1L0UPeTueS+P74Bfp9957jy984QvcuHFjqCoLHcJDTkyIKHj3bo/4fOc73wGcD5R3BQ/P3aNIvl/hfAj5PJvoob+GHgXzVU+vvvrqufLqu3fvDoFdyD/y5+6vRRhUhP3zDvCvvfbawB3aDK79XPfNV7ht45eF997fBt3Zhib6cwzHKUTnflJw87MiOE8McC5dOrT/5Vv/ENMr8UbqIstqxLqLGe9dwnkFxb4DxLpCmBVtU7IuVgMJd102FGVEWa2pm2IweHRSsgasRCAHoTL3SYQQMSpOiJQayr3TJCbJEkSkSLMxk/HUIRtAXZcUqzNMW1NVNcboQd03khFSWGYTiYxjzpbunBbLbkgZIGLiWJKPXCAzm+2wO5Uk0TFtdYru3LkWlSVqayZpzOH+LrG01P25FmVJ23W4+pPoXIBjrR0WcWNsb6rp/IXSNMVaKKuKpmlovBloHDMap+zs7DAaTRhNXVpkurNLrFKkjIby6sHoUmuSNEZEEXGcMNvZ5/jYBSsvXL3KdDZjtVpimgbdPSrRlipmNJqSZjnHp6fc/LP/D4CPfvg36KakM4YkSZj1wcBsOkXKiMXCOZu3bcti4SatsZaXXnrZlaOv18SxHPRkVBwjlUR33YDIwCOdhKIsiYRgNB4PpqgYp9Uj+kBMKe8/FiN7tEqlCViGKjiXYhNOtE5ryqpitXbXqWprOm2cnpNSrqoNmEzHZFlOJCxCaBA1InLXSUWSxekD6vVD4hjiHg0yMqcVh3Q2pY0sVqSkPjir79NWR1gxJd97HpFMuHToXgpmkwNE1NEUH1KXD2naPg0rMhblmsVqTZyOiWQ6zAclHaImZYRSirSf+8I65G+1XLBcntF0K7Rp+ntTE+HQQdl7r0nhxs+hsTlNK0jzfCDYC+kC27ZxhGJTt8znDtGrm5Is3+f/+J/+z0+cZLxZHv04svDj/vak7z4OWfF/20Zu3CQ/Pg5N2rYAbNtmk2QctjD1EfpN+YAi9Jfy3w9Vm8OqnjCVFHo9+WDGL/xHR0fDQnPz5s2h9Nz3ETi3aPt/h8J8m5VOXrH42rVrg7JvuHjfuHGDV199lW984xt88Ytf5ObNm8NYvPbaa1y5coUbN26cIwxPJpOhBN0jAR7BuXPnDq+99tpwfmFQ6eeRR608UuTHLhzDcMH1lVJVVQ0k6tDP7ObNm0Mllh+HUFk4RC78uHhkLqx+e+WVVwYF4zAl5edQ+J/vt0/RbSvrDtHEbaiib+G13Zau9f/eDKj9GIemtb5f/juhXMDmffGk+3jzXvPHyrKMOI7/HgKc5160/9V/89/R9W+9rZVUjabrNF1TEwmNkq6TUbemrhpOlwXL5YqyWNLU7gFrTK+rYSMEjtcAjvdhem6HVDGRjBF9SkLFCSpOAYFKYzIv9KcilDTEcUKkMtbL9VAhpHWH0TWRMCTCYK0h6lGNNB/RtobFYsW6qIdKIKEUaTYhH0+ZTEbsTHJ6yRgyzjD1EbrRFG2MTl2ZeKdz4vaM5/ZTJnmGqRsW3m6gqpBKOUSh7TDWoQrgtGviWCGlZF2UQ+rDGO2Uia1DMcqioA5QmcnYOaHLSA1Iw9VPvUQcPwqgQndnow1JFoOImM0OmEx36TNH7B8ccHZ6im4q2qYe+Cpd15Gk7s1+PJ0xms44OXFB0b99/wYPP74LxpBlKXEfXKRpynQyoaorFssz1kXBok/vJWnCc5efBe0EBMfj8RCIIkB3mqqunQmqf+jXFUYbF3AKMXCpANI4ccFQH+AMPKA+qFMqdm7tKkD04tjdPJFTN261ZtEHovdPTpgvCs6WBeuyGuZDJJ0I42SkuPriPru78YD6YBMwUNdnnJ5+iOyRLJlfRqT71FqDdY7nonW8tcw+xJqIVuyi5S6Njh6lVGeH7O9e4mAiSWRH3Fs46ChjsS4pyoKqLimrgtWqT5s2NZGQKKWcia14lC5M4hgVK1c5YA2dT/volixNkJFwHC7bgu7R1a4iQiNwiKdXAIyiiEhAp0uiqCWJJFF/3RcrzUcfPeR//fb//okGOO++++65N04f8IaLlG/byrKBc2jE5oN1cxvfHvcGu/m9sPmHd2jlEH7mF9owwPGL0rZSc79N+GD32/i2ycvwlTkeHfCieeF24TgCg1quP1aIaOR5zo9+9KNB7M8HLrdu3eLzn//8gIxs8kj87++8886Q6vPn4FMvHvHw/Q77dfPmzUGsLqwaChEc/30fSIQpKp8e8n8PF/Y7d+4Mui/h+B4dHQ1Cgt7w0wc/ISK2icCFqaZbt26dS+n5IG4z3eT34ZWifVBw+/Ztvve97/Hbv/3bw1iH8zNUNvb7CmURNtNQoU6R32Yz0NsWdId/27wHtn0WpqF+0j3zuADnJyGym+nYp1VUT9vT9rQ9bU/b0/a0PW19ezLJWFseLCtMn8Jp6o6ubRCmJY4NxrYc9zyNs7MV5brG9DobXsLO/z8SwmWkIrA9giMjSaISZBxD5AwHQ25AkiRkWYaUkkR5n4jOvdGuC5p6Ttc2yB5Wz/IEgcRowyhXSDVhuXJv3/cfLKmbEkGEjDPSUV/9NZqyu7fLbGqYxacocw/TZ0XqrkGbHcquIptNKUpH9FwuTjjINILcmRfqiqp1KFLbdWhtsAiMNrRtO/g9aWPJlMICcawGuXzde0nFsTMK7RJFp3vRvigCY2kbzYXnnuPnft4RPZNU8fFHd2ibhqZpnadQfxypJEmdkqQ5ai+m6yxxj4QcPXjA/PiIrm1w5FrvUdWSNDXjiaXrWrTuhqqs/YNDPvrhHUzrUlpe2bduYrRpkZFD4ZqmYX7mkIbxKKco14yz3JF/pejRFzCd87aKlaJtW6pevLAsS4qioG27gfysJ+76dUkLGKRURFIN/mjGGLq2Q0rlPKfSpDdPdam/RI4ZZzlGwLpqAIfgjMdjR9QWEaPxeOD0tK2hrBpUbijbNXYeESdRP78kIk5J0ovsZrto3BwywiGNmCPW8x9hu5KoRzaLpsR2gtEsoekKyqogzR0KpxPJh3c+5oGKee7KCyR5f18kgIhRKiPrdYaS3kvMaEeKNlZjjBnSvUI461bTdkSRwVo9EMsj0VGXK6ypsUZjdQ2m5/uImlgJaB1Z28/JJJbEKkIqSxxFdFoADmEyGC5cdjo6n2TbJMlu8hp8CiG0L9gkUoZvlU9CbMKfSqmBSLvZQnRnG5rjUYMnwfxh30K4P/Tq8WkX/+8QxfAqxyEnAxz35Pr16wNK4f2bNvvgq5XgkTjgO++8wxe/+MVz/fu1X/u1QWgvVCQOCcAeMfIGnd4mous6XnnlFebz+SAc+IUvfGGrQWeIRHnuU1jJ5FGa3d3dc/324+IrlXz/bt++zSuvvDIQfMO02dWrVwfOUTi/JpMJN27c4Etf+hL37t3j/fffP4eiePTJ8378tfbnU1XV8Lu/JteuXRvG02vy+P1VVcWrr746iCgCvP766+dUpoFzKR+vLuzRPd8Hf303UY579+7hVZT9sTfRpxCFCefJ43hn/m+P4+f4tu3e8NuF9+3jWti3x6WLf5b2xABHa83RwyPKvsRYiYi9nQkIzcP7HzOfz2kqb5RowLlAOeIn9HwJelfpGCInkKb6CphYJUT973GWEcmYtE9FxbEjyCZJgrWWsnAXeLFcUFYVkXCieqMspu3JzLqrGU8zBBknc8NyfYzpYfo4ihklU1Sek+3ssLfrHtB7aYGs70D1IaJOIH2eZdU/ILtdinJBFkvaQmK7nothGsZpCqZjuaioiuXA7YhEhIxTjHFGjiqOB7HBpmkoivVQgjxYALTCpR4iCdYJDMo+Vdc2LdpKnn/hKp/9pV9iNnVB1snJA5IkdaRbETkfLm9aqTuUlCTjGCkVFjE4pB89uE9ZLCnLAmGhbdwirY1hjXD8nSQhigRpH/yMspSmdhU7cTweUjZN01DX9XAeVV0P1TDWWpqmJlaKNBLUTTUIG4o+uAGnXBz3wevaatblmrpuKOqSUZYxyh+ZhJZl6SqF0nzwohLCcVG8IrNrXlJA07UNTeXKsLNYsdsrIDcnZ2RxTqxSOqNZrd0cr8oamoosSai6NXWjkOv+obBs2d3fIx/NSONsGNPWFFitMfUCSUmkzCBE6FK6FaKUzA5eJEpGHBw6nzGSXdJ4SVEWfHjvQ0RPJJZxRpzmpElCEsdkWc6oF6ZUUrm0Xtuiuw7/KmGtq7yryzO6rkA39WArJUyH9ammOHIkcdMTncUUGafoNEKaDt2TjK1tKLsWUxrKVY2KElTa3xdtTdOVfJLNWvtjXAP/MyS7+haWkYew/CZXIVwEwuqobQ/UzYe93+5JD3+fxgj7Fqr7hm2TfxOmezb5Cr7fPt3j+RCh6u8bb7xxTu03dNH2f/cLoV8Y/fl4U8jw/L797W8P5c1d98hawSse+yDl1q1bg+VBOJ7epNIr/4Zl3d6mAB5VV7333ntcu3Zt8Hjy+wqDHc/B8d+7fPkyN2/ePEcyPjw8PMf78GXtYf98sODP1VdIvf/++4OKsd9fqCK8u7s7XIPNKqfQ28oHQX6crl27trXazQdufp74lJWfE9uIt2FqLZy3oYyCH4dNAvRmQLNtfodtW3DzJN5Z+L1w+zAACkny214Y/L267fh/1/ZkBKdtWZweDwdPYsH9j++yPDui7ZoeqXAtEoJI0GuzSGQUDaaC7o07ceXdcYKSPohJiZOUOHG8CaWcnxFAGsdUdcXD+/coigJrvbWCZJQmYDq6ak2aCw723Q3faDg+LiiKDm2d2ms+6jkcoxnjyS67s5RxsoDmAwD0aoVhj7L9RapGs35Q0DR9sBIVjPKM+TzlZHWbUc9/GQmLMIKmajg5nXN2djYEUmmSwkhRlqXjjMBQJi6EoNMtpnp0LuAmmbAO6eqMpm46fPZwMt3lhZeu8Yuf+xzT6Zhi7UqtO91hkWjT0bbGkVAHGo4FY1wpdSQRUrFeue2KYsWDjz+iqUuH0vSqxyp2gaZSEqtHpFmG7iuiJJrZZMxyuWS9Xg3EbamcE3YUc1XNXwAAIABJREFUCaRUjpPToz6xihEiom0b2rZBSTFwbbTWqChyZq5JMlgAKCFIVEqa5gghyJJHvlfrskB3fQl50wxcrTRLXWl35F3jnYUBgLSWol3TVhVZnpLkIxL5qDLrbLlitS6JZOLKqoDROCWNNbGxKBKKtqbWRT8fNI0+I0lzdiZ7SOWCr+logpQJTZOySnJMUyC1G7tZNkHT0JGT5BdIJlOsRyNFS5SMmCQj91LQ90FEyt0P0jmed22D6OdDhyNOi97M1fRj2tYryuURXTPHdhUqVoxG4/5aJEiRgNVYq7DaUHjUw2qk6Gix1F07VO8Z3dLpjrbVLOdLdNMOCtnZKB1Q00+q+UrJ8A12kycQPjTD4GCz4ifcNnyAb/OWAs4RP/33/L7CthkUbT6oN/uwrYXI1DaekD/+pl6O515sBoGbfQwNPX3Z8LbS983FERjKpj1q4Bf8kBzrkZrwfPx+fXDkj+UDAo+4hYRcpdRgmBmqPft9+WOGpGA/BleuXDnnTeaDv5Bg7OdRaIMQViN5SQBw5Orf+Z3fGb5bVdVAjp7P5wOK5L2hfDVUGEj58nZfwbSpQOyvYciTCq/NNkKvD5w3q5VCku8mQuM9ycJKufA6hWPs/76NqxZe08epC2+b475Pj+PY/LRtW6D0s7SfsLUlSyTV2qUdjldLh5aY1r2hisilnqAXReuDG6VQKnUS+rgAJ04yZOJIoHEf4CRxTKQkcaxI4hhjNcsztxDfn89pu67fpyPsgnOcHmUp+wcXwGqKdc39h65/Zdtgo5g4n7CbjcmmY8ZjtwgdZC2xvo81x5giptVOkn7VPMOibGmahq5ZgF5y6YIr8ZXpC/zwwwesFiforqReOwQnPZg5l+xVzfxs4TyptH/gS8Yjh0D5i2QHDR/bI1IGY51YIECeZqhIoo0h6iJn6Ngvni+8+BKf+cwvMpuNaNsa3aNIum0py4qqKGibmrooh2uRJQkRwqEpwqWBHnz8IQBH9z+mrtaunL1t0X2ZcZKmTCZT2iRFTmfESrJaureJex9/5EqNpeT09JTJtEcTlOoJ4xGgadt2mJD5aAQioqpr55sEgzhf1dQI40QFR6MReeosIXZ3DsgnB+z3D9L5/JSit3HoWuOCF23RTU3ZE9jjdczOzi7j0Zg4SbDYofLKGAPWUpYtTZswtmZI1U3GKUkiac40ddUM6IlKElIpqZqKS7sply7s0Xhtnz6tZ3TDen0yVFFZ24LIyLILTKa7rFZHjJTrX2TXNO0KKRQIg7AC0/hgpe2JuxZj9BDwqjjCWKctlKi4J8r3Ug3G9uXvHVrXmD6VqeiYZBKRTpByihViIGBHCIS1zlVcW7QUpH2loMVVh01kDFE0EJPB0hmNsdDtt9z/6CPmPh09Xw66VJ9023zAb76Jgpt3t2/fPrfYbnpQbXswhoTNJ6E0m1UjYVDgWxhcbb4lb36++Xa6bT++hUGY32dVVT8W3ITbh1U1oeZIuGD6Y/pKopBIG46DDy581VK47Ta0yh9LKcUHH3xwrsrrzp07A0KxicQppbbaGnh3bB+geQHAV199dUgHHh4enitH99uG1hS+jx988AHXrl0bjum3Cauw3njjDW7fvj0EK4eHh4On1e3bt4dx8Gmn0M8pLPP2wY8nNYeBQlgG7oPpUJAwDG7DcwnNY8PrFF6LsForvJ6b7uC+hYG1H8dNMry/riHpd3PehvdmOF8fl871n2++YGz7zuZxftb2xC2NMcxPj2m8B41xGiVCKlSfGvEVK1HkuBFKKiIVE6kEqXrkJ82IE1flkiSJ45UASkriRNHWFUcP7rFYng0+Qi6t4zgsWZZz8fnnARhPdqjqmpPFGcVqCVailHuznE33GY1HTCY5OyPI7BG2/gs3UNUZHRO0OeSoSDmr+qCjW6O7CiVTFIrVuuJvlm7iN/oeRVVjbIMUOWnq+l03Dcu1pFmfsVytSNOYtE8hjPORS7upiChSaN0Ob+ZadxRl7+sl5YDsWGPI0syVkdc12hhe6N8mXvmFX2RvZ0TXFXRNPaTqynVBVaxYr5aYThNLSZ65QCHLXLVWpzuIIqpiTdEHK2WxoK4r2rajKiuKwi1o4/GIWMVMZzsurSYjPvrIqQh/9NHHCGuHxc+nZlyzGON8rZq2HdJxcZxQ1TVVsSZLY0zbsur73jQtUT8Gxlj2Di4C8Au/9CscXn6ebDTGGsPZfM7piXvb+eGdv+YHf/3XnM1PaHXLeOweLAaomqY3HrXEsRrMO2Pv+B5Jirqi0R2jiSuzH2cTLu3t0DYdi7IeVHrbpqMFykZQf1TxjJFMZy6NN53kRDTM53eRUjNSvRlp+4Cjk2M6k/Pcp17l4OJFTo8/cnM/GlNUDSQZttXMJhLT6yxprZ0JeSQx2iK8L1gkh5eHtq2pqvUjTZtIolSClBZo0b2hptEl6AqLxmo3Bj7gTVXsnMCNRXct69X6UYAjBK3u6LoG/UgwOUCUBGmacuXFF7n83DP9FQeM5l/8b9u9o36Wtpmi2tR/2Wyhci2c59VsSzdt/ntbNdPmQ/xJPAC/vyeVlodoDTwSYvMPd7+YwaPqoW2Cgv73TTE/34/wvEO+w7Vr17h58+a5BfLy5ct8//vfP6cX47e5desWk8lkKF0OxzRcuObz+RB4XL9+fSg597wP3zz/5fDwkG9961u8+eabQx/u3LlDVVWDFo0/lkdWfMrrW9/6FuD4Kpsl2GHAFCINWZYNnlNvvPHGoCkTmllWVcX3v/99vvnNb/KVr3yFt956a7hO3gD0nXfeGfy0gEH5ORx3j8Z45MtrG/nUqR+/rnP6Pj5t58eh67pzDuDbEMJQEydsmzpLXucnlA4I54kft00uUng8/+9wm8chjWELt90MSrbN5W372ZxvjzvW36Y9cWtrNE1dDqVWQsUIIVGRcjwSlSGj3hRSCUSs+nLSBJmoQRAuljlx4t72lZRkfYpjvVzx0d27FMUKpSRKqmER1dqyM93n4MIBKk5ZrVya4OMH92lbjUAxHk/JJmNmM3eRppkm6T5GNDexyzlGJ5g+yCqjq8yLGfc+PiYSBVnmFq3xZIc0u8S6KDm5t+L0rKJcujfVrl0jZUyc5uiooev6N7nYYnYy8vG4v+kkec9XUSrCWFca3famhHHijtXVHVY7/okxhsqnrozFaIMQktFozHi6w8sv/zwAewcTtC6oy5KiKFmcunL0o6P7nJ6eICyM8pw8zRhPvON04lJHUgGWar2m7om8bdvR1o0zotTdULJvNHTa9CJ8KVjB3oF7AxhPZzRl4RylYzlwcIzpejFDp/9ztlzS9jygtusQwGwyRmtDXdcDstI1LVjDaDrm+U/9HL/yD/4zAC49d4VIxbRNi7WWvb199g8c0nblhas898LL/L//9t9w9OAuZeHGTgrVa7W4kvxEKSZ9akap2OkEGcdUqdoa0dtFdBbyUc6zlw85qGtOF26xOVuuMFbRdJJFYZnfPmN/z13bZy/n5MkagWa9WpH2aZo8ztm/dI1Kx8wXpyTVmrJ0i4Yc7aBVQppNMAKsiBGxm+OjNKNcnqG7jtE4Q9h+7JYF2WQXFae0FqRUSOnTVxIpY6TQSGOp6mV/d3a9MrOg601dO2+BYQsiY5mmOccPHvLg6Ihf+IyD/vPxmLptqJqKsi0HDo6KJFJECJzZqE+JAVgsVn/yKarwQfjTIDKbJa/h9zaRn/BNFPgxlGQbcrNt+822TSdkczHwn3uycLgQ+/4cHR2dSz1s6r+EKE64783fN3lGnj/jgxilFG+88ca5MvTQUsC/9YeE65AD4lGN119/HXCmlX/wB38wBFhh0ObP8d69e7z66qs/Zvj5+c9/njt37pxLUYXowc2bN/na174GPEp3+UAiXNgnkwlXr14dUker1Yq33noLeKTt49GW0DjTu4x/9atfZbVa8Vu/9VvDsVar1RDchBo94XUGzo1dSEzeDFpC920/xm+//TavvvrqYO7pr1fYwjSRbyFSEwbZmzYafnv/vc2Xgc3Pn9TC+R/OeR+MhrypME3lv+P757+z7Xjb0Nq/a3taJv60PW1P29P2tD1tT9t/dO2JoZIQEXk+HjyYhJSOTyNjIpUSKTn43TjURpLEGYlUpHE8IDgWkNKRSlerFXfu/QCAsixIE8V4OnLVQsay13vcXDi8iIjgbHnG6vSUrleGVTJmbzRhPB6TjhRZNCfV/wEAM/8PWLvGRCM6uY+JL7KqXdXM0aJkXa6ZzSYIWzKeOIg+S8ccHZ9yfPSQ9WqOlIqsRwDKtcVqQ9cYoqhD9KmP5XLBPIVnDg+YTKcY0zEZu2201rR1fQ5G9dVNXnDOp6x8es/SR9CmZTbe58oLL3Oxj/4j09A2FdV6yepsyelDZxtwdnIC1qKUwnSa0pTEPefJwSqCyICxgq4z6D5ibpqadbFGa4OxZuB9dFqDiJAyJs/HiEixe3gJgPFklz/74APmZ3OEEAPxt657rkufvqqqiuXKIQpJHDObzuh057yQejsF1z2LiCTPvvASv/jL/4DJrkNplquCslxjuw60xlo9+FRNpjN+7ud/ntnOHv/yX/zfHN13nKIsUUQ930RGkiyosIoiV6mWpCnICBE5DhGAtmc8XBQIKblweIFnn3OVTfv1ipPTBYtVg15Z6goePnBoUVtbdqYxibzA3v5VdOS4Xy0dVkl0JxDaEJkzdsZ9VZctmYwUtW1Ikyknp7fJc8fxijCsFx+yM36W8uyY+dyltXZ2LpKMc5rWok2EiNSAmEjr0lppCiIymNzdY2XVoo3BGNvznhjMNjvjJB2qVQGJ5fDKRc4q1/eTconWFikitK0xvfpx3dVEwjqlcSEhion65wDCIPhkyjh9s/1cDmXnN/kjm4hL6DP0uPY4cmW438030sfB69veLjerp+CR1cGTSth9eig8t9A6ITSL3LR98PsMK6o2PwvRnDDd5/kuk8nkXD/9NtsIpeEY3759+xxB9w/+4A9YrVbnCLae23J4eDioFIepsN3d3aGq6f333+eLX/zikLa5e/fuwMH57Gc/O+zr6tWr3L59e0Ap3nvvvaFaq6oq/viP/5jf/M3f/DFSrh9jT7oN+/BP/+k/ZT6f87WvfY0bN24M5+vTWR6V8H3zlVs+lbg5tzxp2CMaIUrmvx/aJPi0XSjS6Pf5pS99ibfffnuYY2E14OY125zTfh5spnBDdCXkVf2kar/NFs65MD0YHt+3x6WhHtf8ff2k9PTfpj0xwImkYjK7iJS9HYNSgzpsIlNULIhjz7lIUbFExB2KDJoOK1w6QMZjzlYNR0dHrNdrZ2YIjMczBIK6KZnMdnj2mWdRPbl2fnbGslhirSLNZ+z3KaXJKCWPNUp/RFf8e5riITV9kCX3aKOrGLlDZ3c4Pok4Kx1JVevOefFEkKUjlr3i7q27f0VTt1jdYjC9G3ZP1p3tERE5rlEkoC/JlQLmZ3OSyJInudPu8SXxRmCsRqkIJSNWy/VQQq6UQvd2B2mSDJC/1h0NllhKRqMpk9kuvuq5rQvqomA5P+P44RHrpQsg8iRlPJlgjKEsSrQ2LPvP4liRphlR11tsSDnYF1RV7aqQcPwVH+BIFWO0pdMGISJGk+lAdE4yS6MhyydoY6l6snBZrmnb1vWhLFkuF0OlVNd1tG1Lp2MwAmPNoJJLJEjyMZ/69OdIJ7uczN210F1NtV7Q1U4GwDppXcA5kGtj2T844Bc/9yv8m6rn85QL0AIlY5qqxmo9+GuN89xxi5JeIbjTzM96t+wkpm4aiqri7OyMvUPHA3r55ZcYT6Y8eHDEKG1YLAqqXlV6MS85OxFgO+xfnyAjd5xPvXiBw2czZiNFXT+kLOZkfVpSRhZMh21jyuII256Rxb5EfkS69yn29p/j+PQjLmY+xbiHEJLxZJcoyTDWDB5fum7Rbc3x4ph6/ZC8JzrL3lneSMiiEcaaIV1om5bIGjCaRrd0Tc26cvcmIur5cwJhNbZPUWEtCIlSI5JkhErGzhsOiNMRlgnwP/NJN/9ADBV7twUW28iuP81+n0Q+3vx8G69gM8jyn4f7eRw3J+y3X/BCzozf/yZZFB6laPxiGR7Xa5+E1VueTBySSYFzXJRtC7UPZsKSaB/4+H6F1Uh+QVdKDa7efhH/R//oH/Hrv/7rfPnLXx4CKr+NH7/XX38dpdRg7/Daa68NVUBhMNB1zgLA2zJ4/g44JeMvfelLw3UKt5tMJrz33nu89tpr59SZ/fzywVZYYu+DzTt37pzjzPgU4zaVaT/G/vqEOjg+5XV0dMQHH3ww9OGdd945V5Yfzr1vfvObKKW4c+fOueDw8uXLQxrOX79tAflmGsgHHptO6/7vm7wx4Fy68Um8m21jsY3zs3kc37/NoOhvc1//pPbEACdNE65efQ6vsG8jiSXq3akbYjVCeC2XqEFFCbrqaNr7dKambd3CsnhYsSwLrLFMJhPi3j6haxsiNJeuPMP+wSFF0XAyd1VUmo7RdEaejJnlglz1gcr6z2ge/jmmLrCkRGqGHDl3Zjm5jJIXKdY5ZdkhkiVx2/fPaNIU5osV1jhSM0DXWbI0J5+MkUrRtg1Fz9MwpsOIyJE6VTx4R5XlinW7pF4veeG5F7i4MxsCBayrDmrqCqwmEgSBjBP0q42ha9uhyiXLMhACEwmSfMTObIpuXR/K1ZLF6Smnp3OaumXsS3/jBCPcJIykc1z3nlraGIqiZN1Z9i8/T5LIgQfUak3XdQghSLJ08N0ajcZMJjPSNMdY+8hVGxe7XTg8YHeac3pywocfubeq5WpFUVbUdUVRFtS9yaX/zFhLlsVujlg7oDHGOq6PkCmroqDs7RO6ek21PnP+WBas1ST95DNdyzGO+H5wYZ+8J3U//PhDxnmK1k7ssGmga925YlqiyBApJ3mgTcfL1152250uaGXD7r5ECkvZo1G3/vwvuXTpEp+6epWuaynLYhAitFZRli1d11I3xUCA/sEPTrj74QOufuoC01xy8qOW3QuO8P38pz5FYxXmbE6SREzsc7SdJ5pbZNzS6AV7+/s0TT/vetJ7UywxVYWNBLbXABBCECcpu5PnmEeCri9Hd/5n1gWRohdr7LVqpG2wjSWOMnQUIwRDWb2IlNtGWUZpNri0G23R1tLUNWXTYNsCY3xQtGQ+f6Qz8km1EMHxD9rwrXPzIbvtofu3ISiGaMcmd2db2xa4bCv3Dh/eofFjSDreFniEfd4MSDxaE75xe26MX6h9kAFO58UvFKFO0GQyGfRqPFoUBmr+9xC1Cd+ofdWa759fnF577bXhvL130z/7Z/9s4BCFx/HBhP++57sAfPe73x24ML5P4AjQh4eHvPvuu7z33ntcuXLlXKBx/fr14dpdvnx5KO1WSg0BURgMhJysrnPVeD7I8gHod77zHa5fvz4EKrdu3To3LpscrRBlC/lIfn5kWXZOXDHUCAoXe3/NvGDftvnoj7fJedrkgW3OldAjyrfNwH1bwL75nfDahEHftuBkU5Bw8zibwc4n2Z74BFCUHOj36Jq+NBkFIiXPJrRExHIfq90DUQBtbcAoZLTLqp6xWPdv2bojHY0YZxlCCGxPNk0yzWgUkY4S1qslZQ1xjxqMszF5ljKJDaL5Ae3D/wcAUz1ERgmVyEEq8iwi6dWPO7vDyUrwYH5MU5UIG6Fkj0KMM4piiTYR85NVr8zq/FfSJHdieF2HtQIhvGicAStI4pzZzi4+VCmXR5w+WLBYnLKcnXHx4oVB4M4YhwJ1TUNRFGj9SFG209p5VGk9pKnA+QsJIZBpxmQ6Q9iOstetWZzOOT06YbFYIqUiiV3f1kXJYrVAG0OapnRa0/TIRdd1zgOqKDl89gG7s70hfRXHMSqOwVqiKBqUo8fjCbPdXVedJBwxN+4Rq7JYoIQlSlNmOzPOFm4SLxYjTuenrFYrLLZPQ7lzLcuK6XSCiuNHFT19lZDBBYFJ/1nRp7XK5ZyqXNDUFcY6wnbuCdptS6c1KonZObxIkrjrulqtqcsVbVOTphl5mhIrVyllTYe1HWW5pmpbmqZjZ9f5if3ohz9iVWsOLxxysDvl8kWH4AgZ8+DhMffvHZOPEtqmZjaaPBq7Q8XZYkFZStJY9H1YkkSSrsj5cGH4+ETww3vOi+pvfnDGM88+y2i8C6lBRB2yv4ajPOfs+CPOju+wO7tEnvfqze0pxiSgpuTpBYhydD/3us4R1avKMppcom4c+mXrRT+/O0dWT3Kyvpy/LhYkOxOk3EOOpi5l2ae8tLZoY12KWDfUjbvmrXaK3EZHGBK0btG6R4RMRVs2fJLtXLDftycRIB8XvGx7EIdtWwC0+bDftt3mW+3j0meb/bty5cq5Uufw+L5SyP87rP7yb9le2wQYXLk3gyK/TYjuvPXWW0PFVujp9MEHHwwoyeYYKaV+rDLHt5Bo7L8Hj7yR/KIeBnRXrlwZPttUifbBWujlBK4qyyMhPvDw43B0dDT0/Zvf/CavvuqsicLKJj+OYQAWGpduC35v3bp1zvDTj8GXv/zlc8anvi8eWXnllVfOLd4hGhciY7du3RrSVuH8Ck03vX7NNtQFOJeqC/sfIn2hGrc/zmYQ/7hgJZx7m8H6T/OCEQY2m/fYNlR0s2077pO+/9O2J28tIoyckvYP+NZmqHQXIRIirVHJiKp/69TaYqJdGhtT1R2tqQdBuOl4wng6QkQRujGk+sP+LH7IaOeXKNoxNjLk+SNJ+lTVRM1f0y7+ApoPMT2ioZlStTlVu2aWGqLkgArHFVmUGUVtmCQprVJ0nR5Ql9Vy3VfxWJ555oWh3LruS+AjoZAqJU1S9nszRNU7Xndak+VJH+TAmdQsj39Ei+DBg4ekWcqFfrImsUJrQ9s/JPSgK+LEEIUUCNGnE/oqF4ul6TpiY7FGY0xD0QeHq/mcqigAgzGGk16LpKobWtORqISu1WijqfvJ3HQtbaMxFHz4wx8y+4Udsh7xmOQT2qoEIRiPJ4MY3HR3h9FkNFRJRcJie0To5MF9qmKFjCPyLOWFvmRfa818Pqcoit4wlMEuwlroOk3dtGA0UjibATcOkqZtWK/PSEbToax7sZhTl2vatqJuGrIkRucOCWnbFm0tSZoy29kbxi5JIhd8kTrGvNEYX62lFGVRMBqNUUaQjKdEfQB96dIzxPMzEqVYrkuauuunfIRBgNVkaYawDskA6OoK2UVEEeS5E6kE2JkdIGWMNpodaznYm3H/vrtO+fiQo9MFqx98xP/P3pt0S3Jc+Z0/c/PZI+LFGzKRCSQBkAApVDUkoSVI4unWQouSupZc1lJfQPva10YLLbXQB9BH0EILLdCn2S20TneLJbFFVBVIgCCGHN4Qk8829MLcPD2d8V6CIqoXdfKekyczI8LNzc3N3a7d+7//P8IQSINSLmJ1cbpgWSQkWczTr5+xH9S6+3bPxYM16SIhXVyxXD4gTh3JpAwCNJau7TB9ix2iKllkSRcrZLiAMEfZgDBw45pnEIa5qwYUmq6psf5ehCnGBpheYRH0PpXZ9XRdi1IdfdfRtjVCOgdaGMPF/Slz9O9v3jG+6wU4tZdVW3ybdub/nobQj53jrtTT/HxTh8VHNObtzEvSp+3PQ/abzWaMNkwjQv5cPq0033V7J8IvkO++++7IIeRZdW9zzrx5rI4fIy8aCc9LnX3/F4vFWAHmy83nZIPHIg0+DeQ5ZOYRCv/ZxcUFn3/+Of/m3/ybkWnZj8tHH330Qjm57zswHjd1KP34TNmE4bnDkabpWJ0Fz1NUjx8/5t13331hvKfX4Z3NafWQr+Sai2XOHcdjTsR0Ds2jKx4T5K/Vp4X8/Jo6Qsec+6lD6u0Yhua2jcMxh2l+f+f/nvfhGPfT7+vYjP2/60tjLH38DrV1u9teW1RpMVYThTGi0/TdsGNvFE23RekOCyRJytmwW87imKrc05uWIr7G2iHUnf2IbZ1hhCVJIoowQahfufauf4apPiO0DUpLWvyDm2KtJludk5z+fVpO6AeW49PVmhMdsdtuuN5taKpyXPSNdukiR7QnSAc9oNcffZ8sT+mVou80eZaxGsqtre3dxOg7+vYwLhjrVU55fsqz7kBbt/z6178eOUfuXZwThiFRHENZYrFEg6NnjKVXHaGUPC+6dSmltmlI0tzJCyg1cs00XYcVoAe5inaIphEEQzn3oEYunu8mE5FSlhU3mxsef/UF7/zgHfJ84MjJUrImx4qANCvGz5fL5aj4bTEYrXgyvHQuL58SIECEiMiQDU7Ha/fvs91uadqasto7teoBSNx3PWVZstslhDJwpfFDebk2hv1hz1/95Sf8YVLQ9z7y1NO2Nfv91lEKCEtpPMme4xNqmgqj+vHFFUUx0iqEtSyLAjkyAEMch8jAjXWxyNnVDT/78z9343D6kLPX13RVidHdiFHqmo5iuaJpFV988RVFkZFlngJA0nbdIGguiOMB+yWEo1ToalrdksQRb705AImlYX2SU546ksooiLHWzQdLzKGruD5UXD97xs2lA5D37Z74lwcuXrvg4rWIOPuaMHAv2SQOAcFquWS5zImzYeckLNaGaCPpm55OdRwGDFbbKiw3QEAkQ9I4HscoDC2dVjRthZQh4bDBQDk9qzBNyRYLhJVYPaQsEajBQfquzEdwpvayXdxtL9GX7QTnjstdO9RpGP22vtx17MsWg3k/pykO+O2UxXxBnDoX04VFKTXKF3gGXWB0Dv7Vv/pXL0Q8pn3wi/0UmOzP1TROU8k7JNOFyaeBpmkTD/L10adjY9k0DT//+c8BF+Xy0RAvPTAfhw8++ICPP/54XOTff//90WHzkZ5jRH/eQZnfO6XUGNny1+QX3U8//fQFB8BrYHlw7VQixEdhDofDC1GzqebYdHy8Eze/D/6YaZTwWBRzznfj5/4xAPR0Xng8kB/7qTN0Wzps+lxNnd3bnp35eb0dm/NzJ/Hsd4qRAAAgAElEQVRlm5ffxV6Vib+yV/bKXtkre2Wv7G+c3ekm9Sbh068NAa58dWRalQEilC4FNEQU+q7H0BMlKVmak0YRu0F24WndsFydcLJIabsTbupBTbmDMN6QLhYkYUQgOurdJwAE1RcEFpQJMTZFWJdiiZMTRPIAmV2w2RmU+pqiGKQf0gSRhrTG8CAtMCoZIzgY60js8lOaVlGW7vNASpIsZ50ldE1NU265vHw8XK/A6IDPPvslu5vH6KF6yGiFVhWBcWrUZVXyy185UFvXNaxPTtC9QlmLJRjLo7W1GBvQ9QqsI1ADaNvWKYzX1aCl1NO0Q7qp76m7jrZt6JSiH9JGcRBjtMZo7YCnMnQRHRx+IpIhUgiuL59SHg7EAxFhFMUO5B04iQwfjYmimKIoiKKIr7/+il/cbOiHexsOLMmBEOP5AE5PT3nj9Uds9juarqWqDogJE27f99zcbMjzjDRNRlJBKwRVXVOWJcboMd0kAldtpVTvgLJ9N4pMWmtpu27w+gVvvfl9AP7bf/kZXbUhjiN61ZMk8XPyQqNJk8SB4gOB0prffOEoCk7qlgf3HyJFQJLlfPH1kDbVmvXFBVYEyDhEGUtZ9sO8d2R6IhDEkURrF3mKQvcnTUJkVGBtQj+kbsvyMVkgSPKMqpOkixOSws1/Eca8na/J0lMef/2Yz37pWLevr74hCAWL1Tmbssfsn5f5a+1SrcY8I4oki9zvbBecXhScXTgZkVgITgddMLN0Uil91z/H1tiBXVsExFnGcr0iCmOGW0EgJJGMEQiazlXpBQOerTUBZf3bEZfvwm7DfhyLzBzD60y/vyvaMk9F+ejEfPc7jYzMNaLu2rVOv5tX3UzTCHPzgM05iHdKpjaP9vhzTfEiPjLgIxF+x75er/mX//Jf8m//7b/lT/7kT36rImrap2OpCp9muSvN8O///b8HXKmzjzz5Si9/TVOsj4/K+PZ89MhXMfl+r9frkbjPX9u0nx7X8+jRIz75xK0jHjfz6aefvhDBmaaL/uzP/ox/8S/+xdiOj2j4qND0Gj2A2aftpvQCH3/88YgLevDgwaiqDrxwfd58pGxe2u3756/ttqjfFDdzrO15mtP/JgzDMaI3PadS6gUBUf/bafrWn9d/75/PY0DieZ+mfbuL3uGuaOvvanceqbWirQ8jrkL1iiiMXLVRV9O37ciJEkSSLMsJCeiblnpfjlo9J2dnyFjy7HLLoazpBwbYNE0owgU2AisV0I7cOR0a1WmUSbFxSBi7F2qxeohc/BCZFES7AzfbS/aVa6/r9sSJczoc/4ul7wd5haZG72oMe4piwW7nnK++bzH9GX2aIeloy42rgALyPCdAYvqWpqpQg4PjFdONlYOAoaEeKq8eP3lMXVUkSYKwjoPESzJorel6J2gYiGCsmrY4kdITKYmjCNUrqkHduu16jLG0jXN6fGpL2Q4RBFirnU5UEMCwaEkESRSxPlnz9GpL3Xakg0RBELoURyCc4xIP6u1SSqIoYrlcEYjHPHvylHTAmORZjgr1wKDLCJoOw5gHDx6ybxoscHX5dGRnduKj1ml8KUXfK/LiuYZVXhT88L33SfOVw+kMI6uVY3Rum9rhgLwCuXAprK7r6FXP6tRx5yxPzrhqDhA4Lp7NbsfKA97aDlnXnJ5lGCHQ5jng++lvPsc0FQqBtnLQhIKT1YnTbBIBbdOwvblGDziuPM9ZLHKnm2Ygz1wqc7HMqUoH+I5EQFXf0DUOZxOHITLqUWZPoltoapoBl5Wv3+JQK7bVFSYRvP7uDwE4e/A2Ao1Shqxu6Pt+xIp1fUM/qLZbLM3wDrveS1qb0ZmC0/UZVpZsd74Pkr7RWOFSUGGcYIY02aFqqLc1Rjtx2GgYhzRJCWNNEEYYIzEKBANOSUhC+9cT/J2Hqad8GLdxgUxtHk6fL9LHMAW+zWN9mbbzsnLy2/7vj5tWKN127Z6vZdovv/jNMRt+IfaO17yyaArWnYKkm6bhJz/5yehkTMfkWFrOn9unX6ZgZo858aXMSqmRRdg7K03TjFgd3zdfQTQHa/s+pWk6ShsAY9sffvghjx8/Hpl/p/32c+Xf/bt/N1Zl+QX7WDXSer3mk08+4Z/+038KMGJtfEWaHxfvmE0B095pm5ade40qPz+9k/Xpp5/yk5/85IXxnJ7HO0qff/75CyXcfs4dS6n6do7N9elxx+bY9B57R8Pf46kTOG1v7pD4Pt2WXjqWbvL/vuu5ve1a/3vtpUdrHYzVE3HkqO+btkIr5+yEsS83Deh7xX7ncASnp2cjvuOw29IeGmrbEwhLIgaNKilJo4yTMCdT39Bc/p/owxcAdErQkqGtJLFnFOv/AYAge0Rvcrabhr4NaPqC3VBmrNkioz1xuEAK0EqNpctd29J3HX3fIi4vOTlxi61qt2wud2xtx5dffE5dN0SR+y6KMywSY+H07DXQHqexR6sGoxSqq5EmHPlDeqXYHQ6wP5DECV3X0Qx90MZFJwSCIJBjubyUAVXdUtUVVV0SBnY8JghDqt0erTWn61O2W/ewGaMdmZsxKKPRyuGiwGFF0iQlCBPS5QUP33iL8wvnEIRBQBKnHPY7rLWjSKiXbQil5Afff4dff/ZrDltXoWO0QVsHcs6SeBRLBSgWS05OTlHKkmULigGQvt9tHcBbOKkBY6Cq3YOdJBknp2c8ePg9hIyxZuAQIkDKkCgM6UVA1zejREHfOzxUEAQEIiRJh4hemqONxalua6pJWfe9iwtSLJ3RtPuG//aLX1AOC4AVIciQ0/UajGA/8OPUdc8XXzxmcXJKFIaIIOHkxDl6q+USGcVUVUVdlVzduPFZHnLiyBIIAweAHindo2VtQGdBxgknixSrNcHg4Fv9a7IgJIxzDJZ+UDo3SQxSDER/IRhJIAaQcZTRtU4gtCwbav8SkwF107Avt5QVBNKSDFpZ60XCxfl99oeGwIlWIEM3l9MQApuijdOC0r3rW9m3yNiQ5wFpZFH6hqZyz7YygtPTN/nrtOnuEF4sVYbnTs7LoihzfMltIMfpC/xYm9NFxZ//2Pm8Tfs+/c188ZlHi3yfpzgW7yR43aZpn3x7PqriMSt+0fJ/+/a8ArYHl86rX/yxU5yGx7Z4ksCLi4sXIkL+WO9weTyNVwKfOjfePBblGPbEO0TTcZ9Wj3livKkz8PjxYzabDY8fP+aP/uiPxv598skno+TCNNLg++uB1lOw7TRi58fvWP/CMBydmLkaetM0/PN//s/Hc02r76bO5scff8wf/dEfvQBw9mPmr92Xq/vz+M/nc3vuIByL/MyxWvO2pnYMGzT9zrd323nmfYDj4rO3RRC/C3upgyMCOy5oSZqCtWQycpwuSj0nINMdMhCcn5+wOjmlaxVPhrB/3ZSASxElSUGUu/aKfMlJIUj0LyhvPsa0W7rOLfpa5FgZszz5PiQ/4NfXw6Ig9qRJ58DCWGQSs5LPRTDbtkXTEacpabZgsXKRC2GhqSqq6gDWcHPt+rZIBa+99ohGwVmboJQh9w+9iMEYDrunXJxmo1P07OlTtjcbVNeyu6mRgcRDLo1xLL1KGVpl0USMRELGksSC1SJ3i//AzuzKu3u6rme7u0H1zRg12+8PaK0p8hysGSMQxmjUAEi22hIkcgTxdr1hdfYaf+9v/33O7r9OmhUjqPTi3mv86A//LnVZ8/kv/5JnT136sWsVXdsDgvXpKe+8+0P+/D//Z8CpaKc6ou8sqqtJ+gHMnBREaUBRZMRJTFVXiCHHkWUF+fk9Xn/9Db7/g3dYnZzw9NlTAK6ubsgXJ8gwou8V8eDo5XlBW+057Df0RtFrTTyCjDuCQLhS8Cwb9bDK8oDFVW0Za6mblpuBS6npe8qu5cvHTyirhqpuWJy4+fDmo+/RdD3LPOPe/YfcDM5KqQOUiWm1oe5rojjHDI7H5U1NpxosFmEF9VB59fRmQ5pErIuE87OcRXFCXTmHqax7tC7o9hFRHII1ZIW73jiJCVpJqKFrG5KhZD+UlurQoIgwQlKW1UTw9oAyAZ1u6PqWpnabj7bt0EoNFXADs/Pw3F7mC3al4OHD+6R5wnbzDap0u9U0EkTGkEcZQRx4Hx6ZLml1QNd1bLY1qjcInJMcRQFPNyV/nTaNOhxLT00/nzMR32bzcLy36Qv3tnTAbc7PdMc6PW7qxEwdhduucd6fafTA76z98f633uF49OjRKKo5VaH2DoxSzyuvwjAcIyNztlvvWHlHxffNL+JpmvLuu+++wPI7r86Zprw8WZ+PrsydgGMLqK908qDkKZeMvxbvOE0Zhj1P0IMHD14gSvzjP/7jsY9zDqGpUzFlHv70009fUFz3URo/PhcXF/z0pz/ln/yTfzLOu3/9r/81f/qnfzren+mc9GPsK7P8eHtun5/+9Kd8+OGHL0SZptGen/zkJ781//3cmc73qYPzskjKsfTjtH14Lg57W5po6kDfFsE51v70HFP7rp0b+BYOjhQB6SBDIIZqkTCSBARukRFD6iMQIJzQ3+MnlzR1MzLcxUlBHCdkRcFqccrZcvAawxv0/i9oqr9ENz2VSlFymBSBJc3WLO5/QM85hXaL45MnT9ionizPWS5XhFE0psmklKSpU+XuOrdAZkMUKQpDTs9Pef3BGc1hy4NzN8D58hRtzzjcbFlepGxuNuwal5K4dy8BXZNlJyyzkCx1/V4ucsr9HtVBkuWYOB5Yd12kQfWGNM05VA3aiEH00qV2QinpO00zEB+6sQtIkhStDZvtnjzLxmokKUNeu3+ftml49uzJ6AzIwDPx1rR9TxiGo5OVLdd8/w8+YHXvdfZVzWazGWu2ZBiQpAlFseTv/L0PubpyL4mnj7+mrju6tiUvFrz51tt89aVzAptyh+pbur5xPHJDY2EYI7SL0mR5jozioaQdzs8u+Gf/7H/hzbfeGidu37sxN1bQ9Zq269jt9qjBSc7ygiYvKNoVvVYYo8fyYWsdW3aW54RpwtMBJ/XZZ59iuoooklRlyW63oxuwQ/vywOX1NVmek2UFoYzGaqnNtsQIyfarKx5fdWS5i5D0gVM493xGvWrZD86KtIaT9Tl5moBoifJBAFPB+fkZaMWXz/a8lb9GceYkQgrdcfn0hq7UtCoGEXJTDym+CLIs4PQkJQg7ttvPAVgtMuLwhDw0hMmK0/VD7OCsqD6k6S2HuuZQ1qPoaN93WGNGZmlr9CD77aofHz+54nqzYbHMWC5SiqHsXAcGrRts0xGEDnMEkESavumQQUIUCESUOFV0oGxfpD/4Lu0Y/gVe5DDxNt19zp2eY+YXqCmHC/BClcx8hzntw9SmOIJjDtF0oZo6JlNHaVqanKbpyDI7jf54rIePYE37752b6bXNMTh+kfasv2+//fbI0zJ3MKZRjmn06+LiYnSivHL4NCKhlGMP9iXLU64Wf+7pfTmGv5iOg09fHXNspw6U/9s7Bj66cnl5OTpl77///igv4SM//pouLy9HbNPUofNswV9++eULopneYZtWaHnbbDZ89NFHI9Zmmn7z88iPmXfM3n///ZFV2kfIfJvvv//+0Uifn2/TP9Mo3G0YKv9/f/wxx9qbH9c5KeCxqMzcuff3cr5pmLZ9zGE6Fvn5LuxVFdUre2Wv7JW9slf2yv7G2d1ukrUIxFhNI0OJwOE2tHF/fKTBGIO2FoFFRgnrfDFW6BRFTpHn5InB1p9C7apFVPuUrqmomxBtFyAWJKnb+UbpCV0f8Ktf/wYRbEb8i+5b2qama2vq6kBWLEgHuYEkSTDGuB28EBjMiMGRWYCxlqraIewTAhyu4vrKUptL2rZDKU1eJKSJi1hJAcpGGBFwdajoBrHBIMmRcYapNVpaRCSQ2gtPOtI7J34onNyBl2CSoFSHURpj1BidMBqSKMUiKMuK/X5PNKRFVqsVq0XB07bGWks8MPsuFwsshqZt2OwPpLniZOl2b3/wd/8BcbHiq8fP6KoDpq8ZMlRO9DSUxHFKsTzh5MRxFb39zg95+vVvaOqGrm04Oz/n3R/9LQD+65//32xurkE4bplkiCKB0y7q2oau7zFG8PANh8348Y//Jx4+eptD1fDV148JZUAwMEQnaUqxWLBcFBRFwSYJh3HoaZsVdV1S9AVa9Q48DaRpTpYWLJYnGGH46f/2vwLwzde/werOsSRb65ijhRczjQhDx3tU1i1JWlCsHD/NxYPXyIoF+7oDEaHVIGaJA19HUYIxMVobXr9XDNcbUPUBZdNhFMhg4Deyhi++fIoUBmFD/suff0bfuzSZEHByesGD1++7SrC6wwyREN32HFTM9XWJtRAK17d9F7DMLSeZRHWPCdMEmbr0UBDnGGM4W8WsFjldPwifdo4csWlaur6na5qxgrDvO7qu41ArrjaGEEE07JCyPKJYZizzlEhpxBAH1HaLDCCkYhWHiCDlzIvQauj8g/8d2nw3edtub27HIie3/WYa7Tkm6Dffbd7Wh9vSWnf1fd7GfIfuIwXTCMd8tz2NZE3ZgX1kwpuPgvg/06jVNIUzx5j4CNH0s0ePHvH48eORuXdKVud36x6cOk1X+DF49913XxjraRRq2oYfk+k9mkZ2/B+PtfESCuDAxB5Ts9lsxuqpxWLBe++9RxiGI1+OH4eLiws++eQT3n777TH6A89TiT494/v+H/7DfxiB3IvFYowSgWNg9qk1fy4fIfQCotPIyPS6p6kmz8XjK8jSNH2BoNCf2/895cuZ8hVN07t+7kz/vg1LNv3NPFJ221yepyhflmq663n+riM5LzlaEIhgXGTqsqTvOxzZvgDECKYMpBPijOKIOEnIs5x8cDyyPCOPDOz/C+3NfwQzMLaqiLqVKJNiopR0+RqWhwB88bTiUNX07VdEUUS+ciF1pQ1G9wgNvdEYLO1AFJfEGXHsyoJjGaGNQg0kgPv9lk3XEgU910+esN260H6YZhSrM6I4dRpMQKMHMj1jWC6WfP7rzwhD+NVfONXyvtkgheBsfcGyWEMkCYVbGKr9DW1VkiQ5MdIt2mMpfUcU4M5lLNY+x6tEcUIgLE+fPqWu9rzx0D0ERvfsD1snRZCnoz5UVmTD3wsWrSbJCy4evgGAzBZcXV3RVjW77QYpLIFw50rjmDCUdHHqWINbl1K6uPeQs4t7XD/7mnAnWMtgVNh+/M3X1GXpQLRG0zbPgdtFktI3DRhLni/48MN/BMAbb7zJ9fU15X5HediThCHG+CocS75YEMUJWbbgZGCIFliaukLexEgpSZIUOeTDirzg5GTN6cmav/zFL/jP/9d/Gu5RP+g0OWdSiqlDKUE4NW4jJOnylGQ5OBFNzLZuqZuSe+ennJ+6+WXpaOuetisJZMTJ6gQzaEdVdY8AlDKDoKcbO2tchZw1FmyD6uuRQVsbw/bwmKubhjTNiaKAeBCoPT9dsyrOKbuefdtQVu6lc3WwPN0Y4qDlZJXy2v1zCusc/931HikNQVhRliVZ5hwfjUVEEkGMUj1WW/SwKVC9cvIhfYfRms7YsRpvv4fgcoMMI9I0Jsuc05ZnCatlTppaokARyRYxBHxjG5FEbv59lzZdbH2p8G1gxdtefLe9eO/6nV/k5gBg38a3KROf/nuevjpGlz/9/7Q9//cUxDstJfa/9efx/fWaVb69qQTCFLTr01w+pfPpp5/yj//xP37her1o5vQ8U5mBOdh7et+OlQnPVct9dde0n9789Rxrb5qeevvtt8d/ezI+j6uZOoE+xeQds+nC751Kfy7vRPjUz5y48IMPPhhL8d99913S9EUZiI8++ogf//jH4zHewXnvvffG9qYEitM5MpfOmGJf5sDiKVB6Xp02n5fHnpl5CsmnP2/Dmd1mx5z4+fMznRtzx/fYMzPv6+9rd7ciIAgFbft8QIVwWk12eEH6Kpcwku5PGJNECVEaIwcF8CSw2O1/5bD5TwizR7duJ99rTSCXZOmaIH+DoPgBz24G5ebmmrI8QNdSmpqb7RMA0nRBHKeuyshqVvKCeCgtV21LW9ZO7kBrlG7RgxMRiIC6OiC0JQwTBMOLtCzJigVnpw9ZrQv6bsfZEAlBKQ7VhrZdcLg5cHlwE7bvNlgpuXnWIIKIIIkIhj5YrZBR4obWCKJkAYG7JmsOGNOhtSVNVr6qmyRJCANXNWSt4HqzHx+O1SLl4t4ZURhSFAVqiEhZESAQrE5OibMlcbpksXD9LvcldVnS1BXlYUcSh/QDSHWPBQvL1dLJNBivkC44P7uH0parZ0+IpKRYOGfgrbfe5unjx5T7a+IwGJ1ap3/VEYaSKAz5wz/4Q05PXUToyZNvOOz39G1N3zU0gYu+uXsh2G9vCKOI5Wo9VumtT89Zn9/j6ZOvkTIglHIoN3fikMvVCgT8x//9pxx2bnycppaEIEQgiOJgxJ6IQIIIOT27jyagahqS3J/rlPXpmq5rCIXFDKKVQsSApGkb0kxQVi37QResLBvCdEkYCqxN8BleiSVw9fN0fYdSKWLA+hjlRDADAW3b0HaB6xfQ6QMizLm4WLPsE66uXMerpmfTtpSHis0Wnjw9cHHf3YvXXjulbErafU2SLAnCoZoMzX53Q1uXRCLCpqlz8HAl38ZolFYYrbDDHzd8BmsdxqnrDL0anr9Dz9PrmjSKybOQRR5TDJw7UdhjB8f4uzJr7fiyndptEZSXRXaOAYZv2xX66MOxSMzUsZjTyR9ra/qZd4qOLfp+wbttlzxV3vbX4kU3b1v8p4vU9NgpvmSK+3nw4MELeBWPZZnqGU373DTNCziW6VhPS/en0R/Ppjx1FDy24zZhRv/d3NH0/fB98YKa3vnyx8OLvC/esZk6zFO+l3k1mY+OzHW5PP+NP/977703XtNHH300go79GMwxOL4Pvt/eSZve+2n13LFIo//9sediisu5jTX6GKbs9wH3/i6OyF3P419XZdWdvbPWUjf1SOyWpANpmggIAoGUz/lDwjB0JHJxSBanZHFEZF1liii/oNv9DNoNbWtRxh1jw4Q0f0CcPaDSBV//+htudi66Y5XCtDVatcRJOBKd7TfXrE5OWRZLrq6vuHzymJNTt2gVizUCidVOj0irZthpuxLk0FpU19HpjuUwAQwCpXrKskKrlq6toHsOTbq+PlDvoe0E2ZlbZMI6RTctqq0xpsSWaoxyEaUESY7NBUEEAWpUbs7yJUr1GNuhJCMouGsbpJPPRoYSGYZ0rZvoTy+vubq5JklSTlYr0kH24eTsHnmSsj6NCcKIYrF2pc9A3dYo1XM47AkFdG1NO3D4qL4jTVP2+x1KafQQrQqEpUgLimLBky8fE8kn4xicnq5443tv8lefbGjbjih0YxqnKb3qqaqKRVFw//49ri4dGHy33VKWB4zusaZ33C3K3ac0SRAiYL1eE4UBG6dLSRzHXFyc85u8oNq5Mno1pPGyLGF9esLVzTVfffkbksGhJHLOdiAjgiBwwOTB8SiWp6zWp2z3JUmacTjs6Yey+OubazBOwtIYM1agpdmS07MHpEVK1VRsbp6OlUWBjFFVhQgCkjQljJ1zIaygbVv6viUUAdYK9OC9psmSJEoQSUQYR8hAcChdBVLd9Ty+2hGGkvPTnItT9yDLcMnVPud611LVHZiOZ9fOyXp2vaPII9brNUl2QTesAarrCdDEgXHK8cucXj+XuXB0BQ1d26K6ftygGKMG/TON0WYC6rYIIWiB7cYB4T1HVZbFrJY+bffdmBDiBXIyvzOdLwBTu+vl97KwOvw2oNlXyHjzlTxTYOcxEOd8sZlGe6bOhe8zHAfaTtucOglTFfEpqNRHepT6bX0q338fifGOo3dwfNrp7bffHqNFP/vZz8brnToD0/5P5Rt833y703Hy5p2P6cI9HbNpX31704iZP84DgX3/Ly4uXnAC/bX7Mf3oo48AxojK3HH1kZt5ibi/xunc86X3HmztHZzPP/987J+P6Hig+HRu/vznPx/HOU3TF9J7U4dt2v9ppMc7adO+3TaOU2fBj8n0d76tadvHqAL8d9/Gvu0G5LZ07rG+zskx/3vt5WXiBISDExNFjuQvCFw6IAwjwoEoLkmcUGUSS6IoJm5+Rfvs/wCgb6/RqqWtJIqIYOHEMaPie/RkXG8s15s9dduMvCyhlBTLE5r6gNaKNHU3QQYd5WFLluc8fPCIp5dPqIYFI0kLVidL4jglDAIXjh8W8N5ojBUkIUgMali04qBnXUCUpfSqwHA2Om3WBLxePCBJJH13SbVzg162bvdVH3Ycdhu0alFDlKtVymk6CUFdleSnpyNmpalK+rZF6YQwzUaF7wDY3VyjdI8WkrzIx8lRbnqMNjS1wpg95+cuJbE9NKwWZxSLgjiNEUJyeeMWwW8eP+Pk5JRQCqQQdG1PP0werRR1XdG2AjBk2VDCbjVluWN1coYMErY318iBr2W5vsfFvQu++WrNfnONGjSOuq6jM5bNdkMQSA67G242zqltaxe5cWXtLh3nJ3BtLFIKdjtGokSA+rBkfXbB2fqU7eUThCudAuDs7BQpBU8vLzk7XXO2Xg39tgRhiNYWa6HtFZ1xzsXq7AGP3nqbv/qLv2B3fYkME5ZrF6pPsoy+3qG7ijjN6O0Q7YgTeqvZX2/R2iDjfIwQZmmKQNPWJdhyZG0O4wVGhIhOEacLMqAfIm2hjCCIsEJghGSxWLAe7uHV5TP6XvHll4/Z3cQ8fOAc6Cg03FsFrJZnVK1gvy1dNBOo65rNpmKzrUif3XA+ON1FnnOzrehVw3KZo/ua/cAP1fedc+KMcezXSo/etTFg7XNWYn8vrLVDGtVjbQxd735XNgHX2xcXrO/CPIYCXv5y/Tah+JfZfAGfl8TORQiP8Yccc6SmTs28L7dVr8zD99Pdv//cY2n8gu7LeD0HzrRNv5B6LMf0Wnzp+VxP6e233x4X5s8///yF0vJ536f9m6cW5lVZ/vP5WEwX3Wn/pqmZeTruWHw8N30AACAASURBVGmyb8c7U0qpkTdm7uDO7xPwwpj6300dyin+ZVpl5svJgbH6zTuOU9zT+++/P47LHB8zVYifRuCmDv70mPmYzm06R+f3zNsx7Nn02qf3wc+Nlx1zm9My7cOxc0z7dqzfv2+q6s6jRRAQpylh9DxKEwyRCh+w8HwtWmus7sFKpNnTN7+ha9zWvGlLOmVALomXD+gChxXR9hHb/Zary82AYRAIOyzEOiCMQorVKX3XIYZUUywlPYarmxtW64D16Tli6EySJCRZxsn6lCLLSQKJaR05mVbPCAJNIGKwoLTbMaiuIo7uEUSa7HwB8oxu6EPXtERWI+1TGv0FJxcOB1F1Kdu9pc/v89r91+n7nrpzEZLtfsvJakmgNZfffE3QK+oBjxGmKeHyBKUtRunnZHVxjIgyhNUIAdZoguEG3zs9ZZEnnJ46nodoABkvFgvyJEWGjojx6vpqJNL7zZdfjDtEgSGKogE7BRqoqpIwlASBHcHHaRwTxQl5sUKGEfVhSzmwPUexe1gfvvEIa8xY1m1FwM3mhuvra4QQPHvyFZtBEVsIx6bcK1e2LASTxRLCMKLvWsoDBIOI6dXlY2QQcO/ilKtnJwS2IBmu9+RkxX63w2rF3/3bf5so9EKXAYiAunXnOVQVu2pQEydGhiEPXn+DNEnYl3vCKB3mF+TLE9AZvYZ0SPWEQUAQioGrRlJVtZu7wL7sCIRFtQ6LJEPPBdMgw5gsTUnjjFAK1MD6q0yLSACR0HU9h90N5eBERBLO7y3RymCV5euv3fNycXHCIhecJxVnkUKvYsrepf76/j512dJ2mrbXNG0/PKuaB997B4vi5maH7p+Hqfu+p65rp8je9ygh0OO7xGK1HTiZxAjQBjNGcaw1Duc0ao6YUY38u7Tf1TG5Kzrz33P8nBfmWGTmrjbvSle97PO7jvffzVlj57iaeajf/3+6sPvf+V2y57aBF1NwU4yLN3/sHCTsbY61mAOE57+dpraOXft8MT8mEeGvda7SPeUemn4/v7dTZ23q5PjzTvvtnUnvEP3xH//x+J2fP77Pn3766UjK6D87Rk/g++edM/+dF+j0x87L8qdz8jZneW7TuXQbZmra9tzJvMvuev5uS6lOx2PKHv1tzvdt7VWZ+Ct7Za/slb2yV/bK/sbZndueMAw5Wa9HUi8hBEEQuL+Fq5wKhp10EkuS2BB1n9Ne/py++iXtIDiodUxafB9ZPKLhjKtrt+tsmktXydM7jaVAQBC48m2LoVeaIAyJ03zEDMRJwuIsoGkapBTIKMH4EnJtscYiZUCWCRZhgAqc93hz9QVWCJR8QBAuCYdriopz+vgdRJBQa0Ngd3QDXqU6PEPXT0nFNVJ0tMbt2LdNQddZdK/Yb66oyy1x7ggPX7v3iDBZoI3gjXdWdKqhGXSqVFfT1QfayrHvCjUQ3J3e4/UHDzF9TxBK0iwhjdz1LhPJxemSRZETRZFL2zBINGjNodzz+Ref8dmvPuNHf8uVRv6Df/iP6LqetmkQVhAnCdshGtN2rSsb7g1tW9G3Q2RHKzSGYnGGDQRKW9ohElJu9+TrmNOLCy6vLqkGnaXLb77i8uaGJ08vefON1zG65y8++X8BeOON7xGu17iogHCpzQHLVVUlXduQJhFa9Vgz0BAEEbsk42R9wr2LcwKjhgopJ0ha1Q1KG4osRw6CmkEQIGVEUTjsktKKph1SaFpQdz3F/ftorVEwRgLLqqbrJAhBEMREw/wKkxgrFFq5aFqeSjK/D5AhSmtsGoJWCNz4JIEmSRRhagmjls3lJfXeRbKCUJLYBXGSEUqJMhZj3HFd21KiRi0yhujJs2c3dKsUvYop8hBrerLQHZMnPetFAOQIkdNZF+Hq+gBtHEXD66+/Ttd2oz5akiTkeU43MH13Q9k4uB2b7RVW9Wijxko3J4Lq0lrWOoySr/oT49P4/6/Nd3bHcvrHcDpwPL00t2Ph/LuiRN82gnRsB/tt8EO+L/Pd+rHvPfh4Gu73+JEpMd+00sYT83mbshh73Ak8x8X4KNJ0zOfEgNO++WjEHGjtd+rTEufpd9Pd/TRFNY1qKKVewMb46/c4qilWyINup/3w0aNj93qKx5rPrzk78fQYP3ZTTNS0bR9JmqebjqVFp5ivKWD52BhN27vNbpu7t0Urj/X9trbmWLZ5KnB6rnla0V/zXbii38fudHCklCRxjBociCiKkJEYHJyAUGRE8bA4mSvM9i+oyr+Edo82mjBxqaioeAedfZ+vr/fsDw2Hg8NpqLZGK0UQWKIoJJDZuKCJICCOE4SUhGFINKQWrBCIIOA0PyGJJWmeEw8qx/vdU+rDY8w657ATbEw3gj3D7H8ktAVG7Qn1E8SAsxHBEqErpL7BNk9QShFHDtcQpEv65D06DZUSIzbn9CIhQGNUTXPYsru6ovEaR51if3hM03QIETiaf8/LEqQsVivSQtMrxenAQVMkCYHpuP/wHufna6JQupJsIJICYXpU19BW+zFNYBE83Rz41eMbdpstm/2BvS93/MFrHPYH2uaSIDAo2nFx6rqWw25HFEmkEGShGzvdddSHEqU1EGCRtAPWRtY1hFuUjei15asnLpWy2V5hTEcSR5xfXHCyXPPm994CYH16RpzETnzTOqd4ypxSVRXWROgwZPBV6Lqavu/GKr2yrseyeCEESqlh0dVjCbQMAtI0R4YxSrtj00EfLQskRRrR9Jofvf09vnmaEw8cR89uLtlsblCqJ8sTFosBDxU6ZmwpLctljoxCgsA9Js+ePuF0uSAIAmIZUAzM1mpwCuq6pa6GVMHqnhuH+4/obER5OFA1JU1bo71z0bb0T3cI6/SpxFD1ZK3Dt2V5xslywfnZktUiH+aQJQgUQXBAypY0dY51ni2oGmiVoe9qCARyrC7s0MYihsKAkGi8FyII0CKAQCBMgNZuvK1WBMbAIMkisIiBx8hiX8DtfFf2MkflWDh9CtQ81t6xxcR/923TR7d9Nm/nNgdqmrI5lvqY/maeQnhZ2z594R2MaXl5GIYj/8r0+CnOxuNu4Hn6Q6kXy6enqbtpigueA7G9TdNNFxcXfPzxx3zwwQcv9ME7NlMw71QZfFpG7fswxb/4fvrUmj/Wl8lP78kUOD4F184xKfNxnXLNeJs6mMfu8RSUPncCp1ij6dhN27ptYZ86OPPrm59natP01fz388+PPRfT30zPM3927urD9Bzzz+b0CcecrLue029jdx6plWK7f+5x5lFMnmZEYUIgwXafo3dOHLM5fIKurzHWIsITivP36AZOm20l2Tzbsdu66IjnCBFCoHWLUhqjQ2wMUeLOJYIIEQSEUeL4UIZIUZxGJElOJFOEsGg6jHXRibOTDoICpRR1XxHJkMi6iRFHCqs+JeaJ4wVJ3KTXXch11RDEGUX6Q8IMZD7wspgQqRSRVkhtRrxR1Sr6vgU02iSEq9fJ1+6Fr60l6jqWSUocRZS7HeFQVr1YFDTVnsP+Gt23yMA5EOtlxPlqzUmRkKYRUopBFwr6ukF1LX3foJQjIwSoqpqf/eKv2HQCoRtM1xKnXq07JgxTkjQnjSXXXT06Rn3v9KawgiRz3D8AdVUz+FtOFiFOHYEeUDUtylrifMVquWSxdD9UxmCt41i5vLzk9Yev8+E/+IduPrQ9+/JArzRVeSCylnRQlw9liJRyqMiSI+lc33d0bY3RTmy0bpvxGBiiOFWFtWbEihhjKKuaJE1R2n3uy9gd8D2liEN6YzlbpNRDxOp8eUIeRSRpTBBK5KCc3nUarQLQCq06lO5RwzjEkSFPnVSHDCViOM9+W6I1bPc7+rZjsT5jUdx346AFYRgQ55JOSWQXoYf7LpKIOJEIY9C9GiEuFkunepqblqvLK774TcByqFq6d3HOvYtzwgiMORAO3DlhVBFEBWm8wBKi7XOSxCiQ9H1PrwQykEilkMN3XRBgpERrSaA1Yqh0E6rHqB4rXIWdMXYs2fdO5ndtdzkR8932vBx4bnNcx+8CWrwr0jPf8X6b/s8Xl5f14a4I0nwBmjp4U+dgvghOnSz/f0+KNx8b73D4/0+5c7x5p+GYc+Dt8vKSDz/88LcibdPqp6nD5W0a2Znu8qf4l2MOhK9wmkdE/O+mnDFTLIvvw/T6p+M9HX//2bSiy7c3r7g7Nv7HokHHzjX9bF4VNXeYj0VI5uea442+jXP/Mkdjfo0vszmm6jaH7PdxaOZ2Z0tKK6wRWOVehlXttJXSxJDFEXHbYra/AEB2e7TMyNY/wgQ/4LLJuNrdANA2Dc3+MHDo2FEfylpD2xwcZw0WerDDdj6NEqIkQcho4EsZdqp5jgwiolAAe6SAIHAPTN2cc6hqOr1nvViSxJoAFya1/R7bC8rgTVqTU26GnaoUqK4l7RRtI+hUQyhdCqYoFu580tV0d72bzHXVUFYH2q4lTTPiKMYOjkcgA9I4IZIBcSjoIjlqbVpV0ZYbmv2Wrq2JlgMRYrxitYyJQ+jbkrJtaCpfAeNSSkr1DiSqfYqlpNrdcNjuCANDGMdsb9x4G6WIopDFYkkUBmRlTjw4CkmcEEmJVk67SA8LlRGOwzaUkrquMVoTDuXtxkDbaYgUSb4kHXiCEu1K0LeXX7PpSr765itOzx4M45AQx5o4blBdz+n6ZFwUwzAEAUa56h5f7SPDYIj4WMIoci+Quh7noxCCrusoy3IchyiKsNYJuaZpNlAYuH43dUUUSrI0I8kyzlcpw21CGUHbx+yrhu2houoGvakoRWnlaCyFIEki8oGRO8wKrjdbnl1tCMMEGbiIXiosRZHw5qMzRPIGUgT0jdtVtlaQnb2GUkvafUXXdHQDPvfQKfqupWsaurYeKQ20VvR9g7Yt1lh6Zdls3RiVdc/NtuXhw/usTvIxpdTVFbarkW2NlAt6a0fdrb43dH1Pr3pUP3BlaL8b0wMJYIvue/TAg2NUj1I9WvcYrVDK/e2f2ylg/Ls0n9aYkrUde4nOX+zepqmCuc13pPNSZ293vdhvi87cZcd2yz46cKy96aI2XYSPLYDzxW4eqTl2bJqmYwXWFEQ63dlPoyf+977sHZ5HTabXNa10ghedn2N9n0Y2pr/z4zJ1suC5szJf9OfXeFuUaz4+UxX5OX/PPEXkr28eATrmMEwdCX+c/35+Hm+ffPLJC8zM8+uZR0iORTzmzuLvkgKdO6HT8x6LWN1mx+7PyyKb877Mf/P7pKvu7rV1cgV17V46pg1IMwjCgNxUbHf/D4EYXojFfZLi79DwkG1Vs9leU+7dQ9CVNaDRWhNG00qskHyxGgUaEcHI5YIMEWHEycmaLE2fk8aYhiRtkEFOWSbsqwY94GxEoEhFxXnYIboSrSyNcYtT2aw51D1tp9DssMangCQnqxNsIJCpJgHswIOz3ezBQl7kGGOph8V2t72m6zvSLMdoxb6uCYYbk+cFJ6slWRpS7i6pNp+zH9Sts6wgjnKyNKdIM147d7vyVR5j+pqqUaiuY7/f0Q1l546nRdO0LUqp5w6JUfzo3e9jraZuGg5VixqcItWUhElKGAZEoWS1WtI2LupilMPm9F3ghDMHZ0BrCzh+o8NuS9/VrJZD9CtJCGSIMQINqAGTsqsaTN8OhH89z549G51AISLiKCTPMoosI47jkTAyzQRCOE6eui7RY1SqosgbsJYkyQiCYJQJqet6qOhxpcvlQA0gpXScTG07OAiCeIjGxFGMUQFadfSqJYlTZOhSUWkkyZOQVXHCyWLFpnTOxbau6DpN2/VUdf1CBV8URyRRTBgGnCwjzs/c3EpEQFNXXH55Q28tcSIJwwG3IzTV/hn56ow0lqyKBBG4ce10xr5s2O721G0yRAUdNqftYmToop1Wa3xNugicc/vZ51+yKDIePnAl52enOcZ0SNkThS1pUtAO8hNV3aOMxvSWXin6rhtfGk4ctnMK9qp3lZA4J1nrHm0MxqgBkzO8aKwdy8m/a7urHNXby5yOYwvD/CV9LBQ/b28eWfi2EZv5OY79bo5luW1RmP//tl36MTzJsYVhurD765unteb9ORwOI5/O/Jr8ojoluJv3+7a+ea6gKXZofs+mxI9Tp2GebppKGNzl/E4/986dd0C80OUHH3zwAl5nel6fhpqmyqbX5X9/LHpyLIroz+/bPDavp5/PU7LT3x/D9Nx27d8m8nJbNOWuKMv8HMfu+7Hjp8/aPDX4+0R0XlVRvbJX9spe2St7Za/sb5zd6RoFUqKtQEi36y2yhHUmScxv4PA1gW3ILv5nAGr7Js/2NdvtFfWhpOvqkdMmyzJkJOm6DtV3VJWLhARBgAgjiuUpgZAEYUg4pFKMEGRZjggEvVYsF263rFXL1bWh6TYgDKE0FB7Ea3eE0tL0IYcSOhXQdW5HqnU7tOsEK+NBS0cEEqUV0mrKa4sx3SgK2XY9VblHBAFplrEa9LDeevv7dKrnenPDfrtHAFnoUmt5EhMKg+kq6v2GIl2xfMPtNLQIUURYDYW0rNcDZkZCfdjRNA1aWcdZ40GcAlfRQwBWOM4SoC5rl4IQlra3GG3YXTkW4b/85L/y7nt/6FJnuiOU4nlOu2vZC4HAUNXVKK4oo5h0SMV0bUVdHQhGdt+MLC8IhaTcbvn1L51Y6s3mGtXV6L4jsJbrqw1XV4/dOGQFoUzIsxQZhq4ibgIYXiwWtI1jXG6HajKtNNaYUaYhS7MRnxNFEfv9nq7tMNoSDwSTWuuh0qcjCMSwCxgqr7oGISRRFDoByrgjjtOxvTTNSNKQ9CQmjYfhtj1tucdgWKUpNonRw60wxhJFEUWeEcQhN5WL7GxunnF1dUUUpeTFCUIFZMnAzRRKqBUGTVbk3NxUgANpn18suXe6osgTyi4ZifS22wPloaSVkq6pHAt0P2CyekVrXOqqKWO2OwfYv7g45dHDC87WmeOoMhXLAc+Wxyl6WdD0mqrpaOpmjEY2dU3XdnR95CI5Q4pK9S1CS6RWaC0wWmDMc44cY/56Iji32XzXOcciTO0Y5uEYhf/8N7f9f37+uz572Xd3RY3m6YLb2rxtV3yM/M5HM/wxXmfKtzfV1/K/m0cSfIRhGoWYpq/mu+1j43SMO2cOnJ1fDzxPhf385z/n4uJilEeYRljmUY/p+E0jVT7aBIzsxdOIlCftC8NwFBf1/wZeABD7aNH0ft4VWbztvs/H8NhcfFk702udn/d3sWmU0LdzTH7j20R/pr89lvq7vLx8QSx2TiJ5W1rrd7W7HZxAsCiyEfi7yARR8wuaq5+jZEi8+AOa4HsA3FQth2pPU5e0bY21etSpMgDGEkYxcZyMJaq90QRxTJrmpEnGYrkac/tCWAIhabsOC2y2Ls1jtCWQIYs8IQoaElHCkEIwhJSt5PJaUTctMpBEg8OUFilRHBGF0RBit+MA9p3DtjR1SVXuWK8dod9qUbDd7mlbTSglzVA+3nWtA6P2mtPVgjQJkZFrL481IXuaww2B7ljd+x77asBW2IBQSJJQcj8PyKT7vNzv6bsWYwyBkCRJNpbhaqVQgQaj6FSPGha6rtc0Te0mjDHIUBIPk+GrLz8nDCXff+dHxHEIJiAfcE+qLejaBmMVne5HAcWiWHB2ek552KN1TyiD54KRoaTvJEIIwsCwyt2YHnYCmeTEJ2cECEIBv/7iGwBOT0+4d3GfZRw7wcwwAOP6FwiBJcBYTdREmOE8QRASyBgE3GyuaNuGaCCZzLIUpTr6tqFqajrlx6FzFX2hS1X1fTCmQOu6wmhLluWuGlBIQunmih1ehKLrSLKA09WgSJ9l5EVC02v6XrmUzuBsOhX7lrrasd8bmkEVvOk7ECFlXbLdbRGIMUUVCAijiGLRsl73LBYrwsilJr/8ak8Ufc3F2ZplmHDQzrFer06wWg9pyohQWgYuRBQCLATxczA1wPZQY77ZgCx4cP+CutyNBIphqEkTR0SYZzlt3jstN6Bpa6eR1bY0TT8+m13fovsOM+C/jO5HDJXV5q8tReXtGKZkavOX/m0OgTf/kp7T8h9r+7Zz/C72st/fhjU4ltaaLjzzkuFpaH+uTj51bnx7cwI/DyD2ffCL9/S8U2Cvb+9YGfc8FTW9tsVi8YIG023jML2eL7/8cjzPj3/84xewNI8ePRrTV/76pn085iBM+3abqKrvk1cen4/3bQzOx657mj68DcQ8H6fb2pljcI6d59viZV72rMz7dwyLNHdWb0sFH+vzND14rE+/D+ZmbneOhECQ5jHZUG6a1E9o2g0UPyTM3uHQZVw9HrgOyhv61mKNIUqiQbTQWRAEjqnYgrYGOSxaSVwgo5gkSVmfnCKlHEGlvbKUdYUIFIXMyXPndIRRg+grIhRGb2kMdJ1rb19a2r6jU3rgXpGk2QC4yrIBrxEgpRyqicAOLLtt6zgU0iRhP0gyXD27ZLU64d75BQiJhyBEecSD0wWpbIlpUM2Gw8ZVk4lWUJsUwtdITu6z6yxlO5QRVyUhEK8W2CSmrJ3Ttt9tCKQkzzLCKEIg6IYFqGoaDvsdXdfRq250Og6H0glFRtEwtoZkwJ5IG3A41PRtO4CxLXZYnLTWBAgXwYifA2XzfEFRLPnm629QfU8cyhH0KqUgSWKMURR5xo9+9CM3DllB1bYEUUoUxmiluCldROHp9W/YHzr+1js/YFFkBMaMfTCB0//CWAcWHvhx4jihWCyp6gNfffkFwiqHvwIWRUEUSqQUNE2JFZ4HRxAI4YDsTUlRLEcActd1RKFTJgeHN/GYIyklURhjjaFvu9FZWGYZQqz5/9h7c2VLkvNa8/Mphj2cKadThQJQING86DYKEChQoACBAgUKFPkAfAg+EB+AAgWKFKm2XZg1+t66F0mihqzMPNOeYvKhBXePjIza+2SBKLZASzdLy7N3TB4escNXrP//1/rq9Ru6YQCp0ClLvGsD1rY0zSFqLuWfjw/0/YFhcAgRK8v6NlkeEMH03c0N33wZbUwuLuME+/zFjwic89Urx+Wl4vwsPjTu7u64WK5YL5Y8bO45HHYjsHUu4INHypjHlKvJlCnxQnHzsKVerqiLJV2+fn7A+Z6Ap6ouKIykLCPgXQwVfW/phpauH+jTNt3Q0nc9tnfYYcBNk4yd+08DOHNA81jc/hQYmG47XTY1UPx9mZdj7dRb9ofObzqRnVKUzW1eafShvs8/f6hvc7AyTcadjuM0MXl6rKqqxkqsU4rEuf3iF7/4Tl+n4CQfKy/LSs3T9fK/6ST76tWr8doeG4djACefY2awjgGhDKimZqTzPJHM7sz7OgdMx/JejrFWx+7laQXbdPn9/T339/fvAcbHzv2xazO9fnm9Oev2ocT9Y9scy/059ht8DOz8ISzO4wBHSkpTIG2k1AP3uOKn9Jzx5mbHbvuGJvvd2A4vFEZXKCmRSo0WCoHoaGz7ASUlKnW4twN1VbFendEcDuz3+/FEhQzoSrOo1jxdLzFFesAPLUL0DENPayV3m8Auiap5EajqFecXV9R1SVGUFIUZzyVXkTRNQ5cARN/3tG2DFLBcLWkPzTghvvj0E6qqout7pDQsl6nqqS5RPnDYbXlob/G+YwjP0hXxrM5/zMCCm7ffcvfmLU2bE28FldGcLQv84Ef/Kq0N2sTSaecch8NhfKvquo62OWCHgWHoMhbABY9QisFanPMEND75Kf34s8/5b//XL6iqgrY7QAjjBBlLfQUSxaJajn5Y5+tzClMw2AGpUgJyCvXsthucHbh6+hxV6tF0UZtYRj/0Pc56mqYdj6OF4ezsiuVqRd8esH1HpqVCADcMbDcburZBp/GWWnN2cc7X33zFZnNHoRVdGxPQu/bAYlGjjcL5dz8GpTXeOwYbWThj+ncaOUoBlkNzQEpJ8LBKxT+FKeKPRymcHWiT19NSSlaVodSS16+/5WbTcJm8o148u+KTT15w2D8Ant0+nuvtzYG+t+hC0PcdTdOOJdVZEs85SxAQkDyk5PvBfc3lsxc8v37BECxfffW/AFgvCurlBXcPW87XS8qy5JDKwSPbaHF2wNp+dGIPTUMIntvXlldf/ZYf/+THXF3GftdlRd/3KOlQ4R7rHFLF38W6qqE2eH9B11v6PoFD69PLQscw2MgkDnHcnX1XhfVDt2OU/4eAzbGH4yl9nMcE9n7fh+mpJORjE9i8f/nvU8vmb+xTjZpTGjlt244TLrxz7Z73ZToJaa3fSzKegoTphJyBT/axmgKdzBTlfU3LwKdgaR76mB4r/z3VkoHvVmtNWaJT1VrTY03vjWMhvPz9vNJpumwaSpkyRdbaEdgcY1nmgGrepsBuDoqmYb15pVvu3/X19Xu6OqfG+Vg7dW9OPz/GyE33MWfGjq2b2zRcOGd95ozase1/3/bo1kp4FnKLTxUcvfmUplU83G7YbXYMfY/38QEuMCjlkRKMLhBK4tMEKYWg63sWVVRz7RML8ezZc+qq5ubtDU3bEkJAqrg/pUsWZsnlUiPFt+DjJGj0JUIt2A/33GwcfddRLSLwQEiElEjlY/6Qc9zfxwlSiMgkWRtp+D5NxFIqyqJMN5hHGzOq5O62HW1jWSwMSg54F/dVhHOGwy2DvacPgsFV3DxEJqswC+4evqHterpuT3voRjfq9fkFn3xyzdOLJX7/ZryI6/UKQWDo+ugbtD+wTbkVTdvSdZHVUkowtF3qdxLPC1EJd7la88mnUVjxj3/+f7BYLNjvt/RDR9ccRjfx4ByFMfGmSkAUiHklUvDJp59QFoJmtx3BihCWh80GGzzry2f0CXT4oQXbsaqWlPUKf3429u9Hn3zCH//R5xTScmBA4EZ2oGmaFO5pCd5Rph/1+dkaZwe++epr1ssVEs8mj8PhwH4f3ey992Q9IOUSIygFwQbath3zbJTShBDoug6BwLl322ltKMoCj8coM1Yw7bd3VMslV2dLXjx/gdc7ZGK57u4PvH59g/AD189f8PlP4nj/7POeui8/PAAAIABJREFUV9+8pu0EWlcEYLuLYyR1QdsNkREZopt3mPi3be7eMLQH1usVlYnX4ttvb6kXe+p6GcumjEKme/wgWvb7IXm/AZmZG1r6bo8dOvbBs717TV3Hh82z559yff0pRVnQd136nbbpN57L7UtMrWFh0v21pLcLOptKzAdLl8JXXTeM7NB/Vpu+1U4/z5fNcytOsTe5HZtovi8YmgOgUyGHY2/rx7af9mcuZHdsu+nbL8QQTnbZhji55Mk4j80XX3zxnmP4dB/5vDNYyW7XU8AxH5+3b9+e1B7KoYdjYzQP6WitR+ftDKCOjfs052euSn1MRyb/P3XfnvZ76lGltT7qJj4Pt02rqzKrk6/R/L6bXsup5ME0F2gOfI7lucxL5I/da7kfc6Ax/63Mr9H8Xn8M9M/3N9/Py5cv3wOAj7X5ceeSENM8uT8U2IzHfHSpbwnNN1B/CsAwLGl2N7TtFgdgJCJR1YWs0MKg0kNaCDkaIvZ24Gx9HqXqreXFi7g/IQW3N7e0bYsgJn6Wi8go1PWaZWGQ4i3BLdm38QHvhMAOlqEvWJaWi2WB1HHCqBY1pljTtoH9Ycdmu6FPwm7exwRWvENIxpBESGaNi8WSi7NzylJSlYlRYKDQMefG2haZAJvrH/B9oN8v2DcHzp5WvHjxMwBKveD+9luM0jy9/AwbGJWgBR6Ght2mo3AdLk0SulFoEejbLhpxOkuZkmjbrh31X7rOjkm3SsWbrq4XXNYLrq8/5Uef/ShdOMftzRsG2+O9xQ3DmNNTFAVVIXHBJyG4uMQOHd9++zVlXXH5JD40czhnt9ngQhTfU4fdmPB62D7gPChVoEvP+cUVL/44MlmfXb8guI52f8DZgX7o2O8i09Y2DW0XzR+VkJjE9FWFoW0aLs8vqMqCw2HHkFiDu7s7tpstIUDT9SP4KssSqQ3GFLjBMlhHIqUYhgEfAkop1us1JWr84XjAhgBKEgToIrGKfUfYe0x9zsXZOXd7x24fwaHTGq0qiqLm0Ha8fhPzjc7WJRcXNednz7m927LdNVx/8gKAN3cbZJB42+FcdPPOTpfD0NI3ns3Nt3ztPVUdQ4xPnj2jrBcp6XqgKssRBC4vn7Fu1jT7yHjukyp43H9UHQ4hEFxDnx4Y+8OONzevefb8E548fYHWAp3y46SKpe/OSQptRuHHgEPJwLJQyCAotCHnFRmjKfof5gF0qp2i63M79raZ18vLj7VjoZ5Tb6qPPfRP9Wt67FPfH9smT1TH6PtT+5kzNHMGoG3bMedmnlydjzGdWKcaNvM3/zyxTxmDaX+mzNl0m9yX6XHyulOF4antwLFwTQZZeb15IuocVE7lBqbjOk+ozgBvfq9lN/W2bUd9mn/5l3/hb//2b98rbZ/fgxlITYHjFJxNz38+TvnY0z7nv+fsUB6D+f6OMVTTz8dYnnly8nxcTwGgL7/88jt2H/N78NjvMAPQaZn/9GXlh2wfy8Q/to/tY/vYPraP7WP7L9cehUshWJQpsDIisr4dsN5iTIUUUewrWyhIpZBC4kNMgjTGMKQ31YvzNUorhr7n+fMXozfTw8MDgaiuGwiYshxVjquqRGhJ25wx9JbgU6a/ChjpMGaLFj1FtUCkqhShDEFIhLAorVgtlwypiionL4dg6do9u5Q7JGXBxdVTVnVJoTu83eJE7AOqYNf1keRwBbt9DDv0vWW73VDXhmpR87vffcPDNu3fx+oxbQqk2qKLcrRQcMPAw+1r1gvFH/3oSR4GmrYBZ+maBg84F0u447FaBttTVSVNEyCVsHsEWhnO1ue8eP48lrCn8d41O0IICCEAEXOiUgKyKOJ3eI+37yT3h7bD2oGmMSxXK8p6ydWzhNpFgTJbejfggG3KV9lsN7Rtx3rwXF095cefvODZZUwGt+2G9rClP0QzVWcHnI2MlcBRaINRUfSxrJJNQtcx9AN1VcbqKbniIr0dSGW4u7tnu9+zWFVsNpHe7KxFDjZKEZytkUK9Z+NQVTXGaKzzaKUwaRwQJIXoMrFiKVlXFXgfCN6yrA2VgZA2OVvHsvey0DTtgYeHyJ7c3NwmlmjHxfk5xgi6Lt5f67WhvblnVRe47gDGIFIOkwgC5wa6fk/wA80hnuvrbzwPDzuePr3i00+ukTLQJQFFQqDSklBqlF6PPl4q2W8oHXNxYvn/O7+ow27Hv+//F6+++prl+ozFKkoelNUGYwzr9YrzszOWdRZJdHjbUZaKQjbYYXjHeCiBqN8VEfyQ7VQy5WMCgB9iPKbtVCnt93lzPLbNsfLn3HI585Q1yP/P36Tny4+1Y9vk4x9joabhlHniZ952/ta82+3eszSY9u2Y+Fq+NpnRmIeh5uzNdFlefqxvx8J+Of8HHheEPMZc5O/nVhbTe2fKkmTbh+n4/PVf/zW73W4852PK0ZkFm47DqeTwaYhpzkjmfubw2TH27/e57/P6uS/HfKCO7WfO+E2/z35l8+2Pnc902fQ65PHJy37o9uiIeO/ofICQbrZCsFyf0RcdzoaoIJtyOBACHwLO2pgs6z06TVx1VdE2HWdnFwipxnirD56iLNFaxXwJAlle43DoUHg0A6XscH2cTEoFKE3vK/b9ipu9ox9SCME3BKLKbwyHuVGx+F3Ss2JRXVDpOJgeH8vGCew3O0Rw+Cotk1E3BB9YVBpkCoXVkuXqBdtdx9ff3LHdHui65BhuhwjayprlWmBMiRuy+jCsVucsK4mSmiQ0ixCewcbE6abt6YZ+IoUvIAS895RlOZZNe++py4rLy8uYwyPgsN+mPlikjEAmhFhplBODy6rE+6Rg6wdcuql8CAQH0lmCD9RLKFKlzdWzp2y3Bdvtlm9efTOWe+52WxbLFZ//5DN+8Sd/zHq1oNtHu4iha3DDQLADGlBaoUfKNer6BEK0DsjJq4VDqKyi69Ba8+Qq0rxPnjzn6dMt375+Q9v1I4h5/foVWheUPjDYWMU0lpZX9QjArbWxZDzlsgxD1M0pjEbix9JyIQRFodAqsF5oXjxZ8+3bJGvQ79kM+1h51Q/Y9PMRsmLX9uyaPfcbz2JxznKZq/egfHHBZtOwqp/hQyBFTTnsO7abW0KI9hIZjnjbs33o2dzf8m8vX/LkyTN+9rOfpWUNXddQ1ksKU7FeRKDSXQ20bcxtGvp4Xd0YCuvxboigFxgGNwL8rh+QSvH2/h4pFctFTqQvWFQFq0qjsRRqApe0Qekf9mH0mPXDh0JF84TVUw/WPAn9UEnG877NK6IeCyGc+vxYOwaIMniYmkpO152X4+b+TZdNwUf2fJqOxdQiYd7fqTEmvD9JzRNjpy0ve/nyJT//+c+/A2ystWOOEcA///M/81d/9VcjmDu2L3g/lynvbzrZHstTyW16/aYhnXwds3v5Z599No75vMro1P11LPQ2X2+ah5K1h54+fcoXX3zxno3DdP1j1yRf03kp/LQP85DXY4D71O9iDgCP7efYOOfrMdfH+VCV4H+kPbonqRY49Sldm97ybZTzL8oKVStkyqmJyyzBO0zKHQkw+h8N1lKWMUG07/sxMKaNxntPP1h830edlQSYCqMwDPhhS9NtR00d6y+4v3FsD3sG2+HCO9GxKIKXAUtMpM2CcAgIdkAKiSkX1Em0z9QGKQJny3OUOONh82XUNQFEUNTG4kNHWaxQMj78H3YtfRuwoWJ59YLl1dMx1ieEiNVa1sbqJeuxTdZ5IfkiaYQAJXO+UhK30xIpA8ENydU7ArM8bsa8K3l+8uQJF2fnLBc1Qgq6rh0ntOgcLtLfEYTmsl5rHdF/KJb/ZltpTwRRxpg4hF4w9HF/piwoyhqxO7DfNaPp6HK54mc/+xk//9nn1EbQbKLwH0S2yjqP63sEPoLYdL42RP+jEALeuzHRWRlNUZQM1kVw3b/rX1XXPLl6wsX5Jdt9w83tTRpTxTD0hBAZkb7rqIps6inZ7naUZUlI3ky3abu6rvBuQHhLs5OjIer5xQWyLJFC0zUdX3/5Jb/7+lsA2q6j71qc8+hCUy3TBFbU+KCQUtH0A1IXqJQXtlwsuTo742y1Yrvd470Y2b49HqREFzXBq2jJQASvIoRY66YLms7x77+LffjsR5/y6Y+ecXN7h/OBPrFigx2QWqHLGpFK9nNStxeCMMRr4lyPCBYdYg6TkoFFvebs4oKAYMhmXQjuHrZ89dUBrSIYLZIelhQC8wMHt4UQ3/nu1KQ6b4/p5eT2GDsynRBOtWM5QXl/UxZl2uaTzPzB/6FjTI8zzzGZnleunpqyLNPk3FOAYP6mPV23bdv3KoTmk91j55FfYOfg6hizcmzizsuzmB4w+madKkc/lQeSP0+ZptymydbHtsnjmP++vr4eWbnVavUdRikDkTlzN+9vPqc5m7jb7cYk6KdPn/Lll19ycXHx3hidyjuaLzslHDgHV9N74FgS9H8EcBzL9cltnrM03+6Hbo/23AXD24cO7+JN4b1DK0ORwIp1btQc8d4lx2qPNhpTvEvodBIkAa3Aundva9FF3I6JoGVRUqWJwdt7bPcQDSEdPOwiSNjuXzI4IJg4hUuQY/2xADRCqqiaK2VMIiYqFitTgJIgLVLFSeZ8aSi1RatvseGS5fJT+uY27s/uUCqgi5p6dUWyP0LqAu8GrHBIKaiLirJKvkRlifcWiUMJ6IeoswLg3cCqLhi6Pbv9A3VWb/OBoY9VKs6594CeS2NVFIayrHj2LCbxPnv2jMoU0aeqPURTxCzEFnwynIzmpsE72gSyfAhY6xhsNJTMgGmxWCARURXYWWzXjAnkXdcijaGua376059O6MXA9fU1Skq29/eE4MaQiXWOruuQPoKYfhjQiUVyPoIsrTVCyLE6J2y3rFaMvl4usUkAzcEDgaqqeXp1wWKZdFwWNW/evKE57PHWcv3iehQ1dD6yiYO19BOjUoD9LvoutfsdpTGsV9HM1Q093lcxVOgDCIEySXPHBsq6QCmND4yVeL0NaFOyqJZopdlsNmyS/9h+t+Dy4py+tzy5qlifFVRV3N/V1RN2+yYKF/ZRnBJI1YkR3AXAO882qX//7999RdNbfvb5T3j17StUSvxdLc8SMIS+j5WCVRnB/WAr9vsd1u9xdgDrxjL2obfsDwfuH+5Z1KvxhSAA56sFz65foHSBDWLsQ9v37JPb/Q/djtHjcHryP0WFz9uxdadv+Y+FSeZ/58/T5MjpdrkdC4dNt3uMzckT3ZwFOhUK+OUvfwm8mzxzYuvFxQWvXr16T6dlGjqag448GU/ByRxAzs95eo2OgaEMLqbfz0HFsfO6vr4eNWj+4i/+Ylx27E0/92/OZOVjTcHavJ26fnMQMT0HrfWYhJyPm/VopsBpPq5TRmh+vlX1vip0FmGcXr9jjMtcpfsUS3TsNzAHq1Mw9hiAmvdh+t30fpkzSKf0nKb7+SFZnMcBjnf0TTfS/IXRKKkJ3rM/RPPH/KBUOtoZVLnMWkSlWohaLmcLE8MPwY/CbloblFYIJTGmoC4UMsSJod9vaELHYBWv3x7Y50oW5xFKooxFKo1SJYXJb5YSLwS6KOLD2hQE0kVRhrP1GYVscM3/QNoYSqn6AhEWnK3+G8Kc0fVbWt2mfluCOGN3MNxtW0JiILQMrJcFqlAIEThstrgUJhsYcEPLalFSFgVVYXhI4bXAwP2bb3n1ze8QYeBPPv9JHDsh6LoBax1SSoqyHENH3X6PC4Grqye8eHE92kUYY3DeRTfqrsfZfmRwon6NJHgfVaRDFJyDCPRCiPo/gUCR9FD2bktVlggh8N7h5DsaU5oCRWRLzs7OWC1TzpMQFMYQrENJCciRNdgdoraQlBpBvNG7LOKYmBmTmLdD+n5/OGBtZAFzaHFUtkZgncU7S71YUKfJ+8Wz5xhT8PbNaw77PWVZjfeXtRYhBHVd4bxHCDH54Q2EYGKlWIg5N/H7Du8HnLcE4amXNdfXsTptsAFjCqRUPGy3dJMKPYFEIOmbAY+iLOO49tbR2Z6z9ZL9bkdpBBdJNVmZGs85/eA5tANNEgdsmoGmP9D3A3ZoCENHcgKJwN127B7u+OmPX9A0KcToJUVVJlCmEKiRgXvY3LNf79ntG2zXY207gr1oXgpBBPrBI1IY1hjFzf2GV8MbjCkpy5LFKl73qydrCv2fk4MzLwV+jHn5fRiRY8tPCZdNGY3HQNZjD+PHwgeP9TX/P83byQDh1NvwdLvpBJjLoo85hk/tF6aT4bQ8+VRl2rwfpwwgc7/yueQQz7S0fb6v+/v78TymFUzTfh3LydI6loLn/KEpOMsl26eAxXziz+Mz12vJ+5tq18zF/KbnP19vag8xH6fc8hj96Z/+6XeA97TfeRzmoOgxcHAKsJ96qTg2VvP9zb+fl/ef2ib3H/jOfTg9xz8U6Dy+dSCFS+LB+r4HEel8rQoKJZA6PiiX65qiOsMPPU13oChr+k2c7ApeY8KKXSMYeo/K+jhFhSkVta4pxZ7Qf0PbRODRto7tXvH6zZbDfk9IWjxSShQKiYpMjS7QRWJPTElZ15xfXbCsFyipESGCCx06usP/Q9i9pNAKtYg/HKs/xdQLdl2HP/yW9vDAfpe8jFiAUvjBgm8p0sN/URdUixVCFvS9h8WKPvspDS19u2cztGhtcLbn1ZcvAbh5+5b2sKPbP7BcGPYvohDboixBgjIm5km4d7lDxhhqU3J19YSrq6t3IbcQ8EQV5uAtbRPLseHdhKuURmmDy3Eeosy+EDICkxAi2AC8FQhCdPAeBpQy1Mt4exTGxBwr53DDOydqgQDnMEZHnZSuGfcnEwsViInA1lr6lGtjnaNvmzHvJU+2Qgju7+9SSC1Q1/V4gyupsG1Hk2w2cvhTSs35+RqtJQ8PDzSHhjA+j6LwHj1UZdQ6yoEQqTW270EplgnYxXFwuG4gyI67m1ua/T2LKoLK9dUZ1bLCC8Vqux61bqyNgM0OloBAKB2BBrDbb3nz5hWLsuTyfI2UkjqJ6TXdmyhGWWnqomCRcp7U5TlOPGfftHz15f+L1gNnySesqg1df49tDgy7gSrlG3W2Q9uKYAXlYkVQUKjYh/WiYrAlh15wv9uxb2OuF8DQ7hnaA27wCNwEWBoWyzVSncfwnxB0KZfscPOQAO0P344Bgulk86Ft5qDm2IPyQ2zQdHKc53LkNmcljvUd3g/7WPtOvG0OFuZvsNN+zbVOjgGuOVCw1o5hq1evXo2AIDMBxxir3HKi7HzsporFUyCawdI8FJNBRb6GU42ePC6ZnZjub6pzM7VjmAKXPJbT/h7LFcrr535MQ3CPten9Nr938jnPmax83DwOc/AzTRyG972tMrDLgG7OrB37nBmePEbz3KFTYGW+/+l+T7V5H/J3p8DQqePPQeS0L8d+g6f6+n3bxzLxj+1j+9g+to/tY/vY/su1RxmcEHzMv8h5LErHsmdjqEqN0YoQEkYKkr5r2e8PGBNo97cEG3NZ6tLTsWbfeXzwlIlvL42kMgrNNzSHN3QHy/1dfIO8uW9p2oZ+iNUf+W1fSYWUGqVLqnpJUS8ok3LtYhHLIYUSHJqOUg3UMpWsDG8R3Q5lfgL1z2hJbzCho998Q3e4x3vNoRWg0ttyWYEfEMYjhB+NCN++3mPdHSRl5K7v6BLLJQGGHtf3nJ+taQ/3fP2//wdAZMKEQIaBvunZ3MeEV311iSk03km6tsU6N9pcLJdLVmfnXFxcYLRCJvdvl8I1zkURvXidsqq0QGsdQw8hxNBV2p/WBiEkSkkEYgwBBR8QIjIn1jqEUO8sFCSAx9oB23ccDkkdWgqKouBwCAx9NGWsE9MggMPhwDDEfBDv/UREztMnNqUsipHByR5h1lqklEmVODJWq+UyCtF5j7WWXHRj3QGlNKvFIqk3H8Y3g/v7OwISSbKoCB6dlLKD89GkUykQ4r2QjSfEPKS+JwwDy4vIkqxWhqZ/SCKUnvoin+sZSmu6bseh60AVbDcxYctpSX1+gRSe5XJF18Gb2+j6fn51Qbd3rKggQKFjqM6yw7oB4z3P1xYpKtwQr/t+f2DfBg59w5dv/p26ivfxelmj1R5deMxww6JYoHJJYtijaFkLgSkcV8UZbn0JwO6wiGG0wdJ1LW0qb993G1pXYpRBy1hQQErEFkLhszz3D9imb+jwfkLk9E3wmAXAMVajbdvx7TYzF/N8lPnxp8edvqHPW2YsHqv8OPb9vEx5fux8/Hmobnrup0ItmQkARpXgL7/8cqz4yeMwDW1MK4GmTM+xhNvsvTQtW556Vx1jR/L1mVeb5c9TR+95mzqG5xBVZi6mIadpyOoU25H/no/ZsfE/tm5u9/f3Y4htft9Za8flU8uKeXhs2tfcv6mhad7f9FqfCvVMxRmPhYpOhXrm/T51/84ZyGm/T7UPhbny/zlXah7Sm2//h4SpHgc4PkDwo3eUJ9D3Hd45fChRSo4VNUIODLZluaoxXuHtHd6kh7J/jj0IKi1QKpCqxzFiT7e7Z982bPee203PPnnuhGEgEGJiqi5HStwUBaaqqZdn1IsVCNBJulZpzXa7pW0aqlIjF5J9Cnl5+4BU52zbBcObG5RMni2uBe+xvkNJQVlVI6112O5oDnsGZ+l7T9vE8+mHAz54AlFzRQQ/hoecswQ8RaHp+wMPr7+CdGMoqdGFYeihbff89re/BWC7feCT60+j03lqGQzUiwWXl5dR2Tgl50LWcIngqm0b+qGnTGEbJWTKpfF0fYfUZgzpGFNEEOECcmLWGISLXkk+IITEe/+e2aaQAkVA4WMCLDB0A8PQJpXoEMFTSkwerOVw2NO27/I9mJRihxDtNExhxvDQfr+n6zq01hSFYbAd/RDHxFnLsl7Ec3Qe6/N4O/AepyRlXVNcXLJPekVN09K1Dc1hhx1szC9PfSgKzWqxwhQlgpgrAzGBlvaA8p79dstmc49X8Qe+aTXnlxc4IVleLEDGh0/bOPb7hiEUBAkKzdk6LqsrQ70ocbbn/n7Dft/j00vB7cMritJQqHtKo7i8WKVrJAnCY7SkXjyj7xxWxnvopnlg8OBFge0Cm0MEJG/u9xA8hSlYn5+zWEtMyq8qjaYwK2QQSN+DeECErwF4tl4hWOOkRlDQdfm3XiLMksEHwhDz7YbsaO4CXffDApwQwncebKcevMc0X6Zhpel6czBzLNl0ToufygM61o+8/bydsn+YU/cfAkZz+n4eNptOUNPtctWR1pp/+qd/Go0uX758yfX19dj3aS7LXJdlfhyt9ahcOx3v6fI52Mh9n1+XvP/5GB+rcsp/T8HYFPTmkF8Gbt8nNHMqzJSXTcdk2u8MyKY5TNPl2RhzCjZzKGnet2ni8fzem4b85kBvPr6ncsmm7dhLQd7HsXs0LzuWA/QhoPjY2M+B1bH9PraP37d9gMEJDMOAS2+CDhGTMoXgsO/wwRESo1AUBavVBYWK1gnCvEhl26ClYqkVyu5xvsd3cULbNi0PzcB2F2i7Fjf0jK/mUiIpYmmxiqwNQL1YcnZ1RVFU0bJhsFiXHJC7AaMVlxfnGDlw2G548zoltnqLd3t8eKCoinECKuuKttkyHBp2fUfbdHRtyjlyPlUkSZRQqCSyJ7SmKGuUMlFYDo+3kd1xPpZf26Fls3nAB4murgBYXTyjNJrt/bcU1RLv48389uYOaz1PLq9idVo/EVWr6qTr4rHWj95DIbE3Xdcy2AGkoE8gK2hNcFHjJAhJXZUjELXWopXBi1gWnhNyldLRhDGZoXrnOBzij9u5Hm30WGVVJBakayPAEUlzRwoY+iSyN3G8tnaIZpfp2noCIkQncescRUoYbtsWYwzGGKSMICjr9xRlZG9GVir/OASIIOmbA8FZimoxVg8tl0t2uw0+AFJEzaN0vw7OIrTCp3L9fNvt2o6b3Y7OOu7uNnRDYEi+TbUfONgtw5f3COxY0VZXZ+A9SoAqFwgh2aSHW0BQeE21PufHl89p91u++ipaPAhRoEzBdrPhtu/43Zfxe6kUi0VFsTBcPXnK+bKkUFHj6MdPQRQvONiCgKLdJ3+vfaykO784R5ex1J5kvtr18SVFKk0IGi3PYv4RoJVjWSnK4KJApor316IqUarBDTsQB3q3RyQ2TdSfEHS0ovih2zEG55imx/wN7/vE6T+Um3AMdPxHHrRTcHOMmZlO7tO+HZsE5w/7POHBdyuspnkNUybmL//yL/mXf/kXIFYj5WPliTe3af7HNIckHyPvf3pe+brkvh8T4JuCpdynuQbKdLKegrrpPvJ383ycKUs01XqZHnvOkEz78dg9cSz3KzMnx/JEMrs03W7KxMwZkbzu1FhzOiaZiZvu/9i4Tfswv3+m4zcf12PtFCj/Pus+xqhO75ucED7tT2a6PqR79fu0xwEOgcNhj8jaNGWJkoK2a5EiUFVL6mKVlhmkHOgaDxKKZUFZpgu863jzcMthc8sw9AyJ3rbtgPcBUcioHVKtMCkh1nufGKQoVJcBjkdwf/eAEFtMMo3Mk7fSBmMqtFF432GFoKhj5Yd2MpZMB0tRG0jVVW9eveX+7Wv2+xaXwihS5klfIKQGUSJ0gcxMkVQEH7C+gxAQBHzKbHU+4AeLcoLFYkV99ikX5/FC1vWCynhk+Iy7u9f89otfA9Ac2ljZ1PUoKbHW8uzp87RNjUwGk0Ozj67cRKZosD27/Z6m7TFFMfo2eecJpgAZE42d9YhUfu+CBxUrimI5ekriVTJq0kgJOnoytX18CB26BiUlpU6O5wlkRZVli0wij6EoRi0XISVSxImS4Om6Dhsy6/IugdpZR3bKMqZI/5LhoxZjUnAIILREyHgsbd65xGexHOsc2llMqmBarZfc3RcEIXAhELwn2HhsrSQPu11kzYSgT8nR1ju22x1CFdSrC9b1iiYlBe83v2O3CZytlizPLrnbphLRg8Baz3a3jfdBCCQiCyEU99sGY/bUtWG9UHz2o3g/dG3S2Wr/AAAgAElEQVSP0DVPn5zzsHng0MQ+dJ1lv9/wcNiz2TouVyu0jMsWywW6GtjsdqzPLugTsA4S6mKR7pUoUSCIFYlSNihZISmJkMtRVUkwMmg6p3HSYJSEJF3QDZKhATtoGGrw55Qi3v/G1Ywn+AO1aYUbvP/gnPszPfaAnmt5zB/634cxmQOGxyplju3j1AM6r5NBxXwinq4zZ0+m5zI3wsxhEWvteyXS0/Oeun9PAeOcTXpsMpt7Rk37NK2EmYOLOdibHnde5TXt9xwMWGvHSqQpgJgzQHNWZgoEp+AwrzdlSOZjdOyaHwPCGUDlf3NAMa8umv6drx+8Y4ymTNy0f9N9/z7gew62jiVZP/bbeMxL60PHnYfQjpXyZ3A8Z/L+ULDzQQbHOztO+N45vB+QWlOvzqjrEpGdxoceOQi821DXEt9UfHUTL9Zuv2XoW7qmYej7UStFIAhCIoPGBElRGYoMIkwUTgsBhAs4lyexrJsjUamkOquvam1i8ocUeFfg6SmWqSpkMNihRSlFs9txdxdDV33TxrfaoiTYARFC0pABbUp0VaPLBUqaUXTODQP90OLcEMGXUJDCGMu6onxSU5SKi9WCsihxIjFgXmKMojKKZugpk9uzDKCkYLvdYu1AVddjWFDKKAA3DB3NfscuG1Z2UeRwsBaCiA7qiWFSUuGDQAhJ8IIgQKTAm0DQddGYkfBOYK0wBlPEh04IkevYNW3qg2SwLaWEZVWPIafm0NBbS3BRb8Zbiy/9uI1PFU926HF2GEvVlZR0XY+3DnygSMJ83kf9nvW6RkpJb/vJQ9EDFqksHkFtMqMX1/XOY/shWmWkGON6tWK9XvPNq2+4ublJOWURINZVibx7V7GVz8mFeCypCqo+UK/DKLp42O1o25aHN4pydUOZVIRLs0CbCiGiY7mWGsS7yjVrew77DW+/bQm+R6Tw2mJRcv3pT1ksF3z6yXNsVvFuHPt9S9Nusb1j12zo+5T3dHvDcr1GF4btvuHJRazEq4qawIaq6qiqK5quZ7+POV773Ss629O1e5xrUNogZZGuk4n5VkW09Ag+jmtZXVKUT5CssFITRM3Bp9+FC6jJ+f2Q7fuwNI9R4nMwckwHZH6sxxibKRD40JvsNMxwqrw3MyPzB3nODZpPXjn3JIdEpi1vm9/w58Aul0dPxeJ+/etf88tf/pJf//rX/PznP/8OG5OZnWNAb1r9NR/HuZr0tA8ZnMwnq2NmjTm0kye76YQ/DbFMl01Byqlwyzz8NAXCU+Znei2+Dys4PU5msjLImecdZUB3zGQ0rz+/X6esWR6H+VjPr8k8l2c6tvkaz/V0ToGb3D4kqXDqu2PrzF9Yjv1GfygW52MV1cf2sX1sH9vH9rF9bP/l2uNcUwBtDEVS6RVSU5Y1q/UahaHpNrRJKl6FAmH3FMWBg6t4uH/FLumEDNbm/NIYzvHvfJaEiqESIYnhDZUYFx8VaL1zBOfHsIbUGlMUSCnRiXVwmS53A1VVcWh2dLs91jVIYdOpOEIQvH59w363GZOCJSm8ojRGF8gU5gKoFmvq5TlFHan/nKgRXFRtjkJ2Aq0VwsS321ItWMk3aP9bpBT06oqBTwHYd5pdu+fm9oZXv/s3tkm8UDnwMoY5BJKqrDk/j6aVWmuG5kDfHjgc9uxSXszDdg8mVt8oAWWlqEfUG5mEgIz6LC5gs8jeYMlUlNZFrBQDipTrEyvjPNv9YdRKKeoKU9Vs725QUo7WGE3bcmijoF+VkpjDGC7UiZGRkWHxnpDYIikESkmCj4g9q0CHlBPUtC0QQ3VZnVlUGmM0Qmis9WM4zrloKiqlAjHg7MAwJP2lOhptdl03smM5D6jrIpunkuFnPicvVByeoWXXvCLcvhlZLhHyLSBo2x1Kv0nHWWGqcxbrJwQhGJxDZ1uKvmOwPdZmn6iWkE1Rd3B7e4fSmk8+/TE//vyPgWhOK0NPaRTBQWCRbFLADgeEPKC0ZrmE0kSWRinBfvtAs3dI9RZlFhTJT0FUZ/TdhuB3tHuPbwc8Ey0jAT0C51qGrOfkAmW1RJc1Zb3mydOfc3EW+2fMmqB++Hejee7AsfyT3KZvntM3zXlIab7+fNt5O8UgHft8rC/w3TfU+fbH3q6zRsz8ODnZ9Fi10VRj5tSxsthfHpM/+7M/4+XLl7x69QprLb/85S/fY5umYZmpKvLU5uDUG/excNs0zDfPmZnq4kyZlbkSMLxvDPqv//qvPH369GgVzvzaT8OA03Gaiv/Nr8f8WhwLzxy7hlMGZjp+U8ZmzkTmc8+hurzffH3+4R/+gb//+78fBQA///zzcXzmIcH5tZiHQKdM2jwsOV9vfo4fYj7n7dj9fyzvbLrufPmp/fw+7dEtlVI8f37NMMmrODs7Zxgcm+0Nh6ZBpodobx+ozQE7VNzf3dI0Q/JEgoDFeUComOMh8mEFSicxOucJYRjLT2XbQ0pSJQR0qghROib1KqVwbuDudo9OSssXFxdsty2bzS6Gm+ipq3yRPLf3W/rBg9SjYquUGi0VymikMihdUqZBNuUCU9SYokpJmrkMO04Mzjm0UqzXS1brmOvjujt862nvK27f9tw0N2wP/xbHqO/BBgqp2G1e0zbxB7BcnrG+uGJ43SeQVr+jIJ1jaA8cthsOzX50NHcB6nJJ2zbYfsAUJWfnkcIerE2eUZ6iqrDOYVOOiSkKnHWj03j2gco5OT7E8NJysYwhP6BtO4SU7A4NQ9+xSKXgg40l4EVhGJx7r3RYaY1SUTQwJwZPDS3jxBqPf5bA3Hq9xrtA1/UcDgekUu+VbzdNi5DRAiTnzPTDAEJQVRWFAGf7mHQNSGvGnB0fAkEwnm+UPkiaz8pgEkAdfKDvXXS8z+k9CY8HF80qER7v34Evh8RRsDqD9fkFvR3oUyjMFAXO9UgUVbGgSD5R+Zy0Kqlqg/eWroth08srzf3NN0jfcnlxxdn5M6SKieqHw4b9bseh2cFwwA0pzMkapQwKjxANXXNHlxzpCy1Z1DVCrtBySfAihgchhQ5dTP53ARIww1ns0NF0W/bbbzk8fMXd8v+Ov7P1j3j6/P/kP7OdCjVMl09LlHObPyDncvnTfZ+asKfHeOwBO133FF3/2KQ7VaGdWis8FnY7NhZzgbdp34/ldORqoOnxp+Mxn2gyCMhjPh3Lechj3r+cPDuvjpqup7Xm5cuX49+5lD0n7E7barXi6dOno+HlsXGZgqNpX+f3SgYU0/BS3uYYeM77PhX+yfvJ5zuv+Mp9mYLPtm15+fLluO4UVH7++ef83d/93Xd8rU4JXx4DCfM+HgOb837lNt3XfPljodr5/9MQ6Py4x9qpl5T/SHt0a6kVTd9TpKTNqqzYbB7YbndYbyl0hSFVY1Q9rjfcvN3RDx0hiDEnRIxVKiKWCqfSZCkVUhm8FwgpKXQxGjLKcWJyqZw5lWi3hzEnwnmP1prlKubg3N/eEDwM1iMFrFexugUiuKgXa8pyQddHRgTAuwietClQukRojU/96/qWw36PEJpqsWSZpOrLOtowGFOgpERI2GxjbszQdNzeCm5uNe32gOseCMlpvN83WDfQqJhfVCXlWuHh4eYN3lmUkAzOjf5MSqlob6Gir1afncmFomkanLOUhaGq6lEzJjq0F2x2u3eeUFlHyBikjBo4uVwb4o0kRMC5AYJAa5mm/8isGK0RUtIksAPJfLLvMSbexF4ItNNpvLtYEWZtqsbrsam0uKqq5J4tOVutolIyoJXBVAV17eM2zrJeR48oQkjn6yjLciyJhwzOJEVV470Z9Yqs8/gEroSIpqOjqaOIAEspk+7D2O9lXVJWgsFLHGCKktUy5trUZUVpNN73bA87bNaAUhXa1CgpMFqwXF5wcxs1oPbbTdIdKlBGYv2AMsnoUkkuLs+5ujpjsTBk9wMhe/7oT/4E224ZOkszNBQyjtH64hlXT6/xvqc5bGgTs1OUZ/Rdw/397/D9Fi0UhYljVJYVulhS1QLvPELoUVdnsC3W9hzaBtEaXMoP8toihGJRLCAl37sQ+/Bm85aH9r/zn9Hmb4fTh/kcUGRdlt/85jejV9G8HZsEjgGXKQvz2JvrfHKbv0FPj5lzHo5tPy37PbbufEy+L+v0D//wDwD86le/GvVYrq+v+cd//EcA/uZv/obf/OY3fP755+/p3sD7YGUKluCdrP5cEXj+93z8Li4uePny5XusyHSSzdvk5W/fvn0PbMzPsW3bozpG+TznLEmulMogbZ60nMd+anQ5LdGeX9/pfn/zm9+M5ffT9afl3XlZPv4cKGQgk+/nvCwD3TyGx9jHY2Bmfi3mgP9Ubsv0us3ByWOs1fRYp1pedizn6ljfjrGB/9H2eJKxDyyXq1H35Obmjr4fEFJQVQsWixVlkoO/v+25u72nG4ZUnSPG5GQpK5DxbV1JPbIxRVERhEJqGc0TnWO/jdYKTbNjGCwh+JiMnOtppIwTlSyQSsdKqixAJgXDEL2MbG/p+4FvX30FxETPsqwpTIHRBaTJxA2eADgPYbAE6/C5ikqK6L1FoG2bd+NC1I9xzuOcpeui0B7AoT3QHQ64IVBUS6qzp5h0kQ7Nhv3unqqskThuv30ZTylpgNje4z3sNg98+zrq9Hz26acYpdGmQBd99CIC2rZHhdgPKYsYZhiyN1LAWkthNIONTuXZVNM5x9D3MeQXPGfrs3F8vI+eUsJoIJp0AvRdS3vQMeFcyfE4wzCM5p3REV3RJfYEpWJISkQxQZfWh3jTFlokl/JyLFWPScBNDI1qBSKgEmtWFCVVVUb/sQQq47kO+CDxQYNX0RU9Xafddsduu4vu3EIwsUGLQFoIpCSeV9rher1mffkJTQ8PuweMlrz4JIYYl4sVIDl0HaW1GJOTowMBx+Zhw9s3b6OdSUqcXq6vKEsTnbyHluVCsVrHa7E+r6iXBc4HlC4mmkSCwYOqLlivHEPzDX0X7wfFGc4ueHuzwXuPSyCraRq0ClyeXaDlU0SwI3gNIVb3xbL9+M9U8QdQywrvHSvraLuWQwL+bdNgijVnFy/ouh3ONoRcKegcwR/4/6MdeyDnB29+y//Vr3713gQ8XWf6UJ4/OKdJqtOJ7Jj+y/Tzsf7kY0zb/G15us78LfwUqMrrzt9+5/3M7e/+7u/GZXmCu7+/HwHEq1ev3pucT7ED84l4ysIcS2aegpXc8vfZimEK7qa2D1NglyfuPNlPAeDLly/5+c9/zv39/XsJul988cV4n2TWZ3pOU+Dw2JjO2Q5gTBrOYzC9H3/xi1+8B3gyMPviiy9GL6npNc3Jy/PE6SnbNh2jDH7yPnLL6+Yy/8fEAOes4alQ0Cm2cg7wTx3nsZa3eyxx+/fd5/dtjzM4UtL3bnQR9n5AFwKtS7RWaOnZJMXWzabFeZeqigRKaYrkEaWLClUWaBVZi1wpJYjreRG4u3vL/c2bkVYPwUURPSHRpqAqkwhasUTogJSOZX2OKQxx+owP8qpaMFhP4zv6vhsn6eAdfd/gvUWbClNG1qdexhwMIaJoH0IQcpkXIikny8hlZL8i7+nayIporVkslizryDRc+IDzFm8H4twsGFyc2Kv+kqf+xygReLj9mtU6hmaeX17y+tXXhCDwztK2jtub+Dbx7MkTiuUCpTVam3cI3QeEFFjnxpykd27iMXzWdR3WReXfro3LqrLCJ8fyRb2kKN4J6UmRojLOAWFkT3o7RBG+vqcsCwabtWQ8zvtYnp18p7KejA+e3jqG3saUFmuxaeGQ9HYKIZBKjwrMRaFpmzaqIvcDHj8Cx77vRgBQVzXGJUZKSbxWSBW9r3pnR++03XaL0ZoXL15wODQcmmZknzwCKSTS1NT1kouLGAKq6wXKFPzk02v+5xf/E6MUi0Uch7PzS/aHBtd2mKKiruM9JIXg0DzE34QNWNfRpfyl5UJRlkuefPKCh/tXGHXg4iKZgboNDw8hgnyVjD/H34VBYSmUR4aAJMbxm4Pi/v63HNpb6sUTgliM22hVErxncB1lYury/UqIeWzeOTzvqhKV0lEsszCs6wsW/ird+wpTFGy39zjXIBjQqYS81BKZ1L5/yDZnDaaTzjH2YpqLMNUPOdaOAYljNPiHHrSPPXinICtPXKfKa+dlw6cm2ry/x/pyrE/T0vHVasWf//mfj8eZjnPbtiNzcX19/V6IbOpo/sUXX/D5558fDQm+ffv2OyAl7zuvP/fTmoKo6Tnn65gn++l1ze7dT58+fQ9sZHG9Y6zFY0q/ef05i5TXzSBsWmKfj3dMgyif52efffbe+F1fX79XPTUvkc7bTdtjYCKPXz7veen7MZZyek1O3cOnQM6xfuQ+Hvt+DqA+BFZ+KDBzdN+PLfTO8XD3LS5NTFVZUWpJYE9taoauZ/MQkxzbdj/m3CA1BElIISppCqrlmkVdYZQaQxLBOTYPW968/ZbddoPrO0R6/1ZKI7WhrBYsVmvKKoaHgggEFJVZsKoN2oQxybhtezYPG6IjdRknNPGu5BshQBqC0KCSsm9VRn2aqqYoSoTMgZlcFh9f+2OCa5yYcl6J1hkcCXKiRnxDLpEpHOJ9GCd9QYhqxN2WQrdcLmPffN/ExNiUpxLwo8P2/cM9dV1FJWGlWCYn736wbHY7tClYrRYIKUeDR4FHyugIHTVRwigC6I2mLAzaaIyU+JSQK6SMxqJ4cIHeWbTOqr+GtmsiSHFuHAfrPf0QS8SlUhghyfnjbdtFt3PrcD721ybmxzmPWAiWSVQwq1QLoNCK9tBDcHTJ5iHeD4qmaSM4dg6bGKn1ekVdVsgU2ovaSckRu9AIqQlBRGuPZYnKGjsi5vK4IFhePGV5GR86UipUZWi8Y7E6p1Bm1IHa7h7o2obL8wXL5ZqmjWP6cL/h/OKcvh3YbzuMKahSXlhdGHzfctjfUdcghGObdVCGHicUQsWxF0GO51qVhrqSyBAIoiKU8brXiwVSeg7/fsD1DlFk/SXoOqjLMgLwoR+tNoKP95XRCisEwQ6jXpEPoI2O4pTWgci5biVDd0ALx6ouIEQZACCWnA/fv4T2+7Y50HiM+p5OTqcepr/Pg/XYZPBYOzYBfZ88iVP7P9XvOeMz32ZeEpz/zmGc+TZTMLJard4DAJnVme8DOGpPMD3vY9fr2PXJbQouT4VapqCgbVu+/PJLfvnLX7537fM+cngtf56qCE/3O2fjpvuYXr/83bF7a8oITVmtvM8MEqegZWoEegq0f+hen6+XQeJjYac5cP5Q+fUpJuvUusf6euo++VAo6/uu8/u0j2XiH9vH9rF9bB/bx/ax/Zdrj0Il5x0yDKzqlASqO7wdsNbz9uGe7e5AP+SKkJQ0LFVKqjSR/gaqqqQuNYWWlEVJmwTkbm9vaQ57rLWUZYWs6jEXQmtDUS1YLFdRhG80kpSUWlAvBEUp6RpHs4lsx83dPX1vY9LrvsM7G/2qgGqxoF4sqMuodJz7pkwJIpUyBx8rj5KInJIVfRf9ng77w5j4G0KgKIqxMkhIiUwVR6XSGBXNLKWUCO9GNV7vbSqFF9TqjG928S3j9ZtXCBxlUaTwyjtbg9u7O9arNYu6fC9JNrIrMU8mCsxZXK728TEvSAqBd0NaJzNMgXpRQBCRUcnl0VISgoYQ8LhYdeTjtY3l8JKiKNjtdqNYXt9HIb4A0e+qkGMYqes69s0BFwSL1RmFqmjbWCW0b1qqskZpg/fhnYqwczjn8MHjvGXoWprEZEmpGAaLlpIQPMvlOo2DTnYQNub4iHdM1uADm4c73tze0fQWaUq0zJm8is56Bu9QTYdLVgjV4oy61PS9wwnJ3eae17fRt6lvo6Lz9SfXXP7JGSHEfb1qGqT0PH/+jIvzM0wpR7bKFAqhe66vn9H3Hdutou9SWMIM9EOPlyHejyFe26qsUVLRtT3eDTgOyBQWNEWFMmvK6hLnO3waO6TC2w7b99RVFcOC6beplUYHgVaSuijphUCGfFfG8nclJM45hMzCmC3OxyR8EaJERA7dFkagk6XDf2abMxTHQgynEnO/z74f+/yH7ONYuOY/2qZv68fah0IB+bvMaOTqo3/6p3/iV7/61Xshp5wAeuwNPIeHji07Fv6bLpuGTabLp0J7uWUzz7xeZmXevn3L559/Poau5uzHNGw0badCf/PKr/mYPsZ2HAs1HlvnWAj0VE7ZtK/5u+nYHVt2bH8/5H19LJn4Q/ucM2RzFmm6r+/Lbv4h7dG9aa1Yn9X4IebFHA492+2etunfKeGmpFelDdqUGFNSlUsWi+XoLC0LwbJUKK24u3nLdpc0WZJr9WKxStsXYzJsoQ31aklZlljrCD5OqsuiQ/gtRXFGO6x4eNiw2cQfgUSjtaDvGvAOKdSYCLpcX/DkyRXrWgHdmE8j9YKuh67vCMEx2J7bm28BaPYNw+BjRZiS5LLpahHtE6SSGG2SZUSyG6CBYQNDhy4Kgjf0KR+jb3dI0YOUHBqJHbIujEHKEogO2zEkEpdtNht+9+WXPH/2hMroMVG3rmvOnGN/aHEuhY7SdbN9DO0oyejOnbNyvXcMQ5+8p6JhZ+yDpMSMDuM5vwfizeicw1rL4XAYQYdzLgIxEd3Li6IYy7C9EFgHSIVQBSLIaHsRv6IoK5TSDGnfAGXXE0LUy/HE0Ike3pV1r1cXFGVJVdXIFALyBPr/r727C5HrLAM4/n/2I03WNGlsUlD7EYUWLLmIJUi98YOKWXKR3hSpUGyleFHRCxVB8ELRO0UEQagVix+gVr3QIEoutKESTHGhWJpAMI21BoV2bbNJs0l2d/bx4pxZJ5vdnTOb2TOzh/8PDpyZc+bs8+yZmX32fd9z3vl5YrFo+o2R8WIeJuD8W5f4+8tnmZtbYGR8nNGxsaXux4zgpokJto6MsNBa4MLF4g/ApSuzTMzvYNeuXYywwFsXppcGJo+PbWHX229ldnaek6dOs2dPMR9TBOzcsZPFVvG7vXR5/v/3bRq9zOiWGZKL7Nh5G9t33kKWXVGtheKqubmFq1ydn1uau+3K7FVmLp0nRi6zmHOMj02wrew6ujhzgYlt47zzzr1cePMNLpaTbbZysRhn1povjjs2tvRZWmy1uLqwCJm8bVvxhTjaHivVarFIi/GJrcXM6x23DVgcTWI8yCjGcbVvET2W4yy2Nqbxt/0F1/4DtFaT+kb23XfTr599o1eLrPaHfbnlY5QmJyc5duwYk5OTS/tMTU2xf//+rsVUt/EYVbv4lhcpwDUzlbenKWjHv3379mvuwNz589rdUivdL2ily6ZX6z5sW8/56OxObHebLc+3M7bVCsXObf18j/d6rH4V53UUMquJdkvBihsjXgf+WUskkjabuzJzTz8O5HeNpDWs67tmzQJHkiRpM3KQsSRJahwLHEmS1DgWOJIkqXEscCRJUuNY4EiSpMaxwJEkSY0zuDtlSVLp4MGDOT09TWZet7St9Px6n+v19f04RrfnJK3qaGZOdt/tWhY4kgZuenqa48ePXzMhYefEhCs9X+dSRwztO3pLus7u7rtczy4qSZLUOBY4kiSpcSxwJElS41jgSJKkxrHAkSRJjWOBI0mSGscCR5IkNY4FjiRJahwLHEmS1DgWOJIkqXEscCRJUuOEk7xJGrSIeAm4Mug4+mw3MD3oIPqoafmAOW0WWzNzX68vcrJNScPgSmYeGHQQ/RQRU03KqWn5gDltFhExtZ7X2UUlSZIaxwJHkiQ1jgWOpGHw1KAD2ABNy6lp+YA5bRbryslBxpIkqXFswZEkSY1jgSOpNhExGRGnI+JMRHx5he03RcQz5fbnI2Jv/VFWVyGfL0TEqYh4MSL+GBF3DSLOXnTLqWO/hyIiI2Lor9ipklNEfLw8Vycj4md1x9irCu+9OyPi2Yh4oXz/HRpEnFVFxNMR8Vp5y4iVtkdEfLfM98WIuK/rQTPTxcXFZcMXYBR4GXgPsAX4G3Dvsn0+AzxZrj8MPDPouG8wn48AE+X6E8OcT9Wcyv1uBp4DTgAHBh13H87T3cALwK7y8W2DjrsPOT0FPFGu3wu8Mui4u+T0QeA+4KVVth8C/gAEcD/wfLdj2oIjqS7vB85k5tnMnAN+ATy4bJ8HgR+X678GHoiIqDHGXnTNJzOfzczZ8uEJ4PaaY+xVlXME8A3gm2yOmzNWyenTwPcy802AzHyt5hh7VSWnBHaU6zuBf9cYX88y8zngjTV2eRD4SRZOALdExDvWOqYFjqS6vAv4V8fjc+VzK+6TmQvADHBrLdH1rko+nR6n+A90mHXNKSLeB9yRmb+rM7AbUOU83QPcExHHI+JEREzWFt36VMnpa8AjEXEO+D3wuXpC2zC9ft68k7Gk2qzUErP8Ms4q+wyLyrFGxCPAAeBDGxrRjVszp4gYAb4DPFZXQH1Q5TyNUXRTfZiile3PEbEvM89vcGzrVSWnTwA/ysxvR8QHgJ+WOS1ufHgboufvBltwJNXlHHBHx+Pbub7ZfGmfiBijaFpfq9l6kKrkQ0R8FPgKcDgzr9YU23p1y+lmYB9wLCJeoRgLcWTIBxpXfd/9NjPnM/MfwGmKgmdYVcnpceCXAJn5F2ArxTxVm1Wlz1snCxxJdfkrcHdEvDsitlAMIj6ybJ8jwKPl+kPAn7IcYTiEuuZTdud8n6K4GfZxHdAlp8ycyczdmbk3M/dSjCs6nJnrmiuoJlXed7+hGBBOROym6LI6W2uUvamS06vAAwAR8V6KAuf1WqPsryPAJ8urqe4HZjLzP2u9wC4qSbXIzIWI+CxwlOIqkKcz82REfB2YyswjwA8pmtLPULTcPDy4iNdWMZ9vAduBX5VjpV/NzMMDC7qLijltKhVzOgp8LCJOAS3gS5n538FFvbaKOX0R+EFEfJ6iK+exIf5ngYj4OUUX4e5y3NBXgXGAzHySYhzRIeAMMAt8qusxhzhfSZKkdbGLSpIkNY4FjiRJahwLHEmS1DgWONwz7agAAAAiSURBVJIkqXEscCRJUuNY4EiSpMaxwJEkSY1jgSNJkhrnf2wscCOBpoRIAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "noise_tunnel = NoiseTunnel(integrated_gradients)\n", - "\n", - "attributions_ig_nt = noise_tunnel.attribute(input, nt_samples=10, nt_type='smoothgrad_sq', target=pred_label_idx)\n", - "_ = viz.visualize_image_attr_multiple(np.transpose(attributions_ig_nt.squeeze().cpu().detach().numpy(), (1,2,0)),\n", - " np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),\n", - " [\"original_image\", \"heat_map\"],\n", - " [\"all\", \"positive\"],\n", - " cmap=default_cmap,\n", - " show_colorbar=True)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, let us use `GradientShap`, a linear explanation model which uses a distribution of reference samples (in this case two images) to explain predictions of the model. It computes the expectation of gradients for an input which was chosen randomly between the input and a baseline. The baseline is also chosen randomly from given baseline distribution." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAE7CAYAAADQCfvFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9fWxdyXnm+auP83EvL6UriW2zE3rMztAZekLvComyw0FkDAehx8paWciOjFEQGZEDNSLDAqxMejAyrFm3kQYszyiwDCtwDyy4lWkNosSaWIsogLIQEC0iwzKsJDTM7HAnSsykmZhKU92UeHnv+azaP+pU8bLj9WCMHixg8AUa3c1zzzl13qpz6qnnfd63hLWWHduxHduxHduxHduxHyST/383YMd2bMd2bMd2bMd27M22HYCzYzu2Yzu2Yzu2Yz9wtgNwdmzHdmzHdmzHduwHznYAzo7t2I7t2I7t2I79wNkOwNmxHduxHduxHduxHzjbATg7tmM7tmM7tmM79gNn+nsdTNLEjoy2qGsDgLUWIUT4bxDIAJEEUgqEkFgrsNZijEtBt8aAACEI5zvbnqIuhEAgwvVCCrsY+qsQ7hrCHXc/Ef4UsGAtWOzW30PbQWCbH5lwjr+PlBLBVhuFaK5lfUt9e01ovpACKRVCSH8jjAVrZWiSP88En2mEkFvniKZV1lLXNdaU4R4CC8JgrAFrt3xiLUrJpo0Wix16WjHkWefTrWfyfrMIOXxG00rrHxx3T+877xDstmvRXFt4Z/muaPrSIjDGUpsaa+pwvSHnD/UzYN09LJZIRYy0R1zfCInwXWpteD5/79BvQrBtiA3dZ9t4EzTtcx1sjT9mwz9bFRRscy+JkIonvQG9zf72O1hLbQwIQaudINTQ2DOAsE1/C8KosBZrDabxzfA4VFohhMIYizFmq+3NWLTGYP0YBkQzdq01CCGQUjLcfGu3nklKsdX3TX+L5vl826RUIEQzll0bvD+kjJBC8vjRwzVr7VNv9Pb3Y2NjY3ZiYiL4wFpLFEUYY9w7YS1a6+CfqqqQUiKlpK5rlFIAGGPC37TW4Xp1Xb9h3LrrABRFgbUWKSVa68bf7lpRFIVrVFUV2uCv499Zfx2AVqtFv9+n1+sxOjpKmqbh98Pt8n71x6SUof3eqqoiiiKePHmC1ppWq/WGbyjbnttbXdfBb0IIoija1m7vs6IowrHHjx/T6XSo65ooivjOd77j+4a6rpFSkqbptnkgz3PyPEdrTV3XtNvt4K9+v8/o6Oh37e+yLIP/pJTbfFdV1dZ7PdRXvq1CCPr9Pq1WK1zL94sQAmMMeZ4D8Morr9DpdHj66af50z/909AeYww/8iM/wiuvvMK+ffv4i7/4C37oh34IgL/9279lYmKCVqtFmqY8fvwYgM3NTYQQPP300zx69Ii1tTUmJydDG3bv3s3CwgJSSp555hleffVVAMbHx+n3++zduxetNX/yJ38CwI/+6I/y8OFDnnnmGYqiIE1Tnjx5AkCapvT7/TCuvU+VUrzyyiv8w3/4DymKgqIoGBkZCb9x76mlLEtarRZxHIf2RVFEVVX0+33a7TYAGxsbtFqt8H5tbGzQ6XQAN57jOGZzc5OVlRV2794NwOjoKHv37qUoCqSUlGUZxrg/TynFo0ePeMtb3kJZlgBEUcRgMEBrTVEUoW/TNA1jrqoqlFLBD76/FhYWvq9vzfcEOK2RhJ/+396NNe7FyfMcIQVpq4U1ClMLyrJojvUR0jDSGiGK2phakueZczwVtS0oqwIp7NBglA4cSIvAMJKmtFLneCsl1giMEVS1ZdB3TqqrmihW4YOglAofayEV1kJdGyzGffQbECGERAqoigHZZp+sPwDci2NsjaVGNh96pd2gipIYoRRKaYypsMa9NAiLMTVgabU7jHRGibSf2RXWRJi6RV0ryqogz3rOR9nrKKVptTpEUUKcNANTjmLUbqxIKCtDXvQps9cAKAePqMo+BoXWEdnAvWzCbLJr1FCbjLrOmo+982tt3YSnlQ6wR3ksZS1FWVKWBZatj2IcJQihqGuDlAqpNDQgrawMgyxHSFBakMR+2EjK0k2+aayJtUDp5kXUCiUTEC2y0tDvb5AVzg+mrol0gpYREkmWZY1/MiyCONJopfmhp36Yf/T2fwRAgkZYi5BbkzWA1pooihw4FQIdqfBS+4ndGkNVFVhqrHWTkZYq9LO1hrp5CTEVtiqwtsLUdQPsmqeNWqhWl2/9P69w8/f/TyqPkYVgXyLZ3OzzatZn+sCP0dnnXsxIRlRlQVmXRDpCKkWD86hrS1nlDAabFEWGh20WgVYxoCnygv7mOmWRhWOmMlRFSVWWAXSkaUoUSUxdYmyF1BIlo+b5BMZUCGGwQBRHdJqPokCjlCZtJdSVpWoeqt0eZXRXlzjdhbExFoXF+TWK94Bs8R//3cf+ijfJ/sE/+Ad86UtfCh/K1dVVZmZmyLKMLMvQWofJBCDLMtbW1uh2u6RpSlVVgAME6+vrAHS73fCxXlpaYnx8PHx7tNb0em48jo2NAbC+vk6322VlZQVwE9Pa2lr4t7+W93dVVVRVRa/Xo9PpsLa2Fo51Oh2qqmJ5eTm02z/L8vIyaZoyNTXF6uoqABMTE2itQ/v8M6yurjI5ORl80Ol0wm884MqyjKqqtvlhYWGBsbExut0uDx48YGZmBoBOp8P6+jq9Xo+JiQkAHjx4EO65srLC3NwcV65codvthuOnTp0iTVO01qRpyvLyMkBo29LSEuvr68zOznL27FkAzp07R5qmLC0tsbq6Gtp27Nix0E9ZlrG+vh58Nzs7S6/XY3V1lYmJifD3TqdDp9NheXmZXq/H7Oxs8F2apqyvrzM+Ps7t27fRWofnvXTpEs899xxjY2NMTk4Gv/7O7/wO165d41vf+hb/5J/8E5aWlnjhhReCz5977jnOnDnDxYsXw/i4du0aH/nIR/jiF7/I6uoqhw4d4tixYwC8+OKL3L9/n2effZavf/3rzMzMcPv2bQBu3rzJxMQEk5OTrK2t8alPfSr0ue/P4T72fbu4uMj+/fs5efIkzz//PADLy8ssLy+ztrbGysoK9+7d4+7du2FM+7GltWZ1dTWM5f3797OyskKapnS73dC3vV6PW7ducf/+fU6ePMnLL7/Mxz/+cQDu3bvH4cOHuXz5Ms8++2zoi29961s8ePCAu3fvcuLECZaWlpibmwNgbW2NsbGx0K6ZmZnwTFNTU1y7do2TJ0+GNgG8/PLLdDodxsbGwvvm2+ffm1ar9X19a3ZCVDu2Yzu2Yzu2Yzv2A2ffk8GxxmDrmlazqkqUYmPjCYMiR0YxOk7QzYrdGIG1isEgJ89r4kgTNQtpJSV5pahKt5p0YQiHOJVWGFtRliX9Qd0wI6CjGK1jrJUYs0WJqkgSxTVJIpEShBwKPVhBbQyCiqquMbWibMJrdWUwxv2buqa2fsXn2AatNHEcARYrGhYiVugoRqmkYXCaFTE5ZVlSlRXGVljbp6wdk1WWBqVSJDFSRghlsMKFM6Su0Rqs2MAyQIRQl0aJXVitEUoSqYrMuhW7qkoqGaPjLq32GJsDd63Hj/+OJ5uvYZEoFdGOI1pp4p6VCisqtJKYsiTPM/KGoTBVRVXWVHUV2uz6IiKOUqSKEcJQDSqkcs8bJS1QNbWtsbXFFp4i1xgUEqhqF4IpaufXul85dkFGCCGpTYUWVTMgLNii8SGBpgfHsiEgiVPG9o4jhQpj0ZgaISRK6RCEU0o1YcRhdqdxaxNfrKqCqsrA1CGMZ7VjQ5R2lLYcCv1V1mB86EwIVMNyWUDaml2jI0Rxim1YFWEtTyUpnapgI06J0ggZwjkQJwmq1lhrKIuM/mCzuZVBCImOJVG6m9SzlwayQUa/twG2IEk01rhXtSwqfAivrA3NUCUrCgyKKNJIoZASkua9jeKYuiopioyyrimqkicNeyGsBCS7zChpOoJuwhU6jpFKstnfJM83SZJdRJG7nkwihFS8mVZVFRMTE2HFefDgQe7fvx9Wub1ej4WFBcCtfKuqCsxFVVUsLS0BMD09HViDmZmZwBpMTU0FpiDLMqanp7exPv5aDx482BaGGh8fBxzL4+81bGmakqYpCwsLgRHxq88bN27wjW98g4985CPht8MsEhBYIR/uWFlZodvtBqbBr/A9ozXMUL2RUfLPBo7BOXnyJO9973v5/d///W1MiGeYPGPgr+cZjm63y9GjR8M5f/RHf8Ty8jJjY2NMT08Hxsrfp9vtMjs7y8LCAlrrwGr41fz09DTdbjcwLp610VozPj4e/AZw4sSJwB7dunWLQ4cOAY5d8m1bWFhgZmYmtLuqKu7cucPs7CwzMzNcvnyZ5557DnCsiw95Afyzf/bPAPjoRz/Kf/7P/5nnnnuOmZkZbt68Gdq9urpKr9djZmZmW79+4xvf4F/9q3/F+vo6Z86cIc9z3ve+94XxcfjwYX7pl34pMBV+rJw+fZrV1VXe85738Hu/93thrGqtmZ+fp9frsbKywvLychj/R48eBQjs27Vr1wA4cuQI+/fvZ2lpiY9+9KN89atf5d69e2Gsrq2tsbq6SrfbZW5uLrTh6tWrdDodTp06xdWrVzly5Ehow7Fjx5iamgLg2Wef5cCBAwBcvnyZlZUVpqameOmllzh9+jQAL7zwAocPH+bMmTPhnfTt9u/Q3bt3ee6557a9t1VVcfXqVU6dOsWlS5f4m7/5m9DvKysraK1DO/zY8+zZ92vie23V0N23y777vf9LiI/auibPcow1CKlRQ5SqUgKlXVjDxWsFuokfaq0Q0ukJiqLC60viSBNFCivcJIQF8QZSSUcxSkeoJsailEVri5Iq6FyG1ROmNuRFjrUGKVuUzfdokBUUucGYiiQSRLo51zraXilNEkXuPO3DWgqEJm11XNy396S51gZFXmOtJEmg1QalHYCo6horJHGUooSgLnOqyk/GbaxJ2Bxk6DhhdGSf+7vuIqO9CN1CkGDKPpubfw1AmfXQUUqS7kaoDkY41FjUNVmRkRc5ps6Rsk8auX5KZY+6fI26yjB1TVmXlHXedHiFqSAvCqq6CiEqpQVKaeI4IYpisqwgLxqwqWNUFKO0QAhL3YAYYwRx0iaKIyIpMXUVwpJFlVNXVdBeGVMj7VY83YUOFYNBSVG68RCJ2OmKJIztfis//o9/kpZuUHJdIwQo7XQXysfmm1ClVFshyzCBGAdSsmyTusoxVYluJmapNFI14MUapxMDBIaqzqnKHFMbtFYo7Sf9FlE8wsMnJf/xd/4PBhsb7hxT8S9+6ClWBhu89vRb2NXdhdJDeojKUFZujPcHParK9UWcaKSMoAmtKh9iLEsGWR9TFSgpSNIEgWra53QJdVWTZcWQjqvRcSiBsTVYQ9yEEpMkQUrhJmgfsiv95G6oyholFUncBhk3/okY3dUlTTpUlUWIlEg7ABbHXZAtvvTvTv+xtfYAb4L9xE/8hP3MZz4TwjlpmnLv3j2OHj3KnTt36PV6gdLOsiwAFg8G/IfcT6Ldbjf8zj1nFcBBt9sNoAbcx3R6ejqc7ydvH8bygCXLsnAsyzLSNA3/Xl9fD6GemzdvMj4+ztGjR1leXg7jsdPpsLi4yOTkJNPT09uAjv9vDwr8hJGmKffv32dmZoaxsTEePHiw7aNfVRVjY2P0ej2qquL+/fuAC/Vcv36dO3fuMD09zZkzZ8LvfRjOgy0/mSwtLTE1NRVAnQ/heTDiQ0RTU1PB31prFhcXGR8fJ01TxsbGuH79ejhWVRXHjh3j0qVLwXd+8vYhmPX1dRYXFwEHRLXWjI2NbQu5+edbW1tjcXGRbrcb+tb7a21tjfn5eS5fvhyeYf/+/eH3hw4d4uHDhwD8y3/5LxkfH+dzn/scv/iLv8jFixe5efMmAPPz84yPj3PixAnOnTsXrrW6usq9e/dC6PSf/tN/ymAwCOPBA62LFy9y+fJl3vnOdwLwla98hSzLeP755zlz5kwIKU1OTnLkyBGuXLnCiRMn6HQ64ZkePHgQxmun0wkhtytXrnDy5El+7ud+jt/93d/li1/8YgArftxfu3aNTqfDrVu3wnmHDh0KYcnhcOu9e/fodrvs37+fXq/H8vJyODb8Ds3OzgYg1Wq1+OQnP8m5c+cCIB9+R5aWlti/fz83b94M76wf2/7e3pd+nJw6dSrc941h2JWVFZ555pnv61vzPRkcIQQWg4rcR1TGilYnBSGpSkORlxRlo0spDUoLtNIIISiqGiEco4DRKKKgBfAAZ5BlFJkhTiJ0HGOtAyjuwWqyPENIaI+0iaLmA19ZZAmxTpAyaTQSW2Jki0VpAVahlECoZpKOY5RMyfMBdZVjG2EgVpLlFXVWYFqCNI6IIydey/IKpSOE0EghMca1oSg0QrQY7YyCyCjLJwFk6biNTtoIYrJ+TtarKCt3L6kEtZFUVQtZ1FTNB7bdylHRa+hYo3UbIWKi2A0YQ0xtKjazPlaUtEfdx20k3cVIu4uxJaauyPKMjcePAHjtyevUWQ9FgYwjDDoIfKWoqcuaohQolRAnblWudKOFklAbUDqh5YWoogGwkWyAZgM6hMJYQZ7nbFaGuqywNPeRAiEdy2atoa4NXscrjUEqp4GJEk1lGibJ1khtieOY8af20YoTpBGNH1zbnLjcQMPsCCkCc+NFp0GEKcHWWyLiqqwwwjOEFkqLlALsFrMTRYq6qqnKKmjEggjHOrZJS4mtKsrSXetHRmJ+ZHcKe1r04pjN/uYWKJIKa6CsoTYCpWPSlnsvkiRCiIiqdm3L+o6dG/Q3twApTgMVusLUIKwDo1GCV/lbC8Y40bLAIhUBiA4GNUpKtFLEKkIoSW4aRq/MaSUxSdpG6xZWuE9CVtRkWUlnRNNKI+rSIIVrkxKb2wTqb4YJITh48GDQdkxMTHD48GHW1tbCCtoDEq/RGB8f5+7du+zfvz/oHWZmZpieng6Trl8tT0xMsLi4GDQeDx48CB9Uz+Z4fckw8BgbGwv39RM9uMluaWlpm97DA4IzZ86ED/3s7GwAHV5X4kHY5OTkNiZEax3aMswu7d+/PzBFwwyQn4B8Oy9evMiJEycA+LVf+zW++tWvMjk5ycTERGiDZwT2798fAIgHTN43WmsePHgQwKafsDzYy7IsPMP4+HjQudy4cYPp6ekw4V64cIFTp05x48YNsiwL2oubN28yPz/PzMxMAEwHDx4EHONy9OhRFhYWAugEB/Tu3LkTgMrHPvaxACBu377NpUuXmJ6e5vr16ywuLoZ+98ArTVNWVla4detW+LvX3Jw9e5ZLly5x6tQpAO7fv8/+/ft54YUXWF5eDuNvbW2Nw4cP82u/9ms8evQo+NPbwsICnU6H27dv02q1+MM//MPwm7GxMRYXF5mfnw/3+fmf/3nW1tZ48cUXef7557eNu5MnTwbw/kZGcWVlhY9//OP89m//Nmtra2HceaZzbm6OTqcTWDXvo5MnTwbw6N+zYSbnxRdfZGlpifPnz4fxvrq6ymc/+1nu3r0b+uMP//APt+nUPLjz/eTftYmJCcbGxsLYW19f5+DBg0EH5sfXiy++GJ7zuz2zH+Pfj31PgCOlpNvdjfAAwlYgLEVVkwvTMBzuQ17XFVJYpLKOlbEiZFFleYGwlRNVlmVQVed5H0lFEkfs2rXLCYv9Kl/IkE1SVSVlUTZtEm51HCuSRNMf5BSF+/AabLOKd9kQWIFuhKQqiikKyPo5RdYPK98kGUHLCCUMkYpRWlM0zEVV1UhlybIcpSKSxAlHk3Q3ILG2oihzRAPe3DkaYzVatpC2gxS7ANf5SrcYaXWgLth4/SH5pgtVpDoikgXloKRAEbW6iMiJQKPWbupaIhAoHRFpn5GhsEKgbIoSFiVTtHITp8CyUSfEWpK220gBm72/A6C38QqmLjBWY2pJVXvRZUKSxMjKUhuXrqSaTKAosmgtSFKL1BrRTIJFYcj6OU82BmSZy4pIEzce0sSJV4Wwjag4QtqtTBeXfRUTRZK6AY7SWnQkkAJGWm2UkEOZQgZhBcKAUMPZFWJ7ZthQhokUEosTQUvRhEozN1bqhraOYwf+fMhLYKirEmOsE44Pg24qhKwpywpb1egmxDe7by9PjST8Za9EDnJ6dYmM3Dlp2iZSGjAuFCYibHO9InPAyiApS4upfeg2ceEg4Sa4ssgZFG6lWJUZ1rpMnCRuUVZbCwLnU4OQBoTZysrCsalxFJNEKXVNGOP9/gClNbu6gjgWJIljadpRhNKCMuvRL2usqUga8XaS9JFxzpttaZqGj55f6Q2LZ/0xDwCyLGN8fHwbWFldXQ0fYi+oBDf53Lp1i9nZWW7evMnBgwfDMc9meAbDf7xXVlbCCtSzHP5DPjExEcCKZxD8Sn9YyDl8jUuXLjE3N8fU1FRYqfuP98TERGCCut1ueNZer8fa2loIQd27dy+AgZWVlRA6W1lZ4dSpU1y+fBmAD37wg3z4wx8G3Crdhx3OnTvHiy++CGwxNsOrZc9ujY+Ph2c9cOBAYLPeGKJbWVkhSRK01pw7d461tbUANi9fvszdu3fJsozjx4+HNqysrHDs2DGmp6cDyPNA4ciRI0GwPCw+9iBsbW2Nq1ev8o53vCP87caNG7zvfe/jN3/zN5mamuLAgQMB4PziL/4iX//61wEHNHwfjY+P80d/9Ef81E/9FJOTkxw4cCD4bv/+/WHSnp2dDaBoZmaG+/fv86EPfYhf/dVfDRM/wEc+8hFeeuklDhw4QKvV4qMf/Sj//J//cwBeffVV5ubmSNOU48ePc/jw4eC/ixcv8sILLwTB+ezsbHhOzyyeP38+9PnBgwdZX18PzNeweUF6r9cLwNxfT2vNtWvXOHTo0DbWzov6b9++zdTU1LYQ7fnz5/mt3/ot/tN/+k+Mjo7y2c9+FiAImVdWVnjw4EEAdgCnTp3i7t27HDx4kE9/+tN8+MMfDv6bmpoiTVNWV1dZXFwM9+52u8zMzHDnzp3AiPrxPzk5+ffG3H+PfW8NjoUyr4mUTxcpKKqMoqowBoTU6BDqUYTQUxwRxwl53jA1g6rRwFQURRlS+JTSGGsZ5BWqn7kVvxpKw0SQ5TllmdNEu4gTTSttQZwQRQkbvQGvrz9p2mBpt1vEcURVllTaIJuQTpZbijzC1nGTSeOcltu8AQ4CIUu3Am60J+0kdc9R1tR11WS2OHBR1Rll2SMvNomiiDhuAEkcgZBooVFJQjtOKEvnIx2nSCUoiwLV7WAaHVAU1Vg7QCEdWyYLkLvcMT2KlgqBRFobVvLYAkGJEBsINpDSErVc++KnIsb2vY1W0kJLDTZjc+BX8z1ggJASRMrGhg83xaRJu9E4RVhjqGv38ZUqR6kSawVFVVFWnq+KiOI2rVQCLjUwjn16fE1R5pR5RlUZJFGj1nEp9DqOiHQLrSNkoz2pqwJrCyKdMpLuwdR1GFNSgBI4XZEAsRUBcinRDYMT0tVdR7mQoxDUTXadf1mKzIXPykKF7Dn3rFAWGbWpqLRLU/a6FIShLMsmTFsxtdsxfT/W1bQTTZxbRrOcJ0ZQN2ClPyjAFNR1TVUVTndlPZvmtWYplYGq9kyRcumhUqARCFsH/ZdSEtWE46RQIU2gqnPyPMPaEqWMA4pNOM6xPRFJnCC1phZg6iZs2oSvyiJzzFXuWcU2mjYVJZu9TaqqoN0wT1VR0N69lRb6ZpnXZnhL0zToPaqqCqyBj/NPTU0FdsGfd+3atTBJV1XFxYsXATehHThwgEOHDnHz5k3u37+/LRTl2ZuVlZUQLpmfnw9hKK9P8Stfr5uYnp4OGT7eLly4wP79+4POxbf76NGjIVvEX2M4fOWf12eH+b97dmltbY2pqaltrI2fzDzt78HUgQMHQkhtdXU16Cf8ZOMZLu9P2J6xNZz268Hk2NhYuKdvX7fb5TOf+cy2v3vdzIULFwILt7q6GnQkZ8+e5ezZs2GiXl5e3haKmp6eDn4bDpdMT08H5uzFF1/k6tWrgAvbvO1tb2NlZYXJyclt+pf3v//9zM/Pc+nSJc6fPx/Gw+3bt/mN3/gNxsbGgj7lzp07wa9+nHS73cBA+PM+97nP8YEPfIBf+ZVfCX//1re+xbve9S6+8Y1v8NnPfpYzZ87wG7/xG+H44cOHmZ+f586dOwEAvvLKKywuLga25tatW6HdHoxfu3ZtG/D5xCc+wUc+8hF6vR5Xrlzha1/7WsjK8llkBw8eZGlpicXFxeA/D+7GxsY4ffo0x48fD369cuVKYPK63W4IHb31rW9lc3OTy5cv8+qrr4Yx9Nu//du8+uqrdLtdrl+/znPPPRcWBVeuXAkZZg8fPuSll14KPv/qV7/KhQsXOH78eAi9+bHqQ1Zf/vKXefe73x1Cqr6N3699T4BT15Yn6xlSutVjWfSobY5QitZIG6UiymKrdoe1BqU0SkUoFZPETXjBlGSmQAhXV0I3ICaONShLXdXEUeTO1V68aCirAlsaIhJko9qMooi0laIjRVEVtNsjIe22KEvarTYWKIuSMleoRsPRStvEkSLrD8jzmoa9xxiL0g44QU1RFUTN7Bkr0NogZE1R9EMKrasdUhPHNUpaR/83E42pAWGoRZ+y7lHmZWC5qlxiKZGiJm23iBrGpShz+v0CrVIi0UJFHYiaeg0yBWmRViBNjTWOjqzNOohVjHkVax6DFcRxU6egs4s46aBkH1Mp8qyiqhwILOoCISoirYkiwciom6SrSpEkglYaoTUURcZm32lMiqLEYBsQG2EbxsXDnCRpoaMYY0yoQSOsRiqFTGKUBqzEVu5gXRrKAkydIWUeRLx1XSGUYu9ol1aUIu3W9Vz9HQdglHDaGxiqgyPchC99bRtvxtWFqY3Tj3lxbVXkKOFYKhtEzg4kV2VOrCVxmlDVNXHqfKSkxUaCR6+9zoip+KmnHQjtKlDAaBKxp5Q80gYbNxNenVMCdQ3ZIKcsB6G0gq1r4iRxLE+UBI+WZcGTwjE1UaxJk4g4acK9whDpRoyNxNimNkyUEhUtbF0Qqdr5vPFdXbsQoTWWkVabKG0xaBiczc0BmxubDPKMSJWIJjMgy2rKsqCV7iKOkkZw7Y71M9At3lQriklceCEAACAASURBVIK1tbXwgfehkHv37oVJ24cKPHgZHx8P6an+Y+lTgldXVwMjAm71PT8/z9LSErdv394mMva0v2dx/GRy69Ytjhw5sk3MPKzH8GyDF+v69h07diy0v9vtBlDkU7fHx8eZmpqi1+sFIOHBDbBNxJtlWfh/37bhVHf/rB6g+ZW+BzdZlnHw4MHgJ//MXoz93XRAwynw3jxQ8mJQH5bz7fXmV+j+Ht5naZoGlubatWvbQlB+YgWCpsP7w/fFcNq41porV64EHx07dowjR45w9erVwDbduHEDcCzS66+/zsLCAhcuXAhtnZiY4N3vfjfgwnlnzpwJrFqappw7d45Tp07x4MGD0H+3bt1iZGSEL3/5y3zwgx/k29/+dgBFV69e5Rd+4Rc4ceIE733ve7l69eq2OkIvvPACWmvm5ub+HmPmx6lnV7y/PePz0ksvBUbj4cOHLC8v8+u//utcvXqVCxcuhDbMzc0FcFhVFUeOHOHChQsAfOpTn+ILX/gC586dC2JqPyZ7vR69Xi+MSz+Of/7nfz4win4cgQM4Tz31FNZaOp0Ov/qrv8qzzz4LEEBcr9fj6NGjjI2NBQB26tQp5ufnuX//Pjdv3gz9d/78ea5fvx76rqqqEFrz7+D3aztp4ju2Yzu2Yzu2Yzv2A2ffW2SMJB8Inqw71DvIniCkIUpiuvtS0lYdqhxHkUvptrUgz1xab8iIssJl2kSxE1A2eoIoUQipKShcmCiOA4I1tUFIRRQlTSE3dx+lmsqXZY3NXXVG5bUnZURVaoytMbVuVvVNlpCEuhyQpJZOZ4S6cqtRS4nS1olORURZK6pG9zHIB5RV7n5VlRS50wGV+YCqGoCosUYw0t5NK3G0c17kVKZAyQpjXCq2v54XhMZKMzpiSXWjnygKIqVcETgRo9QoolktK1NCPQCTY20PK9eazlkHkYHIKcqKojRElWNcKlvTthVJlBDrFro9wsaGQ8u23iBtj5KmsRP5Kp+JpohiQRxJbG3YyEryga+yGmPxWhdJpH3IRlFWFQKBllGTDef1S6WrDiw0SRKjZIxoNDi9jT693gZFMQCqoF+yTXXm3SO7XH8PVamW0mVXGWtQQqLklsjYi4uVFNtCVKausLIp5lhUbPZ6vPporRnLA1d0UlqnUW/aYGyFNZDELdqtihFjaTfjuDWSUFWWP/vm/824EbyjCdlYI1DlJrv6JX/ytz26P/zDvG6awnwiR0WCOImIkz3U1a4gzLe2QkdJM0ZlEAULJZCRoq5KtJKkrZQ4VqF9pq6R0mWUeTHziBFYRgBLXeVsPHnC5qZfWQu0kORFTpYNEErRbsKCGAu1QcoRIiWDGF0LSaudMjIyQm0S+q9bsto97+joHnT83SvUfr82XLAOCGm/f/qnf0qWZaFQGmwJZVdXV1leXg5p3+DYmF6vFwrq+WqyMzMzPHjwgDNnzoSwzrCuxhedGy4ud+jQoRAmGRb2AiE7apgJGi5o5pmG4XDP1NQUk5OTLC8vh1ReH24avv6wsLnX67G0tESv1+Pw4cN/j93xKd9vfKaxsbHAGD148CDoX9I05caNG0xMTIS/DRc8HH6W4aKDPky2uLgYUqi97/x5w1kw/hqeufEMgT/Hh9p8arsPC87MzITQ3XCav9cE+YyimZmZbeGXiYkJZmdnmZiY4MaNG8HnS0tLPP3003zoQx8C4Jd/+ZcBgg4JCNohP4Z82OjChQtcu3YtMDi+LV5D8/zzzzM/Pw/AZz7zGX7rt36LQ4cO8clPfpL3v//94XlPnz7N888/H8aOZ7h8SM1fW2v990TQx48f5z/8h//AO97xjtDer371q3Q6Hb75zW8yNze3rW/v3bsX+ufOnTtB2H369OnA1PiikuAYnLm5uZAZNsx6+jF29OhRsiwLIaqVlZWQYXb06FHu3bsXfOMz1nwm2/z8fOinM2fOsLKywvr6OufPnw9j/Pz589y7dy+E5S5evMiVK1fCsWGW8b/X/hsiY0Erjcmbj2FRFQgJUZRgTEKeS6pGMFzXJa00bQRnkiZpu7mOE66WhaEoCenHQpeMdkaI2i49OInTICrdzAZUtdO0xFqhG21HnGiUlNQ1xPEIUiieNDVjBv2MPHP1UgyGOBKUpTsWaYHWNUJalLIo3dCvtkJp4UJG0QhZWVM0IYS6Lreq2EpJHLuXxpaaolRsbvYwxqJlTNyE46IkQgu3bYWpJbKQSNuUqtYRSsbUlRPnlsL9vdMeYc/ut1BWEXktUaJCWKfSr4o1ynKN2vYQMg+lu7EaqRKwMWUhybM+ee7anQ1KejqjlaaMtneTxpY4dsf2dFNa7Yg0TZEyYpD5suoDijzD1gqMACOom+K+ZVWS52WjR9EkTeZVkqSui2tL2mqhpGKz5zKByrqkKGuKsiTSNUkiSJpQT9TWyMK4yZUa3WieYh2jpWD36F4nEDZ1AMlKKqSSQfAr5RbwCf8IgbV1CDk5wKSQ1pKVFSub67xOk7HV1rSSGIFi0CspMl/SP8OWT4gGjxkdtDHVXkRTyTtOd7FZlvzFK6+wq9/ncc9N+LtbKUIr3t6K6NSbdFLJJg7E9Mo+yhhQbVeXRsTEVZOVqC1J3HJaGbf/gnsvhBNM51lBVVZI4bRBAKZ05QmqqqYoM1pt9y6NjoxgEBRlTZy0UZEmauoiYS3SWNI4oZUkDgQ2nasEDoAqRRxr6mbsF3nRhG8ThNzF6N5RokZk30pHiHyRqzfJrLXb0oLf//7388UvfpH3vOc9HDx4kPPnz4cQgqfkZ2ZmQu0P/7FcWVkJAmAg6CQmJyfpdrssLS0xMTGxDXj0ej3W19dDltJw9s7Y2Fg4Ngw8vM5nWEswnM0yHKoZTuv2FYw9gBgO73w3W1hY4MGDBxw+fJg7d+6wuroa0qyHgYSvMzMMVnzmznAoKssyjhw5EurfDFd79ub7wIeUfHvX1tY4fvx4CMv533oA+Eag50Nk3s9vDDH66sZZloUwpK+mPFwB17dlcnIyhKr8ZO6v54HcxYsXt2WGLS8vc/r0aebn57l27VoYQ5cuXeJ973tfSA33uhjYCnndunVrW8q+1po7d+5w8OBBTpw4wfHjx8NE/PLLL3PixAl+4Rd+geXlZS5fvhxCYOBKNfzMz/wMi4uL2+oYXb9+ndOnTzM3N0ev1wv6pYWFBS5fvszly5d56aWXtvXPw4cP+Tf/5t/wiU98YludmSzLuH//fggNedGw70NfBXpycjL4bm5uLpQ4WFxc5MiRIwEk+xDo0tIS169fD9WUjx8/HsKhVVUFvRe4TLxutxt0NQsLCwGAdbtdFhcXmZqa2gamJyYmOH/+fGjDgwcPQojRVwr/fu2/CY2SVsxI3az+tc88SkjSFnGcsCUCrYgSgZaW2rjCfVWYjBRap8RxSpTu5nHPfSiruqY3cMRGkkjQCmPcRzmrE+raIqwACVI0E5OwSC0RCqSyaCUY3dUUIJOSIrcMBgVC2EaY3KyKRUVV1Qx6BVVVUDcZMFWdoZRk794x9uyNiaREelFppKnqgqJ0eo2RTqP6HtXU1W42ezlladBRHGag2gqMlUgUZVm5LRGaiavOSxQZdWnJsjKwS6Nv30NVJ/Q2C5AFQj7G4jq1rF+nNAPKuqZyu0O4a1UlVSkoq4qiyKirbCvbTWiEUMSRpjPyhF2dPU0RQ1wmjHU6GLQJdWGUFJRZTdHPyQYlm5sDeg1YycuSqq6ojUVpRdrsAdNuj6KaQn6qKhGxJErcxNdWoEuNygusFegoCqnFSZrw1Fuewpg9TnTb+EEal7K9r7sHaa1Ld/bbcIitGjDb9ixr6jwKmppG1mz5AZceLhA8Lge8srmOabbUiOOYqKXpdEZJ97VoEtpYX39C77HF5uts9gc8yV9jb94IIHPBt1dfZW39Md/p9/mDFTcePjg5zt6qZk8U8y/+8TO8Npry2uNGTyEFGEltSoQUKFWRxM02EwqUzJ0eSm+J9N24VeRZTDaQTk/mQXeVufo9WtHvG15bex2A/pMN2q3UbRUiNFJrV8ag6VvqppihrJ1Wqkm/L8utD8hIp0Ok3ftXWsFGLqAHSSel091FHLt+l0JtCbnfRPMppwCf/OQnmZ2dDTocXzQMCLoYX/tkcnIyrISvXLnC/Px8EAb7SXV1dZWbN29y+PDhMMH6CXRlZYX79+9z4sSJIB4GtulkvNjXf5R9dsdwhpOfyL3+xad0+3Z7jdEwS/PGmjs+hdZf6+DBg6GwmxdTDwuAPcDyk9dw3Z9Op8P+/fu3sRVvzAobFjp73Uuaply6dCloLnxhuwsXLvDLv/zLRFEUUom73W5Iu5+eng4aGn89P0l6sOPb5o959umjH/0oAJ/73OeYm5sjyzI+8YlPBP2GF39PT0+HQo9+8vZ+OXHiBKurqzz//PNhf6Zf+ZVfYXl5mZmZGcqyDMLk+/fvc/78ee7evRtAlgcX4ADQ6dOnee6550K7feG/U6dOMTU1FbJ+/Jg8e/Ysn/rUp/gv/+W/hAka4Gtf+xrLy8vMz8+HLChw7MTXv/51Ll++zIMHD7h+/TpJo7X79V//dSYnJ/mrv3I7FHzhC18ACEUjHz58yKc+9angQ+9X7wOvfRpmzTyYHda1DI/pubk5rl+/vq0swpEjR7h48WLYisL3+Z07d4JofrjezeLiIjdu3ODAgQPMzs6GrSVge+kHz96BA3rXrl3j/v37XLt2LYA9f2x4vP/32vcGOEISJbsZEY7B0a262bPQIJTCihhf3KSyfapBD1tnTaE9tmqVCEsUG5Q2SD3Cru5e93c1AlaBLYEaIzW6+Yju6bSpa8ug/xqvrr+Ksi6sNdKuiRPrBMu6akIVzYQRR0RxSm0sj19/naLso6Mmm0Wn1LUizwRZVoZia6YuiGNJmT+i3+vTbrcCWImThCSNSHRTALDJerKiJElTIjXCILfkRY3Bg6zYVVgWhn69SWlaWOEmrrLI2Xz9NQZP1hG2Zt++fY1/Ejb6FVlZIdQ6VD1oao4UNiOvTBOGqkMqcV3U2LpqqkDnmKIKzIWRGQhBrgRFMSDPi3AvrVtUlaEoKoTIkE3Kt5Iu7Xgj67M5KNjYrChKX6AwQkaa2oKOVGBwdBShZISpHVhVdUXUFJeL4jZt0XYViK1FqXgInNVgXKHAurYUDdis3YWoyj5a7nZDy4ebjBt7Pg3cb3DoygG4WjeIJsssJFEJjLXUWNaerDOoS5JG8K0Q5Nkma/ljtE5J0j2u3aMp1WAfg3KEXJeUUc3GY4d+ypU1/vIvlskHA6q85vZfO5ZtXxxz6Jk97NMRP7J3DxN7O/QSB9qy3iZlaSjrEkGBMQOCKr6CWlpMJbCRDpmCAoVBYawrWljlBUX+pDlYIBXESRuI6W+692J19XW0FLRHWrRHRhjZNUrSAHVT11R1ST/LKKoBiphW2pQ8iNt0RgSVsRgbUxj3/ul0L2nSIRnZSzqyhzhNtoTdSMKGs2+S+YKT/mP7/PPPB4bEr8aHAYSf0Lvdbij+BgSq3VdF9h/R4Vo3wxMCEFaci4uL25gIH17xE70PuXjzRfl81eRh0NDpdFhYWGB2djZMdkePHuXGjRvMzc2FCrHDNT48q+KFw7BVx8WLbYcrAnvQNQxs/PV8Ku7k5CSzs7PhfL/i9yzW8OrYp+L7Ojj+WX1toU6nw6NHj7bVK1paWmJsbCyErIbZIu9LD/6GGR7//L4P//W//tfbfLqyssI73vGOcJ9Op0O32w3X9NWT/TP57K/x8XEuXLgQ2nD37t0AnD/zmc9sq6q7tLTE9PQ0Fy9e5MiRIwGYeeHulStXePDgQUg5v3DhAmfPng0F/YbZNB8m/fSnPx1KA/zYj/1Y8F9VVbz44ovMzMwE0D05OckXv/hFbty4wa1bt7hx40YAEfv37+fcuXPcvn17WwmCr3zlK7z88sv85E/+ZACNw3WYfAjRA2jPRvqSAOfOnWN+fj4wV7OzsyEL0GeweR95FvLkyZPbMrmEEHz5y18OWYXz8/Pb3rOzZ89y//59FhYWQkYXbJVj8LWP/ELi2rVrvPDCC8GXvvSCb8P/MAZHCIlK95D68IuhyWSBCkWFbkrHQ1U8xhQSUytqWkgVOWYDAInUrkKu1ClR4gZSnO5CS4Ete1RFD4QIGStEHQyCNI3pqZjXHrpJ4fFr3yHSfTojLZJEUJssMCQ6itCRwdQapXcR6ZSkqcuSqIRiUJF0FLs6e+g1VYkfr79KNSjZ7Pd58nfrCCVQzQS+56m97N2311UDzgYhk0tHGiVz0niEtL2bOEmorC+lX2KswOqU9u59QETVnGdrS7v9d7we/QWKAeNP/zAAtY2prSKKaspyHVPnmEavUiNRFhQKYS1VU1yuLCskBikNUQRGiLApKlJRVTWmEmRVjTV9RJO5Nuj3XeE7LFpHoU6QQCBUjIxT0l0xldDohjUQ2ADSpCKcI2UTQJICiUVYg9/D2oELV3Surko2Nvph409rfG0c7SoXm+bDp2qMKanyARjTVD4e2kVb2Gbn9q2d5t12DMZptoRBiy3Aay1NeKrg0fprlEWGqdwzKQmjoy2SOMFahWmqYidRh6eeGqfa28ZQYc0G+RNX/fT1x39Or64w1mAVPG78c/2/vkJhSn72RxPekhWMlAXvbLlxt/Q4428HGWUNQmZYCkyjtdGidFoaJSGN0U1BzSI3lCX0+5KyME4X04zxKJEoISkKyKsYmbzFXWtkL2VZUQmB1NL9d6P1kdZgrWg2zEzJa0H+xE2EcWyJkxbtdgfUKEK5TLxWq0u71XZVlJt33puTOb35+Qk+1AJblWv9JpbDwMKzI2tra7zwwgucPXs2nDec5ZSm6bZsHz8JfjeA44GE1jqwExsbG7zzne8M4Gg4XOF1JB70DF/XZ8b4icwDpAsXLnDixAlOnDjB0aNHOXHiRGjf4cOHOXLkyDag4J9jeGL3ReuAwGj4ic5vounP379/P//+3/97PvShDwW2Y3p6OmxzsLy8HM7359y9ezeExPyk5Sf2mzdvcvXqVVZWVsJ9vB6l1+sFhmx4I04PUn34z5sHVx6geYB67NixoKkZzugZzqqbmJjYBuq8pslnmg1XU56bm2NxcXHbVg7gQkD+Xm8s/Ojv+dRTT/GBD3yA3/3d3wXgx3/8x3nnO9/JL/3SL/GlL32Jz3/+86EvfO0XHyLt9Xr82Z/9GeAyuXxmnQ+vAWED05WVFc6cORPCpwDf/OY3efbZZ/n85z/PysoKn//85wH44z/+Y65evcqhQ4fwWx/4ENDk5GRg+nw4bxisXL9+PWiYfHbVoUOHApC5efNmCC2By4jSWm9jZ8AxUqurq9y+fZu5uTnu378fxvji4iKrq6uBRR0ey7dv36bT6YQUdQ/mrl69GgCZB6nfLbvv+7HvuVXDvreM20Mf/PBWBVphETIiikYwIsHtiuMrAldQFZRVn7LIMcalhLvzBLE0budvlaCaHFOlYpTJKLI1NnuPUDphZLd7CVS6D0OMrQ29J4947aHbumDj8QpVtU4rSUiSlFhHeKGM0pokSVA6QrdT0ngUfM2WKiPbfIwWMQhNWfp6KIMQUtvsb1KYGtkAs1anRRTHTvyYZ4RwXLMtfZKO0H3LD9HetRchG2q/LKmtRCYj6HSUSI+E+i+yLiizh7z+6C+RtmBP101OOaNUdoS6WCPPlkH0AlCg2Ym9qCqqGsqiYWmMdbtGK0ukAVFu1YapNb1eTVFIVBSTpBqtXT9FShJHLpXf7WO1JcJGSISOkTKlbkr4gwMkRVFgRel2CW8GnDWKumyYE+muHXY0r2ryIkerBGskG08GlM2EYq1BK0jTCGFrqkaQu6fbxlTwltEx/udn3oFCY0NBP4VQ0tXNkWpIr9JsBSKc5ktLFQTItamhljwebHD7j/8vHptBCAtaKuJEkkQt0mQ3SexrLYxixQhWtDEoyrKgyN0O7nWxzne+/V9ZXlpi8KSkyD3zVNKJWvyvb38rH/if3s7bnnqKYp+jyL/+6Al/8PCvKf1u3qaiqpz+xcoaaR24dNq1pt11TZ4LNvuSvBKADDqlKIpRuoXQo6i4S9za24z9mLIYkPf/jnLwKqJ8gpaufVobV9BSj5JbV9k6L/3O5RIdpbRbexgZ2UO77QBOpJOwNYdnzba+FQJr4Qv/+6k3bauGAwcO2OF6I8M7ZPvJfZhZ8aEVv4v0cC0Xz064Z9/6OHq2wE9Cw/fyIMXfEwjiy9OnT4fKq8MAyodnPI3u7+knb59+Pqx/8SJjL/Yd3jsqTVNOnDjBwsJCCJdMT09z48YNZmdnQxuGqykP64lWV1e3bVUxPj7OwsIC9+/fD6nBvp3+WW/evBlW+e9973v55je/GRgpL3idm5sLdYCGd1gHAqi6e/cuY2NjzM7OBjA1LPh+Y1Vivz2DF2QP94cv8vfgwYOQ3j68tYQv1OhX+Z6J8WNiuObOn//5n/OzP/uzgVV429veBsC3v/1tDh48yL1790I7PWh729vexssvv8z4+DjXr18P/j5w4EAonrh3715ee+013v72twMO6L3wwgsh3HX37t3Qds/KDZcZALYxWktLS9tqPfm09qtXr1JVFT/zMz8TzvvkJz8ZmKQ3irfPnTtHWZY8++yz294DX1Dw7NmzdDodvvKVrwDw8Y9/nMnJyQCAZmdng3Dag9bjx49z586dbTopX8hybW2NhYWFbXtI+SrjfusH3/f+N16/5s0XF/Q+8iwebAnfW63W9/Wt2UkT37Ed27Ed27Ed27EfOPtvcD9uPyEfQpDSuBW8amjvqmx283bVUoUcIYk0JikB68SNQFnmVFWGMTWJBmN86KNGCovBkFel2wkidnqHlkrQehQhoJ1AtM/Rh7vSPfQHgG023BwSqQphMdagpSWRClk+wWROoyBqiFHNbsoVttm8MEpHkcai2pKRfZoawo7mlRH0+xmlkZRYTOXQcG3c+ZVNIYtgZIQUx+BILYl0jIpbSB07ZiRzWo2st0Kvv0ZZ5SRJG9vseRUnexAmoSaiv2nJsr8D40Jodf0EWw0wtfOpD78I6dgzXUvKUmKsCXteVVVFXaeoqIPSrlp0o/cmTRRKu40JalNjPKuiJVhNVeSYutl5uwlL1XVJVRUgQckUJZowonLZPFXlhNQDY9nS9yqk1K6PpWVXN8GGSsaGujIUWUGZFVjbbJ/QaSFFRJZVWCOQKmRvo6Rja3zhPh8ykRIkBlPXof9DmMy6jLonm6/z6msPyWweikwKocgjTZHUlKmhbLLMpH4dFWmsFYhaIWpJ0rBFqi1Ipt5KpGq+89ffYbMpn7Cx3mNQVfz+X/0NT2zFsXfFPNN24/Un3vrD/OWgZPHREwrj0tWrzI3xQbFJVZXUxiDIQ8VkISOi9lOM7n6akVYHKXUohaCUItERsXL7o0nlxdY1VZwzEBEbpSQvY8pmE9ONjR5CwMhIi6iV0tk1xlubVZ+MRkC6TW+VVEFn4/Za//9md4e3xHgzzLNDbxSivjFbx//Gh2X8StGzLp5heGNmj2eCVldXQ3l5v1L1+hC/UvcMxKVLl8JK1TMiw9fzbfKMkl99+12R/T5B/u8zMzNBezK86zZsiSm9INavYIfDUp7B8O0c3lXd79/jQzD+N0tLS2HvI/93HwoczkwC+M3f/E3e9a538ZWvfGXbyntycpILFy4wMTHBiRMnGBsbC1k4vtru2toax44d4/79+4EJ0VozOel2SB/eLgIcCzA1NRWybHwW0/j4eNjYUWvNpUuXAFfA0W9WevTo0aAvAsesDOuhfLt827vdLg8fPgyhEXDbV3jh8sc+9jH+7b/9t6Hfv/a1r7GyssJ73vMe3v72t/PTP/3TAHz4wx8ORf7+4A/+gDt37mwTaPt0/OXl5bCvF2xtP+EZFz+GhkOkfvNYP8anpqY4efIke/bsCcJjcJuEHjx4kFarxac//WmOHz8efDQ7Oxu2hLh27dq2DDbP+PgsJ8/gTExMhJDW7du3uX37dngvfNZclmUcOHBg29YKnmkBF3ryfesrda+urnLw4MFtrKcPVfqtRbx/hse1TxoYDkn/jxMZ44I/HqhIXDZGTY6lcCXnfXFfK13dGmlAWqf7bL6BOtIgUqyQIKOtD6cwWCmQUZu4tY/SWOpGmOx2pXZ1abH/L3vvH1tXVp6NPmvtvc85/pHJyYxhPK3pHKj5MNRIBvzdurfmNlXdS6afEREKd1LdcJtK4ZbeRqqp0stUDZdBBJGKUScV4TbVDGoqpSLSRCUV+cMVkTCquZgPA+arv44LHjBfTcmAGTyJfxyfs/da94+1nrXfvX2chGHm+6QqSxqNc87ea69fZ69nPe/zvm8L2nu/JF096Eo0TGoAY2AAqIjeXTV09RxAtXqf017c+hEyn1QwM1Wkuhvam7a0j3CcGSBrpagmNSTVKoxJYVK6vmeo7MsQVRJobWHaec4rq2NEURfiuAeVahciIbrUOvKRnQGbtkOurI2dbWy1NFrtHmSqCr3l2l2LYsRJBd37Eujqa9Fs9mN702cu37qFnZ2baNsNpO1byIzbHC1aiNCGbW8ha28hS4E080AvqqJSiRErgwxNxIlCVedJFNtthSyDz6LuN29toVQb1mrnAdduIvNC7LS14/RRlQRZawfNLS+M1DVY5dIZRJGLdaT8/NnMQiFDZtpOs4IMoI4HGkrFXpuTZ9eOogj7D/TB6sitHZVvsgoRIp96wVoVoh9r5RJMwqTuWqUCQAWcZuzFrW2s32L2dO+yX4lR66o5d/TsJpp+vNO2gU4iRJUqgAQwCeAjNyeVGjIbo1J/DX6u++eRrjsvs+e/+2388CeryIzGP37vBTRbz+JRr1F5/S8N4n8ZfCuwL8ONLMFOZrD9otP0RJvrPumr8uZVD3grNfT0PoDungOAB3axnz+NFKa1jtb2C9jZ2kBmfE4olaLdaqLVbrtEm1GCt7OUCAAAIABJREFUjCC+9z5oXQPiGhDFMMjNjLWuKnTkUoEo4apuYWG955oFYxK58go4UEEpVaCtCUjoXSQ3Bopry9cCucsw/2aRYIQxdOR3UhjLjVO6kVMDIuPVsH5GLJbuvzRDybxTvb29mJubC9oU6VnEPlG/I4HdyMhIIWaObLc0F9GFGchNBczLxGs4BtQ1TUxMhLG4dOkStre3MTMzg9HR0eAWPDo6ipmZGVy5cgUrKyu4dOlSSOpJgfdf/dVfodFoFPQvhw4dwsjISNjYCWIYD4ii1unp6TB2x48fD+Dp0qVLwTni3LlzwWxHbzSO/+XLl3Hs2LHggXPt2rUwVidOnEBvby8+/OEPo16v44tf/CIAFwdndnYWR48exd/93d/hoYceCuvmPe95Dz7xiU/gDW94A6ampoLnEr/7zGc+E+aRXlmHDx8O4JRtpLj80qVLmJ2dLeQoA5yQnjF9CATodt7b24vR0VE89dRTOHToUDCtra+v4zd/8zfxy7/8y3jqqaewvr4egNvCwgImJydDok2uXX732c9+Fl/5yldw6NChkEaCJtOZmZmQxoGm4v7+/gBKpEicsacGBgZQr9dx/PjxsFbOnDkTNDlzc3PBrMnCvvf19YXfGQ8iMtmtNOvK3/FPW+6gwXnIPvK//W441SVaA1AwWsPA60DCXmLdphoBsAqKLiHw70YdAXDJF7UHAwoGadpGc6eNnVYbOtKoVJjvyQkbjcmQpe0QUDDNvAeUcS9hjQhR5PpQq1VQqe1DUqnDWoPW9lYOppIadNKFSLtcUUHwCsDC+I3SwmSpc10GYMyO8w5KqojjCqJwj3ZZrJXOUZwQXWrlwv9n7RZsBBjqfVobLtVAnDj3Z+/BpOMuL541sNBOpOw3GpMZtEzb9bvVQsvn8Wq1mti+tYYf3fgOtm79EAomuPEm1QTVmkZ3b4R99RpqXRrttmcNtnfQ3gGaWxZpG4h8tvVK0kK1apHEGplxIlW+JFo7KYzViOBEvlUfF6nWsw+Vri5UazF6urpRq9bQ9jGONjZegDVb0FGCNLW4tbGJ7U2fIdtGSKIEO80UN1/ccOwQgAP39+DBhwbw4P4+jDQaqOhIBGqMXP4sAMoH9XPrxLE4ylovutaFODgWGt/43r/h2pf+M9rtNio+1EEcd0NHVSgdubH2491ub0MnNdx34EHUeu5HknQh0m5NJkkVSVRFXOlxc+iB2fq//jO+989fgdlax9bGJn64s4M31Z1X1qE3vQn/8X96C7b3vwpzNzXWTS3owtrWwqrMBVHUChG9lGyGGAawGmnadHJ+smmtW9jc+AFarRfRarfQbLk5MgCsipHZBFBVZIiD1q1S2efzflVRiXqQVCqo+rxlSSV2ua0AD3C815oFjLI+WanTYbFYH4DxL/+f/+tl0+C87W1vs1/5ylfCC5kvVgpsJcChJxRPqOUYLGQ1pNeTPDXzZSr1OVJ7QyEx3WolkOnkIUQvnrL7NkGQDJhH1onPLDNWZeaKYARACEYnX/5SfMzAfgBCwEL2V7q3M98VhdKyrKyshDGnWJjPogeX1NSQxVhdXcWJEydw8eLFcN/k5CQGBwfxyU9+El1dXSF799raGubn50NSzaNHjwYG4Pjx45iZmcGlS5fwtre9DX//938PwAlSDx8+XDj1ExRJQfb6+jre8573hHa3222srq7iN37jN/Cd73wH+/c7jdmVK1fwxBNPBGaImcIBB6YoUj969GjIWv7www8Ht+1nnnkGAEKyzdOnT+Md73gHvvSlL2FqagonT54MQfauXLmCer2Oa9eu4ZlnnsFzzz0XxmFpaQk3btwIDA7BJr2T2F+uh6WlpZDE861vfSuyLMM3v/lNAC6pJ38bnBOuNQKFtbW1XZ6JUssm4zcNDAwEIXGz2QyeV/TSOnz4MObm5jA2NhYEyFJrRaZV/n4I4qXOhqJyzifjUgEI8ZCSJHlJ75o7Mzg6CvFLoJTbvOHivERxDBuTqnbB7TLrMjMrgzwvkVKA1Q7QtG4i9SaJWrUHcXIfqlGMqAuASUUiQpd400IhqmQBkChroayLngsduw3OB28z6RYya5BlW4iTfajteyA0wljFYCohbgrgvYuVDq7GWldEpuoaotg9WfF+1wgPbLT7HMgBk7UwlgxWBKUArw9FLdoHHSlUKxXnBhxSW+mwGVvACzvJUESIVAyLGtCNsAFZAO2dn8f++x/ECz/+Pppb64g0M1gDXbUMSbKNSnXHJan07vIxutFEDEdsZVDwZresjbRtAguiVAVae5F4YhFpoFpxpqLEx9Tp7o1RrSlUE4U4ypC2N9BsumjKze11mMwgTSNYW0W7VXF5uQBk6Q620UKWujHSPkN62gZu/mQLByqAti7STRhy2AD6lLUAovC5goKOOBcmbMqZMYAC4uoDePUv/Ee02yl6a44CjqrdSCpdSGKXfDX1ruomayNOqujp3ockrriYL8SwNo/F42gV14ZX/+IvIalGuPEvX8d93euIb93Et269AAD4wdf+MxbXXsAj4+N4+P6fw1ZmYTywtTGgESGjCN2bgtvNHbRtG5HSMKlLcJu2/bg2f4Jm8xbSdActk6HV4lpNoHQVcdKNSqUX1aQHSeKAaLXai0rc5dz9tVuTXEdZatyBhIlKCbIUwFzssAaRT2jq1l5uKn25ChkcnvDKrEqnhHtlcOPGJ4/uW2ZwKEItU94SMDCgH4s0t9CVVhbGraFZjO2S8W3kC166updZKQmgeB3BDYCQvVzmr5JjIAMRkiGSgADIgZc8kfP/FDHLRKJyLtbX17G0tIRLly6FzNvr6+uYn58PzAEF2Wz70tISXvOa1+DYsWPBc+fw4cMhiu/IyEgBaJ46dQqHDx/GW97yFgDAO9/5TgDObMQ4NNwgJcj63Oc+h09/+tO4du0arLUFoEBG6ZlnnikExTt//nxgss6fPx/acejQIUxPT2NjYyMIawEEwfHJkycxOzuLw4cPFzKDP//88zh37hwWFxdx6tSpEPmXa+HIkSMYGxsL80cmhJ5UNG0CeSLV+fn5gqv0+Pg4nnrqqQC+nn766cAwPfjgg/ibv/mb4C04MTFRMKny0NDb2xvYE86VjBfF3xpd1AmK/vRP/xQA8MUvfjGYOOnyTeZKAnvpCclxWF1dRa1WKyQwbTQaIZYO+81xl4ldX0q5g5t4npEYcOYcoxWsUtAq9u6i/iWiNKxKAJXkwdZU7umiYZBlGVrNLWxtu+Bk7Z4U3ffd78xWxiKzJs+WrX04fmWRtg2sjwYM03YxUJRGXOmCQh5NOU0NrFIu23TkTGsMNmgBXx8VGrn7MYPGlXUFSmvknwhFgvWveJtvsEEbA78BKEDF3mWZm4aOEMUaVkUwGYIuJqQkUBDIK2+TChusqEsp6K4uvLr2C7i/rx/tdgvNpk+psbmG7VvP4+aLm9BqB5WqQVJ191V0BXHUhVpPN9pbLbQ2fTbxHYOsYtHqUoCNYLMuaOV+iPv2KXT1uOSiJtt0Gh0AJt1ButOF1maE5hbQattgbkqzNhRiwGoHhKEB74IMa6GjBJWeLvRGNdz6yQ8BAC9u3ES16wBUtN8BXOVcz7mGPPpzcVhsboaCVc586njFAijKFBDFVQz0N7Cz04LywKharTmPJB0D2rmgu+I2esvxhg0xWhxQR4gFZXwbUmjc1/+L0EkPbnzra3i1inC/D4b4/MYmZr61jOdvbuD/eOS3UL/v5/GjzLEnBhZaRVCeM0x98L0MsXfDjmB1BamuoO01OKZ6H+IkRWSBqo5zhiuKnZeiilCpVBHrBPQh8PyMX5wG1iIkm3XvPxdugAwZi4KFVtYdajQK4/DyKnBckUHxOr3U5IZc9q4qB6tjmgR5sqRHhmR4eE+nSLz8TtZfBiTUHJRNZjJJpvRsos5Amqbk/4EiLU9NETcK6ZUlM44TYMlowdKkJdu3uroa4srI62Sbh4aGAriSbt6jo6OYnJwMfRofH8fJkyeDOUKezNn3ZtNlIqcWaHFxMeiPrly5gvn5+fCswcFBnDx5Et/97ncLAQppcmGAP8Z1ARxQ+MAHPgClFLa3twvv8WeffRZf/epX8cgjjxRMSO985zvxrne9CysrK/jmN7+JT3ziEwVPJWbLPn78eMFd/uDBgzh+/DgmJycDyAEcGLhw4QIajQampqZCygKuJ/5Xq9VCJO7JycmgyVpZWQlRnHkPTVcEtpyLY8eOBe+0vr6+cPBgjKOZmZkwf+XM9Zx3CUJ5TRy7hLHUMR08eBDT09PBhZ5u7wRofX19mJycDF55ck3K61hkmpGRkZEAuunyT/DOWDlcqwRjL6Xc86K6V+6Ve+VeuVfulXvl3125rQan78Gfs+/87f8zeL8EMkJ5sw4MDE/YUQVQFSgVuaBvSKGZJgHWaR1QQTtrY7vpxJnQFVS79kNHFRgfsI3B9GC9liVLXT6p8LGj0VUUQ0UJFAyMFxIbkznWRSeoKJdsk+2D0v4EyjgoIdyt/5/yjFTe//I1hSLMXIAXYIv7bLkyuMB4cRzBGos0s0K3o3yzds+FtTZ4qvHfob3+FgsfsTdj0MUWmtu30Ny5hR3vwWYzN+bKtKGiCqLaPsSVbsCbPlo3VxGpm4gqBjbuQaQPIFIObbeyJtrpi2g1b8JmG6gmrg1aaVgkaLY10nYEjRhKM7FoCmggbSeIImcuSRJXX1fXPiRJFZVKN+Kkihs3vgsA2Lh1C6/5hdejf38F/6G+iZ4ozXNPKWeGgtLQcRS8oSLt0jZoH8LYmCxwbdY4E8t//W+38Nzz22jubKKduvqqcTcqSTeSai/i7l5EXc6cE1VcmgtnNtRIswyWZlOvQYMFYGzwLjRQnqXU2N74Cb7z7Fex9W/fAgB0mxZu7jSxdvNF/K9vHsUv/s+/jud27gMAxDoDYs96yjVmrZ9n5WNQiUCLsN6/STnTUtCAGW/mNNBKB7G3m3QLW1zY+drmGiuvfeuYSQXtdXM2eGxFGtCRwv/7+O+9rBqcr33ta7sEhVKAKGPb8N/SjAUgnCbJvMiTJa+RwfCAoi6nHDlVmrrIvvBzeb/05Lqd1wc9ZcpaG7JB7FdZwMx2yz7Ri4pjRPMA2yTzTbHd/f39IU6JvIb3SDaqzDKRNeg0RmQIZIqH3t5eXLhwAbdu3cLHPvaxUN/ly5dx9uxZzMzMYGBgIOh+OD7Xr1/HoUOHQtwgft5oNII30vj4eEEzdfTo0SDafeyxx4LeZ2VlBX19fRgaGgrBAAFg3759ePbZZ9FoNEJsmI997GMAgF/91V/Fl770Jeds4WKwAABe97rXYWdnB8vLyzh79mxgbwCEiMgnTpwozI+cC86rjGNEFoZicSkKZqqSTvm8yKpduXIlsJS1Wg1TU1M4cOAArLVYWloqCObLrJ6cWxbZPj6HIn/WVV4De7GtnfRvZSYUQIiDxPZJpwH+rl6qBucOAOchO/no7wYNjoKCspkzFykAugLAu7ZGVSifA0lZi1i7WMfuIRkQ1WBVN1oB9gBGaf8CVf7lanMTVcgwbXIzGBBUpSoYhwRdTjOG9Vod5TYfdxv/XyStrNhXGCE3BDa7Aw9Pi5L1ppPQhOJOEaj9yOsc3Kapco8jJRpOIxfrUCEJ+e4IvsaDPQDOnyz4aHvNCpBZnxnA0DDndClaOb3U9rYLYnfrxX9Dq3kTShnoJEa1ug/VituItaogTTO0WptotTaDuzyUCzAHlcBkbWTZDuBNiVEcIa70oJLsR7VWRxJXA06MNGBtBgWXYDMT45VUe7APG2h0/Qjd0Q6MT8kQaWfqUpHTZjGIZCTNJgoFgKOURpoZfPmfnsN//e6/QWuLyPfJVroQ6RiRShBXurDvgPPW6N73IJRKkFkLazUyY2AoloI39ygPaEO7M68JiwAVodnaxLf++SsAgP/2X+bQlW6imbZR1TX85rv+d9j7X+fnwsIIErX8S7RiPQQzqtUwwQQHBCEXnParaDsqC4PvnGJBrl2ZGiMHXV7KpoCLZ19+kTELQQe1A1JPIl3ApaZFlr0+l/WX/6Z4Un5H0COBhGyfbIfU60jxpgRhUtwsQYIM2CbbLUXCrFMCqPI4EazQ9bYMcKRuRz6D7SvnjJL9WVtbC0BRArOVlZUAjsrgjptWo5EHKGREW5rWxsbGCiYYbnYEVAAKbuvMGE5hMgMq0nutbKrjHEkAQVHt008/HcTW0kT17ne/G7/9279dECwDwBve8IagQTp37lwwKdH80mg0QuRkmtAI+DY2NnD27Nng1n3jxg2srKxgdHQUdJ2meaherxe8jNjuRqOB5eXl4Io9PDwc9FDz8/MYHh7GoUOHcPXqVUxNTe0yu/K3VD4YyPmWgJfCcgqQOedS2yMBGDUzUqzO78pmYKkv44Gh/Dtj+5RSL7/I2FoLa9I8+muWebfrDDqpQekY1qcosNZlc4Z1IEW7QC2syP9NEStf6i5lAEkWqFznEiCV0oDKoxWzOigqC/KzqAraRwWrxEkXEICJIlob6mLNpgPYk5/IiK4ELbnsMm95ACIeLDFhJLRClmWOAFDI2xDoKRtEvvmJ3sJaFcY2iIzF5mNsvhW6rrqTN2EgIj+E8FulcuNmbIwkcfbXnt79zlNNiHuDtlxrKO8I7zyUqItxuo7MGJjM5cLSHrQ5TUjF6zp82oYgEmZLLKJIIyarplxCSOOBRYZ22Nh1pKF81nDn9ZRvti5zuwGgvBhWsD6xhtJAq9VC9777se/Vv+i+634AcZQgURFg8uzkaaahFZBlBgYZlI5Cn3aze2GAnCt8lgIKqMU1vOlNv+zmxmgsf+06tAGifftxS/egB9Ta5LyfFdVZ+HhCVuWTyrWisqDzCpjFjyaRT64xk6yQEHiVgPtehxxFipD99W0wL7/GGFmWFV62fMnJCLZSuCvZGwlIJMiQ3xG8lEXJQFEHIwGRPElKhkjewxO23DR4uubGxM2WbeaJWLaFYuWyyFg+s9x2CmQlMyAjAgN5igM5dhwXKQDlc8ribvYnjvNIsxKY0e2e41Cv10MEZIKalZUVxHEcANzExEQYo0ajUdCBEIBR7M3+0nuMrAc9eADHdrANBE4UEzOzPDUdjHCcpimGhoZCHiW6ZwPA5z73OSwvL2N4eBgPPvggnn/++fBdHMdBGL26uhq8qA4ePIjHH38cTz/9NPr6+vDRj340eEtxHtI0xWOPPRbmkxv8ysoKVldX0Ww2CxGBybKRhWK7KSImc0KXfSaSHR8fx+HDhwNQ4fPZfskcsk65LsqsDiN2l68ps0vyORSylwEU1z/nWK6jToxsmVH6acudA/3FPTCBafBuoxbIdAKFJOyCChGy8OIGUmugDV1bU8RxhiTeAaAR6Wqo3wCBHg9sCORL2l1XLPm3Bia4sVurcq9tv4nmVWgBPESdym9VoRFKCE79JUoXNgEpYitvDlactqGcd0rw5PJxe+AZK3ki5t1B4Cr6bq1zyXc5oeRzc7ZJCYWy8l5c+dipAPCUHxOrlAuS5+c2QcU91ebAqwgqZb9Q+Nxy4iyg5D3uQS4nFMGqH/MABJVnReAZPQuktoqdVKMWmRzBe/bLebyZYDYyxiUD9Y3x4FWF52soVCpd6LmvH69+aBBdB9wGkEUV1zZPfHEu6KJvrIKBhrJaAFEVXKmNaQHeG1DrKhQqsDaGVXDAyHsw/Yc3vQ01swWrNA70vw7V+oNIScnZNoxSUNbFoQkWUVhAZfCaZj+GAYYX5sZArCE/Dwol9jH8o8zw5EWyg3t9H9aX2hsUvdSitS6IEIE8tQFPkDJ2jXQfl/f09fWFDaHsWl6m1Du9OMsveL6My6kfyuxGmZKXQc1YyKawfpkZnPXIWDosUrQszQE89UpmiBs7AYE0W8k+ys2pzDBx7KWYudlsBlOCzA1G5oltWV9fD8wKRaNjY2NYW1sLgIRMDDe5srmLQI5eWECeMZwszKVLlwIYYIydo0ePhiSrbN/09DRGR0dDHjGalSjYJhvChJsA8PnPfx5vfvOb8cY3vhEf/ehH8aEPfQiAS/vw+te/PvRhfX0dj/v4L4zBA7gs4f/yL/8S+kuGhvNAD6Lh4WEsLi6GcZPCWwn8JABkkZ5KknFbW1vD7Owsent7MT8/H9ok51j+LjjXBJMEkXINln8ntVotxHkqgyHOB+uSbB/bKN3FeT3XG6+Xv4u9WNi7KXcwUQ3Y/3RsCtYHGYN3lSZ2UF4PAxTZA/eGzWC9Rw2yFhKtUK14fyPtbJoZqkihxMt499u3U8TUgleR2OQhNvn8BFtkcEAGQ56W2acSsIFyfQxmK7FrlNtlBfWv/IYZeU8wgpXMhu2ILQkPKgMoGzZpBVhDP5jQHWMdW6KUgjU2jAVEzcEFftfY5eavMkNVqCfgGdm+DmCT42ZFhcLTLK9PMFWCoYqYbV05QKGzLQxEq3gg2UQlyU+0iuBFCY8e7YP++bnSdHeGA5RaRfgv33sB3/phC72990P52DBGA0rFzhVeRS7DOQBrWjC25cZCd8PaagA4WboF2E0obKO5/eMQZK9avQ9JpQ6laoCqIoILpsfxNps/QhsRavte5fKrhfk3MEhgjR9VeoYpAu3MjZ1RyP0BiiYmiWPl1BZAskUASKqDiSoAbRTXQ7mUc1L9zdnff8VMVAB2mXz44pVAgt/Jz3gyJmPDz2XcGMkISY1E+WUuN/wyWOhkjuG1sg0s1N5I7y/J4LDPZfaGZoWy11MZjNBcAjhvJGk6k+YFefoun977+vpCP6VJkAkxBwcHd+mSyjogbtKrq6uFjVOa9wjWyuCLm51kMNhuySRI77SVlRUsLy+HuDMzMzMFkw7BCFkyIM+2vrS0FFy9+R1NVX/5l3+Jo0ePBjdzjvP09DTe//7345FHHglRhgnEmFdpfHw8tIGeb1LHwjZwjRI0Ss84fl5mScpmVK4Hgn0ZckCuQwnCy0wn14k0BUtTZvl5/FyallifZAw7aXrKvxu5NiUzxfsBvEJxcJQCVAzNl6tSTtNiAXHgzC+Hyyod2AlF80LiN1MXSj8EsVPOrKCs3gUwyhtz+UlsXhHU8F4BeMK+zM80IDUuniEJLI4U+9ocAKGUPVniwrDxIn/5a62Di72h/sUqQFPQmZ+mGVvFDYsN8VbYO1My6QGAVdpFhmavlIacEQ6/zY/2oX1OoKy8KJUMgPJyjpxp6SS4VqKPpBgUx87KexRoctsLQxNQMXO6RuQNYQYmmDxp1jKeefKJN9lX49aU8tosY/IYQsa4AH4228Gtm9/HrZsrQSiroxhRnKBa7UW11hWSjlqzjay9A6UrsKoXxsRIUwZJfBFa7UCrDMa2ETGYZdpCZl9Eu+0ArNYRPF6CyQy0bTvAn/UiTuoB4FtESLRLPmtVDcbHHbLQ0FYhQ+S0VSI4Znmt28KvUIW1VSZwFGM3dZgLpVT46QXYSVOoyq8p6nNeXgaHOif5oiwLZvlvMhp88ZZfwEwySHAA5GBH6l/4Imf8GNYlT6UybozUcJTBkKybQEGasViXZHEk8CgzUbJe2d+yuYlxS2T8ESBnT8qATW4wbIMEVzLYmiwEWOX4PDJuEJkACcAk80MARo3M8vLyLrE1GTiCGZrc1tbWQrRduoyz3ePj4wHEMJEqWRKZEFWa12TqjXq9jqGhoaCN+Z3f+R2cP38etZpLiEoAdPHixSDcnZiYwLPPPhtMX7VaDQ899BD+6Z/+CQsLCwHsAQ5szs7OBkDHlBB9fX2BWerv7w/giP0dHBwMCS8ZF4bhAAiG4jgugKb19fVd7CJLGdywPqa4YBZ0tmF1dbVgypThDuT6LTMuZQAj9VqdBPj87XF+5O/gZzFPAffcxO+Ve+VeuVfulXvlXvl3WO4MjxQgXavDaTlgI1W4mFFOrYqgRCJAwCA1ytfh2Q6VAlZ70avudLi8m8b9VCX3kirpbOA+Uga5upZf2NvjQLrZAjl7pL3ZJMsMhBOOr7+s2zH5M2gGFO7g7hm8NteDcC6EOiJ/jgJsaW5Kl6A8dzz9GwvBeLEep3iyQDCfKW8XUfAaoT3GqWBBDJ+5OrXO+6ptC1H6ItLsJrJ407MO7vo0bTvRsHbBJ1VgyvLIwhYWxpjCXKTIsNW6ha3mj1CpIKSz0HECoIV2awdK1dDT0wMAiCoaSZy4e80m2u0UUM4zrLvLQEUVZJlBZpIgTFZxDK01ImtgTQtWS+YpdZyUMjDZOmKzGQI8ttMMsY5Qq/VCqVpgsuKoClU9gCg+ANhq+E3JMd+9PsoaMZpo8yL1YeXry7+kYLYtsJ3l+Xv5ilJqT/ds+RlQzCtV9vihiaPs7UORMdMlSO0HmRsyRHuZgKQ+R4qIaRIot1eKhtkG1kc2RJqB5LOlyzlNAJ08Yph2QUaSBRBSSPAz9o0eSnyWFFaTCZLsAceH4f15Qu9kguB3FN6OjIwUTB9kGshUSAZJmvIY3JD9AxwLMjk5ibm5OSwsLKC3tzdocOghRS+i1dXVoANaWFjAwMBAEKpLHQzTMzz99NNYXFwMuaOYn2t2dhYzMzOBMZqamsKlS5dw48YNXL16FcvLy6F9jzzyCL7whS+gXq/jve99b8Ej7uzZszh27BgGBgZCDiuOP+er2XTpL6R5aH5+HqOjozh8+HAY44GBgaCB4bVkVri+uV7opSbXXjmKtXTPlikjOJ80kfX394c54lhSF1f+XdRqLvEoGauycJ9Ffi7v57PL6+ullDt4UTm6vBhwVwEdzEc0sxj/XlUWQTxKhYrx+aUiz4dHSAFrYVBBphL3+i2/OBWCKYSNKrxw9e4XrfP4KL+0mTBwj03Y981aC0U/XAKRkJph9z9tyUzm3NPdxmxMEdy4tqmCbAVg/6wwH6EwxirY0PIx1eF5chujGYptoplQSpYLo9SxuEdJk0RunlIqN5+xMLNYwSxSMH9ZZ6Lx8Yq02UFkmgDasJEClLfntLfQbr6Apt0NQG48AAAgAElEQVTATncFStWDOTPL2tCxy2dmrRHxXzR0FCGK3OepNaGXSiloq3Hg/v14nXqtF+ISrGvAOFNopKLgbg6lgdj1uBobVBMN4yMPpyZDZgzSLIOxFibYdRzo0FoDuoooitBTjUIbLBSs5trKwkgZY4LmqdVeD3nGTNINk2SoqgiR6kG2s4MIdJfvQhbXkOk8TYgfVD/uyD2wpOLLmyV36cwCeNr9O1LiCvbllSzSzAPs9o6SJituuJ00BdQvyI2YYIebADdFfidfxGWzUdmUBOTmGAKfsg6BQIruvLyHglxqQiRQIPCSOgiZaoF9kkBQbpJlcxPjvnDzkn2TIFCCK86BBFSyHn5e3nQ4J81mswAu+vv70Wg0QnsAp4shOFxfX8fc3FwQHksgMjQ0FKL+UmzLtjYajWDqoWv4+vp6SB3AKMgbGxsYHR3dNY8EMSsrKzh58iTe//73h3gyy8vLePrpp7GwsIDDhw8Hbc/Y2Bgef/xxPPDAA3jPe96Der0ezFe9vb349V//dbz73e/G9vZ2Qcg7OjoawCQjagN5QlQ5L2Vzn3TN51zEcRxAF/vOOuS1bBfnR4rVmfh0fHw8ABGayiTwWFxcxPHjx3eZLAney59zXdH0VwYxUl/VyVuPJsWyNu2lltsn2+x/jf2t9/7fhdM8OoEQ+I1WUcLI/E2kHVwAP+tTI8f+JRurDNpapIiRInJ3hdM+XYeLGoFd7e0AcFwL9jiZmg7grMMp2NXtOqZyiW/novP2QflYPhZe/CueJ3BaIQlEeL4XIStdGGMZm2evwvEv9IPMhgUEQgxsz14Qx5RAYGClYDqe5o0ClLElkasTSiuVQmUvQrV+jKzt3Rbbm0hsGzpS0JUqTCCvUkQ2QxspXhV34eH79rkYSnAgKUlcnCUAQdwH5RidKIqhNZBRIObHwRhgZf0WnnvhBRhj4cPqILUZsjSFyTJopZDwx6YjqEi7/5RFpHQQ6KZZBmOsy77t9T4AkKVtn8HcQqnMxdshENWR0+r4pJ7GmBxMWR4IEqdt8xqcru4+REkdBsD29gY2bq4B1uXKqiZdiLIKdNQNVB5A6uNQGWtCmAMHiDuAGYIehRKDIxjC0vzu5jrzcvHj739ZRcZf+tKXdgmIJXsiN2du9NyQOwkjJego10t3YwAFNkVuENQEUAvSycurLLIFdgcnLHul8BlyI5JMVCcNAz+XIl6pxyh71EgGgdcC+QbKfpUF2myz1GLITY/MChkjXkcReBzHAXiwrfTooganv78/pFrgODCR4+rqatDUyEJN0crKCkZGRoJ+B3BsTL1ex+nTp3HhwoVCzBauB2640hNPgl4peJ6enkaj4TK+v+Y1r8EXvvAFAMDc3FyIT3Pt2jVMTU2FPs3NzaG/vx8TExMhZpDM4D47O4uhoSHU6/WCCzsBcKPRCOPHeeJ8SCDEPpGhk4CJ/SSYkgcE+Z3UZq2vr2N2dhbNZjOkz5BrhWuB7A7nYmBgAHEcY3FxsfC7iOM4sEwE+mx7mqYYHh7G8vLyriSv0rOvU+DAVyzZZnlz3WujdXuoLeKAYCuI/Hbq3F2zcI/2/JB2G4nYcjtLKnkitnu/dcvP3tXIO5dcWIk7gxt4RsdXrj3NweSZUiwd3KndlcVmebaMj8oTG+ahDCVQyeP5eI+pUhN5N+gyrpiXqLxldepbURjMNdAJEFlrc/ApalMKiLAN3f4hVPpDGLMBXXHgJNUZNjY3gcyiFtsAYtpZG1m7jUxbHOiKYYxBHPIjZd4lHAXBaxRFXtRu4IInqjD3cu0ay/9y5gdKo5210Gq3AuiIvWkmSmJoP7702DLWwmQGSisYY0MOtHbaQpa1kGUpFIoxoKJII4oiRFGCKI4RxxGS2DFCkY4ArVDrug9dtf3QsXMt17rbRUdGikolxn37+wITuL29iZ+sfx8wKQ70PYxK92sAAK008YJuwXAKnGs96HEhD0qeWHsdHiBWirrrn89LKkqpwsYuQQM/l4JOMjEUv8pIuNJbR77ka7VayG0jxbASQEiwJOOqSLNOuZRBVtl8Izc6btTymWyb3JikmUDWJ005cRxjaWkJvb29YVOXIHBtbS20Td5X7q+8h2NO8SvHlG0EUABS5RM7kzPyPpqp2F45XtIESBftpaWlELhP5mDihk/WTm6Chw4dwpEjR3Dx4kUMDAwUQGiapgFAyPvq9TouX76MM2fOYHFxEbOzs5iamgKAAG76+/vxe7/3e0GwTHbokUcewQ9+8IMwFmzD2bNnMTo6GoCbBND9/f24fv06bty4EXJyPfHEEzh58mQhSzvj8UxNTQXWSZrqZEyokZGREA0aAJ588kns27cPY2NjSNMUR44cCWNPTy4GQySAJFilWbDs+n3mzBmcOnVq1/rh+urr6wvzxTVS9nyT62FxcTGY4iSwBopxqOTB5GdxE78LDc6dwQ0gNjYyA8F7x/3PGBtMXNxjjE/qoFQezbjjRm2FicXXK7167tQm3lcgMjr1qfwSt7kOQZqhHKsjLrN5BGYXIdjA2D3Gi5vv7RqL3SxKufGMIWO9yUhBblAKjFcUzIq7HiYAQcfSmTUqRHrutCGGWwyy1gbM9g3c19tGW2m0M7IaMaJKBcamaJtW2GCNVYijCjLVwna6g8wYxAxR4E1mDLIon+10PAR9xbYaa5DZNrR2qQaimB5WGhYR4iSC3sndxI2xSE2GVqvtwI3SiHxaCBVFMFBI2wbtdoo09dnRjXGJaK1CpOA8vqhTyjIgTRHpNpJKjMjGSIx7VnelG7XafnT3vBpJ9T5knu1LU+3AlLWAcsCIGTBq3RFsotFq3kK73UbcZlRphTy5pipYY8PvznAVhzzh/HZPr6gAEF9ReLP7+WUWRgYt4wuYIKXsxSE3F7mpku6nWUeefFkkcyG9gggEZPRV6Y0k/19ux17MkwRg8jMyEoCLt1L2SpJeLvQeYv28lpsFzUMs8n5uPnKjIUiq1WpBK0LTAU/kTA7J55Cxoc6G9TcajYLLvNRDlXUirK/RaIQ20eTEuukxtLi4GNgAALh69SpmZmZCzJuyWeT69eshmSPH+9y5czh+/Dh+8IMf4OrVqxgeHi6wCleuXMGhQ4dw5syZ0P43vvGN+Pa3v40//uM/xuXLl/H000+HoIYzMzMBlHTyJGJiStknAtRazaVcOHXqVIG5mpubw9jYWPDo4hhSKzUxMYG5uTmcPn0aAPDpT38aw8PDqNfrOHLkyK7fTV9fHxYWFjA6OhrmTJoLueZkOpLTp0+H3wrHjr8hJsWs1+vhtySv44GCAIxAiOED2DaapfbyZPxZNDj3vKjulXvlXrlX7pV75V75d1fuHMn4pxAWklXIdRgIfzDfkiR2nLxRBb2OEY9S4v/ybFc2me1lQtslpdwzUB2/h9PS7NEviQUpLpWxQxhN2fige9QbqWLjfRqF3S0MzJS1BbE1/x2YpNBAzypZG1icnGFSQW8ho/0XnsrvOzFad9D87HXal58bY9HOKri13YUXd1qodwFR5CP/IkO1GsPY2OuNvLlJKXRFMdraIskyZCY3t+SxhqS5zgl1Ex8MMDOZD37ovouiCCbNsLPTxubmJqAVtHLXap/2IY4j9ETdIk2HQmYsUgvEUYxKXEPigwNGcQKrImTQPl0BzV9MdGmDuVIGMlTGQqsMVrvfQex1RBWdIIljqKgX7XbOqlifWcyZH2NAZ1BeiF2LYiRxHbbaA2RprrsxzqgVUjLklrowN0r+mIId1rfxdvPt11fZc+vlLOU6ZXwbinlp6iFlL4OaUSBKFkGaqYCcPZC6lXIcm3JsG+lxRHOT1PpIPYNkY3gtT/Jlur0cQwTIIwI3m82QXoDt5qm9LIKm2YVRm6XGRDIwchyolZH1yVO+FBnLOEGsY3BwMLSRn9HTpqwtYpTgWq2Gubm5wimfn9O0RVZDxoiRuhOZIJRCbclMHT9+HOvr65ifn8eJEycKmhAGPdzY2AjRhRn1+Pvf/36YB5mQdGpqCktLS7h69WrQzHzjG9/ApUuX8PDDD+PixYs4c+ZMMF8dOXIEGxsbwbupv78/rEmaZAYHBwvBGKempnD9+nUMDQ3h8ccfx9raGo4cORLaTfZtamoqjB0ZL0ZrlgxfmqaB3eK/ZY6v5eXloAljOzg2vEaabhcWFjAxMRH6xTZQY8PAj+vr62GM+vr6MDo6GjRXMt5Uo9EIDJX0vJKpTaT5Ftgdj+mnLXfkfuJIw4ZAdRBeQwBKL3LjbSJ5YstiXZ2D9zE1AYp7fl6tfwcLI5i2eeW00/By656TO50ThYhUA7IELt/u1hBBvnilbkGhgAyUDUk9nSBV554yqgiEItEkaY4L2aOhO2wgeR86KSF2f2q87kJD2+L3SuX/7jQfwZzRAeQY5XqWAxmOSZ7wUnpeKV2BTh7ET25m2Gk30Z24RZs1byGKAMQV9PT2opK4DT8zTWy1WwAiaK3QtCm6MrdETQToNIOq+oSuIRih08NEkXZ5spQK6Se01jCRAypRlMBJnNhW7XQtpo3M5AabSGt0d+1HrecBWFWDUrFYNw5wxVAOwAqwZb3uhiZVlrBqlfeysm6W3WVttNqbaG+tIUIEXXUaHMRVwAA7rS20draws9nMq1QKm5tNWETo3bcPSTXYRj1QtMQ3kItZyT9K5lNrFaA6JOEsmWxfSS8qa20QNAK5R4h82fGlTG0GQQKFjbxP6kJkfUCe3kDqSBhhli/aTi9eWRfrYz3cfLlBchMuBzajPogmGKkPajabwX1abjp8Bs1HZQ+TjY2NYAbgxsr6+AwJpOihJF3cZTukCFtmrpamvuXl5QCeCESHh4eDSYJtmJubw8DAQMgELudIurBLkSo1VdR38B7qewiMJFBoNBpYXV3FsWPHMDMzg8XFxTAXY2Nj+PjHP44sy3DlypVQnwSCBGgTExMAnPnqxo0b+LM/+zP8wR/8QRift7zlLXj22Wdx7tw5nD9/Hp/97Gfxzne+M/RjcHAQ165dCyYgqRMiEOjr6wtmrTRNcfjwYaRpGgCC9FwbGxsLruKMlNxoNELurcXFRYyPjxdMlHLOFxYWcOnSJQAOgI2MjATzlgwrwN9ZrVYLmi4AwQQ2NDRUAPvT09PY2NgI+qparRYSil67di0AUAa7ZNupf6M2rBxgUpq+OkUCfynlziLjzAS/m/xl58GCEkwDcFcn/7sRLN+xTQUvIeza82VcmkIhEVPCKoJHgkWHF/1dtYmblgR3xW2G0X5vUwuKyUjdZyGPVKFTJSEwiroglpc6xrtSUXh35iJ5s3vwA7jVClESYd/+Orp6upG1d7D+onuprD2/hWxnA7HaxMBDBg+8yr0IDBSMzRBFCql2MMD6jdcYAygPYiJGbnZPZ+wbanPyuQCUsqhVEnRVK0Ckw31KOT82AkEbvPaqSJJuaJU4BgmZmI8oBwPK5AjVKrj8WPlKKkZ79pFsjAPR1mtwNjdu4dbat7G9+W+oJBEe6HOnm33112Iny/DDH9/E5nYbNrNIKm6jrFa7EXXdjziqQCe1ghdhmVjbxbRZEW+pMF+vrL7mbooxZhcY4AYuX3xAnutmZWUFAwMDgcngd9zQpQs1T4zUSEimRjIgQDEWTVnoXNbtUFcgBcDUqpRZnzKbRDdgID+Zl3U7ZRAi/+YYsW7J4Eh9jRxXboBlwS8Lny+fI1MkUM9C5mJ8fByjo6MFMTD/HhkZCboYIAcVHGu2TXrajI2NYXFxMSS05PjMz88HVoMaJZnL6MiRI2g0Gjh37hzW1tYCYLh06RJWVlbw9a9/HR/84AdDGobh4eEwN1wb9ORif5iH6td+7dcAAP/4j/+IZrOJxx57DAMDA3jve98bWJrV1VVcunQJo6OjAXBKLZDMMXbs2LHw2dNPP42rV6/iwoULmJ2dDcBjeXkZTzzxBCYnJwtrn2NDoEfXfCDXL0khNT2jRkZG0Gw2cf78eTQajeBmLvU38/PzgWnidxQ1p2mKM2fOhP7woNBoNAopMI4dO1ZYv6urq6E+esERLEkQTxDNaOGSNfxZyh0Ajg0bC4BcqAtuqLtzKHX6e8/a78L9ee+WIYddNBlBC0+jPepV1oOcMlXjbpPcz571lPcN0ERU6rfdfT8/KYupZTNgc1CZV1c2seWB+dyj9mCo9ii3ExA7t3wrH+5ZH+0/yhm9Xf0LrsoasYpgowyxrsEk3YgrLphed3cf2tub2NhYw1a2gbq/p1ZLoFQVWQqYNMN2G7BJPjLWu1VbY2G0EZ/7derbRfFvFEVQAGpJjEoUIVUyPKVFpJ2IWOkEkfdsarUt2s2bSLN1GGMRxxXENSZn7AF04pPOCg8tkAXx2eslHelNWUVLpbsvTrqQ1AewbVM0Wzfx4q0X/NzUoCo9uH//AdQP9CITSWQpcM/jIOXrASL2UGEuOI+qxDzyms7nhF3szcudnkGWLMsKAl8gF/kCRfdpvlAHBwcL+YqAzrl1gHyD4QtdMjW8rixmJEgiM1IGQRJgMFYMny3jlrAPZIT4gl9aWgqUvWSTpCu4ZKm4GUuRsIytI2l/yTDJ+ssmM+l1RnDCTU2abOQYLi4uBkAyPj4ePHTYX5qZFhYWApCRolGO49raWng2T/k3btwIIIEmFc6/ZDL6+voCyJqYmAinfrp8nzp1KrT55MmTmJiYwJ//+Z/jIx/5SFhD0rw2MDCA3//93wcA/PVf/zU++tGP4lOf+hTe8Y53hLpGR0dx8eJFfP7zn0ej0QhAA3Bs1Wc+8xnU6/WQh6o85tKdH3Cb/8GDB3HkyBGsra3h4MGD4R5mOScDxnGiazldx2UARQJaKfKWWdqbzSYmJyextLQU8msdOXIkCH55UJAmLrr09/X1hcSdBCnDw8NhvZJRo1mSbZfsofwtSy+qcsZ7rku5jl9quaMGp7DJ3QY33Kns6V5+Gxxyt/XmLtXGmy6UvED+z38GeCuGj//nIYpnXYJKZs9GdDATcQ/ZxXAUGgs+bRebZcVY2PxgboTZrBMgvK1nm6KmR5qo9pgHWfcewJNaILldh2eU46coN44aLju7Vga64tBKNT6AdncvdFcPdrbW8eObTpsTb2zDZhtIEoPe3gqaaYTUQ5I4UoDRLlu3NVCZn9dII8syABpR5Mx7xjMkxmbQFoiswYs/eQG6WkHFMyFKKRjt2qd0Fly+jTVQSJFEgI41dGRhzC0AQKvZRBR3IY5r0HEMTozLnuUBThChue9oIjRwzJICgkt6knSju6eKBw70oZW1w6hGAMxOG9BAHCto4zU/yBkiTxcFvOKwiwoLsKgD8tdg7zUdvB8516r023oFwQ2LjIEhN3qaLSQD0mg0wklxcXExvOR5+iOjUfYgosZAbgSybulVxJcrzTD0QuF30oRWZkXYDppVgPzUyyJNUey7dA3mPWWvLvlvCRxkxGK2ixu5HFepN5JaFoKbjY0NLC0thfxHLGma4uDBg7h27VoIfseNjNoTmi4AhPxGKysrhTxezH1EE8by8nJwE6cbPSPnluO/kOlK0zSwEIxBMzQ0hMXFxcJ8cozn5uZw5syZEACQG/TRo0eDa/aTTz4JAPjd3/1dfPnLX0Ycxzh+/HgAoRcvXkR/fz+ee+45nD9/PvwbcF5Ub37zm3H69GlMT09jeno66GnK7v8SrEg9ldz0FxcXcfDgQZw6dQrnzp0L2iGCirW1NQwNDQWQx+fQ1EoPLTmH9XodS0tLOHToUGHNsHB9ypxhBORLS0uBiUvTtBAdWubQ4m+Ehw9ZCPBlfjeuoTKIkf/+WVicO/tflSKmdnpxshSEsT8lO1NmH4pEyO6X614h58tMRodXfKkim9P2SiGINPOnd+hLB4Bj8+8CmyNBi2xrSQOhQPOV3QX4pCQ5F9p2eLAwf8mNSYKW25VyUMS93MGV2LyVKms55Dh5x2KrYBEX2QCtkFQj1CtdsL117Ow4hL+1tY5W6ybS7S1spzGi7hT9/v2dJJFjEnVxfmmWku1gEkwLC2sMIhi0mtuwpg0d0ZU6clGPrXGCaGbHVBpxJUIcR4jjBJUohsIWACBLDUy6DVW5D1lagYocYFNxAqX9uFPL4scspHOAh87WBBrJGLfetK4gTioy2TrSBLA2AhSgM6Dd8tnOA7wUrEz4ty39/+5LWYP/SkctLhelVEGDQ7ORDEYnX3RkT/iil5t+p79pNuIJWNZF4TH1KSwyOjK1GvIzaYoCcjdxUu1kV8ovaCl0ZpGnfMlk8fOVlZWC+YjPARBMIrLt1HuU00UQrJGVkuMqtTfcSGVdQH56l2PEhJRxHOPixYsBbJ44cSIAt7m5ucKJnWPNfkm3ZW6C09PTYTOWgf7W1taCOQ9w5hfGWBkfHy+4yy8uLqLZdNGVaRri+jp48CCeeOKJYHJjfW94wxswPz8fwOS73vUuAMDXv/51/NEf/RG+973vBXaKzxkfH8e5c+cwMjKCy5cvF8S6dOfnmBOsrKys4MiRIwVQJ9vX29uLxx57DPPz84E94doZGBjAlStXCmECCKrlnDJtBseFGhwZdFKaU6WYX4IWqcE5dOgQVlZWArCXJmKCaml2khHIKYpnvCPOLU168nDBe36Wcs9N/F65V+6Ve+VeuVfulX935Q6pGn7B/qff+eAe3k++gg4mk58mOd8uMWs4n+51glSBFlG6A+MRGItO6Q6Q25CE2NLLJKCtgu6A+WzQnZAiobvM7d3odzMgZXZo73vuWOcdanIsmircw7JLY43czd15AnWKI61gVOZSMpR1RmSPyi78oBnFei8jzq0zu3FUjEjYZY1BlmXIshQ1+yJ+6f4fAwD2JwAiIEaEKEKILpwkCbR2c601Wa5cM9bOMmzu3ML/963ncKudoVJxWhtEiddsWbTbqUuq6QbCBeRTzoMw0jrX8doYSVRDFMXYaRuoqtMUdd33IFTcDW1d36y1+VJhMtC0ja1b69i8tQ7vS4fUauykQFLrRrW7F9qnalA2gvUpIiycaY4mKkNplFWAUaU17nVICjBCPFyYRVtiROXvQHrp3QWBc/Fjv/eyp2qQphnpTi01OACCuJKnaJ4SV1dXC6fTsrs49Tbl6Kg8wZaZIpp3pAAYcKfO4eHhYJrhyZTPlawHS9mrSgotgWJyTykelmJhmQJAekaR/pf180QvXXXJYvEZsr9sX9mbjOkZaDKS9zBfE81QUpwstT4y3cD09DSGh4eDKHZ1dTWYUhiQb2VlBePj4yEXFaPzUn8lUwfQXXlpaSk8k2JdukrfuHGjYK6RIm7AiZg5ngMDA/j4xz+O973vfYW1VavVcOHChWC2eeyxx3D+/HkAwAc+8IHAJH/+858vJM5k8k+uMTI4aZpifHwcvb29wbTGMZKspNRkLSwsYGNjA9PT0+jt7cWJEyeCVmpxcTEwhisrK8FDS7ZBasXYBslCNhp5ji/J1JV/MzQTSrG9XK/8Lcm1wkjeAArsF+dCjjULWdhXLFXDnUonkXEn08ZeYuQ9AdZdvGBfsiaog/An96ISJpCCRatk9iqYBhTQwftqr4zgcnOXdd9NVxhR1sLpO+4GYN1N2T0P5XttudF8iMjDVYr7o5z+BoqJHsvPcwOstdxkFXQUIUEFNVhk1glvjXEpEspNMMZ4gJObyOR4K62RJBU0NxVurDXxwAMORHR3R+jq6oKONFpqB1nkc15FMdK0jXSniWotQq1SC6lFsnYbrdYGTNZGHMfY5wFOtZKgjQittI3Nmy9i8+atMNe9++5Dd08vbq7fxHeeew4312+iZ98DAIBa134k1V70RD3QrS6XugFAyKUl5yGMHcfNjWdx3nINjiqsXf+tNGFKdwGL4pr/H1TkZk+gQnMGX5xAvnFTCCvpc4pNCW4ImEipj42NBRdzFgpT+TKVGbn5f0m9855msxk2Wbpr8zsppJRmLSAXHssNQgqipchSiowJtuQ9ElRdv349/HtoaKgADBlnhuMiNUdl8Wc5SSJNK/z+xo0bwWRCM4SMAkzPIplOQ4pNDx8+jOvXrwcNkEznQMEyAQ3djzl+BFhSi8R+ypxXUpxM853cYKX+g+YgbtLLy8v427/922C2Isj613/914JH0OXLl4M57q1vfSuGhobw6KOPor+/H6dPnw7gh2kYuLZktGLGkKGbO+eCcxnHMYaGhgqmpnPnzuHIkSMYGBjAzMxMWDeHDh0K621qagrve9/78OEPfxgAcPLkyZBZXYrRuSY4VgAKa1qGW5CCeprCKHwva6U436urq2EtUzzOCMgcu3LiXFnkb+GllDu7iXvvDFncJlK6LogR967rJdv195K/lPQC5U1aajNyZsfdKDdBrZQnIuQ14dJdDyQbZO8AMHZ1Q6kwPhQau8+pwdn7XikUZhtC3uxOYlLWX2pjwIQdvKTK/dzdgeJ3hZxHqpjlqlMNIdyAlY/P/fZ3Q6oIxjC1gkEECwuDzKigbaHeRlkX6M8F/tPhObAWsU2wb9/DMDdbWNty9yVphAN6P6JY44UX1tBqOaFzooHNjS3cevEWertruP/+KuKqY322NtvY2U6RtVMkNY3+1IGl+00V0DG2mk2s/aiJ7S2LKHbftUyCnTRByzyAAz/XjfpDBpUqAwdWkfi4Rzkvl//fLQlbGBgG88ulV4FeyteTrIr3+TEP6Rus+ELBs0EIa+K/h6i4XPhCZCEjID2MeB1PtTytSraAYlyp0xgdHQ0swtraGhqNRoEl6eTlQqEuA+OVw8vzXm7icpOXXlDyVEo2hhuePN2W4+6wSLd3yQJJwLS+vh4yW8t2sU9kNOQJWrppA7kIlN/TY4kCYbJWq6urATCRIaIuppO+Y2lpCfV6PQh8a7Uazp49WxA1S3CxtLSEyclJzM3NhU1wYGAAs7OzIU2E1J7Q04j9kcJsyfxJzya2k2zW2NhYADLDw8MBRDz66KP4kz/5EwDARz7yEXzjG9/A4OAgzp49GzzIAPHslIkAACAASURBVODtb387/uIv/gIXLlxAHMc4fPhwyDk1NDSERqNRSFMAAB/84Aexb98+fPGLX8QnP/lJjIyMBNEw9WXDw8O7ADnjPp05cwaf+tSnwudf/vKXUa/XMTAwgNOnTwdtEuCYHwLJcpBEqekqB7uUYEYyhrKUPa+k/ojOAPyOa0KCGXkYoXaN93RKvPnTlDuaqH7rdx4L79ciYOhQmbq9CaZsvrqdW/lepidr8y+VLjMk0hNIF77b3Q7+rUttAnYjDV1gJpyQ1PW1cyDA8rPYTufhxS4UNiT/WCXuk8X4C8vzVc7LxHuNyWP7lItGPlZyS91bGG4DalIdxMdhLJGvCwXH3vAal3csZ58kmxCyzgf3c4d+qtjBw8lzAIB6kiKpwEUBVip4IlXiGHHszF/Mxh5R/Ku1i2WTZfjWzX349ot1GOsBEdrsNdIsDWay1GgYa5CmGSKtEEcRmAjKBQZ0zEkUKSQ+R1USxW7MkSH1Ivc8WzxnwbErUqQNaFho33+Tsyo0Fem8jvwrJVZaEfm7caPIOWfFcvEy67Qox3tSRntKUFx7h/JymqhGRkbs5cuXC6dIimFp9iibPvi3NAUtLCyErM3SpMRCkSaAwktUAiRJ6/O5ZAFkGyjKpChYZg2XLuhlpoEvd7IRQNGFlt+xjeVTtzS3kWUaGBgoZGkum9P4OceUrJT0Juvv7y8AODIx7BP7LBkzBnJbXl5Gb28v5ufng3fT7OwsxsbGMDo6Wki6eO7cOaysrODMmTPBJML6CKwIpAh8CFj7+vqCiUcGAeT4spQZGv4tr1ldXQ3PGxoaCs+6cOECLl68iJGREUxOTgaPseeffx7b29shkODExEQYO74TP/nJT2JtbQ2HDx8uRO0lsKHpBnCs4srKSnCNlwCZ4I/mIwko5+fnUavVcOTIEczNzRUiBdMcyIjFBLYEklIAzPok2JasIp9Nj0EWekHR3EUwxuewv/SyYqFAvRzosuyRKEEWwapS6pXLJn77Ik6Q6LSdirp4R2ET5Qv37opCRwvT7Z7WuR5x8lUFZiIPmbfXY3Igd+eGmBJ44njq3fRQR7YIgNAACa0MK0R5PN2dOjBMrESMsA9yZyFNFd7k4c1MDOzn6rfh+k79Jlgrts0zNejQXraZz1DyJkDBARYDjZbxS9TuAIzyLDRhmcmgjSVCA5TybuNAol0mcKMydCUZ4siGxWNVxetaLCq6Uhp1dx1NOcrSZOSBgSoxTsp6/UqMqLR2FN25FX8dOtSXc17u8yKwNmE8ck6u/DfE39SYeUAddGIopesogWrRh/+RxVqLOM6zXsvQ+TQvyFM5w8fzRc3Nqb+/v/Cy5Muf4EC+YCUI4ctdakikGYkMi3zxAsVge2VGSIICAEE/s7i4GEwPbB+BkHRz5z1knLhZyzZwnBigTW6e3Gwk8yTHobe3N4A4IAdVfAY3tUajETbA6enpMB9s9+DgYMiYzYjDgAOpp06dwvHjxzEyMhIACb2Z2D6ZrHF9fR1jY2NhM5SJPKULvfS4o2ec3KjlmMu0Bp20WHw2+z83N4eTJ09icXERAwMDeP755wE48EJT6ejoKM6fP1/wzHrd614XXLOlmWxsbCy4q0uzKTNxX79+Pfy/UwA+qedaX18Pz2SiTgIpmbV7eHh4V5wmmsho+uU9BJ9kT6RXnYzBxMJx4/xJ8xTnJk3TAFRlhG9mdpcsTVmLIxnMMqP005Y73nkbPsb/r0iuF86UhZv3eLHKt+/dABdFDkRUUdL6uE2wyAp0MoCIm5DnfxJB1Up7b25I6MAY8TKlCuyIhG7GV5jvJXt3uAiydrNeypbEwsLEFRgRzwSUn+JAImO2CBYtbKgEU+J6Y1wU4D2avNvN3N0pZ0ruoflmXOyf0+34Z9oIO9aZc6y5BbdcvVg5LD8NY/KRduDM/ThUBsQ6AeIK7kuAWFm0kXdKE9ja3QA7T6+Rr88cZ7INYnbYJFWMOxRSQ1FkbQGrsnCf8q7g7kklUFtcovkf4TLbYZ3na1BOiAWchkmaFcWXjI8jA1b+9zRTKaWCFgLIdR8ECVIoSyDEkyNfmkAuZJRgAchP+TJWjDyp8oUtmQ8p2i3T8502SvkZ2R55YpeiTeYGkqd81kFAAyDoFXiSJihhfdwkuaGWY49InRKAEH9mfX09CI4lW0TTlYyIy9P4xsYGhoaGcPz48ZDWgAwNUxNIjdDIyEgQuh47dgznzp0DgGBiotC5HDiQYlnqc1jYdin65tjJzbEMUumKLudPmtEuXbqEQ4cOBZ3LAw88gMHBQZw5cwZnz54Nzx8ZGcHJkyeD6WdqaiowK08++STGx8exvLwcsobzWYuLi1hfX8fa2hoOHToU+kqW8sqVKxgeHsbExASuX78enic1RZLtWFxcxLVr1zAxMYGhoaFgShwYGMDCwkIQLh88eLDgkj40NBTyRMkI2lyjZJnKa5u/GcnicL2Wwb2sk78LOeb9/f2FkAD8XD6rHHTzZwE499zE75V75V65V+6Ve+Ve+XdX7goa3S56buGvMnu+657dXALZlk63vZRT5G4Nye1pITIt+VlcefNRsZQ/kkkl927DXhGBO6dVMBCn7MJBm6YiVWQGRFsKgfk8I1DoR+k0b+FMTwXjhehTED6DJiWN8lTI70uP6PTYXYVtjpgAEwYWmWuXApTVaPtcDVZF3ojDtKY61GE9+6E06xFPV4AyFrVEoTtKcTOt5s/3hJUV7FPOMlkOUqk/3pRUMsfldxUHKZ9/MjSMtn1n82/HgI2C8HRBLUNrRRs6/Q4KVqtd7b8b8vSVLvKkxlMcT4/SfCU1B2R35IlUJqeUOhSpCZDaHOoSJNsCFDUdNNmU9T8yQJk0h3XS9NC9uV6vY3BwsED9yyjLZXdaahTIdsg2se2M2iyzqpPlkPoXGWF5eHgYMzMzhSjH1NTwdA3kgQTJEp04cSK0mwHkent7C7nBAMcaXL16NYhyWUZGRkJbV1ZWMDw8HEwzCwsL6O/vD8ySdF+mSYTpCSSjx/VCjyWyXAxcxz5KtoOi4yNHjuDq1ashUu/ExAQuX76Mc+fOodls4tFHHwUAPPHEE4iiCNPT0/iHf/gHjI2NYWpqCkAuiKcJkqY2AIGlu3HjRsGVnSJqpnyQnoJ0nWcKBcls0mPuM5/5DN7+9rcHT7NarYbh4eGQ4mJoaCjUJ9NZlM290kuqVquFMSJjKEXCXKs0I1E/VXYTp2ZKun7TREX2lfWW+yZ/Y/K5L6XcFcDZSxhc+E53eKEWrt3DRBU+dZqDsoD1buPC7Pn5HptyaJVUyHpbg9yU5HW20IdOsWLya53Jpuw2zf/nMWFku6TlQfafYfR/ltxdoWpVfrSc20KLiqaZXTqQ4jcofbPXvwExPsrXGcwjGVTWQkUpKKPQUhHa1uljUsQ+qaYzlbFeYyyUdvYm7evkGEWREyRbY5DoFL1xilsZe22hoEv6lNBANxiqgymwQ49oxnI6JF0Cn6VrVa616Zi/LL9w7+84hsgnkxZK67+DKrZUZrQHdv0sxGPz319HgPUKlSiKOnp3EKR0etGSUpd6DOoLynmtpOcSzS/S/ERzkhQzsw7eK7/j/QQ38kVO8THrkBtDWbApdTsyoqyM5Fp+lnSpHh0dDX2v1WpBqEpTVtmEQO8jik+ZN4nX0HOHGyNQdHsfGxsrAKDV1VVcvnw5xGORAtZms4mjR49ifn4eMzMzYaMfHR3FwsICFhYWsL6+joMHDwZgxiSbctwBZ+ZhuzY2NoImieNdNoVwjGdnZwOAWFpaCp5Sk5OTQatFEEYz3pkzZzA2Nobx8XGsrKyEaMrT09M4ffo0hoeHoZTCa1/7Wjz11FMAXE4nbu7Xr18vuIIDCKbUjY2NAEioU6G3FYBg+ltbW8OTTz6JD33oQwVNysrKCkZGRgo5zGSUaQI/iuLpzi9Nr9J0y7kn+FlbWwtriCJ46ofKa1pqfaRZl2YozlM5InjZzCsziZeFzmX9z09bXhKDc4eLC/oEfuR5AISTcYdn2NK/f9Z2qZKe5jYXukB/pdc/tSw+j+JdP3/Pz+WWIxiRclygjnoQ1WEnVnme9wAWAFj2RHhp2QIDcIexLT8qeKR5ca0SbtjIr+1k77yLWXRZtgG0jUHWztCCgkYEJAaxFwBnHpkZk0FrwAoUkRnjAzQaKu59O5ULtGc1Ip2hOzEwLd9Wf39kFYwqr9ciClRiXTh8UlzDIQ+ZUo4NKg5eYSykM73LnaY6zIeQfu8ByEM9JSaG4EayOEronPaKd7MXm9QpBMMrAXaUUgUdS9kVWn4n8ywBKDAzUtxbdrUG8pezBD/S9Vp+x8+kcFLeU9YKyISeMn4PN1uCtHLf+LfcQLh5E0hIry1uxPRWAXLvGn7HDbvsRSYDE1KHwxP75ORkEJqWc38tLCyEthw7dixoO+r1ehDkMr2DTJzZ19eHiYmJoOvh5/39/RgcHMTExERIpcCyuLgYWCMZk2V2dhZra2shwzY3ecZaYd/peQY4l296/DBfFedqZWUFCwsLIc0Ex59u3WQg6Lo9NTWF5eVlnDp1Cj/4wQ9w6dKlMCYUWTPb9+joaJhnej0xVIHcsIeGhrCwsICVlRX09fUVxuFjH/sYzp07h8HBwZCrS4qHJyYmAmPDPlG7Rl0T72OcpnJKDwnsyaBwngYHBwPLJQ8Y1IWxH8vLywXGj4wOGSsyWVxXS0tLgcHk57IdZbfzV1RkDHRiYrihdjyfBzanI02+e/cEQU9BKIuiGWaXk4dSu3I95U8QbRMbO00Ohd4onuY7lGCCCUad/NnCDOU2FhGcjZuc3wi1YLdk7JuiaUMFgGAB8SgVAIcUr/I7FdqXV0ioyAB67jTODY5C4d1B8+ABIfOp57FSkN9b/ED+b1exvpLbmTgdE+HqjeIaoijx93lWRPmNx1SQ2R1EJkImWR/lmBt4cGGVDoJZaw2U1S5woDXoqhrE2/474yIem2Dg8u1R+SiyD4XcZqoEnPOehgskRCXwlGwL69Y6cn9bP7/iex1+J53q8xCoMK6uldqDHBl8POA1G+7cVW7HnFprC+EIXimHK5oa+Lc8zckNUgYS48Yk3ZblC7mc00bey+9k7JlOwcb4HClmlvVSUCrbxzaXXcslHU9RJdu9srKCxcXFkPtHjgtP4AMDA2HD5UbDKL0HDx4M4ILmALp0c5NgxF+aCW7cuBE2fW4+ZMWkV9XY2BiuX7+OtbW1Qm6kWq0WIgUT8FEYvLy8HL6TQK+vrw/Xrl0rtJHPYvZqmmW4eXPsDh48GEwgMg4ORegcR84TxdFkEiTrMz4+juHh4TBX0uw2PT2Nb3/72/ja174W5uFXfuVXALjfQ29vLzY3N/GHf/iHAJy56cKFC3jVq16Fr371q4VYQYyXQxMehcT1eh2NRiOYs9h2litXriBN0wIY4DqQgfGkezngzHxkYjhGMzMzOHjwYGA3CVYowuYaTNO0AFYk8JNgmfND9kWGauDvlu2W4RMIciRLWQ6wSQEz2/cKAhxVoqlveyWAToDjTqV4wr3bUni1l170QVwhX9Lipj35FVXS/HhzgslSZFmGmPFVIglw3AZmSgwAn6eEvoiJSsOVKm8bN1JubEUg1AGMePCktM65sVxgIVgzH6m2BFY66TTc4V8D1uy61uHWPDu5rGPPeSuYojp9TfNm3m6tY8AaWGuRAbDKLdGWrcLqLedirVRwv6dZSmsdNDjBUcgawFpYraCNRVcFSHxT2iKdQ2n1FP5w4KAM8IsAvMjMFWoBYEMsPbvXDyiQMbvZEkH47CpGISTClavR1VOKcxOAl+oIOvncveJGvdKFfZbu0UCuxZGnXsYHWV1dDadMbp5yo5RghadEeoNId12pmSmbdaj9IQAqB0Vj6e3tDWafpaWl4HYrvbZkYZ/YXm4EZBvKST1Zl/Q0o9aDmhYg3+zICMjNgvXV63VMT09jcnJyF9NFV2q6Y/MzsiwEQNRc0FWfQIHzIsekv78fV69eLbjyU+ciY+8ADhTxOQRwAAIA4BjIyLpybjY2NjA8PFzQd3Cua7VaYBNWV1eDuanRaASgwTEcHx9Hmqb4yEc+gieeeAIAcO3aNczOzuLkyZOYnJzE448/XgAX1WoVzzzzTGBhmKWccYAIwmS04hMnThSAvWSs/n/23j+2ruraFh5r733sk8QBB8zFvDqPA/V9uMJVDTXCFa7qVqlqhHkNJVGD6qqG5ooggppyQU1F+ArCFUFwH6lIRfjIhSCCCEooRhjhCt/GCCN8hSnmw324r27rPtyXtBhwiJPYPufs9f2x9ph77n2OnfDrPunKS6VJzv619s811phjjrlhwwZhXng+U1NTGBoaQqFQEK+gdPFTwIEqHeJrb28X7yP9HDNjjyBUvxc6HJsOQ2mX7lwulwjrkoHRjt3cjpMIDXx4PfibrrKu+/Fx2lIW1VJbakttqS21pbbU/tO1jygydszAwuEpTmAXmwWW1+CUXb/s1FoHYsoEWRbrWzSLVcGmaMYbsxTlBZ9eVMiReJCFPOnUG+suNCPAwFeoaP8wMsQTXQ2Pizj8EZ9H6emTBdAuwel4XprRcsRGvC49avRqlE1ZF1NL2q1IB5LXm2SFsHdlhNMna7oOFeCulRexaU5V45iIOWRd2YboPujrHQLOYZl9iK17I+PeECEsKrwQFZEHTd4EEi5dVEQP9TgLLReFaeW8422TQnR3bcgCMVR58uyp+Nkp2ycRsStn8dTy8vtd+L3gn7rwafp48u/PgNBhn0lHp0XAOqTEUAO1N3q2x1m+1nsAjlJPZwvp/WuBsDYua2hoSGgM0oJhsh30GQFiwSaAxCwaiM3+6DvCPpBFmJiYSNTvoUBWa37IhHB9Xi9d0LK/vx9r164VwamefXOGTBEpz40ZMfX19di6dauEmqampoRNaG5uxujoaMKBmWEgMmTaKZoz+Lq6OmFPRkdH0dfXh66uLuzdu1c0MFzG9XXIJpvNoq2tTdghmsjxHtfX14vxni6HwH4NDg5izZo1CUEuGay+vj5s2bIlYYo3Pj6OgwcPoru7G1u3bgUAbNiwAc8//zxefvllZLNZ7NmzB93d3QCc/uX1119PGDlyfyMjI4nwEJ81huOam5uFceP5NjY2Yt++faI3GhkZkeezqqoKLS0t6Ovrw9TUlIiW+RzX1dVJthb7wKwmPgvpkiNBEEgf2LgsreNiuFizm2x8L/hean8citB1OFc3ZqGl3+nPXIOTKIZoLRYdt8zCH2YAMqhwXwutt+gQYMpnd4hgsxzVH+2VwZ7EB5v/VgOV29793fd9wA9QirgMjImEolrQq9KtrQrR6HBNQl9knB7E8ProHutsFuNEswtdoPS1SC2NNzMudJZYJYwHcx2CAmLwEJa7dlEIZaEK8mULrkbIKE591ufEyuORFihadiJchnzBIpOJChxEYFN0RnDhOlgLW4ydhq0BAs8gRIiMzaPSywMAjofL5AxPFpYJ4ysh+iQkAAhAMtSL9Dmx/16o1kHJ3+XapP6uC20sBhyN3kgvXyQsuGhmlr63qXes3LJPq1FknKamtegw/dHTWReawteaF1L2FIwyjKE/mhq00EgOgAwSFEzqpjN3qGXRdvo6JEFAwg8+SwMw1ALEzsPZbFbCCUAcJtMZMuwv9TaTk5Ni6sYQR1NTE3p6erB582bs3btXjrNp06aEGLWuri6R4stressttySAyvbt27Fly5ZEwUaeEwXGDK1x8CQAoTCa24yOjmLDhg0YHx/Hxo0bEyUrqqurJcQzPj4ufeP9yuWcqzJDkwBkQG9tbU0Y7HF/zP4aHh6Wfet12tvbMTo6mghfZbNZPPbYYxgYGJDf6+rq8Pbbb6OmpgZf+MIXcNttt2H37t0AgIcffhi33norLrroIuzfvx/r16/HjTfeKMfQZnlaQN7Q0ICenh60t7eLSR+vK7PGdu7cKf1mSQc+22vXrpX7RENDAgjqpHgP+XwxjMRrrO+NDoHq0N/U1JTooZh2zzCrfi9pOsnlDFPxnPguM+zF4+jEgXRINQ2wPkr7yNBIz5wXXufUpniLiU+BpE5koY9tybGiAbdkWfRXzyQHDTIiZoH+xD8Z6IiejMnW6XRKwYWDBGnAp89HM2M8YVtmX9Yo/Qb7rfZnLDkpXhNRlMrv2jHF4YvUAKUU2wICZQ/R/k1Sg5Ng1cqwDOkm4Cy9H70Orw94K901z9sK5POAqYhraQEQxiG0Fsb3nOBYn7qNWBTfQ4UNURlEDEXR/W5NeU+icn2ikQwzmKSekyWjFF0/7UmkiommUWm6BppwJwSN8s8yEwDxwInv66fdymqCUss+rRaGYUIPosWNbAQZ9FphWnUa/HCmSKdf7o+pqNTgaK0NByBdu4iDNj1ONLggsKGvSFVVlWghuF+KZck65HI5WU9rfYCYsdIp0kDMXuVyOTlP3e9sNouRkREcOHAATU1NwsbMzs6iq6sLs7OzJSUccrkcxsbGpL/MiGLKOAEbgd7GjRslDZxp3Dplv76+Xq65Lp9BoStTh3k/qUnh9dbCae2qrNkBskQAsHfvXrS1tcm9oPibmVQ6u2zfvn2oq6sTgEBwoR2ueQ91Bfeenh4MDg6itbVVUsvvvvturF+/Hps2bcKTTz4p2VaAAzjXXHONXJOXX345YQGggQCPTeA8NDSEjo6ORIZVf38/Ghsb0dPTg4aGBmzYsEH6VlVVhX379qGrqwv9/f2Sxk6xNmthzc7OCgjWWiHN0tALiQwin2kgBiTUxXA7LURn1h1bNpsVAXQabPLZplaLz9fExIS8Q/r94nPwmfngcEiXD2165q3Xld9M+SwLE7M3i85IU7PTtBj2ZKDIgQ1AwIjUDVLDZYK9SZZoMEBygATFx+lJMVGUjbZzC71o7m1hEMKX43MbK2Ak7rsHlccT/ZHcCiVDnFF/mtQ9sfIf+1KmWd5ZBXx4vtG2wlYYADaUayX7k0hQaQFO6WeiX9GyMI5/aUaQvfFMFOqxMagsGg95eLC2ACvWgJDYmrBFan/GOD+dEAV4thLWL2JZpXtZ/LkiCobAz7A4WCQIVgyhvkLWxFfHAnHI0ojYV12WqA+IRMoLg4S0aaSLsmnmL+4E/ZAE3ih8Y2R5yaHk+pQI6cv0J9knLLrNp9V47LR5m2ZJ2MiMDA8Po7a2Fo2NjYksqlzO1bqZmJhIFJ/kfphVpE32+G9dCRmIBycdxgLi0JM25dMhjiBwtabIbujG9GyCLu5Pf9zTnjpBEGBoaEjqFgGOjTl8+DB6enpQV1eHpqYm6TvPe2hoCBMTEzKbZ7o1wYMuQKlrBjG1GXD+LxzUONjp68MQSltbG9ra2qQP9Cdi+rq+DlNTU+KNQwAJODExhbMDAwNyrOHhYal5pUNv7AMZAWZtcWCnER/vuS4ToEGXzrBiOOvw4cNoaWmRbV5//fVECvvU1JT493zzm9/Eb3/7W9x8880YHR1FQ0MDLrroIgDA0aNHBciQoQEgVdYbGhpwyy23YOvWrQnwwWN0dnaip6cHANDW1ibhtb1792JgYED2qYEe0/rTWYGsKq4zp2g8OTk5mWBAWesKiI0HeS11eZJsNpuoGcZ+c11diJMp7hpI8RnS9g5pYfLHbR+JwUkM8pwdLwI+0r8nDd4WXq/0uKdOqwMc2IHYJ8b9yv/XbI0nQCgKCZRBE9aW65uNtofzccm70AfCD2G9eRSDFTCZ009JsCCX1Bj5R2LQX0AjIgnxJknIWCDy7vGAaFBecIBSehXqitwgnwxhORCXdgqWTpVl2ErAjoTJIiYkFW4jU8RCnxYxG2M9D0AFQptHWCwCdC1W7sXiWxSLYmC8AFRdeR5wWvS+BzMh8iZwoCWMt+HzUDZUI+eVBLsmCqlxJZN66sgSlTxB6prpx454JibtdPwpeT2Nel5o/uf+vjjYLNcWAzGfZXhK7z/N2mhgw0Yw0tTUVMLecIbLjyY/vCxsqSl3DiZ6pq3DWtR2kFHRqcRpl2AdbiKzwgEnXcRSz3LZPyCuLaWZIp3WXltbi927d2Pz5s0A3Cyf7AvTe9mH0dFR1NfXI5fLJUIQ2s2WWiUCptnZWfT39yMIArS0tCR0OwzTZLNZDA0NJbxSGhoapG6SZnD0tvSd4fWpra0VVoKAkOtz4Fy3bh3uuOMOuXZNTU3iq6JNIcki0KF5dnZWMp+Gh4fR0dEh4IKMC58RguX6+nphkahR0o7YgBvkc7mc6G64LwDo6enBXXfdhc7OTgmL3XvvvXJ+1EdpsE7zwba2tkS2GRAzSwzF8Vzb29tx4MAB7N27Fw0NDdi4caOALD5TQRAgl8uJkSL70NLSItov9oEhQV0DSuuACO6ZFcVrp4G3BiBkR6kn0sZ+ZGoASFYb+819lnNa/uw0OCY56EJ9UIGPTlMT3Jwq5V0iNI6aBjUL96FULKn2DO7YUwyHsamBOWID0r2ltT9n+2FhDsff+yMAYLlfQJCpwLwtoKK6Cgj8soO+ttlPC6N1aMyGYdnrZowrxSChHkd1cWESnGjFsI1rgseQz/0p/UmdcBgxO+kLoftUKna1MugSPKrex+yc3ojASpZZ8D6GxkfRZBCGQNEW5bh+dL78zwlloyN5gPEdYAnDIowJsTLjRMZZP4/ZMOP2YIrSCfripE5UnRUAL4IrCaqG182dL8NXcWp2dN5GoozqOpnovsSAzyBazxAAqWcSMRhN3w+3SnktjV7v44SdPktXY2NMCVMDxCGatJ8MByF+wHWFZraamhphMnRFZoqGy80Mp6amSiqU85isTA0kywOQ9dHGgAQ/2v9F6xzoM0MWQqfmVldXJ/xQCMqmp6exadMmYSWY4tvV1SXiVYISMimzs7OiPwIghnM0aqNHCxCHOFh+gS0IAuzZs0cG3Pr6euzbtw8AEteDmiWtRWpsbBSWgMUsOftnuEwPkvTlYViIzr4En2TnRARmTAAAIABJREFUtO7qwIEDaGhowPDwsLA7vb29cqzh4eGE5wyvHYXM1dXVGB0dTTB6uVwObW1t6OrqwhNPPAEAuPfee7Fx40Zs2LAB7777Lm6//XYBOXV1dXjggQewceNG9PT0oFAo4NZbb5VrXigU0NXVlUjrHhoaQkNDAwYHB0X8qwtx7t27F2vXrsW9996LX//613KdBwcHBczyvLhMi7J5rXgs+gq1tbWV9Zti+JPPvWaE9LNFl2xq2fgO6HPl34GYlSV4J1uT9sHR6+j2STQ4S2niS22pLbWlttSW2lL7T9dOyv2UsijxLDPtsHqyGd7HCU2hzLLFwlyyLcMgiZgap9nJgIGJfpEU31REwCB5rtG0OmJOnMmfqXKot+hlYIIMMpkAqPBcdtICs+WkQ24yTMHmKXZnsXPW5SQ4t3eaFO5f7ZPrKD0Qr4rbV7K/HgzCMiEPfWwPZCESS6CZIUVCxMczKgNNbxwxUybKQrLGRxEVsNY4+ZBJ3j9E5xNCMw3Otdkzvut/aJA1bnaxIjOPmROVKHpB1LE4VIkEy7IAS6KOK8JvOijDlpQIMWItoLseM1RJp+MEqQWAz0HMCC3kOMzfnF7IJnbm2LIF7uEphLMWEx1/0matTczkdDkDihLTok2yJHoZxZzpdHHG/5k9pFNlOWtkWIKsD7NB2B9S/0CsLyGLovvO43JWq4XOaRaKs1M63DY1NSVMCrVgOZvN4v7775d09Fwuh1wuh40bN+Ktt97Cm2++KWEWhqa4H27DNGwtsmZjavns7CwGBwfR0dEBwOk26KJMAS/DNCzNcODAAQkjUdCrhdu6xhFDEfX19SVhkYaGBuzYsQNdXV0SZgNceINC7OHh4YSTMcXVfX192Lt3b4IFyOVyss+GhgYJtfX29sr1r66uTuiDhoeHJaS5YcMGuec7duxAY2Mj2traxH34C1/4QuIannPOOfjGN76Bhx56CA8++KBc87Vr12JkZAS7d+8WBo4p9rznQRDINefzm81m8dBDD8n+BwYGUFVVhebmZhw+fFieaT5Dk5OTmJyclNR7HW7q7e0VJkaH3chuUrejRdCDg4MiEtemi1r0TaaQjWFPpqZrUbzO+NKhUT6PfD90htUnaYtvbYHQuiKYbInU3jL6l4+jyVl0nQV+Vz+Ui2KV2yPcwGBSmIlgqXzYqzQQoEI+JgpXZTKozJwZL+eAXzTRuBkPVzEQTAIm+vPY6JziSuBRWYB0iArJPif6F/2fYehGYlh6UFbnktraRhlVcdjJwIcLVZVIitL7UYJZnbvFXgMuky0uVWpgyoUTo2OzPljR+ChaH0DkSeR5ifWAKJPKACaIlvleBPQcsLXGhxdd2KoKi6kTRYS2CGPgBOHqnHRQyi4Q7oydjBVgTIWO5Nkqs72EJjlZUGG+hDTcQO0zuf+yHj5ROExvkd7Pp6XH+TQbU0uBUvfSdIhKi4SpKwBiB2OKZ7kOP6B6UNdUPAc72v4DscZCa0o0kOJgkabU6+rqZLCYnJxMhLoIxrgdl1FwqvUWACQTZmJiAoODg3j//fdlEGxra0MQBHjllVdw4sQJCT/xfFk+QWcjsYI1BzLtppzLOd3G8PAwmpqaBNyNj4+Lu282m0VfX58MkP39/YkUdHrIAG4gpOaIGW+8hgydUWNCAWtPT49khjFMA7j6VxyYeY4MedXX1+OOO+7ALbfcgl27diVEywSV69atQ29vbyLdenx8HC0tLZLiz2vEPhCYPProowCcU/H09DS6u7sxNTWFPXv24LXXXpNnaHZ2FnfffTeWLVuGPXv2SJhteHgYO3fuxMTEBLZu3SrXjvdnZsZVVtfPJouiEuATuBKI8PnVRT2Zlj00NCQiaQLEgYEBbNmyBWNjYxJiAhzA4bHoy0MQqDPudCiMOidqydgXfU4Etdpnic8kwbd+7rTXVdo7qlz5lFNtJ4VHemavm5sNloKbcr+n5ruJ9Rc8rgyYaqBO7dEC8BZgeUprfVvAWHjWi5iDeCC2xg3FBBXx7NsuYK8fRkAp0sGY+DgGkW+KiYCULgrEmXcEWHggG4EXWvo7VkgukvQlef7UtpClSYOfWGNjPCOb6yoWLpvcLQjDUDxlDLyonpjaZwQMDY8t18kiiOpbLTavpzjXXT11Htbla/HaGVhYG0bXz8JGwMOHRWgqYI2DQ/TBcdcxdFolzwOMH9V4crWeDDyENoSFhWd8uU+nVxRhPAvPhgitD+uxVxQMa/8aBTyMAcJygCVZhV6E4RFTZ6GyxRL3krXBFGhRfKHDp/H74wnTGCYYOKHwyjB2iYnEpwBOPquMqnRKKQDRBug0Ww6aTFdOi1q1BkYbvnGmyg+oFgVrTx2dDcX1+eHWOhqmRZNh0uUSqO/Q4IvsR1NTk+yz3PlqLxB+8Kurq7FmzRps375dlq1duxZ9fX149dVXMTk5if7+ftF3cIbPIpDsW1dXF7LZrGTgtLW1yYAGQAz4Zmdnpd/19fViApieabe3t6O/vx/d3d0CQrX/DQctnWZM1qetrU3YATJtExMT2LRpk9SrIvDhdRgfHxfdDBmFIAhEh7R161bs3LlT+jAyMoKhoSFs3boVjY2Nkl1FUfS+ffvQ2tqaYM1aWlpw3333obu7G0NDQ7jnnnvk2gwMDGDdunW47bbbMDc3h/379wMA5ubm0Nraitdffx0dHR3o6OjAz3/+cwDABx98gKmpKezevRsNDQ1Yt26d3OuhoSEBk7t27ZLimKxbNT4+jiAIEsCVWVDU1GgDSwq+aT5J4MHsNJ0JxedYe/SwVAivOdlOghAeJ5fLiWhaG/fxeFqflk79npiYEH8p3bgfXWfrk7aTiozdoLcwS1PSotnoR82IOhUflcS6anlZ0z8eR82KE+twIPAWGZjLMDpuXxxsCOri2X8irJY6zaTvTRKYERwKtipz+dLhCHFlFrwW7z8JT1LnEIEpAVxwAMcBhCiUYvQwCxjfwEsYtfAWeLGYOHHPjIRsHEejwKKN+7OY2FXzXAYuTGX8DLzIjdit69Ld6StkoZyjyeiAz0EMslZkLJYFIY4U3PPt2WJ0TC8+IPvyEQb00syx5Dkt1NIhXnlPDB2aS9d3TQHoBdaJDy0QctHj/99qmjrXKajpQZ+CX/qITE9PJ3w+6PabZl50OjRBg96Gx9ViSmZl8aOrP9ZkfJghpNOWtQmaFo5qsKQ//tw/3Xs5eDc3N0sqtR5guL/t27cL+9TV1VWS4qv7BEBCPDorTNfDamlpkVAQmRheA2al6XAFl09MTEi9qnQdqKqqKoyOjiaM59asWSNp/hzIAefFMzIyIoBj586dABwwW7NmjWTokF3hudFz6Oqrr8aVV14p2WXj4+Mimm5sbEwIX+mGTAaPzwPZjOnpaQwODgq4uOmmm/Dkk0/iwIEDeOSRR/Dcc88JmzYxMYG1a9diaGgIbW1t2LlzJ9555x0AwF133YUf//jHIpjWwJGp66Ojo9i0aZOwUgR6NNjTWWua3dCMH+817ysLk7I1NDSIiJ6/t7a2SuVxPp/adJE+StpOgM+iNvVjn7Romf3ToWACH04OAMfgFAoFue66zpgO/X6c9skCXKot+gFPzCyTg/qp7C85sMcMgldme36o0yUAYmATcVJkACSes3Cf0h9/3+hSBmWM+RAxJdbCpHxwBHQZpcEpM65oAFAOFKYBS5IjC+UcJRqmMJd2k+Z18rwKABaeb5DJBKiszMCPQj1h0WI+X4ANLQqFEEVmKaUiN4n7pACcIopKzi19Honl6tpaWITWQ9H6SJ+t8TzYsBhfC5WpFoYWnu/BM350/m67Sr+I0yrm8WFhefS7VceEq0oeQSx5zqJrKSzYIvft1MM4PBfN8LACfQwy493FBn/lPI4sd6A6x/RxKMCZ2GYxkPkfBHp4PP2h1IBCh6xoiKZt3TV4Yew/CAKh8zVAYWiGH3mGhsgK6dmjzu7Rs3wyRwROehuCGz37BSDUfS4XZ8CwcRlpfAI2TetTU8GPv9bYsMglB4OGhgZhVCYnJwXEFAoFCW1VVVWhvr5eUpOZgcTQUZpFm56elnAGrx19VUZGRrBmzRoEQSBpy2QUCFj4uw4TMfzGrKeOjg709/dj8+bNqKmpwY4dOwC4QXDfvn2SadTc3JxgfWgZcOeddyZA6po1awQI9/T0CChihtfo6Ciam5vFHwhwoGj79u0YHx/H5s2bpQ/WWnR2dkpWVW1traSxb9q0SXQvuZzzn/nBD34AAFi/fj16enrQ2dmJO+64Q9Ljud7WrVslnEWw0tDQgLGxMdTX1yfctelhxNBUY2OjgDkCDfosHThwAF1dXXKf+EwRiAIObDU2NgoTROCin+V0uJjMjQa+2kCRYIX7I3jlvghu+G5SB8VUf50hl7aB+KhtKYtqqS21pbbUltpSW2r/6dopMDiLMy6nNlN1s9SymR+pzY3epMz+Y7Z94b4sOos29B3R2xgsFFYrLzw2Qko5Mmahk0i2RE0v+b/4OLGeJvW76kNCVBrLiJKHTPQnGaKLAjoifuUBKzMBTjutCquqT8eK5VlUVmTi4pAAZufzmM8XMDs7hw9njgMAPpj+EPl8ES6tqZRVSupkTVwo1C7MGsRH1KE3AMZD0XoowIM1KiPJM4AtwhgPnufFDEb0h1vNwngWBl78DKKIVZVFHD5RiFgh6oCs6I0kBJjqauzU8/FaKTuSZOmMKo66sEljxMWxc8qwMR2CKmEYTyFj6j+6WWtLmJOpqSkRHlNACcTuq0BMy5Pu5oyPeg9qDph1xdmtnuVrn5na2trEjFXvj5k8PC7DVJy1a7aHM2kyRkBsDsjjaSp+cnISw8PD2LBhg9R0AiA6Ii2E1lqkhoYG9PX1iaOzLqKotUhkkchUTExMYM2aNZiYmBC9Cr1uKLzludKbhuwMQ4CAK0C5a9cutLa2oqamBn19faLpof/M4OAgGhsbJZwzMzODnTt3oqWlBVu3bsWKFSvwm9/8BgDw85//HF/60pfQ2dmJHTt2SB+qq6vR1NQkwmVtDtja2oru7m50dnZKXSodxhkdHZXQB9mqrq4uCUPR30jXnBobG8OePXvQ3t6OO++8EwBw55134o033sCGDRtw5ZVXYvfu3VIm4ZZbbsHIyAg2bdqESy65BNddd52c029+8xt88MEHmJmZwVtvvYVt27YBiIXllZWV6O3tTYTxyM6RbdQ1yxguIjOlWU5mGOZyrrgs/Yra29vFgybtO8TnfnZ2VhyjASSOnXYSJ+uixdwAEuHJtChcZ0Gy/0AsItYaL51A8NnWolIahHRIoTyASG4a/+VkJR6iVkYkudD6tsxvC62vwZUBJAtHHGx1yCh9AjIeJEFOpKjWK4gOxGU+IbLwT6MWajv0j1Go4iRjTRq6xPClVFlhU+vGpxWHRFZVnw4AOPusM7Eim0HgGWR8H0HgyTYhgIpsJbxsFvkVy1AdPainrViO994/gg+PnkCxaBWgiI+3EBQQgKh1Pqm+W5v+xYe1HrTcJzZMtJKdRQ2OZ51guVgouuV+oMJmFqdXWiwLijg2b2BNJtEHa0MwpGhUD9j35Lrpa7t4OxnAEOhp6fytt+U6C5TgUPsrB4wW+u3/NsihQRwHYjbtTKxTtlmgsVAoYGRkJKFlYdxf28QTKDCTigMFW21trQx4adM9IAYT2lhQl2qYmpqSD3la00HNBbOZOBgEQSDLdBaP1rFwkGAYjanAQBziaGxslJABAR8BitYy8Dh1dXUS1tADF03etHszG3VD09PTyOXiKubM2MnlnOi0vb1drlF9fT2mp6fR1NSEhoYGnHmmyzR9//33cffdd6NQKGDPnj1oaWkRse769evx5ptvYtOmTfj1r3+NM844Q7Z57rnnJKzBDCjAhW02bdokpn68D7zGAwMDaGpqwubNm9HX15e4R3V1dQmjPcCBlS1btkiq/OOPPw7ACXV3796N5uZm/PnPfxbRMeDA4ejoKFavXo18Po9MJoNXX31VrnlVVRV27tyJ559/PlHMNZvN4qabbsLmzZtx9tlnS0iJ951hMwKfdevWoaenBwMDA2hvb5cyGDxXhnmy2Sw6OzvlvWBZCRZX1XW3GO7ivdWaFwIOncVYXV0t2YEMm2ozyzRg0VljOqSs9WxMiedvGih9Eg2OWSzGXnPOufa/X3db6UanoKNZbJ0SQXEZFiTpRRMLVtO9pebFrQdADUjlBidXGHERsKUKVcpAERJKkEmxiX+zHhUQAxwe27Oq1KKJlyWa1OQ0SN+OdF/jquVJUFXaPISR7sIgTreOq1NZnH7aCiyvdA+Pb4s484xVqFqxAl5U2TzW7RgBZWGxiGJ07LlCiOmjM/j7u9P48NgsimGU1QY4WbEMtGHU4xgZuPtmyzM91kbbA3GmWYgqewK1wSEs944jiLRNvmdhjONfMn4A63kCXn3PZU2FYRF+ECDIVMiy0Fp4yOCt6ZU4PLM8LtkBHzC8V6mK66qVXHOrwNwiWMFCVycH/DIru2eoWPJ7shnAxo7J6Tdj0ZpgKUCj1z2Vv7P9vz+79nVrbXPJgo/RvvzlL9vnn38+AVT4wdb27kAsaqXgUleCZmYJ4D7EupYR2Ql6s+hBn9lG/MgDcWVyzm51hhU/yoAbqFjRm8flzJept0BsfT8+Po6mpqbEzJgaCS5j0zPotDW+1utwsNTeIhzwGxsbEwJlMjBkELT7sy6aSWaHQlt9/rqSeWtrq7BTmmlrbm4W/Y8Gh0NDQ1i/fj1+9rOfobOzE6Ojo8KsFAoFjI6OYnp6usRxd3Z2Fh0dHeIbs2fPHrm3O3bswPj4OLLZLMbGxrB9+3YALo2dWqmpqSk5TmNjI1pbWyWtXeuhCBQPHDiQSHNubm5GEATYsWMH3n33XRSLRTlOTU0N+vv7cfnll8t+vvOd7wAAHnroIZx11ln4wx/+gH379sk5vfPOO7j22mvx6KOPYuXKlQKqAKfBuf766/H0008nqqrX1taiv78fExMTokOitmnTpk2JjENWCue7Q1aR4m4Aohtidpr2ENIVw3kPAAcuCYqoTdPbaKZSZzlSkM+kAG0bkBYna0+pmpoaGGM+1rfmUxMZsy0EbBZlb8wC68TTVZk2l+xFMUwU7wrxX4ZxYmHKtNA1Dl0YRR9FtX28SKxbCpdKSB5m3RhZWJpkb6xNhKO4ljVGUsbLhnBs6proY5auLaDJ9Y+ZXhawIbKVGWQCD4iM9E47bSWylZWYn59zgMDzkMlkEudJNoGD8rKMh4pVp2Hlsiz+9//5O947MoNiyPukE5q9BHBUHAVgLELD8JCBsa5gKSKQExVjQBgBttADfBPAiwCAKTofG/geQi+A56mwjS06nyKydWGYYAh9Hzi90uDdY8XIYyfxqEXP0mIeNnErXxt98baY2PfkWU0J56QF97Pg1oqVLbdNOqMr/dtn0RiKAeIBmp426SKEnPGlB2iGiziwctns7CzWrFmTKPDHQa2lpUWEkbpQINkeGr/pGj65XC5hEqc9fJjhxQ83BwOKgKempgRccJumpiZJ42XRSAASMuM10IMLs7dmZ2exdetW5HI5YS/WrVuX8BXhIEP2ZXh4uGS2Pjw8jNbWVmF59HWorq7Gjh07sHnz5kQBUR1CJHtCdoeDKwdAim6PHTuGn/zkJ7jzzjuFkWFra2vDjh07hIm48cYbAQCPPPIIzj33XHR2dmJ8fBybNm3C2WefDcCFtSYmJtDQ0IChoSEMDw+Lfw4F2o2Njeju7hYgfPjwYQnHkAVjOIf39pZbbkF1dTUuvfRSAMDtt9+OsbExdHZ24otf/CLOOOMMqXlVKBTQ09ODr33ta3jppZfw2muvJbLnAMizvGnTJgDAzp070d/fj5/+9KfYs2cPCoWC+N1ceeWVOHTokPjUsG+s/cU+tre3CwBjeJBMW39/v6Sk89kh6GRGF59L7o/9BJAA4LrEBBlUPuM6pArECQJkUtk/3iOdScX103/qvnyGIarFw0rlP3TaMC/eT3rbxN/Lj89wRQxT9HlqYNeJPEZrXKxN/FufT7nByRqInw0HnmTiNuKBEyYVPkHsoRP9JwAqFV/g/hP+f3Djv0U8UCY1PyjRgQhboM+3zP2wVvu5AJUVAc5ctQpnVJ+GisAHovRoD4jATQFhsYAg8FEszif64nsuMyvIVLh/+66qd2Z5Bv+Y+y/I/u09HJ5yH9L5+YLDUvAAhAg8g+WVDkSsWJ7FsmVZBL6HQiGPE3PuOCfm8pibL2Iu76EYerAoCrNiI94jhEHR0/fF3SUfFl4xD2ONMCShF8D3PBmkC4U8fN+XvsMAp1cWUenlcTys5BWTfSsVjFxjZuglvGrUe5K+AwIOFA73EmtFTJG6o5qVTLck8FmYtUkDpIUATLqdyu+fRUjLGJPwxuDHjh9ZbRQHQHxmCHT0x5EAQWfakMUgS6NBUV9fn4SFWKMIgICHpqYm2Y8OoemKyBoQ6JABdURcnx/r0dFRtLe3y+ybM/K0w7DWoDC9m+dK35L7778fzc3NMlADEMCm9Qw8DtkxFpNkvxsaGqTeEzPVeD4zMzNob2/HwMAAWlpaBMQwpZyOvFVVVXKNmPH0la98BQBwwQUXAIBkEV122WVoaGjApk2bEiGz3t5eDA0NoaenB3/7298AQIDD7Ows9uzZgyAIxGeG2p+qqiq0traKqzLb5s2b8fbbb+Oqq66SsFEul5O0aWYikYHjthMTE9i+fTs2btwIwAFA/v3xxx/H3r17pfBpa2srWltbUVdXh89//vMCPoC4sOTq1avx8ssvC/vF6uu9vb1oaWnB4OBg4hk/55xzcOjQIQwPD0vfLr30Uvzxj39EX1+f1PMi4zc1NYV169Zh9+7dAsQ0iOB6zCTjc0KQSkDMPmhAkmZ2+G7QR4egW2t7WIFep53z3aO/DwAJdWmGUmcr/oemiZ8s3FR+HWAhkJNuookRcJIESxo8GGMi0axsLMtk+zJUfYn7q4kGUGuhjflMYrv0Oeo1kjoSD/oYpS64DFPoIZp4ySsZIpPgJr52Nvpf+Qrt+vgVmQBnrXIfyrNqVqEy8GBCi0JhXtYPjcHc/BxsmIdnDIrF+LxcunkIhBYVldmEWDoizZANDM6tPVN6/38OT6EQun0ExqLm9Cr8w5lO71OZcWndXgQmwuVuf8WwAoUQKMLHfAE4fmIOc3NuQDg2Pw8zH6CIShQRCgh14TSLgvFRgIFfzItPjk+Q7CnFiqASD9YYrMwUsaLCx/FZhkBDWBsZHUbPCgETU9/jf0N+F+dpht7kArkVxZsHKebGxBoi6OOUNL4Aqtr6Iundi7WFGMJyIOZkYapPq4Vh8j3RJnz8CPM3erfwA8sPJgAZnOl9okMcnM3zd+29wjCKFh8TBDBNVxdDBGJmgkZ1HBgJLNKCSTI+ZJiY8svzZGhIgyiGJwiENKhiKvDq1auxbdu2hGsyByeyTlrTQ6aKDAYHEA2sNEDQpohkz7RglPciCIKEE24QBLj66qvxzDPP4Oqrrxa248orr5R9DwwMoLe3F62trQDcIDg2Niai6c7OTgDOS+att97C2NgYuru7cd5550l4qLe3V0pMjI2N4Y477sDKlSsBAC+88AJ++ctf4p133sHq1asFbN11111oa2vDkSNHcOjQoUSaOMFwTU0N1q1blyhGCkDYwY0bNwpDwtBeoVBAb28vfvSjH+G3v/0tAOCZZ57B8PAwvvjFLyaKWQ4PDwvoZgFNMisMjTHkw20ee+wxZLNZrFu3Tu4J+9fS0pJwmeb94HWlz5LWntXX18szwmecoJrsIYGwLlRKDyg6I+vSCvyP10O7jPP94nPE54vAPW0Lodmcj9OW0sSX2lJbakttqS21pfafrp1EZJyzazduSzLhqRBRebYmXl6yoWI+hJRPRHHSDA4gml6UMjildLlJ/X+y80YM3NR6BlH9JQvA1xIceKKJSbM4+jjxQopnE6Ezpfcp1zwVFIt1DgzN6KMhES4Jo1m/ywCL92Ijfsgai+XLslj9X85GVdbpacLCPMJiHmHerRNUuHCTDUMEgQ/fC4EwhC2GKEbmecbzhKkJMhn4QWX0u4Fv3HG96LxPRMj70N8/wOTfppEvFrCsIsB/rT0LVctcHzzPICzMo1iYR7GQh41CYdbmYW0I3/eRrVwG42VQiEwFCyaAQQUCe8y5KqswjUdGI5xHcfYo7KybGXjFY6jwCvA9x+ZET4Bb5meATAUCZDBxbBn+8IGb9RSZ/iasmn6GkhqixN206lnSbCVixoTPj2bpLML42S4RLpPRMQm9FsNaJzPoW0gzsxCDk15noX/znXv4jus+VZHx66+/nhDDkkWYnJwU8z7AsQuTk5OSAaJnnUyNJhNCjUdTUxOGh4clzXhiYiKhNaBjq64PpTObSLVzRsx1dDHBdCkJCju5LkWUTLXWGVszMzPo6OgQxofZOWvXrpXsl6GhIUlPByDhKF1ElMZz27ZtE2G0LnQJICGsZTYR+6DDcQxDcQZP0e/Q0JAcm7N/1qhqa2uTQpwbN27E1NQU2tracODAAfT39wNwIcF8Po/3338fAHD06NGEYLutrQ1DQ0N45pln8MUvflGuXWNjI/bu3Ytt27ZhfHxcnpXa2lqMj4/jwIEDyOVyErpi+9GPfoT+/n5s3bpVwmN33HEHtmzZgomJCVxyySW48MIL8bvf/U62OXjwoAi3//mf/xkA8Le//Q1BEKCtrQ0vvfQS3n33XWF9rrrqKgDAww8/LGUpLrnkEtnfAw88gJtuugnnn38+brjhBrm3dHl+8MEHsX79erkX/L2urk5KL/B5I8PH8g5kzMieDQ0NoaOjI/H8knXj+6JDYXy3dAFT7p+CZc1e1tXVJVLvNdun30Nt6sd7CMTPbVrfQwdw3Tf+O5PJfPoiY+O+zklK3aJsGQG3flJHoFtym1jpaVP7L6sjWeB45QSSrkb+1u/hAAAgAElEQVRRGaCgKHfnROuW+3DiCI8DU6o/MYBSKEufA5KLrI3rSJ0ypS/oqTRMEZc3iPOf3Im5czPR4G6kRjhVIyFWVFag7uwzsdwHCiecd02xmHcZRRUVCEMHbNw2IYwF8vN5hMUCjGcQFiKYFnnMGFgUCyEiCQ4qKrNw9S+t86aBh2UZ14e6s8+A5wFz+YLz1sn4qGAs1VgcP+bEzE4rReBTAcDVlZqby8MLgIrALfPDAqwXwq+ohJ+pREUFB5MKFIsWxTBEEFS4sw/nAADh3DROHDmMwokpVIZH4dl5IKpTFYYWJiwCXgZnLCugYsaBueP5jEvtN6G72lYV4VQ3vOSZFAzCIFR0L6IssYTHkX4+jInCV+VDQU607on+y5gIbJcJZaYbJwknC2UttHwhTc9nJTJOU9G6jhFpbSCuhaPrUzHcBEBSYbWegJkbFB5rd1hNw1M0CcQVyPnn5ORkwmFYi211zSkOFBwYCIqoG6qurpZK2elwGD/oDFWMjY1JxhX7qDOleO4EVQzp9Pb2or29XQor8vrw3zy2FlszjEEAqcN7FIYStOnMsMnJSQwNDaFQKOBLX/qSAJfGxkb09/dj165duO+++/D9739f7tGLL76InTt34tlnn0VPTw/eeOMNAC58demll+KnP/0pVq1aJddh9erVAkK2bdsmpRkACAgC3LO8ZcsWybC69dZbpdhlXV1dIgQ0MDCA8fFxPProo+jv78ctt9wi14Eg+J577sG5554LAPjud7+L3/3ud9ixYwdeeuklnHXWWfjud78rx/3hD3+If/qnfwLgMqRuu81lIO/cuRM33XQTAAcaCQAHBwfR3d2Nuro6/PznP0ddXZ0AW2qZcrlcAoSOjIxIJtTGjRsxMzMjouW+vj709PTIM9bY2Chp8fQpoqUB7znvZW1tbcJWgM84+0xxMxC7hdODJ5eLPaCo3dI13LTQX+tttNeNfpc/qe5Gt0UZnLPOydm1P9yW+E1/2MsJhrWwOKGvXUCrs5Bg8VTSz8sv95ROobxmyDmcxADHcNJu0+vC0UfWRBgkeb7iwaKxT7ROaBRuWaiviVl5etCJZuKekXVjrYb7U5dcsIiFz9YYLK/08Ll/WIUVFQYmLCAfPYCeHyC7bAWs9VEs5hEW89Hx8ggL8y5mGQTw/QC2GDE4NkRYDGHDPIwx8H338C1fXoUQQFCZReAH8IwnZQ3yhXnki0XkQ4vZE8dRYaxkZc3OziKfn0OR+weLY3quaCYcOwRj4BPgBD6M56EQFuEZD9nsMteHZcsd01MI4RkPBZV2nvEysLaA/PwM5o//HeHMX1FROAIACIwFPIOMqcR8kMXY++7lOnQsg9AGMAjhmRAIPSQAifoz1O+C3Hujf0kwTQs9k8XoiVyoGfUcnQr7wpY+nu7/QgzNqYIYa+2nyuBcfPHF9je/+U3CQwOIRcO6FhMAYWD07JG/E8Bo3cDExIRkS+mPKxt1Kjrmr1NdeRwOQK2trcKOcPDndvQM0aZ8ABKAYmRkJDH7rampSehY9Cyds2Curz/+2rtnZmZGsqg4+y8UCgnwxyya++67D62trWhvb5d+MxuGZQ90JfZcLpdIV+Z5TU5OCrhrbm7GD3/4Q0mVrq+vx+OPP46rrroKX/3qV6UPf/7zn3HeeeehsrISc3NzOOOMM2QbgtmGhgZks1kZvGlal8vlpCo4+9LZ2Ymenh50d3ejvr4eN910E372s59J3zdu3IiJiQkMDAyI2WBNTQ02b96MnTt3ikCYOqCuri60t7dj3759WL16tfR7//79ePLJJ/GrX/0KAHDo0CF5Hq655hpZ7/TTT8e+ffsSKeP79+9Hd3c33nzzTVx44YVyfT7/+c/jhhtuEI8YAmYCj2w2i4aGBjEH9H0fX/nKV9DU1IS6ujrs2rVLAHlHRwe+/e1v4xe/+AXWrl0r2ig+JxTQUygOxBo3Le7Vpn1894CY0ePkYmZmRtgXDU4IoDhZ4LOszTZramoEJPOZ1aUf0mVCPtM08YU+pxqcxAyJ/hjH65b7XMaDgvrtI84OPypAkgNTc2odOpHwjgolWJl1WywsV0oCuZD7i6qNJwIZNhq4rS3JiuLy1PiozsXChmlflgjUROyBjbxhli/LovbM01DphwjzeeTzeRjf9b8ysxy+F0TwyCBfdAPJ3Oxx+L4H4wdOJF2Yw9yJD905FU8Atgg/6ksxYgYKs+8C1iKTycLzMshUrkDFCickLhSKKBZCVFYug8lU4tiH0zie/yC6xnMAirBh6Cp8R5lNYSHav+V1zaj75KFyWQbLK7NAGALs9/FjqFi2HJlMFjY0MMU5FJgZZgyMCWEqlyG7LAfv9LMwN+2yMvLH/w7fHkPRAhWmgLOXu/29d9xgPnI2dgJuFc5MAfI0tyNFReVm6oX63sVcD6vSu3NMbiNw6WMQJuVCSuUmJB9XRPxZsDj6w0b2hU68uj4NP5561kcgw9RVbqvrNjF8la5tw32Vy+DgBz/tGaNrUzE7hI2hKJoXpj1WgiCQ/XBmzppVY2NjieUMJeVyOQl7pY0C6VnDsB2vA4XTOmNlcHAQbW1t2Lp1qxRL1MJpbaaYFnzW19djZGQEjY2NEvqrrq7GOeecAwB444038Lvf/Q6333677O+VV17BnXfeiZdfflkyjrZs2QLAZVE9++yz4lUDxDW0KGy+7LLLAAB//OMfExXhH374YTzyyCNynL179+IXv/gFAODiiy8W9+Fzzz0X7e3taGpqEgdnHuf5559Hc3Mz9u7di5aWlkSKvfbzYVu/fj0A4Oabb8axY8cwMDCAXbt2AXAVw1etWgUAOHLkSALccNu77roLb775poTCbrnlFuRyOWHMGIrlvaUYfXh4WATV9Kwh4GVfAcee/Mu//Is8sxpcMOOuUCigo6OjpNYT3xcgBjIE1wS7+r3hMQjMdfFVhraqqqoEZAOxCScnA2mPHk5K9HHSx/2o7aQMzrd/uK0kq+NUTfzSWpmS9Y055Y93OfakfB8MYM2iH2AWSwRKjdbiQS15HM/zwJIEieNaIJ3K7tiqKD05KnwJKDBWMpAxSdjGtE4EqELjjmPkODw2EDK33TOAsaha4R6EurPPQGDnEeZPILQGfqYCmSiulAkqnA4pLCIszKGQd+GcYph3xzQ+bLHgrkGYj/oXwtoCEFpX1FJ8ZkJYWwRsHj58eH4WfoUbUJZXnQ7Pr4DxM4AxmJ8/gaPTfwcAzB6bBmwBnnVhoLjcgIHn+dGg7yEMi8hkXTaE8Zcjk12ObGUWnu/BRsxTPj8PvyKLTOUKeH4GBqFk5MTp1iF8GHh+AEswdeII5j6cBI4dQWVmDgW4a/fmYR9H5ypQMD6AYhRaOnUtvjVxxhQAlV1Vmk3H8FNonOOy7MMi0lSFcI9L8g3U/9Z4OD3hQGqbxZYt9h1YaNmnafTX1NRkORsGkAiPAMlim7owpg6bcD1+YDXASVPeDPcApRlDGuCQYiewSGtvqMvR2hjtwqr7NjMzI6GhdDYLU285CPDjz9kwU99pBghAtBlTU1MSNuD56uyznp4e6UMul0uk9HJwBWLdBB2IddFFFgedmJjAjh07xDBv48aN6O/vx0svvYS77rpLSgIAwNe//nUALpMpPeA/+eSTkoJ900034ZlnngHg0q9/9atf4dChQ6JvAVzIra2tDQ0NDRgYGEiEU9rb2zE4OIj6+vpEuAoAzj//fHzhC1/A7t27BYgBwE9+8hNs374d27dvR21tLYaGhvDQQw8BAN5++20cPnxY+v/oo48CAK699lrZ/q233koc69ChQ5idncV5552HdLv55pvxP/7H/wDgzP/IAD388MNYu3at+A9phonXeceOHaIRA1yIiiCdoUs2DYoJbnmNJiYmJExbzqmY4aQ0uKYh3/j4uIAlvhcMuQJxJhefKWZPNTY2JgATJxM6K5KAh+el+8einZ8JgxNJN5M/prU1C9DgaYOwch9XRaQs2E4m0C3tA2M5nHmXATqhAiSK+ndGgMkZrdbuxAZyqfpQiKNbWiNTeu0Qy481YEv96XQZofwah6eU9sICxliXMG2Blcsq8LkaN/uqMEUABn7lCnhBBsbPxOcbASUbWoTWwPMjT5tMJRwj5MOrtM4wj0yDdcaEfhDA9wy0vZANQ8zNz2J29hgK+XkU8k7rUzhaQNXKM1GZCZw+JpPB6Wf8gztWkMHciSOwhVkHoiLGBaHTozgSzMIgj7kTDoAFFSthUEQeIQqFWYT5eblWQbGIMLQIMhUOxDDl2Lrz8PwA8HyEYehCUwAyK85AxbIVmPvwPcwf/zuMdYDpzKoijs4X4aBvum45D5lkcsRyL2LvPAJfdZsN/XxS1F05sbBHQAsvBsPRH2EZ2wHdr1NZdnITQelc1HeT+OHUeZ5TbwQjaav29AePv5Fu13Vx9HbaEp6/a0dgbSBGMMS/61CY9sbRM3rtz6P1BlxWW1srXiEEFEwLJ8BJM1AcWMi+ALF3yMTEhDAuWgvBkhWNjY04fPiw+MlQczE0NCTOvzwO2YKmpqaEvoMhP4IlDkDsG0sa3HHHHXj55ZcBOFbn9ttvx6WXXorh4WF0dnYmxLX5fF7+vmLFCgDO6O+aa67B/v37MTIygnw+L+fb1dWFFStWYGhoCGvXrpWw9sMPP4yBgQGsXbsWzc3N2LZtm+ihqIV56qmnSp6rP/3pT/jTn/4kDBG9eDo6OlBXV4fW1lY89dRTsNbKIL1v374EA6Tv+3PPPYcrr7yyBEidc845eOaZZ3Dw4EEEQZAIyRHcvPzyy/jqV78q5SdaW1vR2dmJPXv2oKenB7W1tdi5cycAB14p5qVLMuCAxNatW6WvaaDMRsNG/e7oEiBaa9Pf34/6+noJQ+p6awQYfOaAuMyFdjbmc0yNDUNYWpzMZWmDPwAJlkazSZ9Ui7OUJr7UltpSW2pLbakttf907aRp4t/+YWktKqD8bHFxh+Py25H5+CjbnKoA2RgT1ZE69X0ZE3vULriu9RLLdOZUvJ5Xsp271i5kZZShoMt/MrBRyAbGJJggE2lS9FyaIa0QHgLfx+raaqzMRqoQ4yEIMvCCIHJzjrmysFiEsRa2WERoiylGzaWbe1GFbjoZwxYRBH7UT+t0RAB8zwmL/SBAHsD8fF5qZSEsohAWsGzZMgR+xqWcyzlbHJ85gmMzH8BXoRvjOXGzMHEhUIjCZCEsfL8Svp/B3LEjMGEhurYe/EwWXsVyVK1cBS8IkI/YHRf+MvB8HxVBJnoeXP+CCh++n3HhoHAeszNOH/TB0SP4n3+dxfG8hwAhQuOpQt1JdjJmcJL1pQxQorEyESuVZnBCcF/J9T0bZ0DR2A9wDBCzr0CRe5n2cUJSJVlTYfn98w35tGtR0akWiDNZOJvTZnO6OjdZH4ZtaL3PEBTX5b/pLpwuMkmWglkqgEst58ySx9FaG63d4X9AMqw2MDAgLrRjY2OSeZUuaMkyDtSf6JISpPwZCiNzoUMKZGZ0mjHDV7wuAIQJYguCIGFwx+tEzQb7MDs7iwMHDqC+vh47duyQbKQ1a9ZgdHQU69evx8UXX4x//dd/xUUXXQTAMRaTk5O45ppr8OCDD4peZfv27WhqasLGjRuxbds2fOUrX8E3vvENAMC//du/CYM0OTmJAwcOyL1gyIj7/tGPfgQA+P3vf49jx47h/PPPx5/+9Keyz9f+/fsxNTUlTsTbtm3DPffcA8BlR42OjibSxMnU8FgAEqzMYu3xxx+XyvAA0N3djeeffx6AEyCTpWFW2fe+9z1s375dzAKB2GRvYGAAjY2NCWNFMpda6wXEKeTU3pDpZBseHsaaNWvkWeFx+NyzYjwbMwEBJLILWfCVbKQu6cBtuN1CzIzuF9/RtBZIb/MZiYxt4kN5spZ2Pz15xtOpaXAW6sOp9I1hJZsOKy2YOqtCM9Hgo2JH0XplttNhm0j1a7gscT14DHXuCUGFUUdibyzHs/QwCgOLwAvh+85fBgCMl4Hn+U7AG/n+iJOu57msKGtgQh90Wi7k8/A9H54P2LCA+fkTsgw2xIkTx2CLRXiegR/FqALflUKoqMwis6wKvlchmVx+xqDSd/4zxWIec8dn4AUMh1VgedXpyC6rgu978juM67M7txDWGqf9AWBM6ETQAMLCWcjPnQAAzJ44hhOzswhDi2XLq+BnMjhx4hgAID8/G2mELCw8eCaQix3Oz8FUAMargMksx/JV0YuYrcJpR/+Gufdm3DODOEUbSIlyE3ci9VsaXJhSMB8uMrmQu1wCsnUY9NTey7Lh4dRkJJ1Fxede3oHkHvFpB6rCMBQtABCnTXOwpWMuEA/6uiqxLo/AcNf09HSJdw4zrLTLsc5O0tQ7983MDjrBAnFGlF6ulzG0xlRpwIUdNmzYgKmpKUnV1mEtal+0Pw4zmujxol2JmfJNgSYFqNyO6cJM4WYf6HjMukc6M+rw4cOJTB7Aga/R0VE0Nzejuroazz77rIC2np4e5HI5PP744xgdHcXQ0JBkMNG3h8d48803AQCXX3453njjDXR3d+Oiiy7CBRdcgH/8x3+UPlx22WW4/PLLsWXLFtl+YGAAL774Ir75zW8CcOG+3//+94ln6K9//SuefPJJvPjiizjrrLMAOO3O+Pg41q9fj3vvvVcyd6anp/G9730PTzzxBJ566im89tprMtCed955UvuJzxvgwlV/+ctfZDsAuPvuuwFAwNtf/vIX0ULRNfntt98Wbc0NN9yQSJe/8cYb5X5rvyINLBoaGkTHwsyvXC4nomstpKeofXZ2Fr29vXK+a9euRXt7u2jK+F7QQ4jXRDt585niM6drk/FaUVfDbZhSzvdXi+zZrzT44URGa3I+rRDVx2ZwgIUZjo/Fxiy4TVLMsBhIWRzsUMpb7vicQSeXL5bGzuXU4AiDw/3YuJq49FJ0PNF2saQn2tSKYDlxTJFhlKhBABSxckUlVteeicqA5oA+giDjWCKTHIqIxQqFAsKiqlgdATI3uy/A2lCEr1LPKsq9CgikjHVGfQhRuawKUUUoAO7B9DyDTOAh4xvMnjiOuYJjY/wggOf5KBaLKBZDVK10L0DgVyBGiiGMyjwyMBG748H6DgABQFjI48TsCRTzBaxYcRq8wBf90vzsccyemIENQ1RkMgh8P9ayFEJ4vo+gsgLGDySTy8DgvSPH8Ls//BlHZ+YQWj+pOWKKuI29cKT6uo0l5WWfGJM06LMAWACNYmK5F+nsKtlheFL9TDl/KL2vhfxtyjE9XhmAw/N+6P/p+lRFxgQCQOyNUS59Vc8YgaSegELZ9MeUH1p60OjZKj/q/GinjcaAeMapZ6RaN0M2BYhTtzlglavGXFdXJ+nigGNPhoeHRTiqB4GJiQkplEjvEW4zNDSEoaEhbNmyBb29vQIIaDaXzWbR09MjjAuN+jiQ6gGNqfhkklgeYmRkBDU1NWhubsbIyAheeOEFySjieVD/Mzo6ihdffBEA8PTTT+O8887Do48+is7OzkTxXsBlXV100UV44IEHZCCuqqrCPffcgyuuuAIzMzNyfXp7e3H48GGsX78e559/Pp599lkpk3DFFVdgYGAAIyMjCMMQBw8elGv0zW9+ExdffDFef/112QcA3Hfffcjn87jnnnswPT2N8fFxqdHU1taGubk5fJR28OBBbNq0Cf39/YnUct3279+P9evX44MPHFvMrKtvfetb2LdvH6ampiTtvLGxEU1NTdi7dy8GBweFeZqdnUVrayuGhoZQU1OTqMqtS4OweCe3Y2mStNGfFtLzN75PzLgje6PfJW0loAFJNpuVEiC6T0BcLoXvJYFPGsxos7/P1OjvZC09+KcZHLZTYoBKgETqI7yAuHmx/uhjywc+TP7u/oHSKTiAuM5TlNmyAIskK6S2d+EhlRLO0EtKWGotYLwI8KRJLaFtStmuECF8E+K0lSuQCQKEkfMwPAqciww6Sf/CMETRWtgwBLvuDuOyj0ICLC8jTI3nee5cbBhruAF4HpDJFgFY+CbA/HweYcS4hCaMAIuF8QIsX3EaMhHAKRYLkdDb3ZBi9HsmU6GAn+u5DtWFxjomx8YhPi+oRFVVZQS04KqHGwdWKrPLEfg+8vNz8ABUZHy5RjOzx2DnQ2TNcmQqlsGPtjGewVnVK3DhBTn87g/v4MOjJ5AurOpupbofBlIsNXpqFg0dJQCnMH1JgXrJzVZM0ILPoepbuXczvXyh/nGd8uwNUFZ5/QkbwzX8GHIg16mqWnjLdcg+6DpVFARroSxTqpm6SvEkEDMhFNLy40ygwn7RCRmIM0y4H4YGdN/pTcM+0NyvqqpKKnZroKEHHxrV1dTUSAo4/86B4L777kNLSws6OjowNjYmxTqBmH2anJxES0tLgrngzH/NmjUYGRlJCLQJbpgWz+vQ1taG8fFxzMzM4JJLLkkwM6Ojo6iqqsK+ffvQ3NwsoZ2xsTGcccYZuPbaa3HttdfihRdeAOBCMu+//76EsrTpIsM3DOlcccUVABwjdfrpp+PRRx+VKu+7d+8G4EDWsWPH8Nhjj2H79u1obW0VMHXppZdizZo12LJlC5qbm8WIj41A7a677pJzyuVyePfdd8Ww8FQaw2erV68uGyp75plncNVVV2HFihUJwe6NN96I8fFxDAwMyD3kdWW9KwBSif3yyy+XoqgNDQ0JkK3rQXV2dmJkZETYQwLU8fFxjI6OCpgjy8fw5sjIiLxT9CIiw6TDnwwdpdkYhmTTAAWIa7FxgqI9r9LLNHPzSVick29pU9+yeEp90o+kLregdpfcIXdn0wClzEoLtFPVAzE7B7GkIf5YlzmszLNlgIuDEklqP30dOCOOGBARcUBo/0QBTbgZe7ID+phuBDUm7gtdlysrA5xWlQWsyyQCAD9KO3amh4iWFaPtXAaVtRa2aF2KedTX+fwcgiBAJsjC+J6AiHgwd/vjuXsAPC8Dz9gokOaqkQNAoWCQCXx4gS/AjZW8rbUohgXYoiuaWYg0M3nfj0COj9BaFG0YH8sYuOSoMAIxNtE3zzMowsLaYmygaN0zWFlRAc8aeJ6J3I6BZStCnDj+IY59+C4qKpdj5cqz3XGCDDwPqDltBRr/23/F2J/+N96bno32Z6LHJxQAEJ2QgEWvBAzpF6gMKPfg2D6rn4E065byUzpJW8jET7eFsqoS70sE8Imt4918uuEpwAFvnfKqQ0AcbAkgdKw+7VfCGazWBwCxizA9O3QoSqetNjY2Jj68+qPb2tqaoOl1Fpb2mpmdnZVK5tqLhFlNra2tAjI42O3ZsyfhAcOQBgHW2rVrBbBQP0GABThQ1dnZKUBmbGxM9jc9PS0DXUdHh6TWj4yMYHh4WI7FQYZVoBnCamtrw8zMDHp7e3HHHXegs7NTzmlqagoXXXQRXnjhBezZswfXX3+9aFX6+vrw7//+7xJ+Yl+ffvppfP3rX8e5556LLVu24JprrsEf/vAHAC59nCzT1q1bJRS0b98+vPfee1i1ahWuuOIKTE1NCRhqa2uTwqOvvvpqgilqbm5GY2OjXDu266+/HjMzM3jiiSdw8OBBPP7446L3YejrrbfewoEDByQlfnh4GL29vVKW4bbbbispCwG4LLF0u+qqq/CTn/wE99xzD/bu3Su//fKXv8S9996Lq666CpWVlcKa7dixA+vWrcO+ffswOjoqHj+0KmAFcoJmIDaYZKiRLuBArOlJh6gYeuR7Q5YOcECPQJ2eT2xaG0eABMQGmHz+tK6I761mi9g0iBkfH5eJTtrI86O2pSyqpbbUltpSW2pLban9p2uL16JCGe6EYagFtimXvbGYluWURcwJIe6pN90HzzPOBM4g6bMf0UrOMy85gy2GITwYV0ZAyYHSDrBaXBqff1h6nSTS4JXRNhgJcEg2ko4jIUSMSV39rJozViHje65+FJdZK6Gt0BWcEvO7kBoMhqKiC1oIiwjD0IWjongJCTg6OrvQVXx9POMyrnxjAYTwfA+hOqWiaHyS51ksFlEMQxRtiGKhABMxXZ5n4BnA8wKEoUVobFRbDLDGi8KL1mU2mXgbA8fUBMZHMSwijFyOTRhG9a4iNgsUMAOZTCWKmSyOHz0Cz5tFsRjF3H0PHnwEMDhzZRUa//F8/K8JNzv5+9SHCK1fymqq8GEsSI5DSmThyoc59RwjyfR9mm0hMbEceYF/896nBdGnmnhwqs1aW1LWgDNIuqHqWD5nj9oPRy+jQZ7OGAKcfoB+IJox0kLidChMm6BxGUsTMNtL94GahaamJgBIuP52dHRgdHQUbW1tGBsbE5aEmV319fUYGxuTGS51E/39/WhvbwcAYU+qqqowODiI2tpaCZ1pd9jp6WnkcjkEQSAsTUNDg2hwOMPXYmuKpaurq6X/vJYHDhwQ4SqXbdy4ERdeeCF27dqFdevW4corr5TZ/C9+8QtMT0/jO9/5Dp566ik5ztzcHL72ta9hz549UoqALM/999+PH//4xwgCV9SSmpSRkRG8+uqrqKysRHt7O7q6uqRoZXd3t7AqbIcOHQLg/GmCIEBDQ4NcIwB47bXXcOedd+KJJ57A17/+dTz++OMJ8S/LSVx22WX48pe/DACorKxEGIb4wQ9+gGw2i+7ubtx3330AXNjtvPPOQ1NTE/r7+4VxAVzm1JEjR3DPPffg4MGDEs565513sHr1alRVVeG5556TLDvAFQMdGRlBfX09mpqaEjXPmGVWKBTQ1NQkz+nU1JSEksisaKfsqqoqtLS0YGJiQu4Fw5cMnTL0BcRaNGYpMnyWy+XEeJIMi87y4v4mJyeRy+VK6q3xOOmsSOp50u/sZxaiYvDl437K0nH/BYGRjY9SlipXgs5y6oYFRZdldDuy38hi1tgoyygCFvpDLmAjBdC0ASBBgg4sxWnFSFy8cvvQ1ye0odpvvEMX6iLIiAfQf1h1Os6oPg2eLSA0RkKCDigY2FVrRqwAACAASURBVDACNsZITSvfOHGvtU5ky7Rpa12lcAfkXAmFGLUlT4TVsHn+nucG+EwQSNVua0MgtEBoEdqiGuh5ZXnORZgIfNkwQCE/D2OKgDFO9xPdJyn8CQAoqvsYpbXDwPhA4HmYzztgVczn5R6GcCDHZya9CbBiRTXCYh6FQl7MAYuFPALPwDcBMjCozlag8fzPAQD+JwwOTR11QEWBmvg+WpTkh8tN5HRBA+N4EpF4hg1Q4nysFy+grVmsfZL1TvW3T9I8z0uUNKA7bzabRW1trfwHOJBSKBQkrVmLjhnP147DQFxXR9P0PB7dYRnK0IJJhnPSKazpkhA6i4piXU3vsy/19fWS7dLT04Ouri4Asb093X116QmeU09Pj1Sg5nXo6upCT0+PhPA4mDC1eHh4GEEQCMiqr6/H6OgocrlcQjcBQEBXfX09hoaGJNxVKBTQ3d0txnSHDh0SgLN9+3asXr0ahw4dwrPPPltyXx977DE888wzibDRBRdcgOnpaZx33nnYv38/1q1bh/vvvx8A8OMf/xhvvPFGSaHSvXv34oYbbsDBgwdx9dVXY3p6GjfffDMAJMDNihUr0NvbK4P0bbfdhq6uLgRBkHAZvvXWWwWIfe5zn8P3v/99XH/99QBcIVBmRb3yyivo7e0F4AAbi1euX78e+Xxewlo01rvrrrtw6623YuvWreKcfOSIq3933XXXJVLdBwcHkc/n5docOnRItvn2t78tYFgXuqTGjBqa6elp6VNbWxuy2ayEnVgqBIAAjampqQSwXrduXSKcq8EEDSspZmbjJIJaN63FmZ2dFQEyn3sCpXQIWm8DxIkFDLVxG51E8FHbSbKozrX//brbUmoY4wbMMlDlZNlG0rzS9UyZ2W3iQ26Sv5fLENEtLPe7iT1nEstCEw+4gJwbwcticbzF9D9pfxy9T2NLz4HHduuwywRCXjR4um2ylQH+W64OFb6BYe0lL1DHAIpFB9s8l0MereMhn887tsbEKfFh0WVN+RFQ0mDUGMB4vssWUgU1vei++p6F73uwYR5UcYfFPObn51FRUSHXggAsNAaFYohCPo/5E8eRyTjUUVFRCWM8GC+I2CJPQKoRAJdmEjz4nvPi8XzfsXQRczR34gRsGML3fXfNPQM/+pg46ZSF5xVx4sQMvKhquBf48P0KZIIMEJWL4M2Yns1j9H/9Be9PH4O1pX0BAIti4hlwP0bPV6RUInSx1sIry+rotcq3ckwMmURaE5xMI3ey30627NPMorrooovsq6++mmBxJiYmMDU1JR9MncmUBiF6tsnZYV1dXaKKdtpXh8fS1aPTIGZqako+1tTa8Ljj4+NobGxMsCC6DxSAsm/UJRCU0ekYcLPYpqYmKbBIlmZ4eBiNjY0YGBiQddg4IHDWzuwwAAkWqq+vL1HCobm5GdlsFiMjI1K1GoD0iSJoHosCWDI+HR0doiNZu3ZtogQC4LKFgFjAy8aq3I2NjXj++efxuc99Dn/9618T67z22mu45JJLUFlZib179yb2weKcbEzRrqqqwk033YTrrrsOr7zyCn7/+9/j6NGjsmzXrl244YYb8KUvfUnqYLHoKEtI6H3v378fg4OD+MUvfiHsi+7fgw8+iEceeQQXXHCB6HUeeOABrF27FqtXr8YFF1yA+vp6EUo/+OCDuOGGG3DhhReio6ND/HeAuIYVJ7bnn38+AOCnP/0p1q1bh8OHD2N4eFgAL7OryDjq7D9mL42MjEhhWQLb1tZW8brhciB2w66qqhKdDYEfmSKCbz6rFNZTgEyWkMt0kU0+n3wWdXkVnSbO/9LePgS6K1eu/FjfmlMCOCUbnQI9vRhY0QBHxMCpbqS3jxkcJJiZhUJcYbx2vD+DSBCrOZdoPRuXXIhZJK8swEmMXdaVA5DLaLhdBHBgkxtERza29PpYnk9ibYFbbruI0VhddzbOXrUSYX4OxhgEfgAa6VlrgdCxQaE18CsqBOC46FTEFMFIeKhYdOJcz8Bta2II6/sePM+PwE0cWssEQST+LcLzgIrAi8JVrrbV7IljMdgDEESVwa0XoFAMceLYccwdn8Hy5ZUAgMpsFobePdaFpURk7HkR8IqvMwABXX4QwARufXmWihaF/JzrYzEEPAMvE8j+ioUQng8YW0RYiPpt8/C9jEsdj4CCF2VYWQ9498Nj+P/GJnD0eD7BZMFGKeDiHaQ6ahxz46KGyefBhHzWFFyyCzFBpWCDjKNNLXebnxpo4YThVIEPu7brZ58ewPnyl79sn3766US4hDNAZj+RvmcqNUMpWsioP4w6pMTMm6mpKWFb+FHW9XFIowNxCjWBBNfj/mtra9HX1yehNIILfqg5EOjQFb1GCEq04ZruD3+vqanBvn37sGHDhoSBIQCp7k2vEt0/sjTcnm1qakoKNLIGk07PZSaN9l7J5XLYvHkzNm/ejL6+voTImBW+a2pqsGbNGgwPDycKL15++eU4/fTTZXvA1Y5at24dhoaGxAvnW9/6FgAHpvb8/+y9f2xd1Znv/Vn7xznHjhOS1JmaqXvr6Zg35jYVHsYVrghq1GuEuZi3mU6kpMK8pFwQqQjCdJiX8BLU9IW+BJG2GU1QU006dZVUSUV6MSIVQU1LEKkIIoVU9Qy+F3cwF3MxxYAhTnzO2Xuv9f6x9rPOOscOv8r8M8qqSpJ99o+1915772c9z/fH8DAzMzOuBAW4EtKiRYs4ffo0TzzxBP/lv/wXwIKCpcS1f/9+hoeHXSDT1tbm2Fr79+937uQbNmxgYGDAiQ4++OCD7ljXXXcdq1atYmBggJGREXdfBwcHWbduHU899dRZBQX/6Z/+aR5TC+DLX/4yv/71rwFLKQfLvHrjjTcYHBzk8ccfB2wwJNdc7rOw9OQegX0+Ojo6XIYLaq7vYsQpQHd/Oyl/+uJ6IhYpz4cvPikGs2NjY3VyArK+GLz65VzfCsU3hx0bG3MAe39C4HtR+ZlQOc9yucyKFSv+fQKcqxsyOFB7IS5EEW9c7wP9W6l5x1hofXess8RX/vq6ISyxPykCdN3xjJQOXF+84+SliPCsAZ39EClFDXuSH8cymIyjXXs9Aew2fujkAo68aOHP34Mch6OU5rxFNhjo/It2ApOSpSlxXCQIgtrHzmiUsftItSGMc00cQBHmUYxlPglexej8iuUMKxu0CafeECiViwcqJJqLcj0bpSBNKxSikDgS4I6mUj5NklRQQUBUaHKCfjozVMpl5k7PgskolnIBwDAmCEOE5k0oKsy4zJIc2wU+UZSXnkIrYuiV9wIVoIxB64y5uTmUUhTzjJKKAosDyjIKUeQo8WmSkJks34/F7ch9CkODCUMmpt7iX1+coJLb7CilCPJgVpSJa3db1QcudgPv3rof61WO36cEtHAwgtS76h6S98sGyf4+eIBjl+3+mJWMH3/88boAQtgejXoZEvA0KggDdcGLr/fhv7ynpqbcDFSO5Suw+kGSND8wAVvWWrdunWPniFCfHMs3BJVgRY4tHy+/79I3n+Ei5ywBzNTUFIcPH3b6LyLsJ4GZ33fZZnR01O0XajgHWVfKaYBjl0kZQ8519erVXHTRRfzmN7+hs7OT6enpuszAsWPHiKKIH/zgB1x44YUuuLjiiivo6Ojg/vvvr6Mfl8tlLr/8ch5++GEmJia47bbb3Plec8019PX1OWNL0dRZu3YtK1eu5JlnniGOY3784x+7dT75yU+ybt06+vr6SNO0LusjRpdPPfUUhw8frstczM7Ocsstt3DeeecxOjp6Vv2axrZ//36+9rWvAbjS2u9//3vnbn7dddfR29vrArS9e/c6dtF9993n1nvxxRfdWL7kkkv43e9+58b/Qw89xP33308cx8zNzTkmV1dXl8u0iIu83HMpUUrQv2rVKrfd2rVrXXalkcFULpddQNzW1uZKlqK71NbWxtjYmLt/HR0droQsgbCMYyl3SWDv+1TJOPWVyGX5QorgUHvm1UdUMn7fAGdg4/9Tl4B4v+zNe5VsPui/F1p+tnIV1ON2auWh+YUl+5OuP54JXOZmwb4vmMEJcsBorjBcZ4FYA5PW+uIff8EztQGPCVx8lTmAh806YQxRBH/5n/4cgE+ct4ikWgZjKBRLeYkpLzdpC86tpilhFBNEocvuKBXhaMcmqwUxOZhaa6v8awOtHBuDIVQQBiFhqBzlXOUFP7ssIQoDYhmQQJpUSNIKcVwgLJTQ2MAlqabMnZ6lWjlDc3OBYqHo7oXF3oT22gUefdnUZxqk3BVGISoILQVdqbxsVqO3C3C5PFemWq26YwVxhAqUFZEKQre/TKckSSXfLsSWBm33QhQqjJjLMkZf/Df+1+vv2ktnAgKTYcgD6wWyI55xx7y778T/vADnvcqifnlqXpCsVJ6lq5UzF8oGNWLdzhbg+Ou6M/h3CHB6enrMsWPH6l56jarGko2RlLhkVwRbI+suZOYnzbdp8LcRrIw/G/U/CPLSFryDCAWKnofo1EA9lkAAz/5yKZ8JHRtwRpodHR1OaRisUrDgO/Lr5IILqAntyQxY1mtvb3cBVrlcdro6vb29dHZ2OpyDX6obHR0liiI6OzvZvXu3W/7QQw9x9dVXs2rVKqfJc++99wJWWTeKInbu3MkjjzzCs88+6wIjKakdOnSIcrnsLCGeeuopzj//fDZu3OhAumLK+dxzz7Fy5UouvfTSOrq1b6R51VVXcfDgQZqamtyyL33pSzz55JPz7vdNN93kXMIvuugi128RuOvp6XH3QYKfFStW8NJLL3Ho0CFuueUWty8pVwndG3CifUNDQ3R0dDiTzgceeIBt27YBljb+9NNP88UvfpHf//73DvD98ssv8/bbbzM+Ps4VV1zBm2++6e6fKE77ATFY7aPBwUFmZmZcGUra6OioOydfZwZwgbA8L/44EZzXsWPHXJAI1Eka+FkVsQzxM45yz6VkJdnPlpaWOhFH0aDyNa+AuomNr+0j7aMGOOdo4ufauXaunWvn2rl2rv2Hax+Af2XeM1v+QfA4Z6Ogvt+2Z6Wcv0cf3HoL4Q/yFH5jOc0WhZQrEy1YL/OapVP7YBA17xrZ/cv/a6Wjs/dbihmC63Ar5SQmzZKWZpYsbs430DmoNiDLMtIkcVkIFYRobRWUwyBwwHC5CEbXsCK17FKQg1SVu0aOMu8yBRla40C8ku3RYUgY5MaRoeOWo1RAodhEEIRoDVl+sCS1zKUwVDQ1lQgDi80JVOhl0izIWPpncpVlcnxRIHQogzUOxdj1wxDfO0prCywqFItEUeRmimQZkQqJVD1dPwgCC5g2GntGtWZMgNKaosroOP8T/PEtC2Q8XbHeXuS8wwVxYWbeX2z/ZGwwv32QjErt737mpj6D816P2dnA+mejk0tfz67V/NGaMcZlNgDH6hCxPT/z4tPApcbvl5v8dLefERIabSO7Q5pkaRol6/2ZsFgejI6OuixJuVx2eAW/fzLD9ZenacqRI0fYsGED3d3drnwlYGJhgMmst6enh9nZWbq7u+np6eHYsWN19NqWlhZGRkbYsGEDU1NTDgQtaf/W1lbuvfde1wfpszBsfIzEnj172LlzJxMTE+zdu9cpEl9wwQUcPHiQ4eFh5yfl07Afe+wxHnnkEZ544gk2b97M7bff7s5JcCL9/f2sXr0asBgcob739vayfft2l435/ve/z9KlS/n617/Ot771LbcvsMKB77zzDr/4xS/qsjdXXXVVXTbgq1/9Kv/9v/93wHpESQbnd7/7HQ8//DAAt9xyC+vXr6dSqbB06VIuvPBCVq5c6fbxFx7jSpqAjSV7c9dddzm7BbBqxf/4j//ILbfcwt///d87T65vf/vbzpcqTVNefvllt017ezt79uyhqamJHTt2uLG3b98+hoeH6ejoYMuWLQ5H1d3d7YDvcg/9MS74NCk/yvgSRpo8G0I7l+ynZGvESwpqAoqNVgo+zkZ+lwyOAJMFgA84/JCA130jXdnGZ0g2WjX8Ke19tz4b1sb/U9p76d2cbd+ynb8P/7d5x1+AuD4vha4UprEU9f6dseFILR7JmVgL97f+mLWNav1vCFS8M6hto9w2td1ZrZvadvZ8A6D1E0vJCUegjQUWo8hMgtE1XykNZGkGWEZRFPr9FePNBVyTVK0vVgNIoguDCTRGp1ZHRzR1shTQhEFEmmZWFyffVRwXCaOQFKhmFuuTOY+oOUxWoViMiaPI4oKwAVGWa/YEQWDdrPMLYZWV8/MwNcd38dUyRjyulHPitrgWRZYzqaIgdgFOUq0QqAIqsMBpKeMoFFEUkyYVjM6wP4nHl0bnju9LSgX+vHUJAH/432+TGVWPt6G+9OMPl7rx7oazqRvzwgJcSE5A1slvTX404zA4ivoxutCzulCJym8LB1G1Pn8YZeUP0/wXmwQw8tGXQMM3pBRmj2wnyxr9boRtIjgYH2jpY3UEhCzLAbd/34+nu7vbBQidnZ3O5gEs00WwLX6qXbR8+vr66hSV/WPJh8ZXkxWmy5EjRzh27Jg7J1GK3bBhg7seUmYRbMf4+Dhbt251gYJYK4gKcqlU4vjx44B12D5x4gRpmvLcc8/x3HPPub5fc8017NixgyiK2LVrl2NOPfXUU065ePv27czOzjp7gX379nHo0CFn8igfq3379rF27VomJibYsGEDJ0+e5JVXXgEskHdgYMAFUBLM7dmzh87OTtra2hgcHOTuu+92fRO2krTLLrusLsABO3G54IILHCZFcDDDw8PceOONTpMGYPny5XzjG99wKsXyzmj00vJVjF944QVaWlr4m7/5G66//nr++Z//2QUeUj4rFov81V/9Fddccw0At99+OzMzM+zdu5fx8XGamppYv3692+ezzz7L008/zS9+8QtHVZcy7czMDKtXr65j6QnjaWpqqi7ghprXmWCBpG/C6vM9ySS4FoBxuVzm6NGjLgiRSYCMX/HyApzGlOjhiJSD9F3KT/JcS78Bx+Dz+y2l14/a3heDc9V1W2orfyB8zdnWfe9gQ2sbkIic/3sdx3dlXujlX1tXLRBgNPTHNG5TayZPfChqflT2hxz0i98n6RQ2q4CyjCNqmRuV07wlZBGsiGyW54KAwOnWSEcWFRUrO9uJ8w9xqALL9MEGGuWcEg1gAoXRhiAILQA5DBFuVhBEZMbY6x3UEEb27zoHRttzNHmmxuiUMICAKkrXZu9JOkcYWjaVfEQDZV8CTc2LMEA1y0jSjLSaOhsHnVYI0Zx33hIKxRIOoWIg1SlJUrXXyISEoR3cYRwRxjFhGBIGoYcDMiTVKpVKmUIxp3fLOakAJRklpQjDgOqcfajOnJ6lubkJVP7ikuyXCgErFpglSW6kKfR2jcEQmIAsTZlNbR+efeF/MTObegOkFurI+AxcRs9jydlI0jL3AF/7RgK5+oGXjxQjdPD6DE49ngYv+jELBjx1TX7zju9vY5li9ev+cNvHCzL+7W9/6/7ta3L4JoJQAxL768hLsZEu7s8+ZTv5SPjb+uv7mBTBLcjx/KyOYFhkmXwYhI3kixPKOcl+5KMg4mkCfD5y5AgDAwN1/j0CGBUwr7B6ZNYsujo+k0twFm1tbezZs8dRvtva2hxGQq6ZsNMEV7R48WIAHn30Ubd8YmKC++67j5///Od164DVtdm3bx+XXHIJl112mWMqiWN6W1sbPT093HHHHYD1axKAbHd3Nzt37nRYnPPPP5+9e/fS0dHBZZddxkUXXeTup4BehXHkt/vuu48777wTwDGtwGZVhoaGePnll3nsscdcoOCzpj73uc85bBHgwLNpms4LnsA+G+Pj48zMzLhgbmJigr/92791gVNjW79+vcMRXX/99YDNjJ08eZLh4WH6+vqYmZnhX/7lXwCL7ZGAUnA9YOnoPT09Lpjx2YCCA/OxVf44EtaTBOWA82vz1/cnEiJgeezYsTqhxJGREedvJZ5tchzB9DTqQEn2RnA6Mu4kc+lnbaXfHR2War5s2bKP32xTUt7+i3N+9sI2H1Bbn5Fwe5u3rt8CR2PWC67ntlb2P0amq3X99bJLeVZgIQaJfVnPzxrN61M+s54fq3nLjBzPt5y2XWvMNhljPO8n4yjaPm3dNIBr5Tybi0VitPWPAoIoQOsUrY3NNKCtoB5ApsBYWnSW2eyGElniQGPyjIcllElwEaICcjXnvGQlQZZRhGiUiVBo0sTqRZTPnGLxkhYCpYgKBYyx2jtgA9ZEa5I0JU2qVMsVp9cDmtLiRRSbSkCAzgdzkiYk1YQ0Ta1mTRA5RQGTBahIEi2KKJ9NKW1QBUWSJhijST1F5zCMczd34wLNqGi3awmXgM4soFgZgjAvk4VBHpxGZMqCsI0XrAjtP4wKLGu2Y+w/nb+MU39405YF86KTF2K7wFU3jAeFIQtkjHrhcv7cGXsh64HEkDuN21vsNHVsVG3P1xiM0m6PKr8ffmukk9cKWrXfa+Xe+iBrAX3uP7llWVanjeEHNY2gYZlV+kBRCX4mJycd+NdXRJUZpyz3Z4aSIpeXtOxLXrzCuGltbXXgTMkGCQi5UQFWQNECiJb+S1Am5+ADp+XYki2CemVimR37pYK2trZ5tG75TdRkN2/eXDdblpn31NSUEzmEGvvrnnvu4e6773Yllk9/+tNOxO/w4cOOQQSWCXTBBRewdOlSvvvd7zI7O+tAtIsXLyYIAn74wx8yMTHhNGd27drF2NgY9957LwMDAzz55JN1gaCvKCzU8htvvJF/+Zd/cZmWW2+9tU4teHBwkOHhYTZt2sSOHTvcPdy9e7ej2F955ZUuMyTr/eQnP2FgYIAHHniAP/zhD4AtT4m+jd9++ctfcvnll7vvxWc+8xl3zZVSXHDBBTzxxBP83d/9Hc8991wdHVyCm9dee82J7H3/+9/nD3/4AwcOHGDbtm20t7fXjaGuri56enro6upiw4YNrt9dXV0uABNlY7nnkqH0l4ENLsSbTGje/lhpFOuDmsiklE/9ScTg4KBjCEoZWZrPSPR9qiQ7IyUo//kcHx93elIyGZG++CXiD9s+dO7nvXABZ8uofNA2T/vGeIGTW+j/awF8gJuJ6jz7slBf65e/Nw7BT+X7s9n6EpP71HhdM/MwOMbX6nOdqMsE5R2UD5LBBhxNTUXQaa18pm05xxjtFIsl+6V1RpZpAp3VSmV5wKcTK7BnjMWs6JySHYY2lWCvmba6MmHg+qe0VRxO9RnKc9ZlV6dVsmqRuFCkUCiSpJo0s+ncSlK1mZukgs4SsqScl9TgvPOWsnhJC3Eck6YZqWjxVBN0ltFUKuXnojxcEaBTjLIWD+iacGEQBBTiAsakLosFoELjAuYg/0bL/uJiSLU8RxiGeTZL7pEmCEJQljWWpdbqAsC4DEtAEAZIrrH9k8t55fV3ePdU4t1LyRwBRqNJ86Al8ExobTkt1BmKxCF+MhNaplKON2sM0etLVzLe8+xgraroym4fKB5pyODUFtfv116Hs78HPmpTStUpnfrKwTIT9NPqx44do6WlxWEO5CUoM1JJhcsHSEpZvg6O/yIXdWNfQl6WSRDj07f9ma7s3zcDlUBmoRS7BD6dnZ2uf7Jea2urywBBLYs0MzPjnMSlHCBChqI83NHRUWf9sHTpUlci8IXYJJiSYFACkvHxcZeF+uxnP+tozjIrX7p0KSMjI9xzzz3ugzY4OOiux5o1a5zYHFjxvCNHjjiciXzoNm7cyJo1azh8+LBjPsk19zMdUNOFeeyxxyiVSq6M5Ac3YPV4Zmdn2bJlC1u2bHHv8e9///t1wnpSWrv++uv5yU9+wvr164miCK21w9088cQTzMzMOIXkRYsWAXD55ZcDNcXh48ePu/sENphqaWlxpT1ftdg/vjz/l112GV1dXRw9epQdO3awYsUKvvrVrwLw5ptvumvz9ttvu/siWTnBqvgBgATao6OjzjTWV7aWQOTQoUNOamBkZMTZPRw9epSBgYG6CcXExIRja/lyAo0Bim9CK9vKn/41kiYaUdLvrq4uxsfH6/A68KcHOOdYVOfauXaunWvn2rl2rv2Ha++TwanHEZxNl8atvQAg2W8fhDXVuK6PMaj/4/2yQzbtPw/c6QCjck7U0vM+wphcYC/vQ+CHgkb2u3B/a3/Xdb+JRUP+Y+0MfLhN48zY2HJYIQpAJ27lLHU8KDAN11ZrMBk6M1ZDR9WyD1mqIcswWmOCwNk7WL+oHLOUm2dGeUZIoSmffpdAV5ibfZ3ynGUTNC9aRpYmmMwCjDG1LFI1SUgqZdLqHAEZcQCfWG4j9sXnLbOWEWlKpVKm6smvL2puplAooHJwsCutGNtnqVNlIt/jLCQMOsusBpC7WWF+P3IgMbUMo7XFsFm+NM0Q/KBdZrNHSlkNnDRNvHuhILIeWgJmXtwUc35rC6dnp1EmxJia8GOaVtBpmblKQlKpEAUpy5daJlwUGrLyW5i0glYhWWxxDUFxGWGwyJX56kteuIwSuT4SSIYqtwYxUpKrDYmzzmSkRJWX8rT3rJuGrI7vsfZxg4yNMfMyHY0zVMkMCB5DwIzCzgDqrAd8fIyUXwSs7DM1RMyskZEl205NTTkwpsw6fYE8H+sj/5aMkY/bEdEzyUa1trbWid8BbhtfbE2AwMJ+keswOTlZZ6EwPT3tzn3VqlUcPnyYzs5ODh065BhM0m/R3PGl+aMoore3110b8Vm6/fbb2bx5M8ePH2d6eprx8XGXAZCsjpQrTp486UC5kqmS7Ipo0GzdupX+/n7X1+XLl/PTn/607t5/8pOf5PXXX3fZkCuvvJK3336bSy65hNnZWYaGhhxg+Be/+AVHjhxxSstHjhyhWLR6V76I4EsvveSybBs3bnQA6UsvvdTZKQCOtQbMs2qQc77vvvvqLDDAZkME3/T3f//3brmoGD/77LOMjo46gcKhoSGOHz/O7OwsK1as4Oabb3YWGGNjY5x//vk88MADDt5/aAAAIABJREFUlMtlB5YWYPLo6CgbNmyo00ySEmhvb6/LqPhWJTJGOjs7XaZvYGDAYWxWrVpVB6SXEpPgtaSE6/ti+ZgfqAliSinYZ1j5mSa/pCVgZCn7+lnURqbjh20fqER1tmBmoXU+SInqI5WxXO6d+oDgA/TVrqhsyci9wGUD2ecC7t5eGGU8U6laaGJDoxolXLrq18a8c4U8wGk4TsP10POujyEMDJjUBWjamLxUAGFOF3cgYylX5D5KRgcOcmSBvjlWxNTO0GQpqc5soKCt4aRWFjOTlk9x5tRbVMvvotPTjiKfxQWiuJmsWkanSc56ys8pSyCrgq4ShNDc1Eyc2ySgrZt4pVymUim7W9vU1OQMP3WuMiwDXAJHHVqVYaGJBxhMEIHBbSMij1kWEEYxKBtwBFaqL79+eRkvv8sSSAVKkemMKIxtYJurIcs1MiqAMEKblEzbPsQq4vxPnMerr/6RStUGJKFIFKszvPX2S5Rn/4jKqqQY3jpjA5zm5hbrC0ZEy9JPEUTL8741YTIbggUqD4q98aRkMDUEthoPu9PQNNQc6v3mAhwJimpBvQT+9YXWj788BbZ06LOepPmiefJxEkE+CR58xoj/IvZLV/IhmJycdMdpPJYf0EgTIKf8XbaZnZ112Bxhm/jby0vaD3x8gLI4cvt4Gt/zSjAXop4s5oo+22VmZoaBgQEOHTrEmjVr3McVajYOUCsjyXEOHDjAunXrOHHiRJ2PljDL2tvbGRoactduenraic5NTk66jyJYs8Y9e/a4427dutV9ACcnJxkeHqZcLjufJmlr166lu7ubK664gscff5wvf/nLgC3r3H333fT29rJly5a6D93AwADPPPMMjz76KH19fc4S4YUXXnC0+zRN6xhWp06dYvHixbz44ot11O/XXnvN9XPbtm3Mzs5y8cUXA3D11Vdz3XXX8dnPfrbOkuGb3/wmK1asYGpqit7eXsrlssPq7N+/n+3bt3P48GGGh4e56KKLHKX+sssu49e//jVf+MIXWLlyJT/+8Y8BaxL6xhtvsGLFClauXMmDDz7ocE/T09M8//zz/NVf/RUbNmxwJbmlS5fy7W9/mxdffNGBgH1Zg1KpxNDQEGvWrAFw5UdhMPmBt3/PBwYG3ITCF90TuQV5bmQM+oGHCGLKb75juK9M7AdO/sRFysryp9iOSPtTWFQfiCYu7cNiaj5Qkw9+465NQxjgqFMmf9lKmOFtqBozKH5wUdu+EfhrqGeL1Gb5hsBbt5ZxEUyCqduP/GlxLEGN5eJloWr9XjgzZvvToNOj8t5og8GmGrTR6CxXUs4ZXZnLdtjgxhiNUsaZV8r+A3IsigKl8+yETshSG4zoyilSnVCpzgGQlE9hsjKhSShEEORYmqR6htKihKRa5szsu6gwclckreZU8Mh6WaFw+wtCa3+QZla7p1iymhZxFBNF1u08SRJnCgoWhBqJVYNShP61CyxDCgpA1W2jtSbQOgff5I7xAvLO/6sCRaRC715aLJLOj6O9zEI1Sy0OyOTsNS0YLDivuYnzWkq8eyaxAOkcoBOpZorBJ5g7HZNpxewZzbtz9lgpy1j6iaVExSIqxwEANrhRAVYbqX7smfx4CzGhVH7v3T9cxsUH0DQG16AWCIkaAyU/+Dkb0eBPbT7rw/dckoyI/9ITDI14KkkT40B5Wfuu3IcOHXKU6kaHYmGS+AwOqL2wfWqs3yeoZ2iBBQzLfiQQgxodVnRujh07Rn9/P1DDzAhrS/ogmRbZn280KqwW37/LBwxLICUfDrD09r6+PiYnJ+nu7nZWDkCdbsnBgwed03mpVGL9+vX8wz/8gzPklGOPj48zODjoPlh/+7d/6zRqJicn2bhxo1Oz9enWoq68c+dO2tvbufXWW939e+yxx9w9FTXgyclJtm3bRmtrK1dffTV33VXzSLzwwgvd83DRRRc5ewa/iVfVP/7jPwJw8803u8yMYGteeOEFt7+Wlhb+7d/+rU61+Hvf+x4PPPCAC5Q++9nP8tJLLwHWsuLVV191isX+sUQNWbJEksF57LHH3P2SQEkYU5s3b2bFihW8+OKLbN261Z2H/L5y5UpeffVVDh48WMecW7VqFdu2bXPgY7lO3/3udxkfH2fPnj2USqU6fSHZVrSifA843/pExq9kOiXTJ4BiqOGAfCVlGZ9iR9L47MlxfdahLxchwfNHaX8CwZy6COT99G+UUvJmrlte+2dDKeo9/y7BhOy7fg/+i7jWp1q2xTJjZK+q7uNRp/+hIMMCgwOv2z6LRDkks3wyjZvy+iBpIPelyrdrLCt5+wsW+HAZbUX2qDtXQxhGVnhPATlLKdNJnonJ0AZCk9qyFWDSKpoMk1XJkjNU56zdQKxSAqU5k6QEQe7jlB8/KkQY3USmQ0JldWIAMqVIkzmiQkx57hQqDPNSEEQBVElyEDAok5FUqwAU4pRisWQ1cILQPeSBUqRV60KepSkmS2slKgUEgfObcvdIW6B1EEbEQUwYBu6B0Fqjde4rJeVCF5RYKrdll1lavVxYFViKvwpyPaXARitRHOf2GBplAkej19hrViyWiJPcZTwfR5kuUFp0AYXmjMzAEi8Q1QLgRTSX8r6FNqsksbEPlresMM186HE+7PxrUweKt4G1VpaTVSs/GfcAnU0n5700cj6uprWuCy7EO0pmmFLugNoMUspNPjjZ34dkVsB+iNeuXetS9z5jyy81+V5Qfnpe2FR+BkdmmsLaEiCoyOyLRoj/ghZ9H8mc+GabfmDls7VkO9mP/zERerlQhH1Bv6mpqTo6sGxz8uRJ1qxZw/j4OLOzs+4DKXo4EjT6wNYf/ehH/PVf/zVPPvlknXaOgEPHxsZYu3Ytjz/+eJ0p6pEjR2htbeXyyy/njTfeAKwQX5qmbN682dlDCHOqt7eXNWvWsGjRIr72ta+5AGdkZITNmzfz+uuvOzE9v8m4v+GGG9izZ48LVsrlMitXrmRoaIhvfOMbrjTjU80vueQSnnnmGS688EK3bG7OTsZ8gDJQV3q69tpr3dh79dVXufjiix1t3C95LV++nLfeeotNmzbVGYheeeWVXHTRRS5T49tK9PT0OPdxn9G1f/9+ent7HSOpo6PDlR937drlSqxdXV0cPHjQBXqnT59m27ZtrF69uo516OtEiW6TP87EUkRcyGUsSRbUL0/JNjLmziZ4KZOGxpKVX+r1f/t3DXAWEvmz/5j/e2ObV8ZaaJ0cDeEorbJ77ZWRvH25rI0DBMyff8osd6E+zMcJ1VLwqAVKXnUBWC1nZI+xcICy0HGhxuCR4/l6PRbzoah98mr7C5R8gJWjgpv8q2dMhuinBHkUprQBDZEKMbpKVq26vJHWGkyVrHoKk5YJ8wxOoOx9KEQBQVQgCGLHwDLKBlhkoQ0olCDkY3SWokhBWf8o0ceI4pjZ2YC0WgYUYRgRF+3MrlQqYQwU4gIOBAVkaUKlUsmxNBqNIcwHfBhaTRwbkBhHb5dgUOvMBquqpqWUpAk6sbgghbJZoNiZt2GMIUQUmfNz1RqtMqtoHChSlFNuDkRYMU1yMUK7rwyFMSEBisAoUIELP7QCHYIxkc0GGkMYShZJo401SdXGuNJarVyEy2S6cegyK/UigE6HKAjqlvl/ulLTAli5xnX9djaRwI+zhWFYl86Wl628iP3yC9Q7EPs+UIKlEcyNr6ch+5+YmHBsJahljiSQaXzxSilKaNlgAxzJrgB1ARjUxAH9QEoostJ3329L1pX1fcaWb5Doz7ClH/LB8XFBcl0ay26Cwzh06JArO/jsrzVr1rBr1y6X5ZF+z87O8swzzzhtG79sNzY2Rk9PD4sXL8YY49y7H3roIbq7uxkeHubWW2912bQf/ehHDkdy7NgxOjs7eeCBBwB4/fXXmZiYoLu7mxtvvNFpxlQqFTZt2uQUcm+99VYXZE1NTbF161YX3Pzud79zgZEwsnbv3s0DDzzgApA0TR3uZ3h4mAsvvJCbb74ZsBo5zzzzzLxAyg9AwJb+hCF08803097eTn9/P93d3XXP15133sn+/fv5b//tv/Haa6857NAvf/lLvvvd73LkyBGgpmsE1lX95MmTjsklbWRkhK997Wvs37+fqakp+vr63Ll2dXWxatUq2tvbOXToELfffrvDcm3fvp2TJ0/S2dlZN75kouDr6fisJcmI+vgzCdJlmb/+zMwMU1NTLrhvbW11gZEvainPlYwhyQbJMy3j3c8OfZT2nkJ/n2j7T+a//l931FbOMyILZ0je50Dvs14jjsVSlt9rG2Opw56ppjMGzwOgs23uH6vRSlNT3w3llbTqA5LavhYWNVT5bw1Bnsym6zI4XlZCqXkZohDo+GSRpU2KLP8Qa6yScZYmebAEAj7VWe4MniVU5t7h1Km3aG4+D4BS81KiqEBWnSNLyzY4QXTubLQXBIG1TRB8Tv4/dEqWORvQ3OAyIAxjwrjIopbzWLw4xzUEAUmlyjsz0yigZfESCsVF+U8RaWbp2GEYkeWO5kliNXAEFxIUYvfQqcAK7okxZVB/k1xZTynlQMGVagWtNVEUEeSZH1EjVSogy1LCMBdcdJWdAFRAVCgQBQFJUqFaruR9AJ0mzJ05RaACCrkzeVwsUtWKF8ZfpFxVqKgZI7R8FZJpclXoWmAD2Eyits+TNp5Zal3AIQGI7V/NZsPMC0xMHijphmdasmDKGLI8k0NDwOLvy1+2UMAuf//J/7fpYzXbPH78eF0Www8G/GBFXpA+9dkPfnywop8elwBGlvtCgvJx8QHLIvgm1HLfYNDPYggF1z9WmqZ0dHTU0WHlY97e3j7P5VsCEnEl98tffknAB22maUp7e7ujiPtBmzg5t7W11WWe5IMmHx8BL0MtKJucnHR0ZICdO3cyMDDAL3/5S374wx+66yjHaW1tZWhoiJ6eHrq7u12A86lPfYpXX32V559/3mV1ADZs2OAAzFNTU3R3d7ss0pEjR7j33nsZHR2lpaWFSk5AuPXWW1mzZo277x0dHa68J+J4d911l1M8/s1vfuOOJ9mUBx54wOnq+FYPF198Mb/97W/ZtWsXUCspNRp4GmPo6urif/yP/8F1113Hjh07XHDS2dlJV1cXpVLJvWMEazM4OEgcxzz//PN1GUYJIsfGxvjiF7/I3r17HWZm2bJl/NM//RM33ngje/fudeDjoaEhrrzySn784x8TRRGrV692gOg9e/a4cdfT08PRo0dd8LpmzZo6YT2/lOlnSSRwkTHuTzT8jKePjRPAvIwHGVuyjV8mFi0qX3BTxpkvNCh9kGdKnTPbPNfOtXPtXDvXzrVz7Vyz7UNhcOqyPYocMDs/TfJ+eBy/1a3XwDCq7cfP7uR5e5Rd35O3R8n+PFDvvGxTA+vJP6Ucn9CI7Fw4Q3P2DJZdJkJ08/uQM7e9Vp/BUap+XwprVGkwzhdJoQnI0CZD64zAPxGtSaqnmZt9i7RymgCNyQr5/pZCGEOkCcPA0d+jUAGaUGHBrUFYB1LVJsXojCg2uQeV3UawVXEUUioWa4rJKiSKC4RBlGNIFNWKnSVkWpNpW+IqlZqo5jOaQrFAoVSkUi4TBCFBFNYo34Gyyr3aemH5NheBUmSZtZ5AWTVisAJdlXLZChsqRRiFKCMlKpuBUnmmT3A2ZDKurZdXFMVUlcUOaWNyv6uApFominJGWxZDpnn3zXEq1VmKxfOIC3bGXCicRxg2oaMYTYgmJsv7YFlPFkOkTU3cUecYMa21y+DIvdCqHivm/+lnauy2Jh+DgVtuxSbn427qxQNrY0/W+XchGDQ03xzTnxH6jAyo1eVlueB15DfZ3s92+OBFvywDNWq2X+qBGiPL96ySNLtQiWUdP4UvmR5hrjSKrQmgWcDDcu6CXWjEJ8iyRkyP9FvwPCJMKE1wQX5Jq1QqMTIyQl9fn8vy+DilI0eO0N/fz+DgoAMZHzhwgJ6eHi699FKOHz9OqVRypqPlcpnDhw+zceNGhoeHmZ2d5fnnnwdsZm1kZMSpLQvodmBgwGU8jh8/7nySZJulS5dyxRVXsG3bNgeGPXr0KEeOHGHbtm112Rdp119/vfOGev31151x5r59+/jCF77AXXfdxbp161y2A3CA4Oeee46WlhZn7yBtw4YN7N6922FzlFIuG/STn/yEvXv3OrbSr3/9a+bm5ojj2DGoBEz89a9/nVdeeYXh4WHuvvtuZz8xNjZGmlrz1c997nN861vfciyqvXv3smXLFr761a/W+XtdeeWV3HPPPXR3dzuhSMFKHT16lI0bN3LDDTcwPj7O1NSUU27u6+tzCsb+2PfHtuDA/GUtLS1uzPn4uEaQvTQZjz4V3Md/CSvRx+b4QGYfDyftT6GKfyQlYwkQpJ4vTeV4CgeWXAAse/b94QNeGsAwfqq8tjMjHydVH3DYD4JdFgSNR5XAqD6Kkf34gE7xCGosnwVS0sg/3Eop50VVC3rk32behwYgaCjB1V0rVYOQSn+M1rYClZehinGBapKQplXIrE2BkVJPmqJ1hlEBcbEpJ47ltzoMMUoRFZsIVRNRlCsZK0WgrJGk1mndR9UYg9EhBkMUhVQrFoBnqdCGIIhoalpMFBW9kqEthYRh5C61BEZpmhLGBZqamwijmCBP6QZBCMYQF0sehl2wMdYF3TLEtAgZ5+vZ/8pYcvicICCOY6f0nKUZaWD7EEZ2LAWBxTUVCvb6mMAGAmiDNpkrKdrzDQiUIY5jsqRas5Gw9qYERlE5c5rqmTMo7EskiEpEcZG42EKx2EwUN1MI7YshCEtoFZOqiJSQVMpaXmCjtbaMuBwEbYIAbXKgvF+iwpbxAp2XqrxSsntGvfLU/HKUxpgG7Zv8P42Bz79n81+GvhWCX6Lym+ABfD0Zv6QjzWcm+RgCOZYAln01Van/ywvZT51LqUEo6o0YIQm8fHdyKYX55S4ph0kpTADD8nEQHRM/4JFrNDU15TALsq2UIaTPnZ2dzM7Ouo+gKA4LuHfdunXOJHRmZoaNGzc6s9DXX38dwOE81q1bx/DwcB0VP4oi+vv7OXbsGKtXr2bt2rUuUFu/fj2bNm1icnKSDRs2OOp7mqYcPnyYG264gXXr1pGmKTt37gQs+Pepp55i9erVDAwMOABtqVRy+/r+979fp2+zcuXKeR5Q27dvd9fhtddeY+fOnaxZs8Y5eV9xxRWO7QQW2yJsKmk+IBhsCWxwcJBvfOMbXHXVVfziF79wJTSwZa+XXnppQSdyqIFshT5eKpU4ceIEQ0NDtLa20tfX59he3d3dnDhxgkOHDnHw4EF3PgB33323U/EWywawLu2icCzHk/Fz7NgxB0rv6uqqC1B9A1qoAdxFN2p2drYuGIcaNVwwOr4quEw2fHVuoA5474Pb5VmSZ94Pnv4UgDF8AAzOldf+37WVzxK4gAdyVLXgYaEP+Nn0c7wldX9KADHveMogJoJ+H6woX+iyBo1ZGEVQx25ywZoESr6XgqoBmFUuFOf3UrIXyv3uBTgCuVggqrNZmZpjuKIGlnXXSYK9/BRWNGuWN1mbBYBCsYkgCKhUy6SVOUKTkOQ0bBUViQpLSJJch0bXmECLlv4ZQdxEGMREUU3AUGltRQFNhs4SMDU3dskGWABvQKV8Ju+rXSeKizQ3n0cYlxwNG2MDpVPvvkMUBMRR7NhDBkVTy2JQIQQBUWizS4VCDCjSNKVareL7QOlcY0e0bvyPl1JWuwalnCaQu5YG0iTJcT41HIwF49YyFyLHroIQnWZ5dseuKw9ZEAQoo0mSOeZmT7mgKIhjtA45+a9jTE2/QaEYojOb9akmGSqIrN6OTggDQ5zT7EuFJuJCM8RFiBcRRE35LY9ICdBK2WBG1zy+jMkQKQHr7O4HJLVlBs/uw8PYLJT5MTma2WWLyHFA1LI+jdsA/Oj/veHfzWxTXniSQRkbG6sD3nZ1dblZn49/EfBvo5hfe3t7HYDYn0EKsFewKY1sD8EM+JRvsAHG7Oysk8VvbAI8lvEj2BwB6i5dutRlLnyBPV9sTYIJwQb5gZlkaGTW7H/spqenaWlp4eTJk3R0dLggpr+/31F4JeMjgceOHTtYt24d/f393H///Tz88MOABehu3LjR4V9uuukmZ0LZ3t7OgQMHGBwc5Pjx4/T29tZlWF544QX27dvH008/7a7rz3/+czZv3syaNWvYvHkz+/btc0Hlvn37eOWVV7jttts4evRoncfY/v37WbFiBV1dXZTLZQeu9QOV3//+9+zZs8cFRgcPHmRqaoonn3ySO+64w+GmDh48yIoVK+YPxAXapZdeCsCJEydcQPOZz3yGl19+mf379wPWUuM73/kOy5cvJ8sy3nnnHb75zW8Cll7+la98heHhYXp7e11weOjQIb7whS8AVlDwxIkTLsB5+umnHY1/YGDAUcVvuOEGenp6WLlyJT/60Y/qHOsloPB1kiTjKBiv8fFxxsfHHc1fJg9iedIIGhaMlu/VJuucPHnSZSX9iYk8twJ697OnErw36kOJvYSM9cYAp6mp6eM324T3Dkh8wLEzy7QbobzgIJ821mV3Gtv85d4Ms64UlgchqgYqbdxHfSlKWuD24Wd1XNnI39arXrlVlWeIuUCJKmxclgdMpqEeVcvuNAY4tWDOTxjVsmI2sElT++FEp8SFmEIYEcUxaXWOpJqDwwpNZFphgiKBilAqIU3sQKmWz9AcFYmD3LAxq6n0msCAznBO50rurR0HcRxbEG9UdP0O44hCqYkgp447sUGTkSaJDXrD0F7LPMgqFEsEKswDkpggZxWlaZqXiwLiOEIb7bQzyJlTWZad9Z6LYrFQ1WXcyWxeaxs4gWXNh2GUH9MLhANAGSrVnI0SRg40qHVGltpAKc0SqFp2VVEZTNDETCXg9dMxcSUkjuwDGscF4mIRnWUklVlMWsFU7TmpuTkiNUcYQSGOaC7ZIKsUNxPERcKoiAmKmKCAdma0VrRQ/m9yV3UJeowGE9QCIPeblowP+XoNzuUSMEkpTAKb9whwPu7mq/5Kmcb3ZvLpq75In5SDoKZkLMGMPwP0S13+b/KR8IG8sr7vhSVKsVADIEsWxS9RyQxUZr1+9mV6etql8H3FXAlsJLskrtcys5cMjZh4yjYzMzPOidpnco2Pj7tMUXt7uxP7Gx0ddX0fGxtjzZo1TiVXslTSxOG7vb3dlYtuvPFG7rrrLnefZmZmXDAxPT3N9PS0K7OIc/nc3Bw/+9nPXHZpZGSErVu3cuDAATo6Orjjjjscbfvb3/42SZJQLpdd/8BmFdasWcOVV17J/v37+dnPfubcyV977TWGhoZcMNfT0+M0fdasWeM+7vv27XOg4YUC0lOnTgGWbn3nnXdy1VVXcejQobr3jejivPzyy1xyySXOeDRJEmZmZjhx4oRjDQlF++KLL+bee++lra2N7du3u8yF9H///v2MjY2xfv1657115MgRDhw4wNatWzl69KjLquzcuZOTJ0+68SbMOzmnPXv20NvbS09PT10wLM9QS0sLq1evdmOokcnnB0iHDh2iu7vbBSuNuja9vb11asayD5ksiHyCNCmDiV6TH8TIM+sHbNL+FBbVh6KJS5PZ/IJiY/5X2//pLMHN+7Or5u/XhTteBmX+PhszP6IvI9ma2gHc900F+HuTQMNWKTwLAA//oZSyuinecQQ3I/ue1zdlAxwJIEIJsuquUT1uJww0Sln9GoA01egkvw9ZQvXMW1TO5Jo2QUQaaArNS7D06JRM2+1On3oLRUZWKBJGEWF+TlFoy27luTM0lZpQnrKzZSAFRFGMMVbvBWwpDAKKcTGf/Wfuw6kz6yLuHNmDgDCnVYdRhArIjS5T0kyyNNridmIrDKizWhZJqZra8EJjLsxNQ/OOyJ2wQRGZO4+aIam1aYgia36ZJnngk9igxrmwK+WwNnJfsixFkzJ7xs7moug8woJh5tQpXvvjm0QqcCyvMIooNpWIiwWiKCQMm10fAgKMMpggI03PcHrG3j+ytyiFYY5JaiIuLrKZHkCFTRgVolWMUSGOWp4LQWopUTUyrBro47ohwHEsLPzMDnVYntr68zV4Po7mM0z8WaB83KX04WvRNLIuJOMjwYwfdEgAJbNKeXH61O9GFolQ0H0XcLCsGWExTUxMsGrVKvcRkpe3zEb99L3ojMifso0EInL+YoUgHzDBTvgu6YIZEifmEydOuOBMqL+C3ZAZ+6ZNm5y1Ql9fn3OKlm327NnD5z//eQCH35icnGT16tW0trby+9//ns7OTveBlDLGpk2bGBoaoqWlxWF3jhw5wr59+xgZGeF73/se99xzD2A1Xk6cOMFtt93GN7/5TX71q1+5wOzmm29m165drFu3jvHxcUdzFiXlnp4exygSfRgJcA8cOMCOHTvqXNpPnDjB8ePHefnll11GBWyQJe7gwpaSLNedd94JWAsIpRQPPfQQYNWXDx8+7LRxnnnmGbe/22+/nQcffJBHH32UsbEx7rjjDveMPffcc3z+85/nBz/4gVNAlnH8qU99ygVJX/7yl+npsUmKG264gbVr17rMnSwfGxtzOKg0TV3mBWyAuWnTJjfefXagjFMfoybXTgJ3wQNJANbW1uZKqZJ9lH4LJkcmBn6WUp4/Gbtyb+UZlOyqzwaU56HRusTHo32U9pGE/t4bXIvUb+rX935//zJV/XKbCaktD5S1XTDKhjpqgW1cQONvF9QyJ/MCJ9fPoO64gHOa9jE07pyCoKEUZo999ixDHmR5l0gJksTPJrkKlcnF7eyANbkOTqg0SXWONDlDMneK6ul3CYwdgHM6JWzWRM2l/CHT1rIAm2lKK2cwyRwtLUsoxk35uWkqlTlKhZAw0KRpgsoDkjguuaxO4FSDoVytWPyJztBZ5j6sQB4gWCCz1TiplY6MTklSgzHlHAdjl4dRjNEZkrTxP67GGLJcj8bP4vjZuLoglNo+qtVAmfXnAAAgAElEQVSqzSQFjWPNODdyOU41qaJik5fBQsKwFqQGgYUeJ2lKGEa0tOQKzMUWCEKWLVmMySaZLZcJ8yA4DANO57TyKIqJCgWKpdyLKo6IA5v7i6ImYilRqRSN5vTpMwSzp4njtykW8zJesUip6Tzi4hJUWMIEuYmWCjEheZBDfYlK12wYhGbvX5+6EpaUBN2yYB4Gx5j6a/xxNK11HZCxtbXV1er9l7E08VOS2aK8BP3gxA+Y/PKU/OZnhGT2KL5Usi8JsHybBX9/kk3yadCShfG1PcAGK1KeEpVYv2R29OhRVq9e7YIWgI6OjjqquCgTS1+uueYaPv/5z7Nu3TpnHwEWpHr06FG++93v0tbW5s5J3L1bWloYGRmht7fX9WFgYIBVq1aRJAlxHDubgl/+8peUSiUGBwe54YYbuOGGG1wf2tvbOXz4MKVSicOHD1Mul9m7dy8Av/3tb9m3b5/bj9hNpGnq1qlUKg6TAlaD5umnn3bX7fDhw4C1gJiZmWF4eJi9e/dy2WWXucxTR0cHl1xyCdu3b2dgYIBrr722TjVZMDuPP/64ez8cPHjQleb+8i//kieffNIdS5qAhdevX+/G6PLly11g9Oijj3L11VcDNXdz+bePE/rKV77CzMyMw+4Inubo0aO89dZbQA3wLGN8y5YtTE5OcvPNN/PP//zPPPvss4DNqr366qu89NJLRJF1lpex19XV5YJwuX5+NkQyiv5z5mPdxItMgkNxopcx7uv0RFHE4cOHnWCkT/WGGl08TVOXCdywYYMr9/rWD1Jihflqx412Kh+2naOJn2vn2rl2rp1r59q59h+ufWSzzbOt42dQ3G/mvddtZBDlC+vXadwWQAXWjLAxC6NUbqKovVJUBEHoyg7+rFyb3FSxcV95JiZwuBhVWx7kUv95GUvn2ZMsM8RRgTDClkqUFagDwCiXCfFPKlCglM4zXwHKKKtGDChlwJQxJqcl55mYalpGBRCQoHQVZbSzI0jnZqlmr1NoKhGEJUIVogKbAYjCAKMrpOUzvDP3FnORPU5Sfoe52bcJwgAVxKggZtF5FoS3ZGkbUXExQRQ7PA5AUp0jigtUq1VbrlIAduakM4MKQpSyGQqdabJU8C+aJLPFkDiKUZHtm04tE0xFEUaFWM52zZ9Jp6kF0qJr1mRBbLMWRtsSlMqViYFUZ2RJSlKtWP8rn1oeWKNOvxQHFkNkVZMzN9uT/SljzS8DpYjCAs1NzW67zMB//j86eHlyij/+cYaZd+xsR6uMQIXEcZG0WiUsVygLHTUMCFVIEIQ2u+PYZIo4DimEzSgTsSgK3XionJ5l9swccfQ2xWKTK13FhRJRVCQIC5goRhOgtVe+Is+CecBjgNBYWjomyPE9fgZH1iVnr/kA5I8fhyMgSaixNHyPKGkCJJZUeKOhXyOtXLYRN28BqcoMUmaaYnvgN0mfiwifYGZkZivZnRMnTjiRNsHJtLa2Mj4+7rYZHR11pZb+/v66TI24lYsKrLCeRLm4s7OTkydPOpE7gJMnT3L//fdzySWXuLKYZCF6enq4//773Uxbzmt0dNRhZvr6+uq2ERfqHTt2cNFFF7lZtAj/jYyMuJKIZKUmJyfp7++nvb2dkydPUiqVnHrwzMwMPT09XHPNNfz0pz+tE0a87bbbuPbaaxkaGuLZZ591pbRjx44xMDDgrBnEoPOVV15h3759tLS08L3vfY8777zTbXP69Gm++MUv8p3vfIef/exnfOYzn3G4uUWLFrlS2OWXX+5A3XfffTePPPIIP/7xj2ltbeXCCy90Ngw333wzDz74oMssSSb0c5/7HJs2bXJsq66uLkeJHxsb46677nLZqh07dvD2228D1k+rVCqxZcsWpqenXSnsrbfe4uGHH2ZycpKHHnqIhx9+2I0VUSO+9tpr+fnPf16HpXnooYfYvn07W7ZscVIEMlaiKOLEiRN0d3fPYyAJSN0XuWykZftyBYIvkyymz94T9pyYxvrWD8ePH6dcLtPT0+PKm9Ik83ro0CFXyhT8zdjYGFEUuWdB9ufT2j9s+1AYnPdiUc1bd4H1Ftr+bH+3TO6Fj9dY8lkowDFpQpJW3EcqigNCFUEwfxuTJZggx5pgHFZEMDRS6qptkqFy0LS1PsCVlAKTERlDemaOLKtSLDW70oplIUUEUYgKYgKVf9BUjFKR/fgYQ6hSDPng1FXQCalOMHHBHSiMYjJdtSWeMKJQKKEziwkxacLpmSlUELDskx2oMLJGlQBKU61WbGBElbnTFlinK+9AchpdNQRREyqMOTNjA5LK6beJCs3EcQGMJgwlyNLES5czm8yisEGi4GlUFBGGCq09AKtcb0BjAcZKF8nydLItY4UEWYRWQR4g2YuuswSTl8HSLHElIHKauz0+pNUq1cReB61TdKbzF5Tjw9n/xmGO17EGX65MlhuT1oKbegMwrQ2BCsl04l4KcRSiDLQtX8InljbxxzfecsFKkmlUEORKxTYQDvIST2hCdFCjaScCIAfCKLAAcQyny7CoyQK7m0uLiUJNmiWcmXsL1LTrQ7FQpKnYQqlpCWFsAeb2ZK3itEZZjSBVuxzaK0HZEmN+qnngY4yMb2VB6NR0ej7OJm7iYg8A9sUnH1kfyyKYHJ/67bM4hCouNG2odwWXcpRfdhIqrH8c6Y+Uuhr7IPsQAKxvbdDR0eGosFJCEFZJb28vo6OjdcwUYZdInwQHIRgIoa8fP36cAwcOALBx40b++q//mi9+8Yuu/xL8/OAHP+DkyZPce++9dHR0sGfPHsAGNceOHaOrq4vdu3fT3t7uPjT79u1j27ZtHD9+nJMnTzpl3yiKGBoacrYMgqGQfqZp6oLG0dFRt93Q0BCzs7P09vaybds2d6+kj+Vymd27dzMxMeE+glu2bGFkZMQZj4qFQ1tbGxs3bmRiYoK77rqLm266iS1btgAWV3TllVcCVvFYHLcBp22zbNkyHnjgARfEPPTQQzz99NOMjY1x//33O7NPsGUyqAGKr7rqKsACluX+PPHEE1xwwQW88sorgC3j/epXv6K1tZWjR4/yrW99y429jo4O7rnnHtatW8fOnTudmvIdd9zhrBjWr19Pd3e3AygPDg46DaHe3l4XFB0/fpxdu3aRJIkrhQoQW0o//f39pKk1hvXLsguVruRZEbxaY5lYSp5SQpLlUg7t7u7m6NGjjnYu+5QyqAQsslz2PzAwUFc+FqaWlLr8yYn/9w/bPnQGZ6GgYqF1F1qn8d81Om8NGFxbuf54jWhdvx/zcTRAXCSKaxosSuVGkIFkb2rbRGGICmyGIQgCByoVvKpG2Y+rBBfKAl4tJTnMQa458DJLyCrvkiazKKNJzSw6/6Bp7Ec7ywzFYpFibl1ggiJRVCAgswaTpopOLBVbZ2UbgBlNOViEko9gEFmjzagIWYbSYPIskgmqmOpp3pl6maXLVxCGsbMHSJMEFRoiFaCrmfOvIlCoqGBZTYUmgjCGnPWkwoAwSDE6yQMW+7ENg4jkzDu88+b/JtZllElcpsgEITpN0GlizzxUhKUlABQXf4Kg2AKFxWRZ5jydkjQkCGMbBAYhYRS7u5QlVVCQJFXiuIDR+blmIVEck2WapFKmWi076weDxnlMGWsNIUKEWaKpaE0UxzZwy+9toVCofeS1JtManfciCsRIM8udzvPjFIvEcUykUi76z528NDnF4mWfAmD23XepViskaUYUxQQqzK9hzoTKbMBjTFj37KSpxugUg2KuCrNz+QwrKFMqhjQ3xTQXmwlDGzxXqlWqlTOUT89SKv6RQqFEFIsQV5EwbiKKmgjCEhbgbu+tUYFlY6HR2lo5SDOEuTaOPW3tgvigZk76MTbfe2p6etp5EjWaTAq+5cSJE/T29rrsij3XqA5YLM0H/kqWxMe/yLqSOQGcrcL09DTj4+OOmg41TyfRtRF8jfRPjjk6Olo3812zZo2bFfvsLzm+gFDlwyIZG7Fw6OioUb5HR0d55plnOHjwIAMDA87eAKy43K233sqDDz7INddc4/Am7e3tLnPT399fN0MeHh7myJEjjs4rgYh/X/yPlVw7f5a/evVqR50+fvw4bW1t9Pf3MzU15YKY8fFxWlpanM1ET0+Ps13YsWMHo6OjDtcj10X6Iw7sfX197rqK1k1bW5vTc5F+CoB39erVLtgCmykSllOjds1NN93E6Ogomzdv5v7773eU+NnZWZ588kmuuOIKp8fj20V8/vOfZ2RkhJ07d/Kb3/ym7gP+q1/9iq6uLvr7+11A0tfXx9jYGI888gg9PT2MjIw4wPfu3bu54IILeP755zl06JADo4sQowSN7e3t7t6ePHnSjSvBjzV6u0mWx5c7EId4CczlWOJrJUGRHyzJ2JR77gOGu7q6mJmZYd++fU7+QPqQpqnLRvo4m4mJCceU9AHIkq39qO19AhxVN5t1S88S4LxX6WmhbQJnnHj29ecDfoM6hpL1DvLLVqCcE3bsCE/KyPY1GrdtFqisTYoyllLsVIGV18cwrDly54Jpgc4IdApGkyR2wJTPvI3JysTFCBUXqCQZccEGBIW4mTAskWUaYzIX+GRpmWpymjSZI6vOkSZV0pzOnKUpxlTRWhErzaJC/iGOm1zgF0RFTJa6AEypkKZigblKyul33mBxVIBcRA4FxThEZQkEYHKKNmFkMz1RE6ZQJAhiF6wEQUwQRZhAEYcFwpwmHsclmpuaKLUs483X/ifVM9OEOi+/ZNYvKgxslsRkhnT2j/anuRni5uUUlqyAQgsIuDYukpGSaRs4hqnnOKUCMIoogDisAZ0VKdVyhUqlQppYE8yaF5O9t2EUg9OGqY0v0FYQLwxqy0NDYBQB1ok8SapUc4p9HBWIo4hqpUySVFDkWZpq1QbJWcqn/2w5SxeXmH7XahK1rWgjI6VcqVCpJmijXNAVRTHaaNIkhZwFZXudZ1SCGm07y8tFWZaRzIWUq5p3w4xiMU/FNy2mqQSaMmcqZSrJLHF0Jr9PMVFYII6aiIotRIUmgrCYn3BMkJuDBqEidBkclfcjyMtbjpxmVZeDjzfAMcZQLpddelx8a+TF65eh5AUo4N7u7m73Um5paXElJQlMwM6iBUwsQF8JIkT8TACXvlox1Giskpr3jwPMy0yIroco9UrA09PTw65du9i8ebMDaMo+ZPY8MTHBiRMn6pgs0r9Dhw5RKpUco2Z2dtYtS9PUfRzBsoc6Ojo4ffo0P/3pTx0r6/DhwwwPD3PJJZfw7W9/u05bKIoiR6v2FZwleyRmjeJGLv0WNd3+/v66Ml53d7cLKtvb2xkeHgZqCsFDQ0OsWrWqzv9r3bp1TExMMDs7y8aNG10ftm7dyubNm3n00Ud58MEHKZVKdcFouVzmwIEDdHZ2smrVKld2u/jii/n0pz/N2rVr2bRpE3/3d38H2MDnjTfeYOfOnU5PR9ro6CgdHTWvK2lCMT9w4AC7d++mp6fH+WAB3Hbbbdx3330cPXqUEydOcOONN7rfhoeH2bVrF1NTU86QWNpNN91U51Lut8nJSUZGRhxAW4Lqr3zlK3znO99hcHCwTinbL9U2Zj580L00X4xSgMHyDMozJsB7X4rBZyH6OlRyL+QZkuAcaqw/IQ/4mk1yn0VGoVFs8KO29wxwlBKK8AcLWFD1bKn3y/z4WJhapib/NwtnaBr7Y5Ewsk39fvwyVy66iwolqLIzX0yGChSFoIgqqFy52P5k1X2F9l2rQ1VPz/D2W69TnZulpblIUq1QPm1vYpaWyYxm8bJWSotbiJuXO5XjaqYIc5yNNobqnGBSMqvRcmYWnZyhmpSdvonWFjdRrWjSymt89nw7kEwhpdS8iDAKqVTLlD1FTWUUb79zmnffnWVp26cx6RlQedRdiFE6RWcJUagcToMoJooKhIVFqMBiOVTO0Akia0CpwiZUWCDIhfnCqECqA4pL2vhkqcT05P8kTE7l98IygZRND+RaLPk115p07h2qc6cIopioOZ/xlhbb7FFUAhViCHIHb3ssTEAYxWhd5cxpG0AkSeJwVCJ0l6Y19lChUEAFCpMrRwtFO4ptdijLUqqV2sc6NBpUgNEpc3NnmDtzijTLy4VGsWx5K4VCSJL4Y9cG2VobCgq6Ov+C5/7Vzjoqc2eIShFLlpxHuVwlNVBN8peMgULURMuSGJXTz+0YSslyBWPrrJ65AExbvQW0gbm0SiWn/5+plolPxzSXYhYVz6OkUtLEXqNKtUocJMRhlahSJi42E+fZwzButjgmZVluMlaNkuBKWUsJVcPnBCbwnrqPp8lzKi/R1tZW99GXl6mfNZCXLOA+iNJEmViyPGBn8D4Gx9et8UtaolUjTWjZ8jGVl62vWyOKwVJeaGlpYdWqVZTLZfr6+uqMJAcHB9m9e7dTofWtJCQg8xVoOzs7Hdaor6+vjuXlqytLkCMf9o0bN/L1r3+dL33pS2zfvt19cIS2K7L8HR01IULBLcmHR/ot+169erULcnzxNqEKj4+PMz097bIhQmcWTZannnoKsAHOwMAA4+Pj9PX1sWHDBkdvnpmZoauri3Xr1tHe3u4+tq+++ir9/f2cf/75XHrppTQ1NTE0NARY8cI9e/bQ19fH7t272bJlC48++igAjzzyCJ2dnYyMjDA1NeUCienpae677z5+/vOf8/LLL7N+/XqHHRKX8wMHDjA6OuqyPp2dnVx11VUsW7aMxx57jG3btjkRwP7+fg4fPuwCt61btzpriltuuYXNmzcTRRGDg4Pu471582Yuu+wy51D+5S9/mV//+tcArpx29dVX86UvfcmVtSYmJrj99tuZnJzkG9/4Brt27XLGpb59iTwDfkZUghn/HvuyArJ9o1q3lJpk3EnA648Xn10o2R5hN4ohqdzP2dlZxxaUc5JASoIt/z3wp5SozrGozrVz7Vw71861c+1c+w/X3tOqofX8z5j/8/q7zgI0xmVs8l/y32p+QB8ogxPgdGQU9eUwpxmjlGUZ5Qd2XkMox4QBMAQuZDPGkOrElTIiAkIVoMKApDzD6XdtuaQYQaZDWpb9OWFUEkBQ7RxN3j+jCfKsz6m3JynPvk0psjgYwhiVZzWCYhPlVFFNDEqFRIUaviPVqRNjS7O0JrZmDEm1ii6fQumEuUrZZShOzZ6hUq2QJimFwPCf/9Iymzr+rETLkuWk2RzojKRcrengvPs2Y//6r1y4ahVLli5j+s03Wb7ifAAKcQGlNMVSiDIanZdfjE6JC80EhSWEYQkVxZCf0//P3tvHyFndeb6f87xWdVfbbWhCE5pJQ8yNszibTtbsmBtH10iOcIQRvTueGeeOo3gyRjg7nhszQYJRnIsjPBrQOgEURzgaR3S0RLDCc9cRnoujOKFnYxRnx7P0KM7F2emQZugJJja47X6pel7OOfeP8/xOPdVkM7NZ5p8VR7Jsd3VVPfU8p57zO9/f90XOSRg0UWHq+RtBGBJYBZREQUn78i8cWRlQtkQb63x7qngFU6ENRpeOX6JLdFFQihsvyuU1NVdB0iJKGp4HpFFEUUqaNDBAlnUVAi7vKnTHE4TeyVip0Lv4qiDynCn3nKDyxwkIwm6waFgZHhpd0ulcppMt+viJstSsWLGKgYGVLCws+XiNJEmI45g4jslNwcy58/z4v/3cHbctyPICgj6SpA9UTKdyQM6NxdiAsnD+RoKK2IrEmxcFRZ53yS9U/jYYSq2x2nT9kpQjWrvrFNJMY/qbbufT34AkKAgoQYMKFWG1KwrClDBMSRt9JGk/qsrJslU0iXNEdm9g/fEBVvHA3be/bVENH/rQh+yLL77Y03YYHR3t2b0JsiItIHA7PEE4oKuIEqSizouRNpdk6AiCMzs763eidSheWk51VUodlhcScn1nK2Pt2rWcOHGix4fk2LFjzM7OcuDAAT71qU9xxx13+NbR7Owsp0+fZnx83LchAN9+qyM9ggAIsiDchvqxg2uLbNu2rccFWnbuslOvB3TK7lm8S6R1Iy2ECxcu+HBM2eWvXr2a06dPs27dOo4fP86WLVveggBMTExw7733ejRNWnVHjhxh//79rF692qMQwpV59tlnPUcGnK/MiRMnuPfee7n11lu57bbbvAngo48+ytmzZ5mcnOTJJ59kaGjIX5OZmRnfUut0Oh5NEN+g8fFxXnjhBZ5//nl/jgVlWLdunVdjgTM+vOmmm/jYxz7G7t27mZyc5Atf+AIAzz33nCc6v/TSS5w4ccK/l3BrDh48yOHDh73669Zbb+X555/n1ltv5ZlnnvFmd+BCNe+++26+9rWvceedd3pzw7Is2b59O61Wi8nJSe69917PbZI5+ssiROr+UIKyyDyoe0b9MrREUMr6XJb2lcxVOd91BaMgi3VFlMSiCD8NuqaUMzMzPaaa8pxz587x/ve//58jquGXFRxvbS25v4Muwfe/w59xpmy/pC1V+/dyJZY8ZqtFVSkInQiWQFlskFB3FnY29BqTtQlVQBQ0/fMc7SIgCAeIW27x1iiiMMQql/LsqA4VCVTpimWssbpAV7EGSzricttAcZHFy2/S32pxxdU3uM+oAvIydC0GNCZf8vEKLl9JuaLJWpTo501BWWQsXp7j0qWLzM9fpijFgt85/oZBgEbxd6+4wmxF/7tJ+woajSZlVhL1NcC6NtXS/Jv8xm+8m7LI+MmPf8w1Vw/x2k/dZNI25Jprr6PIYsI4ram/LCooSaIcFSXuOkjCdhhjjXKEYArXsqKSGgcKa0O01STNAWhUhR4WbUDrAqNzlCccgzalMwIsC8K4QJVVyniZURQ5QdQmCCPKwkBFQNY2wOgSU+ZYFXmDvyAMCZRbsOMkrYz7qkiIOKUsC7I86/JbKi5LluVeiaBUVzZtjCMXY12waGJjH++AdXwbXZaEgUsad/M68Fw1VWpW9KXoavZebueEBvoSQ1i8gQo1A7GTdlvVQkcKVEqnU5B1iuoYIwptSJLEFSLWYqr5kGUZRrvjC2rfQ601ZaXWKyjIs5z5efeZ0jig1Uzo72sQhRpMQVi6uRKGBUlUVCouQ5S68xNESWX0qCr+k+Pl/HMNR6zuTQyvt4qAHjOwsbExZmdne8in0HVfFUfiulpEioDJycmeokjUUfI6dfm4wOoHDhxgw4YNvgATafjOnTt9RIHEKwg5eW5ujpMnT/pWyvDwMC+++CKNRoOvf/3rQJfUvG7dOl941Y9b3GCF6Cl5PdAllcriUjdPGxoaYteuXV75JENaf0IsXbt2rS/MJKhRuFBS4Ozbt4+ZmRnPjxgZGfGFVF2NJtwgGefOnePChQucP3+eOI69Wd1DDz1Ep9PhwIED3HLLLTz33HNe5XXPPffw0ksv8YlPfIKf/OQnXjF25swZH6paFAVTU1P+fO/YsYODBw/6wlfyscAVTOIyPTMz4wvKM2fOMDU1xfj4uCdyy4J74sQJT7B98cUXvTHf1NQU11xzDdu2bWP//v0cO3bMf+aPf/zjXHvttfzDP/wDExMTbN682b/e1NQUMzMz7N27l6NHj3rV2muvvcbp06d59tlnGR4e9gngMrZs2cLTTz/Nzp07vTJt27ZtHD58mIWFBY4fP05Zlv4YpJ1UD7SsFzLy2tKehN4QWnmNulWDPFeuNeA3A/I8MaGErsKxrgisWy/UW2DCGZM5J3OzLhSQGJRfd/zjHJweREN1uTHBW3k4PY+rmsewUtSzo/4pZGKoChxrsBiCagGKbEmsCiJlUCogVyFU7r66M8/im6+zMP8mpCGDQ9fRqOS1lgSjLFCiYkUai/1zgLWK0lrQpkrtFhWOQzmsXqKzdJGgUqyERU4zgDxsUIYruLCoyN903JMkDTE2QusCbTO38FTZQxIUiTVQ5uS5I+Rm7QXaS4vkee5kyoEiCmvnLogIwwSCmKKq5eY6McMqwtqAMEoJlKLoVAuxtpSdDq+/do73vte5pg5ceTUA17/3/dggZWBw0AVgVpLqon0ZZQrKXGP1InGqUdV5tbqBVTFWa7I8Jwjd52k0+9zxYolCRaM5ADhuB9ZiS01eZOiyQ1nk6KhW4BjtCsdSo0tXFJVZmzLP0GVGSgMVJJ4TEgYhKnCFnkj9/SSpApqsrlx5qyvbbi+Q5zl5lgGKKEpIUzcfjC7RpiQwCq1Vj5RfKTBliTYZWPfeIHlh+Fwup77qDmMMgQnJ2prz5x3B93JHoztt8vIigcpopYbBljtHcdTAhO51rLWkIk23lVJPhWgCjFGU1ec1UYjFoHT13fDkHIuqfG6stZTdQBPyHOYXM+KoTbMRsXKgyUCf5GuV5AUUJkfllqjiLyWNfoIwdlL1QLycqnMeuO/z2zmcejF6y01Rbtp1F1XZhU5OTrJu3Tqmp6c96VWSs+XmKa934sQJ1q1bx8TEBN///vf5kz/5k57drRCWZdGXIY7Ka9asYfXq1b6QWr9+PZs2beLEiRM9ShFwBc7c3Bxbtmxh48aNPYqoL33pS0xOTnLixAn27dvX41Vy9uxZ1q1b17MjBnwekHBD5LOKLFvec7llvqih6sGisuuWY6qTietk5XrhIhyl0VGnsJmdne0pDkcrArYgXrLwSbTC6tWrefjhhz0a8v3vf58oili7di2/+Zu/ybFjx/zrPfLIIzz55JM89dRTvPzyyxw9ehSAT37yk8zPzzM0NMSRI0e44447eM973gO4/KoHH3yQ48ePMzAwwMWLF/3nE3dfcJwXmUfDw8Ns2rSJ+++/n7/6q7+i0+l4F+Lz588zMjLC1q1b2bBhgy9wNm3axI9//GMGBwf59re/3YPugOMJATz88MPs3LnTc2s2b97M4uKiD7qUe9DWrVt54YUXuO+++3zUhhSb8/PzNBoNdu/ezdTUlEeKzp8/z7/5N/+GkydP+mJNniM8m+npaTZs2NDzvakXzXKtZSx3Na7/jhQ8y0nFdbK9RJAAnoslxyGRJvX3lAK7zihV2LwAACAASURBVAOSgmlmZqbHPqHRaHge1q8zfnWBQyWhXp69pJRTmvaQf6vdZKUwUlXLSZ5ja4XSL1Nl9SRAA27LWFn1mxIkT0iVhJQESjkVkjZUQcvkJOTplSi1gkacQNAi16Iecl4o1tb9T0BROGJq5fehfaAijoBsCpQpyDJDoatWBX1om2KUIWkNEBlNVrjXa2eXKEuDLguMKarWjJjVle5nRYciW/Tp38aUGAsqiFBRlS+kJJgyJUr7fCssqlpuF5cgK0OSVBGG7rUlaXz+0jx5oRkeuZ6fvXaJ69/3r7n+/U7ZEDcHiKIEZS1l7o7DnYgIdIYtM9AZpugQKdnNO0WPCWPi0Hm6AOSdBQIS4iggVmALTV6hVbooMGXmz4OpteRMlYVkrUFZi/QVozglDBS6LFhamEOpBdJ+t9CF6QDGKnRpKsPGrmIsjNNqwdWU2qBzQb9cERwE7iatlCLPK6J4nuFyqlyxI/Ou0JqyzAmUIokj1wqqji9OnJxfUDWZsxIdYYwBZQjDAl26Vt2luQWgJCCkyEvefKPgZ9YVw2FoaQYBzUbCylUrWLGiIv6GilAFmBJMqbAmIJGA09i9d1FAnpue75K1xhdgStWM+nCEYZ0VdDoB8wsd+lL31V8x0M+qwZWsGFhBu71Elru5n5ULlWosJggjh+aIbYDpEvHfriEoWb1QkFRtuVGKUdzs7Czj4+P+RriwsOBbHMPDw2zZsoVz5855bxnoRgqMjIxw8803c/To0Z7cHsm62rVrFzfddBMAV111lb+xC3Iii/jJkycZGxvzqM7Y2JhHaqQVJscmn0lUOYJA1dtDkmslMltZoOX5QlyuS+LlZ6KAkYIG8KjF5OQkExMTPo1alFpCtpb3gO6CJuRgaX3I55EA0fqOWoIsR0ed186OHTs82XrDhg3s2LGDAwcO9FzXj370o9xwww3ccccdLCws8NBDD3mp8z333MNTTz3F17/+dfbt29fzXkImv/pqt1mT95FMphdffJEHH3yQ9evX+887MzPjC7Rjx475YmBwcNC3fWROybj33ns5deoU+/bt4+677/bo0qlTp/jUpz7FrbfeCsADDzzgi4x169aRZRk/+tGP+MAHPuDbU+CK6wcffJBjx44xNTXlic67du3igQce8J49zz//PI8++ijgkJpt27Z5creML3/5y3zxi19kZmaGG2+8kWeeecYjm1LEC8I2OTnpr7GoBuubATl39Wsv11T+rls01JGe+oaj/hx5L0EBjxw54ue9tKtmZmZYs2bNWzKmBFmSOQX/8yqqX8nBede119vf2bWvpw2FqimLXM+n+m3rUJqqUAhUl+9AoJxxW8WpCZbdHT1nh26BYzCuCDEaY7XfMUZoIjQEISUxVnWraGsNVinv3VEl71C9oKtpjEEvd2WtdsLaaLQ2fjdvtMXoAmyOsVCICMga13oxDqUwZUleoT5GF1hTwXfO6MQXHnm2RFG20bqgEiZV58c5Das4IW22CIIGqqo9VRASxzHNZpNGX5+fSKYzz/VXhly5whCpAorS82ku/uLnDKx6F83BEd717htp9g24AEsgjBOU1lDmFEWbToUilXkHnS+hTE6k3OIrfkBh3CBM+jCklNp6Z19d5gQYGrEiCS3Kal/8lLqsfGhs109GnmeqwEpjsJVKyH0og9VFxdHRWNOBoOKERC10mBDEDQKV+HkShhFR0kQFYVde3Z0RSPGkS4e6dIS7I5YAgs4I18cayiInDAKiyDlfR1VxkaYpQRiTJFUuVFy1z3RZ8YAUWZbzi7k3OPKX/9ldi0VDs9VHeylzRoRF4Z2MtdboGocmrorXOI5YuXKA/oEWSerQOUGLssKiAW0VWa4JK/l/WRTkuSuotalywXS30DPyPXLSwm4YaBiQJAkrVqzgyqErSBL3mbKsA8YSRzFJ6jhZgfB2Aucg/u/v+Z23lYPzgx/8wN/0xB9FevWCKgB+lyeL8djY2Ftci6V3Lzf/2dlZb5onMl650W/cuNG7DAv6Angn1l27drFhwwY2b97sb7yzs7OsWbPGLypjY2O++BGJuCiz5NgE+ZAMq+WcHtlBL/cBqfNd6o/VlUwnT55k3bp1vg0xMjLCQw89xJ49e7hw4YIvBmZnZ9mzZw/Hjh1jfHzcH6ucV/H3qbc05ubmGBsb80WdoFpyDCLRvuuuu/izP/szr+Q6ceIEExMTrF69mltvvZXz588D3ZaNyJrrXCkppE6ePMnnPvc5XnjhBcDxWMQpef369XzmM5/xqeVf/OIXWR78LMZ9p06d4vDhw2zbts0rs8ChMddffz3ve9/7vFfRpUtuU3LTTTexadMmtm7dytjYmEf0XnnlFW6//XampqZYu3Ytf/3Xf+2zpP76r/+am2++maeeeoqhoSHvdgxwxRVXMDc3x9/8zd9w6NAhj0js3buXrFK/3nnnnXzrW9/yz7l48SKbN2/2Crj63B8dHWVoaIiZmRlOnjzpOT1nz571BezWrVt7eGZDQ0McOnSIRqPh0+eBnu9VXV0l/4due7fubF0vyEUBKO8jvyPqqDpyI23fuipyeb6bhOLK3HY0AvX2c3AUllBZT9xVQUCgAgdWKwDjwx+tdYsSCkIVEGA8om1VVOML1Gx/qbWoqv/7nTmVF0cQOSpx1f/XCkprsaYiO6paEKBxFEznyqowlXmZvK5ztdWuMBE0oYL0dVm63XotWFCXuip6yl4kxupqgdbYsqjaGZVPSVlQlpmT/FpDYErP3TFGo5RLq46ikLTh+EGEKSpuYIkJw5hGktCsWmuNpEGcNsnznPbSIgtVsVRkHd7zrncTxxqbl6ggQlfXYmDo3Yy+/3+nf8VVYBRRnCD3f2sN1pYYZTFlRlAdW4CGwHGInJtzSBqJRDvAmg42n+fyG2+wWEniy6JEYQhs4dpNxvprLmnhaaNBo6+PtNHsElsDS4gLUDVKeVm3Q38sSZoSKkVRQFGhMY04xCZ95Ljoh7CG+JVlXpGII8IgcqRhKm5MGBMGkWvblAVZhZpZNBZFqY1zJtZdj6NucR4QxRGDK6+oPpNCa0sYRt5zx527KvYhUCg0ZWlptyuS+MUFlhbmaTSbxGkfhAGJWNAErtDuFDlZp0OWubZWBMwvLBLGsQu6W7mKq664EoC+RkI7X8RoTawUUcVRsqUrOggDrHLFk7T3pLg0uux+v/z3SZF3MtqLS8y9+SYrB50Z45VDV5I0miy1c3KdkzaCboWvAoKwd5PyPzvEybiO0oiJnziwCudCAv5EQl1fAOSmfuHCBUZHR/3NU17noYceYm5ujk2bNvmb+aOPPsqaNWvYsGEDhw8f9pELk5OTPP300+zevZs1a9awe/duv8PesGEDx48f9wnadeLmcjKlDJHNiplZ3TsEumnLssiDaz8IgnL27FlvrAZuATp27Bh79+71Kd7CxxC58szMDDfffLNPBhfJ+/r1633bQs6DLLxSVNVbTkIQFgm7HF+r1eLkyZOcPn2aJ554wku8wXF3Tp8+zXe+8x0A32666667ePDBB2m1WoyNjXHixAlPGN6yZYsvGF9//XXPHxodHWXr1q2+aHz88cf9zv7VV1/lwoULPPHEE2zcuJGNGzf68MvXXnuNj3zkIywuLrJ27Vq/4E9NTfHII48wODjI0aNHuXTpEtdee62/7hIgeerUKT8nx8fH+cu//Evm5+eZmJjg/vvv9wu6fM6xsbEehATg9ddfZ/v27Zw8eZJ7773XtznHx8fZsWMHx44d46tf/Sr/6T/9J48WrVq1ys/niYkJX5iNj48zOTnJz372MxYXF9m0aVNPK7FumFfnIu3YscO3Uuvz8vTp08zNzbFhwwaPdMk5qqM2nU6n5+cyv+U81QtyQW9arVZPOKyEasqmZDnPRuZinZhc5+z8OuMdmfg7453xznhnvDPeGe+M/+XGr2xRXX3tqP3Ev/u/kW25iiK/w1dVEKLY1WudO8QiDF3fntApnACC2HE8wMlNhRgJ1a5X+feQ4XCeriOtrT0gqEtX+dLdfRtj/ePGWt8yMcZ0f661b1EJMiN/6kiN9iZrroXl36fMKjM2h1qpWjAhKiCMYwwWrQtsmYOENQYKFYYEQUyUNEhTp6ZJGn0kzX76my2iMKCTt1msZOLtpYy87BAGAUkUEVcOsmmk+PC/GGFF0iFbulyFbTq4s2/gKt71G/+SIEiIlJMNh1WLryg7FPkSpsz4++kz9FeqpyuuvAprSozJXDSEKdG5e71Op8PC4gILc28wP3/Z7xiSJCWu2jXGGIL6JdQaqzXalC4IMwxIU4dY9bda9PU1CaOwCoDU/mlhEPjrYHVZ8a/ABhFRYxUqXUkZxL6lpAghcBEPqsqRUjV0x9bmVlkWZB13XvMiI45cLEQYRuQV90QCXKM4ppGmqCBgYGClnw+O1+PCQ+Ooq+zDWlQYYLTh7M9mODTxH9z161iafStIG/20BlYSp/0YJWRiQ97pUFaxH9qjc23nzKxLkjRFGfx79fU1GRxcQbOvjzBM0Na1aBfaGWEUUlZE8DzPKSvVmjXaXRtpx1qLqUwFTVlW105VJG73PmmjwYqVg6y68ios0O50SJvu+sVRBFie2H/329ai+vCHP2y/973vedLs5OQk27Zt8y0ecScG1wLqdDqefFtXhRw/fpzt27f7llSdQHn27FnWrFnD9PQ0IyMj/vWkLSWRA4ImiERbkJnR0VHfzpFRbzvVFWCCuiyX3tZbAPUWlbyHZPxIW+TcuXOeizQ4OOgDN+W4JRBx/fr1PProox7VaDQaHDt2jN27d3PmzBnfxhD4f2ZmxrcZ5L1Pnz7tpdMSswD4ayDIWP1aiGx5aGjI517J6x0+fJgoijzn5Pd+7/cA+OY3v8mdd97J3Nwc+/bt4+zZs56Dc/jwYY+CyGcH/HUW87o6+jU7O+uv1XLX62azyac//Wn+6I/+iEOHDnni7/PPP8/nPvc5vvWtb3Hdddfxne98x/N2fvjDH/KVr3yFRx55hG984xt89KMfBVzb6+jRoxw5csSjWwcOHABcO1Mk8rOzs3zoQx/yZoMSrxBFEevXr/dI2erVq7n66qu57rrr2LZtG7fccgt//ud/7ufDunXruP322/nYxz7WYycwPj7O7OwsH/3oRzl//jxXXeWsQ+677z62bNnChg0bPLFckJV6fMhygrEcs7hzy3MEiREFX51YDI5LJtei7qAs7am1a9dy8uRJf67EfHM5ejk1NeUjSqQdVidEA792i+ofLXC2feZPkDTsIIxcZIGtChy0L1asccVAEDhr/EDFWOUWPxUknjQLtTaUUr2FTOWc6n7H1DgVXct6W/FnTHWjtjVrfmOsf9wag7b1x3S1QFUFkO4tfJb/8e9lK75IqT2nIbCFIyCL4gaIq7ZImCSoKMEqt1jHcUoYdjlMBreQxGFEWPEq4jgljCKs0WjdoSwKwup8NRoBAYX7PDrHlA6u608D1tywmmZg6SxdwpiczoKbmCps8d6bbiEIApLAYsuSsnTtj7IoCSra7E9f+i/ozL3eNddcR5bntLMllLK0F+dJKnyvKBwB9PLlixhjaFVW43GcVBNbPl+3TLXaOBdenWNsVQxWUmdTOoJxnMT09fX510sb0rtxyiVjQWspSHI0KUnfEGXU8m7KQZBUJFj3qZxdgfRUvbNMVw5fLeCOR+WSvqOoKwV37byYNE1oNvtQSvkvb1EUFEVOmsSUZek9lqowg4rbpTjzd/+Nr018A4B2WxNGDZK0SdLoJ2muIKgUfEEUEycxEBAGUa2ALtEmp93pYLRGVUW7G9oVi3HKypUrueKqdwOQNPtYWFxg7tKlqu2mfBFTFq7YKfKsKtCUJ9lTfR+U7XLhZK4GUUTSaLLqiitpDQzQztw5skbT3+zjmwf+r7edgyMLpyzAw8PDb1HpTExMsHXrVu8gXFdNPfnkk2zfvt3LreuE13poJdADv4uTa925VqDyyclJzz2pFyL1vJ/lVvX1AqeulJKCZznBUlpT0v6ROTczM+OPR+B68cERD5JWq8XU1BRbtmzxC4NIvlutlid9Aj08Iznmutut8COk4IMu+XO5jBxcQblhwwYeffRR7r//fu9/IudhcHCQZrPJ7/7u7/rWzf79+7ntttv4+te/7n2EhJQr506SqmVhvnDhgi8uz549y/T0tF/0675Bw8PDPd5Eoo6T0Ec5d+fOnePUqVOMjo56JZ48JsnwZ86c4aWXXuL3f//3AcfnkRbTiRMnGBwc9A7Dx44dY3h4mOPHj/P0009z7tw5z+n51Kc+xdNPP+3tCeQzSWFSH5/+9KcB+NKXvsTBgweZnp5mx44dPYn0p06dYmJigqNHj3o3a3lszZo1vm0r803+Xt4SlZ/L3FsepCrzRdqg9VaTeOMIz03Ot3yHRHE3OjraM88ajYYvROUYxZ9obGysR61VH81m85/DB8cS2NKHIVZmGNVCFjrPkCpPSQWxC3ZWLtbR2FqkgsWHPUK3wPH8X2NqBUz1t6nIkZgqQ6j7/DqC4woQ031uxbWRIkibOrrjiJZ2GQdHezKm7SlwtDGVf47qMTrT1nSLnTgijCOHUgFEKWESM9DfR39fSpJ0AyODMCJOGi4GQYVdKYp1HzgOAkJ1kcVLr5FUfBrKRcrAEvddiWEFWea4GEkUEkcN4sh57nQW3+DynPtChVHhijBt0WVRqeHEEyWizNosXbqMyTtUPFnm53+BihKCOHbnnpAwrgisZYHWJY1G00mYo6pwDSOCSqIOvQWOCQ3KaAIdYkxBoAtMUBU4oSuGi7zgF/O/4Be/cN4+SZLQ12zS6m8SRTFBHBJX5Og0iiiNJaIgTROMquT/YezZ2mJRIB45cn7DMPRmgKpmUgjQ6Tgpf6PpFEwrV670z0nT1NGUa5yeMFAkifPh8Qhi6YJAgyCkNJpLl+YpCuGShSgMRdZ2lgGlpjmwqnqPgDyzhFFCFIb091cqqiik0CWNwhUlRcep0dxUcenmVikuLXa4tPiKOz/NJgMDA1yx6gq0MSwszNOunpMkCf39fWAtRVHQ6XS6r2c0QeAKfjERdD83qEK71PQiY3FhgMHBioukQk+ufLuG+ODIjVKUIAsLC5w6dcqnNIOT1+7bt48zZ86wY8cOtmzZ4hfj8fFxf9MeHR31C9+ZM2c8CiILrxAjBXUYGhrqQSAENRC+CtDDBxC1U51XA13ugvAU6jd4WWgk5qGOuMjnrst7xUtmenqadevWcebMGV9cCBIFeHm5vFcURXzuc5/jT//0T3us7yUY8f7772f79u09El95LSHzyqgTR+W9ZOEcGxvz0QUnTpzg3LlzftH/yEc+4hfxffv2eXRiamqKAwcOeMJtfbGrR2EMDw/7YkDOmcij61J3CSddvXq1Rw/kOo2MjPSgLVIUrV69mnXr1vG+972Pa665htHRUV566SUAXnjhBU6fPs2ePXuYmJjwKI2QcycnJ7n//vuZm5vj3nvvBRwP6Gtf+xpf/OIXeeKJJ9ixY4d/37Vr1/J7v/d7rF+/HqWUV+nVx3PPPcfIyIgvZm+99Va+8IUv8KlPfYrJyUl//Z588kmOHj3qU7zrZn5ScIh6T4o9cHN8cnKSKIp6rp8Q3kWJVi9uJJdqzZo1nD171vOwtm3b5n1uBEWV4lC8imTe1BVRgkyOjo6+Bclct26dRyclmV5e45cVPP/U8asLHGspi5ykEVf/tRU5McQq5aSj3hrDLS6+gFAKT/GpIyLUChzcjdQVKvQUMa7AcTfcejvK2m4ryqM7vljpFj3OMVj3kIwdElSpeXz3qypajMZUEnchsAZKuWLGaJQKiKPuebBxRBjFpEmDVqtBs9/dWBppH800JlY5C5dex2RLXLzoCg9jFWmjSf/AIFmh/MLcaq2gLDJsvghmnhWDLeKGQzVynQMpRdCPtilF7I43SUOipEkYhjQDi9UdwqrIsuUS2fwvSGInZS+yjPbiZQAuXnyDxYU5rCmJFN2sp9AShIaF9hKNtJ8r3zVMKaTXMCDP2miTYI0lqqqiIEpI0gZ4p+eghsZZ7ynk5PElpe764CgLJi1Jmw1nXFed1yzLWFpYqFRO0KyI2I1mkyhOCImIGoOohmvv6Sii682oXAtVpNOBIiBwKFvV6mo03ZclSRoURUGrlVbJ4JVtgFKkaYoCjHZoicyHKE2JwoAgUGjt1FburZ0Hj0PxDO08J206sm6RlWALl3GGaw1lbXdegzBmYPBK+vpalKWmqIqOMIlY0RpEBY4AnHU63kuprJLlta7mq6SlG8ulS5fdLqnZR7PZ9D4dCwvzzF2aJ1C2ImFHft4blENfg9BdK2npiuS8KNFFSZHlZEvuuFsrBmn2VX5Hb9OwlapNbnzT09M+GPPZZ5/lscce8+RMIaVKMnFdxSGFkSyYguzILl52iEJ4rA8x+6v/XwqXehsM8EWIFDHL05YFqal72giRUmTVs7OzHmGSlpucA1mgN2/e7BcaWYTkfeTfUsBIoje4wuhrX/uaL4bqhoeNRoNDhw71ZHBBVzUzNjbG2bNn/c8fffRRjh49ys6dO304Zj0r68EHH2RmZobPfOYz/OEf/qG/TrL4Hjx4kKGhIf7oj/7Inz8pyC5cuMDOnTvZvn27f46cu06n419r9erVTExMMDw8zLFjx3wqPODznURdd+HChR7zOynYdu/e7RdpufY//vGPvZO1DDmfQnSX0Ezx4dm5c6e/PtL62717N1u2bOE73/kOJ0+edN2J6jsmyIps+CWg87777uPQoUMMDg7y8Y9/nB/96EfeBPCTn/wkH/zgB1m9ejXT09NeSv7II48wOzvLk08+ydTUFKdPn+a2224D4Nvf/jaHDx/2+V9112uR/S9XLtULHUHfpLgWwrGYYtaVUoKwrl69mkaj0dNSEuRUNhEy/+thoHUfHEEMN23aBDiET1qWZ86ceYuB5P/I+NUy8Xf/hv2du+4niqvdsqXiOjiFiakVHt6PwzrlkoGuiqqO1LCsJVW9hqAyMpb/zIi7cIX2SAFEvfjBoSu2cgqut6JERugKHSdPltdTgXJtDsJKZlstxGXhzODimL7mAP1VoReHMWFkaSYBiVokVucJdBVREBi0ztDFEu2lBbSOubzoTkReJAQq9kYiScVJsSpBG0Wea8Io4Jprhlkx+C4AwmQFi1lBe2keXVrvg7OyL+Jf3Hi9W3CtpswWmbvg4gEuX/g5ZakZHBxkaWGBvLNIX9MdexinqCghjFOajQaNCtm5eP5VymyBdnsJoy1XXzvKQIVm6CIjL7SLGDCm23ILQlQUOy9CFKFSIMWhv/AuNFKbAi3uzEY8iaqWoKjMtHaLbamrRPU2WlyEjSEMAvpWDHDF8HsIW641U8YNsNbFMwSBOybh59TiQlQYkKb9tFpuR6i18e2nKIo8ClgUuSsaGw3iqGobCSBEUHFYHIdncbEKFjUFuixIkgaZLnjm//0uL7z43wBXSIWBotTV81VIkrjr7tpWLfr6+ulvtQgrno0xhiBUNNKUqDqGvCpwisoosiwLsiL351QZ6+XhgQpJqvYfuKJOl5q5i2+ysLjorREAbGmcdULVYpa2lrUVt0xsFayT5IMrbBt9/fzn//jv37YW1fvf/3773HPP+Rvl1NSU91F59dVXueeeezxM32q1vCpqaGjIB1RC1/lXJOZys6739ScnJ3t29rLLrJvXyWvJTVhiDGQsl9DW0ScpipbzEwRpEAO8eitFnJvFpK3O56mHINa9SeqFiSzwdcnv/v372blzpy8moBveeejQIbZu3eojGOrnYXma+tzcHHv37mViYsIndgvSMDs76zlAoo45dOgQ4JC2VqvFgQMHOH78eE8b6vTp0z2GgqIektBK4fXU3XcbjQZHjhzxnCxB9IaHh3nuuef4xje+wYkTJ9i7d6/3yvnhD3/ImTNnOHPmTM8i2ul0OHLkCFu3bu0JL5XXk3aKmCvK5xEO0pkzZxgeHvZts6NHj3oE8MYbb+SP//iPueYaF49z8uRJDh06xEc+8hGuu+46n0p+ww038PLLL/Oe97zHI49f/epXe74XDzzwAENDQ/7cTU9P0263efnll3nqqacYGxvz1+nee+9l+/btDA4OeofmeoEoEm2JU1g+6kW6zD3gLQiKzFXxj6pznuphm7JJkU2GRDGcO3eOsbGxHkNI+bfEjQgfas2aNdx///3Ecfxr3WveUVG9M94Z74x3xjvjnfHO+F9u/KMk49/9d/vAdlUp1X4YC57AK6OOqLiOvvI/71E91RCc+mO9CE63dQW222qqCMeC4Cj/O+51TeBaVcq4rB7/VpUXiMURWMOwS3rWxql9MBqU6gZnJglJEtGMAq5oBTSCi+592rNg5wlsh0DnBFajQ7ebsvEgRP1gSkyxRBgFFKpqV5iUEAu6gzYFWSYkRwtBSl/fSuI4wRhDGLtdflYEXFrMaLc7FEU3d3Hk6kH+j3/9vxFFzrItQFPmbvdWLF4mzzOM1Shc7hOVIZzFoRxxkpDECYlyyMDMS6fR7YsoU6J0RpI2WLnKcS4GrriacOAqljJbxR4Iaue8kcLABZlibBfB8XPFVnlVtjtfKn6Uqq6LlhDOsnDGf1qj85yy6HgllykydJGR5RnNlVcysvpfupmYtjDOhcZxSCo1kDu+iEA5J+44TunvX0lU8YeyPCeOQsIoIgojmpVCSAVBlfekSZZZsUdxSFHkFZemJM8cATprz2PKgihO0Srmue9P8f/9vdsxp30DNBopnTxjfmEBbNe7ppmmLvy1LADreDI45UcQOKfkNE5oNhoEFbpT6pJ2u+2QL5RXSrWXliiKkrIsKMsSW3a/S1EY0mikJHFEpnU3xJMKNdOC4JSeW6Yrs0WjK3J+LfBTKUUYhvzw2UNvG4Jz00032e9+97v+/6LokPbG7Oys50+IEdzY2JhXctQ9NaRttdybPnKIzQAAIABJREFURtAQyc6pIy7i3xFFkUcwhGhbdxuu5/TI6wm3R4bwcpYTNustOEF3lqNCgtAI4lInNkuQYp0kXVdsdTod7xuzfv16vzOu524JWXjNmjU+t0mOQcjK9c8PeJ7O7OwsDzzwAJ/4xCd8a+b48ePeFXhkZIRt27b53ffmzZv9Oa6HbU5NTXmVj6izBI2ZmJhg3759DA4O9rg2g+ORjI6O0mw2efbZZz1p+ejRo2zatInBwUFuv/12PvnJT/rrsbCwwO7duzlw4AB33XWX9wN6+umnOXv2LAcPHvT+SvK5hYwsCJPcGx555BHuueceHnjgAY4ePcqWLVt6IkXuvfde4jjmj//4j/nyl7/Mq6++Cjjuzu23387c3Bxf/OIXPYr0k5/8hBtuuIGZmRl++tOf8gd/8Ad873vf85/3iSee8ATnixfd2rNq1Sr+7b/9t1xzzTV89atf5aWXXvLnSEIrf1nOmKCf09PTlGXZg15Ct60qbWGZe/UA1vp3SeaHtFPrLdA62ilIq7yXtIbr6Gir1eLUqVOev1NvtR4/fpyhoSE+/vGPv/0kY4tCmxrIY2rOwG8pSOoFSFWE1B6rPy4L3fLC5q1Fzlt/7v5WYKsep+2NjLDGEIYBYajQZddZN4xC0ih1ydBGUZYiTTakcUQQNQgbEc00oD90J75PdQjM63SWXiWYe5OycJNMl4uoICBOm9iwBdEVqLAy7YsGydS70EGTdtkmKAwm6qpmlOmg9IJTPlWLUJz00exfSaewXJprk2UFRdUqKIwjlMZxQjrQIE3d9Ri8ss8Fjlq3KFM/31FAErU8UTuyXUNGrTVR6PKjrHULJrjiYmnhMs00IQ0sqmyz8IbLVonDgMGVV9BasZKybNFuu6IjCBVR4GToAcpxQgJpXwWu+FRVDEftGimFlyo7w0S5tgZbls6QURfYouPjLIpsEZ23SfIOOlvg9ZddH3vl1SOkK65CBQ333nUicWUKqFDEccMR46uTlEQxQaCIKwdiiecIo4g0TSgrV+AwDMiqYuDS5SXA0mw2UcpKLYcypQtjVQFFEEIY8q6rHbmyv5kw0AiBPhY6LUoTkFb8IWsteamrujBEVweX5zkBkMSxuHgSV0X3yv5+in7L4sICij7i1BWhhdZ0OgXGlBRFRl6UZFnhX09bS6d0Si+CkCAWhaPBhhqlS6wNPRcpNMZfH1VW7StpRxvdVWG9TSNJEs6ePesXrVOnTrGwsMCJEydYs2YNrVbLL9KNRsMHagrnRm6+a9as6SlWZAjXpL4g1R8XeWzdOVg4O+LsC922jZiSLS8w5Pjqx1pvk9VbVnU1lRRd8rO6DFtCJCXEUBYGOS75HeFeyPPqoZiy0EmLQlosdb7SoUOHesI7ZREUYi3A7//+7/PRj36U//AfnA3Ck08+yebNm9m4caPnJf3pn/4p4MiowuVpNBpMTEz0nDs5T2VZMj4+DnSzrQ4dOsTx48c9F2P9+vWcPHmSmZkZHn/8cc6cOePPwyc/+Ulv/PfTn/6UH/3oR3zzm98EnMle3eVY2kaf//zn2bNnD3v27GHdunUMDQ35cyecHQndfPzxx4FuMOqaNWuYnJzk2LFjPeGdYnHwpS99iS9/+cveIPDUqVOcPn2au+++m507d/q21sGDBxkfH2fjxo1s3ryZQ4cO+QLntdde88cK+BZeURTs2bOHjRs3Mj4+3kPYrc97aQHVbQ0kCFOKb5mDshGQ+Su8LfleLVdg1XPK5HrWH5NCptFo9BDF5bUkFFZeY2pqypOMT58+zfr16/3xbd++3RfGv874R0nGRndvbMbW/WgqNZV4elReMR5hqaM7tlb40OXg/HLkpvffXd5M9TPlYhiUcuoWZfG7yygIiMPYKaOMIUkdSgFUWUHaPTcMaTQrdU4a0mhEhKpNkL1GnM/ColP12OISmWljiDDBKlR8vTuIRohSLXKbooOEIL6SwjrSZbZYsLTUoTQ5hmrBqLKHAqzzedGWpQVD3nGkzaK4RK5/jrbWZSuFCUHo0IOk2Udff3+l3LHojnutVtx0OVlBTICTwZsqBypJmhgDygZYYyh1gTFdZCUMHPE2iSyLbzg1jCmW6O9rEkQRRRmibUlaXYtL53+OCmMG3/MviNIWYSQENQ04cnEQKKLAeQCBuza2In0HgUOZ/HVHnKpNb4Fj3OwwxtkP2KKgqOIn8myJsrOILXJ03vboyeuv/h0rr5ynb+XVqKQPE4Ze0RaqAKVCkoaLuIiTuDZftffciePYz7ss62CxLmEeXR2r6s7x6pi1LrvkeVPiAl8tZbnE4MoGWeAei1SOLZdQJmBF2iROY7ReqI7PEPSnqLCBsQmFEe5QTJZnFNWNSxu8GrCdZYQqpNXsJwwCCuOKzWajn1UDLUpd0skWKYsO1riiu9Sw2CnJtfaO3VLY6tL9zOjQozXy3TMqdChYoClNCdVzHEz630d+f52xuLjo+/bgSKhysyzLkk2bNvXkM61du9YTFZdn1UhhUr8xCxG4vmuUIbvQ5WRbUaSIkmO58qOOyNR5CPVdr7y3DFkE64RL+Ux1snI98LPVarFx48YeZRa4YkWCDeVzLOcijY6Ocvr0aV/oSMFx9OhR1qxZw5YtWzwRdfXq1WzcuNEvlFJkScEleV5175WvfOUrrFu3rsd5VvxfZIG98cYbefDBB3tQFSlyRBYv11Cu3alTp9i9e7dHio4cOcLhw4e9m/OBAwd8Mdzf389nPvMZPvvZz7J//34eeuihnrTz7du388wzz/Dbv/3b/tiOHTvGH/7hH/Ld736XyclJLly4wL/6V/8KgMcee8yft9HRUe9svWvXLh577DF27drFpUuXSNPUFzEjIyNs3LiRz372s8zNzfF3f/d3PZyj/fv389hjj9HpdPjBD34AuAJHiraxsTEefPBBf82vueYabr/9dlqtFk8++aQvAHft2sWuXbv8+ZPvhByDXPt6IS7HUCe7y9xc7pMjLtzgimLxp5F5IM+X+SXztl7ECGoj35n6e8l3sj6PZf6sXbvW89Bk/teVgr/O+JUtqquuGbXjn/68bylZ/8d2w4SVqDicNLtevPhhwSpBdZajMdXLVEvgLz1I72dSFT2BazsYYwhVUGs3udZHGIaEUaWmMdImc62pKIloJjHN0F20oHwDm/2cbP4VynweFQSY2CmYiFaA6keXDfIiIKvaAZ0O5Lmu2kBgbIqtFlWlAneMoSKKI/KswFSJ3dY6om1RuryusnTHUGqNVS5NuZE2GFixkr6Wa2tlRUlRlJhskbzIacTu89z2kQ9w3dVDxI0Ei6XMcke0xa09ci10RdqVvKe86BAAtlgku/QPkLsvwtL8m0ShU9VkuWvBNCuJdiNwRcDgde9lYOh6oj53cysN6DKrZOJOnu0JvoH7WRgG7tqabpHqg1WpiteacgcLxlbmitpW7TUXjqnLvPIK0i4UFCjzBZbabbLCcNXwtaR9fRjVNQEMo5S+vgGafQM0m/3++IwsVg5O6pLkAyjyjDBw1gDS5pL55cJYM7Ks7a9r+/Kbzv8pafLaXIfv/fBvPaLXTFM6VrEwv8hAq5+rrroSo10hqkxOoAqXq1ZaX5g1mgOosIkKIgqtyAtdawcrV7RFECcGSUxI4wZaywZAs7B4mbxCcOKkiYpS8lJT5Dl5UXgEsyidSspodyMqKrPBsnS5bMa4uJK8yH1R5AyKDD/4fx59W31wXnzxxZ6WRL3NtJxcW/f3qPvQ1JVN9RgCUU7JrrS+C5XfXd5SElheip/lBZIUNfVjk1EvVuqP1Quhf8qQzy5k3uX5QgcOHPDKGyExg0M8jh8/zpYtWzw5V37nrrvu8vdeSQeX50xPT3vytoRRtlottmzZwvT0NHv27KEoCt/yeOONN7z/zblz51i7di2/9Vu/BTgkQxa/egSGtFLq11Ou+9GjR3nppZe4+eabe1C7hYUFHnnkER577DGmp6f5yle+wt/8zd8ADkUaHBxk//79nqAsBcHatWsZGRnhgx/8IC+//LI/r7fddhvf/va3Abj99tt5+umnfTr5Lbfc4p+3efNmbrzxRv+8559/ng0bNvgWlZgXPvzwwxw/ftwrxdI09YhPWZYcPnyYrVu3etRIPpMUUocPH+YnP/nJW67/fffd1xN/ceLECTZu3MiOHTt49tlnWVxc7FEmSWtP1GZSKNT9jcQqQa6/zEn5Dsgcmp2d9SGzku0G3e/L008/zdq1a70cXF5PiinJTqtbLNRRShl1mbsUP3VVZKPR+OfxwbFYSq27Bc4vKYbkMeVIOV1+Tf11rMX+iugagQ+DGue53nYCCMKueZsxBoUiTRsemQHXFmnETbe4Vu0SWbiSOCKNAiKWCPLX0AtOcZQVb7iCLbkKlfwGuW7Qzt17t5cUeWbI85Iy7y4KpRVZsQFj0eXlLtJQuhBORWUqF8T+2K11ShqlAhdymFbeK/399Pf3E6gCa0tKbckqdMeYiMha8iInX1qisbLiafQ1CUPnLN2ughF72kOB41coRWVIV10nZTDZPPMXXiWbv+AX2yCwhCqizHPKoiQMu0GmhdWkUUS2cJG+gSFUXDkZN1dQBKr6rEGFtsk1d+ojF6KqCOKuo3AQBD7ryV07mV/d9pVbXLtFUVxlfwGVOV9lrBhGKGXptNvkece1XwJR+8TVl6lJf1+LOG344yOKq5wx507si64AgiSmLAqPTImMncrnxxqNLjIfbmqMRltFqTU/+/u/5+ev/r13JY6imHjF1WRlxGvnLvLTn51jxQpXQPf19xFEiigwpKECWxXdc/MElRosSZvepdl9D2JsEJMXAZ229Yq2PC2d6qraDKxsXYFaIaaGrohOY0OZxGhjKKpcqaIK6SyKjKIoiCoETmtNUbrMtbIsIQgIRGGl9duO4ARB0NOXr7v3ilKjnjclaEUdvZC/64VHfdTRlroUW9RW9awdGfUWUh0hkeOR4koWeOjyZsQhViD/X3acywsjkXvXj7X+PnUU6cyZMzz22GNMTEz4BfTgwYOAay+tX7/e813q+VXz8/N+ARkcHPQL8fT0tJe1i2EiuPbI/v37iaKIffv2ccstt/D6668DeOnx0aNH2bBhA6tWreLDH/6wP3ci55Z2ivxcFrO64gZcATYwMOCTtMXq4POf/zz33HMPw8PD7Ny5k2uvvZb3vve9/rNu3ryZ1atXo5Ti+eef72nb7Ny5k9/+7d/m4Ycf7uHgiLnj2NgYBw8e9IXizTff7INUjx8/zg033ADAX/zFXzA+Ps4rr7zir8Gf/dmfAQ6Neeyxx5ifn2dgYIAsy7yabP/+/ezfv5/77ruPJ598kuuvd52AO++8k0OHDjEyMsKZM2c4ceKE5wNt377dp9R3Oh1vJzA+Ps7Ro0fZtm0b999/P+A8hsAhIdLOnZub80WezDeZn/WWq8xNKd6lCJF5LChmvdiUeSTKuc2bN3tkcnZ21s8bQRzrmwJBfOqj/n2W360jOP8jG4Ll41cXONYVOD35zMuJxd0HXJFTM8TzRYrqtpvqwwdtVn+w1rcDZMGUP2Lnr1RA2kgrYzCNwtCoHHDDOHGBiGVBoCAJE5LKXC7iEmX7ImU2D7pDWcU4t4urWGgrlvKATmYoyg5Czyl1TlE4Z2Fdln7X71o+ukpON0ggALjwSFuFNYZKEQYKK0Z0QUAjbZI2XfCkLKrGGBYWnTw7TRo0m020de81Pz/H0vwSkTIQwLXXOPn4ihUriNOUoiyc5BlVWeg7+bYrMBSxCjAYso77vGFuOX/hZyxceJ0obhKnFVplSzpFgVIxSehQlbJCKLKyoCxzWgSk/efpq/yACAKSxkpUEHozPOFwCGHV4oIZgzD0jtgo53atlMKa2PONlIUojhz3JQkIgsj71xRF2Z0/tusunCSpQ5eucMVJWdScY5Uz7EuShDhOCVTQtRtQjm+jgsCZISoJznQhoAqDsoZIBWQyxY3BlE6+borMR3CUWmPCmItvXua//PC/sHR5kf4KgTM65/L5GXLVIghTFudzLl+66OcDUUgUBARGE1XFykCrj5UrW8RxBAvzziOmKpKTRoNGcwUqSLA29oaCS0uLxFFCWhHjXVuw8tWJQtLYuZDnUUSpS6LqeiVRSBJHFEVEUTq0EPBoTlGWFNVCIzefoih8K+vtGtZaj7DI+8sCVOe6QK8HjSzI9fDHOilYhtxABTYXKTDQg9L8MnRIbvojIyP+OcIhqRcwdWdW2REvt5yX4kreQ+aq8CMA7/YqrynoDeBN18AtAkJEPXnyJOvXr/cLwxNPPMEdd9zhJef13bd4kwj/Rhau0dFRjh07xunTp3uOcWxsjPXr13PkyBFuueUWbrrpJm+KJ9yTdevW+ZbRBz7wAQBfgAqRuH49BF2TYlDOk7QrZmZmOHDggL9HCq/n8ccfZ8uWLYyOjnqEaXR0lB07dnDhwgX+6q/+imeffZaHH34YcIXC2rVrOXfuHB/+8Id9yytNUz72sY/5OAhJOAfH24miiE2bNvGhD33IH/OHPvQhfvazn3Hs2DFvfCfXfGJiggceeIDjx49z7bXXsnfvXj7zmc8ArojYuXMnd9xxB9dffz2/+Zu/CTi06v7772ffvn3s2bOHp59+2nOOZC4+9NBDDA8P+wKw0WgwNTXF3r17mZyc5Pbbb+cv/uIv/NwSfsvQ0JCP/ZBrUUdiZK7J8dcRtfr3TNpFdb8k+b4MDQ2xYcMGTpw44Z+zceNGbxcghHZB++pkZCGZy2cS9HR5IV931P51xjsy8XfGO+Od8c54Z7wz3hn/y41/hGSMIxf+CjRaWk+qIugocAor1fs7HqWht/3Ug+I4qMf/3LcNlCJNKiWSChyCYi1JHJMkCZLyWJQapTWxsgQYKC6S5VVwWJ5hCkNuNBfbcNlxVMnbmWszWYXVxsl/K+VOWWYYaY308DSci3EYBJWDc+Cl5SpKiOOEMAoAQxjHrKis+ZvNPrQ2FWckR+rLKI5RccMZuhUZF17/e4R1lCQprVUrSeKIvhRGr3NEsWaaYFBo7dxpXXZQFW6qAKMIVaUi0i5bCuDi67NcnrtIkvaR9q1CC/+lLDBkRAGUCooy8yZyWVZg9BLRpUXaheU3qtZaaWKCICFptoijpIruqKD1OCJIusRcY7s7Axd9EQDKcaUqNEFr5xgdRQ69C6MEa0SqXfjsL62LLqqoDEFYvWYASRjTaCYy84CgamNaUA6RATCBM6pUFfUray+6S4slDF28gjGGPNPEVShqURrKMq/aVzhFEi66oJNrpl/5B0qUswKo0B0bxBir6XQuE6f9BEFEu3KItlYToimAIIh9COebly4RvhbQbDQYWNHPypUr6O9z839xcZE337yIChSNZkpUzTtrY/Kkj/l2glUBjSShr3JtDssQ2m2SOCZtNIjCCIvspi1KuVZnUF2T+vdSEDBtjM/rCsPQ//vtGoIM13eJdUO1OrQtuz1xm52bm/NqEdn9LefG1NtSgsgI6VJiHIRzsxwSF85CnbwpxyHtpOWqLOhtR8kx1P+uu8ZKmyKKIqampvyxCZ+iLisXxEiM61588UUmJyc94gXwhS98wTsB1wmdIqeenp5mdnaWPXv2eOTib//2bzl//vxbWmciK96+fTsTExOcOXOGXbt2AfDQQw/1hKJ+8IMf9IofMXaLoqgHoaorc+Scy+c9ffq05+gIYRicImvbtm088MADvPzyy3z/+9/3x3fnnXeSZRl79uxh165dfOUrX/GtrT//8z/3Uur/+l//K8888wzgWj3ve9/7ePnll+nv72f79u0e3Zmbm/Pckscff9wjMe1221/nCxcu8MMf/tDHq/zkJz/hyJEj7Nixg8HBQY4fP84TTzwBOGPJp556yvNzBOk6fPgwGzZs4MCBA5w7d44f/OAHPubi1KlTjIyMMDIy4sNHZZ7IORsaGuLGG2/saevKfBQlmJxzQQFFfShDIi+EL7M8ckSQoDpvR1AWuW7j4+M9fKo6WliPRJE5L23n5SaO8nj9OzI62o1b+XXGryQZX3H1dfZj/+fnoE4GXlac1AscCeyDqvCptajk99/yfFHZKIWyXQKqtLSEQKxLkaW6LKAojpzMtvIlkZGEhtjmUF7EaE1WuOcttC3ziyVLma6s+avn6IKyzCjKHFOUVUtEuB5BN78oCH1Qow0igjAmiuMqcDIhTCrlThASBIokgv7+BmnfCtpLbjFot3Mn/Y0jLN0MrLIoHE+ptFgy4jinv/JeWDX4Lmy5SGk0gbJcX7Wobrzheqd6KXKwlihJuiGTlSuM0YYAyDtLvPrKjwCYO/8yCkWjfyVWBT6TyJQluihI4ogwUu7ctV2htzS/SNbpuHlgC6691sGaI9ffSGPlEAOrhmmkK7Aq7kYeBAFJGhNHEdZ2U9mhfo2lFdmdc74lqY1r8/kcNOXDUruVtJtiSRJXnJxKxlyRgk3VOlSq4skU2s8nFcSUVeinNRntBdc2skVOnDYI4xRjDEVR+AIsjCKyToes3UbRbeGV2nD6R2f56T+cp7CKN38+i7KVb028ko5RdLIMYwPipOEX83ZnEYUlVKpSK3Zdt3VZKf6UIk4S+qob6arBlaxa1U8SK7K8oKL6ECV9hHGTQit0lU4uN/kkSWg2msRxRBgGzgOpmq8Wp6SyxuVU5YXEaWjySiqvtaasKazKUlMUOd/66n1ve5p4vSgQOFv4OHITlBt5p9PxPfrlBY6MetFRbwfV/WTE46VOVpbnCj9HWip1cqb4pCwvZORYp6ene4oOadXIMdSdegFfqEmboX78EjxZz+kRMubo6OhbuA3L/Xvq/KXVq1f7hU2UVvXjlnMo0nBw7TBRBY2Pj3uH3JGRESYnJ/nsZz/LG2+8walTp/yCtn37dr/YtlqtnnRyUQBJWGm9ZVeWLvl93bp1vvjatGkTr7zyCk888QR/8Ad/wMaNG7nuuusAV/wMDw8zMTHBzp07fYsMnH/MgQMHePzxx/nmN7/pOUrT09McO3bME4hFZSXj7rvv9oRlKdhmZ2fZtGkTjUaDvXv3egdngL1797Jt2zaOHTvG9u3buXDhgk8hB+dIPDY25j2CwEU2fPCDH+Shhx7i4x//OM8//7x/7OjRowwPD7Nx48aeVpi032ZnZ337SK6TcJHOnj3r56ecP2mZSiG9nLu2du1aDh48yNatW70ybNOmTb5Fu1wqXo92qBPpxVVbIh7q8vMoivwxnzp1ys/X0dFR/92Q75oMKSh/3TTxfwJ7p7aYVEWMFb6oqhc8DrURdVWglH+e+0HNNt9zKZwINxD0RnU5HKoiE2ttCYKQKJQcKMPS0iJFWWCMkyNXmZBEKsPki+Q2JysC5udzLs1XSpes4/g0OscU2hdt1iq3yGEIVUgUJhUh1uU0BUFCEMUuIb06hjhqOP5G6LgkjaSPpEINGmlKX18TZTXzly+xuNghrJ43MNAiy3KW2kuoAJIKcelvNmikASsbEWk8T2kyOpmbFJcuvgoqodNxhde1VznfE4wGo1GBIorTqviq+CVaOzKzLVlqLzF3/qdk8+5GOrBiJWGYUhpLXhTee8VYF6/RKQuSMCVJ+miGbgKqsIG+eJGlpUUUET9//TwAP3/9F1x19TV8YN0GgjDCqgZxJCnfIZYAwogwiImMQz/ALZ5BoKq50jVqlOiE/5+9t4/x6zrvOz/n3NffGzl8kUTFE3tsjxOqYLesNarpDQNPEC6qbBgsvWAAuVVgZktg5Y3Q0qkECxsFYWAZUNdGS6wZWEblVIDlNYMSawaVYQIetExNrxmEsSY1E40TOh7ZI2ss8WU483u5L+fes3+c+5y5M1ITpFH+KXT+Iec387v33HPPvec5z/N9qeu6MbOsnQAjEEfugZIFV2wDgkA3k25TF6lu8DQK5QDeCrSqKcoxddZo+ERdVNgBralM5edtWUxQtkJpTWks1E7wDhzOparFKsFgGvDxazdv84Mf/pCqqNm55x7u+h/+Ea/8aLkZuz4TBgTjMUU2RqHpdNyLYueuuxiNN8jHGVGssI1FSF2X2NB61lLSgJ4BfrT6Y16/EdHtpOzes4udU858VemYjfGYSVYSBRF5nftAShbqJEkaj6rQBz+dbtdZUijHlJPg0xiHeRLsk9YaI88vSpKmb1nTWr9Bl0YWO3n5tWniq6ur7N271wcZbQE+YWlsF9aTl7TsGLdreWwHP8qLWfrSDoD279/vAwehUEsf2kJ9y8vLfnE6d+4cx48f97of7Ze5YHkuX77s/Z7a/WiLrrVBoLJjF1xSWxRQduTtHbRkg/bu3et1h9oeQ5Lh6vf7Hs/z6U9/mqmpKebm5jh9+jTz8/Ne0+b3fu/3/LHlmiXYvHr1qr9HEqTCJn6pnUGT65Xr2b9/PxcvXvR9eOqpp7wv11e/+lV+4Rd+wWNZTp06xS/+4i9y8OBBnn76aT772c9y8eJF36fHHnvMm5QK8FYyFuBMQT/xiU94MPE3v/lNnnnmGV5++WWP/QGIoojPfvaz3Lhxg6985St0Oh0f4Ii45Kc+9Snm5ub48Ic/zIsvvgg47M43vvENLly4gDHG9+3d7343hw8f5hd+4Rf49//+37O4uMjHP/5xwOHcPvCBD3DixIktzKa77rrLY8lE80n0e9pjJ/gvASeLUajcewlqwQW9zz//POfPn+fkyZNbsGALCwssLy8zOzvrBQplDkpGVCwgpIl7vWwOJMgSTRwZAzleG3ezPQvafob/W9pfn8H5yOO+XOK0S3CVlW0vOKU9R8b93JQT/Pe2ZWt8k0WprpvPJQhyJR6hqOaNSm9tahQBURgSRyGRLgj0Jg17MrIM75RsjNbIi9wvErauwRpEhUXE4JQO0CpCBQE6tARhRBi43bKOE4IkIopCp/obu8W7k8aEYUKSdOn2UkJtvXJsXVvysqQ0JaaqMcK2AkKtCANFGgYENsOKPo7NnPCSLlkEAAAgAElEQVReHZCXNWURkFfuZTCpDZG2TmS5LnngH7gdxzvv2UNlDHESo8LQBZ7NgltXJYqC0fqYtZs/YO32yz5AHOzc7XbjZUFZGbJmwS+LHFO68VEa4ijxQURtDEWecefWbfI88/c+iZwI3dTuu3jXe97Hu2bvI0waN+6o61yyo8gBZFvjUDXeUyIW1w6Sw0aAzxjTLNBuPgVBRBiEXkVYvhPHsdNj0g4YrcCr8bqY2Rmm2rqkHK+TbzSZGhXQ3bEXHfcoi4xs6PSAqswZfQadAUHcwVYldZPlyvOMqjFeNaambILxhf/0B6y+doMdO3aye3ePdOcUdzL3u9dfu8Ng6icowx537pQMh0OqBrYcp13SqENZFEyyiQ/uyzKjLieOSVZVULXUusX8FWcK22n8pnbs3MWOqV2gAobDIUVRNuw51+QlkSQJg0Hf+1S5TE9Mp9NxlH7JwFrrylJlSVEUlGXpj+E2HhVf+r8efctp4u3WLv3IyxI2AYoCHBaWFbAlKGoDGQW02c50tFPkbfZIO0XfZle1y1NyLlkw2gGJvNQleyPnu3r1KiLCdvnyZR588ME30M7luttlLMl2rK2tbXF8FsVk+fv2QigBoPj+tMGmQpHfDniWa26X8sAFZseOHfNZJ7l2cDv/9py5evWqB5U++uijzM7OMjMzw9LSki8Bte/X9j60KcNpmm5h/rSv/fz58z4bc/r0ac8SEn8oEYc7deoUZ8+e9f2Q0tqXvvQldu7cyeLiomc1SXvppZdI0/QNn4MreX3uc5/j4MGDfP7zn/eA72eeeYb9+/czNzfH3Nyc30AAfOUrX+HUqVO8/PLL7N692weF58+f55lnnkEpxU//9E/z5JNP+rLW7/zO72xZ9CV7duLECa5cueKD4DYjqn1fJLjdLlDZziK2/355eZnV1VX279/v58rS0pIPCJeWlrboL8mxBLDcvp+rq6tbRDXbTuPynAn7Su55W9l6u0bV3yaD89cEONP2H/+Tf+mBNr48oEWqrZ2VkSPqVvBjN/9pZW/aYmLU1pclrLUtpoYhy4tmsbJETZomjiKiQBMHFWFYUpuKjfVNpdnxZEhpSlTlDB03z9uUwQKNCkJPJVZhRBgmhFFKEHeIk5SkCWTCWBMnMf1uh04Se+n+IEwJI02ga+cqXViPZbF1hSnzZhGvUaokauwQwnqErkZgnXFlXroFKKtTijrF6hhFRRJWhM3YVcZQljVZXhKHNYc/8A/cven30QqiOPKieuI4XZVjymLMcO0WN179U5QOGex15pS1tZRFTl3mFHnGZNLYOzQLmNhshEHoszFKWaf0a2pur92maDIxnW6XHYM+2cYd+t2U6Zn3MXWv2wXdde976HR2uIAxjAgC7Y0csZV3kXd0/taEVE5PpywLrLVEUZOqD6KGOdcoDkupSSlniKoVykV5XpXYqR1KYA1VPma09npznwrizhQ63kFNxXjkFk+bj7BVhYr7RGkPraAuXaluNNqgNIYwSqlVwA9ecVIDf/Cfv4ExNVEUMNjZZ/fePmnHZdpGRY3RfaJkF5P8DrUNUdoFgZOiQoUhQRQyziZsbDgckMJlL/M8pzZOJbnM3ZiXxji8VGWgMf6U+xrHCTt27mSwYwdo7V9qk6bUGEWRV5sSh/Q07bBjMCBNU6Io8qWrIAicJIPYOFS1dzsvmwXpuU/9729ZgHP//ffbP/zDP9yy2MouULIxEuBsNwXcrqshf9sWNJOsgYjjtdvU1BRnzpxhbm6OI0eObHnBtlublbKyssLc3Jy3KhBhQthqryD9hU1WiiwQ21WO25L2srALBklKOdsXgDbbqh2kiXmo7OrbC5CMjQR27SBLskFtI9ALFy4wPT3tRd+uXLnCmTNnAIcvuXPnDlpr/vAP/3CL2eYjjzzC5cuXSdPUZzjkuiXQlKDpzfBLWZb580xNTXmzS8GRSBbp9OnTXpPl6tWrPPPMM378Lly4wNWrV5mfn9/iGt7WV3rhhRd4/PHH/bnf9a538fLLL/P+97+fb3/722xsuI3oYDDAWsvKygpTU1M88cQT/l4aY3jiiSdYWVlhdXWVD37wg/zWb/0W4ALoj33sY7z++uu88MILvqR05MgRVldXeemll/jN3/xN3v3ud/PRj34U2Czvzc/Pc+bMGR9oLCwscOzYMX/vpqam/ByQQFv6J/dU5oOUINuYlnZ2UOZCu6w1PT29Bacjc/LGjRscPXrUi0K2GYRLS0tMT0+/QfG4HTy3M3ozMzMeo/Vfk3j4OylRWes6LMFFFMeEgUZRYQmo62BLSUmhMI2jsYXNQEfRiLZVtAMqwd1UVUWe5+6FLtgY5UTW0igmjQIa2ROCwKB0QZEZbr5mWB9lFKVbGOq6RNXKYTDCAB1on4VQQYQKQpdViGOiOPHXlKQdOmlKHKVEUYAO3DWlcUCv0yWJEyec11wrAZiyICtyimyDqsqwdeYHzVYVURhiTE1eKSbNJRemJi9CRpMaUyXEDd1aaU3c1exMEmxhyCbr3J64jMJkXDoAalWyZ2eKVuLIXRKlHYoi9wuWshI41qhasX7nR9Ras3vPNKa5GY7ibplkOfl47INN2aXXTcBpdI1pxiEItMtqBAH9HVNkmVswgyiEMKa/cxcbt17nh8vfo2iGKM8zdu25l8HOvXS7O9Aq9lTnqrLowC2eta23+BxZ5Zyzra2boHerJYBgs9pZQK011jYYEdvgkgBT5k6tuKGV6yAiFID0KKcYrxNaiDs9r3hdVYaiHFGXBUGUUluDbY5XlbnLIMYd8qLkj7/9bQA2hkPC0AUHw/WM0oTsvLcBxO7cTT+GYnSH2m4QpxU6cM7zd+3ch412UVRwz94pxg0QvDYGS0RZQVYU5NnY20Vkk9z5YZWFF+0DqCu3+VjfGDIcj0k7Hf9yGQwGZFnGZDKhNMaBqJsAJytyshtZk9kZ0O067FcYhkSh8+kKg4C6CTzBeVvl7aj0LWjWWhYXF/1LdGVlZUtJqa1bI+BFWaDaOBZ5Ocqi2V7wwzD0eh0zMzN+l//kk09y5MgRjh49yuXLl30f2ro3U1NTXLt2zQchS0tL3slcdqIS/Ag1Vmi77cBldnbWBxTioyXX1NYhkfOKDom8/NtgTynzyN+0tU6kBHHlyhVfygB8cCDZrPZuHvClnHagubKy4rEgsoDJea5cucLFixc5c+YMU1NTzM/Pe1FByeZItqiNHWpn2paWlvzvDh48yPLysu+//CsL/r59+zwNWcTvLly4wG/8xm/wH//jf+T73/8+Bw8e5Otf/7rvv1CW9+7d64Oi2dlZlpeXuXDhgrdckD7cd999fOUrX+E//If/wK/8yq/463nppZd44okn2LdvH5cuXeLEiRM+g/Obv/mbhGHIgw8+yMGDB/n0pz/tx/BjH/sYX/va11hdXeVXf/VXfRBz4MAB5ufnOXnyJPv27eNb3/qWn5+SiVpaWuK5557z2jLz8/NvyFLKcy5ZLwk22lguKWFKxrO9IZAykzwrbYf77fo3ciyZc5KlbAdF+/fv3xJQy7jK/N6e8YTN+S8Bfbvcub10/Ddpb9PE325vt7fb2+3t9nZ7u/131/5akHEQBNRNiSrLSkyRUWRDgiAmTnselOgUXx0bQ2sNgfY0WuNcH703kWRxyrLEFOJ27TIZYZPVSJKEKNaElKRB6UtgG6OK9fWMSZ5hqhJs5eX3wyBCawdwVUHg8B+Ry9SEUUoYJ6RJRJp26HQcBiFNIsJAoWxJWOcEuiZqGExhrKmqEcONOygdIYK2dVVR5mNUnaOVIdQWrRtLgUqhkz7DHIbjknFmPJBXqYAoCOn0+wS6BtPQ0YsRZjzi1uQWcZxQliVpxwnw9QddirzCFBNmZu71CrJBAyqu6spbJXjFaaVZ/fHLBEHA7rt/Cqs1xdhlDarKlTjyPG8o8Q0Gp3Sg2bpu2FdKgxs6jAGLU/uNgpBez0XfQRSig5Aw7bEn6XL7xmu8/D0nN35vMSabDMnzCVO77mYw2EmaNI7dSoF1c8siqHXXHOV7E+eR565/CkdXDoLA2wm4eacbpejNkpc3grQ1pjSEYUxpKpfp0QKCjqmqAlOMQFls1WSX6gZwXZXUVUFdltBghgKlqJrM4veXr7Pyyg+b6wmp6prReEycpuQbGWPcDnePHmC7Cb3eFEHcIVCWSTZsuneHOOwRqgRVGbphUwpmgq030Gmfup9Q2x5Fg/HKCkOe52S5A6ILu9AUrjRamoLSODbUnTvunne7HbqdHoPBAFNVDIcjxhNHVQ+CgDRJCYLQZXiase10XFaTqMnmRFGLBRe0GHtvXZubm/M7WPGmuXLlCleuXGF+fn5LVkOyJG0nZXB9vXTpEjMzM1y/ft1nY2ZmZnz6/dq1a8zMzPhzPfbYYx6M294xLi0teYbSdsXdBx98kGeffZbTp097bE3bQqFtNrgdJCmYk7YQYBt/I67e4OwTBLT5ZkyptmhfO5Ml5Z/tnldhGG7BAm3vl1xvG4R68uRJFhYWOHz4sBdSlF25MHeuX7/OsWPHtphgLi4u8uyzz3prAulHGzD+1FNP8ZnPfMYDb7cr6orwXfua9+/fvwWg/cgjjzAzM8PFixc5ceIEy8vLnuUlNHaxEBC14ueff97TvwUvIz5VL774IufOneN3f/d3+drXvuazNHL+o0ePkmUZn/zkJz0L6zvf+Q5Xrlxh3759XL58mccff5x/8S/+BQB/9Ed/xOnTp/nqV78KbKr0ZlnmrReWl5c5dOiQx9rIeKVpysWLF31ZyxjD8ePHPbC9jX+RMpPQt4XNBO55Wlxc9IyldqlVAPJtzzFpkuWT50fuueC6FhYWPLBZrqk9R9fW1vxcnp2d9RnINu6qrfwt/5fnti16+d/S/toAp7KgvN6HJowTwigGWUuaurwiY3T7R4yHt9gx6JGmHcKwCRSSASUpWVFSlJXXVwl0QKxBxaBUig5i4ti9OKNQEwUVRVHx+s0Rw1FTJmiUlZXS6MDpsATNohVEiiBUBEGHOOmQpAlx2gAG4w6dpEMnjegkCbp2L/h8/CqqzJzbdJxi0VS5K3lNhusOMFwWjrHVAJM7sSLWDqtS1RHjXLM+ci//0aSgqG6hg5Bet0en1yVsSj3dKCCJYsajNUJdoeIGSGgVxuRYSpIoYdDbw3Asiqkj7pqK2dXbQT/K0dYt+Osb63Q7KUppFx+E2scJw43XqbDs+4n3kuWW8WSdqlFuripDmWXO6RvIG2yHMU6rxuFwoK4Lj7lQ2gHGdaCpo8S/EFQQEOAUh/s7pti59x5u33Av2Vd/8DJrr/0YihG9NGCkrL/vUZS4wERptAqokPngyiDugbWMRuNNoKxyqtpgCaPAK157nZ2GbRUGEUUpysjOPqGqnWdYHCXeDNRECbaqsQ27LordXK2osFICq2tq8KaXtQpQccTNtdv8l2vfIU07TR8ckytOIkxVEscpFG4O/fiHf85qNIUOO+ye2sHuqS6mYUuZKqNYWwUUSaQJdIOHmtyhm0yRqoq1OzewlEyJMnIaY+KU8O7dGHUPWe7ua14YsmziNJby3Clcm02AfZ6XlKUhTBKmdu9mF06baTweMxqNyMqcJIpJm51EUTo7kjKOSdOURCmvfhyGTqbhrWyCv5NARV6Chw8f9gZ8bVyBYEzEfFHKFVmWMT8/z8WLFxkOhz6IAbh48SKLi4se4CiaI1IykQVTghhh/wjGoM3oWFhY4JFHHvElKEnXg3uGZKG4fPmyDyTaOj7b9T6kD3KN8h0JJNoAZ1mcBI/SLjW1QaNth3RZtAR03A4ipF9t8LFQ6eXc8/PzXs123759Hqwri+LJkye9ArEsaAcOHPDXcePGDb9Ip2nqFW+PHz/u1ZMB7+wtOiltkKzQkYW5Jvfr8OHDGOPc0//gD/6Af/fv/p3313r66ac9/b5N6ZdS1V/8xV/wvve9jy9+8Ys89thj/rMvfOELgPOpeuCBBwD4+Mc/zuuvv+6Dyvn5ef71v/7XgGOTfeMb3/C4lbIs/XvywIEDfPWrX0VrzUc+8hEftAmV+nOf+xxhGHL69Okt8gBSEhXwr8x9KcsKG3C7LEI7iJDxk5LkdiuQmZkZfw6Z5+0SqGCKZN7IOSRAF1xWuxQm5TOZ0xLQSfCyvLzsWYiwCSSenp5mcXGRAwcO+ID3wIEDf6sS1V8JMt5190/an/vlf05b6c+L3eHAkGHzoy1H5OObVJOhA7FSb+60dUDUuxtTayqroQkUeklIOfoxla2YfuffI053eMBpPhlz69YNhsMxWbGJ3dHKoqOAIIoJgoggDLx/ThR3iZIOcRrS63QZJCFpE1xoOwFVEEchxowxTeZC1zUVmpyE2oaYvITGodnWNUprrFZUFkcbBvKsZDIqnLVDpVBB4oHJcRoQp0GTFaqJlQO4urGzKJtRlAalQ4LGRkJjiaIuhQkpTUYcZfSSRsNEp1TU5OMR/VDznne+qxn7hN7OHlYrB+KNIvJmV76+9mOiSKNVSFEYxuN1siZoq8qMIhtR5gXZZMx47LJIgr8xpmrowcUWfZowDAgCh2kQgG+/P6DX6xEnKZ3m/1FjN1DlY269+kPGGzfp79jN3nfex93TbrfT7e92gO4wIKLG+iygJhB5AQXj0ZiOZNOCkKIooRlP7wruGUYO11OZAtP4eGWjdayt0KHzcgrCmLRhD2WjdcrhHYJqTF1NCGP3eWGgqJzwY9rtU9XWeVwBOtRMsoL/9J8v89LSErt27ZanAlMVRGFE0FDPdcMmK/UUa5nFRpGTO1CaXTtddm5q0CMOc2o7IU272FIyTzmdTgSqpJPsQqmEcuQwWeX4FSblDcKkQxjdTW/gtEBs0KWoQyZGMcxL8syQTdw8zvIJeZFhTEltHV5LbD0ix1BwTMU890FRoDRJHLtNQuwA9gKyT5KEIAj4V6f+17cUZPzNb37zDVRrWbjaGIE2HufEiRPs2bOHD3/4wwCeMitYEdkJtgXQ2i91cLgUyRJdvnzZZy+ECbKysuJxBXLea9eu+Z2taHvITn9mZsZnULa/nN+MIQKb1Pc2fRo25fclkNkOpl5eXv6vZookCGxjkbYvQG19oTZLyhjjA702hXtlZWWLaJ+4YWdZ5jVeJLgQ1pcswnI8wYD0+30WFha4dOmSP8e1a9d49tlnWVhY8PYQAMePH/fXcuHCBdI09RTtX/u1X+NLX/qS71e/3/dA5/n5ea5du+bn0nbmzvLyMr/0S7/E17/+dR8Mnzx5krNnz7K4uMjzzz/vP79x4waHDh3i0qVLHD9+nGPHjvn5IIyuo0eP8tRTT21hxe3bt49r167xta99jbW1NW+tsLCw4IO5xcVFDh065LNdZ8+e9WN0/fr1LVT+NiOwncGRDKXMP8GzSNuurSTfEayOZH3ac0CCyvZ5tgfU7cC/zeqToKkdZLUZgG22ovxeJAraNip79+79u2FR7bp72v7c8X/ecnu2noVhrWMQCfBW24pIV1jyZlcNSjC5Fipq55YcOGE8cCUbU9dEkaLb7WHKkuEd9yIvJjkqiJ2JYW3QqlFljSKCRBPGEVGUEMcJSeIW3G7co5MkJHFGWG9QZ69Tl+sAhFEXFfZROgYiiiZz4fqqXV0k1GT5BCOg0lozyiuGY8MwqzF1s4PVEXEY0k0TeoOYMFYEDcCXukKrmjgKsLXz9vEkaFs5fRg7QauatLOn+QVockJVYVWIUSnD3J3rzoahNBZtMrp6g/f//fc015oQRQFx2iEII6zdVCsusnXCUIMNKIrcsX8aY8jK5BSTMXk2YTwa+hJQnhfO00q5O1zXlWeahWGwGWBq7Xcm/X6fTiclDGPiTodef4cra+DA27YyjNdvUA5vUxUZO3bfC8De6Z+iv+cddPtThGoz8xRo7bIEjRu7AJ7BsefqumI8HjpxvObh0DrAlAalnZhBmWfYQgQKb1NXhl6vTxAnoGOSjgMZW6Ww2Yjizo8oJmsEoeu31SG5gUpFhHEHlKJonMt/9OqPeGnpu7z8gxWKsvQqpv3egNoa6loRhCFx0qfWDZg57mOjKdbGE6raolXo/Z4UliRwWj2dbs97qilrqI0zLu0PeiRJhG2Eeqq6QFcjupElpCKSDJcO0VFKrWNMpTE28GWtUZYznhRMsoKsASd7Kn0jthiETpW7Fl2kum6ENzfvuYDioygkjmM++38+/JazqKTJi7NNhW4v7rLDl928LHaywxcgZJu5Y4zhhRde4NixY1y/ft2XMSSTc+7cOebn5/1CLMwlWVDaTK5+v8+VK1f8YiLAZtjKWNkugrb9+toveQnqBEgLePNE+U47QBKQ8vT0tKfrykIji470W3bEMzMzvsQjpQy5Jrk+Cezk8xdeeIGpqSkOHTrEysoKBw8e9EFMWxX58OHDW2j10t/t4osC5JbxWlhY8E7j58+f92rLgM/6TE9PMzs76/s9HA598Proo48yMzPDqVOn3iA8l6YpR44c4fr16/zMz/wMv/qrv+rHQejrDzzwABsbG16XZX5+npmZGR566CGuXbvms0tS/tq/fz/nzp3j0KFDfg7Nzc2xb98+7r33Xt7znvfwl3/5l96v67777gOcE/n09DSf+9znAAc+FrC7ZC0kAJN5IOXU7cFAO6Bou3XLhkDKl21mX5uR2A6Y2hmY7aBlmetyr9vnlj61gyIJhqQE1daoan+/rdnUVgPfzpiU+3nXXXf93bCo6rryLBdhQVlrN00VRSOnrjCqRtuYJFakcU1TgUGjqFWCsRqLszkA0IFCaUWZl2zcuk0+HjudFZzBow1KkrRD0kmJkwZLEyeEcYc0TugmMd0kJoldX2I9RlUrVNkN6mqEYkAQul12FQwg6ICOySeTzZKNHTHaeI18OMHYHsb2mBQNRqhWWDRR3KE/iEg6rt9pVJEGmggIlAsEqobOnGdDimxENjIoFRCkKUmDAzJlRVHWJPEuQl0yaspQhYEyh1FmmBRjwrDw+iYoi8kybD4i1GOCZtw31tbo9DrEnS6VrTFFjm3KNFqrRko/oChzR6NuAoWqseyurdM7rj2DSZGmTmXX4XI2VaSdbtAmJU5i4slkgg40SmsmY5chElG8KBuRxBH9XftI730XxXjoKdqv/uC7TGUT7n7HLFE68Ew3rR2bSzIEYbhJC69rh60ZjzfopCm6CZ6rumIyHhOEEXVt0IpN7SNrsZWhKrJG40VjG4o7QYSOO0T9PRRlzqYKsvtfZgyd2AX1S3/+FwD8yZ8sEicJUzt3UlUuwAewxpD2OuioR1EB0Q7K2gUeN2/fxJARxj3yomhUgV1msyhyqhKixAlGdruuDNVtzGSrqub26BZx1CEKXCYrjjVWKW5hiYKIHV03dkmkiACtDNbWhEFA1FC+e50+ZV8xyUsmReGCgCawLYoSUxlqW2GMyD8091xv2qi0n/miLJty4VvXROSx/WKThVsUY+WFm2UZq6urHqfTLt+0WR/bA4gwDDl27JhnVEnK/cKFC3zyk5/k937v9/wCDmzR+JDUfluLZ35+fksWRuaqYEwkuNiexREKdvvlf+XKFQ4dOuRxFG0MgmSO3kzTRDAzIlTY3vlKn7Is8wun7PKlvNHeSQtrTLJl4mx97NgxHyyGobOSkJLJ6uoqBw4c4MCBA9y4ccOfDzYNNYEtOArp6+LiIi+88AJPPPEEFy5cAFym5sKFCxw9etSLzMmYtkt4bQG548eP+wzNmTNnOHXq1JZy4FNPPQU4a4R/82/+DQAf/vCHeeGFFzh79iwf/ehHMcb4DNxDDz3ExYsXOXr0KEtLS57BdPHiRc/ykrkmGcNPfvKTvPLKKwA8/vjjXjiv3Z544gnOnTvnsT979+7l6tWrnDlzhr179zKZTPx9Evp3e6wAnxHbzkyS/okYotzHNo1dAs226aXMozYeps24awtnyvMnz5Ucp431EQzcoUOH3hAItTOG7bkqtPa2u3w7GGpLLvxN29ssqrfb2+3t9nZ7u73d3m7/3bW/skQ1ddc77OH/5WO+DFXVtdMuqavGpNCyqdluiUJNLwkJKSkm6xRFk5YMUpLeDjq9vitPNVkDY0rySUGWF5RioNjUK7QOsKEiThPSqEOnAXSmSUoaBcThEG03SCgIGoVcY++QF0O03kkVTGNIKGyjb0KIVZbQWop8zOiO7BTHbIxyCmMI44gw6RA35oq9Xpcdgx5JFFGWE8e4AZTV6EBBoClLi6ksQZPB6cYRymTUNgOMw4SUbrcbhim2rqixbIwta8NGv6cqqYoChSWKo8a00g1dvz9A2ZJs4xaxHfKB9zvA1re++U3237eff/TBn6HGmWWWjYljXWZsDNeJoxSoyYuJYwPhcECjjXUHLG2xZpRSpEniUoeTCXGS+Mi7qmrP2jKVaZmgQpxExEmCVppO2mVqlwOv6iBEac2g2yVNO6gwpmgE88o8oyordt01ze573k2SuvFOohConf5K5HYJuskolGUJ1nDz5o9RQLdhctVVRZZN0Mp5KeV5wWi9Ee0zBYNOQid1wGgVhOjAZdN0nEIQY60hu7OKkrFTkKuIgpgwTvn2t/+YpZf+DIBBr+fYgjXEScrE45dyVBiR7riboP8Obq7nGMl6WkVhKlAapQPKotwEbysIVECaBs76w2fTLGGYknYiQLO+sc6kwRVFUUoUJc7MVFm0mLJGIWknpdftOrNXVXndoSiOQWlqW2NKRVEaMtHVyQryoqAwTgepbOaqL1Ep3QDMFWHgU7LU1vL//Ku3Tsn4/vvvt1/96le31PnB7SJXVla2AGWFZSQaNG1GRpZlWxhA0uRvtvtQwRvBuu10/fLyMnNzc56d0s7SwObutw0yXlpa2qLf0zYSbGd22liDdumrvbsWRWHJ5LTLPW0hxPbP7fGTrI+UqKTMs2/fPmZmZt7AtFleXubw4cP+ePLdI0eO8Oijj/Lkk09y48YNn4A34MAAACAASURBVLk4f/48x48fZzgceu8twTZdvnzZ+0S17SvkGpaWlnjhhRc4deqU7+f169d91mJqaspnVWSXLyy3Nh5K/i+Zs/Y1iSDj0tIS586d4/Tp0wBefPDkyZNeq0UyNefOneO3f/u3+fKXv+w9msCpFd+4cYMXXniB5eVlHn30UZ95mpub48SJE7z3ve/lvvvu81YK4Epwn//853n/+9/Pb//2b/trPXDggC9nXrp0iZMnT24RfpS52NY3koyizLnp6Wk/RjL32xme7Z5TkpXc/rnMoXaJUeZqG1cjTeaaiPpJvyXLeeXKFebm5rxQoDTpf7tEJeVdeT5lnrfPtWvXrr+LEpWlzPNNE8C6wWdQo2vlQJONAl8niYg0ZBs3uT0aUqmQuOuAlp3eDoIoxBhLbTJUE8TkeUmWTyiqktoqojDyYN0oTYg6KUncoRNa4sAtCrFeQ1djVF6gw4qyqhk14MzK9iiDe8nyAcZaQh14yvAkX2c42mA8HFO0BAV1FBF3u+xIEjqdHt1uh6QB+Cp0Y71QUVlN3ABHQwV1PcJWE7TWdOOEugmyysktrJkQBhprNWVRUlvX9+GoYm1YUNYVyiqvJhtHCWHaIwwsVTmmMiW2mXjVuKTTH2B7O+nFA1ZfuwnAj15dpb9zin+kFHUTdEhQVNUQBCFVw9bRShM2JT5TZJiqJo5jBzDVIr5XkY3HDW2448DVzfFcuSjCGOfD5MXl6prCGPrWOarbGg/4TpKUIAhYM4aBVcSJ9d5NoAgjxWRyh7LMCcIm6NCKKNSMJ2PCQjdMvMYuonZmlGnaJRsPyZuApDIV+WiDGz/+IYMduyhrzes3fgzAxq0b/PS738ugk2JNjq0KVNiMa1WADl1djIDCNkFbEBFEKUmQ8OfXr/NnL73k2V+TvKDT6aBCTW/HgLKSkiAQhHTSPvHO3QzuGngLDKs1pnaqwqUpqOua8UT8glyf7ty6yc1XX6Zo1JSxFWEYEyUd+jv30p+6G9tYbdwZ3aYsSucHFWqn3owDYceRYzz1uj3STuKd3btphzSOSSKIkw5xFHrn+TDQJFFIVkYURUERbLIVHVXfbWgqQ2M74ubW3wVNvG3AJ6wdSWu3aapLS0tcv36dw4cPc+bMGR5++OEt2AR5SW9X8IWtDsmyQM7MzGwBQLZfvO0Uf1tkTwIXOUdbME/6cv369TcEUu3vtUsusmBs77dYNAgTpa1CKwvddrFA2CyTSSlPFltw1HMx6uz3+77k0i5RtUGlKysrXuRP/KGk/CIgWAka0zT1fT1//rxfbNtlByl3HDx40LPjZBGUsqTcHzmWuGi31aDbwZwEPfv27ePixYtbsFfXrl3j3LlzPPzww+xqNmC3b99meXmZkydPMjc3x4svvuiDCHFHP3LkCFevXvXA30ceeYSnnnqKNE05fPgwKysrnna+sLDgA7WlpSUOHz7sv/fcc89x7NgxH1zK2J0/f55Tp07xiU98go985CNvwKsIaLrNLpR7LmO4PbCWgFfmRXteGuMMVMW/Te7fF7/4RR544AFf/hJQtQSTcqw260lKqRKktdmPco8EoyT4OJnXbdkF6YP8LKWr9v3727Co/voAx2yyaVTjshlqh89I4sgrDGfDddbHQ4wOSLq76aZdgkDAxBpTuAVKaeUXjKqusaEmjDoEKiZNYjpddzFx0nW2CTpEVXdQtWAGLIQ7UKqmHG2wUVZUVcOAyS21qujvrIl0yp2NNdbu3G5+Z1xmRFcknZhu6kCg3W7XBTWdFB065+ugYQKlcUiAcxK3OmjsH8Bs3GJcloRJlzhKmQzXMaUD+I4nOVlpqStNXSuKuqbM3cSIIsPUrh100piqHGMbx2lsiaKirhRBuoMoDikbjEMQxSgb0leGe6Zi1l75vvtKXZPnE0zjFaSovaZNbUrSNCXPnXotdc1g4K63zDNnZNp4DYV6E2cTRjGDwQ4X1GWFx7J0el3K0mArsNp640drIVJBk3EyhJHTm3HXWqMDp5dS1ZbSbDLhTFFh64Jxdove4CZJIvilAhuFTMZDh/+xtVecrkxFVTkskcVSNkBwW9dUVU42WePma68w2P0TfKd5QF/6s+9y6/4RH/ofP0AnUQR6EyOkgwKrI3TcJer00Q2LytQ1xiqu/ekSf/ztP6YsHD4FYDQaUVUVvX6f4XCDbs99ZzIusEFKrXuUlYWyIGrohXVtMEVFHFhqYymLiqh5aKpIOWBy2mPv3T9JUTrQeY2lyBx2KqsqqtGQugnAamon0VDX2Lz2FiHO50sR4LSkHABf7E1itLV0koCdU3tIBwOUp3k7BXJxHxes1WaA4/41de0xOE636q1126zr2r/4wAU78jI8cOCA392Bw3M89NBDPPjgg5w7d46FhYUtNFpZHNqg3KmpKW9kKRmFtqJwm8HRZpvIQiILfzv4kd8LsFn6J/iWth0BbKryStAmLCe5JqENi7Ks9FuCDdHlkdbO4EjA1O6fLI5txljbi0pwK21KuiyKEgDBpj6OOGm3A7Br166xtLTEiRMnPKX4+eefB5y+UDtwbGN9BNz60EMPbem3XK/0dzvIuC3x3x4HyXqdP3/e41DALdLPPPOMz9J85StfAfAWG0eOHOHpp5/miSee4DOf+QzglK0/8YlP+IyOgIR//dd/nRs3bvD1r3+dX/7lXyZNU589uXTpEk8//TTPPfcchw8fZm5ubovS8oMPPujHUEDt/X6f973vfZRl6bFmbSXq69evMzc3twVLJvdccFTte7F3714PPJe5J3Nc5pzoSUngc/36dR544AHvXdZ2Lh8Ohx5M3gbsHzx4kKWlpS3zpj3vHnvsMc6ePesD3zZoX4LU7WxAaZK1am8k/jbtrw1wnOWCe7mGQUAYuHS6pqauCoZZA+jUAcmuu0kbwz6X69lkFtW1W1Br4/RTAMIm6g5DTRgmRElAErVF+yyVKlA6wdaywzZoazGmpgjuwtY1utnF9pMSWxWMbt9imBsqqwkjtwh1Uk0nien1EsLQolRjeBhqggByM0RVMVGYEjbsoSrP2RiOMFZT68CXS2w+ZDQZkuVrlKV2mY1Y7CxSkjhkEEOqM0w2onvPXW4cghRDQVmO6Qy6NJtybA3deEAYpNSqJisNk7wJpiqNVoaqrIl1wOuvvQq4UlMSx973qsgyKrO56CtliaKYyWTixBqbxSnPC1QLKLzpC4bb1auQcjJxu3UpRemA2hqCMCLQYVOucrm8UCsCHaACV6qKm4AEpR3IOoxdpqc0fvyMcY7wkzwD/TKDHS4zNh5PnB2AdaabUBM1gUygA0dzriqy3FA1zKZ+t4u1mn5/ir/47ve4+d0VFq+5l06vt5vv/eDHvHNmlf3vmUZT+ZKOdvUXamtBx16UMiszFhf/hO/95V9CA8L2gFofHAVu/Iy7nkFvgFGKwqyjxhatFVUtYn63GISWsrbs7vbR/R5B49JuakB3ULpLrXaTV27sChNSVZbKQFUrjLWOIg+UhaGsDKYsMeXEl7vEZd1W1vuJ+UwbkIYRO6Z20ulYsvEt8oZhFSU9lAqcIWlLhFP+L07iodb+ZeOCnrcWZDyZTLzbMLgXsmQaZFGWxSRNU5577jkuXrzI1atXMcZsEU+DreBLcC/Otkv38vKy/73sRiUgaBtTSpNFeTtwUs4jlF75bHV11ZfFZPFtg0ZXV1e9BQK8ERwti4wsTNIuX77sd8siFCgLTDuT1KbvCo1dPm9nkf5rZo3SJ3D6L4888gjGGK5evcqJEyd8H8SN/JlnnvHO18IeamsHtRfptgaP/CwLqfhuyX1tB4fPP/+8z660F29hDbW9yuR4s7OzPPTQQ95vTIILuZb5+Xn27t3L9PS0H/MPfvCDfPSjH/Uidd/61rf851VV8cEPftBnJeT+7d+/n4WFBU6cOMHP//zP86lPfWpLwHvlyhUuX77Mo48+umXR3tjY2AI6b2s9tbVi2k2Ybm2hRxkjuTbJaMkzI5sEOU+bpSf+a2ma+tIjbAYbU1NTTE9P+3kspbErV64wPT3t2YbggrnZ2Vk/r9ryBW2GVRvYLIG1MCa3B/F/G5DxXxngKOUWr7Qp2SSBBmuY5BuUeUFVln6BNHWFqSsUhkA7ryahoioFUaSIk5QwTh0mAEjiAf24RxSHxJ0EHXf9AmSLNagtYdAlK9bJx67soKsxda0wagDJHseKagyQbtwekeUjAh3S7aYMIkM3cb8b9DtASRKWWJtiKofpycYZkzrHBjEEmiy77RVg83xCGifEaQ+DZdJgZoo8o8Zp2URRh06/w6Dx8NnZ7xPYAlPcAVUzSQbcHLvFuBNDN1b0uglpN8A2C35lDFWxhsk1lVUOL9GwkkKt6SQ7KFTBd699h5eX/9T1uyiJ44DKlI4hZWsmI/edIAzIJiVJGmNrS1FtqkWbqkJpTVVVlGXpXdWtBVPVZFlOnmUNDsbd97oGYyrSjjOf7IfyQqyYDIcUxhAHCbBZ1qprp0/jBAQrlwVRksEpyYqKqq5ZX7/D6qtOEdj5OSUopV1ZpC5J4iajFydUxqn4WluhBHdVloRhTNqfYnn1Fn/ynT/32Y6773kXVkf8lz/7c+776VlsnWOF9RckWB2igoCyKlm74xa7pe8u8f3l71OWGcYUqEDTaTBZmsZiNghBafLmAVV5TpKGJMqiy9Kx6pogvo52U+iAQGkqU1KRYdTY36dAQV3cQlfrTDXBeG0jjK2pAoVOdxJ27kUFg+Y50xB0yEooysLj3PK8IMtzirKkLEuKoqQoxR8NKqW4sbaGulOT58ZnD7u9mk6ni442n3k3HzZlAYqicCaftkUhV29tBifPcw4dOuTLJW9mBCkvuvn5eYbDIRcuXGBubo7Z2Vn/wpZdpeA82tgA2EzxX7p0yf+tlL+2Y1raC0Ub9wBbGVayELSxBvv27fN4gnYfJMCQRbXNGmun5aVdv36dxcVF/7dtzyTJUrWzKtvpw4IvkkyI4GvES0jo9DIOsqDIGAF8+tOfJgxDjhw54inGcpzz58+zsrLCI4884hdcccuWIKatvSNNsi4XLlzg4MGDW0TkRAOn3YwxPPzww1tKG+2S5XA45NChQxw5coTFxUVP+W6XFh9++GGSplT/pS99yevPiC6S3IsPfehDZFnGsWPHOHPmjGdhffrTn+bxxx/nt37rt3j22We9bpJcz5NPPkkYhvzKr/yKFz8ER2MPgoCf/dmf9fcdNgMIwZlNTU35eSoBsrD62rT39n3eHkC0zTbbwUI7yAzDcMv4SoAuc7CdcZPjtyUI2kHYdumCmZkZjh49ysWLF9m7dy/z8/N+frWzje35IJnE9rHbc6X9XP1N218NMt77Djv/Sx8l23AnGI/WiOMAHYZARTbZwDQiaApDkjh9jCgK/c4SIElibA1VbTE1frG11mBrS5aPuPcn3st7fuoDVKXrT7GxilITijwjm1SUTSyWVVDUGkVIECRUlWKcb2aRojhi0BuwqxdRTl7FNDo4u3a/k9J0WJ9U3BlOKBscUJw4+wRNQFkbLJak0SMJtSYbZ4wnY0pr6TSllF6a0OlEpN2EXVM7icOAMnPnqesKHWgsAbq2VMMfYBtcQxLvRQUJtTLYGqKwEZ0br6HqO2A2WLv5A8bj16kaGwdFQJAMGI5Lvvunf8lkJGDhLj97+EMc/tkPEYYheTZm3NDOrbVUpiQvcowpUXbTtLIsxmTjscuGWOtp4lqHTCaZK3cpiGOXrQGn5KvDiH6/R2UMUbN4V1XJeDhEhw6jE4abNg5pp4Mo9gVh6Fy9JbjABb2dNCHtdOkPXAbHWS4orFVEYehEHJs0l9ZBYwOiHFi5cmOqrXsYgijg8194jm+/+KeIwvB73v1ep0ScT/g//rd/wu4diTfV1JFTrR6Oc16/vcYPG4rn+sYG1taMxxPCOKYym7TufJJRVc1ViKcErshTmZyiqKmUwtiQ3LgxykugDsDmVFVGp5N4BHmvM2Dq7ntJezuJ4oQoVs08qUljS20M1AE6CMmb+WAtpL1dEPTRQZemIkheGvKiYDLJGE0m5HlB2WT06qqmKgyKCh1qUHrTOBahaDsbDCnPhqFCq9pdWwVZWXlFZ+eeqzh/5tRbCjL+whe+4Bc6SbML0HR2dtanugVTsry87HeesujJC1kcj9s70meffZbz58/z5JNPkmWZ/50sKmma+mOCy7iITYLQX+U8sqPdrrwMeGqtlJu2L0YS9GzHF2xP9UufZFG/dOkSV65c8VkICSgk+GlnmOTYEmQJrkJMQCWgW1pa2qIhdPnyZcIw5PDhw17/5fDhwz7jJOMt2a8DBw7w9NNPk6apF+NrZ10ks9IuO7THoh3AwqYp6pvRwhcXF5mbm3uDUaN8b2FhwWvotHV69u3bx5kzZzh9+vSWxdIY4zV5BF8kY3fixAlv+SGYmbm5OW9R0O/3/WIOrhw3OztLGIb82q/9GlVV8fu///uAs4A4efIkJ06coCxLPvKRj/jjyX2Qa2qXJtsgaumb6O2054wEELOzswyHQy5fvuwxQnJcyRwCvhwm90FKovv27dsCfJdxlSyhAKrbmLftAY6UAtt4ou33uK15I8cQMcs2IF/+HQ6H3Hffff9N75q3aeJvt7fb2+3t9nZ7u73d/rtrfzUGpy54ffmPvZFktxdjVYWtFJ00pRMHlGWDuaDxg1IBZVm4VHmTxRmNhgQawigmCLt4gKJ11OBu1KWnc0av/Rk3bzmw7nB0BxVq+oO7mNp1D0xcRFdlORCgVEJWKFSQsnd3AxhOoZOMifQNRhu3ufV6hU1dtPvaqyVRAGkcM5iaEnQQRe48l8JQEccxKtiM+Wpl6U8NuOuuvaShhQZXkQQlUTgmjgp0VTBen6Bil4VQegdKx0SBIs8KiugnqU1DBzcBSVVii1cYD+8w3HDR+vqd1yjKIVjF+toaZTH25ZxJVjIaF4zHBWWhMGXDvIorbt+6SVU29PIo8sq6ZVlSKBz7zdbkRYE4hdq6xipNWQdEcULSsGlAk/Y0dWWcGWRdezBxGMV0BwOqyhlyihIvdUUYJQSBpraOJWUaAcWirECpBlQOURx54cA4jknTjlPQDTazfbZ0gPRAB4RBiFIuSwSQ5VnzufOhknJJEIDWNbdvrnHrtZvYGpLGVyrPcqyyVGXFD3/4CtH0FGnP3aeN20NMVXP79joWZ0gJYGqDUopezwnzTcYTskxwLjXGWKzS1FXlhf7KImOSZa4cV9XcXttgOHHZkzjpujJhmYHWJEnCpLHUiAJFkecE3QG9XfcwGDSilGXN7j1T3H33HoyJUGGHsMkqRkFIPNFEcYmO1jfZTNZhl9I4Jg5Dyq7x41pXFbbx8RpnY1c6bJiHdV079lpgSZLNcnSZD1m//RpJEtDtdVG2ImmA0zroURZvbYmqqipWV1c9sHNxcZHjx49z4sQJL64m2Z3FxUUuXLjAyZMnvYqu7BLPnTvHkSNHPIZHdvL9fp9XX33VGyXOzc359P309DQnTpzg0Ucf3QLAhK14kYMHD/ryQjuF3mYxgctcCJ6gvZOFTZ+rtjmh/Numx7Y/lxLP7OzsljKeqBy35fnfbNfcNs8UGvazzz7L3Nwcc3NzXkRO8CRnz57lM5/5jC9DPf/88xw5coSlpSWOHj3KlStX/LhmWcbJkyc9wLidMZPdvGQH2l5dbRBsO+sjmI/tDLEwDH2GQsDobX8tEV6Uckd7HJ999lnOnDnDoUOHvAfV7OzsFmD6ysqK94haWFhgbm6Os2fPviEL+Mwzz3D69Gmefvpp5ubm/PGefPJJTpw4wYULF/jYxz7GtWvXvHHm4uIiy8vLPnvXpmS3AdLAloyV3Euh34Obq8vLy6ytrbGwsMDDDz/sS4nXr1/HGOOZaMLmkuM988wzXLx4kaeffto/S9euXWN6evpN1ZJlnGQcjx075n8vIn9SDmtn56SkJf9vz//2GLSfzenpaV/yamd3tlPG/6btryxR7b37J+zP/E//mKoxpqxtSZ6N0Nr5ETmV001QsHOJrsjzjNF4RCX2BVg0kHYG3PuOnyKOnWLraP0Wo1urzpeotxuVDkgbKf1YKVQQYEzEeFJtptttjQ4Dp+IrPjlacDsjinzMeFKwfqegrGuC5nhBlBJqTRBFjYZI84Ku3UseZYnDkDgJvedOmjj3Z+oNlM1QTZlHpwOqOqLIayZ5gTEVceOU3ev10apufCoCysqgG7q2yq9z+wf/H7dXV3n19dfIm8W7Vopa1dQlFJMaU+LsI3CYmbwAWynqqnaAZtyNv//++zl69ChJkroSjoB4y5wsm2BtTZkX5NmEIm80W0xNnA6Yftcse/bs26ZWrKkqw49XV1h9dYWbDd06DC1KW8qisZ2wrWDJWpTWjdL0Jng5jmPCOKLb7VJVFVEcbz5ASepVkytT+2AlDEO6nS5BoJ0EQaA9XkuhcRYSNbY21KULGrPJBv1+n5u31jnzf3+e4cSwZ+/dQJMSrWt6vQF7du+gG5WkTQ0+t4oojEmThJ1TO73qb1lVWKtckJjnBEHAxqgJrk0FaGrrdGDkXpTGeO0ioxOyOuFOY76qkxSramKcFUIThzSPhcNbaRU4IHczJ8vKoDUkcUigIxTOSgEcwJkgIAgD4jDwgO8gdAFkoF2AiMIDgSvjXOMn2ZjJZEQYhIQNNd9UFYNBD60rTFl4lhll3dznCeP111FaEyTupaWiHjpI+eKnf/0tK1H9w3/4D+2LL77omSwnT57k/vvv5/d///e9/047pS1p7eXlZa5fv+4X58XFRY4dO/YGCfq1tTWuX7/uF/s2kFcWYVlUt/tFyTGuXbvmX/iCXRFMw9TU1BbGjwQU7TILbKU0t1/+/+yf/TO+8IUveMBpW7dErl+uWfrQpt2KroycS8pDKysrnD171nszPfTQQ+zfv5/nnnuOhx9+mEceecSXr55++mkee+wx78oti6pgYqRc2O63lEjEWb2N7ZDyy733OosWcesW+vyHP/xhXn31VR8IwaalgCx0bbZPGIYeLyVYIPmOAGcPHDjA8vKyv7cSvEmJRsZOPheDx6tXr/r+ffvb3+af/tN/yqlTp7bouOzdu5fnn3+emZkZvvzlLzM1NeVNOcWPK01Tf30yj65cucLhw4d9P9uYGcFBta8btlL+25gbAd2LAebs7Ky/f22dKMFfteeKzMU0TX0pTDYOco72fG9jZbbrDsk9aVtASL/bAU27tcu12zcRxjiFbSkLy9yT4D6Korfei2rPvp+0v/jRf0lgN+mhtq7QSjknaB26Fy40WAmFwlA1lgGqEQG0WEzpXJpRCVkhjJ6McVES6ZAkTogStYm5IGiyGAFo5TU9tHLAR42jm2f5iLDJrOjiNqM7N6kspP0punvex1hgA4FC68Qxfmzl2Dq4ICaNY8LQaYIEWvmsAdQoFTDJDIXZFEfL8wJrFbVVKA1pJyJuMj+VqYjiLrWFshgRFGuUd14G4NYrf8RodJPC1txaW5M4AUuAMTgRttxQmJKk0dx55/RPc9/f+/vcfdde1tdu8cqPXNT7yisrRFHAkZ//EHfftYcgiCVJg1KWPMscq6auybPJ5o5ux17e8c73Ead9rIVxA2Y2xlDbmkF/QBLH2Nqw8kNHSf/BD/6CyXidqsjBWh8UlWVJHCfUbEr6y0TXWrtAtNMhThLquvZCcZ1Ox1GS0Y3Oiut4ksQkSUwY6sYeAI8DimPnQF7XBlUbslFD/y/GxHGHP136Hl/68v9LlHR517ucX5epagb9HYRpyq3bN4l1Rafjjtft9lwGSiv6/b53ICcIqYxhevonCbSzKJBA3RSFY/cFDky96WjuQvgwDOns3E1W1xTyDAQdKjok6U4IQmocrd6NeUleFlRFia2tez6Ayjau76WhblzBxck+jCJ05PyrlNU+iwQymawjfitxjaN5jhzlW7mInrRhu5VVxTjLmExyKlsg8W4v7VBkQ+7c+CF5NmFq9z4Gu3+yuV5NmtT820/9y7fci6q9E3wz8Cy4Rb+tg/JmANY2dkX+po1J2G4eCLxhp9iWqZeFqX2etqaHaLdIvwX7EYah36kKE+j48eMsLCzw4IMPekr1Qw89xMLCgsdxSID0ZgvGdpyOMGnaQGXRRLlw4YKncAN88Ytf5Od+7ue4du0aJ06cYGFhYQswW/RmwjD0QUCappw8eZJnn32Wxx57jFOnTm3B9GSZs4IQbFHbw+g3fuM3+N3f/V1eeuklfzzRVzlz5gzPPfcc73jHOzxeRdheMq5tPJT0Zfu1yucCnBa9GRmby5cvMzc3x/Lysj++gIufe+45zp49y8rKih9XCQ6+9rWv8fGPf5wnnngCgDNnzvhshQRR27FDkpk4ePCg78OVK1fYt2+fz0DJeWZmZrwujcz1duaijZXanl15M3aV4KSMMczNzZGmqQ9shbIu2Kx28NR+jrafq43zamNz5P6+GatQfpbnpx20SbauTRqQgOzSpUscPnz4DYxEYwydTuetD3B23zNt53/5Y5TGvTxDHRCGDZA4CAHlA4UgCF0Jwxh04Ha5ssOtK4sxisqW0JQlAKJQEQcBWgeoIGj8bpoMRWBBWYq8ApwJpRwr1AZVZYzWbzK68SNSEVjVlizPGI5GhL0d7Js9RJy69F+sA5R2zOcwhEALyLhDEIQYU5BnDlA8nrhsx6Q05KWhNhVaBZ4+HgQxQdAYK4YxdW0cIBTQcUBlKoJqjDav8cr3LlHc+ZE7Xp4xLiy1jSgr6w0/rVUUWUVdWWoVcM++aY4c+Z8BeGDug0xN7cJWFUpo+8DacIM/u/Zf2Fj7Ee+avpve/8/eu8fYddx3np+qU+dxH919m81Hy6IsOqZs2qFnmAxnhlkrAyXgIhyEu8sACkIDBKIMFEAGNIiMUICAOFgBnj80sAJ4EQFOAHlHWQsbGcsAAkJgCIyQMGsG4YyZhDNhIo5Nyy2Jujr7+AAAIABJREFUFl9N9uO+zqMe+0edOn36ilZmHc0/AxVgk2r2PbdOVZ1Tv/r9vo9eH23qrJQUWG180FJTtJPUZ7J2Lz8MIqYoSrCO6XRcj52owcVelbg/N0+/1s555+3v81/f/M9MhqukadICJksWd+ygKA1xravSlLUiD0aPk9i/FOpsCPgySxwnjYljoI9HkWzNUeRducWWcKB1PnsTC8d06AMcZzVR3OUP/u//h7+7+hadTo9HPu11K3pzC4zHU0aTdTqpIovjpvQXxzHOaMCiVNwYi5YWcI5dO3d6zysJVU1J76YZaZxQVAVCyibAmeYlIor8GMoxzt1Fm3v13BriZIEde/4paedjGJdg62mqdI5xEUIlGCtxLogaCl8KNBKtS6qqRFeBvq29KatzOJXi6sDHSzM4H+A4x/bH2iKwCOmB/ht3V+nUGas0S5Aq9oBzJyiqUFYesnr7JqbUZFmPLFVkNQh6od8hTTT/x1f+9w8twDl8+LA7d+7cNuPHNs0Ytjb2tiHkrF5GeCGGl297w2i/wNsbZPslPBsUhWuF02/Y2JeXl7l8+TK/8iu/wi//8i/zta99raHkhk3jwIED3Lx5swHrHj58uPFZunbtGocOHWr6EFhZwLb0fdDUaW887exJu4R19erVptwRAriwWYfg4ujRo2itG1ozbAUVIVt07tw5VlZWmnu9ePEily5d4vLly42IW9gwr1+/3mzogdYdGG0haDt06BBvvPFGk2VTSvHSSy/xzDPPcPPmTV544QW+/e1vA/CNb3yjofRfv369CfSCz9JsVg62XKqvXbvG66+/ztNPP938zte+9rXGJ+vkyZPb/MxC9iFQ0kMpKujmKKX4zne+w7/9t/8WoDG+vHnzJp///Oe5e/futvlrq/EGUcfwXe0sSdtTLGTswmfDZ9rZknZg3c58hLFoBx5hLa+urm7LbAYAeSifhmxPyIiFa7T7cL+gJnzHrB5SW1rhfgeS9vXC97XZWGfOnGnKmLNKy1mW/ffJ4Czu3uv+5y/8Rs1ugVjFPhgR9ZbkHLraerEgfAq9KismedFgNZwTiEh4OniSNHX+XpaQJF1krHD1tbau56mpRguqqqCsg47J+m3M9CYLfVGLDMqGSbK4tBsnYhyK3uABXLbYYG08IyRGCYE1VaMRUtX6IVWlvUFlfQ/gN3DrLE44kiRtsgkyEghDc6o2xm05VkhJYkfcu/5npG7IO++8ze27tWBWISgLT9t2xmFCOaA2vpSRZO/HH+F/+d++wD/63D/y/6QL8sm0ZjdFjfCdjBUykvztX/8nlNtkrp8Rp7V9AaIu/VgcAidSdux8EPCYnrIoqYqCsphiG0abJUkTOmmGcZYkydi5y+v3dLtdrl27ynf/7hLdXkpVhmxa5Bei9JmE+bl+404ODhXHJElCp9Pd0lTCB5dp4rM1XpMn4GkEcSRxzhIpn7kLpT8pIoSzWKO90nNt+1CWFcOp5v/8v15jnFcIoVhY8GqlkzwHHIOFLh9/cJluliFqo1chJFWVY61BG69gDOCEJE0yr6jtLGBIk8Amc9y+c5e1tTW63ZhPfMJnNPoLc4ymQ4zTGOkoTdHUoQSGqpyiRESa9dBONWykotjA1Bm7OMlYGvi07I7FBxHxEkKlyKQD0Rw2BK+USO4w3bhBnD1IiX9JFJUvkwnvkIsQnj0VWlWMUFKjMkWZV+TjwMryluGltqRpr9H8saYijmPiSKKikkROyFStcqxzEJavPv+1Dy3AOXTokLt48eI2lks4yYUXeZthMas5E17EbYbJbBo8bCazujXtjEib1h02wXAqbuvJ7N27t1HUDUKA4WUfSleBCTOLJwin+Ha2KjChwr3OZoraJ+32phOUZ0MmpU3JDdc6ffp004eQRTh9+jQXL17k+PHjDTvm/PnzLC8v89RTTzW2DfXccPLkSc6ePdvca2jBnf3mzZuNLkqb6n/48OEmMGhTgNfX15vMyurqahMcBlzVlStXGpE7YBtLLOimhGCuHfAF+nbbdPSxxx7j8OHDvPzyy42T9ze+8Y1mHQV7hzad/9/9u3/Hs88+y2g0agK2K1euMBgMePzxxxtpgnBPQbE3bNDtNdq2PAgCfeCzbIcPH+batWsNXbwdFK2srPC5z32Ob37zmw02rd1CiautfTQajTh37hynTp3atmZCP9rqwe0WnqO2mGVgjAX7hTbTqx2QtctXo9GoKbGGclP7nsL/Qgk1rOH259t2KaFvP26A8xGL6qP2UfuofdQ+ah+1j9r/cO0DWVRSCubneigVVMAk1kJVegBmKIGAB/8aazGVz4ggRQPcjGpNkzT1xodK1gBMfMmhKgzG+SxCUJQ1VnjtnKpkurHOZOhTtnGUk3YF2kqmOqbTWyStlXDLeA4XJYgoZr0Ekw8bHFCqYiS6Bu0W2KBoG0VevE1ExHGKswYXTA+to9ftkWRe2yeIEFonwBpc5DA4Ok41pTVdWe6tfJsffu8vWZsYpptT8lqFVmvr7S4kCAWuPmFL6Q0N+ws7eOznj3HgwGfZXPcljmI8pJhMMc4ho6ixNai0ptefY3n3Xlbe+iuwU7LUZ0+iNEPUAOe8MiwszjMa+RP72r01imJCMZ14rFE93mmaUpYR62t3a/sKzXDDLw8B7N7zANffXcTaaZOJEVJSFDlxkuKspaqqZj0o5a0WrNFMxuNaa6UuwQgH1qtOq2jLL8xJgZPe+8ozr1LymgkUSYkwBpyjmE5qEDdMi4rv/NUV1jc3QcZoXTKsBRmFEHS7Ga6f4owlUgpXg3L9qUIgZEQSxw0uzFnHNM8piwKlPFD31i0Psl8bTqgMRJGmt9DB4L9nbXMDEUc4CUIpkqwDhCxgTEcoXGWo7BQnJSYPXmyK3FRo6xDTEUW1AsDtu+8w193FAx/7xyRS0InnvAEakJuYquggnQK9SZr5U5XRFhsJMAYZOSy+ZOtvymB1yXi8QdctYAzI2GcC8+kEYTXz83M1Sy1YNVgSlWKsZbS5jhFThuW0HjuDbulcfRhN1krJbUxDUPcNJYjZElU4kbb9mdrZkvapM2QeZsXnYHup58qVK02WJpxcw4myjeEJ5p9BtC/0C7ZKJrPCfSE1307Zt/sQxNTaJYPAQJrVEgn3GLIKr7zySpNVAs+Iun79epMlCOWoU6dO8Yd/+IeMRiOOHTvGuXPnGgzO8vIyR44cabRzQpkMvKDfpUuXyLJsG+vn+PHjnDlzhiNHjnDixAlOnTrV6PQEJd4wnu1Mi1KqKTnBlgrv6dOn2blzZ4OZCWMa7i1cs52pa4/HE088werq6jaBuwsXLvB7v/d7vPLKK/zsz/4s4LMxIcMR5j6Mw/r6Ol/60peask4oxymlGhG7wFwL2apTp05x7Ngxnn/++QabM5vxmPX+Cuutvf4CJutf/+t/zZ49e5hOp5w/f34btiWMX8gStu9fKcWTTz7Z/E743IULF5qSX1u/qY31mS2HtUu8g8GgWVvhmWtfv73WQ0YnZGna/xayTu0S1urqamMTEUpmoYXf/3Hb3xPgSGKhsDUGp9S+9FQUOc56zk7Y0FwN/lVxTJwkyMibcQIkaUqaJjWwFEzlN+LKWIzLPe229r0JeAwpHLEsSdKKzfIWKoCCO3vozC0QxR20hlFRMKnftbHTqESSiogsSenEqrGZcNpgjfE05Dih4Q5J4cG4OOJYEYm4UbtMkxgVS7Q1OGca1eYoSkmzPkZAmRdEOqeb+kkZb36Xv/vrv2b97oje4jzTakIVKgVSolSEkhFVWTb4EiUVUZLwyf0/yWc+848ZbWxy95Z/udiqZLixjpDeK6rT8SUbFcd00oQ4SVnbzCmmUxb7flxVkZKmmZ+fylGVOffWfMA0Go4Ay2Q89GNeu0f3el263S668kJ/sVJMxrV4oTMs7lhix47d/PCH398qa1kvRGgLQyQVRT5txo5aRNBoDcJ4B3K7ZXSppcCmCUpGjSqxxJLEChcrhIyY5gVxbd2BBKu9F1UxzRnV2KE3v/sWP1i5gXUwHY8wFlTtgdbppAwGC1RVxaQoGKi4KXkZ63yJzhqIFKoOUJ2FsphS6Jyy1JSlaajYez++i958Sqk3UFGFjYIicYyIBJFKcDLGRQrbAJA9UyrtdlA2Iy/LRogwSfpEuxTGCKoqZzy6A0BerJOP30PeLNiz45P00z61cweJ7GKqlGmeEjtDpPyce3Vii64KYikQWhPVY+edwWNitYQVCpUpRP3cZiqmKibkE4PRFZPJRj0OGgukWUpZaqrSNNi5SEQIfnwDvPs1IcS2oCMwnW7evNkoAM+ym4KQXqBIh3Y/vELYYALuArbbOoQgos2aCWWxcO12yaT9PW1AZbt/bVxPuF57o/pRIn/hd4FG/KwNnA4tlLp+93d/l1/6pV/aZryotebIkSNcvnyZ06dPN337+te/zvr6OqPRiMuXL7N///5twUAYqzAWsFVKCbid0Wi0TXk4iN2FMmD4t0CNDkyedukvzF87iA33Gxyq9+/f35SugrBeG3cyW4IMm+ssNmvfvn0sLy+zd+/ebc7poczVBtPCFp5k1s9pMBjw6quvcvz4cS5dusTp06e3BT9hPEOwGsY8AMfDGmuX1oLAXbj3s2fPAr503JYnuN+6CYFwuNeAXQl4oPD7sCUBEALoWexaKNnOlkfb+K82vqst3tgOSNoBY7h+G3Q+G5S111sonwYPrtD+ITTxv0cHx7G5OWwMFAvtMyBSSCIpcTiiOCjNSpxzSBGRpDFKRc0LUQhBVRmKvEIikFGQg5cYZzDGn/ylkNiawbS+fovxaERvbgktFihqLZ6iihkNLVGUE0vvkt2tN9Vup0OSeDaXqSz5NKeqsTbCBbyB12bZshTwmQddVSgpSNO0CWQqE2PHFmdcbUZYa8a4ivXxCFNZeplBT99meNM/vOOJRXY+RtqPiYnoJhVFHdAJ6ZlanU6He+v3GhNTlcREccrHH/4kUijW7t1gc8O7hldFyWQ8RClPnS5y34ckyeh2Osg4AxHzV5f/in926LMAxLKgjCckWUasuuTDEe+96+0QqkrT7XU9lsXa5iRelBGR8vNalRWbm2sea4HHxlg9Tyfr4hy1poo/yUco4jRtKMYyyLIE/yYgjpUHwdZAZKdLtHAIW2KEbIJXKRyRiykLh4oTsjimGnvcx0SXOCcZTwre+eF73LztH5pxUZF1uvR6XSbTKUoljZnl3Nwcex/8GLdu3UTKiPX1TUrtwcndbtcHS0VOFMdsDL3+ktEF3U6Hfr+Ps5L+3BxO+vkb5e8yHBc1LT9r5JyM8/9nnc/MGW0IdCQVJ95pXYBSCYnRlLUqMVYiXUKazjG/+yHGY//gv/3OVUTi0LZgPF2lN15jczypn5kSawvWN26QJV16xl8rdV53KgIUiqRDTd2HKO4iZAep+mgpKLWhLGsKeZWgywxrJM4JOrWqtNFVrX7t6BjvhaXNVtYmEhEfZgtmm+3TXpu22vZMCkHKLGAztHbA0cbZ3O+UGv4tnB7bQUe7P7OMkLZ0fdhs20DNtuT9LOOlHaSEFu5xNqhqqwfP9juoGy8uLjbO3OGUfe7cOU6fPs2zzz7LE088wVNPPdX0JeAzZjeOoBYdAo+QeTly5AhXr17dltkJQVG4/8AY+/KXv8wv/uIvAvBzP/dzaK157rnnuHr1ahN8LS8vc/369SbgbI/5rLdW+J6gsxM28fZ6aK+T2TEP8xA21vDzEGy0QcthI96/f38TRB05coTf/M3fBLwr+LPPPsvly5d57bXXePXVV5ugLcgQBLmACxcuNJm6AHoO8xcwPWG8lfL2FAHEDd7TaTAY8Oijj27L4M22djYtaNKEe55dL+F+2wym+62DHxVQtLVtwljOBjkh0xnmom2O2salteciXDMQB9qZzfba+HHaBwY4xlom07zZ8G2ghyMRQjaBCnihLhXHxFFcv6ymrYyH1+5QMoIW2FQIgbPWAz0rzXQ0RutQopJYl7G+mSOiiLgWb8vS1DOghCRJM7Ks2zC5yrxkc3PoRcysB6qm9QBFkc+aFEXhA5p6AIUQJLHP2sRK+XJR2KStwWmNraZYV6JFoLdPKCZ3wUo24x7r995rylpCLfHA/p/i3upbuHJMqncyqi0UkjT2ekBZhkkWESLQeCMWBjt5+BOfYbS5ya0b18mn/sGZTnOqIieOPdusKHxAOb8gmeQTKHKGm0PGOVy49DcA7F6cZ9eOBfpzPQa7OuTFhO9//3sA5NOCn/zJn/QifHgWjR8Hh9YVMlYolfmsSk3Nt6ZiPNpERYJ8MoJa1yeWisJodFFinfMWB8MaiC18MBfHMS5RSCmwZZ1NcxqcwSgvDxBAt3NzPS+gZ60XDawqRnXgsbq2xvX3VtFOok1Fmnmbi4VugkOwem8NFUUsDAZN8LqwsIBSEXsffNDr8MQJvbpsWhYFk8kYKQSRgL0f8y/fXrfLxvqI9Y01+nMJSWdKXvjs11w/JYq6CBnVoOnaqkEK70JuSiQCIRTaBu8vSNMOCIcQUIyGrK95faEit8T9nczNRwjZpdfbA8DOJc3m2i1KPWb1Xs549CbG+TW0uTElVvNUzjIav0ua+UCjN98l7XQYLO5CpT2sSjF1JktECikiNEWtsURjUCtjgcQHMEIkjU0JdLx7vNPNM9t4jrpaRPJDbM65bSe/WeG7toT87EuvXdIBmg26nQrfuXPn+4z+2htNOJG2X/7h2u2XbRvo2wZEttP54c+rV69y4MCB5nuCNko7gJkNdma1RgK4OYBXX3755W0ZqGPHjjUlmGvXrjVg1CBC98d//MccPXq0CS5ef/31ZsMP2YN2oBY8mQJgNfQliMf96Z/+Kc8++6x/hwB/9Ed/1AQJe/fu5ejRo01G50/+5E/4+Z//eZ5++mmuXLmyrVzYHoMwv+Gewma3srKyjZH1wgsv8Pzzzzeg3DagejQaNfPYzgSGeWnPD2xlk0KGUCnVZJrC3P7Gb/wGX/jCF/jc5z4HwJ//+Z+TZRlnzpxpTDMD0+zmzZs89thjTcblsccea3SRXn/99WYO2tYYIatz4cIFjh07tm3TP3jwYAPQba/B+1G6w8/aFP/ZFsDNbeZg+DOM2WzpNqzvdhAYPtP+HqXUtixNEEcMppyhhaAxzF0729gOvNr9nzWb/f/b/p4Mjt9kwqtMCImIPC6h0hUIbxgYbrIsSyblGOsMkYqawMMaA1pi8AwsagyOw2IKb6BojPHf1ez5ijjLvICgFMiaJp6oiDSNiVSCsY7pdNRskNZ4P6MsS8niBO1gPKnTxOM177atpKd3d/ygddOMXiej18tIY4szY1x9Kp5OxhgEyfwC3d5usrq8gRlTTe4g7SbGOuL9h1FdH0kLN0+uHeujn2Iy2mBzuImuGT84gy5LynyC6twln/oSkDGWnXv2MT+3yObtdxlvrrG+6TMNWldgNZOxI4kVna6nbku5iK4MlSkYjkZk/Xk2N/xG/M6NO9y4u8Hu5Qfgxoj9+z/FT/+TfwLA5uaQPXuWiYRgONpkPN5iG1hjiGSXqioQmJpG7SnaSsUkaQzGUub1/cQKYy3O+vn35qwhqPV4rSSWVHlVex/VpSghMM5ijJcU6NWZBq01Kk4YTqaMpjmTomR93Y/DdFrghEJGCUnijTIBilpReMfSEgZBFCnm6izE3Nwcu3btoixrZkqkGop7EkcsDhboZBlxoghqxbdurTPJN5lbiBksKSI1bdaKEBEOWQc3rjG69KXHGCcVRteBYnCvlKBtRSIib0ml4sZAdLp6FxcVdHdnlOUUU/j1sLwwz7xwbK6v84N332Y4XsHU6b65+d0szGt6vR7duS62TqQ44ejNDYjiLpBitGrUiqFC2wlgkdS+YME13Hr15bwsKQpLVmN6OnEfUaPOjLP+QBP7ADUSW+70H1ZzzjUnetgKaNoYmNAC1TS8nNfX15uTfng5hhd12MjCqXIwGHDp0qVtZZZw6mwzb4CmBNYW5gsv8nb2KLR2KSoECW3xvXAS379//zY/oPCZ8KJvB2z9fr9hfoFnGYVNNc9zDhw40Nz7rNln8G06c+ZMs3m3WTwBYxSuHTbICxcubCulhLLdwYMH+frXv87y8jLPPvss4Esf4T4uX77MgQMHGlbW1atXGzzOqVOnGuxJm/XTxiCFcQjzHQKCcK1HH32UN954431icPv27WvG+34lkqA99Oqrr3Ls2LHmMyFTdOXKFZaXlxtV4hs3bvDrv/7r7Nq1q2FhhbkIgdebb77JT/3UTzXfE7A/IbAOY9NuoVzWDlZeeeUVTpw48b7AI8xX+NzsdcLvtkto9/uddrDSDs7bgVJ4Vs6dO8eRI0ea/odxvR/jCraymu3ylVKKw4cPv4/5GD4X/jtk6sKctwO12TLwf78AB7C4RkxMm9LTxKXw1GYB2rQWqACPpLDowjZBiUQSJQaphKdh1+ntsrRMplMv9uYcUZKS1IqtXoJfIYRCRWmDxVAKDI680mhnSIjo9+rsTpYSxQqjLXmZY6qKNK4xJkt9krhDJ0mJEomoAaKp2ECZGyjjMKWqT75eabk3eAgnU+Ikq7MRflx0OSHpLZCoAcgMEe1A1zglLTVEjoW4T7/fQUaazXv+uzAVwkywdkyvo+h3/KKwDnbt7COEZjIeUZWlp6zj8SC6LOsyD8T14grCdL3eHJ86cID//F/+hp27fAbg7upttLFcv7GGqUp2LO5q0s0PPiiZTqeUeY4UkrIIIF5FrIIpqqWcThrwr7UWGUUsLu1CyKj5TKVLjLUeKBw5kigm69b4lzQFo8nziRf5kwpRZ/wq66i0QKg55ucGLOz2L6rh5ibv3b7J3dU7bA43PGC3nvck65EkGdb5/uW5H59IRRhryTod5vtzWGvZMVio10OHjY11nDP0uh16va5ftEChK8ajKcONVaJYktf3ZCgYLMXMD2KkqrBGY8t6+qwPwKWUOAkh9BdWgnBIIUiyFIgaR3NtLJGQREoQKUmWdVh91weI3//eW0S8jR6NiDtdRnWwqfc+yMa9EaPcUok5RLdLFpSWnWE6HSJNiez26S14l/HFxXmKquS9mzfo9ObpducabR8plcfDiQgpIq831Egm+cxbZhPKyjIe+XLc5rhCyQQZyVq/yGyTFBByK3v7YbQ4jrc5OoeNIsjpw9YG3sZZBGxFG+8SUuhhk4StU+L58+fZu3cvhw4d2kZNDbYHsxiH0O73Ip8V3GtnVgIYtw2IbVOsQ5kt6NOEezty5EhzX+1rae11boIFBXiF4UuXLnHo0KGmzyHj0S51ra+vN4DhkA04c+YMjz/++Las1LVr17h582Zj1NguLeR5ztmzZ/nWt77FyZMnGzDs888/z1e+8hX+4A/+gF/91V9lPB433xWcpGfB2CFYDIHI+vp6E8gcOnSIwWDQqBIHJ+8zZ87wH/7Df+BLX/pSg4UK4x+ct9s06LZD+t69e7lw4UIDvgW/OV+6dImDBw/y6quvcvjw4aZ/J06cYGVlhaNHj24rxYX+vvTSSzzxxBONWzb4kuCjjz7K7/3e7zXZnbC+2uafQWcojE8wBw1tNkvZBgGH+btfBmW2hZ+FcQ0ZuXC90IcTJ040Bp0Bo9QOvMN/3+87YCvz1s6gtrWZ2sFU+HPWTmP2fsM12tf/cdtHNPGP2kfto/ZR+6h91D5q/8O1D8zgWGsZTSaN340QAq01Moq8cq0QW/icOmUdyYg4UojItmiq3nJBa4N1GlOnzgWSrNf1JZBI1eqw1P8mULFCxRECR9DEk86zs+L5hKQjSOMIUbORisqSFzlSGJI0I3KCpM4izfW7qMRRTm+Rr72F1L4coFSK6u1CZsso28da0eAaVBJjSTAiBZQXUQMcS1S2xFiBQCCdaQAK2oATgo4SQI7tJajK40U2NybITNDpL6KtJMlqnywhWNq1hLUWrUvG4xHTSS3EhrdQ0FqTJL4sF0ao0+mSZBm7di0Tx9cotY9Xc5tQVTlFoanynDu3b1M0p82Y6XhCURQUxRajZ3FxEaM1k+mEaZ5jtacWA3S7FePxmB1LuzAWNkbBm0x75pySxGVFmqZYETyTFNPJlDurd5jmBdNp2ZSH9n1iP0f+p8d4+BOPkPX6DVC9qkqKyZh7d1d5++0f8L3vXWVaM7lUJIhij2FKZFRbEXjsV4w389zc3CCfTLl3zwO09+zZgzWOpaVF5ub6xHFMVbPGOlmXJM6o5mJUYhE1Dbu0I6Q0WOdxWmVVNYwoY4xnhjlLZTThfO+cBBkDXu067cwh4i0PLTvVWKNJZMJ49R7f+xt/qhptFnS6c7zz9g/pzi8wKnzf0r4j636MwdIce3p9km6GSupn0E7h3g36SkJ3jv/yPZ8BuHVr5Nl+MqI7nccufJz5OS/UGKWKNM28r5eQXnE5rCLpRSpd/XwmcX3CXRujK4OS4IxrMFZQqybbDzeDEzIUgT2hlGoAryELMZtRWFlZafA27dIUbJ1Yw6k8lIrCSb2NKwinzfuBggMuIKi/hpN4m90U+tZO3a+srHDkyJGmjAY0Gao2PThkQpaXl/nyl7/cZCNmT/Lr6+scPHhwG2gzlFtCSenIkSPblGsDtqSd/g8n8jZ+I2SPAtsItijeYTz27dvHkSNHGI1GnDp1qrEAePrppzl9+jSvvvoq1lquXLnSGDwGFeY2hiRcL2TZVlZWtvlrhRZ8r0IG4sSJE+R53pRRAoYofM/hw4d55plnAJ8ZCfYKzz33HI8//jiPPfYYf/u3f8uNGzea8bl58yZnzpzhxRdf3EYTv3TpEseOHXufBEEomV6/fp3hcIhSqpm/EydO8OKLLzZ9aJdbA5YlrM0wPqHk1QZJt0troQTUpuuHa4b5C3M8u27bawC8gWowkj18+HAzruG7g1BkmBfYnplsPy9h7AJ1P+DbwK/TdtaunSEMz0JbDuFHtfY9/ajs0X/BQ5/GAAAgAElEQVRL+3s/GUWqeRnK2qxSCG/8iHDbOu9qmXgQRKJDXDtVJ7HyHk+Nr0+tvRIndPpdYhUhA+aj9v0RUhLFXWSU1A7YNZ7HFShhSFXsFXurkqpm+zhn6UQlkcxRpkCYu1S591Mar62h8xwhctKsR5L4oENXlnztFpY3cUKCmoM5/7Cl0UNU1QjiAagONf6ZKK6QMSgZI7Smyu8wyT3+pddbYJrnFBjKoqCYlFTG90+mPZTaiYgSEtVFRDUAWjh6c33AB4zWbZmLal3W/liGWGvmgpJxHRDGcUqaVmhjePftdwAorQFdYqopwhomkxHTGuicZhlpFtdO3Ya4Di46WUZRlsxFEePJCJXEYPz8jcc1XdJobty6zVv191irkUICgl6/x9LSEnfXfDmurPxLIC9ynPWKxP/0n/kH+1/+y/+VPcvLVLpkMhlhN31ZxFmLjGJ27X6Ajz30CXY/8BAX//zPAG+qKaQ3k/RU+WBd4A04NzY3iYSk3+uShnJOmbNjcQedmjKfZSlK1VpG1mEjzfrwHvnoHqL+eaS8zIFzzpuPWkkVTCutpSgLpnkOQjTO6b5sW3o1ahFhnUPV6ysSCmfBVgLDFKerxsw1iZNmzqsyZ77rS6OdNCVbnGd+cQfdboqupqjYr//h2ghZjljozzNymyD82ko7MamR6KLAje4yNBtMR359dbo72bPnJ0iiAXHSwRERkrdaW0prsLZqvMv8PcWUumBalOD8cy5ritwsweDDaFEUbWOLaL3lpxNevG1mTPhZ+4UJW1iWWcrrgQMHmtR5KGW0GVIBWBrAvOA3qZs3b3Lw4MFGaXj2xTsLLIYtbEzQqGmbeoaN4ubNmxw6dIgnn3wS8Bihr33tazzzzDPbSgQBQBssEWBrkwvBTihrtYOVoNMy644e+h82xkuXLnHhwgXAb8QnT56k3+83JaJwbyGQy/OcP/3TP2VXrXIezB7DRnru3LkmuGj3vx0AtjEyoX9tBlpgT/3iL/4if/Inf7JtnQyHQy5fvrxtPYSg9dSpU+zdu5cvfOEL/M3feMLF0aNH+eIXv8jXv/51nnzyyQZnc/LkSY4fP/4+q4XQp2CY2Q4Sgk2FUoqf/dmf5ezZs9so8o8++ug2W4+2RUfbgmQ2gLifHUK4ZtuDq/27bVf79tjNsg9DyTLQ2c+fP8/+/fsbVl1Yw2114dDXEOyE64eyX/v5G41GvPbaaw3Wqh2MBDPQ2VJuGOvZUnDodzsg/6Ag6L+lfWCAE8TZAljYO1YDNQ7B1+cDZib2HUsVnTQjU5LI1VkIM8bKDKIupY4aILHRJZGQdBJJKjXCVg1zp7KOQudYGyORpK52EzdjjDWUsoNK5hDWkangRg3SAVZhTYHVMf3EL85qNMXJIc5YhPDu4H4AIqQTaKtAdTxOoR7UzfWbEPdQUYeIpDHHFNpiKTEJVHnJZH3SWEzcu3WFNO0yt7iLSRUx0imV9ZkaLSSdrEe32yXXJXlNYU8jf4qOI0mapkRR1OjJOKepqopOmhFFqrFqSNOMKIqRUpJ1UopiSlhbsYwoxhWgQVqvg3PPa6zMzc+Tph3P5LKWqsb6qNjPX1VVHteiS4ppjc+JIlSsMMbUm3twsK6zNVJQVhW3V1dbth4JiUrA+WDioYce4l/83M8D0FsYsLq6SjEZMRpueMA6W4w2ISN2LO3kk5/8VMOiuvxX/4k4EWRpglJxYwmR51P6/T5CQFl6e5CtF+mUxYUBSZJQFAXaGHo9j1mJY+XlD5xAigxd48yck1jravNQcE6RRT7L5SJHKjX91BLFClkPuHWWypRUpsAacEaj6nuK44i4k2IrzXA0YjwdIru1D1TZoT+3hFNeRsHWGJzhnRss79rBIHFMRuuM1++xXtt9vH3tuzww3+NTe/8F1+/cYGnXx/wcCIdwBmc1QhiUMM2zqRJBOb1JVayxsLAbITMsNZvMWE9zt3WGpsYOWWcQUiJF4u27xJa0gsNhqg9X6M9au033pG1MOOvTE4KaoI/Txou0T7ht3ZjAELl8+TKDwWBbxiBgVcKpM7zQ2yfT8FL+oJNl+3N5nrN//35WVlbeh80J2aA2Fbt9cp7VuwnjETaWQAVvA5ZD4Na+p/D7bWZM+Fy7hc3u+eef3za2bcxM8Ll65pln+Na3vtW8nx577DH6/T4HDhzgwQcf5Ld/+7ebzFLQbwmYkTaLKgQBoW+zgeLq6irf+ta3+Of//J8D8Gu/9muAt4YI2ZUgXvhv/s2/od/v8/TTT3P58mV+4Rd+gV/91V9t+h6kQtoeWiH4PXz4MNevX+eFF15ogp/l5eUmsGjjuy5evEi/329ECIOXFsBXv/pVfud3fmfbWmgHTwGo3d68YYvGPsuqC/0LRpz3a1euXNm2RtsMwCzLuHr1atOHZ555hhdeeIGnnnqKCxcuNEHMwYMHm7UTMm7tgPzy5ctkWdYYpIZrB52fAHJvB9FBbiE8Y+3+tw8Ps3o4s78b5u8f0v7eACdJY6hLVBJJHHtV3ziWJHFCVm9yKioR0vtR2XINW5ZEiR/cKlpAiwSJI5EaUWdpom4E5LiyYlzcJTIbFFPPmslShysr0s4AkczjbP092SJCDjCVoDQRTqR0a68gaTWVmXptFSURpmJj/fsAlOPbJMphXUqilhGJn0Qj+9ioy1THGJvgiKlkrcXRHxDFCUYIiqLE1JuWsxopFM6WCH2XbnqPcU0L7nUj4kyBWoQ4IUXT8fENWZYhI4XVDhnHpFn9otGWvNC4niLNfOASgLy61KjIa+BIldDp+b51u10i6V2jK21Iu1327fAeTE4XrN58j7IYA5bJdMTf/q1nXux96CGWlnaya+ceer2MaL5G7wcD1Dj2itS6bBzcjYnpzQ/I84LxeIxoTvIBqeqdsK1zhOhVG40VEiElWZpw8B8fpj+/BMDq3bsUkxHD9bvoMqes6uDVOSIhUVJS5WOWpeNTn/o0ADdu3+bWjXfQ0ylVsUGS+OySjCKKqmT37j30e33u3bvXrF8pJWknI8kyr9FU+1wBTKZD+vMpD+/bA8KgVAgojafQiwiH8Bo2oSroLNYZRtMJkzJnvc6KTYuSfk+ys5dQlYLJOEKp8KB65pkU0OkkGJexVJ9+1906e3bvojfYQdLrsrnpRfbu3Pwhf/ZnZ4mFQGhDMRlvA9GKB/fy7cv/kbFwlGLLO0o65zWFhAf4y5rhKKJh7f2Vcm/jDkncJ019hqk0Dm0FSkiUiFmo/bAWBz3EZoXWDmcdxmwJXVpjm3H8MFsA+4b7DJmZNpMp/F4oH4RMTZvSHE6hbQG50ILGSbu1swttanobkBpKO7NA53bA0y6hhT62s0vtDSi83AMjau/evds8f2aDotFoxJUrV7aNQwi4At27DYIOwV8o5bU3p5BtCP1+4oknAJ/VCFmHdjAHniH1+OOP0+v1+N3f/d1mnv79v//3DAYDnn/+eV588UW+8IUv8OKLLwLe6HLWPyqMT8iGzdKQ23TyPM/5mZ/5mWbeQiYllEVCsLJz506ef/55Hn30UV577bVGVRjgt3/7txs228GDB7cFjnmeN5m5L3/5y02GLARdIUsRxiSYo4Zg4NKlS808PvLII42TerhmACiHew/rpw1cnlXpbQcobY2bWeo20NzPbLYjBFEHDhxoDgx37txh3759XL9+vQGph+tduXKFvXv3cunSpcaLDLyqdChbBmp+GO+21k07AxUC9ftlXtrrKQhvhvG+H7B/9jM/TvvAT6soYvdgsLWZJAlR5JCuQJUjbHWj2QRVNMDQxwqJzHYi0w5WBFpwSa+2BYizmKqq2TS6QhtNbjOs+xjGDcjmvIGhiwxxtsG0mNKJdpDOPwCAEQlmuok1YzrdGKsU09xvuGVVIe0aWXWL4eZ/pZjeIEn8IukuPUYVLZLrjJGLqWpNlrzSOCdIVEx/fp75+X6jrFsUjkgbImXATVFRrZ1DAVWJ0xPKfI3S5FRRHfWWu7DjGKkNUhXEcUyn1myJoojpdOopupFD1cGhUDGlq8i1pdP1kx3G3FSFz+7EMZ1OxlzPX6vTyXDOYm3F9XffZmnH1qK6t3EHIQxJHFEZiy4Nd+/5wLEoNVnWpdefIIWgWysjOwlJmiFF5PE5uWk29ihKWFhY5K0f/ICiKLYCm7p46ayDOsAJJQ7nIKrVrYWMiJOM8dCXr/LphPFwg7V7PsAxDTvHeUsGHNaUqDTlwY//BAB7lh9g9fZ7JJEkjlSj6GytJi9yytKP9eLiYjMOnU6HSmtu3blNmqZkWdawf9555y0+/ZlPkHYcxlSNi7bXMxJEKsZYh4i2BO0mkzGj6QRtHRvjKVE6Vw/QPKWBm6urlJNN+t0FqqoWSZSWvCgYjSqG4xHTfExRZ2oiKYi7is58xtpwndL5rNSehx+gLJfQ+ZTx5gZmIsgK/6h2XQeTOmwimO/PUYSgQ2uqssSYqpZucOigOKUtWufoUpMkEaU05HV2LlV9OnGPylSsbW6iayHJXEcYkSLrwE8KgWi9bD7Ao/fHbrN6H+Gk394QYHsZKlBz2yyhIBjWFqRrY1Bgi2oeftbeJALNeTAYcPTo0eZ7w4YYPt/eiIPWCWzhgNrXDa2NrWlT04NI26VLl3j00Ue3nejDCf/gwYNovaW9EjaG0Ke2VlD47iCqFza6w4cPb9tEDh48yGuvvQbAiy++yL7aLbtNZw5ZtJdeeonf//3f5/Llyw1eZefOnVy9epV9+/Zx+fJlvvOd7zQZposXL7J///4m+9QO2kK2LJSC2mapL7/8MqdPn+bSpUtNsDQYDHjttdfQWjeGnGGcr169ysrKSiO+99RTT/HCCy8ANP1sSwK0569dzgy4ouPHj5NlGZcuXWJ1dXWb0eX58+d57LHHOHjwIG+88UajPBzKU4E11B6/s2fP8vjjjzeb/6yUQQjK2+Wr2dZeRwEDMxqNmgxgaG3tpxCEAY1xaMCBhcBq//79PProo81z9tprrzUBzuHDh5vvCeWrMHbtPs1mpIK56qz+0GzWc/ZeQ1A5e+D4h7QP/HSsBEs7lAdRAlaU2Hwd8ttemr63B5v5qNqIFGU0zhReO0PkCFf7/uSwUTjKqsK50ssK152P4w6RAGENCRJXuyaPjaKqljwewiqqWqfEVXdxehNHyuakh2XLHiB1b1Hd+4+M85xC7cD1P89Q+QBnddKh0gqJxesO+r71O116/R5xmmCNJp+Mm7JNWVUYa8E5JK7xjnIKlBCM1krW1zTTEkR8G4DufI/+3CJzMmNhroMUceOqXkwKb4/grC+D1Fl+awzSwUZk2dnt0ev3PSAUmE5FvSkL0jRrNvZYxU1Z6Hvf/S4iiry3FBBJUCrCYJHOkqSK+dph++DBg3zyJz7J5nCTcjrG6OD+7UstQkh0XlEW02YTm5+fp9+b49q1a172X4SSpQR8VkSIkNGpxe8QOCQQYYzjh9ffZfcu72iexDFFPmW4OUSXU7JabNAYDVLirKEqYqbjUQOO7qRpg/2aTidMa3f5Xs+X26SUWGPRxjCpdXqMs81DlNQZjEC/7/X65EUJUYRUEboOzIz1gZ2tSo/5MVGjGTOdTnHWkcQpDz+0m1j5YLOqJHle8M6tVdZXp7y1cYfgRbWwsMMDnHtdUiNwxET4+x0szNFbHKBxDHYsUdRYMhUJOnhM2Y6P7WE6GTEe+eyOqQrSpENnfoE465DUGTMpPA3dWuOfM2yTGdNVias00jn02DEpEkzkqfSd3hydrENlQDPHZFgDiRUoaVCm9PPc0s6BgID6cFug+sKWOm6bLt0G68LWKbdd3gmaMSGb0T4ltrM5P4p+qrV+X6AyC2AG/3JeXV1tvvv48ePbaMsBr7K8vLytdKS1bkTz9u/fvy1gAr8Rt2nBIdsxGo144403+Iu/+IvGTymUwsIYtbM7oQ/9fn8b3iGMSxunEfp37do19u/fz4EDBxoNIPCg2zzPeeKJJzh79ixHjx5tSjhBjffkyZNcvXq10cIJ/QsYjFlKcBs/NTvWR48ebTIDYc7Dprl3794G8xOCtsuXL/OlL32Jf/Wv/lWT8Qmlo5WVlWbTbAN929TtUIZqa+Ssrq5y4MCB9wkhBlXna9euceTIkaYME8YwZC8uXrzYBFVhPEIptD0WIbhpf0f7OrMA33CNkGELsgdhvANQP2T2Qv/a/lODwWBbdihcdzQaNc7w4IPuAwcOvA/wHtYUvL8UHFqwWwj+ZUCDb5ulubexN/fT3PmHBDkf0cQ/ah+1j9pH7aP2Ufuo/Q/X/n4WlasIml6FVohoJ6KzQIWl0gq3WeM0nKEyeU2T9qfxMqT9jSVytTVDjY8BUNaRVJooKhCqRIgEa32Goig0k3KKMJbEdrFjfyqvpgVax8hE0euOmUsq5N2/A6AcXaNUu8izn2Z90mFyr6IsakqzHKPSiEjFJEnCYGGhvkPLaLSBGxqsNt4pvfbp0dbghC91ZFlKZ96XJExp2FxfYzM36Cgl6XUbunWa9uhnKXEEq7fHFOWIcN715NxQABNE9d+SGEQUk5egFjp0Or0tpk2SEglACLJOl6xTY3D6C2htcSLms5/9HJPptIm0bxjrKeKlQamMBx74GD/9U17JeNeuXUwmYyIZkcQZtsZDOWcZbW54VpIxWGPJagXfXbt2cuvObX7wA89Ia7NpvBFl7UMmt+JlWWedfOnKsLLyfR7++CcBWF5+oInMqxI2Nnx2QusSFSmSWHlRPmuoSp9hmuv1mOv3qYoxVVU29xpFgs3hJtPp1GdxWgq7RVEwGo08SFqpJosD3qJiuJkznnqKeTDUtM41mSjnDFEEae28vdBfQluLsVANS6ysBQ9Lw3vvrXL9nduUVUkUpd6PCvj+W2+ztLTE3O4l4iRjYbAbXbtyW1swrUo6KiHP8wa0LfDlPYtEW0ua9ghnkTyf4BCsDUdEoykqCCGmMYlRqFjR63ZqQkBwSNfooqCYTLnx7l2Gm0PixJcsZbnE/PLDqE4fSBDhzCNkzVAzOGeb0iP1av7vkcGZTVkH3EQoQ7XLNm3PqvZn2yrH7dPyB4GDZ9kb7c+0FYXbn2vjLVZWVlhdXd3myn3x4sWGsj0LoP1RuAnYUk+eZd30+32OHj3alDpCH0ImqF3qAp/BaGNcQmuXQz796U/zl3/5l0025rnnnmtYNhcuXGjuJ5T8QukItlg8586d48qVK03WJ4gogs+eBFp3uE645/a8tUuTYW5ffPFF3nzzTb7xjW8033Pq1CkGgwFnzpzhypUrTabt4MGDHD58mCtXrvDrv/7r2+jyx44d4+zZs1y7dq1hyoW+hX6GsWzPRdsmIYxPnuccPHiwEet7/fXXmxJaoJvfuHGDL37xixw6dKiZiwMHDjSZs/tlI9pU/va6uJ8acGDgvfTSS+zcuZPjx483JcF9+/axf//+bZnF+2X3flRrs6lgOy2+XXJrA8Nny1DhfkMZ7Q//8A/5pV/6JYD3SQG0S6Wzz0ObFfkPaR+sg+MEw7KLDsBRbdC69KWbSlPpCuOCm7ggkjFOOKw2OGMa/RCplGcIJSmdbEut2NkCZIXVCet3Ku6t38bUNg5pr0+n08OVltHmvcYuotfpsGMgyKI7MLqG3SxZwwcrm9VPM1pPyPMJlRmhsdi6nKKIEWVMlnTpd/sN62mkPWhWa4OpSpwzxDXNeCFN6fU6VNr7DnknbpiOJ0yLHI1ExgmpUnQ6NTYmS9FVQVlOcNR2FfVuIKX0isGpdwXPVLCyGIOFLE2QKm4YTeBdvVUk2bFzF8sP7GXfJz8FwI6duz193vmN3DnHaOwxLjdv32LlrWt8/7tvMj/f47Of+Qw7Fn2JajweUeYlpqwoy6oBjhqjKfIpUgi0rsiyjG7XB239uT5/+f9+m2meIyOvSwQehxHKVZ515AMa/4M6oBOAcOTTCUUdrGjjwejBwyngX6aTKVEESRTT7fZ8Oakui8Rx7MswdbCysDBfX8v3VQiBtabWEgpBW+1rZgzWOXRggQHJNGUyjUnSlEhVdLr9+jO1s70zSCGQkWVILWXsLM5YykpTaUuvm9Vr37K0/BAPP3KEKO1z794a91a939RotM7GxhrGxBRjS1WO6XfrflHgREqaSTIUtl7lxmgP5LYQi8QbeUb+3+I5X5qsqhJrS6ypAzPtsMJisBirkSJC1SDjOJYknZRuGiOJee+dIZOpX+PZ/B5EdxHhmlmtp88hpGdHbrWteXcfLkscKeU27ZCgRBzUiNuS8eHlH1L77eBj9gXZxn20X/BtDM0sTqB9jTaVvB0shBLGtWvXmn6Ekklg5wTsyiwQOQQvbduEAEQNpYK2nUEIptpsm3APoSQXQLvh2qPRaJt7dvh5YNZcv369efZDC5vY6uoqR44c4eWXXwY8+HhlZYXHH38cIQS/9Vu/1QQXJ06caFhNgRnTxjYdPnz4vqDTgK9qU5wBXnvtNY4ePcrp06c5c+ZM83753ve+xzPPPMMrr7zCYDDYtuG+9NJLHDp0iGPHjvHmm29y9uzZhrZ89OjRpiwYgjvwAeCxY8d4+eWXOXDgwLY+tsHrV65caTBP4R5feeUVnnvuObIsa5hXTz/9NJcuXeLs2bONMWi43vHjx5sSUbsPIaAIgfLsug2YngC4D+thMBjw3HPPNespfDaskeXl5caYtH2/bV+o+7WwvmaNa4PW1KzVxiz4P/Q/PLej0YhHHnlkmxp5uzw1Sx//UQHPP6RE9YGf1Npw6849dHDXrrR/+WvvRO31MIKBosO5qcesCI+zCEaXaZqQJSlRpHAORlO/0Y3HY0abQ8bDIXGsmB8sEtd4jFJXTMYjIinpdmP6iT/1JvYHRKMNCjtHIR9iOE24N6yvNy1xZoS01lt3S+87BRAnGXP9OZI0paoqVC1jX5qSqioxxpB1ugzm+7iq9qQZ3WU6lnTnl9AWhpv1z6e5HwvncTHd3jz9udqnCkuZ+1N9lsUMdiwiXMjUJESxN5csipJpnSnCpThriGOvESRV1OR5rDUIFdOfH/DJRz5NWgdS62vrlJU3Dy2LEikkWerH++GH9/ETn3iEz372H1FMNsGVrK/5GvFwfYNxXlKWOVVZNItKCp9pM0ajlCRRytstABv31hhtbrK8ZzfD0ZAirwOV+rM+sKmDnDqL0+Ss6uzT0u7dLO5YatYRQhDHCVKqxtMpLws6WYK2BuNcrX3kr7ewMI9DcPPGjZqWntfXqpibm6NTZ5ucc62gzeAQtaaNIE7iRqJAG01pLaYsUcZga5GjJM0QShGk8JzdAk5LESFRdDvzaBSmlvq7e/c9NjZvszCY0ukv0ltYYv8BfzpMo5LxaBVpcqzosLCwwM33/EZ4beXvyNc2GRpL1k3p9H2GME0SPBk7wjkwVYmsHc3T1JGli0ynBqNtIDgSCVHjngRW+PkMkgv5tOLenU1uvrvBaKzozy+zY9mD+ZPuDqwVyKjOL4othlzAVYkmXROC2RaD7kNq1tptL+S29k0bqwHb3btDENK2eJgNZGCL3bGysoLWehtosq0d0g4iwneHl3LbwTowUt544w2Wl5c5fvx4swFcvHiRU6dONSfp0MJLP/ysDZ6+cuVKExTNAkpDoBRwPe3Ph6xE2MSDBH8AJIegsY09CeN0+vTpbZiH69ev88QTTzRA5i9+8YuAB9YGvZe//uu/bgDgod9BayVkDAJDK7CJwji0N+J2pqodrASnc601v/zLv9z0TWu9zWj03LlznDx5EvA09xCwvvLKKzz11FNNVuPo0aNNVuj69et85jOfaa751a9+tRm/duAYNIDOnz/PyZMnGyDv8ePHeeKJJzh+/DhvvPEGTz75ZBPUBkzOwYMHm/63A72ACwuMpTC3AU8zi2UJgcP9Mi/nz59vAsc2Xisw58LfgxBm+K6QjQog6B/V2oF/CLTCMxPa/fAy7bm6ePFioyHVDs7aeKLZNovNgR+tEfTf2j4wwKm05t7qKsFe2wcx/oVv6r+HF53DU3YjFZHEKXGSNP9WliXFNEfrCl0ZimkAP2qiBOYWBw2oVtdU7E6q6PU1XbGO1LeQ9c9Lt4Nb+SOsjyx5PsXZElOf1EUkiFSKirz3jlIxWZ2F6PZ7dRYgwlQaXWcNYhWTxAlpmiAjUQN1az+l/m6QkturawxHI6J6HLJuh6XBIgsLfVQkqMqSYU3xtc4x1+sxv7CAc46Njc1GhyFJvaO11r7sV9bA6XySg3V0H5zHlAJdlTQhghBEacpD+34CqWJu37rTjKnWmo2NDYzWRFI0pcTFpZ3MLyyytGOJaq7H2z/4Hnfqzw3X7qKto6hysN65G/B+SVLirCNSKRIYbYR72uDjDz7A0uIiN2/d4oc33gNgMp1iW8UKGW0pDFscElELAUIn69OrTTC1tkiV4sSYOFZNec+zqRzgjTrTNEOGcmascNaDmeM4xtab93g85t1332V+fo7BYECn02nKUF4rR9DpdOh0unS6HaKaDq+NQVu7FbCXfi6yJCHteFr5xuY6ztrmM8RAlFJZx8Zwg6qOlvIyYjKekG/+jfeJSjJ6fZ8xiyNFrz8gm59naccSqsh4+BGv1vvAx/aRj1e5s3qDt1eukXVqYPJgwNxgNyqWHjyOwFm/JjEOtKCXZJDYJusjcATh8OFwyM07G6xv+kBvOHJUOmGw8Gk+/uAeuv0t9WgRCYywuFqZOASoXr5RIMJz7raXJq39cItUxhiuXr3avPwDyygAHtfX15uXdfvPNngWtnv1rKysNC/hINLW1g0J7YPS4WHTCdTYdgC2f/9+Tp48yerqKpcuXWpKMW0wZvuFHYKXAPJtqzMHb6w2lRy2b46BmRLGpC1YOBgMWF9fbyjf4TOhxDCrkLtv3z5Onjz5vpJEaC+//DLf/va3m7F/9NFHmyDx5Zdfbso7V65c4bHHHuP1119vRA3bQd3Kygrf/OY3+Z3f+Z0mq/Lcc5roku0AACAASURBVM+xurrafLY9fyFAPX/+PH/8x3/MSy+9BNCUXvr9PufPn28Ug8N4X7t2jSeffJITJ06QZVlzT+1AY9++ffzFX/wFAJ///OcbAb7ZMmYoCZ44cYILFy406y3c99NPP83hw4f5yle+0mjfXLx4kStXrjS+YLNBSfiOgwcPbgM3t13Nw/yGvrTXcrhecJYP5axZPZn277fZaWEt7ty5k/PnzzfB+JEjR97Hcmpnke7399nvaa/jkNU6ceJEMxazWdUf9bzNZvna4/bjtg8McJy1FNPJ1sus1jWBevsNZQlqMbhIEkUKXVWURdFQcgWCCM/q0a5CpP7nnV5GJ+kRxwmRMMx1JZnwEy4m30dv3oV0QBl/nLWRv9G7GwWT0m/OSkgilTZ4lThJfHosTUkSX35QdbnJ4ajq0lokBVFabxhSEElFWRQgvCv0aOI3u/FoyDSfoE1Fv99j925vZtmZn/d4Il3hjCZLu6SZP31b6+0i7q2t11mACK39/U6mYwRjokgghaDeu+lmkk4qWZpP0PmQyXhz22Q/+PGH2bW8zHA4ZO1enYIejvzGA+T5mKosiOuHQArYWFtjsGOJxaUlOr2FpqagpCBWEWncJVaqMUstcl/mSjsJWdYhEoJ84vFLQghSFdHbsch8v0e/74V97q2vMxyNGA6HlLrCWtuw02SdUVCRQkaSbqeLqpWtVRyBtThdUZXTZp1IGf1/7L1trF3Xfd75Wy/75bzdN15StHQlXdd0Qsd0wqbsgJhRBwpqICrAzBCIBhAwGkDA5IMx0QcXdVEDkVENoA8u4KIawIDtQVoIAxVgMRpARRiAg3AKNZYbJmEmnCmTMPVtem1fiW+XvOfe87Jf11rzYe21775HlNq4mi8BF5DQuuecvddee+29/uv5P//noa4KBqMBcRSjdexNIvFI1nw+I8sylFLtYjscDr0ScFUxmUyw1rLc8KuiKMIYS1EU5FnB3t4YHXVSLlJSViX9JPWGocD+eI96tyLL5hRFhlQK14xdVllEbw1rFaLKyGZehHAy3iNJNXl2QK8XUU12qSrPcTE6xZiayWTK9p/eIBot8+zp/8L3PV1m0H+K1Sefpr/yeVztX0bWZBhXUpSOKJEYq1rVa2cNRVGhlZ9n4wf7Tb/nzOc1TvaxVhGpdUYrXgTwxMYaySBBRzEC56vEbCd9ZwyVMyHnyJFmbTPPRLv5AIibIPLTanEcH0EnQgqoq4K7CGWHF2QX4QlQfAgSugFO4FWE9qigCA4X+hBAhGCrW4XTRXdCKfRiBcyjXuTdl/ziIjgej3n//fd5/vnn28/C4hHQp0U+RljkQkplcZEIaFcYn+4it7GxcWQRDCkjrTXf/OY3W5TmueeeY3d3t62yeuWVV44o6k6nU77yla+0PJbQ91A+/ku/9EtcuXKl5atcunSJU6dOtVVLN2/ebPkZoZT5+eefZzweH+HzaK1btCiklsAjTwEpePnll49UhoXPwjgFccDAzwuIXkCawjWF63juuefaYOD999/n4sWLfOMb3wC8tkwIVjY3N48s+iEQCX3f2Njg2rVrnD9//kg6Kpz3a1/7Gm+99dYRa5Fwr4AjQe3Zs2e5desWOzs7vPjiix/hWIU5cOfOnSPWG+H5CuKMi+1R3LRFTlA47ubmZpvu7B5rPB5z4cKFNn3a5bGFcywGS4vnBD6Svvpp2+MqqsftcXvcHrfH7XF73P7KtU9GcJylKPJ2VyekQhL5VJSURzgX3ojTUFZ1W1ETfI6UlmjliGSK1isM+34nnyYSrXNcscPBvT8hFQLRJPxF8hSl/i95ONNMxzOK2qMJUsKwHxGpIVEcoeMeSWNf0Osl9NKISGuE1tTGUDURobUWLSVRkmJU3ZKMhZToSKGjHtPJjPF0n7JJV+Asa8dWWDu2hlaarOGejPfG6Egz6vcxDrIsR3TImFIq0rRP3XA7AtlTiwhhSoQriaXzJp1AKh1DrZClY3IwJpsdkOeeMKyUZOPpDeazObc/vMPBgUcNZrMZvTRFCUlVFeTZnKRBpdI0wTnvAdYfDDi2foIP08bWfnwfTI2OIpSSpM3f/Q69Ju31SZK42eU31WR1jTQ+laN1zDPNDuTJzzzJ/sEBDx4+ZPfhA7IsI28sFLw2jmj/raqcutHcieM+aZKSRzHOHlZfSSmIYg1YlJZEcULc3NuyLJhOpgz6A5IkoTbBIkQ1aYSMPM/Z399vUcV+v+85LMZ49EiIFo2pbU1wcJ1lGWWzY8iyGc5WCJwXv9vba8T/IE7XGSZPMpvsI/P76MY+pBfVJJFksjcndj5vLpS/F1VVMX+wg4iHJMkSUvS4ve3VtdExQsQgNFHcJ22Izv10lURFSCWwymHMhIOxTwv+xa0/oy4Ng/4KjhitPdl6eeUUJzaOM1pZoz8YksQK0aTWrHAYW2EMmLrC1J6/A2CNwxhL7Ty/Ljwvpvb/jRDts57oQ/RgkaD6n9uMMUc4CIHj0rVPWEz9wOEuM/yuq+/RTWEtfrdLMu5C9F3i68mTJ4/YHSy2LprzKO5AV1QunGeR3xNSFKdPn2Y4HLZGkl3Ca0CkQjogpF+6PKVFJdhw/mAKuqhl8txzzx3hFoXjBWLr+vr6R/gboY8BkQDa1Fj47ZUrV9r+aa2PcGXCtb700ktsbW0d0d3p7vK7Ksfd9EtIEb7xxhvcunWr7ffv/d7vcf78+Tad1T1WsIuo65qTJ0+2abI7d+7w3e9+l5dffrntezhe4Dtdu3atFfALf//a177G5cuXee21145U9oUxe+utt1p9o+DxtbGx0Yojds1S33///VZz51vf+hZf//rXW/PO3d3dlpNV13Wb/rxx4wZbW1vUdc0LL7zQjn33XgR+TEjJAq12UNAP6mrihHscxmGxgi+MezfVWtd1q6S8mIbd3t5uEaNPqmTsPsNhDgeEZzH1/NO2Tw5wAKG8Ei2AlLEPciSNI7HAhioq51Ai8uWqSUIcx60XjsARJRH9WNHXB1D8EAA7u4uuHuBEjR6uogdfoDA+DbQ3cUzKgto5omhAr8ko+TLvlDRN6Pf6JKkmiUIqLMdUNVI6yrrEWZ8a8/3zJNqiKtFKkjYHzIuS3Ye7FGWBqAUKydpKI0l9Yp0oGTCdZ+wdeHdlwKe/VMR0NkOKxu8kcITKkrwoqOvSi+LhoEkDaVuxlApWB5phKoiatEikfABYTsdMD8Zks1m7AB0/cZxIa3Z+tM3u7oOW8SKlxNma0lic9TL6wZ9pMj1oCMcWbI0UEaopda5qh5IOawGhWnfyKIoxxjGfZ2R5jlKqDXCMMeBAaUUSp8QNmTmOE544fpxjx46xvrfOw4cP2dsfN32YUNfG83ow7O7eZfzQiyGurKyjhPJpIXGY+rC2xtQldeNxFidxS6K9d/s2a2srzGf7SCUYLa20866uapIkQcoDPycbXlFZlMRJQq/XJ0l7ICRFE7wKKwGHsRYVHRK0a1NysD8hTbzP13A0RDYBU20Ukppsukc1fYBWfuwGg5S8yomSHqR9bKwos3n7FCWDFUS6TNRfIcvnLDUBr9UjrFPUdU2ZFRSNm3iRFqT9AXGcIiqJlENE5BWdNz7/JP00Ie31UUnSptaU9M+q0hIhDZWRuOYF4oQBLMJppEiQkUE1fXfWYU2NbQQNbdykrqyvPAskbWstdSMkWVf1px7gWGtbR+PQwotvOp2ytbX1EXImfFTAL7RHCYYF88sgVLYIh3f9kbp/Dy/drtlmN2AIaZ1uGqhblRNSHF2H7pA66gYR3WtbJBqHv3Xdo7sl32macuXKldaNfXt7u03NdBe6EMR1g7OumWQgvY7HY27c8E71wTcriAfevHmTixcvtr9ZX1/n8uXLnD9/nsuXL7cBzVe/+lUuX77M9evX21Jp8IttWCBDSrE7dnVdt6XJ3XHY2NjgxRdfZGtrizt37rTXevbsWX71V3+Vv//3/z51XbeVU+C5MadPn24FF8M1Pffcc7z66qtHHL+7wobPPffcR4KBMD/ffvtt/t7f+3ttNRP4YOX1119nc3OzDQ67BPduiXQ3dfmtb32Lb3/727z11lu88sor7fWePHmSGzdutAFiCHyCd9Tly5fbwDAcO8yF8Mx0q5dCqi9wsrrj0E3pdrluIeUYPg/97j473dL28FnYJITNSfc5C/O4rus27dYlwYe2WJn10zbRVSddbMOVE+7s3/7vW3JtSGhZ57klSjmiJoiJ0z7pIGWQJJ7MKx3CNZG02cMVHxCVdxHVg7a0POqfQKencPGTTMsRs8JRthdjGz2QCN04PPvzxMSpINKWRAqPihCqRWaUZYZFgkwRKqWqG/2QsgAcWikqUzGZeoSkKg0q0jhnGSWKtZUYKaPmN5KDrCArKyTQbw0wBXlR4rBUdUWe55g2Gq18hCo8AydSin4TgC0ljo3jPUY9SaRkq3BsjEHgEZOyKJhOZq0s/tObzzKZz9n5yQ679x60C/RTTz9NrCOSNGE+nVGWRct/SZKEtbVjrB8/wXC4RK834Id//ucAbG/dJNYeuTK1bfttrfWaJ1ik1Djr2gXNe17JpkQ7Ior8vYiSGB3HRFGMQ1DWFXtjzz3ZffDAWz4UBUVZYp1j81m/SH/h9JdYGi1TFHPu3f2QO7c/APDco6pkaWmJn/nZL/AzP3eG8cEBAO/96/fY33tANp8ilCcgAywtLaOVnyM4R7/fax/WLMvQWhHFMYOlJdKkj23UqA/2xzjniGJP/A6/ufHH11laGpKkSXOdgrhBxuKkh7GCNB0glCQrA3l8iFDe96qXLmFqw2TqkbZ8PsdZx6yYIGTMLMvoN9VSSg7RyaDhtinq6hBV8f32aGlXd8Yjo4eaGbFujDu1QGmHcRZhSqRwqAZxETLCOYkDbKNb1FbzCwsohFQNetoab2GN9dpQtUdCA1/Le1E5/rdv/k9/5Jw7x6fQ/sbf+Bvuj/7oj45wcMICnqYp29vb7Yv8P1bB8SjeQDdo+ThOz6OIlOHzrtv4Ygv8jkV1164rc/h7CITCd0IVTlg8FwOQbj8Wz7O9vX2kT//gH/wD/tE/+keA53AscoHCebrHXGzXr1//iEP422+/zUsvvdTyjIKyMvigbXt7m/fff781hgwIznA4bJGL7gIZ7kkXUQvn6iIQXRSsqwkT7kc4zqVLl1hZWWm5Je+8807r0h44IAF1CtVVocosBIfXrl07ghrcvHmT8XjccoHCtQYFa/BoynvvvQccBgqhIqwb4HaDpxC4AHznO9/h93//91vS9Fe/+tUj1xuCwvAshN8v3tNHoZRwqIkEh2hmGLdwTV3UJFTjLVZLhTkZjtvtY/e84W9hjAJ60yU6d7+7GLgsVm91/7cQ4qd613wigiOV8pUvTdrIGosznnAYxZrBIGY08BUwg0iAuYcxB7h8gpnfJZ/7iVDkE1aGMenKZxArX4JmN4p6momRzGcZVVEiqEnahzkhijVxKokiR9qIqsXmDiZ/iIwTXLRK5WSrBWJcjJOr1EZgKkuV163ztbMwnR4wmU0oS0OvEczr9foIHINBTKQLdh9OebjnS9JneY7BkiQ9enGPfFo04+Jdr11TKZREEaYJAiOlEClgDIlWrPQjji35BXKUWnqRBVNR1yXBnlwDzgqcdURK0x8OUM0k2rl9B2sqDvbH/Omf3GQ2931LkoTVtVWMrRHSVwoFJKQoM8oy52B/D2v8BBk0HlbGWIzwtzQvCqoyOIZLnPUBW5IKcKJ1Tw/CjVHkA4mAkBRFibEO0wSJcaRZXWosAJKEWZYxnc3Y3X1IXhTcuesRnGefnbGyvISpS/Isay0mAuHVm7kq6rrg2u95mPcnP/4PLC+NGkHCGWXiHw4V9bC2Ik4ShAMnIyRB/8XbOzgk2bwgyyrSJjjrD0ZYZ9nfPyDLxxw0Gkdpf5m/duo0o9HIaxg12jvgkUhjrEcmXYVugnupew2EorGyj0hWWHtqqelfQl7O2Xtwh7qsqfLMe5kBk/1dyvkevcEqSbJC3SKRDqkcUnmhQWPtkWo1hMAayTwzTBti8rCXY8U+RTmlnB+ArYnixgNN9ykrWF09wfLKKWCtrQArTUltPQqIVS0ZXeBAOJTyUhBxpOk16UIhJe7/B6m/btoo7ARDiuZRaRg4hMu7lSlhgekGQl1Dyu5Ot3uckI5arCrplusuEofDYhOqneAwhbayssLVq1ePpIUCqfRRKYKAtiwuMIFEHcqtw8Jy8+bNFtWZTqf803/6T9vFMyxooV9hHMK5u/oqYcE+efJkm9L5h//wH/Kv/tW/AmB5ebndZYe0Uej3jRs32pLl7e1t3n333RbdOXPmzJGAsOu2HgKlYOXQRQem02m7QHbHobvIdlNXL7/8cmvl8M477/D666+36E5IFZ09e5aVlZUW1bh58yZnzpxpx7Y7h65du8Ybb7xBnuf0ej3++I//GKAVCwypmWC+GeZXGPOAYITgdXNz80gQ+qUvfQmAf/bP/hm/8zu/Q57nrZ7Oo4i+3THsBgeheiwE/tevX29NW+v60JMt3PdFpCWcLwQ+H5cWetSGIuj3hCCmmyIOc/9RfQ7n6z7PXXL7YvAUruOnbZ+I4KyeeNr917/6altxEQlFmhjiuCBmDvmHxM4vWrackhUzyrykyC1OJgyW/Y0ZrX2G3vLnsNETVKJ3yO0oDXVlMc4rbEjhaNB7IlWSin1EuQPlLlETZBUuQo6eQqhjFHOLTFdx0r/Is9JSVDW1rRBWUFV1Ky6Xz+cUeU7UIA4Bjer3U5aGfeaTOePxlKLMW18iRISUEClBr5e2fk5SSq/UXJZe+biqWuRJIIi1YJRq1pd7rPUd/ZBecwYslKU3GcWWzW8sSIWxgvHBlFs//Hfcf/AAgCRN+eu/8EVGgyHzadbygHr9gU8hONs6eGe5T4sopVgaLZEkKWmScuKJzzBrRAD/4N98n7qcI6RA66itUjKm9vomjYyfMTWy0T1R0qeM+v0+Sul2Pthm8ZfOL3pRpBDqsKxbSMXBbM7ugzG1dXz2s58F4OmNDWxd8/D+fe7fu83e2DuA59kcayrWjx/ni1/8Isc/8yT/4n//FwDs7t7n2NoxpJQc7B8wbAKpKOkjVeSF/GrjU6fN/Iq0otfrEfdSrPXonRLBYVsQx3GDXEjvhA4I4aiqGuesvx5xWB4NFmt8FV6sI5AN92vtM9QyIi8cVQ1OJhiaNF6k6aWO7OAD4jRC6Yg896hUke8hnKM/WEPFwzbokBKMqxsejEFIR78xbE3iFK1A4lNz9+969Cub3caJOcZZ6iynrkvKJo2UFTlFkeFMTRz1OLb2DKPRmea+LyG0QSoNMqJu/OOKusbUDokE6ZUidFPtFim/6P+v//P/+KkhOOfOnXPBGLDbui++bnVIEAIM1U2LKY5u6qbbFhGdcI7FAAY+iuh0g59H8XLCAh4CipDW6S7KXW+skEYKv+kukt1gKRxv0Wl8a2urDUhCn7qeSEHp+Ny5c0cMErt8h52dnTbNcunSpXa8tdZtCiEcbzgctimb8FlXiyVNU27cuNGWfoey6o2NjSOCh7u7uy1nJfQ5BBfnz59vK8e6i9vi/VlE58Lf33vvPXZ2dtoKrW4KR2vdpgvD34N3VlBIBnjttdd49913SdOUS5cutX0IXkph7l25cqU9T+hr8OYKOjSh76GCrztv7ty50/73x1XBPQppC2PfDbzDeULl2mLqKLQQPC56gHWRze65F7ll3RYC0xDcdschzOVHiQs+KohbbIuoaq/X+6neNZ8Y4Bw7+bT7b/6HX0c1O05V38HMtyG/R6QLTA2zzHckKyqs6aMHKyw/8Tn666ehMbp0JsJKgbQaaoOlUZoVrimZtmimJNynzm8DUM1vY4oHRMkSIn0WF/vFsaj6ZLllkhfUTmLrnPncT3SLJoojnK2pspyyrlsS9Gg4YjDo42yBpSJtBPOkiHmwu082n3s+TxwjG0GRQX/AoJegpEVpTd0gA9OZ52nMmjRXmqbEsb9p/TRmuRdxbBTR0xYtDDQ3y1Q+VeNNEG2LhBgryGt4MJ5w80//hL3xHoNeU4brDJ//3LOc/YVfwNS2RVUqYynLEgE+rTWdtuTaUMbdS3sM+gOOHT/RBnq//4PfJZtNcFgf4IhDsq4Q3qRTKY0QkkGDzmkpqasaIUSjftx0IiAcrRmjQalGAqDXI05SSuOoreDEySdZWvKohq0rJvv7PNi9y/7DB8zmfhyNqVAC1tbW+PzPnma4tMzv/uB3/fzKM9I4JY4SsjzDNcGXdQIVeQKxqSvqJt3nj+d1fkajoSeTK4UKQZuSpL0UKTUI0SHJZVRVYzBpa49i6ENV6TiOvd6P1ER9P79l7ziFMdhqThQPUckyeSMcaG2FqOeUBz/kmc3joBMCcFrmB2hpkToGpQjDWhYls/mEopiTzSfM5wfYBuWS0otBKqmIdI8kHTRzqMRYS2UldV5ibUXVaAWVVYEpMmyZY6oC4ww06t9PnNhgXjxAOMFwNKDf92KMaXKCJFknNwnTXDAvDEWRHc5ja/mt7/3Gp5qi+sEPfnDk5Rd27eGlGdILYYd6/fr1j+iodAXTHnWsjxMZ6yrKdkUDuyhOt3VVh3d3d4+I+p07d+5IkNKF2+u65vXXX+eNN944omAb+tBVTg6/DaRSrfURHk8IUEJJfUhndK85XEM4XhCDu3HjBlevXuWll15qx+SNN97g1Vdf5ezZs0dEDRfHLdwHoOXPhMUxcDzAozsbGxucP3+era2tNpgL/Q7oRPfYgfex6HodUJZuQNVFnsI9CccPQUD4LCBhXRSpuxB3F/IQfG1vb3Pjxo1WuDB8FhCwR+m4BO7J1tbWR0rzFwOGcA3h2rok+8XgfDHdFbhSV69ePeJ4350b3VL1QKJ+VGDeTad1019h7nzcMxCutzvXu4jh1tYWWut2ji8+g4/i2YRUWWjhvFEU/VTvmsdl4o/b4/a4PW6P2+P2uP2Va5/IwVF2TjL+17jSp0usmOFchXQRWW7J8gLVkBxXTzzJcP0X0YMvUhhFZSyR84dPlMbICidKpLboxm9KWkM+3cVVD0BMmeb7FM3Ot7RPUNvPMZ1GzEtDaby3j7UCU1usMThqBBLXpB1q46s7Iq3pJSlpHLceVtbWgKXXTykKwe79hh9UOITQSC2IlfQlv7FHmKSz7O/tMskyxuM5eYNW2YasLFWEUhGamrXUIy5PjGJWB4pE1WBq8sKrOANMJgdkxRwdSSQCHafNtUZs7dxnOp9TWkl/uISwTURdlty5c5fidEkcJe31KKEZxMGDaUx/MGA0asrxlKIsK6/g2++RJHFLEJVS+d1/nBJFSavSK4SvSIqiiOFwgBDOe0EB8zxHCe+rJYRABk6KFFS1R3aU9Byisggl9p7curS8xsqx40ilKBqkZjadcLC/R1XkLC+PGI767fjgHEmaUlUlrjZ87rOerzWZzUjjBK0ihFJkeYMmGOsJ08aQ53Pm87z1oCrKojF3jTC2Zj6bohuEKYqSxmtJkaa9VjbAl9cnKK0aQUHRllurKAGpqWqDEz1q6/tNPvXK2SphNi1w2T5Vkx6aPLzH3Q/+HbEdY6sHJMNDccXKltBweqIkRjUK2s6BFRYpLUsjyXC43KYhy6LEOpAotO61aKjSMUIoQGHSGmdV68NmbIGtMqgrlFIoFYNolMONxVCChszMGN/zz5nizxika6weO8Mgfpphb5mialLBRd56en1azTl3ZMcafJrCzva99947YpOgteb5559/5E4aDquUQgs7dfhomWog7oaqmS4HJhw7kFS76YCAMIT0zWIaaJGUGfyJXnvttSPidqFPoT9f//rXW2uEwKn5yle+0pYmh7RISHkFZKJL1g2k7JDOCy3wmtI0bVMugSvyz//5P+eVV15hZ2fniChiQDrC9YfUUhjngApNp1PefffdIym0nZ0dzp8/f4SjBByxaOhycLp8j4BShH53icWL1xTajRs3jpS4hz6G73Ur8ULfgyDeYil9uN7F6rhw/u5533nnHV566SXeeeedVqwxtGDQGca9yy/pokfda++mWbt8lZCm3N7eJs9zzp07d6TMP3C8nnvuuY9UoXXHpDvei/8upowexX0L3w3j0f19+FtQZl48V7jegLKFce2Wkwfk7uMMSv9T2yd7UZUzJnv/Dh03KrhxjFQ+rRHHEXFvRDR4FgC59CUq+SRVqVCqImGGLX0licGAiIhkhJIOUzdaLvmE2byiLGvmc8N0PmQW7AuqOcbOEUJ5pVsXjP6EN6TUkdcqsTVKB+LoAKUEAotWmn5/yGjUPAgOxgf73H+w632fmqAokZYkLhn1e+AqHjwct5U7RWVwVqKc8guJaG5i3GPU67M0HLA0Slgbwsqg4VwokHbGfF5R1750O8v8Yjyfz5jNpn7RlBA1pM2f3L7Hzv0xpjZILM7WmMZrSeJYP/YUcaTRWkHw0KoMzgmU1vQHI4bDIf3GjykvCnpaE8feMkN1DTKF4NiJk3zu859naWm59QsbjYbs3t/l7t17TCdj9sdj5o1SrzUWraQnZEvZ+jRJpUh0hKmrVu8mlLdXoiZKEpZXVrFVxcP7d5lMvOpuVRZEkWJtdZnlpVHLf5nOpo1mjaYoCu7du9d6hq2trKKE9KkjIYkbsrAxhrKqKMqCOIoRfXnEGkPphNp6p/QizxDBTTxu/LecxZuLDttrkkqCFFgnKGrDpHnxTbIx6XCd/nAVpSNE41Rf5mPu3vkx2bzk2NqToAQf/sQ7rw9UjBSa+w+nGDGkvxzz2c8db653wnR2hyKfoCWsLq8BMBys4FAcjOc4qUnSJXpNKkolFVU+Q2goKbANsVzSKE5HCUJYMjNDBf0lKVCJRiYRSsVInWCMH3NlataTY+AklV2hSH0QWswzJvt7jMc/IB2eYDRa4YkTn/fPWTxArB6+LD+N1oXr4ZBDEiwS+KFG5AAAIABJREFUQtoHjgYQYeFchL3DAtTlT4S2uFgGXktd+5LYsGBsbW21Srahgqj7Eg5BzSIRFGiDn7CwwSHvI5hZdst1g2bN1tYWL7/8cquhsrOzw2uvvYbWui0j7pbxDofD1uahW0J+8+ZNLl26xNe//nVu3LhxJOj4O3/n7/Cd73yHv/t3/y7T6bQNpoAjRNlFpehr166xsbFxZIy6i2bo43e/+10AXn/9deq65saNG7z99tttcPHee+/x9ttvHzlPMPZcX1/n9OnTbcot9Du4pofUVldTKNyfYJXQ5eSEvnePE+55l9Ae5mC4TyGldvLkyTYlF9KD3QU3HOPFF1/k+vXrnDlzho2NDX7jN36jtXHo+lN152g3AF4MHrq8sO5vNzc3effdd9v+nj9/vp0rIWi8evUqp06dOnJvQuuWgYfW5XB101eLad6Pa92+L3J4uv92xwuOPpM3btxox2mRXP6f0z6Rg7N+rO/+2wufRxO0bsCKmFomxMOniYensfoz/ssyQcaWWAqwJbbOqUu/sDtTUFUHFEVFkTsmjTnmdFYyKwrvbm1csxs9NDb0O03vbxQuVCqFExIVxcRxioqiFlHQWpFEkkgJnDBYA9OJ70NZ1mgV+R16bFleaipghGY+M4z3x2TzGWXpd7/gXdCTQUp/uMRgsMzyst/BDmKLrCdQ5aRas9JPUc1uuSg8wdMa4bV3nKOqPBKyt7fHdDqh1+8hpefOANy9d4+ydp70KjzXw3SIsp//mVOsrq55xKVBfbxAjPbmks3xg2VFVZYkSUwcRx6RGS1x7573orp//z5f/Pkv8eRTTxEpTdVwc7yRlWA+m/Oj7R/x57ducdCUfGvpqIscJyT9/oAoapC5JEUIx2w6QQgfbBRl3swVwVPPPMvSaInZ5IDp5ADX3NsojkmTyCNMaRpiV4qyaErnvZ1A17La4ry7t1SeCB3EJxtEyTkwWGazWUdsUGCsrz8q85zJdN+TsvFEXq01cZISJ32Go1D1pKmqGqEUu7sPuH//NvOpH7veYIjUEusKtBatcWdezMiyCf3eMZaXnkIky/SaYOXg7gfc39nixBPPcPzpLyHiVdbX0mZ+7fPg4Y852Nslnx9QNWKWQjqipIdFoqMB/eE6UjYijnGMkIaDg/tMJnvQiCfa2vuX+UqvGhvGEG+boYUklhoVeR2pqJlHSmvSJG6c3wVVgxwqqXCmoq4qb35azniw68ngTgme/ezf5Dtv/C+fGgfnzJkz7sqVK+0LMCALAWVYLI2Fj2pwdNujODg3b95skYiuJ1UwJQy76YBojMfjVrCsa2QIjy5p7eqehKqVrsZH2GFvb29z7tw5fvM3f5MXX3wRgO9+97utaWfggIRx6C6MwbIAjiIcIYgKra5rfu3Xfo2vfOUrrVYN+AXylVde4bXXXmM6nbK5udkadL7yyitHKrYWF/5QMdXlsoRKna6Mf/hsc3OTt99+m52dHabTaWvVEALM8N0ggAe0zvHdHX23dcvIA7E17PIXBRvD90NA1g2EFwPeLrLSbY9y4Q5E7EeRzLe3t7l8+TLr6+ttqXoIjO/cuXNEHHCRm9UNMLpVT110cDwec/Lkydb7bPE3IZgLXJbFMvswX7uoT6iG6nphhf51+9VFnhaP2537XR5O9zq66M7HtSA42A1ENzY2fuoy8U8McJ54Yt39dy/9ErZR3JX6BJO8z6yOGKw+gfcKakz7hCAyOcJOqcqM2XzaknBnWck8k2T5jKKctwaPIHyptFMIVCtU5j+RCBGhoxipdVvuncQRcRojpCZJBwwHI4JScFFkzKf72KogzwusNa26r1QSJRxLQ4WKIvYn/poOJof6HoiIKFL0+j6QWVpaZmWkiOUDqnwPU/trnecOWRUMk4j1tRUi5Siaa51nGVVd4+tP5JEAxznXLuLWusZU0/sLJYlXH87ynLIsKYMZaBTRHyQsLy/T7w/pj7yGymh5hUgnKCXb8urW6NIY4iRqKptilpbXePDAByvPbG4yWlpiOp1gyxJTH5ZoKx3R749I0h4P9va4+W//XwA+/PF/wJQZtbXEccxSEwwsjUYoJTk48M7mVVVxcOBftNY5PvvZz/ly9NmMKFKtnoyOIpRWmLpuERk4ZOXPswwpBP3BoDVFxXqtHtEEYloH/7EI1aBVOonB0VbB+RSb8KJ1xpDlOdOmmiyvCmpjcSik1tQNw3c4GpCmPaRwCGFAFAjp75OWioO9exSz+0QRRA0aZFWPSqxTu4RKOpxISEJwVtylyndxYkRv9WlEPOSJdb8pWBoeQ8iacv4BRXafsgrVaSkH2YyD6YwoGSBV0s4HrTyippREa03SzH3hPPI3nRwwmexT1lNMqNITBolHB1XjvaaEHz+PxvYoK0HS67UEe6F8YFuVnlBsi4rx2CN6RZmR9tb4nf/j//rUApxf/MVfdH/wB39wJChZTD91icTdSiDgCKLQrTLpphfu3LnTevlorVv0JCyO3ZQJ+OAipHgCWtJdnBarqhZLyMPn3cqpoA0TRO66v3mUaGFAiEIfuzvwgI6EVFcQx4PDCqZFZeTwG/BaOV1k7O233+b555/n1KlTbYl5+E0Y7xAohHLrEKwEsvVv/uZv8s1vfhPwSM3zzz/fiu1179Hm5ibXr1/n3LlzH/GiWqyeCq2bWgwl7nDoZdUlOnfv0yIi1W2LgUVo4X4uIgqhj+Eciyq9oX+BgBvO0RX+6/ZtMcgJLWg/hd91PdV2dnbae9ENoENqsft8LFYNhqq+7viGORGC18XUapdo3O1feCZC+TwcBuRhYxLGK5x7sUow9K2rc9RFV0MfRqPRp6+Dgx4gl59v1YoLp7DaENWG+axAihytGm5HPWOcl+xN5kwmU7L5hLLwL1hrG10NJxEcGiUK4REhqSRKR0gVIZqUhI5idJQAAp1EpEHoT0u0skRRjNQRs/0HbYWQMTXWFEhhSZXFSUuo8E3SPlVl+eDOAbN50VYCCa1J0iG9wYjhsM/ysEcjGUPKHrbYxZSGvIowif/ARj0U+6ysJKRJjC3K9lrLskJp7RGFqsI6y7zhniRJQr+XooaK2Txj0lTGOASlqXEOamcoqoKiCX4shqhS7O8fMJ3MGTYVY8PBECcsVe0DqK67szUW6yIQkig6hrWWUWNAKaTkg5/8BFPmVGXR8lXquiZOUqbTGYPREoPREp8//QUAptN97t/eAeeQAoqG/3LgLKPhECkVZVkym8+ZzvxncRIzn87AeAHBOI4PK8DKinyekxeFN0ENEGmRY431AacQTKZTeo2gXxLFnXJt2gU//Fbr3Lu160NEL4li/1BKr27cGwzQzfHuPnzILJuzP5kwy/J2PkjlRRiHfc3ms2usrEStvQNOs7zyJEVvwN7eB9SNiKSKVpHJMs4YtLM+MKo8by2N7pMoSSU0tckopwU/yn2g0F9aZ23lCY4N1xmNVoia+WVkysEsY57NyYuMLJ9jp03atCyQQiHQVLUIbhNIFRFHfZZPrLF6AnCWuuEB1aYiTWKUFF7B2lVgGnS1zpEYBB7xDAqAUkqkgDrJkLIiloqnn/Eq4wdTw4cf3ufTbIsbre4it7gIhRd3eOkGTRM43AFubm6ytbXV/iakcLpckEUX5vBvNzWzWJ3VXZBCANblC4XPwL+4b9682QZcaZq2ZotdvsxiH7rHCItYmqatnktooUollOkG5AC8oF/43be//e02bfTWW2+xubnJtWvXePPNN48I2d2+fZsLFy60i1d3fELgsbGxwfb2Njdv3gQOdYdCeux73/seb7zxBuAXtGvXrvHlL3+ZK1euHFHTvXXrFlevXm1NGwNKElC0gFB0+TMh9bRY6vzee++1wUYXieuOZV3XbXoLjiI4i9yYbon6opjdYvnz4nmCIWoXXdve3ubOnTstcheqzPI858qVK7z88stHytlD6womdtNn4R4EK5Ewb8IcDMFf1xYi3L8QVHZFKDc2Nlq5ge7xFlOyiym2EMws9jscNzwf4RiB1xWese7YdZHKxUB/EZ38y7THVVSP2+P2uD1uj9vj9rj9lWufTDI2jnuTHNukcMqipq5KhK2IIot1FQ8ansb+/pRsVmAbnQ2/dxTt/5deRQ4nwckgIKeIdYyKIpDecLDLDYjjmDRNUUoR6+ATUZPlc6azOWUxpq5KVAOrp70YgcIaS7+nUXrIZOp35nfvTSjKDIFERSlJ30P0vf6IldUVlkaWpWgPbe9gm6xIUZcYu0xW56RLI+aZJ3pODh5yLDUIet680OTklUeRqrrGGItDYI2lqqrW78lYR6o1Dogi3crlm8ZLKoq8UWgda2pTNmMkwTqq0nD8qaf4mZ/1RM840dz+cJuqLCnLynsKNedRWhEXCXHSQ69G1LUjapCL3Xv3GD/Ypa7KhlwbPKoq4rJgMHTUdYUxdVuVtXZsnQ9/vI2tfEorKPsWZYSxFUp6VK4sS8b7HmkY9HvMsxmDtOfJv0o0PB+wtfe2irSmqiryRrwwyzLm8zlVVbfkZzP096+OK8CilEYq3fqjWWupqxqltPecSmJ0wxFy1hCrAYO0hxUwy0vAo2mDwcATtYWkPxi0nJ6qsmR5ie5ZsmqGG0uiWDbzSyGihDg5wUq6gsHPISs80ojdZTb+Ca7OkA2yOS8zXC3oL8WU9Zwsn5P0fIrPxIoPtm9zT0c8tfEMca95LmJARGidkjY6Q3HjJWaNJ0VbZ7DWtuleIaRnsFU1UlqcMy2xXIqaIpvibIGzBmcKsA3fRxREWkDlydphTsaRItISpR2RlNRGAA2CieX4SY8IflpNStmmfYBWWyagLovKtoHPEHgygTcTJO4DzB14GmGXGfRdwk4YDneIIf3T5ZfcuHGjNf4Mu2Kg5fB0jxPa1tZWy93RWrc6Kt2U2CJ5dDGN1EUuAnoRNGICehL4Kzs7O2itefXVV9sxevnll1v9mYsXL7ZVPdeuXePkyZNsbm7y+uuv89WvfpUPPvBikT/84Q9bns/p06fbcblz5w6nT59u0yLdaqSuWu50OuWf/JN/0iIUAQ26fv06L7zwQpuiOnPmDLu7u3zta19r0xvhs4CIhe8sVkN1UYMwni+++GLLkVoktgbEICATgTB85coVLl68eAQpDC0gSt0UTJhDwaMrVIZ1zwOHVgxd7ZyALIX0Wbim69evt9cYiODh/i2iUN3rCuPfTeXA4fwNc6TLHwqIyebm5pE5G/SbAsLT5VM9Kv0WWrfyaxHF6upQLaa2uq3b9+61d5Gjbj9+mvaJAY4xht37u2Rz/zLUQrK6PARhuH/3NuPxmDIPRokWvAuUJ35Cw5fwL18lI5BeIE0HLyMdI5v/jtIUqSKSJhUVRZ4gG8cxzjmyuX/gDyYHZHmOFF5Ur59GVA2Z2dQFg1GKIOXh2DKZPcA2MH0kI/rxCN3rkS4vs7riX9CryRxVbEP+AaKIIXmaSd7A0vUK8+yANFJUc4WrGy6GLRkkCdiayUFOPp+03A4pJCpKsNYbOeooasUGy7JkPp+1JcitBUAlfOpBKnBeYFA1qbqqrDBO8fQzm5z5+Z9naeSDrIcP7xHHiSfdCkme5bSmlaZGK0U8iFBK+xRYY8mwe+8u2XxCls0RDqrSL9LGWmYIz9+JY6QUJE3w008TysJX7ETRoCXqlmVJURx6YOVF0ZowOucoy4JIaxIpKMq8FTYUTXADjYN4E7zOnGGWzSiKknmR0U9T+r1Dk9Asy3ylUNJrvaiE8AtjUGT2LYjsGeqqpMx9GXYaaVYaBeTy4T5p1CPSCbU1TGd+judZAWVOGsfk9Yyi1KhZ84BPKlbWVun1l0iitB3Tys5xxmCLAxQZUttWiDAvDXWdIzLF0rFnkXGfY+tP+m7GKyTRhHk254M7HyAaIrGKUqKkRxLHxFFEmvboN8KUWmmf1qsqTF0TthLO+cq7ItunrueYsmhtpYStcaZJNUXeywrbEJ3FCBUlmESibI2xoVy+JKsrbGbJpgVaxuikeS6qgrLO+DSbMaYtKwa/mIQFZVFMTGvdCsTt7u621TPgF6fw4u0Sg8PCHQKTbsAUYPTFktxwrFBN1eXMBGuAsHDcvHnzCJH3UUqugfsTUibdhWGRFN2V2A/HfeGFF9Bat4q7obS9K34X+C+vvPJKW/VT13Wbwtvd3eXq1at89atfBfym4rd+67cA+OVf/mV++7d/u/WOCgHEl7/85fYeBFG/sOh3jx2CjvDfgWcUrrubFupWuX35y19ur+nixYusr6+3IoghmAsVVNvb24zH4yPpqxCEjMfj1g+rK3gYxqcrHXDmzJlWjC8s7GH8Q4D1+uuv8+qrrx6RDTh79iynTp16ZLVPSFEFF/DufA1poy4X6Pz581y7dq0Vcgxp1XBvu2nZbpAR7kUImLrpvXC9gaQd+v6oUm3giCv84jxcDDAXSdgfF7iEOfeowOTjKqryPG9tSrobncXCgr9s+2QEp6o42HvQ3pA4Ety9vcNkf5eqLhukwjcpBLKRtRdCoaT08u/Q7Lg9Z0ZHMVqFICYhipPWVFBr72cEkEQReZFz/+4d5vM5riE6K6XoJzHYmjqfkfQEx9b8QJUGHjyYM5/XGOfVXnv9hsPRX2IwXGFlKWEQH0DpH14znWJZJat+jrw0zO7NKcsmWJFz+r2U8Tjh4XSLfkOu7QuHsIIyL3m4N2Z/f78NpJI4gb4my7KWMxLKxIUQ1KbC5ofXAv4FKxq7itoairImZA+HoxWe+ewpfu5LX2I0GjCf+VLr2tQ4FMbWVJX1nJSWxuDAWl9KLRVCaWZT/7v5fMq92x9SFplHaRrVYx35QFNrhTN9kjTFNBVRCsPScMBkMmE2m7bEbaW9E7aUAqU0SZK0qE+kI4SQVFVJVZVoJVq+jDEGLSVSSJI4bi0AtBDEOiFJegghSOND36tZNsfUTQl5WbZcrSRNfGm3DK7xrtW0Uc4xr2ZUeU7aS4h7fWJ1WJm1P5kynWVIFRPIWv1BQhIZIuvQxMyrgsLMm/lgKM0+cdJjebiK0j74GvWHKBVTlgnTuIct5yjjx24pHWIoqekR944TD0e4gEaKChn3GcZ9vykI3DSp/fOgvON5XZWIZj7UeOK0aMxcbTOmVTElm+xSl2NcnaMjTb8/aO5FjBIxOINzGmcs8/CycgYlaiocRV211XvWeDuRqjJMxhNMWbUK2Wk/aVHTT7MFAjAc7uQDEgKHCrpnzpxhZ2en5SB0OQBdYnCXFAx85MXdJb0GTk93Udna2mpJuG+++WZbZRT6cOvWLW7evMmFCxeOVKYEvs+jzAW7/xf0V0KfAo/l7bffbqurulVF4/GYN998kz/8wz8E4B//43/M1atX2zLxPM/bkuHgB/XWW28dcddeX1/ny1/+MpcvX+b555/nRz/6Uaur873vfe9IqXn4TRcZCLv9bsAUxipNUy5cuHCkagw84fntt99u+9bd2YdjdscuICddHtC1a9d4/vnnee+99zhz5kyLrAEtJyigb12uVNerqUtAD2TdbiAU+n3+/Hl2d3e5ePHiER5OOHaX4NwNHLTWLc+kGwyH4CmgJV0uWUC5zp07d4TPEpzbgY/oJXVRnkfpzIR/Fz3Num3xvxdJvaHfXQRm8TeL/lHd7yyOz6PGqhsABt7XpUuX2vkYPusSkv+y7T9SZO5IY0U+82mHB9OJR0ts5XeoQvrUEzSiaE1wozVaJ15CHx/gRHGKij0JNGoCnDiKkFoRRZo4irDOMNn3C/Hd8ZiqqbIRAkwQYjM1/TRh7dhxcJ7sfPe+719WlTgZEfWGrKQD0tGAwcAvQsfSisjcxdkH2HlEZbwk/bT8DAdZRVmW1OUBmAlPHPclvip5hh9/cI/pwUNMnVHMPIKTHFvyLtnTgvH+AWVZYk144SsGfY9AhRvqWg0f1yBSFuu8WCBAL0nRUmGsRdbSGzo2i+czz36WL37x51ha6lNVBaZBkUxVkWU5+XxOVRYU86y9F2kcIxEeTRE+DXSvcezevXubIp/5cvaqwjRlxnGSMByOqOIENVoi0orppIGob3/oS42VYm9vrxXm88iJwAdjhqqq2gne6/dBSPKi8L5J0Irz5WWBsF5UsN/v00u8JcTK8jF6w2OstXDuXkvQrivvYF0bhykLsobUHc0ilpdXGPQHRHGMw7WVV9ZacI4sqyirmIGzbapuOEiIY0W5byjyskVPdByTKEVe5jyxkvDE8VXKoO3TpPWsKZnNHrZVVM5VIFLS9DjD0QrT6S597fsn3YyymqKEBmERTmDLEKxUSB0BDmtNG/DqSGKd1xaKdYSMIoJ8grOuKX+vMabANqlMTc0wVYhkiFIjnBBtVZ1EIJzzruLGYZQgaSoFHb46bKgikLIlJoOjtgbroF6ruPvhh4xDOno8aXWpPq2mlGoXczgsDw2L38bGRruo7uzstIjL4k4vHGMRHg+w/qNe2FtbW0cCm4AanD9/vtWxuXjx4hH5/YAIvfDCC61pZOhDdwHswu2BpLq5ucn29jabm5vt9YZS5p2dHb7//e+3KaWbN2+2Xknj8Zivf/3rXLt2DfC6LCGNFlJvITWitWZzc5MXX3yR4XDIpUuXAPjGN77B97//fS5cuMDu7i6XL19uP1tZWeFb3/oWL7zwQlvdBD7V1CW53rhxo7UHCEHFxsYGV65cac0ew33a2NjglVde4eTJk205el3XnD59mo2NjTZdGMwxT506xbvvvsupU6fY3t5ux/Hs2bO8//77LYn43Xff5W/9rb8FwJ/92Z+xtbXVBmFdfaGARmmt2yoe8EFbF1Hb2dk5Qrzd3NxszTtfeukl4HDx7xJxu4TcgDIG5CRcb0DAAgoVFuwwj8P86Tat9RGRu8Wqo4+r/loM8EILY7CYUupWTHXvcfjbo9JMAYX6j6WOFpHKxdTs4u/PnTvX+qaF812+fPlIuu8v2z4xwLHWMt57QBk8aKzXKBFKo5vUSKhYkdJzI7TSSB0hdYzSDfKTpERxRJzExHHseSV4xd0o1lRFzu69OxxM9lsfIZ/W8RyWNO1x4umnARgMl8mLgocH+8ynE3AKrf3Ocmm0Rn/QZzjssdyH1O3iij/3g53vUzPE2HV25wn7eRN01DNMnaNVgkYzneX8h4mHyUtzh3leYF2JEj2SxPe7KEsmM0U522cynZIkEUmTQhj0+j7tpiVSaoyp2p25MTXzrPH1UqpFdpy1pEnqy8iLAmMtzzTQ4ekv/Byry33qek5dFm2qLpvNyedTZtMJtjZEStFLfaCQpglR1CjmSkk+nzFvgpVsfkBR5FRVTZ7lzOd+QRsM+kQ6YrS07NNqSvLhh94X7MMPbyOcaxe/kJrxzWGt97Uqq6pNx0VRTF4U5PMZaRJhq4pp0/eyrJDNGFjrWD12AoAv/PxfZ/3k06T9Ac5a9sdj9h76HdaPt/+CH/3FX7A/fkhlKgYD/3BYIC/LxnjUEUUa16A+UXB8l4p5kVOamv7Ql9kP0iFPrC5TlTUHWUERqrLKmgrISkHxYc5nrGK05NN4o2EPScl4vINShr72s9VV99h9+IDa9njqr53j2IkT7D340M99OWCelxCnuMqwNFRYGwxOjTchlwprHCL4gknVbh6qqiDPZ4eaNlKhdYxSDqgwlR9TazIwOQ6DM34MQsCb6Mg7gVuHqStm09lhgCMElamp6xLjWsHkDqIkSJKEjWef5eRTn2nuOGAN/+b//Kg55k/byrI8ks4JC1IosQ0aMnDopxR2+F0OR9gthxf24s407KRDYACHO/bw/cXqla7oYDAEXVlZaXea4XuPKicGjqATQYE2cDzCAn7lyhXOnz/PrVu3+MY3vnHEQ2h7e5vr169z69YtLl682C6GIfgJKECe522wEhZbrTWvv/56u0j/+q//Ot/+9re5dOlSa0oZFpP333+fzc3NtgT8/Pnz7bUEROHUqVNtFVhooWooTb2pZOj7m2++ycsvv9xyhEL68YUXXjhSLnznzp02YLp+/Tp1XXPlyhW++c1vtuP9yiuvcPHiRYIC81e+8pUj9/TVV1/lzTffZDgctpVq4Zp2d3e5cOHCRzg6W1tb3Lp1izt37nDhwoUjDtvXr1/n5s2bR6qrgoBel1/1KP5JQB26SERIJ3Wr+ILfVUArNzc3j4gPhuC+W1W0u7vLjRs3OHv27EfmWzeIeVRZ/MdxaRYVkxcDjy7aFu734jE+DkX6uDTWo6qyQuv2+8UXX/zPqqL6xADHWUNZZG2pldARQii01J5HolNU46iMFohIE0vlg5tYt4JwkeoRxX63r5UibVIcs8mUD3d2mM+naK3QSreLqDGO5dEax44fQ0cJ06lPE9y+d5eqMgg0g8GIdDhgacnfkFFqiOvbiPImbjLGmhjbBFmZ3GQ8X+LO7QdIMSdN/aI1GC6TpE8wm2c8vDNlbz8nm/idal3NUCoiSnoYWVLXTbQbOexySm8waCaHotfwVbSWWOdLo6vGlDCK/bnqosYZzz+x1pKH1JV1WGMRQtHvDxiMlvnc534WgNVjQ4yZU2QZ83nGwZ4XW9vdvcve3kOEg36vRy9JGTQphCSOfepIacCRz2YUDZG3qmqqovRGlKZuEBiwxsv2exG+BJxg9Zh/4AejJcps7h2lI9VycKytGzFDr/+zP5lQ1Yfl2wJYGg4wxlIURYus1GUFztIfDXj6r/0Mf/1v/lcAPPHUBlJHVGWFc47V1TXWjnmkbeOZTZ565nP8P3/8f7N7b4ds7sdOCd1otdRYZ4m1ZtikZrSOvE6Q9UyVvCoQmZ9HtYNev8eTJ9c5VhTsHfiXzv5kinWaslYczB3jrX3WVv29ffJkj148Q2CYTackTZqmF/VYe+IUuYkYH+wR5zOyzD+Uqr+M0TFJOsQKcCJCRH6O95OUbLKPqWv6gxThmrGbzEmHK+gooXKglEapkL5SKBWhhEFZR15MmqezbpSZBXVj6lo36aaJmyPqU0T7AAAgAElEQVStY5T0eHDvPvd2d/nCFz0a0hsMKKqSvMzJqqzl4GipUEIi8GajISUG4HA48+kiOAFt6u6iQwuLTFhoQolsCGIWUZnuwtdNl4Q0VPh+QEnCYvCotEP4TZD0XzQ2DOftppvCbwM/ohuYdcXWuqJ4dV1z6dIlLl68eORar1y5wubmJhsbG1y4cIG33nqrDVa6C8uNGzfY2tpqP9ve3ubWrVvUdc0TTzzBr/zKr7R9+8M//EPee+893n//fV566aU28FhfX2930F1OUXDchsOUT1cjJdy3K1eutEKF4JGLgMKcOnWqDb5CABIW8LNnz7YpuXfffbdNd/3ar/0aV69eBeBf/st/yTvvvMPVq1e5detWGxgBrRN4uDfd8QtKzyEFGPr73e9+l6997WsfKdUPv3/uued47rnnjugbXbhwoS1x76YOw9gtBgLdebRYfh1+E8QWQ+AbvhMI5cG8NAS1IZ3V7Wu3fRyx9z8loFi8p11EshswdVGixcA+pI5De//9948gMIvpyUf18VHn+mnb4zLxx+1xe9wet8ftcXvc/sq1T0RwhJD0eoPWg0ko5fk0KkLqBKlV63fjURtFHKXESpNEUYvgOEApTyqdTqds3/kRAFk2J4k1g1HfVwtZx2rjcXN8/QRCwv5kn+neHnUjtqZVxGp/yGAwIOlrUjkmMf8eADv+9zg3w8o+tVrDRieYFr5qZvcgY5bNWFoaIlzGYOgh+jQZsPtgjwe795lNxyilSRsEIJs5nLHUpUXKGtGkPiaTA8YJfGb9GMPRCGtrhgP/G2MMVVG0kajfZTUpnUZwLqSsQnrP0UTLtmJpsMbGM5/jRBMFS1tSlTn5bMJ0f8LefS+wtv/wITiH1hpbGzKbETWcJw+rCKQF6wR1bTFNtFyWBbP5DGMs1tmW91EbA0KiVESvN0BIzcq6F3YbDFf4tzduMN4fN+aejfBjY6xpm/RVnudMph5RiKOIpdEStam9F1Jjp+C75xBS8eQzn+XnfuFvMlzxKM1kOifLZri6BmNwzrQ+VcPREj/zsz/L0vIqv/dvvs/uXc8pSmONbPgmSirSToWVlL5SLU4SUBIhPYcIwLh97h/MEUpxfP04Tz7lK5vWiikP9w44mJaYqaPI4f49jxZVhWN5FBGr46yubWKk535V1DitMLVAGIu0+ywPmqoulzHsawpXksQjHu5t0et5jpfEMjv4gOXBk2T7DxiPfVprefkE8aBHWTmMlQipW8REOZ/WShIQ0mJ7/hnL8gpjLda6hvdEa7ZZWy/pkE//P/bePcaO4773/FS/+7xmzsyQHEpjibLGDu1LxcwVvWY2DEBfDLLKhgZohH8ogAMHCIHQsALIiAArCI0osIDIgALQMA0okILoD2Mv/xAQGVZgOtZmZyHumrlhYjrhtcc2LVHUiBqS8zhzXv3u2j+qq6ZnRNv32tp/AhYwmMeZ06e6urrrV7/f9zEGTzIzt5vNWPV9PRpQFBJbWBQyoazUj5M8wRJSKY0LGywXq3oOIEoEv/iu6k7NdV2D2QDetZu9E66gXsuvA2PrO9h66UoDGXUaXzddhtLg0DpQso5NqONsdB/1brNeXtO7fC2oVi99aFyFPtc6yPWRRx4x5RxdJtMA4eFwyOLiIidPntx2TjpzFATBNjDx6uoq58+fZ2FhgV6vx1e+8hUAA64+ePAgL774ojEY1ce7dOkSQRAYLyhQbDLts7QTVKrHT+ODgG0gWp2lWFpaMhkW/f9xHHP27Fkee+wxU4paXFzk0UcfZXFxkePHjxuw9DvvvMO1a9e4ePEi586d47HHHuPFF1804/ZHf/RHfP3rXzfUeI3X0hmgubk5zp07Z/p+6tQpIzWgrTF0yXJ2dpYzZ84wPz/PkSNHzPho00yNndHl0/o51a0StESBLnuePXuWU6dObRNQ1MwpXU7U1/bixYucOHGCV199lRMnTrzLJqSOydmZ7dD3Th3LAmzLBNUxSjuvZT3To+8l7fel58nO/6+XrzQ9XWen6jYcWqBxJw5Is87ulEX9ZTI4PzPAsWyHVmc3tl3ZMTgOjusqtpPt47gC19WYCx/HtRFujkMAaY4Uqhxgu002hymrq6uMRiNlZgg0mx0EgiSNaHUmuGfvPTgVuLa3uclgPEBKBz/sMFWVlFoNn9AtcIob5OMfkI5vk1AFWXaXzNpHaU+QywnW1i02IwVSLYpcefFYEPgNBpWh5tLyj0mTDFlklJQURY7W7wk6XSwshTWyBGjnZgG9zR6eJQm9UGn3aEp8KShlgeNYOLbFcDAyFHLHcSgquwPf80zKvyhyUiSubdNotGl1JtGs5ywZk4zHDHqbrN1eZTRQAUTo+TRbLcqyJBpHFEXJoHrNdR18P8DKK4sN2zb2BXGcKBYSCr+iAxzbcSkLSV6UCGHRaLUN0NkLJGkBQdiiKCVxBRaOohFZlqk+RBGDQd8wpfI8J8sy8sKFUig1bC2yYgm8sMn7P/AQfmuS9Z66FkWeEI/65ImSAZBKWhdQDuRFKZmanubDD/0a/xpXeJ6oD4XAsV3SOEEWhfHXaoahwhZ5lUJwXtDbVGNkey5JmjKOYzY3N+nOKBzQgw8+QLPV5tatVRp+Sr8/Jq5Upfu9iM11ATJHvr6ObanPef/9u5i5J6DTcEiS20TjHkFVlrQtCWWOzFyi8Soy2yRwNUW+gd99P92pe1nbuMHuQJcYuwhh02xNYnkBpSyNx1eRZBRZwlp/jWR0m7ACOtuWpYJPGwKrQSlLUy6UaYYlSygL0iIjTxNGsbo3EVaFnxMIWSCrEhVSgrBxnAae18DxmsobDnD9BpIW8He8V21jY8OUdWArja9po46z3XZhJ7iznl6vy9jXdXXqixlslcO0T1Bd9l4fa+dxdqog18tYdR+tetpfv0djOmCrPKH7srCwYMDJS0tLxlBRY2SeeeYZHn/88W2Bnu7X5cuXuXjxIsPh0KgI6761Wi0++tGP8qlPfcqcE8C5c+d44oknuHLliil56JKZ1qDRfbh69SpnzpwxZo66nKKPpxd+rXmjSxRavVcHYhq07DiK6q7Pad++fQavMjc3Z7BBi4uL2zSEWi3lpP7qq69y8eJFQ4l/7LHH+M3f/E2j1bN//35eeeUVAIPbieOYY8eO3dFsc+f3PM+NLs3CwoIJlvT4zM7O8vjjjxsQur5+dVsFrRekj6c9xJ599llOnz5NvWl2oFa+1vNmZWWFpaUl2u0277zzjplbddB0/b7QAY0OlHY6cc/Pz7O0tMT+/fu3gZr18XTQWQ/IdZCzU5dHn1c9sIEtfJzGFtXLePWNxKVLl0zZU7//Tridn4bh+R9tP9OLanrPnPzff++PcfRm1LKRWJU7dYrrNBBay8VKcayAIh6TZpvkZUKWqYWlPygZRGNkKY0BJECepVgUdKenmJqeYTxO2Ryoh0FBjuW4hF6TTigInSpQGf2IdPP7iGSMxEc6bZyGcme2W7Ng72Y8CulHOVE2YFTpm+RpShjYjEZDZKlAzWrQJYEfEvoetuOQZSnjCqdRljkIC8dR7C/tHZVFQ8qsR2jDfffex+7du/A9dSGKPCdLYtIkJksS+v0+g8qnCqGYTZZVjaFmPVUX13ZsHnjww/ynhw4SeBWgd7hGf2OD9fUNxqPIAFFd16MUalIrZk1pNGiEsJSeTXuSDx54mCRO+MkPla/U669fZTzsI4TAC3yaDQ3QnmRiosveuTnuvXeOTncap2I3jYdjfrT0A7JkzMb6Om/fUDX7mzffYTQakiQx42hMUplcAnQ6HZrNJnt2TePaNsiScaWnlKYJnckZjvyXY0zs2kNUjU+ejIhHm8ofS4KUBV41+cKwSdjq0N01S2k7XPi/vg3A9dd/TDP0sS0LWUqEUH5loAKcdrtFs90izjLGcWzAybc3+vTGqdIjEpKoykZlWcGePXvYe89u8jwjisZGiFBKhyjKyPOMJB0bAHQ0irCdnH3v30U7tHnnrdtM7lKSAu97//tJpUN/s4fnWUhpk+UaaK7MLxuNKRzHI02reZenOLZPKXxKy0VaAllpAAgpcG1oeILe2g3yio6u/M9UEFmUOWmWkmeVVk2RIhOJawVEZUkpMbR6YTkq8HQkDT8wLu1lISmkJE1UQCyx2LKQs+n1JK+9dO4986L61V/9VfkP//AP5uFax1fsxAbUg5s6MwO2JP21iWA9I/TT2E31Y9d/1ouM1s2pZ2nq+jr1jAwo5odmOMVxbLITly5d4qmnnjKigXVRwZWVlW20Xr1AHzp06F2ibHqMdHC3tLRkMgF63BYWFjh48CCPP/44R48eNQvnI488wtmzZzl8+LBhJunMytLSkmEAaXsBwJg6xnHM4uKiYQXVx7FuZVEPBg8cOMBzzz3Ht7/9bf74j/8YwNhDtFotXnjhBQ4fPsyv/dqvAfD5z3+ehYUFk43SfXj22WfJ89yIGT7wwAMmE16WJa+99prRwKljm7SNxczMjNGvqV/n+rzR80zjSDSbS2c5XnzxRQMuHw6HXLx40TClnnzySRNQ7qS453nOq6++aiQH9Pw6deoUTz311DYcT73fKysrxs5CX7+XX36Zp556apufmu6fDkbqmZCdrR6U6PfUQcb1e6Iu/rdzrGA7Nm5n5kXfh3UtnStXrph5vxM3pz+/noEEDAPwM5/5zHvvReUQMV1cIE8rajIOCJ8waJFh4dpTyEI9EAWQJSWUDrY1yTDp0B9Vu+wix280aAYBQghkBTb1goJGw8JveIyGA6IE3Cpr0AyahIFPyy0R6Ztkt5X2QxnfxrY8YhGC7RAGFl6lfpzLCdaHglu9NdI4QkgLx66yEM2A8XhAUVr01oeVMiuEYYjvhUoML8+RUiCEFo0rQQo8N6QzMYnOJkSDVTZu9en3Nxh0Ntm9e5cJLspSZYHyNGU8HlMUW4qyeVEoj6oqyNEtSRNVYvEDWu0OQuZElW5Nf6PHxuo6/f4A23bwXNW30TiiP+xTlCW+75MXBWmVucjzXHlAjSNm7rnFZKdryleu6+K4rvKVsiyjHN1stuhMTqoAQChgrltlrKJxH0dILN+nM9Fhs69ugn6/wUZvQwVZyKoMpc41imLa7RaO624xeqrgrERRxL3qtXFV1ooGPeKoT5rElFIBtkMN0M4y8qLA8VwmZnbjeeq6DocjkmhIlib4fkDo+7iOYkrJMkfKnCgaEWcZaZozMdkF4K3rbzFMCmZ2zTA92WZ2t8rgCNvl1u01bq6sETY8sjSh02htjd2Mw2a/TxTZ+K6o+jDAs2zyccjb/ZJ31gXXV5QX1RtvbrL3nntoNCfBLxFWjl1dw0YYsrl2g821a0x29hCGlXpztkFZeuC0Cf1dYIUU1dzLcwVUj2NJo7WHJFXZL5n0q/mdK7C6FxJUdP5k3MebaGHbXexGW5Usq5JXUUiKUqoScZGSpOqaZ4VS5C4LixKPosgotHdaGZNFKe9lc113246zHkzcCRxZBzfWhd3qwMf6YlLP8uxkwOjdq2aQ1LM+OqOilX3rmZs6WLIu7KZF5BYWFox+C2ACJR3IrK6umjLG3NycCabqDJylpSXiODZA4KNHj27Tnrly5YoJsBYWFkw2YHl5mTNnzphFRb9f79K/+MUv8q1vfcuAWWFLN+XKlStGTE+/Rx9Df4bO+ly4cMGoGTuOs010UWeVJicn+epXv2r6rcf6pZdeMqyst956y4yrXtzr2Qm9iGoF4W984xscO3bMHO/VV18lz3OOHj3K0tKSyfw899xzPProo+9i22ljVa0fVAcgz87OGkPR+pzTpqJhGPL8889z6NAhzp49a17Tc0cH1/XAXJe69u3bZ87p3LlzBrCs31f/vFarZVhoekxPnTrF5cuXuXDhAocOHWJlZcVksk6dOmXet9O0tA6G36m8fSeqOWxRx3X5bacBqr6Od/J0q2cz9bgeOHDgp97Ldcp7/d6+du0ap06d4jOf+Qy/SPvZ+R9hUdpt/OoBn8kAx59ECA+rKHC8BnG16ywKSWlNkkqXOMnJysQIwrWbLZrtBsKyKNISv3i7OrPrNCZ+lXHWRFolYbglSe87CVb6Oln/h5C+TZlVn0ObOAuJsxEdv8TypompTACjgHFS0vJ8MschzwuTdRkORhWLR7J3732Gbp1UFHhLONiOj+/5TDmVJkrleJ0XBUHoVUEObNoFg7W3yBDcunUbP/DZVUWpnutQFCVZNTEKoyuixBCFLRCiKidULBeJJM1z3FIiy4KyTBlXweGw1yMej4GSsixZr7RI4iQlK3M8xyPPCoqyIKkezGmekaUFJWPevn6dzocmCCoaeytskcURCEGz2TJicO3JCRqthmFJWUIiK4uO9Vs3icdDbNciDHzuqyj7RVHQ6/UYj8eUZYFlYewipIQ8L0jSDMoCWyibATUONmmWMhpt4jXahtbd7/dIohFZFpOkKYHnUoQqi5RlGYWUeL5PZ6Jrxs7zLBV84SvEfFlQaraW4xCNxzQaTZxS4DXbWFUAvWfPXtzeJp7jMBhFpEleTXmLEgGyIPADhFSZDIA8ibFzC8uCMFQilQATnWls26UoCyakZLrb4eZNdZ3C5gyrG32Gb94AUWLZJXmuMlYz3Rbtpo8fety6cZtB5dadJQNmZicJWj5Ba412exYvUBkh27IokKRJSpklyMpyIXQlQauD7bTAaZBLC8dS49oIwXEaig0oCtI4Qupr4QSU0qLMciSCTJcy04w0TcjzlCxNSZIIYasAWpQlM7vrytG/fBNCvEvXo67YWi/1wLul6++kyVF/uOpj1Km09ePV1W53GgxqSrF2atbHq/erLpCnsyk661NXON6Jx7mTLH49MNN0di3yd+XKFV544QVA2THEccyZM2d48MEH2bdvnykPnTx5kscff5wnnniCpaUlU6LS+B4dCGnxPMBo+mgNIh18BUHAxYsXOXz4sAnC6hgOXYrSzCPdd01l1to5eiHU10WzkpaXl00G55//+Z+ZnZ012CBdStm/fz+HDh3iD/7gD5ibm+PixYvbVI7zfEsJeGFhwWR+HnnkkTvq1+ixaLVanD171uCH6vNBBwr6GmmF4m9+85scPXrUqCrr/9f4Lk2X101ruWjKv37NcRzDxtqZpazP/Z3iizrY0YGwDkR1aaqO76org4MK3upMp4sXL3LkyJFtFPb6GOl+3SkjpK+jDoBgi01Wdw7XrX7P3Km8Vc8s1TOtO0tj/zPt5+jgSDLvQSKpdrdZIclHklIWuI6HSAuytNqxxzlxuklepEjA9wOmqt1y6HmMRwOyMqHprSNlVf8PP8hmFFIKie+7NB0fkb+ujrd+mXL8Bo6MyQubBB3dBUhZEHam8bsPkzBBVqkcdzuTTBQu/c0e6/0e8XhkFv2yKLAEldCeIKj8gO6Ze4CwEZDlOVla0AhDOhXdWspM1dezlCwZmgVjstNgNN3ldjokiRLefPNNozmya2Yax3FwPQ9GIyQStwr0ylKS5SmObbNFulU2CUkc4wcNZS+Q50ZrJk5TpICisqtIqmwallXRuZUlgSW2JoovAkajMRu9DVbevs6D73+QRqPSyAkDwriBFBZB2DR/b7fbNJtNHMdGUlIWOTer3c7q6i0sBAgH4ZaEVdCxZ/duNjc3iZOI0Xig3KqrimeWZoxGI/p9H8e2FDW+opcXZclgOODHP1riw36TLNOZp4wkiRgMNpWkgJCMSi2yp/SE4nhMmWfmBnBdD1vmCClpN5vYRgEYPM/BttRYN1sN+lHM5e99T41Ddy9T90ySjkeURWowSmmc0mx3iJOc69ffptkMCUMtAWCTpKmCWwmB51XYLyGUpEIakRQJvudy/30VkNgumZxoMOoqkUrX8pBSzQeJxzAdsz4cs377NhurCkCeJQO8nwyZ2TPDzB4XL7yBY6kHtiqFCjrtNu12Ay+sFnYhkdKhKG2yOCPNU4YVBitJciQbgIVrOwSeZ8bIcSRpkRMnY2zbwak2GOTKz8oJAsJWCyFtZFGB4xHkha5XvTdNSvku1VgdcNQfpMC7gqD67ztT3fWsTf1/6wuXLmvU1YdhS11YWx7US2H6waszC3Xl2sXFRaMVo/EXsIWfqJe3dMBTD+DqgZle7L/zne8wPz+PEIKPfOQjgApiDhw4wMLCAo8++ijnz583GYq33nqL5557juXlZc6ePWsAuaurq+zfv9/Qsl966SXzc/0c6x5T2ktKB5IaW6HP4cyZM8zOzpqyiR7z1dVVU5bRMvx67DSN/cKFCxw7doxvf1uVnOug17m5OQPwPXXqFC+++CLPP/88n/jEJ0z2BlQAsbCwwIULFzh+/DgrKysmANMLt6av1xfTOI6NE70GDtfHX4NrdZ80NkdnUTQAWL+2kwquHdx1FvDSpUvbSl71Oar9y35eqwc6dTA8bJWFNG5N+7Tp9+mvS5cubXNi1yVJbWNSDy502bGOj4N3+1Tp33WQVw/KdKsHNz8NW7OTdn4nGv//TLtLE7/b7ra77W672+62u+0/XPuZGZys9Ll6o8RC0VeN0qptIRxblYCqjEKWZpRkuH5AGDQIXJd+ZbtwK4ppdyaYaAUk6QQbUeWmnILj9QhaLXzHxRIpUV9F7Nb4OpaEvHQoZYCQqsTi+RMIfxY7nKHXL8nzGzSblfVD4CMCh6QsmQ2alLlvMjiUUonYNbrESc5opP5u2TZ+2GAy9EnjiHi0yerqSnW+grKweOONn9DfWKGo2ENlkVPkY6xSuVGPxiN+8rpK+aZpzOTEBEWWk0uJxDL06EJKSmmRZjlIJaAGkCSJchiPxpWXUkacVOWmLCNKU5IkJs1zsqps5FkeZVFQFgVCCLUzrxg1WZHj2g62EKyv3mI0HOJVQoSu6ymQt6UsMnQ2xnU9ms0mruty48bb/GCjR1ZdW6dSSbaEMJ8H0O12ufeeOXqDPnGaMB4PETUl3CzL2Njo0WiEBIFvRAWlEIyjiNFoRFkWptwkLMW2yvMMhPJg0iaTUkqSNK12PYL773sAgO//22XScQ/Pc8nyDN/3tsQLy4LA9xWg2xLkRcFb15VEwUSUMLt7L7aw8MMG129UZdOiYHJmBiksbM8hLyWjUVbNeyWmJyyB59oUhco8uY76CnwH220ipU9WlW5HoxVCS+A3QsapTdCawG+q+S8cj32NScKgy8qNFd74iVLdXl97B8sRtDrT9EYZ5WCL5l8UqtRalrdxXZtWQ6eQW3RnmkzNKBsRTwi6lS9Y2VZWKVmabWFrZKWuLSy8MKQ92cF1PKpLgSVsXNtDIIhTxdKzKjxbUlqMoq0M5HvRyrJ8l2O4zujs9LzRdgfLy8s/k0K6M9Vezw7Vy1NXr141gMj6LrwOktQ7zzo+QTOEdr72yCOPmJJFPRtTN4fUbum6TxqUrMsedcfp8+fP89prr/G5z32Or3/96zz88MOAYgh97WtfA1S25PTp0/zu7/4uAK+//jpf/vKXOX/+PC+99NK2nX+r1eLJJ5/kzJkzxhATVHlB2yHUqcjz8/Mmk6ZZNvVS3cLCghEiXFxcNGWRgwcPcunSJbTreR2kOjs7y4EDB4x5paZz61KYHi+d9VlZWeHkyZPs37+fj3/84/zFX/yFYRadOHGCPM85fPgwzz33HJ/61KeM79Xjjz/+U0ub+j1nz541jt+wvRwzPz9vynmXL182VH7NHNNZjXqWL8/zbWUg7a+lFZx1f+qYLk07r2fG7sQsqpdr6qVMfYx6mbUOWtfv7fV626w39u/fz5UrVwx4fSf9/Gtf+xonT55kcXHR3Gv6+typdKSzPXVmoe57PXuzurq67T7TZTp9v9dLuf+/laiKIieJhgZXkWc5ruMqtlEakSWJ0USxXJswbOBgkcUJ0WBkvHompqawPZvbq5sMRxFZpQAbBD5Np4V0Qdo5kBjtnJSCPC3IywDpOTieeqA2O3uxWx/A9pu4/SEbm6sMxup4aTrA81XQofRfJFlW2SvEEUU/omRAs9mi31fBV5YllNkUWRBik5KMeqRVcNFoNLCwKbOEeDwmrwIc7ZheSrsyMCyJKubVys0VovEY3/cRUmmQaEuGoihIM2VoaAnLsKYlyqR0wrbxXJc8yxlX7K8kzShLSRKroEeXtnKZIiwLKQvlE2VZUC1aNgLfdZmcmOTW2iZRkhJUFgWWo0ocllCBi1e5t9u2jeu6tNsdLLHC7Zu3CCqMSSNskDtFpaCLAU07jsfs7F4GcYwE1lZvGXVmZT4qlcdXnpNlOY3mlodVo9nkA/sPEDQ6CqdTjWyRK0XnJI4UDkg7kAtVwkrTlCzP6HSVdk57Yoq1eAiW0uLp9ft0dJkhSbGjiO5USCkERbkF+L711jXKeEyOoJB25QkFE50J5dkkLJI4ZnNjnaLCcTUaDVqthvJNK6ERqlJmq91gPFKAb1dYjKMN0ljhbDzHwXYz8nKAXyQQR8QVLqsxeT/DKGdzvEbpC+6Z/wAAU7P7EBTkeUkYxWRZZrBiaabYeUVRIJHE1b2/PrBJZEhaNulOTiHtEZt93QebLC6QQpWgHM+nrMpkw3FMtBlRFsoc1q3GIfADHK/AclzK0qbMQVDhlISNI9/b5G9Zlly9etWk7zX4VdfztRkhbDFMNM5gZ5kK7kwv1UFIq9Xahu8IguBdiwFsLRh1hk0dgFzHWTiOY8Cbw+HQ6Mlo5pM+Xj1gqy9odWPFxcVF8/vzzz9Pu93me9/7HhMTE/zX//pfDQC52+3ywAMq0P/iF7/I2bNnDaX5k5/8JCsrKzzyyCN8+tOf5q/+6q8AhbkJgoDPfvaz9Ho9jhw5sq2kpGnp586dM+UXfQ51HFN9YT548CCtVmuby7keV+2jVS89xHHMyy+/bF4/f/78Ns8pfe3qbvAaI3Xo0CH27NnDhQsXjCP6o48+yuHDhzlx4gQHDhzgxz/+sWFsnT17FsdxePLJJ7fNE231MTc3x2OPPWbUsZ3dbUQAACAASURBVPX5atCxBk4D28w3dUlJl8J03+uBg57LSZLw3e9+1wCw6x5fui86INYBhlZ63gnK3cmC+mnYMz0P66reOuCoa+rMzMxsM7jV/dHfjxw5wnA45MiRIyYQ1mU93XaysnbiyOrnoPuhg+X6edRJA/q1Ogj+F2k/l2ReFJZhT3iukr6PkzFFroIdx9N0U4ssyxn0FY6g250y+I5hf5NkGBPJDEtIfFF5VNk2gRsy4TQI83eIV/+JYngdgDQXJIQU0saXUzQn/xMAVjhHVjbY7MVkiUWcNelXNOOCTWx3gOe0sIWibGvqcpokZGlKliWI1VUmJtRimyeb9Fb7bMqU5evXiKIY11WvuV6IxKaU0J3aA4XGaQwo8pgyz8nTCLt0jH5Iluf0h0MYDPE9nzRNias+FKXKTggElmUburxtW4yjhHE0ZhyNcCxp3mM5DuP+gKIo6E522dxUD76yLJSYW1mSlwVFrnBRoLAigR9gOT5Be4a9997P9IwKCBzLwvcChoM+UkpjEqptGxzb5v0PPMibb7zJcFMxdMqipJAK5Bz6njFLBWi22kxMdMlzSRi2aFaA9EF/UwG8haJDlyWMIzVpfT9kojvF7N73IWwPWVYaQljYtoPrOGTCIs1iY1GQZQoPZVkWlnDwgyqjFzQoSoly3S4Y12jdu2ZmCJCkZUEyiPn+D37AqHqASOGA7dCdnIRSMKj0caIo4/r1FVoTXVzHQVg+ExMq0Ou029iux3g8JhqPWNtQ49MeNvBciSVKGAJk2HYlciktUgm25zPRCpBFgVUF+LJ4k9BycLwGJZKscjovfQ9sUQn9OVDaWKICGbshaaIMQkejmEjf/LZFFMcMRpuMxmDZEr/yypps+cxM72YwjLGUaQW2o+Zy4IAlA4pSKlB8pvo2yhJsr6TRsAhcSV5sEI/VvZ2Xgm73Pt7LJoTYhkHQD/hr165t82/a+Vp9EYSth/NOtkgdb5PnyuxRZxq0t5DGQujARS/K9WBEL95f+9rXDMhX75r18SYnJ43QWV0cUGecrl27ZrIB+rWZmRkjzKcXEoC/+Zu/AVT2YDQa8fTTT/N7v/d7gDKZPHPmDH/913/NF77wBT7ykY8YHZyjR4/SbqtNzec//3kTMD388MMkScKHPvShbcwywAR+9WAN2Mbyqe/A6+O5srLC+fPnefTRR/nzP/9z03cNktYWEPVxvXbtGlevXuXYsWNmzDWGA94t8qYzXgsLC7RaLcMaOnLkCE8//bShaj///PPmemvNmZ1gWC3OqM+rDqrWi+pOrSL9/ysrKwRBwOHDh8141+eHDlR0FikIAjOGq6ur5vpqrZh64HsnUHx9TOrXrM7gq19DfY12Bj87Ab/6GHVmoD4GbGXa9P/rOaGDv52sr3q/68er968eqNXng84Y7vR1q2cLf5H2cwMcYUmzoPlBAFIS2q7yMsrzLQGyIsW2BNPTE3QmuqRJzs0q7R/FI0CViHy/idtQx2s22kw0BX7xA0YbFymTTdJULfqFaCBtj/bEA+C/nzfXq0VBDAj8VIGFkdi+R8feMsFMkoSCFC8ICMIWrY66yYWEeDxmPB6CLNlYV31rBYI9e+aIc5hKfPK8pKEnhvCgLBn2bzHTDU1QdPvWLTY3euRpQn8jwrZsNOSyLJVKb56XJLmkwMUICZUS3xN0Wg21+FfqzIrenZGmGZv9DfIsNlmzwWBIURQ0Gw2QpclAlGVBXgGSZSGxfNuAeNOspDO1h//80MNM7b6HIGwaUOnMrj188MMfIRpFXPvJj7h9S5Uf0yQnTTJAMNnt8uD8B/jed78LKBftoHDJUkmeRvhZBWb2m7iBRbMZ4vke42iMqGocYdikMb2Le+65lwfe/yCdiQlu3b4FwNraBo3WBLbjkmU5XhXoNRpNkvGA4aBHVuZkRYFnQMYpliUUFTwMjR/WaDREolhbpZREccJGT2Xn4ixjlCYsr9xkNI4ZRzGtCTUf7pt7H3Ga0W6E7Nq9l40qWBkVFnnpkRQlURbheg3KKvBY3YhI8xiJREhBVDGvbm30CHyXyabP9FSDVnOCaKwCplGUURRN0oGL6zkgS8KmOl/P97ASG6eANInxK8q+Y0vGw5gcl1LYjEbjmuHtkLy0SIuYNEuII7X5SJKUIs8rBlyl7Fzdt6uNFv2RYO/e3QQNn83eO+Qj9ZANXIFbljTcEMuzdAyPHbRJCos0TeltRuRZiUAFya5rcatXaTu9R00I8S4NFf3gO378uEmjw5Zw2r59+0wAUvdTupN/TT09rsGYuvSgF5ojR45sW+j0A12/r26UqNk5Wg1X63vU/18r+NYXmtnZWfbt22eE/XTmSGcndLZKLywvvfQSR44cMaWSd955h29+85sAfOhDHwLgd37nd5ifnzd0aWCb99SxY8cMrVuXwHT56MiRI9uo5UeOHGFxcXGbseihQ4dYXl42TKV6GUP/fPHiRfbv38+nP/1pfv/3fx/AUKBXV1e3ZSe08rIeh16vZ7IaekHbuTjXBeiWl5e3sb+OHz/O2bNnDfX76NGjZiF99tlnefLJJ3n55Ze3+YjBVmZqcXHRaP0ARrFZBzd6HLSWTj0A1s7uOtPx3HPPsW/fPo4dO2bKh08++SSLi4smY6OvRV3VV7OP9HnrebWzXKhZZ1rzpx7gXLt2jQMHDphyYv1+qmdU6mD5nRmietMBVj2I1X3T91jdX61+nHoWpn7sncGYPqed4OJ6+3mu5T+r/dwAxxYWQWVDICq2iOPaWFhqkRFV6cMSIJTR38rNVeIo1rIxeH4Tz/MJm006rS5T7WoQnA2KwQ+Jxz+iiDPGeUBuV+hsSxKEk7R2HyRjmmahFsebN2/SyzPCRoN2u4PjuqZMZts2QaBcudNULZBhlUVyHYfudJd7ZqeIh5vMTqsL0mh3KeQUw41N2jMBvY0e/ViVJHbt8qGICMMJ2qFDGKh+t1sNRoMBeQp+2KD0vEp1V2Ua8qwkCBoMxzFFKSrTS1XacWybLC2IK+FDNXYWvh9QFCW9zQGNMDRsJNt22LN7N0kcc/v2TRMM2JZW4o1IsgzHcUyQFbYneeBDB+nsuofBOKLX6xnOlu1Y+IFPs9nmV//zIdbW1E7s1soNoiglTRIazRb33b+Pt5dVEBiP+uRZQprFCLElSOw4HqJQWZqw0cB2vYrSDtNTM/zWb/1v3Hf//WbiZpka81IK0qwgSVP6/QF5FSSHjSZxo0kz6ZAVOWVZGF0dKZVadtho4AQ+tyqc1BtvXKVMx7iuzXg0ot/vk1bYocFoyOr6OmGjQRg2cWzXsKV6myNKYbP59horaylhQ2VIMks5nGs9oyxPGFTBii1LJianaQQ+iAS3URlg5jA9PQVFzvLtAfc39tCcUhYhzSJl9dYG6aggyT0QDhtRVeJzIQwtuhMBlpOyuXkNgE4rxHMmaDgljt+hO7kXWQUreeYQZ5JhFDEcRcZ0NMtSZFkaZWlZFpXtt2I/rtxcY73Xo9UOabcCmhXtvLBKiiJGximWozBHAL5bkMUptuXjWgLh+soVHRgl2+UP3oumaeL18obeXS8vL5ssC6gHorZBgC0HamCbyFm9JJHnucG96F22fvBqyi+wTdl3J/Oqvivev3+/YSTpphehelmrXsbSr2kW0d/+7d+aUorWANJaIfpctajexYsXWVpaYnJy0ojL6fbiiy9y+vRpDh8+bLIaX/7yl3nttdf4zd/8TT796U/zvkra4eTJk7zvfe/jox/9KFEUbcuS1D97fn7eLN7Xrl3jiSeeMI7cmh0FW+KAWsX4T//0T8212Ldvnwmmzpw5Y/qrF2GtPHzp0qVtRpmwle3S17K+2D777LOG8QPwxBNPcObMGU6cOGHKcXoxPn/+vKHW3wnjcvny5Xc5u2urBx0sawPTOI55+umneeyxx9i3bx+XLl3iN37jN8zxfvu3f5vPf/7zzMzMsLS0ZMb1lVdeYX5+nmeeeYZjx47dsUSlgwUdbOpsoi7l6Hmn+zYcDreVdAGTJdPlrp0WJncKNHYGFfVy7E9jNOlAv15qqssd6H7reaGPsdOkU8+TnRo4O0tzv0wG5y6L6m672+62u+1uu9vutv9w7WdncKREIAybxnZsBAq3UZTqS2cayrKkkBKBxHZ9Jhstw9BpNhs0Gw0afomMrkKk2CJ5cos0HhPFDoVsgWjhB2rn6wYTpJnF62++hbB6Bv9SZAlJHJEmEdF4SNhsETRU6cj3fcqyVDt4ISgpDQbHDi1KKRmP+wh5EwuFq1hfk0TlKkmSkucFjaZP4KuMlS0gly6lsFgbjkkrs0HLb2B7IWVUUNgS4QrsQhtPKtE7ZX4olO+WtmCyIc9TyrygLHOTnSgL8N0AiWA0GjMYDHCrskin06HTanIriZBSWV0AtFstJCVxEtMbDAkaORNttQP50Ec+itfs8PbKbdLxkDKLqCpUyvTUsfG8gGZ7gokJpVW078EPcOvGW8SRspmYmp5m/oO/AsC/f+9f6G2sg1DaMn6VRQLlXZQmMWmWUZaCvfcqbMbhw/8re+f2MRzHvH1jBce2sCqFaD8IaLZatFtNms0mPd+pxiEjiTtE0Yhm1qTIMwWeBoKgQRg0abUnKEXJhdf+bwDeufEWskiVSrKUSjlaaDNTF8dRukejKMEPmjQ7Sp9mZnYPYbPFIEpBuBR5ZWaJAl+7rk9ZehRFyT27mtX5Wowzi1GcUuZgW5W+kSy5vnwLW5QI6fBv33uDLFNlMiFgojvD7D27FRMsSimrTEiRZAxzj/X1EVKCI1TfBqlFuyGZCG3ydAUn8LEDVR6yvAZlWTLV8ei0GqRZZXyaKnHEOE5Is4w0jg2DMMtS0jRlGOWs9UocBG61mwsbLs12SLsR4OYFosoDFnIT2wKHMR3PQVgBU9qEtoBU3/jvUSvLchvwUO+wNT6hnmmoAyW1xYH+XWdC6sBZUFmf+fl5JicnjbpvHSOwf/9+I05Wx5doqf+6LozuX70kpf+mj1ffhdZl7HU6/sCBA3zyk5/chjfReiR1n6Tl5WVWVlZYXFzk9OnTvPzyyzz//PPbxm7XLmVV841vfIM/+ZM/MX/XJbaHHnrIiANq/ZZnnnmGF154wZTKQGVcWq0Whw8f5g//8A/5whe+AKid94kTJ9i3bx+PPvooZ86cMf0+dOgQ586d49ChQxw7dmwb80djpC5evMixY8f4y7/8S0ABqetlxzqrZ2lpiYMHDxqgr251nSCtP6PPaf/+/Rw/fpz5+Xn+/u//njzPDRBbY210hkdn6nSJZ25ujvn5eS5fvmz6oLNuS0tLBu8FGC2flZUVPvaxj3H58mV+8hNl9Pzcc8/xK7/yKzzxxBOcP3/ezDc9Rx955BEuX75sxljPSc3Q09egDlTX87w+J3VJSAsu1jOR58+fNwwnXfLSGSE93/X3evZEj5P+fidg805GYj0LU8+0adyO9prSPm/6ePv27TNZMz0O9TGua+XU+/CLtp/zboElLLPIRKMRWZaixPYFIAyY0rKVEafruXi+TyNs0KgCj7AR0nBLGPwbycZ3oKwUW3OXKLHJy4DSDQjae5DsBeD6rTHDcUSWvI3rujQ6KqWeFyVlkSEKyMqCEklSCcX5XojnKVqwZ7sUZU5eiQAOBpv00gTXyli/eZPNTZXad4KQZmcK1wsopcQC4qIS0ytL2q021958A8eB13+oJnMW97CFYGpyhnZzElwbR6iFYTzYIBmP8P0GHrZatA2VPsW1UJ9VSqTcwqu4no8lJLdu3SIaD7h3r7q5yyJjMNxUVgSNwBiVhs2w+t6ilRT4jSYze+8FwA5brK2tkYwj+ps9bCGxhPqswPNwHJvUC5RqcKJKSjO79jI1s4v12zdw+oJJ2zIO2yvv3CAajRSItixI4i3gdtMPyOIYSkmj0eLQoY8BcO+997G+vs5o0Gc0HOA7jvL2AoSQNFotXM8nDFtMVArRAkkcjbE3PGzbxvcD7Koe1mw0mZiYpDsxyY9+8AO+e+m/Vdcoq3yaVDBpi3pAaYNQbtylsAnaXfx2FUTEHptRQhSP2DXdZbqr5pckJYkyknSEZbtMdCYoK++ocZQhgDwvK0NPNXayVAw5WUqQMXkWGQXtoizZHK6wthETBA1c18KrDGqnu5N0mtOM0oxBEjMaq4fN2lByq1fiWQkTnYA9u6dpShX499cH2HaJ5YwZjUaEoQp8CiTCtRF45HmGLCRFtSnIs1zZh2QpZVGQltKw8QYDsFZ72I5LEHiEoQraGqFPp90gCCSulePaCaJK+HrSxXfV/HuvmpTypz7M6uBW2Hrg6hR8HbugS0B6QayzfXYGKnoB1SJnGkRaF2vr9XoGK1EH12rmy51YIVpEUAcqelHV3ky6pFZf7HTpZ3FxkU996lMGv1FfgONYuW/r0tHTTz/Nl770JT772c8SRRHXrl3jX/7lX8y4aYDtU089ZbA5eoyOHj3K6dOneeWVV0ypRDODgiDgc5/7nCm/abZRq9Xi0UcfNV5S+j11Q8v64qkX+IMHDzIcDk05To+jXtzPnTtngpeTJ0+aIHB2dtaMncZb9Xo9Ll++zPHjx406sy5naWC5FloEVX7UAezi4qKxzdD057m5Oa5cuWIA4bC12NfB7KCCOV2S+8IXvsDs7KwJKB966CEuX75sXMgXFhY4d+4cgHE4f+2110wQCCr41i7ter7UWWO6zFRXOtbBhcZCaVAuYObWgQMHTMlN44c0A2wnI0lft6tXrzI3N/cu6rn++acBlHUJSY+RFvjTZbS5uTlTUh0Oh8bqo27bUP8MXe6qf94vE+T8HKsGsBxBkmxpHgihvJpk9YDULBfHtdWX4+G7Pm7gYVcO4L4lkZv/zrD33xDlgCJRO/msKLDsNmEwidW4F6v5fm5vVM7N8Tqj0RDShFEZsbF5sxqEFp4XKJaRLOjYM3gVtTxPEpJRpOwOioK8SCiqIMISFtF4iCgkjuMjqKhwoxFhs8VUdy+dySZZ2meqyoSQ5wzHPZKkxXBjyOpQ3dRZ2kPaNhu3Y4TlYvkuVtUHWeTYrq+GthS4fgssdU6yHFKWKUUhCfyOZnXj+z6OpVhDUgrWewPzAOm0AmZ2TeE6Ds1mk7zKSElhIRB0Jrp4YRsvaNNqqX6PBiOi0Yg4GjMa9vE9h6wCqQ6QIKHdaSubhlI7pAump3aRF5K12zdxbZtmSwUD99+/j1srK4wG63iOZYJa5X+V4jg2ruPw4Q99mG5XZYRu3nyH4WBAlkRkaUxsqeybuhaCweYGjuvS7kwalt5kd5rJ6V3cunkD27ZwbLuimytzyHanAwK+8/9cYNivVDWlVMaRloNA4HqWwZ4Iywbh0J3aTYHFOI7xG/qzukx2J0nTGEdIysq0UggPsImTmCAUjMYJg8oXbDSKcYI2jiOQ0kdXeG0kluLPK5PLPEBUWJ8yz5FILAFJEpOkluoXkBZDhNNgZmaSduaztqY6Po4zeknCaDimtwk3bw2Z2a2uxZ49XUbxiGQQ4fttLKdik1Ew6G+QRCNc4SKDQAV4KMp3WRbkRU5Z5MjqSw1fiZQK45SmJVle3X/DjFvrEYHr0QgdWg2PZqW54zoZsgqM36umXe11qwcndQdl3eoZknrWoA7YrD+s60yWncDIK1eucP78eRzHYWlpySz4GkOid8X1rILGBmmMiXaL1k2Dfk+cOGH8igCzkNTZKbppzM7KyorZ9Z44cWKbL9L8/LwJPK5cucKXvvQlvvrVr/KVr3yFF154gQcffHDbGEZRxNLSksG4LC8v8+yzzxofpYceeohvfetbgHJ0P3fuHMvLy4ZWXe9bniuzy3r2SusAabyS9rrSY3D16lVmZmaYnZ01Qcfy8jIzMzNcu3bNgJf1a5pJ1mq1uHDhwjZbAh0AaHyMpqWfPHlyGxi2rnJc95iqA4avXr1qHMq1ho0OKk+ePGmucZ1V5zgOjz32mOnLxYsXDaDacRwef/xxnnrqKTNX9PhpGv3Ro0e5fPnyNuuOnf5cGiyvLRX0PNLvqXtC6WBSf46mfNdxbNqTSwdQO5lSuq+XLl0y2aI6HkZvGOqBa51urrOl9Y1EPVNUP1993+3fv98Ymeo5pAOjX1b3Zmf7mQGOlJIojoywmx9UomnCwrIEtr2lH+I4jhKR8xxCLyD0XFypmClidJ20fxmSHkkiyUv1Hun4BI1ZvHCWcdHkxpvvsNFX2R2Z55RJRJEneL5jhM4GvXU6E13azTZr62us3lxhoqsWrWZrEoGNLJQfUZHH1U5bUZAdKcnTlLRIaVcXpESQ5xmj0ZgiT0iTMaRb0KT19SHRAJJUEE6pRcaJAoo4IU8iynKEHOUmy4UbYPkNZENguWCRG+fmsNEmzzNKmZLbGFBwmsTYyj4b27GxHYc0UZP21uo6axvr+H7ARKdDUNk+TEztouEHTHY9LMel2ZpU1GcgSiLyPGM4HOAISJOIpNLwybOUIAgYDPrkeUFRZassIWkGTZrNFjeXV3Dtm2YMut0O977vPn681CNJUlxHjakXBGR5xng8ptVssnv3LtZWFRi8v7nJaDSkLDJkmSntllxdp8D3EcJicnIS17HoKV9KPM9jZmaatxpNxn1Fo8+rMl4Y+kx2J1jbWOft5bfwq4ASVwXblu1iWZYCJleBR7PdpTPZZXMwwg9ChsMBWUWLX99Yh1JZWJZlaRhoQdimOzVL0AwYx2N6G7cMs8iyPfLxGGFZ+EGA46ngQkhBkiRkWYIjLKQUFFX0GvhtfNdH+C6O52JbguFIMZCiNGNlrY/j2Ex3G8x0VQBhO23WBg3W+wnjKIUy5fa6CrJur/dpNlwmJyfxwxnS6lmQpxkWBZ5V4noutBtkxZbNhZIriEmThDzNzAalLPPK/6ygLMoaqFsihCABNnsKCK81qsLQo9PWZbv3plmWtU0zRnv0aJZJ/YGsH7z1ktDOVLtmVtUDifr/XLlyxTCYDh48aLyjTp48uS1Y0ovm8vLytgBGL/LD4dCUC/RDXgOCZ2dnOXv27LZy2srKismA9Ho904c8z40oXqvVMhovly5dotfr8Xd/93emLzoLEQQBH/vYx/inf/onY6758Y9/HIDvfOc7/Pqv/zrHjx9n//79Jih68sknuXjxIrOzs5w+fZrbt2+bEtcXv/hFut0uZ86c4fjx40brRAsh6q+d4G290Olsg9aGcRxn2zXcSW/W4OIDBw5sy5LososGqurPAbUYHj9+nPPnz5sMTp0dpwMdbZNw8OBBDh06ZFhqeuP4yU9+kuPHj3P48GHjnL6zTJPnOc888wzHjx8HVBZE20Jo+wUdFL300ktcuXKFmZkZrl69yvLysgEnHzlyhBdeeMEAbutBsg7O4zjm8uXLJpheXFw0Ugb1TJaWHdB91GxC2CoJXrlyhbm5OZaXl00Zb2Fhgf37998xSzMzM8OJEye2Abx1m5+f37ZhqF8LfR13yg3o13TmVc/XVqvFyy+/bMxa6wGgZtnp49UB+79ME/qBdqfWmtwtDx79PeU+jXL8tR0Hy1LlAMdxcSqhON9XRpW+Z+O6Hl78Osnq/wtAlqxT5AnJWJLjYrWUOabTfB8FIYOBZL2XECUxebUAOZZAliVxNKQocoLqc7I0JckSZnbvxfdb3Fq9aVhK3enddCam8LwAx7JUOr5awLOyoJQC3wGbkrxatDwrY7IJbtgiy5uUWCZok6WFJVx83yZLVxn31aCPEnVTR8M+w36PIk/IqyxXkufK00kIovGIdnfKYFbi8YgsSZQrdhAah28L6G+skxcZ2DbtZoMiUYvgqHcbQYkQAs93mZ5WJYl7772X983eQ7PVxAs8hLBZ3VCL4I2V20xMdBkNh9gCovHQKCMXWapwOJag1WoxNaUeytNTM3QmdtGZmOL6T5ZARkxNq2xMe3IXaxtj/v3yvzLorZvgotFugeNy4+YtEDYf+vABNnoqqE0ilblRtHZVjssrFpVt2di2IAxDOu02zeohtmfv+5icmuFHS0u8cXWJIotV/Qe4f9/9PDD/Ad65eZt//Mf/0/wdKbEch6KQSAlJlpOWKrjoTM0yd/8+fvzDH9JfXwUbursUm8QPQ7KoT5GO8YKQTFbZDs9HWjZxqhR/bdvD0Qt7ECAoSKIRWGB7apF3vBZplpOnMV5QmYNWmTbHdsFykUJg2TaddgvfV/NhbfU2WZYjioJO02PvrAqgw4atRDZlyDgRDDZHKpsJRFGkxlFA0AiZroLuZqPBxupNsjym3Z6iwGZQ6UNlWaqCuLJU6td5YTJ3CgtWUpZ59T+VAayU5ku1cos+Z1lYlsN//8f/41+klId4D9rDDz8sv/Wtb20r2dxJywPeraCqd5m6aaXgXq9nFhP9N33s2dlZsxDPz8+bUtK+ffsMy2UnDb2uU1KnEus+3ImRcvXq1W192LnQ199f3zHrz6nT2RcXF1laWjLBD6jFYXl5mVdeeYXLly+bY8/PzxvDyvqu/PTp01y+fJmXX36Zy5cvs7CwYBbI+fl5lpaW+LM/+zM+8YlPmPF56qmntuGIlpaWTPCjMzCaUXbx4kWTdblw4QJHjhzhlVde4cSJE9sCUi30t7CwsC2z0mq1TKatbkyp8Vjagbs+BvVSiaZX6zF/+eWXcRyHw4cPb9NMeuaZZzh16pTp905KNahAtZ7ZOXjwIHNzc+zbt4+5uTkuXLhg5sojjzyy7XNXVlaMj5b2E6v7cYHCEulsWRzHvPLKK4adVg/qtdN8fQ7dKXup8S66ZKczZ7Bl+Kk91+5knlnH1OjrpB3Y60rPQRCY+0vT+vVr+r6tB2/1IOXKlSsmU3knppQOvnY6mrfb7V/oWfMzA5z21Kz86G992gQ4juNgVZkKy1JlAx0MeJ5L6LkqmnMSyv6/Eq+qGyRORqS5opR77VlSS2FFcObYHGyyttozGAYpt1RtHddRkv9pipD6wVswikZIbDqTh9pHWwAAIABJREFU03iuh6j6FDZadLozTEx2aYYNfMumTJQ4WZHfxrJKLOGBLMkL9bDL0zGeuwvLbRJ27gF7ilSqgU/jBFcW2PI2cXwd11Y4iHEasDmIyVIBOGRZRpSqDMnmYJOJThurKFh95waOkORVrsYJAoTrkxeSMi8ItVid5zEeDhCyQAiQZYFVjUNolbQaPt2u2s24Fci41WrR8ANsRwkxrm+sM6qE9P79+z/kA/MfBCkQlKRxxHisFrs0iUmSCMexaTQC2pXC8Z7du5mc2sX0zBw3336TaLhKu1XZAMzsQbgtrr3xJjfeum5o3UGzwcagz413biKE4AMf+AC9yhFbCKWmnOeKtiwEZrG0LAu/ymYEvk+7UzmaT0yze/c95HnG0g++jyVz/Op8Z3ZN4/ohg+GI9fV1XEcbXVogLKJEfc5wPKY/rtzE8eju3k1vo0dvbZXBaEBrYk818wWBL6BIyQoQVanHsSwsR2WEwGY8jtTcRfXfEpI8iZRDuqPB1ja24xEGAUGzhWML8kgFenmZIXwfhE+aFiBAVMGZY0NnokWRl8hcGgXtmZkJWg1ByxdIcgrLY5RVZd3MJRolJGlBkhXopT4MW3S7E0hyNjb65FluAOlZlhFFkXJkzzLyIjcZ0bJWtiplafSFZCXsqH+WJt+o706L77/20nse4OzUkqn//NMCm/qOr16q0ItivekskdZn0a2+c9SfOzs7y6uvvmpS/5rerV+rP9TrfduZddDH09mMOrZCLzTabVuXxerZBE0T1xiUumllvQQTx7EJLpaWlsyx7r33XqOLc+7cOV588UVOnDjBuXPnOHLkiMGRfPzjHzc7eX2+uulx1nicneKKGhy8k26tSw91HRgdMD7zzDM88cQT20Di2vRSl2g03mhycpKFhQWee+45jhw5wvLyssl26HHSC/y5c+fMtT19+jRnzpwxWaw6rf/pp5/mlVde4fz589uCU+3G7TjONoXjnVlEwMwHPT9nZ2d5+eWXjVO67rseu6997WsGAL1///5tpbder2eOt7y8zJUrV3jkkUe20cePHDliSqV6/uvXYCvw3hngv/rqqwbMrTFj/6NtJy5mZzCu57S+DjszoDojpO8tXarS79GbD511ArZlueI4ZteuXb/Qs+YuTfxuu9vutrvtbrvb7rb/cO1nFrgcx2FictKIegkhsCxLfReKOWVVO2nfs/G9Eje9RrJ6hWz8E5LKcLAoPILmA9jNOWKmWFtXO+w4XlVMnkx5LFkCLEvRtyUlWV5gOQ5e0DCYAc/3aU1ZxHGMbQts16fUFPJCIkuJbVuEoaDlWOSW2hlsrF1HCkFuz2I5bZzqnNzmNJn3IMLyiYoSS/ZJK7zKeHibIrpFINaxRUpSqizIZtwkTSVFljPorRGNNvEaVSZk1xyO36IoBfc+2CHNY+LKpypPI9JoSDJW6rsirwTuuru4Z3YvZZZhOTZB6BO46nzbvs1Mt02r2cB1XYSmlpcleVEwHA24dv0N3nj9DT74K2p38tH/5WOkaUYSxwgp8Hyfzcp7K0kTRRvOSpJkTJZUbJ8ip6Ck2ZpCWoK8kCRVJmS0OaAx6dGdmWF1bZVx5bO0+s7brG5scPPWKvfdew9lkfHDpf8OwP/H3tuG+HXd976ftffaT/+nedDoyZ6kcqMkk3PUohJdUG4VqhcqqCCIy9ElKvULtbinyo25OFTFLnHBoYYqkFIHHBqoXzhEEMPxCxVUIohCBFWIi8VlylVvdFqdVmnG1lia0fxn/g/7ae297ou119Keiepzm+O+KVpgbM/M/v/3Xvth/fb393148smPIGdngcZVV0q8psUxnU4o8ow4CqhUia4bGwIvYCtKmJmdYffCLrxaNQopk+cyTTNUVdNNOvhNoKbnefh+QLdruEuqUmS5ObdFJUiLku6ePVSVQTssEjiZphSFD0LgeSFBc33JKEQLRaUMmtaJfRL7HuBLVFWhYwmVQmDmJ/IqokghY40McoZra6Qjg2R50ifSPcIoQfo+qtbUtdmuyHMmKJdFRiNvv39/g2IQUw1Cuh2JrksSabbpRCWzPQ/oIESHQhuUpig9qtpYNDzxxBMUeeHy0aIootPpUDRO30UjGwfzlqVLhVYlVa2c0s2EoBoUR+u6QXea54C7Gz/c0Q6m3Ml3af/bvoXatpDla8BDq3/7tt1uS928eZPr169z/PjxbUZxO7/P7oN9U+71eu6t3rZM2ryflZWVbYjGwYMH3X61EQ0LxVsCqpW0t7ex399uEwCuPXPmzBlHyG2Tr1dWVjh8+LBT7jz99NPcvn2bLMtYX1/nwoULgGkbnTt3jizLOHXqFKurq3z96193+2ARk9u3b29zF7516xZnz55FSsnFixc5e/YsgDsO6+Rrjw9Mi+fpp5/mT//0T/nDP/xDxwc5d+4cBw4ccNLudjvGmu+13Yjt8Z8+fZojR47w6U9/mh/+8IduH15//XU3t1YNZb9rZWWFs2fPcuzYMa5fv+4QguPHj/P888+7eW8jdzZc1P53+7qw6JptHbbdru05P3HihGsJgWktKqV44YUX+OM//mP3mRYRtO3SY8eOuWvl2LFjDumz5G0wnCybeWVRj3ashg2xtJwwu511jN63bx+rq6vu3FqpvEU9H9Wqs9fao8ajrBDa560dmWL5RJZkbq8Ti3xZI8udbbd/Nydj3/eJwhDVFBBBEOAHoilwPKRICMJmcarXqTf/O9PJP0A+oqorZGRaUUH3Y1TJU7z3YMRonDEeN/B9nlIphedpgkDi+Ylb0ITnEYYRwvcbArOZbC0EwvOY68wQhT5xp0PYpByPtu6RjlepZzuMtwTDunBkT5n8ClJ3qdUIWb2PaNoLwusjqil+tYHO3kcpRRgYXoMX9ymjJYoKpkq4dtzcQoRHRa1SsvEmW+vrZDbjqFCMxqtkWYEQnrH5t74sXkxvMCDuVpRKMdd40HSjCK8u2LN/N7t2zRJI30iygcAXiLpEFRn5dISNJtcI7g3H/NPqBlvDTYajMSPrpfCLexmPxuTZGp5Xo8jd4lQUOeOtLYLAxxeCRJq5q4qCdDxBVRXgofHJVaOwSlOQmygdUFaad983rODh5jp1XRCFAbsWFpjpz/LRj/wCALNz84RRaMI3tSmK283Q6XSKrgMqKWlqFYoipSwLp9KbpKmTxQshUOohT8RKoH3PI447+DJEVWbbuMlHSzyfbhyQlRWfOPAR7t7rEDYeR/c31hgON1CqJOlE9HoNH0oaZ2zf1/T7HfxA4nnmNrl/733m+j08zyP0PbqNs7VqioI0zUmnTfL1wBA3Z/csUuiAyXjMNJuQ5SmVLS7ynPLeFkKbfCrRKIm0Nvy2pJMw0++xa77PoNdpriGN5yk8b4zv58SxKaw7SY9pBrmqKYsUPIHv1IUFVa0RjTBAErhzITyPSnjgCUTtUVVmvnWl8OoamkgWgUY0PkYajdYfboljoxr+/4x2y8fKte3D2C76lofQdj8+cOAAR48e5dKlS9tUWZbr0W4XgHnwWrmr/ae9EAMubsEuOPZ3djFsLwx2sbLtjzYHx+6rXaDsvtnPXFxc5LXXXnOkY3jYdrCL5IULF7Y5Atvi4fLly67AWVlZ4cqVK27BB7Z5xhw9etT5p1hy6I0bNzh79iyXLl1idXV1Gxn85s2bHD16dFtrye6zVfTs37+fX/3VX+X73/8+8DCGw+aM2dwuwBWU7RYdwGc/+1nu3r3L/v37uXv3LsPh0JF/bar77du3kVKytLTE5cuXATh79iy3b9/m9u3bXLp0ifPnz7trqNfrcfPmTc6cOfMz/Kk2+bfdmrGcE1tcWG5MOznctjTbfJuFhQW+853v8PTTTztuTjvU0xLPbQvt3LlzPPfcc64Asdwce25tm6l9LtqFTls5Brjz1o5YAHNfWJK8PeadxfW/5nbcbrXuLEZtoWMLKrt/9r/feustRxK394EtMq231YcxPpCDM7f7SX301O+6A+z3enTihEBGeD7o4g7VlgnHzMa3qNIH1Foj5AzduSWKxtNmc+oznORsbRp0xHqECAF5NkbrCulLwjAhiMx3eX6A8ENkGBs/lAYpCuOAKOoQ+DFCaCoKpG5CHL0ReJJK7KLUAYEvCZoHcRIotPopPu8bfkJkTnzl7ebB1MMLE7pxiJQQdRqFVW3UW0ZeW7t8qEJVlGUOKKqihArqZpWutCYvCuIoJgwCJltbSN9Wo12y6Yjx6AFVmbu07n3zM+wadJnpRsRxiO8Lx8co8wxV5JRlhlLGjBBgOk1Z/vE/MiwEosqoizH/2//+WQA++YlDjEdTNocPiEOfB+ur3F81mVMPHqyTpylBw8GJArMPcRSy78lFPv6pX2G0uUk+HRkDPTMThFFI2Bmweu8Bt/7B+AENN9fR2nisRIHkl3/pl5mf32Ouh7xkNBmztTlkOhkTSEncpMun0ymTyQhdK3rdhNmB4TYl3YT5XXvZ/8QB7vzkn0gnm24baFCc6RSta2fmV9c1UgZEcYyqzM+tjN0Q32N8KSlr2NiakjboTlkL0mxKFId40sdvzkVRVEbtVSl8XxjUr5mHWhXMzQzo93rG9LL5ntHmhKqCtbUHlPmU3uw8freZh0ogfY8sHzHempBOTOQFQFXnQI2oa6pS2drVkHupzTVXVUjp0W9US7sXdrF7YRcygLrOkU3xJYMuXtDFD3toJJUuXRFYFhVlWVKqAqVqSqUaPyuMQWNVUVXKWCs0SrdKldSqRFfm/Na1cpL9ulFd/fj6pQ+Vg/PDH/7wZ4qctlx8589tUdD297Bv0sPhkEuXLrmHqM3wsSRiu5DCQ4+c9s/gZ43O2jyg9u8smrPTrK29LWy3wbfDPvAtKrC8vIyU0nFp2iZpVqFjP2NhYcFxdyz/xG5n9zXLMn7t136Nz3zmM4DJZlpeXnaZWG+//bZbBK0k2RaJbURp7969fOlLX+LcuXPs3r3b8enaPjX2+C05OY5jZz63vLzszsVO8ulOq367aLcLn0uXLvGDH/yAL33pS1y8eJEzZ844onObmN3rmXTzS5cuuTm+evUq586d44033nDHdPjwYQ4ePOjm6VEqIVuA2H2wRbPlILWvzTbR2SJ3drT/ZmVlZZuk2nos2aLFesZYubu9ltsIoS0qrKfTTrTzUTwze+23ERp7LtbW1rhy5QoHDhzg+PHj23gw/xrJv83D2UkKftQ8tn9ni3i7jTW4tDyuNqdtaWmJ4XDI3Nzcz/Ws+cBXJlUpdC3Qyiwm09RkK8VRTRIGhHlOvfljAPxiROUnJLOfoPZ+kbUsYX1rA4A8y8hG48ZDR7t8KK1r8mxsHqxoKEE3hUIcRARRhPCDxi+leVPtdPC9gEAKYIQvwPPMBZNmuxhPU4pqxGyvTxRWeJgLTZcjdCmYeB8lrztMhs2bqi9QRU5cKPJMUKgM6ZsWTLfbM9/nG023XZjSacZkOiYvcuI4IQxCdFN4eL5HHEYEvkcoBUXgu6xNrabkkyHZaJMiTwn6jRFiOGDQDwkllPmESZ6RTa0CxrSUlCoNSbSyLZYJ060NxptbSK9GhiGbG2a+a6UIAkmv1yeQHsmkQ9gUClEYEfg+lTLZRZVV0wjjYSt9nzRNzcLayNvrGvKigkARdfrEjU9QVBkJ+ubaewyLCe/efZe5+X3NPESEYUUYZqiiZG52xil0pJQgTMFQ17VT+/jSaxAfjQwCs2ikqbsehRAURcFkMnHzEAQBWpsg1zhOGgsDs99ZOiWQPkmcECUJuwYxzWlC1YK8DBlNMzbHU6ZFkzcVxKhKGRtLIYiigE7jyC2TLg+Gm9xfHyJlhO8ZRC8Wmm434qOL84joSXzhUWbm5s21IJnfi1J98tGUIisoGr7uuFCURU6RZRR56iwNqkpRlhmVztG1plSa4WajqktLNjZz9u/fw2Cm41pKRTpFFyl+nuL7PUqtXe5WWdYUZUmpSlTZZL1UtiCoGhPAnKosqZQt5kqUKqmqkrpShiy+zTvnw3Uyrqpq26K30/wrjmP35msRk/aiZIddYKx5X1tee+PGDeI4duoo+6C3aIdNq97pUdP+2zaZ2BY1trXWdt61f9de6NreIfaY2qoxm7HVbklY52Wr2jl8+PDPoDs7vUvsWFtb4+bNm3zmM59xxYU1vbtw4QJnz57l0KFD27a1KJOU0iE8S0tL/OQnP6Hf7/ODH/yA73znO25xsvtmE9+Xlpbc27eUklOnTrG4uMjRo0ddW8QGk37zm9/k9OnTHDx4cNuia4sKi/KAabnZovbQoUPbfGba/i5vv/02N2/edPN3584dTp8+zYsvvsjzzz/vkB1bhF64cIHnnnvuZ5C7tnTbFlKW2Hvjxg2XGN9GO9rX76Pan+Px2HnvwHYl3uzsLKurq5w+fdrt9+rqqlvg7bVl98uaEO4sbqwRof17W7y258haFNj9PnDgAMeOHWN5eZm3337bnb/XX3/dGQS2C6n2v+19+KhCyP6+Tca3Bc7S0pIrhK3J5sGDB1lZWXHn3O73v4UQ/TP78IG/1SauIE3NZNS5R5yAJz069ZTNrf8bTzQPxO4eou4vk7GfzWnKcPMBk5G5AItJClTmIRa0lViSTm/gAhoRnvNywZcIGTAzM0sSxw9NY+qMKM7wvQ6TScRomlE1PBvhKWIxZZcsEMWESmmy2ixOk2yWcVqSF4qKLXRtW0A+M4MZtCfw44oI0I0PzuZwBBo63Q51rUmbxXZr8wFFWRAnHepKMUpTvOakdzpdZgZ9klgy2VpjOrzDqEm3TpIuYdAhiTt044S9u8xb+aATUpcp00yhioLRaMshOManpSLLc5RSDwuSWvGJg0+hdUWaZYynOaopilQ2QUYxUnoE0mcw6JNnph1WK8PNKQvPBGc2xUBVacDIx8dbm5RFyqBvLtowivB8SV0LKkA1nJStaUZd5o3hX8n9+/ddEShEQBhIOklCN0kIw9AZRsaJQAjjyZOmEyqHSk3pdjLQmihK8DzPxYSkqfFjstLlSeMl4/u+8WTK86ZAEIQNGhMGIbXyqFRBqfIGzTGtqDjw6USSQXeGmd6A4cQUF5vplKKoyIuSaZpuU/AFYUAUhEjpMdMP2DVvrq1IeGTplLWVDUqtCSMfKRvejqiYju7TGcwThz6DboTwzLwWVcJokrG5NSLNowYVNNycvAjxpUE7dVWBsK1bU9z+850Vet2E/fuMbcD8XIe6LvD9kkDmxFGXvImfmKYlqq6oS23Qm6JwC6EJhy1Mgr0q0TZyRCmqqqSqrYS8csUUWju11Yc1tNbOOA/MImPl2+1gP3iIANif70R9lpeXnQrIPuitaZp9S2xbyK+urnL06FHnrLsTDbIP5jaq0ebGtDlAdrvl5WWHCtn9s62BtgNyG8WwvISdjrOWL2RbW5YnYxeyhYUFVldXt7Xdrl69ytLSEgcPHuSVV15x+7e2tsbVq1d56aWXXFvpUWiDTaYGw9t56623eOedd7h06RL/7b/9N+fxYgvGtpKn3S60iMLa2przpnn99dcZj8ecPHmSgwcPcu3aNcdXaS+aw+GQr33tawB8+9vf5u/+7u/c4ttGzOx5tsWP3RYeqt3OnTvH5cuXXVF05coVTp48ydNPP+2k03YbizBYNMjut1WXWXde67EDOHm8XdB3Kv5sDIhtB9pr0haGJ0+eZG1tzZkXWh7PTrTLzo9tkbWLQKXUNpXYTqTGzmsbmbEtz4WFBY4cObLNz+n06dO89dZbPP300ywsLGxDdtr33E4ky363vb7tdqurqxw6dMjxntp+TnYb6wVkt7GxHD/veKyiejwej8fj8Xg8Ho/H4z/c+EAEx/N9Ki0Qvnnr7SYRs4lPVP8Uxu/h6YxkwcTFp/qj3B+lbG6uk44nFEWKaPxkkiTBD3yKokCVBdOpQUI8z0PIgG5/Dk/4eFIim1ZKLQRJ0kF4grJS9HvmbblSOesParJiCKJG+jVdS+LVW0hfk5WS8QQK5VEUDaegypvPNYGVYZOlIzwfVSl8XTF5oKnrwoVC5kXJdDJCeB5xkjBo8rB+4cBTFKrkwXCD0eYIASTStNY6UYgUNXUxJR0N6cYD+k+a6rYSEkWArqDra2ZnG+8VH9LxFlmWUSlt+BGWxCkwih480ALdGCGmk9S0IIQmLzV1VbO1blyE/+HW/8PBpf9kWmdVgfTFQxi6yBkJ448zTacuXNEPQuKmFVPkU9LpGM+5+yYknS5S+Ew2N/nJ/zBhqRvDB6gipSoLPK15sD5kfd28FXeSLtKP6CQNB0ZV2wjDvV6PPDOOy3mjJqtUha5rF9OQxIkLhQyCgNFoRJEX1JUmbIwfq6pqlD4Fnieat4FGeVVkCOETBNIEUIYFYRi7z4vjhCiWxDMhcdhMty7JJyNqagZxjI5CquZU1LUmCAK6nQQvlGxMDbIz3LjP+vo6QRDT6c4glEcSmWONpA+poqYi6XbY2JgChqS9a6HP7rkB3U7EpIgoSvNFm5tjJuMJue9TZFPjAl2a67gsFXltWlfZJGRzyxD2FxbmWNy/wPxsgucB9ZR+w2frhDFVv0tWVkyzgizNHBqZpSlFXlCUgUFymhaVKnNE5eNXiqoS1JWgru370EOPnA9rWI7Jo8iFFm1pt46sg7BFMexbrLXeX1lZ4ciRI+7tsNfrbXtbbbc47ty5w5EjR1ybYieH4FFOyXaf22+f7d8tLi465MXee6urq66NYD1vLIp069Ytjhw5sk0FY/fBohM2xNCiBpaQaVs3bRTp2LFj2/avPSz6Ytty7eOxKFD7rdwa9R07doxXXnmF/fv3OxTJZj21Ywfa6MDKygo3btxgeXnZqZ5eeeUVXn75ZS5duoRSisOHD28j69rjkVLyrW99CzB8uj//8z/nN3/zNzl27BgXLlxwWVsWsWm3M9r8DjuHNgepvd92m7ZZnVU1SSl58803XWvt7NmzDp27efMmhw4d4otf/CJgnJHtXLezy+z+WXLyznNi21CWnGwRnsXFRc6ePeuu23Ycw/Xr19210ia+W06Pnbt266itAGujlDY2xM6RlNLN0cWLF7Gu0DYjzF7rls9j79v2ubfXkT0X9p5eXFx0+9Dm2VhRgD2+K1euuHu9nVn184wPLnA8Qa/7kPjbSwRB9mOy9ZsoXxL2PkXmGWfYjWnOeDoiSyfkeYrWlcupqgFqjQxCwjByEtWyrvDCkDjuEEcJvf7A9faF0HjCJy8KNDDcNG2eutJ4vqTXiQi8jEhMoGkh1Egmuc/aA0Wa5fieT9AUTHE3JggDAhk0EHvjmCwlZWG4LVk6YTrZYnbWkF4HvS6bmyPyvEL6PlkjHy+K3JBRy4q5QY84kviB+bxOWCEZkY038KqCwe6PMJo23ArtIYVPJH32dDwS3/x8MhpRFjl1XeMJnyhKnAy3UgrlVVArClWimoWuKCuyLDWwY13jS5+wuaHeXbmDlD5PfewThKGE2qPT8J5U3qXIM2qtKKrSBSh2uz3m53YxGY+oqhLpew8DI6VPWfhG6eLVDDpmTsdbAj/qEM7M4yGQAn7yL3cBmJubYffCHvphaAIzpQd1E8wqBBqPWlcEWUDdfI/nSTw/BAEbw3XyPCNoTCaTJEapgjLPmGYphbLzUBhFnzStqrL0XAs0TafUlSZJOkYNKHyk3xhGNg8AURREicfcoEmkTxI63YisrChLZVo6TbFpUuxz0ukWo1FN1qSCZ2UBQjJJJ2xubSIQrkXlCZBBQLeXMztb0usNkIFpTa68OyII3mNhfpa+jBhXprCeHcygq6ppUwZIX+M19YRCgAYvfEimBtgcp9R3h+B32bdngXSyhddsJGVFHBkjwk7SIe+UJssNyPLUZGTlOVlWunuzKHOqsqBu+F91VT50Oa7qD71FJYTYZtjXVrFIKbcRd+Fhe8ZavLfl2zsf4oAjrcLDBcguNHYRtIvkzod1uz3V5uVYtZH9rDYnxG7TJtAuLi66dk0cx7zyyiuu2Dh69Chra2vcunVrG1l4pyvz0aNHt5mq7XSDbac62/9vt+ranB/rdmuHnWu7uFui7nA45ObNm7zxxhvue+yiZXO2Tpw44Uzd7HctLi66Nlccxy7j6Wtf+xq3bt1yZOc2r8i2Iq26yo48z/nGN77h5N/WDRlMsWIXc3tctlXTPl/tHKcXXniBr3zlK5w/f94dV7vtYgMwT506xTvvvAOYQm9paYkrV67wrW99i4sXLzpS8PXr111OWLt11p5zO3fthf3MmTOO+2VNFO22bbWULSjPnj3LcDh0URVtjsvt27e5cuWKc43e2epsc9bssdp2lQ2VPXDggOO6xXHMV77yFb73ve9h3Yftvln5tz3f7evIysDtMdphVVX2OmtbOLR5WDbbDbZL9n+e8YEFjkAQd0KSRm4ape+T5UPofhyZfIxxkbC+am628WSDMtfouiaIgia00AzP84xTsYZK1/jNohWFXfwgJIpiZmfm8H3fkUpLpZmkU4Sn6PodOh1TdMggQ5RTAhR1tUlWQ1GYzxtNNHlZUKiq8V7xiZNGbpgkDV/Dw/d9yqZQ0I3Lbp4bVnwcRYyaSIb1+2sMBjPs3rUAwsdSEIJOwL65HrGfE5KhsiHjoVGTiVyQ1jHIvUQze9gqNJO8kRFPJ0ggHPTQUcgkNUXbaGuI5/t0kgQZBAgERbMATbOM8WiLoiiMCqYpBsbjiQmKDIJmbmuihnvia4/xOKXM84aMrdHN4lRVFR7CIBjhQ6Jsp9Oj2+1z9727qLIklL4jvfq+IIpC6lrR7SR84hOfMPOQdJnmOV4QE8iQSik2JgZRuPfgp4zGBZ/82C/S6yZ4de32ofZM/he1NmThxh8nDCO6vT7TdMy7K/+C0Mrwr4Bet0sgTcRDlk3QwvrgCDwhDJE9m9Dt9h0BuSgKAhm6IMeyLB3nyPd9Ahmi65oyL1yx0E8ShJjl3Xv3ycsSPB/ZsMTzTKMVvUgTAAAgAElEQVRURppOjeeSvX1qTVFMKcsKIWq0VhRZ4wKMKaY31te5u2JiTGbnzM2/Z++TaGZ4d7Vibs5nZmAehBsbG8x2e/Q7XTa3hkynY1fYVpWm1jWeZ3hMVk3mBxG18FnfHJF0eyRhl9yev7qkqgs0NXE8Sxh4RJEpeDtlTFEo8jIjL0qKZpu8zCjyAlVUqLI0qipLMm6utw97tN9u2wu35Q7YYRcrpZR7IO/kANhFwy4YVvUCOBXMzliILMucZHbnd7cVIHb/VlZW3BvmzsLIIiqPkh8fOHCAy5cvO84GmLflI0eO8PTTT2/j0lg0x87NTtJmu7jaqdCxXJD2/Nn9bs+L/a6bN29uywiyaMLhw4e5ePEit2/f5tlnn+XIkSNuH06dOsXv//7vuzf8dqq65Qa9/fbbTtJsx2uvveZk722JvZ07yy/58pe/DOBci0+fPs3rr7/OyZMnHUnV5kjtLIrs8VkfIxt1AXD+/Hni2ERFWGJtmyhrF/xer8enPvUpwCBf58+f59y5c3zrW9/iwoULXLt2zW1jF/521ASwjRfTnh+rPLNy9Z1k2nbRYIuL119/3RVCbfTGXkPW7fnll1/mzTffdNff008/7V4I2gqmtiLsQJNQbh2njx49yssvv8xLL71ElmXbODNtGXq7MLQIjeUGtfk67XvOIj/t7ex9ZFEtu82/G8lYeB5REOIpA6lrhlThL1Aw4P76mPHoPqnNu1E5tfAJZIzveXi+7yIUNCbRWBUlvufhNwdcqJIkjun3Bo10eOImTngaGUs6cZ+FfpcgbB7wZYYQBWVZkCmPjS3NuDFVq4UmTnrMzM6TJBFhGDm7euF5TkWSpil5U0AURUGWpXgCur0u2TR1C+LeJ/YTxzF5UeB5Ad1uo3pKIvxaMx2P2MweUNc5pTa+J6ia3sxHKOmwvvY+G/fXSDNLvBXEgWTQDanL2uVXSRkgA4nv+1RVxXQ6dRdgnudk6RRVlpRl7uKAKl0jfJ9SmcwkjaRu8pQ+sniAT/6nJeI4JMunoLVbII3UV+Dh04m7Lg9rpj9DGISUqsTzGwJy0+oZj7aoVMn8wh78SLrQRRlI/Ia0WqmaNM3c90gRMBjM0+31KLIpqsixsJTWUJUlo60t8ixFNvPtSclgdob37r7L1tYGofTJM0NAz7MpnU6CDHyq+uFi50tJXVeUyqBwQVA89MjxfUAxTad4noeuodeIf8IgNCQ436dSJVmT9dT1PHpxQCQ97t17n/WtlLkm/2vv7nn279/LdLIJ1Iwn5lgfrE8pCoUMBUWRk6aZk1RbS7yqUmgBGo/NhnxfVu8xt3sve/btpdSKd9818vt+JyTpzrKxOWKm3yWKIqbTxjagKI0poypRqnBJ7DpN0brmwT3F6rv/zEc++hHm58x+J1FMURT4XoWvh6iqaqIooB8nkATU9Sx5oUycBFCounlZyClLE+1gs8SsdcK/x9hJGG7LWu3D0ULoFkXYqV5qL6R23Llzxz007RumXewWFxfdwrrz+9tE4NXVVfd8Go/H7i1/ZyCoVSHZQmynR8+BAwdYWFjg4sWLbuG2KdUW3dlZ6NmFpF2o2X227aTl5eVtrbQ7d+78jNx654Jx69YtZw544sQJXn/9dX70ox/xW7/1W9vk0cePH2d1dZWXX37ZLaRgFtUvfOELXL161XnotBfdOI45f/6887yx5+2ZZ56h1+u5gmonsmD/fe7cOcCgJ+fOnePMmTPOsO/ll19259a28NpKNTtWV1d54403AHj11Vfd512/fp3Tp09z7tw5hwwBDjE7dOgQn/70p/nqV78KmNYa4CT3tnUDpvCycm6r4LPzZwu/nd4+NsDVFqNra2tuP59//vlt148tcI4fP87Fixcd6RxwROzFxUXnPZRlGc8884zbh+XlZXced6Kbthi3hXx77paXlzl//vy2Itm+OIzHYy5evMi5c+e2ZapZYYAtzHfGqNjjsmMnSb89dt6P/9bxwUZ/oqbjjagbBUcRPEGa+Ww+2GK8NaYsCuraPMAFAb5f43kQyBDhe9TNAukJQV4UdGLj5lo0KMTu3XtI4oT1tXXSLDNZP775PF9GdIIuc12JJ96H2iyCgZxD+B0m5ZD1rYoiz4k7pvBAeAjPw/Nrwx+qKoZDs0AKYZAkpQwMXzQLsef5RGHUnMAaGQTOJXc8yslSRacT4HsldWU+K9QzlNMHlGpIoQVlFbO+aU5YGHTY2LxLlhfk+YRsmrs06v7MLPv372Nhtks9ue8umH6/h0BT5oXJDZpMGTXcijQz2VFgkJQyy5v9bszztHHC7fb67H/CGCt+7ODH6XQ6TCYjijInT6cuTVxXFWEQGEi2KUQBwyvxBPuf2E8UCtLxyBUrQig2t7ZQuqY/t5uiKTrqMgOV04u7REmPembg9u/J/fv52C8eIPQUU0oElUMH0jRt2j0Zuq6Imht+ZtCnUiV3332PfreHR82WnYfplMnEpNnXdY31A/KrBhH0BFppsixzPBvfl2ityfMcgaCqHm4nZUAYhdTUBH7gFEyT0QZxt8v8oMvePXup5RivQbk2hlPu3VtH1CX79uzlwEfNfD91oGD17j2yXCBljAZGYzNHngzJ8tIgIqVJ89aNn1JVVWxt3KfMpvT7PeLAnIv3339A0pmQJF0jmwp8vOYan4qMycQUc7rChWZWZUaRT1BlzkTXjDbukSRmodm95wn27XuCMAop8ry5T7PmHrdy+4ggkdAJmuurS6E65KqRmJeKvGlf5Xnp0KF/r2EfjLbVYjkqgOMMWCRip0TVvuG2lR9tR1owi2J7O1v07PystrS23eYCwzGxLZh24WGLEYsi2fvcIj5ra2ucPn2aEydOuO+7dOkSJ06ceKRPSVsB01YItVtPN2/eZDweu4X61KlTjv/T5hC1eUzW18W+sX/2s8ZHK01Trl+/7gqf06dPc+PGDWeW99ZbbznVk0UtDhw44M6LnbN2uGS77WADIc+ePbvN9M7u16uvvspzzz23raVy/PhxlpaW+Pa3v82FCxe2cWYAFyraVrzZObeKnaNHj247pi9/+cvcuHGDU6dO8eabb25LJ7dZUEEQuHbh0aNHefHFF/nud7/L6dOn+fu//3tXoF66dMm5R1svmXZxas9de8G23LG2I7U1Irx27ZpD+9rcIqWUCw61CJNFVmZnZ7l+/brjQ1nvG3ueTp486Qomex3funXLXV/2Z+19vH37NtevX3cIkP29LfZ3OoZbVLWtzmsjpe3CaqfdgS18dqrQ2vfDv3V8cHlUZ+j0LiRPAFCWXdLxOlk2ogIIPBccGHoxUgT4zUNaCM8FIhaqZNCfMVb1SrF3r/k84QkerD8gyzIEhvgZdQyikCR9umGAJ9bQVZdJZh7wlRCoUlEWId1IMdsN8aRZMOJOQhD2yTLNZDpma7RF0UQR1LUhsFJXCA/XktBNWGOn02V2MEMUecRRgyhQEkrDuVEqw2sKtqrYpC40xaTDJJ0yWIjZu/cpACLZYfjgfQJfsjC3iNI4J2hBDWXKeCsnrHKqZpGQqY8UmiLLTRBnpYgaEm2WZ87/Jc+VI936voHPk6TDXNJh374neHKxCTGl4sH6fUpVUNeKqiwdpycMQ+LQo9I10vOwsIoqc95//z2iJGZul5HL2nbOeGuLSmuyPMefjh3hdTrapKoxidtRzczsPHs/ZpCsxX170VVONplSqZKizJmMDdKWpSlZbsIffeERNEhfHAZkacrczCxxFDKdjikb1GBjY4PR1gitIc0LV3xFUYQnA4IgpCoVpapoQCnKsqTWGt/36ff7RPjupqoBpTX4HlqADBtUscjRk5ogmWF2MMPGpGI8McVhJSXSjwnDhGmWc+++4RsN+hGzswkzgz082BgxGqfs229CPe9vbOFpj1rlVI1xH5WVaGcUac3W+vu8V9fEiWkx7tq9myjpNKTrkjiKXBHYndtNP+2TTgziOWlcwc3nG9dhrTW6SimaB8NkOub++j1279nProW9SGnMB8EYakZBSFV5hDKgdk7ZFb6n6YY+nhaEMnC8oiCQhMX/2pvV/2wopVzRYFsPbVSjbUPfdgxuL/o7H9q27XDjxg33ttv+u7a0tT3aZNQ2enLkyBH3IL5z5862AsfyPdpvy7ZIUkptW5DhIYdlJ0/DLvJ2W9s2s99jWxu23WKHJTS308ztaCeASymdN8zdu3cd/+bmzZvbCpITJ064AsH6t9j9s9EP7eO0+2d9Y9pk0X379rG4uMgrr7ziEtzbRdFzzz3n/GdsEfP6669z/vx5h3q021G2ELZI0OrqqksnX1xc5C//8i/5xje+QZ7nfPe733Xz8NWvftUhDVmWueJQSsnp06ddMWF5NkeOHOHll1/m85//PMPhkCAItjkY22LBFoIWMbx27ZojNbfPn+WW2aKsTdSenZ3l6NGjDq1sX5N2G1sI2CLGXnO2ULchrWCKh8uXL3P06FGklI47dfLkSWcYaXlt7fN08uRJV1Tb69uiPXfu3Nkm6QacYaCVnbf3fWdYqb2f24inRb52Ino/73gsE388Ho/H4/F4PB6Px+M/3PjA8khrhR+EKM9UU0VWompFEMR4wph92QgFz/fxhEetDQkyCALK5k11dqaPL33KomDPnr0um2lzcxONcdfVaIIoci7HcRwhpEeWDigLha6bHp+vCbyKIBghRUEYdxCNKkX4AVp4CKHwpU+v26VsVFSWvKy1Is8mjBvukOeFzM4v0EsiQplTqxGVMPuAHzLOCwNyVCHjiWk7FIViNNoiSQLiTsJPf3qXzVHz+bVRj8kgxPNHyDAijBv0qSzZfHCPfsfnF5/cZaeBNEuhUuRpSg1UlZFwm+/KKFVBHEekqYZGwl4jkH7AoD/D3j17jIS9me9xOkZrjRACEIYT1RCQRWh+Rl1Tq9opY8osR6mSNA3o9npESZf53Q1BUoT4wYiiKqmAUcNX2RptkWU5/bJmfn6Bj+zfy+45QwZX2RbZdEQxNWGqlSqplEGsBBWhNFEanucRxU1MQp5TFiVJHBn1lNdjtnmb8PyAjY0ho8mETi9ma8u8JeZK4ZXKWBEM+njC3xbjEMcJQSBRVY30fYJmHhA0DtFRg4o1ZF0/pK41ulZ0k4A4AN1sMugb2XsUStJsyuamQU/W1x80KNGY2ZkZgkCQ5+b66vcDsvUhvSSkyqcQBIiGwyS0oKpK8mKCrkvSqTnWe3drNjfHLCzM88T+fXieJm8MFNGaWHroSOLLvsvx8hGgBb40XBwj/3+YFzUdj/mXyf9g9d336PYHdHrG8iCKtwiCgH6/x8xgQDexJokVtcqJIp/QS1Fl+dCwzheI5KGI4MMYVtXYRi4sMmFVTnZYFMS+ubZbFRYF+degbmuWZ6XX9ueP4vq0ERMr422/hba5HrZVZX9ukZu23NqqhqyT76PeTu2xtbk09q3eKn3abbOlpSWuXbvmPtO+8fd6PZc3dfv27W1o1dtvv+1aWFbBAsas7s6dO/z2b/82n/3sZ/npT38KmPaeNUm8fv36tjmwhNr2uWsTScEgH1YdBoZ0q5RyWVJtzpRFc3Y6+L744ovub4bDoTNytPu3sLDgroM2+fall17iRz/6ES+++CJLS0tuHiwXqe1g/Nxzz7nt3377bW7fvs3CwoJDg9bW1jh48CB5nvPWW2+xsbHh9v348ePcunWLQ4cO8fzzz3Pu3Dl3/MeOHWNtbW1bq8rug/3+xcVF55Bsj6mtLmrzdtotm7YNgW0LWduDW7duuX04ePCguzYuX768jQ+llHKoXFtp1v7Mdmv21q1bDqWzrUf7+zNnzjjiuM2/als/WGVXO1jXqrDairc2Mfl/ZXxgFtWuhb7+P37nv0Jk2i/TTJDlE4o8p1LaOMg2HA6EoNaaSilDlq1rRAODJ3FMluZ0u91tpKOiLBCAlL7hS6Cp3e4IfGokJZ7IqTKzmEQRICVFGVIUkqysKMqGh1AbQnNdq6YdVjnH4oekZ4GPR91MZk2NDCMGgy6UE4R+yAmpPcE0K6DWdGLp5Oie0Ph+xGics7a2wWi0RZ43ieGqNEVblNDt9+l1+3hNoGVd12iV04s9ntiVoKZD93llnpFPU9KsIC8L98CvqoqiyBoysHCy6bquSaKY3QsL7Jqfa5RqZbMPCs8zhYzWRmlkicFxHFPXpn1TZDmVnQet0aJJv45ikm6fsFHaVJUp6EajEXdX77obZTQe0en2+OQn/zNLn/rP9HtdirQh0Oapsf4vCtAVmpqqFQ8g8NBoVKncsXa6XYRvChQbvmiJ6giP0WjE+/fuk+WFK3Du3Vul2+2aYlYphHg4R0mcuAK8LBWe8JlpHiCeJ4iiiH6vSxJHTlouhCAMfWSUUBDx3toW768Zkj3aJIzruqYsSlTzfiC8gDQvQGuSOKHTmaHbbQr1xFznW1upm+ema8p0kjPaekCWjdB17soRoQVKm0Xfl5Jdu3bz1FNPNee9Is9ToqQLXoznmWsrL0qyzHCbyqKkUsrNd1kW1FVpil5MoKjf9PGCMDR8NTSe59PtWCJ9SCcO6cUSiSL0W+WSDPCl5Gtf/r8+1Cyqv/3bv33k7x7VNrKFh10k7AO37Rrc/v+2GmqnrX67oGj/t5WJW3jeKnvs51v+hH0428+zwYE71V9Xr17l4MGD7nOsqzKYh7xNp7bFmd0Hu1+WV2F/t7a25uTJVvHULn5sYWNbUfbzbt++7QqW2dlZ55777LPPMjc3h9aaw4cPO5+ZI0eOcPXqVRYXF13Lok22tsc+Ozu7jfexsrLiuFNthdft27c5duzYtgXecnFWVlY4efKki6uwz5pf//Vf52/+5m9cq7Ld+msHoNpCwp7Da9euuRbIn/zJn/A7v/M7AM652qp82gVuu5W0srLiiph9+/bx9ttvE8cx77zzDr/+67/Ob/zGbwDw3e9+l+vXr7vF+Y/+6I/cc+3KlSvO46ntj2MLl+Fw6BLU247QbU8g22qybS/rh9TOAGur/qwi0BaVR44cQUoTv7HThsC2144cOcLly5eddYH93aMI+Jb/Y39vCyar1LJxDO1iybab2/YM7fGvKSYBhBAffhaV53eo/CfIs+YtXxk7/zCK8RMfr+HUmN8pdF0RNNwRDS7/qFSKKDIE0aIoXGNMBpK6rilKRV0UZlFrCqYw8AkoqcsRaT5ynjqqnmW4XjGaTihVTqUfmo4ZE7za+NxgiLTWEA4BWpV4wiOIOiSNaV+QBHhCM+jO4IsBm1srxtcEENonCRS1zonCHr5nHv6b44wi0ygd053fS3d+wfX6hBBGraWUUS+pGpVanxeaXCSJEOB7lq/UmNtJD8/T6KpsUr1NYWbnLQgeSp537drF7GCGbidBeII8z9yCZpLDRfPfpgi1sl6lKkz+kJH/2ljpGk1dG+SNGnQtKAvzeUEUEkYJYjxlMk5d6Gi32+Opp57i4FMHSAJBumWM/8CgVaqqqYoCQW2K2OZ4lTb5R1pr6rpyRGc/kIRhRKlMmGNePNy/OEnYNb+L2Zk5RpOU9QfrzZz6lGWB1qYwKPKHIabS9xiNx0RRhG6ymR402yVJTF2ViFqRjj0XiDozO4sXRXhCkqc5762s8NP33gcgy3OKPKOqamQoibvNm2qYUGsfz/NJixJPhvgNL6zb6TI/GDDo9RiNJtS1cGjfhBo8Dxkm6No3kQyY4lVobbRuMiTNK/7lp2YfFp98giee3M36gw2qWlM0qFipSjxpCjPRSPYtqbsWAl2ac1JVBUIrpDbFsO9pOkmfwewsGkFpw7oQbGyOePfdKdI3xWhog3CFIPiQm9s708TbpMxHScfbfwfbC4E2MtMuXNrS8bZqw4YqAtveeu3bpi0Kbt265QidVlZrPWLab6B2HyxPyH72s88+y40bN5za58CBA05mvG/fPqfKakvLbUGzvLzsChW7yMVxzJkzZ9xC2F5oLl++zIkTJ9wC2S747P6srq7yta99zRUyq6urvPDCCxw+fJilpSWuXr0KGELumTNnHjn/9hhtVES7mJqdneX48eO89tprzM7OOpTr1VdfdX4xq6urHDx40C127UXzmWeeccWXPU/WL6h9/uz32kyslZUVN0c2nPTZZ5/l29/+tlMcWa7RzkK3fUwWHWl7M507d86Z/43HY773ve8BBqW5cuWKO8dgFGaAK2rt3Fh5+/Hjx13IpM3qsvlftiBpIzxglFtvvPEGKysrXLx4cZtSqs3hspELbW6aNfVrX6tWGn7nzh3efvttFhcXHSfrmWeecZ9pC1nAoWUW1bT3QvvasAV8+35cWlpiaWnpkUpFex5tpMWjDCp/nvGBCM78nkX9a//l/6Ru3HPrukL6AWEUEUgfVVUPb+pmwfKFQAYS4QmkNG/SVWXSi6IoJisemoyVpaKulCOCRmFE3CwMtRpS5ZvouqYoYZyaB+9oMqWsAB2YJdwDr7WYg4fwfIRvFFX2bV5KaRZS3yPwapKGSDw/NyCSJdJXKD1HnguK9IGZADXGlxoZhiS93TTxR0zSimleUtQVnqhJQkkUN7lEUURdKzwqfAFFaXxWAOqqpJeElPkEik0ST9mTQDadNCaJBUXRQnC08YrxPONdsmePSanevXs3cRCanKpsiiqLh0Zsum4CJ63CTThvmFprlKoM2gGuYOp0OngIs7gKQ2K27ZxKeHhBQKUqNjc32WxMF0Gzb98+OkmHqizQunItE1UW5HmOV5siRqORQettujThinVdO9O+MIro9fp4UlJXxmjPKo583yfpdIjjBM/zmTbX0Pr6Ovfv3yedTqiVYjAYOFPDqlZMp1NKpShaQaVgFulOEpvrMgjo90yY69z8PN3BAJl0GU5K/t9//Gfeu2eKizRNzTXuS2oNpYUbhUQGEZ24SxRHeMLDQpGDQYe52RmKQrFrPqY/CNncalyJq4TxJDXGhYUxpwQadaIp7jRQV7Xz/YnimP179/LUgY+y+v6qa1mGUdwUhlAURilofYdKVTKZjJlMJhR5Cq3zJISPLyVRHNFJeu6FQAMzPZOZ5ssQpQWjxoE8KwzJ++q3X/nQEJwjR47oGzdubHuLbitHdhYusD2Ic6c6o11s2HHnzh2HNLT9SGz4oG1fWdKkDUccj8ccP358m2LLSoItgbQtQ7fKIrsQtHORdnrvtP1fbEHVDtu0iIiVg7eJqLZwscfbXvjtAiOldNk/9udtObp90wbTorlw4QJKKV588UXXFrLFiP0uq0yyc20LR7uI2sX41KlTnDt3znnQdLuGSvB7v/d7SCk5cOAA169f59ixY9tQmPY5t4jGzqJ0J6pnz9OhQ4e2tcPiOObFF1/k4sWLHDhwgH7f3Oe/+7u/y5/92Z9tU1zZ4tCiG/Zc7kQuPve5z/H973+fK1euuP2+c+cOx48fR0rJN7/5Tc6ePcuv/MqvADAzM8PZs2f5+te/zuc+9znXmrNE5jt37nD48GH+4A/+gF/6pV9yc2fl6ta7BkxBcvr0aV566SWH5LULXruPO1tb7WERRrvNcDh0hc61a9cc2fqZZ55xyqudbeCdiOXOFnIcmyDZ5eVlt60tGNs+TI86n+3Pssf+86aJf2CBM7OwXx879V8dzB8E0hjDtVAK6/fhSxNnEFuZtTBOtQCTdMKgEyBkh/E0p2iUMboGH9PKCoKQJPTxtFk8i8ld0jSjKH3evz9lYpUslfl7P5B4vsSXEWFg3yw9aiGQYWge1kGIpnnr8AMG/QGhl1Kl/4CnTPJ2HIaIoMNg7pOIYBd5MSIbvwcY8z8tBoynAZny0Q0CIT2zWPuhjxCa6dbIhW0GgaQqM3qdiCgKAZ/NjcZHSJWk401W7/4UoUs+ceCjZu6EYLxpAi611q7VB5jkbK2Zn9/F3r37XFxEGIZQ15RFTpamVKpwCI7xr/HQdW1cpLUxnAMTTaG1kZ9rNGHjhyJ9jziKEEIYVMXz8RpUwwtC/DDC80zr0Z5zIQRhEKCrGmGtBBrUYDwZ4QkIPImuTUGl6mZhb5AZW3xOGr6R1pp+f0AQhq616JytEQRRRLfTIel0nI9LWVY8GA5Zu3+P6WTCoN/Hb9Q+uVVqSZ/xZNrIy5uWXKXo9zpIzyf0Jb3G42gwO0N/dhY/6bGVVdx59x6TtNlvpQmCEM/z2RyNyFsKPYGHwKOqocYnisz+dbsBs7M9Bt0uZT5mfq5HlJjv8oOEmoCirJlmJWljDpimJWkxpShKVJmiy5wmCQTP9+gkXXbvXmDX7lnStDme2iOMI6ra8LQEvkPgNreGTLIJ40mKyguUylyxZ8JLQQuNLyRRg7oGgUHGyjInCCKiKKLTMwtU0u0QypA3/vS5D7XAuXTpknvI2bfMttKi/bBu/679cGxzHWx7CR5yCR7lz2EXaKuSaqNC1hnWLn4WhbAP716v59xW7d9kWea4Nu1CCrajHzvNBtsIiVXu2EiHtoqrvX+2sNpZMFmfn5deeonl5WWHXBw+fNi1NZRSXLhwwS24NuH5+PHj3Lx5c5vZmi2+rl27ts2I7fDhw1y+fBmlFCdOnGB5edkVIleuXOHmzZucOXNmm6uxRQgsGtUuMtqqt/Y5elTL0W7z2muvEccxzz//vPPbsfLt4XDIjRs3WFpa4vjx445vdOvWLd5//32+973vsbS0tG0Bv3z5MidPnvwZTx17zV2/ft0VoXbu4jh2iJfdJ1ucnTp1ysm6T58+va1QW1xcZHl5mYMHD/Liiy+6VuPx48ddEW1bZWB4UufPn2d5eZmlpSXHm7LfY685W5jZ1p/9Wdvg0V4nds7sPdZG09oqr7ZDs+XQ7ET17N+1iyg7txZd2mm5YLex59QiV3Y/pZQkSfLht6jQNO0ScxBFUYAwcL70Q0Jf4EnzoOz2E8J4QF0WpPmUMEootsxiF3KPQPcYp4KyqPGtP04YE0Q+iUyIxARd3CVLN5oDqxhNfO7dHzGdTNDNAup5HgpShLUAACAASURBVD4+Hj7C8/FkiAwb9CSIiJKEmflZukkH35MIbbg7Uufk0x+jx3cIpY/fMRe6kk8QJB3GeU49/Wey6SaTcZNlRAd8n7pUUGeEXsMVSULiTg/hhRRFDZ0ehc1TKjOKbMJWmSFlQKUKVlfuALC+tkY2HZNPNul2AiZ7jRFbJ4rAAz8IDE+iesgdCoKAJIiYn9/F/Pz8w5ab1tTUDSdEkaVGjg0PF1zfl/gyoOJhEWuKEc8UJlqbYgOolUCgTYJ3WeL7AUnXXB5hYIrauqqoyodJ1AIBVUUQSOOTkqfu87ym3agxRGCllCtsVVVRZKnjvVStgmk43GhaapokSdyN43s+KstJm5gN2/70PMnMTB8pPTY3N0mnKdq9ABjjPQqII+N1ZHkknpSoogDfp9sUdmYeKqq8RHs5G+sPSCdDOrEpKvvzA+JuTC18eqO+87pRyhRsqlRoBMKXptDAFHr376/SiSLmZvp4nkfSmOml+X1jRhlLkjCk03Ce/LkZKrGHSZrx7sp/R8qSQWI5PQF5MUSlU8pxSdwUibnKkSpGK0HU6aF9CH2zD/1OTKkipoVgOB4zyQrSJmaizCaU2ZSqrBFUrcIyoNPt4/kzpv0nBHnDdZuub+J7H26PSmu9jXhoF+tHFTE7RxuxaaM6O51T7e/t/7cfvNZB1SIA8DAPyLZGbt68ue3Ba5GV1dVVx8cBHAzfNjiDh/LaNhrSRmNsjIPlN4DhirRl4m1EQSnF1atXmZ2ddbyWts2+lJK/+qu/oixL569y6tQpx/UB4+hrWyrPPfccr732miMv2wwmi1xZ0uvnP/953n33XQDeeOMNfvzjH7N//37W1tYcMRfgnXfe4Qtf+AJra2u8+uqrrhV2/PhxXnzxRbdo//Vf/7Vr9Rw8eNAtnLY9aEf7zd5yScDEF1y7do21tTVHYLWclbfeeosTJ07w8Y9/HMDt91/8xV/whS98gdOnT3Pp0iV6vZ5rDx08eNClz7fRQXvurJfR7du33THY6+fYsWMu88waA96+fZs7d+64dqBtc7adgd944w3+8R//0XkSwUMCsI3wsNeQ3Tf7fVaOPRwOnUeRbdPZdqRF9+x5tOfIkoFtTtfi4uI29KtN2LbXapuLZh282y1ie97auVT2PrBIaZsfZDk+bURyJ+H/5x2PZeKPx+PxeDwej8fj8Xj8hxv/E5l4TZ5nhlMACF8a2XMQEEeSQPpo3dRI2qPIMyaTKUGgySYP0MpwWZKoJqfPJK+pdU3U4O1R4BEHPpK7pNP75FPFcMO8Qa4PM9IspSiN+sO+7fuej+eZ1lScdAmTDlHjXNvpmKpR+IJpmhP5JYnXSFbKNUQ+xg8+CslTZDSVoc4ptu6ST4fUtWSaCfCbt+UohrpEBDVC1C6IcO3eBFVtQOOMnBc5eYNyeQBlQVUUzAz6ZNMh7/3TPwCGp4QQeLqkSAu2hqZ1JefnCEJJXXnkWYaqKqce6na79AYzzM7OEkgfr0n/rirDX6oqY6JnztNDzo2U0rQetDatq+bzpAwQwsP3PQTCtYB0rRHCICdKVQjhP4xQ8ABqlCpRRc502rhDe4IwDJlONWVhQhmTBmkQYPgvpeGD1HXdMpGrKRo0JQpDh+DYjDCjAvMaV2KDWPW6XWNE17SZbGdVVVN8X9LrdBr35mmLW7GBxsOjiajQNbJxytZVbUI6fR+E2NayqdHoSqGKAl2WdGcNStLrBaTFZmNCWZPM2mMd4EtJno8NN8gPGW0ZwlYlPZKZWTxR0+32yHO4/8Ckvs/Mz5JPKnrEoCGUpg2rGKOqkqCu2dNXeCKmKs15n0ymTDLNtEhZuf8vJLG5jvvdBOlPkGFNUK7TCTv4NvFbT/DJ6AtBEFbMhwOq/hwA42mHQlXkpSLPM7JG3j7Jt8iqiMAPkJ7f8Nca1Zjwqa0994c06rpmeXnZweMW0bDE2zYZtD0sqtGWIFt4vG36Zz/TvpXuRISefvppTp06xdLSkmtjtFVIFr1oE5Db1vuHDh36GbSoLUGGh+7JFrmxDsD2Mw4cOMDt27edUgkMUnHo0KFt/Ju2YsUmjNuE63Yg4sLCAl/84hcJgoAf/ehHALz55pucOXPGtaC++c1vOiTh+eef59VXX+X55593SAU8fHO/ffs2vV6Pb3zjG+4Yz5w5QxzHvPDCC4DhlbzcRCjs///ae/cgva7y3PO39v279EVyy0ggHxSPwOZYVCmkOXQKMSNAjDWJSJREnMiDGSscUbZnnEJOnMKpmLI9livixGSUg6gSxwYrByfgg+N0sD0WhWI6J3JZrihjcWgnotAxDTS4bbWkvnyX/e3bmj/WXqt3N0KWjS0b1Xqquvr2Xdbae317vft9n/d5Vq1ieHiYr371q2zYsMFkJ7773e9y9dVXE0URf/d3f8cf/MEfLCqHaWJ5VQlZZyB06/GePXuMKvHo6CjHjx9nfHyckZERPvzhD/Pbv/3bgOq+2rFjBydPnmTFihXmXMzMzHD//febDqKqs/qRI0fYunXrT3Vk6fOkv+tONL3uNFl9ZGSELVu2mLIgKGL1yMgIw8PDi4xh9bretWsXV1555SKxRp3BXLlypTl2et1qfs6VV15pskhTU1Ns376dY8eOmXHpLNyWLVsWtYFXrRW0xYY2z9Rz1FkpzeeqCisubSWvlo91OfNsWVNdsq1mipZKI1Sf8/PinBycvsFL5b/70P9u/IqUuobAcz2iWojrOqajRnk95TSaNcLCpUh+QuHoC/alZIT4rsB1M6JQbTK+gF5nhl7cZb5dcHoupl167sg0NTYESNekxP0gwI9q1Br91OpNEODpllc/IEtT4m6XKPRo1h2SsuRVZLM4bsR8XCfNJK6jSinkMRQFWdHDdQRhFBlp/izJ6HbapHlGkhTEXXVRT9IOhSyQlC3NsjDloTzPkBQEgUfgOcy++GNISi8qx8MLfNJEGUP2NdUGOTS0nFUr34zv+cauQZ+XRqPBpZe+iUa9ge+KBeJo6fLcS3rMzc7S7XQMf8ITqjyV5wVZUeB4PkGkuRWBUvgtVBnJeFQVOWHJfUmTFMdxaJaci6gWIRwBhaTXS5gtFYk1v0WpREs8z6deLsw0y2i128TxAt9DB1lCCLIswXVVW7L2OGq32/R6vbL7zUc4GKJ6LazRqNUJw5AwrBnSbZ7niqAeRYS1mnL1LvWKXnjxBeZmT9PttMjSDNfBBMpB4NGsN/CDUMkclWNsNOpEzTpuEPHDySmmTp2muUxtklF9iIFl/dQbDl6p0wMQd3Pa7S5p1iHPElzhIaVu0e5Rq4fkWcLMzBztdkJR3hQUQBD6BK5P6LssG2yW58hBigLfc/C9iKSXE5fH6OTMLGlRUBQuWSKNSrbjALIg8AP6Bgao99XxywA19HMCX5msOlkCYpaiLN1GXhNBH7njIfDo9YpybCHCb5AWEpn2yLKMVDua55JeL+WR++541Tg4V111lXz66acXXQy1rLy+UFZboPXGoC+OVe5JlVxZTZ1XN8+DBw+axwwPD5sNX3sq6edWjRCrzsZ6LNpNuRrM6NfV3ArNOdm6desibyod7ACm+2dkZISrr76aa665BlCu1z/4wQ+I45hjx46xYcMGM4YTJ06QZRnj4+OmDKO1a/R8jh8/zpVXXmlkBr785S9z9OhR0ya9fv16M57x8XFD5q2W/fTcDh06xNDQkLEkAFUCGhkZ4aMf/Sjf+MY3zMYLCy3DExMT3HXXXcYK4vjx47RaLQ4fPsyBAwcW+SppXRUdiFa5IoBpKdeEcP23LMvYt28fjz/+OJdddhl79uwB4Jvf/Ca/9Eu/xP79+3n22We57rrrALXhf+QjHwHUdezw4cPcddddAHz+859fZGdQLZfojXt8fHyROrNerzrI0kEBKC7S2NgYt9xyC0NDQ8YFfWRkhNWrV7N27VquuuoqvvCFL5g5rVy5chFpvfq5qHYG6pKcXg9aZkAbp+r3iuOYG264gSzLFmndRFH0U+arVc2darCuO/6qHV4aSwOS6nE5W/fdz0K15b36Oq8JB0dKSZqm5OWdYI5Q8v1C0Gn3KEp9E1Ck12ZzkMBV1gnCf1PZtg2e49LwXNysTV4kFD21Oc13Y2a7KfMtSdyLyVOlJQKA4+AQqNZiV2VtAGr1Bv3LlxMEkbJsSDOyvHRA7qX4nsuywQF8J6UzP8fJF0t38iKjyNsUcpYgCujvUycnrEXE3XnSTpdW0iPu9ujFJecoL8qOJAdXuLhlx4rwPIKwhuv6SliOgiJT2Z28UO3XWRozNzdLIR28aDkAzcEVhL7H/MwLBFGDolAnc/rUGbKs4JJly3FdlyypiKpFtZKMW5BlhfEekmX2pteLSbMUHGG6kaTnIXOljSKFQy0KTSCaZRme61MI1Rau3Ttd11MmjKUZapHndDrqQprnCZ7vmS6roMyC9OKUNI1V8IPAEZAm5eZdcbzOMhUw6aCtQCLK7rAszwnC0pYijvF9H9/3cRyBlIXR7wlClb0xWSldjxcgpEPS7SDzjCCqE5Wv12g0aLXmVEOTI1CUa7Ve0zxDeC5F2a6vl10r7nGq1aKX5Zw5M0cvlaSlb1OtSOlk86STMwgyc0dYi/qhKHAFuGEdIRzmyou8RBAUHlHfAJctu5S4Pc+Pf6wsHoQIcP2A+bk5Tic9fjSp/u64LvV6RFD3WX7JEAONkMBVQeVlQyCCN9HJAiQucbv092p3yPOUgcEBvFC12lOar/aSAtdTpHwpPTynX/GPAM/NaUQuocyVQKar1lc9CnHdLnnaAtEhyduIMpsmaquQnrKieLWgL7Qamtx44sQJQ0atBjFL9VeWdtjoer/+u+bIaD2XyclJ46c0ODhohP+qgn2g1qTW86huDPo9qh5XVfdovflU3Zm1Pojmmdx0002ms+iP//iPGRsb4/777+fGG280437yySeNL5KW7q/K+Y+Pj7NlyxZGR0f5yle+Yu7YdXCxadMmDh48SFreyAwNDXHTTTexfft2tmzZwmOPPcbHP/5xM4azOaDrTMKmTZuo1WpcddVVphvpiiuuYNu2bfz93/89+/btY+3atSYLoTukZmZm+Ku/+iu2bdsGKO7JbbfdxtjYGCtXruT48eM88sgjAPzRH/3RIr6I3uR1i7U2efQ8b1Hb+ec+9zk++9nPMj4+vqjV/+6772ZycpJvfetbPPvss2bDB/ja177G4OAgo6OjzMzM8MUvftGsRe0TBQtBsg4MW62WESLU/9OZDk3U1q32oDbrW2+9lePHjxPHscnsbN261XBlnnvuOR5//HE+9rGPmTWkz7X2y9Lnr+ovpgMWUAGqHoOGXkda0kAHyTpAjeOY9evXm2C8GqhX/apmZmbMGPTx16Trs8k7aFT/V/08VqE/x/p79TnnExSdC+fM4DQGhuQ73rMFobVpwhDXDyikwBGSKGpQC+rl/3wcr4DcBQeCRkBQprTjVo+59iydudOqM6O868zilKKQiMDB8QKEcI3fU1EUqkW4FKrTAY7jecpUU6gWcNVqXLYSez7NRp1GPUQWHVrzbdpzukW7ixASKTOCmm+csudOTTMz/SLtdqw6hKQsRfKUuaVwPIQX4vmRyRSpDVGq4E5KBJKivGPPC0mRZLh5Aa6k1t/P4IDKANRqdSK/wJEpZ868yPdPqItRtz1PFEU0ajVcxyHLMlYMqXbwt61dS7OvDwdJ2m0rV25UpijNElrtNt04wQ8Cs7BcxyHwAwqJ6jRzPZMJEWV2Rxl1SkMqVdm43GQ4kqRHUmaeiiLHdRxCr3Q8L4Osmbk50izDKUUeoyAg8EvFZEedSVkUdEr39kzq8lqFQB0tEIl1Jkd3VzmeWPDQ8gN8zycKIzxvQQ9IlfIW1nAU1fBLsm4r7vKjH/2Q6emTZFmKLHKjB+S5DvVGA99TBOqkJEdnRc78fAvhBtSagwS1Jt2SFNwuO8/6mw0a/cvo5WUm0q2RZQXzrXm1DqSkfBu1pn0P34+o1Xz66i6BpwPEBOHVcByYnZulU3Zr9XoZnfYcmcwJwz6WNZt4Zcax3qjjRQ3mWj36+hc6dLI0I/R8onqE7gEXZQZV0sXzIhwRqvXquKobEtXN7ggPz/fxPQc98Fw6pBlkaQxpD4oFfzQ/qoHj8YXd/9erlsF517veJf/6r/96kaCZVnfVDshLybpn08PRF/2jR48u8lMaGhri1ltv5VOf+hTvfOc72b59u/nf2rVrTZameoGtupYvLXfpzEi1LKUfX20H1xo5egwHDx4kjpXjtC7B6fFv3rzZqAxr4m+1LVyXqnQAcvjwYVavXs2BAwcWdfPo19PE5A0bNpi7782bN3PixAk+9alP8f73v5/169cvKmvpn3XmRY9BH/fVq1cThiHPPvssgBEfXL16NYcOHWLHjh0miDh+/Lgp1ezYscOcv3Xr1nH77bdz8803mzFrEvDnPvc51q1bxyOPPILv+4sUjPUmPDo6ys6dO00w53meacm+/PLLee655/jyl78MqG6myclJWq0Wu3bt4s477wRgfn6eiYkJ3vnOd9Ltdonj2HSu6cB0w4YNRr9Gr5MqSVzPUc9p79693Hzzzfzt3/4tR48eNevozjvvZPny5Tz22GMMDg6aEt6uXbv4kz/5E5544gkAnnrqKbOOdZZkYmKCtWvXsn//fkBlnjQZeuXKlRw8eNCUGDdv3mx0lrQbun49XQ7SAaJeq7obbNOmTYsUs/X3oaEhjhw5skiLR3tGVQn9Grp8tfQ46eOqSdtL28KrgVG12UCP4zUR+pNSGT/qDb/Ic4oixfE8as1+arVwoT04TXBSQZHPUas5FN2IH59SGYBWe540iel1u6RJsqDBgUAKB0d6+NIhiHwCHUT4SjhNShC5JC+zQZnRzXHURl62DqsD4SvyhyMo8oCChKBRdoWkPlka47ou3VaLM2dU6SrpxuquNgiRWYqQstSQAc8P8aIaXlhXG0K5j+ZpSpLG5Hmqgi/hgluaIdYiwktqBKHLYLNOGITkotw0Cgffd4l8l26aEJZuz44E1xHMz8+TZSlRrYZbnnzHUQJwadqj227R0oaVPSVymGYZSKEc1MsMk+u4FFIghIMsBFKAKPnkAkGvp4wZKbtjQHVK+YFXcndUrqPVjcsxOKRZTOhAI6qZck630yXJMmSu1KuLLKMIC/Ocoux4ytKEPEtNq7rrOPR6CUWWQyEJggWlZ8dx6eur4TgOSbbQsZVlBZDhuBkFgpqvM3rqsUVekCUqiCk1IelrNunr6+P5qec5depUySlTAWItCnHOLHRs6TnlUr2X4wZEiaTWJ43oYqdMmc+edAmbpwjrpd2BX8fzI4RQjuWe44FYCLqyLKHTnmP6hRhZJIiyXb5eD1n55rdSb9R586pLycqgqNPNabdjuvE8WZLT6s6RJCXv6fQpGn19eIHPfLvLJYOqEy8KakjmiKIeUbScbi+h3VYcr3Zril6W0Ivb5HkX1/NxnKA8T77iWwXK0kMW6riG0TKC8BIcmmSOhxQ1OkX5ucglrvjZN0avBL1ej5mZGbMxfexjH2PNmjVs3LhxkeCeOp4Ld3y67FTdjK+77joefPBBPvShD/HMM88AanOamJjg7rvvNsGFvpscGxsz5ZxqW/f69esNJ0G3+ern6MCkWiarchRgoQtFByubN2/m9ttv5+mnn+a2224jiiI++clPAvCNb3zDtIIfPHjQZJdOnDhhsgWjo6OsWbPGbMQ33HCD+X7s2DG2bNliWpU3bdrE2NgYQ0NDPPDAA+b1NBfjxIkTPPzww9x1112mC6fqaj04OGg4LuPj49x0001MTExw9OhRVq1axYEDBwAVdOzevdvMeWpqalGgt2bNGvbu3cuyZcu4/vrrzXG48847TUlsYmLCXI9HR0e59dZbueeee5icnDSaLOvWrTOP/da3vsXv//7v80//9E+AyuBoPPfcc2Yc+vVWrVoFqABTrwdtPPn444+ba4zOUFS74qrrQXdp6QBCm1PqY6QD2bvuuot//ud/Ni3fb3nLW7j22mu544478DyPxx57DIAHH3wQUN1m7373uzl06JDR4Dlw4ACrV69m27ZtHD9+3GS/dGv/3r17DW+rmjHTa7LVanHPPfeYbE5VC6nZbC4KrHXQcfToUTZv3rwoE6m1haoKxNVAf2kLuZZW0Nm3qo2DznLpDrCqknE1qKrycZZqXL1c2C4qCwsLCwsLi4sO5yxR1fsukeve+xsEpUqvcDzCsEazrw8Xn24yR1xKxbsyQGRtgqCD40TMznRplTohaZZpfilZmrPwngLhunhBgB+GeG5AWN7NO75PUUiKPEfmhSlrOJ6n/HMchyAIiOoRrqu1UhyiKKLTbdFrtcnyLo7Qwm45WZJz+vQp2q05Qwp2UOUViSrfOJ6PXwoHRvU+ao0BglpddZHoLqA8BylxhCqfeZ6L8EtCp1un6ZzEK76P4wgSdzkpbwag3fPI0ja9zgxTP/o+M9NKUNDNVQmoF88jkAwMDnLF268AYNWbVkLaI4k7dDot5lqKHDo73wZfdd+4Agb6+qiZdKDKJEgcyomh009pmpmfPS9QnWKoTIjv+2VnXMH06VO8cFJ1+wS1CN/3aJ85xWBf01hjnDp9hk7cxRFKZ8b3fFXyAcXjKRR/SQhBp9MxxGDXU91SslA2Eo1SRTjLMlxXi82pUp1WZ46iGrUoJAwjpJREJWm62exTKUwg6cXIIiMsM3pBrcaPn5/i/3vmGZ5//ieqTCW1MrKD6yoPNMdxzJwK4ZaHp/SDcl2T5RJSLwG1bnWWLag18aMB6n2XmDl62pYi6ZFmCVmmfaJipBZkFOqOxfU8Vr35Mi5b8z+pudaazM2cIklbyDxHkpNm7fLz00E46jmNZoNGPSjPpaA9P0shcxw3wvXrBOpUkMYtkt4c3d5p4nYHCuXJVs6k/FGQ5zGp1nPKJWHUwAtrhLU+Lhlay2C/Gp/v9yFdh8/+0XWvWonq8ssvlw8//LDhE2iya5XwqrMEOosyOTlpxPt0WaTVarFz505uvfVW9u3bZ/gOURSZTIPmV+i7fC3Mp0nEOgOh76bPVgqr/lzN4sACGVWXsXTGZWRkhAceeIDVq1fz1FNP8ba3vc3c3V555ZUcPXqU7du3Mz09beZazQot1QjR0N0+U1NTi7p8tA3AAw88YCwPDh06xP79+2k0GnzsYx/jjjvuMJmG3bt3GwsDzXMClfl4z3vew9NPP83OnTt56KGHzFw3bdrEFVdcwWc+8xnGx8cXiQDed999rF+/3ngcVS0hNNlaCxLqcQ8ODrJp0ybe+973GsVjfYzXrVvH1VdfzRNPPMF73vMeQwb/i7/4C6677jr+8i//kve+970cPnzY2CTEcczevXvpdrtcdtll/MM//IM5bh//+MeZmZnhV3/1V4miyJhtTk1NsX//ftPNps9BldisoddrVQxRl/I00fnQoUOMjY2xevVqnnzySfPcyy+/nGuuuYa7776bp556im3btpnM2H333cfGjRv56le/yqOPPsrtt98OwN/8zd/wO7/zOzz77LM8+uiji0qWWqzv4MGDRqtG20KsX7+e9evXc+2115qOLr1W9Ty02GX1mC8lxWsszbBUs5a6AzKKIsbHx02mpmrMWvUZa7VaZg1OTU0tyhDpdeb7/qtfonJdl0svXUmqhdgch/7+AdI0Z27+FJ1uF6c0pUmyWWp+hyyNmDlzmm43LT2RQJKRF4BwFcdD6LcVuF4pRpcXSJma9lMnTqAkqSIlnqs3TkXqdV2XPE85c7qNVyotDw4OMj8fMzfXUuUmEmqRrvMVnJ6ZJ0kLcDyEo4UDPTzHLZWRfVwvNGabfljHD2r4QVSSNPWmsGB/4LkufX0Nmn2KLJj3zlDEBfFMxOnphFPdU8x3fqCOUZJAJgkcl9bci8SlMWWj0U/f4HLSFxPIU6KotpCOz3PSuENnfo5Ot20czXMJtbBBHHfJkhQ/COkfUBf+NMtKz6iCIIqUpUbJMfGDgDzLjdO49oESQigVY6nKS416w/B24riHcBxanS5p0qNetoKnmWoBDwKfNM8XtQ67nofrOmVHGIta/YUQ5caq3r9/QDmQ9/X1UeSqU6vT6SgTyEr7drcbIxwXz/MMZyZJUxCCKIoIBORZokjXgJP5CEeUDvelmahufRdqk5cop3K/DFDTQpIkuXK81/SeMh6XuSxjgYKiWAi+chxyApr90DcwSJKlJGUpzA8C8jzBwSUKlAKwJkhLKfHckKjmUxQZvZ5K0y9b7jFz6nmcImbZ4HL6B1bguIqo3unM0W616HRbkHbI07LMSR+u6ytlcNGl1z1Dr1SIDjyHeq2GcJp4TgNZCFUehLJ0mCvyfy6hDMzIM7K0R7c3T3v+BTqzP+ZM49vqc9b3FoYufQevJjzPM/YGgOF16ItsdWM/dOiQacvWwmf6gr1161aOHj3K7t27GRsbMwHOoUOHjNeOvmBXNy5t46A5D4C5uFcdwZcGOFq4rCp2NjMzYzp9NLETVJlFlwBeeOEFrrnmGhNEPfTQQwwODjIxMfEzHbr1OHQJoWo8eeDAAUZGRkzpYc+ePdxxxx2Mjo5y7Ngx8xzA8GH0RqzNFT3PY/369UxNTVFVU96+fTvPPfcc+/fvN6rKmit1+PBhdu3axdatWxkdHWXt2rWmJLd9+3bjUn3ttdeaDU17eumNtGrDsH//fnbv3s1HPvIR3ve+95n5HD58mEcffZTBwUE+97nPsWHDBnbt2gXA9773PYaHh/ne977H0aNHmZiYMMftnnvuYdeuXaxfv55f//Vf50//9E8BVdabnp7mbW97Gw8//DDAIv7XTTfdRKvVWqTovNS2ARaCbd2+v3btWv7wD/+Qffv2mdLf5OQkt9xyixGF1IHepk2b+PSnP829997L9PQ0jz76qDl2Dz74IMeOHWPPnj3s37+fP//zPwdUOUurF0TKngAAHQ9JREFUaI+Pj5vzBRjC9k033cTMzAyTk5P867/+K6DKgnEcs337dtP+red6+PBhhoeHTblKQ/PRdCehPhf6c6GDG80pg4WbAt0EUCWt6+ClGnQBpmQ8NTVlPktVMvLPQzQ+t9mm59JNEoJSdj4KI+bmZpmfb5EVGYEX4VN2Y0QJeeJzarpFkvaQUhhOiDBdKkL1s5a6OsoOwKcoBMJxCLzAGDI6ZmNSvjmi5LEkccdwIvKiwPM8Gk11xz5z+hSygDQrcAT0NVV3C6jgolbvIwzr9JIOSawu/kWugifPD3C9EOF5FOX4eklMp91GCI+o3qBRtk2HtZAwCJT5peMgHJibL1unuz1OnxacOu0Rz3eUn1bpNJ60u2R5StdV/KKoJMOKAmZPnaTIM1zhkOY5vbLLxXVdClmA6yCFY5zTC+HS7XbJ84ww8ImimtGMCcIQzwuYa7XI8lx5QmkdId9XWRVESTQuSbeehxBSOZJLgec5hogtiwLfU87e3TLYgdJ8MknwfXUHWwiBl3vl8e6pjrAsK7vxErKyBTmKIhzHReDQ32wqpWSUnYYfBdRqhXpOnpluDaQs55uXreKhWacqOHMIohpF4Ru9oiwvKMrgSgiVLdLZGIQKsFzXX2RL0aiFhJEgLRxywA9Cmg3FtamFEaHvURQJ850WmdaAciM8v4brCHxP0GgMcuq00oBqz8+VxO4A13fIihTXL40uXYfBZQMsX95Pve7jaV9YJ+Hyt7+dLJ4n7WV00y5BSQruG1zB8qGVFEVCtzNHnMnynPeT9LrMzPyIIpnHE64hfIdhhBc0iGqCIi8QwjO6OmkWK45Q3EXEPnnJDyq8DCFc6kEdSvJ9LtUYTs5NMxt/h1cTvu8bzgYsXFz1ha/q6aQzJocPHzZ8EU201HX+ZrPJli1bTKCgN16t8lqV5j927JjReKk6k+uOFf17tfW31WoxMjJiWr2r7bAzMzOGv3PgwIFFbd0bN25kzZo1rF69muPHjy9SwtV3tVVdkSr3SP+tutHo43H06FH279/P1VdfDcAXv/hFbrnlFu6++25OnjxpSMhhGPLggw+yc+dOoy6sNxx956w5Jt/5jjrHa9as4fLLL+f+++/n29/+NmvWrDHHb3R0lOnpaXbv3m00fDT5V9sDaJVlHeDogEFvaM1m02QuVq5cyY4dO0jTlOHhYb79bRVUf+c73zE+TQ8//DDvete7jJN3likrgziO2bRp0yK9mze96U0MDw/TarV44YUXDM8miiI2btzI888/b1zeq5u7VoXW3UfVdae5WlmWLeKRaB2j973vfYuCtq1bt5oAYWxszPChDh06xPz8vOHKVPkqTz31lDkfmzZtMsd75cqV3HfffSZDU1XrPnDgwKLPwfDw8CIFZFDE5mqLtyaWZ1nG0NDQT2UrdTBT7S5cGuxr49jq37RL+9JARX+WqzybdevW8eijj5rgR7fZw4JW0CvFuUnGhaTRaCrjP+DUqTMkSYpwBFFUp15vEpZy8DOnE86cnqGXpqUruDDkZMdRnR2O6+I6nsnGBEGEFC6O51Bv1CDPac+rEky321Jmi7JQZGTdT+Oo0oJwAhzXU51UWoDMEaSpcjTPkowkSXlh6sflgU8Iw1rZjRNAuZnkaYEE8gJkmiGznEJ3UTkC1/GQSOK4u3BcUOWsPC/I84xeTwntAXTiDr1OhzyVBFGDqH8IvzxBne4c7dYMUVjDIef0CxNqSlKqD09SUBTQmpvlhRdL1vub34zvenh+gBckOCWDNo4TXFmW1ZwAhCJ6AxSFJMsyAt8jzQpTjgGl95ImiSr5yYL+vn5zfHS3lPA9QBrNnaQXE3c8RTh3HfM+aZoa807liO7SK7MnuK4q15TdWnn5eFALPfBE6VIemlZ1RQLugkRl5YTELbNmQRASRaHqCiuDSjXXlEI6FNKDwlWu6OV5as23aM23SgNRgVzoileBtBA4jvKl0mKWfX199C1bRTeB2dYsvufwplWqxNioNwGHTq9HmGX4viZHSyQ5c7NzTJ+cVnYmZam10becMPSVk3ca06i7NPvUuegbiKg1AvJC4noBohyDFIK0ADcapK+Zk3afJ+mp9eDST57VmT41R1EU5GWQ1e128VzJsv5BPGcIITMTvEqpuvtU27768iP1Aag5EUWR08xy4l5Mpwz8424XP+ijf/BN9Hot8qxrtH3yPEcWHV5NRFHE+vXrF9kbLNUf0RdL7cGkDQmXioxpHyhg0feqS/RSA8N169YxOjpqiJV6TLoDR9sl6OyO3rz1XbnerAHT2q4fpzdVfac7NDRkOrf02Ks+UFX9Fz1OTeSstibrv4+Pj3Pbbbexdu1aU4r6yEc+wrXXXsvv/u7vsmLFCqP/smPHDlasWMF8eUN27NgxkzXYuHEjg4ODpkSmybDf/e53+fznP8+9997Lvn37GBkZWbR5r169mr1797Jv3z5mZ2dN5mfnzp3meAshTMBUFafTQeyNN94IqOzxhz70IeI4Zs+ePSaIueeee/jABz7AE088weWXX8473vEOYz8xPj7OkSNHjHHovffeyyc+8QkzhuHhYW666SaOHz9unqP1iYaHh7nlllvYvXv3opbqQ4cOLXJ+12tLj7/ZbC4qrVU7gvTa1ARpLXI4OTnJpz/9ad7znvcAGOL2nXfeyYEDB/jBD35gLCuGhoZMq/zY2JjJBkWRcjSvttjrdTc0NGQ67bQAZNVX6mzQ5Ui9PqsigNXgolo6OptWzVKRy7MFJdqAc6mWVBzHbNiwYVH3VLVjUj/+leCcHJzBoTfLkf/t48x3VP2/KMXwPC/E81xqYUh7Xv1v5vRJkqSt2qyFchIPSo8oL4hwwwDPVVkL3SklEMqZWUjOnJlm5tRJk1aXMlciesLB8wOisBRBCxoIT+I4OY3aAH7go7ZPdSH3/JA0K+h2esi8x+lppS2SZQmO6+J5vmr59iou446DEEq0DyGQus0LUSonl83rRjPGNc/Td29Ci7cVkrzIKLIUt+Q2pHnZ/pv0cIoCV0hmT/+E2WklynXpsmW8OPUTZmZUFkcIJf4HcMXbr6Cvody6O522uZtodboIxyXLCwYHl7Pq0hUEZZlFSkGSKDfvLFedVnlZkojCSPFwhKAe1ajVtFGp+vJcF+EIJJKTp1QXzqkzp0mzjPm5GcIwMKUo0/UVhnglJ0VnY5S2jSRNlFhjWuEoRGFI6PvU602WLR8y6sf9/X3E3Zg0SUiSlIJC6bmgM0zqGNeiGn4Z6LmuQ1SLaA7047k+SZ7RKV2vp0+eQgJTL77A978/QafbNdknEMqhPapRqzUYHFTHu1ar44YNlq1YyfdOfA/fdVm1WpmiDgwso93pMjM/h+t61ErTTEcIOt1Z5mZbxLHSZSqb/mjUB+kbGOCS5cuYnZnCdzssW1YKSeY9JaQnVCZTlNlL9bnwcckI3AJH5jiUmU3XZWZmgk58mlr9EqRQYxBCKLNUVQ8k9H0TzCkVacVjK/KcgoWuRNf1lFhm4ON6AXmhj4+LHwTMz8/Qbs0iZIorFjrkHNfly//pv75qHJxf/uVflt/85jfNJqPbvbU67NTUlAkuDh06ZLIg1TvYKs7VRq79c3SmYXh4mCNHjhjlXH0XrAOrKj+h6sejAxHttly9o9UbuM7mgNokdHCm56Q3jdWrV5v3r469qvejv6oBnQ549GP0ZqDNGD/60Y9y4403GlG7D3zgA/zWb/0We/bsYWhoiF/5lV/hS1/6EgCPPPKIEQD84Ac/aNq4P/zhDwPw1re+lfHxcQ4cOLAoE/LAAw+YUmHVB2r37t3mHOouL30O9LnzPI9Dhw6Z46AdzYeHh9m6das5pmvWrGFkZISbb76ZgYEBtmzZYo7runXr2L17N08++STPPPOM0Q0Cpe3zta99zWgI6XOr29vXrFljpAh0+7bu4tJdTNU1pDfcI0eOGPkCUGJ+2sNq48aNHDx40GSsnnnmGT7zmc8AsGLFCqMqrd8f4N3vfjdXXXWV6QgbGRkhjmMjJFn1jtJZPl2u1HuCLttWO6M0qsKUVS+pqi/a0qBEB2vavHSpMvHSz9jZUDWR1c+tZjs1dPl1qVaOfo/XpE28yHNmz7xAXgZBURgReg6SNjW/RtpLmJs9VU6kbTg3OB5IB1mWqBw/IGr0Ua9F+K5rNkGZ58zNznNy+gVa83PkSQ+B1mXxcDyfMKpTb/YRRqo8JIVE4hL5dZo1H8+X5OWdahwnzM3OkWU5fhCqDU0stHwjBDg+Unjglsq+Uaj0aaIaQRCWm/vC/LUYnu97pryheSULwdECiVfdIYc4ZTmkKKQRkRNIKHKy3jyBF7OsocZWJF3StKeIy46DRGnHAMzMzlArlYRd1zXCYEmaMddq4fkBzWYd4TjG4FFQ4DjKEbooclwhjQhg4XuEgY/ne/iOQ5EqrohwHGUsSgG5JMkzPE+r/vrEva4KUvLcHIesKEhS1SLuuC6+cCiHQBz3yIucNMvJCzXerMz85HmBqAsapaigVqkWQOC5xJ0EZE6vtHlQ68Gl241VcJznZGVGqq+vSS2McMrSntJOUoPwAw/heEgplLVHI8TVGjtCBam5FDQGh2gsUxcQx3FxI59ukVNvDhC4vtGBmm/N0ou7LBuo02j00Y3VMZ2dmWNgcIAkTmnP9/D9gKjkhdUCnyKJ6bTPUKuBEDnz5SaUpQm5cBGuOvY6SHZdlyj0qUUOjpRIESHD0sm7XsdxCjo/7JAnOSLQ+kvQ60EtDCmKgl6aGKsNWah15XsumRDILFVEeZQOjud7Spwyy0ForltI2uvgiZxmLQCpZAAA1XKevvLWzbNBSrlI2Ven0eM4NlYJOtPgeZ4JBLR4ng5yVq5caQi/S/kE+mKpNzf9ejpTs3nz5kW6M9XNokq+hAXtDi3UVlV91bYK1TIbLHB+1q1bZwi21efosVfHXc0Q6ACmekdbzUZVg70NGzaQZRmPPfYYe/bs4R//8R8BxXE5cuQIa9as4cknn+Shhx4yAYwuIzWbTT7xiU+YTMw3v/lNrr/+ep577jm2b9/O3r17zVwmJyfZsWMHsBDA6cBo37593Hbbbdx2221GSwgUB6fZbDI0NGSyE7qUcvjwYZMd0eVJgNtuu42hoSHuvfderr/+eu655x7T/n3//fdzxRVXmPls377dbKB/9md/xle+8hXWr1+/qPQxODhonLQ3bdpElmXs3LnTHHMtyAgLdgf6mM7MzLBhwwYmSid3UGWkVqvF2NgY73//+5mfnze8MF0im5yc5Pvf/75ZDzpoBmX+OTg4uEh+QAtJVsX3tAXH2NgYWZaxceNGo3GUZRnDw8MmiKi2dmvdGh0QV7OhZws49PmsGo7qtVrl4JzLRkXPQ4+harpZDcD0Z72apa0+/+eBbRO3sLCwsLCwuOhwzvAoL3IcmdKs6XJOjyJLybKC6dkZ5lsdklR3hJSkYcctSZW+ad+OopBaqLyZwiAkLgXkTp8+TbfTJssywjDCiWqGC+F5PkFUp95oKhE+3aqLQ+gJanVBEDr0ujndOZXtOHVmhiTJFOm13aPIM+VXBUT1OrV6nVoY4fnuQmu5H4JwSmG6QnUe+brtPCLpKb+nTrtjiL9SSoIgMJ1BwlHt5QCh6+G7yszScRxEkRs13qLI1J2zK6i5/TzfUqnFF09OIVBeUFmeAQu2BqfPnKGv2Ue9Fi4iyarsiuLJKIG5zJRFZKF4QY4QFHlaPkZnmCS1egBSqIyKbo92HKT0QEoKctV1VJQGogLTlt9qtYxYXpIoIT4Jyu8qcEwZqdfr0e52yKWg3uwncCPiWHUJtbsxUVjD9ZQUgFERznPyPFfllCIj7cV0y0yW47ikaYbnOEhZ0Gj0lcfBK+0gMsXxEQuZrLSQzM2e4eTpM3STDMcP8RzN5HXpZQVpkeN2e+SlFUJU76cWeiRJTi4czszN8OJp1c6fxF1cx2HlqpUse3s/UqrXmup2cZyCSy9dweBAP37omGyVH7gIL2HlyhUkSY/5eZekV6Z4/ZQkTSgcqdajVOc2Cmu4jksvTijylJwOTqkC6AcRrt9HGC0jL3oU5bHDcSmyHlmSUIsiVRYsP5ue6+FJgec61IKQRAgcqVelan93hUOe5whHC2PG5IUi4QupJCJ06TbwBV5p6fBqQd9F6tKOLmGsXLnScCV0p8bGjRuZmJgw6W9dxoEFLyp9R6iRZZkxaly7dq25qwZ1F3vttdeeVchM/79KitTj1ZyPs7V0V8sEVVJmVchsaaam+pxqOaDaUXU2E0J9F17lTGgV4yiKuPXWWxfxYm699VYeeughHnjgAe677z5DQNbcIW16qssn2kBzdHTUcG50FmJqaorR0VG2bNnCmjVrjDigPg5xHJvjrru1HnjgAaampkx78PT09CKuyMTEBCdOnOAtb3mLES7csmULY2NjNJtNPvOZz3DgwAHTaPB7v/d7AFx//fUcOnTIZBf0fKvWBkvLLNUMWLUL7oYbbjBdU3psuh1f/67JuaCyEocPH2ZiYoJPfepTPProo2Y9eJ7H4cOH2bhxo8kwAYsyeNVyKGBkD7Zt27aIdK6PuxZsjOPYZND0OtDms2vXrl3El9Hln6X2Cvr/+hhVpQaq46y2hlfLofr5sFg6ofpdP0+v7aXk4Z83U/OzcM5X9TyXvv4aRap4MZ1Owvx8m7ibLCjhai6E5+P5Ib4fEoUN6vWG4VY4gaARuriey5lT08y3Sn+o0rW6Xm+Wz1+Q4A88n1qzQRiGZFmOLNSm2gh6iGKeIOgnTpvMzs4xN6cOtIOH5wmSXheKHEe4hgja6BvkkkuW01dzgZ7h0zhenV6i+DFS5qRZwulTLwDQbXdJ00J1hLmO4e1E9RqO6+K4jtJ+8X28Un7fpwvpHKQ9vCBAFj5JrDa7JG7hiAQch07XIUvLMQgfxwkB5bCtSiLqf3Nzc/xocpJLV1xC5HuGqFur1ejPc9qdmDwvS0flecsSVdpxHYw7t2blFkVOmial95Qy7FRjcAjxjcO4cITpVsuyTPlGZRmdTscEHXleahoJ5V4eBIFpwy6EIMsBx0W4AUI6CG234UIQKv2itHxtgLCXIGWBFKpQ6fkeXrrQ1t3XHCQIQ6KohlOWgAokSZoiClUyEI5veDszrTbf+x/PkSQZju/jep4pP0ohCOt1IschyzPm5tWFpR13qKf9LFu2DIeM1ty04bL4XsCy5ZfQ6aQ8+y/fZcUK5cckBAz0D1Dk6ti2u+mCbpPbxQ1mkczTP3ApzYFBZFmKyjPVNZdkPXppYrzb4k6P2fYMwulSyATfq1MrS0fzs3PUaz5v/jdrmDtz2vDjclkgi5wkT9Xrep75LBV5Ti9TtiKNknNV9gaUnJwcvx4p5/WKbEDhSoQvkEI5uGuJaE/6FPmrm/yVUpoSB2BaV2HBK6pKeGw2m4s2kCqqiseG91WqEevXmZ6eNiUEfbFdyilYqjcDmABMdxLpTaXqOl0NOJZK1S/l0VTJxNo5vLoxVTeFpWNcWh6ovtfSoKpq77Bx40Y++clPsmrVKrZt22a6qG644QY2b97M3r17jX4MqIBydHSUxx57jMcee8zYaOgx7Nq1y5RMqt1pMzMzHDhwgIceeoihoSFzvG+//XZjW6C1e6oEbe1k/ulPf9pYFBw9etSMfXJykrGxMVOaOXLkCDfffDOjo6Ps2bPHuIGD4mvdeOONxgZBBxC6ZDY1NWV4LtVWZ60DVLXo0MHF0vOhz7n23ZqcnDRdTBqazK1b20GVC3fu3Gle96GHHjJqxHv27DEaT1WZgqX+ZzpwgcV2DJrMWy1xLi2LLl2XWh6gGthU11WV61bt4Kp+zpaWh5eWv5byyV5rnJNkLIQ4CfzgNR+FhYXFLyLeKqVc8dIPe2nYa42FhcU58IquNecMcCwsLCwsLCwsfhFhScYWFhYWFhYWFx1sgGNhYWFhYWFx0cEGOBYWFhYWFhYXHWyAY2FhYWFhYXHRwQY4FhYWFhYWFhcdbIBjYWFhYWFhcdHhtVfasbCwsHgJXH311XJ6ehop5U99aZzt76/0by/3+a/Ga7zU3ywsLH4mviGl3Pxyn2QDHAsLi9cd09PTPPnkk0YJtfoFnPXvF/LrQoxBK3pbWFj8FIZe+iE/DVuisrCwsLCwsLjoYAMcCwsLCwsLi4sONsCxsLCwsLCwuOhgAxwLCwsLCwuLiw42wLGwsLCwsLC46GADHAsLCwsLC4uLDjbAsbCwsLCwsLjoYAMcCwsLCwsLi4sONsCxsLCwsLCwuOhgAxwLCwsLCwuLiw42wLGwsLCwsLC46CCsyZuFhcXrDSHEOBC/3uN4lTEETL/eg3gVcbHNB+ycflEQSSnXvdwnWbNNCwuLNwJiKeXw6z2IVxNCiKMX05wutvmAndMvCoQQR1/J82yJysLCwsLCwuKigw1wLCwsLCwsLC462ADHwsLijYD//HoP4DXAxTani20+YOf0i4JXNCdLMrawsLCwsLC46GAzOBYWFhYWFhYXHWyAY2FhccEghNgshPiuEOKEEOLWs/w/FEI8WP7/aSHEmgs/yvPHecznD4QQ/yKE+O9CiL8XQrz19Rjny8FLzanyuG1CCCmEeMN37JzPnIQQ/748V88KIf76Qo/x5eI81t6/EUJ8SwjxTLn+fu31GOf5QgjxJSHEi6VkxNn+L4QQ/6mc738XQrzrJV9USmm/7Jf9sl+v+RfgAv8DuBwIgG8D/3bJY/5PYH/583bgwdd73D/nfN4P1Mufb3wjz+d851Q+rg/4b8ARYPj1HvercJ7eBjwDLCt/v/T1HverMKf/DNxY/vxvgYnXe9wvMaf/GXgXMP4z/v9rwOOAAEaAp1/qNW0Gx8LC4kLh3wEnpJTPSSkT4KvAby55zG8Cf1n+/BDwQSGEuIBjfDl4yflIKb8lpeyUvx4BVl/gMb5cnM85ArgL+I/8Yogzns+cPgF8Xkp5BkBK+eIFHuPLxfnMSQL95c8DwE8u4PheNqSU/w04fY6H/CbwX6TCEWBQCLHqXK9pAxwLC4sLhbcAP6r8Pln+7ayPkVJmwCxwyQUZ3cvH+cyniv+AugN9I+Ml5ySE+GXgMinloxdyYD8Hzuc8vR14uxDiSSHEESHE5gs2uleG85nTHcC1QohJ4P8Ffv/CDO01w8v9vFklYwsLiwuGs2VilrZxns9j3ig477EKIa4FhoH/5TUd0c+Pc85JCOEA/w+w40IN6FXA+ZwnD1Wm2ojKsv2jEGKdlHLmNR7bK8X5zOka4ICU8rNCiF8FvlzOqXjth/ea4GVfG2wGx8LC4kJhEris8vtqfjptbh4jhPBQqfVzpa1fT5zPfBBCbAL+BPgNKWXvAo3tleKl5tQHrAPGhBATKC7E19/gROPzXXd/J6VMpZTfB76LCnjeqDifOf0H4L8CSCmfAiKUT9UvKs7r81aFDXAsLCwuFP4JeJsQ4peEEAGKRPz1JY/5OnBd+fM24AlZMgzfgHjJ+ZTlnC+ggps3Oq8DXmJOUspZKeWQlHKNlHINilf0G1LKV+QVdIFwPutuFEUIRwgxhCpZPXdBR/nycD5z+iHwQQAhxDtQAc7JCzrKVxdfB/6PsptqBJiVUj5/rifYEpWFhcUFgZQyE0LcBHwD1QXyJSnls0KI/xs4KqX8OvBFVCr9BCpzs/31G/G5cZ7z+TOgCXyt5Er/UEr5G6/boF8C5zmnXyic55y+AfyvQoh/AXLgj6SUp16/UZ8b5zmnPwTuFULcjCrl7HgD3ywghPgKqkQ4VPKGbgd8ACnlfhSP6NeAE0AH+L2XfM038HwtLCwsLCwsLF4RbInKwsLCwsLC4qKDDXAsLCwsLCwsLjrYAMfCwsLCwsLiooMNcCwsLCwsLCwuOtgAx8LCwsLCwuKigw1wLCwsLCwsLC462ADHwsLCwsLC4qKDDXAsLCwsLCwsLjr8//I9Dooe26wqAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "torch.manual_seed(0)\n", - "np.random.seed(0)\n", - "\n", - "gradient_shap = GradientShap(model)\n", - "\n", - "# Defining baseline distribution of images\n", - "rand_img_dist = torch.cat([input * 0, input * 1])\n", - "\n", - "attributions_gs = gradient_shap.attribute(input,\n", - " n_samples=50,\n", - " stdevs=0.0001,\n", - " baselines=rand_img_dist,\n", - " target=pred_label_idx)\n", - "_ = viz.visualize_image_attr_multiple(np.transpose(attributions_gs.squeeze().cpu().detach().numpy(), (1,2,0)),\n", - " np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),\n", - " [\"original_image\", \"heat_map\"],\n", - " [\"all\", \"absolute_value\"],\n", - " cmap=default_cmap,\n", - " show_colorbar=True)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3- Occlusion-based attribution" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let us try a different approach to attribution. We can estimate which areas of the image are critical for the classifier's decision by occluding them and quantifying how the decision changes.\n", - "\n", - "We run a sliding window of size 15x15 (defined via `sliding_window_shapes`) with a stride of 8 along both image dimensions (a defined via `strides`). At each location, we occlude the image with a baseline value of 0 which correspondes to a gray patch (defined via `baselines`).\n", - "\n", - "**Note:** this computation might take more than one minute to complete, as the model is evaluated at every position of the sliding window." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "occlusion = Occlusion(model)\n", - "\n", - "attributions_occ = occlusion.attribute(input,\n", - " strides = (3, 8, 8),\n", - " target=pred_label_idx,\n", - " sliding_window_shapes=(3,15, 15),\n", - " baselines=0)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us visualize the attribution, focusing on the areas with positive attribution (those that are critical for the classifier's decision):" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAE7CAYAAADQCfvFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9y68sWXbe91v7FZGZ53HPvfXq7upmP/noJk1TtCzDpmwZBgzJAD0wYNgjwwPP/Sd4ahie+h8wDAMGpJk0sCDIhjWQLJskTMt8s0mqm/2qqvs452RmROzH8mDviMxzq+rkJdFCFxv5AbfurcydETt27Ii99lrf+paoKmecccYZZ5xxxhk/TTA/6Q6cccYZZ5xxxhln/LhxNnDOOOOMM84444yfOpwNnDPOOOOMM84446cOZwPnjDPOOOOMM874qcPZwDnjjDPOOOOMM37qcDZwzjjjjDPOOOOMnzq4x77s+k43lytyLgCoKiKy/BsEs5hIgjGCiEFVUFVKqSnoWgoIiLD8vuJhirqIIMhyvCWFXY4+FanHkPp9bSLzT0BBFRQ9fL70HQRtjcrym/k8xhiEQx9F2rF07unc37J0X4xgjEXEzCeiKKiapUvz78oyZg4Rc/iNtF6pknNGS1zOIShIoWgB1cOYqGKtaX1UFD26Wjka2Tqmh2uax00Rc/yL1kudL5x6znns5gFBHxyLdmyZB2u+Fe1eKkIpSi4ZLXk53tHgH91nQOs5FMVbz2a9qfdGDDLfUtXl+uZzL/dNhAdT7Og8D+ab0PpXb7CW+Ttd/hwUFLSdyyDGcnu/5367e3gGVXIpIMJq3SH2aO4VQLTdb2GZFaqoFkobm+N5aJ1FxFKKUko59L3NRS0FnecwIG3uqhZEBGMMx91XPVyTMXK49+1+S7u+uW/GWBBpc7n2YR4PYzxGDK8++uGHqvr266P9l8HNsyf6+S99/tE2H7utn9rqcekLBXKbi48haVqegU9D0fIG/Tp+Xh5rJQQbHm3jjceIPXlGK+Zo/n4ylMev7WHPTvRdjp/rT0Zp98XKj2df/SYKJ4XC9+6//2ibD374EsobHOxNsHI4+/j9ca5ef0qPz8GUM6u+e7TNRd/hzaPLOADeOsY8PdpmTImYT8+JlPPJOS8ivHVx+WibJ+FJa/v4fDAYfus3f+sv9a55dGRWm47/4D/+m2ipHRjHETFCv1qhxVKyEOPUvtshprBZbfB+TcmGcRwAUBJZJ2KaMKI455YLM8YiRhEKm75n1a/rb4xBi1CKkLKy30UAcsr4YJeXuLV2eVmLsahCzgWl1Jd+GzwRgxFI055hu2PY7evgGUPRjJIx7UVvXZ2gvguItVjrKCWhZawDI0opGVBW6ws2F5d4N6/sFi2eklfkbIlpYhzu6xgNL7DWsVpd4H1H6DbtWi8p9hqVjpgK47QjDs8BiPuPSHFHweKcZ9i/qqcpW64uC7kM5DxgjMG0iZ61LnjOusXssbMtpcoUIzFOKAXTLNTgO0QsOReMsRjroBlpMRX2w4gYsE7owjxtDDHWxbcPjuAE69pLzFms6UBWDLGw290xTHUcSs541+GMx2AYhqGNz4AiBO9w1vH5t7/Az/3MzwHQ4RBVxBwWawDnHN77apyK4LwlhLZItMVZSyGlCSWjWl8qztjlPqsWcqzzi5LQNKGaKPOD3G6t8Svs6gn/7+9/h7//D/4habaRRXjWGbbbHR8MO37+3/gWF8/qw+2NJ8WJmCPeeYy1zGtrzkpMI/v9lmkamM02RXA2AI5pnNhtXxKnYfmupEKaIinG5SXf9z3eG0qOFE0YZ7DGt+sTSkmI1CXGB8/Fps49wWGto1915KSkdlHr9SWXV08I/RVFA4pFqePqww2YFf/jf/df/xk/Jnz+S5/nf/nH/9OjbcwbOJxnA/4xFAovxxcnj/XR8BH7NDzaZpf2mDcwXIA3Ml6+ePH+o20+t/48F/760TYAa7ch64kFtMSTx4H67rQnjCor9uTxpvb+XLuLNzrvKZwyPgH2ecd/80//20fb/A///d+D8bTB+yaw33rGs5urR9vc3NR3w0cfvXq03Ycvb/nZb3710Ta/9nNf493Nzcl+vXfxjD99+b1H2/zRiw/53qvbk8d6+eIO5x6fD947/qu/8e8/2ubXv/zrAHR29Wi73q7Y+Mu/1LvmHKI644wzzjjjjDN+6vCoB0dLQXNm1fcAdNZyd3fLfhoxPuBCh2s79lIEVct+PzKOmeAdvm1YrDGMyZJi3U3WMETdfVtnKZqIMbLb5+YZAecDzgVUDaUcwiLWG3zIdJ3BGBBzFHpQIZeCkEg5U7JdXG45FUqpf5MzWRMAKVVvg7OOEDygqDQvRLA4H7C2ax6ctiNmJMZIiomiCdUdsbn/YixY22MIGOMRW1Cp4QzjMs6Byh3KHllCXQ4rV6hziDV4mxi07hxtiiQTcOEJq/VbbPf1WK9e/Yjb7XMUg7WedfCLOzOTUEk4aygxMo4DY/NQlJRIMZNyWvpc74Un+B5jAyKFtE8YW6/XdyuwmawZzYpO847VUbAYIOUagplyHde8S9W7YDwihlwSTlKbEAo6tTGkhWAAqpcNgS70vPX0vcUdr6WGckQM1rolCGetbWHEY+9OG9YWX0xpIqUBysG1qq56Q6wTSimYo9Bf0kKZQ2ci2OblUsBo5upygw892rwqosrbXc9FmrgLPb73mCWcA6HrsNmhWojTwG6/bacqiBhcMPj+mn72XhYY9gO7+zvQia5zaKmPapwScwgv5kKbqgzTRMHivcOIxRjo2nPrQyCnyDQNxJyZUuT2/r713QCGq3JJ329wvt5zFwLGGra7LeO4peuu8L4ez3QeMafDJGecccYZP0k8auCIMYzTxF17GWrOjMNY487GYZ1bwk3WCtY5xBhSnigqSyzSOYs1lvW6Z5rSgTugGQN1YbI1ZjyMbdFtfzsfsM7TrUw7j+KcYs2BVvGAPaGFVGr4xVpH0dqHqWSmsVBKovPC+rK+rFWr295aR/Ae1YJxc1jLAhYfekSE3X113+2HzDQqqp7KldljXTUgUs6ojATfY0XIcVwW475fo6Xj7n7ABYtKGztnMaYgEjF0lGwoybX+9XRdT9dfISawuajuXb96xjANjNNIySOj2SHUMevNPTk+ZxoGSs6knIm59k+0Gh4ppRaOqtdaSiKmgWAU5wIxKrsWxnNTxvpA8BYRJTcjppRI6Dw+eLwxlJwYm6t3ShM5pYV7VUrG6MzvmEOHlmGMTLHOBy8Baw1FE1erJ1ytr5awRNGMGIuxBjHyII4vUufQzMdZDKZSjZQYJ3KKlBRxZjaYINuETQa0VJ4YIFS+U4oTJRecs0gbI2dqby42a2znYJqNosRXNp7vmsCXP/c+q1WPtfO4ZnIqxFQNrd3+npSqqz50DtN4LyUnhma85hjZDztKnnBW2GzWXF9dtv7Va8wpMwzTEY+rXr+xQtEMWggtlNh1HcYIKSXSHLKLs4FfSDHX0KoaaGGt/VhwnaHvL3BOEQn49lwYLbwxfeOMM8444yeExw0ckWoo+PZiC5bVRQ9iSLEwjZEpNl5KLFgnOOsQEaaUEWkEqeKw+IULML8d98PANBRC53EhoAqleVxSygzjgBhYb9Z4XxcmSYqJEFyHMV3jSBzIyIpinYBarBXENo9QCFjTM457chrR3GKuahjGRB4mykrogyf4GhMcxoR1HpG6EJXSjKXJIbLi8uISZCDG28XIcmGN69YIgWE3MtwnYiOTGSvkYkhphZkyqXFP1qsR65/jgsO5dV1MGgGrEMglsR12qETWl28BsOmv2KyfUDTWxXEcuHv1EQDPb1+Qh3ssEyZ4Cm4h+BrJ5JiZomBtR+iqoWdd40IZyAWs61jNRFRpBqw3beFurjmxFBXGcWSbCjkmlHYeI4ipXjbVQs5l4fGZUjC2cmB850ilGbWaMU4JIfDe289YhQ5TpI1D7Vsllxdonh0xsnhuKg/JHMicBjQfSMQpJorMHkKFqBgjoAfPjveWnDIppoUjtpBwtHqbnDFoSsRYj/XVTeCr1z3crLgPge1ui3XNE2IsWiBmyEWwLtCv6nPRdR4RT8q1b8OuGjj73ZaYx3noiamw3IqSQbQZ5B0zy18VSqmkZUExlsUQ3e8z1hictQTrEWsYG1+ixJFVF+j6Nc6tFqN7mDLDELnYOFa9J8eCkdonK9sHBPUzzjjjjM8iHjVwjDE8eXKNyGGniihTyoxSqodD6os854QRxVjFe9uMmfq7YZwQTZVUGSOxhUvGcYch0QXP1dVVJRbPu3wxSzZJSpE4xdYnwToDwdJ1jt1+ZJrqi7egjXhsqmdJZSFDWR+YJhh2I9OwW3a+XbfBGY+VgrcB6xzTVBeulDLGKsMwYq2n6+ouuuuvAYNqYooj0oy3+htHUYczK4xeYOQKqAuNdSs2qwvIE3cvfsi4raGK3nm8mYj7yITFr54gvpJA/eqanA2CYJ3Hu2qQiFhUBKs9VhRrepytC6eg3OWO4Az9eo0R2N7/CID7u+9Q8kRRR8mGlOsUcK6j6wImKbnUdCXbMoG8V5wTul4xziFtEZymwrAbub3bMwwREaHv6nzou0peFdFGKvaY5k2rHhaphpw35GY4GlWcF4zAZrVumSCzq6AgKkgBsYessJq5d5QZdkT4NGJapohipIVKhzpXckqICCFU42/2sgmlenuKVuL4sdFNQkwmxoSmjGshvn/r2VPe3nR8+z5i9iP3OWJ8/U3fr/HWAaWGwsSj7XjTUA2rgiFGpeQ5dNvVcJBUT1ucRvZT9aalOKCacc7RhRUxHTYEdUwLYgpIOWRlUb2pwQc635Mzyxzf7fZY57h6IoQgdF0Nk629xzohDvfsYkZLomvk7a7bYcLIGWecccZnGY9zcBTimPF2TheZmNLAlBKlgBi3pLypWmbPTAieEDrGsXlq9qlxYBLTFBnHthO0jqLKfkzY3VB3/PbQJUEYxpEYR+bMu9A5Vv0KQof3HXf3e168vG19UNbrFSF4UowkVzBSX8rDqEyjR3NomTTV6Bh1bIaDICbWHXDjnqy7vl5HzOScWmZLNS5SHojxnnHa4r0nhGaQBA9icOKwXcc6dMTYQhyhx1ghThP2yQWl8YC8z6jusZjqLTMTmMrE9+4SZyyCwaguO3l0QoiI3CHcYYziV7V/4W3PW8++yKpb4YwDHdju5938PbCvYRfpububw02Bvls3jpNHSyHn6mEydsTaiKowpURMs7/K48OaVW+ACWstIczp8ZkpjsRxIKWCwTe2Tk2hd8Hj3QrnPKZxT3KaUJ3wrmfT31ByXuaUEbBC5RW1kNQMY8ziwVnS1euNqiFHEXLLrkupXu801PBZnOySPVevFeI0kEsiOV89No2XghRijC1Mm/j6dfX0feuJY905wqhcDiO3RcjNWNntJygTOWdSmirvSmdv2sw160kFUp49RRZrLRjBIYjmhf9lrcHamkFoxC5pAimPjOOAasTaUg3FFo6bw69d6DDOkQVKbhymFr6K01A9V+PsVVzjWJOIbO+3pDSxbp6nNE2sr3vOOOOMMz7LeNTAyVm5fTlgTN09xumerCNiLavNGms9cTpod6hW3ou1HmsDXWjhhRIZyoRIwXuPa0ZMCA6sklMmeF9/u6SfFWKa0FjwdJjG2vTe0696nLdMaWK93ixpt1OMrFdrFIhTJI4W6+qiv+rXBG8ZdnvGMdO895SiWFcNJ8hMacK31TNYcK4gJjNNuyWFtmqHZELIWKPV/d8WmpIBKWTZEfM9cYyLlyuNBiViJNOvV/jmcZniyG434WyPlxXWX4Cv3qJiejCKUcGUjJbKh8rlJcgPKOUDtLwCFUKo6aOXF1eE7gJrdpRkGYdEStUInPKESMI7h/fC5rIu0ilZuk5Y9R7nYJoGtru7+pspUtBmxHq0eVxmM6frVjgfKKUsGjSiDmMtpgtYB6hBU/0yx0KcoOQBY8aFxJtzQqzl6eUTVr7H6OF4VX+nGjBWWFJzFx0cqQu+mbVtZpSqC5NL5Y/N5No0jVipXiotB0KJqpLiSHCG0HeknAl9HSNrFPXCR89fsCmJf+dz1Qh9YsECl53nJho+cgUNLRU2j0QgZxj2IzHuF2kFzZnQddXL47tlRGOcuJ2qp8YHR995QtfCvVLwrpGxMRStz5LxPX5aoXnC21zHvI1dzjVEqEXZrNb4fsW+eXC22z3buy37ccDbiLTMgGHIxDix6q8IvmuE6/rdbgD3eGbnXxhWDBcn0ofNG+inGDEM+fHU7iEPJ9OeAYIJJ96Qtd8rt360Td+8ruaEeogRQ28fNxyLFmI57T3bp1PKNe2cb6ChYsWe1MEpWk7q83Tmx2sU/3D/5yfb/M6L3+HbL18+3ujza9i/QZr4LnL5s49LsXz1y5+jP6FdE5qX+0vvv/Nou00IvBwen8v/9599l196/3Tfn62ueWv95NE2l2HNl69Pp4k/f2fPdff4NW78is9t3n20zTbVd/GpeeMaL/Avg3Oa+BlnnHHGGWec8VOHx0nGGMa9cPuyWlr74RYxBd8Fnjzr6Vd5UTn2vqZ0axbGoab1ymw/qdRMGx8qgbLxCXxnEeOYmGqYKIQlK6vkghiL910TcqvnsbaGIqaY0THivcfO3JPoSdFRNFOya7v6ln1lIMc9Xa9cXGzIqe5GlYh1Wkmn4onZkhrvYz/uiWmsrVJkGisPKI57UtqDZLQIm/U1q66Sf8dpJJUJa1LNTMrTcryZEBqs43Kj9K7xJ6YJb20VgZOAtZdI2y3bEiHvoYyo3qPmw3ZzXoIMICNTTEyx4FP1uCTNrDXR+Y7gVrj1hru7ujvWfEe/vqTvQyX52jkF2uKDELxBc+FuiIz7llkkAWXmuhi8m0M2lpgSguCMR0UXdc6UYlUHFkfXBawJSOPg3N/tuL+/Y5r2QFr4S9rUma83V/V+H6lUG2MQU3eKVgzWHEjGM7nYGnkQoio5oaaJOU6J7f09H3z0YZvL+yo6abRy1Fsfiia0QBdWrFeJTVHWbR6vNh0pKf/f//M7vFeEb7SQjRbBxi1Xu8hvfu+eJ1/4Ai9KE+aTEeuF0HlCd0NOVwsxXzXhfNfmqFlIwWIF4y05RZw19KueEOzSv5IzxoB1ZiEzb4qgbAAlp5G721u22/vlSXZiGKeRYdgj1rJuYUGKQi4Ys8Fbs5DRnRhW657NZkMuHbsXypDr9V5e3uDC4yqlZ5xxxhk/aZwgGQurPjC2l+GUJsSA9x2ldIyjITXCcM6RVd/TdV3j5SgLf8JU4mqcClOEsbnHxUUuLzb4dU0P7kK/kEq3w56UK6clOItr3I7QOawx5AwhbDBiuW2aMfvdwDhUvZRCIXghxvqdd4JzGTGKtYp1LUalCeukhoz8hiFmphZCyDkeVGyNIYSWWh4dU7Rst/eUojgTCC0c5zuPk1q2omSDmQxGY+uDx5pATpWcG6V+frHecHP9DjF5xmywkhCtGVFp+pAYPyTrPWLGys0AUIexHWggToZx2DG21PphH7l3A6u+53J9TR+UEOp3N096VmtP3/cY49kP1RjY7fZM44BmC0WgCC2znJgi4xgbH8XRtcyrruvrLc5Kv1phjWV7XzOBYo5MMTPFiHeZrhO6Furxa4eZSpNHz7jGeQou4Ixwffm0EoRLXoxk21LEZ8KvMQfDZ/kjgmpeQk7VYLIYVYaY+O72JS9aKj1rx6oLCJb9fWRq45DzgMZb/P4Vl/s1JT1FmpJ36K/Yxsgff+c7XO12vLqvC/71qkec5WdWnou85aI3bKlGzH3cYUsBu666NBIIqWUlOqULq8qVqfUX6nMhlTA9DhMpJoxUbhBAiRlVQ0qZKQ6s1vVZutxsKAhTzIRujfUOP7vKVTFF6UPHquuqEdhurhWqAWotIThym/vTOLXwbYeYKy6fXuIbyX7Vb/D+cVXeM84444yfNE4GYLtVYJPb7t/NmUcdXb8ihI4DCTThO8EZJZcq3JeWxcjiXE8IPb6/5tV9fVGmnLnfV8dG1xlwllLqS3nIHTkrogIGjLSFSRTjDGLBWMVZ4fKqxbiNYRqV/X5CRBsxue2KJZFSZn8/kdJEbhkwKQ9Ya3j69C1unga8MZiZVOodKU9MsfI1Nhf1PE8uHTlds70fibHgfFhWoKxCUYPBEmOqJRHawpXHiGUgR2UY4uJduvyZG1LuuN9OYCbEvEKpu++YXxDLnpgzqVaHqMdKkRSFmBLTNJDTcMh2E4eIJXjHxeaWq4ubJmJIzYTRyoPBlUUXxhohDplpNzLsI9vtnvtmrIwxknIiF8U6S7+qhsp6fYltQn42RSQYfFcXvrUFFx12nFAVnPdLanHXd7z9ztuUclNJt20cTKkp28+e3GBUa7rzXIZDDhowD2qWNS2kuQ5TFc87KCNpUQThVdzzne1LSiupEULArxwXF5f0z1a0hDZevrzl/pWi40u2uz2343OejnUO3Y/Cn/zgAz58+Yrv73b8r9+t8+E//fJ7PE2ZGx/4D7/5FZ5f9jx/Ve/fvREohlxi1e+xiS60MhMWrBkrH8odSPp13lrGITDsTeWTzUZ3GjBWsM6y2xWef1hLDuxu71iv+qpnIw7jXJUxaPeW3MQMTa5cqZZ+H2PivvGSNhcXeFefv6jC3ShwD91Fz8WTK0Ko992IfbNCQGecccYZP0E8buCIwXfXbKR6cNwqN3G9gliLSliKlCXdkfb3aK7ic7WuZAsjiOJDwbqCcRuunjytn9sNqAWNQKYYh2sv0ZuLNTkr+91zPnj5AVZrWGuzzoROK2HZpRaqaAtG8PjQk4vy6sULprjD+ZbN4npytoyDMAxxEVsreSIEQxw/Yne/Y71eLcZK6Dq63tO5JgDYsp5UIl3f4+2G/aiMU6YwG1mhKixLYZe3xLJCpS5ccRrZvnjO/vYloplnz5618em42yWGmBD7EtI9NM2RSQfGVFoYKi+pxHnKaE5NBXqkTGnxXBQzgAijFaZpzzhOy7mcW5FSYZoSIgNmFhs0Ne34btix3U/cbRNTnNWCPcY7soLzdvHgOO+xxlNyNVZtTvgmLufDmrWsqwKxKtaGI+MsQ6nq1zkrUzM2cz0QKe5w5rpOrTncVOrcm9PAc9MxqnIAVesGaVlmSxKVUFTJKB/evmSfI10jfFuEcdjy4fgK53q6vtZz8Zc9af+Mfdwwukj0mbtX1fqJ3/2Qb//xnzLu96Qx84/+ZfWyPQuBv/2VG545z1ef3vD+0wvuu2q0DfdbYizEHBEmStmzsOITZKOUJKh3S6agYClYilqcc6RxYhob+U8mjIXQrYHAblufix/84AXOCOvNivVmw+bqkq4Z6lXsMbIbBqa0xxJY9U3yIKy52AipKEUDU6nPn+uf0ncXdJun9JsbQt8diN0Yzkp/Z5xxxmcdJ4T+DLa/oZ/DL4WWyQIJS8I16XhI0yvKZCjZkllhrK+eDQAMxnV4HzCux3eVzR36K5wRNN6TpnsQWTJW8BcUhL4P3NvA8x/WReHV8+/j3Y6LzYquE3IZFg+J8x7nCyU7rLvCu56uMdY72zHtE92F5erihvumSvzq5QekfWS723H7o5eIFWxbwG/efsrTZ08pOROH/ZLJ5bzDmpE+bOjX14SuI+kspR8pKqjrWV8/Azyp/U6zsl7/iBf+j7Hsee9zXwAgayCrxftMjC8peVwUmDMGq2CxiGpVnaXuvA0FYwreQxFZiqJiLCllShKGlNGyQ1rm2n63q8J3KM75RSdIEMQGTOjprwJJHK55DQRdjDRjWX5jTAsgGcGgiBbmGtbVuKiiczlF7u52S+FPLbM2jqsV0UudQ85mSomkcQ+lNOXjoyraoq1y+6GgYi3HUCpnSwpODgavKi08NfHRy+fEaaCkek3WwOXlii50qFpKKyza+Qvefvs90tM1hYSWO8bbHwLw4tUfcp9rhWm18KqNz9/9g+8wlciv/2zHO8PEJk78wqrOu997NfC9/UDMIGZAmSiNa+MkVi6NNdAHXBPUnMZCjLDbGeJUKi+mzXHfGawYpgnGFDBdzcRwm6fEmEgiGGfqvxvXx2hBVVrBzJ4xC+NtDd2GoIRuxXp9AfYSsTUTb7V6wnq1puu75ZmfUWlO5/yEM84447ONEyGqKsY2v8u8VcR4vN9QpCMBupkVga8hvUdMO+I0UkpNCYea0htMqZW/bYdtOabWCrYMTOkl0+4jrOswjTdg7ZpCwHU92neM7fMyOuJUGCShORKcR5irkzucNVhvubze0IdLmDVb0sAgr3ASQBxPmuHzzma9hNS2uy1TyZhmmBlWbO8ywzCQxpElHKdKKYWuH3nyTs/6aoOYRnQ2BtRg/Yauv8S7zaL/YvJE7GHt7zE6cf2kphyOXKC6IU0TY/KM2xHTQmuQyTpV7aEMtLIGVqt3QsXUsIKPB22Y7Li/z+RssD6gxrFrZQDiZAi+pvLHHLGNFGwNIBFxgS70uOsVKTYidlGmaUIl1irhjQiuxZKjgpRKxSmKxrn2V2acRpzt0GLY3k3EpkGjWnAWtPeIZlIj5N48WVMQUhqr5IC4mfuLUBdW20jF84JfcmxphlXFtxhdCMhFMxTDFCeKjmz6A+k85zt2+y05rei760XPyTkl+IJKoeCJ8YLg6xitLx3d2vKnv/d77G/jUk7kRZr4e3/8Aftk+E/+NccXVyveflZ1kX55dcUPbl9iSkK0oCVRUiOrm4xRSBRIljas5JwZR2G7gzEJEBaeks8B61aIu8SGJzx9t3pD33aBOO0Zdz9i3H/AtL/FmdiuqdB1G7ruEteUrcfmncsYou3x/obN5ob1uho43nVYJ4gcxBNPVek+44wzzvgs4bwNO+OMM84444wzfupw2oNjDiEEY0rdwdvm9k6xVfOuaqliNnTeUboIaCU3AjGOpDRQSqZzUMoc+sgYUQqFMcVaCSJUvsPKdjh3iQisO/DPKtH5qr9htwe07tT1iKQqohQtOKN0xmLiLWWoHAXJELCtmnJCqbt8319iimLXhs0zR4alonkqwm43EIshopRUPQ251N8n7WHwsNnQUz04xhm8C9iwwrhQPSND5WoM99/lfvchMY103RptNa9Cd4OUjoxnt1WG4c2/GbMAACAASURBVEdQaggt51s07Sm5jukcfhEDSsZlQ4ymCoAtKdqJnHusv8C6qhbd+N70ncW6Wpggl0yZvSrOgDrSNFJyq7zdwlI5R1KawIA1PVZaGNHWbJ6UKpF6X5QDv9dijKv32ChXTzp0UTIu5FSYhok4TKi28gkXK4x4hiGhRTB2yd7GmurBmYX7lnJTBgyFkvNy/5cwmdaMutvtCz54/kMGHReRSRHL6B1Tl4l9IbYsM+NeYL1DVZBskWzomrfIroXu6+/ibeb7//L7bJt8wt3Le/Yp8Q/+7M+51cR//kuBr6zrfP3Vd7/At/eRf/HRLVOp6eppqHN8P21JKZJLQRgXxWQxHr9+m8vrz7FZXWCMW6QQrLV0zhNsrY9m7Ey2zqQwshfPXTSMMRCbN+3u7h4R2GxW+FXPxdVbvPvee/V6/QaMw/taENcssShdyld8Eo5LYvw4IBj6E4J55g32Y0bMSU/TkIc3Eg10xp9s19mO6yaw+Wm4bKKd+sh4QpVACPZxATVFGU8IGQLEEvHm8Uw3bwJvUhPeiqXo45yr+t49tZy82X66aDl9Pgp/+OoPTh7r7/7+P+aHHz4u9Hf99jV9OC0mF4Lni196XLzuFz/3LjE/LryX2/z8lXe/8mi7X3j6Df7n3/2Hj7b5+7/9R1xenFbd/NZbkWerx4X+rsPVwod8DFOJJ+f8Vbiid4/P5ftYZU06c0IY8cT3j+FkFpXAYqgYajZGZkSZquT8LO6rpurWmAJGK++zvQOddyA9KrVa8fLilIIawfg1YfWMWJTciMnjOLQzKuiEadkvfrVh5Q0lFSg1NCJ2zu7qWW1u6Lqryr24+4Dcigrm0pHMGtN1dF2PaQrHuUCeEp3v8V1HOQoh5JwJlxkbPMYoJR5qXqlxWLvCuQ2hW2GPSJfG2KbsDJriUivrftyzmwxT3JClw+xqv3vrcD6wvvSY7isMw3vst61y+e6Ocbwl6j0p3pFLXRyVCUtE444cd+QEKTdDz3aE4HBSyAw4L3TmUEQxRiFnWhX1tngbRSSiamoGXBzIjYidprHyo4InTyPDrr1gTY9KLWdgbdU6knb/NCtCJpdYOStkmHk8GERc4+Ycqmtba7m+eQs1ts4dOSyygsW20guqsqgfG6mhKUqqbUUWAxUqZ+zVbs/Lu4mUE6aFbXxw9Ku+Loj5lqGNd4oF4y02dICH4qEpN/vQk9URnnyRz6+/QHpZw34//JM/5Ecvvksuhn/yZ88Zpt/lP2tx3W986+v8u1//a3CZ+UH2jLmwf1U5PXb7shV9FaxzdF0zeEPP5uIZ680NNMNuXjwMiTK9ZNo/Z9zdk2dVW0nEaWCKsRbatJ48G/EXVxjTg+vBOgqHMGO/6jC2lgKRo1R1RdGWuabMmkQV/yoiVSLm5ItMTyx60KrOnzJKTIfxpxfb3vYnDRxB6E6oD8/qxFlPLXy5qic/gjdVda3Kwo/3/U0UiudjnTLOfpyI5fQiC/DO6nElYIC/+cVfJJXH5812u+fubnfyWC9v73lfHz/nW6sLvnbzxUfbfOmyfv/Nm2892u5p9zbP+mePtnl7vearT95/tE095/tchseVwi/8xRvNhzmb9VSbtds82mbja39OPfdvojr+aThp4KjqIqVcHy6pC3yb8nPJA8iE0EinahFrl6ES43HBArX4omnGgFBqIc0cwF7RBUMIc70nQ8p1B56zkKm7u2Q9SUeQ+hI2WKxt5N8+IP4SdU9IWih9j+lbKQnf0/kV1tRaUTPhtRYfKG2hVMhpMVZsGTE5Y32Hc4H5ihRTq1iLOVhxenjxGKny/zlONUnMNlL12tFtatFMYwRaBpNxK4xYxBQ2q5rh8uS6CgeWXJhKJOVImiamVsdrmgb2dx/ywQ++zW77I4SypPH64Am9YX1huXzS068MMTavwX5kHJVhp6QItlVbD36i67SVATCI6JLmP6Wa+h6nhDFK17fFcWMIfaDrHZvVmr7riU3j6P7+OVomjPWkZLi737PftgrZavHWMw6JcZxIzaDcD3uu0CplLgVFlpe0NI5NuwGHjDFtXhypRGdj5IEOjqKM0TDmK2KMhLmmRlxXAbu9rcdtx45xj/E9Vzfv0m+e4rsVti061nf0tuM6bOo9bIbZW299gYvf+T8pu5fs7rf80w8/5NU//20A/vZ94q//m7/Cv/fFt/lnt4aXpYd2b6MqKrmKKBrBzllKmnHNqEhpwGrCzVID0x3D/feZplfEODFM1dgsgIojqwfT0W02C9cthMtW96sj2A0+BHx7zoxxldcEzcAxy7gWUZTSUvCPF7hajPWMM84447OM0x4cYxf9EkTq4k3VebHOoW4xYzBGyForM0vhUJdIBNRUg2a6rQYK0HcbnL+isw67Ako6KkRYC28qgg15MUhEFdGqnotxiIBp4m0l7chayHmH85f0l8+WThSVWUxl0U2Bll0sZkk1NiYcVarusa6eWebf1040w8bUz+GQIaRayb8KKrYSY5vt09tLjBW6EGoa8LJem7YY1+BKJXbOHgpbybb0sGbZPisQxy9w/fRdnn/05wy7l1gzV7CGVZ/xfk/oxlqksqXLO9YMOKpjKyO0sFuOpFgWL4hIwLTdovGKNdCFGiryzZ27vnB0vdB5wdlMivcMQ3U7DvuXlFxIyaLaEadQ63IBOY3smcipjpFptXpShNsXO24CGJWFWFxn18HAEVXALp8LgrHzvSitgjjkUkDAdc9450t/nRgTF33dNdhujQ8rvKvFV1NzzZYccb5js77Eu1CN+9mG1aPdi0gVsgHe+dq38J3lB7//m1ytX+LubvmDu+cAfP83/jn/4sPn/J1f+zV+5unn2WWlNMNWHRgseSaht1BwHEaiRqwYSqoFblNz5w7DC4bhjpRGppKZpnmuesR0OL8mhAs6v8H7uinouguCW9V0f1Pn5DyPciqgLRQthzlen6s2klqw5hD60aNQ6RlnnHHGZxUn0sQPFYmhhnOKEVQEI66lizYXjhhUPIg/iK3JrMxaeRI5Z6Zhx25fxcniJrG+elrDVkXJWg7Vsk2T4xclxYI2NWBKrBooYnBhhXBQU06poCK12rStobXZC6HQjjczNA7px7Nb7nW3m5jj8nhHjARtr3g9LLALN4a2AAiIaynL86JhLNYZVCwls/BilpIEwpHldVxMcj7t0bFEMKsV7/Rf4ulb79Xd/NBKamw/ZH/3Q25fbTEyErqC75rAnQk4u6LfrIm7iWnbqomPhRyUaSWgFs0rjFTD4/JSWG1qcdGSt5WjA5Q0ksYV09Yy7GCKuoSbUo41u01NNYQx0FKQUcVYT9isuLA9dy9+BMCr+1u61Q1ir6uBKzX1fJ5DzfqrOizH7n6VVsiwAOWBUZQFrOt4/70vM44T0gyjruvxPmCNA1NT0CvqQq/zeFNLgyzzo0nuoKVmaQEJw9V7X8P4DT/4g9/gHbE8bWKIP7zf8r//wR/xw9t7/ou/8x/x5OoLfJCr96RQvaNS5Q5JTXwv41oatkVNIJlAbNyM0l3hfMIqdMYdSpFYV7MUxRJC17yts/fLHOaXFpqjsvY91Z4YU2oG4BEExYjWTU0rebHMSc4444wzPts4Z1GdccYZZ5xxxhk/dTgZoqpVpY7sIJ19GXGRxgcQG1DVpcClkDBthyuqYCzG9oT1O2RTwwTZBKZcwwuIYl1YxPRQKAiaaomFmRug9GAEsY4snkKhtEwSlVB3ocaDthDQomrbdrEqBy8LB6/NLGZ2TDXQw49fGxVZwlzKzAV62EaXgx3cMsZUj1gptTbXIjCENFNTD0c58trMpQeOBe4ALAoYrFvhbU/XQhKb7gnD6l2G8Y6xZbDFXEl0KUbEBmx/ybPLNbTQx3T7XazcYkNB3QZrbrBS79OUB2J6xfb+Fs1C55tqsximvWeIhhQtBoeYpnodEhhI0aO2hkvWl/V4q9Ul3neEsMb5jh/84E8AuL+74/0vfYOr60DULUHTUnsKmeeJqXNpUWBu3gStN7uUsvjaqqpxomzvSM/3xHFLTK3AqVsT/BrfXeDWF9hV7bcNtcxFDRtaUs6kNGcRznMIKIqUmTRtEbvm+p2vE9bP+Pbv/l/svlczPN7dOFZu4A8/+HP+yW/9Fl/7t58wTjOnLZMd9ZpmzxTg/ardZ6EoBL/CLwRtbflNbS4vHLDSwpylcaiOiHlyxF9qk/Ywi4SmlYjmw6eq1TMp2Mab06UeljV6yN4644wzzviM4oSBo2iZFg6OiCCa0dKKUJqAoaW2UknDgiCqOFMWsq5oBnGoeNR0rBp7uoipL/WWrcEDxdQWJjCCDa/JqBrTsjsEwdUyAHMnZnrAbAgs5SKEowjPEpZasprbglINigPn6FMhh79Ua33K4/9fzq+HEIcVA4VagV0PTHRd4i+Hi1gMGTk2wh4q+GqRtjBW3s6sMOxcz2rdofoWWVtlgDIH5iovxUjlS+33r+q9KMI03JJKwajDuktcuAIgSKjFHbst07Q9pMsLWBdY9Z6SIzmP0EKJ1llc2BD8NV3/BO+6ZTitAdWMUAtsvv/+zy3D6rsNnns03VE0UlrKpRgD4hBb65MZmY2Yo/DgEc0KwDhbK6PffsAHP/gexii2XdNWMoPusfEWN624lJqtsPbv1pBRC+WgOvOPWzq3afaooM3IEnKdj8bQX7/DV//a3+IPmiL3t3/7n7FKE2Id/8fv/R7dz/0q4elb7V4oBbPM14esFqmmzMwHmzlHamoIljlsdzAACxyy2Diy7uew2qeUWDjMrwOZeH5eEJ3tuUXE8Yiqc8YZZ5zxmcWjBk5dRNMS59ecW9p1xvgeMQ5tJQpUazVntNYDMmKOrYf275nEOnsuWjbW/M4VebDMQ8tUEs9h2ZodIzOz4LAwyMJ9FFSOdrqwcFpmHsvsFdEjwnH5hPzX40+OFV1no+VAuzz0fDFEmrE0F4zECDnnumAIhz4sC5EuJF890iNRlWVsF5KxHvpT2uJ4oO9Ub8BsBmLbEFJ9RNUIUIo6vK+L7ebi+mB40ezI2WgzBmnmas1Qmhe6utLmUii51sKaM+4qJ6R51JrBsPBpdO6JYq3Bzfo4UgtCFjXkUsjExRA11iCtanjNejoYNbVyewGkkWHnArC1bIEYmKaJ9eVTLt/5Wv1u/QxnPV4slEN18pQNRqoRWsiIscs1fdy7twxQNYhyAoHe9Xzzm3+j3pti+KPf+EeYAvbymjuzYcPMtTn4/fTocErTE9Ija22eK5IXD+Ris7TRnK3sA8fsyArRI4LXa8bJp+nG1Ol1NEdbH8qZY3zGGWf8FcBpoT+3ocwv+JY2ikI2HsEvq6BgycuLG5IWTJlTWxPOZbwbAYNd8t7nXefB0FgcH0f//dgb+ejbQlnEyVTlkLXdFtHDIcyR4XF0zLZDlaUTckQ4bU1eEw87JiO/vjjoQjquF1Y9D80Qabo9tN2xHi3S868XguvRtatCKdUgOFyfLu1rq8MCJi2L6zB2shh40sZERVp6ddNKIdSz6sHwemhUHl8XDz7X+cbpwTM2jwVa+29mY7WN+WIICktopkjVYknaMSZDb0stpglLlk/NeCtoC3+WUouBts4041WW8xuEEFZsrt7jnc99ndVN1YzINtS+NUfHfC+KVq2dokLBIGqODFFphodWscqWDWhMhxBQraUlChlp4cKf/eav0pcdKoab975K9+Rd0kzm1UgRQbTq0CwRURQk0zjNbQwXM/zBvSlH3qv5ARKW293OczCWP/YozUd7Lfz5Sd8v8+vI0/PjgkFOCn5Nb6CPkjSd1M3obLdo0zwGEcHK469II/ak3swsUHhKB6doXp7HT4MVe/I4FemNjvUmqGT6x112P06HXizT6TEVy1v92yeP9Stv/TIvhttH2/zZi5fs96fn1t3Le8oJTZ2b/opffuuXHm3z89e/CNQCx6fwi09/5dHv/8tvrd5IH0pRVvZxIc2VW+PfQGfJijupVbRLWy7942KAB52cf3Vz60QWlUXtBp1vREuVnm2HFj958Budd/Wam4gZVME0WkJsZq4dhboHi/knvTM/SVDo9do4r7v2D22O+rcsYvLAxT4bN8e74eOdrhyHrR6sGseGxRwSYOmXqmJNLYx4WDwPZouR4xsnHEJks/dk9hBJy0prZ1sMmplrIWjRxeBpRz8Yja+9KOQ4HKYPx3xOl18+W4ZBjmxFeX3A64K8GFLLICzXw+xHO15nj71hEtvHhiwGJTLlTDnqujX1mmQei3lMSybFeeGunqvFs1XqGK3XF9y8Heh6j8b2sssg4qoukrG1wjmgeaLo1DxvazR3B89F2oFuEfYM+48Wkb2uu8KHJ4j0SOkwVDE9gJUTvvGNXyBi6S/fpmAO0VMsRf3BgzkvXKKARSVzGPhPfsyPDUqRh+0Os00Xj+CnvSx0Now+5ft6/MM9+3ErGcNxfz8Zb6I+7I1fvMqf3iY8GLdPgxzxoh5rc0pheal/dtLAebMK7W8iulcVwk4bCW90Pi0fe498/Fhvnq+SSjrZ5pQBnckEc9pIfXf9OX7prZ9/tM3tV+75304eCe62O7Q83q8/fvl9/vV3HldOTi3z2J6mwJ5EMIGb8PRku42/OqmAPeb9G52ztDqBj+HCX51U0p6fwTcx9P6yePzIIiDu8ABLZdmgcLThPDSniq0t3omZP2B9W/u0cRuaSJvUsIJoS90+8pw8/kAddpLLwvqg23JotyzW82eVNq1Hq/js1JGaz84DA2D2krxWPfmhYSC8bnQZY5YU+zLzX1TA6GEHfGRAVEMFFi8KhwWpvBbSA1AxVRl6vioxHN+Refj1sLVf+ldf3MIshDdfQ92cHDwtn0S4lqNrnF0MMo/dA4NJmENun/aumr0Gc+V0g22BsEJZQp5zWKs0z1NVil6CmaXOKWncrFIOGkKlVAE/zSN3t3/O3e2fLuRYYx3Webrugq5f1YregJY9OY6ICahcUIojpVkk8RVGRoxkikasbQtEmsj6ihirP8UYS7OXKLlgNIJmNF/g/BPUrNqYWrypxWdVekrbPSkGo0LGUihwJI75+lx/uNjJMrded+DIrN30KZuI+dFbbNB58yCHNseLzrnw5hlnnPFZxzlN/IwzzjjjjDPO+KnDad+QwGwHzR6Y6q0wxw2Wf88qpyoWOSoECIVUpB2jeTskgbbQw1Ii8S+Cv7ib/OBe/4TAllK1CY08/EIftwPrMVvz2WtlarZNzoXjsG09/uu8nXI4xxwGPMpmqeeY2x74IPO9OGJHHM4jS2Do+ApfG7KH38+7/6I8CD0eghfVQ3EId0gL4zWO0KeM07FD7fBZPaYxh2s1OmHTK1K+Jbtt8zrU9inFShpuqfayeMoOysJKSxM/uheJzG66Yzd8QAgs5SyM88BEnEZEejabGg+2weCdr78tW2JM0EJo61VBbCDnQi5+ISaLcxhjsFrQMqHm2POUqk9KCiW/xJXtIvAYU8YZS99fINIvnixnO6S7wbob0G55po7H/OPz49j7Od+vj3t7lpDqa+1ff5KWsO0Db+fr9++MM84447OLE1lU1V3+UHBX+KSqsHOYpbT3qihH8WttL/lqzNjmD7ckUKUQyOLr6/f1F6ewhELmTj144ZqPv2hrxsfrL+25YOCnLMLt2lQVmXO+Z0NkKc3w8f/V18JkMuvWaCMVvxZW1xY2e8BjboSZQ/iIB2MsSwztMKZmOd9D1gXMxlBb5Npi9xqt5sFnr6MxlY7G+RCeqsbox0aW1z99GP7SGqJphU9NGbFlACJqBaTFc+KOODxn0HvGdUDkyRLOzDliXK1nplqO9F8MxlqsrZ8nLctVighGDTdPr/mqfKURcWdjvabsixis2KV4J2LA1SvuXKHzhtKUh1PJ5FJIOVNUKUtcpxodxhgwHdZaNt2RPAGCmnlu5WWkSikLd2qKL5c6Y8WvKT7TicXKhjyOWOoYWbMiu55sDmVC2qC2ceeQgXV032hhSeT1uz4bTx9/juSoxXwtZ5xxxhl/VXCCg9MW5COuCJ9khMDBxXC0ez68S03dqbfSyHNWSt2RK6kZUaYRUtsBmP/vmGXzpl6eQzr4w+uR8vGjfIy0/CCVSz+2oB+vK9L4SMeJRzNfoR7nyKCS5ZAPyaHLGC85MQ/PqB9fXOTh18wp6YdPDtevKgfOypEH6CFn5yGX45Oyxszy+WseKKnaR7oQYuvxVQwiCfItMn1EiZV8l+MWoxFjBRu6hUyskrBdRjAE45tg5HzAw71JKdJ13XI1lXdTvUGVi2SWtmBwtsOYUAUW5xIFmskpUXLGiOBbtpYzFrGm/hGtJPFjr4dC8DX9feZW5VT1eqoBWBAy80WJsThrwdSingXFzka52rYh8LiwYn1ZOTir9VtY/4QC7Pf37Hcfgtashc6vsEMg2DWEZ6SmQ1VUDjIH2izwhxbnEaHm+O7Ja/uHj3s2z4bNGWec8VcRb1RN/PgF92kvu3mRfRj1mF+otgWvarprXn5jZtOmLSQHr8InUyrnHbG+vsZ+HJ9ohJ34zdxsMdJmj8njL/jqsJmNNhZPkGIekKWXdOra8mG3mrdsPtUhQ0yOwgqHizgYcE2Z+bUuzr9esqKWqtwPDZtPvraHxOB5DnySz0dVF+Pu2A8gApY9Jv4IST+ilHtMqF6NZDL32y1kpXdahSCBmCM5RrJRblaOUgr/P3vv1i05cp2JfTsiAGTmudSpS9/IJkVxRGlGwzVay15je1n2ix/9Yr/7p/phfsDM8oPs0WgskaIoXrqb3dXVdW6ZAGJvP+y4AYkEsrpb7Ko2Ntl1zkkEAoEAEvFh729/26X6SD6khGcACQDW2kBqZwVyRYpcee+yxP+y5wdk0PkWbdcmD44LoRlbOZgwv1HziEXAnkGGwCypBlrXt/C+hfc9CEMNKGsNrLWwtoJ1Ds5ZVC5UJzcWMITN9hrbzRMYp2mcxuyCZGaPuna4fvIieQIfH+/x5avfAtzj6Ys/Qb37EQCg7atA6C48nMW7ggSAo5IHQ7dixkUT1zf+Qmd/fVZbbbXV3go7g4OzDG6AYmGLPJyUvaM/mCWFuOIawzAhLBU1ak4s1EV6dUz/LrN6lsYU9ysdRJPnNH6IS+YhDPxINMpSEUHW8iN4YfCE1yUcMJ/XqcFC52Zgo8FHDRkJISNCuUARol5RnPPjgxWAYNKmU4FL0DC5IKZdGL69Az9+guvLDh0ZdD6E14yDrWuw9Oi4TQssC8HZGp5aPPYHeGa4lEKYvWLGDHWJlMcTQd9wrCwMLx1MKC9gXcywMhBYuMrCHHKaOLOgZ4+27RTckIG1QYvHWjAIfcfouh59H6qjM2shWiFYgmZ8RZ6S90Dfw5oOVe1gxaFiPdau3mGzeYLdxfuommv4wGHqe6NgSgQgBUYhAoXNzkIqg3Z/i67r4LqQ+lnw4pK/LokA6nbheBenOuFx68msqAQQV3iz2mqrvWO2ZlGtttpqq6222mrfO1tWMn6D+Hv0KmQeBtIvsd5S6dhRNkdg9oikek7ITY4CKuOQ2akQ2hGVcqxed7QdWsTzxHmVWDCSS0vtkKimzEF0L/GNhoMPZRSOR5g8UyIDsnX8O3mS0gCDV0kkeXEKAlSMhx1TMdIvYfuUR2tByO3U2375ObOg8zVuH7f46tDiZgtYG5R/4dE0DiwOqjAdwk1E2FqHzggq7+E5h1uy1lAZrlOiblXpbexZlWDj0K214N7jcOhwf38PGEpFOk0o++CcxYXdFWU6CJ4FvQDOOtRug8pp5pV1FYRUrlLLFcTwVyx0KSlcWfKhiAWGPMTo98AFgbXaVKicA9lLdF32qoiq34TwowOMBwUi9sY6VO4G0lwAvk/jJtagVirJkCN16doMkgcHfJyF6x3ur3Hm1rdtSwJ2S2JzAOCoXggoqwfrHGE6M1IwPz2u8+bDYV4lloUXxf689JAz3ku1dM68kN+54nx8ZtslAb99KPh73jEXRA9ZUC8IyQHAzlziX13/2UJXjJf7u8W+Pvv05aKS8d99/jm++PEXs22i0N+8bnce25w1tsFVfXNGT6pUPDsubpfnHapsvSTiV9lmUQDznO/zN7XFEJWzJqk35hBS8fAuHuQcYiJl8b7Spk8oliYABs+33G14BhdBMCO58xinic1Fj5OTziMKOSYL581BJG/MIUL58CovPGGADEhUABFQMb9QBQoINacKIGSLIcloAQJCeYCjB2Y+hykmxPGnHHgXBkaG2yOhVDB9PVI4YwLkMJVEYz2OWgiNULlNQKaGqT7Al689Dt0eu0q/2H5/C2sBuBoXl5eoK30Qe97joWsBWBhD2EuPrddblC1geg9qtNp3FiNUPoy1RutkEaUHuzEGbBWoWFspGTyN1SivhTt4zgEbawx22yfYXDyH0AZErrhvFHA5BMJ8AbYk8G5iSDVayUkyxoT7OWY8dWi7e3QPn8PCwjThAeQagIFD+4D28IDD/T53SYT7+z0EFpdXV6iaFBsNQFEivkF5M1P5yyh8KkII7PuhjUK2/9Jk4yV14bMUfOWcYBqjPwO4aOh5/iFsyaZCqKcs9rG0WLF49CHT8JT10qcFcrYdt/ALi1XLh7P7cjQPzs4pIdGHQrzNggJxbTfLcwWPzcKCHe397Uez2w0Z/OOLXy/285+e/Qb/7ofzff3V+z/FX9z8+WybpZIk47HN2QfbH57d15KdC5SUVjD//RFhOLsMQP+lbZlk7DlnkeRPQ+ZPWfcHZ735n0NYXhxTytiiYxdPOs7EjtERM8IqhR8JcgaCnR5TXLRKcDdcZqLa70wvGBYj1c9SHanBSY2IwJDJ5eHrzvF4v5g9Nbyvjyc/gVtDsJXF1ZMbbC928N0Br776BADw+acP8Ic7OLrHxx8xnr+nXywGgcXDWkJvFAZIWHiZGaAAYmxZygJJ+yZyc/K1AIgEm7rCtqkBm9/ciUzIEFIgGFWhhRpU1Q6GKvUgQJIIkAAAIABJREFUwRfXw2YwQJwRqhAQqo/HO2mo9hyUbFhBtAQOzv3dLW4//3s83v8OdWXxPEjKX938KQ7e47MvXuP+sYN4QVXrotA0O9jtMzhbw1SbgUzC+Jlz9BCSQm9pcL1Wfs1qq632/bMFgCNpYQGQibqIC+p0OvH495O9LwCi+ZEhw64YMkp1fvLWIyMJIGfsqtHdSt/PyX7G6wby2+fgfOR4//jJmExdDgOSQWXubhxiy8J8eqgTHqoTNkcgppD2XaJEhTcmfJQ9ekfnF8MYYuDIQqyHMxtwtYOrVUxvt3uB7vEed3ef48Hf4Sbss9lUIGrge4B7j8cOkPTiqBl4LAoUOLJuwz2ormPtJ5J/rbUgAJvKobYWPZXylJqubciATAUbMpvaTtDtX6P3r8AscK6G2ygAc+4CMFUoOltkaCF6QUL1+tIdGUJZw0il7ueqLaqbj/EoPfbta3x1+zJcmw2ovsCzJ09x8/QSvigiGwnuWQcp3w8otIcG1yJlM448j7HN9HvCkfdmLc+w2mqrvUu2yMEZLHIzuGHJTqaXz+CQc/vNKdWxKByVDcof4TMghac5ur6jZk6Rln1yEBNhoriGHHk4BoNFPNqRN0uKuZD8Ys5F2GwKEM5mtqV09TJEdeI6lH2fAJ6RC1Qu10PNn+GxQ+lLCAkMMUytaKVxT9HtLmG2Fzg8vMIXr5Wb4+4eIf4OVcW4vKyx7y36AEmcJYCNVusWBvlwXa2B9x6AgbUa3uPgIWHxMAJYYXz15UuYpkYdPCFEBDY6PjI+pXyzMAg9KgsYZ2CsgPkWANDu97BuC+c2MM4hXhitnhUATiKh6bYYImSoZ4mAlJJeVTvsLho8f/oCre/SrFoAfOgAAzhHMBw4P8geouAuSnhFsUuOhw55QKENTt/TKfsxXmsafbdWcLPaaqu9Y7acJj5STJ16cEYbEGPf0Dsz9j6MCZKn2o89SGNPxsQjftSRZLd9IueOQ0Hjc5kAOJK3JW9OCVrKsY44EIQYvpIjwFdSksuinkcHLsJf5cJUgpY5G8v1n0oHp2LxJhpzOcp5ClwIIQjc0BtgCFVjcVNvIZc3OBw01fnh4RXa9jX6xwc89g521+PDS92nqqx6Es3w+sawVDmOWARTIBBmWDDa/SOEOxgbU6mtqh4LKyE6VsckA1dbOGfhXIXaOhCUHOl7BvePoPoavq9BVgEbuQpkwrxHLkuYs1TOAQE6Cyc3ErPeb8bUcFWd9YQE6CtAxAIEGA90bah2nuBl4ZVJf8vo5/k25uCv4n6rrbbau25rmvhqq6222mqrrfa9s2UPDjAgMh57Ws4PmUwZFZ4P/XfMNTlqqB4XAcjIkYdEj69kyoF3IWqvJYdGsY1EwyhCIcsm8kjSSSGyUADApCKQOXV58qyNDAmn4T1+3FjiedPEfIYG5Xt63IcGn+C436MUa7UjjjVymrtmAmWS7qAleQiP0vRD5lIM7FEx0nQtRXlcsUBm9FgRAagqmOBx2e4uIPwRvPfwvkcvX8FDUy6JAbYMxxZii5AgkXJtiGBM7Ddzxjp4NNUe15cNbjsP32k4DLZKnK2u91pUUycCbATe9/B9h77d59tfHJxloG1x6BjUKKdoe/0ByNYwgtBn6eUKc993eLh9hfvbVwi5dOjF4NAD1WaHZncJY4JHSCyEDEQC6Z2Rif4lNepIqDHErAhJlqG8xuN0b/0wk7Ul3mzHF3+11VZb7Z2z8wDOjE2RjKdCG6fIyCdj+2fgpK/NCZog/uQsqiIEMohojcJeg9BAAFVH4xuGiUqcM2KsjI5w2jgBQeV3LHFwzrXj6zDeV8aDjgcZAMFxEVEhSQCo7DKDAEmlEABdmI21qFBjA4EXJd4ya4mE8RCYGcaYRLguwZwIQMagqmrs7wmffL7H8+cKInY7i+12C2MNWjrAWw0BkXXo+w79YY9mY7GpN6m0iO86tO0d2HdwzuEqAJymrtDBou073L/+Cvevb9O1vry6xu7iEq9fvcYvf/ELvH71GhdXzwEAm+0TVM0lLuwFTLvV0g0AUi2t8jqkuYvzpvM5riGWCPcnorG6reTbSMBE4+Osttpqq73btpwmHrIzSktv32W7REY83dfXjuufor+M+ALjRbrkZmQuiu5YLoKGKLwZl21S06MDxjR0WQAYR6cRjhP7zgAocnBO71sSheMYUt3sKTJp7H80xoQJJ7Kkxud5fALDbYOaRzSscjXVQ+mFyIfPefvHkMqCOZZWYFgIBAzPlLgtkW9DokJ/Kvxn0nEgAicVrq7+BPy6xecPul/VWzw1T2CdwcuXn6Nt1bNTGeD+7gG3X93icrfBs2cNXKMZVg/3HQ6PPXzXo9oYfNgrWHrGDWAcHvZ7fP6HPR4fBNbptpYrHPoKLT/H0x/scPMRo26icGCDKuge0eAq5PsievbyJVDeTqZeZZ9eup/KruJ+Yc5T+QYpNhAADt/pE9+lP44tfZfOG9O41tZULz23i/300sOZef2XytRnvyXygk6MF7+oS9PyAa0/LB7rwIfEHTtlhgzuu2WBu/v+flFUr7b1orCgjQKXzbwOTmXqxXmI2mzn2JIo3Yfbj/GvnvxksZ8Pb/4G/91H/3q2zf/w4X+P97cfzrZZuqfedqtMvahTdPD7P9Jo5u2NPDip6OI3ePidm1Z+RLal4RKgn32dEdAAaFChVpqAy1GmiRlGyBLmWx7AmPAbU+1psGgBkKHGzNF8hIYDr9io/2JnrYUVfp/yzZR01NjXaWJ46Cye+KgNF03yJvXexKFpEneY5xgqiXOStFmK+4sIgM0dGg1BWWXz5nGzwDpKGUoiWhATUO+NiK7hH330Q9ztbsASABG6eNZ4/v6LpFDas8Hle4znvYc1FCqB67ara+CK1XNiLcGEGlX3ewcigLHF9fOP8eQ5pTTueI80jtBU9YCkDRgIYuiOs1clCvYlZe0MfkkoqByj6KcwkkTuTp7BNFmCLDX+doWgiKioOzZtSw9VQL+7S2J5LP3iYgwA1URh0rEd/CN4QbgtgoNzJAgtzc9BYw38gmIwALT+sCi858Xj5f7Lxb6+2H+BD3cfzLZ54d7Dxs4Dl43dDn6eMkMGNS0AqjNUjM81IsLPn/27xXb/25//Hh/t5sFL65cBaGcVXC8Br7fZlgQIv83r803srGri81a8QWLykZv7insMFkhCXvqWLa6zyzbnSxi++Q4XiyyZd+owuWTA8kB4AOjyfJopgDThLQKG3AgzQEYj71SxpxljkQF6MmHWy1BFCHmEMFMU9tP+JbWfOm8J52VGqE0dSBPjjWOOx6ByJ4BgABEwDFoOt6gcgKjyXHy5PHsYlojQAKKQNg5URiuBM3lsKw9nJd08QnVIvR5KvicYLRGMSgJgEjxIUfU3D1sCKHawo3uHYjo3xW+HSf1ln5d+PgQdnOZjCEVp1C5D1OiBkYjqooONBnfTcOzFOay22mqrfZ9sEeCcXsLDlpFnpWw/BCInHqzl0/cc4ELA2Ccx5vroIjh0908FQIqdkOs/FaJqo7U3BxKyG3+KZJ08XRhCNw4d5rXk9AkPQdax14tkRBYuQlyRzBs9AeOjKEiMmi2FFy0tqBFMFe2ZFbWfGPJxmrnuOfC4DTxUCIvx8PyUtxOOKRYH0bc94Vvo7WoQibTa3IA5z7SCM33DJR/cwa7GdQU4EnQF18REYCvHADuX18j3Z8aZcQzF1Ukes6HuUCoNRSYiPgj5tB+FVHA90gjUDm/R/EtqJhP3eb4HywsigHKYyrBisTF6LUvBylX7ZrXVVnuXbU0TX2211VZbbbXVvnd2FgdnLhV88NvYe360z7EvIXpbpnb7Om+RxxySebdQ4sQAiOECM3HI8UdlUcnTYzilCDxdVoFRvGUPXrRjqIiGnoFiLANhvuARGJzH6G1e+S/DoOKgUCYV3iIgcJWmz3POATc3+3HMNhbABEPgdVwEkBh0oVaDkA1BnFjW1KQ+JHg/yMR+iqMTQCzYVISd7fG6z3wJCQ4rKbxPA9kCnaTR+YRQ0hGJKu41nKR8/aOHJqptL4d/JwUbC4enilqm0RZjmPoeDKJWR+M/x3m62mqrrfYu2VkA5xQxeLDNTDxQxxodOPUg1Qd/AjxFv0tZSkuqymP8cXL8CZzJYFEq28ngHPioTdk2liqgKZARwxWjcZWRhwExOXBlvkntrtQ1jQ9dXtvBiIahmSMeyHALRltO/Q0U8xNzmVN4xIN8i5oIxISWLDpRfkwPF4pqaqgs9sssIKPxJhP6jHNkrZKUhRmV6XHpetz6eNYCghnxU9IAdTJoIhQ4cUYxjBWrTw/B56gtFTpLRTjouNOZbXEOkS9mjFBK2AYajrSsaA8cfS2Kw+bv3yTAWm211VZ7R+xreXAWGg/4CfGj4AdAejOeOIaM/v6m46IRn2amIYRQZL6Eh3rMrqKjF/nZ45/8vFxyCo/IWBdokg9CEysx5TrvCSwAkHgmRdqwDDwAC3M7PlQkxUZyLRVp2Mhtp+KdZ1zFlPLZMcN3Hi0IBhaoGC4QgH1AZswexgClUKNnhgnp5s657FkiAhnN0rLGY1cxYnawCftbITCN79chCqTivlB8MryHS9FBobGEQtlP7CteJ04AdmgF9fsEIE/9HBG79bPSi0MFz+mU3s0pb9KUBMMKdlZbbbV3wb4GwAnE1cmQU9huaGK/0Nfx6okIegZEWQzDMEdJHjHb5+gQWVM3tssd4ujNVsMUx0Tccl9K78a5zzIMpQtLIc4WF7mwEJrCu1Vq3wxDG4ScLF0eihLgKMmrcRul8eUOI1SMAnr6Nh4XuEgUPk4fRwCEsZ561kpB3nf4QfnjyCR0MhfiVE+E9mvdBtZWYb/gFSFNPe25hpcDLFv40utD6rlBABdCJhFmRRgkRoUDhbFtGO4xbGNVPOYU4ArjoTyL8RwGtc1oBJzzmaYGJUSNwLP0tsS+jbH6u4TrW2w36Xsy1V+AQIN51VGaAHLKLM4yYe04iDbqd8JjIyKp5hcw8V1cbbXVVnsLbbGa+NBNPdsSwBTgWLLhG+65Nni0jx70iVxRPqSLnU76V8acnxBOYN/Dew8XiyvaEuDoAsYjD0A8HhX8olioNLWkPLa4kMaFbQiEJsBIFPEzJvvGMsGi8JpJ0oIZH/PYOxC8M1H7o2iruDVXJy/7OHndBqGoqc0xvJnHbYwDhCEi8AAk6IK00kDMg6ZYE6X0+xiWMsYkDk5KFBIGRCCGYFiwrYEqDKUryjmM7p7BLwoOxgB/CMCHnrlBLwAkaenJqS9QcsYce0sKh8+RMSEVwi3vRu1nqN9CCXjRJOiMx518KXlLPDZL2hvRUsHTE9Zzd5YOjiGDvX+cbfPQ32Pn5ufHnnEsQO+jJS0ggsEj3S/2dfAHHBb0WB79Hp88fLLY1z/ffoKLajfb5oPdh4v6NlurfdR2Xjfou7BnzXuLbf76w7/Go58XT3zoHxbvmcbrS9uSrpMz1dn3zttmduE+/mPZmkW12mqrrbbaaqt97+wNScZUZNec8oNg0tUzCOmc4eKOoZlhx+WvNOlsnx1beIstgk3hjTd7KaYJnyYUcox4MBbyjPL4mXdRegRi4IsLtz8HQbzEq4nHRQ5/5PM4Pv3oBVCV4Ol43tijpY6N3DZq1JTNIm1KNKY2lFtJAxjOd3RWJO/dBHF6yco6VIDOlQneNGXV6FvOARst2xCuQznfDICkKGxKyYWj0VJhMAS1YdRBg6Yjl8KlsyR6FLdzcsuFMG0677zvkIiucxO9QDFUuZw9le+dyTElEntRimS0fbrf09+L+DMqOk8dL/39HTl0lpR5Y5ulMgy9dMBCKQBAr91h0YPzgGpBet8FL+Q5pQzahbF33OLV4eVsGwB4eXi56MFpfYeHbv78AOW4LZkli5v6+WybJe/U224/uvxTPPTz3rPPHn+/6GlsWa/LkrytQGAXvGLfhXnxiwrfXjyaBWXrP4addccNiiGKYHbdGpM1x5sTt2A63p+OMzcgms7uSITNKVd/6DUGewYP7Ph3sVDp/vq7tRawDseIi0AUiKIlobdIt5YiRFOGawb8IlI+CMX5KUdcZrME0uypCRrPxWhr3i2EzgZNOC/mZQgKyOCBp+YuhFCmFtVxyG8AyFCErqg8J4GQVos3Bc/kkbfoekFVhQIH4SGSeEbQcB1EID4rDQsBzhAYjEo6NEZl/B94m85wKSyTJfYp8ZMwACBAdIaawM/J+ntctMHR72luRr9H+DS8n47HRuVO5faZsOBsZtaIe1Meb2rbaqutttrbam8Mqcs359NtznvFmyOfAkOeyKmH7dGxwoJ7tC38ami4aESPCJ0YT/6IUEb00posytM5BhcKCcaArzyf0jMWT1gm+hIq+Btx3EV/JNEnFeckMUrT56ViiuKL0QJVMLYTCEw9hP5HHJyBV23CyzC2BM7G/ZRt4vwgXkqd805qdB1AdShqEPqPHgcWAVmjhOPy1CV4UaxBLYzGhTcPr58LTWsSTY0pCsnEDCaJPBeJHqUwf6UmUVFMdIxKh56jgjUTQWP6c+IFIGngDNxL36pNcoJG21ZbbbXV3labBThxSU8P2vGbd9mW8nI4mWVB2Xsz+0Y6ejsdk2GXQJGCDSCBkVQ3qFguB96bYYkGAoYLJHJxzuGhIoqSVDxSj6oLpoDAsOn4cR9JYCSP3aDI4wk/hnvhaImj4ieNromk/+JYJkzilS2ATzzfsG/yVhAA4TRXqb8UCZKTi+FwXGFbqgQ69AjG0ZgY6pEMKj0ZdDAQ6SFJGhAptpa8RUV/RKqnw+hhpIFYj22joQl78OgpAj+KxcECIbjwEJYzJJRnR4AcsqRE9i2mJYwBgaR8GiSMRSM1ylZ6/vIgoh5SgjcFvqG0/ehQaX6OiPQT4xmOCbP7rLbaaqu9rfaG1cSLB2p8O14ISZWfDwXeTrc7Pu75bnUgLuxA1onRT+O/pbfGJCAUQgITaEJkamwS9ofquHShgjG/hpgW3l2AqidnERbSlBKlPwaL/gmOSEqIp6FDRoCg3WOAsCifXKAKvkrkFekiPwxhKYgbKwWnQU162I7ATgqTBU/IKNwWPUWx0Kcge2PEGAA1WDqw90BULS7Ui5NuUSbFgIxDZF0ZA1yHsLC7Y3TkFLRw3ifeD5OhmnReQ7BLIaQWG9HoroteoqM7qJiz8raLeCY77cr403A+yyhfFP/T3+fB5pTNgZg1PLXaaqu9a7aUkzhYdFE8UIE3d1NHcHOuy/uIaBysBDWnxzBHgsqvxKbwcJCMFubgDRiPNkr7x7d97g94+OIXAICd7eGqGq30qG8uAWcnF/1SZn9MjC5DY8I8OW9EWoohhXrU1RU3DsFJyRiWXBM8Qz79mcYzOmEOnp3xRJRjOia7Slp0I3gsRp+9c+VOEVilbYJ4HZksPFVgjiQ37c2G843/KVE2HMkAZBWwMHsQMa4qJapubIc9V9oD+TSIqIszOtHirACYAFcGrpo4b3q+MXyVU7PDeVOKMhbzROG6ZMBHCO0oAqDinkQGo+ProU2muTRlu68TdlpVjVdbbbV3ydY08dVWW2211VZb7XtniyGqYy9KfsscK6wuveF9ndAUJrbNhbnSvjEMMoipxdfsYcCAwicpxXcUEYjchsGnkYsiKvJHlx8CALypQK5CVTmgNpqddOJteaiQOwxTRDOFd2funMtyEvHdvizaWe5qYpuCDxRnRfsajteAwBMhj/LYBtELMdiC0jNUOCHy8ajIQCt3Dp4pCllIQhYeNURI6UMjrhbC+TBKT4OqNhuyOn4mbEg5OBdVi7vHBt64MLAcqsTAy3LCS1IcNxG/o4Iy5KhECCVpgXLo2UM1VDoeOLUAxPsge4ROKQ7Hz5QvJIPO1Ft24hqeEc6aIx2vttpqq71tNg9wJKotDhfi8EvB28Dxdkw/JMvP57g15UJyqv84jvMc5goURGiEmSJYmg57HQcCipAPhXBVVaGpsgZEWvA9hXUzL1cZCA4BU9TnkXBOuRJ4KAswDlFhOObB+MI/FEM3KYaFCbBxdHa6UJckVxAsNFR1RCka91MQZsvcrThqQDPZcqlSAk2FExNHSn96svBiAQRNImMG7YCQSUUAubDNmgD0FNgKWZgwsZe14PNHDxYPIighvDinMiglJ8KdWcm4AIyj0FG6tyb2T6HJ+LJQhPkG1HBC0eew/0kNnxAOK/cY9/Nt8XG+LRNZVnbtFjRiYpslvRzPPfgMTR0G476b1z3Z+0c0fl6Ztwr11NzCvFlYtH4/2+bLw0t8cfhitg0AfLF/iY672TYH3+Khnz8eAP2OLDj7Ldl3XufmHNu5i9ntT+qbxfv0vrs7qy9gWQW7MvVZLxy9dJlvesIM2TO1pnr0C/dWx+3i9znq5JyrUP51bPGOLN/sS9O3wWNwM/X56H130P7kcdOCWSzUox4FgDnh5Tmu9S0ACYyY4DnIC7GQLsURVOS3bzkhr88BKAUeTOHkIgTdlMiDGVw8KsBRRgsSwEuU9FevUJqkNJbh+UduS/TSjMFP5tiQobR7WcVCs8l1AzMnTRmCCfXEij4DMCy9WRIWTBfqW819zSI5V2evOA/RfK04dwSBCIf5E0gAHhYCphpCCofSl4IIEFaukjEA2VDjSWs9EQxYGAKBIZuu05Pag4zACIPFQkwcVSQMl/o1BfAgAngKsAyr0CdiePDUCYpsscG1jLXBCtBS+AsVn+bvj0meRh544JILb8JjN3iR+BbAyb+EB4do+UHnaF5QTzuSswT1zjkHBsPz/AO/l+4MOf0A0nleXJDJLy6OAsH+DFDy+nC7CDgaW+Pp1c1iXxdPd/iLm3892+aj3Y8W+/k+2L6fL9Xw+4ff4tXh1WybL/YKUP/ts5/PtvvR5U8WQcK+f0hiqHPGwot9sfjFUhQAcN/fow6g/ZTVpj77RWjr5suAfBNbJBnronfaS3Nk4W30TTOiztFRGbQttk+K/sXjjMivw7dcxR8njzTh0dG+4mITQV1+wA3CaqPTHOreDIFZBIcJW01M3zgckVSZE17L/Y89TzRc8UL77BXiBBBCKIXKZRYgSzADoZZ4CUwmEw+uGaWQjfpoCrAoeTxzZNfSz0XQMBXZCoZ80VbT3aOukKBQjo4eHcT7IIOsi0qwdYyver2/TXhzkRSqKsbyBgv6cebY8JxO2TjEm74nFBWaj9urFaDgRJt86AQhZ4+/2mqrrfZ9sG/Npzj7AB+8WQ4X9XP6Gy7s2YNgJvaPD+pxCYAMbIJPKr4tpnjO6TGNH/6WylIGE8J8CJ4SEdBIByeBLio4OBPrSgkApkDhGLAMfWSczjFFwwrMVapJx3kypgYgMJZQVQ5NU8GGUA97Qdv1EBb0PcPHLKXRC8HgOhUArnAUHZ3b+DwG24u5FQhYDLxYjM+WjIHEN23JAooiAmaBsSa91cc5b6zHdd3idb8Ln0txTGhV8gCx0n0W5jJ5wWau2/lhnHgupYcnVqDPIDN3lwX+pjSOJHZQDC6mj6MAnIN95kDmCnpWW221d9TWLKrVVltttdVWW+17Z2d4cOY9Lue9qepb6mTmx2h3KneZ6D9720+PZfYtmqLuSLkP4VRYbZp4TMkppc6YUycxtEFNr/RPPk7m04w+L8YwIJVmGtHwkIPxDEN0IaCTyK/xgE3lcH19iac3T3Cx26Cpq1wcEsC+7dB2Pfb7A17faZz2y1ev0XUemtZ07FUa8mQpFwqV016DfMQy9AaADLwY9DAQKjKSDAHiQWRgjMkejPBDmwnICAgm34PweNp4fPLYB69Q5AFJ4hulEOBoqFmp5+vZsXdk6KWjojjqaZHG4IuLgysEG8chqCMP4xkZU6utttpq77otA5yCgzAOKUwDiOGu+ZelEg/BJkiSp9rLxGen2pfgioCUhZMUbMuQ0fgE0nowBDmBUV02SDwQzXxCkPAfo5bI7Sg/DKGKhbVmDF0yfDlmVsiobT6tHBJ5evMEAPDBe89xsangDKGyFs6ZtA8DqDcNzGaD7mKLm8tLAMD1xQ5fvPwKr28f4b0UgCIf7xQUSACx5PmMxi4y/sRCxKCk+2TBREnZWZGDY0QJy773ut26ImwmeNIIts7jviVIILDGI2q1XClAV3m/YdR2PLfztgQwEvSUqPxd7hvbnCjBUfQ3BYxOfbaCnNVWW+37Zss6OMAR2lgCOTRuM1q4h2/6CAkgw1VjqEWTCavjx3PkvJRjpWLbkcdHzOB8aNQeRaHKtAtHKBE9KSMuA2VPVNJ4Cf1qqcWw4JCkbQBS/aNUs5GKxbLwMI3T1vVndtvIcAaCGcSy1lSMtaxOdX11gU2lQO/uy8/RPHuKzcWFkoJ7ztciegqIYJmxrXSDub6AIYEw4/X9Hp5RVFWXcgIHYyMD5QdBpj09AhgwSmyo2jIOQg4sbZHdIiCSUIBTD5OywQI4VxVj0qyq4JViEexsh8u6w11bwaYMA1vMa7yn4jnlWR4XytSSGHkMp0yAnCEHwKZ7qgDuhRfmpPbQyCs6/mbM1gSbIfqX+536fbXVVlvtXbBvXbjgFPiZ9d7QiTb5dTUtlke9FB6mSN5Nj/wJj1MsTDkmuubQBRUAKNT2MYGse/Quf+zkiYtqBobHSfYkMghHxVZClFLGJ0M4MpqT8pjHrcPYIrCJmV4CCGPTVKicCeADuL6+wqZp0LYHMHtYY1BVOS03huKI8qK8rQzqp9e42m7w6999hi++uoPneJ3KhGYzAI6FjwIgAVMMDxFItGCpziEjFGMAw4BBYANYcjBQgENedWxgDdg4GFOEbcSrTlH01jEPPITWAk8awh/ufdDYGdxq4V6a07DJNl0bfd7myL7LWU0D5aST/Zzcu/DKTu0zzugaf7baaqut9rbbAsCZDytNP+hKwbzcz3jfwe/T6zO0iOHobXO0sJeJPFRyXEQGf5fnM7U4SfDClJBkmLidPTf65jzsI2nue3z+AAAgAElEQVToIHtwAAx1dCR7Uwb6f9D1X5AXyrHXZswDKZwb+XwnrodIqecCNLXD86dP8ezmGrWzQEiPNkAANz3Y93DOwvt2MBZrNDPLVaqBYK1W9a52FX72kx9g8+kX+ORz1YBo216xVPBhOUPYNQoiLnYbbLcbOGvQ9x0eD3qcx0OHQ+tx6Aw8Gwh8EqcSVRcCg+BNeV30KlkIjO9AQqElwMbBGpMW6b7vYK1NYwcBTxqPxnR44CjWll0wBQsmzXHM0Bto1RTfk/EVSOCgwOFm0EoQq76juPZz4adzvDZz3pipv9/k8+8qpHWekJzALIBNEU7fizljCLyd16458GFRByc+T7zM99X7Dgd/mG0jwtgviAECwJf713iyuZpts6u2+OHFDxb7+mj3A3y4+3ix3ffdHvsH/O7hn2fb/NPtr/FPr38z2+YfvvwtAODjy/k5/ampF3V37vrXmHUZBzNkksDgKbvv7/By/3Kxrz/sP8eHuw9m27zYvLfYj4Sv8xbflQ7OhM2mK59sA5wCOWNLnJgEToZgqQQPRBRIs2nntC3tP+GqP1J/pbCAiqAU5qPBfuNzLFsMeSRmEDo4fpDqQi2DJTriJTNxsw7CdYV3Sf8/XaG9PH5dObz3VAW93nvxFI0zIBb0fRYVYyIc2gOEOxgieJ/PS9PNGWBB3WwGZOngNMPGEf7kw+dp9L/75HP0rH04Erx4con3nyvfp6k0rdsEMME77c9zjZ4BD4u2Bx4eDzgc9GF+37ag1sGjgQenRcOQeop6suhBsL5LOjk2gmRTMFYSKjEQIlxVHhe1xcM+hkAZIkHoMNwrETDF1Pf8N9LnSXmaRjozAbckbR6MPDeUOUQoj3Nk8QtQVFufSe+es1MewikQ8zaFqZaEygAFHEsqxSz+LH+bCC8Kn+37x0X11whIDgvA5OAPaBeE/lrfpntpzt7bPcOL7bPZNk+bZ/hotwxwnm/eX2zz/wfbuh3e38wv7I+XD/gvL/9hts1//JWCpOfb/zDbruMezzYL17B+dpbCd8stXi4oYH/68CleHb5a7OvlfrkNALTVPFi/CoD/wl3OtqsWRAXnbE0TX2211VZbbbXVvnd2XrHNN3hxOyfLaszEmO9woZHISPAveHcGnJnhNtDxtpSmXbxfx6wgfeM99uIAxdv3IGxXvoMXYnXl23BxWlErmlCGlMyg3XHoI5SEQAx7mTRyAae41sV2hx/94ANcbpRPw32L9rEDd+pDcrWiY2HGptnAmhpghniG9z4N0IQ5Y86fkyFYUjKzIUJjgY8/UE+RJcFvPn2Fzvdoaoen15dognCgIQILo+9b+L6DhFCYSAcRRmUtrpotXmwq9Kz1Wnp6AkINJ++rqnIRpjHRo8Et/P4W/V7DZOzvQehhcXwvCgNegAqM5xeEl62ek4/MZonXN4fDhiHX4U2ZadRD1k66GybvHwxIyaducym/NDgvSb300pwbTlpqt4r/rbbaau+SzQIcXasFA5e6YLKMgLYf8ghKG+6TmZ4y6n+SR3LieFMESa1nU2ru5HTw6HJXJVrdbkEBJMWFZDiezDcYwwwZ/kq5PRe/n2UJPR2HKXJ5gzL/CYmjRBJBTi6poe0YF02Njz94jp0F+kd1tXvfwToHV9dgVmCj+zBIgK7twL4HmZBJBQBBY4Yg8D0jUHBQNxto/UtRbRqYlGH18QfPYAxw6HrV1qksahduNxI83CuZWblSCr5UTVnrSh0OHYwDaqfbLPcQw7B1A1s1qGst1OZcDe8FnhnO1Xr2rK5RPrzC41efoH/8HA3fwkgLhDpVzAJiD5gKz7Y96jsFOA9dpan9xDrbMsWvkON7MmGQGISKQDuAmwSaMLhXQBRCDtOhIH3BMDlzjwLYPifuPpJCGAx3lFU1tf0Up2clGa+22mrvgi1WEz/K9Bg9247r58TPp99Yv6ktPVzj2/Kc3odIASAQvTRIJ5fPCQAJROjofI6yXIpMLiMxFXhcuXx0LoPdh1waGS2GU0QyEwePUOsp0kyIsGsqfPT+U2ysh3QH9L3GO411qOsaIhaAghkAYOmwb1uNWToHY1zEAiDpwT2DudPxBS5BRR4dANdsYKyAyMAmcjXjB8+v0LFg//gAZoFnBSv7/R5dd8geIsQMJgPhmLnmIAxEjGWdgzEGnffwvE9eu9pZ2KpC3xMMBL0wJNzW1fYjuM176No7tA+fge9+i7rX+LEj1cgR9mhchZtGJ++xF3DIEzPEI/Car9UY6OvlzvyofPnid2JOYO/U57EPLr5X0/yZsU0BknNIx3MgZgkUrbbaaqu9TXYWyfik61yG4ZcIHmi0IABTy/N4UQifvSEqmtP0OGmFj18khqXK8wjbilDFabrSEMRw7C9UGx8QRgVBeVeOsqLi9oJ5PDoX0cV/cFohmyt4DyTUvdptN/jw+TUay+CuQ9d1IKvjb6odrHEh+ELoAsA57B9grQFZpyTp/oDD42s9J/8IiE+hHh88A/3+D4AIqmoDYypUzQXqCyUS972H7xlNswVVDe5fv8JD92WY4wMAD2HWCt8hs4n70L/Eea2K62TQbCvsmg3ADMRxP9yj3u5QVRsIE8gf0MfMMCIQMajZYrP9CcyT93B49SkAoHv4DFbu4QWoqccHO+3viwdCG5SNlcCdL0oG8fr32LeTioqmi1luLK9d9vXEqvR6jiOgE4/8NV4UpgjDU+Hjr0siXr04q6222ttuiwAnsBsGH5x6uJUgBwX35JR7e3KNP/GQPaVbM7n/whhP9atjyuGCUibfmOEre1roZAiyDGJJgpCePGZnxEqN5RgQk4SHxwZy0yiWGE+LiMApt121X64ulK/y8QfP4KQFdy16IbjtBaoQV3KuVq0d9hDuEwqt6gqAAZOF73sQAa7a6rGqBiI9wKJFLQM6Y2EIPHx7BwuLrmtxaDsAwO7yCeq6BhmDzXYHYwm3r3Tb/v4OkB5GFA5QX3i/jAVE09GZ72DNVZgHhu8IldnAWAMJ3p/28AAvjKoRGFvBEODiJHEXZp9hPcG4C2w/+Jluenwfh9e/gb//Cg0OuNnqPheVgA+MnpL7anDdz+GpTN+bE59R1GUavywgcKo4c8CKfcreSjw8l759jrjfVDZe3He11VZb7V2zWYBzBG6AI4/LKTf4WCBs6o2xcKSctHOIjcMxSHjqxzfviQc+Fw/7wvWficb5sxJQZQG5UX0o5DWw5Mgczx0C4MFgHo+cNoGEGz8lKdvkAxGJJkwLcLWt8cMXSvCtyQMg2OYCxlUgW+XzFQCi3iAWgrFB06ZqoB4hC9OICuZFsCUqTGidgzWEUl5ImHFo99jv79F3LfpOuT79bY/Lq+doKqf8mKrCk2eabmpdhcPjV5B+D3CHqMUDVj6KOsEEhA6HR+XTuPoKBI8OjL7fg7s2zZXzHswCV9Uw1iVeEUTPw1gHGAtmhgvXsLp4hnp7gcPrL9A+fAYSBV/PLz1uWw9lZ43rlsdDDj05SXIveO8MZRCbb7PAhxm57gTHISdDFDCkKeJiYYomZAfKcZ2zbVlEMA0ujH0YSlvhzmqrrfYu2Jomvtpqq6222mqrfe/szUs1yKieUvp4GJI63m0iRFW43t/Utb4wyEweHr3wnnLDDz0yp1z2R8zf8PYug/dqorLtmJMkIaR05BcIGWXj8SBkShXxqTiC4Nlx1uDF0yvUJnouDJzbwDgX1Jyzr4zZg5KXxCAluksMlanOsniPPqRvQzycs5C2h4ekek7WOBgy2DYXcM0F2rZLtajAHoe2hbEWzlbw7GGCEu31zQs8uAr3d1/CUp45Mg7WuuyJY6Bn9awwBGxU6OzwcAviPsyPATOj9x6XV08Bw0nAkCBgJhjxqB2DiNC3Oj4HD2srbK7fw/byCfZ3yg96wl+hut2j6wQWBKYsvXja6xHumQmvXLJQF2zq46mQKhXXJWVhQb07MfsKxf0yOaoT3s8povKprKnxqEIP34kX55yjtn6f7pmTbc4QRov20N/Pbt/7/aKycLwOt+28kuxdd7coGujFw9HyY/vF9hne384L9D3fvMDT5sViX99EaO37Zlf1zez2D3cf4aGbvx/+69+r0F/XzStb//LV5/jff/Y/zbb5Hz/8a3QL9zsA3Hd3+PTh09k2//Dqn3DXzt/vAHDbzotfRus28+cXv89L9+A3uf8WvinyRgBjzI85S1fjjK5PlyFYHlsMK8k4rHQydbYIzUQOTo4dhXYT+5Vhm8D6pbhtMB/xGFSuF0X3VBwpjkbielbCprTVGYa1gAnAg0wFY6wSeENRy6SkawxIGCwEYouotNx3HayxMBYQ7tG2j2kbhPH4eA/xHsYQbIhROaulEOpmg2p7CWtqxBIWtlJdHEuamn54uINxMRxWY3f5BJvtJaw16XOQjlnPjUP2WgQyrCRoANy/h+7wCADYP97jcb8Hs2C7u4StKjw+6pe0a/cQ8QGUGxhyabK5PYBqgEwNqnbYPdW0c2wucX37KQ5f3Ok9g5yiDYxIuYMrMfpsDC4ohzHjtnMUaY+AT0nhOvN7ORkeHr2MjLOo4n1f8tCKHvFdBKqWSiIA+jA0C+2scWeF6ASyuHgczCFIU5y2WG6ktfN97f0jLu28quvWbRaPB+h1e9rMq+BeV0/Q2M1iX6udb7XZ4L/94Oezbf7X/1kVhZfuwZ4Zv7v/ZLbNL1/Pqya/iV3Vu0VwBgD7vl9sd9feY+e2s20OTks09G/wwvGm9rVqUQHT4GLOg3OyD6Sn/qlWX/sYgxuoACnHN1aZ4VIuVxFsDAk2kvaJmVJjDERpLyNIXhIUWVBEkrxLkXdMKLhAA28AHa0nmR3CqOsKTeWy7kkkeIuSgsvxEREMWeXgwCPqBFVVk44vIrCuRhQdFGHUtgaF3CsXgRQJfN9h3z5CrEWoCBWO5BQgWINttQEJ49DHB7wPbQWHtsNlo+RoZ2tkpMggElB4WyVQ8O4YiNXzBoCrvsPj/hG+61HVDYyzuHDXAIB277B/vAOzauuAfJp/7gG0PVwTCqmGTK7dxQ3+7McVDod/xO3dASzlNSs9d/kNxJDREhtSUsqP94ngJAKb7NDLROO44ej7lX4/Y2EegZU4jlPAfgr4jD8fGJW8nNVWW221t9O+UTXx8UP4VIbTWYDnCDCN3OUnyM1z4ymPnd5Uefi5/oHjV3BkoBC9JydDb4WXptxfw0NFSngMvYyIpSIAmZB9NnZqJbfNsbeLwbDEuL66QOUcmLPysC6+PgScMlmVmeFFIMyIQ9fDMJg5LOgEMlXy1Bhj9FyEk2dKPweqjQcgsOTQth04eFyYOAAWARmH3cU1qgBwvO8z2BOGD59XVY2chRdCZcU1YhL15IQsKwAwrsHlZaOKyIBWDw9v8M1mB2ctuvYAA6CubJqju/09pGVsaIeq3ibvABnCezcX+Ld/8RP857//Z7y+fcS4sKpeyuJ6hOhThC0ys/wPMqKARCAfembSP+WO+VgLmU5jEvSp7afGF9tMe2+Q0fhqq6222ltsywBHRs+yIvto6SFpjqp557U69xd+HL21TjQ6YUucmjwu5JUoDj0+rCcOm96z0wKXgxJD1/6xR0i3BQ9Iyr5CevsdFNAENH18MIDymLqCUpGyHFWXm8bh+nIDiGYSAVomQYQVBAjCNh/20wwqEYF4iTUYIMJouwOcc6jcBmRNAhF5MTfJ4xD+gjEVDEkIpGk1cgDoe0LlLIyzCbjFSt4iAs89xGvRzD5kRHXWBpBjwSLwwvlYRNDkKA4gRgZjM4bgIRDxaW5J9B5s6hpGCMZQUDsGtheMx4fXuH/9B9TNDldXWkTPuArGAC+uL/DzP/8x/u6Xv8YXr/ahPwq3DycAEE4ogUVzBIbKL9AEKDcAQr9UyhAUbUpe2Dl2SsSvtFNZVUMvlaT5Ve/e6fNYbbXVVnvbbM2iWm211VZbbbXVvnc2X4sKE76TGIY6sc+U5s2Uy3yq/awNiLjnWzkGY7RYpFJXxq4aghAGhTsFWuPIgGCMyVGCkfdqnA2Wz5+P5ylFGszxm3Z4U1cPT/T6FHEkMDIm1fpZL549RWWN1o+K20RSaIu14JT+BILOjKTrGL0QPXsws4ajQrwkOuBysUhKGVRA4J4YgiUBwDDWgItTyqUYhufpvYdnhhdWUcHg6TKGYAgwxoFZwCSJUClkQnhRNLOJ8j4E9dQ4svDsU/kJYg71roI3C5HArJwjX23wcPsVjNnDe9XbgTUwsHAgPL+6xM9/9lP8v7/6DQDgs89fg8UeezWL8GEmJOeQUvTCTYc5y3eMoafv27RTZOJ05BN/x2s/JkS/eWbjaqutttof184Q+vv6z9pJkuN0w3SUk+nkKTI2zz8Y2ARvJ/VrwnEkZBkFYFE+yBPYGAG0UgAwgoQysJQiUqPJm+qjnB8WLvrNHWqoK4KMvIC+//QJnt1cw0gPJkohQQUKBOEAbIggMbWbLLzXRd9YJRvHsbqqCkBOSyhk1DY8kZg4Hc/fGF3gK+dgC04PWAAWsPhioY8zG8/ZgwL4EnbouxZEHiBS3k+4TqnwJwDAF9fRhOwxAlnAGYO2C5XBuy5dQ4aCHBsFisnh4uIG7Dv0fZfEAX3fwRmCJYcKhJtNjZ//9IcAgL8F4fef3ypQKUBNvo6CqVRwvYjxdaEExvkl4ogQTyN9g3LzOUTgkX2Tdud+ttpqq632Ntlymvg4iwlBufdEpsb4s0FvpQtkcBQkj0LZds7jcyrzI5qXkYZHWE1MOIc0VuKBN4cln/M4m2nurXdAs0i8IpnRnT0+r+EHRb8iAEwkKgEANo3Dh+89hYVWvTbWJp0ZBV2AZ+WKGM0hB6CeDum6BHyM1f4qaNZULB0AMHysNE4AGYukkxP5TWGcIgJrLJq6BkTHwL5D27bgkGYrIgmAkdFaXd4LmD2qgDpIGNx3IBOzwAw8ZzBlAmk7TQkAFqMgNZCTjSFUlRb1PPRKZjbWIKbbx7si3kPXNy/w+HhXzLeH9149R2RgILhslLfz53/6Q7TdP+Hlq3slHh/d55R4V4N7UmKmXeRP5YtM8T4fEeyPek6bT3tioicxZdAtfQ8nbPXMrLbaat8Xe+Nim3mJmGh3brrpGW+jYxBTRqgG4zn1EMdw/cmApggDpI0AJJQJGISfxgtS7Cv/rmEdwnCXws80CDHFMckkTzMCBpLhjMefJECUwPjgvefY1A7cHQAiOOvSRglZUoRAfjUmARwWwFirejigFB4SAYwY5RwzgymH11R/Rv15Kp6n+1jnYAjwniHCWtk7jMEbge8P4CAWKFBCss6fivn1XY+ubVG5JnyumVUEhjqAihpfxoTFe3Bpwjnqfxy0c+I+TbNF3x2UoOw1a4xTOMzA9wocN5sLcKiH5aWDCKNjr2EwEZhQVvPJtsaf/+kP8Dd/9yvcPnQDTxZk+DKQBSYjeJEMnmm0n8gwiyq6dibsCGSXP8N3RuREMdc4ohMvCOd6aub6/q6tMjXMglieFXsWaVtE0Nh5jY69rxb1eWyQOjjwYbZdZSo8aa5n29zUT2e3l3ZdPZndvnUXZ/f1bdht9xUAYGfnj2vNN0ru/U6tNjX+zdN/M9vm//hLfWH6v//wX2bb/aff/wq/vf1s4Xh/i5vN/HUGgJv6yaLu1mV1gc/Nq8W+Dt7jrnucbfPqcIuLajfb5qrS78M5QoVf184qtjn1rD2VIn7W31yEoUYA4NT+5UN1/HCaFhac4E+Ht24pwiWSY1/5WOMH/lGoK48EdKxkrN4o9Tbw2JMUxq8LeR4jR+9JCFoU+r4wcY6Icb1TMPDek0vAa2jFVQ2ITNZXCX0JEXzk28Q5hw3emABWfPjcBDkyFkjg1mQdHNXTUewiBT+IALKw1qDvD/BkYVzwFJGBNQZddwAZA1dvQSGDSbzAtx18e4CzJs237xnGFl4zU1zpkKIuPLrWruAd+SLmA8BYg8ZswOzRdo8gIbjoLTICMoK+96idQ92ECukdqZosdwEw2jSvlgTv31ziz37yA/zt3/8Khy7OKYXa41obrMysG4SfpsBCPD2RDL5pum1p6Z4v+kkcnxQbjQD92I/4zTw1by/CEeFF8CLC8Gf4Vlk8Hvv5B/lD/4B6QWm1tsfetikzdMzLG1vH3eLxAAVL1wtg6BzBwG/TaqPPrncZwCzZxu3w48ufzrb5+OInAIAfX/5ott2Hl/8X/v7lr2fb/J//+Df49z/408Vx/dV710V9w2nTe6ta7Otms8GL7byi80cX7+GqvpptU6Vjzd/zS+Oes2WAw3K0+M8RFac8MlOk48HfWH5kzj2Qp95Gj94yRT0E0QOVF84YusjVwef612OYhMsohCUG/YnqtWRxtbgf0pFFyoUnhIWKdPQEiyR8LKpW/P57zwEAlTXo2hiCMsFDoX0zCwwRur6HddUQYAXOkHq4eOBNIBCYfBpfPn8dCInAGH3wA4DvBR49rCUI9/Ceg1pwWF5JwVRV1bBVDQ6eEM89uq4HC2O3a9DUTTiQCdwbq9fCFOnLwSUXPRRJgiCdgyRgF8GtQMtKOOtQ9VUImWl/RlQ4UJ0lJu1D1kK6PlzbcAEoFwM1BHz0/Am+eHmFX3/6Ws9H8j3AGN1DwSNoBh8UcxvGOZYbmFt6yu9fCZIhEu7HIciaekOZfik4tjnNnNVWW221t9nWNPHVVltttdVWW+17Z2f4CmXWW36Oq/sUOXdp35Mp5zNjyF6hKVcM0hv1IPyF6ImRQXbMKYu8m3Lv8Rxp//G/HDo6Pe7oV4keldQoJDExri93uL4Kcc2QBWWMgfcefdcVJF4LZuVh2MC1yR0GoT9k7o0exgSSKmWvQ9wneQo8mAEO6d/MWueJrYU16r0Qm3LLQWRQN1sYY8GsxG8A6HrNXLKWsN1uYIOr0pDVqFeYOypS8yWoLCuRRs89Hke81yw4YyDWoqwdxSyAIdRNA+ccui7Ee72HIws3CgsYY2CtCdeKB7eCiAExoyGPn3z0HJ+9vAUA3B+0tlfyx4zurzjO0S86vnhv4NjOIQmXfDGdntK7Gr8zk90c9TX1PZrk5WDAMltttdVWeyttOUR1gktzKpvpbF0bTAOdKb2OsbrqGIEch5AIUW32bAtcGSriV4zh4jDW9SmOiLyYxPGPgEpxBnmfHB7K3anWTd5Pz9cAePH8BlXkM7IosRikxFjOxEoG4HsPgMDew9lyvLHwZqyaVMYf81hUAyhzR8QwhHslykZNHd8DYFjj0Pc+1GRSq6oG1ln0AFovYN/DB4DX7h8h/oCmqVA5BwqhKyIDHzR7jDEQLirUB65O1PBJdaAA9H0PkUB6NgQjWStIiOCZYa2FM1UCOF17gKFauUdkUkyTQHCuQt8dEu+IJIa8OHClBNebGj94oYTQX/zuS3jJob98fZFCauXtcsQtC6HL8p5n5PtsjhCcAGp8EaEYHqSj79AUMDpFMJ4GUXnM30098dVWW2218+28LKoTD8Np8HP8udppsMFBr4WIkpz/+Pipv+LhupQuHnky0+c0/GXyQR8XnsiRSbtw5rJMeaPCGE3g6uQ2aXMiE6dxTg8ztd80FS53TarbZMkASeROx9GFkgdiCMICY7RaOHufPDbGOPW6MGu6doQkRkGa1sTSNG7xkY8jWr9KehDnt3fmDtbGvxU09b2K7FV1Axag9x5d79G3fSrjwP0BzgAXu63OUTGvzD26rtU5Egtr9Ra1lYOtKjjnYE2uKRUhxeGwhwmeFx+F/sgoMILeY2RN8rztHw+onAEYMFWFyJIhUv6PdQ6+68L9Ee53Ui+SEQNiwZ989AIA8NmrB7y664t7J9f+GhLVR2wzkaKG1bD8RMyEmyS4S0wHB2LRUUEWYUygqAC15VimPKNpvOk4Q1A05Ket4Ga11VZ7+21e6E+OH4anSIe5zdgjkXo7altaqoRdhHGGnpv4of4j8XV1MN7CuxS8AiczSIq6P6c8PSYAnGOsVnwWScUDsicCl3Q4RhEpaj9JStEupQJlRK6N57lrGlRgrR8FwDgD5h7MIcMJnMi/8AQIA4bgvXo3KJJyDUOCxwMMxHpTEAsyCGrOIWQVw3BCqrcjDgRG32l63/7hFlfXlzBEcHUNEU0ZBxRQdMzo+h5916LdH0ApfZexubpAs90AMOAAirq+Q9d26PseZAjWOKQheANy0dFCcEHrhlhANaHrNb27LxSdra1CNXdJpGrX6H6X9hpgj647wJDA2BAmswYCgiEHTyqIKAVAYI29wboaT3d6j/34o6e4/cUXGhYMQaccwIxQVkZb9DNv4j1aSgsEkKITObi3FPiFArCMdHdHxWET9yVOPUaAV9qAvB3nZ7Q9h3sJ5Rd6Qp97tdVWW+2tszfO15vjBZwjwDdn0x6YlMuC/MvwzXRqfBqimvaMjD0m8zyE0kNTvs0OQ0xpqSmGJkccnKBPUkapMOQzSBhgXJAECji22wbgPu3LrOEcEU6KxdH7xew1o4l9DpUFwMcdo+86HYsx4KDhYa0AYeEkMKxzoMCnIRCIVXG45wfsH19qX30L3zao6gZ13aDrGb1XD9Oha9Vz0x3AvoPv9iGkBjx5coOr60tUVYW+9+gD0PNtB/Ye280mnAsVvCIA3ENISzyAs3ChMQZ1VUOkT+EzACArCTCbsEbH/qrGot0/wlobvFnxGrF6vgiwxsL3WuoCUA+OmoGxUR0H+PiDZ/jnT7/C69uuuJYmX2NhMPoAWkxRhFbDaZY9CF1i/Hixmoof+GZjiD4MXcX7XX8fOGSmNJ9O2ciDkz8e9qvzcPo5sNpqq632ttiaRbXaaqutttpqq33vbLFUA1BySObDOqd0cOb2Ge8/bltmiQx/LHmH1O1/RO5MhNHMi0nvwSXDGFCBvTAGU0JBif1Ojzf/PpTtV+XgGHMpBAAniMzFByACamdUfC6+5fcpDwqQ0dwyA+LBXmBI3VXR++B7BryHMEOMSeUdtF5U4JYj0uYAACAASURBVBqF4plJFA+M/f1rGD7g8e5T7B+DIunFU/i+g8TSBpK9SG3XoTvs0bePMPCoDPD8mYpDXT15CmMMur7H4bBHe8gKrxe7Heq6BgVycAqtiA+cFI1ThUgY2FgYMiASsPeqAZQulg3XIxCJC86UVvdSL1/fe4SIV/hMvUdEBiCgD7wnxGvrtIZWJDNfbSt89OIS93efg8RCJGlZou8P4H6Px0OH7nCAMz2e3WgmnLMCv38J6Q9gsvCVCmOZ5imsuUhhvmHIC8mjVJbuMMGrwoTE0SlvpZNvMjFEFUJ5XHzXZeTVKWusfRckY7+gUAwgqFnPC4MxJIdzZ6z1B+z9vNDfbXuLi2pemTd+N5cEywzZxTb92UJ/9R9dyG/JqjPG/X2wpXmP23/25C9n21Wmxi9f/Wa2zX/8f36B57t5xWAA+Kv3/nLxnu/Zw5l5VW4AuGmuFoX+XmyfY2O3s22qQAtY8gb330Dp+KwQ1SkwM9XmnBDV1wpjJd87hoDgjLFqQ9XuzaTiuEPsc6K6dwGjpKhXlaGJQqOcEh6HWsbGinMFAsAZHWc0H3w0PwJrBJA+AbRcVgKwIV1cUlgrhBVYi1wKm0Q5UqJv4IpIPkPxPXr2ChRYC05G0b9+f4uH25do96/B/X0i6vqqhqt28O0e3Hch6ymck+8A3wLcwlhgt92hqsLtxlpN/LDf43DYp0u73W5TwU9m1vT3wM+JwJGtFtqMaeIGAjEOEKR9JMyR9wbWVQCFEhWwmSAtIYwXrnIEUoYInj2crRTYkknKzeJ7CBnAOrD08KxjqMjho+dP8NvffoZDq4DEhpAX6AEvv/xH7O8+A/kWPQQvH/SBtNtdous6MBwub34I456FsW0hXiGYoQCKi/uJ4s00AraMgrszMgZGJUBSd3qvJFCUQX0E/mN69HcVnjoH4PTco+X9bJuH/gF9ILzPGYtfBByX1SW2bv5BvnV6va+q+TIMluwZZR8sNm55QWvMZrHNH9veNsD1ttuPL3+K/+VHfz3b5vf//iv8Nx/82WJfV9XV4vzXtsZNs1z2oZcezzfPZ9s8b54VSsXTFhWtazt/r7oz1JVP7rvU4Jtwas6yuOCPu5YRDEglFaIScSqbmNvQ2INSgou8/5j4K6NsqPyWL6ne0OBIFDkJMugn/lQei0kZZflVmopxT3vGdDwjnR4Ko2GBQC82C4N9yFoLGV0+eTsU3IgwiARk3GBODAIXhQCK6Jg7+F7BCB9u0XOHQ6tvr93+FuL3sNKhdoAJXJqufcDmokPX7vFw9xpkXZqRvg2p4E5rWYGQ+jPWgmDQe9XuaTa6QFSugnNa7bzrOl38Y5Vv7+FMyE4igi3nzpAeAzWANu3DzDDMgXwTKsZHknf4lwzBkS2upXKROByHReCcnm/re+UBiQvE3cjBAp7stnhyucHrh04J0mGdcrRDY57j8b6CZ8LdA+P1ox6rx1PcPL+BaxqQc5l35TkA7mGV+jjuU5mKFK59+iN5XEoCzRhcI2WiDT8fAqUS/Kzqxqutttq7YF+/KMjIEbGkf0NE8ck8+Dz/OQpFzf4ewUTse9hD+SDOY8relrK0Qs5fGj7EAcVUHkoMNsWwyywSSkzmguwZXnlLkjQQi0eG/cZhpaI/M7FwCavIHgbnKrDWqfAeAYglFLgLnhgPFsBKr2ErANK3YHiIb+G7B7SPWm6goh6GGA9dD2P0bSuOwtUOwlt4trCkOjEA4InQd49wdYX94y3I2vSW4AzQogskYIDEo2s1jb2uejTNRjVwjE0AwhChb7UKue97iO9ziIoAGKNFQktAyBqSMNahMhWsNdjv9Q1e5QfU45My1orq5AQJ2WWUalxBADKk52+CnlJw27qqQtfuAWGtYB4FD6Fz1jQbVF2oeB7uI881Nhc/Q73z8AJcF0CUI4EXUXMpjM3GkgsJz2XqsmgY7Zh6HG67QeZhAQJDSJRJc7Jy+EnSF+iUTs6cRs5qq6222ttqiwBnSuRP/zjePrajMNZUm8CGSCmtsfuRBEhOWQ3/JkLA8ftnfMudGsMxTyi74EETIa8BAMs+Iz3GNECZOi6QM3ji8fL++klUaZYRgDIUF2BKcVQJq56IByhq3IQ5YgEYcGQh3MK3bfIbMTMgLXx7C+n3sMGDY0ivQ+0MjKthTJUysIQUYMFbBRSh3pRzFdj3IPRA0I+5ulIeiasq3N0Z9O0egNZ9qhr11Gw2G4gAdVUjkaAA+L7D4XAIXBoGQ2AD+LFWNXEUkMRipkhgkNkrWKWspdT1HbhTXhCB1AsUwmRx4baIiszhXJnB5FXR2BB6UFJuNlFYse+CGKH25UEQsTAgGCGATIIfTABbQMSpN1AE1kYvEoNFi6SySAqt5XARkicz3YfJszIUAYz3tTFm8Fn5M4WaJrhy47alnRIJXG211VZ7m+1rhagmxe3OsOUH45R+Tjx22Q/Cm3b8oPhBMRy1fCz9tyiDKLmP+DeFkFb5eRHwGnmJyr4pbBuBvOJtOu+XvRJlOnrqv/hEAsBhUSXjvt+HvoBIPjXCSor2HQ6Hr3B7+xK7ncZWN7sbuOoCHgbeNApOgECiVrRnjNGyCZGfE/7nuIH3PnsTrNXFvD/AVg1220tst4GPYAwuL67xVdcCAtR1jbpWkiF7j95rOra1LgnzaUgqgAmj2jrRu0PGINXslmHoMJaeyNcihBhZgZKIgzHqkYn8ISID7/vg4Sl0ZkTUc2QNnLGoqgqtzyn7rqrx+HALQyafjwU69uDuFWpDILeDxLR8svCMoAqdgY0eiyGs4IGlKJY6ABwRgJTnGq7KCJiUBOp8LwVQS6QcnAhuToRH55IEVltttdXeJVtZX6utttpqq6222vfO3oiDM3ijIwTC7LEXZ4mPU9qwxMHQe5H7SUEkRC6NDoBSeCaOaegBGZKH47ZB1lN5Sv8fe+/VJEmW3fn9zhUuIiJFVXV19yhgBmJJwBZcPqzhgUZ+B35nvpBrBpBmJNaWwACDEWhVXZUqhLtfxYdz3SOyujqzZzi72zuIY5aVWRGu/Ubc4+f8RcUnvI/s/DbbiQ9Xb+blZyG6bx5DZW6fxAmuZKZqn2xLUKPKQll8kYSMISnTIyfM6YnkTJh2HLbviOMOQ6akpm7vGqwHl7HWLPR3ZwXIWEHBrcYeK2OlkEuk5ITzpXpQ6Toztso7S9e2R8VksTjfYI2rGBJhGhUbk3ImZW1xdV3PVJlSTdvQdC3jMGCMxTh7pHwbUeXerBYGp1UXI0JKaj2BqBoxwHq9ZhwGFTYUwTqLlLlFpW0vqarUM86GNI9r9fJyzjOJYodyKdXvyhCmAecqoy15SJn7tz9nnLa07RW+URpl01xhbU92nowl40n1GJT1pBiiXI7ijrlixLT6VD939V5keYwVO/09ry/17/m9pTVaqzyziODp+o/FA49jb17mPwvB4BznOMc5/jPG76RkPCcIcz9/jtmv5nG75RgfxOCcfnmetnMeVcdPmVHHjZV5cpLHCYdOCPra0fWb0xVPel5H7I/IrORb9yqnWJvjdlTzhaUdJiKKiTk5huN2yzcmGgBTHidHj66VnLYZKm4iZ+1A1TZU6xumEIhxgqQ2BWVu9URtvRQx+LavxLF6q62liODaHis9zlUlYxGMqJFkzvHRpFpKoWSrbSpnmUZlQykVumCMo+8vcK6FE6NLAcXN1FObE6MYI9Y39Kse6zymitAYY6EUfNudtOVmbIy6oCtDLM9CxnU5/XceSws+xxi894vSc4qJaPQYrFpyYYzimppGr08xmgiQVSvltJ1jjcFIwXtPCtPRRkLtTTFFGPc7pv0e4Qs9BtfhfItvN7TtCudXCy3S2I4sniiOiCXOba2TxCbnrIy4CoIuxpBLBcqftqjQNp7J+lo+wc0sn9HaGuW9REa3kynlPe2b+s/7ic85znGOc/y3EL87Tfx9GukMcnwvGXh/3afF/444hdNNPLZJ0DeLlBkkc8Sn1KdWY+qTOd9MIARTgcX1/2bGy9RlTrwUFPR7xGzwaHvz8tXwUsyyzpzoHcEx37wWM418PlVzkiCBJm/zmzopZchqs0Bd3ltDTkJMCVsCcaZhu5ame0EIa9WhyUcmUON7jO+xxuPcUcBQclZRwJKQpPs7xXCUYiqA1yygWxFdxvmWpl0hxp9kh6UCoDUxOK1aeefp1xuojCJntbrUNB4QrI1M0wTlKNqWZ42d+tpj3Exm9nNS0b/jWLPW4X2pOJ9jlYPqxzUnAm3T1mtnybEClut5zImpMQYpGWudmoTOzLQcoVh8/0PSztO0lpy06nMICYkOExPy8A5r3uIrzb5renyzAt8ifk1b9VREHFEMWQy5WEr2i8dXKWq/UTDV2f00ISnLa+XkXOcE5UNg4uNrM2vrBAfEserz/jr/NSJ/B+2akCcewsOTy9xNt9/5HJx5+iuydz0r97TQ36rq1vTPLNfa/lkxtlzyswJqcNac+UMII4a/evk/PrnM//rne66ap/WVQPWaZmG9b4uVWz2rwwRqYbN2myeXWbv1s9sy9f3WtM8s97uP5d8qwYHHCckpu2Ixy9SVFkaQLljfKbyX0Hx4uxy3VP86TVZqEiLlmEy8t43Hrag5zLKN06rO0jY6Xfeke7UsKieGmB9oUdn3X6sJUHmvH3Ws7ryf4ByrQac54rEqpolNjDpxkiO+8TTW4bwnTgfCtAV04kxZKKbFiEMkEIO2h6Zhz8q1eFMNG9NRpbeYAjnV5MssFTWVn9HKhYgQXbsct/WOpusxlTq+TPolEUPQpNdavZZzktV2OrhF1BCzsopijLVdZPDekUsmhFnFslRgcPrWez4rFi8fiDrunHM458i5Jk4oa95aV/d5vOeaxxbGSa+Xsw5fK0w5J1LURCmmAJNORq0Uium5HQ1f7jx+tHinVRrvG3zbklMijFtKHCmTnpMcDjg5YB003rHqdALs/ArjW6xrKaalmIa8mNGqaOH8U/LR8b1QKBmKqQnOaRKT54oPdblja7dU1H4+ATMvQOf/QglOLpkxPSPQl3bPbud2uuF2vHlymbfDW+J3EA1MOS4ifd8WK9fT2Ke/oJv6Bf6c+N53USg+x7+ueK41fOEv+MHqh89u51X7+lmhzFwSsTz/EBFzeFacrzUt+QNSFqdxbI8/ncB8F4HPb4vfiiY+x1yt+aDY2Oms/V5x5ila9bfv/5vbXdKdkwrKN7f5Pj7mWF2SRx2qk7aUGB5XfaiJCrUyNE+cJ8wrEWXnnOxnxs3M2/7GsYkmOHMCYeck69E1eozbsSYjovo1ADFmcqj3IQWm/TvGfdW0MY5oMs3qEqVHR1LW9XYP7xASqWmxzmHrOTmrbbfhsKfveuRE2dkYTXic85Siei+grTAwtL6tT/9pmThzUhfxxZHdmEW50jqHGKrRZSSmmfWUFbfjVRgwp2MVSeSoNvyhMbc8LdRJud4JTYqYmVnmxJBUbRqcU/PLGGriEzSpWVzYRRaszXxfUopkItu9Wkw4d4VtCrcPD3z+1VucmIXlZZ2j7Tt82+CcxdrVcgwGQ5FCMYkY9+xu9f6R3tFZWzFJPb5da6UHENtTxJLFU8SyUMurEGSeW1TvM6zeo4/n9xKc+WfWeJqToVMsz3H5p7+4znGOc5zj+xC/k9Df0+BavtGamSf879am+ubrWgk5vm5q66jUNpR8YJ0loTldzxwrJ99InJbjfJ+yzeI0fYqhWc7J1KRo2Z7u+9urDDXJOrlEMxH8UTVp6VCVKm4XiTEy08StZMJ0IIY94fDAtLvH1Oz7kCN2lXGrrk5kWS0L0EpTHPeUcGCzuaT1fT23zDge6BqLNZkYA1ITEu+7papjFtVgGKZRW0M5kVNaJlagJggKZLbW4k4AwyVHQiyUMlQcjL5unafkxFy0OZ1cSymk2ho7reKcVuMeJaEctzFNk1aSzPtjrSxu5PN+pjAhXvelCckxSTVGocchRqx1bDZVgbndgLG8uLygpN+wHQZsTYKtNewqrdw5j2sa2q56UXmHN1r7c67HLy2qSCaz2+0x2x3e39C2tY3XtnT9Fb69RGxHmWXMxVIsNcnhcYsqH20YZpr96fV51MKaKfbLa+YbGJxSzu2Pc5zjHN//OH9TneMc5zjHOc5xjj+4+J3NNr9tmdMKyvJeeXrZ9xlE9cXHy7y/LoAYNSN8vwojUk0U80kryoGxS9vh9Kk8l7KAUx9tq1ZizIKLkePrpkr91zZWrtWTlAreNViHtkpEBeoAKLJUQk5PygiI5Fr5MkgRVSMGRAqUgVIqLblWYqY4IAYMAckTUvJiRxAPW6b0JU3fYWyHFYvU/r6zhpJH4rDn7vCOg9P9hOGOw/YGYw1iPGI866vXAFxef4prLzDOL3gcgDAdcL5hmiZtVwmAll9yKoixiGiFIqdMijP+JROSNkO884irgnlRmWDiHEUsytk++jPlGBVISz5akxmvVYuStQUlLGKBMSdSiIRpVP+rU2q5UaPO01YcKIZIVZPTUg2atydFzS+NCM42rPojPiMV+Mt/81N++Zsv+OqrW27vbnVdSRixeN8Spwk7jAy7iiWxBisWY6xWdxY2meC9pbErpDjWzi7jYdxt2e4PeHdD2/ZL68o3Hc61GNtQnCdjyPmkfUWtgp0AjwFsqS7XxVR8z2kFZ16Wyl47BSCfWVXnOMc5vt/xW2Fwvo3+/cFlP7Dch9b/tr+LfPv+3m/5fCjBKTEQ4rhMUs4brDgw31ynpEAxFWtCWbAiM4ZmbnUdV0lIBU2r9QFLS8mUhCuFuD+Q0kTbrZbWirKQHMZZxHiM1AlNPCJOJ59SsBIpVMBlniAHYg4U3yw7ss6T8qQtHutomo6cFBNSYmB3+wViDC8++SlinRpVAkhmmkZNjJg47JRxksc7CDvyVDCuR6xnf6sJybi7wTUrvG+gZKydk6yMv37JNmwRNEmc8TTiHNYKOZ8AWOfrDWQUYCy5JdWelLaxLCY5spiaIOlFzylQahssprC0gKg0d90/xGliCnodco7klGurZt57HTveVrxOZV/NbbJqTHpMbh4bgOVcMGJJOSxO595ZpMCnLy95dd3z1Zt3S7ISUkaMqUrFmgib2uKxxZLNkaYdZgA5YJ1RgDiF3QDrXoGqq+4CZzMxBfaHdyBfL8fQNi19u6HrL7FeAeZ6slVxGlGNIDlejnzSgtIWYz3VmviUMo9vURA6R52ec5zjHOf4PsdvXcH5UFLxoWU/tMz7/18EyJZk5puVnCMr6Zvb+tYEB8C3OH/UYBGpRpBmrt4c13HWIkYrDMaYBVQ641UzopPrnFxUwKu1tlLSBTsLDqZAGu+JYYuUTCxbcp3QMjppp1Ro25a2VdZMMS3ONRiS2gSUiRz2uk4aNAErmcGskXkSNE6NNl0LKSEZSq0iFTNRph13X/yS65evsdYv9gAxBMQWnBjylBb/KowgrlFWU9NjrIfKehJrsCZScqgJi0621jjC/o67t5/h84CUsFSKirHkGMgx6JlbwXZKZ2wvXmHaDTQXpJQWT6cQLcZ6TQKNxTq/3KUUJhAIYcL7RqnZQEkW55VGHcaBaRoW64dCZvGYKmoNMQsRppAZc8Z5r4lbvbdN0xwn+ZxJOZPrUTgzG2mmaitR99O2eO9xEvl3f/ln/OI3X3Dx4kcAbO/vmaaREBPOeYzYeg0rEyppwlOKffTZiTFTcqQgHCbYHqq4ohnoWsuq96zaFdZq8jxOE9O4Z9ht6dqvaJoO5xUM7lyL9T3O9RjboQB3vbdFjLKxyORcSKfVLGzVxtHTzksSb47mpOc4xznO8T2NZxIcefQ0u7z6DMj42yo1H05wypPLfxPwax4xlARz0jqiVlpmDotfCE9S5vWPNG4NBSrnEpGilOJFFVhOjtHaoyN3FUwzOWFyhJIJQSnaw/6GkgZ86xDfMIaErxorjV9hbUdKmVLSkvikODCFHTEcSNOBGCZipTOnGCllImfBS2bd1InY90viZ1xLSXFJwEQsfdtwGCO7uzdcuAaqiBwCrbdICmCgVIo21mmlx/WUpsUYvyQrxniMcxQjeNtgK03c+45V39NtXvD2879n2n+NzbX9ktQvyhqtkpRUiNuv9K3DLX71kubyNTQbmMG1viURSVkTRxtPHKfEQBGcAW+PQGchMg0j4zgSg5pg5mWS1ntrnYdFG+Y4viCrDo41x9dtwRTBoE7kIUxMlWLvXYN3jmkcCGFEqFWaadIkOUV+8vFLri86vr5XTaJPX39KIjKMI+MUyEWWpMs5Ty6ZGCJUFpQeda2omCNtO9V2UUqJcLAMU+beJtpWj2HdX9B3kBnYjwNj2OLdvt4nj7MN3vW4doNresxMbRaPqeagxgp2qeBIPQ5T21sLOU1Vl805wTnHOc7x/Y4nExyRmSL83RIWZmbRd0hYjq+9t70TZtGH1nn/eBQJM6/zeDunba4quovYOamq3PqSECM0pkUaqcrF+pZd8DfzXirTZnfLzbsvmQ5bNquWMI0MO01wUhxIJXPx4iO6iw1+9XJROZ6SYCvOJpfCdJgxKUk1WvZbctgzhWHRN8lZcRPTmInj5/zJD1RgqTSRbrXGOss4DQzjeLyuRbi523F/v+X6059Q4h6kPs03HsmRnALOyoLTwHmca7DNGjGK5ZDK0DHOKDbI9ohtMFWYz7qGmA3t5ad80nV8/Zu/x1aRNUGZQKLlgarFUq95zsTDHdPhAeM8bqW2Bq670OqR60AsBVMdvHVfFIN1npwn9jtNIEIIC45qFrqL8cgeapoGMUKpytEzRdt5rQ6lFJnG42RtSwYxlBw5HPYc9g/EWZ+lCC9efkTTWEI4HbuaZOdcaAT++z/7GX/7H38DwHjY4zrH5eUVwzARC0yhak0UaFzP5tIjlKXylGIkVQVjdVZPSwKWVW+BXOAQJ8ZK/99PA37nWXWedXtFJ5EY9BqN04Q3AW8n3Djg2xW+Vg+tV4HGIspym8dqkTm5ErWUkCM+xxRz8qn7/UQumUPaP7nM3XT77HZuxne8OXz95DJvDl9ziOOTywCMaeJVd/3kMtftFa+6V08u4+rn6Dm9nHOc4/2QZ3hAF37Dy/b1s9vpntFz+m1iytPvRbMp1gr4c+KWIU9Pvv9UnFlU5zjHOc5xjnOc4w8unsXgnFZM4LQ6w1Kxqe/U945+QN+pgmNYdGSEx+2wRTNGRFlGdceL1xCyMGEACmZJ2ZQxEpZWhhGjlgFWCMMd23ttl7QOUrZsXvywVg5O8D6iuAOpNXpTqz7DcIeUA1ebFmtVyXfz4mPdT9szRGEKhUksLnvmyk/MkRIGci7EFI9ia6UQpok8HJAcOYxxqVA8bPeM00gMkcYUJGm2/tOPO6wRYjpUf6QWU7Q6cRhuePP1O/7i3/5bVl3LF7/+R16+/oHuKzYkybSdVebVjCuyBucbtXGwHeI81ErNfE2s6RDbnuA3LDkLeYo403Nx/QPyWAXpSiTlateQMyklcs3Ec4qYHJEUSWFif/t5vX9fqF9T/wKaDa7pSBUHNCA419KWjhBgHI+qtxanGCtnccbSdTO2yy4qvsbaBTM1j2vVx6mWC3NrJiXFm6TINNwTpl2184AYE+Ow5+LiquJp5laTVjSM0aebT1/1/PEnWiFJJTBOAUzg4sUaxDNUBeQpF3IxxKD6Rm6uVhltC00hkMuE4WiKWhQtQ0wKdJ8ffmKOpBAYBuHOWPrWs+61arfuOowJlBKZ9gdkHLBORQWNbbG2pe1WNO0aqQqlpVqTaJtq/tzNV7wsLd/fVxgx9Pbpp8zcPK9omkumfaZS8qK9/k5KxrmkxWbh26KzHa/7T55c5jmLhnP864p91Gq/k6etE5zxxBKeXOaiufwvbsvx+1LcPtqg/E5yfN9tH0+//aGE45utJf1tjgDfb8HPmBPfp+N2nmBEney31ElVBKySYDFSKKbhVFlYZegTeTxgxeBMv6ynsAuDsRf4jd6khOCspYi6PCvUoYJAJVWUcaKkQKq2BvvkuD9kCDfs7t+x3mx4+cmf6DmKYYpWWwwk8rRf7BWmaaJUB08pBZn58zkQw8ju/pa7uxseHu4JcZbgV8VfawwJ4R9+qYnZ5fqHtKtA1/XEMeJWHRQtu+8f3vFHf/RDYhj5f//u7/jBJx/x+T/+P3q+xfKDH/2EMHqsb0/YXwUxkcZNiGv0PswO29ZTsiggmKAtKyrV2AilWFJJNP0FdBW3QyFlSCmQ04QsgGOVwE8pUmLA+oDE6jIeR0KYMO6AsY4YMtQPQSqGnCI5ThRxi8CfsRYjgnUO37RVuG/23WqJMTBO4xHfUrEs4zgRQsA5BaIvHkyZmvCosWhT/GLvQFG8TYoRa9RpXMe1WbBqEhOXq5ZUR+/9YcJmWDUZG94iNnHhddIssiE5AWkZhsA4hHqMjpAyTdNgnbqC5joexnEkp1wT7uNnKaVErGy9QGAaJx4e9Jxab9j0DetVh7MJcsDWFo21gcaFyuLKuFavj3FNFXqUin9SXM45znGOc/y3Es9jcE4qGjPmZam8fJDBdIKdOZX3lfLhJOZbkiGoCU41UjR1AnIl4iXgRA0XJ7HMj7FpeGD37ku2D++gtVx/9BO6Sq8tNGQpQES80PrZS8NQihBLgZSra/fMwtEqR0l7hv0NpjJWbJjoDUy2I9pLvt4J0zvFnjStJRdHSoFURp14qvdQrpUMSoY4MU0KyB0PWw77HdM0KU3ZCM6eXDvjsLYB4wk1l7sdPJ+KoxSDdS1GhDDUiTgV4jDw5edf8Kd/+mf85je/4eKVPmX+7E//gmJaLq6v8c6TKqU6HO6RHIhToqQdvk1Iva4ldRTxlJQYpwlj9Xy6fqXHS8FZoesvgPq0WgolJqYwkuJADBPJnSQ4OWniGBMpalIUxwNxGklxpKVDTLNgQqyxiNFEb6b6L4OkGjSVVFV56509HLZM08Q0joDgXEPb6njIKZJym+6OwgAAIABJREFUxGQhJXlE5ReBHCMpj1B03zD7hWky5Bf21TFyzphsGQ+JN28UT3I/JNJwYIo3GBnZtJnrjV4j7zqy1e2UUmhnanqpTD2xJAw5C7Geb3aWQl4MURdPqVyQqnNTSiEeDU2YJnjYjXh3oO8cVxc9F6vZXysyBe1zy1RwFb/UdGuM9UpVN7OWU73mRviGuNU5znGOc3zP4ukEh0qhft97SUSZpo/Av/VpsjKMpLac5nXKSaL0IVbWkTI+b7Oyb0qBHGH2E5KIJWJElIWUMtVomYmGqX2FyCWdb8BsmNLMHlItlFJO9U9ACApMrXofaTFURAHIOSA5MI6ZkGqrghWptGTJNJsLXE6MQbd3GO+IMZNiIOdQWzOzWF3U18JAGHeE6v6dc9RWmHGIq/5CMhtTtrh2hbUOrFfPKOBmD2O0NK1grW57dhp/uHtgColPf/wzfvH5HT/77/6an/2FutL6/gLnGqQU4qTHoRfCQRopcYQ0ksOAk/lpXhk92Xp1MK/Xbhq2GBq8M3iBEhJTrValEMhxXK5DPmnJ5eqFVEpGSmHuKzrfYo2QYmC/vUVkS7tWkKdtL8hFSDFXwcYjY8z6tk64iZgyaZqrX5oEGwPDMCAiTFMFik8j6lOlyc487kJKxDhhRGi8I6akrU/AN0rnn6tq85idrSNyziAZawMp3gFwd7sFIgZLmCLv3gZ+UTQZtrbQG0PfNVy9uOTysgJ/rWDFkCPkKJRsaGaDU6/7DgGmKT/6LJWSlwRM5ESor7aZ0hgYBsPDdmDV6kf/8mLNi+srLi8uORz2jJOO/TFuK2vMY6zTas4sG5CPXdxznOMc5/i+xtMtKpFj4sKRLWIeVV1m4z1lGQmaKBjs0SfIoMJtFVNj3vt2XCo/HJOiWUpMKCiztk4mWAIQsMTiKeIW3I3xhosX3aLdUShMeTY2qjlNHknvq7LWJ+GUEynl5Wk+p0JOAcpELhBmElDRdlXOWqXIMTLNiPAUKFl9o6rQyZJ4TOOeEA+kFKjEJD1H63CmQXxD228wpkPqrRFj8d7T9z3daoVz+noeHrjbJZzNOAkQNHkCaFYdr370R/TXP+av/pc/p19dqIElYH2DpARxwjhLzhVPU1rSlDCScY3H2rLoAVnvsU1LpiWmsij7pjhB2GERTVRKws1GjCVibMYZoWRHyua4Xq6GlVn1hY6hejBYxTuVfCAOVTU5BpJtML7DSLMkJNYCpZBiIMbpUQVHx+TsCaWtqN1+W98q9VpWZlCdvHNRergYo1UmMfiaXLRtqzo9VXn5FI82t6mmBDkLU92PLZl+s+GwH+m6BmeFYVcrWSGxLYntEPj6boevyav3jqurC9YXG5q2xdqCd3V8haIPF42h4LCV/h9D0DG90LyPrDU110zKVihCTMI06rE/7Pa8eXfH5eUlrz56SdPo+BoPA4d8wDtP0yomy9SxZ4z5xmf4HOc4xzm+b/FMBadgpSwJhBiDEaPFagHIi/ljKVG/UAWsGAx5qWgXcSd4gRPZX05aVPX/y5M5VYvDOIUS1/5/EoilUHLV5ZATI8CsEExVZRVyFS+bt6uqtkkTk7maUEv6KUZ9Wj8xFkwx1aQnPq7ElFQn6ESJobYzqk5JDMQ4KuW3ZEyOC3Yn54SIulU7Z2k7xQdhW8R3FDzWerqmoa+tta7p8G3PNE0c9ju2NVkK48Aff/xDvE+UKSLGLbbyFx/9kJ/+xf/E+vI1ZMH5hjo3aTJXIlkKOY6YemyGBEYxRKrmbGndTNE2lDxQpgfu375lVynxMUSEjClB2025HGn+1S287Tq61Yq26xVPAhhTsKiBahZZaN1a/Sk6qYsQAoRajem8pTQrJtT6wZ5U/GKckCp8aI3D2COQWKzHGqdtmxgYa9WskCgIMWVVJk5HjSMjMxjZ4Lzj+uplPSchpYK1btHc0WtXbR+MICRiLBwOFSR+s2W/faDre3y7AmtoZgkao4n2ECbGYWActa3lgIftDus9XddxffWC1y+VirzqGg7TjpwSXmQB6pVYkw5rKKJVpbm9l3Id9ykeP1/L50mYhpHDbs/tu3dcXasY46uPXtF0PfvDxJQm2s4cM3wxGHtOcM5xjnN8v+NMEz/HOc5xjnOc4xx/cPEdvKiOcvciqTJ/FO+gIMfZZHLSioW1SJXYX5R1538r3XQBRoKmWKUsVgJzlHn9ueS+mOccqy5H5svx6TvnsryfS1nwIjnn4+spLS2quTIz/5xWatIisqYtrGU/caxibFq1khNjQhFD12/IFFIKlDhhZ7NGI4i1GONxTUfbKpum6VY0/Zp1v8FZwzAd2FWa+M3DwHRzizWGxjma+uR8cbni5fWGphkY4wgl0/aK4VhdvKbbvKBgcLZS6atHVIwDYdqT48iv/uk/sq6sp5evXlOsJeeoeJ4pcrdVAPIwDGx3W7a3b3l4uGezUbHBpmnxTUOu19ecPtRPiZASu9sbNcK0hrbVitV6s2G16rFO8VBSr09rBWssOSdSVPuJZvY/mu5wxrBqr4jGLy0lwYJRiwepPlJyUt0p5Sigl3NafMamkJQJZbXyM1XsiZiZleXp2hYxSp+fx4MxWrUUOWH5GUPOauzqnOdw2PPF578A4DAU+tUlUhLeWpp2jZuBziUzDQONdfTri8WTK4wHxnFkHCcKwrD/grdv3ui9XfVcX1/Sr1Y0riHNatil0PYdMSXyNOnvcvxMOefA2lrBK+T5msSq/pyEGEeGg1aRbm9uuby65sWr18SUeHj7lrbX++dPWnvnOMc5zvF9jWcTnFLCoqYomfolWRMchWgCVNAvULJ+sYpdpN0faWaUo/y8AjM5JjdVOVUXy0fJeo7rlIqfyfWLupxI8+dclvdLzqRy+l7Ssv0McE2PE5/3f5Z91QkyR1WVBbQlUxJOBHGODPjaFrFNg7iGItpG8b7F2iOVPiOKq7EOWydO71usc5Scqmpu5nKjyc/HH20wBD2fNJGrhsK6NVxsGjrjIWdynhi2Sre+v9/zukidiAtpOjBGnbhiiJgKm03jjpv7LwHorCreHsY9IoXD7oGm1vdCqKab04DzDtcoA8d6p+aNSHXrPk76xViySZBmTZzIfqtKtNvbd5SS8Y1ntVqxubgAoO1actIh0FhLNn5JTqawZ9olmgLRbRY1ZWMEg6EQKSlXuYK5pzqr/BwT5TnJ8k2rCYtYrPXU21fbeZ62bej7FSKy4J5KKYQQaRuvrLuFyKViSSlFShb1nqqtsDDquAmT+mQ1/SWmMviM8/imocFgjSP7ymBqVnTricMwkJPew1DH693Dlof9nta3XF1d8fL1DwH46PVHbHdbdnd7YspqOVKPLwZtz4VprMBrWUD21IeAkkFyVmkEIMbIYRi4ubvjxctXbC4u2FUX9JIT6/73p4wK2hptbffkMqXkJ98HoIVLf/nkIrGLR4bnM2Er2P9b3zeOjb/6/7WNc/zrirvpBgAnT0+/ylB9epxu3IWaSJ/jg/HMlSmYEhczxCqGUScyq8lJfYIU49XYWTRdyeXEUqHwqEKzYGbmokzOJwlM/Z31Cy2Tq4fQcf3TCo4mIPm4bsXazElQelTdUaBleQ+DM4OK5+RnqeDUp/LZ82muIqWSj8mOd1jvoMqx41ps47lYr1ivWprmaBhprMM3ndogiD1SUWpi6I3Byg27u89pFgW3HdEU/OoVmUvGUbEYjbN41+Gdau4Mu7fc3ypzx7qgSVhS8K2y4WZNFEccD+zv7snTgK+39uHhK8Q1GO/12mOxvgJYYyClSNf1SmGeQbbWYSpFHXiU4GSbkZwwyZJzwKSgCQ+QrVbGwhT46uErvvpKtX2apmHV92zWvQrpeYuv4OjWOWIuOAJt25Cl0v+tX9Das0TBAm5fgMi2goytXndYcDrDoFT+rla/rq6ulnXatlWY8gmmxxqhaVSHZ6kgRjUCNcYSc+Lu7oEQ5uqlRciE8aCSATHRX7yo+zBMY8G6Bmct63VlUTlLSJEuaFISBmWj6VBRd/Miwt1u4G73S70+fc/FxQUvX7wk5cx2+8ChrtM0Dev1CkohhMAwDMft5VqVSnkREdTXMxKSuqaHkd32guvrikUSy7t37/gvHe47CIzZPC7CjN8W31WksJSy2Cx86/7E4Z8RbDvHv644xKctR/b1/fUzApBe2meTYyP2RDDvHO/H01emFGKYaDpf/zsrmFqKiFJHF2kMnVyWBEKEBeJzWhHhJMFBv0hLreqcJjGa4OgX7mk7qpRjK2qp7izJyjHpKbksgOLjvrWVlHM6VthnQHFO5EpxnwGsRkSTmZwQMXh3vA7FO6zztE3HZtPRr7Vt07Ur+tbjZWJ79yV53HNzo4lHLkLb9awvrhmDLBPzZnNJDCNl2kF+4PJ6g++0qjGlCWgJZk0qLcHr8TatxTU91lp6UyhpwNYv4xL3jA9f0Xilsodx5LBT5dqbm7fstreUHHHC0evJFozNbA97unbNq48/Jc6gV2uYxgMpN5RccDUrMq6haTu0/ZgxYo6txFpdK7XllXMkpqMOjhTIbaTtOxWuq9d1HEf2221lOUFfgdhd3+N8g8Xhumuk0wpCqhW0ufpnxCwtKmp1R4TF+bur6r5N0xFCYLNpqzP43GIU2rZFgJwSxpplPLi2xVmDMUJKmVgrWwXV4NEqXuYwTbS9VhHCGKEE7c6iraGxtoGM9Vxcv2K12hBjItSkwzaOy801YhQAPA7DoqUUq7N8SnW8zm7puXB3d892u6XrV/R9j/c6HrbbB27vHjBSKgjbLeM+IyqMaazeq7mlO1POQySFSBgnxr0e9+bymn51Vuc9xznO8f2OJxOcAhRpSQuVWFMWMUDRltSceCxPzUXbThlAjmq8UCsvnOBpasVlaRudJj7vvTbTxudqz5wAcZr8oNWVUpWCT1tRqg0iUERZWYuZZcYYwTUdgiUlfWoFxSeUnLDes+ovWNdEz1uPdYW+MTSyw8sbTNInaSGT9iMp7GG/JSePhMpYCQ3D4BnufgUiNLVd8vauIWVhmhLWGXzb4atLdNO/YjcGDvsHUtwuOjjWOrx7iViDtz3rzSs++oFiZu6//oz/9H//DdfX1+y3W6Zhx6qf20qtmnT6lr7r6Gpl5+bNr4njLYfDnodU+ORHP+WiVjNSsPiuV4uBnI8tN2PBeaVJI1jlS+t4WG68mkamHEizOnOeNYlqS3BmmaWkk21M1VH9wHanbbftwx5rDKvLPS9Ni816PtF3UIrKlRuDVEFAgFO7ELGGtvV0c2KUMt43OOfYbDZLFTCEiZQSfdfhnavaNtR7azDOVx2cxDBoG0pyIsWAFUNKkTdv35GqXUB3fVUtNXT9Ipam0ftuXUeMQoyw3lwpJqmOSQE637DpV+ScmWqCE6pQZIyBMUzLNZVcSPnIAswps6lJ90cffUSKidubd2x3O3IpC+W7xKxWGjktTCu9dRVbljOptmnn851iohuOVhnnOMc5zvF9jDOL6hznOMc5znGOc/zBxTNWDQbTrFQxGGUBqZ5bUZ+lk4rLUm2ZnyAplAUwfGwdwbEaQ3n83uMKzrF1BeXYaqqA47mCIyeg5UwhGxXvk1y9eip+olQtkIKCt6w/GvKlnCojasJYwdYnbNNc0TSO3hlebgydUXBYPvwcygMmD5g0YUoiWX1aLvYa113jmohv9lhnuJLarsgtlgJpIOXAOOrT8jAUMC2vX1/hfUPOmcNeqzHj3VvudiOHw0AIqh0I8ONPrrEqe4Jg6VZrPvr0JwBcXVwxTaOaBV5eVqBuvQ5olcM3DY1vaEQrA4df/Zx02GJyxKaR7Rc/x46Kubh4+Qn9q9f4sVTbg7lqpwwiawxWjB7cSXtP5ptc8SrLeKn4KKn3Jc0mnDFQkoJy0zQRw0Ca9DrkMJLCyMPDjmi+5MeXaj3hnJCxlGoMmU9kdsWYBXTsfcuqv8DUnnbICe9m/zThojLDxJjq95S0Enii4u28JYRUBQsLvlZcxsOenAIxGhDP5uITfvLTKg64uqDrWoZp5GG7hXLUrunbFrGGEAPb/YPiZIC+7zHGKoPLOvp1h6n7iilyOBy08oUQa1vrsN8TQiTGQIyRcQyMo7ZG3f2WrmvZrDf4rmcKgTDNxqeJkuYKTlywZQqYTvX92nau1yGnwLh/4BznOMc5vs/xTItKSPmkyJPLY4zFey0lXacsiUk5ee/0/Xmiez+x+WaS883X9be2mkrdyallRMkZaw3WCikeqbLWWVrXKgAxCzHOCrqZ1juM67Cdo28Na6uJx0oGTP6SYf9rzO07YtAEJ8UdYgy+7Sl2A+4lYqton7tmlI9JpucQD5iQye7ImpE8IGnLsL8jRz0n36zo11cMoXB3e2AcA6G2CkJWQKn3De1FR9vq/bh+tVLD0aKTMqfX2xkat1mA2q4cBRlTUtdqqYliPKEL77f39G1DawoSD2zf/osenzVcX71kc3lFjBsOB006jBWcUWq3QTSxNCfJRVEsljHmkbb/bG6ZU6yCifO9zZQYVZAxBUoYTthIO9J0oJkG0rjly3/6OwCuPvkx7eVrxHS671MgcRUFFATvtQU5J4iN8xgjeKvU8tmewzpH2zbESW02rDWMNRm4u98Dhb7vESmLw7fkqGasYgjGgrV8/Im6vq/7hovOAiu2w4aYDW1tk5VSmGKqeaEl1YObpgkDNN5XM1DBV9bY1XpNWBd22y3CCt9qEhpSYhgCOUdCGJmCJjnz9lIpDLGQSlFafWXwickUm5AUKcUuWCSb83J/JNb21dyOzunIwjrHOc5xju9pPAsyzun4xZbLiQz+zKaqT7izVsxSYTlJVHTynUHBRwzOhys3j/+etUyWyVukPlkru0UKi6aNMwZvvTKjcqZptUoBMyW9PpVbS9dXdk5r6TqHlQNm/Bw//QZ2yuop4Y4xH8g4snmB+J/pQXQWkQ1TaUmmwfhXhKKgy3EX2O8HYp7I1Amjeg8ZCtYYcirst5lpUNBmCHdM6TNSKeqtZBuMnTE4K1brdWXuFNKg29r4Xn2yjMegNPhcfaCapidnkGIoORNTIOdjZcUaBd42rrB7q2yYHPasVz3GOUK0pBJp6724e/MZYj3Xf/yXuHaDrQmbJokKLjZGcMZgK7DVWKtP/aWoovDpfWdWqs6PExzVGdD7lDMlBEJQrMc07onDjhIm0nRgGjXx+fLX/8DVqwdWV58gzYps7cJos2IQsTSdWlz4xp+M16T3Ime898u4G8eBQlGHeVI9VjmO8XrMKcUjeD5H1PC1EOOe66uO0eh7TiZK3CPZcNn2+NaTUrVxkIxZt4jtyKUh5Bk75BmnkVCTrpRZ2ICHccSKZdOvscYQsiabfbfmxcWGmCLDuCOGgZI16Y4JdkNkSmlR7J4T2xT1tZysVs5OGYViMcZhTCLmCHWdWiblHOc4xzm+z/F0Baeobko+mZjmBGUxE5YjrbScVHi+keDIXNV5vxpTN1OnwFMC51yZMcY8qgZJNQDNOWt7pJmpdNr6aHyDdZVNk+c2GQoqbRx94+mtTpwmvqWMnzE+/JIwPRCNIXtlMNF9DLImxY4pGMZBn4iHAaYp1TbQRC6BUidVEVOPUXDeMY2BXB27S1GgbYjq1xWjHkNMiSIG5xxd67i4XLHaaFtrDJFx3HO43zGFic7r+az/zaeYosaMhUyOkdbrhJYLarYo2iqUbJcCSiqBEhIl7Li7+xeYdLL1FlzTatsjC1M8CuZ1JrO9eYPb/IaLj37GaqXViZghxbHSxKtv2QzwNYIYwVqj9/akxbEYq1KT1xPmDgVyqeKKqdDUSdVPIylOClhOSU1BgTht2R8OPHz9Na8//ZFq6Sy0cYt1LV23wnuvlP3Zc2o2VK0mmfMxGWsI06i2FyLkbBY20vXVi2rGOhJSXO5rnCbV4xG4fxj553/+9VLR69uWm+LYPuy42Bhev94sVcWSEiY9gNkTY1kSs66/oFn1iOkJSZhCIiXdV0qiSZuz4DKVyU/rCilNOCus+5ZtHplq+6pte7r1hikmwjQxhbBUMENUllRO6p8WqthgjIlkMzarXQlhWtqP5MLicHuOc5zjHN/TeKZFVVQR9UNJS43FFLOg2IoPKJyWUnhKemJJZE4wz6dtJ6AKyrFMSILQtt1SmQFti3S+11ZFbZfME1fjHa0zOPaY6XPS9jMAxvBWE7bmNdL8EVPqOEy678NemMbMNEXidJwUYplpxRlyIcX7Y6UhqgmnUA0cjV+OvRRl0ogYrDU0bdVeWa9Zr9cYCZQSiakw1upOzg5XClOYmPZ7uquK01j1WOswYjiMA+T32kOGKhKneitzA0skk8cHHr7+NePD1+SkVR9jClYccZqIIWKtp1R9j1ASrXOM2xtWFx8hvioZ95cEI/VcTa22zfdc2UcimuAYr0kQddnZ62nGsyzXp7avUlIfsXk0+er9BVX7oWJSVN+mMBwOTNOg7Rcz09i1xdN1PevVBt92y/HhfPUZS5RyTHDEgGk8MYSlMjXT2Kk6PyUnUlDHdb1HiVSEmBK/+NWv+OzXv1pUiZ3z+MtPGKPj8y9u+MdffMHlpSbQq/UK4wRnMq0VKDXpvn2oGBxL0/aLSrN+DjzFeKZgGA5lYbRNbaRrW1wVN7zavEQuZwNRTaJbn4mNJ+VMqL5SIQSmKRDCSAgBV5O5lBIhqudajBGMwcwMq5T+q1RwvovehxNHekYcTThqWj0Vmbxgtp46pve/q87xdHy2+9WT7//t13/LX3/8108u83H/Q+6n22f39U8P/8C/e/nvn1zm93n/3o1veAj3Ty4z6+R0zwhbWgzuGY2lswbO0/FMBUcTnEf+zO8lOY9aVoVHgnjLwJETmvZJLEabszN5KUs7YJ4w5580JzFiaLu2miwmhEzXKaDT+kYNEWPACDS2oanico474uGGOD5AGojVuuAQXrM9CPvJMIyZEAdmeE5MEyEMxBC0jF+f+rXlk5CiFuVyUnnKIpRq1mhFsEYWJ3Qxhq7taXs1npwn1Zwz292enApt09H3Panovh4ebtk/7HGSwcCPfvAxAJeXl/i2VZftpAmfd0cHck0wBC+GTGasrtx2Krz5+hdsv/4S53t8W6tVJTKEgIinsVpVibVCMVan7g2Gdv2GVdUDwhia7krtDeyR4qy/FbBaUGNGY+2iiE21QhARSvYL3kgKOO8U+9IYjHGLfk0I8Th+ylFduGlavPdcv9TkJIbIMFOYRQX7mqbB+xYj5ig3IIq3EWNUDFFm40w1ARUyUjJODOM8xHMmR6Wv5zBCHZMxJbL13Ly75z/8H/+B/f2Oda3A5TRx/+afmWSDsS27h4n7u5tlPOAszhhMTrjZhmOz4upqg/cOtg+UUhZ5gKbr6PpLxDSU4hdBwf1+h3cNbdPUdqZBqLo6ztJ6h1jL5BwxRVy9X42zNN4RgiPESAh1jNdqToiRECPee0100KRobmV936Kz/WI6+22RSvpOCQ5Ab59WbD4nN799dK5/8v0frn/AkJ6WIbifbhnS04J6AJf+iimPTy7znIL2bxMv29fPivNNtRrrnxGRFDGLtcy3hf8O4pf/muNMEz/HOc5xjnOc4xx/cPEMyBgFFz7xsDO3nmYPTgFlWMnjZZYqDY+feh5VcbTUs7y+tA1EaJvKRBKjFZRSaLynaRpm050QE5ISXgqGDOGGsZYxh2kkh8yUEzcHuFeMKtNh1DZTEUrKxBiZKnMnxpE8t0YqWFYPQlWMrTFVwdkgleUirsFXDBBkrPdcVmn+vl+RUmZ/ODCGiTm/dN4jvlNBtzDy9Ze/YnZRapqWzYsrGu9YtfDTn3yq22obMkJKqk4rYjDVQkFleAUrlUWU1FsK4ObL33B/e0PTrmhXL0gz/iUGMiPOQBQIcVxE5MYxkNMed7fjEAp/VFtrMXuMaWj6Dd411boj1nNymOYIzM2Fpeqi1hfqYWWdWaj8KalitKv0besaSp6fckIdJ6iJ6TwoJWNs3aaBxnq6fn6qKYCpbcwCohUZgGyMsr4U+sV4UJ8lQ8FatVfIOTONCV9NUUPMxDjV9pUaXOr5WIYp8fNf/gsRUSmAWt0pxpNLYhju8e0aYxyHqhBdSsKSCIAxfsEOvbu7w35u6LuOi8s1V1eXrFc6/ne7He/e3SBG6PoWV8ddKZ6pWfFwaChi6JqGVVVtttHC4UDjPW3X4ayjEJdrJKKtTlPvyenncq6ApZyZKpvMWrv8fY5znOMc39d4FoOTVa54ee395ORDIbMp0YlH0fz6++vPrSsRQcrR92duhdn6/xjmL2T1AnLeUUrhMBwelcsbmyllIsUbckqMQSfw7UF42BX2oxomzngOUiDGkRAncoi1JTJjPYyaMbq2YjvqsRmHsR7nfVXDbbCzAaWxGCM0DtbrjnZ1yWGvk8HhMNF4z+XlCwpHD6wYguKUYsHZwtXFC9bVufnF9ceUuCPmhJFCXwHVxqlZJDODqWkW6wfQZCwn1ZpJYeLu3a8BuL/9lR77+oooQoozwLeQEMQ6bHuNpMR40ESvxB1TEKZU+MUvP2eKegw//hmkAhdGMFiKeEpenLewradzjlKOruxwBBnnOSmuY2KmRIuoFULJeSnR9p1bzFKtsZzCLEopj3FGNXHMRyUmIBGnaRlPYjw5avJFjuRwqMNhgrbD+pZcIFRnbtCWFhUALXIEvvu25ed//5/47PM3vPrkB7xLabFQyHaNtBs8I7kYfNOxqWabh2GHULAiqj9T5jZZIU4T9+PEw/0Db756x6r6VL24vuLFizWNF8YpcNjXhLJZYctESIGUM3treah4mqZp6LueyScO46QaSM3MdtP745x5pFU0K5PrvdDrvrRAkcV/7BznOMc5vq/xHRBKZZlMpOhPmfGicprkaNVmZleZU+dFUBn99ys4VdPGzNUbOWI4pIKJUyoYY3F29oHK7Pc7QgzkrAnRzCRxMpKnHVOZGIPh4WGQ2U/jAAAgAElEQVTi7kH7nYdxUDxNmsghLUlbKaL6K2SsWJxtKiBWv/yNaTDOY51fqNvedYrfsIol6ZoVTa0adG3LatUjJfFwf8duN2DrehcXG8ZxYn/YIwaaWnFZ9x1da7jqHK1/IOaRYdQe9N3Nr0EahkETrx+9Vt0TcoKcECM439bkq+JLUlIwc4nsD3tu3/wj48MXegyXV1jbEnNhCmHRXslFbRyHGGhsS9Os6GtvWmxHurlhv98hOD778g0An335Fa8/+QF/9e//Z50opcO72eXbUjBgHdZ4XNbqB6iwojFSx8pjd3lX7RHUzDKTKgan8R3OaZKj+jSzh5apg+6oi5QrnkYQBXgLGMlMYU8eqoaPXyGuB2NIMS3jNkwHpCTEGEIskONi67Hf7xQLVrTSFyv4+Ku3N/zq178mTZmrV5/w+n/4a/7ls3+u127DgQvsfs807BEMfa8g7asXr9ntHxj3A74RymwRkgPFlYXK3VbQM8BnX3zJm689q77j5asXXF2r+aqYhof9nsMQ8NYz5nF5SHDO4ZyjbdvqUeUWZli/WqklhShdfk4+Y1TM04x9MsYQ588vsjiVn+Mc5zjH9zWeT3CKXdolql3CkriUwpIoiKnvH8s1x8oNOvWe0nGXZVDfHH0qPjJtVK9EFVanYWKcKmMlZgSLd47GO1wemGGgqQS2u8L2LvCwu2WcxmWSKDlDiSgVXRYxOLEWI15/u4J1Hmf1adk0Lbb1eO9U9bfRybvvGpxradsVq3WHM1p9ATX8HEMgpELTbTBNZVsBzgibTUPnrrBloMz6OGVQXke2PGwzYdowJk0uhhzxRh2nJQdWdXKc9UuatqlCf+Xou5UimYnd/Z7bt7/i9uaXuDmZunhJTAkJ06OEMsVSk53CMAxkX5YkwjjH6vKCECPjOHCoDJzWO7766iv+5n//3/jjP/lz/vjP/gLcVb2uDWIcBaX0IxlXncGlek/NFYvTJFlVhy0xxjpBVwYaWrk5epTN1SBX9ZiqYo2wqPEWgRLVMLXkQAoD48NNfe+O1eVHmGat1P0KqM4pKqgag2163V9NzMI4kKrxaoyZUK/d3/yf/xd3t7dcXl6xsTu6laf8WKn0b76644fXLeGTl9zdBbbbLamOV9v1fHz9kjBNHIbDci9CGMjhgEu5Kgkfk0BjMyEl7rcHdvuRr98qY+Py6gWX1y/wFx3b7ZZpCrWqpUJ/+2qU2bYtFxcbVittu43jiPcNfd9XgcwT53TnsDYwTROhVhnn+2XOGc45znGO73k8k+AUjKQFaKNfcPWnCDO+ATjRxdGfU70bKrsKqFWZo5gY+diiKqWcMDUiwzjVyarga5mm8R5vDY0NOLsnx8TtzVFpdn/YEmJAkho6HrV0LCIOsQaxbqESi/M41+J8h216mrajrYmMawxN27BZ9fRtQ1Ofeq3rcN5gTVZX6amQfJ1wc8KTMMbQAiIJL7WNkHeYtIOcGKbEFHQCGnLHlDuKaRASrU90dXs+ZkLIDCHQuLyYZuaq2Dzrryi1uoq3hQNh2rN/eMf923/CGvf/sfdmz7Jk13nfb485VNUZ7tgTmgABkgBJkZIpUWG/2OHQg8MRDj/7v3WELcthCiBAgAAaYAM93vmeoYYc9uiHvSvPBW31pYIU2YTqewA67jlVp3JnVu6Va30D68uivoo5E1IgpURwDj/Pdb39UlQkMt6npRsjRCZmWG/O8THh6oZvtOVss2Z3+5pPPjoQ5gMX7/4uAA/f/V20NrUAliijlyBHLcSSIl/k/G9ccXUieoz+MNWoUas7Oa7W+m7UJAQxBWQtbso47GhIV5RkxWywvMeip4gjYdohkyATF+VNruGg2XuEsiWdnGMRWMz3tGlBKZ4+ew7Aq9evIWfGYcfWZHQD97vSaWvfvSRIhWk6No0jPTxHyFIEji4itEYZzTCN7HaH+hUq3ct5nkmhuCT7uRZZIRS+VAyQE66OYF+8fMXN7Y6z83M2Z2d0q579vngcjXXUaIzBecerqyvUTeGmtW3H2WaD937xCoI6GhYCLRXCWozSS9q5D2H5np5wwgknfF3xVqO/aZqW4sJYi1YSQSSjSEn9xkhJIAjHRGO4G1EJyDEvs/wjjrybGCPzPJcb+pEbIwRSalpjaY2i2p6gVEBIh5sCr18EtocJ58vGkJJHJFG8K7RCKrl0IYQyhV+iLdpajG2WY2rajq5tsabFGIVU5Zhaq1h1PY1tiolhPVYUBO+Y3IybdsQ4kdO0LFqOEaM1ISTmKBjrIbuQmJ3mMCZCbLBVbi2kxPaS86Yhu8A0brkei8PwOPhCQI2e++dtKTiBnHzJFXIzGYo78XGTzgmRBNvbJyQpuXf/A0I9GUXinhmnmXkYlmLz+JSeasEZZCLUdVCqdIiUUqzPLpZUaWU0aMv6/JLd1Us+/+RjXF2ieZ64vP8um/MH9P0ZUthF6hxjRqriL5NyWpyoAbIoydk5p1r0/qah3JucrSOklORcXXhzLDwaIPi5uBVXWblUBn0kSB9m3LBFZ7DdanG8jjHg/IHkHcq0pBzI9f2in0sH0XbMzvP9H/wAgN1+j9alONhvJ3zQnL9bOnDt+T3WFtzhlpR32DYiVcmIenj+Dtlc4iI8fnDBUIngKQQyBh9hco55Gpa4iGmcS+K5d4tpH0CK5cFju9uzHwbarmNd87U2mw3TNDGOIz6EQqKundTJzUyvptrZ2dD3hfultcZojVYarRTpja6NVor5zar0hBNOOOFriNNd6oQTTjjhhBNO+K3DWzk4SilSHVFNkye4CTftUcpi29Wdxb0sSpCcqpxayUVGG0rq45JNdOzieO8JLiyjFSFlGWtQuALGSjSeVvmFz7M7RLbbiXGeCNFDjov9vlYGKes4Sim0MeiaGq5Ni7YNbWNo246uKxyEtjFoJRDZo9OMkglTFUzaSmI8sN/dIqRZ3OlTjPh5QKQZKQJaZqQsx+CiQDZr9jPsB88whYXIK4TCKE23XqNkglDl6O5AGA5cjVdY2+C9p+2KAd960+PmSHAj3/zmu4uDrKqk4pjiEpWwOE4LybPnn6KU4t6j3ydLiRtK1yDGMuKY57lK4o8jqkKaTalwoqSQUAPXQyijGyklRmlWq9IZUEYjlUa3K+43PdevXvDpxx8B8K4bmMY98zxycfmIzeactunqOgjI5drKy7izoEi+70aZcx2hCYpcWSm1xAmU605Wp+i7kdcSBJkTwQe0tvhQxoZZHknQlhgdwR1AZHKs3aVUCdfRk6IjeQ+VM6SEINbO4q8/+Ru++PLzejyamBKHYcC2LfNuYqCQuu/LDblvWK0uULZDicw47evHu8XqFVo0iBjo9VHzNZLTDtmuSeuGlFe4yvGaXGCeZ6a5ENGPKrjgIsEXNaAPHuc9t7flnPd9R9+t2Gw2hBjZ7w8MY+HkKKVomxaldOnw1LXtutLVxNRujjFvqOAU4mvawVFSo95yWytJ9m/nEP3XYOI3v8VQD2AMBy6a+3/vv3WMKHmbOd2j7vHi9vufwq92v2Rjzt76N8/tOe7vcIz/kGZ/K735yp9bVXiA+i1Gf1JItDg5Ff998NbVixnEQi6UaNugjS00nAy5zuUFE4frJwz7K842K9q2Q1fHSt1s8LRMzpdcneqvoqTCShAWhGiRymJtuXEaLTEq4lzk5esD+0MdE1RnZSEkUhUfFlW/MMoIlBYo1WGbjqZtsG05xNZ2dE1H1xq6pkGm8gWah6cIP5W0aduSkcS5jLzG/bYQhr0riq1KTO6swMrCVYnJMMyS7aF8eQ+jw8UrpNKs+hXdqkfXUU9vFI2xDIcbtIwIWz7bPgtCmMl4GtOwWd1nP5RNMIQDDy8sl6sz1mZG5rLhb3db+q4tcmUBaLnUCfvdSyKZd977NtOcGcYtsTo3xxjw01SSvoG5cjtCKF41hYcDKbmFcyFk4bdIJUmmWRQ4QikUxXF4fXbB+YPHXL8qG/vTzz7l5sVzcAdWreIg8nLejWlKYVJl+JHj9VDGIMUvJ3M4DAtRFpGrXDujjfr/BGAeeTdaGZw/OiOX+ISYZlIGa5olDDSYhhwTuarrjC3XaiSSjyOwlEiwhF4moRDW8Prmmr/6yY9p25r9lYqSyzaGED3WtuDKNfT881/wzFwgdce9izPuXfSEqpYKccLdPAMEjZEoWW7Efrylby5oReTm9hUZz8XRGbm1BNuiH90jiMdMczmvswtM01g8lua5OFyHO4L9PHu8D+im4eLePS4p3kzDMHA4HJj8TGMsbd3UnS9xJN5a2ralEWJxP9a62DT8c4X8mhZn/9hwyf2dHJ2tav5O75f+1jj5b2NfIwzGePjK35vj/Nb30kLzqH381s+0sRdv/Z1/aLytcHncvvt3+r23/fyEt+MtdymxhGACd5k9dSOViCULI/tI268xAryb2boD3tesEPkCs3pESJKYJdRCoTUCf3hOzJEPPvxDbHu2EE7nceDq9Q37/cDk7rg7UoA0GmUsShmUVkt+jrE9pumwrWbV9WwaTVuLC5lHELdYowluINTOhUmJiOLgJcklwjxDtfbOKSFkIfJmCa5uGLtrz3hwJdohCoRqFmKybRtWa7V0hSwOebyHhIzzEykEvNSoGiOx6sCYS1zQ+DAh8kveuageJrIlkri5uSJoyb2+cEgSkmwtSeal6+WrtNz7mct79/GhJl8Hv9wwUizhiTEVP6BjVyrESEq5xF8IUUnHd50SrRVKaXJiIZgqpWlliaNAStp+xYff+g4A8b33uHr6OU8+/gnbl0948OH3ePTB7wHQr+8VQrcGQ1pCHDMC8tGUrxTQtnKltNI450EUwvDxQimqqnKtSiVx3hEqZ2YaDuQckbpkOcWUaNvSuQu+JzuPyo4URnLll+RQrvpYEktLd7DK/LWWjJPjP/w/f8GTJ0+5vKySfSQhOiTQ2RVIkNWYEnnGzRjJZmb/4oonLyWX5+UJ72LzGCtmUh7RqiP4upHolmQNQ/KcP/gWQjT4Q+FkxeFLnH9Fmjq0ecTDzTfK5+57XNowhjP2s2eeAtNYruNpHpndRAge70oIp3kj6qJpWpx3zPPMUAnJ8zTTWEtoC6HYGbOQ7JumWUjeJ5xwwglfV7xVRcVvpD3nmi9Uip2jGRuAzBGj1si1waREztAcObkZIolGGlB2kSwLodDNNzFGkLXhMG7Z35YbuRtnhLIY2yJ0QIrqymoMqpFoazCmqTfocrPt7YquaWjshE470vSSNG3r63qEXpO9RWGWsVFMiZwlVgA6MSm3PGEnJIfRsR8C+ykRUn2ClQarV6zOGlYbi7YCdcy/SREpEtZIci0iFhF0jkhpaGxACkfb3V+WWTKzbmayMASxYT+Xv/XkNuBDRgbo5Y7HH+R6rJnJjdi2K50kNzNNx7ZuGQPGlIixqqPSXaBlTsVIrxge1hFHiCXTqhJ7pRSL0kxrVUeLEGO6Mzysyi3vHGIcSvBlW86T6S94+M01w/YVfn/N609/gt+9BuDBB7/P+v77yPUFCLn4zKgSj16UVUpgm/Yu01EItFEMw76Y49UNWsoiKRdSEFIp8nItXudpIMXAarUuG3LOy/TK9ucYqXG3M3EOQCmKhNRV9adLJpmQ5Hq8n3/5hJ/9/CO+/PIJbdst49n1akPKgZQESmtssybJSma2Lat7F9wMIzFlpNBc70oherMbaVQpzLqepSMksuFqL8i5Zb1paBpDFlUF110g7QFtMppIcvWcS0djWoy19EoSuga3Kd+zw2QZxo5xckyVnHwcRXnnqyS8OCenoy9S/Q4750oulTH4Wkg75xbLhBNOOOGEryveqqJKKS6b41EFdfQigTfSxFMkiITMlsYKWpuoExgkgiQaQpZkSswBgFQCIQV+9uyurpmHgbl2IebgycrTtB1N12Kb+iRvG7TtaG1D31j6xtLY8lmsHBDxC+L0ihQPCDYoXZ6yo9qA6kBa5nG8G9nkA4fdC+b9SMgrQl4xusoRSoKMxNiO9cbQVIl2ayKtkhhAiYiUmljdaedpj5sOTIeAEArVtjSVBxR8xPlEYy/R0nOoYygXwM9wmAKjG9Da0VWfEkQmTBN5PqDlgKrrvru5oVt12K4n5kRwM7mOaaQU1Upf4fxcZNR19BBrZHfKpWOS7ioI2rYl51x5OeKNp/Q3VUt3ieHjOCKVREjJOJS287FYMdOBxhrWl+/Qvvs7uGHP4aYYBD797CMuppFH738H027u/HZk2TyPHQKtxdItKo7aiWHY0bUtshYqMUXGYUBpQ0oBKbjzPsqZHAPRTShVUtxzlbijDNJ2mPV9nJ85dilloQcxhUBnS1H/81/8EoAf/eiH2Kbh4vycGEuBD5BDoF11SLPCRcCc4VMpfl5fvyYwoe2K2TlijIU7Bjg3Ez2YphhG9n0ZQ/U1TDbGxPXhCms6jCrFj7WSLARXZIwynPVl7RojMIAUgZwTWilMlXyvujV+LRhnz+gc0zQxVW6Tc54QAylHQnjD5ApRR5N3Fg7H77zzfnF3PuGEE074uuI0jD7hhBNOOOGEE37r8NYRVQhxGUPFlKrrcKwhhXkJusxkjFKsGo3G44Y9e1fNwFRLszKFcKvtogQKwTOPjml2+BjJxmJ06XY0UpG1wLYNrenoavu+bVpao7B6j8wvaLJDzXXMkm+Z3R4pz4nqewQaXK7+Jl6XrKeccXPmcFu6J/v9wO6gcaFDW4VuBLZ6pZyves42Kxpj8H4sihtARENAEJTEu0yICVXjHXp7D9v0JDsBgRgc+6n4m2jdklPkMAV2Q+ZmX/gOKXqicwgyxhrmaWK/K/yl9XqDyJ5pvCHmPVc3hYH/H/79v+e73/suf/7gYQ2NvIvGEAimaSrxBkphjCb5suam78kx4JRCa0NTqSJtJ2ibhpubG3LKNE27hGPGmBbVVoh3Yy3vS2xGiAEpJDkmbH1NUhoXMxsxEYRANWvae6Uj5OeJ7e0Vyj7h3uNv0VQieM6Fy5NyRlIVPrW7cxypCGCeJlRVcqUYirlfCHjvmWfHYVvWLgfHpmsgJ7KfIcWl8yBtC8qSTYdsVlADMGNKoA1aW7JS/OUPvs/Pf/ZTADardVELJrBNyziM9bPNzLOjbS5oz97n9XYmpON6d+RQiMtN1+Odh3D0lWpRQtG2qkR/HLtpOaBVy3rVApLtbsvNVEa3xrQY05QwU5HZ7Wsoq9G0Xcuq7zGmReWIVuWCMAqMFSijab3BtQ3T0VdncszO4UIZW/nqUp1S8SfKQtZ8qnynPMqQwtvJqSeccMIJ/5R4y4gq4+c7RnsJUswkEjKJkhFVHfi6xmAkTLvXXB/2RKGxfXFs7VZnKKMJIZPCtAQRzrNnmkdc9KQsMNosZF3TNpiupbEdnc5YVTY4K2+QcUDMDqkjPiYO1c015hVevcs0bwg5o6VaJMPjvGV/2DHsB9wbhoLSGGzfc9Y0dN2Kvu9omqoSQtbohUjMEtuU49ECUjqQ44iUkt42pOp268crchjRSpKzxDtPyuWz7w+Rm73DpxLGqCqHw5oG3a7QKhP9QAyeXEczcfB06w15dc7Kbnj2ovBYnjx9xvr8gj8XghRDNbsr5y2mQgCOlUskhUTXEV9wEyEmrLUYrRfDtxgj0zBU2XCHeOP9VC2GQojVPfeYmZRwIbDOJVE9JxbCd9O0KKW4CYFNFtgmL9lNINBGMI63eD+XMFPKaM1oyTAOaCerEq8WTCmSciEJT8Oe+ViQhMh82PHq+edszi7xSfLyVXEY3l294g++9W02XUsOMzk6hK7rGh1IXQnOCpdrjIQyKNPSqIZf/M3f8NOf/WxRf42zo+s6hJaszjb4eBwJAkrTtWvs+T02DzdMNfMqS0lIkv1+XwJdU2IYyxh2mspnur16zeunn+IOlZSfI1pbTNOxPn/A+uIRuRKdbw/XeOdLHpSWNaKikLCtKYqnVb+i7Zol2b1vO1praQzYpsMavSTPayVpjGbyBuccTt2pFYtUvzzQxAAhHY0f9ddWJn7CCSeccMTbC5zg7jKlasqmloWf0VizOAxP+y3bYU+Qiqa/R9/2KHUkE0uCKxuUkGLZMGJKZC3RpkMJS9tYur60FGzTl9gEqRHxFpGOnIEM+gwhEv6wY+cjMRa+ipszSUTW5wkjW253N9zcXtefBVKCLCNNZ+nb0qXp+74UNV2LrMnXqj75tlajUCAVWaoa/wBhd8XgPbrpsaZl3G8JvnRphnFm8pkUJSkJXEr4uWw0xgQuLs/oWkv0AznXxcseQSRFgWrPMFbjjwnWxiKyZi0Cjy8sN1/+urwkJeZ5JPiSFSRIi6dNCp62bUtu1DhCSmw25Xj9PJUg00pC1vKOZ6ONZbM5K0Xd5BYuS7fq8T6QI2SZl+DHnMEIVdY1B7QpfjPlWBNSFb+UmDI+3Cnhgovk5BimK1ab1zTNkb/kyEYzDvtKCk6L43QMkRgLlyiT8VUplVMixplpvOH1iy/Z3HuPH//kJwD87KcfcfVnB/77/+7f0jUCJe84QlI5sjRI22O6NdJWdVVKhCz4yV//nO//4Pt4V/gpAIfDgRgjq/Wa/X5HvyqvGQdHVi1JrvAxg3cYXRPNUyC4iFWZFDLeRUz90kQjCjG5XfHg0TdwvpDOExk3Fe7UFCPxsCflY0J6Ktz/lMhzIi5y2kRxCypeUoWAf4w3scic6RrF+cV92s0Gsci8i1JSKYUxZuFa3RU45f9DSne5ZTHwm0m6J5xwwglfP7y1wCmRC+XmqpVCq9JOlyRSdOynSuiUiubyEa2SNbYBMnfKopTKhppC8U8B0G1bk44lWjeYRtGYN037MlE4hGzI6fiEHZA5E0LCqYfklJD1KXbdeHJ0HK6v2M+BmCXalE2oayVdY1mtGrTOCFGKAaslSsEc9ohoMbpdpO9xntntD4QsSVIh6009z3sO455pvsF7WTob9m7s0FjNxkIrJ8J0oH9cghdRLQGH9wPdpj+qj8kJertBq5YkEpMPjMexW5RIEYg+YaXi5YunAEiZi4zXz8TocdNEDHebvhAlx2kcx2LWWDeneXaIN4jCd7lglKd6ofHjWJ7Wa3dHSEXKAaVNMVI7qqhIpdiVCqEMtmkWWTdCFpK1tqXT48OyfiGU0dY4TyA/ZXNWOmPDMJY4gHyUvidMLWSUVITgSTEyzYEYyvlb9z05S9brC3750ce8/ugLfviTnwOwWt3j48+e8+E3n/Hd3/0ASUQuZOIyXk05g7SLKeXkJ374wx/x8a9+BZWEvRBql+JIlfUL5Xg2qw1BCFzYIoaMlIKYjmZ+V2x0xqfMvX6NXK9Q1VQsJEB2CNmTxD3mWNbOBU2MmRggJkHIuUjkAe8CPgaC9wQ/Ll5Fx5T1EsxZPJqWThvQasPZxTldl5mGK+Y6YjLNCiFUCSR9w4Tz+N/HJHEt5UL4LkXPiWT8zx0uTn8nIzkrG4bw1d41IXnmOH7l7xzqexxVqv8p+Lf8HEBL/U/icfMPgVb3/9Qf4Z8V3ox3+s/FV17dQpTNq60jm0ZJyIFx3uFnR/R+2SBDioQUEQSULFlNx1RnIcCYIvvVtkhZARq7YW1XGKuxXYO0/bIBZXcDKaNVz+S2zEMZO8g4kJIgiA0094sqqgYgvbo+MM0HlNT0fcvGBPqqVd+sO8DTaE/OLSEWTs80TIxpJisLSjJN14sD7DyPtLbBtisCmXFfvqBunkgEhNQY09GtOzY1w+d8vUZlR3C3IBJjs+H1UDbjzkJvBau+oe1V8X0BYghEd0OYJTELEJJUVUlaSrrmDCccH/3kx3z6yV+Xz+081ipi8EUhlRPjobxGacU0eprWklPGxTu36BAjQkpijHjvl1T1nCHExDTNzNNUcojMMdizyMjbboUUsNbreoVExv0eF0I1A7sba6VUZOXFQDCWLog4dnA8k4vElNhub3n2tDgClzynBiFkGYskT1P9ZKxtiKG4+OYclwDM4D1aW9r1BZ88u+JHP/7F0u149Ph3yNLwVz/9Bd/7g++Q07wYmwnVkKVGKIWPnpvKyfr5Rz/n15/8Gu8nQnAIJemackOSlL6FVBqEZK4bvphnmlbTiIz0vqjqahGfzD2cVCghicETmQhiWM6TEpDcFTJuuajFeMqGkBNRCWR7ju7eRahN/Z5JUB2TB+cdrvLc5tkxzTPOe7z3OOdx/piPBlEIXt3cIG4T8xyW7mG/SnRdz9FT7NjBWXynpCw5ZSFULk4ZTf7X4PL7245O9Uzp7S6/B3eNS/NX/s4UJy7f4nb8fv25ektRJYV8q5PxEPZf+fMTfnvw97nXfOWVJoVkbWHalq7B9nCDtQqpNYJImHcEV74ggsCq0YXbYe6ShwGaxpITxDQTwi2ujmxebQMvU2aaD7z73rf53d//t8RKhvW7ZwgxMswT0xjx9aNOEVySCAaUisQoGOa7LpKxhs1qzeXK4MenuH3xwUn2Q3zoeDlGbvdbfOUB2abEJ0giPu3IZJp12UxWZ+dMw8R2v8fnTFdHKQ/Ozug6Q9s3XF6cY7XCV7+dlCJSWTLvIFNms/+MfFa6EI09R6iGJAI5gamVfPQJpUbIN+yvPmMYXhJrjINAMTQb9oPno7/+FeOh8mpkj1HFs0UrhdGapi0dgFzjCg6HgRA8It+FVno3MQ3l31POpOTq+2nGcSrjLgFZlMgGgP18QGqDNppYE8ehPMn7EJFaAxLnPMbU0Zq2OB/BT8Wzpo6WyjFB26/p2vu0XY+p4xKpBDH5QjZGg0hULiwh+BoDIvBhhli5IvOI1hrbdkwhcZjmxU8mJsducFxdv+D11TX3zhrUMVRTajKS/XbPy+sbPv/yy3KN73ZcXmwYBs29+/eI4U7WPY9T6azEzDh7jrPbyQfi9YxziSgEIWvmSiSePZAU5JkYJ7qu4VgFrroNF4/epV39AcY2zPX9mj7R2kwKAZJCSs3sb+u5hbaBplkj1X3qRJDZB2bnGNrcLocAACAASURBVMeJwzgyzw5fO3opJqILCCJSS7pGLsKBTGR0e3QqMRjH8azWAikSgoQwkoxaHJ3L+PBU4Jxwwglfb5yYgieccMIJJ5xwwm8dvpqDkxwvP/n+EiTZryxZRHIUdG1LZxX+aC9PzYMSCu9daZXXLs7hsEdJ0MaidA9vyE0bo+lNz0rOHF78lNdXhay7P9witGS9ecjF5WMYS0syTjOgEKJhcgKhWh7cq4ThFrpmwMhXHHbXXL2M5PYdAF489RgFrbVsLi6O7CDcXDKXtBZYaxHqruZLIrO+2PDw4QNanaHyKhrlMXrAGoeMjmE7ImzhkQh5hpAWowTz5HDmG6Q6e05B0URPdl8y7G8XKfj29gXO7yELtjc3eDcs45xx8hwGxzA4vBMEX5VXNnJ99Zroq7zcGFarSiT2HidqNkxOzM5xzGTIKZGFxCeFsQ2NPjrSStqVJMVQwiBTWsjE2lj6zYYYSyCnr1lPpIg2DUoVKXGIiVANFJ2PNepAEAMYaxbjQGvt4gSs1F23L/tCSFdSoZVGCIi1ezLNU/33kkN1HJcoBVImrl/fcPXiNTlBU3Ol5mkmi0z0kc8//xLzwQXtqpyn3fWeEBPX11syJZASIKSAEILVqhjzjcPINB15LokQqnQ6xsXoz7uJcZrKOC4mrm927MfSPbFNX8aEfgIpaZqGsQZdGiVw84zqN6wuH7PZVFNKn7h3/4JHj+4TgkHoDl27c0Zp7Cgx1iPN9k7NlAt3qbUWqzW+D8u6phjJNcdrmIYyOqzKw5SKa7VRmaa5G0f7ec/2+gVNo+hXPSJHmkqclmqFd6cOzgknnPD1xlcWOEYbHrz3HrEGU6bsmacDUhaPEyFAqKPctCowcoSU8XFeiohjrpBWDY/e+zbWFsfWw/aKw9UzlO2YxD1mv6F9VLJ1zoRAKEUIhpsh4kPNYJIJaRXdquO8bbDWYuWRt3PAzYHdYc321hJMQtla/JgWLWWJejAaU8cBrSkkWETGao1t9JK50zYl/Zm0Q+QZUXkLsr0gJsN+ToyDI4QGK8sGuVq1IBIhR1Rj0VoiUxltiflvePXZ/8X1s2c8ffmCuW7eSQiSSCQPbkwED7nySEKMzE6QY1tGDZXX5H1gmgecHxCyLQnPlfxbCtJcRj8pkUKobr2FtLraPOAP/vg73L//zt9yK5bEGHj+7AuePf2C11VurXUm50AMoZCAjzwNIQuhVQhs2wKC+aiwEgJtDX3TEyvvR6pj9INFa1NUei4wz7WQ0pq+60vBlFJx+a18rdYaIFd/lkSua3e737FerxmnkeubG7TWNDUuIgsBKXN2dskPf/oxv/ilp61y+TkLjLa0TcP5xfni+qukJGdBiJ4UIn3XESuh1hoLSFIuDsehzod8sKzXZ6VwkA1n7zXc1vBV2bRkkbDIogATy4SqFCU1cFRIRarr6mPAS3i19SgJgoiajsWFAnVAaYXVaiF8K10KSCVLgSiFwNRzG3PGBc84DYzjAa00ukrzA7DZ9EgZCX7kcKjcBp9o7QbyyOsnnyGkRDWF1CkMyH/A9OUTTjjhhP8S+OoOjlScf/CnqHwnD80pIoUoSdBSlxsupcApktNArJEB4g0TwOCL2RmiYaykYN+sCPffQUhNtg26EYvfh6cYy6EV7bmgqZ4eJddRIhFEH9nur9C1syLdNYfb18QMq/UF/f3fY6jNBpRAyqYofnIsGzXQ9sUjROviCaKkWLoGMCOEYnQWF+Rijja/3pGzIGWBkNB2hlhJeNfXA8b2pAzeHVDuBn/7KQBXX/4Fh8NrXE7cjsOSi5RRhADBC9yccMHTVM+dDz/4A773h/+CRw8fsL254ssnXwDw5ZdfsNuPvHz5gkcP76OUXYIzhchVPh0Xq31VOzXn9x7w/oe/h23X5AzbSpwOIZByYrPe8O773+Sddz/gi8+LJP2zz37JOGyJ3kHOS1HkvcfahoTAudL5aNu7je8oM7ZNsxjHHRFjRFRS8vHfpRDkXDoNOSecv1N5WdtUr5+IyBE/F45SDKXL8utPPmN/GDFNz+VFScoOMbE5v0S3LZ89f42Vka4rl3zfryDt0FKw2++WBHJU4Rl98ME3sLYh58x6XUjVwbmi7lPlc98lmkNGorWmO7/HlBLu+B1QHZGOpj0HpUmoGg5ajS69IzpfTfWOcRo19d0HUk0FPybZa2OQpuRXiSyXLtJRRUUuhnyFmFfXW2SELCGZbWMgJdqqdvMxMkwj4zgTs+NY767aDjeN3L76nHkaubj3Dm13rx6vpLVfnfZ8wgknnPBPjbfKxPeHAz6Um5mWqhA6rcUoTUQsN2WELiOMkJHKkHLxO4Girg3BELMH6ZbsIdt1rNfr0n1QqubdVJKqKl0VN3tIkVyZ9z5mtAyIOHHYvubw6gntMfNKZqZ5Yn84oMeRd85/h6Z9UP6WVAhZlM9aUxKwKcZnSmlCcByGkWEclkTl0QdmH0ghIoVa5ONKWZSqwYrSMh8CY5UtS6uI+xtUHJDhBV9+/L/jbp+U95snBpdJ2eCjwc1V1p0jboqkmElC8fidb/Lv/t3/DMC/+df/LRcXl+QYEUfZPnCz3/HTn/wVL148obOS1WpNiMeYd1FGKKG4DscsaPry9H354H2G0XN98xxSZhwPde0EQoAbhkIu35zxjQ+/XT8ffPSzHzGNNzSNxdXzKqVkvVkzu7gQhY9jLQmQJMF71qsV0zzfEZ3nGVJGSokxZunsKAEpOEIqAZ/UbkpBIsRATgEj8iLZNlIhheYHf/lXZEr34pjjtdqccziM3Ny+YtVpWtMuo79jYeVSZLs/LMGibi5Fws1tzbySFFIz0DctjbHMfkbIo+i9qJmEUqTg8de/IOfXhHi1nFtjz1m3/4bGvkfMllRf6MNEbBRCW2KS5Hw0NRRlFBglITi8dwR//NwBLSI5R7LR6Np5KtYMJRxX1GDUO1SysISYMrevXyHr+jWtpT1fk85WpHzXgTscdry62hLDinb9iCw07lA8pc7XHY0MnHDCCSd8nfHWsE2tLNaW9rjRphQjot7c64gBYAwTiNJCn6aJYZoXrkbOAqFEkYMrS70ns2oN1vZIo8k5E3wg1NeE4PAhEoPA+4irHJzh5gVxfMb5WqAV9K1clCTn9x6xFob7aFYX75LbyzfGZBEwSCEI3jMc05RvD1UyHUpAZT0GACUNrVXkJmNtg5J3ah8RWZ6qMwpTE82Rkk7suXr+f9PkHfN+y4ubojQLs8DNxX8ix7yMPqjBl1JJvvGNb/O//K//G3/yL/6k/CjMXL98UdVNajG+k0bzJ//yz/jrv4wctltk8pjmGF8giCHVgkJg7IrL++8DsN2NuPkWP8+4eSQtwZQJ21i6piXmxGG/JYbi3/PuO+9z2O/4xU+vUFqRjhEcuQSlSilxs+Nss2a+m7+gpEBLSfQBLeTSqUkEUBJjLCLdyY8FAkOJfEhZgRTopnY1/IjIiRwDY/DLiMo5z+5m4OnT59jGknLm2dOi+ht+/Wsgc3He887lO/Rti9DHgkDi/URKkRBZEsO1kjS2JSbYHwYg0tTU2OvtgRcvP+P6+pq+N3zrW2Wcuj7fsB93xBjKOCgayI/qMUX8duTl7j/StCtC1osaaZ5viXPABY+xLfcvCl/s3uX7CHOfRjd0fQfqjBSXcgrJS8bbp5j2fRylcJ19STM/fi+lZFHBAfh5QMuAaTVnG8t0KEX8YTeClLiQaJrV4vmjEXzj/Q8xSqKVw8qBVlflWngN4tTBOeGEE77eOKmoTjjhhBNOOOGE3zp8tQ+OFJxtVtVVlmJAl8A7j5vnwtuohIKUEzEloq9cACnuiJtao7SiaRq6tkHLSsAkkVPAz5GYSxfh6CgbkyjeOd4x3t4w7Ar3xKiJpheEJBmDoVtd0lQnXGc2ZGURynDjIE67hQfUaIMkVNLuTDo62ipVzNuEwpiGnOIdVyRlVv0K2xZvn6MJYcqijM1UJpLpsl5Ga8Enrj75P/jyl9/neoiM25GputCGkErchQShIdcnbCklQsD6/B7/w//4P/Hd7/4h25sy4pgPO+ZhJOaMVGqJNfAhsFpveOfRB3zyqx9AGmmbMkpRTYtA4WNg8pHzyzP2Ndjz+uqaeR6Yx6Fwjep6N02Dc4qb69c1viKwuy2XhwAePX6XLz6/JKVxGZMJKZnnCWMbckp475frQesStZBiYDgcEELc5UqJDKm4Tmt1lxeWpSDL4rNSlFcNU1UCKSkRlWMyj8PSQRhnz1/84CfcbLcgDSE4dpVXJISg71vyuiHHhNJ66dQUV16BkAprDJM7qswy4zTh5hmti6/R8+eFZH+9G/ARlAqszjsi5e9cb28RRpEliOrJA0fCt6ETmuwjPo1kKYnTMYtNM0VPSBkx7pn9JwC8eP0Zm/4h7773p1gp6MymBKABUzT4uUNmDWFL05auXQyJpATEiFSZRBnZloOKpOA4HG7p8zkxgjSlEziNAyIFzs42VaV2jGpIWN0QU2K/vSGKkZ0b69pFwhs+Vyf884SSungtvQUvxmfMbzH6m+PMw/bxV/6OkfYrf/4mure4/R676V83uOSw/xnHecJ/WbylwJEYoUmVg+OCZ5hm5nkip+LDe9zQciX/amMw1iJVCeMEsE1D09iSdQPEqujxMRHzVGS3lZB6ZDZIkTHSYRvP1j1HH0nB3WO6zTnKdIQA+3lmqPdakwPaShqhaG1DZ/QSM5FDJMVYZMjGsmiHpCgW91V1pIShqUqbxhq0kYRUOA9HwqtSDU27Jgpw04wKE31TbhSH7S/46V/+JTev96wuzxj9gD9286VEa4WWCu8cUpQCUEuNspZvf+eP+N73/pT97ZbXz0tBl7xjd3uDkCUrquuKWksbQ9dYjG243k7M48jluqyrnhuapi3nx2e8m7i6LgXTfrcHEsNhV5VK5ZhWq56+7wm+GP0ZrRkO1bwwRy7v3efevUd8+eXHd2OtVIwI0xxRUjNP47J25FziOUIAEZFSQroLugxSkBqLlmpxJZYkrNFkoxFSMU4zxhxHf5BCyaKax4l95Q797Be/4tefPCVlGA97YipjVYCua7i4OMd7zzDPXGiDbY4mgLmM6FIEpdG1QM0J3DwyhwnnAs7FRYr9wYcPWZ01uHCLVp6kjo7EBqEKkTtLQ1aatBCQi1Kq6Tt0apmcW4wIrV2jHmpiFHg/cdi/BGCab5gOT5DPZh7f+zbrZk1N7sDKnugbxqnB5IjS5ZwXd+JE8DNGCkQIqLp2KSVENhh9nyQ0utWI+r1ttcHPA9MQicEzDNVQMAUS0LQNzgW8iwt3TgmF4KSi+jpjDAMxf3XxEnPk5fjsre/1fHz+RubZ/z9Svvue/GNg8DukOXvr7+mjRfc/Ek7FzdcLb/HByWy3uyVAcQ6lAyKFLHJaMqpKqovCJSOFwjYGrdVyQxSi8GjmySMRSHW0g5fEHImxPPlLIUmVW3Fz85zDfs9qc58gzpkrqXH2hv0uodSEkSUlu6+bat91WFvUXNEnpnHCV66NyNXhVxZvlrtIgdJ5CN6jpaBpmjspdjSkQyLHXMMI68WbPTeHPdEnVm0kjJ+ye1Y8bQ5DQnbv0awNBkVvPXMt6IQsHI+u67i6uVpCTLU1KNPw4e98Gyk011dP2d6W1HA/O4bDrsjNpWKeymewtqXvOqRpQRh+8MMf8Of/8g8BMHLGmQHbthjdM+32PPm8xCF4H+hXPSkGYkrLk/jsFEqX8+qdZ7u9JobCHVJKkMIZXdsXcu4xniNEFBrTNATvisLuaMsSF/YTxuhCgq1E5BwcQWREckQhl+JViozKBjdntLG0xuAPhfcxBEfOksMw89mXT3j24lVZ79nTdj2rVc8wjiWFu4ZZbjYbPnj/PZ4/f4aUipubLS4Uomzf96VYmieUMdzuiv9SDDN9Jb/nJFlvNmRZzt9++pzdYaZpWqRsFzunmMv/pFw6czFEjnIkbWxJWhdFHm9jwFWXapJEZkvTbDh79A0Oh8Kn+fSznyNsJqSZw/iK1eGa7WGo3xlHSjM3t09pbc+q5v80ufhOKUCjsV15sABQpkfIDqnXBClwIS5E8egtwbWkWAjd3ea8roOvHK5MF0sWVoh3XRslFCeccMIJX2d8ZYETU2IYp2XDT0d5OBIh5FKoQJGpamMwypBSYr8f3+h4KFClc8EbSiAhBDmlQvT0gXF/IITjiEqScsvNdkIohanmbW3TFAWUkNimpW37RfLtJsd2uysmZimVsViVLStVuibzPJeC5pgjJATWlK6N0bqMi46bdIrkEEh+JGVHEMfAyoF5eA1JsjUrbq6eLGMtoe/z7nf+FVevfkV2B5rwgP1QCNK2MUigbVuivUSIo4xXcX7xgN/51vfYb7c8f/oF01gKpnGc8POEMaoUOHMpKM/OJcM0wDyx2+44TPB//scfA/Do8oyH985Zb1ZcPOyY5oGPP/4lANM480d/9EfFhI+ioinrkAnBI41G67Z0VeoTYIqew36LVoJp2EMNwzNSM8dAmB0pF2n3sKtEbFGKOWMM2WqkFCRXu2k5QI5ErWlss5BuN5tVUX+lVEwDvWdfC49X19d88eQVIUtC9DRtaWGf95aM4NXVNVopzi8uluL1/PwcrRUfvP8+xlq0sazq2NTNM8NwQAqBEvDBe4Xgu+p7bm/23Nxes95YbDcyzaX7tVk3KNUjpKpBtOW6E1KUFPLokAiE0IR0zP6CpumKVFvAvN9xc138heYpYdYP2JwphOxZrUqL/8H9wPb6OS4ceHU1cdj/jJjLNbS9HTH6DJ8T+8PnNG0pNFZnPU3XcXH5EN2sSLoh1k6WUBopFIG5eiyxBNRKI5CUAkYIu8R9QFfS43NYvrNL5miuJpInnHDCCV9jvKWDUzaZ461MCIlQhZfggwdRAgOhmLQ55xjcgZQjSqul8EgxQpBEigILeczBScS5BCjGGMvfWvZ8jWnbYiAoBbLKxK1WNI1BaUtMmXHcLxtkiiCVpG0bWmMJGQ5D6UJMh+uStq1lkXd3pfDpm5ZV17JatTQmkeOBXJ+Kx+FARGDPzulXj2jreIN4wA8vkWlLTBnznX+N7oscXeQzppC52f8rhv0t292W4OsTe44E53DTgO5eM41lBBRj4sHjb3K2uWT74nMO22tutqXTEIKHFBgOGWs0XV+MC6W8JPiIjzO7/Z52fcb2tmzEnz19ydPXtzx65114uuc73/l9/ps/+zMAttsdjx+/gxKC3X67GLtN00SKESV7vJ8RRHIdRTVNW4IwGwMx4aZ6PEYTUyKncv5LOOuxqC18LWskfvI1+6iOooQg5kSMAakkq9ppCCGgjWU3jOzHiWF23NyUdRjHmSw0UtniT1Nn8HN1FL53/z4RgVKaTe1CbDYbHj58iHMTbduilSbVC8waxeXFOV3bYqxe3IqfP79hmLZszg0X9zVKj8u1IoQiI2txk5egyzJ6NGSpiaEWisfWuCzpyVaoEkmlzRIgOr56TVYz/aMW50biXK6Hd87POBOZ7c0Nv/78U3aHT4i13bc5e8T5WWC1WtFvelJtpGSRWW0uUKYHGmLQi1sxeEIagISk5oIdU8NTcV+enGOeE23l9HRmXXyKgJhTeaAxpUBV4i6d/oQTTjjh64qvLnCARF7MxEJ01TFXFGmzgFA3wWmaastekkiEOS1FiUSibERqUWTYtb3tXGIYR2JMpJxRtsFWO/hiwa8RQqNVs3AxtIZIZvKBkCMWxXpVuzttgzKaGBKTm4je09Twx9X9NdZ0dLZBWYmoBNFG3KLjU3TMRKfrk2+Z7a4uvkGWDca2tRtR1iW4Abs6x+oLkC1C3SNUnlKQAVTm3KxZrzukCmyvyt8iekQcSOnAqtOsu1IUpQwPH6wRIjAc9njnimSdwgcJztUxD5hazB2N6VarDb//3e/yo7/6MQ8elg7A61cvCDHxxdNronfcu3zIH//xHwPw/vuScRxx04QUsvgMUUh7Rh9DURNuHBbyb0oJqRSX9x8ipFpe44MjplSIwipjlaHtK/+laSAGpmkgpYSWGlE7fj5lfBAIveFsc8H5o9I92W23PHnxjNevXrLd3RbCbj3vtl1hbUvK5fNNU1kfpRUxJdqu42y9IaXEvYvzej103N7ekHNk1XesVv0SEjkHz2E/srt9hTKSqR5TZObivuHswiC1J8VAzSMlplKASynJEo6lv0gSREYKgW0bQC2J5iEmlJAoLVBa0rYdrz4vBeLHv/wVik8J+z2m69nXYjN88D63V3v2U8KLDaLvq5Mz+BwZxx0yOmS/ZnVegmEvL8+YvePJs6d0qzP6frN4+0ipCx9OKKRQKCWX8agUpfPWJovzicO+jOO2B4+WFqlkNXaMv2EpcCTvn3DCCSd8XXGSiZ9wwgknnHDCCb91+MoOTkqJ/TAseTdCCEIISKWKc60Qd/yc2rJWUmGURqj0hkw1A4oQIikHYm2dCyTtqi8jEKV/wx1WINBGo41CkI/Gtchc1FnmzGI7QWMUoqqRZp+Y5gkpIrZpUVlgaxdps+7RNuPG50zXv0KGMg7QukGvHiLbd9BpTUpi4TVoa0hYomgAjTi29bmPT46YBAKBzHEhKIRYMpA6LYCJtLJoX/gi29sB2Qq69SUhSWxbxk1KCO4/vE9KqTgqH/aMw1j/VolQCCFgbRnLHVeo63ps2/Lw4TsY8ze4UOrVKVm8n5jngJ8mXr54wTxN9XgN42Fgnmfm+U7Rc3l5SQyBYRwYp4kUirQYoO89h8OB/5e9N22SJTvv+35ny7W27r7bLHcWDAYESJA0GZTMkB0K2u/0Rp/WH8CUrDDlCCsY4g4MgRnMcpfeqmvJ7Wx+cU7lHYSDd0DLIicY9X8BzHRPV1Vmnqzz5PP8l8urx/gAD4dTNplLyjktMZOlLEuCOGUmafqu5/rmmn4Y6ftpHg999PEP+eN/8yd8+PGnVO1iJqpbOzF2R+5ub/jii1/y85//LX1WcmklUCZxmAqpchRB4n4ZUpjnbvfA0PXc3SWC9tOnTwk+cnV1wXK5wBiDzaqxumooTIVdGnQREFmGPYUDUnpCTDytydpZEeW9T8qwGLDecdKoxChBGiC5XZf1EpEJ6QJJ6B3BOwpZcLy54+d/8bcAHHYjdbPkV198TbNacxizu/AiUjXvsrla8rRdUDQVusj3YOjh7gULLaFZ8l9//ucAvHp1SGo/qWj6FWH9AatlMmpUpaYsq5TrJWRyrT6tIhlJDdl0fxYmrZPt/RFnPVpC9HHmWEF2TQ7nDs4ZZ5zx/cZ3mgkopecvQ5nDKoUQySVVxNnbROvkRpyKAIESNSbnHxVGp4ynGPE5awigNAX1osFohTxxPmL6khdSokyDVEVOwM58njiihafUhoDA2wmb1T4xBmo1oeSA9iPC32KHlKd0vL/HDQNCDJRVS1GkosPZwHD/isDfEIUEvYTlD9PnU8+x9gBmA7om859RxiJNkiAK57DDNd2Q+C9tu6YfBkY80zgydhPWp88nyxatHyFUQaEbRA4sVCLSLhdAKhhD9NhcXDg35Xwsj3GO5cnJOBeExpSUpcV5z5df/AqAKXhwU3L/DZ6uO9BnonNZVZSVyUndHpOLi7qqGKeJpVIcu0OKAPDp+h2PB6qqwnnHi1ev+UV+nxAcUkhA0C5arq6uuL1P47jJfsV+v2cYB2IQFGXNv/rX/zMA/+7f/XuePnuGdRNddyDs0lgkhoBUhsdP3uHd5x/z5J3n/Nl/+lMAhn6PkClMMknlT9EFKYDzYbdDCcmibShP45xp4PLikjpL5quqROvsZRQiQTm2+zuGwx0i/1zpZHMQY0zho0Fic3XtQ2CcRvphACHm5PQ0tp2SG7VQhBjReX0poYkBghV4eqKzc5hrCu9M19ZOA6smjUbrsqS6WLG6uKRpSpzt0Sat//39ATkdWC9WHOIORFpbZW0ovcSNI/Fwy94/0B/S+qqbRzx9+gMKtcEUNRHFqXnrXGAKnhBssksIJ28mw+RG+jHlj+lMwAf+XwKDM84444zvI95a4JzM2U5kYSlV2lYyDyHN50+cGYPWGl1q6rKi0hIVcxfCHwmyAtUwOTUTib2bUEJSF5JSOkSws3LHhsjoBkIwSCRlTBt+8Ed88EyyRhdLRIhUeXPSGmQEgib4keAMiyLxO+yhJ8o90QeE2CNi7migkFHgggZdJ55C5rnsti/BtGhVoyjmcEzhAoEJX4AdJrptN0dM3L36S8qyYXnxmM4qDq7EhtSpcUJSVy1N0zC4iSFL2EuVnqKNkpRliVJq9pOJ0WGtpS4rlNJzVENZVihlkFJS1SXj2JNrTYxUjEcLOJAh+eDcJY+V5WpFWdZJyRUCNnN9tEnXz1qbeC1uYuwzP0cptNF47/Pmfkqwzt0aKZis5fXNDVKdYj0KCl1ATMXE8+fP+bf/y/8KQLvecHNzw9gdOOwfEmGdN4o2IRWXV4/45JMfzSqqP/8v/xemEFRlSiIfx1QUDUPPYrFIOVpTigc5KeSGoedivaEoCsZxxHlP2ybOijE62R9EgRQVLvPMYpSEEHNIKcSoqVTqckUVKaVjUQaU0ciTcWEMWD9h/UjwEL1D52MyRmHqkmAd+8OBY79HNqnAKaeaxfKKqJONQsgcnP31C549vmRTRLrDluP2ju1tksV/8dnPeGfV8qP3/y1fXb/g6vG76RqIiIieGBxCeLTw872pC8HUv8SO96zXTxCyIpDVZD4kmXvIHZrMHQoxJ8CLIsV3iTfWCpGIt2ejv+8zroeXjPnB6h9C73uu+5vvfK1X3eukgH0LtNC86Qv+t+O7Pvt2up/vy7fhn9oH54zvF76zwClKA3lxS1J+kDEaYySFKajyJqfVhJAOBITpnjBNqCIpMqxa40SBJFJIh8hdGtUoYCBOluN4i/IPjH1SzVRlJE6Wst4gihUx5PepLhByg7eCySuiKGlyVpAMDuv7sT4sEAAAIABJREFU5K2iJcJbHrZ/D8B0fE2hIyGWFPoZongfAC8XBNXQO4MPBRGDlelzV4sNyhR4IRjHCZ83rRgcUmhimBDulqa845hlwW2jMJUGfQGmoMRRp/qGqqqQShNcRBpDWeUhhwsMoyO2mrJKhcuJyOsmh1bJA0fqgrpNn61pGpRMqdHWecqm4aPLlKId3cjNy2+YxiMQ6PoDf/VXfwnA+8+fc3X1iMePntK2FWq1yNcvnUNjTHKkdlOSCAPeG9rVhmEYOR6PiPlJ/sRUTUnYIUZO1avzjiAkQkqqsuCnv/9HLFZXANzc3jJ2B/bbW9w0MNlcvMaIEhItJXY48kxGfvSj3wLgxevXvHrxK1zfY8cHiiJ1l6RSjHbiyZOnLNoFd3d38/qVUlLWFUVVJY8mJecxS9fvWaxKPvzoKQiP1qeC0icJvVBERPKwmeO1AiF6Dn1HNw1sc1esHycWreRRW2AnQXdUaH0ywkvKMymgrgt8rLh6nEZH27jl6ZPHtJtLirZht0sme9cvv+ZP//R/wwiBcJ6xOyYSP4nML957n//45/+Zo4hM4hRoa5ExJk8hkQj+MischdpTFgVlWXL3cE1hFpRl6jBNPuKCQAuJFoZ1zsO62LSIncW5SAzxTVo5KeMqnmXi32sYaXJ39R9GqSpWZv2dr/Xx8uM5aPgfghaaRrf/qM/4NpTq7UaSzxcf/0av44P73roen/HfH2+98lopnmw2bzaTokCpiIwjejoQ7It5E9Rqg2dBEBJZPUKWNUGcZMETbY4FMJXB2qymcRbnHUOoCPFdfNxQLVOAYVQeUz3Qjz21uqRcvQOAFwW+3xH8kboxBK3ph3QjT9Yiwz2VfcV+93eM/QuKIimVmqs/waoLBldxiAabPVkG64hRUGjDYrVitVrMzrrjGFHOo7SH2KNV9s5hBDsRXcc03DP5AatSwTRMjwlHg3QeqUeMMdTZs0UpRd/3SaKrIjoXh0IbpmgZXKBuFlRVNZ9zb8fU3TGGuq5Ytum16roixkAIlq++/IKry83cubh7uEYIT2EU1gfc5Lm9S4XjODmqqqFddEghaLIzcpRQlBVSqMTPGfy8sStVsF5f8Itf/pJxHN8UNvmJLYYIucA5jThiTOngyVdIYYqK4z6Nr4a+47h/4P4uFTh+VufEFMlAJPgJXZa898EPAHj67B1uXn9DoSRG6dnROQTHMA5MUzrXFxcX83mo6xrrHK+uX1OWJVVVzeqfX/3qF/zWTz6mrCPe2zlFO/kZCZQ2+BAR6s2Ta9cdOfQdLkQejj2qXOYTtGLy8PLmhqnbsWjWWJtNEmVgGEcOB8v+eKAfjoy5U6OkwDSaelVxv98yxdSVevrhO0zTFW7oOe4e8J2gGtOt2sQaX0ZCIVgtloynosM57DThvc3WDRF3cpxyAecG3OQoCsUkPUPuzpV6QW1arLfc73a4bCQ5OIUXJTIXflIIhH7zdfHraeVnnHHGGd8/vLXAMVpwdakTiRIIYiIMWxheJ2v69imhSk98XpRo74h+TN4ZYkDEnPszwMMYmawlxinZCpN4O8bUKAEieAokMacmH73G2qvEhwgam31Kor0luh2Rkl3XEngTD1DGX2Dv/jPHYWDUl8TF/8RepwLnpquxTiMJJN/B9NkWdUO7aDFlQfCOoTvOY5vJWnwIKZ2ZOGdHRQ1aCA73E9t7Rz+BMK8BaFYti+UFS1mxXtZIYeZU9bEbUzxCDGkMkrv8wXtkhAcVeNS0tItFIoQCfS/ypiwoy2re2I0281jo5z/7GUKplC0FKJmyoDwBGQNFqVmtU3fnpz/9KZ/84BN2+x1Tf8S7NxkzIfuduMEyjf28ia1WKxbtks8++yzZ/ovTyFICqSsixKmjk83vEEQkoPA+8vVXX/LkcUo0L4xhHHr2uz1u6qmy2aD3DqQkBo8dDf3xMJOj67KcuV9939H3afzZtmncJqUk+IDzni779PgY2GySO3CROxgn+X3bLhjGCZRCaoXLhZkPqbALdkqcH69mz5i+74khUpiSD58/weS8HGslwzDyq1c3bG96fvFwzSmLar2+TATntqH0gohBkY53s17SXmxwRDaXV4yZS6aVoCZxyi7ffUrfHTgeUnfH25GyqKlXa0xVU+SOmRRJhh6CT/cZYe6MOTsRrUPGiDtGurHAq/TkXrdL6qrGenAs6faZSKxBS4/2U7rO3/LOgRMD6owzzjjj+4uzTPyMM84444wzzvgXh+9WUUXLydNrdBqhHiHqNZaAdZq4yzyN6LF+yDLp9DQ+ndr+PqBijmbI/BgAHSKFdSg1IvSEEAUhpA7FODq6qUf4QBEawjE9ldt+xDmDLDRtc2RZWOTtXwMwHT5j0o8Zqj9k29V0d5ZpzJJmeUSXCqUNRVGwWZ9mz4HD4YG49wTnU1J6zulxwRNFGnVUVUm9SiMJP3l223t2g8epkqJtZrl1WbYsqhKj4Ob1kXE6cHreTSS80wBMoPI/FQaEMgwT6HVNXbdvlDZFiRKAEFR1Q1VnDs5ijXOBKAy//du/S9f3HA5p9PHChyQRnzxaV7zzzrv84R8kJ+PHjx/TdUeUVBSmImQ+VIyBw+4hqZK8J/hAlR18Hz9+xKvr1/zyl0mR9m01TQrYyzlk8k29LHPXKY2uPJ9//vd8+MEnADx79k5yLdYaO8HDQ+pOODehlaYwOpnyBY+dUodp2bYsFwvseMTaaT5WpQS7/Y6+71MX51sOu+M4cjgcEkla67mLAymiYr8bOPZJYn4KCgwxzp2oGD1KQZmTt9eLK1wI+AB2PxFkNjycPN98c8NXv3rNZCeUKlMeFfD3v/iCq6srlk+uMEXFevMEl1O5Qxjp7UStC4ZhmEnbgjTeC0hcCJRly+lZZBg6IoL7/QF16NEnI8TSUHiNNpq2qbMg4JSQ7nDjyNj1vPjylv1ujynSyFJOV6yefYiuF0CBOD3zCJkVap4Ywzx6JK/mcwfnjDPO+L7j7T44UbCfGtyJOOo8zk1pdGMd1tk5ZTYKgZKGKCLBeaL3s3+I1DophIqSunrjVhzDCNISXMH22nK3fY3PMQ5lu6CuW+IUOOzu5riItq653AgqdQ2Hzwi7iXtSsbKzf8hhWzAMHdYfcARCHqdoDGIyVEXDolnMqqeDS6RZ5zzeTsToMVlmvC5L2rbGupQ7lJK4oT929OOAQyJNQak1dZ25MVWJsyPT1BHJcRV5N5BSJsfgMqWCV/oUZXGEAFVZILWZFU2QUr21klw+esyzd97no09+BMDloydJPh/TRh5j5HBMHJeXr1/x+S8+4+9/9jesVi2//ZOfcHmRRlTH44FpmPCTZZrsTBz13jEOPVIInLNUVUXTpKJtsVzwf/+H/0g/DEiVfIkg8TBO46qkOkoFTfpBLugEICJD3zHmYsX5REY/ZTid+C9916MUFMrQNG0aJ+WxiDEmjWFysbJer/Jrpc8qhCAEn72ETkVbzjXznhAj7qQCA4q+pOsNRVmitKVuFvlvcrJ99EghkCqwJ1sZx0D0gck6rAu0TZXXfuDq2XM+/PSPUeWCu7t77m5S3tThsOXh4R7vDeMxYKcjiyZ/LkaiKCkrSYUm5FXuvUtE7gBGFCnIU6XfmWUaTVo7EcJE8Lkwc5EgAp6ADw4pFDqTjI2RFHVJUxokhm9+tafr0xqvVk8RzQUizlc1X76IkEkd+QZvrns8q8TPOOOM7zneWuA453l1fYc7pWtbl778XUqiTn4YpwDFSIx94qyIxLM4BV2WZUFVlCiliREOfdrojscjh92e436PMZrV5gKT+RiTs3THA0pKmsawKNJTbxF+iTo8MIYlo3zOvi+42+fX6yeiPyBDSNHdMuVOAZiiYrlYUpQl1tpZFTD5CWsnvPdUdcNmtSDanM90uKU/SprVFS7Afpd/3g/pXMTEi2naFYvlSbIYmIb0VF9Vhs3lBSKeOjUFyqRwyXGc6HOniFgSg8eY5BEktZr7PCF4hDYsVhs++fS3KHMhtb3fMtkUHjqNE1JIqjKd7w8//IgffPwpv/3bv8fY7SBObO+THHS/feA4TEzTgJ3GmZArReq0ee/QWlJoneIWgIe7ew67Hc+ePmF/2DMOuVD5VmApmYNzUljNPavcfbp68oSLy6t5HSEExhRIqedMp2EaqasCFzw+xux9lF5vvV4REbx88SLL0of8Wpblckmdu00xxm8VbZ6IyJ42AlOY2aLAeccUAn6a0N4TsslRUVYI/UbyGsMb4rQUCommqVc4ND5b/d3efsPD7jXrTU+9uKBdX/HDH/8Pae2riePhBukHgqhZr9e8/CYZ/X32+V8z3O/Y+0DVlNSL1CEsi4IkxlbECN5OyJxoXpaRqryg7z3ehZPAESVE5j0JgkjX82S5MPSWu+sdL7984HDULFbPuHyWyPxFc0kIAqlyf1G8UcideFVibtecitlvKejOOOOMM76neGuBY53j7uaGU7x2KmLSF77P/3z6ooskya7SisKUmKKYfzdNE2M/4JzFWc/Yn8iPDlXA8mIzk2pdlmLXpaZdOBqxRbpXyPzzKV7yaviU7SEwDD0xTPj8pC6UQOkSrVL2jtaGKnchmkWbuwAKbx0udw2MNhSmoCwLpBKZqJvzlBZPQEpe39yzPxxQ+TxUTc3V5oL1eoFWAjtN7LPEN8TIsm1ZrdfEGHl42GHzexVlSrR2Lo39pkycHroBQqR5b4WfBM5OzCWCEKiy5PlHP0Bqw+tX1/M5dc7x8PCAdw4lxTxKvLh6xGp9wdXlFXbZ8sUvf851/rv9/S0uREY7QEjJ3UDKS5KSGCJKl0jg8HA6pgc+eO8dri4uePnqFV+/+AaAru8J3xpWSPXGYTgQkYhZqlpXC9ocgulcQOqSKI4Yo+fxXlJTRSAFdZZlhTyNM40mhkRmNsYQ8uZ9PB758ssvWa2WbDYb6rqex1DJK0dQ1zV13VA3NSrL4Z33uBDeFOxTuhZVUVDWSVb+sNsSQ5j/BgOoEhsiD/sHbK6WhknRHTuG3V+knKiiol2kjplRmnaxoVqtuLq8Qo8VH376RwC88+5HDMcbrm9e8MXnn1HVmZi82bDcPEEbmcjjCGJIaxIfwQnaooIizF0fQeRkHL7f73l5/cB2lwq9/SFiXcFm/Vt88N5TmsUb92ihBF4EYjglo2dvI1IHTpzu8/jro8kQzkOqM8444/uN70wTH/vuzZdZ9jWBvP2exhJkMzglUUrjrGUax1mSKxAokqrHRYso08/rtqIuWowpUMKzbCSV2Ka/6f4et7uFcsNkPuD+kEYItw8j3ZQ2Zy0kSpczX8UUBVVVUZUlRZHGDzqPmyIRm0drSgpUmTcMKVBSM40jiJQKfejSZnc87OmHDucti0XLkycpzLJerRKfyFmid1RlQ1mlp+8QUlzE3f02dwEUzqXj7fojgiNKCaQQ5L2bppLUpeRqVeCGPd1xN3dHAN774EMeP3vGfr/n/i6dn8P+kDYeYBiO2GnE5G6VFPBwf8/m8oqLqyvqdj3PFLQUGK0oTYPReg5LHYc05irrgqqqUUIwdIm/JISg1Ir28oLVomWxSH4Xd9st+8OB/X7P5CwhhFmdJnNHQSuNVJKmbtDZ2VobBSEQncVO/bxOpFQ4O9IuWwpToHWRQiJJnayuO9L3PUqpebNdLBbJCdha9vs9IQTWmV9ljMH7wDiODP3I/f0Wbb41cpGSyU40ZZUCQ4GH7T3uxtL3HePYI5Ui5nPX24CoLwlBIWxPf0wmhPvtPWWlGfoddW2w+xusTRwXryu8d+z3Bz7/6z/HLNd8+ON/nT57taZt3uPi3ec0m0+JLnUIg+/xcWKcIqaU+KBm1+sYPONo0Sqts+3tQ/7cHV3niLIhBIVRj1hukgngk/cvKdsSbQoEManEwrfGd95joz/NHPk1hJDXmZgfPgCKXESe8U8PF77bZFEL/Z1eMhJJlZWAb8NvYqj3Tw0l3m48eMLW3rEpLv87f5ozvq84q6jOOOOMM84444x/cXh7BycGxnGYn+qEVEhMGkVJ+WucixTE6ZmsmxU1p5wjpSVaRYys0HrDoklP8lUp0Xogjl+xe/1XVEIg8sBflO8x6X/D3VFz2B4ZXeomSAmLxmDUAlMYdFFT5viCui6pK4PRGqE1znts7oSEENBSYsoKr9xMMhZSoo1Cm5rD/sj28MCUxxXEwOXVhsurS7TS9Jl7sr3foo1m2TT4CH0/IL5FxpRSUVUNLnM7TmRPLQzCT4g4UciYQjqBSkYWWiGnyH63pT/uGIZEGFZK8v7z9+mOHS++eclul7oGx+ORuqpQQmLtyNB3lLkrVVUlMaYMsKZtuXr0hG+q1AE7bK/BO7QxKCWp8s/TE7qjqhvKsshP+VlN5hzSp1GO1gUfvJ9MDd99510edjtu7+64ubul73uGHKGQvHHE/P/WDrjsuVMUDVVZMZiCGN6or6QUmEIDAaUlpigp8rWdppHD/kDbtJRlifOniBBFVVUMQ88wDDw8PMxdxaZpEofF+9Q9EmLuxrjgOCW4HvueKZOP+/5IDBZBTOZ39/fZ/A+K6hGL8l2O+wfkcI3O8SG1cZRGsr/vKKJOpGeVroW1lu72K0SxoCxXSFHz4vPkro0uEKIAoTFFQ5WJzk11QakMUgmCini/Z7dNY8Ff/O3f4CZP22yIFGidyNbrzQ958v5jlptLmnZBWShEHq0FEfHB4j14Z/Eu8XcAgo94H3Ax8etO94t36d8RYr7XS/2mI3DiOZ3xTw8fv/vcH9zhO12KC12ixW/m8vtd0QmD71kXF7/Ra/1TYvkbODWf8f1G+G9wTX97gQMIlZxoAaQsUpEjyYnEYn7zGCNKmCRXLUuKopizcAQRUxqaQtHoHYw/Tx/8+Aptb4nCoRcX6PYnjD6Nge73kf004mLEmJY6T5SSzLuiqkqauqGsNKU5jcIGvHVIGZncRAxpNJY+XyLRjnZCK0mVX3AYJ27ubhinEeEECsnlJn2RP3ryCFO2HLqe+11KVwbS+EsZDscjUiTDwlOe0jRNDOOIc1MyxSNCHgPpYFlVgotWs6gEJo9FjEoF4HTYctht6Y/HeQN6/OQxRmu++uJzbm5uZ8aLlJIYHJMPxJBs9E/5TPvDLhOOAwSHFAaVpc7WRZSMhAAINaeTG1PgfaTrevphQCk1Fzjee4igtKIsKopMZi6KkqePH3N1dcWj+0fc3d1x/7DNn2GPcz7xevDc3Lxie5fMEDebRyih0lhIvBl9hODwbsLljLOiLGYS7esXL7i83NAdH5BKsFxt5nXnrKMsS6TcpTWZeUXTOFGUJXXdUFY1CMmYi1cRJBDxIaDMG4K28xO7hz1VmXK+FssFMhdMziskjv5wjz3colU6d21bMdgBU9ZQNYRCMfXdfBeV7QZRrTHNhn7oWOWCN+glIaqUWt6PjDlNfKxGqqalKCqElUi5QJjk6Pz+p+/SVCVV3aDKch6tKZnuVaUlQnqsl8RcrEThgYCIGilKpPGo/NljiATvCNnQMBR5dBWS8uxE0g4h4LKRpLPuXOCcccYZ33u8tcCRQlLWi5lcexpohSiSBFpFqlzEFFVD1Va0ZZnIvDIiYuIU4O+J49eY/SuivZ2l5aZ5glr/PrF4l35ash0i04l7ogOtblDCoHPCc3qfgqISGB0oZUQLEGSybj/gpp6ABFmhVIXNzsjWJoVSXRZYb7nbpo3YTh5lDHWlWJaKy02BzAFtwxS53t/STxYJLJpTXpHgeDwSCVhnGYYBnz+3czZ5vIjEwDFK0eQCbFUJ3n9cs6wlRsnZ4dh7T/RJo9LUNY+unvD4aeJPPP/oQ3a7LTc3L7l5fTtv0O89fw4xUDcl3SHxek4FpXeOclVSZHdmGQN1JvIqU1Do1Lkahmn+3CGE5HlCSMqm0c4bWsq8Sr4oxPENfyN4dFFgTMGjyytWqxXrbeKe3NzepsiHcWScJoZh4O/+5i8A+MmPf5fVco3AY5TMCfQppDI4l5VzDXVT8dVXXwDwH/70f+fh/pa+OyBUIiADrFZrtDJoXbJZP6Jp6jm3qe97go8EFZFaU5UNVZnW3u5hmzhHZYU2xfw3X335gtVqQRSpSC9KQZE7Y0VZ44Pn6U9+iFA/op9O5PEFQqXcq7pa4Z1nf0idtqHriCFyHPcIWeB9QJ5yvwToqsrcNoWzb7oqdhghhMQB4o3vjNQGLySjc+nm1acuqUAScS7g/YQUEZU7LkIaYpRELCH7Fs1qfhlQUqPLMndP5+Atgg/JG8qlTuipu6pOa+GMM84443uMtxc4SiXlS/5iCz4QfSIcmkLTtgXLNm2crRHgX+P9jjjs8d0rhi5Jk8dhz2ZRUG3eQWx+F/LTKOo5ey/pjj12nBA4ykyU1brEFJqikhgTqbKpWuFf4oc7ZFESzQU2ytkLxMeCKC9wXuBtwA5uTr6OAQ6HHfvjnmny1Nkwr64bBJG2LTB65ObuwN19kqQfhwFPoCxr6qJmOIz5vKTU65iVQqVJmw6kgkZUgPeUWrFpDFertEEuq0BtAniLcxOneHINxCCIIWKUplm0qCyx/+rFS4K37B62/PVf/SXHLn22siy5uLzAB4eQSSl06oSMU880Dewe7gk+Geq1OcPK+4AX6ZIO44idTonhkhhSwVZWAqKY09NPxo3GpGLz1CEZxwkfIn7yKJMM+i5WOQKgLDn2PYfjkZubO4Zx5OWr1MH58MMjm/UK7yaGvp8jJk6E1xTmqnBu5M/+z/8DgC9/9UvWq2U2JDwylakwU6YmBEtRlogIURokJ/+XFO8QkfTdSN9bKpOuRdMuCTHw8LCjH7bsssdR1az5wQ9/zHK5TB5G2XsHUifS+5AKyWjRuaCUus4tFE2QDaLccPneKn++kmHquL99iZscduhTlhmwf7hh6u6p2wvKcoObO5ERqSJSJaNBH8KvqdUQguAlXe85ZGLyoh4I4oFxOjB1OwgOU+QMNN0wWbi4eMJ680PgclaATX7ChdQFJKiZjC6IICJKJSuIwmjqPC4UUhLPVn9nnHHG9xxvLXCU0lR1PT+xG6GoSk9RjBR0MHxGcUyblp8O9OORaZgYh0CUJe065VQ9ev93qNefEMxTJlG/4XZMHm8dWiuMrpGiInfvMWqiEreI8SvY36BzkdVHg1y+h6BmfOiQ1QVRpi/y3ibTOBcsIgisdbO53NB1jMOAKQraugaZE82VZbVo6PYd19sD4zTMuURCGAoJOgS08Kw2acYspUxOzdNEyMdw6jwJBIUWLNuSR+uayybSnMZrEQiSyUqcDzMHRBBAKjyS7aHjb3/+M65vbwEoq4o/+P3f4aOPPuLJo6czD6hu2jRCiAFCkvKesoeUUkzTxPF4xDtPWdazq20/jOynDiEFWptZpTQ5hxAglWayHu8d8uQFE9PISMo8xsjrIcRAxOGjQ0wSYxQib/ptXbFo21RACoMLkY8/TgnA77zzDO9sGsXZcfaZEeTRpxAURhO84/r6ZVordoDYslwuiSGyyIWUVgZZGEKMWO/Z7vaIfF6NVtR1jTIFIaSkbZ/zxAKWoii4evQoyZ5PVgMi5nUzpOMRzFlsEAjeEUMKZw0xdU/K5RVOGoYxYh3E0eGzg3ZhJuoqsihGipVB6Q3DsANgtVkgYkvTXqKKxVx0SAk+usyD8QgJTZWUa2WR7hFJGs1dv0qdov54h6CjNAFVqMyHy8aUhxvGsefm+q8ozJ9xdfkBy+VP033rVwjtU1dJGlzOjxudw7uIRIJMThE6q92M0rMR5RlnnHHG9xVv7+BIuFxEVH7iVO4lvvsctq9ResQ7uO/Txt6PluAbdHvF+sNPaB79GHLQZfSGTgqk1+D8m3a7kNS1QoqA5kDJNW54AYDdvWAcbzHlClF9yFCkzXG0Df1DYD+MuKgJ7pquS+OFgMYUhhgcth/Spp0JrMvFkqurS2IYCUxU2TBPCsnXX72i7zrKStO2JTIbirRNS1uXKBlQWnMSbh+OA7uHPcdDIgJXVcWiymnPVcG6NlwtDbVOhRG5+LF2IsyFSJg7IT4IBhe43e75y7/+K+6397R1Jtfuj7x48Yqnv/+MsmzY5K6K9YFpmhDAlCMJRO5WNXWLcx6jw8xJORkyCilwPjnyhghSnAq9zOXQCqU0QtS0uTunpcRZhxAiux+H0wXE+8SzIQhGO6BUtgCoa4oySfafPXvGk2fvslqlrkZwluPhwOG4YxqHb7kVa1ShqYokDx/7YXZgruuKqqgoTMlykUz/II1LlUkEYu8szvs5bsB7z8PhwFLkrkMMhHwVVZBEnUq4KMIssR+GAWdTwORk+9TF+JardFkUye9HakyTjAujWuO8R9KxaBaocs2QjQNDsNihJwy3PHn2GLQG0jFNg0LLgNQFqBQBAYk7dOz2jK5j7PZ03Y673OWSMo1alUwPBeWp8KklPjQQJNFXCG1noz/MmGI5pgFvR25vPuP2JvkiPX3yPt14i4iCxbKlyce0aZ5Qlo8YvOYwCLrRz91Db6dfi8Q444wzzvg+4iwTP+OMM84444wz/sXh7SOq0FFu/5Q4pXFJEEditMho6IdAP4yoTHK8ePIui0d/iG5/h9ErrA+YmF6+VBovLVFMSB3QOW9KBs9wuCHaWxAHDsMDY37yncJTXPiEw8HQTZ7Jp2yfEATeBYL3RBwCScydC+eTusNoTV1WVEUxZ1iF4IBA3VSMo+DmOvODxogQGqkFhZJJ8lukroaMgYf7G/Z9z3bbMeRuVSCilUIqg1IGjeOySh2Xp8uCi1ZRKgfeMYzJxRlgv9/Rjx3aSCQCXVT5WA2ffXXNoeuYgqRZrBAhk5aniZcvXzH+eKIw5Xw8Smja4pTBtKVpW5bLxCvSSjFNNjn4NjVlWcyGflKq9PRfVBhTzi69aRQTMcawWLQIEVMWFNANA0qoeXwkT5wUKTL5VKBk4hBN40lin8itq/Ulm6vHSKUYu9TxOh727B7cbz/qAAAgAElEQVTusePAer1ksWzm80OMlFWFtRPReT75OPG19scjVVGilUEoRT/kboIPCCnx3jMMHV03zATYcRpzuKvBB0d3PKBzh8mYMmctKaqqnm0Dkry+zJ2sfMz5HClTgtRY54mixoVskjYcknO2KjkeRmL/gM0qo/3da159/TOKsCXYW8rFG3NFGybInB5TFqjsoB0jBBGQMrBaShaLNaeMiWmcUucNhdY1gdyB00Xu4Cl85YhBzTlsPowE24OzKKVQqgCRncN9wDOBht4f2b5O95nib2irSy6ufkpbPGdRrxltHgWPw5zpdcYZZ5zxfcXbs6imI/v7n6GL7IJbFEhlkEImqXS9xLQfAiBXv4uV72InhVKWkiNhSvwAjwdhMNKgZMS77OUy7Dl2lmlydJ3n0C04nuILbIcPHUKo5HR7UtpEkQIptUleJcGh9Ik42qKUQBDQStM0C5bLJCcmwnb3wPXtTcp9ykVRKQNlMbFsaoiW27st213iSIzWE4NERZU2kuwZoYuaZd2wWrSsliWXC9i0WTqtQIYjXWdxLkm3+z5txl135Hg8pE1TgsmkzS9fvOar6y3eeSSBGBw+Zy1JIo+u3qMwOvnpnDK0rCdGgdKapl2yWCxoch7TMI7UWlMUKTJDfTsgUwiunjzjk08/ZbVaz3lhy+WCm+sbXr16zWG/5WG7pctOvcEHtJKJTyPlnNMklaLUBu/s7Hdzkrdb4TBlyXpzQbCWu+tX7PfJdddOI8YoLi/WrFfLmf9yOB6yZ41mHEdev349Z4Zdbi5QQibPHCEpMlnYe89kLeM0UpgC0chfi8ZQusSFlJQ+Dj3ilCZe5PytGHK46GI+JqkkSEGIgtF59jm5fN9vqRaPaBYXKG0QmWczDVtevfwVfTdxdfkuKME3X6bk9VYVSKG5vjvgxYJmXfDxJ4/z8e45HF8yDnu0hIt1clxdtBsiit22I0pNWa2o8yhKlRY7HBEaJkZCJpZLsuO0KREi0Psj6uS/JAWq1MjSoFSB1CXeZ0WUdzwqryBKbNgwVqkIHbue/cM92+1/olo8Ybnc8PTJp+k+K1rExSPO+OeBj+47/5vOHb/TB6eUFUr+ZlyqLpPZ/yF8cfglP734g7f+N/o3fK//P/GbOh6f8c+H7/K5+U2cu/8hfIeKSlK1C3TuGyQ+a8EoS4rFc4rFjwn6HQC8LJFFoJARQiA4QSR1d6wPWHvHOFrGIbLP4ZiH48RxHFO6tY/5afRNsKFSBVGACGImNUqtiEIglKQoKmpj5o6C1orSSIwSROEJfuCbr9NGM00OrQxEKIvIenV6H0N39Hz5zSv67sg0paff9F4FZVvRLFa07Zr1Oj3BtkVAuj3YgUoHNkWFcqkg6Y5D8sDxInnvxDgf0zgODENP3dQI4Hja8LsHLkoolnXKWtIa/y2i7AfvvYubBkSMqFxsFoUCdO66ZKXYqfAQkrIsKIpk5odgJie//8FH/M7v/S7vvvceRmlsJmEjBZtHj3n3gw/54vMv+Lu//VuGHAZalBE3DnTDSNO0GJM7c2WFEJHjYY8QWe6eh56T8wipGPojx/2Ow343E52rqqAqDVVdIpWcwxyrqsrS+ZjPXTidOoJzeCGQUqVQSXE6VkFTVdRlhSdwPB6/ZTYoks+NUoh2AdGn1wTGacAHl8I1VZFUUEBZFVjrEEpxf3PL9fULukPiq9TtgvH4BfcvR7QWc3DnMB7p+z1NfUWYBKJc84Pf/jEAu1dfc/3VZ7zz/gc8fv4TRHFBkQvRZ8sHbu9Kdvc3DN2Ol6/uABDyFlPWBCTatAS5YMwmiVVRIIoF97tr9vt7yD8PbsorIOK9I+RzeDpHWkgKqVEm+UiZ3D1UWlOVRVJGCgHZjqGpajbrJc7aFH46fMVf/Jf/ms6rEnz48b/ijH8e/CbGZzZYwncYAv5jdHCtXr7191flozkX7Ywz/jE45RX+QyjU//dYmLePqHRDvfnRfKNI/YT90HB0hrZ5ipfFrLQR0WK6gSkcsFPPsTvMJNxjP9H1kn44Mk7dHPAIIlVNUSFQSKVR+mQOKBHCoE2B1HqWe5eFoagKhNSUVcuiXc5OwePY0x0esN3IMIyE4Gd336ZSKOFZLRTKlDzs0zHt9lMeGdQU7Yp2o6ibVMisVms2S0Uhb7HDDd6lgu24jUg7sigNy2WLlIEhH2vX91jnSPqT5Bdis7qpKguEWGCtw7qIz+O4q80lZZnch/thSOqsk8IqSr756muO+wNNs6BZpi+a5XqD0Une7ZFpZJcrXSkCQnicjwiZAkBPZo1/9D/+McvViu32gTBNePdGoq20oWmWfPrpj7l89JS//Iu0oX3zq18SEDjv6ccBUySycFmWKCWxdmKyKfS0y92qECN2Grm7uWY4HjFGzflFyUVZ0Xd9SibPC3wYBpxzdH2fCpe2nUNRCcmrJ+VWJQUYgCkMKnerdFmwXq5p22z0N02ASKZ1TUPTNByO6ToNdmTygbEPSDtw/ZC6MYtlS1XVSGFpFxXt8l2ETN0KLRW7+9eMxz3GgMnHE9QjrPgxLpZYGYnC4Mf0xNvWA8Xziih6BvsCIfZYnx4KVvVj3nvngsfrrxn7ayabicmiYtcf2R2OSNMyOTMr5LphIviAUguW6w1lXvsips7fYb9jv3/AugM+pL8RwiOZGBhQVqAGjRImrxVJUdRMVlDW9UywFwq0jNgpEYrD6BiHdK+PU89nw19yxhlnnPF9xtt7hrpFrv9kfmIYoyJoj3Ge7jgixYBWmdvhjmyHift9x35/oO/2TGP6gg0h+2pEmQqZOd4BgiiQSqK0QSqDyG1MbQq0KQGBLg3VyehPS7QKGFMgteH4cDtLwb13BD8iRaBSgSgD+a0oqwZrA1+/3HHsxlkJJLSmrBbU7ZLFomG9qMmWMVTcE8Yb/OQZrMGX6RfB1Cge2GxKqrIgjNN8rNNkUVqniABrCTHQZe5JWZY0dYVaKI5dzz4rYyKCyTtiBBc9ox0Z84YW8BireHjYcdh3LLJibNEuiCJgXSqgvp3uHHxIEmYhMeaKEALLHEAppOTrL7/ETwN2Gme+inOpm3E4HGmXK9rlik9//BMADocHrl98BTEiBYyZ/7KLgeVigZRZlt51HI7pd0VZ0B2O4JOBYFEUs6+OnSxDNzCMYwpBzSqzYRwIPqSCUwj2hwN1NvQrTTGvG4ApFz6nv9V6SGnt+k1HrzRF6vzJpCSr2xadX+/V3R3HvuNhv+fYD/N6kCqZMC4azUcfXrLZmDnegahZb95lrFvu77/GuRwXYS6Q5ZroPTqm4hKbeGuVuaZUEis0zvdMh5EvhjT6a1aPuNw85WrxiOVyg8nry8uK3bGn6zuGsacfOsIhj02nESkUAo114uQ0gFSGwjSsn1xy8QSIAZd5QM5bqrJASZEcrKMFn65TdAMSj8Cn1zp1xqRECnBlj5SWQiqef5BcxncHzzffXHPGGWec8X3GWUV1xhlnnHHGGWf8i8PbScY+8no/ELLqYxodzk6IYDEmEKLlNlvzPzwc6I8jwY746DlZ2J3+VwqRJlISYjYMU1JR6AJlDMgUOPhtbkBRFFRVhVKKQp9yIhz90HE4dkzjFmcnVG6rV3WBQBF8oKk1Si/YH9KT+avXe8apRyBRpqJsUou+bpZsLjasloGVuUeHl5w4TaOb8GFN7waq1ZKuT0TP/e6Oq8ojqFN4oR8YbOoiWefwPhARBB+w1s55Tz5EKq2JJM+Xk12+z1lSxqSgUFdonM+mfVJCiNjJ8/i99/jRbyWiZ1FqXnzzOXaamCabMoXy+yitKMaSoqzRFwbnIiZ3Lm5ev2Z7e4OzUybXnjKqLMU00i4izlm8d7Mq6/LqEd/86nOCTSOtk2fOOBl8sCiZunLTNLF9SJ2Gtqnp+iNtVSfyrxKJ1QsEl7KtjNZYaxkyP6jve7quw1o3k5/9Il0/V1ggoJRGKj2P3EIIOOtQSqfMqbJAZ45QDJ5CtbRVTRBwHCYgddPatk1EbSFp2nbm9Fgb6IcJXQd6eyRuJaaQeX0phCkpyidsqg0+c8yCSJ1Gwg3H7ZdE1yNzZ7ObeqITNKuCyXX0Q0dZpxGfLxRff/6C19rw3vsfUNT5vigAYdC6osphl0XOEgs+kaJD9IQQ5nGvEDIx2KxDykCMfiaWS+EY+wMxjMTgiX6E0OW/GzFagE1k7dOaLIzCaInSESMlzgsgdzAJPH52DjE844wzvt94a4Hjvefm+oa+S1+GWkgu1gsQnutXL9hut0zDKSgxQEqBSlJiyHyJ9OWrpAGZDNJ0VsAYXSDzv5uqQipDmUdRxhiMMWm0ESN9lzgNu/2OfhiQIpnqNZXBTlky7EbaZYWg4m4b2B9vCblNb6ShKZbouqZar7nYpC/oi7JDjZ/D8DViLKB8zn7Ipm9uQ9fvqIzCdoroUtGhw0RblhAc+93A0O1nbocUEmVKQkhBjtqY2Wxwmia67jhLkOcIACvS6EEqiMlg8KRusJPFR8XzDz7ip7/3e6yWqci6u3tNUZSJdCtkyuE6hVZ6h1aKojUopdMILEcy3Lx+Rd/t6fsOEcFOaZP2IXBEEHwaJ0kpKHPx01Ql05gUO8a0M1F3mibGcZyPYxjHOYQxxsg0jckcTwrGaZjN4UQubiAniOfi9Rg9x/7IOE50Y09TVTT1m5DQvu+TUqis5ywqISRa69mROeFksudxdmIakgy7MppNdkCe7h6oTI3RJS54Dse0xod+hGmgKgoGd2ScNOqYx6Z7y+bygrpZUZpqPqc2dETvCeMORY/UYSZ8D5PHuQHRK1ZXHyKLhqtHKWeMYkNp9nR9x9cvv0bItPaVqTBlTVkUFMZQVTVNNqbUSqexnrV45zg9SsSYlHdj/4BzHX4aZxapCI7o86jJyEQSD1Ver0uUKfGlRAWHDye5/ETvLKEP9IcRLQt0me8LOzK5njPOOOOM7zPe3sGxlt39LVV+mi6M4NWLr9g/3GDdlDsVCVIIpEizeyEUSso5VDA9cSfOjDYFWp2KmBJTlJgi8Sb+H/be7EmSLDvv+93F91gzs/bee2aAaXAAggREmvRO/bl61qOMECBRFDEDUJgFM93T1d3VVbnF6ttd9XA9owYyYxdkhAENWHxmaWVWGRnh4e4R99xzvkXrlGcEUGQZwzhw8+Y1XdcR41vH3brIITjc0FJUgsuL1GkwHu7uOrrO4WNye63qicNRL2hmK1aLgibfg/kpAP54JLCmt58xGE973WHMVKzIjroq2W4L7o+/pp6nnXctIiIIzGC432zZ7XanQqrIC6g1fd+fOCMPMnEhBM5bwvB33YPLskTE1OlywTMax8P0cDZf8cHHP+Czn/yE+byha5PyynlHROGDw9qQOCknGk5SsuVZnopKpWmP6e+67sj1t68wY5+6NLNUMOksFZpaK6KvKcoSbxLfR+FZzBoOhwNtezwRt5VOSdhSCpTSFEVx6vpkOkOIREC21qCVOPFlvPdoKZPaK89PEQBaCHJdUBQVQgjK/G3uVdt3eDdJyI05cbWKskjSbvmQGh9PnjYqRjrbYoeBsirIq5p88sEB2B2OHNseqXIeyFp1U1BknixENDmdHRl9N90PHuN35EXFcrZG6VR8zesZSuUYU3DMK4LpUD6du0U5w2NwVOTVI/LZnPjQjRQWmdfM8jptCh64aVKnz4NKiefOmpM7syMRp8UU5hoeXLLHI/3hFme2RDegM01dN9O1yFEin1RkmugD3YOPTfQo4bBERmdP6r3gLc47rPUctge8scyme6Wsi1PX9Iwzzjjj+4p3GBNEylwxtGnscHc8pG5JsGmHKmQaPcFkijYVN1qjdZEs9EkFTpaXqDyRQLOpwMmzDKkVWabJs4wQPYddWojfbLdY56bnBP9gxOYddVlwcfkIYiI7v7lJx9dbQ5QZWTVjVTaU84amSYvQZWnJ/BtiuCN0GdYnS/qjeca+txhjcGYP/sCTR8mPRBUf8PKba477e7zrGdvUwSkuFykl+ziy3e2T6sk/fOErmjp1oJx72A3H07+pIxUIMZkFAlRFiZYKHwLSyRToOC2eH3z4MX/wB5+xWNRYO+KnLpK3lr4fGLoOa0bGrj9dizJP6jbvk3ePtZbrb78B4PbNt4xDyzgOOGvxk8w4Lwpmszk2L1DzBZlWHA8pcf31t6+S1FgpNpvNyZgvdU4EqRjzWGtPcv6qrkFIhnFMuUlwMucbzIgIyVSwrmuqIkVCrJaXVLNLLq6ucM6x3W5OBG1nQypefMSbkX4idWdtxnK5oqkbsjwnEk/KqxACxEjfW4zNaWI4jepmTUGeK8zOMw7m1D3ReU6hFIMZeLIqePJojXnw9pnGesEb2vb+pKKK0YIoKctHzOYrjsdbap2OT8YWY48ooUEERBQE81CsWKTOgEgI/lTw6kwSYvIWynWGzDI4WTXESf7u8H4kTKNMjWNWKkQxQ6l5slJ4IAwjEDGmVHEf8UpQTErBSFKHzVQGUp6IyRBxwRMiuAvLm1ev2D6Mo7eHky/VGWecccb3Fd9Z4IQQ2G7uMOM0AgrJo0QojZ5GIw+KFSkTN0IrjdQZUucoPXV+ipIsz8iLnDzPE6+E5Lib5Ro7Dtxev2Z/2PGwv05jncRhKcuKx++/D0AzWzKMI/f7Hd3xAFGhddpZLuYX1E3NbFaxrKGMt8TxlwC4YYdjhg9X3HYFu2EqOlyLdwNaFWg0x3bgi8PXABj/mm4YCdGgREVRpOMejeHQKky743A8UhQZxTRCaKo6jd20REqN9/a0M/fe0fVTrpdSp85ODIGyKIkxMo4jPgQ+eO89AH7/x5+xXtY41+HMeBrV9W3H0B1pjweC82RKUZWpUCjLgiybHHOlZOhauqlY6bs94zhgrWPoB7ouLWhNU5PpjPlimcZqSvLqVcoFe/XqW0SMp8XvYTSTEAkhoHWWOBzTe82ynGEcGbqWssgI1nKcjt0Yi5zOQQiR9eVjAH78h3/M1dP3KeuGGAK77ZbNfXKcfvnbz/ny88/Zbe+x3tI0qVMUgMGYKXg0kmX6FN6ZPSS+S0U3DhjvqGdJZt+UM56sl1jj2Pcj44Mqyzgs0BvB+GrgWVDMF2mMN59VSAzb7dco5an1FEZqr7m9v8OFihef/AmXjx+zuXuV7n3Z0A0G8pJok01BmHyWUo4XCKkIPiImubyS6rR5sHZkGNq3njZSoXWOUhGw+ClQM/ge/EDEE306Bw8Fb6GzlAQeIt5Z2mP7tsARAusdzhl8PBkm/05HSVAUBe99+CFPXzybrjgQPH/+v/5nzvjHx9/HB8d4i3+HD87/Hyecd3mRrPL1aXR9xhnfF3xngRODx4z9SWoldIYQCi114pHoEiWnG18LRKbJpUrFTa5PhnCZqsjytNvXSlFOI472cOTV11/TdUe0VmilT4uo95Hl/ILLR5forOB4TGOCb6/fYK1HoGmaOeWsYbFIi9289OTuW4T5r8TDluBzwlRk9fIjtt2C19/eIUVHWaZFq5ktKcontF3P/esjm91Af0g7VWdblMrIigovDc6l91NmkbAsqZqGYRjQWlFNfBWtJSEmabSdQgmzPL2WGx3RJ/5JCIHhYXQVIsEHhFDUdUMzX/Lpp78HwPpyhvcdY9/TdT37TTKDu719w2Zzj4hQVxVVUdLMHhKn8zQ6UhqIDG2b/GYgefCMBu+nxPAH4q9Ptv1ZnlMWBUTB+jL5vzTzBabvUqJ0pk5fZCG4yZAv+f/sDgeseyvfFsBi1uB9YBzHU2fFGQsxUM8b3v/kR/zxn/5PADx58R5SZ1hjiTGyXl9wcZk6be998BEvPviUn/3lf+H2+mv6KfhRCT15tThCDORaM5tGM1ono0MfElNlsCOiT/eRi1DVFc+fXnE5jmz2qVDYHY6EqDFOse8i21/vuFina/v8aUWVtwg87fFIMY1pqqzi4skPGHzGdr8hH1r6PhWUql7idU5RzggCosgQWbrH66KkP+zwzlE3JSJO5+7QUc5W6KzARlBKJ8NGUjGkVIYSHhUiw3iYPp1ucmYWuCnU1U3jpkPskCEyLyrurm+4vr3lx3+Q0sSrpmG0hsEM9LY/cXC0VCghEaSw0YeRGEAkEv25g/NPhUW+eudjPlv/K3JVfudjtMz+oQ6JQlX/XYZs/1+8qzgb/UCpqnc+z7tM5M74l43z1T/jjDPOOOOMM/7F4Ts7OEJIqqo5ZTAJldyGM5UhdYHU6pR3k7o2ijwryZWmyLJTByeSHHelkByPR377+ksA+r6jyDXNvE5qoRBZTxk3j64eIyTsDjuOmw1uMlvTKmNdz2iahqLWlHJL4X8DQNj+hhhbgqxx6oKQPeY4JtXM7b6n7VsWixki9jSz1KIvi4bbuw13tze0xy1KacqpA9C3kegDzgSkdIhp9HE47NkW8Ozqktl8TgiOWZP+xnuPHUeccydn3gd104Ph3MPI6mG8F0lGewTLorngvQ8+5fHTp+kxwWDNwNAeOO4ObG6Swdru/h5iRGtNcJ4+9GQT5ym1VQQyQIgC5wJ+4gMZM9J2Ld4HQgwn3ofzHoREqYyqahBSs7pKxm7NbMVf//SnbHfbKdzzIXpi4rpM46thGDgcU0chzzIW8wXOu5SFpNRpzBInZ+XnH3zMZ3/0p8xWqUtzOHb0fUt0DrwnRn/KqZrNF/zo936PxXLNX/z5f+T2TeIUlblGTnwTJRXl7yispExKtbwoQEmETBwiAB933Ow7hFI8unrE8xdJ2XQxHrnf7NkfDf4YGQe4uU7dIjtGlvOMXD1iffERXibul8URtcI7gfABGXYsm0nVFXtmtWaMhiKfc7/5NVWVOF6SQLv/hmXznH53x3abxlrL5WPypsLYiA8SIfWpY6JiGmsVBQgZCFX6jPWDxYdACHHiPXEK23QhWToMxw7yyNV7j9kN6djv+wPeR5SQ+DgSJvfj0Y1IEZPTuFAgM+T0PYAICL67O3DGGWec8U+Nd2RRaWaLxyiVWplCa3SWJbWTKtCZIMseOBcFOlOIzKEpwTiiSOMAlTXsjobb21vatk1hhkDTLBAIRtMzWyx5/uw5eiLXbnc7Dt2BGDVFteBiGinN6oIq82j/Ctf9HNPdMDIVWWqNlR8R1BIXl9zdS3Z9Iql671IWj4SyqDlMgZq/+PpvMaMleksg4L3jwb+nXKyRyMQ1kgIekpsFbHdbchmp8ip59zxI4oMgRI/WEq0kx0N7kpBrrfEhkOc5RZ6fWv7eOwyRTCnqes5sseJB9WzHjrHrOGx33N3c0h5SAVHlBc1sRgiBvuvxPnCYfpdlmqIokW6K2FAKNxUlwzAmFRKJv/JQ4CidEXzE+YAQkno2PxGd8zJiPJTVDB8iw0QW7vsWa206hr7ncNiflFLOOay1OJ9BEIk38GCyIgV51fDJD39CMVtxv03XwruRod3jxmQDEJO1LpASyH2IXFxe8tlP/pj/Mkx8nn4PXqBVhhlGovenfK2mqhK3KJ8cgp1nu0vnSOUZozF0w8But2N9lXhAn376Mc1szvX1LXVh2O87hslVer/t2d0LiI74+T1Kptf55MNHXD0vWdSacbyh77aU01hSyQjBEW1G390S7Y4ye5DI1xTrT1hfvOBu84rH5cOIcY0Qima2QuYlIQbGSdHmR4u3I3f7O8b2hmoiOispU/GpoJQ1IYbTuDAai4wBgsd4izMj7ZA+mwg58ecEInriNKIiRhAKrWvyvEbnTUohB7KiJjID/hfOOOOMM76v+M4CpyhyPvroBfphMyoVETmlUxsyXSMevFykQcscPziMfYMLI9amhWV/M3DoO2KIzGYzsmzipFiDxPPkvWdcXF7RdYb7bVJReRz1fEGVNywqQaWnQqX9a8zN3xDGjkiB1AtUndKZ1ewpWj2mayv63iHyA5mdji94igK2+yMxJFIzgHORsqioZg1Ka6w1dBNPIwRHEDKROnWGmxa6vj/S2gNje+CDFx/weLk4FQrEpA4y4wDRIwW/U8gkQ78xBJy1J5VLWZYgBEEK8qpmuZjjbTqG/nhgv9mw2Wwxo6V5kP5mOUHA8XhEqpS47iZDRh8CXdfTusjF0/fJc3XiAVnvcc4hhCAvi1PuVl03zGYLiqIixPg2VZtUuz26umQ1r9jc3/PNq0TCPhyPdP3AOA50fcc4hVw+/C7ESFlm6R6J8dSNCTFxfYQqOHYd/ZTj5caWod2lfKwIMXry6eYLznJHIr5fPrqgmkjdN99+Q1MVeJ/MDo0BZyduQbBIGZA6WR744Pj0B5+mv9vsscqwulAoEemnbtQv/uZXPHnyhE8++gjnLH3fnYwIY9T0vcU5y2i6EwH6yy/v+fqbaz765BHzSnH/lWX1KPED3v/kE0zUhN2WPJfM4guseyCaR1RmMX7P+uICY6b7biK9m+5AGAaiFMSJECqEIMsLVrMXbKXATXL0lH8WUxEpJrPGyatGRUM0kUyWeJkhBCdZvZA6/Y2O1EV5SmkPPuJjxIwjvTFE2xHCQ1F0YLt9zRlnnHHG9xnfWeBoei79n+HMJE1GgyioyhkWSaYuiD59IQrAjgGCRskVx3HBvp122d5R1DVNWSKEIE5k07z01LWkqHPa44F+hGzqGjRlQ1UWzLKAMF9ib/4vAMJwg5I5g6hAaaoypYoDuLjk/ii43t5hhh4RJXoivuVNSdcd8EGyvT9OzqxQVRVFXiUzPOeIUSDEg2lcgCjIs4rFcsVDqdIfbtlc79nvNxwWOx4/fnQyuAshdYGcMXRdh/dvHWWd9ymjyvu/k6s0mjGNWIqS2XyBiI5+8q3Zb7Zsbu/Z7w8opcmn5PC269kf9/gQKIoC5z1m6lw451IGVNdz9fya1WJ9Gl9lWYbOspQrJeXJObppZixWq6ROEomYm00dq77bo0VEFgWL5YLdPpG69/uazXbD8XgkEqcxVHqvfT8wn8/QWfZW0TMR/gKpCMyn33XTWKs/bCz1eJYAACAASURBVBn6PWYcCDERtqsHgra1OO/Recby6jF5nq7r8dgy9kesGSmKkqooyKbk4xgcMTr6vmWwFmMcy9UagK9efsVx9Fw9uuJyNefp49TBESrj+uaON6/vqOoca0YW9eztubvS7PZ7+l5RZGI6hgO5VLiu4pt94Nt7wcvXKYvqiy93PHv+nLpZQREQ0qGma1hXFbu7V+zufstq8YRqShn3dkMIOeg5VfEIZIWf7j3nElF9GCL17AmjSd2vOO6n+9slsnpeUU5y/rHbky9nKLVG1fM0spxGXt5HfIhpROwN45Qgb31y5A5eEsjx3uIfstPCgO0NZ5xxxhnfZ3y3D46QBDWnmL7gbSzRxQohcqT36LxmmHad3keCXGFixjA6bBhPhnDzZkYzrxFS4k2g8Ik/gXtJvfxDOtsQZaCq3lrSF3pEms+x+1+C+YYwdTQ8cwZbMdiWRRGQ+SUDUwhgX9KNgVleYLXGOX/quhwP7aTiiTx79sFJbj1OEngpNEoXFHnBhZ48UbTCO4fznrLKpyIHdspzuPsKi+D6+oaiLHh0lbhDeabxPmCdwzl3KnzSawiEEggxjRMmlUskYpwjC5EYPCEYuqk4PG63DF0HBEII3E9eJMNosMGR6xxnPT54xsm8zTiLNZ5AxzcvX7L48ZJy6njMqhl26EEImmZ2MoObr5bUs/qkkpIiEqeO0P31G4buiMokVVnwwSTZ996z3W7puo4QPFJyiouIEZzzjMZC8CiRYgbSeVAYa2jbHXk9P8m69/stY99i7cBoDGWe4avUCbHW4mMkLwoWy/Xp3OW5TMUXRWLMB094UGtpTd911HWDDoK8mSOnAvrJk2dk2x251hzaHjO66ZaXBARET1mUiJg6GQBuHFBOIiVUVTKpBFguLlEqwwfPMkYu1wvevEnXqWquuN3sOX75CkRAqoBzqWN1tZ4xbwqKKuf61Q2HbSr07Hjg6umKclZQzu6Yz5+Sl8lkUkmJJ2JGQ7AjceqqVFmknC1Qega6xkWJlum81hVoXSc1oPCYoSc+XAtdEqIkWEdEYB9GmcZizIhzBmsM49gjVCqgRQhcPf5d5+gzzjjjjO8f3uGDE7H5p/Qx7W6tj7g2EqIn0znCeKyZduyDYzA7nDdEoChKLqbdcpXndO0BG0aa/J4Yp1Z39SN2fUUQkaLIaHSBcJ+n57v/KaH7Ah0HnFeMpCLLuZIYPdXikmL9bxlZYidJ4XqxYukz9rst9/stQ9eeFv3g07goGe0JyikP6Pl7H1PVJdY5rPHUVcViklvHaBNR2BrseDwtGKtFTXu55sYcGfuRL7/88uQ58ujqEq01WZ5D2xKJZFOhF0LEOoNWirei2zRSGoeBoqxTvIBzJ6+ZwRiiAD/FVYxTNw0pJzl3iiSQgpPjdCFK2rZjs93w+puXfPrJp9T15JFTlVRDTRSSsmpO/z+fz2maJjkZEwje8eY2jWBub6+RCBAakQWqqeh48vgxu92OYexpu0NKq56IxNZY2rZlvy/QSiZp/CQv9yFwOB7421/9gs+KBmsfOk+Wcew5HHbJUkBE2vBgspf8hIahIzjLapWKzSzLUdEhYmTeNKiTAzDkuUbJdK6bWc2+H/jpz36WzsP6GRfPV5iuJXhz4iiZwdDMFwyj4+XLb2iaiqp6sABQjMYkupUQ5PnE/RIiWSqYntGPFHnGhx9MRGIVWC1r2nUyqcxkTozpfojkHE3H/bHj/uaGzW0ikNvxQP6bI1dPrrh6kpFXr9AyjYSKXAOCxXzOfF6TV+lzgYjEqPFBYQeLcYbjxMEaR0dkA0gypSnz/HSOtI4Y7xjGDqU0etpg4FKelS5LqtkMERXRTyNLBM6fPU/OOOOM7zfOMvEzzjjjjDPOOONfHL6zg2NDwa9fBSRJvnpyWlUSoVUaAU0dBWssAUtWlFRlTZll7KfYhet+YL5YspyVjGbJpp/SlA3ofEs5m1HoDCkM/f4XAMjuJTKCC5oQS0RMI5a8WCKKp6jqiu0+4NwrmmaKfigLRKkZQ+Bp2RBccergEGIysavXDKOjbdP/S6UoqppVVWCGnqHdcXv7enq/guAlX3zxG/ab1/hJPRS8w7sOGVIaddu1/ObzXwNgzMBqucRbh4uRiDzJo32MhCgx1kFMBmoA4zimhPG+m7KULMM4jZuspTeGcRwwzmGnsVEuc4L3BO8T8VTp1NEh8ScypVFCcH97TXs8kk9GhFmWJ5K3TBEZD92YLMtpmoYsy3j16ht+vtlip2urJ5dkKcTp9QDW6zUvnr/H9rBnMCNdd0T8jhOutZbNZktdV5RlcTIVjELQ9T1t2xKCP42bhExqK+dsIspacwqZjDEyGjPFXwg+/OBjAP7mr36K6bbkeYZ1lqLI35oXBk9ZFIkULwXOe756mSwKlv3I08fPUEJSVDUvX01jU+9ZXV0RhUTlGhcibWun+z6Z6QkpyDOF96nzlOn0UxYalTXEWGCn0W3bvqaSgqKu6IyinC0pmnT/C53zUb2iKte8fvWaL36TXLfv775FasFsccm2tYTDW5m/92nUGsINWaaYTVlrq9WM9VXDxVWKEcmFYD3lgoV5ikqxxr7l1sTJXVtI8qpivlqQ6ZzpUiCFIlM5AsFgkkpPTny2MUja/m0H8ozvH2bZ4h/19f4hTf625h4X7Hc+xviRy/LxO5+reIfZIcDge7IpquW7oMR5LPvPDe9IE3eM/fHEq3DWkeksqY1Mjx3HkyeKzBRVVaOR2GGkP7SnrJ7lxQUqV9zc7ji2PXZygC3LgkbPiBlE5YDx5J1j8DjjcaEk5hqdpy/UZvEMNfshqmjI9kc2u1sOXXo+Yw7kRSo6kv9LxNopXmHo8fuewIGmmbHfp+LL2pFgL7BlhcIwttukgALqukaiCHZk6DrcVOA8JKaHqKYAw0A/Ka9ev3lN33UURYGIyYPkIZLBe4+xKdBQCnlSTUdSSOlSKfIsw1lHN6Vbj8YSQmQcUtHzMNpy0SCkJEafcqKkhGnRUgiKLGO1XHF9t6MfDeUUUSB1GnFIkQqXfEpvV0qRZRnz+QIpXnPz5ppy4pjUVY3TfnLQ5USa1jrn6dNnHIaBCNzdXp/cmVP4aEwZX85hraNu3mZY1U3DD3//X1HWi8TTmc6sd8nReRz6xAN6SCAXaYRljME6y2KdvHPmywvuhiPI5MWz3e9ZzKaxzWhQfc/6oiIIgQ9vCd/XX/2WMHQ4BD6qKRMKlotlymwSknEY2G3u8ROPq65rZrM65aYFqKs0ypzNa7o2Eb4zIen6DWZIPJtca1RmceFA4UcYeoaJl1WvPuTYO3bdHaEQPP/BDwG4ePoRAo9zgaofsNaeuGLGDtgptT0SGSZV9/1BMcYKExrWqwuiatntH45BYQdPFGkEpfOCMI3Jjt1Av+sJPoXDZtN5KIsSnXukzghBERwIJp6SUOh4bv7+c0eI4Xvp9NvaA607fudjjvZIpet3PlehSlp7+M7HbMwdF8XVO5+r1rN3PuaM7xfeEbYJ3suTeiLPkvX9MHZ4l4odnT/ITSXWOg77xCNYry9O/I7jfsd4HOijRYpIIaaMKqUos4qlrqnctwy3/yf++BIA4wQjFT4qinhBs/oDAGT1HjbU7LYDdpQMtmE/yYw9O1R2INczlADv3Em6bMYRawzWjojbW5bL9OFw447t7Z5dNHz98rf0/UCWpd9leUVEESKsL56Af+BpHPBuIDiHMz0q6JN/iHWO/fEIhyNFXmCMYZiOwYfUnRAIpFQnubxSkq4f6fqOrm/RMp7+RmpNtz/gvWe9WrPbpQiAEHwycwsBFzzeJV4UJK5IWZRIXVDOr3j24kMur1JBoKWkyEuOhz0xxlNI6ENsg1aKTz7+lC+/+JLjLil0gg/4mEjOVZGfwlIBmtmc5XKNc5GqmtFMhPTDfpcI3iJFDYQAXZ8Kx6KoWK4vePrsfYTKiWHyEEKilCbTGiskxg6niAJrEx9KSokUmqKcOnpljQ+RlLrt6X5H1v3o6oqSiAme8TDwNz//Oe0xfXFGoUFp1qsVBMFh8sfpe8vLl6+ZLddkWiNkwXKZCr3FfI7Kcrquo+9a7jbp/MyPNXkWkSLAEcCi1GRyGSUmgsoLlrOS6D1yKvCj/5JKanReE4jYKek8FDkoMRn9aQgKKSaScVZhxhQQ2rYD/dTZQUn6YeDQ7mg7kCpSTFlZq1nB1eVjDscBmUIrUDrdy6UGGUt8iIkUb9OxtXZE5YG6lpRZxPkNQ5c+2y4I1usPOOOMM874PuOdBY6Q8bSgFWUJMVKpLHm6OPfWgMwblBRcXi5ZLNeY0fFmavv3QwukEVFRNGR1er6mnrNsBIX/Oe3m/yCMO4xJi74XNVHlzJcfQ/EJX95Pi4I4UBYmkYWJqCJnod6GYI7jiMeQlyVlNWO2SJ0LEWHoOrruCDGwuU/HNisFT568x+DgYixwLlA/dABEDiFw3F9zta5ORdHN9TW7zRZnRvabHiUVD5TLEJJLr3OB0UU8GScjoRApcsFiVqfFf3JnTvJuizGW3X6Ds8Opa3Y4HPHe09Q1xHDqQITgcRMhOfqILNSJxGtsYHHxhH/zk3/LxePnlFVzIpVePXrCjz77I/q257e/+RU312n8aEaHGS0gWK3XfPqDH/Kzv/xLIKVolz7DmogzPYWdyMxFQ1ZKmqYiL3K6vkNMM46qaqgvH/H8+Qs+/uRTFssl1zfXANzdbahnS5TOsNaRT4VeXTeM3YHjYYsNDus9+YlkbJBSJCl4VZ3ysNr2SCSptkKM9MPIZvJSGqylNSNfv35D2w10/cBsme6HD957n8FY5nXFo8fP2EzFSuslLuSMPtDbniyvCVPhcbvpMW4gEhFR0E/Kq+vNlrLIWDUFlxc1s2ZJ36WCqe0t3jeYQ0aWa4iBqknvNy9y5KjQHsw4UEySfa0i3XHAkRGEom273wm8PeKCxPgBY0eGPm0+xtHgnZsUcJOz8/S5va1n7FvBs2ePKeuC3fZbXJvGsGUmyEKgzipkLh9qeFQ5Z/QSYwzbXY+zAUEqkrNMcr1tOeOMM874PuOdBY4SknKKIRCTWkRnColMi4yYRh9SgEhBf6/f3DL0w8nhLi8a8rygahoWszUX8ym0Um/wh18ydL/CD5bOlTiVigstI2W1Yvb4X2O5pPFpcXzz5g1bZ6nqmvl8gc6y05hMKUVZplRuY9ICWU1dpExr1pdrnj+9YDjueHqZFqd6vsbHC46bHfOrku1my35II4lHjwrwPVW1ZF5pqjId93xW0x4OOANFVRPyfHLdTZ0GZwNlWXPsBnwQU+hlGu1opbDGM0zGh+ncSYqixPvAdnegrqqTGkkpzZPHjxmHgZubN6diQMkHJ96e0doU2TBds2q+4uMf/2sWj55z6Hq22+1Js6W0pCgLmmbOH/6bP+HuLimlrl+/ou8NZhypmxkffPgR33ydisCh3ePsiLFD8pGbnkzrHOFTl6aqa1SWT5J2uLy44j/8h/+ZDz788KTusjad8xAFxnpGY9jvD7ipSK7qhqFuaMYF1jtC8CdfnRiTW3ZV1+iy4HriSX3xxa8JpiPLFF3bst/vMRN36NAeub2/p6prqqpBq+ykltruWoJQ7L654/WdoapTh8TKlHD+4Gdk3chhKlZUDCxXl9RlAWIkq6cATAeXlxfgHV/fHPiwfkJzkSJCGm+4vd5gWs/ochCaTT+N+DKoKsl6WSK1Ybf7LQCLWUWul9Q6oIsF69Uz4lSsOKsZbOTY9xzb/hQ6aq0hhnBylo7Bn8KirY+8fnPH/XbLbF4xn5U0k+zcy4D3A3EwSJ04RwBF5rGDQcmCTApEVqRUdKAd/679wRlnnHHG9xHfvwHsGWecccYZZ5xxxn8nvruDEyMCcVLTKK0QJN6GD+nnodMQQsDHiCCisoJVPTspdJqmpqlr6iIQ+19Dn9QibrzGDB39oPFxBmJGUaadb1YuMVby+ZdfIeT2xH/xdmQceszY03dHqmZGOcUNFEVBCCHt4IUgEE4cHFVJQox03R4R3yBJvIr7u0gfbhlHg3Oeuikoi9SxUgJczAhCcnfsMFPYoCxqVF4Reo9XEZEJlH8Inkymdyn8UKS4g4cIJgXOGYLzhOBO3YngochKIoK27TgcDmTTWGSxWLCYNVyPPTFG8snZdz6bEQkM48D2cKSsHct58ob58R/9KXmz4JvXN5juSLA904QqhZ5qRZ6XNPMly2XyKvro0x9y/eorhn7AjAMXl5f84Ee/B8Bf/+z/Zru5B5G8ZYqpiwQpu8iMA8ZaQhA8e5G4Gf/+3/+PPHvvI47dwDevXqOVRE4qhKIsaWYz5rOGpmnYFno6D5ZxWND3LY1t8M4m8jRQljVV2TCbLwki8Gf/8X8D4NtXXxG9SS7JMSbnaPEQZpqhdfI9avuRomxoFsmf5urpE6pmxqE3IDK8m8IsSeTrLCsIIcf7wPNHzfR+JZ2VtIMhOFCT8iLEwMuvr1EiIKLmr372BdamMZkQsFxf8fT546QE6w1h6oT40XJ0Off3LTGCFunYDkYyryPLSuHMa3RZoMo0HpJ5TQiBi0XOYlZj7BR8apI54jCMGGsxw3BSEFprMMZw7B1324BGkE0KvqrOaOYV87okcx4x9QF93KEkaDoWuUbIkouHEFoP5uGDf8YZZ5zxPcU7RlQCKeRpkenbFmsNyWxfAOJEppQqBXFmeUZeFNRVTT0VHlVdUWcBDn/FuPkLCJNjq8voR4ULJSErKedPiDwD4OV1x7HrseM3ZFlGvUgtdecDwVuEBxs8gcg4GcUVeUWeJ1lwrjJ8cLjJBPBw2LE1I5m03L95w26XWvu6rGgWF2R5mTKYgMFPZnohMJ/N+e2XX6A1fP7LlFpuhy1KCC5WV8ybFWQKLdLC0B02jF1LUdTkqLRon6T0hkySXitEYnzLV8nyAiki19fX9N2BF89SmnjwlsNxl6II6vKUD1U11fTvjNnoKeqGq2cvAFDVjLu7O8auZ7/bokREivRaZZ6jtcLkZXINHtNI6erRMy6uHnF/8wq9F6yUPCVsv/72FX3bJhJt8IzDW+J2U5TYYYAQqesZf/In/w6AFy8+4P7+nvawpz0eKLQmhAcVTqSezcjygqqasZwcogWRoe9QmxylFEVRoqZ5WFM3LJcr1ssVv/r5z/nL//yfpmtkp5ymVEwq8bsFpQKR0riDUJTzNcV8KiKGnF0/0g8tjy7XXK7T/RUxjL1lNC1SZSwXS8KUHdX1FgE4F6ZAz3TuYkgKuRgixAFn+5ODtg+B3fE1d5uBsqzJMkk+BdRerlcsmktaYzmMA22XCpK7Y+R6G8jlyHJR8uTxJU1Mhf/+/oBSAak72ralqlLh44mITCHIcc4SfcRPmwJnXYoPsYbgPSbEkxrvcAB5u0XpjLLMqapUtNVVwWJeU5aRTDoyNSKmhm8eM4os3X9nnHHGGd9XvCOqAaQWjJNs+iGkUQg1FTicVC46U+lH5xRZQVbmqCkBvJCRuPtrjtv/hAgH/Jh28tZ7pJpTlStk/QLZfMLNZkpuHu5p2yOYkTb0bHZvACjLGXleJpVR9CzUFfkkLXfjyNj2Ke7Ae5wf8VMRIYWk744IH9G6QJDe09C2VM2Mi/UzFqsGa/ZcTJ0QnOPYbRnHGcfNkdtjUjBZsyUqxeZmQMgMWWTI6Riid6isSKc2CLJiBjK9pxiOhGDwPlIWiwdVN0VRoGVSDcUouN8e2G7Tay1mJVePLsi0pmka3NSRikIiECyWa/JqTl7Omc3ScbeHlr5tGfqO9rinyDV2IqkeiBBhvpinmIbwkJAuuLx4hPORu5s3ZErRzFIx8OGHH3H9+jXt4Z5cy1NRm/KvDForMq357MefsV6njtCbN99yPBywY481A4NM3bd0LQSH3QadZcwXq5NKb7W+ZHX5iOs3r1BKopWa5OYpHHK+WICAv/jf/4zjPp2flKmlQGoEgiyXJ+6JkAqEZn3xGI+kGwaK+uG11qzWK4wZ0CISptBKIXJAMYwDZSVou5HDlAvWtgO6nKO1IMaChwmvIiKTfh5jDc6ViInrE6YQTClgHAdGI9NxAcYfEbrm6mrF3Bbc3aUD7wbLdhxpjx3bHby5PnL1OF2LJ0/WtEPLeOgpijlyksrmeA77DWPfkomMWJapwCNJvkPwOO8I3hGnn3T6AjEmjpMxAeumz9/Rcn3fU2Y5daWZ1TnN5LmTaUucCuMzzjjjjO8rvrPAiTHSD/3J2K0oJ9M0IZFSoNRb/xCtdTKRyzVVXlLlGVlMyhTRvsTsfwrjlnGMuJD+JuqCsn5KXj2l8w2vvvyWzT51d6JzhLHHu5G80Cejs8P2nsVyzbyZc3d/x+2b1yzXadFqZisEiuhTHpF3w7TTThJkHSPOGIw3zCer/4DAOUvbdng3YsYOzFtq0v39kf4AoxFUF2mR0X2JH0bc2BNCS2zdqctFViKLmlgLZAYSd0puruo5zllCNDjFiRRsxgGV4rNRWqG0xoxJznx9e8/d5p6iKFkuFpRT7MPy4hF1UbJa50id0cxWSfoM9GOPc5bj8YAWYMaecfLwcdZQliWHwx7nPH7qVkkRacqGppnx5uvXZOrN6Rys1wtevP8Bf/uLLeNoyHQ6p3lZYp2l6zpmTcPjx4+4u01k8P1uR9seCd4Sg03eLS5dp7IoEEKyWq3ItGSbcinJ85yrq0u+qhu6fZLRu2mMV1UFq/WSu80933z9FcVUUJKlYluqDCllIiZPhUczX7NYrdkdWoqy4ng8YCdZ/P3mHkKKsAwhnBRoZTVnffGUsinpho7t5vqkLJIqx3UdQkqKskTnqbgQUTCOI9aOaCGJUeCn6rUs5hRZgSgydJ6hpODYJgVSbyyv7/Zorbhc11ytUwGh9Jy7Q839fqTrDQTDzX0qsm7u9zR1xmq1oqiuMJNK3BmLxJPLkJLj5zXWv425SHYFA2YcccaeNighuCn/zBN8+B1Sd0QIwQjstokI/+BRVVU5i/nD2O6Mf64Y/fD3MsL7x/bKOdg998P9dz7mur9hma/e+VxNtmBnNt/5mK+OL6n1u+/nsw/OPz+8WyaORE9FTJYlkz8p0zhA6ww9GcUVRQqqLHJFluXkw+eMN38OgB3v8W5k7BSODDlL4ZhZ8z6Wivtt5H57oB+Hky+LVopmvmToj3jvKMt0cylpaI87qrrm2dP3uL59QzctGEXZsFjOyfMSLWVqx08LuA2eEAWFBkXATYtWLi2rBrKqxLqGwMWpaItB8rx5SlEorLml26eiox0dwzDQH/cc91u8G3FTl2t0LmU6CUHftdTr9YmzMnQtdhxxvkCX1SnhWwL7zT3OW7xQ1E2NnjgS7dYSfGDoHSEcuLxMI4ndcWAxu6CZNeRljhCK201aBL99fcNyuUYrgRICM1rsgxOuc/R9xzgKIFBVk4Q9etp2z2J5gZIFu809avJrma8ecfXoim+/WXHY3uOmjCNjDCZEtrstUiqO+w2bbSpqxz51bpKsPY3j3HQMfYgoJdjvORklAvTHOauLKy5Wa3a3bxBJOgXAxcUapQTXt7dcrFdcrCan1hiRWuN9JEYYrcOE9IW8uHjKex9+xN/+8pfs729RumC+SqO/oqqw/R5vOvKywsap25EX2Og53O/wPqDy+tQhrMoSgWfsW4jtybVZ5zOC0AjjyMsZFWCnTptWGciMKARBKGazGavpGt7d3mCt4+uvX7Pf5Dx7mgroTAceLSSL+QXdKDjs2tTNBPq+Z7vt2O46ypsNl1PR3dQ1m12HdQPzeY23PYfJH8pak4q4EJL7tfOn6joEiPGtK/HDtYgxTmPUB65NwNj0uHaQ3O++24jtjH96+Gkk/N+Ci/YUgPtdUEjKv4ep3j8UnlbPKdV3j0BLXf69nIU7e2CYurP/LSih6dy7bQ9KVf+9CqEzvj/4zgJHSElelujsbZdGTp2Kh4bFg1+L957oLUSFCgfs8BVmSFvzYWwxLoCak8+fYmTiivj4HrvDjrvb7cRhEIj4YEkv0ZmmWayxxiCmUVOuFJbA3WbDYiVZrS8R08EURUFRVSxXa5qqppCKMCZzMu9ukNIjRQ4RnE/yaGc68uwRMvNUlzNQF5jpGMwwkkWPitcM/iXLq8SD6EzJ7hCx9WOePH6OtZbepA7J7rBjuZgjvef221dI6+gnPoYuS/R8ifOR4Pxbs7o8R2QVInqEgBg8cpJWP1qvmdUF6/WK2WyWdufAbDajLkqUTkaMd/d3JyO9r75+SVmWaK0RBLIsm7hT4IGua9FaIWU8kY/LPCfLC+pmgdIZ/XFHO7k9Z3nJbDbj2Yv3iCGcZN1RSDbbDff39wghuHnzDdspEVuI5KZsXZItC8HvLJagdYY1I+0R5BRienf7GiUlj67W3N0skbGhmN7vcrngsN8TveOPfvITMv0QdClBSPoxvc6x69h3U5o4OUprnj5/QVkUHNoDOiun+wvq+RJ8hfWcvsC1lEgtJq8aRdf16d4FDq1BiogbExdJ6YcvxQGlc6qypMwrtBK4yfXXhRFRAKLAGMtxv6GdiohMweWjOd4Foou8epU+L1dXS2a14LLouMgcfpHT2jT6s/YxfTsyGs9oPcNop8+q5+n7nxJxbDZ7vHWnQFJrLX3fp0R2a3FC4E9rXyT6OHkyiRNBG8KpixNjSDynU+ZIOKWRn3HGGWd8X3GWiZ9xxhlnnHHGGf/i8J0dHK01y9XqZOolhEBKmf4VSTklp510kSuKPJCZ3zLe/lds9xvGKXDQ+5yy+RjVvMfABXf3adc5DLdJyWNTxpIUIGWSb0cC1nmk1uRlfeIM5EXB7EIyDANKCVRWnNqs3kdiiCglqSrBTEucTN2Gzd1LohA49RSp5+jpPWXNJTb/FCELeh+QcY+Z+Crd8QbfX1OKe5QwjCHt2HdDgzERbx2H7R19uyOvk+Hhk0fvoYsZPghefLrAuIFhyqlypsf0R8Yu3MX4JgAAIABJREFUue8KNxncrR/x/OkzgrVIrSirgjJL73deKK7Wc2ZNTZZlaWzDFNHgPcf2wG9ffsEXn3/Bj37v9wH40//h32GMZRwGRBTkRcFu6saMZkyyYRsYxw47Tp0d7/AEmtkFUQqcj4xTJ6TdHahXOeurK27vbummnKXbb7/hdrPhzfUtH7x4TvCWX/7i/wHgxYv30asVqSsg0mhz4nJ1XYsZB8oiwztLDJMNgczYFxXL1ZJHV5fI4CaFVAok7foB5wNNVaOmQE0pJUplNE3iLjnvGMZphOYFvbE0jx/jvcfBqRPYdj3GKBACKXOy6f7SRU4UDu9SN60uFdXDPkBpnPfEUoN3CNL5KaSnKBy6jOhsZHt7S39InSypFUWckRcVWilciIQpSNCMIy3ulEXG1D25udlgFiV+kdPUmhgslU5/UxeW1UwCNULUmJg6XMZKfEgWDc+fP8eM5pSPVhQFdV1jJqdvM8nGIQkHonVEZ/HBnZRuKQQ1jbViTBylB9WfOH0azzjjjDO+v/jOAkcpRZHnuKmAyLIMlYmpwJFoUZHl0+IU7gi7X9K1v4LxgA8eXaRRVNZ8iq8+5tX9gcNx4HhMPA039njnkDKSZRqpqtOCJqQkzwuEUhOBOY0WohAIKVnXS4pcUdb1Kcn2sL+mP74mrGqOe8E2mBPZU1d/jI4NwR3Q/g1i4tkIOUf4DuU3xOENzjnyLPEaZDnHFr+P8dA5ceLmrK8KJJ7geobjjv3dHcNDxpFxHI6vGQaDEDLZ/D/4ssiS2WJB2Xisc6wnD5qmKJDB8PjZIy4vV2RaJUk2kCmBCBZnBsbucBoTRATX2yOfv96w3+7YHo4cJt+T9z55wvFwZBxukTLgGE+LkzEjx/2eLFMoIah0OnfeGPpji/MekEQU48S1UX3P/8vem/w6kmVpfr872UjyDT57ZGRGVGZFVfdCK0kb/f9bQYIaqFapujMrY/Bwf/4GDjbdUYt7aR65SPeE0OoKVPMAAYQ/Gkmj0Wj32He+Ab3HJ4MLiR/f51HK0/6eGC11ZXj2/DlX22t++/XvALi+uaWqqxy+mXJT/EvnlHEcSdEQtKb0Klg74ZxdVXrDNK2yeCEE3vuy6IZVAq2kpGk6lK7wIT+3KflorVT0jWF2ge+++Zp3Hzqq4nF09/iRp6dHvHe0Xc1mU/hQOjtjK5XYbjuU0UiZfyZ3H95zs90gpaRSkr44W/vSFEzTwjSe0FrT7F7k4/DyN9hkGE4nxnlgXibCublYFtyHAyLlfCpRVE8pZX5b27VcbTc8u92y23TlHEpI6ZHyhFILTZMb667dMM6w+IizE0iBWtWFlhAToggDNGb9LoSUBCFBCkSUhJCPdwoeGSOUSBZBQhTOQyL9BW/nUpe61KV+jfX5NHHv2R+fVqv9zlR0TYvRNVJBsn8iHHI45nz6z4TpgZgSQl/RP/tHbPG02Y+Kp7sDh31GR84eIUIIQljwPhCDJlVg6vxeQhqElGhTZz+UghRVjaGuO4xqECIRsMSU0YnbKwuyx3vP5EaM0piUycmV8ST/L1S8z74gJT02WM3DOCOrlr75e3QLqiu+LFGjvMcEjwpx5RuNi8e5BQiEWKN3b+mu8wU/pISxlm3dUBnDcDigi6x6s+mZxyOn4wPBLSiZG4jrreHZ7pqrvqZpDEqJkgsFbprxdsG5Ge/tSvAdx4n/45/+H56sQISZaBeq5pzWXaF1Q910NJXiwU5rY+RczpsiCeo2e/8ATONE6bdyLELVZAM9YJwXfEpU3Y7ddstmmzf0MZJS9lj5+PEjb9+85X/+X/7XfD4sjuNwwvnAOJwwKdGUdHmtNEqposhSq+mccxa7TMSQw0anZV6fAwXFGUdSiitXJMbIME7UTYMP+e9nGXsmvjf0lcbFxO2mYSqI1bPtFZ0x1E2F1ApVktOtDQQvIXiCt/jg8OU4VCbSNTmqQ2mFKO9z3A+EAPvjAbdYNte3bPqX+TgEgdaSqlNYr1DWEMr3LmpDVStEjATnV4pLImG9Y35cuP94z5+/l2yLaunF82e8eP4MbSDGE7p452gzIk1PU21IaEL6ZJJopMI5h/MCJRXKe1R5zEpJVIoQFDIERFG6Ce+I3pFEVtjFmFbJ/rnJvNSlLnWpX3N9tsHxwZOiIPl8MRynnK3U1JG2MlTLQtz/EwDKHgmqpb3+jij/jo9zy/0hy/OWeWY+noqHTlrzoVKKLPMpe9aQwEEqt/ONqTF1jVCm+KWUO9WuQ0mD0QI4ogRImRuSaX7GaZyw4cj1ZktdBSTZLyW5I8kJBvlbltgxPJU7VSXwdqGxnmUWWD+jVR7B9P0mv5/Kmm7r8mIyjTPDeGKxC03TUpmKVBoPqSRNVWOUpNICa9SatZn8yDI8MR/32GXCbIsRYrVjt62oNLhlYFhm5vGsgMkjJe9dJomG84hlYDw8ctof0DKiq4r9Yz7e0XuM0Ww2W4yWtENHVRqFuqoxShF8zi4KZaGKInvYaqWYpokYArrI22OExQYwnrrb0hSfoDpkCfr+40882YEf3/3Ize3rchxqqipQVTPeOm6ur9ZFUWsNAqLP6p6z2kdpWRCfhDaGeZ7zv0sJIbDWMgzDehyMMaSUg1ybpi0WBnm/52nEaEXbtNRty7NdQ/ma8FGwuIrjOLM/jYy25E2ZBh98trEUgro2dMWRW7c9D0977u6f0LpGyYzoNSLR9zW//c0tov4KJSRuzojekgTt7Su837IcR+xssYWfe7IeZxfsPGOXabU0CMHj3ExICykmnE887fMxGibH437hzZuX7K66daRkp5FkJ9QyodQGl9Kau+VcxDqH8w7vPN57fGEZZ6sAj3cLwTlC8cGJ3uG9IwRHDD7bG/yFd87FyfhSl7rUr7u+ENWQ4wqmKTcJcZE0LUgt6eLI/vC/I0W5IPYvqfv/iZk37MeJp/0DwzFf5O0wAYEQAtr8Uoml6Ta7NaARIVcvF5RGaMPV1TVt03wyjYkzdTOjZMcw1BzHmVB4NkJ6GjHyTFuEHQg+Mce8OA3zNafJsVhP4ECK5xGQ4mp3RZIC1QRqIBUfnP3TERJ0fUeMiakstof9A9ZZmrYjBs9xmpAFhei6nqvdlrbRDIePjE9/4ljSrdu2pzIdbdPRNy2vnuW78l1XEd3EOHu8tRyPB2yRnWeflsC8LHjvPzUk0fPdH74lpcA0z5zGBV+aIj8P6LpBa4nRit1uyzJn1CX6zM1xVubgzNIMhJCA7G90OuxxdmK3LehXXSOVJkZBAHzhpBzGmeiWYvjnuLu7W5tAIQyV0XRtS9+2VFW1GkY2rUCI7MkzTQNhRaVG+m6GlKjrFinlGhMyTVNR9GTp8lCsAZRS2ZNpWUqDIKgKGlOZiuglwVucX6irBqXzKKoxiq7W7PorrjY7nobcXOynEWsDi3WM0/QXCj5TGWpTobXkamt4dpvPrVpI5mnk4w+PuJSoaoXWhbcjAuPxjm53S1Mpdn2NkPm42tByHGb2hyPTUhdUMHNzFluhdEY7UwicNelC5ub2j3/6gU3f8uZ1lpzf3nTEaFHKYfRCU/csJX5inBw+BqJLOO9x1q6S/RwOa3OCvXdZCUlukkNwhBiJ0RdOTpFepbTKyS91qUtd6tdaFxXVpS51qUtd6lKX+ndXn0VwpFKEJBAq3/X2bc11q6jj93D6CZlm2uf/GwBT+i13x4n9/p7pNGDttHratG2LMgprLd5ZxjEjIVJKhDb02xukUEit0WWUEoWgbTuEFLjg2W7y3XLwC/cPkdk+gYhoFenPJN50QKvE7DSnAayXWJvvSENYyuvmwMqqZOkIqfDBo1JgeEjEaNdQyMU6xuGIkJKmbdmVPKzfffMt1jsenh457o8IoNV5tNbVFVpEoh2Zjk/0zY7tV3mkE4TGY0gBepW4vi6cGQXT6cA8zwSfsmfNmcQpyIoeJCSRPUuAaZjyCEIkFpeIIXK4zy7C//yf/y/+8I//MY/OgkUrwWaTUQNvF45CIIiM07iGKypT0ZRRjF1GpvGEXN19W9quRwvFsN/zr/8lh6U+Pj3g7URwFpkSD/dP3N//nI9D26NVTdc2KK2zIu4XhOHNZsMyZ8flpajJgg+kGNeYhrZpV36OMYbj8YhdLDEkqmIwGUIoSh+LlKLwxYryys4IoTBG5wDKylJVzfp6TdNSN5rmqqKpyuFOjmU4EonsmoZUV4TyVcSYMMbQdy2y0jyOGdl5erzj/v4eYxq6/grhJW1dvJm0gskTCbR9x+PjCGSS9rPnW17c7Oi7msHWq5Hefn9iOA0sSmHnMbtAu8LJcp4l5tHVPFTsD5mw//z5Db9585zb6zZ7VMWRbeGzdVVD2PbMLjDOlnmaVzRynibsYrHOZCSnjKi8WxBBoYInBEEMghg/eeTEeEFwfs0VU2SJy2e38dER0vTZbfJ2nj65z27TqR4lv+gb+zfVdf0MLc1nt6lkhU+fNzIEeLQPLF8w+tNS/U1GfwDTF7arZIUpIbx/rc6P/7c6Xpf66/X5BkcKNn27En83rcDM/8R8/5/wSlNt/gOz/BqAx3HhNB6Zp4FlmUgprDlVESAmtKmoqnqVqLoYkFVF03Q0dctmu1tn+0IkpFAs1pKAp30e88SQkEqz6WqMnKnFAGWEENEMi+Ljg2eaF5RUmNIwNX2DqQxGmwKxF8dkrXE2c1vmaWAcDlxfZ0O/3aZnvz+yLAGtFHORj1u7ZDKqC9zsNjS1Rpn8el0V0ByZT4/IYNm9+JrjWLgVSaKFotaKl52kVfnvw/GIswsxRqRQ1HW7ynCD93gZIHqsd/iy0FkXmOcp8yliRGlFVZqBH3/4E1orvv39d1SVhijpCu/JLz12mYnJY4NbAxT7fsPtzTOG05EQHFrJT4GRWuGsQgiBlpFdl4/p6SBQdUd1dYtEoAX865/fAXBzc8WL5y/ZVlUOzNQSYglmFYKEJKaAmQ2xvI+UGqkqEPD4dM+yzJhiMtm2Dd5b3DIzzhPWn4+DzYo+nUdVzsl1BDpNIzEk2rbLakCh0CqfK0nrnK1mLXUrudmVRPq2petrZhdwzueRTmk2c4r9wjQeOB4jc0kFn50FoRmmgf1hj0CsIyopQBtDv1m4vnZsNju0yaPJH348YsxPPL+9ZqtrTiE31te7K1IIZUxp0CpRvBDxCEggq09kaoD9aSK+ewLV8/rlc6bhsBooah1o6mxE2LUdS+dylhswL1POyFoW5tmtv03rFoKzxML/isGtHKoU4mVE9SsvKeQXXXc73TP6LztSj/60Rpn8tVriQvc3Ltg2fL7xerL3X2xwerPFFXuJz+5XmL/o1y+FxMXPN3AA9/PHVTH518onz+8233x2m+fN6y++16X+29TnnYwRNF1FW+Sm9fSeeXmC/u/R7e852Zb7nzM/5zQ84pZEihFTmxJamEtKmZ2KE4QUUWXRqqseZSrquuH66gal1EoqdT4xTCNCenrV0XW56dBmRrgRgyeGPXMEa/PrHYfE4izWh+K9omja3Jw1bVv4GhKlVFETQSouu8syczqdsuNtiWS4v/vIbnfFi2fPQSjO57bpDK9vNjRqoWLGz0+cnrKaTCyCKTagX1FfveRgE8NSZMTjgAaq3YZUVwxTbtqOhyekUnRtizYGgcCWBWicZ07HA9ZanLdr03E6DTko0phybCN14Z6oJDmdJtyyFDJ2IpXFKYSARGQEo/pElO26DX2/5d1P7/DOUWm1kl6VEtR1RYyevmv57rvv8nFoe8ZlQZoGoyuC9zwOGVH48PA9x5PlH37/d2z6Fhnjug9R5vwvYspk4eKPU1U1/WbLOJ348Yc/I5LP/Ctg0/cYrVBKMM8DSZx9cARSiExknwf6frsSkK21GJ2TySHzTc6cI6UURlekGHGLXZuFbdsixDU/frhjcQ6kQheW+DInvJ+ZpjF7Lp1/PjFh7YhzASGysszOJfKA3Ew/3t/z7occY3J9kxV8L199ReKKH38O3NwornYZZXt8fOS637DtevaHJ8bxtDa2ISRiikiZeUxnNZkyNVEo7vdH2n5DW/Us5+8vOkK0JCJNc01lJHWdG97ONVjrWdzMYh22PGdxM3axeBvwzhF+STIO4dLgXOpSl/rV1xejGmpTIX2G1BNPhOp3WHbc3Z84He+Yznk3fiEKhdENSkqkUmuEQiInGnvrUFKiCtJgvaNtGrabHdM4MgzDSn4UMqEbTddseb7tMVW5wLsZISzOWWYveTwkTsVULYpE0264ur6lbWuqqqaqzPpZziqSaZpYSgNhrWWeJ6SAftMzj9O6IL56+4amaVisRUpD3xfVU1ujYmI8HdnPD8S44FL2PcFHNldf4+i4//iex7uPTPOZeCtojGbXV0QX1/wqrQ3aZOl0CIFxHDkVX51lWZinEe8czi3nXoCQIkIpnPeEEEloYslT+vo33/AP//EfaZqKeRkhpXWBzFJfgUTRNf2ah3W1vaIyFc47pCoE5DLqOR0PBO+4ff4SVes1dFGbLKN31hJ8ZJrm9X20MOx2t/SbDXYe8XbhDEulBME5jocDyzyhy/GWWrO7vuKndz9yODxSacUyZwL6Mo90XYs26i8ydpTWxBhwPqNwxthPHjlKAZ5xGpFSkiJsivinMhXee7RSBO+YS9ZTLyWbxlBryYcP77k/TNyU7KhXL2558+YV47AHIqchf9aH+xFrPboSWLswTfMqqT5b4oXgSQISkn0h37vwEzcvXvHy9Stc8vz4438BYNtVtP01j/sjV9ueuq4Zixw8o42e4B3e2zWJPU0TKUUePnh+/vGPfP3br7m9yfvd1g3WWpQMqPSEDwGp8u9i27TQGmK8ZrEea0tz6GO5WVhwzmck0X3KM/Phy+OBS13qUpf6t6zPG/2JSCePxKLgsOYt06zYPxw4HU44a4kxX8AFBqUiUoLRFUJJYlkgpRAs1tI12c3VFhTixYuXtE3L/cd7pnkmpYRU+fWUrulMz02vkeI9xLwIGn2DUB2De+L+ELDLQtOVIDghEVIiVcz8oRB4esoLpBAZSfI+w/C2LMRSKuqqzqMeH9HGrC65p+PCPHm6zqCkI4b8WlW6wo0POP+ETQIXGu73GcmqTMfj/h3zYlmWgXlc1jTq7dU1b9685vl1Txzu1mZuu90gSLjF5tygYeRYuBXTPLMsGdVSSuDmpex3Mc9L2Qm332x58zYbK/7+D39P13UMwxHrFpZpXNPEUwhUxqC1zrlLpbnouxYpBW/evqGuBNPpuDYrQnj2hwM+RbY3L7Cl6YhuBr+waXrqdkO82q3799WbN/z+776hkp4RhyCs6MA0TWXcM5NioC4ozdVuS/COdz/+xLbfIIkczsdhHBmGnGYfY1z9gFQoiKAUJJ+Y53nl2SilSSmxLAsCQQifnqe1oaorIhGjzKpgGo6PNH3P7a7n1ctXRH1CFpTr8Wnkw4d7RHS8fvmKb36bj/e331h+fveBeRFo3ZCA4ykfI6kr5sVlRMTlNO/0i/y2w+Mdbh7Zbjc0Jn8X798/0HYDbdtn2ZRRyHKOj2JmGFzJfgPOyJybscuAdwtDihwfP9C2GRF68fItr1+/paor7LKU3+lcfuNnuX2NaTV0ppxfPdZ3LL5IzJ1nKeOrZXErOnSpS13qUr/W+vx0Ms6k6R20bwFwrmc63TPPRwKAkYgCVVeyQQuDKhdpIeQaiGi9Y7e9ylb13vPqVX49IQUP9w/M84wgEz/rLiMKbbulrwxSfCSFnmHOF/ggBN55nK3oa891XyF1XjCarsVUW+Y5MYwnDscDthi7xZgJrMSAkKwjiVTCGruu53p3RV1LmrogCjgqnTk33s/I0rAFuyfahB06hmlk97zh1atvAah1x9PDe4zSPL/5DT6xOkELIriJ02GhCguhLBJ6UmiRsPOSgziDpy4k2nmZV/+XZfEr6VapzCFp246btuP167d89ZuvyhcXeLi/w3lLjJ7g3MrpqaqKppKEFIsRXH7Eu4X373+ibhtunj2naZp1nHM6HAgpm++p8bQSXsfjnhBBqQpdR66ub3n1+4xk/eb1K1JYmIeR4B3WLQynjLTN08S85PBHJSSmIH1NZZiniZura5q6YhxPuIIaPD4+cjwcSQmmxa7NV13XSG0wpiI4j/OBAkrhnCOmhFKK7XZLjVpT2iPgUwIlSQJ0VVBFu5CGiGmvuN5d8TgETkNuDoPWaNVQVS3jvPDhLvONdtua6+uWq91LHh6PHE8Tr9+8AuDu8YBMkugXQshp3uekS+dm7BQ53L/npxhp2jxifPbiBXXbFdK1o6nrtQnsb16wnbZMQ0Y8h+IKnl8/uw6nlEhhwhbkcBhP3N1/4MXLNzx7/gqtBbrw46TK0vcQJJU2q/FjIqBkoq8UMgkqbVZekTGayl4Ikpe61KV+3XWRiV/qUpe61KUudal/d/XZ27CUPMpUeJnvHu3s8NFjTIMU2ezrHKEglUIKSUyZBGmMwZU71eurLUornLW8fPlqzWba7/cksrtuImHqenU5bpoaoSXztMNZT4qZt6BVwsiAMUe0sFRNhyiqFKEMSUiE8Cit2PQ9rqiozuTllDzLPHAq3CEpK65vn7Npayq9EP2RIPI+oCpOi80gR6g4DXnsYK3neDzQtoama/n++3fsj+X1Y1aPaVMh1RFd1WuEQnCO/cMHtp3i7756dj4MTPMEwbNMExEIIUu483vNOG9pmpppSlAk7BGBVobd9opXL19mCXs53qfpREoJIQQgMieqEJBFlf9GjET/yXLfzQveO6bJ0G821G3P7Yv8vSMqlDligyMAx8JXORwPzPPC1kVub5/z9ZtXvLjJZHA/H5jHI3bMYarBO4LPiJUgUGmDUdn0sW5KTMKy4KyjbeqsnpIbrssYTyrD4+MTx2Gg2zQcDnkkuHiPdD5bEey2SKH+IsahaVqM0fgQ0UphynFAUByi64KKFbKuqogxkaKnbw2NgVSesttm2XtdaaZ5ZL/P6Mn9/UNBiU5cX11hjGBZ8vm13Rrm+yc2bUVYRjAGUThMIglCcCx2IEXHNObP+uFdZL8/8fz5LW/fvEbKxFIMFEmJRktSrVF6u+Z4qRK/oXTm4mT5/6e8qPF04s/Df+HnH3+i3+7oNtnyoG4OGGPYbjdc7Xb07dkkMRD9Ql0rKjnhnVvRr0YJRPt5KeylLnWpS/1b12cbnBgDS0yQCqm0EvTbHbZaCD5lB9nC4UAIYkoE7zNZNkZ0WbjapmGeFna7a4RUK4E2pkhV12itMl+CxNleYxwXFBGNo5YLwebFpFaA0tjYMNgN90PAujJCiBOJ7PKbx2FhdSz+RHpWdM01jS6pycQsGycxHE6IFIhNeUxm3xBioms0yDIKayX95hXH08JP7x45HkeWpSSGe5ebtrql3wqMqQnu7D4Mm80VfSNRUlOMZhEi4nwmTk+zZXH2F1b4AlIixkhd16tsOsZIWzfc3NxkDo+AcTiWffBImRuZlLLS6EwMrpuaGIuDbXSE0kDElEgBZPCkmGh7qIrS5vbFc47HiuPxyLuf3/Ev//IvAJxOR7p+wze//Q3/+N3v2W46liHHRbhlIjhH8g4NKK3QZy+e4uuTSDk64ExerQJCnV10A1prnt1mxdGzZy95/vzI+w93zItdm5gPH35G64o6JpzPKqZVWt60awPuvc+S8cJlcS775lRGI4mrtFwIQVUptEpsO82rZ1vefyy2Bnbg4IasvLIOX34+QjacZstpGng6RLruir4/q/egfnXN4TCxaV8QU6JMTRmHhePhgZRyvMS5HYnectxbDk8P/Ouf/sSzZy/49ttvy2MTyzJRtz2Vadh2uVFZbh3znLlNzubvNayjMEsMLje9gHNhbfAX65BK8fHpCSkVfXcm0ld0TcWm0Wg8lfpFu6QNSl9Ixpe61KV+3fUFo7+OoN6yzOUu32c7/6puUK1CFk5NfsyTYsAU7kiCNf/IeU9dZ4KotXYdjGmjiTFinSdam31WSsNUGYXBEd2RaTmunjo+XvN0HziOA84vhPTJdCyb4J0blkykPRvCISB5hxQSU3e0xbTPtAYpErv+CiV27A8/ZF8TQCRFazwxLdTVBiXzxX9/mrFzwqeG/vYV/e3zddYnhMhqLe+zeslH/HT2eaHkImmEACXPfKVibqclUiZScCXVOzdm5+NmzCfJ87Nnz7jeXdF3LUIKlmVeF7ScHC7K/+cm9Czr9T6U/KEs/z3HSkdyE2WMyYcwCpzNr2fqiqpuEaeR4TStoaN9v+Hbb7/lD99+Q2sE0yEb/0FGq3yIBGsRxNzEls/rU84/SikRY1iJzspoqqrG+ZCba/tp/5q25dntM66vbjgOE/cP9+WYKpyzpJQREbssNNU51FNyPJ2o65pUspkeyvPatiEGh4ie6STXQNSr62tkXSOFZpkWfvrhB77/6T0A87Jgl5kQIrrSNH1u2HTVEpNCSsVkHVJXqMIL67ue292O3WbD8TgQo1jRvoEIUqKrlhRVjmQgN68ipax10xXTEvjz93kffvPVW95+9YL7h0dCTNiCijnvkFqh6xZRJPtnUncUguTydxKCRSSPLsZtSia6dsvu+pqEwJ3DuhA87o/8+OOIVrkZrYoflhQCcxlu/7uoTm++uM0S5i/aAri48Lh83jTw7KXzsHz87HZ30x2/237z2W1eNK+R4m85CROqoN5/rYw0fJzvvvhK78f3fJwePrvNz8NH2t+1n93mefPqi+/1P1J9yWPJfsGo8XP1+TTxZPi4X4jlDWIMaGWoSrPiQ1g9R2IMJbE6oo3GVJ8InUGCJKEV+MCKTuQUcb8SQeuqpikLQ/RP+GWfAyED7E+5STgOf8IFIJm8hEuQq/5YABohVXbNlTKTiMmOxcpUoCRIj1T5x3jVG2rt0eo9Pt3Q92+x55PYn1AqoauWdnNLiT9C6ooYHF4EpBS0VUPdlFyiuiZGjySgBFiXfVYAYnBs2gq3DJxvshkfAAAgAElEQVSGPe3ZvS0mnM0qlRDCXzR6oRyrqjLUdcOLF5nE++LFCxpT5ZyqecyhiGcjthRL4GQON00xMJcmK6aE9wHnc6DkuWHqug6JyK7AweOXaSWQL8uMNIa2bfnd737H9fV1OUMSr1+/RknJ8emJlMI6MvEhsCwLMuYmxjqHLihSiLnJ0lojhFzVOel4ZLNhzfUKBU0CmMYIJJqm5fntNV1ffFy6lru7O6ZxIHrP61evV1PDEDOa6LzH/iKoFGA45dyleThRG8N2k8Ncg7PE2ORRYUwgBMoUzx2fqNsKpTQxsSrxrE9oU9M1PVppDocDh5I/Npw6bq6vsNbz7LZhu6tomvx6t7fPOA1TNi602ZwSKOrE3NwlIIbIsbh//9fvf2Synm+/+S0/v/8ZVYi/m35XGkOwNisFmzo39843DMMJHweCd+DDKmN31jOMI0/7J7p2s94QJOBq0/Hi9SuUrvBJrPswW8uwfNkY7VK//rJ/g1mekdXq7v7XSgn1ReM9W5yV0/mu5a9USJEn+/g37NfnzQDzfmlCCp/dZg4zk/+yo/PgRnrTfXab726+4UXz8rPbfMnE8H+0+lKjalT9//m1P9/gxICdlhXmr4xGSU2KkWFcCuxf5Lo6xxk0Z5m1yE61kL1cdp3J44cUV2M3rQ1KK4SSGFPRVgqZ8sJghwNTWnBe8eHjyHBWsoSIUBJlPFJplKqpzPnOUhKFQFdVvlibikRGITJfZUclJ8L0z0iff0CNrRCpY7f5B4TZsdgjs57LfnuS2HEaDY/HmVQQCC0T275CVQohEuPhSChjMocjuJlNV1NXFU1l2JfxWsLxdPeen999j0iO7775bT52QrAsDu8DUkqqul5HR8swEFLi9vYZr169XuMijDGEGHIa9WIJ3q4ITvavkaQYs4t0+nRREVKRUvb/SSSq4ocyhCNNXSOEIMZAkH5F56SpUGS0ZLfbsekL50kIKmNIPqCkBOSKGpzG7C0kpUaQR0TL2cSxIDOmIG9j+fswjnifUcDzaHF1tkbggycGT9t1tGXxfvXiJcZUfLz7wDgM1HWznl/ee4QQtG1DiBEhxPqZvHekZLJSLGXOTf77QoyOED1JRNq+5fXrrE5zPmFMhZSK/fHI8guFnkAikNjJEVHUdT6u1gcWb9lte4bTidoIrotrsjItkSusi4yzYyrmgNPkmOyItQ7vJpJbKEkguXH3C6f9I7/7+hXTVEaMUVI1dWnKFAK1InD7wxPDduA0TPjF4v28Nns5vBSSSFgXEWUMa4zi/unAz+4OY2rquqbb5O/99tmWSl84OJe61KV+3fXFNPE8LskXSmstiAzna1VRKYHU+ULZb1uqZkd0lmkZqeoWe8iLXcUHTNpwmgTORtTZH6dqMLWi1S21GEj2HfOUG495DhwHxYe7I+MwkIoXj5QShUKiMlKjK3RV0BNTU7ctV7fX9G2HkhqRcnOh08Iy/hPp9CcqrVDdHwDw+i2m7TgtC3H8I/O4ZziVLCM6UIroPMSZqlz8u7ai6TYIWWFthG6DPecpuRk7DxzcjNaG4C0///AnAO4/fmQeTyzDnr4zDK+yEVtX1yBBGZN5EuETd8gYQ2tqbm+fcXt7+2nklhKR7MKcomeeshwbPi24SmmUNoRf3DGlEBFC5sYkpdxsANELBCkneDuHUoa2z6dHZUzmWIVAcJ+SqAUCQsAYnX1Slml9PVlQqEQmAnvvsYVr40PAztPKezkvtkIInp4ey0gt0bbtigIqqfDzwlRiNs7jTyk1V1dbtJbs93umceJTRE023sNCU2evozOPRGqNtxaUoi+NXT4OgbA4klx4vH9gGp7omtxUbm93NH1DFIrNcbt63XifGzbvPAmBUDo3GsBpOHJ39zNdXXNztUVKSVvM9KblLptRNpq2qugK50ndXBHES4Zp5scf/m+0duxKTljTGhb7hJ9G3MnRFL7R4he0b0heUHcbkoJK5X3Ydg3O14xW8HQ6McyZ6wXg5gE3jwQXEYRfNJaGrt8i1VUe/wnBUrhk4/2+NLSXutSlLvXrrctV6lKXutSlLnWpS/27qy/IxGPmX5x5LEpn2bMxNLXGaEVKpUdKErvMDMOIMYl5eCD5zGVp68jClmGJxBSpC95eG0ljFJp3TOMdy+h5esx3kPdPM9M8YV1Wf5zv9pVUSKlRuqZpe6q2oy7OtV23YbPZIJRgnBZq5WhlmQu7j4jlhDK/hfZbZgq5Li3YwzuW8YkYNeMsQJW75bqB6BAmIkRcgwg/fhjw4RGKM/JiF5aCckkAZwnWcrXbMo9P/PRf/xkgI2FCIJPDTpbDUya86tsbTKWJQbLMMz6ENeai73s2uyuur68xWiFL+nco45oQsole/p7OrtICrXUePaSUR1fl9bQ2CCFRSiIQ6wgoxYQQGTnxPiCE+hShIAEi3ju8XRjH4g4tBVVVMY4JZ3MoY1uQBgGM44hzmQ8SY/yFiVzEFjSlrqoVwTlnhGUVmCyuxBmx2vR9NqKLEe89Z5GZDyNKaTZdV9ybR+ZicPf09EhCIikRFSmii1N2CjGHdCoFQvzFyCaSMg/JWpJz9NcZJdlsDJPdFxPKSHt9/qw7lNYsy4lxWUBVHA+ZsBW0pL26RopI329YFrh7yKnvV7fXLENgQwMJKp1HdZ4TPjhMjLzceqRoCC5/78MwMsyJ0U78cPdn2iafx9u+RasBXUWMu6erOtRZkpgGFDNbITBV4LbaEbY3AJzGLo/RnGdZZuYibx+WA3OoMcqgZRYUUIjYQihi+Dwx8FKXutSl/q3r8w1OTJDimh0VSVi7EEMgphql5KqoEdLh/Ey/aTFREf0j0ZSLcnyJHwWNFiiVKOpxjBhYTk8M88RxiDwcLEPJ3EnOkUiZmKrrFRI3VYVpWtp+R9ttQIAu1rVKa47HI/M00dQa2UmGMvKKfo9UVxznDnd3j5I/550IM8SIjwtKCuqmWWGt8XhiGgdc8Fgbmaf8eawbiSmSyJ4rIsV1PBSCJxGpKo21I/sPP0IZ6Sip0ZXBWZjngT/+8Y8AHI973rx+m5POS52bgbbruLm5yc7GhZwLZw+X3FzN84R1lrqMbZSQhUsTWeyC1GYd6RhT5SYiJOQvwhqTCDkrKSaEkMQY/yJsU0iBIqGImQALuMXh3FxcolNungox2XnPOA7M8ye+B7+QYqeU4zRMZdbx0DAMLMtS1G8G5xesy8ckeE/fdvkzhoiP5+MdIEaCktRtS3V9w1D8iqZpZpknpvGEdz7zy8s+VJVm020wVY0gc2UgE2iZR1SMDMcjh8MTUeUG+jBrrm6uCULSX3cgc3MxT4FhmHCpIklQaHbb/FjbGNquJnjL09OBYbDEclPwsP+ZqjZU6onaKG6uN+U7kiQRMVrSdi+wS8DLfA7dT3tchCgq/JI4jLkhuXsaIEUqU7G9uqLbSkzhV9VGU5kNMglktCD2iPQTAC+2GwRbgtQIKpbl/FuvEabHxURymW/nzonmIbEslwbnUpe61K+7voDgJJxzhHInGBCZlCkE47AQUyAVRKGqKjabayqVoxOEeVVk26ClotcK5QdCtMQlL2jHaWY/OY6nxLzMBGdZb82lRFJlabHKqA1A2/Xsbm+pqiZHNjiPDyUBeXEYrbi5vsJIx3g8cPehEFujJ4aBmPZUTbUuQHXbME9H3DhxsgvztLDMhXMUYlEkSZRQq9xQaE1VtyhlsrEckegzuhNill97N3M47IlJoptbADbXL6iN5vj0nqrpiTE3cx/vH/E+8uzmNqvT7C9M1Zq2+LpEvI9r9lAq6M2yzDjvQApsabKS1qSQPU6SkLRNvTaiOWDSEEWWhZ8JuUrpHMJYwlBjCIxj9isKwaKNXlVWVUFBljk3OKJ47kgBzhaTvV8kXnvvcthl+W4jCZFykrgPgaoQhud5xhiDMQYpcxN09u+p6ozerKhUaRoRIJLETiMpeKqmW9VDfd9zOh2ICZAiex6V89UFj9CKWOT659PuNC/cn04sPvD4eGBxCVdym9roGP0R98MTAr8q2tpmBzGiBKi6QwjJ4SkbESYEVdQ02yu+vnnJPBz58ccc8SBEhTIVx8OBB7vw/Q/571Ipuq6h6gy3z55z1ddUKnscff0cRPWK0VckFPNQ8r2GrKS7ur5C11lqTwlfXWy+SZFKk5JGy13mHwFaBfpGUaeQDTJVPr+6pkapieBOIEZsGBAFTRPtG5K+SF0vdalL/brr8w0OiXEcEGdvmrpGScG8zEiRaJqettqUxwxSOpYpgoSqr6jr/PLzaeFu/8B4eMA5iyvwtp8dMSZEJbN3SLPBFEJsjLEgSNmo7tzgRARPj3uEOGJKaOR58VbaYEyDNooYF7wQVG1Wfuggs2Q6earWQFFX3f38kaePHxiGmVDGKFKeF32BkBpEjdAV8owUSUWKCR8XSAlBIhZma4iJ6DwqCLpuQ7t7y/XVawDatqMxEZl+w+PjB/74L/8JgGmcs7JpsSgp8d7z4vnL8pwWWQIm3TTkVG4yUuS85TQMTLPFVNWa2xRDJJkKZCYaBx8RRX4fUgSVFUVZjn7OtpLZk0ZKKPlbs80L+7hMKCmpdUk8L01Wdln2yGLymKpq9XIRUiJFXihJkWVZ8OmMunwiUAcfOCdlGVOV/0rgoxYrKTglEFoiZH4vbT6lxJ/NcnwI6OAxRcG02fY8PlUkIQgpkWIk+fzeWkn2p1NGzYTAFnK0j4Hj8YRQFe3mmm27YSqk4OHwPadDYrfp6Xc3PB7z8TmNAu8jx9MxnwcpcbZ2EELxdJwwZqBtDdtO8Zuv8vmwzBahW54/u2J/2DNOeR+WxTMMB/bjwOEYuNls0DI/1vUdunEcTie2u2tsaayThLbqyrmSLQoEWZEo5YSSDZKa3HIFmqYYRibNEjRBGoySUKwLFidxE3inwbUQr6hFPv9NaOEL3hWXutSlLvVvXV9EcGLw64IfQyBGh9SadrOjbWvEOWncWaQTxHCgbSVxavjxPiMAp+GIszPLNOGsXb1SBIIkJDJpTJJUjaE6NxEmG6elBCIkQjgvYmffHIkqkuqz+6rWJpM/pCCGioil6osqxBm8m1FKMZ1OPD7m0ZWd5nxXW9Uk7xApFQ8Z0KZGNy267lDSrKZzwTmsmwnB5eZLKChjjL5tqJ+1VLXietNRVzVBFAQsSoxRNEYxOUtd0p5lAiUFx+MR7x1N265jQSmzAZxzC9Nw4nQOrFyyyaHzHpLICeoFYVJSEZNACEmKgiRAlMGbQLAsOZiRoo6BrJQylS7cnYx1nKa57IPE+ZlaQt+068hpGies96SQ/Wai98Q6rs+JRfHknSV4t0rVlZQsiyX6ADFRFWO+GLN/z3bbIqXEevsLWXcEPFJ5IoLWnBG9vG0MEW9djsooM8btZsN2u+Xdz++4v78vnLLcILZNjXz8pNg6f6aQ8ntJVdHYRLtNq+nieDoxzzP7O0W9uacuLsK16dCmQYicWK6lBvFJuea9ZRwOfHw/k6JFlPFa19W8fvs7ur7j7ZuX+LOL9xQYhplpPuJt4DQdsLbwnh7u6bdbdGU4DhPPrrMSr6laEgeaZqFpbpkWyzBkjtdw+pnFW5Z5IIQJpQ1SVuV7MplvVeVIjxTPjtc3VPUzJBu81CTRMsbyuwgJ9YvPd6n/fuWjL0jk5yulSEifd5sOKXzRBA+yb4uRn7cFUEJ90d/m7IPzpYop8DB/3gdnv+x52X7ebwbgWfPiiz44S5gZ3PjF1zraE283rz+7zevuNVfVzRdf61J/e/0t5+hfq4uK6lKXutSlLnWpS/27qy/64GhjqIpLr5Caum7ZbLcoDNNyYC5W8SpVCD9QVSNjaNg//cyp+IQ478/80jzOiZ9yloTKoxIhyeMNVRCXmB1oYwikENexhtQaU1VIKdEFdQhnuDw4mqZhnE4spwEfJqQo8QUEUhJ8+HDPcDqspGBJGa8ojdEVsoy5AJpuS9tfUbUZ+j8TNVLIrs3ZyE6gtUKY3GXWqmMj79Dxj0gpsOoWx1sAhkVzmgfuH+75+ft/5VjMC1WAKPOYQyBp6parqxxaqbXGTSN2HhnHgVPhxeyPA5isvlEC6kbRNs16XEOIJGT2ZwkJfzbZc54zFKV1lZViQFW4PlkZFzkO4+qVUrUNpmk5Pt6jpFyjMaZ5ZpyzoV9TSMxpHRfqgsjIjLDESCpokRQCpSQpZk7Q2QU6FU7QNM9AHtWd3ZlFozFGI4TG+7iO40LIoaJSKhCO4B3OFf+lNgdtLsuyomNnHtCyZDRPlcDP82eKQuXD42ZO08+kh7sV5RLpfAoI5vmE0nflfTaY5opu+4wkBC4E9DmWwi44b/H+nBM1k86hqCd4eHhEac2bt1/z9Te/B3I4rUyW2ihSgERXYlLAuxEhR5TW9D3UJqM0SgmG455pCEj1EWU6qpKnIJoddjmQ4ol5iMTZEfmFl5EAiyCEGXf2cwqJuunRdUvdbnn2/A9c7/L+GbMlqcu90f8f9SXb+nN23pdKIL7oPgzib7o7VkIxuuNntzn54xddkV1BLh+Xz6MzT3ZP9QXEqFE1e7v/7DaQUaovITgxRbbVlyMrfrP9irfdm89u86J9RS2bz25zqf9+9dkGRynFy5evcb/gVex2VzgXOBzvGacJWS6i1u9pzYh3DU+PD0yTK5lIkPCECAiVOR7i/LYCpYsZXYik5Fb5qZwtFJIqKaGLIkTpTOpVShGC4/FhQBen5evra47HmcPhlMdNWNomv5f3kYenI9ZFkHp1bJVSo6VCGY1UBqVr6tIomLrDVC2magpJ8yzDzheQEAJaKbbbns02c33C8kicI/NTw8NHy/10z3H813yMrAWfqKTidPjAPOVmpe93bK9vcR9sadJaNudgyhBw88h4PDBOw5poHhK0dc88T3jrMFXN7ipHKDjvS2ZUpGoafAj4wjExVUXwYU0aP+dAnTk5MeXxUt/1eeQHzPOCkJLTOOHsQlek4M5nCXhVGVwIfyEdVlqjVDYNPBODfxlomRfW/P670sxtt1tiSCyLZRxHpFJ/Id+ephkhcwTImTNjnQMhaJqGSkDwNpOuAenNytmJKZEE6+fN1gfF81kZTGlQXUxYG3Li/ZneU9aTFHJYJSIS46fmKyAJVGx2sL26xnqHLaMwU1WEYJEomqqjKjlR58+kVU3TGmL0LOXCf3Orebp/h4wzN9e37K5eIFUmqo/jgeF0YpxO4EaCK2NOtihlUESEmFimR5aSSF9pSde2CLlBy54URR4PQhkdhkz+DwlKY0bweLcwLUeG43vG/Y889v9n/p1tv+L5y//ApS51qUv9muvzYZtaMVlLVUibTd1wOOw5Hk/46Kl0g6GoMRpLsIb7jyesW0jp0x2EWFUqIkuFizRZSoVUhhgFQkoqXa2BjHJdmEKRMxeJ9jyunIgQI1pr+k3m4Dw93JMiOB+RArabrG6B3Fy03Za67lhsRkQAYsjNkzYVStcIrYll/xY7Mw4DQmiarqcvVvV1m2MYjKlQUiIkHI75DsdNCw8PgvsHzXwcCcueVJLG7TDhg2NSmV/UFOdaEWF/f0cMHiUkLoQ1n0kple/qVM7VsudkcqGYpokQPHVlaJp29YzJCe0Vh9PpUybU2UfIGKTMHjhnuTZQcqESIThIAq1lWf4zsmK0RkjJVJodKOGT1mKMzmiLEOigy/FesiLM+6LGs/giLW6apqRnS3abTXZKJsdpmKaibWN+TvBstzkjipTK5w3Udb1K4uHcnEmqpiVGs/oV+RCJpbkSIoeOntEYRG6wlDLlPMz73bc1dSNwURIAU9Vs+sy1aeuG2mhitBzHE/7sAaUatGlRUmC0oO+vuX/IHlDD8VB8hyqUkfjoUKYEXSrJ9c0Vt7c7us5wTj8Q0vJ3332Hn4+4xTO5iark12yvX3D7/DUxWqbxwFyQnareYZeJp6fv/9/2zi1Esu0swN+/9tq3qu6e7jNzruZyFBIw5MUQJL54IUZDHpKXIApBI8GHiD6oCIIPir4pIghCjBi8gBr1QQ+iBNRIQjDBQDCeBEJOLiYnyTlnpm/V3VW1L2stH9aqPT3dPd01kzndM8X/MTVde+219/7/vXfV/mut/4JvD7CSUeTxHJVlhS3GVLXgnUfEDnl1un4efYTmM2Se49KvbG97RDJGxQiS870LUYabk1vsz/8XRVGUh5kL8+CMx2tD3pPt7V3atkOMUFUjRqM1ypQOfm+nZXdnj6brUnSODM7JxlRg4q/1zNhhNKYoKoJkGGti8UTnODqIpRVms0O6ricEH52RF/E0xsQHlSkwmY2RVIsEZEbouljLqG972rbj5Ze+BURHz7KsKfKC3BaQHiau8wTAeQhdT+gdfhFFZSTW3iIwn98uxhaI+WOc8zjX0zQx0R7AdD6lmU5xXaCoxlQbN8iTw/B0NuHocI+qrDE4dl7+elQpBKy19K3Hezic7PPyKzFPz2ueeYY8s9i8wBZtrEUEzOctWYhyGFPEaYZuURsp0Pc9RW7p+lipfFFU0zlH17Zxyi94NtY3hvPjfawpJbkFYpFOgLaZM5/a6HCemeE4XdcNxTtjRfSMJo2ekGVxSkpiMkGX+kM0pgorqUp5OYSqRyfgWZwatRlIIEujZkVRUlVlrD+WjMqoa4cPBh8s+CxWRU/X6fDgkMODw1idW4RjZdCiIS2CMUS90g7X19dZ33qaWQv7h/vk1vDk03GKcTxaAwzTpqHse/J84RwdCDgm+xNu3bwVy5kkx+nx+mOUZR4reXdzxqOMtfV4LdavVdTjAucDmS2O5SQSOg9Ztcn6mqObfYe2ifdDxgauH3Fre4L3HpeMrNlshs0CWxubWHMDCf1gvIYQo/ti2H585VX8ANSmwnvHWu+YN3OmyfCfz2bkxTobm0/SNIe4fkZYRAo6R/AXO2UqiqJcJeeP4BhD27qhirD3HbYQrC2xNsMazyRlbJ1M5jjvUlSRkGWWItWIskVFVhbYLI5aLCKlhNjPS2B39xZ72zeHYfUQXEyiJwabF1RlSoJWjBEbMMYxrq+RFznx8Rm/yKtqRNd7Zr6hbZvhIR28o21neN9j84q8jKM+9Tj6YIjEpH2IEBZhXkjKnGziWMaiXpH3NPM4KmKtZTQaM67jSMOmDzjf4/uO+GwWOhcf7FW7xQ3/WjIJ7O98m7X1ODXzxNYWr7z0bUIQvOuZzx0727cAePz6dYrxiMxarM2p0vRZ7wNihN65wSfpdjXxOH3WNA29i5l/m3lcV5UVPlUsH9VjiuJ2Ij0jaVbGOSAMoydt38UkfG1LWRZ0/SKXjMd5H8OzU92phXuAD562d3RtH11a+p4+rexSvp1CBJPZIQNzUVjms3nMitx2ePxgOLZtMxgAdVWTuzQilRm8zTBZrH3Vun6onXZ4cEBuLU8++STT6YzpbDaMPnkEIwaT19T1mM3NOAVU1yOyvOB1zzzFl1/4MnmWMRrF87BxbYuj6Qw3b8iLirqO95ARYTrbj5+JPtC7hib5L41HGWU55vrTT7K/9xJ5NmVzMxUDdRP290M08rNU+HP4XORk9BSZx4SA4QYAs2nG3t7XmM53qEfXCTIatrFZSfCezjWUaaRucb8Soh+bdw7P7ajELLMxWWaRs15vMvKPpXs/Iy8KDg72cG6G0GFTCHlpDSZl+1YURXlYOdfA8c6xv/syLj2YqrKitIbAEXVe0zUtk/3o5DifHw0+NxgLwRDSFJXJC6rxOqO6Is+yYUoiOMdk/4Cbt17m8GCCaxsk/f7OMouxOWU1YrS2TlnF6aEggUBGlY9Yq3NsHgYn4/m8ZbI/SRWpy/hAk9sh34iAyQliIZVgz6sy5qepaoqiRMxiYmYRFh9/9kcH1/hgWviVWLswjoSFo0b8hVxi0nSI92F46AshZiNuDijsnK1xlM23s+gYm/xUAn6osL23v0ddVzGTcJYxTpW8265ncniIzQvW1kaIMUOBR8FjTKwIHXOihCEJoM8tZZFjc0tuDD455IoxsbAoHlygdT3WLrL+5sybWTRSnBvOQ+89bRdDxE2WkYth4T8+nzex2nnvcD7K26eRH+c8MhLGKangIku1AIXNmE9bCI4mlXmI90PGbDaPxrFz9GlEan19jbqsMGlqL+ZOShWxC4sYSwgSS3uMS7JFjh2JvjwuCOPNG4y3ogFhTEZW5cy8Y7R2jSLLhzxQB4f7NPMZW9dGjMfrzObxnO7vTbi2eY123nF00JDnBVXyC6uLHN/OmR7tUtcg4jg4jL5XfdfiJEOyeO4lmEHXqsypK4MJgSAVoYzXvR6NMMYz/cYU1zqkWORfgqaBuiyjAd61Q6mN4ON9lduMXoTQd0O+Ih/A5jYmp+wdyMLXraRrplhxrNUFhJgGAIgh5935IciKoihXjYZCKIqiKIqycpw7guO8w4SOtTo5gdoG33f0vefW/h4Hh1PabhERkpyGTZacKvM4/A1UVUldWgprKIuSeUogt7Ozw2x6FEOFywpT1YMvhLU5RTViNF6LSfiGQpKG0gr1SChKQzNzzCZxtGN7d4+27aPT61GDd32sVwVUoxH1aERdxkzHC9myvARJoczBx8ijlEQuMxVtE+s9TY+mg+NvCIGiKIbIIDEGkyKOysySZ7GYpTEG8W7Ixut9n0LhhTrb4DuHMZ3/KzdfQnCURZGmV26XNdjZ3WV9bZ1RXd7hJBtHV6KfTEww1+MW0T4++gUZEbzrUp/FCFOgHhUQJI6oLMKjjSEECyHgcTHqyKcCohKnK4ui4PDwcEiW17YxEV+AWO+qMMM0UtM0HM2muCCM1jYosop5St51NJtTlTWZzfE+3M4i7BzOOXzwON/TNXNmaSTLmIyu67HGEIJnPF5P58GmchB99PGR2yNZnQ9M9ne5ubPLrO0xeYldhJ9KRtN7Ou/IZg0ulUKoRhvUpaVtHU4Mu5M9XtmJdZvaeczo/NTTT7H1xg1CiPt6aRysG9cAAAm8SURBVDbDGM8TTzzO5rUN8tIMo1V5kSG25amnHqdtGw4OMtomTTPmHW3X4k2I92OI17YqazKT0cxbvOtwTDFpWjAvKrJ8nbLawvkGn84dJsP3DX3bUldVnBZMn02bWWwQbGaoi5JWBBMWd2UMf8/E4JxDzCIx5hznoxO+hJgiYjF1W+SCzc4PvVUURblqzjVwrM1Y36jxKcvjdNpycHDEfNbezoSbnF4zm2Pzkjwvqcoxo9F4qCxtCmFcZmQ2Y3f7FgeHKSdLqlo9Gq2l7YvBGbawOfXamLIs6XtHSFkwx0WD+AOKYoN5t8b+/oTJJA75GyzWCm0zA+8wkg2OoOP1Ta5ff4z1OgOawZ/G2BFNC03bEIKj61t2tl8GYHY0o+t8jAjLzBA2XY1i+QSTGXKbp5IRqdwAM+gm0DXYoiD4nDb5Y7TzQ4y0YAzTmaHvFnlhcowpgVhhO06JxHWTyYRvvvgiTzx+nSq3g6NuXddsOMfRdI5zaeooXbe+jVM7mWGozr3wyvXe0XVtqj0VC3ZGGQwl+VBhfOHfA9F4cM7R9z3T6XQwOpxz0RATSQUyiyEM24vQO8BkSFYgwcSyF7GJoqzIMkuX9g1QNi0hxHw5njh1YrvbYd3ra5sUZUlV1Zg0BeQJtF2H+J6+7xGTxzpMwN7hEV/+yldp2x6T52TWDtOPQYRyNKIyht71TA6isXk0nzLqNtja2sLQczi5NTgm57Zg67HrTKcdX/jil3j88ViPSQSubVzDu3huj2bd7bxN2Yys2CdwwMa1J1i7tklIU1Guj1Fzbd/QdO1Qu20+bdg/2kPMDB9acjuiTlNHB/sTRnXOM697lsnuDgep2KYLPvqZuS7uN5XVgDjV2vQxf8q4jsZVtvCVcg6PIx9VsfL6sbQBPgtILgSJflyLFNE25Hing78PGhcc/sKcLY7bBUzujojBcH6OGyMZ2RKD+EYy9trzc9c8v/M8I3u+X1Zl4723Pd85t99+M2Gcjy6Uq2/O3w/ApJ0wumBfta0Z2/GF+9rIN3jygjw4G/kWmTk/vZxyechipODMlSI3gf+7PHEURXmEeH0I4fEHsSP9rlEU5Rzu67vmXANHURRFURTlUUTHmRVFURRFWTnUwFEURVEUZeVQA0dRFEVRlJVDDRxFURRFUVYONXAURVEURVk51MBRFEVRFGXl0IxEiqJcOe/4yXeE7e1tuCNrxekUFuE+1w1rwgXrz9xvONmwXO8L+p2WJCz+3aXPiXd33f+J5XCRVmHR7cztBynCGW1n9LmrLOF8SY8f/469hztbTupy/JqGZdqP/bdM+516h1Nttzc7dTVPXiju7HaW7seOdMZtGs68DqcOeOoePOsePnVfnXHtTp/sk8tnCnnG8tnn7S4X4PS6g+5jIYR3nj7Y+aiBoyjKlbO9vc2nPvPJVKIkDF/Tizxdw/LwMD7d7+w+i5bltovLx/7eIcPx5dN9Tr2/YD132cbjT+3Dh0BIhYjv7Lvo40/0vbPdnzhG/OtPtfvUfnwbf7z/sXNx/Dg++Nttx493TJ87+0fZFv3P2taH423c2Zbum2H9sfYL247t6+5t6V5ZyJeWw4nl4Xpc1O+C9Ustc7vNn+hzWo47t/XHl7n78fyJNgKkAx57n/6eXF58UI/3HZbDOeuW2O+/fevGvXyfLNApKkVRFEVRVg41cBRFURRFWTnUwFEURVEUZeVQA0dRFEVRlJVDDRxFURRFUVYONXAURVEURVk51MBRFEVRFGXlUANHURRFUZSVQw0cRVEURVFWDjVwFEVRFEVZOdTAURRFURRl5ZBFPQ1FUZSrQkSeB+ZXLccD5gZw66qFeICsmj6gOj0qVCGEN9/rRlpsU1GUh4F5COGtVy3Eg0REPrtKOq2aPqA6PSqIyGfvZzudolIURVEUZeVQA0dRFEVRlJVDDRxFUR4GPnzVArwKrJpOq6YPqE6PCvelkzoZK4qiKIqycugIjqIoiqIoK4caOIqiXBoi8k4R+ZKIvCAiv3HG+lJEPprWf0ZEnr18KZdnCX1+VUS+KCKfF5F/F5HXX4Wc98JFOh3r914RCSLy0EfsLKOTiPxUulZfEJG/vmwZ75Ul7r3XicjHReRz6f5711XIuSwi8hEReSWljDhrvYjIHyV9Py8ib7lwpyEEfelLX/p61V9ABnwF+D6gAP4HeNOJPr8IfCi9/2ngo1ct93epz48Bo/T+gw+zPsvqlPqtA58APg289arlfgDX6Q3A54CttPzEVcv9AHT6MPDB9P5NwNevWu4LdPph4C3A83dZ/y7gXwEB3gZ85qJ96giOoiiXxQ8CL4QQvhpCaIG/Bd5zos97gL9I7/8BeLuIyCXKeC9cqE8I4eMhhGla/DTwmkuW8V5Z5hoB/C7wezwayRmX0ekXgD8OIewChBBeuWQZ75VldArARnp/Dfj2Jcp3z4QQPgHsnNPlPcBfhsingU0Refq8faqBoyjKZfE9wDePLb+Y2s7sE0LogX3g+qVId+8so89xPkD8Bfowc6FOIvIDwGtDCP98mYJ9Fyxznd4IvFFEPiUinxaRd16adPfHMjr9NvA+EXkR+Bfgly9HtFeNe/28aSZjRVEujbNGYk6GcS7T52FhaVlF5H3AW4EfeVUl+u45VycRMcAfAu+/LIEeAMtcJ0ucpvpR4ijbJ0XkzSGEvVdZtvtlGZ1+BvjzEMIfiMgPAX+VdPKvvnivCvf83aAjOIqiXBYvAq89tvwaTg+bD31ExBKH1s8btr5KltEHEflx4DeBd4cQmkuS7X65SKd14M3Af4rI14m+EM895I7Gy953/xRC6EIIXwO+RDR4HlaW0ekDwN8BhBD+C6iIdaoeVZb6vB1HDRxFUS6L/wbeICLfKyIF0Yn4uRN9ngN+Lr1/L/AfIXkYPoRcqE+azvkTonHzsPt1wAU6hRD2Qwg3QgjPhhCeJfoVvTuEcF+1gi6JZe67fyQ6hCMiN4hTVl+9VCnvjWV0+gbwdgAR+X6igXPzUqV8sDwH/GyKpnobsB9C+M55G+gUlaIol0IIoReRXwI+RowC+UgI4Qsi8jvAZ0MIzwF/RhxKf4E4cvPTVyfx+Sypz+8Da8DfJ1/pb4QQ3n1lQl/Akjo9Uiyp08eAnxCRLwIO+PUQwvbVSX0+S+r0a8CfisivEKdy3v8Q/1hARP6GOEV4I/kN/RaQA4QQPkT0I3oX8AIwBX7+wn0+xPoqiqIoiqLcFzpFpSiKoijKyqEGjqIoiqIoK4caOIqiKIqirBxq4CiKoiiKsnKogaMoiqIoysqhBo6iKIqiKCuHGjiKoiiKoqwcauAoiqIoirJy/D++FF6y2wOqwAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "_ = viz.visualize_image_attr_multiple(np.transpose(attributions_occ.squeeze().cpu().detach().numpy(), (1,2,0)),\n", - " np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),\n", - " [\"original_image\", \"heat_map\"],\n", - " [\"all\", \"positive\"],\n", - " show_colorbar=True,\n", - " outlier_perc=2,\n", - " )\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The upper part of the goose, especially the beak, seems to be the most critical for the model to predict this class.\n", - "\n", - "We can verify this further by occluding the image using a larger sliding window:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAE7CAYAAADQCfvFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9W7Mty3Xn9RsjM6tqzrnW2rdzkyXZliy3aTuAoE0DQTeXCCKIbiLgoQMCnvgKPMMXIII3XvgAPANPNAREPxD0A6YJu8NN43bLtmy3JOtI57L3Xpc5qyovg4fMqjnXPjfJbTVHov6KrbP3nDWrsjKzKv85xn+MIWbGhg0bNmzYsGHDzxP0/+sGbNiwYcOGDRs2/EVjIzgbNmzYsGHDhp87bARnw4YNGzZs2PBzh43gbNiwYcOGDRt+7rARnA0bNmzYsGHDzx02grNhw4YNGzZs+LmD/7wv+6G3w/WOnAsAZoaIrH8HQVeKJKgKIoqZYGaUUkPQrRQQEGH9fcXjEHURQZD1fGsIu1x8KlLPIfX7eogsPwEDMzDs/PnadhCsHVTW3yzXUVWEcxtF2rlsaenS3rI2X1RQdYjociGKgZmuTVp+V9Y+84jo+TfSWmVGzhkrcb2GYCCFYgXMzn1ihnPa2mgYdnG3ctGztU/P97T0myF6+YvWSltunHrNpe+WDsEenYt2blk6axmKNpaGUIqRS8ZKXs930fkX4wxYvYZhBBc47A91bESRZUjN1vtbrr2OmwiPptjFdR7NN6G1rw6wleU7W/+cMyhYu5Yi6ri9P3H/cHx8BTNyKSDCbt8j7mLuFUCsjbewzgozzAql9c3lPHTeIeIoxSilnNve5qKVgi1zGJA2d80KIoKqctl8s/M9qcp57Nt4S7u/pW2qDkTaXK5tWPpDNaCivP7ohx+a2dtv9vafB0+eP7F3v/7OX8SpvvTQn3BfKZ+c0D8zeDW9/omOf3l//OKDvqSY5vkn+8Ep/3Qa8s8Ab33l2Y997FevvvJPfb3f/Z3f/XO9az6X4OwOPf/Of/BvYKU+kNM0ISoMux1WHCULMc7tuyOihcPuQAh7SlamaQTASGSbiWlGxfC+XlZEKzlQQygchoHdsK+/UcWKUIqQsnE6RgByyoTOrS9x59z6shZ1mEHOBaPUl34jESKKCqT5xPhwZDyegLqYFMsYGW0veucdAKHvEOdwzlNKwspUO0aMUjJg7PZXHK6uCX5Z2R1WAiXvyNkR08w03tc+Gl/inGe3uyKEnq4/tHu9prgnmPTEVJjmI3H8GIB4+ogUjxQc3gfGU31hSHng5rqQy0jOI6qKau3XbHXB886vtMctXMqMOUZinDEK2hhqF3pEHDkXVB3qPDSSFlPhNE6IgvNC3y3TRomxLr5D5+m84HxdBZ13OO1BdoyxcDzeMc61H0rOBN/jNaAo4zi2/hkxhC54vPP8wttf5dd+6dcA6PGIGaLnxRrAe08IoZJTEXxwdF1Hm3iVRJRCSjNGxqy+VLy6dZzNCjnW+UVJWJoxS5ScG7Frdxt2uN1T/u9//F3+x7/9v5IWjizCi155eDjywXjkn/uXf4OrF9d1DmkgxZmYI8EH1DkazyNnI6aJ0+mBeR5ZaJsheNcBnnmaOT68Is7j+l1JhTRHUowr6RiGgRCUkiPFEuoVp6Hdn1BKQqRgQOgCV4c69wSPc55h15OTkdpN7ffXXN88pRtuKNZhOIzar6F7Brrjv/2v/rM/5S8I7379Hf6b/+m//os63ZcaOzf8RMd3rvspteSnj//hD//nn+z43/rtn1JLfvr4gz/5/k90vP3ey59SS376+Fv/+X/4Yx/7X/61/+Kf+novhnf/XO+azUW1YcOGDRs2bPi5w+dacKwULGd2Q91x9M5xd3fLaZ7Q0OG7Ht927KUIZo7TaWKaMl3whLbxcKpMyZFi3U1WN0TdfTvvKJaIMXI85WYZAR86vO8wU0o5u0VcUEKX6XtFFUQvXA8m5FIQEilnSnbE5l7LqVBK/S85ky0BkFK1Nnjn6boAGCbNCtE5fOhwrm8WnLYjZiLGSIqJYgmzIzFXS1aMBecGlA7VgLiCSTW7qs94DyZ3GCdkdXV5nNxg3iNOCS4xWt2xuxRJ2uG7p+z2b/Fwqud6/fpH3D58jKE4F9h3gd3Q13slYZLwTikxMk0jU7NQlJRIMZNyWttcxyLQhQF1HSKFdEqoq/cb+h24TLaMZcPmxWTuKTgUSLm6YOZc+zUfU7UuaEBEySXhJbUJYWBz60OaCwagWtkQ6LuBt56/h4pb52IpGRHFOb864ZxzzY14ad1p3dr8iynNpDRCyasbz3y1hjgvlFLQC9dfskJZXGciuGblMkAtc3N9IHQD1qwqYsbb/cBVmrnrBsIQ0NWdA13f47LHrBDnkePpoV2qIKL4TgnDE4bFellgPI0c7+/AZvreY6U+qnFOLC68mAttqjLOMwVHCB4Vhyr07bkNXUdOkXkeiTkzp8jt/X1ruwLKTblmGA74UMfcdx3qlIfjA9P0QN/fEEI9n/YBUceGDRs2fJnxuQRHVJnmmbv2MrScmcaJYgVRj/N+dTc5JzjvEVVSnikmeFdfgt47nDr2+4F5TmftgGUU6sLkFDMYp7botv/60OF8oN9pu47hveH0LKt4pJ6wQirV/eKcp1htw1wy81QoJdEHYX9dX9Zm1WzvnKcLAbOC+sWt5QBH6AZEhOP9LQCnMTNPhlmgamVOOF8JRMoZk4kuDDgRcpzWxXgY9ljpubsf8Z3DpPWdd6gWRCJKT8lKSb61b6DvB/rhBtGOw9UVAGH3gnEemeaJkicmPSLUPhv0nhw/Zh5HSs6knIm5tk+sEo+UUnNH1XstJRHTSKeG9x0xGsfmxvNzxoWOLjhEjNxITCmRrg+ELhBUKTkxTZWgzmkmp7Rqr0rJqC36jsV16BinyBzrfAjS4ZxSLHGze8rN/mbVKxTLiDrUKaKCk7PxUaTOoUWPsxKmUklKjDM5RUqKeF0IE2SXcEnBStWJAULVO6U4U3LBe4e0PvJaW3N12ON6D/NCihLfOAS+px2//JWvsdsNOLf0ayanQkyVaB1P96RUXZ1d79Gmeyk5MTbymmPkNB4pecY74XDY8+TmurWv3mNOmXGcL3Rc9f7VCcUyWKFrrsS+71EVUkqkxWUXF4JfSDFX16opNLfWaSr4XhmGK7w3RDpCey7UyipD27Bhw4YvKz6f4IhUohDai61z7K4GECXFwjxF5th0KbHgvOCdR0SYU0akWhQoHkdYtQDL2/E0jsxjoesDvuswg9IsLillxmlEFPaHPSHUhUmSoRE636PaN43EWYxsGM4LmMM5QVyzCHUdTgem6UROE5abEMKUcUrkcabshKELdGEHwDglnA+I1IWolEaWZo/Ijuura5CRGG9XkuW7Pb7fI3SMx4nxPhFTvZY6IRclpR06Z1LTnux3Ey58jO883u/rYtI9rV1HRy6Jh/GISWR//RYAh+GGw/4pxWJdHKeRu9cfAfDx7UvyeI9jRrtAwa8CX5VMjpk5Cs71dH0les43LZRCLuB8z24RokojsEHbwt1Mc+IoJkzTxEMq5Jgw2nVUEK1WNrNCzoVFx6uloK5qYELvSaWRWsuoN7qu4723X7DrerRI64fatiouL9AsO6KyWm6qDknPokwFy2cRcYqJIouF0CAaqgJ2tuyE4Mgpk2JaNWKrCMeqtcmrYikRYz3XNw8d33wywLMd913Hw/EB55slRB1WIGbIRXC+Y9jV56LvAyKBlGvbxmMlOKfjAzFPS9cTU2EdipJBrBHynkXlbwalVNGyYKhjJaKnU8ap4p2jcwFxylSaRS9O7PqOftjj/W4l3eOcGcfI1cGzGwI5FlRqm5w8PBKob9iwYcOXEZ9LcFSVp0+fIHLeqSLGnDKTlGrhkPoizzmhYqgzQnCNzNTfjdOMWKqiyhiJzV0yTUeURN8Fbm5uqrB42eWLrtEkKUXiHFubBOcVOkffe46niXmuL96CNeGxVsuSCb4JSV3omGcYjxPzeFx3vn1/wGvASSG4Duc981wXrpQy6oxxnHAu0Pd1F90PTwDFLDHHCWnkrf7GU8zjdYfaFSo3QF1onN9x2F1Bnrl7+UOmh+qqGHwg6Ew8RWYcYfcUCVUEGnZPyFkRBOcDwVdCIuIwEZwNODGcDnhXF07BuMs9nVeG/R4VeLj/EQD3d9+l5JlinpKVlOsU8L6n7zs0GbnUcCXXIoFCMLwX+sFQ75G2CM5zYTxO3N6dGMeIiDD0dT4MfRWvilgTFQe0WdOqhUUqkQtKbsRRzfBBUIHDbo8TvYgUKogJUkDcOSqsRu5dRIZdRJyoKEYVQas0V+lY50pOCRGh6yr5W6xsQqnWnmJVOH5JukmIZmJMWMr45uL711485+1Dz3fuI3qauM8RDfU3w7AnOA+U6gqTgLXzzWMlVgUlRqPkxXXbV3eQVEtbnCdOc7WmpThilvHe03c7YjpvCGqfFkQLSDlHZVGtqV3o6MNAzqxz/Hg84bzn5qnQdULfVzfZPgScF+J4zzFmrCT6Jt7u+yPaTWzYsGHDlxmfr8ExiFMmuCVcZGZOI3NKlAKiHu+XHaRjscx0XaDreqapWWpOqWlgEvMcmaa2E3SeYsZpSrjjWHf87twkQRiniRgnmreLrvfshh10PSH03N2fePnqtrXB2O93dF0gxUjyBZX6Uh4nY54ClrsWSVNJx2RTIw6CaKw74KY92fdDvY+YyTm1yJZKLlIeifGeaX4ghEDXNULSBRDFi8f1PfuuJ8bm4ugG1AlxnnFPryhNBxRCxuyEQ6u1TGfQm/qdv8arQ1DUbN3JYzNCROQO4Q5VI+xq+7q3A2+9+Dq7fodXDzbycFp28/fAqbpdZODubnE3dQz9vmmcAlYKOVcLk7oJ5yJmwpwSMS32qkDo9uwGBWacc3TdEh6fmeNEnEZSKiihqXVqCL3vAsHv8D6gTXuS04zZTPADh+EZJed1TqmAE6quqLmkFqjqasFZw9XrQFWXowi5RdelVO93Hqv7LM5ujZ6r9wpxHsklkXyoFpumS0EKMcbmpk1860m19P3GU8++93STcT1O3BYhN7JyPM1QZnLOpDRX3ZUt1rRFazaQCqS8WIoczjlQwSOI5VX/5ZziXI0gVHFrmEDKE9M0YhZxrlSi2Nxxi/u173rUe7JAyU3D1NxXcR6r5WparIp7PHsSkYf7B1Ka2TfLU5pn9k9+skigDRs2bPhnjc8lODkbt69GVOvuMc73ZJsQ59gd9jgXiPM5d4dZ1b04F3Cuo++ae6FExjIjUggh4BuJ6ToPzsgp04VQf+sX8WIhphmLhUCPNtVmCIFhN+CDY04z+/1hDbudY2S/22NAnCNxcjhfF/3dsKcLjvF4YpoyzXpPKYbzlThBZk4zoa2enQPvC6KZeT6uIbQ1d0im6zJOrZr/20JTMiCFLEdividOcbVypUkxIiqZYb8jNIvLHCeOxxnvBoLscOEKQrUWFR1ADTVBS8ZK1UPl8grkfUr5ACuvwYSuewLA9dUNXX+F0yMlOaYxkVIlgXOeEUkE7wlBOFzXRTolR98LuyHgPczzyMPxrv5mjhSskdiANYvLQnP6focPHaWUNQeNmEedQ/sO5wFTLNUvcyzEGUoeUZ1WEW/OCXGO59dP2YUBtfP5av6dSmCcgF7k4ql/6oKvS26bBaXmhcml6scWcW2aJ5xUK5WVs6DEzEhxovNKN/SknOmG2kdODQvCRx+/5FASf+0rlYQ+deCA6z7wLCof+YJ1V+0hmohAzjCeJmI8rakVLGe6vq9WntCvPRrjzO1cLTWh8wx9oOubu1cKwTcxNkqx+ixpGAjzDsszweXa563vcq4uQivGYbcnDDtOzYLz8HDi4e6B0zQSXERaZMA4ZmKc2Q03dKFvguv63XEEv2PDhg0bvtTYwsQ3bNiwYcOGDT93+HyRMcp0Em5f1V3vabxFtBD6jqcvBoZdXrMch1BDui0L01jDemXhTyY10iZ0VUDZ9AShd4h6ZubqJuq6NSqr5IKoI4S+JXKr13GuuiLmmLEpEkLALdqTGEjRUyxTsm+7+hZ9pZDjiX4wrq4O5FR3o0bEeauiUwnE7EhN93GaTsQ01aNSZJ6qDihOJ1I6gWSsCIf9E3Z9Ff9O80QqM05TjUzK83q+RRDaOc/1wRh800/MM8G5mgROOpy7Rtpu2ZUI+QRlwuwe0w/b4LwCGUEm5piYYyGkanFJltlbog89nd/h9wfu7qpFwfIdw/6aYeiqyNctIdCO0AldUCwX7sbIdGqRRdJhLFoXJfjFZeOIKSEIXgMm1rQgkFKs2YHF0/cdTjukaXDu747c398xzycgrfola9mZnxxu6nhfZKlWVURrdmUnitOzyHgRFzuVRy6qkhOmLZnjnHi4v+eDjz5sc/lUk06qVY16a0OxhBXoux37XeJQjH2bx7tDT0rG//O7v8d7RfjV5rKxIrj4wM0x8jt/ds/Tr36Vl6Ul5pMJF4SuD3T9M3K6WYX5Zgkf+jZHdRUFixM0OHKKeKcMu4Guc2v7Ss6ogvO6ipkPRTAOgJHTxN3tLQ8P9+uT7EWZ5olxPCHOsW9uQYpBLqgeCE5XMboXZbcfOBwO5NJzfGmMud7v9fUzfHfNhg0bNnyZ8QUiY2E3dEztZTinGVEIoaeUnmlSUhMM5xzZDQN93zddjrHqJ7QKV+NcmCNMzTwuPnJ9dSDsa3hw3w2rqPRhPJFy1bR03uGbtqPrPU6VnKHrDqg4blvOmNNxZBprvpRCoQtCjPW74AXvM6KGc4bzzUdlCeeluozCgTFm5uZCyDmes9iq0nUttDx65uh4eLinFMNrR9fccaEPeKllK0pWdFbUYmtDwGlHTlWcG6V+frU/8OzJO8QUmLLiJCFWI6LS/CExfki2e0Snqs0AMI+6Hqwjzso0HplaaP14itz7kd0wcL1/wtAZXVe/e/Z0YLcPDMOAauA0VjJwPJ6YpxHLDopAEVpkOTFFpik2PYqnb5FXfT/UIc7GsNvh1PHQUq3HHJljZo6R4DN9L/TN1RP2Hp1LXVzJ+KZ56nyHV+HJ9fMqEC55JcmuhYgvgl/VM/FZ/4hglleXUyVMDjVjjInvPbziZQulZ+/Z9R2C43QfmVs/5Dxi8ZZwes31aU9Jz5GWybsbbniIkT/67ne5OR55fV8X/Ce7AfGOX9oFrvIDV4PyQCUx9/GIKwXcvualkY4utahEb/Tdrmplav2F+lxIFUxP40yKCZWqDQIoMWOmpJSZ48huX5+l68OBgjDHTNfvccETWl4kzNBiDF3Pru8rCWyD64RKQJ2j6zy5zf15mpv7tkf0huvn14Qmst8NB0L42c2uu2HDhv9/4HMJDkC/6zjktvv3S+RRTz/s6Lqeswg0EXrBq5FLTdyX1sXI4f1A1w2E4Qmv7+uLMuXM/akaNvpewTtKqS/lMffkbIgJKKi0hUkM9Yo4UGd4J1zftARkqsyTcTrNiFgTJrddsSRSypzuZ1KayS0CJuUR55Tnz9/i2fOOoIouotLgSXlmjlWvcbiq13l67cnpCQ/3EzEWfOjWFSibUExRHDGmWhKhLVx5ijhGcjTGMa7WpetfekbKPfcPM+iM6GuMuvuO+SWxnIg5k2p1iHquFElRiCkxzyM5jedoN/GIOLrguTrccnP1rCUxpEbCWNXB4MuaF8apEMfMfJwYT5GHhxP3jaxMMZJyIhfDecewq0Rlv7/GtUR+LkWkU0JfF769Ax89bpoxE3wIa2hxP/S8/c7blPKsim5bP2ipIdsvnj5DzWq481KGQ845YB7VLGu5kJY6TDV53jkzkhVDEF7HE999eEVpJTW6riPsPFdX1wwvdrSANl69uuX+tWHTKx6OJ26nj3k+1Tl0Pwl//P4HfPjqNT84Hvlfvlfnw3/0y+/xPGWehY5/99e/wcfXAx+/ruN3rwJFySXW/D0u0XetzIQDp1PVQ/mzSL/OW8c0downrXqyhXSnEXWC847jsfDxhzXd+/H2jv1uqPlsxKPe1zQGbWzJLZmh5qqVauH3MSbumy7pcHVF8PX5iybcTQL30F8NXD29oevquKu4s5B7w4YNG76k+HyCI0ron3CQasHxu9yS6xXEOUw6luQmyY6k0z2Wa/K5WleyuRHECF3B+YL6AzdPn9fP3QHMgUUgU9Tj20v02dWenI3T8WM+ePUBzqpb67DPdL1VwbJPzVXRFowuELqBXIzXL18yxyM+tGgWP5CzYxqFcYxrsrWSZ7pOidNHHO+P7Pe7lax0fU8/BHrfEgC2qCeTSD8MBHfgNBnTnCksJKurGZalcMwPxLLDpC5ccZ54ePkxp9tXiGVevHjR+qfn7pgYY0LcK0j30HKOzDYypdLcUHkNJc5zxnJqWaAnypxWy0XREUSYnDDPJ6ZpXq/l/Y6UCvOcEBnRJdmg1rDju/HIw2nm7iExxyVbcECDJxv44FYLjg8Bp4GSK1l1ORFacrnQ7dnLvmYgNsO57oKcZSg1+3XOxtzIZq4nIsUjXp/UqbW4m0qde0sYeG55jGo6gJrrBmlRZmsQlVDMyBgf3r7ilCN9E3w7hGl84MPpNd4P9EMtHheuB9LpBad4YPKRGDJ3ryv7id/7kO/80Z8wnU6kKfN3/km1sr3oOv7GN57xwge++fwZX3t+xX1fSdt4/0CMhZgjwkwpJ1ZVfIKsRkmCBb9GCgqOgqOYw3tPmmbm6bZ9OaMOun4PdBwf6nPx/vsv8SrsDzv2hwOHm2v6RtRrssfIcRyZ0wlHx25oKQ+6PVcHIRWjWMdc6vPnh+cM/RX94TnD4Rnd0J+F3Shbpr8NGzZ82fEFif4UNzxjWNwvhRbJAglHwrfU8ZDm15RZKdmR2aEuVMsGAIr6nhA61A+Eviax64YbvAoW70nzPYisESuEKwrCMHTcu46Pf1gXhdcf/4Dgj1wddvS9kMu4Wkh8CPhQKNnj/A3BD/QtL0vveuZTor9y3Fw9475lJX796gPSKfJwPHL7o1eIE1xbwJ+9/ZznL55TciaOpzWSyweP04mhOzDsn9D1PcmWVPqRYoL5gf2TF0Agtd9ZNvb7H/Ey/BGOE+995asAZOvI5gghE+MrSp7WDMwZxRk4HGJWs85Sd95KQbUQAhSRtSgq6kgpU5IwpoyVI9Ii107HY018h+F9WPMECYK4Du0GhpuOJB7frAaCrSRNHetvVJsDSQXFECssNawruahJ53KK3N0d18KfVpbcOL5WRC91DnmXKSWSphOU0jIfX1TRFmuV28+V5ms5hlI1W1Lwcia8ZjT31MxHrz4mziMl1XtyCtfXO/qux8xRWmHRPlzx9tvvkZ7vKSSs3DHd/hCAl6//gPucKFYwB69b//x33/4uc4n8+3+p551x5hBn/vKuzrvffz3yZ6eRmEF0xJgpTWvjJVYtjVMYOnxLqDlPhRjheFTiXKoups3x0CtOlHmGKXVoXytw+8NzYkwkEdRr/XvT+qgVzKQVzByYsjDdVtdt1xldv2O/vwJ3jbgaibfbPWW/29MP/frML6gypy0+YcOGDV9ufIGLqiZjW95lwRmigRAOFOlJgB2WjMBPIL1HTEfiPFFKDQmHGtLbaamVv12PazGmzgmujMzpFfPxI5zv0aYbcG5PocP3Azb0TO3zMnniXBglYTnS+YCwVCf3eKe44Lh+cmDormHJ2ZJGRnmNlw7E87QRn3cO+9Wl9nB8YC4ZbcRM2fFwlxnHkTRNrO44M0op9MPE03cG9jcHRJvQWRVMceFAP1wT/GHN/6J5Jg6wD/eozTx5Wqu/T1xhdiDNM1MKTA8T2lxrkMk219xDGWhlDZxV64SJVrdCiOfcMNlzf5/JWXGhw9RzbGUA4qx0oYbyxxxxTRTsFJCI+I6+G/BPdqTYhNjFmOcZk1irhDchuBVHjgZSqhSnGBaX2l+ZaZ7wrseK8nA3E1sOGrOCd2BDQCyTmiD32dM9BSGlqaYcEL9ofxHqwuqaqHhZ8EuOrV5VzeJb1FYBcrEMRZnjTLGJw3AWned8x/H0QE47hv7Jms/Je6MLBZNCIRDjFV2ofbS/9vR7x5/8/u9zuo1rOZGXaea//6MPOCXlb/0Lnq/vdrz9ouZF+hd3N7x/+wotCbGClURJTayuGTVIFEiO1q3knJkm4eEIUxKgW3VKIXc4v0P8Na57yvN3qzX0bd8R5xPT8UdMpw+YT7d4je2eCn1/oO+v8S2z9dSscxkluoEQnnE4PGO/rwQn+B7nBZFz8kTb3FIbNmz4GcK2DduwYcOGDRs2/Nzhiy04enYhqJa6g3fN7J1iq+Zds6WKHuiDp/QRsCpuBGKcSGmklEzvoZTF9ZFRMQqFKcVaCaKreoed6/H+GhHY9xBeVKHzzfCM4wmwulO3C5GqiFGs4NXo1aHxljJWjYJk6HCtmnLCqLv8MFyjxXB75fDCk2GtaJ6KcDyOxKJEjJKqpSGX+vtkA4wBDgcGqgVHvRJ8h+t2qO+qZWSsWo3x/nvcHz8kpom+32Ot5lXXP0NKTyZwfDDG8UdQqgst51ssnSi59unifhEFI+OzEqNSrKw1r2ohzQEXrnC+Zotuem+G3uF8LUyQS6YsVhWvYJ40T5TcKm83t1TOkZRmUHA64KS5EV2N5kmpCqlPxTjrex2qvo6xGjdPe2zNZFzIqTCPM3GcMWvlE652qATGMWFFULdGb+O0WnCWxH1ruSkFpVByXsd/dZNZjai7fXjJBx//kNGmNcmkiGMKnrnPxKEQW5SZ+pe44DETJDskK32zFrm90H/rXYLL/OCf/ICHlj7h7tU9p5T423/6fW4t8Z/88x3f2Nf5+pvvfpXvnCL/8KNb5lLD1dNY5/hpfiClSC4FYVozJosGwv5trp98hcPuClW/pkJwztH7QOdqfTR1i9g6k7qJkwTuojLFjtisaXd394jA4bAj7Aaubt7i3ffeq/cbDqCeEGpBXF19UbaWr/g0XJbE2LBhw4YvI74wikpgJSpKjcbITBhzTTm/JPc1rXlrtIBa1X22d6APHmTApFYrXl+cUjAVNOzpdi+IxchNmDxNY7uigc1oi34JuwO7oJRUoFTXiLglumtgd3hG399U7cXdB3syBtsAACAASURBVORWVDCXnqR7tO/p+wFtGY5zgTwn+jAQ+p5y4ULIOdNdZ1wXUDVKPNe8MvU4t8P7A12/w12ILlVdy+wMluJaK+t+OnGclTkeyNKjx9ruwXl86NhfB7T/BuP4HqeHVrn8eMc03RLtnhTvyKUujsaMI2LxSI5HcoKUG9FzPV3n8VLIjPgg9HouohijkDOtinpbvNUQiZhpjYCLI7kJsdM8VX1UF8jzxHgc240OmNRyBs7VXEfSxs+yIWRyiVWzQoZFx4Mi4ps251xd2znHk2dvYerq3JHzIis4XCu9YCZr9mOV6pqipHqsyEpQoWrGXh9PvLqbSTmhzW0TOs+wG2o4er5lbP2dYkGDw3U9EKAEaJmbQzeQzdM9/Tq/sP8q6VV1+/3wj/+AH738Hrkof/dPP2ac/xH/cfPr/upvfIt/81t/Ba4z7+fAlAun11XT4x5etaKvgvOevm+Etxs4XL1gf3gGjdj5Nn5KosyvmE8fMx3vyaXVhJJEnEfmGGuhTRfIC4m/ukF1AD+A8xTObsZh16OulgKRi1B1w7AWuWYsOYkqNk/Vhg0bfhbwhQTHzJrGAbwGajlCa/9jLXkAma5rolNziHNrfR/RgO8cUIsvaiMDQqmFNHMH7oa+U7puqfekpFx34DkLmRrJlVwg2QRSX8KKw7km/h06JFxj/inJCmUY0KGVkggDfdjhtNaKWgSvtfhAaQulQU4rWXFlQnPGhR7vO5Y7MrRWsRY9szgLa5+p1PT/Oc41SMw1UfXe0x9q0UxVgRbBpH6HikO0cNjVCJenT2riwJILc4mkHEnzzNzqeM3zyOnuQz54/zscH36EUNYw3tAFukHZXzmunw4MOyXGZjU4TUyTMR6NFMG1autdmOl7a2UAFBFbw/znVEPf45xQNfqhLY4HpRs6+sFz2O0Z+oHYchzd33+MlRl1gZSUu/sTp4dWIdscwQWmMTFNM6kRytN44gaj60Mlv8iqmZGmsWkDcI4Ys2bFkSp0VpVHeXAMY4rKlG+IMdItNTXiviawO7l63nbuGE9oGLh59i7D4Tmh3+G0JV0MPYPredId6hg2YvbWW1/l6vf+T8rxFcf7B/6PDz/k9d/7BwD8jfvEX/1X/iX+ra+/zW/dKq/KAG1soxkmuSZRVMEtUUqW8Y1UpDTiLOGXVAPzHeP9D5jn18Q4M86VbBbAxJMtgPb0h8Oqdeu661b3q6dzB0LXEdpzpuqrrgkawdG1X4sYRmkh+JesphZj3bBhw4YvM77YgqNuzV+CSF28qXlenPeYX2kMqkK2WplZCue6RCJgWgnNfFsJCjD0B3y4oXcetwNKuihEWAtvGoLr8kpIxAyxmj0X9YiAtuRtJR3JVsj5iA/XDNcv1kYUkyWZypo3BVp0segaaqzaXVSqHnC+XlmW39dGNGKj9XM4RwiZVfGvgYmrwtjGfQZ3jTqh77oaBryu19oW4+pcqcLOxULhqtiWAfas22cD4vRVnjx/l48/+j7j8RVOlwrWsBsyIZzo+qkWqWzh8p49I55q2MoIze2WIymW1Qoi0qHaROLBcAp9V11FoeXU2V95+kHog+BdJsV7xrFmUx5Pryi5kJLDrCfOXa3LBeQ0cWImp9pH2iqkpwi3L48860BNVmFxnV1ngiNmgFs/FwR1y1iUVkEccikg4PsXvPOLf5UYE1dDdR25fk/odgRfi6+mFqpecsSHnsP+muC7Su4XDmvnXDzVrFLb8M6v/Aahd7z/j3+Hm/0r/N0t3777GIAf/Pbf4x9++DF/86//dX7p+S9wzEZpxNY8KI68iNCbKziOE9EiTpSSaoHbFFu/ji8ZxztSmphLZp6XuRoQ7fFhT9dd0YcDIdRNQd9f0fldDffXOieXeZRTAWuuaDnP8fpctZ60gmsFTevcO7tKN2zYsOHLii8IEz9XJIbqzikqmAgqvoWLNhOOKCYBJJyTrcmSmbXqJHLOzOOR46kmJ4uHxP7meXVbFSNbOVfL1paOX4wUC9ayAVNizYEiiu92COdsyikVTKRWm3bVtbZYIQza+RaFxjn8eEka96auQFQv9qkXigRrr3g7L7CrNoa2AAiIbyHLy6KhDucVE0fJrLqYtSSBcMG8LotJLpe9OJcIutvxzvCLPH/rvbqbH1tJjYcPOd39kNvXD6hMdH0h9C3BnXZ4t2M47InHmfmhVROfCrkz5p2AOSzvUKnE4/pa2B1qcdGSH6pGByhpIk075gfHeIQ52upuSjnW6DbTSoRRaCHImKEu0B12XLmBu5c/AuD1/S397hninlSCKzX0fJlDjf3VPCx2dkNhUt2nFKA8IkVZwPmer733y0zTjDRi1PcDIXQ49aA1BL2iLvS29De1NMg6P1rKHazUKC0gody89ytoOPD+t3+bd8TxvCVD/OH9A//bt/+QH97e85/+zX+Ppzdf5YNcrSeFah2Vmu6Q1JLvZXwLw3aYdiTtiE2DU/obfEg4g179uRSJ8zVKURxd1zdr62L90vP8skIzVNa2p9oS1VIjAC8gGCpWNzWt5MU6J9mwYcOGLze2KKoNGzZs2LBhw88dvtBFVatKXfAgW2wZcU2NDyCuw8zWApdCQtsOV8xAHeoGuv07ZK1ugqwdc67uBcRwvluT6WFQECzVEguLNsAYQAVxniyBQqG0SBKTru5CNYA1F9Ca1bbtYk3OVhbOVpslmdml1MDOP36jV2R1cxmLFujxMbae7GyWUa0WsVJqba41wRDSqKadz3JhtVlKD1wmuANwGKA4vyO4gb65JA79U8bdu4zTHVOLYIu5CmJTjIjrcMM1L6730Fwf8+33cHKL6wrmDzh9hpM6TnMeiek1D/e3WBb60LI2izKfAmNUUnQoHtGW9bpLoJBiwFx1l+yv6/l2u2tC6Om6PT70vP/+HwNwf3fH137xV7l50hHtgc7SWnsKWeaJ1rm0ZmBu1gSrg11KWW1tNatxojzckT4+EacHYmoFTv2eLuwJ/RV+f4Xb1Xa7rpa5qG5DR8qZlJYowmUOAcWQsoimHeL2PHnnW3T7F3znH/1fHP/s2wC8e/Ds/MgffPB9/u7f//v8yr/+lGleNG2Z7Kn3tFimgBB2bZyFYtCFHWEVaFuLb2pzedWAlebmLE1Ddba8Ihf6pTZpz7NIaLkSsXz+1KxaJgXXdHO21sNyauforQ0bNmz4kuILCI5hZV41OCKCWMZKK0KpHUoLbaWKhgVBzPBaVrGuWAbxmARMe3ahLnRFtL7UW7QGjzKmNjeBCq57I42qaovuEARfywAsjVjkAQsRWMtFCBcentUttUY1twWlEoqz5ugzcZGAzqzWp7z893p9O7s4nCgUagV2k3MCtdX/cr6JlcjIJQl7nMHXirSFsep2lgzD3g/s9j1mb5GtVQYoi2Ou6lJUql7qdHpdx6II83hLKgU1j/PX+O4GgE66Wtyxf2CeH87h8gLOd+yGQMmRnCdorkTnHb470IUn9MNTgu/X7nQKZhmhFtj82td+be3W0B8I3GPpjmKR0koyiCqIR1ytT6aykJgL9+CFzApAvauV0W8/4IP3/wxVw7V7epDMaCdcvMXPO66llrLYh3ery6i5cjBb9MctnFsbHxWskSwh1/moyvDkHb75V/5tvt0ycn/nH/wWuzQjzvO///7v0//ab9I9f6uNhVHQdb4+VrVIpTKLHmzRHJlWFyyL2+5MAAuco9i4YPeLW+0zSiyc59dZTLw8L4gtfG5N4ngh1dmwYcOGLy0+l+DURTStfn7LuYVdZzQMiHqslSgwq9WcsVoPSEUv2UP7+yJiXSwXLRpreeeKPFrmoUUqSeC8bC2GkUVZcF4YZNU+CiYXO11YNS2LjmWxitiF4Lh8Svzr5SeXGV0X0nKWXZ5bvhKRRpaWgpGokHOuC4ZwbsO6ENkq8rWLfCRmsvbtKjK2c3tKWxzP8p1qDVhoIK51IdVGVEmAUcwTQl1sD1dPzsSLxiMX0qaKNLpaI5SWha6utLkUSq61sJaIu6oJaRa1RhhWPY0tLTGcU/ySH0dqQchiSi6FTFyJqDpFWtXwGvV0JjW1cnsBpIlhlwKwtWyBKMzzzP76Odfv/Er9bv8C7wJBHJRzdfKUFZVKQgsZUbfe0yete2sHVUKUEwgMfuDXf/1frWNTlD/87b+DFnDXT7jTAwcWrc3Z7mcXpzNaPiG7YGvLXJG8WiBXztJ6c2HZZ43ZBQuxC4HXG+TkszIU1+l1MUdbG8qmMd6wYcPPAL440Z8/UJYXfAsbxSBrQAjrKig48vrihmQFLUtoa8L7TPAToLhW1gCWXeeZaKyGj4v//8Qb+eLbQlmTk5nJOWq7LaLnU+gF8bg4Z9uhytoIuRCctkNEHy0Cl2LkNxcHW0XH9caq5aERkZa3h7Y7totFevn1KnC9uHczKKUSgvP92Xp8Peq8gEmL4jr3nawET1qfmEgLr265UujqVe1MvB6Tysv74tHntgycnS1jS19gtf26kNXW5ysRFFbXTJGaiyVZz5SUwZVaTBPWKJ8a8Vaw5v4spRYDbY1p5FXW6ytC1+043LzHO1/5FrtnXwMgu662rRk6lrEoVnPtFBMKipheEFFpxMNqssoWDajaI3SY1dIShYw0d+Ff+vXfZChHTJRn732T/um7pEXMa5EigljNQ7N6RDGQTNM0tz5cafijsSkX1qvlARLW4W7XOZPlTzxKy9necH9+2vfr/Lqw9GzYsGHDlxVfEEXlMHfAWpIxWqj0wh2a/+TRb2zZ1VtuScygJkyjBcRmltpRmH+0mH/aO/PTMqa+WRvnTdP++ZiL9q2LmDwysS/k5nI3fLnTlUu31aNV45JYLC4B1naZGU5rYcTz4nmmLSqXa41wdpEt1pPFQiQtKq1dbSU0i9ZCsGIr4WlnP5PG1Vp22Xdvui6W72q4/PrZ2g1ywRXlzQ5vzkR5/N3F/bDY0S7X2UtrmMT2sZJFMSJzzpSLpjut9yRLXyx9WjIpLgt3tVytlq1S+2i/v+LZ2x39ELDYqnJnEPE1L5K6WuEcsDxTbG6Wtz2W+7PlIh3BHhBOjKeP1iR7fX9D6J4iMiClR6nJ9AB2XvjVX/3LRBzD9dsU9Ow9xVEsnC2YS2SYGOAwyZw7/tOZySWhFHl83Hm22WoR/CzPki3E6DO+r+c/j9mWyXjDhg1fdny+BUcExKPLyi9VZYPBxYbzfDg12dpqnVj0Ay60tc+atqElaZPqVhBrodsXlpM3F+Y3r7Q0b11YHzVbzseti/XyWZVN28Uqvhh1pMaz84gALFaSN6onPyYGwpukS1XXEPuy6F9MQO28A74gEJWowGpF4bwglTdcegAmWjNDL3clyuWILN1v56392r4a5issifCWe6gGt7Ol5dME13Jxj4uJQZa+e0SYhMXl9lmb/cVqsFROV1xzhBXK6vJc3FqlWZ5qpujVmVnqnJKmzSrlnEOolJrAz/LE3e33ubv9k1Ucq87jfKDvr+iHXa3oDVg5keOEaIfJFaV4UlqSJL5GZUIlUyziXFPdpplsr4mx2lNUHY0vUXJBLYJlLF/hw1NMd61PHUFr8VmTgdLyDhmKmpBxFApcJMd8c64/Vu7IOrfeNODIkrvpMzYRy6O3ctBl8yDnYy6tNpsFZ8OGDV92bGHiGzZs2LBhw4afO3xhmHjd0i3ukovd8sqNHrttliynJg65KAQIhVSknaNZOySBNdfDWiLxJ8FPbiY/m9c/xbFl1NyEKo+/sM/ngfWc7fDFaqU12ibnsmYshuX8b+p2yvkaixvwIpqlXmM59qwHWcbiQh1xvo6sjqHLO3yjyx5/v+z+i/HI9Xh2XlQLxdndIc2N1zRCn9FPlwa182f1nKrne1Wbcek1Kd+S/UOzOtTjU4pVNNxC7WW1lJ0zCxstTPxiLBKZ43zHcfyArmMtZ6E+ADNxnhAZOBwOALhOCT7U35YHYkzQXGj7XUFcR86FXMIqTBbvUVWcFazMmF5anlK1SUmh5Ff48rAmeIwp49UxDFeIDKsly7se6Z/h/DOwfn2mLvv8k/PjTY3Y4jY841If9ubxbz5Jq9v2kbXzzfHbsGHDhi8vviCKqprLHyfcFfgU99HiZintvSrGKh5dFCqlhYG7Zg93JDCj0JEl1Nfvmy9OYXWFLI169MLVT75oa8THmy/tpWDgZyzC7d7MDFlivhcispZm+OQ/7Q03mSx5a6yJit+IyrXmNnukY26CmbP7iEd9LKsP7dynul7vseoCFjLUFrm22L0hq3n02ZtoSqWLfj67pyoZ/UTP8uanj91fVl00rfCplglXRiBiTkCaPyceiePHjHbPtO8Qebq6M3OOqK/1zMzKRf4XRZ3Dufp5srLepYigpjx7/oRvyjeaEHch6zVkX0Rx4tbinYiCr3fc+0IflNIyD6eSyaWQcqaYUVa/TiUdqgra45zj0F+kJ0AwXeZWXnuqlLJqp+b4aq0zVsKeEjK9OJwcyNOEo/aR0x3ZD2Q9lwlpndr6nXME1sW40dySyJujvpCnTz5HcnHEci8bNmzY8LOCL9DgtAX5QivCp5EQOJsYLnbP53ep1p16K428RKXUHbmRGonSJkhtJ2D516XK5se18pzDwR/fj5RPnuUTouVHoVz2iQX9cl2Rpke6DDxa9Ar1PBeEStZTPhaHrn28xsQ8vqJ9cnGRx1+zhKSfPznfv5mcNSsXFqDHmp3HWo5PixrT9fM3LFBScx/ZKoit5zdRRBLkW2T+iBJfAZDjA2oRdYLr+lVMbJJwfUZQOg0tYeRywvPYpBTp+369m6q7qdagqkXS9VhQvOtR7WqCxaVEgWVySpScURFCi9by6hCn9Y9YFYlfWj0MulDD3xdtVU41X08lgAUhs9yUqMM7B1qLehYMt5Byc21DEPDdjv111eDs9m/hwlMKcDrdczp+CFZrZfVhhxs7OreH7gWp5aEqJuc0B9YY+GPGeSGouRw9eWP/8EnL5kZsNmzY8LOIH6ua+OUL7rNedssi+9jrsbxQXXNe1XDXvP5GF2rTFpKzVeHTJZXLjtjeXGM/iU8lYV/wm+WwlaQtFpPPf8FXg81C2lgtQYY+Ekuv4dT1yMfNatay5VLnCDG5cCucb+JM4Fpm5jeauPx6jYpaq3I/Jjaffm+PhcHLHPg0m4+ZreTu0g4gAo4TGn+EpB9Ryj3aVatG0sz9wwNkY/BWE0ECMUdyjGQ1nu08pRT8Wh8pt5DwM4EEcM41UXupRO4iRO5y7hZb/pwtP4gS88wc59WC45trxgWPtv5dch4VM0ouiAql2FoDLaaZnGdyTgiPc0A5pzjncC7gvMd7R/CtOrk6UGHY3bAbnqC+hpar7lvKzETXeW6evLVaAk+nB16++j6UxLO3folu/3UA5hSaoPvCwnmxV7BGcGrKg8dmxTMv+pTxXf4iP/bjs2HDhg1fCvwYGpwvJjdwsbAtOpw1eqf+pxRbXVzLGlPQ5pZactR8xkJ9EV69hH9fRvV8UZuW310aiD71nt58idtZh/DIjiRvRKmYcc7lJ2QrlE+xurQLnu/rsxpL7ZtHeKPxSw4Zay4j4XKBEpZ8RUuff/JiF4TgU/HpocCXpOFTF8T1J4U831NO73NzFYmixNzca+pxXUexRCzzusAWE7zryDJzShO5FPySooCzVUz1cV6iquNZSN/jthYrZItoKy/g/BJhpRgOHxw6ncPESzFSycxzrORGFOdaLh7nKAgpFmJMpNSqo5dSC9Ga4IQa8bXolHKGlHAaCZ3HmSeUeq19t2cYnrA/vEPob8hNw5SSVjJlBlKJUfNAMewdFpR5vCPGiI9j6x7hXFzzcdqD9bkryyxe64Qv335mVNRKEDd6s2HDhp8xbFFUGzZs2LBhw4afO3xxJuOfwP++WBXOOgzWvyz1li4NO1XN0ZQ9Zms9J86HfMKh8qbL7LNcaJ+QUr6Zve4T31OLeH7GfV1ywUVcepk7ZMmmXFrSvVVv9LjxrYzCJ1u4WqbMHomtl3+vlqS1gc2qZLZacS4EUIs/7JNSjPUv7ftPs2h9QSK3z9rtX35eihFzx91px+tp5ukOnGuZf8n0vaeYp2aYbu4mEXbOE9UIOZPL2d1yzjV06a6rQt0Q6jTOJaPiVoOVc46SMtMUeXh4AJW1SKe2sg/eOw5uf1GmQ8jFSAbeeTo/EHyNvHI+YFLTVdZyBYv7ayl0aau78lIPJcVQyZjW58C37NGdBoL3iLsixrNVxWr2m+Z+9KAZaULswXmCf4r1B8hpbbeU6tRaSzKcPXXr2DwKHnykx/mC8W7z683IrQ0bNmz4MuMLXVTeKbYmquMiagh440Vemk/ksnjfJT49ed9SmoDHa/6FXra+gy+cYGrnky9+muVwq9c5B50vLOSTYuHz1y1J3psaIi5f5pe6BeH/Ze/tmiQ5svS857h7RGRWVX+hgcFgdsQd0rhLybSmS5nMZLrTlX6AfrjMRKOJWpJaLpczswAG6O6qyswI96ML/4zIyKxqzEDqhsWZQVdVfHi4e0Smv/Ge95wzQwaiMQEixGR+qQoUpJpTDRCyTZd0sQBBKg9wtoDUMawpIc63hqS7MBid78+CUmX9fhR3xgrICdIKjeN1oiXXiLT7FDE9pvuaP73zHMcDN11U+PrDe6wFXM/t3R19Fxd8Hw48jCfAYoxw0Im9j49osGAmjwyx2ndNRhj1MNaaWCdLpJSfMMYQbAQq1nZRDF76aqKuJYz4UB021hhu9q/Y3b5FZYeIa56bCLgcSTDfgC1NupuiRcvz3cy7MSY9zzniaeQ03jM+fIvFYoaowcENEOB4euB0fOB4f6hNinB/f0Cx3L14QTcU32gCiprxDe3DLO0vC/epqpDU93NbuGw3YLPZZpt9Tva0yNiHGkVSt6bIn7buD89683+OYPnJPrWZdJcUT7nOyomZiFlglYZHQln5on9Wn/Ki1YK7+TKTs/1eaYV5MdK4rdSRmg1qIQRmrgvK9lPneHlejp6akzfnk1/ArRFsZ3nx6jX72xv8eOSHH38PwLd/eMAfP+Dknt9+E3j71WsglmIN6rFWmEyEAZoW3hACSAIxti1lQcl9k7U59V6AiLLrO/ZDD9aU80RMihCKQDBnhVYZ6LobjHSRQcI398NWMCChIlQVSNXH85M0z/acMtmECKI1aXDuP7zn/bf/nsf7f6LvLG+//G8BePH6X3L0nj9+9477xxH1StfvABiGG+z+C5ztMd1uliZhSaydMW3a5Fua3a9NX7PZZpv98uwJgKNlYYFGqEteUNfDiZe/X2z9CUB0vWdU2JVdRqXOT917ZqIJ5Cypmnhay/1cbGe5bpBdRItx6/n5ectSTN12A62gsja3dLHVxHzxUhcYqgt2TUAsKey7RYkR3pi0qTJ6Z+PLbgw1OLGo9TizI3Q3uD4m07u5+ZLx8Z4PH77lwX/gdTpnt+sQGfAThMnzOIJ2dWZUY54lDUowodmentPUryz+tdYiwK5z9NYySZueMoZrGzGI6bApsuk0KuPhHZP/gRAU53rcLgIw527BdKnobBOhRWZBUvX6lo5Mrqy5pzKe57o93evf8qgTh9M7fnz/fbo3O6S/5YtXb3j95g7fFJHNAveaB6k+DzS5h2b3okQzLpjHfMz6e8IZe7OVZ9hss80+J3tSgzNb5K7ghqfsYnj5FRzy3HZrSHVIrgtpD2h/pG2QvBgp/1+CKIl1KSqZi51YcRPlNeSM4Zh1lny1MzZLm7nQ+mIeGrfZGiC8GtlWwtVbF9WF+9C2fQF4Zi1Qu1zPc/7Mr51KX6KiGAmYPqKVwb1hvLnD7G85PvzAd++iNsd9eET9B7oucHfXc5gsU4IkzgoEE6t1a0B8uq/W4L0HDNZG915IDElQj1GwGvjxT99jhp4+MSEiQjCxf2J8CfkOGhAmOgvGGYxVQngPwOlwwLo9zu0wzpFvTKyelQBOEaHFfdlFGIjMkkAJSe+6G25uB96++ZKTH8usWiAcRzDgnGBC0vxQGaJEFxW8ErFL9YfOdUDpGC4/0yX6Md9rWXy2NnCz2WabfWb2dJj4ImPq2hdntpkw9iPZmSX7sBRIXjp+ySAtmYyVr/hFQ1pp+yLOXbqClmNZATha9xU2pwUtbV8XGgghu6/0DPC1kuS2qOfZhRv3V7swtaDlmi3T9V8KB5dm8RZZajnaeUqBxSoobs4GGKEbLK/7PXr3muMxhjo/PPzA6fSO6fGBx8lhbyZ+fRfP6TobmUQzv7/ZLdX2IxfBVBQNAUvgdHhEw4ixOZTaxqzHGqIgOlfHFIPrLc5ZnOvorUN4AMBPgTA9Iv1L/NQjNgI2cR1i0rxnLUuas1LOgQSdNRQaKYT4vBnT47q+5hNSmDpQtSBgPIynVO28wMuGlSl/6+Ln822pwd/0NpttttnnbluY+GabbbbZZptt9ouzpxkcmAkZz5mW57tM1kwa5iP+u9SanB0YGRcFMXrGkMTrRzHljF3IudcKodHsE41uFJUUZZN1JGVQZBUKgClFIGvo8uqojc4Fp+k9fnmw5nHLynymA9r39HyOzLZw3u5ZiHW0M401Ncw9RgJVke7sSPFoWITpp8il7NiTpqflXmrUceUCmZmxEgG6DpMYl/3NLRq+wXuP9xOT/ojnu3hOgGADLljUNi5Bkai1EcGY3G7VjI14hu7Ay7uB96PHj9Edhu2KZmucfCyqGSeCYBTvJ/w0Mp0O9fFXh7MBTieOY0CGqCnav/wasT1GSW22LFea+2nk4f0P3L//gRRLx6SG4wTd7obh5g5jEiOkFhWDahK9B6rQv5VGnSVqTD4roaRlaO/xMtw7bqxibc0P2/nN32yzzTb77Ox5AOeKrYmM11wbl8TIF337z8BJP1kTtCL8qVFUjQtk5tFauL1mroEEqs76N3cTtThnoVhZXOGyhQIEo77jKQ3Oc+38PizP1WWn80VmQHBZRFRFCwBqm6wgQEspBIgLs7GWiEwo0gAAIABJREFUjp4ditcovA0hlkhYdiGEgDGmCK5bMKcKYgxd13O4F37/7YG3byOIuLmx7Pd7jDWc5Ii30QUk1jFNI9PxwLCz7PpdKS3ix5HT6QPBjzjneJEAztB3jFhO08j9ux+5f/e+3Ou7Fy+5ub3j3Q/v+A9///e8++Edty/eArDbv6Ib7ri1t5jTPpZuAEotrfY+lLnL8xbnc1lDrAjuL3hj475Wb6MJEy2vs9lmm232edvTYeIpOqO18vbdHlfEiJfb+sl+/Uvyl4VeYLlIt9qMqkWJJ7aLoBFJb8btMeXQswvmMHR9AmCcDSNdJ7ddAVDW4Fw+txUK5z6UutlrYtLc/qKPBROuREktx3k+gPm+Wc0jmVe5WmuhZSHq5Wvc/jmksoSQSysELIoS8EGKtiXrbURjor+Y+M+U66CK044XL/6a8O7Etw/xvG6yvDGvsM7w/fffcjpFZqczcP/hgfc/vufuZscXXwy4IUZYPdyPHB8n/DjR7Qy/niJY+iIMYBwPhwPf/vOBxwfFurjvFDqOU8cpvOXNb254/U2gH3LiwIEu5T2S2V2oz0Vm9uotiLqdKr2qnF55ntqm8nlpzkv5Bm12CBDSZ/rCZ2mzzTbb7HOzj2JwStHFP+PL77lh5WdiW5kvAXHbT+mBzIBGLD6YwVkCLmeRJmbuISuY7+kOLAW/OdReZosWoPMcM2fzkQ6csWKL9puTYy2s9PsaN9PKUXNbl4XhqbE88MUxoTmk7orsTe5aDOJO85xdJXlOSm6W5vkSAWxt0EQXlI1q3trvoFgnJUJJNRbEhMjeqMY1/Jtv/ooPN68JmgARYx41b3/1ZQozhykY7r4KvJ081kiqBB73vXgJL0JkTqwVTKpRdX9wiEBgz8u3v+XVWylh3PkZGZwwdP1MpA0GJbvuQmVVcsK+klm7gl9RSVmOadppTLSIuwszWCZLqanGNwCz2Wab/bLtWdXEr1vzBsnqV25tK58xWyCFuvQ9bXmdfdqucQnzN9/5YlFT5l26TC0Z8HRHwgzQ1fk0awBphS2CuTbCzJDRgp1qzjRLLDJDTybNeuuqSC6P5GbKif1i+1qOXxu3pnGZBWqLBNJKf3Of8zWkPQkEA6oEDKeQHlE9Qs7y3CRC9MFjgmaEBiIpbBw6EyuBB/HsO4+zWh4elT6FXiu96RezHo/LrhwpOpXIIOWsv7XbmkCxwy6eHcnh3JI/Haa0VzmvuH0OOkKZjzkUlcVxFaJmBkYzqssEm8yepnnfmzFsttlmm/2S7EmAc3kJT3sWzEp7/ByIXPhibb99nwNcBJacxFLrExfBOd2/5gBpTqLWf2qSqi3W3upIqDT+msi6MF3MoVvIQmJtGr1gc5B1znqJLsTCbZh4oae0aak5lghkdBESL2VBzWCqOT6EmAX4QpfPw8zjmTPGbcZQkRbj+fiibiddUy1Hje4cDe+Jj6shC2nj4YYQ6kxHcBYFw+LBmQ5cz8sOnChjozUxGdjqOcCu5TXq81lxZu5Dc3cKYzbPO1RKQ4nJiA8VX86TFAoer7QAtfNHtP5SDtOV57w+g+0NUYgaptat2OzMrGWbsHJzU2222Wafs21h4pttttlmm2222S/OnqXBuRYKPvttyZ6fnXPOJWS2Ze20n/IWea4huU4LFU0MkN0FZuWSy01tUcnLfbiUEXi9rEKgecuevWhnV5HMmYGmL7PEfIkRmI1j8TYf9S9zp+KsUKY0bBEkrdL6OK8RcNdmP/fZ5gKYBBQf+yUgahhTrQYVm5w4uaypKW1oYj/E5HaaqwtIUHadcGMn3k1DvX4irLRhn2ZpC+IkLcaTXElnIqp81nyS6v3PDE3Otv20+3c1YWNDeMaklqW3TR/WPgczr9VZ/59Dnm622WabfU72LIBzSRg822dWvlCXOTq49EUav/gL4GnafSpK6amsymfRJJf6X8CZzhal9jidjSGcHdMem0sVyBrIyO6KRb9az8NMmJy0Mn9O7a7StCwv3d7bWY/mrpkzHch8D4s9l/6GZn5yLHNxj3jEn+hFkCCcxDJq1MdMuFRUM7rKcrshKGKiv8mkNvMcWRtFyhoCnZm4cxPvfR61IpiFPqV0ME6GrLgCV0aU3VhRh2QW4HNxrDR5lhp30HmjV/blOaTezOyh1LQPmfe0rWgPZx+L5rL187cKsDbbbLPNPhP7SQzOEwfP9Al5U+IBKG/GK9fQxd9/br9koae5ciAqNJEv6Us9R1fJ2Yv81etf3N4uOQ0jsswLtKoHkZWVWGqd9wIWAM0jacKGdcYAPDG3y0tlUWwW10oThk09ds3f+Yy7GKtsA2MI+NFzQjBY6AIuCYB9QmYheIyBNlGjDwGTws2dc5VZEkFMjNKyxnPTBcIp9TWdb1UIsnxe5yhQmuci4pP5M9wmHVRZplBo28lt5fsUCoCdWyP9vgDISztnwu64rWVxpNE5Xcp3c4lNWkvBsIGdzTbb7HOwnwBwknB11eWU9htZOS+1db56kkHPTCjL3A1zFuSRo33OLlFz6ubjaoOcvdlGN8W5ELc9V8q7cW2zdUPFhaVJzpYXubQQmobdanPfzF0bQg2Wbi8lBXC04tW8T0r/aoMZKuYEevFtPC9wWSh8Hj5OAoS5nnrNlUI9d76h/XFmmhq55uKMTERs17od1nbpvMSKSCyOOYUer0dssPiW9ZHI3JDAhYopglnVgKiJiQM1sB8C7jHtCzHjcSgOrtQfqbOYxzCrbSYL4FxHWg5oIWoGni3bkts2xsbfNd3fZr8pn5O19hIEms1r7KVJIKcJNCvvHJmhXIMy15hTVS01v2Dls7jZZptt9gnak9XE5zT11SOBNcDxlM3fcJ9rs6/2xRd9EVe0X9LNSRf5laXmJ7kTgp/w3uNycUXbApy4gIUFA5CvJ42+KBcqLUdK7VteSPPCNgdCK2AkJ/EzpnJjVWDRsGZacsEsr3nODiR2RsPZsRG31urkbRsX79vMFbW2O7s3a7+NcaABVcUDKvERPemAmocYYi1Swu+zW8oYUzQ4JVBIA6iiRjBB2ffQpa6MTTmHxdMz+yWCgyXAnwPwOTM3awXQkktPL32AChlzzpY0hM+ZBaEUwm2fxtjOPLN2zV4sq6AzX3f1pWRjbDbbbLPP0LYoqs0222yzzTbb7BdnHykylia65hIPwirVM3PpPIPizq6ZecPtr7JKtl/tW3qLbZxN6Y23shTrgk+TCjlmPJgLeeb0+FV30TIC2fEVGto/pIR4RVeTr0t1f9RxnA8/swAxS/C6P2/JaEViox6bc9S0h2XZlEaf2jzdSunAfL4zWVHYuxXh9FPW1qGCOFcmsWlRVROZiCO7WLYh3Yd2vgMg2hQ2lULhRG+pBgJKbwJ9ykEziivu0qsieprHudByyU1bxl3PnQvR49xkFii7Kp+OnqrPzmqfioi9KUWy2L/e7uXPRf6ZMzqvXa/8vRE6m2222WdgzwI4s2KIqlxdt5ZizeXuoi1Y9/eX61zrkKxHdxTB5hrVn1rNzp7ZF3b+u1mo4vnxd2stWMc54hJEklC0FfQ24dbauGhad81MXyRRDyJ5ftoet9EsSTR7aYKWc7HYW09LrrPZIaEu5q0LCip4CGtzl1woa4vq0uU3A2Q0ritpx6SoxGrxptGZPIY946R0XSpwkMBm0RkR3XWoor5mGlYBZ4RAoNORwYwAPIR9GeFTbplQZ6Lok5gBEMhkqEn6nJp/LzTHcPZ7mZvF7xk+zZ+n875Je1K7/4pb8Gpk1kJ7015vbd9mm2222adqH11NvH1zvnzM817xrolPYa4TufRle3attOCe7Uu/GpkvGpkRkQv9qZuE1qNX1mSNOp1zcBEhwRLwteNpmbE8YF1pS6XRb+R+N+2JZk4qz0lRlJbtbcaUiC8WC1Sj2C4gsLSQ2l9ocGas2grLsLQCzpbttMfk+SHfyjjno/aMI0ifihqk9jPjEFQRa6LguB26JhbFGnoNDC4xFD5uV1nPSbTWp5xIJkcwada5aGaU0vy1OYmaYqJLVDpnjhrVTAaN5c+VF4CSA2dGL/1FbVUTtNj3lzKDzEpm/JLttrv9qOPvuhc/U09+fvs3X/z1Rx3/t//q9z9TT35++5//7m8+6viv/vePew4+Jftffvs/PvvY+/H9z9iT63YV4OQlvXzRLt+822OlLoerURZS2Zurb6SLt9OlGPYpUBTBBhQwUuoGNcvljL2Zl2gQmC+Q1OKc80tlFKWleGS8alwwFSFgy/XzOVrASO27oYnjST/mZ3G2xEnzUxb3RMt/uS8rpvnONsAnjzedW9gKATSUuSrtFU+QXlwM5/1K+0ol0DkjmHtjsqtHK6j0YhgxqE5oSQ1I8a0VtqhpTyTm0wlMGB1Q69kPsYyDPXomycBPcnGwJAhuGMJ2hlTq7ChUl6UUsW8zLakPJJHyZZCwTBoZvWwt81c7kfMhFXjT4Bsp+88uVebnTEi/0p95n7h6zmabbbbZp2ofWU28+ULNb8dPuKTa7fMEb5ePO7/u82l1yAs71DwxcWv+t2VrTAFCySWwgiZU1/qm6XxiHpcxuj4I71BzwrtbpHv1LMFCmVKR8sds0b+gESkB8TInZBRS7h4DaVG+uEA1epWsK4qL/NyFFUHcMlNw6dQqw3YGdoqbLDEhC3dbZopyoU+lsjFqDNATdCR4DzlrcZO9uOQtqqIYxDiy6soYeBmjznEfAqO4CFpCPSc/D6uumjKuOdiV5FLLB8niqcss0dkT1MxZ+9hlPFNJu9b/NJ/P1suXk//F36+DzTW7BmI299Rmm232udl1gCPzRZfmCxU+nqbO4Oa5lPeZ0DhZC2ou9+FcLNm0TG7YNAyH6GJhTmzAsrc5tX9+2w/TkYfv/h6AGzvhup6TTvSv78DZ1UW/TbO/FEa3rjENYXXeRGIphuLqiVRX3jkHJ61iWGtN8Ar54s/Sn8WAQ2J2lhPR9ulc7Kpl0c3gsel9ZefakzKwKvuUfB+DWLx0hABefbmuTePN/0WhbLqSAbERsITgEQm86KLIeGdHDqGLLYgvnch5cRYDbUYFmARXZlRNnrc43uy+qqHZadxSvIzNPEm6LxXwCek4yQCoeSapYHR5P+Ih61qa9rif4nbashpvttlmn5NtYeKbbbbZZpttttkvzp50UZ2zKPUtc5lh9ak3vJ/immJl3zU3Vzk3u0FmPrX8mj13GEjaUkJ8Fx6BrG2Ybc1aFI1J/uTu1wB40yGuo+sc9CZGJ114W55nyJ27KbKZht25Nua2nER+t2+LdranmnxMowfKsxLbmvfXIIQVl0d7bUNmIWZ7aJmhhoSo15MmAq09OTFTkqKQVCyeHlWJ8qGFVos0nkDLNMSszUZs7H8QdhI1OLfdiQ+PA9641LHqqmTGslxgSZrrFuF3zqCMnpUIkZJaoO16ZajmmY5npBaQn4PKCF3KOJy3Rb2QzhqLbNmFe/gMd9Y10fFmm2222adm1wGOQtBYBDPbLLR3Rf/yUzQ5V4+5sL3ZsObFWmuRuDDIAjNlsLTu9jp3BDQuH0nuqq5j6N7W/XnB95LWzbpcVSA4B0w5P4+mMdVK4KkswNJFxbzPs/6lfyS7booPixWwcTa6uFC3IlcES3RVnUmKlu00gtk2div3GmIkWy1VKsiaO7FopOJPLxavFkg5iYyZHQcpkkpAXNpnTQJ6EdiqWEya2Lte+fbRE9QjQhSEN2NqnVJ6wd1ZMxk3gHHhOirP1sr5xTWZXxYaN99MGi40bc7bX83hk9xh7RnLdv5SepzNNttss0/VnmRw2jf71uLb4Dm4Wdu+eN+dHX/xumXBbBbqRYsKmAssz3mtbwVRjJrEHNSFWCUuxRlU1LdvvZBePySglHQwDcklpLwpWQfTFgXKb94JsOQLaQIvOaV/ZIXKJJW+zMeftS2ZpVmCn6qxESPl9LaKRYwmjztCCCWnjGBSPbGmzQQMWzZL04LpUn2ra+/1WZwbZ68Zh8Z4rTx3gqIa0vwpmoCHRQnSoxLhUM6DE+cxRK2SMSA21XiKtZ4EQ9CAohix5T696j1iFKOBoBY1uVdZMNzmr2mAhwiENcAyr0JfhOGJqVOaaLHZvcy1wRrQ0vCFEZ/Wz48pTGOYMXCFwlth7GYvEn8BcLIxOJttttnnYE+KjOOid5mlObP0NvqxEVHPyaMyO7bZv5r0L19nIX6dv+VG/HHxSiuMTmwrLzYZ1NW3/5lbbTHMed6bOTDL4LBgq5XpW7ojSlbmgtdq+0vmSeYrXjq+skKhAITkSpF2mQWxgpklasm3wFQx8eyeSXHZRI6mAYta+3NN7NryXEJ0U4ntMCkbcTw2hrvnvEJKkzk6Mzrk56CCrNtO2bvAj1N8vo36dE1TL5j78hEL+nnk2HxMl2zp4i2fE8kZms+Pj9YA6AvH1EsXCHn1+pttttlmvwT76ER/l+zqF/jszXK+qD+nvfnCXhkEs3J+/qJelgCowCZxUpkBKP6cy31afvlbaUsZrCTmIzElqsgiD04BXdJocFbWlRYArIHCJWCZc2ShjLF4wxrM1WaTzvNkTA8oxgpd5xiGDptcPcErp3FCgzJNAZ+jlBaem9l9agBcQxSdjW05jtn+Zm4VJajBq2U5WjEGDb7ORROpFoJirMGITeOP5w3W87I/8W66Sdu1uSaxKnmCWOU5S3NZWLAr9+35bpw8lpbhyRXoK8iszdUEf2s5jjQ30HQuh4/TAM7ZOddA5gZ6Nttss8/UtiiqzTbbbLPNNtvsF2fPYHCuMy7Pe1ONb6mrkR+L06U9ZaX9yrZf7svVt2jJeUfac4RLbrV14bEUUiqSMZcGMbdZTa/yT71O1dMstjd9mIlKq4xofslZf+YuuuTQKeLXfMGhc7x8eceb16+4vdkx9F0tDgkcTiOnceJwOPLuwwMAf/rhHePoiWFN56zSXCcrtVCoXmYN6hVb1xsgBq+GCYNKE5FkBNQjYjDGVAYj/YiHKWIUwdRnEM+bwfP7xymxQlkHpEVvVFyAi67WTD0/zc7ZkTlLJ01x1MtJGhMXlzvXJGxcuqDOGMZnRExtttlmm33u9jTAaTQIS5fCOoCYn1p/earEQ7IVkeSl43Vl26XjW3AlUKJwSgbb1mW0HEBZD+YgJymq2wOKDiRGPpFS+C9RS9Z2tBuTq+KJtWYJXSp8OVdW6OLYOqzqEnnz+hUAX3/1lttdhzNCZy3OmXJOAPrdgNntGG/3vL67A+Dl7Q3fff8j794/4r02gKJe7xIUKACx1fks+q663GJRNbRyn5owUUt0VtbgGI2CZT/5uN+6xm2mvBqUvfPcnwSVbtYH1UB2KUrTg9z3+bHLub1uTwGMAj01Z/5uz83HXCjB0bS3Bowubfv/G+QIQmf+Yh7zT9pu3MfVIHrZvf6ZevLz2+9e/PVHHf8//dUff6ae/Pz2v/3uf/2o4/+7N//Dz9STn99+PP3p2cf+4fGffsaeXLen8+DAGdp4CuTI8pjFwj1/0ycFgMxXjXkumipYXX49Z81L21dp9p0xPmpm45HF8TSFKsspIUOJzKQstAxSmaiS4yW1G0stpgVHtOwDSv2jUrNRmsWyYZiWYevxZ6VtdD4DyQy5rLU0fW2rU718ccuui0Dvw5++ZfjiDbvb2ygKnkK9F5kpEMGGwL6LO8zLW4woGgLv7g/4QFNVXdsJnPVNDFEfhK4zPQqGQIsNY24Zh4oj6AmfNTcoIpoKcMbLlGiwBM5jFmOJUVWJlQqq3NiRu37kw6nDahYU2WZe8zOVx1RneVkoM5bEqH24ZAo1Qg6w5ZlqgHvDwlzMPbRgRZefjKs1wa4I/dvzLv2+2WabbfY52F/8lekS+LnK3siFY+rralksz1ppGKYs3i1f+SuMUy5MuRS6VteFNAAo1fYxSax79i5/TvLkRbUCw/Mge1GduaPyUSpSQsZXXTi6mJP2mudHp75lYJMjvRQ0sBs6OmcS+ICXL1+wGwZOpyMheKwxdF03G2dmE/KivO8M/ZuXvNjv+Id/+iPf/fgBH/J9agOazQw4NhwFiBIku4cE0ViwNM5hIBVjIGAICMGAFYchAhzxMY8N1hCMw5jGbaM+5inKbF0IM4bQWng1CP9871OOndmjlp6lazlsqq3XRr9u18S+T0c1zTInXWzn4tkNK7t2zjKia7lts8022+xTtycAznW30voXXZswr7azPHf2+/r6TCxiuHjbXCzsbSCPtBoX1dnf7XjWFidNLEwLSeaB25W5iW/O8zZKDh0qgwPM8+hoZVNm+f+I679SF8ola7PUgTTkRh3vyv1QbfO5wNA73r55wxevX9I7Cyk82kACNxPBTzhn8f4064s1MTLLdX3828aq3t1Nx9/87jfs/vAdv//2BwBOpyliqcRhOSPcDBFE3N7s2O93OGuYppHHY7zO43HkePIcR4MPBsWX4pcaswsRELxp70u8SxbF+BFRSUdCMA5rTFmkp2nEWlv6jsCrwTOYkYcw5BkrbTcqmDLHOUJvlqum+Zws70ABBw0ON7OjlFz1nebeX3M/PYe1ucbGrP39Mds/BZfWZpttttlT9tEMztVw5YvHwCWQs7SiiSngZA6WWvAgIkk0W04u+8r5K1T9WfZXSQuoKm1iPpmdtxxje8RcR2JmroPzLLhxodbZEp3xkjlbIufgps6dpv+vV2hvr993jq/eRD/+V1++YXAGCco0ncrxQYTj6YiGESOC93VcMdw8QFD6YTcTSyfSjJ0T/vrXb0vv/+n33zKF2IYT5ctXd/zqbdT7DF0M6zYJTISb2J4PPVMAj+U0wcPjkePxAMD96YScHJ4BTygg1EhkiiaxTAjWjyVPjs0g2TSKlYJKDCrCi85z21seDtkFGlBNiQ7Ts5IBUw59r39TtpfM07LIM5NwS8nNw4K5EW3gVHOdM8sfgKba+pXw7mt2iSFcAzGbm2qzzTb7XG0LE99ss80222yzzX5x9rximx/x4vacKKulEuN6g08cpLpI+JfYnZlmZr4POd9XwrSb9+scFRTfeM9ZHGjevmduu/YdvElW174NN8PKuaKF1qVkZseduz5SSQiy28s0QuJQ/Fq3+xv+m998zd0u6mnCdOL0OBLGyCG5PrqbNAR2ww5reggB9QHvfemgSXMWQt0uRrASxcxGhMHCb7+OTJEV5R//8AOjnxh6x5uXdwwpcaARIWhgmk74aUSTK0x1RDXQWcuLYc+Xu44pxIiTSV4h9Dj9Vcyq3LhpTGY0wgl/eM90iG6y4O8RJiznz6IG8Aodgbe3wvenOCaflc2a7291h81drvOHssqo56qd8jSsPj/MRMmXHnNtPzQ8L0i9ZWme60566rgt+d9mm232OdlVgBPXamVGqSurZQTi8XMdQWvzc6rSUxftr+pILlxvTSAZaxS1OXdqOHim3GMm2rjfIgkk5YVk3p+qN1jCDJ3/KvX40Pz+LCvo6dxNUcsbtPFPFI2SaAY5taRGPC5wO/T89uu33FiYHmPuGu9HrHO4vieECGziOQFRGE8jwU+ISZFUACnHjKD4KZAkOPTDjlj/UmNuGkyJsPrt119gDBzHKebW6Sy9S4+bKA/3UcwctVIRfMVsyrGu1PE4Yhz0Lu6zYUJNwPYDthvo+x0AzvV4r/gQcK6Pow9HAMLxBx5//D3T47cM4T1GT5DqVIWgSPBgOr7YT/QfIsB5GLsY2i8hzrY2RTibG372TBYMkp1QGWgncFNAE7NnBZHkvlp3BcUXDFMj9ySB7VXh2tzMIhXCrLuLqKq1/Zc0PZv+ZrPNNvsc7Mlq4meRHovvtvP6OXn7+hvrn2tPfbnmt+Vr+T5UGwBBZmkog6tjAkRRlbPxnEW5NJFcRnMo8LJy+WIss9PnWhpdLIbnHE4SNqdIrYCWc1SEm6Hjm1+9YWc9Oh6ZpimeYx1936NqgQhmAIKOHE6n6LN0DmNcxgKIToQpEMIY++ejLqYTzwi4YYexiojBFnF14DdvXzAG5fD4QAiKDxGsHA4HxvFYGSJyBJNBQ45cc2iAjLGscxhjGL3Hh0Nh7XpnsV3HNAkGZdKApse623+D233FePrA6eGPhA//hX76EQAnMUeOBs/gOl4PcfIeJyWkODEjYQFe671aAv14u6s+qt6+/Jm4lmDv0vbcRmg+V+v6maWtAZLniI6vgZinQNFmm2222adkzxIZX6TOde5+yeBBFgsCrC3Py0UhbftIVHQtp8dFazh+1eyWaseR9jWuistypTmICbm9VG18JhhVUuZdPYuKyvsb5fFiLBoX/9mwUjRXYg801b262e/49duXDDYQxpFxHBEb+z90N1jjkvNFGBPAOR4esNYg1kWR9HTk+Pgujsk/gvri6vGJGZgO/wyqdN0OYzq64Zb+NgqJp8njp8Aw7JFu4P7dDzyMf0pzfAQ8GkKs8J0im8KU2tc8r11znwzDvuNm2EEIkPv9cE+/v6HrdmgQxB+ZcmSYCCIBGfbs9r/DvPqK4w9/AGB8+CNW7/EKvUx8fRPb++5BOKXMxlHAXW9KBfHx7yW3U4qKlpvZ7mzvXeV6clX6OMYF0MlX/gkvCmuC4TX38U8VEW8szmabbfap25MAJ6kbZhsufbm1IIdGe3KJ3l5d4y98yV7KW7N6/hN9vNRu7FN1F7Rp8o2Zv7KXhU7nIMuQSxKk8OSlOiNXamz7QA4Snl8b6qE5WWIelogQSmx7zP3y4jbqVX779Rc4PRHGE5MKbn9Ll/xKzvUx107waJgKCu36DjAEsfhpQgRct4/X6gZUJwgai1omdBY0oHj86QMWyzieOJ5GAG7uXtH3PWIMu/0Nxgrvf4j7DvcfQCeMRjggU8N+GQsaw9FD+IA1L9I8BPwodGaHsQZN7M/p+IDXQDcoxnYYAZcnKYxp9gPWC8bdsv/6b+Kux19xfPeP+PsfGTjyeh/Pue2UcAxMUuir2X1/jk5l/dlc2SY5L9PyZYGkqQq6Jw6OAAAgAElEQVRVA9ac07bW4uFr4dvPSe63Fo2Xz91ss802+9zsKsA5AzdwxrhcosGXCcLW3hgbIuWiPUfYOO+Dpm/9/Oa98oUfmi/7hvqvQuO6rQVUNYHcoj4UdQ1sNTLnc0cCPMzm8Yy0SSLcvFW0PaZeSERjwLTCi33PX30ZBb69eECwwy3GdYjt6ngV0MgGBRWMTTltuoHICFnMoDFhXgZbGhMTWuewRmjTC2kIHE8HDod7pvHENEatz/R+4u7FW4bORX1M1/Hqi1/Fa7mO4+OP6HSAMJJz8RCiHiWSYIowcnyMehrXv0DwjASm6UAYT2WunPeEoLiux1hXdEVoHIexDowlhIBL97C7/YJ+f8vx3XecHv6IaARfb+8870+eqM5a1i3Pl5wzOSXlXmLvjFQQWx+zpIdZUHfKucvJiCQMaRq/WJqilbQDbb+es+/pJIKlc6nvc1faBnc222yzz8G2MPHNNttss8022+wXZx9fqkEX9ZTK5rlL6vy0FRdVQ71/LLX+RCereHjxwnuJhp8zMpco+zPlb3p719l7tUh77FKTpMmldMYLpIiyZX9IkVKNfyr3IDE7zhq+fPOC3mTmwuDcDuNcyuZcubIQPFJYEkMJdNfsKot5ltV7phS+jXqcs+hpwqOlnpM1DiOG/XCLG245ncZSi4rgOZ5OGGtxtsMHj0nFFF++/pIH13H/4U9YqTMnxmGtq0xcgClEZiWgBAMnf+L48B4JU5ofQwiByXvuXrwBE0oCQ0EJQTDq6V1ARJhOsX8Oj7Udu5dfsb97xeFD1Ae9Cj/SvT8wjopFCFJTL15mPdIzs8LKFUt1wdY2r7lUpbkvJQqLyO7k6Cua52W1VxfYzzWh8qWoqWWvUgsbi7PZZpt98vYEwNGPAhhLfcyz8mo8o+nLZQie7lt2K+nSrXQxdLZxzWQNTvUdpeNWzmvdNkn1K3nfbD7yNaRdL5rmpblS7o3m9ayFTWWvMwFrwSTgIabDGBsFvKmoZcmkawyigaCCBEvOtDyNI9ZYjAUNE6fTY9mHBh4f71HvMUawyUflbCyF0A87uv0d1vTkEha2i3lxrMTQ9OPDB4zL7rCem7tX7PZ3WGvKdiT2OY4tpOi1DGRCFEEDYfqK8fgIwOHxnsfDgRCU/c0dtut4fLwHYDwdUPUJlBuMuDLZ4XREehDTI90NN29i2Dm7O16+/wPH7z7EZ4Yaog0LUe7sTiy2LcGFVDdm3hcuAqZqZ8CnlXA983O56h5evIwso6jyc9/q0JoW2RxVm2222aduP6kWFayDi2sMzsU2KN/6l476ydeYfTE3IOX8C7uNcGmXqww25gIbLefkSKklBpJyllEKS0ITBSWihV3KumOh0QLN2AA5W0+qOiTQ9x1D52rekyzw1igKbvsnIhixUYODJ+cJ6rqhXF9Vsa4nJx1UDfS2R1LslctAShQ/jRxOj6i1pIpQ6UouAgRr2Hc7RAPHaUz7fDpWOZ5G7oYojna2pyLFgIgi4socRHbHoDaOG+DFNPJ4eMSPE10/YJzl1r0E4HRwHB4/EELMrYP4Mv9hAk4TbkiFVFMk183ta/71v+g4Hv8j7z8cCdres5a5qzyGERNLbGgrKT8/J4OTDGwqoVeFxnnH2eer/P40sFjLD1We1RVQtQZ8lttnJq0uZ7PNNtvs07Q/q5r48kv4UoTTswDPGWBa0OUXxM3X+tNeu7yphvn2+Afnr+BUoJDZk4uut4alac+P7qEmJDy7XhbCUlUQk6LPlqRWoW3O2a5AwErg5YtbOucIoWYejouvTw6nKlYNIeBV0RDIXY+XCYQQ0oIuiOkKU2OMiWPRUJipuB26nQcUK47TaSQkxiVISIBFEeO4uX1JlwCO91MFexrwaXvX9dQovOQqa+5REI1MToqyAjBu4O5uiBmRIVYPTxFQw+4GZy3j6YgB+s6WOfpwuEdPgZ3c0PV7bDpHjPDV61v++3/zO/7Pf/+feff+kWVh1Xgrm/uRvE8ZtuiV5X8WEQVFQD5nZso/7Yn1Wk9EOi1F0Jf2X+pfPmadvaGi8c0222yzT9ieBji6+C5roo+e+pI0Z9W861pd20s/zt5aVw66YE9pamq/qCtR7nr+sl65bHnPLgtcdUrMqf1zRijuSwxIib6ivP3OCmhCDB+fdaC9ZlxBpQlZzlmXh8Hx8m4HGiOJIJZJUA0RBChpn0/nxQgqVUW95hoMqAZO4xHnHJ3bIdYUEFEXc1MYh/QXxnQY0eRIi9XIAaZJ6JzFOFuAW67krar4MKE+Fs2cUkTUaG0COZagitdQryVCDI4KCcTorG/GCB5F1Ze5FY3P4ND3GBWMkZTtGPa3gceHd9y/+2f64YYXL76O13EdxsCXL2/5u7/9F/y7//APfPfDIbUn6fEJBQCkARWwaM7AUPsBWgHlBkjtSpuGoDmm1YU9xy4l8WvtUlTVnKXSMr+R3bs8js0222yzT822KKrNNttss8022+wXZ9drUbHCnWQ31IVz1nLerFHma8dftZkQ9/nW9sGYWCwySleWVI2gwqxwpxJrHBkEY0z1EizYq2U0WB1/OJ+n4mkw52/a6U09MjyZ9Wn8SAQqJo31s7784g2dNbF+VN6nWlxbIRacij8h5ZnRch8zCzEFTwghuqOSvyQTcLVYpJQIKkjaEyNYUSBgrCE0Q6qlGObj9N7jQ8BriEkFE9NljGAEjHGEoATRVFsMVExyL2qMbJJ6jhCZGicWH3wpPyEhpHpXic0iC5ij5sh3Ox7e/4gxB7yP+XawBoPFIbx9ccff/c2/4v/6T/8IwB+/fUdQe85qNu7DKkiuLqXMwq27Odt3jDnT95e0S2LicuULf+d7vxREf3xk42abbbbZ/7f2jER/P/27dlXkuH5gucrFcPLiGbuuP5jZim6ntGvSdTRFGSVg0X6RF7CxAGhtAsAMElrHUvFILSZvrY12foKGpt3aYHR1ZZBRF9BfvXnFF69fYnQiiBSXYAQKgoYEbETQHNotFu/jom9sFBvnvrquS0AullCoqG0+kBw4ncdvTFzgO+ewjaaHoBCUoL5Z6PPM5jF7JIEvDY5pPCHiQSTqftJ9KoU/AfDNfTQpekwQC84YTmOqDD6O5R4GIsixOUGxOG5vXxP8yDSNJTmgn0acEaw4OoTXu56/+1d/BcC/Rfiv376PQKUBNfU+Kmuh4PEm5teFFhjXl4gzQbws8hu0u58jBF7Yn3Pcc7dtttlmm31K9nSY+DKKiZS590KkxnLbrLWWApldhcIotMdeY3wuRX5k87rI4ZFWE5PGUPoqYcbmBK1jXkYzXXvrncksiq5Ir+SdPR/XfEPTripgslAJgN3g+PVXb7DEqtfG2pJnJoIu8CFqRUyMIQci06HjWICPsbG9jhg1lUsHQMDnSuMCYiwlT07WN6V+qirWWIa+B419CH7kdDoRUh4bVS0ATEys1eW9EoKnS6hDNBCmETE5CszgQwVTJom2y5QAQU0EqUmcbIzQdbGo53GKYmZjDTncPj8V+Rl6+fpLHh8/NPPt8d5H5kgMBuVuiLqdv/2Xf8Vp/H/4/of7KDw+e86l6K5mz6TmSLusn6o3WfJzvhDYn7Vcdl9mYjKTWCLonvocrtjGzGy22Wa/FPvoYpt1iVg57rnhps94G12CmNZDNevPpS9x5utPBTSNG6DsBDSVCZi5n5YLUm6r/h7dOsL8lIZnmrmYcp90VaeZAYPofMbzT1FIHhu+/uotu94RxiOI4KwrOzVFSQlJ/GpMAThBwVgb8+EgxT2kCkZN1ByHQJDqXov5ZyKfF5PnxXOscxgB7wOqIVb2Tn3wRvHTkZCSBSpRkBznLybzm8aJ8XSic0PaHiOrhEAkgJoaX8akxXt2a9IY438h5c7J5wzDnmk8RoGyj1FjobjDDH6KwHG3uyWkelheR1QDY/DRDaaKSWU1X+17/vZf/ob/49/9J94/jDMmC52/DNQEkxm8aAXPsjhPdR5FlamdFTsD2e3P9JlRvVDMNffowgvCc5maa21vttlmm30q9qxim2vftZdCxJ/1d2jcUAsAcOn89kt1+X67nlhwRT+d3rq1cZdo9X3Vay2/8M9cXbUnyHkm48hGRbYhLJmk1P+4kNc+hsyeJKdFk98Xk+dIAi9vIhj46tUd+Ohacd2AiKn5VVJbKoLPeps859jExiSw4tN2Y2JvgqJJW1Pz4MR8OhG7aKMPEhCLtYZpOuLFYlxiisRgjWEcj4gxuH6PpAgm9Yo/jfjTEWdNmW8/BYxtWDPT3OkUoq5hca9dozvyjc8HMNYwmB0heE7jI6KCy2yRUcQo0+TpnaMfUoX0UfDqY42spNvJ82pF+dXrO/71737Dv/33/4njmOdUUu3xWBusjaybuZ/WwEIenmoF37J+bGvlmW/aKRqf4hvNAP2cR/zzmJoN4Wy22Wafvj0NcIKeLf7XhIprjMya6Hj2N09/ZV77Ql7N0LpsUCNDkBmounBm10WtDn6t/XgNU3CZJLfErD2N+VpqcrV8HuXKqu3Ck9xCTTh6gUWaNmvMVvyrr94C0FnDeMouKJMYith2CIoRYZwmrOvmACtphiLDFWZsgiAE8aV/dfyxI6KKMURNDeAnxTNhraBhwvuQsgWn5VUimOq6Htv1hMSE+DAxjhNBAzc3A0M/pAuZpL2x8V6YJnw5UXKZoSgpCMoYtAC7DG6VWFbCWUc3dcllFtszGhMHRrLElHPEWnSc0r1NN0BqMVAj8M3bV3z3/Qv+4Q/v4ni0PgOBxTOUGEEz29DMbernMt3AtfDG9vPXgmRU0/M4B1lrbyjrLwXndi1nzmabbbbZp2xbmPhmm2222WabbfaLs2docPQqW/4cqvuSOPepcy+GnF/pQ2WF1qgYyhv1zP1FZmJ0Fh1zybLupj17OUex/fxfdR1d7nfmVTKjUg5KQUyBl3c3vHxxk04ISVhs8N4zjWMj4rWEEHUYNmltaoMp0R9VexMvY5JIVSrrkM8pTIEnBAgp/DuEWOcpWIs1kb1QW2LLETH0wx5jLCFE4TfAOMXIJWuF/X6HTdocIzZ6vdLcSROarynLchTSxLHn66j3MQrOGNRa2tpRISgYoR8GnHOMYyoX4T1OLE7m4frGGKw16V6F2aOgapAQGMTzu2/e8sfv3wNwf4y1vQofs3i+cj8Xv8T+5WeDc3uOSLjVi8XpadnV/JlZbeasrbXP0aouh5nKbLPNNtvsk7SnXVQXtDSXopmendeGdaCzlq9jmV11iUDOXUhCzjb7bEtaGWn8V4H54rDM69NckbqY5P4vgEozgnpOdQ/V5mKum3peHK8Bvnz7ms7mwzQKi5EojM1lGlILfvKAELzH2ba/ufBmrprU+h9rX2IOoKodURPQMEWhbM6p4ycgYI1jmnyqyRSt6wass0zAySvBT/gE8E6HR9QfGYaOzjkkua5EDD7l7DHGoKGpUJ+0OjmHT6kDBUzThGoSPRvBaM0VpCL4ELDW4kxXAM54OmKkj9ojMcWnKQjOdUzjseiORLPLKyStlPJy1/ObL2PNq7//pz/htbr+6v2luNTax+VMW5Zcl+0zH6jP2TVBcAGo+UVEsntQzj5Da8DoksB4HUTVPm/1xDfbbLNP3Z4XRXXhy3Ad/Jxvj3YZbISUr0VESjr/5fVLe82X61Ph4hf0y2Vf+8vqF31eeLJGppwSqpZljY1KfTRJq1OPKbuLmLj0c72b5fjd0HF3M5S6TVYMlCR3sR9jKnmgRtCgGBOrhQfvC2NjjIusSwgxXDtDEhNBWqyJFcO41Wc9jsb6VTohob69hzBibf47gqZpikn2un4gKEzeM06e6TSVMg5hOuIM3N7s4xw18xrCxDie4hypxdr4iNrOYbsO5xzW1JpSGVIcjwdMYl58TvQnJgIj4jMm1hTm7fB4pHMGApiuI6tkRKL+xzqHH8f0fKTnXSKLZNQgQfnrb74E4I8/PPDDh6l5dmrtr7lQfaE2U21qWM3LT+RIuFWBu+ZwcMhFR5WahLGAogbUtn1ZY0ZLf8t15qBork/bwM1mm2326dv1RH96/mV4SXRYj1kyEqW1s2NbK5WwGzfOnLnJG+M/ml9XZ/1t2KXEClyMIGnq/lxiekwCOOdYrdmWRcUzsSdJSzrvo6o2tZ+0hGi3qQJ1Ia7N47wZBjpCrB8FGGcIYSKEFOFEKOJfvIAGMIL3kd2QLMo1AU2MBwFyvSnUIoaUzTm5rLIbTiXm21GHEJjGmPX38PCeFy/vMCK4vkc1hoxDBBRjCIzTxDSeOB2OSO4fgd2LW4b9DjCEBIrGaWQ8jUzThBjBGkfpgjeIy0SL4FKuGwmK9MI4xfDuqcnobG2XqrlrEVW7IZ53Z19C8IzjESOKsclNZg2KYMThJSZE1AYghOh7w7qeNzfxGfsX37zh/d9/F92CyelUHZgZyupiT9zmTX5G29QCCaTEiZw9WxH4pQKwgfJ054zDJp8robSYAV5rM/F2np/F/uruFdoP9Ep+7s0222yzT84+upr4NV3AcxLwXbN1BqbEslB/mb+ZrvUvuqjWmZElY3Jdh9AyNO3b7NzFVJaapmt6psFJ+UlaLxVzPYOmDuYFSYmAY78fIEzl3BCiO0c1lIzFmf0KwceIpuCrqywBvjAGpnGMfTGGkKpoW6uQFk4hYJ1Dkp5GECTEjMNTeODw+H1sazrhTwNdP9D3A+MUmHxkmI7jKTI345HgR/x4SC41ePXqNS9e3tF1HdPkmRLQ86eR4D373S6NRRpdERAmVGKJB0JNXGiMoe96VKfiPgMQqwUwm7RG5/a6wXI6PGKtTWxWvkchMl8C1lj8FEtdQGRwohmMzdlx4Ldff8F//sOPvHs/NvfS1HusgcCUQItpitBGd5oNHmEsih+vNobiJ73ZEqLPXVf5eY+/zwiZtZxPl2zB4NTN83bjPFz+Hthss802+1Rsi6LabLPNNttss81+cfZkqQZoNSTX3TqX8uBcO2d5/vLYNkpk/uMpdijS/mfiziIYrbqY8h7cKowhJthLfTAtFNTc7np/6+/ztP0xc3D2uTQJAFeEzM0GRKB3Jiafy2/5U4mDAl3MbQignuAVI5GuyuyDnwJ4j4aAGlPKO8R6UUlrlIpnlqR4BA737zDhyOOHP3B4/BGAm9s3+GlEc2kDrSzSaRwZjwem0yMGT2fg7RevAXjx6g3GGMZp4ng8cDoeS9dvb27o+x5J4uDiWlGfNCnRT5U8YQRjMWIQUYL3MQdQuVk23Y8kJG40U7G6V2T5psmTPF5pW2SPRAwITEn3RL63LtbQymLmF/uOb7684/7Dt4haVEsuS6bpSJgOPB5HxuMRZya+eB0j4ZxV/OF7dDoSxOK7FwCY4Q3W3BY339zlRWGU2tIdJrEqQSganfZRuvgmk11UyZUXms+6LlidtsbaJjLebLPNPnV7lovqEphZO+Y5Lqqf5MYq3DtzQPCMvsYDY+7eKirOJ+Q2V6p7NzBKm3pVFZpEaFRDwnNXW99YM1ZIAGdxncV8hLP5UaxR0KkAtFpWAmwKF9fi1kpuhRCLXGowRXIUhb5JK6J1hOonpuAjUAix4GRO+jcd3vPw/ntOh3eE6b4IdX3X47ob/OlAmMYU9ZTG5EfwJwgnjIWb/Q1dlx63EKuJHw8HjsdDubX7/b4U/AwhxPD3pM/JwDHYWGgzh4kbFDUOlHKOpjny3mBdB5JKVGCrQFqTGy/d5QykjAg+eJztIrAVUzI3q59QMWAdQSd8iH3oxPHN21f8l//yR46nCEhscnkhD3z/p//I4cMfEX9iQvn+IQKcm5s7xnEk4Lh7/VcY90Xq2x71EYIZSaC4eZ4kP0wLYBtotDsLC7AoAVKai89KAUUV1Gfgv5RHb+6pzTbb7HOwZ4WJZ/tZCvHlBX/ZtC5gQCmpkDMRl7KJ9RhZMigtuKjnL4W/uoiGqm/5WuoNza4kWZOgs3byz6hjMSWirL5KS9PvdWYs9meRp0dSb4KiRKohaCD4FLWWIrp8YTsiuFENiChi3GxODEmLIiCpGCZhxE8RjITje6Ywcjw9AjAe3qP+gNWR3oFJWprx9MDudmQ8HXj48A6xrszIdEqh4C7WskIo7RlrEQyTj7l7ht0egM51OBernY/jGBf/XOXbe5xJ0Uki2HbujMRr0AOnck4IARNCEt+kivFZ5J3+FSM4sc29jFqkkK4TVHEujvfkp6gDUpeEu1mDBa9u9ry62/HuYYwC6STQcXLDYN7yeN/hg/DhIfDuMV5r4g2v377GDQPiXNVd+ZAA97xKfe73pUhFSfe+/FEYl1ZAswTXlEi0+fY5UGrBz5bdeLPNNvsc7KNFxsUWRMRT+W9EJH8zz7bXPxeuqKu/ZzCR25630H4R1z5VtqUtrVDjl+Zf4hAxlScKg03T7TaKRIqSuRF7plfeViQNuXhkOm/pVmraMysLl4aYZI/ZWBVrXUy8J0AuoRDGxMR4goLVKbqtAJ1OBDzqT/jxgdNjLDfQyYSRwMM4YUysJZV74XqHhj0+WKzEPDEAXoRpfMT1HYfH94i1yRUUS0SdGJMIGEQ94ymGsffdxDDsYg4cYwuAMCJMp1iF3E8T6qfqohLAmFgktAWEIQqtjXV0psNaw+FwiPMdAiFExqdErDXVyQVN0WVSalyhIEbi+E3Kp2QiWnFdx3g6gIZYwTwnPCTO2TDs6MZU8Tw9Rz707G7/hv7G4xVeNkA0ZAEvOedS6pvNJRcKnqvSZY1utHPpcXrsZpGHDQhMLtEgMSarup+0fIAu5cm5liNns8022+xTtScBzlqSv/jH+f6lnbmx1o5JaogS0pqbX6QAqSGr6d8iCDh//8xvuWt9ONcJVQoeWXF5zQBY5YziNdYBytp1oUbw5OvV8+OWnKVZFwDKSF6ApYSCa1r1VD1IznGT5igoBHBi0XDCn06FNwohgJ7wp/fodMAmBsdIvA+9MxjXY0xXIrBUIsDC2wgoUr0p5zqCnxAmSPljXryIOhLXdXz4YJhOByDWfeqGyNTsdjtUoe96iggK8NPI8XhMWppAQLEJ/Fgbc+JEQJKLmVLAYAg+glWpuZTGaSSMURckSGSBkpssL9yWnJE5jTUEgviY0dgIE1IyN5ucWHEaUzLC2JZHULUYBKMCYgr8CALBgqqLbKAq1mYWKRA0FkkNqsW1Vt1FFCazPIeFWZknAczPtTFmtq39WVxNK1q55bGtXUoSuNlmm232KdtPclGtJrd7hj39xbiWPydfu22H9KadNzQ/JLujnr5W/Lcpg6i1jfy3JJdWu71xeC1YorZtSfsWIK95m67nVVaiDUcv7TdbNAGcoDGT8TQdUluQxadGQxRF+5Hj8Ufev/+em5tXAOxuXuO6WzwGb4YITiCJqCPaM8bEsglZn5P+58KA976yCdbGxXw6YruBm/0d+/2e3ODd7Ut+HE+g0Pc9fR+riQfvmXwMx7bWlcR80SWVwISJuXUyuyPGUGp269x1mEtP1HuRXIwhAiVVhzGRkcn6IRGD91NieJo8M6qRObIGZyxd13HyNWTfdT2PD+8xYup4LIzBE8Yf6I0g7gbNYfli8YGUFboCm3itgIYIHoI2xVJngCMDkHas6a4sgEkroK7PUgK1IlGDk8HNBffotSCBzTbbbLPPybYw8c0222yzzTbb7BdnH6XBmb3RCUkwe87iPKXHaW1e4mDOXtR2ihOJrKWJHZDinsl9mjMgc/Fw3jeLemqHlPQJS2XnpbIT6+xNPj4nojvvQ4rcbqzRleRQ7aYtIRaqVLTURRICBk9QTwge0w4kBMbTPY8fvmc63mMIqO9Te6/BduAC1poS/u6sAAErRHGrsZUZUyXohAaP6zTVoIrnZG1V5yy7YagZk8Xiuh5rXNKQCKdj1Mb4EPAhurh2uz2nFCnVDz39buB4OGCMxThbQ76NxMy9IZYwaFkXI4L3sfQEErMRA9ze3nI8HGJiQxGss4hmF1V0e0nKSp11Nvj8XMdaXs51nCRqh4JqqndlGE8HnEsRbb4DH3j33f/N8fSBYXhF18eQ+L5/hbV7gusIWAIdPvUhRj1FDVHQmtwxJI1YZJ/S5y7diyBzrVj7M58v6fe8r7hGE8uTkwi258+TB9ZnLx/zswQYbLbZZpv9jPaTMhlngJD9+dlyvZq5u6Xaqgan/fJs3TkzdryNjKqNaV6cZA444oIQt9Wq37QnNj6vqv0RyZl801Wl1drUdmLOF4o7TESiJqbpQ21XzxYaAKNzcDSbK2ndDEk3EUL0QCU31ND1nMaRaTqBj2UKNLt6puh6UTF0wz4FjqVbbS0qghv2WNnjXMpkLIKRWEgyhGm2qKoqGmx0UznL6RijoWIotGKMY79/gXMDNIUuBaJuJg0tA6NpmrBdz/5mj3UdJiWhMcaCKt2wa9xyWRsTq6DHCLGQExmn4+K/+Vkq+hxj6LquZHr2k2cysQ82luTCmKhr6vs4P2oiECAoQf3MnWONwYjSdR1+PNUyErG8KUaF48M9p4cHhN/HPrgdrhvohjuG4QbX3dDbXdxndwTpmMQxYZmyW6sBNiGEGBGXRNBqDEGTUL51URHdeCbEbaHRzZTPaHKNsgAysZ2A6iL3TfpnCXw222yzzT4H++lh4ssw0ixyXICB5bnXk/9VnULbxLxMQtypolkkU/Up6a3VmPRmzjmAEEwSFqe/TdbLpGOaWgpR9Fs1G8zay8engpdiyjkZ6FVxzPlc5DDyPFTTACSI4C3vjItSgBDLLJCO76wheGHyHqsjUw7DdgP97g3jeBvz0IQaCdR3e0y3x5oO52oCQwkhJgVUj/h4vVbDoWqSgNcU0a1IPMZ1A/1wg5iuQYeaBNARGLSsVec69rd3kCKKnI3sUt93gGDtxOl0gsRuxD5o0RnF8PdWNxPI9Zxi0r/6rFnr6DpNOp/KcpDqcWUgMPRDmjtLmJJgOY0jA1NjDKIBa10sEpoj08IEalUmGUkAACAASURBVOn2v8Hfd/SDJfjI+jyOHpkcZvLI+++x5ju6FGa/6/d0/Q10A9LdMrh9mlfHJIYghqAWDV2p8aUay28oJlV2bwGJlm3ajDUDlDUxcd2Wo7YaHRCV9Vmes9lmm232qdtHARyYA5I2uqIUy4wnlYigeGDaoywAzXq71JbSby1YSSBEtIKJRRtzV1Q2U9poWZ3iNmrPbbxX5VBpCmKuuKjsclsCQLrwR1V2ZwlwKhvUYsTKikVgM01x4SRMdH1Hbx2u65hOj4ynD0BcOH0Q1AwYcYiMTGN0D50OD9y4gc6kgo2+ZulVoxB8Al+mMGox/UxkLkSEyQ2l37Zz9Ls9JoWOl0VfPdM4RtBrbZzLDLKGHUYsiMSCmCmqaJqm5C4ydJ0jaGBMgI4UOeW9v3jPc8biDDbzc+ecwzlHCAk4EaPmrXXpmvWeRxyrHE9xvpx1dIlhCsHjpwiUJj/CKQK9QRQ1e344Gv5w39EdLZ2LLE3X9XTDQPCe8fgBnY7oKY5JHh9x8oh10HeOm91tvH/dDaYbsG5AzYCanlCK0cakhfk/DbXiu6JoADUJ4LQgJmTGh3Rcde1qUu2HRsxchM4bwNlss80+U/uoMPFsma1ZTTbWrtoLcuZaWPXl65+3W+BOw6Cct7nUx1R2SWYeqsYtJYY560MCKiRmKC+cTeSVSIzOaa6TdTO57bO+SQQ4GUDYDLJmczTX7VgTEIn5awCmKRDGdB/8yOnhe44PKaeNcUwm0N+8JIZHT/gQz7t//z2Cx/cD1jlsGpOz0e12eHxgv9sjTWZnYyLgca5DNeZ7gegKA8PQDent35eFM/hYRbxUZDcGm8KqrXOIIRW6nJh8jnoKUbfTxcSAwVcWSaRmG1575mwqGpo6ku9EBEXkyCzTFCSNZRqci8UvpzEBnzGCmlKFXaRobfJ98X4iMPHhIZaYcO4Vtld+eP+e//rH73BiSpSXdY5hv6MbepyzWHtT+mAwqChqPNP0wP0P8f7hv2dnbdIk7emG28j0AGL3qFiCdKhYSmh5SgQZsotqGWG1CB8PC4CT/8s5njIYarU89fjzHDybbbbZZp+a/aREf9fFtZy5ZvKC/zw31fn2yITU7Sa5jjS5oWTlnAJo2vNMZU7OgFPp5zJkm1JputXQlDGZBIpKe/Hal1mGBLKaKcqB4DM2qXioNCW3m5imiRwmbiUwnh6ZxgfGx/ec7t9hNOpLHsOEvQm4m11ayEIsWUBkmqbjAzo+cnf3kqHbp7EFjsdHdr3FmsA0jUgCJF23K6yOKVmD4XA6RtdQ8ATvy8IKJIAQhczWWlwjGNYwMU6K6iHpYOJ26zo0eDJp0y6uqopPrrGWxWnZuBkIpbZxOp0ik2SWz5qWauT5OqfxhHTxWhGQVJBqTJQej9OEtY67u5SBebgDY3nz8gXq/5EPhwM2gWBrDfcprNy5Dtf3DLtUi6pzdCZyf87t6YqLaiIQuL9/wHy4p+v+xDAkN94wsNu/ohteInaHmlRESyxqSSCHuYsq1DIMOcy+nZ+ZCyuH2Jdt5kyDozqf480222yzT9G2b6rNNttss8022+wXZz+52OalY1oGpezT68cuI4jSxvkxy3MBxMRihEsWRiQVUQyNK8qBscXt0L6VB9UiTp21lZgYU3QxUreblOo/ubFCYk+8VzrXYx3RVSIxQR0AKoUJaQdlBERCYr4MohKzEQMiCnpANYUlJybmNB0QA4YRCSdEQylHMD1+4OT/QL/fYewOKxYxkQFw1qDhyHR44MfH73l08Trj4UceP/wJYw1iOsR03L76CoCXr3+NG15gXFf0OADj6RHX9ZxOp+iuEoBIvwSvyP/L3ps9SZJdZ36/u7p7LJlZVV29YCNAciiSmpH0IJsHmfTX60UaM1IyDTk25AAEGg32VksusbnfVQ/nukdUdwMNmg00RSiOWXV1ZWZEeLjfjPv5Od+iDUpJh6LkQk4z/6UQswxDnHUo2wzzkijBlLVUZRDN9jmfqaQkRFrKOZpMO+la1CIjKMViFphKJsdEDJPkX11Ky7UEdV6O4kA4ROKanJdu0Px8qkr4pVYKazyrYbU8Llf467/4KZ/+5ku+/vqBh8cHeazKaGVwriOFgBknxsNBHmQ0Rhm0NtLdWdRkCucM3qxQ1bK2ZlkP02HP/njC2Xu6blhGV873WNuhjadaR0FTysX4itYFuyAeA5gqsnSqbvyeyw7O/LM09dolAfnKw7nWta71fte/iIPz2+Tf3/mz3/Fz3/X43/b/Vf321/vmyOe7AE5NkZimZZOyTmOUBf3tx9QcqbpxTagLV2Tm0MyjrvNDMqqRpiX6gGWkpGvG1ko6nsg50PWrZbQiKiSLtgalHVq1DU05lLKy+dSKUYmKkFwpAUoklUh1fnkhYx25BBnxGIv3PSULJ6SmyOHhS5TWPPvopyhjJagSQBVCmAQYETgddvIy0yPEAyVUtB1QxnF8EEAyHe6xfoVzHmrBmBlkFdzdc/Zxj0JA4synUdZijKKUCwLrfL6BghCMVenIbSYlYyyDzpaidANIctJLjtQ2Bks5LiMgmsxdXh9SCIQo56GURMmljWrmV29rx5nG12nqq3lM1oJJz+Dm3QCwUipaGXKJS9K5swZV4ePnN7y4G/j61dsFrMRcUFo3p2IBwrqNeEw1FH2WaceZQA4Yq4UgTuUwwnoQYveq32JNIeXI8fQW1OvlGDrfMXQb+uEG44RgLm+2OU6jxCNInU9HuRhByYixvdUGfGqd17cSEjpnn57/mqWUws3jtj/yWvhiv2f9PjeY72v95bP//l/0839x95d/oCP5w5f+Fw5EHsPbP9CR/OErlfR7/+xt8wT7b1H/4g7Od4GK7/rZ7/qZb/57MSBbwMy3OzlnVdK3n+u3AhwA12Hd2YNFqRYEqefuzfkx1hiUlg6D1nohlc581YKSzXUGF43waoxpknSFmQ0HcyRPT6S4R9VCqntK29AKsmnnXOm6jq4T1UzVHdZ6NFliAmqgxKM8Jo8CwGph1GvUvAlqK0GbtoOcUQVq6yJVHajhwOOXn3L3/CXGuCUeIMWIMhWrNCXkJb8KrVDWi6rJD2jjoKmelNEYnaglNsAim63Rlnh85PHN57gyompcOkVVG0qKlBTlnRuF6W8A6LYv0N0G/Jac85LpFJNBGycgUBuMdctVyjGAghgDznmRZgM1G6wTGXWcRkIYl+iHSmHJmKoSDTEbEeZYmErBOifArV1b7/15ky+FXAqlHYXVc5BmbrES7XW6DuccViX+x7/+c375my/ZPvshAPunJ0KYiCljrUMr085hU0JlATy1mnd+d1Iq1JKoKE4B9qdmrqhH+s6wGhyrboUxAp6nEAjTkfGwp+++xvse64QMbm2HcQPWDmjTIwR3ubZVaVFjUSilki+7WZjmjSNvuywgXp/DSa91rWtd6z2t7wE46p272eWr30My/m2dmu8GOPV3/vy3Cb/6HYWSQl+MjmidllnD4hbBk6rz488ybikhKpeaUFUkxYsrsLo4RmPOidzNME2XjC4JaiFGkWiPx3tqHnGdRTnPFDOueax4t8KYnpwLteYF+OQ0EuKBFE/kcCLFQGpy5pwStQZKUThVWPu2EbthAX7adtScFgCmlGHoPKcpcXh8xdZ6aCZyKOicQeUIGmqTaGOsdHrsQPUdWrsFrGjt0NZStcIZj2kyced6VsNAv3nGmy/+kXB8jSlt/JIlL8po6ZLUXEn7r+Vbpwfc6jn+5iX4DczkWteRSeQiwNGki8QppaEqrAZnzkRnRSKME9M0kaKEYJZlk5Zra6yDxRvmvL6giA+O0eevm4quCo0kkccYCE1i76zHWUuYRmKcULQuTQgCknPixx8+527b8/pJPIk+fvkxmcQ4TUwhUqpaQJe1jlILKSZoKig56tZR0WfZdm7jopwz8WQYQ+HJZLpOjmE9bBl6KIwcp5Ep7nH22K6TwxqPswO222D9gDZde8MO3cJBtVGYpYOj2nHoNt5axGniuqyvAOda17rW+12/E+AoNUuEfz/Awqws+j0Ay/lr33i+C2XRdz3mm8cjTJj5Me8+z+WYq5nuoswMquTOl5pRWuF1h/KqORfLt8zCv5lfpSltDg/cv/2KcNqzWXXEMDEeBODkNJJrYfvsA/rtBrd6vrgch6wwjWdTaiWcZk5KFo+W454Sj4Q4Lv4mpQhvIkyFNH3Bn36ykcP2iX61xljDFEbGaTqf16q4fzzw9LTn7uMfU9MRVLub9w5VEiVHrFELTwPrsNZj/Bqlhcuh2shAWy3cIDOgjEc3Yz5jPaloupuP+ajvef2bf8TEXbsWogRS0h5oXiztnJdCOj0STju0ddiVtDBtv5Xuke1BGSq6JXjLa1E1xjpKCRwPAiBijAuPaja6S+msHvLeo7SiNufoWaJtnXSHck6E6bxZm1pAaWpJnE5HTscdKbdxYVU8e/4B3htivFy7ArJLqXgFf/nnP+Nv/9NvAJhOR2xvubm5ZRwDqUKIrb1bwduBzY1DUZfOU06J3ByMJVk9LwCsiN8CpcIpBaYm/z+GEXdwrHrHurulV4kU5RxNIeB0xJmAnUZct8K17qFxYtBYlajc5rVa1QyulERKqDM/R1d98Vt3rWtd61rvZ11VVNe61rWuda1rXeuPrr6Xg3PZMYHL7gxLx6Z9p33vnAf0e3VwNIuPjOLdcdjiGaOUqIzaCy9ZQ6hFCQNQ0QtkE8VIXEYZWmmJDDCKOD6yf5JxSWchF8Pm2Q9a5+CC76OEd6Baj163rs84PqLqidtNhzHi5Lt59qG8TjcwJkWIlaAMtjjmzk8qiRpHSqmknM5ma7USQ6CMJ1RJnKa0dCh2+yNTmEgx4XVFZVE2/fTDHqMVKZ9aPlKHrtKdOI33vHr9lr/6t/+WVd/x5We/4PnLT+S1kierQtcbUV7NvCKjsc5LjIPpUdZB69TM58ToHmW6C/6GoRRFCQmrB7Z3n1CmZkhXE7m0uIZSyDlTWreh5IQuCZUTOQaOD1+06/el5DUNz8BvsL4nNx7QiMLajq72xAhTC+4EMFjhWFmD1Ya+n7ldZnHx1cYsnKl5XYs/TotcmEczOQvfJCfC+EQMhxbnASllpvHIdnvb+DTzqEk6GlpDKIGPXwz8yUfSIck1MoUIOrJ9tgblGJsDciiVUjUpir+RnbtVWsZCIUZKDWjOoahV2DKkLET3ZotEKokcI+OoeNSGoXOsB+narfserSO1JsLxhJpGjBVTQW06jOno+hW+W6NaTlZt0SQyppp/7+YzXpeR77Wuda1rva/1vRycbwOOb4+W5G99Jvj+Fv6Mvsh9Oj/P71BEXbxubZuqUmBEBItWlao9l87CYkOfKdMJozRWD8vjhHah0WaL28jmnVFYY6hKUp6F6tBIoCo3lnGm5khusQbHbHk6FYj3HJ7est5seP7Rn8p7VJqQjIwYyJRwXOIVQgjUluCpakXN+vkSSXHi8PTA4+M9u90TMc0W/OL4a7Qmo/gvnwowu1n/gG4V6fuBNCXsqocqY6rj7i0/+ckPSHHiH/7+7/nkow/44hd/J++3Gj754Y+Jk8O47kL9VVE64W1AWS/XYU7YNo5alBCCiTKyokmNtaJWQ64ZP2yhb7wdKrlAzpGSA2ohHEMuSYwAU8S4iEotZTxNxBjQ9oQ2lhQLNAJyrpqSEyUFqrKLwZ82Bq0Uxlqc75px35y71ZFSZArTmd/SuCzTFIgxYq0Q0ZcMpkIDPBIs6qtb4h2owrfJKWG0JI3LutYLV02lzM2qI7fV+3QKmAIrXzDxDcpktk5AYFUbslWgOsYxMo2xHaMl5oL3HmMlFbS09TBNEyWXBrjPv0s5Z1JT60UiYQrsdvKeOqfZDJ71qseaDCVikqwVYyLexqbiKthOzo+2vhk9qsZ/El7Ota51rWv9a6nv5+BcdDRmzsvSeflOBdMFd+bS3lfV7wYxvwUMQQM4LUhRtw3I1oRTEaskcDEow3wbm8cdh7dfsd+9hc5w98GP6Zu8tuIpqgIJ5RRdU5iAplZFqhVyaandswpHuhw1HxmP9+imWDExMGgIpieZG14fFOGtcE98ZyjVknMk10k2npY9VFong1ogBUIQQu502nM6HgghiExZK6y5OHfaYowH7YgNyz2Mjo+VpVaNsR1aKeLYNuJcSePIV198yZ/92Z/zm9/8hu2LjwD42Z/9FVV3bO/ucNaRm6Q6np5QJZJCpuYDrsuodl5r7qnKUXNmCgFt5P30w0qOl4o1in7YAtK5oFZqyoQ4kdNIioFsLwBOyQIcUyYnAUVpOpHCRE4THT1K+4UTYrRBaQF6s9R/WSQtoKnm5srbruzptCeEQJgmQGGtp+tkPZScyCWhiyJn9Y6UXykoKZHLBFVeG+a8MJZcLlFfnauUgi6G6ZR59UoIvk9jJo8nQrpHq4lNV7jbyDlytqcYeZ5aK90sTa9NqacMGU0pitTeb7GGSlkCUZdMqVJRzeem1ko6B5oQAuwOE86eGHrL7XZgu5rztRIhQiwBFSq28Zd8v0YbJ1J1PXs5tXOuFd8yt7rWta51rfesfjfAoUmov5m9pJQoTd8h/7a7yaYwUm3kND+mXgCl71JlnSXj83M29U2tUBLMeUIqYUhopUSFlAstaJmAJ3QvUOqG3nnQG0Ke1UPihVLrpf8JKKIQU5vfR14CFRECcomoEpmmQsxtVMGKXDuKKvjNFlsyU5TnO02PpFTIKVJKbKOZ2awuydfiSJwOxJb+XUqSUZi2KNvyhdQcTNlhuxXGWDBOMqOA+yNMyeA7hTHy3HPS+O5xR4iZj3/0M375xSM/++/+PT/7q/8JADdssdajaiUFOQ45ERbyRE0T5IkSR6ya7+ZF0VOMkwTzdu7CuEfjcVbjFNSYCa1blWOkpGk5D+ViJFdaFlKtBVUr81zRug6jFTlFjvsHlNrTrYWAbLotpSpyKs2w8awYM65rG24m5UIOc/dLQLDWMI4jSilCaETxMCE5VQJ25nUXcyalgFYK7ywpZxl9As6LnH/uqs1rdo6OKKWAKhgTyekRgMeHPZDQGGJIvH0T+WUVMGxMZdCaoffcPrvh5qYRf43CKE1JUJKiFo2fA06dvHaMEEJ553ep1rIAMKUujPramClPkXHU7PYjq05+9W+2a57d3XKzveF0OjIFWftT2jfVmEMbK92c2TagnKe417rWta71vtbvHlEpdQYunNUi+p2uyxy8JyojhQAFjTnnBGnEuK1xavQ3Ph2Xzg9nUDRbiSkqoqxtmwmGCEQMqTqqsgvvRjvN9lm/eHdUKqHMwUYN05SJ/E1X1nYnnEsm57LczZdcKTlCDZQKcRYBVRlXlSJdipISoXV9So7UIrlRzehkAR5hOhLTiZwjTZgk79FYrPYo5+mGDVr3qHZplDY45xiGgX61wlr5ehl3PB4y1hSsihAFPAH4Vc+LH/6E4e5H/Lv/7d8wrLYSYAkY51E5Qwpoayil8WlqRw4ZrQrWO4ypix+QcQ7jOwodKdfF2TenAPGAQQlQqRk7BzHWhDYFqxW1WHLR58eVFlhZxF/oXOIHgxG+Uy0n0thck1MkG492PVr5BZAYA9RKTpGUwjsdHFmTcyaUjKIOx337Vm3nsimD2uZdqsjDldbSZVIa18BF13Xi09Ocly/5aPOYKmQoRRHa65haGDYbTseJvvdYoxgPrZMVM/ua2Y+R148HXAOvzllub7estxt812FMxdm2vmKVmwuvqVhMk/+nGGVNLzLvs2pNwjUzpWaoipQVYZJj3x2OvHr7yM3NDS8+eI73sr6m08ipnHDW4TvhZOm29rTW3/odvta1rnWt962+p4NTMaouAEJpjVbi1yifb2UJf6w1yQeqAqM0mrJ0tKuyF3yBC9tfLkZU7d/LnTnNi0NboRK3+X9WkGqllubLoS6CAItQMMWVVVGaedn8vOJqmwWYzN2E1tLPKcnd+kWwYE65gZ70biem5rZBZ2qKbZzRfEpSJKVJJL+1oEtauDulZJSStGprDV0v/CBMh3I9FYcxjt57hjZa632P6wZCCJyOB/YNLMVp5E8+/AHOZWpIKG3J7VpsP/gBP/2r/4X1zUsoCus8bW8SMFcTRVVKmtDt2DQZtHCIxM3Z0NlZoq2pZaSGHU9v3nBokvgUE4qCrlHGTaWeZf4tLbzre/rViq4fhE8CaF0xSIBqUWqRdUv3p8qmrhQxQmzdmN4Zql8RkOgHc9HxSymgmvGh0RZtzkRiZRxGWxnbpMjUumaVTEWRchFn4nz2ONJqJiNrrLPc3T5v70mRc8UYu3juyLlrsQ9aocikVDmdGkn8fs9xv6MfBly3AqPxswWNFqA9xsA0jkyTjLUssNsfMM7R9z13t894+fwFAKvecwoHSs44pbCNo1RTAx1GU5V0lebxXi5t3ed0/v1afp8UYZw4HY48vH3L7Z2YMb744AW+HzieAiEHul6fEb7SaHMFONe61rXe77rKxK91rWtd61rXutYfXf0eWVRnu3ulclP+CN9BSI5zyGSQjoUxqGaxvzjrzv9tctOFGAkCsWpdogTmqvPj55b7Ep5z7rqclS/nu+9S6vL9UuvCFymlnL+e8zKimjsz85/LTk1eTNZkhLW8TpqaGZt0rdRFMKFSmn7YUKjkHKkpYOawRq1QxqC1w/qerhM1je9X+GHNethgjWYMJw5NJn6/Gwn3Dxit8dbi253z9mbF87sN3o9MaYJa6AbhcKy2L+k3z6horGlS+pYRldJIDEdKmvj1P/0n1k319PzFS6oxlJKEzxMSj3shII/jyP6wZ//wht3uic1GzAa973DeU9r51Zc39SETc+bwcC9BmEbTddKxWm82rFYDxgofSrXz0xmF0YZSMjlJ/ISf84/CI1ZrVt0tSbtlpKQwoCXiQbUcKXXR3an1bKBXSl5yxkLMooQy0vkJjXui9KzKcvRdh9Iin5/Xg9bStVTqQuWnNaVIsKu1jtPpyJdf/BKA01gZVjeomnHG4Ls1diY610IYR7yxDOvtkskVpxPTNDFNgYpiPH7Jm1ev5NquBu7ubhhWK7z15NkNu1a6oSflTAlB/q7n3ylrLRjTOniVMp+T1NyfsyKlifEkXaSH+wdubu949uIlKWd2b97QDXL93MVo779enbtRf+z1L86i4l9vt+zOP/9vfQj/n9VlaO/vU//w+Hd/oCP5w9edf/Z7/+zG3fwBj+R31/d+otQamdOwVaF9SDaAIxRNgEb6BWqRD1ZlFmv3dzwz6tl+XoiZnMFNc06VHytny3rOj6mNP1PaB3W9sOYvpS7fr6WQ6+X3srTtZ4Jrfhf4fPPP8lptgyxJXGUBGcnUjFUKZS0FcG0sYrxHWU9VMkZxrsOYs5S+oIRXYyymbZzOdRhrqSU319zCzUbAz4cfbNBEeT85UJKMh9adZrvx9NpBKZQSGPcit356OvKyqrYRV3I4MSXZuFJM6EabzdOB+6evAOiNON6epiNKVU6HHb7192JsoZthxDqL9aLAMc5KeCOqpXWfN/2qDUVnyLMnTuK4l4Tt/cNbai0471itVmy2WwC6vqNkWQLeGIp2CzgJ8Ug4ZHyFZDeLm7LWCo2mkqi5NLuCeaY6u/ycgfIMspzvBLAogzGOdvnaOM/RdZ5hWKGUWnhPtVZiTHTeiepuEXKJWVLOiVqUZE+1UVicZN3EIDlZfrhBNwWftg7nPR6N0ZbimoLJr+jXgdM4UrJcw9jW6+Nuz+54pHMdt7e3PH/5AwA+ePkB+8Oew+ORlItEjrTjS1HGczFMjXitFpI97SagFlCliDUCkFLiNI7cPz7y7PkLNtsth5aCXktmfZGkfq1rXeta72N9D8Cp6JqWMMRmhtE2MiPgpN1BKu0k2FkJXCn1IlKh8k6HZkG6c1OmlAsA0/4uAnIKpWUInR9/2cERAFLOj21cmxkE5Xe6O0K0rN/g4Myk4hn8LB2cdlc+Zz7NXaRcyxnsOItxFuYkZNthvGO7XrFedXh/DozUxuJ8LzEIypylKA0YOq0x6p7D4xf4xcHtQNIVt3pB4YZpEi6GtwZne5wVz53x8IanB1HuGBsFhGUh34oabvZEsaTpxPHxiRJGXLu0u93XKOvRzsm5x2BcI7CmSM6Jvh9EwjyTbI1FN4k68A7AKaagSkZnQykRnaMAHqAY6YzFEPl69zVffy3ePt57VsPAZj2IkZ4zuEaO7qwllYol0nWeopr837iFrT1bFCzk9oWIbBrJ2Mh5h4WnM44i5e9b9+v29nZ5TNd1QlO+4PQYrfBefHiWDmKSIFCtDalkHh93xDh3Lw2KQpxOYhmQMsP2WXsNTZgqxnqsMazXTUVlDTEn+iigJI6iRpOlIunmVSkeDyOPh0/l/AwD2+2W58+ek0thv99xao/x3rNer6BWYoyM43h+vtK6UrksJoLy9YKKWVLT48Rhv+XurnGRlOHt23+9ScjXuta1/v9Rvxvg1EqKAd+79s/ZwdRQlRLp6GKNIZvLAiCUYqH4XHZEeLeVVxewwjsgRgCOfOBejqNqPY+ilu7OAlbOoKeWuhCKz68to6RS8rnDPhOKS6Y0iftMYNVKCZgpGaU0zp7PQ3UWYx2d79lseoa1jG36bsXQOZwK7B+/okxH7u8FeJSq6PqB9faOKaplY95sbkhxooYDlB03dxtcL12NkAPQEfWaXDuik+P1ncH6AWMMg67UPGIayKrpyLT7Gu9Eyh6nidNBnGvv799w2D9QS8IqzllPpqJNYX860ndrXnz4MWkmvRpNmE7k4qmlYhsq0tbjux4ZPxa00udRYuuu1TbyKiWR8tkHR1UoXaIbejGua+d1miaO+31TOcHQiNj9MGCdx2Cx/R2qlw5Cbh20ufunlV5GVLTujlIsyd99c/f1vifGyGbTtWTwecSo6LoOBZSc0UYv68F2HdZotFbkXEits1URDx7p4hVOIdAN0paNU4IatUEiYgAAIABJREFUZTqLjIamNgbSxrG9e8FqtSGlTGygw3jLzeYOpYUAPI3j4qWUWrJ8zm29zmnppfL4+MR+v6cfVgzDgHOyHvb7HQ+PO7SqjYRtl3VfUGKMqY1cq3mkO0vOYyLHRJwC01GOe3Nzx7BqfkfXuta1rvWe1u8EOBWoqiMvUmKBLEoDVUZSM/BY7pqrjJ0KgDq78ULrvHDBp2kdl2VsdAl8vvG1WTY+d3tmAMQl+EG6K7U5BV+OosQbREFVospawiwLWius71EYcpa7VhB+Qi0Z4xyrYcu6AT1nHMZWBq/x6oBTr9BZ7qQVhXycyPEIxz0lO1RsipXoGUfH+PhrUArfxiVvHj25KELIGKtxXY9rKdF+eMFhipyOO3LaLz44xlicfY4yGmcG1psXfPCJcGaeXn/Of/6Pf8Pd3R3H/Z4wHlgN81ipk5BO1zH0PX3r7Ny/+ow0PXA6Hdnlykc//Cnb1s3I0eD6QSIGSjmP3LQB60QmjcKIXlrWw3LhJTQyl0ie3ZnL7EnURoKzyixn2WxTbonqJ/YHGbvtd0eM1qxujjzXHabI+0muh1rRSoPWqGYICHAZF6KMpusc/QyMcsE5j7WWzWazdAFjDOScGfoeZ23ztqFdW422rvngZMZRxlCqZHKKGKXJOfHqzVtyS+vu725bpIY8viqD93Ldje1JSZESrDe3wklqa1IBvfNshhWlFEIDOLEZRaYUmWJYzqkqlVzOKsCSC5sGuj/44ANyyjzcv2V/OFBqXSTfNRWJ0ih5UVrJpWvcslLIbUw7v9+QMv14jsq41rWuda33sa4qqmtd61rXuta1rvVHV98T1aDRfiWOwYgKSPzcquQsXXRclm7LfAdJpS6E4fPoCM7dGOq733u3g3MeXUE9j5oa4Xju4KgL0nKhUrSY96nSsnoaf6I2L5AKGG3F/bZVLrkpogLaKEy7w9b+Fu8tg9U832h6fS+vc/o51B26jOgc0DWTjdwtV3OH7e+wPuH8EWM1t6qNK0qHoUIeySUyTXK3PI4VdMfLl7c45ymlcDpKN2Z6fMPjYeJ0GolRvAMBfvTRHUZsT1AY+tWaDz7+MQC321tCmCg1s7q5aUTddh6QLofzHu88Xkln4PTrn5NPe3RJmDyx//LnmEk4F9vnHzG8eImbaos9mLt2oiAyWmOUloO7GO+p+SI3vsqyXho/SrXrkucQzhSpWUi5OQRSHMlBzkOJEzlO7HYHkv6KH91I9IS1ioKhtmDIcmGzq7ReSMfOdayGLbpxcGLJODvnpym2TRmmtG55T1k6gRcu3tYZYszNsLDiWsdlOh0pOZKSBuXYbD/ixz9t5oCrLX3fMYaJ3X4P9awWGroOZTQxRfbHnfBkgGEY0NqIgstYhnWPbq+VcuJ0OknnC0VqY63T8UiMiZQiKSWmKTJNMhq1T3v6vmOz3uD6gRAjMczBp5ma5w5OWrhlQpjO7ftt7NzOQ8mR6bjjWte61rXe5/qeEZUil4smT6nvciy+MVKSx9QFmNSL711+f97ovglsvg1yvv11+VtGTbW9yGVkRC0FYzTGKHI6S2WNNXS2k2TookhpdtAtdM6ibY/pLUOnWRsBHis1ostXjMfP0A9vSVEATk4HlNa4bqCaDdjnKNNM++wdk/qQrAdO6YSOhWLPqhlVRlTeMx4fKUnek/MrhvUtY6w8PpyYpkhso4JYhFDqnKfb9nSdXI+7FysJHK2yKXN5vq3G281C1Lb1bMiYs6RWqwYU04Vc+Lh/Yug8na6odGL/5p/l+Izm7vY5m5tbUtpwOgno0EZhtUi7NUqApb4AF1W4WFrrd7z953DLklMzTJyvbaGmJIaMOVLjeKFGOpDDCR9G8rTnq3/6ewBuP/oR3c1LlO7ltS+JxM0UUKFwTkaQM0D01qG1whmRls/xHMZaus6TgsRsGKOZGhh4fDoClWEYUKouCd+qJAljVZqoDRjDhx9J6vt68Gx7A6zYjxtS0XRtTFZrJaTccKEht4MLIaAB71wLA1W4phq7Xa+J68phv0exwnUCQmPOjGOklESMEyEKyJmfL9fKmCq5VpHVNwWf0oVqMionajULF8mUslwfldr4ah5Hl3xWYV3rWte61nta30syLvn8wVbqhQ3+rKZqd7izV8zSYbkAKrL5zqTgMwfnuzs37/7/7GWybN5KtTtrUbeoyuJpY7XGGSfKqFLwnXQpYJakt7tyY+iHps7pDH1vMeqEnr7Ahd/AQVQ9NT4ylRMFS9HPUO5nchC9QakNoXZk7dHuBbEK6XI6RI7HkVQChbZhtOwhTcVoTcmV474QRiFtxvhIyJ+Ta5VsJePRZubgrFit1025U8mjPNfGDZKTpR0akcGXlgPl/UApoKqmlkLKkVLOnRWjhXjrbeXwRtQwJR5Zrwa0tcRkyDXRtWvx+OpzlHHc/clfY7sNpgE2AYlCLtZaYbXGNGKrNkbu+msVR+HL687sVF3eBTjiMyDXqRRqjMQoXI8wHUnjgRoDOZwIkwCfrz77L9y+2LG6/QjlVxRjFkWbURqlDL6XiAvn3cV6zXItSsE5t6y7aRqpVEmYJ7djVec13o4553Qmz5eEBL5WUjpyd9szafmeVYGajqiiuekGXOfIucU4qIJedyjTU6onlpk75JjCRGygKxcWNeBpmjDKsBnWGK2JRcDm0K95tt2QcmKcDqQ4UouA7pThMCZCzotj9wxsc5KvlWykc3apKFQGrS1aZ1JJ0B7T2qRc61rXutb7XL+7g1PFN6VcbEwzQFnChNVZVlovOjzfAjhq7up8sxvTnqZtgZeWVnNnRmv9TjdItQDQUoqMR/xsnCWjD+88xjY1TZnHZAip1FsG7xiMbJw6vaFOnzPtPiWGHUlrihMFE/2HoNbk1BOiZhrljngcIYTcxkCBUiO1bapK6XaMCussYYqUlthdqxBtY5K8rpTkGFLOVKWx1tJ3lu3NitVGxlpTTEzTkdPTgRADvZP3s/6Lj9FVghkrhZISnZMNrVQkbFHJqFAVszRQco3UmKnxwOPjP0OQzdYZsL6TsUdRhHQ2zOt1YX//Crv5DdsPfsZqJd2JVCCnqcnEW27ZTPDVCqUVxmi5thcjjiVYlQZeL5Q7VCi1mSvmim+bqgsTOQUhLOcsoaBACnuOpxO71695+fEPxUtnkY0bjO3o+xXOOZHsz5lTc6BqC8mcj0kbTQyTxF4oRSl6USPd3T5rYawTMafluqYQxI9HwdNu4le/+mzp6A1dx3217HcHthvNy5ebpatYc0bnHegjKdUFmPXDFr8aUHogZkWImZzltXJWAtqsAVtoSn46W8k5YI1iPXTsy0Ro46uuG+jXG0LKxBAIMS4dzJhEJVWy5KfFZjaYUiabgikSV0IMy/iRUlkSbq91rWtd6z2t7xlRVXFE/S7Q0moJxawIt+I7HE5rrVx6/X2zFiBzwXm+HDsBzVCOZUNSKLquXzozIGOR3g0yqmjjknnj8s7SWY3liA5fkPefAzDFNwLY/EuU/wkh95yCvPbpqAhTIYRECudNIdVZVlygVHJ6OncakoRwKlqAo3bLsdcqShqlNMZofNe8V9Zr1us1WkVqTaRcmVp3pxSLrZUQA+F4pL9tPI3VgDEWrTSnaYTyjfGQppnEid/KPMBSqlCmHbvXnzHtXlOydH20rhhlSSGQYsIYR1Wy4caa6axl2t+z2n6Acs3JeLghatXeq27dtvmai/pIKQE42gkIov3snPU081mW89PGVzlLjti8mlzL/gLQymAbJ0X8bSrj6UQIo4xf9CxjlxFP3w+sVxtc1y/Hh3UtZyxT6xngKA3aO1KMS2dqlrHTfH5qyeQoietyjTK5KlLO/PLXv+bzz369uBJb63A3HzElyxdf3vOLX37JzY0A6NV6hbYKqwudUVAb6H7YNQ6OwXfD4tIsvweOqh0hasZTXRRtoUv0XYdt5oa3m+eomzlAVEB05wrJO3IpxJYrFWMkhEiMEzFGbANzOWdiksy1lBJojZ4VVjlfOzjXuta13vv6ng6OAJx38pm/AXLeGVlV3jHEW0CKupBpX9QStDknk9e6jAPmDXP+k2cQozRd37WQxYyi0PdC6DTOSyBiimgF3nh8M5ezPJJO96RpB3kkteiCU3zJ/qQ4Bs04FWIamek5KQdiHEkxShu/3fXLyCejqkSUq4vOU1GK2sIajVIYrZYkdKU1fTfQDRI8OW+qpRT2hyMlVzrfMwwDucpr7XYPHHdHrCqg4YeffAjAzc0NruskZTsL4HP2nEAuAEPhlKZQmFoqtwmVV69/yf71V1g34LrWraqJMUaUcngjXZXUOhRTS+reoOnWr1g1PyC0xve3Em9gzhJn+VsIqxUJZtTGLI7YtCgEpRS1uIVvpCpYZ4X74jVa28W/JsZ0Xj/17C7sfYdzjrvnAk5STIyzhFmJYZ/3Huc6tNJnuwElfBultZghqjk4U0JAFQVVC1ZppnmJl0JJIl8vcYK2JlPOFOO4f/vEf/g//wPHpwPr1oErOfD06lcEtUGbjsMu8PR4v6wHrMFqjS4ZO8dwbFbc3m5wzsJ+R611sQfwfU8/3KC0p1a3GAoejwec9XTet3GmRtF8dayhcxZlDMFaUk7Ydr28NXhnidESUyLGtsZbNyemREwJ55wAHQQUzaOsa13rWtd6X+sqE7/Wta51rWtd61p/dPU9JGOEXPg7utHz6GnO4FQgCiv17s8sXRreHT+908WRVs/y9WVsoBSdb0okpaWDUiveObz3zKE7MWVUzjhV0RSI90xB8o/GMFFiIZTM/QmehKNKOE0yZqqKmgspJUJT7qQ0UebRSCPLykGIi7HRujk4a1RTuSjrcY0DBAXjHDfNmn8YVuRcOJ5OTDEw40vrHMr1YugWJ15/9WvmFCXvOzbPbvHOsurgpz/+WJ6r8xQUOYs7rVIa3SIUxIZXYVRTEWXJlgK4/+o3PD3c47sV3eoZeea/pEhhwmpICmKaFhO5aYqUfMQ+HjjFyk/aaC0Vh9YeP2xw1rfojtTek0X7MzG3VJaui0RfSIaVsXqR8ucsjtG2ybeN9dRm6AexrRMkxHRelKqgTXtODd44+sHPKw/QbYxZQUlHBqBoLaovoX4xnSRnSVMxRuIVSimEKeNaKGpMhZRCG19JwKW8H8MYMj//9J9JKLECaN2dqh2lZsbxCdet0dpyag7RtWYMmQho7Rbu0NvHR8wXmqHv2d6sub29Yb2S9X84HHj79h6lFf3QYdu6q9UR/IrdyVOVpveeVXNtNsnA6YR3jq7vscZSScs5UkpGnbpdk8vfy7kDlkshNDWZMWb5/2td61rXel/rezk4ReyKl699E5x8V6k5lOgio2j++jcfP4+ulFKoes79mUdhpv07xfkDWbKArLPUWjmNp3fa5d4Uag3kdE/JmSnKBr4/KXaHynGSwMSZz0GOpDQRU6DE1EYiM9dDSxij7Rq3ox2btmjjsM41N1yPmQMotUFrhbewXvd0qxtOR9kMTqeAd46bm2dUzhlYKUbhKaWKNZXb7TPWLbn52d2H1HQglYxWlaERqrWVsEhmBZP3S/QDCBgrWbxmcgw8vv0MgKeHX8uxr29JSpHTTPCtZBTKWEx3h8qZ6SRAr6YDISpCrvzy0y8ISY7hRz+DXGGrFRpDVY5aluQtTOforaXWcyo7nEnGZQbFbU3MkmilJAqhlrKkfw+9XcJSjTbn0Ku2Vt7hGTXgWM5OTEAmhbCsJ6UdJQn4oiRKPLXlEKDrMa6jVIgtmRtkpEUjQCt1Jr67ruPn//if+fyLV7z46BPe5rxEKBSzRnUbHBOlapzv2bSwzdN4QFExSon/TJ3HZJUUAk9TYPe049XXb1m1nKpnd7c8e7bGO8UUIqdjA5R+hamBmCO5FI7GsGt8Gu89Qz8QXOY0BfFA8rPaTa6Ptfodr6LZmVyuhZz3ZQSKWvLHrnWta13rfa3vTRM/t2WkS6Nq69q0P2fAIl2bWV2lL5MXQWz0v9nBaZ42eu7eqDOHQzUycc4VrQ3WzDlQhePxQEyRUgQQzUoSqyZKOBBqYIqa3S7wuBMGxWkahU+TAyXmBbTVqsR/hYJRBmt8I8TKh7/WHm0dxrpFuu1sL/wNI1yS3q/wrWvQdx2r1YCqmd3TI4fDiGmP2243TFPgeDqiNPjWcVkPPX2nue0tnduRysQ4CY/k8f4zUJ5xFOD1w5fie0LJUDJKK6zrGvhq/JKchcxcE8fTkYdXv2DafSnHcHOLMR2pVEKMi/dKqRLjOKaINx3erxiMbMTK9OT7e47HAwrL51+9AuDzr77m5Uef8O/+5/9VNkrV4+yc8m2oaDAWox22SPcDxFhRa9XWyrvp8rbFI0iYZSE3Do53PdYKyBF/mjlDS7dFd/ZFKo1Po1BC8FagVSHEI2VsHj5uhbIDaE1OeVm3MZxQNaO0JqYKJS2xHsfjQbhgVTp9qZGPv35zz68/+4wcCrcvPuLl//Dv+efPf9XO3YYTW8zxSBiPKDTDICTt22cvORx3TMcR5xV1jggpkWrrIuXuGukZ4PMvv+LVa8dq6Hn+4hm3dxK+qrRndzxyGiPOOKYyLTcJ1lqstXRd1zKq7KIMG1YriaRQIpefwWdKwnmauU9aa9L8+4taksqvda1rXet9re8HONUs4xLxLmEBLrWyAAWl2/fP7Zpz5wbZei/luMvPILk5cld8VtqIX4k4rIYxMIWmWEkFhcFZi3cWW0ZmGmiukf2hsn+M7A4PTGFaNolaCtSESNHVYganjEErJ3/birEOa+RuWfsO0zmcs+L662XzHnqPtR1dt2K17rFaui8ggZ9TjMRc8f0G7ZvaCrBasdl4enuLqSN19sepoxjvFcNuX4hhw5QFXIwl4bQkTqsSWbXNcfYv8Z1vRn/1nLuVE4XA4enIw5tf83D/KXYGU9vnpJxRMbwDKHOqDexUxnGkuLqACG0tq5stMSWmaeTUFDids3z99df8zf/xv/Mnf/pv+JM//yuwt+28epS2VETSjyrYlgyuWvbU3LG4BMniOmxIKbUNuinQkM7NOaNs7gbZ5sfUHGsUixtvVVCTBKbWEslxZNrdt+89srr5AO3XIt1vhOqSk5Cq0Rg/yOs1YBankdyCV1MqxHbu/ub/+r95fHjg5uaWjTnQrxz1RyKlf/X1Iz+464gfPefxMbLf78ltvZp+4MO758QQOI2n5VrEOFLiCZtLcxI+g0BtCjFnnvYnDseJ128kRPXm9hk3d89w2579fk8IsXW1xOjv2IIyu65ju92wWsnYbZomnPMMw9AMMi+S063FmEgIgdi6jPP10leEc61rXes9r+8BOBWt8kK0kQ+49qcqZn4DcOGLI38u/W5o6iqgdWXOZmKU84iq1nqh1EiMU2ibVcW1No13Dmc03kSsOVJS5uH+7DR7PO2JKaKyBDqevXQMSlmU0ShjFymxsg5rO6zrMX7Adz1dAzLWa3zn2awGhs7j212vsT3WaYwukiodKtm1DbdkHBmtNR2gVMapNkYoB3Q+QMmMIROibEBj6Qmlp2qPItO5TN+ez6VCjIUxRrwtS2hmaY7Ns/+KSKubeVs8EcOR4+4tT2/+CaMtm2eivsq1kkqilEIKgThN7XzHBVQUKjGWpRujVCVX2GxvibkQ2obvrOdmu2H3+IZf/cOBNB24++RPAXj5yZ9irWsAWGOcXYIcrVJLirzI+S9WXJuIztEfrhk12uY4DNKRWEZNSpFLQjdwI+Ow2ZBOlGRiNijPMSuiyCfSuEMXRSWL7w1QWzhojRFlvKSTM4NAMd+zrgdj+OLLrwB4/eYN1MrpuOPJVWwHLwbptPWfPCNpg+sGtl2gvLxFaQGBp5BR1mKc5Tie2O0O7VdIupfTNFGSuCTHqYGslIQvlRPUQmgj2K9fvebhccfN7S3bmxuG9Yr9XjyOTm3U6JwjxMDrt28xD8JN6/uBm+2WGOPiFQRtNKwUVhuU9zhjl7TzmNLye3qta13rWu9rfa/R3ziOC7hw3mONRpGpGEox74yUFIo0JxrDeUSloOa6zPLnmnk3OWemaZIP9JkboxRaW3rn6Z2h2Z5gTELpQBgTb75OPB1GQpSNoZSIKkryhqxBG710IZRxwi+xHus9znfLe+r6gaHv8a7HOYM28p56b1gPKzrfiYlhe68YSDEwhokw7sh5pJZxOWk1Z5y1pFSYsuLU3nJIhSlYDqdCyh2+ya2V1viV5rbrqCExnp64P4nD8OkYhYCaIy9uewGcQC1RcoXCRAVxJ5436VpQRfH0+DlFa56/+BGpXQyRuFdO48R0PC5gc75LLw1wJl1I7TwYIx0iYwybm7slVdo4C9azuX3G7u0rPvvVLwjtFE3TyLMXn7C9/YDV6gat/CJ1zrmijfjLlFoWJ2qAqiQ5u9bSQO+7hnKXnK25tNbU2lx4axYeDZDiJG7FTVaujcPOBOnDRDg+YSv4Yb04XuecCPFAiQHjekpN1PZ8OU7SQfQDU4j8zd/+LQC7/R5rBRzsn0Zistx+Ih24/vY5Gw/h8EipO3yf0UYyol7efkx1zwgZPvrgjmMjgpeUqDhihjEEpvG4xEWMp0kSz2NYTPsASpYbj6fdnv3xSD8MbFq+1na7ZRxHTqcTMSUhUbdO6hgmxtdj6+xsWa2E+2WtxVmLNRZrDOWia2ONYbpEpde61rWu9R7W9VPqWte61rWuda1r/dHV93JwjDGUNqIax0gKI2HcY4zH9+uzxb0WJUgtTU5t9CKjTZL6uGQTzV2cGCMppGW0orSWsQbCFXBeY4n0Ji58nt0h8/Q0cppGUo5Q82K/b41D6zaOMgbrHLalhlvXY31H3zn6fmAYhIPQdw5rFKpGbJkwuuCagsl6Tc4H9rtHlHaLO33JmTgdUWVCq4TVFa3lPYSs0N2G/QT7Y+Q4poXIq5TBGcuw2WB0gdTk6OFAOh54e3qL9x0xRvpBDPg22xVhyqRw4qc//WRxkDWNVJxLXqISFsdppfnyq08xxvD8w7+gak04StcgZxlxTNPUJPHziEpIs6UIJ0orDS1wPSUZ3WitccayXktnwDiLNhbbr3nRrbh//TWf/uIfAPgkHBlPe6bpxN2zD9lub+m7oZ0HBVXWVl3GnVIi+T6PMqc2QlOIXNkYs8QJyLrTzSn6PPJagiBrIcWEtZ6YZGxY9UyC9uQcSOEAqlJz6y6VRrjOkZIDJUZonCGjFLl1Fn/5q5/zm3/+rL0fSy6Fw/GI73um3cgRIXW/0FvqqmO9vsP4AaMqp3HfDu8Rb9dY1aFyYmVnzdeJWnbofkPZdJS6JjSO1xgS0zQxTkJEn1VwKWRSFDVgTJEQI4+Pcs1Xq4HVsGa73ZJyZr8/cDwJJ8cYQ9/1GGOlw9PO7TBIVxPXujnOXajgDOrawbnWta71ntf3ApxcQS3kQo31HdZ5oeFUqG0urxg53H/Ocf+Wm+2avh+wtgGFbkukZwxRcnWav4rRBq9BeVCqRxuP9/LB6azGmUwImVdvDuwPbUzQnJWV0mgjPiymbVrGKYxVGDPgu4Gu7/C9vMXeDwzdwNA7hq5DF/mAn45foOIoadO+p6LJk4y8TvsnIQzHIIqtRkwevMJr4ark4jhOmqeDfPgfToGQ36KNZb1aM6xX2DbqWTlD5zzHwwNWZ5SXY9tXRUoTlUjnOrbrF+yPsgmmdODlnefZ+oaNm9BVNvyn3ROroRe5sgKsXnDCfveKTOXjH/wZ41Q5np7Izbk550QcR0n6BqbG7UhJvGqEhwOlhIVzobTwW7TRFNctChxlDAZxHN7c3HH7wUfcv5aN/Ytff8rD119BOLDuDQdVl+vuXCfApMnwM/N6kDGI+OVUDofjQpRF1SbXrlhnvhWAOfNurHGEODsjS3xCLhOlgnfdEgaaXEfNhdrUdc7LWs1k6jwCK4UCS+hlUQblHW8e7vl//u4/0vct+6uIkst3jpQj3vcQZA199dk/8qW7Q9uB53c3PL9bkZpaKuWR8PAloOicxmgZc8bTI6vujl5lHh5fU4nczc7IvSf5Hvvhc5L6iHGS6zqFxDiexGNpmsThOp0J9tMUiTFhu4675895hngzHY9HDocDY5zonKdvdxIhShxJ9J6+7+mUWtyPrRWbhmtd61rXep/rez6l1BKCCZwze9pGqlHYRtatMdOvNjgFMUw8hQMxPrQf/Bq3/pBUNLlqaEChd4p4+IpcMz/6yV/j+5uFcDqdjrx988B+f2QMZ+6OVqCdxTiPMQ5jzZKf4/wK1w343rIeVmw7S9/Aha4nUI94Z0nhSGqdC1cKGcMhakoopGmCltBcS0FpIfJWDaFtGLv7yOkQJNohK5TpFmKy7zvWG7N0hTwBPVNMUiXEkZISUVtMi5FYD+DcM0KyxDSi6is+vmseJronU3h4eEuymucr4ZAUNNV7iq5L1ys2aXmME8+evyCm/5e99+qVJUvP9J7lIyIztzn7mLJt2M02JIecEc1IA2FEDeZCI0DStf6nfoCIETWj4bDZzW62ZZuyp47ZLl1ELKuLtTJ3UQKqQIANHBD5XlQVzqncO2JFZKwvvu81Lfk6hmPAY041PDHl6gd06ErFlMi51PgLIRrp+KFTorVCKU3JHAmmSmk6WeMokJJuWPCVr38TgPTOO9w8/4hPf/kj1q8+5fFXvsvT934XgGH5qBK6NRjyMcSxIKAcTPlqAW0bV0orjfcBRCUMH26Uqqqq96pUEh88sXFmpv2OUhJS1yynlDNdVzt3MQwUH1DFk+NIafySEutdn2piae0ONpm/1pJx8vyn//JXfPrpcy4vm2QfSUweCfR2ARJkM6ZEnnE3JoqZ2b684dNXksvz2p27WD3DiplcRrTqiaG1zHRHtoZ9Dpw//jpCOMKucrLS/hN8eE2eerR5ypPV+/W4hwGfV4zxjO0cmKfINNb7eJpHZj8RYyD4GsJpPhd14VyHD555ntk3QvI8zThriV0lFHsk57xTAAAgAElEQVRjjiR759yR5H3CCSec8KbiS1VU/IO059LyhWqxczBjA5AlYdQSuTSYnCkF3IGTWyCRcdKAskfJshAK7b6GMYKiDbtxzfa+Psj9OCOUxdgOoSNSNFdWY1BOoq3BGNce0PVhO9gFvXM4O6Hzhjy9Ik/r9rkBoZeUYFGY49go5UwpEisAnZmUP75hZyS70bPdR7ZTJub2BisNVi9YnDkWK4u2AtUIvuSEFBlrJKUVEUcRdElIaXA2IoWn66+OyyyZWbqZIgxRrNjO9Xd9eh8JsSAjDHLDs/dKO9fC5Eds19dOkp+ZWkAnTcGWcialpo7KD4GWJVcjvWp42EYcMdVMq0bslVIclWZaqzZahJTyg+FhU24F7xHjvgZfdvU6meGCJ19bsl+/Jmxvuf7gR4TNNQCP3/sWy6t3kcsLEPLoM6NqPHpVVimBdd1DpqMQaKPY77fVHK9t0FJWSbmQgphrkVda8TpPe3KKLBbLuiGXcpxe2eEcIzX+fibNEahFkZC6qf50zSQTktLO96NPPuUnP/0Zn3zyKV3XH8ezy8WKXCI5C5TWWLcky0Zmth2LRxfc7UdSLkihud3UQvRuM+JULcz6gWNHSBTDzVZQSsdy5XDOUERTwfUXSLtDm4ImkX275tLjTIexlkFJYu/wq/o9202W/dgzTp6pkZMPo6jgQ5OEV+fkfPBFat9h733NpTKG0App7/3RMuGEE0444U3Fl6qock7HzfGggjp4kcDn0sRzIoqMLBZnBZ3NtAkMEkEWjlgkhRpzACCVQEhBmAObm1vm/Z65dSHmGCgq4Loe13dY197krUPbns46BmcZnMXZeixW7hHpY9L0mpx2CFYoXd+yk1qB6kFa5nF8GNmUHbvNS+btSCwLYlkw+sYRyoKCxNie5crgmkS7M4lOSQygREJKTWrutPO0xU87pl1ECIXqOlzjAcWQ8CHj7CVaBnZtDOUjhBl2U2T0e7T29M2nBFGI00SZd2i5R7V139zd0S96bD+QSib6mdLGNFKKZqWv8GGuMuo2ekgtsjuX2jHJDxUEXddRSmm8HPG5t/TPq5YeEsPHcUQqiZCScV9HModixUw7nDUsL9+ie/ur+P2W3V01CHz+4c+4mEaevvtNTLd68NuRdfM8dAi0FsduUXXUzuz3G/quQ7ZCJeXEuN+jtCHniBQ8eB+VQkmR5CeUqinupUncUQZpe8zyCh9mDl1KWelBTDHS21rU//TnvwDgBz/4PtY5Ls7PSakW+AAlRrpFjzQLfALMGSHX4uf69prIhLYLZu9JKVXuGOD9TApgXDWMHIY6hhpamGxKmdvdDdb0GFWLH2slRQhuKBhlOBvq2jkjMIAUkVIyWilMk3wv+iVhKRjnwOg90zQxNW6T94GYIrkkYvycyRWijSYfLBwO33kfwtHd+YQTTjjhTcWJKXjCCSeccMIJJ/yzw5eOqGJMxzFUyrm5DqcWUliOQZeFglGKhdNoAn6/ZeubGZjqcAtTCbfaHpVAMQbm0TPNnpASxViMrt0OJxVFC2zn6ExP39r3nevojMLqLbK8xBWPmtuYpdwz+y1SnpPUd4k4fGn+JkHXrKdS8HNhd1+7J9vtns1O42OPtgrtBLZ5pZwvBs5WC5wxhDBWxQ0gkiEiiEoSfCGmjGrxDoN9hHUD2U5AJEXPdqr+Jlp3lJzYTZHNvnC3rXyHnALJewQFYw3zNLHdVP7ScrlClMA03pHKlpu76sT7n/7yL/nOd7/Dnz1+0kIjH6IxBIJpmmq8gVIYo8mhrrkZBkqKeKXQ2uAaVaTrBZ1z3N3dUXLBue4YjplSPqq2YnoYa4VQYzNiikghKSlj22ey0vhUWImJKATKLeke1Y5QmCfW9zco+ymPnn0d14jgpVQuTy4FSVP4tO7OYaQigHmaUE3JlVOs5n4xEkJgnj27dV27Ej2r3kHJlDBDTsfOg7QdKEsxPdItoAVgppxBG7S2FKX4m+/9NT/9yY8BWC2WVS2YwbqOcT+2Y5uZZ0/nLujO3uV6PRPzYb17SqzEZdcPBB8gHnylOpRQdJ2q0R+HblqJaNWxXHSAZL1ZczfV0a0xHca4GmYqCpttC2U1mq7vWAwDxnSoktCq3hBGgbECZTRdMPjOMR18dSbP7D0+1rFVaC7VOVd/oiJky6cqR2I3BXJ88C464YQTTngT8SUjqkKY5yNBtQYpFjIZmUXNiGoOfL0zGAnT5prb3ZYkNHaojq394gxlNDEWcpyOQYTzHJjmEZ8CuQiMNkeyrukcpu9wtqfXBavqBmflHTLtEbNH6kRImV1zc01lQVBvM80rYiloqY6S4XFes91t2G/3+M8ZCkpjsMPAmXP0/YJh6HGuqYSQLXohkYrEuno+WkDOO0oakVIyWEdubrdhvKHEEa0kpUiCD+RSj327S9xtPSHXMEbVOBzWOHS3QKtCCntSDJQ2mkn7QL9cURbnLOyKz15WHsunzz9jeX7BnwlBTrGZ3dXrlnIlAKfGJZJCotuIL/qJmDLWWozWR8O3lBLTft9kwz3icz9PtWIoxtTccw+ZSRkfI8tSE9VL5kj4dq5DKcVdjKyKwLpyzG4CgTaCcbwnhLmGmVJHa0ZL9uMe7WVT4rWCKSdyqSThab9lPhQkMTHvNrx+8RGrs0tClrx6XR2GNzev+fbXv8Gq7yhxpiSP0G1dkwepG8FZ4UuLkVAGZTqccvz87/+eH//kJ0f11zh7+r5HaMnibEVIh5EgoDR9t8SeP2L1ZMXUMq+KlMQs2W63NdA1Z/ZjHcNOUz2m+5trrp9/gN81Un5JaG0xrmd5/pjlxVNKIzrf724JPtQ8KC1bREUlYVtTFU+LYUHXu2Oy+9D1dNbiDFjXY40+Js9rJXFGMwWD9x6vHtSKVapfX2hShJgPxo/6JBM/4YQT3nh8eYET/UOmVEvZ1LLyM5w1R4fhabtmvd8SpcINjxi6AaUOZGJJ9HWDElIcN4yUM0VLtOlRwtI5Sz/UloJ1Q41NkBqR7hH5wBkooM8QIhN2GzYhkVLlq/i5kEVieZ4xsuN+c8fd/W37u0jOUGTC9Zahq12aYRhqUdN3yJZ8rdqbb2c1CgVSUaRq8Q8QNzfsQ0C7AWs6xu2aGGqXZj/OTKGQkyRngc+ZMNeNxpjIxeUZfWdJYU8pbfFKQJDISaC6M4zVhEOCtbGIolmKyLMLy90nv64fyZl5HomhZgUJ8tHTJsdA13U1N2ocIWdWq3q+YZ5qkGkjIWv5wLPRxrJandWibvJHLku/GAghUhIUWY7Bj6WAEaqua4loU/1m6rlmpKp+KSkXQnxQwkWfKNmzn25YrK5x7sBf8hSjGffbRgrOR8fpFBMpVS5RoRCaUqrkTEoz03jH9ctPWD16hx/+6EcA/OTHP+Pmj3f8D//mX9M7gZIPHCGpPEUapB0w/RJpm7oqZ2IR/Ojvfspff++vCb7yUwB2ux0pJRbLJdvthmFRPzPuPUV1ZLkgpALBY3RLNM+R6BNWFXIsBJ8w7UuTjKjE5G7B46fv40MlnWcKfqrcqSkl0m5LLoeE9Fy5/zlT5kw6Oj1nqltQ9ZKqBPxDvIlFlkLvFOcXV3SrFeIo865KSaUUxpgj1+qhwKn/jjk/5JalyD9M0j3hhBNOePPwpQVOjVyoD1etFFrVdrokk5NnOzVCp1S4y6d0SrbYBig8KItyrhtqjtU/BUB3XUs6lmjtME7hzOdN+wpJeIR0lHx4w47IUogx49UTSs7I9ha7dIGSPLvbG7ZzJBWJNnUT6jtJ7yyLhUPrghC1GLBaohTMcYtIFqO7o/Q9zTOb7Y5YJFkqZHuol3nLbtwyzXeEIGtnwz6MHZzVrCx0ciJOO4ZnNXgR1RHxhLCnXw0H9TElw2BXaNWRRWYKkfEwdksSKSIpZKxUvHr5HAApS5XxhpmUAn6aSPFh0xei5jiN41jNGtvmNM8e8Tmi8EMuGPWtXmjCONa39dbdEVKRS0Rpg5K6jatqL09LgZIKoQzWuaOsGyEryVrb2ukJ8bh+MdbR1jhPID9gdVY7Y/v9WOMAykH6njGtkFFSEWMgp8Q0R1Ks1285DJQiWS4v+MXPfsn1zz7m+z/6KQCLxSN++eELvvK1z/jO77yHJCGPZOI6Xs2lgLRHU8opTHz/+z/gl7/6FTQS9pFQeyyOVF2/WM9ntVgRhcDHNWJfkFKQ8sHM74aVLoRceDQskcsFqqW0xwzIHiEHsnjEnOra+ahJqZAipCyIpVSJPBB8JKRIDIEYxqNX0SFlvQZzVo+mY6cN6LTh7OKcvi9M+xvmNmIyboEQqgaSfs6E8/DfhyRxLeWR8F2LnhPJ+IQTTniz8YUFjhB18+rayMYpCSUyzhvC7EkhHDfImBMxJwQRJWtW0yHVWQgwpsp+ta1SVgBnVyztAmM1tndIOxw3oOLvIBe0Gpj8mnlfxw4y7clZEMUK3FVVRbUApNe3O6Z5h5KaYehYmcjQtOqrZQ8EnA6U0hFT5fRM+4kxzxRlQUmm6fboADvPI5112G5BpDBuKwfHzxOZiJAaY3r6Zc+qZficL5eo4on+HkRmdCuu93Uz7i0MVrAYHN2gqu8LkGIk+TviLElFgJDkpkrSUtK7M7zw/OxHP+SD3/xdPW4fsFaRYqgKqZIZd/UzSiumMeA6S8kFnx7comNKCClJKRFCOKaqlwIxZaZpZp6mmkNkDsGeVUbe9QukgKVetjskMW63+BixygEPY62cq6y8Ggim2gURhw5OYPKJlDPr9T2fPa+OwDXPySGErGORHHDNT8ZaR4rVxbeUdAzAjCGgtaVbXvCbz274wQ9/fux2PH32VYo0/O2Pf853v/1NSp4pB9WfchSpEUoRUuCucbJ++rOf8uvf/JoQJmL0CCXpXS2SJbVvIZUGIZnbhi/mGddpnCjIEKqqrhXx2TzCS4USkhQDiYko9sfrpARkf4NMay5aMZ6LIZZMUgLZnaP7txFq1b5nElTPFMAHj288t3n2TPOMD4EQAt4HfDjko0ESgtd3d4j7zDzHY/dwWGT6fkCah+98vR9aIShlzSmLsXFx6mjy81lgJ5xwwglvIr6wwJFCsrQwrWvXYL27w1qF1BpBIs4boq8PUUFk4XTldpiH5GEA5ywlQ8ozMd7j28jm9TryKhemecfb73yD3/nWvyY1MmzYfIYQI/t5YhoToR3qlMBniWCPUomUBPv5oYtkrGG1WHK5MITxOX5bfXCy/Qoh9rwaE/fbNaHxgKyr8QmSRMgbCgW3rJvJ4uycaT+x3m4JpdC3UcrjszP63tANjsuLc6xWhOa3k3NCKkvhLWQurLYfUs5qF8LZc4RyZBEpGYyuG1oKGaVGKHdsbz5kv39FajEOAsXerdjuAz/7u18x7hqvRg4YVT1btFIYrXFd7QCUFlew2+2JMSDKQ2hl8BPTvv55LoWcfft5mnGc6rhLQBE1sgFgO++Q2qCNJrXEcahv8iEmpNaAxPuAMW20pi0+JAhT9axpo6V6TtANS/ruiq4fMG1cIpUg5VDJxmgQmcaFJcbQYkAEIc6QGldkHtFaY7ueKWZ203z0k0nZs9l7bm5fcn1zy6MzhzqEakpNQbJdb3l1e8dHn3xS7/HNhsuLFfu95tHVI1J8kHXP41Q7K6kwzoHD7HYKkXQ7430mCUEsmrkRiecAZAVlJqWJvnccqsBFv+Li6dt0i29jrGNuP88Nmc4WcoyQFVJq5nDfri10DpxbItUVbSLIHCKz94zjxG4cmWdPaB29nDLJRwQJqSW9k0fhQCEx+i061xiMw3hWa4EUGUFGGElBHR2d6/jwVOCccMIJbzZOTMETTjjhhBNOOOGfHb6Yg5M9r37z18cgyWFhKSJRkqDvOnqrCAd7eVoelFCE4GurvHVxdrstSoI2FqUH+Jzc1BnNYAYWcmb38sdc31Sy7nZ3j9CS5eoJF5fPYKwjhDTNgEIIx+QFQnU8ftQIwx30bo+Rr9ltbrl5lSjdWwC8fB4wCjprWV1cHNhB+LlmLmktsNYi1EPNl0VhebHiyZPHdLpA41U4FTB6jzUemTz79YiwlUci5BlCWowSzJPHm/fJsY6OclS4FCj+E/bb+6MUfH3/Eh+2UATruzuC3x/HOeMU2O09+70neEEMTXllE7c316TQ5OXGsFg0InEIeEFVv5XM7D2HTIaSM0VIQlYY63D64Egr6RaSnGINg8z5SCbWxjKsVqRUAzlDy3oiJ7RxKFWlxDFlYjNQ9CG1qANBimCsORoHWmuPTsBKPXT7SqiEdCUVWmmEgNS6J9M8tT+vOVSHcYlSIGXm9vqOm5fXlAyu5UrN00wRhRQSH330Cea9C7pFvU6b2y0xZW5v1xRqICVAzBEhBItFNeYb9yPTdOC5ZGJs0umUjkZ/wU+M01THcSlze7dhO9buiXVDHROGCaTEOcfYgi6NEvh5Rg0rFpfPWK2aKWXIPLq64OnTK2I0CN2jW3fOKI0dJcYGpFk/qJlK5S511mK1JgzxuK45JUrL8dpP+zo6bMrDnKtrtVEF5x7G0WHesr59iXOKYTEgSsI14rRUC4I/dXBOOOGENxtfWOAYbXj8zjukFkyZS2CedkhZPU6EAKEOctOmwCgJciGk+VhEHHKFtHI8fecbWFsdW3frG3Y3n6FszyQeMYcV3dOarXMmBEIpYjTc7RMhtgwmmZFW0S96zjuHtRYrD7ydHX6ObHZL1veWaDLKtuLHdGgpa9SD0Zg2DuhMJcEiClZrrNPHzJ3O1fRn8gZRZkTjLcjugpQN2zkz7j0xOqysG+Ri0YHIxJJQzqK1ROY62hLz3/P6w/+b288+4/mrl8xt885CkEUmB/BjJgYojUcSU2L2gpK6OmpovKYQItO8x4c9QnY14bmRf2tBWuroJ2dyjM2tt5JWF6vHfPsPvsnV1Vv/H7diSUqRF599zGfPP+a6ya21LpQSSTFWEvCBpyFkJbQKge06QDAfFFZCoK1hcAOp8X6kOkQ/WLQ2VaXnI/PcCimtGfqhFkw5V5ffxtfqrAFK82fJlLZ299sNy+WScRq5vbtDa41rcRFFCMiFs7NLvv/jX/LzXwS6Jpefi8BoS+cc5xfnR9dfJSWlCGIK5JgY+p7UCLXWWECSS3U4jm0+FKJluTyrhYN0nL3juG/hq9J1FJGxyKoAE8cJVS1KWuCokIrc1jWkSJDweh1QEgQJNR2KCwVqh9IKq9WR8K10LSCVrAWiFALTrm0qBR8D47RnHHdopdFNmh+B1WpAykQMI7tdLeIJmc6uoIxcf/ohQkqUu6h3igHZiNInnHDCCW8qvriDIxXn7/0RqjzIQ0tOSCFqErTU9YFLLXCq5DSSWmSA+JwJYAzV7AzhGBspOLgF8eothNQU69BOHP0+AtVYDq3ozgWueXrUXEeJRJBCYr29QbfOivS37O6vSQUWywuGq99l35oNKIGUrip+SqobNdAN1SNE6+oJoqQ4dg1gRgjF6C0+yqM52ny9oRRBLgIhoesNqcnYb2/3GDuQCwS/Q/k7wv0HANx88lfsdtf4krkf98dcpIIiRohB4OeMjwHXPHe+8t63+e7v/QuePnnM+u6GTz79GIBPPvmYzXbk1auXPH1yhVL2GJwpRGny6XS02letU3P+6DHvfuV3sd2SUmDdiNMxRnLJrJYr3n73a7z19nt8/FGVpH/44S8Y92tS8FDKsSgKIWCtIyPwvnY+uu5h4zvIjK1zR+O4A1JKiEZKPvy5FIJSaqehlIwPDyova13z+kmIkghz5SilWLssv/7Nh2x3I8YNXF7UpOyYMqvzS3TX8eGLa6xM9H295YdhAXmDloLNdnNMIEdVntF7772PtY5SCstlJVVH76u6T9Xjfkg0h4JEa01//ogpZ/zhO6B6Ej2uOwelyagWDtqMLoMn+dBM9Q5xGi31PURySwU/JNlrY5Cm5leJIo9dpIOKilIN+SoJuK23KAhZQzI7ZyBnuqZ2Cymxn0bGcSYVz6HeXXQ9fhq5f/0R8zRy8egtuv5RO19JZw/y9BNOOOGENxNfKhPf7naEWB9mWqpK6LQWozQJcXwoI3QdYcSCVIZcqt8JVHVtjIZUAkh/zB6yfc9yuazdB6Va3k0jqaraVfFzgJwoojnapoKWEZEmdutrdq8/pTtkXsnCNE9sdzv0OPLW+Vdx3eP6u6RCyKp81pqagE01PlNKE6Nntx/Zj/tjovIYInOI5JiQQh3l40pZlGrBitIy7yJjky1Lq0jbO1TaI+NLPvnl/4m//7T+vHli7wu5GEIy+LnJukvCT4mcClkonr31Nf79v/+fAfjTP/nvuLi4pKSEOMj2gbvthh//6G95+fJTeitZLJbEdIh5F3WEEqvrcCoCN9S378vH77IfA7d3LyAXxnHX1k4gBPj9vpLLV2e8/5VvtOODn/3kB0zjHc5ZfLuuUkqWqyWzT0ei8GGsJQGyJIbAcrFgmucHovM8Qy5IKTHGHDs7SkCOnphrwCetm1KRiSlScsSIcpRsG6mQQvO9v/lbCrV7ccjxWqzO2e1G7u5fs+g1nemOo79DYeVzYr3dHYNF/VyLhLv7lnklqaRmYHAdzljmMCPkQfRe1UxCKXIMhNufU8o1Md0cr62x5yy7P8XZd0jFktsHQ5xITiG0JWVJKQdTQ1FHgUkSoycETwyH445okSglUYxGt85TtWao4biiBaM+oJGFJaRcuL9+jWzr5zpLd74kny3I5aEDt9tteH2zJsUF3fIpRWj8rnpKnS97nIyccMIJJ7zJ+NKwTa0s1tb2uNGmFiOiPdzbiAFgjBOI2kKfpon9NB+5GqUIhBJVDq4s7ZnMojNYOyCNppRCDJHYPhOjJ8REioIQEr5xcPZ3L0njZ5wvBVrB0MmjkuT80VOWwnCFZnHxNqW7/NyYLAEGKQQxBPaHNOX7XZNMxxpQ2c4BQElDZxXFFax1KPmg9hGJ41t1QWFaojlS0ostNy/+M65smLdrXt5VpVmcBX4GnyZKKsfRBy34UirJ++9/g//lf/vf+cN/8Yf1r+LM7auXTd2kjsZ30mj+8F/+MX/3N4ndeo3MAeMO8QWCFHMrKATGLri8eheA9WbEz/eEecbPI/kYTJmxztK7jlQyu+2aFKt/z9tvvctuu+HnP75BaUU+RHCUGpQqpcTPnrPVkvlh/oKSAi0lKUS0kMdOTSaCkhhjEflBfiwQGGrkQy4KpEC71tUII6JkSoqMMRxHVN4HNnd7nj9/gXWWXAqfPa+qv/2vfw0ULs4H3rp8i6HrEPpQEEhCmMg5ERPHxHCtJM52pAzb3R5IuJYae7ve8fLVh9ze3jIMhq9/vY5Tl+crtuOGlGIdByUD5Wk7p0RYj7za/FdctyAWfVQjzfM9aY74GDC24+qi8sUeXb6LMFc47eiHHtQZOR3LKSSvGO+fY7p38dTCdQ41zfzwvZSSowoOIMx7tIyYTnO2sky7WsTvNiNIiY8Z5xZHzx+N4P13v4JREq08Vu7pdFOuxWsQpw7OCSec8GbjpKI64YQTTjjhhBP+2eGLfXCk4Gy1aK6yVAO6DMEH/DxX3kYjFOSSSTmTQuMCSPFA3NQapRXOOfrOoWUjYJIpORLmRCq1i3BwlE1ZVO+c4Bnv79hvKvfEqAk3CGKWjNHQLy5xzQnXmxVFWYQy3HlI0+bIA3LaIImNtDuTD462SlXzNqEwxlFyeuCK5MJiWGC76u1zMCHMRdSxmSokCn3Rx9FaDJmb3/xHPvnFX3O7T4zrkam50MaYa9yFBKGhtDdsKSVCwPL8EX/+7/4nvvOd32N9V0cc827DvB9JpSCVOsYahBhZLFe89fQ9fvOr70Ee6VwdpSjXIVCEFJlC4vzyjG0L9ry9uWWe98zjvnKN2no75/BecXd73eIrIpv7ensI4Omzt/n4o0tyHo9jMiEl8zxhrKPkTAjheD9oXaMWcorsdzuEEA+5UqJArq7TWj3khRUpKLL6rFTllWNqSiAlJaJxTOZxf+wgjHPgr773I+7Wa5CGGD2bxisSQjAMHWXpKCmjtD52aqorr0BIhTWGyR9UZoVxmvDzjNbV1+jFi0qyv93sCQmUiizOexL199yu7xFGUSSI5skDB8K3oReaEhIhjxQpSdMhi00zpUDMBTFumcNvAHh5/SGr4Qlvv/NHWCnozaoGoAFTMoS5RxYNcY3ratcuxUxWAlJCqkKmjmzrSSVy9Ox29wzlnJRAmtoJnMY9IkfOzlZNpXaIashY7Ug5s13fkcTIxo9t7RLxcz5XJ5xwwglvIr6kwJEYocmNg+NjYD/NzPNEydWH97ChlUb+1cZgrEWqGsYJYJ3DOVuzboDUFD0hZVKZquy2EVIPzAYpCkZ6rAus/Qv0gRTcP6NfnaNMT4ywnWf27VlrSkRbiROKzjp6o48xEyUmckpVhmwsR+2QFNXivqmOlDC4prRx1qCNJObKeTgQXpVyuG5JEuCnGRUnBlfHDrv1z/nx3/wNd9dbFpdnjGFPOHTzpURrhZaK4D1S1AJQS42ylm988/f57nf/iO39musXtaDLwbO5v0PImhXV91WtpY2hdxZjHbfriXkcuVzWddWzw7muXp9QCH7i5rYWTNvNFsjsd5umVKrntFgMDMNADNXoz2jNftfMC0vi8tEVjx495ZNPfvkw1srViDDPCSU18zQe145SajxHjCASUkrID0GXUQqys2ipjq7Ekow1mmI0QirGacaYw+gPcqxZVPM4sW3coZ/8/Ff8+jfPyQXG3ZaU61gVoO8dFxfnhBDYzzMX2mDdwQSw1BFdTqA0uhWoJYOfR+Y44X3E+3SUYr/3lScszhw+3qNVIKuDI7FBqErkLtJQlCYfCchVKeWGHp07Ju+PRoTWLlFPNCkJQpjYbV8BMM13TLtPkZ/NPHv0DZZuSUvuwMqBFBzj5DAloXS95tWdOBPDjJECESOqrV3OGVEMRl+RhUZ3GtG+t502hHnPtAZ79GEAACAASURBVE+kGNjvm6FgjmTAdQ7vI8GnI3dOCYXgpKI64YQT3mx8iQ9OYb3eHAMU51g7IFLIKqeloJqkuipcClIorDNorY4PRCEqj2aeAhKBVAc7eEkqiZTqm78Ukty4FXd3L9httyxWV0RxztxIjXMwbDcZpSaMrCnZQ9tUh77H2qrmSiEzjROhcW1EaQ6/snqzPEQK1M5DDAEtBc65Byl2MuRdpqTSwgibZ0wJ3O22pJBZdIk4fsDms+pps9tnZP8ObmkwKAYbmFtBJ2TlePR9z83dzTHEVFuDMo6vfPUbSKG5vXnO+r6mhofZs99tqtxcKuapHoO1HUPfI00HwvC973+PP/uXvweAkTPe7LFdh9ED02bLpx/VOIQQIsNiIKdIyvn4Jj57hdL1ugYfWK9vSbFyh5QS5HhG3w2VnHuI54gJhcY4Rwy+KuwOtizpyH7CGF1JsI2IXKInioLIniTksXiVoqCKwc8FbSydMYRd5X3so6cUyW4/8+Enn/LZy9d1vedA1w8sFgP7cawp3C3McrVa8d677/DixWdIqbi7W+NjJcoOw1CLpXlCGcP9pvovpTgzNPJ7yZLlakWR9fptp4/Y7Gac65CyO9o5pVL/kUvtzKWYOMiRtLE1aV1UebxNEd9cqskSWSzOrTh7+j67XeXTfPDhTxG2EPPMbnzNYnfLerdv3xlPzjN398/p7MAi1Z/lSvWdUoBGY/v6YgGgzICQPVIviVLgYzoSxVOwRN+RUyV096vztg6hcbgKfapZWDE9dG2UUJxwwgknvMn4wgIn5cx+nI4bfj7Iw5EIIY+FClSZqjYGoww5Z7bb8XMdDwWqdi74nBJICEHJuRI9Q2Tc7ojxMKKS5NJxt54QSmGaeVvnXFVACYl1HV03HCXffvKs15tqYpZzHYs12bJStWsyz3MtaA45QkJgTe3aGK3ruOiwSedEiZEcRnLxRHEIrNwz768hS9Zmwd3Np8exltBXvP3Nf8XN619R/A4XH7PdV4K0dQYJdF1HspcIcZDxKs4vHvPVr3+X7XrNi+cfM421YBrHiTBPGKNqgTPXgvLsXLKf9jBPbNYbdhP8X//1hwA8vTzjyaNzlqsFF096pnnPL3/5CwCmceb3f//3qwkfVUVT16EQY0AajdZd7ao0aX5Ogd12jVaCab+FXDc6IzVzisTZk0uVdu83jYgtajFnjKFYjZSC7Fs3rUQoiaQ1zroj6Xa1WlT1V87VNDAEtq3weH17y8efviYWSUwB11Wl1PlgKQhe39yileL84uJYvJ6fn6O14r1338VYizaWRRub+nlmv98hhUAJeO+dSvBdDAP3d1vu7m9Zriy2H5nm2v1aLR1KDQipWhBtve+EFDWFPHkkAiE0MR+yv8C5vkq1BczbDXe31V9onjJm+ZjVmULIgcXiGQCPryLr2xf4uOP1zcRu+xNSqffQ+n7E6DNCyWx3H+G6WmgszgZc33Nx+QTtFmTtSK2TJZRGCkVkbh5LHANqpRFIagEjhD3GfUBf0+NLPH5nj5mjpZlInnDCCSe8wfiSDk7dZA6PMiEkQlVeQogBRA0MhGrS5r1n73fkklBaHQuPnBJESaIqsJCHHJxMmmuAYkqp/q7jnq8xXVcNBKVANpm41QrnDEpbUi6M4/a4QeYEUkm6ztEZSyyw29cuxLS7rWnbWlZ5d18Ln8F1LPqOxaLDmUxJO0p7Kx73OxICe3bOsHhK18YbpB1h/wqZ16RcMN/8E/RQ5eiinDHFwt32X7Hf3rPerImhvbGXRPQeP+3R/TXTWEdAKWUeP/saZ6tL1i8/Yre+5W5dOw0xBsiR/a5gjaYfqnGhlJfEkAhpZrPd0i3PWN/XjfjD5694fn3P07fehudbvvnNb/Hf/PEfA7Beb3j27C2UEGy266Ox2zRN5JRQciCEGUGitFGUc10NwnQGUsZP7XyMJuVMyfX613DWQ1Fb+VrWSMIUWvZRG0UJQSqZlCJSSRat0xBjRBvLZj+yHSf2s+furq7DOM4UoZHKVn+apmibm6Pwo6srEgKlNKvWhVitVjx58gTvJ7quQytNbjeYNYrLi3P6rsNYfXQrfvHijv20ZnVuuLjSKD0e7xUhFAXZiptyDLqso0dDkZoUW6F4SK+UEHPAClUjqbQ5BoiOr68pamZ42uH9SJrr/fDW+RlnorC+u+PXH33AZvcbUmv3rc6ecn4WWSwWDKuB3BopRRQWqwuUGQBHivroVgyBmPdARtJywQ6p4bm6L0/eM8+ZrnF6erOsPkVAKrm+0JhaoCrxkE5/wgknnPCm4osLHCBTjmZiMfnmmCuqtFlAbJvgNE2tZS/JZOKcj0WJRKJsQmpRZditve19Zj+OpJTJpaCswzY7+GrBrxFCo5U7cjG0hkRhCpFYEhbFctG6O51DGU2KmclPpBBwLfxxcbXEmp7eOpSViEYQdeIenZ6jUyF53d58q9Py4uJ9inQY27VuRF2X6PfYxTlWX4DsEOoRsfGUooygCudmyXLZI1VkfVN/Fykg0p6cdyx6zbKvRVEu8OTxEiEi+92W4H2VrFP5INH7NuYB04q5gzHdYrHiW9/5Dj/42x/y+EntAFy/fklMmY+f35KC59HlE/7gD/4AgHfflYzjiJ8mpJDVZwhQUmP0IRQ148f9kfybc0YqxeXVE4RUx8+E6Ek5V6KwKlhl6IbGf3EOUmSa9uSc0VIjWscv5EKIAqFXnK0uOH9auyeb9ZpPX37G9etXrDf3lbDbrrvtFljbkUs9vmmq66O0IuVM1/ecLVfknHl0cd7uh577+ztKSSyGnsViOIZEzjGw245s7l+jjGRq55SYubgynF0YpA7kFGl5pKRcC3ApJUXCofQXWYIoSCGwnQPUMdE8powSEqUFSku6ruf1R7VA/OUvfoXiA+J2i+kHtq3YjO+9y/3Nlu2UCWKFGIbm5AyhJMZxg0weOSxZnNdg2MvLM+bg+fSz5/SLM4ZhdfT2kVJXPpxQSKFQSh7Ho1LUzluXLT5kdts6jlvvAlpapJLN2DH9A0uBA3n/hBNOOOFNxUkmfsIJJ5xwwgkn/LPDF3Zwcs5s9/tj3o0QghgjUqnqXCvEAz+ntayVVBilESp/TqZaAEWMiVwiqbXOBZJuMdQRiNL/wB1WINBGo41CUA7GtchS1VnmzGJ7gTMK0dRIc8hM84QUCes6VBHY1kVaLQe0LfjxBdPtr5CxjgO0dujFE2T3FjovyVkceQ3aGjKWJBygEYe2PleE7ElZIBDIko4EhZhqBlKvBTCRFxYdKl9kfb9HdoJ+eUnMEtvVcZMSgqsnV+Scq6Pybsu4H9vvqhEKMUasrWO5wwr1/YDtOp48eQtj/h4fa706ZUsIE/McCdPEq5cvmaepna9h3O2Z55l5flD0XF5ekmJkP+4Zp4kcq7QYYBgCu92OR1dPSBnut4dssliVc1pifMA5RxaHzCTNuB959foV4zQzjv44Hvra17/Jf/tv/pyvfv136RbLI1E9BM+833Fz/ZoPPvg1v/jFTxmbkksrgTKVw2SlalEElftlqGGe6/U9037k5qYStJ89e0ZOhaurS1arJcYYQlON9d2ANR1hZdA2I5oM2+ctUiZyqTwtH8JREZVSqsqwkgkpcvDyLUWCNEB1u3b9CtEI6QJJHiM5Ray07F7f8Isf/hSA7XqmH1Z8+MEnDGfnbOfmLrwsdMM7XFyteLZYYocObdt3MI9w85ylljCs+NtffB+AFy+2Ve0nFcN4Rj7/CmeratSonMa5ruZ6CVldqw93kSzUhmz9flpT75O72x0xJLSEksqRYwXNNTmfOjgnnHDCm40vLHAAlNLHh6FsYZVCiOqSKsrR20Tr6kZciwCBEj2m5R9Zo2vGUymkljUE4IylXw4YrZAHzkepD3khJcoMSGVbAnbj85QZLRJOGzKCFDyhqX1KyfTKo+SETjMiXROmmqe0u70lThNCTLhugbW16IghM92+IPMTipCgV7D6Zj0+9T4hbMFcgO5p/GeUCUgDWhpEjITpFfup8l8Wi3PGaWIm4eeZee8JqR6fdAu0foxQFqsHRAssVKKwWC2BWjDmkgituIjRt3yshImR1cHJuBWExjicC8SU+OiDDwHwOUH01f03J/b7LWMjOruuw3WmJXUnTCsu+q5j9p6VUuz22xoBkOr12+22dF1HTJHnL17yq/Z7co5IIQHBYrng6uqK69s6jvPhYzabDdM8UbLAup4//bP/HoD/8B/+V5699RYhevb7LXldxyIlZ6QyPHn6Nu+8/3Wevv0+//kv/wKAadwgZA2TrFL5Q3RBDeC8X69RQrJcDLjDOMdPPLp8RN8k813n0Lp5GeVCVpG7zQ3T9gbR/lzpanNQSqnho1kSWnWdcmb2M+M0gRDH5PQ6tvXVjVoocinodn8poSkZchAkRkoMxzDXGt5Zr23wE2dDHY32ztFdnnF2+YhhcMQwok29/ze3W6Tfcr48Y1vWIOq95XqDS5I4z5TtNZt0z7it91c/PObZs9/BqguM7SkoDs3bGDM+J3IO1S4hH7yZDD7OjHPNH9ONgA/8/wQG/xSw0vLu8P4/6c98UxHKP85DaBvWv6Uj+e3jH0tG71T/WzqS3z72afeP+v8HvfgtHclvH4Ne/lb+339qfGGBczBnO5CFpVR1W2k8hDqfP3BmDFprtNP0rqPTElVaFyLtyLIDNeCjOhKJU/QoIemtxMmIyOGo3Am5MMeJnA0SiSt1w89pR8oJL3u0XSFyoWubk9YgC5A1Oc3kaFjayu8I25EiN5SUEWKDKK2jgUIWQcwadF95Co3nsr77DMwCrXoU9hiOKWIm40kWwuTZ3+2PERM3L36EcwOryyfsg2IbHSHXGzkKSd8tGIaBKXqmJmF3qr5FGyVxzqGUOvrJlBIJIdC7DqX0MarBuQ6lDFJKut4xzyOt1sRIxbwLQASZqw/OTfVYWZ2d4VxflVw5ExrXR5t6/UIIldcSPfPY+DlKoY0mpdQ290OCdevWSIEPgZevXyPVIdbDYrWFUouJ999/n3/7P/47ABbnF7x+/Zp5v2W7ua+EdR4UbUIqHl095hvf+NZRRfX97/0XjBV0riaRz3MtiqZpZLlc1hwtX+NBDgq5aRq5PL/AWss8z8SUWCwqZ8UYXe0PikCKjth4ZqVIci4tpBRK0ceHblEFJyNLl1FGIw/GhSUTkiekmZygpIhu52SMwvSOHCKb7ZbduEEOtcBxvme5uqLoaqOQGwdn8+o5bz15xIUt7Ld37O5uuLuusvgP/v7nvH224Fvv/Vs+fvWcqyfv1GsgCqIkSo4IkdAiHb+b2gr8+BlhvuX8/ClCdmSamizlKnPPrUPTuEO5tAR4YWt8l3iwVigUUjgZ/Z1wwglvNr60wLHOQBtRSWp+kDEaYyTWWLq2yWnlETKCgOxvyd6jbK3cgjonCoukYGVEtC6NGhQwUXxgN1+j0j3zWFUznSsUH3D9BcKeUXL7Pd0lQl6QgsAnRRGOoWUFyRwJaazeKloiUuD+7pcA+N1LrC7k4rD6LYR9D4Akl2Q1MEZDypaCIch63N3yAmUsSQjm2ZPaplVyRApNyR4RrxncDbsmC14MCtNp0JdgLI5I3wr1ruuQSpNjQRqD69qQI2amOVIWGtfVwuVA5I0+olX1wJHa0i/qsQ3DgJI1NTrEhBsGvvaopmiXOPP6s0/x8w7I7Mctf/d3PwLgvfff5+rqMU8eP2Ox6FBny3b96hoaY6ojdfRVIgykZFicXTBNM7vdDnF8kz8wVWsSdi6FQ/UaUyQLiZCSzln+4I/+hOXZFQCvr6+Z91s2d9dEP+FDK15LQQmJlpIw7XhLFr71rW8D8PzlS148/5A4joT5Hmtrd0kqxRw8T58+Y7lYcnNzc7x/pZS4vsN2XfVoUvI4ZtmPG5Znjq9+7RmIhNaHgjJVCb1QFET1sDnGa2VySWzHPXs/cde6YuPsWS4kjxeW4AX7nULrgxFeVZ5JAX1vSaXj6kkdHd2VO549fcLi4hF2MbBeV5O9V599wl/8xf+BEQIRE/N+V0n8VDK/ePc9/uP3/x92ouDFIdA2IEupnkKiEvxlUzgKtcFZi3OOm/tXWLPEudph8qkQs0ALiRaG85aHdXmxQKwDMRZKLg9p5dSMq3KSiZ9wwglvOL6wwNFK8fTi4mEzsRalCrLMaL8lh+fHTVCrCxJLspDI7jHS9WRxkAV7Fi0WwHSGEJqaJgZiiky5I5d3SOWCblXb1EUlTHfPOI/06hHu7G0AkrCkcU1OO/rBkLVmnOqG60NA5lu68ILN+mfM43OsrUql4erPCeqSKXZsiyE0T5YpREoRWG1Ynp1xdrY8OuvOc0HFhNIJyohWzTuHGYKnxD1++n/Ze69n2Y7szO+Xbtsyx1wDD3SjQbYlRcaMNKF50b+tN82MzChCGo1E3wS70Q3g2mPKbZtOD5m1L/oFFCPIEIJR3wPMubfqbFeVK9f6zCOzH7EqFUzj/JTQGaTzSD1hjKHOni1KKYZhSBJdFdG5OBTaMEfL6AJ1s6KqquWaezul7o4x1HXFuk3vVdcVMQZCsHzz9e+4vblaOhcP+7cI4SmMwvqAmz33D6lwnGZHVTW0qx4pBE12Ro4SirJCCpX4OaNfFnalCrbba37z298yTdO7wiYPL2OIkAuc84gjxpQOnnyFFKao6I6phTsOPd1xz+NDKnD8os6JKZKBSPAzuiz58JMfA/D8vfe5e/OCQkmM0oujcwiOcRqZ53Str6+vl+tQ1zXWOV6/fUNZllRVtah/fv/73/DHP/sRZR3x3i4p2snPSKC0wYeIUO8M7fq+4zT0uBDZdwOqXOcLtGH28Orujrk/sGq2WJtNEmVgnCZOJ8uxOzGMHVPu1CgpMI2m3lQ8HnfMMXWlnn/6PvN8ixsHusMe3wuqKX1Um1jjy0goBJvVmulcdDiHnWe8t9m6IeLOjlMu4NyImx1FoZilZ8zduVKvqE2L9ZbHwwGXjSRHp/CiRObCTwqB0O++Lv4wrfyCCy644IeH7y1wjBbc3uhEogSCmAnjDsY3yZq+fU6o0o7PixLtHdFPyTtDjIiYc39G2E+R2VpinJOtMIm3Y0yNEiCCp0ASc2py5zXW3iY+RNDY7FMS7T3RHYiUHPqWwLt4gDL+Bvvwv9ONI5O+Ia7+PUedCpy7vsY6jSSQfAfTsa3qhnbVYsqC4B1j3y1jm9lafAgpnZm4ZEdFDVoITo8zu0fHMIMwbwBoNi2r9TVrWbFd10hhllT1qZ9SPEIMaQySu/zBe2SEvQo8aVra1SoRQoFhEHlRFpRltSzsRptlLPT3v/41QqmULQUombKgPAEZA0Wp2WxTd+eXv/wln//4cw7HA/PQ4d203O+Q/U7caJmnYVnENpsNq3bNl19+mWz/xXlkKYHUFRHi3NHJ5ncIIhJQeB/59puvefY0JZoXxjCNA8fDETcPVNls0HsHUhKDx06GoTst5Oi6LBfu1zD0DEMaf7ZtGrdJKQk+4Lynzz49PgaurpI7cJE7GGf5fduuGKcZlEJqhcuFmQ+psAt2TpwfrxbPmGEYiCFSmJJPP36G0anYtFYyjhO/f33H7m7gN/u3nLOottubRHBuG0oviBgU6Xyvtmva6ysckaubW6bMJdNKUJM4ZTcfPGfoT3Sn1N3xdqIsaurNFlPVFLljJkWSoYfg0+eMsHTGnJ2J1iFjxHWRfirwKknp63ZNXdVYD441/TETiTVo6dF+Tvf5O945cGZAXXDBBRf8cHGRiV9wwQUXXHDBBf/q8I+rqKLl7Ok1OY1QTxD1FkvAOk08ZJ5G9Fg/Zpl02o3P57a/D6iYoxkyPwZAh0hhHUpNCD0jREEIqUMxTY5+HhA+UISG0KVduR0mnDPIQtM2HevCIu//GoD59CWzfspY/Tm7vqZ/sMxTljTLDl0qlDYURcHVdpvPMHA67YlHT3A+JaXnnB4XPFGkUUdVldSbNJLws+ewe+QwepwqKdpmkVuXZcuqKjEK7t50TPOJ8343iXPPAzCByv9VGBDKMM6gtzV13b5T2hQlSgBCUNUNVZ05OKstzgWiMPz857+iHwZOpzT6eOlDkojPHq0r3n//A/78z5KT8dOnT+n7DiUVhakImQ8VY+B02CdVkvcEH6iyg+/Tp094/fYNv/1tUqR9V02TgihzDpl8Vy/L3HVKoyvPV1/9A59+8jkA7733fnIt1ho7w36fuhPOzWilKYxOpnzBY+fUYVq3LevVCjt1WDsv56qU4HA8MAxD6uJ8x2F3miZOp1MiSWu9dHEgRVQcDyPdkCTm50DNEOPSiYrRoxSUOXl7u7rFhYAPYI8zQWbDw9nz4sUd3/z+DbOdUapMeVTAP/zmd9ze3rJ+dospKrZXz3A5lTuEicHO1LpgHMeFtC1I472AxIVAWbac9yLj2BMRPB5PqNOAPhshlobCa7TRtE2dBQHnhHSHmyamfuDl1/ccD0dMkUaWcr5l896n6HoFFIjznkfIrFDzxBiW0SP5ab50cC644IIfOr7fBycKjnODOxNHnce5OY1urMM6i4/nNHGBkoYoIsF5oveLf4jUOimEipK6eudWHMME0hJcwe6t5WH3Bp9jHMp2RV23xDlwOjwscRFtXXNzJajUWzh9STjMPJKKlYP9c067gnHssf6EIxDyOEVjELOhKhpWzWpRPZ1cIs065/F2JkaPyTLjbVnStjXWpdyhlMQNQ9czTCMOiTQFpdbUdebGVCXOTsxzTyTHVeTVQEqZHIPLlApe6XOURQcBqrJAarMomiClemsluXnylPfe/4jPPv8jAG6ePEvy+ZgW8hgjpy5xXF69ec1Xv/mSf/j137DZtPz8Zz/j5jqNqLruxDzO+Nkyz3YhjnrvmMYBKQTOWaqqomlS0bZar/g//+N/YhhHpEq+RJB4GOdxVVIdpYIm/SAXdAIQkXHomXKx4nwio58znM78l6EfUAoKZWiaNo2T8ljEGJPGMLlY2W43+b3SsQohCMFnL6Fz0ZZzzbwnxIg7q8CAYijpB0NRlihtqZtVfk1Oto8eKQRSBY5kK+MYiD4wW4d1gbap8rMfuH3vYz794t+hyhUPD4883KW8qdNpx37/iPeGqQvYuWPV5ONiIoqSspJUaEJ+yr13icgdwIgiBXmq9GdmnUaT1s6EMBN8LsxcJIiAJ+CDQwqFziRjYyRFXdKUBonhxe+P9EN6xqvNc0RzjYjLXc23LyJkUke+w7v7Hi82OBdccMEPHN9b4Djnef32AXdO17Yuffm7lESd/DDOAYqRGIfEWRGJZ3EOuizLgqooUUoTI5yGtNB1XcfpcKQ7HjFGs7m6xmQ+xuwsfXdCSUnTGFZF2vUW4beo054prJnkxxyHgodjfr9hJvoTMoQU3S1T7hSAKSrWqzVFWWKtRWcb+9nPWDvjvaeqG642K6LN+Uyne4ZO0mxucQGOh/zzYUzXIiZeTNNuWK3P/g2BeUy7+qoyXN1cI+K5U1OgTAqXnKaZIXeKiCUxeIxJHkFSq6XPE4JHaMNqc8XnX/wxZS6kdo87ZpvCQ+dpRgpJVabr/emnn/HjH33Bz3/+J0z9AeLM7jHJjI+7Pd04M88jdp4WQq4UqdPmvUNrSaF1ilsA9g+PnA4H3nv+jOPpyDTmQuU7gaVkDs5ZYbX0rHL36fbZM65vbpfnCCEwpkBKvWQ6jfNEXRW44PExZu+j9H7b7YaI4NXLl1mWPub3sqzXa+rcbYoxfqdo80RE9rQRmMIsFgXOO+YQ8POM9p6QTY6KskJojfgOgXrxhhEKiaapNzg0Plv93d+/YH94w/ZqoF5d025v+clP/5v07KuZ7nSH9CNB1Gy3W169SEZ/X37114yPB44+UDUl9Sp1CMuiIImxFTGCtzMyJ5qXZaQqrxkGj3fhLHBECZF5T4Ig0v08Wy6Mg+Xh7YFXX+85dZrV5j1u3ktk/qK5IQSBVLm/KN4p5M68KrG0a87F7HcUdBdccMEFP1B8b4FjnePh7o5zvHYqYtIXvs//ff6iiyTJrtKKwpSYolj+bJ5npmHEOYuznmk4kx8dqoD19dVCqnVZil2XmnblaMQO6V4j88/neMPr8Qt2p8A4DsQw4/NOXSiB0iVapewdrQ1V7kI0qzZ3ARTeOlzuGhhtKExBWRZIJTJRN+cprZ6BlLy5e+R4OqHydaiamtura7bbFVoJ7DxzzBLfECPrtmWz3RJjZL8/YPPvKsqUaO1cGvvNmTg99iOESPPhBj8LnJ1ZSgQhUGXJx5/9GKkNb16/Xa6pc479fo93DiXFMkq8vn3CZnvN7c0tdt3yu9/+PW/z646P97gQmewIISV3AykvSUpiiChdIoHT/nxOez758H1ur6959fo13758AUA/DITvDCukeucwHIhIRDYChLpa0eYQTOcCUpdE0WGMXsZ7SU0VgRTUWZYV8jzONJoYEpnZGEPIi3fXdXz99ddsNmuurq6o63oZQyWvHEFd19R1Q93UqCyHd97jQnhXsM/pXlRFQVknWfn+sCOGsLwGA6gSGyL74x6bq6VxVvRdz3j4i5QTVVS0q9QxM0rTrq6oNhtub27RU8WnX/wbAN7/4DPG7o63dy/53VdfUtWZmHx1xfrqGdrIRB5HEEN6JvERnKAtKijC0vURRM7G4cfjkVdv9+wOqdA7niLWFVxt/5hPPnxOs3rnHi2UwItADOdk9OxtROrAifPnPP7haDKEy5Dqggsu+GHjH00Tn4b+3ZdZ9jWBvPyexxJkMzglUUrjrGWepkWSKxAokqrHRYso08/rtqIuWowpUMKzbiSV2KXX9P+AO9xDecVsPuHxlEYI9/uJfk6LsxYSpcuFr2KKgqqqqMqSokjjB53HTZGIzaM1JQWqzAuGFCipmacJREqFPvVpsetOR4axx3nLatXy7FkKs6w3m8QncpboHVXZUFZp9x1Ciot4eNzlLoDCuXS+JW8trQAAIABJREFU/dAh6FBKIIUgr900laQuJbebAjce6bvD0h0B+PCTT3n63nscj0ceH9L1OR1PaeEBxrHDzhMmd6ukgP3jI1c3t1zf3lK322WmoKXAaEVpGozWS1jqNKYxV1kXVFWNEoKxT/wlIQSlVrQ312xWLatVMvZ52O04nk4cj0dmZwkhLOo0mTsKWmmkkjR1g87O1tooCIHoLHYeludESoWzE+26pTAFWhcpJJLUyer7jmEYUEoti+1qtUpOwNZyPB4JIbDN/CpjDN4HpmliHCYeH3do852Ri5TMdqYpqxQYCux3j7g7yzD0TNOAVIqYr91gA6K+IQSFsANDl0wIj7tHykozDgfq2mCPd1ibOC5eV3jvOB5PfPXX/xWz3vLpT//bdOzVlrb5kOsPPqa5+oLoUocw+AEfZ6Y5YkqJD2pxvY7BM00WrdJztrvf5+Pu6XtHlA0hKIx6wvoqmQA+++iGsi3RpkAQk0osfGd85z02+vPMkT9ACPk5E8vmA6DIReQFF1xwwQ8VFxXVBRdccMEFF1zwrw7f38GJgWkal12dkAqJSaMoKf+Ac5GCOD2zdYui5pxzpLREq4iRFVpfsWrSTr4qJVqPxOkbDm/+ikoIRB74i/JDZv3f89BpTruOyaVugpSwagxGrTCFQRc1ZY4vqOuSujIYrRFa47zH5k5ICAEtJaas8MotJGMhJdootKk5HTt2pz1zHlcQAze3V9zc3qCVZsjck93jDm0066bBRxiGEfEdMqaUiqpqcJnbcSZ7amEQfkbEmULGFNIJVDKy0go5R46HHUN3YBwTYVgpyUcff0Tf9bx88YrDIXUNuq6jriqUkFg7MQ49Ze5KVVVJjCkDrGlbbp8840WVOmCn3VvwDm0MSkmq/PO0Q3dUdUNZFnmXn9VkziF9GuVoXfDJR8nU8IP3P2B/OHD/8MDdwz3DMDDmCIXkjSOWf1s74rLnTlE0VGXFaApieKe+klJgCg0ElJaYoqTI93aeJ07HE23TUpYlzp8jQhRVVTGOA+M4st/vl65i0zSJw+J96h4JsXRjXHCcE1y7YWDO5ONh6IjBIojJ/O7xMZv/QVE9YVV+QHfcI8e36BwfUhtHaSTHx54i6kR6VuleWGvp779BFCvKcoMUNS+/Su7a6AIhChAaUzRUmejcVNeUyiCVIKiI90cOuzQW/M3f/g1u9rTNFZECrRPZenv1E5599JT11Q1Nu6IsFCKP1oKI+GDxHryzeJf4OwDBR7wPuJj4defPi3fp/xFi+ayXizszC8/pnwtKKtbF1T/re/5QcZh3/6S//2p68S90JP/yeNF/+0/6+53t/4WO5F8ez+qn/6S/f1v90/7+DwlV9gD7/4IzTeH/D3x/gQMIlZxoAaQsUpEjyYnEYglTizGihEly1bKkKIolC0cQMaWhKRSNPsD09wCE7jXa3hOFQ6+u0e3PmHwaAz0eI8d5wsWIMS11niglmXdFVZU0dUNZaUpzHoWNeOuQMjK7mRjSaCwdXyLRTnZGK0mV33CcZu4e7pjmCeEECsnNVfoif/LsCaZsOfUDj4eUrgyk8ZcynLoOKZJh4TlPaZ5nxmnCuTmZ4hEhj4F0sGwqwXWrWVUCk8ciRqUCcD7tOB12DF23LEBPnz3FaM03v/uKu7v7hfEipSQGx+wDMSQb/XM+0/F0yITjAMEhhUFlqbN1ESUjIQBCLenkxhR4H+n7gWEcUUotBY73HiIorSiLiiKTmYui5PnTp9ze3vLk8QkPDw887nf5GI445xOvB8/d3Wt2D8kM8erqCUqoNBYS70YfITi8m3E546woi4VE++blS25urui7PVIJ1pur5blz1lGWJVIe0jOZeUXzNFOUJXXdUFY1CMmUi1cRJBDxIaDMO4K28zOH/ZGqTDlfq/UKmQsm5xUSx3B6xJ7u0Spdu7atGO2IKWuoGkKhmIfzF3WkbK8Q1RbTXDGMPZtc8Aa9JkSVUsuHiSmniU/VRNW0FEWFsBIpVwiTHJ0/+uIDmqqkqhtUWS6jNSXTZ1VpiZAe6yUxFytReCAgokaKEmk8Kh97DJHgHSEbGoYij65CUp6dSdohBFw2knTW/bMXOBdccMEF/9z43gJHCklZrxZy7XmgFaJIEmgVqXIRU1QNVVvRlmUi88qIiIlTgH8kTt9ijq+J9n6RlpvmGWr7p8TiA4Z5zW6MzGfuiQ60ukEJg84Jz+n3FBSVwOhAKSNagCCTdYcRNw8EJMgKpSpsdka2NimU6rLAesvDLi3EdvYoY6grxbpU3FwVSJm6MeMceXu8Z5gtElg157wiQdd1RALWWcZxxOfjds4mjxeRGDhGKZpcgG0qwUdPa9a1xCi5OBx774k+aVSauubJ7TOePk/8iY8/+5TDYcfd3Svu3twvC/SHH38MMVA3Jf0p8XrOBaV3jnJTUmR3ZhkDdSbyKlNQ6NS5Gsd5Oe4QQvI8ISRl02SXBS1lXiVfFOL0jr8RPLooMKbgyc0tm82G7S5xT+7u71PkwzQxzTPjOPJ3f/MXAPzsp79is94i8BglcwJ9CqkMzmXlXEPdVHzzze8A+I//4X9i/3jP0J8QKhGQATabLVoZtC652j6haeolt2kYBoKPBBWRWlOVDVWZnr3Dfpc4R2WFNsXymm++fslmsyKKVKQXpaDInbGirPHB8/xnP0GoP2KYz+TxFUKl3Ku62uCd53hKnbax74kh0k1HhCzwPiDPuV8CdFVlbpvC2XddFTtOEELiAPHOd0ZqgxeSybn04dXnLqlAEnEu4P2MFBGVOy5CGmKURCwh+xYtan4ZUFKjyzJ3T5fgLYIPyRvKpU7oubuqzs/CBRdccMEPGN9f4CiVlC/5iy34QPSJcGgKTdsWrNu0cLZGgH+D9wfieMT3rxn7JE2exiNXq4Lq6n3E1a8g70ZRH3P0kr4bsNOMwFFmoqzWJabQFJXEmEiVTdUK/wo/PiCLkmiusVEuXiA+FkR5jfMCbwN2dEvydQxwOh04dkfm2VNnw7y6bhBE2rbA6Im7hxMPj0mS3o0jnkBZ1tRFzXia8nVJqdcxK4VKkxYdSAWNqADvKbXiqjHcbtICua4CtQngLc7NnOPJNRCDIIaIUZpm1aKyxP6bl68I3nLY7/jrv/pLuj4dW1mWXN9c44NDyKQUOndCpnlgnkcO+0eCT4Z6bc6w8j7gRbql4zRh53NiuCSGVLCVlYAolvT0s3GjManYPHdIpmnGh4ifPcokg77rTY4AKEu6YeDUddzdPTBOE69epw7Op592XG03eDczDsMSMXEmvKYwV4VzE//5f/ufAfj6979lu1lnQ8KOuUyFmTI1IViKskREiNIgOfu/pHiHiGToJ4bBUpl0L5p2TYiB/f7AMO44ZI+jqtny45/8lPV6nTyMsvcOpE6k9yEVktGic0EpdZ1bKJogG0R5xc2Hm3x8JePc83j/Cjc77DikLDPguL9j7h+p22vK8gq3dCIjUkWkSkaDPoQ/UKshBMFL+sFzysTkVT0SxJ5pPjH3BwgOU+QMNN0wW7i+fsb26ifAzaIAm/2MC6kLSFALGV0QQUSUSlYQhdHUeVwopCRerP4uuOCCHzi+t8BRSlPV9bJjN0JRlZ6imCjoYfySokuLlp9PDFPHPM5MYyDKknabcqqefPQL6u3nBPOcWdTvuB2zx1uH1gqja6SoyN17jJqpxD1i+gaOd+hcZA3RINcfIqiZ9j2yuibK9EU+2GQa54JFBIG1bjGXG/ueaRwxRUFb1yBzormybFYN/bHn7e7ENI9LLpEQhkKCDgEtPJurJP2VUian5nkm5HM4d54EgkIL1m3Jk23NTRNpzuO1CATJbCXOh4UDIgggFR7J7tTzt3//a97e3wNQVhV/9qe/4LPPPuPZk+cLD6hu2jRCiAFCkvKes4eUUszzTNd1eOcpy3pxtR3GiePcI6RAa7OolGbnEAKk0szW471Dnr1gYhoZSZnHGPl5CDEQcfjoELPEGIXIi35bV6zaNhWQwuBC5Ec/+hEA77//Ht7ZNIqz0+IzI8ijTyEojCZ4x9u3r9KzYkeILev1mhgiq1xIaWWQhSHEiPWe3eGIyNfVaEVd1yhTEEJK2vY5TyxgKYqC2ydPkuz5bDUgYn5uxnQ+giWLDQLBO2JI4awhpu5Jub7FScM4RayDODl8dtAuzExdRVbFRLExKH3FOB4A2FytELGlaW9QxWopOqQEH13mwXiEhKZKyrWySJ8RSRrNvX2dOkVD94CgpzQBVajMh8vGlKc7pmng7u1fUZj/zO3NJ6zXv0yfW79BaJ+6StLgcn7c5BzeRSQSZHKK0FntZpRejCgvuOCCC36o+P4OjoSbVUTlHadyr/D9V7B7g9IT3sHjkBb2YbIE36DbW7affk7z5KeQgy6jN/RSIL0G59+124WkrhVSBDQnSt7ixpcA2MNLpukeU24Q1aeMRVocJ9sw7APHccJFTXBv6fs0XghoTGGIwWGHMS3amcC6Xq25vb0hhonATJUN86SQfPvNa4a+p6w0bVsis6FI27S0dYmSAaU1Z+H2qRs57I90p0QErqqKVZXTnquCbW24XRtqnQojcvFj7UxYCpGwdEJ8EIwucL878pd//Vc87h5p60yuPXa8fPma53/6HmXZcJW7KtYH5nlGAHOOJBC5W9XULc55jA4LJ+VsyCikwPnkyBsiSHEu9DKXQyuU0ghR0+bunJYSZx1CiOx+HM43EO8Tz4YgmOyIUtkCoK4pyiTZf++993j23gdsNqmrEZylO504dQfmafyOW7FGFZqqSPLwaRgXB+a6rqiKisKUrFfJ9A/SuFSZRCD2zuK8X+IGvPfsTyfWIncdYiDku6iCJOpUwkURFon9OI44mwImZzukLsZ3XKXLokh+P1JjmmRcGNUW5z2SnlWzQpVbxmwcGILFjgNhvOfZe09BayCd0zwqtAxIXYBKERCQuENdf2RyPVN/pO8PPOQul5Rp1Kpk2hSU58KnlvjQQJBEXyG0XYz+MFOK5ZhHvJ24v/uS+7vki/T82Uf00z0iClbrliaf01XzjLJ8wug1p1HQT37pHno7/0EkxgUXXHDBDxEXmfgFF1xwwQUXXPCvDt8/ogo95e4/EOc0LgmiI0aLjIZhDAzjhMokx+tnH7B68ufo9hdMXmF9wMT09qXSeGmJYkbqgM55UzJ4xtMd0d6DOHEa90x55zuH57jwOaeToZ89s0/ZPiEIvAsE74k4BJKYOxfOJ3WH0Zq6rKiKYsmwCsEBgbqpmCbB3dvMD5oiQmikFhRKJslvkboaMgb2j3cch4HdrmfM3apARCuFVAalDBrHTZU6Ls/XBdetolQOvGOckoszwPF4YJh6tJFIBLqo8rkavvzmLae+Zw6SZrVBhExanmdevXrN9NOZwpTL+SihaYtzBtOOpm1ZrxOvSCvFPNvk4NvUlGWxGPpJqdLuv6gwplxcetMoJmKMYbVqESKmLCigH0eUUMv4SJ45KVJk8qlAycQhmqezxD6RWzfbG65unyKVYupTx6s7HTnsH7HTyHa7ZrVulutDjJRVhbUz0Xk+/1Hiax27jqoo0coglGIYczfBB4SUeO8Zx56+HxcC7DRPOdzV4IOj707o3GEypsxZS4qqqhfbgCSvL3MnK59zvkbKlCA11nmiqHEhSyXHU3LOViXdaSIOe2xWGR0f3vD6219ThB3B3lOu3pkr2jBD5vSYskBlB+0YIYiAlIHNWrJabTlnTMzTnDpvKLSuCeQOnC5yB0/hK0cMaslh82Ei2AGcRSmFUgWI7BzuA54ZNAy+Y/cmfc4Uf0Nb3XB9+0va4mNW9ZbJ5lHwNC6ZXhdccMEFP1R8fxbV3HF8/DW6yC64RYFUBilkkkrXa0z7KQBy8yus/AA7K5SylHSEOfEDPB6EwUiDkhHvspfLeKTrLfPs6HvPqV/RneMLbI8PPUKo5HR7VtpEkQIptUleJcGh9Jk42qKUQBDQStM0K9br7K0RYXfY8/b+LuU+5aKolIGymFk3NUTL/cOO3SFxJCbriUGiokoLicgE6KJmXTdsVi2bdcnNCq7aLJ1WIENH31ucS9LtYUiLcd93dN0pLZoSTCZtfv3yDd+83eGdRxKIweFz1pIk8uT2Qwqjk5/OOUPLemIUKK1p2jWr1Yom5zGN00StNUWRIjPUdwMyheD22Xt8/sUXbDbbJS9svV5x9/aO16/fcDru2O929NmpN/iAVjLxaaRccpqkUpTa4J1d/G7O8nYrHKYs2V5dE6zl4e1rjsfkumvnCWMUN9dbtpv1wn85dafsWaOZpok3b94smWE3V9coIZNnjpAUmSzsvWe2lmmeKEyBaOQfRGMoXeJCSkqfxgFxThMvcv5WDDlcdLWck1QSpCBEweQ8x5xcfhx2VKsnNKtrlDaIzLOZxx2vX/2eoZ+5vfkAlODF1yl5vVUFUmjePpzwYkWzLfjR50/z+R45da+YxiNawvX2BoBVe0VEcdj1RKkpqw11HkWp0mLHDqFhZiJkYrkkO06bEiECg+9QZ/8lKVClRpYGpQqkLvE+K6K840l5C1FiwxVTlYrQqR847h/Z7f4XqtUz1usrnj/7In3OihZx/YQLLrjggh8y/hEVlaRqV+jcN0h81oJJlhSrjylWPyXo9wHwskQWgUJGCIHgBJHU3bE+YO0D02SZxsgxh2OeuplumlK6tY95N/ou2FCpgihABLGQGqVWRCEQSlIUFbUxS0dBa0VpJEYJovAEP/Li27TQzLNDKwMRyiKy3Zx/j6HvPF+/eM3Qd8xz2v2m31VQthXNakPbbtlu0w62LQLSHcGOVDpwVVQolwqSvhuTB44XyXsnxuWcpmlkHAfqpkYA3XnB7/dcl1Cs65S1pDX+O0TZTz78ADePiBhRudgsCgXo3HXJSrFz4SEkZVlQFMnMD8FCTv7ok8/4xZ/8ig8+/BCjNDaTsJGCqydP+eCTT/ndV7/j7/72bxlzGGhRRtw00o8TTdNiTO7MlRVCRLrTESGy3D0PPWfnEVIxDh3d8cDpeFiIzlVVUJWGqi6RSi5hjlVVZel8zNcunC8dwTm8EEipUqikOJ+roKkq6rLCE+i67jtmgyL53CiFaFcQfXpPYJpHfHApXFMVSQUFlFWBtQ6hFI9397x9+5L+lPgqdbti6n7H46sJrcUS3DlOHcNwpKlvCbNAlFt+/POfAnB4/S1vv/mS9z/6hKcf/wxRXFPkQvS99Z77h5LD4x1jf+DV6wcAhLzHlDUBiTYtQa6YskliVRSIYsXj4S3H4yPknwc35ycg4r0j5Gt4vkZaSAqpUSb5SJncPVRaU5VFUkYKAdmOoalqrrZrnLUp/HT8hr/4L/9Puq5K8OmP/i0XXHDBBT9kfP+ISjfUV39EyI67Uj/jODZ0ztA2z/GyWJQ2IlpMPzKHE3Ye6PrTQsLthpl+kAxjxzT3S8AjiFQ1RYVAIZVG6bM5oEQIgzYFUutF7l0WhqIqEFJTVi2rdr04BU/TQH/aY/uJcZwIwS/uvk2lUMKzWSmUKdkf0zkdjnMeGdQU7Yb2SlE3qZDZbLZcrRWFvMeOd3iXCrZuF5F2YlUa1usWKQNjPtd+GLDOkfQnyS/EZnVTVRYIscJah3URn8dxt1c3lGVyHx7GMamzzgqrKHnxzbd0xxNNs6JZp8yr9fYKo5O82yPTyC7k3bwICOFxPiJkCgA9mzX+m//u37HebNjt9oR5xrt3Em2lDU2z5osvfsrNk+f85V+kBe3F739LQOC8Z5hGTJHIwmVZopTE2pnZptDTPnerQozYeeLh7i1j12GMWvKLkouyYuiHlEyeJfbjOOKcox+GVLi07RKKSkhePSm3KinAAExhULlbpcuC7XpL22ajv3kGRDKtaxqapuHUpfs02onZB6YhIO3I233qxqzWLVVVI4WlXVW06w8QMnUrtFQcHt8wdUeMAZPPJ6gnWPFTXCyxMhKFwU+p69PWI8XHFVEMjPYlQhyxPm0KNvVTPnz/mqfbb5mGt8w2E5NFxWHoOJw6pGmZnVkUcv04E3xAqRXr7RVlfvZFTJ2/0/HA8bjHuhM+pNcI4ZHMjIwoK1CjRgmTnxVJUdTMVlDW9UKwFwq0jNg5EYrD5JjG9Fmf5oEvx7/kggsuuOCHjO/XeuoWuf0fFrfiKSqC9hjn6bsJKUa0ytwO17EbZx6PPcfjiaE/Mk/pCzaE7KsRZSpklngHCKJAKonSBqkMIo8ktCnQpgQEujRUZ6M/LdEqYEyB1IZuf79Iwb13BD8hRaBSgSgD+VdRVg3WBr59daDrp0UJJLSmrFbU7ZrVqmG7qsmWMVQ8EqY7/OwZrcGX6Q+CqVHsuboqqcqCMM3Luc6zRWmdIgKsJcRAn7knZVnS1BVqpej6gWNWxkQEs3fECC56Jjsx5QUt4DFWsd8fOB17VlkxtmpXRBGwLhVQ3013Dj4kCbOQGHNLCIF1DqAUUvLt11/j5xE7TwtfxbnUzTidOtr1hna94Yuf/gyA02nP25ffQIxIAVPmvxxiYL1aIWWWpfc9py79WVEW9KcOfDIQLIpi8dWxs2XsR8ZpSiGoWWU2TiPBh1RwCsHxdKLOhn6lKZbnBmDOhc/5tVqPKa1dv+volaZInT+ZlGR126Lz+71+eKAbevbHI90wLs+DVMmEcdVoPvv0hqsrs8Q7EDXbqw+Y6pbHx29xLsdFmGtkuSV6j46puMQm3lpl3lIqiRUa5wfm08TvxjT6azZPuLl6zu3qCev1FSY/X15WHLqBfugZp4Fh7AmnPDadJ6RQCDTWibPTAFIZCtOwfXbD9TMgBlzmATlvqcoCJUVysI4WfLpP0Y1IPAKf3uvcGZMSKcCVA1JaCqn4+JPkMn44eV68eMsFF1xwwQ8ZFxXVBRdccMEFF1zwrw7fTzL2kTfHkZBVH/PkcHZGBIsxgRAt99maf78/MXQTwU746Dlb2J3/KYVIEykJMRuGKakodIEyBmQKHPwuN6AoCqqqQilFoc85EY5h7Dl1PfO0w9kZldvqVV0gUAQfaGqN0iuOp7Qzf/3myDQPCCTKVJRNatHXzZqr6ys268DGPKLDK/Kkh8nN+LBlcCPVZk0/JKLn8fDAbeUR1Cm80I+MNnWRrHN4H4gIgg9Ya5e8Jx8ildZEkufL2S7f5ywpY1JQqCs0zmfTPikhROzsefrhh/zRHyeiZ1FqXr74CjvPzLNNmUL59yitKKaSoqzR1wbnIiZ3Lu7evGF3f4ezcybXnjOqLMU80a4izlm8d4sq6+b2CS9+/xXBppHW2TNnmg0+WJRMXbl5ntntU6ehbWr6oaOt6kT+VSKxeoHgUraV0RprLWPmBw3DQN/3WOsW8rNfpfvnCgsElNJIpZeRWwgBZx1K6ZQ5VRbozBGKwVOolraqCQK6cQZSN61t20TUFpKmbRdOj7WBYZzRdWCwHXEnMYXMz5dCmJKifMZVdYXPHLMgUqeRcEe3+5roBmTubPbzQHSCZlMwu55h7CnrNOLzheLbr17yRhs+/OgTijp/LgpAGLSuqHLYZZGzxIJPpOgQPSGEZdwrhEwMNuuQMhCjX4jlUjim4UQMEzF4op8g9Pl1E0YLsImsfX4mC6MwWqJ0xEiJ8wLIHUwCT99LHcELLrjggh8qvrfA8d5z9/aOoU9fhlpIrrcrEJ63r1+y2+2Yx3NQYoCUApWkxJD5EunLV0kDMhmk6ayAMbpA5v83VYVUhjKPoowxGGPSaCNGhj5xGg7HA8M4IkUy1Wsqg52zZNhNtOsKQcXDLnDs7gm5TW+koSnW6Lqm2m65vkpf0Ndlj5q+gvFbxFRA+THHMZu+uSv64UBlFLZXRJeKDh1m2rKE4DgeRsb+uHA7pJAoUxJCCnLUxixmg/M80/fdIkFeIgCsSKMHqSAmg0GVR3V2tvio+PiTz/jln/wJm3Uqsh4e3lAUZSLdCplyuM6hld6hlaJoDUrpNALLkQx3b14z9EeGoUdEsHNapH0IdAiCT+MkKQVlLn6aqmSekmLHmHYh6s7zzDRNy3mM07SEMMYYmecpmeNJwTSPizmcyMUN5ATxXLx20dMNHdM0008DTVXR1O9CQodhSEqhsl6yqISQaK0XR+aEs8mex9mZeUwy7MporrID8vywpzI1Rpe44Dl16RkfhwnmkaooGF3HNGtUl8emR8vVzTV1s6E01XJNbeiJ3hOmA4oBqcNC+B5nj3MjYlBsbj9FFg23T1LOGMUVpTnSDz3fvvoWIdOzr0yFKWvKoqAwhqqqabIxpVY6jfWsxTvHeSsRY1LeTcMe53r8PC2xUiI4os+jJiMTSTxU+Xldo0yJLyUqOHw4y+VnBmcJQ2A4TWhZoMv8ubATsxu44IILLvgh4/s7ONZyeLynyrvpwghev/yG4/4O6+bcqUiQQiBFmt0LoVBSLqGCacedODPaFGh1LmJKTFFiisSb0DrlGQGUxjBOI29fv6Lve2J857jblAUEhxs7ylpwe5M6DbOH+/uevnf4mNxe6yZzOJoN7eqKq01JWxxg/q8A+NOJwDWD/Tnj7One9MxzLlZkT1NX7HYlD6cvadZp592IiAiCeZx5eNyx3++XQqosSmg0wzAsnJGzTFwIgfOWMP6he3BVVYiYOl0ueKbZcZ4ertZXfPKjn/DzX/2K9bql75LyynlHROGDw9qQOCkLDScp2QpTpKJSabpTel3fn3jz8gXzNKQuzSoVTNqkQlNrRfQNZVXh58T3UXg2q5bj8UjXnRbittIpCVtKgVKasiyXro/RBiESAdnaGa3Ewpfx3qOlTGqvolgiALQQFLqkLGuEEFTFu9yrbujxLkvI53nhapVVmaTd8pwaHxdPGxUjve2w40hVlxR1Q5F9cAD2xxOnbkCqgjNZq2lLSuMxIaIp6O3E5Pv8PHhmv6coa7ara5ROxde6WaFUwTyXnIqaMPcon67dplrhmXHUFPVTitWaeO5GCossGlZFkzYObASaAAAgAElEQVQFZ26a1OnzoFLiubPz4s7sSMRpkcNcw9klezoxHO9w847oRrTRNE2b70WBEkVWkWmiD/RnH5voUcJhiUzOLuq94C3OO6z1HHdH/GxZ5Welasqla3rBBRdc8EPFPxIoE6kKxdilscP96Zi6JcGmHaqQafQE2RQtFzdao3WZLPRJBY4pKlSRSKAmFziFMUitMEZTGEOInuM+LcSvdzusc/k9wZ+N2LyjqUpubp9CTGTn12/T8Q12JkqDqVdcVS3VuqVt0yJ0W1mMf00M94TeYH2ypD/N73MYLPM84+YD+CPPnyY/ElV+wu+/fcPp8IB3A1OXOjjl7SalZJ8mdvtDUj358xe+om1SB8q58244Lv9OHalAiMksEKAuK7RU+BCQTqZAx7x4fvLpj/jFL37OZtNg7YTPXSRvLcMwMvY9dp6Y+mG5F1WR1G3eJ+8eay1vXn4LwN3rl0xjxzSNOGvxWWZclCWr1RpblKj1BqMVp2NKXH/18kWSGivF4+PjYsyXOieCVIx5rLWLnL9uGhCScZpSbhIs5nzjPCFCMhVsmoa6TJEQV9tb6tUtN0+e4Jxjt3tcCNrOhlS8+IifJ4ZM6jadYbu9om1aTFEQiYvyKoQAMTIMltkWtDEso7pVW1IUinnvmcZ56Z7ooqBUinEeeX5V8vzpNfPZ2yeP9YKf6bqHRUUVowVRUVVPWa2vOJ3uaHQ6Phk7ZntCCQ0iIKIgzOdixSK1ASIh+KXg1UYSYvIWKrRBGgOLVUPM8neH9xMhjzI1jlWlEOUKpdbJSuFMGEYgYkyp4j7ilaDMSsFIUoetlAEpF2IyRFzwhAjuxvL6xQt253H07rj4Ul1wwQUX/FDxvQVOCIHd4z3zlEdAIXmUCKXReTRyVqxImbgRWmmkNkhdoHTu/JQVpjAUZUFRFIlXQnLcNYXGTiN3b15xOO4576/TWCdxWKqq5tnHHwPQrraM08TDYU9/OkJUaJ12lpv1DU3bsFrVbBuo4h1x+jsA3LjHscKHJ9z1JfsxFx2uw7sRrUo0mlM38tvjNwDM/hX9OBHijBI1ZZmOe5pnjp1i7vYcTyfK0lDmEUJbN2nspiVSary3y87ce0c/5FwvpZbOTgyBqqyIMTJNEz4EPvnoIwB++rOfc71tcK7HzdMyqhu6nrE/0Z2OBOcxSlFXqVCoqhJjsmOulIx9R5+LlaE/ME0j1jrGYaTv04LWtg1GG9abbRqrKcmLFykX7MWLl4gYl8XvPJpJiIQQ0NokDkc+V2MKxmli7Duq0hCs5ZSPfZ4tMl+DECLXt88A+Nmf/BlP3vuYqmmJIbDf7Xh8SI7Tv//qN/zuN79hv3vAekvbpk5RAMZ5zsGjEWP0Et5pzonvUtFPI7N3NKsks2+rFc+vt9jZcRgmprMqa3ZYYJgF04uR94NivUljvPWqRjKz232DUp5G5zBS+4a7h3tcqPnwx/+G22fPeLx/kZ592dKPMxQV0SabgpB9llKOFwipCD4islxeSbVsHqydGMfunaeNVGhdoFQELD4HagY/gB+JeKJP1+Bc8JbapCTwEPHO0p26dwWOEFjvcG7Gx8Uw+TsdJUFZlnz06ae89+H7+Y4DwfO//o//BxdccMEFP1R8b4ETg2eehkVqJbRBCIWWOvFIdIWSZX4ngTCaQqpU3BR6MYQzqsYUabevlaLKI47ueOLFN9/Q9ye0Vmill0XU+8h2fcPt01u0KTmd0pjg5ZvXWOsRaNp2TbVq2WzSYreuPIV7iZj/knjcEXxByEXWID9j12949fIeKXqqKi1a7WpLWT2n6wceXp143I8Mx7RTdbZDKYMpa7yccS6dT2UiYVtRty3jOKK1os58Fa0lISZptM2hhKZIv8tNjugT/ySEwHgeXYVI8AEhFE3T0q63fP75HwNwfbvC+55pGOj7gcNjMoO7u3vN4+MDIkJT19RlRbs6J04XaXSkNBAZuy75zUDy4JlmvM+J4Wfir0+2/aYoqMoSouD6Nvm/tOsN89CnRGmjFg5OCC4b8iX/n/3xiHXv5NsC2KxavA9M07R0VtxsIQaadcvHP/4j/uzf/nsAnn/4EVIb7GyJMXJ9fcPNbeq0ffTJZ3z4yef83//Xf+HuzTcMOfhRCZ29WhwhBgqtWeXRjNbJ6NCHxFQZ7YQY0nPkItRNzQfvPeF2mng8pEJhfzwRomZ2ikMf2X255+Y63dsP3qupiw6BpzudKPOYpjY1N89/wugNu8MjxdgxDKmgVM0WrwvKakUQEIVBmPSMN2XFcNzjnaNpK0TM1+7YU62u0KbERlBKJ8NGUjGklEEJjwqRcTrmT6fLzswCl0NdXR43HWOPDJF1WXP/5i1v7u742S9Smnjdtkx2ZpxHBjssHBwtFUpIBCls9DwSA4hEor90cC644IIfNi4y8QsuuOCCCy644F8dvreDI4Skrtslg0mo5DZslEHqEqnVkneTujaKwlQUSlMas3RwIslxVwrJ6XTiq1e/A2AYespC066bpBYKkeuccfP0yTOEhP1xz+nxEZfN1rQyXDcr2vb/Ze/NmmTLzvO8Zw17zrGqztiN7kY3AZKwKWogJYV9L/9c/waHaMmWbQkUbWIggUbP59SY057W6Iu1Khu8AW47GPlGVJw4VZWVO9femevb3/cOHVWrqeWOyv8GgLD7DTH2BNni1BWheMlpTqqZ+8NIP/asVgtEHOkWqUVfVx33D0883N/Rn3YopalzB2DsI9EHnAlI6RB59HE8HthV8ObmmsVySQiORZce473HzjPOubMz77O66dlw7nlk9TzeiySjPYJl1V3x4Uef8fL16/Q7wWDNxNQfOe2PPN0lg7X94yPEiNaa4DxjGCky5ym1VQQyQIgC5wI+84GMmemHHu8DIYYz78N5D0KiVEHTdAip2dwkY7duseHvfv5zdvtdDvd8jp7IXJc8vpqmieMpdRTKomC1XOG8S1lISp3HLDE7K7/96Mf87C//msUmdWmOp4Fx7InOgffE6M85VYvlip/+6Z+yWm/5z//pP3L/PnGK6lIjM99ESUX9eworKZNSrawqUBIhE4cIwMc9d4cBoRQvbl7w9oOkbLqaTzw+HTicDP4UmSe4u03dIjtH1suCUr1ge/UJXibul8URtcI7gfABGfasu6zqiiOLVjNHQ1UueXz6R5omcbwkgf7wDevuLeP+gd0ujbXW65eUXYOxER8kQupzx0TFNNaqKhAyEJr0Hhsniw+BEGLmPXEO23QhWTpMpwHKyM2HL9lP6dgfxyPeR5SQ+DgTsvvx7GakiMlpXCiQBTJ/DiACgrTGF1xwwQU/VPyRLCrNYvUSpdKIRWiNLoqkdlIVuhAUxTPnokIXClE4NDUYRxRpHKCKjv3JcH9/T9/3KcwQ6LoVAsFsRharNW/fvEVncu1uv+c4HIlRUzUrrvJIadFWNIVH+29xwy8wwx0zuchSW6z8hKDWuLjm4VGyHxNJ1XuXsngk1FXLMQdq/vLrf8DMlugtgYD3jmf/nnq1RSIT10gKeE5uFrDb7yhlpCmb5N3zLIkPghA9Wku0kpyO/VlCrrXGh0BZllRleW75e+8wRAqlaNsli9WGZ9WznQfmYeC42/Nwd09/TAVEU1Z0iwUhBMZhxPvAMf+sKDRVVSNdjthQCpeLkmmakwqJxF95LnCULgg+4nxACEm7WJ6JzmUdMR7qZoEPkSmThcexx1qbjmEcOR4PZ6WUcw5rLc4XEERyw342WZGCsun49Cd/QbXY8LhL58K7mak/4OZkAxCTtS6QEsh9iFxdX/Ozv/hX/Ncp83nGA3iBVgVmmonen/O1uqZJ3KIyOwQ7z26f1kiVBbMxDNPEfr9ne5N4QJ999mO6xZLb23vaynA4DEzZVfqwG9k/CoiO+NtHlEzP8+nHL7h5W7NqNfN8xzjsqPNYUskIwRFtwTjcE+2euniWyLdU20/ZXn3Aw9O3vKyfR4xbhFB0iw2yrAkxMGdFm58t3s48HB6Y+zuaTHRWUqbiU0EtW0IM53FhNBYZAwSP8RZnZvopvTcRMvPnBCJ6Yh5RESMIhdYtZdmiyy6lkANF1RJZAP8rF1xwwQU/VPzBAqeqSj755AP0882oVERkTqc2FLpFPHu5SIOWJX5yGPseF2asTRvL4W7iOA7EEFksFhRF5qRYg8Tz6sM3XF3fMAyGx11SUXkc7XJFU3asGkGjc6HS/x3m7u8J80CkQuoVqk3pzGrxGq1eMvQN4+gQ5ZHC5uMLnqqC3eFEDInUDOBcpK4amkWH0hprDUPmaYTgCEImUqcucHmjG8cTvT0y90c++uAjXq5X50KBmNRBZp4geqTg9wqZZOg3h4Cz9qxyqesahCBIQdm0rFdLvE3HMJ6OHJ6eeHraYWZL9yz9LUqCgNPphFQpcd1lQ0YfAsMw0rvI1esfUZbqzAOy3uOcQwhBWVfn3K227VgsVlRVQ4jx+1RtUu324uaazbLh6fGRb75NJOzj6cQwTszzxDAOzDnk8vlnIUbqukjXSIznbkyIiesjVMVpGBhzjpebe6Z+n/KxIsToKfPFF5zlgUR8v35xRZNJ3XfffUPXVHifzA6NAWfTayVYpAxInSwPfHB89iefpcc9HbDKsLlSKBEZczfql3//a169esWnn3yCc5ZxHM5GhDFqxtHinGU2w5kA/cUXj3z9zS2ffPqCZaN4/MqyeZEI3z/69FNM1IT9jrKULOIHWPdMNI+owmL8ge3VFcbk6y6T3s1wJEwTUQpi9gAQQlCUFZvFB+ykwGU5eso/i6mIFNmsMXvVqGiIJlLIGi8LhOAsqxdSp8foSFvV55T24CM+Rsw8MxpDtAMhPBdFR3a7d1xwwQUX/JDxBwsczci1/xucydJkNIiKpl5gkRTqiujTB6IA7BwgaJTccJpXHPp8l+0dVdvS1TVCCGImm5a1p20lVVvSn46MMxS5a9DVHU1dsSgCwnyBvfu/AAjTHUqWTKIBpWnqlCoO4OKax5PgdveAmUZElGiVuxBdzTAc8UGyezxlZ1ZomoaqbJIZnnPEKBDi2TQuQBSURcNqveG5VBmP9zzdHjgcnjiu9rx8+eJscBdC6gI5YxiGAe+/d5R13qeMKu//Sa7SbOY0YqlqFssVIjrG7FtzeNrxdP/I4XBEKU2Zk8P7YeRwOuBDoKoqnPeY3LlwzqUMqGHk5u0tm9X2PL4qigJdFClXSsqzc3TXLVhtNkmdJBIxt8gdq3E4oEVEVhWr9Yr9IZG6D4eWp90Tp9OJSMxjqPRax3FiuVygi+J7RU9WCQVSEVjmnw15rDUed0zjATNPhJgI280zQdtanPfosmB985KyTOf1dOqZxxPWzFRVTVNVFDoppWJwxOgYx57JWoxxrDdbAL768itOs+fmxQ3XmyWvX6YOjlAFt3cPvH/3QNOWWDOzahffr92NZn84MI6KqhD5GI6UUuGGhm8Oge8eBV++S1lUn3+x583bt7TdBqqAkA6Vz2HbNOwfvmX/8Ds2q1c0OWXc2ydCKEEvaaoXIBt8vvacS0T1aYq0i1fMJnW/4nzI17dLZPWyoc5y/nk4UK4XKLVFtcs0sswjL+8jPsQ0IvaGOSfIW58cuYOXBEq8t/jn7LQwYUfDBRdccMEPGX/YB0dIglpS5Q94G2t0tUGIEuk9umyZ8l2n95EgN5hYMM0OG+azIdyyW9AtW4SUeBOofOJP4L6kXf8LBtsRZaBpvrekr/SMNL/FHn4F5htC7mh4lky2YbI9qyogy2smcgjgWDPMgUVZYbXGOX/uupyOfVbxRN68+egst56zBF4KjdIVVVlxpbMnilZ453DeUzdlLnJgrzzHh6+wCG5v76jqihc3iTtUFhrvA9Y5nHPnwic9h0AogRB5nJBVLpGIcY4iRGLwhGAYcnF42u2YhgEIhBB4zF4k02ywwVHqEmc9PnjmbN5mnMUaT2Dgmy+/ZPXna+rc8Vg0C+w0ghB03eJsBrfcrGkX7VklJUUk5o7Q4+17puGEKiRNXfFRlux779ntdgzDQAgeKTnHRcQIznlmYyF4lEgxA2kdFMYa+n5P2S7Psu7DYcc89lg7MRtDXRb4JnVCrLX4GCmritV6e167spSp+KJKjPngCc9qLa0Zh4G27dBBUHZLZC6gX716Q7HbU2rNsR8xs8uXvCQgIHrqqkbE1MkAcPOEchIpoWmSSSXAenWNUgU+eNYxcr1d8f59Ok9Nd8P904HTF9+CCEgVcC51rG62C5ZdRdWU3H57x3GXCj07H7l5vaFeVNSLB5bL15R1MplUUuKJmNkQ7EzMXZWmiNSLFUovQLe4KNEyrWvbgNZtUgMKj5lG4vO50DUhSoJ1RAT2eZRpLMbMOGewxjDPI0KlAlqEwM3L33eOvuCCCy744eGP+OBEbPkZY0x3t9ZHXB8J0VPoEmE81uQ79skxmT3OGyJQVTVX+W65KUuG/ogNM135SIy51d38lP3YEESkqgo6XSHcb9Pfe/w5YfgcHSecV8ykIsu5mhg9zeqaavtvmFljs8vxdrVh7QsO+x2Phx3T0J83/eDTuCgZ7QnqnAf09sMf07Q11jms8bRNwyrLrWO0iShsDXY+nTeMzaqlv95yZ07M48wXX3xx9hx5cXON1pqiLKHviUSKXOiFELHOoJXie9FtGinN00RVtylewLmz18xkDFGAz3EVc+6mIWWWc6dIAik4O05XoqbvB552T7z75ks++/Qz2jZ75DQ1zdQShaRuuvP3l8slXdclJ2MCwTve36cRzP39LRIBQiOKQJOLjlcvX7Lf75nmkX44prTqTCS2xtL3PYdDhVYySeOzvNyHwPF05B9+/Ut+VnVY+9x5sszzyPG4T5YCItKHZ5O95Cc0TQPBWTabVGwWRYmKDhEjy65DnR2AoSw1Sqa17hYth3Hi53/7t2kdtm+4ervBDD3BmzNHyUyGbrlimh1ffvkNXdfQNM8WAIrZmES3EoKyzNwvIZKlghmZ/UxVFnz8USYSq8Bm3dJvk0llIUtiTNdDpORkBh5PA493dzzdJwK5nY+Uvzlx8+qGm1cFZfMtWqaRUFVqQLBaLlkuW8omvS8QkRg1PijsZDHOcMocrHl2RJ4ASaE0dVme10jriPGOaR5QSqPzDQYu5VnpuqZZLBBREX0eWSJwuUC64IILLvih4iITv+CCCy644IIL/tnhD3ZwbKj4x28DkiRfPTutKonQKo2AckfBGkvAUlQ1Td1SFwWHHLtwO04sV2vWi5rZrHkac5qyAV3uqBcLKl0ghWE8/BIAOXyJjOCCJsQaEdOIpazWiOo1qrlhdwg49y1dl6Mf6gpRa+YQeF13BFedOziEmEzs2i3T7Oj79H2pFFXTsmkqzDQy9Xvu79/l1ysIXvL557/h8PQOn9VDwTu8G5AhpVH3Q89vfvuPABgzsVmv8dbhYiQiz/JoHyMhSox1EJOBGsA8zylhfBxylpJlmvO4yVpGY5jnCeMcNo+NSlkSvCd4n4inSqeODok/USiNEoLH+1v604kyGxEWRZlI3jJFZDx3Y4qipOs6iqLg22+/4RdPO2w+tzq7JEshzs8HsN1u+eDth+yOByYzMwwnxO854VpreXra0bYNdV2dTQWjEAzjSN/3hODP4yYhk9rKOZuIstacQyZjjMzG5PgLwccf/RiAv//vP8cMO8qywDpLVZXfmxcGT11ViRQvBc57vvoyWRSsx5nXL9+ghKRqWr78No9NvWdzc0MUElVqXIj0vc3XfTLTE1JQFgrvU+ep0OmrrjSq6IixwubRbd+/o5GCqm0YjKJerKm6dP0LXfJJu6Gpt7z79h2f/ya5bj8+fIfUgsXqml1vCcfvZf7ep1FrCHcUhWKRs9Y2mwXbm46rmxQjUgrBNueChWWKSrHGfs+tidldW0jKpmG5WVHoknwqkEJRqBKBYDJJpSczn20Okn78vgN5wQUXXPBDxB9JE3fM4+nMq3DWUegiqY3MiJ3nsyeKLBRN06KR2GlmPPbnrJ711RWqVNzd7zn1IzY7wNZ1RacXxAKicsB89s4xeJzxuFATS40u0wdqt3qDWvwEVXUUhxNP+3uOQ/p7xhwpq1R0JP+XiLU5XmEa8YeRwJGuW3A4pOLL2plgr7B1g8Iw97ukgALatkWiCHZmGgZcLnCeE9NDVDnAMDBm5dW79+8Yh4GqqhAxeZA8RzJ47zE2BRpKIc+q6UgKKV0rRVkUOOsYcrr1bCwhROYpFT3Poy0XDUJKYvQpJ0pKyJuWQlAVBZv1htuHPeNsqHNEgdRpxCFFKlzKnN6ulKIoCpbLFVK84+79LXXmmLRNi9M+O+hyJk1rXfL69RuO00QEHu5vz+7MKXw0powv57DW0XbfZ1i1XcdP/ux/pG5XiaeTV9a75Og8T2PiAT0nkIs0wjLGYJ1ltU3eOcv1FQ/TCWTy4tkdDqwWeWwzG9Q4sr1qCELgw/eE79uvfkeYBhwCH1XOhIL1ap0ym4Rknib2T4/4zONq25bFok25aQHaJo0yF8uWoU+E70JIhvEJMyWeTak1qrC4cKTyM0wjU+ZltZuPOY2O/fBAqARv/+QnAFy9/gSBx7lAM05Ya89cMWMnbE5tj0SmrOp+PCrm2GBCx3ZzRVQ9+8PzMSjs5IkijaB0WRHymOw0TIz7keBTOGyR16GuanTpkbogBEVwIMg8JaHQ8dL8veCCC37Y+CNhm+C9PKsnyiJZ30/zgHep2NHls9xUYq3jeEg8gu326szvOB32zKeJMVqkiFQiZ1QpRV00rHVL475juv8/8acvATBOMNPgo6KKV3Sb/wEA2XyIDS373YSdJZPtOGSZsWePKo6UeoES4J07S5fNPGONwdoZcX/Pep02Wzfv2d0f2EfD11/+jnGcKIr0s6JsiChChO3VK/DPPI0j3k0E53BmRAV99g+xznE4neB4oiorjDFM+Rh8SN0JgUBKdZbLKyUZxplhHBjGHi3j+TFSa4bDEe89282W/T5FAITgk5lbCLjg8S7xoiBxReqqRuqKennDmw8+5vomFQRaSqqy5nQ8EGM8h4Q+xzZopfj0x5/xxedfcNonhU7wAR8TybmpynNYKkC3WLJeb3Eu0jQLukxIPx72ieAtUtRACDCMqXCsqob19orXb36EUCUxZA8hJEppCq2xQmLsdI4osDbxoaSUSKGp6tzRq1t8iKTUbc/we7LuFzc31ERM8MzHib//xS/oT4m8HYUGpdluNhAEx+yPM46WL798x2K9pdAaISvW61TorZZLVFEyDAPj0PPwlNZneWopi4gUAU4AFqWyyWWUmAiqrFgvaqL3yFzgR/8FjdTosiUQsTnpPFQlKJGN/jQEhRSZZFw0mDkFhPb9xJg7OyjJOE0c+z39AFJFqpyVtVlU3Fy/5HiakCm0AqXTtVxrkLHGh5hI8TYdW29nVBloW0ldRJx/YhrSe9sFwXb7ERdccMEFP2T80QJHyHje0Kq6hhhpVJE8XZz73oDMG5QUXF+vWa23mNnxPrf9x6kH0oioqjqKNv29rl2y7gSV/wX90/9BmPcYkzZ9L1qiKlmufwzVp3zxmDcFcaSuTCILE1FVyUp9H4I5zzMeQ1nX1M2CxSp1LkSEaRgYhhPEwNNjOrZFLXj16kMmB1dzhXOB9rkDIEoIgdPhlpttcy6K7m5v2T/tcGbm8DSipOKZchlCcul1LjC7iKfgbCQUIlUpWC3atPlnd+Yk77YYY9kfnnB2OnfNjscT3nu6toUYzh2IEDwuE5Kjj8hKnUm8xgZWV6/413/xb7h6+Za66c6k0psXr/jpz/6SsR/53W9+zd1tGj+a2WFmCwg22y2f/clP+Nv/9t+AlKJd+wJrIs6MVDaTmauOopZ0XUNZlQzjgMgzjqbpaK9f8PbtB/z4089Yrdfc3t0C8PDwRLtYo3SBtY4yF3pt2zEPR07HHTY4rPeUZ5KxQUqRpOBNc87D6vsTkaTaCjEyTjNP2UtpspbezHz97j39MDGME4t1uh4++vBHTMaybBtevHzDUy5Wei9xoWT2gdGOFGVLyIXH/dOIcRORiIiCMSuvbp921FXBpqu4vmpZdGvGIRVM/WjxvsMcC4pSQww0XXq9ZVUiZ4X2YOaJKkv2tYoMpwlHQRCKvh9+L/D2hAsS4yeMnZnGdPMxzwbvXFbAZWfn/L69bxccesGbNy+p24r97jtcn8awdSEoQqAtGmQpn2t4VL1k9hJjDLv9iLMBQSqSi0Jyu+u54IILLvgh448WOEpI6hxDILJaRBcKiUybjMijDylApKC/d+/vmcbp7HBXVh1lWdF0HavFlqtlDq3UT/jjr5iGX+Mny+BqnErFhZaRutmwePkvsVzT+bQ5vn//np2zNG3LcrlCF8V5TKaUoq5TKrcxaYNschep0Jrt9Za3r6+YTnteX6fNqV1u8fGK09Oe5U3N7mnHYUojiRcvKvAjTbNm2WiaOh33ctHSH484A1XTEsoyu+6mToOzgbpuOQ0TPogceplGO1oprPFM2fgwrZ2kqmq8D+z2R9qmOauRlNK8evmSeZq4u3t/LgaUfHbiHZmtTZEN+Zw1yw0//vN/yerFW47DyG63O2u2lJZUdUXXLfkX//qveHhISqnbd98yjgYzz7Tdgo8+/oRvvk5F4NQfcHbG2Cn5yOU/pnWJ8KlL07QtqiizpB2ur274D//hf+Gjjz8+q7usTWseosBYz2wMh8MRl4vkpu2Y2o5uXmG9IwR/9tWJMbllN22LrituM0/q88//kWAGikIx9D2HwwGTuUPH/sT94yNN29I0HVoVZ7XUbt8ThGL/zQPvHgxNmzokVqaE82c/I+tmjrlYUTGw3lzT1hWImaLNAZgOrq+vwDu+vjvycfuK7ipFhHTecH/7hOk9sytBaJ7GPOIroGkk23WN1Ib9/ncArBYNpV7T6oCuVmw3b4i5WHFWM9nIaRw59eM5dNRaQwzh7Cwdg8+x30n9+CfrT6IAACAASURBVO79A4+7HYtlw3JR02XZuZcB7yfiZJA6cY4AqsJjJ4OSFYUUiKJKqehAP/9T+4MLLrjggh8iLoP0Cy644IILLrjgnx3+cAcnRgTirKZRWiFIvA0f0tdzpyGEgI8RQUQVFZt2cVbodF1L17a0VSCO/whjUou4+RYzDYyTxscFiAVVne58i3qNsZLffvEVQu7O/BdvZ+ZpxMwj43Ci6RbUOW6gqipCCOkOXggC4czBUY0kxMgwHBDxPZLEq3h8iIzhnnk2OOdpu4q6Sh0rJcDFgiAkD6cBk8MGZdWiyoYweryKiEKg/HPwZDK9S+GHIsUdPEcwKXDOEJwnBHfuTgQPVVETEfT9wPF4pMhjkdVqxWrRcTuPxBgps7PvcrEgEpjmid3xRN061svkDfPnf/nXlN2Kb97dYYYTwY7kCVUKPdWKsqzplmvW6+RV9MlnP+H226+YxgkzT1xdX/MnP/1TAP7ub/8fdk+PIJK3TJW7SJCyi8w8YawlBMGbDxI349//+/+JNx9+wmmY+Obbd2glkdkhuqprusWC5aKj6zp2lc7rYJmnFePY09kO72wiTwN13dLUHYvlmiACf/Mf/zcAvvv2K6I3ySU5xuQcLZ7DTAu0Tr5H/ThT1R3dKvnT3Lx+RdMtOI4GRIF3OcySRL4uiooQSrwPvH3R5dcrGayknwzBgZLZ3ygGvvz6FiUCImr++99+jrVpTCYErLc3vH77MinBRkPInRA/W06u5PGxJ0bQIh3b0UiWbWTdKJx5h64rVJ3GQ7JsCSFwtSpZLVqMzcGnJpkjTtOMsRYzTWcFobUGYwyn0fGwC2gERVbwNW1Bt2xYtjWF84jcB/Rxj5KgGViVGiFrrp5DaD2Y5zf+BRdccMEPFH9kRCWQQp43mbHvsdaQzPYFIM5kSqlSEGdRFpRVRdu0tLnwaNqGtghw/O/MT/8ZQnZsdQXjrHChJhQ19fIVkTcAfHk7cBpG7PwNRVHQrlJL3flA8BbhwQZPIDJno7iqbCjLJAsuVYEPDpdNAI/HPTszU0jL4/v37Pepta/rhm51RVHWKYMJmHw20wuB5WLJ7774HK3ht79KqeV22qGE4Gpzw7LbQKHQIm0Mw/GJeeipqpYSlTbts5TeUEjSc4VIjN/zVYqyQorI7e0t43DkgzcpTTx4y/G0T1EEbX3Oh2q6Jv+7YDF7qrbj5s0HAKhmwcPDA/MwctjvUCIiRXquuizRWmHKOrkGz2mkdPPiDVc3L3i8+xZ9EGyUPCdsv/vuW8a+TyTa4Jmn74nbXVVjpwlCpG0X/NVf/TsAPvjgIx4fH+mPB/rTkUprQnhW4UTaxYKirGiaBevsEC2ITOOAeipRSlFVNSrPw7q2Y73esF1v+PUvfsF/+7//Sz5HNuc0pWJSid8vKBWIlMYdhKJebqmWuYiYSvbjzDj1vLjecr1N11fEMI+W2fRIVbBerQk5O2oYLQJwLuRAz7R2MSSFXAwR4oSz49lB24fA/vSOh6eJum4pCkmZA2qvtxtW3TW9sRzniX5IBcnDKXK7C5RyZr2qefXymi6mwv/weESpgNQDfd/TNKnw8UREoRCUOGeJPuLzTYGzLsWHWEPwHhPiWY13PIK836F0QV2XNE0q2tqmYrVsqetIIR2FmhG54VvGgqpI198FF1xwwQ8VfySqAaQWzFk2/RzSKITKBQ5nlYsuVPrSJVVRUdQlKieAVzIS93/HafdfEOGIn9OdvPUeqZY09QbZfoDsPuXuKSc3T4/0/QnMTB9GnvbvAajrBWVZJ5VR9KzUDWWWlrt5Zu7HFHfgPc7P+FxESCEZhxPCR7SuEKTXNPU9TbfgavuG1abDmgNXuROCc5yGHfO84PR04v6UFEzW7IhK8XQ3IWSBrApkPoboHaqo0tIGQVEtQKbXFMOJEAzeR+pq9azqpqoqtEyqoRgFj7sju116rtWi5ubFFYXWdF2Hyx2pKCQCwWq9pWyWlPWSxSIdd3/sGfueaRzoTweqUmMzSfVIhAjL1TLFNITnhHTB9dULnI883L2nUIpukYqBjz/+hNt37+iPj5RanovalH9l0FpRaM3P/vxnbLepI/T+/XecjkfsPGLNxCRT9y2dC8Fx/4QuCparzVmlt9les7l+we37b1FKopXKcvMUDrlcrUDAf/7f/4bTIa1PytRSIDUCQVHKM/dESAVCs716iUcyTBNV+/xcWzbbDcZMaBEJObRSiBJQTPNE3Qj6YeaYc8H6fkLXS7QWxFjxPOFVRGTSz2Oswbkakbk+IYdgSgHzPDEbmY4LMP6E0C03NxuWtuLhIR34MFl280x/Gtjt4f3tiZuX6Vy8erWln3rm40hVLZE6q8nwHA9PzGNPIQpiXacCjyT5DsHjvCN4R8xfafkCMSaOkzEB6/L772S5fRypi5K20Szaki577hTaEnNhfMEFF1zwQ8UfLHBijIzTeDZ2q+psmiYkUgqU+t4/RGudTORKTVPWNGVBEZMyRfRfYg4/h3nHPEdcSI+JuqJuX1M2rxl8x7dffMfTIXV3onOEecS7mbLSZ6Oz4+6R1XrLslvy8PjA/ft3rLdp0+oWGwSK6FMekXdTvtNOEmQdI84YjDcss9V/QOCcpe8HvJsx8wDme2rS4+OJ8QizETRXaZPRY42fZtw8EkJP7N25y0VRI6uW2ApkARJ3Tm5u2iXOWUI0OMWZFGzmCZXis1FaobTGzEnOfHv/yMPTI1VVs16tqHPsw/rqBW1Vs9mWSF3QLTZJ+gyM84hzltPpiBZg5pE5e/g4a6jrmuPxgHMen7tVUkS6uqPrFrz/+h2Fen9eg+12xQc/+oh/+OWOeTYUOq1pWddYZxmGgUXX8fLlCx7uExn8sN/T9yeCt8Rgk3eLS+epriqEkGw2Gwot2aVcSsqy5Obmmq/ajuGQZPQuj/GapmKzXfPw9Mg3X39FlQtKilRsS1UgpUzE5Fx4dMstq82W/bGnqhtOpyM2y+Ifnx4hpAjLEMJZgVY3S7ZXr6m7mmEa2D3dnpVFUpW4YUBISVXX6DIVFyIK5nnG2hktJDEKfK5e62pJVVSIqkCXBUoKTn1SII3G8u7hgNaK623LzTYVEEoveTi2PB5mhtFAMNw9piLr7vFA1xZsNhuq5gaTVeLOWCSeUoaUHL9ssf77mItkVzBh5hln7PkGJQSX8888wYffI3VHhBDMwH6XiPDPHlVNU7JaPo/tLrjgggt+mPjjMnEkOhcxRZFM/qRM4wCtC3Q2iquqFFRZlYqiKCmn3zLf/ScA7PyIdzPzoHAUyEUKxyy6H2FpeNxFHndHxnk6+7JopeiWa6bxhPeOuk7qKiUN/WlP07a8ef0ht/fvGfKGUdUdq/WSsqzRUqZ2fN7AbfCEKKg0KAIub1qltGw6KJoa6zoCV+eiLQbJ2+41VaWw5p7hkIqOfnZM08R4OnA67PBuxuUu1+xcynQSgnHoabfbM2dlGnrsPON8ha6bc8K3BA5Pjzhv8ULRdi06cyT6nSX4wDQ6QjhyfZ1GEvvTxGpxRbfoKOsSIRT3T2kT/O7dHev1Fq0ESgjMbLHPTrjOMY4D8yyAQNNkCXv09P2B1foKJSv2T4+o7Ney3Lzg5sUN332z4bh7xOWMI2MMJkR2+x1SKk6HJ552qaidx9S5SbL2NI5z+RjGEFFKcDhwNkoEGE9LNlc3XG227O/fI5J0CoCrqy1KCW7v77nabrjarPJxR6TWeB+JEWbrMCEVF6ur13z48Sf8w69+xeHxHqUrlps0+quaBjse8GagrBtszN2OssJGz/Fxj/cBVbbnDmFT1wg889hD7M+uzbpcEIRGGEdZL2gAmzttWhUgC6IQBKFYLBZs8jl8uL/DWsfXX7/j8FTy5nUqoAsdeLGSrJZXDLPguO9TNxMYx5HdbmC3H6jvnrjORXfXtjztB6ybWC5bvB05Zn8oa00q4kJI7tfOn6vrECDG712Jn89FjDGPUZ+5NgFj0+/1k+Rxf+KCCy644IeMP1jgCCkp6xpdfN+lkblT8dywePZr8d4TvYWoUOGInb7CTOnWfJp7jAuglpTL1xiZuCI+fsj+uOfhfpc5DAIRny3pJbrQdKst1hhEHjWVSmEJPDw9sdpINttrRD6Yqqqomob1ZkvXtFRSEeZkTubdHVJ6pCghgvNJHu3MQFm8QBae5noB6gqTj8FMM0X0qHjL5L9kfZN4EIOp2R8jtn3Jq5dvsdYymtQh2R/3rFdLpPfcf/ct0jrGzMfQdY1ernE+Epz/3qyuLBFFg4geISAGj8zS6hfbLYu2YrvdsFgs0t05sFgsaKsapZMR48Pjw9lI76uvv6Sua7TWCAJFUWTuFHhgGHq0VkgZz+Tjuiwpyoq2W6F0wXja02e356KsWSwWvPngQ2IIZ1l3FJKn3ROPj48IIbh7/w27nIgtRHJTti7JloXg9zZL0LrAmpn+BDKHmD7cv0NJyYubLQ93a2TsqPLrXa9XHA8Honf85V/8BYV+DrqUICTjnJ7nNAwchpwmTonSmtdvP6CuKo79EV3U+fqCdrkG32A91HnUo6VEapG9ahTDMKZrFzj2Bikibk5cJKWfvWAmlC5p6pq6bNBK4LLrrwszogJEhTGW0+GJPhcRhYLrF0u8C0QX+fbb9H65uVmzaAXX1cBV4fCrkt6m0Z+1Lxn7mdl4ZuuZZpvfq57XP/qMiOPp6YC37hxIaq1lHMeUyG4tTgjyhAqIRB+zJ5M4E7QhnLs4MYbEczpnjoRzGvkFF1xwwQ8VF5n4BRdccMEFF1zwzw5/sIOjtWa92ZxNvYQQSCnTvyIpp2S+k65KRVUGCvM75vv/Fzv8hjkHDnpfUnc/RnUfMnHFw2O665ym+6TksSljSQqQMsm3IwHrPFJryro9cwbKqmJxJZmmCaUEqqgIzxJyH4khopSkaQQLLXEydRueHr4kCoFTr5F6ic6vqeiuseVnCFkx+oCMB0zmqwynO/x4Sy0eUcIwh3THvp86jIl46zjuHhj7PWWbDA9fvfgQXS3wQfDBZyuMm5hyTpUzI2Y8MQ/JfVe4bHC3fcHb128I1iK1om4q6iK93mWluNkuWXQtRVGksQ05osF7Tv2R3335OZ//9nN++qd/BsBf/9t/hzGWeZoQUVBWFfvcjZnNnGTDNjDPA3bOnR3v8AS6xRVRCpyPzLkT0u+PtJuS7c0N9w/3DDln6f67b7h/euL97T0fffCW4C2/+uX/B8AHH/wIvdmQugIijTYzl2sYesw8UVcF3lliyDYEsuBQNaw3a17cXCODywqpFEg6jBPOB7qmReVATSklShV0XeIuOe+Y5jxC84LRWLqXL/He4+DcCeyHEWMUCIGUJUW+vnRVEoXDu9RNa2tF83wfoDTOe2KtwTsEaX0q6akqh64jupjZ3d8zHlMnS2pFFReUVYNWChciIaTHmXmmx52zyMjdk7u7J8yqxq9KulYTg6XR6TFtZdksJNAiRIuJqcNlrMSHZNHw9u1bzGzO+WhVVdG2LSY7fZssG4ckHIjWEZ3FB3dWuqUQ1DTWijFxlJ5Vf+L8brzgggsu+OHiDxY4SimqssTlAqIoClQhcoEj0aKhKPPmFB4I+18x9L+G+YgPHl2lUVTRfYZvfsy3j0eOp4nTKfE03DzinUPKSFFopGrOG5qQkrKsEEplAnMaLUQhEFKybddUpaJuW8qccnw83DKe3hE2LaeDYBfMmeypm3+Fjh3BHdH+PSLzbIRcIvyA8k/E6T3OOcoi8RpkvcRWf4bxMDhx5uZsbyoknuBGptOew8MD03PGkXEcT++YJoMQMtn8P/uyyJrFakXdeaxzbLMHTVdVyGB4+eYF19cbCq2SJBsolEAEizMT83A8jwkigtvdid++e+Kw27M7njhm35MPP33F6Xhinu6RMuCYz5uTMTOnw4GiUCghaHRaO28M46nHeQ9IIoo5c23UOILe42KB9ZFv3qdRym7/QAiGqiy4vrlhvdzw0Y8+BmCzvaKsyhS+GVNR/PvOKcMwEEOB15pcq2DMiLXmrNLrx/EsixdC4JzLm64/S6CVlNR1i9IlzqfH1jkfrZGKri6YrOenn/yI725byuxxdPd0z273hHOWpq1YLDIfSidnbKUiy2WLKjRSprfJ3e17tssFUkpKJemys7XLRcE4zozDCa019epFWoeXH2JiQX86MUw90zzin4uLecbeHhAx5VOJrHqKMfHbmrZhvVxwfbVktWjzNRSR0iHlCaVm6joV1m2zYJhgdgFrRpACdVYXGnyIiCwM0BTncyGkxAsJUiCCxPu03tE7ZAiQI1kEEZF9jCLxn/B2Lrjgggt+iPjDaeLOsT/uzlb7bVHS1g2FrpAKovkd/pDCMafTL/HjIyFGhF7TXf8ZJnva7AfF7u7AYZ+6I88eIUIIvJ9xzhO8JpZQVOm5hCwQUqKLKvmh5E5RWRdUVUuhaoSIeAwhpu7E1dqA7HDOMdqBQmmKmMjJZeGI7h8peZ98Qaqb9BqN5nGYkGVDV/8E3YBqsy9L0CjnKLxD+XDmGw2zw9oZ8PhQoVdvaTfpA9/HSGEMy6qmLAr6wwGdZdWLRcc0HDkdH/F2RslUQGyWBderDeuuoq4LlBI5FwrsOOHMjLUTzpkzwXcYRn7+i39gZwTCTwQzU9bPad0lWtdUdUtdKh7NeC6MrE15U0RB1STvH4BxGMn1VopFKOtkoAcM04yLkbJdsVouWSzTL7oQiDF5rNzf3/P2zVv+6q//bboeZsuxP2GdZ+hPFDFS53R5rTRKqazIUmfTOWsNZh4JPoWNjvN0fgzkLs4wEGM4c0VCCPTDSFXXOJ++/yxjT8T3mq7U2BC5WtSMuWN1vVzTFgVVXSK1QuXkdGM83knwDu8MzltcXoeyCLR1iupQWiHy8xz3Pd7D/njAzobF5opF9zKtgxdoLSlbhXEKZQp8Pu+iKigrhQgBb92Z4hKJGGeZnmYe7h/48ivJMquWXtxc8+LmGl1ACCd09s7RxYAsOupyQUTj4/cmiYVUWGuxTqCkQjmHyj8zUhKUwnuF9B6RlW7CWYKzRJEUdiHEs2T/uci84IILLvgh4w8WOM47YhBElz4MhzFlK9VVoCkLynkm7H8BgDJHvGpoNj8lyE+5nxoeDk8AzNPEdDxlD514zoeKMTBPp+RZQwQLMd/O10VFUVUIVWS/lHyn2rYoWVBoARxRAqRMBck4XXMaRow/slksqUqPJPmlRHskWkEvP2IOLf0u36kqgTMztXHMk8C4Ca3SCKbrFun5VNJ0G5s2k3GY6IcTs5mp64ayKIm58JBKUpcVhZKUWmAKdc7ajG5g7ndMxz1mHimW2QixXLFalpQa7NzTzxPT8KyASSMl52wiifrnEUvPcHjitD+gZUCXJfuntN7BOYpCs1gsKbSk6VvKXChUZUWhFN6l7CKfN6ogkoetVopxHAneo7O8PQSYjYfCUbVL6uwTVPkkQd/ff8vO9Hzz3Tdsr17ndagoS09ZTjhj2W7W501Raw0Cgkvqnme1j9Iyd3wiuiiYpin9P0MIgTGGvu/P61AUBTGmINe6brKFQTruaRwotKKpG6qm4XpVk08TLghmW3IcJvangcHkvKmixnmXbCyFoKoK2uzIrZuOx92eu4cdWlcomTp6tYh0XcVHH14hqg9QQmKn1NGbo6C5eoVzS+bjgJkMJvNzT8ZhzYyZJsw8ni0NvHdYO+HjTAwR6yK7fVqjfrQ87WfevHnJat2eR0pmHIhmRM0jSi2wMZ5zt6wNGGuxzuKswzmHyyzjZBXgcHbGW4vPPjjBWZyzeG8J3iV7g3/inXNxMr7gggt+2PgjUQ0prmAcU5EQZkndgNSSNgzsD/8VKfIHYveSqvsXTLxhP4zs9o/0x/Qhb/oR8Hjv0cXvK7E07WJ1DmhEyLOXC0ojdMF6vaGp6+9NY8JEVU8o2dL3FcdhwmeejZCOWgxca4MwPd5FppA2p37acBots3F4DsTwPAJSrFdrohSo2lMBMfvg7HdHiNB2LSFExrzZHvaPGGuom5bgHcdxROYuRNt2rFdLmlrTH+4Zdr/jmNOtm6ajLFqauqWrG15dp7vyVVsS7MgwOZwxHI8HTJadJ58WzzTPOOe+L0iC46d/8mNi9IzTxGmYcbkoclOPrmq0lhRasVotmafUdQkucXOskSk4MxcD3kcg+RudDnusGVktc/erqpBKE4LAAy5zUg7DRLBzNvyz3N3dnYtAIQrKQtM2DV3TUJbl2TCybgRCJE+ecezx567UQNdOECNV1SClPMeEjOOYFT1JutxnawClVPJkmudcIAjK3I0pi5LgJN4ZrJupyhql0yiqLhRtpVl1a9aLFbs+FRf7ccAYz2wswzj+EwVfURZURYnWkvWy4PoqXVuVkEzjwP3XT9gYKSuF1pm3IzzD8Y52dUVdKlZdhZBpXY1vOPYT+8ORca5yVzBxc2ZTonTqdkbvedakC5mK289/9zWLruHN6yQ5v9q2hGBQylLombrqmHP8xDBaXPAEG7HOYY05S/ZTOKxJCfbOJiUkqUj23uJDIASXOTlZehXjWU5+wQUXXPBDxUVFdcEFF1xwwQUX/LPDH+zgSKXwUSBUuuvtmopNo6jCV3D6Fhknmpv/GYAxfsTdcWS/f2A89Rgznj1tmqZBFQpjDM4ahiF1QqSUCF3QLbdIoZBao/MoJQhB07QIKbDesVyku2XvZh4eA5PZgQhoFeieSbzxgFaRyWpOPRgnMSbdkXo/57+bAivLnKUjpMJ5h4qe/jESgjmHQs7GMvRHhJTUTcMq52F9/MmPMc7yuHviuD8igEan0VpblWgRCGZgPO7o6hXLD9JIxwuNoyB66FRks8mcGQXj6cA0TXgXk2fNM4lTkBQ9SIgieZYAYz+mEYSIzDYSfODwkFyEf/3Lv+NP/uxnaXTmDVoJFovUNXBm5igEgsAwDudwRVWU1HkUY+aBcTghz+6+DU3boYWi3+/54jcpLPVp94gzI94aZIw8Pux4eHiX1qHp0KqibWqU1kkR93uE4cViwTwlx+U5q8m888QQzjENTd2c+TlFUXA8HjGzIfhImQ0mvfdZ6WOQUmS+WFZemQkhFEWhUwBlaSjL+v9n7z2bZbmu9Mxn2zRljrkWIEESzRZbmv+hmN8/MdJ0SG3IJmGuO6ZMum3nw96VF2y1wGlp2IFm1BtABHCqKiszK6v2yrVes26vbTuaVtPeWFpbT3f2LMOJRGLftuTGEutHkVLGGMOm75BW8zSWzs7z00ceHh4wpqXf3CCCpGuqN5NWMAUSkW7T8/Q0AoWk/eLljld3ezZ9w+Ca1UjvcDgznAcWpXDzWFygfeVk+cCSyuhqHiyHYyHsv3x5x8+/eMn9bVc8qtLIrvLZetsSdxtmHxlnxzzNazdynibc4nDelE5OHVEFvyCiQsVAjIIUBSl99shJ6drBueKKK37a+PECRwq2m24l/m47gZn/lvnhvxCUxm7/E7P8CoCnceE8npingWWZyDmuOVUJIGW0sVjbrBJVnyLSWtq2p206trv9OtsXIiOFYnGODDwfypgnxYxUmm3fYORMIwaoI4SEZlgUnx4D07ygpMLUgqndtBhrMNrUFnt1TNYa7wq3ZZ4GxuHI7W0x9NtvNxwOJ5YlopVirvJx55ZCRvWRu/2WttEoU7bX24jmxHx+QkbH/tVXnMbKrcgSLRSNVrzuJZ0qfx9OJ7xbSCkhhaJpulWGG0MgyAgp4IIn1IXO+cg8T4VPkRJKK2wtBr795ndorfj617/BWg1J0lfeU1g2uGUm5YCLfg1Q3Gy23N+9YDifiNGjlfwcGKkV3imEEGiZ2PflnJ6PAtX02Jt7JAIt4J9+/z0Ad3c3vHr5mp21JTBTS0g1mFUIMpKUI2Y2pPo+UmqksiDg6fmBZZkx1WSy61pCcPhlZpwnXLicB1cUfbqMqryX6wh0mkZSzHRdX9SAQqFVuVay1iVbzTmaTnK3r4n0XUe/aZh9xPtQRjq12Cwp9gvTeOR0Ssw1FXz2DoRmmAYOxwMCsY6opABtDJvtwu2tZ7vdo00ZTX7z7QljvuPl/S073XCOpbC+3d+QY6xjSoNWmeqFSEBABmk/k6kBDueJ9P0zqA1vX79kGo6rgaLWkbYpRoR917P0vmS5AfMylYysZWGe/frddH4hekeq/K8U/cqhyjFdR1T/G9jb23/V83+t2j/Tnvz58Y/H//6vev5/ffzbP9Oe/PmxNf+6+JI34k8GCVzxv4kfdzJG0PaWrspNm+k98/IMm/+A7n7N2XU8vCv8nPPwhF8yOSVMY2poYYGUsjgVZ4g5oeqi1dgNyliapuX25g6l1Eoq9SEzTCNCBjaqp+9L0aHNjPAjhkCKB+YEzpXtnYbM4h0uxOq9omi78uPQdl3la0iUUlVNBLm67C7LzPl8Lo63NZLh4eMn9vsbXr14CUJxoSCY3vD2bkurFiwzYX7m/FzUZGIRTKkF/Ybm5jVHlxmWKiMeBzRg91tyYxmmUrSdjs9Ipei7Dm0MAoGrC9A4z5xPR5xz+ODWouN8HkpQpDH13Caayj1RWXI+T/hlqWTsTK6LU4wRiSgdDPuZKNv3WzabHd9/9z3Be6xWK+lVKUHTWFIKbPqO3/zmN+U8dBvGZUGaFqMtMQSehtJR+PD4B05nx9/8+q/YbjpkSus+JFnyv0i5kIWrP461DZvtjnE68+03v0fkUPhXwHazwWiFUoJ5Hsji4oMjkEIUIvs8sNnsVgKycw6jSzI5FL7JhXOklMJoS04Jv7i1WNh1HULc8u2Hjyzeg1ToyhJf5kwIM9M0Fs+ly9cnZZwb8T4iRFGWublGHlCK6aeHB77/psSY3N4VBd/rNz8jc8O37yJ3d4qbfemyPT09cbvZsus3HI7PjON5LWxjzKSckLLwmC5qMmUaklA8HE50my2d3bBcPr/kicmRSbTtLdZImqYUvL1vcS6wcMasvgAAIABJREFU+JnFeVx9zeJn3OIILhK8J/6QZBzjtcC54oorfvL4k1ENjbHIUFrqmWei/SWOPR8fzpxPH5kueTdhIQmF0S1KSqRSa4RCpiQaB+dRUqJqp8EFT9e27LZ7pnFkGIaV/ChkRreavt3xcrfB2PoD72eEcHjvmIPk6Zg5V1O1JDJtt+Xm9p6ua7C2wVqzHstFRTJNE0stIJxzzPOEFLDZbpjHaV0Q33z5BW3bsjiHlIbNpqqeugaVMuP5xGF+JKUFn4vvCSGxvfkKT8/Dp/c8ffzENF+It4LWaPYbS/Jpza/S2qBNkU7HGBnHkXP11VmWhXkaCd7j/XKpBYg5IZTCh0CMiYwm1Tylr37+K/7m//iPtK1lXkbIeV0gi9RXIFH07WbNw7rZ3WCNxQePVJWAXEc959ORGDz3L1+jGr2GLmpTZPTeOWJITNO8vo8Whv3+ns12i5tHglu4tKVyhug9p+ORZZ7Q9XxLrdnf3vDd999yPD5htWKZCwF9mUf6vkMbRUxrzgBKa1KK+FC6cMa4zx45SgGBcRqRUpITbKv4xxpLCAGtFDF45pr1tJGSbWtotOTDh/c8HCfuanbUm1f3fPHFG8bhACTOQznWx4cR5wLaCpxbmKZ5lVRfLPFiDGQBGcmhku99/I67V294/fYNPge+/fYfANj1lm5zy9PhxM1uQ9M0jFUOXrqNgRg8Ibg1iT1PEzknHj8E3n37W776xVfc35X97poW5xxKRlR+JsSIVOV7sWs76Awp3bK4gHO1OAyp3iwseB9KJ9F/zjMLn7Merrjiiit+kvhxoz+R6OWJVBUcznzJNCsOj0fOxzPeOVIqP+ACg1IJKcFoi1CSVBdIKQSLc/RtcXN1tQvx6tVrurbj4dMD0zyTc0aqsj2lG3qz4W6jkeI9pLIIGn2HUD2Df+bhGHHLQtuXwgMhEVIiVSr8oRh5fi4LpBClkxRCacO7uhBLqWhsU0Y9IaGNWV1yz6eFeQr0vUFJT4plWzbf4MdHfHjGZYGPLQ+H0smypufp8D3z4liWgXlc1jTq3c0tX3zxlpe3G9LwcS3mdrstgoxfXMkNGkZOlVsxzTPLUrpaSgn8vNT9ruZ5uTjhbrY7vviyGCv++q//A33fMwwnnF9YpnFNE88xYo1Ba11yl2pxsek7pBR88eUXNFYwnU9rsSJE4HA8EnJid/cKV4uO5GcIC9t2Q9NtSTf7df9+9sUX/PqvfoWVgRGPIK7dgWma6rhnJqdIU7s0N/sdMXi+//Y7dpstksTxch7GkWEoafYppdUPSMXaEZSCHDLzPK88G6U0OWeWZUEgiPHz67Q22MaSSBhlVgXTcHqi3Wy432948/oNSZ+Rtcv19Dzy4cMDInnevn7Dr35RzvfXv3K8+/4D8yLQuiUDp3M5R1Jb5sWXjogvad75B/ltx6eP+Hlkt9vSmvJZvH//SNcPdN2myKaMQtZrfBQzw+Br9htw6cz5GbcMBL8w5MTp6QNdVzpCr15/ydu3X2Ibi1uW+j2d63f8IrdvMJ2G3tTra4MLPUuoEnMfWOr4aln82h264oorrvip4seHgGkmT99D9yUA3m+Yzg/M84kIYCSitqqtbNHCoOqPtBByDUR0wbPf3RSr+hB486ZsT0jB48Mj8zwjKMTPpi8dha7bsbEGKT6R44ZhLj/wUQiCD3hn2TSB241F6rJgtH2HsTvmOTOMZ46nI64au6VUCKykiJCsI4lcwxr7fsPt/oamkbRN7SjgsbpwbkKYkbVgi+5Achk39AzTyP5ly5s3XwPQ6J7nx/cYpXl593NCZnWCFiTwE+fjgo0LsS4SelJokXHzUoI4Y6CpJNp5mVf/l2UJK+lWqcIh6bqeu67n7dsv+dnPf1Y/uMjjw0d8cKQUiN6vnB5rLa2VxJyqEVx5JPiF9++/o+la7l68pG3bdZxzPh6JuZjvqfG8El7H04GYQCmLbhI3t/e8+XXpZP387RtyXJiHkRg8zi8M59Jpm6eJeSnhj0pITO30tdYwTxN3N7e0jWUcz/jaNXh6euJ0PJEzTItbi6+maZDaYIwl+oAPkdqUwntPyhmlFLvdjga1prQnIOQMSpIFaFu7im4hDwnT3XC7v+FpiJyHUhxGrdGqxdqOcV748LHwjfa7htvbjpv9ax6fTpzOE2+/eAPAx6cjMktSWIixpHlfki69n3FT4vjwnu9Sou3KiPHFq1c0XV9J1562adYicHP3it20YxpKx3OoruBl+8V1OOdMjhOudg6H8czHhw+8ev0FL16+QWuBrvw4qYr0PUaJ1WY1fsxElMxsrEJmgdVm5RUZo7Huyh+44oorftq4ysSvuOKKK6644oq/OPzobVjOAWUsQZa7Rzd7QgoY0yJFMfu6RChIpZBCknIhQRpj8PVO9fZmh9IK7xyvX79Zs5kOhwOZ4q6byZimWV2O27ZBaMk87fEukFPhLWiVMTJizAktHLbtEZW9LpQhC4kQAaUV280GX1VUF/JyzoFlHjhX7pCUltv7l2y7BqsXUjgRRdkHlOW8uNLkiJbzUMYOzgVOpyNdZ2j7jj/84XsOp7r9VNRj2likOqFts0YoRO85PH5g1yv+6mcvLqeBaZ4gBpZpIgExFgl3ea8ZHxxt2zBNGaqEPSHQyrDf3fDm9esiYa/n+zydyTkjhABE4URVArKw5W+kRAqfLff9vBCCZ5oMm+2Wpttw/6qqN4RFmRMueiJwqnyV4+nIPC/sfOL+/iVfffGGV3eFDB7mI/N4wo0lTDUGTwylYyWIWG0wqpg+Nm2NSVgWvPN0bVPUU3LLbR3jSWV4enrmNAz025bjsYwElxCQPhQrgv0OKdQfxTi0bYcxmhATWilMPQ8IqkN0U7tilayrLCllcgpsOkNrINeX7HdF9t5YzTSPHA6le/Lw8Fi7RGdub24wRrAs5fra7QzzwzPbzhKXEYxBVA6TyIIYPYsbyMkzjeVYP3yfOBzOvHx5z5dfvEXKzFINFMmZVktyo1F6t+Z4qRq/oXTh4hT5/+e8qPF85vfDP/Du2+/Y7Pb022J50LRHjDHsdltu9ns23cUkMZLCQtMorJwI3q/dr1YJRPdZRHDFFVdc8VPEjxY4KUWWlCFXUqkVbHZ7nF2IIRcH2crhQAhSzsQQClk2JXRduLq2ZZ4W9vtbhFQrgTblhG0atFaFL0HmYq8xjguKhMbTyIXoymLSKEBpXGoZ3JaHIeJ8HSGkiUxx+S3jsLg6Fn8mPSv69pZW19RkUpGNkxmOZ0SOpLY+JotvCCnTtxpkHYV1ks32DafzwnffP3E6jSxLTQwPvhRtTcdmJzCmIfqL+zBstzdsWomSmmo0ixAJHwpxepodi3c/sMIXkDMpJZqmWWXTKSW6puXu7q5weASMw6nuQ0DKUsjkXJRGF2Jw0zakVB1skyfWAiLlTI4gYyCnTLcBW5U2969ecjpZTqcT37/7nr//+78H4Hw+0W+2/OoXP+c//ubX7LY9y1DiIvwyEb0nB48GlFboixdP9fXJ5BIdcCGv2ohQFxfdiNaaF/dFcfTixWtevjzx/sNH5sWtRcyHD+/Q2tKkjA9FxbRKy9tuLcBDCEUyXrks3hffHGs0krRKy4UQWKvQKrPrNW9e7Hj/qdoauIGjH4ryynlC/foI2XKeHedp4PmY6PsbNpuLeg+aN7ccjxPb7hUpZ+rUlHFYOB0fybnES1zKkRQcp4Pj+PzIP/3ud7x48Yqvv/66PjaxLBNNt8Gall1fCpXl3jPPhdvkXflc4zoKc6ToS9ELeB/XAn9xHqkUn56fkVKx6S9EekvfWratRhOw6gflkjYofSUZX3HFFT9t/Amjv56ovmSZ611+KHb+tmlRnUJWTk15LJBTxFTuSIY1/8iHQNMUgqhzbh2MaaNJKeF8IDlXfFZqwWSNwuBJ/sS0nFZPnZBueX6InMYBHxZi/mw6VkzwLgVLIdJeDOEQkINHColperpq2mc6gxSZ/eYGJfYcjt8UXxNAZEVnAikvNHaLkuXH/3CecXMm5JbN/Rs29y/XWZ8Qoqi1QijqpZAI08XnhZqLpBEClLzwlaq5nZZImcnR11TvUphdzpsxnyXPL1684HZ/w6bvEFKwLPO6oJXkcFH/uxShF1lvCLHmDxX57yVWOlGKKGNMOYVJ4F3ZnmkstukQ55HhPK2ho5vNlq+//pq//vpXdEYwHYvxH5RuVYiJ6ByCVIrYerwhl/yjnDMpxZXorIzG2gYfYimu3ef9a7uOF/cvuL254zRMPDw+1HOq8N6Rc+mIuGWhtZdQT8npfKZpGnLNZnqsr+u6lhQ9IgWms1wDUW9ub5FNgxSaZVr47ptv+MN37wGYlwW3zMSY0FbTbkrBpm1HygopFZPzSG1RlRe26Tfc7/fst1tOp4GUxNrtG0ggJdp25KRKJAOleBU5F62btkxL5Pd/KPvw8599yZc/e8XD4xMxZVztivngkVqhmw5RJfsXUncSguzLZxKjQ+SAzoXDpGSm73bsb2/JCPwlrAvB0+HEt9+OaFWKUVv9sKQQmOtw+4orrviJ48fTxLPh02EhxdIeTymilcHWYiXEuHqOpBRrYnVCG42xnwmdUYIkoxWEyNqdKCniYSWCNrahrQtDCs+E5VACISMczqVIOA2/w0cgm7KES5Cr/lgAGiFVcc2VspCIKY7FylhQEmRAqrLI3GwMjQ5o9Z6Q79hsvsRNj2V74YxSGW07uu09Nf4IqS0peoKISCnobEvT1lyipiGlgCSiBDhffFYAUvRsO4tfBs7Dge7i3pYy3hWVSozxjwq9WM+VtYamaXn1qpB4X716RWtsyamaxxKKeDFiy6kGTpZw05wicy2yUs6EEPGhBEpeCqa+75GI4gocA2GZVgL5ssxIY+i6jl/+8pfc3l6MyjJv375FScnp+Zmc4zoyCTGyLAsylSLGeY+uXaSYSpGltUYIuapz8unEdsua6xVrNwlgGhOQaduOl/e39Jvq49J3fPz4kWkcSCHw9s3b1dQwptJN9CHgfhBUCjCcS+7SPJxpjGG3LWGu0TtSasuoMGUQAmWq507INJ1FKU3KrEo8FzLaNPTtBq00x+ORY80fG849d7c3OBd4cd+y21vatmzv/v4F52EqxoWumFMCVZ1YirsMpJg4Vffvf/zDt0wu8PWvfsG79+9Qlfi73exrYQjOFaVg25Ti3oeWYTgT0kAMHkJcZezeBYZx5PnwTN9t1xuCDNxse169fYPSlpDFug+zcww17f6KK6644qeKHy9wUsRNy9rmt0ajpCanxDAute1f5bq6xBm0F5m1KE61ULxc9r0p44ecVmM3rQ1KK4SSGGPprELmsjC44ciUF3xQfPg0MlyULDEhlESZgFQapRqsudxZSpIQaGvLj7WxZEoXovBV9lg5Eaf/jgxllNI6i8g9++3fIMyexZ2Y9Vz3O5DFnvNoeDrN5NqB0DKz21iUVQiRGY8nYh2TeTzRz2z7hsZaWms41PFaxvP88T3vvv8DInt+86tflHMnBMviCSEipcQ2zTo6WoaBmDP39y948+btGhdhjCGmWNKoF0cMbu3gFP8aSU6puEjnYjgHpdDLufj/ZDK2+qEM8UTbNAghSCkSZVi7c9JYFKVbst/v2W4q50kIrDHkEFFSAnLtGpzH4i0kpUZQRkTLxcSxdmZM7byN9e/DOBJC6QJeRourszWCEAMpBrq+p6uL95tXrzHG8unjB8ZhoGna9foKISCEoOtaYkoIIdZjCsGTsylKsVw4N+XvCyl5Ygpkkeg2HW/fFnWaDxljLFIqDqcTyw8UegKJQOImT0LRNOW8uhBZgmO/2zCczzRGcFtdk5XpSNzgfGKcPVM1B5wmz+RGnPMEP5H9Qk0CKYV7WDgfnvjlV2+YpjpiTBLbNrUoUwjU2oE7HJ8ZdgPnYSIsjhDmtdgr4aWQRcb5hKhjWGMUD89H3vmPGNPQNA39tnzu9y92WH3l4FxxxRU/bfzJNPEyLik/lM45EKWdr5XFKoHU5Ydys+uw7Z7kHdMyYpsOdyyLneUDJm85TwLvEurij2NbTKPodEcjBrL7nnkqhcc8R06D4sPHE+MwkKsXj5QShUKiSqdGW7St3RPT0HQdN/e3bLoeJTUil+JC54Vl/Fvy+XdYrVD9XwMQ9JeYrue8LKTxt8zjgeFcs4zoQSmSD5BmbP3x7ztL228R0uJcgn6Lu+Qp+Rk3Dxz9jNaGGBzvvvkdAA+fPjGPZ5bhwKY3DG+KEVvfNCBBGVN4EvEzd8gYQ2ca7u9fcH9//3nkljOJ4sKcU2CeihwbPi+4SmmUNsTLnIdisy+ELIVJzqXYAFIQCHJJ8PYepQzdplwe1pjCsYqR6D8nUQsExIgxuvikLNO6PVm7UJlCBA4h4CrXJsSIm6eV93JZbIUQPD8/1ZFapuu6tQuopCLMC1ON2biMP6XU3Nzs0FpyOByYxom80kOK8R4O2qZ4HV14JFJrgnOgFJta2JXzEImLJ8uFp4dHpuGZvi1F5e5+T7tpSUKxPe1Wr5sQSsEWfCAjEEqXQgM4Dyc+fnxH3zTc3eyQUtJVM71p+VjMKFtNZy195TypuxuieM0wzXz7zX9Da8++5oS1nWFxz4RpxJ89beUbLWFBh5YcBE2/JSuwquzDrm/xoWF0gufzmWEuXC8APw/4eST6hCD+oLA09JsdUt2U8Z8QLJVLNj4cakF7xb8Fmn/HUQ2d7v9Vz//7x9//mfbkz49f7X75r3q+klerhT83rr9SV1xxxRVXXHHFXxz+hEw8Ff7FhceidJE9G0PbaIxW5FxrpCxxy8wwjBiTmYdHcihclq5JLOwYlkTKiab22xsjaY1C8z3T+JFlDDw/lTvIh+eZaZ5wvqg/Lnf7Siqk1Cjd0HYbbNfTVOfavt+y3W4RSjBOC43ydLJKVvwnxHJGmV9A9zUz27rfC+74Pcv4TEqacRag6t1y00LyCJMQIq1BhJ8+DIT4BNUZeXELS+1ySQDviM5xs98xj898948lcC7EAEIgs8dNjuNzIbzq+zuM1aQoWeaZEOMac7HZbNjub7i9vcVohazp37GOa2IsJnrlc7q4Sgu01mX0kHMZXdXtaW0QQqKURCDWEVBOGSFK5ySEiBDqc4SCBEiE4AluYRyrO7QUWGsZx4x3JZSxq50GAYzjiPeFD5JS+oGJXMLVbkpj7drBuWSEFRWYrK7EpWO13WyKEV1KhBC4iMxCHFFKs+376t48MleDu+fnJzISSY2oyAldnbJzTCWkUykQ4o9GNolceEjOkb1nc1u6JNutYXKHakKZ6G4vx7pHac2ynBmXBZTldCyEragl3c0tUiQ2my3LAh8fS+r7zf0tyxDZ0kIGq8uoLnAmRI9Jide7gBQt0ZfPfRhGhjkzuolvPv6eri3X8W7TodWAtgnjH+htj7pIEvOAYmYnBMZG7u2euLsD4Dz2ZYzmA8syM1d5+7AcmWODUQYti6CASsQWQpEu9txXXHHFFT9R/HiBkzLktGZHJTLOLaQYSblBKbkqaoT0+DCz2XaYpEjhiWTqj3J6TRgFrRYolanqcYwYWM7PDPPEaUg8Hh1DzdzJ3pPJhZiqm7UlbqzFtB3dZk/Xb0GArta1SmtOpxPzNNE2GtlLhjrySuGAVDec5h7/8QEl35WdiDOkREgLSgqatl3bWuPpzDQO+BhwLjFP5XicH0k5kSmeKyKndTwUYyCTsFbj3Mjhw7dQRzpKarQ1eAfzPPDb3/4WgNPpwBdvvyxJ5xWXYqDre+7u7oqzcSXnwsXDpRRX8zzhvKOpYxslZOXSJBa3ILVZRzrG2FJExIz8QVhjFrFkJaWMEJKU0h+FbQopUGQUqRBgAb94vJ+rS3QuxVMlJvsQGMeBef7M9+AHUuycS5yGsWYdDw3DwLIsVf1m8GHB+XJOYghsur4cY0yEdDnfEVIiKknTddjbO4bqVzRNM8s8MY1ngg+FX173wVrNtt9ibIOgcGWgEGiZR1RKDKcTx+MzqY4IjrPm5u6WKCSb2x5kKS7mKTIMEz5bsgSFZr8rj3WtoesbYnA8Px8ZBkeqNwWPh3fYxmDVM41R3N1u62ckySJhtKTrX+GWSJDlGnqYDvgESVjCkjmOpSD5+DxATlhj2d3c0O8kpvKrGqOxZovMApkciAMifwfAq90WwY4oNQLLsly+6w3CbPApk33h2/lLonnMLMu1wLniiit+2vgTHZyM955Y7wQjopAyhWAcFlKO5NpRsNay3d5iVYlOEOZNlW2DloqNVqgwEJMjLWVBO00zh8lzOmfmZSZ6x3prLiUSW6TFqnRtALp+w/7+HmvbEtngAyHWBOTFY7Ti7vYGIz3j6cjHD5XYmgIpDqR8wLZ2XYCarmWeTvhx4uwW5mlhmSvnKKaqSJIooVDVZE9ojW06lDLFWI5ECqW7E1ORXwc/czweSFmi23sAtrevaIzm9Pwe225IqRRznx6eCCHx4u6+qNPcD0zV2q76uiRCSGv2UK7dm2WZ8cGDFLhaZGWtybF4nGQh6dpmLURLwKQhiSILvxByldIlhLGGoaYYGcfiVxSjQxu9qqxs7YIscylwRPXckQK8qyZ7P0i8DsGXsMv62SYyIpck8RAjthKG53nGGIMxBilLEXTx77FN6d6sXalaNCJAZImbRnIM2LZf1UObzYbz+UjKgBTF86herz4GhFakKte/XHbneeHhfGYJkaenI4vP+Jrb1CXPGE74b54RhFXR1rV7SAklQDU9QkiOz8WIMCOwSdPubvjq7jXzcOLbb0vEgxAWZSyn45FHt/CHb8rfpVL0fYvtDfcvXnKzabCqeBx99RKEfcMYLBnFPNR8r6Eo6W5ub9BNkdpTw1cXV25SpNLkrNFyX/hHgFaRTatociwGmapcX33boNRE9GcQIy4OiNpNE90XZF2iKK644oorfqr48QKHzDgOiIs3TdOgpGBeZqTItO2Gzm7rYwYpPcuUQILdWJqmbH4+L3w8PDIeH/He4Wt7O8yelDLCyuId0m4xlRCbUqodpGJUdylwEoLnpwNCnDA1NPKyeCttMKZFG0VKC0EIbFeUHzrKIpnOAdsZqOqqj+8+8fzpA8MwE+sYRcrLoi8QUoNoENoiL50iqcgpE9ICOSPIpMpsjSmTfEBFQd9v6fZfcnvzFoCu62lNQuaf8/T0gd/+/X8BYBrnomxaHEpKQgi8evm6vqZD1oBJPw0llZvSKfLBcR4GptlhrF1zm1JMZGNBFqJxDAlR5fcxJ1BFUVTk6JdsK1k8aaSEmr81u7Kwj8uEkpJG18TzWmQVl+WArCaP2drVy0VIiRRloSQnlmUh5EvX5TOBOobIJSnLGFv/rYGPWqyk4JxBaImQ5b20+ZwSfzHLCTGiY8BUBdN2t+Hp2ZKFIOZMTokcyntrJTmcz6VrJgSukqNDipxOZ4SydNtbdt2WqZKCh+MfOB8z++2Gzf6Op1M5P+dREELidD6V6yBnaiMLIRTPpwljBrrOsOsVP/9ZuR6W2SF0x8sXNxyOB8ap7MOyBIbhyGEcOJ4id9stWpbH+k2Pbj3H85nd/hZXC+ssobN9vVaKRYGgKBKlnFCyRdJQSq5I21bDyKxZoiZKg1ESqnXB4iV+guA1+A7SDY0o17+JHesBXnHFFVf8RPEnOzgphnXBTzGSkkdqTbfd03UN4pI07h3SC1I80nWSNLV8+1A6AOfhhHczyzThnVu9UgSCLCQya0yW2NZgL0WEKcZpOYOImRgvi9jFN0eiqqT64r6qtSnkDylI0ZJw2E1VhXhD8DNKKabzmaenMrpy01zuam1DDh6Rc/WQAW0adNuhmx4lzWo6F73H+ZkYfSm+hII6xth0Lc2LDtsobrc9jW2IonbAksQYRWsUk3c0Ne1ZZlBScDqdCMHTdt06FpSyGMB5vzANZ86XwMqlmBz6ECCLkqBeO0xKKlIWCCHJSZAFiDp4EwiWpQQzUtUxUJRSxurK3Sm9jvM0132Q+DDTSNi03TpymsYJFwI5Fr+ZFAKpSetrUlU8Be+Iwa9SdSUly+JIIULK2GrMl1Lx79ntOqSUuOB+IOtOQECqQELQmUtHrzw3xURwvkRl1Bnjbrtlt9vx/bvveXh4qJyyUiB2bYN8+qzYuhxTzOW9pLK0LtPt8mq6OJ7PzPPM4aOi2T7QVBfhxvRo0yJESSzXUoP4rFwLwTEORz69n8nJIep4re8b3n75S/pNz5dfvCZcXLynyDDMTPOJ4CLn6Yhzlff0+MBmt0Nbw2mYeHFblHit7cgcaduFtr1nWhzDUDhew/kdS3As80CME0obpLT1czKFb2VLpEdOF8frO2zzAsmWIDVZdIypfi9iRv3g+K644oorfoq4qqiuuOKKK6644oq/OPxJHxxtDLa69AqpaZqO7W6HwjAtR+ZqFa+yRYQBa0fG2HJ4fse5+oT4EC780jLOSZ9zloQqoxIhKeMNVTsuqTjQphjJMa1jDak1xlqklOjadYiXdnn0tG3LOJ1ZzgMhTkhR4wuI5Cz48OGB4XxcScGSOl5RGqMtso65ANp+R7e5wXal9X8hauRYXJuLkZ1Aa4Uw5e62UT1b+RGdfouUAqfu8XwJwLBozvPAw+MD7/7wT5yqeaGKkGQZcwgkbdNxc1NCK7XW+GnEzSPjOHCuvJjDaQBT1DdKQNMquvbil1E6CRlZ/FliJlxM9nzg0orS2halGGAr16co4xKnYVy9UmzXYtqO09MDSso1GmOaZ8a5GPq1lcSc13Ghrh0ZWTosKZFrt0gKgVKSnAon6OICnSsnaJpnoIzqLu7MotUYoxFCE0Jax3ExllBRKRUITwwe76v/UleCNpdlWbtjFx7QspRunqqBn5djSkKV0+NnztM78uPHtcsl8uUSEMzzGaU/1vfZYtob+t0LshD4GNGXWAq34IMjhEtO1Ey+hKKe4fHxCaU1X3z5FV/96tdACaeV2dEYRY5WoguFAAAViUlEQVSQ6WtMCgQ/IuSI0prNBhpTujRKCYbTgWmISPUJZXpszVMQ7R63HMnpzDwk0uxJ/MDLSIBDEOOMv/g5xUzTbtBNR9PtePHyr7ndl/0zZkdW13ujK6644qeNHy1wlFK8fv0W/wNexX5/g/eR4+mBcZqQ9UfUhQOdGQm+5fnpkWnyNRMJMoGYAKEKx0Nc3lagdDWji4mc/So/lbODSlIlZ3RVhChdSL1KKWL0PD0O6Oq0fHt7y+k0czyey7gJR9eW9woh8fh8wvkEUq+OrVJqtFQoo5HKoHRDUwsF0/QY22FsW0maFxl2WRhijGil2O02bHeF6xOXJ9KcmJ9bHj85HqYHTuM/lXPkHISMlYrz8QPzVIqVzWbP7vYe/8HVIq1jewmmjBE/j4ynI+M0rInmMUPXbJjnieA8xjbsb0qEgg+hZkYlbNsSYiRUjomxlhjimjR+yYG6cHJSLuOlTb8pIz9gnheElJzHCe8W+ioF96FIwK01+Bj/SDqstEapYhp4IQb/MNCyLKzl/fe1mNvtdqSYWRbHOI5Ipf5Ivj1NM0KWCJALZ8Z5D0LQti1WQAyukK4BGczK2Uk5kwXr8Rbrg+r5rAymFqg+ZZyLJfH+Qu+p9XiOJawSkUjpc/EVkUQs2z3sbm5xwePqKMxYS4wOiaK1PbbmRF2OSauGtjOkFFiWMja9u9c8P3yPTDN3t/fsb14hVSGqj+OR4XxmnM7gR6KvY052KGVQJISYWKYnlppIb7Wk7zqE3KLlhpxEGQ9CHR3GQv6PGWphRgwEvzAtJ4bTe8bDtzxt/q/yPdv9jJev/xNXXHHFFT9l/HjYplZMzmErabNtWo7HA6fTmZACVrcYqhqjdURnePh0xvmFnMXKCRGrSkUUqXCVJkupkMqQkkBIidV2DWSU68IUq5y5SrTnceVExJTQWrPZFg7O8+MDOYEPCSlgty3qFijFRdfvaJqexZWOCECKpXjSxqJ0g9CaVPdvcTPjMCCEpu03bKpVfdOVGAZjLEpKhITjqXBj/LTw+Ch4eNTMp5G4HMg1adwNEyF6JlX4RW11rhUJDg8fSTGghMTHuOYzKaVKvIUquVrukkwuFNM0EWOgsYa27VbPmJLQbjmez58zoS4+QsYgZfHAuci1gZoLlYnRQxZoLevyXzorRmuElEy12IEaPukcxujSbRECHXU930tRhIVQ1XiOUKXFbdvW9GzJfrstTsmUOA3TWrouldfEwG5XMqLIuR5vpGmaVRIPl+JMYtuOlMzqVxRiItXiSogSOnrpxiBKgaWUqddh2e9N19C0Ap8kETC2YbspXJuuaWmMJiXHaTwTLh5QqkWbDiUFRgs2m1seHosH1HA6Vt8hizKSkDzK1KBLJbm9u+H+fk/fGy7pB0I6/uo3vyHMJ/wSmPyEleUc7W5fcf/yLSk5pvHIXDs7ttnjlonn5z+Q3AktFNaUc9Q0LdpuaDtBigkh9Oqr48NcOELzhJgNsfKDkg4IoehtD5V8H3PZh4/HTxzm/5srrrjiip8y/qQPzmazXX1PHh6ecM4jpKBte/p+S1Pt4J8fHU+PzyzeV3WOWMnJUrYgy926knrtxljbkoVCalnCE2NkOJVohWk6430g51TIyBc9jZRloZIWqXRRUl0MyKTA+5JlFFzAOc/7d98ChejZNB3WWIy2UBeT6BMZiAmyD+QQSRcVlRQle4vMPE+fzwvFPybGRIyBZSlGewDjPLKMI9FnbLuh3b/EVMLwOB0Zzs+0TYck8vj+d+WQckZrTXCJlOB8PPD+Q/Hp+fmXX2KURhuLtq5kEQHz7FC57IeUtowZ/CUbKRNCwBqNDyWp/BKqGWPEO1dGfjmx3+3X85NSyZQSRgMlpBPALTPzqAvhXMn1fbz3a3hnSURXLLV7glJlJCWKmWCsz4dSTFktakp5s0rVCwl4KqNRrUBkVO2aWdvQtk3JH6tFZTlWT8qSlDUkVVLR6+d0Pp05n84lnVsIfhCDVgppIZCSclx1g7vdjt3dF0wODucDRkvefFFGjJt+C0jGZaEJAWMu5OhMJnI8HPn08VOJM6nE6c3unqYxJcnbz2x6xXZXPovdTUu3scSUUdr+wJNI4BOo9pbdNuKn73FLuR4Ue2Lo+fRwJKVErEXWNE1olbnb36LlS0QOa/Gac1H3Fdl++de05QvQyZaUItsQmZeZsRb+8zRh7I797RuW5UwME/miFIyRnEauuOKKK37K+PEOjpQ4F9cU4ZQ82gq0btBaoWXiWB1bj8eZmGJVFQmU0tiaEaVti2osWpWuxUUpJSjPSyLz9PSJ54ePa1s951hM9IREG0vbVBM0u0HojJSRTXeDsYayfJYf8rbt8SExpQXnlnWRzini3ERKAW1aTFO6Pt2mcDCEKKZ9CEG+yLwQ1TlZll7GJa8oJZa5dEW01vT9hk1XOg23KRNTIAVPWZsFPpaFvXV3vExfoUTm8Pgd210Zzby+u+PDu+/IWZBiYJ4jjw+fAHj14gV206O0RmtDW8dnIWWEFIQYV07S5zTxMj5bloUQi/PvMpfH2qYl1cTyvttg7WcjPSnqVCZGIK/dExd8MeFzjqax+HDxkknElIo8u+ZOXfxkUk64EPEuFEpLCIT6oK9+O1YIpNKrA7O1mnmaiyuy8yTSWjg6t6wFQNd2mFg7UkqStEKqkn3lYliz086nE0Zr3rx5wzhOjNO0dp8SAikk0nR03Ybb2zIC6roeZSy/+PItf/f3f4dRir4v52F/c8cwTsR5wdiWrivXkBSCcTqU70TIhLiwVP7Splc0zYYXX7zh8PwOo0Zub2sYaDxyOORS5Ksa/Ll+LwyKgFUJmTOSlwBMo+L5+beM8yNd/4Is+vU1WjXklPBxoamdusv1Si48thQjic+qRKV0Mcu0hl13S5/u67WvMNZyOj0T44TAo6uEvNESWd2+r7jiiit+qvjRAifFyOHpPbEuTG3T0mhJZqAzHX5xHA+F5DjPw8q5QWrIklxHVNJY2s2OvmsxSq0jiRwjx8OJj5/ecz4diW5B1PtvpTRSG5q2p9/uaNoyHsoik1G0pmfbGbTJK8l4nh3Hw7EmUjdlQROfJd8IAdKQhQZVnX3bpvjTtB3WNgh5GcxcZPHltr8QXMvCdOGVaH0pjgQXoka5Q26QdRySUl4XfUEubsTLCatn7jZl35KbCjG28lQyaU3Yfj4803VtcRJWik1N8nY+cDyf0cay3fYIKdeAR0FCypIIXTxR8moCmIymsQZtNEZKUiXkCilLsCgJYsbFgNYX11/DvEylSIlxPQ8hJZwvEnGpFEZILvzxeV5K2nmIxFT2N9TOT4wJ0Qs21VTw4lItAKsV8+ggR5Ya81CuB8U0zaU4jpFQO1K73ZauaZF1tFe8k2oittUIqclZlGiPTYO6eOyIwuWJWbC5fcnmrhQQUipUa5hSpN/eYJVZfaBO5wPLPHF307PZ7Jjmck4Pz0dubm9ws2c4LRhjaSsvrLOG5GbG4YmuAyEip3PhXgXviEIhVDn3Isv1WNvG0LUSmTNZtOSmfO5d3yNlYvz9SHQRYS/+S7As0DVNKcC9W6M2cirXldGKIAQ5+NWvKGXQRhdzyhBBXLhuDX4Z0SKy7SzkYgMAFMm5XxNNr7jiiit+krhKIa644oorrrjiir84/GgHJ6aIzJ5tV0mgeiEFTwiJT4dnTucR5y+KkEoalqqSKk1pfwNt29A1GqsljW2Yq4Hc4+Mj0zgUqXDTIttu5UJobbBtT7/ZFhO+NUhS0mhB1wtsI1mmyHQs3Y6Hp2ecC4X0OiykGEpeFdD2PV3f0zXF6fiyb8o0IKqUOaeiPKomckq2uKXkPY3DuBJ/c85Ya1dlkJASWRVHjdIYVcIspZSIFFc33pRClcILOrXn+3Ox8//w8R2CSGNtHa98jjV4fHpit93Rd80fkWRLd6XwZIrBXCBe1D6p8IKkEKTo63MuHaZM11vIonRULvJoKclZQ84kYlEdpRogKsq40lrL+XxezfKcK0Z8GUrelZXrGGlZFoZpJGZBv91jVcs8F5XQMM20TYfShpTyZxfhGIkxknIipoBfZqbayZJS4X1AS0nOic1mV8+DrnEQoXB8xOdOlk+Z4+GJj49PTC4gTYOWFyavYgkJnyJqWog1CqHt93SNxrlIFJKn4zMfHktuk5uLo/PbL95y95s9OZdtvZsmpEy8fv2K25s9ppFrt8pYhdCOt29f4dzC6aRwSx0zGo/zjiRzuR5z+WzbpkNJxTI7UvRERmQdCxrbosyOpr0jpoVUzx1SkcJCcI6ubctYsH43tdLoLNBK0tkGJwQyX67KIn9XQhJjRMiLMeZMTIWEL3KxiLiMbq0R6BrpcMUVV1zxU8WPFjhaK3b7juQLL2YcHafTwDy5z064lfSqtEGbBmMa2mZD32/WZGlpBZtGobTi6eETp3P1ZKmp1X2/ra+3KxnWakO33dA0DSFEciqL6sYuiHTC2j2z33I4HDkeS8tfotFa4JYJUkQKtRJBN7tbXry4Z9cpYFn5NFL3LA4Wt5BzxAfH48N7AKZhwvtUFGFKrrLpti/xCVJJjDY1MqLGDTCBP4Jf0NaSk8FVPoabz0jhQErGSRL8xRfGIGUDlITtMhIpjx2PR/7wzTe8fvWC1uiVqNt1HfsYGcaZGOvoqH5uwZXRjpKs6dwXVm5KEe9dzZ4qgZ1lHyQNZk0Yv/B7oBQPMUZCCIzjuBYdMcZSiAlRAzLtKsNOQhAiIBVCWUSWJfai/AnbtCil8XXbAM3iyLn45STK6ET7z7Lu3fYW2zS0bYesI6BExnmPSIEQAkKaksMEPJ8H/u4f/hHnAtIYlNbr+DELQdP3tFISYuB4KsXmMI/0fs/d3R2SwPn4aSUmG225u3/BOHr+6//z33j1quQxCQE3+xtSLOd2mPxn3yY1oeyBzIn9zWu2N7fkOoqKoajmXFhYvFuz2+Zx4TA8I+REyg6je7o6OjodjvSd4ctf/Irj0yOnGrYZcyo8s+jLdmusBpRR6xIS5MymK8WVunClYiQRMX1bktd/YBuQVEYYQRaFx3WxiNbZkOK1+XvFFVf8tCEunYJ/8UEhPgL/9G+3O1dcccW/I/wy5/zq/48NXX9rrrjiih/B/9JvzY8WOFdcccUVV1xxxRX/HnHtM19xxRVXXHHFFX9xuBY4V1xxxRVXXHHFXxyuBc4VV1xxxRVXXPEXh2uBc8UVV1xxxRVX/MXhWuBcccUVV1xxxRV/cbgWOFdcccUVV1xxxV8cftTo74orrrji3wL/+f/8z/nh4QH+yLXif7SwyP+Lj62P5D/x+L+43fzP//D/7dl/4nn/457kyz//k+f8s//6n27/n/1//lNHlS9P+xdfv+5F/n/bu98QKeo4juPvT5lJZH/oCCItCxQSnyQS9qQ/GCE+0CcSBlKG9MCoBxVB0IOinhURBIEZSX+gsnpQRxRCZSjSHQmSqCBcJmYF1lUSiKXttwcze87uzu3Onncze8PnBevO7ze/mfl+d+bO783M7ub05YyZNJboHml2+y1rj9ae9lyy+zSK9Gf+KdLfmnd09J1frGNvtu8oWofl5Z7ZUs5hGrn7oWODHcdg3jHccVzl7LvOF7u9nRtkTjv/dZtkB3TO+/vszohY3bmx7lzgmFnlxsfH2Tu6J/2Kkpj4Nd38nK6J9sR/xp3j8sc0e4otl7Qzzy0xZNudYzqme8xnkmUaNDrW0Ygg0i8ibh3bHNNoG9va32jbRvLc6OhvpP3ZZRrZ8ZnXIrudRjTO92W3l8mndXwSW3N83rKNyPbR2pceNxPzM/09+zLrmrwvPVaa8aXtaGtP7I9e43rML9TmfF+jbUxnHK3LNrJtJt9eo62PgHSDmen0ub3d/EHNjp1oR5d5Bdb75c9D/fw+afIlKjMzM6sdFzhmZmZWOy5wzMzMrHZc4JiZmVntuMAxMzOz2nGBY2ZmZrXjAsfMzMxqxwWOmZmZ1Y4LHDMzM6sdFzhmZmZWOy5wzMzMrHbU/D4NM7OqSDoInKk6jmk2BPxedRDTqG75gHOaLeZFxLJ+F/KXbZrZIDgTESuqDmI6SdpXp5zqlg84p9lC0r6pLOdLVGZmZlY7LnDMzMysdlzgmNkg2FZ1ADOgbjnVLR9wTrPFlHLyTcZmZmZWOz6DY2ZmZrXjAsfMSiNptaQjksYkPZ0z/1JJO9L5o5IWlR9lcQXyeULSYUkHJH0l6cYq4uxHr5wy49ZLCkkD/46dIjlJui/dV4ckvVd2jP0qcOzdIGmXpP3p8bemijiLkrRd0sn0IyPy5kvSq2m+ByQt77nSiPDDDz/8mPEHcDHwA3AzMBf4HljaNuYRYGs6vQHYUXXcF5jP3cBl6fSWQc6naE7puPnAbmAEWFF13NOwnxYD+4Gr0/a1Vcc9DTltA7ak00uBY1XH3SOnO4DlwMFJ5q8BvgAErARGe63TZ3DMrCy3AWMRcTQi/gU+ANa1jVkHvJ1OfwyskqQSY+xHz3wiYldEnE6bI8CCkmPsV5F9BPAC8CKz48MZi+T0MPBaRPwJEBEnS46xX0VyCuCKdPpK4JcS4+tbROwG/ugyZB3wTiRGgKskXddtnS5wzKws1wM/Zdon0r7cMRFxDjgFXFNKdP0rkk/WZpK/QAdZz5wk3QosjIjPygzsAhTZT0uAJZL2ShqRtLq06KamSE7PARslnQA+Bx4rJ7QZ0+/Pmz/J2MxKk3cmpv1tnEXGDIrCsUraCKwA7pzRiC5c15wkXQS8AmwqK6BpUGQ/zSG5THUXyVm2PZKWRcRfMxzbVBXJ6X7grYh4WdLtwLtpTo2ZD29G9P27wWdwzKwsJ4CFmfYCOk+bT4yRNIfk1Hq309ZVKpIPku4BngHWRsQ/JcU2Vb1ymg8sA76RdIzkXojhAb/RuOhx92lEnI2IH4EjJAXPoCqS02bgQ4CI+BaYR/I9VbNVoZ+3LBc4ZlaW74DFkm6SNJfkJuLhtjHDwIPp9Hrg60jvMBxAPfNJL+e8TlLcDPp9HdAjp4g4FRFDEbEoIhaR3Fe0NiKm9F1BJSly3H1CckM4koZILlkdLTXK/hTJ6TiwCkDSLSQFzm+lRjm9hoEH0ndTrQRORcSv3RbwJSozK0VEnJP0KLCT5F0g2yPikKTngX0RMQy8SXIqfYzkzM2G6iLurmA+LwGXAx+l90ofj4i1lQXdQ8GcZpWCOe0E7pV0GPgPeCoixquLuruCOT0JvCHpcZJLOZsG+I8FJL1PcolwKL1v6FngEoCI2EpyH9EaYAw4DTzUc50DnK+ZmZnZlPgSlZmZmdWOCxwzMzOrHRc4ZmZmVjsucMzMzKx2XOCYmZlZ7bjAMTMzs9pxgWNmZma14wLHzMzMaud/ybH1UOW2VHkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "occlusion = Occlusion(model)\n", - "\n", - "attributions_occ = occlusion.attribute(input,\n", - " strides = (3, 50, 50),\n", - " target=pred_label_idx,\n", - " sliding_window_shapes=(3,60, 60),\n", - " baselines=0)\n", - "\n", - "_ = viz.visualize_image_attr_multiple(np.transpose(attributions_occ.squeeze().cpu().detach().numpy(), (1,2,0)),\n", - " np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),\n", - " [\"original_image\", \"heat_map\"],\n", - " [\"all\", \"positive\"],\n", - " show_colorbar=True,\n", - " outlier_perc=2,\n", - " )" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/tutorials/Titanic_Basic_Interpret.ipynb b/tutorials/Titanic_Basic_Interpret.ipynb index 39fcd3f3cd..ee385a0671 100644 --- a/tutorials/Titanic_Basic_Interpret.ipynb +++ b/tutorials/Titanic_Basic_Interpret.ipynb @@ -136,9 +136,9 @@ "# Separate training and test sets using \n", "train_indices = np.random.choice(len(labels), int(0.7*len(labels)), replace=False)\n", "test_indices = list(set(range(len(labels))) - set(train_indices))\n", - "train_features = data[train_indices]\n", + "train_features = np.array(data[train_indices], dtype=float)\n", "train_labels = labels[train_indices]\n", - "test_features = data[test_indices]\n", + "test_features = np.array(data[test_indices], dtype=float)\n", "test_labels = labels[test_indices]" ] }, @@ -202,6 +202,8 @@ "if USE_PRETRAINED_MODEL:\n", " net.load_state_dict(torch.load('models/titanic_model.pt'))\n", " print(\"Model Loaded!\")\n", + " input_tensor = torch.from_numpy(train_features).type(torch.FloatTensor)\n", + " label_tensor = torch.from_numpy(train_labels)\n", "else:\n", " criterion = nn.CrossEntropyLoss()\n", " num_epochs = 200\n", diff --git a/tutorials/TorchVision_Interpret.ipynb b/tutorials/TorchVision_Interpret.ipynb new file mode 100644 index 0000000000..9231b85f57 --- /dev/null +++ b/tutorials/TorchVision_Interpret.ipynb @@ -0,0 +1,578 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model Interpretation for Pretrained Deep Learning Models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook demonstrates how to apply model interpretability algorithms on pretrained deep learning models (ResNet, VGG) using a handpicked image and visualizes the attributions for each pixel by overlaying them on the image.\n", + "\n", + "The interpretation algorithms that we use in this notebook are `Integrated Gradients` (w/ and w/o noise tunnel), `GradientShap`, `Occlusion`, and `LRP`. A noise tunnel allows to smoothen the attributions after adding gaussian noise to each input sample.\n", + " \n", + " **Note:** Before running this tutorial, please install the torchvision, PIL, and matplotlib packages." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "import torch.nn.functional as F\n", + "\n", + "from PIL import Image\n", + "\n", + "import os\n", + "import json\n", + "import numpy as np\n", + "from matplotlib.colors import LinearSegmentedColormap\n", + "\n", + "import torchvision\n", + "from torchvision import models\n", + "from torchvision import transforms\n", + "\n", + "from captum.attr import IntegratedGradients\n", + "from captum.attr import GradientShap\n", + "from captum.attr import LRP\n", + "from captum.attr import Occlusion\n", + "from captum.attr import NoiseTunnel\n", + "from captum.attr import visualization as viz\n", + "from captum.attr._utils.lrp_rules import EpsilonRule, GammaRule, Alpha1_Beta0_Rule" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1- Loading the model and the dataset\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Loads pretrained Resnet model and sets it to eval mode" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model = models.resnet18(pretrained=True)\n", + "model = model.eval()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Downloads the list of classes/labels for ImageNet dataset and reads them into the memory" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "!wget -P $HOME/.torch/models https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "labels_path = os.getenv(\"HOME\") + '/.torch/models/imagenet_class_index.json'\n", + "with open(labels_path) as json_data:\n", + " idx_to_labels = json.load(json_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Defines transformers and normalizing functions for the image.\n", + "It also loads an image from the `img/resnet/` folder that will be used for interpretation purposes." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "transform = transforms.Compose([\n", + " transforms.Resize(256),\n", + " transforms.CenterCrop(224),\n", + " transforms.ToTensor()\n", + "])\n", + "\n", + "transform_normalize = transforms.Normalize(\n", + " mean=[0.485, 0.456, 0.406],\n", + " std=[0.229, 0.224, 0.225]\n", + " )\n", + "\n", + "img = Image.open('img/resnet/swan-3299528_1280.jpg')\n", + "\n", + "transformed_img = transform(img)\n", + "\n", + "input = transform_normalize(transformed_img)\n", + "input = input.unsqueeze(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Predict the class of the input image" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predicted: goose ( 0.4569333493709564 )\n" + ] + } + ], + "source": [ + "output = model(input)\n", + "output = F.softmax(output, dim=1)\n", + "prediction_score, pred_label_idx = torch.topk(output, 1)\n", + "\n", + "pred_label_idx.squeeze_()\n", + "predicted_label = idx_to_labels[str(pred_label_idx.item())][1]\n", + "print('Predicted:', predicted_label, '(', prediction_score.squeeze().item(), ')')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2- Gradient-based attribution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's compute attributions using Integrated Gradients and visualize them on the image. Integrated gradients computes the integral of the gradients of the output of the model for the predicted class `pred_label_idx` with respect to the input image pixels along the path from the black image to our input image." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predicted: goose ( 0.4569333493709564 )\n" + ] + } + ], + "source": [ + "print('Predicted:', predicted_label, '(', prediction_score.squeeze().item(), ')')\n", + "\n", + "integrated_gradients = IntegratedGradients(model)\n", + "attributions_ig = integrated_gradients.attribute(input, target=pred_label_idx, n_steps=200)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's visualize the image and corresponding attributions by overlaying the latter on the image." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdgAAAH5CAYAAAAiKS8KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9f2yc13UnjH8ija2xNbKnNh2NawphmvGGhsfb2d0xTCM0wm1plN0wiLpVEQVVUPVdB1VQB3ETvaiNdbAKaiMu8kuLqqi6UVsVVREF0TYKIsMMom4YmIZpmEno1/TrCTJxJutRPHo1Skf2KBnFY/n7B/25/Dxn7n2eZyjSafarAxAkZ57n/jj33nPO55xz733L66+//jou02W6TJfpMl2my7SmtOEX3YDLdJku02W6TJfp/0S6rGAv02W6TJfpMl2mdaDLCvYyXabLdJku02VaB7qsYC/TZbpMl+kyXaZ1oMsK9jJdpst0mS7TZVoHuqxgL9NlukyX6TJdpnWgywr2Ml2my3SZLtNlWgfKrHWBFy9exI9//GNs2bIFb3nLW9a6+Mt0mS7TZbpMl2nN6fXXX8crr7yCX/3VX8WGDWuDPddcwf74xz/Gtm3b1rrYy3SZLtNlukyXad3pxRdfxPDw8JqUteYKdsuWLQCWG3nNNdeg1+vh3Llz2LhxI3K53HKlmQw6nQ7Onj3r3rv22muRz+cBAL1ez/3wHVKv13NlxFG32+17rtvtotfr4bXXXouUw783bdqETCbj6mQZ/D6bzUbe6XQ6fXVo+b1eD9dff717DwDa7TYAIJfLefvQ7XbR7XZx4cIFbNq0yfFEqd1u4+zZs8hkMshms9i8eTOy2azrH8vlb7aFn+mPj/isLYPlkxe23/xt67fl2O/YZ/KN4xCqw7ab7bJ9VL6Tzp49i3a7HRkXHx+UByGyPGTZuVwOmzZtwmuvvRZ5vtPpoNfr4aabboq86+Od1sHv9OfcuXO4cOEC3vrWt3rnCHn64x//GADwb/7Nv4mU3el0cOHCBdem1157DRs3bkQ2m8W1117bt+58/Pl//9//FxcuXMB1112HbDaLrVu3ujp+8IMf4H/8j/+Bt73tbXj/+9+Pj370o/ja174GAHjyySfxP//n/8SXvvQl/P7v/z5+67d+C+fOncP58+dx6tQpnD9/Hr/7u7+Lt73tba6uU6dOAQCuv/569Ho9vPDCC8jlcvg3/+bf9LXtRz/6EZ5//nkAcHJn06ZN7vtf+7VfQy6Xw/Hjx/H973/f8f2WW25Br9fDo48+iuuvvx4PPvggcrkcTp06haeffhqf+tSn8B//43/EI488krh2+L1dk5xzHJ//7//7/7Bx40Y3H7PZLE6fPo3/5//5f5DL5XDttdfi2muvxdatW3Hq1Cn8+Mc/dmO+ceNGAMug5vz587j55pu9c0HHnPOu2+3i/PnzyGQy2Lx5s3vm7NmzOHfuHH71V381Io/PnTuHTqeD//2//ze63a6bw5RVZ8+exaZNm/Bv/+2/de06f/48zp49i2uvvdaNpY/Onj0bkaW6Nnu9Hs6ePYter4dsNotNmza5ucn+6DrvdDo4d+5c3zicPn0a586dc2XcdNNN2Lx5c2Sev/zyy9i2bZvTYWtBa65g6Ra+5pprnIK9ePEier0efvrTnyKbzbrvfvVXfxXtdhudTgfZbBYXL14EAFx55ZW45pprEpWokmXoNddc0/f91Vdf7ZSmklUI2WwWvV4PP//5z137gWX3dzabdYNy3XXX9dVhhbxt39VXXx2pywrVixcv4uLFi/jpT3+KDRs24Oqrr+7jA3nH+vj9hg0bnFGik47PqdGh7bPtVIV15ZVXIpvNol6vo9lsurLf+ta3ehWYKgvlb6i/7PPPf/5zbNiwAVdccYWrw9c+LZufX3311Wg2m/jOd76DfD6P0dFRXH311cjlck6QUXhdeeWV+JVf+RW0Wi385Cc/cZ8XCoW+/vR6PTSbTXS7XWcYqYAcGhrCyMiIM7YoaG644YagBezrPz9vt9u4ePGiM+B6vR42bNiAfD6PTqeDl19+GZlMBldeeSVuuOEGN9ZXXnllH684/9/61rd65+JPf/pTbNmyBb/yK7/iPicv0hix7XYbBw4cQLVaxTve8Q6MjIzggQcewDXXXINut4srrrgCr7/+Os6cOYNvfetbbq38+3//77G0tISvfe1rePHFF/GVr3wFN910EwqFAq677jr8+3//75HP5zE0NOTqb7Va+OxnP4tXXnkFf/Inf4Lh4WGMjY0FjcTbbrsNN998Mw4dOoTPf/7zAIArrrgCO3bswPj4OK688kpcd911+Lf/9t/irW99K5rNJnq9Hq677jrk83n8p//0n5DNZpHP59Fut3H69Gn8/Oc/xzve8Q786q/+Ki5evIgNGzZ4jZBWq4V2u41CoYBcLof//b//N1qtlpvTxWIRmUwGP/7xj1Gr1fCZz3wGuVwOu3fvxsjICCqVCn7+85/j+uuvRz6fx/DwMHq9Hl5++WW85S1vwbXXXosbb7wRhUIB1WoVzWbT8YuGTmjcVCY2Gg0899xzyOVyKBQKbl5ks1lXVi6XQ7vdxs9//nPceOONyGQy2LZtG7rdLmq1GhqNBr74xS+i3W4jn8/j5ptvxm/+5m9GAMqWLVuczA/RxYsXcdVVVyGfz3vX4E9/+lM31zOZjNMrP/3pT52uIF199dW4+uqrnRwj39/+9re78nq9HhqNBs6dO4fR0dG+cVzL0OaaK1hvJW8IjG632zf4XNBxiGqQeuK+U2vSh670b98zSe0LoTf+H4dQbD1cKKE6Q0JaFaTtS6htvjLsj6+cNO1KiwTTPpumLBUy3W4XzWYTQ0NDXp4m9YcLnvPU8hhYVjZUxLZuNWzy+Xwi79km/V/bys+pDNn+OKUYUuqWBzo/fGNhP7vpppvw6quvYtu2bU4A830qEyqq0dFRvOtd70KxWESv13PoiIool8thaGgI+Xw+wqdOp4NWq4VqterQNg2aTCbTh9jI7263i1arhXq9jm3btuGGG27oK5vvUjYAK8gSWFaWRFb5fB7lchnDw8NeOWb5qcZsNptFq9VCJpPByMhIRBZdf/31uOKKK9But1Gv1137m82mG2POK2tQc8ysQUqyYEKVl86bdrvt+j08PIxCodBXh+0Px+B73/seXnrpJWzZsgUXLlzoM6xZJw1Uuz61Dtv+TqcTGY+Q3OZ4qGGq69Ma+Fw/WsZ60VvW+rD/l19+Gddeey1Onz6Nt771re7zdruNarWKfD7vJlmckvCho9WQMr/dbjsXno/Bl1KnRUpvJqnQoWBR64389r0H9LtrVZBxMfD/0GJO206Oh/JIBSKR4aD1tNtt1Go15PN5FItF9/ni4iLm5uYwNjaGSqXiPqfwZF1cxCFUzvnTaDQcjwqFAoaHh7GwsIDZ2VmMjY2hXC47S7xWq6HVajmENDExgaGhoSBvWq0WgKhBSgWlc7jVajllpDzk+GiZjUYDADA8PBwRMiq8qNzS8NgaEWyvj3cqGNmfer2OpaUlNBoN1Ot1jI+Po1wuo1Ao9BkgvV4PCwsLqFar+MM//EMAwGOPPYbh4WE31uPj4xFB2+l00Gg0UKvVcPjwYTz66KN4z3veg507d6JSqTgEqXUAy8L8xIkTaLfbrn9cy8PDw8jn8ygUCs6bQZ75lBrncqfTcWvv8OHDaLVa2LNnD/L5PBYXF91aaLfbmJubQ7PZxPz8PPL5PG699Vbcdddd2L17d4T/rVbLGSX0/tF4VOr1eqjVaq5/NHi0nc1mE81mE9VqFa1WC61WC5OTk5icnOwb+6WlJbRaLYyOjiKbzWJ+fh7VahV/8id/EnnOF79sNBpYXFx0Bk6hUEicb71ezxlVnHPlcrnPM9fpdCLj0Wq10Gg03LiE6vLJPuquc+fOxSLuQWjd1LfP2uICUt+5RVWDWOCKruLclSStM8mVGeqTtieNFTYo2dixT/lxEVOQW+SgbUnTHjVC1ELVfpJnKqTtZ3Gk6M/3vFW6cWjWtzioiKy7h58DcKEIrcsaWnFeBoYHKHjpstK6NXakz/tCE7ZPFjUQOdTrdQwNDTmBrggiydMR4iPnULvd7jNoQ4YN61xcXESn03HIs1KpRPpN1GcRNucZERJd83Yea33VahXPPvssNm3ahM2bN7uxrNVqjr/WqGK5W7duBbBsXBSLRSd/ms0mOp0OhoeHI+NPRTM5ORkZW0WKHBNFdeRnnGeBdfB3Pp+PzJHR0VH3WS6Xw8jIiHPd6vuau8H/yStraBM10oi0xPcZHtHyfGOv625oaAjDw8O46aabXHwcAKrVKnq9HkZGRoL1pZEXtm/kMYA+OdFoNNz6ID85vykzQ0bhetO61XLhwoUIWsnlcigWi86dphZiXMzNZ5nzc04iDrhP0KjgUmGnrjsiNlqGvjLU7UCLSi2jpMmZVtERcagwZfnNZhNLS0toNptotVoolUooFosRIWUVWZzwpQDgBGTf4xJc1PWiv1XAsmztPwW5fqftVMNHvQG2LLYBQKSd1kInFQoFjI2NodvtolqtYmRkxAkcfZ91UDn4eEBvgKXh4WFUKhWMjIwgn8+7Rc3YGMsNeTZ0jtvxqlarOHnyJMrlMsbHx50yp6XOOkPjrIl6FsHSLZnL5SIJMBRWljqdDprNJh566CEsLCw4b9SRI0cc77vdLpaWlhzvKcBbrRYWFhZc/JSxyuHh4VhUf+zYMSwtLWFqagojIyMoFototVp47LHHcOHCBczNzaFSqeC+++5z7R8eHsbo6Cjq9Tp+8IMfYGJiApVKxfWf6Gvnzp1uPDudDg4fPox2u4377rsPo6Oj7nOLBIeHh53rWuVQu91GuVzGyMhIJA5Jl7iuR5ZPKpVKkTHT+U+yc1brUNRcq9Ui89giP5LyigjWKnV9Vg2NSqWC0dFR7N+/H9VqFQcPHkQmk8EXv/hF3Hbbbbj33nv7DAHmLHBsk2TiyMiIW7fsH/nPcon+S6WSi6cWi0WXM8IxpMcnzhBdixCVpXVTsBs3bnSLVhvOiUmLn8JXB8/GCrwNFwUNRJGftTzte4q8rPWujLYKIU55x1HSM1qOohM1AmgY6AIILRryNU3dSaSLnfyy1qyOsW+S2ti3KjN1d/r4bI0t3+chYp2cU6HQg/I5hNx8rm0ShUevt5IURYONaCUOFXL+a9Ym20KBETLmrCFj+aNxRv2OiprCikig0WigWCy6OlWgs1+VSgX5fB7PP/88zpw5g7/6q7/Ctm3bnNKgK3lubg5DQ0Mol8vo9XrOaKQrXF2b9XodrVbLIU0qrLGxsYiLlm3ftm0bms0mFhcXI1mwOkbDw8MYHx8HsBwqoMIfGhrC6OhoxPCjTNq0aVOfPGAikRpwanBzDtBIBVbWJtEkk5VCRpaOj8/QilvPjUYDrVarry002nyeI/ZZvSuaZKThA85NXbcafspms9ixY4dLCLvqqquwtLTkUC7nGttk+2NlN/vCuWt1guWbLzmKY8GfpLCdyoC1pHVTsERcwMoiB4Bms+l85CMjIy6uwMk6OjoaUSIhy1wVMq0bfq4MVWSlAlzRHoVfp9Nxlp8y3LrmWFac0E1LdlCJgBi7W1pacn0aHR1FpVJxPAwhvDgkrfzTv0MKi+OjBpEaABbxq3vQ1qtKBFiJzVBgazss4qJAII+SSMeJyimE8HT+qNtQv2fSiQ/BMrZUq9WwuLgYmZu5XC52Tx37xXaqMifC0PfZB4syVdgDK0LaV7fyhIiwVqthYWEBR48exdjYGMbHxzE2NtaHrHq9Hu699170ej3s2bMH8/Pz+NznPgcA+PVf/3UMDw+jXC6jXq/jH//xH3Httddi586dKJfL2L59O1qtFpaWllAsFiMobm5uDvPz87jnnntQLpdRq9XQbrdx7733IpvNYm5uDsCK4BwfH8eTTz6Jr3/9646PquAAuKSkubk5HD58GOPj4yiVSiiVSm68iPba7TaKxaLbqkSiS5wZvtYLwPVvjUSOPY2NSqWSuPVJyc5B9TJZIiKnIVIul51XQsdN102n00G9XnftpxudRERLDwnnET0PlJnMa5iensbi4iJ27tyJl156ySHj4eFhtwbUQCeRj0SZmcyyq57eANZNQ8ca8Gy79YIwTBByjyuxDefPn499bjW0rgqWMQV1A1J5qktXlZTGcNTio3JjXEEtc42z8TNFxbYNfIa/LXrUcuyPvktKi2RDfNK/NXaQyWRcJqbyjm436xqylhyVYFycTtE++6ICXq1P5Yk1TlSwaL9YXqPRcIqIYYJarYZ6vY5sNusSQoaGhpzVb1GyHYcQ331IN2l8rDLX93q9nnOl5t/YMkOlyM/UNcwFTyHGGBf7xPnNNWDRe5zBo8LW55a3Y87v6eYkr9kubnchUmYy2OjoKDqdDubn5x2aJeLkOtm+fTtKpZIzKiYnJ53bmMJ6aGjIGVAU6FQE7E+323XJQBSUrEuzWzudDk6ePIler+fWRbvdxm233ebWDrfEcM4ODQ25xKZqtYrZ2Vncc889rk2sI5/PY3Jyss9gbrVaOH78OIrFoouLjoyMuGQqJrqR3xqLVXSV1gj3uSqtQrJrjyiSysR6TOyaZRtpLKrhy8SnRqPhZC3HS2WFNarn5+fRarWwfft2p+QVKKlc0DVmy+RcBNBXl8+wZrzafke5lbTulZ+/VC7ibDbr9p1y/yQ7zL2DymRa3LTo+b1lUqPRiCwwTly1UhgrUoRLBcS2+YRYCAn6lC7JTvZByZalMZ18Po9SqdS3QGkdNxoNt9ABuAw/Et2VFPAhS85ay7RQNUbu66dvfCyR90QtxWLRZUvW63XUajXngtu+fbtTTETwbD8Xkq3fut20/RZd+xQyx5ZKw1r7FJqaBdlsNrGwsOAMHSaosG7Gxufn59FoNDA+Po5CoeAsdXpwKAgtyowTxpzbVETqFsxkMo5n1qU3OzvrPm82m/jGN76BO++80yUo0ZVLhVQsFnHixAnMzc1hx44dzt0HwLlVNc7mI82ArdVqOHnyJEZHRyOZv0SPjDGTKCNqtRq63a6LEz700EPI5XI4cOAAJiYmsGvXLvcO0TEFLucvs7vf97734X/9r/+FcrmMSqXSh3qIqJX/jUYDTz31FJ566imHYul5W1paQl7i7MDK/KOyS5OdTVLPkBq5wIqc0ERH1lGpVGJlkMbhOX9yuVzEO0GqVquYm5tDq9XCK6+84t7nHPfJkHa7jUOHDiGfz+ORRx7pU3ZWZqohogqVpLsI9H27LuhB8/UjrVGjeTW/VC5iYGWihvYgalYh4I8nqWXDSaRuBZYBwClxtUZC1pLWQxe1tTa1DDtBdBH4BLmNNaRRwFoW2xr3HoWo3Q6iyEgXnu1PCNFqG+wi598cBxWUtp+qADWOSJcRUTn7qTEXYGVrgG6HUNe9b8Hx/TQGlK/vPn7n83mMjY05RaQLn3xgViuVFADnHqOBQiufz8ShVPZTESOFq1rcNn5l0Q4T4tgvurk/8IEPRLZvadYs20/3nM1UtbE0HY9Wq4Vjx44BgEN35J3PleeLJSvV63WHcPP5PHbs2NEnbOv1Oo4dO4ZCoeBVnHz+tttuw7e//W0cPXoU8/Pz2LNnD0qlUmIbgOVDXLjNh8/mcrlI8hbnMtcdt48QPVNRWS+T5T95qQYfn7GyiW2J83rYZ33bekgqQzdu3BiJoyrxoIn9+/fjlVdewXvf+15nANNjRR5Z4z4k29hfhgfYHoYaCaqs0RFHjOWT1LOg63cQL8MgtK4Klgz2WT1kZuh73/MAIoiU6JgMUn87hX8S+ux2l7dBMAajsUBr0ejAavt9ylUtIlV6SUR+pLF8+Sy3F5A3vjKsQPRZjkDY8rNtt8/oUWfKe1Ww6m0YHh7ui2fS0KKhw9ig3Qai7n8fQo0TNko+l5BPweZyOUxMTEQ+44EDRATVahWjo6MRa1rjp0z64d7PuJOedJsFx1ENSk08s650a9xRWCnv6bbV+eybM8z6tBmxFJr8X8M29XodDz30EF599VXceeedGB8fd/FHhgCUv3GCja75druN8fFx5PP5CGIlVatVPPjgg9ixY4f3e/axUqmg3W7j7//+7/Gtb30Lo6OjEa9IyOAEgBtvvNG1QXnWbDZRr9cxMTERMRYZtmHfFhcX0Wq1IspK57JNjiK/dcz1OSvX4siCDJsprPNHDSwaRXau9no9LC0t4fHHH8dXv/pVAMBnP/tZlMtlAHAHg9CAtsg3JHvU20UvTS6Xw/z8PICVXAefqzhElCFqSKrSt2BmrWldFSzQH1NQAahuLBu7IDFJQLPZVIlxszUPAGBsknXyeaBfKZCxjDEwhmMZzvf5HdsbSrpRi0gntxJd3dovfZ/9YuxPF4WdsBrXtgpf22/5Pwj53LFA/7YWW7byUK1zdXFaFxD/npiYQLlcRrFYjFjvKgC0fWmTznRO+lB6Wl7oHFZXoZZNHnU6HUxMTLhkjjTl6w/Xha4FnVfsA9Ey56aGY/icupMXFxcjijSbzbpDIGggVqtVdyxfr9fD1NSUUyZsQ7e7vD2n0+ng/vvvd20mSuYcDo0N96YyHMC2couVzvd2u42ZmRk8/fTT+NznPodNmzZhbGzMJWypAUADiGGIqakpHDt2DOfPn3frSNc0EJ1XIyMjeP/73++2gPBZxq9ZNg11PbhEt/jQ7U6vwtLSEnq9XsSA8c0Dtol90vFjLoNdmwyPcXtONrscq15cXEQul8PY2Jirg6ddaSyZ7dc57GvTtm3b8K53vQv5NzK86/U6HnnkEWzevBm/8zu/4z73rVPKTwIbomr2pdPpoFqtIpPJYG5uDps2bcL09HSEVxpO43s2+Y/hJho8lPUsRw0bzUZfK1pXBWvdWJwEPheexkntYtJsPctgTm5ONAoWLvwkdEyXSf6NrELGPq2g5kDycwpNdZcpYtb+WQXLRaYCRRcvFWyj0cD8/DwKhUJfudov3WDtU57WwFCll1bRqgKz4xZC6CFF7jN0fO/qyUtp2heXaanPqcJJ47oPlUPhZeuzSpFzha7SOANA0adVsBoLVw+JNWg4v4D+uLxSq9XC7Oys89zw/UajgYWFBbcu6CGh0q1UKpGwDud9rVZDLpfDnj17HPpUZRm335WKSj1aVBKW2u02Tpw4gX/8x38EsLznnvtPiaa5RhmXrVarEYPtmWee6csw9RmRw8PD2Lt3b8TAA1bQFMeEblEdJ5VPPMWLLvvZ2VkAiHXXqpdM56l6rggsaKwDcDsPOPaKoulG55i13zhhj31VOeuTDyrPC4UCjhw54ngxOzuLv/7rv8bmzZvxh3/4h32nKKnypPHB5EfKD9b7yiuvuKMjueeac0Lbwb3c/J+yiKTPcCzU7a2hk5///OfecbgUWjcF237j4PJIZR5BZt0gljQ2YWM/ACIHB9AlwTKtlc9FrFlxwIpQYjq4TdyxSkSVLwULrTVtW6jfmcxKopd1T2mSDeM5/K2uIvKYQkRP1qH70MZ14sYhidRyXguyhomPQt/bz0PKMq58HT/yVZ+3CzpNmbZvfIaC2HpEQi5JPq+GnjXY+KPCl/Odddt5SIHKeuj6Hhoaipw/S7RJg3VkZASlUimi3JeWlvqS52yuxfDwsMvCHRoacmVQaVh3a9r5xfrf9ra3IZdbPkhh586dLv5bqVQipzFlMhknsLvdLnbt2oWpqam+5BifoqOHiyjdGoPsl441P1eXey6Xc4dZLC0t4Ytf/CKuuuoqZDIZZ+C0Wi2cPHnSJZxp3T4jlMY5x4VHUH7mM59Br7e85ZHbHrPZrEuYJBhhfNI3tyhLLU+ssU6FWa/XAQCf+tSn+uK2DKEwoY1omfPFegC5jYqf615abQczndXIsGXlZf+yrimN8aYJUa6W1k3B6klOQHi7hC9xI9LATDQgrmgYgLOyuZg4kVm3CjNaMr7FHLKwFbnp4PFde/ZlWoqz5oGVyaDxD+5JVWVM9wczF9UAWS0681FcOYPUYd2aSc/66gkpKCsofHXa59TNpC5my7u0itv3fEhIhd5TRRdXtiJb/S7OM6HJaBS6VshQMdDLMjo66tz0mUwG8/Pzbl8wn1XhpQYevTDc5kJe27jeIAZct9vFiy++iFtuuQUnTpxw65J7afNvbLnRcbxw4ULkTGjdKuTjq5LuT7bzIiSgfTHtVquFb3zjG5idncXFixdx/vx5zM/PuzY1Gg184xvfcNuBfG1UUiXU7XaxsLCARqPhji5Uw5/KGlgxzOnl8BmRcXFpoD9WTLm6d+/evnfonqb8ogeE7bfrQ5MD6cWwnh/OI8o/jg/nt/KIoEvbRQUbtxbXgtZNwapyU0Roma8bnn1KzrrFKAgpRNS1oJaetbRYFi1zuoKT4nVWsQLRo/pUIKvwsq4+dRcSeVgDwLbXh1gowJi4wsWo5VBpaF0sxzcGPhc2iYuRPOeiVwTlK1Pbrf2ynoG4cVB3pwo362EIWfghRaOfs41UJuoJ0XFUCtWnyUdp3MBxykS3U9iDV4B+VKxl93o9946dT5wrIeMBiIYcGM+jK7HT6eDLX/4y6vU6brjhBmzevBl33303CoUCisUiFhYWcPvttwNYzry966678OCDDzp3IVEGec6xt8kwmpzFeU4EuLi4iJ/85Cd4/vnncfLkSRSLRZTLZYyOjmLv3r2u7xyPRqOB559/3mX6ss6TJ0+i1Wq5mLLyQz0bmojkyxUh0md/1NggEWl9+9vfjnj26vW6S7QqlUr4kz/5E5cEaBUK66DXTimTWdkP+9GPfhQAMDY2hqGhIdd+9VIQvRIZsjwbA+ezJM4LnoSloYWQQmaCGw/2YFsbjUZkbdMTR2XI+LRPd7AN3W434l2xfOFYDw0Nodtd3m7HyyAymYzbfrRetG4KlpfuAvH7+lRZKEJ1DXxj0Mh4Ffac9ElxN20HJz6FaRqyykeRjiZUqBJQpahC2iq9uLpsnVZpWwHLZxTlWySndfhQnq2Dbh3de6d1JaEOazna75RvIX5ovNvnUtJn9e8469QqWQ0rhMYgVJc+k9YiTnqOQttHcciCbQjxKMmgBFbQF/nOecAQy+LiIn7wgx9g48aN2LJlC2688Ub0estHKCqCuHjxIr71rW+5OJ3mAKh7kp9p2xirVAXc6XTw+OOP47nnngOwfKG3xnmHhoYie2nVKD979iyAFRcuhe0Pf/hDp4h884eKTRUI17vNFSEiZH/UsOU6OnfuXITXZ86ccXzI5/OR9ms/OB/0YHslNTx37tyJTCbjlDTHRF3y6v3QWLRF5Fz7OjeorJXiZCkVHBM7lTdqwNDlq3I1bq2n2WlhZUatVnP9evXVV395EWw2m3WXR8cR3QFMRKBrhKSBaV2kui3EEhUvgIgVrDFNn/tU0WaIuMB8nymy8Skxn7IJtcF+zz7pIrHvEnERKYRiklQucUKaAlCvddPTiZi557uwWNuuC0n5q4soaY7YhJo0SiLkirafsQ08L5ffDRq31n4lPWvnRsjq9yUoUVBb3qnhdqkxJbrdqERofBSLRRcf4/aHXq/nYog8lWvTpk3I5/PYs2cPRkdH+xJ5qAxyuRyOHj2KmZkZ7Nmzx22F0vmn9XW7XXzwgx907SGPQkLYxmB5iEa5XMbp06fdczfccINzg+fzy3fX6twF4K6/K5VK2LVrV8QAorBnO+k+z2SW3entdtsdUPFrv/ZreOGFF1y5P/nJT/ClL30J4+PjGB0d9V4Vp+i5Xq97L7WgR0CPN/TlYHD9ZrPZSBIUy+b8GhkZcTkpNNh0vtEtm2b7YT6/fGAOz4bW7Xia1VssFiNxbo5rGo9PiGgksv16ShmAPkNhrWldXcRpFCytU71QWcmeU2mFhy8xSieVKix154Zcimn7xuetwA4p0LSTJK4NaYU3FW0aRRTXDnuqjMa308YwLJq3cfk0iybODR1qu/0/hG7jDKK4sq3hkmS0WGIbQs+rgFGyiJ/tsZmkl0JEbZYvipxouNL41eS6nTt3Ynh4GHv27AmGQlg2Y7Tbt2+PtEG9NPl83hl0eom7IrEQcb1fddVVzvhQ5QrAKRwt0xrL7XYb8/PzkXCQyh4ajGwn53q9Xkej0XDnA2/bti2iYEncNxo3J3weMTtuqqDsfOS7DMuwv5lMxhktNKrpUlVvoVXUPpesjziX7XwmzzQ0EOo3y0lL1gPHcfOh//WkdVWwV199NQB/LIzZr2R8qVRCoVDosyhoeZBZilwp9H1KTQeT31NwcHHYJAKL8OLcloN8ru3VZzQo79vbmVQu+xFyFdv6fHFQknV9M1ZFntgYsgoD625lHVzM+pkKXNaZ5Gbm8zbBLdQf/b9er7tDIPRgi9nZWdTrdRd/4/Fw7JtmoSq/6ZLUgyYUWcf1w6dk0hIFnyJ/KjiiF0W2aYj9YSKICmBVsIzzq3tQj05UA4iH+LNNLI9EDxWF9/bt291VdKRMJuNQBuvkWcTcgqIXyFs+0pVKebJjxw6Mj4+j2Wy6U6YA4F3vehf27dvXl1Sj/CNKrtfreOqppxyfyOeFhQXMz887XlUqFZetCwDHjx/H448/7q7M27FjB0ZGRvD3f//3fWNhvRNWRnIrkrq51VPFmCTzB4iw1QNEWevrZ7FYdO0gr7neVQl2u12HzKenpyN7WInerRLzZWDrPLa8UAPfynrf/ObzLG9xcRFzc3Nunk1PT8du+1P5spa0bgoW6E/SsdaUxhU1C9iWYdGoWuqDKDsV6jbr1vfsoBRnfdp2qTJP+67vuUHbOQjC8lmVXEhMPvO1j+9bi9uHFhUdh8jHK1tXiBg71EzCTCbjhDAXsd7ypElc1nigQuX/g/I/7TiH3gX8ngxNahukPLs9ztcnDU2wfkUvdsypHOhy1PufVXjSFelDFJQHKuB9pEah9oEoDYBLbpqdnY3ESScmJrwuWTuv1Gghn1UxqAGhY9DrLe/npJFJA8QnyJmzovz3yUifLCTl39jKp7FfnbOcNz5e6rok3xXQ2Dmh8Xmtx+7SUDkQV6fyXnMz1EPhG2t9T+vhvNPQVBytZi2noXVVsHGk8VD+z4VrEQ8At5lYs+t8g6NWvn2GVpie9sK6lQZx9WniVbfbjbhCklAZf7PdmUx4qxCFBg0D3ftr66Hy01OW4vrEBZ+m38p7XVi6CNhmX3+0/PYb26bsaTa6r5eLXfvBZ/XUrRDpYQPNZtNdUM/5p9mZ7TeO5GPmJQ9XIIoDEMku1nlm+zYIWQXlEyQaA7NeCbYlpHi1fRZBMJ5HIcwYpF6MnWT8VKtVpwS73eU9qtls1mV38o5ZjbHW63UsLCxgcnLSuSMVjTGp6ZFHHsGZM2fwyU9+0l1sr2WcOHECQ0NDzuPgW3u857bXW84Z+OIXvwgAwYQiPWWN86RYLOKjH/0ostksDh06hHK5jMnJSRdjZtz65MmTOHjwIKampjA6OooPfvCD+J3f+R13ow+vzMvno5dG3Hbbbc4jQOODfOA8oBHIdtp7glWxcc60220cO3YM+Xwe09PTqdY4+57JZFx2vRKROuUeUevS0hJ2796Nm266CQ8//HDEI0k5wXgoZbHOcdal8VGuf+uVs+vDro1isYjp6Wkno3zXTNo+/x+lYEMuNQoZoD/GqQz2kb7nQwrqalDLiN/5/k5DiopDcRQ7eD40l7YefTaTWdmWE0pp57u0tJUP/G7QPrMMtWJDz8X1R9GMz1Vs0SrLTLsYqAR1gdMgYAxKn9PkEIsmdM7aPZFxnpDQ3Aoh8ThexnlsQoaG5Z3+Td6oYaRxRt9aDKFemxWuP+Qt14mdy1RQ5D/HhsqRh+Xz6EUKXVU4IV5Z1FkqlWINWV8Wfi63fGuLIjd+rmu51Wrh6aefRja7fKADk6eAlWNfgeW7anU90u2ubbZGk6KzuDVn55Pet520zjVsFZqPNMRs28i7CxcuRNaa9okyUt9h+T7ZxjBIGrLGo25fvJR8lEuhN0XBhgaVykiD0HzeWrS07kJlaWyQ//N56+dXIeojO0HjiPHKer0eQc8+N41OFAoQmwSiLg1rrdF1aSfL3NwcqtUqpqenI5aauoKazSY+/elPu2PlhoeH3f2XFLI6uTVhImQI6W/Geygk0kxoZhEuLS3h+PHjmJqacjfN+GLj1iDSuGForIjGeFQar8hjNinHYefOnREe8HO1wNWo0NglUbKNW2smrk9YMkapil49AoocKZxsljDnFVGB5buuMZajxpXOL+7VpILjvkXGYDm2CwsLrr+5XM4pPe7bJXJgcuLu3bsjQpUoRm8eOnToEI4dO4Z3vvOd2LZtG/bs2eMOmn/ppZdw9913Y+vWrZifn4+cm8w1pUjPescobPmOReS6BRCIzmGOS6FQwPbt2yPhJfKP5RYKBTSbTbzwwgsukelP//RPcf/992NmZsbtx92yZQv27t2LUqnkELlFZTonSBwDJk7Zua8nGtHrwvnqM1w1ZML3eEcz6+L2I6vkfDkjQ0NDWFhYcOuh01k+T5hnXXPOc33TS8R1ojcSqYHk8zAmkfXuJb2Ty+X6Th5cC/qFIthBIHkaJGTLjXvHN+EGRXG2vKRtJ74+2wmQZJXa8i3K8pXByXrFFVdE/tcyrELVsmzMKW2fksjyLM6LYMc4qS72icKWW4z4OZWICrReL7r1QgWeoho1gvR/+/mgbifrgfH1P847Yz+3bbNeE0v2cyodCkBgWRDxgAB186lCIlJV/ts+slyGa1555RVnCFx11VWuLxpyOX36dB9yPnPmjHNPMoHKKseQkRgaI9/z2i81UPR7BQLKQx2DxcVF17/QmvKNhdahRoKOOecAQydqbPNzTVayvNCteXrYiA+M+MJ0migVmnc+Gan98vFkNXLZN89DMmS1daRqx7qUmpLiUI51IyQxQF14wGAMUxSgAxOKTfo+p/Vl67aCOol8z2q2qlq23ASuWZ60sHViM2Z7//33A4guDrrZiF6ojPhbz2/2HUzOxaIus7TExTsxMYHx8fG+skPKKk2aPW8s4S0mHJ9GoxE5wMCSbj+g0NH69fAHxm/V+2C3L6lQUVIhTeXuSxrRsui2JYJS9yTHnAKUc4Mb6/l53L5Fn/Dr9XqYnZ3FmTNncNddd6FQKODkyZN46aWXnAdAvUwq7FUwq7LPZJZvSDl06JC7zu7tb3877rvvPnz/+9/H+fPnXb/GxsaQz+fxT//0T9i0aVOkbe12G48++iguXLiAQ4cO4f3vfz/+5m/+Btls9N5e8pljzx0LegOXttXyQNe7DwErPfTQQ9i7dy8+/vGP49FHH8XGjRtx8uRJF0/8zne+AwBuv6olNbJCxhD3qFplyH4we5bZwtxed/z4cQwPD7tYrPaj3W67s4wbjYbbt0qjgnPPZwxbyuVykVg5fzTDnDkW9GKRv4PQIJ5Gm5SlHqWk/lwKvakK9lJRYhwpkwatg1YmlZgvQYpttyhD61yrvvlcxFq+IiereCkMfIaGL3tQ2+5Dk2rNx/XvUmIcg7zLPobaw8QpKidFEFoG37Ub5oneNcSgCF/dt9oW5Z2dF3H99ilUG+bQNqtw8rl5gahQU7dpnHdF6yGpC5x1dLtdvPTSS+68W+uu5nv6GZNgOEf599atW90VYTTqms0mzp8/H7mZZmRkBO9+97sjvGFbC4UCXnnlFbz22muRk53UEFV0pIpUT4tKyl/w8cf3PRH3XXfdBQB4+9vf7oxVfc7n2WDCkKJljiGNZ821sPkealCrUUBlHMoyZxkaJwfgEq18IaQk0jbZuLxFtmkpbf0+j4Rt/3rpIUtvef31119fywJffvllXHvttTh37hyuueYaAP64IinkzuTfIdIJlPRskguT557yO3uCjm9giSTYr7gNzCrwQtavoiAiJ1ql/F6TSFh/t9t1N2bQlRd3BZaPVIBqXdbS+0WRtqXX6zkh5Lu0fGZmBvfffz8mJiZwzz33APAvcu59PH78OBqNBrZv3x65HH1paQkAXCbs4uKi4zmzWanMC4VCnzuO5Jvr9jMKP8YwR0dHHaKgcOWNN4yLEmEoj5S4HYXIScfWjnOcFa9zl9eL7dmzB6dOncLjjz/uMnE7nQ7m5uaQzWbdfaO8ReXLX/4ybr/9duzevdvVw36QOIcPHDjgrspj/JZ7YIHoUYeNRsOdJ/zDH/4QW7ZswdDQ8mXyU1NTfX3R/ne7XTzyyCOoVqvYt28fRkdHvc9bpaeGDMtTT4PGhq28q1aruO222wAA3/jGN/q2CNVqNRw9ehTDw8OYmppCo9HA0tKSi9WGxt4S5ZKuW2Y4FwoFl3vB/lHW0PPBed1sNiP37PZ6Kyc6+fgK9M9tdRXb/IG0ZA1QNSjtnNVYuj5rzwxQY5i88umuS6U3TWpaK8sqLWtxWySQpuzVklqIvrJ87VULcpA2JPXJ1uVzkfI5dd/os3F1x7VVeU4hsRbInItD4ys+Qc82WKPJ/va5MXVh8c5PCmMqMSbmWJSmPNQ2KGqjAqzVauh2u+7ybF9My85dG5sNxZw13sU+0YjilgyOIffwMrHK8sOuN8srjbdbstmfbBcRDo0Jq2h4gDp5Qr6cOnUKN954oztHlyiPSkIFN/nKNcl5eOzYMXS7y/eqalyc26705CEqRevy5jhqJjkT5fRQAx1PNejYLpuURgFuM9R984JUr9dRr9fdcYRMLvrhD3/ovqdC6PV6EQWXtB75jo4/x02Runp3FADZ7U5JWcshsms51G6LzLVNwODbKO260nke8satpn9p6E1RsEnJMery1EGOY+KgLkkr0LVsxrMUxfraqxSyxtgPm2Rh+2rL1MnESaaTW5WdJujYMmip+cr2ZQVreyyauRS3rxJPhRkaGnKnzdDNmc1mXbKL9k/deXah6mlfVJ48hH54eBgHDx7sW0Q80clm21YqlT7PgqJjjgXRxD/8wz/g9ttvd6g1hHy0bmZU6n5exglJuVwugko4lktLSzh58iS2b9/uMjEBYH5+HvV6Hbt27XIXaGvdoTAHUXi9Xnf3jlpqNBpYXFx07dRT1rLZLHbv3u2QvI7xzMyMyxwdHR3F7t27ASxfAP7qq69ieHgYpVLJ7TX2eXymp6cxPT0d6Uu1WsWHPvQhAMAf/MEfuG02hUIhEruv1+su/shsYx6tmMlkXPYtL5CvVCqYmJhAr9dzYYVMJhM5ianT6biTmniKEm+t0R/dStTr9TA+Pt4XY9X1dPz4cbRaLdx7771oNps4cOCAu+WFe/6Z6d7pdLCwsIBisei8AxxP/a3gxCevuA8ZWEHmfJ9zg3KN8Vtm3iclcIaMd6vYfMTYOM+V5p50Gt0cDzX4QhRKHEuSZb/UCjZYuWG4TymsBXrylWOV7FoplNAgWRRG0uxUVcRWQdvfvv7oe3H9tTxJ4s1aEMuze+zYZlWmg7qliRiYiOUjull9CUdx7dVDL4aGhnDbbbc5dJxUDt+16EOFt7q+1FVHJd9qtbB161YnZLnlZHFxES+++GLfIQA6n3x9svy1WzWoIOfn5x3a1AMDiDJ9qJ+xPkXJ2WzWbQvz8Z7ucb2sHVg+ypIJPLzMG1h2s15//fXusAZuXSJiHB4edglu6m7XLTidTgcvvviiO3he0ZtvfTJOqxeO+GSXzzujY5HNZnHHHXe4JCLytN1uY2ZmBtns8hGdvPqv3W7j6NGj7sJ7G3O15Q+ybmmEhQx/+8M+E4RYFE8DOXR4fgjcACuI2ypQnwfN179L9bSp3F1rWjcFG0JqfQ3IrLj9VDiknTShOkIxWut+1d/WNTTIgPncuEp2AihqVITKBWwTkjQt3/5W16PPglMBqu/4FqzlexLv01i0XKBciFRWJN2KMShRUFC40q2qKA5YiUVS0Gs7fWPGzEu6hJmhyWxke/qUj6rVqnObZrMrd/fqIQlEEpwH+TfOis3lchgbG4sg/IMHD2LXrl3YsWMHZmZm8L3vfc8JPJI99caOEecX55vurW21WqhWq5iZmXGCnShQb5gZHx/3IhWe96v9yuVy2LVrl5vTdpzpWRgbG3OIj/HRb3zjG5iYmIj08amnnsLQ0BAeeOABZDIZF6/lntpKpYITJ05E4o2Li4tYXFzExMQESqUSjh49iueee86NieZScE6Rut0unn/+edxyyy3u4m/9TvuvJ1KxDE2wy+VymJ2djbjTs9ks6vU6fvSjHwGAuzAeAB555BE8/PDDeN/73ocdO3ZEFIHKMxozIeXvo0wmesqanh6l617HLZPJYGlpyeV9aDiD/bFZ6taw9/HYnkGv3g0b7rBEA0jd2oPQWgOJvvLXrWDP4o57VoWwD71ZskLRh0jj2jUo0kzTBy0/DVnUqq7yQRDcoMaMvqftsM/GlWUFiY9v+rcaCLa91mhYrTXqQ/9qTOih5CpAqPjVbUbEoAin1+s5FKPCxbZVtwSwDIYgGGsC4AQy20BXtSI9Ko12u41isRhRQp3O8v2ovV4PY2NjkWNEQxmjyiu2k9e4MfmLx+DRIKArmNcUUiGRRzQQ+DyND6vMfQqW/a5Wq25LWKvVwvz8PC5evIhbbrkFuVzObW/ZtGlTZJxDBtMrr7wSyYZl2zOZla0/dludT0Dncjnceeed3qQinac0GjW+3ev1+pQ3x4cKK5NZPp/4ne98p1PgnIdnzpwBADz77LM4cuSIG3/OEUXeSSG1JFKUCkQBSmi7FYlJgQwnxGVkp5FtIXnme4fzWOUReah5HxZkhLwQa03r7iJOq2QHTRjyPesT+D4loohR6VIZPIhy1gmqSkbbxckSVxfLSjNxbfvUvTgoYtdYr7bTF/uj25PttP3URUslY5VsmgWpglz5yZODmCSkvOK841nFJ0+eRCaTwYMPPuhOoImr18d3XiRAZcrzamdnZ9Fut93+UZtw5SOeZmSJSP1LX/oSHn30URw4cCByK4xFtj5+8YxmJgpRSQwNDWFsbMwlD5GWlpawtLSEhYUF/OxnP8OHP/xhd4h+NpvFPffc06ekNHPbp8DIw/n5ebRaLczNzaFer7uLycfHxzE2NoZud/nqt8XFRbz66qsAlueVxsB1HlCxAcsxvqefftplPNur8TgGRF8WXfECcx1vfQ9Y8cLoutATjWx9NGiA5aS8arXqvmc+AV3jL7zwAh588EFs374d09PTfSeGMTY8iJvTBzJ0fLhu7I4Eu1bZz7m5OWzevNllKPtkka7/kBFNhakeNJ9M0ee5N13DBTTU1K2fza4c/6mXzMe151Jp3RUskC6euhrlain0rqZo6x6yuDYMqnBWS4qkBnkeiJ4Jq1Za2narUaOU1Hd1S2l9aiHadlDB+jIrrUUc6m9ojlhUrM/5hKFv8VO4TExMxBo2tm0ad1O0THc16+v1ek6JccFbIWfrpBuZblBu/Kfip6t248aN3vAGhY8qN82kzWazDq0eP34co6OjqFQqDu37XOCZzLKb/dVXX3UKhGUfP37cJcjQnc6YLpWCJeUHD1DodDp4/vnn8dprr7nEl8nJSbc31ibC0EvA8kZGRnD33Xc746hUKuEDH/iA96Jy2zef0c12p5kTXBu6HYTtIv/5XGjO53LLJyL99m//NtrtNm688UYMDw+jXC67mDJ5QbSmazFJllojN9RvHyrmszTgOE+mp6fd2IRkkJY5CBCwn4fKZN3MU/DldZCsdyGbzeKnP/1psE2rpXXVIGr1xaG7QS0v/Z1ULi0inkakTA9NcosuB6G0hgLrt4I2zm3rq0sRwqCkE10VhFqnvjpZr90/q4aJtQ6tArDno6ZxCcW5dywP1XCxyTi+92jp2jhbEukcV6tfY0o0IPgZBYGiLKvUWebi4iIOHjyIUqmEsbExt0ebt4Vo7NZ6cFTBkv908fI0qEqlgpMnT+If/uEf8N73vteV70tWYRv1Bh7Gp9vtNg4fPoxsNotdu3ZF4s0at7OkqJl/+8Z3enrauXhpePR6K2fbco4xU316etq1c2xsLJJ9GxrH0HobZO8mx41GA+UNM7B5/rQqYl99pVIJIyMjmJiYcEYI2zg/Px/Z8mTDNXEySOum7LBrlW3wyQD+z7lL5L5r165E3lg5EPec7+/QswzZaOIV61FjUmUBPQvsx9DQEH72s58ltm1QWncF6/ud9LyPrCJMU6YK2VDWZ0jR2smapv1aXprn9G/rIk8Tg7UW4SCGSlK71DDyKWG2TxWqVbZxZPunZfJ/3zu+sn18S2sY+cqyGbJpyiCSCM0lKlS6OgG47R7ko1rU5GmpVMI999zj3J561SJdzIpQ7VYgewC8bregEBoeHnbK1UeqSPV9/WHsmspE3a0+NMyLymdmZvDkk0/i4Ycfxs6dO119n/nMZ1Cv17Fv3z6nKLPZ5YxkCkS23XoFOp2OU0A6liGXftyc4+dJc0qNTt2SxfLV26RzQr0Ntnx6Evgsy5+bm8Ps7KwzZDTOrf3xtZHl2rUSQoeW1ADKZFa2EdokzEGBia1zkPWr+RBWPlmjVRWw9jubzWLDhg2ranNs+9a8xDcoLaMHfY406AD43gktLB+yGrTuNP1SpWiVZFpl7lOAqyEfL9TCtuhWhRawMmGTSBe5fmb77UPRaQwOn7Cw5fjKVSRqF2YaYnkqRH3ftdttLC4uAuhXsFSGRMFEY6Ojo1hYWMDMzIxTsJlMxrmM1TVHZUoFxDJJHE911zLbNoQuaOkThdlMUfJs48aNTqGqW5UIQ4nI/LnnngMAPP3009izZ4+r6+GHHwYA7Ny5M6JgS6WS+9tH6rHi9iiOt/W62LXi845ZgydEVrlaD41VuHb98G87L21ctNVqYWFhAY8++ih27tyJkZERl6DHcuN4Q96tVgEqamabVMGql4l98LUhTtYN2jYbpmEbuE5sQhjfsbz6P+o2HcCPiEI0iKD1vauCzJajFiLbpW20Cy2t8kvbNv72uYrjyowzGOKMhFDbfNajTljtv13EobqV1DWskx7oX/TKD1uXHZ9Qn3zPWVKBkFapKk8sqZtKn6fS02xiXjDNQ/KZhOXr88jICKampiLKSg0KPk9BT4GrCEjHyKJltsE3v3X7hy2Hv3O5HD70oQ+5+LMaZnTtNptNnDhxAgcOHMAzzzwTqWPbtm0uVqt9f+9734vrrrsO3/rWtyL3sfJaPXtQRiazfCDE9PR0n7uZW4j4OX+zPu6XZUbs2NhYRC74iPzmuz4ZYQ04VUjkTRrPCy+pHx8fd3t4eYBLGgN3tUrVR3HrNm1daWV/Eilv457xkXoOVxNmS2zbmpf4BvkQiO97nyvS9yxpNQMRshjtZLBKztavv9dysmp7QhafbXNcGXzPh0rjkJyvfDtx1QIMUYg/VLCqXNMoSN94hNquRlTS/NOyBtnmwH7YuoH4+DCT7HjYgd6DCcTH+uLOulaiK5JrSlGybX8oZmwpZHzoGOZyOUxNTfUhPc4fosoTJ070Kdf3v//9GBoacrc52bp+8pOfuDt8qcyoWHjikJLdV0lqtVqRIwjtwRfqYeA+ZCrYUP/ZHirYkMLh33Yua1JgEnGf8vbt2zExMYGFhQXUajVndCV5r9ZDwVoeJtWTZPzH1WXlWRw69tWVBCzWg9YVwSYxWtGMT/BfikLzDYJFoaFyQ1ZYnDtnrcj226ccVajZBB6ruHztHzROadvne88exG3rtAsyzupNY5xpPUkLL/QZ0O+q9pGvP4rmGBv1uZ1Yh5bN82dDiNH21Re7s+1hndy3q3XzeboYqUjs95ZarZbb+pDJZPrQOdcwjwhkeXooB7cpcQsO692wYQPuvPNOTE9Pu+0z7F8ul8OnP/1pzM7O4tFHHwUAfPzjH8fMzAx27tyJfD7vsr3pCl5aWsLw8LBTitpOGhyLi4uYn5/Hjh07IgmP7AtRLbeaULlazxLRP40U9RYoKlNDg89afvsuLg8RD9NoNps4fPhwpGw1+JLKSiO7QoY957IqdJ/SjFN+um5Xg17jDBitYz0VZ1paVwSb9D0tyTjkFjeIQHxAP4QkVMHGWTk+hBTXL21TUvvSkKJ7LZ+fh5K2rFDwvT9o2+zk9bVVF57PsAHij4CMqzfpO9888SH4UBkhtBx6zgoH3xGQ9n3ygXG1NPxXBZuE8i169JVD97SirVA7dD8pDQffoQ50dQMrwp3biqi0uLWEdN999+Gzn/2s+79er0fOo967dy927tyJbdu2AVjeC3r06FFMTU25gzF6vZ679eW73/0uut2uywK3Crb9xnnVPOfXd+oR/y8Wi7FyReOtOqa5XC6icJW3ykerYNISkfmxY8ewuLgYueRAxzOtAo3rY0jBaruT1oyvPlvOIDIoJLesvP3XolyBdbyu7vTp07juuusA9DMkziLXbDs7IZXSWP72b1VMOij6fxq3gs+lrcowjeKII0WhFFzaLruoreGg7bQCWhVDmvaFlLXP7ajfp0GDtl9p2qJl+wTpahcXywydgKRK0QoWCjh+RmWk/NZ6VDDreCQlp5Di+E4FqolIRG/KP0WcepKTls1D2DWLmPtwKWCZFW0NQSJX1k8Fq0fyab9ZtqLKTqeDhx56CLOzs3jqqacAAI899pg7iYnu3EwmmgxEvrOts7Oz7rB8Pb2JsUufB4284XjReCGC1Yxu/QnNTfadXoC4MVdZ4vueqJ3EseQpT2sRS9Q5F6eI7TMqt2iQheTTatsUMjR9emWQ+n7prquLcxUAfleGKhd93ocg4kgVppZr2+Br16UShexaluf7rd/7kJsVGoMqfruAfJatfp9Ea2FV+oygUPmDKO9Q+RR0If7xe2ZWxiXK8V3WkTb+NgjCt9tBWD9dw9wvqwaFL8vSlqmZsXRrUunQNcq+EYmSbEJRNpvF0tISFhcX3f/MiLZ9ozuXClZRNOvKv3HDDZOf+C4VJJU7T4VaWlqKZGPHxd9VGepnOp6+eK6lkDKKez7UJiJZjjVvAtKyL5XSIOHQGtS5Pcge4kshHZO1lOWXSm/KheuDkE1xDynWQVCYVbI+JX0prgtbjy3P90wa9M2J6rPObLzPugqVb7oPMg4p8fmQYeJDv6H+2HT9NMR2anlal095xaGAQaxmrVvbbdG/tdSpYH1JJopmlOgu9G0n4HuX6v2wqJkHHLCfRKXtN66dY7JQJpNxlwvoCWhUkj5Fwv7Y9utzTHJS/io/bbmLi4totVqo1WouuSefz+PBBx90KHRxcRF79uzB5s2bceedd2JkZCQSg7VziVtM9Jxo3/xImrvW4NC1GDJ4QttX7P5RpaQ5YL1L1lBYzRpMS3Ht5fzSz61R8maRBSVxvPilQ7CroSTrYzXCRxeb73+t91IGfxBln2QZWuVgEYEVDJmMfzvBalwlPoPEp/BC/YlDQ2nrtn3g79C4hcoaBK0rz9MIA58x4CvTUsjTYFFvUv0+8o01UScVgzUkfO3WA9SJGuNQWpzhpvOIddN9y+99ikkTg3bu3BnZX8tnzpw545CrL67KbVD27l1fG33zK66vPo+S7UtoDqhnhP/b8tPSIBnwl0pJXkA1IEJg5s0mCxjezLb8q1OwIYRkSQcuDXL0oQ9bh0VQa+neSHIL+v63bbGC3wouFYjafrtYQ5Ne+eKbiKxDhYsP0fnKTkM2Nm6RtyKTkBK3glxjgz5ekKxi0sPyfQJPUasibE020X2R+r59j99popDy+lLnoW1DJrNyb6edO/ydz+ddFnFIKFkE5YuB655VvTiBzxAt27OKS6USRkdHIyjM8rFUKuGrX/0qgBUlo3M/NEftWDKGzHeTLmHQdtibk9SAyGaz7nseesF2hrK4tf38WS3FKWlmlPMULFJINjC2b5Wm7udlndls1nkK2m/ccUzerNbQ5++0xodVqlaWvFn0r07BWlQG9FuXPgU8iKWUBpWsNYUs2UEpTqHEKZ5B25eGRyEjBVh97CXJsEpDcdZqiDdqVFghEtcWH5pPQz5jaT3Jrh0VUopsfag8jRfErlWt13fhvG4Z0r77krRCxKMkSZ1OB/V63SFdvq8Hb2iftI0UwlbOxJGPJz60rt/xtxqi9jnl93rHMENINGRcD4K0ffNmUEQb4uEvC/1CYrA+JoUYnoahvV4vEuS31nrce77FwL9DW4j0Xa0zTTtJinoAP8oMKWVauRZ18Fm1gpPa5eOdj0IGjR6qbfdXMm53qRQyopSHim5VWVgUEEIxtmw9iN+HItMaMXHPkVe+W2bUULpUi7vXW47BZjL9F2KzHc1m07lt9RD0Xq/Xhy6TYn9KjUYDJ0+edM/y0oITJ07g2LFj2LFjhzugAgD27duHxx9/HH/+53+OSqUyUD9nZ2fxyCOPYGpqCnv27HFr4+TJk5ifn3eXJfB6N+UPeaTrkadbJfFW+WGRk2Zc6zuMiTPpjEYIEJVhzKyOyzYm6VrU+RMan7jdHPqMril7/KQv+5zlKW+td1C9DUmkYY2QUg/JaNsOKzuU/v8iBmvJZ0nx85ByXAsXwGoQ4FojYzs5fHVZHqyFME6jZEOIRctZL2sziddxiHAQlG/RrC2HzySVEXonxENfLD1EVhH70FBcO61y0Pf4TpJLLs44pjHjuxt148aNTsjSVfzKK6/gqquucs9oAlWv13NZwmr80gDi3zzUgu5Pm6jma7/+DDJ3FZHrZ3HKizzRcbNJaZaPcfWvdp2xDXHv+2QP3ekazouTGdbo0LL4zKBk++1bz/r/WuiE1dCbWmsSEklDlmkh9JamTD5nU9zjNuvre/p5GkvXZ/UnKbPQ+8BKhqKitTST3tajWzd8lri6qmy51jK11vpakW2P8lxjltpGXzvoDrVIzjeeIUVs60pridP6Z4zPHhlJRVSr1dzeUI1La5yQ7eC9qDw9yaIX9tN3uEW323WoTQ+VyOVykf2iltLEwLrd5SvlMpkMJicnUavVIkh2cnISY2Njbl4dPHgQX/nKV/DAAw/ggQcecIrx+PHjaLVamJycRLvdxr333otOp4Px8XG3f5dnD4+NjeHQoUN46KGHcPfdd+PXfu3X8OEPfxjlchmTk5PeJCglroNBSdeHEsdBLxiwc44/jE9TpmnsMoRebRlaLpAu+SkkJzjfrAHGOVypVGLd+GpIWaSt6ysOYdu+Wq+krgPLExL78GYmgin9whHspXTaZ61fijWkA5XkctD31pO0jpDS5Xf2J0S+8rQenwUd4klI2dnnQ8hqEIrjBQWTLj7+nTbRyde+uMzY1fTBxwf7mSZJUamG6g0peB8i9bWFwpz7SUOhlaSyfKToMp/PuyMieQoRj3VkH2+88UZ3OhE/12MA6bZtt9v42c9+1pdQR4NC793V+pMMIWuYhbbWpKWkMfGhR7t2kpBh6JnVysIQsSwaPnHrwtfOJJQcaqu+a9fxIHQpaPlS6BeiYNMMvlr1cd8rIgSiVxf56vWVw+9o/evJLfqe7nm07w5qKSYtIN+7VmHpYoyzdn19ThI09hlfRq+2Tdth+0VhqWM6SPLGoMJCUTQtWJZBlG/550MWSj5hG0Iucf1Iih/p2b0847fT6aBQKGBkZKSvnfZQe/aNF5Jb1KtERFKr1fD444/j3/27f4fJycm+5xTJAP4bgyxls9lI1jBjn8ePH8d/+S//BR/60IewZ88ep9y3b9+OHTt2uP5oBjPR/NDQEI4ePYpms4kjR44gl8s5JKU0PT3tspaLxWLwIHwrdG3iV61WA7ByB6ovVp5EnCd6uYLWS77amH8aHoe+T/IipVE2nKsqXzkOQBQZark8pcuXmWzXoraB46z/W88K+2bncxrZQD4neQ7Xmn7hCNaSVZxxysAnGJOsIZ/S0PfjnvfVz+eSKKltad63//NnELd4iEKWdcgwSNtOW76WF3LtrBYZ+gwQLc/OrUHrSlLCa0kUshRIisDSzMs02yLURXzjjTc6oR5CXmnmOQ1UJkr5tuds2bIlMtY0uFRwtlotd8axjiMF9+joaCQJyNd//VkN+rThFp/8SDsPVEGE5qrPUFbFzLp8F9j72m8pKRZt28r2KHLUE8HIE63Ph8i1rKQ22u98hjq3wqX1RGk7yedLkcWD0C8MwSrpoPDaJ1UecWXYOJYyU5/zMZSCwLfH1Ne20MRMO1CXolx9faJQikMoKhh9ewntc5qK3+v5D0Vfbd8s4lPBYfvlE0CDJttoMoaeqKOWbFqynpFL2T4RMigUJetZvlaoazwrNDZx18+ReHn3yMgIdu7cmXiYhM4L3xohIltYWECj0cDMzAzK5TL27t0b2Xc5OTnpLlHP5/N9yLDX62FpaQm1Wg2NRqMPkeXzeezcudO1ybeu6/W6i6ly3uk8t4jJUiYTjYtybXD9qAExCLLVuCWNEVI2m41cNMDr9arVKr773e/iqquuQjabxdTU1MAZ1oyJ080e95zKRFVkvV4Ps7OzaLVazttgM+FVkannimVovoTP2Fbi5QnKf2D5LGai6SRjgWNPQ8W2MY2SvhT6hShYn7KzymA1CCGkZEKkgw74szdDFn2ovvWkkHJPmmAha82iVl86/Fr10YcCVNmvhQK3/RyknrTWva+MJFcsn7F/WyXls9aVb9aQtO32/Y6jfD6PUqnktuHEoQJVUiEDlM/x9hwKa70lh2cX+7Y98f1MJuPO2p2bm8Orr76KdrvtXLV8jvfC5nK5yHYR9otX0uk7cZ4U2xblhT5P5dpsNvu2MIXIh1x1Xmr8W7dJMXZNbwNvBMrn8y6xLQ2pcRuHvO26t3OViXeh9aTvah1qnOhaSfK+sd2hNWcBQ9L6uxT9shp6UzWEhepKau3w2biBTqI0z+seSWtthSafz/qy9a7HIFqBkMbFERK6bJ8aFDwrVt11q4k5hdqhlqsuLpvAo+20/Uh6zvLd1qHXiVn+aQZtkqKxRCUS2rPos+pVMPj2QlOgEiHRALJzih4f9cKEhJKl4eFh7Nq1y9tW3zYT2y/1BpCy2SzK5bIrq91uo1qtolAoYHh42CU62bip9SxUKhUMDw/j3nvvxfnz590BEorMm80mDhw4gJGREdxzzz1uH2+xWHQI2ZJvTdr5wDiiL77NddJsNl2MNg4R6ruhz7nWODcajQYWFxfd2crFYhETExM4fPgwvvnNbyKTWb4Hd3Jy0nk5kkiNFt5d7NujropYecNxGR8f70Ok+q4tU9Ej+0pDzbf+fUYIy+QaJWpmprVtfxrZbHXLeinbN1XB+pSrzwLSz9VFEGfl+OryWdpxZVgrM6RkQ3WsF60FstcyfKiDC0sVbFx7BmlDWuNIDbBByG7VIvkMtNDnIYs8rSETZ3zpxdz6vL7vIytw1M1Jb4Mvics3R3TskxCDzU0ItTGunKGhIUxNTTmkRYTGtlt3Hfuhxlc+n8eOHTtQr9dRr9cBLG/vUeE+OjqKfD7vLhLwJQfZcbFuSx+atR4HCnZ+ns/nUSwWUx+kom5p33fkB9tJdKrtGRkZwd13343h4eHUyFmJPFa3dNq2aya38lCNQ58RBkRj4gAi7nUbf0/yOKpB51Omccg8pCf4ezWyJ4neNAUbJ+DVTWAHUIVzErrUunx1JylqX3awLUc/9z231go4lIjlUxxxpM9bQa9Wa5JytS7JOFK+J7U3JPh9PNTP1PPA+eFzHen31hMA+GNI9r1Qu4HoecIWBTAj1rrPSCGF4DOqiFj1bFgSlZKvrcqjTCaTKJztHAmhixARfVrq9Xru7GGWSQHO+1JZ9tDQEB566CE0m0381V/9Fb773e+iUqk4ZDk0NITJyUkXcyUytsjICnQmT9HdqWjfJ2iZyVqr1dwe4aGhocgxjXw3xBM9l1oViSpvksZi9Z7hSqUSuS1oEFIe2/3Y9jnfWmRy08jICLLZrPtfY7Ccf/ZdomWWzdgyx8ne0xsiNawG7b/Gka0uUiNvrWndFGxa1KUCRxWtIlirZK0A85VpXRdJlruvTaH++D7XstcC1foMjCTDIi3Zcn3unhClVawhRTxIPyzq8j2r8yXO2PApeZ9RlnSVWajcbDbrlJ9NDOF8XU1SWgjx2DKSXNukNMKJ8UUSFUrce7bd9jtgxf3Iu18zmYxzt87NzaFWqznXcKVSiSRA3X333Wi325iZmXGKNZPJuPgklWWv10O1WsXS0lLEVazxR7YlRJxLtVotIpeGh4cjCtleyWbLVUOJ84TvqFInXxRp6/wLGVuDEOvgu6F5RVJEzfaq8W2zvm2IItQGAC6uTIWvV/+lXXNWHqd5j/PD581ZCzDkbeual/gGWbcM4Edf+plPiJIh1hUxaJr6pTDPtkHby899gnO1dao7ii6RNMovbdk2mYm/0578klQ+2+9DSquxvO27tgwunDiyBpsvFKF8pwJI44ajQKR1rntt2b5MJv6WFh0XRZk+ZcXvtQ9x2d5WwSVRu912iFB5ESpXjRP2V59ROUDXKvnKeOPhw4fxzDPP4I477kC5XHYuUAr2nTt3ol6v47/8l/+CLVu2YHx8HPk3LlonEVEtLCxg//79kb21zHi1Nxb55g0VIRUs99JqXJeomMT1z7HRddDtdt25xuQry1Klo1tQ7D5Sn1HI79KuKY33WtJxIi9V6dm5qB4vX7t8xLKY5FatViMK1iY+JdEg589b2WHlQNo+DErr6iKOsypUMSUhGhU+HGi++4sgq/x9SOhSB8vGh1ZruWpbbDIHDQaLutZiooXQ5yCU9r2Q4mX9aqmGnqXLiws1bpFbhK6Cg8KVV7RpWXHlKZ9Yvi95ybrhFJHE8UuVoAojHzHTl2cHhzw3i4uL7r5VXx8tImf9vHiACpLv1mo1VKtVVKtVnDhxAtVqFRMTE+4Cgl6vh9tuuw0bN25Eo9FwyJVEA6JYLOK3fuu3nKJmchL7Zo165T+FLg0B8pbImIqVyVRaNxUzn9G7aHWO8HkgmtGrc0hJlWIItPiI650XC3DctT22Hp0DSfUMIuss8Mhmsy7LW+ezzmPrVrfK0Mor60WJa1dorq41rSuCTVIKPgUVaZwwjokRvn2v601xLkXbVn6XBunZ97SstC7KQci22SqfpK0ml1Jv2jLj3MFxFOK/GnJxZVIgEmUmKVgidCpQCsF8Po9qtYpGo+FQmG4v8ZF1W7LNREjqjvOFUdLyxod+fUQh7IvzKg8WFhbQbrcxNjbm+kklxX7ZdcrsaCoMostyuYxer4d7770XCwsLmJmZwfDwMMrlsrssvtfroVQqOQOm241ea6cK9u6778bIyAgKhUIki9XHN4vEWY4qNZ54xezhsbExly2tRPd6o9FAu9127nCSRY9UmFRoPg8DP1eji5/HEZ+v1WrOcFCjT3NObFlJc4TjuhqQwzFgspaWpXOV8y8U/lAFSx3BfgPxe9V9c+CXOgbbV3GCELPPcmJqEsN6K9c4JaqCJGS1p0FAoUngs7BsXUntDj2rMde1NlTsYkmrCNbKerTzToWTuvJ96IrP2qQXn/BRq1tdqlSMNpYW11bOBU3w4XYNCvRisYjR0dFUyAWAQy3qllahqW21hyVQ+I6MjGBoaMihLju24+Pjkfinjrn2S12PtVoNR48exdjYmHOdKqrbuXOnU9hE0r1eD/V63fEik1k5BMKX0JbP5932lXq93rcdLzTXQiiNgpttZfawHshPonxS9KWkSFp/pyU7/kkAJZvNuovreWpXrVZz3gNdn7omksIN9gL51R68ov3xGdbattC7/Fu3/wxi0PvKWytaNw114cKF1II+jsh4CoBQPGg9KMR8ChDf4GssIzRB07gjrHIdxCUeN2l8ilsFID9bLY8tKg61OcS/NH1JmldWwZKUh+y3NYhC+1h9i5nU6XTQaDT6YklxbdQ2+Nx+vV4vciF56GSnULkUgBbhsW+sVy9Dt/2zSsDObZtF62uHHdtGo4HZ2VlkMhmnjHSry8TERF85VA78UQPJty7Y9kajgUaj4RRjCI0ntZ9udfKSglxPIdO66c3wbYfR2J9VbqvxSMS1HVjxRtA1r2Ou990qP3X9+oiGmdZxKSebxRkIaWSlPh+SuSGvRdK7l0rrpqkU4Q1K+p4mjCQNOpBOaaclmzzjs7Di/gZW+qKoZjXtXC3S1HeUj/Z76ybz9SVUvj6rCkxJBbM1MvTzuD6nmU8Wpdl2qbLJ5XLODWtjY1qetseHmKgo6vW6O46OeQJ2ew6wElti3VbQ8uQjbslg+xuNhkN2IVKkru3XLFUaBNls1nsaENvrc60mJcL1ej132hDdvLp3dWRkBNu3b8fx48fxj//4j/jYxz6Gz372s8Hy2J5yuYxGo4HHHnvM3fdaLBZRKpVc2c1mE0tLS66fvGN2YmICw8PDaDabaLVaLvZHsv1RV6EaHzbMENoSlcmsJLQtLCyg2+26WLJeYKDelNAh+TbxzXqd4pQT1xT3ENNAU7erRZAKHkLeGypU8ljn6KUoWkurCYeox0ERtu85lXmXoq/i6M2BggOQFbwqLEMM8KGwtaLVMN63YO0Wjjh056NBLLmktlmDwKbk8/PVlm//tmPKz+xzltehPie1jd/b2GYIWepCTIM47dgRMTH+poLGlyREJegLE7AO7rdkXTz83qJnS1bBWp7oXkhN5LEUN05xpAp2bm4OpVIpgkqHhoZQLpfx13/91wCAJ554IrYskp6WxH2vdsw6nY67gajb7eJf/uVfcPbsWRcrZb/JV58nxCd4+ROKAfqInrb5+Xk0m0237Ui9FlqGb8z02W6327dXO2muso808hSxhsgawb7nlRetVsu1H7i0M7pt+9MAK997dvtUKGvaypdfOgXLBse5TONIleagCmktyKaBh8havPY7/vgGNQ3pJIlDsdbNY91Qg7qg0pBPceok91n/ugVAP7cuSOWXLvg024nYJtt3TZZTwWlRpvZDt0+oy7XZbLpjALlXdGxszL2vKEWJgpbCSOvOZrOR7FX9XNEr0fLIyEjkc/bHZ/n3ej13CTqRH5EqE4/UXUuUY12CcduN2u02Tpw4gV6vh+npaYyMjLjjEVnH1NQUPvaxj+Fzn/scxsbGsLi46Ny4tVrNXdXXbDZdWUeOHMHw8DAeeOCBvrmlQjj/xqlOFPyKMpn0xH7RBa9ZtfxRo5hbr4rFYmSO6hqzpHFqlsPjHn2okC7lxcVFL7BQd6yOp44Nn2EdnHs21poUwkoDVnRbkc/zRGSbxnDV99g+693S9+Par2vVZyT6jH2tZ61p3RFsqENJz9rfq1Wuq3Gr2raErN1Qm+13oT4NQr7JEmrzpaBdnWir4Z0q+ZCbCVhxU9l37W/7d5xQS9s+i0JDyojWP38rqgSi5zdzbx+t7qQtaCHDJ4RQVXECK9mqVCDWmPKVoe1SQa+ubF87iXpVAIaQSrfbxYsvvogtW7ZgbGzMuWP15qrh4WHcddddOH36NIaHh9FoNCLnzdJwqdfrDuE2m02MjIy4W2R0D6q2N5/PuzHLZDLYuHGj+17jymyrGqO23zSwqKyVj/o7NF6ZTMYZDtzyxC1NNj7Lz6iYfPtg7Vpi+2kEqgFqk77Sks4RX0hJ+6fPWL6oEky7Xn3GNOuyz/k+97XRPq9lvxkK9i2vv/7662tZ4Msvv4xrr70WZ8+exdVXXx3pkI0LKVmlEFIoPkVrLSYtI45pKrBD34faC/jPwLXoi2TPo1VLOlR2qL+hdoYsM99zVpHahZWWQjzSBaaI1W6zIpIjUtI2UqjTClZjy6LftKTjoHVbIUmByFglj66zyU1UvL7j9rT/ilhXSyp02A+2Uw9viCMqJo61ui1DPCUCUyEOIJL0w/bRTUuXJHlLXpIn3MrCOOn09DTK5TIWFxfdKVLdbheLi4t45ZVXsGXLFgwNDWHXrl2uzawTWMkvYFs7nQ6OHz+Oo0ePYu/evdi9e7c7slKNlF5v+YxfzkuW1e12Ua/XXYLV0NAQKpVKn+LVeDvRsJ0L7AsQfxwry+XnNDbYn9HRURSLRdcPInCOvcZrAfS5hAcBOsojHmHpmx8WwSp/VMGGDD7yRsM5PoWs/9vcBYvqtZ/Wm6f1armZTMbprnPnzuGaa66J5VFaWjcE6xPgSQNsBb99X58JkVXIvgnGz0OWoe9dXz1anu2bzwqzCQpxNCh6jLP47HO+8n0o7lLILkRVuOSFzepURLVaBJ5ErFtdxZZ8ngCfWzp0PJxvbqQd96S2a92M+w7CL7r2VNGEULOtW8eHvxXl8De3E9nYMn9T4I2MjHgFNBU/y2i325idnXXC3qfA+Jvbiji25A+fUfenHeeQoepDOyyL/2soyAcmLH9D8kaNpJArlAYrjSvd3sW2+Cjt/PPN5dC7KtP4fKh/ti3aHxsOjNMRWlfI66L/+3RC2nZeKq27ixhYYSZRps+lFVrkfMZmXup2HU5MZb4vhqG3eADw3ks5CNlkFbZF3SYqgEPI0ke+xJc0wpyWryI/nyJVCgkBpdVOSI5ZtVp1Y8yry0KZjD6rU9vgs3BDngRLOi9U8FoDxZ4YFuo3lTUVlm2/EtFJXAwziSw65mZ91qtJMz7UbAWU9tuWTfIhRvKJdZEXargq0lDFyvXR6XRQqVRchi3rAuDQL5UwUdvJkyfdWcQsq9VqYXFxEYVCwW0dymazKJVK2LFjh8ueHRoackhPvRi+frFujddzXdFAoduacoQeBZuAlclk3F5h7pdm/+zYqKeHsXXlnfLoxIkTmJ+fx2OPPYaLFy/iYx/7GO68806Uy2WvN2M1SZU05EKKlv3jdxap++qkgaDENZdk5FsdoFvjQn32tcHWwXLWmtZVwepi1uzG1VjzIYvVV2fIAot7b1AKWb4UytrutOgyqT77fhJaT1KKgypNH0pPet4nyHxC2ke6eO1ntp40/Q2V7VNE1hD0zVftkypiK2z4nm+Lxmrmg/IjlAyjxsMgdYSej5u/VjGr4vUJY+Wt3vHKMvTknlqthna77YSv8lXrp6uec42KiucIa/uswvLxld9bQ4z9oJJot9uRU71Yt+WH3iajP76kviQkx7qAZcVw8eJFACvu3LWScdqGJC9JqJ1p554PPITIypJB53iozLXkG2ndFSytOp2cFr2mIU4ojbVYlMj6NKanm8F5MkwIYaymbxbBWiHK/lor31ce+6L/k2zSgz5rlZDG1VRAxLltk/pqlUYIjfE5RQmZzHI2Jb+PU/hqNdtF7TtkhHXZ/tgftkXjuWoN2wQY1sPxsmjX8oPPkvcUvqpkeLQgrfXJyck+L4oK3ZDlnc1mXfySCIr95GECmiFMpUUe2flpyx+UbNYneayuS8bhWD4VDv/XJCj2p9Vq4eabbwYAPPbYY5iamoqUp3xnpvLCwgIWFhbwta99Db/927+N6elpZLNZF0dlO6jctQ2Mueq2lmazib/4i78AANxwww0OFTOmvLCwgDNnzuC9730vpqamIqha46n02IyMjDhetVotzM/PI5PJoFwuO9SaNAYct4mJCXfZPJU4PSpxY5xEVtkkGSPso/2tskwNDosqk5SkPUdaDRnWZY2V1dBrr722qvfiaN0UbK/Xw4YNG/qQxSCWio/iLGjfsyELOqntobrSlOVDXIqCQihMJ6SNSfjqsH2z7bPtsXWsB6nisUIXWFGCIUTo45Ftq138afoSQgtahq9NPoSoffSd3ESDyvZDlV6v13PZqUnzMsSrUKxNywwJnUtZg766Qu2NQ2OhNlG58oAEfqcK2vI3l8u5d2q1mlOWihx9detc8P0ovfrqq155ZgWzKgHbTx0XYOXyBbv1KIlowNjL7NeKrNGe5nufvEqDMu06T2NgWPlyqZTJRDPO14rWLYv4Rz/6UUTB0sIKWearIUVLzPbkZNM9cmldL+peUaUQV7+m8eviIyLSrRt8xtcGqzRCmXIqEHwxSi1f+cPPQhl9SaTuzjje+Xjoi4NYZa9K2VrxLFOTa5Ti+qUCWz0p1oImL222JNtENMpxyWazLpOTqIv7YVmmls/fnU4HMzMz7qzgXC6HyclJJyzZZuW7ZiqTFMFqjNSedcuYnyoi9s8aMZciqHSdsQ2sY9D51uv1sH//fjz55JP4p3/6JwDAN77xjcjB/8xUZny11+vhxIkTuP/++5HJZLBp0yb84R/+offSd9tm3ylrnAusS/tl+6aZ6DYRS71YljqdDubm5lzdvMQ9LerknmHOUc3aXu06X0vSZDrrzfPtWOA46LMhPuha9AGp1SD3X6os4tdeew0bNmxYriTT7xZYC/IpzDjGxgmR1Vh/qvysYrPumSTrPURs8yAC0KIb+75ta5o2JbXBlsVnB5noSRautiEO1aYp3yqXkKXte0fnM/8PWfNaPgWy7vm0it7HgxBCtPMrzitAinM/XwqFxsTXH9/nFK6aPXzjjTfijjvuiChpm6ioZXa7XZw5cwZbtmzpM1I0PBBqv2/cM5mMu/FFT8GiEU+3LklDWTpGITRLJa7v+ijkXdGQx6XG9teadL2QaAz41qsa2r53bdkhfiUh5jeT1tVFfMUVV0Ss5vXqsLXaVHBqHFJRoLaTz1hlmbZuLhJ9T0+QUbI8CC0uTQbzudx8bSSP6R7j/4zNcCEqGg2h4VDZcXzIZKLHLrLcUHnsh69sX5/tFgZasIreQuiMpxTZDGX2n0fsWSGsPCTi5JwmUqHgDblseREA5yiPDiSK1fZaYcS62Q/NK2BmqrZV91lqjgCfU6Wunp5LRa9Kylf7XQiRz8/Po1qtYnp6GsViEbt37+7zCHGcAESycLvdrkP0r732mks84vxoNBqo1WoolUqRIxfJb1WglvT7Xq/nPCFUjnYvuyYfqUzg3NADPrLZrMt6VgPMkh5tqWuAGeTa1jRkjxL0rVGVO75yVWbyefZJ16266K2MtMqUn6nHjWVaIv+1rdqu1QCm9aB1U7DKtLTKVV1pIeTnq0cngh3AkILS+rSNqxE0nKRJcVNLaSZCWlRjywxlJ6blU1qyyVvkg1VUq0lAUIXlc7lqfDSEOn3jb+cmsOJS1cvAmQijz1llaH8sUYHq3CYv9HjDOKNQt0kkueptMpaPf2m+H2Sc7HzS930GpU28ApYV/4svvhiL5rT/tv1UhBMTE+5zXmmnRr4tT3+se92XmKhJUFqGouQ4hcV37TaWNGtPjZNB5IyvHat5N1ROUlkqo+3zl4I0fZnycXz5RaDadatt48aNkThEEml6vTLCd3anJa1D9yOqkLKuExVkPtQSRzpBVdCtxjXDSZJ04IEu8Dir05fZzL7bGJ+Wb7NL0xKzpvVgeosgmUmuHoY0AoJuQ5tlS37o3PBZw/q5bZNSJrO8naPT6eDQoUNotVooFotOYFNBhviun2kbOJfJd57KwxONyuVyX3mdzvIF2RSmQ0NDbj+momBfW4iw9PAB9k/nmRpdiiqs4B3E6NRn2K4QGqvX6y77mdRsNvHcc895j0C07wNwsW+6lIeGhjA1NYXp6em+NjERyHdaF+emzh8ex8i8DqJeKsinn34at9xySyQjmIlV5XLZfa7rloiWBpyNtSYpKCZxtdttd6ZyWkXpM6atsT2o3LKnrPnmorbNt27UkFQ+aHw71C56LfiOhl5Cz6scsLReivcX5qQOWT+r7agPldn6rJs4SXjETeBLHaQkxJjWOtRn7dYlnfyhRCstQ42SJN74FLmWGXo3jcC2wp9tU/RmUQWNM9unJGL5mtjiGxef0raxIvKP42A9MvyfSkH7ZxEq0TM9AioUbVzPhw70WV/iiDVyfAh00LVojcAQH7VsutcLhQLGx8edkKzVau54QEV5TCybm5tDoVDAzp07gy52Ndj5ruWBhni0D9oX+95VV10VSd6z85Djp+XYpCe2T59Jw1/yVfuVtLVH15AFB/zbKl77jC1Lf5LIV7b22877NGXZtZcGFGh966VQ++p8U2oxpEyyiSKazJBm8IAVgasDZRe41mmtLjtZNI4C9KfOX+rgaF1xJ+2octR4kyUKe+6BpHIdGRnpQ1f8bftvhYQPiSo1m81IRq1vAYXKSyKiNRvHpQLl7SB8lrFMzd603otQvayHaHh0dDSyl5mk7ysSsfOXCLTRaETyAlTBsf32Amxu+eGJQ4VCIXIAvGam21iTVaCcsxYl2b/tvPJldw5KvjlMYv80y7ler2NsbAw7duxwfDxx4gRqtRr27t3rXL293vLdpgsLC/jSl76ETZs2uQsFfOiFyliVebfb7UO05JVum9K+1Ot15PN5d2Yx67Mnkam8Ig819srPyWdrMIaIY6WnizUaDTcH4s6h5rzSun3rmgYI51fSerF5KyHis1yb1rOSyWQiXpe4ucc6de+6utttv61R6jMKrH5Ya1o3BeuzKH3PAP0xNfs3ED76zZbls5B8zyklWVhxNKgVqs/GWVJJCMC2wecStnVYpOIThBYthfil/fAt1ji0HEcWgXPMQ+Oii0eVjFU8IeLiV1cj6016VxevogDdjpbJZFzCjRqBmczKheZU6DyxiIe0swxfzE3H0qL3TKb/YAxNfrK81nJXE+awpPOn1+v1hQe4nYUuc99co4Fhx7pUKjmFceHCBfzDP/wDbr/9duzYsQNAf6KbPexCvVi274p0gejB/Or2ZvjAttde5G7LVrJKL4mfapD7wIR9np+rArRzyMoXa2yF1jTH0Nap5VoDUA1fyxur+H39V/LJekt2faR575dKwcZZInbS+ZSbL14SJ/T0fTuIPiGvfv8k5R0iG2RPMihC7Y37Po5H2g51sdi9t1YRapmWV9aFbskubDse/N7uhVRex5WtVrGN5YX2uYbiQGmUBU9cImoMXUBu61ThZeuxaGJ2dhaNRsOhJrocuWeSSFZ5pkKHmZisW4n8VqSUzWYjSEPfU6+DVV6XqlgtZbPLe4VrtRqGhoZQLBadS3ZxcRGLi4sunqgGZSaTcWhRx5R7hnO5HD75yU8CAD73uc/hjjvuwPbt29Htdh3aJB98yM4iMDWOWEY2m3XtVRoaGnKnktnPffWF5rlmyibxnc/bLGL9XhWc9byF5JpFoZw3mseiZXa7XYcyWSbnk3rFaKSQzzQ+VHaoV8tmlPvaqWQVcmht6LhaI8PSWh8x6dqw5iUOUrkMYNIkG0RxAWFrJKSIlXxWVtIzay2gBhlsq4hCMSkfWQSmsUVfm6wx4VMwPu+DZo7GGUn6t+WBNWh0oYX6lkRJbikS+67Cy6fUfURkY+cd31VBGNrS5lsnVmhovJCoWFGj7Yu2ZZC5a4WWbaf2NZvNuu1E1jCjQuLVjdqG4eFhxxcKd5Y9PDyMP/7jP8ZLL72Es2fPYmxszPEsl8uhXq9jZmYGpVIJlUqlL5nRZxhmMivxd0XVvr5Teeg85G+ruOv1unP9Z7NZ553wufB9dXHtWMMViBoKAByf06LipFwLH2r1rXVrsFsEy+812XGQEIS6d9kWHafQ3E6rW9ZDsZLW1UWc5vtBFeegz3Gy+1CmRXAhV4SlQQdwUNKJadGh/R/oj7+lJRWCQDReohPX8onvUlBYQQWsKHvNnowLAdj37d9snwoG38lHbG9aPtjYXRxSJNqkRZ6WiIopmPWsWPIwl8v17Ym0FOKzIgPWwdhjqVSKIATGbxlvTJPQZskeZm9JBR5jzj7Ulsst36zEGKuPZ81m08XoMpnlbO+RkREcOHAA7XYb8/Pzbg6yzGq1ik9/+tP44Ac/6GLqTKSiQeVrtx4AYvkNrMwBZvMyZkkjYmhoqG9sFxcX0Wg03IlbDEGEYqYkXYuaxKfGL9vBsU9rLLIv6i63Ll72n2s/xDe+r0jWp1z5TL1ed7xKSxxbe/awKmttu25lUtkf4gPLXA/6hSFYn3syjihI0jAiJJysQAgh2bVC06shi5TUMg4ZCnxuUBTCDE7NkiSqUCHp45Nas3H1qtvMopu0pElHaQSICgb9TD/n/9yqQTdlCLWQV0QjvmeS+qWGEN8BEET16hpLapcKCio1nwHEZ3RMBh2PJHcb26bzis9TsA8NDbmjD0PU7XZx+PBh57ItFArYs2dPBP2pG5fza3R01LmMDxw4gLGxMXeYvo65zeZO8oio4qDRoi5Ouli5FUsT2NStmobUYLbGtv4m6ibRCARWtjjGhVb4jparc0O9FXHjbdup7aJy9PVBKa2yU2Dhk0Fah6LnJKN1EFSdlt4UBetDXiFUFKJBO5/ETP0/9Pl6UJpJpIjEKld+Fof0kohChRYwBRiRGd1Y9h22jQImbV1JMZYkooLV7GEf+VxIJApXWtj8n9nQvn2SSjYb0tabZlxDc9inZJJcePye6M6GBeLchSpcB0H7Sf2w7dMjBakwqICYlRtH3W4XR44cwXPPPYdrr70Wo6Oj2LVrV5+Ctf3ihe/Hjh3DF77wBbdHlqTZxYwTc04w5u3rj6IzolA7t/lcvV53sXW2dRDjMo3hY+chUXWtVkOv18Po6GjQeCOv1KMCwLsOQujW12ZVsPq+z+vh8xCEyrbPhYCGtsWW65vr2pb1kPvrrmDVggihVos40lhMaSkNGtU4AtvK71bTBt9AWmMihN4V5emCtkkEq3HtsV5NQABWLFbG8LjBXoUCx0et/fU0RJRCCoZC0p62BPQrAZ1r2vY4l6G+q8I0rmygf1P7agwgICpA+RmFKNvD5CwrAEN9skaIzqsQKYph/1iHPkNXLFEb31EEpxnV+i6POmTslfPv/vvvR6PRcGh4fn7eJRqF+MpktR07dqBUKqFUKkXcvnQ728QkjpWvf/o917euDduW0dFR555W9/0g2cODEsecFyCQj0A4NmnRpm2XBUN2Pvves7Kc33MOhAw/K4d93wPR+WfL8XlXrJciqZ61pHWTkJbJFlH4rBgdzDhXwlqTLhzAn6aelkIDZyd3CL2zLUSudPfYeImisEE8ARwHTY6gJUsFy88ouH0W+qDIZzVIKa4/6oIMuRlD6E1/5984ZCAtWgjFzvR98jGN8g5R6B01gHxZpVYZWrKGWZx1b8vkMxZBkOgRqdVqAKICXo1G8kbL5nnBikqy2Sx27dqFXm/5ntdWq4WFhQXk83lUKpWgx4HuZB5eQaXOcolgdf5rPzTTWsnyx7r69XvGXMkTolnfNqG1IvbP5xlQY8qOdRrjSnllv/eV4UtItMg21Iek76yhYykUwrG8fzOU7Loq2EhFBjnYRa6DuFrL39cGi7riBJ4PUccJq1CdeqSdVUZpXC3anlBm4yDlKFH4aP8Yh63X604YcJuEjzehxAifK0jRwWqI7rhQGfYzCnCOdbPZRL1ed+iTiS5qRKmhQsHL+JX1NKTpB92MoWdp4PDIRB4I4vN6KF/5XhrEbROKQgYrFU6j0XDHMuq81/f5Li8voAtSyyKP+X+3u3zd2/DwsOunuiH1hppWq4UTJ06g1+uhUqmgUCi4OnTvqQ+5WBe+KnC+w3Eul8suDuxz24YOLqDHhHFf9s8eiqJrx+5btUlQl0I6J7SfobnHNnBs0uQzsO1xckbLZb98+65DlFaGheZ0HNm57/t7PelN8fFRUPmSCHyKeC07zoVnUWlSHXEWUhxZS0n/t26LJOJE1fbbd1fTRotI1WVCYedDhXZsfAqW1r+tZzUUso61Pb53NIuw1WqhWq1iaGgoksHJ9trtM4z3qoBOqtOSFUqWNBFGEXgotksDaJAtDhortO22QobnAwPL22PsVhPbZ7o6Q2tX+dvr9VzmtW27Kh3O8e9+97vOQOp2u05Z0RVu8xHUGFYPDNvgM659GeBJXjOOAzOBfX3odDoOuZIUweu4XIpHh6RJihpD9iW2sa1qPKVtRxqZbL1AFqwkeYmSlKwq8TiDO64PFuC9GbSutSjTQoOkcN/ndgqVqe/HPauWra0zZEX6EFoa4vMap/O5JpLabZ9T1MiyfDGPS0GJ2WzWxYxarVbkKjQtmwtThTOFD4Dg1pk0xNgYx5jxOJalwpNInO0jqQCloiyVSs6dmslkHKrtdDouk1WFlM4NWzbLVUOC3+m46LOW18xiLRaLDgUB/QpWeW2RIRC9Eo2/OW6+7FLbXtbB5DY9BCNO0PHygZBBoPUy6Sifz6NWqzkFpclm/CmXyygWi2i1WqhUKpEjFbXdjUYD+/btw/DwMPbt2xdRnmowHT16FAcPHsSePXuwc+fORNQfJ+SJDHXdUaHTgCgWi33tpRJcWFhA+40DTdhWVYYh1BznsdA4vLabbdT1wvL4HOvUuUyDLK3HTuedb8sMKU7WAtHjVEPPqAwc1KOo6D70jP5eS1p3BTuoxZDmOZ/Qi3vW/qSlQZWrb4Hq4K1WAVojZC1JLVqd4L6DEayLhd9RWCYtpCQieqbC4QlGLE9RmQoli+6pmOzZvlQgupeR77IPFHhJaEZj2IPOcdbFbG2iZh+FlJ16ZtSAtGOVZt5T0KtCjyM9EENJhZkaYRwnjZmTh6xXXYo22cnyo9Pp4OTJkxgdHY1NJqtWq3jiiScwMTGRemzi+m/XhKJmzjFL1gWuyk8TfkL1xhnPSYpG14WSAh41jtOUqe3Sv/XyAVuX/vaVM4hcC/Eo7ru4MVX5/EulYLvdLq688sr+CmMslLhFoEFz/taFHCrTxoiSLCWtI064WotIBbp1lVhllMblYtviS6nXOi6FrMFi3Vms3yfIbFZgWoPHbqHJZrPuEHXG+Pgc6wwJDDsOmjGqiIlIolarRQ4dsP0YZGyUR3rZgFXS+jfRpVrkSQjK12dFITov1GPiE6YapyZK5BYobQf3VCqSDKEt8sOiSDvnqUyI/IAVrwf7pahWKZPJuDgskSszjPX8Z1I+n8fmzZvR6XQwPz/vjmUkcYuTPq+89xluOo5qFNDQYTY0eVar1Ryvh4eHUalUIvOO87parbpxCNVJZa28tLLGR+ohsXOToQoaWRojjlO2tkzyQpGszmcblvJ9lzTvQ/JYz5+2/8chV9uWXyoFS7LCe7VILs7CSFKyymCf0FsrsgJyEIEZV+Z6tFVJhSrQL/Bte3xtS9O+kLXIv7kwiegouAYl6zlhX6hk2+22O55P+zwIr+0Ya3t9xpc1SkK8TTL87PfWgNO2aDt9yMunLPi/GkJJmZ+W1BCziFpDHSFjMc7IoVEwNjYW6YcvDEP3aa+3HAdW5co26PxKyjL1CWptJ/mlOQC6LYlufp9r3brwtXw7dvpeyDDzzS87Blq3NYiSkKyV6xrT1bnlK8v2Y63kmxo6jOGnBVPrResmte1gq8VuOxwnWMgwprmTYbRY45hHwRHnew9ZRcp4K3xCC02z93xxBd8CiGu/Ig26OLPZrLM6NRtzENK6KbAo8KyisT/1eh2tVsuhTAoMvbfTEpGQxpw0UcSnNDT+y/bwwHAKFR73B0RPjFJk0Wg0XDJRJrN8mTYvUbfIWxVLqG3aPh/CYr0cO00+4fxQFyn7ocIvJBT0MyIlJtWEULz2jXV3uytHKSqpcFLXelq3IeeOomugHxmSz+qiJzHJyh46r2UwX0CRNhPZuAcUWN4q85u/+ZsYGhqKHPpAsolXjUYDvV40BNHpLF8/yExmS3bf7ujoaOSayKWlJXQ6HZcV7Vuv2WzWxeOVfEjPKjKfElEUyvKBaCKSzj/mJ2hsPEnx0BOie9FV2cd5Z+z888XafaTeD5URNFg1ZKJywsphJb67WuCXROuKYLWDq0WvdjINgpi0HXHlh74PfTeIgeBrqw9hpKWQNXspxMnqy9C0/Kbwo2sO6I+V+sgipiTDyFe3fc/OLevqUdRKocls4kshRVm+fvgyJn0W+2q9MvxejSKSCpIQUkhKOLH8TsoqtuX7xi2pH9p+Kra4+a19DimFfD6Pm2++uc9lre1Sd2YowzdunKj8tV12PGj8MQtay6PhkCY0EZIjLIt81MMsfHNBP9M2qls3jqynRNufJNdsm1dLIQ+QlQFpKM08XS295fXXX399LQt8+eWXce211+L06dO4+uqr+75PWqSW+bSUbBlx+wzp9oiLI+gishMmabLoJNF3fBPaCimrvNK4YkJIg9+H0vJXQyFekJjpe/DgQdRqNUxNTWFkZAQTExOxrsRBYs96Vmyc4KFQpDXMGBIvYNf264lHdtyB9VlcVlj76tA5kRTz0jFnP6rVqvMOZDIZl7GrBhHXQyazckGCjS9yjtK9qYhibm4O1WoVo6Ojbq+sr61phKsmZekP3y2Xy26ftpJVeEQxdp+4tpv12LWnSLLX67l7aZvNJjKZZS+HVeCDGvUk9o31nTx5Es1m0x2YsXfv3oFc8GoIcMzpTbJnUpfLZTeumgjHtvji9NaLofWqbNAwTiaT6Tte1Se3+DwTDVmHxoZXwwftMz9XpZ82r4K669y5c7jmmmtStyWO1j0Guxqyg2OFYhKzkqykOOsnjeVtlWvaPlmFnIZCCJqIc60pzUTUZ9ImBqXtrw9x+Z4JGWpcwNpOKgwrNAc1eAb1OqQRGqsRLEDU9aaIxTePQ/WyPP0J8TTNPE9aL6rsWVdoHaXhifbdp1gZg6XSYOa4GhsMufhi56S0c9dHfFf3PvPUqkKh0LctapB1YteAVb5UlFSG6qGyLlxLvjmg3g0710JttP/b9b0a3vrmouWhz5Pyi6B1j8GGmOhjtqJGa9XrRNXyQ9ZlWiXKMpOQoEV26rL2JUbwtwoV637j99q/EI+s4r+UyanWf4h8Fq0u5LGxMZRKJUxNTUX2zCZRHBqg8AuRPbXGxnG5DUczZIeGhlzmKdve6/Uip1Z1uyun+pTLZW9ShlrselJQHA2qkOMo5I3R0410zNS44G9rtPJ3q9Vyl6L7LnoYGxtDpVJJLbBsVic9EiroyRvdgxvncVLi2LdaLZw8ebLvEvSlpSWcOHEC4+PjmJycdOXWajVUq1V85jOfwTPPPIP/+l//q0uWymaz7sYdtu9SD0oBVjKVT548iUajgcXFRSdv2u025ubmnKeGNwwl9V15SEOBcWYeGsKT2Xq9Hmq1mosPsx4l62UJrc1ut+vWuj2pyc519Yjo99oPmwORhjiftAxdi2m8Rm8m/cJqV2VqPwf8AwL4D4T2WVGrQUxJz1hrO85K8iFu/a0KOG4SUAFbV0caJL8WZMeJioxuPN0/qc9TqDLJJ839qRQcvn76FjB/24Wq2zysha7GkZ4gRD7r/sTQmK4V2T7ZMY1T0Ioo7BaqNIjElkWXnbqI06LhJFKDUOcSlZjPw5CWfOu3/cZ5yDQYdEtWLpfD9ddfj2uvvbZv2wp5ypADjY2kvietRSrwXC6HrVu3OkNeD4DwzVOSbx5aY4nzAFi5gYsGjd2jao17W/8gYx33bOg7O08HnVs+kPKvAa36aF1jsFdeeWUEaaVBhxbJKsLT91XxxJUdV59aqmmUnKJXjR0MUpe1+Ei+mLKNJxKNheIkvnb7Fv9aTES7WBuNBoBlRNVqtXDo0CF3YlKlUsGDDz4YUSS+RUEXHmNkvtOV4tpgP/d9xw3/vKbOEgUxT+W5FPdgEtESZx0cK3vCjsaSSLwOrVgsej0vnDNpYvz1eh0LCwtuPhWLRXeiEvc1avnqEQDgddOG6rJ0KfOQ2cPMYicdPnwYH//4x3HjjTdiaGjIneRkvU+cV/RicP4tLi4im81i+/btLrsW8Hub1B3t4zXLZl06Z7vdrrsq0p5vrHPTtyc4ROqdYQYz8xnGxsacx4D9JU+0n7Y8lVtpx9hn1OqcvNTdD1pus9mMnHSm7R5E1v3SxWB9LqlLIYtmLrXstO/ZhTGohRdCJvzbhxK1LjvJVclb8inUEPq7FLLGjl4wzfN/e70etm7dGpu160PHapn6XMpJ7U9CE3wmlJiW1jugz6cx1ELtjOsbvQE+QzUpOSSJDxTkFMCKdvh+mjmW1gsUF+e0RHcn3+ERg749pJZyuRxuvvlmANHDUjQRSL0v5KPGLzXGGOo3y1eXOJ/TE8nsvOZnVunoZ4PMdyubyCOGPaxXhmOh4TZr9Crp+kgimzynnpUQD1dLaqD/a0OupHVtVdrsrZDg18GwLtVLYSon1CCJRqroNB4cyrbzuUAymUxfDNkidb6n2a+MK9rsS1u3RfVWMV/q9hQfUUifOHECL730Es6fP492u435+XmUy2UcPHiwD51TCKhrFli5Ik9dddxrS/el8mbQAxBYN+vKZrORw9l7veVr0VTIxhE9DByXkZGRVK5wUlIMPJ/Po9FoOGNFPSfFYhGlUimxnyRFX1QArVYLS0tLGBoaQqlUcnXxWW4t4dwLeQySku04R/TGnjjq9Xo4ceIEnn/+eZw+fRqZTAbbt2/H8PAwSqVSnyKzVC6Xcd9996FareLZZ591CmdhYQGLi4sOHe7atctlRgPLe1qtOzXkcSIx5klPAtfm7OxsJMveJ6/opdCT04jGBlmrHB+uMyI5nhldrVYj64XrqtVqRcI9PFNZ56U1duNkOtuvBgzXA93W1mix/PDJ5dC8Y7nWoxJXx5tN/zrV/hvks5LXEoUNQr4YRqhtcaTtVwNCJ7JVRtYSpJC0yFet30ERxmpJ0dtVV12F8+fPY/PmzfjN3/xN3HLLLW7R87AHKi4uIu2vbbu6htXKVvd40nywwpIL2CJVOx76PZGdogOt04dQ4uZK2rnLcrnPmO+mUf4hVx3dghoe0URC3cKiSlWVmi07bWJSGqOYxgqF/muvveYUkS+GS4N1aWnJfa6Ja7fffrtTODRO5ubmUKvVMDk56Q54IG80w9nyOWTU6lZCu1Z1zvrWpT02MeQFiUsO1Pet7NAkILvOrLKMG5+0SsvG7kP9jutPEtk56CvDyka+92brjX+1CjbkpkiitAMXJwxDVqtOTP7PRW6FjK9+CjQlWtN6pqwqSlqUKgy5aFRQAiv7R60i0BjyWk8w1s1rxb773e/ixhtvxH333edig41GA7Ozs85aLhQKzrq2Z6sq/3hyEwWrnlGsyo2CwhfX4YlAqlyz2awTzNbVroYOAIecGeuzWZ5qMKjiVuWsxoRvDigvreCwB2OoG1PJuhbZP71ppdvtOkVEQc7YJRUSM3oBuCxrewUb5yjLSPIkkC9pTh7jGI+PjyObzbp9o3QZj42NRfjVarVQr9cxPz+Pn/3sZ7hw4QI2bdqELVu2YGxsDGNjY65OzqcPf/jDAJYRLbOju90u5ufn3VpmTFK9VY1GI2KQ0COl7mDOg6GhIccnojo1CjnOo6OjEXnlQ670APhisZxPIb5yDuk42M99BquvDaGcDp23esMV263ySg0OTaZLSzS21PCz888aDdr+QcM4l0rrXlNoQNJ0Uhm/nkyx1o5FM6F2WRS0mraGrH+rRGwShbWMbVkWfSRZp1pnyDjwCXYSF8rNN98cuciagp6HE+gZrSwvLSpTolD0xXgUabDOEPLVd1T4UDhSKOlxboqcbBzUN5d8f2vdNm5lUbR+rt4Lyw+t344p54O92kzjohbV0ACyAjAtGrW8jXuefKDrmhm8NNxCiIsJO2wvwyk8EEU9DzTw3vOe9+Cxxx5Dr9fD4uIiSqVSxEDjszapifWrGzmTyTgUrN6B/BvX12nsWI1IG87hfCKvVQFZo17HOYn3bLeOg/JE57LNR9D22XmZBsDYMfP1w/ee7UPIG2TbamP8IXT+ZiLZdavF1wEbqwkNpn2HVloapqRlnG8CJZWjwss3QQZBzaS07jW10qgsdP+uCgEbz41DGKqouah9z2s2oi/mzPFh9i2FOk8Z4n5DLmiigdAWjTR89qF1xsSIxqhQqdBZH/fcqmDXhacZvNlsNpKlqmdBExVZ177yP/Q/+0f3OXlLgaiZpJrgE5qb+jnXDceSQrVUKrkxsKjMIiGLzrQtSknrl7e1xM11KsZarYZWq4VSqeRiw4r6tQ56FIjGGBOfm5vD7Oys85Tope1DQ0M4cOAAms0mZmdn8ZWvfAXDw8NuO4+iHGtcEIVpDHNkZATj4+Pu8AjOq7GxseCeVjWqWCZRLnlGI4MIl8csqsfH8sOuFSpOvss53uksX+AwMjISOfPZZ8DHKXhSCJBY41cNRF/bQ14Z2z+fQaso32f8ad1q2K83vaku4rgO2e/I3KQECqA/PpDGClotc9MgFdbp+86HBrSNg7hLaIEq+vCVEeqrKhgqqpAQtIvFZkiqO1cRIMeRV5Oxr4qCbN+tu037oWhgkG00dCXp+KnRRkFnyaIOJtWo+5CLmy5Q5anynkreHtnIGCvLUuRBfgErMcCkuUt+K8JXV6f+zwQRjoOis2w2G7lEXFGxts+HpqiIqBx1LOnuZayVvMzn8xgdHXUKwPan1+tFDB01HpWfGkvWdnBcarWaa8MVV1zh3mdCYb1ed8aIGjwkTTajR4DomO2wAt9SyDOg60yNHR/PLXEcOEe1bvZPx0ONMF+Iy669QeS3nStWBtr1EWc0qrywslwBgrqOfbJB52mcUbiW9KYg2KTO+D5XxsWRoiI7KbQctfxWswfL1964wWG9SbEyX0IJyw7xhd/7XGZ8Js61wvrs6URxmYu+ftDCZcxJv+O2HQoS3WqiblpV2GpU9Xq9vlOF+A6zikPK1ddf+7wiIlW2cWPa6XSwtLSEQqEQQSd6jq0qWDvPKNTpkmT9FHyaKa5Gi87hNHFMAO4yBioh3gTDz1SpKc+JwJgVreOqz/V6vUh2uM9Artfrrh/kP/dG88hAxkitwlLq9XruVCK7Rqy3hWtO48ask0bfwsICms2mu3+YbaeCnJmZQSaTicRvfbJFibkSnEOsi+jZ9kdPtWI/OH98SUmqZJKIxohmXHPMbRu0biVbl/Y/pAyVdJ6o98Unj0NGY1o5y/lqvS1JxrcPda81rWvpOkHSdsQqhjiLXRd8XBviJsZ6kSJKtdb0xz4PRJFUnJWaVLf+tuVRiNJ1RwEI9F9ZFiKfu0bJZk6qgFA0GeduZrlEIBQ8cXOCyj6khHRvpU1YiTP0aDCoguOiBqKINjTf9MKBXq/ntsSQD6qIbBnsMwWjur71eEk+zyQyohM16HQe8Bg9VQ4hXrCdccdZKlljivUzkYr9JW+ZaJXJZNzRgnxXr4XjtrBsdvl4QyYkcU5rotLIyAjm5uawsLAQ2Rf64osv4tlnn8UVV1yBiYmJSLxzEC8Sr27U95nok6QQVcmRN5qFm9Y7o0SFybKBaOKnjrU1MtkmX90+Qz6uX/a8aX6uZYTke5L8s2vDGu7W62DbzjZZg22QcU9Lb4rGGUSxWcFskQ5Jkav93Napk+lSyOf2CxGfowBkP0IuIyvYfDE9pbRKlmXxMy487kvkMXJab6vV8rqNfG0IjY0mTtj+cZGH2mzdO7RM4+6cJdE9GCLGnNjvJCK/lpaW+lymVFCFQiGSfRuas4ogOp0OFhYWnLIsFAouWcbOVS2r3W6j1Wo5hc5TqUicX9x7aZNptGzuVy4UCg7txCF5fp5k1PJZ6xpm/VSuAFCr1dBoNNzpQzzR6MCBA3jmmWewYcMGbNu2DYcOHXLIv9Vq4e/+7u+csUMkqoYQeToyMoLjx49jdnYW/+E//AfcfPPNOHPmDE6dOoXTp08DAKrVagRp+hRCiBqNBubn510M16L+OPLJL3oziPD02bRyVO/8pacKgOOXGqqhdvnqGwQkaQ5D6L04o1brs//b9eHzWvq8HfpbvWW2nrWkdVOwnU4HFy9eTEShfQ3yKFWfAFd3mkVCg9AgE9cqv7SK1iIlH9ks1jiDICTANSHM125gJTbmM0zIR0Vj+h3/Zht0XG3cdGRkJCKofEreCl/LI7rRbObrpZAmEsURhRPdbYzpkTd0ATMJRYkomWOqHgLt69jYmEvK4YHw1v1sySJ0HSudE6ooiZbZf2BlTHjAPRNh9Ng59tOuQzv2PspkwldK2vlE5NloNJyi2r59u1OIvEhdtwV98IMfRDabdZ+TF2NjY86AZF/Hx8eRy+Vw8uRJHDlyBJVKBXfeeac73rNSqbi2ZrNZTE5OotVq4ejRoxgaGopcGMBwAA/lYF1MlLJrT+OCbDvXB4961ASkQqHgPCN0fWpWsw98hOKc9K7wYA+f0W49hraOQUjDejRy7BxIk+/ha5eSuoHj2ulTmBapk39rIVt8tG4K9vz58xEFGwf7Iw2SRRwiVbA+a2cQS2sQ4mBo8kgSse9J/bGZvElZ077vdGKHXDrKO/2MfbPKx/ZX3bi2D1ofDwqwJ+OogrUo2RoWVFQ+BbVaSqNcFeXrTSR0RSpP6I5Tg4Wowd5rq5TJrNzd+rWvfQ0XLlxAp9NxJzSFxt62n7G/EOVyOZdZ3ev1nLCl4NZ9mBT0NCSssE2zNrV/vnb5BLoqLc7BiYkJ9Ho9VCqVvnLy+Tymp6f76sjn8yiXyy7myu/K5TJKpRJOnDiB5557Dtu3b8eOHTucbNL5lc1mUalUUK/X8YUvfAE33HCDawMNjkajgYWFBZw4cSLCf5/nhEqS/FM3MhWszh+NJ/JvusfVMNWx8MlAdT+zXcxWt+OhIMWH/tIQ3+F4qhzTZ9jONLIzpDPsHAqBEeuiDrXZzu+1pHVTsJs2bYogEUWZSYoj7ntVRMDKIfk+15ZloK+u1dAgEzCpP5yUVHpUPHax6sSPSwrwCT9Fl8DKkYREP/zcWnW6aOI8Clq2bY9mOmtfqHjpQldFxP5RqFzKxE8bU/a1nQqU/CKCUZ7wb7ZT5yGTtDSRjbxqtVp46KGH8OKLL+Kqq67C1q1bMTEx0XfsW1paWlqKbDUiAqXyKJVKDqHyN12aHIdebznOTcFfq9VQr9cxMTERyd5dDWm8GlgxDJiMpPFCJiCFwhTKZ993gB8BURESbVLB79+/H+12G/fee69zXedyOdx5552Ot0wUo/IGlhV3sVh0hhK3h6nA1zXnkwUak2d7uF40a51tp7yzP7qmONfpCWEbfHOLvFRXsvIsRD75p+uCrn4gel5zKMfEjtegssb2Ceh3JVvQocZJqK5LpXVTsNlsFhcvXgSwttcJqeBXV0OI6YOgzfWkOGtMrT4be+EzVpAPYjCoqxaIunFDz9s6k4yKUN2+tmrGsKJFABGhqjGxNIrW94wu+rTEchiT5G8geiCA/bFonAaM8hKAU9SHDx/GuXPn8L73vQ8jIyNOUA9Kvd5ylm2tVnOfcR+pKloi8vYbBzGwb0RKbBvHY2lpCdVqNfbM47RExWlRMBXt8PCwQ/ytVgujo6POC+Ib16Tx9GXl53I5bN682e2HZdknTpxAvV7Hrl27ImfncssQE6e4jUddr6VSybn6yVMV7DqPQspNjWbr6WE+BPM44gwLKlg+Y8/F9iE9LUsT7pJIZYpVlJz7+pl6rKws0bK0/SFKs5aTnlFDzJfxv1a0rlrH7gkEorDdpyzUggtZL5lMxikHWxbroMJSpeKjOMHtU4pqhanrh89QWFnrm0pFE4q0TC54Kj+d7GrNxSk5Tl5ff1RpUHAxS1PdnuyXNVpC7mdbB91QcYfeExlq2XGxdLrLyBPfzSp03TF+qHUNYtgpkvPNTwoyulKJcNULYBEWt+eoK5I8KhQKuOeeeyJIbn5+PjJe9Gj4DKJqteriuN///vdx1VVXIZ/PY2JiAsPDw257ytLSkps7uVwOExMTyGaz7rq0QqHglAcVMJU+E6ZCpJnUSjqm+Tf2uNbrdVSrVac4RkZGUCgUUKlUMDIygmPHjmF2dtZdQjA2NuaSyDKZlcvh9+/fD2AZRY6OjmL79u2u3kajgW984xsA4LYnAcA999zjXM9HjhzB/Pw8arUannjiCTf2JLqKW60WFhcX0estx7HVPQ2sGIR656ydT3THA3DjwDAA3yO61OML23IRAPlBhOwDFWq4WpnKPilZN6uVL1qOL7+DitMqVEvkD7AS9gmFsuLmmRrhth+DAiiVqapD1prWTcEqBLcND1k//CwuyM7PWXYolujbyG0p7fch61mNAX6uikopLvNSLVn+zwno63scpfmeLiEKRotYFUXbyRfHM11wSa5Oi/ZCHg6Ope/EGbvYfdtHBvWaWGEUWrw6Pnau66Iln4mA9J2hoSFs3LgR5XI5IoAYl+NYEYXa+nu9XmRf6enTp53wIZLivbFMcqLrldt4ms2mE9qaWcnYd5qsWPLMGrmWRzQuacR0u11XNg+c6Ha7+P73v++MVGZtc94xXnvixIlg3e03DouwN+0wFnv8+HEsLS3h5MmT+N73vue+Z5iGgp9zmAYvURizvZWo8KzXxxr6emCGekjYfhp2qvCIjpX4nUWPvvUZWrP6fpy8tuNpx1jL0N/aVs4v9dTxu6T3ta5QP0LvxZGVDeuhYNftwvWzZ8/immuu6eu8KidfbEwTfdIwTF1bKhxoIXMBx6FiS5xkjLUQeYSEPy1NizbTInNrNXICEl3aZ6yC10Vh0ZO+axcGD3+gUCY6Y3+42FVphJSg8g1IvphZiefGUsjq52r9a/uBFXRqPSVpY60+5alJWb6yVHHq/2yPzsOHHnoI3/jGN3DnnXeiUCjgX/7lX3DVVVdhz549KBQKWFxcRLPZxMLCAoAVJVMul52SIPojytH7duv1Ol566SVcuHABU1NTTvBr7JVzhEqNc2NoaAjNZtNt0+G72j/lb9y6odLg+3arCd3Qdr+rxhM552dnZ9FoNJzRwcxcncPtdhsnT550aLZUKmHPnj2ujfPz8/jyl7+Mu+++G1NTU33tXVxcRKPRcIbPN7/5TZw9e9Zt+dm3b1/k0HpV1Lo2acToXD9y5AhOnjyJhYUFtFotHDhwAJOTk46HPrTf6XRQq9X6BDznkz2GcXx83O3/9ckYu/Z0robmso4D5a/OfbrJeaY4eUPFT49VHDjinmGVy2xHnHJlXZzDnFO+2LEdjyRS2fXyyy9j69atvxwXrocUzSDvroasBWatyrRlqxDl79D+RBtjDiVmsFz9P/S3pvf7nrP91YkSF9zn/+o69fHFjluoXxbZriaWEVLc1t3OshV5axlrEUdRxK4GkY6btfYtWqMQXlpawne+8x1s27YNmzZtcmiJrnm6Xg8dOoReb8VtSKXCjFEKZ81OptClgVksFiM3zdh4nM9QU4OU4Qt1v1GgJ/HWKmXlE4kGnbpTNVOZyIYov1QqRZC7JvtkMsunLFFJ2nmZzWZx4403Bg0tGo50uRPpHzx4EEtLS9i7d2+kbxpy4L5jnwFGo3xhYQHPPfecGwflacgboGOh/FODvP3G3nUmL9l1G+pvksxLk6di5Yy2UdsSF4rjODOsYo33NKTrU9uv3w8iBy5F16Qqf70K7na7uPrqq8MVm8mzGrJuQXWxqHWnKI1ti0PJigI0ruFrL4WXjZloXb7JQKVhFa8KRgAOZerE0hhMqP1JZAWHtkGfCZWlwkD7FXfIg31X++AbCxsG4LMcS3UPxlFoERNRdLvdiDvQIn1FY5xXaqDY2Pfx48dx8uRJvPOd78TY2JjLDl5YWECj0cDOnTvx4osvIp/Pu7Nwb731VuzatQvZbBbVahXZbNYdZE8kyjmbz+exffv2CLLTmHev18PS0hK63ZWj+njSEWOA5Deva7NGWrfbxYMPPoi/+qu/wt/8zd9g9+7dQf6GErN8MfJisRg5ApMKi/wkkqai5fq24QCui6mpqb69lkyQ0qMtVbHxf75TKBRQrVbxyU9+EgAc/zmuNHS4F9oedQlEvTDT09MuTqtGDwC3FUl5wO1S7JuWa9fHz372s8iJYHHk450lDQnZea3ky4RnO4lkfTIFgPM0kCzv0sorzjMNYamcJpLVg32UdH772pDW8zUIra/6jqt4AObGkbXikqwhtRTjFLxOuLij4RR9qctW69PPVCnEPaefsx7rzhnE8gu13UehWIe2J+QRSOsl0P6G+qKT3ucit20KfT9IO/i+lmGVj+87dU8TZTIBZ3R01GWg9no9/OhHPwIA/OQnPwEAvO1tb3NxUSoPuoZtXWwb79X19YfCxoYQ1M1GJavCie2v1Wqo1WqYnZ3FxYsX++J/lgZBHz7Up/yzoRbbb4YwqGDtZQQa2wNWkmqsV8u2yxrg1jvB8n3JRfxOY8r0Bths2pAsSTpYhobVr/zKrwwU6hqUQnI5tBZJlKccK5VbSUmMq2mbT+Zr+3zr1P5eb/QKrLOLeNAOqPKLe18nvS4MRRpxA8kBT+NKiFMA+r2NIyvKpIWnlpW6THRC+DL9fOW32+3YM3dXQxRgen2aCipmz9KdyBgx+2jbzPds+8kDXXh6Uo2e2EOlYJU+eUpFQX4yKcguwBBx/viELhAND6i7ln1jHHNubg6VSgXlchmTk5OYnp7uQ9ylUgn5fB5bt27F6dOn8eUvf9ntF2TZdF1aIcr/Q8l7VCR069o9kboVR/vFBBoeBZnNZvGhD33IPbdhw4ZEr4Q1Aqn8VLkMDw9jamqqj8/kDW+4YVlTU1OR22louBw5cgQ//OEP8cQTT2B0dBT79+9HNpt1cWnGZl966SXceeedGB8fd5nRmryk7ahWqy4JDFjefkOPgHqu4tYaUfHo6Ghk/odi+IMQ3etMOovL0FcKeRaUfAaNj6zyAtC3bvmdlSEqL2wYYjVKzjcOPplCCinXOKN9rWjdY7Dr/S4ZZV0rPvIhxLRtiVOucXVbq8sqa9um0OfWIqRCuVQ3u6+9qlxsDFKTPHxKzE7mpHp8CN3G8XzoXl3U9vtB+GGNg1BbtV7+32g0XMLMq6++Gqnfxmj5WT6fx6233uq2pgwPDzvja3Z2FrlcLrJJn6SZ1Oq2tK51KhMiUmvNUxktLi5ieHgY4+PjffNRadu2bZFwhbrT+bx1D5JHbAPrjRP45I9FeFYQ9no9vPbaa84YsC599p1JYupGL5VKkSM8Q6Sxf9afViCzH3HyIokUaChoYALPWrsy07Y1rs9WbnEOqPcgLqy1FuQDQb6xfjOQK2ndsogHzcTyuen0czLKxmLoviJzQyem8HlN6rBn7vqeJ4XKU0pS7vZZtkdRMp9lPEF54jsYAIgezgCkO8rO1zYVyBRSeih+r9fD4uKiO2xeF7yiXR+KSSNcmNVJXrDMWq3mrGCfYNds1CRBHuq/bZveqanzhichdbtdfPGLX8Tf/u3f4v3vfz8OHDjghMfRo0cxOzvrBMru3bsjcTuegVsoFNBoNPDxj38c//zP/4xz584BAP7lX/4lwvNOZ/mc4uPHj7sLxDlvpqamXPyu2+3i4MGDLt6Vf2PPJrNxybODBw/iz//8z11djPFyDvDQilqthpdeegkf+MAHUKlU8Mgjj2BxcREPPvggSqWS82gcPnwYAHDfffchm826g/t5rypd0b4DK7jFiAf2k0KCWLf40IOiZTEjGwD27dvnko0A4A/+4A9w6NAhrxCu1+t45zvfiYsXL+KP/uiPUC6XsWvXrkjsUbOJ6bLVedFsNt1atOcS6924Pk+VUqPRwOzsLJrNJp5//nn8x//4HyMekaR1ZOOkg5CVt2mSn5T0hDaVb71eL7iXe7Vk+6nKHfCDmziZvVrdFUfrqsrTIgr7nIX3VvmGykhjicUhUkuDIulBv09CtCEr0ve8PpvWUlbyLaq4ukMGUKjeQdClRauabML/tZ32vaQQg6W453yLlO157bXX3Hf2Ply69HzJW4x7njx5EtVqFc8995xTrgCc0Wjjgi+99FJkCwz3zGoyE11wRLfKI0VBylsbVyyVSiiVSpifn8fi4qJ7PpvNYvPmzc4VzR+LImmEsN18xkd0s5N/oeQU8iRuf7UeMpLNLmdpq4JlP7jlhfxh8tINN9yA06dP4/DhwyiXyy6RjG2g0WiNLioVn6cjtIbiiOPbbrdx/vx59Hq9WOXqW1urWQe2vDQUQrm6r3rQMtOQ9m+16/7NoHVrSbfbxZVXXrlcSYzQ9bk61fWnsSRLOtn1pB91a+qpRFYxDDoQ1jJaiwG1CR++mKxVbCHFogstyUpWymQyDnEwMYNWuO0bhb66z3QLBtGkxu10HEJxLO0D+8GYKhXSzMxM5PBzIiJay+pGVVS9Gkve7tNjGXrq1cTEBB5//PE+ZMZ+7tixA2NjY16lUa1W8du//dveuo8ePYpKpRI50D6bzTqFrhb7n/3Zn6Fer+Pv//7vMT09jZ07d/YZJ1r30NAQduzYgWazmXj9H2PKfH/37t0uvjY/P+9cwLt27XJbLxqNBo4fP+7Qc71ex8zMjOOXpVqthrm5OaeI7XGRNKwOHDiAV199FQ888EDEK2JPi9Ks3SNHjkS2u9E9/qd/+qf4+te/jnK5jJGRETz44IPu1KivfvWruHDhAp566il3FSGwjEBnZ2dRKBTcjT10mROd8WhFrgeeLKa5CmmJ77DsUGKVygyuPc5Pjo9vHftIEac1ulhXUh9s5rgeLHGprm3VF9YNrYYa+6u8GARYrSWtW21pUKdrhHRek1mUSSFU54P9vrKTPksiW8cg/UtLqqxDk9FahGowaDlxZNttEaNFajpBrTvY1ukzOrgAgOR9stoOTTCiMUWFo8jQKmb9zPbTttc+T7773EzKGwquu+66K+L2oqBj5jDdr9ZYpJvYR76+cSsHjQtFB+fPn3f7Yq0gV2OVgr/dbrsjCOnm5aEqAJwbmv1sNpsuXKDZ0Or2VEOXiodjzuMQfdTr9fDKK694xwSAu8aOx0cuLCxgZGQkcjAG+8XtSM1mE7VazSUFKS86nQ4uXLiA8+fP44knnsATTzyBoaEhlEol5HI5XHfddS67e2ZmBgAwNjbm1gN/FLnqXFHvCn+nMcKt3GNoRl3RcQg2tIbTAgD7vo98ayb0HT9TY3CtY8faBl/f49r2ZtG6KlhrOQziLlHlCoSPGrSozTLWnvKjP0lKMuT+9E1mn1tzNeTLitZ+AitJGL4EJOWFJY2HcPKroKB7UZWg1qUIlUKUbWB/aTUTZfB9WpehjfbKWz31ptdbyarlBnvdw2gzsVmG7T+RLeuycWtmsLJ9mqFsY30sY2JiwiUJsS1EapOTkxEk0263sbCw4BC4KrT3vOc9GBsbw65duwDAnULGMhuNBkZGRiIHIOTzeTSbTdx88804f/48ZmZmsLi4iB07dkSyTDUm1mg0cOzYMYyOjmLfvn3o9ZbP1z1+/DgefvhhAMtZw5/4xCewb98+V8bMzAwef/xxfOQjH3Fbj/RkJhJR3fPPP48tW7Zgfn4eo6OjuP/++yPz1Gf0UDla4+DYsWNYWFjAt771LQDA3r17cccdd+Czn/2sm6utVgvHjx/H6OgopqamMDMzg49//OP4kz/5Ezz44IOuPM5VO5b//b//dwDARz/6UXzgAx/AX/7lXwIAHn74YRw4cMAlS/H0pEKh4NzgnN/qmh40D6Db7br5QJk1OTkZ4Stv6rGeFb6va5TrN3Sik5VNIQWtFFKulE++/rIvNBIGVXR2vqhcswmOwMopTj7l+otSsm9Krb6FFSJdiPreIO7OQZiZ1LYkA0AHcK0Rra3f97fPAEjigZ2k2hfftgKfi1MVdFzdfM4qbh+pC8iHsONiw/ztc5VrO/R5JfaFgpOJQnrqEIkGg/1ceajjMzMzg+9+97uo1+s4f/68K4M0NjaGYrHolNbx48dRLBaxffv2CHLXMmlklMvliKGkd6qqkcKfm266ycUcmThWLBbxrne9C7VaDadPn8bs7CwOHDjgjuQrFAq45ZZb+o6sXFpailwYQaR15513RuaUxjHtvNW5YYUjEevs7Kz77KWXXsLZs2cBLLuXP/OZz6Db7WLjxo2unqGhIdx+++3o9XqYm5tziVRTU1Mol8vuztivf/3rkTnAwz+Uzp0759rJ9tFQUyNI2+xDa3aN0gtALxG/0yxhPuuLk+uY+uaIvq/vpJFzaWWYb62S7Pa8tZKLISOAdYVCib8oWrcs4h/96EeRTKyQoA5RSFDaZ3TjvA9p6LMsa5A61osGMTrse3bfGX/s/a62Lv2f6Hg1Wbdajl7krQo3ySDyuW8bjUbkSjOOie6hs/zS7M5MZuU4QSKNuLnDd7Ss48ePo16vY35+Hhs3bsTtt98eUXbAcvz02LFjKJfLmJ6eju1np9PBli1bvN995StfwdTUFDKZDBqNBo4cOYKvfOUr+M53vgMA+PSnP+321YaI7tsjR464U4s2b96Mt7/97a5cYOU8bbp5K5VKhBe9Xg8PPfSQQ7IA8H/9X/8X/uZv/sY9o7xqtVooFos4d+4cNmzYgJGREXz4wx9GsVjE5OQk2u02ZmZm3P5XS0yQqtVqaDQaGB8fj9x8w77deOONfe/ecccdOHHiBA4ePIhPfOITAIBrr70Wu3btwoEDBxySPn78OI4cOYJnnnkm0h815FqtFsbHx3H69Gls3boVo6OjOHjwIOr1uouRnzlzxh1dSU/I0NAQRkZG3O1AvHWIz1g0riGSbrfrbujRDHiieFWcapBYTwn3hzNGG7fmKCu5npIoZCjYZ3R+aft4OhfX7FrIVuup4/9p3fBJ9EuVRRwn2AZFmHTV6Wf8bS3ANOXZdqZ5Z7WDF9e2QcvVLUZ0z2az/kvAfdar8gpIl4KfhIT1TFGNu6kbOvQuSU/b0cxXHWdN2rDHtuleR0UBVkDp71C/7MUO3AJz9OjRSOIJj+O7FKJCqVarLsHn7rvvxne+8x28853v9IZFyAsdb14QkH/j3lD2Q7d10XChO3J+fh75N+5hHR4eRrFYRLlcxrvf/W7njv3bv/1b/O3f/i2+8IUv4J577ulrP9t2ww034MYbb3QuTKK9YrHovcJOs3GpHKx3g67XzZs3O9RPeuqpp3DDDTdEPvvd3/1d5HI57N+/H6Ojo6hUKs5lDADPPPMMzp49i/3792N6ejpywMfOnTvx7LPPYsuWLcjlcu6wCgBuHGyipLaXqJYuc4ZbgGhoy875Xm/lyESrIJPkgkW7dp74nh8E4PAdruOQ3LReDc0zWAulx3kORI9n5HchI8RXjr77ZtG67oO9+uqrvb59y/hQ54myut1uJENOmZ4WfamAtZZPiNRSilMWccT2W/SlViqQbuDbb9zTyf7zKjFezUXhZs9mtQlGoYQjnwsv7SJhTJbuMxu7jCuDyFWTOrLZrLPQ+ZsLlwk4FNS831ZjrFZgaaxW22cVsK+d8/PzmJycRCaTwfj4OCYmJnDfffel4otFsO985ztx5MgRl53LG1fy+TzuueceZywsLS05lLxjxw73PpEf9wzrxeTc+tNutzE9PY18Po9Go+EOsufhCfV63d2B+p73vAdTU1O49957HR8mJyedkiVZMdFqtTAyMoLz58/jt37rt3Drrbfigx/8oMviDFGtVsP8/DxKpZKLqYeeazabeOihh9BsNrFjxw4cO3bMoVHSs88+i9HRUWQyGRw4cAAf+chH8J73vMddZ6c8+93f/V185zvfwV/8xV+4/uo4zc3NoVqt4v7778eFCxfwnve8B6VSCbt373YeEUt66QKz3rPZrLvw3ncXcKfTce3jTTtWUcYpCvtdSMasBam8VDnuC/cQ0aryv5TEJq55u0XLrlkCh5C8CrmVLf1SIVjfwMT5/+3zZJS1hPQ3FTCQrCzVGrMWWah9FkWthpJQ3CCWFd07VDgW4RDhqYLx1R+y9LQt6kJOg3RVcfF32viLttm3b1TngC5aX8wuZKnzczvudj6RuKhZx+TkJF588UXMzc1Ftol0u13Mzs5iZmYG09PTThEDy9ei1et1vPvd73YnJ23dutUlLtEoIfrMZrNYWFjAn/7pn2Lbtm3Yvn27y4KlK9K21SIk3g9L44aZx3Tb1mo1bNq0yfXz0UcfdYfw84L1HTt2oF6vuzOTAeDAgQOYnp7GyMiIE+jT09MutkljLxRn53GMVPjknybWZbNZzMzMoFaruSzn7du3o91uo1wuo1ar9SlYnQM0iJ988kkcPnzYzctSqYRisYjf+Z3fcYqS9+SS/7lczoU59uzZ494Dlrf7FItF7Nq1KyLc9WIOjoldL774ObDivbDzNGnrn+9zXeMqrzQBybab74Xkkw+QpGmnxtttGYMiWj5LEBV6n+UneQttuW8GrbuCVVeWz21nBaS6/QB/LE/f0fsVk1CmvscFobFMn3BnuwYllpnkItUECf3fZ4VRAdF9pm0HVi6MBlY23fu8Bb7+2M+IHHUc0kxuLuakhCbbFiJX33u6PUfJZlzHeRrYJlVMVkjomPB+TiKP3bt3Y2ZmBt/5znfw+OOPu+eIQL/+9a+jXq9jfHzc8WpmZgazs7N45JFHUCqVsH//fofW2+22O8SByBUATpw4gf/1v/4XAODgwYOuL4uLizh06JDbQkPFpOECAPj+97+PxcVFLC4uolAo4KGHHkKxWESxWESj0cCBAwf6YsLPPPMMvvCFL+C9730vRkdHce+99+Lee+/FW97yFvfMRz7yEXcSDxHhnj17ACzvl00a71qthkOHDuHVV1/Fa6+9hhdffBHVahXlctkp90wmg4MHD+KrX/0qHnvsMVQqlUhcttFo4O///u/d/xs2bIjMASqOn/zkJ/j4xz+OCxcu4Gc/+xk+8YlPYHR0FHv37sWDDz6IxcVFLC0t4Zvf/Cba7bbb+sSLGXS/7uzsLD784Q/jXe96F3bu3BlxhSpa0xOarBFos/LJM84hlYc6lmlJlavKNJ6kpUpfESHbrh4vHzDyKSeVb7p+8ub8cDXWLS+SKGQA+ICAbd+/FlrX1pBB+gOE42EqrOOsK2DFLaBK2yoSLTttW/V9LSNNOT5kGEKLtg5tR1L7qDw1vV/RH3/UdaTl+JSlNTYymf7tDKF2sU1sx6CTPBSvCX3uc3FzcadByxQAmoxCw2X//v1otVqoVCoOkRENlstl/Pqv/zrK5TKWlpaccBobG8PXv/51bN26FUtLS27fJ3nKLUrf/e533clChUIB5XLZ1b+4uIhdu3a57zds2ABgGbnOzc2h0Whg69atLluXdWiSDADcfffdePvb344jR46g0WjgxIkTKBaLKJVKaDab+P73v4+NGzfiYx/7GE6dOoXZ2VlUKhX83u/9HoaGhrC4uOhc0HSXsT1PPvlkxA09OTnZ5w7udDoOqdINunHjRlx11VUOIeZyOTz55JP4+te/jvvuuw/j4+M4fPgwZmdn8dWvfhUAsLCw4OKnnU4HR44ciWQT33HHHZicnIzIh/Hxcbz73e927ed+Vt1OBgDHjh3D7Owspqencdddd8WGmeg1eOKJJzA7O+tQPhPGOI/UW8Q2+ZRlaL2roalzOAnRAivhGWaMc04o6LDgQo1gHsxivQH8AdAnZ60niOEZ613StqdJfIwDJdr+tLLZJ2PjZPJa07oi2JDrIQ7O+9y+IbeIohqrwH0H0ofI14ZBFKzPYFBFFXonTsHGGQhUJNyEz20X/K2xS6B/0fpir1QGzJLk2bDqVQiRLtbVTNw4BWup14seWedrQxLR+NAjCRnzZVbqf/tv/82hamBZyFcqFezbtw/dbhcLCwsYHR1FsVjE+Pg4/viP/xhDQ0NYWFiIGECvvPKKO8jhqaeewqlTp9DpdPDOd74Tu3fvdi7g+fn5yLF+733ve5HJZFCtVnHo0CGXiKQK1mbdZjLL96O2Wi18/vOfxwsvvOC2/HDf7HPPPYdbb70VDz/8cB9/l5aWMD8/j1qthmq16m6/WVhYQL1ex+zsLL797W+7+Cw9DjqHGcs8efJkZBvMpk2bsH//fncu8mOPPYZTp06hXq+jUCjgL/7iL/DCCy+45+fm5iJl7t+/H/V6Hf/5P/9n3Hbbbdi7d2/feE9OTmJychJHjhzBf/tv/819ztgosDx/vvjFL+KFF17APffcg+3bt8fOlcXFRff3iRMnMDEx4RQsjXwmkFGZ0VizytGiQx/o0DFRRBu3rngXLbdo8TQsm7CnxPXCpDP1HmUyK6cjadKWT2myT1xLNBit0RKX70FiXWkAjf0+9E6SHF5vWtda7V4okrpB1Y0ARBGQz11Bshl3PoZb4qSx8UFu9VFXSRwStcrPWof6jvJA+6kJN/oOlaK6hH3udt2Yr1Yz60yaqFZR8TfL0sVmF6lvwnIsGdeie5lZuD4K8S2OrCJlP3yLWp9RtzrngRUWuVwO73//+3HmzBmMj487tyUApzCZqcukMmDFXcgD7dmOyclJ5/7M5XLYu3dv5EQkXoLOM39J//W//ld3Efro6Cj27NmDVqvlhOgPf/hDPPnkkwDgDuJXyuVyeOCBB9xWGhWM3E7S60UTqbZv3+6OAaQSJILnofOnT5/GhQsX8O53vxv5fB47duxAoVDA4uKic6u3Wi08++yzyGQyeNe73uVim6OjoxgbG3Nz+Oabb8bs7KwzEh544AGcOHHCIdivf/3rERc16e6770apVIqsf6Jl3g7U6/WwZcsW3HHHHchkopeeZzIZPPDAA1hYWEClUkGn08HevXvRbDbxmc98JmK0cC2S/vIv/xJ/+Zd/iX/4h39wSVpEip1OB/V6PXI/LQAXauAc4HrWiyrozgVWjD0a0VTiChg4j3mACdc766Yc00NfVFapO5ufWTcz66LSU8NbDXZdHyp77FqMAyzqTk4jB+xxstoO1hUnm99MZbuuCFZjr77P9TPtfDa7crycxsz4faQDMczyWUh6JiYVnnWN6vtpYxL2b/teKE6ik1VdLSQuMLZd3ZoUgFqvuna4WH1El5K6hkLJQ7ZfccT4Ik+e4ZF2IVot4tX28Jg8n4Ilv+k2ZPYteaP1Z7NZbN++Hd1uF5VKJVKejfWpoicvuTWFz46Pj2NsbMxlku7Zs6dvPHif7NLSkvts7969rgzGXOfn53Hy5EmcOXMGP/jBD/Dss8/iJz/5CW655ZY+BZvNZiPbanq9Hmq1GjKZDN7xjndg27Zt7rO/+Iu/wO/93u9h+/btTukPDQ05JVsoFHDs2DFcvHjRGaJ79+518dFer4cjR47g+9//Pv75n/8Zr7zyCq644gqMjo7iwQcf7LtFp9FooFqtYnh4GHfffbdD8Pfccw927twZ3DNMGh8f7zv7mXuIK5UKSqWSW2+VSgVjY2N92cr33HOP40+r1cJf//VfA1i+DYgKlsri1Vdf7WvDV77yFfR6PXfIRy6Xc14Km2lMJUjvEvfBqkLl/1RojK9zLLnuATjU2W63nSuec1+PpOz1es69bTPm1SC3mb7st7aVhjP3l/u8R0NDQ5E96UrqBVPlzf8Z009zXjPbp2iXcV/NJma7tI32szeD1q02X0KT+vT5DODvNJll0axVSHGu5hDSsv/Tigy1R13W/D5poPgsrTNVYqp4bb+sy1uNADUQaIToNhZOUGuksBy7f1T34IV4xMVNxeTb26h9ZpYp20EBoO9Y13hay1XroQWv46ZZ1BadqjHSarWcwFN+ZDIZVCoVxzPdP6oJY41GAzMzMyiVSs4NRxTDQwdyuRzuvfdeHD16FBs3bsSWLVtw9OhRlMtlnDx5EktLS3jggQcAAF/+8pcxNDSEJ554Ar/+67/uBIgeXs59m/v3749soeGJU5wbBw4cwIsvvohPfOITkXN42Yff+73fc8KzXC7js5/9LIaHh10cTtET+bN79+7IebyMT/OQiIMHD0ayez//+c9jdHTUxX25N5UxVc5nTcrjuL7vfe9zKNZHCwsLkUseFhYWMDc3hyeeeMIpMyZCPfXUU/jLv/xLvO9978Px48cj5fR6PRw/fhy1Wg0f+9jHcNVVV2F0dBSNRgN79uzBSy+9hBtuuAGvvvoqfu3Xfi3ivj516hSq1SoWFxcjR3BqDgDnf7FYdHO1Xq87tM+1znFln3TN838rS2kcjo2NRdaazbXQm5eIKq1yVH5Yb5v2g3Va49v2PbRFy5YHrLi2c7lcnzs7zq2r8s2uc9+zCpT+j1KwTNQAoq5LIGpRJCEcVUR2Ag7CtNBzaawmrStNfaq47HYaVbQWsYZimapkbXyEB7hzIbCN5DcXoSoUuyBDREHIbSVxexwBuBgh39XEC1su+znopOc7tJbZZ11wNruRSoUuNaIEvRElm806BEMe8yhARbzMAFaUcf3116PX6zlXca/Xc8gIWM5srdfrKJVKWFxcjOzTpAv1N37jN3DzzTe7ecFTstSlvHHjxggveJIOx+nYsWN47rnn8Id/+IfOgOLcy+VyEfQ3MjKC3bt3u3d9CAcAJiYm+m7C6fWW7wb2bZ2ZnJx09TQaDXzta19Dp9PB5OSkW8c/+9nPvOtCFeHi4iL+3b/7d5Gyn332WReXZELVs88+CwD40Y9+1KdIAQQV9pNPPonFxUX89//+3117FxcX8eijj7pnbr31Vnz729/G3Nwc3vve92LTpk3O8KrX607BasIZ+0KjptdbPvKR97x2Oh3nSSC/ua7IE6s8rKclLiRCIjqmrFA+A1HZqdnoPoObZVnQpMhaZYr1SvpkJ+UKY8baFm2nbYtVruodtHVberOV7LrWFIq9AsmuRjKPAx/y3/uC+BSo9nMijRCDVdD6DIA4tMzPrcBQhUPXi5ZrF4mvbWw3y1BjI5vNujinjcUSIVjXiVqwREpaP5Wxjp/eTMLYLcvy8Z+ChXWqsqcA0ZjUIJOeSpIubovEOQ6+HAC9QJ4GgO9oO/5dLBZRrVaxfft2vOMd78AnPvEJ5PN57Ny50/GD2cDcghOa22wPt8089dRTrh2jo6P4xCc+4dA+x2hpaQl/9Vd/hd/+7d/Gjh078OEPfxi333475ufn8eyzz2LTpk3Yt28fJiYmMDw87A5m4Bm9TFRiMtw999zj4r6FQgGVSiWCWuOIrm5gxQtRKBTwhS98AfV6HQ8//DA2b96M+fl5dwTh8PAwPvjBD6LX6+HgwYMoFouoVCrORcy5yz3DjAEDywbAb/zGb2B2dhYXL14EAHzuc5/D5z73OfzxH/+xO1e43W7jn/7pn3Drrbdi3759+L3f+72+th84cAATExNOkRLBvvDCC07ILy0tRZKr/uAP/sBtu6pUKvjiF7/oZAvd6NYbU6vV3I0/PASGxlK323WXuOvWHpKGgpjDEHfcZxKpoa1zm3U0m81IHWqcW6Iblu3kc6GDZHyyV+unK1yvJ6SxqzFkLU/d2j4krjIx1B41XpRH60XrqmCTGp5GsNoJnLYOnxJMYqYq2DR12LJ9LmuWRSvSF/dLQz6Xu7pvQkqff1sPgH6nE1ld86qY9eo1tTBDmbu+uA4Fh7ZlkH1x2heNm6tbXJ/zbZOg4cDx0PiWrw90s33rW99CvV7HRz7yEYcE2fZCoRC5N5T83bBhg1MMbBONj61bt/a1S1EihVe73cajjz6KfD7vFESlUsH4+DhqtZrba1ssFlEoFDA1NYVOp4OHHnoIp06dcgZeo9GIGDe1Wg3dbhelUqmPd5bUU2J5lc/nMTU15eZE+43TxlhePp9HpVJBtVrFY489hvwbBz34YpXc4kQBm8/n8c///M/umUOHDuFDH/oQAODkyZOOJ0R/IyMjmJ6exp/92Z+5bHDS/Py8M2w4rxkHZf9qtRq++93vuncmJibcfb6FQgE7d+5046jjxDKIqKvVqlOe9PzQGOTlCTonfKEwehR8daUlHzhg+TRQ+ZlPKfnKsjsK0sovJV2binh1W6Hmnlgk75PjafikgC1UzlrTupXe6XSwYcMGt3g5SV3FA3QuzlLSiQNEj83i/773fGTjvlq/lmmfUcVjJ6K6FelyBFbOvLUKhgvLp3jUwrQo28czXlTOJALG2TRT0v5PhUOLWxW7bnWw7r0k4vtUblTqRHVxRGWg59YyscPygm1jnfZzXcT5/Mql7UTS1WoVvV4vshWjUqngK1/5iouZtVqtiDIg8dhCtouZscxI5gXqFLKvvfYaNm7c6PZT5t/IUK5Wq8i/sc2iWCxiYmLCIbdbb70VS0tLrt58Po+NGzc6xcb6jxw5EjmiT91/HPNGo4H77rsPY2Nj2L17dx/fm80mms0m/uzP/gyPPvoo7r//foyPj7sYs3pEstmsczf3eis5BYzL6x25Ppqbm8OXv/xlh/727NnTl4E+NTWF973vfQCWE8GYiMV5+fzzz2P//v0YGhrCl7/8ZXzqU59y5zpXKhWcOHEChw8fdn1+9NFH0Ww2MTY2hkaj4ZDvTTfd5Nzitr3crkR5UC6XMTY2hlarhWaz6fYcU0nQazU+Pt6Xi8A5qn/zPeWrz6CMU4j2hCk9iJ9jojsQbFa+de8qpQ2nUWb6El1VJ2SzWecZ0Xax/zZjWde3huBYtwUPPllu27KetG6l+5DnaqwdiwTj6vIxdxD3Y5IFZ+tM+syiSCovIkLf+0loXbdcJBGfJWoMxXfsAqNr2e6PS8sHX7uB6BhaV2OIiJyoFLW9oTnhixVp/FoVMAWeZkv2er2I0TE0NBTZL9lsNl1slkksjOtqjJru1507d0bKo3Lfv3+/Q5M8i5n81zibJitxrywFhRoaGku1MVMlvssbZzKZTETBKsppt9v49re/jQsXLuDFF18EsHLqli2TWcU0ntRYpCsyRM1mEy+88ALOnj2L66+/Htu3b48oWLqjjx071ldvLpfDhg0b8Nprr+H73/8+7r77buzYsQOVSsUZZ7odisiNSVfMyCXt3r0bU1NTEcVEopH8L//yLy7zle2jEUiXK7ByAAxPi9I5GTKM1RhV4z7klbFkPWnWWE+SI9YLNwjZd31r26JHzjVftnNcHfp3CPyEaL0Vq6tnvQrmogLiB8xmxvJ59bcrWReVnYQUToO4HkPuU+2LPmvftUlDFHZqbVk3jPLHlhcito+KWv/vdruRA8X5PPchqotvZmbGnUAU507RpKilpSX0ej13iLnyPM2it33VuGmr1XLIEYDbM0hidiiRE8kXY6WSoRIjCiPPuA/ULvCjR4+6eBndmorSlE+NRgNHjx7FyMgIarUaPv3pT+OFF17Af/7P/xn/83/+T/dcpVKJbJ3w0dLSEm6//XZs2rQJjUbD1c0+cR/s+Pi4u3SAbahWq5iYmMD09LQbk3379qHRaOAzn/lMcA9ys9nEF7/4Rfzt3/4tgOX9nfv373d9XFpawsLCAsrlMiqVCg4ePIharebcsXFrq9vtuqMaeafs4cOHEwUalfe5c+dw7tw5d8IUy6Si5JjoOI2NjeFb3/qWm7NUehpvJ9pkJjyp3W7jP/yH/4AXXngBmzdvxjvf+U7s2LEjuL2sWCxi9+7dOHz4MD73uc9hy5Ytbj+wZvErr3Veca+qNVBsGEeVsS0ziZc2mTG0Nn3yLuQ9s+TLV7FtY1mUPZrXoTIyn8/3nUjmI5t/YpGrRbi+NoW8lOtF61ZL2g7oxLL/h8qIU9hJiCiuDWktnxBatpOLz9r30/QjTZtJNhHMkrpSbMaoj9TCVCXebrcjwinOSo0jXWQsQ9sfKs/yVF1mIdLYjg0jcCGSJ61WCz/72c+wcePGCE+13larhVqthscff9zF1biF4wc/+AEAuIPk1QBRoUUPAbORAeDChQsRQ63bXd4bSQOJLmbtlwpjKpUzZ864k5gymYwzJnQ7Ra/Xw4ULF4I8Yx9p0HDPKxWIPf9b20S+vfTSS+6yAKJ9fY7Clp9fddVVkTZUq1XXB/Jdx11vlcrn8xgfH3ffkbR87bttC8fvjjvuwF133RVrRDCpThU3P1ce+JAvPVd83hp5vvJIaT1o9lkrJ6yc0u+T5JAPOSZRnCGu6zeNd9MHbkLPJcm3N4velBhsnGViMz+tC88y0TdAa9lmtcp81p3+1jbFWYLq5mSf6JLiYtbzQ5NILUEqEP4dR7SKGV/0JV3RJcwTmfi/xmbb7bZDmaudrDqOmmltv8tkMu50Hm58ZxzbLkyOnbpUyVv2g8/z+D+O8+TkpLsdptdbTnjhHlPGahcWFnDfffe57N/nnnsO9Xodb3vb21AoFNzh929/+9sjff385z+P++67D8Cycr333nsxNzcXua3m2muvjfTl+PHj+MAHPoD3v//9OHr0aB//SqUSRkZGsG/fPjz22GP467/+a0xOTuKzn/0sarUa7r77bgDA008/jeHhYezbtw/5fB4PPvggisUiHnroIXQ6He8WFnoUqLRIdK9+5jOfQaPRwPHjxyMoc2FhAQDc4RrA8tYZxh/z+TzOnDmDU6dOYefOndi9ezeKxSKGh4dx4MAB3H///bjnnnvwve99D1/60pfwpS99yfHmkUcecXtr6e7laVo80ITzJUTcVsTsZhKT0XjIhR77F6KdO3dGMp5tHfRe8DIDbumh0cB1TwOIRh95Sa+eRboAIlvmGLenwcbwBr14RPudTge1Ws3tfwZWEi/VE6RrSr1jVhmG1n4I9FBGWVStaJPtD2W0q/eP/2v7ra5JQsTaPh/yXQta1xgsf6uiDA0Av0tyO4ZQk08ZD9JO22Zb12pRZmjgdTHZtqdF0iRdnHFt5cS2W3DinmPb7P+2DZeCxhUh6kRnG4k8LHpVBOpzU6kbS8MGFDrcpqDhCKJHCgRb55kzZyJtp/IdGxvrOxuYpFnaVN6qXAFEhB63dQCIbKFSYp/q9TpeeOEFhyr1eEfW1+v18OqrrzohOzQ0hJGREbzjHe/oK5d91f225DUPS1haWsL58+f7BBJ5rYgaWD6YAYhmVfOwfSo6Hs04OTmJbrcb4Y8maHHcfvjDH2LLli2RdcOtJzxSkpfJ12o11Ot1l0nNK/yA5fG98cYbcerUKZw8edK5t9/xjnfgIx/5iEtUInIlhYCDzmGNpdNgVbemj6ybM4RU9UwB9frFyUC7vjQngTLEykNfuasFNT65nlYJKoVc0nGfxbVpPWldXcQ2kUUXIEknYiaTiexLJAoMTTDWQ4VgBW7S4NFVp23WOqwS9GXbab/0fWbt6o0smljAuGij0Yggdv621nNIcfJZniSkvAwZKBQUcbEWor6lpSXUajV39qo1hvibx7Lx8mu22R4rGEd0rbJ87pGzC5KnRbFOJmMpcqWQtRmXHBeLAk6cOOFc4BqDVWu5WCziE5/4hMt21D2Eqqjf9ra3RRSEPdqv3W5j8+bNOHToUOSsYCKzz3/+83jttdfw7ne/O+IW9hFdzKqIc7nlM5V5AEKhUMDDDz+MxcVFTE1NoVwu49ixY7jtttsAAO9+97udG7nRaGBoaAjvfe97ncHQbDZRq9Vw5MgRd8CGPXM3m826M3/pEXj22WdRrVZx/PhxLC4uRi4z+NGPfhQ5AIGnQu3Zswd79+51CoTzuFAooNls4o/+6I/w3HPP4fTp07juuutw//33u7UyMzOD3bt34/z5866e3/iN33DX/5GKxaIzaDKZDH7rt34Lhw8fxvnz53H+/Hk3dk888QTK5TKOHDmCiYkJHDt2zI3xgQMH8IlPfAK///u/jyNHjriyy+WyO0ykWq06lGvPDWdGvFUW9NJwuxdliJUH6mWjAWrjmHoIBD059EKxDP5Ww5tGhcq9kFcviVgG1yzDKqxP55C63Wnkar98MiTk9VP5rca7lYn63Hoo23VVsBcvXuyzxkLP6t9xA2mZ5itntW7L1VCoTmv1qYWoGbEWffomgZaZZLElWbEhxRv3rC4+lq3HrynZrT2DuGj44+Olr22W9/qu/vbFs9SlBqBPwNi2cA7zyjUetaiLmwlVhUIBP/rRj7B582aUSiXnRqRyp3AdGxtzRkGvt3IA/JYtW5DNZnHTTTdFjAYfbd26FadOnXKol2VXKhU0Gg0cO3bMXVzOpJ/Nmzc7wbR58+YIkqXABqKXZzPD+vTp07j11lsjW8DUyNVylPL5PDZt2hSJ/XJLDgB3jCD5r+iWlM1mccUVV7ix+MlPftI3x2y9Nrar/eLzt9xyC26//Xbn+ieRT1ZhqTFvjXRFhSqrQgmNofXs8w7pnFTlHCeD7Pdxa8SuKd//aT1V1hOp5aWVCwqYfGE4X53/mtArALzl9ddff30tC3z55Zdx7bXX4vTp09iwYUOfy09jA3HK0jJULVpdzFYwx1korEuFJlEWE1H0exsnsJMjbrIxZqkIrNdbPjKt3W6jXC47JUuXpU5IFS52olpiH1mGWraDLAqtS5W/Vfq9Xg/z8/Not9sYHx93cSC2QVEyn7eZ4vodFQ/bSeXF9mqCi/JdEQHLUQ9JqN+9Xg+PPPIIvvnNbzqkpuPR7XYxPz8PYAWRs1/5fB4LCwv4u7/7O9x9990u7goA+/btw5/92Z/hAx/4ACYmJlAul93l6MDydWc8Xzifz2NsbKxP8GpMSfsYoqNHj+Lpp5/GqVOn8Oqrr+KTn/yki1OePHkSv/M7vwMAePzxx91+TSrXWq3m7oudnJzs4xP/n5+fR7VaxX333Ydz587h93//990BDDQ26CpnW+fn5/H7v//7aLfbeO211zA9PY1HHnkEe/bsiRxF+Ed/9Ec4ePAgdu/eHblM/Y//+I9x4MCBPt4sLi7i+PHj+PM//3MAwEsvveQMmEajgYWFBTcH6Kqm25hxeD2HGliJRS4tLUVOURofH3dzgWNPT8mxY8fwqU99Ctu3b3eHXwArJ1JxT7SeVMSy6KGjJ8A3P9X7R5nJI1HZjqT1rAiWZfnGdxCiq9u3hUnbT8ODcjV0jgGf98k37sUnD3zhD/1bZUzIs+h7l+2i7jp37hyuueaawRgToHVFsHoWsW/xqjIA+mOWvjJDdSWhNp91E0I5PkQ46GS0VqZ+phNeEwrshPEtvLh2JPHBUpzi1dgMlY66hNkPdeVYd4uv/b5MRrbBGj4+K13Jx984NKOfDw8P45ZbbnGCym4rYyIVFSxRS71eR71exw9+8APcdtttfQkgN998s0vG0YMo2HfdKxlSnBQUmkDD+OfIyEjEeCkUCnj729/uBPvMzAwajQbGx8e9B7voZ7ncynWCepl4iHj5er1ex9atW3Hbbbc5A9KORTabxbZt23DDDTcAWIkNVyqViIJ9+umn3R5gda2znbVazWV4c9zUa2KNZwpi7YeOAZ9ToueCSm9qaiqCWrm/l/3q9Zb35N5111245ZZbIvKLbnYqVqJ8GoycYzQoOQ8sMtXPtHwa7XFywAdefOvItxZ13ev81JhvGlmoMjUkf0OyQnmt3/vqj5M3aWm176Uqe90KzmRw5ZVXRoSqPZXDWu92QvEzO0HSCFFbVkhh60RQFxD/1/b7TmHhpLeGgU5QbT/jmLz+ycZLKbBttl3cBGK91pUUxyONfavA4rgwi5aJInraSiaTcYqH5+9a4aqLgf0gOtAkGPKVwqjXWz5Enqfi5N84Wi9kiDFeRQGZlnbu3IkdO3Y4K1nb3+l0MDs7i0wm465xA5bRycGDB1GtVvHMM89gZGTEJc60221s374d99xzj1fhkOe9Xq9PSSrV63V84QtfwC233BK5cu7YsWP4+Mc/jk9+8pN48MEH3ee8bed73/seTp06hf/7//6/ASwj1nK5jM9//vMA+uPAwLISm5ycxKFDh/DhD3/YockkeuKJJ/DEE0/gm9/8pss0tn0dHR3F4cOHI96V2dlZTE5O4t5773WK9zvf+Y6Lne7bt8+tuUKhgE6ng0996lN46qmnXPz2+eefDyrY9hsHRnB+WooTpO12Gx/96Edx/vx5t8cZ6L8ggX0ZGxvDxMSEm9sa23/yyScxPT2NYrGIpaWliMeKZycfO3YMvd7KaUtEemy3D2ioMRtH9PgwNuvz7tHlb9c/k8GY3c26aOiwH1oO0J/5b8fIggd1pdOzwOcoh3UbmHrH2C89E0GBi5L2P43eWGtat1p6vR6uvPJKANGAfAidAuGMsrSoJMmqS2JqnBJOQo6DlGsnu6I/X1axRYdKtl+ZzMotOnGWrlrLoe9VcfN5bjeg20djTUDUONHFwMWkn9v6mARB91LISLB/p4nPkJjcpP1TV/rs7KxDVHafZ7vdxsmTJ7Fp0yb8/7j7/9g4ryp/HH9tOyXDxqFD62wcZfrZaXHVqeoKt+sqrnCEy3pVI4zwskGkIogAQZuqqQirogZR9O6KIFK9w76DKCKILAQ1qEFEkBVGpMKAEa7qqgam6lSdqgNM1ckyeXdaJtTZTt6dlu8fzuv69Zy595lnHDu7fI9k2Z55nvvj3HvP73PuO97xDncfKMFGz4bACpDM6eT8r7rqqrb0j97eXlx//fXeYJeenh7ni12zZg02bdoUSdFgak02m8X27dsjQhsjb4HFcoXHjx/HwMBAhEFRyOk0FyW2uvYqDDHg57rrrsOzzz6LtWvXus9o+mw2m7jnnnvw4x//OHJNHPuwfmn6b0ulEmZmZpBOpzE2NuYEnyNHjrhCImfPnsVdd92F0dFRN759+/bhmWeeceln9GdPT08DgMMFzxT98GSsDKaj+fn666+PRNzbQEruWT0Pas3Sd/i5/nTa66r9hiBETzQWgeNVi1Unhcb3v0/JUeVEC7r4nrcaLb/zjUWVjNB845SulYZVZbDcJCSmnZhUJ+YaB7o57XscS6fNGWojjmja9tSc4ZOcCFqiT8dIbcxGz1otyzcv9ksGFVdByMfkFEhISBjJhL71rW/h0UcfddK4ph6ols8iCSptkhhRcuc7HD/v2FS8WkZvce6bR5wpa3p6GidPnnTEnLmYwKJ/aceOHTh16hQeeuihSEF/YLH4walTp3DJJZfgV7/61QXlARPoK2Vxh/7+fqcFK4yMjODAgQNtqUAswzc6OoqNGzfivvvuc4y/Uqng8OHDLk0GWLxKjgyKGh/zV59++ml84AMfwCc/+UkcPHjQvcPqVxbsGatWq0ilUpHALRJm+hsJvEvVp3nU63V89atf9eKr0WhgfHwcf/zjH50VZnp6Gnfffbd75sUXX8SuXbvczTa28P9Xv/pVfPWrX8WGDRuwsLAQiTp+6aWXUCqVUK1WnTXg7W9/Oy699FKcPXsW73nPe/DAAw+4uZdKJUxPT2NsbAzDw8MYGxtDPp+PXNyuwP+poWuQmArZzJtXlwLXulNEfty59oHuNfrTrXuG2qzdl9byRuZuswfsmVXrE90zfMYXl0DhRsFnAaXQYssuNs7nAmsf3Qjmy4WLoydj9aWFTmaTJO/qhurGph/SOLXNTu+qZAvA+W24YZOailXS5HNa/Fs3f9xB5OFgsBZ9Rddffz1ef/11AEvXSwFLl0BznFZAID7UJKbzp4lMCwb4Ss8lBb4zMzODkydP4oknnnDpHQBwzTXXYMuWLU5j5lgZmMTgJGqYU1NTOHnyJABg48aNiZgr9wHb5s08c3NzyGQyTjOiX5EakC+wKXO+zjHXjOMm7m688UZcddVVkXKZPT09mJiYwMzMDJ599tkIXoBFbf6hhx6KXNHGcVOLp2mfebaEK664IjLGer2Or33ta1i3bh3uuecet3er1Srm5uaQzWYxNDSE6elpHDlyxJVhHBgYaBMa4oK6Pv/5z6NarWLr1q0olUr40Ic+FNFyr7jiCldkg0JiCF577bW2z0ZHR3Hs2LFI2tPo6KhjsBs3bkSxWHQWnHK5jNnZWfT392N4eNitj/payehTqcUa0Vr8RM+QMiNrOUtKTxRskJMCz7f9LmQRUrePD3xWJaU1vjUlHjoJDDbfWkFprc+daGmxxetqw6qbiFdrMjZ31CLRgo0ss22pP0TbTQo6Dp+2qWA3gT5L01G1WnXjIdOkdmpNODqGVGrpLlbOWYlFs9lsq+jiAx6+UqmESqXizJ+Tk5MYHR1FpVJBuVx2Y2NlJ66Dav2KE62LTEZC/GezWXd9mk9j7UbgIezfvx+PPPJI2zO/+93vsHHjRocLavuMCqYW2Gg0MDs7izvvvNO9G4c3BUan0tTMCjsHDx7EwsIC9u7di1wu53x5cUCNm1AsFlEoFFytY9YjVujt7cWhQ4dQLBZd9SLd+/Pz864eMeGaa64BsKhhUnPlWhMuueQSvPvd727z3f3bv/0bAGDnzp1u/xSLRXz0ox/FO97xDjz44IMuT/VHP/oRrrjiCnzhC19oY7CZTAbf+ta3cPz48UhAFAD87Gc/w89+9jOMjo7ie9/7XpsJ+fnnn3cEm4ISi2y89a1vdc9t2rTJ7a+zZ8/iiiuuwE9/+lO0Wi3ccsstAIDrrrsOo6Oj2LdvH1KplMu9po+WAsMjjzyCwcFBbNu2LXIVX6vVcgyYVak+9rGP4bbbbnP5zbOzs5GcU2CJ+SltsOb3TkCLAgAXqaznyQbREeIsiSoMWxrqY8i8GCHkYvDl94bmYpknP6fGquNQAVVjTXxm7uUILt3AqjHYpJJC0gn6JJFQn772tQ8f4V5JQaBTW6GxM1DHBltZsHOy7emhtP5bHl4ytk5jpbmaz6j5mmYbMlZf0Q7NCVRzoAo8qr1boqLmad/8Q/isVCqYn5/Hc889553X5s2bMTExgYWFBRQKBRe8wYT4Y8eOucAVJuZfcskl2LJlS+wlCQrMi+UFCWRIvLOVgSZcj0wm48y2NKlagso2U6mUa5dBaYVCweFvcHAwgmua+HgJwPbt29HX14e1a9dGTKSZzOLdsSdPnnQRudZfNzk5ibGxsWCwkf7d29uLG264AblcDvV6HQMDAy7fdN26dXjuuecwPT0dyRduNpv4/Oc/38Y8CR/60IfQ09ODW2+9te0735nxWWu2b98OYFGLPXfuHFKpFGZmZiKaut5Ny3Z5ST2wGPjTarVwySWXuPZViOcatVotx2BPnDiBs2fPOvzR50tTqQY3qiaokb1J6RTHZMsUdhMM6IOk/XNPh0y+neZiA6gsDfClIfnomc+3rd+tpja7qgy2W9U/bqI2TNxn3vQxV5/v1X4eZ5Li891oT8s1aXLzW+nVZ372SZG2LZoQ1feg0rEvitiCmi35P31qACJpBlpdiwxcc1htpC+rLVE7s+tE85mVOtVvHdpn8/Pz2LdvnyPS73vf+9xdoXog9+/fj7m5uYiWWa1Wce+99+Lll1927W3evBk33HAD7rjjjmAEsAUWrGcZQGo3+XweCwsLmJqacsybQkS5XMbhw4eRz+exY8eOCK6BRaI+MzOD8fHxSIH7EydOODOk9dWl02lcd911KBQKeOCBB3D55Ze7G2Puuece7N+/3xWAWL9+vfMr8i5aCjrve9/7UKlU8OlPf9pVbbJrwvEQcrkcdu7ciVQqhUqlgomJCdxwww146aWXUKvVXD3nu+++O8JgQ8z1qaeeclG9W7duxZ///GfMzc3hs5/9LG677bbYs/f2t78dTz75JL74xS9i7969ke9qtRrGxsbwzDPP4G//9m9x5ZVXRkoqEo+8tH1ubg7Hjh1Dq9VyFwQAS1YL7ufR0VHk83l86lOfArBYHOO73/0u7rvvPvT19bmc5XK57M6kXXOa6LuhLWrJYqS8BicqdEvfkgLHoMBxMBdYz65VfEhPrIDNZymUxMWaWB9x43zZUs457t2VgFVjsHFRoMDy8ktVktYoPV/7/CxOWwxpuyGNsBsIMfdOwLFxU1nt2jJf3/iVoVHLVDOtbduOWaVlHYsydY5Dv2OfwFL9XWq3Pp8lzVRWMlefrJqQlTEqQ6egoISjt7cXAwMDeNvb3oZz585h69atkcuciWtehg4sMsR77rkHpVLJMdd3vetdeP311/HUU09h7dq1EU2UgUlMlbH4ZC6k1fTK5bITLihUpdNplEolzM/P48SJEy6dxQpR2WwWIyMjmJ+fdxG/fX19Tts6fvx4pPwm8XzTTTc5P+yZM2ec6XpkZAQf+tCH8M1vfhOXX365s6DoWqtpmReLnzx50vlud+/ejWw2iyuuuALr16+PzDdzvuwkccNCGydOnMDjjz+OSy65BOvWrcPGjRvdPbsUOhTWrFmDbdu2obe3F/Pz87jllluwdu1aHDx4EOl0GnfccUewFjRh586dmJqawvDwMJrNJnbt2oXp6elIEBiwaGHo7+93F8T7zhrjBXp6ety+IK5TqZRbA0YcM8f35ptvxuDgYGSvWoXBWmhs0KMK2Xxfz6A9Lzz/6lqKg27psn1XgTRaTeDWUqXPKvg0V322myBD7RuICumhsa8ErKoP1voikzI0+z3/pgSijLWTmTNOy7MQilZbDqiU1u1mDZlxQvjj3z6TK9CeWxungTFtg/4RmnU5H9W0lXFqoAb9P3zOauMqLPi0T3urETVx/s+5ML0FWPJRsm3ed8v7QkMwOjqKVqvlCr1bf+1nPvMZ1Go1fPjDH3alCLk/qtUqpqennTnWziefz7flY7ZaizcpVatVlMtlF7zUarUwOzuLn//85zh79izm5ua8BIR+xUOHDuG73/0uNm/ejHe84x346Ec/ilwuh8OHD7sIXUI6vVg6kUFawOKeyGazGBsbQ29vL6666io0m0289tprePXVV/Hqq6+6uTAXmjnchw8fxhNPPOH8t5OTkxgYGMBPf/rTNmaRyWQit/LU63VUKhV3Q9Abb7yBM2fO4OjRo3jmmWcwMzPjLgQAgG984xuRfGAArvbv2bNn8cUvfhEf+MAHnJ80Dnbv3o3du3cDWBTKtHKUwuTkJIaGhmJNqb29vY4BM82IuAYQWd++vj4cOXIEjUYDQ0NDbWZTCocqNFp3mOJUU97UwsPPeV6oISa1uLDfJHQ5pDDZZ3he7Y09SWhiJ2GgG+VFaaLSFKWZf1EMFmhnfpbZ6iYLSSmUBJWQqgS0HPOuIpaEm/110op97fsKTSQZmw+61XaBqK+V/wNLppWMVJTh95ynHTPNU1ZTtlIntWOrAdOHxfaZrqO3l2hUKvtU7dRKrvq/atnsnxqWjqWvr6+tmlEcHnmF3+HDh3H69Gl3BR0rJAHAZZddFjGD82IKCmWd1q5YLEYqEtHHyvSlmZkZvPTSS1i7di1uuOEGpyHSnHzkyJG2e1wff/xxF1SUTqexa9cu1Gq1CFFl4Yw//OEP7jMGodCPyIvcuWasGgUsFR/45Cc/iV//+teujbe//e2uZnCz2XQ5qAyqsW4drnM2m8XWrVvRarWwYcMGrF+/HseOHWsryg/A+UV37twZ0a4Jo6OjyOVyKBaLzpIQB81m01ufWGHv3r0YHx/H3r17g8J2rVbD/Pw85ubmMDMz44S5er2OF198Ed///vcBLAZTbd261e1Fja/Q/cL1sAE7PlCfrQb0qPVLrVk8K8zXtZHVeq6YzqKCpAV75rUv35pba6XVvENtX4gWrX3RNG4tgZZ+Lbe/OFg1Bvv666+3OezbOhetJgSaRkGTYjfRvj5mqURaTZEcp41QjgMbpWYZ1mosmg98B4oHhOPy3W5kBR01R9nNF/c/29X8N97cYQkfP+feUD+ujpcQynejr4uVnhSSRigSGI174MABV7e22WxidnbWMViLQwZBccxxQM21Vqs50zGjkRmpPTc3h3Q67apHzc3Nuf319a9/PXbsPBPbtm1zYyU0m01XOxpYJPpk7MViEf39/REtkwyWa8ZCDspcgUVT6r59+wDApeOsXbvWjUG1BAptXO+JiQmXL5rL5fC9730v0vY111yDO++8Ew8++CCmp6cxMTGBTCbTxmC3bNmCvr4+lEql2ApZiotO8OSTT6JSqWD37t1BJlOv11EoFNx9uo888ghmZmbaBKBTp07hy1/+sjMLq5aqwPOkwnoI9FYaG4BomQvPCoUpBlb58MJ2GXiXxJJn0+10zdXipGAVG+vS6lYr9YEqG+ryinv3L4rBWvD5XK3P0DdBBoiEiC+Jhk+j9fWpQEZg/X+WAXUinqq9aoRc6D31n3QKBPO9a+djE9YpRdpD6IvgVQGB3y+ngALf0ZQg9QMx7YiE1paEa7WWykdSiAr5aqxv8EIOBgk2CR8P4+DgoNNs6/U6xsbGnKkUWNx3LOhuiToZ5uDgoNOgU6nFyF66DdS3nE6nkc/ncf/99yOVWjSr33///fjFL37Rcfwf+chH0N/fj/vvvx/FYhH3338/8vk8pqam0Gw2sX37dvT29mLPnj1OU6ZfkL7UDRs2oFQqYWBgwN3CQxN1NpvFgQMH2tJliP9ms+lM0tu3b3da6r59+/Cv//qvAICHH37YmVMJdB20Wos+aatVfuADH8Dg4KCrTXzjjTfiiiuuwC9+8QtMTk7i+PHjyOVy7gKDmZkZAPC6AygwfP7zn/dqydTEZ2ZmnDavdaSbzcUa1LwYYXJyEuVy2UUGA8D73/9+vPvd73ZC1xe+8AX33e233+40JtIyVoliMROe0U55oVZwVuZF5gYs+XVV8Oee9oGeI6Uj9ntfFC7HlUotBQ1Z65ht12cO16BTfTeUkhlSzHx9XkxlJzKWVW3co+Hwc2uzt8/xXW5ybh7LoG3kqg0EsO0p8FkfU07KYO1ickwh5qBtLwd8wgilT9VUSbjJ5HQeFoc0N8VZGzoB27ah85pwD8AxWBs9SEavdY1DUibHuRxBwAKZqmpGqVQqcgtOq9XC0NCQ85VRy2AUqIVqtYpCoYBsNhsxUTPlhXNnhDXnogTwhRdeCI75Xe96F+6++25MTk4CWFz/48eP4/Tp0yiVSujr68OPf/xjnD17FhMTE8jlcu5ZPQuNRsPd7/rSSy8hlUo5M2exWMTAwACazaaXuQJwpTJ5L+/WrVvd3OhjBeB81wrcA6xlvWbNmsj3epUf4eWXX8bCwgKGh4ddn8DSDTYhd0CtVkOpVPIy1y9+8YvYvn17UPPl3qxWqzhx4gRGR0cxOTnpckwB4D3veQ/uuOMObN261b0zPT2Nxx9/HLfffru7NYnMsdlcvLmHDJeBcyrwh8bC/eIrU6r/W+02FO9A4LnSZyxt1TEQeEZorfRZm9iG9mXpLJ8N0Uzf/0m03f9O5gqsIoO99NJLI6YLIEowLcIjg/IgQ235qgFqVCuAiFQUYhiqNekC2/EmAUqdbNNnXiVY34QP4rT50NjYnsUt/X0hZsTP+LtT/q0PNGIxnU47oqy+Rj4XMgFxzmRI1qpAPyE1L+LO147vM/XBEOhr4iUG/J4Rr/SvUktjicdyuezMTqrlKAwMDES0XRZ816vLgKXoTo5xZmbG+WIpkCh89rOfRS6Xc6kiOo+DBw+6VJN0Ou2YDm/JabUWfXBHjhxBLpfDPffcg97eXuzfv9+NgW0eO3YM3/3ud/Gd73wHa9euxdvf/nZkMhmnUV9++eUYGRlxwV2jo6MAFvdNvV7H1NSUi1gGFss80mLBqkYDAwNOe1N/3/vf/368973vdcFAd911FwqFAv7whz9g48aNXkZYr9cxOzsbNGn29/ejt7cXH/nIR3Ds2DFnxr3mmmsSEWhGDO/cudMxfUY00/1B3LHM4u7du7F9+3aXq6wXrqdSKUxMTKBcLuOf//mfcdVVV+HBBx90gXpK3+xYUqnFVC6axJX2WFeJxjnw3NCMq4xHz7uaddWMG7Ii+czdQDwTJE7VTafM1TJa/Uz/T6IMhBSdiwUXRYP1MVX7jA8sUmmisAxWF0bDr+M0HG3LgrXVd5qjPmM3qJo17HxWCqypiOZHG9SkGpmOXaONuw3MsoSAGh5Nwup3Ulz4GKGmD+nnrK1M4ho3Rts2D7BPOqc5T3007IMMlT98TveXj7m2Wq1INR9gqTiEVtRRAkH8VCoVFItFnDhxApdeeimuueYafOADH8D+/fuD8+U8xsfH3X6v1+t46aWX8MYbb6BSqbj1LhaL+MUvfoFCoYAdO3Ygm81iYmLCRfaSuBeLRdf+2bNnkcvlsGfPHmzfvh2nTp3Cjh07MDY25gi6apqNRsPdpUsggwOWfJdMo7Lr/Q//8A/YsWOHw9GBAwfQbDYxPT3tcKbr0NPTg0ajgVOnTkXcE7oexAu1ed5pSoFN96X+JlBjJNMH4AQEIHoxeK1WQ7lcxsjIiAtis5BKpVwu9K9//Wv8+te/xn333RfZoz7GxT2q66UarwqfumdJH/g7zj1llQ9dH0s3OGdlxIp3+47tw9d2COyzSeloHHNNogFfKKxa6yHpw/dMpzYU7GYBljaTvueTZrlpeKMKzYDLGVuScasJ22rKIea/nH6tWYmEklpppVJx2qXijczV5uTFgT0IoUNqfTo+rZNCgA1EYB+UzqmBqSCgkjj78o1FtWn9npGxzCO1wgb7pOlYcyxVI1AoFouusITm91IrZ6m9/fv3o9FoYM+ePejp6XFBVCxNyMvMGcAFLOWfcpw0K5bLZXdROLCoWWWzWRw7dgwLCwuRG3+Gh4cxMjLizNE0VZ48eRIHDhzApk2bcOONNzqGODg46Grssg7yqVOnMDg46MyeNoCKQYl2PxB4MQGZ8okTJ/CDH/zABVAdO3YMO3bswK5duzA3N4dNmzZh/fr1rpzkP//zP+NXv/qV881+6EMfwsLCAjZs2NBmImY5yfvuu889DyyahVUgYfDUgw8+iEql4hhw4/ztOoxgtqUmOf6HHnrIMfh/+qd/wpYtW7Bv3z6USiUcPHjQafgWUqkU1qxZg9deew1f/OIXceuttzpfealUQm9vryt8Ui6XneDG+s20ltElVCgU0Gw23f4h7Z2dnXWCBtfVaq5kvPoeA0ABtAmYSjfteWd7/M6nwVqtmb99GqfF+UowRathW9P3SsFF9cGudLvUQoH2BY2TWij1A92ZQ5cD1gzNz7oNbtJ3fRvWN1/6rTVftJPG3s044t4NmXsUbD6fbZvvUliy1oAk0d58zs6b/WYy/ivm1JwGRG8oIfOz422cL6tIfxf3JwUgtsfUk8nJSfT19bl38vm8Y36WgdOcrcyd7TXOF5RvNptOsxwfH2+bE2s9E2heLpfLOH36NE6fPo2XXnoJf//3f49t27ZhaGgociuM+tV1fhRYOZ6Q2ZDvqn+7Wq3iV7/6lfv+qaeeQr1ed6ZcmpoZ/PP4449HCkM89thjWLdundNsS6VSxL9bLBYjzJVt2XrSZGpPPfUUnn76aWdGZh1nNccq0KTPwiS//e1v8e53vxuFQgHPPvusq6JkhUPuiU2bNqHRaOC3v/0tNm7cGLGYKI717labR8vny+UyFhYW2gpksCKamnt9DNFa2RTsOdLzlMQEa9tVOm1diKutVfrGtlqwajPxmQZWA3iwkgAZqwYWLAfUb6ab1bdhNTJVBQJNYfK1T61ruXVDacJUv46m0IQsC8QRpUlrQos7hApsX7VHiyP+rwQbaL+Zx86LBFw1TxJ6q5GTKKnPaGFhwZn4Ol1FqHuEaS3EK3HFYvj9/f3Ytm1bxKJAPLBvYDG95cUXX3RMnrew8HpAiycyjhMnTrj1pLY7MDCAwcFBzM7OOmI/NzfnfIRx0NOzeJn42NgYnnjiCWQyGaxfvx5btmzB2NhYmxA4NDSEhYXF6/XK5bIr5ahjrNfr7vq7UJ+cJwB3LysvU3j55ZcxPj7elu7C6+s+//nPY3BwEPPz8+jp6cHIyAhmZ2fx6U9/Gt/+9rdd8YhNmza5IhCE97///fjEJz7hvayhp6fHXXGnGu/Zs2exb98+rF27FuvWrcPf//3f41//9V/ducjn87jjjjvc+MrlsrspiIFRpVIJu3btQiaTwd69e7GwsIADBw6gr6/PRVrTaqDWGLv/KWTRt0pBpVgsolwuY8+ePThz5gx+//vf45ZbbnGR7/l8HqlUylWe8gUi2R/LhC1Tp0brEzqsu8q2DUQtm9aKqMK5TxO2n/vm0olRW1qt2vlKwl+kBnsh/aj0eCHj00W2i+3bsHaccf5ONdcsd2xANIQ+NA41kXBcNrcthKck+FMfkO8d30GIY64qKOjBpBSvDNH66XV+neqg+ubIvvU9mqDL5XIwD1P7TqcXE/3Xrl3rxmXrT/tMbdwTjUYDr732GlKplDMBM4e31Wq5gDAfsaDAo+Y/phkNDg7izW9+szMjcu0Zna7zoFZWq9WckKOEtBNho0BEQc7iTG/usTAwMICJiQl3Gw0Ar++VWm42m8U111yDSqWCd7/73V7NniZW+kwZ2MarDTXfOZ/PR+bJVCbFsQY+EU/U/p544gmn5WfO50JzT/B9IBpERGGcoEK6WoHOnDkDYPFOWw1wooDJcp4WQhqcj+n5nulEH5RZWnrDuepnIaap/mWrQdvnl0Pb/6JMxN0Ug1CwyEvCZLiJ1IwRYnDcyBfCXK1jX4mgrxqL5rlxI1n/oR1rqMRiknGzPV8gGIFj4HPKBGie8vWXdD2S+HVDKQkhIlAqlSLEzhJi4i+bzbpUmVwu5yR4H/AdVgxTRkftl0SSzIZjJnGdnZ3Fj3/84461cEksWdSBQU8MgmLKjBZ94FhGRkYwMDCAmZkZzMzMuKvhNm/ejG3btmF0dBSDg4MuAtmH12KxiO3bt+Ppp58GsHh36qlTpzAwMIDPfe5zDkczMzPYs2ePi4Smz/TLX/4ygMWL2Tdv3oxDhw6hr68P27Ztc75mzuv48eN44IEHHJ4sHD9+HIcPH3Ya1f/+3//bCQo9PT2Ynp52vsdWq4UbbrgBV199dcSfyfOWz+fxjW98A/v27XOa52OPPeb2F/OrfSlVzWYTDz74IF588UXcfffdyOfzOHz4cMQcSoGgXq+7SxT0vLz44ovuViKmQ+3evRs7duxw69fX14d6ve58zRS2yIQptHAPDgwMuFuNuBc1Wpl7lhW38vk8hoaG3P7nvgKWLEKkB9zH1vVi4ybigOeb58dmdVgFxtJKfZcQEm45D8sAlZEm0Vw7CfmroRBelCCnpGCZDD9LylT4O6QBXKjWGhqz/u3bNL6xqVnCN16V1nR+ScEnEdp+7BisL2S5oG3pZ8sVGAjWB2QFGR9u7aFUIUeLTKhgxufs2gLtQoEKTAxEYjt6uYD2QeGJEdYcC32svj1P07AtYVcsFvHUU0+5K/Ti8hCbzaZjrsCiOfbw4cMYGBjAyMiI04TI7C+99NJIkRfCFVdcgd7eXickUnikL3lychKNRgMPPPAANm/e7D7XFLZqtYpf/vKXePOb34xUajHCl3mkQPuduzRJlkolpFIp9z01m6GhIfz93/89vvnNb+KGG25w3xPPLPBhgYLbCy+84PaTCuHKSDVfXOGyyy6LmK1ZMSkuZY/gE9KBaE1vxglYyw73Cq0OqklTUOb3Voi3/bG9pGAZW+j7uPe70Rh92q/+tmeXn+vf2taF0qKk8D/GRGwJIhHGTdUpKEi1jiSfXwgwIpTBAzT3UNvhfHRza6RsKpVyxL1UKjnp38cANWdNg1vIFOOYoS2ar8BxW3OX+iuJP9/f2o6Oh8R/uUFcOnc7Dkb2Ep9MpQGiV+HR78s0EBJ43UuFQiFy68zIyEiEmVjBSImX1fZbrRbWr1+PmZkZl3/6hz/8AZ/5zGcwNjbm5kNJXKPXqR0z+rZTXADzT+v1Or7zne/g7Nmz+OY3v4n169djeHg4UlmKTN+OX+Huu+8GsBhcVCgUcPLkSRQKBTz99NOYnJx0ftZUKoVnnnkG9XrdaaqsfJROL+bdfuYznwEAd5Uei/e/4x3vwC233IKdO3eiv78fg4ODKBaLeOONN9xdtIcOHXJ3tNq90Gg0cOzYMfz85z93NX6fe+45xwjJYL7whS/gE5/4BFqtlis7ye985TTZPm/UmZ2ddYyc+01N5r6Mg2w2i6GhIYyPj7u84oGBAezcuRMjIyMYHR11+MpkMvjkJz+JV155pS1OQDVTzrlarWJ+fh6Dg4OuVrbtm9HqOi7uSbapQqAyI6ulq5mfEFJWLF2wbgQfE7PCfBK6rM+Q9mkBDB2bFttRZtyJhgGLa/D//t//ix3LcuDiOEk94NPMQhKNMoFuoRttzPYT916IufkW1We6CI1rufP0gU+qs2Plb93wy7E6rCaQEKigkU6nI+kgKoSpYBayKFBACq13yPLA9ulH46GmuffSSy9Fq9Vytbi1/zjzmS8IzAc0qQ4ODuKZZ57BSy+91CbU6ThZ8YgE6IYbbohosYRisYjf/OY3mJ+fx2uvvYZNmza51ByC3gzUai2aIhl9q4FNxH8+n0e1WnVlELUQvNUmrcnRClepVCoS+HT8+HEMDg46wVYvk+BcQ+vHmtAqgNAnrn1a8J1N7iMGvlGQY/Cb1rFutVrOhxtKPVFmSO1bU2X0HOheBvz3a/uYCz9XZhtyCflwEBq373Pf+0noa6gtey47jXU1tNJu4K/+/Oc//3klG/zTn/6Eyy+/HGfOnMFb3vKWtu+tmYKE0Gcu5fPA8urjJgU10ylDCuXI8h3V3viOSnD6QxMP2w+lCVlNkO0uB5i6wYR6S3ztmLtlrED03lcfg1BNeznQarUwPz/vfG3UsnUMhCSHmnD8+PFIRPDAwIAj1J3GWqlUMD097dYpm81GImMLhQLK5bKrVawX1vvGSU2YPti46/UIZO7cswykIb5HRkawsLCAsbEx1Go1jI+PI5/PY/v27Wi1lm7MYfRxqVRyQT0f/OAHceDAgbbIUd8YKpUKxsfHI6kzv//97512SdMqGQ4jn8ncaElhFG2lUkGj0XARr9rXiRMn8OEPfzgyhs2bN2NwcBATExP4+c9/jn/7t3/DO9/5TuzevdtdF2iFo1wuFxnvvffe6wr785zYM0E/Kc30hAcffBD/63/9L9x6660YHh7G8PAw+vv7cejQIczOzqK/vx9XXnklrr32WneFYie8EmcUJnlP7tzcHObn5119dlpCuO606ExMTLh9F9rLasFqNptOUFE86fz18+UwSftuSIDxCR+2/Ko+q/SX4/EpP9p2aMydeNdy4KKzd0pO/NtKVf/dEgchTiuz+Zc+advm5+r3uolCmm7cRuwGLF7twdH2u2WGPsZl5xunQSdtM3RoiCfFtX22cb6+MZkR8xkZoKRaRydzFftS0zsZvmpk1KY07SJu/mrKjCO8aqLjO2ReaiJTzX3Tpk1Yu3atu7OUxRLy+TxqtRpyuRyOHDkSuViAz1nt36eJp9PptrzX4eFhjI6OuiAm9kmGPDs76/BG/BM/x44dw9zcnMvlZF5vCDf8Lp1OOw23VCo5YcUX2GQLYXCM3Cu86WloaMg9QyHIrmMmk8H111+PhYUF/PznP3dR3awYpZWZrLtrYWEBhUIBqVTKRTCrJklrBfec3j1LfNigPN2jHK+lt5b2+JiOvueDkBm5EyR5NiQ4+2iXzzr1P4WHAKuswf71X/91UFIhdIuMpFpLpzYssdLPSTA08pdA6VJ9fvquMlhNebG+Tb6jmqweEhuxuhxgwI3PvwtEGRQPJQl9J7CR1Kr9K5PkM518i8BSIIvFFRmItSgQT1ofmH2RGE1NTeHo0aOYm5vD888/j7vuugvbt29vq+KVZB9RyyTONMfQJ2gsZ2/HaeGqtTLYaXZ2FuVy2a01GZIyQxJrJa7a7ubNm11066ZNm7Bnzx7cc889LmJbtThg6RYjYHGPbd26FZVKBRs2bIhcafeb3/wmEqzE8dlbgm6++WZ87nOfw/j4eNutOjfffDM+8YlPYOvWrZibm8N73/teN86JiQncf//9bh0ffPBBfOpTn3LvfuxjH8OXv/zlCANptRYvbnjyySfdc1/84hexe/duTE9Po1Qq4TOf+QyuuOIKPPnkk8hmsy7wa3Z2FrlcLhLJzH23bds2PPLII/iXf/kXfOlLX3Kfl0olx7SBxUpb1IALhQJuuukmrFmzBocOHXJVs+K0O5/2yM+p/dP1oaZlAE6ooT/3QuIkrLn6QoMyQ21z3K1We049+7NR0QoWZwTf+P4iNdhORANYPpNdSUnFSnokoj7tKSQl+Z5Rgma1gZB5eaWkMGsWDoHtOwnogQ+15fvfx4TVV+mbuzXb2Wdt2kSxWERfX58z61WrVVx55ZWuyAGD1NR0T4JIYhQyFbNPa1Lz4UZNoLq3KPBoAFKSNVcBjM9qhCmFEAYdMfiOUbah+ahvk1WLtL/QuMg8BgYGkMvl2hjsTTfdhPe///347ne/6+Y3ODjYxmB//etf44c//GFwrxYKBRQKhUiNY5ZGVGEsl8vhb//2b1Gr1XDu3DlcdtllkbFTYBgYGEC5XHYBVmTQ1AjXrFmDdevWOTrA2tozMzPo6+tzxWpoAclkMli7di2AxYhiYEm7z5xPH6QQyDVPpaKXa9CnH6KXcfuD41SBkQxWz2knEy0hiXC4XFqVxEpmNVYVFpXmxGngtq3/Lli13jsRdtWAul0gtq+SU7dj4/tWutVxa7Qaiar+r+35JCTrQ9K6xIwi1qg67Vsr5MRtyLjDwPFabTPEAH1rQSHAfkdcqblNcWTBlw7DeTOKtr+/33vlmBVSmERP4prP5x3xmpubw5EjR7Bp0yZcf/31eOyxx/DMM8/gM5/5DHbt2uXampmZcf5D5s02zpcxTKVS2LFjRyQqnPPXoBobGU6geW5+ft4V8Gdu6tq1a/GP//iP6OnpwczMDNLpNHbv3p0oSp4MQC0MAwMDkeCjVGrRLH706FEUi0VceumlyOVy+PrXvx60TKiJd9++fe45X9Uffecb3/gGTp8+7XJmM5kMfvrTn0a0w+9///uRyOP9+/fj/vvvRzabdQwOAL75zW/im9/8pvv/3nvvxa5du7B3714cPXo08iwArFu3rm1sExMTGBsbw9GjR3H//fe72ANCoVBAsVjEzp07cc8992B8fBynT592z/G2I167R8GrWq1ienraVYkCFu+Q3bFjh/O7Uiix0dr0v3Pfzs/POz9uo9HA7bff7taMNzgB3ZcvpeDWarVcwB0AN35GJVuB1ELceWc/QDhLII6WMyDM+qDtO/yOmril9RREkhYMSqWWLnaxtG+14b+NvS9HY4r7uxtkJe3bmtn4jl1UH1PyfWalSEq5yuCVoCfVPjuBrx0VJqx5mnVP4/BEqZltdApCUybuq07jEyJsFC4ldBUUdIz0pQ0PDzsNY35+Hi+//LIr/M5xsn4uU2eOHz8eyTkkjqhxUOu0ZRB949bn0umlK/z4P4kuCSG1mVKp5ObLQu+83o3pLXxeixL4NP6hoSGXjnTu3DkvgWGKUDabdQUafK4Mgj1rrPykkbP5fD7CYAHg4MGDGBsbc1fppdNpjIyM4JFHHok8R/McsFiWsa+vzwV86eXmADA/P48rr7zSXQJAJs7LG/SC90Kh4Pyy1WrVfTc8PIz5+Xm3J+n2GRkZiQRf1ut1vPrqq67vzZs3uzrNFCivvvpq3HzzzcicL6Gp+O7p6XF9MuWHzJQmYRbZUHeVBY1a9zFK3zv6nM/NohAK2vQ97ws8igPua41J6ETf1Fpj6Y2+n4SOh8zrqw2rqsGGtK9uzApEoi9oiJogsLTQSdoN9a9BAmxfGWon6S3JXKjx0axHExL9j1oGUOd7IRuC87Hjpn9NtTMWSKeUyaAKC/aQJGGwKlVTo7PMk0BGT6KSSqXcbUA+LZnjp0ZBOHHiBADg29/+tqvE09vbi3q9jtdee80FozCH8yMf+UgkApZ5ylwv9WeHLChkOtRmyCwssJ90Oo1yuYyvfe1raDQaOHfuHIaGhrB7925MTU3h05/+dFtkL4UD35206XQae/bscfeScn9pBDaw6D89efIkNm/eDGDxwvQ4/zuZOteKVZfINAqFAkZGRlAqlSJM9oEHHsDU1JQL6AGAPXv2uIvgGRD185//HO9+97udMMF5tFotHDlyBPPz89iyZQuAxRrB3//+93Httdei0WhgdnYWt99+O770pS8hl8u5qGkAeOihh1zlK2AxT3d0dBRbt251pnMKGr29vdi1a5d7ltHPr7/+Oq677jqMjo7ivvvua8Pl6OioE+p4ifzCwoJb+4mJCbenaSlJp9PYsWNHJGhM89yBqLDOe2A5TprIrQVOGSPXCWjXru3aap4saXdIS6TP31oJfMD9Z5WTkBLC9uzZskJikjgVzsVaCy8WXBQfbCebftz3nSQdfqeF9/lep7Z97ei7IZNw6P04c66Oi+YNlcqsKVLNdsqIkvhQ7JzYDzc5N67v4GjUp61aBERz7ZIESvgOrNXwLI44Zj6rPkxt0waj8btms4nZ2Vl873vfc2a9DRs2YHx83DEo5kJyDu985ztRqVQwNDQUqQtrD2RI01YNlVCr1VAqlZzvcGJiwhUHANqDT7Zs2YJqtYrZ2VmHj97eXlxxxRWOCdOHTCDRZZoRx8P5DQ0NOaEkFGS3fv16TE5OtlVP0sA3tXJw/qqZN5tNFAoFNBoNbN26NeLjBIBXX30V9957L2666SaMjY0hk8m4EozpdBrFYhE/+tGPcNttt7URbWp8qVQKN998M1566SVkMhm88sorrhwjb6VhFSpejDAyMoJbb70VH/rQh/Cd73zHrUsqlXLBPnv37kWj0cChQ4cimi/XgJ8xQMiHS1oc1PzJc273SEaimzUtTxmPPfPA4j7XPqy2eyFamvapJmL+aACitq3mWgWfn5T/dxLE7bxVMPeBVcJsP0n7Xg1Y1d6SMDcSyjgNKGQiANqRqmYIy/RC7fuYaxJJR82cNuHcQkjS0lw0HjRKunY8VsKzGl9IIuTnylBUS1boFLxD85ct3RYSpPhOrVaLEAb+HcegWVlJi6UDS8SqXC67MXDNafY8ePBgxATZ39+P3bt3u/9VG8tms9i3b5/zXylR1FQIi3OdH9de17hUKmFmZgY/+tGPACyuNZk8fc/UMHp7e7Fjxw7Mz89HGGx/fz/e+973IpPJYG5uDqlU9IJzRhHv2rULg4ODbjwPP/wwzp49i927d7cVjFAcNBoNDA4OYtu2bW3fq5Zs928qlYpE09brdZw8eRKZTAZHjhzBfffdh1Zr8fL2Q4cOYWpqCv/2b/+GDRs24OjRoy5iljA1NYVz586hcf4OVotj1iR+9NFH3TgOHDiAT3/6067/l156CeVyGSdPnsTjjz+OXC6HXbt2YevWrdi6datjsIzoHRoaQm9vLx599FEAwA9+8AN8+MMfjjAvCgIAIqUcLTDvVP+3uGTkOXNYKQi1Wu2R/qRXarbt6+uL5FsTN1ZID9E6FeK1H/7WmAMrXNOlQgavdM/6bLkHrUDdCSzT1gwMjt9q6Pq5VUo0hcnm0FpQ3rKSsKom4je96U1epmjBBrEoEyFoyot9h+9Z6FajTSIMcCx2kXUzdQOUGjlOmmmsNqxChu8AhQ6UasuUzG0fPDCdrAzWZK5tcQwUEBhQwbaV+agG6xsv22dkpeKWDFeJEv1/xWLRMY0bbrjBFVBvtVptZfh4VR01QrVaKM71wnOrsddqNZTLZceI6PslDA0NOZ9uvV53GhsJZ6VScYyJ5mcAmJycdP7ZbDbrbo4hk6tWqwAWifjg4KAj2sQhANx2222OKFs81+t1zMzMAFiMGqbpkLijUEHC9sEPfhA/+9nP8NBDD3nLGRJvvqv6eDftiy++iO9///tIpRb93xzvkSNH8MMf/hD9/f3IZrORiw4UmJere3R4eBiXXHIJ3vzmNzuf89zcnMNPaD9/9atfxde+9jX86Ec/wvDwMK677jo8++yzKBQKOHv2LEZGRtDX1+d8sXFQKpVQLBbR39/vcll9QtjMzAxqtZorAsFazg8//DDe+ta3YteuXd4zoUzE0gP+tqbTEL2139vP+bdvDprT7cuusG362ghZeiyoJk1BGkCEWVtcWOGbn/v2wMXUYi+KDzaOwVrtVG3lViKypgtrGtG+tX393JpNfc/5Doi+78u7Uj9KEtxYxqkBFSpkWNx1szl48DQ4iFGFGtGnGmDcmH3rqJc5kwGp73JgYKDNXxWSaDXHM5VKOX+VmiiVeWvOYL1exw9/+EOcO3cOrVYLIyMj+NKXvhScD++DJYR8j5xPpVLxMlgSzkql0naR98jICEZGRrBjx462dhvnL8guFov4zne+g0suuQRbtmzB8PAw7r//frePWLSAkcn0CTLimlo+n+eaj4+PB9ezWq3i8OHDGBoawv333x/RHKrVqrsxhnj/2c9+BmCxalEcg1XfJaGvrw+Tk5Oo1Wr4/ve/jzVr1qBarTot9eDBg3jyySdx11134cEHH/S2bbV2xe/Zs2dRKpVw/Phx1Ot1d1ct3wvBG2+8gaNHj2J8fBylUgnVahUDAwP42c9+hmKx6O507XSei8Uivva1r+EDH/hAEJqUJQABAABJREFUpFyiQrPZxA9/+EM8++yzziydyWRQr9fx9a9/HdlsFpOTk15hiHtetbOQIG9pXeh7Syst7QsV9ACi512tYJpipIqN9sM9bC09vnHqWIvFIgA4ISoUg0FB21erOASrobVGxrWqrSNKmEPaoxJuS+h14ZTQ+hiO1Sp9/fiCpUImUVuhJs4HoD92XBZ833FTk3loEW+r4WsEadxG9R0UHgoy71Qqmo/XacxW0CGBV9yTIWUymWD+pc5HDxP9fhQ26DdW7V2LmFPCrVarWLduHS677LK2CGUf8HJwMhMbZGXnznnqpe59fX0YHR11goGvapAPSARGRkaQz+exYcMGnD171gV+kdEVi0VXTJ5EmbjhbyCqLTBIhuvKIK/JyUm3H/r6+rBjxw4nyExPT+PAgQPOpH755Zdj//797oo8gpqEAb/JUb+jKZZjv/322zE0NOQ0ea4DAKd1sigILzC/9957MTY25p75+Mc/jo0bN2J+ft6NP5vNYmxszKWiVKtVnD59uu2e2M9//vM4duwYnnnmGbzxxhsYHBxEoVBwZs/77rvPRUL39PSgVCo5vyvnRC2frpSBgQF84hOfcGlbBFo2uB7r1q1z/ncGhfX19eH+++8HsHTHrk/QU3MnsJS+oqlE1nXUDf1J4sojWJpjmZlPu+X3GvuhoJYq0if9TeZuBQieO1bMYj65MnA9Jxy/0hur6Kw0XBQfrDJYoB1RJNj8zhJcn8TkA9uubyNpm3wnJBFa04uPoCnT1j46aYQWeFCosYWkPJUEfZKiggZbKBOkr0WLhHcaqzJPDToK+fYqlYojgJ0EHusz52GjxqZBJSSohIWFhUieKQB3IXkcMDiIUZ5WO7Vzp0mPRJcM1hcd3AloVqcPcmhoCJVKBcePH3dSeLlcxokTJzAyMuKEFO5T7l8WktC5WuJ39OhRAIvMkXjmHa6EmZmZiL/6zJkzOHLkiGMg//zP/4xjx461mW9tnrj9jsyTWt327dvdvaUEFrmg2f/48eP4j//4D/f9Aw884ITB2dlZvPHGGzh16lTksvfe3l4n6FSrVfzgBz/A008/3cZg77vvPtx3333uf94cRBP7PffcE1mjqakp9PT0OIGO545jJfPN5/Oo1+uO8QFL+0v31qZNmyLXDbLPWq2G48ePo9lsulQsBatV8lxQY1b62sn8yvYUkioGQPR6vVYreimBKhk+ZckqR3Y+7J/40v1qaWqr1XI45xpynylNoqBucWljd1YLVq3ldDqNN954I8KAiCBrQ/eBBrWoCdOaN3SD8VkgLKX5tMI4zUX7tJF1fMa3oZezaOl02klhZBi6WTgObj7LEGi+scxZAxd0zMocOh1K6x8NCST0g05MTDjGSMLHOZBIsR2aQW1k8cDAQMSHzEPFgBd+bm95oX9WP+MhJg5J6NgvnyF+CIrjdDqdKC2BEjkFERv5a/csicjExERk/9Jfy0sJqP0wXQmIlsNUbYaS+65duyLaAABXXnJ2dhb79++PFL4nrF271j2/bds2DA0NRbTZZrOJqakpLCwsYNu2bW2aF8/59PQ0HnjgAWzatAm7d+9263Lo0CEcPHjQPb+wsICZmZkIcwWAz372sxgdHcXx48eRyWRwzTXXuML5x44dwx133IHLL7/cBbz19fXhve99Lx5//HF3+TmBVwnyWj9WoAqlWtFykEqlMDs7i927d2N4eBj33Xdfm2CpTAGAy8fVYCkg7Iqwbi77WU9Pj9tTZCI8K1aLtMzSWt5U2Nbn7DMqeNszrxYTy0SV4asiE+pL60z7aDOZt08RYo6xKhO+XGGl4fo7pCitFKwag02lUm0MlmZNn3RjCY5dYJWc+LuTBqdt66bzSYg+UGc7EL0xxrfZLhR0M1nzNCFOO1aNT8EyWPYVZw3w9Wt94L5nyuUyUqlUhFnQ78t1oPlTI3RpctMx+fJ2qbGSqSjDCWn8lGL1MnTe3sL++R1xw996cNVcFQc0WzG1wRaqtxGNnP/w8DBaraVCHxS21G1AHJHYEickuGrGBBZTg+xa0aw+NTUVYa4333wz7rjjDnfTDt8bHR1tMw+3Wou3HNXr9TZGRqBwAACnTp3Ciy++6PbiyZMn8eyzz0baKxQKkfc/8pGPuIpahw8fxqWXXopHH33UXaDOaOszZ844xtPT04ORkRHs2bOnTeOuVCqYm5tz/uu4vFAruDG394UXXsCDDz7YUcvMZrPObNxqtSJtWbDuJQWNb+CaU3O1zMEqBJbB6vN2vL5+bSyMtuGbs9JGn8vMuroInbIJQqZlfqZlTa21TumC5TF2vj78XyisKoN905veFEG2mhdVGvExDPuZLY+XxG9gNx7HlRSRcZrtagAJLQOQQv34AgpIgK3/QTccAMfgVDKmCUZNj7o5NXiA+CfzoDZJJkep30qhZJzabqVScXeJvvLKK/iHf/gHDAwMOLMtNU4SEx4CHiim1HRK8eIh7O3tjfivFahVhtrRfcT1oSmfQJMVx6l1jhk5a/e1/ZsEleZnMmsKXWR+XD/FCU1kPB8qHPL8cP/39/dj165dzv+Yy+XctXsk5DSN+iCdXiySQFzSrF2pVHD06FHMz8875v3BD34QAwMDmJiYcPgaHx9HuVzGddddh1wuh9tuu81VrnriiSfwiU98AoODg+jr60O5XHYpNtdffz3GxsYwNDSErVu34sSJE9i8eXNk3+dyOWzduhX1eh1HjhxxEcr5fN7NEwCmp6ddLWXiToVEjR8YGBjAu971LmzZsgWp1GJeLt0gLC5BLZrMube31wUU2uv3CBSkh4aGnFWAfnfVwHSPhJiY3U8EVUqAZFd/ch7K1H20M6Q1829rcVQ6rEwtpKGGgMqI9mlpvGqydmyWD6XTf4EXrtvNAERzpKypwr5LIKEgsbXfh0CRHJfLGDf+bp5PAp18HUocQ4JAKNzdHmBf8XCaWXU9yGBVK9JgGRWO2AefJYPV/L446V41YNYgfuKJJ/Dyyy+78bBsnPW/Eydk8knubtX+6Xvx+ZzjLCF2LYhDIGryIzPk/Ei0ie+QxcAKIxxvb2+vwxH7rdVqKBaLkbPl01p0rMCS31eD07LZrIs2DuHRJ3SwTfpSuRdombBm3kOHDrn9xOd5Ny2ZJdt98MEHI3sznU5HfKm8Y3V4eBhDQ0M4ceJEmwbE/VGtVt1F8CpkcQzFYhHlctkJmbQekVGqPzSbzeIDH/gAcrkcWq2Wi+Zmu/yfY+fa06rEYDqLRzJYVhRj+hRxEre/Q5Y5e94tPpOACpM+7a4THbNj6DSHOMtcqH01K/va9WngBM5J21gNxWnVGWw6nXYbVzUkZbQ+czEXxZokrW9Sb6fwmSHYX7VaDZb96zQHJQ4KIeITt5HjJD5COp12OXUAIhqTmobiBABqTc1m05W0I3A+JIysgevTXIlD4pxaGokVNT+fdqbzUXNcJpNxkv/o6CiOHDmC733ve3j88cfx6KOPOumWP1NTU87UysjkuKhfBfVbaeCEXQ+uCX3Fyrz1MBN/zFNlQFe5XHbBT0pcmT9rD3Cz2XQVntTXRzzz2UwmEykgwR9qY+xLr0BjCcRWq4W9e/eir68P/f39aDabTgDQM6npExRsFhYWMD8/j1KphLGxMed/bbUWyxbWajXs2LEjcnVdX18fhoaG8MUvftG1yTStqakp7Nmzx9U8fs973oODBw+68zg9PY1isYjp6Wk888wz+N3vfgcAeP/73+9uqAGAnTt3uoCtWq2Gubk5p50SDh48iE9/+tN4+9vfjq1bt6Jarbo0qnQ6jR//+Md49tlnXTRxuVxGPp93RTnGxsbaaEmhUMCdd96Jd7zjHQ5/IyMjbl/Q5XD11Ve7dz70oQ9h586dGBwcdPTKujnoPuBaxt0JrH7XEB2xgqAGdPriTzqBavaqEWp/ltGzL0KcMhE6i/a50Fw14FO1UcuwbQwJzxHPpy8NbCVgVRks0B4oBCz5BEi4FXEhs4dqUip5+PyLFjS0frlzANolsTitIYkJO64/G9zUyf/pG5eN+GXbNFuyHUqpmvpjDxHfo2lYtcIk89H1Ui2qv78f8/PzeOKJJ9xVZ9TaOO9yuezSJ4ClQ58ElDDoeEJAfDFC1Wdl4fpwfEwPoaWE41MLgk+IJDMnAyVe9Vn1v6mZl0KKCk/UrKrVKubm5vDaa6+5FAYybf3hfNVqwTWidWJ+fr7tTtdnnnkGv/3tb13uJsdMAqdMg++USiXHXAHgscceiwQB1Wo1PPXUU67qFeHRRx+NED8W1tC5AkuCdzqddn7fJ598Ejt37kS1WsWLL77oNOFHHnkkUsbxueeec0FdoT1N3D/66KOYnp7GyMhIBC82fgBYvECC6VFK6Gnq1/Vl33E0ygp6+jnQnrVBWunTcpOCarIhJSPOTN2pv6TjsRqp9su1V+YaasOOm0rFcrIBksCqM1jXUSpqJgSWJqwRXZy4psgow6Gpi6YVPkPk83/1zbFiTrfaq40qTWLCCB0Cy4xDxJa+DtUeuQFCkievo6KETiZJrcP6ITR31Tc+n0ChGpUKOIormk5TqZTXf0dLAiV1tjk5OYnh4WF3cfjo6Ciy2azzZ3J9bdWlJECNMInUznFbC4SNaFc80UJDZmfXibjy+dKYptPT04NyuYzPfvazuPbaayPFHwh8n4RdNXJtkwzo4Ycfxq9+9SvccsstWLNmDUqlkovWZtAXo7np87VrWq1WXX1h7WPLli24+uqrXVQuNUqmMs3NzbmawMRZvV53FZMA4OWXX8b27duxc+dOTExMuIvrT58+jWKxiH/6p3/Ctdde6wozMNArl8uh0Wg4jffQoUNIp9M4duwYxsfHcd9992Hv3r0YGRlx1ZXm5uZQKBQwOzuLUqnk8nDp46VAQFcJz6IydsXzAw88gAceeAB//vOf2/bQww8/jJ/85Cf45je/iXPnzmHnzp34+Mc/jjvvvNNpucokSNdmZ2eddSYp2PVXpqHnm8JVUqHUtqf0WPe/4iWkSfsE1G6g2Ww6Cxv3PK1LGiHMc25TGH0CbqvVcgFolUrF0SW9MWmlYNUYbEiKsFKGj+EoUOOx9naf9ugzz6r/rtvxh6SyuPl1ajM0T/VL+yDEWHigKGGrBhqShpU5xI3V907oOTU3hoLQrMmKwIhLMlUG7HBu1FisttaN9Jv0uRBOrABHIB41wEjBaow6Hg3SaDab+O1vf4s3v/nNwfFROPIJimo14XguvfRSAIu5praYCG97ibPshCwzWtXHVvIijhYWFvDcc88BWLrWbmhoKBI5zGIMwCITyGazuO6665BKpfDhD3/YaYitVitSt5gR4bVaDWfOnMGZM2dw+vRpAMDevXtdbiqBTPTSSy9Fs9l0PlyWRNR5UvjgmrA/X1S/DaJptVrYtm0btm7d6u62PXPmDH71q1+56/RsKhrjAjTKvhtm5NtXVmtNavnygdVQQ+NbLgNNAlrcxkeXbCyK1eT1WeURipdms9l25/BKwF/92SeGXQD86U9/wuWXX47Tp0/jiiuu6EiUfQuvUhM1I/p61PwBLAUFqUbL32TMSkg01cbHkBVsMBDgj15LeijiGDa1hG40NGohLPVG4K0tFiiFklks12TOvn1R4Ypf9snPuZ7qQ7fjUzOQTS+wh0jz/+whIxQKBczNzWF4eBiDg4NtvhjuARI4X54rfWbMuQsJDqFYAtseTZWqWdMUrqZVhWq1ilKphP7+fu/3LBFIQW1oaAjFYhF33nknAODnP/+5S7Wp1+uYnZ11+5EBOgMDA86v2NPT41KNqOExIpZnke4C9kmmRoLoswAVCgVMT09jaGjIG3HONVffroWFhQXMzc25SF5eNQgs3trjWz9NaaKVgbSFa05L0PT0NFKpFMbGxlAoFHDHHXdgw4YN2Lt3Lz71qU+5dr/1rW9hcHAQg4ODLro7n8+jr68PH//4x/Hd737X0YYPfvCDuP76613OsPoNq9Uqjh49ilwuh+3btzt8hWIv4sCnwXbDYH1M3ieg6r4F2gVwjedQwVoVpqRj4jqF3uEepGDE9n20lHuA1j69SKTRaOCWW27BmTNn8Ja3vKXjuJLARTMRRzrtoLXa7+MYk+9dK3WRmahUo393YpD2uTjzagisP4RgzebdSILWfEOCthxtndCNoBAyHem6Ka582pyCHkifBO7rn32rT9k+q4fbtwbaVicISe++CFErJKq2REKojDmu1KLd0xbIQF588UW8+c1vdlo/QYmbby6vvvpqW9s2l1OZKYmX9fMrw/QJeVxPpgSR4FGzsxolQQVQYEk4yWQyWLt2rdM+ZmZmnGmYQGJr6zYT/8Qvg9J0z1KIazYXqyy9/e1vd3fdcux8jnfKAsAtt9yCc+fOYWZmBn/4wx9w9uzZCDOigGk1fwqg7DPpvrT4te91qxnbNuPA0sW48xWyBPEZX39x0cL8XNuMozMWL8S9ukFWElZdgwU6B5Wo+YUHRzdXq9XySnCU+oFolShuWl9KhiK4k29OA22oufokNb1phW1b6Yn3c3JMTOQfGxtzZr8QnpRR2b4ZMMG7RxuNBrZv3x6JQlZt3wJNYoqTOM2WpkUSQtZQBaKCDNvguNXSENI27V7gXH3+Sz7PyFiC+lw1LUev21LmY4UBOy5rzo6zuPA7pmbQRzk9PY16vY4HH3wQQ0NDjpAePXoUzWbTVf3xlcnTPnxaMmF+ft5dOtBqtTA2Noaenh4UCgWH097eXhchS4ZcrVYd8yHOaILVtBZgydfPedIXliTQkDjSlB764xmVHQo0WVhYwIMPPohms+lyaTUvs1Ao4MCBA5H0IB9ZK5VKLu+VzJZrurCwgCNHjmBhYcFdPM9IcF4Uz5zc6elpZLNZVwkqn89jZmYGs7OzGB8fx9DQkLtG8KGHHsKpU6dw8OBBF/0OwK0Tx8E4EdIF4kR9st0K3xTs+G6SGBSNN+gkEAPROBV9Ti1X+ixppW8f2886zdem4fiEUNsmaYbyE8X/rbfe+pevwXYLSSQR3zuKfBICSzCT9KuOfKvtKRMPSYwkLHFSUtxmCkmFag6xTNo+TwLN93xCRxJpWbVW9q/zVe3S11cnLd8emjiwh8s3dx5mmrTtXKx2HddXHNi1t2O0OPARJL3f1j7LtaFZtlqtOmbBHEtWOOK8enp6MDEx4Yrkr1u3zuUY08dNocLH3NSnznFofjTHx898bhu6MGj6ViEYWKo+pgErZDy6txiMosVOOIZ8Po89e/ZEiltoeUldl4WFBRw+fBgvvvgiPvGJT0R8tSS+Gs3LwCPOj1fq6brQVfPHP/7RrT2Lmlx11VV4/fXX3fxYSpQ45Jkl82N0se982r0QF3Rpz0YchL5frtZrLVc6pjhztaUdSYJKbfv6fqfn7GfLmWvHMa14i+fBmj0Av6ofCovvRPAZHEFTEIkzfRZEmBISSuxacDsO9BlK3fytUYfcTFZr47io5TbOX27NQ8uDlSTC1fcMiTEJHNM9GB2qfqxWq+WKr9MHpYebY1QJFmjfjFYDV5+lasNa4EPb8q21mrgbjYbLCSTBC21+7jHOQ1NnfNKx4jopM9c9rGvse07N5UyjabUWA1/INAiZTAY7duxw+6dUKmHXrl1Ip9NOa2k0Gujr60M+n0etVsPvf/97nDp1CpVKBY8//jiAxZtvHnzwQRddzEIIOtepqSl35Vyz2cTk5CR27tzpmF+r1YqYVBkUpHed+nLILRNgAYyBgQF3ddzhw4fxi1/8AgDwla98BYODgxgZGUHm/EUChw8fxvHjx130MxnpPffc40zmjCRlUJXdQ729vRgeHsbY2Bi+/e1vA1jMLd67d6+7rQZYCgCkz/Y73/mOi07mHiHe7b7iHFlcnilmjLLm2tBaQEsJrQqVSiXiE7/rrrswODgYuc4xl8u5OXM/0WKkgg5N0zwnIf+sjjsJKM31CYDaTsi1ZQVNPWMqyPna5g/pEGmLMlwF+7+2EbKShZhrb28vLrnkkgRY6g5WjcHaRVWJ14LPfxZH9FSL0jbsMyEJTH1JPknQx2C4SchcbPEJGzRjpXx9zuYkqiCRZP4WrLRKU7TFhR4cOy/rCwppoDb6Tr/nd74Dqrj3aXQqANH0yHHFmSBDa2UZLduyOFkOqGanSfgh01rIdMp3aeJ/4YUXsH79eidcLCws4Pe//z3++Mc/AgAuu+wypFIprF271rVhA3QoPHIdWMKPQJMssCR0AHDlAclQ1NVCXIY0ipBlqNls4pVXXonMV/2fZGRatIRng+ZSBimq5u3Dp9XCz507h5MnT0YYrA2uW7t2bUQDVc1SBSaaNVm+c3Z21rkZqCCsW7cOa9euRb1eR6lUitypq+PdsGGDc7EoY+SeqtVqjtkS75qnrP5V4p20DGjf5/xsOeCjn6plWjpiv7fvhMYT0nRXA0L09S9Og1VzZJxZgFoLn7Nh7D7QQ8HoWUqBDO3XCEeWhVNzIbXQdDqNfD4fOXh60Nh2Op12QRksZ0ZNMHO+UPvAwEAkcAVYYjrUrqwmwOc1DzaUcJ6U0FHqJfHl59RqrL/X56ewDEi1xVAgCr/n3xY0KlJxQM22VCo54sWUBmp39FXaAA5ldmwrlVryMercSNCI8zghzDcv4p/5oblcDkNDQy4KN85/HeqHvthyuYxz585h06ZN2LFjB8rlMo4ePYrZ2Vk8+eSTeOc734m9e/e6th544AFkJJ/4k5/8JB5//HEcPnzYpbQ0Gg0cPHgQx48fd/0xjSWVWrrBZ25uDgcOHMDatWvx1re+FaOjoy6PNJfLuUpV9pxwLOpPVHy3Wi3ceOON+PWvf433vOc92LZtm/tufn4eU1NTGB0dxf79+9uYx5EjR3DixAkMDg6it7cX+/btazMNW7C5148//nhE8yNT++AHP4ipqSl35+zU1BQqlQoajaV7XhlFzWsEWbt5dnbWaeRTU1PYvXs37rvvPhSLRRSLRTzxxBP43ve+h0996lMYGRlxNI1Mc25uLhLhyv04Pz+PYrGIw4cPY3R0FAcOHHABchwHq5+ptYY0UBUF5g7HxV7o+hH0HX4X2rdWIYgDCqDKOK2Arf9bASop41NBX/egVSx87Vlr20rBRfHBqpTmmyD9HnHABbU+Jm40lbZD/fNv1dh8odxxUo6mUfAgaslAMm9b3Nvn2Ke2SW3Fao8+SMIMLCGyQk6oDV/0IcfJtQtp+z6cWRORCghAexlDCkIAIn65EIGwGqPVWK1Gy3f0wNkx2rZtfyR28/PzzoxFTYZzAqJ38R49ehS///3v8dGPfjQSfEbInM8B5QXsnHMmk8Hb3vY21Ot1FwhF0AAkBm1YwYna4ebNm/H9738fAJw74OTJk860yj393HPPYWZmBn/84x+xsLBUjtH6XS1QWFGzNPseGBjAO97xDvT39zv/IwUtvYCcoP7bF154Aa1WyzG9vr6+SIoSA5A0kE2LWQCLmjkLgBQKBScoaFsUIHK5XCR4irm2tVrNjVEjoymss6RkpVLBZZddhmuvvdatP9/TYhZ8j/uEZ4JFFMjcOXfuWb39iThW/FvFxAYg+Vx0ejbsd/p/J60TiHfrWdqTRLD1gaVFvn6SjvdiwKpGEf/N3/yN+5wHgJuMwIhFMqtQHig1UkrLmhfrM0GoaYsHlCX4uNC+6jWdgD5Ytk2mQMIxOzuL2dlZbN26NXJdVqlUckRLifHx48cjJiMy5qRVp+I2aifTTOgdTctQ/FIDV+bBZ3yajfpqGfTBilrZbBbFYhHz8/PurlH6luiDocZkmRbbJ5FSvyoJlWq26XTaaa0crxIyzYtTPxyw5MeiZWBubg6zs7P42te+hne/+93YvXu3iyQtl8vOp8c92Gw2ceuttwJYvH5t7969bX5r+i5ZRYq+Rmot3BM+7ZjzmZ2dRb1ex9jYWFtgD9eC85mamsJ73/te3HDDDZiennba4wc/+EHHiAHg//yf/4M9e/Z03C+2prLdA/V6HXNzczh27BjK5TKefvpp3Hvvvdi3b5/bk1wHWhn27t2L2dlZPP300wCA973vfRgYGMCePXvc2ZidncXExATOnDkDALjhhhtw8OBB3Hvvva7s5ic/+UlMTk5idHQUExMT+NGPfoSvfOUr2Llzp9sXExMTeOqpp/DAAw9gYGAAg4OD7mxWKhX85Cc/wa233urur11YWHD+ZVrguHcPHDiAnTt3tglr+n+z2XR5yBS49LwQZ/l83tGQuHNOv7XebdtsLta6pkJC614n62BcX3GMmPtMLzdXd5h9VoXabpifBgPG3fYU9z7HZoG86y8iijgOqaHnQ2ZP1Ti4GZURKwHRz4D2FA+V9JYj1agfR8fROH9dlxJrAC782zJ9am/UfinZqh80yfi6NZ8kBSuNWguCblSVgtXkTaakGhC1a2DpqjwbMGET5dl/yH/rMw1ZrV3/5rw0D9J+p/3ye2oYg4ODmJycxE033RQpzs75kpFrkXeOr1gsYmpqCqlUCjt27IhYXXTPEqiZKg58e5jVr0KBH5wn/Yk333wzbrnllohGf+uttzoGu2bNGhQKBRw7dgxDQ0NeYmaZYkhrUP9iq9XChg0b3DuaS6rz6e/vjwQHPvXUU3jllVcwPj7utPeenh6Mj4+jcT7/d8uWLchms3jve9+LX//617j99tsxMDCAZrOJQqEQKcZC4afRaODKK6+MXJzA/aKCEK/xU5wCwKZNm1wBk2az6S6BsDji8+o6ApYEOa4BhXUrUKVS7W4PPUf6v66p9mdpo55xZbxxNDpEl/Q7xU+IUduz7NNIiTcVRn2aelLQ8fm+i7McLhdWlcEqklutpUhM+5xuGPs9NVdqeNzkKhnRnKNaAw++aoIkqpTYl8NgqflaKJfLOHHiBPr7+53fCFissDM/P4+tW7cin887PKhfUSu1kBDGbVB+32n8F2IWIa5sO1wPEgbWxSWBYT3hkydPutqe69evRz6fR39/f0SrJ3NVBsv1s+Yk3T/q59WDaRmvHkJrqWBEuLZDgq+4V3MUb1AZGRnBjh072vqs1+sol8v4zW9+g0qlgi984QsYHh7Gq6++imaz6SJmv/vd7wJAxG+vAghNl8rUiHP+kMlw3L4iFTwXzJUGlm4yevTRR52mRDzdc8892L17N44cOYJDhw7h+PHj+Pa3v42vfOUr2LVrV5vAQw1pYmIi6HteWFi8remZZ57Bc889h1wuh+HhYTe3crmMUqmEoaEhZ25vtVqYmJjA8PAwMpkMisUifvGLX+B3v/sdbrnlFqfZ9fX14ejRo5H+UqmUq0dM3Jw4cQJHjhxpS4FhpaqbbroJ1157baSONJk356qxDfR7cu67du2K9K8wNzfnBG8AzgzN9WKe8sLCQuT6QMUz/2ckMmkhBSpL53gWSed4xiyj0gCqThfQh+Znv9OYjxDDskFxfM7W8aaQzr3F8x9Xlz0EeqYtfn1jWilYNQZrpRglkDa3Lo6xMu1DN4uCbhJ+73PWE1TbWK4fAIhGQXID5/N5V6EGgLtkm4ntmuvHa8EsE1FtfbWgk+nYmm4UT4pj/q/v8KATB6p90bzOtugesOX/LMNUv5xl/DpGDc5SS4MPfJYNq83Gge97FototVq47LLLXLEBlq6kpkMGS787BTargSpTVQ0o7mpAnY+eP64D31OTsfaZTi9eEsFr3hrniwMcOXLEEXYKhT6f3sLCAgqFAnp6epxJkozz9ddfd+OqVCqYmppypj4VmClopFIpx0ifeuopAHDFHeICnuz6MRjt+PHjOHPmjNOauUeoLas1imNQIUULz2QyGWzevNnl9hJP1oVCn70K9fw8nU67aGTSsUOHDqG/v99dSM+gP2rQZKzWpaH0g2urgqiusZ4rvgu0+2y7pUPWUhRSGEgz9azafcTz7OMVdt5xPlkdW5yGulo0d9WoeLPZxCWXXBIxE7HiDgNYeIh8JlsGF2hlHwaDKFFlIW7e98h7Ly3jon9Ocz6VUXQDFBYKhYIbUyaTwejoqCv4wPrAzG3TqFgATpvV3NOQNsY++XknU0ZI+7UH0HeILCO16Seh+ypV0NCSdAMDA6hWqzh58qRbf/bJyMvJyckIg7UWBms6ptalpknuAUqinXKd7XcU6JQAaJ8WfOZqFpmnlrh//348//zz6O3txbZt21zVrs997nOuT+LI1z79sPPz846oMvCoE1izpKY+qenep7VQSyfs2rULBw4ccFrmPffcg3w+79wbVos/fPiwu6OVvr/BwUFs3boVs7OzOH78OB577DE8/PDD+NSnPoXt27e799kWhY7+/n7HvJrNJsbHx7u+FYv979+/H6dOnXKxGNSEuGe4J3iRek/PYiUnBrTpPqAwxXFSu1TtvNVajIBnnIEKdbw/eGxszO3vqakp3H333XjXu96FsbExzM3NYc+ePRgZGcHk5KQLCrMVttTlpAJ6KNqfZ1MtNDw//FwVmm4Yj1oA1A2jUcQanBqnUFC4tFq40h+6o3xBfhZCNJXf/UUxWKA9kpNSFyVyRa6dnA1S4WeqTakkZPtSIs1Qd00B4qaiKcUnAfkiQjmuVmupSLhPGtPoYtVcfdqi4iq00KGD4oM483JS7Yw4tONOIpCk02lHvKgJMH2K2qjij0KPFbIs/hXPFle65sDStXrEhz6nYH38VoqmAEdrBItAqOBo8UqmxftPbR4qoV6vu0IOilfuM56TpMVIFIhn37y5pr42rUAKAKOjo06Q1IphLKTBtklEx8fHvcEtABxTT6fTWLduXSJmmU6n3UUF6fRiYNLc3JybA61ESshVmyIMDAzg6aefxpe//GV8+ctfxve+9z1XFpF0QDUiYJHIT09Po6+vL2K+VUYBLDLY2dlZ5HI5J+Q3m4uVn2644QYMDw9HIqbJzBRyuRw+9KEPuYC/bDaLXbt2ob+/HwMDA0579VnhbFtx59zuBXXRaWAj90AcvUjiylJrimVqQLR8oc6D/6tJWPvhWFUICFmhfOMM0eKVhIvGYIkoJVrcoL5DZoOA+L/VHHgodCOQqGtblUrFSYBcLI6D2qW2Sy2VfQDRYI2enh6neegmUgKvRF8Zgw8/nRisxavduHbsoff0/bi+rCTazeZLpVIRLStzPk9YzT7MOWTOnga6EHS9VXK1AW38m2uoApHFkSUYJIQ+6Zd7lebMfD7v6gVT+ldzNfvP5XIRzZAVtIBFs91dd93lSh3Ozc05TUPXT02SPDfdQBxDtntVP1dtiHt3cnISW7dubcOPrwxhKpXCtm3bgn3TJMvo6CR+P46BUKlU8PDDD+PcuXPYsGEDrr/+euTzeafNKPNTbWd4eBi1Ws3lsT788MOOwVocAItrWq/XceLECWzevBn33HNPEK/lchknT5502j/xSPP36OioW2crCBD6+/uxf/9+t+/y+bwTLHzAddIAySTgOzcEvYKQdCIOLOMKMVwya2sJII5rtZqjBfyc+57WF7VmWvpsz466MPi5KlMXC1atJ7s4qVTK+RvU/6GmCjVrUdIl8yPDtASSG0Qj/rQP/qijXMfFhbBSECUjBbbPg6LEm2Oxz3aSAC3EmXct2ANqtUwbpGT9pb5+fOB7hmvVzYYlgyPDrtVqqFarGBgYiGhx6iPj84zSJsOx5n3LPLkH+LcVZAgqbOl8+Hlvb68zcdfrdezZsyei3TCoixquzz9q+5uYmHCErNVqOR+dtbCoCZxgTdtWM0hKZNV8p1YYEm2N4FRrkI6H66HmZ37HK/E4f/qgKVTx7GQyGa+53YJGrWcyGfzjP/6jWy8KRxTi+Xe5XHZBQTSv79ixwzHYdevWuavzMufT+Dhn3YunTp3Cr371q8h4mO9Od0C9XscLL7zQFhFNxq8afavVcrEIWhiH6xsSgCxYpYBujpBFTnEZwreleT46xLGpssR9ZKOo7brwRy1WVnhWHqB90jeuypX2E0fT2I/1Ceu+Xg1YdVZu/UA0fSnTA5aueyKCbfpKHKTT6YjGREKhmi0PsuZpkcFbYs1FsMyDzFxNSezPLpSVDH0L6GPOoc+suTNuU6igwI1vmdGFAg9ztwKEZbDU4Eho2DYLEWhOK31hw8PDbf4/i28yCQs+ApJOp11UqJq2gaVAkdOnT+Oxxx6LrA+jwQuFgjMPagqJzln7Gx8fj+RA01xIwYHEiHtNzd0+rVN/khILNQNS01PtlXESuu+UIAKLDJYE3RJ7an5kgryPl2ZOAvvsJKhZBjsxMdH2DHFIKJfLOHbsGAYGBpDP5zE8POwig+fn5wEsRvkzz5j57QzOApYY3/PPPx9ZexaY4Lsvvvgi3njjjcg4AUQuE1Dck8GyTV+Fs05gzzWZnQ2Asn3HmXVVqNV3rPKhgqkKGwz6UrD0lXuM+4VrqnQbgBOcSMdUeLFM2TJXOwb2ReFdmbi2tdJw0UzEyiy4abk4WtWFcCGShUr/wJI2zL50bCEpzmcWtZqQ3Yh6YDqNmxvVlwqjbVnGG/pfP9ND3i0eSXT5jk9DIn59OFIJ1ErRXHtNDRgbG2sL2tG0HbbT09ODkZERp8FabdXOkQTbChlss1AooFarRcpdqq+TBIDRsJ/97GedlaRUKuHEiROuL3tROfv+2Mc+hscffxxbt26NEDaOY3h42DEo9slatiqAqvnaCl0MBFTCqM8Ui0U3RqsJq79Ng7y4B1gWU59RRsvCGGoxIvT19WH79u2uLQrXdp00+lbX3ELc/tU9q+8PDAxgx44dToNlDnJ/fz+2bt3q6BBTibimak3JZrNYu3atu0GHcOzYMfzrv/4r3vOe9+Do0aO48cYbcfPNN+PAgQO4//77cfjwYWzdujU4Fw3WZP9aycwHDPzknGl+5v/WpaL4URwmoQeh762wyPPD9ddxsG/blqVJNqiRlgQ+o1HRVpC2a8/vQ3SJtIvvkh8sxw2TBFaNwYakaSKEP+VyGeVyGePj421EYLlgF4HEh9pzp40WtwEtk9V3+L0SoRAQD1YztYtstRPfOELtdoqqixsXx6+aDufp2+RWwuWz1jJABktJW4kEwfpU2I76vOOEH2BpzdWUrWMul8soFAouZ5naFefL4iCUyvft2+ferVQqOHbsmDN7Dg0NYWxsrA2X//7v/+7GpjhU86HihvmSjE5n1a+4dSaD8mk+zebiLTTsywqH/FuFXv5Pgtnb2xtZM90b1FaYr6jnhhGyikufxYNzUA14OTTABkQCcOlfbPPEiRM4ceIE9u3bh9HRUWe1oGBDk7bmtVJQsIU2pqenAQA/+tGPHMO89dZbXX3j6enpWAZLgYK4ZgR86FwDS3nW3E9aolX3mMWDpSlJ3QihsSvYWBPuce4nq4SwDXtWFYgTZbBWKNFnOWelFRbUWqNtcA8w82GlYdUY7H/+53/ikksucZI4UwN4MLkhstkshoaGIgEAPga1HJ+fBRIM3YCpVMo59fV6Nx/EMV2r6YVMLNpWnNnWMm9ldiEJlc+SkaiEDMRfiE1QvFiCqd/bedv3+b3mCtOExwR/XoCdy+WceVUD2tQnCSze8akarEqiHDP7VO3dMuxms+kYO8vLUTtgn6EoWGAx7WPfvn1uP4UuCicUCgXU6/VIARJqn63WUplJxhJoWcnQoVcmp9I3x8zi9SFBj3vIdwXd/Pw8pqenXUCSjU/Q2AmrEfj6seZjBZ5Hq8UQVGDVz0hLSDdIY/TSBfY5NzeHYrGIdHoxWIopdCMjI06z7u3txd/93d/h9ddfbxMKebnDkSNHcPvtt+NLX/oStm3bhkcffRR33XWXs0Zks1kcP34cp0+fjt0T6XTaCVc9PYuXXBw8eNCVaeTYiQ/WSlbaYs+ern8nBraSwDFS+FW/KSEpvbbuQVpVbBAgn7OuRvIPNRnrOH1nWm9F+q//+q9l4SAOVo3Bnjlzpi1Xi5K21VgUrIlS30+iGfra4/M8yOoToLREk+VywDJVq4n6JDj+1nHESVC6uawmy9/KHBXUp5wEfIzfJ2Xqbz6rc1N/u0b4sq1areZMmCSSJJRksPxOGZKdh9WgNR+QY9fvSVA15YRFFWiii2OwvIUmKbDYgLXQkIGqb7Onpwf9/f2oVquxDFZxBiz5xPk8/XHW2mDf9323sLCA5557LqLVqtvERsbbmAQLoX0JtJsHCcpEVAjhdxTc1LRMGmOZPlNoWDlrdnYWxWLR5aZyDFdffbX3fC0sLKBYLOLs2bN49dVX8cADD2BoaAj/8i//gttuuw3AIqGmReORRx5pG6/iHIhGYC8sLOD555/HK6+8EqleRNzyDlrfnbwKy9X+LxR0HYAoLepGK+T+Je70fFgBS32yKrTafeijAQpxvGglYNWK/f/yl790gSuKZJ9jnpuKWqRWPWIha5V0k2yiUKScb7PTTEDJvBu/pZpklVj6tE7V0H1Mmb/jzBzaVtyYfAw7pCV30sx9woJqxVZg0E2u8+MaE5SRMtCGhFLnqRWatE0NjCDh1zQqDWIjWDMnx8soYRaDCGnqcdqAXgiu2jeD97SwgRUYQjhUCZ1jUVO77icSJz0n/JyMh3OLIyzVatUFXqXTaWdZYFuMnP7a176Gc+fOYd++fc4/HdqbNMNyjlxvHzSbTdx111341a9+5cyzY2NjbesIwK05A66I51wuh+npafzgBz/Axo0bXQ5zPp9HsVhEvV53VaLY5/T0NFqtVqQvmuwb58sjciyVSsWVOWw0GhgeHsbQ0JDTlkdHR9Hf348TJ064axhbrRb279/fdtNWqVTCZz/7WTz99NN49tln8fa3vx3Hjx+PCIU0o+v+YUUr7guamWmJuxgM155JqzDEmW1tO+qGApZ8sRo4ReFK+9I27JzVHaU4t8FowF9gsX8OXivvWODBI7GwEhqreajJpxPowvrGxWfsWJWoXQj4NEDt16f98Zm4OXZiiAQryWnAT6jNUBuWwfJw22hC26YVHNgOGarW0bVg22RfJIYa6GHHqIEePlOR9qFjU8arfiNLKOJwxb1qBSxrGfEJSlbqD50XCiUsgu8TgGiKVybBYhchS4TOjdoYr2CzaTr0Bf70pz/FK6+8gj179njdK9aio7ixgg+f57MzMzP43e9+F6l1rc9bYqlVwlQQeOSRRzAxMeGqqTGQyJfmZQP3KLhpVSsCzefz8/P4zW9+43y0ZLQsIvLLX/4ShUIBP/vZzwDA4UpNqT09PdiyZQtOnz6NZ599Fk8++WTbeqovWYV5Hb9lbnx2uUw26btxwnwSDdaO17cnLahVRaOCLTNX4Vzn041mfSGwagz2//v//j83GZ/WyeTinp4eDA0NOQRY822nnC4FS3DjNoh+HvKFdrvQoWf1M5v64Hsu6YGwzNoyaPvbmvJ8flwyCbsO1Ji0D+ur8vWh66cpJ90cfB48ElF7qTvNaLw2jeOidkNixHEoc6VwR6ZCDWF2dtZVAOvt7cXExARarZa7Wk5TaE6ePIlvfetbuO2221w0cW9vr9NobaqZ3QM+fHJ81Jzo62VwFq/G27Ztm6suBSymnzQajUgAFbUb9sm2arUa5ufnnWnTQqFQwNTUlMPh3r17MTg4iJmZGec3ZAyFMgzuIfo9GSVOvNENoLfbqAaeSqVw9913o1KpYNu2bU6DbjaXrvZTc7tq5gyE4XheffVV9PX1uTgPBSvo0I+YTi/m0O7evRubNm3Cl7/85TZhgP5yLfYALPq+q9UqtmzZEnl+7dq1yOVyqNVqKJfLbg/MzMwglUphYmICg4ODOHnyJPr7+9uKX9i+eSZUaNY4iW6YqlU2gPYKZ/zf0nJl+toWP0/ilrKWKkuvrLBraZym61DYsu4m4okxFzrm1YRVY7A2ildBtRkiwoJPSosDuwj6WRLwbRprskj6/oU826kd3/c+RstnLeOPk2p1XVSr53eq3VsTlG3T/m/7t4cpCVAD0iAbbZOWEisJ2+hd7ZMHUC0k1H7IfO24LUOs1WooFAq48cYbIwycjEYDLHTMvv8tqHmQOKhUKqhUKvjDH/7gmIuukfXdKr7VT0vfYqvVclHGSrgpIDAojcGA9PcODw978zxpNiWhs0UFKMQQl5ynEvCBgQFks1nHbNgn8anAdi0t0c/0IvXQvtV3FxYWyzGSifreodBIYapQKDgGa2HDhg3I5XKR9aEwwjRC1s+2wq2PGege57jifN1xEEcPCJ1iYHQdl6sx+9pTnPs0ZX0mnW6/91nHb+fE/1divCG4KB5xRT6wpJkODAwEma8eGp8EE+rDRrHFIdAumCV6fMan8a0E+A5JCHxSpo/BqOTpqyrE+VjpUvGnlXlUG7TMW8G2RYk+dHA1GEn9lb7nSdx5xR+JJrUY1SIYGax9kcH4fDE8kJRs0+nFohOHDh3CpZdeiq9//esR86cWgeDY+vv78YlPfALDw8OOiNZqNRw/fhzz8/MuwpQF8q2WFQeWsFcqFczNzbn6tpo32WotXiFXqVTcxRNamYk5vWQkxWIRn/nMZ3DzzTejVqthcHAQw8PDOHnyJKampjA8PBxJT6rVapiZmcH27duROV+b2LdWMzMz6OnpwcTERNu6KhNvNBou6JHPkDgyx5bWid27d6PZbGL//v1t6RoMDLN7Z+vWra4oCQUe7h8bmWohk8k40zBvEhoaGkLjfPUu+nkZjHbHHXd42/nQhz6E7du3O2G1WCw6a0JPz9KVeBpBa5mK7hXiSP3vxJ/uAz7rA6uA6POqEVMQUqGq0569EGZlaQzHxh/lH0qrdW9pEC1xo1q3Kgjcg8T7asBFYbAKupidAnn4nL7XafMQ7HuhsehPqK9Vl3JWUOJToSGOgMS14yOIFzKeuIOu2oF9loebREz9vxrcY3NdKZTZgKqQBAxE82Y1erFTARQe4nw+HymhyTG+8sorkRxSFYCSgM6RZvrXXnsNb33rWyPBMuyzcf7ycdXe1b+sxJjPnD17NmJGazQaeO6555zAQMFjZmbGRVr39fVFAq2ARQJJDbuvry94mwsQDeZTJmwj3olPBopxjdW6ZGkJcUbN1RJnvsf/rQLAsWzYsAHnzp3Diy++GNG66aro6elxt+j44JprrsGOHTswNjbmrBlMt+F6cHy2xKIPV/q/T+BeKfDtz7izs5Lgm7u1xti/LW6s4hKndVs6sdJw0RksJ6zmqpDUYt/T76xEEtef3YzsV4kDgMgm1z6tL2AlN7RtKxT9HCcw8DM1kcURtpC0tlxmGgJqcgy6UUin066Qvr2CkAeCl1UfOXIEjUYDBw4c8N48w3f0diN+R2BxfRuRqzmaCwsLOHz4sPvNoBhKusQR/+de7u/vd3eK8lLvVquFyclJjI+PR/J7iRcr0CmT4J4kw6Tfjox6y5YtGB0djZT0Yx7va6+9hnXr1rl9XiwWUa1W8dRTT2Hjxo0RnIyMjOAHP/iBq9PLd1KpFNavX+/8qBQetPJUs9nEoUOHUCqVMDMzg0svvRR33nknms0mjh07hhtuuAHbt2+PrIUWg9BSlz4Li1oaMpkMdu/e7ZgmzbcAHG6ZC0wTbK1Wc351aoDsl7jiPuO7GkVMHABw9zzz6kVWz5qZmcG+fftw7tw5N/6Pfexj+PCHP+w0J73rlxorKzel02kMDQ0hlUq17Us9B2p14g8FjQsR/kO000djrGAZyq2PG4sVqJPSm5DS4Ns7+nkSC5HF8UrDRWOwiqSQJKTMUH+vhgapmqt+BrTXtmT/q63JdoKQRm3HplKcD3zSqe/z5YzNtsGDGCdEqbAFLOWgapvUTH03n/A5XwCGPZzWvKYCH6NtX331VVfAgSYkPXz8XwO4VPsClnKuSTwt87RrE9r3qrUzmp6Mv6enx/lHqU2uW7cOr7/+egQH6XQa69evj+BOo63pR1TNb9OmTU5r45jIHDmParXqNDIboHXZZZe555giZJ+x1go966pV0oS/sLCA2dlZVKtVHD58GOl02vmBJycn3RpyXLRAaJ+6fqFzoj5kKwzwf6732rVrHYN917vehfe+972RqGO7H0n0tSa6BTtOZbhWG1steuRTcKySczFgOf100u59tHK1YNXyYF966SW86U1vAhA1cwF+8xCBB8oSIkvMLgS0D10M+7+VtGy+4sVgtnZM7DtO+uzGhESGQ7DpC8STWgx8DJp+JfWFNc5fSk8tj0yHxEuZiBISvT5QgSZHapPUZorFovMv6pjIlOjr6+3tdYEoNAOPj48jl8u54JSPf/zjOHfuHGZmZpDJZFw+IrW3SqXimCaDcCwu7Fr51kiZtiWYZGzUtMjEFhYW3OXhXIe9e/fixIkTeM973oPrr7/evT8yMuKYArCUcpLJZFyh+vn5eRw6dAhbt27FwYMH29a8UqmgVqu5gCOFRqOByclJvPDCC/j3f/93Z65mkf++vj5s27YNxWIRBw4cwPDwMHbt2hXci8Vi0fWlfshiseh8soVCwRV2sPDwww8jlVpMIXriiSfwyCOPYPfu3di7d2/bs6xyRfO3FfQKhQLm5+fxmc98BpdffjmKxaLba6QDfIfpUtQoCXRbaEoOEK2zS5N9CCqVCubn551lSrVwm6akGm+34FM27HcWiIs4N8CFgs1/V+FOeUFIIAHa6Rl9yb4ysn9RebCtVguXXHJJZPGsltOJSfm0XpXmLgR8fetC2XHo3xdLi02qgSZ9L0T8fZYDfSdktu4EKpQoQ2HQkh4SapGqwdgULT6j447DgfUR6hy0TWAx2b9UKuHs2bOR9n1BYnH9Ws077rk4K4M+p9HcJLQ0F5MJX3bZZREibBmraq+6z1999dU20xiFXo0A9gGtCjTFEihksSCFDTRRsMIuTaf6P4A2F4OvHWBxb507dw5r1qzxCoIUXHjBiOKCjHN+fh5PPPFE2+csw6h+XbVScF14XrgHFb8UDpPcEhZSQlYD7B73fc7vrJVhtcGe9yR8I66tizVuYBUZbLPZxBtvvOE2GT/TiFGVwuyiqtnOar/AUki9apg+8BFEGxlrmYtNaVCtcLUXyGo13RwsH5O0ZjhqrCS6KpH7cEV/FiN0fUACY/ujVkkzIfumCa+vrw/ZbNaZY/V9bUclWe0rjhAw0Z/fkcGQONJ3l06n0Wg0sHfvXjz99NO45pprcP311zsGw/xXLcvG73yFEnTPqAZJ/JNgEz9xBIv9sF4q2wQWNTtqfT09izcN0XfIOdNPCMBF9LLd/v5+NBoNDA4Ott1mRGAwk28PUkvWFCIADmfFYhGf/exncf3117u6zT4ol8solUrO7H3PPfe4+1ptf/39/XjooYecBv6HP/wBMzMzTqNngFc2m8WHP/zhSH4wsOSH/973voff/va3rk/Ffa1Ww2c+8xn3Dq0ijCwnvmhZYMrU2NgYRkdHI8IJsFj0n5fAp1IpRwM71T1X/ANL/kufn3C5zNen8MRZYEjLW61WW7UzCzrOpDTTjsd3voBweUNr2fP1ay0Nqw2rzsot0Y8z8/oIpvUDUTrUXE19vluw5jlqx0osfXNJ2l8SbcY+2y34GKsVCjgGxVkov08hFDSk/cRp+CqFA0tCFk22vhQNgjXJ+w4/fYHU5Pr6+lz6jh7E0JisdeXGG2+MpI+FCoOE9m+n9Q5ZTXzA8WXOJ8xb3NhbgKrVqsMZL4H/4he/iDe/+c0YHByMFNJgoM66devaCCUtDNT0hoaG2kzEqdTidXWMhiU0m01XDOOnP/1pBIdkNBqR22wupV0xGO6KK65wfmTOX/cLfbK1Wg0bN250jIgBcblcDrfccovzT1Pb598bN2504+J82Y9vj3G/8IIIRjRzXPybz+vZ4w8VC+IrJNASh1r9zu6rJBYsnUcnBmwDqNiG4mC5ysVKKiM+bTrunHVSvFZ6fN5xrFbDr7/+etum0KAKH+giWiZAUws1CZquOpmOkiDQR3xVWuPnPmGhE1hTEsFqM3ZD+5heSLr0aeHsQ3GpjK5x/jYblbZ9WjPTLVh0wVoeuC7sV02+Os6+vr6I32ZoaKjN9FWtVt1F1On04o0jqikyPUIFtEajgampKVQqFTz22GO44447XN4i+2QOqMUtsBTQQi3uvvvuizBYZbQA3PVv1rdD3JPYhrQ+H9h9pP5Srg2LPnAf5vN55PN5jI+Po9Vq4dixY/ja176GW265BT09PfjWt76Fn/70pzhz5gwAYGpqCuPj4+jv70e9XncVmq688so2jWB+fh5TU1M4ceIEnn/+eXzlK1/B7t2728Y8OTnZNv5arYb9+/djenoaZ86cwfe//33HXKenp9HX14f+/n6USiUUi0Wn+XFe27dvdxejU3P3CeXcbzt27HBjOHjwIF5++WW8/PLLePrpp/Haa68hm82iUCigVCqhv78f2WwWk5OTTthotVqupvDo6GhQyO3v78c999yDarWKubk59Pf3O3+4xYEyV+4V5uNq7AELnHA+bKNareLEiRPI5/MYGRlxdM+a/0NAaxHHEipLSkWFZnybXWCFcwAR4cAKVwq+s6H9hqAb5cW6fuwa2P1itepOY1kJWNXW7aL4fAmdtAOfBrRcTa8b4MGwWiDH2s3ChDZ3COz8FEeWafr6UmYXAjJWbStOQ7f+z9Dc4g6dHgTf/HVMOl+1Ulgc0Ay9YcMG9PT0tFUWssTZmnEZBMWoWTJHTUNotVpOQ2aVHm1TtctQEJiPWIXAhx/O1WexIbGmuba3txc33XQTzp07hx/96EcAEAkcI544ZgoXDAqj2VP7BpbKSpJJsE4wNTrmK2/YsAHDw8P4j//4D7zzne90bWSzWXeDEs2rtuShnS+ZhY9u6P6gQPYf//EfAID3vOc9uPbaa505k8yVrg5tTzVN/fz22293aTRMwWo2m64NtbrYvU1tmX1xX2hqjaVz+jeZotbd7uSLta4tK5hbzdZH2xi05XOB2HEmsdh0Cxfajq6lTyC7WIyVsGq9XHrppV4pQgM24jYowZqfrKmM7XQLujlCm5b5cRpS7xMI4vroxGzsWGw/CjTd+fwf7Is4BaI+DDtfEiT9TvM0LaPw+S6s6UsPd+hwqsZuCQAJoI6HFZp0PNTkGFyzZ88exyzVUuILENHKRqlUykUU33LLLRGTHAlbLpdDo9HA9PS0K4k4PDyMiYmJyHgqlYq709a3br60nhD49kzId0TGSsKol8CT4aVSKXf3KbC4r6n5KVSrVRSLRTz22GOYn5/Hhg0bXA4oAFcD+eTJk3jllVfw1a9+FblcDvPz86hUKvjBD36ATCaDO++8E319fTh69Kiba19fH0ZGRnDgwAF84QtfcH3+3d/9XeRicpqmuQeoXeoNNzyTqn0NDg5i69ataDYXSzhu3brV3aNK8zjQ7qdje9yDfX19+PznP49UKoWdO3c6RloqlXD06FEMDAxg27ZtbWtPhsQIX0alDw8PR6xscVHDhN7eXgwPD7vyi1x7n9VEgWZ/0hbinueSDJh48D3HW4J4tZ8FvkMao5HVIUjKiLsVTFWB03e0ngH7JV2ycRGrbSpeNQYb0trsonfTHgmgLyo0KaKSSHG+fjvNzdcPfyfRVm2kbugd648mYyEjCkVrhtqzGzLuWV+bvgMb6idkyvaNUw8xn7fCmYUkwQv0bzGClAxVzWpksEwBIqF79dVXI3NUPyJxoXV34yC0LzpZKZTo8Kenp8dpoUrA0+k0xsbGgrjRqkTpdDpSlai/vx8DAwNO8wOWInlHR0edwEBIpVLuWjjN09XvqcVu2LDBmb9vueWWyNp89KMfBQCcPHkSW7dudf5fq+HpPmc/ZOIaxfy9730Pt912G9LpNE6cOIH5+Xns2rXL5apSUKNQySA8rqHSF+KrUCg4k6q9otAyXpqQQ4UZfMD5qbsh5HZQ4N4gI/blhftoDOfNW5LK5XIbc7XnlUKjauadxsbfSc6HHXPou7j3fGPv1vp4obBqPfX09OBNb3pThCDaDeKLNAtNXn1iypzVdBwyuQB+Am9TSEIb2JZt0zbtQoaIZifGo363EB74HMdATYxamE9jU/C1yYCXzPkCBknHbdtNIhiwTZ033/FJqhplq1qx1cxtfqLdCwrMwWU7zFMsFouRaGVqP8ePH3dMtLe3F5s3b3bzZek7JYi0MFjmklRqJnPXKkAWjzQ9sl9GEdNnDSwR9O3btwcJYL1ed7e5ZDIZFAoF/PKXv0Qul8Po6CjGx8cxPDzsnh8YGMDAwIBj2hwP2x8aGkLmfC1oX3/p9GLlIjI4bYdtEZ588kk8+eST+OEPf9gWDQwsCRKKo2w2G9GGf/KTn+Cb3/wmXnrpJfT29uJTn/oUAGDNmjUuBoDzItRqNTzxxBN485vf3MZUXn31VZTLZTTO15+mlYAR8erDpCY4OjrqcM3gLN/5tFY8pTnqHtC9bfePamlW29XzZq1I6XTaCQ6FQgFPPPFEZN35rApVek83Nfc4GrecqOJOz3SjSITo9Goz21X3wXZjEkjaJtBuRut2MToxY/087ll9RyU6ZcZWY7Z9WImc39u+9KDZdqzEDSwltcclg1M67uRvCUEnC4B9Dmi/CksPrw2O4u+49u07PhOgtqX44/yZTsR1YGF+1aSpKWazWceMlcn51oB9dBIgdfxJtBWCWjR0D1ktgRoHtTOa4umLrdfryGQyuPbaa52pPqSVaJ+t1uKF2LxYwK5hsVjEoUOHIqZfXiE3NjbmCH9Iq2GKXxzQitM4f7VfOr1YjOHaa6/F+973PhcwRfjmN7+JjRs3YseOHcjlcigUCqjVak5QXbduXZtw09PTgxtvvBGVSgWzs7NYWFhwwplGWdOFlc/nXZ6wWtzoxvCVK7XnSDVXq00T9FwxBc2HS933PrrGPcHCKTpuAM7PTgGhr68vomHH0UV7JlebqdnsA+33YmqvwEUKcur0fRIt0L63XObcScJRk2kSfwnfsb5ktmmZrJWKufE0mtDHkPmsz//KDWwZb7lcdodA00203VQq5dWUks6727VQjZ1/k2CHTPEXIjypBuwTZlQD1HepNVEDsbEA1GpJRONwGGKWPk02RHxDoHnNVnBge5rKxApV9A2OjIy4ik2ZTMZpoRrBbMEW7/DdZEOYnZ3FV7/61bbP5+bmsGvXrrYAsRtuuAFPP/20ey4Jg+X8SqUSfvKTn+Cqq65CPp/H8PAwduzYETmHhC984QvON3vy5EnMz8/jhz/8Id544w28//3vRz6fj6wbcVav1/GLX/wCzWbTRRFrBTH6xIeGhjA6Ohrx99M6QSGq074mgyVY2sDP+DvuBisg3jydOZ9vTSGSDJTtV6tVVxEtnY7e8esDO85OmSMrBT4hN46G/MX6YDt27JlQyC93oe12AiuRdzsOn3Rox6NBQACCB4wHUc2eygxVQ6BGS21Eo4EZ7cgNbOflY2g6/06MLSmOrGBBE7+23wl3cW0nOSB6iOk7S9pX6HM16SfxP4Vw2i2BsX5yBtNwD9rCEPyc+41Ev1AoROoP53K5iABCs2G5XHbF/gkh86Pdf6zl+7d/+7d4/vnnI/Ng4CDfIZO3+8r6AlWIZdF8MulWq4X169cjl8u5kov0L9p4j7vuugu9vb0olUr43Oc+BwB45zvficHBQVcaksIJI6pZFGXTpk244YYbMDg46NV0VWPj72q1GkkXY8lNClMqGBOXSgdCQrsVQpfLKHSPKGPneDQaOtRPq9VyJUgpfMaZjm07lkYlteLwXR+u7DOdxrDS8N/GYIGwI/pC2+oWNFBlue110o656UhYOkmwvkIaPhOPBleoP1pNw/bwxs2PGzUULMVnfH/72rUapBIOghLsbhiObdvH6PSw85kkZepC82Gb9IN2IiDAktlQ/Wpsh799ZyEkgOk8GflLRu9LUyIh5605xWIRJ06cwJVXXumsIvSbqsZUKpUwOzvb5g+2uKOWqWtI5tfT04P7778fR44ciVRo+sMf/hCZD+vuEu69914MDw9HtEPiku/orToUFlgdTBkzTciED37wg3jwwQdRKpVQKBTc56Ojo9i5c6fDWTqddvcQE3f9/f247rrrcOONN7aNjTjwCTgMhuL6kMHye66pBrgpXVILlVrL2MeFggqLGi/B82NT+nxASwLHxz2XFFQB4ZiSzo201e5hbbsTrVoNWLUeFhYW8F//9V+JTV6dNstyVfk4gq23qgBLhyPuHS6kErokfgaa8kiQVdJLpVJOg7BjbzQakQOoTEX78gkHVntWZhTCjdWafcBDbj8LPWu/0/ZJjLVgupofu2k7CXO2zL3TszStzs7OotVqOWbDIBntj0RUg0ysYBQnVMbNl0TLEnBqG9QyrUnRJ9BxjTdu3IiBgQGHd94mxIpJDJqiOdB3BlutltMiyYSZNjQ/P4/e3l4MDQ1h586deNvb3oZKpYJnn30WL730EvL5PPbu3YsdO3a4vrLZrAsU8xFFFS5o2meUd7VaRaFQcGtAZksh4t5778XU1BR27NiBZrOJvXv34uTJk7jkkkuwceNGd5XcXXfdhXXr1uHw4cNOaCFdyOVyuPPOO9sueeDa2zXguad/l75ZCr+6LipwWauaRiGHhMmkoOsYMjkTQtYlH9h9wbxqpV+d3ldXVje0Xi0vSvf03NHqobhdrYvW3bhWq+GzZ8/i7NmzzkyQaDAJiGM3SOcih5zw3PzsuxNj4TtksL6xh7RgEkhqT6VSyYXGM5o1xGCtSU6JrSXcPhwpg+0E3UiNSdYjpIWpJksGy881l7YTo1ewjJljtGNOigv17R05cgTAIqMaGRnB8PCwV5Pj/bYch4+x2rGR0MXNlXtBA6BoStTgK9tGiMGuWbMGmUwmwig4fj6fy+UidYqJNyWWNKGqT50lFkulEgYGBpzJdvv27U4rvvfee/H888/jhz/8oQs2yuVyLnp1enrae6Wbzq+nZ7HICO+kLZfL+OUvf4lLL73U3W9LBptOp7F//37s378fwKJwzaIUDz30ELZv3w5gMdf3Zz/7GQDgwIEDTrvn/GkmtsAUF+s3JY0hTpTOKKO0KWl2b2iWw4VqXtZt5DsL2n+3jA6I1ixI+v6FaOQWr5ZGEvi5xtmspia7ai1ffvnl7uJnH2i6RKvVajMn+BhYJyKln1FSUQkqlKgdFwlHgsHn9HkyAzWp8sceCq27CywlhVNyt1qJ3thhJU09mJ0YPQmiPUz6vfpyQmDf0+e1LTLKbiRWSvJqBlOGkyQa2jcnjtkGNTHilWaskNmL6zAwMIA9e/a4KFXWpLXvUXhiyoP66Oz6sX3+T3NnJpOJVDfiuyp1K/T390eK1vN5rg/LDarQ0tPTg5tuuqmtKAbLGWrgl6bIUChiRCmtMPl83q19tVrFkSNHUKlUcOrUKTz33HPYvXu3m2tfXx9GR0fx5S9/GXNzcy6t5siRI5iZmcHu3bsxNDSEgYGBtlzbELD84dDQkMO5pkqxCAcjo+nv/fznP+/Kc+7fvx/f+MY3cPbsWXzsYx/D9ddf72IYGIFdq9VcVSgLpDl2jYh3lmFkO7bYvzIG31mkMGU/830eB7oX1Nxu+2RUNvForWC+PlOpRUtcs9mMCJlUJPh/XADdcoHCOedI0ABK1XIz5/PfOedGo4E//elPKzomYBUZbDqddvfB+oAbzfrQupVi4hisaoh8Ji4CN9S+vVpNfZ6WafmIvGU4ZPzUaH2bzUb96mboVqJUhm+ZVyctX/vXjRp6VlNako7PPmvxqMwwqban89K1ZV9aXSmOQNHcyzJ/c3NzbXd8ats9PT2OaJMQW4bv86U3m01nnqX2xXctcVOgYKrP2/HrHuZ8c7lc277TG4gAuKpQ1irDc8XgKpYTJFF+9NFH3fO8D5htkLj29/c7rREAZmZm8O1vfxvj4+Pe4KE4YKoMo18tTaAGqetTqVSwY8cOZDIZ7Nu3DzMzM/jd734HALjzzjudYEGNh8IDgKA7x7c+/IxCEy1XPl+tpSOdzrmlMUlAz4aOw/ZnXVqq8YaAzFP7UTrMZ7oRCLoBewZUk+UcQoGdzWYTZ8+eXfkxrXiL2njMolNSV5t4pVJxi20DUeg8t5tbF5KaKqVrTQHQjaFl5eI0GI6LmrWPMBIsg1KGpp+XSiVXXF4XXE3V2p4l5CSW9DOFtG8fQbdBUL70jjjgnAA/A9UDZoO04tqL6597gfPge/zOB7Qs+IiU4kI1CpqKLM6UQfX0LBZtt35O2wc1XFoh+D1NqWyfl9ADi/gkQy6Xy84fyT6oTWuMgCWIxIlvL3A9qJGQiauJnlfgMfUklUq5Igo6Z2qIuVzOja3RaKBQKOCZZ57B2rVr0dvbi23btkWukuNF59Vq1UXrKs5uvvlmnDx5EqVSCdu3b/dqinFAv7HizAq4CwsL2L17N5588kl89rOfxcjICE6cOIFnn30WALB27drIXLn/6NOt1Wo4fvw4stms86dSYOF6l8tl9zl/NGCJwgjpldITPQvKQHUfJT2vBPXfaqAU2/L1qePXPmm94DysVcn6ijkn61vVNjqd525B21VXFGmmxV9SgWZZY1nxFhOCbj5KvjSxECkKyoh9iFBiTelLpTU1ldI83Sma1JpPfT4Qq3nHAQl1o9Fwh1O1S7bn07LtPHlAfRIlP7Pf6WbW75OOPaRRKyjj6mS+SiqBh6KD494JHRpdy1ZrydzJtVDCw99KHK1pz4dDX+oOmVnj/A1NZLD6Pa8+o7TPXESNJA3tfSWMvu94Nog3Cg5sn/uSz9GfS6KkYPtghG69XsfZs2ed8Lxnzx4n8PLMsaCDNU+TYdNXOTEx0TbPOOA6+PyfuleazSaefPJJAMAzzzyD/v5+53e+/PLLHdO32iTXnL5WAA5HNDlmMplI/WfFleKW4/DhMiQo26hhn8UiZM2zfXHMIe2V+PIxIkur7Fitz1XbCVnRtM+VBMUX+Qt5wGowUx/81Z///Oc/r2SDf/rTn3D55ZfjzJkzeMtb3uI1nSgD4OJah7j1cYVqeWq7PFAkGDY6lRVqiGwygVBpN/W9kCB2szC+haSJiPOjdsxDadM+rCZmmZfVumz/lsnp+8pMfNoy+/dpTCFCTwbC5zv5Wpaz2eO0tW7BMlTikvuDvvJqtYq+vj4MDw+7fikV2/1NYmvHR2ZOwmZxw/bm5uYcXur1On7/+99jy5Yt7no4jrvZbKJUKqFWq6G/v99ppyrBawlIBgXxOrRsNuuuu9NLA2h25o03NL9yn7AAP2/T4fxZjIDpOUNDQ66SE8svaq1inT8ZE6G/vz+xm6FcLuPEiRPo7+/H+Pi4m//c3BxmZmbcfKiVlUol1Ot1jI2Noa+vDydPnkS1WsUrr7wCAHjrW9+Kvr4+bNu2za0bhQ6uEfHFtaZQFTovqjwAiFR0ss8pQ1cLHOmbDXTT9VWmyN82LsIKXZY+hCwkSjtUUAsJBVZZsOfE0rXlnGWlY0BYu9egJx2Txjb86U9/wqZNmxzvWglYdTauWoEyViX+1kzB9xRCh82+E9rgKqlxI9Jk5dMCFez4k26EOA2PYIWNJBDSUnxthDQ4fT5uDLpOncYXJ92GIOlzcZaLC2GyPrOzEiAKY9bEp/2rKwII71U1O/uAqTJKTOv1Ok6dOtWWWsQxkikymMnOg0KiEjJeYqAaBfMHaTpOpVKoVqttAjK1/nq9HnFzpFJLF7Dr/Fg9anh4GKOjo22RywTejNTtGQMWmdIzzzzjrFccT7VaxezsrKtORdyOjo5Gbmhiqg/rDDPtiHvL5mz39PQ4bVwZYpw/n+deTdW+vWT3c0jb0++Vefjw5zvTcTgOCa5KV0Oas1oKQu1aRhs3lk7gU958banWrmCVjJWGVWOwOmklOCoFccPrBlaN1kpAnUCfpzRJCZEHAwjfbWqBB6a/vx8LCwuYn593Wmc36UdAeyFuPWj8nM/pPOLMxUD7YVG8h0o+qrChRDYkENi+fOOw5fNWOvxdhSf1Y4Y076TA+fOuTwYwcZ0y52uy0gerc6JVhGAJna4JhZRWazHWgGuuDIpEmnmXGklug0c47+Hh4YiganHV39+PVmspjoDCAgC8+OKLmJ2dRTabdUxPGRRv01HG0Ww28ZOf/ASFQgG/+c1vcNVVV2H79u2ROAVl9nx37dq1yGazbh50C9mIUtYF5gXloTUjDskAb7rpJmQyGZRKJfT19SGXy+Hhhx929+Hu3r3brYcltExxooZKvzHXm1HSykx5pRwD2rTdTucIaM+/5NnSPabCjVqp+GMtVNx/vvOu/ahQZc9/iL6opmd/sy3VnOOsS0rjfQFf3YBPQInrk+ALHPQJBRcKF90HG5Ji7OLYhU8q2foW2bfg/D9uYa0Jw5piugUr6aVSKee/8jHIpBCSKDu9Y3EVei5Ju765rRSE+u0WVyENnb+tJq97RAmZQkgA8uFNpXt7sHX9ydw1klatAzq+OBO8Ch/qc+X/69ata7Nk6FhUEFQ4d+4czp49i1OnTkXmpzjheSEzWr9+feTcqOavfdJXy3FaoqeMRcdOYYVMGwBeeuklAPBeQmDbJFgzq/bJuAeLW6azJN2PoX0YYnDK3ENnK07T7UTj7L73jTf0ru9vH/g01jiG2A346F/ceCxj9Y1vpWDVGGzcBBk4osyFPhllPDx8ShhsFLE9gDYdhu0rAePf9AW1Wi0XzBGSPpnMr0QhDqgp0F+iUXhKrEkMfP7TJEzKd7BUK7b+Bh9jTcoQ4w5fEoFlOaCCjeKSBE/HoM9zzQg06dn0FLbF6FOfIKb7L26Mtk/tQ9tj/9x7hULBrY2aabVtppawXF/cWLgfQhpVLpfD3r173dj4UyqVMDc3h/7+/kiErJ3Ltm3bMDIygkKhENw3PFN9fX3Yt2+f0yqtFlkul525mferaoDi/Px8pAgJC3xQMwfg3DxMM6LWOTAwgF/84hdIp9OYmZlxNYZDQC3MZ76llcOauNlnyPRtccKcek1/IT5C71BLZgwJwSojjDK3Sow9o3aPdmLAwJKAZhlTN+edNyoxwp5034KNt7HCVEhTtgKb0iN7plV75+9z584lnktSuOgabKRzj0ZpkWfNyIz4JFjtwGq7vig5gkracRHK2pb2GQc+6cxu/NXS9LrR9pNIe0nbSvLcckDNU7YPi2cVfuwB1e+tIBdXU1j3pm/tbdtxe06FKyWONnBNGazPPBcC356z//sCrOxc2ZYl0MBSQQ0GeMWtOdOPfMIemVapVHL9UcigAGXXS33UfNYG9vDvXC6HtWvXusBGBjzGCYNxQqKPmKtFK8net+sThz+rqYeeDTEcfuY7w92c09DZXg79itu/1rKjlpVOWrZt36dQWVguPrqBVYsiPn36NP76r//aiyTAXxQbiFbeAJZuoaDkp7VTeQhVKyAkZQzAUlUlHtZQWohq3J38BjyA1m9nNaFuN2nIvMR5aJ++Ci3dgBJ/Kwl20+6FCBSt1tK1e1oTlhG+OiaVYJm3yL5JBMvlsou6zWQyOHbsGKrVqivX12kObF+1Kvpq5+bmMD8/j3w+74oe6F7SlBG+ywpOtOjwnlRCvV5HpVJBb29vRPvqhEsbHW3novuQY1HGlU6nXTATzyT902QmGlcQwpmCjnd+fh5zc3M4dOgQnn76abzzne/E+Pg4xsfHkcvlMD8/j3q97s47+yKjLBQKyGaz2L59O+r1OmZnZ53/l7jis+Vy2flJqTXRUtApyt03n1ar5Uo+DgwMOJ+t9XUqHbPatrWW+daSe0L3tOLfCl0+Jk/NHlgSOEPCgNIW7gW71j4m7mvHF0OjPlddU/ZRLBZdwJ5G4tsKWdZPbRlzJ8XKjpU/L7/8Mv72b//2LyOKmJphaFGSLBKAIIG3z3aS3OPAR2B849PPk7QfJ20m0YK7Ad1k3Y7TB3bjKrHotp2kz1ncdJqH1WStpufbE3yOZkDNTVXwMcPQeJXBa5qSD+x8KAhZbdGCDWzxQSfp3o5B/9ex+J5TpkzhIlS6MolwSyK7YcMGPP30004YUcKowgvpANeN/WhchAanAUvpUnzPMmkKDHbfhYRB7hcKHlbj7rTu3QqZdv/73rVnxQe2+APfs0zQnid9RmmAfU7n12k+cYoJzyLziy3TDOFX+7VnKwnEtX2hsGoM9ty5czh16pTb/HE+Cp0ciQi1SmplDLX3bTBKaaq1hcB3+OkLsyYpqwEmlYriwHdo7VzYV6f3VSpWjWW5QVgKlijZg2H90PaQWuk6bgPzYNGHpGbbdHrpcmeVqklQm81mJJ2E66ZrpQyQoIVNfFaG+fl5Zw3g3iUxJV5sJDnHl5EbaPS7kH92YGDA+acscWAfit+QtqNz6bT+SfYHNT3mqJKpTE9Po9FoYM+ePW3zpGUhnU7HljukL3lycjKiKfEOWmqudpyM9OXnpVIJmUwGo6OjQdz09/cjl8u5YhonTpxwFapSqaVcVK3+lkr5b7gql8t46KGHsHHjRuen1lgAzsOnJeq6hPBv40ZsWk/IumbjK7S9UqnkzhG/52UMfX19wdrKSgNsxTueN43o5+ccvwUVJn3RwwxwGxoaQk9PjzvXLO6iuPFprr4z3wn0nL3xxhuJ3ukGVlWDtT8qfXoHI1KLNSfYDcuFt6auuPHEPacLY7WJ5TDUJBJdaHz6f6e+QxaCJBJZ6FCyX580GNKgOvXXaSzWXRDq29cuGa2+Gzps+hn3lo5diQrxw4NPpmGFGA3YC9Up7jR3Rg2rEMn52jQZ62YImcfsM4rLpKB4otD7yiuvRPBEoZipTiFhwkKrtRTAMzAw4CpXNc6XEqWw1WotmVQ5Hq1yRRz62leao8LXpZdeGhFqVICxgjQDFnnl3MaNGyOFK1KpJRNqJxwvB/8+xcHS1jjo5M7yQcgiRHxbBmvPv8/i1Ymm0q1j+9c+7VlWWA0N9EJh1UZkNxwDGnTjqmmHn/Pg1mo1NBoNDA0NtUnCzWYThUIBrVYrkufKvnzERaXkEPB7DajSw6dmEvbFz0PSaqg/3+e6AVW4CI3fanRKEDoROWp+9Fv5xqeEnb+p+dmgFY5d18HOUwmevmvTQUL+dB+kUqmIr1U1WR+DJa5UOyauySTU1651eln5iFoPQf1xExMTXr9eJ6Lb29sb8b2S0VhNkBqe4oZSPgUN4sQKpD4NKIkgxmj7SqXi+l67di3q9brDYaPRwJEjR/Dqq6/illtucde6hdpunK9JfN999+FHP/oRvvjFL2L37t2oVCruooSenh5XNYpaDfdkPp/HwsLi/bWhPliWkQyGZ4TWCFaqGh4ejtwdq7CwsHhx/Pz8PB588EGMjo5i//79EasL8c718jHCOMagoIIU9y6jbgkaa9DJ7Exc+c6B3jhkgUVOrHBHK4Y+xzlxr9IaqLEypOukHb7oYV6wQMGHwpWun+JGXSaWr1yIcrSSsKomYiBqFiEidBNbadFG5tkNz4VSZqc/cYwrjphYk4OaHUKbOLSIy1lcq5XEMVNt28fkk2jPXIdOkq1vbmSU3Oi+5+La6wYvdh6dBBafJUCFolqt5kr5UUhQ7TedXoqwJU51z5VKJVfuj0CzqNaXXg74hBELVmNRX7EVbmzboc9DYAP1MucvINA0I92PLP5vNfHQXK1gRVMksHTuWHiCQgNvpSEOrKBHHGmRFTILCjIUPrju9NuG8MN5b968OZLOpWfUp2XaMXFencAyiE57Ps51ZcdJOtJJ4dD3bPshS5LGCVhh3z4T6tNnkYuzKIboj2reChfqOusWVo3BvvTSS1izZo0jZJRquGEto1VzAE1EPk2GUcXcIFryLARstxPhU5+jfR9or4hCzcdu3pD2GMfgedg10k/fUxON9bPZnFugM8NLpVIRzVVxxI3u2+x8lv4RJb52zPqbfSbd4D6hqNO7tk8SUeKsp6cH8/PzOHnypMvLtIIZmQQjL3l3LLAoWR8/fhz5fN7VqQWWLiqn/5VjuBDpmUzb58fUtsn8bWEKC5qypL/jcKq5w2RujOS2eyKTybjr55KsMQOQ8vk8Nm3a5MzB9L0CcFrxk08+ieeeew7XX3+9ixKmRu6L/GbkcF9fH/L5PObm5pyvNp1Ou+v1kkA6vZhzyzrHyqy591utlptPCDoJvARNSyTttKDaG8cYNx8NwqJ1kIJkaK30Oz3nth9ae1S447jUasn+4vKQrcnfMmu278MHwVqybIlTDYK7GLCq+rOmvdjNYBHVacNroXR9NhSoYiHJBqf5k310ChayY4mTNpVBht7V3wrWHOKblw0yWA4oM/VZClKp6K0U+rzFfxItWudgrQQqzXYzfsuUiTtNdbjuuuu8rgVtRz+nIMfP6P9jX5lMxpkZOR/+Tjp+MnUlfGrCoxDVarUiBQVonvSZflVztzhKMi4bYBVnzeH3vnmpW8Dup8HBQXfp+tzcHEZHRyO4Z9rO2bNnUalUXFEHjs8G6FBAp9ZLwUpzcS/EwhDSwIgXK8DYVJROuLeM0wdJFQY7drapArqvDaspxtG0kEDP9i2diAPSFj4Ximjv1JbVePWdCxF6lwOr2huJEhEVV7tXEeBT93krCAuGk2DSjxinualmGQdaxJzSY5wJJURkfIeI/VMzYii6thcaPwmFPVghrXM5YOdDDaohN6wwYrLVamFwcNBdrwaE74dNYuoiUQwVe0h6KLQPK9BVKhV3TRr9g/Q/q+mdoPOhHwtY9BNxvJq7umPHjggDscytE2Glr6+np8f5G/VuU/peWTe4k/CnfuRuhFkdJ2+h0fe4pj6c+UDPKKP1aW3JZDKYnJzE5OQkDhw4gKNHj7q6wMDiGuzfvx+1Wg3btm3D/Py8GxO1IfXzcl2q1aor2A8sXRx/oaB7PSTsqiVOf3O/WQHQAnEch1sNALVWQCC+fnkqFU6v4hzsmfUJDnFCgNIrFRiSKFG1Wi3iZ+/p6YncsuRrR9dBlRg7lwsRrpYLq9bb3/zN3wS1yjiE8zMbqKMObt1ccdF1KnGSWSph4O0ZykitP9c3xrjIRTsvTQfRBbdtdMNEFOwGVg0jyca2Up62S6aqCe4kkIyoDN2p6zPxdmIyPpx0KzBY7dNK7j7zOjXbVCp6c0qI0Olh9fn/fcJSp/VNpVLeoBPVAPm971yphSSJUOMDZZxx7/FaOgY8jYyMRKxUatbkuNk+GSD7YInEfD7vNHGWhuS6tFotTExMYGFhwQntNBWnUilXeILpUdls1qX1Mc2oVCohn89HzOhcexYyIX6t8Ktz4W/f3tbnrKDN3wwSstp0N9YOK7jZbIDQuffRRtuOnatvbknAjqHTOSZOOD97nuIsJz6N2waAxfl+VxNWjcG+7W1v6zpnyw0qlYpcOq1mM+ZIMuKPi2K1L729nj9kzsDiIhYKBRQKBaeNAUsRrXbsVkpOaq6gVMZnSRwtYbcm3tABDxFtK6lxrL456Ds+86ziwQLHTQ2Bd2paUBOqHpbQ2vsOhY7Trm8I78pgFSgwWCamWigQvRg7dChTKX+R/QthbPT1WeB+AxCppGTfJ+5Y69oXEZtkHCEXhj5TLpdRLpdx9OhR1xcrJ1mhl+Z1Nd1y7ywsLGB8fNzdTMNoV96Jy0pOmUwGu3fvBrAYsZ1KpSL1mqvVKo4dO4ahoSEMDg4icz5vmVauubk5/PznP8dHP/rRyF5lbu+JEyfw4osv4pZbbnER03F+Ot/6WuHEp+G1Wi0nOKiVjN/FMREF7kvuVT5vhUSdAwU1O05L16zv0zJGn/DoAzt/jtNH3/gZz6fuHdtnaE/66CIFNp8idrFg1XpsNBr4z//8T6TT6UggApFkF4+TJyK4ecicqEVZZIY0QA1l1/50k7daLVdWjeHlJNCtVguzs7POvKNBJHHaLUEFCWX0KlFZXIQ2c6h9+7ePadnPrYlHcZgE6JdTs7/PLK6atR2DbzxWmleCQC2mWCwCgEuzUGZQq9XcevEZhv3bvhR0nwBLFgcNorF+Kx9Y073+dDrcnb5TCdwSbMvUNQpXcWT70vHp3vQFs3AvswLS/Pw8nnvuOQCL6ToakR2aD9vW/FYGh7GIfuZ8HmRPz+LF8NRYdW9wfjwzDDgaGxtzpmWOlekeAHDjjTe6sTOfl3t3eHgYQLwA04kB2jOt73JMml5i+7HaGvcgrUQ2VUvTZax/l38z8E7Tqdg3sFSRi+PotMd1PkkYrM5JcWO1f8tQfbiNo7d239k93a3Au5Kwar3+3//7f93BsSYXEl/rqOchVB8HmeHw8DAymYzzAWpbPlDCaYk3c+0AOAZrI2p5UfTCwgJGRka8pdw45lD/GjBlUxp8z+t3oU2o3/lMIwo+KVvfs9plEuAhtP5S33hDhMj3jv5QS9YiAwDcrTMU2DR4plqt4ujRow6P4+PjEQYbMlFxH/I9Vvth9CP7p0YYMoer1quFKrrBsa69/q/uEIs79Qv6iKMvTcJqM2quDO1NugVqtRrm5uZQqVTQ09OD9evXO+G3k9bHZ7LZrGN+U1NTmJ2dxejoqLvtJpPJBH2mvvSodDqN8fHxiNmfPutSqYRcLofBwUFUq1WUy2WX+jMxMYF8Pu/iOkJAHMf5ne0Z1LXkXlYGa/eS4p1MkabtwcHByLz5uWpntNBRoKdASotBb28vtm3b5r7XaOJutDyrCIQ0SnvefEKLfd9Hr/Rdn3IQ2rP/XRqrhVUbwZVXXtnmZ1BtkhtNmaAugiKIC0aTDoBgSgIPg1bcIdCkbEtv+Q5NT08PxsbG0Gq1IlK0z3QSJ9Fa/2vogOrnPGCKJ9+G6XYD+Q4/EGVUnSBEiH2HI8n4lFHQxMWfubk5F+DS09ODp556Cq+//nrE0kDI5XLYsWMH6vW6Kz4wMzPjBCgr5FBDYMAM9yGvJFSpHoAT9KrVKnp7e12gEYmZ7nFCKLUhBL796JPOFefKMBXUn2Xxze91XzK4xMfEKXTQhDc2NuZSiELmVOKK/lRCLpdzqTi82CCfz7t14Hxo6qYgx88p+HCdeBEChS4VOPL5vGPY7K/ZbKK/vz8Se2GFQx9YgcZ3XuI0LOJb2wsxbO5t1egVtIYyBVJaSpTmDQ4OotlsYmBgwLlISPes0KX7NI62hYR5n/WN6xjSJjudi+XSu7jniKskVsiVgFVr/fLLL8cVV1zh/o/TuLQaCH+rL5QMRxmP70CoVkwG7NOQuWmtD0Ohp6cHIyMjkfFpP7ZtCz4GGwe2LZtfFjrMSiCSjM/iIxSRGIKk5uQkOFKiZQ89ABSLRZRKJUxMTCCdTqNSqeDcuXNeRtTb24vJyUlHgOl7YySiZQQ0BVN4YqALCxnoHKgp1Wo1PPbYY7j66qsjBMvOWSXvbvAV2os+JmmJA7Vm4s+n0WofqhXQFAn4/XY05w4MDLgc1Eaj4YSMEIOlxlsqldBqtfDaa69hy5YtjuATh0NDQxGzPAkz/1c/JdNvstls5H+1inEePuYEwAVUcc35XpwGrvNS314n4Hxs22pZ8L1DpuwTYKzJmIIMmSufZxQ6wZ43FeDjGGYSRudjsOrXtcF5q8XYrPJjgfTOCiOrBavGYH2LYheShELNjZZwKLGgROtrX58NfW/HEpLy7SLx+9CB8m0uAn1LIWlJmQW1BQ324UGwWqZKrhZ3PESaEtRqtVyASH9/v1sL4uFCNrwVdpSQh4ivEhj6lCxjoFbCg3D33XdHTMbaH+ff29uLkZERR0SIfx52zrVUKqFarWJsbAzpdNpdlcU9pnuSVoyFhQXHsJnqoESL+GeENQnf5ORkJA6Bgp0KgxZXZG6+z1WgIqOihsS21b/GfUQcWZyl02k3Bs1DVBO3+lhZjEPPpZpBGcw0NzeH3t5eTExMuLHxblYrfFgfHa+Y0yBAaq7AktVleHjY4Yc407OtAq4yRT2PVuiwfms9/7puScFH9DsxZ+KWc7NlCxW4NrSysBhISCgnLkP+dp/AHqft+Rga9w33VTfaolXGuqVNcbhVy9Rqa6/AKjJYb2cBpkjm4nuG/yeVNJIgjYsWx4z1UHSSuvRAKtFVU0QIVHsnEbIb1hIAYImJadEH+52a2QC4uqw0meqBWy7YsfoOqO8djcRmQIrFIwPPSCxGR0cjfSiz0H3S39/fxvSY00s80kc3PDyM3t5eV3SefSaJwiX+1c0BwJmpf/Ob3+D06dMYHh6OMFhqa2Q0PmuLMotQNL4C++b+IQOyDNX6s4gPMg+OSfe/3cM2n504qNfrzrdXq9XwzDPP4KabbnK5w9Q2fQzKElLWEbaauebSUljUOeqYNQ6D+0jxbPGjQq0yFXv+LQNOAlYj7MSsSJ+YtkQB1GfN4PrQ0hBKMwrNXdvyWcL4fCczuu8dn3Bo97m2D0Tx69P+LwRUWPv/Owbb1rnRVJNAiHAn3cD83hINNVF20lh9/caZVELQaDRw+PBhLCwsOEJP5uArFMBxk2iQMbFKTYiY8l2WiLMaqzKiTvNkWz4hwPYdao+mQSVgvqIGQ0NDLk1Dx0FNU7UrCxoAQ1M9iznQvMmLsuv1OsbHxx1Ok+KE4yGzpL+PAXNkqracH/2NZKzce2QaNFuzkEe1WnU+OY5Jy4Va5qfra4WoOM2AwV30rarfM85Hq+XoaDFgFDfxS8ZLf2ixWHR5tFx/+k0zmQzGxsYwNDTUVt+Z7U1PT6Onp8ddU8d2rMbOgEkb7KU44Lw4XxXWfIJAJ6HZ7g/7fjeE3bq8dHzc05wbo4R5Huj7ttqwr38VRKzw2mncVhnpxNy1Dx8PsHuVZzIuEM1CrVaLFCHSINUkgsJKwX8rg71QCElbhCRSHBDN2WRb3SyAj8nG9a/vFYtFZzprtVoYGBhwY/L1wb9VOg/1xc3E+ZDwWwkyZD3wjdfHXHV8PsnfAg87v7e5wIRQ3VIbOGYlXBJYFZr4u1ar4fe//z0GBweRz+edGZea0Pz8fOJ9oGNQLYnMUAt1KNh5qmnVBuWpj5xzs/3Hta046WRZsGZ0xSXHaOev5n5lWCT0FHTICNTkWSwW3TssHKFCSavV7g5gv8xQCJ05jifEDHV/qjnVMt/Qu91AN8K3ZW46D8v8VNAm7bDmcn2/E+h54Vjj9osPLG0NnaE4nNg9rsJ7UtxToNO9mMR9uNLwV3/+85//vJIN/ulPf8Lll1+O06dP42/+5m9WrN04JmDNkp02lEr/JGL23W4kVE3H6ZYxMwCEGp0SFMskSKxVaiUR8kVd+0wuto/lgjIh3yFk7p0vnYfj0GeZ79dpbCSuAJyGx2AV9VMzepjvqObHw7ewsOACdzQ3EFhibjSra8AINT39n0UReI0a91ir1dncrOtEgqJ+VSUw3LNWIFRhw9eXtYhYQggsFnGYm5vD4OBgJE2mVCq524LsejYaDRw7dgyt1mK1JQYlEodcj3q9Hin8znmp9qjxAPQn+nDXai2m71Gz43ga56tEcV60imhgkt13zWYz0kar1XK5s7akINdHfcihAKGVIuI+wVW/U+HOWrF0L3cSelVYstYoAG0BY75zrHvSaqH6rO5pHV8IQkGmPCc+SwPnwudV+Av1Rd515swZvOUtbwmOpxtYNVbereTTqa04BktJy0c0Qu3R9OJruxsp046jG0ilUk5jJVjTpPqrbPs2MMRK3zpe69e4UAIQ0oj4uc9PpXj3jc9aEnRuOn/VPEhIaKblIdJ8ahWmyMAZWMV2CBqxCixpyzpuClX6v+KB66IBa51wCcAxJxJGrhM/t4IStUsgaqK36+sjfD4ICUuKN1+0LX39vnUlQ1XzHNugQGUJt7XO+PBlze6W2VAY0TQfn6bkw0dovbR9tRytpkak+8s3fp+wFEfP4s6+tmWF9KRjtf71EI3VcXaiRypQ6o8KcrZtK4gmOYerAau2M/Tw8/8LYVwaDHShG1rTf3RD2OAOXz8M5uDh9c2Bh9sHnb5XBmWf03GqhNgJHzpfHcdKMNlQlLASIA2AoRmUvjoywVZr6UIHapejo6MuAAlYzOvTfEYSdpbNU1zZ5Hu9yKGvr8+ZiFUbAhCJeuzp6cHAwAAWFhZQKBTc/xlTCEG1R86Z2pUPz0pYAH8UOzVz+mqthYQBLdS+Vdigy0EJbCfzWLPZdLjRvaVaMaODmZ7D9liWkL5xXzF5FXxsvrMCiyP09/fHFqVXaDQaKJVK7kwWCgXMzMy44KqQZcQnCOo+stor95sNOgxF62o/FLbiApBCEDpnvv64n9WiQ3+60iudh87bCjjdjNWHT7uXrBKQpH3L+DXS3YdrXZ+QEGKBtGml4aIZo1eCoMdJIN20rci22lLScfhMH/aZ0Oed2rbP+YiVhbixd9pcKwl6QO2h4A/QfkmBaoZkxgsLi7eukHBrUI++zzQFHxFSTY9+RJrTALh7bdWiYRmT9q2fdwJLGKyG4dsLigufT8ziOdSXr13+Du1BHw4p5IU0ARJwqzmG8BFaJ4ISOl3j0HzISOg75jsvvPCCK0bRreaSlBZ0064vgGi1wGqfcRo54KcvSZhSpzHE0cXltq3no5u+kyh3r7/+eldjSQKrqsHGHRALloBaSOqg7mbBVBNM2oZKrlpqDGivVBU3vtDm9pll4p4lzpIcXDvXpJGyfJbEkxtcCQa1xbm5OecL44XXlP45BosDRr5qeg2wtOazs7POh2crM/G5OHyr5sR0HPoT+W6lUnHal8V7T0+P01iT4Iwma43E1fWxxFYZjjIs9QvbveorJEFcsh27fnG4Cp0DtXyoOVfN7iMjIx2ZByM5AURiFixwnTSC2RcjQV/33NxcxMfK+Z07d847Xx0jhSw7jpCgxsArK4R1glRqqXyhHcNKg45TP/OBjke1cRUs+T6tI9aSYoVk62KxY4gTGJPiJCQA6HnVz5JYFFOpFNasWZOo/25g1VUaqxVcTAgt8nLb4PtqSuHnSQWJbp7tZoz/HfjV/okPap+WCfF/bnSNKI1jWDRR+kx5IWHGhw8b0KYHSzXGkCsiSRQmQSOCfeZG3xwtrnxBInb+ccEhVmO+kD1n932IIYV8ptqOxb0FDe5SawbXw6dhcwzKHDZs2NAW9OMzX/rG4NtP/N1JgFZcX6gWuFxIIjQnsQaG8NCp76TPLheUhvo02jjNOa7N1YBVjSJmqcTlaEgKccgLBdPYd3zSfiegSZE+V71OTM2gGhofGqcP4swoNm/PR1CXI00nBZ8JUsGnjdXrdRw7dgw9PT3Yvn17MI+wVCqhUChgYGAg0UXYofqhPvwpc9N10fVKpVJtGh3TpSila8oD2+VadyJgc3NzKJVKGBkZiVwIrrilRqB4sW3HBbiFoFareU3p3MOh1KdOEGIcoed8wi0FHLs+9v1ms+kK8s/Pz6PZbLo8cV5Gb/efCgEqKAFL+aIqRLVaLZc/HlfJjGeRzD5z/s7Z0Lzp66dA1+21gRdDWLZRuT4hsJNFsVvwmau7pcfalrWexfUJdNbigUXedeWVV/5lRBF3CyHNrpMklMQUoe0vZ7NohKYSvCSSYgiSSoMqNXd6diXBEko7X+beKYMlc1IzXygq2jcnFpXndzSxhnx2nbRC/a0CimpSKrxooBBvK2F6jhWm4oDE2BL/JOP2Pecbr/2fQPO0DXIK7aGkZ8Jq2HHgsxCE2uL6aMF6PcOqlXJPdbIsqLXCRn9r21qK0jcmO+dO59Die7mwmkzWd6ZD/a3kGJJomcttzzf+OCtJXJsrDavKYHUhSYzjJA77HNC5/q9FsvoSLAMI5a2FgDmnZLDWd+RLL+h0uCzj6pQ+EKfB2L441wstLaYmXy0QoGkPs7Ozkehb4peahm/9mD+aSqUil9wTjh49ih/+8IfI5XJYv349duzY0VawvBOkUqmIidFq/pybJaqMhOW1bPv27UNvb6/TyJm0nkQDZKlERi3bg24Pv+IoZJFQv3ZfX58rR5jL5RweW62Wy1llTirbDmmLKhTZ8fHvkN/N4p2/+b6PgakPX4W0QqGASqWC4eFh52OnD181QYtHX71mHRMFNUZ0t1qLUbbMvaZWqiZ5pm9Rs6Vf0Zc1YNesk//Tx7x9eA+93wmSvB8S1KzfNbRnLc3RfrsN/gvNgfsu9D5/q6Ztn7f8R9+147cCwErBRWGwrrMYxOrh7YZBxbVl27XvJZXcNa2gm3ftuIHl1TG1G7oT07V9LlcyU+1O50+c2Dqx9J/FHTIeHBJdK0ytX78e69evj6SLdDtm9qO3syRxPXBcIaEnJO1b9wYrEnUiNheyn3RMHIPmBYbOWkjo9T1n2+B6c+0Y3W0rcVlNTvuyP3xWI8y5v9hXaD7aftw87Tg0MlzHa3Hqw3cSWA1NKAkksfaFnrH7KIlQFWrD9mkZYhJYKVzruoe+X02LwarthGaziTfeeCMiwSZFRhyo1AugrbIMQSOYSQCtySgUUWnNirYYRDeg2iDHArRHuvmIv4/A6T2xKnlzzgrW7JZkE1nCY02NBEaOlkqlSEk2ah8+awVxzjKCzHnl2EZHR50GwzHHbX5rMVCcNZtNV22p1Vqs06qlIrV+LscFLGot2WwWo6OjEeLOfaZX+3FtqU1ms1lks1mMjIxgeHi4jQGohUFxEzIlK9B6wHHyb/5frVZdqoqt7KVrS3xTQPLVeVVthfNkLnC9XsfIyAgymQzm5uawsLCAoaEhl69L/FLYIuglAOVy2THU/v7+iNbX09PjKjBRm9Q9afd4XB62T6vhnrY3eCmENFULvjMaei7p95YZdUv848Zko/Ot1Y/R/rzzWPd/SMjpFJ3rsyyG5t2tBtkJ91Zw8rVv6dNKw6ox2Djpspv0ECAcyRvqwyeRJjG5hvpdCcRzgZNGlca1002fCja4IalvU/+3UbicjxbJj4vO9GmISpDJgDTiVwmAjlvbUCLM/1XI4mf8rWZMYGk/0YdJ0yQJPAsZsMiCXlenJlYbhWxxx/47Sfs+3KmP2Aov1MpC+4tMRwmwauyhPu3fatolI9c21HJgizso3slIWYJPC1Bon0nPqwqycbTH13ZSs6ylB91oWZ3OdByTTQqdGDIFT3ULEA8UthR/Fxrg1AlPnQToThBHn319rwYD7QSr1mM6ncab3vQm70HnAiepiWsTxbupo8u+SXy60eIABAlF6PkkCx061KFDbj9Paja1xJbSKQkt805949WDrYSTGgUPY6vVctomg3roq/RFz9ooVmoYVhMnUMsk42WuKpmf4ojavRLwbDbr9hvb0/m1Wi2nTXEMxWIRzWYTW7duRSq16Gsul8s4fvw4Nm3ahA984AOu4hHnQL8o74DVeWlfZL6hVJM4YJuVSgXVatVVOiLYS7ht+6yGpYJpKJLXnhNLcFmfeXBw0MtEiQNrpVEBKZ/PuwpcQLSurG8sccSeTJ97oK+vL+grt0weaL/8PFShjdHBSekBx6+/VcjzfW+hW+01bi+l02l3o1Rvby8GBgZc+xrYRysIzfQcRze0M+k7cQzQCgw+gZr7uFPbvnEqjVwtWFUT8X/913+1mWkUMYq8TtricqQPXaBuNGbChYaRA2EfgP0sdDAUP1Zr0c9D7+lzLKGWBA8hLdaaNUn4GERCoqracigSmIejk9amc4jDkwoDuu98fjwdt2rdHA+LiFBTHRsbc+ZjDSoKaYQhJmWJhl2/TmtDzS+J9E+TMIO3KCzaPcSgLILiRpkN/6YmfeLECQDA5ORkpGiDL+1FcavCB4Hvq/nSt94+IYWCXSq1FHkeAkuk+ZkPj5YmJdXofH3YYCDdq/ztO99JIIkGTgFPU9HsvuPe0O+6pZk+07DFRyea7xNQLCyXpts2LkSDTtTHajX80ksv4dy5c853RKC0CbQXq1eCbaEbzc33O8n79kCHJKM4Iq+mKprRQhvBPs/P9Hv922cNSJqr1mot1fplNaROm8tHJLVSkAa80E/Ng0xtE0CsthwXCETLgw9HKqD4GLUyPSUabIfP273Z39+Per3uag9PTEwgnU5jYmKibXzMkVa/Z0iQAJZyNNlX0r2pZjt7Q0wcoWk2m5idnUWz2XTM0sf8SqUSDh06BABYs2YNrrrqKmSzWRcRTsjlci4HlL7Ys2fPYmBgAENDQ26uNk+U44yrw0v/tb5jrVcUGOy+WVhYQLFYdP7vTmBpTlw+LrC0PiE/dSchh1YUfcdWPOI5Dlkh4sAK9KFnKpUK6vW6szLpu+l0OuIL9zHguH4pdHHdGKugqVX8nv/zWeumiFsXhQvJllD6kcSCtOx+VqvhdDqN119/3RtkoEgPmQVsW91CN1qB7TMkUfl8x8oArLacVMLS5+LGrZGi9nnf+HmoyahoMuX35XI5ceoJgWZb3wXW/Fv9qUA04EyZpZVwQ0II2yDwfTUJK+OkFuNbBzsOG+Sgd7j6BBeds08Ti4M4ouXb93HWl0ql4szFjUbDBSCNj48jl8thdHTUEexmsxkJkCJUq1WXbrVmzRqsW7fOCUP9/f3BYB+muWzfvt3l3IZwpL99+0WJrE+g42fWjGufi/MlW0gimIbOZFJizOf02kJ9V614ALxMphPj1rH6/rbzUcuHBqRpX7795hMmrIXBN0f7LsudUpiy8QI+bX852mUSDVjn7ntvpWDVGOzatWvxV3/1V22bXqUaayYB/D7X5SA5jmgrqLYZImb83ub1qdTGqEiNvkvSv27wTgy52WxGfHzsx25MjSxdWFhwmsPAwEBkrHNzc8hms4lvLQEWKwXp3aK+OZKwhw4gzVTKyDgPH2GzBwFYksjVH8y5Dg0NRcbkI7x2zQm+Kj3ap90Dqol0wqHd7/Z5NatbgcFCoVDAyZMnMT09jVOnTrnPH3nkEbzzne9EPp+PROha0x+wqLnef//96Ovrw9/93d/hqquuQi6Xc/7REA5KpRLq9Truv/9+bxS/zU1VbdHOm3fpZrPZiIbIZygc0iLiOyNkHknjM7QYRxxTDn0XR4itAGfTj3wMylr5tJ1OmiOf6SRc0IJAC0joeevSs0K91f5VkLDjtc/UajXMzc1Fcp19tQQ02j4J+HJZl8MzVgNWdRRxUmUns4ZV3y8UYT4CyKg5th9nntb3LaHk/2qO7GZccZ9b6ZSaoX5vtTH9X+eVSqUiAkynC859kqAezriDbX1Oti2fZhmn6QDRYDUAzsxNJsvL66md+ObDd21UrQ8ohKTTaW/ajT7HFJkkREFxou2psETc2nlw3CwbmMvl0Gg0cOTIEZw5cwabN292t8iwQIgdd6PRQLFYRKFQwGuvvYZMJoMbb7wRfX19kcIVPkilUi7IK+Q/9+G+Xq+jVCohm806d0Gns+0j1pY5EIdM+5qamkIul1uR1Lo4IT30nd3DPmHbzkvfsbELnTQwX3vlctm5BSiIK/Oyl0dYRqgQGrvPAsTndV/rHHp7ezE4OBg0g8fR4BBwXqGz2Unw9QnvKwmrymB92qcupM80YX1USRlsnFnA145qUnEmax2bbVPNnD4NLOl49TMr7esYeFjU/+YbJwUHZfxKxLXCUchCYPHPNuhv7DQ3TZnR+eo4dFw+BqvPA0sMlu9T22y1FgO4yuVyxCLhmw/nrcJVCBqNBk6cOOGYWUig0HzepFK3ngFdJx13SPPmfa8052YyGUxOTqJSqUTuLGUlKbu+9XodJ0+eRLlcxuuvv45MJoOBgYHY6FsF60/3ra2Fer2Oubk5DA0NuVuT4oRLS/j4t92v/Jz3Bv/gBz/Abbfd1pHBxp3TuFSrbrQkamHd0ARah3Sv22c6KSaFQgGNRsPlJ3PMjPRX65Ft10d3Qj5qpXeWAfsseNyzIaF8OQySz/jwkVRJW00mu+p6dEgzCWkrVppPujmTSHr2M26cbvw3+r5PurMSFRA1Q9sx2cMbBz786f+KO/1ex9lqtSLm27jNHhpnJ1BJ3Po4fcII5xXyL+u7voNAxj88PIyFhQWUy2XHQKlVWqJM02TcgU+n0xHTZb1ex/z8PDKZjEsVopDCcfiu9PLhxwe+vUBcWkFEI3oBOJ8p8U7GWiqVACCizfT29mJ8fByNRgOjo6NYWFjA8ePHI2UudSxMzQqZVEOEzRLX0dFRV0CCP1qIX9vj+nE86jMk0GWims9VV13lhFDd4zpupp/YcXMcGqnczb63OAlpYyEBkvuYf4fwGgLiUgVsn29X3TIaT6HR5j6fvQLPorqLSFMVh/bc6ZpY4d0HnfDPPkM0XsEnPOjfy13r2PGteIsClrnaqDx9DvBPciUnbttRX2oSgugbm+9ZDaBQQhJnjk7KaH2auN3EccKCHuJOB/ZC8O7zO1mhRPtXASS0FlZo0WeoWZfLZczPz0eYkvXzAEu+vzgzMQkNtYBGo+H81vychKqvr89rEQmBPRshQcaaDQk2YtlG4QKLOKXvkoIANReNtp2amsJ9992Hnp4eFxyl42g0GqjVam3CSJzmYD/T6ky61pyf3YuaA60Che2Hlc24p2m6VqZhxx1y47BPtUzFWULiILSHlcn4BGV7Nn39h/qmdqoV3JT5WMsT29Z5K9NLwmAZaOgrNmJxofO28+vWNGzH0g3oGFaDqSpcFA1WkagbTKXLTgS1m/74ru87n1aU5LBYYFI7QU2nPqHCEkRLUO3mU2HEtqNt+CREO96QYJNKpdw8fJV0fMw7yXpQqtQx2h/bJk3XetBtPV/iN+5AsciF4k0tCioA9fT0oFqtolarOY2UEjl9fTQNk2D09/c7zZDarV1vX563QlKCoOeG6RU04yox0/5YKGNoaAjp9GIxCL3dx453YWEBuVwO9913n6tSxe8pMKRSKe+1a9qO/o7bI7VaDcViEblczuHSB4w1sHi0zJmaumrnetbiBE6W+czn85H9agVvO+cLYQZsg6C00PbR6V0FMrtGo+EKePgEIt0vZIq0aKkCkCRgjM/p+vgYa9w8UqlUW7xAtwyzE3SzP1caLkpPVlqzId0rOWFfKo0di/a5XCbO5HZtw5oqlBh0MjdZSdWasHxpLUkhxGDZr0qhnI9dn6SSO0E11RBzVbAaU7PZbNPIkhw8mnWVcNmUDGXqnDujGkkgSJzob9RcTt5sY4OS2LYlmHFz5Ts+UAZLc6jVjvUstVotZx4n08hms1hYWEC1WvVqQ/Tn+nyWWhkpyf5Ncp4bjQbK5bJj9KFnbZ6mj8GmUqlIwAxLWMaBtqU3ElkNN26/Lpde+dZZ9yj/D2nYce1SWGIkvdVegWg2hJqPVRjtlr5orrqORemrnbdVLjTSupM1sVuwY7uYzBVYRQZrzQDKgPTwWCmYm6DbTaZthMaT5LMkwDloAImahPU5K0EqoeB79jsdmzVbWXOMHZdvTp1MPfSt6fu2rW42fSrVbtJTgUE1PSWWxCsl6jgtUEGf4bro50o0qAmqlpxOpyNFzi2x5W/1W9F6USqVXJnCpCZUO/bQc8rAM+erSJExFYtFVCoVDAwMIJvNOj8pzcAcB/cPhY5isYienh709/e7tQ+Nj9ogNQwr5PkCWdin7iPFCSNJWSxDtSBqy/qOTafy0Q7NiaaW7svNJY64xvyt89G+Ognpvr2ZVLC3+5573ecb7gR8Xl0WPvrA+YVoh2WuHI/iJCnd8Qnncc8DS3v1Qi0Edmz2bx/TXy1YVQYL+JmelWAISaT/EFwowrqVbnhACb6F1L992kPcZtcDZ6OGuxU84ubl07xXAkKCBf9XH5kebo4nbj19DEmJgM/XpAILzcAAHEOq1WqO+FpBg0CtgESAmqw1L1qNZDmEmsB9QB8q8aqm1lQqambTcWtOITVZRh8D8XuJhJq48Qlgdq/rGQ4JezQ3q+CtmpW2bXMi7boQ17R6UBOyFbrIwBlBq/veJ0jq5779q799a5YUfAx6OWfRnuNQG53iMwiqWSud6rRXQ3/HCZtW6Vhp5tdJwF1p2hfpe7UabrVaeMtb3rLYSWACFqGdNnan/ro1Yyp0WgTfM3GHzndwFbhxQ6ZfEh0Sfy3Jl2R+Kqjo4bDjUa1gpTeaZSAkcmoS0n47ES5gUQM9evQoUqkUduzY4RgdTV71eh3FYtHldNp1YIAStRkyzXw+j1arlQi/FK7o8yMj0P0bJ4Xb/WQtDFb65982pzKVSrki/tPT03jhhRdwxx13OO201VoqxkEiOTg4GNkPxEO1Wo3kqCoUi0WUSiUMDw+7HFuuJbB0jskgaRGxZnnVhG2RFN2r+p5GgyshrlQqkeCrwcFBVKtVFAoFlMtlVyKS+aD80dxpG3fgi5Gwf+v/cfTAgv3O58+29I8CHG8d4nyshurTEJOMIQlY2mAVA+03ZIXr1Df3Qpwr60LAZym9WLCqDBYIS2R6sKw5MAmzI6jUHHpmpaAT8w7163vPaushTZZgU1g6jTNuPHZMqyHBhcagGrmvb5+mb4l0oVCIEGcNACOzSKVSEdM3QbVQnzkwTtJWIMNTjTUpQekEdr90ClKr1Wp44YUXcPr0aafp8j3V2FOpaLk8roOmLPmAhN6uhdVyVIP24UDf8eGe79i527OiY6aAkclkXCCXpqto9D4tAPyMQtKFnIOVPjt27tS4gaX9b/eB4malx+Pry0KIuSdVdtSasZK0O475rxa+LKyqiVij1XzfK0LtobPQiSF1Yuj6XDdaMdvs1EaIMOg8VfLTC6XJDCwwkKrVWvQV+nI6Q+OMY/b2QKyGxEgN1ed7VVxQi1Cmp/WOATiTojUlsU0SIU0DUZ+hD6gFUAvavXs3SqUStm3bhnw+726ICQl01NZCfsg4sPNQfyPnxH4bjQYqlYrTyEl0+/r6MDQ0hLm5OVSrVYyNjbnSiIpratvKTFjJCYgGc3EPasQyrSYMnOF49VzT/8no1bjoW86R89DnfWe3v7/f+Vgb52sup1Ip58cdHBx048hms9i6datjvPSrq4+3UqlE9iC1J86nE+1QOhVHg+LAx5B8QhTzrVWL9AW48TvN19YzshwI0VE7ZzJHriXfVWGoE022vGAlmV4Sbb4bntB1/6vSKtpNCkknGgLLYG0bSTW7lVrETouiAkboezsuH+Ok+TOUW7kcie9iSG92vazWxM98xJV/+4gE31ETla8vOzdluNo2mfFzzz2H559/HrVaLVIMQfsA2qstsT/93Q1+7Gf2f5+2r4wzlUrhlVdeQTabjdQPtm1Zcy33FdslEaf2p5of95/VNNmmRl7b8fu0U35GjTfOv8c+9L5hDdbRIC39Xwl83H7xaYWdzkensx/3vbXs6JqE5m7Pha8vCgva9sWG0LyTMrDVtAb8d8GqMti3vOUtbWYkYAnhlrjGRbtq1KlP2ox71xLLpIhPwhx1fDz0vvn4DodqrqE2mSZhi6qHzDLal69Cjkqb3RT5t2A1coIGLynQfMtLnUlYGU3KXFwluKrRqb90YmIiokFoxGwmk3HFErStY8eO4eGHH8bg4CCuvvrqyL2uAPCd73wHqdSSCZUaEzVC3qXLQCibw5kUj8S/7hX9XIPnlIkoM+TcUqkUtm/f7nyaPvMhzw1TYxg5S41UL6UvlUoolUruNh0AznSsfl3LKH1FIOgnVaZHLYtxBeVy2e1tXqXmq1WbSqWcBYcBV4VCwZWwtDnm7IM+V7X8UIMnznwMixHiNpXI/u0TIDoB31su07H99fT0RPYTcd9NHxcKqj3bcf5PYHKEi4UPhVXtzad16v/LCcnuduF82s1Kg53fcubTzXPdSKg+QtBt33GgEjT/t0zd9+MLgrFEQTU27UsJthJ8vqOEUQNyGo0Gzp4928b8U6nFm4bIpMhw7Dz5udViQ1K7aoAWR4obFT7tuHwMgMRUNTOrofNZ+iGplbNdzYHknPVmImXUSTUpMibtK25O1r/qoxNWAFczqPqXfb5fat5ksAQ1C4cgjmboWvq+TwI+/C2njdC+We64lgsXIqhfyPv/0+Gv/vznP/95JRv805/+hMsvvxynT5/Gyy+/DABOKyAB4yFmoIENqfcxXtVegXgfrL5jc+tW2t+o/VtTYtymUeICtJvX+IxWWWI/FkL9hMxR/Cx0EK22HzcPZUQW99bSwLW1hJrE3WrFKogBSxoF2yBO9PICC3Nzc5iZmXGlDfP5vCsqoeMl05ybm3N1dzXXudVqueu2qJWp/1gJOJl5sVhErVbD2NhY5LJxXY9ms4lSqYRUaulCcit4KG7pV7S33tiqRCwSsX//frz22mu48847I1G0GnldLpcxMzPj/mfZRZtvbVM2iLNqtYpqtYoHH3wQa9euxd133+3OdWj/8B0tRalzp6bK/aNrv7CweME6g69yuRwmJiZc2/TB6trEnXvfmaLVRPeZCmaaFuUzjfN3EjrF9SBOfXs5TnC3/tuVZlorrflZ4eliQad5kHedOXPGZcBcKKzq7KzmYRc+JPn7oJNUFtq4qy0hhTS3JO91MuOopuHrc7lzUu2vWwiN2a6PL/iH8/G16Ruj/Tzk006yJ3p7e901a0oQrdbE562GrePn2DrhjwKFpqb4xmu1e5u6Zfvx7XFLrKyW6EvtUO2eQVvWnOprk3+zby2peNlll7Xh1eLXavA+4Zdt2zXXIEEArppaKJgmjoj79hewVHUtLoaCwi9x6ztTob0asuiRqV+oIvA/QRu0a92NwLCcvpK09d+Bl1Xr0W4czeHS2pe+4APvQAMHhe/YRPgkDGw5c1IggVLJ1moz9l3fxotjsJYZxBHb0JhDhzWuX/5WST2VSkWIsWoWywEloqrxqulSn9NUEWpbgJ/x0nqRy+W8peOUudCSkk4v5omyT91LjPYeHR2NWBZ80d9kUsQb/ZsaEUpIp9MuOCmVSrk0I2qSuh5AtGi+BiPZlCTih+Ojr5Nzr1arLtWFuLDX8nHtQ1oVGWuhUECr1XIXBtBSRX87o581vYaan9XWdfzEO+et3+XzeTSbTecjV0sVn7emYd13HEuz2XSWA6b80L+uViM7/2q1ipMnTyKfz7tr4ZIWbNH5MkuAZ00vVVCmba0evoA9fs93VFC7EOj2fHNvMkKfMQu2zW6UpdWGbhWkpLDqM7BSrxJv38JfKFJ9UmQ3poikDDnE6JL20+3zuumWuxFWYuOGNIsLAdVi7B5R0CCbpD40DXbyCV+2H2tms6DmUTJEu5dVmCRT843V5wvuNLdO2q8dKxmQHZ+mclDo1TKRnQRe9k2tF4DzjZNp+Mat81MN3afp6HpZDVX79lkhuFeU8dr3La5DZ0v7VibPPnx3Aev+84FaN3S8ipOkNMLXl1U2VpJZdaMx+vbySjPO/wkaewhWzQf7u9/9DmfPngWwlGu3HG2nE1OwuWDcqNY8HUe4bVt6iHxj8RHobhh5txtetX0lSJ36s0yZ5jSVkLuVdBlcwrZ9t6z4wKaa2HEnwUknoqWg0rNNu9G2OBafSVtB7wjl+/V6HeVyGdls1jEyYLHyUbVadZeYK57ZRqvVclfJAdEUE8JKCIW+/MpKpYJjx465CkjMcyUeqBlzfyXJD+V46/U6jh8/jnQ6jZGRkYgWbbUw4oS4VN83n2X0NjX0uMh3MizOo1KpoFKpOO1S7/b1AWND1LdNbZ8aLRlrvV5HpVJBuVxGuVzG6Oho5ArAWq2GRqMRyR9WfHG+PJOkj7Ra+LRmxaH+Xa1WsbCw4G5DsmD37oUAz34cHu14db2SnPOQTxkIx5GsBPzF+WBtYrpPuyT4pNSkEJLqff/zcMc962uTY4zrLzRua260nyWBTnMM9avPKhNRBtPtmKwW0AnUhB/SzpLiwu6ZONC+rFktJCyFCIcP/9QENbKVFwlY86f2qwFdqrUk1Vg6jc3iwPe8FpHgWHVsSc2KVnBg2zbKWcFXh9pHK4D2y9G5jpVKBT09PZF0KRUQmGZl0wN9e9yeEx8w1Ym+fFonKMhZzZ/mcxUu+DnnoIGOxKEKajq20P867xCsFBNajgVsOX2HLAkcw/9kjdXCqvpgr776akeIlMHodUkEEiceeDfA8++FpK/QxorbcPQP8DDTvxNnzrFaY9JFVq3YMve4eWnf3Zh7fBIjgXjlBtb7bElg+b2vXR1LN36dhYUFl4ep0bSh+STR0LmPdD7WlKcmT2oL1lfG9VFTnW9uvs/oWyVe5+bmMDU1hW3btmF0dDSID73NRxnSxSAcZP7j4+MR8y6wVBKRdXvJBOLaot8QgLu/VyN6rfBKhsT10svrfUATMH3NGrGcy+Wwf//+CIPt6enB/6+9rw+S66ryO5baUttq2Q1u4xFuigHGy7A0oR0aGNihdjY1ASVot5SUCNrEFKLiFEriBC8FKW9BBW8VVWSzXtgPvIjCLGyVWUStFlSJWcRaG4Z4iIcwxkPRC+2lbZpyA23csltWC7fwkzp/jH53fu/Mue+jZ3pskfermpqZ7vfux7n3nu97b6vVkpMnT7o4L+Y14q7ak4ax8FnqudxqfPbkyZNSqVRcP3ntcnwbc63b7YZixNi/i4Q3noOtVksmJyelWq2GlDGmv1aI8RzTjj1FKH+jMViUa+3uiBO6WlAmVeAtIavruhQE7dhauHPnTpMQloCy3HdpBVkU9MBAuI9iKSR9x6c1W8IkTTviJrRlaQFsafjaEld2WuGKcpEkFNVe1ubB8HztsSw+Zli8SNFmWENgspwtq/tuuYR1W+D+xDMTExPuCD8LPP+i5oEV3/aNle97H9jyRiITb2VBghISrSwXpbVeuQ+sDPIz+vhKTmRCXXoO6C08GMNarbbOXYyxDYLAuWZ5q07c+rXGGMKv3++7qwFF1pQREQm5gdF2dicz7RGu0NvXfCG0qHmiaa1dq5stgCz6pa0jrct41HmepOytwNhqtzZ+42+dGavjqPwTZVXqsq3vuQ5MeCy4NGWkFfaaUWjXl8WgkgqgNMyU3+W9diLrL0sGjSxXPf7mzN04Fy3Q7/el1WqJiLhba6w+IPbH/fTNI24Lfw8my0koIuI8I4uLi9JoNFx8FFYuC/MgCEJWGdqm24OsWzDNarXqLBALbFlrgQpoa5rf5f8tiz0J0L9ms+loiAvXEeNsNpvSaDSkVquFsj8585oVoKh5gH72Ll60DqGH9iIWiZOiYCk1m00nSLW1ODEx4VzD3G/sPS4Wiy6zFwKZrS8frSwFtN/vy+LiopTLZbnpppvcu81mU44fPy6zs7Oyd+/eUBn9ft+dPMV0z+fz7mJ73u6F762x0mvYGnO4nfnIys2wWrneUQ0ezUP1d5ZVzN9bvCCJkLbKjmrLuLCl4l0LFZ5cmHCsNUcRIYlQ5OdQpiU80rpdk8CyWLX2ablA4upJ0w5dhyU09aLV7cHvOEsmql2FQkEqlUpoqwUn0egx4jJhYVntsrRpziwNgkAajYa7mHx6elparZbcf//9oWxgq2x2p+vnIGQQ1oBgilOArO+Z/pbFbs0XSxlNg1wuZ7YX9MOVf5OTkzI1NeVlTKhb0wptZKWEaaSVKHblnzhxQhqNhjtIA3Xz8YVMMz1+EJIsZPRzHGfW61T/RtLWa17zGrnppptcGVCuYNECiM3qdkHZs/gC6GV9hr5GCSKd44LfSdZmEoz6vvZ0oK1JDRcWjFHCMYlwtr73vbuZGFvperHp39C44MJJk1Shy+fvrIWHQYSFxG4nvGcxPv7O6lcc0A7tQuPvdfmsLVrlbUTQaw2Q6aJj4mzV4m8tZJJasKVSKRSTRBIKWyaglWaElhbqUwjwGRJder2eLCwsyGc/+1m59dZbZXp6Wh588EH58pe/HMpsF1lvUWg3r24Xzs6FVQZLL2pRs+sbbWRNG31g7wo+47JR/qhx20Jh9f5bxAr1Wmm327K4uBjaE6zjhqAJt8FSQrTXCDRDEhBimqD9XXfdJV/96lflve99r7zhDW9w/UXGNfYMo2ztDQNttPXIyiSsZgjCKMu21WrJd77zHWk2m/LHf/zHbr5OTk6uS0gS8SfJWfzNMjg0DbFW9JnkehxE1ixvPilvFJ6xGWDFQMR2Z/vyHYCNCnbLCLCU1HFiSyjPmhWgM1p92pvlFmPtUwusuAHTsY8obMRSsKzHqGd9dSd5Pyk0I+XPo5QN63OtiaZtBys5PstZ15NmHDDWtVpNRMQJize96U3uN18ByP2LUg4BWFJsrXCiHh+YwUoOl6/jjJoGiJNqhRBlpfWsWB4JXGPHZZXLZbd9B4owKzr6ed888DG4IAjcYf+c9JbL5aRWq8lgMJDXvva1665qg9CGAOX6oaygPwwdzmCBG8dop6am5K1vfau8/OUvd3VtFlPm9vsUaj3+cAOLxCd4boVg1fRLap0yL8dz+n9LcUuKpAroZo6n2Y6xlawr8pj1PkbBlyLzYuA9mGyV+ephxGmRFgPD35rpphW2vud9n0Pzi3INMZK0ybeIrQ3yzITwObdFb0tISw9L09dWM7v1RdaszCR1oZ1zc3Mh63lubs7F9ZiuOHhB31rE+6n5N2eNoi+dTkfq9bqzNMDs0W5LWRRZb/WA2eCsXr2FhQVDEtprbwwzH8stXy6XZXZ21m1DgSWCdur2JhWw3O92uy3Ly8tO8QFmZ2dd/bwnFOATtFhRwbGFPgHbu3hnMPcbbYna0zk9PS133313qO2bsZ+UEcUb0OZisegykXltWu9uZvw1Dr6xZ/5uvcPzH2PCR4paczQNLIUUvzXdxilkxyZg9cKyOhvFpEFYuDk4sWIUi9Jqn26Xhh4Udj/rvll9Tdo+1uYsDTApA/V9riey7qPl+tX9xOIG/dmCsKwvnYXLNNR1R33O78J64UQr9AvgJCdOcNGL1qcl+y5qt7RpWK88P7VVEpWtroUkv48jBrUVjLbo56Pms6Uw6HK4TaVSSSqVSqgOK6EJtMW4aK8S2s4WVZGuvpuamnJJPwDcyazQgR54X3tccrlc6Io/6zhKfo/pHQdeH6xsbYV1qNuh57BWSEfZGZEEvv4mVeo1n8Bn1lq0eGHcOKUxLHSZ4x7HrXfOc+URk5wXEGuoeoGNAl1nUutSH4un9/fyhEsqZLVlzhoqEiaS9MWa7Fx2VJssy0ozS8SCOCEnqm/YlsNlwN2INsNy0PsttfsPYKENjVe3AfsysbeSaRoV6we9WVD6hAbahSxVTRsuM8085UWfz+fXJdBYbbbeTQstgNEvxEmZbiycYN2y25bpaykHsOgnJyfNuasFLI8DEqUs6yPKCtVjyOUnEbI6QWmrmDPXhXZYa9VK2trM+n28RSS5gaI/980NkTVvEisQoxgx7AWz2o6/UXaSuZAWY5shmrloRpfm/SAI3DVbmz2J4gaI22Kl3esykrZNux61MMJncVqiZo6swesyNYPgujudjjs0oXjxYm7uL/Z74go27JPUhyTohcA00po3vtNj6jtNSAswax7hSDydNBQ3LmCiUbFlXYY+LB9WPuY6TvHRMUymgRYkSeZPlEWhwUkmUUyExwT9wHsQevwsW7b4TmdBW3Tnd63vcOMRewdEok/YwjO9Xk9arZaUSqXIYydx0QEnYCW1xNIqTRuFXheYa1CEfFtXxlF/EmjBm9R4Yfi8TJbSrdcRnosap1wuF3qW39lsbNlMAdOxEj/4t2uYWhzjiCtYmjBD74vTbYhqcxwsd7BVRlJtGZPGsj4twao1U+whnJiYcK5JZmpgpIuLiy4LFPTQWyJQts+1abWd28gZ5prmTDdfWWz1s2CPox+e1e4pa8FiPmO/LNqNH17EYIzcHu1qjcuoTKpd63lsMSPfczwGLIA0/TT9rdi4tWateafLtG4nQh1W/VoAYb911CULfGJVGqtlIzxoM6xezDkOe2y0XUngW2dW+/jvKAEXZzRECUm9Nnnt4X3fmtfK7biVpbEd9n/69GnZsWNHSGPHotWnnmCybGVwnsHuCGYMelHoCZSGMVrCm923UQF93yTzWQdAUoady60dYQerDMA2CgAWLNoLYcyadS63FqNNovVr4cTXiPG8GAxWr0Cbn5+XQqEg99xzj5RKJZf4oq/EwjtJxgnwWc+WsgJFoN1uS6vVckcMsjXIFjTWwcmTJ2UwGMjc3Jx33zesMcwJeBWYZlpIw22thQ7awu+xBWrRLMqzoteBdt3r9cLv6nAAe13YksQcSHNoAh+HybTCucSNRkM6nY47h5mPPNxKq9SHIAhnjmtgmyG2iE1NTTnPEgsOQH82zj5upts8aVm6v5YB4ZMrUFR4vVxyh/1zJ0X8R8RxMsO4kUQwAXHak5Vkk7RO3zNJJijTTFsNIuuvQbOg64FruNlsuqPhcFg5C1jO0oS1mMvlQkIZ5YnIuvivrz8ssHSmOFtKQRDI6dOn5fTp0856RLatJWBRfhpYSpYFKItwEyOBB/2BwsJuVDDIfr/vFAULiCVDCCaJJfmsQ/QJv0FnX5lx81nPOcStLUXBB7SV3efcds4oTWppIDygn4XgbTQa7uYbCFm9RevZBCsrFlhJY0vWZ60xr8L7+P/Z7msUkrbN50HU8wrQXpqtwNiofOrUKdm9e3doYVtuJL1dgmFpZGmRhJBYZPqEGQ2tncNya7fboVhOWreoiP9EobR9Bk3x/mAwcBdi12q1WOYJqxGWhbaaOHGIaYvPrcMI4vrA1rtOTOL29vt9KZfL8rGPfUzy+bzbM4lj9dBGVla0u5z7wkJB/8/0jEOxWAydSYz6Op2OuzKtUCi4vaX79+8PuY8tIYuTglCeZhR6jvq2MOn3OBMbzDrNHIMixGMNZSqK4eFvnQGM8WbLlS3atDkX7OIHk+10Oi7xDZ4OeF6sdqcB6vHNMw2tlOv4O9++Y41lLpeT6elpd/Weld0d5W1gLxM+gyLjOzFNl2nRgMvn5zHHeAdGUlhJaEnK8MkVTRdO0NvsrVeuzrGUKqvE2b17d7gyYwL6JqUlGMepeVkMOKou7fZKy6yY4Wyk/jiLBZYUtzOqXGRqarDbE2Xp+qLaYZXnU0SguFgLIp/Py+HDh93zbDmjTZzp7GuDtvhGVWjwnuXKZHc3x2GRQauVFAa8A75283NR7dY0xLs6ppmm3zqZLq33yWozjwe7hkdd71wWtxfu481yC3O7dZ98z+rP8J6lSFn8Et4mXuNp6tdC1/IgjmrhRQn6tDzSaqtlqPnWQxJaaF6x2RhbDPbHP/6xvOAFLxCRZL50n4UB+BiJtXWGy9QWCu+J1OC4KLcJ5US58zCgSRm15bZJ8l5aBMHqwe6wRnmCaiFvwcqAxeewQCxhjs+tstvttjSbTXfcHC/yXC58oovI6nF1EFQ8hrjgGkffwVLkfoKpWnTRY5yElqyJN5tNWVxcdPs5EefVWbgAWy9sRWrrDbRgax7gMfONG/dL7ynkz7kN1rtRNEAbomiXhJlqps+KXBqLEO2whLa2hGDd6L31WqgkURwsPpV0LonYl0jo56w8AkvA+OrV/Ey3kwWX7pcejzTguYI6tUfKyvy1eDavPV7PPqs5bhwQ1kG/isXipRWDTTrR0pbJ0ItS/62hrRYfNIOHReVbBJb2Ny5L24coS7ZUKnn3/CVlBj5LT2vRevuRBqy5brcbOhxAL2b+HAsRQhaXnAdB4Cxu3BMK7V6X5etTGjrofuGGGE40wTODwcB9jnfa7XaIoVj7fX1WBn7HCR6fhcQKJ8dg08ZN8axljfk8BUmVTS4j7XhY1pFlFep3uR+87i2BawmiNMqJr+1Jn03Cuyz4tqTE0XpUKzYNotagj99H/e+bg7o8y9AYB8ZWMm9FiOsAL1jdcWtSsaXEZ8EywXWshwUM/sYz7KqzrJokg8DCJc4C4N9pJ7n1HPb1IStSAxrfKJo2M/RcLucSdDjmKLJmfSHJBJYoDpwoFovueDxo7Bg3nzWGciqVirusutfrydLSkpRKJdm3b597r9fryX333Sc33nij7N271wlxQCf2QFhzrCaKHjrbW2T1aMT7779/XWINhDxoDpoh7qcTwtBXHQdDm3CrDM9Z7pc1rvjMcuOClkjKghDC7ygmri0KXrM6gzmJMGDrbRSFJ2ofKBLmNE/R1hv6AQUI/WClEfMHd/5aQnYURh3nqtZrhduEMcNn1toPgrW7mHGpgkj4xDPrPT0uo/SNy7CAfmkep61e3z7ruLwEfM7vcN3cNp3dvlnYWjNLon30UQTSn2nC6c/SaM0aPg01rjztKk6rgUWVibZY5WLx+8rzWbZJwfREXdxGrVz4GA6sUQggXxarpclqQS8SvsJMROSKK65wwtpSytB+/j8JrDmbdP5oyyNqbqb9XCtr1rPa6vK1Ow0T1WsO72qr2FqjUQI4CW3j2qShrf8kz+q+wYOC7WBJDYckbU5Lc5HR5rAuA+UkqT+pVTgKtCEVVXaUyz5tO5LImc3AWPfBwo+tJyqYLCfT4Fg2vt0jCNYud8bJLPpYMHyGa8NYS9NI6tLScSs8ix9roLF/1Jf9qK1mnShiARmQiCtasRho3mzBxvU/7WRkRoh9sLjphK9c01qyhr6mTjMY397Her0eOhYR2vfJkyelXC7LLbfcIiISohXazTQrFApuLyT2ECZVxPRYdrtdabfbUq/XpVKpyMzMTOh7a6wBnS8Ql2CBflhbOHz7aHnNici6bHCd8KYFcRx4PXc6nRCdp6enQ8qglZmN9aJPDLPq0X0TWb+/N2rOM2/hujB3tQWNtmM+djqdUFijUqmYWbdbBdAa80evl16v5z4XsWmI/mFdWEoye0LSzAtGGl5j8dykZWE+Wgq+tS6ssN5TTz0l11xzzaURgxVJHpeLQpTJn8QCtsqyLGB+RmvSSZgwa1++bN2NanvcJl3uOPYR++piIW7d2Yp3LQ0UzMBqL4SIznCFq08fy4g7QuHq1VscmEmw0sQW8UYAhc6X7QukZVY+74e2OLhvSYQ0MxyfW9D3rv6e5xwre1HWMreBxySqLqbbKOB54FuPPo8L+sV7mLW15evfRpEk4z8pbaI8I5vVXpHNtQJHaZflDdkqS9XbpnEVHASB02yhKcFisDbOM/MVWZ+goAWoJibejdKAADBsnc3JbbEsDqs89A9aEf5HX/GOLw0+aiHlcmsHOeh3mdlCM9cxZZ/FnYTR8+X0/D6yfvFZq9WSwWDtVCLW/jEu3B8rAxDthFUoIiFhCSGOPbpoX7PZlDNnzriDJiYmJtyhApxNDMu12WxKtVqVmZmZxAvYEha5XM6d2oQYpqYvj6tv/mhXKrv5OTZmKYYYc1hXOibOdbN27xPE2pIVWR/f1UoJFCVdJqx2vtXIEqSWgIXVyLkV1lilsR6xXzTpmMM6xlzFtX1oi3VIh2+9xMHnIWHaaXAYxLLGojwCgLU20yhdGlb8Mq2Q9PHBpErEKB4FnZuz2dgSCzapxZBkQHyCiN1xbDHEuRX4txbaSdoD5qWtMs529SXwxE0crXlHCeKo32kR1S6Uye4znXWNMthFmc/nQy5i7arjLGEteC0rpFAouK0xsGSh1Oi5poVHkjnhW+ja7Ylx5O1ieA5MGWXCAo+Cb15oZTNubNndx16kJJYu3uO69ff6c/5eewysLUs+nuCzgDdqacWNua+/3NY4HsbW7WZahlH1PVcxjrZtBl2TWv2bhbFasDouh5gdCx7Ldx4Fn7CClqwPKU8CvadTW51RyQAQpLgBBFheXpZWqyWVSiVkeUX1I66/WusE9ITxlW0lIlllYSJbWj+E4dLSkrTbbVlcXJRcLif79u0zn2s2m5LPr167V6/X5dixY1KtVmVubs5ZYfV6XRqNRkgxCoK12Bjiz9yWyclJueuuu6TRaMgdd9wh09PTTuDiPGDeswqLNoo2/I6mM1vmem51u113FjEyfkXExXsbjYY8/fTT8q53vcvdhcr0Rr+iLA/E/DjWKbL+KjX0A0oHbqFqtVpuHOLGHtC00rkJ7E3QApUFLdz+nHPhy5fQHg5tTfK5x0mQhClr697HYzCvLGsccwJHjPqOt7TK1WDL1bfPN4mymBY6oTINxhGiErETzywFKCl8NBsMBnLu3LnRG+qrb9NLRMHK6tCuX8CyVvTnSesTSbZBnbXnpJYuM3x8ZiUdAfrEGN9C2UygDt9kT+MhYKbJghZthyBhpgM6MnMFs4HysX379nX1IeGNhSHXp7cpaCt3eno6dF5y0r5az7Ol57NkRCQkaFkZYRcvM0nESXO58LawtHPBcq1yW/V2A15P3W5XTp48KcVi0W010RZu1Fpg4aLnA8Ij6LtlFXK7rDWVBKOOaxysvvnGyGcB8XNx9UZ5SqzPdZ3j4B/PNYtYexgtbLTNnDSredNmYKwUxcLXsSFmRtD4dKII3IUW07WgExLi2mUl5ViA1aL7gZOD8vl86P5RYGpqKnT4PFyp+vzWUaCVEgCxYFhqWuDqmJ8PEALNZlNKpVIoxgtLanZ21ikXsCoQg8LfuKEHwrhQKMgNN9zgXKX4qVQqMj097erWgPCE0EfcF5bRbbfdZgoq/b8WTCwE8Lvb7bq26jkHxaLb7bqr/aamphyNdCY8ZzPj/SAI3NnJoGmSbGYAHiCsj0ql4ugLbwqHLGD19vt9qdfr8sEPflCq1arcfffdblxxcw+UQt84QHjzSVki649d1O5oXueIVaIOy7ujx89yzVvwrQsfoAhgXrC1zOsecxpKgk+J0bSIamNcOzdipUXVnaSOrXSh+sDCNS5ssRGAL1cqFdm2bdumlMkYqwW7bdu2SCtAuyLZ+tFWpk+jszTqpO2z/ufYWdRiYc09zvqFJQeBkMRq5vet57j/TDvf4fH8Hh/+4GsD3IkQ1GAomsmWy+VQDFVvCudbSyYmJqRSqYTqZWtUW8xWLJXHG+UmdcVxeczo0F88x7+jaKPpDOHHcwOf60x6fJ82mxlCE5cIlMvlkIBmWnKfkABWq9Wc4qc9DXHeH+2F8jE+7QVhgapDHpiz7FYWkVDGOPOFcbsio6x33cbNqHOjh82n8fIxot55rlmy4wJ4DebZL37xi02vY+wWrAUde+W4kHan+YQLx3dQV1pm5QPO7p2envYyHd1utB3f4XMIVr1XVS9UXz85actiokEQOEsI9NDuSwbHRbl/GrDKYC2x9djr9aRWq0mpVJJqtSqDwUDq9brLnoZVDxcyBNLExIRMT0+HMq/ZqkFGLG4K0dYN2gomm8byY4VBZI35Y8zQToxN1FwqFArO4uax6nQ6Uq/XHdPDuDSbTZcdDaWE3eJp5iwO6Th58qScOHFCpqenQ9a/dveiL9Vq1Z0kxUoJxgL3qOo1ywzcOv0Gn2taDwYDN+fhxcDeaUbv4uXnuOMU63nfvn2h8cfJbb4L2bVnAoijLSsKUcITc3WjwlXzuajTlHT9lpERpxhYdW8mkigmG6k3TblJaKHHT4eWNhtbpqpYCyCKubB72BJuLMz490baA6YDlxsvPg1tYfvKBrS15bNi2a3rs961Vg/obR2WpQFrxirXihMzQ2art9PpSLfbdYkqUJrQf1YGeK9ssVh0SgDXUyqVXJkLCwvS7XZlZmZGJicnZXZ2NuS6hMsuiUIFpQOCRltUbEWx1ZcW6MP09HQoWxiuYG4nBH3U/O9dPOe4VCrJ5ORkyEOALGxsmcI2JdCX5w0reoPBIJRwiCxwEXGubqtfQFpvESvJvI2MUSwW3RYs/C0i3vmkoTOUtTWdBDwPuBw9F7TXwarbWlO8TpkmWtlh+ATIc826TKLAbKRcX5+TfmYhTRhhoxhrDT6LC9/5GKTPuosSNmkYo3YP6pgItBrefmItQGtPJ6BdgiyIdL+4jG63G0qasuKmKEcvXghxfW4uKyP5fN68mJwFEaxiMHPWricnJ6Xf7zshuH//fucG1i5XWKYQqNirCYue6V0ul90pUXfeeaeIiHzhC1+QV77ylS5eCPisGAuoCzSFUEH/QBsIfH2YRRrgdiCum4VaGrTbbfn85z8vr33ta2VyclK63a67gahQWL1YHN6DRqMh1WrVCVhticLzkMvlQqcsIc5eLpdDJ1H5AKsLQty35rBOME5RfWdvhFUX4FNkOZyTlg/oNujy9QlPEIjIakfd+M7yGkGxQV8wF5hvWUqMzxrTynsSQZHGyn024Qs58Hf6+7jyLPpZoYbNdP0ztozi2srxES6pqwdlJdHqtABlIRn1vn4Wz+uFr2N73F5edEm0PZ38hMWJScFWqi4Tf8PNadHYoo0+4IDLsmgHBs97fPm4Ndb0kUjDm/3ZFctKF4TTW9/6VlleXpb5+Xm3rcWKLWtas8JhZfhC2eD+aMUA5Sa1HjSd+X+OTXOd+nIAKDdw3ZfLZel0OnLq1CnpdrvOygTNMU7FiwdNQIjDirXGG2O8srLi3m21WrK0tCTValUqlUqoT7DmuZ1x8xj18hzQQF+1WxShAswpPnCC1x5i3Dzv0LaocdLttGgUxwfYk4P/QStWPnQyZK/XC21L9GV5azrq9jIdksC6oALrnZX4JLAE+2ZD900bZL65FzXmWoZYxtI4MbYafMKRB1Vbedb72mrkMpMIEHyvGYZVJpfF5essST5AQLt9dRm+fas+N4W2PMBo+v3+usQaLFieMElpwnV0Oh3XVjAO/h6MjycoYql4FoIKWbjaimFA8CLmhrYingh38eTkZCijUzN8jk+zm5fPugYj1wIW46OFtpVpzL+j5gvawHUhxsgHUUDhwPuwsrGFZnZ21rnLO52OtNttl7EMwJJaWVmRVqvl7saNsvQ41lqpVKTRaMiJEydERGT//v0hGkAoWKdD+cCJcD4Bi77qk6fQV5yMhfs6WWkIgsDNVYytXl9xyqTlSePfVhk8blpx5jlnKQ7dble63W7IBW7xNB3yioLPENHvWnuGsUb1vmQfLOVTl6mf57akFcz8vd7OZoUwuF49hvyjlUPdryQG0CgYm4D90Y9+JDt27AgtNN0BS2Bql6hPEOpyLALze7y4ojS3JBNAa8t6D2Hcok3SJ3yvs46jNLyk/dBxXn1gAKxFXzavpoNub1T96EehUJB2u+0SYBBXhAXHFq+PaYLxshKiLQqRVWaAZC3O5mZrT3sGLDpafcL4o372OKA9aB9u/4Eyg4WPiwdmZmac8oF9qr7YJeg/NTXl+sJzm7dssVI4MzPjmGun03HPg+lCcCBWri+wsMAx7jhGhXazJQXmycoQ9lfrpDQ8zzSBkpjP5yOFBjNbLpPbxQqb5im+frFypedquVwO7YdnpViXbVm3bPVaBkIUYGFzpjIr0qBJkv4lRRo+FAc9BqxQA5ijVv4B6res1XEIUwtjq+VnP/uZXHvttZEL05q8PKn0M0mBCakHw2c5pq2LF4lI2BL37dfVizuppsoHVViaa1JLlZ9lawoLjhOPgKi4lm+hJ9lugH7BImEhwkySz1S26gI9IMA4cYqZEoQ5MqCRVMOu9DjhEMdcYXHxfk+RcJIX9u9inkAAwmpHHBRKBu7BhdUGYB6xqz6Xy4WsZ3gSYOFBqajVaqG4J+YyhD8rXZ1Ox20FQl81HVh4R2X+M71YMYIixVa9yPrbf6AwcKwTwJ50ZKpHgRUBzAW0yxpX/ZnVHxEJKVgM0E6/o3kHwP+zcMX6TwPMMeQ7YHw4thzlTfP1eavAbWOerr2gzEOSeCm3EmOr+QUveEHiZJGogY1bsFYZehB4UvnqE0kmaJlB+NyyPo3Jx6DwPbsYfZv39QLUGaoWtFDXSgDaC6sKdegjLLWwi1IkoDUzo8SF65OTky7md+bMGee6hMsZghXWWbvdliBY2zal6cr9w49ebBAmKFtvsWq1WiKyloSi3Ws6Ts3tgFLAbkxcbYZEqiAIpFqtOqEHpYnbaSlfKBvbXiCMWPmB27XZbDpGg+/b7bZ0u1351re+Jddee23IFTwxMSEHDx507lo9npzt7APmjW63BT3PrPWiFVFsmdPjxfFtJIDFgRUp0JbnzChuQ+4/xibueYYvdsx16y2ImkZJ2pfEgttsa3aU8vlZTUtWWsEjoWQmlRO+urBNbLMxNgGbhPFHYaPah2+yRkH7663veUFqK1kvUt2GqHrx24rjoEwIPEA/54NvUetnYMmiTgg87leScYE7FO5OoNvtytLSkoiIVKtVERE5f/68i6+i7xC2YPywDq3sZ/SHaa6TUUTW9o+y1g7AgguCwNXJ7mXL/acFLP+P8hFD9iFqiwmA/kBTh0WkXfiNRkPa7bYTsMgqxg1FDz/8sJw9ezbUh4mJCZmbmwsJHh5j0Exn9GqkOSQB84y3S2lvEP/Pe6NZWYGAhQKBUENc3Xr9wJsgsj7ml1SAoU9R3rok5aBNUQYHz19Lkbeg52CccI3igaPCanOcoWPlggCsjOpxT0oXRqfTkZ/85Cep3kmCsQnYq6++OtXCAzaiiWwEWiiya8LnKtKLiS0c/ixO29T1aIGLHyTuQGvXsSTfIkfZ0NCg/FiWH9rC2Z4i4uKXHKOLEghWpizoAAt3YmJC5ufnXSIPThnCqUNJEilYoEIY6v6KhA9J0HMM1jKPna7bsop9gOVqHarAzAtKWr1eX0c7WGegdaFQcAlAOk4HwQNFBJYrPwNLVXt29LGHudz6y9BRR9p1aSmgut0iYQUHwHdoy+LiovR6Pfn4xz8uO3fulPe///3u4BJ4N6BAJW2nngccS0a7kpbFSh7e5bK04gBlOYnw832vPQC+d7U3Js6atdbHRqxDXW6aPgI6vm7NKe0J8ZXHPALjMjU1Jddcc02KniXD2CTZsyUoR4EWoNb3LByiNK+owfQJJL0weZJw0gyYEifz5HK50PmzWlByudjioPf3aQGr2y0SvqOSXZAWNOPgiYx3cGjC9PR0KPEIglnHnKPmEtrNyTOc9IRndMIYv6+VEssVndSq0RYtwIoQC+pOp+PmV/HiCVZQQkBHlKmtSbY8OU6H23R27dole/bscbcXRYVOAIx1XMJaHKLGjhUM1MkxNowRxhFHQ37jG98QEZHf/u3fluLFs5NzuZyz7PVajmK0mjmzEsifpxHYeEeve61g+gRsUrBSHuV5swwEq8141np/VOi6NyoTNN/icq26re+0cIXyUS6X5corrxy5bT6MVQJGdXIzNCIuOwnRfdBM18d8taVpaZMArE4dP4kDH//H1gszR7hewai1Bmu1j921VkIPL3r8z+2GVYZr6vbu3WsmcFjAHs8gWI1DttttueOOO6RarUqtVpNqtSrVajUkXPnAjTiNm/tgKSsYNwgN3e84DwOeiwOsLdSJMeM7c0XCAhjuXCx4/lx7AfB5Lpdz8wvzE3HaWq0WcvWjLSgLdLX2FKMunlecQOKjiW5jmi0nqIdPT+NysL83CFbd9x/4wAekUCjI/Px8bGyRBVxUWzA2vD6Stt8Czzley7rMpIIByocviUcD3gCtNLOCHSdINyJYAR/d9biwEs/9iopP6zZq/pfEStYer3Fg7AI2jbWXplzAJ1TSlh83afn7JBl9WBRpXGtJLCl+Dr+TxGLZWrGYkmVp64QQxEmRxMNZoz53uRaY5XJZms2mLC8vS7FYdFfNwWrDuz5FxleHr8/cNsuTsJmLS1v5lvXPTA9tgQBhBcdnXXJ/mU4IH7BA4mdRH6xoK4lOzyl4FtLSR3tG4mA9B2YL4Q7LHzdXWcrHqGAabiYsXoTfceEP/X7SLGL2emE84TpnhUyXz79H5aFJwNajlbilBW/StvgMJAs+JWccQnasAhaN9yVIJNEurXcsiwMMbZQy9WDq+vQ+Mu1Csk5G4UxPBu9Bxfvcfj6uMEpwMrPULltf31nAYpIztFvXogkSX/bu3SuPPfaYvP3tb5dKpSI33XSTO0IOLj0Ij3a7LQsLC1KpVKRWq7ls11arJceOHZP5+XkpFArugvJyuRyyZllQgf79fl+WlpYkn8+74/+wYBH/5OxWn3DV9EKcFAIR7UjCfFE3rH3tjtVnFHOmdZRAtcB7X3u9nrseERe8Ly4uOot2YmJCarWaq0sDlxSUy2V3gAhopeO2aHuUS5LHaVQGzZ6ZIFjbagIL3bdWmXFrPuDjHbBkxgW20vizqOdFwvyRE7E0XVkJYn7Cmdf9fl8ajYZTxJg3I3aPxEIdlx8FPuVXW6e8xVErxEmNnjTt0e/xVr1xYOwCVg88Ph8VUQvBmshJ4Vuw/GO5eXwuBp/LwqJHVJ1R4EmcNOPRel+3F99Ze4khYB977DEREanX6y4rlLVT3m7U7/fl8ccfX6eIPP300y55Cu5VnHrDGaP44aPfgmDt3GZfQlQUk4iiP+rVcWPf88wI0D/t3uLvuOxR1wXKZPdmLpdzN9j88Ic/lLNnz7qxAU0tRQEKBSxfLahGtfqZiY/KsNmaEZF1iouFKGXZsgY3Kkw2E9Ya1bxDg/uk56Pmwb6x5DkZBW0gjAJtterPt3IseOzHUe+W9IQJqQWPD9DKfPEC3yLayMDDeuF68DuXy4VcLKwhJ2HkHF8IgsAltugTXvg97XLkPvJl3qMyLggnPmEIZXY6Hel0OlKtVkPbY6anp6VcLstb3/pWWVlZkQ9/+MNSrVZDhxZAS2a6nj171u13rdfrcu+998pv//Zvy6FDh6TVasnRo0dlampKKpWK296C5C0IjaWlJSkWi3LTTTeFrDGMC45fxJ5WxLB5e47W/lnDR9t53CDYebM+018rHzxf0W5YBaygbSSBiMcc1jrvHcaFAK1WSz7xiU/IqVOnpFAoSKVSkSNHjjihCxphuw76hr4vLy9Lo9GQmZkZtyeZ56rVdm3tdzodWV5edlZ0XH8AVhxKpVJoexLe0fSL8wLASsPWHyhsMzMzoTazIsd1+KwyfGcJbt/zPvh4YxRf8ykdXH+xWJSZmZl1bdFjju8RHtD8rdlsymAwkGq1GknrpH0eh6LDyisrtUxTKw9lHBhr6XGablznotx644C1SET8ll/aBaQFqCXMdZ0+rTuKyaWFpUn6NFosyGq1Kjt37nQxVH6XmTCsVo6liawKo+uuu87dFIO4IAQX18200BnV/D3A2rzePxdl3eg+cDu0F8MHyzrweRjYTTaqFq3rg6DgmDb6AE8BntXtwnjhO9AO7zHDYssoar0ktYyi+me1cyNWMTwloAX2ZDOilHjfs/ib5+uo6zOKvtazcUaLVnx87wMW78ac2Mh4RmGzeJn197OFy4bD4XAzC3zqqafk6quvlkceeUTOnTvnNOS0i0FvR4D2zMfh+RgXw5rkljYjIu4oOyRSaERNel6QVj85tsp1MmPVZYCRsMsVC0Vvwk6bUMXtBgPlQ+W1xacFDIRi1KXn/X5fVlZWnDBkwQthgLgtuyQXFxel3W5LpVIJneOqaa9jnCwUAWzvQCIV6tBxRFZkRMLxaMSpYCWnUai0UNbzkffBoq9xByZYc5qTl5gOvL8U+0kRty4WV++UxaH/OGqwUqlIpVKRVqvljkvEcY35fF727t0rExMT7oStqCv+WBgyHXRmLPeDPTv8v8ialwnvJr26kNf7f/tv/83FqPP5vNxxxx2h24RQB+jsGw9WvICNxJ19dWy0PBb+XKZPsEYJUCirnGku4j8TwNd2q/w4Q8ZXRlolyPIyiKzJrtOnT8tVV10VW2YSjM2CtSZfWoDx8URgRjsuLSpKGdCCME25PHk1Y8Ez+m/Letf99tFZu7p8iwH1sHViWYVsNaAMHFE3OTkZWW65XHbWEBh57+Kl4nChWn2HQsFCMaof+nMeL9+4pbUUtNCAAmS56uK8L2w14l3rZBpNF1/78DzaBsEE4b28vBx6Dufxol8YI1yRx3t29bxIsr7Z02D13RqTpHxjMBiE7vrV88aijUj47lYrk9WqJ4onpGH0aTGOMhk+PuZTlqw8lKQCbhzYiMdnKzA2C/ZHP/qR0wI209+tmayOmYnEE5HdjNwuHYezEARryTVp6w6CQJaWlqTX67lsyCQxYzBw1IO4mxYcbL0EQSALCwvS7/elUqlILpdzN47gf5SNM26tuCLQbDal2+3K9PS0FAoFOXnypDSbTfnYxz4m586dk2PHjjmrSPcZZTabTTl58qRUKhWZnZ2VI0eOyB/90R/J+973Prn55ptD/WXrEuWsrKxIEKydSZyEdjglCs9rmkMJibJMsY8XpykhrogzlVdWVmRhYUFmZmZcti7q7vV665K2WOD0ej05ceJEyCKbm5sL0cKy9DTYAgfNe72eHDt2THK5nBw+fHjdISXdbtdlD1cqFel0OtJsNt3FCLOzs+7IRZ0DgP4FQZBoywxbnfBE8U09WIdoP9qpvV9sXbZaLfmrv/ored7znufii0jkirKqm82mU/TwfC6XcxY594eFuN73jT7xkY9QspJ41hhbwfi1BZu2/lGtafYMoS6tDG6V4ItShi4pC9bSdqOeTVMuyht1UNgy1p/DLcV1JNmzlqbuUbQuHai3slA1dOKUzyVkTTowDm0Z4DcY47XXXiu9Xk8WFxel2+3K/Px8yGJGAhWYZrFYlHa7LUePHpUTJ07IQw895KwlbrevPxw64LmA32xVsotWMz3dZx0HtcYISWf6TGhfXIoVI/3D36PNcP1riynK+gZ8nyOk0mw2Q8lC7FKGkBkMVu9fxTixRc4KHN6Nm8uW0BfxXw3I/dDb1Xz9RP94rmpviw9IgPOVzZ8nWbOa38XRRmRt3qU9Vnaj/I9/J+VjSfpjlcdzl3+4D/rvuPouFYytB2xlgSHqhBF+LikxebKncVPwAIKh6XcgkJApB6aCfZZ4F1mp1qk4US5IaMf6sukkfdZWD5+zy5OWvQUzMzMhWvO1Y7p9elE0m02p1+suixPHGILZwVqr1WrSaDTkbW97m4iIfP/735fp6WkRWY35HTt2zDG86elp2b9/vxw6dEi+8IUvuLoQg4yjAfZoNptNyeVyLlYMoQeLCIlTOPyef/QWHFiuiL9jLsJyYmu63+/L4uKis2TBnC13I8YJh9Cz4gbmUq/XQ0IOWbb6GD1eQxhjH42sedXpdOSOO+6QyclJue2221x9GFMArvpqtRoSUCsrK9Jut2V2dlYmJiakXq9Lv993XhgLGBdYybAqeY8w1g4rTqAhDjPRa4WziIvFolxxxRVy+eWXh+qFIuSjVb1edwoHt9+K5+bz+VASn6Y3P8frjy12C+gvYvuwmpN6tKxwjUZSKzmNINPCD/+zZ4SVYFZ6kXOh69Xb4SwP1lZauZuJsbeYtRULlgWVxOWKwdQDkGYSaUtIWwxWTE0zO0tr1UKWP9uMTe26r/p/XT+EsS8hiZmCpYTwItF1TkxMhIS9dgXhCD9YR/l83lkdAAQyXxkFAcrMFW3QFg0UI62s8bzS4wT3Law3lAnGrO+kRbnonz4kwjr8gI+45HbCAgQjgfCHoNHnAGvBHbU+9LyDUmS5csHgfYdy8DyH5wHj46OzbotPmRVZHyvn36y4giYiYSEI5RfKLmL7WtlhC5qVq7h1yEI6iq9YMeooK5qNDJ2RnTQ72uI7SbER69dqh+Ybuv1JebP1/Wa2dSvK1dgSlQALSVuw+MEiZ5cmW7jWBEX8h10sSTIwgVxu7ZB8MDfNzKemptYJ2MFgdR8da//MkLTg4/JE1mLG7AKzhHIU0FcfOPO43+/L8vKyiIjUarWQEAIjAtPixB1cBM4Zypa1AosE4C0xpVIpdP8o8Pjjj7u/n3zySff+0aNH5fjx47Jr1y7ZvXu33H777eu2UFjaPtoLsFvYmjuDwUAWFxel0Wg4KwY32Nxzzz0SBIG7FxYWBv6fmppysWRsUUI2rqYPTlcCML+Xl5dDFxxUKpWQMOHLwyHceGz1tV0+5lUorJ7ZKyKhDGqg0+nIiRMnZGpqyj2Hz3FZQBAEUqlUpFqtysc//nH57ne/K//pP/2nUBwfwk9bJ6x0aGGG8bHWjYi4uScSvuZw7969bv6Wy2U5fPiw1Ot1OXLkiFSrVdm3b986WsCbwcIvLtu33+9LvV4P8QG95nieaWAbkOXh4jHUihzWGj63+ALq4/POQXNGlHGiXe9Jn7HKBP8VWePxbMH61iK/bxkkvu+5jaMKSa0UstW9mdhSmzsJMaKeYeHLmm6clsnvcyyA45rszvGVgwGwjsHj31gkVv3j1Nb0pEH/4NJmTTLOIoJLh113DL4ZhvGxj31MGo2G3HTTTaGYGJhNsViUPXv2iIjIddddty55ZteuXXLDDTe4xKCofrFlovvG1qO2tmCR6ttlRMLH5qEcKHQQ5FCu2EUMYWgdZQca4tB/lAPFTs8l7brUY8yem6g5A2sZbbQYNfrBQo6VKa0E79mzZ53SGzVnQX9uC7eP/7bcghhjCBxLiBSLRbelC4pBv9+XiYkJp1gUi8VQ/NyiB2dO43cUb7GUNw3mOfyM5gPa6GD4Lg7R69iXvGm1aaO8OO4di8/5PB1WGVbuBwNjnJT3c9lbZb2KjFnAWpPJmhCWJmhpGNq14jpBGlTUIPK9qrDk8vm8s2SjYsE8oNYtMmgD9pRym/A+L5wksZa0QPmsdOjsVYvO+uYVkXgrudlsSr/fl2q1GqLZF7/4RfniF78o8/PzLnbV6/VCp/nUajX58pe/LLVazcUoIfBuuOEGufnmm0PlsisV7RQRJ7Cg0MBdC4ZqCSkIKAhw7bWYnJwMjVO5XHb7R4vForv2DReVo12lUsnFXHXcEK7VEydOSK/Xk1tvvVUmJyfXhShAd+vgA91+HisfwwiCQBqNhoiIy/5mTExMyL59+0Lxa/SFrdF6vS6NRkMmJydlampqnZcoKus+l8u5+331gR/cD2wX4nNwgyBw1nGtVvOumcnJSbn55pul2WzKiRMnnAW+f/9+OXDggOsPboJihQgYDAayvLwsg8HAnezEe2PjYLmeWRFk/sQhB44/W8I1l8u586UnJyedJ4WVIb0eoBj45n8SATOqAGL+od3yGFN2i1tWctI4NJReS1GNa6NF53EI3S21YNdVTgspzr0RxUy0luQjFLugLbcUf2YRPG4AeaFoN5TWTi0rMu0AW3Eeizbot1UnM1cc+tC7eA+pJWBRJ+Kl1tYcfrbVaq2zXCBY2u221Ot15yJF0hLitGAUaDOYLVuOImuHXuBdbo/WbkEP34H8sPbZDRcEQcii9gHvaxrjPViLUfMIcVHt9ubywESj3MN4DsqeBTyjmTtbTGDi+rYj7dWAlS8SjvVjjlnKhKadjpty0lnU2sDlEjgMY2JiwlmvDIQC9HwEeB5Z1mgU9LqOS0rTfdKeHK4f9M/lcqFwmi5DW7oWfBaf9u6NCu0Ns/ha3FxIAmutWW2Jmm9bgbHWklRLSuqusIQs/9YCTAMTiy1ZnqhRSQ2+hQIws4Kb0No6gPb5rOU0A897CSFYfP3m/qO9eL/ZbDrrBEJPxw8BCOTl5WVpt9syNzcn5XJZPv/5z8u9994rf/7nfx4q/+TJk+ssBjC473znO3Ly5EmX+Yu7YXH6EjJ1wXBgjYF2OHsYjB3JQTo5RwtcCEymDcB7geEazeVyoXN0tULDAsfyWnCMm2NmFhNH7I+tSO1i7Pf7kW5k1MVZqj73JWjHigDOc0bWLxKH4OnRGdioD4dYzM7OOotiMFjdR2rRWlvu/BnqsWLHGvAw4P3p6WnT4p2cnHRZ0JyYx7QAb4hTpn0CSSvoPl7Cc4CFBVu9eBZjgHUxMTHh5jXPC8R9rf26PmHOBgfWT5pdHUmhFQEoT6N68sBTmFaMOFkQ1b7NxJZasGk6HAdrUlvfWe/pie/TktMKQI73cdIWJjgmE1tIcbRgmuFvbGHgBem7UQb98zEDFgoQnrhk29qsb7lkwNT01iG4O7Wg43Y++uijofNxYZ1Zi8+iFVu+gD6WMi7jNcqz4EuyY5eXdgP62qz7xWOHcq37V3X9UN7wt5UPgL9xAIPPioLFjrLQTjBxnrMYUxYgImuuSYQE+GQqfgcCF4d24HOem+wBSsov2NpHn7QQ4T5CmGhrq1arOTc1jyVbtdwfLp8tbu32jYJP+bEMBljgbBhw/3TyIpcVBdADx2qiLD32o8BaO1oJ8QFzXK8r/txXDvNEvfatdvk+2yi2TMDqmIvvGdewGCHp+9sitH6WXaYi8fHGpG1igcf188LTzCwKmCRas202m7KysuJuukHyhi+D2sdcsRAxCSFgW62WcxlrSwn90G4qK9u3UCjI7Ozsurq5vIcfftgtbDAlnxvVZ51XKhVnMeNMZVgisAA0Q+K5wlowtw3vavBc5v8tdzRDn5SF38zYLAGraQABi32iOjYN5pzPr54bHFWWfhc0sCxxVgz4OyQWwcpvNptO6IGGaHer1ZJ6ve48JlqIYtx8wsniIbBmuP08NrzVCsKPz2jGb86k5v6xN4BpoxUsJPKhnVqIR42DxcfYqgyCte1cFk044TCNBcpth6LE48Whl6gyNS2jhDMbOFFlgn567cK4wDhYvILXpMj6g3nGYaVbGGsNmuhxzyWBj0n6ysWCTKLRWVeWjTII/A5n4ca112o/JyBBIE5MTJixT1xyjuvKuF8isk4rh0sM5SPWg+08+A7XteF4OSy87du3h+ovFAry8pe/3AnIXq/nDhnghJFqtSr/8l/+S+fyuv/++0PxVtSB7SwHDx50MVBsO4JgZaHCGi0vMO6/jluz0gWax42RXty4nYXdpnqe4j0GXMZwocJjAGHBF2RbbcB8sOY2PtNxa90/X19zudWjAzudjtuCBAbF6zoIgtABJta61PFay+oAA2w0GqGLBTB2TF/N7Hu9nqysrEipVHJzF+3jsYaLO5/Ph7bgsXBnZSvKQtL0Y+sR/7Pw5Zg+j58uR3tSoFhD0FqWud6rzf1BW3zAXOb9w+xZ0IpOkjyEuP+1gYO+WMaR5p/ME5GnYSWd4n2uF0rLVmJLBazPwoxiQhppBZSPYVqf6RtJkrqo4tqgs6XTvMvuTlgrVsJNLrd2GpFvb6q2SjipAwuN72KFZSyyejdoq9WS6elpd5yeRrFYlAMHDriF2u12ZWFhQSYnJ0OnYdVqNSmVSnLXXXfJt7/9bXnggQfk3Llzct1118nznvc8J6Q+8YlPyI9//GOZnZ11sbh+f/WGnnw+HypTZM1dyooHNHMWoDrGpgUizxlrDrAGjmcQy4RVyNZNnIBttVpOsGLu9S5ehICTv7hu3W5rfoKJ6YMh0sxp3N2LzGItYMGsNIPT9PS59DiEAlrU63X5wQ9+IC95yUukWCy6d3GphGV5IEu9Wq2Gtl7xmsvn89JsNl0MU2d653JrR0DyoRZ41zc/8K72gmEeshcKNIMwtOYGe0ZQLp/cpgUsBBDWPX+fVMBiLPRecstd77NkLYUyqk79jk/AaoUHNGIPjiVgtdHGdaYx6DaKsQpYrdHGCbo0gowZmFUeTzzfwPH/IuJdTNYE5YFHvdxHHbfhfaNWkoGvjwjki0jIatKJO1AMrPay9cGwysai1gsOC52TQCxG2mq1ZOfOnesOgl9YWHBXoUGQ7927V3K5nOzcuVOuuOIK536DgLr22mvl/PnzTlDgkHaMKbZcME30WENwsWWB35pZwFIQWXPn6sWN51hQgVZY9NPT0+46t263G7qsHGX2+6sXCARB4GjCSU0QPlBUuL0c42NYVgEun+fDOaIUTwZ7QtBWlKVjW4PBQBqNhuRya6dHgT4YF8xR9r5gDsEdWKvVpFKpSLvddlno2hXIQgsW19TUlJvPem3zyWFQFlgY8VGboAtbcngu6gIBgLfpaWjrTVvw+K2/w/zS6xrzSNMGrt6NukGZF+h55VMetQDT7/k8ilY7odSxRwIeRra2tVICerCiy9/76hsHxl5LEst01M5i0WoC8gSwBIsWjixkkrZFa6bswkC7uA5m1BYj5D7x31bMBRMf4MWly+DvtULAAklrzRqwopaWlkIWoBYaP/3pT+WKK65wW03K5bJz4U1PT0ulUnGLA5Zsp9Nxp2MxY8O2IdAabmqMH2IxoKvOREXfeTGzYmAxDR0msBQ033gg/guNGjf5aLcmlBScLmRlvGIOiay5eTXNGZbQDILAuZ/1HEuyVQKCiN22UPr4XYwHYq+47QjPFNWBJb6zfYNg7aakkydPOgUFoQmt+LJyxW5sTRPQG8xa5xWwgBWxLVc9j3yAtakTxJj2Ft0xHjyO/GMpj9p9ivchYKempjYsYH3GibV3nvvls0h1uCAKmvcxD+XwiGVkMT9mvrhVgtW1ZayFj7kzWojq+lgDsz63hLNmzro+PZl4MPk7LaxZMOB7lKH7YtWdhA5og2ZA3F5Yg6gDtEg6VrAUsMCwCCAE3vGOdziGB+sRsRIdS4TgwTGFWvAdPnxY+v2+OyShVqs5FzGYTr/fl6WlJRefZXcmtHhmvOyiY7Bg5TZYtLGYJL+LskEr7brD97AqfdYOCyZW6FBPv993Qhzv4CCClZUVGQwGTnhbsTufdwnX1QHFi0dB8nzRbS0UCpEZy1oI6D6zVZLL5aRSqTgBwT9cDn6XSiWZmZkJeT/wfT6fd/2BZ4FdjRg3/MALg7UCgewTFvgbbef91blczgk7tIVj4ppf8Nhg3DkUoxUD9spowwLfJ0netODjB6xwcHt5DvmUCJ4XltXJsOYIPDd4R1vW1hy3/vd5JceBrRXnY4SlvVvMQ2S9O0MPtM8S1OXiGYuhaEbEjFJrnWxRJHHd+fpvaW26Tax9ivhjKj7oU35QN9qPJBNmSmAAelIzU7KgYysQori3EzFZvs8WtGWBpBeXpZBhbPQJPz5FR881ZrJ4x0crzBlfv/kZbpvORoe1guxVWJcQKv1+X/bu3WtaPz6viciqssQCtlqtOve9b65EWaa6HmtuaiU1LnFFj5G1ZxvlsbeDac4ClnmFTgzz0U+HgUTsHQk8fr5DLixewPFglK3fYaVEb09Lu7aTAvX6+Az3RwPvaW8aw1cmnsWaZiEf109e/0nf2QyM7cL1U6dOyfOf//zNLNqEZpjMlHgwWID59kYBmnlan+u6UQcvNEujsoQ4Cz2OTaWlA35b+xD5OXY5+hQE3W642XBE4uzsbIhZoU7WcFnIsQXC7/AeUFh6ONJucnIydNABnsO2EPyPJCYcc8iMD1aN3ibVaDSk1+tJpVIJxajTeA64HzhQHlm3bLki/r6wsCC9Xk/m5+dD8VbEkrWQQF+QjNbv913SE8pstVrS6/UcrTDWJ06ccJZbsViUw4cPh6wf7SIGY+c9yQCsS70uEGfHuMMi13FE3xrleuLmu/Y2JR0nzHdsY4MrHy5tPpgB4Q94QWAVW9aOvg4xykvA8wqxZdCBvTq8XjgLGfMA81jTDr+1gNXKos6S5vU/qrBJOn7We1HvcDt93iamFQt9K86LOaC3FzKeeOIJueaaay6NC9e3CqylMsEsC4Mnu+We0MI2SpPid9mdYwkSbqduE/9tDbqGb2KCBpbA19mSHLtKAhawOOQCGZuAjg9yG3yuKksY5vN5d5Ysx2IZcJ1CGCAZB+cB672kHPdB+2D58i04G9FosbiR5ALGDMsCWcGPP/64O+sWYQrEq+HeBVgxYVox8D0YPeiKclZWVhy98J3uK48ZGDkLY2tdoK/MrPk5/TfPBY0kTJrXS5pxwvzRGbJQinjvKu65hatbJyTq9vBBBj7lWwsvPMvCTtNfK75W4hPTQdPGEiA8fzh3hJ8bZf6Pumbi3sOcF1nP89hVbBku8PQwNI9NYzVvBGOzYDdTC0gKbcVpV4ZOCrDis2nq0lmcmBTa6rUErn6Xn/XVxwvQarfW8gFeqL5yo9rKZYMx8N2ug8HAJcFg6wxvsodwKdIWI7YaOS4K9ya7PVkjF1m1PjGWhULBJU5pbwXqRgyYLTG0Wye4zM7OeuMzECp6nPB/s9l0QhtH23U6HVlcXJRutyv79+93ygArZ/V6PRTD1OPCcxeCGxYs6tZeGfQP/UJcGhYt7yHWc4GV1sFgsG6LFj7HhfFQthCnFRF3nCYucGdwO9MwaDwfZd1oWEId7Ud8FHcW/+mf/qmcPXtWbrrpJpmYmFin8OgydKiFhSnmFStAoCn6ommB/1mpYj7Gz1u0YVhjy2sSn2EtjgOsQCQV4lpY8m8dw8W+ZmzXwcElXAbGSW8R08pqEATy1FNPyYtf/OJLx4JNu4A2Cm3FidhCxXIhpIFPiLKA9Qk7X7uTTLykWpblgot6F/RgV5avTEszZOtd14fPOENTMxM8j7+RzAEa8klHaC8rS9ojoWPfbNUDYCq8SOPoZI2Brpfd0Si30+nI448/7pgAGJ1vTPVnbJEwjTEe2u0OGoqIO6QfMVmO6Wloxo6xRR/gqmePTZRVwEpSXB+TQFtkSdaM9SzWPpQ8zLXdu3fL5Zdf7uZfVPnoF9OBlXff2EYp2ponaYUnCkn57FbyY2AUzwM/H2eMQNnkdzSv4HXCPDoJbTeCscZgoQVspANJ3Uf6f2hsuA6ND4ZmKywugzYI1g4R0K6bJNrkZg/gZistLFxYSKRpj2bIKAu/waRhwSalCcpG3ApZpbDO4Ea2rDEugxeSfo4TUETWH7PHtLGUMq0koK98MD4yV/mwDJHwYRC53Nr2FyuGCUYBWPHzIAjk+PHj0u123TVt+ByJYWA0vA1Jj9fCwoIsLCzIzMyMVKvVddo+PAH6AAltYWA7F2ftRlmEaF/U3OD2Jp1DSa0+PlFL05+FndVPhE6QqRxnUSaB5V1CnTxHkhgKWKMiYSU5rl1Ya1Hu8nEDCil7a0TW8x6Rtf2v2C4FWuGQHhbGImtbsmDBXlIx2I0IA8sSinqOwQsDSQvaRWFpRXHt0Rqx1pZ0/VHtHhXjKi8Nw/K9B6VGREyrMo1LXltGENTMULT16uufFkL8vM8y122Bda8tbj3WhULBHUGZy+XcFhdWWjTtkiTdaeuN285gxqLdbWiPFhywuHhtMFPjbUEspJnRafjCGJqumsZxPCOtNRQ3N7hcPvIxrr1WOawEbcY61WUw/xmVt1plJvUEPNuw+CzTnvfF+zxDmnZp+V9ajE3AJtWsRMKDzNleSTtsaZf4W7vXcrmcS26wsuxYywZjgUaqXUHcV1+bop4ZN5Iwo3w+H3u9lcga84BGy6fagCZcH8c8+HPWvH0uMAgIxHlxStLi4qIEQeD2xfKBBlE0gJWIecUJSD5w7JLjdRC0OiOX3dWgB6wZPONLLtPC12ISuVzOxVHxv9VXzGm41eEiZusFwlHXhb9nZ2elWq2Gks6QbavpFgSBrKysuHGJEqycD8HQCjFcehDqaDe8SWhroVAwz2keBbou7p9vaw36hHUAPsGHiwCY01ZGdly7AB3X9fHYqDnCyhPoHNUmvT1LW5Nx3rzNQByvFRHnRYACqPM8AL2nedx8eeu5voJ2gzCYObOmbcEiFE/EqM90OyAEkiYYxPXv2RCuaaAZZhorwZfNF0VnXZ9PWHD7dPxEJD7BxQIzcZTB1hm3Sf+gv3Ht1f3fDAtAa9wAFB7emmWdeqSt2SivC29NiXpOx2I5ozgKvjVtzUMrl4E/5z2sUXUlsdLinomaAxC01nhAsdT9ToMo6y0pWKkFDVlB9q0na8zHmRilx5p/6/bwZ0wTvf58yvy48Zzg/JqImKyc+s9E0sT2aXKwNFAOCFsul10sUGT9/ZWI+UHAIvaXZlLpweXPtwKaphutF+PBJ1DBotBxMbaQRNY8A0wHbFFBhi8vbmT84n3UPT8/b1oUUYwdbYIl12w2pdPpyMrKinQ6HZmZmZFSqSRLS0vS7Xbl8ccfl927d8stt9zirCNY+YPBwB1vaNWDsYZlhX3D+nIGnUmahLH5cPz4cbnvvvvk4YcflsFgILfffrvUajU3Vzn2ygIW2dDW8ZIAtmbBekbbsZ6wlxjjgXtesV581hXmAwsqfcE8Msk5aYvja7hRCX2wTlvSGaQ+cEzcYu687nu9nrvlqFwuu8QxPmUJVn2v15PZ2Vk3j7SiY8Far8iTKF48Dc1SWvkd3/yERwKKgD7RTScDcfn4aTabMhgMQrcWMQ03ckKSj8ezxQ1PgQ5B8fyxDLVny8h5TghYXvhJLEwNa+KysLYIHtcOMAJkTY46cZIsqs2GFmZp6o5apPy5ZemCqWqaW9plVNt8dbMVy0hKX24frDQ+7/aZZ56R3bt3m1YRKw++BcwKAcdiRcKXC4wSOvH1E0LnmmuukXPnzrl5iz5g/vrqjKIdz10df2Z68t9x7bXoZVkYKI8VRRbuvrNwR0Gcl0HPc8ua5PXAYSkuQ1uOXKauS38X1ce49vveGYV2Pm+eVnJHHROrL9oqFYnOvcH32qOGdqZNENsInjP7YFnb1Fl6WFBsZULg6a0CHAPj50TCizSKqTQaDefTz+fz7raTJBasTnRgK2WUSTeKcIYFjn5a2v1GActVJ5D5JqyVrboZwNzgsWYL0RprZnS33nqrLC0tycGDB2V6elpmZ2fXWdRx9Vt9CYJAjh49KsvLyyIisn37dnnVq14lpVLJ1RFXLra5IP6o567W+AeDgZw8eVJ6F+/QtY5ptFxuIjZjRNwa2fZ4J84VjHnP7bf6x3XgPX1qF37DcsrlVrPIcf8rrkeMoiMLSEsJZ+bL4wleAj6Ag0xarZaUSqVQ7gKsbcwdWF3oe6vVcgo7aKJj+RhD3lrC38PyT6uoaXqgHLSHY5VxiYiWhR0Ea7c2oX++Y0Ct8pLyAsw7vb55fWCM9ZY0zOGVlRV3Alc+n3f5HCLjOcPhOWHBAlHWZpxFZS2eOOvI0nKYUUMwcTJPGsGwWZarTzv1MXZtDWxG/T5rNY0mHKetj9LuqPr5M2Za/E65XHZZvliYPks1DVAGDoU4d+6cO9awVqul6hv/7xOMImtJTr62W9p/1BzVoRXdDp3V7asv6ju2Uvl5PiVKJLyNB+5ZvVeVvU46McZn8fisUZ6P2h1pCSE9D7X1jWc4ictqD34sjx2S7VjhiaJx1Pd6jnOd1njwe7oO0Ciq7s3ghTwfrfG06K3bDYVisw0OH7bEgrXcHkmsSYberxilxemsTh/gwgPBrQxJzaRRtw/WJLUEQNQktspkzZYVAW3tI04YBIG7h3QjQBxOa7hJx40nPTMPjCcWZz6fX7cNZFTofaQiqxYE36gCNJvN0OXysLp8h+SnQb1el3a7LfV6XX7605/KysqKiIjceeedMj097X0vam74PD1J3uVndEa878g/XS7KhtWCeTYqnXztPXnyZOiKPFiG1WrVK5RxQXy5XDbp6xMGGjojXlvUafrK1uJgsHZn7tzcnHdtwntWvHgmMrC8vCwrKyvupqG4deKLi3IOgxbonMSUhHcgjgsrGFtleG80e5ni+EZSQax5LGiM7zhRD8/wu/DA8d3FvxQWrLYYk0K/47Pq9DMWs9WuNbzjs57j6vO1IeodTIa02XhxFiNPap+Fq+NXcQzHp+knAbsVtcbMbdCfWWWMsvAAdsdxTFLHKrk9Say0qHaA6WDL0RVXXCEiyRNBLMUUf+N/fZuOziDG1gWtRLKigzJ9zM9n/bHbeLOBNiK5CcIEitDi4qIUi0XZt29fonVqWYRx9fNvlBE3B611wgpBVFIZv2MJT7bceaz0SUZRW7CivET4PCqsgr7w6WrWWrb6FPU96hgVUUYMvue/N+qhStyusddgQDOtJC5QFgYYYBH/lUys1SArFYClwjEXnyWsF1WaCRJlvfKeraQDrScymKRmBmDsPguoXq+LyNqRhFF7CbUQ9i2SKFcRW0xWAgjgEzy8JSMOqEuXhdttcLoXXKk6e5X3WWLzOrKIfW0DtDUwMTEh5XLZncU7iteCy2XPAcpYWlpy8chCoeCyVpGlffLkSRkMBu7KOVibEI4QzpiLXB/a4Wv3ZuxBtdywImvhGdx2JLJK65WVFVlcXJT3v//9sm3bNjl16pR5iIePlvg/agx8noGo8WOvDD/DYzYYDNxe2bj6LdpOTU2Z1/LBC4N3eQ+zSJiPcT/0iUjcXg0IcfCW5eVl6V28xQlue+ZDmi+l8XglUbBZ6cfnrPDp8UDfAM74jkoC3Ci2RMBqq9O3gPlZ32Boovo0LQyU3p7A+x/BWHyJI7qtSfqZRAvL5XLrNkHH1WEJeWsyamHoq1tkfVZuEqYTp6UyeFHrBIW4suLKFllb9Nhywv3y9d1aePw9mI62cDX0PLPmtDU2UbDWQtx6KJVKMjU15Vz5jUZDOp2O24YGxYCvzhNZY7oQZPrHajPaBiUE33MZaaDXGgNWmg6B4BhHEZELFy6sY6A4Eg/l61DEKO3kMrjd/Lm1XUePX1zIKgm4DShfz1G9LU4r8ZZAiZtn+lkocfqMX4DXIGLHbOhEWZe+PlvrSStPvv743tV1bDa23IL1ETDNAEe5OJA5Bo3cslx5ETAwKZEB6NtXlQRx/YGGqi27KCuYGZJONWd6RLkg8/m1e1MBPh2G69TvRdHBp3XC9dq7eIUbL+yk1rvPooB7dGVlxZ3spLM7NdAWvjuVoeeFr24rjsXfW6EJ/l5b+1wmvtPt0/M+CFZPT5qcnJSFhQVptVpy8uRJERFnyc7OzoYsGWSYI1mmWq2GtHifYoL34QFBfDSfz7us6CQKhFZ2seZ03dYYdrtd+dSnPiWPPPKI+4yZq+WpQkxwVAEHLwaA91E2vGTtdlva7ba7jclKtGIlcBRowY75gYvu8T3ubEbCF87q1jxEt82qy7JCc7nVW7MszwDe4b53u11ZWVmRqampkGGhjZi0fBb9sfgX/9Z/+z4bh5DdUgHr6+QoWl0U89J1+dwillbDVgz+1666uHZZf/vAlqHWkn0Tn/uB9mHBJa3T0t70ZygrSrhq7RFlawEDZgpBCwtFI859xgBTn5yclHa7LUeOHJFSqSTT09MyPT1tZuuCwbH1OxisXr4NgVW8eH5wLrf+NC+R9XPWUkbwOfdHCxMwwZWVFefai/M+MJ24LiRv8SEOOICex1u7mbEFJUop4wRDzDO41jlBKgpI3MG7LCzYhembFyKrY/eud71Lvva1r8n/+l//S0REPv7xj0utVpP9+/eHhDfnOPA8tsYhCuAHKFMzYZ7LqAtbj/AuC1u99jSs+Q866YPqWUnTipdI+CB77dVLw3N1udwPze8smqJOPT4+C9tXv+873QbmpVE822r/ZmPLLVgLo1qIUVqXZu685yuuHfoZWMVJEhSSfB/3rCVo+XOtHcMy1ycGRdXJ9eoM7ThrlqH3/fLnWHDwCkDrn5yclEqlso7RpHGt5nK50LVizWZTPvnJT4qIyCtf+Uo5ePCgV8AWi0WX4Ys7W0+cOCG9Xk8OHTokU1NTjjnB/axjYlEMipmy9hQwU+x2u9Jut+Wzn/2sTExMSK1WS8X42FqoVquh+X733Xe78rFVCN4LxJR7vZ7U6/WQW9UCn+gEGuLEpqQJW6gLc5QFLO9ZjLIyS6WSfPCDH5QDBw7IzTffLM1mU37/939fXv/614eSnfjkI2s/JgRV0v3hiGdrAYs5CK/JYLB6wxNO+8K8wRxNYkxYSXWworGGQCOtxPJpW0Gwlt0NSxtlJt2jij6KRIcvuE6LX2ihrmm5EQGr28MCNsorMy6X8Lp2bUktmwytoYiENXqtzVkaVFINFmVuFJZb0HqGt09EpZonqctKkomCpbDE1ck0ZLpzu+G+5S0mSbwBQJTFAaunWq3KO9/5Ttm+fbvs2bNHKpWKiEgoqYmFCP+NZKdcLhc6RhNlp4EV7vD1E+6ymZkZx8STjJMuM5fLucNRpqamnMAFg9HzigVbUgHD48W5C0lRLBadd4CtOKxNETHLhODlcSiVSnLo0CFZXl6WT37yk/LMM8+E3sF4+toHzwXqjxK03GfOOLfc9Tx+UEJQnz6k31prqEcD5UGo6jWH9Y7QFpfDvG8UxV+Pk/Z2aeXaWqOFQiGk/KM/8LBoPpcWllGFtml6aiVh3HhOCljLzQvwhOJn9R5VLWC1Rpgmc8wK4qeF1gB94AQFX//jJgYWO58mE2UZcHmW5RyFJGXm83mX/chuQV//NLTlp4H9kbfffrtjZtDSu92u1Ov1dcKSrV+4LUVW41lwD6PspLC0ZssFpd2hMzMzksvl1s3hOHDZjUbDnQXMmcscj2OlK4kLDdBzJ44m1vqFkqXbHtdXnsNsqd18880yOTkpn/zkJ+X8+fOR7dVgdytc3Cw8fPNSZyvrGDqPH5KAYD3iHZ8XjJMv4+q2+oP4Om/BAza6F15kvXsdtGIFyKccwmPC/+fzeec9sm7z0n1IAs3HLJ4bpciMA89JAQv4EkV8TEET2NJqmPBJhQgL9SSWLw9slNZq1cNZdnoBa2UC6HQ6oRNeeCGLJJ9MVh91XUmts6g+oux6vS7Ly8vuYm+fKwdMCoqC9RxijrDW0GccbYcD4mu1WuhgBNB0//79IiIht2fS+cGw2gcGyAdpMP2QpJI0hm7Nr2q1KpOTk+syehGX1euBlcZRmQ2OL4Q73Sc80tARh7/Ai8AH/kNwoazp6Wn5yEc+Erq4gwHFAoycaWRl1ia18lgYwi0MqxleCcxVHe/01bERho/1ji1AEILNZtOFBeL4FcrR5fqegRWvE0E5yTQuto9YPC7FgFLia6vVTrbQGexx0J9vlXtY5DkqYMHYsTCtBaoJZblM4hZMGiGL5/m3TyBwirx2Weuy9GSxNFXNULUF2O12HWNid9dGMhYBrotpnFRpsID3ms2mHD9+XIrFost01GABy65b6zkkLCG+JrLKZH/6059Kq9WSp59+WiYmJpyA5XLm5+dDzMBnYfsQNY/4NB+LFmn2k7IShH2JIhLyEPC6gKuS53pcLkLSdvD5upabL8l60eh2u9Ltdp0QRHwWQovnd7lclttuu81bFmKX9Xpd6vW6lEoldywmw+chsdrN9C0UVs8cbrfbbj+oho7F+2gwyjrS72LOQylpNpuSy+W8Cgj6k8abp/mALkuf+hYlYCEA2+2228YTl2wnst4it9rORoZemxuhdVqMraZRtAT9TpyVxMJUl+GzdEB4n+CLape2erQVgb+jMkwBjiuivSjTp41zHZpJQJPu9/vexc7P6jZzDIl/tPsMAgyLQ2c18pYGdr1a/ZqZmZHixcMPfMxMZHUhcrYpM0R2x1UqFVleXpa7775b9u7dK7VazR3m3Ww23SHfIuKsWp8gTcJw2FqGwudLrGCvwEaZKSud2KqEowUPHToUcsWCZmxpRDFbSzGF8sbfB0Eg9XrdWSyIcSeZ+1advA44zIM9vsjyFhF3klM+n3eJYVxXq9WS5eVlmZycdIczIPHrjjvukPe9730yOzvrnk8S5uDPkPwGyzUq2Yt5RhCsXsMnsiZc+D0oiVGWn1a0OeTCgh9JaFEKKceM03pO4lzZPqHN7cU7rEwxb9Hvp7Xyk4ZAxonnhIC1nk1rVVrvRwnmtNZJks/iFAJ+lxcEGBZ/b2nNbIFYjAzHl0HgxPUnjj5MJxaw1iLHdxCw6BMLWF0n4p1RMWeR8KEg7AoGI4GLslwuy/Lystx///1OaE9MTDi3It4REWd5bCTBAgJWZM2jYnlFWIgkFdyaVhoYG/TjxIkT0mg0ZN++faHnwMiSWqyWgoB9ntyPIAjk0UcfdXuKud2+9vqgBTvXPzExIYPB6t5bPNfv96Ver7vEKZEww+90OnL//fdLoVCQWq3msnzvuusu+c53viP79u0LCdi0DBjzvtPpyOTkZKwHgpUidtdjPvAai7pXVSs4WA9QFPEuBCtim1GelbRbdti4YL6FOuJ2WqDNUEzZ4EE/WGF9tizPzcLYWpxm0NJYkfqdrQhWxyU5WZ8jrR7fcRYdND0sKAgmfO5TAPAZNEDEHiqVitt2wUwoyor3ARNeP4P/0W5teeNvnwXD2azdbtdd+QXhaLUVdGDrCwyl1+vJ0tJSyOUrsiq03/GOd8j27dvl9ttvl7m5OZmfnw/F3iB4o7ZP8JhGMQv85n2P+nm4PWHhJdmWoD0KPvD1bjzfgDTKgz6YAS47uGnxOQ5IX15elnPnzrmDJ5CsFadoMuO0BCpbwixQB4OBO6xg3759ztWNvcTFi/uXB4OBnD9/XjqdjjQaDSdoUeb3v/99d/AB04dd0UEQuMM0cDALjzEO6RgMVvdQIyMWAhfrUM/vyclJ1x8oR6VSSfbt2+csdT6+k6HnAsrF2rISwnzQ1qYuG2sMCgH4Fwt3jA8LWeYL+jvtXcTzrJhyny5FgapxyfUgiXbve2+jA+ZztXD57MZigae1XEwwTOAoBq3fY02WN/3D7cntStu/OIauv9d/xyk8EJCdTkdE1m8BsQCGpxk3hAF/hy07zWZTlpeXpVwuu5tLoBwEwdpB/Em8DlFzhy0J39jxPk92t8chyZyNyt4USbdO0A+8xzEsawtKsViUxx9/XNrttjzzzDPmVXG6DZrp6u99Vv6TTz4pZ8+edWM+PT3t3oOgQsJVEASyfft2J3Qg9Hbt2iUiIo899phT8Ni6hAcI7YS7FmC3J9oJwYo91VCg4JVhZYFpijYvLy/LddddJ3Nzc25tJFWKtJGhPQFxyOfzoR0V/A6sTL73WVunWtBa7dMhGC2M9dinSTa7FLBl19UxYTdisW6FgPVtl+DB5710Imv7LZmBQ/hFWS3a9QqtWZ92gwQmfM7p8rxHzop9+ISIb1FEAVqtPtuWmUgU2K2Fv7HQovYuMjg7FFmSYHgoG9YYGF+1Wl23DxMac1SbOc6F9vu0bV85x44dc1to8vm8iz2DXhs9ND8IAllZWZFut+tcoqOAaQdhVSqVpNFoSLvdlpWVFen1erJv3z4pl8tuvt5+++3S7/dl//79MjU1JXv37g0lIfI8w1yOS2jR/YOVuLCwIIVCQQ4fPuze73Q6srS0FLK8UT5+crmcnDhxQpaXl+VLX/qSPPTQQ/KWt7xFJicn5cYbb5RcLifHjx+XwWAgtVpNyuWy7N27NxRCYA8MQhPLy8suHoy5yJnOrEiLiMvoRU7AsWPHZNeuXfKbv/mbUrx48QYnoSXlW5bHJSnftd6F12V5eVna7bZUq1UXbmElkWkjEn+Vp7UrgcNMsMCtdWmdqhZVl+6TBW7PU089Jdddd92ldV0dMyRXaUJBtxlWJ7chSd3cTqt+tlR58zgLWJG1uGFcjA/ls9bLApQ/0xYXmBVv4I6zFnx9Tqr4cIIC0yvpWEGL55gLx52SLB5+TjNxJD0FQSCTk5MuGQUn7WhPAyOKSel5rBNE4ujLNEOf2UW2kXmey+XcvteNrC20hxmeiISsMu02xDhA4bHWi15T1nyO6x/cuRCCuly0r9/vy8TEhHkfbLValXK5LEePHpWzZ8/KAw88IGfPnpVrr71W8vm8/OAHP5CzZ8/KNddcY65dtJW3gXE8UVurWKM8x5k/QBGAAIbQtmiXlE4WnbWXx3rP51VhBZ+z4NPwjCikMaTSeuWS9J3LTVt+EoxNwMLF4ipKqHkwLKKMOqBJBLxe/GCCmPRJ2o/D18F4fe/ApQXNl08S4j2TmByw7rTmGOWytb739RfPxS0aWAajCHKrXfl8XlZWVqTRaMjevXudoBBZi4npjGW2eBlgZuxpmJqakoMHDzrtW8eI8F6r1QoJYGwb0ho6/83KVa/XcwxTY3Z21l0hhjK1hcNlMzPmNkTRNu26sJ5nRspH2YH+s7Oz0uv13LnHGL9XvvKVsmvXLmk2m+vog3LxLARRp9ORZrPpYuNJ2ovYaxAELukKdMexmPAsWEAM/i1veYvkcjmZmZlxlurExITMz8+HsvutcnBgBsYJ610rW5zMhPdgiQdB4JSRgwcPOiGAuQPXLIQbC2IRe4cE/w9XN+jOFrUeb1bSee4irIFzvTksYNWveYleN/pz/S4D6555BPPSNG5krl8rjZp2m2HMaYxVwG7btm2tohSdGIcmMQqSWmeaecQxDEx+TBSdmas1Sp5k2oodNRnA8iwkgRbCSTwC1jNcP+JR1j7RKEtHW5k6/owFzQka+n0WshCU+fz6rRc+JUa7kC3gAIK4sYJgQ0KRL5tys6CVK9+cADOCgGJmLyJy+eWXy+WXX+7KtOoB+D19eH0c8vl8yBPB21NYCeHx0HO1UCjIDTfcIKdOnZJyuezGBu5ZEXFhGt+cw5pFvNRa777MeB5jWKxQ0pjps/dKW+w+HsFIs7at51AHe+KYJqygpi3bqivuPZ+CG1Wm5TnxvbcZ1rjZjk0vEQXncrJjx47Q/1pT58XFzGcjbgFfW5LEe3jyiIi5aDFQrOlikeIcWAvaDcExOJE1rQ1JHGCu3AZe1JY7lYUFt983sbCok1gQ1ilEqMMnYAaD1ePb4LblvmJvJVyLzWYzpLmCRrAUfFnRsD5xoMDk5KTMz8+7fuMdvS2HrQ22ho8ePSqDweqhFohB+tBut12dnMmskcTz0W635e6773ZlVioVOXTokDejlJHEO6OfhzKBrFVk31r5Bxxr1t8NBgNZWlqSbrcrN9100zo6YHy1dY95hznvCw9ooaK9SZh7rVbLCSzsg8X2HE3DAwcOyN69e6Ver0u325XFxUUpFAoyNzdnKsiWsO50OrK8vCzT09Pu3Gs8i3nHPAeHpeikIliPfBhEoVBwp3txH+GeBy1xaw+UN3jBtBclal5yO3ntYe77FEv9v1YONM/xtcFS6rT3QMuApLFYX/u4TMuS3UxsSQxWZPTGa00krtyNavt6QoEBxDGxtO5vK4FK16EnkbYeGXqS8v+WS4UtlzjEKTls/eiFwRvnrYXDrjQ+IMCy+HzzgAWD1SdrjmhgO4p+hucTu918iWQMZrYQ8qBJLhc+YWcwGMjKyoo8/vjjoevOks7lNOsMdO/1eqFMbLzvs5rZKrOseAgyfMfuZq3gQulNu1YtIQ/acnsgtK2xRjvZDcvrnK030Etbjby2tPJn0Qg0xW+tUOj5xAqEXts8ZzBPgmAtlJKWptxu/ixKKKaxHkdtj6/upO14LmBsrev3+/Lzn/9cRNasNb0odKKKDz7mJbI5B1lHodfryV133SUi4jLpKpVKyJplDd0SYtwHnysHtGBa6Wd1RiN+W+4oMAyRNQGLjeegXRLLlTVuS9PF/4iJ8ZGHsGCDYDX2VC6XpVaruXgOLAhcDP7hD39YHnvsMXnPe94jBw4ckEql4uiKOjRtwAgRh/NppKiTx01/n8/n5eDBgxIEgfNGsLaMbFW019LymWaNRiOU2XvPPfdIvV6Xe+65R3bu3Cl//dd/7SyVdrstX/jCF0RE5L3vfa/ceOONbitKFCNhBsyMPerAAuwbZavet++Scfz4cWk0GnLzzTe7oxlzuZxcf/31ocxdEXH7lLULV4+HVU9UGyxFFtm7+tnixYMofOUj3g+FA1f8IV6PO2aZP7Hw3rt3r7TbbVlcXDRjsVZ/raxbH39jF7iIOIscY1yv1912I96xMCqSCCuthGhr2bcDI6rOqLlttQ9KSpyLnJVu/cxWCeax1hLXCZ91upGyN2Ixa0FlaWL8wwNtaZpJ2qGZfZSVqgHrgJ/X1kiU9s2LgLcfaGarLTjLVWwJLgg/ZPJqtx4WKCyN66+/Xh577DE5c+aMtFot51bW8R+dwcvxbx98Co5GlDU8GAzcBeXcBu5PLreW3a0zrjmpxMcgrrvuOrnhhhtCGbpx88oSwr51hbJAcytpTZfB4//MM884GmB8XvGKVzgrFS7j3sXLFVjIgU54diPKcZQLEm1jC1bTRntbRNYykfEMLqtnly6XZ20nsZQ3RhLPh29uaKNEz8+tEBqaj1h9HUc7rH4mkR1J1/24MLZaz58/v24/WBr4FgFg+dR5YiZxb+hncZYvPoO2OD8/7/5nFxWOcYMbFIuSD672aZUQSKhPu3ei+gFG1Ww2pdlsyszMTChmo12TmkZwUTKDazQacvfdd8vs7KwcOHAgRGe0ExYpzjtm4WglKBWLRZmbm5PFxUW54447ZH5+Xvbu3SvdbtfdngHaiqweuN/v9+WuuycuI/AAACv4SURBVO6So0ePSq/Xk6mpKbdvlC+1Fll/JFwc0GfL/Qu63X333dLv96VWq60TAoPBwJ0ohMzKUqnksj7heuQN+lx+qVSSqakp2bdv37qszampKfnYxz4mExMT7pQibjdipmw58Pgmyc7E/MzlVjOCOaZvAXXyWc+FQkFOnDghQRDILbfc4g7ch2W3vLws73jHO1wZr371q2VhYUFyudVzk+v1uiwtLcns7KzMzs6OZHHBm+Eb+8nJSSmXyy4ur2PpiP/zmd2FQkEOHTrk5le/33ft5r2pmIegO+rC/0wzHl9WtJIo0Fi/WmnE2ofQx5yLU5JQ7yjgdQJvEsIdfECOiD/WmaS/FnxGWJxc0fzt2cLYBOz27du9wiKJ63QUxFnEWgDrWzT0Fg+eVGwx6Tq1qzuJFRrVb20R6c+5Hu2W5jLRX96fyxYf+oxN5TqOxFoyW+0i628J8jFKTHQoGliYfAgA6gKzwAHvfIuOHgeLdknT96PmydNPP+3cm5OTk6Fr9JB8ggQT9FvXizaCGXGGcr/fd8f9sUUuIqHtEBa0qxJ16f7y+tIJITyO/B7aphUlWOT4G2175plnXHvA3LHV6fnPf76cPXtW8vm8vOxlLwvRQERCfY9zf/tCQb5xttagjpNa/WfaIjSArTT4geDkvaqIZbMngJVSpi88Bj5eottiWYh6LaLeqPKYhkxTlJdWyeGxw9zfDG+Er54oIfpcx9hOcjp16pQ8//nPdwyeB2EwWLvbc7MRpTHpbFQcLYiFgXghNFswdq2lWeDj8PCsNektZQNghstuOAB7B6FJo3yf9opj3I4dO+aYQLlcloMHD7q+NJtNOXbsmBMeU1NTMj097YSu1sR9QHzU2nOHE3gQxy2Xy6GDACB8+Kzgfr8vhw8flm9961vy7//9v5dKpSKzs7PeMeCM5SRbYqzYYK/Xk1tvvVW++93vysMPPywve9nL5Mtf/nJoDGDhLCwsOHryHluLadfrdXcgf7/fl9tuu81Z30GwtieS9+lq4FQqnf2sk8c4BhYEgdubGpXljMzlZrMpDz74oIiseqDm5+dlZmYmFA9EbDkIAre/GLQ7evSoBMFq/JoVJViMGGNsm9Kufz0+HMOfnp6O5BcQRjpRjd31fM4x14nvIQRhIf/BH/yBiIi89rWvlWeeeUZOnTolMzMzcvjwYffu0tKSLCwsyNzcnMzMzLh6oRyibNydixwErSxye7Vg1cmBut0cKrHoiPmFTHHQdDAYuAxyTccoRZWVdhgoWPdRsX9fWT5X86jyIanVrGGdQrhRjE0F4MnCTIG1s3HVqwkLBs7ZjsWLV6BBKLI7RifR+JKxWCByX+O0U00T33MasFitjFyR9VtpuC35/OoeQiu2B1cTvtOb5OPAngF2Q4usMXosYk6WAt14+wH6WSgUpFqtunZbljq786G0+Sy6JHTP5VZPRCoWi7Jnzx657rrr1jFA9BNMMsqCYMuXBQ6UCDA67VXw0ZjnGcqGMsghhyAI3GlWcKfzZRPatYfxbzab8uMf/9iNB9zkfN4utlixZYu+QiFFmzBmbOFj7bGS4APal4RXgLfwusX/nCXMbnYc9oJ+wNWLsdy9e7fk83mX0NXr9da5pIsXLxhgJVQLOyhPWJucu4FxwPsQypx9L7K2jjjskMT9axkGvB7gwUJd2nvmm5Pam8btSsM3uJ2bZZE+lyzbsbVkMBjIz3/+89DCw+fjFK6s0QHNZjN0XujMzIxMTEyETkwBQy8WiyFLVGRtcvNWACwKTFDUrWNrGhD0rEn7mL3+nN1QYCDM5GCRc/YtFrfI6v4/tA39yeVWTy1CdjQyS7Hg4rRIzdjhMl1eXnYMtVQqSa1WMxWfVqvl5gPHyXK5nNxyyy0hbZrbwpo42mqd6cuJRThGjwU5o1AouDpBGx1HQ3thpbH278PU1JSL1WGO9Ho9ueeeeySXy8lNN90Uq/FDEYFnAShePCABwoPncxAEsrS0JEGwlt2N8YEnBP0olUqysrIiKysr8thjj4nIqmU7MTEhi4uLcv/998vf/d3fSavVku3bt0uxWJRDhw6FaDc3N7dunAqFQugy+KTMD2UwXVjBsdaHT0nB+ONMZXz2pS99SVqtllxxxRVSKpVCnoVisejWxcGDB71hCZx0pKF5AD8DYQ83dKGwetsPeAk8ClB6IcAx/jrhKmq7k+a/+jvUVy6X3b25EProRxRN2WsAZdiCz6qMs5bjoOeEVUfc+2nfSYOxCdhz587J+fPnzay5OPddGrBLrN/vu4nJLrFSqeQmOGt0YMja2sPk5UMftPuJF77ONIxCkv6z29diKBzTYnc7DhDnk4tyuZw72s03FvgcioIvJq0BK4zHAH3DYfBcl6+vTG8IQdb0G42GW/ScfAKFyNqiofvYbrel3W471zvioL72FItr16DlcmvutSgG7wNfTA6lA22Ioi1bM7BKmV4ssCB4edyhPIFmpVLJHQfYbrel0WjIiRMnZHp6Wubn52VqakoOHDggx44dk8cee0yeeeYZEVm17G688UZ54IEHJAgCOX36tDzxxBPuKjjeniLij4Xz/NVeD5/FpD1eozBRXFRQvJjR3Gg05Mknn5Rz586JyOpRlribmBOGYMFb67XRaMji4qJUq1V3TGMctIIBhY0PluC1BKUxl8s5r4IvNyMpMLd5DKCQoX6Ek3whLuYRLIyT8D7rM9/812PuC9VZeTNxGJeRpzE2Advv9+XcuXNmcgIztiQ+fx9YCBaLRWm323LPPfe4PWmoD4sHExRtgvapBQsEJtxrfOIMvmfrNpfLhYRRlKbO9IiyXrEI9CZ2LDZkKyNOWigUZGFhQRqNhlQqFcco8vl86HJprgNtQV3Yz4tMWHan+ZSC5eVl6fV6Mjc359x/6Ge/33dnr1rgRZHL5dyNKWB4ELALCwvSarXkzJkz8vDDD8vXv/51ERH5j//xP0qtVouMz6FsZLgiHnj48GEXMxNZv38PCVlHjx6VQqEgBw4cCPU/qZI4GAzknnvukZWVFbePGlYjTpyyykEcvtVqycrKitRqNZmbm3OCFAwXYwgFYn5+PpTVeuDAAWk2m3LTTTdJqVSSmZkZpzgsLS3JV7/6VXnLW94i8/PzMjc3J3Nzc9Lv9+Uv/uIv5Pz58yIiMjMzI7VaTU6ePCkrKyuujYgpwzOCua/dnswoWXHguC4YuraYtMcrST6ARr1el6NHj8qtt94q8/Pz0mq1nJVeLBbl1ltvDc0FEYn1Tpw4cUJ+53d+R9797ncnErCcKCay5qa///77Zffu3S48A94Bz8TU1JSzMjl7GGWkRS635q7G/6zIw6vHITOuC/0Az8C7SYwGq82+uQ8vUhCsXS2JdrFCzTwybaIV8+lxCdyxCVhkESbVaqyORr0L6w3uTDB3MFscCMCuGZ+bhzNZMWDsesVA8P2ROsaSRINKO4iWYMNk5mPR2FK//vrrpd/vS7vddkLKoh27l0ulkqkgwNKy+gVawbKzLG4kP1hWCStWaAsEinYnDwYDOXPmjFx++eUyMTEh27Ztk2uvvdYJYnaRaU8DrGp4NXB5tr61xBq3QqEgs7OzjhYoT1uPTFcIPaYbXKRQfHzzUFsVSKISEfcbjE+3AZ/5YsGYJ3DdQyjg9KjDhw/L/Py8HDhwQGZnZ+W73/2ulMtlqdfrziMyMTEhL3vZy+Tb3/62iKwe1FCpVNatBSiosP6R0AQa4jM8i3Zz26OypC1oa4dpMz09Lfv373eMGduNwBuSbvMSWU1qOnLkiJw5c0be8pa3rBOujUYjdPiDdQ42+o9Yv4i4d6amppxFiTHl96AswrDguWmh3+/L8vKyiKyPjTO9WFCykqN5FsYL73C4xZrPXIf1HX+vY/p66w/z37SwDDlfezcTYxOwp0+fTqzlawHCVqYFaDO9Xs+5hMG8ZmdnpdlsyvHjx2VmZiYkYC33gsjaAEJoQ8BqDS1qIbIwTOrywOf6M/5fCxposHy+KmiBBQTL0RJuiPNgG0ypVJJqtRpKoMECjxsDxPa4nRDS0Ch9+zNB61wuFzqT+Pvf/37I7SSylqT2ohe9SKanp+XTn/60TExMyNzcnNk/XOYOBoCxA5PXe1tF7IzFQqEg+/btW/c5tHwN7O/lQ+Tz+bxUq1WZmppad4GABifjQKBxeANt0skoIuK8GFb5udzqaUtnz56Vr3zlK/KKV7xCDh065PaKHj9+XD75yU/Kt771LTlw4IDs37/fraPFxUWZm5tzXqFqtSpXXHGFiKzuW+ZzeLmNvV7PZY5PTU05mrDnJ44WyHKN4yFsNXMWOoQ29twCc3NzkeVF4Z577pG/+Iu/kG3btskDDzywLu6/uLgoX/nKV+RVr3pV6E5Z3QcIJlypWK/XZWpqyu0NZq8YKwsIBXU6HTfmUZY2vDC5XE727dsXeb42C0wWsFpxY0U6Kqtfl43fVh4O9xdjrtdk1L3JcXOEPSX8PLfjkhKwzHA5KUMvLBY8/EwcwdgyYaLBGkM6fKPRCCX8JLGorWSJOC3MZ9Xo79l6YSsyjtlwxqwGFjDvr4yioRXL4b/jJhorBZw9nRQQRKVSSSYmJpzLu9frydmzZ9dpt/Pz8y7eijH2JXaASejxgGaO/48cOSLf+ta35Dd+4zdC+13vueceGQwGMj8/703wwLzjOBS2ZWCucfuSat2wDridOJwBW6gA1Ml7hMF8ofjkcmtb0V772te6pDLMpYmJCdm7d6+USiU5fvy4/LN/9s/cAQ5gwsyQJyYm5IYbbpBXvepV3qQytK3VarntX7VazV14D3pgvLF+MV7wrmANWpYpjzV+a+sXCTgW/TH/cRgI3LNoBxRQ8I6ZmRn3frValV27dsmBAwecgMM4YTvaV7/6VTl16pS7fJ3r0ONdrValR5cuMD9gCx9KQxAETlmJUuiZVjo7Wo8Vtipi3lm8Mi1vsD7n8YmK8+pYq/Z4aY8JrxeuT7+neUYSd/VGMTYBu3PnzpDrD9BJA+zSs4jgA55li4SJnc/nQzesaBdUFPCcFchnWMqB9Qz/RjvxO8m+MdDQl6HMlgsySqMmOm/D0UxKC17dbi24Rkn86fV6Lq5YqVTcTTpwsVoCNikg/LCIWcCyVv5Hf/RH8tBDD8mPf/xj2bt3r7P+7777bpeJbSlaaBOPAxgk4tcQsNZ7UbDcV61WS+655x6Zm5szBayOiS0uLkqn03H9wf7LmZkZ6XQ60mg0QklT+/btk9nZWdm/f7/LLuaEHwYE6uzsrNcKgpBsNpvyjW98Q0TWrn/jE8JgtSHjHRYGYuSw9qMELH/O44Q2YAw0T4FQwXnMOCuat0+12205fvy4Oz8b79dqNTly5IhMTU2FFAwkUp08eVLOnj0rX//61+XRRx91IQlLWcvn81Kr1UK5DswP8Jn2VmDbGu+DtYC5wfkoljBDtrhPoWSwh8v6TsearTmPtWnxepYH2pJHX7WAjWoL7x7Qhh2X4WvrRjE2AQtLVTMjTTRMEp82A2ihgYG0NvizhYF2WAIHn/mEBJg9FoB2m7BmBOj2awagv+cyrcmG7FO4TcAAut2u05ABrfVicrG7hjVknnTaha2VB1+/ONlBP9e7eCIS2jA5OekOycfvwWD14IJ7771XbrzxRtm3b5+zdBYWFqTX661j6L4sVSshxicga7WatFot2bt3r8zOzro5WqvVnHsRAgcMAQkWmFPIJJ2cnAy5ca39yFHAGGuhzZnBuoxWqyVLS0suroxnP//5z0ur1ZK5uTmZmJiQe+65xyXClUol2bdvn5RKJcfgUHa5XHaCZ3FxUY4cOSKtVks6nY7cdtttTglhhRbzC1uBYKXBbfne975Xdu/e7ZK6Go1G6Gi/crnsaFir1ZwrmWP6LFhhXYqsvziE8yhE1g48Yd4ABQ7PI/ERwgV8Cf3O51d3Jhw9elQmJyddIh/irrzFTGRVkN18881Sr9elWq1KuVwOJRyKiDv4gxN1sJXJZ2DAI8BGAn7z2sMWLe57sbh2Gb0WTqAzHxkZB3ZZW1ZuEs+f9ibpcdSwPBT47VOCoYD6DA2fxbvZGJuA3bVrlyOKXiwi4TgcJ4b4wIvDNT6XM08OglDXVouGdktZWiNc3BDaImsHHIhE70HTbYr7XAtZ1A1LHW3CFgvtpmO3WhAEoRN0dNlWTNmyFuL6FjdmEJIQlBCW3J9WqyXf/OY35V/8i38hBw8edHUvLy9Ls9l0TIrbqbVo1nxFJHY+TU9Py9zcnMzOzjoGNBisnjEMxhMEgXOxttttZ5niN9ygBw4ccOcoQ5lgRu5zz6HdUOBYwCKOzltvGHAdQzijjX/3d38np0+fdi44ZGBfd911Uq1W5ZZbbpF8Pu+EA+jEDPvBBx+UO++8021jmZmZkb17965zCSMWvbCwIGfOnJHXvva1LmY8OTkpv/u7v+sEbqfTcRnILGCXlpbk5MmTThhFWWNQdDC+oJ9esz5PD5QWKJbIpuVcBawbJBENBgM5ceKEVKtVd5LY9PS08wZgzaA/uI1JHz6BsrF3mzO9c7no87TZytQJdAx4NDgZiJO5dOImXPFJhSvoyzS3donEgROptBLPNNF/a4MoKjwF3skGR1zfLikBe/XVV8vzn//81UpI82DNh7WxuEGGtcOEiHP7Jo2j6gHA37DO2NXE5foGl6GtGa6D67b2eHH8mlPrwRx03WxVg2Fz9ibTIWohsFvb0lTRL6YJJwux0sIJJcViUZrNphvzer0uKysrUi6X5Y477nCC7uTJk87lytYl1w1a4cLsfD7vMsh1EpDV13379kmtVgsliMBlx2M+NTXlBCD2k8Jt2G63nQDG+zwO+PsjH/mIPPDAA/K+973PHV6gLTC2RnK51VOGjhw54j7DGEJ444IHJBktLy/LysqKXHPNNeu8R6VSSfbs2SPXXnutExrQ7pHoBHqXy2V505veJGfPnpVPfvKTIrJ6Td3evXudorO4uOiYl4g4Fypoycd8wkpGuxEDRvwdCVTWYQ0MzBnO5tbf6bAHBCrc9hDsnU7HXdPHYwZB9rWvfc0lDRaLRbe9isM0OGIUiv+BAwdcQpzlQuXL0ePWH4c3MF5oP+YOK7/spWJBZNEw6n8LLNT0u1gT2rsXVwfzft/3Ue1nb6C24oHixUNU2EvwbGBsApbjgtql6ion5h032ChPJy/ECbio77VA0m5Sbj8+499JwLEDbZ1y+yAMLKtMewBYA9R1QWhzWWnay4KBy9Jjp7/X/YHQgVVSLK4ekI9zUfP5vDQaDVlYWJBDhw65+FwQBLKysiL333+/vO1tb1u3x1Vrmv1+X+677z7Zs2dP6MADH90B3AWqoTf8I9QAJtZoNGQwGDjB+/jjj6/bFsRMLggCOX78uDzyyCPOCtRM1mJ83W5XFhYWZOfOnU7RQH97F28ZgkISBKtnDq+srMju3bvl2muvdTTDukHyFZ7n+HSv15NGo+EEHQ4mgYB96KGH3HYdCBdkqcNCgiIHq5bDPjxW7G7P5/NSqVTMTGQNbTFZfAPzkAUP7+kELeACxlhjbsOt+NBDD0m/35cXvehFsnv3bjeH2YPW6XTk/vvvl1OnTrm925bVDEAQx3lW9PjwOGIMNS+F5wQ04D5pGvLfSS025t/6Hd2WqLCS/jytwOf32LjR/FkkLH+eTYxNwMKCEAnfvAKhwe4cnwsMGh9buHGTk+sXsX3tLKiSlJdWQPHgswBigcSCVU9ctmixZ48/5xiz1c4kCosPPiuMf6MOFl46Ds2nZAFwo4HJVioV5xoUWY1ptdttOXbsmHzzm9+Ut73tbS7m2e+vXog9GAzk4MGDjpk1m0356Ec/Ktdff72zNDjRDdejzczMmEL15MmT0ul0ZH5+fp27HX3O5XLO7Qlhgjjy+9//fimVSnLixAm3FQf0B5P8d//u38kPfvADl6iE+W4peKDZ9PS0fPCDH3R7g3O5nHMJ64McmO6wurSFh3i9NUeazaZ89rOflQMHDsjMzIzb0vTud79bPvWpT8mePXvkyJEjzjNQqVRkenraMXXei8wuTF5fOOSi3W67pLYoD4NeE+xlQjJUPp8PJX4hS5pDKsxzQDsof41GQ0TWkrbQjr//+78XkVXXOC6/0AK93+/Lww8/7BQMWNZ6rWB9g88xr4Mg5XHC2MFljM/AK3ns2NPG64/XpebDFp25fg3mlRgThKlE1hRQ7T3Q5Y9iPety4gwdLegt48k33/L5vPziF79I1aYkGLuA1VqTSPhwfP6cwScJiay/Hi1J/drySuK+2AzwYLI1xYLXRwu8C0GqD0RAuVGa8Kj9ipq4+jnLemBo7RF9LxbXznrGQSB4FhbuD37wA1cmNHYk00DAou9g8j/+8Y/X7V+GJbiysuKyObmtQbB6DGOz2XSZpBYjYIWIY2VI2uKj+JjhY7xw2lTU8YxMZygoc3NzbtsN+gJrRWeQ5vN5Z+3CFQxs3749tG9ajx9OuXrNa17jxq5QKMhNN90klUpFPvOZz8i3v/1tabVabrsQLEGR9clkluXASUUcQ/NZGTphTXtPEJvm9c2ub3zHiixyAVAunmW6cz1QmKyEnCBYPTKyePHEJZ+Xhdc9GwosrPAsCypNFx+duI/Wdz4Ba1mvltULumhw8qWvLUkt5Dj4yrH4uuajlsC1yh6XLBibgBWxM2QxeXzMHEyEs12tCZ60boZFXBZwSTa14z0tRH31sKWnB581WD40wleWFqo+YRA3adIITN/k9rmM4oQ+rG8WNGgzGOAf/uEfSqGweopSEARy4sQJl5Sza9euULkzMzPymc98RooX9yuKSCgxDFmfnU7HHXuYz6/uPyyVSrK8vCz33XefE4779u2LdPVpN2elUpHl5WU5cuSIszx1AhnHhHExO9McHo5ms+kySmEZTU5OSq1Wc8oJhOvx48dlYWFB3ve+97kTmObm5tz8Qdwzl8vJtddeK/v27XNZvrlczt1UhLE8e/asS2oC4GEQWXWpnzlzxp0DPXnx8oKkXiCMPaw9WF2+Ocp3AXP5qK9arUoQrB2fhzL5UgNt8YmIswaDIAhZhqBLpVKRL33pS45GQbCabJfPr2WQY9zf8573OLctFCvUBS+d9mQBvB744BI+0UkDc4iNjSh+pdewzoHRz0UBfJKtcM3XtRKEzzWfSMvLfbzIUph9PMxHr3EJVlf+WEsnWINhdZgzBeOSmEatn+tiLdKnwfkQtQeNYZWp6+RkJxFbY02yoFiIxwlY38SMa7t2g6VFlBtaZNVlBwaDxBgkR+3evTv0fKlUCt3qgjga6AkvgE5sgWWC+QY3rE7m0P3GfOFEq16vJz/60Y/cebHaokNbsOWHGbrI+iRAjAcEPXsxMFdarZbce++9Lusae1cRI4bnZOfOnbJz587QvtZcbu1AFpwCZgHCQx9awW7PpMIVSBobA43RXj1neexEZB3NMPY8f1nYsXKtab5//373Dm+VYkuQb4jSFifPE84i94GFUBRP0Yp9Uug1Zhk+ScpgQRVlVFhlp22zLjsJr4kzEMYtTM02javguMXnc/niM05J3wisgeGDxtl9g+ctQYw2o40iss6y5gmo67eEGpgUW56s2SbpuyVQk2q2vv+TYKOLxbJ+cbYtmCT2+yKTGofKY7sHrBA+aQd1wNKDJYyTgxYXF90hF1NTU3L77bfLLbfcEnLFRrUd4wV3ZL1el//5P/+niKxZH7qMVqsl3W5X7rrrLul0OnLTTTe5DGBm+kgu8mWU8xagXbt2yQ033CBBsLr1A7EwdoWLiPzGb/yGK1/j6NGj8q53vUt27twpH/jAB8xLIUTEubixDqBApF2bVswV44L5wOflQknAOtGAp0B7bqBMwcoGWMni56G88T5ebi9vqQFwDGKr1XKHd0BZYd7C8VkGJ2ti7EWi127aMJm1ZzWJ5eoT5Fw/u+etciyBG1VnHLgenyVrlf9sCNVQ/c9q5Z6BweLdqHCNgh6UUd0WaevS0JZMUiG5EVgWwajlAGmtWet5VljYZRwEgbuDtFgshq7IE1nzJDDtYA1w5iXACS+Is7FVqtupmRJ7HDqdjpw6dcqkCZeBLSBI5GKmivfAtJKcHPa85z1Prr/+esnlcm7Pq8iaIIX1xwJIl4VDD86dO+cORrDqHGdGJluSltUXZ4H4eISV14D5xBYY6CeydtCHFf/UAgr8CRnTfLKWjh9bfeaxRHuSrPlR+E4ansJt4/d9gist/0jjPftlwNh6NhgM5Be/+EXIbZMEbLXqgwNGgY9h6q0vPKmszdNJJmYUoLHqg6y1UOXswTT982l3ce9pgMlZGq9+F7RMK1y5/1Zb2u229C4et9e7eF7tYDCQxcXF0PtwXS4tLUmxWHTZnmzFIeMRt5wgrre0tCQrKyty4MABmZyclJmZGWcRi6x5OeBu1vtlcYZyEARSrVblRz/6UeTWn2KxKC9/+ctFZPUGm0cffTQUL2Q6WGERuCVB95tvvlkOHjworVZL6vX6OosPBxrg8HimN9zufPXc3NycuXcTBzOkWcM+WMIQdUJQQVjhc+YBUWBrkM/qFVm9rq5er7v1zecrB8Ha2cM4TISz0NmixfO8zQgHaCC2jnOXfX3WuwZGyS9JCg6TRPEwFnLsmhexlQuRdF6yKOszDbS3TvOe56Kg3vQWDYdDERF58skn5cKFC5LP52Xbtm2J3/e5Dy9cuBD7XhICc9lIzWZmHARBbF1WmYAl0INgNYlkMBjIjh07nItRu2+eC0giYK13QIPNSHV//PHH5YknnpAnnnhCTp8+7co+deqUBMFqotPVV18t58+fl/Pnz8vPfvYzOXfunLzgBS9YJ0yeeuopOXXqlDzxxBOOiV922WUuqaTb7boDUbZt2yZPPfWUiKxmSZ47d84JWDzDGAwG8vTTT8v27dvlqquuklwu597X8/HChQuyY8cO2bZtmzzxxBOybds26Xa7smPHjnWCDRZsFC2vvPJKufLKK+Whhx6SJ598Up588km58sorZTAYuHaLiLzwhS+UCxcuuHah/MceeywUe922bZv84he/CNX5+OOPy6lTp+TKK69MtYbToN9fvTd6MBjI2bNnQ3wjl8vJmTNnXPui5qK1/n/+85+LiMhjjz0m7XZbtm/f7tbe008/7Z576qmnpN/vyxVXXCFBEMgTTzwRGQc9ffq07Ny5UwqFgrt8Ht/1+/0Q/0AbAKz7s2fPSi6Xkx07dqSgVjr4wlNR7tt+vy+nT592/1+4cMEZShsBPE6WW9nyhPnayH+zh2Mz+CfWCGTYZuCy4WaWJqvWx4te9KLNLDJDhgwZMmTYEjz66KOp7giOwqYL2AsXLshPfvIT2b17t1x22WWbWXSGDBkyZMgwFgyHQzlz5oy88IUv3DSPzaYL2AwZMmTIkCGDyHgCKxkyZMiQIcP/58gEbIYMGTJkyDAGZAI2Q4YMGTJkGAMyAZshQ4YMGTKMAZmAzZAhQ4YMGcaATMBmyJAhQ4YMY8BYjg/CMYkZMmTIkCHDpYIdO3Zs6hn4my5gB4OBvOQlL1l3r2mGDBkyZMjwXMbExIT88Ic/3DQhu+kHTTz11FNy9dVXy6OPPipXXnnluvMwgyCQ8+fPr/sMv/E3P6OfO3/+/Ja8m6ZcX782491x0yTt2csZMmTI8MuK06dPy1VXXbUpZY3thPmrrrrKK2Ctz6K+e7Y+8323fft22b59u/sbv/E9jtnatm2b+xvfXXbZZe4ISf6d5ljJ4XDoDqTm31yvrh9C1Ko/Q4YMGTJsPrIkpwwZMmTIkGEMyARshgwZMmTIMAZkAjZDhgwZMmQYAzIBmyFDhgwZMowBmYDNkCFDhgwZxoBMwGbIkCFDhgxjQCZgM2TIkCFDhjEgE7AZMmTIkCHDGJAJ2AwZMmTIkGEMyARshgwZMmTIMAZkAjZDhgwZMmQYAzIBmyFDhgwZMowBmYDNkCFDhgwZxoBMwGbIkCFDhgxjQCZgM2TIkCFDhjEgE7AZMmTIkCHDGJAJ2AwZMmTIkGEMyI2r4KeeekqCIJAgCEREQr/Pnz+/7jP8xt/8jH7u/PnzW/JumnJ9/dqMd3UZ58+fD/0tInLhwgW5cOGC+1t/NhwO3W/+O0OGDBkyjAebLmCHw6EUCgV50YtetNlFZ8iQIUOGDGNDoVDYVMNj0wXsZZddJv1+Xx599FG56qqrNrv4/2/x1FNPyYte9KKMrpuMjK7jQUbX8SCj6/gA2l522WWbVubYXMRXXXVVNgHGgIyu40FG1/Ego+t4kNH10kCW5JQhQ4YMGTKMAZmAzZAhQ4YMGcaATRewO3fulA996EOyc+fOzS76/2tkdB0PMrqOBxldx4OMruPDOGh72TDbq5EhQ4YMGTJsOjIXcYYMGTJkyDAGZAI2Q4YMGTJkGAMyAZshQ4YMGTKMAZmAzZAhQ4YMGcaATMBmyJAhQ4YMY8BIAvbP/uzP5CUveYnk83l5zWteI/fdd1/k81//+tflNa95jeTzeXnpS18qR44cGamxv+xIQ9cvfvGL8k//6T+Va6+9Vq666ip5wxveIF/96le3sLWXDtLOV+Ab3/iG5HI5qVar423gJYq0dD137px84AMfkBe/+MWyc+dOednLXiZ//ud/vkWtvXSQlq6f+9zn5NWvfrVceeWVsmfPHnnXu94lp06d2qLWXhr43//7f8tv/uZvygtf+EK57LLL5Pjx47HvbIrcGqbE0aNHh5dffvnwU5/61PB73/ve8D3vec9w165dwx/96Efm84888sjwyiuvHL7nPe8Zfu973xt+6lOfGl5++eXDY8eOpa36lxpp6fqe97xn+Pu///vD//t//+/wH/7hH4a/+7u/O7z88suH3/72t7e45c9tpKUr0Ov1hi996UuHb37zm4evfvWrt6axlxBGoetv/dZvDV//+tcP77333uEPf/jD4Te/+c3hN77xjS1s9XMfael63333Dbdt2zb84z/+4+EjjzwyvO+++4avfOUrh/v379/ilj+38Td/8zfDD3zgA8O//uu/HorI8Etf+lLk85slt1IL2Ne97nXDw4cPhz6bnp4e3nbbbebz/+W//Jfh9PR06LN3v/vdw5mZmbRV/1IjLV0t/Oqv/urw937v9za7aZc0RqXr29/+9uEHP/jB4Yc+9KFMwBpIS9evfOUrw6uvvnp46tSprWjeJYu0dP2DP/iD4Utf+tLQZ3/yJ38yLJfLY2vjpY4kAnaz5FYqF/EvfvELeeCBB+TNb35z6PM3v/nN8n/+z/8x37n//vvXPf+Wt7xFlpeX5Zlnnkllbf+yYhS6aly4cEHOnDkjz3/+88fRxEsSo9L1M5/5jDz88MPyoQ99aNxNvCQxCl3/x//4H1Kr1eS///f/Ltdff738yq/8irzvfe+Tp59+eiuafElgFLq+8Y1vlHa7LX/zN38jw+FQHnvsMTl27Ji89a1v3Yom/9Jis+RWqtt0ut2unD9/Xq677rrQ59ddd510Oh3znU6nYz4fBIF0u13Zs2dPmib8UmIUumr84R/+oZw9e1b+1b/6V+No4iWJUej6gx/8QG677Ta57777JJcb22VTlzRGoesjjzwii4uLks/n5Utf+pJ0u135D//hP8gTTzyRxWEvYhS6vvGNb5TPfe5z8va3v10Gg4EEQSC/9Vu/JX/6p3+6FU3+pcVmya2Rkpz0fXnD4TDyDj3reevz/9+Rlq7A5z//ebn99tvlC1/4grzgBS8YV/MuWSSl6/nz5+Vf/+t/Lb/3e78nv/Irv7JVzbtkkWa+XrhwQS677DL53Oc+J6973evkn//zfy4f/ehH5bOf/WxmxSqkoev3vvc9+c//+T/Lf/2v/1UeeOABOXHihPzwhz+Uw4cPb0VTf6mxGXIrlYpeKpVk+/bt67Spn/3sZ+ukPTAxMWE+n8vl5JprrklT/S8tRqEr8IUvfEH+7b/9t/JXf/VXMj8/P85mXnJIS9czZ87I8vKyPPjgg3LLLbeIyKpgGA6Hksvl5G//9m/ln/yTf7IlbX8uY5T5umfPHrn++uvl6quvdp+94hWvkOFwKO12W2644YaxtvlSwCh0/chHPiK/9mu/Ju9///tFROQf/aN/JLt27ZI3velN8uEPfzjzEI6IzZJbqSzYHTt2yGte8xq59957Q5/fe++98sY3vtF85w1veMO65//2b/9WarWaXH755Wmq/6XFKHQVWbVcDx06JH/5l3+ZxVwMpKXrVVddJd/97ndlZWXF/Rw+fFhe/vKXy8rKirz+9a/fqqY/pzHKfP21X/s1+clPfiL9ft999g//8A+ybds2KZfLY23vpYJR6Przn/9ctm0Ls/Ht27eLyJrFlSE9Nk1upUqJGq6lkX/6058efu973xveeuutw127dg1brdZwOBwOb7vttuE73vEO9zzSnX/nd35n+L3vfW/46U9/OtumYyAtXf/yL/9ymMvlhnfeeefwpz/9qfvp9XrPVheek0hLV40si9hGWrqeOXNmWC6XhwcOHBj+/d///fDrX//68IYbbhjefPPNz1YXnpNIS9fPfOYzw1wuN/yzP/uz4cMPPzxcXFwc1mq14ete97pnqwvPSZw5c2b44IMPDh988MGhiAw/+tGPDh988EG3/Wlcciu1gB0Oh8M777xz+OIXv3i4Y8eO4T/+x/94+PWvf9199853vnP467/+66HnFxYWhjfeeONwx44dw8nJyeEnPvGJUar9pUcauv76r//6UETW/bzzne/c+oY/x5F2vjIyAetHWrp+//vfH87Pzw+vuOKKYblcHr73ve8d/vznP9/iVj/3kZauf/InfzL81V/91eEVV1wx3LNnz/Df/Jt/M2y321vc6uc2vva1r0Xyy3HJrew+2AwZMmTIkGEMyM4izpAhQ4YMGcaATMBmyJAhQ4YMY0AmYDNkyJAhQ4YxIBOwGTJkyJAhwxiQCdgMGTJkyJBhDMgEbIYMGTJkyDAGZAI2Q4YMGTJkGAMyAZshQ4YMGTKMAZmAzZAhQ4YMGcaATMBmyJAhQ4YMY0AmYDNkyJAhQ4Yx4P8BnbDYTfu97J0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "default_cmap = LinearSegmentedColormap.from_list('custom blue', \n", + " [(0, '#ffffff'),\n", + " (0.25, '#000000'),\n", + " (1, '#000000')], N=256)\n", + "\n", + "_ = viz.visualize_image_attr(np.transpose(attributions_ig.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " method='heat_map',\n", + " cmap=default_cmap,\n", + " show_colorbar=True,\n", + " sign='positive',\n", + " outlier_perc=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us compute attributions using Integrated Gradients and smoothens them across multiple images generated by a noise tunnel. The latter adds gaussian noise with a std equals to one, 10 times (nt_samples=10) to the input. Ultimately, noise tunnel smoothens the attributions across `nt_samples` noisy samples using `smoothgrad_sq` technique. `smoothgrad_sq` represents the mean of the squared attributions across `nt_samples` samples." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAG2CAYAAADiPRBgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9f4wlx3UeDD+nqrrvnR+7O+QOxaG0lMbCMlq9XsJre/V5/Zl5tUlWH2jYRmhAQRRYQmzAQOw/BPgTjC82ksAJ8tOIEwuwg9iQ3sSGE0CGCIiBZUhGDEcBaYjBt4jXL5efV+ZYGYcjaWgOydnd+XFvd1Wd749Tp27dnr4zs+SSSoApYjkz93ZXV1dXdz/POc85h5iZcdJO2kk7aSftpJ20k3bSTtpJO2lvoZlv9wBO2kk7aSftpJ20k3bSTtpJO2n/+7cTYnHSTtpJO2kn7aSdtJN20k7aSXvL7YRYnLSTdtJO2kk7aSftpJ20k3bS3nI7IRYn7aSdtJN20k7aSTtpJ+2knbS33E6IxUk7aSftpJ20k3bSTtpJO2kn7S23E2Jx0k7aSTtpJ+2knbSTdtJO2kl7y+2EWJy0k3bSTtpJO2kn7aSdtJN20t5yOyEWJ+2knbSTdtJO2kk7aSftpJ20t9zccTaKMeKb3/wmTp06BSJ6u8d00k7aSTtpJ+0tNmbG3bt38e53vxvGvL02pJN3xEk7aSftpP3v1d6ud8SxiMU3v/lNPProo/ftoCftpJ20k3bS3pn28ssv49y5c2/rMU7eESftpJ20k/a/Z7vf74hjEYtTp04BAH7kb12DdRX29kbwbYsQIowhWGvAEPYTQgQRgcjAVRZEBGMIlbOw1qCqhmC2iIHgPRB8xHjcIISAGD0AgAiwDjCWYIz8LY0ngyqMYoYMDBGsqSDqLkIIEZy2J0MwxsLCyHjIwFYW1lkQOURm+NYjBCAygWyVjxljOq8YESODowyQ0/chMpgZBMBSRGUDEAM4BjA3ABhEEZEDmCNAgLMOla1gTBqPA6yxMEQyhggZP+sZRAABjEZmgRnMgDEEV1UYDufhrINzFWIEYmS0LSEyIUQHsMwJpTnkGBCiR+QIUA1rB3BuHq4awtgKzg4AMojGIKSj+xDR7O2iafbRjN4AeAyLMYg8yEQADSJ7tD6AuUXkiNi2aQKBufkKzhlYC8ToEWLI13MyMoBBYKY0ZguCgbEW1hhYK/8AIAZGCB4xRlS1Awzla60tRiCGCENWFgwD3ge0bYMQg1w3ImHqRGDEtPYsrHUwZEAwcmxn4YysZ2ZZW2QinLOytkwNhkGIBqOxR+s99vd34H2DGFp4306dKxjgEBCirC1K/8m4GcwyPmcdziwu4dF3P4p3v+sRDE2dt0x3XbEmGMYYGGNQuSqfm7VyfnKv2ollgjt3FUc5N45p3cq9Z4hARIic1mQMiN4jBp9OhAEO4BjzT869RrlH7QDGDUD1PP7v/9/X8c2/2MKLf/KSnCsIDICY4ZgxHo/Reg84g8Uz83j3dzwCNzQwzgAMxACEkM6dCFVVgciByQEgMMv9E3yDGBo04z34tkHb7IKjB3PEcDiHalBjOLeIqp4DkcNo5OF9i/G4kXGn+yzGiBgjvG8Rg4dvW7n+AAbDAUxaczG0YI6wzqFyFaragfX5ERgx6tzqPEY45+CcQ1VbvQQgkueCJQMyFkQVyDoYsqiqOZB1IOvQBEKIEd57NO0YbesRg4E1AwwGZwAmfOXpz+bn99vZ9Bj/43/8D8zPz8N7n7/b3d3F7du3MRgMMBwO4ZyDtTafu/7Tpvs65/LvZX+6fbnd/Wp9fR52HO/9zM/L8R51nLKfct9u69tG56JvzN77qW0XFxcPPfZoNDow5m6/3b4XFxd7z8t7j9u3b2NhYQHOObz22mtwzmFhYQHee4QQsLOzg+FwiMFggBACAMBai9u3b2N3dxcPP/wwrJV7I4QA7z1GoxGGw2Hu1znXO+5y/Ds7O/n38XgM7z3Onj2bx7y7u5v70L7L8yzXnPce4/E493/27FmMRqN8fs45DAaDPJY//dM/xXg8xpkzZ7C7u4udnR28973vxeLiIs6cOYNvfOMbeP311/He9743H+OVV17J247HY9y+fRuj0SiP5T3veQ/e+9734oUXXsBrr72G1157DWfOnMHCwgIefvhhnD17Fu9973vx2muvYTweY2FhAa+99hr+9E//FO9973tx9uxZvOc978FoNMLu7i7Onj2LnZ0d/O7v/i7e//734/3vfz/+6I/+CM45vP/978f29jbG43G+d/U+ds7hXe96V/79tddeg/ceCwsL+OY3v4lvfvObeP/73w9rLV577TUsLS1hYWEB7373u6fuYQD5PF977TWcPXsWr732Gv7ZP/tn+MAHPoDHH38cALCwsIC/9Jf+Ul4f+lx5z3vegwcffDD3/8ILL+Dpp5/Ghz70Ibzvfe/Dd3/3d+PrX/86/vRP/xTf//3fj4WFhXy9y3XxjW98A2fOnMGZM2fyvaLrTe8PXYd6Lc6cOZP//p//839id3cXr7zyCs6ePYszZ87kcZ89ezb3s7u7m+dxd3c3z5muGf1MPx8Oh3l9nTlz5sA9ORqNDtyHfc+mci0753Dnzh08+uij9/0dcawncunadpXF/MI8Yoho21ZIRAK4RASOCgxJwHSMCKGFD0BkhrUCiKuqgjWE6BhkkMCIk30gQNxQAnrGAiRgisgABJABEgxF7So4a1FXgwT6DTgKKGCmRHoA3wo5iBEgBihGEHkABOsMnBMkRQbykyj1AYRAApYE0RfzIv3LcCI4NghtRPBAq88eY0EREHDLiGC00ScCBthgEC3DWKtIDtY4MBIQ4QQe4TLoY2Y4V8FVNepBLWDGmgR3CHWwYDaIsQZHA2bKgD60jOg9KHoYE+FsROUYzrYw1qFyQ7CpwVQjmiEYFgyLgRvAB4+mWQSHMaLfRQz74DBGiGMYZlSVgHtmRkt7ALcg9hgOAGMZgAcRg4yAeoKQUCUVSKSUEkHU62BkWkAkoCxyAHEAEOBjK9eTDAwEOBPM9HFSv9ZZVPVQgGeM8D6k9UQgY2AMUDkr6wwGITACB8Qg5M4aA2sg/RqGtbJeDAUB75YQYWCsQWQH6wNCiLBB1osQSCvnzYQQAlrvEbxP5EDItEmkoHY1zp5ZxgOnz2BhbgEDcnKFGSBS8M5piXAmDs65fN5KYIWYWRjbIRZpkYfgwYiyjhMhsEZIOxmT1x1zBIeAGIIgYY7g6IVUsIBwJLKNtOyNG4DcEKaew9nls2gCY1Ctw/uYjkRwBCw4QmMJTdtiJ7QgQ7BVhXo4gKsdLFm5h0NI5FReCmQMiGwyBCTiGYEQDMgynHdwtQGnczDWgqxDgEX0DLBH4z3atkHTjjJJYBA4RumvbRPB8HKQdP8LYSPEIKTF+xatGcE0FiatYxnXhFjo9AcEBPYgOyjWfVortQNYiGwIDaKu3/T8HM4NwTCI0SCyElIHYwZw1Sn4Nh54fr9dTY8xPz+P+fn5DBq2t7dRVRUWFxexsrKSQaBzLr9k9Rrqy/D06dMA5CU4Pz8/dZwSiNR1PZOUaJ/HabPIgX7X933fC3t7exvD4bD3vI7a96jx9e1bgoS+fo5LvBQ4OefyfHeJTvl7dz76jr+zs4MYI+bm5lDXNYbDIeq6ztsrqJubm5vqYzQaYX19HcvLy1hdXc3fDYfDKeCv572zs5PXTJeEltdB11T5uwJ17z2qqkJVVVOgSwnyxsYGFhcXMT8/jxgjjDE4depU3m44HCLGiBBCJi0lAdvc3ASADFgffvjhfA4xRty+fRuvvvoqHn744fzMXlpawnA4hLUWi4uLWF5exnPPPYetrS089NBDeWwK9j/wgQ9gbW0Na2trOHfuHM6fP4/v/d7vzQRoaWkpk5QXXngBzjlcvXo1z8mv/dqvAQA+8YlP4NatW/jyl7+Mc+fOYXl5Ge973/tw5swZ7OzsTJ2zzu/GxgaGwyGWlpawvLwM5xwWFxfxyiuvZNKzvLyMS5cuYXFxEc45fP3rX4dzDsvLy9je3s7XcTgc4syZM1haWsLS0hI++clPYnNzE5ubm7hw4QKWl5dx7tw5LC4uZoI2HA6xuLiY+97c3MTCwgJ+6Id+CKurq1hcXMzH+57v+R488MADGA6HvWt9bm4u/17XNYwx+Zrr2umS59FolM9heXkZy8vLU2RDr2WMMT+zmkaMxDGKIb6qqmwUdM7l4w2HQ+zs7KBpGjzyyCN57sv11TQN7ty5g9OnT2M4HObn0Pz8PLa3twEAy8vLeaxLS0votvv9jrgnU08IakU1YGPEopfQiTUmgX4rYF7emmLxjmKN5MjwJsBaAqxsJ/sCbMQGGziIpdnHBAKEiJCyCUK6+TIqEgBJDOEfJPjdGiE3kYqXbswWSIoMAQXxAAAjI99R8kwwI4EttZJGIAF4JRcEgDkgxCgkKUYBXgAoCilRekCM1IdgEyVBBkgWSgGoSIfhRCzkIMhkJ1uFiQEIGFRiYYwQPAKDiWUO0kWJaMHcgmMLkFqpGRxbMCXyEkOa10qAPxlYV4GMAwiI3sKTT/0EgIMclyysrQAAMVhwGAPcgOHBHBBjSOvDgKyAfWMsomJkQ8n7ZPM5clpnkQFK11E8XEHWZEhWcUPiaUjgXeeJKF1jY/M1I0swMGD4tIwYhiFADpwJXYicECADbGWdOoJhBrHMO0UCEwMk/h31OBBiXpvJaTAB6mRAbPKxOVnF1cPnrHhN6mqAubl5VFUNQ+J1obTuS+SuzwVdy2XjtC2j3Cd/mSzzETGGvI7SopcVbybH1d25OA4rc8+j0V+SD4bk3lUiOahrDAdD8QiR3A/i8SMMrXgSLUfscZsOmubLWBjjYIgRiIAgIxSPk1znfINAKD8Ri0fBWTANivtIxhSZwG1AZMD7FsG3YgjxjdzH+uyIjOA9YoiJBCJ7P40hRGcSsUrX3gAUPKxxiTjTNLFgfZqIEcV6kzxr8tMYhnWyXpkJMci5yP0TQYgwwi5BsLBpX1ANY2q4ag6Nifh2tFlAvLT6HmXlfzPHudf9D+vrXr/XbWaB+/txfG19ZOVe+jyOZ2RWX+U5zvJk9PXdR0b6rt9oNMoArSQT3bUzi5zNugaHjVmJbtmvki3vfQbUXcLQ9WJ0z6F77O3tbSwtLU1dPwXU5Vi64x8Oh1PAcDgcYn19HRsbG1heXsbi4mIGr92++trdu3dRVRW2trawuLiI4XCIV155JQN9Hev58+cPgNhynvQ81tfX8/GVbGxvb2N7exuvvvqqGEHSdyUQV5C8vb09dd5KEJxzWF1dzX3pXJTgWrfVn3rtnHOZGOk8K+g/7P5RL0V3Helcll6B8ju95np9l5aWsLW1lc9Lvy/nobs++sZUnlO5dvrWXLfP0ojT7b+7bu93uydi4b1IW4RdWdTGomkajJsxmrZNlskKxjoBAVZehvKeF7LRNK3IZ6iFs1bAoJtILtpgEQKgKgtBRMnabMTaSkRgBLESRI9xE+CNQeQowM06WOsgUN2IhTsq6AKMI1jHcI5RVQLkRH4QkhVSSQshJtAHhOTtiGAWD4DP8iiRSEUW6Q0SsQjsM94yxoj11dhsOc4yFmIYZ2GthXVp7kyVgQhHBwF8bQLUEdELGGIEMI/TeNokuQCMqUFkYSDyMENiuSX2AMYg42EowlrxWgAeDAvAJR+MkBRD84moWZCVa+hsQLANWjSwsUVEgCcHY2oYN496cBpEFvvjEcbjPYxHO9hv7gDcgmFgKIBMxLBysM6iripEiKeKKSRrPWWreNs2SRomfwvIS/PAET60E4JrRZrkbA1jrBChBOFCCJlg2GoAWAJszNImjomAJaERYBCTxdlAZG8AAcEIMQwRcaxgEgBZgFQulbwqiLAUAcsCZtGK94tljauESbB/knMlcly5CsPBHJZOn8VwMJ+s3ywEkSMQKcv8VEymVo/MRdW9gcmx0qYZgMcosoQQmuyBSHce2EJIIBPIpgeBkir9ByV+SlISsE/evYk8jUEcMTesMT83hKsGiDwGQgABqA3hgbpGi4iWInarGvV8DVeLBcdwUrxZ8QhZa7MHJUbxYIzGowy+lUQaRzBUoaKhEDRjgSSXapsW49E+OHiAWxjDqGsLsEUAIfiQx64k1yeySWA0bQtjDRxEckbJwKIyMlfXIvupKhlXjGjbRjwfMSCwEBbeH8l4WdaeMQaR58Ur6WqYtK5tVYmE0xDGTZJ6tYBzQ1hbw7ka5AwITrxo73Dz3sMYcwAk6Hdd+UH5e/myK63Uasns7neYtX6Whb2PiBzm8ejbr7uv/q4gpvzsMA/KrHGVrQQmuo0CjO55do/d7Qc4CIxKkNI931J6o59vbW3Be4+VlZUDQEbBogKr8rMSTAETb0LpNdja2gIArK6u5nPU9aPbl8fU73VftVzruZbbbGxsTI1LLcm6nY6jlExtbm5OgdeSgJTzoqB3dXU1g8lz587lfpeXlzEajfC5z30Oq6urOH/+/NR1W11dxaVLlzAajbC5uYnnn38eFy5cyOBUj7WxsYHNzU2cO3cOn/zkJwEAf/fv/l089dRT2NjYwJNPPpnPd3t7G1/5ylewsrKSycfKygouXbqU51KJxYULF/BzP/dz2Vu0urqKCxcuZI/QjRs3MgE6d+5cPm8lCF/60pfw+OOPY2VlBZubm9je3sbTTz+dAfeTTz6Zr+lzzz2HtbU1XLx4Ec45bG1tYWVlBYuLi9mzU67jGzduTH2uAF2vsUqASkKwurp6YE1fuXLlAOHSeeh7DpX3THkdynGUa0aJzObmJobDYV4LOzs72buinp3Sc1uuKSVNAPKaKu9DHfvW1lbeXgmd3tflc0LPsftMeLvIRNnuiViQMfAhIEZ5CXIIaNsWbdNkqyh5L0DHWrXj55e8oJyY8EhEoIDIBKuWf0PJwgg4ZxMhSMCFVSwzkVjoyxtIOmbvEcmAQoQxHoDII7IV3yJ5NRjWMoxlAQNiAlZTcHHGCpoE1HLyVmS5gkqbomioOREPQyLvcrVNBlQWqQ1RESswIRYwSCDYJMuugbUuS698Kzr8EBjBc4rBkDG0xLDWS0yK8TKWKDIdiT2JMOn8YyIlIA9jkQibeAtCG2HZwEax8JIRcEsRgBEgS7ACjjkBICZBnmBIrEENWw3EY0EOde0AU8HYIUKYR4wtQhyDIBKmYETHHwAQeRh4RN4XoBhiBmIxiFU3ptgVBa+RI0KUc+K0HmIUUBxJmKkhZA08cxQLdZCfInfSdUQappHWmqxTYzVOyMAmbwoSWQ7J/S3AlgHSNZe8HmmsSLEcE5u/AUeJWxGyyiA2SRZGyXPAIAgRHVQDOONAEMJCuvqMSryEMBMmN0R5b2i/pSeDMynQGIKQ51u8VXKuMUnPVKZFaR7Fmj8hGOp1USkUQT2NE++fCgedc6jqCsYZkCdQkD4sCEuVxT4s9ozD6bk5uIU5VJVLHlHKzwGNo5BnREAIHt43aFt5Fhlx/xVzLucs8i0xAITg0bYtYmzFy0ARzhGIRFrJ2ZAgcxa8RwgRTeMn18AaWWMp/oeSZ4jS86SqRJNcVVV+jnlfi1FEZWXMIJ7ILjk7Gig/u0AWDAMfGCYAxhkYI3K3CvL8kH/JI5bP+tvTSiutvvi71ufu9l0S0AeWjwP0yzYLsPe9XPtevuVYZvV1mAfgMOtoeS5HbVOCju53s1rXyjyrzbJo9pEXBXBdMlaC9rKPLiHQc+mz+uv++nefhb9sXZKqY1IQrMSh9D6oTKQksV1pXvmZArvuXPURVwV6JSFTC7UC4vX1dWxvb+PixYtThEXHtbi4iPPnz2ePjYJQJXPPP/88fv3Xfz2PZ2dnB9evX8fFixfzeZXyF+2/JCglqdNxqedCQav2s7OzM3UPK2FSD8Di4iIee+yxTA50jShR0nE757JnQyVNpaStlOPpWLz3WF5ezsBd+yu/L0mkXpfueZbXq9u6a7/vGdDn+SmNHV0gr9dRDQ06T12ZpPbd9fYA0wYA3VePU3p09F/5WblvuaaPeg7cz3ZvxIJMvpGiRAkjeAlkiWohTABZgkYVlCWAluRMCgo5aByDWlkpWesJde3g/STQkSgmINuRQhkJ6GQAbVBJjo6XYF2VQbt18uI3JsV6qEwCSNKXybmy/mPOcoVMbpI8wzBSwDeSp0CAAqU4Emdd7o2TJtsYm4OR9YDGKQASKzmRhckB5JzAD6FtGd5L8CqQzcdoTIANDGP9JMAWHmQsKpehCWJowMnaapNHg6MTbWgTYKPMi3UGhsX6aiKDEAEKAlBhgUhAJHC0YJaAWWtrWFfDuUGSSznUdQVbzaMeMsZtI0DOtymANiDQfurXo8IIhhogjCW4PLQZvMbACBxTkHPIZC2TjqSjImOyBTtEDxDDgEApqBcAYgjwQT1YFsa5lCRAPVUKJjUYWrSPErxt0jxK0LX3UYg2T2RvEzSXSCa6wD5J+pjgvZfg7cCwcFlWo+BdiIXDsB7CWTch6lDiVxDARASmwCQV2LponALquSAWIag3KCIGL+uTTJL1CNmxOehbA5sFQKu3IhYeJSE2QloNUw4AJwC1c6irRCyM9GAQUBnCg7XBbWPBjrF09gGYoQRBGgXtKmcMESElKhCC0KDxY8QgQfJVbROpSUNmAIjwwYOCBJ97L0HPEh8iJNQ6CSqmgXqBJoRMyEhE2/qpz3X+KYeuTKRkkrDApgBzIYAqKQ3pWohRJHlEA2fCJOzf5H8Mg9aL5NNGQl3VSUoIAA5ENpFf8bVRIU97J1sJ2tQKXep6+0DyLMv+LNDbbbOIRTmew1oXUJQBm/fS+gD3cY5/HOB/2GddAtSVORwGrMrtyzGXQES/Kz1Q3abksY9EdPvVPrvAR39XeUyfHly36SMWagUHJrpyHYcC7KWlpTzWUnqlYFQt4iUxmTVn2kcXFHc9NaPRCG3bYm1tDdvb2zlOQK3ZKj1SEFoSGD3G6uoqXnrppTyOz3/+83jmmWfwla98BU888USey/X1dQDIMiLtv0tk9dy3t7czCO56kFSGdO7cOayuruLcuXPY2dnB5uZm3ufSpUt53LpGrl27NmWRV2/IhQsXcOnSpUwW1FOh5Eb/6bytrKxk0qXXspSFKWFSz4VzLvddSunKa9dt3Xu2+3PWs6W8TrpmynNQsnVYcoOS1JbXp1w33eelkm3to7tveT93x/xmnmlvpt0TsTAJ6BpL2eVfDRyAFDTNAnpFoiQvcQVrxlKSuNiMc3yyvhJVABshGJET2VBNslhvQ2CE0KQgXrGQU7L+Z3VHTAAnMrxvEZlT5iQHV1VwrBIFhvECupytQJDsUBNteJK8qC4dnC38QJLpAOIVcAZ1NCBUkl3KN8lSPZGUMFMCsxGRGZVj1M7COSEYztYZYBrroCCBBEmBo0EMFt5bMAvQHQ7mQEaCzzmO4NnDAqJBdxbGJSkUVfA+IPqAZl+s+z5l8wKRBH5Ggg8WJjAMRcSmgXMGVWVh3I5Ih5JHQkB6ypbkFsGoEKNP8w74ZgymADIV6rlTsKZGZSoM6nkwGCH6lDErovVjBN+gGe1iv2kRWo/Q7IPYg+CTB4cQMImXMCm4OAaGDxJUT6ZK81iltZkkb+kcOV1OJWvWIun2JZZF99GMU8yuQOQSGNu2LZqUASz4kGVqsmgSyE9eAiUl6kkBTzIrkRFZGowkQkDyxhBLRgGTZD7OGpw5vYgzC6cwqCoYiBwpiZoymE0rP51jMQ4FuTyRR2kMkcr91AOik6sWeo1bEWLOUEVNSKQHmjUKSPefEKuQvEwakK/ZjXTImYwQwRLEc5TA+oO1w7sGFd69WGMONYZgjIY1WgOMxqNkHJBMSQmzwydiESPAKbZHZJoQbxkkCD/kzEwRofXwoUUzGiHEAB/a/IwiEEyIaNsw8bBEvcYplgMGTpMsFDEmMo/I20psTfLMBvVk6roU75RLnl0G0HJAQAAHnzN6VdUAxlTJAyie19YzfASo8RjUEug3qCVoHREwppVjwEoMxjvc9EW3vb0N7z3Onz8PAFlfDPS/3ErA2ad5L7frHq/sc5Y1va+fLvAuX/oKBvpAx3FaF0DfT0vhcUiIehD6tu8C/b4+ZnlfALmWKqPpatu7+3Wvi1q7+/ouLdIKHvuuWylX6nopvPfZql6OWddlKZPRdba8vJwlTH3HK63B2leply8JiBKiEvxqv5/4xCfw2c9+Fr/5m7+JJ598EisrK1hZWcHOzk7+p32o9+bTn/40zp07hyeeeAIrKyv4V//qX+FHf/RH8eEPfxjOOXzsYx8DADz//PNZhqQkQ+VfAPDMM89gdXUV165dy/emphfd3NzMYF5lVNvb21hZWcnW9Oeeew5f+MIX8MlPfjKD3o2NDQDAhQsX8jUrpXu6r36mZKo7x2Xsg0qGVHKl/Z47dw4XL17M81p6E3TcXXCtTYlqnxejK7XsGjW2t7enYlHKNVOScd1ex90F/F1jhd6fGj8DYOo42vqIeTlOPVZJKMp7QZ9jXeKufb9dHox7IxbWChDjabmFSD9UNy4ZkQAkrXNy90cgmiQiUpClwBsxB+Ymd4CQlBScC6jEIogljoAYU8pCqrLHgqMGaSuIlzgBioCJJCCURJ4RDUBRLPBCeDgDQs2IgyS9UM+FfJRAGYmzxIDAVjTNMQbEQBL+mrM5TSQwOkb5qrBew2RJhMyHHo+yXEkyENUAJDDZVTUkBS0Qo0lzRhAbfUpRSRaAkLbINs1nTIBXU3TWAmiNBG9HBtroAfYw5AE0MIYQYMDkRX5hBhCg5WAsg8lKXImOm0y6xuq5coCRjDyWbZbMECxaOHgTEXmAEEdo2yr5RQxMJYGvcsVaIDYIaZ6iB0IUYmRSLASzBccUoG0pA77Ak/nR6yrAT8muEgyTeILJ24YoVmXvA3yIAr5TJinkoGwF0oo1I8AmW8zV8i0kYyKHMlZUZsZEiWFIVm9jZEyDqsKgriTtqI49tVkyF/Wm9WV50M9I17beOGVLoD1yCngPEw+g4RQkXsRgSA6HSfpUjpxiKiaEInv+NP5CfyavJ2LEaVfhgdphsXLYl1Urz4rI8CGAbAL2Rd96i0We3CfGANakewYqLZxIvzh5BfQ5MRENqfdGt03pkIu0yOKBNXA2rSVC9paxMkhSr2aKL4Pe/ZogImUGMwaGJ8LOGCKijwhtSB5ezWyWJHspk5gxBSHMKXEnHiSOUZJP8NtbEG9W6774ypSN5efH6eOoz+/FC9H33b16CY6z/ywwfNRYutseZ57e6jkcp49uf6X05F6J1qzj9/0+i5jN2qZ7rK6n5TjblACuBHQbGxs549GssQL9xKpc+8vLy1hZWcH73ve+vE95nLW1tfzZrPFeuHABX/jCF/LfCnBv3bo1pfvvAtFXX331gPennLuuTLEE4SUAnRUQXu6jnpCucWCW3r/7zFCS5dy090k9TX3H7RKC7u99pHHWOPqu7WH3dN+a7Ft33b76pFqzPA1H3ad96+4oA8Lb2e7paHNzQ1S1yxIdsM8WOp/Sd7YECSgNBgzJ/BSCABCxpHJOz4hsieaklYe80FlrOYSc3lHkDqLPJzDqyqGqKszPz4NJLdPykjYpe5Qhk1NrhuCRSgnkGAJjCMQhpcC1aNoWWudAsziphMXaidXXWZGFWWtyoLqUbGA04xa+HSOmQGFjKrH8wyWreUwZfyTrDxEhS2qiAPyImILcLQwZuGoOriLMzRUkhQNiHMOHNmU7ErISo8x7ZAtDDtYMgGgSKFwQSRmCBFpbh8FwPqEzj/2dN1K+/xEUmxB5gNP8JUmGG5wC2QqwAxgzBEGOK/hLMjORMXB2kMaWiEYiPbAAmGHNAFUVUDlJqzceLSJ6CR53hlAPBgnMAW27h2a8g/39v0Dwo5TWWK5RDGId98Em6ZJFXVcC0pPsSSGeSvPkmstP5wBbAcYlLxFs8pAxfNOgaTz2R2O0jUiXNFamqiaadpPiRfLiNSwZqiCyJx2rgPokW7EEUACj1eS6EiuTLNuDusagqmU956BoFeATSIFx4b1Q8Npt08R4AqdDZhacMTsTiZcrRgQTsvHAOVsQC077J2ljqikioVYTSRanoIHgQwK7MQWKe/GKBA8XPc4vnsG7F4d4YK7CnSYCbYBpJH3rOAap3WAcBgMnzw8yAuLzvCRSmLyWPo+REUHpeZLSRkeCtRUsKp3K9IyQccmzwktQu2+gKZ6ttbDGoqq8eCGY4XNwN6V7C6mui5AMnXcDJbFSY8QYi9rVmVt5H+B9wHjcyJpyDrxokrwQKcmExSAlvDCWENsxWt/Ae01LHVFXlRD5ah/Rv/PkQsFn1z1f1k84Th/aZskQ+j4rX+aHvYhnbXPUy7drfdTzKvvtgpPuuRxFjvrASncMh83JYa3ss5uZprvNrL5Lr0LXunoUUOsC5q73ohv7UO6jc67H7vZdBmWXY1UvQOmlWF1dzRbyra0trK2t5eDiMjBWScWnP/1p/PAP/zCeeuqpA0Ho5RyWnra+bE+bm5t46qmn8JM/+ZPZm1ACv3/7b/8tVldX8Y/+0T/Kff7SL/1SJgxlZiElKRpgvrKyggsXLmA4HOLGjRtYXFzE5cuXsweknA9ds5rW99y5c1OB86V1Xve7du3aVLC7zjkArK2tTcl+RqMRnn/++RyoXq6pMiC6j2To3xsbG9jZ2cEXv/hFXL58GU888cSB9abjLa93aaXXY846jnoVSq9Kdx+NedHrqd/PeoaUx9G11yVqXTKl+5ReLj2HbkxQt816Xuj2evySVB5Fuu9Hu6cnUwySH94kaxwQpVgWhxyIymrNTDITqaGgEQvI30mwr8Ap7yVGQbPjaLrPmCzFbSsAg8hkcNUG0f03TZst5CABF4GSKZOQCqElC3kCSNYlOYO14FxIzILhEWLE/micrasuBY6CLSJF0YSnIlYmODCLDKhtLYKP8I1FDC5p+AVUeYQ0tmQZN5wBvnotrDOwIFSVE4lSOs/IyAXeiEzyNgSEOEYIDUJo0uknbXiyhpIRj4WlFLFuDSwMQgB8YNiUacZVTqRJEYiDCpUT66mrCLaKgGmTKiwBT0MgE8QbYgwM1WJNTcHHwERPb0iDd9XqG0HUAtwmQB0F/FcMzEXUzmFQnYEhQpUK/knMQUDbGjRtxHB/DiESEJtkdQekyCGhbeV3Iif68xQ7MbGgJ9kPAowNMIbhXBqDESu9pCdOKT5ZiKHUOGFwtKCU09oagnMmx2YELYqY0sbKkjeSlhaUgsVTsG+sQCnLDyGCqirFPYiexcDAGofKzaFyg+L+UelgUtyr1Eg9hyneQu+x8n6bDt7OFAcSlC/bRD0KTyRRUd2PSTZnsoxKnwkC3b1voAXgOHkTAWTJJFJcFaLEZEnK1oChM5gzFR4eGiwPLQbOoAqAC4zaB7QM7EchOwwkmVJMZFaeOT546OhJC/IRsuyMTCXe1CSb0uubSVjy3hhmgK2kxjaJBLsKlD2UKe7IWCGqUchDzKmlQ/L+xUKONpl7WTcmZy4jjVkBIxLJMa1Nc0aprghS1rmYSE0NZsneFk0AM9CM25wJi0OAcy49l+t7ebzft6bACsChVlJtfVa6WYCgJC2zrHTlvn0egMOsjbNe0N1xdwH1LCJTHqcL2o86drltt7++v2cBnL7zKS24Cvi6IFkBfPl5CY4O02v3nWMJsstj91mdu60L+rSVGX66gKlPelcCT71mGkiskpoyJejKygqefPLJDL5LiVwZJ9Bdr/p7CUjL+dT7ogT9jz76KB566KGpNazSKr2flKD8xm/8Br74xS/is5/9bA7c1uMpyXr++eezNOehhx7KZAoQ0Puf//N/xuOPPz4Vi1Kmyd3c3Dxg6S8Jjt6LpSdBr8e5c+emMnuV66IE9mVTuZJmHNPz2drawubmZpZVej8dg1OSuTJwviSIOuadnZ0D9XSO8naUnphyLXafN31ruPu5nv/6+nqWeXW/O+w5VB6/O599HpHuWLvE6+1q90QsQgCMF2usIUlRGtgjRA+fAhIlKY8FUjXsSALCJ5ZWrTdg4VxVfBdTppSY8Z8EZqocSvPVTzLCEEW0XoAGSKQl3RY5pgrNSWJgCJVA+MKyK8QCSF6Hps0BvAABDknqElOpgiS1ICM6f89oW5U5WZHkMENSwQKcvCKUAKnIJGLWxYtHRMBGVYmXpw1ayZihNQDSVRAyE8cpy1KbKkKnrEypErRKkSwoVZC2sGSSdTTVpLApB38MCJ4xGDhwlMKGco3UEkpJhpGK3JHEA4CMBGqbKnmJkleCy+xdKgnz4v3ALoiktoVeU2sqGGLE2mB+flEAlKtFAkQE8BhtGzBux6gHwyQ/ScGyZEBUw3vC/n7IoKuuhlneJHOSCp1FqQxOpgVRgDEaB4MskfFBpEqApDe2bFA5gNmDQkzXiuAcpfOTgOfg08+gdUmK7DwKZGHB1gLsYMilAn6MmOp8MHuQcbCmQmUHcGYg8hbVKCXuYIgSeFZylf7piu4hFt3GeuJ6rYr7TsFyGZTOUSvXTyRVIUmhgm9T4oCYYzWAJB+ygMkxJwEhPeAYEXOWcLZ2WB5aPFATamtQWcAaRo2AJnnBOCVuEA8BJS+aHM/7VOEeKmFCygaWEiXYVKSuUF+VkjQ9QZHuMcDpeZDmV0iFeoJM9oiCGORl/kJRVdtaiWEy6dlHoKmEFjaNi2whnwtSz8M4l8miSkkjpYKE1sISxFtIBPZWjBqNJEZgjjDgnN2L3LdPDqUv+NLKeZgHoQxinAUiu6C0/HxWm3Xc0nqqf8/av6+fPqvfUX10t+879mHzNGufe923b9vuuLpgpQuiDhtXt59yny5pOS6xOOycSxLRBfd90pnu32WGoi6xcM7hiSeeyJb/0sqt56JrXAO/dZtyvZYWawX/ALKnAEBODVtq8cv4Cz23ra0t/PZv/zYA8Tpcvnz5QBD09vY2bt68mTNLad+67re2tnDjxg2cOnVqilSWx1FvSJneuAz4VpCq81deD/VglNegvJe6cTJKFpaWlrCysjJFppRcqHeiHIPOqwbBl0SzC6y3trZysUPdfhY57iMM3WdGF+B3115JFLrrbnNzEysrKznOpbs++56BJYk4bPty29IjWN575bV6OxpxTmw/u925cwdnzpzBR576f6FyAJkGxB7e7yMiILIHSEBcXUtWICKLZqwgRSUcDFcJeJaS9xUMSd0K7yOaNojcJET4Vms2SNVj8XIYEaWTZOYxNKlSSMnqL00yxUQWGVVOjUmAtYSqtqjrGnVdYVAPEwCpUkYWxu7OnhCaGDCoRY4DopwCFbAgWBhb54DmEAxikJe8920iM63gDwNUAwvnDAZDl709AhQJzkk1RuuqFHQqnpbJ+efTElAPCdqWLDIxy39cCvKUfwpABSxyZPg2iCwnBbUKPgvJyhvgrJMCd8Ym633AeOzBTLCmgnWS+cnUp0BmDnCnwVRLjEXGWhI7QxzBPILU2BgBtA3GPjjeBngEQGpvGHJwbg7WDmFtBVcNU3YkiZfgCLSNx3i8i/3RHYyaNxDjGKAmy9OsmwOzQdsaxCBJAOq6grUmpfsU75H3Y7S+RdOMEKNPcjdOc0KJlBjxshWgk5OMRoPvdS0RIWXeYXCSAoUYUrAw5ZS8HAnBqxQJqVr3tGcnaGpaQ5gfzmFxbgEX3nsep4YLqK0mFhDkT0nmZ23psVB5n8nWcaUZ1tpUdNBMPBqQ5AixbeFDm671PnzTohmNsbe/j9a3CG0zITIJZHOcLrymxMIYKXLn6koqwddSGV6yoDnAOLCp8OobO3j99du4/tX/L943Z/GBUzUunhpgcVDBzp/Cuge+4YG/2A+4EyO+RQzYAdg4ILbJ+4AkWwrY39uRBALRw/s2x29Yl4oMpnvcWgctthh8qqJdBG/L9gSX4oHEdxol05LRdMSyLpgNIghNK3FL8pzxACKcESOG3IaUvUCUQjAG9QCVqzA3vyBEwliMWzGSjMcNmnEjHp3oE4E0qJxLHotKJI7Woa7mQcaC2cCnuahryRTFMHBuDl/4zf8Lt2/fnqo8/HY0fUd84xvfyNVlgWnduQKU8mVeWnSBaSnVrOxR3ZdpH6A+DsA+6gV9GGE4jBwcdbyjxjvLCzHr2EeNoY9EdPfTz7pa+3KfvgD8Poup9tMlgqW1vzvPJTkowVs5Hl0Ps+J1+kiQ/t31bHRB4qy52NnZwc2bN3Ml6LLPMuC59MYoSNbCdX3Xq/QwaLC0gt6yMN2tW7cyObh161YG9DoGDbz+4R/+4QPxFcPhMO9z5coVbG9vY21tDZ///Oexvb2Nn/iJn8iZntbX17G1tYU/+ZM/wWOPPYbV1dVcP6IMutY1oGl11cOg86UemG4WOG23bt3KVbR1rsssXSUwHo1GuHnzZp7HGzduAMBUHZCVlZUDzwmdl7W1NVy6dClL3MpCezr3SrjK+JlyDH3PsfKzck2VrQTtffdU+YzrHneWsaK7nnWdleRqlrGgz9PonMPrr7+Os2fP3vd3xD15LDgQPMf0Em/QtmOxsiJIYLeTirHGcgrqTPpiM4l/IBDARjTykRCTXEAthpQKYdk8QamPJJ8SM6DAYSKTQItmiNLaEAIeKGnbUxqglF4WcKkYnRYSi8xSvZnVe+Cg6R01C1KRPEeDD6A1C3JBMpbsUS5JWUIQJEHEcFbiSoxRa7JJKXqRUnUyiANCqtEnNRd8DrjOwbFSyzx5PCQY1Vmx4EaqJp4SBUuksjIW8MMAUlDrhFhwsn6n0yKTivxpPQVpRJoOtwYZqVUBtYSz9CPgyUv8De8AGAHYB3AH4DGAPUQegeMYMaplmEEmwqBO1nX1wFgwGbAD2lYBnaYnrhIhTDU/OMnVjJACV0lmpaoyMKQB+DHLlXLgb/YpKJEQr0uaCOSMUprelTkDa43DEbw/WQ/WUrKIS3wFIgmRUQ9cDEl+JPEaIpWSAZE1qN1gEqtAlGV9ims1bak2lTJpX4CuMc1UNZHjaCFBGTRyHBGA7Glo21aKXjYNfNuk+y/FSQHpRtBeZD5C8HBWiljWIFhNxEAm0TOXZ2zn7h527+xgyIzThnC2cqhSYgfDAS4CVWSEcQsmQl1V8Mn7mYOjDaWoCgNXOcQg5C8niyg8FlrvAzpvKTOV6srkeqrnxuQinCloIxE5jRvXeUzyRGMQIsNFC0QHcEyF6cSDEXI17uTFYq0bkowdSHEXlRhHOBkLEt9NhJBSfBdBq4kTSYC3eFqdpLyOQISFgZX709ybBv9+tD5AOssyNgu4d136s/brbn/YPkeN+c3sc5Sn4n62N3OsrudA9y8tqfpd35wfdcwuwOrb7rjXdhYpUAt6CVT7pFTlfm8mUUCXzHnvcfPmzak0qCU4K0mWAj0t0gdgCvCV8hxtfWSs/Hx9fX1KblS2nZ0dnD9/HufPn8dzzz03NS9K1BWMK5lTb4WShd3dXYxGI6ytreHWrVv5+6qq8vmVskP9p9W+tQCcgtu+DEjdOe77u5z3MpBdv+vGamna2r5A7rLvMnailKyV4yuL0JXXvfys7xrNOq++72bdW4cZTbrPs8O8Cl2iUu7Tvf/7PCdvV7u3o7BDM26wv9ugafYxbvYgL3mGrRyqSizxVRVhXUAIPAXUVWoRgujhJRWmIJQUHzmpnOwqeNOibQnejyXHfGVSMDCJnCXFRtiqyjIDpBe3I8m05Fydtc0qOzGGs0U3xJgSwISi7kaFmOo3xGCFBCGmeJGCBKV4AkOMEFsQGFUFuKHEbcTgBOTAJykUYB1DM0EhGiEVYLTBI3BImatkun2ygreNT1KbFiEImYNKqZgwHHg4N8CgGkgKTc8ILNZTa0LWX/vY5uNNNBiJtBmLCEZlq6zpjiFImtOkLQdZMFWAGQI0BOBE9sQewEhkKOwB3gdjDNA2QCOA9gE0EB2ZFCTzPqD1DKIAFwg+BrjQpDE7VK6CMzWMcbCDOQQ/wMi0AA8AGFTOoqocnBNyASaEJFUBGbhKsgNZS0AC9L4NaJuAtmGIXG8ihSvJhdWLBYJPUiAJD07I2toUg6BF/BRoJ/mZFY+dISckhQkxSh7zpm0g8QgeSFI5Wc8TEm5gMD8YAhST5DChzDJWgpBJgtIJiSeYbKOkVz0jeqYToBuRinnDEIF9gG9ajNPDeG+8j/F4DCTiaWlSE0WJhdR3kb+dlcDhYRtR1S6VQSRUDBg3AIMQAmPzW69g+y9ew5nAeJe1ePegkjDqyDB+hEEbMTcOuPvGHkbVAAsPPog9jhhzkHWUsrFVlQVgUdWLSboVk/clJvmhhRaR0+ubC/gZgokWJkq2NDDDGolxqgcVnNNsUiGRPo2b0CxiQn6HiVRO3L4s1bCbBqP9fbSjJnk55TpZMmjTA79pxgABjoC6HsKaifUiWAuiYQpUJ2gmLonDqlDVNYbDQXpWVfBsEAOhjRWcG2BuuCCSrXe49YGpEvB0X5QlEOgLztVWvvBLS+FhL92uVfwor8YsID7Lg3DYS7rrnSj7KQFpX+sblwLZWcfvI28KdPusorPGXkp4ykDbw/Ytr0f3nI9DwEpPxaxzKHX3JSjvS6epgFelM+V25XzNipPR33/lV34Fu7u7ePrpp6fGpylIy7W7vb19oGJ2OZddYNe1Si8uLk7FcPz+7/8+XnrpJXziE5+Y8hQMh8McdL20tISPfvSj+Rjr6+s5O5TKkzQVLCDk4urVq7h16xZu3LiBL33pS7hx4wZef/11/MIv/AIuXbqUPRsbGxtTMQx6T375y1/GhQsX8MQTT2BjYyNXlz537lwOHtc4kD4gq+PWee56AnStd8makqnNzU18/vOfxwc/+EGcP3/+QPA2gEyqLly4kMd48eLFqeuu8jINXu9eD53zsnWJk55HmQGrb613ZWLl711C1ne87vflvC4vL2N7eztX/C6LLpaB+n0ekrez3ROxcJWApbaqEDmg9Y1YEAmwtoKxDswVQhBrf/CtWAQ55BSLzrlMAqhEKMmbwEHgkgYZq0yKCDBepS0VqNZsPCnLihWg70MQSVPS4Rsr21lrYJ0cw7oJ2IpRtdV1CpIGOLZgjmgbRogyxknhOanWjVSYSzJgctLqi4fCmmSJNqmeBaKkFjWEalAJ2DEVWh9TDMjEw5DdA1BLs4FzlWTfCQYhSlBn24yzFdRSAliVnJOrtDa4SDIkbiICPsWccJwEopLVYSP4CA4tIkmgqLMGw8EiiNJ1JQdO+fGJWgARHPbBsUGId8HcgllkSoQAMmkbxEl2KLaIgRC8hW9FhuK9h28Z1rZox5I1q6oqDKo5OFuLRwYNnAuYG8o1Ggyd1CexVtZdJLReNPghRpGSqKdM0xDHNBc+FXNjWVtAsibrGq0qWCOZrbJiLU5ILxEh+IA2ejTJ++FDSm8cU1V3I1WcZZ072HqIAAtqk+QJEw8HYZJdyhrCcLiIueECbIqVQZx4GRQoU9a4TUiiMdOEoiQYKqWapHudJFmwxiIww8eI/bbF6+M93I0NxggItVjKndbAYMA3MSdykDCgAA5jOGpgDeDDEIO2TlW8hW9WtWSgamLAG7fvYOuNNzC3t4c7c8D+yGKudjBsQc5ggQhnK4M5tCAY1JVBoABPAU1oxOMAQFImS9IChsSt2BRMThRhrUskT6NdJqRKY38iR/hWvVgxxRZJLBRInj9IXjKWfNYIxHBgWBtRV7U840A5aJ9tLfFL1sA4m2LEsooTtZPK3sPBQDy9RECUgnaGCC6lPTbGJnJspPBgCs6O0OKNIuGEnUPFNdhFWDcH6yoMB3M5zuXb0dbW1rCzs4PV1dVsce7zZmgrX+J9FsayHefl2Get637f98K+3608564V8yhrZNnHLAtnuc1RwKS7T3d85fd9x+sCY21dS2kJzkvrdV+8Tdey3T1mGWhbHq875tLa3Se5mkUOu4CyBLs/8RM/kUFyKc1TKZD+0/WqheKcc7lgnJ5jGfjbDTpWj8ilS5cysNZieVrk7ubNm/kznYObN29idXUVo9EIzz33XL7PvPe4fv06PvnJT+IXfuEX8OM//uN5DrXYnR73sccew82bN/Hss89ibW0N165dy9dH6yyUsQsf/ehHp4hTN3ha51OJVzcGQ4mIehz0fLR+hR5XJWKbm5s51e/Nmzexvb2NU6dOZflSSSZ0frteri6Z0PGqxKvPm9f1NHTXUbneZhGDco2Va3fWtkcZLWatYS3G13ff6bzoeZf7HuaNeavt3oiFtYiIcM4hxEpeaqSxCwKYAQdJe0qIbEAs2aRsyqZirSsCIZFAFoASWKdfmQkRBiHVBPABsI7gSDwQIs8wqU8LTQsZU30DgJNlUfTl1kQYS4kgJWIRkD0klKQ2rROwS0RJMpPy3qf/JBaUwewLD0bMMg0hW5LNSCQRKn0RXbwAngpkJEWvyDHEMirpQyeFxAwBZI3Ix4xFILGcx5SKV4KOUzwCQ7wLIBiyCW+yGLsZUuOB5XysBpOSS31ECT7miEgBg7oGuUqCoE0FH6TitpQ/86CU5z/Gu+C4j+Bvg7lB5DFArXiGOHlmUhVvQNZE8BbeSxwNgwHyKa0pobUTYsEDQuUiUFswtzAmoK4F4Na1Fd25czDGpZSyKjOR9KfC6ZKMLTA4cI6j0YKFTeMz2LRJIscMcAVYdhMJXATIpTkzVjwkPhYaeqQUtSFJtZA8Yylw11WwTDCulexDZACERGotnHGZWAzqIQb1UILXAQi7STKt5GgyJPVSMi/HtORJ24RUiBQsuxeK75F0/D4yxsHjbjvCbvRoKYJSsT7jXKpXAvgQEhEBQpLjcYgw8LCIkvI1BJgkZwMMfIjwzBi1wJ3dPdze3UU7HmFnbLE7rnBGM1oFh4ExOOUMFoyQtEFF2GPGiJMUkDWYPc2HEfIAMqAQ5XNrsgdFEzOQ6taSnEgfPRLXFSQlrs6l4Yn0Mc+feIli8EmOZFIAvtB4z1IBR0hdJV4gIAfAU4qzqF0lySsqrbWRFpgmPaCJ9EmTDxAxYoAkdeBUbwMGIAcyNVwNwBFcPZ8KBQ4QjgFa346mwEJBTGlJ63otSjDXfUH3kYPjvAyPA9bvZbvDCMBR47mXF/dhBOewINPuPuU8zTr+cebxMA9P97izSE/Xy9A9dhcsdT/vq7x9GLE8Lmk7jKQpOL1y5QoATBWaK0G3yqMUtCmJ9t5nUF62MjNRl6go0NVAZQXOy8vL+bMLFy5kIK5eE/3+1q1bOV5iNBrh5ZdfBgC88MILB85Lx65B3SsrK/iN3/gN/Nmf/RkuXbqUx1ZmX1PZ0NWrV+G9nyJbOncleep62GaR27ICusaLaPyGeoE0puKP/uiPMB6Pe2Nbyj7VOt+tel0euyROfePrerT6jAJ9ntO+dT1rjXe/O6z1PQvL+7wby9M3J8c91v1o90QsjAVcVSHwHGzlAGugtteqlpd4VQ/gNDMRYnpRRtiKYCXrabYUhmSFk1gEtbRWKTtSjSrppnf2RxJrwIxxS1J5lkTq4ipJ02hgEbmCD8A4gUuRZBNcUkIQCSDIGm1DKa7AiEzJiKhkfqFGVVnUtYNvBYiOx2JdJ9WapwBsk9LGaixE20pchADcVizjsRVLqLM4fYoxnIuYm0teE0MwzgGQFJYSvxLho09WS5KATBjQKYMYFhFCxP5ek7JmMVxViUfASHVeBqWiYQKEQ9AYC/HEMIvFXmzmTdJ1C8CKzDAwOH3mDIYDh8AVgnfYH3kBdSaCaBdEHowxQtxB5DHaOJJrmuqRKCDT9KsxUMq4JLUCvPeIYSzWZUBAYfontUIs5oZzqKoBFuZOCRGy8rkqPGJkkI+AFTBpycASIRKl9McRTRD5k/cR+/tjNE2L8bhBG3xOVapxNtaKrKoeDFDXAzhXJzlTkiEFL+vIiOTI1RVggSo6tN6JtyQEMKfUos6JJ80YVFY8IYNBLRb+DI7l3E3KekSIOH3qNM6cOg1nrJAQqFNiQiwAoKxhMVXhOv1Uj6DgaSUU2h9PfcQM7Poxtps9bO7flXgGI15KdhamthgO5+CMwyAO0DZA0zB2dvfgmxFGuwz2I1AcY388hmsChqOAhVGL4WCEvYawO2rw2t1d/MXWa3j9zl38xWgERxGegf/z4QrLZHEqRAyMQW0rfO97V7DvHPYWBgj7Upl932DiheIIjl6C4ZMMrHJq6ACIAgxFSUpgUvB6OmHJhisPhraR5AvNON0rKRMdx4AYmjzn1hlwBMaBsbe3D44Bo2oXzlnUVZWAPoFTxjgYg+FgmIlgWmi5ZonIGSW2C6Bcz2I0Gk+9qAaDgcQRwcIzIQSLJhJ4X55/1VwNOxiidjVcNRBPBhkw79/L4/2+tJ2dHbz++usYDodTaSxLa1qfdrsLwg6TFmjr9l3ue9i2fe04ILv7Yu6eS59U4bh9HRYXUFpGZ4H9vrno1tgA+uVjfX93LfnlGL33WWuvGXwATFmD+6yvOl+lxV6/L4Faub96svpkS+qd0H27Aa0aVNw3T+X5AOJhG41G2WtQAme1BjvncOvWLQBSbbrsQ/vX4Go9tvd+igyUGYxUqtInUSnX/9LS0oFxKSHQ7bQC92g0wmc+8xk89NBD+OVf/mVcuHBhKpagtGwrETl//jx+5Vd+Ba+//jr++T//5/jEJz6Bj370o3n8ZWYqDYC+ceNGBuald0D/LomREoAyXkVT2d64cSPXENE51f6+/OUv4zd/8zcBAB/+8IfxX//rfwUAfOpTn5ry/ADIJGs4HOYq6kq+AKl3ofOm83FYwcNZ93NJRMoA/O66L9djaTwpyWRfK0lNdxyzjlf23e2rnE8dV/deejvaPRELMlWy+DNADgPYjGM0GNrYSiyIxiYwEwFqE4GISXIQEgBN1mWeyH5U/WFSNLGxBlVtRQ3Cmk1HAJjWKGBy6WVewVSE2hghK2AwtfDRg1sPFzysZThmOMvQGgREDLYkdSrISBYrYlgHAGJ99j7mLDSa/paMAAMbbJJtMdpGimYJ0fBg9gixhbUGzjL27UiAd2RYJ7KWfP5GA29RpPQkmBTHIuecYgDiIB9To64loFQDrBOxIyuytCjF3ThpezjFBsS2RfQBoZUCXYAUZuOUNjgEAd0+yHUEWtjYAuQBjBF4H5FbhJiycIWY6wVovAuHmFO5hjgpQha9xIFoBIOEESQylK6N9z7JYSSLl7FSgZgjSxXuyDAx7c+SzUfmT9amDxGtZ7RtRNMEtK3WXFEVESWPDqUaHRq4q56oUp/PkzTEKXjWkRPPnDFwLq1xlvOoqipLp3K8M2kiAANwmED9qAg/gqSk26ReTLK0k0qZAN0rNw3k1zWkm0ys9MhrCzwp1jfpjTFuG4x8iyYEkCVQqt7MEMLY+jGi8ZDK9RZUWZjagbhCsEPESOI5o4hAUgWeW49xBEbtNu7u7WPrjdsp45Sk5319v8Wfu31889Q8QMCwNqishTOMBwY15usK88MKb3CNxgJ3x4SQADqnE6KUKU3nAUgKRAKYCJG8rBmtjq7eDqRK9eoFSgknOKQEFcEDSHVcjHhlowFsMPA+PRNaD2sIjWtT8gqRJxnn4EhjMRKRSPNe1pzQIH9nTaqbIh4xNnKngiwiG4AlXoesZIWSqvfD/M+6Graqc9FNgpleC+9gK70TCpwU/JUA+TDX/3Et/bMs5tru54uz7xj3YtV/s2ObZeEsQcdRxzruMUvyMMurABwsZleCn+517RKI45x33zZ9Xq4uqSvH0Df+Wf2XcT0KxLoBzNp3t/XFlsxqs4h09/y689sNbFYZUgmSdU4ee+wxAJOigd00rPq7gu/NzU08/vjjePnll3O9i1lxAdpHmY2pLyNRGUeh/5RY6PyWKabL/jVeZGNjI/dXpuX9ju/4jkPjG/o8DeXf3Wvf/axvvc8yKnSPcdi+fc+9e2ldL8RhzbmD9UPKNfVmx3Dcdk+9WzuAdQ41atgqwtQaQFzIK4y45yWrEiABqoTQjgAEII4RQsgBjCkSIlmsAetiIigRxjrA1hjODZPLf4icaQc+7R0BY8BkZXymApkq5av3GI/uYNzuIuzvwmAEayKGgwjnWAKpkSqBmyAShiQcIUMwSaMdI6H1Ehg6Ho3gk6VdauzJiz5GgxAIviU0jVYXbgXAc4BzEdYGBL+Duh5jNNzDYCCpOJHS5kqKTpeCcB0ULFGqlcDEcLYGOQtnavgANC2nWA0CIJmaTEo3q9Is5jFCbBG4StIjhg8tgm+xf2cEPx6hHe0BLDIkd0ZiFoAK40a8G1KQcAziEUzYA4wH4BHQIHBAGyWXv/cFcI9Jh++lMJpmrFJiwW3Imv9ILVSzo94kH1o4WyEExtzcHMguwMUEWMGS5hgA0CYdvQSYmxSXIkXuItoWGDeM/XFIciUtdiYERKmNTVInV1VyPazNxQk5CsFCjLAxpHghJXLIa1kyd8lVM5qVJ0nNlJCoxCZGyJzpZDEDISIGKX5IkJTKTHlqktyPMikqZU8q6SozSWmjPCrkn5yYRQQjMGNntI/d8QhN9KjIwRHDgMAhwnOL3XZXZIW2hqvmRM8/cCAMEPdPoQlDBOPhycMaRnARo6YB9vfhd9/AnTt38epfbGFnfwTfBgQf8cruGLfHASvDIfZDwNkFCxsMLBmcXazBwwH8wgAjR7Bti23n0AQWUJ8AOtCCEVIWsyhkTGpSIqa452gkjbDWstGUrBGEyOLps9ZKhiv2CH6UEjL4TDqsI9hUPb5tDGIAdnf2AJZnyGBQo6ochnNzqJjhnM2pajlGiTaKHk3TpNo/DYhljQ1qI+mWbYVBLQkvAiM9R8VzSORgnHjSKjeAG56GqwaoBgtSyNO5LIkDJvVG3sk2HA7x7ne/+4CV3Tk3lYpyFiE4DHgel3z0gezDgPebIQPHIUd92+tn+rkCoz4r4lEAVX8qyOl+1rd9H7ErvyvrCygQ0etWnodavoGJzKLbd58VuPvdLE9Tn5SjO49lcGp5bAWv9+KdKWM5hsMhzp07l7NCqcRJvXA6nq5VWWVGzrkDFby7c9DVvnfXka6HkhToeLe2tjKw12ujcRMA8OSTT2JzcxM3b97Ma0ODqbvyq/X1dbzwwgv46Ec/mseqfZXXqVwrZb2N0rqusjAA+XuVRHVT0ZbeFi12V3pW/st/+S/ZOwQIsfjSl76Uq2DrdurBUQmY9q/XtSulmwXOu/dm6Q3reu/KVMp6vC6JKNdjt5Bi31rsIzDd7/vS25b3XdnK+J/yXIDD0+Ter3ZvUqhqHraqQA6wkUWBAqR4AhYJDhkwUppQH5Llb0/0/SnFqOj4RTdOZEBW5SYm1YZIMQ+JJBi3AGNr2GouFx3jMAJHD04VmIkMXF2DTA3YASILyKucQTMeoLED7N9lNGEP+zt3YW0LYyMGtZCHyhEYXozGiJikso0Qyz0BXMHYecnJT0BVqTbewjcRzhAqazCsJXByNN5D24wxHu8hthHsGWgaNDTGLommn6zo7wdzQwyGAyyeWkzVvSOi9+BU2I9Ub01BrONmADIV6kqK4jEbBLiUMjSBXDKAsXDDOVAN1MmiHykB3eBRuzcw3r+L0e4bIG5QOYulBx/EYLiICJdAlwSqRh6D4y5iHEvaVUjWn8gGhiOYDSwggIg5FYwTK74UzYsARUjl8ZTqNcnLrbE5RoJZYl98ZEQTQKnmRQTQNo14mlhTyHIKkDapToPq3oyks3UV3NAguoCaKRE+jxziQ5o6FqkqOiXpjBBdFc+A1BfERQFAtfuLxZ9SUHEIAZEZjR9D0yzHKGyCY8wVs8V7IDU/iFIK4RjAsUVsm1wgkXQA4MQGoEEVWUIIFNZ6lvllZsSg8T8pq5UaAFSFlbww3rfY2dvB3mhPki7EgBhMypQk2ZUqp9ZwB5CC8QGGtQOfXkIIFiFqbJGHwRhhtIMw3sfu7ivYi8AoRonLAIMN0KZaMzdefQOv7NYginj/A6fxnlMWi62HsRaD4PGQlTTE67sed7zHqPHwUYLQyTQi08vkguU+UQlTCoBG5WCNpLgOXpxEMRCahsQo4JG8a7JGgAhyqYYHKKWzJbShQjQGVA1hB3PJExcRKMVuGQeGyZ5LSmtDvUqcaskwKkQmhGgQRq0E/FsGGQuyDrUdpAKUA8DMw5gaVbWAylWoqhr1YJiMH9VEJjd5JGOKWb5DrQ+saiuDarXNAnqziMdhoGDWeGZZ6A7bb5ZnQFuZTvSwvmYdV/vrzkkXTJcZkw6zds7a7jCS1vUAKADpgv6+Amd6DLWcd/vqG5t+37XwKygv51KlJF3vQ7mfBkp3r29JsrSVWcn0O60RUQJpBYJ6fUurf3n80oK+urqa5+/WrVvw3mcAvLa2luVAeu6a2akE5YDIsZxzucq3Sn22trZyJqgSpOu5a583b97E2toaVldXsby8jCtXruTjaqVnLcim57C9vY3xeDxVT+b555/Hzs4OPv7xj08FV+vaWFtbw82bN3H58uUsLeojjiXpBTB1vboeJv1e40nG4zFWVlbwQz/0Q/jd3/1dvPLKK/ixH/sx/OAP/iB+6Zd+CZubm1NyNQBTxKQket00s0qgVJpWeoMOW8fl+p31jOqLt5j13NO56qYj7tuuHFOXhJafl3PeXe/d+X472z1KoSzI1vLytJACzCoZ0fStMIjpH1OACS04g6+U+5019kIL21WJnEiMhTUmBTc7kHFwbgBja7hqKJVnwWDfCgBopeo2mYjKStAmrE1xBpjgscjYxx0Eb9GOAwx5WONBkeAsgSubgJmCFdFhRxcSAJQgUFcZGDgpeucsLElFa0pa/RTZnT05BoTofartkLLKpArQIC+BvTXL3JBFPRBruJybyDG09oUURPMTC2clmZusrcCpaF8IKeaDCVLyuIY1TtLGUiXzYjTgVmoGiEW1gYFD5Qzm5xdg60ECPzYRLU61LaQQmVjeTSHlwcQUz5M5l2xM6QMq8TCBbJongyTlmji/YpRYCWaRnBjrQeMGiDFZYifyHmtdqmpuMqAScCdzKrIUg6oOsCEgRJXpIUvDVO6iWYEMJlmQMkbLOC3p4gtZEqeK8QByKtpm7CcSqAwsxSukwblaW8M6ISqRIghCyJH6pD6ASJznMQddJKlUCq3QTybjJb0Gk/obSAQ8xJBS4aZMXqzSNZ8MCOpV1FofMiHWOJCrMBzOIXINZoeICOYWHEeAPguqAbiqQbUDtY24Ekyqhs0Rm3v7aEPAu7YHGNYDzNc1Bq1H7RxciFiwhNYaLBBjxBL7IARa0h0rsZBA6Sj3VpoaVm8FMWClcKHE/gjBGI8NfAB8q1mzZE1IpfRJ7RQOLpFtyfpka0KVJJ7BBxgnkkVNviDxGknWlkmopqpOdSvSuvdB4mwYDGekTouthiBTg8wQxi7A2AHqehGVk3zzVVWl9MLiNes6KPqqrb/drfvSK1ufjvy4rv37Oa53qh12focRHuBwyVIfMSsB22F9HjXffR6FLtnoAqASUJbbdMejffR5Z44a+6w5KPc7zDtRWv21ddOJlv12JVDdPkrAXB5Hre8XLlyYArcl4esSp3I8JdDUY6jlv/SWlJmmSsv/2tpaDoBWIqLj6M7t+vp6JgXlXGqF6tIj1M26tLGxkc9Rz6M7n11yXhLQPk+IrjP9/dy5c7h48SKuX7+OV155Ba+//jquX78+RQK6krHy2nSvT3f9dxNG9K3B7trqI0Td1p3nLjHoa7PWft88zTpmd9x959Ld9u16/t7j09YBqHKVZWeEHIAsnBuCyCFSBVU8s0p4OADRA9HDh5GAZi81FQBAKnDLi9BRyplvNeOJg7ED0RQbwLCA9DbsgNt9tKMdGOtE1zyok4yohiSEJDjUIl2JLdq6huUKsXWIoUEbIiwFBAvEYOBSoT2CzRmNtAaGcQZmWIMqh7qaE+tvQD6vBjsAA4YckAhUWztEv4B28ZTk+49inW19qmcQI5gkeLtyNQwcxvsAs4C82Ap5AkUQi7U8shTVqgcNBnMBw0WH4fxAAsCpStbpkECgBbmhBHTaGs7OiScGBNLrMQDG8wZ7cxGGPaw1WDz1ICIN4DEA8xyY5Xr56BCCQzNqUhxAshIjInKqZBxVBsWAF0utxOsn0GtFImQIgPMZICNKvZAYAnzKKmZSqlA2TrI4jUfwrQDyylloRiUfJYOXSZnChOt6mYNk0bVWvDxarVwsx4y2bZPXIhV5TDUKwAIoowcUpWuESogMqW9gUzX2iNa3kNoVch4hMPZ320QiU8pdCO+MlRWSyCGlvW1RO0l6IEInqWTNKVUxQaVt0/xmUg27IBYxIBJSjI16LkSeZchmQpAU/EDy4njfIqbMW3O1gl+A4x5aL/KzEGpYU6GuFiTmAEZqLxhGXcnsMAlJjpEQgoGvgDBfY27R4cydM1hcmsdfbGxg7+4uxnsewUs2pr0QMN4f4Q82trG5F/Dn2yN8+LzFWWYsVzUWFgewzuL8YAFVYLwW78LElKaZtNK7MAXmCG+i8igQGMEw2BvxSpHUr4lBCi+OxxFtIEgmYANAKoUbY+CCg0meU7LzAvTdgqQDtgOQdULMfAPf3EEI+2jH24Afg8IY1ngYirCWZR26CpWdA5NDyxL/FNmg9cnjC4K3darlchrODVEP5jEYLCSpVJ09a1pgsdvKTFbfjla+QNXCWoKoowDkcb/rgoFZFr/uy1n/7mqkuy/cErx0W1+2ouOeS1db3ne8w0jZYV6bo8hDKb3pBnf3kYbu/HXJQ3ke3flVEFparLvnUwZnl+lBy2DT7jnr+iolWgqi+8ZQ9lf2ceXKlQP9qISkq0/XoGUNytbPSu+Bej8U2C4tLeHKlSt5/V+/fj0D/pIklMfZ3NzE7//+7+PatWtYXV3NciAtiOe9x+/8zu/ggx/8YA7gVvKgsQ6f+cxn8Mgjj2SPg/dScA8AXn75ZTz22GPY3t7Gz//8z+MDH/gAfuqnfiqTn1u3bmFhYQEXL17Ec889l+fniSeeyHUqlpaWck0Jzfy2vb2dCYf3PqdyVZLTt0ZK8lTOvUqt1Hvxcz/3c9lLYq3FL//yL+Ov/JW/kgPatY8ynqsrJdM5Ki356s0pyfT29nYeb/c5of11ifRhdSy6z7rSs9hdj31eyVkEvXvs7nrV/srWla69ncaWe/NYqOwiSRmIOFdr1srEBjTRi6uFNEdkCzmINiBal6UbLlXMFmurxE5EIJMN+U4DHQVsSWXqlD2JAcME51tYauBMJYG4MCBiOMOIjjA/dKjMAIYH8D4gBsrWY2umpQQK4pAsznqOzhhYBEm3GvVfhKWJl4I5ZJkPGYuqGoj8ixnkGDYGVFHSbzJE5kRWqgRLbEjyaqR9VBIDnuj3ORogWJA3MNHBcQVLFYBUsJCseHySt0c8QVa8RbEBt3uIYQTf3EYIe2LxtSSyNFuBTA1rhgDXEiAePQLaFEsBgD2IWwGTzMmTkbJCscpwFJALWUIqsDapuJ4kMczJmUPwrQAtwIHISfwMNLUqJ8KUrLQkduCYpEkcOVVcpnzdhBmItVjjHDhJaDhl7kJKFUxwQipJhE4ECejnlMWMgqxnkRel4N+UjjhElgxhqUgfEaMepOupQ0+zQSRaew4hERSPGCtwFCt2ZEg9lghINXjkeVQrPOXFmQK88z2KSYByInOTeU+EU6KU0+4MHxqM2xH2x3sYjffQcJPlWgDDWCm+xgGwVuaJIxAtJyJrQWYEhpBqCUwHKERYbkDk4WoGFhwQF9Hsn0FdO9w1u/CNR9u0aBsZ6ygEfGtvH4yIh7bm8O4mwFZDDGoHZxwenlvAXgSWRiPcHjcYB7kntA5F8E3KINfm+B1mTuDe57oRzJK9iVGDzVwKeq7SORtYMym6aYwTomEHKYHFANbWKVGFpIoOLqIhh9A6jFuDGCWZQAxGCmC2PnnDCFU1BBmArRXC72oM5oZCBsmBUorcup6Ds1LwrkrZnmyuVZIeUsWzWZ+n3wZHxYHWB0a1HfVCu5cX3lGWvMO+637eR3hmyRIOk0wc5/zuxfJYHqcreejb7qi5mHWMWduXrQ849VlVS9I2K21nd0yziF7f+Mq0rCVhLS3VagEv8/l3ydMsC3U5332eFj0v3V7BmqZPVZCqHgv9Wy33ZZzAz/7sz+L3fu/38JnPfCanZ/7qV7+K3//938fVq1cxGkmFbAXrjz/+eJZTqWzqc5/7HNbX1/Gtb30LjzzySJZ3ad0Izb70xBNPYDQa5cDor33ta3jhhRfw7/7dvwMA/PW//texurqKhx56aApc6/j13/r6eiY1W1tbmRDonJfxCWXNiz5jgM6/zk9XeqckTOVhu7u7+A//4T/g3//7f4+/9bf+Vi66p4URS8LQjbfRdaZzoLEeum/p4ekjz4et4+766tt+1t99HpHjeDq6EshZ3/Xdb29nu7feE9hgaL51eWEbK0GRE0lIqooFeeEZkmwmYMDZZEHlyYkaQkrR6uGDKmo4y2Yke06qmJsAlQTvCgBnBJE0tY1IgkwFC5uDmJ2VMzXzNUIVMLDzaBpIbYbkATBGg80TGVJLuupFRLkhMoUokpzYjqEJaSwna2OSQAimluq8tqqBlP42F6YzBgFqyZftYwRGoyaD84AiHoJFt89JQgGuwNGBvYWNNTjWIKqT5Z4S6LGwbgCyFmSksB04AH4Xfvw6fLuD/dF2Dqa2diApa20FckNYOw/mCghAiBahAZro0DQAxzHAeyk9LoulOIoFvpQI5aRKCDKvMWXnSecuGac0QxghxgGIHMgOZMyGoIUAmbWYIeWUs3J14kRuZU0KPBeZUUjyLU7R0kRa60Qs21LEUcgdm1qAHbS6NaV1ppp7lcrkJQGw1pewgOEUKyHxGgObAr8RAJgkDYvwjaQm9k0LST3bIvohOKU+jhFo25ir0eewEUL2yOQA7UwulPin4ow5+1fMbo4o0yPZo4pzaf0Yo/EedvfuYm+8h4ZbIaGa/teKZyjWgLUBHAFnPZxtYNy+bOPSuTJAUWqeIEpGMwuGqQiVtRgOToF9i535OYCBZn+MZmSwGyWYu40B39zdx2ujEera4v37LZbmFvGuwRCLjvDuhdNoyOGboxb7zR5G7NFGAw6SfSw0FiG0GLcxPVO0WCZEqGmlbg0ZKwRhcApz8w/C1XOoBnMi9ySRIkndGQtrxJtZpQxf8rxIlgcOSfZEcGzgySCOJW6iJfVoMZpGn4eMubkA6xxsTXDVEHU1j4XTy2IAcEPR5JGBcwYmZUnLz0K9ryYPZfmkcFN8uz0Wfdb3w6x5fV6H47S+bbsv9i4APgys9vU/a7vSuniv4++zPB5nvy5I7iMHXY33LKByFNk6TJqh4K177D7i1bdd93cdj8YtqBa/O55y352dHWxubmJlZWXKu6GEQ8FgV7/etQr3ES39vJQcda3C2neZEansQwOmb926hUuXLsE58XAo8C7P9fd+7/cACHB+4oknsLi4iE9/+tN48cUX8eSTT2ZioDENV69OqmcvLS1hfX0d//Sf/tN87F/4hV/I3o3NzU1sbGzgj//4j7G0tISrV6/ii1/8Iv7kT/4kb/+Hf/iH+fcXXnhhyhOi5wIAm5ubWFtbw6uvvpo9IEtLS7h+/TouX76MixcvTnmIdO43Njay96IkfuXc6XZl0HFpjV9cXMTa2loma7/927+dj//93//9uHjxItbX17NkrJSC9a1BzTyl60SD28+fP5+Poc8vXY+HkYFZ94qupb7Pul61vudiN56j2w7zCJfrv1tXpDuu+93eVM8mWcskkBWSyQZaZdljqhBXqqegWZ8MSQAvULwACQnEyHBisjCTcUCqhi3gilPKd4JxA1gGXJ2ChckgklQQRjsGIBZJAVctAIlVYGdh6yEqa2DiAJzS0hKrOCSltLUSQF7V83CuRlXP5yBOP7qbNN4+FaYzCDQAp1oSxjoBZtbJOJgQUypXkTJYGCcZaJgnAIiZ4ea8nL01UO9M9E2Ss7CcExk4NwdjBxCpxJwAoHyFKIEn+cnJe4IYEYNH8C1G7Rht22DsCT6IxCm2NRxXMCOCqw3sQLwe1hEG8w5UWQzmT2HcnEHwDdpmH227L7+3u4ihlYxGcQxmL8XyUpFAKaoXgdikoHupkC7Bq2kpkoVzMm4LBpMHRYa1YukFGbQhIkTABwGx6h3RtWVMCtqV1QlmSnU8AmLK0hVjQNSaHskib41B9K0UdbMVQBVAFoFtJn9qKbYuSYpIK3Mnyz3L2LRWimj90/oCIdcrYJH/7O/vS6B3bGGMwWA4wPz8abCRoHue7AJlM8knOAnD1joIKYHCJJ2qEoeQJUFIsiik2BFdK+O2xc6owc5ei72xh48BxghBcqlooKuEsKhnoKV98ehEvR+NgHIjFbABA0SbT8BVmqWLgMEShuY0ztZnEUYN/H6D7Vc2Mdrfxd29bSE7AP5kaxdbewG744jv2m/w3uUH8K5Hh3hweArf9Z4HUS94bDWM7ZAqhwdGs7cN345hxjtprMkrSJSTQlhr4VwN64YYDE9hMDwF6yRuIl9jcmlNMRAbIDYI7R5iaBHaBh4heeFSamnfwPsGIQS5/sYgGifRFaaGtXNCmMkBbk4KbVhZY6y1W5yDq6uc8tjkeBa9pmJSmW6zWAQd8t3b12YB+KO8AbP6Oo5X4Th9HuWJmLX9LKDdB04PO/6sMR1FcLrHvNdMLiWgBqYlXH1ejllB4kpq+sbQJ9M6KstVCYLUCl5KZlTCUlqcy/40ILpr3S5JV5/+vnuu3bHq5zqeUvdf/tR6Fd25LseqMiAFddeuXcP6+jqee+45PPnkkxl8/8t/+S9x/fp1rK6uZuu/ejSuX7+O/f39nBZWPQTOOVy+fBmj0QgrKyv4rd/6rTwPzzzzDJ5++mm8+OKL+Dt/5+/giSeewN/7e38PS0tLuHXrFj796U/jz//8z/Hggw/iL//lv4xr167h7//9vw8A+Af/4B9gNBpha2sry7iUOGhQuIL+f/JP/glefPFF/NiP/Viel1IKpj8VmG9tbeVrpt6H0jOg2bdGoxHOnTuH5eXlDPidc9kjsri4iDNnzuD27dv4yle+AgC4fPlyJnA6DzpOJTrd+1RrW+i41TOkxKQ0inTXTLmWy3uq+7zou4+6RFf3K+ualNvrz1mJIrr3ZNfY0R1jn3zqfrc3RSxyYa6coym54SkkMJekUqy6dM7Bi6Yj2xACkP42KTAaAKf4BtF6yz5ZP58BtsgSOGtEUoE4FjkRshcl5Y1P28Amy360iMTqIkm2PwkqFvBfwdZzsG4AWy3KmTKDTQOOBDYAkwR0Mg0TqZAc9iYRCwn8ZBgnqXmtq1KueyvW/RhB0cMk6ROsyGmMc5Pg09ACnAhXqmRsbJ3y2Vewrk6kZ8LUjDH5dwBSDRmcwLiksGSqACMB5iCprkzWgSnFqKRUmGoJrzBMnpAKPrQph/48gm9Bdh4xtgh+DBNGUhwwjBLRDIlQtPAeiL5Jllyk+bG59kk+piGJqbEkxRUNwdi0npjBgVSFliGXNZwyTjGMSYUMQMkbInVItD6Bb5NUBgQbGWwkW48xESammiKEBDYBaNV0Q3CumvTttdhdnAROp98De/GksAqrRL8fgwQZt97nYmxtyoAk5BH5+Ejn1qelL8EmpXuAkuZKZUC6f75vVR6VOzEIUeqUNIHQeoMQU6yKAZAC+CXeKcVOeCSPCBB8kDgha2GrRDAoyRBhAZbq0hRrcDp/N7AwFcEOGDz2iHMN4tjDVRWasJ/SNTFGPuD1/TG+fvsuHnh9AcZYDB94AJh3WFqYx/IigRpC8BYNE3xkOFPBt2NQtVAYOJJ8KFfjFoLhXI26nkNdz0tqa/VWQirTy/2eilxygxD3gNAg+hFClHXNJLFTIXhJs8zJxWTESytELxF9ktTU1tWwxorXwg4lVsNIjRabCirmOcyXcJokcHc5TH3/7SEV3XYvAPgowvB2tr4Xcd822mZ5Rd6JdhwydtT+fUC/+91x9yk/69v3uJ4h/Vleiz55SLlPF4RpP33ka1Z9ji4B7vuu9AIpoehLE1uOUy3lSh4ATKVYLUnRk08+iatXr2Jzc3PK4v/nf/7nucjbzZs3c/rbl156CY8++iguXLiQLdXqLVAgrcSkbdspq/3m5mb2lvzIj/wIVldXsbi4iKeeemrq/PvmoixGePPmTbz44ov5+5J4qvdB+5hFyrvXuc/iXl5frUyu5/uHf/iHmJubw5/92Z/hX/yLf4GPf/zjuHz5MoBJFrBZa8c5N5Umtguyy2OX83DYucxqs77rei/6jBmz9ptlKOkb61FGlLejvcknorz0bNZoZHUIJrp5AX36jdR8UHqR9jOFRS7hKFtJ0LTIiGT/ZHsGoNb9iBAcAlI61VTYrKpUI52yzQT1CAgQDTwAU4VgKgSkTDKqKFFrMBGMYQGRlYNxc4AdgO2inAkzYlWDbQANkPTQkl+eSPTYql2ZZMMCnPpDElJgZpgosiEDkYYxB5goFmVjq6T7NrC5HwW5mglm2vKsaEM2SciDGRy8WG8NBCSaRZjaoXIe9VwidCrzIIIGzZOpErEAQBHWSED8oBbgkgvGRUbLWnE8BeaHiLZtksyqxXjvNprRLrb3v4mm3YFv9kCpgJ9Yj6XqdTUwcBWhHhjMLdSoaoN6YMDcIoQG43Gbgm4ZvmF4L5l9ACET1npYE1HXLLUHrJBfQ0DUbD2R4YPEdDAI5BkGQWJTjEVVO7gacJXWF5FsYIN6gMo51FUNZiD4iP39uwhBSBMlIhyCgQ8B432PtvHwbQCxfOeMkyJ9bUDbpEKBMWDcNCBDUvncGLhKMo+BhJarPGt6VaXGIV//yCqVmhAPg8lnSLKybPtmSD0Ub9CGeTTBIIQAZyglMBgiRgfvHcbjVIhRNVrM8H4sa87VGM6fQj1YwGDudFq/dQrUtzCuhiEJirZuKJ4w6yRbWvBYWnoIu7e3MLfuwM0+YjvCaH+Esfe4ub2N7bbFu/7idfw/R4x3r7wL7/uOIf7S6dPYNTVo12A/OuyzAxaXwJHhs0mD8zNKvAApliplppMkxxJzEkKTPo+wIYI4IPh9hOYO2mYHvt1JBKJF61uRLKYnhxSyk2BsUA1yBpUzOfFEVc2nOKdKat8Yh8oMYa2sr6quUtY3iQFRXknKEUjGyJnS8eQaHmj6aez99u1spcW2C7T6rH36d59n4DAQq637sn8rIL8PBHWP1WeFPKy9GQ/LrH2Oe9w+INEF4H0AG5jEJfSNp5vVp88LUB67K9GYFWiq8pdSplKOs3scXUulvEO3LaVi6vUoSUXpiegLwC8BtO5TSniuX78OYFLJWcdSjks9Knpuzz//fA5qXllZwcWLF7OFWr0D6qkAgI2NDXzsYx/D937v9wIAvvzlL+P27dv4xV/8xTzOhx9+GJ/+9KfzOHZ2dnDr1i2sr6/jypUruHr16pSn4NOf/jSWl5dx7do1XLp0Cfv7+7h48SI2NjbwW7/1W3j88ccxGo3wUz/1U3jqqafwwz/8wzklrsZrbG9v49atW/jVX/1V/PEf//HUvGncBSCSrmeeeQbf+Z3fiQ996EPY3NzE8vIyLl++nOesjH8pU92WHiydZ00te+3aNTjnsLa2hp/5mZ/Bj//4j2M0GuGTn/wkAOC3f/u38dWvfhUrKytTRKcL/JV0dSuzl5b/vntoltfgMPKi67n0fHTvFR1fn8Sx7E+P1c1YNmv7bmIAoL8GxtvR7u0pXESOUvo7VybOYvqkP2aasqqZZPnl4mVIPF3gS35VspGqQ7NHYJ8yRaXib7aaxC3YJBFJVt4MwJLFnjlVyLYRlNJT2pgyVeWA8HQuafzWBEiV65T1KgF/IpF62HoOORo3SRlICYUG9abeOFsPVbwysSZKsCaDIJZ6kanouViYwiMEKj1FlOYo62TyOUzSmyKdP6BVF9TLBAs41MlTkKr92pIQqXTNFv2bVFBtEjiaA5iNfC5ejijEKzIGQQK6I0e0gzk0zT6MdRjt30Ez3kXwIyGTVvTk1hHqgVRFr+qIuk6FDFOFcwMCKodAAEUDtlKzIxoGOILIAyzeiRhEhpcjgpggZJUAyPXSuARLQkIky5KBqy2q2sLVBtWAYC1QOZJq7SSpVGPKpBT8HrxP8i5I3zFaKcTnbcp6BHCUNeUpIniJw1FAKgHAkkmqGbVoTUCoIEoqTCebVVIh4F6vQ/f7CSgVj18XYCbLOiQ7FJkKtlrE/Ol3gwYi56mTZMi6uVTlWQi0hHbE/C+EVlaHqzEczqOqh6jreblPjEv3z4S4mkS+lYQRi3FgfmkZtq7gm12M7myh2bkNZwxq3yKOx9gLHt/a28EfffMb+NZoH6+3LR5+z6OoFk5jySyCiNEywGSkOnYySoA0H5dca62nokYHRpB7glkqbXMA2MMnyV7b7qBt9+DbfbneMcCHkKreAxoPAXKQrGwOxg3hyAKmgrUDGFOhquYkK1QiF5Ieuc7F+mQMyNKtaChJGyfXn0kNB2rCmfwOUK4to+E3B31c71wrX1h91rTDLG6HWce77dvl5biXdtzzOc5LfpY8bBYZ6YLto47XB0ZmbV9eq8O8C7ptH6jpArRZZKUkdWXsQx8Z6a6hkuiq7r4vPar2U/ZdEiHnJrUzSt19CSDLwG1tKtvS4zrncranlZUVfOUrX8Gzzz6LT37yk9nDsbm5ifX1dSwtLeH27du9c6rB23pu29vb2NjYmIpdePnll/HKK69gdXUVS0tLuHv3Lr7v+74P4/EYn/3sZ/G1r30NgEhlHn/8cVy9ejXLgjSj1MbGxtR8XLlyBX/8x3+M7/qu78Lq6iquXr2a4zJ0rX30ox/NcQ4KmmcBWr1e6+vrOci7lFIpQdO502uoxOyv/tW/ij/4gz/A+973PqytrWXCqUHf5RopQXnfeO7VaNDXZhlKyn1m3atHte6a6+tPP1NCXO7b3eften7eY6/pJZhNaZgC0vK7SB/QkeLkIl65zvHkR+oGEx26fMlRNPvMDdgYWDMUKzpq2MqCWMQlHINozROEkJSzdgKUuQCmgMhFUipc0nGnQG/ZowW4lTiKbJlvJYhVg7Hz+VCWYmVpV3Fukp1Hp0G9CBOSoC0lMspypglA7MCDjBwSqSg9FsVGU+QCBI12JmKpQUIVACfxDFYs81KXIunmdT8gS4YK42/qWyRDMm4DLmRuKs3g9LsfLqJtG1T1AHu7t7G/v4NmfBfgAKKIygHOMeo6wBoPaxs4F2AMT2pbGwDWiacsOuhlV6mbGNG9yMaSt4zUFZZAv5ALJyU+WLKaOZsk76kQoXMWbmBQVYS6ku+chRBNSM2CEFr4doS23UXwEsAuwecGzJXE3Xib/kXEBMCl1oLWWDEieWIjsSaeMR55DG1ErKXeAumcK3fXi8B5gSUUaaavj66eRNbV46cyxVyzJaVnNs5g4fQjsK2H9xHDeghnHWw9l4uwuSTtkYxs4p3i6AEQrKtQ10NUTrdTOQ+Vt3lezxODgtSYmDvzIOrhEIhj3LWEXWbAAk0zRiTG3dEId8dj7L3SYHN3F2/sjnDZDXF2GTi9NEQLix0wIpJXxUxAtx5T1qnEpLDXjFxBvBhA8uyJXC74fcTQoGl20PqxpFsOIWWiA0IwCJFgyMmzwziRNFEFa+ck+NsO4JwQi7qeE2+NqRJBo8kcFV5MXbeGATbTz4juHJb3l5FJTctBY44O7vtOtD5S0bfNLHIxCzzP6muWp+HNgIXjgv978TQc1te9eCa64L0P2Pelxu1aOI/Tt/bfPcasazbrvMrv+9Lrll6JPsDT91lfjYJZuvHSk9Cdg1Iu0/W0lFZ0DWQeDodZzqSAuTyHkliUcp6+bZVYLC0t4dlnn8Uf/MEf4BOf+EQGgy+//DLW19fx6KOPzrxmWmtCyZbWnyirYt+4cQOvvPJK9pKMx+Psnfg3/+bf5L6+9rWv4UMf+hCuXr2a+1OAX57TcDjElStXcPny5UyWzp8/n+dHMzs98cQT2RNTStYOs5Jrpqkyha6SvzKVrP6u8R6f+MQn8I1vfAM/8AM/kAO4u9XBdV41PW7XqzrrmdX1dnQ9fWU7ynPad959fR/1/OzeR93xlGuvu75LT8a9xmvdS7unXk0ukAUBb5gAZM5W9ImEqfBNgHMOfQeVUWQBcaoMDCiwFolNaBt4P8J4fBfGGPiBRzUU2YxYCJG8/VnwkBFYTpdJyarNDGiRulRTQjwEJmWIqTLxCGESXKz4PVKyglIO3ZBA8XRsY4yA/S4PKGXuh73oKUOu8sPORgpADnZ5aNdGBTS6BwHWJG+BeneMyNcgEvdpETdNrtWBsan3auKjmQKSyatFdQ1XVaiHNU6deVAkJe1YfvoxfLuL4MdoR9towp7EapAHmYCqYsnmYwkWAuREslSBrIMft4jeI4wDOBA4MoJnyfdfA0i1CTjUACwIDsMBwTpGPdQaAywF3TiAuQGhRQwGoR0gtAZNNPCtVF/2nkXyFVr40KSMVCZ5bURPLys5WbPtAPluIYtqIJZtIokHaPZ3MW5GaFpCPTiFiFOAXRAPWZbFxOQtMsUcy3wLIe8EZdPEr4VM5iepaSe53SByQmex/ODDaNqI1nuJ3yGDqk5pTjUhAakncvr+1riAaVqTjPlpHUypt/IiFoNAAIGrARbOnoOtFzG39Ai2v/ESsL+DB43DqcEQPnjcGY3x+v4+tv7nBl7fH+ORBx/E/3n5/4G54Wmcqk7hTnSIyUdjoF41k0lyYACREKAZuyS9MYHAVCFSQCQPbypEBMRqAeQCbIwwySNQ08STaIzNmd5ExmQkNSxZWQfpuWdI1sSkoCEXcwFNolewds6FMSdGmfLOS+m+MbnsOQ0tTZ7F3472ZkC3vvC6L9fDXtTHOcZxX5zHIRTHOYd7bfdiPTzMgzArWFqtvV1g0fVizCJMs4BgHxgvKxn3WVa7gK37eykzKYGsAswSMJXnU5IHld3M8oToWMs+vZfsSQCyXMc5qSmh1bMvXryICxcuZJmNnqtzDjdu3MjzrHNaVuZWMqJeDJUUAcClS5fwoQ99CADw7LPPYn19HX/wB3+A7/zO78SlS5ewurqK1dVVvPDCC/jv//2/5z5fffVVDAYD/MN/+A8xHA7xsY99DF/+8pfx3/7bf8OnPvUpAMBXvvIVPPnkk1hZWcFP//RPAwDe//73Y319PUu6tL344ov4+Z//efzjf/yPc+C0XsvLly/nOVpcXMTy8nI+J70GWsOiJH+f+9zn8Mwzz+BXf/VXc5aqEujr3N+8eRPb29t57sv4lZIQ6v6aXWs4lGrj3nt87GMfw8WLF7GysoKtrS382q/9Gn7v934PP/ZjP4annnoK58+fz2Mv16P2qYHxpQdIf5YyTvWGdKWF6j3RtXeYp6D8vXsfHIf8l03vjzLdbJdgdA0v3Wxfb0d7Ex6LidV9YhUnxTjTAJRDtpYrkJkAUe1SP03gKX+RCrwliUEEEFiq006U5mLt0/Sl2euRX97JsstF9WdNXQoI8EOSIZCCD9Uxp8Du3FfST/NEkpDnoMTsB6Iqy9nTX2Zs0/P5JLHkQWYyddjCOpu5zOSA6dMpW7b8NCbPJwM5mdfhVOXAGeXhZwnGlD5HwLEER0s9jRgjghsgRI+2HcNbB9+OgBDgKXlPuAEQkpZdEwAkiRYNAFPDUIWKhzC2lSrnLcCB4IwXr4QxAMQ7AzMHggB6WzGMZRjTgkis1xyNSIM4ScoiS60RlirUbcOIAfBeM1IZRHYTjwGMyMsg2X6ILKxLXokqpW41Erwr8qIa7XgfBAeYCgRCPfcAqsECXD2PnBFNK2dDkyIUADJ5PsprQEiSH5qsBs43a0n7EtngmFMm21RXAzFIZ55FNsZBapyQlYxlKa4JCrIL8Js5gyZF6KzrCdnmvA2SVM26Ieq50yBTYbhzG60bYBwjXLMHascYuIgxBzRtwGt374AIuL39BsJpC3d6DhxN8lum5wKbTITkmImMpftdK2DLd0meRZLmFRzhTJW8PDGNmzJZyKm0KQX7p8+k4KdJZKKk/l2jQU+Op+4lQr+maZIBDAX5TEQuffHtTDv7ZrwF5fb3w5J2r328HcRh1r7HkT28mXYUeDlq3zJQuduOMzddcFQSxm4ffaBn1rjLfrueFGA6zW53/N0xlQC3lI10z6OMDelr3VS2+lnfPO3s7OD555/P+ywsLODUqVMAhHh88IMfxOLiInZ3d2GMwfnz5/HYY49hcXERp06dwsrKyhSxeOSRR/L+ZRarhx9+GKdOnZpKEVsCyFdeeQVf//rXp8b2Az/wAznl7BtvvJFJQ+kF68YJqEejm8VLSaySh27hwnKOu60kEN21McvjoZ6LxcXFnHpYs2YBwJe+9CV47/EzP/MzU+ehrUvCu+uq2/qIdjnecpvDjBxdL0K3z9KrcNSzYtaYS/LU54VxzmFvb+/Qvt9sI+ajXz937tzBmTNn8Lf+zv8H9XAOAE0pMfR/E+09Z8mFmPhTmkW12iG9GCF1BUjslakbDd52CCwF18bNKAWlOriUpYlMBQD5OPqiFaCECZiJUoMgah2C8kVPBGi+fiOpaQFOgdSSVhNqiSUHS0a009lmKP1lq3yOUZi0rvVefhbfT+tE+i5RT0/6zUGioVEFB/eY/kvHa22KRYkMrcM3BYJosv8U3+gBP5lv8cFjTfbhZNlXEBol5WoIiMFjPNqFDw3adoQ2tMkzIMHRiA3AXkCdcaBqIGmH3RBABPwewugNxGYHhnZBJsK4CNghYCoYOg1DNQgD+NggsocPOwh+hODH4LAPooDKsVRWJwLgECKhDYTgpegZaTi90Srncv4cLWK0MGYoBMoO0r8ag8G8WP1TwTMJ2q2xv7+D27dfxWhf6kE8vPIoFocVTs9ZPLo4woILGJqJ1EuBJNkJoCdrUtVxK3IuJY2U4p2Q7sci6Fp/RAK+9doIW3cbvPzaGE3bovVj+BDBTKjtMFd8ttWcBGUP52CqGqaqYFJ6YCSSroQ/stSmUclVeX9k9sFIHsQ4tZzUczjeu4OdO6/jlZdfwnh7E2HvDobcwgeP/bbFnf09VMbi+x/7P3D23CoefN95fKOdx5gtrIlCfIwUsWEF2+XazRmyuqRIvalKtyeiKk3dTGVnuZ90H6BIrtC5h3pu44JedElgvoMO3FelP0pOjaeIhTVA2+zj//rF/zdu376N06dPHzzwfWz6jtBjqTX4sIDE+9mOIgXH2V+B9f0aD3C4rOl+Ha+UjOgxu0C8G4NQjrE7nhIYdQFJWSn7KAupNk0tqkC0Dyz1SULUyu/cQYlTCfDKY5YkRr8rQamC8J2dnex1UNmMpnJVKVTp+dDjlYHa6+vr2NzczDIj733ev1uL49atW/iRH/mRPK7Pf/7zuHDhQg5U3tnZwaVLl/J86TGvX7+O5eVlXLx4EWtra9jY2MAXv/hFXLx4EZcvX85yqLZt8d3f/d04f/48nn/++RyjofUePvzhD2NraytncgKAz3zmM9je3sZzzz2H//Sf/hMAKZD3xBNP4NKlS/laa6yEXr/NzU08//zzuHLlSg6A1vgOlUWVMSalB6u0luucagXzMui69PKUa0bnuPTGletfA+xVhqX1PV544YXsdbl06dJU/EHpBesjpeV4Vdql8jb9ro+8HuWBKPvXfbRpjQ2Nd5kVJ1XeS30EuHte3fv/zp07OHv27H1/R9zjkzhIJeMpmQWnoEGttk1I+TLFE5BhzuRFrfDbkPyttZWRLNLyppRUlaAK1UCyEXEqXIUUDyFtIiESmYeZGnEaygTU6/810DoF82Lqe5EFwSp7km1MsUU+diH/yGSLJuD+gPUexTQdRSpo+lh9oGSq3xm/dz/IRb5Sn2I05g6poMLYKuCKprrrkofJ76YInJ86NgMy18ipiJXcGALYGlhLUnE8eISU0Uu0/EXhxYSgpICeBROBOcA3AzQMeKoRQw0NUiauQLAwdgFkBrBmAMMSuGz9GQTXIPgxQtiHBu9GXeOmkmxVzsBWk6rdcjJB5CrGSBpeqkBUw7kFGCPpTCV1roFzVZaqiEzGwFmHuTlJoxpOeRAZzC8+gIFlSSDAI5HsQaV7LPElhpBL04Oyh0JiQCbB3N2K3FPeJLl1Qcxo/Qij/V3s3NlGG1J64FTHoyHAoEXLDWxsJN6CR3BxiApD1HYRYDdZ88xgnsglc0FB6kjk8k8lJeX9Ivu74SLmyWKZDN4YDrG7/Spef+VlsI+AD2AAbWSsvfIK9ufPwCyPwPVCyqYWwdlIgYPOmu7C5ek/87wqqdDnQ+IhVIB/nkx4+kz/nr4jJ/f7LGNB+XmvlaHoLV/CIlCbpQ4lMUIEWv/tc1mUL7w3C/iPSxa6luou4O2zKPf1exgJ0O+Pe07HkTTcL7JVArZZ/c6ylna36fMelH+X0qRS9lRu1wfsZ4G3vkxh5e9duVbf2Gd5Lvq8XwpGS81+16LeDe7ts0arRGdlZSWniVWCACDr+5WgLC8v42//7b+Nu3fv5vPy3udMUCV58t5jbW0NW1tbWUJ08+bNvM3S0hK2t7dzNW0F5IDEXVy4cAFLS0vY2NjA93zP92B7extXrlwBADzxxBP49V//dQDT4PXDH/4wtre3c4Vv7VfnR+VCZfXtmzdvZqDeJaPl7/p3KR8r57acg+69qcRhNJpUC9fz9d5n+VVZ8by8xtrK6uC6frvj6FtP+l0J7rvGgK6Er9xHjSuzvCFdCVPpQSvnsS92qGylUaA8dtnvLO/F29HuqVcJgg4JmAJqHxfAJx4BEEmhuKRhnmyndr8JsVByYRI5IWaVqgMwAu6IJM0paYB4YQnMbeItASYkglWiYiZW0LQBslQqA+hypHaanpQWTkw25+L8lCzk406Glv+eYBaaJhWdwxQTfmCbvnoGU4ZQ6rGK9ngQjJKqhEw0YLscKE/hn4NgR3s9mNlr0k3GczxZDRnEaa9kQDYRw8rmnVLtORmbWtk1w1G6bESp4Fz0aMgICSGL2DixhFNMgfwWZOZhbC0eL0gtCmslViK4Fq0fSXan0OSTMdYBZGBhU5ayiBilYKFUchbiYN2ceCfMEFW9kNKKujwftqhMr3RAPBgOVTVMhzOw1RAVWhgaS34BYiEWKukDAWymg/xTvBJlz0Dn2pe4N19F2Y4jEEKLptnHaP82fBCyZKoFkCUEisJhGIiRYdgjpAQA1hGYF9IY9HDqrZxeJJOUzpTXVjJLpIGFCaxON5iphqhdhdODAfb9GGMG9v5iE4gNbIiILGRm8/YdDHb28OC4BQ8Ixqb4lkySp28BnjpQ6QWY/o2K/am70YSlpdohel4TM8oM98TBdjiHmGxG0+cixFx+j/lGm2zgwzufblbbcax1b6a9FVDetXLrZ29lrG/WU/J2zE0XJHUBftcrUP7e3afUlc/ap9t/3zG1rxL4lH2U6Wi7wLSP5PRJSPqssXrcckz6XZmhqDv27pjLbbqeEQWZGjCsxKIcV1kJ+qmnnpoq/Kdj6UqqFhcXcwXxS5cuYWtrC2trazmoWYOq19fXM4kAkPdZXV3NY//gBz+IwWCACxcuTGWk0irWKiHSYnSf+9znstdFt1eCpORCQbZ6Sy5cuIBu65Pm9MXJKGiedc3L+dZieaurq7kvJStl6uCy7/e97314+eWXc/G5Mq1xH6mYdQ56zuqJ6lvn3d/LddL9vnv/dD87bJ/DSFBfrFX599tFJLrt3ohFlBStpG/mlEqUWaorCxCrBMyTkIvuC77U+psUWCnVmYFsPgcmQKnYN0NRVnpSjK3YYtKUaJTj6Daa6v3gSXf744IelVDpoAeCurvn7Q4C/WMYKWe34kBHdZOBZ8rmJJZw+S5OjbvP/zEd8dH9dsqn0fVWFN9x5+fkc7URy/YKnm26dDJNLp3HZDyRLZgrVFWN4dwiOErRuWQoL86bClKVvFRZlsXZK6DZxRJzkblJnhOoRC55fayxqQ6IVkxWzT5NZEDgwng9WT3WTu4NFuaVEwNENggsSQwifJ5fraiOpO/PqL6UyehcqTmbJ+cvl4ZhKN2JFpKmmRjeewQ2sPU8hqcehhueghmeltSxJP/EO4J0zkbmPqQ6Ial6vIxXBkEpW9XRtnMjBSDTddAlQwAGdoBHHn4fHlx6CDEa3H51A1sbXwOxJJSwc4to6gXsmjkMU1a6STLeY7T+h0e+Vgc3nGzL+vuxMHz3SXM/PQqTu0p/i98Gh0X35XdcItC33b14FY6zbdey393mOGDhuOM5rPXtM+vY5ff6ry+Xfh+wn+VF6M51nxyrC+DLTEmzvA/dfcqxlX+XXqMS5PcByvJfF9yX++jPsu/SGtzVrKslWcFfn+Rqa2srexW0sJwCeZX6ODepgK3F7HSuFhcXszQIQK5krcfU462treWaETreCxcu4NKlS1M1N0r5TVkDQwPPdTxPP/10vlaXLl3CuXPnsLi4iGeffRb/+l//awCiKlDp1c7ODp5++mncvHkTt2/fRtu2uHz5Mm7evIlbt27hc5/7XK41cu3aNZw7dw6XL1/OJOPWrVuZoOj5nTt3DltbW1MVykvvw/PPP4/FxUVcvHgxS6xKb5AShW4QPIAcVK+kpus508rea2tr+Gt/7a9hPB5PrbOSyOi67V7/PsB+r/e6FkE87BlTjqOcg25MyVHP1C7J1pTD5fd9Y+gjgPej3RuxSIRBC7UxRWhdbfVWRKpAcKlrialQ74X6KQTXEoIkhxSiEilZtSGkwoS8D5FYsacNjF0IXVoKy4+os+3sl3oZgZFOGDP/TNZjwsRK2enswKFnvef7y1zNhkRTHpmezXNyqk63kwJ40yCfMTm3mZbWLvqi6a2mk0Yp+UuAPXkrpiFa2R93Oiwsxp1pKMlLvqKkMjipQ8HMsC4PYNqLol2SUpgi2L1I4TUVBwPJKqaVnDlqNh4lEgQyKetZaVWm5IWbWlecxzHtNZsQMYbEcsRIclvEIm1u2k//Jirqb2uWMtYsZaXnoLCwF7eCZCwyUmne1jCmxnDuDIZzZ+CGp4B6UUhE+k/HSFBCLNXus1NJST8V10qJc9lK+WR5kRJSZ03Hlj62boAahDMPvgscGox3XgNxgDEW86ffhbnTZ0HVEKwyvAPrtRgDT67DYW16SfPs7/I4u332GzLeaut73JRdEw4M9x1rb8Ui9ma9EG/HMWZZ9+6Hxa+v7z6ZxJvZ/yiyMetYxzn2YWRh1nG63/dZcfuAUl9fh51Pef6zPCsloFfi0R1r13LeBX5951Z+r94EBbtlTMHW1taBz1VStrKyMgVqu/Or4FePo/vfvHkT+/v7eOihh6Y8DIPBIAc1q1dkbm4O3/Vd34W7d+/i1KlTcM5lAL61tZXrZXzta1/DrVu3MkF68cUX8X3f9314+OGHce7cuQz69Wc3SxcwqVDunMvEpyQWZeC3fq8Zm/pAvHOTeArtty/mAJh4gZaWlvDII49Myfb6MpaV60Q9Tt1r3LfPYc+Cvnu0XIfHfY4c9Vwo++yOq3sc9aiVFeDfLg/GPfVKVAF2CM3PA5te4BnApLSyJNIT2YdQBnUCauBL2W0gWWk4MjgA1kYQycA4WX5N6hc8sapLK8BDAaKmAG8RA9HfBJBO8voXo+zsdvBlreSiv39RSBzxhu/ynZmbFeM5DmiYnoTJz4KUqGRFC99N2zypwEp6dWeNtajdwX1XYTJTU+dT/FWatfnA9wf3yKZimpxWT48HxlH2xeUBS1Q2fZCih2nTu3ruSmLIBfvVa5b5bXEAjUlQMlLW02Y4BAA+GngQomFJC0xUpHXVsygpW5G5KMWyTK6HHld+55SJSQtPOjfAYO4MbLWAMw+soF44C1PPIZoqbZ8Hl86zmCEu1pMWxkypd0sSkx4VxVx6MHsQgjxbIIHWE0NEInWIUieitnj43atYmBtgaCWDnHEVTp89h7nFB1AtLIHJpOuh/g+ZC+GdydvCOhGS5npiMFDrxZQFYWr+Jp9OrrlMKWfClffquV/LtTS9Lt5ao6mJ1nviPnV+j20WADzOPtqO6+kAZtdpuJc+utu9FUveUfve67jKbUtA3LXcd0HIYdfhMK/JLItoN+C1HEOfZ6HvuApWuzKlo86979rMOt9S266WbbUGq9Z+cXExW6nLWAvtX2VCOt8K0PX78rxL74V6F0rgpjKpZ555Bqurq7h48WKWK2ndCZUTqeej9HqoDKis6aBxG8899xz29/fx/d///VNF+PQ6KRhXb8u1a9eydGs0GuHmzZv4nd/5HVRVlefxxRdfxGc/+1l89KMfRdtK/aX3vOc9+Bt/42/g4sWLOQXv+fPncyxJ97reuHFjaoze+xwv4pzL3hL1eGxtbeHq1avZM1LOs14b9TBtbW1NBXeXgd963ZWk3Lp1KxO+btxFV4am5E+3K9dc10N32DovyWy5LsvP+7wNfWu9u3/fZzr/3Wdg17u5sbGB9fV1XL16dSYpu1/t3uiKGQBmICBfLcwHjJGaxlEB0zQklCBs+Z1SkTpEkyyfCewA0EJ68rvNAAFILv5jvjO5J91l3zbFAI/Rd4kWZ288ifvodNpr3Zz6sv+zDIhmbctTP4DJ+RNSHZL0eWQFXgd7m8JZfUPkCWiZUA7unGVJhER6I9ZyBbXT4KwkndOfzZrfDnGZ+pN6vFvT3eZxd9lip5/8AXU+7+FPfHAgh7TCO5LSLKc8aRBQHOA5wscINpNuJ1KuEnonasdJRmQIMfhMizRTGHUSGwAMYoPKVRgM5rBwiqSoW2VB3ACekYopJHpfFp1UIiEySE6FGGRMNSRYykGzK0XJAwxwC4IHcwvf7khqWw5wTorKGTsPkJNjwaUimJSNDLUBTi0soF55DyIZwFSYO70M64a5DKA8cQw0LQRisbKVIaW4iCSmw8ELevhDYGp56SdFfNPB7/v//vZA/7e/3Qsw77M0A8cH3odlVroXD0W5/SzgfZz+DpM+HNbfcQhZCYD7xnecfrrfH3Xu5ThnWUP198MkIwp0yqrV+nkJuhRAdvs+7FxK2VMpKdFt9LMSMCr41LWnQF77UBlOWfvgKKtzeU4bGxtYW1vLfQPASy+9hJdeegkf+chHcuwFMJFd6VhLT8dwKEXoNGj6+vXrmcCo1GplZQUbGxs5a9HKykomL9vb2/jiF7+IpaWlnBHJOYf19XWsra3h9ddfx6c+9Sk8+uijePbZZ/HQQw/lQnXr6+sAhKCcO3duijxubW3l89JxK6FRWVQp8SqzgqlnR+VMSsq2t7exvr6e6050yaKORVtJnPT7cgzXrl3rzdKl16j8uwyyLq9n31rsAvtZ389aG9rKddSXWEKP3yUf5e9KKGfdx/qzrE/SHcf9bvfosXDgnDZ2Yv3uez2qBXYi1TjYNCcUWM2GUoE4hxwU8RYTZCV7HjAJdoHf0WfTH2wNsTpTT38qt5k6xoGTKy3DOtYJESnB3nGGOh1jkrrr26njGSlBLgFFwD0mnooSQ1G+YtPDmprnvrFNfdC/bfpcvUcHqVZGzVN/Tq+xcp/0W8cinE+nQHXM09dDLexlrrKp1leHhDRGgqa3yeb68vpM5nz6l6I7KgeuIHeyvcQpRImx6KFfU/vzNIHVIcUYp45NdHDW9U9DBtZauMpJZ+xThqxGli5JvQpjtKK2pGZmjqDYQmo8tNmYIEDdiXSMGOCIGPYBbgE0IEj6YN/egVRNDyAaA1yLBJKT14IqiKHCooy4qhzgFuYQIOlk69qmeWsBzUiVngk5UofVs8P5O7m0VARcc2YERz9BaOoa5/VR2gA61y4d8MieDx5pstR6v/xfuB0FxN/qy60LTo8rVXin270SiOP2pe24XpKunOc4MiT97Kj57HpVZm3fJynqu359x561XR+o6rMCl8SnHEdfmtqud6bPMj3r/JVMaByCkiq1imvKVAXr5TYlcNbtlGxpITq1tpd1IvR7JSwrKyu4detWTos7Go3w6quvTlXrVm/LY489hsuXL+PixYuZoJRzOB6Pp+ZJz0X/Lj0NOrfdTEqlR6VsGpSucSGbm5tYXV2dmkudo3IutG8lFqUHQY+j5KovGL/v2nVJbff3Liif5Z2Y5bHrO/ZhbVbfZcyQflbGQOm+5bHK6/N2t3v0WKglsQyE7hCHzouuB4rnz7Mom0jqReTCX/KSz/UYOKasUEVtjPv6Ru2Crll994CzA7930C4mf04Z0I91Cl0L82Gtx4aqkhljMOU1KnjawTF0/A402advs8nZdjuahsNMZbJeBXmmZ9uSV3Qnqaucp55v+pwGB+fx+PCOEneYlnJNkZ/DejzCLJ0LPbJInLTyPCEmWZGBljAERylmx92+zYRcaPYoBc6kwFn+CWkmIR4sIdMxtuAwxv7eq2iDeCCMIcBosLiBMRZVNSdZrOpBCvgmcByD2SP6FkgFLZnmwGzBbBHiGDG2GI92AHgQeRjIMSK3cs7GAKEFs0XkuwhBChJOasSYVBcDOe0wsZefROCwAGMHMGYObMRbwjCperiDswNIbFgFpumEEgQJlGdiTEdg3yMBOHj7Hfz4wAPw8O76/r53WvLtacd9eR623XE9BPd6zDe773G2UaDRF2B9WH9HEYMSYB1mDZ01pj6ranebLijqs76WMiPtV8+1D3T1WVr7SEcJ/LqgrXvOJTko6yGU8pSuR6S7n45HreZdT5CeYzmOci6UIKhmvZtGdXt7G+fOncO5c+dyvIIGUQ+HQzzzzDNYX1/HxYsXc78anK2ZjkajEZ5++mksLS1NpZW9ceMGLly4gPPnz+Ppp58GAHz84x/H+fPnceXKlan0sB/5yEcAAJ/61KfwwQ9+EOfOncMP/dAPIcaIX/mVX8Gzzz4LAPjc5z6HjY0NXLt2DdevX8eXvvQl/PRP/zS+8pWvAAD+43/8j7hw4UJORXvp0iWsra3lehmrq6v5/JQcqJdD09HqGvR+kj639F7pvurt2NnZmYrLKK+bStxUdqZepXItlRW6y/XZXWN6PXUNlNdQx3VU696/KgubRWCOuof7SGw5/tIr1yXKszyR+nvf5/e73XvPClJmAc4SbaYm+KfPvEwTYAQNwBVQJBZ1/TtVQqZYaNg1I85B1HZ8bbFas/vQX1+/xecTPVf+rCvHmY0qqcMy+jabZEc6VmMdIE+hGa1ZMcGcKZ8+d7alTmdUnKOOpYilmUJMU16FMnNUmUGrcxA6mMxzIvfB9HFy55N+Ds7sYfM98VxMXbbiFCY9dBlXIhSMySFmVFefVJfv3hSTz/rWZvZicYThBhwbII7AtpEYBF2fGkAeJ5dH61ZI7IBa6fuifjS4uyBZJEHpIXopSuj30AYPYyKYLAwbMBzAEkweQgTYwRgP62xKtSvFJEUlxQAFRDRgJsRAIG5A7GFtCyBOYo6YQGxlPswkGB0k2xAlmSRSYmrW9RQhE8BgEiJAkWDQytwFB4aBKMIsrLFgNwTIAVSDE+kgSlXETZXiO8xk5VLpdZp1/x2o5JIuyrTHSm/LqZVZrqWelg0CvcuoINDHfcz9L9z6rMr3asnvAs934sU5axyzjnsUSXqzFs6jvBddi+phrUsE+vrrSjXK/frGddR5l/KPWfNXEp2SYHXrB3QJRd9YjmplvITuU8YQlIGvZXYhtZ6Xmn39p4RBvQulJb3cRz0R58+fz+D5137t13Dx4kX85E/+ZLZIX716NUuVFIRvbGxkqdHGxkbu+8EHH8Trr7+OBx54IM/XI488gm984xtYWVnB1atX8dprr+HSpUt5nFoJfHt7Gw8//DAA4Hu+53sAIGdceuaZZ/DCCy9gd3cXly9fPjAXWtujnAeVl3VroChJ0DnXoPM+r1MJzEsy2vVI6GdlO+667vPu6ed93oxyTR732TOL6M/ar4+gl9sftrb79nu72z09eRVTTYHBEor1SqOmQU4GXgSU2aQEREy0zqHgHzkgFAETbwmj5AN8BAzoPZ8uK5pFVPLYZ/ZUbDkb3B74tCBXB7lNDzvrfNXxCeTfytPIgA0TUjF12hHdy1V0nkC8FjnrP4vpkfDktKa2YM5b9gHfg6Ss5whUnF/3uMV+ZdYs7m6ZA67LfWLBGWjqmwldmJ6H/HextYxRzzDTBWRyUvKkEjVqilsOoLALxDEij8A0AlORihniaaAkWzO5QJ5UAieNp5m69lSQdCBV1suHjsTwsUUTRmj8LkL0cAQYqqUqvWFo+twYAsAG5FsYU8O4WkgBCLCTzG+B2+QRiUD0IIqgSu5zMg4hpLS+LAkejCHAlhm2kh+HJWWwFAKMoCjERQ0PMXkYPEdQGMNGixDlXH2IMCQZr+p6HsY4AFV65hhYU8PYGuwWQHYRhBpAfcBQovfSwXt/BjPIpKDIGofJdS/lVkquDzyHiuN27xSVlmYKe0hMz7crePt+teN6CI6zzTtFMo4C+rO+OwxQlL+/VWBQgr2+8XWtnd3fu0CmD/x19+kbe2kpLrMZAf1yLQXuCkRLMlEev8/z0f2sD6DqWDY3N7McSYFiKV8qLey6zcbGRpb6aDakcjuVO5VF+TRFrXOSNWlzczMXp7ty5Uru9/bt2/jDP/xDfPzjH89ZpT7+8Y/nc7l06RJeffVVrK+vZ4v/5z//eczNzeHKlSv40Ic+hJdeeimPZ2dnBxcvXsTDDz+M1dVVnD9/Hj/6oz865flZXV3F0tISbt26hcceewxf+MIXcvD4ysoKbty4gV/91V/F1772NQDAtWvXsufAe5FjaWxF6clZWVnJ8rALFy7k66l9a9C0kje9Jn2EUeeyJCnaupKpvnXSXYd93ozSU1F6W7p9dElo1/PR1/qSIBz3GVWOpVyn5Tru9lfeZ//LeSxUthEzqSgaHS7bmfZYTL9u5f+aJjKmbyY5+pNRU7LTs6ShZRLLJLOdxGYWvaHvozepI+iFrxlXzLJOH/Ol3jWQv8k2LdTpWE1TQvupInizxnLQYJ9+lp6VGYM9ML8HvS40e+833Y66rNMk4vA22z59+DYH636kf1rjhb2kR2Uvf1MEG0Km5qEBYovQ3kHgBp7HaGpCTQZEc9IrR6QSGrBGq0oX9TKKlKrG2iwjUr9R4OKeywCYMBwOcOr0IlYeeRdCjFKGxtic0U2RNZF4Fq1xUi1dyo5PJiVNjEHKDuUMuLLgyAgcU+wIw5qY0vfyhFubST9ZHgXJVGKMQe3owApnJc2cjAx6fpxiTFKTzLseITYIPsix7QCEIawNcKAk0UpjDAEmPeUM1WBjwcbm557EayCRtuKmOsbzpWtm0WtxGEHo7+dIx8f/sm0WUH0nPQzHPV7fdoft22dJPGz/WQCl+113m3K7WfuUoOmweIHDPA7AtEyku0+fB2FW67PwlnKj7v7lGLoykO68ldIs/awkJeV8l2k39dh9/8rjaBG5EjyX86vESL0SetxyO83EpL/rvtevX8f169fxkz/5k1MeiK2tLfzNv/k38Z73vCfLjPS81IsCAA899BB+8Ad/MH/3kY98ZMrLsr29jZdeegmvvPIKvvrVr+JHfuRH8NRTT+VK2prudXFxcaouxOXLl/HlL38Zv/iLv4gPf/jD+Nmf/dlMmp566qmc9enSpUuZtCgpu3bt2tS1Ho1GOehcs0NtbGzkrFhlLQvNzNRdcyVJUc+Hxg2UHoBSCtUlKH1rp9vKfbprt88zpmtllofksOfMrGdJ9/7rblfOQ5dQl9uUwfXd8XTjiu5nu8cn+XRaTPmoeFEey0I2eRUq6Jz0OEEnajnWGgVapVu+VPpRxFzwwcNPg8EJCDlyeDNaD26ebM7AJCvMPb7usyGcp1jLrDS2B9oU2C8JQHGIAlRODkvlH9Ogv3Q7HHIqCoq6I52+qj3nwVM/er48wjNySLtXkDa1Jnt2FRAr2+VZLiUpxcjk++R9iy0kpWoAxQaAB2IrMh9EqfxHSkDGQPRA3AVzC0YDAdbV1Pg4xRVMz4W6nXquAnWt5tPbEaQCeF1XmJubg8/F6ZIRYaJLLPpL15bVT0NTh85ZjVPKWSYAkeSeTVmrSBMIYGJ9Lx2e+dmQsmAZk2JNUlFArdjNek8zAxwnY4satM0AGSk0yBHGRCAyjKX0DzCWQSZK1XV4cGzBCCAQyESAKyBqGm2t5aOroXgeFiSntDnMfizqvtxzTTH9XJix99QzrnOgb7fH4p0kC0eB8ftlpXunpAR6rOMSr6O+7yMyx22HWVNnEZ2+8R23326fXSDXR9S62x/WZklaZo2pD0iWrQS8pbznMOlM3/FUAqRB1d57PPXUUxm0llb6Lvk5d+7cVLC0kg/NHrW9vY1vfetb+PrXv467d+9mAL+1tZU9LnpcJRtvvPEGbt68CWC6LsXi4iJWV1dx4cKFXH9Dj61zoLKq8p/WllhcXMT6+nouKFh6d7repsNIQPc69AHn46ZVLcnurOvcPdZRBOWwfe73c/GwZ9y9PEfu23jubfO+F9W0BXT2Hh2wSCQv4byVgWiwbdo6oZMEMoRcBFFFAIDaFOn/z97fx1Z2lffi+Getvc+Lxx5ySDx3HMURh+IojsZRfamjOMKIaTtRBzFVh3unIohUTO8FKaj0e9veVC0iCKoSpf1C2yCoSlVEw5dUBJGWuWJQBjFNB2UijGKCEUZxFAMHxfmN55eTxMl4xsc+e6/1/WPtZ+1nr732Pud4PHnp77eiic/Ze70862Xv83yeV5BBVcrc77pMPFu8I1ymViTb+eBzEM6XjFyU/CoG6oUxn8LHrF/+GvecZR9D9Lfc5R31pUVh6CFr2pJq8kAOwGoTUFtA9AoQbwKqAxVtJhqL2LgHCQFZqQLCRFsGYkBoyIqRloeQqAQBQhEkGeqT0TgdiaYijmPDeNvkcCYLtpTaxkYwifAYrba9cdAOZBVCVCAESe1NWOdYKyhlso0b8yZtGf1ASgRCGkduCksrSRBgok1x8GCed4EwMGFrBflOaW3C45IPSUohBGkEbH4JacImC2lUEUnfWmjoBKuZlwKZgAlAJC9zCEAEEDJArd6ADOqQwR4zitbY2tpEHF9CpC4aDZMAKqIGGYWQOkAo64CsAuGboBCAKHXDVdtHuOws9VMYcnijaSWA/sx7Bm1bVHxmNL7+BgUGg9DRi0nu1WcZU+W7XqQtKNM+9KKfzIx82gKXOaHvbnhXd8wiUOH2VbZWLoPI14o0CG4/Pu0FaUlcx2xiiMlsCUAuchOfB/cR4JoLnhWazHooGzdpNHh0npGRERw9ehSHDx/G+vo6VldXrZSZZ9teX1+3DPjy8rJtTxoSkuBvbGxgYWEBjUYDhw8fBgD84he/wPnz51GpVHDjjTfiy1/+MgDj0B3HcSY79vLyMlZWVrC8vGwT5n3mM59Bq9XCww8/jLvvvtsCCToXFOqVryXRSmeD1orWnXJnzMzM2IhS1Cf1v7GxkUkqyM8KaUb4nruSfW56xveanyEXsPp8H/hcuckYB5RlwNnVdtBZcUuRv1HR81UEwOm7W6/fZ243ysC9kuA7CyRKwIX2fLGSSWE1CMaMw0AEcpK2TpvJD6wSQSLdSxkkil2/W3x93yXDuWevFzGpvozZfhMbD6vr6dTVP6TXUiJStwCnTy+RfmBhvhJ8c0YtABzZ69k6moe+RcHeWc5MsAhWO99lzUXItrtyOFGU2dztyZzAOHFU3oKIXwb0FrTegBARtIyhghg6jrAdbyfaNYEwTDpVGkrHxqwmjqGECTIbiwBKBkYjJEhC3kvjJtg5g21LlFLI36wGK5W6mzYCKlECEENvwIoBHV1lokZJIRHQeAQqpCR5gM1dAgAxmT4pnYCQZOUSwBLHUWLqFZsocFpbgEJzFzBmUUIYECVk6pdBR15JbgJmxgiCAFKGCIMqhAwBUUEYDiefTehcIUwSQpMoaghIaNBaY7u7BdXtAthAENRQ3aMhgj0IZA2RojkybaXOGsalXwglFD2H+fPoCVib3293mILvr+dyOT9w/ZocvBrjXE4hhmLQeZRJTvsFcUXMh3utiJ5+6KTrvI3rY+EyR73o9zFYvrHLcg0Q8+aOyRO1uQCul7Sam02Rmdby8jLGx8dz6+1GueImU8QcU0Qo0lYQaFlZWbE+DdRPEATW1AgAhoaG8C//8i8ATKK7/fv3Y3h42PZPDDrlnaAIVP/n//wfXHXVVdY0aXx83M6fMnC7fg7c7IvoIYd4AhWdTge33XYbwjBEs9nM1CGtCc95QdoOXyFASXOgNeV7drnFt9f8nHCfBx8Ip9LLVHDQ55ho4BG0yvosu7bbZaARin6o+lG5F/7IOaZU3AmZ/iptNBZaA1Iodj9hLJC3cM+Pn89065Pi95xJ2VwH+CXPVeXE5RyMeR0PjbyizJKoUySIPGDJgwJvjgzL/jPA4iHM2zLDnKcMYGYfMh3q3Hfz/2S/M1TplFdLKBjE+kNbUKs9AClbyiTQZtW6EOoShNqAiF8C9Da03gSEgJbGFj/WCl3dhVUjaON0Da0QqxhKK6goMrkrJBAHVcvMp4DBPAdK2dx1mfnwoL6mbqKtsgxoPq+MeyI0+0z7Tox6rBS6UdeaKAVmAc3YQQAhKYGf6ZVrUbTSUAzoKKWNiVIcI4qNyVic/FUqCyoMJQIyAS9GaxIaTU0QJBobgTComM9CJ9GmJCoyhAxrqFSHIWQ1iQRVB0D+YjEEgCCQEKgiCEIoZYDU1tYmtqNL2O5cAFSMsFJDUA0QygBSVCCSV6g9Pj3OUfp2KwfJg5rzEabJlAGehddTKfsR9V33qfp38uNZxsi641ypUsTE+ySyRcVlrPs173Db+MbyMe1FgMPH9PPPnGF0NQo+ptA3By6d5jbjxOT5tEAusHCl2nSP2++7gIXT61szDgSIQV5ZWQEAm2OCxuXSeO6YzrNZj46Oot1uZ/xDxsfHbRbtjY0NmwBt7969iKIIrVYrtwftdhvveMc7cP3112NrawtvfvObM1GoVldXbejY48ePo91u45FHHsFtt91m/S+IZmKUuW8FAR8CieT4HoahTfIXRRHm5uZsP2QWxc3ASKtUr9dtdm3f+eTZvrkU3j07gwgffN+5Vsun+fBpJXwaRrfvft9XZeDZPWe8je/53W3g5aV3oNo9pdw7LVkJO5CVv2vLiRIjkGQRFrDfiCH1M8a8T0ZxHwLgAmrzFxLmbcdiwp52Qb0Lhw4qYUC1c283SeBrbZegF3F90OD77F7Lw6PXgosi0BNDR5sQ0SsQ0TqGalsQUiGCgNIm6aPUAXSgIcMQlFU+0pHl5FXCGUpp7msRYzuOsC0lYq0hNQeHjAKtEyl+CkYle15MnQROiHSXbIQwaMQ6hkrC2srEV1tqSW4LMCFaNYJAIlYxRFdCK20l+loDMTQQx8YvPfHDMOADEFKAOlY6yVGhNaIohlLmX5wAKKVg/Dqgkfi2p1BIAEJpiMQPRIrYgIkwgEicyUOtEMgA1bCGUFQRVKqo1hsIwzrC6rCZixaIVWCfD2WZ+BBCGl8uIWBMyYSECAMEe/Yg2t6E0AJRFEFIk+jPFJ7XxykFl5PIwGyfOKR7Y5crwYC75gH8OjEwALySZ7dN2Rj9FLfvfpmWQQAB//Hn11yJPt3zMTY8hCfvg7f1mVe40nkfnZxp961Fr1CdLnPq0u1KwHkfLngguqmNawLl0sWZ0jDM5imgzy7z5QIhAkC8P5K007jkOE0+D8eOHcPKygpOnz6NI0eOWF8Dqk9tKSoS97XgY5w8eRJzc3MWvIyMjFgfi7W1NRsS9vvf/36igQXe97734Rvf+Aa2trbw6KOPZvbma1/7Gh588EFcuHABt99+OzY2NrC0tGTp2bdvn/Wp4GeQku5RZCLKv0Frt7KyYsPgUp4J1zyJO7HTfMjXBEg1WqQZAZBJhscjSJEZGgElbr7Ez6mPseaRpGh/fe8UH9jgY/mezV4gnOeG4f3y4tLrAmQ3UaLbj2tmdaUABZUB3/7E3LArffJznJnPmrwQQ5RlTVPrF5+UXGT+EmPpldp5SnZ85x43zSopheDCV5eZphR34LvI55mmBvQx12Ycdi0R+2uIDN5J7+u0GjOn6MXc+DQVdD2lLW9C5NO+COeG9vSQngO3HuwcM/TlxPEidzG/t/0zdF5JcsKAq1hDRwpBoBOH4GRs4osFIAOTL0Fr7YAB8zmE0crFzMQnZeCF7Yfmyj9bUJ6ADU5gavlEfaTaD62NNiUmPwp+XimIAgRkYMB8qMNE+2ByamhoQKV5rYVINAoisAn2hAxsn3ECICBja/oUKGXAsIpBiTBJ15GSzTSaia+HEAJBmJhFBdJoMUSAIKwiqNQQhDUEQR0yqCWrKzJnSycvDePTlZhiQgNSA1ogRAiIWqIlAaA0AhUkwbAos7h2jpkDe30vP0F/PBGhBsHIl2EeeKVKPwx0kSS8V3sfYPAx5K9F6QUe+gEgvLxac/GNQWP7aHDpdxm3Xn0X1S2q54KgftfEp+EoYuyKfFTKpMku4ODghXwqOLPtStR9jCofnzQW1CddJzMh1/afnKEppOvPfvYz6/9w11134eabb8aPf/zj3DxOnDiBb33rWxgaGsI73/lOtNttm/iO/E64uRQx0kQfmX1x2vlcuWaD5lkU5YvXd4u7D759cvecR+XiTu1FpYgx533ysXmdMvrc9ry49JQ9G0XPY69nw7c2V7IMBCwuO8rITph+l/FnYIJuuVFUr5TsureCYxfUDrkR6WMWXPhqWrmn4nnLzZr1HWFqJ7TZcfotvllkQVSv/vI9FKzMwBGi+i/kw6A1EKkQW90qtrequLi9jUqgMVIFpIwhpDKhBoSGqARMs0amWxpBYlpUkyZ8ciw0qkpBCmlMhgQQOHMkX6QMTUpb53AqJJG3me1B9wWgFeJYobsdYavTMVGhpIAAyytBUZmSDNwGHBHIMh3GivQwAoE0gCKUFYRB1TD7QQgIAQ0JleQXJy0NEnCT9pmcc6u91Gw+aWhZYxZpzMZM30AgjEN5KELjXB4EiYN2iDgW9rmwf61WRMD4WyjoZK+kNmF9Q12DCmvQ1bpBkHEMjdCAQ6JXezxgBOxzC+d63rTu9QcQrmQpY7J9kni6Tv9cpoJLnX1SQ1//ReP7ShHzwK/5GGwuKSxjwOm6O7+yufgYBb5mZFJEpYyx8cW455F+XMaNj0W2/Dy6Dy9FtBeZcPiKyzjRnhdpXng7VzLNpeZkqkOmSW5fXDvjMsTEzLvheKlPYs6JKV9YWMDo6Cjm5uYy5k8+Wqk9ARaeYfquu+6y60cRnxYWFrC6umpzYqytreH8+fO273a7jTvuuAPHjh3D6dOnrfnRyy+/jK9//esAgIsXL2J+fh7PP/88zp8/j+XlZRw4cAB//Md/bE2SSCMyPj6ey37N50OhaycnJ635Fjmd0zzIv4PWjfwsXCDmjsPPKWfKfeGDaQ0Bcz7JmZ7qE73u3rtnnjRHbrha3xl1zyDd8+VscedQVtznnQN/N+iC+8zx677w0btdBjaFCqTMRUEp5VmT39X+fi5TkXsOw/h4Rnj6ZfTYn2pX/E0MnfC5RhLD5V5OJLeZ66mJRmnJSDINgVyIWVQEG6x4/Xgdopt3Wq6LIK2BVwOTG4mkvWmgTT9dbMEL9i0dgjZLO+vkyH2Zw6uV0oNA0+UVWrL83rp6Hp+mg85AACHrEHIvtroRulEXWkUIA41AKKh4y1ArYMxrpESlWjUSdykAHSeO0bFd5whAJIEuFAItoZVIQ6ApbY+qdWCGsKfLRoMSAlDEqBumnJLoKQCKgQaRRHiyfSIJ7wrj0yG0cSpXOmXMjdYgQLVSgwyqEEEl8WEIIIXRHpAzNZL9ooALNkIV6w8QWSzoONALdk0k68lCxZmQtCDdV4wojqGiSxBampGDABAmLwV1pRLH8SjahopjqChmmksgihSiWCU+XgKVijGZElIwoQbRxL8lZLOgDeVnNT3YFqYUNMi/nvKaj9c63GxR6aWO9zHPRd/7Gaufa27xaR96tfMx1a4pQr+lSPvBpdRFmgR3fV3AwNtyUOaCGpL2com0b1yKXOSjnTPf3HHZZdTdPn1Awp2Ljx5+nzNbPDoRnyuAzPx9fXJJO43hSuP5GCTJHxkZwdTUlGVKp6enbdQj3zNAZlEUISmKIkxNTeXCzUZRhLNnz+L06dO466670Gw20el0rA/DH//xH2fWZ3h4GLVazQJFMjuam5vDiRMncPHiRVx99dWYnp7G4cOHsbKygqeeego//OEPrd8EzZeYd66JcZPH8fUlIBdFUcYxnNaAt+OAgs4ON0fyPUu0HjxnBWeYedhb2mf662YAd/fD3Vt379050323uM8VAU/aU57krqwf3zj8DBMw44EDfEKYV0NzMdBbOhEMWsalH7BAQlXfD2H2e0H7XfhxJOaZfUPum7UXKmAiHTOUFMGkMytncfMS+cKaO5kzW2PN5mGF2iK9584ww8CXDJGTxtqLnAEnRrv36eB6CSvctTSKvunR6GPNPJoLy4gJtk62Woa7hV1PziQyZk6IwDgGB8Pobm0mMWQFKrFGIGPEnQiAgpQakCFkECAIBCQMU6+goLVCV1FmbIFAmlzzlFwuEemn0wmY5gE84lNKX2b+yT8TbcmY9lB0JykSbYRWyXrwPlPtDKATjVhSpKlTCasIq8MIK3Vo1GBshaTzTKRhj9Owt9w0iX239dL/5WQNgkASZ8g1AAWtI8SxicSFaAtCCwSQEJUaZFgBRA2UwjuOIsRxF93tLcTdCNF21+43hEC3G6PbjaARIAhCDO0JEYQmD0bW/pA1YyeozBHbFW1QCN6eb1fPcX+9AIkipris9PNjtxugYpAy6DyKJPX9Mgy95l5kotGrX9/9MrBBhRg7YiZ5HVc6TUykOxZJU8m5mO5zhtHHAFHbIslrUR3OULkSZpeB5AytC8K4NJibObl0ENNJf3mOCYrcND8/j06nYxPJcbo5zfPz8xgZGcHc3Jztu9lsAkBGYt/pdLCysoITJ05kkuq5PilSShw9ehS33HKL3cvnn38egDGnmpycxNTUFH7wgx/gE5/4hM34HYYhNjc38YMf/MBqGzi44b4cIyMjFni5e0LRrYiRb7fbmJiYyGgpeH03fCuXrrtnyr3mSuzpL2faXeDBwQhn+qm4Z8fd917Anmh17/NnhcAije2C3bJC49C8yeyNfFV6ldcNsNAKVvrZS/YGsB+6K2iOsuPihhLNhN/cYfGJK9MBWYXSipdRdAZU5Akrlr33U2z0LcuFw9E0UMX+5tfPigtW74qdIs1NYtyRy4vxozA5G2qyjkq1ilq9Bq0j6LiLra0LuLR1ES+/tIU42oKKOgjEFgIJ/JdrFOp7ahgeHrLPlNIKQihIKZHk7E40C6aG0pQRWhgGXyiAQqxy7VTixyAdsyjy1zD+AeZaGErUKhXUqhUE2vhYSGHADSXYA2hbBbRNfCcAUYEQIcKwbjQWCJOs2ipZWmL8JbQmvw8NmxiQdtfFcXDeMZoAJLufaDpscjkNE7I2jrDVuYitSy9ie/MlbHdehECMMJDYM7wftXoDe0bGoIVEV2lc2LiEzlaEzlbXOJYrjTAMIWWASqUGSAFZEwiCivEZCassJFcvQOtW4QBR5qu/Dl+VgxYf08qLy1C5bXs5Yhf1x7/z/gYpZXQPWnxmCP2MUzR2EXMNIMeoF/Xlo4EzTZwh4kwPZ/LccXwMHX12w4C67XuZZXAJMTGIxBC6c3XbuCYmfG7E8PIoRO655fkZiOkjBp7Py+ckT5L+hYUFa2bl5mQg86CxsTGsr6/jE5/4BADgD/7gDzA3N4fp6WksLS3Z8ciEZ21tDc1mE3/wB39gzXm4Vunzn/98Rks0OjqKyclJfOlLX8KXv/xl3HrrrWg2m3Y8vmaLi4tYX1/H3r178elPfxoAsLS0hLm5OYyOjmJ5eRnLy8s4e/Ysjh07Zh26aT5haEyXTp8+bR2+ab8OHz6MMAyttgNIpffUlsCL69dBfiP8TPFzxfeD9ombvblnAECmjS86Wa9nh2sIiur53nH1et0CRvfcUHu3D06X6w9EQQK4SZrbHx+Ht1fKdSTYnTLg2zNxIs1Ipv0/rBnpmeNAe7mStd2SzHn5Yc3ZWJ8sv8fYpB7hGhImxaRPxfHpdzY3X2+C39VOv8yjexBeJtMnv+hIWVP7/wKwk/eyLhjQzRzdu2jPWfOdmYz5iHcR+hg50a5IIaGlTiToVSgdQskKQgUoHaBS70B2txDLTUBtQ4sY3ThAGCc0JJoDoWnOwoaVjUnZIBmRPCSxy59b8JAqKtJ1MSFeybmbQEoQGJMsrSS0TKM6mb+wf5MWRiMhBJQOkrMUQ8XbgIqhKLeDMM7UWnDgI0AJILVITLNoOhw8OGvMVItMEMAq0EJQtCstoRFAixCRBrRSiFWEYHsTQlZR2e4AMoDJ1S0QyBBhJbSRsIIwhJABZFixtAcyTMzFQqOQ6fkeYtol+M5g0VPbG5D/Zym9mOj/bGUn2hxeerV1mZhBpZIuY+IyRmWapSLg44Z9LQObvuJjslzpsEurywTyvrmJTVkpYgr5mHwsVxNCfVCb1dXVTBhVqkf+FFRWVlYwOzubATvExPJx4jhGq9WykZlIQxCGxryNkvGRJoXGWF5eRrfbzcxrbW0NZ86cwde+9jU0m01rsrS2toYTJ04AgA1HSww+JbDj688BHYENFwi4hbJ988R4BJR4Xg/XVMqV/PM94+vOtU9FoNu3d7z4tGd0nWtv+HUfaPC152VQAQqfq6vx8dHPAVQRMN+NMtgbjjEsfYeD6qO8XlT4aekTRBSVPgT2rtnU7jELHgBRXqNnF7nC7alc249cW+ELzJR21Q89u1CKxrCmJ8TvZopPy+TcThhTw3MbDYLxQwJ0KBCGddSGrkKtOoI46iLa6mBrawNRtIltvWmAB4BKIBEEqSmTigEoBaUFtiMglnRGUkCR4IQ0ahTjzFNgkZ2UST5neqDnLhQC1SBARQbQiBGDB1DVkBBGQE/aBxvtKUAUmdwWcbSZRJWibN9Gwo/KHsigBhkEZoETTYgF1qkVk8W+mezgbJ2zSJjdp81LOhGQJipUfS+CIICIjaaoG11CZ3sbSm8gkC9BhlWIsI5adQi1WhUjYg8UUr8JbY92PvyBgHDAuv+A56+yg1ao2Uz+vt5eiwOUfpjEXm1d85Sifst+qActvr4G+bHfyTg77YczS/1qafrR/tBf14aeM3WulN43di/JLRW3/6K61LdrJsLb+BLhuSCAM7KuzwMvdJ0k7mGY+hjwkKecmefaDco/QeZClBF7dHTUSqxHRkawuLiIVquFP/iDP8C5c+fwwx/+0I5JzsYUSpXobbfbWFxcRKfTQbPZxLFjx7C6uopWq4WzZ89akyqaw/z8PBYXFwEAL7/8Mp588kn8xm/8Bm655RbMzc3hs5/9LL73ve8BAJ588kn8yZ/8Cep1k3vjxz/+MX784x/jXe96l50T+Y4sLi6i3W5jdHQUExMTdo3J7K3VamFmZiankeKaK8o4PjExYaXvBIrW1tbs+Z6ens75AxHIcSNLuVJ+11zLpYXAJvnGuIEP+J7y87GxsYH5+XlMTk5iYmLCC2h7aT5c0FEEvHkdF0C7ju2+d+jq6qrVepGZ3utCY6EvAwAUgYedgIpeTPhl/R5neAWVXCjpkdtmcEBBzTKWQimjKjINeGLAstJHHZEHLWV10y41/2j2xRlO+PgoliHbSMz9UloDLnYAnzSZ3nE6irUQZWOkWIg4WMe0y1agTXPAn6dvnrzN8IyJlobWIhCQMkAwNAwVR4iqNchqFd1oC6q7gQgKFy4phEEXQihAb5uIREKjWgkgAqCrJCItoIRMc1RoYZ9HjTT0q3A2SSmTVI7Wy/pJ0NnWgNAKQitsXrpofDyCwDDkiVO4FsKYVSWmP0JqKBVDCIlYkbAhgk1XAUAICeMfvQUokwDQAJKK0QQkie5oFRX91cxnAtzfgjH3hCGSuUOzl6MQkFpCBlWEFYkhVcNQrQoVdxGpbQTCmDgFIflYEFgCRGD2T2oGLui46OzxSG/S52yl8ozZ9OCVSh5y8gnN7r1Ri8uo8lIGJAZhundD29Evo+9Kwssks4OODyATwaYfcNXP2D4Jvku373M/Ul9u2uQy+76QrkXjcibPjcTD6ShqTwDCF+2KmFbqgxhjnxMvZ4C5hNfNfeHWA2B9S2j+s7OzmTlvbGxgcXER4+PjmJyctKZHR44csX4T7XYb7XYbq6urGB8fRxSZ/BAjIyM4cuSI9ek4ffq0Tbw3OTmJRqOBiYkJLC0todVqYWFhAU8//bSluVar4bnnnrOO3+12G1dddZVlkIeGhjA/P4/NzU28/e1vx/T0NN761rda86LR0VE79tjYWCb3BF97YtL5c8/PCpnwEKPL1zGKokw2aZ9fjuuI7Xt30Hf3PqeVgCE30eL1fVG8qA0BHh9g4G16CUh4u6LvfD6+tmXvrbGxMXvuifZLly55615uGewNaLwl+YXkx3XnEn5f3ohSsNGDz99VOwFX+O/ILGnAHL0i+5GH5czfT6TU7LrPlKdf84iErc3Sq9miuWuXAz89Bilcew04YCTvoM++lwEApuHY6XYK6shX+PqCJOTFoXzLB3F0Gk54USkEoCWCCqACE3ZVCQkZVbEtBKAjbMcRIiUhdBc63oaQQJBEHZJCohtLxMow3VLSrkr7LJhoQ2btteBnLg/CaG1JuyGSkKlCa3S3t7CtNGQlAFC1/hlaJD4dSM6USj4JkYSyNZoawjxSyORVEUOjC621SawnQgAKgagCymTpRjobaKTABIkmyfTJ1pPNkWB/6oNPOygRSCCEhEaISqUKlWQ3p55MGgoFFcX2vSYlOb7DPhM5kJ45mPy8+09q6Tkc9D3W6933Bi6DmASU9bEbTP1O+h1EEzPIuEV+Aj5G2zdeL7qIGSkKo+kyRkUmRFxzwiW7XLLqMnourbxwG/mieRUxbS4tLkPHNTE8z4Er5ea0usCC13MBE2dGqf8wDC0w4H23221MTU3ZiE7Dw8OYnJzMmdVwU5Z2u43x8XGMj49jZWXFOlMTs0gM5OjoqK1PTttUms0mut0u4ji2NF9zzTU4fvy4lfA/88wzGBoawoc//OGMdobWgodx5Q7ZVIeDCnff+Xx4KF3aG1o3buLknie+9tz/x3fmioA3nTPXZ8atWwTmuRbLLTt9H/na+c58r2fbff658z2n/0qUHQIL9oP6Ovuh2yk55VL+3TLY8XH1nC29fFS026ZFvWBNEdX9aqJ61aL+B1mdnZ+B/MhFUaDSksqTUzqDPK0CkAEgggB7KjVjuhS9yWgxoi62ti8iirYRdTegul0o1UUnDlELAVmLUQ8EhqpAmPg2GG4fcDVUFCUpFxXKuW8p1oYhF1oh2t5GN46hY4la3bx4BALGaZu/Jju2MXtC0p8MKc+FQBCECWMfAOhCoAsVawABVFQBwj2QMoSKKzBheiUQhNaHw9KdsU1LDKTYfPnZIE0GtVFJwj6lhX15kvaDwIgGEFc1tA5ggRopQCKVhNX1PbNFZXeeYSq7KSN5PRWfo65PvU/X6VqvH8Hd/JEskhL6GHEfs18meRxkLmRS4uvf18bHgBTNy2XAixgO/tnN41Bk+86jI3GmtGj93Ig4rpkSLz5NBZ8vaXkoGzWXOHOwQn0T2HDXlBhMLknnuRY4aOCaFgIsZDbE6aI50TqQL8XGxgbuuecetNttLC8vY2JiAmNjY2g2mxZItFotbGxsYHZ2FhsbG9a/gsyezp49i29+85u4/fbbMTIyYrUcjUYDhw4dwurqKhYWFnDw4EE0Gg088sgjuOWWWzA9PY077rgDa2trWFxcxMGDB3HkyBEsLi6iXq9jamoKDzzwAObn53H48GE0Gg00m007L+4ET2vITXMozwmPnkVhVpvNpm1H2gkOKLi/Bg+jysMHU34NCmPrOyu+iFOcJhcQusV9xn2aD36fh4V265R95+2JPrrHx3BN/oqEAnSG3YzitCZXquzgTZyVgOr0F72n24UbnWZHxdNssJ/zlBURFOyfc665OWTsHXwVmMTUJSib5ddK9TOyUDa4dpqzlmQ6kWd+ucy9CB65BLqFWZCLzOUsCYVteT1hP6fOvg4dQCrF1XmyLi8RsW8N7OoXrBBJobmmKDuyZdZh/AN82gnDe/up5S7oMuGQdRgmeSMMUxuHNYRBBUpFUHGEMBSQUiOWW1AihuapIN19So6xTBjz7D+2NiLdZ6E1lFCQEgglUAklIihEAHTihJ2ZYuLHoZQyCfGSLN0mF4cBKjR/rRW4L46OBQRpNVQHWgdQ0ZYBFDJEIPeY6FZS0tPJdg0gUyNp3yEi8RfRUNE24tisGbTJbK60gNImOaBI+pVBCHvWdZop3ESrMqocrYXJJm61Fp5T4wpVuNbC3ssbNwr3SxFGdVqUm1X95ynuj3U/EnegP1+Iy6WrbBzX5KGoTj9juOP4wFav9vx7rzXkTJVvfPea7ztnrn1ahDJpr49hc6XLnBly2/loKjK5cutxbQXR6dMQcZMsDkC4eUwUZR2sXaDlk65T9CO6TvkriOkjpplMqqjeyspKTgND9Ozdu9cy6Lwe2f9zB+nrr7/emsZQcTVXlHwviiKbh4RrGrhZEi98vWidXUduDjgJILl7zDUknOl2zxvRwulxAWzRefE930XPjE9j4DuT/Cz5wLGv+M5qv8VHs/vd94xdqTJQ72SLbLiSVGq4ExlxmUTba8teYkajnc/evl3OQAsA5BFbzngLAk+Mcebx/dOKPvsdwZxS0/9neZIsJLDfbEjORKrspS3VepTgBpcofoNjgVzRTrVemogcA+YJR5uNGMaql5pHicyaFdXMB/B0S5FORzl3RO6cETiwEvPExIwzflkm0M3GIazUHQAQBJBSIghCVGu1JFeFYdjNvxhCR4hxEUpchEIn1RpIIEgcla2TcXIUXFAhRLrmaTI9EgooSBkhDIF6LUAsFOJIAUnYVlinbcq2DURKI45VAiwAISV0DEhlQJNWsTGTkt1Um4AAEKEBF3EEDYEo0kBQgQirCKoVmGzfiTM8Mx+0Zl0EORgo1SpGd/MStrc62N7aNONAINICsRKINRBW65BhBZVaHVKGth+zd0niPvKNgQKUASfl7LzoLc0ofVREqjpxrhfgCzvnHbxuXxelHwBQ9KNexhz4NBy7UcqY3l7tyrQTvfooMncoY6pdmnv1z+nopQnhjJpLF5nEcCkzXXf7cxkxPja1d6XK9K/dblvm0bc2fAxX2u0DTmQiRAw+Z2Td+qQB4doGN2P4+vp6Jpwsp5MABzlit9ttNJtNK7Xnmh83GzU53FJyuXq9jpMnT1oHcKKdwE+z2cTo6Kh17ibgcfjwYSwvL+PkyZPY2NiwoWApc/fzzz+PCxcu4Prrr7c0k1P1wsICpqenbZ4L7hsRhqENbcvPCJk1cX8Tvocc/LXbbeuw7QIOHoaW7x2fN4BM+FauAfM9s1xD5wKPXsID7kDvFtdUjkez4v0MArw5Tb7SS/vre3eVga3dKle29/9/8RZXV9GrdrFKRTh/dy7Z3G2ZaA7s4dXhh64c35XXFfHPOnfDnXE5aKK/WmsEQpgoSjqEQIgqNESwDaU70ArQkuCMyPGlFCHKBYBFplFIxgriEN0tgUsXNdYvdTG8R6JSlajWDPAJgxCUL6KLLpQ0plAiSDJzawUdxVBaoVINEQQBQhka/2gN6NgkrYt0hKir7NiVcBjVShXVMIAIAsQiMBoRrbDd2UTUjbC9tUUSA9TrQwhC4zextdnBVqeD/+/5c+h0OtjqbKFaG0YQVBFW6iYDeFBBXdYRIIQMaibreZK8L90ZkflbfIiu8An2aTHeoMX3A90PQz1omzIpX9GP9k7uFYGXfmguA1RF91xGvog2V6Phq8+ZG36fmLJ+GA26z+3Py8BTmR03Z+B5HZ92hurwXAF0nzvMFkmb+VhkPkRMb7vdtoz8ysqKZc7JP4EKZ/R9AIsYTu4ETpL61dVVa0o1Pz+f8X0giTrR2Gw2rSN3GIZotVr44he/aLNkU76HG2+8EefPn8eZM2dsJCcAuPrqq3HttdfavBiUQ2NsbAyLi4uIoghHjhyx4IMAyMLCAp577jm0Wi18+ctfxoEDBzA3N4eJiQmMj49jZmYGn/70p/H444/jn/7pn7C2toZ//ud/xsc+9jHMzMxkfBQIhNF37s9Cf1dXVzPahWazafeMmwB1Oh20Wi2bi8M1D/JpsTjgdZlublblnkc6OzSuz7/HBaFl7whOg0+r4wPprrbP7dP3vPmeGVcD5ZvnlS4DjUB2yUbQ1kOrkLaiu3hDi9uc0tuUK89KZ/UKDuNX2IcPVPjAxaBFeL+m8xL2Wr9RpryWHZr7HpDMv+AckJLAw2B51yeT5JBrfMpalp1R3jUzi+JjMWk571MA0CKdVwbq6fQbX16XbhDzz7QzRq8WQoggSUynE5MrS1huXi7txoTLGStpKmAcs6UIAF2BihW2tmKT00EEkEEIISoIdRWQBvgYEyMFpRWkCqChEUVdxF3SskiEoWHgdeKEHUcKOtHEaGVecEEQQAYKWgmDlrQEtIlAFcUana0uuttdbF3qgDQVQlQQKgkhNLa7Gltdjc0tha0tja1tAEGAUAQQugqJKgJRAUQVQAitQ6ShbGV+G/k6atpP+sp2RKRrl+xqrrnz0faZ+WzVVzpVnGY0fP5n9P+Xy040AIP0NUi/l/tD3Y92gfffb/1++uvVV9mc3HXrd/5Fklnqk//tBdRcYFNkosKBVRRFuWR4fFzO/LoZmAk8+Bg/Xz/0mYAYv84ZTcoDQdfr9brVbJAZVBQZ/4PV1VVsbGygUqnYtry8+OKLNpEeD6/a6XSsWRQ5dhOwon+8rKysoNFoWDMt8oMATPjY1dVVPProo/jd3/1dC4I4iKAxiUnnoJak+BzUuow37ZMbRYr66HU26Czwfjldblu67zL/vsIBZhkwcGnzPXO93j/9lCLg4Y6/2+P2KjvqfWfwoEjq/p+p8PlljGqQnfNO5n/lxZlZE6Nij41++nE/mwg+fex93gKJLuf67q8MsG4FVTNpO3ZQrDGb5t/602aYVQsSnwHDdAtJUZQMQxorQEoBCSQO1GnyOwAmQ3eCRqQ0DL2xujLjSh0gFMCeof3YiCLozQgXI4FLSiCMA9RrVQxhCFIJKBXjlVdeRhxFiOMIoQRUHKPTibC1uYVudxt76lXUajWMjFQhQ+NsvrUJRJFG1I1NJCYAYVVg+E0Ce68K8SZVQVAxztzbUYxuV2H9pQRYbAEykJAyQFeHqFRC1LohIjWCWOzByOgeDCf+FpVqDVKGCIIqJAQCIRINRQZ62b+5LS/TVOzW49cLNPsO+xvolcml0by4joS8FP2gXw4z3a8U3mc24JOADwJofO1dBock1m4/ZU6VRZJ5Lvl227saDmLO3MhDvjVwpahFJiC8D7cfKpzh5s6knC4XYPgcYH1aG9dExWX4qa/x8XFr/09hTsMwxMTEhI2uRFJ1zpwSAz41NeWVQDcaDczMzGBpack6W1OEprW1NdTrdRw6dCizR6urq3jggQcwOTlpzZxI0t9oNNBoNPDnf/7ndh2JUT916pQ1ezp37hyGhoZw5513YmpqCuPj4zh16hTq9TruvvtuLC8vY3V1Ff/wD/+ARqOBG264wYaK/dSnPoWZmRkcPnwY4+PjmJ6exsGDB7G0tISVlRW7Z61WC4cOHcLIyAjuvfdeO+d/+qd/QhRFOHr0qF0z8tlYWlqy+z03NwcANklfu91Gp9OxoXEJMPE8GKdOnUKn08GxY8cAIAMI+fr7okItLy/b9eHnmocwdoEh+Z5wh3d+ln3aCG5uVaaR4P24GhaudfGdK6Kbz9Xtk49JtFHf1D+fTxF9u1l20HPW7hlINRXG3GJX6MoVX1jawrq+i2V8XIIDdsTuC7djV1PRL6DwcK88TKzvPpz7A5c8PYWRj7R/lJzJjf3r0QJkhnT9F5KrBdPoR+9g6+U0GbmF9bQUzuUCvYfT1NKdVwbk/4q0YgovXO6x6HCmf4Uwz5kkf4RE8k2mUVprm7siFYUDFEtVKwYfEzQpIDA8PIK9QuIqSOiEGQ8CIAwDBBVjCiWkQn0oRKxiKGWcsZVSENVthPVtxHGMaiVAJawgqNUgAkNzKCPIWCGMjeYCAIJKgEp9CAiG0Y0riGHC1MZKQusQldowZKgQVhWEMICpUq0hkAE0AuMEH2jUq7RuOtGwSAgRQNj/SFnDoTN/f/mVBMJuat7kLH3RJc+8D31qXscZOlPXUYGwulzT9EZx4i76wdqJdqBfKZxbin44+5Hmufd9dXeSs2InUv5+i5sArAwccXBRJKUtA1Ocke81Dx/I5PQQ08Tt5l06itbNlWL7JMQuwPGNQd9JW0D08LVxzaH42vmcxV3/Dc5I0lwpBwLlgeBmQ75ws5SnggDS5OSkNdni0acIOHz/+9/H/fffD6UUfuVXfgVxHGNpacmCluHhYezfvx+Tk5NYWVmxvhZkevSJT3wCAHDfffcBMA7gpHVYX1+30afOnDmD0dHRTAQzWk+qT2vPQ+GSuRivRww25fHgGiSfaZIPEFPffP141DF+Vtw+3LZucQFwmQal6P3jnstBBBZlpQzIlD1HV6IM3Ls1qyi8n7e4sPeSv7uOPdwBSwcoQRB9EVY2i8EBBTe3yNbymNTsUrF8jWfZNFKw4GKAvL6BM8mXTxP/m25p0Qrk1zTPMnpuZhhK7bmf75uzozl+sKAe/57yl77IaUx3kWxKHtglPgGEkRKcQeAiQ4rWZpyEAnpeeSZu5fG3kEJgZGQE3WoNm9U9UDpI+o3AV1ZrjT3BsPXliJRhuuvQULGC0hqBpEhREhAGRMi6sxgCCAKTp0NIiUgFhpEXgAnXK1EdqtgVEpmVSsGCBBL/D/4cCQDGATtl0LXdk/Riyr37c9TQrMsi3jmgwndcOerMHXS38hu/FP1ovVr2vmVajiJJYq92RWPsFBD5GIqyPn20ceaWR6ApqlfUJwcaRZoKlwZiFnlUoSKzDN4/H5v+uVGPeFsfU1REd9G8XY2LuxZ8fYihJZ8J3o6iNBGY4ICI6CEmmfwtSCtChYeibTQamJuby4AecozmGgpaJwIPFKZ1dnYWU1NTGdOtjY0NCyz+/d//3WZWHhoaQhRF+OlPf2oZ/GuvvRZvfetbMTExYbUGP/vZz3Dw4EGMj4/jK1/5CgBgcXERY2NjmJiYwLFjxzA6OppxRH/wwQcxOzuL6enpTAheHtmKvlNkKdoH7tC9urpqARcl7qM1pohSfP+LGGWeV4KfM/cs+s6H+44qejcUnbeie3Sd+x6V/S3zUfI9z77ndSfvtd0qr6Ip1Ou47GgyV3IVyvp1OZj+SqG5xY57LWbsvXcHiSbV78giYergRtIhCXAPDVFp73ntAQEFSuYmnL9ZUOHXBqUVyphJciwmNlgg1ob51poYfZHOLwlXC5jwqlCxMYeyTGzKQGuloXWMMDTRk0TCnQsBVEOFaqwQSJOIzowRWt8qmpWQ2vZZtUMQ+mRMuEil/mZ9knYiZcRFsi5Wo0CIV8hMhK80EpeLcokyyaB4CkN0loN3Pmvekeee285XXO1YD5DAD00/5Q34ovUxmG4p0xiU/Wj3M06Z1NvHoNL1IgbcV/qNrNKrTr8mCa6E1aW9DFBwrYFPg9AL8LkgAMhKyH3SX7dv1+yD/pHjL8+Ezenm/bu08XUoMm/xFZ4UjZvSkKkOMZg8HwbVIYaYh4UlZprMe6g+Mc5EMzlx8zXi4VejyPgWzM/PW20EmWitr69jaWkJ6+vrOHz4sGXYScJOoITnk4iiCG9/+9sxNDQEAPj+978PAFhbW0Oz2USz2cTp06fxpS99CfV6HcPDw7j++uvx7LPP4tlnn7U0Hj582AIrcvien5/H1NQUxsbG8NGPfhRhGGJtbc3u43e/+13cfPPNmJ6etlm4ue/I6Oione/a2prdL9oD0myQDwpnsF0g6z67pP3g68ND/LpnhxcfUOXjFeXJ8AFpX+n1bnPp8mlGyoQMbl9FwLvf985Oy5XVhyAbitNcyZYCgxNb0/IoGadZj+lA3xQl3QwgKcyGu3QZDj+XkLWQ4nJSkblPYS19PefotiZnO+M28jL/PNuVZc6KCaK5ZAX92f0bCFzopDfCCsmqiEwI35TadB95IF5ioMsYRfM5q2txpP5uW9uFy0RSb2k/+RNVIAsXnh33oj8T/UlBIqZkdQmYIqacz4tmp7Vn3bQAOQfrRMouEoAiAFQkEEptTK2SfuDpn/YpOyeNbNxbNmZmnVR+ohlQQZectafhbd4ZBkLsfUHUOboN2xjFhdGp0+9C5247BGXNP+3MBMABXdmQudsE5MQbxfhp98pOfuz6aTMoA7+TemVj7PTeTstuSCnLNCg+RqdsDlxa64blLKK1bL18NLrgpwhsuZ+JEScauebEx6i5/fFkgAQ4OT0+en2glmsnCCTQZ64F4CCKh7YlHxEyKdq/fz+uv/56jIyM4OTJk1Z7QaZOFFL2l7/8Ja666ipcc801mJ6eBgBsbW1Z+j71qU/hyJEjmJmZsVoDHvGIgy0qcRx715vPlfpxw7L61ouXIs1Y2R4VCRb6Af7uWG7fRaVfjYFLRxE44H3RXzcc7+ulXEFgUSz57a8UMQJuv7sj0hvcN6RfiaZbn2gWubulPe2y80phZKZdLj62vqxetr6/lcs65ntxP+fHSnFlf0Cxd6+9ix+4eOYosl80AsSooKurUPpiAhoEbOptgB0rI/03ueuyqyigLeCIFSCFyZQNGUAKgaEQqHdNJojYWUof9MqJDDLTyXPNKa9d9lw79Z1raXPB6KKOU71RKgpwM5u4Z0ShsOiyc+vqqPos/NG3zf9zwYdBJP9UdspcDwoWyjQbvYqPGfZJNnsxxL657gQI8H64BN3HbNN3n9M0Z4jd69SO/rnaDZI6h2HqIOquj2/e/D7lgCAzGQAZ5t5dV2Km+HwJUHDHa/I/4MwZXx/SSiwvL2NqasrmdKB1mpqasmtLxY0WRZJ6GoPa01wajYYFHjzSEYGFdrttfSwo8tLExITVQJw5c8aaTU1PTyMMTdhaCotL67O2toYzZ85gcXERN954I/bt24ff//3fx0MPPYSHH34YFy9eBAB897vfRRgaU60vfOELqNfruPXWW21eiptvvtkCFCq//OUv8fd///e48cYbcffdd2NychJ33nmnXW+eGJDWgft/0Lkgc6bR0VEsLS2hXq/bxH20bhzs0T5wgOWeR3dcAnpAqlVzJfe+kMlU+PPEmfayuvw8lp173/PoXis689QPP4NRFGFlZcWatrnRzni/rvP2lS4Dv8n7Y6zSWkbA2EervHjb/PH+5iaSV85Z9MvxFUkJB2hbcqG4XW4eKcAo7EVwNtdne0/99DF+2XWtM+P4RrD3rUaBd1LMZPn2PhsONas7oC7LE90lbTJet7zHPDvK4YNJwlYGILRXK5TzPXHoKaa0uKT+A4m2hlZMpCsntUnkFie+B4BN65bXuWjTgxA8tC2tMT+I7BlN/DBCCVQCoCpjbKkQMfWaWWZt1p16yCqCSvAvnTEyJHPuOgDE7doh2X8hRRnpH5G9yVvoQoJ7aBoK6WEXS0KJ2fkVTbSoHQuS8XovZUx7kVTx1Sj9SNd32gdnmvuVxPsARj/aDbdvn8SyjDlx7/sk6b42Prp9jsacQfO14WNyqbePYaR+OHPIx3HBCDG0JPXnidBcHwuy+wdSxtcdn9r78iLQ/bW1NSwvL2NyctL6aXBNAoE3AkA0B+6TQGtFYIRyW7h7w7UY1NfIyIjNSVGr1fDTn/4U8/PzmJubw5133olTp07hl7/8JW6//XZcddVVuP/++zE+Po5/+Zd/sfO58cYb8cUvftH6vLjl6aeftqZJq6urub0kZjyKImv2RRoU2mPum0Pr4wJLvr8u4HDPgs8k0T0PRYy77xnjIYV9EcmKnj0XMBRpOlzNie/Z4j4zRcEGaP/JmZ+b9HG6ue+ND5BdqbKrI3gjNtnf7n6Y8JSRMW1FvhnPwJzhbK6c9L08ElW/4MIPIEQf9Oel9ztjLIrY4n4LC5KTCohRHAmMLFdK+yTZMo/e5OPJRMEK5I6IdoAP9Z82sK4JCeeZ59NEzzN7OafNjaiWSdWmk2zWzAZHCAmtJRQCw9TziEQZ8JBSZfhakurzNo7EnkCCBkIpEEqNilToJk7eySgmWhj8QJGNmjua2ppFiULgwUErv+Y/544jtean2n2WdrZLZc97hql3hjOPA7tfEAQh98Uz3pV7m722pegH+NUEFj5mfpDxi+r7mA5et4jB9/UxqFaDj+EyUu7YRaWo/yKAwrUd/Bqv60bP8oELYozLwJS7jpzh5/2SdJ8zuhRi1AcOeAZnYtTc+XGQ4IIwAgCU6ZoSz3GaeR8cFHApPF9n0pxsbGxYkELmWrSmXPNC89/Y2MD58+fxwgsvYGVlBS+//DLCMMThw4cxPDyMv/3bvwUAvPzyy2i1Wrn9Xltbw8svv2y/v+9978OpU6cy1wgocC0XN4WiPimhHflMuOFf+X7Q/OgagIzfis+8rOic8PXoB9xzcEvjUVufP4bbjo/jOvLz+u64RYXGIiDg0zRwGui8EtjwgZhewoorUV69kcrKG/JXdDeI3ok5kmu60V/78lq97+Z4otdQaHo5Q6egQmSuZRIDZv4WKJwui4a8eF5AAVCAjhAACBKbHw2BCBJKB4gQItYhYg0blclodxjYTu5RuFmRTJBn9waAIEjNqLQ2eS4CEaMqBfYEMbaVRtTPpN3FEe7Nfhr56mqIJPxsf2uf1UX01ULkfcB2Wnyg9w35WtuF4jMB4Pco47ErPeY/8leCnqK+BwE3vSR+ZdoIl5Ze9zij4GPUfUDFvecyrz5zDc4kFmknihg63o5MYrgkmTsVE/PDGeN2u22l2UX7zhl4vh5cSkuMqdsP1wJwAOGCDFdKzbUd5GDc6XQwOztrmWECJXT90KFDOUk6rQHRRfeIhpmZmQwzStGoeII6HkkqiiKrnVhZWbHO0V/4whdw8OBBfOMb30C9Xker1cI3v/lNjI2N4dSpU/jHf/xHAEYr8fTTT+Mv/uIv7NyHh4dx8eLFDIAAjNP25OQk/uIv/gLXXXcdpqen8bnPfQ4/+clP8Pd///f4whe+gFarhQ996EM2+tXJkyexubmJ3/3d37UhaLm5E60FZ8inp6cxMTFh832MjIxYjcjExERGg8LPG50fYsC5BomHsC0Cv+77yWXkiwA1Pyf8LPrOEz+DXLNRlMuH2rnBCHgdrqXiY/mAPz/PVGcnobIHLeUWJ7tZSswCBGAjw7hhRkVh094/20KI3L/LbWOvl1BQNI6GEbD65bD5fykHn7UfH7SIzH+esUTZOiPDmBJV7ifhqhQyxTeH9PNA7iOW0BJtguD/ROa7VXEIZPY33W84f4Wdf+ZMeK6V/cvSlz3rOvF90FpDKYU4VoiVhkr+kaZAIQA5+1P9rAQ9+a51EskpaZuAjSy4yNMnhUIgdOLAna618P1nJ8AmklloRzNiN5oDt4QOosWeUKRj5Oh0/iXt0v0E64uvt39PBt2/7HMkMrMxe8m2w3c2vSswWOnnPTZIvd0uvh86fq/fiEo+RrbIxKCI8S1j5C+nrtuuV9tBfsS55Ncdo2hNBxmzl2bABSNFxWVOuCOxr17Z/pRpc1ypsI95L6ORIihx4OO2I+bdNz6fkwvguBMzjzJVJDnm60RMNI1P9QjEuGedTIZISn3u3DmrEfjxj3+MtbW1jF/DO9/5TmsqQ+X+++/PrdHRo0dz1971rndhY2PDRoeanp7GHXfcgV/5lV/JJPEjEEBrOzo6imuvvdYCCP6Prztn7rmZFI/e5AIQV2tBTDa1c/dmJ4XTWAbQexVXy9FL4OCjox86fdd878hBx7/c8tprLHISTibF321R8a6WHfxoc47CtYS4QnbTfTMXfYqGy8jsd7sy+SMKSCnkyujDIGdDZP0u/EZpeZMsHtQn46NRNEwJSZR4MLcfBgdAaQ2tFVSU5H2ASCT2AggUhJSQwvg9kBmaTj5oaiEYHFXKmFlJAcp7TnRkAVK6IlJoBIFCLdAQUiOxysrMj+bITdEyNm9s0YTVuiRj8EhOubCxvD8OVtx1dEzJ7FjOw5X4YJV4MF3m6yV9V+2G3mNQWvyJLF8/pYypJebHvV4EFAYBITvpwxeNpt8yKJ1uHZ9JBUl2edx+dwwfU+H2R3+LmH1XcwGk+SnKEtYBsNomzvD5svtyMERhR7m0loMDVzPCzwSFHqU8De46cDpISk391+t1zM/PWw2BjykjEx++5sTgcs2Lb894TgYq7toRE0ztaA7cXIvOYavVypjmUJvFxUVEUYRjx45hbW0NrVYLN910E5aXlwEAZ86cwdGjR7G8vIxGo4EjR45gdXUV7XYbf/Znf4bx8XGMjY3hvvvus2Fr19fXsbq6iv3799tkegBw991348EHH8TXv/51AMDS0hImJyfxiU98wpqaHT58GGtrazh58qTdlyNHjuSk9wQ6eH4J7lvC14fOPXf49tVzzysAb3I7rhUte4Z82lV+j0zR+Nlz6xBIIhqJFv5+KXpO+TXfc0mFn8my4gIJ9znh41yJsiNgUcyseowAPIJLp7esQJNX8v5uEidC1t5u7uIC2sp+gy0JZUy4I5ssotWzNq4fsIB/DV2pp3DCt2b/+hrmaTMRRrOTL9y/pJ3DtqU0Q5iEfpoPlUiLEwN6P4MksstmJymc6SS74Nria83cbdgOM0a6YDLJH509F06D3LmzTHha3V2xDHkorpcdJztGmqleQIgQGgGESJWIQifmSlIAQkGLCpQOEesYGlGi/hJQ0qSDU5S8UgiTlTunSZBMY6YTnwcBkvoH0AglUK0ohF0NKWExCUEz6xOD9Fq6jf6VontWS5AAEWoL1i+RCxj/DI4lbdhn6odvAJ1BfodAonap0rxZhtbMMXF8YUyD/DvOJtDT5pnloCv/1CbrzlbMnbc7dlHxPcdpaGwUPRivm1L2w1am3nevA/6wiz4pHXdiHLQMoi0YtA4vrgNxESPjjuEz8/C1LwILQJYRc++7DAoVd+1dhpj+EkNKwAlIGX/O2Pk0CkSbL1+FS5trChVFkc0azWkioLK6umr74eCBm2uNjIxYQEw5EnyhXsfHxzEyMmKZaeqHxiR6eAQtTuvIyIhNmucy09PT0zY86/j4ON773vdiamoKExMTOHfuHG677TZEUWTNnN7ylrfgbW97G/bt24fl5WWMjY1hbW0NTz31lM2yXamYJKQzMzP42Mc+hnvvvRcHDhzAwsICTp48aWn75S9/iVtuuQUf//jH0Ww20Wq1sLKygna7jYmJCetXsry8jHq9bk20eMQofp7IxIvyhkRR6ojMzwfXYLjMMQcwRWfGXWOf1q/oPeR7Lnz9uw7mLpgvelZdelyw73sHUH33nNJ6uvP1zakMRO1WueyefTxqnlHr3bCI2fVfdhhl9v9epWCUPlolrECGeUcamYjzJIwhMsyT8wtfKI1nrWxWsrTz/BpljZJ0wZry6DOcUSuiI38rhXDETGZYZIHcRhWagVDnmfk6IwrGeGkCLK6Kh8YplklrC3rYyjLifVoIDqp8sK60uIxoaVVtmVVTNTAjBmxckvgn9yEUlA6gtICChkyS0WmdRGqya2WJSBh4kZuPSkCNZuBCmuERBjBJ8kBnKnO4011jU7TPBq2t+0zwpzT7CEGX7GImWpTw7FLmoGWBmzlrWbDAD0BmROdMZMejc5iKMzgssUea1tO2z80GQH4OvpIbe5B7TNP2ei8+iZ1PGt1P4fWKfjx7aRcG0T5Q8Y3R68e9rJTlX+jV1pV2loEKVyJaxMi493xjupJQXzsOfjhz2O9cuU15kRSaf+bjcWk5Fe4/QT4Q3CSJ2hLDz3MuuOCI+qM58SR1LkjgeSncdQxDE6qWmwWRVoNHu2o0GjZE7sjICD72sY9lsoUDBgysr6/jbW97G1qtlmXyV1dXsbm5iRdeeMGCtUOHDuHgwYOZJHUUovYd73gHHn/8cQCwplhUhzKM01wJcPH19QE9akP7ROCBryONx7VcXDPA2/R65nznmZ9Tfs/3vUybwX06qHDn+p28D3waBreN+wy49X0aD7rfi6bLLa+9KdTrvnC2s7z0klhn+ywbJzGLUQpaawQyhJDwcCpZti3LYwmnHud40DfTnGW+RaZrK3EX2frlrJNIGepMPZH7P42V5m3YiQi2H0Yuw3n2rN1zxEFs2x2EJghgECOrCTRKaISIUEGMCBBbEJRtWogcvRmTJykdmrT1u4D1S5CQyoSxrVdMsrxAIDG98jDiHvKz46c10oSHgxWuMfKN2R+LvvvFo5dNwUUGNRVQttOj/AYo9EPbj0SsCFQURRIqk7S5ZjhFgIIzAEU/2L0knEWlH8knjetj6Mskjv2AqyJJKV+3MjMLrmkA8tnFOVPiRs/Z2NjAmTNnMDExgWazmenfTfDGGXQAGaaeCkVF4uYtvD+XWfeZDrlSbZKQky8E0U0ahJGREbRaLYyOjtoIRgRKosiEWF1aWgIA61jNwQWFS3WjPvGzR9d4Pgtai0ajYU2LpqenrfaD2tx2220AgEceecSOe88992B9fR3T09M5f4oPfvCDCIIAAHDTTTfh3LlzWFxctADjwIEDOHfuHF544QXMzs4iiiLce++9+J3f+R3ceeedeOCBBwAAzWbTAgvaL6JtcXERH/vYxwAA3/zmNzE5OZnxweCaBHIq59nNuTaCnLdpHVqtFj75yU/itttuw5EjRzA5OWnHpjXhGkh+nnznmsakvXHN+fgZ5+eN983PFnfupzNVpIlw6eHPpOvczeuR3wwPgsDNw3zO2WVgxEfPlSgDjeDGUTdMn3D4XT+rkZE5XwFRmttlLg1B0Y95oabEue7tMP/Rx5bmmf4iWjKdgNiUTChWuOvtjsiZf1e66tQV/G5+PnnwkZcr+yIc8a+Gp8yzhlz4nO8zba01QZqcWshRfHApLiMnkVoXnr0MEvJAQ+GbtdtH1kTH/Zyv7qxHmWlh5mwJxAiTfBbcd2GAB0rnPiSfdaI50AiENv4WQiO2z7fwRn/OzsMznM7uZzqt5CyWrG+isOE7a4ZxNrN0+g5mpLC52bCwJe17dOyCi/SC5wHnfhGuTwoGBKR9lNcKu/SStvVqV9TGxwy7bcv6vhzJ4SClTCvQT/8+YMY/+3JD9DNGv+CEissQF2k36Dpnrvg/qu/Ox9cHn5/PNr2ouAxZkeTW1ZAQI0uSey59dufPaedmXXwcTjv5ThADSACK56lwpfntdtv6M3ATsdHRURu9iTObExMTlrFtt9tYX1/H1VdfjWuvvRbT09NYXl62DPvevXtthKZut4sXXngBjUYDN910k2XWf/VXf9WOPTMzg9XVVZw5c8bS+MADD+CZZ57BRz7ykQw4PHDgQIbZp/kTbUDqa+EKAbjTPN+7kZER3HbbbZiYmPBGdeJg1D0/PgGEe/5dh29fPfe6e36ITp/TPgcwLh39vld8/l8cUPBxy57vK62hcMtljZQyDaakP4xF4IJ/Kf4RzZg87EhILVxes4ysXp1BWO7GZXGK+udsfsqAZEySSrQPhpuSEEKBVAKJe601lwe4JJ/1wBgxy7yxGkVupvml8YGI7NV+/ES8UbAywKqsPx49KWv25Y7I+bScpFsAuQBo1h+BesgeZi9WLhJA9wsi2Blyw79SXSsNt/sOmwxPaZiQswihlEQgte3TrFOqpVAApOMsrq2dTqojEgRRtLJme6FQCIVCAMVoJv+Z/CJ4bf35nFkoX0oE6L2d6dR3ie11ulCWhlK/hMyjku61q33w7WTW6d7/bPO6ZWXQiE409kCO2uWv4StaXMk4UO6oyNu4xfdjWMQs9ANmfNqQ3SouM+uO20ta6NMGFEXPcrUKvUovpoPT5dM08DF86030TE5OZrQvURRlHKJ9DL67b9SGM+BEg49p860J/8xDwtJ3Pl69Xkez2cwkbHOBFLevJyn82NiYjYZEbbkJ1OTkpAUKZErFNSXkcM19P8iR+oknnsDhw4etrwZpQ+6//36srq5iZWUFURSh2Wzi6NGjVpty4sQJzM/P46//+q+tRmVxcRErKyvWcXt6etr2e++992JychIf/ehHbUK7qakpuwdHjx7FmTNn8O1vfxv/7b/9N7z3ve/F7/3e7+HRRx/FLbfcYtf0L//yL+0eE4gBYIEOzW9tbQ1jY2NoNpt2ncIwtL4uPP9IvW6yct9zzz2ZcMW0v9w3x6dlcM80P6tFGkL3ftn7imscuJkdb8v33h2Tl6J3Qr1ez2SPp+fA1UqWvXNdDUo/74vdKAO/Xf0Ogz2khpkOBh3xtS35gJK9iqs7KO6xcEwhIISEThx5XY2FOx6Fv+VMUlbbkGcH+2dwJBt1wM2TzNfksiPYeDlN86eIUS1UBGRpKY3pI/iH3ZAB9zLJymtNyLcFQqCrKthWIWKlEQAQ0vyl1m54VJ1cS9GWyqp0RKoV01rBBLWNUUGMiozRiclHY7CSw45lS+xFcaypANNS7HAPPDTszLBOQPezIm+w99xuFpfp893fDca+Hwm8W8pAxU5p6gc00H3fj7/blkdK8vVNn4uYBJfJKgIDrqSdM0EcUBBzz+kl6T6v5xuPRwDzAQM3p0kUpY7NXCPgi+vvrhG158wbScOpf56IjfrlzJmbx4D6PnPmDObn53Ho0CFrqkN0Ly8vY2RkBFNTUxZsEIDh0vbV1VULMJrNpp3D+vp6xgTrj//4jzExMWH3iLJ6ExiZm5vDysoKzpw5g+PHj9u9mJubs1GvKEP27OwsJiYm8IlPfALDw8M4cuSIjfRE67O6umrD0N5xxx2Yn5/HE088geuvvx4bGxuQUuLf/u3f8G//9m+49dZbMTo6iuXlZRw7dgwTExPWiXthYcHm5SBwODY2hpWVFYRhiGaziU6ng9XVVashWVtbs+uwsrKS0SDR57Ln3PcM+MIG87NSpL0qY7x9fk+uZs0dk2sy+Bkr64fXKQNJPlDkK73eFVeq7Pjt7ppFsTv9NC7sz+0rK53vp83lFZ85CwcXZQxy3tIdcCXhScelKg9BoTKZtNhfz3c1/9kaQoksqClbP5H5fx5W5PY/YdxSZtJhED3Eiqwtk69Z5l7+pKXS78w5oWsQTEvk03PoYp53t89WdvHsR525ybUytOYcaKSmUEpx6zzt3aO8GZomq6f0CpcKJH8kFAKhIEXWqdqClLJpMk1AquFI58d2mvVarDfgR0TwA5Yjg2eAz+8oKfc8b5HsOD3eM3w+vqjJZaaBWXry5nNlpchh+7XKVfFGLS5zOwiY8ElGfQx/0f0iUFFEnzu2W6/XeP1oKnh713yICmfUuWbBp6Vx6ei1vrwfF4D1o2Vx94TTR9e4yREHHr5woG496qfdbqPVamU0GlxqzukhkEbaCX6d+ueOytwHhcybeHQu0nwAQBAEGW0JjRuGodVSkEYDSH1BAODixYt4/vnnM2tIoIQcutfW1rC2tobnnnsOAFCpVPDOd74T3/ve9wDAalLOnj1rtQ+kceh2u5n1dR3i6TNn/CnEbBiGOd8BfgaKzoNPU1l25nxgvdez6uuz13vEByR89PvmVfRe8o3hM9MrElj41upKFaH7ECW/8soruOqqq/C+//VZVGtDpqHH3yIrWXcG4sxLv8CCWU0MBCwcRqnf4vaXmqP4gQXZgHOrDFe+qzk9SR8CwsOUkHaCtxTsH5z7mRHgY5k480ZMKDe1KQtXmbZP588pyey/07dtS2vjCxPKbaW883LnINhMCcxwBiulP52CAKxNPetN50Fg3lzLdx4Hl3FbRjSPHfhgrH+Xc6aYTgqARi3exBAuYJ94DnuqQLUChFICtJ/uvgqBMAwhZOLqrVW6FgKABAIZQkoJLYy5lYolnt0YxktbdbzQHbHO2zk3I99MHBMjDWbeBZ0LfZwCC+H8yy5XhrXXQJqB3kdUAbCgO/a86lxV4bmW7VnbrCDl6Vh0aYV+NXi+ev223epcwr985n/h5Zdfxpve9Ka+2uy00G8EjeUzYSmTxPHS675br6iPoh9SH0NM/fSrfXDb9aLfJyktosNHD6eLM24+BqiMIe9lf+677jq+ksMq9eOzIfdJSLmU1dUkcKabM55uYjUOOngbn3kYp5EzrJTbgUyTRkdHLeM+NjZmE9GRuQ6XJJMplBtClps4ra+vZ5y/SSo/NTWVaUPO5Fx7srq6ilOnTllnZQrZShmmSQvEHcA5mFlfX8dHP/pRXLhwATfddBNuvPFGNBoNfPvb30YYhti/fz/e//73W98Mmkuj0cD6+joeeeQR3HTTTWg2m7j77rtxzTXX4G/+5m/w3//7f8eLL76I97znPZiZmcHBgwczZ440MSdPnkS73bamVxRBCkAmOzatycjIiHU6b7Vads2azWZGk0VrBcD6l7igjX/nxT3TnB7uOO9qwMqK77n23aPz6AoVeE4Xfo9rDvkz5IJ5t28+/0GCZ7jv7d0qlw1bLA/fp+OqKwW3xeVnkWUZ+pWU+rrMg6Ae4Mfbk5G/utF1OJGWDefS8+wIcEXsInef87TCuacz97MmP9n+fDLivPNt3uyGj5fmGM5TwzUT2lch01W2j8w3d4qZ3vMMJlGWoyRnd+OnO3V5zvVQUlJms1hT5y+CzTHD1PraiyyMzRJmrhpjJYFYAwraj3UcB2ENDaGz+2+fW03rpYEkypSQQBBohIGC7GrEyfki+t1nt/xpT89tHmDlH/oMiE9HzfYoys6tH/+lfjcFhm9EWi4YBVFJa83CUOTAos61uhKlLNxsUb1Xu5QxzYNI0nuVIvDQS5Pg6+Nyxnev9WJuXEZjEIDVj/nDoBqRsuvUHzFDnLF2TTd843JJdBHtHDBxIFqm8fFJeoG8aQldIwk5ARbOiNJfznTSd7L/5+ZY5JRNdFJdWhsyBSKm3Z071SMwQcx4p9OxUbXW19dtUjyiudPp4KGHHsLo6CjGxsYykago/Guz2cSFCxcQhiFeeOEFXLx4EaOjo9i/fz+mp6cxOTmJ0dFRrKys2HUhQNTpdGxui6mpKdRqNZw9exb79u3Diy++iM3NTVy4cCGjzeFrRVG8+Nryvec5QGgdFxYWEEUm+hYx1NxcjfrgAMwFrhwA+541TgM/E3z/qHATP/ds+86tCxzcws0OqfgELnSd08B9goqCNuzkXXqlNRYD9Z6k63KK8IKLXK2c1L6k9Pmb7HUe7pOGwYGKYWZE5huKeWPWhzVrESJfywOoXPbbtHVpoSpZJty0zDJeaT4H7dlApz0bSNK1TDKBtJVPV+J2XwDhmFIpZX7LdC/+UgQQy+9Lu4nEMub3KlMu4zz6pOLFe5BWoLOVStoTFl0kwAISGjGNkByFZD4MtGacgHOaI2HQhjZyeKFDIIkIFQYKlVBBQkFBJuDCtLI5KlwGn02jCHqkLuBpW9ePiedK8WArjvO8O9wv420eB4cGwTJVsHOiE1RGdKfPGRGhqWpfpV+A2msugwLdV6PQj6BrIsK/9/PDVmSi4PtBdu8V9dWrf5cZ8o05iESzn2u9QFg/pcgcw+3Dx9j7nGB5Iafk9fX1DOPozsHHQBEg6XQ6uVwS7pngTH3R3F0GkIeTpWs0D8qSTONQngceBYru0xqQfwSFmAVg/UBoLDJN4uCAxqZr9Jm0IjQfH8N49uxZzM/PY2pqCmNjY9YJnvwWaE3It+Pv//7vsX//frzjHe/Ar//6r1vJ++rqKlZXVzE9PW2BBl/7m2++Ge9973stQFlZWcHzzz+P9fV1PProowCA/fv3W83H7OwsXnrpJXzzm9+0QCaO40ziOw601tfXMT4+nlkLbhZGgGt1dRUzMzN2Hb///e/jhRdewB133IFGo2EBho8ZJ6BGa8fPHtVxNVv8rHAgQDRy/x46J51Ox/oH8TF4pm8ax6ed47S52gUa0y0c+HCNDhUCrq6ZHI3nA0/uO6BIm7jbZSBTqPf/r8+ikphCZaTQOWDRg+EXPYBFn6UXsCiTpO9EA8LlyTrDVPAa+TaWVRHUB/vqmO1ka7j0cHY+KRRJSGsgVpB6GwJdQETQQkLJKiBrgKzk25ZQbhinxDzLSQpIn8kYpQxYpNc58OF1s8CCS/UTTq6kV3d0ti/uCImEXDi16eqgDsr92shzYOGeRy+jCOeUZapohLqDIVzENfj/YKSyjVoQI5RBmmnb+SukhJRJJm7AARcmSIAIABEAEjWz5ELhxe06LmxX8cuX92JbS0RCpvksSPUhtAWf2Qm6a5CZNps7aY+MtiRdA4/ZW27d8pon79g5R/1sn4KF03UnkZoPamulZjOP0xKwzXV1IZdj7jRoPd+97a1NPPh//1+viSmUz7Gxn1Im6S+S4PfTZ5nWYicgpxctRaCIru0EnPRq447ljsdp94VVLeqD/3MdTAG/EysxZ7xvYuo50877IqbN1TTQNR4dyAWXlOiOGGs3ezmZOrnRpfjYLvNJjCRFMyKzHu4XEUWR1TS4Zk3uvnGzHk7f8vIylpaW8Pu///u46qqrcObMmcz6uQzvysqKZfR/7/d+DwDwd3/3dxgbG8uFciVfjGazaZl6AHjppZfwt3/7t7beBz7wAYRhiK985SuZ9sPDw/joRz9qNT2UdZvMtaampjA7O2tBAoGipaUlC974PvMz4YJZAmkEoLhJkCvhd88Mra+rPSBzNgKZPs0Y3yP+PPiCEtA6EPBwzRppfA5GXe0CByNFYN73vvHR6AMTvn7c+dLn140pVE6K2Kv+DrQEO3FOLAp96tqFX84YaeGOouX0aMYmcsosc835GSsKTlkxbsKRtnZ60gpaxVDdDqC3IbENIWNASCipIcIQQoTOgL0KgwJcu2DpMV1pXc6Se/0qqHBzGAeTpqy1cBsUlKwZiqB19OE/Dy/cD9QtOjPpM1Fg2iP8JktplmR3b0sYSEEgKMlloZENU+tSobU1d7L3GLgwIMQ1LdIIJVAJYHJaUM+W3oJS4JfSS6tgr0Fk9ktn6hHwdLVuHJ7SkPl9YnAho4Fz3bHyMITu66wpmW0rQMkMM47uBWFi3XlnQ9nmizuXInDRt5bmVSr9AIp+JepFbXeqzu93DD5Ov2DA156P2e+4g9Doaj18Y5aN0W/ppz9Xo0ARgNzMyT4tlAsWfMCKz9EHjNz67tnijB430Spi0LhZDg8n66ORA7YyOtxC0aAA45xNkn0gNTPiAIsiL/FxCDyMj49bGl2newJKzz//PM6fP49arYZut4tKpWLNr66++mq8+OKLtl2tVsPY2BharRY2NjYwNjaGtbU1PPvss3jqqacQhiEmJiZyc+JryenkYWkBZMLw8tC0vn5cDYC7t4OeZ/fc9eqLA04XMHB6fOeRA0R+ragUjT9Ifd99911xpcqOeub8xZU0471sG2ExOBAqL/32lMrl3ag6QJY58Y8hPJ/9owCAVhFUt4POy8+hImJUpEIQVmAyNccIhioIahUgYFLhXiYWJRSa9vnVKIxc4+tJe2Y34H75IAeXddtZeDp02L0+Ryxu4TKmLm3CmZhvjuXnQhnmFhJKBCYylJbQGlCxghaAlBJSJjoErQEpkSCPtFdr/qWNKZMkwCCgoEwtoVGTCiqMUQ0ixEpgW4VWgwWhGFUF+1tUfAjPY2pH+KGI0e89SH6H3fPW/673px3xUlICBnZSdru/16r4fox7MdODgA5e33ev6H5Z8QGgXnRwJqQf+ouYaVd66vbH7fvdvlxG2Mc8+2jiEl4f8+2T7NK1RqOB1dVVPPzww7jjjjswPT1tk7PxbMm8H5/5C58fl+ADyDDxZN5EORIoHCwBAp+jOwELPrZrSgPASqZ5dCYy+eGlXq/bCEmjo6NWq+CTzHNGk0LVPvLIIxlTH256MzIyYqXuvHzjG9/A6uoqHnvsMYyPj6PZbOLs2bNotVp44oknsL6+jq2tLYShyVFx9OhRfPe738ULL7yABx54AKOjo2g0GrjvvvsQxzG+/e1vW1Movr+nT5/GwsKCDTF7880349FHH8Wjjz6KTqeDyclJTE5OWhOx0dFRu2+UI4P8TsIwxMLCAur1utX2cG1AGIbWd4QzwlxKT+eTm0Xxc0v1eXI+7vtBGibaJ7df9zs/1y4dVIc/K1wrRwDPzWHhnrMikOxqC3kd16yrCJQXgaArVQbqnSScWSfgvLMjL9xkpF8twSCAorQuKQAGGKsv0xbqu2f9LKtYyIDlrT08NwVcbpUYJQ0BLQKgOgItACUAEVaghYSUVYhKFQjK1yALBAylWROR/NzsbU/GatenJjdRfkWk/aVsr04YTmdxkq/SXnIDmjr0eQpfNxD5LiPqManLnZUMiLEdmbETNENBs3LJttkH4d3/7LysZkMIaEhohFZjYZyfeku9yfdCaw2RRJIiSbs5AwmdCghgkuRVZYyulgi0ghIys9+pLkLktiqdkHsuPFXyBOcu5iJSae4d4Y5BGds1sici35FLtsggQHZKfEA6bcRI5++7tH1e35jW4+3c4gPrl6PFfbWLDzDs5EfNJ+WmslPJfD99DEKrTwrImaJ+JI68bpE01ZV80nUf8PHVdYvrFFpUn5sj+aTy3GGZzFgOHjyYSfTGmWlixHiEIx7C1ZW6F2ko3Hm7IMJnRkJrTEnpJicn0Wg00Gq10Gg0cpGXfMDMBTqkleFmTjQHYtZJQs8LgRFqTzTweYRhNuEaZ5JHR0dx++23WxOi5eVlXLhwAbfccov1sXjb296GOI5x5swZ3HzzzajX6za0bBRFuHjxoh2D8mwsLi7adZ+ensb+/fstM0+J9gDYtSMnd1obassjWtEcaJ7f+ta3cPPNN6PZbNqoWfws88he5NfBc6MQ8HLfDT7mn9+n/fI9T+4z6GvrXvMx9NQ3nWe+n74zPIhApexd4nvPun2/PjUWuHyJb1/j9JDOXc4P5yAmWn30BsA1q8lrLIpb+q+50lqtEwYwqSS0hhbGREPLAKI6AiSJ9XQQAlIiCAOjqZBZzsg1wShdA1GsOzFMFwNQvkpl4vmi77ahyFbhwm3HbMZ8ztantdIFNYpOVy8TFX/Y1PQkZM1i8lW5iY9rjkNtss8ZMagCSaYJUDgFu0q9QLHOMtp2LkIgze9tepPQqEChGsTYUgEkVDpDex6IcM8EilbWpVEDOjFZ42CrEITyOpqFQhbZ9Ra2D+E09r+5yjGR6Gnyl7ZJwao15/P4lPG5+s7abuTteS2ARdkPetn1fn48feCiyGSgiJkvkwpezg8tn3eR1L3f/rlTKdHcq5RpU3qtaRnzxWnnzLSPgWq321Y6TUw02d+TlsJl2giQECjh/XFgQevBzYR8a8C1O649P58D18Ksrq5aU6TV1VVEkbHJ5yGTqZRFI+KO5Hy+NH9aHzfZX7vdzkSF4on0OLDi2hAeparRaGBqasoChVarhZGREUxPT1tgMTc3h8XFRZw6dQrHjx9Hs9nE0tISzp07h+eee876fRCw4POn/icnJy2gmZqasuZTlPiOO29zCTvt1+joqHX8DkPjoPyv//qvuHjxIjqdDmZnZzPPJ50Nmie1o+R6tMfuvrgmYHwPXSDoAgsCxe6+l5UiIMIZfPf9NohghOr4fEOK6OHj9iPY2O0y0EjGlptE5fwn+bWXjHnLq0KWcP72qgeUmXT06iUjnSdJfxBAygCVsJpKV8lZN8mcbdQY7ih+Wb9vTF+N3Ix2e70FYwo5oBiojyJpcAr/iN3ulafBXa0UTvY2TaGxlOd6z4YJEDFAMoCJ1ZQ4UwsBo3wQiQYi3yP5YAR0XwIIJNNgMK0jOXVLQEJjqKKxrRQudhW0jqGEjRUGzRyuCwnv13wpg6L6a+Oal/Xo1HuX/91NA6PUAb2Ihh60vUFNnlzGvYiZ9EkDfe35dfc7/dhy5qNo3F40Uxn0B79IC0PffeY9vZh7N8xm0Xhlmhh+rywcJl9vt0+XsXbp4fXr9bplNHl/POIOXeMaCT5fLqUGDIO4tLSEMExNS3hdAhlFfVN97tTbbrftNYpydeTIETsub0vSdWKoOdjj60HAqN1uY2pqypoB0XzGxsYs4079rK2tWW3DxMQExsfHbWZt0pZQLo2lpSWcOnXKmpTx7OFUl7Jfb2xs4O6777aAiep97WtfQ6VSwXve8x4ABqTMzMzgW9/6Fr7zne/gz/7szzAxMYF2u21BxezsrHX4/tGPfoTz589jZmYGjUYDk5OTWFhYsOZEZ8+exde+9jV85StfwczMDABY520CWTxvxPj4OEZHR+28l5eXMT8/j/HxcUxMTNg9JlpWV1ctY017yLUEfF/cEK0uSOfmZWWl6JlxgQcHDfxM0z1+Fni4Y/cclT3P1CedNxf08HdrL/o5zVeqDAYskDUScD/5St58BF7mJ5UwOr1fjrO1tXlhLKEVsuYMWTIjl+XFyF7zASuX5XYluk6uAo+E1s9S6Mw9kXKdEAIIGKvM19k4q7rAogwQmvpWRutFFL5V61G4I3deH2PvcCdxH5mpKRO/lZoemaGEx8QpK2G3zsIiX8X2qVOqSiYGoESi7Th6++aSodS33gmYT9h+Yw4luMaCEuOJzCCUWTsR8FtzRvMvbW+mSotnrgsBVKRGKKiWtuxydiIDsuaeaua86vx91nWqIYHd6DTkLX8/8LH4adOZm9oxU3JxN9dBUaAC7zySdc1oBJGCA6/WMpPcsX+o3A/YyIQTfg1LvyBhp6WIqb9SpUxD4qtbdK9XGQRwFZV+67pMjQ9Y8Xv8mkunL49ALwkugQFXu8Dvuf24jJy71kVzKTqLFH6Vj0fScc6k+v7SXGhMisLEw8y6Ph6uxoVCtVIhwMR9UUiLQIy6G8WKtB7cHInX27t3rwUiBDYajQb27duH6667zjL6fI+5piWOY0RRZKM10drQmpH5FN8vd+9Je0JjcB8L7n/h7j+X1Lv33eLucdEZde/7tHC+ft0zVzSu27ev+MCArxSdNbe4Gg33eX01yw5H29kP1mvyM5fHKjupkqtLxWVsfTGgDENDbAzV6q//3J2MtiiVhLv0GDaQoiPRjSIOmhguH6uefhDO90G0FP3qtXJyXBej8Y+ee1qnGZmz4Y9FTwK8QyUESYcwbThNRnG5BLqMHbR5TspqkyYh+b9CJQEXpG2hObITkGNCJYRIHLyFTIEIAEW6lER7IQBIoTEcKlwKVLJ8dKpkOkbRBnmKG0mrn+KDwHmgV7T+IvvRQ15R2GhzKbsjeXBBCKR4NsWah95grCiq1Otdk+H7ESuK9d6rXVH/nCEuMlnw/cD2YvgHMTPol9ayPoo0JK7ks0zL04sul2lypZquRJXWlGsGSPrrhg+lsrGxYcOgugnhqHDm3ad14OFmqQ5FHOLjug6rnB5XM0bjUiHnW74GpAGg/BUbGxtYXl7G1NSUjVZEhWd/JjpJYzY+Po6TJ0/i3Llz+P3f/30LLugvaSHa7TYmJiYs2FhcXMTy8jJmZ2ctHa1WC+vr65iamrJmSKQRonwVrVYLhw4dAmD8FYjpj6LUfGlhYQEbGxs4fPiwNVfiiehmZ2et1oTMr2j/lpaWrHnV8PAwJiYmsLS0hCAI7Njj4+PY2NhAs9nEnXfeafeGn1sCDhxYEOABgMOHD2dyjnCNDP0jutzz4WOmXY0ZP9tkSlZ2Nt1ACXTfvfYppAABAABJREFU9QPi8yPaXf8ZlzZXe+gDH77nla+pTwPJnx/ug+Jz6u5Xk3s5ZbCeSTLXgy0olsAxUaBw6+Z/LC8vJKx35NynIpbEa2NPUlJDkKfHlBnxCnR9Uy27VjADgDsvE0OZzER7WnCeutRZ1GHEeXudJ0u78yoqGQkwHBpTQMYBnpd1csbJRnsyDJdOJO+BYKYoZOMuzD2S8BPwyoJBzc4ESat5wjp+BqiFQCr/9tBcygeWM+YZnEDd0eBSQsgAQjANlTUfIw2OznSkASitIRNQlLpHCCtlF0lzAaAa6OSfQkcJKNJ+QUNAQSMonpnI63HcFfIfdcY8e86db1EtzvMRAZqQ+7C5B4rueajKaMKSOhkthTNPflZyDuGs04L3ms9Ru+/cKa9z4EFlp8x9P3WKpHX0w+pzQN5JKZJsUvFJ8X3tiiSXvRiAMkDB++R/3fVwmXaXRt8YnIGjv+Pj4xnnbbee61tATKQPHJL0nejzJc3j8yNwQsyd6wTOmVZiSjnAIYaXO0bzc0KMGx+PaxOo7tzcHNbX160EnkctIo0BBxqUI2NkZAQPP/wwRkdHcccdd1gNAoEWSi5ImapbrRZarZb1bzh58mRG+7K+vo52u23nRPNoNpuZfaCxyaRqcXERzWbThq6lvCN33303Ll68iE9+8pPWF+Ps2bMIggDvfOc7MTY2ZjUeZMJGffC1pH04evQoDhw4gL/5m7/JaKzIB4N8XnjeiFarhXq9bv1J3ISNBFzc/XWLax7lO+vuddf0yqc96PVOcp8fzuQTXfSPBwBwQbOvrzKtSL/07WYZaCQb9958895/LcrlxHD3SUR71ed/LdPqqZMrZaTlouf0pshIlrMU5UyzGENpanEi/DYpuWzEHAjylpZnywPAsmg3mnAQsuwW0cZNUFKyGDrKRbBikudEUm9JFml0KyFSRs7O0Ir8sz1mV7EI/LLrRbyo7iXHzxeiNzsvumYo05CAMP8E89ywIMnltFkixSyYF1Yc74PKoUzMoaRO9swDnL1o1vs1VwZ59gD2XHjNKX3SfJ2prjOqLn5uk+8FAIX2JBU4OODbGS8zJu8nM2Ph7G92LobeNwZIKCs+5ns3fuR8P9T0uZ8yKB29zBYGMVVy+y2jq6jffkx9itoUgSru+NwL/LjAwsf887o+syKSTvOQn3SdcmCU2bJT4UyZK9l1wQHd48yhCzY5KOFrQuNz0y0+32aziSiK0Gq1MswjFWLqSWJP4VjJ14B8SWgtW62WbUf0UyLA1dVV6wdCkaSCILC+IhQalwMLcgjnkn4CMOvr6/jFL35hgQw5iI+OjuLixYsADHgkGs+ePYt2u41bbrklEyGLNDMEStw16nQ6OH/+PJ5//nnrf0Jz407uXCPBQSiATOJCDiJ51CzX34Yz8K5Wwvfu8AEJ9x6dlX5K2TPK147M2Xxj9fPOKqrT73tlN8qra3h1BUp/DHgB1+cwyzvpp1geu3OQVTROykQX957NcM6ZGj/DBc6wZ4DKq10KpMie4qtB8w4COtKGARTSJB2SgUS1EkBIASkFlAK00ojiOAmxqhErDa01lNIO2IBPSF5K0G6xg6RZyfoGJPoCLRHrIPGBcOnJai4ytGntgEECbtns1xACVaFQD2OMVLroqBqijOUQUZIy+ym80304V/dfBgmxWh5JruhOf4RyXwqLUbxNS563XTsdr+8yCOPOf+DLpPBFbXzj7QaA8Un4fWMX0dvrGv9c5lTqSjddyaWPSeDaEhdQuNJPFzC4mga6zhl0+sfzLrhmUJwB57kEiGGkttQPSc0XFhawsrKCD33oQ9YcifqkrM6U6wBIHZ5JW0DSa3KAnpiYsMwmmQwRU0vOwNwBHYB1GCatBDfXoX9kAtZut60GYXR0FFNTU9apmujkJlfklD49PW3He+CBByztRM/09LRlOFdWVrCxsYGjR4+i3W5jbW3Nhn09cuQIlpaWsLS0hBMnTqDRaGBubs4y3isrK2i1WlhZWcHf/d3f4ec//zne/va3o9ls4vrrr8fnPvc5ACYD95vf/OYMMz0yMoIPfvCDWFxctD4kAPC9730PAHD27FmcO3cOjz/+OD7wgQ/gpptuwtTUFFZWVnD69GmrzSBTqlarhX/4h3+wPhkEILjWiZ9X+kzhaMn5m6JDEeggLQaBEgD2Gg95S3PiffMzTmCNNEt0Xjng488cPxM+kOE+41EUZYA0B3lk8uUDtkXPOK2TDzT4hBY+beNul4E1FjstrnPjZXSU+ZqTIRfQmM/AW1ynfPgSTQ2JqLns146bOooKX9veI6fmKvZKH6YRgks985AkGw0oOxrvw5dkzs7HYeZyYWxzbR0zlty9dK6+Me3/Mw3TtZBCIAwDBIFEWKmgUgkQBAGqlRBSCggpoJWG0hrdKIZS2oCMKEasFLpRjKgbI44VC9Ga1cSko/IwsJxOFuC2mMdP1idlOq0rtj1SXDtDgwooiCRlnjDZuEWult00q2m0yfEY/SSBFzybPK2yBpJ8FrVAIxAK0lLE9UrpGpjt5t5EDk3QWZeEggey9DkrKGWmQllHfn4+82T4h2EVBTsRmt8ixJFBXwUbT398tJZrMfqp93rVdPAftCKpmu/7IOZArtmA78ezH4mer55PormTUgSKekk0d9o3H6Osb96WS4t9ElvOmLkS5X7o4ddc5rLRaGQYR97Wx0QR2HBzWBCd3KafrvvoWV1dtW2oHs+l4LbljB3XrvgYY96G9npxcdEy3jz8KYEkn68LaX9IO8JNxsg0itaCGGM+9k033YR9+/Zhenoa9XodQZCasxIw4xqmdruNIAhy9PG13Lt3LyYmJnD+/HkAsBGgiFnmmcKjKEKz2bTAjq8pTwTI975er+PUqVMAjE+GC7KJ+SdwzjUorqbGNZFzS5kGosi0kYcwLnr/uCCf01D0TPBr7pq7pez5ct8dZe+a3SgDvhn96v/dSnY3EBlFpYh5K2vaA4z0fU94P8KYmQiHSRx8zcjMxccEZUwnBGf6c9TY+r4kcP5xUQwuHNOnspIyxp5rQGYfGCufqevCQ9eEPgwEwkBieHgItVoNI8N7UKtWEIYGWBgthmmklMZ2FCGKDYjY3u6iG0W4tLmFS5c20dnaRhTpxELGBTopnPBrkNJITNpy0r5VTs2ohG2XBQC50yuMtkJBIkYavYs0NKamTmzORGaviVbH9SL54otgpFCRCsOhQkUobCNmoW4luMaCGG2zJq7ZGc22bC0ur5Qz1Pkzkyp1UkDSmyFnc2KOR5Tngp4/l66dlLJ2ZXlW6N5rmcein+v9/LBxRsot9GPrkxQWMf1u9J8iWooYA1fyX9RHmfSwCCS4jAfvgzMVfGyf5JHqciks3S+bP2dSSQPAmR/O3JBEndv08xwQrmkT7WGZ1oX8KqIowuTkpJX6k8Mtjc0l0qTNePjhhzE9PY1Dhw5lxiCfBtI+rK+vY3Jy0kryOeMKAPPz85a5JcfxpaWlzDkjZpn7gZBfQqvVymgdyBm80+lYHwRao1arhYceegiHDh2yYVypr8XFRRuSlrQlY2NjWF9ft07y4+PjWFpasmCg2Wxienraakhof7jPyPr6Oj760Y9ibGwMY2NjWFlZwcLCAv7yL/8SL730Eh5//HFrSkWO2YuLi2i1WlazE0URnn32WXz+859HI0kq2Gw2cfjwYTz44INYWVlBHMcYGxuzie9cwMdzU/BnmwAlMerc2fxTn/oUwjDEoUOHrC8GgRYOLAj4kDlWo9HAxMQEVlZWsLy8nNPa8WhUdE4bjYbVzHC6udbJfT75XHwhsPl47vPPaeLPB39O+bPnKy7Y5QDH7ZO+b29ve/u63PL6MYWy/EYPRvXV/60cuFhG3CYdy97zh58sm5grDc/Ki3NF22X0O7T2GqafNgPug8PLgc9iN0oYBqjXqhjeM4R6rYo99SrCQKIShqiEAaSUCAOZmP0kRjyBQCBCIAwBDXSrFURKYU+tjs16DZ2tbWxc3ES3G2N7OypcSxdcuPuNgvvCUw9OnWx9DjhkglpS8TllzhaCe9okTCbNGQnjycK1KhVDaEAiAISJGMWpCiWwp6JRCxW2lcJWTBDPOcmWqU4l976zznd+N82leiXT9Pr7sGv9gopXq7xetQ5lZScS/jKA0UsrwM0b+ik+UyDqpx9ad6KlKOvb1VgUjeVqB8roKpKUusXHbPB6xAy6Ulbf2BSFiGfU5n3ztlwTwunjEYXoGjnnEsNFDCMVYjA500b3iTnc2NjA1NSUZZK5Mzg5UNMcZmdnLW3Ly8vWlp8yWtNaECNPPgTk90Dz53vAr9EciNm94447AKSJ+fi8CRQR3QSGeJI80nQAhpldWlrC5OSkXRtaa3J8npyczDiXh6HJEfLggw+i3W7juuuus9L9s2fPIgxNQrpf//Vfx8bGhjXNGhsbQ6vVwurqKiYmJrC2toZTp05ZZ+3Pfe5zeMc73oGDBw9mIk7NzMxgYmLCmlQ1m027fxQJa319HdPT0xmToE6ng7vuusvuEwdodL4oehbVj6LI7i1lB6e14YCC1sp9Nvh9n58P/aV942aAZcy/773D++PR1/gYPMhCmSCkyNzR9164UmWwngeQgPWS6OdvcbFtLyl4RsSbloSb6kllgRQ/W6c/CXz+pz8vpU0ZT5oXZ8k84nvtXnBpEQ55Os+IErjgWhSdpdhv/lHMHrtRNc04fsmpTxeyM7YshVBupmditKUUCAKJarWCeq2Kobr5F0iBQEoEUkIKgUBkZ6dh/C2o3yAQiJVCIAJIAYRBgCiKIdBFFMUJ405Me1b2nt1vvsZcwl20RkXr44Mg6Wpo+w82GlZqhUPJLLW/CxqBRY8SMtFAWCd3M1cpTGQocuLejqmN6TiVCRTtdfY6Bz29Sva9UFy089dHRz7KW8/hy8fLmFdlx7iSoKAXQHqjlV5qede0gEq/qvzLVfv7mPbL6aPofi8a+51H2VguI8Pr+6SrBBJ891xgQEw2kNqSc8mtK0l1NU1cys5t2l0mjWtSeN4IYiRdcMKZPh6q1Ncfz6vA80vwvBHEBBOzTHPjJkl8Pfl4LiNKSek4CCDtBvXDpeEug0i0k2aE1hvIJvwjZpUAgauNovldf/31ds3X1tYyJl7EyBM93PRoY2MDzz77LG677Ta7rk899ZTVOnHn8ZGREZsMkDPUtN5ra2s5iX+n08HMzEzONIyvLe0FB560JzQ+13y5Z9q9xov7jLjP4aACjqLi02YWCQiK3gWupoK361eAcrnlNdVYZH/od0EaSIyjdi+nzElRFJaBhmERdLKsumD/cqR56Un7ZOypAGw6BgZGSggC2SlRfgXNGlmqBGDs83ME5YnNLBOx0oMXL9lClzB1/vUrK0NDNVTCALVQIN66hM3uJqpiL2S1ahy3kxXXMa2LS6CZn1QKgEYtBAJZRa0aQgiNzc42BDQ2t7roWoDBNALowaNaPJTuh81gT8M7DYpXm64H0CKEFgG07kIRxFDGV4JC0AowrRU9H2QeRT0m81ZxDCkB87+0BEIhFBGGwgjbSuBi17w2pAOpUnM/V4fjW47iJ/Fy3gQ+bVFx3UFPtKt3ujLM/OvZR2KQ4jJT7jVez2VU3T54fgVeuASY91sk/ffdd398+XW3ve8en2ORtNIHjNzik4bS9V5tuX23b42JQaaIPmQWQ4CA29UTw+jaxbu0cDMl3x6urq7izJkzmJubQ7PZxNrammVu+ToRk0sMX7PZxKlTp7CwsIDjx49nGEOSppPp1fLyMqIowp133olTp07hvvvuw+c+9zkrmaf5ETPNNRUEAiYnJ61mgjOuMzMziKLIMv4kSadwqhSNaWJiwvpJkMkQTx5H60caILrvOoxTCNlTp05hdnbWmio1kuRzZ86cQRRFuOOOO7C2toYzZ87gS1/6Emq1Gu69915rjkXjEv18n5rNpgVhIyMjdg2PHj1qNQr8PNKeksN7o9HA2bNn8elPfxrHjh3D1NQUTpw4gZGREdx8880YHx/H5uYmAODFF1/EE088gdnZWURRZOfC1xhIzaJISzM1NWXrkakbZTUPw9DSwv1QXEdsfhYJCPIoVW4h0z1uckjPiQtU3Wu8rrt2vvcGtXXb8DPD+/U90/xv2fuTgB9/PxbRvJtlMOdtlGkR/Pd62fnmHH377JtLz73Zvb2dlN71c+9FdsxJT1pkGSuTYKyXxoV1y2xBBOdZBGewTZ18d5ylZYYyrk8J91AVjO0TxaxRRlci2HxL+J2so3YqLc8JijM8Z4ncXrjX+QVlHLWtVoK0DgEqoUQQmDzkSikoxABgAIYkplo43SZrDA0pgEAKCEhjUiWlMRWSl9DZ6mJzO0rmQXoonZ4Fnc3nnP0/hYJNQrcKYm1T+b05Q+5VWrA0N4cmmy6YDNo25KzWvHp6joQE2YFl8irYvUgPH/kLpOfOfK8GJq+FJG0IPyU5RC+yt5yScUXgHy5Hi+B7fJ3R8wnuBhswF87Zvd8DEPTjgL1Tk63XExgpMpkpqutKkKm+T5Xfq99eEnvfmC7dvbQURZK/sj59pde9fiWKZTT6mA8gH0mGj8lBhbsffK7cZINHgAJgnYmpDrdlJwk5t4MnsxXSBDSbzUwuBpLAk+SZS9oJQNxyyy2Z8fhaEAMKpLbyru8EaUFarZZNkEeglmsF2u02VlZW8Pzzz9s+XaaZ5ukyhi44IxqIuZ6ZmbHhXslBe3V1NWeaQ9L/breL1dVV+53GobWhKEo8nwStKa33//7f/xsA8JWvfMXm0KCQuZwJXlxcxOnTp/H0009bf5XTp09jcnIS1113HVZXV/HCCy8AAA4cOIDbb7/d7uHExIRdO9ozAm0AMuZZXBtBAGJlZcVqtGgNCBBzGukf9+nh4KNMiMCfOZcB90n/+X23Pe+X1/cVrl1wC9c4+dr1O4eid8SVKK+JxsLnUNwPwHAdULMSf848eyTiltkvpy3TLPWMZhUyGRPybHGfzsxZ63MB7hlNjpc6wyn5mSA3qk2a+C1LDxNXZ2SutKL2LxvCgUymFo3nY2J42x4ApDz5oRknxwQyT20Bw/yHYYAwMJGgBDQqlRD1agWVMIQQQBR1bTZuKYTRYCQSeeKvReZsmLmGQhgfjKEa4moVQ7UqhDCgYzuKTGha2hPm0KK51N53BITzFyk4FeRfRIupyWCLm0SZfyqBEloCAhJSGNghdFJfC5NFUUhoynchCFuYvrXnmdM60WAIaQBQsi5SALUAqAUCUijEmjmNE33soSSzKANGPYfBizYKrheUXmy02R1fLUZb/8OxttlWgzD0uwkkdtLvlS79SsFcJpcX16QEKHdY7AUC+qEFyDIBgzD1Pjp4Py5dZWvkMis+0NRPW/6dmBJi0uieGyufj+kyqEA24zCXrNJ4xMRSXZKAUx1u2kM5GJaXlzE5OYmZmRmsrq4CgHVUJon6xsYGJicnrYkMRTMiZpmYy4mJCet7QDS4DCEBFO7kS6FnSTq+vLyMb33rWxZMkAMxaRDW1tawsrKCM2fO4JlnnsENN9xg19P1p+AmTG7kIL4WxKSPj49jYmLCMv8TExNYXl7G2bNnM0nzSNPBHbrJl4H2jfufTE1N2fHIjInA4+joKJQyv5GnTp3CwYMH0Wg0sLCwYNeGQNPZs2fx0EMPAQDOnTuHer2Ora0t/PjHP8bhw4etJueDH/wgZmdnMTs7i4ceeggbGxuYnZ3F2tqa9fcAYMEL3y86WxwY0BxHRkYwMzNjHaipL9LCAClA4Q7jZAJFWhfaD9oLFxS7zxoPiOACRde0ytUq9Cq+wBP8GeZmeBww+AAVjUvPKhcO+AQJV6rs2ij9ah78bQfsH37pJHgNyz3rDCAp6zsVtidS/wE0GFyiXhrNBcgxT5yd7M1ZFd/nd/xzLQBsyV/pYbVIEF2+3nz2/YyYLb4IN2mYVyoKgIn4FIYhhvcMYahWRa1WRTUMLGMdSAMy4jhK8jXE0EpBQyOQEkrJXMQcKVIwJ4SEDALzVwgIDQQBEMoA/+XqN+GqvXtQefEVXOps4+LmFuI4lfC7ax4IGHoDgWq1gjAIUElC3gKAUiYaVTeOEUUKsVLJXwGlJJQill2BtGEcNGoCGNKsvky0VeabTh4DDaFjCKWspkIJGKChkdCSroXWCnGsISXlAZEWL9RDha6OUZECUNLmtHA3udCIy5dN2t9Fz6ILPvv74aO8fqT6/xmLTzJOxWV4i37kfJK5fksRI9+L6fcxFW69Ism/b1w3NKRPcumj1UeXT1rq3iczHmKaeB1uq+4ytRsbG1hdXc1khKbCJdvc7IRoJM0CZ2rITp40EdPT0zh9+jRWV1dx5MgRSytpHB555BHL9JGpCzFTZBo0NjaG2dlZu6Znz57F2NiYzcBMjtTESBGzOTExYRm/er1umXjKbUA5JAicUC6Nubk5TE1NWaa82WxiY2MDy8vL+P73v484jjExMYEnnngCSinLwLZaLTzxxBO4ePGiNS0aGRmxNv8UZcrV3JDGhkvrl5eXbZ6KRqOBQ4cOZTRGy8vLWFxcxFe+8hW7X9yHwGVAFxcX7X5PTEyg0Wjg9OnTdu9uvPFGdLtdCwTJcZ32kKJUHTx4EJOTk5ifn0e73cYXvvAFvOtd70Kj0cDzzz+Pa665BgAQxzHOnj2Ls2fPAgBqtRoeeuihnDYCgPUnIb+OhYWFjMka0fBP//RPeO655/DQQw/h2LFjOHjwYCaXCZXR0VELEAl8ctM3F8jwZ5UDLvd573Q61pzL9dUoeu597wrXEZx/5s8SBw++d4YbXYrXp7okFOBt3bGvRBnMFKpHCMP+wIXfPManxfD1IwTL5ZBRJOQl4BmGXThGEbnxs8xOht1yHDLLnJVLE8wlXDpnQ1nmgmLiEhJSDYZbN+9I7JFfslrUslySLDiacKTJReZn3tlbq5typi71BciyjQKJyVMQoF4NUamEGB6qoV6rol41TtqGZ1aWhjjqAlpBqTi5bvInKJUPxakTibwUgZHyI7Dj0rmUUqBerZh43nvqgAC6UYQtpRCLlHainJy/a9UA1VCiXqsiDCUqlYoBLAJQsQl1G8UC290YsRLoBgJRDMTK/NPQyRxM50onWqUEoVoHbpF+5ruiwc+Naag1Em1G0c5px1bJ3K5IjarUCIVCbPfIAw1EeiJTA73UKEw4LUuBgUsW+1JEQVYn54MgTKPUE2ckeo8BNQj9Fu48X3bf/ezP1fH6BU2DSv/pbxHz7avfr4TwckuRNoHu+YDCIPPvZ85FNPlKL41OL4ajjA5XWkqFm/fwMKDcNKXRaGDfvn0ZU6KiPrlEmUAOOWpzGqMosmFRJyYmLMjhie/a7bY1z+H9U+H5MDiw6nQ6iOMYQRBgdHQU+/btw9VXX22BMAGhixcvZrQ3RB/XYtBci0A2tecRtGidKNkdZeUGskyyy2BybQnfB76md9xxh9WCcB8b18+GGOoLFy7YKE7NZhMXLlywGhbS/LRaLaytrWFqagqVSiUTjpXWgzQLbjha2sdTp05hcnIS09PT2Lt3b2YuXPtAbdyzydfd1TT4hAduKWL+i0rZs0tj8rF9mk5ej49dpq0sG9s37qDvpEGL0H38Gr3yyiu46qqrcOfdn0O1NlTcWd/+EkVt+wcW5kt6vRhYIOEjvGqC3BiW9eBSdLe/gmIs92XRzaR/J5sFSZgZ8LEZtrlpEbV3VB6CVAoZ+tn/fWZGhSWb2IyAhV2TIhM1Ph/bVZ5tLAMWxjwqpcIMbXwjKmGAoXoNI0NDaFy1F9VKiGooEwZbI45jZxbA9lYHWseAju36SikhpUhMobjc35g4hZUqZBAgCKoZPwzBDpLWwHassXGpgxdfuYgXXnoFW1tdxDqdshQalVDiqpE9GBmuY0+9ZuiFhtYq1Sgk37WOESfZsGOFxMxJIoqBKNbY2to2PwZxhE63C60URLeLEXkBQ3ITw7KDQCgEJsMEJJlPiWSeiaYiQGx0HEJDyiBZjwCQpOVI90sKo9mRYQghAwgZIkYFm90AKy+F2OjWcCmusP2VBlDktIMqj7oETwCY3Tj36SlOpqehnLrpHKiRWyPphCGR8tcfFyiUA4CdFjcLuu++77NPw+f2s721if/nrz6Kl19+GW9605t2iWJ/od+Il19+GXv27OmpIaDvvZhWKv3+CPbbxvcD3UvL4TI+1KZoHJIYuiYIRQwNMXzUpsh0wZVuUpswDDPMeZF2o0i6WkQbMaDkAMwlpVwqys1NuFkTSf55/9x5mRhZ6pds8AlAUDtuHrS2tobFxUWbXZo0Iaurqzak7PHjx3Hy5EmcPXsWf/RHf2Qddx9++GH86Ec/wh/+4R8CgPXtCMPQ5pqgyEzE+BIY4WtPGbdnZmZsToparYZ9+/bhQx/6kDXfOXTokJWsnz17Fo899hg+/OEP2wRxPPQqBz+kaVlaWsLp06dx7NgxAMD//J//E9deey1uvPFGXHvttRgbG8Pc3Jw1ceIJ5ugMkdM7aYJIQ0QAjbQYo6OjWF5etk7pnBbAONYfPXrUJsLbv3+//QwA9913X8Z864knnsCHP/xhjI+PY2xsDAsLC2i1Wjh48CDGxsbsGFEUYX5+3kbKAoDTp0/jYx/7GADgJz/5SeYsEECiiFV0jjiA4P9cLYEboICHHObt3PeJz+zJB1BpvQmYUuEJIH3FBdWcBu6U7nsH0HNG+0/3eeHt6/V65r29m78RuwJZ+ne6Lpe4pZe8yMPpoQ96GANh2cgSqTsfOeObkLlfxOn4gRHvi9ud5yaiubbBZy/Nx9GZdvl1TbU6WUdp38A5Mhjhzjxyjq/wo0TeNqGPsWYZTYD5f2rioy31QBCECMMAV+0dRr1awVCtikogIKEQR5HhG5MM2gCScKmmhEGQ9CwtOZbSxIcg3WuiVWcYNC00JAQT3if+FxKo10JcNTKEqNvFZhjgwqUtKK2htAlbWwlDY6oVhggDA2gS9YHRpGgNreLEVCs2AMOoJCCFgBQSFRlAS4EhGSQaDIltVTH0xEBd1BCKbVRlDJmACtJZSHb4NRSgY+hoC1p1IXQXQJzVzIl0jpnCARNMuNmhqsC21thUmp3LpLecVzY7CBkNib8oT42cIMFVRDjduhoRfjH/PHjG4oC+lNp8ccPN9tIyDNr361krAfgdCItKL6ne5ZQyZr9oTPd+mQTUHacI0Lh09KN5of7KtCJuG9ffwQeKXCaoqG9fVCi65po+EfNKjD31yRk0DhCIUad6PKwrMYeUH6HdbuPw4cMAYO3reQQhih5EY5AZDeUsoGzcc3NzAAyAaLfbGB0dxTvf+U5EkcnY/dWvfhW33HILms0mJicnrYlXq9VCGIY2ahRFoqL5ExNcr5tEeIcPH8ZLL70EIJvBmgMncjDnjuitVgsrKysAUuaRM6WUDI/qv//977cggO8TgZQnnngCW1tbAGAjVoVhiMXFRTz88MP40Ic+ZB3TOVDkpm7UH+0xd/Q+fvw4/vqv/9r6KvJCWgRyOh8dHcUzzzyDpaUltNttHDhwANPT0zaKFvcR4DlBxsfHMT09jauvvhrvf//7M88eP2933XUXJiYm8OlPfzoDymjdfFGe+Bxd8O8D+vSs8HeTj2Gnv66GhNd1/X5oHPd55G25xqhI68Hr0T6416iPMmHIbpWBexeeTz5riLLWRRoL708m8a85qbzL5Be3zZpQDFYyzFauE1ebkn7WgtfI6CjgLljRLHwaixwRBWsvGA07YW4Mf6gzbbg2hI2SMXvxkaNzbVPujmTlAsZUyYILAVTCELVaBY037UUt0VLoOIJWEZSKTfjYxIlaCONbQYsWBAGECCBFIjHX2vhaaG3MoaTOHmGdMG1KQwllokcRQEvOpkwmFgqBeiVEEEhEURdhILG5FSFSMaAUwiBEtWK0LNVKgDDx+yDJt1LGREvFEbQyWhWtI7N6mqJdSVQrNePjUAmhdAgFIEYA4w0TQmIPJCKbSVyy9ZWWQ9ambxVBbW9Cdzeh4w4Qb0IghhIxa8d2LKMhMx8kNEKhsacCXIq0ceKGQM6JW7vn3D0RKDy3/FaurQti+HOVwdrsXcFAo702YCI8dyb9lt0AARltakHOGLfuaw0+fD9+ZXWBrGRup6CizAzhcvrpR7tBf31STn6vqPjmX7QOLn1cIltk7kBMic+Jk38mJpiYO25iw52PXWABIBNGlWfepkhAxJhyCS4x4MTUks8HZXu+4447rBaD6CZGcHJyMkMftTt8+LANizoxMWFDxLbbbSwsLGB8fNzmq1heXsaTTz6Jra2tjBN3vV63IIIyUG9sbOCpp57CxYsXAQAHDx5Es9kEAJtlmhhomheQgieqNzY2huXlZayvr2N8fNyGfCUnaZ6YkMLzTkxMWIbw2LFjds/n5+ftHtIc//3f/90Cubm5OZsU7sSJE3j66adx7tw5HD58OKOlWVpaykjXecQlooVoO378OI4cOYIvfOELdnwqFy5csI71BDD+6q/+Ck8//bSd/2//9m9b53waBwDGx8fRbrextraGZrOJmZkZ/OxnP7NO6O55jaIIjz/+OB5//PEMsKC6PHs8nVkeXIDAE4+45NPouVoQXvj68OfQpZNf49oVd0wqbj907t2++Xc+B/6s8ncD7+9Klivb+y6WPCvhL5crFfT06PwtYp1F5puvJk9VYaX3xE37RhYZfqi8OJJYnxEI0Js56T1IdsD8FV9hGgoOcsAzPJPruHHAroYSb75qxCS7CwWEihBvKSgVGcY1MI7FUgqoTJrxRGqvAWiFSKuEeTfMslYGjKT5HqSdhVIKUsQIKkZbEgQBdEKiEEiAjwFCQWCY/6vfNILhoRqEBKLYOGCPDO9BrRJiT7WCSmAS9EEAcRxhe6ubmD8pG64WIoSUoTkgZHajNbqRMV2SASBlgFAIBDo2GgihIAMBIauQYcXcD0JIGUAIAaXMXiutEcggVV+pCEJ1obsbUFEH3c2XoaJLQLwF6E1IHUMghs2CoQEoDQgFCOM78qZajEuxxCuRQhyFnHt3TkKBWeBAJfv8UcSrvMdQcfE9Qr5rKcxnYzlTG0RrsPvvotd/4T9aZVoDt45PglckXSu630t7MAj9vYCAT2Lo/pADWQkltSPm3kcjMXruXLn5kTueKy3l7bjEFkhNNIg5d2ngDCTXhnDnbhqHzIPIFInTQA7LJInmcwJS7cGJEycwMzODQ4cOWQf0w4cPY3Z21trpE4P7z//8zzhz5oyNYESRmwh4AMDk5CS++tWvotFo4N3vfreVirdaLZw5cwb/+I//aGn4sz/7Mxw6dAj1usn5QFqBxcVF3H///dYB+8SJE1bT8t73vjdjsrW0tGTvjY6O4rHHHsPTTz+Nqakpq2kAUqd2n0bn4MGDmJmZsQCEIk8RKGskGcEJtLhSb2JUCRR1u12cP3/e+mGcO3cO7373u3Hrrbdav4ylpaWMc/vCwgLCMMTU1JRl7r/xjW8gjmNMTU1hamrKrg+FET5+/DhmZ2dxzz33YGJiAgcPHrSaIDKFi6LIgorf+Z3fwcjICE6dOmXnX6/Xbd+Ux4Looj0lPxnSzpCWaHR0FJ/5zGfs2aL1pKR8lC09iiKr+QKQOdtUeDJBWkf3uSV6fZoGnzCiSEDhvp+4dor23AUyriaF/tJ5aCQZ2qkfn79SkTDkSpSB3rrC87nXT2yZw3O+1+JLvcYq/RG/rN93DW4/xU0/XHMpTVLihPlIZp4CDGYikiFJU38+onvYbuTIZWFECxasFFwQA+XUL64syg+Dq0kRRZLsVJtVCQPUaxXUKgFqoYTUCjqR8mutkvCnFQghAUgIRcx44qSdaAXAGHgNDSk4o6uMU7OOQUFioQUU+RYI2nYBircqYHJBEOupBVAJJYAQI0PVBFho42AeSATCRHMSUFBKQaso+ZeaP2VTLQrDwFOG9OQMGYdtnYSNTVYqcZ/ImO4ICRmExj9CJvusNGQQgrJtiMTvBEEIEW1B6QC6W4OOO9BxAKW6QNyBZPtmfEM0TPhZjUqShbsiNbZFwuLr5JwnIWpTwrIHIHOWaJq+I9ODKe/viSC9SXaEHqc5WWNXPMB6fRUAw6BaBw54Uh+zVx/Y9PtD1Y82o1f9ftr3M47vvk+iz3+Mi7QY/dBUBFx818vWs2xu3GSjiAHygTk+X36dAy7SUnBJKklMOeDhoMgdg9uq82hIxBiRdJYk/2EYYu/evdi3b5+16T958qT1DaA+O50OKpUKAGRyJJAjMS/EgBHwISfter2O4eHhzDqQ5oDs12ksV1q9d+/eXKhemourzYoi46dBoI3Wju8LaXoIIPEIVzyCEYUkjaIIlUoFtVoNYRjiwoUL2NzcRL1ex759+zA9PY04jrGysmIjHNHYNC/SMD333HNYXV3F9773PfzWb/0WDh06ZLU/BFAajQZuvPFGm5wvioyJ0o9+9COsr6/jueees/N929vehueeew7PPPOMzdBN4IFroigkMNcY0FnodDpWS0SaEZ6PhGhyhQ10hvjau4IB9+zzez4BiO8+L/SscA2dT6jitvGVoufTB3KK7hWNeSXKG0Zj8VqVlDXSOe1BEYOemv5ke7BfS0fj/Rf00ZvYcl5/Vxij/vvI1zRMdOrITkypwFBVYk+9hje/aQ/qFYFQxNDxdmI+pIwjsQiSB0QmEY8otKxxhNY6Rhx3ASQycynNPwHjz2yBRGJKpQ2Tb0iQgNqG1DXISsXY/EuJoFKFlpRTIjG9AgChIQPgmr17EGuNWGtsb3WAWCWuHGbs7e1txHGEOI4MyCAbfDCHf3ZwBAEaIQAFEyJWAzIwwAdCGD8NraDUNgIVGlOwQEBKowHR2nhSyKTzmNZbhAgrDQQVjbB+DeJ4CyreRnfzRejuBnTnRYTqEqTuIrB7ppP8FgKVAKiHwEgF6EQG+GghuQVVf+rFEnOo4sq87NRIqby4oOK1Ni1yaXi9a0LKfojpmlt8P4hF0r+i/nppGHx1+mnrK2W5Njij4oIQor/IBtptWySxJKaVj+srZB7jhpx1Q1XyKDucwY2irKMpRVMihm5kZMT6B0xNTVn/CAodS2vF/TZ4nok777wzY/pD819aWsLCwoJlqOv1Oo4fP44/+qM/wre+9S3867/+K/7xH/8Rb3nLW/Cbv/mbuP3227G+vo6zZ8/iU5/6FEZGRvDAAw9YesIwxNve9jZ85jOfseMcPnzY3iepN2kHZmdnsbKygk6ng5mZGTSbTWu2ROZaZP5E8yI/i+npaRvS9qmnnsL6+rr1CaE1Jcb+a1/7Gn77t38bBw8etGvGHbnn5+ctUKP8HrRfGxsbVlu0uLhoTYZIyxMEgQVZYRhifHwcBw8exMrKCh577DE8+eSTAID/8T/+B/7rf/2vaDQaWFlZwfLyMpaXl9Htdq3Z13e+8x0sLy/j/vvvx9LSEj75yU/i937v9zA1NYUPf/jDWF1dxWOPPYYbbrgB6+vrGc0QlWuvvRY/+MEPsLi4iD/90z9FFEX4j//4D6upOHPmDMbGxix44WCAO1hPTk7aM0yO+iMjI1bLMzc3Z/1ZCKQuLi7a9SPNEfch4uCQni2utSDwy0P5lj27/Nxz/w0fECkCB67GxBemloINFPmJuO9LF0RdKaAxoMYiNRPQ2Ru54krPOBNOaSKy9VlfBb/jPQTxA5Ve4Rp368dbayMxteFiRWqVktRIxnMlq4QSBqND06Cm1+T/CYPqMe2w13XvkQTTTnh5LbLd0k73jBaOfEioraEQhMbJee9IHfVKgIrUEEpBQRlfhITkiqwkSe4CIyVPRMxaATFiqLgLpSIjnxcGSdi9VBFUHBnQoZLEedr4YFB9AQEdS+g4QLQdmHsyQJCYGwkRIAirkEGIIKwmQEFDxQpCSoQygA5CE0p2ewtRMkYcbyfAJ0rAjDYgJqFR27Vh65c44gsRGMf5INkFKRBWAgMkBCB0cl5VDNXtIooVgorpNwikmZPWVjujtYaSLAs4AghRRTj8ZiAehqgPQ229Ah1tIe5ehEAEgdhkLgcQCIWhMMbeqsDLWwJKB4h1Si9F80p2plzT6P3O3zE+jQF98ved0bZlrpZrT0W2watSXB8Kfr1XKNqyvl7LUgYq+P1+iu/Htkiq6AMJRdqFIlp6ARD6W5RrwweKXLDg3ne/c1tqHp7TrcvNaVxmgmsLyEyC+vNJTH3r5AIQvvbkE8GZGfJJ4FmxV1dXrUT585//PG6++WbceeedFvCsrKzYpHDEGBKYIGdqGmNlZQWnTp2yTOuBAwdwxx13WGftZrOJW2+91dafmJjAd77zHQDA29/+dtx2221YWlqypjc0h4MHD1q/Ep7Tgps4bWxsWGdwWnO+Fu1222bsplwRlDODRx4i0Ebze//734/JyUk7Bo8qNDIyYpMB0v0oimw0KVp/ukZ7dN111+E73/kOfvrTn6JWq+EDH/hAxlyItDjXXnstvv3tb+PLX/4yPvCBD2BmZgbz8/PY2NjA5uZmLtpip9PBV7/6VWxtbeGmm27Cs88+iyiKcPToUTzzzDP44Q9/iH/7t38DANx66634wQ9+YNteffXVaDQaOHjwICYmJvDFL34RzWbTmqKR5mJtbc0CDM7YR1FkHevHxsasNorOKA8q4DLmYRjaDPA8oSLX9FA/HCy4z4P7DBfdp0L7zoFIkaDBfd440KZ7bqGzRH376he9b650GQhY6Nz/Mzd6/rBxsJFnrDlqKGDwE+al1+9n2Q/xThwcOUn9/Xjn+7ZgKmf6wdbToWknpgx5Q6OUoS+asZMDvP+BnNopU5iCpXwjB5gmXrdhKI1fQr2KaiAQiCSSkVbmBSeT5HVJiNQULBm7fyUAkfhTqDiGlDLhc5OwsRqGsVcRVLQFpbaNSZBWEIlUX9u6AjomWo0JlQoqxhlcBlCVIQSVKgCYDNyJ5kMKiUAIaBkgVhrdWEFF29Cqa8YzYaxAzuQQxh8CUuaQWBpWWEALZeiDgBJBYqZkfDdMtKmkP61MYkClTJK/xOeC8lgIraGhyFgs3SspDVgRFUDHkLU6urIKtX3J0KG2AL0FpY0GSEKhKjX2VIw5VBSrpFfa28TtPXEqSsMn+zV8ZWeu+CmlM1byHOsEmJnJm7UseO7tyRRsTFa1F4AZtPgELrzQdf6XtxtkjFezlP2g9fvjVqTW3+mPovsjvdNSJgnsVYrq+oASNxNytRp8LmXjc8lovV63NuQ+8w/q111f7ixNdaitLwkbd94mpmdtbc1K1R9//HFUKhV7jzPzUZSGyyQGj3wU6PvZs2fx3e9+19J31113YWZmxoa0HR8fx0033WTXi/t1XH/99ZiamsKJEycsWKE5NJtNmxCO1p+c17k0nMKy0trQmhAQofkAxkmZa5TCMLTaHgJP5MhNIILnrSBAQ8VliN0zQMBjY2MDe/futYz61tYW3vrWt2YA6traGmq1Gt75znfi29/+NgBjKjY5OWk1AMPDwwiCALfeeiuOHDmCs2fPYmlpCWfOnMG+ffsscLp48SLCMMTFixfxy1/+0tI7OTmZARYf+9jHEEWRzRZ+zz334Nd+7dfw0Y9+NJMhnHxReMhc+kfggNaegz+ed8T3nqHIWPy8Ux++aGe8XhFT7wPirjbA9WNyfZ58fXCNZq93DAdFribF977sp8/dKDsa4bU3DHg1ixUfD9TENUnyVzNy+MI6lmkajEEgBp8ccIsYjCSeUg7MZXtJa/dPAMVTYgxUwrDTfeo8CCTqtQoae4exp15FRcYQKjLMeLLuQW3I5JeQAcKwYiX92kZ7igFlpCsykBDSmElBGMgQqUQrIQCIAEFYQ4iKaYvYalmQZOgGaY8SRlypGJHqQkJCCgkZdSG2K5BbW6jWhhAEFQQVokuiWq1BVSqQocTW5ga6Wwpxx5hoQccQpCFBF9YngUCSDJLtSIGT0XBUgbAKHSloHUJJIEDFaBsk1QPieBuxBmKtEs2KMtqdxDfEZvDQMdvRJJeHTvKqBEOovmnIALHO1Yi3NxBvvQy1dQlCRagiQjUE9gbAntBE2VKRTmDT7jGzrnItX3qcSSESPJGm6cuPQN4nJX0NFEWBmuxuaNjXizai31IEMHrV66duv/0UFW7e4F7nn33mCr1odpmbIs1HWV/cRt83Dl/TImaI900SXXc8kly7OSWoDZCaSHHbd5KQ+xgZChNLpjzc7OlLX/oSANiISABw5MgROw9Kzkb5KJ599lmcPn0aY2NjOHjwIB566CH8/Oc/x2/91m/hwIEDNrITZfmm7NsEWjgTd80116DRaOCuu+7CwsICvvnNb+IP//APsbq6ipMnT9oQqEQvBwsEmMgUamRkBDMzMzYnAzm1uxJwoolnI5+YmLDOxaurq3jwwQcxMzNjHaQJTJHPBweHtMYEFAk8kK8B7e8Xv/hFTE9P4/Dhw/YsEJ3j4+PWMf6xxx7Dxz/+casZ2djYwPz8PMbHx9FsNtFoNHDx4kX86Ec/QrPZxMTEBE6fPo3R0VHceOONOHfuHNbW1vDQQw9lokPVarVM8r4PfvCDAICPfOQjuO666zAzM4Pf/M3fxLXXXovTp09jbW3N+ouMjY3Z7N+UPZvOHoHc+fl5C8rIFIg0X7R/tD4ETEm74QIyAnV8femfz8nbBdM+8OA+k64wgL5zp20XRBUBDgJfBCQo8hWBI5/AwEe/795ulgE1Fr1yJ3vaeCRtPpOjMskdqwyPyL9n8Y3dj3YlrTOIMQccGgW8WhJmd8FwiGdt6C6vZXtGxq6KaRFyWMhDZgoqOOUpoMhmMM7qQrLftK3LdR95hYVOpecQCAKgGoYYrtdQrwaohsKESZUSOgmrCiEgEzAhkxCyPDQxnUkzX2l8CzJmZBIiceo2lkMBoENYHwvGCguKyGT3xmgBjB9DBCTaCZWAEBVtQwYBtNYIK9KEhhW0WiZTeKVaBaAQx12ouJv4l8dWgyISp2jaMK2sLB6pE3cMrTTiWJm8GkJBxRKKAJwyvhaIY8QJwNKJWZJGKvU2/HEy7zi258WJQQA6s0JIoDps5iUFFEIg3kaMS9CQkFqiGgpUFdCJFIDAa+Jou+/1zDmfyrUE/TybOgEVrolRtodcbhpNn8z6m60pob3P91kvoOF7T3jXLKNJeeOKea6U5MwHCooYhCtdin68y4AQZz6Kik+b47YhzYAbPaqoD5eeMgkw/05/ibl2I0rxHAg8+zOAnKQ+iiIbMerixYtWcr6xsWHDpk5OTuLaa68FgAyAoL/kG8El/kNDQ3aeHDwAsFL0kZERLCws2HmQ9mF0dNRGJaJxyOxpZWUFBw8etIDmpZdewgsvvIDFxUXU62n2b+7ATWvS6XRw3XXXZYAkAQdiOonpJqdl7iBPe0PMJvU/NTWFkZERG+GJmPb19XWcOnXKArChoSG022089dRTmXC2w8PD1heG1o2S+BFIffOb32x9NC5cuJAJBwsAzz77bOZzEBhvPXLmvvHGGzOgk/blzJkz+NrXvobPfe5zmJqasuvCAS+ZyvHzwzU5NGfezn1GXADAnxFqVxS5jX8ngO7TIhYJFXxChyLtB38ufEn1+tFcujS8bjUW3rILErWeTL8Nz3nZQ5VHRnKLZd45O13GaLCaBdV8PbmMR0qjB1Rw0zFWh+GZtB8GYooJzd1hjFfRXHSmRplJla+PehhiqF7F1Xv3IAyMiY0xdTNmPCbjswRkCJ6Z3DJ+WiXSfAAwzK8UfBDj3C3JlUEQ3EjOWbLeMkhMrERaL52iRqxidLvb6Ha3jAN2lPhnxNtQHYUgrGAoCJPxZXJUNIIghKjvQaVaAyAQRVuIti9Bx9vQKjaAJzFholUyEazYpgiTvULFXSCWCCoKWlUBrZNoWSHieMtEmSKbWCERaBM+N1DK0CElhAxgzaZoRIF0nSETvlpDapOoT9SGgdoQ9NBedCuvQHU7iDovJuAoxp6aggLwypZCqg+5PGY301oIu0+CL4u9wNvlAUR6LTtnc/QJfBIUzEOafmbCTZZ2o94ghZJLvp6Kz2ypSAPgM5nqR3vhKy5D4PsR7aVBKeq36LuP8S4ynfAxFL3q+r77PrsMFLUjMxOS3HI63dj9JBGma66DOf/MIz9xvwCStnP6SJJKoTFHRkZs9mfabx4FijJab25u4td//dctM3333XejXq/j05/+tA2vSnPh4W1Pnz4NALjnnntw4MAB/PSnP7U0ra2tWca71WphbGwMx48ft5qSL37xi5iZmcGxY8ewsLCAzc1NTExM4MyZMzh79ixmZ2cxMjKC1dVVzM/PY21tDcePH7dApNVq4Yc//CF+8pOf4N3vfjeOHz+O5eVl68xN+0XrxM8MAa4wDLG6uopOp4OVlRWsrq5iaWkJ99xzD8bGxuw9fu4IgADA8ePHrfaIJPLj4+N48MEHce+99+J973sfZmZmMDk5iU9+8pP4+c9/jmaziVtuuQVBEGBoaAiNRgN79+7Fm9/8ZjSbTfz5n/85nnvuOdx6663Yv3+/1ZAAwIsvvpg5v1tbW/j5z39uvz/66KO4+uqr7V4899xz2NjYQKVSwe23327Px+joqM2G/qUvfQlf+MIXLHAg4EJ+GgQ+ab04mKXEho1Gw0bVIs2RG8iAm0SRwzcBOe487ma95u15dC1Xy+EDD/w9wPvh30mjQVozAoc0V7fPIvMn933Ax/dpRnar7B6w0OnPW5nNcH9dFUvsfFK/wbQPOywJc26lydCpRLmkSdmoOea7lMaU1c+tiWWHNEvM52o7igZn4EB4tAxIJbe8WbrXvLssuOB0cEpMZmmB4T01DNVChFInjsEmopEQImGEU+dmO65Spi/No3QlTtxasNkkOheakwagNRSSvBZk/iMlEMfQShivAwsuiCIDFmqVOoKgglhrRN2uOVNsTaIoso0prK2pYxj3+p4RxFEV2zJAd3sTcdyFBNEBWO2MDJz9M0BAJSFzIQNAmPwaMRSU6qK73bHmYKRp0ABkHCGOY9TqexAk3LTRvsSWbqNhMflUwiA9Yzo2LthBUkcKiUptGLpSR6VaQxxtIe5uYSjaRCRiBJdiKAXrh0HaElFw/JxDYovmh8veFxmrQLOfmoEDQIsBn3E6txm0S880VelHc0Ik9jd2oVniZZhNZTWL7qdXvxRJ4Xu14RJD3k9Z2151B5HQFUnmOQPtk0ryH+giIOO7xsfj5g0+2n39c4k13eP3iRkhUx3eTy9NCv/Mr/FIN1S4pmJ9fT3DRJNvAHd6Jkk+97EYGxvDiRMnsLGxYZOjEWNITuCtVgv1et3mJFhfX7eM6Ac+8AEbuWl2dtYyZrfeeqsdnzOhpKGgfsiHghyEV1dXbXSiRx55BNdffz3uuusuLC4uIooizMzMADBM7IkTJ3DhwgW0Wi0L4sIwRKvVwkMPPYTR0VG0Wi389V//NW688UZ89rOfxYMPPmhNyohxPnHiBIIgwA033GCdnCm/Bq3j8vIylpaWbCSlv/qrvwIAfOpTn8qciyiKrO8JmQVFUYQDBw5geHjYRqyanp5Gs9nEm9/8ZqysrOBnP/sZbrjhBjQaDSwsLFhNxa233orrr7/emn+5jt0AIKW0OUbc8uKLL+Kmm27CgQMH0G63cf78eXznO9/BHXfcgYWFBbTbbRw6dAjvec978O1vfxvj4+P40Ic+ZHNgfP7zn888C3SelpaWEIahBTpuCGAXEJDvBgB7JugzaaK4Xw35unATJTrDNBaP1OUy/S4wd98VPDgCD9rAATyPpEb99NLIUnH9fPg7tpe243LKYKZQWu/IiZC3d9teTn+XO7Z7r386yrUXhVFnfNeZNiHH1vdBimbMjxbOdabJKO2K30xozNT3clb5PjPKgmynVq5KYEtKkWTTDhCwNkIYQCGDxC9ApFJlH/OlE0BkfBKydQzjzM8amTWZSE3G8ZfTlexDonkQQiY5IQQCGSAIg4SSEBRJChTyVcegkLepb0QMJP4gYVgx2beVgtIKEBIyyXNhpmDmG8gwYZ6Z/Fwh6d84SYvE5MtoGZzVtn4hESiUrUgYcCmEgTJk8mWqJyF5BaDTPB2kRNEqSgBeABlWAF2BCEOIbgUQIaqRRlV1EQRbxrdDaTunFAj3Ypwdxrjo+fF8I58Yt9DzwMFnrmudng+brNCC4+RclPhX7NYbq0xY4l03V3PjUDRI8sDXYyky7Skq/UrdXEb9cn9Uy4BIP9c5MPBJD8tABL/u1uX1iOHn/fvABWc23OsuHa603JUAc2kvMfgkQea24fV63UrVG40G1tfX8fzzz6PRaNhEaRRulUBIEAR4//vfb+3vqaysrFjAQP4dURTh+uuvx9zcXIaJpHk1kmSBxHyTuRHZ5FPSularhbe+9a2YmpqyNv+UJbrT6eDZZ5/F+fPn8dRTT6HZbGL//v12LX7xi18giiLrc/D0009jfX0dv/jFLxDHsZ13u93Gj3/8YwBG4j8xMWHnQmYwPPv3tddei06ng7Nnz2Z8BLhZmRuxCwCmp6etozKFtb355putZoTMtojJXllZwcWLF3H06FEcOXIEKysrWF9fx09+8hN88pOfRBiG+MQnPgHARJnieSvcsrm5aXN2UC4SyolBQG56etoy5wQq+Pnk54/AgMugu5J/Hqa1qB4/uzy0rAv23bpA1hyL0+s6avcSQhQVHq2q6L3lezdwWt35ltXfjfLqGJruYiEb9vT7G/knlEtHHY4nV6d8nsRbZ9sVM2hZ/YOPhv5KrxZMz2KvSaERSsooLVJzHJFEfBLSMMQk+edATsrUF0IKIyKnrN2UDE8pCwjAmP9udwsmMpMxP9Ja2yhK5NwtEm1KIIPEPEpABsZpPKjWIWWAQCZmNlqYOQgBGSRsvACUiqHiCNtbmxAJAJBhBUKGqO8ZQbW2x5gyBQmQCkJYjYWgzBEClD/dJPJT0FAQQhkapbAMsIq6JoxutI3u9hbiKMJWt2vYS61RqdZQqdURhCG63W1EURdRdztBD2YdhDaO7iKJ+yQSbYmOIigZQIYaEKHZk6COSlhFpT4C1PYAtQ5GNtexcdGYihmiBQOf2chGZWepqEbhOdvlxz+lk3xP+qO9uJ/B2vhKWSSr12MpY4CLvtM1kvARE9CPtoIzCzQ+/+ted5l4Xz2XAXDp6cUgFGkY3DE5c+JKON1SxgRxpoGbJnEGyF0DGoeH7aR7XHrKNTbEGPIoQzQmhWOdnJy0tBENQLpP5GjKbewBYG5uDvPz8/jTP/1T/MZv/Abe+973WrAwNjaG06dP42c/+xnW19exurqK//iP/8A73vEOAMD+/ftz54akyWSXTyZDlNma5wAYGxvD5OQkZmdnrUkTMex79+61AOPgwYPWtGhlZQX1eh0f+chH0Gq18PDDD+O6667Dvn37bBK3TqeDz372s/jpT38KwITIXVhYwO/+7u8iikweh/Pnz2N9fR0f//jHEYYmqd3i4iLOnDmDO++8E2tra3jsscdw++23AwAeeOABa34kpcTU1JSNmrW4uGidwDkw+epXv4qhoSEcOnTInpW5uTkL2u677z4opfCWt7wFCwsLmTU6ePAgoijC/Pw8Dh8+jIWFBXzlK1/BDTfckDknH/rQh/AXf/EX3rMLAE8++SSklLj++utx6623YnR0FMvLywjDENdccw3W19fx3e9+F08++SQ+8IEP4DOf+Qyeeuop3HDDDRgfH7cmTuSkTVm46RwSc09O/eQT4j47/MwS004anbGxMQueKNQvtXH7oDak4XDfV773UpFGk4CSe420X0Qvb+e+Z7kWgjuGu/MeFNjspFyRnnfbjtgtu51RdmcRXBJJqTWHKguDm7PtcOpy8KCRZxmy37n2JY265FZNPuhsbmd/jwlNHqozWghdpKMpL1mYpCGlgJQSgUwYZLYYInGEMDwdk0brFAoZ8yZpzJoSMxkNclCWiZLAxj8CZd4248iM3b2QIYQgYGFoCYSwnymLdxRHQByZsK9MPSSSbNhmT82+BoGEEAGCKGT+LcxIywITmOR7SShboi/dCcXWz/RB+TZsOF0AOqwmYXYjhNVtxFEMub1lfU+CCuX+kAgrFQu4tEoTCRp6aJ00yKHcaC5Mng4ZqPRACAGIAJVKDfWaxFV7I6gYiGOFKFKwShF2UNznjH+ypmsecx57Bn14G0ZTxYtdbeexE+wc27qOJlNT9DA2SHp2epedmDTt6F3pmUv+5mtbdqIVKJPqFzHpPtBSNK7vh/hyS5GGoqxwJqAIhPA6PrDGGRWfhqcIvLmfy+yzgdS8pBdYIkad24O7/fFEebw9SdU3Nzdx66234rbbbsP4+HjGlIMYtfe9733Yt28fDhw4YE2mlpeXEQRBBgRyXw8an2splpeXM9GkuJSZZ3++5pprrBnS7OwsAGBpaQn1et3m0BgdHcV1112Hm266yZpZ0VqQA/dzzz2Hzc1NRFGEY8eOIYoiHDx4EMPDwxgdHcXm5iYAII5jjI+PWxOodruNxx9/3DLYt9xyC1qtlmW02+02Tp48abOLN5tNrKys4Bvf+Abe//73Y3p62moSzp07h3379gGADak7OTmJZrOJVquV2ePz58/j6quvxsTEBJrNpl3PsbEx3HjjjbmzVa/XcfXVV+d8LnhRSuGXv/wlLly4kNH8rCfJDV944QW7/vV6Hbfffrs9+1xbRJoVN38D0c4jnbn3uS+LzyyIZ+52z6jrb9TrmS96v/R677jPpq9NmUa01+crXQYahTOyvcqgJk59gxHNGITkezKQc6G8uGOVmUiV0iW4WVR/cxWC1/WDCCF898o6zeo/shdFYg7DCjOHIcksnD/EP5cBkmyfPoDjAxZAGAqEQYCQMkk7fVK4V94J9+cQQkDoJKGdBXYCUmoInZoIpUnGABmE1jdCaxMNyrg0pKYjEqQNMCug4ggKOnGeDhBAQ+sEtAgDEIR12EaSJE9CKwlUFaI4RpxoBgzjbMLJaq0RK41QmPZBECa+GaRpMpoYvkfp/GUCLBIfFDtdDaUiqDhGZXsLKlbQSqFSqRoH7kBCBBJBGEIKIIq60Do2fisW6aS+IyaZHqCVhkBs/F4STQ0SU7GwUsceWcV/0QHiSKEbdXEx3s6YW2X21jHxcbWPAiLJt5FHEf7H0Cx8atTmnrf00AhWJ1fxdVy8go8+aN9tAcygpcg8p1f9IlMht0+fit818ynSJhQBll70lmk6eJ1eDL5bj9NLDCm32fbV40yHGybWRwdv75qU8O/Ujpgyio7E6eDmUHR9fHzcOtWSLbsvbj9n7Pi4i4uL6Ha7uP/++63Z1MLCgqV5eHgYURRBKYXz589jZmYGc3NzGBsbQ6vVQqVSyQALLu2l641GA0tLS2i1Wjhz5gwmJydtJmcgzSzeaDRslu1rr73WmgWRedSZM2cwNzdngcbIyAhuuOEG6xPB8zIcPGiiRn3961/HCy+8gCiKbEbrM2fO4D3veY/NIUF7ODs7a+lvt9vY2trC8vIyRkdHcezYMUvPI488glarhfvvv9+G1G232/jGN76Bn//857j33nvxJ3/yJ2i1Wnj++edx/vx5TExMIAgCPPnkk3j729+OqakpHDx4EK1WC4uLiwjD0IKIF1980YbIHRsbw9LSEiYmJnDnnXfa6Ft/8id/gqGhIXQ6HWvapZTCr/7qr2JychJf//rXc2f/xRdfRKvVwszMjJ3LD37wA0gp8Vu/9VsYHh62DvoUrndhYQEjIyM4ePCg9b2Znp7O7DGdFZ7bgtaUnnt+/qgdPWcbGxtWK8fPJj/7dJZcE0Pue1SmnXD78kWuGkRI4RuDnoGyfBg7HaOfInQfIrZXXnkFV111Fe68+3Oo1oYGG8DDDQzig9B3+xJgYe+4kvE+S1nd7D2RDO+ClmwVkaHKNz8U3isaWwt35mn/VC8j2LXbrr0Mm2ULuS+FozXIUGgBCTFyjDbL+msIKOwdHsLwnjquftMwQpmY3SQ5IIIgsJJ/IP1r++f+AQlDrFRGBG1GVMlfzSZOjKtgmhGRMO98bmCMvI7tagTSmAJFkbJMdxAY7UEYhokmxgAmkdAaJ8BCp3FkoZWG0gpxFJuM47U6KpWaNQNLARppKbLMMQQSYGGuS0l7IWAzaye+JCpWpm7yz+56HEGrGFF322Q218o61YeBTNZVYauzmSyNRqVWQxCYPCBCBtbRXsMkyXv54iW8cmkTz557AVtbXXS2okLmVlOwh2RrLahI9jAPLQp7YmfMiY+UIGPBjqTOoF8wzRMHPJkKbq+lJaOR6UN70asO92vL3ih+O1Dt7c4m/vm+j+Dll1/Gm970pp60XE6h34gXXngBe/bs6Vsy5jLw/PtONR79gApXG+DWKeu/qG4v8MQZBx8zxMGBS2MZCPFdcxkM333+j0AE2dcTU0e5GahwJsgFN3SfGKwoMnb8PJoNB02kpaB7KysrAEw4WQIoExMTNjrSt771LZvZGQDuu+8+S9v4+Lg1meKMI0nxaQwynel0OnjggQcwNjaGubk5mzTv5MmTGBsbw9TUlI2+xCMFkYkT5c4gP5F2u41Wq4V2u40gCPDbv/3bVmp+8803Z9bo4x//OO6//35sbm7i3e9+t5W+/+Zv/ib27t2bAXXch4CchL///e/j/PnzOHfuHK699lo0Gg2rOQnDEA8++KBNfEflV3/1V/Frv/ZruOWWW7C8vIxnn30WP/zhD61z8tjYGJ555hkbQvbWW2/F2NgYxsfHMTc3Z83P7r33XrzlLW/Bn//5n+MjH/lIZox3vetd+N73vme/U64Ryn7Oy2/8xm+g2Wxia2sLo6Oj+MlPfoJHH300U+eTn/ykNXsaHR21md15vhVurhRFJknjH/3RH2F6ehp33XVXJv8FgQ0XIACwPij8PNPZJdMq/qy4ZpH8/ANpFCnfM0r1+PPje96JRv48EzDiNPjqcg0fjeej+dKlS7jqqqt2/TdisLe2Xwg5sObd/aEsY9zd4QotInhISl8hBnkXTbRSut0+mdkLfe0xLDFZJeT37iTXI18tgTRfQrYr73rm+uE3+bwdRi03bvpRCyCQQBgGqFYSCb0wjHZ27qwP6ziSjKNVYuaiU6aLzlOy2OREncbwMpoA0riRKRFgNAxWe8O6IWBBEZ4Ak1nb1FF2bK2FZbxZ6xQcCQGhkuzhRFsCFiwTrYxjttVQWPMuZwlJK2K1NPxmijqMn4iEEApSqBRMcAoTkBGGIWJhQJrQsOZpmq2pTjKax5EAtAE/AQAkDucSAtVQYnioBiEFXtpzEUIIRFGMWDnbQ5RYDUIC9PgeI3eCnBn4rpew/5pre5zifR/Q6PROKQZHZaXUAZvV2WlEqD5eK2+YwiXYVIqAgSspp+u+v0XaiKJ7dN3HvPto2WnxzdfXXz/Ayu2jH7pcQOMDWK5Nt09L4aOBGBqudSHmjrdzQQiP2EPmSuQgvb6+jkqlkqGv0Wjg+eeft07QxKTxyFVEFzmTE9M1MjKCZrOJIAgyOSpcibEvNweAjH8GaTbCMLTmU67fCi/nzp3DkSNHAMDa9G9ubmLv3r0WHHBGdmxszCawW19fx9bWFgCTm6NWq1mtRqPRsODDLevr6xgaGsLk5KSd689+9jO0Wi389Kc/xXXXXYdz/y93/x+bV3WmDaPXWns/Pxw7jQFn4pwYYYijGGFUlzrCCKMxnVQEkapMBd8ElTlNR63aHpjTgdNqGJXRy6h9Ne35eqb9vlJ1RkN/vCqoVDBtKlI1aDJtKoIIpwZcYYQjTDGK88V549AnjR0/P/Ze6/yx1n3vey/vx3EClL5nSYnt/ey99tprr72f+7qv677vEydy93Dr1q3YuHEj3ztK6fvmm2/i8OHDK84ha1cA4AxLRe3111/nGhkU7B42CQhorkjCRqwCgUhZI2VhYYHvqVwTBC4lqyCfAbqfcr2G74p2z2i4fa1OkRBMrJURvZDtRWMqOt872f6XC94OpTlr+3J9579+15w9igzjdgMNthXY/W+jeZ7A68ZXCkXaDiPbnpvw1SpV5A4q6NlCAyjFEaqVGOs6ytDKMFmgjIXSPquSYFkyo9+wUW59qlFrM6kOAB+74PZrJU0XL+FjC7R2Faopy5RS4rokk+U3amTgwu3qk+76IGrKMJWmgLUaceQzJ4mYF2J2tNYcVG6tdQXtjMsIZY1FmiTQqglrDOLYB0h7kGGthSkycK3ycwUXZwJiX/L7ZfcdADLWhDzeSinEUQxok1XeVoCKlD+3QdJqoNlM0GwswgWDV1Eud6JS0VCI+Zh15RiVUgT0/Rn+sLiE4ycXsHiuhWbT8DlXLBX5R/C5XrmpoJ1nDxU8U/adebLerXbBQKPoci4Op7xjrcjgJIOOPg8BwGoZWIq+uM9H7bdjLkLvf9Fxq52DWlFAtPydjLeinPNSAhRKl8hICpmVoib7k55/MoxkcS1pGMn+ZJCr9HJSFiYKtCaP/PDwMGd0CtmH1VgTIItLoKrS0qtLxjE1OscXvvAF1Ot1DA8PY3x8HDt37sSnP/1pnuMPfOADAMDxAUniMjBFUYQPf/jDXDGaJFUSrOzevZslUYArlLd7924sLCxgamqKg8unpqY45kEyNpSmltK/jo6OMsMiC8Z961vf4oBnAPje976HTZs2YXh4GLt378auXbs4+JpYEWkALi4u4vDhw2xE9/X1cUG7Bx98EGfOnOFzfelLX8L4+DiGhoa4Gna9Xsfzzz+Pffv28Xz09fXhhz/8IR9LMRgf+9jHsGPHDgwMDOAXv/gFarUaAxa5Vh977LEV65FiMijG4syZM7nMXbK9+eabePPNN/Gtb32Ls3JRu+eeezA6OpqTo1Hdk7m5OTzyyCP4u7/7O+zatQsHDx5EtVplSdXCwgKn8q3VagxWab3J+AlaL5SUYG5uDgcOHMDo6Cj6+/tZFkdrMY7jXOpZapJ1kBKqEPCHyRboOaMx0TMrgT6NlViaOHaSw6J3mwzYDp/BoqxS52NY3067aGBRaBCwUXWRHrjVmIych5080Wuw1MPta7TcLyhlbG4H4WoOjRgrfqiVfUnduSZ/Lns9i52rVnSa3YaV0Cub23b3xscrWLnF/5cVx1jBbmTeetonvwfHP8AFNa/rqKJcKrnMSoGHOoypcB/bHDuRAxYrZC3IgpBFzE6uuJ6Yn/x00r5iPsjIVi7km9kE7fMxiVTe+bVL91HlPjf0z8trjPEFAVMg1e4Bt9ozS4quFzyHNCZ3/ZlP37LEy3ggIa5PKTbQ3XEUWM2T5WVa2fgp8F0pQOsIOooRRTGSZt1l3EpbLpbDJIDPnKVsFvi+ruIK+LUuuwRRtIhzy00sLzfduEL2ou3jFN4juTAL1rAtYDkYnKrcPuFzmD/kvS04VySlKmQ+gteZ/EPWtflTaUXZWYo+D1u4f5FnfbV9gWKWYzWv32rnaHeudp9fyBd3KIGS/ZzvfEWxGCHDQNslqIvjLA1sCPZk9icqficNojANZr1e52JwAwMDWFhYwOHDh7Fz50421AAnIxocHESSJDh8+DAbyr29vWwYdnZ2Yv369di6dSvSNGWjS64TYhKkh7lWq3GWJBnASwa/BEMEcgYGBrj2BmVRIq39/Pw8vvCFL+Duu+/G3XffnQO/U1NTePnll3mepAedDOU4zmJUrr/+et5GbMbU1BSGhoY4UJvGRKwL1degeASqsUFB5+Pj45iensbRo0fx0Y9+lAvvERBIkgTLy8uI4xjbt2/H4OAgpqenMTs7i+7u7hWB1jt27EBvby/iOMYrr7yCOI5x9dVXM7jo7Ozk+JCwbsXS0hKGhobQ3d3N8icJeooaGf833HADy7AeeeQRTExMoLOzk2NChoaGMDg4iIGBAezZs4ersFP9Ciq+SKCV1rDM1kRrJAzQp3iYer3OsSTEaIXvpSK5Ekmw6FpkK3KWyOPaAYmi5341plY2CWDCZ73dO/Kdbu8ZYyG/LIsCty+snoTY0i4InIx2tpFX779dbvlMIpIZPjlHMg2JDw/GeB6KRYILeb62nswiA4M/EkAvAFQrancEHfA8+vEyfpD7KFuwESsNP+USmUZaY11HByqlEiKlfJpXIDN9FU8gjZk1794oz2nOw2tQZMBnUiWtNRvYymbsw4qZUqIfP3cELLSCZyIMLHv1FTKVlAMJK++P4AooHsRa/umABQBrfMA4YCINpVxmJuvBk8tK5Ix9azOg6QcK+DHB+vS9AuhrKFCBQeNBGaXXdeNOeZwMPfkZUoii2DEtUQl14zKWRD4+w/raGtbXv9BwIKejXEKsXYpeYwCtltBsthy7E6y13KPAf6wEaQj3s8Gn4nnMboMXnImN+d7+dAzvsK01VuPtFNZ7N1q7L661GOKhl3ut7MFqY2gnUVgLuAiPv5DxnI9RaXeMPK4oI0zoBaXtoeQkNP7bGSAELEIvLnlfgUxGIo0VGfgtpTszMzMcZDszM4Mf/OAHDFyIKSB5DwA888wzGB4e5nSvi4uLePTRR7Fp0yZs3rwZ4+PjAMCe6yRJUKlUcM0113A6W9LgkwFP8RKSiaHMTNPT07l11t3djYGBARw8eBC1Wg27d+/OXV+tVsPS0hKeeOIJ7Nq1K1dxenp6GocOHcKdd96Zk2IRY0HnmJ2dxfLyMh588EHu+/Dhw1hYWMDk5CSPn0CSlFm98cYbLFcaGxtDX18f18vo6+vDrl27MD4+zkCCjOuw1si2bdt4jn/605/ihRde4PiMWq2Gf/qnf2IwKEEixdjEcYze3l48+OCDvN4OHDiAEydO4M4778RXv/pVnDlzBr29vdi1axd27tyJL37xi6uud7qv/f39GB0dxbe//W0Aro7H888/z/u8+uqrHNBOsjCaa6qoTUCJQBGtVwIWVGCQpFKSJZufn2dPP9XRiOMYAwMDfB9ChiB8f9RqNWbNwkxUIZMn33VyrckieLR/O+aVWhFgWC1WK2zvFrC4sODt/1cWvF1oGxcwFufz/BcVp8szFZm3fEUf/HNtoER6KC82Ha7KLNDi8+W87qSjp3nhAa/oh72MNtPfr0jDipVeTHnphv5kD/0qns5g3hUFsUKtvCfKV38Izi2vqshsc0ad2/a+deuwrqOMjZd2I1IWWrnYAkcCaFCqWBf74Ho2xq7o3wEseE+JM46pWjUskJoExrhidVopxHEMrSLuX3nGIT93Krf2FP908QbagwvHIhi0mg1f6C7l+62gUYpjlEqlgntj0UoSDyYsbOrG12o2/VoASuWyq5cReSkUoxZ3cq1EIHtRo3F7IOXS+FKBvyxOJE0TV7sjSRxbIRgl7edBRxF05OJfjHEF92AMzi3VkCYtGJuiXOpAudwBFZWgowilOOb5tVAwxqJlUpxrNLDcaOLN/2sBS8stnD3XFHPWrtngZ3itlh9muWf2DIn7mi34lbilCBjntqz+aiws2LjGbRdyzMUCi2Z9GT/45//HHz14W56rnZEfftmGHnB57GqA4+228Eu73d+rXUvR50X7FUmwio6RHsyi8ZxvHFKGQYYLGUskqWgXLxEyHiHIIiNLGnDS8CI5CtWyoMJwAHIViqXEgww+6mNxcRFTU1OYnJzkIORbbrmFmY8f/OAHLD0iw5G8zFQxmdiL3t5e9PT04NChQyxroUJwdA0AckHC8th6vY4DBw4wgCHjj+RSx44dw5133smB4/v378fU1BSnfaXq3SQtq1Qq6Ojo4FSxAwMDzHjQfEoDkwAKGb71ep0DzPv7+5kZIaNaBjkDLuvU3Nwc7r33XgZKkqn61re+hV/+8pf4b//tv2FwcBD79+/HiRMncPr0aa5gfuLECZRKJVSrVYyPj3MNEQAolUro6enBc889h9/97ncr1qJst9xyS2Egt2wbNmzIFeI7deoUduzYwRm46vU6nnzySZw9exaNRoPn4LnnnsOtt96KoaEhDA0N5bJCyTkldqFerzPLUBPV0klqRhIqAgx0nwg4yAByCVraxZTQvZUSSloXBEqLWNvw/RNKquhZpnNLhqTIeRK+P+m9/Z4Gb7P3FPmv3MywX0m+FwGHcPvqJyX9QhELkZ21qO/ctlXGVdRWDdhUKrNe5O/hKJXFiqCQcDw2NGNWOW/wd8g00DQpS8aiMMqtleqZtq1dBpqic2fki13ZrwKvFa0UqpUSqpWySy8L48boQYsz4Ck+ABw7wZ16o9kSU+BPR/EYGcjz1+0zPamgRoa8HiuM0wwHCLYCK49V/lyR1rBKQRv4mAv4Qn1ZjIgYDlbcWZVnYngNURwGXZK/ocpS7Q0lOw25OjfbXl7lHht6Xmle4GVdgA8lR8YwqVxPDDcUoBBBaY1SuQKtNZKklQMrFNeisqOgFBBrx15opbC+swMWCvVmgiRJQUXo2rVCoCqkTSufOCtWvOykoAq1avN7/uRrbu3eJe9EVqjztbcT/P3HaKsZ00VGcTtj+91qF3Ku1RgO2ddq17CW61ttfi6khbKqC2lF11IEPpIkYaagp6eHPe8AuM7D/Pw8pyKl/qQXnIxjysJUr9e5poMcz+zsLGfqkfItMhKBrNAgGfLkraZz9Pf3s5FJ2aLIsCdjkv6RJ5tkN0A+60+9XmdZEGWuOnToEKamppg1KSpQBriA5VKpxOeW10JBzzS2ubk5TE1NYWRkhEFUvV7H5OQkS6hoDJJxIGAo63sAyB2zfv16ngualzRNGYTVajU8++yzDLrGxsYAOFZheXkZpVIpB3JWq2GxZcsWXHXVVasCELoPCwsLeO211/DWW2/h6aefxs6dOzkgO0kSnwxlpWxPzqN8LunaJLiWgFb+K2qSWZD7SoAs5zhMsxz2Rfu3yy7V7ji6hqL95dqV22jfP+p79WIOamcS/LG/3lY3Td6d85GRLoOLJROR+Zml1zozYlf2J02kC7uaQtmXFb+QF57GeBETxkBq1Z0yk1caeoDLMlSKI2x4XyfWVcrQbOhCsAh6RRwEgRIX0+DrNSgRCJ2mMCYztAlURSpyNSRyrBldgnFnt2J6lJZ+bQEuim6dq4ytSiUPBCJXmM6kSGzipUFU/E6AW882WA8gaB0ZkzqGQDmTWFkDk3rZk2dh2HCk42nedBDaTCDboxJrFay2UBFhF3es1hoqjmHS1MuqqGK4ziZLdEkMERRQ7eiCtSkajWVk8UNOzmZMCmggUvn5K0capaiMLb096KidRZIkOLtUR6v1zr4tVmTKEmN4N1ohyxCc+4/V/pTAhfTMFRmlwEqdP1AcXNju86Iv1KLWjm043/jlOKTXTxoUMkAy7Dv0FIZjLpImhH2Enski72ORREJKLchY7O3tXTHf0ntalBoTyIwlkhRJLzCNb3FxEfv27UNXVxf27t3LBuuRI0cQxzH6+/uZqQjnkoxoqjkxOzuLiYkJfPvb38aWLVswMDCALVu2sFzp//g//g8ALsCY2AMyoJ955hls3LiRjeZarYaDBw8yY0DAhiREi4uL+Na3voVSqcQSICDLPDQzM4N9+/ZhcXERQ0NDGB4extDQEKanp7mWwr59+9jonZmZwa9+9StOmXr77bdjaGgI/f39mJiYQL1ex+23387B48PDw0iSBJOTkzxHExMTmJubw0svvYTNmzejt7cXo6OjePLJJ/H000/j/vvvx1//9V+jr68Pjz76KH74wx/iH/7hH1gGRbUqduzYAQCYmJjgmAG6z/39/XyPpqam0N/fjyuuuALT09Ncc0PKgyi1LVUHJxA5NDSExx9/HGfOnMEdd9yBkZER3HrrrSx/ev/734+ZmRkGXgAwOTmZ+7uoHT9+HP/6r/+Kzs7OHEhJkgQHDhxAtVrlYHcCCAS2aL3Ozc1x6l9icSQjIcEnvaeo0joFaofefwIhlG44fIZDUEFB7yEDS8+OBJ2rZSQLa2UUPadSPifnS76bwriLdxtkXHTvNve7yLW/2jFt4hbk54VfkiErEBo/Qd/t0jxKj32RJ/t88QyZcELGPri/iSlgY4w9qNRPdnIXxJp9wt5oRXt5D33BNITjLQIXVkm+Qo4++5EzIMmze56MOeTkV9lBkCshPFoBqJRK6OzsQKUUI4oUYFI+fQYqdDYQmlfL0MJdnwcXNP+cbQnEMDjAYowFtOvHsSXwxAChHzfbWe2H7BqUvC/EFvh7YozxIIBkRu6sxsdDpKmr0WFM9nBbS/UmnLRJifVt0tTFK3BMhFtdnKbWMx85eY8HIQAAYjaCCVfiD8fqZKs2+0j5gnyGwY1SSrAuGaBUfv6M9XEmSiOOyx4Z0drNYl9Sz5i4MRuep45ShPd1VtG6bAPS1OAcmmi2TDbv52sW+eeBz5HtsCbTmh/DgnnJd73i+SsYUvAefOdaGF+14tzB4PJyTL/tjwpvXCODEch/2bbzxq32BbdWdiPcr8jQP9+Y19JCMBB+eZMXPjSgi8ZRBCTkvmGmpXAM7QAYbaf4g6I6E9JwaQdKkiThuAbp4ZXXTP9qtRrOnj3LOveiHPtkyNF5JTghT/v09DRqtRquu+46joegatbkKT927BgbzkeOHGEJ07XXXsvAp1p1tSV+/vOf48SJExygDThjm4zHD3zgA1zbgoK3aT5Iyz89PY1/+7d/w8c+9jGWw1D8xtjYGMeOVKtV3HrrrXjllVdw8uRJLjY3PT2Nzs5ObNy4MSeZIaORgtgpq1dfX18uJoaMY8Cll6XigyMjI/j0pz+N5eVlzMzM8H3u6OjAXXfdxfd006ZN2LlzJ0ZHR9mopn27u7sxNDSEJHHxNCdOnOCMW1prfOQjH8ml+D158iQef/xxbNq0Cd3d3RyYffDgQfT29iKKIt73t7/9LcJGwdnna41Gg1PqUuvp6cHZs2dzYJiAJZAvTkf7S3mcfI6I+eju7sbExASee+45fPKTn8xJ3eTzJ5kFyTasBvSl44G2FTEOkl0pqlYfttDhIfsK2TSZOrfoWX8324VJoWzeTM59xq5d/3mBcX8+Y77t/rkYAQkyir8420qhcg7e9mbAal/oWW+ZYUPGV1ZyoR2oCMYTjIPkIZxLKQQMNjw6/3vor1W5eA//Q4yRxrNaHhwytrO/C9oKV611gdIaKJdK6FxXRSmOECkFY8nwpFoLeZ08j42QlTeo5QksLNefoCtQlgzzvLHqZp4yVxT5tAXgoqhna2ERQasMMLspMDAAImhoMuI9c6D9dVsjUkWxnsnm/rfGwqSueJ3Pl4Xie2o9q0BVu1dOtRV/KD9XBLQVyauI8bCZFz+KYlhleFQ0rwQypYRKAjJAI45LsMZJ61KbMIAx1oErXiWW8RnKkUZntQyLLpw5u4RWkqLRMjQjwgjOr4Zi417JxcL7WNhgrciW3edcl2v09K9wUkD2E94ZmuuV28O2Gttw8UwEAeV3EuqsvYVMRWhcrxUQXOi5LuSzcD8amxxn2IpARRH4Cb/sQ91zuzHK/tqxHHIsIZMiW1HtBTnmJElyGWzCsUsNOhm24RjISCWDRsqRpAacjl1YWMgZtnROimmYm5vD8vIybrrpJhw6dAi/+93vMDIywlmBiGmgwGIKfCYmQo6NpE+vvPIKZ4paXFzEM888g23btjHYoGOpkB55vglwnDp1ivuha4vjmONI+vr6cODAAfT09GB4eBgf//jHcfToURw7dixnSM/OznKMAMW8UCE+WcSPsm8RqFtcXMRll12G6667jgENBWH39PTg4MGDLJ2SMSPUTp48icnJSQwMDOQMTjJOpSxKpvs1xmBmZgaVSiWX/emVV17BiRMnGNwBYNalp6cH11133QoAsX37drRarfPGYLRr119/ParVKsufyFCWBj5J5Oi6wvmQ65tqjZDM7MUXX8TnPvc5ro0RPn/UH7Wi90r4LgjBTBFLKYGFbEUAoAjItHNg0N/y3RM+c/L870Z7z7JCXVAL7XP6/e32eVF9rHJQLgVoZhtfUBfsg19Ls+KY0DQlAzuTzBhvVWWAxZ3LBsacYkEXmdJyRHlwJM1SOWqtFdZVY7xvXQWXdK1DrKxjK6z1QcVRxlQAoJoM8hyGRmTlnHjTWCkoJQwo6416Dr72/RqPcODOq5BPV8uGsNKAzQCIi+v1TIP36BuTwhqD1BeGizxzoT17YtLEMwAuYFpHJSgdQenIGeLGwLQSpK0WTNJCpF28Bo3TWAMdqZx0CWwsW4F9/DWZYHEp5dia0Lg2AUBTcPEnOkLk61VYY9BIE2bAtHFzpSK3v1XgLxetNaJIQUUKOnVg0YGSVKwfd5+MdYyM1hbVUoRSaR0af3YpOtedw5vH/yeS1CIVt57iQuj+0zrj+xLC4BUeg9XARQgt357hLc9SEOER7PXeGPnvRWuXhajIqy6PWa3JL3vpLS/ar+icq+0jz30x7AUdE+rpw2ts10+730NjJDQKZAGv0LMqxxPHWZpN8srTNjqGPpeBw729vTkvrmwSoNx9991spE5NTWFiYgIjIyMchE39UO0FmZOfwA1JR7q7uzE2NsYeXArYlsCMruvUqVM8JxR/UavV8Pjjj6Ner+MTn/gERkZGuLhckiTYvHkzF1AbHBxErVbDoUOH8MYbbyBNUzbeKfj61ltvRalUwtjYGGeWmpqawle/+lXs2bMHo6OjzDrMzMzg5ptvxk033YQHHngAH/rQh3DTTTcBcEBtamqK53n37t3o6+tj7znFTFBWJenJ3rFjB6699loGPTVfqZuYj8suuwybN2/G4uIizp49i/vvvx+lUollQSRlo7k/fPgwpqen8cgjj+DGG2/EXXfdxQHL1K677jocPXp0hXTp+uuvxzXXXMNr4tSpU1haWuLUt3TOL3/5y/x9cfToUVx33XX4+Mc/nqt/ccUVV+DNN99s/3AA+Ku/+iv09PTgyJEjGB8fZ2kfBVUTw0NB6/V6PZe6l1gyypQlQVUcx7j99tt5jRCwkGtcPiu03in9L9XakNnHqBGopnMWAX36neZdnq9dnRz53K/mrAilXOG7F3DvvWazuer8X2y7QMbCe0IReE7XQNXLbe32b1fXgY9hbyoA8UVe+HXextvHzEjBMeEYV4zXuvPmOww7sy7I2GbjzDENxLismIKV7MbK8ecPygJ8g3mwWR9Z7lFhnpGhroLtBb/JLXw6CI+t0OmTjad9UqNqpYJKuYRYa8AkufmU90EGaysfmGts0RmZn0DmSfefSTQhpkUGafMnKjPSM2+5JfwBQKRl9Ua1Vr4gHQVYawULzX1TYLebV5HhiiRcDvv4tLMu2DmKtP8XcZwJzY/8yW5/OQ8cN5O/V4q25cCjWHIKjHrd3w5AQItngwbL85Zl4+L5p8VHkjBjxClzJ+NxKGjEWmFdtYIkNahWYtQbCVKTVQcn5kmC1vwlZmu9LXzI4Q4rtvkEBgHXcL5WnKEpz7EQW0QDDvHOmk+Gt8NU/Om0ImO4yOtW1IoYhLDftfbxx2irjfd8rYjRkX2e79ii34vGJ4GONEgkgJFeTSlnWy1bDTEfsm/5k7zkMvNOOBaSbdXrdbRaLS5Ytn37dvb8UiwGHdPT04Nt27blgnUXFxe5+nO1WuWg5SRJ8MQTT6Dmq09TzQwAnKp0/fr1LJsJ6woQOyAbgYE4jnMxJHQ8BW+fPXsWV155JZIkwW9+85tcetw4jjEzM8MGKHnd6Zoo1oHmhwxbCtBOkoSLpUlP/cDAAIO32dlZHDt2DKOjo1hcXMT09DR+9atf4ejRo+jp6UGj0cDExASPCXAG//DwME6fPr0CWFSrVaxfvx4bN27kOg8HDx7kmhvj4+MAXJB8yFDICtvbt2/n2iarxV3Q/Wu1Wix/IuOe4kAIbND6CNcxGdqhvIliE8J95bnbjWe14Gzqj/YPHSGSKVgLqxruHx7T7l2xln3erXaBb0Ly9K7qFPzjtPN5JguAyoV1v8bjcwiLjBibMzLIomBDUK3GSWQswso9VvPEyrFnW+k6AkjSth9/VG6/NRlfQM5jG0cRNryvCx3VCiKtkBrL80IpX63JalJY4X03XquvdcSxELmx830RDBEtSiuYExkUIn7Njdn/R3EazmanmhMKLn+SAiLlZU6u/oSCzhnSHC+iLaI4hvKF5awPVzc2hTEWaWocuIBFqVJyX35RCRJEKZkiloI8+CIFeEAR+CajnqCf2GYtHIJALobCzXGEKImQpimMMU7W5MGFG0/eqKZ/SmtP9KRYOcNiHNavD6OwvsOtie71HaipOuqtBhvikn0rMs4v1NzOYI18NrPP35HX2ArsroLBv/Mg4X818BEyDaHUYLVj6Pd2nxUdd7HSqqJ2vn6k8bKWY9p9VuRdbPeZ9NyvZljIYnBh8DUZaVJGIo1caYCtNl6SHUmQQX0PDw9jYmKCGQBp/JFxRhl9Tp06xbEVvb29XNSOqlsTayCNaJmmdmFhAa+//jrGx8dRr9fxX//1X5wm9Xvf+x6P++///u8xPu4Ky1HaWAq2JkNTGo50/bI2xWWXXcbrmEBEd3c3pqenUa/Xcffdd+PQoUP47ne/iy984Qvo7e1Fo9HADTfcgF27dqG/vx/z8/M4dOgQe8prtRo2bdqEnp4eHD58GL/5zW/w7LPPssyKaixQTAWxOwC4UriUp9XrdUxMTODo0aO49dZbcerUKbzyyiuc8vUb3/gGnnnmGfzbv/0bBgcHMTg4iB/+8Id8X0+fPr2CUaDr7+3t5WxfS0tLWFpawptvvomZmRls3749ByoqlQqDB8oKddttt/HnRSlob7vtNvT19eUKKJJMidYDBZ/39fVxcD0VWSQAJtP1ymeCAKFcOyGbIbNt0bFF/yTok8BDAuGiZ16mfQ6BvXwHFCXCCJmNonO0ey+8k+/Gdu0ieheG3BrahRj358vXHtZ1WEt++CIWROr6L2xc7eQO/tPMpZt554XpkhtJGCdynmkijX/+elRuh6KRUaEzAjOWDR676j0sCpAv3tH9p8hyh0WlXEJHtYSOjgpKMcmQFBBFTmSlnIfbpGnWiQzG9f+yjEkBc8E2Yv4CLHnYBaZjfi13ARkgye6P4bkxvoAcsyhKwVqfJtdtgVGAtopZD0BB69hLoOKMpQABpdT9SxMAFlGkUCo5YBHpCCQfckmdMuYDgGM96DwmM7wJqFkfWJ5n1gys8XmwuD+ZScpdibWA8exVHMfQUYTI19kw1kIbw9W1I8Fa0KJwQfRKZOiSXIPQOFmu/40IFtUY6OnugjEW55YbaCTFXn6+TgTvkuxRK2g0R6sLnxzWOv+boDgFcx76h7vY3ERBLsuLO9/F7LPG871brUjDKz3kch/puQ91xaFnvmi/1c5ZNK7wONp+MYwIGQRF/a1WpK6d57HIoG83ZjI6iuRc0igJDRPApXel8ctjKCsSSZik8RP2L48n1oAyH5HOHQCDF4qPoL4WFxcxNzeHmZkZbNy4kWs8kGefxk56eQrypkxANMdUrI32pTG1Wi1MTEzg+uuvRxy76tMUrE0Gu4xZoHk5cOAA/sf/+B8AgP/8z//kc1OGJ5IPJUnCHn+qnwAAMzMzLMOhgG9K2zo8PMzZlSgAnAzQrq4uTE1NIY5jbNu2DevXr8fMzAx+9KMfYXBwEL29vXxvKC1rkiSYnp5mgPLMM8+go6MDg4OD+NSnPsUgcm5uDq1WiyuAHzlyBOvXr8dnPvMZVKtVBgpUi2RkZAS9vb149NFHGRg899xzDKKjKFohkzt+/DiOHz+O97///RzA3Wg00NnZiQ984ANcl+Rf/uVf+JgNGzagv78fv/3tb7FhwwZ88IMfxNjYGAOhV155hVkYWheLi4uoVCp44YUXGMBOTU1henqambFQnkTPC4Ffkv7RGpfMkHxOJENBsqswVqjdMxYyDbK1AwNF77yw3/Oxle0cN2tljd9uu/Dg7YIv+VUlR6FHFRfPJqyaCeU8x6wYb05estbzid/Pe+b2+8puCzPQ5PBC+EHwt/SSrnJ2m8v4JI3Aov0LWIJsRLwtN/02i3kolSJUyiWUSy5gm5kKOH0+MRWkwSTpEOD1/tI4LTDIwiDj/FBVzvONFeswKJTmPfnSo22FXAm0Vq0GkQjWKsAoWN4ANuytZy4ora2xFsY6CZQxjg2gSt5xHDlWRkWeAfGwlQfowQKxFj6FLCVKYMDHLJCoLWEAaAOHgKj6eB5USIxhLaCiCJF1hQWTJOHnXVkDWJ+WV1ZVVwTMHLiQoJWBh9+RxuwEZAaxAtZ3VHC2vIxSpNFMfLX04E63s465nk7B59l7Ruwvxp17JxVsKzxfkSxRspHCqVA02nA8q51jNadJUT2b4h3Rdu7ezRZ60qiF4IH2LfLOn4/qX4tcqB1IWA3AXEg/ReMpGpcsBhf2e74+iwyPdnNW1G9RZinJHMksMrKRcSkNsNXYIZk2k85FsRxSCkXMRsiQkGY9jmNUKhWcPHmSxyWBWRw7rftLL72Eyy+/nDM90bnTNEWlUmHP/eDgIObm5nDixAns2rWLA6OpHwIgZChKbzMZ/kAGHClmJI5j7Nq1C4DzdM/MzHAND5pvAhXEEkl2R+ruiYEJ5x4Ae+hnZ2fx1ltv8f2ieBQaE/2j+ZycnERHRwczGv39/ZicnORrGhkZQaVSweTkJK6++mqMjIzwmKj/2dlZDA8PM1tAaWSNMZzKlWRrRW3r1q25zFBU76IoXufMmTMYHBzEwsIC+vv7sWPHDiRJkiuuGHr1qZbHs88+i+XlZWYyCDiEwdOySdZUsmfUf5GzA8jHUkkJlfwn+5fHhJ/JvsNt8hmlz8Pxh7+H/dE52zln3u32v0bw9p9UC5iGt9Hebg/nB2hv5wxFxxZfO2M0Dy7Wd3agq7MDceQ8+gquvkS2NxnurgaCk9O4GhOSxSAjHLESx1phb0rrqQAMseWZsR0cOmAtDdkZzjCuyrQHE461cNudXiiCSV04uTUaVkeANYiikks/qzX751sGgDUwxgELay1ajTpMmgCmCR1HiOMIceRABZCl3HWgiQxMGnbGajlZm+YwGmewZ0HwBAuNSWFTP3RkMRwrZXEUzyKqdWuN1BiYJEHaaiKKXO0LiONzIFtpRFHsg9f9HMGNU8Z6ONjgPtcK6CzH6O6qotHsROv0Ihot4+VnKyG0vL8snwuJqJUrIOBnkG2xttD2XqvzIivw1x78XEh7R4vpvddUhWjyi5qa9ICTQSS902SUUsAlUBycTC38UpdeSpmFp4gtoXahxn874ENjoXGSx56OKfJshgaBlDcUGTayvxAkhNckrz9JssxMpFeX+8osO1R8jYzl6elpTExMYHh4mD3wZNBSylI6ZmBgAEeOHOFzTU9P4/Dhw3juuedw00034e6778bs7CwfDwADAwP46U9/iqWlJTZAe3p6GHAQY7G4uIjvfve7bPTSmPfu3csxCXQ9u3fvxtTUFF566SW8/PLLDDjIYJ+cnFyxzkiC9cADD2D37t2o1Wp48sknWSo0OTmJmZkZZjMAV1E6jmPs37+fszt96lOf4kxWBK5uvPFGXH/99ejp6WFZmExBS+CLsjwlScJVv++55x4sLCzg8OHDzFYAYPbn9ttvx5EjRzhTVqPR4Cra27Zt4/oVJLnq7u7Gpz/9aS4kSB57isU4ceIEXnvtNTz77LN4/vnnsWnTJuzduxdf+9rXcOrUKSwuLuYCscPW3d2ND33oQ7n0uwsLC9izZw+nv/3IRz7C+//4xz/mmJr5+fnc/P75n/85y80oboQALQFGAsFJ4uJOiHUjMDsyMsLPCqX2lVXRKWVwCGDomZJFH+V2ApEyPic05Kn2ycDAwAoGg/qW7yYpV2z3fmjHksoWApyi99+7xV5cNLA4X0rW1ZgNcmLT7yvb2gxi8njTeVYzslektXUbV+1/1f54n9XHWHSevKQj7wFeYQLlLCybs5MVimp+ZPIeCzK+8m7/0HCV/tvMrJM/i1swXCitECuNUilGqRSBsyxZADorQ8dyH2/Eu9SlvhIFZ2Yio82yEQhrAM9sMMvg2RAahOKYBMtMAtcJoR+UJYmlQAYKBow6rDuXtSmUckHHymc+Aqhmg4uViCILKoto4eRDBFDShLIlObYCNoUCEEcapTjiscq0pBzfYUj2pgAIUKB9bQ3lYiU0FD9QFtaNxB/P/WjtPfbWX5dYg+Fa9KiBwIPLcgUXyK6VA49aC2LLjV3BjU3DgcQcc+HnhpkRfy4FV+dkfWcHKmfrSI1FMyHgmAESObw1GfKSkaB7brOlKlZExvqguNt84PaKT8XvYt2JbdkxmRNgzewIAag24/lfoUm5DH2hhdlTpMFN2+QXZ5EnsKgVeQrPd0y78Z7vs/P1WeQlPB/DUNR3kWGw1mPp7zD7VghqCOhRf93d3RgZGcll16H0rHQsGVFkSIUZcAgoUlao8fFxJImLRyApCxnhNMbh4WEsLS2h1WoBcJ7zI0eOcEYpyoY0NjaGTZs2FWriCSRIGUypVELq6wbJOZHpSaempnD27FnceuutmJubw8TEBBvjb7zxBhYWFjA7O8tpZ6+66ioArm7ENddcg46ODiwvL+OFF17A2bNn2fCXMrg4jtHR0ZFjiMiIlBIdaciOjo6y7IuA4qlTp3JgHAAbxlRQsNVqodFoMHgkwHXttdfmngmSlk1PT+f2u/zyy3HllVeiVqvh+eef5/VwxRVXcOzGam3z5s1Yv349Lr/8cszMzHDg9ssvv4wXXngB+/btW3HM7Ows1xiR7de//jV2797NRRdlnA6BS1p/Mj6oXTazoncCpdql+0DHhs8xrTl5D2V2taL3QhhQDqw9a1w4djq2qK3GbMhtUtb1brW3LYVaLQc7fV5Uj4EkFbawKNvKPotiJcLxaK2DY3J/+Z7Z0hHgYG3gKOch9UZEu+/5iytORVZtcCzbnfRZ3gPvBxmAAto9319OHlJwKt7A58tfiw26l51opVAqaVTKMcol5+HXZASLPpS4BGMtbJoCWolT0r10qWAdgFT+GoURzsCSArbzAEop+GrXFJjt4xG899z682tlAOPZExoDAws6tUDDMLBW+SBssMyHCsQlqYE1FmniqnJba2DTJgCLSAOlOEa5VHLVrqXsxTpg4b4EyWhwwEKrCFpr6DhycRxwsjKtta+aTc+CB2LWIkkcg6A9mHCgRUMpN34GNtbNk5uL/DJIk8TNV6RhU5+KVsf+eO1Xh783nDqXAKVfG8qK8fnOrdu8rlKCjiP8z9oiktSimVAQeLAeub+gFT27gWEucSWyETM7tCpeCLepbEPmHFnJr9jc9WZANhtim/dmOAQJbIqGJd5R+WMLZIJ/hCYBQhHVT39Lbx2wMli2aP/VjPnVUsa2C6peC+AI+woZiaJ92h1L5ywCB0VGQbs5oDEUSZTkMWHRMABsMMl+CAxQ6+vrw549e3IMxsDAAAYGBjAzM8NGW1gxWKbzpFoMBw8exM6dO9njTP8WFhZYbkXG9V/+5V8iSRIcOnSIpTCPP/44tm7dir1793K9h89+9rNcZ0MyNpJ9kNdHQIWyRBGokNf8zDPP4PXXX8fNN9+MgwcP4rHHHsNf/dVfsdxqbm6OJUoAcNddd/G1jI6Ocn+lUgmzs7Po7+/n9S1BmEyNCmQAjeaM2Aiae6p9QSze4uIiJiYmcvvXajVMTEygt7cXN910E3vpqQL54uIiZmZm0NfXh/HxcV4bMzMzmJ6exjPPPMPB1s8//zxuueUW7NmzB0NDQxgcHOSK5t3d3bj77rtx+PBh/PrXv8all17KbAhJwQAwEApTntZqNfzHf/wHF9YDgGuuuYbBWqPRYID0pS99CY888gjL4k6cOIGnn34alUoFf/mXf8kyNoqzobgeYjQICMuAeyllknFFxGKQBG5wcDAHFAi4JElWzV6yDJRulq6d5lc+c2E8BrFmIXtJ+xS9K2mdFAGmsMn3TPiOoeemr6/vvP1cbHvXpFASULzdDE2rtXy/bQwS/qw9gFj7+IThfd5D1n7NKvd7UedkxaywcPzH1nnzhStWgWy7VfpbsVWGpLaBRyL4nY1ZOJ19paQRKyDyTAO09g71lBkUGJJBOabAwscC8HW43zkGgzzsytVOAACbGjbmXWwDIOsniBIZHhx4Y1JpB2I82HDREJG7ztSN2ZgESauBJG2ho6PCxfCiyBn1dGkg5sIqpJ4dSI1BmiQwaYqklQD+OmFTRJFGqVJCuVJCqVT2fTkWIfXxF2ni0q9m6VsVtIp8bEUEa5xZrCIBgpjNABfFoyfbeAYoi2mhexVljIeYdzefgI41lI5RVesy9iJ199AocIFCzZUC3fwrpWCUoQly99ZmZq5jVbQfQ4xKDJSUQk93F6JoGefqS7xOZDppQY6Afg1cBcivcctgoq2BLXCHQOhhLxngzB0jKm5YyioGXpMupXG+tsva5E7ZdYvTnb8Pm//Dhpv+yE0yEdTodyn1CfeX+xUZ9UVgIJQXheeT55JfsqHnLtw/7FN6O1cDFecDLEUe0yLJQ5F8TG4Pg7vJyJHxC2EGJtmkJ51AARn5i4uLuRgLalKyRkwCZUN6+OGH8alPfQojIyNsqC0vL+Opp57CwYMHsXv3bvT29qKvrw+jo6Nc94Ku59ChQwDARmwcx5wJ6eDBg/jbv/1bAMA///M/49SpU3jsscfw4IMPYnBwEPv37+cgbJpDmrNLLrkEw8PDDCgmJiawsLCAnTt3svH4yU9+EvPz83jggQewadMm3HPPPXj11VexuLiIvXv3cm2L6667jgOwCRTR/JOcaX5+HpOTkyuM7d27d7PRSvM9PT2NmZkZzM3NcdwGAQGZIYvmAQB2796NhYUFPPnkkywFogJ4cRzj5ZdfRqlU4voa1WoV4+PjmJ+fxw9/+ENs3rw5d8zg4CAOHz4MwEmGBgcH0d/fjx/96Ee5IOstW7ZgbGyMU/q+9dZbeP755/H888+jUqlgy5Yt2LFjB4MKknzRNe7fvz8HKoCs8CC1+fl5HDhwAEePHs1tp3Fcd911HOtCa7Cnp4eBqwRzUq5H957WrzTcq9UqF1CU0iT5rFHfxBxRH8SahJW25buiSIZJz3Qo0wxbCCqK3nG09iQLEr5/5fklM/ZutXc1xiIEF9RkTnz2il8E8ChmQrJ+iQ1R7K1cDVwUOz/l2HM5och4b3cM77Zyh6KA9gITIv+nKvx1xSHSeSowRuY99p9IwKFkBza7sMB5nYMc8jqk1zSOIkTKV2222T8y0EhGRIanHLyCM4SVy20KymxEUdPKX4cFfIC1qGlCl2e0j5vwY1f5uXZrj2I/XCCxso4VgEq9bClBmrZg0hasLcEVylPQvt4EZUzimAwPBFL/z6YJrElh0hYUXNpWrZUDFqUSojhGFEXuiq0rjGcJWPiMTHS/OHZbwfdFE8k3lu905rVW0NpVJ5fry1iq9O2v1wo3vlixnKJYRyiVHMsDm/J+7v6p7NxWZetFUeLeLMDeH5Ud77GIy6DlCg12dlTQTFJE0TmY1GezEqtDif/9KEXfwX6SQGB0nTfyBTJGvrGgjHdT4edi+klUlcnQ8vsA9rxyyRVjCsZVBBBWZp0LM2C9N4wFUCxDkt72UCMcfsFJL107I73dl/Bq+6+FoQjHIc8VyiiKxh2Or+i852NN2vVfJK8KP2/HsBQxI3Ib1WUoOi7sI5RT0e8URCs/6+7uxvHjx3H69GlMT08jSRL2yFerVU4ZOjg4iN///vecHnZ+fp4DrAGXZYnaqVOncPr0afZmA45xWL9+PaamprBz50709vbmZFk0psXFRfz+97/PpSFdXFxEf38/uru7WbYzOjqKX/ziF1w0j/7ddNNNbAjKGAkZ/FytVnMAj4zbEGQTgKAidsQ0kExsfn6e52xoaIilYxRDQGwEzTVdz8mTJ1GpVDiTEhmTtVoNp0+fRkdHB18PxbNMTk6i1WphZGSEwaUMngZcxqdarcaSMtkajQaOHz+Oa6+9FkniYnmkEU6sSru2adMmnjcJKrZv3577+8UXX8Stt96aM6bpOMn0hEY+rYWi9Q+AQSKtC+qP9pMGe/huKqomL38vesZlYoW1GvhFwILO0+68RX2/mxIoau9J8Pa7yWC8m62db/QdPwt56Atb5qstOrZ4c4A4aF82/EIfrSrYnu/PeZVlxQuXQrVSKTk5jUn51CwbIi+2dZmXZCVnAhxkqIPAp6LsUK7YnE0sDCzSJCu45zz2mv9prV3FZ0XAz6WJdcCAjOAIgIUymec/tXWYtIFm46yXMRmYVhlGaUQKiCIHCJLUOMYEKVppCiBFkhquvM0/kya0r0mxbt16lMsldKzrQBQ5WVOaGqTWsQgmSR0jYIxLQev3kalnqZ6EUtYZ+j7uwaQOMGhfjI8AVKQjlOISgAys0F1VyBvn5P2nu0nxHDrSnn1JOfNTli2LnmXPFvk1q7V2yjKb+nP6+842sAGUuxfam8aXbuiEjjROvrWI5XqKZjMFFy4UI8zsaMeGZDyIvyqeL7eztgoaKVyFdS9dswoGmh8B+WSczxTPO0TyR+WkkgHoebfeF0XZsaw/4XsRjyE9bMDKjEMAcp50eRy1djKj1YzqdvvL7RLcSMOgiMUIjys6B30mDY7VxiX12eGXf7tjQ48pna+oUd9SlkHBwDJFJvVDevqenh72tlMhOpIU0fkpxoDSsnZ3d3M9gdHRUQwMDODnP/85F5wjL/Do6CgmJiYwNTWFr3/96xgbG0Nvby+OHDmCX/3qV/jZz34GrTX+4z/+A/39/ezF/8d//EcAwJe+9CXEcYwnn3wSH/vYx7Bx40Y0Gg10dXXh85//PHuaX3zxRZ6HWq2Gv/u7v+PrpqxHJK0aGxvDDTfcgN7eXszNzeG5557Djh070NXVhTvuuIPjN0ge9P3vfx+XX345e8aTJMEzzzyDjRs3oqenh2snHDlyBP39/bkA93q9jl/96ldcP+K2227DQw89xPP005/+FDt27MDg4CCeeuopNBoNJIkrCBhWbP7Rj36E06dP47Of/Sy6u7sxPj6OyclJBhcA0Gq1MDc3x1IhYpRmZ2fR29vLVdKBLItXvV7Hj3/8YwDADTfcwMHM3d3duOWWW/D000/jlltuwTXXXINDhw5hcHCQ63Q8++yzfO6RkREMDQ0hjmM8/vjjzAjR89FoNFas2Y9//OOYmppCvV7HQw89hH/913/Fr3/9a/781KlTK47p7e3l1L6UrvjRRx/lgHl61kgS1dPTwzEkcRwzgJPPpmQyDh8+zJI7Wk/k5S96n8hnmOaU3iUhcyEBZhjnI98BYX2LdvEbRc89SbNCRrPonfZusRYXHGMR/v5OAYTVUtZeWD/FTIbrEKt8069iSOf2WXk+ait9/B6MFHabF3KQNz4cz4o4Ebua8RPEfIiD8yxJwZjldShXAXvl9BPTIT2/2TpQACKtnOFI1g18+IIwMLN7oMQ1E7vh4imsEachF7d1qVsd+BBGq9JwCCGC0tZXzJaGqCWnOqC0y34Et1+aNAGTQtkErcZZJEkDrcZZKBUhUpGTcPlzKZov6+VISnPWpzRpwZjEZ35KoayBhkW5FKNcLqOjo4o4LiGOYjb60jRx8RQeJCmlUPJsRhTH0B4E2XBdWHgGIWMdrFIwxmZB3mSUK8D44oRUFM9TOwC0Yx+YGcnHKFlLQfUE4PyRxiDifeU6pTn3zBC8FMvafB9KAcqwT10BKMcROsoxujrKMGkdScvyXEtywfrYF5gUiWd5TJoyAK1UYh93AliTwJoESFtgfkHHsCqC0lVAR4gQMUimau8rXhEZ7Seu2YqP7IrnMscXCABzvpbVRaFHYyUrw92G78wAXLwXwEJ6q9t93k56RG01T59s8njpbW/n2QuPWe2ztY5BtvPJC4oAgTRIQklEkTxKSnykQdPuGOltD++NZI2kV196ZwHkMufIcZPHO5yvJEnw9a9/Hb29vZyt6ezZs7jllluwtLSEL3zhCwCyQGFjDH74wx/i2muvZWnLLbfcgv/8z//Ed77zHfT397OMSjIENG9yXIDLMEVSLtLDU+YjqrpN23t7e3Httdcy2Ovq6sLS0hJee+01bNiwAQBw00034dixY5iamuKYCwIASZKw0To0NMTFAAcHB3H27FmcPHkSAwMDGBwc5Hv85JNPsiF7ww03YHl5GRMTE+jq6kJnZyf6+/sBZMzMqVOn8Jvf/AYbN25kGRPdHwKExMz09vYy60OedwCcDYoAQxzHHJcxMDCAzs5OLC8vo6+vD7Ozs1heXsbk5CRqtRo6OzsxPz+PVqvFxfAoRbBsfX19WFhYwKlTp3D06FEGAHTfnMMpS7izYcOGXJayI0eOrHg+3nrrrRXbCNDWajWWuI2Pj3P9ERlHQvvNzMygv78/FyQv4y/k2qeYEdnkcyZrx4QsRvj8hE6DIgeI7Dt89uQ+q7XQ6SKBSuhQkfu1Sxf8dtu7zli0AyAXWpOiWD50oYNBppERhi91d75AdHEgHystBmcH5PfN2eD+uJyp4H9Ik448kEoLOZf4P5SRrRxj/mOZw5+Ol4BCBkTLawrPs7on1AX+xpFy3mE6N3uWseK6nS3Kkw/W5XuZkVaAD7DwxqkSKWFNFiSsjK8f4QUpHHGdjVkpKulgYI0rdgeTotU4B2UTKJuguXwGSVJHq7GEcmUdolLVSa5Mdi6ZTUn5YPA09SxF2oJJWlDKBYhHWqFSdplA1nV0MGOS+poWSeKARZIkbj5UVjRPvihSkn0R66AU4EpLAMaDKjJedZQBC5KbUSwIAQ/tAYWCA0kchO3vBxm0KqsrYrk4IHgsblfpufdTQ2vcrxWqWM4PSuTBkHVB5BYK5VijWonxvs4yGo0mll1Eue/P1wW0gEkdWDBpC82Wn7+mm/NIGVR0BTrWiDRgk3MwSR02bbpRqgg2qsLqMlQU++B5zcybQZuW8x4E6ze7aA+kCpwP4qdaxdjPMw8ZuCgSNeWcPOJ42rBCafhHbqvR7VKX3s5LL7+Ii9iFsLXLdNKObShq4XlWMwZW66/ouorGJscupRpFQdlFhojMKCQ9ozQXMsgzZFUkwCNgIQNKw5gOmW2H9unq6uIgZSkFSpIEP/7xj6G1xq5duzA3N4elpSX89V//NR555JGcR5qMzZ/85Cc4ffo0BgcHsXv3buzZswdjY2P4x3/8R7z11lv47ne/mwMTJBdaWFhgYHHdddfh05/+NM+BzGpFheQoBSxdL8UCUD/E8szPz+Pee+9Ff38/xsfH8eijj2JychIA0NnZiVKpxNc6OTnJ4Of73/8+XnzxRZw6dQqvv/46zpw5g3vuuQejo6PYtWsXDhw4gCeeeAIf/vCHOZh6//79nIqXjHG6Z7VaDSdPnsTx48dx44034sorr8xJdEinT/d7YGAAQ0NDHIhMdTOGhoa4PgXFoRw5cgRjY2MYGxvDk08+yX2Q3EmyQC+//DI6OjrQ09OD+fn5HPtwxRVXcFzG1NQUXn31VQAuzSoVIuzq6sLw8DD3+fnPfx4AcPDgQc7sdODAAfT29uITn/hELt1s2GZnZ3Ho0CEcP36cC+/t2rULP/jBD/Daa69hdHSU52diYgKzs7M4ceIEg6zx8XFUq9VcML58HigOhvoIWUf5fFCRvfDdIFnJMP5BHi+ZDQIrRe+/8D0jWY8ih0E7oCHP245Feieasmtwa/3hD3/Ahg0b8L/9P/93VKrr8h2s0cg/335Fn7c75mL6Kt7R/UfO1nYTserYct537lTsl23KA4uVQ1nJd0jWQCHseyWwUGJ7tq9R+X19z7mfub5y/QnWw3+Y88ySJ18B3V0V9F7aia6KQhyRt9n/FPiBvOrGMPrwxePcPxqDVhoKGlFccifQ2mdZ8sayIcbCjVPrSChljL+v1nm4vaGvAWhlYVp1pGkTjXN/QJo0YJIm0mTJMwEG5er7UC53olTtRhSXEZcr6OjoQlwqo5VkApxWs4k0TZA0GzCmBZMm0Noi0hrlUhnVjk5UKlVUqut4Tlv+RdFsNRgoleISIq0RlUrQSgl5WJbdaUV6ZV8RO5M/aR9XoaF15I6xqWdTUk5hq5SL9dBaOyDiUwG7rE4KWmmxlD2z0nLxIrAu8xXJwuh8biwO1LRaTVjjmJ40aXkWhzRnCjp250ZEY3WyrVaa4tQfljB34jT+5+kzSBJ44EGrzyJNltGsL2F56fdo1s/CJA1mJJQCqtUK4lKMSrkKkyZITQJrNXRcRqWjG4jWAVEVVlcdqBCgOmQssudB0hH52BEemZAHrtpsGKkkP2PXgd81AxSmAEiEgCIDFu64ZmMZj/3vn8eZM2fwvve9b/Vxvc1G3xEnT57EpZdeyttDI1t61NsZ4HLfov0uxMAPv4CLjg0ZgLW01aRS4T5F45L7SKNcjnW165NylrAQHl2LTJkpvaG0n0wRK2VSMnUnAM48RBIbCQzJGKJzHjp0iAOXu7q62Ggkzz6NlUBMHMfYt28ffvazn+GjH/0oBgcHWbpEmYsAcF8yqxUxEYuLi3j11VexefNmllMBYOAgr41AA9XfoHkgFoD2IZBBTMDc3BzHOJDM5MiRI3jttddw1113sXecvOGTk5O47LLLcOWVV3KA7vj4OMdOECCjwOb5+XnOCCUN2ziOOdaCzkvyr4WFhcJAXGJHDh8+zNdPMSdzc3O5a6VrJPna6Ogo5ubmMDs7y1m4XnvtNXR0dKBSqWD9+vVcFLBareLs2bP43e9+h+3bt+Phhx/GV77yFSwsLOBTn/oUr4GJiQkkiasvceTIEczOzmLnzp3M0JFhTuPt6+vDv//7v+P48eMYHBzMFdoDgEsvvRTDw8PYtm0bMwwEYCnbGM1Vf38/4jjmityUQpjus2T1aO1LJiI01iW7QM9UKG2Uz3mRgyJ8novYRnonhYX+2jkcwueafpdxPkV9nDt3Dps2bXrHvyMumLH4k4iPkN/dRY76tXjqFDgQ1ma2Rb7DgMkorjZO3uFwcCsN9nagIjxKqsrzvxcdkX2WGdVyCPLTHCQQoKIAspC9Hoo4aM7oOB+7QfsqrpegYH3htiyQNQMWdGyYNpgGTzl1iMGgz9hb7getyFOvLLgWhXNt83ZrWoA1MAqwMDDWIG2eg0maSBpnHahIm7CmAQULpRVgEhiTwKWWdfEPJk1gtM4ZuySVcvEEjqlwlbUBHSn26mfyLMVGPgErrbWLqYgiV4yO2BZjGVAYyVr4udPWwvg4DKsUtIYPRDc89wokc5J3mOJZAEWxBt5druju+uViC9zfK8FoPhmAbARSTWic+35d6lsNZV2Gqmq5hEopQinO2Cl3H92RGgomtoh0iki1oHQC2NTPDdBKEhgLKO2kXlBlWB0DUQWIOtxPXXLZwYLnkZJK8PXR+rfZ+bPnQj4TGbtT1Aq3F0k/c5sFkKBnogBc0O8r3w9rADl/5BZ64YraWg172V+7Pov6Op+06UIkCO0+O985ivY/H6gJJU6rjSmUQhQZRLIf6VENQQo1irsAwIa3zLJD56Z9h4aGOCsPgQhKeUrVr8kDvHXrVlxzzTVs8EomZWxsjPXyEgjKVKBJkuDqq69mI5q8yjK4t6joGO0zNzfHsQg01jAdKcmnyOvd09ODVquVC9IGwPuR0d/f38+ecQIYJLWhccpg9tDgp3FTscCFhQWOIyDWiM6/sLCQ86hL1knWHKF0oxTQLYPPqSBfGGDf0dGBjo4Ojt1YXl7OBXETiOvu7kYURVx8TsqNCDQAjnUgwEOfnz17lq/npptuwtmzZ7F582bUajW8+eabfK633noLJ0+exObNm3NrksYwNzfH93lmZobBh0z7Kte1BA1ybcn3VQgOJDN4vueyyEkgg+7Dc4RJFMJ+ilrRcy3HJ98Fa32XvJ12Ub2+t+AiOO9KW6a4hWAkZ4mvsY+30TLTrP3JiiDJ6nvm98sy8bitkpVonyGm3VmKt6+aa8YbYmTkAc5QM9YZybSPq3PnxV9C4kOSHZZEwQIqgjGRT29qcsaSBkCFF9ypUx97kcKmLWdQa0C1lmHTFox1MRA2bSFpnoNJW4BpAjZFBOMMc88EwKZIkjoqtgVYhTRRaDY00iQBdOQMSQBpq+FqTpgWNCx07OJMlB9XmiZAC9DaB2NDOwbAuGBorSPEJRd74QCGzzpFEivxkwveAYi0hlGKpTWU/hWAP0/KzBAQQynHdkiAIuVVDpx4q9laQgT+FhGYcf9FSjJp2Toh2Q7daOvHFSknYXLjy4CEO8bV4IC1iJRGZ6WMzo4yujrKgEo8YHGJwbQCIlVBq5qio9RCsx77uVRoJRaNpsW5hgVMjBTrUa12oFqpIPKpfRFF2TUbOfbMMSAvXyxqrDTbxbJfBVQUtbZPXO7ZXf34wu1/AkBiNSlSkdddfrFJ73so1ZHGYJEhHvZF2+TPdgxJ0bFhH+HYQ21ykVey3TmlUSL3kbp5IM9cFMmjZJOGc1EMC/0tA1fJiKXA3u7u7lyu/NBAIYN5bm4O3//+93HzzTdz6lMyIvv6+jA0NITZ2Vk+FxnAO3fuzDEh9Xodhw4dwrXXXou77roLBw8eRBzHGBwczGU8ovSuZPxSxWy6bmIUKMaAAp8J1NC4qa+BgQH09fUhSRLMzMzg8ccfZ5kRVRsneVQcZ/n+yatOc7x+/XqsX7+eAdPdd9+NmZkZLCwsYHx8HLOzszh48CAHGlOxP1m7I0kSBhok1yL5kryHPT09+PKXv4y33noLY2NjfA/JcCf5U61W44BuWf+ir6+P07S+9tprWFpawpYtW3D69GnMz8/jjjvuwOzsLB577DFcddVV+O53v4tqtYrp6Wk8++yz6OzsxNDQEMbHx3kNUND1/fffjyuvvBILCwu4/fbb+R4dO3YMJ0+e5IBuSvM7Pz+fk8NR01rjpptuwvDwcC5VblEcwCuvvIJXXnmFJVUTExMYGxvjiubUduzYAcBJuQAwM0QtZAUoNkfGO0kJkXz/SOZO/mz3fqI1TwUGCVhJEAkUP/fy2Q8Du2l8dD4ZiC63y/3p+GazuWJu34n2rsdYULtgMNJuX+n4FJ5VceAqX8rS7biy36Jdc7u0jfPIjOZwmxUfFHkVi04vkqgKLzI4ViIPQMgr7o9V5GFV7OktujQy3cP4ivYcBm1VBR856KKs9fEIvkclZ8EbvT7ol2U9FC9BQbk0MmvEqDzYMBowlA3KZD99kK5JmlBIoWFY12+sBWzCbIJLnWqgNFzgrirBQsPalIv56ShyHm0Fx1ooJxlykiID5WtAOK7KQCuLFK6YnvbsgFLw50uRpi4Ww0JBR07mFPkr09pngFLuTpjUcECyIUBBgerEHHiGgjNc5QJ58vsppXxxPTemPEhxjIG7T8S8KViYrE/lkSCsmwcFkK7NWivS+ubHYz07RPIvHUWcUpeAo6LxGl/LRCkHHrRGHJcQRU4CJDAOqDBfqVKGippe7gWUDVBNgY7EreooLiGOSa4VMVvExfo8u6KVYvBC7xZFS9z6/zxDYa0pfIcJeMLzslpr5ziQiRwuFDy895DCtXZfsuE+qzED9AUbMhyybzI6zuflD39fDdzIcYW/h+NsxzCsti3sT37By8/bZcUqGrsEX0XXHrIU8jMyPinImYAFfSb3JyOVmIs777wTvb29OaMvlJCQ8UXHS2ONQIL8CQCHDx/GF7/4RTYy7733XjZwyYgmeUuSJPjKV76C+fl5PPTQQwDynmsak2QpqMBZT08Py3kGBwc5KFpWuCZDP0kSnh8CJHRt3d3dDAwIkCVJgh/96EfYuHEjhoeHc0Bybm6OgUiSJLmMXQTGKFVrkiS477778Od//ud46KGHcOedd+LUqVMsgzpx4gSnv6WxyribY8eOodFo8LVTcLOUEa1fvx7dvtghga/jx49zET6KK0mSBFu2bGH2ZHx8nCVcxFxUq1VMTk5icnISv/71r3HVVVfhpptuwj/8wz8AyCRMsjDbVVddxdm3jDGYmZnBd77zHY5BiWNXJPBnP/sZwlapVHDs2DGWcCWJk5Z99rOfxejoKB544AFcd911LPMiCRetRVrvdA+q1awmBQCWvklGKnyn0FzT30XvnJAhoGxdsu9wH/kuKOojbOc7dwiQ3u32ts/wTrEXObnRKv2tMJIL3H9WGDvhNjIScrrp9t/0K865cmjSR9seDPHx9Of5d4VUl4eyDR6uyn7Ka7Cg4Fp5IuFpFpKjMF6kbWwL4AzaFeOXXmtfkE2k88zPn8oYCv7MGZbOcAMbxtQXZ0CCdVl+rDdEbeoBRR0mbSFpnEOkjKtNoZzxnKTkuc9AjQJc6lTlisAZ6wxqF2egoKPYgQ2lHGhREbS2SE0CZVLAxzYob2hrBaQwbFyTYaroGryUSWva37ngKT4hUlm9CZOmvvK2Tz9rXRVvnguyjz2zkrES8nZQcHVmPFN617z0zAVPA+SmFxmRhFyN2CSGx20tX5UBz9yyoxTAWaV06tMtEAurs+xUJA2LtIEipsuzcQYRlCojKnVCxy6zlOFH2QXGZ8xdHta6Tf4+aQHes1EFTwu9KWzBp/n5hmePLPLPT+79KEFBAAZz3YXdF5+1bSuSTr0XTXrPiz5rBy7CY4o8/PKzdq0dmAjBQTuQ0G7cdOzFfkEXGfuh9OZ8oIZa6IWUn4eGT/gZyWZkIDPJl8KgYAqWpjiH3bt3sxEsxxz+I+NNjk/GcND4CDSQZ9kYg1//+tfYu3cvksQF4RIDMjIywpIe8nxT3wR+iuaAQIyMMYjjOJcpqqenh1kDyaDRPSLpDUlmKPibYj+oFsLTTz+N8fFx3H777ZidneV+Tpw4gddff51rdpw6dYqfE8rwRDIzmv9f//rXzPjQuBYWFnD8+HGeZ7oPdF1JkuD48eMsB6MYmTfffBNjY2OcOau7uxuXXXYZlpaWeH4bjQZeffVVdHR05OqHbN68mdfLwMAAHnnkEa6WTSDg5Zdf5nvyu9/9DuPj43z8W2+9hdOnT+Paa6/lbRs3bmRgAThQc/z4cWzbto3nlmR1hw4dytUuufHGG3H69Gls3LiRQe7c3ByOHj3KxQ7Hx8f5uii+Jo7jXJpgCUYliJDZtsLnR7ai91HRsyrjNyS4aucUaHe+ovMUvWflMyATH0g28t1qFxy8Xa50uAPFF+M7FcCd208Vm+lFGuR8v4o9qoXAwu+iIDI2sbGt8n/n7W3fZ9E521yDPGHw0waHF90EqiPd7hh5nnaFCLN8UwTcCvoQP1emzM0brmygiX4UXKKf9eti/NmGMtaVgThSsIhzjA3gvNErgIV1RrsxBjA2qx7tGQyS4LisUL6SNRLYtAGTNmETJ2eCaSGCiPPwF+wClDWUinksbK76GAljUyifNSnSEUDHRGXoqIy41OE99gpKxy6lX6XqPPHWYnl5yRfFS1y6U60Rx2XouIwoKqGjoxOUzpXBnpxX4zz3rVbLsxSGU9lSgLpSyoMTZ3hnbIXl+8TB3FowCAI5pwK4EKikehkKGfDQkQAt3mCOoigDfn4RUJ0OpWOWexkfn9JqNb0Ozqe9TV1Fc8XzmNUeiePIBecrjROnajj1+0WcXWqB4/shcAj9zp8JuoEzkBlQ8gBjs8Dq0OimvuSisEBW4F7K8hAcK35m47K5Z3CFkW8zqG9oNRbsX/T7WoEC7ddsLONH/5/7/qjB26dPn8b73ve+82p428mSilgDafivJmeSfZwPfLRjJ1ZjLIq8kxIQhOOlf0V9h+MLP1sNuIQZsMhgkOegnyRboaDromrdEghQX+TllexGrVZjqYm8J9IAl7EC5PWnc5JBPDc3x578gwcPsnHX39+PWq2GJ598EnfccQdXlZ6ensY3v/lN7Nmzh0HF7OwsfvOb3+B73/seAOD+++/HBz7wAQwPD+PRRx/F3NwcB0wPDQ3hox/9KDZu3IhHHnmEsxWNjY2xMUpjpqBqMsjlfJNRLeeIMi/19vZyzY65uTnus7OzEzfddBPiOMb+/fsxOTmJqakpPPzww+jv72dDF8jiDkg6lCQJDh06xKldR0ZG0Nvby2OUgGRmZoaZjwMHDuDIkSO5wnKVSgXDw8MYHx9nqRjFewwODuJXv/oVTp48ieXlZQwPD+Paa6/F7OwsZmZm8Itf/ALj4+P4wAc+wIBnbm4O3/72t7n/6667Dvfddx/uvfderq59xRVXYO/evZiYmMDhw4d5e6VSaZuNSGuNv/7rv+asUNu3b+cq53S+6667DkePHsXS0hK+8Y1voNvXVBkdHUVPTw++//3vY2lpCfV6HZdddhnWr1/PAfH0zIbPKGXKWlxcZNZC1hEJn1n5zEmmTj5X1CTjJxmK8P0RtvBdIs9dBCyKmBP5biJ5IIFAwAVvb9iw4b0P3qYmGYbValBcfGrYVbT8b7d5F78lSRTZoPS/RT6g++0TMkDOvAMHHYuPEfILxFK0O33RHBcDGn/+oAp1eHopaxFbeRuNRd6ZTDITOLItWN6SSa7gsz7JK7f+up1UScH6ybEw1kucTOIN0Cgz7p0ICdozC4B2YEBR3WR/bwlYqAhaU7VrcNFpZbVjLqyGVd7UYzbBC5YI5CgA0IgiV2E8jmMGFqVSGanPhkQTorV2mZ68QU5edz9x2Xx5OdCKIG0yQrWvveE9//QTKry/vIL9sKXFnK9L4rz6+WBw5ekvBn4EVsV9Kmqc/tf64GfP5milYSCqtPrtHDhuLZR2we7W3xAXj5MCJoFWqR+3dsluLWAUFekDsrAdyQhk8USUylZZz3b4dUUAgMaeFe7LdbMqVUBMxApGYrX3HTEbfEeCY0SfK+YXxe/aIofCn0IrYgHW4u0v8tZdKKvQ7vzhGOQXcfj5av22ayGYWm3Mki1Zy7jPN4Z22yjtKEl8aJwhoJDHSOMLWGm0hAyJPD8BEJLySOmFDC6W2Z4A57SgWhPDw8MYGhrCwMAAe423bt2Kvr4+9Pb2sjFeKpXw/ve/H0mSYPPmzWwAElNC8hYAKJVKfG0kg6FrkwHb1OTv8p5Q7Q3qhzzlJLMiY39oaIiLChLIkDUlJJMSMixyjikeQMaLELiRRqP0uHd3d2PLli05YNFqtfhfV1cXKpUKOjo6eNyNRgOVSgV9fX3o6OhgL/7AwADGx8dx+eWX875h7RCtNTo6OjAxMYFqtcoAolarYd++fajVajh79izvv1qKU2IfqNVqNRw5ciR3/OWXX440TTE/P49jx45hfn4ec3NznPHphhtuwPz8PN544w1ccsklK2IhZFB/mJo1jOmQEiK6P+G6WKv3v4hVKGIkL6bvdswm3SdZLV6e491qf7QYiz9aW8P3a+67vx14WM2iv6AW6kJW37NoIw2lyNYpBm551oHkOWEPOUDiQZZkLMKCabS/Fsab8oZS3qSlZtjLrLWrdG3SNLcnV3+2xjE0CsxImGQZadLA0tIZxHEZ5XIHypUuaF1CFFVgVQSjYhgVe3YjhZZD9kgp88jnMwFlBqjL6JTp/+G98MQZOQmWk+koVMollMtllMtlF1VsHXCqA0iTFs+L+5IoIYpjTo2bFbFzcRuwLtVuFvuQ1QBRxDzEWSXujIFQ4hoU46hs6i1nerIgo5QMUA9kLIEYnc2RYDy0FuexJMfy2xSBYxdnYdPUF9Pzwd1aw7ogCRhLGbo0dBSj2ViGMa6ydhRFUHHs4nKsRWpTpEkdNl1CDMDqCNAVd9+UhoV2NbQNkyFBy9gFm91OWGtZiiVTw6404iXogGM9WMLl1oKUlOWkfSQbEwAgZPt43a/iOJGAJXcO8dn/Ck0aZO3ofel9L/rypiYN4XC/IoNeHicbGbpk6Enjrd145bjDwOiQzQg9kKHBSL+HQZnSiJDnKLqWouDscBsdV6vVMD09jeHhYfY2k5xmNbBBKWaBLBiUUrBKHX8oFaL0qWNjY3yd1Pfc3Bwb/T/4wQ9w9uxZ/O3f/i1X8/7MZz7DKUbJu0og5Ytf/CJLtUiSNDg4iL179/L9m5+fx8zMDF/rwMAAn/v222/n6ydpDRV4IwAijbk4zqRiMmsWBY6PjIxwrAcVhpucnOSUpgMDAzh8+DAOHTrEx1NxOpIhzc7OYmpqikEUASuqGE3n6+/vx7333psLrKe5l3NB97FarWLXrl34h3/4Bzz00EN49tlnccMNNwAAnn76adx9990M2l599VXs37+fPfudnZ2Ym5vDq6++ik9+8pPo6urC4OAgszMTExMAHOvw/ve/H9VqFV/5ylfwi1/8At/+9rcxOjqK0dFRHDt2DC+++GIuVeyXv/xlrqgetuuvvx7z8/PYunUrqtUqnnjiCSwuLuKhhx7KZYQCgJ/97Ge47rrr8OCDD+Lzn/88jDHo7OzkdTkyMsLMFsXmUHA8ydKorgbJ2Oi+9/T05Bgneq5oLch3BYFTyXyE2crocwJ9ISCkviQIbydtbJcwIvxbvheoeCM9ExKU/kkDi3YxFtJLXXQMtbcbn+G8rKufJ29Yu9EV9IScV5YtAJXbI+s7GEM4Jj5CrZiHFaP13n6wrKU9YMiGtTojVFSHwhndeS8reamhbMBY+LGH/XsGghX3AlhYlclOHFjwGX9oLViArD0DCw2xr08tatImTNJC2lpG0nSxE8o0AaNgjQMnjqCIeEguAZNxbIWme22IsOBr0Vy3AJnnGimsdQa+pirR1vpaEsgMeQXPPmhXc8LXcIAHXzqyro6Gr6XhanC41LK25ebLWovUZBmiSqWy35ZCaY040ojiiDNBkWRIxxEb/Vk2LWQSH2PcKhPea7qvxscU8DblgFa5UoYxxr2ErAN8dA6ttbt3fAytBV4C2doICkJSRW+lFKIodpIro/g4TfNmUqSpA2vGKBgTA8qhhaTxBywvnkSz1YRSEaK4AzqqQOkSoqgDsYoAFcH4++k4Ku15Lz83cGvaAQjjt2W1QVhiBgIYhAksLBddgQeCtFJt7vkJwYWBAwwmAAO0Dz9z1rpYJXo/yWdL9FnU1hLT9qcAPtbCLrT7cmvnyQ9/D716oVFNX6BSd0+GAhllFzr+1RiI0PtZNPZ22ySokeeQEiParyhLTrt+Kcc/GaNk5EpvvmxSi02fk5e+v7+fg3kpaw8ZaTRuilcgI17GNMjsN1u3bsXx48fx1FNP4eqrr8bQ0BB27NjBMpx6vY79+/dj586duRSscRwz4KEK1bIOR1dXF+644w4kSYLHH3+ctxMICD24ZCAS2CJPPWWXWlhYwPT0NAYGBnIyMDnPdL00zsXFRZZ4kXzpyJEjePbZZ/mYSqWCzZs341vf+hbuvPNOAMAbb7yB9evXcxxHHMcYH3cxAgcPHuRzk2deGr40J3RttIYoNe0dd9yBxcVFvPHGGzl25corr8S2bdv4eBorAUSKGQEcAOvr68OpU6dw8uRJVCoVUDpaABgdHWUHgYxLoNYOVADA888/jxtvvJHjOp566ikuDFjUOjo6EMcxPve5z/G9oyrf8/PzOHjwIB5++GE8+OCDnKWM1hCBtvn5+VxygVqtxrVIwqBqmXgAyN4fi4uLmJ6eRn9/Pwfkh++IIudAuK3du0uC86JEDUX9yP7oGaHPw7X7brULO0ObL6sV3jm18jO3+R2hALL+LhqU5MQI3JxXNdgNaw9Ol7ud71pVfuf8z/DzFTuuFVgEnQKQ15MzdsgLnTtXCMjgLlLlr47ABQSwIAmK0OWAmAlLnnLJHTgNjC9U10CzeQ6mVYc1KZwf3KWR5UrcSjswpCP309u/kQQWikK+Adi8UU6eexe4LYKjYX2chOIMT3TdkS/kRuwBQSqrPFjw8h8ljrPGuNB0Y2BoGmABRKDMV8ZaxFEW65AmLvOVErInNvAzXOR/EjTLZFY5aQ4BPSUMXO1AltaaK4cToIL2WZKIasqBXom3PaOVSphuc/dcq5WgWvvAdydpSr0R7+Rk7nEzSFvLaDX+gFZrCUpFsGkHongdtC5Dl1IoXYJWJWgdOxZDRa4PRDDW1/RQ2SVQSltlM8PdePZFMhe8RP3rwTFtPkuWmPOQSeD3n58nLbYVAQHl702RdO1C32mFzEgAZN7rVuRJuxBZ0/n6Xq2v8ItWevbbpcYt6kMaGe1a+MX/dryC0oBpN7Z2gEXuK6Uz5OUmozS8L6FhQvtQKteenh4cOXKE08rSfiTtqdfrOelOOPdSikRylpdfftnFqwnjP0kS9pATsJDzQKBHBlLLvpeWlgAgV/VZBmXTtUljUQILADlgRP2ErA6Nia6Z0touLi7iyJEj6Onp4foYYTt58iQ6OjpgjGHgsrS0lKvoDQB9fX3MYhCQoPtJP4EMWEiAmyQJOjs70dvbyyxQCLZ7e3sxMDCAyclJzhBWrVbRarVyaYRpbRNAPX78OMuvSNY2ODiIU6dOcSaqokZxF1//+tcRxzG2bt3K1bhpzAsLC7mq34CLtaB7eubMGSwvL2NxcREjIyMcY0IB+PPz85icnMSZM2c4xoeuQQZjUyYtOi+xSLReaExAlqktTDpAUkMCKzKbGrXzvQPagQ0gA/rhM3S+9ycdQ+OSz89qDpV3qv3/iRTqbeqW8gSD+zUw3K3Nn2P172zJFKzcMetbeiuZq8hvFMesZD7yoMAKr3URsKAsQdZa55UOTqNJUqPy5y28PPjgU4ElOdOWc90CACJfBTpJUy/5aflaE8angnWByqlJYYyFMYmPU1CI4jLgpTYOQLigapAkKC5BowStHMMQcbYmQHlgobxRT7IsADlgYU3KAMfVkDBIWk1oJYv+KSgVoVzuQFyqII7Kbjx80zLJldYunoLml4zYNEndmKMIpXLJS6RKsBaISiVmJ2AtECsXL5INN5t0Gjv/9Cl0AVhRGwQq44OERcz3lCp7x3EMBSBF1q9JDVLlis5p+YoggsJYRL74X4bcwEH3NB746/EQ1a9h6wLPrYFJsvvlgq4VAOOK5VmgVW/A2hRNLPk1rqGjCnQUQ0cxorgKHZVQKlWgoxK0LiHWZSjlMkeRdCr1sTUuETFJqUgWlRnnJIWjGBA3x4rZpixbWSZ3sn5OjfWMnwfMVuVjWHIMgmcr+MkqYCky5oKYFMXnFYvCMyz5c/wpMBbUZJYaau088/SlWfTFKf8uAirtjOwwYFl+VuS9C+UJ7c5Hf7fzJLYbe7vWjsEIx96OzZGGAxUIk1IgMqjC9JVkUElDJARS0ogaGxtj44+MWJkZiq6VgAgAHDlyhL33gDPohoeHOZj4wIED+PrXv45HHnkE+/btw2OPPcbXdvvttzMLMjExwVWrwwxWU1NTHIj8pS99CYuLi7lAbDL4urq68MQTT+Do0aO44447UK/XOZi71Wrhwx/+MCYnJzE7O4t7770XY2NjLHWamJjAvn370N/fjz179uDRRx/FkSNH8KlPfQrz8/PYv38/4jjG2bNn8ZOf/AS33HIL7rjjDjz++ONIkgTXX389hoeHMTIywlK8T3ziE3j55Zfx6KOP4qGHHuI5m56e5qB2knURoOrr68P09DQOHDiAgYEB7kuycnS//+Vf/gVA5rmmIO/LLrsMd955J9/L73znO1haWsLevXtZykXzNjc3h0OHDuH48eP41re+hdHRUTbYFxcX8c1vfhPbt2/HRz7yEYyMjHAA/oc+9CF0d3fj6quv5hoZZPgTq5QkCUqlEubm5jib1G233YZ77rkHtVqN1wLFi1QqFQDAiy++iKNHj2L37t2o1+t4+eWX0d/fj/7+fvT29mJ8fJxlZt3d3RgcHFzxDFDNEilNHBwcZFBJz4HM0BXGGlWrVYyMjDDIo7ohVOmcnh16niTok+eQbKp8P9L9lxImybYWgRLJwIQASYLjd7NdcO/tggfzO9GP4MtNEhqhF+/teNeUPOkF9kPHSiwg2orrDX5bOWxV8HsekITMjiQFZOyCPF7RNsubBMsgwIRgD/L+UHG+tmxHli5VbAmukUCMzWIifNeK3LoWPsuRz9ejdDZ++Dn1xj6MgUlbbDzrqOR09UpBUTVr65kJHUPTvyhmYzXSxFZovo1audoLSqwLqvFB3nuebX8NBCycLMhll3Jz6QBDFJego9gb/flsW1TrgeaPWBzrvfgkY4pLJWYgrAcAGq7OAwELpTSgUl9UUKw/60fMYKa9V5wOkM+gVuG9dADIaO2qeBMgoGMFk+PIDMW9MmOTudsz4EsGsDCEpWROUSapHP1i+ZKULkFF62DVMgyMYw38ukqNAyfaWkQ2gU4tTGqgdNPdI13ytUEqcMH+MaBjuFokJS9R047RoFlUlJhA+6EoD3qZ9HEAwpoMZBAD4i9fMeuhIAGIjOfIpjYvhZISKNncFCr/U8wp/ESucHbkAcWfAmMReq3l9nb7y99Xk0S93bZW2dJa+wi/5KVUay0exqK+Q6ATni+UUEmN9mp9SyOFjBcpoZHnIiM+vF7y+hcZUNSoz/n5eTz55JPo7+/HyMgIgxECA8RQkOEIAB/60IdYsiML3JF3WhpvUhJEcyANRJKA9fb2YuPGjVhaWmLd/dmzZzE7O8uBzVIuR1IuunbS5VO8yaZNm3L3a2Fhgcdaq9UwMzODSqXCUioAzIIA4OJ5xA6QF13OHd3jiYkJJInLYEQGLu1DcqQ4jjm+BXAZlF588UX09fXh1Vdfxc9//nN89KMfZdBFaWivvvpqPu+xY8dQq9WwceNGtFotJEmCTZs2IY5jPPLII8yAkDRsYGAAl19+OarVKl599VUsLS1heHiYx0NM1KZNmziuJ4oc89/V1YWRkREMDg7i8ccfx5YtWzi98YkTJ1asWxn4TVIsYk5I0vbNb36TK7rPz89jampqhZc+dCzIvwmsyuDuMOuafKaKWNCQBSSAEm6TfRZldSpyfoTvgiJplGTk5PY/SSlUmEWGtq32BVZkmFvxBcn9oNCuL2yrfmFKkLHCqBa5+MVeeYIhu678l7QvDpbHBAXjIbdu9lnIHpCqxf0ReDIDYLKCeVByqFlHSuyfkzflrl+1nWQCMkqOEWQIqmA/b+AGQ9PK0xXeGjNpAjK2SRZjlHLecWOgkPgUrU0GDVFpHaz19SdMKwMW8IZ55Dz9Kiqx/MhlXvVyKOvAhELkx+KCwrnIm298f72X33nxXaCuiVKQlAoAg4ooLiOOy95gFXVFGKS4OdFKZeyPN0qjyNXHKJcrDjiA5DSu/ziKwOlorYVONZIk8ZW2vRec5DoZOsqMcuRBrpNZSWAiDHyS8sBlzIq0/13lM3a5mJcsy5XI7wSrLVz2XgfmbGr8XhIseJDHwfNuu2NLiKEBswR+b+hoHaJSN2xknQwpjmCtWyutxABGQSFy6YFtCtiGq3qu4aRqWqMcVxDFZeioBMQlQJeAqIIoKsOlHXYshlFelgVFYSWwxvXtnn8p24syoGBscP/B6YEJAMp4jtyaC9iHMECb1oVbI+5+E2AhECTBW/gupp85VvKP1Iq+tELPfjsvWzsDmH4WGQdF+xexEO32Xcv4i1r4xX4+T6A09tuxJPS7DOIMU8uG5wvZH2I5Vrve8HwUVNzT04Oar/osQYLMey/rW0hZCXm3ZawBkBm+x44dwy9/+Uts2bIFY2NjmJqaQpIkGBsbw/j4OHp7ezE1NYWNGzfiueee42t4+OGHMTU1hUqlgo985CMYGBjAQw89hOHhYezcuZONeFlw7tixYwDAhqZMe9vT04ORkREMDAxgaGiIZTyzs7NoNBpcp6NarXJaVgour1arLCkizz+lko3jGJdddhlmZmYwNzeHzs5O1Go1HDhwACMjI+jr68PAwAD279+PJ598Ej09Pdi6dSvuuusujI+PI45jPPnkk2zAUnVwuicnTpzAz3/+cwDArl27OI6hr68P8/PzOHDgAN+z8fFx9sTfd999qNfrGBkZ4fgYCogn4PPyyy9jz5496OrqwsTEBJ5//nk8++yz+PjHP87398Mf/jAA4Gtf+xp++9vfYnZ2Fjt37kR/fz9uv/12NmR//vOfo9Vq4bvf/S6mp6cxNTXFgG7Xrl0MYAmYXX755RyHMjY2xtf6/PPP47nnngPgvj/+67/+CzfffHNuPV977bUc20CV2WdmZniePvOZz+C5555DR0cHdu/ejTiOc158+SwQmKG1QkH+9BxSYL1M9Ru+P+iehGwExXJISVzoBAife/nMFwGI1d43kqkNWZE/BqgA3oYUaq164Avxml0IuLiwHkOgIY35zEAODeh2kqAVQCKgO4r2LWIJyHjI2f95xOLPQEZsML7cPl7KtIKxEOfg6GxxDsl2+OuQLITmw4Pxi52oO63ZBwxrLdLUGYM2bbkFrRRiraAjDYsIJmnC2gRJaxlxuRNKKaeRt56C0NoDC19rIk2RtJoAFMpRGRG8EU/X5Yujwbo0pt5KpNG5WeRrz4Kaqe6EUsoXskv5EnUUQUcRolLJGaURPTLk0XZAyl2rv0sUE+H+gAY82xFBe1ACpaB17LMvORlOLh2wVogil2bW2CwNrQQRTjomWYbipnwVcQoozzMNmeHvGBtn5Ke+OB8FYtPchM89/WphkRqDNE14vWhOkxtxv5auw7qgdevnsAQL6AgWGo1UYamlUWvEMMYgjjW0ogB27e9JDOX7M0kdsCmQpkDiY2uaTUTKx8pEjiGJ4hiluIIoilHyjIaKIkSe0aAq7K6eBsVfOLRhAS7E5xgMw9vdeoeXgmXOFAYXAF9zHmggtx9tZOBA0NBm5zDcN5glkU32TwUh/5itiJlY6xeaNJjpb/lZUf/txiClPCEACH9vN/7w8yJ5VNFn8hraBYm3uw5pWMiMS+G46G8ynMmQlOOQ2YzoGKrv0NXVxRljKG9/EVghtoFAhNSYU5rPmZkZlpFIL+/8/DzHGtx11124+eabEccxZmdnuY4FGbtUvwFwMiA6z/DwMHvWyeDbvXs3uru7OSB3cXER3/jGN3DttddibGyMq0pTAPi+fftYSrNp0yZ86lOfwvj4OGc5+slPfoIbb7yRg38nJibw05/+FH/5l3/JcjI6N/W7uLiIQ4cOsSG+adMm/N3f/R3HVHR3d+PEiROYnJxkWRYBhaGhIRw+fBgzMzM4fvw4xsfH+donJibw7LPP4m/+5m/wyU9+kr3lvb29+NjHPsbs0rFjx/DCCy/giSeewMaNG/Hwww/jpZdewtGjR5lFouBzAuWbNm3Cpk2b8MEPfpDZlZmZGbzwwgscwP21r30NV1xxBf7+7/+eWYdarYavfvWrnJ2pUqlgy5YtnFUKcExCkiS47bbb0NHRgX379mF6eprjRyg1L92Le+65B5VKhdmner2OQ4cOYf/+/Thz5gwHtx8/fhzGmBWggtYnzSsB4MHBQXziE5/gbFYEignIUGE62p/6mZubA5AF4kuATvNPzyTd/6JAfsl6yGB7Ok87cBAmfghZC/kOkJ+F20LmMHwnXMj7+O20t9V7kS4YKAYT52cZfB/5P98B8CJ7DHovYCpWD4YukhnkPf1FY1Le/Z/JijJWgLqgka04vWJTkPkW2b8MAJX9FwEYK4fc5joIWATTEvSdHcLgxjr5UW49mBRGwUlLlAGlWFVkIJsUJm25Ine2AtiSMzyRZVty2aR8kLMxSBNX08KaxM2HyqQnsCljJ+tBBWdMor7gzDU5TgksADi5E61lHTkmJSr5ehjkHfY9eYNZGt1ZoHV2ZpdFKsqzXoKh4toOdFzAPEmmIWxtQbAV90j8vwJXiuNpHLKeRiiPo86ZEbFwMQW+DoccAzN9OWkVMTAGqd8WRb64nwYSY9FILM41DdLUIk4sIp/+No5jaDgwoHzAf2pTDwA0uKgiXNYxrQx0lLpj0xZMmiCOYiBK3L2NYih/b6ENSD6liVUCMqmUlz6RQi0z4klmJ1P6rhVYWDfaIC7F+vcNHUuSKPCx2bu2SJ56MYHg71YLvwTbSZzWIhuSx67GEITnvtjWDkis5VzSUC/yOq52rvC8RYCnaA5Xm2spCZK6/KIYlCKAEZ47rBQtARF5S9944w1s27YNPT09GB4eZmOeJDEHDx5kbz4ZdFREb2FhAbt27eLxkkeZpDVkvFWr1Vz2oP7+ftbyE/ihdvLkSZw4cQJdXV0svwIc4BgcHGSgdPTo0RxAkxmjaDulL6V+FxcXEUURuru7UalUUCqV2ANeqVRycqxarYalpSVUKhVcc801uXMA4GByutZ6vY5t27bh1KlTmJ2dxenTp5EkCX73u9+hVqtxetU0TbkPkrnRuDs6OrBr1y5cfvnlOYBE2ZBIelStVjE6OpoDm3Ke+vv7sXnzZg6gJm8+GfpdXV2YmprC/Pw8zp49y/I0uidyXVIfcRxjamqKa2C0Wi0GZ0XOs0qlgkqlkjP+aV3u3buX1yWtM1oDMpWrXNMhQyf3pd/pPO3eT3K7NOqpn3Z1c9bKfIbvhyJQ0W484bnW8u58O+29Dd5eYeVcRBcX8OVJBv6KQUgDedVzFIEP1RYwKIEUcqdW2XHUtDTWA6BF1ZTDwbPxppWYymyM2fnagyYpp+Iq3T4YWslz2KLjbW4MUeTkUEo7+ZI1CUtyTGJ5nqwxgE3Rqp9B0mqi2VhyYKOUINUWOiojKncwmDMmddWcbQuN+lm0WjEUUkRRjCiKPROgfCYnl/UIxlV6bjWbKJfK0FGUnyE2plVWIwLOEAYUUl/9GnDxFeW4zPeD5DGwbmzWGFe/wpJ8iix6Ba1c31l62owhcFW/LUzqA4eV4uuRC8Yau8KQLNLkF93bFUxTdusEqwLRl5sXGXxOLYoUfw5YpEnLB/ArRCryzErKAIklcB54UnP3M4VBgjRxaWejqAvQCjqyaCRN/GFpCad//wckSYqIYnSgEMURoihGXC4hKsV+bhW0il0MhY/d0HCZoSJYRNrAIEWSNlBvtQBTB8wZREqhpDXikpvzUtkFg0dxGVFcgdaxq6GhPExRsQcZPr2tzcCVu0cZ2LBi7grlUPJWWAvj66HIbblj3FmgBShZbR04sPbeSKHkF1+7wOYir1l4jGzScDifkR5+cRdtl4Xb5L7hsTKdatG+ZKABxQWwQk/kavIFYh+k8SpjB0Jjoqenh5mKImMnlE9RP2TshIGkQFawTmYZkmwI9SP7JolLT08PBz5TkHepVMJvfvMbpGmKO+64A/Pz8+wpp+rNW7ZsweOPP85Ah4KTjxw5gp07dzLwOHLkCGdHImkJxWg8/PDDuP322/HLX/4Sn/nMZzA+Po5vfOMbuPnmm7F//34Orn7ssccYBPzmN79BvV7Hddddh40bN2J6ehr33XcfNm3ahHvvvZelVBREvbi4yFmmqHDcwMAAxsbGcOTIEfzTP/0Ttm/fjs7OTrz44ou49NJLcdddd+HEiRMolUrMzlBMQE9PDz73uc+hr68P1WoV+/btw9atW/Hoo4/iy1/+Mu655x78+Mc/Rr3uKl1PTU1hYmICJ0+exKZNm/Dwww/zmjp8+DAAl5npq1/9Kvr7+/H1r38d//zP/4xDhw4hSRJs2bIFw8PDbGxT/MjWrVs5SPrLX/4yFzecnJzEiRMn8Morr2DXrl2Iogizs7PYsmULxsfH8dxzz2FycjKXwemVV14B4AKwP/jBD2L37t14+eWXsX79euzatQt9fX04c+YMHn/8cQwPD+OOO+4AAMzNzXHNiw0bNmB8fJwBWqPRwPLyMjo6Orj/RqOBm266iYEg1Z6o1+vYuXMnZ3gi0CvTylKWqH379qG3t5cZD2I2iMGjZ4VAMh0rpYYE1kPJETGV9HsIYiTADyVQ7d4Vsg+S6Q0MDADI17i4GCfIO90uuPfzGfLh56uyF3n73P2wwT4XMYa2+6rs74y7IHkMo4tCrNNeCuW3CWTA3SnkZSf0qSIzKW/05ZgAb+wpUIYhAkByHMh5myUQkOMIAU/+nBI00TabAyaZIe77pQ+ER9wZkYBSxhnLLskqXGUBC5umviCbk0aZtIVW/SxM0oJJGkh17LJFxZEzvlH2Hl4fG6EUKHOSgoVJWs47bRJo5bI0RSqGq7ztYwOsQaQ92IHU8WfB0gqa+3WfWbi6bgapN+TYy26koecMOgIWmfzEz4VWnFrVrY0s25D0WAsOzM2ztZ61KTYc6Xfpxclr8/PrVH6m2zw3Jsc00I2Vx0vQIZ4haxkQqQjMWBCoEMRN9njB1Xmg+hBR5FP1RmUnDVMapShCuVxybESSIDEGmgBPGkHrFqKk6QClB21aa+hIO8mZT6UbKQfKo9StH40SXNB9BGVTTv+btCx0kqCVLPlsUzFKJTceHZehdQkqiqF0BQoRXIyGZwCVgrUKiKwr0QLxk+6NABuhVIrvW8BEtAMWubVDcilLsTe8IkBFD//Yjb5ogbVlSSryoBV56duBiSJwcLGtqO8iiUKRRKpoDOcDFEX9SI+q3E9KJsJxtPNUklFDBhF5y+l3MpzIKCHwAuSBAxlZlHaWjCdZOyL0gB85cgQAuO7B7OwsPvKRj+CKK67Avffey6lBr7rqKgwPD2NqaooN7CRJWFZFcQC9vb1czIzAD7EBZJxt374dL774Ik6dOoWZmRmWRFGxMwq0pp8nT57E9PQ0fvvb32J4eBhXXnklLr30UmzZsgVzc3OsxSfW48SJE7j88ssRRREOHTqEgYEBLkwHAJ2dnVw4b/PmzcyCLC8vI01T9Pf3Y2FhgetAUCPDkmQ6jz/+ONI0xbZt23Ie8u3btyNJEjz99NN8D6g2xo033ojTp08zS0Btx44dXPOB7iuxI0899RQAcIpbul80n5S69+mnn8YVV1yBrVu38r61Wg0vvPACXn75ZYStUqmwfI2CraMoQq1WY3nVK6+8giNHjmBmZiYHpAEwa0H3ubu7G5s2bcLzzz+fO8/s7CzLjGQWsrm5OURRxGud6pLIWCGab1pT8p1DILIoVilkF2icRQyIzERW9OzK2B+6L/SsyzEVnTsEN/Jz2ha+R8Iif+9muyBgsVZQsbqciP7gjWKTEgZI3jB6O+PJnUf+8BYPBd1moqMA86xgKDJjSRrtbj/Nf+e3F40tz3Zk+1lIeXSR1IXniDztwaC5/9ypQyCjcvvSHhnOcgZx4TEQY/UXqrXPAmV9nQDKlASD1DRh0gRp2kDaqiNtNdFaXnLAwKZIrIVNmtDVsvNAo8pGmWNGABVFoFrYadKETRWsVihFTm5DwELBIkmbUADiSPtxpUiNk2NBaWgV+2rgSsxV9nsrcWyL8UYaTBYfYL38xxCwEMZ3JqvSHlyQEe5ARWryBiSdN4q8zt8arkJNrSgIOEuXmt9Pa3Fn2j47Xr5jKRbGxa8QeCx6rChVsVyLdKwDgpl8iooUyr6knMr4qt9aa6gohlYR4lIFWkewSqNcKmNdpeIAZJqg1Wo5FsIDNupYq6wQH8XClCtVH2wfuVTHKmPemOFSgEs+69dp2gRMAmVbPsheo1xymUviUglxqYo4riIuW8diKAuoKJPs+QfGemeAVRkU49gYASIzpqP9fZb32t2x8zMhsh8A0O8BY1Gv13Hu3Lmcfpm+SEOj/HxedrlfyHCsha2gv0NZUOhdDM8lj23HLoRyhHbX006iUCQtkhWtgawaOe0vU+fSfqFREQI1AnrEUJDxCoBTxpIRRIYOadWpf/LYUgVvurcyUFsaZCStobSfVGwNAN58800Ohu7q6sLtt9/O2vq7776b09eOjIxg586dnKqV5D79/f08zrm5OZbWLCwsYMeOHTh9+jROnjyJqakp7Nq1C/Pz83jppZdw9dVXY/369diyZQuuvPJKAM4AJcM4TVMMDAxg7969DDhIUkVswczMDE6fPo2zZ8/ixRdfxP3338/XRxKtnTt3YmxsDECW/emNN95Ao9HA4OAgJicnmQ2ifeieDg0NYXp6Gl/72tdw2223YXR0NBdIf8MNN2Dz5s14+umnUalUcv28/vrrOHToEM6cOYPOzk5eO2NjYxgeHsb+/fsZFNDc/fKXv2R2gJqUP/X09LBx/OabbyKKImzevBlpmuYYhr/6q7/Cvn37GERs2bIFrVYLx48fR71ex9atW3m+qSr2fffdh0ajgePHjxcWwTt79iwqlQrSNOV4C6pPQm1ycjIHHKi69Je//GVs3LgRIyMj/DkVCpTPPqWWpWeDpGMUTzM8PLyC9StiEKgPuk8SNBCrIAvuyXs/NzfHcTzyWV8NWADgtNA0Duk8oDUTsq30bBID+W42Zc+npwDwhz/8ARs2bMD/9rf/b5QqHSs7KTRUC062AlhkKEKt+H8lsDgfa1DY52qMSXCcEkZI8bVRTn7Lp3Lnc4ZkFgORN9AoXaaTNWnRX55VULljJfMR9puNhS7XGTUUDAtEUew95/kLJcZEWTqbZpSkst0y8ATjx8CDyY41FlCU0jVFpBKUdAvrYoMIKZL6kpcwpbBpA9a0kLbOIW3WkTYbaNXrgEmdkeerKaO8HqVqFzred5n3DGt3cY7+8SllLWATWJMAaeqyASkgjhVM2oBJmmjUzwLWp0XVkTMAESEuV1CqdKJj3QbEpQqiuOr19ZrlaBYW9UYDzVbiA35L6Kh0OAPcEsPlgJPx7IKC5sJzEWVBUq5SOGB8xiA4iZWf5MhX4HYVu+kYt5agNSxniUrZiDSp9UXtPJNjfRVzrbl4n6tsnRmjyrMmcRQJJsT4/gySpOVStkY+uFuJNKrKZlIuQrvi+XDVsRWqFWdgGGP8vip/jGdiTJKg0VxGKuId4thl+IJSMFrj9B+W8dbZZRx54RWc+cMizp5d9i/dlstGxWAsYyfop/LnVBGBiix+hlIcKl/8UGtf9JBSC9sEpVihVFIox8onI0hc4LiOEHt5VMlnm9KUoUxFXHUdcAX76Kmw4j7ArwZ4YEEpbWnNZcwG/U4ArghYZCxFLvCb4jYsUK8v4Tv/+Dc4c+YM3ve+9+HdbPQdcfLkSWitV3j7pHEt9cwyHaj07F3sF1+7cxbpk9udp8joD/uT5yva73zexNW8i0VpW2m7DAaX55AGkAQE1DelbSUZDHnyKR0neXQpO87c3BxnSJJpaGV6VzoP/U6B4XEcMyAgj3CSJHjyySe5KNvevXvR19fHbEJXVxeDnrm5OR7PgQMHWDZCMh5pUB86dAgnTpxAR0cHS6YOHz6MOI6xZ88eTv86Pz/PXmoZC0LA4+abb+b0tUeOHMGBAwc4betTTz2Fa6+9lmMw6JpJikZMBAEY6ofuzf79+1Gr1XDNNdewrOf06dOcZYquleZ3dnaWvemyCOCBAwfw8ssv45e//GVuXdx2223YuXMn7rvvPt72sY99DP/4j//IsSpk5J49exavv/465ufn8fzzz2P79u3YuXMnZmdnUavVMDs7i+uvvx47duxgELS4uIixsTH09/fj3//939HR0YHt27fje9/7HoAspS3gHGvXXnst+vr6MDQ0hIGBAezbtw/Ly8vo7+/H008/zUBi06ZNGB8fx2uvvcZsxgsvvIA333wTf/M3f4MbbrgBAPDggw/mGB5qGzZswK5du3ieCCAMDAxwLA/JmqhqOGV1Onz4MD75yU/ib/7mb/BP//RP/JzQvaV/8vkMn+WQqZDPs3xe5XqRIJzedbRWZK2KEIhIh0O7d4NkpWT2NtomQQv1ee7cOVx22WXv+HfERcOWCw0MbA8KVMFvxSBlbcACOcNnVSlWfuN5gYUCwJa7r4ngjEfyyLrgTSltIiBgAZY7SO8tsxX+AuQYBJ7gfRwGkGHcxLa438k7quDlI0IuQR76zKWqfF+Zp57nAs74ygEzvi66dleLwhn6LQAprE14V62UTy1MF6HyDITv31VE9tmVmstQOkLSWEZU6nDBtT6TEmn2AeextyaFNS1f5M7AJgZpsgyT1NFcXgSscfEnKgZUBKVjmLQKmASRVjBJBVE5YaMwy8qkkDabSJMUWlVgFJC0tPe0+6JlHky5y1GAtlDGBfEaGH+3XCCxhZeHWYvUkn5MedPTrR9tjV8skTeerQsIRmZ0un9UudzwXFIciwMixPKAPwdUVrzNZsHmxriaHSZNXTYs5QKJc0BWu+MUrXm6h/IZEUxG+NxybIgV4+JFrcCVxUFGN1CtlPE+C3R2lNGol3BO13nOjS+e6NiK1AdNWx88bgEvxYLR0D6jFTFIaWqgI+MZFcd+RJHOCitaL9zzz542BLBdxi5jAK0cIKIifXFa9oAuho4cyFBRma/N0pL3jx3dFgIN8I+Hm1oFqsZurRKJCMDbmBERt8CKjt3zrxzYfA+yQgH5vO7tPP5hK/L+F8kOitr5Pl+ttRvjam21861lHOc752pzFoKQIjkUGRRS1iSNIzqWDBkyVMjAl32SQUOfkaEZnk8aUNIDfPbsWfT396Onpwd79uzB7OwsXn75ZczNzSGOYwaUslCZTPlJnlsyxuh66BqefPJJTE5O4oEHHkBfXx8GBwcxMzOTY1rI6CLPNcWykPFOGYsozSzp7mneSqUSLrvsMgwODvJ5KZMRkEl2Nm/eDAC5+YnjLEYlTVPEcYz169dz3QdZBZ0YKclchYCx0Whg06ZNOUN7165dufvR2dnJY5HrLY5jNBoNlmNdddVV6O/v5zobZIxT5Wwa++joKGdY2rhxI6rVaq5/ORZjDKezbbVaLLmbm5vDCy+8wDKnSqWCnp4edHZ2or+/H41GAx0dHXwdr7/+OjZv3oyxsbFc/9u3b0dPTw9OnDiBpaUljsM4e/YsH9stKqCHXnu5xoB8XQz6PAQVBGzlfMrng46TzKxcp+Hx8lyy+J4EDKu9H9o5MsJ3ZtF7KmRw36120YzFarEU5zPmL3bftezPX9QXcY5QcrRimzWwqa8eDcveZu2NCqzSD0lmyKBRXDQOWQpSZEBEEASiiYJvAHs+kSlxQPEApdilajVp01WzthblStWPxcUaKAVfcE45b7WK3D/In844SS3VKbC+dnEKa1uATQCbAjZxYEalWF+JESvANBtOLgSXEtSkTaSNszBJEyZpwTZbsNZlhoJxxu25ehNRqQPVrm50df8ZSpVOQFecR1o5IGRtilZjGcq2oGwChQQwLZjWMkxrGTZtwDSXQalmlXYxGErHzqMdxdBx1dfNqLp0sjpyBrRSrlK4sTAWWLd+gw/ijcGMldJejgTAe+d15ECcIo8xSPJCd47+KV+dW7sK3srNuyYPu6/NobSGIQCiI77lSavlQIrI2pQaB45KpTLimCReQhIjKnKnaeKrnLs1YUXKWpn1yq9+RLFjK+IozpCy2xkKQJKkUFqhXC4HsRqijgJ53o2BTRO0Wm5NJq2m6zuOEfsqh0ZpWB0jSYFf/39fwslTv8fcibdQrzfRShIkpokMkFCcDEkKs9S4FNDvpG/5gHT5rOlI+3XugF6kgSgCqpUSSlGESjlGpK2X0yUe0KUeCVjEsVs7pThGuVRFHJVRrnT6bFMxAHq26adikJD6Z1w83lk62Rz7QOspz15IRwK/+Pyxxho06ufwf/7D//2PylicOXMG69atY+OqKPC5qICb9K4B+awqsoXeebmdjltte1GQY7sv8XYMRdivNOTDz8PMMquxE0XXIGVRsnAXtbBAnMy5T15cAgTSwJTMjfR2kjdTSjkk6CAvdr1e5xgDqklB0hmq80BgY3R0FN3d3fjOd77DhhzJs/bs2ZM7d71e5wDwhYUFPPDAA4jjGDMzM5iensbi4iI+9alPAXCxD+TV/tWvfoW+vj4sLi5icnISSZJgeHiYg3pJ9kLSGDlPi4uLDCQoAFhe//z8PAYHBzmeQs4HAaj5+XlMTk7y3FJAsARB1BdlKOru7uYq1nKuu7u7OeD8K1/5CuLYBRUfPHgQs7OzOanL7t27kSQJfvCDH2B4eJgL7nV3d3P17FqthsnJSb4fVC/jX//1X1Gr1TA9PY3JyUksLy+zhIjSAdP6oLVHqVeHh4exb98+TE5O4rHHHsMVV1yBv/iLv2AW46qrrkJHRwcqlQqOHz+eAwcf/ehHAbjUusePH8eNN96I66+/nquEy/bEE0/gzjvvBAAOhh8dHcXMzAxX8F5YWMATTzyBD3/4w+jv78fk5CROnTrFqXypZgldz+zsLK9TSlfb7plfWFjA9PQ0RkdHmYmS64PWPd1nAuvESIT/QpmjlDDR2ioy/oueV+ov7JveufIYCXZljJIxBlu2bHnvGYt2hv75ZFBrOfZ8+67cBtA3M3tIIWwfv5OC2NjmHEXe1hVjNAAi78UFFX5z0hNNHn8tQIHkFYiJ8Mdak7ChQdmCeF9yR3rDj4kEZEBCKfJ6KyYDvHPZGdRpE9amSJO612NYmFYCQLl0md5oNRQYDoUo9nr3uAz4ImLKS1Q0Mi+5hQMTNm16cJHCGgcsUhi0dNlJeUz2kLq50jDewNfawkTWKa1syoDIpk2kxqBuLTrWrfeVqkvM6DiAZgAfYK6hgNR57KlIHhS8ce1jHaIy4AEg/P1SWnl5fOozWGXAD4gB6/o2rToSY9BqNqCRQlnP0MAL4rQLNleeCXBow/ICVDoGIgdgoCMgKgFRGUrHSEDB4ym0cWBCa0rL6/T7SmmfkcuvDZNV5HbgwnBFbWtSuJSrzogmcGPSxMdDJD4jkxGyuUyOk61Tv7aUAwMGQGKtD3inqtleAOaBFRm+xEpYACZNWTyoVWgsU60MP2829rI1L1+LFP7ssm4kSYr5U7/Huq4OGKPQaCy7JACUhQnKS8+okjcxJd5IV6kvyEcPkXuulL9WizQH1hMF6BRIDRDpFPVmiigCYq0Qx07KGGvtMp8pizSxMCqFSQ3SJEWs60iTOgeBa13ycxZ74OYBLrR/xsDPHzwj54BEVineKlcJPMMP/k1gjaBB/PNhXUVwhfemQF7owZOGqZQIFB1DX35FNRlWkxKt1sL91npcEaho5+GjcZ6vXkURqxAyEe36lpln5HHSu037hqlfpZFCAdgyYFYaIMQK0BxLI0V63ynNKvVJ900a6lKOAgAdHR3o7u5mbzcZzNIoI8ZASkSq1Wou7Wq97upTfPGLX8zNLbEcNCfT09N8rPxMrs1QMiLvA8VvjI6O8nhCrzLdd2I9wnsn55DmlGQxdL30kzL9zMzMoL+/n+NJqA+SsdH9JkBDIGpoaAj9/f2Yn59HrVbj+iNdXV04deoUSqUSS7cI5CwsLODEiRN8Dy+//PLcupHrQI6BDGc5bzt27GBg8bvf/W7FWgYcm9LV1cVZqC699FLMzs5yxizZrrrqKtRqNfz5n/85fv3rX6PRaODQoUNYXl7meJFf/OIXWFpawunTp7GwsMDX19PTg8svv5ylUPLe0v2ViQzoGaOgfSrilyRJLr0xxSWFhj6tU1ojxERQJjG5Zkg2KJkRuZ4u5t0jE2YQaAeQe4bk+qN9m81mYb9vt10YsDgP61Bk/Bd308Zwb7NPu23k3fd/Zf+rlcfwfmsARoWgBnCGIXwhOu5KsVFDxr78jJpWGlAGSmfeZjqWvJ/yOhz4yLySxG4Yk3mhpYRJwdWRcJabgUkaMLYFkyyTCewyKTHnQKAmckaYsSiZUhbcqoxnMLxRb43L2mQNrG25VLJpE8Y0AZP61LJuvEkMx4Ckrcw4VtoZ9zoGtIHRTpZiYAFD4MgCaQupTZC0Wkhby0DaARWTpEh5T7vhmFkN5eckk1cppWC9N1vrCCoue7Yi9vfIxTC4z72kCZmhqqxmT7dNW0iaDSwvvoXINKFt4tkZDSgXm2EB2DRxHnmTVa9WGtClKnRcQWndBui4DFWqOrmLLsNY8rJH0FZDGWFYGxEELtaiq4RNXu3UF5Aj4JUZm7KKt5M6pWi1miyDojxDZJgqpWCN5flRyqU/NanvwxhXkFBbxGywWmYNCDDItUsMjZsLDYDiQjzQNSTrIuChEasY2gd2b7x0A+qNJuKSRlTqAJQDH2maIE0TJKkDR1EUM2NhODgeIlYhYwGIlbJKeTDo2UQeuVuLraQFpRQipRHHGnGkUK3EiGMNlCJo654iYxMoa5AgRapaaCkLk2aB4lFcdsHkkQfIUQlRVHHgmp9dx2gQcDB+DJKlAAIMATdfNhs47+TeFwr5lfPHaUUeeSkroNbO81+v19l4kX2uFRC83bEXAZEi72HY2gGYdgYBGW5S77zaOGTGGDLEpZErDYsQVEg5CBmQRR5SaWRTP2FQKo2XxpkkWY0DGsfCwgKGh4dzxisZpj09PSyrSRKndScPO42FMkDJRvEeZKzt378fgPN+33vvvTwOmh8KNqcYhomJCZY/ybHSPxl7QddGRuTw8DAHPMs5l2CSQFcInuX9AMBzKrMR0VzQWGZnZ7laN0nFyKgn0ERMBAE8ql7d7QsHAuDUqXEc4/Tp0xzHQsBibm6O61zIuBUaP22TEi06v8wgRo1Sn7ZrV1xxBTMh1Pbu3Ytvf/vbOUnSddddh23btrGkac+ePdi7dy/uvfdevPLKK2zs9/T0cJpdqhMiU7BKkB2CRyBL+0vbCNQRGKN1S8HVNOdyHkJQL2V39MwWvS/m5+fR7SunUysCFkUsp2z03qRUzSFDStdN4JWOoZ9rKbB7Me2i3tZFnrDzgYq1yptWAxrZtpVpNdsdv+IzyUy4jch+ZN7a7HM6VmRf8rp4pz8nwwDe6UhMQnYsYF1Oees8pNqZJBzkKmdTSfIi8nEbdPPJ0wqnyXfec3jJj0GSOG9p2qrDmAaUsq72QOSy7bQSxUXB4qjsi7+VGViQ8e4MlhTW5/53cqUmTOICptOk5TzfSct5pQlskBFkEnSUY1Rjl0VHR7H3EAMplDOqYlfJWdmUJhhaRaiUS0gSg1aaorm8CK01OqKSn38HwhSAONZQxmSyf18GwFX1jjluItIl2LjEoEb5IHHlU5u6mhHOK6y9RznygblaR6hWKjBJCx3rL8G5M/8TzfofkDb+AIUWFJpAwrfeATgCidaxMabRgmkuwjQWoeIy4koXoup66FIViDs8e1OGjR2bYpHCWAeZGFikOlsTYhVqOIAVa0pvq9z5bYKk2UKapkiShKuCG5NyEDmDH/JsE3Pl40UcgPHJAqzLcGVT702PfHC4BZS2fu6ICbDMqqTGndtYgziKObA9SZpIWi0kSdOd22okyjEPcRQBJoVWQM+GLiwvL2P9ujLONQ1aSQuXbOh2xrdN0UoSf40mAzHeOo+i2Hv+DUxiaGVnRjoE2PBUnxSFGg+SjU2RtDR0otFMLCKtEUUGcaQRRRrVcgfiCCiVAAMXZ1RvtaCTBFo1EUUNX9jPrSetI8SRk+Hpkqub4dgMv8ZtxMyLgbwlPnudVZBYQsZtAID24Nha+57WsQAywyv8QiySPYUZi+iLVHrcaF/5udxf9ie3SwlQ2H84DmkYynPRl7f8gpb9SCmC7EueRwITMoLknJGHlAxOaRhIg0GCtrCRN5kYBDKI+/v7ObAVAEtaqF/p0ZRGJfU5NTWFX/3qV2zwkSxkYmKCs/F0dXXh4MGD2LdvH775zW9iYGAAX/nKV3JZpMjoonNMTU1hYGAgF1Qu77WsIUFj3LdvH7q7uzl4l/ojzzfVzfjgBz/I2yk+gqqN9/b2YmBgAA8++CAee+wxfOxjH8N9993H4KdarXKsBhmU0mglCdH8/Dwb/ZR5SEphiMWhue3t7UVvby8XkKNMUJJJ2rNnzwrgScXeADCAAsAZh0j2ROCHYiOIvRgYGMDExAS+/e1v42Mf+xiuvvpqDmgeHR3FJz/5SczOzuLzn/887rzzTpYPzc/P46mnnsLx48dZOkS1O2ZnZ7G8vIzvfOc7mJ6exhe+8AXcc889ePXVVznA/P7778d3v/tdnDlzBm+++SbefPNNvP/978eWLVuwvLyMb3/72ww2KHVuR0cHTp06hcXFRbRaLVx99dXo7+/HAw88gDfeeAPPPvssnn76aV6f119/PW6//XYGkSTJI1kbMQj0HBOTMzIyws8pZYOSlcoHBgZWAHBKbxvHcS7TFBn19PzMzs7ycyLlSjQWkmbJ53itDoywrgaxXvL5oXVL60e+287Hkr4T7YKARTu5kPy7LbhQKmccrRUYFJ277fGKfPftAUbhNfBxiiUSzIMwK5GjQfiHUmTM+M1ynMxEZClZXdYYZFlsvOSEepegTYlBWC9fSVJnzBtrOLONM+RSpK1lJC0HLqxpOblPxcUnqEi7OAHl4gWsiuB03wSSKFMQkPiKxs6LT303fJXsBGnS9IG/CUxKWv+E4w7OLTeANEHcoRFHrpyYIiPHF6+zcLUiWOLhDaY0NUiSBK2WP0/aAkwL1sc4kFxEy6gFd+vohvgMTy5oW0dlByxUHlhoygSlIx+sq33wrc4y/mgXiBupGCUolFt1QAN104QyCTQStuiIMaAgaWKaWBpkEiABUrUMKA2TtqDiBCoqwUZlWFvxVclLHl1qwDgZGlUYV/CyOYIxLJFyXv80NUBK5zNIjeFUspl8yHopXBYvogit+uxb1tD5rGMvSPpFdTi8xMlasNfdGgcsLIwDE2mKJGkhSV0cjdXOg69KJc8auDFkln4moaK/S5FGtVzC+q51aP2hhdQYH38CH4/iGAqlE8JxFFaDSGcMgI2ytUJzIGuRcAwDsR1SG+abgUsVbK2Bm2aLyFoorZBaBQOFWGsqnQetDCLtWCBXC6UFrVNEKgIiV91dA4hMChuVoGPr1ya8x4IffnZSKL4TEhaiYLSeDX1vYrdXGPmhdER+yckmve/yi3g1j91ax3Gx+7UDLOE1hH2Esotw7BIoyH1l5qd25w6Dg0P2Ihyf/Dz0aNL5i46X4CqOY1xyySUMIELQQ8fPz8+znj4MTpYZpwig9ff3s6d9NQMrXEf9/f3Ys2cPH0fsx2OPPYYtW7agv78fpVIpx7xIrzIBrqLUr3SMHBNdC4FBWTyN+iwqlEb7yrVA7Eocu5SnCwsLXKFcgir6R8HPxKrQuGS8SNjkWqL1dNlll+GKK67A7OwsGo0Gzx8xAwA48xYZ111dXSiVSujs7AQALC8v83goDoayZc3OzuIv/uIvsG3bNk5le8kll3DWIWqSwVq/fj36+/vR2dnJwOLEiRNYv3597vfBwUE26mk/aq+99hoDZzn3cg3LmIaQYSCQK2V0IRiQyQRkPFO4RuWzHDIa0skSOhvW0orYXeqnyIEj/w6ll+92uyhg0Y6dWBVc5Iz1i2QbkBn6K/ZjjLAKgAiuYUXfKL4mCUACxAEfMpEdr+mcZMw4165T1ihoVcqfx/+qvcGscuPJOjdpE0mjhfpyDc36MlqNcyjFEcrlGGmriTRN0FxeduldjfMSR3EJsAollBGrEqLq+1jOlVrnCjUqm1PjPZ226StmGwNjU5g0QdJwwdc2baGVNL3kxsCwsWqRpk5znjab6CgrlHvWwcQxbJygXKlCaSCKNJLUemlO4qVDrlkDLJ1roF53/9Z1N1AxCaxpQFkDKG/sKwDG+piCxE25VjBWw3qg4FiHGCqqeG9wxD/ha034tFduuy4BHngobwRrHTm5UlRGqdSBqFxB2jrn9PpJHSqtQ3HmJxvoVjLpDWdwshameQ5Jc9mdN4qh4wqiyjroUocDNiUvk4lKMNAuqxYV8dMe/JAIzKertdZVsG61WkiSRMSKEGjLjOc0dcXpSBIUx3EO2BKI1tpJwSKx/q0xSK0V/bsLVcoFXcPHvzQbdVdRvVlHapqecVOuxkRnF1zXGlFLMRaUMkIXHwHEsOiqVnD5/60XKX4PUzuHpNVwhfBKEaqVKqA04mbLZ9wCkjRlOVSkYx/UHuekYpwNy8ux4FPvWi/NchKtTE5lxbsitRbGJFAtQCVAo+XWUhzFKJcilKIYHeUyYuVrp6RNwKZQSBApIFIKsU5cCt9SEzouIYpKiMsdULqEKDYO7DND5wCUIpke+TEIVNoMExKQIhrjvcgKtbi46OV5K784w/SNssn9idaXhrD8cpb7UwuNuRCIFLEGRWxAUSMDskhKIK9F9kPGv/QqykYGHRmkUrtNhhftE17PxMQEgy/y0JJ0iDz7ku0hzTiNURrboYxCzgkZUz09PYUBsGSEUxB0d3c3y6LIgzo9PY2BgQE2yKanp3HgwAHs3bsXg4ODGB4e5nmamprKMRMA+Fiaq3q9jqGhIfT09GB4eBiHDx/mImuk269UKrj77ruZqSDjPY6drGl2dhbT09P44Q9/iI0bN+I73/kOqtUqZzOie0oMGrFpfX19OHjwIIOR4eFh9PX1scyKgEqSJBgZGeH5pFSudG8pgLunpwfj4+OYn5/HK6+8gksuuYTXg2Rx5ufnsW/fPoyPj6O/vz8XoE2GsKxITvKzI0eO5NbszTffjM997nPYsWMHAOCBBx7gdfPVr34VAPDzn/8cs7OzmJ2dZTA4ODiI8fFxVKtVPPPMM6jVajhw4AB+/vOfA3BG6/LyMs6cOYP/+q//wmWXXYaPf/zjSJIEL730Evr7+3NVsyndbKVSwTe/+U1m7z760Y9icnJyRXxGo9HA6Oho7n7I9tZbb3FMz8LCAsdE0DNOkij57EqWghigOI5Z9kTgl44jhkmyIkWgghgPAoQEWEj+Rv3RGgoBR/geKWIlCZjKxA0SwIdgitiLMAX4uwkyLqhnqiYMrAYOAO9eyxkr9CER+RQbUNTXeYGFYCb4d2+chIwF/Jex+ynOLfbl82YjguhceAu9ke+lRySP0uRNVgpKKycbSltoNRbhMiVZWG8IVqrv40BOK8/tT5mTqvMoHDuQtM45I1slqFZiLx3RiHQVFkC52umtNI2W8eeMyjBRCYkqIbIxxzMY47zLMAkAoTVnYws+wDaBTROkDVdEzFqDZitlQ7bVclr3JEmQGos0MahEFh1ljUpk0dVRQlc1ZqlOmjpDUynLMiRlFdK0jiQ1WFw6hzguoWfTJnSuW4dYA3/4/QJK5SrKlU7AxFBawcK4TD0+NSvJcKAVlPVZgaISVFx2YE5HUBGxAa4PYjmUKrl/JEfRjtUgWRiMSxOrEEFHFVTWbYBNKkBSdoIVz7xAgAuaR2ud3IuK6yljvAfbeiao7or56UVXK8HHZOi4AkQVx65EsZMqKQ0kTVCBvziKgShC0ygP1FpctTviau0O7GpvpEZRtqoAD2YZWeTTsyrP5FjrDHGKO8k0Q/S795x7MJo0lx1bkdRBoMsFN2u0Wg2US5WsfofKgEwGrC20skisQRRZbOgq49L1ZSiTwLEzFgaJT0UMlNeV4XgChWbiwK5L6+vnjMdrAGhEmqIasiKH7hiX3MCBNYCAmYeNQWwKASDPBKUp0lSjoRQajQhxpFCKgVIUIdIa5dilM1bKIoFbB0mjCZ2kULqJqNVkQEkB31FcdkHgkWcac7VysvdFyFiIV98fvUnvMJA3+GUl2vAz+hvIjNLQgJf7hGxA6HGX/QN5j50EKrLPIrkAgBVyLNm/9GxKL6UERHL/8DzS20/HyqJdRW1gYCBnMJE0YmFhATMzMxgYGMgZMXQNZGBIcEAGjxy3lNTQfZMypFOnTuEDH/gA69zldd9xxx18fgrEpnN9/etfRxRF6O/vx/T0NGq1GqdKpWshY3ZmZoa99GQA0hxSfAKBHjKmKMj31ltvZcNqamoKL730Ej7wgQ+g2xe7oz4+/OEPc/Yk8r5Lg1TWkCAjkebhwIEDHLMg7wftNzExkUtbS2uaZFMSeFA6VyoiSBK2Wq3Gnvo9e/bwnNI5ZOC7jEkZGRnhe03H9PX18Rq5//77sbS0xNnCarUaxsfHAYAzbxGgoSBwCianjF1PP/00NmzYgO7ubhw5cgTr16/H/fffj5MnT3KsAgHCsO4GNYqRICN7fHwcW7duxeTkJCYnJ7G0tIRqtYqhoSEAwFNPPYVnn32WC/PJRvdMrhWadyCf5IDAw+TkZM4op98le0HPIDFrMtib1ouc+zD2ggB3+N4pijsL2Vz5fgrff7J2B8m7CHhJ50IR2xu+N9+N9o5IoVYCi+yX3P8rjlmFPWh3HvJwCmDhfqzMgrISvBgPTOjcWRe5f4qFInmWwnuhrdfyaK4B4ZiLrO8UMC0kzXNQMIg1nIGqY6DSRa7QHPjJvMvwenAqDmgcsDAJkqQFY1xGpthXm7bWcvXiUlyGiktAVIJOFVIDJInzuKbKadnpJKn3pLtsSK6flINpMwM5SRIXS9FseY90ikYzQdJK0Gg0UW800WolaCUt7wk2WNZAvaSxoasMZVNUojJKSQs20r4OgYWGKxAH5YBAChdz0Wy1UCpXsP5970Mcx7DGoL501tUOUADSEpRWiDSAkkbMnnkrJGmZcay9Ya58kTPoyEvCJNilbEfCU+xvfKZssoiUhlIxyuV1MFEEG2kXI2K9IUtrg4LzU+MlYsZJoayFMmkWBJ8kTk6WpOD6EUnTpcItJUDJODAE6wEhpaB1On9XRyRyK8RQGmR3XcY6VkB58AApvYMC1V/h6s1eV0XOAwIVyoNQYwwzCxzuZWmG/Lr1cj2TtmBMy2c+8x9b48aYJFDlCmT9CqVkjEj2SFjrwGNnNUZnNUarGSO1Ll1ukhifmUkjLlFaZCe9S61FYtwqs9bJ69w9UJljQlEiBiBJ4O6b1q7oI8nr/MoyPmMZv2uENW98nJOBBVK3Q0tHiCKNUhShWtEoRcSQGb+ncXU9/FpQSkGnic8KVvIpoGOUrEFkXGA+ZY6zQiaVCbfyLhySS70HuKLQyJeGs9wmf8oWpqgt+lIMwUGRFEAeH0oBZIagEByETZ5HjoPGIL3C8ou86JjwdwkswtSx7a6HjHk6Nx0rC9vR8dQHfS49oRQfQMG8UiJC8STh3B0+fBgnTpzAtm3bGAzIDEKjo6Mcc0GGNBm0Bw8exPbt23HDDTfg2LFjDCzkmiHjTo45ZFWk11dKlO644w6MjY3x9Xd1deHYsWOYnZ3Ftm3beJ7IYCRtPwVPh4kG5FohA1sGnY+NjSFJsjgIKWGjlLIEfAiwEbDo6+tj45TiJCRLQBmiCKQRMKB7I+eG5oDugdTVE8AkoDA9PY0777yTt9F1USpdCShlfAvdyziOsbS0hKWlJa6DMT09jaGhIdx66604dOgQp3NtJ9MCnOSbAGStVkNnZyezNKVSCcePH0epVMLw8DBLoCYnJ/H888+v6IuyR8l5kcY7PWe0vikGY3JyksGxBH5h7BOAHJNF66PIqSCDrWkNyfSu8rkvcjqErZ1ThcZLf8u1UPS+Ch047yZbAVwwsNCFBr/8W27OQEMYMI38thXgIgQFYX+0I5gpCMckR5dJmbLIaPL9aV9ZWsPCeq8g5einxqkd0wRIEs6PH+koB0b8Nz8UKi5AuiN2Xk3lalVorWBVGQYRFDTrwdkzqoScxmdhcgZZgiRtoWkiLDeBVjOBShtImg20GsuodFRRLneg65JeaM9KJGkEY12lZ9d/CttKmYVIk8R7YBV7X9nzrwD4FLBp0kSatNA4t4R6/RwajQbOnVtyQbOp4ew/5PlWSsGkzpg7duL3aF7WiTjWiCsJyqqEcrkCk7hsUOVq2UmcbAtJqw4dKfzZn12GKIqRJk2c/L9qSE2KSzasR/MPy1g8PQ+LCHGpjEsu60EUR4hiDe2zIlnrjD4XG5AiihNo2wKoHoc3sJ1I34MLQxWSDRQSX+9C+zuixH3VvvCdRlxZB9gyYKt+zpwhT2lcjXESrzRNOf5F+QxOxniWyBjoOIEyKbRp+ZSwrgp2xNKnCIBBihQkj0l9xicHSGisEYNup+5y3n+qOh7HJW+0ZoAhjly6PmOIbUpzwcsOcDgD3vhroarekYqZBUgSJ2WznuUCXFarGBGAGEmSMgNmUuOyfSUJosgzoFQ5W2fvFqqkrYwD5Z3VMqIoQgpgqdHyAA0oxwaRThAldcdGaoOOqAIghlVVGA2fUrYEYwxardSNJzWwVjv5lLGIYx/vEMeZZM24td1qtXKyNipaR68U4wsfyuwaCRIopdBQGufOWWjtKnmXY41yKUK1UkKk4VIL+yxfOm16gNVCHMWIdOyBVQmtJIGOU5fa17NuXNE8cLDIe/hetNBLL43EIi9dqOOnz+UXteyb9pOGQ8gWFBn14bklayLPQZIVMs4A5DyS8jzUj0yTG45XGgBF80NzII3+IjmTDNgMQRIZLwMDA+whD40I8nDKWAAKTg1TUtL5SNYjZVR33HEHAwgyHKWnlOQ7ZIyT5GdgYACPP/44e5F/8IMf4PTp0xzk2tXVxWwCVW3u7+/HI488gjh2EibKlHT48GGWE42OjrKHn+ImiCkZHx/H8PAwgyRiEsiQpG0zMzMYHBzMBesmiav3UK+7WhEU7L246CpzLy0t4eDBg9i1axdnCiL2goCBBByzs7P427/9W9xyyy24++672fst1//AwADHnRAjI4PD6V5Ttijql66X1t4dd9yB/v5+PPzwwzkAAYDvFf3dTqpHLFNXVxduv/121Go1HDp0CL///e/R39+Pj3/84yw5evLJJ9HZ2YmRkRH+t3fvXpb4HThwAPV6HX/xF3+B9evXI4oiLC0todVqMXjo6elhidqhQ4fQ2dmJLVu2sNxMXgPgZFS33XYbfvKTn+B3v/sdbr31Vlx//fUYGRnB1NQUgzGaMwJ2FNuSJAkH0svEAXGcyaHksyezccn7QGudQAM9e7Q/HS+fV/nM0j2Qxj71KfsL340S0ND9p0YgSPYrgSfdawl03ul2YcACxUwFS5GQDxjMG/ySIVDeU4zgp/e3qYJj2jAYbZmTosEDroiZcqkiNUTiVQWnE/fMBktVkqaTISVN7903iMtVRFEZGmVmPzJE5QI6rdXQcZm2sOFtfdixywzrfY7WgZtMp28A65kCk8DCebaRJoD3kFqrkFqgaQDTtEiQImq0oFNXBC71Bd4ceHCVqY1xOnKXrtPXMyB7iM/rA7GNj61oNRywqC+j1fRFyhIXSGsMZdJRsF6Tr73hbpVC0wDNVKGRaJ/pyEE5Z0BZIZ9JWdOhAaRJC0uLCWCdJr2+vOyMN2tR6aiiVK5CRxVEpRLicowoKsPJuVIgdXU1lIocGEgNlHKZllhzrpQXpWvHJFkCB4nLNBUBGrFPlETHWF7/UakEhQiwMXvsTUpZl1KY1DMzKoE1GtZEgE2gjHWyqNSd0+rIp+1168eaFDb1QNAkvm6GY1RIgqNzTGBWEds/LQwwwudA0T32xxMzRalbU5+6lYr/UTpjaynrlwsQhwGs8mO05BvP5F/E2mTplDNHAcdqeOOXwA9lR8s+J2mbY7OcgZ+iXk9Rbxg3R8agoY2PTWoi0gY6sijFKbQqAdrCag3rwZUygDKp43eowri/r1405QgHR1cCVvlYdj8uC/F+UtlFCHbP+r9JHGaUYSbTGoU01WglBkkKRJFCKbIMsEo+mNtJEuGeReWKDyqrEEFD2xgRFKBIVkVr0403bO8VyAg9/0XyIrlvuz7k8UX7FW0v8sqFHj85xlAqUGRghWMJwUv4xd+uFQVQSq21HFsR80NNAqowIDQEaZTRSBo8RV55yZYQ+KBzUWzE5OQkRkZG0NPTg6mpKZbHkHSEjpdabgInkm3o6upiz/ZnP/tZzM3NYWFhARMTE4iiiLPpEBiS6ydJEpbrRFHEx1JshzT2CGT09PSsCNQuAoeULSic89AAIyNOZvaRoJBYgJmZGRw4cACVSgWNRgNbtmxhACDnLFyDocddAj5iOehaZWA4gSu6DpLqSMOWAujD+y+lZrOzsxx3QHUhqCBdd3c3LrnkEu6rXncpfEulEstxpFyImCHK7vTf//t/BwDccsstzNSE3vZ6vY4tW7Zg48aNaLVaDCJffPFFvge7du3CDTfcgKNHj3IsEIFDMqLn5uZWrHe6PsnmyOdJ/gvlg/LZK1pH8ne5L82FfOdI5wHtI9dauA6L3qmyLylXlExKO8aI+vyTqGORFYIDGygr4hqEIcHb6HgBRFZInkh2xD/zxkg7uVQ75sQZXe6nzM6jYBHZFJHy/1hI4ORCHEqctmBbdbTO1tBqLOPcuTNApIBYo2vDJuhKJ7TugPOOUo6izDpW0ChFVEGCagrA9e9c5MIYS53RxkZaCpgmWo0lpGkDSrtqvypJUUIKrRRa2hlPqVJothxQSRfriGMFHQEWkdf5p66ehfCYp62EJTBcU8M6T7pNUyTJMpJWE0mrgUa97moGJImXFmm+RZEWa0FRMHHsDR+NVAENU8ZSK0JqXcpba92+OvJmmkmQpspNh3FF/Or1Ov5/zP17jF1XlS6OfvOx1t71sjdJ+bp8bCtFUlHKSiGK4AijGGFooxhhRIgSEdRpEei0AHWQ0i8BIi04Ot33BBHRtJq+HdQ5NEcYkfw6AiOCEhSTdhRHODfmdOVSUSpKAZXjyomNy0nZ9dh7rzUf948xx1xzL+9ykj48ekLFVXuvvZ5zrT2+Mb7vG6vr6xgb24ZGo4HTp09DNwbQHBpBa8t/QaM5BIgM+cAAGs0maQ28h7MlTNGGNwXgSTvirAd8ASGoEZpQFuQD6wOtJNiSOg8TQJKQFlkeaGUxdvPBhUuikfHNWtkAw7rQW8HASUmgVKrA37eQvroeXofzbaka5WwBWSo4Z2BBXd2dM8i8geIqm6Dsu2TdQABxQladpcOOxvnPgAkuUMUEN4bzKC1VrIyhniEsWGZL1CzLSGvgXJhDjrQrqLQ4DIwjbcix4L+Mc1sgVE8UPyv4ngS0VqHHA12D9F523kM4AW8BU3qsrRmcXymw1nVUbSsLmEDNEyiRa4+G9hgeaCJTBDZ9oL5pncXrJINzE5MMpQj3CgS5OPmqgaQTgFYSJlDtUtvnikKGAIJQ3Uvg5nxk0iUAlGX1fNKqhJICea4w0MzRyEkv41Hpm5wAjDcQgihf0nlIpZF5QX9LBRErVQIi0vf4fsQF2ovfxUizg/Xs/sVK8fWgn/+9WKC+0Xv1QDTN3nHQU/+ST336N9p2up60EpFmplNeNb/GX+4coHAFJA1+UqpFHTik5wTABccAVNSKepZzcXERs7OzsVLAFptppULrSlQ8MTGB5dAfgUXSxhgcOXIEDzzwAL7yla9gfHwcd911Fw4cOIAbbrgBx48fv0BMPjk5GTPqDKi4y/Ho6GgU8jIl5fDhw1hYWECj0cDy8jI++MEPYs+ePdi7d2+P29Ly8jIefvhhbNu2DQcPHsTx48d7HI327duHubm52DF59+7dmJqawvHjx9Fut/HmN7+5Zx4ODw9jcnISMzMz0T6WKyh8Deuc9d27d+PRRx+NgSkfO/egeOGFF/Dss8/2WKICwBe/+MVI90ltYevZaN6HtBqUuhfNzMxgcnISe/fuxbFjx+K9xuBvZWUlLpdm/FPdTl0kz9a6Y2NjOHbsGH784x/j6quvjlQhBoJ33XVXj9ZjdXUVe/bsidufnJyMQI6v+549ewD0Vv5mZmawf/9+7NixA/fffz/m5+dxyy23xPfHx8exZcuWeBw/+9nPes7j1NRUpJTxeeGK1qlTp7CwsIATJ05EsXX6LDpx4gSGh4ejKxafh/R+S4FACrLTygC/zsun5zX9Se9f3geucqXPkbSvCleD+j0rU6DL6+LKFov3GZz3e66miZGNEjv/t+MNrVUxvSIBARdUHWJSuF5ZCL8j+VdwzCTSP/hD8fMX65vRv2IRvvCZWsSm+0GvIIWlJlxBc0HCbJE0pCPXJIsMRg/C+AzwDShF2VWpRuBFA8aFoI+Fu2Ag4ZNvdQ/AgB1mnK/e40CkanpGvOuKHmTIQckD3is4r2CtIptWODjVRDZgIZ0DhICxAsaWgLCw3NjMGjhvwc3UvGOaBwu1DWWlraWmetbAmA59LlBgXEhMk+C50h8ALJJWJMVPsXsAAQAASURBVDiWpGmA1IAU0ErASo21LlBYidxJZDwXosiZAsWi20VnvY3SWKisgdalw1grPNaNwZvGrsBI6xJsHt2KwZE3BVFrBhUoND4E7yi70FBwqgBcGcFSQC3wll6TcID0EEIDEgR4lIAK4I7ExiWMs6FyQfNMSbLOhSXePYMG7xw8d7W2lvQF3sWO155tdSNlJgTdwZEIkEEHwiJoAh5lQe5KQnaDoDuH0M14AxE2daEHBUIyPYAOlRG1Dh4QLgbCNlTKuJmh5/sEPlaxtAasBZwTRAXiywXACVcF2Aji5QCYEM6elKLnMxAiOjRJpcFojRsnCiHiPvHvtICHEA5SGsB3YM0a1tc74ZzbiJ2cNei0CXyflQUBQEX6GwKCGVSm0Gg2kOcZtFYxIaJAlT/vBZwLlSxH+h8FkDWsFHBOwlgCv9bY5Nnj4JwMACdcBn4ecFGj+iXcyxYGAqWR6HYNtJZYz6n5XiPXGGg2kGUZms2B4LZmyXHNWVjXieBPSR06yBO1kgEnJ3joufK7HfxFl/6dZq+BKhBPl0lH+oVdz+r1ywjWRz2L3C9zlwKeOnWo336l2W0+xrrAOs3Mp/vIgKQfIEgDi/S9fhnKtPpQH+xGk56X1IGIKw3sULS6uorJycmeisTx48dj0MgZb85+Tk1NYWFhAUeOHMFPf/pTHDhwAGNjY5ifn49Zce4B0Wq1YuOyqampHsDT6XQwPz8PKSWccz1i8YMHD6LVauHMmTM9uoZUD2GMwUc/+tGoDeFM/fz8PF5++WU8/PDD2LVrF8bGxjA3N4cTJ070uBxt2bIlUo3uvfdejI+P46abbsLU1FTk6TNAYj0FbyN9n+lOQCWmn5ubg9Ya27Ztw/LyMj7wgQ9gcXERb3/72wEA9957L/bt2xd1Janwfnl5OQaTQG+DOj4/PE/5uqWvDQ8P46GHHsLjjz+OT3ziE3jb296GqampCADYISptBJhWqbjLNwu1b7zxRuzcuTOCrAMHDgAAJicn41z89re/jYWFBfzZn/1ZnDcMMFjczpQkBkw87rzzzvj6D37wAwDA97//fezatQt/8Ad/gKeeegpLS0totVp4/vnne+b6z3/+cxw+fLhHxP2Hf/iHAKjHB89BBrdHjx7Fl7/8ZVx99dX4y7/8SzSbTbTbbRw7dgxTU1PxmPiH9S3165EKsVMAUr/neTAgZkCVBvGppXb6LEiTF3WDibSylQIUrXWk0QHo6U+Tbq9Oq+L1/jbGGxZvx26xG1GSIuZIgEGCG/gLN6lTJHQnVNaOG1Yiev+uQA7/zqCCixQc9DvEzr89PwQGXOijEBK88F6EgJM42wp51cBLNuGFDvQeRhC+wheo6BygtYf1UkDKu+WcowCVUADtnzMBWBgYQwGFcbQ/JHBG4Ic76kUhLWQIHE0UC/tgK+oid5+dfTzvgyUBcbSntQbOdILAtpsExCEjGvo+EO+fwYWC1BpKKaisScBCheZzkpqhQQKl8zBBTO48id7pHNkQnLsQPDkIqaHzHPngJqy1DbxQGLlkGzZfMorWljHofIB6AMhAQ/IetuxCcOdrT/QYWKLxAKBzyra/IJcmQdyYSIVhUWx12QiMeUdXUCg2eUXQTXC1wQbaWBleSwXbSWY/BptVUM+ThW4pGSRALgGAJoiwTVxOSE0N7BzRYcBzkKd9oMh4STSpqA+CqOhwnl8LQAQ+sHsiLw7WWsq4W3JKEoICb7rXWdwsqiqYLcPzAVS1qu5Uej3Y91IvEX4gSGyYHPDsxcT3VkmWy2WXqid87OE+MsbBGgcbXM6E9MgE2eU2Mo0sz0JPjxxZpqFUEKdLGe59AhQ+2DBLAJCSelV4BMBDwnXLFdnwupR0f6ZUrirFkV5vLm6F4zISRlrIUsIai0wrOsfSwwsgh6JrhsqlzbgSUjoo6eAVXWsZ/kVwNOOKsf0tdVV9rZFmxHhsVH3Y6LV6kJyup986X4uKVP+Crq+n/tk0I7jRetJqRH2ZetWEj6WeIdwIOPXLVNb3P12m7nrFr6WAiMFCXcjNy3IglGY7+Wd0dBT79++PHa9vvvnmSDlKg1sGT3NzcxgeHo7Z7JSHvry8jHe+8509+8BNwwDg2LFjePOb3xyrJZzZ5+XTRnSc8Z+fn4+iYqbqcAB58uRJAIBSqoeOxR2qGayNjo7GYJ6DRQ6I04w0r7ufIQCvZ8uWLWi1Wrjqqqtw7bXXYnV1Fd/85jcjaKqDzDQATatsfF3SQJTBLVOd+PyvrKwAAK699lpMT0/3VFxSEJLSsXidrL9hTUzqgMT7lgKh1dVVnD17FmfPno2UNc6WMwDma5fqDf7u7/6uZ35xtQkgG9qdO3dCa43nnnsOzrmeJAUP1sWkg/UcXJlj8MeAEACeffZZdDodlCU1j2UQVb+3eP/52vYTZNdHHSSk16++TDrqz5d03tXXn+5D+sPHzKNufrHRvv+2QAUACB/TgxuP8+fPY/Pmzbj98/8f5M2BJBgQEQDIJEDoqRxwcCCCHWiSyZOoxKRMxvaiWicjBpkEHmEDAZAwyKFluQrifcIBD0E1go5BwEPBxiZWEETRIVIUB81VQBBDwBqH2fPu8SE5xCw8N31jYXPFPWevfM54hyxy4Ld754N7EPVn4FUaW1U7XBR0+9DLgUCC8w5leM87DopDgMiBbQi8rSHNiLMGxnbDOm1wuQpFCdC1EDKIRXUGneVULRBk7ylAYl4hJLTWUFojzzNkeQMqAA7YArAF/stmhaEGsHnIU8UIDjBB3GwKrJ17FUW3g8GRFnRjGPngm7DpTWNoNIfRHBwO4EUFobagbH9w1TGmC+tKFGUnNvFzZYfOo6P+ARKAVD66D0mdx+7HHppmRRDiMv3HO0eNzgRZh2oJKOFjBcSFALwK3ivgkNrN0u/p9WO7We4FUvW58EH4zSAJ3sG7IlwHDa8H4YWCkxoidG2WQiMG8FJCCAWVNeK18TGorUL1ChBXND3So1BVzhgSdMP78FpVXeB7XAgJGyxmrTUx8UAdnwnZcwfzPOdeIkSz4vUoRQCUKx5sQQsAZVmiUxQ4t3Ye/9+Z57Gw+GucbztIpZA1chRdonAxDclZi6LTCVUjRwkCfooIxH1TUkBr2o+BgSYaAyGTE/ZLQIQHsERhgxUzCBRbD5SlpWcXBKwxsamjS+7t9BpX1SF+PwBepj8KupvYkSsL99Lw8BCazSYGhwahNRlKFGURL51WCkqSmQEDf6n4nhQoum38w+dvw7lz57Bp0yb8Ngd/R5w9exZ5TtqyOuUoDaAvNl7vl3E9gL8Yfake1PejCNRH+sWdbi/NFParhNT/TYOFfgFIHUT127d027wuDqRSmg5nujnoru9Lup65uTk0m82eDs3z8/MxsGJRLWsaUhvaffv29YhaOYDkRml/8zd/g8nJSdxzzz09n02DNz4WFtCurq7i0KFD+J//838CAK6++mrcfffdPQ3bONA9duwYvvWtb+Gmm25Cq9XCoUOHMDExgenpafzVX/0VAOBXv/pV3B+mnrCYe3l5Gffffz8WFhYwOzuLO++8E9PT0z2Ws9PT0wAI6NR7hTDNaHx8PIqcU70J91RIXZ+MqeyBU+FuWtHja5heew7E+bofP348nnMOjPn40nmeUvIeeeQRAOgRNT/yyCOxLwYDi9nZ2bjfXE167rnncPbsWQDooUKlwJDpR3v37o1g7+jRozhy5AhmZmawY8cOfO5zn4v7trCwEI/12LFjOHnyJMbHx/Gtb32rxwgDIMbKzp07cemll6LVamHXrl2RUnbvvfei1WrFaldqK9vpdKIwe2lpCQsLC3juuedw+vTpWIWZmJiI57B+7pkm9VqAv161TNfD7/d7FvJ9kQK4tFrI1z7dNgMo3jfuecMdvtPt8XOK11NPpmit43P7N/0d8YYqFjLwzCNzifUVImT4Aq0oJh2ZqxCpSJzBD8vxv8wJTihT6I3jawWMio+dVj7orYp2EIlWQsZKCElLZfg3VCw8NVeDEFXgxbsukIADhkYcKFRVCs88dg5OQ4aRXqqWd5GHnmaPfRBWMzWJaB1Mn7GuWl8KLDzz9K0N2UwH7pRNlQhanjkpInDlXRDsRkoJquy1FAJKh47cUkLInKg2knjrUmpolQfRrYYKtAwKymSgwXg4Y+jHlvCmgN00CC8kZbvhwibpmjjvoPIGGirDptHtyJsjyAdaGBjcjCwPYm0pSJchA0Oer41AABAOwpONZ1UFE0QVCZviJoSaXYgkIMCuRQJlp0tuV2URKyk05z1U+BEBRXKIzlakVE1gPYGKgXfEyRLBsYood17Ey0K0FQa/8KRjUcSbr645XX8lQM0AlY6Ceb4/mNZHdCqqeghKtyP+L9xrfN8iWNICInSoppeNNeEmctXt5KvMPN1mDKp8vKN7XOCkRJbl0DqD0kzX4fMi4v2R3u5pBZNvQucAayxMWaLsloBUEYwDCH0e6BwrpSEgIRVpRsjAwMaKnrUGAoBWIjYU7BQllFbI8xxKaWQ6w0BTksBaEniCs/AApKd5wMDCicqYQYrQcNKJ6pyJcD8klSLuNVI9bOi54lxYh3WQhswLim6BsijQCM5YSqvoSkcadgcHC3ZSJtoiAURT/vYyUhcb6Rdo+hqPi2XK6uDjtUBI/Us//TddBwdwFxMzpqO+DqACPBtVZPi9+nFzoLHRsaSf7QekeNv9aAypdoTXxVQOzvinjlzp5/gzTGdKM6UctHCgzMELByipNuDEiRNoNptRD7G8vIzrrrsOO3fuvKAHCFcMuI8Fu08xMEkzyFdddVUUVXNVYXFxEX/2Z38GAHjve98bM+QsJOegWUoZs/xpUMXc/06HGu0NDQ3FYG1mZiZSuDjAa7Va+NWvfhVpREw5S+1ZOchLqz5pJ+g008/Hn4JV3h9+rW4dWwfMaQadry1vIxVAnzp1CocOHcL8/Hxs8Ldjxw4cOnQoZut52bm5OQCIguzUqazVamFhYQFnz56FMQbz8/M4duxY7NKdUnj4MzMzM1gODQdTZ6oU/LAOhgX7/UDF5ZdfjoWFBbz44otxn9nq2BiDffv29egZjDE4dOgQtm/fjne9613x9ZTC2Gq1MDIycoHIvA76+Vqmzm/pfZYCuPTviyU50tHvGZLO0/rcrT/feNu8r2n1j9dXv+83er78pscbo0Ih0FgiuKi+UPklWo6CbBE824mSUgUp1Wd8FdRAxmAwBkuIBIIYRHCZH8n20JOJTffWA0FYnXyLRx9+Fl9GpoqolvMclQA9wRNrJXwIFnhZzx2ok74Q8BWY4OU4m2qT1/jzTI0iS9iqWV0MSGJXYPblJ22ETyhOzrI9aBmDUhaKU88FF4PmGBCDgkAV/PazvBEoNxpC51TVgQ7ZZIk8y6CUQt7IkCv6XefNKAYuym7VNM+EBnt+GJAZlCIwBG/Beg0PD90YgFQ5Lhm7HI2BEeTNTUF8L6B0RthG8lxwFJgHbQABJLJuFVFHQ9dYRsoKzRsVKFoqNMjzroSwFs5YdFfOoSgKdDptsiTlcwQH4U08j/AMLlF1VJcyZL018kYTSmtkeSMAGEleYAnI8B7wSkQHIBfcl2idQcsDEeYC0Xycd9BSQCgF6AxGkLcZwBlvbopHugOmV0kZGhFy74jEdhYBGDI0d7H6UIT7x4M0GgIeFjRbJIHspNgpk4Z6DOalUmg0msjzBhcw4D2itaw1VcdrvmPjM0HwzHCw1qM0lq7N+jodrVLIGw0CEiojbY+QUMqTjaus7svClIEGZQM10MKUdN3W211ItQ6hFBp5jkajicHmALTMIXKFPFcQlpzVnHMQPmjNQnXPBlAghYCTAtKD3KhCFYpTKfwM4cRCT6E4givuEULVn7JbQCmF1RWFoeEhNBo5Nrc2Q2TUNK/TJdqjdAY6Cxoh4cIkEzDl715jAfR3XKpn4/uV5utfxhcLxOvVijoQqK+Hg55UQFpfrt926svWKyQbgYt65pgzkxc7nrrtZLrdtP9COvq5yLCDz/T0dAww04w3B/8cRLKfPzsG8fpYeM3Z+qmpqQgUmJq0vLyMI0eORB0Eg5GPf/zjMavNgTeACB6OHz+OkydPRvDB1rFTU1N497vfjenpaUxOTmI5WNZyBp0z7wCwa9cuvPzyy7DWYvfu3RFYXH/99fG408zz8vIyZmdnAVBwzmLfLMtw5syZC/okcHO6559/Hjt37oyAiEEU6zdYf3Dq1KmoI9izZ0/cJoMwzi6n8yClD3EQPjw8HAEMi5NZa5Ke+zSQZ1Exzwc+p3//938PAHjrW9+KvXv3Ys+ePfjGN74BAPjEJz4R13HixIlYiWKgsLS0hLIssXPnTjz11FPx2GZnZ/H3f//3uPHGG/Ge97wHu3fvjvOUqXZf+cpX8K53vQt79+6NlLOFhYUIuPh8HDlyBGNjY1hZWbkAVADARz/60egk1e128fzzz+O6666L54erJ3wPra6u4oEHHsDll1+OD3/4w/GeSM9ZqpPg+66fiDptQMjd5cfHx3tcz/ic158HKcBLnwPpNnm59DP8LGNgkXa753OcAoQUnAMXJmReS4f22xpvbO0yoTZ5hAZVKaRg8BAy9EkfBn5NytBBQqiQSZbVOi8YXPq4kMBBsKH/5/wF79Wgha8CegYt3vtqc65yvImBv6+W8+EzTHkAkACACmQgAQZ801QVC9/zmWq5tPt1AkxCkzXWSVhusuaDcCHScShgyvIGbS+5DmxXS2JvOolMl6FOv9Sci6hMGaTKoBtNKJVV3ZKFIOcjRz0B2qWD6xq41fVqmoQAWksgz8mTf9PwAIYHNbKshAUF0vDU3C8TTeh8EFljCPnAJqisGUFr9Lvx1LvAurLSgViqiJz99SKcKZBpiWZzAHmWUXDnAe7HAR84+KVDNwAg6yy63S6Kbgdlt4211VV476GDIxJXZUQAnFUAnMwtWyHTgl9nsKHIkUiFAFsphSwLglvBkbajfg0CgBIV7c9XgBIOUKFyArMOeOqlkukmIBWcoEaDkpv7cS+W4NQlIr0oVHASShNtysUj4m0SWFIwxoV+EyAqU3jdOR/AcVWpkAGY5qF6JaSAzqh7dKSKJdU+vo9jBQUMyGm9DHiKoouV82fx6qunsN62YY42IWDhdQatSBSeZUQhCnAT1hCY0FJBwaMxgADsLVxJ88hYB2MD2A3BeHu9jdWVVWit0GjkRO/LNHSeQQkZXMgUyAbAUGVGqUgLc4aqIgiduivAKKCFokoTas8Yvt8T0OGdgLMCxigYU0IrhfW1deSNBvJGA82BYciw3bLdJuF9nse5WxbdC56Nv+uRAop+X6ZAf7rTa41+VYH0dX6tXyYxXUf97zRjn+4v/5tmivtl+fknpbWkdKX6caYgjLeX9qzgICbNCvO6UiCQ7j83bmN6C+8PBzn3338/vvvd7+Ib3/gGJiYmsHfvXszNzWFubq4HeKXVCT4frDdI9/mWW27B7Ows9u7di1tuuQX79++PnZenp6ej1WtKVeGA86677sLp06cBAB/4wAeiSPyKK64AgFjZWA7N9G6//fYY/HPfCD6vi4uLOHHiRHRjevzxx/Gxj30Mt912W6Q47d+/H3fddRd+/OMf48///M/x5JNP4qmnnsLQ0BCmpqZwzTXXYHx8HG9729uiqJeDSWNMFJEDiI5JnNFeXV2NtCeuwrDQmoPE5eVlzM3NRaDH14eF6ClY4ACTX7///vuxurqK/fv391QyeD5yZYeD6MXFRXzxi1/sqQZNTEzgK1/5Co4ePYpvfvObuPzyy/G3f/u3WA5OYPfddx8uvfRSbNmyJToqTUxMxAC31WrhxIkTcY7s2bMngs+9e/fGYPeDH/wgOp0OfvrTn2J6ehpPP/00PvOZz+Dyyy/HZz7zmQhC+DoBBHQWFhZw9OhROOfQaDRgjMEHPvABHDt2DOfOnQMAWGvxyCOPYGFhAV/60pfQarUwOjoagd6HPvQhTE5ORlDL+8Tzke+7NOhOheX1pAfvJ6+HqzjpqLvO8TVJnyH1Z0WqgUqrqgwo02QDUxy11rGfynLozM4gKNU41auk/Z516b+/6fEGYQvzfnwI+mRSqeCgIdBEmALFP54z9ICIYKIGATwoIg16BpY1pLSBtIqx0R6id63V70w9SYECqsoCj7TCwMv1VB0YTPheYBA/w4DB9YKGjX5PqxK9AMUl/xIdg2lPPmbPKwtMBmpSCEitA7XLVzQbl4HpNpESIyUgFKSQpJ+QKgILpbPQs0OjkTUqEX7ZhbWShNiOTix3IKaqAAWiwZ0XmZJo5IpAhvLw1sBLTVUL78GuSFJl5I4kVaggVc36EAAddXVmsTRRubrtNVjThVPU5TiT1BPChWZ1sdGgDd3DrUVRFrDGotPtoNtZR9Fpo91ehxACA2IAQml46Mp5IJlLvaw8XwWETDVjPY8QRBdTCs4YaK1gsywE4InYFwiUrWB/yhU4rjQBgc7kycrVAd6SviI2/IvlkIqe2KOFSmhKVcUl0JHS4wtzT4iqeR13teaKhJRE0RKo9FEyNIyUSkLrPIInEmxLWFvdmYxpeHdSGhQDfV7Ae+r+XhRdFN02TOmhlK00Xd7D6qA70DIE7VQWEqFXClskK6kisLBCUlVQlIlOxsM4B2GogiWVhDEljMkJYHiiWmkd1h2urw/VKGc8XMrZDMDYh6pZPOi0WtHzxKp0GJToCNcxzC8rJaxzKEsydhBSQ2uaT9YG5zFjYn+Q3xcVaqPR70vs9QKKfuCh/jq/91rr7EdT2GhstFw/mkO67TT47ve5flWJ+rrqwATABcFIv2PlYKr+k9Im1tbW4nrSIDXNqHKFJM2k1n8ARG3BuXPneoBOmhXm4BZAT0dndp0DEIXDy8vLsNZieJi0dSsrKzhx4gSuuOIKvPnNb47LHzt2rKdB3q9+9Sv84he/6DkXKysrPcczOjoat3n69OkeDvr27duxc+fOqNXgc8U8fa54pQFivdKUAsT6teZsfvo+n/P6SLPcKXhggTbTe3j/GTjyclxZYrrS7OxsvB7s1PWjH/0obm95eRknT57Eiy++iJMnT2LXrl3YvXt3rPYwiDp16hQaDUpajoyM9MwbrrSsrq7i5MmTyLIMQ0OkE1tbWwMA/PKXv8Tx48exfft2LC4u9jg+ve9978PRo0fx2GOPYevWrRgbG8OZM2cwPDyMt7/97Xjsscd6zqtSKlZyWIfTbrdx6aWXRhCQnqv6fVDXY/BxpME/X4O0YtFPC5X+3e++7zfq1YV+60u1GrwsVwKBymEvFfen+9AvkfG7GG9wKxYAucQgNMuC5MCmoj9FcAGmklT/DTY7oNZ0YUSaU/gCTgogPqKBalFf/2JO3w8opKIvVcAiViZ4HbWqA2ekWdtQUZqSCof3lJlkmoPnRmO2p3pBh9ofUGz0Gu8XAwwXGoFxxUKCqhQkQKdglHLZAFg7oBRE7NBLTb44CNM6DwJRgANFkjoEAXboOk2VC+ovQHoBPhYTqk8OSgkMDTSRbRJQChAwMcimztMGzraRKaCRAcNDGgPNHLnIIIWEkQrel7CmRFkWMJ0Spe3COeKxC0HHCc/0sRLOlbCGzjN3TodzcGUHZWcN3bIN6Ur4gSGUpoSxRMsSgs5pt70OCQ8l6MbjTLIpuyhNQQG/UlBaQwZAIFmIjFjk6QmGwdx5a4kK48h2lEW6ZVGi9B7rK+cjONLBorfZbCDLczSbTWRZBqiqG7sQIFctCDipw7m3cKaEdyWcKaGcgdQDsGowUJrIQjdqLURopohQWYg0JQbuaaURPfeRVhpQGbTP41yVsWKhQfRGRxWdUNmhBxtVZxjUcPM7rsY55yNtihIUiOc2pgy8i6wzoteVMGUXpuzAFA5WKJiyhC67UCpDWRZQOofKmhCahMwEVCWk1tDclFEoeB2uV2ZC5dAQyLRJo0bnYb2HNQ6laWOt0wkVojx+WQ4Ob0ZzoIFNg0OwlgBqURTkOBIokkopAopOUIvKYN9sTRmpiHStRQSRNKVSbRYgBPV8F0LAGINut4vVtVWcX11FluUY2bQJeYMsarvdbuWOFl2+fn8j/bJNKSD9gqp6IHYxatRGGbd0fReritTpUynPvV7lSKsT/Dpz/utddTkYqB9fCgjS/eEv//q6OTvMAWPqn5/2QEgdd+rnPbVIZe3C/Pw8br311tgZmSsQTCPiDHnqNMPVhx07dsTX0i7erVYLe/fuxaOPPorjx4/j0UcfxWc+85lYUdmxY0fk88/OzuLIkSO477770G638Y1vfAPLy8t4+eWXcfbsWZw8eRLnzp3DpZdeiunpaUxMTOBb3/oWXnrpJXz1q18FQNqL559/Hj/60Y/w8MMP4+abb8axY8fw0ksvASDrUbaAZZtdFqBzNn18fBxnz57FgQMH8Dd/8zc9rkdpNpuB0qlTp3DixAns3r07Ai6mPs3Pz8feHQ8++GBs/Mcagr1796LT6eD222/HDTfcgFtvvTUGsJ1OJwrmp6amIvjh91JHKrap5fmTivhnZ2cxNTWF6elpHD16NM4Z7kZ+6NChSDXj7PYPf/jDHocsbkDnnEO73Y7AgjUaPCf++q//Gn/yJ3+CU6dO4fjx47F3idbkznXkyBF873vfw9atW3Ho0CEcPny4pyLwwAMP4B3veEcP7QygqgFT3U6fPo3t27fjgQcewNatW7Fz585Yffn3f/93fOpTn8Lk5CQOHjyI8fHxaB0MAHfffXfsTs7Ht3fvXiwH+2KusLDdbRqEpxU7fi6cOnUK9913H06ePIl//Md/jOeegQtXrPi+41HX06Tv1RMEPNcYyLG4XWvq8M00OV4P34e8/lTknQLd9DmT7sN/LiqUZ6tOBaBeqeARLBsBeB+sLKWkDsEhswch4IL4EWxnCsQsdW9Gr3+CLwUO9IKIlY1IcQrLVMCCM8G9tCbUgvtKaBm25NFLb/LBPjZSHSrqEgcFPRWHBETE/fA1elRP1aQqz/hQdeCqgE8CEPKwT7zrpQIUdd6WWhPvP9PQimxydaYrfQtnmqUmkbZQMTvNzjxMmREieAf5Drz3KDqrEN6Sh1ZwePJwgFKQMoNzCs5nsAbQUiDTEkplUDILTchCdrg0cNah0+5AKg9nBc0vb4NYtnJaAhzx2nXIuFsLZwxsWVJ/CmcgJWBNB0XhYT0xxIRk1yOal+R0hVj6YtqP0jo0IQuagwCYmUaU2ANEYCEAOEG2rk4ISC/hnQzb8lRZAIm1JXejZtDoHdbWDFS7g/X1daLxSAWtdeiXIoMomasPdC64iRuBSwcByqxTBzoV7EaZCsX3VrXvIhY2klcT2lklvq4+H+er5XuJMvVSejSaA9ExSikFpWTl+iS47w1iFUQAEWzEwBpAL1WKTrD3gLUOnU4XpaHeLNVeU48WhMy+dQ7aeWgISOUBSSCN5gDTwNjdSkCgAe8drLeQJdPrDHzQ1rhQxUAEZQJeKlgv0ClK2NU1tLsl8kYzzrEsy6C0Jncxa6lhonfwAWDxuXE2q5IHbFEcKJDwnoC/rxImMT3iAfjQ6NE7oOjAOQO5CpRlE1mWQ+mM61Mokmzw73KkX2pApTFIg6E3Sn+qB891YNAPaKTbSTORG627nuFP11H/PRUv10c9A13PgKavpw21+n2+nrFMA/66aJT3L3W2SSkYHKSkg5epUznSddarFunn0uNYXl6OLjt1HjoHytxzgjPYX/va1zA9PY2pqSl0u11s27YN11xzDc6ePYvDhw9jamoKExMTuPzyy5FlGZaXly/Ick9MTMTzwZqR5557Du9///sjJShtOMYUHw7kuAfARvOIQUcqsObfmdLExzs1NRWbtLHuhM8vN5xLaW0ccKcc/5QOlVLQmM7FTQ7T/WQqFVd9GJhyhWTfvn0x8K7TeLTWOHjwIK644gocPnw4CuEZUHKGPG16x6CXf+fO6aOjo5iensYDDzyAsbExfPe738UDDzwQrzePOqgAEBsUAsAll1yCLVu24Nlnn42OVCdPnkSr1cLOnTsj7UtrjUajEZ265ubmcMUVV2DLli1oNpuxpwVfD24AaQwJzFNAyXOAwTyfG9YXMZWvngxJ79F6IJ8u91oV29SFiml4DDJTjU36ubqDWLodBp0ALrgfgY31F7+J8cbE24FSQ0EDu/NUKcdUws3BPYCKdsNcdaaXI+V6VxSBfiSn3ipFFZz3YIuwyQoQkAt8+KtPZcD3LMuv9wILhKx5AhjC8r0C7MRKMlY6KgCRAove7Ydlkn2rsrgMKhDPi/MV8BKezrhULMjV1ENCUcZda4WBZgN5rpFpsrGsaCgUPOuMnJ5E6OTLwK/ioVHWW0tBFRMYdFwHcCUyOMB24b2BlYCQDahsCB6DcE6jFBmkFMRxl3msgEjvIL0Hyg6ccyi6XfLudwLwBghdqn2o0NC5cIDwUEGUa62BM12U3TacIYqTUoC1BYrCQqiMelNQG/IQUQcxs5IQxsCHYJ8sPjOidsnQrI5FzrICYzx6suyC1yGo4iUlnBMBsABeOHjpozbGewEXqDZlWdI1FwiAQqHZaCDPyLaXqgECUiuilynqy+DDvSIDy5+BhReauk2zfXMPaauiRlU9Z0IlRrDVKQf8stJTKBXXUBRlbKLH2pyBgQGyFY7roeCZTxD1PaEHjXOWullrVT0LeN47H4BkRQsDHKyz6HS6MMaR0D0kJAQ8vLOwwVZWhd4fQmWBPqcJWMBDQYJkKFVlRSpyhrPOQec2uIGRVbEtTdXcEAlVLFT4uqVFt1wH0Ebe6MSqE4nJVaArlSgKonEJIOh1iEbGz4U0W+bAzwwXkx6xY3oEGMHHztGc8YaE9s5alEWBLG9gZHgTVSyFhCl+98Aipe+kX3bMceaxUfm/3/rS5eujDlDSL1UOvOuBVAo46qCi/mXbL1DQWkd7x40qEWl1JhVx1gOCfm5RHMSmmdR0P1l0zWAt3Xa6TQ4mUktYrjTU3+ftpcJWDsD6AQteH9NxmOfNguf6teB9YjE2j2effTY26+P9mZ6exsLCAmZmZtBqtTA+Po7/8T/+B2ZnZ/Fv//Zv+N73vgcA+OQnP4nJyclYTeEA/+abbwYAfPCDH4zBL/P/2VmoLqTnY+Pleb85uONrx0Ennz+uMPD7LJg/ceIEduzYgd27d0d60LXXXhu3zcBhaWmpJ+OfgrQ0sGTXKq117GSdzit2rFpcXIw6D6YuLS8vY9++ffGY+RqnTdMOHDiAvXv34sorr4zH/txzz6HVauFd73pXvMbp/E5/n5ubw9GjR3HLLbdgenoan/3sZ3H8+PEeUPGOd7wDL7zwAl555RX0G3Nzc+h2SRe2ZcsWjI2NoSxLsh3vUBf3bdu2YWJiAgsLCzh58iSazSZGRkZiNezEiRO47rrrsGXLlnhehoeHMT8/H6tyzWazp8qTXj8+L6k4fGxsLHb6ruvD0nkCXGg9m/5b/z2dd+lzisEvD76GTMlLP8vXP00epPuU6kP6JXNeD2XrPzLeELDwIasnMpUAAn4zCWaED/QTjlMT+kWSmSS3FApkknJDWC4BGT4Jry8AB72gowIXHvF/NTDBy10ALuIyyZd7Dw2qBiJSVyg+puT9sMKe0+R43ai4+ilf3CX7DVAwpKP4FZCegn+iKikolaHZzKAzjUajCR20EY1MQ0kgkw5lsQZbrsOXBYqyRLvdhvcUaOeNBnSWI88HYCx5KgECWZYjy3LYUA2AKQDfgUCB5oCGUgPQugETukwDGbzIYEQTDjm8lDDaQysJaAmVDYTeFiTqVVoBroA1JfVh8AbetlGuL0Pk5PbjQsXCliWsKVCWXayvraEsu+i21wLlysKV1G2ZKDACUnpIRaJcEr3mlNloXQJ4C28N6QSsQVl2K2DnAm9eq6j1yLI8yfrTNQ7mygA8VKxoBYF9ENnD+8ryNxoYhPlrabnMELCg7dLqy7JEWRRYXXER4yklQuVJI8/zACQ1hBMQzkM1CqpS6AacJHEw30406JrKWP0QUTsiQ3WAqgYWXG3Msoz6RWQ59eBwDs2mDgFxRftLHbEIaAWAJSrNiBASKsvgPWkcuDO3tUmvDr5PQ2VDShFF/l1jIGSGvDFETkfeg2iZ4XHDSQRrYAqiAgmpkTcGkDWaaDSo944LfWWMNch1gx7IWQ6++023gAnAwhoT3NsM3fcIFUiuHEDEXpxkW2uh2u3oqialQIOBhrXodjvoFrQcN4iUggwGpFLxueYd1xs8WdcizKn0+RSeHc6QlscZA1OWUO02ym4XOsvQbA6mE+B3NvoBABaO8pdomuWri7vTQC4dG1U5+v1d/6KuvwfgAvCTbqf++0ZfyGnQzq/xcaR9Cvg461/6xpieCkKdymBM5faTrjulXTDnP6VPcVaVg9dUW8FONxx4pueCfxgA8DFyB2cOZFZXVzE3NxdFs2xVOj09jS996Uv48Y9/jEcffTTSUfgaz87OYnh4GLfffnt0rpqdncWzzz6Lv/7rv8bWrVuxb98+TE1N4Sc/+QlefPFFfP/738eVV14ZBas7d+4EQBltrjikweLCwgIuu+wyNJtN3HDDDfH4U149n4vU5ja1E+XzdPToUWitcccdd8RrxOf1xIkTmJiYiK5NvB7uVs5OSQyiWq0WbrnllhggcyadqVUMWubm5vDggw/ipptuitWOVuhjcfDgwfh3Ktjl+cnBMFdEjh49GkENO3vxdpZDzxIOVnnfn376aWzZsiV2aW+1Wrj22msjhejgwYMwxkTK0wsvvBCv/ac+9Sk0m00cP34cX/7yl1Ef/aoU733ve3H69GksLi5GETdAPUwuvfRSAKTlGBsbw/LyMn72s59FETd//p3vfGdsrnj69OlIw2LRPlOfvv71r+PHP/4xvvjFL2L37t2xiWA6R9Kmg+l9zSLptMLUj9qZgq9+VQW+r/i+rz+H6kmI9J5Okxx8T3FSIJ0L9SQE/95vvzZK2PzfjjcGLJIfgdRukr3tY1kihs2R7OD5H+5uzD0hEp53PaOf/J68Uas09AIGAEHGQetjv5uK9sTVEvo9BQdhjTFTGNcdaQjVZ+raCAYm8TDC8gyMOOgSwVaX95/Ojk/AU/iwIJcdISRUCDCALCZPtVahE7hEswFo7ZDlBbRyUMoiU2SJKX0Ja1dhbRvelvClge124HxQKdgGXJbBl20YR9dGSAVvcniTk7OOM/BlAaCAEBZZPkLBocioOgLAOmow6J0MHcZ9rK4I+EjbilQrZNA6R5Y1kTeasKYAvMfa6jmUeQN5lsdGf6Yo4CzpMTqdNkxZoii68VzpLCcQpQUESKhtTUldywsDryz1JxgYItqK1PDCwSkWt3uIcE0FQD0X2E0pZH+RXMe0y3wEj9JXQbKTVMXwJLaVzsF5VYFmFTjwSoOoUfzZ4ApmQ8AY6XXBKUxSVp6qKgQCMgfoZhcSCkJZ6hZftYeI1RoKVWXcZfhq9yvIFOZdAAvkiCUhZQVyAQK1PPdloAFx8oArOxXdqqqSeEdsLRG2JYMtq43A3ceqT7j5YK1DtyhIY6A0FPg8unj3UFVJ9RGzJ/NNSipehWtAAnoC5wx0lJDIrIXRCbBgSpQnJ7ZYqfTVOQxTg+Z7qE5yxScLrmBCAKY0UKqqhsADkFx1DM8TcPdvfi4RyHIxIVNZ84KfZwgVMechi261ffzuhzEmNsirZ/Jf63Ov57V09KMc1N9/rfXV1/Ef4SD3W0c/INSv8nGx7aSBRBqcpOCpPvodY+pmVd9+ffl+3O+U210PuNLKCQONRqPRk31P95PpKWyzyvavAHDmzBkcPXoUDzzwQHztsccew2OPPYb/9t/+W6TKfOhDH0Kz2ezZDoOb4eHhmO2dn5+PIKvelZn3n88ja0smJyd7KitpVpj3v67DSRsV1qtM6TxIz2MKRthOlwXI9e0wCGQQe+zYsdhXJAXmKdc+zWQD6LE75v1Kt8GC7+XlZQwMDMR1nT59GrfddhsOHDiA3bt39wiiuSnetm3bqOJbA3GvZ6ytrWF+fj5WKngw/ektb3lLfI01IPXPM4Wo0SDnSudcj3Vv6r4FUAWA7Y3rgJ8pR/UqHa+Hj79eHUhHep+kbk6pWPxiz64UOAAXirzrz5R+z4F0vqbrTff7Pw0VykMCIoPzKmTWELLnMX6hwLvucc8JXlIKx4C9khZWdpdAUkmI263oABdWLGqgIvx+AfUorCetUqTVjQvWHT5nQ4WB30e6Tde7bR4UxPUuD8Gdf3XIeIvYk8J57kURMriBgtLIm9A6x0BDQ0XXHTqfzUxACQOFLrQ4B4kOhFuNIMUVRRBQd+GLLlCW8E7DGwFYAW80nJcoCo0SQFsEuCgFdNZAKTTaQsE6yvQa46jSoCTyRhNAhixXkHoAkBmKgrp5l0WHHIB8EB9nRLHRcjN1ZJYCChngFYQfgZQazlp0VpdRdNbxf/73L5HnOQYHB9Ftt2FMibLbhtYSeaYgVUaVhEYjCHQ1GnlOWg7psb76KrrtVdhiHdaWKIoCznkoqZH9v/4LGk3qtOyshLMOOm+gNNQ8jYEDySuCGxI3X0Mg4QhuBhk0BNXEi7OMKxfWGWjXax0cZ2LMUFtwl2/+24eqhjUkgremQGkMCttFe70TqTV5s4ms2YDQTaiGhfQaNoCLeO8lXe2pb0U4LlujRdHCRNdRClmeQ6kMjqs4KvTWCD02uGJHD0cyL8izjB50gRrlgq1xgBpE1woVEeep34QBUXkIDZHrmQCoCZ4j965z51fQNQ5O5ciajVDhA+i0cpWUAIXWTLnLAShYK2AtkEmFRrMZwLqI9yQAouopBdWsAJMxBtZ5GGv5IRGaSjoUpox9Z0gS5no82Ktr62Pwkzfy+JmV8+dRlAU6nU5FgVSKdFzSxecGa6pcAKdUuaAmkOmzxcVtUq8PYQyK0kD8HpCFMVQNTKk+adAF9H4Z1qk1aaDUL3jeKMu20Zc8v5a6vgC9lZJ0fWlgXd/v1wNiONDmoCQNNtNjT4OEfuvvF/BxlrsfxzulUaQ/XJ3ggC/1u0/BCr+/uLiIZrMZha28Ts6Qc+abgyzm/jOouPvuu/GlL30pZmfTgJ7XqbXGD3/4Q8zMzODZZ5+Nx5JlWbSeBYDrrrsOTz75ZNxHBhz/8i//EgWuDAo++clP4qMf/SjuuusuNJtNzM7O4vbbb8eBAwewf//+eI5YkKx11ZuAqUupfefCwgJefvllDAwM9GSDOcM/OTkZzwNTtlLhL/fQSANUnrtMUQJIv3HvvffiO9/5Dv71X/8VO3bswO233x7pTAB6Mtazs7P46Ec/ig996EO455574nVmqszk5GRsWMhVk06ng8OHD8d5ydd9z549MfienZ3FqVOnYK3F0tIS2u023ve+9+HTn/40AOAHP/gBDhw4gKNHj2LHjh3Yt28fTp06hV/+8pe4+eabUZYlvv/97+Mtb3kLRkdH8aEPfQg/+MEPAFRi+pWVFfzkJz/BM888E89TvyrGJz/5ydhr47vf/W4U/PcbTz31FG699dZYqbnyyitx5513xmvMdsSPPPIIbrnlFnzpS1/CXXfdhcXFRezfv79HM7Ec+pzwdZueno7nl69FWtVL9TY80nub6WOnTp3qATjp/ZlSEuvPiX73c72awn+zZqj+fEyrKrw/PA/SZpS/6fHGNBYyg1ChYVoIXgS4C2+S9fdV2V4IUVlNeg6qkmVoJRuuA+gFFun7PUF+XBbV65G2kAIRJK+HeMan+5dWL9BDQYBHEKFXupG4XT42BIKJrPjlkUoRj8iFokQQtIoMKssDSKMMpVYSAw2NhpZo6ALStwG7DiFKCGGhvYX0BtKXkOhSph4CkBoQGaQeAryHVAZCdpFlBhAK1is0bA7rCFiE/sEU1Hl2xRJwTsA6AQUFEnbngSOuoFQO7wWK0sAVHThfYK1bhkpCActsFQgMDWTwgxRUyQBChQ/i4DyPnbobWQ5T0E0npIDWClJn8M7CmMHK+jRoCIj2xP0LMigJaOHgVpbJmaegPhfCGihnIVyJYuUMUDQhzSB03kSmMujGMLQFSuthDVGYSI4hokagauiYqoiITlR5RlXzjK+2itUIDgR5hoTfY+BoYpNDstClzL01ZaAfFqGLuQUsd2YnqpdtdyFXV9D0CkMDm6El4CVXD1HtnUBsKAhQRjtyrcJ8VkpD6Qx53iTdjZDw3hClSSYaDQS6mJDwjZyy9c7GgN17xjIybltJGbL9gHcEvgAfOpVL2LKIIKsCOxJSZmg0RjCy2cLITcgaJBbXSqG0Fs46FGUZAYZWGZQkYBSF+ELAeodu2UUGAj5K60jj4oZ9KljjUq8dOg7LTk7c/8J7NBw7XDmYoqRr5bhDOgEK5z3K0sK5LpQqURRl6AcikWU6VJ1U+ByBFr7unLDgSpUP24pdu8O5494XIqmg8LPIOepG/7se9S++tOPtxbJwabfhlE5QD/zrpX4edYDCv28U0Kef62fpmK4vdX+pL5dup37M/AV+MWBysaoOH0sa/KSBQxqMpCAhDYZ42TToqOsl+HMcbKTZ1fR9puCkx9psNqM+wpjKiYqBzsTEBBYXFyOthvf18OHDPVz77du3Y3l5uSdzzaACAGZmZvDe974XWZZF3QFrTQDgtttuw7XXXhuB1MTEBP7yL/8Sp06dwtGjR2MQyZUJBkg8uG/AwsJCDMr/9V//Fb/4xS9w7Ngx7NixI1rhLi8v4/jx47GKwOeM3aHq4my2KE3PHTtKnThxAo1GAx/72Mci2ODeF7wcgx8GlV/4whdiZYWvQ0qB46C6X2Xp1KlT+Od//mecPn0a9957b9zGwsICVldXccMNN8TtdTqdCBC2bt0a+5wsLS3hoYcewvT0NLZv3x7te1utFo4cOYLZ2Vm8+OKL8dzyuhlovNb4xje+gc2bN2Pfvn2YnZ2NjRp5XH311T2A9MiRIzh48CDe85734Morr4zXEgDuu+8+LC0tRUeteqWCmxPOzs5GJy0+l6nuiEdaibjYMyU95wxAAVzQoJOTB+l9mV67ujar/lq/imYKYOrVQqAScmutURTF67omb3S8MYKV1IDMEAghPTSAGJSngXjyb/y9Dj5QqQ16NRApWKhoRhst10NJYlDiKwBRZYk5uEsrFgEEpdtAyASKBABF8kUYIXPaU/VAQguRlTidHKRIjErr8CF4JWcmEaxNdSahhEAugcEG0Mg8ctGBsGtwxSsAOhC+DD8Wwjnq6gwBpwbhEdyB1AAASQ5LooBShgSrQiMXg7CegIWCB7wFXAnrTLBItTAWEAaApMx1ng9SoCZksMIVKAoLYxyMA9baJYwxKEsTgkfAB15/I4h5Q/s26uEGOm4pqUqSKQVXDqA0JVijkuU5PMihh3UCPoTyIgRmKjShk8JDwsB7anJmywJwFsI7CGcg4FCun4O0XZS+RKYkaT6aA5COjpXE1K4CF4IbygV6kCAqEVkNVXqFCmyEOSJ5PicglrPQ8KGjOAWg1NGZOodTYFkBC2XIrUiaDD4AC2dCAG5KGFvCGYNOex1SNzHkDAQySMigs6joiJzYp07agk9nwB7BjlVqKJkh0zlZy4akQTwXybGyg5UIgKEsy97mbuFz8bYQfI+wXoABOlXyrPexF4gXbIOcQQqNLB/E0BBgpUHeHITSGnmmURgDYw3W19txO0poKG7SF+4vE6hH1hpoLeHB7lAVqGAXLK0UuVopAkXOu6ChKENwT/PaBSDRlV3Y0CySwYYNtCRvWaBNNCitCdBkSkMqAAFYWGshjAzH76IDnXAy3AsSgqubbGvtHZwgO2rBmZm0eMp9W34PI/1i5ICq3xckL8sjDVjr6+pXpeDP1NfTb30bUQbSdfD+1l9LqQv1L/76tvj9tGKTLtMvoO/3e7o8//B57KcN6Xd+07850KhztevnsO5OlO5H2ggupVNwFp8DKeapM12Hg8M0g14X8O7evRtHjx5Fo9HA5ORkT1b7qquuwgsvvICbb745OiLVQdu73vWuGFDyPu3Zswf33Xcfjh49igMHDkRKFGfp04CRwQpn/icmJmL2fn5+Pp4fBhaLi4tR48EVEQYWHJRyIM+VmhRYLIeGdIcPH8YNN9yAffv2xa7evF/MneeKFQu/77jjjh6BN1dBeF4wsKnPJa5YPfXUU1hbW4tzYGlpKYp8d+/eHa/h0tIS9u7dG5sZcgd3Pv6JiQlMTk7i5z//OUZGRtBqtS4AFQBR0rj79usdY2Nj2Lt3Lx566KE4D6+66iqMjo7iwIED+Ou//uu47M9//nMAiA5ifO5WV1fx8MMPY2FhATfddBMAoq2xrS+A6Hb19NNPY2BgAHv27ImCb7Z87VchrFcp0vfT5RiYpAmUVGjNz0egevb0q772Axb1fapT9NJnUnoPX+xZ+Jsab2jtzis4X4VQHO33kIdqFQR6qRckIA24qk/2qT74sF1/wfv96E/9Xuv3vu+JdkRvMBQ/FZjgYVEpSR8hATjLfSx8DD4bOVtsgqI4jxiIAA46BDJCNSCUhNQCeSahJdCQFpmwyISB9Ctwrg1TnIXstCHbHTh7Ht4VcLYTgzyVZaRxkDkghwGZAbIBoYbg5RCMeBM8MjjkKH1BwYslkruTecj8CwhfQLgScF2U3XU4a+Csp+ZbWYa8OQQIBeMEOh2D0piQibWwviSqFDjWFqFbdxZB0shghpHhHFqRTkSwzXBteCkALZGpAYRTRtDOe7B4Fb6y6K2ciCpgaL0N+1+i216HgEeuFZQg8CVsF6ZTYL1YhRQeDWuQD2+GzBvImg1YQ/z5oihj1UKloEKIpOpQAQ8gNDELFYLYWTvO44om6EOmOQ0Sqx8HcFDqSYzsnYW3BZwpyb60bFPHcVOQ+NtZeNNBsXIWZ8suBjddAt0cRDa4meZE0teCLJ4JmMnkOnCagGhEGYBK/J2FzuNCkLtXpE954vXLcB7yPKMeI1FjAACSurRbiyKI5AFPAvRQqRKxisU2w+SQJLyHkQrWA5ASQyPD0IMCA42MOqxnJHx23mO9O0hVNk8d52WolFjnQ8PCcF1E5ahFFCcaOlQ2tNZRM6Il2f/muYJ1HVgn0G13QOyuHFJTg0JjDYx1KEsL7nBvTAlrXWxmR704SATuABRB12UDSEGgOHoZwKYPgMHRvnokdtba9cwf5z1EEMHH56MnO9rfh8aCv7Tq3O/UeYVHPfhJqUcXAwEXC8b77Uv6dz/gUq9E1AEJZxn7bbcOXOq0BdYSsBUrUPHdOVDlLHu//eR/0+AjFWrX95nPN687PWe8HQYBaVaUPzM/Px+PuV750FpHHUB6/F/72tcAALfcckt00UnnwdzcHGZmZmLVAAC+8pWvYH5+HouLi2iEHiwrKytwzmFhYQFvfetbcemll+Kxxx7D888/j2uuuaanCsDBHQvE/+Iv/gI333wz7rzzzpghX15ext///d8DAB566CEcOHCgp1t2mllOqw/GkG3r7bffDmNId8G9BFjQfcstt1yQ2U6Dez7/7EZkjInVEL4fuOv59PR07POhtY7dxo0xPVa4KRCYn5/H/Pw89uzZE2lYfE648zbTsbTWUag8MTGBQ4cOxUz6/Pw85ubmItjiObZjx44I1DjI5nnMtLYXXngBJ06cwA9+8ANccskl+Ku/+qt4HExp2759e+wv0m/ceOON0eUrHWfOnMFnP/vZ+H3/kY98BNPT03F+8XpvvPFGvOtd7+qplk1NTeHEiRO47777AAC7du3C0tJS7NTOwGtxcTEeC3d8P3LkSATE3LclfWak915Kr+S5ni7L1z0d6TMiDfT5vfR+BtCznfQ+5mUY5NeF5Lw+3h4/c+rg5bc13pjGgjP+MdXfm8kPC/UkzvhzaUUjLJaADF6QAceF1Yq6ruKC9Sf/1n+Pn6vvH0dPFVuk578cNMXAMCwuZcVhj1adobsvmDDDyxFjBkqRQw7F8xZCGuSygBYWme9AuwIKJeBWANeFNOchvIH3FnACHhoQzWAnquDQgBAEHKQcAUQDTjThXBPON1A4CecFrAeMUXAWgCO+vZehAR1rBJwAnES3K2ANuc3QPgKdsg0PidKSG5C1Lrj5UCDnAy1OaRWyvmzTSkJqJXUQVQcRN1eGQnDqQ6aanIo0nb9A4+F55hx593O3Z6ooyMjkoRjVwZZF7MjNPHzqMRCCM4pEAW9hum1IqWA6q5BNAaVyCK0gwnlDsm4SIMsYoPObsY8IKBDmCkEdWCTTqgJKzsNKE++nSO1ToSmi95CBzuKNhlUlpDWAFHDWkMBeacCG6owgOlG3vQpjyxCsNiB1AyzM8cID0gMIvTb4HCUVNillAFFBmxHOOQucec7zPRV1FEm5j+9rIaqng7Oh1wm4iz1n46teJVWPFg6mLSAcskwhdwKwQKaBTDkoYWkue2AgJ7DkhaJmjYHy5TzgvQy0TUH3TehtYS3ThDyUlMnxhcpY8iwSECTs1iokHwSEonOnVI7ceVjtQ6d3h9KQfsdaA6NVeE2Tu1ZSNRWBWiUBWKaRhXuLr00EnCHRASfJwtiF18K/3omwbtZgpA+t3/1Ig1we/aoVG2XaNxr9vnw3+mwdhKRf8huBl/o6+9GX6vuTBvXp62lWP60y9KtM9Nu/dP3p+tKKwsWqFHUxcT0o2eh4UqpUGpykmdI0KE8FwrwOFk4zTWrr1q09+83gI50f73znO7G4uIgXX3wRY2NjOHDgQOy2zJaiqVA63Z8tW7bg6aefxuc+9zk0m00MDQ31HBcDipSWkh5DvT9Bs9mMQJCFwBzAMTDg/eDjTq13eTCgXlxcxB133IF9+/bh4MGDsfIzNjYWG83Nzs6i1Wphenq6p0M3Z99Tu1MGHhzoMuBLNU3ptUqPgUEUXysGR7wsf46tdXlbafabHZq4WtDtdjEzM4NLL700ir4BosJdDFjUQUWj0UCzSRayqfWv1hqHDh3C6Ogo7rzzToyOjsb1Liws4NChQ5GuxvN+ZWUF4+PjGBkZ6RH3pwCK5zdXsJjKli7Tr7K30b2c7m/9Hk7Pbb919Huevdbzh5epb++3DRxea7xhYEGNo6pA3fcuEH8VCb+bg8ceUFEL/NNMcF3j0PNaH2CRvl//PVk9/csBLfNAfC/NIz0oKWVCa6msYJWSwZFJJ0FWIhb33DBMhKZY9KMUSA9hCTgocwbCrAHmVQjbgbcdWN8NuyDhxRAgmoDaHBCJhBBNABoWORwUvNQQahMgGjBowhgHYyw6nQLWdeF8AYekaZv3AEpEo1/OPjuPbsfDlA6m6AYAYWEcZYXZi4boI1kAEAo6b0BnGTLVoGPVivQloI7Y0kk0VQMK1PQOkXvPATbRgKSQECFwo4pPBTwo0KOAqwITHBQDmQJcadDprMKWbcAWyHMdKgoSzkkK1mGhPGk9OmsrKIsupM4x0AJ03oTUGRQUlCZdEHdHZkCR6gxk6J7NwALJnI5zKc69C6A2vPdQgZPvnO/5POBihto7qmJYSxULUTbhTAlXduENVTRU2QnVjAKr51+BEALOlMiaw8gHRoAALrysGul5GMSeFZkEZGJhrCsnLK7ipWAi/d2aMh5ftE0OZgwpgK863AfAgEQH4DwB6NDNOzwg4Dy5kA0N5TDSQRoPBQsJA9gC8FR5GdCN0C1dwLkSoBkfro8OgFXBQ8M4okIBOgT8ZeiF4flxAOcRQWhRGkjhIIVErvM495x3cPBoZAOhI7kK1sIW3UJSPwwrGTPBOqAwHkVpYcL2nA19OBxRJFnc7UKvEO9kUgHifimg1+DAjl38eWrcQXNKeAnIqirzuxr8BZrad9aD7jQg5oCmbg270Ui/hFNaS/39dF/6vZaKJtMv5dThqA4Y0uxk/XjSIC+tDPC60szkRlqNlBedbif9nc8pB3xp1hzopVNwtjM9z/Wsah38pQF/Ci44A57SOlicPTU1FY+fg+r77rsPW7duxR/90R/F/gHpZ/ias7hWa419+/ZFq9If//jH0FrjmmuuwcDAAMbHx2MFgPnyxpioS/jABz6Ar371q9E5aPv27bDW4gtf+EKkRXHQyMedagn4uBYWFmLGOj0XfL7Z/jfVvPB1Hx0dxYkTJyJlaHR0FPv27YPWGkeOHMFLL72E73znOzHbn2VZpID99Kc/xSuvvILNmzfjrrvuivt37NgxrK6uot1uR2E0b58rCcvLy9H2NgVJTF3rdDrRjrVOx9KaBM5zc3M9mW2unDz33HP4yU9+gunpaVxxxRXYtm0bOp0O5ubmoj3sW9/6ViwtLeGBBx7AZz/7WZw+fTo2MWTgUR9p5+2rr74ad999d6w0nTlzBj/72c/QarVw6aWXYmRkBKurq1FXceutt8b1PPvsszh69CheeeUVfOxjH8Ptt98e51OWZXjPe96DZrOJf/qnf8LJkyfj51KNDR93s9nE3r17MTEx0QNAU+oTn9s6KK4/E9I51s+Qop4MSIF7eu+lRhDp8unneDke6bMnrUxeDNz8pscbWqu1Fsq6ysIVSSUgGSHH35uV5oxs+GSMwfuCgKqS0Q9Y1Ec9L3dBni4J9HzyGgfKvF5Zo7EQ84WDRe5wjYqXHT2BBAS4oZgMDeEEcmUgYSCxDuHWANuB7Z6Ft20Ysw6Hgo5QEI0J6k3w0PBewrkM1mdwTsKWEtYjONyQMNcYCw8LBxMYXRoOWTgWwBgKKryobF6NMQTwrAHAAlBu4EfUG+csTNmtXuPzJ9gVSKA5kAeRbwMuXG1jCpjSonAW1pN6O5MOlwwoNNRI1FdQcB5AaXDV0Sqvrr1H1AMQGEX4JF0PB8ryekuVB7gSne55ONOF66wCpguliGvPc9BABEE6QrsVAS1I69BZOw+hM0ApNIZHIXUTKh+i4NJRL4oIwMJOyFitUAn9rQqs42xLAHJsEplMwp4u7aGbO817FuqG+8a6yN9XZZd+N0VFiTEmOIAZWNMhmhokTGGwXp7H0KY3QedUVYIg7YUEuSjJQHnLshxaq/BA1gDfF4Ey1EPtSgFUeN1aE+8Pfs/zOdEag4ND8Ti5+uScDdQvU4nTRbw10WkbrKy08etfL8EETZDQClZ4dLxE2S3hPdBoSjSbCs0BFffNeQPvSwhRApLE3c6JUL1Q0HmT9DmKQIaHgPW0z4TpWPuCAGAlNSkEwH0kFRApfhz0Cw808gzGeHhvYmWE+ssINJoSpQ1gwhgShzuqAjr+1zKlrKKWcWNCvi+lTGyInYNwksCFjdxAOPXa2a7f1kiDz/qXcPp7PcgG+lcT+mXz+5X261+c/SoJ9X2o24mm2+iXPawDDv5STwMV/kJPQVQ/gMLBX9oxOV03B+EpNSkNPtLgoV49SYWiF6tU9HPa4sCTg6p+15D7Lnzta19Dq9XCPffcE/fltttui/vD4JKD4FOnTsVKRtpr4+677+5xCdq/fz+OHj2KZrMZe2mkjjxcVei3/x/5yEewbdu2eH0WFxcjhYqrF9xjIqXfcWY/paAweOAgb35+Hvfcc0+kMfFrhw8fjnSrEydOoBU6Pi8sLODo0aNx31ZXV7Ft2zY0Gg0AwI9+9KP43oEDBzA6Ooo//uM/hnMOf/qnfxppTAx+0mCzDpC11jh+/HicM3yemOZz991342/+5m8wNTWFRx55BKurqyjLEt1uF63QL4NH2ofk0ksvRbfbxV/91V9dMH9YD3PZZZdBa42ZmZn4Xr9meJdddlnsgP3888/j2WefxU033XSB5exG40tf+hK2bt16gYibe6NMTExgbGwM09PTkfr06U9/GqOjo7GqAaCHAsZOXcePH79AAN8PMKRBOc+RdKTVwvp7QJXA6FfRrT+P+lVH6q/VQQZf93Ru14HE66mG/EfHG6tYcAdppifx60gCcF8RIphY7pOMbB2G9AAFj+BcUxU/6sBio9EDJvpQACKlCRzoBaBQwSDKAIpe2kfMxga6REp/AVvuQkQ6hdISmRJQgrQTwnUh3Bq8W4a3a3DFGXhbwNsCVkh4oeDUALxsAKIBjwY8NBw0jBMkkrYG1nqUJWCsg7MOpWFOtQ3UikD5EEzlCNdDhn4YkkTNDCx8yA5TQFM1+4P30bvfew+wK5Jiy1EJrRXRUxoZORNZ4qx7S5l0w43fMgFvLTIZGP0h28uzxwf+pBQqAXzVrPKCefhMTKvArPMe3hTwtoti7Ry86QCmQ0BAUPYdYPgkgiBYwoKAgRJUAbFlgbJoQ3XXkA9shlQ59R3wdMzWIuqdOeqVoWySgk1EOlEArLSjcW710OfCbJURLKeN16rqV2zUqHzoheEAqQlY6EakDrFjEIK9sLMG3aILY6kPRASGMri5CdJaCCFDh/YMSmWh4SKJ4gXPIyT3Ht9XPZXJKpCN2YCgZeilWWVgfYm1BAgIGNke1yO6H2k93aLEeruDlfMrgMwghILIcjghYYREp2PJUcmX8FAQMqMr7oOmBhZCOEASgHPOgxppUPVQyCxU34JexwtY58mwIVKWZDx/AoKMB7wjWmN8eiCpfAJCSXhP1R8fhP5Kq1gtUgFEGCXJcSoCB7qPnA2VCisjqKAGf3S/CkE9TYRj21zLsq7qejlfudL9jkca3PcDCa8nS1an4aSvv9Z6NqI59ftcGji8Fr2h30izmWnwz0Fp+iVfp5ukx8fVhzp9Kf3MRhnPeoCQUmheK0va73zVs/npMdSvy/LyMl588cUePYcxJlYxmOcPVB2EX331VQBV8MVZ9TQgBXpBJ2fgU8cbY0wPEEjHm9/8ZrRarSi2ZvBXr/LUwViakeb94vPB52F5eRlPPvlk5PuPjY3Fzth79+6N5571Mwyo0nOfboeHlDJWZlhbwICCf+dGdvVryJqS1DI1tcQ9deoUjh07hrW1NczNzWF8fBzHjx+P1zOt5qSWpHyM3W4Xv/jFL3Cxwfal3Gl7o/EHf/AHAKiqxJWN1wsqAOCll15Co9HAwMBAz+upqF5rHTUSo6OjmJ6e7jnvfD05uE8pZvUsf9rkcaPERf25dLGg/WJgpd/z6PWsM32/DrR/m5WJDffnjSxsbGj2dZFgP33FhQBBAKHpXD9aCHrW5TkSe50jyQ/T3xvxikXoq0ALxcBBgICCklU38Sg+FXRRiPYTIIlHrGqQRSUF25mSkLBQooC0qxC2Dbe+BOvacHa14knrFoRWADIYl8E6icJIlIWAsQJl6eEs9Y2g7CUF+s47Eic7rvwwZQRwdp3eN2XMgDpfnXvB7lRCx4w7BW+iOoOiovpk+QB0loUOvk0oRXoJDtMJg1gUodEevIDyHs46civqklC3kTWgtEKjGagqbP1pLYlnHV1sJREz5EIBInL3Zbw+Pli3UrXDwJdtdNfPoVg/j3J9OWgrShAQ8VBCBaqOCU3+CGzIkLG2gdyVKwVnSpTr52EHN9O11gOQWTN030ac1D2dq3muphBbVOeT5gjiZE7dh8JVCZQgWkdP7B4AiQsOQYTLaQHN/U4SK9EKEMuo6xEIjkQlUag87QSiDkbp2JMi0zm0ztAcGIRSGjrLK+ygdAByLvaGiaYFQoTLJiGFjmJ00qSwRgAVnypiRhecrQoCuc6Au5RDCKrQCINTv/41Xj7zCn59+lS049VKQ2YDkM0RlFbCOuDXZ87FYxkcGIDONJrNRrB8FlDSQAogEwIAzREp1tCjCRISOmuE3wkACCEgFNOoJIwVgBFwHbZOFshzS/a2mYpyeA+goRvIdSNebwdEG1obzqN1WaBP0f3unIOxluasdTCmiMDCWBcrFmxR68JzQVpLP8pBBgcssqL93VOhgF6x8OvNkNcz77ye1zMuRivYCJhs9EVdfz2tCqQ2uLyuekaSl+MgLT0HqVtQGpywWJaDl5T/nnLn0wwnBzy8P6nFKW+TM7KtVqun8sGfSV9L3Z5S0TEHtiwYZuvUFAA98cQT0Jp6LPB73A+DO3MvLS1FitDu3btjJn94eBhzc3M4ceJEFETv2LEDR48exWc/+9mY8X766afx/ve/H5OTk1haWsLi4iLm5uZw0003YWxsLGbpeTz44IO4/fbb43msW+IuLCzEbt7sxpRWAVZXV/Hggw/Gqsb4+DgmJibiMb/1rW+Nom52Ktq3bx8effRRHDlyBLfddlvc1vj4OA4cOBDPCQv6m02y6r3xxhvxk5/8BH/8x3+MF154AV/+8pfxkY98BPv27cPw8DDuvfdePPnkk/jCF74Qezbw+eNrfvToUTzxxBOYmZnBtm3bIs1s3759GB8fx9LSEh599FEAZOe6sLCAH//4xwCoi/nnP/95jI2N4ciRI3jooYfw5JNP4h/+4R8wPj6Ou+66C+973/sueg9ecsklOHDgAF544YUemlP6/n/9r/8VDz74IL71rW9hfHwcAwMDuOaaa/o2vuNx44034he/+AWeeeYZbN++HTt27MB1112Hr371qwCo8/b4+Dh+9rOfwRiDb3/72xeA+aWlJczOzmJsbAzj4+Ox/wnTw/iZMz4+jttvvz3ef+yMderUKUxNTUXgn1YW6gAlHXWaZvqsSKmRPEdT0M7OavVKZXqP1wFOasyQLgv0UiTrSYXfxnhjrlCxYtELEDaqJvjkfeHT1zdangXW9PeGICF5TwjRs+4Lmn6l64kFhkpsLRKaDceBWssQaFfZ22hHGwCKEFSVUNJBCgPpDIQ3gOvA23V414UNlQZrM9IqOAHrc1gvYR05LVkHatDmHIz1MNFFxsIZX9lXBmARtSoxQ8xBBFGZrHdBCxLODwSE52CSMtUuyb4rWXnqc1UmdiRWpHmghndBMC1AvPWg0nDWwprQc8EaskV1DlIJDA4OYKDZQCPPA7AITj6hQsJ6CQgZrwddfx+pJvCAl47oKWC7V4tu5zy67fMo2iuhwRpADkgUcFvHFTIJAQcpAoc+ZvgtnABUCXhJYuey26aAMhsgbYYQkEKF7sh93J48YtUg1iZEBdSEZNjLQbgIlZRq7nqfWtBSsMq0QSkUoAAVKlAeHkLa+H41v8N8VIoAcriOPmbCTdgO77OPNC6269VaU9CuVACe4VoEgC19RRkkgJfcM+EGIiDhQe5f1JzPMv3RV25Hlb1uBZKiMxaI5leYEr/+9RmcPfsqyvY6BfwgW1rrATiP0mdwXobmhggUQAOtFNbbWaguikhh0oJAp4BHlqkAqnS8x4019DwQInbrVlqH/j06zEgSSltB97NzDkopGGOhlQw0OVRzQPhQhQti7zCnWKvipIQLlRrn6PNGCChpIQWBELovK1ChguOUFaT1iFUhR00sqdrh4OXvR8DXLzvej2rD76XL/UdGClQ2og28VrYv3S/+qdOH6rQF/lw9s77RfqTOTmlwkgYN6fbq54gDhRR48OupwJbfT7Ov9SpD+noqul5aWoqBC1cQ9u3bF7O9qXam1WpF5xvWYDAY4X1Lud/z8/MwxvSAqLGxMTz88MP40Y9+hMsvvzyKtFutFt7ylrfg8ccfj5l8DtSXl5exsrISnl29onQAGBoawqWXXtpzfpaWlnoqEmmlJLV3TQEp245yZYSXGx0dxR/8wR/E/hXp8WdZFilQfK55OT7HKdhcXl7G2972NmzZsgULCwvRlnVoaAjGGHz961+PQfqRI0fifi0uLmJ+fj5apy6Hjtnbtm3D6OgolFI4deoUnnjiCfz85z+PVEoeDCoAEsZzf49Op4OXX34ZAKLgeWJi4jXdnV555RV8/vOfj39fdtllPbaz27Ztw+rqKpRSGBkZwcLCQs/+bDR+8pOf4Ny5cwCAvXv3Yvv27T3vsyPUqVOnsGfPHlxxxRVxrtSraOn573Q6USzfCv1ZGGSm15ppUWmQXg/OeZ31pAO/lw6+9v3ol+nn6n/zHOb7sD7S50m/8R9J2PzfjDcMLGyYDK8HWNByiIFibykihGIXAQ/pSJfrARUxLRreg4i0k3Q5ALEBHPvXs2UpBbtMmiE+tJQKQqlQqQCcpYtBrqgKSghoYaFQQvgurFkhelO5DrgS8DZ07s1Q2BydQqC0Ap1SwBigNCHo8x7GIjjK2JCltKHrcgBy4aFgA22EQYVgcAHuLBL+EiJSOKQMtJ7QjC8gAyCcpyyjoD/L89CArrf3BjUf8/AOlM1WmrihgvbZmA663S466x0I76FCIKWURmvTMEaGh9AcGKDeAALxmFmboyDpPMdsP70nBRnTIgSrxpLrjRSAcSXWV5fQXVtB2V6H0g0CQ5kGfLD8tAaI5yBYAcHBO8CCOzx7OCeRh7cbnVUKovMGfQ5Alo8ElytZaSpQBdg+bA/sbMV0GVFpW6Ktq6RKQbwXJFsSu6oqoqvuzxUgUVFPIUxN8xBBeOiYHSpDVGljmhYtaI2l5oFstSoQ6E9VPxAGKXxj+AiU6Jr4njnnknqhZ6hJlTIPSLhoRUzUt2AHbAqqolgDhGZ/9GzxcBJoFyVW213875Mnsbx8HkWni0aDxPXeW9iiRNlegxFNeKEhZB4y/Bbt9no1zwMFULGDmLMEMqTA0GATjUaOgYEGtObrWlVitaJnhM5zZFkTSjcCoFbwnqh7LsxVoplpZFoTWMkqW14RrpUMNEJOSnggNMizcI4SHd55OCWhrIRzREvjZy71yXCxWZ+1FlYS0OJnmXMOip8V0gYt1e929Mvc1Qc76dQpQRf74uvnzpLSYurrqQfr6ef6Bf38fkqDqAcQ/IVe315aBUgDl3QbHOhwFj+lsNSX61cx4WVTfn1a5eFANg1y2EGp0+lE29JOh7prcx8CXgdnYxcXF2MF5P7774/9J3i/OfDlTP309HSsSPzqV7+KQm0O2lljozVx71dXVzE+Ph7FzRMTE3Gdv/zlL+NxNxoN3H333Th58iRGRkZw7bXXotPp4OTJk/jFL34RnaZSjvx73/tePPbYY9i/fz927doVaUOdTtVjYnJyMh4fVw1YV8DZbV7fnj174nnnDDhTqSYnJyO1iyk4R44cidaxs7OzMMagLMvYf4KF0ZxZTrU1o6Oj+MIXvoBut4vLL78cWZZhfn6+J/P/1FNP4amnnsInPvEJLCws4Pnnn4+dxFlbsHXrVgwMDGB5eRnPPfccZmZm0O12L3DJSsell16Kn//85zh58iR27doVqUwnTpxAu92G1hqf+tSncOrUKfzjP/7jhutJxx133BH1GFJKjI6O4vDhw/F8pH1KLjYYVAAEQnfu3ImZmRn80z/9U7SI/bd/+zecPn0a09PTuOWWWwAQ7W52dhYALgAAfE0feugh7N69G9PT07GK9eCDD2L37t2YmJiI1bl0PqdVi/S5UHfhSgP8fkkWNh1I79d+tKr0mcdNJtMqRrrO9Jmavn6x8Z+jYhEoEa+ld+Dhw3d1YHcQHzkAAc6GcuauvsZ+QCL9vedfkTg6hVG3hAUArbJI06icqmj/tGJxMgWRlBR1ZDYPDxVkysJ7CLsO7w1Ku47SlsRtN9yB16BTehQWaBeAMQ6mpIy7c4BxIgimfRRslgFMuCDA9T5xBQrUEvq/CP0ngigWXGXhjLoOTQG4s7CEVKKqtOgMSmdoNgagszyco4q7bRw5fkmEDLjWEIqF1nTtS2eweo6pXczfF2gODRItTApkGhhsZti65RJs3jSMPCMKVlX9EMFJh+k7Gly+8IGGJvi4QcG7MwZFZx1r515Bt30ea6urEM5BZQ1kjWHirwMhC27hrYQAARErBLwwsbsx9xVwzkF4B7XehdIKhZMYHO7ikqwJ6wSkcRAyg1I5lMxDUEhVHAcPsuSl7YQZX9GjQvVFkN1SyO5XNCiatgF8MPULXH2o7gvWQSCCDbKo5dgZQKBUhXMVonrJDqvVJIHOFHSmIjhgIMTzgLbPlSQRrpkIa2VnLjo8aw1KUwY7XqIcpdUb5xx8aSFUBq0kzXVPc9xaBnZpgkLCg7RDr5xbxdnlFRTGgYTmnkst8EIGWEMmAxYldObhPZ1TY8rQ98aF4/Cw4R6RAWh6IbDWbpOzm1bIMgLMzYEcWZYhz3NASkgHmE4H7Xan6tMiJXQW9B6CtBTUBT5Hl+8/ya5xCnmWUeBvuUKK0DdDQmpNbmhKwMPGPigaEi5Uu5wjqhNd5yphwrQ37T2c1vRsDvPaWkvz2/x2uqq+npF+8ab0IAYIKV8f6G8FW8/ib/RFyeurv9ePBpAOzmJzhp2zgSn1IP08b6uevWRwkO5HP3CVirvrYCXdvxQg8N+c4eTsdB2M9XPVmp6e7qly8L4x95wzuszDHx4exvT0dDzmv/zLv4zWsLxP/D6DFq5a8DlkihLvY7rd22+/PQqEOSDvdDp45zvfiZdeeiny7QHi37daLbz//e/HiRMnIj3ohhtuwLZt2/C3f/u3ACjj//nPfx7j4+P4+Mc/jg9/+MNxX5ZD75A9e/b0gDquTOzYsQNLS0s4ceJEPD4GYAwiuMrBwDClU504cQLHjh2LHaW///3v4y/+4i8iQNq8eTMeeughHDp0KPZMYG3A7t270el0cOLECWzfvh1nz56NtK9f/vKXOHbsGMbHx3HjjTfCWotOpxOTQj/72c9iYP5nf/ZnAIgy9La3vS0Kx3lesw6B583i4uIFGohdu3bh6NGjWF5extGjR7Ft2zZMTk5iamoKzz33HL75zW/GZa+//noAwAsvvNADBAGKufh77J577omvO+fw+OOP4yMf+QgeeOCBC5Z9veP48eM4efIkvve978Vre//99+PYsWMAgCeeeKJHcM5zLe1IPjw8jPn5eSwtLWF6ejqCSp6ve/bsicA3Ddz5WZEmDepmC/2qr+lzIn1GcRUE6K8bY/DJ83B1dTXOTV6OK2X150267bQ6149+9VrA4z863ph4OwCLDZhMvUOIuFyPbCKAEgYbEMnqRJX/3AhY8N8XAIxkI/X34mc4AwwJBPvGmFGUVRdehEykcx6SAQVc+LHwvgPvCnizHtxsHGwZQIJzaJceXQOsF55oQqUNlpqBxuFJ0E7lSapSeGfJ5SWhhfCZo8OQUUjNVRlqLMy8eQGhMsqqSwIWUpAAmYsUKnDpG/lAqMrIUA2wEMbAWxGqBaETc3INnfBEX/EOzpdhOSDTeahkZCRelxJ5Bgw2MgwONNDIM6hA/6kctvj6BD67lLHaInibaUbeU8WoLDrodtZQdNdhjSHBvM4gVAYIopSQ8JbcowSvRuoKHAnKopMwnvorCOMgS4d8dQ0OEoMj68ichmoo6LKg860zwgtCJPNZxgBfxnkT6FFAoMGIZL7GKB8+zsXKcSq1co0VnOSzQgBKVRXCanr7eM7ia1ycEiJuNhKzhEgC+kqlVDm3JWLlEOz65L4VdEECxYoqNcpzw8JQjXKkA5IBVPGFJN1IqL6IhJoVgGenW2BtvY2VtXUK7rWqrIXhQSKcUMkK7lncF0Pwe+E1yZqgcMxWqFBXQbCXpSPPsgxaKxhn0WjYaGQQHczCPSlCtYOselUAitQoT3rACReAD90HWQj4lVSh0zedP+c9VTakjBcxXnduxOk8PDsZew/pFQAHpaqESZwz4YcrSnw9S/X7EW8DFwKF1+L01r+Ygd5A+7Ve3whwXOyLs54d3Gg96fIX+71fgJGul4OBftnMjY693zpSu1Z+va5n4UpKv8pQvaJSBygciHDGtp8zVErrSsXFKfd/aGioB0BOTk4C6BWVc7VicnKyB1js3LkzVhDS7G6r1UK73Y7Lfe9738POnTsxNTWF0dHR2KAtrT5wo7f0GvAx8g+vP72WvJ8p9Sw9d51OBysrK3Ff0uoLj1arhcXFRTz33HN4y1veAmMMut1urKRwQMv0I4CqNQwCbrrppnjOZ2dnY5WkPs6ePdsDgtL5AZA4WmtiG9SBBb8OEKVpZGQE4+PjaLfbsR8Fj6GhIezatQu33HIL5ufnceLEiUirestb3gIAWFlZuQB01Pdn586dkSrVaDRw4MABPPHEExFcNRoNjI2N9dCpeB4AiDqbhYWFWNV49tln8fDDD2PXrl09lQWeN3UKXJ3qyMtxAJ4+H1Ihf70S2m/0W6Yf8Oi3no0qDinF8LWepxttlz/z2wIUcZtvZGEXM5a9yOL10pnqQwgE5x8kyGNjYHDh50X8aAo20opKWrlwsSkWfUFrpcmtJXyGs9jWVaJHLYmfL31J+gnXjpaPpXEoSo+iBNY7HqUBuiXI2cVx1YG85a0tCUTYMjgzBbtNeAC2B/TQPlPmkzLKKmRaVeB+q6hZUEpDBSGuzEKVQgQHK0E9HvKcLETz5jCcA4rCoCwNysIh0xqZztBoyBCo+bjvztL+eUf5ZC0BrwWGh0aglUQjzzE0OII8b8DbDulAHJ2vPFNoZhJaawiVVZQfpmEJBP56ki2HB6ulo6bFezhTottewer501hbOQVTdukc5E2orAEnJNgpimlWDmwLKyGzDEoAIghjfVkCtgPnDUojQsc0j9NnlpGfW0dReLQu3YKhTW+C80DWGMSAJC2PUh5e6Eri4ohuI7UOzmAyVnNY7Fyfv1zUcKjAQQVqq2VTpy4O9PNQceBsj/ceUsl4/1QsJq541O6ZCG4YyqV7Fa6/ddX+hGPljtBUlbDwroQ3XThT0nayHELy9aTg2VobKWJSKepj4l1S9ZTgnhcqy2CLEidfehlLy6tYXl3H4Mhm6CwHrA1BvISQTeIjShEaSjp4UNVLKo2mzonCV7TjnOJeLak+SaLSjJkyfHmsrIU+HhqNZhN5nmFkeAgDzRyNZo5MEyCjRpFEYVKZoCKFl1Tx84DlY5Y0/4lymCHT5MCltSMtU7eIWqYsI92SkApB6g0lBIQV1dVhgCUqpyiyIw4VDSGglQrLCdgsw+968Bc3UH0x1t2E0i9pzuKngsR6Fr9OE0q/FDnTnlZHLvalnY7UjrVfhaS+jvQYmGazuLgYs6K8P2nwya/xYCoSL9ePXtXPYjI9D0zh2bFjR8/+sTNQ2vma+0akr506dQpzc3PYvXt3z7njf+fn5/H9738fN998MyYnJ3uqNOzyxCCBM+P8HmdQ9+7dG52G+Fq3Wi3MzMzgoYceil2677vvPszOzsYA8uqrr8bXv/51zM7O4vjx4zHD/cUvfhGtVguzs7NRuLt161acPn06dtd+97vfHe1aU4E5H3+n0+npyv1P//RPuPLKK3HLLbfEa7S4uNjjiKV1RRVLbV137NiB3bt3Y2xsDJ/5zGdi0DwyMoJz587hu9/9LlqtFubn5wGQxuDgwYNxjn33u9/F2toaJiYmMDMzg8XFRfzpn/5p7Hh911134ZlnnoExBvv378cdd9yBBx98EE899RSuueYaTE5OotVqRRraE0880UMVa7VaeN/73hePNaUwXX/99RgfH8fq6ipefvllPPHEE/j4xz+OTqeDv/3bv8WLL77YE9Cn1YXvfe972Lx5M/bt2xcrNTzq9KbNmzdj79692L9/f6TZXX/99VhYWMCePXvw7W9/G845dLvdHlDB9wwDi6GhIWzduhUvvfQSlFL4h3/4Bxw7dgx33303tNZ4xzvegbGxMfzgBz/A9773PfzzP/8zAKJyMbDkzD9rdJaXl6OAn68nA12eO2nPD65YcNWC5zXfm/V7KAUmKVDh0e/3OvhN76/0PuU5meqt+JzxqD8DeX6mz8+N9Bi/ifEGYYu/AFTwywAqcFD/lysTvgIBAFGlRFxOJMFRH2BR31SsbiQs7xhMVQCDbgjO/KYCVMq4FmX1WdfDH6dqhXclPCys514BFkVBLi2drkVRWpTGoVuUMNahDDQP76pMJ7yvBLTehE344FDkSRwcKg8yNsJTkaNP4lIVArdAo1C0rFQKWueUFc11zI5mGXHslfBAsDM11gUajQRZjFKm23kHZxxYQSxCxlWz8FUAmRSQIvQFECVRZoQFXBtFtwQCqCDffg9nVXC/qRqeMUVIJseVRMLxOjN4JfG7QXvtVXTbyzDdVbJDlQ2iUoXzYRlMeLYIjWEyjHdQni1zM5Dbj4ZzAqJkcT3174AXgHE4v7KKwno0zq9guLWKoZE3kWOQUJGugqQCBqY4scMQ6LpSUzMXH8rJFN9w9FL4mPPPn5fB2UzGahPb0sY5Ljn4ZKASAES/6mGkZIWdC9UWZ0t4G0TBMiew55NeIi5pYmepz4cT3Dhdw9qwTz40vwMJoyNY5fsi2Mw679HudLG63sa5c+fQaRNgyRuDyLRGI2ui3WmTsYFqQkNDQUMURXBRsvHeUYoeaVmjQWYGzsKbIO5XHjKAI+8dpPQE8JlyyJVLQRSksiixsrqGbreLrJ2hkSnqU5NpKJUH4XcjHB/RuFxAiwKk5TGGmj+a0qAIWpYsy4Jts44Wv9ZmPbovrtz1JEZi9ctCCOprw+BVpNWucC3V78luFrgwO1f/cq1nzPpRmV5r9Mse1kEHL5d+pr5sveKwEa0hXQeDgpQOUaca1LfJdJq0ezTTa5h6Uad+1c9XmkFneg9QNT6rc8A5C1v/PFuD9nPoGh4expvf/OYeEMTZ9dTppk4JY7CzY8eOHkep+fn5CDjYQYn7WbBAenx8HI8//jieffZZfO5zn4vnlcfdd9/dEzhJKXsCo+uuuw5vf/vbMTExgcXFxR66WN2Zi8f73//+nm7cqUVset4YDKe2o7zeVPjNQu1nnnkmalXYiYgD0z/5kz+J27/++uuxd+9efOc73wFAWXhudPf2t789gteFhQXMzs7ihRdeAAD8r//1vyClxPvf//44D51zaDab2LJlCwYGBuI+8z5ecsklGBgYiELsoaGhKFIeGRnB0tJSTwM5HpdccgnGx8d7nJvOnTuHmZkZDA0N9bWWveqqq/D888/HYz916hROnTqFH/7wh3jLW96C3bt3R+0MVxvq/S7OnTuHp556Km7jl7/8Ja6//vpIVVpaWkJZlnj22WfRbDaxZ88e/PCHP4RzLoJIdt9iOh8D3GPHjmFlZQU7d+6MdCm+nlylY0DG15rBST83prqeKk0CbPQc6fds4rFRMoP/Tp8J/RrobbTei+3Pb3q8sTX3wRTRkakeMYkNfk9WQ/EMgwh+USR/9FYl0g8Hckjven2yAFKahQw0Ehk/wUGrifaMCAJdAS0BKSw8DLzvwMHAewNjAWMF1tcNitJibb1EaWgdxnRDtaOk5m0xo0x7y8GhD4JXphtBCEgdgIWkrtYQqursLBSkIkGuklnoJlw5DEmlkOsGiW8b7O6j0Gw2QqbWotvpoCgKFKWh7UmNLFAqioIqKMYacrMRApnSUS+RZxKZFhjKFLQSUNLDOgHrHIrSoN21oIRvRv0sTMjWW03Agqs2AWBQ8MbHxkFTIOYE+1luoGZMibLoYH11CZ31c7DFKrJQ5VAqD9adHjCGsVoU1DLdxVoHLyUUJPVqkCCHHUgIVaIoSnIaskSn8dbj/Ooazq+uQUqB1vo63jRaYGTzm0jrIAAImRxD0OyAuPtEVwvzVVLgDVFZywopLkol5EAypQfx34CDEDqChqphGlfsZKTcpPeP9ymwYJCX0qziwjRDbQERrHulttQfInRb53uK1+mtgSeFAJ0XERoRhkod37mlMdGyNoISFmw7T/0qVtewfO5c6NEi0Mg0dNaAftMgXn11CevtdQjZhBE5FAYA3YU0RJEjzCqQNwbo2kiBouyiLAsUnSIAeYA6fLsI9CE9gY9wopUKjQS9gzEOnaKggF8qNBo5GnmOkU3D0DpDljchJPVyMUWBsjSwzkNLHXQmVeWT9VtSSuQ59UppNBoBKEtkxkIphbxB97KMk6iaE1JKCGsrihtsUt1yZObgfbQD179HKhSPjag+G+keNhr9Au46PacOFF4ryE+BQFrxANBXa8GZQh78eebib1QpSekU7B6UZr85sOkHbPh3Do4ZPDBISfUErCHgQIOD+fr6OQPK+13nbQ8PD2NycjICi7GxsRhosT6D9y3Vb3CWmbPEDLzm5+djkMZ2s4cOHYpiYT5W7uTMguXrrrsunsNutxt7HWzevBnGGJw7dw5f+cpXsGfPHszMzGDHjh2YnJzEwsICXn75ZQwMDPQAIQ4c+VhvuummuG0OJlPqWFqJ4iw3HycDuOHh4QgiRkdHccUVV8AYg/n5eQwPD2Nqago7duxAo9HoccgC0CMQB4CZmZl4/d75zndi165d+NrXvoaFhQWcOHGiJ/h2zmF+fj7uB0DPGAZpLFhn8HDllVfG7XEfkdHR0ejuNT8/39NHpNFoYPv27diyZQsmJiYusIR98cUXcc011wBAfO+aa66JdK8XXngB27dvj9efO4svLy/j4MGDsYHgjh07eprc1Uer1YrgZf/+/Th48CCWl5cxOTkZncuUUpiensadd96J06dPx74iDCzYTYl/jh8/jtXVVezatSs2zWOwn1LpUv0CmxX0c6Dj5epOTxs92+oAg+dcP11Wv2dZWt1Ne5qky6TVlfp2f5uAgofwr0OJff78eWzevBkf/tT/G1ljEBylROo0/9FTqUgDlvSt3kCmVqwgyk/8NdFShNcYO1AIRFzuKjgKcEMIhBAzWJu6QEMy4N4ACAG/lBTkKyWhhIUUDkqWoEZbFmVhYUuPTtugLAp0yy6KooB1DqUJnXFDc7LYqSOCn7S5VmhMxhllCeqTICSUapIzUqBhiCAk1wFQcIYzyzKyh1UKWUZuNllOwbKASGx3RehlkbjIOAfjgj5GBJqFYFYJWedKlKB+FV0IGEjYIM4lipYL6zSlh3USpctQWAfjA00qCNSFN2jmGXZduROXbBrCm0aGY1dlHYABgn0ooYEQhHkHAbohyk6BtdVXUHRXsXLu/8TKx8DgEKTS4bpSxttY8v0vQ88GF7LYcZ4GbnwWXY9k7PRcdDvotDvodjrgxn5CILgCCXB/h02tS3HJlq0YHtmMLWM7obIGlG5CqkYQ72bB+Ye6rgOITlTwHtYZVKW7XtEa63qEEFBKR2AQ+0awGAkCSmWB6ibj++zyxJ+XMqlECJ6Tld1uLB1CVPcRfOwtYbptmO46vC3hhYbOmtCNQUgdsvNlF6ZowxRtuKIN74jKJ/MGhM4hVU73giMXM+8ciqIgYBGb4AHWhB4OzuH/N/sszr6yjNNnlpBlObI8x6ZNQ9CNHPngENY6JTqFxfnzHUjdRNbcBCMyGCewtlZSRaAsAWEpOZA1KJCHDL08LMpgsEC6ooI0Q8kzwbkg+A6niMCpi9U0elYIaK2RNxrIshwDg8PIshx5swnnCcR1O13qJ2NtTGowEEwrI3meh58sgIzKoUtKhTzPw7LVM5PX4bwnsOZo3kdalzFxznTba/h//v6vcO7cOWzatAm/zcHfEWfPniXxO/qLA9OMG//Ny/KXZdqULA3A66NODeDf09c4SEzpOPzZlBLA+8WZbg7G0+3UQcbq6moMYADEjH76ZV4XfnOPCF4POwal1IrU8pRHvdtyeqy8XgYW6UgpPel+pxxzFtanGfLjx49HcWs9S8sVqPScra6uYmFhIQpf02oBB3fslAQg9hC4//77ceTIkR59xcXG5ZdffgF//7//9/8eaV0szuVj3rFjR0836fScMcBjGgxTXhYWFjA3N4d9+/bFysn8/HykUbHIndfF/UK42sDngjUfd911F+bn57Fv3z7Mzs7i5z//OW6++WZorXHs2LFIIbr66quxe/duHDx4EHNzc3j11VexZcuWHlDX6XRwzz33xKB8enoaQ0NDWF5ejiLrq666CqOjo3jyySdxzTXX4Morr4zVDq5mNJvUQ4MrpE8++WQMkBkMffnLX77gnF9yySWw1uLcuXP4wz/8Q0xNTeHRRx/Frl27sG/fPtx8880AgM9+9rNxfk1NTWF+fh6f//zncfXVV+Oqq67Chz/8YczPz+Pee+/FBz7wAezcuRNHjx6N4DIdV199Nfbv3x/BaavVwsrKCtbW1qK72W233dbjkMagj39YZwMgNgacmJiI4IrvybSywfda+jff38PDw3jkkUdgjMGBAwcucHbiey+tIvYbG1Vb689JoL+JRP2ZVF9Punz9da11fG7/pr8j3jgVCjVAseFiHF0ngmx+P+Wbi0jW6GF91/FO/Mv79J8k8EpZWuxgw82kQgDqTKBhVM5H9MXPIm0LeAtblnDewlqDomNhjEd73aAMGVBynql6eqT0MHJnYoBDVB8hqYGYEJWFrZSADLa2WjYhdKhSZDpSmbTS0WtfBR62imCDsp46U8E1h3nwLJz1gBNEUQm2m9IR4IIAFKh7sBKOgiUpQoaZmpUhdOZ2TsRzax050zgn4Dw54kCgcu0J+0EVGcqYiqB/qC59AH4CEJHKE+hazsL5EtaUKIsuis4Kis4KrCkglYLKckiVETDxFr0wNTn2dL1hn5wjcCQkZ66D3XHQq2idxX4hLmg0RHAgKsoSK+eXkWUa3hoMj2xC1hiEbgBZQ1V2puBqRJAFSx8muINE5cbEXcR51kcqUjqLalU+plzFc8eVEt8r+K6y2bGzBnrXzue7uj9dPFcu7qMPgTFgYYWA0hlc6FqdUrDSLuGwlmg6Mq0a+kAHs/GekZIEzgBgrEO3LLCyuorVtVVYa0LHatJxwAlIlMgzcj0rukRHynIJp3I4KAgvUZYSWSnhg2Beqoz0R1JHcF2U3ejEpmxG27BlcKwi3RN4DoXnhIh9NkKiwgtKKKAkhzOhqI9GpPaFew0yVlA9QuUs0L6EoJ4TfD1YcxL1FjpLKhwC3st4vdNEC1cylFI84+BVpcERCY3qdz36VQ/6fVm+1qgH9RvRgy722dda5vXuU7oPacBR3079mOv0g7roul4xSEf62sW42HX6UzpSgJZ+vu7MxYMz8v2qJqmgmY+VzwWDE24EmIqTWW+RUrb4XKSi3IuNd7zjHZicnOwrDGZAlQKw9JzwOa5Tv1LdCEBBa0qPSj/Px8XnhM99Wr3gfxmA8Ptbt25Fo9HAwYMHcdttt+GRRx7B3Nxcjy6Bgc38/DyOHDkSGxLyeqemptBsNjExMQGlFJrNJoaGhjAwMNBDSXr++ecjUGPQt23bNkrYlSVGRkaglIqgeGhoCLOzs1hbW8O73/3u+DkeWaLVstbG+WGMwZkzZ7Br1y7s2LGj53qcOXMGIyMj8e9Wq4W3vvWtAKhzNp/HoaEhbNu2DePj49FxrA4uGMhxpaHT6WBgYCCun8Evz0lugJcCi5S+x/vKoCKdK3XKZkp1Anq1WOl9mN4r9Z/Une71UpTS5Eq6/vrz73dRffiPjDe0VwIGAnWLMF/7VyQ/FzKkLhxVU7wYpCcaiaqhWVi/uzBI5eW4CYy1jiguTMVhaoAOFo1KBaoPkEkLKR2ktLGx1PpaiW7XoN0p0O22iepkDeDS3hE0ZKAwAcELXwYBpqx0EpCKMs1SUc8FRYLmLM9D194MUgkoLaCDyLPZyJFrTVUJzdqKDErL0PWXAh/nHKgdADkeEWpyBBykD3SjyqVICg8FC+U7kL6EcJ1YaiiNg3EexkgYr2B8htLl8FCh2Ra5Y+XKQcIjh4cOQZgJTf68tRDSQUmJZoPoU1wFYIegJAHbkyl3zsCUHXJ/aq+hvfJrFN0VCKGQZU00hjZRFjn09HCetu2MoW7FITPNPzxnmBpijAsaFB2uITkGKZ1hYFCTPsYYWEe8eKkyNIYG4a1Fe+08zpZtrL76a3jbRXP4TRjcPIrNl2xDowlonSUAk/tnBIDryJ0LYX8hKuAsuPwGpi0l58anNrRJA7wa6kgdzSI1Jri3cWwp+EyECkIE6CJxfArVK0gFI0I1yZfwBrCFhHAItr6hwWAItqkLfBAUw0CokKnnYDfoNlzoCu+DexmkRLtYx6vL57B87jx9OXrAlFRNWM+AhjfIco9mNoTBLEeuhuGgYYUiYbeQGMy7cD6D900IOQTnJbqli5UxpTWsd+gWXXQ6XZSlibUa53yV8TcmAlxbGtIMGa5ohOoLg2AARWnRLVcg5Rq0XsHA4CDyPMfQ8HCkdHbabZTGoCgr61etyaXMWIOybYB2O9Kt8jzHQLOJLCOgW/UYUT3XGQAUmzRowCsP7zRUqMAYa/9TfOmktqR1VxX+Qk9H+oXNNIH0i7n+5XwxwJAef7+mUumXdyqkrq87BUX8WkpBSGk+qRaBt5E2ZWNaRVotSasH9WNKKwRsz8oVgTTgSelRaZ8EznanAVP9WFNKx/DwcPTwZzF2mnVlOg8Hz6lmhINgXtepU6cwMzODvXv3RrFzSgvrdDo4ePAgDh061NOvAKAGa1dccUV0h1pYWMANN9yAyclJTExM4KGHHoo9Hbh3xPz8PObm5iIoYFvbubm5WJVYXl6OAeXY2BgWFhZw+PDhWGmZnJzE+Pg4pqameqoYo6OjcXl+nbUc+/bti4HpzMxMFNDzNf/Upz4VXarY7YlF6elYXl7GT3/6U/zoRz+Kr3FTus2bN/fQlsbHx3HllVei2+3i7NmzF3QeBxCtbQHghhtuiHOGKT333HNPbCjHwCQN6m+88cYISIaGhvD888/j3LlzaDabOHToEO644w488MADePe7343FxcUeKtU3v/lNDA0NYffu3XG+HDx4EEeOHMHMzAy+9KUvxT4oXMUbHR3Fbbfdhrvvvhvz8/P493//d3z1q1/FU089hdHRUdx6662xujA1NYXx8XEcP348ViSYrsagNb2/+Zh5vnJ1IgWH9Wrc/Pw8Tp06hfn5eUxPT/eYESwtLWHfvn0XgG/+PdX4cId5puEBvVXJflVdvkeYiphWWtN79rXGG13+NzXe0NasdRCmDFSLNJipihAeAvAhIxmDp6SUH7KlPfWIpHV2/0qEv2DR1L2IAYULrixEFQBIwEiBuJICSgU3IkVAgtxVHMqCGlCVpYExFp1uF9YYlMbABroTWW8KQFQCcSEDvYlFu0IEWgzTmbLoV691TnqIjICFUho6Y2cnQfoFJdFoNKCVQiPPg81mcDcSkhLdIYNqytATwJTUdMw7+EC38d6H5mMeSiBmpK0nLryJXHfAGgFrBawFSivhvQCgQDUcCaEDbUPpAEAEnRtXwpkuSmPhLPURcI40BQNNBXgNEh9TUEZ9NUSgZYVqgwgX3LsQnIbqginRaZ+jCpNUaA5uhtIN2ifn4Dw5Jtng8lQWRQUojAkNxZgSwhMH8JJsc631MeDmayukQN5oQmkLURZQoUqE0Jk8xwCsKdFut7H8ylkMlJasgyHRGBjC0FALOm8gy5rI82boYK1CZllQ5UeAeqSktKRY5YgQO1YBXML9ZxvXi40LXdTqlZsAnkOjOgIeItJ+VDgpkdqlHVxRwlsLU3Qg2X1JE91KKQ1nQ3d2ZwFh4SEDeAr0KmvgrQ2UI7JyVYoyYMY6LC+fw+LiIlbXVtEtilBVIoekomvgnIBHieaQgG7mEHkTWko0lCYzBeegfRdCetIIyRIQGYYag/BKAzJHbN032ES324EpS6JDAvChczfPGRe0V2VZwllqEOmCLbQzwW45Pm96aWplWcK60C2baY1CkCNUlvU8q9h9C/wsCde/NAa+3YYquijKAlpnkS6lAtVOMKAI95BiIb/wABRcEKAb9bsHFsYYSCl7qAP1DB/w+r/o6ln2+mfrWf7Xk/WvL59m8/vpNfpVBZhDPzExEQWiF6Mv1KkLaeaTs+Yc3GxEeeD94mZ4HDAx6KifJwYR/Whd9cEAh+1SW6HPBQOjFIDVt9HvvHIQzM28UoCYZnLn5uZ6HIi2b9+Od7zjHXjppZewsLAAay0uvfTSGLwvLi7ikUceQafTwVVXXRU1GouLiwAQuy4bYzA7O3tBNSXt+r2wsIBOp4Pdu3fH/hurq6vYsWMHJiYmouicbXtZk8Lni4W/i4uLMXBkXQZTqHifmR7F841H6rjE1q6f+MQnenpHAIiBtNaVNSxrYE6cONG3K3a3240Vi1Q0ztqHyclJbN++Hc1mE5dccgnW1tbwh3/4h3jppZdw5swZvO1tb0On08HRo0exc+fOaCerlML999+PZrOJq6++Gnv37o06kHRorXHFFVfg8OHDGB4exq233hoB6ksvvYSXXnoJrVYrXms+/n/5l3+B1rpq5ApEty+tKwcnvubLy8s4duxYXHdafeD9qN9HQAV+08aFDNB5rrZaLUxNTV0AVtIER/o8qmsr+lUXebConbun189dStNjgMz6J6A/jarfdvqN3zbQeIPAwkNYC3Kl8YHiQ8EJ88aZ4uAhgssSjQguQrYvggZ6M2ZtY5XCVnaacR0iBGEs/AyNoEpDfPnKPScIhAUJkLWUQXgcsvaSgiAE15aydGivO3S6JMYuTTsEdxZw7P0vI4NFqtDnge01gwWsCNlwqVkHQU3ouLO1UhqNUKUgq1sKEKR00EpCa4lm3oBS1MXXh2P1LmS1JXVPds7BlgWcLWHKDpwrAW/gfRHPj4+Wl4qceRx3+EbIlrJlrkRpgCLoJgCBLLg1CUFC9kyGoDOY6xSGdA1F0UZZOJoXInSMdgYDjQao0ZoLFS4XeeJx0otQ7aGZFcCmB5yHNSWKYg0eHkJlaDRH4AWpP1xCd+Juy2VpYrBH3HYXKxYuanAEnARZB0tf9VfwnvZNCGoaqEKTQKUChUxCCqpwdQxx+VfOnwOxYBQgFYqiA0CgYUl/RLxVDy9FBIcx6Bci0vFQ3QHVr6KyQY3zmcPOUCGo3Kg2HlG0jQqo0LywQYMSQKgT4L7tApxolxAyi1UxHwAJpAa0hxKhR0qY+86x+N4BCL1YhCC6mgtBOVdKooUuCbpXVlZw6vRptNsdmCBg5p4YZWHJ+cgbeA3kWqHRHILSArkWMN11CFdCiRJKOijtIaSBEDl01gCUhJcZjAMgJJTOUOSkuXChM7uHDGYEHkWofBlTBr2Og+5S80oCrWU8d9FS2lYVW2Md4AqYQOfSWRY5zVmWwRhqXtftktGDqx57QLheJgAbCAFjLbLM0n0hPJRT0D502vayokAllVsAkN7DCfF7c4VKg03+ok7pKP2W7Tf6UQ1eCzhstEy/7dWBSr997Ec94IAuDVL7HUsKEurgoB5wpMLgfrSKFLiwwxAH/Vw9YMpRPbDpV62pV3R4fcw150ZjxlS0J9ZibBSUpPubipyBqu9Feh46nU5PlhsgYPC+970Phw8fxszMDEZGRqKegDPFMzMzGB8fxw033BAz0WlXYg6mFxcXe7bFAT8fC2ss2Enq5ZdfjpUoroAwtYqDwBQoc/dwbkgHVF2Y61Qy3ncGODz+6I/+CE888UQPveuDH/wgtm3bhpdffjnSkMqyjBn2gYEBtNvtWD3pByp48DbTwUH9wYMHY3Xn05/+NLSmBoiLi4vRsYtF3TfddBP27NmD3bt3Y2ZmBl/72tewdetWjI+PY2JiAi+//DIWFxfxsY99DJ1OBw888ACGh4exbdu2CBx5TrCuAyBQcPLkyR5h+tzcXAyeeWxkb8zXlrUWqSYopfrVgT1/jq8r06PqACQN7vkz9fu6fr/xsdaTFfXBYGFiYiI+J9N18FziSheL8dkCOh31/eDX0vXV9zFd5jc93pB4+4O3f4mcUKJjiQjWqgam6MB7Dyk1lM6DMDn90nMBECSdfaWE54w6AmWF+dsxoxjoLJztC1xlRrM+oU4ppjhpHWhPgIKFlh5a+hDTeXS6Ft2uQVEYdMsCzrrgDuXitrk5GHPWpZBRL6E0g4gsODZpqCwLegiiaFBmoUl6Ca1jtYTqABbSW6gAznQjrEfJuH1jXNBoSFhXNV6zZUHVCFeC+l9Q5UXAQ3rKolsvIGQDzksURpAlbunQKWzo9UDXDkAAW8FlKgh9RRC2OmvJ4hJEqVGKOgWXpgwATZCLFRR1F7cWzhbYPvYmtDYNYMfWN2Gw0cBA3oDOaDJ3yyJef1mVDULAVuLs6ZMwZRvOrEPnQxAqg9QZjClQlt0YoDpboOh2UHS7sAW9XpYmZoTZWjedSyIEW0rrJKJzYJclxVUniAgqqn4hCrAG3pRYWz1Py2uNN23ZgoHBIQxuGsXA4AgGhzZjaLiFPG9iYGAw8uXTm4yrbtaGoLGSO5Cza9QlVPoF6iwtkGfNSI/h940x8XxW1TQGI0ErEXpr+ChuL+I9yQDZoRIa27KgbvLtc7GbOXQGoTRU1gxVI8AWHThrYIo2VSukRN4cCgUSQ6YGPnTJdhR85wMjMNbhV4uL+OWvfoUXfjEfKjpBfB6ORec5hNDwyKEHh6EbQ9i0ZQfyPEMz18i1hxQOxhSQwkMIj7Ls0nNIKah8E2Q2DOszIFRCvC1DD451SnJ4B6EbgNCw0PCeNA2lJceqoqTkg7EWZbC3LcsimAd42NKG5xFR6LyjDvZcleVnUrPZgFak5eHeOaT7KFGWBkXRJUAbGusxRZLF23zN8zwP/TAo+cD0KL72sRriPNbXVvCN/3r771S8fe7cOQwODsYsftptOhVi98vEp/z9epavX8Y9Xc/Fgt1+tIN+mXbeNtBLVUiDen6fefl1ZymmWqS9FOp0hxTApJSJ9JjS4IeDYKZ6TE5OXsAb70erqAe26XbTz6THz4JUzt4yZWhxcRHz8/PYvXt3D1hIwUYd6LBgm2kk3BSOz+38/Dw+/vGPx/3dvn07tm7dGqsla2truOWWW3D48GE888wzuPrqq/G5z30OX//61zE5OYmbbroJn/rUp/DSSy/hxhtvxLXXXos9e/bEII2vUer2s7CwEEXY3F+Br+epU6dw6NAh7Nu3D7fddhtOnDjRQyNLA9YdO3ZgYWEBS0tLPda9PO93796N+fl5HDt2DNPT0zEYnpmZwdNPP40rr7wSZ86cwXe+853odpWOT37yk5iamsLf/d3fYdeuXbjpppswPz+Pl19+uafzdr/x1re+Fa3Q44KrAB/5yEcwNDSEs2fPYm5uDs1mE3fffTeWlpYwNzeHmZkZrK6uQimFXbt2YWJiAocPH+6hRl111VW49dZbASBSdLTWkY40NjaG/fv3Q2uNb33rW5E+xnOYe2ycPHkSa2tr0Jo0Nu94xzuwZcsWPP300/Fc3HnnnRgbG8O//du/4dlnn437Nzo6ioMHD2JqagoTExM9QC7V9fD+zM7O9hgb1IX6Kb2yDsLT+yd19OJ7g5fpd3+nz4y0CpoKutP752IuUryetK9G3VChX/Jgo5Fu5z+JeBsIrPCEvgH6MuaeDKg0D0H9CCF8yLAbWFOA+iio0NhLBh0Ai2WpKhGDKlc1PfPBvYXoK4F7LrnzNGX8ZeAja0XVCRGytNRfguxJuf+EKakfBbnVIGb/uOEYV2Q48y+CxajSBAKoFwSBAhZT55kKnXw1cq0ghIeShgIf+OpfT+dFSA/pJTkjeaYKEdUJwUkq6my9p6DIWcAbiMBw51PtLFUljHPwwsLBwQSak/XUYA/hnKhAl9BKhivqIGW4ulLAGsDSSoMOwgHSQ0jqUsxXn6lwzYaE8IBEA4NNhYaWEAEwkJVtLEmFOcQUEvrNOgtjStKyCIHGwBCkGgSkgvUVSODOzVyh4ACOqVGsseHgiv9lKYNXvqqS0UklYCYEAB0cwkSo2KRUN6KviSyH9T5s36CzvkZUNAd4Q9eEqlIexig6Up+F/ha9Am0IcvJK+7kwrdCH3hsEHBKqINOb0jWJXrF3ZS+b0KDoDosVRb55mXIl4CthcWhayNW4KM4O1KwoJPd8z7MfGv9JNDuuTPrQy8ILolkZa9EpCrzy6itYW19HZQldVXXoHBBFTgjSPxjZRXt9FabMURYN5JmEUoAUpOXRUoTu9YaodWUBjzacL8M1VBCuhPAGzq0SVTJSDR1K26XWdJ4CeScBLTys8nQP5Q1Y51HaBqyleWVKqgAZU1JFIsxj5yuXKRm0Mz5Q+GTIhUiloIFQ7Uyem0JQD5bQBE/66ppZ56hqzDRJ76GFiH0sqh8fAczvY9QpPRt9afajN/FIQUS/zNpGGbmLbaff6Leeeqaz/noaWPC/fMwbBQkbVVvqgUm6HaBqAsjLc/DOYuqNKjr99r9+PurAiisD9X3ibH8/hyigAkAcVPXr+8D7w1l0rTWGhoYwMTGBt7/97TGo5O7QZVnGjPEzzzwTNRzc0VtrjYmJCQCIdqp8vuoAMt3XVGSdAiIWbWute3QynNHmagcfUyrY5pECyfR9vm6tVgtbtmzB5OQkxsbGMDExcYHd6mWXXYayLLG0tISdO3dGty6tNUZGRjbMgPNohf4he/bsiU3s5ubmop6Cu4UPDw9jZmYGDz/8cLSMvfrqq7Ft2zYsLy9HAwmmaqWUuqGhoXg95+fnY7WAzylrK3huAORIxXSxoaEhdLtdLC4uxqrUhz/84Qh0+Hq8733vw8jICMqyjPoJvg4pgE/nOv+d9vHga8KBPIPn9D7ife1H96tTn/pl/dPXUv1TffSrZFwsOZI+I1Ib3HoS4vWO13qu/ibGG9qjGM77JC4TCkIL5FonAgmEoIUy6kAJs76MoruKzvo5KCUxONAMwbiGUA1A51C6CYsc1gsKJCwFiUyLqqhNAFSgJyEjpyAhkWUiaimUpKCTvOhLdNoF2h0TXWGq0CwEeMH7nqoTGWXjNdG8qL9EA0pnIP/60OAqJwcXrTI0gv1rninkWQYtJYSnzHvZPQfhCgh4aE0diiEycIDtTDcea2mCaDQEq7SHROXKdWh4F/beeQnnFQorYIzHWod6SxSlhXEGHmxr2SCed0NF4XdDS2gpkXM1oFiHFC6wvSRKIdH1gEDIVsNCS0XHnw3DWodO0YH3RKkZGczQzBWGGk00M49clZAoYQwH4TZw+GtRNPPTiy66nTVY79BoDGDTps0oDQmuy+4qcdct62pIqO1tyAx7qnoR1YT6OhDY4Kx/VQUQVkBJEzZPs1iGviDeeyip4KGgg1sYVa4IXORBVDvcugRFp4211XNYX1nG6rllNPJXUbQugS/XMTSQQwrSkdjMQmtL152rCoEbL0KwTQCtAghpkO2chTE2zk1iA/pgZUqflUl/lkh/sqEG6JmnStv2wQJXeBECXTI38JYoilJICJ0FW2QNq7JQfXCAMQAMjClCJUdTwzm4WDVkepkPcNWw9gmSeuxJgXa3g3PnV/Di//7fWG+3kWUNSk6EPSUtgYT15NSmFABXwhUO58+egpcNQA9CyBxKZ9g8MoSBpsZAU8O6krwKXAFj1yGKbtgvgUxJSFlCoITtrEJJjSwbQgYHeIFifRmAAeDQHBiElBm81LA6g4eGamyClzkschgDGEsVDWsN9YkJFQ2yo7YR6LJY3nkPH7p2Cymhsgx5TlVNgHrrsF+/MQYFSkhBFQxGnMaYWL1lcbcH4LWGTqpuAJD/njpvA4hf/nXqQLpcPZuXfnnX3+9H3eHPpf+mn02/kF/r/fo66pn8NGMN9GoxUsoQZx9TS9h+20ipFhudx/TcpZWfOi2DA440+1o/j/32Ic3C8nIssGaRMR/bjh07MDU11SOkT4FCmlEFKutdbjjG15J1FWxpev/998cAj3Ui/Pty6I68f/9+3H777dGVielBq6uruPvuu3soUExX4oCSK0i830wlSV2t0kByz549USA8MTGBTqeD48ePY2xsLAqEU3DEQIz3m69T/dj5vDOg4Ez+HXfcgU9/+tMACFDs27cPBw4cwCOPPIInnngCt9xyC06dOoWjR4/iwIED2LFjB2ZmZi6w3f3IRz6Cp59+Gr/85S/x+OOP4+qrr8Zdd92F5eVlPP7443jmmWfwzDPP4M///M/RarWiqPvo0aM9PSrYbhcAdu3aBWstHn/8cVx//fVRPM3am9XVVZw5cwbPP/98j7i/1Wph7969sTP9Qw89BKUU3vOe90SA1mq1sLi4iKNHj0bQMD4+jh07dmDPnj2xGsHXi+1kOeN//PhxHD9+HJOTk9BaR7qQMSbS47iaxMBicXERCwsLsYKUgj6eu1xB5NdTrUUKVlKHtPTe4/uSQVD9uVcH5umzIh0bPesYNPKoJwHqFdqLDV72tzHeoCtUndfNFBO2nglpSqbPiJDVtA4qy5H5JkToV2ANSBuAEs63AaEApSGyEXihYawn4WYAKVJK5NLD23U4W8ALizwfxPCmYXJakhpSieje0ml3YUyJTqeDsggVimAnyVQcIUXsJcHN8aRg+guJsFVGAmwdBJiZJhqGlgK5Dpx94aBkJ/RKUBDeAYacjrwroX0ZsJZAYQW8BbygbtfUgdhEhyPO+jLfnbL51Dui3XWwpQ3aCLKCtV7CQ0eePISEVhJZTsenZKCECQMNC+rb7Ml61nsYFzLutqTqiACEcJDSoZkLCDkA70UQKnPVYRWZAhqD1D1cCgnqKWawttaF0xIuz+AHBgAZwKgO+yiq+QFQVtqUZQiYLAYHB6GUpsZploXGgbfPOoMAGJjWxboK5xApKlGwbisXM6bP2QRUKEX2uWRhK+Akd8quAnkZ6CjsMpTlObJMY2BwAOWmEdiyQHdtBba7jldPn4QtOmgMDmP4TdswONxCc3AT8sZQoLtloZs5g0Q6H1xJYMtaPt1BMkNzUBMdJlb0wkThecL9IRjgs7CYCwEUjJJAmWllzlnKmAsBCEVA1zmoLIMQgNV5mIQ23LsWcAY0IdiatUoocG0k7pgkAbuQIlaTFv/PyzizdJYaNYXqJRk+UPVExnMe+o5IkJ5F5fCyCeMVuoUDlIG0HsYDek0i0xLNjCqJzbxJ9ybl/iEh4GUG6xXgM3gp4RVZ1pbhHA0Mj0awK1xJdMByFc4VRHMyBGakGkFTD0FmTdhMwzmFcmAAhWnAWI92UUb9jwn0PGPKqAHiueysgfUuOEIRONTBgtp7F3UcTHezIRAijZaCyx0Bi/C+CjQqpu69Dpbrb2WkQW2/7HG/ZVOb0DQTt1FGrV+Gv9/7dXDAv2+U6UuXT9fFX8JphjrNzqfr4+w0B6ApbakedHBwn64z/Qzva6rB4PXwZ9NzVq9WMCWJA6P0mjB9hDUJLEjm/eH+D5zFT7O6HHzy+wysUmDJ20jBR7PZxPT0NGZmZvDqq69i27ZtMcibmJiIgRa7Ar35zW/GyZMn8e1vfxvvete7Ii1raGioRww+MzMTz39KL+sXePHgY+YM8OrqKo4fP46pqakIohYXF/Hggw/G6khafeBzl84dFgMzVWh8fBxHjx7F6upq7DjOLkF8ft773vfisccew4EDB9BqtTAzMxPpQizOT52+Wq3WBZasp06dwsjICC677LKoE2E3ox07duDEiRN4/vnn8dWvfjV+5tZbb8WePXuwsLAQ7Wk/9alP4ejRo/jud7+L8fHxqN/gChSfMw7UX375ZUgpY+NDBqSzs7OxArR3714A6KkQHD9+HFpr7N27F//+7/+OZ599Ft/4xjdw2WWX4dChQ/H8PvTQQ5HCNDExAWOoc/bx48fx3HPPodkk+929e/f2CK/5flxaWoqC/FarFRs/1iuC9XsnfQalNsN8/6XN89LkAYOblKaYDv47vd8v9oysJ1Dqz6W0YphS9S72+XqF7bcx3lgNpWJVxIx/r4hUoMIe/LuED1QipXOI3EQBpLPcrIr6J0AUUJ66/HonY7AshIrOTuTSVMDDQcJRd97A/QYcrA+WqYVBUZTotqnyYWKAGagPSpBzU2iaRloJ4iqrjLpcK51DB4pTltOXdpZpDGgJLT0y4SBhqCojKKushIJzZJ3qbQl46ojrQdl6EzKzHhU/G76oek+AaFgOpHN1HjAWIVBxKLvcDI7fFxAq4Wbr4DKVy8DNFgR04KDjXiB26fUoAqXIxXel9JAKEEoEBx8J4xScMyHwK6grt1ZQQkGAssvWWpiihDAAgnWv9A4iOAV5IeClgEIUExDV7f/P3L/H6nXVd+LwZ9323s+52CfOCXHGzuAW88Mojuq0zlujGGEYI1I11bidjBTUVE1bqoIKahkxgmqo2lGLyqjoLdIUtdWLNFQFTRCIUimIRKStUR0RhEeYt0a4bw7h0Jw0dnxsP/Z5LvuyLu8f3/Vdzzo7z3GSmQKzIsfHz9nPvq699/fyucSORggBpigghIzJAfsk5H4JL/3j3SyZoD8zxZ48uJpJtyLNXe4QSJBcL39HKQ1Wb+I/PPmlUlBSQ8kKvizguhawHbpmgmY6xRbInCwIE79FQbvSBVRM7SAlZAgpeUjCBCBo1Cw5oM+kJCiPFHKWYFFbMClcpXMa+Huze5QTBh9hZNZGtSY4grDJKJsc1adSd0UZwHtKPgLDFC1dSxEnapjVFBIKK977lKzSjLeOBBKuXL2GzStXMJ3WKIoShaFrHkKAE0ROlmKW9EPKmFho6hg4GbtUMeluWloeEm6hQlFISFVAB0cy0sFBKgEZFOBJsQyRS+Og4DxBjqpiEUJqCGjYZgsh1JE31MD5KYRoIVUJGQKMoo4fIjfFBoXCaFgPSKPhLN2vbdvBWYemI6UkOEHJHRcSGN4X3bZ1hB/Q5eSkxM5gfz4gKLrAOadCKwWvVJwPatt8/1GMnRKCfvWcP5vXgei/RPPR7yj0l8kD4Z0SiJslF/N+t1NilFcu+0Fs/oc/yz0O+Dv99fXhHfk6ePSDG15fXm3lwLkfvPTPc14N5mPIk4z+MeT49HkdqXybeSeD+Ql///d/j+effx7GmG0yt7w/Gxsb+Pa3v43vfve72NzcxLe//W3ceeedKRkbj8fbzgfvDweBeYLWrxL3zzXvKycK1hIGfnNzE5ubm4nUnUO7cgx9fp2YD/PMM8/AWiJ4f+c738F4PMbJkydfch2Xlpbwpje9CbfddluSuL1w4QLG4/FLKuEc2F+4cOEl83BzcxNlWWLv3r3Y2trCdDrF+fPnk3TwoUOH8Lu/+7svuUZMgmczPO6yeO9x6dKlbfyP/jFPp9MkU8vdBT5nrIDFnZ7+PGYlrYMHD8I5h8uXLwMgR+9cLIDNDvMkm7sTw+EQzzzzzLZkj3/P15r3mTtoq6ur25Sg+vcqjzyxyOdwPyHgOZ3PqX7w3v9dPvKkZKfny7zn0CspvvCy+fHM2/YPYrzKtXLks13ZScx+g5lUZoxugocIHkoYMocbaKjgIVhJJgAFE7oD4BkmYzRxApgkLSjBcEVBL1JNDrhQGo1r4dsppuMbcJ2F7WysvkalH+2hg4dAQbAmpSE1eQsoo2PSQ7wIJSmJ0Mqg0CVKQxXmwrSQaCHDBOiuI9gWwU4o+JEaQg0gQpRZhYIKhiA50XCNZFwFDB+oDGiVhQNJf5KKFlB3HayLBHMb0DlEtabYGZAlpBCoFgsYI8mgLRLVKYhnQi7xObQW0fw5RKUkDpIpIhRCQysHJR2EsCDH310zqBssEc5FGxMPDScWYIPE1ErUU4+uC7AuAF5DeIVSTLFQOdzqA0oZYFRA61pIKGhZwIM4Jp0lp+y2mcInqVzEhCdENR66GR0HVjytgiDysKPK7kwFykdVqO1JBAfLbIqoorJXbq7onI/J5ew73s8k7yDI0VxK8haBMVBmAapYwC3lIrpmiq4Zw9VjBNfh+gtraG5cRjVYxu7X/FsUgyVUS3sQqgUEbVJ1PIgAGdWrtJJsOxJVyARMUSJ5XMRjUDqgbRs4R7wOkQi8DKtxCe5FiDEP27aA6xBsh66pIzfEoSgJ5icztQ5KEAR0tQilS0CXsJMr1DFzjqBLHoBQWSeTEkZSUeXsTcIFhyubV3BtOMTFSy/i4sUXMZ5MYKLIgZQSVTkgPG+w6V4hZS4NrSsEWSKIAs6UGMgCy3KASduhc9F0DnTsk8Zh3FhcH02hYzFCROGBsqSHqVISIkTVNS9SYrewUEBp6gYE7EaQy/DlbsC3EKGF0uTBokAPqtDVgOwgpEKh6PkRIFEpAR8UXNCwzlBC1RboOovOOjRtB+s8OhfFBlgmGUDXdkmljEnbWqltiTI/bztrIT3Bo5jcbWOBpOsUJbw/5JG/JPPqfI5zzpflvzl4zQPtV9LpyANxfqH3A/H85Q3M1Gk4mM6X4XXyuuYF+HnAV1VVClRyx2muoB85ciRtJ8eDc1DTd8pmOUkOeHMVojzwHQ6HOH/+PA4dOpTOL8M/8u3weWcFnRyixqpJDLXic8cBLH+WJ04MK8qrudyN4PNd1zU+9alPYe/evXjwwQfTPh87dgwAkvzpcDjEY489hgsXLqRAnM/HM888g69//evpvPziL/4i7r//fuzduxdf/OIX07Z5sO/G2toajh8/jnPnzuGXfumX8IY3vAEf/ehHU7eB9y+HR3FQXFUVPvShD6VkhLsyTzzxxLbk5MKFC/jgBz+IX//1X8cDDzywbc4dOXIk/X3hwgU8+uijWF9fhzEGGxsbOHDgwLbzsL6+npybeX+OHDmSPEB4X8+cOYMTJ05gbW1trkv5t7/9bezZsyfNhWeffRbPPvssXvva1+Khhx7C8ePH8Wd/9mc4c+YMPvOZzwAgAvbq6mpyQQeAX/mVX8Ev/uIv4nOf+xzOnz8PAGlu5d21lZUV3Hvvvbjjjjvw9a9/PV3jp59+GsPhEO9+97sTKbzrOozH4wRTY97MxsYG3vve96b59+UvfzndTxcuXEBd1+n8aq3x5JNPQmuNU6dO4cEHHwSApGI2jP4kORSRuzuj0Qif/OQncezYMZw8eRIbGxuo63qbglQ+F/L7nhNF/jd3DvtKW3z98/u53xnh5frPGx75c6bfTek/F+clCXlymz9jeLs/yESiP14dxyLEyjZXimN5kim4xNuMmHbMCNwy+BmkPijqQMhIXhaAAq1DggRKieipItmY/CA4INT0WqelhCCllq6DsxZt3US4gCNpTCZsSgElZq7VLAcrNROwJYw2yeG6KIgIapSHllNI4aDCBCK0EKFBCC058goJCEOVaVEgCAUhNHyUdbWBXYpJuYa08Ol7QShYR7yBznr4IOCDQGu5S0HHKZWA1MT/0FLASBW7BURWN4YSJBG9RbyzEQ5mCQTiOQxhN+lIkg9MFmWZ0RJSENnUsR+IRySKEwHeBQ8PEau0KroQB1gf0FkHOAvhOkhpYRVVz52zgHMADFQAdMFpzUz6lGRVKcBnzD/AZGyX5tEMG0TzMeMoZzwK+l0uacfrZB7DzGSs73At0nopyXAJPiWkhHOWeAO6jRVjCtiliE7jhhJXFAWCc3BtQ2Rl22IyugZruzhHAIQBEOc1YgcNiF4xiVDMzsoZdyJL5n0kCitJHRfm+BI0pkuJVCJ85y7S3PGJpoZBSioCQIANE8Hmj1IC2kDqkq5Vq+MdOBsB3EGj9JN/N55MMJ6M8cLFixiNx5hMJgAQFY8kpJJJdlgIwGiDAAXudgipIXSFAPq87Vp4AQQpSeo1AD6pXgGWYXMhEqdB8tBKSTSdjcmMIjW0INJ9AAAOIZrR6XTuaZ4oiGCIeC0ClAgwWkIHAabkSy4YwEcRg9j1iaRyKQ2sVrA2wCgN6z1aJnxzBzeHlc2wgulcpmRt9gEi1zsl1V7weUCUFP7hjv6L8+Va7fNedPNeuPO2wWNe6z//7s0SlP76+QXcJ3DOW0dehc+/CyAFHv2KYf6nX6nMoT39bkw+GLqUHzcHdvOCGACpmstBUh508DH0k7MLFy6kIDmHDOX8knw/GYJkrcW+fftwyy23vOT4+fvcAZhOp0m29dFHH4W1Fm94wxu2Qa14/evr6xgOh7jrrrtw2223peSAE6hf+7Vfw9WrV/ELv/ALuOeeeyClxLFjx14yB/OgjXkZfI5yqBv/zPyNzc3NJDH8pje9Kflb9FXH+Bh5Pex0zcvmHSLeH74eTF5eX19PyQV7aDz55JM4c+bMS+YDj+XlZRw5cgRf+MIX0mfHjh3D3r17cebMGWitk3fFCy+8kI47D5L37NmDF154AWfOnEnHmvMqOGhfX1/HmTNn0nXa2NjApz/9aVy8eBFbW1v48Ic/nM7n5z73OXjvcd999+HWW29N/JKqqvBTP/VTGAwGCQ6Xz1eeJ2wQl0sFz+Mv5HOZB98rzLWYV3zod/D693q/I8gjv379+3ReAjGv+zDvOy+3np1+z+NmCcTL7cO/1nhVW2BsOziI87MABcAsWOF/x/9TRdFHSAkFxkYDRgcoGWAU4cOJzGoQIEE6NRRgJOlaiaQuZFsL23Wkf9+2lFi0DUEjvEOQhB03RTm74Q0lDkoXkJrUnEpTQCuJ0mhyulYShQmkjS8aCL8FhBreDgmCFToACwAKCLmIICsEWQCyJJ6I0LChi4GCiopTDk2zha6r0U0a+KDhQgmHCt5LNBZwHimpEkJCGw1tFAotUVQaSgYUKsAoghJpIElsyojV8VrDwsMGC+dIPSo4NqOTkGVJWG6liawbYURSamgpyd8DDm3bUNLjAduRf0ndOrSWJDiVclDaoCg4qwzwXUPQr66Bkg281JA+wLsOrbUIoYJBQIlYkA/R1Zhsw1Ng6WI1HPBJ098HB8xYJDTELAngXGOGehLbbp6u6+LvREosaBXb1jhbXyAibQgeSsdEVkr4jnxcpJQpmFWSlIWM0ZC6gKkWURTkwm2bKZrpCF09xdbwMnQxhnWO3K0DEMrotyIVZMyQnCfcvIiQmBmJm+81DukDrG3RtjWqskQIMnpS0HJd2yTuUMjOn98mY0vZY3AWXsRkTIGwWMHFWF1T6KwMZLlAcKtmktYHEWF1EARDDFH1CORqfnV4HVeubOKZte9SpzFylbTWiQ/DiaMIkWOgSkAadB6A0IBagA8C1geMpiO40MCjhdR0z1l2zo4cBk64Ip0LuqDrp5RGUVTQusCgLFLiRd2tgHHjY4eggJLRb0YLgofF+SEjQXpQKBRGogAgg4QKxLWKswhsoKkIU4iyLIgT5YCmI3hma8mIz1obCd/Ey6BjIFJ88GHbvOa5z6Z6Mygq3w8xwQh0//ywRx4U9wPQ/gt7XgLxcpCAPEDn7+QE2X6175WMPtSHP5uHfZ7XveCAhSu6Kysr2yRI5xE7+4Eofz+Xy8z9KfKgiw3yct5E7nDO+8tBLECk5dFohHPnzqUgLXfwzs8jB1+PPvoo1tbWUgeFg7w8yMr9KVi5qKoqvPWtb03L8DFyMrS0tISLFy9ifX0d4/EYR44cwdGjR/GJT3wCAJJKUq5IdPnyZZw5cwZVVeHkyZOo6xrPPPNM4jjce++9yQvhC1/4Aowx+Na3vvWSTko+Zzi4v3DhQuKhMBlYa73Nv2BzcxNra2tYiaZ4H/jAB1KyweeLOSn5NjgYBpD4Lgzn4mvEY2lpCevr63jssceSnOxjjz2Wko7ckXve2Lt3L37+538+JRZf/vKXEzTs93//93HgwAE8/PDDOHLkCG6//XY888wzqOsaBw4cwC/8wi9gOBxieXkZZ8+exd/93d/hj//4jxMBnu8JJl1/7WtfSzyPffv2YW1tDR/5yEfwtre9DcPhMBHCf+InfiJdw42NDZw8eRLHjx/HY489hpWVFZw6dSrN042NjbSNQ4cOYTQa4Stf+QqqqkrXheFRTALPFZLyc8+JCXuRcFeI75u8E9Dnd/F85nXn3I1599a8IkEfapUvl/+b95fnZ/6syI8nH/l6+sfff1b0n5c7rfNfe7y6joVnuc+QXmCzSrHP8Oy9qhtX76RAqaMTtnAItkXnLRrnY1CuoEuqYuqiiCZ3Kq3SewfbuuSI61yUixUSQRvyKIBAASAoImObooBWBlppgnwohcIU0FFf3uiWOANiDCM8dAhQnQfQIWAK66ZRjlMjiN3wYgCPEgEaFgWC0wheIbgYtAKwXYCzAfWkhrUd2rbFtAas1ei6QPARJSEVkVtl7JbQw6gkxSmlAbh4XltKu2LyASnghUiFZXLdBYQVULKElCW0LhCCQ9AtOPQOPsD6jngQgpK2EIMQ54GmI1z4OBp4Be8jD4R4C4hqRQQ1E5hOJIqigFISwXfwtoVtJ/CoIaGwNd7CtStXcenSRSLp3XILlnbtzguuvY4BJQGAgJLkZ4DoNsxecaow8E5St0OpqIyj0xzRUQinMAbOufgwoC0SMVZGD4jIlxCz+rpnk8cQknpY0zSU4HhH10BK4swUJZQUCFLBCQEbLEwQKCDgYuAnTQUDAWHKWD0WmExGkPoaOmuxtGKgNKCFipVnOiFU/adAGzHgl1LGe8CnDIpPXdd1sdNGqk8zcz0PeKpc++DhrEPXNOjaBt42kAAKHY8/hOjW7iGkgw8+dguK2Jkjs7mgA4SpIJwlp/cQUhdLSAkFBSiF0XiMFy6+gH95fgM3rl+HMQVxuaWMECryrHCWOQQOPpAXiZYlKTYNVmC9xKQNcIESUlXo2B5hYjhBxVgpCc5CBk3cKQgISOJcyAitEsTfoEIHmR8WlaaOHzBTdXITBFAHhRTjuLtC3Ymm7aAEYCKh3hgywWNIkhBkVCdl9K+JjR8hBYRS8F6isAq20HDOo+kKuj4deWY4TzLNKWHKfFnASeGMtQ8fla0cd+GEQPsj6Fj0X7A3e5HyC7JfnZ9X4ZtXkcsDg9z7gpeZ113gQHonbkP/+xw0zjtGAC+psgJ4yXrywQHovBd7HsDwceVwJB4ssZqvf//+/Wm/ONjNEw8+lwynuXDhQoKC8ODKuNYE0Tp69CgOHDiQEoZ8+dxJm43b8uu1traW/n3w4MHkY8EwKz5fq6urWF9fx4ULF/DTP/3TuHjxIp577jmcOHECR44cwd/+7d9iZWUFb37zm5Pc7GOPPZYkU9/4xjdiZWUFFy9exJ49e3D16lW85S1vSV2WnPjM5zafK6urq8lnI0/m2HCvrmt88Ytf3AZ74/1mI7mjR49uu/Z8bLnxmbX2JSpEnKzxOWfJ1g984AN4+OGHsbm5iSeffBIrKytJoeqZZ57ZZiaXj3PnzuH3fu/3cN9990FrjY9//ONJPvbXfu3XsLy8jKWlpZSgcBV///79eOtb35qu17Fjx1DXNY4dO7YtYeTzBRBci524l5aW8JGPfAQA8NRTT+HkyZP4iZ/4idR9kVLijjvuwIkTJ9Lc4HthaWkJTz75JF544QW8733vS/cnn/vXv/71286h1gQv5P3JYVx5ks37xb/Pnyl8DAxr4t/zMuxFwokiB/z5vJnXJc2fMTdLKvJ96fNWcoW5lyvE9Ee/+JGfl/7z8wc9Xn3Hwm2HQgUftiUWQmT5RFZVU1Kkl6yAR/AxoHAOzoUYmAjA07Ka/QO4uhvI5dZZl17AVKEMKUJVkjsbCojkbEosNIzUKAsTEwtSdVIyQEsLiQ4CNakmxWg9oIMLDaxr4YMAYBDkAF4sw8NEwqYmCd4gEkxMeA9nOzhLErdkfmXRtID1Cs6TT4YKGpAGSmmooiSJWq1RDcoZrtp1RJi2BEci4EXkGYgZudtFC186tyJitFWsKBOpHSHAeyKJs1SpEGHm+YCAugU66zGpGS7jkqSrQCR0Q0T5UBDMDQHQClKQGVsIHh4ezgvUdYPhjeu4dOlFVIMKujCM25jBaEQGqYmBMxN5gdnxxC3laP7UfUiwp+TkDeJAxGU4wFRSRd8TQTyKMOteBISZ0lEK3OhmJVz7DEbWiQ5SqhlnRcroASEhBan2EI9HUaVf0BwJcW50bQ2pTJQdjT4RYLRXTCy8J5WyCKdjB2+flMPobEhBJpVSiAiliR2JGKgH7xIRvuscmmaKtq7hu4bUw2QV1xUA78CgxoA4waJaFGQ0+ROC5JI9BbKJEyUlpCCOQWctJtMpNjc3cW04xGQ8xsJgEO9/kp0VkpLSTth4/LNOKEDbUMUCQSeDg4xeJEYLKB/IqyVlqBLe0byBEBGiSddMCpCAgQjRBZw8JqjYQTBLFORLI6WGt2TU2HYtQgBI6ldFtTiVkmHW8SLBBAVjPMqSurDJnFMESOmJ64TZ80zAE/dDUZLjJEFFnVI0h6yF87Qsy9aGOH883yjZTZMuHwJENBoUMnrP/JDHzVr/N2vD36xLwevNtzEvaXi59e20vztV8/qJz7z9mLeum22733XpJzD8d59InY+8K8HbylVo+hXVvGPEFef+MfG/cww5JxK8T3kwla+fP88lcfPBwTQnFsPhMK27qiqcOXMGp0+fxqlTp5LPwvLyMm655RY88sgjaZ0MiRkOh9ja2sJgMEgSv6PRCO9///vTucg5PXkymatr5Z2n/DsMn2H4GOP3udPA68m5Jf1rmcOo+vdE/qf/GfMPDhw4gOFwiH/4h39Iy6yursbCG16SXEgp0TQNnn32Wdx5552wltST6rrG6173Otx7770vmcu5JwY7T+cj7wjk+wcAd9xxB/bv35+6LP35efjwYZw7dw7nzp3Dfffdh9tuuy11b9bX19Mc43M8Ho+3BdP5nOp3FPl6c+KddwvzDlzencillXPSdf+68D3A3LC8m5DPp5t1EXg/8t/NW6Z/7Xd6frzSxKI/8nX+MJKJfLyqrVHVVcYgGhGyEqu9MTAQQaRWvZIKSkkURkHFl3E7uQ7btaibGj5yKHS1CG1KmKKCinwC5wDvLAWQgQKqrnPooola5zowwVQJqigWhgioymjqeGgFY0oYifjHQsoORkwhQkdmWa6DEB5CkZKQi67XHhI+DGDlHngUaB3BMTzIkEvEALmzLayzmEwnsJ1FU5PMLUulEn5eQRsDrRQqYyIcpEBZkveFMVHyFsx7QORdAAEKxixG124ghAYhdAi+pTRDCJQFYfU9PLzrYLsOwTUEJpOMI6cgKXhSAmo7j84BowlJXrpAgeIsEZTRvZiuh5KBZH6jIzdh8z1EZxGcgh4sQBqq7lZ6AUYDV4c3sHnlGi5vbmKwuAhVVNw7QU6mBmYKVzIG2j7QzURBtYyJooKzxG9wngJDE88rEAP8GFi3Uc1CSgljCnJTJwdAMCRKSKqac0DO/CEbbEourHUgOVSkec3JNAAYU6TkxlnyIfALgNIOJoQkLwo+rxqwrgFaAdsRXIlkVSmB0kpQpdo5qI64AUVRJqUk5pwEBCitUYQSTT0lLksXJXqdQ1tPMB1vYTIaYrCwDKk0rBcYjW5gPN7C5MYQlSlQ7r0DpVIgUbUudROCtJRMeJIhRgza6bglXPSQ56RDKvJnEUHgnzc28OKlS3j2e9+Lrt8BTdtBa42iUJSEKIVqcQGyaeDhIW18kkiFoqhgygWYxV0QusIuPUiu6kESP8gFMav2uC5dr7ppYa1F13YIgWBRk9EW2nqCrWuX4ZpJnEOeuhdKk/KbNhgsraAoF1BUiwhSwQdgMpnEeznyTwRxNpizQ884RcWLWBwYVIN0XwdQ0lcWJXQsGBSa1qFNGeWgSQHL+QCtJJxV0fW7i/AoC6tm/hWpsJMVdTiHcN4TkT8ouB9+XpHGvM5FXnXnz+a9NHnZeRU4DnLzF+Y8yFL+c387fSnXHKIzL9HI1/dKOCM7VTPzIIUDnVxzn4OonATeXw9/n/c7r7L3zyNX1/MAjoNkNjDja5LDglgmlAPjvHLL22XJVK4sa61x4MCBtJ/8Ha7yb2xsJEI7dwd4f5944gkAwGc/+1m85S1vwRvf+EY8/fTT+Ju/+Ru87W1vw/LyMgAkgjwHwWVZpmN94IEH0r7xdeJOSl3XOH36dNpP9qq4cOECzp8/jy9/+ct4z3vegyNHjqTkhXkAAHD//fdvS0zOnj2L//bf/hv+y3/5L3jwwQdTV+HEiROJi8AJEEu+9uFPDGdj74bV1VVcuHBhGzn/4sWLyan66tWruOuuu7C5uTm3Y/HmN785+UbkUrRf/epX8dWvfhX33HMPrCXezC//8i9DKYV77rkHo9EIX/va13DvvfemIHx9fX2bs/b+/ftx+vRpPPfcczh58mS65ufOncMLL7yApmnwn/7Tf8LrX//6lDxeuHABx44dw3vf+95ExNZa48yZM1hbW8OHP/zh5Onx8MMPp2A+53RwMgkgdSEAJPf0zc1NPPDAAy95FuQCBTsl3vn9aK3d1kXZ2NhIyeXq6ioOHjyY1KmOHDnykvXk+82/y9XZ8uXze5kT/bywkN/v/cJC/vzMk3reXv95wffDvA7KD3q8usTCu1TVpAgx4noxg7VIiCTbqhXhk13XxgDLoescSaTqClpRIKpNlUzugicYSKQJR5ZqdLn1nki/ApCKfBEEJLTWUFKiKMlwTxkDUxSQitRalHCQUd1IeIdoBQYCrhCsBq5Dx4mFi3hoLwlmJQChRfyOpCDHO3Rtiy4aXrEplnVUURBKojBEEtfGEGRIq7hfNFmUJr6JjsmUFDJGV4T9J3XPABVAHgKO1GRCCBDsvwEVoS/kL+BtB3YBRoTXcGLROUqefFTSCRAwhUYhYtbiXfyOTMR6duMWABHiI9iMoXAUGEtoUwEIMN5jqRIw0sO1o5SE0ETvEkyHArUQO1Y2fU4yrz4qQsUExnsyTdMK3ooMc47Z/KOznpIV8n3QKMsS3s08LTip0WZG0I3EBbDL+Sx4J8oBYsKXpr2mOeq8h/IeSV0qdkcIxkS/JxgZEFxI8CQfGgoc2ymElNCmoH3zgq6n62A7C68EnFNRepW4GEx2ZxhiZIJHXoiL0DZyBXeuRddOYbs2dQBuXB/iytUruHzpEqqihIDC3ttvw4pS0DKk+9gDEFHRjaBQirg5EJDagInVJEQgEITGaDzFaDLF88//C64Ph1kiyzyXCEkz5ERuuw4BAcYYWER3aqkhZAEIAzbZExFSJCBJhhnRa0MEBInoXxJdrYUgcz0lEBwl3kpqGF2gqhZhlYK3XdYhARHBhUDnLNB1CLKFj54enbNxDobZRLNx1okI8eR7ICoy1dMaKt7jUtK+F6aAkhJKCBRGxJfgApkRKo0QDRqdm3EqhJSQQPKkSGT8kM3nQAIMPusCJp7Fj1Bu9tWMeS88DhL6L+P+z/0EZqff97eVv9znEbXnJRc365r0l+tXIfvfzwnfr6SimC+TV3X7n+VBRB5s5IEIL5N3RfjzHO60U0eGl+ufO+YQ5ORa/sNeBPx9TubySvlP/uRP4qd+6qcAzPgGb3zjG1PAxjKm586dw+te9zr83M/9HM6ePYtnnnkGBw4cwMbGBi5cuJAShPw6cNLDxw5QUnfo0KH0c36cufcIdzE4iKzrGnv27MF0Ot2WvHGgmF9XANvM1/h3nPTk8LP8nPM1ZK4FJxWXLl2aOz+YT5DLwwJUWLvtttuS/8e5c+cSdOvxxx9P27z33nu3KTb14Xf5+bF2BjcaDAYYDofJVfvixYuJdM7wvLNnz+L8+fP49re/jfvuuw+nTp1KAXV+7B/+8Idx8OBBPPDAA9u8U/hPrmxWVdU2HhMnzDnpOzdLzK9JrgTF2+ZEkrsynADz9cwDcy4McMcqhzbm91NO1Od15IP3J+f+9P+e9/zY6ZkyL3Hp89zy4/9BjleXWDgHSJdItGIWzm2rdBNHQEJJCtLatoFta5JUlApSRVK1KWPAZBKRljHkPviIOUeCX6WXZ1KSIfiFMRpaKZRVEWVjC2hDnAsjFERogGBn5nwuINpqAygQgoXtgNp6dB7wvkKEa1M1VQUMlkLUyldouwnatsVovEXdjWjOBhEQhE/qUlUxgDEaRVGiLEla05RFkgYNEdhAyYUk9RiyFE9V4iAEhPMItoWbtpEM7qEUcVC0MmimYwrOLVVr286htTGg9RJMSKbEycN1HlqROdzCIlVXC6PgbRMhUAoIDslrPQDeR8MyKaENwWKc9zODQWL9QgiHXYsGGhZbLw5jIEzqUETWdqnyKhDgPU32EK+N1gpkjOiTFCcYq54MG2LCBKQgi2F3PDOlJEd4KVVS22nbLhFbdew0WOsi9C3EIDmet9iNo+SDkzMPVuLJicechDBcijgSSKTgWRDoo1qXhbQWbT0hp+9yQOT9CJOxtkPXNoTXl+Q2r4KGlAxFpHMjo8EenQdPUK4QZqpgroW1NabjKQIkFnat4tq1q/iXF17A+vf+GVVZQqkCZVWRE2shojEdIFwMZIOLXQkfiQIKUpcQKkD4ABd8ml83bozx4uYmnvvnDdT1lDxnIgyvjdfdx4q6EAJNPEZTGOoGegGhCgRZIAhDFXfnIWBnSa6n6yUsmd9pEeAQPU9chBhBUGIR90uZAor5T7aFC5YSMU8Gdj4WS1wAqZ91LUIg6B13YgEkB+3Zs4iWiDMyKkRRF4y4FgYEixLE1QDl76WRMIXB0pKDLiuowkCkB72YPVdjgky+KiqRWWdJPScZEs6zrHXexfjRJBY7wQJ2ggrMG/mLuh8A95eb1w3Jf/dy28srjTdLGOatv5/E8HrmwRvy/cnJ3PzveUnPzRKcfoDA6+dgKieJ58vw97hqzsvkiUU/scv3h5fjwcux+dvGxgYOHz6ckgsOWA8ePJgq0xxsHzx4EL/8y7+Mv/zLv8Q73/nO5OVwyy23JNM17rY89thjyehNKYVDhw4lOde3v/3t+Md//Ed86Utfwv79+7ftn7V2Gymbr8f+/fuxf/9+HD16dBtUho+9z80AZupbd999N5xzWF9fT6pW+XnJzy3Ddvi7ABIh/ty5c2ke5AFwDsMBgBMnTuDP/uzP0r/LssSpU6fw2c9+Nn3WTyp+4id+ArfeemuCLXFSxmZyX/rSlyClxOtf/3oABDHi7hYnInkHioPsvpKWcy7Nu+FwiOeeew7f//73k6zr6dOnU0I0HA7x0EMPJUUv9hqp6xpPPPEEnnjiCezfvx/Hjx9PnTieM2yqd+TIERw6dAgHDhxI55cTvvye29jY2EbA5wQlv648J9hBfX19PSVROYwtT1D4+C9cuJC+2x/8TMphdZxM8T2TdwD5O/mffF39dfc/y+cor7+/XN5JeSXFjP+T8eo4FrGUFiJ8RUXHXq6ocuEbwcN7i66l7kCAhKyWoASTPKNKUWLv+liZFOll6HxCE4NlL5UijDxtL5rZSQNlZIJcSakI4y4JV+0FwakQCiIhBJ+SI4ACRAcFK0t4NatCGhVQlBSgBe/RbN1A5wHryOjLB0CpEloTjtvoqChVaijJZE0HJSW0FlAKEMLDhSmZdEFBSz1TjnHkHj2tRxS0QqZqMKlYWoR2iqadRCjYCMGTa7S1Ebqj4vkVBZSW0EKgUICOHRvb1ZSI6WVyORcSQTI3ooGpdISHAACpCZW6hBQaUhhqUImAzvsokxvgYwAmoxpR8AFaCAgfMBxeRV2PIWWA0SrCPLqoTORIzcc5eNdlcCGaY0ppCNEBwid+QQgBnbWwXeYtkc3NVMUHyDBRBkgX4HwHFxx1EGgjEY8v4YNLcsRSKoToU8GEd81QFTJDoLkRO2I6EnuJ1B7VnZSOicdsTgNUiXbOom1rdNZSF0xdxK6VDlVVpaRHKuI2cPeGvCUCwdIUmRHSsdqkytbG4Dh4R3BAIRGChNIFBtUSLl28jNF4iuk/X8a/XHoRF1/cBGAgpMbzl65iadduSGOw7/Y9MFqkYxfIZFQjT5jaOJqgawikUT4Z47nnnseLly/j2nAIG2V5UwIWOx+cWORqL14GBAVUpgSkhBMSQVg4NwaayJeSEgikyBbCFiQCFkSAjQndclkCpQagISV1Oqznx5uhhD8APuyG9RIuSFgnY5fDR58PSiaDoP6ctbSv5H4dTRdtJFO7NgbyPnW3PJ0QzNoaguSenYP0EbIpJYyUGCwuoCjIV8P5KbrpFF0ARDRRRExm/Q6mkPmzeOYgryCyTkXfHPKHNfJKbT9Qzkm7/YB5p8pc/nd/9KuE+ffz380zw+qvI9//efs+r3My79h32rd53YUc/pAnI3nSsVOy0YdWzDufO1UmOajngPfixYvJmZiTAcax8/6sr6/j/PnzCVfPcJg8IOaf9+7dmyBV+XnnQHE0GuGb3/wmAODnfu7n8Jd/+ZcAgP/5P/8nfuVXfgWj0Qjf+973tsFfAOD48eM4cuQI1tbW8I1vfANvetOb8LM/+7N48MEHsbm5Cecc9u3bh7179yblKR4XLlx4SYeEg7+8w8JdhTwwfOyxx/A7v/M7AIAPfvCDeOCBB3Dq1CmcP38e6+vrOHbsGLTWWF9fT+fs6NGj6biZyM7+FBsbG1hbW8NwOMTjjz+Offv24Y477khkaoZRrays4Dd/8zdx5swZfOITn8B9992H1dVV/M3f/A0OHTqEw4cPJynXqqpw1113beta7N27F5cvX8Z4PMZwOMSRI0fwyU9+EtbaxIsYDAY4cuRIgm3l8zGXKObr/eCDD2Lfvn145zvfmebC0aNH8eUvfxlvectb8Nu//dv4mZ/5GaysrMA5h0996lP42Z/9WSwvL6fj+vM///MEsWNokdYav/Vbv4XV1VUcOHAgGexxML65uYnFxcXE32D42NNPP42lpSUcP358G0SSk0t+Fsy7z3i9rIwFIM2D/n2U84f27t2bkkme13kXJE9YmOjf72Lk0s397b3cmNed7Xcn+glFX13u/6qOBQ8O9JQU6WcOCEOE5QTv0dkIKRHkeiukjBVwUi5xEV6SE3J5xNcmQS+UTPKbSlGFX8VqtIqcChm7JBKIfgyphhwhKETchHcQwTKSAdYL+CDhoBO6i+AyFG0wV6LtHGyESoVImlWaOCRaShhDgXNVaggZcxgwWR1g4zrvQzpXLgjAkTwsBYoWXdsmbgW7GwcXKMHpGrRdC+stui5CILxMMAmpKNHSSsMoSRK10lNiISjIlYK6I1Kp2BGJnhUhoDAyciti4BI8ydvG5DGIwEbLxHNI/xKxO0UQNttO4dspJuMbaJopQvCU6ElBnYmIQfFRGtRZG9dC/BZKbkRaLiAmgM5FGJdPVV3ed2pahNlnmMFjyDDPzfiukS9Ay9KWZXSdRuwmMYlZxM4Zg+dEVD8SYmZGNxsRwhaYs8FdvdgpciQnaq2FB1DXU5T1FE0zRddRciidSDdACIAKHp2ijoWPUrQI7PFBJO1ZN8QhhAgRFIJkhE2Buulw48YIm9enuHJliK2tMZaXb0UQCnXrsDWeYrg1wh2330pzgrSF4iFF3xMx+zdfD+s8xtMpbmyNcPXa1ej4OgFLUvPyUpAogxCza0YdH7rmDh7GxGeKEHDwEMFCuBoiSEgvENABoQPQECdKsDKugIrQPQgyhoSQKEKYXWfBpHTAwSAEgS5K0XofE4wAhOhN74WCi27u1vrk6G5t7LbZhrwnmPPgiUvDkLvAHDQCxsU0jf7zQHKHJ76Yj2Z5oOtVCFLCi/dbP5HIk4XtBo/z/v7RJRavpvLP3+v/PO/ld7P15lXI/rrm7dPNXq7z1nWzfZv3eb+D8b+zvf4y877T34+8yp53HvrnuN8B2qlimn+HK8N96U0e3LXg6nY+uHOxtLSE5eVlbG1tbSP+Mpm4ruvEV1pbW0tBKAfdHMQDwHe+851t8B1eBwd587pI+bnsd8b638lVrAAKPJmDwkFpP2jlwVwU4KXQN67Wf+Mb30BVVbjzzjtfcs6rqsIjjzyCsizxrW99axs861vf+laCSe3ZsydV3KfTKdbX1xNZOt8uJ1Z5wsXSrjn0iY8hVynrB9x5wriyskLcwlgsWl1dxd133528OH7sx34M+/fvx+HDh3H69GmcPXsW586dw1133YWjR4+mfTt58mS6JpzgcRLLwTn/3FdomjffbqbmxoOvcf+50L8f53UGcy7HvGs8r6gwb8x7Zrza5+dO6/tRjVe1B0QglSg0udcWkoM/hyZWn203I/cy0ZDJwaSu48DeCy7ilz27BAPUAZAycRGIXGkgtYYxCyhVgUIbaKMgVYAuDGG+pSbdIN8iuCkQSEVJyRLOt+hsja65iuBaSF9HXLKAEwuArACzjAAKtjsX0HU0YdquhvcuatprFMag0A5KAZUJKEsijQMWUjgY1QEwCEHB+ZmEpPMdBRhSA1IBEmjbBl3HE7uDd5aw2EpDF1WEeAQ0EyLnEibdUcArFaQk07+iNDBaYaEqURUFyqKACh1CsHDdGBCUADgzQOsA33QodICWCpVBhK4ZFJWKEC0OujyCncL6AAQZg68YPDuH0DTJyK0qFuGFh0WHzReex3jrKi6+8CzaljT7pQK0EnDOJn8GEQK8s2jqOgbrQFNbSCVhjI7Bc0hzyVqBLgZyzIegz+kGFFG2NQRKAJ2jc9+1Lbz30EpFN2c2CCS4ktaGnKdF9ClQCqSk5dFMp5E746AFeYhQXy5PbGbBMlyU5gU7OVBA6SL5mLxA6F6YTMbEMdI6Ql0UdUEEu4J7OCfgvKU5oTSMKWJS5tF1XayYE/OAOCsWbCppigoBAVdHNZ67dAVr332OhK8gsefWEkVZIQiFF69cQ9O2+H8O/higTEL3BAEISXwK6jRSsuu8Q920mNYN1r//fVy/PsS/vPACmNtDXakASAETVbFEOmOg7qak4NkH4tmIroPyCqZQ0PAIwkG6DsLzdiW8FIBcQhACVkjIIGOVnvxXgBYONXVOlUr8oOBuIIQGwk8wUNSB89F528GTdLOUkHqJ/phdEHKAIDScF8T3kBqtxYxMbX2aX9Y58qOI0L0udjasdaQqFxOtIIjLsTWdQtZUYKD1eOowKYOy8lHCWUPolP/OHZyoueg873bobvywR/6yzQPVeS//PgwAwEte1Px7Xjf/zQHJzboV/UC5D0nKx06JRx5g5FX8/Hj768m/y5KiDN3o69XzseQQjf5+9smnXH3kQD8no/OfjY2NFJjljtk5VIj/zdtiuE4eaAMzpZ8zZ85sw7pzwMfb+eu//mt84QtfwOc+9zkcPHjwJXK8LG966NAhbGxs4I/+6I/wjne8I3ksMJl9aWkJTz/9ND7ykY9g3759+MM//MN0fvbu3YsTJ05Aa/J2ePbZZ/Hud787EcX5uHJiK1ek+fO8uru6uprc03n7OdH6yJEj+NrXvpaCcp7Lx48fT4GxtQRfOnDgQCJqP/nkk/j4xz+OP//zP8fhw4dx/vz5FKQDREJ+9tlncffdd+PUqVOpQ5PPrdFohDe/+c247bbb8JWvfGWuQd7Vq1fx8MMP40//9E/xxBNP4Fd/9Vdx5513Yu/evUnqlyFqw+iRwvPq8OHDeOihh5LEaq5+xHNqc3Mzkcw/9alPpXl0/vx5DIfDNH/KskyStidOnEjb5HnA18Fai89+9rP4+te/jt/5nd9J62NIWi5kwB2MnIidJzzHjx8HsL27l0PPcmO8/rntJ5WcOOfzOf89f5//zcnY2bNnUxeD718+zzmcMH/m9LkPO33Wfx7kx9p/juVJSd45yZ8f/f34QY1XtYVCKRgNwE7gWoexa6NJGxK+F94huA7OkeQqVb4dtIwcDBVlZ6WAk5Gcq2cYekJHCQjpAEjASTgPhE4idBKNJEnGECxMUWFxaQ+WV/aiqJYoqLM1fLsFCAuEABtmD+POtkRsdR4uJhZBdLRNTdV/HwSalqqR1lGlUymF0pQoC4XSKAjfAKGDazsEuYQg6btdACaeK5EdnJeYoeBjICACAtnYJfKlKkooYyhAjOT1umliYkEkTi2LGHBEN99oNFYWJYzRUII6NYTJD1T1DAK+XIZANHNrbpAEaXAwuoCSM4KpkD4Fe0oaOLSEZRcdhLBAsLDdFF1Xw9oaznVECo6JhTeLUcnG4vKLz2O0tYXJZEw4+RAJyOxmnCrqBAMjGU8O1GXkQxBfhIizHGCFaIbmott6FyvHLlaIo+4ukFSEWJaYW2NM3u46SzXsDGYXgs8IsJyg+Ki6KrclMyRVGqVxIeB8IFiVDwSlEpmMLleehYA2BQpJ/I6iXEBVVTTvJXXxiOPCx0GQPqrsg6A/IRrdeSaDR1hU8MSHiNKzHJBqY+ACEfebjpMO6kp4b9F0Hu5Gi7ZtMB5PoERAqWedGYLjSSBIdF2HzgVM6gZb4wlG4zHGoxvouhaDqkTXSVitUFblDB4Uz7e3xGugDhQlFDbJFgn4tqX7sPGRY8OQSzLKjNILEeIUhRSixLP3Hcm7xi6XFCRla8oSpiih9J5YzPDwiNKxhs6RFlEyG4AQJYQsSUo4JubwgNSUGBPMyiCEkq53nO8uJhPsrdO0bexOWVhrYjeJ22ghIp3obyVAitBxjgXhYX0HDwcJlYkRiESsF3Eus0pVkHQ+qEjDLeCZc/sPc+Qvu5u9wOZVjm9W2b9Z8N4nP+6UfOy0vnnbzn+fV0/7vIN5HYN8n/Jt8LiZslR/3+cFD/2Kap+fwb/PeQZ9P4f19fVtCUX//OV8gHx/+HzmsB0OWjgI5uo2B+gcpDOchjHza2tryUgNIG+E/fv34+mnn8YnP/lJXLp0Cf/+3/97rKys4POf/zweeOCBlJCwSZuUEisrKzh//jy0nik+cSX63LlzeOaZZ/DOd74zVZg5yWL8PRN9h8MhTp8+jYMHD+Lo0aPY2NgAgASt4vM4jC7YPB+YTwEgBfLD4RAHDx7Eu9/97rTd/HrwOHv2LO6///5t1y1PGLUmLsxXvvIVXLlyBUtLS7jvvvvw1FNPpXX8+I//eEr83va2t+Gpp57C3r17cerUKXz+85/HcDjEgw8+iLqu8b3vfS/J0QLAE088gTe+8Y344z/+Yxw8eBBnz55Nc4Wv8YEDB7C2toZz585tm7vnzp1L566qKjz00EMJasZmgseOHdvGF+HE8rWvfS2OHDmybU5yYsXL54kCQ8Pm3X88z3KxgHzkKmz9+4nn77yOTf6MynlE+T1XVVXq+PSD97yjwvOx3yXMx7wOybykZKfnY77fN/v+D2O8qq1pJaCFR9dN4LoGdT2ClIDWBFUiArcHfIPgWoQo6wg4KEEwG6PYpEzCCZdMyZQiFZ+IIoi45ihD6h1c8OgyzHHbTVFVCwhuShr5RsJ2Ab6bwNZbEKJFCA62a2FtgLOAhYQLAq0PBIECiBiKACEJmhGCQN05qsxLEavJEmWpURmJykjYuoP3DZydwmoNpQo4V6JzwLSVmDakFmWDgFAEPVJSRnInKVv5QOwTIQRMYcgRG0DbtLHL0VAFUgClKWCUQlloFIWG1hJFaVBVJUlbKkHwmG5CgXjsaFDEIiF8hDWFMQI8gggwWpISlzQAPLxgp2VSJkIQxN8OFiK0gJ/CtdfQTm+grofwvoV3LVgpqzUL6FxA0zpcvXIJo60JmqmFEIZ8NaKULUPfmOgf+LrHsn8Q0cG5s7GjFRK4P0QIkLMd2qaZwYEQUiJAxn8CXedSJRfxPBPnISToSgCpi4kY2AcX2QXM12CCNlhilAJd5zykJJ6J0kTsdmwmAk/SrVF4gAcdMylAkWeJQlFWUa42woVEiC7jFFizrwt387Zh7D0l4wDoO54SBQYAUgeEOArOB3TOo3PU+VAxgXHewntgOu3Q1Arj8QSFUXSPguBPLpIrAkgytmk7XN8a4cbWFm5E6JPzDlVFSa+1CkoTrNA7HxW/HFq+p+P19DER4wzIRjiXdx3drz7ChkCciM4JOC/QWTrfCDJCo0j9iuVdEQKklKiKBVSLEtVCgWKwBBW7UloQybpQHkoBhQYl0CEAnooWCBLetZmENhnpKWUAoSBVSWT7AJioCtdZi6LrYK0jad8IeXPOEBfDEbk8uNhdEoBQVGhRQmSeE4GuSyA5BFbYi3lp4ryQwZ9Iz+UAQAURhfpE4r79KEb/5d8ffchI//O8kv9yL9j+uvLf55W9/nbmfdavEubVxzxIyAP7/j7y530i6csFBvNGDrOZ1z25WeIBzCq7eTeE5TQvXryYqsL95KIfiOXnh4+Lg04O4hnac/jw4WROx+vgJCX3gMhhQjz4308++WQi+zI85sMf/jBOnDiBlZUVrK2t4YUXXsDVq1fxq7/6q7jnnnuSQ3i+7eFwiHPnzuHpp5/Gz//8z6fj4cQml/odRl+Kv//7v4fWGidPnkzkZQ50c2ner33ta3j961+P1dXVbWaAvOxoNErwn7yjkQeWq6ur+NjHPvaSqvbS0lJKfjjJOHfuXFJ3OnXqFE6ePInNzc3UfaqqKm3rd3/3d7GxsYEHHngAX/nKV/Dss8/i1KlTAIBLly4l+d59+/bh+eefB0BJwurqKr7zne9gMBhgdXU1EahXV1dx7tw5XLhwAQcOHEi+UWtra9jc3MR0OsXdd9+NEydOpM4Ey9WyQR1ff+4CfPSjH93W7WLVp1xhK78P2Bl93j3CXQ5OiPJkF0DiEeWEfB7zigX5fO/fX8zX4u/k6lT5/d7vjOTHn69vp2LGzYor/WdPPxHqb3encbPf/Z+OV5VYNMPnMG7HADoIEVAWEpARy+sFYZuNoZd1ULFaR78XscImCcAPayN0wHvY6FcBRJM3QbruUmpAGnBAByBW5IFKVygKjYHo4MYvYNxcxdbWFG3boGkmUV5foax2oSwWUC4PgLaBcBa+tZRIBEkwhyDRdQz7UNi9TKRsowUK00JJC6Ouw9kGtmkwutHBOoVgduGGNfDCEmFbSGilYKoKRkRpTOYGeAcPR6o1UsBIA0S331TdFkC1OIAUEnskyX9KESDQQAkPIz20biElYEwHJQnW1U6JlwE1AEQBiAJCkJuwkgLWOnjr0OnXIPgOwTfwXkMFASMsgp8C7gaaZgLXdajrCZp6jKYZw9oJJYchYDqdoK2n6Lppgt90EcpRtw6282hai6Z2cDbAdgJSdtDaYrR1HePRMrzt4BAgQyTjx2osJwnoQCZfAKgHQUFbZN/OiKlCRJNCIDlqS53mSjGIhmLeobMNwW0QkjO1jOpkxWAAANF9nLoASSkq+CiDjBlELADOMymcoCxUgZ45HntnKYnQKnYiBIwmWJ8xJnlSKKUBKWGdJSRP3HfJUCg2esw6GV3XgqvRKq5bIAkCx+CTuAZt16Ke1rhx7TpG10fwnkQGjC5hI6cjCMBbBxECXrx8Bd41kH4BRTmAkAbTbkpwJR8wGk1IXjme16oqycDNOyTzPk+EZWsdutDCWjqfjqWOPRJfw2NWKODuE8k2h7ish+0cxtMGTUscJ61Juz4ERP8KhyAEeURojbZtEEKAUTImhQGqWoQuKpSLu1GWAxhdwHuPwhgsLg6wvLwIYwyc04DUEFJDGgUhNEEglaEEQDvq7mmbnkeJyhAIWqgMPQPIvJPds1mpi+YXqaF5NF2b1uEcc3MCGSMKAa0ClKLCjdGK4KO2RttM0DYTGEP3UFEWkAhwIsAoAQgFIQvU4YffseiPfvueRw4nyIPanToLeQcgr5Dn28iXzyvswEwl5WYv8n6iwtvsS23y7/IqJDDfuC4PMvoBwTzIw80SkD5Zul/5nHdO833IOxkrKyt48sknobXepuDEAfba2hoOHz6cZFE5APzd3/1dAMBDDz0EAEle9vz58/jQhz6ERx55BPfff39az3e+8x289a1vTUE0MOsAcCcIABYXF1N1+9ChQ7h8+TKeffZZvO9970NZlvj0pz+Nleiw/fGPfxyj0Qh33XUX7r777pRQcED58MMPp4r+T/7kT+KRRx7ZpnZ18ODB5LXAgeHBgwdhrcXhw4dTYN8PILXW+NjHPobRaJRUiQ4dOpTUrhhOtba2lhIL5j7wXOHkiveXr2l+LkajETY2NrC5uYmDBw/i2LFj+OxnP5vmytLSEs6fP4/nnnsOBw4cSFAnhmcBpBq1f/9+/Mqv/AquXbuGuq6xurqK9773vThz5gw2Nzfxh3/4h0nC9xOf+AQ+85nP4Gd/9mfxhS98AQB1Xw4dOpS6W/v3708QNICI93xfX7hwAY899hgefPDBxHfhxI07Ntx1YBJ3P7nk+4zhYrwdnq/sg3L8+PF03nLlKvbL4GvI82VjYwN/+qd/ikOHDuHYsWM4ePBg6lDw9/OuQr/7kN+jeZevf5/378V+l5KPqd9x6SvE5SPfTs71ybfBySrvc15QyZ89PA/nKUb9a49XtWalJcjzjYIdqUVGSeRgkH4WEknRZkYEpfo2VZlF8gJgp1wg4rqFoMRAFzBmgABJ1UzbUHURHlJqSFkgiAKdkyBxVA2oACosEjZbqEUEWcGFKirZaARBkBABBaVKBCgIw3KqGlVZQKsALT2UdNFVmuRn2w6wTsEGDcAQVpuFJkWU44xVcImZtj7BO0I0xJKkaqXkNqgDGaRpSCFgJGJi4YEgY6ChE/RMCFKEcj6gs9FcTkSSu9BArNxzwkIWxCUFHUICokUILdp6CNeN4NohJuMR2rZBXU/QdjXBnlyUoPUCbd1Q4Bf9B4CAznpY61E3hDu3HanseI+oye8hhEVnO3SWnMSFz2AdHLQzzCedj0iijtCf3N0dkFCqIC8KSX4ApJo0SyzYwNB7h2k9Rte16JoatuvQdS0Fb1HxiZMVhqxtI75y50HMyMdMZqbg0RPjQhJUiojf24nPQoqk6kQ3c0wWwJAmB5ZbTi7icfCuBG6AiFkCEeIC2yVGXbyHiMPUdR2ahq6bwGw/uDODwFVxhes3RhBwCHYKUw4gpcaki3KyEGhq4gtwR4I6YwLcixOSqMoiwrFYIlVJCR85Dz4qJNFVjERm7+GlhAwhqoEFeBnI8V54aK9gQYG5MiUl4iFAOkqOIEV0O5ckVRsCQYySvG0JCEMiDV4ASUo6QDQO0jgUju4nUH0EytF10wropICUAVrH49Wc0MkIR8o6A4F4OlQhoedfkAHeAV74yF1ySAIRca5IJsWLWDxRgsQoJMCSzyEEBOcITkWTBwEetrERigeS0RZUIBHh/w4fi343gP/uV8p3eknno/9ivlllb6ffv5p1v5J1zeuA9AnT/zvHOS8I2Wlf+pwWXr4flOQKNZwIcYU951TkyQkHynlgc/r06ZQgnD17Ft/85jfRNE3yMfjc5z4H5xz27t27rePDkJetrS1cuXIlrY/5C4zDZ1jMs88+mwJUDoxuv/32ZI6Xr5chV6urq6kaf9ttt2FpaQkbGxvbKtP9ajR/Pi/4y0nwnID14VG8XJ449pXI8iSb/818jNzpm4+Vl+MgmTs/OSyHB1f0tdbYt29fCtJHoxGuXLnykk4WJ5h79+7FgQMH8IlPfCJdh9tvvx2XLl1KyWEutZqTuBmuxefl9ttvT8v2uU/5HNZab1NZ4v0a9ozmePB56kP+8mIFd4vya8DzmOVz87nMUK98DvXvzfy6959XO415XYN5P88b/bk4rwDCn/fVp17tfv2gx6tKLHbtXkFnDXxoqFKIaHpmPUFQhEDnOPClFyuZR80w9ICHiC9HH6u/+euPAg4BSINqYTeWd90KrRcRvEc92UIzvg7bTCF1CagSHZbQ+QGELFDuHqAUBCEQigJr5zS6LmDUeFhXUXAqfcKQm0EJpTW0iaZ1SsIIkAuxbWA7B+sE6gZo6gJ1PYATIZI9yeRPKg0lCJculYLUFFClcMNT54YtrJSMFVbDBnkaRpuYOACABfyUYFrB0hmRGsJUkXQqULchkkYtrCMfEC1LFKpEoQ0ihiORaInoPQCCh/AlhL2I0F7FjSvfQj26gfH1G7h6/RrqtkUXITXUFYiBpQNs6+EsBWUhkoCpeh3QdkDwCggqqeOw6Z0QVGnvugadbQjKIaJBnaBITggfoT0hcnEkrSsAXkqq/nobnaEVysECdt9yK3bt3oPdu29NXQsO1IiHQ4nF9eEVjMcjXNm8hMlkjDC+EeV/Y7LiXeQDzJJa+O1GfAGA0jpK0dLoHFXLpZJQQsNEIjZ7DIDnhCSHZ6Vm36cqfazYA2D3bqOLxDfic+hsSNsmtSzaowSNCgR1C86hbicIwWNhYQFd16JpG4wnE0zrOiU2piAvFQLoBxRFiaIo8dwLl3HxRaDULnZYFNqYsCqlI4RLY2l5CSqb48yd4S6Dd2RuWRYU5LNZYYhZLnd+KDaOallOx+PloxNwwsBBYdEbTJuAzgGiKGm34WEgo+pa5BrwmQnxH4I7QPH5w2Z+ACx7Vwhg3AbU1sZuqYOAhezYnZ2eE+BigBQw3GmLzt2cBLNCHnecBChJCIEMExE8bPBouwbWkvQwm+spVdC+hYCyNDBGQQhS2PO2RcuauDYAQcLoAYAGrmsxuT5Mia8sliGkg9AgUYwf0ciDPQApQOLfAZhbFZy3nv5LM5et7b98uRLJMJJ8e/O2kQcm+cjhWDnHIg8cebl+opAfay6ZmgecHMjn6jb9bgZ3EPIuxLxuRD8I4s/zIIudhQ8fPpyCrZMnT6blGNbCQeehQ4dSQP/oo4/i8uXLGA6HeMtb3oLhcIj3ve99eMtb3oKHHnoodTH4eM+dO4e/+7u/AwD88i//cpKOZULvuXPnUseAx759+/Doo49i//79ePe73w2tiQz8O7/zOxiNRvjrv/5r3HvvvThw4ADe97734ezZs/j85z+fYDCcOCwtLeG9730vrLVJitRaiyeffDLBo6qqwuLiIn79138dWusEheKkJE8Actx9VVV4+OGHXzIXebvML+DAma8jw5rYhI07FLnfyPr6eoINsfFaPvcZKsTr4U4DJ23csVhaWsI73vEODAYDWGvxxS9+Ef/0T/+UOkxPP/106pbwMa+srOA3fuM3UNc1Tp48iVOnTqGqKjz++ONYW1vDqVOnsLGxkbpz/OfcuXNYX1/HoUOHsH//fvz6r//6tsp//xxyAsudIU4yee4//fTT2L9/f5Kgzec3fydfJ3dD+ByxOALPdU6eVldX8aEPfQhPPvkkPv/5z+O5557DnXfeiY9+9KOpG9LvRO5U3Z8X5Of3bp4w5teOl82Piz/Lf+4/u/JzkJ/7fmKRj7yoMe/5+IPsVPB4VVuQC3uwoG8FgiXSZCDtfO/crNIsWIqT8N1kuKXTyx+RPMyk2zzgJiIq/SyVgSkGUGYBNij44GC1gRsswpkOQhkEpRFMBWkI1hJkAS+IyBhDVASpIArAmADlbfwUCaKilaYqpQM626ANDh1aCNcCboJ2OqaL5DwFtNpAD24BZAErVFTLIaM+IvQqAqYwpEtKaEnO4ATxClCCAhSlZCJjChkghSUIjAesV1EGk0zcqNtSE7k5iKi9H+ARiNAtAB8s2tah6ygQJIgVVTl9cICdAnYK39xAs/V9dNNNjG/8C7qWZGzHTYOu60jBCwIBcsZ1sYDrSEWpsz4eq8Hiwh5UgyXceitVkQZlhaaeom1bXL9xHXVdo6mn8F5gOm2wtbWFhYUBqrIkqBsEVVoRScshJH+GFBzyXFIB5WAAUwyw+5bXoBosoqwWIFUBFwLapkUyrQMFddpoDBZ3oawWsLC4iPFoCzeuX8PW1rVIRG+IRB+5GABih8nHoJilP0XqLgAi8YREbB3kSjxKqVTFngX/23+m381I4oJhcfCItXxQ8pBda+liRZ+7JwGsXhW8hbMtvCMid9u2GG2NsXlliPGE5GyVopf1wsICJSlSUbJgCiitcW00gQRB7oqCpZyLxInRkuBdne1iYhBiMExJxWAwQFmWsXNEp8AUhvhUlvgUcpvULxJ/w7vYAwuzLo+qlhCEROsFWufhAiBUSYRyKOjosSIkEehDvHdC5GVxNyS4WduHcg6RVOoC+CJg1v3xISmXKa0JsiiROozUi0TiioTgktQin6vZ8y4KzUYom5D0AqFkS5JFiACMLgAgeq14dG2UJY4u6tzdK6SOn3VoJtdhuxptPUFRDmCKClovREinhlI/2o5FP9DN/95p+XnV/zxw5sCcl8+/21/XvBfovO/stJ5+5TD/mYOnXMGmfxycYOTBf76OXOkp/zuHRMxTsZl3PDspxfAyeUDLVeec85Dj0/vBzv3334/19fUUsE2nUyilcODAAYxGI/zGb/wGLl++jEuXLmE0GuErX/kKFhcXcfvtt2/bh8OHDyf4EJN+H330URw4cAB33HEHptNpSrr27t2Le+65JwVC99xzT6pysxoRw5H27t2bOA8HDx7E+fPnExSJXZ8feeSR1LngY2X40tmzZ3H48OGkDrWyspI6LdbapPTUr8D3z3Ne2e8rfwFIUCmtNU6fPr0tAa2qCufPn8fKygoOHjyIjY0NPPPMM9jY2MCBAwdw9OhRrK6uJrWp9fV1GGMSkf2xxx5L5+L06dMJ3rR792789E//dDou7gYxz4Z5IIcOHcJwOMSFCxdSsJ0T9DnB5gRtNBolCFk+lzkpypMQPld8/Zjjwl0GTloYwsTLaz2TnZ1Xnefv93/PylN8T/D+HDhwAA8++GA677n/RH6/5cH9PKL1zZ4b/SRk3r93+i5vP19+XseTl5vXxcn3If/+D3u8qsRCmAXoQQUZ2JMhOUtlfhYxMMg6FUrpWTkxKhQxaZthJogEXFZKouKmBqDgbIATHkEpoBhAaFIwElJBaBNNtAUgFcGmwCRGEEwpqq/IILcF/RQkIMqZWnQdqR05P4XwDYSboJlskQJRAJQpYcoBytJAqBKNl0BUuxKSEgtyBCccNcNBjNHkxi1lNM5DkuAEyDgtBAqEANLVby3hrl2QaLtoKGcdVWNB0CfaLki+NggiuUeTOKVLwr2HAG8bIlo31xDaEezkMsbD76OZXMF0eoPI0gForCXvEcJUEMOBYU1W0HWIOHmlNXSxgF27X4Pdu/fgwIHXYXFxEUuLi5hORmjqKTavbGJr6wZu3LgRuyfAdDqBVoKw4AoREkfJFSs2pW4H8ilCvJuyWkQ1WMKu3XugdJkM6Zz3aBqC6vgIC9KaeCZaG8iCiO5FUUIphbZr4INH29aJi4EIxQqZw7HWxPHxSGg98GSedeGwbb+1jkkd+znMSunUzcg4Q+neioHjDPI1WyYAEZ+vYldGxtWxhHMAvKekInaJnHWYTmtcG15H07SwzsMUEkaTkpgPgJQKpqggNSVC00kHERy09GidgtYSFd0hgCdXa5U6KQRjpHuOquMULJMQAZ8nNtHkzoaUxDvJjhwCiOphdL/K2PkrFxcRhEAXotdLCBBSIwiNgAKmXIZSBaDM7L4PzGuysNHjw0c/HfiQOhY+OqlvM8GLRo3e+VQcUUpDKEToXITZYcbf2NY5itdYgFW5OPkDIGZzhh3VWckJIaDQ1MlyQZDSlPfoOirCeHgIQWT9oIgP1DmLup7CdiRZLTWggoKQJqpXERfthz12qp7lQdm8F27/pcijXwnsv2D7lbl5+9APlPl7r2T/+9/pv7TzTkG/8sjHn1dteT3cqZiHq+6fv5vtbz54f26WjORdDO6GsMxqn4zNiQcHjxwM5rAhay2OHTuGuq7xjW98A0899RTW19fxnve8B0tLS7h8+TIGg0EKgPbu3ZtgTyxVmm+L19knOvM+cJUbQOIXVFWFS5cu4c4778RKNPbjY7p8+XIiJjMchgNGTgzX1tZSEM0dCCYM8/I3q/L2u0wAUiU+vwa5VPEzzzyD4XCIwWCQEgKWys2hTk3TbKte13WdOhVVVSWOyz/+4z+iruvkDcKFjrqucfTo0XTt2IF7c3MzwZw4gco5PEza5iSU58WFCxdSh4cTEt5vvo79+7nfqeN5n6+X51n/OTEvuJ53vnNYFEOi8qSEu1E8B/Kuwrznw04FjHzMC+h3mhs3e8bNW2e+3/OSkb6ow07rmtct+WGMV7W1tqvhEGLwDzKmirANE6EomquHsYJIyiSKIDXRsRkxEI/ogLS+4AOcUxQMw1EbQfgIZZAwVYUqrlNwwJIFMcH7iNknGFAIAa7rUmk0iOhf4Im7IIWH8C1c16KZjtCMhnDtFIWKYYoICbYwrWsIU0AVA+xZeA1MVaIoF6n7IESqOAsJKBn/FoRp17pI2HnvZzdL2zawzqFpGnSejbI4yKEAVCQoBydqiKTs6EIeFGxDgVftHASxyBGmI8B7SN9A+BG83cKVfzmHbjqEnVxF08aWX+eie7ZEZwW8V9GsjbgyXRvVkVxAAGVFK7fchte85g7cdddP4McOHMTq6m3YvXuFqtEMy4lBdN00mNRTPPfP38d0soVr164jeAt4i2owgADJCTOXwUcSd+4g7IKAjBCvpV2rMMUAdePgJiN6gEaCfNvW4EIxzQOFejKJXTOFwWABRle4fe+dEELhxo1r2BhPYCNMy2jqBjjuwEmJalABkLDOpw7FjKgc3bUjpt47BwdAVRWElOhikB8CSCZXkpQur0NrHXH6s0QzuC4SnDHriESoERXVCbfPyROCj9aO9LNMEESNa9eu48I//f8wmTZAJIUbY1ANBqgGiwgA2qZD3dSwrkNpSGrYKBm95UTqKiAANprC+ck0wtckbDy+EALGkwYhkNQry6O6KIVbmoI6Hkqjc1GGWkhmAcFZMg0UkrgOIgBuNERAixBGcH6MEFoEeEhZQKoBKvU6GL0HxtyKAI0QFLyghMu6NiYPAlDR+M5TNzOwJ0tMSJ2j5Na5LgktOBtiIukgQc+LKEqLoBTI84bFF2IKGDsfAvxdHrOTyFKxdA2BejJG17aQgaSijdEwg4Lm4SJ3cfjcO9T1FNNpi8l4DNcaCBgUgxLSaAShYJsJjFYYlAYhTF/N4/1fbfSDg/zz/LP877y6OC+Y5oCzHzj3x04v+Zf7d//7+WDVmj4kiQMv/t5OiRMHKfOSn50cePNl8q5EXg3OIQ+5/0K/mqm1xtGjR9N55HHu3DlYa3Ho0KEEtWFSLVeR8+CGFZmstbj77rvTNtgI7X/9r/+FlZUVvPnNb04V6uPHjyf51be//e2477778OEPfzitm4m+DAli/gIfKycY7Gtx8eJFnDhxIn2nrmtcuHAhHUtVVThx4gRGoxE++clPAsA2yBcnNZubm2lbv/3bv43HHnsMZ8+exUMPPYT19XV88YtfxDe+8Q0sLy+ngBdAIu/WdZ2gQEePHt1GSub9sNYmpaOcU2CtxZkzZ/Dd734X586d23Y8AHU22N2bu0QbGxv42Mc+hosXL+Jd73pXSoo4eH7Pe94Da4lT96Y3vQkbGxv4/ve/j4ceeghHjx7FuXPntgXaq6urOHnyJP77f//veM973pPmxJ/8yZ8kaNOFCxfSXMgD8AMHDiRp4Bw6xHOPr30+5/n3nFzyPONrwl0Gnmu5V0p+3/M5zbsXnITx+WNYHCcYAJLHRFVVCYLHHAs+Bj43fRWweQlBXkjIu4X950c/qbhZEpJ/Z14yMu9ZerPuRn+5/vPzB5lsvKo1M0aaHLRFqkZK7h5EAmta3pOdm2N4SpKLRQwGfTIy48TCc6tBRHiIlBCKgnWjSflHxYomInGS10t+wT7bDkvIMlyBPCxs10D4FgIdjLQIvoNvawhfQ4ACO6kUlDEwUkEaD6gKqqigywWYYgHaFBk0IsJ1RCRuRrIl8w+cp4AEoADKOgtnidBM+HJH5yHbX4DhWpRQSMGQq1j9VZzQIMnERnkisE5Q8DW66WWoMEKwY7TTG2imI9STSfR5CGg6kr71IUSyNSkdcUDJAVYAYIoSRTnAnXe+Dnv3/hvceeePYc+eW7G4sAgJET0nHLgKTeZ9AkJprK6+BuNxhasvNgge6NomBrAKiC7jNGf4+s1gHFIqaEPbDojQsK6Gi1Kfno3JujZxraWiyrB3dLNx0lOUJaQUqKoBvLNYWFiGdxZdO8m6BshjwcgJmYH4laJkwIWQBZYidVa4i5d6DhHeBQBBRmdxIZhtkHU0QBlFILWmwDgZOdsOQQnjHOPuBKhbAU52QoB1DcaTKW7cGCVoDzAL4roIr+s68msQwsNUAxilUGgNtoxXSlM3xNs0h2dSDSLNUxnnHokJ2CSfy5CurrNoQ4B3U9RNAx8c+cMUBkVZkPoVAlzo4vkIgGsR0MEHm6SgAQHhHIStIcZXobsORdsgQMMHKmB479HZOnYvQD4coIRLqZLMA/UAgIICPbtCIPf4oBV80FQAic8NiQ4CDs7WACSEVvAgfw/PkT+PeNjca+JnJk0D4kyIKMAgBaAVEBQ50nt4OEtdIEToHT1XVIJoCZCy16AaAEUFIQSMUdAK0DKg1B5KBRTKw4YWP4pxs5dcv7uw0/dfzdipy9AP9F9uey/3st/pO/O6JrxMHnTMG3kS1V9HXu3kv/Pg7eVG3p3owz44uAReylVhLgLj5Dko4wC/X9m+ePEiLl++nKr+t956K+68885koDccDrGxsYGyLFGWZQq8tdYp2ORAFNjOW8iDLA6+Gc7ESYnWOikXceDIxGNWM+Ljz7fBsB1eV16hXlxcxBvf+MZtcJi8qr+2toann346JRZ5kjdvLnAHhINphldVVYWDBw8mBaN53TdeJydx//k//2cAwG/91m+lc8TXBQDe8IY3pOM+dOhQSia3trZSJ4XPozFm237mRPSc68HnOU8E+x2EnKvA+57P3zy4zRMDXlcuS5yvIyex82f9c5Mvn495UMx8XvXPMy+zU7cgTybmFU/ysVOikZ+znfb9ZgWZmy33cs/OH1bn4lVuhQJ7nfETRKaEsw3cEUKUmPTJa4CrwMEHqthH11qC+ACAIGiRFNBaQUsiMysJaC1QGnImVspA6BkJ1sftCLioRuRnkpWO1Imc87BNA9s1aEZD+PYGgptgeYHI1DJ2GJQWcB6QxqBa2gUKeiUABVMuwQx2AcUyglAUYAmOPnWCfIRAGv7JgTervlub+ysg5gNM/qTkKcSqplLRkVmoGRTDxYo82J05RBI0tsFMtOjgujGmozWEUAOuhq1HqKc1ro9beCvgHdC1gswAvaN8KETn6BAQ0hWl67awuIxbbrkN99xzDHv3/hu89rWvBbxFcA6T0VZywRaxw6KNgVCUBN5+x7/BdLIb9WgLItRopjW08FDKQJmKa7mJ+J1M4oSAUgXKcgmDxV1oWwfrGvK5sDFB65rE9eEo3RSGpH+1AYOqmqbGYDAAwjIWBgsojMFotAVnW0zHN2ZeFT5emwA466IruIjtZYGqKhOEhdFQybVbiOi94aEigRwAyY0iAJ4MDpVA2g7L54Kx+XHjIXpJkEkbOVh718VkJSZgnmAxwdvIsyD4z7ipcf36DQyH14lvoqkTOJ1O4X1AHd3IgYCFhRKDyqAySyiNRlkUABcKECF2jhP4CFsSkgQM4twwuoBUmhLklruEjmRSpcCkbTGd1rixRTAF5yyqSmNlZRf27FnBYGkBAgJNS0mHDx5eAB4O1msgdmoAj+AsnOtwo74IJV+EKSjhdEFG7pZF143hrYO3dH6EkFDaYGlhNwbVEnbveg2kGgBqiZ4nUkOYEkIWCKKKyXoAYAkIF2o0o+v0DDQGTmi4oNDGZ1cqunCSIWbQKJ6TlAA3UMIBElCFQmEAJRTaaQPbeXRtIKwkgM4FSKmhozyuDwEKAqZawPLicnwOByhpoWULJToUqoMI5O3RhJvDbH6QY6eXYL/Clr/45wUi+ciDkXwb/LubvVRv9oLvf75TcJh3FOZ9b6dgsq+rnx9fDgXp70M/KeGAn6vmvA8M6+mfQ8ayD4dDHDly5CXnKCfJ5kEeQ4mm0ykGgwGOHj2aoCW8D1yJX1pawoULF2CtxUMPPZTw+QyhqaoKTz/9NM6dO4djx47h9a9/PQAkGduzZ89ug6jUdY3z589vgyblmPe9e/fi05/+dHLfZlfn8XiceBWf+tSnkozpiRMncPLkyXRsnERYa/HYY4+ldbNMK/sdvP71r8fb3/52rKysbFOlYn7CF7/4RZw+fRrPP/88PvCBD2y7Bv35wOfs9OnTqcvwrne9CyvREZ3nBBvy8edc5ef1HTx4EE888cS2+cXk5a2trbQcmwT2OQLj8Rhra2vp+J988kmsrKzg937v93D69GkopVKVf2NjA+fPn0+BPq+PCdT5vGEI2/79+7G2trYt6M4r/5w8DaOHCM//fDApnSFunNxwIsydiLwTwvdAbrbH5zTvPvD55Punf514OzlkjZfhn3OFs5zg3b+v+/uRbyu/v/tjp+cSH2ueiOWf7ZQw7NS92Gkb/1rjVSUWVVGgGpQJhiNiJZADaR+5CuwVwMG0zzoI1JWIyQCTbDU7zEYJVoYEaE0JhopBmwSAqOLT+VRQZhdiH9hUL5I4fYC3DrZt0LUNmslVeN9AYAqtO0hNBlzek3O2NgMy0TIDCFPCqgEgCWIghIKXGm2nSPY2BvNMxJasnhToHJCMbqxSpyo2AMgYNwgkWdMAwEWzvNgJUZocqVWUrU31bxXZqVIgCAr+hY9k9cBylh6Tq2toti7i6r+sobUWXeewdX0Lbdehbhy8i92RRAOgIDkIrq7P3JulUigHi/i3//bH8doDB/FvX3sAC4MFTMcj2K6B7zq0dU3dmeBjZ0XCFOTAHBBQlBW8c7hl9ypGWy9iOh5BooPSGsZ2EDFJBWYyxNZTcD1YWIALAXXdYjyakHRt28DaDq6jIJOJ30pRkuZcN5vkWidnbRmx6oh8il27b8FksoXx+AYgHNh9m+FK1nbJ84Kul4CzNs3nbUTq4OGdQ9s0iX/BSQl5ugkgOMBbOCWhUncvIDiGVM227R1B7JTWJONru8jhCRB+dk/ZllTaEDxaa1HXLZ7953/BCxdfwHg6hWeXeW/RdRaj0Rg+XqfCKHgrEZyijMFE+V8pU9Wcj5sTWK0UnAeYE02V/Q7O2qhoxZ95jMcW1jqM6xZd59B2RDyWKqBcUFCFh0ONSU1qYR4hzmsAsSOoRQFOp5ObdABEJL544WLHS8J3As4CHRRs8HCehJTgHWQ02pzUI4wmQ2hVoSiWsbS8F0VJgboU9LwJkuCcJKJgEHwBEVSsGkxJ4UtpgnEC8EJAxERNxKSCGlB8jwcERclf202JiI0BFUAcQK6KLkI3HYQEBgNyAefOMODhnYyf0aPb+w5tM4YXLSQsGt8kztjL4fd/kCN/Kfcrgf0XHFc7eeQvw361ct73+XP+jLkDORG5XynMR//3+b4CSLCZ3M9ip6phvj6G2szbx/xc5IFLv9uT7xcHVX3/Dv5+Xu3VeuZXwR2A/DuceHCAw9XmD3zgA0kxiseFCxdw8eJFrK+v4/Tp06jrGv/hP/wHnD17Fn/913+Nr371qwCoUv72t78dBw4cSEEcw1IOHTqE48ePJ47FxsZGqtznMDdrCR71oQ99CF/96lfxC7/wC7j77rtx7NixlGScOHECzz33HD796U8n4zeAoF2f+tSn8MILL+D222/HO9/5zhSczrsOHCTnsBb2pODPNjY2cPr06W18AlaHOn78+LZzuxIdwIfDIY4ePZquHycTHJzPmz85x4CXz+Fgq6urKMsSP/3TP42vf/3rAIC/+Iu/wNve9ja86U1vwlvf+taUEP7VX/0VxuMxqqpK1+bP/uzPtvEpnnzySXzpS19Cf9x2223oug7D4TApewHkB/L+979/W2Cbdzc4YWABgDy5yCGEfXI2MDOwY4ic1hrvfe97sXfv3pf4SvCzIleG4nXM6+Tlv+ft9wsU/PscrtXvpvCyeSKUc2HmGfvl6+Z9n/ccmxfgz1vPTnyrV9IZ7S+/0zb+tcarWrPSimQo04tORKxyhNN4Io3mSQUHlp6hSc5HImqIBWkRk4moeR9lLI0xMFpBK0VciIQjJ8deH/HfPsImaB9y1Z2UdiC4Dq6tyZk6tDDKQWkJKYoIMxAIQSGICl4WUHoRQRawKIHoCSGjyhIiZCvAUXdAAAgSJL+LCMNgQ7xIHYgVSMb+C8gY3M7gPkT4FCi0gdQkz8nyllwFDSBXYIGojQ8icqrUKRHwsAiuRb11GePhi9gaXkPtAloL1OOWSOo2JJK3ZIMEgUR4B+9nrKIrrVENFnHLravYe8c+LC0tQ0mJejqGbWpywp5O4/kHdSmkSpA08vKgILGsBhhtSbSdhZIBxlmIECC1IQ8OKITIl3HWI0QZY+c8nGswraeJE2G7jrgLPvoZhABjSNY1weOcQ1mWMMZAWw2rKCnpjCEoTlmiLCuYooK1k6gqFKFI8XoC1EXjANvHbkV+3cBzPSaWiJ/LQImMQ6DLHQi7pnwk4wB0fQXPFZF4S4TCirLFeWskIAWxs8SC1ITqusVoMsXmlau4sTUivoxgJTGPECxd96hqBaNmsEG+flHpjJJZH+E4MiWfQirqAkUlJ8TzTOloiIlzNIFrWtjOYdp29KwQ5H+jjYApBaQOCOii6hqoExlvlMTzUApEWJepGyaEoswmeATf0H4IQQm6CmSsqeh8Cydjh8ehi1yF1k6hVYmqa1AUC/HZQ74oCh4hnn8HCXiJ4BVCUCT/7DsI5QCQsSAR6EVM7rjPx/ODfyb/HSFCmlNknMcJqKImh3BgKKWK14FSHHbsZu5VLKwED2sJ1kmdikhA9x5N86OVm83Hy708573kckhCvo55ycG8777c2GmZ/PP+PvC+9vdhJ1hEHrTyd3eCSPSPb17Hhivj/e/NSxx4+TwgyfeHg6n8WNhdmQNxa20iC1++fBkbGxuYTqcYDod47rnn8E//9E9pX5qmmXucXDk/dOhQCq5zDH2unMXnjDsO3/3ud3HHHXds+/3BgwdR1zWeeuqpbZjxpaUlvPDCC1heXsadd96JQ4cOpWB7XqU4x+/zPnOCyx0aawnTnytDVVWVzlFukDivEp13jvha9BNe/psTrLz7xIPXefDgQTzwwAP46Ec/ivF4jPF4nM4Ln+dLly6l88CD+UDWWjz66KPbOh/5+MY3voErV67g+vXr2z5fX1/fpnSVz8/8uLlTxdexP/rJBX+PzfK6rsPy8vK25Tho73OL+Pzy3ztV+fn3eQLfH/l9Pu/48v3vB+avtFO60zPwlXYO+tvrd1p+kInCqx0iJDmTnceNGzewe/duPPKf/98oi4X4QgvoIj+g7Sy6rgU773J8yi/QZHonRILwAMwhQKoIa61jYKjSSRIAvO3Ako4+UPU+iJmpWpIGpfCagp/QgTwbLEZb1zC6MYTrOggpUZYLMGUFXZSQqqTXtgMa69B5HxMCMlxTmvT82WeCHH5nuviIxxxioO4DVe09B55MSmboDJC4GPzHFAW0kvG4IxcjzAJH8kWQEEJHnwMJJwhaYTsL5TpIOBjj0E6vohlfxrmvfRU3rl7F1vUbKAYVVBE1pGNgRREkSd7SfkiqxHPCEeFZShsMFpdx54HX4557/l94/evfCAWBtqkxun4F3ll4azEZbSW4m4wQrrIsyddDKiwt74oBv8Rzz30Xly4+h8o0KLTAUlVAaUPn2RRUKQfQ2AAPhYXl16BpHabTDpPJFM5aAB5dSwkGd8KcdSjLggjKVRUDXosiJhaLC+SwXBQGRTWAMQWWd+3Clc3L2Ny8hMuX/wVdVyN4F3kQEkazdPJMSlnHpERHnk/MsenYmagBZD4PAs51EILUybQhnpCWbCAZxX0FInSIOndIHcF4nfJuQCSYI3ZyOtuhbhs8/8KLuHb9Br7//GUMb4xxbXgDTVQZ8h6Qgq5HWRqUZYHdu3dDIEBJYHX1ViwtLmLllluIQyRVrKiTXw13cyAVnAuwSXTBw3YtvO/gvUPXkQCBtXT/S6Vwy+oyTKlRVBrWjRFgYZQj2eXo80F+EYrkqaVEkDpCrlSCyhHPQsbOAvm3OE/Qwo65Wvk9I0WCcVnbom1GsN0UbTeiLpf3WFnYhYViEXt27UO1+Bos7Po36ECJvBAlbNuhaxrUo4sIoYM2gCiWIdQAo6lNBQ3nLOAdNGk/Q3gXFbcQ7ysJHwS6Lt57WpHYgpDx2Ra7nR11HSRk7AYHNO0kqla5VDIxBeGjbdfAOTr3UrIiXYBtO/zNX/5/cP36dezatevVvx1exeB3RH9br7QaN2/ZHG4w7yU/b7zci/pmnQZgptyTB8Tz1n2z/ZjXoZkXnOwUDMyDkTBROVe/ebl9YPlSJixba7epKzEUiI3SlpaWsLa2ts08jBOLjY2N9PfGxga+9KUv4Q1veAPuu+8+/MzP/EyqhvP5O3nyZAoyWWa1rzDEf3Kok7XblYd4v3Ii7oEDBzAcDpOaE3+PJWwPHToErTU2NjYSz4Pxgc7TAAEAAElEQVS/n/s/sJrV+vp66u7knY2NjY2UFHCnJYeg8HHxPMn3kYN47g5sbm7iwIED6U9exc6Da5Z8PXjwYNqXp59+Gp/+9KcTqfrw4cO4cOECvvGNb+Duu+9GXdf44he/iPvvvx/Hjx9PBHuewwxh4nUzRyMfb3vb2+CcSx2OfPzmb/5mcqj+2Mc+NteJvh/Y5/4SnKDlHQD+LP9uPu/5+/lnnFjk55b3y1qbklROWvm+ydfHIgF5EpsnKjs9P/pBfD8RzrfHy+XdVv53H67F93V/OzsN7gKyk3y+3/zdnO+Tz9d5HZ2dntv/p+NVpTjWOgh0sTsxSyxsJM9SPZdrdVmlXszkF7lynarxkfzNEpNUESayp+D1xUpq8JEKGgJ8iCZuLEuaOiIW1jZwtgWCh9aGnKlh4ESU6vQazimoTkB5xkJTsiKVjM630TBPR815RV4chHPnaqEFy8ukJAoA/5TzOomgHmLQKpIUrZIS0logUKXexSZGqpTH8yYEIJVH1zXx9wBVTB1CtwXnW7i6RluP0Uyn8KFAkBWk7iClgYSCkgapFB/tBFQ0ZtNKofaeCMkC6XpIpVAUJXav3ILBYAFKarTTCZp6grqewFsL7xzqpgYQYvCrYsfCQUkFpTXcoKKEU0YNowBsXhmiMhLF6i1QjgjGwc3MC0VQkAJwbYt60mDrxgRNQ4mE0mpbdZY8CyjAFFLAOrstwXXWRmlZBwRH5HxJhHMpBYwuEkE7eI8QYTleRk+DIAk+JAK8JaKxF9kFjvPciwz+5AWUFNRdix4qxBsIlGEIlRIKVgvygqrYzpGiGEsYB2vhBGb+CxFu6JzH8PoW6qbBeDrB1Ws3MJ7UMTFW0MagicpogmF7UlDyVVZYXlpC2zbwzsYgPaBpWrSdi4mnTufYObrnhAroOpc4RJQwh+jNYsj5HaTcBuHJo0U1CGjgPCBEJDBHPhXErL8oYhdS+FmC5l2IHTWGQrGxIv2huQao4Im7FBN4GTsbylACIheW0dYF2m6C69ep0wVJ3VbrG7R2At1N4ToitxM5X0YuT4umuY4QLLxT0AGQuoX0pMfsg6efQ4AMElKSN43WMWGK+0wkczo/UJlhn2PVPAkX5yU8JRZBh6g6ZsGu3QiA0rGrJTSks5Fj5AERCxjqR0fe7lcz/3fHzV60+bpfKRTgZhXEPkTilSYz/fX1OxqvpEux07HMq1LmgcxOOG8AKfjor4f/5AEWQAEJ4+/7yjscmDEf4vz589i3bx8Gg8E2Ra88cLqZglce+PAy3F1gH4uDBw9ifX09Scdyh4X5GXn1fDQa4fOf/zw+8YlP4H/8j/+BI0eOvKS6zoEok6h5P3Lsek545yTowoULL+mq5Nc17/zwyIPJ/fv3b1NJ4u5FHvTVdY3HH38cVVUlP4fRaJQ8Kay1KbnhTsnly5fTfhw7dix1VXidfN5yRao8iN29ezf279+Psixx7733JqWrvFuxZ88eHD16NG2Tz18+Rw8dOrQtcM6vSR9alM/lfF/zudsn7eeJZ/+eyZOMfveun8zwHOvfj/l9lwfg/XnB28yvPX+vv84+DHWne/nlRv+5kXdy5hUt+vvDo88P+0F3N17V2tvWwtmaJBp9iNKoFNQxJIQr9MAswMr1/gUIgqG0Snj43JnbMV/Ce4jAHY0IKAgiwqoy/ob3M+ffqO4zndxAPa0RAAwWdsNaAYcKVriIm9aQrYB0AVKSgo2WElJH5+2igNbkNGyMTrAvll211kaZSoc8e4j8zUSg5pjTx2U5wBUgwrgxBj5i95VWkH7WhQkx0GbXYiEJmGG7Dt4RTMjogEJ7uPYyvJ2gGY/QdR5N6xHkAmQRoEviHSgAhSpgiW6boDdKUdJUFAZt18XgmVSnlFKQWqMoK9xyyyrKcgGAQD2doJlOUE/HMehyqOtJulZ8PZ1rY4JmsLCwSHNEM4RN4uKlK1goFVaWl6AEOR9701H3ypBXCGRA17SYjke4PhxScisEqkEVHbNnRmjeO1hnAQEQN0ImszsbgLqewpkOIRQwRsMpmboT5FcRk1juWsHHajkAKVMSa0OEtghEZaYsuQA7dMeunFKRdG8pcUSgZNDJJMccBCGcUmIR55KKrs5K63Ss1kVzuiDQtBZN2+Hii5cxHk9wfWuEurOwnroiRVGgKAwmU9oXpSLcUEoyM1wYYPfuXdjauoGmpsTD+4C6bijQBT2QWJSAFKQCpNZo2hZN28K7lq5HWUKpAloXgBHU6RpUCMLCo8W0uQTnO7jWwpgCSigIUaSTxsUBH0jqmecnELt3Mkpbc7cQMkGmWPEreIIj+RAgPBGbRaCkURsyBmyrCk0zwmSyBecs8SEEmdC13RimG8M2E9R1HYsBpJoVvMV0eoWgbrpEGTrq6gQLEYhQzpBEBUpatQK0MZBSQ+oSQhqCcqkKQShKFKMfSNfNZJ2d1iRi4KNcLgBdVPRcdBH2x8yoEBAMFX1ofswEDPAjUIXqv6x3Cqp5mZ1ecP0Kf16pnzfyyn5/Hfk+vVyisxM3pL/tlzuePLnoJyg3S26snZFl+8eXB0l5oMTL9wOQvOuQVzE56JxHNmZX53Pnzm0jYOcEa676c1eaeQda6xRE8/7mgXq+f3k1l4+LZWCHw2EyXzt79uy2KjfzJfrr29jYwCc+8QkAwJNPPpm4G/3EgrsV+bnPr1N+bjjJWltbw0o0jOu7vnMAzdeN51AuQ3z48OG0/6xGdfDgwW2E79FohE9/+tN4wxvegIceeiid40996lMAkLpK3MkYjUa44447ksrTAw88sM0bZRjdvFnFifelrmt88IMfxHA4xOOPP443vOEN+Jmf+Zl0Hj/84Q+n/eQODhsbshoWr5+PkxMLTmR47rIaGCc8nCzl53tpaSklKjkPJb9X+Lqza3z+fYaz5X9yDkaeXPYTlD5kjUnrfAy5JDFf25xH0U+g++e5H9znyl3zOqHznm/9ZwUfMx9LnjT2l+8/Q/vr/UEmF69qzU1dQ+kimdgRgjd6LUQgEsEPMIsKQIG1jFVoLTVRFQJVRpPJV0xAAnc0hEjvx7iZrHtB1WmCH3jYtiVuhwvx5SrhvAFCwGjSIiK/IZm/oU3qltD+MgyriKRM2rZtLeqayZAhdUVY3YoUmyj4t5aqiTaqExFBfdbFkUxo1rPgjhMHETHpCOQAHbxHcC3JiMLDCUTsfoeuHREkwjHkSGMy2oTr6ri9EgEllm87gGr3FKMbLwK+A7yFtsuwzqJpG+KYRGI4cWcMvFlGZ0l1iMn5g8VduOXW12DvHa9FYUpMx2MMr15B24xR1yN0bQdnHbq2Bpl/sUSuRNd1KIoSECBDOgSgazGdjDGdTFA3HtNpi//vhWexNChRFQa7lkmtqaxKVEsKymh0XY1r14Z4/vkNdG0HUxTYv2/ftjkmpYAqdLyu0bwRIcnykkRsID5DdDN2rovJUQclBWzboG1qwNsED+u8i74hM2nRgBA5Cip1RVTkRVDXJap4CYEQ5xmTqwEPL2fz0EUidlkWEFpRUhMDbBc9L5xzBPtqW9wYjzCtW1y/MYb1FJjWDUmrQpeozEKsjEs4HzCZTqEVJZODxZjcCYnFxUUMBgMopbBreRfC0hLKqqIumtYoJEF4vPOxC2hj14MUrZYWBti1awmlMXQv1x3arkXTNKhKDaUBXUhYN4YILQaDyFWSmQdNBIEhPi7IxTuQQhlmxQpAJW6W80Sm15qMJIUIUELAdR26eoLx+Hrk3gDSDKCKAQYDCVMAQAmtB6iqEruWW7TtFM10BO9btM7jhu0wnV7D1g0H66ewzqKeNGQ6JzQa20UjzevQRkEbhXJAED7mIRlTQJmKeChSwSsTkyI6fggFDzK+cz41PMknQ/LTlDhUXecJOgoFbeKjOhTgvII5HUQrYzjWrFPaNj8aH4t8zKvO3ewz/rn/4utX6fPP5lXx+uvk5XdKEua9ZOct93L73l92XlUxD7j7+5AHpXky1a845gF7HphwgJ4HUHkQxXCg4XCY1JKAWcCUdw84WOIAmzsZ1lo88MADuHjxIi5evIijR4+mQIxVkxhyxUEQq+nkgftoNMK5c+eSLCpX4/fv3w8AWFtbw+OPP56C+6985St4/vnn8dBDD+HQoUNJrSoPsICZ+3OuCMTHc/LkyfTvP//zP0/qUpzUcPCaB7gMPXryySfxyCOPYHNzE7//+7+Pd73rXTh58uQ2Y7s8CeL1sCcI7yf7P7A5H+/n6uoqrly5go9//OPJQO/+++9PKltM7n788ccTROvxxx+HUiqtd3V1FUeOHMGjjz6KL33pS1hfX8e73vUu7N+/PyVUly9fxnA4hFIKX//61/HUU0/hyJEj2LdvH9785jfj3LlzOHPmDE6cOJGUuBiexoT3PtGZ7z/2iODzyB0F3l+e//3kod8tYPI6zxuWPLbWJqW1fjDPf7hrMq/bkXdJ+p1BhgDycvm6+Z6c95zIE5echzOvu5Fvv1904OOb1xm7WSIyL5G52TNup+fjv+Z41VAoiFm3IDKRIdgJGKA3WsgBUUi/EyHjXcDDeZdgFgSJElFqkQLv2SpC7IKIiIsOcD52Sxxh7S0nFiESSiHZEmCGkZcEPdKxcisFkqwmV3OFQCKXO0cVcB/dplMYJCW5+MqZB4S1XZSWtRQEJZw3wzUoOC0KciZWkV9C3YEAAUuHGYjkGcTMIVyyV0Xw8ILgaCTQQ8GqEgJQBkpXgBhAyAEqqWBtA2kkvG2IwN7RhFVtHUnyRAyX0XCv9ArKkgs4EweqhV0YLO7GYGEZQki0TY2mnqBppmibBl3XwVpSsxECUbUmkn8DTWI+l5BEau66jrojkOhcQLdFBLSqMAgIKMsSlQ+wsoYuACEHMZjn+Ra7Aom/4rIqLuK8iFKukuciK4eRozk5LM+4A1KK9L3gLcgALsAKQLgIZ+LZGKhL5qQjGFNMIJRS5HHgqGIeRFQLEkhJRQgBQToiQwdPngchgHg7zA+gKrYLdOMLIdA0DZqmwY3RCNNpg2s3xoTZj6Rh6vIQPwGCukJKaxJBMAZSBRSmSNBD6mZQRyMEDQGursuYXNP+dOgAKKh4zFJKkvI1BBPUURmpEVxmCFAG0MZDagsZ5yitjxP52AEMsyB41umcJYuzTlAOK/Tb+FVI3IvYtbIWruvQTi2Ul/BBoSx95Hy49AyoygUoCKCz8JYginXdohEBU9HBoyGSd+2j90VJ19MLWBcQhINHgNASGhJSR2ibNBDSEORPKngQrwghSnKHgACClHkv0nF5nz8vo5Qw2IHdR1dt4pYgJiOICQXSM09ARuGqACQPl/9bx79m1axPku6P/GV6sy7J/8nL9pUkG/OgDf1ld3rx7/TvnY6nD0XqBywcnM0LSnJICy+TY+XzrgEH4RxA9gM2Xm5jYyMpHPWDopyDASAFonlnZjgc4tKlS6minidnS0tL2LNnD65evYp9+/a9BDu/U1DLikTAS6vIHHzu3bs3JQe8z7lqU57U8e/z7gXvbz/R6weRt956K8bjceqqOOdSoMvnnxOSCxcu4Dvf+Q6GwyFuvfVWaE2mchsbG/iDP/gDXL16FQDw7W9/GxcvXkydC/YVGY/HWF5exrPPPgsAOH36NO677z68+c1vTsewtbW1rRrf78T0VYry7g2PfietP/Lf9bsL/DtO0Hj5fE7N4yfM6wjm+9hP+vNxs45n//5+uefNvCD/Zvd7/7Od9nHed+YlDv3xg+5S5ONVJhbkUZC0jAJjpLdLyQIAIpyGq7jeOdhg4boo1QnuYjCpO/IGHAUdHkyMFYDwSbYxadN3XVKfcpYJlAAEVUSVMTFg1ilokYIq2lpJaJZzVZrI256TA4ITMKeDFXqK6IugpYILXClu0bUNXNfB2Y4yJzULrE1ZQCuFQhtURQFjFKqqhFYBWpGBHYJFcER+t10HDzKU04MFFOUARpcoipKSCN/ANtcRbA0Rxim4UuYApKqgqt0QqIBQonUBrXUYTSfomim6tsFoMiaSp23BwYvrLLwjdSVV3YDrarTNJEoEA7tWbsfulddgcXEZ7eg6puMbmI5voK6nGE9GES7iAA7uA6AVwdzKaoCioGDV+wB01NGZ1jWm0xq6qOAATCcd2nYMKTw2r49QDQbYtXsF4soU2hS4887XYtfu3Vha3oXJZAIhJPbsuZUSKgCT6Rhd16Fp6jQvgvfQmkjS1lGyJODhnYDrbDQGClCRNGwKRUGfI3nioCS8lDGJprmeOkyx2k7/jh0JRdVzBJHmePoi2GAv8jbiuZKKktxSazjnkoBB2zk0XYdp06Jz8efpFHVdo2naaPoWTSmFomORVA23CRYWIJXGrt274SFgnYuk7QplUWFhcQELCwtYWVmJxF8fHbMp8GYStNEqOb2XRRF5GwrWeljrcPXqCE3boGknKCuBhYHG8oqCUsSrMKUEUCJJU4NhglEtzntYF6iqLyRUrOoHQYIKxCVhbxT+LiVdIkR9JAFScVIa2hQI1qGejhGCBmBQGgOlJKxt4DsHKQJWFip4o9Eqhcm4QD2d4sqVi2iaBnXbwQtAKo2FhVtQVQql1KjKCqUqsbC8SOJeAoAIUEWBamEBpqggtQZQIASJ4CRJ8kaTQPbnYItBAigiJoIhzRkWwWi6jkjyNqAoBlDSoNSDrNsTk5LYFxURhikjVMzZH41KSP7SzSt086rufcgPsP2lzCPHOO+E298pEOgHAa/kBbtT0D7v3/0A4JUEUv1jzAMp/t2888XKO8BLuxg5VIIru3kAyIOTBq6qczUYoAB8ZWUFp06dSsF0VZGZ2pkzZ3DkyJFtxnqs0AQgVeIBJAWoPJD+/Oc/jyNHjuChhx5KfhJcSefguw9b+e3f/u1tycdtt92WoDePP/44Dh48mHgEf/u3fwtr7UuIrQBw9uzZFOyzotMHPvABnDlzBn/wB3+A973vfThy5Mg2Azn2ceBtHD9+PJ3fj33sY9BaJ6I0dxTOnz+Pzc3NBPthkrnWGidOnNiWoAHkJcKdnze96U2p4/NLv/RLOHjwIDY3N/EP//AP+MxnPoO77roLd955J44cOYLPfOYzAEgG9j/+x/+IY8eO4Y/+6I/whS984SVz7ty5c3jggQe2zRuWAf7Wt74FgBS9nnrqKbzpTW/C/v37cerUKbzwwgups3Tw4EEcPHhwm8cDr4+9OHjk1XvuoPF5yzsTnCTl3iKc+PEyDOcDZrKtDE3K1bb4mgNIhG6+L7TW2yBM/fu1z4fgz+YF7/nPeaK5Er1q8oSSz0V/Hf0u5sslGnnCMC/ZyNe3UxLT72zO286/5nhVa84lXYmAG8hDQby0ykgcYapUi1TtpWpsSNVjquxK0pUkGIBkP4VZtR9CQMRg3naO3KutQzJzi5CepDyVwVJk9KAQUkJJFRMLWiZIgY67E7F6DEHa/gznYXdt1s+fmbd5KOkhCwUYAYEywWOkkhBKQElappAdjKyhBFBAQjhBFW2qeSJIBW0qSL2AAAUhNbSpovqQhjKxSukElCkBJaGFAatjKbULkAUgC4ToYi0kEbMHokJhFKwt4WHRtUAb2ohJDwAsECxU6FBowAsDrRZS1XNpscJgYCBAqjdd2yRjOmstXCSN+kiWTkR9wdwSn6Bz7NOxvGsXbm1b1B3xKapqgK6dxuRMoHMS129MKbA1BrfumWBpaRkrK8tYXFxCCIAxJjp9+3RtrHVAELGyTteQ5WO9B1yEeUmBSP52UNqgKMuUYCAwXt1DSnJPZ4CKFlQOVoKusWY5ZEnynwIB1rYpwYoUAMbwIQSyigiCyMS6qGCKEuVggZzDvcdoXKNuakzrKSbTKUH9IvTPe0BIA6VE7EywozTJPnfWpS6ij50obQzKsoSy1C0qiwKDQYWqLKClRNPUKdEpS1InM6aIVfGALnYGnQuYTmsICChD7ufWelhXQ0iHaiBRDSSKUkLpACE9MUoopp7Nde5OAAiC4F7EO4ldDOZWCEHk5CBIEjnKzfrYIUqcLhkNBz2ZZ046h+mkwdUrVyHVCMoMoaSGKSoIbWiOBQ91yy4451CPa0zrFk3bwQYDLwUQExEhJRxASVnXQEtSuBLGQEnq2JQlKYQBwLSeIkDAGAepNKQyQFLBmwlZ0M8zX5DZ8zNE+VrqyAgtUmJBz8sOTQcIqPjM5E4uUrdrJhkt4PzMy+WHNea94Phz4KUQoXz0q4rzvt9f17zv7rS+l6vw9/flZsvNq17O+84r6ZTw7zmonpeYzIND5N/tf84BWn/dOddi3vby/c0hJaws1JdK5QCzruvEh+BEhZMBgLojhw8fTgFkPnJXbK5651KjvD/Hjx/fJvu6urqaqvQAUoLB+5cHjMwR4H3hc7l//378/M//fHK/zrsD+fnod0ByfgSrTvE+9LH23HU4f/78tuthrU3+Dxwo8z6x/OpoNELTNFhdXcU//dM/4amnnsJf/uVfpuO68847sbGxgXvvvfclc4bHE088gQ984AMJesV/f/azn922XNM022SG+RznsJ68Q9QnNAMz40PuAs3rfuVk6L6vBPMc+o7n+XbyBKT/vOFzns//fI7ny3GCx8ko/445H3zddupU8HrzDthO92g+5t27O93D+Zi3DG/zZs/Tm63zBzVe1VY8VxljckFBl08veACpkgZkSkhhBmUSMXigQh6pyYTYsRAApAYgSQWFSZ2S6JxEbIxKVC46u/mAKGkqI76fkEpSkva9EAQPkYJw2aRcQ1W+AMDaaNgHDy0kFNSsO2EIEkJY8wDrLFW/vQeEh1EB0ihIaWB0SVAnbah4LAMEppBoYUQL5ScQsFABFDh4wl8HoeHlIrSpAFkhyFg11gURoQXtb/Aezgvye4CCVgOQx4aGUMsANKz1CMLDC6phSilR6QK+0PDWoGtHkLBwLZ17Cvw6IHQI6GCUQFAaAkW6hgsLFarKQAgP7zp0XRfdnV102u7gHUOhiMug1Myp2nsf5wliZ6DE8vIu+BCwefUalNKoBgOMRjfQ1CQMYK3FZDSFdxaFMZhMplheWo4PCiJR101McLynqRWID8BQHyUp+EpStCLAdjMjPSkVvPeoBoMo9xsTEZDbtosJrotwNiUl2OtMRR6R0hKFIYI14tzoOhsTT8Tqu4gxZXQjCApCkUt1US2jHCxisGsXppMJbNNg3NaYTB0m4xbjyZTuIRnPq5SQOnJ1TBGll5G6Kt57kqkN0ZFdShglUZgCMkqaFsagKgv6TMr4gCfvCeaiFIWZwW3iMdmO/D+C95Ba0j3oPBxaSAWUlUqJhVA2q7zTelxgA0malxBUfHDxeSKCBPvUiMDKZDGAhoxJCQkocIdTpntdIESIY9daTCc1rl0dQgTqtFRFiXIwgC4q1G0N7z0GkojSk3GNpgtoHRBkBZgAqX30tKDuiAfxm1wHwBsIpaFAc2JQVQACOmcxmU5hnUc58DCmRFHQMQhE2KUgNhrB+ZiLxFwvTkQZ4hWgvKJOqguop2RA2FpKpCVUKnpImTm8J9iYh/M/GijUvGpaPuYFzv2uwk6dgZtta946d0oqbhbo79RxmLd8nlTMS1w4WOoHIDdLHvo+FfnPO1Uk82XzICfvDPUDMP5+Ln2a/76PMWcvgX73aCU6RZ8/fx5HjhzZ5qLNHQBOTHJ1Jd5+H+rCn+XQGAA4evQoDhw4gLW1tZTA5B0CYCbzytvnY2LeRl7dZZjT/fffv63i3U8s8iQrh/pw9Z27M/1rzNAllr89ffr0Nv6GtcQd4a4Ak4W5C8TeEaPRCGVZ4vnnn3/JnGGzQR779u1Ly/3e7/0e/ut//a/puIfDIc6ePYvFxcVt33nta1+L73//+wCwjVvC3bGdquP5v3lwV4J9SLTW2zpIOYdiXrLMSUl+TvM5kV/XnAfB+8v3Wp6o7nSf5JA67jjw5znBPj/2eQWPPp+iP/fmjX43Yd65BHb2Aun/PO/5OK9b+cMaryqxmDY1OjY7A1ILHwBkoAqfVDMVqMSn4PI3AoQgbDxxMsmlVop8K5RisKMtQiCyMsNRlEJpqDrJhGgkeAoXbEVMNqJWPK86ZjQyQawE1AKRtZUBdCRVC6lTddlaCxccpLBQWqJEARmoQq1jElIYDWUAhA6uuwI7vQrfjiH9OAY/EqpYhFQlZLGCEIr4RwAiwnBisBmgEYRGEAYABaYSAR4E63CBAlcfceoCgjogcEnNyMVDlRAwCiBcuoMbaJSigPEV6noEGxxkIQBRAKIi2IaQ0KZKBPqVPbuxuLAQycQOznao6ynqeoqmJsfnAJLbFBCAC4ms732IBoYCRVGiKCuYosDy8i4IqVGYDTjfonMCnVdovIa1LVxHnSnbdnCdw/DaNSwuLKBr25gQBDTxAeKsQ9t28D6gKEoMBgS/Cp66ZZ3t0FqSW3XORd8RR34BVqGuaxRlhbKkJLVzHqNpHZODkPFjBFRH0CpTFDDGpfMlpUfbNJhOp5hMJmi7Ds55dC1Jgwohcdtr9mLPnlX8+I/9P1i5dRWLi8soBwtQ2kAZA9uReWE9mWA6nWAyHuHFFy9hNNrCxUsvkFdBJJnLqGDG85pVywSQkn6NGRRxOp2gsx5t20QyuMUtt1B3zTtKHsuqxMLCAFqTEppz5HtRqgpGB1Slh7VTBDgow+0YoAtTAA5KBZAVNokY0FyxSNZubmaY6R11b2xw8IHlmRuCSUkdg28JJaKnjanImTp2aGQARBAIzpFqmjTo6hr1eIIX1jdw49p1TEYttC6gjcTly9dgijHKhQXUnYOHRLHgqRhQLaNaqjBQGnvKiojYhv4IEQDfQjRjyGaCgSa/DZQLePHaJQyvvYhr19oIzfJxPghUzRLKcgkL1Qqqahc9qwzJ/7I3DknQipRY0F0SJXhTf1dGvk1AYVq0rcV41CD42EkLsZDjOZlgcQlse/7+MEdeMbxZtQ94aSCcV8LzzznYyAPQfJ158NBfP1eC80ryvKTlZgF8f3vzvpsHSTsFB/MCgn71Na9m9xOVfiCW70ueROT7lG+HE4SbHcNOXR7+meFVDIfiJGN1dRWPPPLItvPOgR4PhrWwuhB/xut9/PHHobXGqVOnEsE8Jzo//vjjWFtbw8MPP4zNzU089thjad3vf//78drXvhY/9VM/hfe///3bYFkc3PL56Xdv+rwBPhecTOTKO6yKlLtO5+fu05/+NNbW1vDe9743Bel514fVtc6ePZvW8573vCcdx1133YVTp05hOBzi4sWL+NM//VN8+9vfxrzxjne8AwDwute9Dh/84AeTFOwDDzyAxcVFaK3xJ3/yJ8kHhMnrGxsbGAwGOHjwYFLf+uY3v4nnn38ev//7v49/9+/+XXJQZ18Ingd79+5N1y9XgOLzzJ2KI0eOpMB9XvLd70bwueS5xfOH17m5uYkjR468RM64P2+riowYc95Ovp38XsqTnjwhZKhcntDwfdrnnPTXmW9rpwLFzQooeaetf7/3v8NFgZ2eVz+s7sS88aqhUKxAghTIx1Ibu1ADkak9a/Fvk5tNlblZpW6GW5fbIUeY4Y4B0qVXhuBJhSkI+x3hBAC/kKPkozaJlM2kXja6ThVRIeilrwSUJpJ08rmNL2kpPYR3CNImhLgMDUTooEIN7SWUEyQh6jvAbkHaGxBuChlIilMEBTgPjxahkwAMAiJpViogDKAEQbUc+3NAU+IWTbJow+TtwJr4ie/qLZHIbZuw6uTFgAihIvMy4TsIuAg3Iy6KNNEzQpLrNYSKiQWdn6JchDFlgsb4QKR7NiULcKkLgBDghZjxXeK+MJSMoWJa62iEJ+GcR91OUdctBeRdB287ShqchYBE27bEQbEdtEYyYcxmFUGLNJGVC1OQ7KZANB1jJScVpyerh9GDw8fOWtt2qOsW4/EUPlBSIBO0TsBoA6UVqgBY52EdYC05RtdTSrYm0ym6zhLExwaUZYVqMMDKntux57bbcetr7sDy7hVU1QJUlDLmJM57DSXJN6SqFiCUweJoi5KdG0NMxiOwzK3IknulZvyDPJnP6cCU4NKEYFU1FQnnWikYrWPgSx2nEEhdixInIhqTFLSDC90M4gVLCYWIcKdAXig+dhM9wqxj4aNnhItmcJFMH230aIXSp5+VsFDKEJ8kBOKUgOBqIlC3I0QVMNd18NGJ3XY2dUdCiDK5EBC6hffU5ghBAlJDFhVMtQBlCpTVgDpCSkJpCeJ0CcA3EE5ioTCQWsEZAQEL6xqE0EQBB59gXq4VsAhoBSCFg3clQhhAFBW0qqLUbkhy3PwsjZi57DnK93hUIYtqYtaHSPb2qfvBj13+P3UM8xnwwx+vtBXfX26nl+TNqv2vtsswL4juf2deB+KVbGOnfelv/2br6Fc0d0pK8nX2OwHzqpjz9n2n6vPNtrfTPvePkyVE80CsD6HJVZtyuBEHcv3ANFeVymFBFy9eTK7NvP08UeD18ZiHreft5t/jdXGitLm5iaeffhrf+c538Pzzzye38iNHjmxLXPh7nIzk5487FHnnACCy9aOPPgqtNabT6Y5JBUAQJ3bQ/vKXv4y1tTV873vfw2AwSAkRK0Xlx1BVpPTFgTp3ndbX13HhwgU453Dx4sUUXOfdhX4Snyf287oDO41+wss/93/X70zk8Lp8P/oJzk77wtcw99iYF7zPg3/NK3r0P8+P4Wbdivy7/zvj1X7vlT7L/rXGq9oKB4d5YiCVmr0ggYjbj4mApCSBMcicIHDEo2AghIRWJkE9VGxfeCa6xmxASgGjNIqygC5MlNCM9VDvY3AbvQWEhNIlBSLSRHx7iIF6gA8dlPCQIqBQFKh7AMGRDKl1M5Uhgw5COki0kN5CegvhryP4MVz7Apybwroarm2A4CBEC21KKGVgTBU7HwHd5BrBOUAuwhACUAuQagEi7IfCCqRYhrUBQWhAeUAVgNAx8PKQykESpx1KaJJOdQ6uG8G5Gm17A8aUMKZE07XwwaODh+0oSG+bqODkO0BFh2NVRSMzBa0qksWUBQWiAigHAxRlDMg9w248fHBwntZLKkmzAEdZGyVBTazOqsR7UcpA6wBjSJJ3Wk+xuXkFNpqMwZFxWXAd4B1E0GiaKZp6irahToLgLk9cJ3mEUCBYRrUjdF1UANNoWvIkUEbHg3CwtoX3DlVZwtoOzjtcv3EDm1ev4oUXX0xytYznBwTKqkRRkFu1jElTFyVIx+MJPeScJdK/IBfxldv2Y9++1+Losbfglltuwcott8Tz5lDXUwRP5P2Q4GKaEouFJdz6mjvQtg1237KK73/vu/iX559D24zpBhIzIvnswRhDyzjfm6bBtK6jpoBCVfKLQZEfgpKoqkWUZYlCG0rIpYQxhuCCPhYSoiHmaDJF043Q+huApOq6jF4bWusskWGvEkFBcORTEXTO0twkrdjU1UoJKPuGUN+RPDwQIGNHT8b7RwYgWILfOQj4zkbXa5J0NtrQvAZD8gjOZZjXYgxMVcIsLmBhaRlFWaCqCupm+Q5aCXjvMJlOIWwNYWsMFhSEBuowgRA1hOigTGRxewFvLTlj11uw3QjT7graaQGpDMpqBUtLt0DLPYBahhQGShQgmJfMzllI3kAhuJlfT+IpaYRgyUOoc7OiSy4sEP9EYbQf6sgrwXngwb/rj52Cif7oky93Wl//pc1BVH/d/Y4AB125ik3+2U7bAF5Kop63j/O2O+885MvmWPT8u/OOOycd95ffaV/479w1Oz9X+fFxdTg3JOPglYN9lk7lCjn7YbDBWg6HyTseDD154IEHoLVOkCCWauV9YH7FuXPnMJ1OXxIQVlWFd7/73ekYGOKSq1DlBGImFedYfP47h8ZwIMpE4bW1NXzkIx9J2/36178OAPjVX/1V3HvvvThx4gRWVlaSl8Rf/dVfYTgc4ud+7ufSuR2NRvjmN7+JL3zhC3jHO96Bhx9+GL/0S78EAPiLv/iLl1zft7zlLXNdsXlorXH8+HEcP34cH/7wh7GysoJ3v/vdaXtc+T9z5gyOHz+e+Cl8/AcOHPj/M/dvoZbkeX4f+vlfImKttffOzKrK6s6eKenUeEpn2rjnUEd0owIXuGXKuB9GeAQjZB30IAkbbLCx9XY4+MGPfvOAR8+jN2EQB4N07DZYMIcZQYGbOQUqQ4kpWyVNTiu7O6sqM/fea0XE/3Yefv9frH9Grb0zc/oyDtiZe68VK+If/7is3+V7WZKQjz/+mA8//JDvfve7y7XxzW9+c5lHnR9NlpSfoOdM+SHtvtvngp4rfU8hY213QddXCJ5yZJQM/+DBg6WzoePRRT+vClh6D7fnXbfzzW9+87lnSwuBa7sq7T3UcpPaZG19Pl5mWd/P64RmfR+ul5s6GuvnUEtG/0UkF6+0B6lougVu1FbcdNEOhmJ/j/+r47b87Z3HV48Bb7JU0glgHcU4iunI2Sw679Q6vpqedc7gLKKrUjIUcVTWtCaVBNmhUpqCvJL1cp5QpZZkN2AEikTOIv1ptSosZl2mGMGAWyMfSw5je7y9Qw6FHCK5HOoYMtbMGBMxJQEGV4R8XjCkImRyjEy9xWBzIs4H4ZCYDmN7jB0wpeL+BUgPVYISIPsKO4qReZxJMRBCYj6IO7AxAtsYNhtihpAsY/Kk7Ai5JyHE767biIld1xELlGKqAZzK3dYcyFaysvdL9VQu0FxhM7mpqopjt8I+BLYmCYYYvgl/RYjfEWuhs5ImxizXQioJYwTYlZIoPl1fX7LJW9muE4Uv23li6oTnUZWVnHP0xlT/kdq5EIkhcgp120dyPpUPEqKIAsDRW+RoJlgd4WPk6vq64RUJvM5Zh4r8FAved9y99zp/7s//ef6NX/2/cnbnDsapHJ+cr8P+WsadY0VdGXF4rx2k3dk5xlrefPNrTDXA+OGf/CtSnPG+Gk3WDlBpAncoVWJW5JP1dUnABAaWcyKnzMXZuXQCnZDZp3kmlyIO2lXsoJQj1KoC7FBZXJDqvyYVRv8pkLPDGYMzIlSQTcabhHcDqoqlrQ/9vFb/c8m1Ym8xOWFNwiKKbmrCSDXTnOdACKLQlp3B9B4/5CqAMGA7gValAoRIKSPj1TO8NewuzjlzBW8LeToQw0yYD1yNI9M08sWPHjGYzM7Cg3v3MNaxP1zj/Iaz87tYhS5V8zpKwRhJtK1TU0KP7w2OiTg/pWSBaW025/U54CiI2l5akopjgniEkkqSJwhK20A8j3A4TVAKZeE2/SKX9ovspgRg3S049d6pCv2fZhzrbet77T40eD8VHJz64r6tO3Jq/O3n1p+9Dcpw2/b17/Z3NVX79re/vQTQbRKg+1tv67ZzoYFf+5oeiwZpDx8+5MmTJ3zyySfLvj/55BNijLz33ntLEqFKRC3xF47k7fZvDea990ug+uDBA95+++3noDltEP4bv/EbXxm/jlWPQZOFlr/Rwmu0q/Ho0aPnXm/lbd955x3+g//gP1iI0G+//Tbf/OY3+ct/+S/z5MkTPvzwQ/7BP/gH/IW/8Bd4//33+c53vsNPfvIT/viP/5g//uM/BuCzzz7j+vqav/SX/hLjOPI7v/M7Xznf/86/8+/gnOMv/IW/wHvvvcev/uqv8id/8if85Cc/4Q//8A+fW/ff+/f+Pf7O3/k7/LW/9tf43ve+B4inROv3oFV67SIph0Dn+NNPP+W/+W/+G37t136Nf/Pf/Df5oz/6I1577TXefffd5RwonG0NBVonwx9++OFCplcOTBvcn0pg9ZpSCNz63tNrVzkr7f3ZKoq1AbSOp/1pYU96bWpXRhMmHY9uTyFdLRdofY21f7fLqefButOzTgR0WT+z1s+udjun9ttu5xfVrYBXTCysaatiSpBW5NOCR1okZF1NHCTQrFCYijXuvKezYrblmKXSV1JNKgDryMWSanIhXItqXAaSVJhCZxKUiCmRUkTmM5Uah2PAVmUWjLjkkrB5WqBO2WaM6WT8tfrnnQbT5fh6sZRsq4mXxeBxdoPJe0gG62vnJFMD4gImSUJixD5QpCENAvVwYDrAU7IlxUTMM3iH1YSmUjFLza5MEsK1DMlJkBijEKpDIMVMCAdiuKLrJajqhi2pWGI2hGLIxcgc2zouL+pTXddRUhRvkZSqlOZySut5bPw+VhXSVAqmHCun1tgludBkRB3SZTvi41AoeG+PEWkopIwQ+KmWISkyzxPX+yswogjV9xu866pEqyPV5FaSBVc5HkdhAfGoCMSSyZU30Zrc5Uoal0REYXnHa99YORspiVyuXuPedYuZXrFyQwnfQzobb775NR780i/RD0LyPRwOhGkkhZn9/mqBlOk8ip9FlV51ln7YcHF+l9def4MQAo9/8mNmwNiyQJfUE0MJ3KVk+qFvqthyl7aY+1IK3tXktkKitDouClEqFS33n9HzZi3ZiN9IhoXbJElAA+kxAi1cSPRUZSOXly6kqcpLGFOhRIVUIrlEkWatZKGc5H6Q8PtIMs9kcoKYAiEF5hwwXowSfZ/ph4G+34KvpPxUk/KcmMdr4tBh04RJIyaICeE8jUyHPVfPnnG4vuLHP3zIxdCTtxtylmv8MM9gHf2wqV1TSSzwHQJVE4UwZ47GoM5mSpmJoZDSTEpDVafrwAi3Khdqh6fmEXnJJiilcsWe87eR7o5ZsjpzFMpoIKS/yOWmavxtsIBTlfjbPvOnGcM6AHjR++2X/ou2fdO22s/cBPk4FZDosbf/t9u+CcKjpFl1el6PRwOk9bGux9Our8EePF9N1c9pEK6wHjVQ067DN7/5zWVdDWhbnkdbAdb12mCwrSRrVV0/d35+zr/9b//bfPTRR/z1v/7X+fVf//XnEpJ2m60MqAajbWLRJsK6fhu06bFqAPsf/of/4fK+BrrjOPJ7v/d7fPrpp/z+7/8+AB988AHvvPMO5+fnfPLJJ0tn6LPPPuONN97gb/7Nv8k//If/cOl66PLv/rv/Ln/lr/yVxUH8wYMH3Lt3j0ePHvG//q//K7/+67++rPvP/tk/4w//8A/5J//kn/Cd73xnSQQ++ugj4OglsYaVtaaC2jX63/63/42vf/3rvP322/zgBz+g67qFtK/V/zUxel1xB/gX/+JfADwXqOv1t57r9fXUJr/toteD8jz0WtHP3XTP6rlpuyXra0C7Ua2Td/v5mwL6duynxtwe56nn2U3PuPW1t95WO64XJSe37efntZhSXvzt8+zZM+7evcsH/4//J/12A1Ue1nLEzTslS9cqqrOW3lmcLVgb5cvWlFr1zwJ1SQI3cX5DxpOLI5qOUpMHVYhRiNNikGbAW/F1KPEam/eQJ1E9shnvdHItXX8Orse4AbLyCs7IpqfQkZMkCrl+uRvjGAaHJWNLJuVZcOVkrMli+BWeUcIl8/W/JM2fk8JTOifdiVIsrrvAuTP8cB/MQDYDxfZkPFPyZBylOApipjX0O3y/xXWDqD7VDo+qKuUUa3KRluDN2bIcfwnPyGnmMCVKnihlxvciX+s2D5iCZ06WEBTeg7iPOydk1EpqjwpZKbXymgsXg2XXW+5fdFw/fcz+2ef8yb/8P7i6vuLp06fEOC9dB0kiOjbVg+PNrz/g/Pyci/MLLs7v0HU93TAwhcD14cD/9/d/n/3hgPNOeCIx8OSLx6QwE+OEdqmMsWyGge12x/0377Pb7bhz5y673TnbzQ6WroLKv0oCc+SFSFArXZ2JaRLFKec99++/ie96wPA//o//H37y+CdcX199hRckAd2RD6Hu60tXTiSEJGD3HXfvvsb/7f/+Hd7+N36Nb/zynyPMwhuJ08i4vyLMoxCyU/VNqSVpZ+ySqJxfnLHd7njtza+JF0XM/OFH/z+ePv2SZ08/xxqBAqYQayLvjh0mL8pYzjnGw4F5nrm8vFyOyVrLZrPha2++ycWdO2y32yUo1c6TMSJZ6jtLPzhSHiklSsJsHda4pYOGURKy1VlbuhFyGvOSXIzzJP4ccWaKQX6qweJmgKEr9L4QgyEmwzxZnO0x1mPojielXq8hiuHiNE9cfnnJdJi4/vKas7M77M7usDm7wHUdfugZx5F5nrh88gUxzMQw421VbapGj2GemKdJvrAOBy4u7nDnzgXf+PNvYfqOfclEk0lkMVMsBVvKUZTCiJCBdA1r8u2Oz8muU+W3Dmcb2CQCHUvVOM9RpZNxbHf3cH4g5I5xyoxTFs5LlufkAplqksN53PP//nv/L54+fcqdO3de8avh1Rb9jvj88895/fXXn/sibjsD68D1porfutLerrNeXrZKuH7/1Lovqvzdtt914HHTNl72S36dVOh2Wsx7O88ajCtRvZ3vVva13X/rJdBCvtqgXn0K2gpxG/zr+i2M5FQwpslGKwmrnYEWytJ+th2vkpP19QcPHixmcprc6Pbu37/Pe++9t8B71snYOkHT31uPBIVhqUTu1dUVf+tv/S0OhwN/5a/8Fd555x0ePHiwwIU++uijJal5//33l/n86KOPFnUohVj97u/+Ltvtlv/kP/lPePjwIZ988gl/9+/+XYZh4B//43+8SJ6+8847C6RKHc4/+uijBSakJPC3336bf/gP/yG/93u/x/e///1FslZJ8Prz6NEjPvjgg6WrpE7nmvB8/PHHSwKnx9LOn567tUJWez1qsqkwppbXoMev53edPGrX7f333184HutkQZ8L7XV9Cn655uu072lyp2NsOyDrsemxtsluKyShx9rCKE/58+g41vfXqc7CmofU/v6yScxtSYt+Xp/bP+vviFdKY4beM1QTLbQqXeEkvqIavEkSgJuCqzh9p4B9YyjGgLFCXjYia4kTrDFYXBViN6YSpTEL6Xox4iuFmIHiyKmD0kMxFJNlHVswVgLTVHJVgXLYboMxHfhd7UCIazGmICqdUsXPxUqxsGKzKQHKSMojKR0o81Ny2pPiBGaD7TqK8xQsqXiSO8PaDXO5RymehKfkjoIjFS+kUdfhKkQI35FtD3RQvHBhjVafE1BhQSVWpmup2PyREq/JSSQ0i+lIxpBLR8kDJm2w0RCzfEyDHIUxWauVZOWgiEqXqwRZjPBcUu0CGWvxvnprVFiTgmSOVVS7dBH6rqOrF7hWzaEwzxOHw56u8wy5xzpLnMTJ2FpDcQZfHLkISDznzBwEotM/G0gps9ls6ftAyhEl/kv1XiFz0k0zmOrSTu1q1OvLSjelHwZiykzTRKgGiV8VHajs+aJHUF+pfCJrIBu1fjtyj/phg7WudpKEWDxPI+N4YJ6la5GVBF/J1s5Ih0GEBWSL28OevpoN7s7OmOaRy2e2VsbNMu/yICnH+6QmK94LVGqz2Szn2ntP34uscIgRO001UTLL8VGKwM+2Ha7bCqdCO3YaRDdlCVOTCREbqMaBdepSyqQixzpHSaamORJyIWVLKb1A1oohpgAlEuco3Jnq60ASOeXlGRAl8Z6CkPunMDPPwnmhygF3vWfY9hjnKRaMA+sN3XbAeCj2yNFKJRJLECNPItkmXG/AFyKJKQdcsRhnjxLYRbg96ssj9Jeq1kZ11DZgSiLlgkvSWXLWklIULxwbyXKDUYrwnQwigpBLpqSIsxPOQ8iZKHQSGtOKr1yz2tH4RS+3fRG2r72oUhejKAW1Qah+7kWwg5cd503dgtvG96Jtvsz+1supJKwdy6n11vtsK/83vX/b2NYdknbfp4KtNhBrt6/BV4tDb49l/bmWlNuqNa07BrquVs9126pMFGPks88+46OPPlq6Gi3k5VQVe319rrszWr1u5/fXfu3XuL6+fm6uNcjUREeTLPVJePToEc6558bzjW98A++F96D8gq9//ev8W//Wv7X4J6xlh3U/b7311vK3Vu/v3bvHW2+9tcCbWn5AO3+axHnvefjwIdoB0LGpV4lCqHT8rQFcS7JfJ9M6Xy2Hpg3Ydc5OcRn0/LYwqBc9J9q/18UCHeupRefilLrTTftquUbre0Y/v75n16+9zPPlRUWRU+u/SiHlF7G80tPzfLdjtztbglLTdVX/vmAImBxxMVDSobpKJwwe684obMh0UOFJ1vZAj4AcBDZkibiKhQf58rXWyhdpPqoRCal0oBRPKRsSZ0Bk2IiKEyZju2tKlgq1Z4u157jNfYyTzkEJI7nMlDxhnZA9i7MU45gnU1V9IqYcsOVAHz8nTp8Txp8Qps+Bgvd36XffwG/eJNo75NIRckcqnlwsMcl25rhkRpWAPjB0Gza7Ld5V9ZlUasCQJYCzGZgxRKxJGBKYALlGFWkkx5EY9sQ8k/FEe49QHDFZSvKiypRy9dXIeCvchL4TB2Ul+C5BqHIqNDAqlkwkFpFhFWLxhq4X6JT3nhzFNE6hMt57+q6j73s2Q88w9OKLgJKAI9fXl3z5xRdsBvHqyDkz7wNhEulSa8C4SoitVdgYE+M4L0Ztd+7cpetnfFdJx87V5FAr9iIMYDAQWQiwwgswFWrUsd2e8eTpU54+fco0zcSYmoSiwUKVUhkXFRpUzckyeemwaYBPNejzvielzDRKBTyEmelwYH99zTQdSGGqXakjy9aaVjY5E2OgGwbuOs9u2HJx5y7zPPO5Ff6CNRZvtRLeLcT6eZ6Fv4Gcz67rODs7W5KYYRhwzhFTYn/YM04jfXXW7vu+JgORRz9+xN17Z/TbN+h6Oe5corhi1wxEe562eoEsYkT2qPA2jgdCjIzzVCE/mavDhHE9xg/CNTBW+EDhipwiYRxxxrEZnCQLCHchZUnUxjERQuL6sCdESS7CeBCvDQumM7je0m06MnB12BNTIJvMnTfuLPC3HCrn5eoKgiPPBh8MPmcMA951lA6KN9jesd1siEU4DCWlhd8jYywC8TKwpHY14Ug5ERFui7MG7y3RJozpCCHjbIe3GzrfY40j5sg8R6ZxJscO6wJzsvL8Mh7juuUaXXhk9sh3cf4Xn1josg421t0HXeemL7zWsViDSQ0CWhjEqeDitgC9fX+9/3UF9NSxtEsbiLfrtce2DuxOHa8GQW3g+aJ5PBUwt4Fxu7+WXHoKRqHQpDVRXdfV+W+dvE95BLTz2gbdrXSovtZ2IhT7r8GsBrCtVKm+r6TjNnDUJODJkyf803/6T/mLf/EvLgHqej7b87pOmDSZ1TEqn0AD8PPzc/7u3/27SwdBkxr17dCuwSeffML/9D/9T3SdfO9p4K8BtTpZxxj5gz/4g+UY/qv/6r9aSO4ql6su0m2nQOVUtQvy+PFjPvnkE9555x2+9a1vPUey1rFpR0ivHfUdAZ5zL9dul87Nw4cP+fDDD3n//fd56623+OSTT57rbq2vx/aaUXicQsHa66XthrTvPXjwYIFyxRi/4mXRnsP2/ms5FjrnV1dXy1y0PCHdn+5bnymnllP7bK9/HeM6OTmVcKyfNev75lRHV7e1Tvrbz7fdoPUz8dSx/GmKJq+6vNIe7lyICZYGbMXWan6aIV5WOdOMcT2lO6d052A7sh2wxeCgVuBlyUSWr8RUSAnGKKTQlARaJHwClVBE4BCLUo9sRbRfLORCKoYRR85nqNtzoSPnjhQLJk6UfEVOB0oKlGJIpSNSKCZQyFjrsewxPCYfPqOEZ0xhT8yFWBy5f5tiB6K7y6GcU6YdMdckqVZoZbyCr94OYmjmqumeqcZ3OQamKNyRlHLV969hgSkY0gIFg0KxWagHGaZ9ZJ4S05iZIyKP6p9ifYd1Hf2ww9uOwTr63tN5IZFShEgbgiRoRwWadt8sMCJXCsUZ9q6wMRY/DAybLfM8i+KTs6J62ejxO19lX/teJFqrGV2Ikfnqkh//6Mf8+Cc/YQpByKo5Cum9uoVnCsU46WAU8N6KQ3Y/8I1f+iXu3r3Ln3/rz0llvUKcDEW2Q71eglbQLSmI30UMAtsqBTYbgVZtN1sePfoRjx49IoS5udb0eGrVvRpB6nWo1+3xOqxyqYjb9zwHvvj8McOwo+8GLJCjOJeP48h4kMRCHdKzSvZau0TsMXics8zTSJgm4hDonKPTgLGeI/WnmKaJrhNSe9d1S6JTshhAppyrxK6IHHSdZ+O3y/2oyYn3Xq4LDMMwYK1jDlG6lA7p6tVOl8qsUjt8BXnfGIOpSl05F+Z5XrwXrHUMvmO7uxC1J9uTsiVn4dNcTRPj9Z7rZ4EUD6TwDDW73G7OqiCAA+dx3tF1BYzHmA5buQjbzcDZxR2Gs7MqSWvZnZ8Tk/A3vJeuXC6S2JWc2d29I+TtMDGNe7lWUqwQv57h7IyuH/DDBl/U2K8s93spkrQJabosnJysxO6qwWtBkuYJYrak3FWFuF4S927AWUdM1YuFQJzluSfO45UgniOLmla9JFtga06/ePK2Lqfa++3f7RftqcBdlWraL29dpw1c16+dWk5V8NdjWX+ZnxrTTcnKy8zDunrfbmvdaWiDpPU8rY+7TbLW+9FtaeVcgykN9FsjuzbAXs+DJgX379/nww8/fC7Qbce1PrY2sYjxCGu6CUOvEK9Hjx4tiYXyBLwXk7vWF0IDXyUDv//++5ydnfGd73xngTTpMWkXY03K1iTh7bfffg7y08K8dM50Lh89erQkvQqD0uXdd9/l7bff5vd///fZbreL5KtW/D/55BN+//d/n88++4xvfOMb/Jf/5X/5FedmTXCurq54++23+eyzz/jBD36wJDrra7JNbvS4WgKy3j9t50B9R3S/CvvSRLNN8tTPIsb4HOn6VLDckuP1fGvgr/MKR0jeqfu6nQc9ljXpWj/TOnzrPtoOzKn5aq9x3f76GXHqmaXXwql75dTzY73/U8+PU8nDet32M+vnzroQctNz6aaE5ee1vBoUqjMMXaPgQqGkLLjrNAlUx0owhxvAX1BMh9h1JUzOi5mTfD6JNlOxoogUM3PIxCxa91R4iMJsnLOCO7ZVdNJI0C1EZwBDzlKxi7GirLwXonOx5FjEbyJKR6XkCEZ08gUsFDEmYX3ApGeY+Dk5fE6eL0khE82GaLZk+zqFLalcEKMX+FM6QrhcVZXy3uMQBSwJ2ByuE1hKyVKNzkn+T0k6MgqnwNRQ1YCyZ4sVombJsN9npikzHgpzrA4ePtANhm6weLR6b46k+wqvSCkt1ftSvQQKqvKjcZKeK4MphjnC0JuKB5fgU4mpbRAOplbrhW/hva+V8Vw7JDPTNDHPs/B0jNBflUwtLsJZ9lsN0bresdnuODs752tvfo27d+9y9949poqFV5y7EJjF2K1ElRQwpCBV5VylcY2BrhNZWmMs4zTx9OnTmswek4ojZ6Cg3AG9FllmSoO6I6dAYDqRy8tL7u33zLUboMpNYs4XiTGIQZp3dd8iEiAdoLKMOcVYFbTSIqFrrRXeQn4eVy/XnfArFsx91v0KBCmmiImStHe1g6GqUHoOUnXWds5D5XcYV0ThzJkqPXw05AOOvgmVj2Irq1j9byiSbIuYg2cYtgIJNB0xyT7GkIhTYdxnDvtEmALTYYTqcTNvhRi/3W7xWwfWLU7Y4DBZIFrDRmRlbecplcDvrcc4cT93la+lyalcP0Pl4QzYzpFiIMUZZ72Q9H2HcWpaaRbImrWidrdAtOq5LBRJZHImRStQrpwxMnGkkAmhEFImS55EKQIJzc4Ti6kdMU9cGPSy7wrAoqpFCMRUDmZ5vpY/Ix+LmwLoU8tNQb8GOOv3btrmOjBp13vVSt16vVP7PFWFPLXey453/d66Kql/r7sep4K7tvLZBkGnEpJ2nXVV+KZjXit+nQqmTgVnrXzrOpBav66/t0lIqxLVVnm1I6OVcXVtVkjS1dXVc0mUzqP+vfYz0IBxLWXacgUePXq0dBXaoFkTiDfffHOBLSkBW4/tyZMn/PN//s9JKS1V87XzuP6su3TtnLTnpVUB04SqvVZamJnOgXJH9LjW15j+rUnFkydPnrsnTy3re/gUMV6TzDVc7tS22s+tlza4b7sOp+6V9n47xV9ot3kTfKr9zG3jWq936l5fFxxO3Q/tuuv9rPd/2zPm1Lh+3ssr7cWSscQKXrKE5KBsKHaD6c+RHkQm4cjJUfaFUgK5RFIJ1ZFXtiX4ZKmaxxhrsC0kSAlAqh2dUYlacAV8yriccTaASRgXMSrZWPrqlp2YghCuTco41+FSJ8TmlIjzTE6Qi6+OuIVhOLDxCW8C9uln5PAlafox0Z6RzF2m/i2m2DOGjvGZmK7FMJKNBPCuU6Ukt1xE52dVn54iXgyTtBtKrolFkKAjBJXYrEZuFY7SdcJlGM42Ul2NmcP+Whx450xKhmR7XFXw6foBcRvu2Q49vnJfxn3gKk6E2DhKN7X2Ugy5ec2ScU6Ut4wVUv0coPQe3wkcahg2dN4TvfiEOEP1wzB0fS9u1pstw+aMze6MlATOhO14gOP8zj2maa6QlpGnzzx7c8U8J3I2lJKxtsM5xxtv3OfrX/86v/xLb/Haa6/hnCOEGVMkielcvyQVcjyZ8fqwBLSiOCZQKJnbjrt3L+j6gS+efMmPf/wjfvjDHxJCADSxkHN3TDCOS/u3VclZeafCowrTPPLDH/7x0hV5/fU3pLuSEuoMX4IhhMDhsBfvjlIq4VrUlzabQWBSWRKMGALbYWC33XK225GiuHHHGAghME0TxkCMdjH/CyEsZPac8sK7mGcxb7y8vFySCSUX6/UrHTZHCJnrqwk7Us0k/ZJI5qabqK0uSd7knvVO3MrPtj1FOwRFPhf3ksgnMxJjZpoCjz9/xhdfPuXZs8tqbFewtq+JcObLJz+i73vOzs7Z3r3AD3295rfstj0xTvV8B0IpEAODq07scV7MDtvUsFTVqlxKhfuJEV9MkXke6/PKcDWOmGnGmbEmExbfeYE1uaPy3XYzLNeQmAYKJyqnJF2raWI6BJ5ePhOI2Ay+eybGlLtzBnsf785w/VYgYm13zNTCTqFe86XO+VeTiD+LtGL9hbeulJ0Kck992d3U0r8pEblpDG2AdtN6p7Z5W+B/atunEgo9Dg2s1u7aN43jVMB1KqBZB8n6uqr3aFehrRyrMlNb0V8H1RqQt5Vfff39999/7vh1vPB89bQ9VoXYtHOqn9fKfDsWDTqBpWvlvXACPvroIz766CPeeecdvve97y3O3co3uHfv3lJ9/9a3vsXHH3+8rK+E7zaIa92jldOj86Bzrp0KVQ4C+KM/+qNlfh48eLBAi9Tv4bd+67eWpKCdl+9+97u8++67/IN/8A+Yponvf//7vPvuu0sypHOjQb/6Qfzmb/4mAJ9++ik/+MEPePDgAe+8886SVL333nt8/PHHfPLJJ3z/+9/n3r17vP/++0t3SiFObcLxO7/zO7zzzjuLr4VCr7TboARygD/4gz/gyZMn/MZv/Ab3799/DlrVXqdtUtPyGJTQrX+fqvKvE6f2ulwXDfSe0nnSrlyM8TlZ4xYOqPN7ykxPl7XalK6zDu7bDkHrB3Lb82/9LGzXa4/1pmRlzVfRZf1MbZP6dRJ1agw/j+WVthyzJST5oivFEFJV3FmM06RCKo66kZxnBCluli/YXOEbIqOaK3cio8GZo3YnqrSleF4oobVgbanhi6FkQ5whxImUIDMJHMmoUKvBUEgpYCr0Bwq2WKwzeAvezTgT8PGASYlSIlOYSNExx9eYy45YBuZkmFNijjCHJJyIKmcqRFWHcNoF+rNUjFMiLDOoZMwsRlwNaddaIe467xZCvLOmBoqRkjIxJOYwE2IUSV0jRh5KpJZOgnRGqKZmIWaZm6WiX5WWYCHYmmpM6KpvgTdI58ZkDDL/ztlqhmgWOdclIK2f976jGwZ2uzPOzu9wcfc1drsztrszgV2lzFkInJ3fYZpGQoyEEBnHA0+evcb19RVffv4TDvtrrp49xXeOYej5pW/8Mq+//jp37twRv4hSSFG6EHoNafel1E5XCEEq+LA4a6t8qsK0jDV8/uPPuby8qkEs1R/gGJKtk4qvvKYwlFrBbs9zCLM4Qce4yKkun6nXaKpdjBDFJM+5hEuiyhRCxHdpOT4Q7wenSkPmeA68d5TSVW8NnksWdEzGmgU+tXbq1vs3ZYVMSXeky93S7Ti6UksCZJ0jq707LNdWPUSMLaTavbMVpiP3u8Id83J/S8cOhs2O117fcHbxJhlTCw9h4aj4/qqSCRyZjpQd0rASjxpbO5kiBZCgJsnGGGxR3x1YXKuNJkdV2asONFkvD8d+QJXFNJjPRYjWKi8tzxyquJpAOo2x0rGpjSzrqvKUUUs8y3S2oxQ573JpWJzfYP2A8T2LG+aqMybJUMEoqX2Z/+P1V2AxG/1FLusk4qaq96tsS5eX/dxt27htORXI/yy2va7en6pctn+3c9QG4uvP3JSctMGbvqaBlyYZay5GO9aWaAvPO2XrWFp+g+7/VGX1pkSwTaJ00SSjJfZqYqFV/fv37/Puu+8uvA8NEpWX0R6jVuV1Wzo2DR41OG7fa2FNGtR/+9vfXnw6NKj+7ne/y5tvvvlc4qbwsrXE6jqIPD8/5zvf+c5XpH/X3R1NRtv32/OjgXr7/maz4fd+7/d48ODBMu4W9qYJo3I11NxOr5mW66PnRpPQlnuhSmG6nDrv64ShTShO3dunEs9T1fy2A7KWkW23t+b16HW7nsv1dXnTM+qmMZ/iRt32mZuWFz1P1tdRO94/7TZ/Xssr7TUkT4kdqQYnMVZMcaokyEp4VqK11kclcJYqYDHC9sxJ1ViquEn1PcCKoZap1cDOe9F7p1DyDKbI+skRZri+ClztR1ENsgXrPd2woe83AquJgm/OUVWHHNu+p+8NQ1/o7TNMegaHR9XHoTBywZzOOKT7jGNHiIKZT7kGXpQaRFT4Do6cxOfDWUfve3znyani/mMUvX6oXAqpQCtu33lX3YIt2+0AGGIS+E0B5mkmxsg8TswxCJQJMbizzuKdJDJd1y+QK0r1tSipbqcqNwFtJV4DROdFJcg7R++glEDJQTDxRvwVrHMYJ7KmakTnrKU4gZb0w8D5xQV37tzj7t3XeOP+19idnbPdnVWoiXQQYoxLUqW+EM8un3F1fc0PH/4rnnz5BT92P2S327DbbfmVX/kVdtst2+2WcTwQQyDFtCQXx+swVShUZp6meqTiW3AkLFv6vqMfemJMPHr0r3n67CkhxkXpyCy8ClluTC709fbtGgeWkpekQuEwueQ2ThRYWs6ElJhn6eip94OvvAYf5OFVsiRMmkTaRWFNDSi76kUh0rXe+YVjocdvbWmSsOMB6u8xCVwxV3K0MYYuJjE0DMK/UNWvruvxnQS+pT4PtONm0MSidpBqaUE6dQIVyjkTU5Hrvhf/B6xjd3GP1+7fpRsucN2OECOXV9dcXz5lGvfs95fiKH64Bhw5W1LMJJuJcWa7KVgj8MyCmG06LzwW7R4K7K+eLntUnXPOQRYIkbNZrvvOLTBFPQ+lCKRJixuFIgi2XEQlqmR5nhlJurEG50317TCVJ5Mo2UKZIAfGyWNtT7e9gx3OoNsu92o9S89fYmbN8Tmuo6dWnjG/+OWmpKJdbmvh/zy2e1P3Y11hfNUxnnpvvc11B+JFnZb271NE1RclFqfgKp9++ikxxsXBuCV0r4mp63G2AVq7Pw1I19Cc9v0WVrMmk7cV9M1mszgiK1laSdk6fxrUf/vb337OsG3dVdHAWYNnJTvrcbVV/PWYW+ldNfl7//33efTo0eJGff/+ff7G3/gbi/zt/fv3efDgwXMdno8//vg5vsG6evz+++8zjiMff/zxyWujPScqw6qdnLa7oG7kOqf37t3jf/6f/2e+/vWv87f+1t9akrV333132ZZ2aT744IPl2DWR0WNoz42eA+12jeO4kNzbc6xQMJ37dZDevra+dtvkoeXlrGFzbVKrc9ombO1r7Xp6naoAgV5Pp65ZXdr7bR3U69jgSIy/7dl0U0Kx7iCsnx03JWGnuhPrsbbX05+mKPPTLK+UWHz5dI8fciXc1qpxUY+AtCj4LEsNvIqSBqCSVOW1pULuJShy3tN7LxrvzlVpS5hmCUTneWSepQo8H0TNiAK+7+m3W1wvhlGZQggTFCNyt84wDJbeB7wZ6fjX+DRh95GIpxRLLG8yBUuIhsuxMAeYQialSbDKKVG0lv1cpb/Dec922C7BOUbcjq2RimKqBFH1pdDj224GnAHKTE4H5hAJk8O6jm7YkREc+34vN0qYRbVI3HlZtiOEz47tbrNA/VOogWvMOC/Jx+58K1XTUqrfg8P6TgJDJEEspTDHIljv0gmHxYD3WnE/BkiQFwiSMZ1AsHbnvPn1B7z2+n36YUNKmaurK+EJqAldTAskSIPfi4s7XNy5y5v3v8b++povv3hMTiIGsN10Quq9fMrh+lq6HLNAgFKFCGkyK2Zl2qWomPYKf+m8xxpD33VMh5FxnDjs93TO8dpr95jGUbZXk2SFVh2vZ72szfOJhb7Z4Guc77hz7x4Xd+9yfnGxEOWBBW5kjKMUQ4yJOUZKTvSdJ5dMymI6mKF24KRDsd1tOYwjBbi6vmLcXyMEaXHwTlEMFDebTSVjC8cIavCvvJqlSn4MWZdk07tjcKo4/mwoNUF29f6PIclxVCWso4cFy4aPCYxFbWxst6Fg8ZU0lE3h6voJIQbG6Us2myuGzQX95gLrO1w38Nr9B3LNlokYRsbxCiv+8WTT0Xc9/dBzffkj9odn/OTzPyEeJgiRQ6nJe9/hO7lfjT58jUABlwSpqnRZK4abvis422PtlnnOCzdJqGRGuooIV4h6npTbVMFi0kGbE9MYmA4zT7/YM0+Zw8FgrCjW7e6+Tr/Z4Yc7YOSeNE3HwVRzyWOn8QhmvKkvkfMvvlp1qi3/slXsF233Zda/KYG4bZvrCmAbvK+Dvpvw2TcFCOvtn9rmen/tdloMebutdUX4VKDWBslK/IUjr+A2yNV63+tuRMtZUCiTQkLWnQ0N5tRIThf1TdD133nnHd555x2ApdLeBtqPHz/m8ePHfPjhhwv0SdfRYLhVGWoTojZI1TlRyMz9+/f5+OOPl+Bd39fg/wc/+AGbzWYJxPWY/upf/avLsXz9619f4EKq0HOqar8+v0oa1w6MdkZU3Um7JjqucRQTxLfeeov33ntv2e6nn366JGb/7X/73y4E7E8++YTPPvuMv//3//5zJO8WytR2nnTO2kBeE4Z1wqrXj44RnufRrK+p9jNrPkSbELSJxyn4TwuVU8J/yzHRJKlNeHQbCp1a/7TnSMfcdjNOBebrpP9UgnjTe+tkqj3Wdrnp3ly/dtN+/6yWV9rzYZzwFfakJOBSq59CEs3iwFz7/8sXY0soLAUtnbsakCxkWZaV5Au8/h6ikFenaT4mFtOEQQIGb02FabgjoTFJddibgrfQucLGzThmbDlAmgWCkgypWAID0+wI0bCfAiFmQhSojfAOaoWwJhTiWu3wXY/rRELWeQkYNeGhOWaZJ/lb4UTOOZyBkkzlnNS5JVGidE9SyszzJFXTSi621gpsqgaoXScqORLnHqvRBuF8CDRLHbGRZMEdoTLLuazwqVLPZRHsCs7BprMVbgLKxDVthdSIx8Vmt2O7O2PYbCTRTFWRKYqr9zRNkoTmvBjBdV3H4LaSHA07+n6g6zrCdCCnmTAfqprSgfFwEF7GLNeEJAJBrr2cloYAdc5zyVXSt6ot1Z8wTYR5whrDZhi4c37OlaF2Dgqi8NPwKxrlnSP87Qia0tqxdoWsteL8PAz0/bAEnVRXbYUxHUnvLN096eIdOzzHREbkfEUqGFJMlUNhyEXmuOWJdJ0HuqOJn7VYK0ljSklBS8v6C6yq8+glnKqvh3FSgdexlDpHVHK3VZnTUo6wr5qIUrnvquZmrHhopyzk5JwzcyzMU+T6+kCMhnmK+HHEdwP97hy7O8eaAW/FqX0YehxJ5tttGQb5crRlxFnD9f4ZxkgCQM7kWJhzoJQBXwQyKLC3Cn/SNMCIalOxcja8g86JKpklV0hfUY9Q+Simul/L9XAsJBwljkOMjIfAeAhcXWVigDl2DMMW1+3otxd0/QbrO8Tn54aEwSjkrklknyNTHN+3Jzpt/2dYbqry/6y+CG9LZG5aZ73eqfHcVnU89flXWdpAbh2IvGict22zrea2n18HIKeO4VQStQ6OT811G5C1TsvtPjQAbxODFsKlFfJTFVslEZ8a1xq/r/ttK+Bt4KpjePjw4VKR13EqBOizzz5bEhmFlK2hQD/60Y+W4Fi7B+uxt3PVVrvbAFU/rwlXu06bZKkfhfpgtOdKE5V2Ttsuke6/DbxPdRXa4LdNCPT9U12JU8d66hy25+ZU0K2/t58/da21nbf1tbD+jB6/Hm+b/Nw2tvV22/2vj/XU8a/HvD7OU2O/7bMv81xYj6Pd38sWaX6a5ZW2/PTJE7oaJEmF7xjElio12arEaFC2YNeNqdwBVyUcfdW+PyrphHmuKjZx+WKeJ1FPSjGJJ4ODzdnZ0uXQ79mcEtYZhs6x2UJnEoO5xOZrTL7G5kgpjsg5V+GCQ+i5OhRCTIQ5CPynQNJEyIJz3QIZUmlH5yS46zcDXd9LJdT7GnhZIcnmTIoRMAJL8bKdvu8qTMRQskhRgsd1Pb43YC1zCHz55JpxmoghCKTCOXzfsdts6PuO8/OdEEiNqapBif311cLZ2G23DINn2AxLkHc4HBa8vO98nb9u8VIwBsiFMEdikB9KYdM5dv6MHArJWlIM5EVBqVZuu47dxQVf/8Yvs9nuKBiefPlEOiyqSBQj19fXAgXLeeGQGAxn5+cM2y3n5xc433H3zl1i3BLmiX/9wyuur/ZcPn3C/vKZdCqyKO6k6uuhUByrXRBT1ZwKGOvFJR5IQfwKShE/hK/ff5357h3mOfD5F19wvb/m8eefM1cYU6XGHoO8mlh+hdDNMXAGsNYz9Ds2mzM2u3NSKhRmjJvBzpR6ToXvMUjHpfogqFmkVtL7fsB1XojT6iyuyZ2RB4QS3lVx6+nTp3Rdx2YzcH5+LsnbMMh1ai3zPC+Jbt/3eO8ZBvmi6Ie+Er5N7Y6VpRupvKFSr/G+62o3oAckMb66vhLSeeW1GGNrtiXQpFwEdnW9HxfzxWmGeYbxMDJdX2FKZJr24hHie4bNmcCvrCTzw7Cj227F4+MOZAs4x2tf+7/whoEHD/4ccb4mzHuePP2c6+tn/PjzR3SdxXeO84sL+mHLdncH67wID1iBl2VjEI8cUxXZHCYZBtcLCazLC6TKKPRLuz+lcL0fGfcTV1cHrveZKRT2+yJ8kOw4P/sGm/Mdr1+8RjfIM8R5kaGWlg6LnG8LdTLGYOprxuglcGw7aWJL+/6fwXJToHqq+rZ+/VWW9kv4RR0Cff2mMbRVQ/gq72DdiVnv66bX19s5dQztPtrPtMHdKcz+TWPQgLElIreBaYunb9dfb0+7BhrItlXhNpBXcrb6Rui4tQKvhmfttv6H/+F/4PHjx3zwwQdf4YS089AaJGrA3MJ+1tX1Nqg8Pz9f3Lhb5+QHDx4s8KUPP/yQ3/7t337Ox0E7A21grs7eb731Fo8fP+b3fu/3+C/+i/8CgH/2z/4Zv/7rv/6cE3U7t6oItfblOD8/57333ls6IEouv3fvHn/pL/0lvvjiC/67/+6/WxIL3eZv/uZvLp0iNeR76623FgL4v//v//u8/fbb/Pf//X/Pe++9x7vvvvtcMtLyDB4+fLh0QNQnRM+Demi0kK6WlN1yMfQY2sRQFx23Jm3t9ahzDUdTPU089bU2uVESuCZO2iXTdc/Pz5dEsIXRtUvrQq/LqWT5VJLd3isvU2hYFwv0fZ2jm55HuqzXaZc20TsFYVwn8+34ft7djFfaegxzVTppF7NUKqEaQ9dlIYnWaq+tVVGQRCSEgImxVg5lW2bBa1eeRs6URb7VidRmVU2yC8TF4Cx4M2HLhC0HXDhgyRhHDRZ2HIKYxx1mzyFYppQE3pBLDeKEnOyNQH2MdQtkqKsBma1dAusEWqGdBz1eKtyjGANKnNWOTE2g5Eg1ubASfOeaPGUh8k7ThKHQec/ZbofvevrNsFSsnXM1qClVftSxM76STMXBOpXCYRwrZ6AQk2DLU4Y0RYyJWKvBbBM8Z3FOl3k1bHvLbrA4k8lRTAdjnJdA0xrL+Z27XNy9y9nFBbmI8d5+vyeEQJhD7V6kyjsIFapUFZJUrjMLb6LrejbbrXRhnMN3A9ZJFd1QFgM9a4Q8bOkqbl6q33qB2opz77pOzqMxy3Wn58s7izUdvRdzue1mAGCsAfoUwpIUaSV+OYfPqQuZZX9Y8I0nhLXqPA5D2pBjhJIJkyfGULtgBlOTA2OPyatTyFpNWkuFPYUgiloxRulgoF0KMWWKMQokLqWaRJTl3tNOlXZE1CiOMhKsY57nJeHPNVGVRKwmC8YuXaF5mmCGcTwsRnGHcd8UF2qCAmA78BtycVLFH0eRv42RcX8t10WcyGmipADyKVKciXkG78muI3cbSi6EFLH7PfsnXwivarPjja+9Rd+Lb45hC7ZnOO8x3T2yPcPaJNd25+ocWFKWrooz4ipeiuWoxiT3TCzCf6EUuUfnWcQU5iBS2amAiGAzTZEUIYQdGCkE9JserCQwm80F3vd0wwZXn2dH2OiRBC98fSWDHLtnz6W0azzb0haFGCb+rJdTVcH1l9pt1fnbqmu3VfZOVRtv2ufLViFfZQy6rJORl6lG3jau9f/tsawD7FOV3PXYgJNBPRwTEMXTr8e7rr6eCmxUSWkdpL399ttf8RvQboCurwG5jlH30Xos6NIG9esqdauIpIRpTZAePHjA9773vSVQVa+MdXdDMfq6T1V/UnnbGONCmtYAXmFL6oatJn6to7wGwa0ilPee//Q//U/56KOPFrUphTk9fvyY73//+3zwwQf85m/+5nOqWHpcb775JhcXF4vnxtXV1cIzefTo0XMQuDZ5u7q64uHDh0vite5yrc91O996vtbXSPuZViZYEwLtTD158oSPPvqI+/fvL+7fev2qb8i77767bPOTTz5ZZIRP8S3WgfwaVtde/+1rp67h9u/17+2yLhLcVux4Eezp1Dy+zGu3FWlOPRd/Xssr7SHFiDHzApNQaNAC7G+X5m9X1Xikwq4k5lS9BljgJUbAO4BU7HJJZHINIiUY6n2Pd10lpxYsiU1v6V2hNwETLzHhc2K4lC/l7pzs7pLsOddhyxgMl9czc0zEHCFngVQZg3EOY6ULognDQmjue5EBrQGjEJ7dUtGOUYiduUKwBNdfE4vluA1hnsGK2o265IaYmWcJwKd5rFCztLhW37m4oBsG+u32WClPRyKpq9Ao39kl8J1DhXqFWc8UUE3IspHxloxhrhV+lv+dFk49DJ1lNzi2g8PlmRQEQhTr9ksRtaGLu3e5uHOX3dkZIWRimLm+vmaeZ+Zpfi6hinEmxiCJKuqabSkpcTiM9MNASpHzO3cWGV3nuuew7BhDsZIM+prApZyI4UgMt9bSeb+YExoksYhValXVx8RUTvgI43aLsZbr/Z5xmrje7wnzzGEcCZWEvVziK7CKwIkq98Z5MQesnhPGSMeLLIZ+lCwKYFVpS7thORWMN5JAVhibrT+amOacFkhgjFF4PZTF+dwYIz4hsBCxj6pYdulaqPCCJmQxpOXeVRdtKYXLfMdKBt50/UIgn6ZR+B31WosxMM+VOG9FPa4UmGIBv4EuSvCeCyaOYkg3T+yvLoVjMjjCPJLSzDB44VDEQC4jORqKG8gpkHCYSZ5Fh6svsX2PG7aMpWO7u8u2P6PvOzq/ZdjewQ+RbngN8iSdyTRRTJJnjHpxOjG4zMVSKxKLDLAh4uzx3jpcj0zjxNXlRIyZec4UM4Bx5OKwZsDZHbuzN+iGLduLO/je4zpXXeGrIIVyWZ6DlAq3ZjFNbJ+pDax0gfYtf1O7XnWbf0bkbV1OBZs3BfTrz932xX7bclOFcL1O+/qprsKp7sap7a3Xf5lge/33qd9vG/dNx7sO+G4jyGogdttxt8Fx20VZb3s93vZ/hRdpdVq3r1yKdtyaWGh3RDsO7Wd1XC35ex20rhMLDdy1C9F2XR48eMBv/MZvfMVQrcX7a5Vft6OkcOVHfOtb3+Kjjz7id3/3d/nLf/kvL07WDx8+XAL1lhPSEsc//fTTxeeinY//7D/7zxjHkd/+7d/m0aNHnJ2d8eTJE/73//1/55/+03/K48eP+a3f+q2FO6OJlQbbb7zxxsJ70cQiRlGSWhO+tSvw5MkTfvCDHyyBvSZ2p8j762tKz8ttgW3LPVEomSauDx8+5Hd/93f59V//dTabDd/61reWxObhw4eLQaDO06effsof/dEf8R//x//xc9fVTUID7bWuc9+qj+m4bwr4X7YYsn791P3d3nvra/ambsdNy6lxtdt50fh+XsurdSzivODADQLbEXdptwRqGvhJRV5NxQSTHXOiRAletJsh0CK3BGXOKoa9w1iHNY7N4PHO0nUG5zLWRIifE+dnTFeP6Ap0HoxJGDNAtyXZdwi553rumEfBcE9xFvM0U/CdoTcdzgqEyXmH830NMHucd/Sdp+/F/bhzQlI1zla4F9VJWGZEDLccWE92FQpV3cPbY3RuIMbIPAf206FWlMOSJJxfnNF1nt3ZWe2W2IVfcXl5WVWcLNu+R+FoIcQKN9POiZwf2edGKu1ZZIGtLRUb7iAbTI5AwpDxFV9uyThT8Aa2zrKxDhsyYR4J08h4uGIa98zzAYDOD7z55n12ZzvGw8jTJ884jCPXVzWxmGf6rqsVfbNwI+bquyBdmMrhAHIKWCMQnX4YuHP3NcI08uzJl4zXz5Z5t/V8qLle73pmKwpaKaWaGA41cbDLfIE6u8s1ak2q159jOwx8/WtfQyFcV9cCSbu6uuJqfzweNZs7ShOY5bq2lecTo3R2Ugr4ThSCTNcTu44cw7G4XO+bYi2mc9UbI1fPCIH++ColnFJkmmcO+wPGWDabzdKlyCUuCUPf9wsRPca4dDf0ZxiGJUlVIreY4dFAHSW4LQtVSioKh2mqymaJaRoF0lfd08UULlR/jkMtuBtcd4HfenrfM40Hcpwx81NMjtgc6W0AW+i9JU6BOE10JWKdXQQdqMZ9IV2TpxnjNxjrcd0G63qM6Xn6+DGX/inW91jj67NJkiRb4ZfODwzdOdZYfFVtMgbyooY2cdh/yWF/xY9/+McV2ljYDGcY48nFYujAXLDZ/BJnuw1v7M4Ytmf4bmAYhDjvncP6Xu5LZ8FUCFUx1dhQ5ZIF8ink8XLksFUnb5UB1sQD7ZrV82ebboZ1/fK8nsf0Ko/3n+miX3Cn9NXb92/7bPv7qQRjHcjra+uK/U0BeRuQvGgc69dv+kJfj2udhNxUPW3fX29Hq8mn9vsy423H0VZmWylWXdrxaKCvleJ2/6fO6zo4Pz8/f+6zp5KRdmmTBzgGou3+brp+2uq6BoyaGLXQm7bjodvUwLo9lhZaoglJ6wSvMq1KbH7vvfeWBENJ4ZuN+Etox0QTCh2X954PPvjgK0nfvXv3Fhja3/ybf3M5L3rtqOztOuj87LPP+Oyzz/it3/qtBdaln9PjartErUTvJ598sihIPX78mM8++2z5vHpatIlBy1Vok7t2XnQ+9bMxxsVjRJMQvcbu37/P3/7bf/s5z5PWoPCb3/zmcg7feustPvjgA957773l+G+SfP3BD36wqGKN47h00LSrpGPU8bbyvbqsiwrr+3QtErBebitgrPfV7kO5P61vyPoZcGo7LyrKvGyR5qdZXmkPuVQDO1OVTzBLEHIkrzZOxCcWfU8DOWuPuHH5XYIs67rqrWAYuiCBrk04JkyZoTzBlisyVzizwRoPDCQ25HzGVHaE3DNlR0iRmI+uy85LpdoaQ+d7kffsvBA0nafvajLhRWPfWiMEYCMeGdSKohGkBJRSIVzPH6N2JJQEK0FFfu5mzElUl1wvalDb7RbfeTabQcBJpapv5WrgZQQys3hgqHRoDQLhCCXT/xdn5qTrZsgJUzIO8atwptDbgrUiTiseH4WNk4ukxIk4j4RZqswxSvXeuY6ur74QwOGw5/r6iGfV43RW5HFF6SpV2Ixc+MZAjAHrhEzrnBOTsyyEcr9U/n2F7hTE0q+SZk31dFBXZ6su4lrhLwhIzxznZOGI2AWK5J10G7oaFOZKnFYOgvOOcZo47A+EGJiDqFItalkLyRpKEdK9wsac9SwqWGYlbFAW2vaSqOq1aqoRm7icG8I4yVwt3hXgnHAYHN3id1FKIUW3JBqtO7c6r7edEkHuuab7WEnXbV/G1DSqKZJLtyKK+VzlEx/9aVLF/ttakZdDTDFK12gaMSRsSRiTa0E+NfsyUAsXIu1akyAMxWhSb6rng3AiUooCIcrVpp5Eqa7dzklBwXvp3HknDtfWWYyFEmXHJUPMW1JJ5HImx2wBey6JjPU4O2Btz/ZMSNebsx2bzQ7f9yJrbNVvxFWPi9YZ3ogPhUEko20mGeniFFMk2c0FU5THJrLUct3TwPFkwtck7fU5+kUvpyr17e8/iy+2F1XyXnb5eVbwTlVO9fUXfea2LsurHPd6n6eqoDdt82W6Ey8KltYJSfte+347NmBRmjoFUTmV/LTSoTedz3bMbcDdBsltB0W/wxQCtfanaLepnYw2aWh5CG2grF2T9vdTMB4NqnWMOh/f/e53vxLUKzRIP7P2wTiVZLf70WBbuRbtuVgT0dvP3TbXNyXXOl86x2uFqlMJ7BpmtZaWXQf/N10HL/M8atWlXrTc1J140Wfac31qfm76+2f13Pt5L682QiFKNB2KrnYsKgnXPC+DqC4WUkF3OGOxC2n46O57dMItAhdwlo23dHaisxOEH0G8Jo9f4tI1Jo9AxJuObnuG33wN4+8x59eZZst+KuxDIOaCiMR6vPMMnlq5dEuw2lfi9dAPgrv2ht6bigoX3gMlY0yppFON/QS2leG5SmNMVe3IGrrei+JNiOwPGozO4s2VDZbKYTjrODs/Y7vb4fsNuQjGfzzM4p8R85KAeSN4+7H6NNglIOQ5kvQcwhL0KXzHLNKhGZujJGu9oe8Mu86x7cE7g6+Gd9YYvINSInGcmA6iyjSNI2Gayalwdrbh/PyCznvmaeLy2ec8ffpsMZwDanCbms6JBlhHw75xHEk5MfRDlcksUFKFqlXDN9+RiiGp3OeSzIlPRy5HOFCqajzTNDNV6JN0LY7BtQ7Q1I5H1yWc9VWStKN3juHOnZoYZulejCPPnklHZn/YcxgPtUOSl8QaMjEFnj37kstnT7i+fII5r5Av4xYIlprkiYJQ/UnxyCMxVKhWV4PUwrPLJ0zjnouLM+ZZiPTGygOo76VzUWoyqu7bIiiQlmNVoQRRgLKo3HM/DFAheypr3Jqwqcu2NQbTSWU8ppk8iXGj97UrU5Wltmxr0GtI2UnRnkSY9szjNXH/DGsy1sJm02ONIaRAMQbfDZh+A85SvCWFWXxVAOstXbfF9GcYP+A3F8QUCTHgjRE+jttSKgFeu1MhBWxIWDMRhiDneBjwvhOoWZCuo7VbiunpNm9w/5cfVI8Zz7DZYJ3Hdt1y/pYO65IAGoyR5Ee8Gqv6llHH+wLFVdCnrepTMgdLoWDxyjhCG5V7Iapxx8RCXz92NuKx69FKf/+CljYg04DvZRKK9gv21Jf/+gv1pm29bFW//XI/Rcg8Nea2MnmqSnnqMy305lSgflMCsf5fg9+rq6uv6O/reutxnCJ8t+NQGdiWPH1KIUjVmVroUbvd9u9TVex1EAjHhKCVwW3novVuWFfAlUR+dXXFp59+ytXV1VK9bo+1DVLbinSrjnRqvrWy/emnny7V+29/+9uLf4Z2w9prRj/z9ttv88477yzrKIdAx/rgwYOF5K4V+3ZudXsaSH/22WfLMXz66aeMo7ifa6IxjiOffvopv/3bv833vvc9vvvd7y7dDvWsaPkKOm/Ac0mLdpbarlFrFqiO5e250vltE6b2Oms7Ay0ErFWq0ve99891THTb6mnSkvh1XPq7bqPtMOmiHBQ93jWhu71XdMytaMH6WG8rFKzvi/XSnl+dM922fm6dZGgHaL2dU4n9qXG1nbCb1vt5LK+UWHjf0/WbhQ8hsqu1ugmgHQwNiozizR2uk+Bl6DoxdfOVDG0KxgQoAVNmTNlj8kw3HXDlABzIaY9B/B9sdwdj71PcGZSeXHYcyhkp9ITkSRmyLRIcFiRQULMqZ5d9u85JV6KTQLpz4F0N1K06Y8cKWcmoX27BYYxUn1M2Vc2nLNCuzldSLJn9KImJGrgJCbzHGeisZTu4CvFyWO8pubDfH4i5MM2hBr+ZvtNEzi4XgxihHfHxGiy3yUUpBdN4MVhjFohT76B3htfPPZvOVp6KqcbDrZTssRXjraXve8525wz9ht35Ba+9/jq7s3PBnR9Grq6ecnV5KRyAlNlsNmx3WyiSgPpOCMsp0iSjtTKb8yKh67zCusRc7Rhge5LzeFdQ2daUMinWZKVuR+apKvfUqrz4dGjApWR1cWSW8xdroKdBnMMVv3BktsNGDBu9Z5wmtoctV1dXzGEmhrici5RrIBsiT598Sd/12G9Yhn7D0A9QUk0eJLmkVqVL7eSg3bTqEN71nmkeOUwH/sX/8SlPnnzJkydfMM/jklg472X9rpcKfJEEwdqOzWYHpdB13WLUl5N2t44/pnI5nOvwThKLaTwsfCp1/HbOLypWl8+umeep8jE8mCpt7MC5vHQjjd1gXI/xhf6Nu5R8Tk6v1XOW6QcxtFw6JsYy9LsF4jPPoyiVxQBYrPWEqstkvV8q+bYaCMomnChRla4+nmyN7Q0U4dukUE0gbapqX0IZl3u4VNNORzGWmMV8z8UITgol+tizRjoeySAJ8dLB9TI36nqOJJ5gyM9xdFQQoNT7wTXiD6V+tjyXRGi3Un2Fcn1OWSPbTt7xZ7G0X3YvgrC0y0/z5Xdb1e+mdU9VVG/bxk3HceqL/9Tn1opTL6pOttvS4GBdub1pPd2eBjHrZGF9PO1nNVBu11kf7ym1nXbfa8hLC0dqq9Q3JZPrSnu7Tju/yluIMS4+F2qa1yY5GsCrhKwmLe08jePIRx99tHA8VM1KJV2V79EGmW2w++mnny7k71YJSQPnFhKlx9KS29sfDcR1n22yASy8hHfeeYe3336b/+g/+o8WvkKbKOr51/G012F7PZy6btr32sBbx6gB+PoabJOMGOPC82iTjfYcrmF1a9nhtpOh19RNieKpa0nnsr2uWojc+vN6zZ5KIm7ax/r3dZKwXnQcp54BN332VOJy22unxvcyr/8slldMLKSSKwo10H4v5qIvCKzAWtF/t1akKH3v8Z1jU6t9EqTkWkUPkEfIe4ifY/IBH59g8kFeL4biepy/h/F3MO4exb9BKQMpDkwRYiqEinnHFrx1NbnxS7DhK9a+67248TrwXqBInZFOg4R6iUSipERJogaUiwHjBXZjJUBYUEVNoGqtJZYalE1TddqWAMUag/GG3hkGb7g46xa4REyGEBOHKYgTc0w18BTsu/Z0Qq0kF/IC6ZmrcpHIuKYa9ElrxSnfxVD5GYbOGjbesOkMd7aeobMMXfUVUahMpro9y/k1RY6hK4XtZiuhkbO89vobbHZb9uPINB447K/ZX1+K50iQ4H7YDFB9AZy35GwEoFLhQPJ/YSEY18qvBtum5ApbE9K8wOaUi2PqeKsMajmSYCUUk2qwwqDE7yIfK811Xi22dqfquoCtTtkW4bV0XSdKT504d/sauD3Hu4jCgVBvkOurS7zzvHb3dSyG3ju5aJquRMV3yevaFaidF189SvaHUZzJf/gnXD57xmF/yTxNxBSEM1NFBXa7Hd73wh2qSX3nhWy92QzLF+2Uq2JQhfIVhT1V4rm1DpsSwUxLQOusW94vJYp542EkhiDyx65buoGaEHivCmoDpRhygf7sXDoEzhCTdPl8v5XXrMV18pDs+7MKo8qM00So/jUaUI/znpgTxni0a7XAKoUCJmaOpvrlWEtO1SSwNhBykvssl9pB0CmpzzVNdkR5NkvOoJA1Y3BovlLhh2RyCnJ+KcL9sA5juvrMqIm0qZwsJAGUy7BgTEG9fdDn7DKa+n9NKtQ7SM6cdJcorvJ8DOnn+MVx29JWYNsA9VQQeeq1l11e9OX7os/cllicWv60Y1wHC20Af9O212Nqg6Cb1jk1Vg2g1hCem8ap67yoM7GGKK0XDZjXMKN2e+sg91Rgug5610uboKhrd8uFaDsnbYW97aS050WTA5V9hWNHS6Vz18fRJgFakV/PX5tgtNtsA+52TtvzpmNuOwK6PyWKf/DBB3z66ac8fPhw2c86KWj3255zPUfrZb2NdQKg3Y9T91H72sOHD5fxt/tu74P1XOnSku9PFQTWx3rTMZ6q4rdjv61QcGqMN623Xtprt30WvEwCsu42vOqz8rb75ue9vNJet2fn+GGHiraLkRpHrLMxeO/oOkfXO3abns5ZBmcxXEG5ppQD5ABxIodn5HggTE9JcSLGkbNBVHr63V2MfwPjzyj+AZhzjHuTqThCcUyjwE9izBUcXehdQ9J0EkT73uIsWFfobcYx05WnlLSnzDM2d+A6cGfkUgVcsyFnS8ZSzI6CJSnhspK2az2zBr8wjvtq3DYSoxAxu24QdaBuwCCmWpvB4mzG28TVfiTGxNVVYI6REBNR5UZ9T+c83nqmQ3gOB28qucNUknbnHM4YsrGUIoZ3RoOfUvDW4K3hfPAMneN869h2hd4Xtp0GJbmqyEi2pB7KCy6+gMNgnGfYbsAYbN9zPY5c7vekFNjv91xdXfLw4R/z7Okl4zTxta9/nZIz5xfntWJecffWLGpG0mUJ5BIJcYsdJRlKMYqHQ4XLbbfy4FUolHTGSk2sclUtUwM3SbxSSnQdWGehBrbHqTni17US33qqmGzF4dwkkSl1tnIwLLYf8NYx9L08eKeJOYTqIXEpQXAMXO8PxFT4xjf2dJ3HmB0lCydhnibCPJNzrLA1SRSF0O7wXo47xsCf/Mm/4l/98R/zJw//FSlFNsMASKJ0mMaaiPRgPF0n8DVVLjNFkspi9HZ3eN8vXTYxZDNMU8DMkdHMVcLYMmx2S2JxOByIcWKeA9M8M00zxg6cX1zwy2/9MsMwLDLQgFwj1i6FCOW7aOeDEpfr2vqNJABOTTMdxW6rRO2OCzuIXKvzIrcbA9dXT5jniRyTeLnEgDGJkgKH/RUp7kkhM2zOca7H9ztylmvA1CBeYHAZU/lFeqy5ISloApqzdDzCmCl5BiK7fsbYQDEHQpzE0HHaS9eiZLzfYK3HuqF2OOHs/B59f8bu7AGwBQaRgi6ZVBIpy9OFrDwi6bDUO3L5X2BXZnGWd8Yy+G7hsPV/Bh2L9ktwHZhqFfsU/OW2ZKMNDE+1/m8LCl40zvXyIoJxO8bbKoHrICfGI2Z7HVS9aHtK4lR1oVPHcWrO2uq6Li0J/NNPPwVYSNxwxK630Jc2UGuPX//XajiwwH40uNfPt2M6Pz/nww8/XNSK2kSlTTba+VGnbL0OdA61uvzxxx+z2Wz49re/vSQBbXW9VQJqORZt4K7j1s7CZ5999pykaVv1b6EsqnD07rvvfgVqo14eev7XAWWbMLbwrnfeeYcHDx4sx6PqXDof9+7d4/33339uvt5++23eeust/pf/5X9ZnMPbeddkRKv8+l6beOjY1gmFJkBtJ0jn45SbtUKUNpsN//V//V8zDAN/7+/9vee4H7qdFgqlc/f973+fcRz5rd/6ra9c8+tOSjtmPc72+aNcl/b632ye90hp7x2FmLWJ4Po+O5UwrNfTddedynae13+350EleFWB7KaujC7rsZ16pv6illfrWFRdfpAvYPG9KhXWIX97l/Eu4m1moOBzwZdMztfkPJLinpIjOc7kuKfkQMlRAuRuix/O8P0Gs3kD3BnFnVHca8CWzE7cqYuQISVwAYMHU5YgxlnwPuJMrk7bEZsiPidhReQJgSMUwFWy6UwxHQXRts/FkrIl1kBEVVlKgZjUNAxK7RKM41hJrOJGXmmsEryY6pdgpfKfqtTtPEdCSIxTIKS8JCymGJxJUgo1uXaJagBRg4aswYfirZdAWakwsr4DBu/oveV8Yxk6y9nGMbiMt0UkNLM5Fs0bbIxZoBtUnkEhpsSzq2tSzsRSSFkCnbOzDQbDdrvl7p07OCtwoYvzcyGzNkaILcn/iCEv2FpBjjESwizk9wLbGBYDP/FcSDUArx2LmJZjl/k7ulZTuRclZ8jH/VEaD4oKM9NFMe1q+lGMwk5s9VypVWEDvff4RsbVWcc0BfGhiB2b7Y7tdscwDNUJW8wIU4zSYcmpGWsdj5K8ranYe4EkXT57yjyPcn4GgTz54rGzxRpXEyOtgMvR5Zr4l5KZQpD7tQBKDtdqvrHLcRukGm5AJJiNFg26pvrvJIHvfDXf24j6lnNVIc0s239eWlXuB4FAmqrKZXH9ICRt644JPuLQbbAUIxBEa4UP0TtDmD3WJOgdOXtK7ih5IkXAOHKSfQ5bEWbwfb/ct4Z87LrWubJGbe9YXLkXWJUBixQXUoQwZ1KcpViSZzIHKDOlRMiHypNIhBIqb8WTFDaZr+m6LTGMOHeBczuMlcKGupEfRWXVW6MmN7XVUgoN5Ov4XHCLGIGtz6E/m+VVA/wXffHdtr3bKv8/zdh+3su6InnbctM83TZvp7bd/v2qcIxTgcqpivC627DusrSvrQMgfe2msa+7HG3Qtk48b0vq2mNox69BdAsfe/DgwVfG2u6nhW2tOxLtT3scjx49ei7Z0GBXXzvFAVlX7dvkoE101sfY/qyr7+t5XI9JX1uPZz2n7Xvrufj2t7+Nc+4r2z3VndD3boIj3RTo37bo+Nfbu6nzoK+dOq5T+z11Hd02lpv2ud6m9/45fszLLv9neL690gj6zRbn+yUI8li8L3Q+433AmYhnhvgMEy/p5i8gT+Q4MgeBbYQpkFIhhkIxHmN7thdv0G/O2ZzdpT/7Jay/oPjXSaYj4SsuvpBjrlVdqieGECNsrVw7K/wIZyMd17gyQvwRpD0mXYu6EYYZhxnuYfoLMh05WlGp6TpwHsyGmGGOmZBqIFiiRNdZSdKZEEM1ypJKtaFi3b2v/JOCMQnnEpuNx1nDeD0yjjOHw0SoJnPi9C3Bna0BjM0ZhwT/Z7tNDSJM5VNkQsiUVCTwrUlJVIIuBuvAW8u2s5xve3aD484G8fvwYiAsWHMo2ZCiqe7NLFAdI60FSsWDH2LmcJj4lw9/yNV+z7PLS3zXsRkGvvlrv8pms+Hi4oI7F3eJITLNAe8FOqQkU6myHwOeXB20JXh1z91cOWX6GNlstqKCRVnMA1Ocavx87DRIcKyEcIXqS9ehRDmPQOU1HIN3Y+xiHreYxmmGRiJjsCSINanzaqBo6bzD2o6t2TKHyDjM5CJcmFTg9ddfr6SxN3DWSrV9lm6FOpiXnFEHZ1uFEECgac5aSk4cDnsuL58SwyRjLeJ6XbwnxYTzns12tyibGSu3dq7JXyIR94fq3CyJrsjxuiqj7GpSWiWji5ybTFx4L7uzs6V6X3uWy5yJSlkmxgD+qDSl/2t3pRSBmxVj6JyHYsWFfDjD+J5kHDlBjKUKJVgISbhOZDof8R46Xxh8pDORrvdY22OsZZ4NKRl280aSY2CzvYN1PdZvSJp8GoUvpQVSpHLHxsLQ93jnq2qcUCQkERZ+yuWzicO+MB2uyWXGMoPNAn/yooKVEsQ8CyyyenzEGHj2NGGMxbues7PX2W7ucnb2DsbsyHkLtgjXwrpaXPC1awqhwv4EpVe1+ASBWqGf1OKKlcTnz2hpK4haWTwlCbmu8K0D0TZQO/Wlvt7ei+ACtwURrwI1eJXA5tS+18Hdmhjdrt8G6+v3XxSotAGrrqfrKrFV53zdQVkrFa23rf+3uHUdp1Z9lWzeqh+1HY01ZK6di3aedNvaOdDPtiTwVsFJ4TPaQdGujCYMLTxMjyFGge3oNnXe1x2d9Ty08qhtJ2XNbWgryR9++CEA3/ve95a5VaJ1Wylv96OdPh23zomOe32e1mT5zWbz3Lhap+tTkLk2GFelqfa60n1pp6Edd9uR+J3f+Z2li7FOvloSegtr025Lu7/2utMxtj/ra7OF4Wlnqn1t/UxpP7dOxtYE6/U8t/yhdmztoveFXh8venacn5/z7W9/+ytzcOpv3f5t89Wu8/NeXmkvu97Q9WCImJJw5QqTr2G+xI6XmBKwbqakQEmRfZAqfgyhwgAsxp/hhi3bu3fpdvex3Rmufx1re3ADodtiTIcpG0pSwiMCn8GIGZqTRMKQsAQceywTJV5S4oESr8npklxCRVYMFHdOcK9R6JlzT4qeFDxzkiphSobCgcKBEAqpINCHCusoJZJjrhX1tMAlnBUjvbPdrgZSeUkofC++GM4arq+uiSExHcal09B1orEPBeGveIbOYy04U8Soz1psZyRxiMLbiEFuFK2+uyrbO3Siy++dY9tbBm8533o23tB7GJxAnMzCRxDIVqpEXA3K9fVSIBbpUuwPM48//5wnT5/y+PPPiSkJXCkHci48efKU1+5Z7t65i3MdORW2KaNl4Vj5D1CqB4LIsQoXQmR/vRdH5pyVI8GxE0Op6mO1S7Eo3tQKsxEhAFgK0BJ2OVWDMkBXOQdCMAaB86lxnJLwcy5LJTtngUqpupExEHNZkpKu7+Qa6DqsNfRdx507Fxjr2J1dcH5+zm67xVpbfR8mxvHANB2IYV5MzJbqc7H0XUdfux8AcQ503nN+drbAXzbDRiRsjaHvxJPCOg/q2eA9mgDkFKv3isy/qcF1TIk0TfQUeeDU4yzFYrVrUiqhPwu3SHSmjxXyGMNC5Na5j7MmpSwJ8ZH47ZbXjHVYv8H6Lbgd2XhSAUrEmsLQ9xjbYdyGWCRBlAsikUIgz3sMI3d2F1gnpIq83ZBzR5gr68KA7yrPwcl9XTJHL5U4k3Llx8wjMQWB9aGKayzHpRwsa9wieew7yMVRSk8qhmwLJXmRc3YJSsLkTHEdLga6GClxXjqD8/iUGPYc9oGuO2O3vUfIB3IJGKQL1vUdzu/wtmfX7zB2wJqBVBwpG+ZkRAEvCyywVK5OmL6Km/5FLO2XWvuF/qL2vX52Hcyeqiye+typ7a7HdGpZb+NlvsRf5jhOvdcey22V+fXSEndPzcepBK39+6bq7G1V1nXVug2c2iCzDaZU2aeFba35AjdVYds5OXVcbdKi77UE7HacLflXYVQ6bg1oNbhv1YLUmE1J3uvxKQm87facCkhbXskpL47vfve7AIvC1TrJ1ONRh2r1ttD3ddEkSAP/FuLTqjG1148mFG2C1ao3tQmDzg/w3Hy0571NKNYJbHstroUH9HU9/nUHbd1tac/tKc5Hex7W891u99QY2vlvYV+3FRDablmbLK2XFwX8p+5j/X/NQWqvPf1bz8VNxZfbxvHzWl5p652dJTgtM4YZm76glGfk9CVmfgZlBhcgSbUzzLmSqjOKJXb+HnZzQX9xn/78G7j+AtxdKE6IhwapEJdKcs0SHBg0pilNUhGxjPhyhS0HYv6cHPek+YoYrwQC4nfgB2Ag23MyG2IaCLEQY2E/z5JEFEPJArmZpiBV7uqpIHjwSo6OiViJwaJcM1Rn7q4GtAGRmBSYkUGqoeM4MU9CPnXO4DuRsJTOS6HrRB1KEwtDlkCOQkwzKRXmKTJNI2GOTOO4dI6GoccbR+8E8tR3jvONZ/CWi62js0USFZA5SQLFUSKzchGUtqpJRS6GQ0hMIXF5NfL50yu++OIpV/sRAwy9p2QhiV9fHzg7O6/dA1dhRwKfypXoqjCoiKnkX9mXs8eqg3I6FA6kJGD9W7MGhdVgjr+3ClDAIiPrKvdGOUB93y0ckhTTsj7EI1SqLkceQv3Rjk4lB1trMB5cEaNF7y1nfsB3PXdfe52h7+m6jhSFYB/maXGoLnU7zgq3oNQg3nt/9JQo0iHzzrPb7YTnYQy974VkbSyd7yRxgBp8G6zvasfFkKJU2mNVgjLlaLiWUsQl15CUq4lghaoZnCiQFQtZIU5SIhdoW65GbzqPBjXKw1RAz2KUaRcCuCg8OLA9xg0LDFGgPrJvka51WN9Jd64UUgzEHChxJE3XODPhzYCxHmMLxVoxgix2gWhal5cugC2VrpAjhYAtIznPmByFdxXFXV49VIxRk7mCNaKa5V2P8+Lmbp0RaFwWDo8pgDeSTJQMJBEBsA5vPdmFOkaRFhay98ScngAzZQMpXhLTjDjFO6zpsOYcw4B39/B2h3NyH6XsKEoAL1oQkXmawy++Y/EqnQJd1sF4GzDc9PnbAuJXWW7axqskF+tt3JRcnEokTlVM16+f2u9t87wORtZB623baqvRbWB421y0AZbKnLbme6e6DrdVoG9KFtsq+vp4TpGP2+1oULwmSbcBsgblrXzpqXO7rna342vPczvmdoze++d4RqfmtQ0YW2hU26XQv3U8yiVYE5rXwXVbXdd9tJ/RpVVSarsZ67k41Ylsj7+d3zYIXm/n1LJOLNrX19t5EZdhPbe3FSXW83ZqfOtE5qZtrZeb7rf1Out7b3287Vhf9Cw8Na6fZ3LxSlvejJ/QzSMlXkKeKOYgmOISocgX6xSrAVxKGOvxfc92e5fh7M/Rbd7EbX+FbHpS8WQMMRl88ThjccaRrciolpIxriKtq3qUKZk4X5PmA8RnwAyMzOGanANzzLWK9wYp/xKpOA7XHSFBzBDyJaVcCYFTK+Op7o8sJEkkuFL5Rq2ceyedic5VqJMx1SSviOswucrXHpV3nj55KrCvyIKRNk6qt501DC7jXKHrMpaEyTOHa1GFGueZwyFIMjELbyNTaqXYInr7QnJ1RFzn2Q4d5wOcbT13thZvDb0TVSVyFpJzTIQwMx5GQpiZwijVWGeW4N35XuA8xfInP3nKYZrZjyOH/UQsln6zk22WTEnil/DFF1+wGQbmOeBdJwZwWbZLgcH3CyxmGkdgYlMr+dvtZvEFCCHWRK1ns9lUydWOWLks0l2osqhW5YP7peugXQVRmBKY1GajHI+yKGbNMVaehEWh9vrZY2eEBV5WNNBeSMgicUvR5MTTDVt2my1nd+7iq4JVipFpPDDu98zzxGF/RZgnUoycnW0pRZzRD4c9qT4chmGg63tyrrLBKXH34g7GigoTQO+7GqRL4ptyqt4lxw6Odp/meSLGyDTNC48ihFkSyMqdcM4JLCiJB4qrhGDve1x2lJKXue/7HkomRYG1GWMX5SlN5kzlP2ElqXO+R+XiUqomdwxYBkwZYJ6OnAtEJnc6RDIZXCbW87Z/9iWH6ydcPv0xPl3Rd5kcn9D1Dje4IyQrh4UrpEpjrvPY6iGhfJwspjI4C2c7GVMpHVTlqRAah3Rc5bL0KBtDmkrK0ZHt5iFVgS9bCyWFnIN0cnOAeOxS2To/mJ5SKsTskLCxAweFyJhHrp49ETlmY+nclr7bcX7xNq67y7a7z7YfwHjmuCEm8RXZK4n+F7icqgCeeu+2wPmU8tGpL0GFUaxhHfq5tltyalkHPBqgvcxyU8BxCou+DlDaxGkNU9L/19t9UWDQVmd1DG1l/6aq7alzoT8qJ6qBY0uGPjUPLWFX32uhQ630bAuf0ur6TdeHfvamxCzGuFT279+/v3hgwFHuVWVp2yr8d7/7XR49esTHH3/8FY6CrhtjXDgW2hnQcbdzux5bmxi029Nzrq/rnLXJQntNKGSsnaP251Qw3SYhmkjdVNlvr5f1+NedFk0w1tt5USDeni9Vrvrud7+77L9NXNoOyzpgXydr67Hfpn62vmZuel/P8amAfn1fru/1U8ttz7b1fk+NsT0fpzgt6/VOFQHa/39RyyslFvP+R+ADpoxAwthIlSaSQnKp+F7TYVyH6y6w3Rnd7mvYzTege51izoT8CdgSKy5hloKbRG0Ldthqd6IEgT+kQJxGYphI8VCJ34EwQ4yWKULKRoKQIr4CIVWMeSnVsKr+YBQiXhfVgTEV22yqPKtUW50VvwuVHRXFna4SxiURmefIHFJ1yk6kKNwQsigzWStu3s6Ct4JHjyFz2Ncgr4jkbM6ZEBJzEHJ3jEUJAzjv8NbRdQId8r52JzrH3V3HZnBsPTgTsQVSkKQiL4lFrPKoUjmfpmmpvi8k3S4zhcxhijx58pRxDsxzIAThBZRcz1uOlBRFrrfzVc73yFsoVbtfbcoNZgn2fVdqN8GyGTYL3MnDAi+zNZmz1mJyXirwxlo2my3b3Y7tdkM/bMUrxYk0q7WGaZyIlQhuK8Y/hiCvhZkYpUPjqmGitdVVneM8YCoXZVnKc78Kjj5LN6TKvQ7DBmcsJWfmIPMcw8xUyf05R/EucT3DIP4KuRS8F35JKWXxrxB1qsBhfyDnTOc6RBhLlMBsTSqwIsnqnG9EBmrykyt8ECo2P1ejuw458cduRZrFCT7FKOpM2Ho/luWg1T3a1MTW1m2rOpEmB3JcyD1QMmnOGOuxXroLGAemw2aDqX4xKUUhp1flXWM3S2fjMB4I80QeR+bpQJomwjwyu8yTLye6weMHy3bXgbGEZERpLM3STbGS0Pd+qD4d1UzQsMy7StOaKlFtCjjXkbKYO1oj8yT9GIH2mZI126z3kLigZ1MoVfVKJWkxFrKvfhmmyusKHLJUQYCUC8Mw4DtX95XI2WMxUgSJ4q8zpmsKP8L5a1w/4/yAcwN9t6NzYrxJ7l7l8f4zW26qvN+2vGi9l6li3/TF/KLqXKsic1MAfuq4buoy3HYcr7LeTfu/6VhuO4ZTlfcX7WedSLSKUu26Dx8+/EoQuw6Sb6oQnwrGT+2jlYtt574N7tpgs92fBpynkij1rNDX28SoTYpOBXrtfLdj1H2uj1GD5VPBfTvvL6pCn7pX1qpH7X7X98CpuVtD3Nr9rM9tmyS1x9AG4OtEQP8/5cPSnrN2btdz2Cah7fG142jXv+neXC+n7utTyfOpca+3sw76f9rlVBJ9at+nnkcvu92fx/JKWz88e0jZGKwXCIizXQ0WbSURGrxxeBzg8dtvYLrXMLtfodh7JHakLA7C1kZsCUCgpGuBVFAWjLgzfiFl57QnpZl5PoiSUsw14M5MU2acPSF4DrN0SkKayGVCWY0aJAr5EjQ4NVaVdOS9nCW5sBi893TDwOLZhUBinHX0Q0/X9ex29SYscFmN0g7jvkIgCh451s4WvC94VzjbeBQn/uxyzzjPXF1fVz3/itMoBoeTaqrOifU41zF0Pb3vONttGXrHZuO52MKms5xverwVEzxTAiVnwhwXzoJ6LczzxFR9AQ6HA1DRKpXs7EPk2dWep5dXfP7kijlIwCmytEWgXjmRk6gMdd5zttuy3QzSRajuyxiHyRUSs8y7w3e1us2Ac5ah7whRJFc1kfBeFMgWnolZ8gqs9+w257z+xhu89vrrnJ2f0/mOru8lKPOOJ18+Yb/f8/TpMw6Ha8I8Me4lOBUvBOlEOWskSev8EhQvMKxq9CaqYRUqVmFCQnoX0rKtTvL9MLDZbqFADDNXV5eM42FJLowBgWL19F3H+ZkYwOVS2G7lwaqcDuck0JynmXmKYOXa225knLbed8phKQW8O5olhhiJgoEiq7IT6vmR5cFS7+FUk5A5j9WLI2DwtTt2vP4VcpZSwncNXIva5bGq5lSTrpwlKY2J6ynh/IAfLJvt5kgyzwnyTJwvmaY9X37xY+Y5kmPh7t03hTdi4ckXjxn3V2ytKFMZLIfDLGphPtBtMv3G843NOb6zxAxTmCSBnvdQxK/mbHcm5o7bC1FOKpZpioSUKMbh/FATuyqY0EUIlTdmtU8RBCqVK2epzoE1VJ5PppBIecYZJ9esEZibdGQqD8b6hRejHVSTE95vlvullELMkeA3pBQJ40SYRuZpz37/rzC2o98+ZrPZMgxbzjZ/HmM3dG5DZ4dX+zb4GSyngtt11ezUe7qcqvzCV020dHsaHJ76Ql1DXk4FtFo11u22lf91oHPqWFt/gZc51lepbq73pT+nZEvbYGxdzfXeL1j8U/NxUyLYBpnaBVgbksUYl4r/vXv3eOutt55zBl9X1xWys668r/ffjmMcRx49erTwCPTzT548WYL11nOinQv9X8/xuuq72WwWI7x10KrH0QbW+t46kNN96PwoUVnH6r1/Dh6mP2tS8KkfXa+VZ9XrVBOE+/fv8/jx4+cI0vqe98+7YytZuj1PbWKhc6/BvvJK9LUnT57w2WefLedinQisq+ttkP3WW28t8rS66H7axLXdVqvUped6nSzqHK07GDcF4O31uX5//d5tScZ6P+vnx8sUEdbPs5v2fdP+X7T99fsv25X9aZZXSiy6bU83OAlcEaJpwVKSJdkOTI/rX8N1r2H9Xei+RrEbir0Q2UoLvgYpii8o2ZDxFBLkSMr7BWaiyirjQaAchzFIFT8lwhzIqQjUaHGgFcdbgYII5GHBr+iXuj2aT2FUA14SjM4KWdvWToVAn0Qm1i0+VuLQHEPk88+vquGWkJ2lO5FxtuBcYbepWvNYYpTq9uMvnqDqMNMUqhdHWcbje3GX7vsNvhvw3rPdDXTO0HuDI2BLxhHxLtO7zLn3dA5cCqSQCDmRcxT4VFLORFmcoUF8GkIQYzfnrGDUgZIT0yEwj9ek6ZqtTWx6g3M91Kl01tTtpRqYd3zt/htc7LbkKMmGLQ7ja/fC1up3BRzhRLLVUBr4kqmQGi/wJufruOTcpZyZ5sCde69x595r/PJbb3HvtXvcuXOXrusqHl2CfGMN27Nz5hB4c3/giy++4PLykilkMhabagBYCiVJFyMV6PseZ1zjDC/wqZQi85RR/5CSs+Z/pFwwKYOxAkeaR+ZRYGb76+vKT0h0na9zJRwPgUrJsTsQ8z9rkU7KEq9X4YICqcg+5RIXcnWTBFVadr3cDUPX0fuO3GdS5UGMtYsjcCGOnynCTdhuNnhn6zUu+w9xJmVHTBGFd5kipQPjxHQSqklkvc+uL6+ZppGr60um6ZoUZ1w3YJzDHjz7p6V2EJQvU5jnPTFO7PeXOCvV9xIthQFjNtx74y7ljbvMl0+ZDtfsL59wdn5OP9zh3tf+HK7bYLsNw3aL7wrd9prD4QmH8ZLD9VNSmIlx4vpq5trMPL28qvd5V3lARhKfLAl9zFE4M05gSnjHfrwkxJlp2kOO4jOh3i9QCf6ISWV1FF8SL8zitO6rCpl1XngyTooGyl/x3h3FApBnJt7hnWXoevJuS0nn1UleUKimXBPHSx5+9q/JRTxttts3X+Xx/jNZTlXq2qCkXU4F2jdVtk8F3acqeLcF9u32NZCB56u06yDnNhjVTYHDqWNYBwBtALVeZw3niFG6AqoadCpR0vXXqkX6+TWs5KaK8jqZagOn1hyuHe977723BHrKUVhzENq5bIPQUwZn66qvkqnbanirQtQG0Ov50O2tJWHXle42QNbxtUG2wsLafa/Jxvfu3ePx48eM43jSx0MDfP3xXvxC1knGGtZ2dXXFZ599xoMHD75CKG7NANdcjHYeTykg6fWnCdp6Xtrjas+dJmNrpbJTcrLttaSJl45nnUysx7M+V9pZaqFZ6/PYXkPrc6ivt4nQ+phvS/7beWuPrZ2bNcSv3eY6qWm3q4veFzovN3Vn1sttY9a5WSfDt23vp11eLbHodvjOYck1RHRkHLl4Eh2YAevfoHRvQPea+E+YDoFd5OqNGyU6KpGUBFYTQhRvixyJYSblyDwHUizEmDkcAiFmpikyx1ThLLG6XhfxtNAwqSq3qJw/yxe0yJlaYwS+USEkdoHQdAu0SbT7JVBwVvwKhCpQQRBJKvjzGIT8nKsrsTECc3LgnGHh3xZT/Rcy4xRrUJ+qClHlDFToz7Dt8Z1jqF0R7zt2uwFvDZ0rmCQqMzZnvIXeWzoH3hRKDtUoLBKTYMPVowKqupImF4vLc63CHleSCy8nLIVNreR774WQW4RUWygVfiOGhp1zonIzT/icxeMAW9V4rIa8gks3LGpbGhTrWZJOmDhva5dJx55L4fz8gq7veePNr3F2fsZutxPoUSX2ykah6wfxLvAdIQkM5+mzS4yV6rDg3RM5VbJySuRSabAV++69x6jSlBU3ZSqMTsjtmVKEqEuVXA3zzDQeRAmtyn0aA87Z6jjvFsM47U4o3l8TQIWFoUTsenwgtXCDCBwoqVy7hRqYmnqNGwMWjzOFlOW4bUwkm0ScoM7pkrxk4cHkpkMj62RIVDlVi7FVkCEmfCcnqbFuEZWxXE0P80wpc1W4ihBHUpmEn+NBCwEpztWbJAhUyRcwCUyimEw/bLDWkadnxJAxZqLrzxm2nn4jUrLGbzFug3NyXwgJ3VJiJtqpdmzEiDFFSLZgy1HumWwwGWyWY7C2SOJVW2UhIT8RWbdAXrjdtZNXssgIl1K5YmW5BmxNLrwR7w7r5dkjz59euhjOUnKHq4aOek41EXTWYo2nOIuJVYChZHKaySlwdflMoFsGZfL/QpeX/fI79SX9qtt+UYVO11l3LtafPxWQnqp26nvr6uxPu6yDhnXVcx0k3lSlbD+z3uap5OGm/Z+a57b6vl7W3IlTSUW771NjPjUn7TqngtY1kXt9fOvf2x9gqcSvx3VqjBoEn3KAbsejS3vNteu2ia3+/aJzsw4G19X+9nrVzsZ6OTXW9Ws3XcunAu828H+ReWU7v6eS8XUi0j4X2gTrpi7ITWN90XHdFKyfSgRuKljo7zclDy/7jHqV10/td/36Tdu4Kbn5WS+v9FTc3vlVur6qnRiLca8RYk+MHYfkwfWweZ1kPdZ6DL4GjBEXAqVEYj6QswRd0zQSKoY8xMQcEuNkiDEzzWNVQ4oiLapxlsoGFamCG/2xZiEgSwXcV9JoV2FPSng2dN5LguQE42ytp+s3bIaNJBjOVuJsYBr3xBAIUXD5McaKMQfvOzpnMF7gR94XdhupRBZjuN5n5jlzGAMpq9xqD35D5x1bLxyDfpCbcugHzs8s3kU6c0mKe3K6JidPCnDYF0wK2FLYdY5uM7AbOrwDcmI+HAghVBhMNV7DLpyVBXefokijDh3G7GpylI9yq6nQ+4HuopNuQDWPC5WjEIJIjArKyVBS4fPHj+n7nt1ux1DncXN2Rj8MDJstzgn/RrkMOZvqZ6EJTq6cmqpWlDMkqZxLkCadpLd/9R22ux1nZ2eEELi8vKLoeNJR1ck6MUUb+g333/ga99/4Gvdee4PHnz/mX//wh3zxk0dMhwMFU03TMiZIQKhGkF0n14Jzgv+PKdbjLoQkbtu5FLp6raQYGblmPhwoRRymvXdYX5OUyrORxDIwTzPUpEBhaqnyQuYQliR4s9mIIpma/KGk6SM+TInAzguUTCBksl/Xeax3dK6rx6qkZMkGcpUZzpuNQOV2Z4zjSIiROcnchlKYZ8AkbJzJ+4lSYLuTL5e+H5ZOx7DpGDaWi7s9xtwDk/HWEeaRcX9JGIUf5T0LjCzbC7LpidwhIwpR0SIBv/EivxpnNv1MbzNnQ0+xCesOzOlzDFcYBmJ6A++3bPw9uos73LlIhPMfk+KeMD0lJYRrZXpCShzCxGGciClj/JZsPCF5gpho4FyoCXnB2gFrNuzO7+GtxVmDUd+UkhgPB0KYub6+IpeZlCdSFXYwJmNI0qWrhRkbTU0yHc74Ba4mYgSOEE01IeywtnLZrHTbrIEYwsKZKVEU6+YJYiyEODNePvoZfEX8bJZTX2anqoXr6vpt22rx5G1Frq1+ngqedJ014btd1pCZm/Z9EyzpZeAGp5ITxa9rRVxlUtWhWo+1na9WLcb7I+m6JR23+2k/c+rz7bHGePRpWAe4uq52ftpgcw1Tabd3W+DfzkOr5HQqqWnPZxvc6npK5G4r5bqPcRz5gz/4A+7du8e7777LJ598wjiOSyV+DQnS6+GUdKz+6DnT8awr+e210TqBrxOCFuqjHhEK19J967YU4hVj/EqVf90V0M+2crO67VNSti0UqvUQacffJtnrZGp9rlRatz0fp6BpbXdKj7PtDp3ipaz/bt222/dPfaZd2o7GqUThFNH91HNGIWdtF+Nllvbcrcd7UzJ66hjX2zt13D/PBOOVEgu7+WVM72rAashmR7KWbC02GYqxhADGJmzMWDtLsFESIQVKSszzgRhDxfkfiDFWoq3An2ISt2AN4Bc/AxTarrwJNeGqBl/GLuRLayzWVSx2hTUZa6U6qARqZ7BOcc4SkJUUCSkyI2pRKUVCGAXuUInmzlQFKVOJ6kr8LQLLuryeyWUiZxinXN2qWcbpqkyo855NL2TjzcbTe+jcRM+MTQHKSIlRDAGNIxlHsRaTLcYmhqGrkBqHzQobS8uPVrsBjr4Utaoe5gWC5DuHL64qBcX6eZYKuPY0KFXdBoGcSUW6VrVxxCjV5sNhJMaMd9WTAEPfD2CiJBTFCFSkjlkBPHqejc1LJd5W521JFBz9MOC8h1K4vroihJkUAinMCzRLOQbe9zjviSFKtds5+s3AxcUd5vuBw/6KnDOHMLG4jVeIXkqRuW5z6Dsh6WpXJIn60hyE0C7XVSbMIg+qHR+FtIDwMXKSpCCh5P6sbwkUKIgcbU65JjFp6T7EGKuHgjgrK7ymLOCnIxyv1K5dTAlrhRDuU+3E1QSxGBaPDFu7T8KLEJ8W13XSzQuBcJB5nataVM6FmEdJRjL0+xHrRDrZO4N3houLjs4bul7bGOL94P3AZiOwwhQnQrxmcZU2A9gN1m2X18QJ24ApmDwDM95eU3zAGUOu10kugZIKJScuryzjvGdKkb4KHHR+i3eevvNgRJ41m4GQEv00M0yjJOIYRGuhkPIkxYWkfirSCc1IJyFlGaOp3SdrOrpth+sTrj+TDmyJtaAgLtwCqTRHv5Wmj6fwUFPVt4wx9FVxy1qn+Wd12ZanoDMGlbQ1We6LYdPVwkzkeh9e5fH+c1/ayuX6S/CmL/v2y28diN/05bquGN72RXpT1fJFy01B1Isqgutq+HoMbYAKz2v/31YpXx/jKdiZBjlt0Lne3ikI2Bqusj7uNnBaB0Hr5VS1uk0o1+eife1lA6JTgVSbBOk233777a8QtfUaW49Hg8XbglJNhtpg+7bjaF+/rcp9U4cDjj4W3h/N1/T9ljt02xy1yXw7ljaxWyfP7X5OXX+num6PHj36SvK3DqDX19mpMd+UEKx/Xyeq6+2e2s/6M+tjPmWQeNM9f9MxnHpmnNrmTUs71y96dp26Z/5P17Fg+xbGi6NtAWKxJFsoNmNSrmThGUx1oLURQ8KmkRAiMSQu9yPTHBirukuMYqAngeER+lKBMfJjjgRJLduZGniKy3D1KbD+mEB4rbTXBMI7+q4TnLuzWJOxVibeGIHrTOMkLtq1Al5KIudQiZ8FR8HbUjs2BmOSwFu8qVXCzH4/Ms2RGPOCOzfO0fVbnHH4vqfvO4a+42w70HWW7QCeEcdICU/F0CxkYnbE7Mh9Jw7hthPpfxPZbHqGzuOdk8p/FtnTGCUYcs7JXFaSsQbcorwz12q8emnYJYgN0Yj+vS0V2p8XMSSt7Kdc4Wg5CgzNFDElC7H6l4hbc8HQdz2c5bpeDdqqdGxuoBrqxm1MqjApQ9cJ+VSq/45hI0lcypmrZ8+kQ5EEPtcqIYmyUqhdi5lNErPC7e6Ms4tzsJYvv3ws1eWrp6i/hpD7MzGIVGlOCe8s6mWRsyQNoqoVmOYgHhUpM09zne+ymO4dEzuWZC+nzBxD5V4InEq7QClLYrHIHNdzMs+zkNOdh87XKvcRWqYYpJQFJqeLdjG6lKoCl194Rs7LPeOllSQBeq1+d1k6ktbNXM+BHMXxeV85TodJE7lSifrgrWXoLMPg6Ic7WOvZVMUokVrWpHrAekcMI9PlTC5gs8WaDcZusd1m4SqZIuRoTMJwgHLA2WuMKRRrSMaSjRGTxpLE5TpOON9ziJHd9pztcEa/G/BuoLNbnO+FV2EHQkz0c2A7TcQUmOaJGAOheo7ECHNI9RlkECeY2m2DhYztrMV4T9eLQtzueFFXlS65Z5yT+XZWuRgAYqJHnqrKWsBW0QZDvWZyfeyZYyJjgOQMkLA2Vrlug3GemGA/ZvKPvnilx/vPanmZQGm97rq6fWr99efa//X9dcB00xevVtXXn3vZRYPMU1yL2yqhp37Xz+hPq1Kk3YJT2zk1D6eORY+1DZbbanf72bby3waop3gI+tl11Xn9/nrsbXW+7WK0wa2ut4a/tNtaz68ubSdmPdctZOidd95ZPqMcg9Y9ex08A8/J2Lbzq+ur0/epY193TXS/6+2cgjKt56A9NzFKV6mVXm7PZZt83hRotudbuyXaTdHrcR1065ysk2w9hvb1J0+e8Mknn/D2228v0r/r832KW7ReXnSf3vTcOXU9rjkZ6/fbruSpa+K2AsF6e7c9h24a/03HcArudtu8nHre/ryXV3qafnmd6Lq5Bm+ZEHKtslaHWTLWSss/l1w1+0V5KMySWMQwVRnMJF+6qjajMaZRyuIikLTIWNpqsKUJBerj4Hus9ZUjoeRbIZp2Xbd4HHRePQsEB51y5DDW8VSZTcF552V9kdyEUhLeGTpvsXZHLpZpKuwPkRD3UuHO6trscJV34FxH1w/szs7oe8/ZztC7wMZf05knmFIwCVKOxJzIuSdnx5wCrh/oXM8UtsSQOIxXnPlI7zlCm1Ik55mYA3OcCampiKMBTKkKRtKR0KqsKVQsfmXMOFHJEfx/JXsLmr92ZgweR/KuJhNSNbWCVxL+Scmc3zvn7OycX/rlX2IYevqh4+kTCeSF/yEB9MInKKBO1j70VTq2w+wE/pRSWaRnry+viDFw9awmYBU6ZIxI3qYKAfNdwFf515wTbvLig+FEweri4oIwTzz+0b8mx7gYlum14r10sXIREq8G79pBGMeRq+trhr4npcQ4jfTeC+m8q8maM6icVUlHHouzch1qh2KeQ+M1cbwefaedBqqSVE+f/CKfq3KzKo8sBPkqZBBTrXZbhjiIOEGXapfOUrJg+031ZvHekakk+RCl22iMPPyNXeBofcpstlv0lk1JrvkQE7Yv2B5CmmCeycViq/N539vqaeFw/gI7nHHen0kHwDiK3QAOjAMO2DIzXT8m5QApYEwEIlM8yLWWDd3GYlwiZuk4hBjp+h2l39J1lsvxGZel8KTzbIaBe/dew/cF6zPWQykW8FiXcVj6vkoh15+U1PxPEupSuwpHHkzlCBnxtClJO5nKkamqbpVbllMmxEQoYoxXcpZOaE5QxsrMDzhbc+sKf0spLx0LTUzEnFH25yqPK2aDYUOscLnt+Z+N3Gy7nKrOaRCxJlfe1JFot9NWCFsFpHb9R48ePedIrGZkNyUdt1UMTwU87XGsK70vG/y2xPHbEpFT86fH3pJcTyVd7bKuDN+03YcPHy4wkkePHi1qT+vPnpq7drw3dTH0vK/J5G3wdlMleV2517Hp59sx6frtflqVqDUkSOFHf/AHf8CDBw+Wa0aDdfXDWAft7ZxogH/v3j0++eSTBTKkc/Hpp59y7969xUV7HbTrNtqkqx2jjufjjz9eztHHH3+M936BSmnQqYTvt95666RHyPqn3UebLLZLe35u696sP69k93feeWe5Vttr5VQielPQftt1fgp61F4T66Tt1HXcJuHrY1rv89R9dlOAvy4g3JT0nJpLXedUgUV/X3ttnDqn6/v+VYspr7K80panORBzObo2x/rFWQqmRCCRSiDnQE6R/fU18xxEjWYWWE9JYSGn6tfuMZUAUXJS0qI49La674s5mq+dCuuwNbHoqoypdRVbXo3WFkKrkS/7FBOhksBTkmNZJEVLgpIxtlR+d+UnZKnMCpRH1IDmKnsbopiFoWOsUppd31c37Y7txtB1ia2f6a38uFpvTrGSuxPEXLdfRDnJGUcppio8BZH6VShMzsRSSCFUHkiFTpWCzdIhKLVjoQE8HMmgQiiPC/Qo14Bp6Q7VirrB4tzxs87LyDXZMBXMYY34a5ydX3Dnzh3u3Lkjqk71TCu0Tedak4uc81GxqyodueqrIcRlOQ4D1Xl8YhoPQlRX4zxzdIHWzoqYurkF4uO7jq6XG6qrPApNjEtO2Kp2JaRfuUanaVqSDU3YUqodm5jwXvaZUiRVrwSqxOhybIYaRB7vpWMHDumOqHFfmOUcplwNEW31BpGkOlmZTTELrIIB3i+wv1JZvqXyVnJWkng+jqUSx60RjxNTAYaudopcVURz3uNjwjtx/u46cK7gqpt6rtwCisgQ22qmnUrEJNmRq4kMJmId1Z/ES5cDJ/dTMWTj0QvWlITJAfIoHjcpCKMauV5LzpQEtpurJG5f+QsJ78A7SXZTkefQlGZKSfTjBhcz1nc4L10ZjK/doyrzay2m8rKKMNyXDlLOaREtUOK7KoVJt0t4GRmZk1KZ3UZaVZQSxSCvhOWe0PkjB0zlYtjapS1GVe0WQCIF4TaJaXsl8idJLEoRv5dUqBCuXzx5G25vtd8W0K/ff1Fl7aaE4GWq+Ddt77Z1bxrXn+YL+qYg6UXH/DLVxhcFPDcFhPpaO7a22n3TNm8KCl80L+vgcr3dm5KWmxKudRB507Hp/k4limuviXUSoctNgZ5upyWxv6hqfWqMOj4NxNsf+KpyVNtlahWs1mO+6Tzedl2dmqf1dtfr3pSsrJO/9TrrMZ0a202vnxrvT7u86rlrn0E/TWfg1PV527ov+nw7vl/E8kpn4PrqmgJSVU0Jb8SDYLvpwWRSnHn69HMOh4P4JExx+RKWL1IWyMnye+3rm1pxddbVL3y7BEvO++p4qxKgturgO1zXCVHcWvpa4XU1sbBWzOxAAq1pPBDizH6/X4jIxiAO1Z2n9xLUxjCKqVzKdH1XDcYc41S42hcO47VgsnOuhoCOwW9F2anv6XY7umHgzsU5g0+c+RkbfozJlxB+gipU0X2NzMB+doTkidkxTtcYsoxltiK5mSImBVyJ9M4zdFZ4KyGRY2Qe90KCH0dUftTW7kyBJWEQsroE7wKJChwO+6oipM7VHAPp2v2AivtGUsChH+h8h7O1Q5ALuVh2mzNee+MN/vzbv8Kdu3c5P9syjnv2+6taMa+Y8ZSwMTLneQmoTUpkI2ZuxvlamXVVqtbULlfh8tkz5unANO4JYZbEqEgC2EePepEIlKqX69SrrKdIqXadp/OOzjtiiOQkJFghqldYUa0Wz/O8wO5AAvI5BGKs13btUsVYydYqZ4xItSqPhCIJoZrVScdBDQMrT6JI5yNG4a/YIO7iQ9/jnSV7VzsEMi7q/dP3G4G1dT2a/CmnooVktYsmYTFF7AzkjO87LNA7x26zxbuOOWSSK/Su4J3wTWJ1+ZZOSyTHBHHG4ei9JeRJqufFUX20cfvIsOnZnUFf7+POW3IStbRSBF5FzpRwTY57TJlwRIyrilgFcsy1Sxcwk8GXLWd3v0HMG3yEO3ffwPc78OfkNJHjzDiNTGHi8RePwfhjl9N5XNcvcMCuKUbYWoxQLkqhLOc8p0RGu60iJ5zjTJwnUppJaZR1UlQSDaakmlREjIlYWxalMIsF21XopxQmjLXkzpIqxC1XxSlKJJZESYkcCzllpkPAmuoK3rsqLpA5HH4xXyKnllOV7dsqoi/75dgGuS1Mpu0A3L9//yvk0lM48ZtUbNb7vqmKuB77+rM3BU4aDMLpLs1NAWAbXHrvv0LCXc/5qTGeImy32/3Wt761vK/dgDVhVau6urRz33Yk1kmJ/r+uoCt86P79+0vFXfdzUyB8Smr01Dy1x62Jw6mkRI9BpXPbbpBCwbTT0CYcwEKSb8f87rvvfqVC3HbOTjnFt3yPm6rSIET+x48f8/jxY959993niMoxRj755JNlDG2Qe0q5aX3dtXPfQoF0OSVWoJ/Ta+ZU5Vw/u/79tgB4/cxol/a8ruevndNTz6EXJfHteVxfh2vexall3Ym5ae7Xx39b56I91va9NgFtx99eey+boPwsl1fay/7qmcAukFa9sxDDxOV8IMzXxDBzGK8laI9RPBSWMO+YSEguIepApuKUtTthrVRfqZ0JNbGz1uFdV12SHd53mFpZtVXCU7wCXDUXk8Dp+mpcAuSYmkAW6JyTKiGFHGcQdBW7bU+pxOV5LoxZHLJFarJiy43FdgK/cq5jGHb1BHf0Q8H7RG8f4fJMmYUISnbE9KZUkYshHiwpR8Y51CAlC34cwyF4QrqU7kO3EYffFKCAySLDG0NgGicOh2vpWIQg3RwrAQpAiLF2KkClRJeguPIdoEBcVdGBruuO3Ac4QkAW4rUo2Djnuffafe6+9hpff/CAe6+/zjAM5FJJ2kVEUqWqairRvAgkSiv5uuss0Cvv/PG60CQnxdqtGLl89rQ6aQdKLjhr2GyGJUm14mzH5BwldxRf4W+pk0StZJyBzdAxz6XO37yQrhV+lyqJ2tpjp8ctLtt9TVoEe68cFq1+W1thaCVXFSeFQcndIJCkXAm9NfGwHts5si9LgtdXaJUkNRWzn1I1W6MSj0U0YTF8tPbIxWhOa87iGm0BSiFMhRIj0Tn6HKs8sEjUium8IaXMOM3CPapKY8K1EfK/kJItnTW4AlZdpFMiFQmuXS5kJlKZ6Oe9eLX4ATWw7L0kdQZL6iClntGoLHCUjmjJdGdOrqsSMW6D8Rt8f47F44vH+h1YD0a6YMb39Ea9UgQ6SeWeGGuX5M7ao9CBXJK1E2eOnBXtBhmF/pVMjjMpzcRpTwx7cp7IcUK7GFrgsMZhisHggVSbslZeKxBiqvep3F+mQDSSRMaSaldF3LzVjyalTAqJw0Hcyg0wDBsRsbAgGsG/+OVFX2SnvvROffHf9Hl9fV1V122/TJXxpnH9NF+8pzwp1kHAegwvox510zFpQBdjfGm9+3VAth7PTeNaczSA58jCbTDYBsY3BU7teNYV9/VYT41Rj2GdQNyUBN4WtJ1KMtvr66233mIcxwXK1CZXMcbFu0L/997z3nvvfWUfpxIhTVAUmrUmQmvArnAsTbw++ugj/tE/+kf85//5f/6c0R0cE5j1PteJQ7vOTV2B9bJWgNLfdZtrVbD1++tzsA6+23N16lzo3+0416+31956f6eW9TX6Ms+AF6136hn2Kp+5bd2b5mK9rfU8vOgzP8vllfYwHfZYLxKk1omrtMJSDtdPiTEQa2DVSqiLos1R1cTUL3lbFW4E519hMOqsW42jloTCWpzrpHvhPF3jlCzeANVYyhq8dcxBAtHDXuBYMYaqoMIRQ+8sgo4SKIxWlfthqJhlOIyTyOCOacGV28rz6HqP7wd8N7DdntF3nt3WM/gRb0aIn1Nq1RTOKKVnSneISQKJcZoEQhMTxgqOvO87SnZMs2E/XjOnmc3uDG8Ng4GSnZCBQ2KeJg7jgev9oSZyAlmRG0lUgkKIzyUMOWemaVpeS0vAcgygXOUzeO8XuJIE1aVWbjVgsXRdTz9seO2N+7x+/w2+9uAbbLcD1hrGwxWpqFITLNKuqSyBUakeEG1KIxC0Y7KJseQsPIQ5TEzTyP76SrwiKs9C9P9DTTwtvuvAgAvq4F7VqJJ0KNSno++6Wl1OhBCxFYlni0gYq1pVzhyhR1YM9Pq+xy9dNHMMpmsnzFnTSPlKMmuNWQL+vqumaAhXxRnhBmFMhZBJwNup8hjI8dYuiTNFhEtFxksw9zZjcAu8zSyJjMKjCiXV+QBCzGSbamCdBf5Ux6Ru56l2afaHqfo7dAtcUeYbqZYbQe2oa3wswl1RVSSRYB0JccS7DrO9qPe4p1uKBh3JW1LqJQGNMyVO2BwwJeI6MdPMRBID2B7ntzgrqlLGCucBUj1+j7d+ud4XAvQi+GAWV2wq36vkvOht5XLMeo8Qwcq1yEmS1TARpj05XpPzDGmuTuQObx3eI504nOynpEpoF+GFolyzCisVRnsVSii5whurrGw99zkXYirElOVZFyo8NRd85+h6v7jL/1ktp6qDL6ryvSgIuG1fp7b/MttbV4fbQHm93k2V0/Xfp9Y7lRy8KOg4NW/t2Fquynr/LwOHedExtYHfmhuhQfEph+o1lv2mfbWfORUwvux1cZPvyHq56fyupVzb5f79+zx8+JBHjx49B3HSeVFJ20ePHvH48WO893z729++MaFaB7Itj2M9Lk0qWonWq6srPv30U/7JP/kn/O2//be/8pkHDx4s52t97DGeVja6abnp2mjne60w1iYWpzoJp7a57iy8aBy3vX8q2bzpOG7b70/zHLrp820i9zLPpfX2XiapeNHy0xZQXmZ5pa1bC31niWFkHhNPxoN8sca54U6wfCljWljG0V1ZjaCsrcRqr9KwFu97jHOLWV2bWHiFs2hiUJVuIFey+J4wiT9GjGkJljWgEpK5OBh7t8Fbx8X5hQQMRUz3Ykx8+eQgZNCcyMVSjMMPg+DMfUe/3eA7z7Dp2HWFjct0PMMwYbiGWawAUzonpjtM0TGGTEhFlJNSIKWJkvZ4C3fvnGP9HYztefzFU6YpcNjvSWkWA8ExMnSe7mxDnAMzIt87ThP7vRDHBaJRyFkw65sB1NjuCEfjK/9736EE06yv1aSicx6nxF0NmnMSMikG6zpee/0+d+/e41f+jV/h7OyM3fmmBlzVIC1GcoxM0yxO36MmU5EwjosikzhuO4WTV0iTOLunGNlfX/H0yec8/eJzpvFwVBSLUXw5DFURSDoI2+1OGjHWsxk2uOpcXFJkf33Jl1885tnTZ5VbIJ2BcTxQCmy3eYGGSSwpAb4mGeoR4pyjH/qaDIhaVYxpSaITEKJ07+YonRVTP+eck3E5R+c7Npszho1h2N1l2GzZ7rZLkrK/vq7bEUNGDXxTRpL7GICAmSZJCJ3n7Oy8unlXKGGFcqUsEL7WEFFJxiF2dH3HkJPwEDBstx1T8HSdJe+lYxJzqDwShRxK8B5LxMTEue/oeku/scQliVT56Hpf5sw4Plt8LEoJNWHpcH6HsxdstuekODNOl/Q24kzClpGcZ1KesbjandBjobp1F5JJiMSzwMzKwrmp0tNU47sSl9clSaxdjYWfoKR70xyDmOyVnHFErM343kK3wdBh7Zl8snn22cpEooAR5rh4VNpCNoZuGJY92tptEhiWJEqqLqX3aS7KtcjEe5Gry0sO19fs99eMBzm/MfzioVCnApp2OZVotNCTm/wKbvv7pvduCvLX798UvOtyE4RhvaxJ1OtxnarSngqITo1Fg7WW2KvvrYm0623fFDS1cqK67bbrsO5IrOFHWqHW4Pijjz7iW9/61nOu0/9/5v6lS3LrzO+Ff/sGICIys6pISqIk2pbX0bG1ztJAgx70oAce+KP4Q/njeOCBh73e14NetnxeuZtSs6UiqyozIwLY13fw7I1EgYi8UJTozZWLlZEIYGMDiHgu/8ulhKCdTwuaY4wfkXvbOW4ljMtzbGMZLDe1q6X/xtplfStxXFbcl/NuEJ9GaH///v1MigYRC/jiiy9mGFk7XlO1upRYtKD7iy+++Na5tuei+Vi0NX379i3/+T//Z37961/zX//rf53XcTnv3/72tx+df7vGbZ/r5GqdyLR9balLrROqGCNffPHFt6711v6X98El1+vlWK7TpTlvQQq37vuta932eem53Zr3ct/PMclc3mfLuS/Vydbnu9znpeSivbYlD72e69Y5/aXHixKLnCIpaIKfZliKVIEFTqOqopOqX4azmpOWjgJKCL6qEqy1tpXs/EC6FuyzqCqZCoeyRiQ2rWmeFM0NF2KsJnop4sdRYFjVE2CGYdUKcd/3M9nVWfGSEF36XBVbIKWqUU+tOBpb1aU6OmvpnaXrFcYUOnum1wGnIyaf5yAlJE1MGj//XzGGItCFVCuUVYWqqMw0jihdKCpxrnK83k+14ljQOZGrzGpMSeAwwTNNnqmaZJXCvIbNWVww9hWf3rD+dcxOzqV5XjwIl6YkZOjcZH3VQ1Dd3qeNYbfbcX19w6vXr7k67Ol6iyYTc6LkWKFHNfiPcYYbtQ5B61TMHRJjZsUkgU9BC+hCCPjxjJ9GQpjmhCJVF3alhNBsc8ZaS9ct78uHAC+mRJwmjqcT5/O5QuArSbeS3FNO8+sNItM6Figl6mFtHWr3qpF7c4oi+0khlVINC0XCuJSPEwutNb3q0cayv77BuR7lxFBw2O1ms7z7+zumacRPE8fjPdF7xvEspPOSHmBRjZxPqvwhPc9NnoMFnG1B0m/O6zFF4RVrjSugjMYZXe97R2ctOYtrdeNNpSzeD4LJEojfWH3/XG8wBoyRZHXmdYQTuTyYxRlAZUkYYgRtJrTZ4fobjLV07FF5pJQAqpOOXU4UbSlIkN6gZHPvqzCTnueG3UOu8C3Y39yBqAlIWWwrXSVFdXGRnxzlpwhvQuBN9RmZ1/VBfe1BQGIxmVJmdbzGJSo1kS2NgN+IUvOZqdqBq0m40pjekGKsxZzqR5IL0f/wPhZbwfrWl/w6IHjOF+Bzt3tqfo9VEJ+q7q+3uxSwtvc/NR6rrC73f2nOaz7JpeNuBXHr35/zvuV5L7sm68BpK6GEj+FMl+a6PO+n1nAriF8mZPAxF2S57/W5L8+tzXMN11kmXMvzfUwydv2zDJjX26wTnBjjRwpVa8nkx+7Rthbr5G25j2bO2Lgoj90Hl+a5taZba7s+3+cWDJbv2YJAro+/NZfHjr31+3IOW3N5bgdgeY22CiZbycxT+3ts26fm/pcaLzrKOJ7wfiIEIW/nqoIi32gV1tRI1w2G0ToUFdPcCLliXOfq/8XMzFqHsTXIdLJgDebUiLGmwp2in/DTxP3dPafzcV7A1ikpPCgOGSP7fvX6DV3XM+wOckOlxP39Xa2kjyKXg8aYHmMNfefo+x7rLPt9z+BgcNDxAZWPlPBHcjqTgyezp5SeXG64nxznqLmf5Eue7ElJvBGMdhVrbZh8JEXP6f5MzJqUFaOvHgdEqX4qS9dpShFuxDhp8RU4H/HeM/kJ5xp0qRdJUifE6ocOUUbrQs5xDrAb/Cn4hweuVbVjjERryV2mc92cFObc/BYy/eD45NNP+enPfsann3zK9dWAkJ4ncqvSTyN+HPHjhJ/OMt/xJGZxpYh7sTEy587VczAfdQeKorpUn5nOR/zU7sHmVC1yrVLNzSLL2jk6J7K1KKT7YKpXyenEh/cf+ObrbzifTkAzRHtInEKIWCvRsiC1Kvm9Qp5Cu9dqp0NcksVPI4ZA5yyKQkmJyU/44Am1eqyRINNUErexHd1ux0//1b/m5vUnvPn0JxVe56AIYfh4f8/pdOR8OvLVH37P3e0H/vjVV5zCPX7yxBwxxjIMYnQoEKdYz0tga21tKS3YVjNcSoJc8ddQKRJioBsi1nZ0/Z7D0JGu9nVdPGoKFYYjCQwoItI90RpiDuwHQ1GWYWdwTuO6vvKZIsfjkRg9WmeccTgN5IkQAse7W1J2oDp+/MX/g+sPDIdXnO4L3iec6okFfIhgHaUYUJmuA2sNpeh63g/8iXaOLWhvamPy+kOwn9IDf6ENpXTleGn0zFtIlOzJ0ZPzhMoRSqhJB5BMzQXKDH+jQTuNqQ3CmmRNYjzYDcOMPctVMSql1gHmI2jpUkxAeE6W65sbrq6vSYvOsR+n5360f69jq5q3Fawtt29Vz+VrbVyqZK63uzS2Apz1l/hTX+pbAf56Llv7Xr5/HWyvA6zle9frtgxGltXndQX1/fv3s4TpOlhen9tWkLzc99b81+9t/x6Ggb/5m78hRqlkv337dg6AH1ubtdzqetut921VipfrtJYwblClNtcWkC5drVui0daxdWvW/IB1F6RJyq55EOvzXlaqW/ekza+Rr5du3e2YLcB/+/btvI//8B/+A8Mw8OWXX/L555/Pc273yBIK1a5N+70R0dfV8/a33/72t/zqV7+a5XeX+1m/p81zed6XxrLC3uBzbX/tvNdckeW9vZWIrGFrl5KbxxKFJhzQ1nG9TbtGjxUd1gnq1ufBelxSWlsfe+tzZusZvjRemqh8X+NFR4t+Ev+InKuHmQRHCvUR/lxVvXqtq8qOafwJja0VXqUt2poKaxJlJ1P5AdqouaJrKuyJAjGEypkQuFOrfJdKps5FvpIp0Hc7rLXs9ruqCGQBRcyFD7e3VWpWZGJLMfT9IERsaxmGHucUnVN06ozmhOUeEwM6eVGuIVOIxLIn8oox7JmC4nhf/SiEjIHRBtt3aHOQ48cklfdx4niORD8RprMov+RELjXwMSLRmZWhFAvF4UwhDYaibYVOSODZCOudc1grAdXslt0q6U1OF7nJQgpUWslHldScxeSwCMNcAupmNKhlnQ6dOFj/5Cc/5dXrG3aHjlIkIYox4CvR93w8cjoeub+/5+7ulhgDKVZTQW1mydehH2oS2czoGr9CJGTDNBF8mKFqrUvRgsBGbJWKPLMcMKiZK+KshaJwVuRwh/2elDMphErMpnYnHqAzLb5sUr0pR0opnM7nCg8TTLtztiaNcv+XClWJs4jBw32aKaK+ZAxvPvsJn3z6Y372xb/hRz/9KfvDFd3u0EAzNLnc/f5AP/Tc3LzicHXF8f7Iq9ef8cd/+YoPH95xf/9+9sPoXCVAxwfokTyCBpukK9R4IdqIoVsutZuAQGt8jKhK1M7VcbzrO26uDwxDz957phCZfOQ8SaJJ0eRKzh+9+DWcphOHg2XoDa9uOpGt1b5W+oUjpHLCdll4EM5xuPkxsVhysYzeE3LBBs843ZPChOl6MpqsDcb2aGPI9TMHZUAXNIoOR46BHCYRW9CSeACookhjrKpQ/exmntJD0N7uBVUTR60MWlc+UC4V5jfSpGNVhUuVquJETUZb320KVTUMRW8sOSVO90eOpxPee37ys5/hqtpa+yyIWZy7Y44zHLGR/9XMWxOeyzwqXwNqN/IHGMsvwSXkYUkABr4VLKxf2/oivRTgr4+//iLe+rK+lBA8VUFdBy/PHcvgaiuY3qrCtjXbgoqtj92C3EuqPMC3gs3Hzmlr/+06rj0Z2nzbNl988cW87TI4Wh7jseRxub9L63Ppfct7rv29BdtL6MgyuG3brROJdq5NaWz5t7UST9vXkouyPP9G0l4G0S3Qfvv27bxmy2B/rWK1nGe7hi0haOfxm9/8ZjNwbQlPSwLWCevr169nlanlPdZ+b2sHHytXLRO5xxLvJfF7K5ndug7L+a0Tukakv3QvrO+x5TbLe2nr3l9ut9zPpSRh/f7HxlPbPOfZuDTWz/yl6/KXHi+DQuWMuGo3WFOriCvMtyBOdiZ5KqOgSp26WZHFYqxGGUkctLIY7WiKPOKP8AAhKDnVxOLMOJ6ZphEoMx5ZvmhNhWNpuq6n63oOV1eVHG44nydSCpyncSZAaiUJjbMW1zussxz2PZ0p9DZi04jOR4hfQ54oZaLkjoIl645Ijy97jnHPOCVuT/coIloVul7gXK5zGDMAiphGcgEfIz4kgk9M40ROXnwqKvwL1wmUQyUKGaMK0ZkaRFefjmjnBOyBkG5qUFTm4Fd8FhpJu3WYmAMQ6jq3vwvRWBFpQZaZeTHOag6Ha66vX/Hq1Rt2u4GuM5Q0VqicJwRJBPwo12o8n5jGkZQiCjWb6rXE0VQzOq20wJeE5d8mKX4V8cGzQnwe0iKxaJr99RzygxmdGOtVMzilMNYx7DW7/UHUjsqxBqUPwgIPcKEHSIwkFkLCnrwnVhiWtY4UJYEWWVgzz2E5v0aCh0KnNbZzXL96w+tPf8SnP/6cq1dv6PoBpY14WKREqV4E1lqcsjBA3/fsD9do44i5gNaE6PGTdPDamrVunXAnItnIsbXSKPuw9lqLMpF4IFSfhliVw6oClNDcFc5ZIZNbjfWhupJHUoKUISbhfTT1tNMYiakwDZmu0zib6GwkZShZAvlsJAlTCoyy9LtrdNbiOp9i5ZREUpzIOVDo5P4wBlWliXXtPOSSQZX6eaTIJZHiJNwWrVFGkrWSMzmBKr14ViwwUrIrPcM4G5xMKyU+H0U6M4okTtlUVTUe7pPcnjWo0KoKPSugSqG4jhwTx9OJ4+ko8sUpYcScYuZvxySwwpBiLQoUktK1sVHdY5RCZ+FitGSjPdsCBfzrj8eC8ue897FxKRlZvv+xxOC5ScE60XkssHhqrPe1DpbW57V8z7LKvcbsr4/RgsBL570M3LaOuT6/dXDV/r6uUi8r7W2bBot6TCnrUsK3NadLSdBWILtc42Wguk4sttak7WsZ7DZCdutCtDW4VJleB69tLCvsy+vfOiotsWgJ2XK75WgBcZPCbd2GpWv4evvldbmU6C3vr/U1X3Mz1vfuY9d4a43WY53UP1aJb/PYSqCfKjhc2s+l+Ww9I1vbbu1/fdz1mi3nsD7upTk/Np5bdPlrJBcvOkLX9VjXIbCnhy6EUkJ8lODTza9r2wJSi7LN/Vr4FFYbUbupiUWr0hrzQPQOPuC955tvviYEzzRNVZpT0e96qRjPMo2K6+sbdrsdh/2VwGlK5jye8eeTKKeUpupkGTpxxh4GIfa6XtPpM0Z5uvwHVLylnN9COQs0QTmy6snqFcW8JpWBczhwnBJnnziPE0rB4bBDEVAqs9sNWOtwbsf9/Zlx9Hz48F5gQdNZqtzW0g87gtdEjPhnZAWhoFSVny2FkDMnMp0p5Njx6asbur4HJFiyRrPf7R6SgxBmNaIY4hwIzxX+GoHknGd4FDAr/QicjNmrgVLo93v6fuCzn/yUV6/e8Mmnn9K7jMoC6YreM51HxtOJcZy4ffdOgqfjUXDk7foiwZevfijGiIKN1hqKQmsJwnL9SanxUwSKFbyoYTUseZ7lXTUpift7xUChtaXrepHh1Jah63D9wG53xf3dPf+///W/yOVPnMfzA+egwIPyFTPfYk4sJoE3yf2oGYaB/W5Pc5Q3FXrzADtbJHFKc/36Ez757DP+7b/7f7i+ecPu+jUxFnw44f04c3BolW9aUqIYdjs61/FvfvELXr1+w+2HW/77//fvub/7wN3tezonPJXmwwDSrTDa0HcDnauqbi1Z1BqrRUELLRwUpS3j6USMgYzi7BPHKUDlJ726ecXhcODmtePGnwnBc3d/ZvQJ7xP5XBWLPNzFwOkYiL7Qd4rdYDHqBmvg6rpH60BWnoQY1hWjyUVLxy8VUUsrZ3adQNMUfjbai+IVTmd3+HDieHpL119JkUMV/HhLmI4chk9RSTPeHzmfPxDDxOHwGjdcYQcnZnJKk7KeBSdybX0aXTsARmMtkmLpgsriQj/5h25C4+j4EGYYVK4JeyrV84IssMtcKK6we7VnUIoxjYwnTznpeT+VqUMukVwilEROoV6qqiBV7ykh04usrbxWCP4ln+7f31hWJFugsiaYwjYUCL57VW0r0FkHsY99yS9fX1ZZ1xKg6yrm+vjLsYW13wr+t7aL8WNYT1vXt2/ffus82+9bFfelatQlH4OtYPLt27dzArH0SrDW8utf//ojkm/bx3pOywD9ks/A8rX1vNp2630t97/c15JD8NVXX81z/Pu///sZ9gQP3huPBcDt3P72b//2o2uwDKyX57wM9BuPY6nmBMzruIRmff7553z++ed8+eWXDMPAL3/5y01Y0JJj0RILYHa1btd66SXSxlJxautcl+u4XtPlmi+TmpbINEjZMilZQq6W5768F5awsGXCsjz+MqFuf1/6hqyTiuW1WXYGt67tVmfrUuK9/Kx67J5ZiwRsbffUWD/Tzxlb815DJf+a40VHc67HdoOopihd9dKrvGc1qTNVwUlpJR2J9prRKFMlYZXGKFsr10ggWavUKUsA15IK7wWfLgHjg79AKRmlDa4zdE4gBLv9AWssKEWo1c6Qs8CLtKGr8+qMxVmNM4reebSK6HJGhXtUmSj5JN2JFMiI4k9ROzIDmR2T3xOy5eQLk89MoZKna1WzwcJSisQQub87czqN4kJ+uidGTwy+ytxmMgplHFZVW+VKzpwJ71p4AiAqQ9NUmPwkwYtSlaci59ZA9k0aVjV0DxBjmIPzto4tscjWVvJrG2UOlHUlr+qq2tX3O7q+R1upWOcUSCESfSBME+P5zDhOeC+Jg1YKWx3QtdIPMJEsCUMIAqPSNQAuJqOavwXQ2LelStQ21+u5s9CI56XMpHVJBioFqPJ9rHNYKz9dv6PzsSbI1Y+kqTvVCnFT02o/sZKpQ+VSNNWmOWGrDs1yHR7w8fNF0ApjLIerG25efUq/u0IbJ0phtbM0jSdKEgO0xocoM8Fe7vvUJ4zr6Pueq5sb3nz6I5TWTNMZzYzfqksn5G1Vr3+jFTfSvFYW9MLYrxK8xQDPg9L4IGaKacEz6Ycd3TDQ9wJnQ2nMacLoQMmKoHPlHcg5TGMkBUXwGqMyRsPkQemAVp7rgyhJGWMwtauS8VCkW2F0S5TE90HcrA0FQyqZHM/kcEJbi9adFDu0Q3UHht21XMOp4NwOrQ3OHbCmR1zlhetlm/t35RPNN1AldofJQw7keE+OgVIEZqYR6V6tq1KsMQ/r3+6DUjsbpYo3NJJ4vRqTn6p3jsDJQCSIJamsrt1FEk41c0VaEcahtJXPAVW5VUYvGyk/yFh/QT63cv1d9v+X2H75nu/StWgB1hb+fB0QbVUptwLB5e9rEu5ym0vzXQdSsC2xuuyAbMFFlq+tg+ytcekaX9p+HcwuDeu2tl3uryVpy6T2sTVZz3GZyLQ12FqbNtZ8g2UitzXP5TVYJgzteI2fsgVXWs99nfAsA/42j0uJ/HI+W/LA62Mu379c82Xy9OWXX350/kuuydb9vNzfpWdkfe+s5/DSKvxjBYWt7Zbnfen+W1+b587psfv/0jZPJT//J4yXdSyGG7p+mKudqsIRZpWb+mVujEIbhbUtGHVVvlOBTYjXrIOYoSRgRBn5YjyeE94H3r9/X5OKUKFRmq4bJLgo4EOrFne8ef2G3W6HMR3ee07nM+fpXImlwvVwnWHXWazV7HonTsI6YfKfKPEdafqS5O/IaSKiUapH6QNJXZMZKPqKzEAqAx/OiilkjtM44/udMpWYK9KpShXO5yPH+xPffPOBGJOQlnOsgXB+MKdDoV2HbfhpweXQeKdFtKtQFLz35DTRW3EK7mwn6lm1y9AUZEolgGotyU5WEIOs5zhNcyCZS6nXyNZ5C5yilDZHUbkxVY6z6wf6YU/X9XK4FMUgzE/4aeR8OnG8kw/X6TxSCnTWMex26Mo/CF7M/Brs6nw+S8KpBcJmtUGnB2vF2cOhkplD7cC04K00CEiDrhgjUp65wsGQhKbrh9pRs6I+ZntiRhJU19MPlSPiFcnnKh8bZ1iRr4pj5/P5wZ+iwpwkwRB3bJXqvJZgM1X9U7qeV29+xKc//hnd7kBGc386i4RpivjzsUr0hlnNqPkRKKXwfqIbdiht6Ic919fX/PTnX9QvtfeE6URJUQJcjFTNYyIjSWy0kRAMpRdHcq16KQAsxIpyykyTZxxHtLOEkAkxMtUu2PF0ZLc/sD8c+PnPf4brHLvdDufucaczVosjt9UFH4UnMJ5DzZNE2rmQQSWUimiV+PnnrzlcGV71AofUBjz3pDjhpyOdNRjT1OCyGEZGQ86aXAwxecgj1vVYW1Cqx7k99B3XNz8S3oJSGNdDKXTuRj6/lKZzA9Z1KNcBokgWohdIWoiQBYo3TbekeCaMH2aX7sZ3aIpOioJTDzybkpP4jFRVNi03piTJRRShcoHS2guz+IUmatmfolSfnZY0Kopqct0Wa/vKN3HymhH+ibcr5au/0tjqQKyroFvVvuckF1uB9qX3fdcv2cfed+lLfivoa3Kh8DFZcysZ2Pp9PZbBftvXOmhupORlt+OxILcFoOvXt7ocTwVQSx7Ies22AsGtoLFt36rZr1+/nn0bfvWrX83JwvL812vz1VdfAcKraN4Syzkvj711Dm2uSxfp9r5WkV6u2fv37+djN85EC6iX7192U9rxW5fj/fv3Mw/kyy+//IhvsVyXZXC+/H2ZDLXkYnk9WvV6eQ2W+2nnvVyTxilZrl0by/P/6quvZr7Df//v/537+/uPOlrrtV/ec617sz72ko9xqYK/fs96bCUqW+eyTtyW5/jY58vWfp/zOffYPi79/th7l9s/lpD8NceLjvzjH39KPww0F2L0g4GZqZr/WmUhYmsrHQ0FWudKgNTkmCjFk9ORnKVSm5IlniMhThzHaa5IL43aQCA/CpGWvLl+Rdf3HA4HQFOK4v50kgCPjO17nFI409NZTWcVvQ1oRlT8PeX8DSneUsK9QAxyQFyAD2h3jXZ7lLtB61cUenzYkZLCRwVmQudYYT3ypS92EJnjyXNSIkX54cM7go9MPmC0xTqHM/3C1TnOHQRYSFU2B/IGpalyujkGfB7RJLKfOOwO3FzfcD30Fd6iKapUSJkVPkIUoqwiz4ZnspZlDpjLzANIM9fCGoOy0v0pSlG0QjuH63r2+x1dZyUJm0ZSGDnXSs39/RE/eXIqDP1AkxtWRtR6/DSRKRL8lwflrhAF+uF9wLiAjZn9qzdVlUc6XdbaWcEpVfx4U1gyxtD3Pf3Q03cDu92evt/hnHRKRJmz+qdUuJ01mlc3N+x6R7i55v7uVtrXH94RYyJlz+RrZyIG4VbEKMldTWqmaZK1VFAYsFacwpUs8kddFRTV4NGBsoyTp+RC8F44BDEwne8lWW34+Mr1MJV3VKqkrQLiIeD6gcPVgdNRkr3T3Qf8NNI7i1apJuIy15QUMQqBW5VUORMFdMFmS0rVcLBk3rx5TS5wP04oHyk2saMhpgpFaUrK/Ms//xHnHIerA/thz6vrG0n8YqyQsViNELW4rccqUpATMXm8H/HTmffvR27vRr7+5gM3r3Ycrno6m4lT4f59ZNgb+l3HJ599CtqQiqKcJ3TOlevRfFi08BA0KJPRJhLzGaUNV1dXQrrOEUpEqYzRlhJHQo6UEKRjUyVbH3g6Gq0cu+4NOe451eRGyPuNnv2QCIuuU+M2SWdSl0BJBVLBKIsGsspCNi/McrOqelcIN63UhL6aeaKEPySHk3UtBZ8K5AAqQfHyXn3m/vblXYDvY2wFn5e+vLfe99S+L32JPhX0P5YErN+zNbbUYR6rnjbozaWkqQVQy+3Xc2gV8AYtgY+hVMvXxnGc4TRrAvilAG8ZDK3P67Hz3tpuHYgvz7PNdb0OW4Te5Xm1JKEFqssA+dJ5rSE3n332GX//93/P1dUVv/rVrz5KItr2S5jRssvRoDjtPJZ/b68tf9rcl4H3+t9tny2JsNZ+JB3bgvT1Wi0J4cvzbz9LGBQw+2MsOwqXgvY1d2d5/OWz1RLXf/iHf+AXv/gFr1+/5osvvuD+/p5/+Id/mJO4zz//fJMPtFb0svZB+Wp5npc8Ii59llz6XFi+7zmB+fIYl4oBlz5P1sd4bmD/VBLxWPK0lUhszbndc0+pSH1f40WJxWEHfZ/lSxso2tTKuEAYpJoYaxAk0CchU6ZaCc8oRKY2FzGZShlC1PhQmCaBYDQ4iagdyb4pRcjNStR39nvBze92O6YpEmKFxyB4e2dF+WZwPZ3JdDbTcYZ8JKe3pPiW4t+Tg6/QAwtmkIqf3aPsAeWuQV2RS0+YLCFlfMyCl1ZVLUlJUKmUeEWEmMhJ5GXPp7F++QsxuCVJqqrOiClgquZXAnOpLGLUwtgsKU1GCTk6F1IOnOKE0Yb9bleDaz0HkW0+QCVvryQ0KQtSciOWFmLtXgBkrdHtbzW5UMZUOJHBaMhJfCmin+YPtGmSxDDnUu8JwfGn8uBA3cr4s5RmTpAfVKl0LhgUfppwnSSypiYEqIdOQOusKC0qWk1WWHgtHc65mbS9RIVI0C9JatdZjB7onJH7TmmOp2OFnqnZS6L5UcQYZ2lakIdWKYVz7iEYLQ/zm8+zwrSaQZtSWjwMYsJ7T/IjKQb8JCT4XCW7Sp2rNZVsXavhYnznUFrJuXZyrk1+V1MqzwIaoUbrCiEkk5IE32JWKJyEBgErOdHv9iituT9P9UwW5G2tSKUIYTtG6Ur5yG4YxI3cWlKKOKuIqXJ0MKRUCDETYxCOTTCMBhSJ6TzJMxwynRMzQ9Vp/ASnY+3xlUwIFm0dRdvaoUrztTJFkbIkB/LZkyklEOMJbSzOdrQOWI6TPH9k6W6VZp7ZZGirb4QSOJlW4KwRMzu3J1WTPEqYE+QHCvgD/6EJjRVV5JeisLpDzB+XcL3G7xCivGRwGaO1GFUaU6GLpZK7i3yG5kwqoTYzls955Hz+gUgWvKzq/5KxVXFd//2phOE5kIFLwfFLxjLIfWo+W0HMc46/ThSWAe6lAGhrH1tdg3WgdikoWf79Oeu6Ds4uvWdZ3V/6KlxK1LYCq5Y4bc1xGaBuJZ3L156THD92Lpfuv3btW+diXfXe2t9Tr7X3tQ7KJajbel4tOVkT27eC3GWytLXeax7R1vkv13p9Tbeuw2P36Po4j3UKtp6L9bOztY+t0a7f1tyeet9LP4P+nG3X5/aXHi/6hH/N/6CvsIBSCgkju1CGvhN4RkRh7B6tB0pqqlCQomDqyQbo0GpHTHt8hON4Fux8zhjncNowdG4mcZcY0SSsTrhO46yi2zlyQeRng6jSGO0kEXGarnM4o9jZgkpHVHpHvPsHSrylTO8kWEDj6aRLoA3OGazVONdR9I7EFcfJMsbMu7tbwdXHCE0SVrnKHSiM44mUCrkoTmfxXQhRiLNd5yppXaqRuZQ54ShFoZSpcYiEowqNsz3Dbk/XCTwjhQk/3nP8IO7Vx/EoJHbX8erVKwk2lt2HWtlOIeAn8QiQILB2RmYTOLm2cwJR/59SIpdMV1V4tBYY1G5/QFPI0TNNJ87He/x45vb9LdM0cT6PNENEpYRMPfnA8Xyszt1iYGeMqQlIDTRb8pMyaEMxR65ev6EouD5cVzfwxpGQD6Lm2q1rV8S6riabew7X1+z2e3a7vXQIqmqQLgnQBH/G+zOGgjIaozsOhz1aw/G0E6+MGLm9u8V7z/l8ohnJteSreV6ABO3aaIy1D9EiSJBaOR8o+QBw7UM1C8l+PB3x5yMxCOwnRjEXbBVwYxTOSLCdYsRaJx8SClIOXL3+BKMlufEhcDqe8GOZzStd9fTonWMYeozuKr9HU0oixomYhUuRskjF7vYSEf/xj39i9IEpFm5e3TAMPYerPcMwzIT4EBMfbu+4uz1yPnv6wVZhhUDvemxvscZVXwnN8XSuYgyaqbfsd52sb87V26Qjjpavj5nzmHn3AfI3JxRHfv+HO/aHPa9evabr97KOXUGpKnZg5DoMfc94umMa77lPf8BYx2H3GueqrHG8lW6ctqB3KNPR2TegrAg1VN5ESgklKrP4AArLsP+EGEdS9hR1pERPmP1nRC7ZaE3nHJ3rgUwYjxjdYXSH1tco06H73axOlzMPSUOF8MUo7t65JEnQSiHmOEP8ctKVp+HIRaBuIoksENMwnV/+jfBnjucGQt9lbAV3WwHI1nGfO4fnVOafs+/HuinLQGlNaF5u0yrky23WXY32vgbRaSTgcRxnKMtjXYQ21tXw9d+WVfFlMLUMkNrf1+9Zns96Pba6NMvtGlF3K7lZV+vbWCsbDcPA3/3d380BfNvXsorfXl/CX7YCsS0vkuXf1qTdNeF8eT2GQRy1GxRqmUQ1EvjSX2HrXl+Tn+Gh49GSC2stv/vd7+buTZt765Ys39vOb9nFWd4TTQL3P/7H/zgf/7/9t//GL37xC/72b/92dh9f77ftZ3kN1vfOcqzvm7WIwtY9s/xZXqP1/i8lMA26eAnOtx6PJZnLYz2VbD62j8fW6NL+tub81+xWwAsTC7QBVTDWUdCARekOpTu06QXCU0CbHq17Uq6Vxgy5WDKGhCEXQ8qWVETnvXE2rKVWXk31HQBKQRuPKh7NHV13he0GUJ1gjQFtVOVhSCXd2oLlhEmeEj9Q0gdUek8J70QWFU3KMp+QReLRaVCmQ5kdiQOxDIRg8VERo0ASsFZ4BU3dFKnyliwu2sK3gK4bsMYKkbwSqFU9R4FbFSFnVwx01+1kh0p4AaJN7+i6HtdJ9T0FhyYyHS1BCTEzhsDpJD4ROSd2u4HG1c6NHL2QPJ27E4tLKvxwVf/dVJEyBYXKStSccuGj8io1IfAiczqNU4XzRIRsnElFEadJoF4xzc7TIFVXqRSLJGaMC8WqJP4gRQfu7+4xpuOwO6C0wlqHs5KkBT3WSi+1OyEdiq7v6fu2brbCnuRaqdYjKZlpPDNV5aO29sZo+q7n5uZmns8H+4FoYr12FSevS12KCoIpD27HSSJESXhYSN8qqVa3RCoGT7e4Jt5PBC/u2iKtK2uCUlirKdaSq19BEhtw3DQKpGxB9NaSI9dKuSQ1H5GGm2BAhb7J+YM20rXStfuijQWl2e32oCaKijMHyIeIUp5c+SmpJrSNkGy0kQ5cdSovpTplS68MMdKTDggzlE0MAc38nChMLljn0ArGs9xLfb8HDMez4ngaUQqMqUpNqlBUxBjFYT9QchB1LQ0lJY7pWL1ZMjHcY6ymH3qMm9DWkVPG2AFjdyjjMFSoo7TGqrGjBO0pe0oOWF0EKrVQy0O72uWQzzRFxqh9TSo6rN2DtihnZ5PHkkrtkYgiVinMXiSiKiVrG2LlZdSkUYoUEVIkq1Q7WnIP9v0Pw7H4S43HgvuXdiS2xqVq5XftVlzqHCxfe04i0wK9S39f72+poLMOGC8lYo8FOesu0WPnsOwyrPf7kutyaX2e6tzAQ3K0voaXgtnlay3YXnM5lsdZJnPLDsqy8r1MPJoCVLsu66RkmdS1AHcZ3D/WCdq6t9a/r++JJb9hue06Cd1KnrfWo0GilonUcn1aMvOYStFj1/WpTtGluS7HJdnj9f2wFCt4TuD/2Nxf+vrWWN/Dj/3+3PX5a4wXJhYdWVus26GUpZQebXu0qb9LCRVVDe9CHkXtpkBhR1Y9EUssAhkKOZBLpilFWWMZduJ6jVLyZZsyLt+i8gT5PV13wPZ7zrF1GgQapVFY22F0wuqAjh8gfiBP/yjVyXRLiSOlaFLZE4sjZoNPZ4wt9EYSIswVkSt83jFmJ9CnLKZWSWuSMeKjkKUiKwpPYQ6qAXbDHmM049iTYiRGXwN+6U4orUBLQCwYajebcjV/hpQzzlmsMxyuroneobPnaO1skhVC5P7+yIfb98QUKmxMqqVzVXPppbDAjc+a9zWxaMEcMMN50LomFkt1pCpXS8L7qTprn2eVpAbnKqUwThMxJkKMpCIOzdbYStp+UFFKMYphYRYojMBe4O72A1obPvv0x5J41gpwtJ5JN1lNJQmY66qsbE+/G+j6Dlur0w08NfMecmY8nTgd74l+kliwYdkHjdav58Si73tCDGLElnNNCpF9zo2JpnAlcLwGs9JQg+4mHQoxRXyY8H5kSDUgr6aE4zgSpqkmFaE6fBc6aynOkZ2b1445ATCUFCVhKJWsb5rHjJDWK7W48oEypRr2JQXRV2laHLpUqJYVWFVRmsPVdSW8n7FWlMO8j6SYMSYsiMsVyldydRXXlXSuanU9ojIVlvaQWBhjyV2PKCdLktEkhAckmL8+7Pjw4cQ0Rfrda0KMnM5jVVgLFW4pyUVKI8bAq6sdQ2fpOoPrDYnMeLxnPI3iVu6P9IPj6tWebif+NSFOdN0Vw3CN7Q5zwaNZzsUUZJ1TpGQPRKwtYDWdGdB6AO3ADBQUqSiMFtCTdlSytcN2vShPqYwOAa0jxVRjSC1Fm1Ig1+5oEy5IuWBq0hnr/0uWxFwp4cdUsw6UzvQ799Lvgz97rKuzLw3yt748276W/1//fWvblxznse22AoHnvPepbV7y9xZkXqrcLquRy4p4+/vWPrfObZmQLBOKtY/BctvH5r0VFF56z2PXb50ILcf6HmhzXcKntuR8l4nAMrHYqli3sSbnNqL2MoFbJhmNHwN8y925zWENz1ruc5mUXEp0Lq1Huy+2Eou2Pu2eavtZBtXr+2D5+zJR/eUvf7l5TywJ5MuK+aVk6NLrl5LV9fuWx34s0WpdnkawX3Y4tpLxS+t8af9bSfulea3//tj+15+rzx1PJWV/ifGio01pQA9vCNxQSkfMiuxbUIFUfbVBRSmWhlDlRGMipkDKnlir+rmUWqm0HPZ7nLFYY4jR48NIKhGrRqyeoByFKO7+FVO5YZw6ElRsu6bTFqMKOv+RHL4hTv9CnP4ZlU/odF8D6kwoHblYUuokKKTghmtsf407fEFWV0TVk4pFmY5ru2efhHQ6nk6MfiLGSPBSVQ7ezwG7QgiY1ugKldF03R57sOyGHa4TbkWqmPOcC30vePT9MCDkbcHH55Rq0CCSls4UrFOYQ890fYVRgRxO5IrP//rt1xyPAo3a73YMQz8HytnaSg6vQymMs+hacU85PmD/ad4VVVcqF0rtNLiun9dR8P8SRPsY8DHW4EsYN8FPM9a/CQFZ46SATuWB1EDfaE3XdTgkERKZWo+fRj68/5qcEl/8/F+hKAxDTz90pNjj/VDhRaL25Kr86m63Y7/fV5UigcZRJVRzlmRoGifev/+G8+lMSQldJJAzNRjv+56b62u0Utzd3dUHOeD9RMpR1M1aVbkmIOfzWBO0Cs2qlfhmjJdzocTA6Xzij3/8F0LIGDcIvCWG6jMS8GEieJHqBYFYGcBXaEyMEeeE1zF1HcZacpRuwtXVlahqGYdG+EaFwtD3M1/JGoPRjQxv6nWX5ML1HanAFBO//8MfmEKiuANmf83N4ZVIrOZMzlGC3ZxJMaO0phsGUobsI3/609fiWeNMTR6qaePcMXtgvGijRCOufRKVTFI1eE6ijOWs5s2bQa6RgZQ1PvSMoyRzpUoia2UoRZ49YxypJMaQuB8nQvAc7ySZnMYT0R/Frb675+rmin438OqNw3YF6yaMeS9rYs0MSRv6HmsNQ+/QtpOES8kHXykifVuKJvlYE4HEVDtZ4otSCdrK0HxXjNYiu60lCdRG3NxTyQQ/PXA8jKVi32rCljHOgnJ0uspUl4duqkIxnn8YKNQ6+HxqrIO7rUBmue1WkPqcqualL//1MS4FwVtzuXSO36UquQwIt9biMTjD8j1Lczr4GD60FZQ9Fvi0QHc91/XcHutmbO17/Z6l78JjgeM62Vlj+ZcJ1XJ/v/nNb7415/VYB8lt31t+B+3va5L827dvP4KLLa/ZMlDdMsBbBrpttNfWvhTr/bV5LuFYMcZ5PsvzWcK+luu0TDyW5/DZZ5/N3YelSeD6OV3uCySRat2KdXK3DubX12Hr2mxdu6c6Hcvf189He/+6w9R+lmpiS3jZ+rhrEv3WfNefcevPrafGpeT8qS7Gcryk8PLnjhcdYUwOYk/GUbASSJRS9YxyhTVQy7iZGISs630i5getfxAys1YaiXCpJMRSDe+SKJzoJOTLBChDKQNFGYrKYKpSjqqBksrSmYjfgP8jhHeUPFJKoBRFzoaMqXN3lCrpaNwebV6R1Q2x9ORiKKpURSnx50gGYtDYorFZk5MEQyUrSm6mbqoGU10lgwvkx7mOftjTDx2mKiOJPGnGVbUXaxtmH6zVRLIo6/hRKtdjoaRIDGdi9JWgWZOAUhj9RC6Z++O9VMq1wlZp1wUAaMb5K1oVv7E6HirvcnHU7Bzdfm8B9OzonNMM45Dr+tAhSUkw4SmnqlCjHyBXC1WbBtcxxkiiUUpVF5Pqtx9HRitwJYG8VFnj+v9S1XOEFN9+7Ec/Yponc6dIsjOOZ6ZxJMaAqfyH1s0AVQnRrpotHggh0HU9KUdyyLUyvyBlIyToEALT9BCwU/8+/1er0OP5zGk4SrUdNUOISu2mpApRknVQxEq6bh4STVEs1y5PqUn6fr+f+RRkETEotROmjZoD/JYAteC27bN1ZXLJHI9HjueJ/pXDub66qydQAl0UxaNICklMHvWDqWKKCa1LfSaqIAF67nipyk1uXbN2zz5ExtLxoXZDlLIzZ6UgAgbS9DOkpOR5bEp0qpPPCiyxZGzJhBRRk2ccFUpLwiXka0XG4IID4zieFMZntA1oIlrJ89joMrshYa3B73pJ9I3C2CZxzGwW37pxpRLwqVwq6vPX5INLLihDJXVrii6gqkxtKYKsqteoJf6g0bqQi0UZwbzpCrMDVTlsSKejmJd8vH9v48/94rr05fiSYP27vu9SUPPU/p97zo9VLpevXwpC1t2JZcByKZBZB+TrQORSwLb82VqHtf/CpfN96XV7TgDUAtXnBKbWfqwUtTXHNpZB+VbAtg6m22tN7emxc31qHZ6TFLd5tE7IUkHqUnJ36d9b226t0VYy3d6zvMcuBd5rM8KnzvG5z9Jz1nO9z6eC7pced/3v5XVq/18/r993YL++N7fm9tceLzrDt/ev4FTQfACqkkkdWktAplpwUompuZmZ1Qqq7frKP+joauB3OgphNYbIfn/AdZarXUdKihAN41QkgIigzYi2nn63A9eJ+pPKUCb86Z/Av0VN/4IqCYoiFUMphlwcMKBVh3YHlL1B2QO6f00uhvtjIaVbILPbWbTaY7EoJ4pMvmRsbzjsB3Jy5JQIvp+5B9Y5jO3o+itCkMC6qbIorXFdj+ssfd/VgCzgxyMpnvnw4R4JoCAnzfl84quvvmI8fcBPJ/I0UYr4YOQ0UkpC14CyoKqR4ET8g+fVzQ2vbm64uroSed8W5C+SDHhwtRZoGGTSHLxpY2Y1pAKYnLFOIDqlJX854oMnxDB7HLSAuOHAY07SOamwmMJDUCXBrKlJkBPVqJSrS7RGA+fTPTllzqcTXd+LiZ1ZkLepxnf1974X2V1r3fyFY4zh3bt3nE4n7u7uSFEkeE0N1mzXz+pJJReKzuiiGKqE76effoY2huN4JmZZy3GcGi1jPpf25SIfJFLZLl03B9FFVX5FqF+I4zh3unJOc6DfjPJmjxMFMQScE35JG6F+iOUkELPdsOfzn/yM3//jP3K6vyOMYU7ock0yTPdQHW8k/q7CqWaXcIQn8u7dO97f3nIVIof9AXP9imaSaGzP7f0dH+7uICWGYcerTz6ZSeraWqDIfeXznDhINweoXR1rFa1TZ5G/GQOdQ7xGzK4WFBwpelLynM8fKmdB0XUdOTvGaDCuw3YD3e4gnjjG4dyAcwN9d0PwgXffvONPf/yK2w/vuP3wVpIco9jtBe51nBJlrMlzSpRcSNlXPkOmlPeommz0naNzluvrPf3gOFz3XF1LZ9J7Lww0pUSe20hRwxiLNpYYotwL9RmWDqF4UyhE1tlqzVV3VbsatipX1a6GEiNJVQUJfJjEryWDNo6MJmRFzN1LPt6/l7GuzL3kffDtytzyC/pS0LSuuL8kOXjOe9fHvxTwXwrkHtvH8hyXFeQWqC4r8m/fvuWrr77iV7/61bfIxssuRQsy2vvX+27HbzCb5ettPssgeVl9XyY3b9++5csvv+SXv/zlR+Z1y2Bz67y3grz1v7fWdB3Erd2d11Xz9fbLbsZybM2jBe9tf8vz3rpHx3Hkd7/7Ha9fv+b169cz6XxZ/W9u2luJzHpfa3jUUoK1eT/89re/5Te/+Q3W2tlleq2A9dlnn32rut72vQz42/ktZUnb3Jb34ZZcbPv/OoF9//49b9++neVuf/3rX39ru0uJ51NJxkuTkMcS3/V5tZ/l9Vpf87Uq1prX08j3McZZcno5j/Uzcmk89Vl66Rlbn/P6HnhsTb6P8aI9By9Gdg3SMBONa5CGEnOp3DDcKc0V3eYfoCsUJsfEGM80V2StDf1uwPQWFBxPnlADV5/ki9eoglUWpRXFQDEFVEYkZv1sBJdLJUOWQsxWgpPquq2NxfY36O4TlL1B91dCQh0Dk4eYAlOgau2PGKtAa0pUlNK6FKVW9HXlRCRCyKAj+hzRWqrp03Saq/yKQAodJXaQk5huTdWF249VTtWg0aiSKEkIvmGaSH6qpNFKBC6QxTgBaFXzjA+e0/k0B6i2YcRTnOFnOedZjan9u3EqhHMhgWcjfYsbs5rhUsLfyMQKw4ohzvvIKRNDqk7auRKXIZX4ETG8VauL0qjWJKkFamsMXe0WnE6egiLGJBCV2WG8QUqYoUemJhgtSDZVRarvxUCw5MLx7n6+Z5V1KFOJ5KrIurdKOhXvbjXX19fkUrg/nwW+Vx/Gdn/P5WyoxOzINEGMwhWQ5KaanhmN05qb15/wyWc/oet35JzQMdWgXM1rBmref56L+bk+b2p2/Ba/jYR1HYM7iJJYvyNMJ3mTluteUmKcJpy1OCuKXEpFfIx0tXPWbqnW3ckpcf/+HdlPlBiF04Sww32QQkDnxLFcKTP/vRHP/TQJrg5JYIzRVbJWU7SCpGqCZwUqqERtLGW5H6hcoRjPxODJOdAM6ZTJ5CLSsjZFVAmoGEmTQtkBN+zIWeNjIeZRPousZndzg+4cbjgIF0YXtOkoKLR9UCdrncGYPDkmkpbnvN68AseKmtOoCEWTlKWojq6XDg8qU1TCh4yKGa0zOQnxP+dm2mgRzxpFKZZSwMcsXTES+pSYfWCUwNWEj1UqYV26KTHpWSRAzBkzGS2iCz/Q+C5f/I8lBJcq+Je2f+q1rfltVTjX+3luErE11tut97XEkrcgcXmuV1dXH/libFWF1++Hb/tQLAPPreC7vXfNq1iv/xIeshXYLF97Cid/aa0eCwiXCkdb+9xap/XfLh23zbm9ttzX8pza34dBPEvW8CjgW/ChFsADc0Kw/tk6p+X1vLq64he/+MW8zZYC0qXr0Y65PLetsTzPLVjd/exdJYnHOolp23/++ecfJTMxPkCqHjvud/37cjz1efBYseAxFaWtwsb63tlKvi7N6c8dj+3z0nr9H5RYTGj7YPolkActzs9aUyjEMM2JRQtMldU41UkFVfA7YsYlpTpc39H1hm7o0VYC1/NpwvsgAYwWLHbXCeQBraW8qYtApvBQpkqsrY7RVcIxFVPVrAzGGoxzdLtrdP8a5V6j3UCOmZJHIcumjA+FGMV91zr5Yi8VbiDYckXOipSY4V4pNdWbka7rMcbgp1MlJkeMTuTYQexRJFSJ+PM9KYmbs3IOXazgtFMUL4MYqzlbqoF/Iw4LJKKGgYAE7Clmxmmar5ezYsrXgvdUCcZ+wQ0JsTpLlyzQNJiPUWrQrioER1dPCoE7RYIPQrpOeZbNjDHN0COF5EO5lJoMQCk1WCqKojOlaFRpejgSaDrrKH1h8rl6YNRArFZ8dfWmQIlLeZuXrj4PLdm11si1sLL9+XRGgXTMVPMFkGOUCs16SCxkv/v9gVQKN+czkxczvODlmoGvakj1vquJm/cBYxoESOYpLvSifnTz6g1vPvkM1/XEGFC6eUW0OFzVhLDIelVCRyki1ZtzhSLlZjYn/hvdsKPrd7h+kGekAu6beVyqZn7SLRLnaxMCruskiIdqQFi7YTlxvr+lxCCJRqWAp1K9OLRBDzu0sfXel+QoZQghcT6LJwelkHcDzonvhvQzqnqRFQK3sT2KQgwPCldoSfAnP5LCRM4JNxPTgRJBVRI5EVIS9bRiUL34ZpQcyY1+bWG42tPtBrr+ppLsK6chZbTxM5QvBFGhMsmSYpVuTs2volRCtWKKmoShKIsyliE7ro1DmYjCE8KIIuOMPLtay7mjVL0vDSgr0K1YiCngg6/PUJJEqnn6aCOfgaagTa7KXQKXK6lULwt5D6rMSd3/KWMr0Hmqev2c8VhgtBUArN+3nNelat6lQPSx4z223fr3NbF1GWQuq+VLqM5WFXK5r2WAuw6SHuvsPJY4LefZqvNLt+qtSv4W2fypxHNr/ZfvfYpv8pJ9XzrOev/LyvQ6ubi6uvoogF5ejyVxugX2S0Wp5fq0LsNWsta2aWv6xRdffCvgXyeK69eX/3+qir8MmLc6Y+083r59y2efffYtjkg7t2Wy1d63JLwvj7v1bGwF/cvtvq8AeXmu6+Ntbbdcy/Xzewke+BcN5h8poCz//pLE7DvP5SUbSzFM1YqmVGN1raCGWuFLMdbKmkX3Fb+tFTlDDJHT8YFQuNvt6Xoh3RaKqPRMAqmZUpgDDKscBoPTms44OttzZQes8vTpG/L975jCW/Lp96QYxIirOFLR5GIwDJiyo9//a2x3gx5+TGFHyo7pKAo3MSjG0OGD4jRWbgYebU/ikWCGuaLdEicfghyv3ugNd96qyrudo6RACiOn2xOTUdyTON3fcXf7nmmayKX6b1SYT0GTc8GHiHUDN92OkgR6JMGVELqbsk9OQRKfGgiWWjU/nc81yAajpUocgyQCIYTKichVzUqGUuI/YayYHWoUUxATw3EaOU9nxumM0YUUvUjIIlCvafJVcjez2+1QKE6nIy2wrflPDXITCSE+y9raGfvfuQ5rC9b1uOEG1+/47Mc/5XA4sD/ssVpzvL+jcx3BS1drDq5y6zRVMm/tsHz2yWfs+oF//v0/M51HTqcTOdUgvd7H1lpxqzYCPWldlWHYkQpcXY18/fXX5Ax9P9B1Egifz+f5HmjYqFZhLqVClnKmK4qud1wdXvHq9We8+eRHWNuTUoEi3iWqGk3mJO7YUStSVIQU6vVhdmr33tfuS4XGGIfrBlw/YF1fY8qqTJWk+zB5L10LY7m5uaHXmg6IJaNSInjPh9tbvvz9H3j37hvG81T9HCS53O/3ohZVFMGH+hPJaSTEr+n6HbYTpbOcDSjHMDicVRz2e7SxGCtQoRQifgrtxmN/GrBGYXTjVxTUWaBSpcTamRLuRCrpIdHUmqudmyGJShtQHpX/WUjpxqBtX++RQjJilZKdnbsPMUkRIiYjXIdiUOwAjTaOFMssRpBiFgf2yglDmyr5mpjCmZgnzqNCa/HVsBqsUVztHLthT9ftOY8iiCB6U8In0zpjgM6ALpasjSTUletUMgJpjB5tDMoa+l64VM4UchnJecRPt5UnozD6r6db3sZjFdBLweKlL7zndAae+qJeByYtKFmSXLcC50vjsYryU1/sLZhsAdpSgWcJ62nvu+SsvCThtm2WCj/L4LYFck2R6O3btx8Feu1YLVBfwmOaqtJXX301z3MJzWrntnSjXldqnwqwnlq/Vl3fUmlaB9uX9rPcbhkQbgWyW4nVVtdgq/uy9J9Yy6/GGPnd7343z6WdV3PHXiYZy/NZzrtdm2UQ29Z+SbBfu4Ov57kmlC/vsy1X90vJYVN9av9uilotmVhem61jbz3v67F1HdbXd+saXhrP+UzZSii3Euf27y0TzOX6X1IYe84cX3Iuy9fX733JZ9z3Mb5b+lTJns0NVqraVbvfWB6ES6FJcTZlnBZANhdqrfQsVRpSIE1i0pVUmQP0GepiBMbRGYXljElHcv4Xkv8T2b+rgTfEbMhKqoja7NDmCmWvCOWKmHYoL34cBTHly0nkTcV11yDSudUhPOVqkFVx+Y1Qqo3AEVCz8V1KusKSpEUQg5eqaklyvka6MRlFzAhRHFCmA+0oSoI2VEGbQt85nDVYrYgx4EdNCAJtyiqSkCqlwIw0rTWRW0eJDAmKyegCMVfcO4pU+RVUaJmpHYWH8+GBcDxLqYoykjOVPJyFhN4I3AVReTLazGvQFKDaaMpSzTG7kMlKqvta65mrYvsd2vV0w56bV6/Z7XYMw0B6E+kHMWP01T9jnM6oea48iATU6nzf95RSOByuyCkzjQKNUarK+yol0qsKdNGVhFxDfStStF31VxGHZE2TbzXGzF0QYy3OWYadGLc1N+5cfUG6bmC3v6LvB6x74EuIO3klps/k9SpnS5mJ8U3ZKmczr58xpnYMzfy+mXRf2jWUZ094GRBUxHWdXC9nyQpMCEw+cHd3z3mGfWl2/U68HowYvlnncLZnGicm48m6A23JRRFzgZRn/o7StpKapYuRKcScCSFXtbja6SqQyiRGgFZhdRWBM6YmiBZJMDJCPTHkAhQr96rqoHloNGJ6kXteuOARIcknVNEYNEYXZtBQbSxZIwWQGVa0+LxDVQiezjNJvcno5pyrAWWon4czehBrFNYYyKaKUmQKRiSODaQUpEOZqwpYEf+TBvErCoqSNZW5aHnUqUT/SvjPMZJiIsbaUQYhj/8A47mV+5eMS0HgY3N4ajw1z6cq3991LAO9dYdia7vHXlsGwo91PZY/W/tcBkJtbsu/X9rHsnr82Jq/pNvz2HpvBZVPVbnXVfz1v7eShOfOe52oXPr70nytydkuE48W4MPHBn9r1aunxrLivnUeyy5E+/fWtb60Fut7ZSltvA5kl8nvcn9bz/LW+l1K7p46/5eOS/u+lGA+5xjPLZY8dy6PHeOpfX3fn1/PGS86YkPhNOiTq67QlEJXq+bNeKvhlEtJ5Bxr5bxKYvY9u92BGIXM+uHdN5VP4aGqwciN2aFshzG2uirv2PeW3mW68gey/yPT8X+Sw5GSIiFYUX1SXYUm9Oz2PwP7CZg3fHOCmAF1xtqANQa3DPCMwSjF3uhq7CZKPyUXMhGjrHQWrJ1Vf0RNCHxVGRrHMyDdg9sPf8SozNAprq8OdP0gfBF9IHMgJYEIDbsdKIs4eRVSnBhPH7jaO3aD5epqwHvP7YcPnI5Hgg+k4PGjbKu1qFMVDVQNfKovRaZyYQqiiqUaNEzmbpTg34feVYnbmpxU8jYIPyNU0vHxdE9OYQ7kJ+/FHC8lgTH1fSUMNzu05oEhTuOpkmIpoJ10RkRBR5yOr4cDrz/9ET/94hdcv/6UbtjR97s5wbx59Vq4M1Ew/n7y/POX/5vj8Y4P778RB/eQiCGRnATYw27AdR2f//SnaK25v78n5YRKCFQmFSBxjl7u6yg4eWMytnZ9+r7DdeJ3cB4r36EUwby7nmEYuL6+5ubmFT/7+Rfs93v2hwP3x3uOxyMfPtyB0vTDnmEnHgkx5pqUGPpeuDeT7SqfIJOKqKmlnNE5Y4ompoQxuQattpoCdlhrKCWLnO40IakMVZFIpGG9D4SWxOdEP/SM1eG7lMJ5nAghMvmAdZZ+N/D5Tz6X9U6ZXd/RDzvefPIZ4zhxPk+cs5bOYDW89KlQopfige0pRpK2u6Mn5UDKclfUm5QYxdMm3QVQis4Z9r1l6CyvbhzWGYbeErw8X5OP5KwpxRKypaCxztQkoNAPAnm0zqKTRiWNyQIVjCFIAmjEXyJVMn3CkMVtQoQIpkAMWZLU0s4PYvbitZICwVe5Zd8kePNMiJfOZlXaqmpVt0PgcEhcXUU+++wNfdfhekc63+LDRPJ3aFVwVmGq6pu1Pc1jJtdnWnc9qWhilnthSuIXI88VwKF2jBXBfzvA+EuPNXzjuV9uW0HepWrcVnD5WACwtc/HlIwem89W5fLSe5cB3DKgW7oaL7fbqjAuA42lU/QleMaay3B1dfVRh6Lh4JfzsVY6GQ2isp7D2oegzav9NBL4pfXZugeWr607LetzvrQPeOgCrbdrXZit4y4r6ct5b637+hotz319T7VjLoP2NsZx5Le//S2//OUv+eKLL+aOxrLa/eWXX848miYTu/z71vGW16r9fPXVVx+tXdt27aq+dW7LfbeuyuvXrz+CbjX409XV1Uc8m63ntr1/ub/13Ndz2Lpm6+TvsWd8a20u7Xf93sc+fy59Hq1/Xz6HW3976rXvMi4lJI/N+S+ZcLxwz+LMa5uSjBEzJkqTi6QGMi2Q7Jj1FlVThdHEVLi9vRdJ1SjOzAWNsV2t2hq6vqfrBjrXc33ocVYxdGd0vkONR4L/CcEfIQAAzk1JREFUJ0q8I48nQlKk3BHpEWdrjbUDprumv/7XFH1DVlf06QiT53g60ZgIXdWmd66bCco550oo17hqSlZPjRjF7bZV12fY036HYuDVzZ4UPCl6Dv2NuPv2PV33CpRjPE/ozjJc94znMyllxgD9IFVxcsA6g7M7dr2h7wydMygsu6F/cGZGEiHX9eQkQWXJqQZtVKKoxlonwXbKs/oMmFkfylQidEqF6APNPZxa9TQVplRKYfKB83mk7zq0qlVpJfCd4fp6vhfOZ1H5MtXPQ9VKdUqJGPyMVTdGEhypnHe4buCTz7/g5vUn7G7ekIpiHMV3oqJWRHmsSvtqZeh6x+c//wI/Tdy8+YToRb0qxCrZG2JNEgyffPop3ns+vP9ArkmsVJwTRGrya4S+U+FMwjeQ7oa1lq7vORSRl80xsht2HA4H/u//+9/x+vVrXr1+zc3NDdZKEuInLzK0PtZY2jDspaNxPo9AIdVEpuRM13ekNBBTJNaKs6hGqZm4L4l37R50HcaJqtbx/gPffPOWr7/+E9P5iEYq/36aCCFwPJ2IMVY54IRzltPpPCfKSpvKNTGSkBbF+TwBmgSE2xPmFDlOVT4WTeBBYeyhq9KSSfHmyCVBSrVAMCCGmKCIKAvWaEiy9leHPbZiDj8cPX20mL5H9z19b3F9xPvIePbkVEhZVM3kM0YzJlC6YJ10C4xR7AcrnBId8OEIPjD0PWAw2mK1vFfbgVQcab8no8lFkZIhZYFPjX4ipsQ4eWwXiCHh+iZUkBfdOGYYp0I6UKnAefSkymvqOsuw61Aqo8lYPYAuFFWqQluGkKraXiFlQBWsraaSCVSx6FIwSi50RhNjIpaCjxk//TAdi+cG4LD9hficoGB9vKfGS7/Ut4LDrfdtVV+3zn+9/XMSiUvnsRVotsCtVcWXfIytYLEF9MuEZH2MNWRqyS9YvncZOG6t43K/8DFpvK3FFndk6xqsj73e16Xjrtd3615YHnNd2W+jQX8uwV/aT1u3pVpT4yGsq/i//e1v+fLLL2cH6+Xab90r63VaX59L13QrqW3ruZ4vwH/5L/+Fq6sr/u7v/u6j696uYRvLBG65BlvrvExCttb50nVa//2poP+x53c9Hksa1/vbeu9WkvP27duPujltPPV8/7mj3XuPHecvmVDMx3jJxqowG3/pCoMCgVs0nXWFeoADNen2Rk6AmY8wjRJw5ZSrWpNG605MzaylH3r6rqd3HYdB4UzA6Xvy9JYSviGNfyCnQAqZmBwJSzJNOlShjDiC6+4VWR1Q7NB6QqkgFfbcHK6TkEqVwhj7kefCx7CUB1hQJqEpGKwkTFpXyJJgpMMEKRSGbifwmH5PLgeBaJWEMgrXW3yQTkjKEbTG2GZ0pVG2w1mNtbI2JuuF2VhTRdJoa6s6TIYavLfkoBQJ1mJsTtdyHZRuuveSGEgikonVG2FWTlLtulSOTJRqds4FpZmJwMZY9ruh8k68JIshiJRpTbwItbJbg9rmLo4SNbHOdrhhz/WrT9hfv8K4QQzpUiSHQEuJdDUgdJ2bHbevX70ixYTtOu7vbhnHU+X75FmZTBvD1dU1V1f37K+uGI93cv+kWFNfOZdihHthcpqTNYEylSq1aukHJcmdiVzfvObNm0/4v37573n9+jU3rySpaIl2I7YX1Nw5iDFV0rtcpBQ81jlyiljbYV3AxQ5rbCWXh/lZa8+T1mZOLpTRhBC5vbvl9vYDt3cfKGGsEDfFNI7SiaiV7aYGZrxU6F0nRo19vxP1qhnqJUUApQpFGTHMCx6fTljXY21H1FUqNc80hwotlHtu9J6YAroUuk6BKehS5X3lZCq6R+411zmBNeXMeQwkYB8LnRO4nrIalUQeuRRx9SbnyiZRxFgT1VhwVhIM4zRGFVRRxOjJ8Yw1Ca0dSu+wWqE1GAtFGbJ2YDpK0aRkiakQU0E7R4gJpT3GBpKNhBhY+o/kZYJRxSlAki4fAjGKTLO1mmHs6DsrSUanJN2v+xIMVCZnhTLyuYMu6ArdLFGgcBrpOiqtyQpiap3Bgo8/jCrUpS/h545LFcT1MZ67rz93tDlsBXOXxtYaLPH2W8Hipf20OTx2nBb0LbkaW8Hd2lRuOZ91QLIMAtdJxVqWNMY4B92PzXEdKG6txXK9l78v57s1v/WaPbZuz0ngtrgAj3l3LIPq9fm1xKIlDMvg/v3793z11Vf85je/mddyea8sz3V5jK2ka739ev5tH0tZ4uX72nUF+N3vfsfV1RV/8zd/8639b6lQPfe5vzS39vule3f59/b6VqLzfYytz6DHzm+9Bstu2Fbi9X0H9489Az/EeNnRm7pQrdobI8pEiqqVXxo5Fx4w4gJDyBXvrZrCj+3Y94PIzHaSULjOMfQ9zhqGrkB6D/Ff0OFLmI6k+J4URlIMiJKlIZcdRQ2gOrruCm07jB2I2XAeLe//+Y+gelA9JSViCOToEbfjRAwT2hjOp3tc32Otw/W9dE26bq6+xhhnsZpS4UXe+zkpKRWmkvyIyreUMqKwBK85ncGXe1IuNTCvBnmdoesNzu6r2R+kYqu6juEUPKeQOCiLKgbV7dBuRAfhJWStyFqDqUpGOUKMEIPg0TOMk5CHc5FKvygpIaJSiDqXUEhzlaXNM7eCAtp2NOcvHyLn88jpdKwOzohrtjEc9jumacQHT3PVttbSdY6+6yhFSK+Tn/CnyDh5uj7SGUs/7PjxF/+GN5/+mP7qhpAVf/z6HXE6k2MkR1H8kk6CnhNRYx3WWIb9Fc517IYd3TBQUuL9138EBdM44bqOXsH1zc1s6ve/f/e/uLvznO/v5xtbOkXC4ynOAlagfCkR/ESIEhjmDP2wZ78/8O//3b/ns89+xI8//zmFwvHsOR2/oeSMMU3rSs3Be9cP9H3HoBS73Q4/TZyGrp6bwvuRQiGlyDDsxFQxxZln1HUDfbdj6Hfsdgd2+wNo+PrdW/7+7/8//OM//o6v//QVJYn5nkTwEqzGJBVspURlSBuLMQ6FphTFOAWRY3YdXb+j63tef/oJznXYrufshcivKheolHp2tRMpibmiZDdLG8NQu2OaVBQha3wUGdaSqRV9TS6ZEAqn0zu0EogYWXN/5/nm63tyPlOKJJjO9fTDnlev9+wrfybFLP4qXjpQ2QemaPDecHd7nvkquvRo5TgFjXOawcG+01gDMXxdyd4W3d2A7tCuF7U5wO7FDycd9kKkTqIcJ7DJ9AAzi9W8MIRaPEmzQ3jOiTLJM6Y+SAfYKOFhWKtxnaEfHNYa9kOHUWB0NQ1UmZTvZ/6GyVL4cK5ypbDkYSAV8BnO5wefob/WuFRRvJQsrAOdrSr+1v6fM4fH9vGcIGgZvCyDi6eqpcvX18d4KqFYV1rXwcKl97cgfwl1WjszW2tnxaH2nvVabAV068BqGIa5sr4V5F6qRF8iYK//vfz/ljTqVhC5Rapenv8yIF53FZb/3rp/lzyI5m2w5jHEuN0NWl6Ppfv3skPzm9/8hl//+teba7O+Lst/L++FdbC9XtdlIrT++7L70hKfYRj4T//pP30rmV5ew8dcz9s827leqtyv4VptflvqbFsJ41OfB+v120qI4OPO0qUk+NLxtj4PmljCeptLyejWnF9yfpeei+V2f81k48VHUjRyZCHF+EDEpUliPlQuaR2N9m+lUEbXKrbBWYexhqEXKcqucwy9xeqMK7fk/A0l/BHC15R0JsezYKJTJiVXOQMWbQe0HsBcE4tl8gbvCzEXxnyH0hNauYWzcP2CT7UaXfHyKPE1QIkLcTGW1mqZSeqIR0RREnnnFAklk2NAlYQuE9GfSOFM8IpcLImJoi1FCYm1wUUqZ1QSr9Sq5iIzOo4TpUQgMY0j5EiJnvPxJPK0KIy2YMUfAQq6JJL2wluoN5zWFqupGO0Kk6pQNSrESyEVT7J+eK1CwYxxEswbTYyR8/nE3b2hd45dDYgVME4TIXhijhL4WzG/M5XH0kQ6hZwdsTajrcV2HcP+QDfssf1AiJGUCpOP+POJHAMlh0qILVhjHhILE0lGbuFUje5cJ3C6fhjk2sRICF7mYiV5vbq5Ztjt8dPEyD3ig4K4gleieiOkG4QB3HhDFIGHHQ5X/OhHP+bNJ59ydX1TOxByrPNJOibWPBDig5+wzpJSqEZpBqXFu2EYBvx+BxTOp3u8f/DjEFK3lcRDaUl8nHRr+r6nsx33d3e8+/ob/uWrPzCejvW5FOM8IZo3BFWTvwVqN64Rk6nqT1pptO2x3Q7jejKOmC0lKkKU57vrBIamtKbQqusFIa3IdTJao5yjSd6mVCArUlECm6rrLJ8nzSiukHPtTpVSE55MSZGUJnKOQMG6go8KTEc3ieS1eMvkmbjurK33rmNSVQo5J1KBVBJnr/BJ4QP4kLFaiOOu03TaYYsk88En6TjlIgIVBUoqaCzKiK+N9A2QZ1CrGRpF7VLJ+T7ApZrRZCl5FroQ3prCeS1yxdbgp4jRCms0xkjnr3MZY7QIQZjqbt74NBVWhVI4pYjmh+lYLMdTX2hbQdJz9tnec+m1l3yRbiU1y/HSL+R11fUl71kf76kEbfn6evutvy/HS853vd8tN+Wt4P7S8Z/TSbi0Jltz2zr/S5X0dTB36Xyf2ud6POV78NyEcuse3uo6rNf5sbmt97nuwqyP0c5nWX3fOsdLc1zO87lj61wuPcfLhGGrUPDYNX1qfS69/7ucx2P7urReW0n9pfds7fMl2/+lxstWT+nq/CrBtp+hFfKF//A1JgFMw6mrCiERXoLAeaxzUu1uLsmuVrdNQZcznP4Fxv9NPH0J5VRdcA0xQohaKvvKUUyH7q/Q7gDlR4xT4sO9Z5xqVyKcZsO04XAQyEAWd+OSY1VV0sScyBR0isQcMcbibIfAWvRc5TVKk4sEQqlkYpQqZQ4ecQSOHG9vGU8n7u9HUAbTdfS7K4GPOCG8l7pK0v0AVQOi/X5PTJH3724Rfnjm9v3XpDAS/RFToWg3169xpsNpA0ajNBgKwZ8JkyaMZ0AJdp9mviaKWyVGUpBzsKqS1o2u6l0KVJYg3Mn5Ky1djmny+Gkihon9bod685qcE0YrzuOxEr7DDJ9SWkkXYKgkf6WkYp8KBXEj73d7rl6/odsfULbjeBTvjzB5zqej7A8Ei67K7NZuasciGksMHtuJO/P19Wv0sGN/uGIaz9zfnjBWkUsUToKzvHnzhlevXpNi4u72FkV1uS5i6hd8wNogSVE/VLhSoKRq9tb1vHnzCf/23/5f/OhHn9N1HafTCT9N+GlkPJ8oOeOMqYReeZ+1hm4Y5J4ylmHY4bqB3W5HKRlnHfd3t0zTiNaieNR4PgqBIXZdz9AP7HZ79rs9fd/zT//8B37/5T/yu//3fzEe76AssfUV/lZJwO0l6fw8QOrQBqgQvGGPHa4wrmcMDgLkEvBhqpLAPV1v6bsOkA5B8LVSn3N1zXb0Q1/J8YkxxVllSZ7lXD/08swdmfkZuZG7qwpWalLG0ilVKmJOnvtTxLmOrhuEkG001ig6Jy7sQ3egcwPnEAk5cQ5BiNkxEn2FNaaM03IPX19Z9vsdN+6ALgdIivPxJPeeLigj0MlpHHHugDE9qS2xUSgMUYH39dme1fDEVb597qTYYHbioSGjmv/pBy6RNhbhfwlcylrD0Dv63jH0HV1XMAWMShgdME2xDo0phl7/sD4WLQBd4v2Xf3sqeHtsv49t91j1fX18eNqJdv1FvRVMrav1T41LgfZ6TS4de32cxzoqz00qtqrjy22X59ikRZfmb1u8g0vz2AoC12uw7iQ89zy25ru+PpfkhpdzaMnTVqdlnURZa7/VxVkf+7FxqWuynG/b1zLg3+o6rdeh7bvJwy55Hg0+17Zfc13aa2sVKPiYOL/cfjn/S3j/reRo3UXZ2n65Xss1WHei1s/lpeTn0v4f23ZrXDre1r7Wz+9ThYT1M39pzbaSzUv7/UuPFx2tKm1W3PoDfp2qgCKB8gMWXOsqF2vMjI03piYWxtbqtUV3IsVqVUFNX5HDN/j7/0EJ7ynlTI5QshICcukEwuEOYHao7hW6/zGYPXcnwymeOYfAeRqlchs8InSZOY13UgG2ruLIFTHGGbrTc8AiZG6yQBmSF9UcSqlqroWUmw+EBHClFPw0Qs7oubot3Y6cE2kccV2Pco6rwwHXOVxnyWlEKzj0O6oJAzF5xi7i/UD0gTAlyigdkBSPoDRFa445VeM6g3JSPdYVNpNTBF1N5BApXFUU2g6okkFFKKryC1q1GKzpwUiyY6zFWjdX3VMKiEFg4XiaGCfP8Xhk6EVi9epqN3d1bOVW5JR46MuIFPF+LwHr7pDphwP9bs9ud0VJhfE8Mp3lugXvOZ+PwjswGvHuiIzq4V7ruk5gTsOADVId10AKnv3+UCF6hfPpSPBnnBGlsc72vPnkExSKb75+S/QjMXqMZpZCBubgt5noWWPoXcfPf/5zPvvsxxwOB8bxxOl05Hw6EaMXt/TqlB60ql2xNHN/zMnOz8B+f0U/7EjpGuc69ocDh+tXeO/R9g5tFCZVV/vWSVJCyN/t97UDEvnt//yf/NOX/8RY16tt1x7Yxn16UAFW1eNEjCP7YU/XD6KMpBQ+BGwXMday30kBoOs7QpigFHon1XVFQMBQFtAVGpRwHRX2F5mmMzEGzmdPURaMCDrI58KDIpsu5QG5VZ+3VNcuJYerCUfOSziXdOoE1thUmDSjz6QycnUwHJRhd+jZAbvoOJ5GpkkRQoMvpfl6jSM4N/LNN0eub67p+o7drhMX+hCIo5d7WXUo3aNNjy1yj8QwEb0X7op8+EHXSXJtHcm62t2VjkUumVKd1Rs/CqrnSy3cKBQlK0LIoqynM+OU0CZgzUjnLEYr+k44Xs5q+s5VWF3C+wezzB9itMBiC6v+nEr0eiwDifb7cyqTW9ttVdrhY8z299FxuDQeS0wuBbrrfa//3dZnnVwsg6ZL57Q2QNsKhJbu3ktI1TqpWQdCLw10tkjg6/N4KlDcOt82v6XPx3LO68B1SWi+NOf1tdpax+dUwbeueYxCAl7OGYST0V5rY7lmW4nGMkloilMtEVonpOtgFvhW0rN833Kbx65LW+8tta5L1/ZSgtaez/Vny3Oq9Zc+hy49k23u7XgvuZ/Xydal7bc+s7bG1r7W+3zO/faXHi88ssBZciW0QkM46fZdOCcWs89F7RYYa+bOgTVWgryKKzYatEqYEinhHcW/JfpvIJ1rxdMiLtoIllj1GLdHmT24a4rek8rAFAM+5qrXH0kxQIyUEikIlEiI1lI1NsaSS+teJEyoGPHUCYRBqep+XM3nZpKml/dVtSAK+GkU+EMuc4dDKwMISblkSW6srZ2ZwRFDxCjY7/uGl+B49pW7YCkxEkGSjgpdKmRKKoQy0hSwVJJ1VlY/qHQpIxCNSs4uNejSRSGy+k1xqAiShaqEhMjWatMq2nrmyMgFVrPq0jSOTJOh6yxKl3ptDUr1YDQ5VQd0BMajtKhwadvRlULXHeiGAedkvWMI84/3EykKPl0hCVOKYVazapC0XMTdveQ8e50oBbthR7tBxZCtEPYjCoW1HbthwB8O9L1ApkqYJHFqPJqPfCMk6NNalKFe3bzisN9jjGGahBh9rhCknIL4l1DldqvqlKn3hCQGdu7gFUBbgTc1CJfrOknGVeWTNEUomOFlfS8qZjFFvn77J24/vBeTvkqobxAnSR5qHXuh3KYrHEvkkzuM7USxrUqwxhgwVjgmqIyuRm/zmtTiAqqjFPFwaY2GXAol1SR5VsUKQj4urUtSFcmU8FAe4Dz1h6okl+UeRFci9MKbQdfPl/amUh78Ms4+YruIjYG9HuZuRk4BVUz1riiEqGYDwZjAx4IPiaINQ4wYV++9FEWiWBtRb1OWogxNl6LUzm3JCaNdhXiJwEUymVy7VyJaYGdZ7pJFAaqkVGFlFU5a/z8/oyXLfENC6YhSGmcSxmh8Z+hcxjlNSqKEZQ344F/28f4XGE99CV+qRG+NdZD2WND2ki/VP+cLeCsofWo8t4p96T3rNViOS5X4rUBz69+PHX95nlt4+XXyc2lttpKjS4ngMsB9LKh6TlC23sdj2y0r38t9PwabW6/RY+OpxKuNZSK9PA5cDuSfujatU7GVdD32PD4VtK//vpV0bSmVXdrf1n4uHW99ji/5TPkuz+KlObxkrJOJ585nXSh4rIjwQyUXLzpqiAlqFUwphevcXCVs+O1mgCe4fDsnE01G1jpJLDrr6KwQgG05ocIdKr0jHv8X2b8Hf1tVfSBlQ1GGoh22u8G6A7b/lEyPzwPv3p84ne+4PZ7kyzolsp/IMZCTr3h8IxX0kDieJ4bdXgzLdjtCjNzfT4TbW7Q+cnUTcd1A34v7rgQ09cs/Z3Ly5ByJQQiyCoVeGlVpgTLsrg6gKs5aQazk5xgC01kJcVxDCTNIhNvbM37yTCfwXhGTpru+xoSeFHbkECkxkYJwMEpJlDFVnHaFtGiL7ga0URQpStduUksGNa4boCzhKJFUCRMFCLlKhDaAW5UUls6IQFximvDHM9wn3n94L9Ah69jv98IDcJaiLf3+it5ZrNNc3/QCqTOGYXctBmfaElIiekkefJg4nY4NwEUMU1UTE4drpaRbUaYHKJo8UBMlB1KY2HV7UOLu/uGbW87+jNGa3X5Pzond4FDqmh/95HO+/tNXTNNphvLYRuBN4lUQQmAcR+FW7DvevHmNMYb3777hdDrW7sqpJp9ZkuHa8crVDb3rutq10Ox2e/q+q4GuSLIaLTCx169umMYjtx8GpqOtSlG2BvKFrnPsdj3X19fEGDjdj/zxT3/k/u6WzgqcSe4kVWGITUWskakl4Rj217iuZ3+4wk+e4xhw3UCISc4pZczxyPsP72ucX+akTswQJfHqenmODldvsJ3FdA4fJryPnI4jTRhJaQsqoeIoCVb1wdHGoY1DFUkOQ4MWllSJ4apytiQJ61yPqW7tOOE5GGvr2tbKUkpMIVKOI1OQhHc3OK4PHWrv2PcCM5pC5n703J8CU8hMUxAYWUncnc7cnUbevrvDWY1zhqsrSUS7/hWlKlDFkGrym7EqY3TBOgNVWUq6rCL+kCoPZ/JeBAEqsTunjCLUxCPRoHOlQvNakiuvlVmAQdIGtVCxk8TXGE3XWZx5yaf79zMuVc3hclX+UpC29Z4lRKIFScvK5Uur4+tjXQo6l0HgViCwPsYyyFwHgJcCk8eCoa3t1sdt7sfNJ2EraFsSjNt77+/vZ7+Ldv2W13DpZ/D27Vtax6Jtu16f5WgV8vv7+/k4y27Hes3gY1L51riE+b8USG11UFrlfH2/tvNdO5C3Nfnyyy+x1vLLX/7yW8eIMX7k97Bcg8eC3fW9viRXN7L4eqzv1a2gelnNX953y3tjDVNcJ4ft/VsGeOtnb7nO79+/n4ng9/f3M+Qqxm/LGG8lq21ska2fSmq21mf5+taz/Zxgfnl9lknS1vGfev2xea9f33q2Htvv1nlfStz/UuNFe28VNF15Ew0Drudq7MJjQIsUqshiNviHtOxbAOo4o/MI0+/J8R7SB9L0gRzPJC8JRcqKYnege7S7Ansg6YEQHCEpzj5wOolPQKrQguY5oBTESswVTwaH1qKvX7IoQpVhwFZYiq/GZCEElBZvC+esVP+7bu4GpNSTq1FWI6u3v6laWVRKYZyrFc2CNQVjDfsrg1YWpQypEZFdXxnvimGv6frM4ZAI4UyMI4dTR4yR4ENVtYqE6UyKgRQlyXnoaCiy0rh+qO7mbuaEWNdVCIyeMetatcq/BGhKN/iMnFP0fg6YMxqNwjhLyXLrzLK9rbNTEnr0pFTQ2khnI0T6Kr3bGVuJ3UbcnwtMITKOHh+iVNjLg/MwVbY0VaO4BoVpCjymQuwERmKqildV+7IOZ510jopiGs+18q6x3R6lCvvDnuP9jq7r8aNIdeYqHapTghCYvGesHSltFCn62lUJjGeB+vjp/ECILw0qGGfSbgxh0bEQlStrxaldKSF3G6Nx/a4aFg4cjSXVILrUluAwDHR9hzaKafJM40hnLbthwJmFCtCClN3SyphyTdUUw14I7Dev33D34ZbT+Sy+HymjlMHavnKCXIWhhVpdB+us5NqAdT3KWFLJ5BAhphpEZ6no2wqPs109fzFfRGUUcQHTchSt0aUSwrPGWknqTfViKaUaEmqD0gbq84MWqKW1YmAZU+Q8niuROnG8PxG9oaROrr2Rrl0HHNBo3eMjjH0vMsJVFjanB7in/F8zThEfQTqe0vlISYzyYhRSNob6PCamEMRHJoZZijbFNHfCWuJAo5UsoIMPn7stsWhqbY3P9jE5WylFyuJ9EZNZ7eWHG89NMNbbPLfye+k46/GS6uelv7/kC/mlSc5T5/xUNbwFwWtewjrIXe9znfi0oHs953UAC0/LfC4D+WVSs/z7cn/rY279vkwSngqStu6PrUr6GlKzTm7amjRDuEvHaMnZpWv/1PVt263N+9Z8ivazlaSuA8v1fbDuxGxdw8eeq5ZALeew3mY517b/dUJx6bo9t9uwfs9jyepLxnM+C5bPzPcVpF8qMqzP4alnZes9T23/fY8XHaH2JOYqqKkdCfG0YE4sWnfCODeTT139Iu6cJCTWGGx4h0rf4I//gxSOpHgkJ/kCjl5XtwiLslcoe8AMP6bgiMVwOsE4Je6PI75WOUW+snVTeky2tEptKRlTF1T0+SM+jezzFbbruRmuuL0X4mz0Hq0Nuc9C4u46rO0wWs/cgVIKIQcJqKrErlbgjEJXZkHMpZpfJQ49OKexvSOXjpw72UpptBH5TorieniF0SIhmeI9KZ4Zj28IMTHFLLCeGBlPR4IfmcZzXbNE8pMY0eXMsNthtMYohfcTOSdcVx92Ywi+dgGUmqVBTdehtHwYtKD+mG+rIV8EpclKYZxwNYxWTEm8SEQ5SarOE4GUC/2wI6TCNEXUlQSrw06I+qZW10OIhPOZ4/GO8+i5vr4BZN9NzLhVdZtPQMOltyqtdMkKObs5qPdhotOavh9EUrVoxvMZSkZR2CuR6DwcDtzv9nT9jli9NlKWZEalRPSeaZo4n8/1Wmmm8UxMmdPpTPCeHCMx+plwLEOSrBY8hhArPFBVqWQhDJcKswrTGWs0u2FH7xz73Z4P1hFjkGS1yDO23+8YBnE3D35iHM8MQy9E/2Ze0lTNSoPRVB5QTKSiSGj212/YH6745Ec/IWaNj4X783tRKjLivdINB7q+l/srjKQwSpLc9WIgh6azTgQRKNUfpq6d0mjbzdyqoe9rxyNXpSXpDKgaVGttKShMkcRW5yK8pOpw366N0XYmm5dKyig1MXFdR9dZKTBQ5vvl7u6es1H40fHqZo/ZD1UIAKxW9H1PLIbRg58i0zgxns8EVc0EQ8JXXw2tNd3xzGG/ZxgGdsNAjPK3mCJQMC5TlCJHz3kciVFEDR7gdXmGVeZU+RXl4fKVOclYjo+7FuWjDcqDdEZCkkrf7q2//nis2vzS/az/vfUl+5xjPfeL9qmq6HO+1JfjUtD2HLjJ+vdLXZPlsT7//PNvBW9rmEz7fat70caSsLsMbtfbL4PLxwKgllg8pun/3OuwXo+t463XZR1kL9+/Ju+3BG15nBZMLk3r1p2j517Tx85nua8mb9sC+XVisXWMpxLn9f7X+9sK0NfnNo4jb9++5bPPPrtIlF6uX1u3S9yK9Rqs9/WcDsVTCcSl4Pu5nx+Pzfm7jEsJ9frvy9+3npXHkoq/RgJxabzoyK7rsF1zx64V7krYbSQLiQOqzGyuTrK10qxVgdKhSkSXiRy+ofg/EaYPpHgmxqlCBxRFD2i3R7s9yfyIbK7I/IjJe7wPfPhwIkYxG5vVjEoEFLlUOVKtGYyVoHuG9RQJhKLAUO5OR1yIDDuRKnVdh9Ia66q3Rt/R9QP7w5VIfRqLVRpKJIc7cj5RylS17lUl2mogk9I9pQRKCnTugNE92mYx7HI7ij5QMCSVyVEkTsXFIqK5JZZ3JE7sb3pi1kzRcR4LIRj2vavynGI6mHLCh4kpTPjgOez3WK1RuXC6v2U6n9G5UELAxyCGfH2P3u0pRci2AmsX5SGtjUCrTCeE4Jq1iToRso6552q/R5MZOuGODMMgPAFr6fruwURptxfvCycM4lIyx9M9PgSmaeLd+2+4P57oOlclVg2KTClSiW7Y/pIgF4Gt6Lk7BiVHtCpVsUy8DuRchhkSFKaInwpaZax1QiLfddy8uiFGUS0KfpLKfOU/HI9HTuczd3d3iMqW5cO7t8SYOJ2nOQJsSUKpiWbrusxBoK4dGIx0u0JhHFUlWyfu794TghfZUQqvX11z+/4KYzUqi4u5sZrrqyucc5xOJ2LwaAW/+Df/Rroputb/a7didlyv2P7z5PEh42MGu5u7WlfXN5JAOyt8iDBhnSRkOQsfw9kD9F09P43WFpSQ+8WQUqRaBfqna+cvirxrhtMYpVeiCsk35aeM0h5tEl6FSjgXIQejHZ3rq8M6JFX5KiUI3M8CykJBpH7DyDlNTCe5Nw2JYedw1pBT7dMUxfHoOZ89Nzd7nFN0FvZW1jGZTB4U6UZzDgdSghAV0VdIXKzmc1UK14eI1hlrez758c8kkSxZXMGzmAQOleuzrLDORnopVn6QEupIUVDlqOUDtMr4NuWu+txcHg+wRQqU+MM5b790POfLcL3NS1r6L53T8hiX5vZdv8C3IErPDW7WicY64Nlam0uB4paK03LbrQSlbb/llbB1nm27169f85vf/OZicL71nksV+PZagxit57b1vq1rta48L2E9l9bkuwSYW0HvVqKzPOcGTYNvJ4xb1fLlPbVMlLYSkfbvS+e6vseWXiLtfV988cW31mDZ+VknLW1tt57h9fEf+/v6mI+NPzfR+3PGU58NT83hqeTusc+k5bP1QyUXL0ssnDj9zlCnJQSqJRZVKnEmkDYMsNSeUcVDCpR8ronFe1IaSTkI1AVDURZlD+CuUO5AzHty7ilB16piZvINTvBQ3tMzCryOyvWgwn9aRdlaS9EalSw5V119CrZ2YFCqVkaru7WW4LbrHJ3r6LVGFUM2x8oD8WidQVV5XaAURdFRPDNMruZhgik31lUctqFghLitxROD7AGPKh9Q+RadR4yGoqxIzSoxx8MIubwooHZqijOge4y17HYHCTRnvwCNJosZXkloY0ErlDbkLNemyalSEyRjHcNuX0npqV5ONV9LTabXBWsUh13H0Pfs9zv6vsda6UqI70KHs7ULogohBkLw3N7ekXKSivMiUW1O7dKzyA8O6DBXfCU4E9nUEBSUXDtiDqM1/SCcCOEDyLxzLqSYhJwcglTGu46u69jt97hqiBh8dcYumfP5xOl85nQ6Ya1FUQh+YvKe+7t7GiTGdI7mxbAO/pRSM78h1/WjZGKQO9YY8H5EKV3/r+g6Sz90UBK6CIywiSBIh2OaydpXhwNQ5o4alTicciYkqYankumniSmIOV3Coq2slXQTJKlSZiIhMDZQFf+vqLrEUJkvStnqwyEEc5FJrc8Zlc+UxcQhz9X1+nxWt/W5w5MzSrWODlgtjvPOSCeKmbciXjHi1yD7Qwl0qukbpNqRUrqgMRhdIUFFUXIhxgRREtOSNRqN0wVRbc4UpcnKoIwiF01KhtiZ2nWQBDwmyPVaNgJ81w+AJHExKXTtsBkjcLflZ2aMApFLSi3EAeq9rYQlM8PqlEJXryB4SFZzfuiOlW+3N+r44XwsvgsEob3v+/oyfG5V8KnjbW33nEr6Y0HFnwPReOq9z9n3MvC4BKf5rgnQ1r7WVeytwGcrydgKnB87n633rPe1Ncetv18670tB3vcx1lX0S8nSU/u4tO1Wlf4513e9Ppe6QJf2c+l+W4/vGoh/l/FDVvSfGpeu/3Pvte/6zH5f40VHvLq5wbp+buUvk4qGn1YgCkUVIqW1wlldYQcJG/9ECe8I5y+J01fkeIcPZ3LWlGyx/Wdoe4Xe/ZjInsjA/W3Ch4L3HyqRVwLTSlGt8CdQSuQrCwJnKZQqdStf/qBqN8Kxq8SLyct+moGaUtVsCy0IhVr9M0Yw30Ov2BmNKpCU55zeE+PXJKVA9aDfoPSAUgZToRsMB5L9nGKuKMoRlQQoqkyUkol+wk9Hoj+SpnfoMtKpO8Ggq4zPIyE5TqEnRjEbyzHhp5HpfGQaj5RScMOefn/DzfUNptsJdCkrXvUHOU7ypBQFGhW9GMhNZ1IUidSCBIekgB72GGu4evUKrTQlxnpdFf3QCdnYKgar6K3h9c1+dtm2NYmQ2FEq9qkmA+fxxDfv3/Hhw3t+//vf03U9P//5z/npT3+GcR0xJpGbDVUBqigUnRjnxYiPoUKPQoV/FHwYK7xL7ovT+URRVEjYdTU0VHXNC7pERnPGxUyvRUr1+vVr3n94T8iJOJ0Y709MfuL97S2n88j7D7d89skb+s6Sc+Tu9j3/+L//iU8//Yz97oAzV7RO3ZxkGzN7vozjmRgynlJ5RsJzicGQ4oRShpyy+FQMA/3Qc3N9Teg7dOWVFGpiFCO5jHKP50LfddItUzwokmlbYULyHILwYWLMhFSISRGzwKOGw5683xNTQo9nMgqjFeTEOI0V3tg8MKRboYvCFEXRtp515QvMAgEwdJVIrpAkut4HpRMeDSmiyECi07lCABPaGbQpWCecouPtLX4cSSGI54qz6DJgXSfPmTYiKJ2hFEnmow+o5Mmhm8Nr6SaKmMKHD/c4Z9jvHHFv6ZxmN1S2c4l0simqM6hd4z10gKjSxWJIRROrGlbOpXLKFLvdQYjaMTFN0wOfoj4Ls0N3/X/KlchdnxFSVZFLcSZ0l9JkoVNNVB5I3aXKQEuC8bHx5V97XKoeP+d9L9nm+wiuH0sYloFcq9guK/xr2Erbdg2z2XIWXgeJzw3m2ngqUbr0t3VQuQz2Hlv/LQnerQRkPb9lV+RSsrV13EsmbO/fv59Js88JZtfO4+t9rve/Hm3O9/f3vH79+iMJ2TVMbD2HreM9Jzlpx9ySd13va7mPLe7CpeTwsXXbena35KIvzaeNx/wrluf0WGdta27r89rqcPxQlfqt++A55/jSBO2xc1sed60o9tLP5D9nvOgIfdehjCWnXMnQeuZVqCpp2WRWlTIYW9A6YdWEjveQTwT/zxDuyP4bchSHYm2uRTqWK9TwOUkNHKeOkDQ+Ju7uK07Zx0o6bs7CEiyYWklt36SqmfgphWqwLa2r70PjhMjfByPu0cYorOsqBEdTciLnQEkjwSdK2pMiTBNE5QUKFRWRG7Lt0DgQRgW6RDST4MO1RekegQ55tPLSlSjTHBSYYnAUtO2I6o14aPC6Vi2h2AGwDDv3YLoVPdFPTOOJ8f6uui2DURZSJoxHcoaYHqrnqero55QoaJR2dL3B2ISxsUq3ava7A33X03cDTgs0Zdj1dH2H6wQyY7TC6EJntODUO1PhQIJJB1BNOhM4jZ7RB765u+fu7sjx/szxPJEqeXt307PfXzGOE0F5Ysw16Mw1gZD/iwlfZBrH+b7TSqFsIZskkLIoPhgxSBdsSYrNpRCzSBKjNNqPxKwqdEWUz27vT5zHE9M0Mk4jMQWM0fR9z36/Z+h37HcHbm5ecThc0fcD1rmZnFvKA9cHHurGuQiJm2LJWVdsvYgLxBiw0c0eB6oSr0uhzrXd27K/RmbOFavfDiR8E41z1E6drBwVVaO1olPi5pxLwVk9w5U+fXXDeehwxmBMDyjMyRCjKFflIpKwRimsrUIM1tROlvi8KAWdc1XEgVkV7Vyv1+C6mjCKoaPRYAzSzUSew1xqTywGSory/DrxjegP1yjjwLT1LoQanKeUZlW4GCNqTCh1pl0QkZithPYCxhjuj5ZhEOPEw74TP4hOTOnERLDCqJRCqQAktC4YLXLV1nbkrAjCa5dnujpro4oos6ErL6jUJsSDwEVB5J5NzvNnUiFVsn4hF/l8zVlRSpYkrZEwqry1XPuHbiP1vQ2e+tceW1/8l7b7LuMpaMl6Dlt/f8nxH1N/eW7Adum173N9tqr76/N9KrBZ/t7GY4TbS8lMC6iewvE/FgS2oL51O55Si2qjqRVtBbxLRanlPB+7Vi2RWZ5vu7+eMle89By0OTafipa4LhOGGONHpntPdUqWScFjc2qjre1zg891kP/YvXRpPNZxes6+nxugX9r3ervnXP/njOfs59I5bn0mbT3DT81n6/PnJZ833+d40VGsdQulGZmkNgptllAojUaUlKwNKCK6nCnTnyj+HfH8j5Q0QhzlixaN7m5AvwbzGan7CTE77o4nJh/xPnA6TRLYBD/r5ytV/SIQwzgZD10Uo40EVuZBuUqUacQErOHQXW8xWoukZNdhrMVpRwwj43hHiOfqpxCIQUFWpBJrZVSh1Q3avoYyCHE4nSncUoqXxEZboBc4R/FAgHSCeC/qOBiMvcHqHu16lL0iF0XMEJPAtFT1/BisrQFYJseJFCaGacTZPcFP+PN57riEMIpaTRDlHZQiVzlZ0LOyjnVWAsycpWKtNIerazprxeW6BDpreHW953AQ4rDg6kGrjGmdqlzlMqtBX6nBTxWx4cPdifvR88/f3DGej0zjyHn0oDU+JYztGHYHgaalAkzzPdXIqaWIOlRMQUzkaiW9KIUukN0isPReKvsNCoUEeLlINyvGKDATP5EwFRInykl3xzPn84nJj+QcyLmIOV7fM+x29F3PYX/F61dvuDpcYTtRD4shUkq4+PyUelylCqVoIWUjcqipys4uTSehkq5DmOGFSqmFStGD10aDx+gG/6MaU+oHqEzzVdBaksFSNM5AyIWUC/bVFbuxQ6GxtqegKCozjiOnc0QV6fhYo+ispuukGyjXRqElhGY32NkUUynxb/DjCavFObpJUrv63HVWE3OU61RE8SvERPQTJSWZrxPviP2rH1GUI2FEkasEpnRG+FbS0SkpkUKqqlxJ4FOA1oXZ2poGczSSMDvLYb9nN3Qc9j37ncUa4YxpXernTQ3+S8LoImIN1olyHRBrBynX+141eWYgpsQMXqqx/5xYwEfFjlyYEwvpsDTIo5rV2lQVjEAXSmo8DHm2S03clmalf+2xVX1r46mk47mVtceO8dw5Xnpt+YW+5by8lTxtBQPfBZLwVMX1JZXH53QkLiVqlwKix8a6St4kZrcq1Y+dS3t92S1aJihLJ+r18Zvk69bcHluDNvdlcN8C763jrL0gLnFSLgXB9/f3fPXVVzOfYpk4rfe9nONjz82l5HZ9H64r2ut797FA/7F7+jn35nPef+k9z+lGPCdpbX9/6hr9Oc/xU+OppLoda+tz5rH3bXFn/tpdnBcd6f54C1okTG2VMnXW4qwV5R1Vq5T5DtId+fwncrzFj38g+1tKPJNzEKy22tMdfoK210T1I0JyTNFyvEv44Lm/P4pZWozE4GfceilJXKCRL/mcDNkWjLYY19UqrSQNYs4n7t7G2AeTPidzN8ZidVe7LFBUBpXJHLHW8+oqUJQENDknJh84I0ZsCo1hj9EZqzMlfYUqJzQfyFGqzsldA4aSDfchiUqU7bCmx9k3mA6UNphetlNFY3JBZVGK0bOij5iOjSFJ4J4TkMhJkYuD3RtsX9DXZQ5ecghY4FBx9FopUUVCkr++7zFGE6aRECb8dCalIFVjnRk6xWFnud7t6Z3laieKO9ZajBGicorVtyOlKnsr1yZXmdXmXB185P/98g/cnSY+TIWSvPhN+JFh6LDdgLWdXCvTYV3GdRFnhTsRwkQruacYSTHROhAU8VOxRqj5AqGCdL1Q1qnRnLXCWSAnfEiElImlYGyHMtU0b3/F/nAjEqZWVKYa+XnyntsPt/zosx/x6vUrPvvxT2YVpNFPKD2SS2GaRigPhoFGa4w2FCN8kVSN0awRaJk1ldAdg0D9wkBOBR8ikw9Mwct+KqQp13X13tcE46FaXYrAA42dqnu6FWK+XPlFkl25IcZKgK8VsYDuNHnfEaLAlm72B3au4zAMWPcg2qCtRRtLikXWJ2npvpQydxRTqhyCkrEm0TnN0CHXvEIUdYXXpdNETmLEOHrPePYEH9DG0O+vUe4KTE9UD945tjdgEiEKzCqnQlaZYuSjzTiNKcLRoJSayAMzdAgxezxFKPDh/W01lzPs9wNd57i5uWa/E/UnYwESpUxoLcpxxo4oZUHLc42zlGIoZDKSeOdcsEoLhywlKRjkjNamSijLZ0rKGZ0SWet6Pkb4FTmjWier3jsl55mLkVX7nJAOjqqcMRGz+OuP9kW4BWm5FBw994tvqwq/POZTAfFLq36PzW8ZPC733YJbuCzHeimQ2apMb73vOQHdc891uYbN1XmLD9GC0RjjZhdnvb+lPOuleS3Pp1X/19KqS6fsFjhtdS/aHC+5MV+q4D41t+W+lvtck9+X8J+tQHR577fz+sUvfvEtQvt6/du+L13P5Xqvk7bHzm1LOnfL1f6pNdt6/2P33mNB/KW/Pfa+9Zyek0zDx07glz4rthKP53Q4njqfZXK3td26i/TczsVy/ddJyf+xiYX3AeMEAlN0mZ2PcykI1bMp3ySB+oR3qPCB4t9T0kgpCWUG0APoa7L+lKyuGNOAj4rJw3n0oqcf4hyAqUbk1QWxqniQGwVQSQzidDGNbFGrhaZK45rq6WDFQ6N3oodvLM44pNORZsiKQaOKRTOQCqLTlNIcyzZlJF0SigQ5QhbDuqwgVahLij1FiT7/5AWCYwrCJylGYBZak3Rp067A7upvgVRAU0lS7U6pwnsSpcSacSCBTYWHq8U5oBSuJoFKK2KsFfIqAay1Inqp5ZcacBcKJRu0cjijGHpH70Qm2GhmknfOeea75JSIoSUWcfZvSA22NHmO9/ccT2dGX4ngRGgyuXOVnlnGWCSKBZJmzNIvpSWMC4njWoGeK/iliW+q6tMhQfK8QkqRKUJsj81ZWgj21jnxb4iRVBqhPpLyhK98nHEacV3PMOyksp7qT3Wzbgo+7X4THwdLoYjksUgASTBYE5Nc3Z9T7bK0USizP8uS5Ns+bJrp2sf8XYVJERMt0dqHu0I9rGHJmWQMzgrpXWmNVhqrC4OzaJVJWeBCnZGugtJt7ZAkLyV5PnIlE9estsT6bOpada9robSWQD6IapTJefZNiUGCZaW0cC06izaiWtXvBjAOtGbKuXKmDNp0pKghF6KxBBOJSYL1WDtos6t19Y8oJdd1byZ/ImVcauKho8JrgX256qsitAdFPwgEUDUFsAwUDzqjTBFDv+IqXq3C+GZp2LKAQ23/MG/brvwC7lbks6BUXxQxXkwPHIwsn8Ult06WJP0/1HgsCHju9s8d68riSyr6zx0v3ddf8kv8qQDzz933cwLt5x7rKd+Crar88v8vDVBfsgZPBXdb1epL8956bR3gbyU6SynWpdngOjDcGusuy/KcHtt+fX6P7f85262PuZ7Tc97zfY/Hjr+c32PX/dL7tvb/kvP5S302PHe/f43uxYv2Pk0je9tXeUQx6EpJVFJSlgptj8HGiA6efPoDKtxi4lmcs82O7vpfg35NVj/mFDomr/hwf1s7EwF/Pou2u1JVLUZclkEqcimK32zJFW9MIeLJxVC0xjqF0R3Guqp81MjbVpR/nKPvRU5VKzHLggiEWa5UqQMpaXxQhMkTUyDkE73r2PUKZzNaJRT36DxRkocICUvUPybknpQN51F8H9CQQoSS6WLCa9CmEJJHTL9OOCfqRMMwzEF0S2SEsCsmXON0lmp18JIkuW6W/KQlWwpRuFJCwrVGvB6CFay37DpQUiZOR/w4EsaTqAKpQkdE7w2927EfDJ0TWEjJkeiT+BWkQJgmxPgr8WAAVsnFtRLrQ8D7ifF0x3R/4nw81nUuGOcI08jp/k7I4ynNyk6UHdZoSkl054HgPNY5nHMokA5FJbdSHmBSBitqWcjaaS0kae+9BK5Ix4YiEKkQE1kljEqYbqAbCt3+iogm647gJyFzj/ekOGK04utvvkZpy83Npyht0cVIlyVlkk1YG9FKcX11mIM8Yww2hHrvSlAIhRATpYwznLD5lFBKhRJpSWhWyj9KqTmIOp/P83qbBqmBubsg8sE1KatKZ34SvoWtZpXWWrphwCmD27sK31ekAjFlYupErjYmzueJkIQErm0HiDFbXXJA+FfO1XvHip9KCIG745l0e5QPH+tQyqCVoUMgVsPguDl0aLdDub5CiRQpTOQ04gHT7XCHAyntyAnCfnxQ+yoCSTqHNCddzWskhEmS3tQU5RIxenI1zEQJ74QEp/OEngLn0dP3Z3bDjk8//YRhcOwPfU1QRBChKA9aofWE0g6t95UdJAIC4rwtiZgkobEmlGmWnk1V4a49Q2KkJ4adJUknsBG6WzKeZ6f3xe85zYlMipdheX/Jsa4crl9/7vuX47FOx1OB1VNf+Je6Ec+d61aw8ZRx3KV9XQpmL1VUt/7+2Ppdmvuyir7unCyD3Kcqn1vzvlT1Xc5rOY8WZD9HdnZ5nOes3XqM48hXX301k7OfOrc21/fv3z8qTbv+WzufdWdiPb/Hru26kr7s7KzneGlf6+v9WHexdd3W3ZP1cdbHuLTN1njqHC7t+zljq2u0/P05+91KtC91pb5L8eGx8/5z9r21j+X4SycXL9tzkep2ihMpgUoaYxPWlYoBL6gSCOEtefwSykjWitxdo90naHNDNJ8Tc4ePjuMY8D5yPk9SiQ9BSMhL1akFthw0zvUABF9ZrKoqGSnhVJT6f4xBW0s/7B/gWrP0ZJRA0qhZqz8Gy5SikH11rJVCoEwYFem0xxDRcaTGHlI5TpYUDd5LhTfkTCpeeBIJQIJ6ITybSigvKCsyoxRQWYLEFKVi66zFdW4m5oYgnILzeCYET8pZzqXKVfokzNFmTmitnaFOndMSoMSJcP6GGEQ5qbPiii5yokWCSy3V4purgcNuYOgMqkRyzISYZ3LsOJ5mgnQLsHINkmJq2PYydzBKyXzy+hXXVwc+8a8egrpU6PqBNHmy9+ToxShNU+VVxXl5N/TkNBDjnhQC3hhxHU+anKL4WdRORusCVCkBSaiCZzqfSXHCWk1XJZOlqt54AKrWiBUJhU+Z0cs9GWKqqlaifHR/f8/hcEPKUbgSqqmGWbquE/8Qpaq5nBCLrbWzVGyDs8Xg505EqM7cKQSau7g1EvCr2nVpxPU2Hsjipbo/+28lFjpKIN1klMWfRDp4Rak5yUlJ4DsC73GA7MdqjdVQnMbZQa6Z65hCFunaLF4Zoc6lwbRaBd5oqtt59S/J1VVdi2Tt0Gv63tFVGd6cxXgw5UyuyZCxrQNQyBT0dMZP9xi3Ey6XyTijoFcUOnLR7JMR88UYOZ8kGTfWzLyL1vkTDpaXwH4x77mDqMRZe5wm3r37gOss+1PHbujoO8tucGhV6tpllE5YE0EZijHEJGpkpVTBhPrhkUv+KLGI9ZmRZyzOiUXJlTeU4yKxeEg+xFckzR4qpUnTlqc8L3648VQg9dR7vo/3bu3r+/ii/XP2cwnW8f9v709DbdnWu378M7qqOedauznnnphzb25MY3dVsEuImiAB0QiK4gtRUERFwSBiVFQiilEQREVBxSiIxjeJik38+SI2eaExNihqBPEqiknE+4833nPP3WfvteasqtH9Xzxj1Kxdt+Zcc+3unCT1hXXO2nNWM2rUqFpP9/0+8+/v2vc+Y7p07pacg/tkE045hKcyGvPrr9vP96lR/nOlWecMzPmY6jannJf59ksGeR1XdZIq5uTs+ViXDM3p76eMzvm2U4dsmsGbj3N6vCXlr6WeFOfOuzTG6fmn1zgnvb/oc3Opc/AqcS548TLnuu9cLL0bTjlCS/fwdWaM7j0LCiWE1pzISWOzAiypFTIzaSCGJ4ThPbRKZOPI5hrlfhLYt/H5bYaUOfiBfT8wDPITfSAOwp2glH/oUp5RUSOwmdIvIOXiWKhSUlHKUCZyt00jPRSstaisRscCimpP1uSkCEHReUSjXonMKyrS0GNUpCXKflHOndCE1OCDYQiKQy8N7nyIZFUIwykXIrnGGYsyWrIsKqN0QleSZWYkm1prJbKu1aRUppQYleyA1O87KTIphhwZtDWlU7GU3jhraBrDEAfpE+IlO9EdDkTXFlWbTSHrNtLn3Gqudhu2raOxptTKB0JxKlKM9FV1o/AZKAZhTBI1jsXoSakYPTlxdbUtQXdpnOZj4NANKG2JXhSuwtDjNno0PEXFR0mWqWnxmw1D16EUDIjxl0rW6lgOVYP71TKkZCx6gu/IyRWFsCrLakblopQYOROV35CCJ5TO7jFGEpn9/iAd2oOXMrRScmWNIVuLsnbsfRKUh1i6g2td5lCPEeZUyspq2ViMYkBKZunIQ6hlUNOysWkX52rQp6IuVMnBUiZYRQ2khCwbK4ZnIXDncu9QUvpETmgtHbWNNqN8tLOGmBTGNLghYE0k910Zb+UPpJLJlLIuoRBn6bauC+ekSDfn4gy7xmCyghTpe0/XD/RDkCbSWmGdLiVIoFTpuN4r2q2XRpaNGR0mUc3StLmh94bBW0gJHwzK6COhuzhdlL4zOkVCmVNKmVTVDogpkj08izcYYxj6lvTgCpAMi1LViZXmi1pFyTZZjdKgCzk+k0lFolYVUYFRSSrVTtzlOUuprIVYSrmK8xDjseSpZEOqQ/G8MzE+CB8azhlCrwKnIuiv+7x3YR41flXGxn2Pd0kZzfQclxzvVA39XdHh+TZzg/fUeOaOzdKYQvhizscpo2tpjHdFc+8youdZnaVznjLMT41vySk6t/30u1NOy6X7n7ruU8dZOu/SfTu1Hu9rlF/qKN7nmPcdzynn8z7Hv+sclx7jEgd0mhm6y4F+FbjXVTnXSn21smgNTetorWXrNI16HxM68J9H+ffRBJoHnyLrhwy8w77P9IfEze0zvA8MXY8P/VjDbpTGbTZFnhGCP5bW9L2UP+lS462MY7NtRnlbVWrErWtAK7LSNM1Gyma01NOHFNluGrSWSO++y6SY8OGmKDYWpSmV2WqFwqPoMEq0VYakGTz4QKnjlpsYkxduKEdRVKPFGHRtaSBWGoLFGCArogf2mZSr4WWK4Zrou/3oKFknEevtdsvV9TWP33qLUIz8m9tbhmGg7/uR2+KM9JRoG4fVoIlk7/HdLf3hltZuaa43PHzwWErT0ETlhMyaYKMzrVU8eLBhUzgVvjuQoqhzpVQzKMPRuAVAFbWukkLKirEhmY8MvpN9AVQmRPlJMZF9T+g7PvsjjsP+GZ/4yV+BiAIY4XzkhDGKpnHsdjtS8PS9lHl5PxCDousli6RIoDQWitKP9DUJYcAPB/ruQPSWFDxNK40E23ZDERCj3+959uQDfuQzP8zt7S19fyD4nlycOpWlVO7pB8+42j3hgw/eo2k2kgHQTiR4Ny1GSxO5WDgEqpSoWWsxu10RJfDiLBIIqXAstDiNIrsqGRtrLG3TYksH+WkEIoYqsSqEbVckbyt/I8aIUtLYTWtxMquqlA9DUQsrjfe0ZM201qU0SjqgS6bF4qzDOFFxahvL4DW9D+hngT2JoTs6EaZpRiM3qWo8V/6MoW0Lebsx+Gx4eojsb2/ou56nz56KXLWWbKPWBhUUzkpJnzNGov4pEXPCukybXHFqDsBTrNVcP9iya1uut47txhKioQutlG3GzM3NQbqMdz3BGmIIRQxCHKJcjHvJBMi15STvoH7vuLl5hnWOx48fcrVrefzwmqudw1lXZHal9HFjRYZ641pyVsSkGEJxwAYv3clDoO97QskChpJl8sEWRyMQUymBCh5TngsdK8di0vW9qkmVe/FRwtwouY/Bc+54dxnbd5WHTP99aUR7aV/gOYLxXec8dT2X4i4D5b6G0ak5mEazl4zw6ff1s3OR9Cnxeumc8+sK4Xl1qel8TntLzM855S3Mo+/Te3RqTOfmbnreWjI0LaV67733FtWwptc0n8fp8ZfOOd9+Gomu29SxnTL0p/ueuv+X/Htp33P3cL7/9LOpPPBdmEfflyRz7+NE3fe5WVqb57a79F5OPz9l/M/nb35/z62p6Xq95DpfFvc6srEGa2zRqFe0raXRAadvwL9HzntivhEjzzwgm8dEdYWPDUPq6UNk8J5QGplVRRspcqIQr6UbsTZWovpJH6U1QTgTWmO11GZrbaQbeFGZQYk0Y+NE9WZK6A0xolIupQWZlCTKrZXISRodMCphNaUgRs4Zk+LQgw9ZuhZnpHQmF416jTQUK/UTxkhpTi1LUbo0BMuMxrk4EkIGdrYpakwKH8LxWgEpnWlISo26/an0stBKlRKvcj8aQ9MonM1YNaByIsVB5H2zGNO59HJIaFKRBpYkiqK1sLEKZzQKUX2aRutrNkCcpQxZSMqi2V9L08rxS8ailhCFeCSVhiTNzFKJzCsy3eEWpRUPn73Fdrtjs91JaR3iNEnNvpC6c0oMxpCSZFS01qXHgirdqZ0Y/MYKGbqQd2WsacwAKYU4tkqhERlRlSM6J8iFB5EpTl4r61IJuX7wkWfPbtluE845Nq0uKmNV7rWYdlpDLmVXZKSlQSqlMyKVPKqYVSnnEioPJVuSCteoZkEglwZ7SClVKbeqmY+jvKwYwjWLIZFtccaPhG9FzpZsjCgoGYgqopVhJMSX2n/pAK0xKtNYjdaOISQRAYgeH0vzxpFsnKRkEHFy6pjIwicYhgR4MrDfi6E/BHHwlUrErMbMkrOVL1SoRznTZoN1mVxeY9IR3BAiHA4eYzPGBJSS+9Ja4WsEGJsKiuFuSDohcrxZsqRKrrVQvKk+M4hCW4wJVKDrBxmfG7BOAhetFUGIlFIRaJD3C+iihqWJUTJSzoTRoQshYI0ZnznjNTFK5kKyURGtzVi+JiWbiRh14VokUZSrRPH00XIs5pgbHJf8oV7a73VE3V6mNOO1lhicMBLn29Tvpv+e7nMX6vXfNQ+XGOLzcS2Nab7dqzKATu07/fxcM7pz+8+N3PkxTxmC9zVGT43hnMN81/zOx3TK8F4637nxL93jl3GAl7adHndpTl9kPVZc+twvzeGLvjPuGttda/DcMZa+f50OxXiO+2zcto62FWK0sYZdCya+j/Y/yrD/QUI8ELTBtl+Kbt4h6Hfw2XIbAoehZ+ilw3Ot86d26dWq6LbLH22liga/Oi6gWCKUyhiUMdh2gzWWxok6jxknK48qUhKZFXUfnTOHzpc/uIzqQtumweiEUQmnPJpSjpUVCUPvNX2AD26iKAAF6fUgsrVFytZKPwhdS0dgYtypQiA+lgeFIERSyU6AuYbGNVjriDdeCJ4plT4dMPiBEAP90BNCcS6CSFRudhsaJ/0KtIXGapxOGDpSHPD9DYSAzpnd9dvErOiGUraGQqNLqZbmYavYmEyjpW9H54WcPXJeiva/kG5VmctyTSqAKnXwKREKoTQE6fY8DMNo+MZSBqKNHpsX7vc3HLoDm7bl0eO3aJsGU0pJclLkbICGTduiECEBkcTK6JJNAIUrBPjrq2ucddLxOnhSjuL8FaWnFDQJCEZkeTFZ2hsaxbZ19J3GK412jZQBNU3h0isMMPjEe59/wvW1Z7NpMaYppHs3dtu2RqOyJikz6ShQjMCilEROZFPVmiRSXzNch27Pfn9LCH6M9huj0ZqxNC74TAhDIVgHIQaXeyX7aMn0kQlBY604Ft4XYnCC5KRbuirE+KR0MbTV6AymoqqEAWPFyWu1wbiGIQSa1ol8b0yEEEenMmTp4Tb00ldFuFQBn3PpJxIlgxlCMeFLuVgaiLe3NSU2XrfiWBLZdoGmafERmqaV7JPeEHPm/S/s0brHmMTjRw+wxrIp5V0qa3bbrXTsLuRuhfSUKbQbVBZGh7yUJCOpCpen8nNyhkPvpedM0ii9IdGyvdpJlsF3IlRARps0lrU1WFKGNoIvJPNhGAgx4sMwBl2GQRpFen90LHxRYUsxiHjBFxG3C8ciZZQy93m9v1FcYvBVTCOsIYQvItneJxNw6R/VU1HCS/aZGpX3cTTOlcScOs6pSG+NBM+jmVOj7JQRei7avYQ54Xt+nLnhfSqjMR37NBMyzRCcwqn7VH+f94WYOk3zJnTTMZ6KUNdoedd1vPPOO89J4gK8884743mXrnvpmOecufp5/a6SweuzMG38t3RfTzlA9bxL87lkuM85JdPt5jLBc9wlvTxdK/NxLTlp8/Gdc1ruMvovfUaX5q7O/3y934VLHbRLx3POOVxaE6/SEfqicd1rY2uk87I1WA3O35DDDSHckt1b4L4E03yMyBVD2nL7zDP4jn2/x/eBEIpxAlhnjyqYitFoHaUZEScDSsTYGJzWqCLp2TQtjXNsNzusE2PMey+chJTx3hcpXJk8rRSN24jRoAIqR1QONCqjcoB8IBKJWQywEGEIGV/6T/ggUVYopFgr/A3rbOmTIZKulVQNxyhtqdMBMt4P+GGg77uiQKXoDh2H/QFyeZEbx253VbI2WogESmGsZbMxGA1WeQyiZkTqyGlg6L6A8QqMwmeRtM1s0M0O6wxd0oSY6HyU+UkJjaKxFts6srUkMv2wxw8dw9CV+ZfMiCrZIoUaHQofjspENbMhBHMp25BrHfBeOo2rqtGfa/EYKOuKMICm6z2b3hO8RyuLNppa2kExcEXdqfQysIbGukL2N7TNhraVH1A8/eApQ9+TYsQoMerFUFegMi67sUbdNY7rqys+8YlP0G53PLu9ZfABtEbbZuxfUuVib7rIbf8EZyzDkHn08AGPHxraVpwLVbgHOaWSqcijNGglbVcHVCR2GzabLUor+uHAky+8z/72hhgGbMkWtq0opBktDoPWjIT+2hkbJVmenBN+CIQwlM7hCecixlh5VrIoZFXnFySjFkIYn8WadZPbULIQISCZPk3rbFHvgpt9R4y98HFyJhfyfEXO0s1+8AMpSqNC4WQfndRQOBCVmDze95r6UHl8aexv9xit+eAL75eXuWO7u8K5lu3uipwdORuefADOwWZjirKY4fb2QNYZNlsaKx3Pb29vxVkLQxGRyKVze5G31rUxZM0wKYxr0MaS0ByGAfaa3e5Ksoi2LQGRjCmZMK2Hkv0wOLvBaJGftrYRhb3gCGEjjkUrDoYPR7K5D5W/Il3mU7kfuc7ZqBSViN7d5/X+WnHpH7FTRtX891fxR/FlIvrnCK2XnGMJLxLNXYrgVsPrPj006v5TA+RUNHy+7dL3pzpSzx2hqcRqdR5qL41pKdPc0J0eb3qepXVxrtRkaQ6Wxj39rn5fjfqlErDpducM4CUHbnqepWzUkpF/rnv23FGcj2XJ8Vy63rvW99T5u08G4dwcTJ3MqWM0H++cQ7Dk6Fz6LL7IMzt3CF8kg3Jq+6U1MP/+VKDgVPDgdeNeZzNKY6zGGrAkdOyIaZDSHP0A9IZkvgQfLUPU3O5vGHxP1++JIZc+VcU4N1L2oUbnQo0Ss7kYGhVaa5FzNGLEa2Okz4FrsM6NhnwuUdKUMr6op2hzLKexxmIMot6SAipFTE5kAil7YhQCr/cwBOiHJJ8VI0npopJTHAnXOGwpuapRTAWFQM2kRntSGjRRgjFWtpMIrxic4qhokdidlMYopdFGuh03RuG0GCqGTBwGYurw8baQQBWJDVltyMaBaiAbei9GSj+IwZ9SxAImO7IVnkVWEgH3fsB7aVBmmEqVSslTJpcIaxhVq6YE5JSlVl2yPKUnCUjDsDIfGuHDUEuYjDQtrJkaual5/P9U81943RLlF8IxaF37XzQ46/Dl5RJrFF/L2FOelkLFkZxstKFpHNfX1/Q+EFHoYZB7bxxGi0JTDIEQPMPQkXyPMZ7dtme33R0VeWQBiJpRKUGaroNK2q5lZLqIDbgirdwPPYfDnv1hj8qRnCzZJqzV5dopjiml/j5ROy2Pz0Mp+8oxEaPCSIc3qooUqInjVkjEJHLMKB2lrC3l0qjx+JNiQutITlpknZVm0zZSFoQ4JrE+M2M54CSDEmSdaZWlVAyFjiVrmWs/DClPy0x6k4hMWx0tIYuSVt93Y6+aEAJtu8W5Fm1bdDakLL03rANjRdlOEaTksThGMUmTQu81elAEbWSNlk7aFKWoGiBQk+eyPutdL07D7WFP4xyts2WtSmAhk0pwQtS3NHZUvctQGilKECWmhAlSCmVjJFgr6mLBjJnA6I+ORXUq5D2SIUX8RPjiw8RSNPtF8Cb+OF4auZxue85QP/f9fNtT0dBzOGWMzg2Kc5Hy6f53ORHzbU8Z9Hf9e36d09/POQfz674vTo1pnhG45BhTp+IcThmZ5xyec/N3ypma38MlJ2z63aVO1KltTn131zyey0Scwqlszqn1v+SEzo81v4b7PPsvgpcJrrzI+/Ou98/rfJ/e68iubWmsw6QbVOrIPCNpR3KfwLMjJMX+gwNDL2Tfbn8o9cEDWWkyGmuaEsVUo8OgJn8ArRPDKvowRvR16aock0xu0zTstlfkDH3XCfFxokKDQrruOkPbbNk1Dbu2wbmEdKzuUXggEqIn5oyPiv0B+iGz3+/HiLprNhjruN5eScam1PlrLb9Xh+hY4y7SoRK596M6zlBKTxQZrRXb3Zah78kpo7Vmd72lbRvatgWkZl0hKlfbdlOu22EVqBjp9ntS6EhhT0pCpvb5sShOZdhc/SSU2ZDYsL+94XDY8/TJB6MTQMkStdZAbtm0pkSRE2EYSrRayryq4wSShen7Hu89XdeVawz0XTdKzsZ45AXEJEpKaOmhEWIcOSIZabqW0Tx8+DYPHjziK77qK2g3LU3j8KWbd43uV76EEJSLEg+a1m0KOdpxtbtid3WNc03hdsjDJT0hxKAlQ98dGJQiBs92d8V2d4V2QmK2VhqwWWvEuEtZZGCL2lffD1LqEgMGjdMNV1cP2V1ds93tiENPSoFY+lZIfVEpGwuB7nCQ/h69RON04eEYa7l6cE0/9Hzwuf/H06dP6LsD1miGQbYb+g5rhQCttJQl1Qg/FCe8lAHG0jOhciysDaJ4NfixV0ogQinDGbkhCTabVBTVnDi1OmKqw0wWWeUQ2CqFtpZdYzg4zUHDBx884bbruTl4rq6vaTctbz16wIMHD9i0jr67FSEDJCPYD4lnTzu8TwQXUGaSiYnSv6U66PnocooRnXNRWhN3YX/oRQY3ZLZX12x2V7z19lsYawhEuqdPyXFg21qcadi2lpu9lMpd7zaE2Ijz3Q+yfnw4yrqOUq+hNKnM5NxTM2pPcwIFn/vRz3D94Jq3Hj/m+vqBOBk0JQMTy1xKYCAVx0VpUc3atA3SbtSScluyGFJOGFMW2eckss4+DqW08kg0FydDeDdDt7/P6/214VS0c46lP+z3Mc4vxTyauWToXGpoLunwT8c9/316jqXvlsZa97nL+JnO81IWY8mYmo9hKUI8L3WaG3hLx50bvdNtp9tPicZ1HEulSXWeT3XVnl/TJZ/dx/FZmte7cOq+L92P+fzWOa7k5GmX7+l81ezOu+++S9d13NzcjMd59913x+3rPZyWTE3J9EtjXTLgK1H9ZaL+d63jJSdqaYzT4y2Rt+eZpKVn4j7jugunnKTpMZcyeafWwXTfUw7si7wfX8c7dY77ORY64JSXemQFSW+JSROypR8U3ie6vccPXv4gh1SijGKQCCmTUlpRpFGlDmokrNZyDmOlfEmXaJ7WCtfsRFHGOmIoRpL3pUxA/vjXqLrRDqsNG2dwJqLVYTRJjLJgFCiR+wwh0w1CzA4xS8kPiPGta9fnUuddCeJZyq0oWYoq+yhKPaFEFaU0a+zJMUb71ZEErcXRyAliyHgVqX6WzFWC3KOI0lw7epH7jTciIZs8KSligoP3xQjURCUcFp86Dt2evjvgu8OYPbDWYa1hu9ux3bbSmE95aidfrVVRuCkGeZW2TAlfyPfVwYhB+B+V5FvrvHM8Gry1G3XOUh6WkeM3bctud83Dh4949Ogxm+0WY3SJ6kdiKh2mywOXnzOgSymPKWuqZLKkR4fCOstut4Pk8YMmxwABkpIxpJToh0HI9UphkXlMVeYzRSjiAiKTKvJRusrGhsB207LbbvnYxz7G9ZUokZE8BE3W6rguap+PKl9buCuVO9E4WxoDZoah5/bmBqXk4TdKjOgQJBptizNxJNUfy6pyec7qM1flTEFeKBLZl/mTQPyxo7eQ6aUcSmsRPmgaaVJns6k05sIhkayL9wMmR4xrcAY2jWOzaQlZ0Yda3qgYfCIlyYIF30PObNqWtm3Zbg2bdoMfArf7AxQ9o7zZjKVZvhjPKBl3SvmolDRKrWY5H0oc+2FAac3+1pU/LJqSgqQ7dBgTsE4ySkbIG/LQZ0OyDq2EvB/Ku2bM2iTG0q2cgpRcJnF6IREHTQo90Xccbm9omparq2sJSliLsZB0hizrK5PROoExZK1EUQqNUQ5tpIG5NSIWEbMVQndK+GglEFD5W1H4W7HyYYj3eb1/ZDA3pl8Hlozw++5/zhi9y3k49dnc+LlkfHdFl5eM2Pn31SA9R2ReOsclhtiTJ08IIfDOO+/c23i7bzT9kmNfcm8qf2EJl47/LgdsaZtLj1fXx5zPU8vHptvex6mfOz/z75fGdOrz+5z31Bycutd3HXtuuN8nOzP9/GXeP9NzzgMNNzc3zznKp8Z+6nhL27+u63gR3OtsrR5wCrKSZk/ePCRkzZAUh73Inx5u+2L0FxUhaumG1JnXEg5jrPzFVCM/EygSmUDbiGynUooQA8YYrq6vaZyQZD948gGD96VWvHIxSsmFcTjT0ljDrjEY3aFVV9R5HEpfo3BkDXFIDCly2yWCT6TEsbxK1aZiqqi7iAGbUyZlISTXUi6ta5Q4TIxIqUWvjpRWonBFKe2oxrHRUnLSFx6KtZq2tSgl3cBz7iE1mJyJ4YYUO2K6EfJrVsTU4GPm2f5WZE+Ng8MzUoLBB0IQErbvfGnWBaZpaJzj0aNH7DYNV9sG3X0wOgPWOppCWM45ifxvTKPBNgwDfdeNpNNh6CZ8ASlpqQu9zk39qRHepm3Zbnc8evyYtz/2Do8fv0XbtiUrciCUrIAfpDQr1KxPztIzQuuxvKpmtlrnaBq5f03jePjoIVonhs7S7W9HnocqKltd1xUjzbNTRhrkBelfkaOH6KX/gnW4pkEbR1aKFCQT9c7bb/PgwTXvfvzjWA1GRXIaimqWIRdVJz8IAd8P1RmrimgaZwxt29K2jcgrHzqefvAUqw2mUWgyXRdLtqkfVYim81qzZSYXwQCrSiS/zHaSTJq8XxTFPx4zG9LtntGxyOX+CSFa0zRudCzq3KUU8cOBGA2NyjijuNq2PLh+gDIDAVcIxJrDQbJPKXpIAWs0jdtxtd1xfX2F0iJo8P7nn+ADpXSrlgPCoesJIaKMG0nfQxhIKQjvoBpi5WUic96RkifHgHOO7XaDM9IfZX84YIzCNX1pJmkB6R+DUdA4aRqYKU7cZP1mJGCSEylKxi74bmx8CJnuVvPsiaVpNzTNhrfefofr64dcXz/ANSJJG3woTfVKWVgW/hTIvTG2GfuHgEH69DSkDCFmUeFKqTSljMdsaUp4/2PbsXjVfwjnzsp9jfUlLEWxLx331DCcfz7PGiyd69Q474rgz0tEphmBm5sbHj9+/JyBGkK408BeOt4U77333njs6TWeuoZLG7KdOt/S9d6VVZoer87FPBK+dNz5GE4d89xnS9e2lKmaz0nXdbz77ruLsrnzY0zPtZTFOsWJORXln67duzJiU1zqZE/POZ2HU8c/N4ZTGYrpueeZgfs49ue2mY5rep1Pnjzh+vr6ZLZo6d+nsizncFcm6nXhfmfoPwvqGuw1WbeEuMGHgf7QMwwH0WSHEnXTkCMahdLNSBI1xh6j9+X/SutCtM5s2o1IyBapWMg8vHpcZERtUZaSaHmNtJpS1mFbIXBa17JxVno5qBvIihw39L4hZ0NSeiQfD4MhRsXGRVRjpFTJSqMwkbFtUUoag4lR7el66SEgTs2RgDsSdat1U4uyx/+LgeZcQ+sarBVSrHO61H2LKpFSheSbAzlHjAaDJ4VE8oEUFb5rinEVaHeWTWvR7qr0U3Acbp8RQhCHZvsQpTShNBWMxakxWqHiQBgCXe4xoUdFX0p4ChemkGd96WNRyywg48rDolIcFYTEoZI5kIyTkIxjTMXYt6XEyvLW2x/j6uqKj33sHbbblpwDN8+eHtVvchjLO4SwzehQNFaN5WqmcjJKVsT7ng8+eB9d+ptstlsp63GOvuvo7J7uoMEHUonaD95j+gNZaSGd9wf6wy0hZrS2UqqSEsrAdiuZs91myztvv8W2bWmcJkdRPUvBF37JgO+HMbsTYyhclFA6nktGzChFYw3WaPwgDsP11TXWSPnY4LuxXPD2dk+Mnv1+T5WD7UpDulQyUcYYlJFsjrWOHBMpI/dAZ7RhVOeiOFpa65K10pAr50W6cydkzeQa1VeUciVNiHL/IYNpsMZytduRMNz2icFL08RkjBSv6QZrpOdHP3hQt4TYs92I1Ov1dYOzO4xt2e/7wgkKPHhwRUZzc+jJIRUSfSCl6uSUZ69cU2QgevGVDs8+KI+hwjmLtYbd1U7EF5qWFGv2QPg2jbU4Z8k42ustwRceUSe9JoahL+p2AyGKXG7NsKUUyQgPpfbE6LsD/dDTbt5ns93x8OFj2nbD1fU1RsuyNVrh4pEzpJUmpZItVWYSfKnvPJHFTVkzEEnakKzGGHnWrI3k1N7r9f4qcO6P+HSbiqXtThnbbxKXREQvMXLPZSZqpmDJgLX2biWk6TnPRX7nUfMlQ/b6+vqL1LbmRs/SfktG03RbkNKmKRG7HnvJMVsyemHZ2ZiPpR5rHim+y0mcH3M6D1ODez6HS47VuWMvzdNdGY2lNVDXTHUq5mOo9632/qj7zNfGtAytbnfOOJ9j3iPk1D6n1s30+pfu0zwIMF8Xl2aDlsZwV9R/7kSdOscl2Yel6546Feee16XrXsIpp2MapLiED/SqcL+3dTxAEg4AypCSLqUjVcWldEDWmsqaEPUeg8aUshU9UYNSpRxIjcow1rkS3T/WUjdNK9FZxKgNIYwa7bpEqo3WxWhwhcBrMLp0t80iVxqCIaGlM/bEGNEktElF0lKjjZIa+8ZiTEPGMgxS1hVyGGvXYzyq14wORZLSBlQW46dkPqSLcinXsYa2sUIm1dA4i1LCv7C69HqIiRSl/IGUxrr2MIRS8qCIUZFiMdpJ4jRlUCMfIQAJhdRvowtJNENV2xmGXs4TFBsdhMyeC9ciBAxFrcd7Uolmj8pGUMi1xzIRoPwbtC3Xjy5lcNLErWlamqbhenfFbrtjs2nRpbdCJSKnUTrz6LhprcFQaDRHYq8+smolG1S6g4sMsPQ4Mdbi2nYsowlByM6xGII5U2RwJevkvRDcY8xom1HGkRspW9tsWq62Ox5cX3O92+KsJcd+lICV7s6lTCeG8V6ksYOyOMyqOF2jY5QhFOncxjkaZ8vFStldCAFt+sLbSYUEn6k9VVIpRUMpTHkWKylcpIDVkSw8EUeoT5oaHf1i3BpT7nEVMCj/qiIFSo+NEWMMGC2ReGctzsYivRxLY8HSh0NrbOFQQCYET84ehZSv1UShNQrpzp3wSnrooIRYrbIau9pXQv5z1yJptpJZzJK1SFka6tlj0z9QWCvd440x2FL2Z1QmaYT/ZWwpg5R0jvblPZQTKSeUr13cdVGKmhC9S7Yj5UzuDpJJCKK4NXgPqsgHG4WzokSnVMQaCTikLD1xqMtbgVZVIS2XhG/GqNILSGWyqaR+TeM+unKzSzhleP1ExCljDu6ukV4yiu7CkjM3PcclUfe5ATWPAp8ba80U3OXI3BenHIu7jjnN2NyVtbhrbl4GpxypaXbinFNXvzuXkXhVRufLBABO7Tddfy+zDu6z/7nn7pLru+Q8Sxm0c+e6y7n5qOFeqyDnA9q+QzINOTv8EAlemnNpY3HKjH/4cs4YWxVhqmKSGuvAU05YK9mLkCKNKaToUgsQQ2DTFi+wlBDtb2+l0RpSrkSJWFvn0NbQthuMNeNxMhnf74hR6o9z6uUPsSnZAZWwdo8iYAjS4Mo6lN2KoaCtOFC5GjyiorNpW5JzhCaWLsr1xgqHIHiJSve91IsrZbm6fkjjGrZtQ2MV1nhIQhKPqpVuw0pzGAKVgE7S5KTpDt2YCegOe2KMNK0YSHbT8uSDZ/S952bfl1KNVMq3pGmb0hatrSj4WIt1LSlImdHt0y9gDWwazbsfe8DWGdBFaWiIUKKwvu+pRUyxlET1Q88wSJlViH4smRmGUq+P1LsLR8aUaPYV19fXXO12EhlyFpKUUlUyLhyVjUB4NlobstIoe/ycqsAUazmQKCCFKPOviixwu9mIw9lsMLal2VyBbhj6Hm1uiVkIsbk0KdsfDuwPt9zc3jAMHmMd221kt92xaxw/6e23uNptebDbkqIn9B1Dtyf6gegHQuhLBDsQwyCNEHNEq4w1FmskSyLz1eAaV0p3pMcLSkv39PoSKQ6hLvey73tubm7php4cIu22HSVnQ86oGNFBunQ7azFbU+a0NupTIx/BjapmSrI3ZIySc1lrhUuVRKI3BHlebZ1/RIlLnEp5pnVObBqDD4ZGqovIVpWu1CJAIKU9mX7o6fue/W3P0w9CWSeazeZmVOfSWmEtoj6XFdutQfXSzb11CmcssZfuIuXKipOmRr6Q95FEgBgIPoxlfcY6XNPy4OEDttsNX/LOx4pzk4nRk0OAnDGldCw7jdUO6wzWagZr0Sj8MAAGU8QGpMStPi3HAEkMkRj29IeuiD/8KE27kd4ru6uyRkUZzRjDbieCDtvNlk3jsFZjTYIsHCDnxJGxuh+DO0YLTyMZhcvHc78pnIqszf9Q3mVIzP99aVnC6zb06jkujWieOv+0zOjUfJ0yau8yOM6VcZzLoJzDNLJ86rjzOZkahfPO1jWKOiVlV+N3XjI1zd7U/eox59mJafnYqY7gpzJm87mZZwPm33/2s5/lyZMnvPvuu+N46n2tfSzuijZfMu/Tba214/xMUa97muGYzmPdf27QXmqULmWXpseq1z29x6ee5bvOu/SeuKQM6FyGZL42l7Ifp84532+63fx+LGW4lsY3v4fztTl9/u96v9zloNy1zevAvc7mo5dSpywKT9qAcRaXpRY4xYQEOYsyU4mSq0n2oZYv1TIoAGt0MYIcKQuBtGnawnXQY6+EWh9vrS2RyWMplSr19qnUX6conbOJCZ0jikhKPUqVOvQSTI9Zk5PDZ8fQaxgUidKsSyWgJ2clxyzR85oxqSUYwsSul6UxxomjkE2xLbREEZG5iZLmAaI4LCmCkkFNOSNGqzEyLwpAsNltxhp4HxKHfuDmdmAYPH3XjxmUOi9SGpaxVozFnEqZRpH0tFZIt9ZKVqU2/pKRplIXH8bSmVrTnYrikijdUFnCo8FcScnjPdYGZy3b7ZbtZkPbtqIOljN+kGh/HtfG+B/EMZtyc3QhBDNmnVLJbFSidAYIUi8vvQP06Oiokj3abMUJVVqyAT4EDt2Bw6Hj85//PDfPbvBDj1Katml49PABH3v7LR49esz1tsUZiL4jhqE03BtI0ZNjROVCndaKxgn5OhpT/aBJZkfKuOpakntWrjwXPo6SkqamaTHa4FyL95623XK730tJYJY+GDnnIq8bsTZhRoO/cCMoPVi0GpW+jg30KKplCnIc95Gsi5IMWQhoBXHyTOcSnZfMCyidaZxh01qudw23iEOckvCHIBB8FT8YRI44ZhKmPFuZeAj0QybGA1pbUHZsLucsaBwK4UTFmFDXu5FnItVQmRiEWF6loivXaXwP1UxLSuQc2d9a+q6jaYRbtN1dSVajcGRSzmi0lIAZi1E72mZD41pC8Ax9TwhDaV43y7Y9R67PdVUDkmUKMTH0vjQ5TBgjnbgH7zHW0rhbNm2DtUaaYUpSmI2T8jFSbRCZQYmMcFaanD46kaxTTsWSMfAyfwQvcWpeFtUAOGdkzyOtpzIA55yKS8Z+zolaMvaXeBvz80y3mxtIlxp6p657yThbOv99r/mS7e7a71RU+9Q92mw2zxnyd0X9zxnTp5yd+1zrktM0d2BPOaDn1IrOPaNLhvYc50qmprhvRmDpft1n7u5yqubXOHdI7vteObXtkuN6l3N0avulc97l3L4O3OtMIUZCMUizMmgDNrtC6NSl/v6o/FR7O6CqOo5EU8du1JUjYcQItdbiB1FaattNUeFR+FDIrhzrwauBOUpk1nKWmEkplFh5wuSAUhGtAiofUFlKDYRJrkVlJWtCMKVzcMaX8gyJ4MrRU4olcq6PCjFF1YfSNK7WKxgtUqBWHQmvMk45mhjrNYqtUDmRVSarSDf4QgwVA80aJWVVCmyJcGc0+/2A73tubwf2e1nw3k+ai0GJSENWRpSPiu2R6vhRNE2LM4rG1eZ+9W7XzFMsx4ylA3BkCH5GxlZlWzU6FiJvKssr54xrGtqmYbvd0m6EqDySgEN4ziGaRnmhKj5pcrn34ihAzFKWk6i9ISJVBSmnQuYv0rQmJrSypWu8kyyGk/uD7kn0dE8+4NmzG97//Pt0fUmDb3ds2oa3Hz/inbcf8/DRY3YbR06BMHREX6RnQyCXUqcaNddFijWVNSO3v7qXuRC4J0bnxOFQxWmqaleNdeAatjtxODabLa5pOBw6+sGPjkXfD6UMK48OaIrF2SpkXqWkp0vtfF5xVIeqpT5ZVJQQxy4ELxm/4lhMf0xRTlMaGqWIjeFq2xB8XxTPBpLKeM/47MQQkSI+g1LSjbr3HrwEAgYvjm/bWtpWSO6NU1iraJw8AyFENo0dM6GDhxgSXedHRSlx82q5Uq2USsJZCsKBAHjy5AO22y1XV9e8+65kEaGUt6WIazaS+VOG1m0ATduGWelcOErUlr41tSljTrEEToqHyTEDOPgBHQ0xJsnaKk3qqpqcZEmttbStNCh11rBtDEaJYIBVRQtDiDtgjBDlfwxh/of+1B/u+0ThLjHmXuQP7ilH4ZL9TkV06/eXzsN9xzo9/pLRPY2aLqkiLRk2cwfqVJR2us1dTstdOLcmlrY9da1LuCTjVfedliLV8yxxZe46TsUpp++uMZ67J/WzaYS8roG5wQxH3sU5p/PUeE7d++l1LaF+d6pc69T5zjkV57Dk9C4Z6fPtTjnKL7KGL3Fq5s/K9HzzwMM5J+NNOhTjOe+zsdn+ZJL+EkKUZk0hlOZRSGS8RgWnqjtjVL8ew9oxclhNGuukQ2yIcWyQZox5bl+lFUaZ0QALMSLSpZlqDY/diJXGIMYJcU+IAykNaERGM+Yt/SHT+8yh749R+MJlEMObsRa+1jSLM1Kb4UnXZ+E05FEmV6FRVsoZbNuirZTjaC3ju9peo1VC5cShe58YPUMIVKek0ZGsEzl7nBVjQqtWjKUhEL2UrPjcoBrLxmxorx+KgZxzyW8wkSGtxonUbMcIyYeR89C4FmsVrtHlulIh2hfHQmuyEVKoiUUms3AsYkqlZv+o/BRCKJkKqdNvGunNcbW7onGO3bY6jIgD9xyfIj8XVc7FEK8ZB5GhLSZyPHJkajaLkg2QGvhcSsEMJEghQlIY60tJmJQHOdeWSLqn7wf6XgxS4eo0vPvuu7z1+C2+7BOf4PpqS6Mzw/7ZmKWomZZYyLq5SI4qSu8MxGGbOqO5XFxKccy6aaMx1mKdm3AnCo8iBOEgAU0rBOlHDx9xtbsmxCi9G/qOm9tbnGvougMppUnXazWS4HUjzo4p9+twOIzZizqHicR+fzuWtlkrJVUqRwZj6A/FwVOa3dUVylmUMqUcyeB94PZmz+f+3+d4/wsfsD90DN6TUhBnokoGG41xDmMbtBUFqJTUaEz3PtA0QZrs6QTIH+7WOuxmw26zJcbIoeup9votniEHMmkkm2vbSPYwGcmwFf4FpafJ6BwZR8qaboi89/mnbDYb3n7rMVdXO5rWcbvfC6csS6lmzuCj/F+Va8EYlHEjT4gg3BqtIEWNKnOQyZJRyBGlFSnbQtpusa7FOsN2d1X6vByziKAYhsCh63l/GCBlSq/R8V2qSoY0hf4+r/cPBecMpEv2uc/xX+Y4U9Ro9fw4S07B3Ci4Cy9ipJw71tx4OlfbPTXwPvOZz/DJT36Sx48fnzUMlxyH+vncgK3nrn0q5lgyypccuOm+82j4KaPqlLN2qXF6yjmb/oQQRpL0vMRtXva1NLZzylV3PSeVQDx38Jacn6U5rf0ppj1L5piv8/feew/guX4Zc2O8HrPi5uaGruu+yNFZ+n+dt+mxp8dbyiiccojOXcslwgBLWYrpPZ/vf2k2ZL5tnbvpNS45m0ufLc3jKYf4deNeb66Yr/DREGIm5vCcBGOt364SsRTHAlWrjY+EVVVKXXRRmKlGTqIoCelj+UvJRdSg+Hi+amCWNmtS9lLIjYqAypIRyGkgJy9RZRREGKKnHxKDz3S9L83tpJFbNdCzEEHKlR/ZoblE1LXOz1VQqxoKHX8y2goB1bXCPTFa4WwU5R0MJjiZlarOQ8KoJERbJYROYy1kSyxE9JhLrwUUWSuM0ihlhXRauSyFCJ0qqbxYJVKSkou0qJA/N63DalXq/mMxdo/3fOwkXQz2qVzstIb8+dIYMTydc2w2G7bbLbutkJydc8dsR8mu1GxFzXqIDKp6bgypZHGiEqO0OhY1U1Exqo3VkZXyqJRUaaBY72ge1+axB0ZD27TS+wJxlh4+fMj19XXJsEiPi+hLLX0qZS/Fscjld3IaMz8ynuPaTXm2pkqkPaaESlK+VBZU2SQjugCSeYkxYYoiU9NoXHYoLdk+pRXeD1grPIzScAHpYq0xjaYtxHlnLXHS92W81zIkQgijQ0rhDAxI6VY00qXcGivXbypJuBynKIeFIgc9+GHszB6LIQ6gk8Zk0CmjEyWjYNBKHPGU8thosmYN20aTnUUrPQo4OKPBynWEmFAqE2KLVpINDcGW+xVKGWAaS6F0mR9GxTopWesHDyi6fhCHr5HsiUqZIaTxek0pwZRqSIVOmajqui4NBbXczKjk/ZMqJ6jcX5XknQWZoDTG12aUAZ2PpX8gzQlzrupXZc5raSDgY104mTj82JSbhfNR5Q8Tl4zp0gzDqQj/faLV9znnXdHzeeT9vo7NuazBfIznsgJ3ZarOYclwvg+W1t1dUem7nNdL1/G5679P1uqS8d21zSXzf2qulra5637P/33JfVjCpducGv9deB3R/1PzcJ/zfdTelfeapdthi8p+/MMopSvFyHCuSItqibLWDECpNT4W7ss+2hwzG6ZIy6ZUiha0ROHy0W6l6vRXRaJqENaSG2M0rQFyT4oHkr8pEcFMilIidegjPkT23ZMx8ki21Irnao1W8udznkJRr1JVSldLsZV8ro/N/krPC1RE6x7nGq42FmcSRieM7si0xLyjbR9hbSSop+TYo7JHG1Ee0rah2Vxh7IbDASmHMkmcpZyI1EZx4KzI87qmLXNhJJuTM4pY24XgQzX4wliysy1lPdH3eN8TcqCdKM/EICUrPhxVsChzX42qaizLvThK6j569Iirqyuurq5orRuzWCEMhKKeVNdR5WqIrGp1LoSMm3MkxUwohrmoEEnGZBwPjBkSa+zoG6UkNzrnIKVTKRay+CAlbIUH0rYt77zzDg8ePODhw4dlbhUf+9jHaBtRrfJdT1+amoFQ01Mpd/G+1LmnyvPI5RiybsR5FadOjw6glAPGGMidNGybcoZA5iCNSlKQ+1QyQpSsinSij7stV9c7NpsNh8OBL3zhC6U8pyeXrtpXV1eimOYsKUvvA1NKEo8O3rFhHkDXBaIxpBgYkPKu2neDpiUGPzY0VLXgKmdG09tQnvWMUYWfYAyUKHxEMpXEHrTwkxqnMVreKzlnkdYtmbe+O9C2DVe7Hd4LR+nxo4am1bStlEr52PLoUcsweAYf6PqeWEjc3gcp6fS1GWR5Ideyxywk9H7wDCHSx8SDQ8+D62s+8fEvJefMF558ofgiCtdsxRGrWc6MyG4X9brGWVJpnDn4vjhYsj5SVBSvUeSHQ8QPEkFTRnNzeyNNJJtNcRxlTbTOsmmF8G20QRsrJWUZbrteunIHjw9vnrz9KnHXH9iXNcDO4VxpAZyWP31dWIpCzn9/Eedi6RzX19d86lOfWoxsT7ebfzaPik+zJCDa/fX4d41n6Xpr1L/22oDTmYq7rn8pm7N0TfW8p+REp/vPM0LT/0/XyilHZR65nn93ak3eFZk/5xidi4YvjW06hul9mJ9vet1TVFnjpX3q/M5L5e7raN7HsTylhjY/zql5mDvh57IC82zefH6WznPq+s4FBabbTP/9kZWb7Ycem489KEwph6h/8FJKxYB6vuYdlcdyC2fMyFWgRHOVqhHogHNmrNcmTciOSj7TSqGMaOprpUf5VqMVVnXk6InpgEcMhxih6yOHPnLoPDEkBh9KZUlpfFc0LlW5Fqurs6EkQzEaRLYY7rUXh5RWaa1L/w3QOqLiB5APWHochjY2EjHGsWkfg96Q1QZvpZRmwI+kT3RLRuO9xUfIKhCiGqObzmqs1bTj9NVSmUiOnqQSKmti9GgFjdVjnw+jFSEkcgjS5DBFuttbhu7Afv8MlXqsVnzJ42sqa2TafCuXshFj7VjW470v9z3hnJOyp6sHtG1bIv2tODqUHhqFjyAdyuNYCiWQbMdo5FFyIrlyaMTTzBQeQIxilFIyAxk8A0nLQzXGbqtRrvO4RtHm2GG9lPC1pY7dldI8rRSbtkVrM2avtKoGvxB/h2JEimyxOAWUzswpJWKOEI+E/5zkWVBaPOeQ4kger2T3SlSuDnQao9MyPzGK4lnTRFISeWWFEMWvdjuclaxQd+g4HIx0oC6OSOUtpXjkcFhjyMaMDkYtPav3OGnI+UjELxMwGuYpiSObckRl4RIprXBtIx2nmw2DD/JElbWYM3TFyI4jB0TUv4w2aFTpHi0cI1m/YsCbmPAxYJ0890M/oJTFakXTGBoMWTXE1BBjliaRUXpqeB8LWTpIOWccxjK1lErH9Vi4T0phrMaqTI6eoetwzvDW4wfC5cqUbGHtxVOza5VGkccSuUN3YPDS08S6VrgYgyfnWH6mGYhJfx/0mIWRUk6ND5EYD+wPB0axiOqMal2ypBsa92PbsbgL5yLhr8rBWDr+3KCfj+muCPbS70ufzQ3JS0o7lj67bzTzLoOt/n5JxHluXC/te8pxmxtDcyPukrHPDfLpsebb1LKWJVL2pRH8pd/n297lBFx6TaeM0op6LdNjzLdbMpTPnXt+DfPjLhnm039fcu3z0ql638/t8zJZqqVjXpJdu+v5PXXsU/d56Tjn5vPceE7t/6YCIfc6S/CFCD32e5DIqy7h5ZRLF99CUkxRSkJqfwhr7ehYjCRDIJUocE6iOmNqiJ1jeQaq9sPIwg8oBoo1FmeVaLnnSEqejJRBpZwIUdMPkf1+oOuG0Xiq/TOkDF0XlahCCDd2bOiXhUCAdRKFd7bBWScRdSQSbJRmt9tidcaqnuQDORzQ8RajFDY5lG7ReYMzDmUsaCmPikHqsKOKBAUoQ4iWEAw+ZWIKEllX0vPC2tI0y0kzPxR0t6HU5EupB1lLfbVSKONKiZjU8eeYIA3kKGTjbv+M/f6GZx98AUWkbSxvP9iRtUKjSrftWS8JJTX7NSqdxx4mol50dXUl5U+73dhojVLulJLIE9eGbrUWXU1dibH06hhFlv9lIaFTI/klyk4Wo1W8CJKu3d5rz4YjOVolyahpW3JRSY9lfM5ZyfzYYizCMfuR07FCTOlCaBcFspgkK5TV0emuz0N9FoKf8EAAXeazZoOOalqTHhJj2dmkzKyUEI6f5lyeLzHIN22LNZYQpeRumi2cqnRNyeK1JHEUQqjf5VwyjuU4NZtUb0AptcuVI5MSWUuWEiVy05vtFtdkNpFR/lgcl4zZ78tLPI7OpaIQBnLpAF7vuwLpO5LHiLyzkrkZvMdoiNbgWifvCavJGDKGEBMxZnof8T4TYqbvpReNj4PI0caI9wdIgRwDtryjtNFYnVE5EPwBazY8fHiN94kYMinLe8k6WxwLQJsyT1rWRwjiAAXHEBzaOMloDJ6YfBFziMcSwVxXu8xIiplkMiTJUIaSuQ2x9uAQHoyxVtTOtMY1Dnvk5f+EwouWBSz94b3L0Dhl5C19d5dBfMrgW4qynzreXUbLKYfglJMwH8/S8U6dYylyf+5a559N+yssRXgvHd8SKXpucNWf9957j8ePH59Ve5o6K+fuz6vAOUdp6ngt3a/p+jtnVJ6KeJ/adu5EnHMsl+71Xcbt9DhLIgLncJcjNP/93DGW5vRSw/yubS89znQeK85xkT4quJ/7ktKx261SeF/LhKqikB6b2xmlUKXpXLtpsG6LNg5iJKaADx5rhWgYDp6cbnE8xeUtKjm6IKU7IQgh2SqFso3UlxtNaxqMSlg1QHwKqWPonxJKp95DB/0ATz64pe89wzCMhlTNNkjl+aS5lbFo4zBuUxpmWVzTYJzl6sF1aVrWiCwrCZX3aCI6B4L/DDncgH8Po5M4Pu5d0FdE8wjTtGRtOPhMHvbk/D5Df0vwge4QCdkSaUBbclakEMlZymuMzlijaRpp8iYRbyvKSDFDuy3RVy8OVfD4oUPlTPR6jJCnGOgPe568/zlub27ou56h2xOGjqHf0zaG3W7D/u1HNM7hjJGSDy2E38oHIEayEgUoU+rrW+vYbnc8fPiIR48e0bZSy1+N8czRERHybGDou9Goqmo5imOZkDR206TR6UB6C8DRGajZk0IcT8XRVeTRsahEdq2FHO2MlI6JlKkasympSIvG0hVbSBVpokQljpAvHItKwtWl1l6us2R5SolUnPyekpTg6JFnRHE+juVlsZQtVTK1OGvNKBMrnbGl5GoohOx6H0x5noyG6+sdTWPZbFtub2/H7tHF5h8j6t4PIyelzmXNZEi3c4siSzd2bcBoTNMUHlRxMEMkDYGMOK43T59xe+jpD7fSN6RxbDc7rLO4xkl38wS7/ZWUHA3HsjiKw5jTUSYWbQqPIdH1Hbe3N3zucz0bJ70xrnYbht2GmDLNIMGMIXjJMmqDbWT9t87QOgcYVOnknTD0g6cfej7/3mdEnjoFdm2DNYamsWL8547seyItYe9LqZbIQys0JjqIQrR2m20piwSnM9llrrYtMTpi2tJ5GEIUUnsIY3dx4e/0RWlMJJ1VBlSZD5XJWQI02pTGorJyRj6MjxkfPftOeqr8RMDckJ9/fhemjdmWIrrnHI5zDgU8bwQsGWDnxnqJwX8XpmM5FdWcn6/u88M//MN0XcdP/ak/FZB5+uxnPwswfnbOqJl/fp+ypVoyc2785441vW/niNT1mPU66nWdu445lsjt5+bkVJR/yWifX+v0/ky3mV7PfO0tOZP1eEu/138vRcuX7uH8+ueOViVgTx2Ecw7p9Di1H8jSPE0/n+733nvvjfd96Tk8dc3za79LGOAczh27XsP0//N95s/7Kedsut3SO+KSd9nrwL3OkEqkWRVnItcSomJUacVYxiRlOked/ErEDjGMKkApeYngxgOKHq0jooCi8SETi9qSUbWmXxVpWoUxHp2DNJkLB2Ls6btA76OUPnVS+tD3Rf4xCoGjkqyVkmIfVaRYjSkN5IzDOlsyIQ1N22KdpXGi9ISSSL4qzpPOUXgnqSPnASmvupKSJvOIrLZk1UJSItkaO3Ly5NzTd16kJoMmK0PWZozWi+NTiNxZunD7QaLkyniUCoXcmhi8ENB9LHX+ORGHrpBTwToxsILvOOxvuHnyefb7PX7wBN+LnKYfCEoTBoUferTKaOWEToKUtyRJEwAleq6O/RBcs6EtdajSAb12Txej/Rghl74BaWJs14wHJRt1JHBXjoWQ2QVq/H0ulZpU7QZ+pPTAUc5Vjn10OOohc7kucXJEGlRVY43CedG6ZFkS3vcST86M3JxYSrJyzkUBKY0lYs/9P0YZZ3GAnjPky6Drv+s1xqjJuRD+rTglqmZFpuR1NeUEibPTtq04Xf74opQyrkBtXqhyNeLHROExAzOpS5NnWo3bTCPsdQ4zQpKPUQzlxrVjp3ltNVonlNHopGidRmOFTxVtycIU4YEUiSnLGLQhBMk6+DGOX+aucLaE25CIsZOEhwKdIKoMWhrcaaXQqvSOUb64hBFrPNl4Ni6BAZ116X6dgcJpClI2NfhM4gZjrZTI1T4pIYjjrDTKl8CCtM+WzuNFWFerBEZhSOSmx2oIVtEYR4gGb1ThtERCiMfFrAGS3DclMrO6vsOo+Y0ilJGPMsM/EXDKwL8PzhnIpyLtS9vcdax6nHOYG1D3jUYuRTmXxn0uMvvkyZNRwWd6jKlq0F3O1ilnaYppPf38Oufzfp9o8V2YZ1TOXc+5eXyVRtqpbMr8PEsG6CXHmmOe1bhk3S4Zxpeca+nY9wkCLG17zjk5d7xLnPRTa+Ku+3EpTl3DiwRGlo5zybav08G415F9kK7A1ehCG7QRA8mWkpfGFWdC1WIN+SsvUpyZQ9cDCWMyYejJOUB8ijEJpzNJNYTc0oc0koKNlA5jjSglWQ2GD0jpwDA8xfeR4BPPniYOXeRmPzD4QUia4dh4rY5b15KnQnysHXht05aGVC3WOtrS+dtaC7oYjUMg6yhdu1VApQPEW/AH6XFn3gH3JWAeMrAFMjl76G/IsWPonklGImn6IZOyBt1grcMoA7mUBZmMUkLs9N4zDIngMzHellJsJaTQUhYSU8KnKDOeMwSpF08hsNm0NM7Sd884PHvKF/7f/5UofjHSck5oIsmD17C/fQZ5V+Zdy33WWrqMF24BZQzOSX337uqa7W4nBGHrRKGKWqcfy08t4QiE6PF+KOU9JYtUauyPyGPJE1DIvXokeIvkqZi5R07AkZMjtrcoSomxLpkIU/YTOzxBqYNP5SU79H2xzRUpuXE0IYh0aIyhrPVGRpnSSG6vpN2RCJ0rT0jKBMOEbN4UhazKa4Cjg3Is48oMgyg95ZxpSld5W6P4xWkZeSfld12Uomr/kJikeZ4vneJ98Ah1unAiUOU5kbFqBVlDTTNppYs4QwkqTOccUXRT5V7HEIT3EyNOKzbOsNkYUo742NOYLcYYWptpjGaXWsCO/JIYB0IY6IZBhHu1pet6/ABBK1xj0a1kUozRbDYbtDZ4D/vuFhRcPbyWy8ti5Ccj3B1rIloHMociLhHRKeGIPNyE8pZwwvFPib4PDD4xhEwXPDkH1Bd6nJNu7lfbFmPA6IS2Ca1hiBpnHI1x6JxROZE4AAFNoAUawNlEMhsSLWn7gBA03bAR1b2UGEI89sjwHTFFhjCgohmzMVpJKeaRY2GODuYx0feRxTnjdunzpf2XjIlL9psbwNMut/NjnDIwTzkb54yfpejyvHzk1HjvOt/039MO1UvXvXQOEJL1f//v//25ea3nfvfdd8cxTkuVLrnupU7WT548eS47MT3OuSzSKSzdl6Vo7ynn59RaOuX0nMI5o3S+/7l1di4bUO/xqXt6ymGo21Zp3BDCYjZhOpf1syVHsD4383V9LnMyvb7p9SxF6ufHno5put20c/vSPhVVRKDK5E6veX7uU3N6n8j/pQGJ6XWdmrPpvJ67t0vXVVF5K/cpMbsv7pexiBFsQmkzpuFz6WfBWBZj0VGNcpG1uVvKko0wRv4QWhQ59eQ8kE0iKUefNqTBkhU4rcq+uTRvSzjdk4PUJQ9B6rP7PrE/RAYvPIrgJdI31cqnNIerCj3H7ISl2eyw1tG0G5Qp5G3bjOVDYtQPhBAKeVyjGkVSkT7cQtxD6sm0pKQZYkvaBzJPyeoZ5AjZQ/LSVC10Y8ZHlfIxhSpZA/BDPxo8tcnZMFSD1R/ruJUu/IMakU/PqSyRSp27UsTo6bRi//Tz+O5QupLXciNd5FIVIQ7krudzn/scu92Wq6sdD64fYm2R95yWJNX6fCs9DnZXV0J+NrUbcCw9QYSDUP8vRpKQWEMsD0hROaqO35H4WiPxWvoEGCN9UFCjMR0L76DGsaV2hNr24RjfnmQHQvCShSgcIUpEuUaVUwpjB/iqGpQLZ6iWJ8mRj9mIvpfu4aE4GGOtfE1pqMIZmHRFN9agk4yh7heCKEMJJ0k4ETFpQgyYIpVmraV1zUjyFv4KZHV0LMiZVLg1xolqmtFXDN7jB0/X9eRU+roEkWNOVZmrcBoUSrKD1uCMlJFVHkguSkg+RLL2KD+gcyIrTd91dIeO/f4WtKOP0CeHtQbb7EgIz6LdNWQsYAlBZFiHEIjJELFkLdkSjaV1YLXFGpGjtlYI4zkluv4gxnjM+LJm9v2xpOz2tsMYjbOKbetwTgIiFJdIl2t1zQNyqg5aJOTEs+FAiJqYFAFZmylCH4Rvtu98yS5mjBXHd7Pb4pyiabRkNVXGaYXWUTI25f7kFMkqAnvINzijcRtHzo6MJmaFNJ20DH4rGcqsUdqhtCvdUjIqHddbrGPMme7HgCrUpX9w77P/faKfpz4/FZle+vyuMcyNpSVjZ8moWjrfOSPy1PZ3jWtqgFZj7FOf+tRzRu3ckPvMZz7D48ePv+haLjnf9PepstCSITs3oqbzfcrRu080/ZIsySVR/LlBODeM53Nx6vzTfeaO3ZTQ3nUdNzc34/zNnaUlB2rJaZ3P57mSofk9mV/D0vXNS85OzSGcV2g613gwhPBcH4/6/SnDuX5+yvk8h7u2P3U/L8UpZ7h+tvT9dI3d5fC8bodiPM99Nq4Ryoqq1JNjjXyLGkwtfRLH4uhkZMC6VrgNWSPK/JmkNQlHYkvKBrLC1nIqnXFG+lNoIj4eiL5n6Ht8SBz6zG1xLA59PPYSoJQ5K+m6C3pUo7LOYV2DcY52s8VYR9O0UkxQSKyqEMtr9DkMA8ZorFUSzcyRoTuIc5R6lG6IydJ5U8pMvHAtiKjkR3JrSL5E6BklelFitKaY6AvvQOryi7HUZyE8p4FcK1NU7SasqN3BUjx2sM6ll0KympSkRGp/e0sKvmRWpImdtVbUcMjEKNKjt7f7kVTdOCmlqUpDI6G63O86n03T4JyTjEIua6P2BylRfimlO0b2pc8JhWTLWP4DVedfziflP7oQ9iWjocYSnLq97J9RRy5IHasC8tGxSDEQ42T+yjokS9SdMvYYxcGr46nkaWNUJSlIFqZcn7y4/XNk91J38xyJfDynUigjv1d1LXFgdZlb2S/lhDGJnA1BywvEKI0bieLHZ7E61JJRiKSkMbkS/u04KdZaYhADP1DWVxCjXOs8iheMpW5OOpaPBO/yLggpQlAoP6BSIqPp+/J8+kGkXrFEPM1GszUWHRFataVI67pjCV+KxKwlk6dMyWQJ30YC8bLGmsaRi2Tu7e1eovk+EmJZF0MUx80YvAolq6oIW8neWSvOHiUTqrWmsZvizORS6hmJWfhkWYNSwjkiS9+RVPgMdS1ICaWoLITiiNhSGhqMwmAwJTukEEK4yh2oQM57lNI40xZBCUvSppSdaUJQojalGtAOpRtCJcyHYeT/hCIuFZMmuZ8Y7O37/OE+h0v+KL/oeV/GiKm/nzNwp+d5WVRp1bkjMI+kvqpzzTE3lKafX4pTRvJdODXPS8b+0hjvyh68yHim55tmi+aOxblI9hKWsjPn5uCSsb7oMU45K3dF+5cc0CVH50XX0dI578I5R+uufS7Z71Qg4xIH+L7jelHc6wwxeEJw0sxLKWItiRrVnTLxUEs/0uhoWGtp2y2Na3DaicFExtiH5HwtUp1Ko5RhY7TIKsZOIpJE8IqQEt3g6QZPHwL7fS4SkoOUXsQ0GgQyJjuWPRVvQRpvGUPbbmh3O9rNBufEoaiGfUpZ1FaUlEXYomj14ME1RkmN9NDtGfqBD550xDQQcySnbqz5lgix4Wq3xRqNbVr8cCDkSBj60bgeBpG/DT4RUpKa8rGfgxprqDVCLqd0Z67qOqoSzxEeRi5R51rLLw3cPP2h8ChiRqkG1e7Y7B5gnRhZfjjQH57hmgHpfzHIPA8DIWY2TcuD6+ux/0LwQUqKjJFsT9OK4VkkVGOOo6GYimpQStI/YBj6MVtRswo+hsLNySVinAhBMlxKa6wR1aKcpVRI+DZ2zGyMWRqKI6mO5VPiTBohvpZsRUpe5HhL1qDWqcs+CachBclchJAmtI4jDyGRCVBUkzJHHhFj5kgcBNk5VceF49hiSqOCj/eeXLIRtfP8sXN2Lsa9lTIgpb+Y3zBxKiRxo8ghiOJUDGhjcM0GoxRt49hupUxvfzCASKVK/VN9ehMKRUhgsGA0WVOyIFKKllOi84E8eMLNDSFlQkp88MENIUSGkAkMaO9oU8B4uOkiKezJyaNUEvWwqysat0PqDQsXQSu0aaFk1vx+j/fC4UBpUja4dkdjDNePPkb0A37oee+990t/C1s6dmsOt/vR8ctRnG5dSzcbi20tzlkePHokPSKcwegO4wKbx6DMDvSWLjpSVmQ0YQgEH+m7blzj290W1zTYpinvlEzIGpVgGKqSXXHqgZwtWm3lXeo9ioTRmdYJx0NyElISqZQ0RnRNkbTWHSkcpFeP6oh+IOaAchb0BtU8pt+9/sjUKSyVKty1/X1KCypOGfv3iezf57yXGhbzKO/UUD917he5/um+p+b8lNFRxzTtHFy3nZY5TctV6vEryXl+L+7jmM33X3IEaonUlGA/3XduPC4Zy/PykXNjWsqqnDpm3X86P0vHXjL0z2UB5hmI+v000r7ZbEZi8yknb2m803U47ycyP845o33pGuaf1ej40hxPy3GmDtO5OZiPa7rtUubrrrm49NiX7DO/10vHuuudtPTZKUf2rjV1ybtk6Zl6Vbh3KVQIvjSDO+qmS7mGGJOJJI3klBqlJa2xxfAqpRpJSlVUIU8Ue5SYMsPgpYxm2Bepzlga7mXC4PEh4mNiKByMlIXroZASq2pkVWjUOEaljUS8lchdDj4ULnIp66qGGqUsp7DQ9VjbL9HsRGkApixKZ/TIb5Xfa0mEUqIwFIZAd7jBDz3doStKQdKsqzZNS0eO7LFMSlOcohK5HSO4qqjERFTpikzOUm5Wat5zksZwKpXyLWtxzYPSgGxLu73CuYbGKmLYEq62DMOe4Dtunn2BGL30ueg6cmnqVrX9Y4ii9tVuRhnh2mE6k0vWSLJHlZztoxc+yDAIVyPUEiNGp6A6oqN6V1UeKgb5yKEoEeQpxsZyVOL3sat0JW3HLKUvISXyIOcysfRVKWugNuCTTIv0OqjHr+tCQ8kSyT2v903WuiEaPZY95UlpCuU+1YxETpmkSudlfexWXsuNakIC9bxUbKlTono8lbg7dh1XaqIYVBwZVTgU2oxOSgjHvhbyvVyNSrlUb8mYQ5HE1al2VVel70x5FlKkH6RMrxKYjTO0zpCNJauE97eEqPFeoxFZaesMMSa6zpPiAKVnQ4jCZckTwr4fJIAgGSxDiBkXKB3TxSFBKXbbDaGJpKRE9UsL0TmEQN/3hBDH5y1l6bDty/izcmwaR2icNKtUCVsycMqAHzxZaYxtxntey9bGEssidTxWwRHE6cczldKt7qk4U5VbZMgqEZGsrfDOi+iAlvxuyI14dwlicOSkIIi4Q04WoxyKBo19rnTxTeLSiN3LRtFexllZ+u6UQXDp+e673TmcMnCm373MeaZGyrm5sNaedIrmxuDUMThXVz89ztwJW3KGzhn153Aqej3FkhP4svNbjzk/zrmo8tRpu2ucS2M7d+wlZ2F6jHOOw13nXTrPuWuYHufUs3+p8X3u2K/iGbnkvOewtGaXnOFL5uvUcaefze/z/L5dMs+vCvfLWKRI6vsxEuic9EggK0Iph9IKrHIY09C4tnTlNmgjCivBV3ItWCNEVKcN0UeiDxy6jsH39LdPx8h+KMZ39KE2PQZXOxRblG7GvgTUSO7EUq8qOtUwTyAOjJesRDWOa0ReEh/H0inpKyCZgZyyxBGVZCJS0hytXIl4G2ekXIaEH3oON8+4ffoBQ99xOAzFITr2EVClXEyIsaJSpUpkVmmLsm4knEuZTiYj5Us1Ci4mYXHCkpTykDImK5H5NQ2bqyuadsvV7i2aphkJtCKdG7i5ecL+9hn72yeSRfGew0FJt+IgJToKyRrI/u64DrQYTSmlIpcZiKM6khC2Ywz0XVe6HyfshLycUhbHxRbjq5BRldKkmEGLOljKldSunispkrVXSKwKyRTwfG8GIbuLLO2QjxkNWxyCum0t2QrBHxvwcXT8VE5kbUSOVevxe6uFz1DV07yfOMaFHJM5PtBjhiGXLICxQgSuvT/q+Yway+equSoOZ6mEypQIvymOxfPPbSVapxRLZkjRtg0xRayTDFjJMVKb4tWrTVmB8mSlpKfHSDIvcrpZyrcOh25cu+3uAcY22GaDjwkfM4fuyej0Xm03mKahaXbErNh3nt4XrlFMdL10qM7Eo1M5ChyVdWF6rB1kDbeWxmlap7i+vgIyQ+9Rxsnzc70lxMB+v6cfhIM1DBIkGfoDcZCsVNcrNk3DtmkwOmIMbDYO7UCbwO3eo7RhuzPlvSRZt9r4s/Kyahmi3IcBVEDTo5RBK8vooha+jjTic2W+JRuTkyZrO0p3l/pCfFTEDDFCjEqkn6OD0gvGaYfJBpMaQvrw5WbvMtZf5ph3bbNkNE/Hc87ova9TcslYl4y/Uwb7uePNlZqmv19qTNdtqvTqfN+5k7AUza4RzzkXY3ruu8YyN7pPORfzyPZSxHbpPOfu5bl5vusen3LG5nNUswvnjOi5A3WJgzA/1qXG6VL2ZY65o7d0b5YyLfNznIvYz8nilzgsS/d9OrZT+51zUk9d+6nzvgym83LuPk/Hcs7ZPfcOWzrW0mevy7m4X8YiBHQhP0hpfyLmyoWQOuimqXKjFl0kEkOUyLkCcjyIwpNTZO8IXvF0P+CHgWEYGIaOGAJDdxibqI35gCR/kKXbQZGJtRptRR1FDB+J1hZTTAae80S7n7F2n8yx2Z+Ski0pj5BeFaIaVZRwtCYnQ8aRCFKbvclSWpEyqTSrUlq6Xvshsr+9JXiP73tCyCQsxubSDyQeI92lZ4PWBu0alDEY26K1HQ0PcpnvGAqxu0bSOZKelcMaiRSb65otUrSNEKzbtpWsjZXoqFIKa6XvgdEwpEBICddsUSisNkIYBg6Hw8gRsNYVuc1qyNcIfIQUGfqO4D19d5DFX/pUxJTwwVdKCEqnYw19Kf0aexegCi9CTaz6cl8zY+nQlPOjQJRytMbYQk7XR6ncDPiY6Ac/HjPlKE0MlaJ1ThzPlBh6WY++9lcoToQS8lDp+J7GLMG0LCkWnsXYmwFxuCXzFvFFBUoh/V+MNaMkr1Klc7JrRocpZunaXeWFc52LmMT4RmGQ3gauqEaNa6acszxAUoKoYdNKCeB2u5U+FyFwc/Ns5OiEKDKrbc2gFPK8FDEencGURRY6+FCcfMMQFca1NBspjYox0R/keQ4x0D0rz9nuBm0d2jY4s0Gr0p+lZJtirI63Llmn+jgLt+BwEAL60xTQqpRQFTK2tZrt1UO2u2uapqGxms3bj4W3lKRBng+RvuvxoSemKNH/nOmGPTEOQMI8e1YU4xqyKs5b19M2LVc7ed4UEaV6XCNqYa65KiWVkWG4JcYD/fAEcmbISRzunKQcTFeFOlcCB7Vho8Y4NQY3SBJ0sHaH0hu0aVFZeoJkBWgrAY9sUEljEoTJs/EmsfTH/mWzE6dwl2E53+6cIbt0nCVj6j7jnxoGS12Q59ue+65+fhd3YMmZq9c7L9upx5rzKk4ZhlMnpBqHc0fnLkNvCaccrqVrmzpFp5zGc8eZf7bUh2J+zqVjV1WlU5256371u1MlU9PjLj03FZdkgZbW69I57xMpP2fEV0f3nFM0XR9LzuPSeaZjPHddNzc3wPMlXnNHYGk+7xOcmBvg5945p65h+tmS4zw/7qlt58c751zeJwDyqnGvsx57DcCx3lyMQKlZtmJ01sg/Ra0mlegcmZw7MXiMJgyRlGD/bM/gPcPQE6OXkis/EEtH3mNBhKpejJQ6VOIyeSxJ0FoUhFStIam1TcUwey7Kr8of7lI+ootzVPs+6Kn6VYk6p1i7QmfhBCCHF2NZor1+EOWjw+Egmv616zKV61FKwcpV6dJHQxuHbVtp0te0YmgpPToVKUZx6rJBpVAcmcoj0ShtcNbhjKVpDcaAtYlt44qz18rcKU1Mov2ftSKX8aQMMUMufBetbSlBkqh0NTqNkWVTnQtplBalF0TwUurkPX3f44PU+acyh6L0VLs3l3tQ+kSM96z8TPtZyDrKI0m59oWohOrxXpbkkYxfyMfHHgsSufchlgwUpVeKKFjVdZtSGqWKpSu2qGxpI5KroRjtqmS7oJY6HZ+TsRP1eJn1WmrZmjS3w0jEe8qPoG4/lkypYoiK0hMIwXrsV5BF0jTX9VCcq+ezd/m5MkHhxwh5HyV8j34YiqKV3O9RCreMvZZnwVHhKo6k+AwqobUh6Q4bJegQyzH80B0jjmWt+pQwrsHalugCWluMbcWJ51jiNU6MLMbiLGVCyYwFP5CTyCuTpcyqbR01l5dSi3MNO2swjQU0xoL3AaMNg5feGdFL884YhEGTU+kirhNZRYyzULqQG21wztBYDURSHqTPjjYY7cbnxmgvDkTuRSQhSgfvFD0x9qMynNYyLimJKlmMoMbMR07idFh3jbVbjN0CWzKWlG3pOSM/uqjb1ezSh4G7onH3PdalfyBf9Xlfx3HORXRfBPd1dJayHPdx+qZOEnxxRuNclmBp7Pedh6Wo/6lxXnrMF8VS5P6UUzj99ylD9T5zsRTRvguXZHnO4dLznHLIz62TU2vm1DmnhvZdc3xufOdwbm3dtf+SY39q7d5nfX6YDsOluN/olMJYi2vaUVWoOhPb3U5qjLGE2ON9zxAHqR/OFpV6SAHnDmLYBsf+dmAYAvt9N3YnPpYQgJCSj1Xsx7rmPDoDo7ERo3ToVeLExOoApDQaVjGWxmTGjFKd9cdYKw6FNaURnPR5cEai2F1/IA6eMAzE2JOJKBVLHb04UN4Hnj17Rt8fCN4TQ8lioI5ZEm1QymJR6FJaYm2LdQ3WtbTb67GvxhghL+VPYhxL9qXOk3BZpMZbWYNVDqstW/0Ewy0m/6iUqylNMA9J7Ai8RQqGGOEwHIihJwwHvvC5H+Vw+4z9oYMY0ZnSxI1j9BiJpm82W66vr2maFq01scitRj/Q9we89xy6A90w0PUD2AaKk6SRPgmulSxT4xyMRmCNTFeHThFTLt3aAyHE0cGtMMaJI+gs1jaizmOF12NKxiLGSD4cCCVjYZtGVL6aFt8d6Lpu7NNQe0d0fU839OKIKulMXUuUUikF0uXf08Z7skZLFqM8N8eGd2oceu2yPXIcisNbjXyocx/HbBGNwSqQjJNknuTeCOHd2tJccZLJUiVbkmMkaAUBbNtiNFhrJEMzDOz3e0TVqs4xDEM/cdrN+Pvo1KgpbyABgX3Xk4vYAGX9V4fmeG8VfX8rxzQa127RpsE2VzTtFbbZjFSEkItzg8gyi8RvIMaBVDu4l1I7cS4yt7fwwQdPxWm3hnaz5e233+Gtj30JV9cPudptCX7A4GmcJiUtytCS0yEGSNkTQw8qoFTCWHnfbbaKtrnF2QPGyJh8t2fISbIa+gvFwHdYA84aVHNFjD1R9eR8IKhMChlCacBHLG+8MeKARyHNJEViW7JEYKzD2gbjJAjh2h27q4+xbd/i+uqTWNNg7ZZu+HD++JyL0r0ITkUs74okVszJx5eO51ID9q5jzPebRnjn2y0ZI1Pc1yicn2NJavKU/OR8nqvM6SXG9JJ06CVG49xYvsQYO2Vczq9huu2pSO+p6Pb8HHU+ppHyKeG9kpOXnK6l61la43Wf+XmWMlanMk2nMhtLOOfwnDrGkqM6Hf8863AuQr907eeODccSuZubG66vr79IzWxp33nvjPr70rxdsn5OZWBOjeHcvE1xaq6W7vWprMl93nevEvc6W9tu2F1dP0fetrYp9fYSIR18hw89PnoSxRBOA4YeTRibeAUf6A5Cxo4hFOJxcSQUjI27xt8B1BiJm/IhqmxpCAEV01gzDjwXqa2Gn2QpSpn6GElOYkR5VfolSAM07yVK3h26sfFXTmJoWFNKq1KmGwb8IMpLQu+QzIpAl0i6Gp0F6SHhJMvgmiJ/2+Bci7YWY5uRFKpqKdAYFT9ej1aKphUSrmsbVE7onLCF4Jl6w+ATIWT26UBIniHuGYI4CykIWT4nz+HmA/rDLd73pemWwbVt6VUySCmNkkXqisRsjfCnEIhhwPd9yVR4ej8QQiRlMKWsS4jrSdSFCrel3WwkGp8zfhDuSKY2MlQjHyWXZmcqH7tVjyjleM99Ns11aY2zTsrllC79HjLKaClZ8Z59d8AUTk2IcXR2KdmMlDMqFSMwP3/Omo0QIro6SjOrmtOTCPxREpfSy0Kuv5KzpyV8IURqNi7nI6k9JyFUK22wxXmQMinhdkyfEaN1ceyjcFUQrpSp2Z5pRi4fS8aOXI3jeMb8gdIcBatqs7xapsj4Q5qu1/ph+beCHBMxJ1TWoC06Ic0inWQpXdsih8lQSsW0MRJoSHmcV2McuqyXVBwLYMzcGGPRypT56Ympw1pHTgPkW1Tu0UTajfCGjC0ljyngh0ORlk2idqaG8rw0pCiZAkoJG6rwlfCQAjF15BgQdyGgdUI7SoZBQTJlXooYQ019UjOhaXTgauJV+qkEIhBSQGlFCHty7PHdU9Kwx9ktbfOQzLG5448FnPsjeO4P7ynj4K597/vH9lVFCs9p8s/Pt7TdKSNjjlPGxjnMDeCpEXfOKKwGWy0Lmhtvl0ai58bnOafiUqd16b4tjX9uNN51rruM0UuuaX7sqeF77vqn+9Z97jMfdx371D7TbZdK4KZjmDuh5xyVuVNVj73k9C4Z5UsyyKeeibuu81Ij/675vvS5PodL3jmnvr+rxO914l5n3e62XF1dj83JlNY0TUPbbghBasq74XYk+ypbSpVShzIDWkdSbBiGxP7Wl8ZvQnjO1P/D+J/a6beyVIuBWKOnEtEtSlOq9hnQo+RotcirDWS0PfbZACBR+1WkFAmlZEkUj1qs0aWXRORw6EalI6UCRgGlzCbGTNd5ifaKbudYJ127SVeuhLalfEgbtHFivDcNxjYY6+T/ppZGlQjxSN4tV1KcqVp/vd1tcM6x3W3IsSOFPanPJK/w0XK7D3SHyJP+wBACh14e+JQSBGmiZ5Sm2z/B+57ge5RrwDjcZlvUofbkQhC11uFscSy0GpvOBT/QDz39MOCDFznd0r9EF4M+FEUeVZqz2ZL9qA5HCGK8VyNSaWngJ0pTaiLBeswMVOP3OVWkMlcpS9d2hXQJt6UXQ4gRkmTgQogMXqLd1hjpVD323TiqQo0GbgpkI8axKYpnshbTuH0aORNqtM1V5YjIASXbVF6K2610o86J0igvknM3OgpHp7JwNUIYnWszrkPhsah4bA5XnZecCqm98CNiklKtqnYlRmsep3ZU1KrzOjoXR+6KUhpSLvc41R2P/hyTXzO1dyGV8JSqEZ0zBE/KCmWk9Ewp4YGAIqRI8FIiqYwhlwyGFMFJl+uszTj/NUChtTgUbWOxziANDQdSPGDthhR7cn5WFKBgt2loW0u72aFNIudI11nh2gwDXS/cCFI/Ohc5yXtI3keVYe7L2vEEehQJZzVGW7R2pNygdS0NFSczlcxFinF8F8ba50VRFLKmZZmREDoyGa8yvn+GNQ5/+ByN23G1/Rht+7HlF/lrxF3R0kv2v3S/c9HsU9tdatwsffcqon/zzMRSFHa+/dJnc2P/PkbhJViKei45GVMnaZqJqYbhKf7BuezCJWvoPmvk0jma3v+lyPcl83jqupayVPPt507CqbU9NdpPRdaXMgTT7+djuGRuTn1eM1lwXA9Lz1vNKixF/E9d37zb9qlrmWaG7rqeuRM0/3zps+l6P7UOLnl3XRoUqN9VZ33Oz5qO79R5XlUg5EVwr7Na19AH6QCsjcbZhpwTt7c3HIqMqo9eiNVKYwkoHTE2kJMiBsPT244QitRqKfnWE+7EMapZrbHyeY3yFyNdVH/kp8o81gi3GEt5NJbGLZWwhsPgj6pM1QBNtbmfZrNpGXrRhq8ZCe9L9BjYbjYjKVhUhiJNs8HaltRIdD/GQBi6MdpYI/bCSxCSqypk86yMkFx9T+56xIGSTIaxjs22FWfDWawxUvZjzOhYaCM8idv9nhQGovfcPIOhVzx7ZhgOnjAE/LCX2u6hJwxeOCwxyNzqItmJGdW8SHC4eVr4HWHkpYSU8FEkSJVSJGOkfwZQU0EZhQ/yWUaLVCdSy260dJVumpbGNeOLJiPGoA+Bvh9k3yjdumVFKFS9bnXs9yGGnTiRlVchtzUVNSZVnABVnAxk4SlEDaqoKQ1eVMhQit5LHw/vPbULdoyRrBKpGM86aaQvhh55EmLYQu2EnoKsw5rdOWbNNLvtVhxYa7HGyjpu7OgsQ3lBpFgya0XKNCVpqFe2k8aEwpeonI/jubQY1TmTsikysXEkXcszeHSCxv4p1Ymd1CbWDED9v1Ia29hSrlYVjSAqZK0bKz1OiiNqtMZqTc4i49sNXel1rkCLWIFxG6xzha8gggpbu2V/uxen9XCQcidUETeQssiUhQ+hTZDnVCs2mw1t2/DgwQ7nLO3G4hqNazRaB3ZXLVfXP5noS2YhiQHfxx6r5Bp314+5Kr5SjIOU5A0H4Zagsc1VySANHA5PCL4jxwMABhETMMbiXFMCCQ1Nk0W/ISVUad4pfVPEGYmlsWTve0Lw+DBgkjhcyUSqYlxjH5Uys6NTl3AMIeNvn8Btf5/X+yvBXRHBimo4zLX0T2FqNEyNl1f1h/Muo/GSaPC0/OVFznnKSFwytJcM1EuM8FOlE/N/T3tbALz33nt85jOf4Su/8iu/SNGnHnNK5q77njKI5jjlTJz6/dz1zK/9LqdyuramBt17770HwLvvvvvc57CslDU9x7Qk6hRpe24IVyP68ePHz32+dG1d1/HkyRPeeecdNpsNjx8/fq5p3qlrrSpgcDobMMfUGZ4rgdUxhxB48uTJc+VI9VyPHz8GGP9fz1OPu3SP65wvORlLmaTpvlNn4JQjd2pdner+fdc6PPf50jaXvm+mfUDmDudd13fXtq8T9ztTLfvQtaGYRFZDCGPn4AyooiBjNVQKZgyZGFLJUkh0WjB1HEqJBEejSD6vBEepK1f6+eyFrRr/o2xM7T5d+mpQqRjiuMQJCVgq/uV3gxlLVyhE46pgNEKIEsKpGDyD93gfSukTIxEbBSm5Em3nmMGo10SVQZXxqGIoSxdzBbGU1JCxQer4tdFgzBhRpjhQtdNzCJ7oPSEM7LtI3ycOPYRQasiVQ2kluv9JA+FILC6OWS61+rWzQy4ypROGCzGIFGvf94yN4UqGaNrbpF5fkjD8yCNgcs6x30Ip99Ilo6RN6TQ8prDUeN0SYT+WBUk2oR67fFsdRzK5XIuq97ZE7VXJeJGP+6SSMaidwcfu4GXcxYQrZUPSS6V4EkdORT1WIZlX0roY5EelH2uFs6FrNm5SflR7p6SsMeSJMV+kY3Meu2JPf441R8cfhQKtUFlLjwpE1jWU63xOXUupMbMwzVqMWYx6o8otsVbK+VCOmEQK1acoToe1bLdXNE3LpmlLmZkWLk4KqL4tnAYN2kmG0rjRl0kxEABL6U9TsiXKiIMp3b/lCUZJ1kQpi9LgrKbdtGw2LburjRCtG4s2isKPHoUarBHxgRQKeTsFIAIyXq1NyYJGiJlo7HFtlrWjFBityMYAbkzcWCOOmtW2kKtFWcvoiWOhNFkXpa1sytqLUMu4tCEkL6pwhPIekQaBIsdcuV555OzEnEnxWKrwUcAlkeN51PCubS8536vEi/6BfhXZjulxlo71MsbDkpG2ZASdM6an308Nm7uyK5dEgJcyKEsO0xxLRuZdEfD5NZ6L1p+b80uM0vk1zufsLmfqLmf8vuvhPg7qqe2WSrmW7tVd51rKINTv7jrG0r6XRvsv2eZ1GOqnsih3jWW6/6l93zTud+as2Gy25CwGydOnN8UIS8Wo1jSuOUYpTSb6ntubgdvbPX3XM5SLFxKoGjkO1XlAq+cMXa1MMaAMthCARfaxRL3bRkjNKXG4vZEI31jbf/QKpMa9GLHF8NWVK6I0SktZi6mymsUyiIWYbbQpsrJieMfgef/9z0n0N8VCYhZVJqU01jiwlCZiVfFHIrsqS3O7XJqA5WKcSyT+qLwTSvRSobDOUq8k5aMzIdyQofRNkBIk7weGriPFiNgnFtNaGvcWRsn1DcMBH3oO+2fSa8Q6NIkYBp6+/yOonNGVW6Ay0YsxmXKkO+zRCr6wfR/FY/Ruhy3HzclirJVxa0UOkRCStAar6lUUI1iJgR5iGEuHqqFrjSGWhoS15Ee4BqlEiI/7kEX+1WgzCgDkLA6l1hpMHg1iaR4o9y8DQ3coqkJpvOchHv9o1PInKdnjuG5QYmhqjUai0+NjUn4SlPr8OJK+9WTtWieyvbVkr64lShZBKYWt+xWHy1o3lgmJalntt6KKA1QbR4axS3RVrKpjSsDh0NEPA4f9YZTurY5X5VIoaifzozqRBMiTrNms2GxamnbH7sHH8BF8yNwcbhBeiuLRW2+x3e7YbsQIBskGhRRpQizZN3tU/CLRdT1D3/Ps2TN5fJVGl9LAdvtASPfWiEGdIjEMOKtonGK70zSNYXfd4BrpoSOKVXosx6uZt4QiZoW2G7RStDvpCh79geCfQc5odpAbYrI8fXpLFQ+QuVX0qkcpkfBtG8du02CUQZGOfInnOBLHedTlWVBKoVx952zGoMiulMT54OmHnhADQ9+jtcPYDbvrt9BaMwwHcvKkFCDLey+lhO/ffMbiHOZG8SmjaWqwzQ3CJVnJc+ep+01/P2WsnDpOjZpOSzmWMO2MPDek7jIalsa9ZGheep1Lx5lvdy5LMI1616jzNCredd0Yna77VvnV+nN9ff3cnCyV+FS50Hl2o56jdpeeXssSn2B+r+rv80zDKaL6UmalRthr9qZuV6/hyZMn4zxMv5/uM7/eucMyJR0vRZdPOR11buffz5+P+fVN52CadZhj6pBNuTPTbMR87uv6qN/XNTPPJNR7tOR0TDF38OaO36nrm2eN5nMx/eyu534JNRMzn/9zGaY5lp796TwvjWNpfVz6LnvTTsa9zqa1KNAMQRRYYo5kldGG0ciRCJ90jB0Gjx984R/E0txMjqXUsaGZKVwDbWxpvlcjtvZo9E7KoJTSZA05R4ahH43D/nAo3ZInjfQo2QItxr5wGxpJkhSD3hSnxVrpBWBNrZcRZyNnJSUeIY5k8VGpp0iwxhBKd9x81KY3ThrluWOGoRpXqvJAUKTCARi7+I7fyz618dbxvHlS8iJRY2sszjghHKdI2PgShfU1mSDlTQXGtzQxsNleSxMurRn6G0KvaNstjTU01tIdbvFDX4LyEpkPITAMPbe3N1zvdrRNg21cuWZTItNC8M4oUg6j0V4J2DVSXyPw9fg1SxCjdMgWsn+ogeFR6jal2vkaIWVbkU8Fjg3eJtknyv+N1mw2G3yJ1g+l3CmEMBr/wlWQTt0i5SqZB10XL0cjsY5b+iDkkbQtDlMcMxaV+J3UZGxaj4auNnIPQigyp1HKz9K4viCU665ZDYWUsTVOOjDrsm51lp4rlWxfOSCxRLWrClQoZV7bovC13+/xXsZQs4I12wMKVdS3jHU0rqVpWrbba2zTStnTZgPGMHxOHDWjFY1raZsNm+2OnBHDPARE8lVUwezYHC4RQocpz79W4pTnHEq3bE3jSs8aa2l3W5SC7vAUoyPOJLZbhbUZck/wihBLQKG8P5iUS6riDOuScQgmQRpEHSptUID3juB7fHjKYf9MMpt2Q8aQKfyKWj5GFkqZiujyfqvZjLoGxNGQxSNyxKnMc3kHaFOLOFFaYRuHcRbTtELQ3yW0sRhTnq0YyTkgKnUJpcSJR2tU/vAiVhVLRtJdf+RO/XG+z/7zc8+/vyubsWS0n+ILnDr/9DjnDIH5Pncdeyl6Px97CM+XjM3Pc2lkGp4v+5kamNMymLpf3bcajlMD8JQBu4R5U7lTRuT0OKccuLnBd2qbU4bhqfs+NwKrwX/qupY+q8bpvHzsnDO4lOVYwvyaT41neu4lo3bp+pechTonUyfnlFO1tDan2931zlhy2M49Q/cxrC95v5wSYHhRA/7cMS8Z37nz3tfpeRW411mqqs8wBEI8kixrXbtWWurYFSiV8MNA3w/0fRgN8Rot1Ez/uFv5Y2kdujT4kjr8YjBbN5ZhVBJ0JOGHxNB37G+fMfQ9vu+EuFn/TFdehjEYir6/cVjbgs4oDVonrLG0zQZjpbQkF+nHnIV0DNJZPCdxmGIqpVwlY0AWOdSMSFYaHFpXYq8eHYNqOIyE2FouNCEkT3kiUy9sJCOno1LMWOdui6JQrjKgklmoZUySLaBcUyakiAmtEMBTKrmczC0RlRPtZsO2bdm1LdGLAQpqvFbhyHi6w0EM1BhpaY7lNtqgdcRaS0wZk1IpgxLHonaJrsT5qqRUx5dqI8DRsRBnI8VU1IiOZGZp8lflZatxV+VWy02sPIKSgWkah+2F7BuKUxGi9LbIRaFn7GCe6+/HBnm1KGx0hsq8iARtGrk9MdXsQS5EXIUu/SaYrGVVHDuRop1cf83kFCKvzEWk8kpqhqE6hrJAiyNQSg1rw8iSfhvH673IyhotQgW73Q7nGnGgUy49EMp+1SnWDmUtTbtls9mx2W5pm40IEhjDZrfFNS1fePKENHJpRPGsaTalBJLxmNZI0MBaN5ZWpiRlcOJYFIeTUpKWFcrJGjBGs9ttMUah6FAMGB1pGjAmEZMnhMIhGbOSlmMp4pGzZVREk0m6PgugkZ4vMWj6/paue0rffzBmN1ENQkJXwHEtk6V/B6qu8eO6PjYtTKOTXrudpyL6oHVxHJV0cZcSN4vJlVdWnCFj2O+fkZI4FipHIKFV4ZRpBfmj0cfi0j9qd0UK74uXMTSWDLtT0e77jGMegT0VnV4a45LxsuRc3NdpOjXWpc9OGbRLzsWLOhZTw3S+3am5PIW5QzSf72l0f+qMza+1/nta5jON3k+v8y6Ddzru6+vr59STljB3Kpac1VNrZTrupW0umcNz6/DUd0vO3NKx7jrvJe+O6T18E8bzqXO87HkvcRZf9JzzbMjrxr3Osr/5gKyEvAuIyo5SEpWnF+lT25BTwA9we/tB6WB8IOejNr7KMHaJQ5OVAW1RVlSIrLO0TSORb61xtjRqS5m+7+m7gQ+ePmEYerrDXkpZYoQcR2dCFaPeNS3OSefcptkWDgDIfxSNbbHWsG0sJaApzctKyVPX9YQQCTGJ0a81fhgIfihOkZMI4+gMWLIyZGXBNGMdt0jyCpm1NhOsBoQYomnsviyTJP0pqsJVVf2RrypBWU1+ONawoFA4sd/0MeJ8LMk48gpIiRw9KfY464mD4+FOGvBRSnNiDJBrIzoAMZS7vud2fyt9AtqGar9qo7G5/GFQUrp16LrCC7A4Z9htNyXCrooqaVXyoVyEJvsEKkvkOtcIvkFrcO7Y+dtpg1KZHAbpn6CQyK+ufUzkmkOSGnpjZE2lnEqJSZTu4H0qc4dkNGozvdohvBiJtmSdMpmhEMtr+UlMhZhbHLBYHPCUsjzUTUPTiuFXDUQ9cRCc0eQY8NGP2TAfYikXkwZ0Uv7mx4weKY3PymbTooyUI1prUaixmd3IJ8kZY6uUsRjXGSVOt9Ng2lGRS1OUpbQmIUGA7YNHbLY7NpvdsR9M44hGesC02x05ZWxR/UIp9gcpmwzes2ml38hms5Ou3SGx3x9QZK6vrlFocoLu4CFRMo3ibLTOYRRkP9B3N1iraJrauyPRDzeS4YkiFpCovB8lPWSK6EPlsDhrcE5h62sBDViy26CNdKs3ztI0G4bPeZGc1gmslPql6iikRGOlLw0plWxXOjYLrc6uUlgjBP2opFN9KtmLWjZVG3zGEIpTFwF5ORndlCaiHk3E6YxunXyfRT0t5URIIpDxYWFuTF4aZb3k+5cZ06VjuKTk6hKcM+bOZVTq99PPlkowpsecl8ucG9Mlzsf8HPOxT481jXhbeyylOqUEND3P9HxTh+ISY/Kua6z3cclhqDjXEbt+XkvA6r9r/4RTjtP0+zreucLP/LqXHJCl+Z2WG9W5XXI46ufT7NH8Ou/KDMzH8eTJk+eu8dR9XerfsXTc+TiWtr3POnhd745zOHXOJWf1ruNM//8qAyznSjhfB+51phCGYmSIkWV1wqjScSIHcgTfi1HuQ2LoD3gvZVNT8u9YyqFq2Y8aI/vWGolkGiN8hyIrK70vBoZhKOUrAyGIPKxWmmxAUZWSDNo6tDE07Ub6RDTS4bcK8FcHpHUOazSuKcYpWYjmRY1I+AslS6A0OusSJcylZlsiwnrM2NjS+E6iscaaUebUGFF6GuVya0JCVxIxY6lTCXoWTkCpnZ/3bphgJGGrOp+T0qpJ1PQYbi+GTIpkk8jBwKYh6Ej2ltB7/DBIhBxR3snqWFUEkj0ZSoftEMRgN+r5si5dOABj6Ycu2aRZ/4QSyh1J09UIrhyK0REqpSXWVDlVNe6bspB4R0crqdJJRfZLhYtTj1Hdg2rwHXkreYzohxjRuWQUjCnE5mOGqZYqhRhGlSWlxFDPSpOyIsWMD0G2d0cSsvDSj0Tzet+Pv5cyqFRKD6M4OfIseKmosqU7dpVRVnrsJn+c3/Sc+lMu11CdtSF4hiEIIZkqimDHrtBKybXkDLHwEmJWhARGaykJUtKTQRU+QyYRYuLQHRjCIOusyPdeXe/QqsVZjYolwxZrp29RPtu0LWErTSqNEdK60koI2AqUyWy30v0alUuWKUp3+lTuQa2AK/9RR855yQzK+6cusVjqJzMJZSJZa8l2GOE0aN0cSdslk5TLPJIhKIXJR3lr8ZcTVTJA19/UsQSzbqvL4Cq3ZZTmpWRFFYWb5Y/PRenZUcn/KFOknCmO1vK74sPGXX/gXtcfwHPGy6ntL4novm4sGfjntln6913bX/r9UhR5ngmY/z5tHHfK0br0nl/iPE0NukuOfe77pej83Eg/N1fTMU/Hd8n5LznuXeOeX8OLrOe7nJK79rtrLcHdTvaPVbyqgMSHNY4XPt99Ng6+o21bWmswRmFMIQtGab4lHYO9lD8N0vzuGIA/ln6gjpFSXVRPrLU0jaNx1bmQEhejTcl6DDx79oxh6MfyFQBrHdo1Y6mUqDIZrGuLVOtWzmHFQak/1iisVrQbMFZhrSJ4CD7h+4FD13O7P+B9IRNP6vdrr4Km2eCaBuscbUkzNdZh7LHXhi6ystPabpAIdy6ck6ruo1AiwxsTPnhCkT8dCrlWrvd5SdGqAqOUQhmL1abIeh4dDF2zFjmhKpG3RFpRxdg30OiWwWYOzz6g6ztunn6BlDxKZZxzRQZTjC/pyJ3pug6F4sH1A5rG0brSKyQXgnzNaJVMR+2FIU3d4liukVOkEtHr8VMSvoE4QZVbkNEamlZK1MgQgx8j8Wk0qo9GW+LorKVi4I4OxejQWg6HAyGEkXNR1aFGsnZRJcvqyJWJpQP3oe/HxoibbSNywUaaEEYf6IdAzoq2qURiMXxjyqhQBRBKs8EinVo5NdH7cUwitSzZK62E+J9zwmhH27ZjJkcyWMemeVVVKUYpzwpZuFL7Q8fTZzc8vbmlK+pm2pQMYpFPSpRO41m6vh8GT1Q9Q4Jmo7FomqwlsK4SEek94buOD256aTTXd2LQa81bb7/FgwcPePvtt0aeSTUGlEpsNlt2ux1Xu62IKlg1Kh9Zp1FaDP+33rqiaZoSADjQdYbg3dh/RJy9KInR+qyI20vjNscGjCFI1+yUZa0QUSljXaJptmgsxm5x7hroSNlLs8EUKXVRJKRJpFaKtm0lE1l4OlDEH5Qu/BEpKzVWEZNCR4UoYY9FcrMsYyreAhCGso5ziQ3UksAj50prhVWKaCdEszeMSw3dpVKgjxJex5hetMzh0sjnfYz0+2x/blzVgZiTrqelQjWLMTeMp8b5NMp933FUQ7VmFpYI0Uv/visiXrMoS70Spvueuj91m7v2X7qWU9c5zezMzzM3/ueZgaXMyCWYlpQtkcSXjn2pU3dXduOu/T9M3NcxvOs4H4Vrelnc6wp2uy3OGRQRsjS4CyHgB18yE0LsrZ1q4ehQaF35Bg5jLNY4mkaM/7Zt0U4UXDZOF9UXjfcDvQ8cDpKdqFFVpTRN044OitF6VJEyxbFo2hbj5BwVOUeUyjQmovFoFXF2A8qSoqXvOobec7uX8ieVhYg+krNr5DxTuA0O12xoNi0Prh/gnGHTWJSKJWJY6rpNQ4zSrG1s4IXwMlKM+KEXgy9Ggq+19DXSDqBQRQmnGkgjwX3a08JqDAmjPDoNgDRLUyW6T9Ji7ERRf8opoPBQuk0MQ5I5DpSGagalpFeAxKqPZVe1bn8YBnLOvP+FL7DdtFzttpjCFRCFJkXTNGw3AR8CIRTeQXFSSosJcU5TEuMSSIoxe3E0jJ/nYFRHNeUiDRtrvweFw46ZsVyZ/Gqyf+VtpKMBX4ncVWWrbluzPvX/LjmsYnQyRP2JkSSMNihthROgBlCmfCylQabwS6o8c0oJF8JIrJbMS+FylNIyEzWpZH+UNmxaIcebooxmnAgPFHowIQpfhqxEdAAZb0olk9AP3O5v+dznPs/+0NF7fySTm9J8Uh5g6VrunLwslMzn4KWEbIjCpWmTp2lbnBVFpBQ93eEZOZfO5UpUsDabDTlp9vue/9+PfFaccyd8H2M0u+1OeE71vodEP6QxM2SGgDIBZTq08bTNBtdsUUax2V2R0ras8WMH7pDCKA2cxfsjxVzUvzxKeSAWJ1reVVYZINAdDlgtpVIPHj8mhoHusMfHIM0eyzOaS/mTXG1/zByWQAo5EzOEkpUQBT07ZpH0RAgARC3ONE6yOZTnTR1Vu6qysJz9mGlDK3LW6HLfPyy8qPG84ojXXdbxMsdeMiCnWYlqeM57KiwZvaci1fMo/6XjnXNh7uIgXIq58TvPBNzc3HxR6dWSET+tdz+V1bjvGC/Jupy7pnOOPxwVv5ZKal6FQXxJNuVVlwiteH246A5Vo05r+aOXYk8qNbyD9yIj2x9lDkd7WCtGOVelyt/5jESfK2m1bFY5BkGRcySmyNANHA4dh64nhEKAzdVhKfwBlSfduPWoNKVNJZLnkUhL9sXoD5A7Mp6sEylbfEoc9nu6buCw30vJQyXx5kQM/ViSo6gEZV1KPFJRgckYFVFKiJTFagQUOdZGe8M4T/JQew63t3gvCloh1FIVimNSGgBaC40DUlH8EalOjCgAZa2LwxNQOZDCLeQI+LEOnmzFoPIR7w/FsQhi9yjFMChxLnpx5FJIpDLuaoDnXKRGpXsdQ5brsMYSggcyzkiGxA/CPxgdpOJYhWK8K9SYfUlBnKxh6CWnpHKJrh8zRGN0OMUSmRVHK/i+OCZH5yclW2vJjlClfCsEBj+MDnHNBlSnovZkqdmZlDMZhTEepdRYgpcNhZ+RCv9F6quk+7r8O6Zj+VHKVVFM5qwfhtH41LpKy0o/Eh+8KJzFGn2XZyKhMMCYgIOx2/YQAkpFdBQHQxUJ2uP8WXxM+JTYH/bc3NzyhQ+eEEIilpIkhdQFxRRQWQvHhWMPjTq+HLw4uaHHWFeU2HbQNATf4fsD/eF2fFatseAsWqkyz9KAcLu74mp3hfe9PE9ZuE05iTBDjJGQ4uhoK9WhzYC2HaRA3264unpL+l9oyWIJG+hYCiTVcnFUi8spM3Syxvt+D8WxyHi0EsWlJmqCjeSQSxZV01hxtMmaGIRDk6g8nmOZnVeUd9BEtEFepKU/jWQVohNRCiZOc05FnFqBJY/ORhUOqOt4uqwlSFEc9ZE/JQpc0/f360Q9x9OnT1/7uX4i4L712R8V1OzEdB3Ua0kpXWQUnuo8fV8Mw/DCxuiSM1SdgvrZ/PO+78eGpzXzPjeYu67j9vaWR48ejcd41QbzfUvLJGg7nP3+9vb2uXu4lAl5FWM5d7zVsXj1qM/pq/4bcdEdevbsGQDf9//9zVd68hUrfizhCx/2AFaseAE8e/aMR48evfZzAHz5l3/5az3PihUrVqx4tXjVfyNUvsBVSSnxIz/yIzx48OAjSwhcsWLFihVH5Jx59uwZn/jEJ8bM4OvC+jdixYoVK35s4XX9jbjIsVixYsWKFStWrFixYsWKc/jwOiitWLFixYoVK1asWLHixw1Wx2LFihUrVqxYsWLFihUvjdWxWLFixYoVK1asWLFixUtjdSxWrFixYsWKFStWrFjx0lgdixUrVqxYsWLFihUrVrw0VsdixYoVK1asWLFixYoVL421heGKFStWrHhpdF13soPvihUrVqz46KFpGjabzSs95upYrFixYsWKl0LXdXzVV30Vn/3sZz/soaxYsWLFigvx7rvv8kM/9EOv1LlYG+StWLFixYqXwtOnT3n06BE/9EM/xG63AyCEQAgBgBjj+Hv9/Nx308/PfTf9PMb4Rdvddbxz+5z6bv75pcd7lWNIKd37Hq1YsWLFEj744AMePnz4yo63ZixWrFixYsUrwcOHDxcdi6Xfz333prczxmCMee73+p3WGq31+Hv9XCk1/kz/fRdyztR43vT3+Xm01qMDMT/PihUrVnxUsZK3V6xYsWLFihUrVqxY8dJYHYsVK1asWLFixYoVK1a8NFbHYsWKFStWrFixYsWKFS+N1bFYsWLFihUrVqxYsWLFS2N1LFasWLFixYoVK1asWPHSWB2LFStWrFixYsWKFStWvDRWx2LFihUrVqxYsWLFihUvjdWxWLFixYoVK1asWLFixUtjdSxWrFixYsWKFStWrFjx0lgdixUrVqxYsWLFihUrVrw0VsdixYoVK1asWLFixYoVL43VsVixYsWKFStWrFixYsVLY3UsVqxYsWLFihUrVqxY8dJYHYsVK1asWLFixYoVK1a8NOyHPYAVK1asWPHjA0+fPiWEAEAIYfw9xvhFn5/7bvr5pceLMX7Rdncd79w+p76bf37p8eoY6k/9d0oJgJTSF/2ecwYg5/zc7ytWrFjxUcXqWKxYsWLFipdCzpnr62u+6qu+6sMeyooVK1asuBDX19evPFixOhYrVqxYseKloJTi5uaG//N//g8PHz78sIfzkcTTp0/58i//8nWOzmCdo7uxztFlWOfpbtQ5Ukq90uOujsWKFStWrHglePjw4fpH/A6sc3Q31jm6G+scXYZ1nt48VvL2ihUrVqxYsWLFihUrXhqrY7FixYoVK1asWLFixYqXxupYrFixYsWKl0Lbtnzbt30bbdt+2EP5yGKdo7uxztHdWOfoMqzzdDde1xypvGrXrVixYsWKFStWrFix4iWxZixWrFixYsWKFStWrFjx0lgdixUrVqxYsWLFihUrVrw0VsdixYoVK1asWLFixYoVL43VsVixYsWKFStWrFixYsVLY3UsVqxYsWLFWXz7t387X/VVX8Vms+FrvuZr+P7v//6z23/f930fX/M1X8Nms+Grv/qr+at/9a++oZF+uLjPPP2Df/AP+OW//JfzJV/yJTx8+JBf/It/Mf/0n/7TNzjaDwf3XUsV//pf/2ustfy8n/fzXu8APwK47xz1fc8f+SN/hK/4iq+gbVt+yk/5KfyNv/E33tBoPxzcd46+8zu/k5/7c38uu92Oj3/84/y23/bb+PznP/+GRvvm8S//5b/kV//qX80nPvEJlFL8w3/4D+/c55W9t/OKFStWrFhxAn/7b//t7JzLf+2v/bX86U9/On/Lt3xLvrq6yv/7f//vxe1/8Ad/MO92u/wt3/It+dOf/nT+a3/tr2XnXP57f+/vveGRv1ncd56+5Vu+Jf/pP/2n87//9/8+/4//8T/yH/7Dfzg75/J/+k//6Q2P/M3hvnNU8eTJk/zVX/3V+Zu+6Zvyz/25P/fNDPZDwovM0a/5Nb8m/8Jf+Avz937v9+Yf+qEfyv/u3/27/K//9b9+g6N+s7jvHH3/939/1lrnv/AX/kL+wR/8wfz93//9+Wf/7J+df+2v/bVveORvDt/zPd+T/8gf+SP57//9v5+B/N3f/d1nt3+V7+3VsVixYsWKFSfxdV/3dfmbv/mbn/vsU5/6VP7Wb/3Wxe3/0B/6Q/lTn/rUc5/9zt/5O/Mv+kW/6LWN8aOA+87TEn7Wz/pZ+U/8iT/xqof2kcGLztFv+A2/If/RP/pH87d927f9uHcs7jtH//gf/+P86NGj/PnPf/5NDO8jgfvO0Z/9s382f/VXf/Vzn/3Fv/gX8yc/+cnXNsaPEi5xLF7le3sthVqxYsWKFYsYhoH/+B//I9/0Td/03Off9E3fxL/5N/9mcZ9/+2//7Rdt/yt+xa/gP/yH/4D3/rWN9cPEi8zTHCklnj17xttvv/06hvih40Xn6Du+4zv4X//rf/Ft3/Ztr3uIHzpeZI7+0T/6R3zt134tf+bP/Bm+7Mu+jJ/+0386f+AP/AEOh8ObGPIbx4vM0dd//dfzmc98hu/5nu8h58yP/uiP8vf+3t/jV/2qX/UmhvxjAq/yvW1f5cBWrFixYsWPH7z33nvEGPnSL/3S5z7/0i/9Uj772c8u7vPZz352cfsQAu+99x4f//jHX9t4Pyy8yDzN8ef+3J/j9vaWX//rf/3rGOKHjheZo//5P/8n3/qt38r3f//3Y+2Pf3PlReboB3/wB/lX/+pfsdls+O7v/m7ee+89ftfv+l28//77Py55Fi8yR1//9V/Pd37nd/IbfsNvoOs6Qgj8ml/za/hLf+kvvYkh/5jAq3xvrxmLFStWrFhxFkqp5/6dc/6iz+7afunzH2+47zxV/K2/9bf443/8j/N3/s7f4Sf9pJ/0uob3kcClcxRj5Df+xt/In/gTf4Kf/tN/+psa3kcC91lHKSWUUnznd34nX/d1X8ev/JW/kj//5/88f/Nv/s0ft1kLuN8cffrTn+b3/J7fwx/7Y3+M//gf/yP/5J/8E37oh36Ib/7mb34TQ/0xg1f13v7xHwJYsWLFihUvhHfeeQdjzBdFAv/f//t/XxTdqnj33XcXt7fW8rGPfey1jfXDxIvMU8Xf+Tt/h9/+2387f/fv/l1+2S/7Za9zmB8q7jtHz5494z/8h//AD/zAD/C7f/fvBsSIzjljreWf/bN/xi/9pb/0jYz9TeFF1tHHP/5xvuzLvoxHjx6Nn/3Mn/kzyTnzmc98hp/2037aax3zm8aLzNGf+lN/im/4hm/gD/7BPwjAz/k5P4erqyt+yS/5JfzJP/knf1xmUe+LV/neXjMWK1asWLFiEU3T8DVf8zV87/d+73Off+/3fi9f//Vfv7jPL/7Fv/iLtv9n/+yf8bVf+7U4517bWD9MvMg8gWQqfutv/a1813d914/7eu/7ztHDhw/5L//lv/Cf//N/Hn+++Zu/mZ/xM34G//k//2d+4S/8hW9q6G8ML7KOvuEbvoEf+ZEf4ebmZvzsf/yP/4HWmk9+8pOvdbwfBl5kjvb7PVo/b+4aY4BjVP4nOl7pe/vedO8VK1asWPETBlXa8a//9b+eP/3pT+ff+3t/b766uso//MM/nHPO+Vu/9Vvzb/7Nv3ncvsoW/r7f9/vypz/96fzX//pf/wklN3vpPH3Xd31Xttbmv/yX/3L+v//3/44/T548+bAu4bXjvnM0x08EVaj7ztGzZ8/yJz/5yfzrft2vy//1v/7X/H3f9335p/20n5Z/x+/4HR/WJbx23HeOvuM7viNba/O3f/u35//1v/5X/lf/6l/lr/3ar81f93Vf92FdwmvHs2fP8g/8wA/kH/iBH8hA/vN//s/nH/iBHxgleV/ne3t1LFasWLFixVn85b/8l/NXfMVX5KZp8i/4Bb8gf9/3fd/43W/5Lb8lf+M3fuNz2/+Lf/Ev8s//+T8/N02Tv/IrvzL/lb/yV97wiD8c3GeevvEbvzEDX/TzW37Lb3nzA3+DuO9amuIngmOR8/3n6L/9t/+Wf9kv+2V5u93mT37yk/n3//7fn/f7/Rse9ZvFfefoL/7Fv5h/1s/6WXm73eaPf/zj+Tf9pt+UP/OZz7zhUb85/PN//s/Pvl9e53tb5bzmgVasWLFixYoVK1asWPFyWDkWK1asWLFixYoVK1aseGmsjsWKFStWrFixYsWKFSteGqtjsWLFihUrVqxYsWLFipfG6lisWLFixYoVK1asWLHipbE6FitWrFixYsWKFStWrHhprI7FihUrVqxYsWLFihUrXhqrY7FixYoVK1asWLFixYqXxupYrFixYsWKFStWrFix4qWxOhYrVqxYsWLFihUrVqx4aayOxYoVK1asWLFixYoVK14aq2OxYsWKFStWrFixYsWKl8bqWKxYsWLFihUrVqxYseKl8f8Hcjyc6dmOVkQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "noise_tunnel = NoiseTunnel(integrated_gradients)\n", + "\n", + "attributions_ig_nt = noise_tunnel.attribute(input, nt_samples=10, nt_type='smoothgrad_sq', target=pred_label_idx)\n", + "_ = viz.visualize_image_attr_multiple(np.transpose(attributions_ig_nt.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " [\"original_image\", \"heat_map\"],\n", + " [\"all\", \"positive\"],\n", + " cmap=default_cmap,\n", + " show_colorbar=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, let us use `GradientShap`, a linear explanation model which uses a distribution of reference samples (in this case two images) to explain predictions of the model. It computes the expectation of gradients for an input which was chosen randomly between the input and a baseline. The baseline is also chosen randomly from given baseline distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAG2CAYAAADiPRBgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9f4xl11XngX72j3Pura7q7rK7nJTjdlyEDumQ9kyF9AydN81MA503nTeOZGbMw4w8wkhGgABNokk0QRBNovCEmMkwHgGaIPIGeHg0RljBCKMY0WQaYURH6ZCGtEmHFEllUra742q72l0/7r1n/3h/7L323fe6HGKIw4xU2yp31b3nx9777HPO97vWd62lYoyRvbbX9tpe22t7ba/ttb221/baXvs7NP333YG9ttf22l7ba3ttr+21vbbX9tr//W2PWOy1vbbX9tpe22t7ba/ttb221/7ObY9Y7LW9ttf22l7ba3ttr+21vbbX/s5tj1jstb221/baXttre22v7bW9ttf+zm2PWOy1vbbX9tpe22t7ba/ttb221/7ObY9Y7LW9ttf22l7ba3ttr+21vbbX/s5tj1jstb221/baXttre22v7bW9ttf+zm2PWOy1vbbX9tpe22t7ba/ttb221/7OzX4tG4UQePrpp9m/fz9KqVe6T3ttr+21vbbX/o4txsiNGzd4zWteg9avrA1p7x2x1/baXttr/3e1V+od8TURi6effprbb7/963bSvbbX9tpe22vfmPblL3+Zw4cPv6Ln2HtH7LW9ttf22v+d7ev9jviaiMX+/fsBeMf3n8bYhu3tAa7r8D6gtcIYTSSxH+8DSimU0tjGoJRCa0VjDcZomqZPjIbgFc6Bd4HhcIT3nhAcAEqBsaCNQuv0d2px3KnKKKaVRiuF0Q1J3aXwPhDz9kortDYYdOqP0pjGYKxBKUuIEdc5vIcQFco05Zwh5HGFQAiRGFIHY/7eh0iMEQUYFWiMh+CJwRPjCIgoFQjRE2MABdZYGtOgde6PBaMNWqnUh0Dqf5QRBMATGaVZiJEYQWuFbRr6/X1YY7G2IQQIIdJ1ihAVPliIaU5UnsMYPD44QgygWozpYe0+bNNHmwZreqA0QWt8PrvzgdH2FqPRDqPB8xCHGIYo5VA6ACNCdHTOE2NHiIHQdXkCYWZfg7UaYyAEhw++XM9xzyCiiFHlPhsUGm0MRmuMST8AwUe8d4QQaFoLWpVrLS0ECD6glUkLJoJznq4b4YNP102pxNSVIhLy2jMYY9FKo9Dp3NZgdVrPMaa1pXTAWpPWlm6JaHzQDIaOzjl2djZxbkTwHc51E2MlQvQeH9LaUvm/1O9IjKl/1lgOzs1z+2tu5zWvupW+bsuW+a6r1kREa43WmsY2ZWzGpPGle9WMLRNx6q6KIY0thrxu072nlUIpRYh5TQZPcI7gXR5IhOiJIZR/YzlqSPeo6aFtD9Xu4y/+8gs8/ZV1nvzs59NYUURAxYiNkeFwSOccWM3cwX285ptuxfY12mqIEDx4n8euFE3ToJQlKgsoYkz3j3cjgh8xGm7juhHdaIsYHDEG+v0Zml5Lf2aOpp1BKctg4HCuYzgcpX7n+yyEQAgB5zqCd7iuS9cf6PV76Lzmgu+IMWCspbENTWuJ8vzwkRBkbmUeA9ZarLU0rZFLgFLpuWCURmmDUg3KWLQyNM0MyliUsYy8woeAc45RN6TrHMFrjO7R6x2EqDj3yEfK8/uVbHKOlZUVtNY4l57lg8GAubk5Dh48yGAwYDgcMhgMcM7hnGN+fp5er4e1lq2tLZxz5W9rLYPBAO89s7OzZR9r02trOBwyOztLv98v321tbWGMmeibbG+tpd/vs7m5yfXr10sfrbXMzs4yNzdX+ibHls9ku83NzdKf+rgAzrkyRhn71atXue222zh06BB/+Zd/ydWrV/n85z/P61//el796lfz2te+dmKsAPPz8xPHc87hvQfAGMPc3Fz5TvaV7be2tjh48CAAn/zkJ7HW0uv1uOOOO8pc7dbkPP1+vxxvc3OT4XDI5uZmOb6c7+DBg2U7mf/Nzc2y/9WrV7HWcujQIT796U9z7do13vzmN5d+z8/Ps7m5yW/+5m/yute9jje/+c1sbW2V4x06dIhDhw5NjPHq1atcv369HHt2dpatrS2stbzuda/DGIP3nr/6q78C4M1vfvPE3NTXCuDq1avlM/le1se1a9e444476PV65Rwy//Vastby1FNPlbHKdfzCF77A7Owsr371q7l+/ToAs7Oz5dwyZ4PBgOvXr/OVr3yF//pf/yvee77lW76Fu+66i4MHD/LP/tk/o9frceeddzIcDnnVq17FBz7wAc6fP8/HPvYx3va2t3Ht2jU+8IEP8E//6T/lH//jf8yHPvQhAH72Z3+W17zmNRw8eJDXve51fOUrX+Ev/uIv+Ku/+iuuX79Ov9/nzW9+M6dOneLcuXN87nOf4/d+7/f4F//iX/D2t7+dq1evcvDgQb7t276Nd7/73Xz0ox+lbVtOnDjBD//wD3P27FmuX7/Ov/7X/5qtrS2efvppTp48yW233cbBgwd573vfy6/8yq/wH//jf2R+fp5HH32U7/u+7+M7vuM7uHbtGr1ej1e/+tX85V/+JdeuXeN1r3sdzz33HE899RT9fh9jTLk2cs89/fTT/NIv/RI/8AM/wJkzZ3j66acnrtfNN99cng3yTPDec+3aNQ4ePMirXvUqXv3qV2Ot5dq1a+Uev379OteuXeMLX/gCr33ta5mdneXTn/40s7Oz3HbbbWV9HDx4kKeffpovfOEL3HnnnfT7/TJPs7OzfOYzn+Gzn/0s/+N//A++5Vu+hde97nXceeedfMu3fAtvfetbuXr1ankmyrV/zWtew9zcHADXr19nY2ODubk5rl27xrlz5zh58iTf+q3fyrVr10ofnnrqqXKvD4dDrl27Vu711772teU5e+jQIQC2trbo9XrludDv97nzzju5ceMGx44d+7q/I74mYlG7tm1j2De7j+ADXdclEpEBrlKKGAQYqgSmQ8D7DuchxIgxCRA3TYPRimAjSpPBiE37kIC4VhnoaQMqgSmlNChQGjIMpbUN1hjappdBvyaGBApiVJn0gOsSOQgBVAQVAko5QGGsxtqEpJQm/atUPgZ4rxJYSoi+mpd0/NSdQAwjfBfwDrphnjRtUAESuI0EIl1wmYCB8ZpgItoYQXIYbYlkIBIzeMQW0BdjxNoG27S0vTaBGaMz3FG03hCjJoSWGDQxqgLofRcJzqGCQ+uANYHGRqzp0MbS2D5Rt0TVEnSfiCFi6NkezjtGozmiHxLcFsHvEP0QH4boGGmaBO5jjHRqG2KHio5+D7SJgEOpiNIJ1CsSCRVSQSalKhNEuQ46TQtKJVAWokdFD3hc6NL1VBpNAs4KPXmefFxjDU3bT8AzBJzzeT0plNZoDY01aZ2h8T7ioyf4RO6M1hhNOq6OGJPWi1Y+gXejCGi00YRoMc7jfcD4tF4SgTRp3FHhvadzDu9cJgeJTOtMClrbcujgAjcdOMjszCw9ZdMVjqCUgPeYl0gsxMFaW8YtBDYRM4M2U8QiL3LvHZGQ1nEmBEYn0q60LusuxkD0nuB9QsIxEINLpCImEE4m2+Rlr20PZfvodoZDC4cY+UivWcW5kM+ksApmrWJkFKOuY9N3KK0wTUPb72Fbi1Em3cPeZ3KaXvJKa5Qy2RCQiWcA7zXKRKyz2FYT8xi0MShj8RiCixAdI+fouhGjblBIQkQRQ0jH67pMMFw6Sb7/E2FTBJ9Ii3MdnR6gRwad13Hq15hYyPR7PD46lOlV6z6vldZCTETW+xFB1m9+fvZn+kQ0IWhCFEJq0bqHbfbjuvCi5/cr1eQcWmuGw2EBBFtbW8zMzIwJb35PSFtYWChg98CBAwWgCnDbt2/fi8ChgOCZmRnatqVtW/bt28dgMGB7e5u2bScAct2ccxw4cICbb7554nj9fp+5uTnW19dp27YAFOdc+X0wGJTfBezWoBSgbdtyPOljv99Ha83Ro0dZWlriTW96U9nnwIEDZV9ZW08//XQ5x/z8PG3bFrAxNzdXxlXvOxgMCCGU+73f7/OmN71p4jgyJ9Mg2zlH27aFWEh77rnnyvWT67GxsVHOXRMirXW5DnNzc+zbtw/nHBsbGxw6dIher8dTTz3F/Pw8t956K5cuXWJ9fZ3Dhw8zGo34xCc+wYkTJ0o/Zc5kTWxsbHDTTTdxyy23sLi4yObmJhsbGwUs7d+/n8uXL3P+/HlOnjzJwsJCmTfZVsZ99OhRFhcXy5hlPck8eu+x1rJ//376/X65poPBoACwwWDAaDRCa82tt97KYDDghRdemDiHzO1NN91UfpexXb58uRDJubk5brvtNr71W7+V+fl5Tp06xdLSEs45br/9djY2NvjSl77Ev/pX/4pv+qZv4vd///f5yZ/8SQD+4i/+gnvvvZff/u3f5sqVK6ytrfHt3/7tLC0tcfLkSc6fP8+f//mf883f/M3ccccd3Hbbbdx000185jOf4ed//uf5yle+wp133snMzAzHjh3j5MmTrKys8NGPfpTv+Z7vYW5ujieffLKA2ve9730cO3aM5eVl2rblypUrfOYznylr4cqVK2Wu/8E/+Af8+3//73nzm9/M3Nwct956K4cPH6ZpGo4cOVL2OXbsWJmb/fv30+v1OHz4MIPBgIceeoijR4+yvLzMxsYGXddx99130zQNn/rUp7hy5Qrr6+usrq7ywAMP8PrXv75cH1mr1lruuOOOcm2+8pWvAOnZ45wrf8/NzfGt3/qt5ZnUNA0bGxtlXgFOnjzJzs4O165dY25ujvn5edbX11lYWGBxcZG//uu/5vnnn+fLX/4yX/7yl/nDP/xDPvaxj3Hbbbfxv//3/2ZlZYXBYMDJkyeLseDAgQPMzc2xubnJLbfcwi233MLa2loh1evr63zhC18oczQzM8NTTz3FxsYGp06dwlrLwsICv/ALv8DGxgY/8RM/UbaTNa6UKs/Ff/JP/kl5Jjz33HPA1/8d8TURC2neixVVE7VOFr2MTozWGfSbBObTWzNZvEOyRsYQcdpjjAKTtkv7QtTJBuujT5ZmFzIISERECZtQZMBUUFECkCqS+IdK+N3oRG6Cql66oVggVYgkUBBeBMCUTt+p7JmIkQy2xEoaIAN4IRcKiNHjQ0gkKYQEvAAVEikReqAi+RgJmwgJ0pAtlAmgkk8TM7FIJ6GQnWIVVhFIYFCIhdaJ4CkiUcU0B/miBDpi7IihAyVW6kgMHVFl8hJ8ntcmAX+lMbZBaQsKgjM45fJxPESfzqsMxjQABG+IfghxRMQRoycEn9eHRpkE9rU2BMHIWmXvkyljjHmdhQgqX8fk4fJpTfpsFdcqeRoyeJd5UipfY23KNVNGodFEXF5GER1JQI5YCJ0PMSPACNGkdWoVOkZUTPOugiKqCCr5d8TjoAhlbWanwRioK42Kupw7Zqu4ePisSV6TtukxM7OPpmnRKnldVF73NXKX54Ks5brFvG2k3qd8mS3zgRB8WUd50acVr8fnld1jdZ4ozL30Rn7JPhiV7l0hkr22pd/rJ4+QSvdD8vgp+iZ5Ek0MbMcunzTPlzZobdEq4pUCn3qYPE7pOpcbhET5lYrJo2ANUfWq+yj1KURF7DwhgnMd3nXJEOJG6T6WZ0eIeOcIPmQSSPF+aq0IVmdila+9BuUdRttMnNUksYjyNElGFON09qylf7WOGJvWa4yK4NNY0v0TUAR0YpcoDCbvi2rRusU2M4x04BvdBJjVYHsavE232gshf0uTz+UlK9/X3ot6/+nzTh9HthXgX29XH7Pf75c+yzmmgffX0mowPzc3V/5eX19/0fGliYfAWluIxEvNXT1WAb/T5572auy27/TvQvA2NjY4fPgwzjnW19dfNOcvdVyx/Nck8cqVK2UOBoMBm5ubzM/PF3BYe4bkmHKu2nMh106OU8/bM888U84v+0k/ZL5lfmX/3bwa1lo2NjYKEajnuL4eQiLldzm2zJl4cYQciWW67tP8/DzWWhYXF1lYWGBpaYnNzU2uXLlSxjYYDApJ/eIXv1g+v3HjBnNzc5w6dYoLFy6wubnJqVOnyrHEayb9WFhYYG5ujqZJ7+j19XU2NjbY2NgoAPXixYv89V//dRn7lStX6Pf73HzzzRw/fpylpSX6/T6Li4s450o/hTBB8rrNzc1x4sSJQogXFxcn1oeMq76usj5knoQYSpubm+PYsWNlba6urrK5uUnXdRPHnibPtTdyc3OzrB+5BgsLCxPXXoC33PeyT73e6jUr563vCWn1MerjyI98L2tJCLysDVkv9VqQe6Y+x5NPPsmVK1cmnh91/6RNj/WVaC/rqM4laUvTNGhtaLVhNBoxHA0ZdV22TDZoYxMIMOllmN7ziWyMRl2Sz6gOa0wCg3Ysuei8wXsQlUVCRNnarJO1VSlFxBNCwAfHcORxWhNiSMDNWIyxJKiuk4U7COgCbRXGRqyNNE0Cckl+4LMVUkiLImTQBz57OwIxJg+AK/KoJJEKMUlvyMTCR1fwltY6WV+1KZbjImNREW0NxhiMzXOnmwJEYrAkwNdlQB0ILoGhiCfGYe5PlyUXoHWLUgZNkodplSy3KjpgiNIOrQLGJK8FOCIGsNkHk0iKVvsyUTMok66hNR5vRnSMMKEj4HHKonWLtvtoewdQyrAzHDAcbjMcbLIzegFiR0SjlUfpQL+xGGtom4ZA8lRF5bO1XhWreNeNsjQs/Z1AXp6HGHC+GxNck6RJ1rRobRIRyhDOe18Ihml6YBSYUKRNMWQCloVGoAnZ4qxJsjdQ4HUihj4QhgImAWVAiVwqe1UIGBXAxARm6ZL3K6Y1LhKmhP2znCuT48Y29HszzB84RL+3L1u/YyKIMUBQReYnYjKxDBcuKu4NxufKmxYAHkJyF3s/Kh6IfOcRDYkERoUShYmQKvlBiJ+QlAzss3dvLE+LqBiY6bfsm+ljmx4hDsF7FNBqxU1tS0egU4GtpqXd12Jbm8YVs+LNJI+QMaZ4UEJIHozBcFDAt5BIbRVaNTSqnwiaNpDlUt2oYzjYIXoHsUPrSNsaiAaPwjtf+i4k12WyqYiMug5tNJYkOVPZwCIyMtu2yaXfNKlfIdB1o2SdDh4fE2GJO4PU35jWntaaEPclr6Rt0Xldm6ZJEk6tGI6y1KsDa/sY02Jti7IahU1etG9ws9Zyyy23lJfe8vIy6+vrrK2tsbCw8CLQvrq6WgANjF/C8ruAuLW1tQJO6s8EQEF6sS8tLZUXdv0SP3z48AS4mP6RbeU48q/8XgONup/1i1mIQL/fZ3V1FedcsX7KcdbX1zl//jyrq6sMBgPuvvvuQh4EYNbHFJAkfZexCNCXY0v/a4/GxsYG8/PzxTJbg5fdAIVIvWS7lZUVNjc3WV5e5ty5c3zkIx/hve99L0ePHp0A59MEqAbfm5ubLCwsMD8/X4D6/Pw8x48fL+Bwc3OTy5cvs76+XsDQ4uJikUvJeQTIiaX42LFjZR6ttSwtLfH2t7+9kIL5+fnyU3su5Bwy1rr/NYl48MEHGQwGvPvd7y7X/sKFC1hrWV5efhFRmZubY21tjY2NjeJxkHMOBgMuXrzIwsIChw8fLvfC448/zmc+8xmuXr3K+9///qJzf/e7383v/M7vAEn6cuzYMR577DEOHTrEBz7wAb7ne76HwWDA8vIyzjnOnz/P3Nwcp0+fLpZ6AcyHDx9mdXW1zMnly5fZ2Njgx37sx1hcXGRjY4OHHnqIlZUVtra2inxnfn6excVFDh8+zPr6OkeOHCnX/uzZs2Xu7r777jKfb3/72wH4rd/6LTY3N1lZWQFgcXGRI0eOlHUo12N9fb08K06dOlXW4vr6Opubm4VknT17lhMnTrC0tFTI6JUrV3jsscc4cuQIDz74IGtra1y6dKkQqhrIy7NDrsuVK1c4e/ZsueZCVs6dO8fy8jJLS0tYazl8+DBLS0usrKyU9bu0tMTS0hLvf//7uXHjBu95z3sYDAbFc3HmzBmOHj3KI488woULF/jt3/5tXv/617O8vMzJkyeZm5sr61buU1lLMu5Lly4xNzfHfffdV+6p1dXVMj8XL17ks5/9LPfeey9ra2ucO3eOJ554gp2dHYBCmGRt1/ETQvZFUvlKtJdFLJTWOO8JIb0Eo/d0XUc3GhWrqHIuAR1jxI5fXvIJ5YSMRwJeeUJUGLH8a5UtjGCtyYQgA5coYpmxxEJe3pB1zM4RlEb5gNYOSPKIYsU3ZK9GxJiINjGBgWQCFlNwNWIBTQnUxuytKHIFkTaFpKGOmXholeRdtjXZgBqT1EapKlZgTCzQZBCss2VXY4wt0ivXJR2+9xHvYo7BSH3oVMQYl2JStEt9CUmmk2JPAjqPP2RSgnJoQyZsyVvgu4CJGhOShVfpBG5VAHQCsgqTwHHMACiqhDyJpFiDFtP0ksdCWdrWgm7Qpo/3+wihw4chiiRh8jrp+D2glEPjCHEnAUUfChALPll1Q45dEfAaYsCHNKaY10MICRQHlZipVhQNfIwhWah9+jfJnWQdKQnTyGstrVNtJE5IY7I3hUyW0zUR+U8EJWsuez1yX8mxHGObvyaGFLeSyGpERZ1lYSp7DiKKRER7TQ+rLYpEWJSsPi0Sr0SYFeMbor435Li1JyMWUiAxBL7Md/JWpbGGLD0TmZbK85is+WOCIV4XkUIpxNM49v6JcNBaS9M2aKtRTqF8OoZBMd8YdjBsa8uBmRns7AxNY7NHVJXngMRRpGeEx3uHcyO6Lj2LdHL/VXOexpzkW8kA4L2j6zpC6JKXQQWsVSiVpJWxGBLSnHnn8D4wGrnxNTA6rbEc/6OyZ0jl50nTWIwx2UKYiYlrk1FEZGUxouJYdhmLo0GVZxfKENE4H9EetNVoneRuDen5kX6yR6yM+hvbpi3b8oLf2NhgcXFxAiDWQLiWI8FYwy5ApLZgyr5izROwOS3zqS2h9Xe19bj2QOwWs1B7KaYt6fJ7Pfbpvm9ubrK2tlYsxkB5ydcgXizD0mQupj0OdavHJt8LqJ7uY/1ZbaWXfeq5qUGSANG1tTWccwUoLi0tlTmTJoClPnZN5sSKXV93a22RxYg1XfYR4iR9nPZ2TJMa6Y+Qh83NzUI8L1++XOZ7GkxtbGwUoC+ATECtHFP6IcS2nrfaoyXHvnLlyoS1XCz80v9z586xubnJ3Nwcb3zjG1laWip9WF9f5/jx4wCcPXuWwWDApUuXWFpaYmZmhpWVFdbW1rh8+TJnzpxhcXGRxcXFMnaRk8m8dF1XrqUQsoWFheIxWlhY4Lu/+7s5dOgQH//4x7nlllu46667ynGcc0V+dvbsWebm5lhYWOAP/uAPyn0t83TbbbdNkDi5hs45Dh8+zNraGuvr6wW4i6emnntZo8654h0R8ixgf319nYsXL3Lx4sUCumtyLutIrjuk+C8h/NKf6fVf90UIj5xfro/cI8ePHy/rWvospOby5cu85S1v4S1veQt/8id/UubpyJEj5Xj1+q2NLYPBgKNHj2KtZW1trWwr945zjqNHjxbiLZ6Nb//2b2dra4uVlZWy7mXf2sNYk+f/M4iF0qUzIUUJ411yewexEGaAnIJGBZRlgJblTAIKo5c4BrGyqmytV7StxblxoKNSIQPZKSmUTgGdEei8SHKkvwpjmwLajU0vfq1zrIfIJCBLX8ZjjfITY5ErFHKT5Rk6kgO+yZ6CBBRUjiOxxpajxazJ1tqUYGQ5obYCgJKVXCmDLgHkMYMfRddFnEvBq1DMx4y0x/iINm4cYItDaUNjCzQh+BExW1tN9mjEYPHeMxx5TEjzYqxGx2R91SGiCKB8AqgYCAqCIgZDjClg1pgWY1us7WW5lKVtG0yzj7YfGXajBORclwNoPV7t5OM6GgZoNQI/TMHlvivgNfiIjyEHOftC1grpyDoqpXWxYPvgQEU0CpWDegGC9zgvHiyDtjYnCRBPlYBJCYZOQfYpeFvneUxB186FRLTjWPY2RnOZZDIN7LOkLyqccyl420cMtshqBLwnYmHpt32ssWOijhC/igBmIjABJlWFrasWc0B9rIiF9+INCgTv0vpUOst6EtkxJehbApsTgBZvRag8SonYJNKqoyoB4AporaVtMrHQ6QgaT6MVN7ea69oQbWT+0E3ofgrk1QLaRc7oAz4nKkgEYcTIDQk+ucSb1mRSk7scAQLOO5RPwefOpaDnFB+SSKixKWBQ9cQLNCZkiYwEus5NfC7zr0roylhKlhIWmBJboNRYUurztUhGkewR9bEQpsT+dfmJaDqXJJ8mKNqmzVJCAItSJpPf5GtTlTztG9nEkyAvaPmRl1xNLOqXsoABeQkKmACKBlle9rUHQazi0gTQyYu7JihAsfwL8BLSIiSiBg/1C7kGj/Ux5fsasMtLXwDg6uoq8/PzHD58mJMnT05Y4+U4QkBqUDBNKF6KPNU/ouMW8FYTi2mvy7TkAygyHAFBZ8+eLR6jT3/602xsbBTrs4DjmqzJfIp3QuQZ4jWavjZiBa6BuIDTw4cPl3GJ52VlZWVi3uvrMy0HE3Bck7s6UF3Ar4A7WWNXrlzh6NGjZd1Jn2ure73Wak+N3AMC2mXMYu0XDwHAO9/5To4cOVLAuhDz06dPc+LECVZWVvjsZz/LcDgs83nhwgU+9rGP8YUvfIFnnnmG7/iO7+DHf/zHWVlZ4cqVK8WqL+cdDocsLCwUciHjvnTpUvFKfO/3fi+33norH//4x1laWiqWcvkR4vLwww/zhje8gR/8wR/k4sWLPPnkk3znd35nuR8kFkJiE65cuULXdWU9XrhwgS9+8Yu84x3vKH2UORLyWnvOjhw5Uvr++OOPF0C/urrKE088UWReFy5c4Pjx44XkyH0t94K1ltXVVVZWVlhaWmJxcbEQg/p6Hj58uKwR8RDI+pyfny/kbWNjg9OnT78I8C8uLrK+vs6f/umf8p73vIcTJ07wS7/0S6ytrXHnnXdy/PjxCTJRG1Nqid/Ro0cZDAZcuHChPA/q+0w8VTJPi4uLvO1tb2NjY4OVlZUiGaufbfVzUT6TRBNf76Zi/JvfPi+88AIHDx7k//X/PpVAhljZ1KSeOr3wM1DJYEXAmjYqS1xM2UciAhqbMyTppC9OZEPhnJ84BoQcxJss5EonSURRd2SgEULEuY4QY86cZLFNykqUAE8CEUqDNQ2KlB1qPJYseVEpLiFlhXJjB4NuiaSMLCFbGBVNyi7lRtlSPZaUxKjoXLZOx5Qhq7UGaxPBaNq2AExtmqSt7/UTcImRrc0b6eYcDpIsBU2/N4PSEnw+AOUw1qV5NAZtsxRKNTjnCc4z2tlJEgwf0LoHyhJCL82Xj+js5ejZWazt0zQzaNtP0qHskUggXROCo/PbODckBFeIk0ITlUXphnZmf5JH6SZNB2keY5aqdG6IdyNGgy3c6Bq+u4EfraOiQ+GyByf5N1KWJIemg+zRcBnoJYlZCgzVRiz5idyldZeP4wsmzrp9hTa67GOMkEwqRC6BsSHHwiQQWPTyKq/N6IuXQMiNc744wQqw1snSjFK4LuJ8oOs8JiaLvLVpTVtjuHXhMAdnb+K1i9+ERqOjyrK85BHTeZzirRCrflrbicQoJfIwXX5kXQm56EYDUnzBKFn/XZcJmUrSPLktMulBskZByggXA86NcpYuh0KNA8izNMjYHtpYtGl5YRBZf+46v/P4x9nZ3mE0HHJLa3jVTMNbF2/ieWCDyJdn+nS6knvplCkpY3Zcud99js3qkhFDk7xlpCB8XzIzBXzn8N4xGgzwweN8V54vqd9VrBWgQiiezJRNSydyXbmEonglM2+MhORrkGuTY0S0SDF18k6Rn4UR6Lr0rHOdQ7JCNU0PrZvsAUye187FknVq/1zKzGN0Clon5HlSDcbMMOoi/7//+h+4fv36RKDvK9HkHXH16lW01gWMCSCpA5qnLfNAsboJMBVQLlbCixcvFgmMgAfRftcWOQnA3tzc5MiRI8DYi1JrmIXQwFiLXFumpdVAHsZeBgEZAkQFvIhVWLYVQD4d0yHEQSyoNSit5T611VH08ALIZW5kLuqxwNhSLnNSE7Y6PqEmRo8//ngBJefPn2dlZYXz58+Xa3Xs2DEWFxcLSBbwL9dl2jsk45G/6/6IhVeAfE0uagmLgCkhQB/5yEdYXFzk5MmTXLp0qfRBZD+PP/44zjlOnTpVgLyA6FOnThWic+zYsXI9pH8C7kW6BHD8+PEXEZ26Xb58+UUk7eGHHy7XSKzp9957b1lf586dmwgot9Zy6tSpAqplHgeDQZH4iAfl8ccf55FHHmE4HPLBD36Q5eXlMn9LS0vFSyCWfVkzco0kMFi8URcvXixz9Hu/93t813d9F7/8y788sYZr4P3444/zvve9jx/4gR/gxIkTE9b3w4cPs7Gxwa/92q9x2223cfvtt/Oud70LgJ/6qZ/i5MmTHDlyhHPnzr0ovuLkyZMvkvbV1v3z58/jnOPYsWOsra0Vr5CQk9p7J8es73u5X69cuTLhGRCPmTTxik57TweDAY888khZr/fcc8/E800ITr/f5/jx40Xm9ta3vrWM4dSpU0WuWd8T0x436Z94Oubn50s8iXjThCTK+YXIiZxLkiHIHNWGEFn3zzzzDN/6rd/6dX9HvCyPhTYmAbU4KbdI0g/RjaeMSEDWOmd3f4Cgs4hIQJYAb0IJzJW3cwqaFGIhEgufLHEKQkgSA6ua4rEQYpHkEUl/H1GoADoovBeraSRoUCFZ4BPhEblH8lDIACXla9GN5xiMBBASzIgmaZpD8ASvUvjrGMGWH+lj+qqyXqOLJCLNh5xPFblSykDUAikw2TYtKQUthKDznCliBj4p6NoADURNiCbPZ8jSIUnR2SbLvk7B2yFCFxxEh1YOGKG1wqOJyiX5he6RgJZFm0hUJsWVSL8zkE/W1CTrQqeMPCaaIplRGDosTgdC7OHDgK5rsl9Eo5sU+JquWAdhhM/zFBz4oAhBo3MsRIyGGHKAtlEF8Pk4nh+5rimoWshuJiAmeSSSpT5t60OyKjvncT6Ri5AzSVGCsiVGR7BmgKiLxVws3xGS1y0TFm2SykzrkGIYstU7gVtFr2notU1KOyp9z+2lZC7iTdsty4N8pmRty41TtwzaQ8wB737sAdQxB4lXMRgph8M4fWoMsZAaOV7x/En8hfybvZ6EwAHbcFNrmWssO2nVpmdFiDjvUSYD++rYcouFOL5PtAaj8z2DSAvH0q+YvQLynBiLhsR7I9tmg0aVFjl5YDXW5LWkKN6ydOvGQjQlaH/8BJAEETkzmM5EsXjSAsEFfOezh1cym2XJXs4kpnXqs8j1iONEA3INlI4QX9mCeC/V+v1+yQhUg/1psABjQFt/Ni3JkePUuv16PzlO/aIWMCXEQoCCtGlgWHsmaq+GAAtp09bN6VZ/V/dNCIIAAIklqAM1aznOtJxo+hy7tXr73aRbtadlt32mLfB1cOnc3By9Xo/9+/dPyMckG08dlD4NXmpQU5OnehwyF9Nequl5reevJmrTxxNiKQBQgKSQWonnEBJbn1NIofSrPnct1annsl7Xsv2NGzcmyDQwERN05MiRYtWX/VdWViYImhBgAc0LCwtlrUg7fPgwi4uLxTIv/ZRrOH3v1XNb30fPPvts+W7//v0lLmqapEqf63mWtb2+vj5hJb/pppsKGZJ1WZPYet5qT5psW3vBapIpxL6OHZiWudXXqF6Dcn1lHqe9l/V62g3w1xIvaRJIXceLyPW8du1akXPVsS/1Ty21qu/V2iNRG0fq5+q0MaJ+ZtVGhvo+mn4+vBLtZR15ZqZP09oi0SG6Ys1zOX1nl62l2msiKfOT9wmAKEXS/hfrsBmDv5CyQRGzBjpQApWdc1nukPT5ikjbWJqmYd++fcSM6AQM6pw9SitdUmt678ilBEoMgdYKFX1OgWsYdR1S50CyOImExZixxdeaJAszRpdA9VSyITIadrhuSMiBwlo3NI1Bk7IpaRNyxp+U9UcpRZHUhATwAyEHuRu00thmBtsoZmYqkhI9IQxxvsvZjhJZCSHNe4gGrSxG9yDoDApnk6QMnzwJxtLr78vozLGz+XzO9z9AsIlSyVPjvcNlSYbt7UeZBkwPrfso0nkT/kqZmZTWWNPLfdPFm6EwScUVI0b3aBpPY1PO6uFgjuBS8LjVirbXy2AOum6b0XCTnZ2v4N0gpzVO1yj4ZBV33mTpkqFtmwTSs+xJIJ5I89I1T/9aC6YBbU0G3ybFs/iIG40YjRw7gyHdKEmXJFamacaadp3jRcri1TFlqCLJnqSvCdRn2YpRoDyRTpLrpliZbNnutS29pk3ruQRFiwBfoQQYq4o0KJF1TbZJYjyG074wi1gwe1TJWxhCwGvxxKjkJSzEIub9s7Qx1xRJoVZjSVbMQQPe+Qx2Qw4Ud0QfUN5hg+PI3EFeM9fnppmGF0YBOo8epfStw+BT7QZt6fVsen4onUB8mZdMCkOSZbnSx+Q/SM+TnDY6KIxpMDQylfkZkfqVnhXJ++LdCEnxbIzBaEPTuCR9jBFXgrtVvrfIdV0SyZB51wiJ1dlDa2htW7iVcx7nPMNhSmGprSXO6SwvJCeZMPRywgttFKEb0rkRzkla6kDbJI8nzQ7B/f2Qi1q2spvuvgZbdTA2TIJzCbqtwZzos+tzyfEGgxRwfOnSJTY2NkqA8BNPPMHRo0cn5AQSQyBgUzwNAvQkFWodVC7AoAYtEhQqx5SXuwAMAUAyJ8AEQJTA0PPnzxdwIeCzlnfV4Ke26stn0ocasNX9lmw9ktqz3rcG7adPn2ZtbY2zZ8+ytLRU5FDSJMbi6NGjXLp0iccff5zl5eWyTW3Zn/Ze1LKMGkgKeJ72dEyTODl2Tb7OnDkzAXhFJnT16lXOnz9fsgW9/e1vZ3V1lQcffLBYhC9evFjiE0QmJN4yIabW2iKjkh/py27zJwD/1ltvLetDgpvf/e53c+bMGe6+++5ynY8fP17Iz4MPPsib3vQmfu7nfq6MX8C99K+Ot1hYWGB5ebl4JoQ0yTWrSd6RI0dKXIJcm8uXL9Pv9zlz5gz/7b/9N+bn5/lP/+k/Fe/A+9//fg4dOsT73ve+4ql585vfTK/X44d/+If55V/+ZX7v936Pz3zmM5w/f56PfOQjxWtx+vRpjh07NnGvvvOd7+TcuXM8/PDDhTzJPNeW/3o9P/bYYyVTloxLyEwta6vXjHwmhGf6d/EYWJvS466urpbsVdbass5qYnHx4kXW19dLP8VbsrGxwf/8n/+TT33qU6ysrPD+97+fxx57jD/6oz8C4L/8l/8yQUjl2bK6ulrIm9z3d999d7mGInX62Mc+xlvf+laOHDnChQsXyjNTnkNCctbW1gqRqAPVxRtVG2REkriwsMD29javRHtZxCL4lB9eZ2schFQsK/oSiBrFmqnSyy/VUBApE+W7FOyb4JRzKUZBsuNIus+QLcVdlwCGUrqAq84n3f9o1BULOSqBC6+yKVORC6FlC3kGSMYmqQnGEEshMUPE4UNgZzAs1lWbA0eJhqCS7EaKWGlvidERYqTrDN4F3MgQvM0a/gSqHD73LVvGdSwAX7wWxmoMiqZJMpmQxxkipcCbUjp7Gzw+DPF+hPejPPysDc/WUKWTx8KoHLFuNAaN9+B8xORMM7axSZoUIPQaGpusp7ZRmCaA7rIqLANPrVDaJ2+I1mjVJmtqDj6GsZ5eKwneFatvQKkOYpcBdUjgv4kwE2itpdccRCtFkwv+pZgDT9dpRl2gvzODDwrCKFvdIRU5VHRd+l0pm/TnOXZibEHP0bF4tPFoHbE290EnK31KT5xTfMZEDFONk0gMBhVCCeS2VpfYDC9FEXPa2LTkdUpLi8rB4jnYNzRJrqYNioBqmhz3kGKKNBqjLY2dobG96v7J8TIqK+6zZAbxHOZ4C7nH6vttMni7UBxSUH7aJshZsscvxV04OUjyDonHrjwTEnR3boQUgIvZmwgUKRQ5roqQYrJSylZP32pmdMOr+5qFvqFnNY0H6yOt83QRdkIiOyIZUipkMhuyjM8hvVdSkE+RpZXpXogxZfUKgXJ9CwnL3hsdI0STUmPrTIJtU2RNRa6pTSKqIZGHUFJL++z9C/I4QsjsOAGALpnLlMSsEAlKpXMak+dM5boi5KxzIZOalhhT9ragPTHCaNiVTFgx5+BPz+X25Tzev25t2ttQW0anLYoCFOV3kWjIC7iWRgkAE5BVW/YuXrz4IgvoI488wsLCQpG8CJiW89f/ikVSJEMi76lJUH3OWsYynSFpWo4hGXmERNUacrEoHjt2rLzw5bwyl/WcTXsGBLDI9tOAsrbI1q0e1/S+AuxkDuq5kjl67LHHsNZy//33F4tsLceSvtfepJpY1NtNj3M36ZiMW+RMAszlGP3+ODj6O7/zO4vUSeZIAOG9997LJz/5SZ566qkS6yL7ijW7Xldyzmmrei3/qbMQQSIdn/zkJ3n961/PyZMny/WvZV0yPlm3Im/x3vORj3yE5eVlFhYWOHfuXFnDQkaFTC0sLBQiLGB3dXW1EGghyiIj28jpWaX/KysrfPKTn+TcuXMsLS1x7dq1konq277t27j77ru5ceMG/+7f/Tt+8id/klOnTvHP//k/57bbbuOee+7hoYceKsUD5+fn+eZv/uZCEmTe19bW+LEf+7FCtoUMSfD46upqIQgibVxYWCgZyTZyuuPDhw9z6dIlgBLnInI1IZVSn0SOJ7EGtYxQ5l76Vt9Xm5ubnD9/fiIWRTJb1RnJapmVtZaZmRnOnDlTiOmJEyeKBGplZaVIk975zncWAi2pl0+ePFmeARcvXizeD1nXEoy9sbHBuXPnuO222zh27FgJ4JcsV7WMU4ijyNjW1tZYWVkpxoo67ueV8lq8rKN6D9ola6xWKUWpjw4fHC4HJKakPAaypjioBMLHllapN2Cwtqm+CzlTSij4LwVmjuMsUr76cUYYpQKdS0ADlaQl0y3EkLXfWWKgFU2C8JVlNxELyF6HUVcCeEGBJUtdQi5VkKUWSuM8eBfpOpE5mSTJiZGUChZi9oqoDEiTTCJMaP0FbDRN8vJ0XioZR6QGQL4KicyEYc6y1OWK0DkrU64ELVIkg8oVpA1G6WwdzTUpTM7BHzzeRXo9SwypsGG6RmIJVVmGkYvcqRxboHQK1NZNiWNQ6GxJLyKPDOZd8n6whVKptoVcU6MbtIqEVrNv31wCULZNEiClIA7pOs+wG9L2+ll+koNllUapFucUOzu+gK626Rd5U5qTXOgspMrgSnco5dFa4mAoEhnnk1QJUnpjEzWNhRgdyod8rRTWqjy+FPDsXf7XS12SKjuPAFkM0RiIFq1sLuAXCbnOR4wOpS1GNzSmh9W9JG8RjVLmDrqKpcjLCDXmFbsSi+kWZeByrar7TsByHZQeg8RwjCVVPkuhvOty7FUo2ZQgy4cM6ExWIh6fX9qRwIxRHGotC33DTa2iNZrGgNGRFs8oe8FiTtyQPAQqe9FCie8Q74Qkb0jZwHKiBJOL1FXqq1qSJgNM0r0IMT8P8vwmUiGeIF08oqiIcmn+fFVV25iQts/PPoXE1uji9UgF+ir5nE/1PLS1hSyKlDSoXJDQGIwieQuVIjqTjBqjFN8SY0ATS3YvZb/xHosa8NaWRJis7lx/Jk2kFfJSFEAkAE5e8kePHp0Aos65orUXULCwsMAjjzzCsWPHOHPmTNEnw4tJRU1sRI9ea7Zr6UGtZ5bfhWSIVbcG6gJgVlZWSpBuHd8g83H06NEJ8Dw9n3VfpyVO0mpiU+8/7Z2oYyzqsdVemdprUpMXAah//Md/zNve9jbOnDkDjAO+66BhOb/M07TcZVoWJX2p10cdvC/jEy1+nXFK/p6fn+fkyZM45zhx4sTEdXXOFZI5MzPD8ePHC2ldWloqAcR1v+vrUV/rWrolILle05/73OeKF0ys00LSBCwPBoMSnyGW9GeffZaHH34Yay1Hjx7l4sWLHD16tBCUzc3NEtcwNzdXyJwEvNfSKrnG4vWT76Xvn//853n00UdLkTQpggfwZ3/2Z7znPe/h8uXLfPSjH+WJJ57g+PHj3HXXXSwtLXHq1Cne8IY38Gd/9mflfqmzWwkQ39zc5J3vfCfW2kIsZK7lfpd1KaSoJkSyHudz0DpQ5s5aWzKWCYmQORfScuzYsQLkRaokZFfAtlwXIRZ1ocYrV65MJAuQdTs7O1v6NjeX6oicPHmSRx99lOXlZT73uc/x8MMPc/bsWZ588kk2Njb4mZ/5mXIPyHqQdNwbGxtcuHBhQrYp/VxbW+PZZ58txEpiYyTRg9xf0mpvkHgzzp8/z9LSErfddttE0PorRSxeVvD22+7+f9JYUHqEig7ndgh4QnSgEohr25QVSCnDaDgOpiZbFG2TwHOv10sWaZXqVjgXGHU+yU18wHVSsyFVPZbAVnQCV8H7JBOyNgdbJqt/ailTTIhJRlVSYyowRtG0Jldsbei1/QxAmpyRJbK1uZ0ITfD02iTHQamSAhUMCoM2bQlo9l4TfHrJO9dlMtMl/KGh6Rms1fT6tnh7ElBUWNtircXYJgedJk/LePxlWAnUk4K2UxaZUOQ/Ngd5ph8BoAksxhBxnU+ynBzUmvCZz1ZejzU2FbjTJlvvPcOhI0aF0Q3GpsxPut2P0jNgDxBVm2IsCtZKsTMqBmIckGpsDEBtENkhhusQB0CqvaGVxdoZjOljTINt+jk7UoqXiAG6kWM43GJn8AKD0fOEMAQ1KvI0Y2eIUdN1muA1MeqUkcronO4zeY+cG9K5jtFokALORfAWJUYoybZikArmuYBdltGkuJ1Y1pJS5Mw7kZilQD74HCysSkreGBTeiRSJXK170rPjJTWtVuzrzzA3M8vR1x5hf3+W1kgAdUL+Ksv8jKk9FiLv08U6LjTDGJOLDuqxR4NUsC10Hc53+Vrv4EYdo8GQ7Z0dOtfhu9GYyGSQHcNk4TUhFlqnIne2bVKAcZsqw6csaBa0JeqGZ5/f5LnnrnPhTz/JHTOGN+xvOba/x1yvwezbz6qDpxx8ZcfzQgg8oyKYHlFbCF32PpBlS56d7U1CSNIl57oSv2FsLjKY73FjLFJs0btcRbsK3k7bK2yOB0q+05AyLWlJR5zWRYyagGLUpbil9JxxQMDqZMRIt6EqXiCVQzB6bY/GNszsm01EQhuGXTKSDIcjRsNR8ugElwmkprE2eyyaJHE0lrbZh9KGGDUuz0XbpkxREY21M/z2r/9/v6HB23/1V3/F/v37d7XsPvHEEwVASauDYeWlWls8a9BRW9MFoAmQffDBB9nc3OTo0aMlnebDDz9cApHrVKa7BYgKiBGAvbq6ytGjRzl8+PAEIZmO+xAyU1shp4M+a6vxtD5fwJWcW4CqAKRpGcO0t0IAhRy79obIudfW1oqMRPpUe0QE3El7KelaTRhrbXhNzOrPpMkY6mDzmkzU55Xj1LIjkXZIk/6KNEjGKvuKTKVeW3I8ic+Qearnu547IVkCmut1KNKimjAJkJUaEUJuFxcXC6kTC/Lq6ip33XUXIvW5fPkyzzzzDD/6oz/K5mZK6SprT7xBQiIuXrzID/3QDwEwOzvL/fffz/LyMnfddVfx6El/Ll26VKRSm5upVoikiJVsQBLw/ou/+IsA/MzP/ExZ19Zann/+eT71qU+VzHZvetObuPXWW0s61Lm5uQJUNzc3yzxOxzTVa6a+j+p1cunSpXJMya70Uz/1U2xsbLC1tcUnPvEJAH74h3+4SK3e//730+/3ueuuu0qfl5eXy9qS/sh1n5ub4/HHH+fs2bP85m/+Jm9605v48R//8QkJUf2MEGmSjOfIkSPlfpWsYfLMWlhY4IknnqDf77O8vMyFCxe4ePEiH/jABwC47bbb+PCHP8ypU6d4+OGHy/o5ceJEkT1KULqQY6lPIqSplinKupXgflnL9913X/FeCbkUKaQYMWQ9Li0t8da3vvXvN3g7eoWLIb/ER3TdMFlZ8Smw26aKsdrEHNSZ9cV6HP+gUBB10sgHRchyAbEYqlwIy5QFl4+R5VPJDJjgsFI6g5acTrbUhkjgQWVtOyZJiXRVI0My5aTgz5iqN0fxHqTMRxGNZEHKsZ9F4pLMjGMQlz5PqSBtlrJ4n5CEUhFrUlyJ1mJN1jlFLzlVZ0RFj881+lLNBVcCrktwbKplnj0eKRjVmmTBDaoZe0oELCmRlcUEfiKQg1rHxGKcJUsJEwpJ5lbLXpSSdLgtSqdaFYglPKbjJPCUgr+Jm8AA2AFegDgEtglxQAxDQhDLcETpgKbN1nXxwBii0kQLXSeATtITN5kQ5pofMcvVdCIFttFYo2kajVYSgB+KXKkE/hafghCJ5HXJE4E4rUQyo2IswFricBLeH68HY1S2iKf4CoJKREY8cMFn+VGK10hSqdQhZTSt7Y1jFZQqsj7BtZK2VJpImeRYIGtMskaN5ThSSDB1mhJHBBRPQ9d1qejlaITrRvn+y3FSkG8EOUqaD+8d1qQili0KI4kYlM70zJYZ27yxzdYLm/Rj5IBWHGosTU7soKPHBmhCxA87olK0TYPL3s8SHK1VjqrQ2MYSfCJ/JVlE5bGQeh/IvMVYCBlqnGkrrXVdinCmwYZM5CRuXOYxyxO1xoeIDQaChRhyYbrkwfClGnf2YkWpG5KNHeS4iyYZR2I2FmS+mwmhyvFdCqkmrlQK8E6eVptSXgcIGDQm3Z/6lQvO+2qtBhUCmOsUotOxAjAGizWIrYGsvOhrUAxMAFEYpxcViy+MAX69327gpu6TbDsd/ChtWkokoGU6MLKW0kxLhHaTTQkQmLZCTrd6n/p8taRMAF0t36jJyfQ8yljqbeTaTG9Xx3/UsrC6L/VYv9o4pj1bcs46EFaCdOu5m56LWko13d9afiVkVHTp9ffy+/Tc70aUp+dUQDEw4Z2SbeQesNaWjFNyb+zfv3/CK/TFL36RL37xi4WkyE/dtra26PV6RfpSxx0IiBcyI7Efb3zjG3nmmWfw3mOMYf/+/fT7fa5fv176LcBZDAFvectbSlrXq1ev0jQNg8GgEHYJ4K+TD9TEtbbAT68L8RjVnkrxqkCql/Inf/InhVRAysIldT7Onz9fCFidAUqeH9MxXkI2xLgh6WzrTFo1GYVxQL/M8XTGNvnOOTchz5PsaW94wxsYDAYcOnSIjY2NkopYZEr1c6g2Rsg9KueSrGmyfuUZVhtb5ufnSwzHysoKJ0+enDDcyPnlebXbvff1aC/vzRMto+GIna0Ro9EOw9E26SUfMY2laZIlvmkCxnq8jxNAXaQW3ic9fKoTkBBKjo8cV062DU53dJ3CuWHKMd/oHAyskpwlx0aYpikyA/KL26qUacnatmibRXaidSwWXR9CTgDjq7obDSHXbwjeJBJEyPEiFQnK8QRaRXzoUESaBmw/xW0EbxPIwWUpFBgbkUxQBJ1IBZHOO3z0OXNVmm6XreDdyGWpTYf3icwhUqqo6Pcc1vboNb2UQtNFfEzWU6N90V+70JXzjTUYmbRpQyDSmKZouoP3aHI14WyCjaoB3QfVB2ySPcWc8jb6TCh2iAxBbYAagNoBRiQdWSpI5pyncxGlPNYrXPBYP8p9Tuk0rW7R2mJ6M3jXY6A7iD1A01hD01isTeSCqPBZqoLS2CZlBzJGQQb0rvN0I083iiApQ4ExsUj7G7lYKFyWAqXw4IysjckxCFLET4B2lp+Z5LHTyiaSEhUhDOi6jlE3IsUjOMhSubSexyRco9nX64MKWXKYUWYdK6EoJEHoRIonGG8jpFc8IzLSMdAN5GLeaKWIzuNGHcNssdoe7mTLVq7xoMY1UYRYpPou6W+bUyX3u0DT2lwGUdFE0LZHROF95MozV9n4yjUO+sirjOE1vSaFUYeIdgN6XWBm6Lnx/DaDpsfszTezHQPD6NM6ytnYmsYAhqady9KtkL0vIcsPDVJETq5vKeCnFToYdEjZ0ogRo1OMU9sbp6aO0WfSJ3ETkkUskd9+JpVjt29M1bBHIwY7O3SDUfZyputklKbLD/PRaAgKrIK27WP02HrhjUGpfg5UV0gmrhSH1dC0Lf1+Lz+rGlzUBK/oQoO1PWb6s0my9Q1uNcATuYEEEkpxLHm51zUCrly5UjT98gKs07iKfKLOMFTLrTY2NpidnS2a442cZ176UQdmwhjwCAgX0CDAr64MvRvYrmVRMu4a/NbzIcBkGoBPS2oEHEiwsJxHzjsNqOusMDURE8nHYJBqBxw/frz0c5q4yWfTln8hhECx0tdSIZGYQLI0S4BxXaui9jrVQFPmpZ6HmgjBOOPUYJAqjUu8hIy7nr96rmuiVctBalmTnLsOzJf5qedPvAWyL4yLG8q81X2WayjzLqRC0rVKoLhzjp/+6Z+m1+vxgQ98oBAO8djNz8/z0EMP8aUvfQmAO+64g7vuuosf+ZEfmRgvwD/6R/+I06dPF8I+NzdXaqacOXOGs2fPcvHiRT72sY/x9re/nQ996EMTa/DRRx/lwx/+cPn7oYceKrEKjz/+OAsLC/z0T/90Aem/8iu/gnOOu+66qxCJX/u1XyuSw5rU1bEfAn7ray5N6m9IbMXZs2c5ffo0hw8f5od+6If43Oc+NzHmuujdl770Jb70pS9NVEKX+AeRK4qHaX19nZWVFY4dO8aJEyd497vfPeGBq40Azo2zdNXrur4Pp5MkOJfqeAjgX15eLvEQCwsLnDp1iieeeIJHH320XDO55rLuZB1Jal3JICbraWlpibvvvrus6Y0c/H7XXXeVvx999FFWV1d55plnuPvuuzly5AjLy8ucO3eO9fV1nnjiCZaWlrj//vv5GgRLf6v2soiFbRJY6pqGED2dGyULogJjGrSxxNjgfbL2e9cli2D0JcWitbaQAFUjlOxNiD7BJQkyFpmUUqCdSFsaVCvZeHKWFZOAvvM+SZqyDl+btJ0xGmPTOYwdg60QRFvd5iBpiKEjxkA3iviQ+jguPJeqdZMLc6UMmDFr9ZOHwuhsida5cAIhpRbViqbXJLCjm1TbIubqzZWGXpqkmrS2Sdl3vMaHFNTZjYbFCmpUBlhNGpNtpDZ4kmSkuIkALsecxDAORFVGuo13geg7gkqBotZo+r05lMrXVVkiJgfvd0Ag+h1iGOHDDWLsiDHJlBQepfM2hHF2qGgIXuGdwXVJhuKcw3URYzq6Ycqa1TQNvWYGa9rkkWGEtZ6ZfrpGvb5N9UmMSesuKDqXNPg+hCQlEU+ZpCEOeS5cLuYW09qCbE2WNdo0GJ0yWxXFWhiTXqUU3nm64Bhl74fzOb1xyFXddarinNa5xbR9PAbVZckTYw+HYpxdymhFvz/HTH8Wk2NlCGMvgwBlVTRuY5Ko9SShqAmGSKnG6V7HSRaMNvgYcSGw03U8N9zmRhgxxOPbZCm3pf4FuFEoiRxSGJAn+iFWjTAanO/T69pcxTvxzaZNGahGwfP89RdYf/55Zra3eWEGdgaGmdaio0FZzaxSHGo0M3QoNG2j8crjlGfkR8njAKSUySlpQSTFrZgcTK5UwBibSZ5Eu4xJlcT+hBhwnXixQo4tSrFQqPT8IXvJYspnjVcRS8SYQNu06RmHKkH70bQpfslotDU5RqyoOGltquzd7/WSp1cpCKmgnVYKm9Mea20yOdap8GAOzg5I8cYk4cTM0MSWaAPGzmBsQ783U+JcvtFNwNbGxgYPPvggy8vLnDlzpkhDjh49yurqKqurq4UIiNZc3PsSTFu/vOsgYLHkSRPdfW01FZJQg9paliHAR/pcy14ESO8GwutjTad8lGNJE8BSE5N6OzleHUNQB3kLyNlNOjLdxDotgEosnALErLWFEExb/KUfdVC5jE0IYF3ArCY0kta3tqLWhGm6zzUYE+JWg3SJQVhcXCzysvoa/E0ekPoaTVuCpwspyjqoU7TWJFG+Fyt1fX6ZK9HNy3oTcCqgWo4t26yvr3Pq1KkJa7eQi/kcnN7vp+Dqy5cvl0B6CeKVJnUkBoNB0d9L369cucLDDz/M+fPnWV1dZTgcsrOzM0GsJUD6DW94Q+n3/fffX7xF99xzDxsbG/zKr/wKr3/965mdnS0ei3PnznHXXXcVT8d3fdd3ARTJXR2DJOtJ5IVLS0sFqAtxFIOCSMCEWF68eJFnnnlm4hpfvXqVRx55BIA3velNhVSIrNA5V/YXyVC9hmQbiY2R54B4XeQ4QoTq54UQIMksVRN2ITQbOQvb8ePHOXz4MMePH5+4t4V8zc3NFcIgxpP6OVTLLiVQW84la7POZiafS+zGiRMngLG8anV1leeff55777233F8vvPDCS95Lf5f28oiFMQQC1lp8aNJLTUnsQgLMYElpTxUhalRM2aRMzqZijK0CIckgC6iBdf41RkVA43NNAOfBWIVVyQOR5Bk6H9MgaSFDrm8AMVsWk77c6IA2KhOkTCw8xUOistSmswnsKqWyZCbnvc//pVjQSIyu8mBUxdJUAnsKkUSI9CXp4hPgaVA6pehNcoxkGU3pQ0XHnwNAjU7yMW3wKlnOQ07Fm4KOczxCJHkXULnQYJLbxHTIVOMhpvEYCSZVNh8jpODjGAjK02tblG1SELRucD5V3E71tx0q5/kP4QYx7ODddWIcEeIQVJc8QzF7ZnIVb0hrwjuDcymOJhJBuZzWVNGZMbGIPUVjA7SGGDu09rRtArhta5Lu3Fq0tjmlrMhMUvrTxOmyjM1Hoo8ljiZV3w6MRq6ATZMlcjFCbMBEO5bABVA2z5k2yUPiQqWhJ6eo9VmqRfaM5cBd22CiQtsuZR9SGvCZ1BqstoVY9No+vbafgteBxG6yTCs7mrRK9VIKL2dS8iRtTCqSFKy4F6rvyTp+FyJD77jRDdgKjk4FlEmSMm1trlcCzvtMRMBnOV70AY3DEFLKV+/RWc4GGucDLkYGHbywtc31rS264YDNoWFr2HBQMlp5S09r9lvNrE4krdcotmNkELMUMEowe54PncgDSqN8SJ8bXTwokphBiW4ty4nk0ZPiunxKiStzqeNY+ljmL3mJgndZjqRzAH6i8S6mCjiJ1DXJCwQlAF7lOIvWNil5RSO1NvICk6QHaix9kuQDSkWCJyV1iLneBhqURekW2wJWYdt9GNPQND38K+Tm/ptaDaL/+I//GGNMyQQzPz9fgI+80AUUCCATcF9Lg2pQMC3tAYpuuAapAvRql38N7mstuXy3m5SplgLJ2HazxNckQtpuUoNpSdU0UK5jNL4aiJ4+5m6yMJlbAfD1OOq+TIPlGpSLRKX2otRjqInQtBfnpcYu17SOk6mv8zRJqYnFS83l9Fjqv2sZXT026Us9h7VsTtZITfBkTdXfybgFxErfRW4l6662bNdyOvleNPCS8enxxx8v5xM507/8l/+Sd7zjHdx3330AE+lGhTyur69z6dKlkj1ocXGRmZmZst4F6A8GA77pm76J7/iO72BxcZETJ05w6dIl1tfXOXnyJJcvX+axxx5jOBzy6le/uszJF7/4xUIqAJ588kkuXbpUAK4cW+brmWee4Q//8A/LGMWzI9dBjAgC2h977DE+//nP8+STT04ElUu7cOECb3jDG7jnnnsmqsDXlvz6/q+lP+IlmDYwyDWQtS6EWTwLdfzOSxkmxFMipEa8tdLq9TEtH5uWksk46j7L/SetJhUyt0KCFxcXy/5CloCJmI7/I9LNagO2afBxBtNYMBqxvTZteok3bQ8rmYlKBdqAaRQmZT0tlkKfrXApFkEsrU3OjtTSZN305s4gxRrEyLBTuITFU8rPJqVp1BhCbHAehhlcJkm2wmYlhFIJEBSNtlY5rkAnmZJOopJ9sy1NY2hbi+sSEB0Ok3VdidY8B2DrnDZWYiG6LsVFJIDbJct46JIl1BoO7I/0ZwIzM9lrohXaWiClsEzxKwEXXLZaqhSQiUbt1wQ/h/eBne1RzpoVsU2TPAI6VeeNqFw0LAFh7yXGInliYkwW+2QzH2VddwJYIUY0mgMHD9LvWXxs8M6yM3AJ1OmAUlso5YgM8WGTEId0YZCuaa5HIoBM0q8Gr3LGpVQrwDlH8MNkXYYECvNPqhVimOnP0DQ9Zmf2JyKUK1KLwiOEiHIBTAKTRmmMUgSlcvrjwMgn+ZNzgZ2dIaNRx3A4ovOupCqVOBtjkqyq7fVo2x7WtlnOlGVIPtVtSdKwFKSMgSZYOmeRSvEx5tSi1iZPmtY0JnlCer02WfgLOE5j1znrkSJwYP8BDu4/gNUmkRDEKTEmFgB1DYtCJiqeLh7BhKeFUMjx4sRHMcKWG7Ix2ubKzo0Uz6CTlzJag24N/f4MVlt6oUc3gtEosrm1jRsNGGxFohugwpCd4RA78vQHntlBR783YHuk2BqMuHZji6+sX+O5F27wlcEAqwIuwj99dcOCMuz3gZ7WtKbhLa9dZMdatmd7+J0O3zl2NGMvVAzE4FIwfJaBNVYMHaCUR6uQkhLk6uwy4JQNNz0YulFKvjAa5nslZ6KLwRP8qMy5sZoYYOgj29s7xOAZNFtYa2ibJgN9RcwZ49Cafq9fiGBeaKVmSZIzptguUKWexWAwnAAcvV4vxRFhcFHhvWEUFHEnPf+amRbT69PaFtv0kidDaWLceTmP969L6/V6vOpVryoW8/e85z3FFS+g6tKlS0XeAgnQiWwJxkHcIgsRsrGysjKhTZfvJehSXsQiJRJL4bQ0ScB2XdsBxrp+sSzWUqtpUCqf1VZNkQ/VMokazMsxaklITXBqqc+0BrqOS6mtpLWeXiyV8plY+0U3X3tOZLxyHAEetSxMtqu15XXFaJH2yPhlDDXxkjmv+w3jytNCCK21fOQjHwHgvvvu49y5c3zyk58E4PWvf32pWl2DOqkrIP2vPUi110nmUvpZ31vTczIYpBSmf/zHf8wP/uAPFhmK7CsZm+69997ifZCMROJlqwGsWJqFnC0tLbG8vMxGTv36W7/1W0AqSnf33XeXIO06JegXv/hFnnrqqSJJu+++++j3+1y4cGGCJNeSmSNHjvDTP/3TPPzww1y8eJF77723rOnDhw8Xj4VkeBIPjaQ8FfKztLTEjRs3+MM//EM++9nPlorccu9AqtUgEq/jx49PFIPc3NzkkUceYXV1lT//8z/n1KlTHDlypASaX7hwoYDq+++/n7Nnz/KzP/uz/Nmf/Vk5/uzsLP/hP/yHEgQN0HUdW1tbnDlzZqKug8z94cOHJ+4FuRen68NMy/bOnz9fqnFPr5d+v8+JEye4cuUKZ8+eLceVpBFCiObm5njggQfKM0a8UaurqywvL0+kxN3IaailIvrKykrJIFcXUqxjT+Q+l3PLsWrp5traGhcvXuTzn/88t956K+985ztLUHtNQr5Ww8XLbS/rqEo32eIfQVl6mIJjJBhamyZZELXJYCaA6jKBCFly4DMAzdblOJb9iPpD52hibTRNa5IaJEo2nQTApEZBVDa/zBt0o2i1TmSFSFQdLjhi57DeYUzExog1EalBoFQkGpXqVCidslipiLEAyfrsXChZaCT9rdIJGBhvsmwr0o1S0axENBwxOnzoMEZjTWTHDBLwDhFjk6yljD97cQoQgRxKnOJY0phzDEDolXNK1HUKKJUA60zslEmytJCKu8Ws7Yk5NiB0HcF5fJcKdEEqzBZz2mDvE+h2Pl1H6DChA+WAIT7uEGKHDzkLlw+lXoDEu0QfSipXH8ZFyIJLcSASwZDCCDIZytfGOZflMCmLlzapAnEMMVXhDhEd8v4xZfNJ85fWpvOBzkW6LjAaebpOaq6Iikhlj47KNTokcFc8UbU+P47TEOfgWats8sxpjbV5jcc0jqZpinSqxDsrSQSgIfox1A+C8AMqlXQb14vJlnYlUiaQvUqTQH5ZQ7LJ2EpPWVvEcbG+8dEiw27EwHWMvEcZhcrVmyOJMHZuSNCOVLneoBqDbi0qNnjTJwSVPGcq4FWqAh87xzDAoNvgxvYO689fzxmnUnre53Y6vmR3eHr/PlDQbzWNMVgduanXsq9t2NdveD62jAzcGCp8BugxD0jlTGkyD5AViAqiUgTl0pqR6uji7SBXqhcvUE44EX1OUOEdkOu46OSVDRqM1ziXnwmdw2jFyHY5eUWSJ2lrsUpiMTKRyPNe15yQIH9rdK6bkjxiUac7FWUIUUNM8TrKpKxQqep9v/wY22KathTdVOjJtfANavWLSl7E8jKvJSECnOqXvgDb6WBhIQLT1uvaqjwtSZiW7ExLfwSEABP9EkAsVkuRutT77kZUaplVnUVq2so+7XWZThcq45K+TGvqp49Vn6cG1tMWzGkrfv17PZe1J6ie+/q7Oni0lnbJsaYlW9PgXbxJAqCnxyjzf/Xq1YlCi9Oa9q8FFL2UpwPGnoraAiwg99Zbb52YVxmn/F33ZZpATc9VbYWWuRVr9Rvf+MaJ/abHd+zYMebn59m/f385Vp3dTDwDteVa6masra2xsLDAyZMnJzKpyX0mcpiaoAowlYDwfr/Prbfeyjd/8zdPyA9rcC7elzq2p5Z59ft9brnlFt7whjcU0CuyOpEUATzxxBOsrq5y6623TlynI0eOcPjwYe64444Sd/LGN76xBLTX0qLp+72OnZEm29ceDcn8JNdWaujU17J+pkyvCXluTXsknHM88sgjWGsn4nPkXHWwt6yJ+hlQy+um40Hq49T9Ee/V4uIiXddxyy23TBhYvto98fVqL4tYGNPDWEtLi2kCupUA4kpeoZN7PmVVghSgqvDdAPAQhnjvSwBjjoTIFmswNmSCEtDGgmnpz/Szy79PybSDy3sH0JqoTOqfblC6yfnqHcPBCwy7LfzOFpoBRgf6vYC1MQVSkyuBa58kDFk4orRCZ412CIrOpcDQ4WCAy5b2VGMvvehD0HivcJ1iNJLqwl0C8NFjbcAYj3ebtO2QQX+bXi+l4iSnzU0pOm0OwrUIWFK5VkJUEWtalDVY3eI8jLqYYzUUkDI16ZxuVqRZMQ7xocPHJkuPIs53eNex88IANxzQDbYhJhmSPZhiFqBhOErejVSQcIiKA7TfBu0Ah2eEj54upFz+zlXAPWQdvkuF0SRjlRCL2Pmi+Q+qQzQ74k1yvsOaBu8jMzMzKDOLDRmwElOaYwC6rKNPAeY6x6WkIneBroPhKLIz9FmuJMXOEgERamOy1Mk2TboexpTihDEkgkUImOBzvJAQOcpaTpm70lXTkpUnS82EkIjEJgTSnMlkxQg+EHwqfqhIKZWjKlOT5X6qkKJa9iSSrjqTlDRVekX5N2ZmEYj4GNkc7LA1HDAKjkZZrIpoFNEHXOzY6raSrNC02GYm6fl7FkWPsLOfke/jtcMph9ERbwOD0Qh2dnBbz/PCCzd49ivrbO4McJ3Hu8DVrSHXh57Ffp8d7zk0azBeY5Tm0FxL7Pdwsz0GVmG6jg1rGfmYQH0G6NAR8TmLWUhkLNWkJOS456BTGmGpZSMpWQOKEJOnzxiTMlxFh3eDnJDBFdJhrMLk6vHdSBM8bG1uQ0zPkF6vpWks/ZkZmhix1pRUtTGEFG0UHKPRKNf+GaFiWmO9Vqd0y6ah16aEFz6Sn6PJc6iURdvkSWtsD9s/gG16NL3ZVMjT2iKJg3G9kb+vNjeXqg7DGFADuwL12uItwKSWQYlFus7aImRFwJK8TIEJC30NXGsALvnw60JZtfxHrPhi6av7XLc69kMkGFK1WciCfC8SFMkaJNWfjx8/XlKV1tpvAXg1MKoJjIBJ0c7XhKkGzLUVfdpSKfry+roIyJT+irVXgJDIT5xzhRwJKNqNTNXASublmWeeKcRHtPAwtqiKHGVubq5ITGTMElBbE6Lp6yJ9qT1P0wRwN++UZDsSsisynboWhSQh2I24ybUWi7Os+zpYXAJx77333tIfKZYnMRv9fr8E6goQl+shUhfJ3HTy5MniZTp37lypQP/AAw9w4sSJUgNDqm8PBgPuv//+cm6RWcnaldgnuW7f+Z3fOSFtWlpa4vu+7/t49tlnOXr0aJm/S5cu4VyKuxHQPz8/z7Fjxzh+/DgbuV7DH//xH7O8vMxP/uRPlgxGP/MzP1OCk5eWlnjmmWe4evVq8YI8+OCDrK+v87GPfYzbb7+9xGnIGOTaSJyEZFyqyT+Mnz+y7q0dZ+laXl5mdXWVtbW1QphqY4XsI8+O2kMnzwq5H+V6vO997+PVr341v/iLv1jWnRAG8dhNewAlLko8XouLi4VE1sYOeS7WMVIXLlzgxIkTpfheTULq58i0N/fr2V6eFKrZh2kalAUTYlKgQLIaJlsxQWkiOU2o89nyt530/TnFaNLxJ924UhplRG6ic22IHPOQSYK2s2jTYpqZUnQs+gExOGKuwKyUxrYtSrdgeoSYQF5jNaNhj5HpsXMjMvLb7GzewJgObQK9NpGHxioiLhmNCYxT2QaS5V5BbNBmX8rJr6BpRBtvcKOA1YrGaPptCpwcDLfpRkOGw21CF4guwmjESA3ZUknTr0zS3/dm+vT6Peb2z+Xq3oHgHDEX9lOit1Y+Wcd1D6Ub2iYVxYtR47E5ZWgGuUqDNtj+DKqFNlv0g8pA1zta+zzDnRsMtp5HxRGNNczffDO9/hwBm0FXClQNcUgMW4QwTGlXSVl/QtToGIhRYyABohhzwbhkxU9F8wKoQKo8nlO9Znm50abESMSYYl9ciATtUbnmRQC60Sh5mqKkkI05QFrnOg2ie9Mpna1tsH1NsJ42qkz4HCXER0nqWHJVdJWlM4noingGJb6gWBUAFLt/svirHFTsvSfEyMgNkTTLISQ2EUMoFbOT9yDV/FAqpxAOnhg6QjcqBRKVdICY2QASVFEkhFBZ62Oa3xgjwUv8T85qJQYAUWFlL4xzHZvbm2wPtlPSheAJXudMSSm7UmPFGm5BCRjv0W8t8cA83ht8kNgih2aIH2zihztsbV1lO8AghBSXQSRq6HKtmYvPPs/VrRalAq+76QC37TfMdQ5tDD3vuMWkNMSrW44XnGMwcriQgtCVHiWZXiEXMd0nImHKAdA0FqNTimvvkpMoeMVopJJRwJG9a2mNQEDZXMMDldPZKjrfELRGNX1MbyZ74gJe5dgtbYno4rlUeW2IVynmWjKRhhAVPmj8oEsB/yaitEEZS2t6uQBlD/Q+tG5pmlka29A0LW2vn40fzVgmN34kM8Esv0FtGszXL3R5wclLtQbytbVdXqgXLlwo1tY6daccuwbTtc6/DmTc7cUp24gVsAalZ8+enZAI1QGWMLaKCrCUz6Yt+LV8oj6vAHQB90ePHmV9fZ1HH32Uw4cPs7CwwEc+8pGJQmKbm5v87M/+bAFTR48eLdlq6mO/FHGY9kgIYZguAjhtgZXtDx8+XPLnS+7+uhjetBxs+thyfAFLArrqrFM1kLt8+TLHjh2bSBcs1u1p74cE/Qu4lZgN6U9tha89BjWBrWM7hMRKf4TUCGCVdVbr4QUsivRMPhPZm3h86nUva1c8DFeuXClyIklsIABePAii7z958mQ5Xp15CcYafpmDD3/4w3z4wx/m6NGjXLlyhU9+8pPccsstAPzar/0ab3nLW3jb297GY489BsC9995b7kkhM0ePHi1xFzJuOefly5dLXYWa9IsnpN/vl/7WHhNJtlAD40984hN84hOf4Dd/8zf5tm/7Nt7+9rdzyy23MBgM+N3f/V2eeuopZmdn+c7v/M4iPRIyf+nSpVJLQu5r8djUngC5TnKtxbsj9/HS0hIXLlxgfX29FFCUZ9Lm5iYXL14s8ytzX9eIqT09stY/+MEPlu+FpEttkStXrkxUrhfwL+tMiIysFQlKl2ec3I+QgrQ3Njb4kR/5kVKtvL6Pp59hX4vH72/bXqYUyqBMm16ehlSAWSQjkr4VTcg/UXm074gFfOXc71FiL6SwXZPJSYqxMFrn4GaL0hZre2jTYpt+qjxLJLouAYAuVd1WOtCYFLSJMTnOgDEeC5EdXsA7Qzf0aOUw2qGCwhpFbEwGZgJWkg47WJ8BYAoCtY1GY1PRO2swKlW0VlmrnyO7iydHowjO5doOOatMrgCNcimwt41pbpSh7SVreBpbkmNI7YtUEM2NLZxNytxkTEPMRfu8zzEfUZFKHrcYbVPaWNWkedEScJtqBiSL6giNpbGafftmMW0vgx+TiVbMtS1SIbJkedeVlIexKT6O5zxlY8ofqBoPK5TJ86TJUq6x8yuEFCsRY5KcaONQwxGEkC2xY3mPMTZXNdcFUCVwl+Y0yVI0Tesx3uODyPQo0jCRu0hWIM04C1LBaAWnZV18JUuKuWI8UFLRjoZuLIEqwDJ5hSQ4V2prGJuISlABRSLk5GOq3QCiimUeS9BFlkrl0Ar5ZNxfJddgXH+DTMB98DkVbs7kFUW65rIBQbyKUusjTYjRFmUb+v0ZQmyJ0RIIxNgRwwDkWdD0iE2Lai2qGyVXgs7VsGPgyvYOnfe8aqNHv+2xr23pdY7WWqwPzBpFZzSzKjKIKfYhEeiU7liIRQqUDuneylMTxVuhIphUuDDF/iSCMRxqnAfXSdastCZSpfRx7ZTobSbbKeuTaRVNlnh659E2SRYl+UKK18iytkJCJVV1rluR173zKc4mErE61WkxTR+lW5Tuo80s2vRo2zkaa1PK2abJ6YWT12zaQbFbtfVXuu0mRZgG2bXVrN6vJgMC8KYlPrUVvvYu1GC6Bnz1dtN9lH2mSYjISASo1FKp3WQQ0xKM3c5V/1vruiUbzpUrV4r1Ujwokv52fX2dT33qU1y9erXk26+zZk2PVT6bns+6HyLbkM/k+1o3LvMznysh12SqttaKN6TOrFTLjIRsiDdHQLTk3BeAJmDzwoULBaiKtKaW+9QeLvEI1ePajeRNS7Smr6O0WpMvc7gbManXXb1PTVSnt6lJbv13XcxMxiDgV2KMpq+x/FuPtZbkyHdCCPr9Pl/+8pf5whe+wMzMDADXr1/n4x//OPPz8/zpn/4pTdMUIj+f6yyIdV7iJuq+1N6yOjYHJgs2iqdKwHYdFyCEaLoNh8NCTj796U/ziU98gqeeeoqbb76Z7//+7y+1K+p7VgiFzI3EPNXrXsB5vc5r6aIcq64vIceT/u4WgF17Q6av95kzZ8p1qb0+sg6kSV/EU/lSxop6jHI++dvaJJ+rDTEvtfbrMX+928s8qgWaUmXZ6kQOUAZr+yhlCapBFM9RJDzRQ3AQHM4PEmh2qaYCQKrAnV6EVuWc+UYynli06SVNsQYdE0jv/Cax26EbbKKNTbrmXptlRC0pIaTC0ibpSujo2hYTG0JnCX5E5wNGebyB4DU2F9pTmJLRSGpgaKvR/RbVWNpmJll/PWVcIzYhglYpEBsUXWsJbpZubn/K9x+SdbZzuZ5BCESVgrcb26KxDHcgxgTyQpfIEyqgYrKWh5iKarW9Eb0ZT3/O0t/XSwHgqsnWaZ9BoEHZfgroNC3WzCRPDAol16MHw32a7ZmAjg5jNHP7byaoHo4eMc4QY7peLli8t4wGoxwHkK3EBELMlYyDyKAiuGSpTfH6GfSaJBHSCrCuAGRCqhcSvMflrGI6pwqN2qYsTsMBrkuAvLEGyajkQsrgpXOmsMR1XZqDbNE1Jnl5pFp5shxHuq7LXotc5DHXKCAmQBkcCEqXCBUfIqm+gcnV2AOd60i1K9I4vI/sbHWZROaUuyTeGRqTSGL0Oe1tR2tT0oMkdEqVrGNOVawQadskvxlXw66IRfAERY6xEc9FkmdpZQohyAp+yF4c5zpCzrw10wr4hRi26VySn3nfYnRD28ymmAN0qr2gI22TZieqRJJDUHivcQ34fS0zc5aDLxxkbn4fX1lbY/vGFsNth3cpG9O29wx3Bnx8bYMr254vbQz4Z0cMh2JkoWmZnethrOFIb5bGR66FG+iQ0zQrqfSemEKMAaeD8CgUEa8j0enklVKpfk3wqfDicBjovCJlAtZAqhSutcZ6i86eU2X2JaBvZ1M6YNNDGZuImRvhRi/g/Q7dcAPcEOWHGO3QKmBMTOvQNjRmhqgsXUzxTyFqOpc9viicaXMtlwNY26ft7aPXm81SqbZ41qTA4nSrM1n9fbdpzwRMSqFqwFsD2YWFhQlJCoxfvHUlZDnGtNwJxvKfOuNU/SKtLe2yz3333celS5d473vfO6E7r4FzHSxeZ9kRwFBbbmvAJ98LmRCAIMBN9nvve98LjPPZb2xscM899xRw/7/+1//i9ttvL3r1jY2NIoVZXFzkwoULJTBazi0grQZaNXCpwXDdV9lOpF2rq6usr69z+vTpCXlILQHq9/s88cQTZS4efPBBPvOZz/Drv/7rBfzJ3Nd1TmTOREYj/RQtfQ3OJGhadP/SZ9lGtqtJrQA+GZcQt9XV1YlYA/EK1Z6HmhjJWhMLs4DoI0eOFCAv3g7xODnnCgAVK7SAXyFbFy9eZH5+nuPHj3P27FnW1tY4c+YMjz/+OO95z3v41V/9VY4cOcIDDzzA3XffzQMPPFAyQ8n8b+QUz71ejx/90R/lnnvuAVL8wuLiIsvLy7z+9a/n2Wef5cknnwTgox/9KLOzswD83M/9HAcPHmRpaYm3vOUtvPnNb+b48eMcP368BAyLR+f9739/GUcNtOWaTd+PMpfipZF1J56cD37wg1y4cIHHH3+c++67r8jt3ve+95VjPffcc0U+KMRiPqfonQbZEiAuHgb5VzJuPfbYY5w6dYozZ84Ur9Fjjz3GxYsXefbZZ3niiSdKfFhNhGQcUrdDvHGSTndzc3PCg1IbMGR+5JmyuLg4IQGVn9XVVWAsSRSyMT8/z+nTpyeIgcyvVECXZ4Jch5owyfOzfha8Eu3leSxEdpGlDErFUq1ZKhNr1FgvLhbSEpGdyEEwnmBskW7YXDE7WVtT7ESAQjbSdxLomMBWqkydsydF0FFhXYdRI6xuUiAuGqUiVkeCVezrWxrdQ8dekil4VazHRk9KCQTEkS3OMkarNQaf0q0G+QkYNfZSxOiLzEdpQ9P0kvwrRpSNmOBpQkq/GUkyJ2VSleAUG5K9GnkfkcQQx/r9GDR4g3IaHSw2NhjVALlgoTLJ45O9PckTZJK3KIyI3TbBD3Cj63i/nSy+RiVZmmlQusXoPsQ2BYgHh6fLsRRAdKjYJTAZY/Zk5KxQUWQ4AsgTWSIXWBtXXM+SmBizM0fhugS0wKKUTfEzSGrVmAlTttKqZAcOWZoUQ8wVl1W5bokZJGuxxDnELKGJOXMXOVWwwiZSqZLQSZEC+mPOYqZ8Ws9JXpSDf3M6Yh9iyhCWi/QpFWl7+XpK1/NsKJW09tH7TFAcITTEkKzYIaaUrikAflwwUdbh2EmRDpwylMk9yjhAOZO58bxnwpmilPPuEedHDLsBO8NtBsNtRnFU5FoQ0SYVX4sejEnzFAMEEzORNSg9IJKzm8VUDFP5gIkjlHLYNsKshTDHaOcgbWu5obdwI0c36uhGqa8D73lme4dI4Jb1GV4z8pimT6+1WG159cws2wHmBwOuD0cMfbonpA6Fd6OcQa4r8TsxxgzuXakbEWPK3hRpiXomBz03ecwao8dFN7W2iWiYXk5g0cOYNieqSKmivQ2MlMV3lmGnCSElEwhepwKYncveMEXT9FEaojGJ8NuW3kw/kUFlUTlFbtvOYE0qeNfkbE+m1CrJD6nq2SzP07/P0Ippq6q0+gX41farX5g1gagt8NPHn7a61VY+AaFiJa0lLNP7AMXyKkBdgEht8XwpXf+0TEfISA1up63Lcr46A1R9vqWlpSLVqK29AuBr+Uc9P9P9qftV91/6Wc/ntFyrjnmopR619R4oILoO3t3INSmcczz00EMlG5iQKiEN8/PzrKysTKyDOo2mWN3FoyOBwseOHSvgrA7+r4kEUPavgVbtcZm2pNceG/lePDYiialrCMjnch1qK7HETNTXpE5VKkS167pSgXttbY0///M/5+zZs5w9exZIJOzw4cPcc889Rfol2ZkklkNkRnLdpA7E1atX6fV63HLLLfzBH/wB165d4+DBgyVl7Ld/+7dzyy23cOnSJRYWFjh06BC33HJLAcFCkoRY1VI2kcidPHmyjLm2xE+vLbnu0zJJSUn9zd/8zVy6dKnM8XQ7fPgwFy5c4MKFC8X4sLCwUKRbMt9CXkVeV1vwYRxLI8+aGvh778vfCwsLnDt3rsiWZE6k33LdhXzLPSzrd9o7IHMkkk+RPdWJF2T7+rtpeWF9vJrc7/Z8qu+33fr09W4v76gZbEQk33p6YWuTgiLHkpBcFYv0wtMqZTMhgjXZghrHi00rcopWh/OiqIlFNpOy5+SKuRlQpeDdBMAjPkmaulGSBOkGgylBzNakkep9Lb7x9Mw+RiNSbYbsAdBags0zGRJLuuhFknIjyRRCkuSEbogkpDExWxuzBCJh6lSd1zQt5PS3pTCd1njEkp+2DwEGg1EB554qHiIm3X7MEgpiQwyW6AwmtMTQolSbLfcqgx6DsT2UMSidCtsRPbgt3PA5XLfJzmCjBFMb00spa02Dsn2M2UeMDXjwweBHMAqW0QhiGELczulxY7IUh2SBryVCJakSPs1ryNl58thTxinJEKYIoYdSFmV6qc9aIYUAY5RihqqknE1XJ4zlVkbnwPMkM/JZvhVztLRSUuskWbZTEcdE7qJuE7BDqlurvM5Ecy9SmbIkIEp9CQM65liJFK/RMznwGw/oLA0LuFFKTexGHSn1bEdwfWJOfRwCdF0o1ehL2IiieGRKgHYhF0L8c3HGkv0rFDdHSNOTskdVY+nckMFwm63tG2wPtxnFLpFQSf9rkmcotGCMJwawxmHNCG130jY2jzWCCqnmCSFlNDNEdKNojKHf2090HZv7ZiDCaGfIaKDZCimYuwuep7d2uDYY0LaG1+10zM/M8apenzmreM3sAUbK8vSgY2e0zSA6uqCJPmUf8yOD9x3DLuRnihTLJAk1Tapbo7RJBKG3n5l9N2PbGZreTJJ7qiRFSnVnDEYnb2aTM3yl50W2PESfZU8KGzVOacIwxU10SjxakdFInoeRmRmPsRbTKmzTp232MXtgIRkAbD9p8pTGWo3OWdLKs1Duq/FDOX1SuSn+T/BYTMuQXgps1LKg+kUpL79allKDPJgEyNMyJRgD8bry8okTJ170Uq5/F+B0zz33TMgJ5Hw1cKz7IL9PW/1rXb0AnloSId6UWsZRezzE61Afv7aeiqW9jiuQOXkpMlGThemfacuqNDnf6dOnJ9J7Tp9LrlcdgH7ixAmOHDnCu971Lv7hP/yHHDt2bCKgWX4ef/zxifgLia0Rr4Jo2SXIXayvhw8fLvEbtRypDu6XVJ21lVbme2FhoQTGSiyCVF2ez3VXhMwIILx48SKnT58uweUiXxLiJd4UIX/12pqW4wjZqYGlWKx/4zd+o6Re/exnP8uJEyd473vfW8b06KOPAnD//fcX74fESWxsbHD27Fk+8YlPcMcdd7C4uMj+/fv5+Mc/DsCv/Mqv8Gu/9mv8yZ/8CW9/+9s5fvw4Fy5cKNdU1tWVK1fKOGUM4i1YX1/nN37jN/ie7/meiZTR0zKiuslx5V6QsYtHpd/vs7y8zFNPPUWv1yv73Xzzzfybf/NvOHLkCL/4i7/I7/7u7/LOd76TO++8k1OnTnH58uVCNp1zZb0MBoOSmlfW+OLiYklhLPeceJLm5+d55plnJpIEnDt3jsuXL/OLv/iLbOQCeHI8WYdC9up7+KsZGuQ44t2qJVT1PMuzQe7xOmueHLf2gNYSR7knhfx8I+Ir4GVLoVLT2VqWAllJmWyQKsuOiUJcuZ6CZH3SKgXwQvUCVGQQk7oTsoVZ6RQkCgKuYk75rtC2h4lg2xwsrDRBpQrCdEMgWSQTuOqAFKsQrcG0fRqj0aFHzGlpVRRxSE5pa1IAedPuw9qWpt1Xgjjd4EbWeLtcmE7jVY+Ya0loYxMwMzb1IypCTuWapAwGbVMGmhjHACjGiJ1xafRGI96Z4EZZzhLTmJTG2hm06ZGkEjMJAJUrpDJ4Sv/G7D0hBIJ3eNcx6IZ03YihUzifJE6ha7GxQQ8UttWYXvJ6GKvo7bOoxtDbt5/h6CDejehGO3TdTvq92yL4LmU0CkNidKlYXi4SmIrqBQijHHSfKqSn4NW8FJXB2tRvQyQqhwoRY5KlF6XpfMAHcD6BWPGOyNrSOgftptVJjCrX8fCEnKUrBE+Qmh7ZIm+0JrguFXUzDagGlMFHU8ifWIqNzZIiJZW5s+U+pr5JrZSk9c/rC0WpVxCT/GdnZycFeocOrTW9fo99+w4QdQq6j+NdEDaTfYLjMGypg5ATKIzTqQpx8EUSRJZFkWNHZK0Mu47NwYjN7Y7tocMFj9aJINlcNNA2ibCIZ6BTO8mjE+R+1AmU61QBGzQEUwZgG8nSpaA3T18f4FB7CD8Y4XZGbFy9wmBnixvbG4nsAJ9d32J927M1DPzDnRGvXbiJV93e5+b+fv7hbTfTzjrWR5ENnyuH+8hoewPXDdHDzdzX7BVUqiSFMMZgbYuxfXr9/fT6+zE2xU2Ua6xsXlMRwgjCCN9tE3yH70Y4fPbC5dTSboRzI7z36fprTdA2RVfoFmNmEmFWFuxMKrRh0hqLUrvFWmzblJTHusSzyDVNJpXJ9lIsQn2V717ZtpuFEiYzQNUWtmlvRN12ezl/NRf+tKxHwPh0qtL62PU+0wHR09vDi6tp79aHmozIdhLEC2NALUB0bm5uIutLPX+7zdM0EK3HJkD2b5qnWtoln4llVyzgAlqcc0Xmsba2NqGhlzmotf1CiCSwFuC3f/u3J4AcwKOPPsry8nIhB8457r777iLzOn/+PP1+f+J4UpFZLPl1heGVlRWOHTvG4cOHSy0CuWaDwaBYwcUCL+OWGIKLFy8WgP7QQw/R7/d5//vfX+bqiSeeKNf/iSeeYGVlheXl5bKO6nUtx5YsTMePH2dtba0UTwNKmlMZh4C/9773vXzyk5/kjW98I1evXuWpp57iE5/4BPv37+fy5cslOPfcuXMT8hbnHB/+8IdLXYj5+Xle97rXcffdd3Pu3Dl+/dd/vczJD/3QDwHwYz/2Y8zNzRXr+crKCqurq0VaI/VC6vna3NwsQP5d73oXCwsLXLp06UUxKNZaHn300eLtEi9PbYm/ePEia2trxROyuLjIj//4j7OxscHx48f5vu/7PkIINE3DZz7zmXLd3/jGN/Inf/InJQD7yJEjhRjO50xUst5k/dQ/EiQv66nf73Ps2DGWl5c5depU8UCsra1x//33FwmfSOWEbNfrvybycp6aRAqBkHvEWsuFCxe4ePEid999dzmmrI9Lly6VtSvrTI4/bfCYNhrIc2I3D2M9D69E+1sRi1KYq+Roym545TOYy1KpKLr0WIIX9ZRsIxGA/LfOgdFAzPENSeud9in6+QKwkywhFo1ILhAXk5yI4kXJeePzNphs2Q+GoKK4SLLtLwUVJ/DfYNoZjO1hmrk00hiJekQMiqghqhTQGVU/k4qUw15nYpECPyPaptS8xjY5171J1v0QUMGhs/QJk+Q02tpx8KnvIGbClSsZa9PmfPYNxraZ9IyZmta6/A6kasjEDMZTCsuoGtApwByVqisrY4kqx6jkVJhiCW/oZ09Ig/NdzqG/D+86lNlHCB3eDdF+kIoD+kEmmj4Tig7nILhRtuSS58eU2iflnFqlmBqjUnFFrdAmr6cYiV6JCq1ALqNjzjgV0ToXMkBlb0iqQyL1CVyXpTIoTIhEnbL1aB3QIdcUUWSwCUjVdK2wthkf20mxuzAOnM6/++iSJyWKsCrp94NPQcadc6UYW5czICXySDk/eWy7aelrsKnyPaCy5kpkQLJ/uW9FHlUOovEh1SkZeUXnND7kWBUN5AD+FO+UYycc2SMC3vkUJ2QMpskEQ2UZIgZiqi6tQkvM47c9g24UpheJQ0eYGRGGDts0jPxOTtcUGTjPcztDvnD9Bjc9N4vWhv5NN8E+y/zsPhbmFGqk8M4wigoXIlY3uG6IamYrA0eWD5Vq3IlgWNvStjO07b6U2lq8laTK9Ol+z0Uu4wgftsGPCG6AD2ldR5Vip7x3Kc1yzC4mnby0iehloq9SampjW4w2yWth+ilWQ6caLSYXVCxzWC7hJEmI08th4vu/P1Ix3V7Oi6v2HkjbDbhPA/6X2k4+380rUv9dfzZthYexZbv2htTbTxMWARA1uBJyMw26vpb+T4+1/m43QlYDC+l/fb7dxlBvOz3OWtIj2+x2zNojJRbper+TJ09OEBP5Xvbt9XoT2brE21Bbc2trbdd1E2B+Y2ODZ599dgLc17ERMtZpgFnHY8j2q6urfPnLX2ZmZobLly+X6/blL3+Z4XDIG97whuKlENmUzE19njqYuj6+/PvpT3+6yG7OnDlTpDmLi4vcfvvtEwHzcszPfvazZZv6mghglbEOBgNmZ2e5/fbbeeMb38inPvWpF60VoEjVaqu4WO8FWAspqBMqiJa/LkQpJLS+t4RYCuGdluzUa0f+lXiO5eVl3vGOd/A7v/M7HDlyBO99iQ05ePAghw4dwlpbZHS1LLCWIsl6q69DnYWpXutCHuprKh6I2ospKXrrjFO11K72StZjlusoHgk5Tn0/vpSscbffa6ND/ff0/vV1eaXb3/IM6aVnikajqEMY6+YT6JNvUs0HoRd5P11Z5DKOMk0Kmk4yorR/tj0DYt0PeG/x5HSqubBZ04hGOmeb8eIRSEDUxx5RNXjd4MmZZERRItZgpdA6JhDZWLSdAdMjmrk0khgJTUs0HtUj66FTfnmlkh5btCvjbFhgxR+SkUKMER2SbEiTpGExenRIFmVtmqz71phyHAG5kglm0vIsaCNtkpFHjETvkvVWk0CinkO3lsY62plM6ETmoRQSNK90k4kFoAJGp4D4XpuASykYFyJdlIrjOTDfB7pulGVWHcPt64wGW2zsPM2o28SNtlG5gF+yHqeq101PYxtF29PMzLY0rabtaWLs8H7EcNjloNuIG0WcS5l9IJEJYxxGB9o2ptoDJpFfrSBItp4QcT7FdEQUykU0PsWmaEPTWmwLtpH6IikbWK/t0VhL27TECN4FdnZu4H0iTSoTYe81znuGO45u5HCdR8X0ndU2FenrPN0oFwoMnuFohNIqVT7XGtukzGOoRMtFnjW5qnKLvlz/EEUqNSYemvFnZFlZsX1HUj0Up+n8PkZe473HapUTGPQJweKcZTjMhRhFoxUjzg3TmrMt/X37aXuz9GYO5PXb5kB9g7YtWqWgaGP7yRNmbMqW5h3z87ewdX2dmVVLHO0QugGDnQFD57i0scFG1/GqrzzH/2MQec3iq7jjm/p8y4EDbOkWtaXZCZadaGFunhgirpg0YnlGJS9AjqXKmelSkuMUc+L9KH8eMD6gose7HfzoBbrRJq7bzASio3NdkizmJ0cqZJeCsVEtymoaq0viiabZl+OcmlT7Rlsa3ceYtL6atslZ31IMiPBKJRxBpT7GQuni+Bq+qMmnYddvvxGtBm0waWGvXfSyba3L340w1EBlWroD7LqvtN3iAeo+1vsKKKtByfSL+KXIRQ2q5Lx1lW05Th1PIfNQ69h3AxXSahA7Lb0ScCHzKgC2Bkb1GKQfdZYaIWGSWrTuaz02uV5yPvmpxyUkQeZA5EjHjh0rc3bXXXeVufve7/3eifkQaZKMc2VlpUhdlpaWOHnyJGfOnGF+fp7HHnusAGMBllLZWao7HzlyhPvuu69ItC5dulQkRUL6Tp8+zaVLl/jwhz/Md3/3d7N//34++MEP8o53vIMzZ87w5JNP0u/3eeCBBwqwljYdoC9WcRm/ZBoS6dWFCxf4+Z//eSBVrBcPw5UrVzh//jyPPfYYTz31FJCqT//Ij/wIS0tLPPzww2Wt/czP/Ey5z8RTI+mANzY2eOMb31ikRZ/97Gf5oz/6o5R1MoyfDT/5kz/JBz/4wZLed25ujttuu40TJ06wtrbGgw8+WLxrDz/8MAsLC5w5c4aVlRXW1ta47777ypxfuHCB1dVVzp49W4jexsYGy8vLxfMjBEDm7MiRIyUt7+LiYkklK2vpwx/+MA8++CBra2s8/PDD/NEf/RGQslr1+ynT1BNPPMEv/dIvAfDpT396ohhdfX0E/ItnSM5T3yv1PSjXcjpzlNw/IpeSlMnHjx8va1gCumVNiNxLyJaklD516tTE8eRedc4Vr0l93tobspvRRALW68QBso3MQX2eV6K9zBiLIvDO0oqqMnER02f9cVQTVjWdLb+xehmqOFngK/0qZCNXh44OH13OFJWLv5lmHLdgskQkW3kLAMsW+xhzhWwTUDk9pQk5U1UJCM9jyf032pOqXOesVxn4K5WkHqadoUTjZimDEkIhQb35aLFYD0W8MrYmpmDNiCJZ6pNMRcZi0JVHCFV7ilSeo6KTKWMYpzcljx+k6oJ4mTBgabOnIFf7NTUhEumaqY6vc0G1ceBoCWDW6fPk5QiJeIVIz6eA7hADXW+G0WgHbSyDnRcYDbfwbpDIpEl6cmMVbS9VRW/aQNvmQoa5wrlGQWPxClTQRJNqdgQdIQaUSilaQ0iVvonj+iqpnoRBgnOVFo+QwqhEQlKWJY1tDU1rsK2m6SmMgcaqVK1dpVSqIWdS8m4b57K8i3TsEEwqxOdMznoEMaQ15VTAuxSHI4A0BQCnTFKjQUenPb4hKamYTDYrpCKBe7kO09+PQWny+E0DzGxZJ2WHUrrBNHPsO/AaVC/JedosGTJ2Jld5TgQ6hXaE8uN9l1aHben399G0fdp2X7pPtM33z5i46ky+hYSpmIwD++YXMG2DG20xeGGd0eZ1rNa0riMMh2x7xzPbm3z66ad4ZrDDc13Hq2+7nWb2APN6DqUiXYSodKqOnY0SKMnHla611FMRo0PEp3sixlRpO3qIDpcle123Sddt47qddL2Dx3mfq96DxEOgJCubRds+VhnQDcb00LqhaWZSVqhMLlJ65LYU60t9oEi3glZZ2ji+/lGJ4UBMOOPfQZXaMhJ+82If1zem1SSgtuBKmwax059PS2ymPQL1Nrud+6Ws+y/197RsYPrz+vtpolN/LyBn2npfj6v+bFoysxuBqclXvd9u45s+r3w+NzeucP7VPDTTJKsmXtPnrGNgZN6mg5Snj1NnpKpjMWS7OpMQUOQ2ol+Xz+q6EkJejh8/PpE1rI5jENnJ3Nwc58+fnyh+J/0SqU8dW3LnnXdOFCd7//vfz+c//3lmZmb4jd/4Dd785jcXUAzjYmUyPrGaC3ERCZRYqY8cOcKP/diPTVib19bWSgxJr9fj277t25iZmZnIbHT69OmJQF4piibzKPUdVlZWymcPPfRQicdYXl7mzjvvLLKo2267jeeff77EUkj2odoLIRK5tbU1nn32WYBCGmsSLjEBMCZaGxsbE3E50+u6nndZq3Lt6jUkVcR/6Zd+Ca01+/fv58d//Mex1vL5z3+eP//zPwfgF37hF0o2q3ocdezQ9P1f3/vSn2mSPN1/+V0ySkncjxC9ixcvcunSpeKJkmOIB03WST1f032rDS71d3L/yDquY4Bqg85ucslaNvdKtZdJV/JLsJjSmADS6fckfWBKilOKeJU6x+N/8mEY69DTlzEkzX6MI6LWGN1PVnRaTGNQMYlLYvBJa54hREo5a8ZAOVbAFJJcJKfCVdLvHOid9uggdimOoljmuxTEKsHYZTyqSLGKtKsaW8rOI9MgXoQxSZCWExkVOdMYIE7Bg4IcMqmoPRbVRhPkAoVEOysVUw0S1QA2xTOYZJlPdSmybl72gyIZqoy/+dhJMpT6rYmVzE2kGTH/7vpzdN2Ipu2xvXWdnZ1NRsMbED1KBRoL1kba1mO0w5gR1nq0juPa1howNnnKgkUuu0jdkhHdJdlY9pYpcYVl0J/IhU0lPmLKamZNlrznQoTWGmxP0zSKtknfWUMimqSaBd53uG5A123hXQpgT8HnmhibFHfjTP4JhAzAU60FqbGik+Qp6hRr4iLDgaNvAqFN9RaUzLlwd7kIsSywjCL15PWR1ZPJunj8RKZYarbk9MzaamYP3IrpHM4F+m0fayymnSlF2GyW9qSMbMk7FYMDFMY2tG2fxsp2IudR9W1e1vPYoJBqTMwcvJm234cw5IZRbMUIBkajIUFFbgwG3BgO2b464srWFs9vDThu+xxagAPzfToMm0QC2auix6BbzpnWaYpJiU4ycvnkxYDs2UtyOe92CH7EaLRJ54Yp3bL3ORMdeK/xQaGVTc8ObZOkSTUYM5OCv00PaxOxaNuZ5K3RTSZoajxHlRdT1q2OEPXkM2J6Duv7S6dJzctBYo5evO83qk17Eqa/+5ssZdOgXdpu4HiaTExLMf6mc9Wg/qUs9NN9/2rfyb41qZqWPsnn096XmjhMA7CXikOpjzVNLMSrIICnnpPdjld7MXYjCfK3kIjawlv3fbfrI8eugc+0R6f+bjAYFJlILUuRwmdSWGxubo7jx49PAFmRKQETxOPs2bPFsl8HuwqYrq/X0aNHy7Yf+tCH+P3f/30Atra2+OhHP8rS0lIhFrXXyVo7kYVKgKekk11cXCwg/u677y79hWRtFk/K/Pw8P/ETP1HGLHNw6tSpCQnPxsYGFy9eLHNeEx2xUD/yyCPF+7G8vMyP/uiP8s53vpNz587x6KOPsrW1VQKGp0lA13WFpIin5OrVqyUOoV7b4gGor2sNeOW4dTzCNNh3zpVMbvU9cuzYMU6cOMGv/uqvlmt0+vRpNjY2ePzxx/nv//2/A6nw31NPPcV8zugmIFpqo+xG0muCLSSu9kbtJvuT44rnSoitrOHLly9z4cIFHnjggSKtElIhc13XXamlktPPAOlXTVzre0nWuly/jVz/RoLu6/tRyPzm5uaE5+rr2VScEFzv3l544QUOHjzIvT/8HppeKq5S/BMZuMX8Qlc0hXNUvgnQ4xz6IqNQOQ0mOZOOqNAhSWy6bgfndhgOb6Tg1t4sTf9mjJ3DZ3FRqpngis5d5A4mW0hRMWvsc7BlzlglgdNkEqJNkwuvQfDJWhm8K8HiyrQY00sWyGzJ9xV4TplbEvqrqcGLpM8v+jB/tYuGfgJCjNF89cH4+xo8TRO3sZdoLKOJ+XdjknfH5GxEMqcvEnGrKFwiH7S2jafvx2erxpjBjgRZ+9CRglwdrhumf90Q123h3ZBusEHw23i3iVYjlPY0TUzZfIzCkIBcjH063+C8ZXvY4Z3DD7eIfpsYhjRNSPn+W00KJjZE3wIGhU1xGzbS9qXGQEwF3aLP3qksr7M9UiCyxnWp+rJzMUm+fIfzo5yRSkPUpNigtE+qvhxSDQ6fYj5UDg5PgbwpHmC0s4XrBiiluGn+Vdx88CAL8wc5dvtN7J9psFJQHIVRuuKT6d7T2XOodSUr1CpLaiQJQBYr5hiLkD0mQWmubCqe24b/fV0x6gKdcyl+R2maNqc5lYQESjyRE77HEhcwSWtSP9IyUBPLdxz+IamjE6iPox0GNzYYbl5n46nP43Y2CdvX6dwI5x0vDIZ4n+rOfNMtt3DrzTfzT4//Y270D/Bcs58XnKVD4XWiUymL3VhMGWPK/+u6YTm3xIqNEyk4nE9pa50blho0MXsEUlazNFatTcn0lmRMOqWGVQatU4HGJMVLsVHjgoYTT4ly79T3uRTGHBtlmNhHnp/CnUsa2rxWusEOv/z/eRfXr1/nwIEDvJJN3hHXr19n3759X9VrsJu3YPpz+e6lgKp8JttIpWLJkjRt2d8NQNT77/ZCfykvh7zMBbTXx6j1+gJ+pvtTkwQBL7VVsgYNux1neo6m+1hr+mU/0ZPXx5LjCcCZJkLT16HuT00SaktrHVQq39WBq7X1tP6+jtmo07/WgFOAsgRar6+vF3Ih24o0S8C2jOu+++6b8B7IceT4ly5dKoXqlpaWOHbsGA8++GCp2SEW53PnzrGxsYExhu/93u/l1KlTWJvSjwoJkvW4tLTE8vJy2efIkSM8+uijPPLIIzz88MNcvny5BFAD/Oqv/ioLCws8/PDDE+RG5vSDH/wgq6ur3H///QyHQ9bX17l06RJzc3Pcc889fOxjHysZpLTWfO5znyvXQuqPrK2tlVoMkvZ3Y2ODEydOFI+EAHCRntUxFuJRkIxktbxn+lrJuSTouE7HWxc+rNe0EC9JHVtnF6sBsqz7+Vxk8fz58xNZj2RtiRRJ6l4I0H6pdV3f50KIpqVR0uoihhIEvltK2LpGS31v1vfa9L09TcBrr0lN+uv1LvEdu5GSOsZE5rP2in293xF/C4/F2Oo+toqrwheYsFr7Yi1XBcqKjEoOKZ+CIlRf5AJvWWIQAB9Tddqx0jxZ+yR9afF6lJd3tuzGqvqzpC4lkyGyDEHpIltKdukc2F2OlfXTcSxJKHNQxs6LAfnE7MkvL7HNLp+PE0sWt8fE8cbiqrF1tsCUipWoqf2L5TgTojHwohrU39Sm+qMqCcaEPidpxlNwdKqnEULA2x4+OLpuiDMW1w3Ae5zK3pM4AnzWsksCgCzRUj3QLVo1NLGPNl2qct5B9AqrXfJKaA0k7wx6BkUC9KaJaBPRukOpRDpj0EkaFLOkLMRUaySmKtTdKBI8OCcZqTQh2rHHAJ3kZaRsP0oZjM1eiSanbtUpeDfJi1q64Q4KC7pBoWhnbqLpzWLbfZSMaFI5WwihyNEErCs9cQ0UWfKjxqshlpu1JqdZRhhDSZlscl0Ngk8HczHJxqJPNU6USRnLclwTakyoyxGLDE8MCJPrZEwqYtmGLFUztk87cwClG/qb1+lsj2EI2NE2qhvSs4Fh9Iw6z7UbL6AUXN94Hn/AYA/MEIPOfsv8XIi6EKF0zvSdyve7VMBO32V5lkppXokBq5tMKELutypkoaTSVjnYP3+WCn7qYoAY3yv1PNR37dTcTHy4u6ZpnAGM3A8hcpWx5280Gb3yrX5Z1qBgNynCbmD+pdrX4lWY3valjvE39f+r7T9NWGrL+kuNfbdz7OYV2O3f6ePV/XipbXfb56tts1t/pr/fzZvx1Twq0+d9qfHsZjl2bjJVq9StqL05UiW69qSI1bu2MNfxB5I1aprAiP58fn6eGzdusLm5ydLSUsk4JNtLkHlNlOSnBrnSJwHTvV5vV5Io45Zz1/Knubk5tra2CCEwMzPDzMwM1tpSx0Ks4dJCCDz22GOcPn26kJNLly5x/vx51tbW2NnZAdi1GOBu16BOC1zP5TSIlushgLmWO+62lqZJpvw9vVZrElzvUzfpZx0IvrKywrPPPsv3f//3FxA+PfcvZfCozzu9XW2MqOeoJiASSD59rtp7N33e6TZ9T+22T01+as9HHcgv24nhQubxa/Ar/K3ayyIW41ejetELkUhy6UcHWWoxDpy0ZG1COZLKR1EZxivJqFM02RbTGDB9GtVPwdjK4mMLYRxDkXbJmWcygEjZqHIfA/hiMYaIQSpjo1VO66kJpNS0EIlapWrMqknZXVQeg0pSmjjhPapjHf4mMC7W22ravg7XddKS+bU0VSyhAqqSlIcxeCqeiJfTgwRqphfrpG8jyUeiAWtaYgy0dobQ7id4x7Cdx/kRXTeg8132DKTgaO9H+OjSjGuLanropsfcvj4QwG3jB88TRptotYXSAW0DmD7oBq0OoFWLoocLI0J0OL/JaDTAu0D0aT4a26TK6krhsPig6LzCu1T0TEk4vU7pbSWfawwm/eh+IlCmR5uLqfV6+5LVPxc8S0G7LTs7m1y//iyDnVQPYmHxdub6DftmDNEM8NHTSFXpmHwPkuFIxbH1O+n0DRPqmcLy8rqu6l7oAjwDjAbEwQh/Y4jvUmYv5wMxKrzpl4rPpplJQdn9GXTTopoGndMDk0m6SCKThyqlUYbA2PKuxuyj/CtZs1K65t6+Pr190PT2s/nCc1z98ucZbVzBuxc40De4xtFvOq7vbLJ9bYdLf73CocOOm/fN4Z3GRYPRAXTMhRh1zggnE6MxtjcmNpXfIMY0ClvSBKfvhbZL6mYl46i8QEICEunQu9xDsb5Vdrl75O90Tf2Ul7q+r8ZxVkImY0UskqzP+xef65VuXys5qMmENNmvtpxPv8xruU/9/XSRqel9djv/V5PtTH8+PbZpz0Z9zt3+nv5dWp3edrf0r/X5avC1W/9qz8C016C2dgpYredFgEYNRKatonJsYCLYXK5H7cXYjSi9VHC+WLHr/k7PyW7zItd8Y2OjVEkWac76+npJ8woUa/JgMODSpUusra1x4sSJAj4lzakcc3V1tciULly4wPr6ekkD2u/3y7Ek9WttRZ6bm5soUnfs2DFWVlb46Z/+aU6cOMEv//Ivl7iRH/iBH+DMmTOcOHGipC69//77izdArObivbDW8sADDxTQ+uEPf5hnnnmGwWBA0zQAvOlNb2JlZYV3vetd/Nt/+2/50Ic+xNzcHL/7u79bgsXvuOMOPvGJT3D//ffzwAMP8NBDD7G5ucmpU6cKUTty5EjxBgjZkXFOy4zqe1cIypEjR8oxprM+yT4yj9PSNVkbddxKXThyOpOTc66k3rXWcvToUU6fPs3DDz/Ml770Jf7zf/7PhaDWnrN6/+l1KWthusl2dX9qb07tKaj7Wj/vanA/fdz6992I2fRzpP67Ds6We0s+l+0kO9fCwgLb29svGt/Xo71Mj4VPlYxV/VqLOWhQqm0rcr7M5AkotvHxi1pIhVbpb6mtTLZIpzdlSlWJamh6KRtRzIWryPEQqRXbe9Yq64ke564Uq2n5vwRa52BeJr7XCXSZsZwnRRGMtyjnruQfY/WPqjwIMMEkqKZpN5lU3dTkuXYDJRPHfYnfpz8oRb7yMWOWKU2SigqIZaG/mjjcFHmovtRV4PzEuSOkuaakIlYqxXhoBdFojFGp4rh3+JzRK2n5q8KLGUGlAnqGqBQxetyoxyiCUy3Bt0iQsopNAt1mFqV7GN1DxxS4bNxBvB3h3RDvd5Dg3SBrXDcpW5XVmGZctTsNxie5itZZ3tSgVIu1s2id0pmm1Lkaa5siVUkyGY01lpmZlEbV73copdk3dxM9E1MCgThIEhzGUhwj4nkpTZ8huYo51S7jYO7pitwT3qR066JipHMDBjtbbL6wQedzeuBcx2OkQNPRxREmjFK8RRxgQ5+GPq2Zg2jHaz5GYhxXLywFBdXkihmTTSEl9f2S9rf9OfYpw4LSPN/vs7XxLM9d/TLRBXCeCHQhsnL1Kjv7DqIXBsR2NmdTC0QlGeZ4sbNmeuHGyT/LvAqpkOeD2ErG7tqxB7NInOTvyTtyfL+r8tlUZ6rPvzqjH3sqq+tKTHUoVSIlnfv7d1nsBuprC/G0ZV/atJWwfvHvBqx3A631saZf2vXf9Ut+t5f7S4Hk6b69lCVf/p0GANN9fCnL6XS/X2rbeqzTIEm2+5vkVLK/eAi+GkkUWcX03H+189dzMT22aYt3bdGux7Vb+k6R8oiFuN/vl7oAQMmWBJSxCZAVQGitLTEC9XU8ffr0i0hUPX75TAgbUCRKAk4XFxe57777CnkRwiRF9oSsyDWSYwswdM7xwAMPlEBoCai21nLrrbcWyRBQ0rFKn5544gk+9KEP8Xu/93vl8y996Uvccccd7OzslMBfoKROrTNzSZ0RmTPJpDVdk0Ks5RsbG5w/f55jx45NZACr43HEi1MXsNztHtzNGySBzzAGzCdOnODChQusra3xzDPPsLa2VuIbNjc3CzmqMyF9tXt9NyPAdJsmSULAhQTtJoGcPv40Kavncbp9tT7Js3S3+6i+n+rz9/t9RqPRVx3j37a9LGKRgqB9BqaAvHZjKJ4KlEqF4rJXYLyd2P3GxELIhc7kRCVzYZYu6ATulEppTpUEiFeWwNLGgdMwJhFRJCpZbz3eXCy9NYCue2om6Ukt3WC8eazGJ2ShnHfctfL3GLOoXT0VLyYDL95o11iM2hCqdrGKTnsQlCq6fEEmEzE8Mo4J/PNisFM8JVWfJhRQVHgujldDAXFyVKVRJhPDxpSdcu25HPMR8zhD2Vnlc4fo8cExUjqREGUIIwsxEFXIgfwGpfehTZuqkZNqURiTYiW87ejcIOn8/agMRpvkqTKYnKUsEMIoa/M92iTiYOxMisHRfZp2NqcVtWU+TFWZXuhA8mBYmqafT6cxTZ+GDq2GKb+AiolYiKQPBVFPBvnHCJmkF519fe1r3FuuYtouBvC+YzTaYbBzHecTWdLNLMoovAqJw8Tk1dLR4XMCAGMVMc7mPsjpxFs5uUhEilXMDIXbyL3ox7A632C66dPahgO9HjtuyDDC9leuQBhhfCDERGauXH+B3uY2Nw87Yk+hTYpvGZPkyVsgTpyo9gJM/qaq/dX0RmOWlmuHyLjGZpSvyT0xeeKv2sbPNTlULNc0lBttvIGbdnl8A9puHoKX+nv6BTjdXgpg7/b9Vzvf3/TdbhbL+rvdzlMD3mmwWX9ff1a/5KdJwjRhkO13s8xOt+nj1tvWgKI+/kuBemm1Z0TOsdvcyFh3I4Bfy767rYEaqO22b51CU8YkWaPqfessVTXQk8DiWl5VZ6kSq694aOrMVdPxL/U5RRJjrS2F70QOVHsxxBIPlKrLMLZO1+ujDqY/efJk2U4K7cmY5ufni7xJ2vd93/cxPz/PysrKBKmom/e+EAg5jpAl8V4JKZP1KLEdkjGrnh8hC5JO9f/P3v/HZnLe96Ho55mZl3x3l5LomKmp6zXMxDREwzTKtjS6RtbIpmeNrAEF3dMqN8K9CuK0MuLc6KDxOQrgIA7iIipiI8Y9DpIgKmo0KuLeI6NCs4VVREY28QalERphEhplIAqhm9cQBVHHtExJK+1Lcmae+8fM55nPfN9nXpKrXUk+OI+wIjk/nt8z8/l8f2pSN+vDo4721ofCPvs619Q6qPPz3NxcMFOjCdz29naYc5to0e75Lm2ALeMEFPq82NDalmjHzLksydB5GPf88nxM8GDr0HaOQ55utpyMWJRViFbHL3MdStT7KrtyBcR6FZh3FbmwH3i19a+isSSosjMDQXwONEBJ7g1Q1JOeSN/kiqaQaGg/bHGt2kcHbevzQo8UKo1qIJy9PVw3CvSPIaTsLtLQUdUE4FlHc6ok4dW5stXvmP6j7fFhz7Z0GlZbIee8+dkcp4y4up7gOa2XrpqmrB5H05/Sp/C+h15vAv1TU/BllXSuFpTLuJ2QqlpL5UOe6qAVYHSxmrlUc1NrTuCrzNOotT5pktZ5QJgxmTb7NAmr93ELadNxvnk2fMW8mNMRpU9Q+DrwAPIwv8yojtq+P6B6NZPhXFGc7ZvxV0vjkbj6SUxRhWl2Hnmeo/AJ0onT6N/xDmT9O5D076xCx7rqX6UdQT3mpJr7os4TUmePr/pbdcLV0aqOlp0nVQLIeh24ZRyAyXQSd7/j3fiB6R9EWSZ46Tvb2N1+Bs5XEeDSU1M4mDiDV5NT6NdR6ZpgvMco8ZdHWKvRC5trPX8/Foa3b5pbqVFonir+Vr4JCosuyTOAAKb0o6vah9gHn/XwZ9fHE2jCW8aiFGmx91mJe5dGwIJnXqcmQLYegkJr260Riey8WQdPPU9AZsej5ELNcrQf/J3AWf1B1FaeoNy2oeZTNlSwJUxH2dZrsRGotG2VCgMIJjYW3CvYVlt3glZeMz09HUK+2ig8BK0cv+5N3U9sk7kSuCZa3/nz57G3t4ft7e1wnNfr3lFHZvabieg49u3tbayvr4f7GE723LlzIfrPtWvXcPfdd+PFF1/Ez/3cz4UgBgyz++53vxvf/va3YQtNsq5duxacsvlvcXEROzs7uHLlCu67776QGXxtbQ3/7t/9O3zuc58LGgnd27OzsyEnh2o+gCa3CrVONM0jodH153W69ziPuu5cp+XlZSwuLraS+P3Gb/wGvvWtb2FpaQlzc3OBLLFOuy+tQMASYLsXbVGTQ32v2GdXAynYe7VvVjtr+6PRtfS9dZL33+0oJyMWNWFgojbvSjCvNrUVpevBIaurriKhBJ8GoQqJcyiq4JAVUSldLdVGRSqSItzjXCXFbgsYLYRWSaEecuba7o863ctlwOj8s5YeOzRSSlPZSNNd3/l4mqtuSNTSyEQupzTYVtskwGuDfI9mbJ2SVou+XPuqltVHIH81YK+1FW2IpvV5U6FIjM00KHkJK+poBlflofDeI81CB9paFFbpGt+YRtArBErnE6iyfdeZnH3JaDwkEq7282nm1tesxgVy0Z7H4HxN4swJ9IBH5ctRlq56LEoJm1vfx7+dk/zbDCHra3O0luZAJOzyKFQRi5Iq03w6gSSZQP/UXeifugtZ/w5gYqoiEfV/7KMDCXGV7T4olUj6nawVibMWNZ/URaqRumc45fpwmk1iAg53/cDfgy8OsH/9u3C+QJKkOH3n38OpO98O1+vD0wxvZL9KH3yzDuNKe0v77nOhn7bOuCDj9ZbY60ardhjp7htaLPDnB1qldPZD2aUt0GJBuV4X04rESEqMMGhbseNdUsKTFjV16Oqv9iFGVGIAR88dd27HkScCvi5NRBcwUbA/bu6tpD8mnebx2ForCbL9sn4YeoxAVYmn9ivLmqheR0nPKSlXbYf2h1JzjYpF0Kx+NVovE5vp/rD5CGxfOL6FhQW88sorgSjQbOvxxx/HYDAIYJwhZ4HKHGpjY6PlZM1ISvQdAdogdTAYIM9zfOhDHwoaA2qGlCxxjDRbsntBx6XroZpArn/M2bprrysJGQ6H+KEf+iH0er0wJxo9SUtsn2u9dh/Yc3pNlzaBY449G3rdUURc2471L1aHXtv1DrmV5UTEwrkekPbB+DxI6w94ADAOvo6GEyLa1P4JTewnCvjq6DaootL40sMXQJpWoWcz1EQGlS+Ar8kFpepVEfAgIKoFeMUHIl4qQNrE9ZdemttGP9YkF/H6KwuJI77wlu90Xib9OQ5oaE9C81NISRM+E0FyX93q2WILhIUujvRVcnf42Co0M9Uaj/ylYm0/cn70jiAqds2wIjWO9EPr8tqgorJ2I1JDW/ROzZ0SQy/sl2sW+K00QJ8EkhHNp+2RoQCQlwlyOJSJr8ICOydhXTkKpWwSuaj2ZWnWg+1Wv/s6EhMTT2bZJCZP3YW0dwZ3vW0WE2fejmTiFMqkV18fOlePU2bIy35iYkxfCxF0f3t9hjzgc3ifw6Go3i1I0QgkmvkoUVZ5IiZSvOP/MYczpybRT6sIcknWw51vP4tTU29D78w0vEvq9aD+o5qLinfW2hbPiSirV4e+T0hozB6wm17XvJpSHwhXuCvyvOpeau+L11dca6L5TNyiyk9YukApwYs6ZKpZiw0nqSASaEvpVJJtwWUX2NQ6YoXt6d9dxKILQNiiwFMBk61Xw0pq9BrOj42+Q+Ck/e4CIJx7nUcb217P7e3tBTBqw3fa+3RedJzjiiUMCiKpNaC/gs6LankUhHL++v0+5ubmgmYsyxoHXGoumN2ZUnGuN+tSnx+aSdl1YrI7hmBVLQc1FysrKwFgc79SC8D7SHRYmIROtW6smz4kAILJz87OTvBxOH/+PM6fPx8yeu/t7WFubi4kwfuZn/kZZFmG5557Dr/xG7+B2dlZ/OzP/iy+/OUv40tf+lLQlgyHQ/z1X/81rly5gqWlJUxPT2NhYSGQh6eeegpnz57FF77whRBilaBd55P9pBM4x6L7mz4oqh3i/HF9VCJv95BqF6yJGut54IEHwn5nOOHl5eXO58Vq+1if+rqwfX027V6OvSv0vWe1JbY9vVfPdV0fq7NLwPOW01ggmQSSyQrkU8I8IoxkGEcCpjYkrJywq99dnaQOZVJLPmuwA4CJ9Krf0wAQgFrFf8xvpo+Eu4xdIx08Rt2KFrsvbvw+TKVR6WbrZPxYAERd1/rWD6AZv0OdOLA+XnoCr9HaWjgr1kXfgJaGcngzSiVCvs4RUoFjOvTG3HnbIxo3v4a4tP50Ee1Wu9rQb8sWTT3hgDPHI/zJj3ZkTBHtSB1muY6PhgoUF8h9ibws4ZOm2saUS6F3Te18bUaUuCoHS6ifJKYd2ADwcL6KgjU5eQpn7nBVUrdeCucPgNwzmUJN7zXpJIlEZQZZ/WSfJlA5S2U1iq8STFaO8YdwyOH9IfLD61VoW18gy6qkckl6GnBZ1RayOgmmC0KGiQS448wZTMy+E6VLgKSHU3fOIM36IQ1g9cZJwLAQKGVnS2SshtBJ0s4OImFLa3vxiPg3jZ6P//3mQP/bV+yHjEWBcMyEQD/Get84Kb9KQ22EFy3WXIDX2X7afsUkrTY6kv14K2mw9Sr4sY6qGglHf9qwlFaiGwMOCnhs5JmYP4jOGUGwJTExbYD9PWbqYec3RtZ0zDSdiQEwuz4xDYn2QUkQJeOUVrMtO1ZK6XX9VOtA6T6jQyno1P19/vz5Vr9IatTMLMuyVj6H+fn5YKpl9wXXdTgchoRsu7u7wRRpMBiEdX/88cfxzDPPhHn64R/+YTzwwAPY3t4O0abyPMf73/9+zM/P4/Of/zzOnj2Lvb09XL58GTdu3ECv12sBf0bPWlpaChGQGA1L94z2m8SO5kfq5G2dqHVuleSpWZt9niyoZ+G+4T/2i2PhXOp+jgkUWBd/6vj0WRwXyEGfMRuJTduz77cY8bEkI9Zv+y6yZob2+ttVTqixyOBdBpBYGCmZFkpgG1ON0cKYUPAUG1YZiIPLgfhbNMiqunNEJGiB39GjiTtbo5I6u0h9NLdptTEyOJUMs68NEVGwd5yutn1M6upiNxnNiIJcB4jDPRpNhWIoF1as3a3WPMf61joQv7Y+Tu3RKNUKqLn1Z3uP6T31b0YiHIYjqM779npQwq6xylollofE0UfCta8J4npdn2bO279IdU47TpDbXF/5KZSVj0WEfrXu920Cyy6VZdnmsjZiEZo/E5cgTVNkvayqzOd1hKyDauu6Kl9FkjCjdhWa2fsSrjxElePhMAgTKqCeVaZjzgO+RFncAPwhgAM4VOGD88OXUWVNL+DcPuAnKhPIOqEhXA+VoCKFelz1MiA7cwoFEiBJMTGR1vN2CDAiVf1OCJ46npodH85VS+vE4doHRnD0G8S11jjsD5UBmLWrGzyy5tGWmq0WPfkWKjEwzqIfOCstj5GRcW3w2q6Pb5emoev3ce0ct1+x+/h3LNqNgnbVbIyrhz8tuWAfYxJPBTmxedHrNUO3nlMwrnNi18DOWQwMqeZDwbj2R4G8tmMJqAWBCsj03hgAZVFyoWBT+6J+Mtbfgu3p+bm5uUCSeI1q8iwpUuCrYV3Vf4N9YeQljRyk5Gd7ezsc/9Ef/VF84hOfwPz8fND0kAh84hOfwPb2Nv7iL/4iJHGjqdQP//APh76qpJ2mXJyrLMuC34SVnvOn+kmwaMK2GDnkvNl906URsL9bgQOP0RzKPs/jnvUuib99/uy9sWcxdg1/HvVOjD3nXcRKi17b9W6+1eWEGgtKEtUR2hAH86GLQPFwPBhlO1fliwiJv6qPfMgX7cs6KpTkxrilX1QLurrqjoCzkd8N2kXzZ0uAfqwhWAnzuBKRodJkhlnB2bzwtNE+GL2Da+6JXdaM1lbUhsPeabBegrwkcq3yCjtJ1nLeRc7ElAaj83h8eOdq7tA25WqRn3E1HiGWDokefWXilNTA16GszYoS5oUGfFkls/O27qQhF4weReDsCJyrfxVpdhXx8JXLdFkewhf7uPHad3BYVBqIJHFAQmfxBEmSotc7VUWxmpisHb4dfLkP73OU+SFQJ7T07hS8T+F9iqLcR1keYn94HUAO53IkqNoo/WE15iQBikN4n6L0r1R5Z8raUKx2AC99FR2MYYedz6ufzsEXZ5Ckk0iSU/BJpS3xSOrs4RmydBKVb1gP3rUDSjhUjvLeebQ9sE9IAEYfv9HDIy/A8dXF/j45LXljy3A4HMngakEFjwFomVAosLbSPv0gqoSY11HKrQ6Qeg+vpcmMSg+7QIpqJxSoEOTw3q6PuwUC4+LnKzjT6yzAtGApNqcKqGPOz7xWneljZh0qibaaD86Pgj2tXwmDzr3eG+s3f1qTKzWJUht57g0CVa1XCQHDqO7s7ASANTs723Ik1vXN80YTQU0D/Ras2dPGxkboN7UOLBpVinuU2gaSCWaHZr80i7gSG86PAnsC/bNnz2JtbQ07Ozu47777cPbsWTzwwANhrtbW1jA1NYULFy7g2rVrGAwGgYC8613vCpqI5eXlsBfn5uZw5coVfPKTn8RP/dRP4VOf+hS2trYCsOeemZ2dxe7uLra2tlqaod3d3VYEJ+4zEkuah3EdeS3XSvOTqOZDzQL12dRwv0pOlQjoT/6ue0n3jyaaY5Zt9o3n8rwd/liJFeeR46dpo+5124cYWdH9bAmYLZbM8B6rURrXzq0oJ6+VIKULcCrarEuFf2LiZdcAI9ABtwJFlUSdf9eZkF0pNuyMiDOK2o5vW0xpdgz9xeqV4409VzhmzXG6UaUzLCN2WRMd6VjFs4O+hWaYs6LBnHU8fW+udaYyJ2NkX8SXpoWYWloFjRylEbRMI240mGdj7oN2O6Hypp7RmR03343morVsMoSmBsu4akLh0TTRkV29yS5vH4rmWGxvBi2WL5H4A/jyACiH8OlB5YPA/UkH8rJZHuatqHwHKKWPef3QuVtIlquc0osyr5IS5q/hsMiRJCW8S5H4BB4Z4Ctn8qIoAZ8hSXKkWVqH2s2rPqX1c+QKlDiA9w5l4eD8AZzPkaaHqBLl8fl3cD6t5iNpnNHhqmucq80kUQem9txPJaoJ8FUSSwCudEhwWM1dkcEjQWURliJNUvisjyrB5QR8TTqcq7OIJ73avyNpdq5TrVPX8zeSyaVelLbGio9la2fqXoqUIBCIbiMh0Md9zb3BxUqYx5XYR36c1N5KLrU9/m7riUnZu/oQG4d+jK30UH+PSfrt77Y/OiYLTuw1sf7ZPlhwHOsb+xCTFNvzatKkfVdn21ifbLuU2FuSpe3bc3YdY8BQx08NgXUE5nkCPgXrXeRS2xoHVvv9fiAoJBpahxIygmn2UQkMCYUSQGv2ps7gBOC7u7sB1K+trbVIDv0/rl+/jq2tLczOzoaIWJbIExxr+NfHH38cf/u3f4szZ85gaWkJAHDt2rWQD4L3b21ttfZQv98PQDwmZdc1p38F11n9TmhuRbLCeixx1v3FubfrHiv2PWX3mzVx4vrq2uj+0b2he9j+rm2zHbuvdR/ZMcXGFXs/2GdAj3fdc6vKiYgFMVULDCoUi5pGtUFOAF4O0GhSFYhobJ0L4R/BIRQFGm2Jh/IBfwQMiI7HsqIuohL63lmTXNkNbkeOCrka5TYRdmZOGZ1A+E2HEQAbGlLRGnYJu1xSeQ3imeQsPop2T3wzrNYV3ocrY8B3lJRFWnAyPtuu3KdRs7y9Mjhc6z2lcAbXOtPQhfY8hL/l6qqPHGGgCwjkRHmSokaGuPUFXPEqUO6j9EN4N4R3EooZlabB1WZrSUiQV2UCd/Snaa29E5IO1Jn1QtOl88jLQxwUQxzkr6Ioc2QOSNwEkKRwSZXVG3AoiwLwCVx+iCSZQJJNVKQADkibyG+FP6w1IiVQ5nCuhOtVz7lLMhRFHdbXVwEeksQBqUbYqvU4vgoZXCUCLOHKirhQ8FDWGobcl3DFPtIyRVFWY82LEomrIl5NTJxGkmQAevU7J0GaTCBJJ+CzM3DpFBwmAEyMCEr4LI0++x3MIJACiRqHZt3V3IrkeuQ9JO3aJ4WmpYHCjvHpeTOdt4HGrnhcidlLW0Cvx+zH256Pfbxj9v5av9aj4ETrtr9bCaMFClZTYPupddjxxkCRJVO2btsfO1Y9r5J8ziczK+t9an6jx1gohbbj4zn2mwBNNRc2+hGPc88o2LLakhhZYv3qLBzT8szMzGBnZ6dFAmIERNtgKFT9Ry0InZuZsI7AnFoNSriBhljs7u5ifn4eQAXoaf40GAxaber4KDXf29sLjtnz8/N46qmnMBgMsLW1hY2NDQwGA/yjf/SPgs/E5uYmtre3sbGxEfqxuLiIhYWFMBY66wNVaFvui9/5nd/B2bNnceXKlZCt+YknnsDCwgKWl5fDfrh27Rrm5uawvLwcSNJgMAjj4pgskVNSxrFSi0GHcV1z1W4y6laM+FutAo+P005YHyfOOa/l9RpYIEYsVEMRIxksJHI6PtXE0FxLn4VxxEKJld3HMUHF7S4nJBYVcCgDqZDixpvttDUW7c9t9X+GiSzrM02M/lqoWUWn91UYWu8qyaT3aeObKbUhdugm7Qii8DXgii7p9DE/6lZAfpOlbahjpKZ1QPtWEryuvowK7Oufqlnp6OzI/I5qXVz33TddjlrWNokYX7rl0+OvGc37Uf9jjhefV+FRfV797Ur4xCFQ8+IAKA9RHL6Mwh8g9/s4mHCYcAmcO1XV6kvUKTSQJswqLfkyJKRqkqbBjIh6o8LLMxcAsEO/P4k77pzC7N1/D0VZVmlokjREdCOydq7SLKZJVmVLr9KON5NST0yCOjpUlsD3UvjSo/Bl7TvikSZlHb7XN9w6aeoJ5lHoVfUlCSYyN7LDPUmzr4UMHJ+vfUzqUkXezVGUByjyomo7nYRDH2laIIOrTbTqPhYFkvotl7gJ+CSFT9Lw3qv8NVCTNnmojvF+sWIWrsU4ghCv50jFx5tWYpLlLoCtH011utX7LXjQD7ACb5V8A4hK69R5dxwA77Lntv1X8mQl3XYOVGLPMRBA8JiCaAVG1nRL61BiY6XB7APvjZmbaZQt6/PA81qPjtuukQU8SjDsvNt5VMmz7aMlISzWUX1hYaFlgkMHZNZDbYGCP5VGMxwtHZTtOAiENTkd508l3DR/2tnZCQ7aNAViRCf2jYRgb28PMzMzmJ+fHyFeWZaF/B2U6O/u7uLcuXOYm5vDYDDA/fffj/n5+TAnTz75JJ599lns7e3hve99L/b29vD5z38+JLa7cOECnnrqKfzhH/4hPvjBD4Y+nz17Nozz6tWr+MhHPoJ3vvOd+NjHPoZHH300mF6xb8zKrURTNQ2acC9G5vUdQDMqJaB272VZ1nIEJ1nTsLUxoq1apC5yz7Xd29vDwsLCiPZLzaMUyDMb+fLy8kifVRujv7PocdXe6DzpnrfPppIXFn2P2fnTZ/x2lRPSmHZYzOqQfCiPJSFrPoUEnU2NDTqh5Jg5CpiluzpJ+iE+F360+TYYbEDIkd3rKBHc3FzugSYqzAk/90EQ7luspSuM7UhpgX0lANKEgMqmWad/tEG/qh3GDIWgyPa0vaqRcfjWj8jJIzQjY8pJQVprT0ZurUBsdV2YZTVJkZ5V52vtW3mIKqRqAVceAMiB8rAy80FZZf5zJCD7QJkD5avw/hAeB6iAda/VP1/7FbTngmqnyCo4KzVvX+dQZQCfmOjh1KlTyENyulqI0NglSn312nrqaVyr6RDVuA456x2A0lXPbB21yjGAABrpuyo8w7uhjoKVJLWvSZ0UkBm7PZ9p7wFfNn0r6bTtAZdUiQZ9iSQpgdIjSV39D0hSD5eUVdZ15PDlITwKODi4pAR8DygZRpu5fLgb5H0oJEdlDt2vRd7rI2uK9nuh4+7WO8409GZpLIDxJgjAeDW8PWc/mLG69XgMVFhNhJKIcX3Ra8eRjBhROU6xpMkShS4wbsdtQbfeP64oUdP7FYTFiNy4eYgdHzfurvNAXIM0ri4lJjo2BVVKKnSsvNeCYBYFzgoQtT1bF8mK1ksQHFtTS5ythJ+/E6wTYJMMaLI5+iT0er1WYjr1ZcmyDEVRBC2L1jE3N9fyM7lx40YIe6vrwtC5eswSI1uOIuG6pvZvBeCxOTtKSh/b67b+GPiPEWedR45bfSm6CLEdi/bXji32bOt7zRKErn2lx27mXXWS4vwxUNjLL7+Mu+66C//PX/gNTJw6DcKJuorq/x0fsbbMujEQCR9hXlibgyQBy1bAwbk6qr3zSKs4MIAHClQSxIJZjlmTQ226oeRHIOG44bbQzWgZISphXFLKCmyc+Jvu0KDaAGIFBEZE5tHxwQdTGdbiSy/5DSLjcc21bd2CXOvbgBNC/KKmHK0+GsAjjXdNE5Ostfvaru049M2zrjGt1fB3TB1NtKVQkxAjtc13KIDyVbhyH8hfhi9uwJdDIL8B5wtkvqiwqXNwvQnAVdGWKzM/j8QXKOv/prMJnEl7mD1zuu5fLUVPHNJUs3xXUv0sy4L5k3OVRiFJ0uDXUDYQvup7bRq3+9oQLw0P8OxLL1Xhbb1HWeFvFL5EWVbZxivzJh+AfpokSF1SOXIzLG3iwv5LXBIwf1HXW+H8+lr6TnlfhcetfUh8WA/6W1QJNUkskjrDOZgMz9dhHUqPtDYPIyj33gEuq8fvAJfCJSkm+9NI0j6S9DQ8HErvsb9/Awf7r+Fg/9VKw+SAXjqJxGdIfAqX9IFkAsjuRFm/f6oEkCYRoeyP6LYb4Q8+fgIA/Yo6d6e0bd/BB/s38P/7/34SL7300ohD9a0u/Ea88MILuPPOO0fU9wRa/J3nrD8AJcB6HRA3BWLRj69+ZLVtAit+iPXjrce0WD8DAijW2SUVjPXP9of1qkMqzx2VnE3/js1JTAugWY3VVtxKcNW8RPML2PrVKZfHFGRbybFKbnktj1GyreMjcNb8FDEAz3Xl7zSR4VhnZmZa2c1Vsk2tA8E553swGGBjYyM4Wy8uLgazJx2PaipIIJgVe3t7O4xna2srSN9XVlZw7do1PPzwwyFSk+4nu54qKY8BYfVR+OxnP4vHHnsMn//850PdeV45rH/oQx/CP/yH/xCf+9znQn9o0jM1NYXV1VX0+33cd999gZRsbm6G8S0uLrZC7PJ+9akYDAZh/DTdoqkXNRFcL2o8bGhh+wypz4fOk/qb9Pv9oCGJ+UUAccm/XhcD4FzTzc3NsKcvXrwY9jyfXY3ipc81tV6MisX9k+d5cNhXTRevsaaAVuOT53kY7/b2ditAgD6jQDzEtZaXX34Zb3/722/5N+LEhlcUfLc/YmPIhY/8EdCZaz7EzqEKFcmsx+K0WSPI0qW1dA8BIDF2vZHX3/6iQzUgogssxzJmx/FHRPocqTRGEwLdER7VnFGxcrSH3Q262h9mhHDYGR8do10Vr6Fv0bF2AZk5iWB186vsVYQcqhvP/roym9uaqh1Y1I7K+3DFS4Dfh/fX4VwOnxQo0wK+yHFQHFQExTlkWV1p6VH6Ah4lUBQoXQWuC5eiTNJKIxTI41EaNyf7DOFe9pQhf9sarEbqXt3jUNaEgAnjPCrzIu89DssqalTiEqRsj6QiSUALJeYuAYCCpk+lr4lFPXM1YSmKvDb1Kipy4RuCzLFXpCppyEXS+GVwy5eJmoBVbaRpiiTJkKUTcEkGuB6y7Ez9exU617kqCWGv1wNwCvAkQh4Hh/soDw8BXEeaTmLitIdLTyNNJpGXHCMfNNcC++3NQjba9RyO7scxlKJZb9tMx99vROkC/13X8uMMYISMaH2xczHJmx5TM4GYg6RtQwFbTIJs2xgn7YuRjtg1Cu5jxMvW10WiYvbVel9MqqkJyyyojYEzvTdmBmX7OU56zHMEVzquGKG0pMrOoRIR3hMDmhbAx0gZ/SYYNUmTtRGgxpzYtT0lzGfPnsXu7i6+9rWvIU1TXLp0Kfi0aP9Y1AfF+okQlPLf/fffH4D91NRUK88EgGBu9Y//8T/GO9/5zuCnwWdja2sLg8EAFy5cCCZNJDH009ja2go+IV3OwBy/RnkimWC0qKWlpdaYOD8E2cvLyyNkVH2BrFN/lmXBzI1aoSzLAhHg2nGOSTK5n9RfSI9ZjZZNyBh7pre3tzEYDEJeESsQ0P2sZKLLLEvv1fcf61AfDPvs2PcUyYktx31P30w5oY9FvBxH5d75kTOmVOqEzJ+lrzQW3gOJK+V8DSzM5zfWVohWpFLwyIVHjmTcWE/wJR+5VDs34mCs10T6qBcm7S76hglilLCMkoJojowA/4WwRDoWvbMFzhsAOKKNEPBl/67+X693q1e+wWp1D06iKfKB1PoIQWqXcekHqlk7hCtfgyuvwxXfA/wBvL8BOAefVLb4hS9x6A+rjecc4NNae1OiKAuUvkSZ55VmIQGKdCKA+YYwVM9BWYbcda3xaFBfUJruIQB0VDdjd0Rbfl6tO4F6UZY4zA+DiVJaTWDVdprCJUzgV9WaJI320JcepRCdsvSViVJRIC8qk7Gi/lmWbVJR9cQhqclLpTXJKq1MmtbaGYcs7VW/O19Hm0rQSzIk2SR6E2fgkok6ElQfAP3FCjig0gJhAmmaVRqbsqy0GPlrOBi+ApQFst4k0okUWZIicT24+hUats8R+6h5u40nySc154soJI/xMrv1JfZRjYFKlUzrfQSbCogVoKr9vbYRA/saWtaCPf0Q2/5aqXuX1D52zBKArut4TaxvXdd2zaMFOxY0cyy2qLO0kq8YiLF1x4hFjBhoP5VsqR+JJS8xcBmr3xJLBaEW6Ot9sf7pfFMCzDWxWh4AwYmX1+g+s/NPbcxf/uVf4sKFC7h06RJmZ2dHJMgcQ9e+JSDf2dnB6uoqrl69invvvRczMzPY3t4O4WJZt+7hCxcuAKh8PhixaXp6Guvr6/jqV7+K++67L0R+YmGyQGbXVoKje0+JxdbWVtAcLS0tYW5uDk899VTwf+F8q2Zsa2sLu7u7rQze3Cc2EpauGbVNDPlLjcAf//EfY39/H1mWhTqzLGtpiLj39D1DDYr1C7IZ6O1zzjlaXV3F3NxcIHaWKKjmSQUdGu44VixJZz+HwyoksPZV29NxaRnX1q0qJ6v9SCn3zZa2hB1oy999QKIEAnUWYYfwFwFpHBhrndLjYwiAO3o7eqAGbzctJhxVBpy4KHUoawDqzblb2QWd6zAFR3XuGH2I/W6PjdKjNwFFBdJTwOc34PKX4fI9nJrch0tK5HAofZX0MfEpfOqRZBmYVT73eUDyZY0Mk6Q6712BgyLHQZKg8B6JV3IoPfC+luI3ZDSR56W6pqYTrlmlECEMHoUvUNZhbZPaVzvxCd0WUIVo9UjTBEVZwB0mtXldQ1wKeKAoKr/02g+jIh+ASxxYcenrHBXeI88LlGX1r2iZYFX9rH3bGyrkAFd6uNoPJHFFRSayFK52Js98iTRJMZFNInMTSHsTmOhPI8v6yCbOVGPxDkWZhuejDCA+g0sqXy7ngCTx8C6By1Kkp08jP7gB5x3yPIdLqkR/VdG8PqZ0HK4jA8s6KaX7v07pAoEWTCoAjIVktJJwBbNW0m6JgUon9VhMUqwSPqup0HZYnwUJ9mdMU8I+sj9AGxjEJKJd4H17e7tl+qORdPRabY+mLpTEatts365Xv98PTrWs0/ZH5zzm8K0gjuNWx2olkZSqz87OAqgAMe+naYmuCYkApeS6n0iMlHxYsKbrQNMb1VSw37yfknkNBsDwrgqEZ2dnsb6+juFwiC984Qth7umgbUHgcDgMEn72nfNz9epVXL9+HcvLy1hfX8fe3h5WV1fDWuqc7+3tYW1tDQsLC5iZmcEDDzwQ6nnooYcwGAzw+OOPh/C0Kysr2N7exrVr13Dp0iVcvHgRm5ubAID7778/aDMsENe+T09PY2lpKQDfLMtaGozBYBDme3V1FTMzM7hw4UIgQlxbRs0aDoe4cuXKyLNKx+k8z7G0tIThcIjNzU1cvHgR8/Pz+OQnP4lr167h0UcfBQDMzc3h3LlzwTRM9y33Ivs2NzcXnOv5fNhniUXfAUtLSyEaGfcFz6mWi2vOPaxmmfbZ1WdhOByG81xr9ZlRjaeaFSqB4/4/KlLfrSgnpC0EN3LkmHhOwXzb5IWAqA1NG+uXmJTctX4SWEaldpHSbt+cU9OsMaWTXMSuFdOU7gpiB3WcTWrAGLiu2pFjtdjf11L8kXsk/KuaUxwFbmKaCh5v+jZqQhTTvjhzwkdqaPaBvQ5hjK3+jYjj3cjB0bU9PqCLSpJrAF4WHj4vkaa+dgiu2yYudkCSVvkSvPeGDFS/Z6i0coWY+DQA3oV6OFb9PZDymmxoBxvLJ9bRaD+8r7QpBf0odL/SlwYOSVqR+cxntfahyqnh4YGyyWvtXK1RcGlIsOeSNNRZ1AQCSRFMn9KyrMhwWYCJMKnraLotGs3a18M5hzSrzaLSpNJiuBRpNoG0N4k0m0Sa9pGkk/Xsutbeou9R5dNTm2LCA4kHvEOGDHCTtZYEQOmRlmkdDIuZxb3ZZob2xl5+jj8iPkon4civwzzwjSpWYhYDm7xONQ9WGs3fFRBacqDSQRbVchxXUheT8Nt2Ym2N0ypYcmHvi2k3bHuUxuu1BC+WdB1njF3t6jxbKXVX/2JrMa4v4zQHCrpsHbofYlJ9lRarn4wlo9YPROu3Zk86t7ZOzqWa62m9JCskHtvb2y0n6a49qURIfSzoWM0IRFnWNvtiP5SgK8Gmr5DO6bPPPjuyZmpCpGOxc6v7IhailVoC69ejIFzXmvdzXvlTj9nrNAnd1NRUCMdLp3YST+23rqH2jfOtvjdd7xBLIkkCtCgJjglDtC+6L7Vd3YMcvz6f2k7smbPv2aPeN6+3nIhYvO4oIzcD+i3wFzLBUzaK6u2SXR+t4LgFaoeRFvlrm1zErgxyz1LzlldzduwIUzfTt9DOcUtsFG0SdVR9ozV0zMyJI0Qdv9CHwXsgLzPsH07gYH8Crx4coJd6TE0ASVLAJWUVvtR5uF4qmjWabnmktWnRZFKFTy6cx0RZInFJZTLkgNSMkb5IrT6VvjaHa45TIh8y24PnHeBLFEWJw4Mc+8NhFRUqcXCQvBKMylQ7g1fkiCSrqrAoqYdxSJOKUGRJD1k6UYH9NAOcg0eCss4vTi0NanLT1Fnv86C99DKeJrRsZRZZmY1VdQOpqxzKM5dVzuVpWjtoZygKF56L8DNoRRwqf4sSvl6rxFdhfTM/iTKbhJ/oVwyyKOCRVeSQ/fURDxiH8NzCHB81rXvrE4SbKQpU+EFTKS+lazY/ggJZSoh5Dz/4FmxaUG21FBZExqTuvN5Kk7UN1q1gU+/XY13ko+teoJE4qsmQtTVnnQSWlOwrAFLJpfZNQZhex99Vqk9zk9i6cq40oZkds7XttoBKzX60bjqxqr8EzxG8WULFf+yPhtulM7Udq90TGkaU0naOc2pqqgUcKTFWSbidW17LUK8kCH/7t3+LH/qhH8K9997bAttZlgXtANA4EA8Gg2DKMzs7i/vvvx/3339/ay5phsQ1m5ubCxqA9fX14GD94IMPYmZmBisrKxgOh3j3u9+NZ555Bvv7+/jYxz6GLKv8FM6fPx8k4QzhS8JFx2E6Yuu68XeSk4sXL+L69etYX1/H7OwspqamcN9994XxMawr10r3yuXLl1tmbdwzmi8kyyoHe5qsZVmG5eVlnDt3LrpnVSulwJ2O1gwAQL8SfXZtgrzr169je3s7JB7kMb2OGhnuw+vXrwfn9eFwGOZxenoas7OzOHv2bHg30HdE3wckSjGywL1m33f2Pcz6Yr4Xt6Kc2BQqTZK2hO0oLF1/V4/3uWxE7iMcJoYZEalX+hM+1Vb8TUDnYq6RBFz2cC25bR1vTDTGlpYks+qgCjG7ipPGuudPr2G/tdLxughqDaIamJGWKO1t4lXF+yUT3rFuTRNcLG/mych9xeFVI06dIChvZ+GUja6t1fPENB3cA1XUIJfcgf3DHIf5IXyZI0s9UleiLPar3jpU5jVJgt7ERCVxTxzgi9oxugjznAPIE+AQJVKfwJcOzClZOR7V/aZ2Ay7sLmoznHNASaBegXIm0SsBlEIaXB3hKdSJOrwrKp8OV0dsKn0DzCutQYqJ3iSSdAIu7dU+DCkSV2kP6EyNer0YcCFEqJL6ANfmgsaB3skxV89nCCWHyguHnkIeBfKiQJm/BueTquU0BVyVl4JVlbXjeJ4foCwKlHkhmksgz0vkRVn7eDn0epXJlEucCDXYJ/2r7rYEbRi/V5uNHWhKxw2jr6dRzcebEW7WfrwAjIBoPacOxCo9tOY5Kplmsb4APBbzN2C7ahbDOu31VkLY1Xfeo5Jq9l2l3RbIdkk+Wbd+7C15IthQEqQmFDR1svOv/bdggyRJ507r1BLTiCgotBLZLqmokj6OP1Y08o6VpqtvCK9TB2LtD9dD7d+1b1aKreuq66tScZsLQ6XJqmFTUkJiQMJAfweg8mnY2dnBtWvXwj0kHuoDw7HpGhKYzs/PY319PczxV77yFTzzzDM4f/58uP7Xf/3XURQFPv3pT4dkgf/T//Q/4e6778bm5mYArsNhldPhsccew7lz5zA/P4+5ubnwzOizpVJ2jpkgnecXFxfD3KuJF89rYkHex35w7gjEdU6V/CoAtyY/JEjr6+vI87wVwUqfdUtq9d2kGg3uKxIQRhnTOgGEzORcN50rEkkSFLvWulc5JxqRzZqT6t6z7ybdn6z74OAAt6OciFjUgsEAXI5DFihUjX0I23933H8LPo4Ez/IXRv4K9kIdINKYoTQMphnZeIg7KpHvvPJmxixzrKFlg1DbNefsCFsAfkwTI9LYcFABOIH20btD9RJBuBv66I7dH49jzFlEcxGAmJN5Cpe10C3CfCpIFDDnXFo5BqdncLh/o44h69ArPNKkQDHMAZRIEg8kGZI0RZo6JKhAfYkS3pc4LJkZ2yFNqiC0TC5Xi/Sb4aSieYBGfGr61xp//a+KtlSZ9jC6U+JqbYQv6/nQOhvtDOBrjVhdkuqaXjaBbOIMsl4fHpOobIUS80z4sAxN2Fs1TZK/w3XN/0ZkDY4kSQG5B1DC+xxFUUXiQr4P5x1SJHC9SSRZD3CTYArvIs9RFIc4PNhHcZgjPzgM6w3ncHhY4PAwh0eKNM1w6nSGNKvyYLTtD+U22UHjHLGtaIMheI98u0a2+5uZt4JFgQ6LBa16LT/eVtKp91FibUmCNQmyJgEKeK3ZBu9nXbaOLi2EBc7aJwWTNnqQHbeVNioBsaAtNmc6PzHtihYLorW/BG06/xaAxO7XubT91LntKgr4dR/YYgmIAlGV2lpJsiVk3D82ZKxdVwJG3XsK2HTNeZ5ET8mUmi5pvwhE19fX8corr7QySPf7fWxvb+Mv/uIvsL+/H4gFTaY0ghrXQZ3faY6ztrYWHKi//OUv49VXX8XZs2dx5swZ9Ho9/NVf/RWAisjQTOkDH/gAZmdnsbKyEuY2z3Nsb2/jiSeeCIn7SPC6wiSrfxOvIymglF4JuO6nnZ2dMFbWc/bs2Za2jvuVmg9qMlXTZgUbbIP3bm1thfFbR32rEbR7VomFaiS2t7exu7vbCnvL/lBLQTJjiQXbZxhg9ZVR8ywArbZVKGD7yWt17DQ5U43GUc/pzZYTEQtfIkg/j5K9AfKhu43mKDddbCjRVvjNmywxcWXToFww9sLXUeL5KvTvLtn7cUqIvhVQOIymgRceb3zHmXEn1922XeTVJMa2PL5UfhRVzobJpI/exAQm+5PwPocvDrG//wpe238VL31vH0W+jzIfInX7SBPg7729RP/0JM6cORWeqdKXcK5EkiSoc3bXmoXqitIzI3Sdn8SVAEOsqnaq9mNIjFkU/TUq/4DqWJYlmOz1MDnRQ+orH4ukzg/DBHsAl9XBh8R3DnA9OJchy/qVxgJZnVW7rKeWwD+B9/T78AiJAbm6lsfBvGM8CaScrzUdIbmcRxWytsixP3wV+6+9iIMb38PB8EU4FMjSBKfPvAOT/WmcnpqFdwkOS49Xrr+G4X6O4f5h5VheemRZhiRJ0etNAolDMumQpr3KZySbkJBcRxFae4kSxGT08rfgq/KkRUGgBcxA20THEgqCGYIbaxYFtIGxrVtBv4IeC4Jj0mzer/fYYyxqZsOftLFWcKpAVoGP1WhY6TnbJyBWgG01GgrK9bou8M9+KMBhIUCjU6ht247ZrkuMkLHENBo8bs22BoNB8EXI8xwbGxvBFMiCW72foHM4HAYHYZvHwppRWY2LOm/3+5VjbyxUKUO3cp1nZmYwGAxaoFPX4cKFC0Fj8eCDD4a6Njc3sb29je3tbezs7OC5557DN77xDQDAO9/5Trzvfe/DwsJC8MvQdVfp82AwwNbWVvAr2Nvbw8MPP4xnn30WV65cwR133IH3vOc9+PVf//XgaLywsIAHH3wQCwsLQVK/V2eR3t7exvT0NB555JEQ4Ynj5RzrGltzxoWFBSwsLIR5v3LlCjY3N7G7uxvGPxgMApkYDAbY3NzEtWvXsLi4GNaeWgxqohjpSd8LSlR4n+5xrvP09DTOnz+PLMtClKo8z/HUU0+F9xEJlz63vH9rays8P+qDoUEDWOfKykrQjuh+p/8G9wfJzKVLl1rzx7kl+dSwtzbAgL4PYlpbEkX1HbLvnVtZTui8zWRQKpmOf1hb0jPjQPt6JWu3SjIXxcNeYWxMln9E21SPqIZEpJj8rTs+/c2NLVab07Pe1Cse3SfBMq069aCRsjb2/x1kZ9TLuqNBmzn66OIjey22Z1rmI9FJOEbLtXYlcQl84msJ+gRKn6FMeshKoPQpev0hksN9FMkNoDyAdwUOixRZUfeh1hw4zzG7EFa2oLIhkU5qSGKLzwN5aBQVzbxUIV7p3E2SkqaVSZYvE/ikiepU/UT4Wd+BOssfSp/We6lAWRwAZYGSuR1c5UztnRIfV5MKB+9q0ywOR8mDmWNRLYogQC7gRDDalU/gkcK7DLkHfFmiKHOkBzfgkgn0DoZAUiW5c3BIkwxZLwuRsNIsg0tSJFkv9D1NstpcLKsUMke+h0S7hNge7Hpqjybkb9USkxYrYLTFAk8ALVBmzymIVqDKttQvQfvA64/qQ9d4YiDa1m/7OU4a2CWhB0bNSlQCrBqLrvNWoxDTkOgcWoJh+2Ul/OPmitfrmnDurBZL58neQ/CmycHsuO0cEGzxfpqMdGl+YnuK5yjxV6Comgi181fnZPWDYT0EcjS9UdKska84FyQbL730Ev7kT/4ERVFgaWlpxBxKfWGyrMpJce3aNdx7773I8zxEl3rf+96HP/mTP8H09DTe+973BpJAwHrjxo1AUgheSSg5j/zdSttjwFT3X5Y1uWp03ArI+bc6lce0T3qP1TTxvO1TjMDavBQKxrlm1JbEngUlK7bumBmd+gnxnwoESMhUwGEFBDoWNXfUPWvHzDWwz9cbUU5GLASwHDsc1DHKW0GF3y7HJBFd5RgCe2s2devAQoRAjL/iyCpGitpTWduPkXtdLDBTU9Vx+nMLSlcbwfSEeLdVYlomc7oGphXmrjQIlR8S4DOHLOtj8tRdmJyYQpEfIt8fYn//OvL8Bg78jYp4AOilCdK0NgXyQFkAKEuU3uEgB4qEe6QhFDVPaKJGCTJviEV7UFXyuaoGPneZc5hIU/SSFB4FCmgAVY8ErhLQU/sQoj2lyPMqt0WR36ijStXZtV0l4UfvNJJ0EkmaVhNca0ICsW6smAL3bWUHl3luM2E5z8WrK3FIqqhQ/TuQpilcUWmKDvPXMDw4QOmvI02+hySbgMv6mJw4hcnJCUy50yjR+E34sLVHwx84OEPW4xt89KhstE7NZv3zrfZaPEZ59dVXO81/bBx6/rTAk9I8a1ev9+m9VmJPoBADr/zA2mO2X6oBUbCgQETPA6PAINaGrV+lh2r2xWNM0kbHUNXQqE+KBSuWmOj8qaSUUloLPlRTZMdp54/HdIwKfDgeddRmnwjiYpJ4jp/glrbstDXXdaPJze7ubpAq0zRIgZ72lUBQHfHZ9+3t7WAipu2yP6otYC4BnqMGg9cvLS2F/cx9wTlnH7mOug+vXLmCb37zmwCARx55pDXf6nzMsVy9ehX/8T/+xxCq9f/4P/4P/PRP/zSWlpbwj/7RP8Lc3Bw++tGPhiRuq6urePrpp/E3f/M3eNe73gUAIQzu7OwsNjY2MBgM8LWvfS3MzfLycth/FqjGCCy1FQCwuLiIc+fOBf+LLMtCX3ieoJm+MBrSlSSEx7kvuF9JWqyZFos61nNPcP4WFxdDxC76RFCTwj4Nh8MW8dLxss7BYBDunZmZwcLCQjDXojkYTb1YqEXTPlIzpJnZu4iCfe5j7xR9Xqym6XaUk5lCvQ4C0EUeboZUHAXCX9f3uIUVyvrAmBrVNkMJBW9rWQo1QNW1btDEgOPKMa5xo6Rl3LVNlV5/rdbFNOdiOEoyZFcS87iUtiIXN0GfPE3vtB/dWohxbTRciAjWmHaFC7hohvxF6tbkbRVmrLU0nIvUIUlSpKfOoCxy5BOTSCYmcJjvozy8jhwlXnmtRJYewrkS8AdVRCLnMdFL4VLgsEyQe4fSJU2OCu/C8+jRhH51ZpHKskoqx/kKfhLc2x5wvoTzJW689mrl45GmFSCvncK9c5VZVW364xKPsizgXIKipLAhR0hXAcC5BJV/9D5QVgkAK0LSqzQBdaI7zmLJn158JqD+FgLuySHqscNLXDjnkPgESTqBrJfgVDmJU5MTKItD5OUBUleZOKUZfSxIlgCXVuuXeCEX3C6+vT2ak/y9fdH4jNl88MZKHkbkE17OvZWLlQYr2NIPo5UGq203r6GkWs0bVGKpANH2ISbtU6mnFvXB4PX8qR9w1qkRgyzp0DEBo7kqFKioOY4lOQBaZjyqfVDHYWA0Apb2XefTEoEu7Y5dGz3G+YtpT1hiGha1F2dSMA0DqvXQ5ImJzyixJygnEFfb8yyr8hBojgmgAm7Wbr7f77ecvNkHahiWl5db66WSdZIRlcpbSTKBMDUDbEf7ZNdb9/X999+PpaUlPPbYY3jPe96Dq1evBlOlmZkZrK2t4dq1a7h8+XKIynThwgXs7u7iV3/1VwEA//v//r9jbm4O09PT+NCHPoTZ2VnMzs5ic3Mz7L2iKLC9vY3V1dWQpI5zMRgMsLOzg3e9613Y3NzEs88+i/n5+aANoc+FrjnnWPdFbI/rvuZ9JNHz8/NYXV0FAFy6dCkQRn0HcA2o5VAncSW9VuhAfw99RrgXsiwLeTGsIITX6j+SYjVbInnknuNe5TkNHqDEiM807yWhiQVRUAKqgReUGFuSp2N4I8rJWqm8JfVA/XG9eQl/LG/EWLJxBM6/pXYCVvhvZJZscKS/rv2rhuUcPV9LqeV4zJTnuOYRNaxt99fLpNm5GyE/RzTSOfceMGRk1EFf/h5HAETDcbPL6VhRrOj8ghLy7lC+4xsxOg0TXjRxDvAJ0h5QplXY1dIlSPIJHDgH+BwHRY68TOD8IXxxAJcAaR11KHEJDosERVmB7iThqibhWaiiDVVz753uuVESxrmldsPVIVOd9zg82MdB6ZH0UgATwT/Du9qnA/WeKuvfnKtD2VaaGnKexCX1q6KAxyG891ViPZcBKJG6CaCssnSjGQ08GmKCWpNU1SnzKWMk7W988LmCCdIEyJDAI0OvN4Gyzm7Omqo0FCXKvAjvtSSh4zvCMzFC0lsbU/d7fKeO3YcnfY8d9e57i5QuyaWaegBxR2klDAqMreRdi15r6+v6GasnphXpGpdKRa3NshKAWLHj1jHYczHQbTUv2l6MnMTmV8kG77X1jBuLEseudWSxElLtd4zAcNwqgZ2fn28lCrMkjvbmBN9Ak7xOx8H7s6xxutY5pvaHSch0PrjWdr9Zkz2ds+np6RDqlu0SlNp7tb+Li4stkkRtCMnL5uYmNjY2cPHixTAHTAT31a9+FQCCdgFozLDyvPJXIYkYDod4/vnn8Y53vKNlIkSAeuPGjQC8VcO0u7vbihClWjDdd3b+dO/p/uEaZlkWnMhtcje7p7VuJXuxPnBtNVCB3ZNsW/eCfVd0PWM8xzGSHJBcqDDAahx0n6sgRs1B9RlV5+6YMESfN3s+9t67HeUmiYV8UN9iH7qb7c54Kf+tMtiJoXqFpa+fFd1q06KjaE1Xr4+riTrqKtZ/ktm5+T0w2nJXFKimNPLkpp/paF8dkKSAS1Oc7k1Wpkv5nZUWIz/E/sGryPMD5IfXUR4eoiwPMSwyTGZAMlmgnzqcmgCy2rehQvuA1VAxStJIVChzPvTYV4Dc+RL5wQEOiwK+SDDZr15EDqkg7epnlR27MntCXV+SMc+FQ5pmNbBPARzC4RBl4QGkKPMekJ1GkmQoix6qML0JkGbBhyP0u2WbVhtIyXh1b1CTwXvKOmFf6V14sVL7QTLiARQTHt6nCESNCpC8rMPqxp7ZrnJrnmGWWykjeSOLftjU7MVqBZRk6H3246zSxxgpsR9o1mPtubUda8pjzXqsWYpKpNUERcejcfFZ1MZfzX1itv/822bl1WLBmR27Alubh0GBmM6FgiCNMKUhNXV9tFjQrtJpSyYZGpQOspxnvZeFx5UosI6NjQ3MzMxgcXExXLu+vh7MTOicyzr7/T42NjZa41eCQNMTAsnhsIrkQ+my9n9tbS1ItgmyeQ99FiiJZv3MS0Fp9N7eXjD7UfMyEpDhcBg0DZcuXQptMM/Cww8/jKWlJTz00ENYWlpClmXY2NgIoPmHf/iH8YM/+IPY2Nho+WWsra3h6tWr+LM/+zMAwC/8wi/g2rVrePHFF/HTP/3TuHTpUisnx+LiIjY2NvDUU0/h7W9/O+6++26srKy06uS41aQLqJ49dUjnupAAcG+rlkY1mvfeey+uX7+Ora0tzM7OYnl5uRWamtdSs6HOyXx2Y6QXADY3NzE1NdVy3lYNqZok6nvLPqs2gAPQJPvT9wu1Xxrqmmtq/Tim61wWnF99D1lTUjUL4zMMNBo67b++K5Ss3K5yE3qRtgTUN1/0I90ubHSamyqR2072OW+giGOwf0WuI2No2TvELhCJqe1QO8tvkOq3ZKHSuDe3y500nRgFvypz76JHtoO2iAW5ax1ud6HzXr3Ohd8bZ1/TD6CR4vrRbr2+RMSxOQiz3zFDlEKrpqjdcgDrqPwDYtqJCnvHe6su6EmNkH2W1XkjKlBbZJPI0h7KMkdZ5MgyhyTxKJJ9lK6A11SQdp3qbZzUwLz9T+bGNevsvEfpSiQJkCVAL0uQo0QOwNdO2K0h1n4cZVlWCfHqLN1VLo6KqHD83pdQXxxfODhqNcohvE9R5vsVoUgypMnpKrpVkvDplFUDaGqUhHeIq/1FPMr8AEVRzRl8ldm89A6lr5IDurreJM0Q9rpvMoVX0aoqVY73rsomHrQWkV1jhSqqtQjnRo0bnf2ji6OaO8abVb21yuTk5IiUzUoFbdFjlijofRbEWkkdMEoQtFiNhpV66jkrUQTa5lL2I08JryVPXfV1mT7pGOy8xOZL58CSra467E8FidrXcWPQdbDkR0tsfNoOQbn+1OMaulOdpQmoeJ5AXMmY1XqwXRIuBbcEpCQXKl3WsdKER0Eu6yLYVW0MwZ36cfB+jsuGUtbzakrDti5evIi5ublAWPSZmZqawk/8xE8EoqKaiunpaSwuLoZoVnlemZw988wzGA6rJJQzMzPBN+QP//APsb+/j3vvvRfr6+t4+umnQ9I8dVjnXFgtktU06Dj0OdHfOQdKvK1ggWSGeUBocqbrxPlj0XVlO7zGEvjYHrfPru7j2P5X7ZQl/fY5U3LVVew7TjWVOkecu5hA5S2rsaAtcoVKGqnhzciIx0m0o7bsY8xovPk9WrdFBt4BoEfseODtSJ4EOGt8/+bCmP2OE6fU5v9tTNKmBOGvEJKzlipH+9ZoPcbwBtspPaFcYKR4c9lRmogRABYJR9uOGCaXjzWPcq0567pyNICnLV06ndKccSP7jOQgSMxrEzMFfm0QaLNxuCB1BwCkKZIkQZpmmJicrHNVVIC9+lfA+RwFXkXpXkWJYaM1SIC0dlQOTsb1VrCkwrlmzptkehQKlEiSHFkG9CdTFK5EkZdAHbYVwWmb2baBvPQoirImFoBLEvgCSMqKNPmyqMykksNGm4AUcFlFLoocHg557oG0B5dNIJ3oocr2XTvDi/lgMOsi5RBS6ssChzdew8H+EAf7N6p24JB7h6J0KDyQTfSRZD30JvtIkizUU61dnbiPvjEogbIiJ+PhvDtamjH2UXGN6sQc7+AXYcw38bp9w8rU1BROnz7dcqJWYACM2v6zqDOygjoredS/FRTEpPEq2bcfVQtwuz68PK7gUBN3KRC2YFsBk7WHZlEiwDnUc/qT/bG/W/t2AkmeI5CMxehXJ2YF49pvNXWx/3hPF5hh4TroPGp/KJ2NgWmCyOvXr+PixYvI88YpeGpqCufPnx+ZK90Paou/tbUVQDclxCQVzKStJizUMuzt7WFpaQl5XpkTMSwp+6rO2ZQaU3JPLQTnUbVJTEhHp17VNs3Pz7fI4/T0ND71qU+1wK4+SzMzM7j//vsxGAzwn/7Tf2rlj5ifn8fi4iLuv//+4Nx9zz33BLKxtraGxcVFDAYDrKys4D//5/+MyclJPPnkk/jn//yf46/+6q+CZkLzSxCgq8N+bH/o+4C5JKgJyvM8mFZxryhp43WcX4bo7ff7QVPFNbREhySL4+czsr293co7oftVSYXVWJDAst82M32WZUF7Y59b+/7qenatX5ISb9VEcO65D7mfWGJ90HO3q7wxnhz/d2kVq6s46upulYozP29esnmrZaIjZA9vDB66fbhrVFekv/uRE3bE40kTf3rvkTpXRVHyGRwyTMDDpQco/RC+BHxCOuNGcCkjRFkC2GUahbqttMhwuO/w2qsee68d4szpBL2JBBOTFfHJ0gzMF3GIQ5RJZQrl0jozty/h8wKlL9GbyJCmKbIkq/yjPeCLKmld7nPkh2Vou5edwURvAhNZCpemKFxaaUR8iYPhDeSHOQ729ykxQL9/CmlW+U3s3xhifzjE//nC8xgOh9gf7mNi8gzSdAJZr19lAE976Cd9pMiQpJNV1vM6eV+zMq71s3sT3eYdHNNifJ8VK7W0Zj0KkggWeK2VVtMeXj/6Cr7sB5mggoXRetTJV8GNtY3Xdq2DZKyPlCiz6AedfVRnUQVdqgXRuWN7CqpjgNn2W02KtI86ZjtGawoGNFmCCYqtT4FKe7WPuvZ6Xk3hWHjMkkVLqHQPzM3NhXVREqNjIDFQIqvzwDWZm5vD7OxsiOCjc8D8DgSOSkwYYSrLsuDkrHOjDtmqPWE/Oa+6rmxDSS7nndeTdNn5IeFj39WcZ2ZmBr/8y7/cAqr0zeDzcPfdd4f6SBqvXbuG4XCIs2fP4p577gEA/Mt/+S+xv7+Pf/JP/glmZ2exu7uLq1ev4tKlSyFbuO49Jdd0LOceJTmkeRSjUJEs6JpyLvb29jAYDIKJ0LVr18KeIKBeX18P9zAKF/uyvb2NRx99FKurq3jhhRfwv/6v/ys+9KEPBROlwWDQ0hro+yamydA9oaTOard4P99JJKr63Cuh1rWwz4buAWbqpumb/k6CZ99vsdLv9/Hyyy+PveZmy8miQnmBuEdpFZq7eBZveXHbCcrRplyjULqtVzDAr7OOGKmIkYuTFhf9sxmXC8eOG2Uqatnh1feAMv+OfUAlQQRgReenleRQNT7j7hy3R7VqMYvStkRarnU6AN4142pRPd/8pdNr+w2Cf9HOVHq1DM6ldWI6X5tchY6NjMv2vTLhMm3VtzpUjtmJSwHfQ1mU2N8vqpwOLkWSZnCuh8xPAElFfCoToxKlL5GUKTw88vwQxSG1LAmyrALwvnbCLvISvtbE+LJ6QadpiiQt4UtXsSWfAL6KQJUXHsP9QxweHGL/tSGoqXCuh6xM4JzHwaHH/qHHjf0S+/se+wcA0hSZS+H8BBJMIHU9wE0AyOB9hiaUbTK6jDqPnuvJP2VFXDN39aqO3G5+DXW2fg/qK98oTlsavvgz+v1Q+IG14KfrOgssVeKooFw/uLGPrwWxKv2zkju9P9Yfvd8CcJYYCFEiYH01tB0r3df2bF06B7F7dexWcxMbn63DSr+7pJw6d3YObbuxumN9i62t/Vu1G9oP7a+aMgENQVNCpcTDEi/9pwAZQHAM599qqmPNUoA2OLSmP0pGLLFUYB1bt651Vd8YjodJ8viPhGJtbQ2vvPIKPvrRj7bMeqwgYGFhISTX++AHP4gPfOADwWxsZ2cnaGVUqq/kmGukDt/UFpGEMwkfATHnS4ExJfM0d2LuDxK9wWCAp556KiQxVHJIcjYcDvHCCy8AAF544YWWP00XYY/9btdYxxp7VvW4jkmv1ftje9P+s8c5R7HS9Z6JjedWlpvSWNwcPeiSuv9fqej4WkY1aI/5ZsZ/+8WZbROjbo+N49Rjf68i+Bxj7UctkHh4pO7jlRPMW8elrbQdN1GCMZvXv46nzahmLa19BirQ7RJGUaoAaVECSeKQALUDdZP8DkCVobtmI0lSAfrK6qpqN/EpMgecPvUOXM9z+Bs5Xs0dXisdsiJFf3ICp3AKSelQlgVefvklFHmOosiRJUBZFBgOc+zf2Mfh4QFO9ycwOTmJqakJJFnlbL5/A8hzj/ywqCIxAcgmHM7c6XDHXRnuLHtIe5Uz90Fe4PCwxN73amKxDyRpgiRJcegz9HoZJg8z5OUUCncaUzOncab2t+hNTCJJMqTpBBI4pM7VGooW9Qo/R5Z8nKbiVj1+R5Hm2Gb/PnllEixpbHbamseAd0z1r1oAhppUUKa/qxSb0jxGD+JP2uVbR2D94CuhsBoOlT7yX8ysSaXsBJ7UmgBtMMr2FCyrM7DOE3+3QCYGQPQ4x2DBkwVKBOR5ngdnYC2xKDTz8/MtR1kraVazJxtdiXMOVCFNuT9078zMzLRCtWoIWa2Xa6XrYeeUkt7t7W380R/9EXq9Hs6cOYP/5X/5X1oSfpX2Tk1NYWdnJ0i0KVmnRodZsPv9fpC0E8jneR4k9Qxfq+SCc6N7QsGo3Y/8p/uAxIEklFm/d3Z2wjPw+OOPY3l5GdPT03jssccwOzuLS5cu4Zd/+ZcBAL/0S78Uspl/6UtfwvXr14M0/Pr16yEHw4svvogsy3DvvfcGU6iLFy9iZWUFV65cwdmzZ0NmcDqwk8D1+3383u/9Hl544QVMTk7iT//0TwFUjuNTU1N45JFH8JnPfCb4bnAt+aySFClw5rPOcf32b/82XnzxxXD+7NmzweyMZOOBBx7AQw891MoYTsdwjYal5n6x58UKPPQZyfN25C8+e+OAvT4rXHsSIR5Th3DVqpDk2T7qO07fXZaMWKJ+K8tNO2/HQqJW5ha3pF8jJRaWtvPa2MFxOK7mATcF952t2GoqjksoIuhVw8TGzsOcP3EZ7U9n5CMfb2XE5Cb8jGgBWk1a/4X6aMcwjqN3CNeNaDJGJjZypzOHO/Qe5tbQ71FlwOhP11zY0AuLHrs2Z/PTueo5S+iPUEu+aRrlvQ+5KxpROMBYqr4U+lizSQeHM2emcIdLcBcS+BqMpymQZSnSXmUK5ZIS/VMZirJAWVbO2GVZwk0cIOsfoCgKTPRS9LIe0slJuLTqc5bkSIoSWVFpLgAg7aXo9U8B6RkcFj0UqMLUFmUC7zP0Js8gyUpkEyWcqwhTb2ISaZLCI62c4FOP/gTnzdcalgTOpXDhPyprlDrr+yuuJHBhUUdNzpoXXf3Mx9in12tM061rjQpErlVN0/eDE/f+/n7le4NRQqHSZKAtTbPgnL+zHn4QCdT0PjWtUamv2iTznO2DtsO29Jj94MfssfWn/chbqblKGLs0KBaYaBvjTBy6NA0KNLQPaj5l1ygGOqwE3wIWNR2yAMyOfZy0XwmjjpW/E2iSdNBenlqFjY2N1pzPzs6GdfuxH/sxDAYDfO9738PKygpmZ2cDCLV9imlldF5ZWDeBMIG1kixdV73fmlPFiJ/uYV0jkiIAwXzq7Nmz2N7exmAwwNNPPw2gMtF7//vfj/39fVy7di3UTYk/iRX9TficfPrTn8YzzzwT+q6Rs6anp4MpEeedRJlzwbF/+MMfDsKB5557Ds888wwWFxeDuR1JmEZZsnuWkn3uCWpNlpeX8fGPfxyf+9zn8AM/8AN43/veN5I9PM+bjOJK+u3asD3+03dBjMDHtAexPWLHEKuT+4j7wO5B1qnvMM6R7h9rCqlj0OdX99vtKCeuNZhVdJ4ftbgI5+qft5x7jMkjEbm4+/yxOjZuFCcnFGpu0b4qYlJzi0rANZFp82jIguUAo/oGBcmvv0/6s1nSrhkYndNRyBg52QKUPnJ+tG6FoyN4sOM6/bvBl7HIaaK7qBdllNjVPgHkSDXPILlodcX7qp26B3xeNRN3GfG3SJzD1NQUDicmcWPiNEqf1vXm0Jn13uN0eib4cuRlBbr78CiLEqX3SBNGikoAV4HMpG8mwwFpWuXpcEmCvEwrIO+AKlxvgolTvTBDrjVTDVlIgNr/Q58jB6BywG4Aug9r0hxs0Hs8Rw1HPS7inSEVse2qrHNko9uLv7/LcDjE/v5+C9TFPmpa9AMINICXEkCeoxOtHlNzCWBU9W9BivUt0Ot4LUkJ7+H1lGpbkwbbngIGG76SRefE3t/lt8D7LfnR6yywidWn/h8Kavr9fnCI1XvseHi9EjhqiHTOeK91drX9VZ8P7efe3l4Av1on9wGl4nmeBzv/qampEFp2YWEBZ8+eDdoFOh1fu3YN6+vr+NrXvob3ve99wUHaSnU1MhT3mAWMClr1uu3t7ZYDuP1n94uCTjvvFiCqf4smhuM8r66uYmtrC8888wxeffVVzM7O4sKFC1hbW8Pv/d7vAQDOnDkTnk1Gg+r3+yH86fXr1wOpYP2MJsXwryQHqkGKjZehY0kEhsMhFhYWgjaB68s+UBKvAJ/7h/uE5y9evIjz58/j8uXL4ZnVMNPUaNEXQUMr06FfS4yY2+eMP5U8W9LcpQ1Qjaa2AYxqGjjvlliQCMZMR2P7iu3GNC1H+WHcbHkDTaHewuWmBnM7Z2FcvRbBHK90mlvcdK3dwD569iTRpI7bsqtBHWwkHUqAj9AQja19VHtAosBkbs78bJOKuDaouWAcmKRjMWGwQ+Er8O09gb5rxleHqwWq8Kooi8ocKoDYBkD70sP7AllWRU9yNTp3DpjISkwUJdKkSkRXtZEF3yqOyiU+1DkRmiD7FBDuGql/NT/1fa4B4q6el6BRION1SSvCVxOJy7Jc9iwRKt7QEN9G8OZ3rxVFztn7YsVqx44gCbppjlO+D1+0BD2UEFrTAmtHzMKPH0EigRYBGk0bNLeAmvsA7Q+lxrZX4KjXA23bdjU/sJoMNe9RDYJqACyQtxJDCxL5U51zGTFHyYwlZxyD2uNTys9+MCQo51D7rPNN8EUiqNJwkjv2k/NiHaO1rwBaJELNoTiPlsipY2ue58Gsh1oiBU4kCgquSHBIPHd3d/E7v/M7WFxcDMnmuI/m5+cDqGY9Sl7UJAYAFhcXW3Vzj+pccT7pSMt5VTOrGJjUvzlHzALN/a716/UkPzzG9mmudd9994W+0FTqxRdfxN//+38fly9fDsBb/ReuXLkS5ueuu+7CSy+9hHe+850YDof4u7/7O/zQD/1QIDRsn8TMgmnuE66hmmvx2VxbWwtro/eoBo3nePzSpUthDkg2sqzJF6LPCOf07Nmzoc/cfyRlvI77SIke10FNnXR8LFYrpX3QsXEuOB4181QypeSf2iSOVQUW+mzGhBX2/aP91vfyrS63OSpUOxRndaRdOgxOwpUBo7ScZiOmA8fuUV3NCSSF7XCXFnDEUULbQkrlpK51nmEtYzWP9DuYnN0c2hiV+Y/CrjY46+4Qx9IW9LfX70Tkwte1kSvUs+JaIXyb3jbrqIF4CaDHAcXq97auxUj97b2hCgsiWVtTz+iO6pCFu8iKR9lfFf2pRIKCyepqMkVQruPi6LyPzJt3oHOwr6XsriYoDkAvAbLEV6ZWdT2I1M91ao/Jox33VtpszVM5OtAWqeAhM/dsPuSdERISzjv2zug2ws3oLtJP3/zt/Mhp06G2+WcYmQOU0I1rcuQ0iZz7fjB+Gi1KHuzxmNRWz7PEPpJdoDwmiRvXrjVD0jZZlDBoHV1agdhxPddVtA4LIIF2PHz20UpKed5K3MeNUbUNSk7susXq0L6M05IoQLLndSwxosnf6YOh5i1K+ngvJdJAQ6I0qhU1CPxbTXbs/KgZij3HcVntStfvdg/ruHWc/D0m/eZx/RmTpqvPCYDga0FwPjk5GY7Pz89je3t75B6td3FxMWTYfvvb345Tp0615lTny/6uPjOqXSRB0z3BddNrY75QLNRokEjpmus86vzRb4FAXP1y7Puq6z1i59v+bdfE9kdLlzbkqOeW9x71/uQ9sWeqayy3stxGYtEt+T1e6QICtt5bI9I7uW/IcSWa9nr22Y2cHVvTLXZe6YzMdItLDNaPu659ffwuCx1Ha7G/j7bV8MrjEcWjaz26xIlLZIyu/YdHigI9HPoJlP7VmjQ4hNTbgGyrSvpf5a5rz6KDD4SjKIHEVZmykaRInMOpDOgfVpkgCjOVMeo1IjJoDWcUNTdYe9xzba43x5rbnfSLFTd6o0YUYDOb2D1SorP4cfvW6qiOWfTRD7d/P9KHeDlz5gzuvPPOlimC+looeFJgYMEer1FnWNUY8B7WQ42GAkUFHSwWlAMIkn2SjhjYOOqDb0GUlSCqdFmBB9uxNuWUJlJqTzv0rrrV5IwaH7ahP+mjQnMQAjKNGkRJqI5NtRgAgqOu+rwoIWJ/rLkVx8vjXGtKsbln6CT8+c9/HkClNZifnw95Bzg31veFEvR+v4/Lly+HOfrMZz6DqampoH24fv16yJugoH0wGASwzezYSkqUyHBuqGFQ7QvnSYs1L7MAkVGnWF9s/VQy3u/3sb6+HtZ/d3cXg8Eg9G92dhZ/9Ed/hGeeeQaf/vSn8aEPfQj//t//e5w7dw4zMzN49NFHw3WMtHT58uWgxfjYxz6GLKtC6zIYg2Y1Z2GeDt7X7/dDlu3d3d2WJmFrawurq6tYXFzE2bNnsby8jI2NjZB1fLrOys710HwfukYbGxsYDAZhLAx7Swn/9evXsb29jcXFxZbG6OzZsyFLOUPeMou7NZ9SXwy2zUhYupb63CuxUkFITPigaxpbX332rECAAgc+60qkeZ/V/FgCn2VZ8Ie71eXExOJ4wKq5qhIwHuOuUfF29SP6za0lr4osjov4uqSEJ7h3zIHu+0bG0RCMzlqcwtyY7T3rOUb7445732on1kI4HzQKWkk3yIqtfTscalt3wCrHJ7qr72l53WqNo3BU6UOVhG0cgfBRrdCI74npT3dPu0vjP1Brazhjrpm5xFeJ3Ira9wAIad1GdS6+qsE5DW3LOdaNKM9o7YeRJUAvBSaSAvtlhoK1tqbZV/POGtqKoDH8l3uMhmTmrCEgtmrT5fiBhmU0P1z7pN7hOzt8hKahsz9ycEwosTC+roF23SdBMr5fSsxfgASBYMx+cPnRtNJYlbJbCZ4F8EdJ57o0EvaflpjmQEusXXtf7F72nf90DtQES+9VcKBS3xhgISFQUhYbs2oZlJzETCtUYsw1JMlgBCa9X+ec4FPBmEq92dfhcBgSmpFoEHTynwI5FkrFt7a2Qjvnzp0L12h0MIJh1VJoUjmOj/fo3lPth85pv99v5TThOlgwyvY0albseo5HTWh4LfN7bG1tIcuykCyOIPh973sffuiHfiiM65577mkRAdb9n/7Tf8Ldd9+Nq1evYmNjI4BvNbdRQjgcDkfMEtkmgBBRyxIvrqP6SbEPamKo/hKcV937vHdjYyP4SqifiZrsaaZ19d+Yn58P66oaDn3W9Bnlu0ufKeu70CV80Dq5r9imnUPdC3pvTGhhyYK+X3UMMQ2yHeOtLLdUYxGN2BS+3ccB4Q2Qqe51o7dpBuYWsrl90vfxkaiOSy7iBMIdo/+j0vubAxZdsPi4RYLkNAJidEcCo+XK2DopW9boTTFM5jpmYGSLeEN8WH9zQ3BNqJHnKE5zR+7Z17PbbES1Vqo2X2ezFhsc5xJ4n6BEWoF6jUjUIg9NrypcS6m+3mMk9iQJHsgShyzx6CUlDmsn77qVKloY4kRRWh3Zmj6YRblO4qGkVY/F97lxpPa6q+2zdHOrNO55b4F601z1OMj5jiAII39E2rt9b7PbX2LqdwW//Fs/gjGbZDVvUZOdLpODro8tS8xsoYtMxEhFjExovTGSpG3E5klJBYGKjayjY6NU1/ZdHXpjAJVAj3Op88xxkbQpkCV4t8SC1+l4qTnKsqxlz67zzrrpn2DnUEEXUGWeZltMUqf28Kqx0bnY3d3F5uZmIAWUSHPcKpne3d0N/WX4VfoDcL4JinmdEmMFfCpRVrBq96SSCQ3bS7MvXXv2USXnPE5zp83NzeCoPj8/j93dXaysrATwDCBEcvrOd74TNGFcjxdffBEvvvgitre3sbGxgf/23/4b7r777qB94Tg5fl1rS6xI1li4N3ktNRgqxbc+LKxLtUQaDUlN3Fj/wsLCiPO4rhdJB+un9mtqaioQJqsx0P1pz6tvkiX+ep+amVliYQUFth19dnTOrFZFiYn2X/fk7SIRsXKbfSyOWb4vv6K3otM3Y45kVVfHu3/8VUefHcFEb6LQ9PU03ZAK1zrWSgzY+tmhcHpdfRgVzzuUAErA50gBpLXNj4dDjgSlT5EjQ+EzFB4hKlOl3RGyXZ9juFlXD1CzewNAmjZmVN5XeS5SV2AicTidFjgoPfLjDNpOjrMnj3NT7FoPV4efPd7ct3URx7rDjfqA3WyJkd7vy9fa6ywqYbcO1Qqk7cdOfxKUKDjTe6zZAevWnyoBVzMA7Zu9R/ugYMACIF5jgbwdl9We6E8LzC0otYUgUM3HLOiwv+s8aV8JVDUEp84jgTSvpxRaASTP0+wky7JgWkSQx/nSdjUaj86xmhYxn8L09DQGgwEAhPwDg8EA165dC5GJFJBbwHXx4sVAGjY2NoImgYCSSd5o/pRlGZaXl5HneSvTs9XqsN8kMDRTs+F7dd/qOuhck4wCCH3M8zz0cTAYYHt7G1tbW1heXg6OvNwza2trGA6HIZv49PQ0nnjiiUC26IjNNTx37hw2NjYAAPfdd1+457/8l/8CAPjgBz+If/JP/gn+5//5f8b58+dbPgnD4TBkuFancj1PkymuIU3ieG5xcRHLy8utvcQ+7u3tYXt7G48//jguX74ctFPcFxwDyR/3G9snGScJ032mppKqBdNnW+vR40pw9JmlA7pq4JQwa99YP/crNWL6PuE+JoHTiFZ8/rXumKCFz4AVZsSIT5eG5VaUN45YdKCzRpAcRyjjZcbjQcFxcl6c9J62E/nJ6gj24RGJfNwg49aAniMT3R01la4dYUfNYpp1cgHojpZxJlzjQnl29BXASOKIdnfNDWZfucYCH0Cdf8VI8uWnpX83Iw8fzfvSMi4KKiDmeGjmHFVCarhKY1HrWSpiYQasWc7pqB1UPb5JnFdrN5wQDu89Elcidb524G4GSGOtVhGlSd1ge+Jj5nKu6YslbtYZnloWq/UazSfBYTZ53a16q/t5HA2721XaARx0DJpZfpRgdD3n9txJnvR4rpn4dW90iUnmjzqnH3b+bSXkVgIXq69LS2GleMcdg/1gWxCg/Rn3kT6qz7b/MSIyrp92jF3aEWA0pKWapQHx6DgxMwoFXkqigDapo827jq1rnWzkKAI19XsBRhOGKWFVabmSHx0L29OxqFkPixIinTOeY3/1J9tVCb0lz9oG/+a4LVDUNdX21eGagFkBsY5f94hqdwhWt7e38aM/+qP47//9v2Nvbw8/+IM/GLRDJBMkelyXWEhXBeXab32W+btqYHRfDofDQDJ4XP1bOBb2n2urJJn7QgE2wb2SbN2rsT6PEz5o6RIe6P5iW0pWugQcsfs43tg5+3xarUmszttd3nyNRRQEuvafb8lyEx9tRaTWEuI22U0fG1wcUzQ8rpvHXa5W/oiOrnRYwTS/nGRvuLbfRZxojZpkaVAflUKfRA7fdMFFCEx1g/dVmFjvS5R5nfcBrpbYOyAt4ZIEiav8HmiG5klGeEfwpQB8WVZmVokD856zH/qPNkgOQOI80rTEZOrhEo/aKqs1vhEAHR7ZhtzwuAtal7oNjeQ0EjZW63NNfZbPOEPSQlvm4apJ1ThS/fpeL8276lboPU7al+OSizejWCk8S5cELSa1Z1HAZD/+FrDZczEioG1a/w8teo5mEpYAWVAekxIquCHIVFCuknqr4YnNW2zsBPAWGFtCZSXNaoKjpiVZlo2ASDt2oDHRUeCjWhVKoJeWlgIwZb8UJHLcbFs1BefOnWv5S8zMzODSpUuhboYqZXvUQgAIjsALCwst/w71DWEflpaWWrb6CnTpFHz9+vVWIjqu79bWVpjL5eXlAMhphqVSfJrq6Ng5z8zSrvOoGgOu2fb2NnZ2drCzsxO0Cpx/zh/QdqCnqdHW1hYuXLgQwq+ur69jdXUVjzzyCGZmZvDUU08FUjE1NYXNzU184hOfwGc+8xlcvnw5ZCBnUsE8z4MGJMuycJzEQIE7k/ex/+wz6wQqJ/1z587hiSeewM7ODubm5rCwsBAye1sCSvMnZmnf2dkJe5qmVf1+H4PBIMyDZvnmMe45Be8xoYGSWf6uz0fsHpp0KhnUvcW51mdWn+W9Ovv44uJiqJdtDAaDQLA4zyQw2g/9W98bt6vcFLHoBqsRI4CYqLddW8MjnLko+t1s5IOUlbfl0R19GyuRb+TuYy/Sn119jcyNFa47xOdQpZlVVTEbk0gfrRRf+lYJrtuD71y/+j4D25o+w1UJ/bw25er58y0p+0jFFif69nE964zwG96Lu40mlGuAdMdg6h8eLrZWrWpGN6oqp7okz1rdUYZtVivSZKp3cC6DRwrnGo8L52tzpcQBroR3PZQ+Q+ELeOTVIniHMqnSwZVMXulclZU7gPMaqLukuoW99XWfXAXAU3hkCTDRK5EdeiQJAichNQs+MWiONcsYnymeC+ZYNREJGjypl90FAK9+SUIoogkcuQf1DEniiCLN622tvra2idUyeXa+1TpCAj1fPbNKukaf2nreZcbsuG3bXSX2HDeaFXQ9GLe1xAgAiyUAQBt4xCT2FrgrII0Be21Hpdpd7ds2jir8aGuyPL1XzR4sseiaG/vht2BAJZtZ1kRwYoI4S8Z0fKyfEYdoWgSgBbJpEsN8BmoDHsvPATRkxEZFImAjmCS402Rutm6gMQ+h/X+/X0VkAhqHa0qiCbYI2rkfaB6jEmqCXJWcAwgmULxGgSWJWp7ngfAo2FOfFYJ5dQTWfWqdc3VPMmEb21bSq2Z76l+gpkMxf4y5ubngd8HxEVjv7Ozg05/+dLj3woUL+MVf/EX84R/+Ib71rW/hv/23/4YPf/jDuHDhQpjbj33sY/iLv/gLrKys4GMf+1jLVAdo8sWwnyRLNEPjWAiw87yJ8qaO/5xr3kfQboMicC+q0IH70T7zfFa4H9V8aWtrC9N11nAlkgru87wxwbLvCdt+F3jnNXxnqBlkl7aJdWmktJiJkzXVs+84+z7S911ME3mryuuuNYZRj+WsbW7sArvxwwYoy/+PKh2tHOOuGgq0wDuayESKSVzbYAJWQt8pjZe7QlaypvLROfKt33zHnGr0GQVqXf0YPdVQuFg8pQq/xaDb6BDVl7cNu3zrQjVTshqHttlMt0zaB9IjMyudj2khlFTFaN3YMmLuNO5SH8BqdWlatZhKu5T41+fhSpQ+RekdSngkdTI67+tITWGuQidqAO9GxlPWpMYLuUiq5pGlqJLkgXuqtbmbVZMhhmeDc2ufCX1K249QY/oUmydtw0VWqbXR2sSt2mttsqAboNWi2RPt9rgPG3GG0pKwpTmf4f6R0QAYHUOsjLR9knOiaXuzigXuKiGz54B41JKjtB0W6Hb1I3avPR5rJ3YP/7ZEgccVOOqYrRlGF9mx9SlgVNMTgmo1GdJ79CfrJlDnPQQrlN73+1XmZQJEBYtqj6712T4T/Oo12m8FQBbQ03eATtMqkdUM3ArMLDFlPZqoTq9TMyVN3Mc6NUKQAnu9D2g7JBM0z83NtaTpVjOmvjGx58L6ZXCNdG8pUVGio/VRer21tYWdnR1873vfw2AwwP7+PvI8Dxm1X3jhBSwvL2N5eRmf//znsbKygldffRXPPvtsy5l5YWEB6+vr2NjYwMc+9rGwHxk5jH4pPM51IIDn30qclJiT4HKOGFGMY7TPZEwYofOsWgeSI86v+qeolk+fM55XHy/73uA6xJ5ju14K5HWt2Cf+ixUrTLH323ptiWkmYgKWW13efFOot3xR2Dm+HCWxbtc5rp3aLKYs4b1HmmRwCSJIpQ3b2hjLmesU8eDYoLkNvl2r6iBxd+3rx0Mn1wDq1nVu5P9sq8nbcDMi2OMAuRbyPPLqI1s8iW27YWiOBINA1pM0JvDIkKOHAjng9uGYbdq5kf62TJ6SxPTJByfvyrEbcC5BUlZhbPu9Klle6lCbXkWAeKT77fabK5qEhycrXe5Mzvx8owXzEb1sQy5arKmjZze7lb8Pin60+PFmsUBApfA0/1BJPMEZ0IAuDasasy1WUwMLBm2b2leVtNq6bRQma9dsCQT7m2VZMIXRGP9dhCpGrKzUHWg0DTonNJtREMO/lRgQyFGS2+/3MT8/H65jnyj1Ztz+GBBmHxlVZ3V1NeSasHshy7Jg6qN1sA86x8ybQOA3Xeca0BC3WZaFjM8AWvPAeae0e2pqCisrKwEsEkwuLS1he3sba2trLULCQuA8Pz8f5oxzSjMszR2gTrwq9WbRvcX149zbvaAS7ZmZGSwtLYU5Yf4JNVmiGVee58GsJ89zbG1tYW9vDz//8z8fHN8ffvhhzMzMYGNjA7u7u/j85z+PmZkZPPDAA7jvvvuC0zUArKys4Gd+5mdw+fJlPPDAAy3H6/X19ZArgiSAz58SufX19WA+pWSMgJhEiKZi8/PzLb8Va163ubkZ9hDnT8kK95gSCs1Twflmro2YVF+JMLVDalrJvtn3iBJT+07Q/nD9acZmSbKSH9WkWaKh5J5k0Pp85Hne0ozxuH1Gb2U5EbGwcdQr0Gedb+NQoyVzvg2iNFvliG9vp4S+o78jtvDdoN4C65i8f0Sw2qm10HOaXbmBU+2u2RYV/FvpqrnW6dnR8YySj1G5cizCkf5ZYcpRaKjC59E6m7u9J6UZUQsZxYdKcaU7tdS6c++1mFCEGrrYqG0dbRMd+/vo5WY+xpkWtvaWQ4GszmehvgsneKD8yC/1777WHHikzlf+Fs6jCM+3i0Z/bo8j0pxvr2czrHovjpnfWmGjK1s1YxZz7PANZ2TY3HZY2DH3H1GxJRfNgcgDrn4R1icFJySkxyhvBnexHyqrttfrLAlRaW1MvW8/hkoiVDJo2+2S2MWkhAoeVLKvH3RbV6x+BQQxIhPrjwIP9l9Dr2ofFEirTbWdJ9smAQpNVazmRYEh7dUZ8pV1q0aEfdIQoHotgZbNs7G1tRUIF49pjgo1TdE55LmYpsT+VPBKoK328BpilpJy9YEgUONc6tiVKCqB470kx+q8TfBHM6SYqZ4SLpIEJW8kTWqSpRod1sN9QfOnlZWVERMl+lOoH4r63HC+PvzhD+Mf/IN/0DKT49pwr6s5ka6J7mXtP/vIOeAaUbBgo1Gpn4pqbah14lpquFol2dpvuzf1+bHvEd2zJBu2HCX113Wx+1P3lD1vnzFLVFhiWhXbdyvA6BJm3Kryumq1gWCaD2MXudA/uj+iLZOHmxJSO4s1x3XrqMrgArqxEKerfoX5DQBpmSSN0T5UaCqBcyWoEqjda4O5PKCSfKlBgFgAb3JFl5vp6NTESET76HH8RBqbfnNRBOnH5qQZb9vs2V8CjgABAABJREFUy7aoOG1E0u2AkZR7wR+BNbQ3c5Qrdwmgj0siZA/Z8K+8NkjDw7ojJMMrPaqQs8hQlgnSxIc6q3lqtBQlgMQ4izdRuxodkSNF8WUw28tcicyVSFFKn9uRwY4af2vuJZQvEwFGT7cqjR2StW4mKvRhrF9C61Fp1tpqH2Ir2Xa6jz/beu24clzyoEKcEztqj38Nv2HFfjyBURMBC5QVNGg9LAQTSiqAJsqMOv6yPdUw6Edc644BeYI1rVs//goGtF71MaCUlvkA7Jis1oRj5DWqZaE9OI8R+Kv2QQF1TBJOyXyWZSN+AgROBIsbGxvBYZkAkHOiBFC1ABwH+0FJuq7t7Owsrl27hsFggIWFhQB+VdJOibwSPB2LBVM6dh5TkMn+zc/PB+fhjY0NzM7O4vz581hZWcHm5mZw7OW6s9+ce84D15fgn3PGOSFJoYaI+2l7exurq6u49957w3zHQpkyiZ315cmyLIRLzfMc6+vr6Pf7WF5ebmmwqG0aDAbY3NzEY489hve85z34iZ/4CTz11FPY3NzEN77xDbz//e/Ho48+Gvpy9erV4McxHFZ5Mj7zmc+09ozuTY6V41PzMa4H14FrPD093couTgI3Pz8f1uXcuXPBL4jzwTZpsjczM4OVlZWw/zlfao6lQQn0naN7lT5G9v2kJNOSo5gGQe/Xou8GzlnMxCv2TrIE2e4z+96KEWztqyXkt6ucuIW4w+ARUsNWBSdt8c0t7sRfaas76K6xs01XJ0Vz7fCg8Vor4NHCWmhj4BidOD7ASaTVEy5eovkVXq/8NIo0qx9dQLVTEdDuy9iYPk5/uRUy4KNMska1JvRtgXM4LHs4KDMUpUcKwCXVT96tIWTZGn0oqgNlW6XjGq2Y9yWqoLYFeijQSwoMC/ponKyMcMdxUxxlcXKrg2gpbnINIn24OcM6B3+cGfk+e8/dymIlfnocaD7GMcmgNQlgIcBQ4G8jrBAcKahRkBPri/ZXgSMloEADUFWCrR/r2Nh4bGdnpwV6dSysx0olt7e3AwHgvSq5VeLB/AUKUBUEWak551A1HXt7e628CQQjTL62vr6Oubk5LC0tYX19PZiFzM/PY2FhIdRFAqcmHmrTrlLh8+fPY2lpKUimgcrspt/vh0hQOiadX4JSdQbWPaMmMZwLNTmhxH55eTnUt7Cw0AJeqm1SEx7rk8L6+/0mh0GWZcEcTP022O/FxUUAGJF+qwSdjuwkKAS+Fjiy37xOCWyWZbh06RIuXbqEtbW1YFJFLcXGxkYwbXrooYfw/PPP4yd/8iextbWF4XCIlZUVZFkVmeszn/kMVldX8fnPfx5bW1v47d/+bXzkIx/BwsJC6L+SWx0LTZ3Onj2LnZ0dbG1tBRMm5gvhXtcAAjs7O4HosM+cZ322p6aq3BQaJCBGCGg6ZudcibjuIz676htCcqykhftK2yP5pImiBfgxzQhNyWgCyPPW/8cKSbRNWz+LvpO0TUuCblW5aepizaLkzHFu7qzP1tWWzh/nntdXYuYsSi7GAeRRS3fASsLriseqPBxDZYq0OH5d7Ojo78EQyrVJzbj5c63/j9KKkfWvgVsDJg1AjHTWBQytcx7vCcfRPtNIv1v7hMfgREsU03P4bsx7q/dWe/LCr751UrUynHMlGo0pVFmqdZ6PrtGoGZqn1VNzRKUC9Y8EJVJXInFtp+pAUsYNUzQBjYajGZ+stNTarTfQLeJ0g410QzPAj64olXuRt0i7nSPeMzqeWNTkcaaB7f6Mms+NK10O229GropxJaYN0ONWe8EyTppmzRRiEkFep9oJvda2ZetniUkf7Ydb+xSrx2o0VDNj50jv0XYsaFDSpaCZwEel2rbt2DxqGyQaWr/adaszNSXh1F7EbMntWiqhYmGiN5r47O7uBsdy7b9Ka7Xv1nFW61ayoutq54aaBia5Y1/sWAiMAYTzlliwDTXn0znn+KnFYdHrNBIXx0yQHHumOI86t7rvuUaU/JOs8uc999wTiMjTTz8dAC3bZTK86elpXLt2DS+99FJYqxdffDHqjB8zuVH/HpqcMYGiarc4BvZ3rw4pzDHwOpXSc39o9KgucyUSFzV31H7G1sRqRpV4suj+t8+rCjps3fYZVwJt11L3hPbXzjXrtu9h3UO3i0xo+b+dt6Wc5COtsuW2cYQfBXfHrhFCJlh7m1h0S3e77UmC1FeuspLtUMsY4jQqS293I5azrqU5cU1/hO3U5zqbbTeitca5aKtRSxyEInZec0tLg4qrcsKGBMbCI0HhM+Q+Re6BiaSaNzXyCiFn0ZAGV5ZwCV29O0zhnANcgsQDPe/RS0v0El+hZxMJ7SQltOhk3ceM0t7b/r2qpPK7sRnoT9gpbVp7cVs3w//1iwWz9gNoryOwINAE2tFzYoBKI9ZQSmlNEyj9syBAf1cHU5qQUOqrgFdzPyiQtmNUoMP+aCIxXrOzsxOOUwOhSdwI2FXboWOzAINSTR2TAmIldKyD80fTE4JIZjVWiTvt7yl9JoCbmpoK86PaFJXu09xJnbPVNn44HOLq1au4cuUKLl26hPn5+WBjzz7YvUBpPk1C+v1+MB1Sia9qEAhMqYHgOqu2hetFQGtBPaXVusYqzQaAtbU17OzsBG2IJSgqxVdp+t7eHq5evQoAQWqvZm8a0ID7WM2sOO+c052dHVy7di30cWlpKZicXblyBdvb2/jwhz+Mvb09fPazn8Uv/dIv4ezZs2H9+/0+vvKVr+Av//Iv8V//639t7feLFy/i3nvvHTFZtKSK864av8FggKeffhoXLlwIpI5j2NzcDOu2uroaCN/S0hKWl5dbz/P6+joGgwEuXryIPM+xubkZtBbU4HFe+/0+zp8/H/rJ8LHcRwrulZTOzMxgZ2cHm5ubwUmeWhM1XdNny2b9BhAIs2oO2Y7uHRUO8Bm1vkm8h8f4N7VoqhnTd599lyr5vB3ldROLIOw8puOqlYKHEkF/x5Wud5335txRUsLx+TkqxGGj62gnKwowTssiJEFBduu8gmwLrXzrfNvkp11fTEY86nzbSRU4ktY6RfGYO4ZTvvFdaP01ih6ldivZb3o20pMRu5t4vxuX55EaxpRGUt6tqYsXJ2MkwO6836E9496cBFAZKzkUHijh4/4JxkHYwwd+EPYHt6HnfHmgph4uAdLUI0tLJIceRb2/GoIQ27Vjxq/r2SJYow99SzvYtNqu0Y3bt1Glg/jddBi+BeIzmgne807PHhpiGzXTun3sZFy42a7r3ugSIxf2WAzk64eRH1oLpNVJlIDFAi5t9yjVv37YY9d0kSX7u5pTKOBQDQHQxP1XkxotCnat1N/22QIIK8FUe3uSidnZ2QB8GGWH86aRmxRE81qSOjpaq9mY1bqoVsRqaQgoSaruvffekPNCHbdj4+bcqRM0QaL6fgBNtC+V1HN+VCoeO08yoiY+OlaSI5WmK5G0e3xqamqENNPxeG9vL0S50nr4XHCuFHwqAGWd6ntDYqYkc29vDxcuXAj9phP9zMxM65o8z/GDP/iDmJ2dxbe//W38wA/8QAinS03I6uoq9vb2cP/994d+KLBmUfPFfr+PU6dOYW1tLexFCgc4ryT6eZ4HM7TBYNCKHkUCwuSF9JdR8zj1sVESGhNykGywbfvsWRKppoS653TPsz6uAcdo3yVWU8V6LBmwe9uSOH3OVMPBMcaKnYtbVU5Ua52uyxQXJRcjV7XOHeFncMxvctR5+Jh9ODlRqc2TWn+hGxtLHcGsJebcHhOnG/hd3Wv7wkvaILy6sw28mnwOPrKA5n5pKOGxVjKB5i7eGR1Cx9882ljfNOA3Vt/40kUQx59PwiISMo6uVau8jv3oW/ZhXd2KgOf6uiZBdQ3RXU0skMCjYAv1VqjHI6S15QQ8kmDOVWzDe3iUcD4D6ohQWVqil5VIUKJEUpOL6q6Qo8ICfKMpiv3VuICrLqb9XGiulAi3Up4XXeHjAu/qcTB9cKLxkX3ia1bGfjfPGTvheemxynEJ6lFjOSnRvd3FquO7zAZipin8WGtCMgILFr2PWgbapCvgshI+q3HQD606e8YkeLzWmuBwvDpWdVS20nkFjdvb2yHiUgzoqM+CHU+sKLHSvnE+19bWgiP28vJyCN+6u7uLjY0NTE9P4+1vf3sLmCiBs1J8BUmaxE4BvZ0THZ+aPi0sLODee+9t+XdYp1o7PxrFqd/vt8KOWvJBMkCwqXO8u7uLra2t4Aysc0dgzr5PSxZtzp+uM7UhbJsaNd3z3F+8V7NFX7hwIcx5bBzsn92DFuTSdI1hcgGEfmVZ5TPR7/dDskQlVpx3zv3c3By+8Y1vYGlpCUtLS61oWF/5ylfwrW99Cw8++GAAyEos+GyQqBCc07Rqbm4Oly9fbmmTSOg4do5hc3MTS0tL4XmiJmRtbQ3b29tYX18PGd6psVKSwehZShw5zwCCdlC1RLxGTcgY8EAFBhpdTdeEe0r3SBex4LuF+8wGqLB7KqYtUZNGJTf22dH7XnvttZFrbkX5v02hbrqcQGJtqEeEXtxUu8QzlfC3BIoS8AcADgGXw7sEZTIBJJOA652olWjflF+4k8lk1Qdg3Pg9K+cVvuvKrhIBX3LORU6oAVt83MclzMcvx4v040f+qkhDCiCDR4myzneSiIO2s33WqEbeN5GG2I+69mptHOA8+j3g0HukiUdRm1TZfBaVjuMEYx75TenD8Wt6PRC6pUGphnq0Gd6IZoLHRHvha6fuFgE7uqcnjvj0fVJiIHgcOFaATqk50GggFKRazYICB9rN2w+oRlzq6oMSHAUnKhW0/gLqKMt+Enixv3YcataihMNKbVX7wpwKAAJoUwCm5Ek1JbxudXUV3/nOd/CRj3wkAM/Nzc0Q5SfPcxRFEUzSKPmmdBpAkAjbtSF4U/MN9UXgsY2NjXDv1NRUcPzleFRiz7HSkZhgUk2cCFazrIlwpWCMAJemZZxHts/61AyNDrexvZrnVTK47e1tXL16NYyfpGZ7e7uVaZzj5h5ivfRrYH/X1tawtrYWCM7CwkKLeKoPgWrFgCYCF6X31M5wfay2SNdrZmYG586dw/z8/IjGhkB3ZmYGZ86cwYc//OFWLoh+v4+f+ImfaGXgJrHQZ4xAWDVDy8vLwdRrZmYm5NrgPSRRSkr39vbwm7/5m5iensbP/uzPhr1L4QM1aJoAUteQhGNrayv012pqeIz7Q4kQx6djU9LG/aHPuz7r9tm0wF+fed3XlrTwXWc1F/re0Db4/tB3kiVVt6OcmFiMSBGPuv4mtAQ345zYFfrU2v2/njaa4o8EIyoBjwRubcC1gpYgCm7ksWrC0dxtavIlfFmgPBwC/gAJDuCSAnAJysTDZRmcy0yDRxWhAqpdEI2Fc7UkfFwt1q9Ci5rDGLbRaDKcvaGjtM1QCJBt9fYPmekxddfXduyZ5pnoMO1xcZOlJkuyXdvucXpHElTnsvBoh6m1vfA+mDuFc6K5qHwrrGmRR5YAvRRVTgvWfBSbjO2tjv0Rf15da7186zpfa8ms1m2UEMbWqTniWxo447ceoXI879umZOFeByYzbDm6d4SJteNuh7IdLXYsXSTk2Fqa21z0A2qPd0nQ7HVKHGL1WI2B/lTTAf4dkxJq3daUJCYNtP1V060uEnVUv5V42OM6X3YM2jeVTirBsGYUANDr9VqAjdfOzc0FANgVBlOl8nbcaoZlzTB03ARtauqjY1EfCUvy1IlXJfdcC0pr1aHYOrUT6Nu1iGnPdK2VJHB+dG5je0/nQu3krY+O9lXHQsBOsjWuf7pOOp8qgadWRBP7aehgRiJTR2tKzmkSpaRdtUFcV/WBsOtq+6ZtcbysX7UH1Ohsb2/jmWeeCZoijc5FAqnt2vmJPccUHtj+WQBOTY72X/d77B1kNYd27WLPUeydESvjCIGuvX1HvJHlplpTfHE7zXhft42wOzkRGl+OW1Mjl7dRdYA2OIm3YSW63a0AgC9zlIdDDF96Dj1XoJeUSLMeqkzNBdJTPaSTPSBtpMJHmliM6WF1f8SApytyTawmHxndCdcrRjkam3wxtYlUaODeMVvsvsMCU9s36xQcG+P4fVFW4BYJSpdWkaF8Au+BsijhHZAkCZKkNmDzHkgS1MyjqTWYf/nKlCkhYXAoUdaCeI/JpESZFZhIcxSlw0GZwVGr4ErpVcf6dpUYw4uY2pE/dAH9oxsZXWG7346/6v6E10sbt1gj8f2g4bAglEXBr0rjeUxBjYJAoJHMqikL26KzK6/TuukszRCVeq9+oAno1OzFAhEFuwRTQNvpkv1RqbdKMgmq2LY1feH9/JsgWzMr6/UqkdS+2nk8f/48sizD/fffH8aqNvisV+P5z8/Pj4ydknadf5rZqP8Bw9DSETvLKm3AdO2UHQNZKysrwWaempO5ubkg1adviO4vanLYN7ZhHW0pNR8MBiNEg5JrG2mKe2lubg6DwSCYagHAuXPnRoCrAnWds/X1dQyHQ8zNzWFnZwc7Ozs4f/58AO733XcfHnjggRAwQPuoUZ+4N9kObf/zPA+SeAXAGl71kUcewerqKr7xjW/gZ37mZ3D+/HlcvnwZKysr+OIXvxjm/IEHHmj5PWRZFsyMAGB1dTXs5X/9r/81AAQtTZ7nuHTpEmZmZkLG9qmpKWxtbSHPK7+cra2t1vOozx1NjTY3N3Hu3DkAwOOPP46nn34azzzzTJj7jY2N4J+h+0g1jCQoXBvuA2qvqEHjvqE2RbUy4wiKao50zykZ4Tzxd5rRWYKivjNWCGLNSPX9wn0RI0P2dxsyV+u8HeVExIISzrYT8KizoxZ1mD6uluBE0ZnGNo5a0Hr8to5qO8iGKVk9hqO6wvTo1Z226XrSwaLVxpDEwbsUmJiCd0DpAJf14F2CJJmA600A6fg5aBOBqqdBItsxtnA6krHa+tSMDFSPuKa+Bvb6GnCayan/TMIhG9DU9C9SdN7A7lsgqiQpOiZLYkJFVds1m2H025Fk2/KLi65/e1xBs+Gq6FAeWdBYVM5PR0u96XvhvYdL6pBStaS92gN1P0sgRZUkbyIpcOgTpL5E6ZLWeje6CDeyVM2A7L6IXDLa4ZGDIxHHvHpH2DaYsd2jvSNGK7Lddi0GKLskRqSbm6Tr+r5r7h/VNzbX6X22xMj669HivhElBhrt7/wod0nngbYpB+9V+2a9lyBQJb9KWGybtm5er9dqsRJutZ3n9Up+7DkFFGrqo8AhNo8q+VezKJXSdgEKNevZ2NjA4eFhSKRGsLG7uxsi8OR5joceeigAdoJLSxIV3HDMViKtfdEM16yPhEBzFigQU0LZ7/dx6dKlMAcEafTF4VxkWeMXYckl10DNnhSAa/hYtXnP8xyrq6sBlJLAqY+FroECe9VyUNNCR206zFNLoyYsMzMz2NjYCPk1eC9N2Oz+IKnhHqM5kPo50FyL++fP//zPA1mYm5sLxGJubg5Xr17FysoKzp49i+vXr2N1dRUAQl6L2dlZLC8v45/9s3+GZ555puVMTZKwvr6O+fn5lsaFplVA26yOEZeooSCBmpmZwaVLl0JeE46LBFOd4a22QDUrrItzzGeC/SXg1/eQrqVqJzW3he4zEgztC/cR/cSstqvrmdfnXjUqVhvB6/gc2vrt86ht3O5ycxoLvH6J77HaOUI693o+nCcx0TpGbQCsWc2oxqL7zvgxK6313jU28Q5w3sO7ykTDJyncxBRQJ9bzaQYkCdIsrTQVSRsZWROMsXPgunUnFegSAhW7aJx4vuvvcKNrX6LCbWM2U/3evp5z5Tuu6NpdR5mouJF9qVJtk/8hcqma+FhzHN7Tfs4IUB3qTBNgOIUwS0eRYt8G2mEszqHJ713VlsCjhxITaYH9MkWCshlh2A/seGQAXTNr++gBX5usKdnqJKF6jW9IRRuAsxnV1MT71U15tavuSJO/5p6GrAZzPhczhmx+ie21W5G3580gFnmeI0mSKLHg3/rhU2DNDyiP0R5c77PSQ9bDj786X6pTNq9TO2lrhpTnjXMvNRIxYmRNG9Rxlk6lqqHQa2JEQoGu1abEIiTR7lojSqn0k/er0/Lm5maQhlO62u9X4UqfeuqpIN194IEHAvBn+6phYTsMxanJyLqADIEbtUoKwjhXCu4ssaBdPtd0MBgEh3QdCyX06rdCcKftsdCuX0mFEgvupbW1NSwuLmJxcTHUzTlRotrv9wNx4LhYD8Eo15nEQrVTatZDsyVK/nmdRlhif+2c055enXwXFhbCWl67di2YFwEIDtKcv42NDXz9619vreFXv/pVXLt2DcvLy/jH//gf4+zZs/jJn/zJkPAOQCvM65//+Z+3xsTxk+xoEkNqHhT4c+9dvHgxjI0BCKiNYmhg1eZYIYQNNqAkmURmMBhEQwerdo7PIX0m+K7gujObuwJ/7mn6f8SAv33muaesKZM+W7FnTE387LWWSNh30+0oJyIWlS03ReX6SX5zJGNHljekW878POo6YJxJx1G1tKTzlPSnKZIkRS+baKSrjhmVa9l+6Sxys7WNbTN2xciIbvV8OwGFSihOVEeXNLihf4TbsTwcWuxsNXTyaNMUtmWzLxw5lrqDzrmaSKaoYjUldaQih0r54GoNxGiN9MFIeT4BkCaiwRCto6t66hIggcepnsdBWeLVwxLeFyhdiBUGP9bhelRjcJxx1j0+3i2jEo5xlUbP6s9baWDUuHV39eGIvn0fmDzFCqXZ/L3rw2U/jlZSqNcBzQddQadKCK3TrgXdrJ9RWgj+VPKnoF/NhBS08JhKm61Jl7WjZ58ZhYfAUSXoQJtYWXJEEEQwzDGTKLHQ6ZrAlABya2sLU1NTOH/+PJ588kk8+eSTgUD82Z/9GX7lV34FDzzwQEviz6IOpAp4dnd3sbm5GaTBBIsEaLTBJ2gbDAbBZp5Os5TIMmJVv98PeTMAhPwa/X4/mNHQ5AkAzp8/H8Kg5nmVyXl+fr4lUQYwAjyV8BFUc02zrHIkp9Ygy7Lg+Euw/uSTT2JxcbHluMt9Q1MlglbuuS9+8YuYn5/Hvffei6tXr7ZIiWos8jwPORnW1tYCKaMGQeePGgI1zVtZWQnjpyZoaWkJeZ7jqaeewuHhIdI0DT4cly5dCnO6srKCy5cv4/77729J7P/8z/8c3/rWtzA1NYXvfve7ePLJJ7GxsYFnn30WzzzzDB544AEsLy8HjcPP/uzPtsir3dc0K1O/iLNnz45I/jmPCtoHg0HYLwT3Gj2M68WIX0Bjusa1npqawsbGBhYWFnDu3LmRLNv0HSFh5bPJ9Wd+FvaPGhA+e+r4bX1Q9B2pwgx9tjn3ekzNFNUB3/ZR89co0dL3hs7V7SgnIxZoGwnY32Jl1HwEUfDTSBhN7a/H2TrYvAgkDELWEUOWVsvj8mK0j8WIlYXcVqJrchVEJLRxSOFb51yDOuEckApU1nmunFUtsRhHCKvrg4w2yihis3ZEUUfuUX1MOKNO4rFuNqZMeqoxPaqachETp7aEPTgLu9FLQp2+6dWYgQEYI9E2jt6xsbR6GpvvmszXsL8yh3KqsWDCQ9dqJCTJQ0WcaM5Y/Wvur4bKyauOOwf0Eo/M8Sof4HJ7ICeE5pHLqv3qR89L1Y2GBGGhm5C3+n7QtnS3+dZJb8yULO9WHRQDFUTHUc9rSyOIhhxEtZZO+3t8qnzcSFNVt2410z9+uZkP1jiVvZWY6zmCXTUxipnlWG3AuKIfZP6tJi4WaAMYISB6jwLyWL28X7UaXVoVOwcxrYolN0tLSy3TKZp1DIdD3HPPPcGhVwGqghxrEsV+UkNDMKcSV6DReOj4NOKOjaJDcGc1MbyGfZiensb8/HwrTKzOtRIjC2B1jlhvjDjt7e2FsKsEo3qfXX89zjnWEKAcG/1MrPaBRJLAlP4lXAOrKSHYjgHI4XAYQLXO7dzcHA4PD1EURcusi9onmsBZzcEHPvAB3H333dje3kaapsiyDKurq/jbv/1bXLhwIfizcM6UMKmJGY9zvkg8SerUvEf3sGoZdX/pc2GLBfCcW45P96E1kbPvHtVy6JpazahqW2PP6VHvxVgf7D5TTYd9P8S0FPY9cbvIRKsfN3fbzX2w3pTP3ChXuZlLRq5lscA2FgOqAjSEMbzqePWPnGlpixpJuO1PBQMZHYknuhA0AVcMqje/OPP3SbQUx9VrjchxLUfTXyPnvKdOQDOLjwLurrZHmqo7lJiO+QppSo/HS6DHwcHRULcx5E1KUf2/RK8mF9S2cIyyA0ZAaALnagdvlzREBEBJXUqtvXAAEudxJivxWlrW08ddlTRtdC1QpNhIWscpMQo8SvS65t+1f410z49sbr2lvSKj5IIMpHs03ZqHo8lYV1Spt7Imw348Y1oJlVxaAGmBn364rTRPQYpmNVZpHutUIMA+sE/6EVcJtwJZgkQFrQomKF3kcfZBJasEL2o3TSCvv6vGh2OPFZ0DC2oV1M3OzuLBBx8M9Z49exbnzp3D6uoq3vOe9+DjH/94y99CgTsditlvSohp4sGIUru7u0EKn+d5yJWhuSA4F3TsBhpN1OzsbDDNsXuF80up/erqagjLak3FVAulgIpjVxMlOpbTBt5qgmhKduHChTDua9euBUm/OpIPh8PgA8D2qF3g3NGsZzgc4tKlS9jd3cWVK1dCn6nR2dzcxL333ovl5eXg6M5QtlzTwWCAtbU1LC0tjQDj+fl5DAYDPPHEE7h8+TLm5+extbWFfr+PBx98MOR+oLYJAJ566in87d/+Lfb397G7u4vvfOc7KIoCU1NTWFxcxAMPPIDFxUU89NBDmJ6exrlz5/DJT34SAPBbv/VbIZwr/XXm5uaCRofzyQzW3FeDwQBXr14Ne4XzTU2MahFoLgUAi4uLQTNCoqVzz701NzcX1lY1aCSJCwsLQVNDcyXuVaBthmjJMNfXkij2UR3LVetI8m1JIN9hWjgefcfoM849zOeFe1SLvruU+Oj521FOVislc0fAgm4JnIgCnb129GP5+kLCRlse+a0LkkRt7CklrToUqbEBI1GBbmyo4451jABQ52UCynokPnKHYuqxzqIGiOv9frRb3o6rq7QkwDB9bAiZErwodDLttKM9VYDL15L31IkpCm3cXXWOEn4SrzYZ9LInKK3WhHW6B3iHQyP/jvR5LA4cD8xbPIHVsfEkgUtSOCcaqmA+Rg2Ob1XkAZTeI6lJUeMe0eS1cPXtDsBE6ut/JYalQ0ntFzwcSnik3SNzo3ocO0PxrS7gObLvYpMaeF6sE+CA7MNmNxTPRXrV0oTV17S0FGaculdGHMKl0o73WsxR+7jO228m8dAPaQzg8RolEBbcqymNmiBYiZvap/O4EgHtD4tK/qw2Q6V8Sm5i0le9jvcRvNKcQ7UPWreSAOt0ThAQGw/BCdtXsw2CMI3oozbjKiXu96tM1ZcuXWppHABgeXk5zBP7YkmF9ifLsiDt5n06Dt0Hc3NzLYCma2ztvikVVnt1u79orpJlWUtroXtR+6gEI8uqyFV5nge/ExITjSRGzY6anNGheXFxMTgoW8k622NSNwAhvOnU1BSeeOKJQNiuX78e/EYAtEy51MSHa0L/F5oOce+pZoaaIfaXkabyPMeTTz6JwWCAy5cvA6giPf3Kr/wKyrLEb/7mbwYizH21srISzMDobH/t2jX81E/9FIbDKmLX7u4u5ufnQ34Ktq0Rk7gmNGfLsgwXLlwIe5jk4MKFC611V9MiK43XPcH1ZltcZ94zNTUVnMlVG6NaIBVMqGkW9xz3hL6/9JnQdwCLjl33kPbNAny7j/UZUa0Ix8g2VRCh775YUIqYludWlZuKClX/FT3/ZpTXE8M9JhE96nr9GUBr5JqRMq5r1mTsGHNZSZbbPRoxzRJAWV2lnYjbpIxkI1YiqHcGzDZKAMdFu/HkQWjDrSZVm7bE88KORiJYieS5ltSHLrsmupWTbGhhhEHk366xPYtd5FeOd2FRf5Qcf7Swv+1x8VjVM48EcNU/J54bgSRZpM1cFy3CLGS0tY+b37KkNodKfL1mEeIcZbPRP0fKSZ49QJ6LqDllTJrvW5f7lqpL9239dwdB4Zo0AgdDvk17rTa1ntaInVnf9liq/r51tRNHFQXrsY+nLeooqdoHoB3lB2hrNmKkQMmC1YwcZRKgfSUY4M+YOUNME6P9jtXP9q2mRIEzj+vvWvr9tnMyQQ3nSkGm9pkAmgBWCQg1DAACqGNdCth0DDR/sUBHtTwAolGsSMAUrCnAsz4SqnmihohEya619lWjV7GPjPKkSdE4pzTRARDMg9S/h74TNGtSEEeyoOZMSjbzvAlBS6d0DblKLZDuOSV6NvqYBYjsB0O6KlGjpoBkajgcYn19HWVZfUOoaaAGYn19HU8++WTw75mdnQ1alfvvvx9nz57FlStXACCYpTFaE9vl/FArxjlndKnNzc2w17gvY3NmtYz2OVSSxXWwAgLVFnLvUCun68Bztm6rGbTXWUJu31P6u14fK7ye57VO2wc+h0pu9F2i5mWxd9KtLrff2Oo2l+MB8A7UZ8DyzdTTLY+9eZLV1U4Dortrb92rAtVRnUxzkdNf3xxy2ClFjpTYFRx3mnJLVwDQJUCapkjSBBO9FC5xSBKHsgR86ZEXRR1i1aMoq6zUZekN2UBMSD62Q7cKDlKz0vYNqPUFPkHh09oHwvanrblo9a3Ovh0u57o7yXNSS+QnXIl+VmCqd4hhOYm8ZTnEnjRgv6F3/hjO1ccvJwmxOj6SXNeZ43VUfSkCR4neOuZ5u2W7461X7IdTP74xaTJBgmonrAaC9/PDyA+nOnnTMVrNl9Q8RgGpfmi1j/aDbfur9uAK2tU2nH2wdVkSwd8J/hSMqRmFglnWo061BIy0cSeoYT28lxFq2JbN26DmP2yLpkxKKEgiCGIAYGFhoZVbgZoTAlP6d6j5F01PLNjnurGP6sTKbNR01t7a2sLi4mIwA6LUm2tMPwaNBMbs1tRwTE9PY2FhIQBb+iasr69jeXkZWVaF6l1aWgrmTzTDYpjUlZWVcC9JCJ26NYGcmtvcd999LdINVA7GOu7r169jbW0NMzMzweSJdROcM4Qv22bkL+ak4HN1+fJlDAYDrKys4POf/zympqbw6KOPYn19HX/+538e1pdRoZ566qmQk4I+FCRjJKNPPfUUrl+/HsjRtWvXcP78+XBufn4ei4uLQetCU7K/+Iu/wOc+97lWBnXdw4PBIGjeqEnq9/vY3NwMzwRJnWoKBoNB0ApxXpWkbm9vY3t7GxcuXMDU1FTQwtCMUvtBstHvV5nVGR5Z61YCoz9tIQHWYp87oK1V0GPsl4bbte8SrruSMO4Lfd9YYc/tKifWWNxssc6Nr6Oi1p8jMuSOPo5m4O2+ZnzzYzQ1FFGr7De02ziKuti9R7fcmKuEI8cwjXAq9RylJI0CKqIhkDpiSebCeAyYGwljO3KvMWMZOdeMNdZm+H/rxmYuEueQZSnSNEHW66HXS5GmKSZ6GZLEwSUOvvQovcdhXqAsfUUy8gJFWeIwL5AfFiiKUkK0tjUxTasaBlb7KQFuuzF+PT8N6Ayu2GFLqXaGjTqUcHXKPFdl43YjV4VFC5rGkBxP+k8JvNNs8pxlD9T5LCZTj9SVSEKPVK/UzEG13OpNZPoE33ZJ6Hggxz5nHWWcqVDbkV/352g34s3IhU52hNdTZBwt9tWx8PwR6+t4LcZxrnsrZN/WYn0FYtoGK4FTgK7OnNYUARg1C2Dh9QocYsRhnCmCXqMffdtnrYeAQIET64yZZtn2YgRNfQMI/Am8Y2Ox4MNeo+YqMd8TJVC2b2pPrtJpayqm0mDmnaDU2JIua86jY+v3m2zd6gSupkcEUWpKRkBJgKq5HUhGp6amsLm5GczJNjc3sba2hl/91V8FAPyLf/EvgtR9MBiEubLaLJsPQ81QeC/BMomWOnDrfRw3pdSDwSCYkpEoxzRk09PTAZSTxNHnYXt7G3/8x38cNA+zs7O45557cOPGDfzVX/0VkiQJ48uyLIQo1kRza2trODw8xNve9jZsbm7i2WefxdbWFpaXl3Hp0qUw/88//3zQvHAMnLNXX301gG3VTKlJXsxkkWSLY1fJe0xzo8f1OdvZ2Rkh1V2aHysg4XESmHGaU71enx2OTwG+fWa1/7xPhRq6/zgfJEgqXBlnupllGQ4ODkb6eyvKCTUWcfX/rUp2d6JudJUu8Dbu1iPIyLHPueivqMxMnAGJJ58zmrnEQFDLdMIp6B/pTbg+lgQu3i66yYUxfRpXGmAcOQa01kGgfOtaSw+tCX2WOmRpgjNnTmFychJTZ05jcqKHLKuIRaXFqG4qS4+DPEdeVCTi4OAQh3mO127s47XXbmC4f4A897WFjCU6DZ2Ia5CaSEw+IOnYLDdmVC7c1yYAI7vXVdqKEgkKNNG7qKGprvS1zZlrrTX7alwv6j9iEYxK9JISZ7ISPVfiAIWEuk2gGgsC7WpOrNkZRztuLl5fGQ+oR/dMo9RpCMnRgFzGJI5HzHPB58/262bKuPvG5VnhuTfLNFU/ZCo11A+xggWgHZmH59RuXjMsx0xzVLJn+6EAlaBJwYY6NlotBfumJhMavUmBqmpAVAqqGhkFjgqi1fGbP/VagnFKJilpJ9hi++qgqeBH+6J9vH69ykBMUx9KQxW82fCfvJZ929raCgCU0mRqNM6ePRtMXWj+Qom7JS5qKqU5Mgg62bcrV66g3++H5HFZVmWHZoI3lfbu1cnoGEGKZjbXr1/H1atXg0T6D//wD/E3f/M3OHPmDJ555hk899xzYR/8yZ/8Cd773veGe773ve/hjjvuCP2nVJ72+1xPrjE1J1euXMHCwkIrQpdqfoAmXLDa6m9vb7d8FUgulHyQPFCjwGdmbW0Ng8EAFy5cwMrKCv70T/8Uf/qnfwoA+NrXvoYLFy5gb28P/+pf/St897vfxcrKSvCVeOqpp7C9vY3BYIDz58+j3+/j3/27f4dTp07hx3/8x7G2toZXX30V/+N//A/s7OzgkUceCf1/7rnngtZMTc24vzc2NgAA29vbWFhYCNm7uf68VkE/tUpKVPicaVZrBew8Rg1av9/HxsYGpqamQnZv6+PDe7nvde7ZFn1wdEz6DrBmW/p8WiGGEhxLPPQ9QUd0S6h4TINV2HeYCmOUeN8urcVbxxQq4I0jgOqb8608UQlAPCQda5+Lh58cNzArDW/Li0eKD9MYd2g9qpnj3HPCdTBYDjqKW1GyLEV/cgJnTp9Cf3ICp/sTyNIEvSxDL0uRJAmyNKnNfmojntQhdRmQZYAHDid6yMsSpyf7uNGfxHD/ANdfvYHDwwIHB3nnXFpyYdcbHedd5DqYa9rXK+FIatbSiM+ZOds59bSpQSbHjBp4SrjWsizgPJAgBVwVMUp7lSXA6Z7HZFbioCyxX5DimZ0cQHUjuY/tdV35W2kudVQyzai/jxw7Lql4o8r3o3/FSy+9hLIsW9JHFjVDUtDOnzHnQzVR4b0ECxreVYGBJSn9fj9EnFFtg5pZAE2mXCvlZFFQbaX1PK99o+kIj3FO1OSBTqw6JzEJI4G5NavQDMY6xwBapIJSbjWH4rg1KpKVfrJ/MUBD7Yl1xGa/tR80YSJBsBJVAh7VOjCKFIAA5rQe+oPkeR6ySAMN2CRhJFDe3t7GAw88EMylLl26FDQRH/3oR/EP/sE/wO/8zu/gnnvuwX333Yff+q3fAgB8+9vfxpNPPonvfOc7+OpXv4obN25genoa3/3ud5HnOT772c+OSK6pJZmZmQntXbx4MWgs1AGb604iNBgMsLS0hNnZWVy8eLFl4kU/BO4hmr9wbw2HQzzxxBPIsgznzp3DYDDA1tYWzp8/j+XlZfyLf/EvcPfdd2NqaioA7OnpafzyL/9yS0u0ubmJ++67L7Rx9epVfPGLX8TnPvc5rK2t4d/+23+Lf/pP/ykWFxfx9NNP4yMf+Qj6/T5WV1ext7eHT33qU1hdXcXP/dzP4ZOf/GQwpVpcXESWZbhy5UoY98LCQisiUr/fD+MlKZidncXS0lLw72DywMXFxUBuY1oM1WQypLK+e2g+Zk0cdS+qSSGfa03wp8Q99qyo2aU6oStJ6iIbVhgANPku9NqYUKRLE6L9tO3eqnKyWk8gATtKoj96SsW2R0nBWyLeptRo6shedkjx29ccTwI/+ukfldI2wJPjUkgWEd97e8D2xZnu+VEgSnIh11X5LHz7Op4L13XDYxtVs2onLjmN6UJuDpY1FMpmeibQThKHNE0wMdFDf3ICp/rVvzRxSJMEaZIgcQ6pa4/Oo/K3YL1p6lCUJVKXInFAlqbI8wIOh8jzogbuBO1t2Xt7vXWOVcLdNUdd8xOjIM1s+PAPIRpWY4XDZJY+XgVbkOhRLqk1EMHJvRpr4qrIUHTiPih4T1VxIxPoWuv2cSU9R5X2e6G7ePMz1o/RKG9HNj++vZZ5VbuN20kKjiJIb2bhR1k/8uM+YDHthn6U9+pwkPqxttJ3oK35IKCIaUisNBNotB0q4VTwoR9o9kE1I/rh5/gpHdX2Yx9za9ZhAYG2YTUJqr3R83ZuVappo1CRLOk4OE7VzMTWT7UpFtRp+wSvSsx4vmtteF5JH0kmiYWaPdG0SPcP+04wv729jY2NDWxtbeHVV18NfgvD4TCAzn6/j7vvvhvLy8t497vfjW9/+9sAgK2tLWRZhu3tbeR5jqIowjlKtLlPuQ4kNiQRTKhGAqB7Rn2HuF5TU1OBPNHUi3WyHpWE83eadOV5jhs3boR1mpmZwY/92I+FBIRPPfVU6AMB+vr6epjTxcXFMH+PPfYYvvGNb+DTn/50WK+3v/3tOH/+fPANYQJDoIpsde3aNfzlX/5lCPHKupg34/DwEHfffffIPKjvkO5plcirWZSagnUBdM6nJfXcx/YdoM9B7Nm0ZlC2Lbunu55/e31XYbuxd984c6ej6rxdxfljfJFefvll3HXXXfh//W9fwMTEqEf5zdhD22uOXYcitK7T3h5rrvcxsBbrqus2VnLmXBs21eFLx5CXJrJNc7e9vkrH0DCD9lREEKoTaTYjAIkpSqjJ19mfXZu/tDUJrUEFaNy1UcYRi8okx57VY9qQAubIEEf8QKqrzpzpo5el6PdSpPBIE4e77rwDExMTmJyYQOKSNplTEuVkfGWBEpXvRV56HBYlXnn1NdwYHuDll1/Fjf3DyiejFv1Xcv3SjqL1F8F/GF447kfQ8CgYb5tE8XiKAqf8Pu5MX8Lp5FWcckMkziN1HkntK8EQtA5AmqRoZeZ2rjpWd8qXJQCPpM7gnmZZ6Gy1nxI4pPgf10/jpYMevntjEkBSz6dk33ZKLuIGYmYGzHTF9HAnIBbetzKbG14duadEZHMe0RDnpVmf6GWvE+iPu/+4xOJgeAOP/cb/By+99BLuvPPO19Wfowq/Ec8991yIMKOgVT92CkDVPp/mDJrNmDbfBDlZ1tjTsy5K2Ol4yzoXFxcDmFDncI36o/cSfAHtrN4K+BSk87xqLWgSxPwMDDeq2gyCyCyrbOcJIAmStre3MTMzg9nZ2ZZZD6W0lHLv7OyMJIhTX5SYeZkCE5W+ErRzbGpqw2g+mktB22L9nGcCbRIY1qMEkRokOsZqxmwrUaWfBO+hdkJNYji/e3t7rYzIBKDqTE0p/qc+9SmcPXsWDzzwAM6fP4+ZmRlsbm5iMBjg6aefxquvvhpCteZ5jsPDQ3zgAx9oAVS2zQhHNOmhM/Ha2lqQpj/00EMt0sm1vnbtGjY3N/GFL3whmJERuFKDsba2FpzHFxcXWw7JXCMW1j87O4vV1dXg9Esztfn5+bCn19fXsbq6GkD64eEhfuzHfgznz58P+299fR2PPPII/uzP/qz1zL///e/HhQsX8PDDD+PRRx/F5z73Ofze7/0elpaWsLKy0tLqzczM4OLFi1hbW8Pm5mbQIFy6dClk0p6bm8Pa2hqeeOIJPPzww5ifn8f29nYgpiSBDG/L94I+d3me49577x0xAaTZGUkO94v+41xzfUmY9J3D941qCHTuY8SevkWq+SD5oyaR9ahZVux55T1KqriuLEo0LFnXeofDIcqyxDve8Y5b/o04mfM2xhOGmyEYR5GLrnMqPY9m945WMvZsXEvRZcdc1+Rb/hsOVYIxAslx49FffPuY5x8NPK8kySO1oAE3YihjfUrUQ9WJ1Nh1QyNtmSTEAWNNq9qO2o20fERQ3MKcY+T2I2RKD5SVo3bQSlTn0jRFL0uQphVwLssSJQoANRROap8DBaxhX1Q0IHFAmjg4JJVJVZJUpkLJaxjuH+LGQV6Pg3oo3+wF387n3P4/Q8HWoVudb0HpoNXy9ignrMnN4WnThSqDdgg5671e3uwjl4B2YK28CmEtms1Hf4Fm31V/T6RVXouE2hDdJUKSW4vn2qvG0nJF0F9ejxYh9vhaujaS4O5kDY6Ec7bnjyAUx3HAvlmTrbeC1iLLMkxMTLQcXK00TsEoi0ZFYj0EvRZoqimBlTDSLKRLyq6EQCWRKgG21ykgto67MZME7TOvZZ12LCQYOhaCHL3egkfOjQIkHrfaDdav41Kgn2VV5CPrXKz2+tquzhlBjprRWM0FjytZUcm9nR+N3MR7CZzUaRlowtXyWvrA6Ppx3pgAcGdnB9/5zndwzz334LnnnsOv/uqv4hd+4ReCqc13vvMdvPrqq5iZmcE73/nOEPXo8PAQ733ve5HnOTY2NgLZ4RpyPLu7u1hfX2+RMZJXzhn7ubOzg5mZmWDvz3VeW1vDzs5O8AlhZCWSYisdJznUNSVxm56exhNPPIF+v9+K8sU9MTc3hy9+8Yv4zne+g7vvvhsf/OAHW9eQGE1OTmJ/fx8A8CM/8iMhItcTTzyBL33pS2GOud9mZ2dx9uzZEFqXJGFxcTH8Tq3TYDDAH//xH+PUqVPBn4N7hue5B3Tfc6w05+Occh+zcL9ru/rsqgCE+599YDtW06Z127/12WPRYzxutS36/mNdsWfZ9sc+n/q3rVPPvUWct29NiUnzj0MwrANqC4O2wHNESh7A/vi+tW5rPKPlglbGhFFYfExn5rb1uYN6RtPx0reQUhwE6bCrq5j4rd2fBuG1jbA4o+HniKaiuccLSoyCGL33CAIyPvlh1c4ICBRPbYcK/GdZiiytIkE5ePR6GfoTPfSyDM4BeX4YsnEnzlWhZ5Okbhc1D9O9UY01c67ywTg1iWJiAqcmJ+BcRToO8rwKTcs1EYcWD9eAz9gWcOYnGnLq6F/EyawjUrVTB1b/yppK+ARwSJC4inY4X1/vXaVMcAk88104couqbh955rxHpcFwSUWA6nlJHDCZApOpQ+JKFF40MS2VS10PI1KhY69E2UbH8Y5yFIyuVid2lfTt+M3JvUaHdAJAfyuJxM3Ue7sLP3hWZa9gR02l1LRAP7DqxGnrUH8BAmo1YZqdnW05EGtREykrCVTTGgUAlDiqVkH9FFQqSsmqAj8CAwUrPE/AqWY0SrDYBiWTtM+3/aGGxPpbsA8a8pT94fzkeY7V1dWQ0ZpSbUpsLRkgqFMpMkG9jp9jJIheWlpqkSYlVDr/a2trLbCswJEgj/2h5Jp7QjUmXEfOxfb2Nv7gD/4ggOMPf/jDeOyxxwAAv/u7v4t/+k//KdK0SvhZFEVwBr906VKYA2oi/vqv/xpra2t44YUX8I53vANnzpxp+Yb8/u//Pnq9Hs6cOYMLFy4Eh3X6mFCrtb29jaWlpSB55z75oz/6I3z961/HJz7xiRDillo39d/gPLNOTexHYjE3N4d/9a/+FYqiCGFyAYSwrsvLy/j4xz8e1kqTEe7t7WFjYwP9fuUs/81vfhMA8IUvfCFoCT71qU8FZ3eaQr3yyitYWlrC8vJyCAO7ubmJ5eVlzM3N4cknnwz7lH4Tv/Vbv4Uf//Efxxe/+MUgkZ+dncXm5mbI2s35I0nlc6FZ4jWZnwohdnZ2Amnl88tnhIRrMBjg7NmzwSeEe4rCCvVh0ufMagnss6AaQu5LXhfzS1JCwHGqplIdx/Uf79Vij+v79LXXXsPtKCcyhfp//29fwMTkqXhFx9Q8VOeBFmwd+Xv0/nEai9Z5OxrxAfDtZkbuDZChDjF0okhHaHI4j43mEm5qsjm3firwHxHBWuRVJ31De9he4JQSi3Z+6VFdR1I1Ghmfq32EJU+BIQau1XPW42GWVk6bdqSfzOmso+K8ZmmCLEtx5vQpnJqcwOTkBCayNADrNKlIRlJL3r0v4MsSHr7ytUiSkYg5iWvInHMJkjSttADOhTClpfcYHuTYP8zxf774Ml4bHuDVG/tVSNpSdRRN9K80QdXf1GFioocsTdGrQ94CQFlW0agOiwJ5XqIoy/pnFbGqLFlTCWrDfG0KNYl93Jnu4XT6GqaSQ1Qxoqp/wfvC1WSKWhr6TThURAOuJlmuJh3NGnCekiRBkqRwSYa9wz5eOczwd9/LcFj2kPteuJebJayaEIsQ5lbDwY4QYow+u2OKj/4e27umFbPv2sZTx2j3NgD420UsDoY38B8++wtvqCnUd7/7XZw+fToct9I5C/RVikswQUmc/Yjz400TF0om1SGTEl9eq6CY/dnZ2cH29nYrgRjPEbAo+GXh8TzPAzhRcGyJFMcQ80FQMwYCB/7c2toKddEETJ3YCSrUBEpj3KspFCXc/JuZk6kZ2N7extraWpDI33HHHSFvAs161LxKNSwWJKkzva4/fxLQqmZG9wTXcWtrK9yjDtqqseIckliQSDLyFFBJ23/9138d//k//2e8+93vDkDsPe95D971rndhamoKTz/9NK5cuYKPfvSjWFxcxIULF1p7S/fczs5O0FQwClW/38czzzyD97///fjCF76A9fX1EElpaWkJly5dCpm5V1dXQ1Ssfr9yUP7Sl76Eixcvhozn29vbuHr1Kp544gl8/etfD/PIXBMkWbrf8zwPBEy1YNz/e3t7+NKXvoTZ2VmcO3cu3Ms93O/38eijj+Lpp5/GM888g7m5OczNzWFhYQFAQzb29vZw7do1LC4u4qGHHgrPz2AwwKOPPor/8B/+AwBgcnISjz32WNinJL3z8/OhHgXTm5ub2Nrawm//9m8HM8rf//3fx4ULF1ok5wtf+ALOnDmDf/Nv/g22t7db5knUUGRZFiJhbW1t4f777w+O+yTmJGTWnIkkIhbpSTU4ei/3IOvV94QW6x9DkkIzMX03ZFmTdJJCBM4f62Y9FMioporzoM+fLdw3L7/88lvAFOoIsH08chE3j+nySRgxc3KSy6GFY0cl4Pr/EZ+JLmKCtiWJdnZcnHyF752lRk9tGBoyF3R3ru5CQzTstaOOxBGoIlfxzvGSZKfExnCaLvOz6OiD1c14gNSkc2jDxgoAV9qG/kSGXi/DmVOT6E9OoD8xUQNnoHZMgQNQ5IeAL1GWRX28AtRlORqK09cS+cSlNbtKQ7vcl0ni0J/oIU1TTJ3uAw44zHPslyUKwavsOZ2/JydSTGQJ+pMTyLIEvV6v0q44oCyqULd54XBwWKAoHQ5Th7wAirL65+HrMVSVl77WKtUMNThwu+Z3XRUP3TfVjd6j1mZ0rVytLTHbrJd4TCQemStRtHwpzP2u2ZGNgV5DgJ250xontYrtlvzR1YO2Ti5GQUSjdCRmr8nYCYH+cYs3pKvrvP09nqvjjddQjCtKKsaZ09jzCtKtSYAlC1bToKBTQ1aqpF2BvDVjYP/U/MCajugYlPzE7Ku12P7ruOycKfhm3QQbCmBiZhl2jtU0SK8jsLG+Gjb5WGw8Og7VLpFkafsagUrHp+BH61eSyfM6zzpfMUdtgratra0gSf/2t7+NyclJ/MiP/Aj29/eDLX1RFFhaWsI999yDubm5EBpWiSBJ3fe+970Q+pWmYgxPSydplmeffTaEUeVc232gGqi1tTUsLCxgZ2cHq6urAIC77roLL730EgBgdXU1mDXR7+j69evBn0Sl6pbAAgghcRcWFkLEJSV6dOje399vkd2pqangLL+3t4c0TfG2t70t+EVMTU1hYWEBFy5cwPr6Or75zW9if3+/BZa5Lgz5qlonNet517veFRziOUcc1/T0NA4PD7G/vx+V0vN51uec/lZKGPTZ0et1TbR9u+d1De3vdk/b55zjVi1nrA/aP86x1mVJiH0u9JmNvWO1vdtV3gRTKBvR6LY3dyR4aBMRjJjqsCRHaWKOfZIgy42eGlfFqMC1sySIDbsc21qpJlRyfCzwG1vjsZCbKb7OkVD1CACyLMGp/gSmTp3C9F13YKKXYSJLaoDtURTtB6QEcHh4CO8LwBcVSazXLkkqKbyCbYcKRCe9pHZFcIYkVz97KZAlCd7xA3fizGsT6KUpvvu9l7G/f4gCxOKVA3UvS3DXVB9TZ/o43Z+s+gsP78uatHoAPXifwvsCha/Aa1GiNnNKkBdAXnjs7x9UL5Yix/CwhC8dcJiidD2UmEBRr2tFUhPSCXhX5bkoakl96gs4lJVJl+ec1KxK5r/1q6v9OeAwmXmUvsSpXoLiEHV0KAL8OrSyeUas5onr00Uu7F4at3ti59xRVwQzyePsSwoUpMbbAN5vFyE4isjfjjIcDnH69OnwMVMwbjUASggUOCugJzmgxJHScgBYWlpqgVugkfbxmH7QAQQJ4OLiYgA56izOnwru1axGJZssBHQEATGiYwGCJToE4ACC02yWZSEaEYG+mpDRyZtj59zxWjr2su90YCUoXVlZwV6dLO3ixYtYWloK80Mgube3h7m5uRETJu23OguzD5plOha7X8kG67H+FpxrjpvXqgkX6+VcMBM1naF/5Ed+BA899BA+9alPYWZmBj//8z+Pn/zJn2z1JUkS/PIv/zIuXryIlZUVTE9PB6d7zjPzVLz3ve/F9PQ0Lly4gKtXr2J1dRXf+ta3cPfdd2N7exvnzp3DcDjEb/3Wb+G73/0uPvaxj4WM0efPnw9j4Dw/+OCDuHz5Mr7+9a/j937v97Czs4Mvf/nL+M3f/E185jOfwUc+8hEAwCc/+Un8+I//ON7//vfjy1/+Mp5//nmUZYmvfOUrWFhYwHA4DE7mzKeh2jK2TadhJQ/USOR55fi8uLiIhYWFsMdVI7W6uoqNjQ184QtfwDe+8Q0AwB/8wR8EP40PfvCD4TmkKdDW1lZLizY9PY319XVkWRbWjFocnr948WJ4jgj4P/7xj4e+LywshHFzz3Bv8zhNuCypVYd3+0wpMSYp1H2vz7CaQipZ4Bqrv5S+S7KsCtqgmgtb2Fe77zk/bIfPB589K6jQ+1m6hAW3stySmo/vdD1e4tYcitSn5kzH7Y+glQBkxkjdteWWb0Lr/DjIHZ+HYGrVMg8xF3nVNsRMI7QdA/5G5rXR6rQdpWMNj3RDOm7GMeL4ilHVk7237l8DL9uagOr/jV+ID70H0jRDlqW4644z6E/0cGpyAr3UIUGJIs8rhFpn0AZQh0utSpamdc1J6E7oae1D0Kw1+0rzqbqnrobpXnsKZAnQn8xw19Qp5IeHuJGleOW1fZTeo/RV2NpellWmWlmGLE0q86eaCMGXKL2HL4vaVKuA95W5FkpfmXK5BL0khU8cTiVprcFIcFD2qv4UQN9NInMHmEiK2gyq0Vkksvk9SsAX8Pk+fHkI5w8BFG3NnGvG2Cq+2XsJqnCzpyYcDrzHjdLLvqxrG/HKlo3Q0pDES4z6trY+D9ht7EZ/je3l0ech0pbceFIZiA03e5SW4aR1v9W0ErZYCVpMqq4SdH5U1TGZ9ehHnOBezYdoYkEyATQ+C5Tssx6VaLIeq0FQcM8+sL/6oSe5iUkfrTlQzCRBJdhqsqXnrCSToEml+DonTE5HvwuCHdr8W8k+HYbVxIlzu7e3h5WVlVbcf/ZHgZ4StzzPgxRbgTO1GLa/7AsBrWqV1JQnlmVcpdU0h6Hkf2NjIwDLCxcuBJB877334vDwEFtbW3jHO96BF154IaxHWZb4yZ/8SfzUT/0UfvEXfzH0k2Y4TPLGfjKyFFCZE/3zf/7PAVSgnTkZfvRHfxRLS0uBUAIIzt4E99euXcO//bf/NvTj53/+5wEA//Af/sOQdPCee+7BmTNngnnSHXfcgQcffDCQgS9+8YtI0xR33303nn/+ebzwwguYnJzE+973Ptx///3B54GmV+vr67h8+XLQdGxtbeHatWu4cuUKJicn8W/+zb8BAGxubuL3f//38dxzz2F7exuXL1/GuXPnkGVNNCcSiy996UtYXl4O5lwA8MQTT2BxcTH4OegzSD8R9QmiDwf3Gk3cYgTVagbVwZx7ZmpqCpcuXQrrQuKiAgECdZrSsT4rFFF/Dn232WdYi/7NdxL3EM8r6VHhiNbBdxjQmE/q+0HPq4BBfTtYV0xDcbvIxYlrdZHfOsWNHXfHvq80cepqsJ0bgMeOaFAQxs1+jltga6QSQzp0SpxeIeCiRQzGaywUQzR1m050zL2TPtwMuKH0Xe/x8n9ppWX2EuuOH7m3QXeNd0ZlqhTIhQN6WYbJyR6m77wDk7WWwhc5fJmjLAv4wsPXTtTOVb4VnLQ0TeFcisSVNZj3la+Fr3wXXOLbW9jXoK30KF1ZRY8iQav3ZlIPLHMO/V6GNE2Q54fI0gQ39nPkZQGUJbI0w0Qvxan+JCZ6KbLa78PXfidlWZlolUUOX1ZaFe/zavY8o10lmOhNwiUJXC9D6TOUAAqkqOJbZUhwGgnykEk8kflNAkL2Vd1ljvLgBvzhDfhiCBQ34FCgdIXcJyumQLz+JYFH5jxO94DXcl85ccNhxInb231udwQ6962eGrnXkhh9rlpcW94VQhrDsSPBuRUm3Nz741aQgJbJnviLjbv2zSQfVs3OD6B+QG3OCWsSoyBeiYeaZ1CSTDMJBaBW8mgBtp5nn7RuW3gfARKBvo7VAo/YnNhrgSYajZITJQaqFVBARVBCEsX+EMiTWNlxcz5mZmZw/vz5MBcELATo9AewpEzBFov6vCjg53pwXjh3Sr4sYaLpDcEaHecVXPGc+p7Mzs6G0K1s9/z588ERl2FNr127FkytpqamWgTjy1/+Mh555JFwXh3eOc/cN5ubm2G+lpeXsbOzg6997WvI8ypC1SOPPNKSMvOera0tbG5uYm5urkUqtHzoQx/C1tYWNjY28PDDD4ds3Y8//jj29vZw//33h/59+MMfBlCFfn366aeDj8L6+jruu+++VlLF9fV1XLlyBefOnWsllqOjOOd/r46e9Lu/+7vB0Z1zQTO5e++9F//6X/9rAMBXv/rVlsM8AFy5cgXPP/88PvjBD+LChQthr/Lf888/37qePgR0CCcIp7ZMCaVqQblW6+vrwWSLIWUXFxdD1neSTc6FvgNUo6F+F7pveW0stKzVRLIu/tPnkG3z+Y0JMvQ5VbLBcLocg5J1ziHQREo7ytzpLa+xeCPKKJSIl9crFYzUaH52QWfX+it2pZPLgvQ+mP1EWnYtPDS+GElsl0vqUeDk6EbaDY4eiRXRUCjJgWZ4TgJNSROHiSzB2+6aqpLdZQ6uzFHslyjLvAKuqYNLKk1A2UozXkvtPQBfIvdlDd4rsOzLioygZL6HJIyiLEskrkDaq7QlaZrC1110DjXxqYhQmlbg/wfunMKZU5NwCZAXlQP21JnTmOxlOD3RQy+tEvTBAUWR42C/ilJV/atnzGVIkqzaIPUY4D0O88p0KUmBJEmROYfUF5UGwpVIUgeXTCDJetX5NKscrZ1DWVZrXXqPNEkb9VWZw5WH8IfXUeZDHN54CWX+GlDsA/4GEl8ZT4UsGB5A6QFXAq6ymrpzssBrRYKX8xJFnil6NztBclzcdGk/f4x4Neox1F1ij1DsWEPzpS0ztJNoDW79u+j7o1jVPsEyAaHadqtEXCWbVprHjyrQhJukGZB+kK05kpos8EOsIF5NB1SiSQm+1ZbwmMakp2kFHY2BRkKo2g4b8pXmKwQYCjYo2SaQU9CixITHaRamOTDUP4NjVB8Entve3g59JpC6dOkS9vb2sLq62srFQSLAflNCzDlhnzRKlSWXrCcG6tRHRsfJULi00+f88PcHH3wwREWamZnBzMwM/vt//+8hMtNP/MRP4Ctf+Qr+9E//NKzRgw8+iFdeeQX//t//+3BsZWUFQAXimC/iE5/4BBYWFoIjPXMcPPzww/iv//W/4kd+5Edw/fp1fPOb38SHPvShkH+B+43gX8sf//Ef4/7778cf/MEfoCgKDAYD/Jf/8l8AAE8//XRIZDc/P4/NzU188YtfxCuvvII77rgjJLHb3d3Fr/3ar2Fvbw/PPvtsyMVB4sh53tjYwO/+7u8CAN75znfi8ccfx9WrV7G9vY33vOc9+Omf/ukwLx/4wAcAAL/wC7+AJ598Eru7u3j00UfxZ3/2Z/ilX/ql0P+/+7u/w6/92q9hbW0NKysr2NjYwPr6ejj//PPP4+tf/zr+5m/+JmiR7rvvvvD8//RP/3TQsFHTxf3PTNuqfWDEJvUL2tvbw6VLlwIxvnLlCobDIR5++GEMh1W+C6DJdk2flo2NjUBa1IxRSTg1I9TE6fOpe9kWCjjo2A60s3WzDWpJukz89L3G944+G9afRoUW+n6xmlKrCb1d5WTO25Hfj/rEjnN4Hq21+9BRbY39iL+u77uH2k+p6Yc1l2IEIdTgox55QzDERKTVJc/6Yp0+wnZjpLsSRrRjwsaSCwIoc333xW78ZrCaFNclyW60Wb0sRX+yh8leisksQeJL+FrK731ZRzvqwbkEQALHjHV00q61AhAA7+GROAW6ZeVn4QswSCy8Q1lHg0ocl92B8VYdqlwQhJ7eAb0sAZBh6tRETSx85WCeJkhdFc3JoURZlvBlXv9rzJ9ca/yuAvDMkF7vocph29dhY+uZqp2vW6Y7LkGSZlVCwKRe59IjSTMw24ar/U6QZnD5Pkqfwh9OwhdD+CJFWR4CxbDldlH5hnhU4Wc9enUW7l7iceBqiO/rfV6HqG061t4Arb3EYca2zOvxZ5KrSFZbfei4OvTW6VMb0Z+8AYThpFoHJTyNz9gbT2xikjs9p3/rNcf9yGn9+vFVTYSa6Whbtk/6MbbSQr3e9hdoPtoxMwh7bVexbSjBifmjaL1qeqWmTDpmNYPQtuyY9XqCIGoAYiTRmi7xOE18gLYPha07ppnSe3QMlAbH1oPjVimuhuGktL0oCqyurgbTHZZr167h7Nmz+NEf/dGQ/G19fT0ATYZt1Yhc3DMbGxt4/vnnAVRRkCYnJ3HPPfe0+mIlzixnzpwBUO2hoigCwGahEzmB6HA4DOZOk5OTweyH2oV+v49erxfC4zJqFKNrqVT7ueeeC+v07LPPot/v421ve9tIH/M8xy/+4i/ib/7mb0bOse9MJPjKK6/g1KlTmJmZCc7yZVkGbRC1E9Qw0onamvBYfwDVNu7u7rZMiWLvGN2X169fx1//9V/jve99b1QLSQJtizV71H0ee3fF6rXPhY7TPqO22GdL67HaDX1vquCiq/03snzfaCzerNJAIz+iPegC6I3pT7uG8OfY1rT+jjqO7ux4rH9LgNHx6xi9sgLRTVhcglKHUxMJTvcn8bY7T6Pfc8hcAV8c1OZDJVxSmThVDwudsPPaN6KsfBZ8gaI4BFDLzJOk+ueAiluQSNSmVL4C+VUXEqA8QOInkfR6lc1/kiDtTcAnDLhbm14BgPNIUuDtd5xG4T0K73GwPwSKsnblqNo+ODhAUeQoirwiGbTBR+MHohvHkdA4B5RAWYPwJE3ALNplPeayPEBaZpUpWOqQJJUGxPvKk6J2q0bB+XYZst400p5H1n87imIfZXGAwxsvwh9ehx++iKx8DYk/RBrWzNf5LRx6KdDPgKkeMMwr4uNdohZUx1MvjjGH6r5Yy80aKY0vllS8FfwabqWvxu0sXcRCzQtUI6EfRtpVx4gGnYlVqqhmRHRepK+BhqBV6aP6KMQke/ZjzQ82gQg1Kmtra8HxlACU5kgKICyAjkkkrXmU2pWrhoRgUsdCUxfG4VftimoSNMqTdfKmuRLvma5zAChYURMtNQEhsB8MBnj88ccxPz+Ps2fP4ty5cy2yRz+Q6enpVqhenQNqPOioT7MoXkdncs4DHaqHw2Ew3WIkpuvXq6zUzNvw0Y9+NOylf/bP/hk+/vGP46Mf/Si++c1vYnJyMpx79NFH8f73vx/ve9/7AslYWFgIIJ7OyJ/61KcwOTmJH/7hH8bP//zPByLATNaLi4sBRP/cz/0c9vb28NnPfjZI+NfX1/HEE08EsvNrv/Zr+JVf+ZVgtsV15bj+/9T9f2xd1bUvjn7mXGv/cOw0bgg3jmKEmzqKURxhqFEcxaguJyiuCKpLwwMeqQhcEOEV1JzeVgUBKlV7VPrKueXoggoqB1I1fYCakwadIIJwwRWOaoSbY4QRO2KTbm6ci/2NkzrExtvea635/phzzDXW3Gs7CYTSO6XE9voxf6051xqfMT5jjLvuusvSfB5++GH09PRg06ZNuPvuu1EqlbB27Vq7jtra2lAsFvHUU09hx44d6O3ttb4TNNc9PT0ol8sYGRnB888/b8/99a9/xfj4eJX/By+bN29GqVSy4WUBYM2aNbjvvvuwa9cuvPjii/b4smXLkMlkMDk5if7+fkvDIvDF1y7tIU45a2lpweDgIF555RUAwOLFi9He3m6zkNPaJSoVECdC3LVrF+644w67P8naQeseiBMO0vuCZ8Tm/k/ue8xdu7R/uCWTxkKgkfpJ+4y/e/h7h1tS+XspzUeJh32m/U7+MzQ+AiW13smfRTlHi0VME1DJE1XF1Z5xIdykiXCuZ3XV+I6fQRF/TuVM4RrP18dbKa0xteFiRcxKMVeY9lzNKqGEc+uHokZ1reZ/I6CmUDvscXXmlgSzTqTKWsTdUk71rC8c+ZBSWyGC52sn58UNeeQzHjJSQUQRIkTaF8F0OSMzJsmdp7XkRsWsIiBEiCisIIoCrZ8XGknYZxkFiMJAg47IJM5T2geDrhcQUKGECj0E854+Jz14hm4khAfPz0J6Pjw/a4CCQhRGEFLClx6U5+tQsvNzCEwbYThvgE9gwIzSIMb0Udm5YfNnHPGF8LTjvGeeghTwM54GEgIQyqzXKERUqSAII3gZXa/n6XwVSilrnVFKIZIsCzg8CJGFX/9FIKyHyNcjmvsIKphDWJmBQACBUGcuB+CJCHV+iMVZgVNzApHyEKq4vzCZzs2TWdjSmPo3f8ekWQzot/S6E9a2xNGFraciecPfpbg+FPz4mULRLlTX51Xcj2LaB9kVqtMEb1fTxvnO3DHRFdxJaOAAwi1pVAD3I+5qGjm9B4idzUnY5ONyte58/FRczjYX2PlYqXCts6ul5xQiHsGG3+OOn/eBxkU+CxwUET2M5p3XQbQonkiOhD2qn0eqqWU1cvvFnV15AkEa3yOPPIJ3330Xhw4dwjPPPIP29nZ8+OGHNkcEceLfe+89tLa2orW1Fbfddhv+8pe/2HCoBw4csO1SGFeKNkTzyQEQFzLLZR1JbHZ2FplMJgG4aIzDw8M4evQoSqUSRkZGUFdXZ8HE888/j6VLlyYciX/84x9j48aN6OzstIkJOSVnyoS4pbqJMtTd3Y2enh50dHRgaGgIg4OD1neG1pJrdRoZGcGjjz5qk9199atfxeTkJJYvX45SqYTR0VG89957qWsH0D4VL7/8cuLYoUOHcP311+PSSy9NHH/nnXfQ3t5u86IQiOBWIHddcUsNZdz+5je/WbVO+PxRdnRA74+2tjZcf/31CWBKe4bWsvtsGxsb0d7eXmVtS9vP1L5L5wOSIaT5Oudt8X9uNCdqjytgeBtu+FlqkytK3GN87mgu/mGAhar6P3HijB82DjaqBWuOGmoI+EZ4OdP3c6EP8SdxcORdOruPd3XdFkxVUT/YfDp9+iRUhmqiUSzQ1xqxkwP87Btyro6FwhgsVd/kAFPjdev7Uvsl5LPIegKeMJGMVIQwDDUVScg4YZsFS5r3HwlAGH+KKAxNgjfdCWFQjFKajhQFc4iieU0JUjqhnASg7LUCKqS+agpV5GW0M7j0EGXq4GWyAKAzcBvLhxQSnhBQ0kMYKVTCCFEwDxVVdHs6jBXImRxC+0NAyiokppeCseyIyIQPFoiEZ2hK0iT8E3F9KkIYBlBRpJP8GZ8LCq0rlIJCRGSx+FlJqcGKyAAqhMzlUZFZRPMf635Ec4CaQ6S0BUgiQlYqLMpoOlQQRqZWerbG7d04FdH6qmXhW2jN1d6ltMYW2MfKADM9eD2XNfa9XZmCtckuPROAOdeSpnDhhY7zn/y+c2nj713SBEmgWsjnGjr+wU0DJXSMhPhawIRr9RaiAHDwwfuTZi1xhRIuIPCPPxcWXMGCj5f6l8aB5v0gAQKoztfgCi/ckZuu531180sQMCDHbxJaObDjHHFXSCHBZ8qEq122bBk6OzutUEY+Ma7Dubse3GdEAt74+LiltZGASYDh2WeftU7KpNGfmZmx99I8ECe/sbER119/PVavXo3Tp09jbGzM0oQAYPny5fjBD36A9vZ29Pf32+NkJeLPljTeLS0t+PDDDzE3N5ew5tB1xWIRIyMjOHjwIKSUWLFihQUZAHDy5EkAwKpVq3DkyBEAwOjoqM02TgCJwJvvx+FPKSpVoVBAR0eHtdQMDw9jdHQ0AVrHxsYSzs4AMDMzY0EFoHNc+L72Kezv70epVMKHH36I//qv/0KhUMBNN92Esy1Hjx5NjAmAjWpFCRf53uWBA1whnPZcU1NTQutP/hU8MhsBCKqzubkZPT099jy1R+vYtZjR+nR9sBYqnNbk7nvXn8rde3xvc0st38u8X7xufp7PpTtO/l51FTV03WdVPhEV6vMnBvw9i1Ufn9MtLiUp/TKth695jRWazk1AIAGfHHBrCRgmnlIVmEvWEl999h2geEpMgDICO52nyj1PIp/LoHFxPRbls8jIECIKtDBu5t3L1UF6HjzpwfczVtOvbLSnEIi0llx6EkJqmhSEhgxBZKwSAoDw4Pk5+MjoexFaKwtMhm6Q9cgI4lEUIogqkJCQQkIGFYj5DOTcHLK5OnheBl6G+iWRzeYQZTKQvsTc7DQqcxHCsqZoQYUQZCFBBdYngUCS9MzjiIGTtnBkAT8LFURQykckAQ8ZbW2QdB0QhvMIFRCqyFhWIm3dMb4hNi+eCtkT1f2RymTo9uqQ/UKdBmLlpQjnpxHOnUI09zFEFCCLAFkfWOwBi3wdZSsKlIFN50+YdY1r1eUMa1IIgyfiNH3VLZD3yQJ1nVMUBbrl/IaG/UewRpxtqfUxdS0C/HeiEfFQoyS41/IdcGlNrpaflzSB2RWUuWBIwikJpgASoIay4HKqEAmC5EDMhQ3eV9dBmc7zTOCcjsHn1ff9qgg9QRD7GvD6aV7JquD7fiJbOadHkMBGfeBWE64xJeoIaZpJkKf+0ZyQ87j7DPmzo37zPrjzvGvXLhSLRbz55pvYsGEDmpqasGHDBgwPD2Nubg7j4+MoFovYuXMnfF9Hkdq5c6cVnMnn4Nprr61aEzfccAPq6+vxl7/8BYODgxgaGsKPf/xjLF26FP/+7/+OV155BaVSCQcPHsSOHTusg3g+n8fWrVvx9ttvY2Jiwo6ZNPGTk5PWUrJ161br/D42NoaHH34Y5XLZCutcAC+Xyzh69Ch27dqFbdu2obGxMUFhuu666/C1r30No6OjKBaLGB4etu3t27cPr7zyCt566y0LFHfs2JHQ9APAT37yEzz44IOJY48//jh+9atf4cCBA9aBXEqJqakpdHV14bXXXsONN96YiKBVq5w8eRInT57EypUrrb9FGIZ2z5CDfWtrK6anp1EoFCwwHR8fR6FQwODgILZt25aICMWBIhWyKrnvE7KgUV6WclnntCBAyKPKuVTDWoVbSWht0nuB9hTtQW5tI2BMIJw7XVOdtIdoT/EIeHxPur47tN9cMOIqCHj/3fJZgYtztFice8qlNE1bGuVoIc0duxgpKv8zlrS2z8a6El9zLmQOOH0USLWSMN4FwyEpc0Nn+VW2ZiR4VcyKUIWFUroZgwre8xhQJDMYJ20hyb+UvZbbPqoNFirWnkPA84Cs76M+n0M+6yHrCx0mVUooE1YVQkAaMCFNCFkempjWpB6v1L4FCRqZhDBO3Zo55AHKh/WxYKKwoIhM9tloK4D2YwgAY52IDAiJgnlIz4NSCn5G6tCwgmZLZwrPZLMAIoRhBVFYMf7lobWgCOMUTQ9MRVYXj9iJO4SKFMIw0nk1RIQolIgIwEXa1wJhiNAALEpqpxBrvbV8bMYdhna9ODEIQGtWCAlk6/W4pEAEHwjnEeJjKEhIJZH1BbIRUA4iAF4qxdFWf6Y95/y2sJXgbPamMqDCpRgla6jKTaPoNz3/+tEs0PezfJ+dCWikvSdS5yxhSfnHUvO4WsA07X+tkqaddz+MC30I06452w9qmpaSC/3ULxcQpQEe16JCwovrc0DH+N8uwCHBvJYlpZaVAYgtDUC1szkX9rlWl+ojXwvuUM1D2nIBicbE66J2CeQsZM3hwiK1Tf2lHBJEOwFgnab59V1dXRgaGsL+/fstqLj88stxxRVX1ASb5Ftwww032LpyuRyuvPJKNDY24sSJEyiVSjh+/LjtAwmBw8PD8H0fy5cvt1QyTp/ieTwoQR6gBdO//e1vqf2Zm5vDoUOHcOjQIetrwcvixYsB6BwTY2Nj+Nvf/mYduTs6OnDRRRdZ5+yxsTG89NJLVW0QTc0tlEODShRFeOKJJ9DR0YHe3l7ceOON2Ldvn82MvVBZvnx5gqZEwv/w8LBdT9wSQ8+br0lO4SKhnCJtUUJLoFo5ACT3H1/XLnDg69W1pFHhAj9f22SpdC0idL8L2t09TddzpQmnZ7kAHIgdy9OcuN33btp7L81qsdD7+NOU81fredConVHot+E5P3VTC0dGcosV3rk4vZCgwa6scVlaTa7gEfcxBVRw6hi7huGZuB4GYmp3tOoME7xqjUUlrliIUpVWR973UZfPYuniRfA9TbHRVDdN4xHSM87PvvF/SDarqU3kVK+FXyl4I9q5W5IrgyC4YdaZmW/pGYqViK+Lh6gQRiEqlXlUKnPaATsw/hnhPKJyBM/PoM7zTfvSLBUFz/Mh8ouQyeYACATBHIL5j6HCeago1IDHUJholnQEK/ZQhM5eEYUVIJTwMhFUlAWUMtGyfIThnI4yFRrfBiHhKf1x8KJI90NKCOnB0qaoRYF4niGNXK0glU7UJ3L1QK4Oqm4xKpmPEFXKCMonDTgKsSgXIQLw0VyE2B7y6YTdxN1C2Ock+LTYA/y+agARH0uOWS99Ap8EBashzdmMhFOWzsd151IoueQ/SuH8ZFfwrmWSd+k6XKPPtdhc6Ob3uh9r+mC7EYVIoKbzrgBRC1iQs/iyZcsSAq4rYLgad24xCILACnW8Du74zWkYQEx5oDbSBCH6nQQ5riHljqgklJBjM1keuHWkoaHB0kzI8ZkE5vHx8UTIV+7wTWMcHx+3Tszk60EhNclqQpYgF+CQZahcLqNYLFoN8JYtW9DU1IRXXnnF+m+Qln/9+vUANP2moaEBzzzzDA4dOmSf3x//+EdrRaJSX1+PmZmZxPrbunWrTXhHc0IhXN9//33U1dVZjXlXVxempqbw+OOP4xvf+AZ6e3utk3dzc7PVxD/22GP2Wd177704deoUrrvuOvzxj3/EqVOnUvcOLz//+c/R09Nj/16zZg26urqwbNkyfPe738WFF16IlStXYu/evViyZAkeffRRu+8KhQJeeeWVxFwAwFVXXYUpk3RvamoKjz32WFUWcl6ef/55PP/88zbBYF9fH3zfx09/+tMqHwtevv/979vQtMuXL0dXVxcA4LHHHsO2bdvQ09ODoaEhAFpbPzIyYv1WaJ2Q5Y+iSRWLRau9b2trS0TpAuKoSLXAd0tLSyLfCxWy+tWi7HGrCgUeoCACtM9p3/KIdETd4ooJHgmL6uZJPrn1ju7lIIu3mQYoXOXDmcCF7/uYn5+v+Rw/TTl/wELFn7eFOMNnV1VtjV2a1u/crA+fsBjh3GqToWKN8gK3LNRqlfC9YB9jUb9qTqw4pFhiPtfaUatxBg5EipUBseaW3xY/a15dElzwfvCe6MzSAvWLcqjL+fClMo7BOqKREMIIwrFzs203inRdikfpMk7cSrDRGJsLjUkBUAoRTF4Lov9ICYQhVCS014EFF9QjDRZymTw8L4NQKQSVil5TbE6CILA3U1hbfY0W3POLGhAGWcxLD5X5WYRhBRLUD8BaZ6TnPD8NBCITMhfSA4TOrxEiQhRVUJkvWzoYWRoUABkGCMMQufwieEaa1taX0PZbW1h0PhXfi9eYCrULtmeukUIik6uHyuSRyeYQBnMIK3OoC2YRiBDexyGiCNYPg6wlosbycxaJLYovLnteJFiB+nkqBg4AJc5xj9O6TaBd2tN0ydlYTqiLZ9d2TVrip6BNJS2L7m9/31Iul5HNZqs4vmnFFaI5BQBI+g6QkMzr4xrBNCdF1wJAbXKQQW0TfYH6zPn1dA1pC7mGnmsY3XaAOIY+1UF9I+47ByMk3BIA4ZQHDjJcQYJTsniWbRLkKVKW62RKggynThGwo6hGJLBRH92554CJ5xWh+SUKSj6fT2Sv5s/X1foSfWV6ehpDQ0OYmppCT4/Oot3U1ITvfOc7eOmll/DGG29g6dKluPLKKzE9PY0TJ07Y53/55ZdjZGQEAwMDeP3117F27VrMzs7acWcyGbzxxhtYuXIlBgYG0NHRgXK5jMWLF2PJkiXYsWMHbr31Vtxzzz2Ympqy1Ca6/4YbbkBnZycaGxvxyiuv4Pe//z0efvhhm4Nh27Zt1mrgefqdvnfv3tR9kFY2b96McrmMzZs3o7W1Fb29vRgfH8dLL72EI0eO4MiRI6ivr8eqVatw4YUX4t5778Xrr7+OkZERDA8Po7GxEZs3b04AgJGREdxzzz04fPgwACwIKnh56KGHUCwWMTs7iyeffBKdnZ148803rVXHBUoEKtasWYPe3l7ccsst1qeE9hll8Q6CwM4rgWwCZ2T1IWdsojHR2uF7mO91yupNIJvOE9Dl63xychJjY2NobW21a51Tjnzft1GsOJjhPkkclHBfCQ6YOfDgCg4ODjjNitrn4ZN5tDj+7uQKGNcys5CF4h8GWOiQnmewKpzhfvfeT1Pfp23bPXf2/VjYelEz6kzacWZNqBLrz6Irigk/SjjHmSVjwar4SdPHxPWpklV1nQljQbJSq1clsCWlMNm0PXjsHiE0oJCe8QsQsVY5TfhSBhBpn4TkNVpw5muNaE06UpN2/OX9Ms/BWB6EkCYnhIAnPXi+Z3rigyJJgUK+qhAU8jb2jQgB4w/i+xmdfTuKEKkIEBLS5LnQQ9Dj9aRvhGemP49g6tdO0sJQvrSVwZlt6xcSgELZCiOASyE0lCHKl77chOQVgIrzdJARRUWBAXgepJ8BVAbC9yEqGUD4yAYK2agCz5vTvh2RsmOKgfCZBGdHMK61f1L+Ip8Yt9B+4OCzqmoVrw+brNCCY7MuFvCvOF9vrIWUJanzxl49tebks32b1i5ny+2lkua06cZjX0i45dYDLmjz/qQBD15cAT2NUuH2kYSPM43PFeb5MU6F4MIG52qnWWR4X9IoVLw9br1JGzenM/Fx83Cb3N/CnV8aT9p50rJSG9yJmAtVVLj1ggSl/v5+5HI5fO1rX7NWlU2bNqFYLOLIkSM2V0W5XLYC/He+8x1s2bIF4+PjeP311/Hqq6/iRz/6EYIgwLPPPosNGzagq6sLu3fvRqFQwHPPPWe5/wBw6tQpjIyMoLe31wq51DYBN0pG5/s+ZmZmrOA8MTGBt956Czt27EAQBHj//fer5v3iiy8+I6Wovr4ehUIBW7ZsQVtbG7q7u7Fr1y4LPgHthF1XV4d8Po+RkREcO3YMURTh2LFjCIIADzzwQAJYnDx5siYVaqHCHb0nJydtgjtymB4eHk6EnqVCCehobgBtTXn77bexadMmS4ki0Mv7RkkAASTWD9/z7v6nwhUGVPh647Q9sk7xQuuPgDJ3oueUQm5RcClMacCC7/W0dwy35Lk+Y9ySm2YF5nTJNGCRZsnhP893+Wxq/QwLcdjjvz+vT+j5KFw76kg8VdcsPE6SrZP31RbQkvaHtD6cXTnTHczOYo9JoeBLyigtYjqOMBGfhNQCMWn+OZCTMvaFkEKryClrNyXDiyILCMCE/0plDjoyk6YfKaVsFCVy7hbGmuJJz9CjBKSnnca9bB5SevCkodkooccgBKRnxHgBRFGIKAwwPzcLYQCA9DMQ0kd+UQOyuUWayuQZIOXFzuZSUOYIAcqfrhP5RVCIIESk+yiFFYCjoKLD6AbzqMzPIQwCzFUqWrxUCplsDplcHp7vo1KZRxBUEFTmDXrQ8yCUdnQXJu6TMNYSFQSIpAfpK0D4+pl4eWT8LDL5BiC3CMiV0TA7hekZTRXTnRYMfCYjGy20lmpdUXOdneftH/eTfE/Oru+16zm3e9LKQpGs/tEKFzCpuIKv61xMv7vRWrgjM8WH5x9E0uLzDysJASQMuhYT7hPAaQWknafMuRxscGoWnXOFaD4+7mPABRAOMkgTSTSapqYmq8XleR+IUsEFG25JoGM0HkqOVi7rHAUcJLi+DxR5iQQjDiRKpVIiMzHVUywWEw7hlAkbgI3mRM7ldA/X0lL+CW5tImpWsVhEEAQ2b8T09LTNiXDllVdidHTUaou3bt2KTZs22bYLhQJuvfVWjI2Nobm5GcViMSGoUt+PHDmCxx9/HI8//jheeuklNDc34+6778aGDRsA6GR3HR0dWLlyJe6++27Mzs7ikksuQWtrK9ra2tDX12fHTbSxRx99FL///e8TFonR0VEUCgWUSqUqoW5qagr333+/ff6VSgVhGNq5/fDDD7F3717s3bsXP/zhD7Fs2TJ7rqWlJWGJoAR2r7zyip2zq6++GhMTE4mQunwvbt68GQMDAxaUrVmzxloxqHzve9/Df/zHf9jkd+SIzYXtf/7nfwYAvPTSS+jr68PIyAjGx8fx3nvv4dVXX60KS3vDDTfY506Ak6I+cesg7RvS0pOV45lnnkEmk8GOHTvsuuL7n+qgwAHuXi6VSigWi9aiQdQyAo+0Lzh1qVwuJxJFunldaG3xdcbXNY2T3hncGkHj5dRFogBSoXq4n4cbLY6vLxfgcDBPxz9rUAF8RsDifPOI3XK+M8p+sgguRlNq6VALhcGt4nY413LwoFAtMiT/5taXOOqSe6n5RSVzO6fXaPqU0uuEFULVstEsXJIwSUFKASklPGkEZDYZwjhCaJmOaaNVDIU0vUlqWpOhySiQg7I0RgIb/wiUeVu3IxO8eyF9CEHAQvfFE8L+Tlm8gzAAwkCHfWXmIWGyYetnqp+r50kI4cELfObfwkhaFphAJ98zoWypf/GTiNj86Too34YNpwtA+VkTZjeAn51HGISQ83PW98TLUO4PCT+TsYBLRXEiQd0fmicFcijXlgudp0N6UbwghACEh0wmh3xOYsniAFEIhGGEIIhgjSJsobj7jP9mqWspdB67BtPwNrSlihc72862E2wd22sdS6ai6GGskXjtnLl8EkrTJ3pXpoyl+uTfv3DNHJAeoYSfdx0fXUBCdaRd51oRgNh/gQsUpAl0NXmu1jDNJ4P3xbUKuOf4PZwe4R7jIIi03q6zpzs3RJMgYYxrNel+LqhwbS+nYnABjK4bGxtDS0tLwoeEa1xdCwmBCtea5Fou3GfDhR7+bHhWZQIjXHBbunRpAlgSnYUAEAlw09PTqFQqVhC/5557AGhfjNbWVgt4qNx8883o6+uz1wFAV1cXmpubkclksHz5cpw4cQIjIyMIgsCGYyXQ1tzcbAEi13pTf4m+RwDnnXfegZQS5XIZe/bswcqVK3H11Vdb4fDtt9/G7OwsLrzwQlQqFSxevNgmDSSH7ImJCVQqlURI11WrViUcyKmkWRG+9rWvVR1zQQUAvP/+++jp6cHU1BTefvttXHrppcjn8zYcLc9i/vDDD9vrfvCDH+Ciiy6y5zhoIWf5m2++OREUgIAlrRES7qempjA4OGivXbFiRdXapTXG9wIHz4DeD4VCwTrgk78EAXSuMKA+ANWBF9xC/adABwQIXEWHm9CTrqFCbdOz5hZG/u5zx0hzx+txi3vsswQTiXbO5WIuyJ6pnCvF6azBiGICgvnbNOQcWLi4bS1EkVqwX4LTos5urELwa9NBhBBp5xaqNGn/SB4Uhg7DCqPDkGYWzg+SnxcCJMk60wBOGrAAfF/A9zz4lEnaqZPCvfJKuD+HEAJCmYR2FtgJSKkgVEwRipOMAdLzrW+EUjoalHZpiKkjEmQN0DMQhQEiKOM87cGDglIGtAgNEIR12IZJkiehIglkIwRhiNBYBrTgrMPJKqUQRgq+0Pd7nm98M8jSpC0x/BnF45cGWBgfFDtchSgKEIUhMvNziMIIKoqQyWS1A7cnITwJz/chBRAEFSgVar8Vi3Ri3xGdTA9QkYJAqP1ejKUGhirmZ/JYJLP4b8pDGESoBBXMhPMJulXi2ToUH9f6KCBMvo1qFJG+DfXEx6Q2d73Fi0awa6ou/AcuqYqPs+j7+VbAnE2Zm5tLfOy4VYFTD7ilgD7EnLLEtfz0geY0GVcYp7p5sjcg5nQTPzkNLLi+FFTca10HT7qGxutqGjkNiQQMEph4NmzeFrc+cE0/v6dQKMD3fcsLdwUOci6l+SXAQBQQ0hATj71QKFjBh+hA3NGaC0w8BC8XDMmywwU/l17l+nIAmlpDQjNpobk15f7770ejCRPKteU0ziAIrGM5Oflef/312L9/v30WO3bsQFdXF8bGxhJr9eTJk3j66acTwKK7uxv5vI7q1NHRgYmJCfzud7+z6/cvf/kLpqamUCqVsGPHDnR3d2N8fNxq9AFg9erVaG9vx/T0tM3vQf0eGxvDsWPHcPjwYRw+fBj33XcfAA2IT5w4gXK5jLVr1+Jf/uVf0NPTg4GBAUxNTaFYLKJYLKJUKqFSqeDKK6/Ez3/+c2s9IvDT3NxclUfik5QDBw7gscceQ7lcxttvv43bb78dXV1duOKKK6qu/dOf/mR/Jwscr+dLX/pS4vrZ2VkbWcz3fSv0A7AhWgnw/td//RfWrVuHjo4OdHR0WAG+VColNPwklHOhnoIWBEFgHcTpGVM7BDYo0hQH3jxaGwdCQNJiWigUrHXPpUfRWgKS1gVX8ZDP5204XtoLXGng+ki5llr+zwUtvLjnXWva+Sr/11GhPkmxkOMzsKJUgY4zffDPogufqptWVetYUlJ5Ju7BtM471pKqIwvcyk7G4l+EbCaHRXV5ZHzPRFGKUU/sHm/6zvvAtOoKsBQmkrlIllXQCetgBGML/kwWbqI8QZBlIwYxNFUkyHsqBMEsT2oqUBBEtg0Na7SwbgGa8CA9iVzeg2+AhYrjyEIoY21QOjJUFIXwPONbYbh+nCUfE4pgjWQ695vul7SzJCCkDyk8SM9HFEXa0iAlbMgrsx78TA6e58OTns5sriLrVO97+plEUYS5+bKZGoUMcvA8nQcEgAmvK5DxJJbU54H/9kXUN+Rx9MMTmJuroDwX1Fot8diEmRYGGtPWz9mC7KplSIDUVUhQY/8XgIvzmQ/jsy719fUJLRv3WUjTKrrabiCOFc+1rxxUkMBNnGuqjz6yJBBTnTwTNHekpg9+Y2OjFXBJeKVIMdxCQfeUy2VLOaJoTlzzyZ1EOV2JAyjqO/1OWk9ORyLBlCghNE6u2aQ6h4eHAcBaQWgegTi2Px0vFosYGBiwwlVXV5cdGwlYHLBwzS052PIEeCTgT09PWwGLO8K7AhBZXUj4oj5TFCou0FF9FL3H9/2EdWN0dNRmZ6aIVOVyGZ2dnTYnw6233mrX0Z133oknn3wysWa/8pWv2N9pfA0NDRgaGrLRiyYmJiwtCwA2btyItrY2NDU14ac//Snq6+tt5uzW1lY0NDTYhIGU2K5cLmPTpk1obm7G7t27sXz5crS3t2PHjh144YUXsHLlSpulemRkxEbhGhgYqOrzkSNHsGfPHjQ0NGDlypX4+te/budpxYoVnxpYzM3N4Y477rB/c/CVVqSUuPrqqxPUJykl7r777qrrwjBEoVAAoIEl0ePo+U5NTaGjo8PmiimVShgYGLAO3ESPAuIkhq4ljgoBjO7ubkxNTdnkghTQgIAJZQInR26eU4aAThAEFqzQfgVg1x21zZUDnGK4kJ8DgUNyVHffk3Stq3Chc65FNu2+NArUZ2XBOLda05WQ52x5dz+UC1kEqklENRgRPCRlWiG+93kEF3G/3ToZ7YX+PEOzJFwt0P0zV1JVI58tQxlJ8EuSvU1vgXVeuFeZ+lXa9dWaYSUATwK+7yGbMRp6oTXiybGzOqzjiGlHRQY7qTiYQCIxAR2PGEjRlgCyuBGVCNDCMUMkthoCFhThCdCZtfU1kW1bKWEFb3a3BTAQAiIy2cOpb9DUH0HjiLRjtrVQWHqXM4WEj6yVhp9k1ilBzucRpIjslYkeSh05yvd9hEKDNKFg6WmKzakyGc3DQABK+8B4AGAcziUEsr5EfV0OQgr8bdEMhBAIghBh5Dwe6om1IBigx58xqlaQM4K04wsEXXWsXYmS+j6g1umdUgPunMlnZCEHbHbNJwUOZw+3/v6Ff9D4T7dwYZyu4x9BTkFa6GPpUq8WOsY/ylzDyClaacX113ApUNyB0r3G7Te3gJBQTvdyAYUL35z+4c4NtxBwbSenHnH6kStYEUjiGY5537n1hXjn7jzzOeTgMI0+RtfSvHIqydjYGMbGxiyViFuagiDAwMAAGhsb0d7enpgLAlBkZVm/fn2CsgMAW7ZsQaVSwcDAgBW+KYv3kiVLMDY2ZoHO1NSU9UOoVYIgsLSlL3/5y1ZApjnhvgAkQLe1tdls18Vi0Wb7bmhowPLly9HU1GTpQb7vWwDslpmZGczMzFjASHM6OTmJXC6HSqWSGN9nWTKZTNUzbjShYql89atftcD+lltuwYoVK7B582Zcdtlldsy05rj/E62ntHwvtD7cMLJU6BjNEbewUR8JVNOc8/XMLRN8H/F9TnVQ/Xy/u2vXtZq67wRunU3bN+7Y3P1Ry2LB3zVpAON8l//rLBYuNefsPq5/B0tFamGCca2O1jB4nJ8eGzuB4Y1XE0VqdiM+npjwhTJVJG5KqVlBAsj4HvI5H4vqspAissYCESkIaaIqgVHurNAfxdYKE2pUqZiqA8D4LujrKsG89pcwvgVS6gzVFGVKCDYu7uNhDkrE4EJfaoLuGidqijAVhoBSEr5nIicxnxeNKzSIIadypZROaBfpiFAqUgiDAFLMQ0URfN84SBuQoZRClCbgKmHmSlvidFuy6rr4uQNAbDUxsj2EEPA9H5BRnHlbAMITpu0IQWUO8/MB5uemoZ3B88hm65HLSQj49p5FWR+5jAc0/zd8ND2DYxOTmP64gvn5yLZZtVT4H855WX0opZzhCuHsKXV+dtZnVc4ZaKQN53M0cJTL5YQgw7WH9PHkoWNdB0teSFinOuhDyj/orpBOjpvc2dK1BnChhAvMra2tCQGB06mofW6p4HW4YySHTz6utrY2q+HntCTqJwnrHR0d9hj1gfwGRkdH0dLSkqAEAUBnZ2cVBaO7u9v2ieaBBCiaJ25tKJfLVlgfGxuz54hyxcHN0NCQDcHKAQvRsAqFQhVFhawRRPXI5/M2RwCFe52cnMTg4CD6+/sxPDyM3t5eaxkgIZs06eQ0XC6X8cgjj1irBoW4feqpp7Bu3brEmpqensY3v/lNbNiwwdazcuVKbNmyBfX19fj5z3+O9evXY9euXRgcHMTU1BROnz6NO+64A9u2bcMTTzyBkZERHDx40FqR/v3f/x0/+clP8PTTTwPQTspEX3r99dexbt0664dBTtgjIyMoFAp4/PHHbd9aWlpwySWXWKtREATWOgNoXxE6R/4KAPDAAw/glVdeAaCtUdxn4rbbbsOtt96KP/zhDyiVSjh8+DAeeOABtLe3Y3BwMJEYL5fLYceOHWedCI+Xubk5a9HZuHEjDh48iLm5OezcudNajP70pz9h5cqVWL9+vc3QXSqV8PDDD6OhoQF79uyxa2F0dBSTk5MoFotobW3Fpk2brPWhqakJpVIJpVIJ7e3tCIIAxWLR+rvwPDJcsObgk+qi/UsWNA6yi8WiDYjgvitoP5bL5YQ1kdMiXasCLxxk0DOmvUfAnSyVaaCGCqcpuoCFgxwgDgBB7wc3yMb5LJ8YWKQKBFao+oQauIUsGQkNO2miz0JSd4+fpeR+TiFjExcwVbMrxCj2Q1TXxXnnkvS5VuuZrlxVrNL4MVRDr3huaz0b46+g+BHzX5wco8q6EWvr6ZrkFdb/AdqpeVFdHtlMRkdWcjTUrk+FPq0S1okEsHCtJQak0LU0D4nkemx+ktNJ17L5sLQp7fJtrQnSxGMKWdPK6QgATmfSGbvNPz0KLYAJARECodQbXEljWRI0Xtg5pD7p8cc6fUW+CSIyQIKNTwgroOv7yLHaTpahacX9J8d3IQApNa3K83wE82UdcSusaF+OKABM5CyhYsf3RTmdwK9ywRfhedP4eHYes7Pzul+u9aLmdnKfEV+YKWtYpVg5LDgViWvcfZi85fNNOJdwbk9xLLfFeZ3xP3hem8+jcKBAAiUX6rk2spZDNafPkEDrflhdnwf3401UIO74m6bN4xpG0hK7gAFIRlghAZtrNTkHupZww/tDfaSPPbcWEIghoYKiLblO2TwXBglEJGwQzYToQXQPF2i41YAn8EqLuEPHiA9OifJIMOI+IwTS+DzyeeaAidNXpqen8fbbb2P58uW45pprsGLFChuFaWRkBKOjowC0dWF4eNiuLwp9GgQBhoaG4Hkeli1bhqVLlybCne7fvx++7+P06dP22Pbt260F4atf/SrGx8fR1dWFr3zlK2hoaMAHH3yAAwcO4O6777aJ1oaHh60AODQ0ZJPurV27Fi0tLWhvb0ehUMChQ4ewbt06NDY24qWXXsKJEydw+vTpKivC0qVL8fLLL2NgYAA//elPEyFYc7lcYv21t7cngMUvfvELXHvttdi3b18iNOw111yDubk5PPPMMwjDEJlMBi0tLRgaGsLIyAjefPPNRB96enrQ29uLUqmUABZLliyxuSpWrlyJDz/8cEEryMGDB+09t956Ky699FKMj49jYmICjY2NWL16tb2WfFqmp6fR2dmZeEfQumxubrbCO11L5+gnWYpcZQBXFND9NLdc409AO41CSfuIX099TAvjTPuQ0yp5n9zC31uurxmne6a1497Lx5z2fkuzcHwW5XOzWPCPZZrj9rnlk2BHajmBk9BuZeSF668VWz6miMSCT0KRTF2ytzt9PIOJhYML3l5NTWaagGFPMaDnAKqq3B1OBXYeTX8tfuDXCJVyENWCn9B+AJ6UWFRXh1wmA08I4yMBxKKvsBNIfbZOwEYo57lU4I5BkAAfU5WklFbAFiq2PlTNlGD1mLkjYCEFjCUigrJafYGYJaVBQvXzYbYCc57GECkCFgBUZBzGgciTEEJHZlIGPOmoRFrYVyoGmqajgOkTlAnfy4C+hAAlGIwMKCPfFN3v0PbTQk+7hwQ8z9eWFi+DcgSEYQgvDAx9KzSWGxkDGCFQl83AlzpEbxQBUsxgfr6irTvOWktsBftHNUiDe51yzrL9GD8GQzhjB5O1fY6q/TOUNIBxpuv+UYpLF3IpMZwqkkbZofvIx8D9UNK1aUI93Uv3E/3EtWzwvqYJ/7xwJ2WumSQNPddO0j/ueE3tkMDAtfjFYtG2QcdJ+9rc3GwT6RE/nAMfbrGhvpPzOtVD/G/qFwcWZCEhIYon4OKOr9RvDgZbW1stfYnoLq7DqUsjoX7yunjmceKyHz58GJs2bUJXV5f1n6AoS6Ojo1izZg3q6+sxNDRk62hpabFz9PrrryOKIqxYsQJXX301fN/HQw89hEKhgK1bt6JSqSCTyWDjxo1Yv349tm3bZufsgQcewPbt23Hq1CnMzMxYwZEEdsq8vHLlSgDaslMoFHD8+HHU19fbCFQdHR3Ys2cPAMDzPDQ0NNT0e5BS4uWXX8YVV1yBubk5GzKXNNZ1dXUAYJ9/W1tb4v5Dhw7hrrvuSoAKAHj00Udx99134+WXX8all15q5+nAgQN47733EEURlixZgr6+Pnieh4suugg9PTor9sDAAHp7ey14bG5uRkNDA4aHh6uyekspq4DGU089ZRPw3X777cjn87jjjjvsfvz973+fWK9TU1Po6urC9LTOcE7CPzntk88DrXNay7S36DwpB/j7gysUOIDmYIOoWHx90rPmFlbXYkr7mBce9IC/+ziVi+6l/tO+o71OygeeQ8V9l3DA7lon0iw1rhLnsyxCncWX6aOPPsKSJUuw7X/8G7I5vchTZeMUi8WZNP9pyemSlopYW15Vh/15dqCEayg/aThcEUug6e0ltO7Eo6d5sR2uqsdqGVXMv68Kw4pqLSYfekR/Wg39AppOZ94FhU+FqH4mwmR/cNrmo0oT27RQp499YdEiLKrL4sKljfCEghTat0AbAcipWhrfB11zFKmq+jXAIt6oFo4pWzUUEEYBokgnq5NCwPe1M7MNRWssDsm5E4m1J+xP7W8gDbjQVoQIlfk5k+gutM9bQCLj+8hkMinPRqESBAZMKKhQ968yP2/WApDJZnW+DM9QoSxq0Y1L8tmohUqp3wZI6TC+lOAv9hMJw0Dn7ggCba1gFiVp5kF62vkcQj8DhQiIInw8M4UwqCBSIbKZOmSzdRBeBtLzkDEULq3xF4gihUoU4uO5OczOzeOD/zOJmdkKTn88z+asVlHOT3esym5mfmW8h9hzjRd8NW5JA8aJIwu/GlMTNp7lsXO555MCi/nyLHb97P+DU6dO4Qtf+MKCffi0hb4RExMTWLp0KQD9wSMNMxe6SRAnoZNnuwVgNfecQ+2CFaqTCudnu/4J5KTMrQQUhYZbCkjABZAQWtL8GogmRI7cbkZgcm4mwYLGSue58EN9JcoF0SB838fg4CCCIEB3d7eNCkSUqmKxiI6ODjQ3NyeADgkyHLRQlmgANhkcCVOjo6Po6OhIUHA49YIEfuL6l8s6zCtRochHgKIfcXoJz4fBMylTNB4CN0EQYP/+/Zgycf9Pnz6NmZkZHD9+HOvWrcNDDz2EIAhQKBTw7W9/G4DWns/OziIMw6rsz1Q2b96Mvr6+BOUH0EnqLrjgApw4cQIffPAB7r//fvT09KCjowMDAwPYtWuXdYinnBnd3d02N0RbW5uN1PTggw9CSoknn3wS+/fvx/j4OLZt24bx8XGMjIxU0ZOoLF26FH19fZiYmLDrrr29Hdu3b7fC9t13321zVdx8883W0f7OO++sEuaXLFmC5uZmvPPOO1i1ahXuuusuPPDAA9ZPZMmSJRgaGrLrZGhoyALUH/7wh5iZmcH3v/99K8iSBWFqagrDw8MolUqWklQul2tm7l65cmUiStadd96Jvr4+5PP5RLjbyy+/HL/5zW9w7733YnBwEN/61rdw0UUXoaWlxQZJaG5uRktLi6XcccWES2ekewh4cSoZX9s0167fBV+Pvu+jq6vLXl+L1sTpUdzyluYbREoBIKY5cmG/llWW6nJ9wMhqwpUsbv8IQPH9TPcGQYCPP/4Yy5cvP+/fiHOCLVZ7iuQnNxbsq43vtbJan7WmTRF/Ic0KEbeaVnfi2AL9SisLOmwKEUsv/He3l0KhyinE7Y9yxZgF2nX+di0NNE1CkbDIhHKlOHumZkmdlxrWjNj4oqrrFbBrRQqBfC6DfC6rw8si0n00oEUL8OQfAOs7YSs1QrMiS4FpjvwxYpBnxm0iPQknRwYfj2LCaYwDmLUC1fcK05YnJZQQkBGMzwVMor7YR4R1B1VPViQtMXYNkR8GDck8UKEo94bglbq2Oj3bhl6ltw3tV5oXGFoXYFzJEVuYRKImCzcEIOBBSIlMNgcpJYKgkgAr5NfCI3kJAfhSWy+kEFhcXwcFgfJ8gCAIEWe6Ti+pQJVRm6p3nGIrnleSkoVa1Pg92fhZl1rvkrN5x31ai8Oncf7+rAr/eNGHn3/c6JpaH0L3mFtczRz/eLr94B/otDZr3cvb4trOtDYIJLj0CronTVigkubHweeM94ODMrfQPfz+NCoEAQWKIESCJdf28mvd58AdtF3qSNr40oQkAAkaGdVDx8gaEIYhVqxYYYEI5Y2gciZKDgAMDg5i7dq1iWO5XA4NDQ2YmJiwALO/vz8RNYisOJQwLwgCS70CtKXi97//Pf74xz8C0Iqu/v5+jIyMWD8RcjB382dQWbFiRSIUK0WM8v042tXY2BiklMhkMmhtbbVa9HXr1lkLBbcYNDc3Y/ny5XbOuPP5qVOnMDg4aNdIR0dHwi8miiK8++671mmdfFuWLVuGp556CocPH0ZzczNaW1trZvBes2ZNFbB45ZVX0NbWhh07diSuzWQyNvoVWYiA2FrGrYMk3HP6E5U0i0Gaxt69ntae6wfmavdrFa7IcPcLf69wy4Ir2Lv1cYULH2etd6jb77TCLTZ/r3JOFoub/8ejqRYLS7k5gxHgTFaCVIsFNVZDQLRWi5TzqcDiLA0VqXktWD2pYxFxSgEupNLNCRFHJGPvJ++hIZ+5s2ljdOck5uojdfzcYpEqVKX11VotlAVHCfHZWCp8TyDje7hoxX/DolwWvhQQIE6/MlpumfCDUAqIFAm9QguxRiomR+gwDK3VItZLE9UnflLa2sByZSSsQABIq28keeqHFNyKoaNZETVKqcAAAR0tKYpCBEGgE9CZzZ0At4IC7eoEcpHpe6U8CyEEPF8i42estUYn+fPY/SY8LbeqSOmK0TQqbXUwcyU9z4aFtaAtilCZm9PzZ0CiZI7fQmqrhbWmGZAiRASlQszNzQJKQELnxbB5OKQHT3q0KhCpyK6aj+YCnJw6jWMTJ3B6poxKhQGwqkIrLSk0xMACiV3D71JgmF/VbsFWlOKvEb8Rz85SkJqTw7nmbOo5U/3nWs/nYbE4duwYli5dmvjIujQe7vDLQ6Lyn/R7WrQV/kEn7SppGrlQn/Yhp/M8pwJZF6hNEiq5/wIJ9SSIEP3H9337O4UZdR03eb/pfteCQqFeiUPuamHpHnIyD4LAWjaIykEWgubmZuTzeQwPD9uxUt/4GKleolvk83kUi0VrxSH/DyDOFDw8PJwQ8nzft5myydpCnHTqFwl3NE/5fBzqt7W1FWNjY9YZl/uCNLIwoYODg+jo6IDv+7jssstS1+Dy5cvx8MMPY+fOnTUtGCtXrrTzQ/kXli9fjomJiaprf/SjH6G1tRW33367jfz00EMPYXx8HD//+c9T6+dl1apVuOOOO5DP57Fv3z7b3i233IK3334b77//Pk6dOoXvfve7+OlPf2rn78CBA9bCsmrVKlxxxRXo7e21fiuTk5PYsWNHwg+Cg4tf/OIXaGxsxLvvvov/+T//Z83+vfLKKxgbG8Prr7+OF198EVMmnwNZV6666ircdddd6OrqSiS9u/zyy7FixQrrrP2Tn/wEu3fvxuHDhyGlxBVXXIGNGzcm2s7lchgbG8P27dvx4osv4t1338Xg4CDuuOMO5HI5rF27Frfeeiva2trQ2dlp3xejo6N2nRKgoXngWnzS3vu+b/OykIN1EMQBEcjq5fs+Ojo67HptbW21VkCeLJICHNB657RC2ptkJST/DSAZVY1HSKN76R7u18QtIxTUgu8fnh2cvy9dv4w0BUotxcvJkyc/f4sFLyrxu4oF6IXuqeG3wM+nauBcq4AjTLsf8VphHrnGPhU4nMGfIRZXue+D/pssBYrutxpULu6TAKLHo2y9Kq4DsLOZNg1uf9N8SpTg9gre+/gHEvNuenUGZEhKfhHfBKSKePHfuUwG9fV1yGV8eJ4AotA2H4MKGXeE5lWRvcM8KwMuaP5ttCWQhUFrzKNIAVLXowECjGFA0UKBgqYKxX22tcbPhawF5plEUWQEcKIZ6VYj4w8RhgoCkXZoZvMaJ7KTEGx9R2Go/RWsTwQBLWNBMZaPBL3HAAYAAFk2nAlnsMkI2RwO0ylhEvLpHBrkMwKW+4Msc8LMX6SMn4mQ8P0sCClZ93KzFkNjMdF9juw81WU8fKE+j8oFSxCGET7GPOYrUTzvZyoKyf3AQA9dcFZ6e7sNU+YlWXXV/kvpkvMePH/F9a+qatvpXJKOaY6drRblPBb6AHJAAMRhN/mHln9AKe8D1xhyfj7XunELAv8bSH5USTiv1U+XK83rcrXuQNJ5mwvpbW1tCXoU70ctLjX97fpdcGtAEAR2XkgQ4ZFc0iwN5ItANBISdqgtaoMLInw+OP+crAju/FDfuHM81UtjoT7weSZKFQEPABZgNDc3Y3h4GJVKBZdddpkFSRTTnxLOTU1N4YYbbrCCPmWX3rx5s6V7bd++Hbt27UqAi7Vr16K1tRU9PT2W1rN+/XoAQKVSsU7ZRDsCgNdffx2lUgk33nijHccjjzyS0MbXKt/4xjcAaGfx7du34ytf+YoFFkNDQ9i4cSNWr16NAwcOoKGhweasGB4exmOPPWbr6enpQSaTwb59+9DR0WF9b77yla/ggw8+wKpVq5DJZBJUq/7+fnR1dWHx4sW45ZZbbPjZmZkZjI+PW0vH0NAQxsfHcfjwYQusSqWSrefVV1/Fq6++WjU27l8BAA8++KD9PYoivPHGG1Vhfmmttba2YunSpejo6LDWlJUrV+LKK6+0VhACmKQ4oHcBj+LkOnC7QQx4u0Tdo3cQrWcu8JNigkdKS3sfUf3cqTqNesSpmXQvT3LH95C7DzkI4fuNzo+NjSXybNA408CEa5F1gcZnZck4NyqUSorJiXNJNWKqcH8mYb7m9QkfAQ4y0j+cNalQrJqFxJCFPuhxbUybS8IrU7mng4pq6wLvB9FDbCwlFzCkalJVym+6TZHw9zA/uFnAWkhqzwYJ2/HfKcVV1UJpbbEEspkM6hfpZHieEFqLbawD0nLynWoYCCCrBW9AQdn8E9YuZC0gSWFVzzxpvt1xMqSpEGuvlYKCByliwKynIEIEwIPU+eYADXigNICB8Rux1QvbBv9fRQpRqJPXmXhZSH+mOk9GnLU7RSvO/hBmrghoC6JXmfmkaRWAdsoWZPGJ55VAJqdQcUAGSPh+BirS1LpQBRbAREqDK7tKlMVnyHoS9fksFBpw6vQMKkGIuUpEM8KE4ORqSBfuBV8s9hoF5awVXuLnnKjyLGlEVUoK8HrcJ0NzXX3cLQtRmT45zYmA8vmEOmdfOBjgWaTpHAcW9IEmARpI5zCngQgeoYXfl0bf4R9eXjevh9OaXF6yC5i4dpD6Tj4EXHB34/G7wginOHGaEZ3jDqJuFBouqHCARiFN29vbqxxagdhBlDtb0zzz58SFNT5n3GJE13Hhi2fO5hYfHnmHWzh43ohyuWx/p3+kpR4eHsbk5CRuvPFGez9lKv7pT39qn1FPTw/Gx8dt5KSLL74YmzZtQnt7O3p7ey3daePGjdZZeuvWrWhoaMA3v/lNLFmyBB0dHVbgvvfee62jMY/GdPHFF6Ovrw//9m//BiDpW9DX14fh4WG88MILuPHGGxOUp1KpZP0oxsbGMDs7i+HhYbS2tmJ0dNSCm+XLl+OKK65AoVDA8PAwPM/D6dOn0dTUhNWrV1tH8ampqQSwGBwcxLJly7B8+XLrgL1v3z7rDP3QQw9hYmIC/f39dj9SWShvx1VXXZUKNKhs3rw5kSAPAJ599lncfPPN1i+ipaUF69atS2TrpihaBJrJBwhAIkhAmlDsCupucRUYHJzQ2iRgx/eHu1ddSl8a/YkKBxZAHPmMgxNuseWBDuh+d1ycNkgZx11gwcfsKmFcqhS39nwW5ZyoUP/v7/0S2fwifeOZKj5LYLHQuVRKFIkg8X81+7KQj8WCN9Zo34iuC15H+Q5iAY83JOgGVmc1SBIwKd3OJCTFqsnE0eTcUGZppOdDYMJP3Etpz1aH9k2ZU0XjJmlbwZMCi/I+vrhkMS5YugS+UIDSNCApPfNP2nooJwNJbApAaH56vg9YupLpm+D9NgK0cdqOAQeMFl5XLMw92sqjh0KUJyFkQrj1pLTWBrovigJARfANSNIhczUdan6+jCgMjAVAO0xLPwshPQjp6XwVYYSgUsH83BzCoAIVhfA8CT/jwTNO29LTVCJrxQEMeNFjlmRFkTIJHM1zFZKctQ0Vylh6iJIlzNRZ4EURtKIIc/Pz1gLm+74ev2doTZGyz8inELMQCMNAR+EyIIQsUTGE0fMqpQEiEBg/cQqnpj/GB8f+HwShQhhxIKjsmosQrwU7RldcdjUGdm3AoUIZoPIJbQxpwIL/odyjVVWfWZFxLucWfG2bc5XyLJ7+HKhQ2g8nmfCJWx9c/jIXTvkHNk0T6NKdgKT1gbTi9CFO+3hzEEF1cwHbbZvacIVzygvR1dWVAAa8fbIaUB28vSAIEk7kpCnlIMt17qxl0eF1c4sG9WlkZARBECRyW5DwxqkVaQCOcjDwjNckBHKNLBf8OCCi+7j1haguFAGnubkZ//2//3cAwL/+679WCYCkpW1oaEChULD92LdvHz788ENcdtllaG9vR2dnJ37605+iUCjg6NGjuP766y2YIHBDTro7d+7EmjVrcM899yAItA8Fz3C9fv16tLW1oaenB//5n/+Jffv2JehGg4ODGB4exrFjx7Bx40bs3r3bAogf/vCHCboU0YdaW1vR1taGxsZGDA4OJvJYXHfddTh27BjeeOMNbN68Gdu3b7f+HjySGgDs27cPL7/8sgVBDz30EL71rW8lQuuebfnlL3+Jf/7nf04cW7lyJVpbWxMAgMqll16Kf/qnf7JUp2uuuQbd3d3YtGkT9u/fj5GREZv1HAB+9rOf2SzkBNBuuOEGrF69Gg899JAFDYODg2hvb8emTZvwxS9+EQDw3nvv2UhRFJmKgwyKKsUjv3HLIa1nAqjLli2zTvk894tLWwSSe4ny0vBcGaOjoxYs0b6nNU6RrSgKFgBrAQRgAy5wJQunZ3KAz2mk/B3JFRc0RgBVDt3ue5SXjz76CBdccMHn7LytjCYUzsf+LEz1/Fit66s19A4osdpUgIsYaZ/YWto+C3hS7nH7WNXfBEigCt3KlHYyVnE/E5YGsrhUTQEHGMrc5/YyeZNViLvzoOI6Yg55XJe1jAjneMpv/IhtDkxjq0gXL6yMJ01Qo3wuh1w2A19KIAoS88mfA3fWFor4+WktWvsEYk26OUcSM58phYSTtj0jlDVQxNpyBSHj+mxYVqGHKIVJSGeOKymgIG3d5Nit55VFuCIKl8Y7JuysFuY9T5p/HgMwqPrJgaKdB1pfLrigY4Jfz5acMM+MMKAwvhrSUQYoPm9xNC47/7T4iBIWRazJRGO2HwISvhRYlM8hCCPkcz7KcwHCKM4OTpYnDuKTQ4zXek29QEK+V+yYCWDg2BrOVNL9HZI2FrIWUYfT8M5ZNYba767/G4rv+8hms1Xx1/nPNIfuNCfnNM3bQu3y3/nfaRFaqHBNXhqocMEGt14ASAjY/KPv1lsLtLgferdPXOPvgim3fpfvzSNOccqI23aapYdbebggw8Ga+9z4uNO0o66GmCwUlKOjsbERdXV1CfBCVgvizfNxTE5OYnR0FOPj49iwYYNth0J1kl8COQMTJYbuzeVyWLx4MRobG1EoFKoyXJMFqqmpCTMzM1i8eLGlV1GUK7JQHDx4MGGVoChEVA4dOoSbb74Zk5OTGBgYwNTUVFUeiampKRw/fhwAbJ6JmZkZ67ROY5iensbKlSuxZs0aNDY2orm5GY2Njbj++usTwOhsi7sG6+vr8cgjj2BwcBCFQqHK/+To0aP40pe+ZHNVDAwMYPny5ejr67PO552dnXjqqafwwQcf4Be/+AV6enrw4IMP2rYuuugitLa2oqurywrPxWIx4XMAxJTDhoYGK2BzOqALaoFkuGmyFvDcFVxod+cgzRrClR2cPkXA3vV9IGBNfUujItHvfCxpe4fGyPtb612W9i5xC39vpLV1vso51qqsdm4B48PfpySEp7TTNfJZnHX1Z3l/AmGREKMSQgZJFFYQFFwsSauQfDTcssB4E32Pj9I4HEhSsx5zV+K6sxK+gIQu2fc8LPlCA+ryOXhSIIyUnRdyEFZRnJNCRfG9keHqa6uG27pgzz0WXMkHgWho+jQtVsTr1u2z+Y/8NLTMTjknBHT8JAF4wtCcdP4JAZkQpK2/iFTwfB/CJJZTkFAQiFSIyFgtokhr+DO5DDzPg+9lwEEUWTzMHwxTEFSNf68G3yTUE/Rjx5SCRhBI+FDoOfbgBZ51io8slYr6kxSq6Z+QUruDIET1DLN+KLM+IoHFdXpNNC6uw5Qoo1yZs4J4nNwtxoxubedSYljD92Z8/ry8xqqwu3A6f/5Bwj8q+Mjn88hmswkhkj5e3C8BQEJA5UnjuKbNpeOkgYA0gZssAKTt5eepcMdk0vxTH10/EW4RIS08OUUDSAj0afe5bafRt0ijS3U1NjZaigbnh5PAS/Vw+tDIyIjViHOndMrqSyFoAVieNu8vByjc34L7d0xOTqK/v9/mRXAdVznNhAtWBB6or2NjY9YhvFAooKuryzqNcyfWYrGIAwcOIAgCG0p0fHwc/f39VqPe0dFhAcuWLVvQ0NCAtrY2FAoF68A7NTWF0dFRFItFfPjhh7jiiiusIzwBFO53cejQIXzwwQeYnJxES0sLvvWtb9nIRf39/VV+BFRuueUWbN26tSrEbbFYrHkPANTV1VkhfmJiAv/zf/5PrFmzBl1dXdZxndbq17/+ddx6663WN2BsbAw7duzA7bffjiuuuAKA1vaPjo6iv78/YRlxC18TADAzM4Oenh68+eab6OvrQ1NTE3784x/b8ydPnkS5XMaXv/xlHDp0CDMzM3j66adxxx132DC4b775Jqanp/HrX/8aJ0+exN69e/Hkk09iymSdJ0folpYWG3q4v78fvu/jxhtvxHvvvQcAdt01NjbiueeeQxAECYdmovu5YNyl+/H3C2Xr5sEPaL0S6KQ9RW1Tm2TtoL5PT0+jUCjYfDFEJ+ShbEulkvUR4f5Ovp8MEkH9JUsj3U/vLx6amTuvAzH4qaW0oGt5fZ9l+QRwhQlyZ1HORbg/EyXAzetwNvHh06wgnNd/bv2qdonmxVJTRHwPF+kTPXH9RM4wTcTxr6YxxRek9UxYzbLpvRV41ILPMM1BPv1C/Z+wfBCFXDaDunwGdXU5ZHwT+lUIwPM0kUloDXcUhnEl3BnX/KPoRtZCQb2xMmJyAJZ2xjCdta8lBhADkvj5RHZuKFqStaIIAaVMmFx9BJEApBLW6gEISOlrCpTnx1YKEFAK9b8wAKDgeQKZjAYWnvRgyG8m1Gxs+QCgrR7UThQL3gTUlHEsT1rWIqhI09/i+qxJxs6BUkBkrFe+70N6HjyTZyNSCjKKbHZtj1ktaFFoJ3qBKKI55bYGFtVJ2fzf8KCQ94FljQ2IIoWPZ+cwF6Rr+e044bxL4q2WUmiOFiY+aax15jdBegjmJPR3L1GJiQJflp+svU9yzVm2dz5LuVxGFEUJQEHHuSba5ea717jCKZC0GPBCAISuJe04ad1d50i6x+Uv8+vSnCH5z/b29kS0JpcKxGkJdJxTr3jf3XGVSqVEYjJqhyhEJCzx+SS6EUXMATTdYnBwEC+99BLuueceWxfne5fLZRQKBRsJh9rhOSd4OwMDA9Z/gs5zSwbXqtP4yDdiy5YtFixQmNG2tjabJZvyQvi+j+eeew5zc3NYuXIlOjs7cfvtt+Phhx/G8PAwdu3ahcHBQbzwwgtYs2YNOjs7sW/fPpvvgDjoPMEZRRRqaWmx1hLKXzI9PY3ly5ejoaEBvb29+OY3v2mfzze+8Q18+ctfxsjICPbt24drr73Watrz+TwOHDhQpdH/zW9+Y53KqUgpa4ZopdLd3Q3f9xM0osOHD8P3dRZ2imy0e/dubNmyxWatHh4exre//W1cfvnlWLdunb13586dmJqaqgIObiEfEV66urrwwQcfYOnSpfjXf/1X3Hzzzfjd735nz//gBz8AAHz1q1+14G7Dhg32fBDovCScmnX33Xdb8EjrYP/+/Xa9bN++HY2NjRgYGLAgds+ePejo6EBXV1fCR4dbFmjN8vcH98twlRzckkd7jgvyLjAg2uD09LSNaEf7kJQLLrih4lpgXUsk9Z9oUvQeIookXzM0Hv6O4+8Pqs/NkcEpl9T2Z2mtAD6J83bKR35BylGKj8UntSYsGAnlDPdU9ddSNc6lPfb7GVuufS2vNmHYSLlBVZ1w/uZa0gVaV4mIT1wITLs+xUoQ98geS0y/EhDGYpPJeMhlM8hmtC+CtVRAv2DJUkF8VaIOARosJogwKQKZ62Sc7KpIaL5RtQ6dRGlGk8812orRlUBrVUnr6qCUACIBZQ/ACvbKWC6UAXGRUoiUpkBFkbYGUCZv3ze+JsIzFhADW20HY98I3U8BJU1fFQN81grEcktEAGQEjYAo+3gSVHCMoRQgPA+e0okFgyCw+12oCFDaV0Lw8KyCgJkGFxy0WuBhLqQ+awJZBF8Ai+tyOJ2dRcaTmA+Mr4fzpGtJxzafTsr5+D3Drmf9TryTUo6ltpdGS+TWSKZUSOut25+F2lhIaVINpmtO0OeCLIJAh112IxHROfrp0ofoOAnqaee5AO5+xF1qEP/HS9rHlLfD73FpA7wu0rpzahEvPAKTCxw4uHFBEwk+nOpB88ijNNF1dJ5nv+ZWjHK5jPfffz/V8kNjoxwRLthyQRfRlnio3TQA6SY8HB8fT0S/IcvKyMgI3n33XXtdXV0dfN+H53nWifjYsWPI5XLI5/MYHR3F3NwcisWiTby4du1a9Pb24oknnsDs7KylPZGAxXOMkCBIgltbW5ulU33xi1/EhRdeaH1QAE0J6u7uRmNjIw4fPoyTJ0/iggsuQEtLC7q6uuw89Pf3nzFS1OrVqxNzQuWGG26wDuEEJN0yNjaGYrFoNdkHDx5MhA+meg8dOpSI2DQwMGAtLGdbNm7ciIMHD9pQtidPnrTO82vWrKlK9NfR0YGhoaEqp+9isZiIsCWlxNDQkAWi5Ivw2muvYfHixcjn47wahULBUr/27dsH39ehYdPofAASe4M08lyBkbaOuWDP9xvtC27FoDkul8sJfwpaSzQW7qvBf68lxNM93E+KAw1XAcFph3RfmjWWWzV4nWnW3c+qnJPz9o07/zXOY3EGof5MztifhqZE959LHamO4OfYh6ST9gL3JgCIAJgzNJDUGVvB12mHxHsXWFQNQxjNM9yo/3S9sL8nS4R0ycPRlrNRWMd085sS8TkAJpxqhBX/7YtoqK/DF7+wyDjQcpuH1rDr3A8VQME6GCuIhBVDSh/Sk/B87dAMCz5orFx6YlYIOyzjJwGaRxVLd0pbHzwpIBFB52hQFkxoq0UEshJ5vmf+VpBCQkqdJdvzMppKJOIZDXWackSRBhZKKczPGefuYA6+78H3PSxe3AApPABxyN0ISfCedFiPnwe50Sg+Jvv0dJ4PXQd0Jm2Ta0JIFt6XZskaRgx4ADA/P48w0M7onmfycxCA4YDHCs1h7LxOa4blB7H9E+a5KJ2N/PipaUycPI3/c2Iac5XQ0M/Y02TAOQbh8XNO24VcgRHfHpOsuBVEOvfWUl7UtI4l+siGytYgqixm1cVVwCzko3amY9R2pTyLZx7++ztvZ7PZKoGTWxXSzPVcMODnSBABUPXxpo9nms8GkIwUQz+5UzEJZCSM1wIknBLErSj0oSbqBAk1RGEiCwM5jbrOmWmRXEi7SOMi3n+jSXhGAnEQ6Mza5ENw4MABS60g51WaO4rSRPPFOftA0k/EdSbnQG96etre98QTT6C3txe9vb1WwKYws0RBI215W1ub7Rc9lyuvvDJ1HX3ve9/DHXfcYdfDwMAAnnvuORw+fBiXX345vv3tbyccjdeuXYuWlhbrXDs9PY3vf//7aGlpsXNAbdP8HDhwAIVCAT09Pdbvor293VLDiA6zf/9+nD59Ghs2bLBZxrm1h+Zk69atOHr0KGZmZrBp0yY0NDQkokctVH72s5/hvvvuA6CtI+QMToWSBQZBUGUZeeaZZ/Doo48in8/jkUceSczp2rVrsWnTpiprxGuvvYavfe1rZ9W3733ve7j++uvR1NSU8B/h5c4778To6CgOHjyYen7z5s3Ytm2bFb6JcrZjxw7s378fP/jBD7B27Vp0dnaira0NUybMMKCpXIcOHUJ9fT12795t9wIBZgDYsmWLfWb0/uCURFrDRDMi532qh/x7yBIBxO8Nvl9HR0cxPT1taVSuBZavCVr3fP8RMKA9R2Og9cdpfgASOV+amprs/qd2aaxE5XP7Q+3xfZ9mvf34448/f+dtXs4UknUhywYpsen36nJ2Aj/PunkmoFEV1lYfXLD+Beuz1yzcx7R2kpSOpAaYC8gq+SdAmnpBl6fl/IhFfWWqj6M1UZPxc+Bjie+sBUaqmkr0T0gBX0hkMj4yGRLEzXkp4n4JxP4ASpnQpQas0D1Wq26uAXR9FHGIrAzGGmJBhfVJUNaSYPOE0I+INOFEBYpgk/YRVlE6GZwQ2ulY2MhHlLNB+0p4ngKJpwqaPhQZi0wYRMa6ooEUlBa6fU8i43u2rzwsqfXviCImlEu7vnU2cWhwIHTMJdpQCkr3xNxv65HSaOyVGRdbg+5aNICbcLeOcgUN0KQAlLGMWLyg+y6g+yYhDZhjlgszN9YyYtoS0HlOFtfXIXe6jDBSmA/IGlMloccWkTOpQriQTs9cxUuVrYgE5E2rNum4XXWW/c7WHTsW36NqgpSabSr2Hkjpzz9qcWlBnLZTy1LhWg2A6njsdMzV/rlghPeDayfda13Bnn5y0JFGveKFWx34GAjA8AzCaYDK7RcJBlybycfNaWPcCkGRZzhI4I6w9JPTQ3h/ueaUhCG3z6Tpn56ethYOPk8E+rgTK3HkSUgrFAoYHBxMncurrroKF154ofUTaWtrw/T0NN5++20cPnwYhw8fxuuvv26v37hxI2ZnZzE2NgbP82zEHj7vVEiQKxaLlg5GgioXuEZHR9Hc3Iyuri5cf/31ADTFh84/9dRTqFQqWLdunR1jY2MjPE8nNKVQtmdbyPJCz6a1tTUBLNavX48wDHH06NEqYEHZwi+44IIqx/NcLpdY91TSQMU111xjk93xMjExgZGRkVQrChXuLF5fX4/Z2dmEXMYjIhHIbmpqwujoqBWeab42bdqEfD5vHdipzMzMYNeuXejs7Ez4BfH3iRvNLM0C4e5lvl65BYMKv56HjaZzbptpVkluceTPiNYpWdLc/hIQcy0gBJb4e4Af5xabNCuuu+8/K6vFp6ZCLRSDnc6n5WMgSoVKTcpWXWear4TbHymlc0/iL1OzlXQYODg7cGSFIltdbT+FT5aciqRa1ywBpr7lGmDWvnBBAV2erC9BD0lpKqmFNePn9zvV80qkEMhkJHJZH9mMhyjUtJ84/Kjtqv0zUgoqDAEpWJP0LHVOBP2iEmaMTAi3LzBy2E4CKCEAJYwwrFGG9kfQ4r628igFKSIgimLFcgJYUNMMDSOCUsI4YZs1pfR6CaMIQRjp8LKBzsqtVAQVzgNQ8CSQ8X1kMxmd7Zprp5UGFmFIvhj0PCSk0OF5pa8zaUvAhpOVxneCW2WUUgiCQFOvDJjQoEUa6wxZHfQSUUKYuUgugzAI9Hx5Eio0Wbqlb+43mcLp2VD4YHoutDaEYv0zlSt9eFEuA+l7+H+mphGECvMBOYE769HW55S0vesI5hxXIu6xAX0pvkmpCMPtTrz3yGqYvJyPNwaycRdrvDfdLnBgk9Ytbt1KXJdCE/w7FNeJ17Ui8A8eF2jpXvdj536g3Q/hQkCF+xFQ4R9i3k8ugJDAziO/uMIMLyQ4c2sKt1BQ4R9zt7/UBr/G9VXg9RH4IUGBrBicAtHa2mqdn+l+CstJgICuddviAGR8fNzO14EDB6zVJJ/P2zCgZJHiCcjofu7c3d/fnwjD+tvf/hYtLS1oamqyGbh//etf49Zbb0VLSwu6u7tRKpWwd+9ezMzMYO/evbj44ovxT//0T7jrrrvw/e9/H8PDw+js7LRcfNJCU2SmcrmM9vZ2jI2N4bXXXsMXv/hFNDc34+jRo1i8eLENCRwEAV5//XVcccUVCe0xnRsbG7N9X7t2rR1jW1ub1YS7eRx4ufPOO6uiNu3bt8/+TlaRUqlkqUjf/OY3US7rcMFuYrrf/e53uPjii5HJZLBnzx5s3rw5QUMbHx/HNddcg6mpqZoWhbVr12Lfvn3Wh4DoR/v378dLL72E4eFhbNy40UaAWqhQHguiX1166aXI5/PWeb5YLGLbtm3o6urCnXfeiWPHjmHt2rV455138M4776Czs9M+O9/38f7779u6X3jhBRuWmPYWF+y5gE5WN9pn7r6ifUcCOlkuOL2IC/tBENh9Q/VQvWQ9AJLKAt4nANaviN4V3DGc73faJ66VloIpUHs0JtpzPA+Ma9GlezgVj1O4PovymXlvcEDxaSM0LVSS9dYQSOy52gDi7PvHBO8z3nL2YxaJ39MqJymmSsIxp5XW5jNVrADJdgvUV3WUu6TWgEfkCwDEwiw0zz6XkfAF4BlLA6Q0CvXQWlBgfBg0HSmCgvEFsOPQv1sfDNKwCwHhmTUVRlaY174NADlAAwKc7SOYFl4JqUGMARvaG8LT4wx1n6MoQFCZQxBWUFeXs8nwPE8L9TQ0kOVCCYTGOhBGkaYQhSGCis57of9pSlEml0E2l0EmkzV1aStCaPwvwkCHX43DtwpI4RnfCg8qMlQkj4Ega82ATYpHOztSMRUsspYEASm92OLB5p1yfEhfQkgfebEotl6E+hlGAjZBobSZAvX8CyEQiYgmSD9bFYu52qpCeTZ85HwgIwSWNTbA82bxcXnGrhMeTpoZR0C/OqoCJNe4smCipoDNcAdD6G4tMeBM3MMybiiKKga7JjX1SiVqOzun7HjcrLkz16GSfyj30N+puPxg+ri51gpeuOUAiLPolstlq6F0HRz5x921kNB1dJyHdKR+8IzSacCDhwul+jhPmdOVXGsC/1iTxtatizs98365whDP/UC0CBIouJXBjYDFBRUCHdQOzTnNC09Sx508aTzcabazs9PW4+YnIR+A6elpS00ql8sJwb21tRW33HKLdW7+wx/+gAsvvBD19fX493//d5w6dQpLlizBunXrkM/nrdUA0IJqX18ffvzjH+Mvf/mLdbYmkNPZ2YnOzk6sXr3aXt/T04Ouri5LHaGEc6OjoyiVSujo6MC2bduwb98+DAwM4MUXX8TTTz+dEMLuueceuKWvrw+/+tWvcPLkSbz11lvYuHEjHnjgAbz33ns4cuRIajK53t5eHD9+HHv37sU111yDXC6HgwcPoq+vzzqDT01NWYrW8ePH8e1vfxvLly/Hnj174Pu+jWg1MTGBY8eOoaOjA57nYXBw0Nbz7W9/G0B1huy08s477yCTydi/N2/ejE2bNuHRRx/Ftm3bMD09jRUrVmDnzp04ffq0zV2RVvbu3Wt/f+aZZwDodfjnP/8ZExMTGBsbw/DwMHzfx9e//vXEniGKXhAEaG5uRnNzM9ra2lAul9HZ2Ynu7m4UCgWMjY3Z8Lrcv4Bb4ehvToVywywTAKF6+F4m4Z+uo7VL91KhvcrBAa17CoZAe4z6zBUqVPgcAEh9x3HrIKdXccDELYMEJNzke9yy+FmBCuAzBBZANbigwmPiW634JwAe6ZaQuF6yhgirrVwIXKQrP3nfEzGhSHivdY+9rPqCNIf2FBEi+adI/bXqFq48ZRgj1h6bMxxwCF6BigfmKK8TkIOPg2tNfc+DJ0zWZhX/IwGNaEQkePLOC2hBWOjYpqDIRuQ1Lcw4FGAcrFlOExpeJDXIsNrk5FzrtSes74dEBKG0VQAiNLSlAGFYQRRWoFQGUNqyIE2+CYqYRJQnGCAQmn8qDKCiEFFYgYAO2yql0MAik4HnawdFBW0FiZROshdF2lph80iAaE/mH5QZl0IsOcbALtZa64R02p8ifnqRokzfZryKqfHZirUhiqWHTEZbeaBCe51+fiJuW4l4vQgK3Bs72Ju74vsNFtERtHSiwfq6HOaDEJ73MaLQRLNiq0Ow/00vWd3OddyAYNF1UshnyBjJYgll9jLhnmfTT6SqmIaWvAZQZ6RLVvXJ6VcaQKiOOudGwPp8LBYkHLuFf8hcywK3FHBzvWvZcC0gaRQHl0LEhfe0vtaiJHFhIu16LhikhdGlv3n9bjQbt32XhsFpGtxqwttKGxNvjwMI99m4mlJe+Hzzwv1NuEWICzhcO8rBFglMra2tWLVqFY4dO4apqSmEYYh8Pp/QiKdRitra2mzYXAJS5GNCf3MBkoRKAIlkgFRobhoaGlAsFvHnP//ZnnvvvfdQX19f0/m5oaEBdXV19u/Z2VmMj49bulJofQXj0tjYiHXr1uGdd96xPiDLli1De3s7uru7MTIygsnJSSt8U58nJiYwPT2Nvr4+TE1N4YknnsDc3Bymp6dxwQUXIAxDfPjhh9biczbluuuuSwABKsePH7eAlq9XchZfv379giFzqfCIXFMmF8np06cxPj5uo4GRcE8+OJOTkxgaGsKuXbuwdetWtLS04IEHHrDRvh5++OEqx+00ug/fd270J35frX3ovnN44RZPfj3VSeuN+4YB8XuIjnGrilsH9Yf2GO+zWxfvn3st3798TtKsN+e7fKbAolb5LC0Yn2WppRs9762Qhj61xLratHvTDzuIg661gp+roxUpx5P1aa0yz3ihQ6jmchlNp4lC27SlDZEWWynjwK216dJo7m0kpigy2nNA55iAtsZICRUoRFAIgzjhntbYS/tPSolIxUI5TJhYDQxICPYAKIgo1vyHqowonMP83GlDY4oQVbKIhIQnAM/TgCAII20xQYhKGAIIEYSRdV62P4N5SJOTYtGixchmM6hbVAfP07SmMIwQGofwKAi1RSCKdAhacw0PPUv5JIRQWtA3fg9RqAEDz7IthIAnPWT8DIAYrNBTFUgK56T9p6dJ/hzSk8b6EtrIT3G0LNrLxlpk1qyUUjPLVGjaNM/dysARIPSzoHznS5fUQ3oSEyenMVsOMT8fgghLCVBh69DWkNgOYkZl50tfLJWARAgB7Yiv161ABGm3AN8ZZxLFkwqR5F0JqqQDej6r90VadCxlGvw8/DHCMExYC/gH0/0Ac018c3MzxsbGLO2G+Oau4EvCI3006RyPVESCEXGOOc2IC+ick0wfYOoXt0i4tIRawImuob+pnjRBhfefFxLAOWUiCOIs2ZzqwK0eNN5isZigSZDDKtU9Pj5u66aQsjT3FOa2XC5bZ1XShBI3nnO0qa/cl4O49IAGIR0dHZicnMTY2Jh9voBOkNbY2GhDu5KQTZGdZmZmMDIygu9+97t2PYyMjOBnP/uZHTsJvM3NzRgdHcUrr7yCe++9F7lcDitXrsTjjz+OZcuWobGxEfv378f4+DiOHz+OdevWoa+vz0YhGhoawu7duxMgYm5uDps3b04VvgHg97//PbZv326jFT3yyCO49dZb7fm0jNWUcG56ehq7d+9GU1MT+vr6sGvXLtx33324//77EzQxXr7+9a9j48aNaGxstHSr6667Do2NjThx4gSiKMILL7yAF154Ad/97nfR3d2NcrlsrRduoXEtXboUf/zjH9Hd3Y3Z2Vn87ne/w3PPPYctW7ZYoPf73/8eV199NVpbW1EoFFLrc8vVV1+N+vp6ADpvRH19vY2MNTo6ip6eHuzZswcPPvggLr74YnR1dSWoZARe/vrXv8L3fZRKpYTzNq1l2ltcy8+FaqJ4tbS0JN4BABL7nkI2E62uubkZAwMDyOfz9t4gCKwPDgFcANaawMPR8vcJzydDVj4u9PNQ2S7w57+71k8q9B7lATMoAhrNGb+XKxo+q3LOPhbu7+cLICwUsvbc6km3ZOgKscCXfgFBOnFNdXtUqnX8BoykVpskcpA23u1PlZ+IWkj4cXw+UhznncNxn/k4hM6AXT39ZOngmt94HQjoKEua+hOPUQuZsYAZPwPBxkzWDe1PoSLWDKm4lQ7dqsEHE1qFhEYIHoQ0kaCsc7Lpt5U5JaQ0OvUoQhjMA1EIoQJU5k4jCOZQmTsNITx4wtMULtOWoPlSFBlJ2qhPYVBBFAWIwsDUF0FCIZvRmYjr6vLw/Qx8z7dCXxgG2p/CgCQhBDLGmuH5PqQBQcpdFwrGghBbHZQQiCIVO3mTUC6AyCQnVBZgCmj/FamtD9Yy4kSLUuRUTwDO3BlF8Oy1fJ3SnBvLEAwVS6lkHUIAIrI6dQEg63uoy/poqMsiCssIKsrONTcuKOP7gihEYKw8URhaAJrL+cbvBFBRABUFQFiBtS9IH0p4EDIPSA8ePAuSKdt71SvCvjc4kFDslKralwl7AQMwZypxXhTaGtVWGVut+850wMXnASyCIEhQK7iWjAvR3HzPfychlT6yXGCl4mqd+XVca+fSBXgfuSCS5uTK7+E5G+iDTICD9/9sCqdO0Dg5fYz6RmPhlgsXpPGQviS88Lmj3Ba8TU6VINCTpgHlCfEI7HGqB1HUeJ+o3yTU8HCfBH4ALWx9+ctfxtTUFP76179ixYoVaG5utlp8snjweadEhI2NjVi9erUV6Km/lGStXC7jxhtvxAUXXIADBw6go6MD7e3tFqyRQ/jY2Bi6urrsWJctW5YAFjxnQ1o5dOiQpSI98MAD6OrqSgUTvPz1r3+1lC3yeyFuPwD8y7/8S817169fj1wuh9nZWVx66aV46623sHfvXuRyOfT19SXySXieV6Uxr1Uos3dfXx+mp6ethYGv52uvvRYdHR1YtmwZuru7Ux293XLVVVfh8OHDOHbsmM0hMjU1pRVzQYBdu3bZJHie52F8fBy9vb0JH5WNGzfaOSoWi1bAJytEuVy2grzrowTEyeVciiIBZr72Odgol8uJEMwEHMj/glvGXOGfCgcPac7Z7n5O+8f3K5DMvM2LO2YCGbUsnGnvu/NdPnOLRS0Acq45KdLpQ+faGcQcGSb4UnVnckRnN9p7ucSg5YDktQkZ3NyXEBXMDy7SkQZSSEbnYv+7NLLqPiZP8xj+dD8HFNwhmo/JbWdhTah2/PU9obXD1LbVLKNq3FoWtZMPy8s3NCMpAONgYYRTEdOPVBQ7CYvI5I8whBTrcR33WQhK6RBBRTrZHaIQlbmPIVQAoQLMz55CEJRRmZtBNrcIXiavKVdR3BaPpiSMM3gYGitFWEEUVCCEdhD3pEAu66Ourg6L6uqsxSS04XY1sAiCQM+HiJPm8RdBSLQvsjoIAejUEkBkQBUJr9KLgQXRzcgXhICHNIBCQIMk64RtngcJtCLOK6JsckDYvuhLuebeTA2tcbNWKGO53SieAUNKO5ErCGR9iXzOxxfqs5ibm8es9ig39Zm8gAqIQg0WorCC+YqZv3k9556IkJM5SF/Ck4AKPkYUlKHCed1L4UF5eSiZhfB84zwvreWtOlwzLW2Oup31Gw/aAKkU5QP7KRYQ9pOWhxhcpJGaEkoedj8dqGIa/h2LK8ynafOp0IeafnedoF1gkebcyCkDnPPPBWb3w0oachIaeL/dPrrO27wfPKIMH6NbOEWDhBcXOHH6Brc4AEktI58vur5YLKKhoQEtLS32PAELPmck4FEoXLIGcCsHXUfCUalUsv2l3+m5cQGK+3nQ8yAhlSwjdP26deswPj6O0dFRLF68GE1NTdZ/o1AoWGAxNjaGxsZGtLe3w/c19amzs9PWT/06fvw4ZmZm4Ps+tm3bhnw+j61bt6JcLlsNd2NjI3p6erBv3z4UCgVs3brVjr+lpQUffPDBgk7K7rmJiQm8/PLLFlhcfvnlCMMQDQ0N2LZtG8bGxjAyMmIF8VKphNWrV1tAMzU1hUKhsKCg98orr1ha0i9/+UucOHECjzzyCK6++moA2rJCYIqAxczMjOX5X3755Th06BByuVxVrgm6P5/Po7e319LP6DlSoXCxvu+jt7e3CljweSFfk/HxcTzxxBM4duwY2tra0NzcbK0109PTePTRR7Fs2TLceeedGBoawuTkJPr6+vDoo49iYmICy5cvx7Zt2+y8DQ4OoqenB40mTwmFXqV1QWuZClkDaY/wdUi/pwFqngmbHPjLZR0SllskaJ9QcetxgQXf26RE4SDCpXpya6n7XkgrfD+QxZC/J913sEuVOt/lc6FCfa4lodEnCRqfjqtAWvxP8SFP64KKWOz+s9N31qjNAQ6JMwvVe3YTY+00AsbR2TgJK0qMJizeIotSMlN0TGhhiCT+KSWUSfSmVGgpVbH7rCC0pB3DYXw1AEAoreE2gr4EIIVCVCkjDOcx9/FHCIM5RME8wmAG2hIQIRQKHgDPywORRBTMIwqyiITQ4WrNeLVDgNGKRxVABRBCwZMS2UwG2WwGvsk+rqIQCsJu6EplXgMlQAMKKeFlMjrbuKWHKZNcL6aO6bYFIhlZq0acZFABQkJIzwqfvA7KkSCl1I7r0tPAhMCAEpBCWm25At3L/GZodZhQtoD235CG3hQLugayWnqbPqqkZzTzISIlgUjAg4ec9HDBkgbMfjyHj2c+RhBE5inrZwahgKiM+coMZmf+hvnyaUTBnLVIBAIQczn4GR+5bB5RGCCMAiglIf0scnWLAbkIwstDqTwUpF1LtI4TflRsXfO1bg0/7OjZWgcW2lExlSp+bhaUpACJKkDBroj309+35HK5hDBfS4sH6A8fCdQ8xCrPHMu5+pzTT0DDpeaQgMEBA/9A0++ulYN+J6GDC+R8HNzBk9pPo1yRQMM1rNRmGv3JjVBFWvuWlpYqHw6ql2cHpqzN9Dc/5lJEqD8dHR0WlFC0HU6bIuGNAB8AK/zzbONDQ0PwfZ2NnHJtcMsTFZqT6elp9Pb2JsZLYybBiIBFR0eHBWKtra1oaWnB8PBwlR/OTTfdZBPn0TO+9957rba4o6MDw8PDiXwMXV1dlt/f3t6O8fHxqgRwvHzlK1/BRRddlIjmA2hH5ZdffhnHjh3Dxo0bcfvtt6Onpwe7du3Ciy++iO9+97toaWnBc889h3w+j9bWVpTLZezbtw9vvfWWrf873/kOSqUSXnzxRVx11VX42te+ZgFELpfDT3/6U7S0tOChhx5K9IsAEkVlevLJJ/Hkk0/ihz/8ITKZDKSUVaBi6dKlWL16tfXbIOfiIAhw9OhRfPDBB7jhhhvQ1NSE3bt34+jRo5iamsJNN91UFd1qy5Yt1sJz8OBBfP3rX8fll1+OSy65BF1dXXjuuefQ3NyMhx9+GF1dXZibm0Mul8Pk5CSefPJJrF+/3jqsP/bYY3jppZfw9NNPY+fOndi0aRMeeughvPPOOxgbG8MFF1yAp59+GrfddhvuueeeBCBw96jv+9i3bx/GxsbQ1tZmz5OzP71DuPWS6H5UaC9T/oq0iHcu6HdpWvydxwV52ou0T7iPGfcd48oOvqf4OTpPQJneM/w9xd8FdN/HH39cc71/mnLOwOIfwj8iAQ5STp/N91TAOsKqhNztSBFIt7rw0JnCqsZ554Tztz5Wq2v8Ls4qT/6edkd8zraY6AI/y2tIOrNWgRorPDmikBU4zX3Gd4OuFTZfgoBS0talEvUKe68bNpg6TzF1yIJB56y23HRakKZeKNhcFFq1bY+rqAKoCJEAFCJEKkI4/zGiYB7B3GkNKsJ5qGgOAgpCCiAKEEUBdGhZ7f8QhQEiKY2W3fTSUKW0P4G2VEgDsKQnrFY/pmcJm4E7MgBFSql9KjwPnme8DgSgoiSoqAqvrBQi44ehhICUMI7okZ17YWlOSUuaonwW5GtgJGZBT9csF5Wi/nYDm+r6gLToY8L0NQJbBAQIlU6oqJSEUDpCVT6bQS7jIePH1inC7YC+JvIVPBnCExUIGQAGbCoFVIIAkQKE1FQviCyU9AEvB3h1+qfM6Ohgzn6koBJ2fLT+GZCI9wXfE8pad9JKehK76mNpFgt+fxq4oN/TVAefV84LV5ilwj+urgaNlzRNmmt1qFUvfZjd+njf+E/3g8/bTvsQu3VyAZc7jHOBudb9fH74eQJcBKBI68mLqyF1I1xx8OPOJZ3jQgcfr9tPrg2t5QzvzjEXmLigR4IPzRPll5ienrbWEF7ce9PGQuCNrqdoP6Rxpv664X8JwJBA2dHRgcOHD2PlypXo6OjAmjVrMDU1haeffhpr167FJZdcYhOy8ahXxWIRs7OzADQwHRsbSziw8+hcAGwuDbds3boVhULBWgR43oO5uTm7XkZGRhL3FYtFTE5OoqmpKeFcPT4+XtPR+utf/7oVtvfs2YPf/va3AIBbb70VdXV1qK+vx8qVKxGGIQ4cOGCf4+7duzE1NZVwbC8Wi1X1U7Qpmvv6+no0NzdbgMOBTqlUwnvvvWetiBs2bMDLL79sc5RQdvb+/n4sX74cAHD48GHrBE7P31UAcEDOhXGeGJKeYZoCgwq/31WOcODgvkNqvTPcQv12AQ3/yX9395rbHt+vrsKiVp3nu3yiWj9fcOG0e7bWBheMJCTxs6zjU5RYNKvdWBokWfjK5HVxJB59NI4RxHjyqXWltZJ+fMFYM0YQIyFPa3I1jYW0/Fpghs15YLn/RPNhEaO0gOshijwT3jRKCEsSACVe0E2HxvcihAorWqCWgKjMQoUVREr7QKiwgmD+Y0RhBYjmARXCQ6QFc2MtgAoRBGXkVAVQAmEgMD8nEQYBID0tSAIIK3M650RUgYSC9LWfiTD9CsMAqABSGmdsSO1bEWlnaCk9+Bnte6EBhrQWhjAMEz9twjsAnpSIhLDUGgr/ClAG7ZBZhXwIoa0dHKBwepUGJ0ZqJtW52eMxmNH/eYL738TrhGg79KCV6ZcnNIVJ9y8GEvoeY2VRCp6QqM9lUV+XRUNdFhCBASw6MJgUgCdyqORD1GUqmC/7Zi4FKoHC3LzCx3MKiHyEWIx8vg75XA6eCe0Lz4vHHPG+x4oBPny2qFEttrNlvwCoSCs1d1xi7y58f+rxzwlI8JL2EXc/qLVoSlwIdzX/QGwdcIVb0nb7vubxU3bf3t7exDmXc06ggD7oLijhFhRXUCeaUZoAwQGD6/ztAhISOt3QmZOTk5Zbns/n0dXVZYUg6odrTSFtP6cx8TqpD1zbzp8F1eEKKCS4lUqlhDaULBzt7e227UaT6ZpyF+Tz2jGfJwRramrC4OAgyuWyFdTL5TJ27dqFSqViw7vSPAM6yhBZUHp6eux5mqt7773X9n18fBwtLS22bt/Xzr+bNm3C3XffjdbWVkxMTFhq19DQELq7u7F161Y88cQTGBwcxB/+8AfMzc1hxYoV+M///M9ECNJSqWQF7EqlgrvuugsdHR02XO2DDz6I8fFxG2XqySefxNKlS/HBBx/gRz/6Ee677z5cfPHFaGlpwXe+8x3s378fH3zwQYKL/+qrrybC1f6v//W/MDo6in379lVFqvrxj38MALj88stx33332RC9HEh99atfBRA7lT/77LP48Y9/jJ/97Gc4efKkve7YsWO4++678cgjj2DHjh32+quuugo33XQT7rjjjkSd7e3tePzxx+2xW265Bfl8Hk8++STeeOMNvPHGG7j//vvtXtSBPZKk04mJCezduxf33XcfhoaGcN999+HXv/412trasHv3bnv9zMwMjhw5AkBbRkZHRy3oGRkZsQkSp0yW7ebmZrtWCERMT09jz549yOfzuPvuu23kqoGBAbvPe3t7rXO2awXkljVaD+TfxPcSvW9ISUDFBQccMHP/DZcGRXuH3qm1FBb0nuJWUhco8fJ/PRXqnMFIrWu54pNpVtmNC3yUudqxut60SxOX1PTziIVm95hiJ9K0imnNsyCqTIsM6yuRBCCkFTf3CtKwCqvpTRsaie6uf0VtGwYdFSmnNHQRShl/BFOj4LNghF7j9GtfLuQvQU651DMVsV4ZsBFJIKJoUFH80zjpRsE8BEJIRJbXHykFqMBaE3To1AhCQjvuigw0JSa0yfyk52mNtoC2WhhqkXbQjgx9iGxVEaRQCBHGVDAjeOv2QoSh9sVQEJCejt7kmZFJaSJAGef3KIysQ3JEgIIc1clyYCwUNsKV40zPrxNCmOR6uk9JkKItBvo5keVNQCGK6xQGCULpeRAA8dqUUiysb7I/yliHKKqV9DwbUpeAo6D+RiaXiRAaPEgJ38/A87TPAsM4oMR8mVwWwpvXc6WAbATkQ6Au0Kva87W2TOce8ay1yCbrM9YVKYQFL/RuEbTElfnPWCiUilLfYQye2HlZqNRSHPBADucKHj5/SKGLa23gVCAg+SF1I5lw7ftCFg9eXHBCUYq4ozXdy4Vm95z78eVUBBcouVxnzmPmWnoSjIk2lAZw0rSUdD9RnWhcaeCIissbp/rSwAWfDxJiCLRxAMD7DcACFt5HDrJ41CgOmNzkXCSg5fN567w8PT2N7u5uTE5O4qmnnkJ7ezva2toSwjynuFF/W1pa0NjYaHMuEA+eBEy654knnsDy5cvx4IMPYtOmTXj22WftHLe2tiYodo2NjbjssstsXoXXXnsNdXV1CatDb2+vzSkxMDCAyclJFAoFrFq1CplMBgMDA3jnnXfsmE+ePInFixfbvymp3tjYGHp6enDBBRckkgu6ZWxsDIVCAW+//XbqeUA7lPO8H2RFAaqjVEVRhAcffLCqjrVr19pkcNxiMjMzg/7+fvv3xRdfjHK5nAjRC+h10d3dnaBK7d+/H8ViEe3t7bj22mvx+uuvWzDDLSyPPvoopqensWTJEgwMDGBwcNDmO+H9W79+PRobG3HhhReiubnZCvlNTU1obGzE2NhYqvKCgPqjjz5qrSPkWE7Pmuqg9UuFWyXT6Egu/ZLqIIsYBwFp+5COc6drbslIs0ik9ctVuNSyUqRRs85n+dTA4nxZLxJ0owXqqxKSU9R/igk77jESEgRHKLW/9FVtVneN62hrgyF7P/155ksRE274X8lrCTgIZwwK5FzLG2KaZkY5in0dzFU15l/LlOTkW9UTU61JyMbCeSbnT8QWCntOC5ZacIMVjKkuGwEJSkf5UUYQVaEBFGVEYQXB3MfwRKRzUwgtPAchae5jUCMAHTpV6CRwkdICtQCFWPU12BBCgxbhQUqFMAogohCQUgMBI2hLAYRGiI5BhQEWKrJ5LqSk67UKXueZkPBEnG8iCkOTeduEn1U6i7edC5KPjWUl4atiHwc5V8fCM4V3TVLPtPM0QGp65h/B6GpkTbLwuKbkK2LgmVh2FAI4zpROdeoFoqBkHJ2KqGGejCDI0mWscRE8CJGFl6mH9HVkqchuZe0YH1vukrBWHzLPSTLwHvfK2S30plApZ5PzDWM9Ukjun8T7kYMCBwwmqnOrT2+1ZkmjTv29i0sF4sc51Ye40VzArvVRrQUs+LWkNecRiXjbLpWB1+NSalyaEo9GQwIgHye/lgMdGg99/F2edhoVyb2Oh6B1+08gzbXwuM+C94v6RgKUy+2mOXDH4M4ZAQuaP+5YS2OgSENuyefz1peCku+VSiXr2Nvd3W2fyfj4uNVIT05O2ghGZCHp6+uzORJI2zwyMmLnaf/+/WhpacEPfvADdHV12b4Rf35sbMwCEfKDaGtrw9TUFH71q1/ZXBtBoJOdkQO57/s4cOAAjh8/jpMnT+K2227Dl770pVShnRdKoDY8PIxt27Zhy5Yt9tzy5cvR19eH+vp6m5Du+PHjGB8fT1gXqKxZsybVNyQtl8aZyrp16xL0tPr6erS3t6NSqeDNN9+01+3YsQO//vWvceTIESxfvtzm7wCQyFoOAG+99RYKhQJKpRJuvPFGbNu2zQKgjo4OCyyeffZZXHLJJWhpacHg4KDNPk7le9/7HjZs2JDIvs0tFHSMrKS0JwgkUxb6Y8eOAYANJ9vU1GSjnFH0sVoUTSr8/cDpU7TOqV9cecLfay59iu85d6+6wCENWKTRsGq9M6nutPfg+Sr/cM7bMX++FrhQiZ/6c38OwIZpJ9M07wufP0PVNS0aVa187hpG3j9hj/G5jH9WRfRy64IwjCRhZUYNWSIr8MVzSdmf+VxB+0IIfVpng5YANK0pqlSM0CuMxjsCEECFc4jCeahA05mkqkCSQG3WUcYzAriUEMK347KrSIUQUYhIhZqzJQQAreWWJnqStqQYa4oR5P2Mj3wurzXxSmF2VpikeIGdMyk9SD8Lz8sgl8uBwrl6nq8tFgwNRqGOPFWpVIyVIrKhbBWUBTOSwIjnMWuFitvkwFzpZ8AXMuUMCcMQkdL+JpQvQyAGHtJjoEVx0ZroU/q5qigymC+y1gRpkFUIxFQr6WnaVhiYsSqIKALlHolUCAgJZZ6+gNAhj93nBUBJwiXMj8SgWClpdemwWQpCz6PpC0VZkwzYKl45jdO+B2KLIT2/WoK7kBLSgrZksaF+VQz1q/aRQ6lyf/9HoDqdqfCPJxBTazjNA9AaPdeq4FouuGM0fZw5YOBCNgnnJCBQX7gmnoMQ3q7r4MjHAiQzgdP13KeBBBkeK560/JQpG0DC2ZpTrGhcrqXBpVbQvbw/HMDwdty55KFbeR/oWZDAwvtIP4mOxOeOh7QkiwUJUnxcpPXO5/Nob2+3EX7a2trQ2Nho66Zn1dTUhF27dgHQVhiaPxIiGxoaMDY2Bt/30dbWhh07dtjoS7t378Z9992HX/ziF+js7ERTUxMKhQIKhQK+9a1v4aKLLrKO45s2bbLPr1gs2ohFFL2IqFrNzc148skn8dxzz+G5556ztKPvfe97NvrSpk2bMDs7ixMnTlhLx2233Yb3338fhULBCt033HADuru70dXVhUKhgOHhYbzzzjt47rnn8N577+H555+3NKcnn3wSX/3qV3HzzTejo6MDfX19eOqpp3DgwIGEw/f999+Pd9991wILLuS//fbbuOqqq3DixInEPQuVvr4+a8G54YYbMDU1hRUrVqC1tdUCu4cffhj33Xefveeaa65BqVTCq6++iunpafT39+O1115DqVSyDvVNTU3Ytm0bJicnMTo6WrVPAOD555+3/it33XVXVd9efPFFvPzyy3jnnXewatUq/Ou//qtdh62trRgcHEzQ8Qi8BUFgqVLbt2/H8PAwKpUKdu7ciXK5jLGxMQtKCBxzGhHfH67mn4q7nzl9ku7jASoIiNAxmgtql/rNk1yWSiX4vp/Yo9xikhammr9L+TuhFpXqfJVPXCu3MCyUg+KTh4b9DGOaGBW/IkoUaerpf4WkQ/enN8iAi+wkuKjkabj2BbJS1Go+bY6T8+1aK2oDH2H6lDwXq54ttQrcRsOudRXZCpbeElOugMiGHmUXavEPGjooMzkKkTIUpygwAqgHiFgIjiAhjWUBkID0IATlTTbPVggTgtWDlJTtGjbptFBSWy6UhDLRkWJrgiEsKaWtJgIAJDxPZxj3fd8Ci0wmi7AybyhYekKklDrSk+cZWZ/5wAhGQjN0oConbRJCpcm9YTT/9BPCfb52BZtuc4k5mZdEIek0H4OIGAzQDUm9f3Wx4X+VcX4WBDAkIjCtmTluHceVgpDa2V2ZB6L9cXSkLSlC02+pg90q6Khcpnux2w63CMT+RBTKVihj7TDrikAG9T1O3JeoZkH0T5aIKovEQu87smzYJ+Lcw+qsml+kv2up7X8U0JGm1U47TqWW1sw9xj+QZ9M+/8k1fa71pFZ/OIfajUDkChfcAZRTqIAkOOH3uH3ivGrqBxcGXCGG/nFtaRpocgv3J+E0tVoCE12bNm4qHDSSIOVaoDhdzHUaJ4sFgQhunXEpJ9QGWSwILE1PT+P48eMAtKXC9UX50pe+hEaToZsEZHLA5gkX6fqWlhZLqSHfks7OTktvGhgYwEUXXYQLLrgAzc3NAIALL7zQCqiXXXYZ6urqcPr0aSvo79+/H01NTdi0aVMiWeBbb72VKvgfPXoUmzZtspGrBgcHq6778MMPExnAt27dan0eDh06hI0bN6K5uTlx33XXXYdLLrkkNW8GCbRTU1NYvXq1BXtEORsZGanK7n3FFVcgk8ngL3/5i31uPAcEAQnKU8I17o2NjVi1ahUmJibsPNeig61cudLO5ZEjRxIWNwIkxWLRhvPlljaeb4YsKgRsqQ7XwkmFWwVqKUHod9fiwPclfy8sZE3g7xr+e9o1acf4nqlV0vb0+Sz/cBaLT13O4vua+PbXAg+fwGJRo7Wzrij1KmZESZN10oFb0upA9By3hgQgMSCLWyzchGl0vWTCGyXGS4q0VCLLdpFSZ7qOjHk2bsUIrCqChHk2xiIRBbMIgznMzJyC72eRzdYhm2uAlBl4Xg5KeIiEj0j4WvBHCMm7bJBSrJFPRgKKBVAd0Snm/8NaOSyUigJD0xHIZTPIZrPIZrNGRa6BUxlAGFTsvOiNm4Hn+5rOBPJrMDQq6WkAFYXM9yHOAULZr4UfZ+KGIC2+YGMQFkfFU69spCcFEkpJADVARhGIkfEckZ+EFJCStaOIjmWOCQLH2s9ChaFJpmecu6WE0k4SiBRF6JKQno/5uVlEkc6s7XkehO9rvxylEKoQYVCGCmfgA1DSA2ROPzdj0Yigo9dG1jrGC4UXUFDx44ROgBfFY7FjcoV4DjoAHd2MKFx6LXBKWYLaR7QxBgAStCi+7hdQnHDAkmiDnftHLWkmeJdawwVjDhjSHBa5Rp4KaRBdCwgJRFy4J8HT1fxT4VpBEmrJJ4D41jwMJKduce0k5YXgIVt5/dzKwrWjpPEvFou2PfJV4KFz3Vj43JGb6qT5ojG4AIbmh+atqakJ09PTKBQKVZYKDpi4dpXoJcRJBzSdhZ4RCXCjo6N2jsg3g+qi0K7kz1AoFDA0NGQFwjfffBPXX3892tvbLTggzjoJhsPDw9i/fz/6+vqwbNkyjI+P20hD+/fvt07O1113He677z4bcapQKFiLkxudibTTra2tuPHGGzE8PIxCoYCdO3dix44deOyxx/D222/j0KFDOHToEGZmZnDNNdfYkMDcKtbX14cDBw5gYGDA1j8zM4N/+7d/Qz6fx/79+zE9PY2NGzfi4MGDiTX5q1/9Cr/4xS9w5MiRxPNwrwOAp59+GrfccgsqlQqGhoYwODiYOJ92z7XXXouenh689NJLOHTokD1+//33Y9myZSiVSiiVSjbUL4GEyclJ3HTTTfb69evX4/vf/z62bNmCe++9F6dOnUJLSwu6u7vtOmlpaUGxWMTp06etH0RLS4uto6urCzt27EAQBLjsssuwdu1a3H333Ym5KJVKGB0dxdatW9Hf32/BHQnRtJdGRkYwMDCAzs5Oaz1btmyZzQA/NjaG0dFRG0mK9jRR7XikNKqX1jUHwfxdQdfSM+KWzDMlz6R3A93Dr3XpTUD83iNal+sHwv2bXMUK/U7XnUnh82nLZ+ZjwbXUafdQ+bT+GVrLunA7ScFa9y6lJiS0slYCEIkr4rqdPrh9sneIqnmo6q3R9sPSWmoDhrhbC1uEyGmWt6aF7qSWlbTUEMqxWJi+u/ULyh7BQIu5WomYdqLBgon4Q2tBASTtRVCQYNea0KJROI8oqCCszCKY174TIpoHIgEVaXCiDRSe7ZKmYUXaWiHpWUdksLBjkULGNiFL7wmhlBbwJWWJVsrQjhAL8gLG+iCR8TPGKVgnWAMA6SlIqSlUAtqfQ0CHllUVPV9KKYRRHCEqk8maYyGElPA9Cc/3bCQoYawz0ves0B9H00JM8YkivcqY9pqea6Ti3BXCUJSklMjmsoiiSL+0lAZ81IaUEsQ3in2eYosHzWn13lOgjN5CCHiejzAMdQ4Sc5+keYtChKEGa1EkEEU+IDRaCOY+wuz0BOYr8xDCg+fXQXo5CJmB59XBFx4gPETmeWoblaE90dxAr2kNICJzLM4NYilmIIBBmCCmS0HBAEFaqSqxf1xwEUEDhsgBA3SN3XNKaV8lej/xvcXqTCtn49P2eYMPruVPyxxLQmbaR8/VuHGtOhVO+3GBh2sxcPvDqUdpdCOXD80/3tzngY+LAIHrG0Jtc4GFhAkCK3ScksfRPPG+uQ7bpFV259wt1HdOH+PUCarDpYFwqwJ/Xhys8DYLhQJ837dOv0Sfov7TWCnCFTnNAhoELFu2DLfffjv+8Ic/YGpqCnV1dZiamrJJ/0gDTnUXCgUEgc7TMTY2ZikibW1tuP/+++H7Pk6fPo2DBw9iw4YNVnCbnJzEyMiIBX8EEsnhl6hPZKUgEJbL5TA0NITp6WmsW7cOHR0dWL16tZ0z8v9ob2/Hvffei4GBAaxduzYR1YmXXbt2Wc079yNYtWoVVqxYgSeeeAIrVqzAunXr0NXVhcnJSfzoRz+y17k+Db/5zW/geR5efPHFxHEqt912G55++mn796233mqPc2DxL//yL3j33XexePFieJ6Hp59+GqtWrcJbb72Fhx9+GPv27UuEmX3jjTcSzuLf/e530dDQgAMHDuAXv/gFLrnkEnR0dGD79u12XsfHxzE2Nmbv+cMf/mCd42+55RaUy2Xs378fK1eutOuLLEy//e1vcezYMUgpcdddd1lfC1qfW7duRXd3NxoaGlAsFvHaa6/hiiuuQHNzs6Xokb8PD3nM9y75SLj7idMggep3AN1D1/H3W9qe4ffwNlwlAle0uKFjOZUqzdriKlLSLB+fVTm3Vmp8rKq0c6L6nD58XkwAcX2fGJQkyAi2aK2qcxnO3jmdX3amsYrkxcmf7vmqC88WWDiVAuDjSQg7pIVOtOUCMuhBiuToCFyAAQuioDBeDsgyoUhTzm0HmgNjEtXNYX7+Y0SVMlQUQuvBtb+FzcQtpAZD0tM/jfzrcWAhyOUbgEoK5aS5147bzDkaClEY6FCwgq9pAU8KeDK2HhCkUsKABUP/Eew+FUXaNT2KtHeJMh2AB4p8FSkF3xPWahAGOvKVYLQnK+DHuMj8JGgW06wS1BwCeoIJuFKDLCmlzRxOgArSREkiU1MC9HK8bSxaIYfpKvHMpagG1dL4imhKU2iEeE0n09stQliZRWXuI1QqMxDCgwrr4PmLIGUWMhNCyAykyEBKX1sxhKfrgIdImZweIh4ChbQVKhbcIxUnBYzBhlkb5vWgLW0mShabc9eSYN9/Zp64n0UaEBDm2aRR1871nZZqGXGAzOdRapnqa9FpFjL7u6Z9NzJLGvWIF659B5IfaLe9NEoRFyBcKgS3GnAtaFr/qR88CV+aDwoXEghYuIKKOy7eH3f+OWjjYIW34Woza1l20qxF5LzNk4vxMRCQKhQKCRBGIKGnpwednZ3YvXs3Tpw4gY6ODiuEkjWGtOYArPDX2tpqc0YQlYpC305PT6Ours5qp+kZkKXEFc44ZWZychJjY2MYGxvD8ePHLYXqzTffxCWXXILW1lZs3boVpVLJ+ncAGqC9+eabmJiYSBXwL730Urz11lup5yhjdaFQwP/4H/8D1157LTo7O61F5z/+4z/stX19fYmoSwBqggoAWL16NX79618nQsXScbfs3bvXJs8DNOWoWCyiv7//jH4aO3fuRH9/P4aHh3Hy5EkcPHgQ09PTuPHGGy0NirT/X/3qV3H69GmUSiWcOHECnufhvvvuQ7FYxIEDB9DR0WGzYJMV70c/+hGiKMJtt91mrSlU7+TkpE3eODIygunpaRw+fBgrVqywVjNu6XMVDbQ+eBQn1y/BLe6eS7uuFjWplhWD9yWtLbqXvwtcK4V730KUqM+qCHUWqq2PPvoIS5Yswf/rnv8vsvlFtStzgEW1pt4IWzXoOAsdW7A9kpxYS+n1udpV57CgRG+IBSmmBU4K9mn9od8kG/sC4+OCvGA9ElW/QKQIaTEYEOZ+BhRSxkw+FkrpzMtukUSpEcl2qwegf0R2zLpni7JA4yKBxTkgo40LWpCUHoIwNJSfisk1EWkhVGlH5TAKEUUKURQYJ+g5CBN+VihoS4CXQa7hAnh+DtLLWYAjhbYweDZaEyAMsBBGqCdalp6AGFjobNj6hM4hESGozEPatUBCmodstg5+Jodcvh7C8yCldgYnf4X58izKsx9rQCMlMpkMlLEshEGo++t5yOXrDEUqE8vvFBlKmRwWJl+F6a61NtDzsxYLZULoAvaZCiCRuTs+SBYJETtxB4H+F4bgrwLf1zHHpRe/rKwhS8GAK8/MpVk/MnYupxvmy2VjfRH2eVTmZxEGFczPleH7Oo+H9DIamEYR/vf/LmJ84n/j9PRJKBVC0H4SEtLLQXo+pOfD8/OQXgaZTA7Sy0DKDKTMQggPQmaNTUwiFJ6BptpXQ1OpiBYVC+dEhSMfED22+PnG0cqYpcPMTWSBSWwN4fNf9ZrlVCj+nOwh3h47Zi+If0lrQymF+blZ/P8e2YlTp07hC1/4Aj7LQt8IassVbN0Po0uFouNA0vmYCs8bwRNcueCE87O54MzvdZ0mKZoLUSdcgYHu55YSV1hwrQFpvgH8OrePABICL42H+jk+Pm7D6PLIM0SJaGlpsZQOPi7irPNwtGlzT+3ReaJhAbD0Mk5HIqdrANbHgGcbbm5uxvT0tE3eRo7RBBIeeOABvP766zhy5Ag2b96M22+/3QqRPT09GB0dtRYLorLwfpJFg/rR09ODPXv24IknnkBXVxdaW1vR09Nj55L6SHMQBAGee+45FItFvP322+jo6MBFF12EtrY2FAoFDAwM4IUXXgCgterkvPzQQw/B933ceOONVRQV3/cxMDCAP//5zwkLwZlKLpfDrl27bMK6IAgwNDSE9957DwcPHsR7772HkydPYtWqVTaPg1vSgMNC5c4778QDDzyAiy66KPU8DwMLAJs3b0ZfX1+qUzWVo0ePYnBwECMjI/j5z39uj7/22muWEkU5TSj/RFtbG6644goAwEsvvWSf0+joKEqlEt58801s2LABXV1duPLKK22dS5YswSOPPIKtW7cm9jIQA1lOW+IKA7Ja8L3CKX70rPk+4hY4IAnqSbnAFQA8VDQQR27jNCq3X0BMc6TCgT6NkxzU+V4mYO2+l9LABp+rjz76CMuXLz/v34hztovUch5MXkQ/nI8pxx2uFu/TaNcEb/Qc66F7SWhyStV4nd+qu50GcJKApBqAxb9z3wV+v6Bjyh5KAgs6z6wHSX0oa6+mtSMOl8qOOGMkEKNinwhYudWqiVWkrRAC0M7RrD2llCbJw4RiDSs0akgvo3n1QmhgYQCIkB4gfUj65/kg+o8nyVpBEYUAKXT0KcHWBeX4IO29nW0zBgIWmhako0vpudTgyPMzWtCWHgQImFH9pj0SoAU56WotPtGY/EzGWiB08AAJCZ3ngYCFEBIQoUkqyNafMj22Vo/aWnG6ge9BKdxnqcFIZKIZJRMXkWAcC+CSnh9UbLGJ1e0x8FXGqkQ/Ec+HXgfGOT5hflF2SEJmILxFUGIWESJtNTDrKox0BCipFDwVQIY6opaQ8/oZyYzJDZKDdvb3AelD5yLJGIqa1BYNmkVBgQmk6Yow+U+s0UcHCFA6FwkBB2EzsMM4iGsaFQcg3J8jntokFYpToHjRUyjMTzanMBNZpexIUqA+T4uFq+lzgQZ9DGs5+XIBmwuDrtn/TOZ9V1tPghuBExeYcC0g77+rSeTj4dxmF+ykFU6/4hQlPj7X18S1YvD+8n66lggSaNKsITx5IdfYc345EFt4OLAioY1C+wJIgDoCa8Vi0UbpISBQLpcxPDyMI0eOYO3ataivr0ehULBWCf5sKKIQCd0kGAZBkKCEESXprbfewtGjR9HR0YHe3l7r+0KRpHzfR2trq/WdAYAVK1ZgYmICMzMz9lx7ezsOHDgAADarNQCr+ab8GzS/1N/JyUlkMpkFn79burq6kM/nbVJBQDuHFwoFNJp8DVNTU7jyyitrAouHHnronNoslUq49NJLa55va2tLAIvjx4/jvffeW7DO4eFh6/i+ZMkSnD59GoBec6Ojo3jggQeQz+dRX1+PlpYWXHLJJejq6kIul7P+MUSVIzA6MTGBDz/8EFNOtm9y1qa9wt8D3C+JCj/PqU8cZNN7gVMVASTWo2vl4O8L7kzu0hndPcdpj3w/8/7SWNzCLaO1AMRCFsaFrDDnq5wTsHCjyNCxhT5gaYK5Yh9IWw9S5frUsuAHk4OMKqGaxeJnVyVABRtX8iMtY42t09dkf0QC3CQpCTEYiQ9xy4lrlai+l8tyglUk2PUJelNi/KLmJBOQEbyPIEFQONcZAdfpmhQKNpmdUib0ql4fRIuJhNBhSKMIAmSdmLegwcssglIm/0RUiYEFjGDuaU2/8DKWfqQjrxo6lNJgQsAzfdFO4TbJmyn2+ZKW32jylYoQeSGISgXAggrPz8L3s0ZgZXlFLEjRcyKFiK0/Rij1PJ0fI5ulsLNEp9H1+54HHs5UhhJBEJhM21wDDjB0FAvlSIJcTbPiwIQJ+EYA1XPqwZPmd5GM2KV9XuIoVzwqupIKOnqvBnMqjMxVHCwYkGed5/VxbS0hCw2slcBcDektgpdphPKUpiH5HpTSa6USREAkIOBBRMqAzzltm5DQVDUpkfVz8PystoT4GUBmAC8Hz8tChx3WVoxIGFoWRBzGNtJ16/3PaXteDBQi5Tz/2IJEAJD7cyTWnAWVyXdokj4Fs0b08ybAQiCIgzf3XUw/06ySn3VJ+4DRcfpAE+2Hch5QIY1bmkaf7nG17fwj6VKYXMGbtH/cKZkLCBzUuP9IUKG2uTM5CRTcklLLKkFUKOKGcyoDFa6R5G1QPWlcaxL0ySEbgD1OlCIS2l1H9XK5bAECPQPuG0HRc8bGxqyATcnpSANNWlouXE1OTqK/vx/btm1DS0sLHn30USu0kwPuvffei2KxiKGhIfT29qKhocFGEWpsbMSBAwfQ0tKCnp4eCySGhobQ1NSE7u7uxHOlaEUnT57Eq6++iiAILFVpdHQUQRCgvr4ed911F7q6ujA9PW3zZTz11FMYGRlBb28v2tra0N3djaampkQG7Xw+j5aWFkxNTaFQKFgr1/79++08kT/A5s2b0dnZiS1btmDDhg1V++SGG27A7bffjpdeeglf+tKXUC6X8corr+DEiROYmpqyCe3uvPNOfPnLX7bhWk+fPo29e/dW1Ue5Gc5UNm7ciGKxiJdffrnqHPluXHfddejt7UVraysKhQKeffZZHD58GKVSyVolqa7m5mY8//zzAIDf/va3+MEPfoCmpiZrsSLgNTAwUEWl+sY3voG+vj6sXbs24etB63hqagpjY2NYvny5TRA4NjaGHTt24IILLkCxWEwkeORRxNIUCrTvaY3Ts5yenkapVML09DTGxsYsIOFAn5Iucj8jDv6JOsfBB7dm0PUEhsiBnb+n0hQm7ruE3kNkQaG6+TuVR03jSgFXWfFZlk8VbvZsNGLnojU7F3BxbjW6QIML87GA7ArQtShBVUDCMXekXZtmJSDhISH/JxGLaYGEWKd/iWsMlanKYsHasN7ZrA1u7TDj4FYIaW93+s8uouqktDpgTbMJtTCowope0ELAlwLSk1DwEAXzUCpAUJmFn62HEEJz5JUxQUhpgEVoAEiIoDIPQCDrZeHBCPE0LpMcDUqHMTVSIvVOz6Ide+zUrOlaWtDViexCO0TpeZCeBy+T0UKppQaRRlsDKT1W85TIJ0L/AQkYa4cHaUAJhICUvom+pGk4iXDAUsDzdJjZSMVhaDmI0NQxbmVIL8JkESeH8qSlIRb8tcVGC/mhSc5Hjtg0N+6+p18VFMIoQhgGdr1IGybXs/UqGofSTuvKzGEGCpAeFCTmQoGZisTUnI8oiuD7ElKQA7s0z8SHMPVFQRlQIRCGQGB8a+bn4QnjK+NpC4nn+8j4OXiej4yxaAjPg2csGpSFHVIasAG9Fg2YoER82oIR2eMwdCVhrRz2aNJiUQU0kLiODlrgQNBQxW1Etm5YKwkvvH5KCPn3LFzQo48lkAwzyj+Y9DElLTm/hn66WmH+4U/jQ7vUK9cSwa0LXOvI70uzXJDAzvvNfSx4X1w/EKqThCaqO80SQ3QsDjgo8hD1w7WkFAoFALHwyzXyfK55ojqiZlBCOSAWQHgiOhoDRdjxfd8K9UQp8X3tY0H3UG6Bu+++2wo97nMBNM0ok9F5fvr7+9HY2IhNmzbhsccewxtvvIFvfOMbaG9vt8IjAGtVoP5SVK7u7m4Ui0XkcjmsXr0aTU1NFmzcfvvt1qIQBAFGR0etRWNsbAz5fB65XA7PPfccuru70dfXh/7+fkxNTeHhhx+2Du5kcaGMz4BOUNfY2IjVq1ejVCqhUqlgx44dmJqaQn9/P372s59hamoq4bTd19eH5uZmrF69Gs3NzVYYp7WwdetWa5l588038ac//Qk7duzA1VdfnQosqPzyl7/Eww8/nPC3WLlyJfr6+vD444+nRomiMjExgVWrVmFgYAAvv/wynnvuObS3t1urDwneVA4ePIhcLgcpJb7+9a/jpptuwq9//WtMTU1h06ZNdl8MDQ1ZPxRA+5qQ78sjjzyCjo4OXHHFFSgWi/Z5dXV1oa2tzVLP8vk8BgcH4fs+Hn30Ubv2+V6ivUFWrdHRUTQ3N1tfDC6k8/3p+7711eDJ/ThIqfWemJqawujoaIIq6CohuEBPz5jTm4DaVEpqn37ydw6/h19HbRIdy1XE8PfaZwU0PlWtrpCR5khI5cxWBlNH8s/zAF54jU7tKZaKhZ2h02gGSU1/Wp+IHx/TimKrAFVBPatqXlhR0NpbeP3cAZTXnwZgFO9yjXEQsHCmxak7vsWCG6XpR4n1EIWIBDS1RJhkaJQoDQqIQkRhRSe5UzlAZbTgiTjako4mZZycowhhoHNaqCjQ8yFi6glUaLGTMqDCRkyiuqDFNd5PDiwAaLoTrWWpfSk8L2PyYZB22NRkBGYudMeO1nHLOoqUl7R6MQuVze1A9zmWJ25pcEtNEKzYM2L/V+FKdj/1g+fTcOlxVLm1iChACWVzcfA+WEtfglpFFpgIoTnmeSa5nwSCSGEuUPh4PkIYKviBgmfC3/q+DwkNBoRx+A9VaACA1AADFCtKQYoI0gv1vWEFURjA93zAC/Sz9XwI82whIxB9SpJVCYipUob6RAy1WIgnmh0P6Xu2wELp3hJANFYIZd43dC9RomDvjd+1afTUT+IIfj6KSzmq9eHjtBs6t5BGjQMHTiPg2sOFCl1TK1oL718tqoDrIMmpDrxud/y16nf7R8XlXQNJfxJer6vtTKM3uACJftKccGuQG62Kj5UEeBIY6Xrip1M9fF46OjqsZYqHt6Xy/vvv44ILLsDixYtx9OhRC8pIgCXOO+87CUwEEuhca2sr+vr6qoQq6iNZFIJA89Tb2towPT1tLSSLFy/Ge++9h5UrV9o8E5VKBS0tLXZ9TU9P4/Tp02hqasLp06cxPT2N1atXW7oXAbeOjg6MjIygWCzi9ttvt3kzpqamMDs7awVM/qzJIhMEAdrb29Hc3Izh4WFb5+TkZCJUa1rZunUrDhw4kLBItLa2Ytu2bdi/f38iCtV3vvMd/OpXv0oop0qlUuJv0n7X19ejvr4e09PT8DzPZgCfm5vD8uXLkcvlMDU1hcOHD2N2dhZXX321BWO7d++2IHf9+vXYuHEjRkZGMDc3hyAIsGnTJrS0tKBUKmF2dhZhGFrHdbIs0XNqaGhAb29v6rvFtQzyMM/8Om5tpGM8zCzfA67V0wX85I/Era3uu4W/m1xA4O7Nhd4RbnHHTIVbNt3z7vvrsyp/H7tIrVIl5XyCKs7h48kdYBOd4ALygm2kgQ9REzAIhhQSTYv4PiqSC+sO0IqzKaeDFyEFm8q4j3F7tUETp1OB/AaMM7Tgbai0+1WiD56n6VBCavqSigJLyYkCZedJRRGgQlTKpxBU5jE/N6PBRiZAKBWkl4WXrbNgLopCRFGASFUwVz6NSsWHQKgzWHu+sQQYp2Shox4hAqIwQGV+HtlMFtLzkjNkhWkR54iA0e5DIDTZrwHtX5H1s/Z5ED0GSvdNRZHOX6GIPkUSvYAUuu44PG1sIVBK+1FEoXEcFsKOhy8YFakqQTKNk5/2bKssTfGjY1YVsLrIwTuZZRoAPE/Y84BCGFSMA7+AJzxjWQktQLIUOAM8qejnGSJCgDDQYWc9rwGQAtJTmAvm8dHMDE787SMEQQiPfHQg4PkePM+Hn83Ay/hmbgWk8LUPhfHdkNCRoTwoeDJChBBBOIdypQJEZSA6BU8IZKSEn9FznslqZ3DPz+oAAdLXOTSEgSnCNyDDhLdVMbjSzygGG4rNXSodij8KpRCZfCj8mOskrqDijOG8rZR1oMHa399i4QrU/HfSMpOmnCfS4rQgl4IEJPNY8BwQ/BhvjwQD14JCQgTPiM0dKbnDNgmkJPBxYEHcZVezSNQKEgC5QzMXTvl4SSjnMfBpfNTu5ORkVc4KLhh0d3cnLCWk1SQBi+oiChZvn+gf+XwepVLJ9pOuI23xnj177PG2tjZ0dnaio6PDaplJ80sWFLLOkEB/7733YufOnZbmA2hhmbj4l1xyibW27Nq1y1o9aM7o2TQ2NmJ0dBR79uyxlJ2Ghga0tbVZYXx6etrmkRgYGLBJ437yk5/YjMyFQgG7d+/G888/j8svvxxXXHEF3nzzTezbtw+/+93vsHHjRlx00UXYs2cP2tvb0dLSgqNHj6JUKmFgYMBGM3rhhRdQKpXwox/9CLfeeqv1mSCKDT2nyclJdHd3Y9OmTRYwkL+G7/t49913ceLECUv5CYIAt99+u6U5vfbaa7j++uvx7LPPJvJJrFy5EseOHcPll19eBSoA4E9/+hM2bNiAtWvX4pe//CW6urrQaPJ40LxQ4aDimWeewTvvvIPDhw/j4osvxsMPP2ypZc8++6y9dmJiAnv37sXevXtx1VVXYfv27TayF+3D5cuXY3JyEm+88UbCd+Oqq65CS0sLWlpasHv3blxwwQVYt25dwhm60eTSoLkcHR2tAt0UvICsaMuWLcPWrVvtunQtjwTkiM7G96EL7F3gTrRAencRqOQO29wySIUrAzhwp/o5oOHvCmrbtc64QMT16+DAgoew5dbWs2E8fJJyzsDiTIK8e35B60VSPtc/lHPNJ+hDzWtF/HdsuyB6jEUXqVinNhXKHGPIwFYnkKSd0FlBYlJS6EtYAoywJ0DRfggA8X4goW3mQID3wwU8yTY5aKJjKgFMYkHc1EsnmEZcC5GAEJEWlnWQVegYPAoqDE1CNk2NisIKKuXTiIIKomAOofR1tCjf08I3skbDa3wjhABFThJQiIKK1k5HAaTIal8B4UNn3ja+ASqCJw3YAefxx87SAtLWq88p6LxuEUIjyFkte8QFPS3QEbCI6SdmLkyEJAt0TPsJjbZK2MD0PCtlrDbpgiP9zl8ISW5+cp3yc7LGvokSlgZ6sPx+DjrYHlLKAiLhwVosCFQww028vaDzPFB+CM8zoXq9rKaGCYmM5yGbzWhrRBAgiCIdF0oIyNCDlBV4wbwGlAa06QhWUlPOTChdT2hQ7oV6/UhkoJ3uPQgV2vC/QUVBBgEqwYyJNuUjk9H9kX4WUmYgPB9C5iDgQftoGAugEFBKAJ7SKVrAftKzYWDDpUrZ5+ZYImoBi8TaIbqUIt8buyJASQ//3iUIAkgp7QeNWxfSTP2uxpHTnoAYMCxkAXCBjFuv2780TaF7H9f6cToX/Uyj9XBwQmPgoCaNfkBtc98RDohc3jWBDBKMqLh5PNy54A7c1B/KzQDE9CKuiSUNO4ElEuCJbuX7fsIpmtrhNJN8XicuI0G5vb0dw8PD1gl3cnISHR0dWLt2Lb70pS8BAAYHB9Ha2moFTg5wSLCbmppCpVKxczE5OWlzJLS1taHR5KYYHx9PaOlpnOQsTdm6wzBEpVLBO++8Yx2JR0ZGrPac1msYhli8eDE2bNhggQA9i56eHgCweTXy+Tx6enowODiIcrmMSqViKToA8Le//Q3PP/88tm3bhs7OTvzgBz8AoH0PxsfHMTMzk8hyTX9zug6gfSOOHTuGTCZTlRWbl3feeQcjIyP453/+ZwA6jwV3nHbLwMCAtUx88MEHFsxIKdHT05Oap6NUKuGll16ydLGmpiYcP34c77//fmo43FdffRVf+9rX0NbWhvb2duRyOfi+dtofHR3Fn//8Z1x22WXo6urC22+/jWPHjmHPnj3o6+tDd3c3gHh909qrFQDCtRQAceQ0V3tf6z1CAjuPHpdmreBKCn4/Of2TxaoWhZO/F+gnASqeDNN9v7p9d4/x/uTzeczPz1c9k/NRzglYnC2oWJhORH/Yg+yQYAJIUjD6NP1JtMN/GImHnG5j0pGDeaosFLGwxIV2fZ20fyePp/Utae2Ir1Pg9Og0qoudIxZiNAFgqP5E0y6QEYlr6YoYZ2mBOPUesL6agUppokApkyeAIiUhQhjNIwoDhOEcwkoZYWUeldkZDQxUiEApqGAeMp/VGmjkrVCmLSPQIV5N/8JgHioUUFIg42m6DQELAYUgnIcA4HvS9CvUIVyFpllJ4Zts4ILNVfx7JdDWlsgIaYhi/wBl6D8RAQsmfMe0KmnABQnhGlSEUVKApHY9z/D8VWSzUFNJcwKOw6Umr5OSPZmae8fQdxT5wmj/FQKPadtK+38kKVp0rwaCMX2KkhTyujidKjJZv6WUEJ4PKTz4mRyk9KCERDaTxaJcTgPIMEClUtFWCAPYqGIp4kR85AuTzeWNs70HT8iE5c1auASgg8+adRrOA1EAoSrGyV4im/HheToUrp/Jw/fz8LNKWzGEAoQXU/bMhlFGGaBEDMWsbwwDkbGlo/Zz5s9aP7EzW0J4PQAgPweLxdzcHKSUCa4x/6gDqKLZuII2j8Liatdr3Uf3usAhDUTw6+knCfE8szZ9tAkk1Ire4mo3KSJSmrDi3sudwYnaQyE33THRdZRojtOjONhwNZM0hiAIEpFyDhw4gKmpKat55Vpfop4UCgWMjIygs7PTZrkmqtHY2JiN+kSAg5xYKWu27+sQrIODg/jyl7+Mnp4ePPLII+jp6cEbb7yBubk5NDU14aabboLvawfs3bt3WwpVa2urpdTQuAqFAiYnJ1FXV4exsbGE38TIyAieeuop61/BfQLWrFmD9vZ2O+8EnKjMzMwkhGyKwLRz584EhaWpqQnbt29Hf3+/dQpftmwZbrrpJgwODmJ4eBiA1hL39fVh586dNqRtqVTChx9+iA0bNuDEiRM4duwYjh8/bi0zgLY+vf322zh16pR91rlczj6TpqYmrFmzBocPH8b69esT/iZpwOLiiy+24Oo3v/mNPf7000/j5ptvxpYtWyxoeOaZZ/Cf//mf2Lt3rwUVbomiCNdee60FFhs3brQA/E9/+hOOHDmCubm5BMWJgztqZ2BgAL/5zW9QLBbR29uLnp4eCxAGBwcxPj6O3//+99i+fTtaW1vxl7/8Ba+//jqiKLK+OBxsUk4TshYSbY/7MZE2n/YTB6yu4sJVYtA9tN5pT/HEkK51koMLQAMLCs5ASoI0KwkHFvT30NAQGhsb0d3dba8nqhqP2MYdxvl7ww1S4fv+ZwYszjmPRSZXV11JqqCa0lgVsIhRhKj6vxpYnMlqkFrnQhYT5z7BhJD0sSkQFBHsPggtSMY+EEkBjcJlalqTZPUlrQoicS+3fLj1xn2h4WqhhpxhAc/zjeY8OVCymAhFrUmLkkR8WQyeEJk+2M7E90YKEBTSNYQnAmRkBYv8CB5CBOUZQ2EKocI5qKiCsPIxwvkywvk5VMplIAq1kGeyKSO7GJl8A+q+cIHRDEs9OKE7pUPKKkAFUFEAhKGOBiQA3xeIwjlEwTzmyqcBZcKiSk8LgPDgZ3PI5OpRt2gJ/EwOnp83/Hpp6WgKCuW5OcxXAuPwm0Fdrk4L4IosXBo4Rca6ICBt4jmPoiAJk8wDkc1zEJrrAZ1sj/J8CHuPyQMhJZSNEhVaITIKlUlqZyw5ymQxl9Im79OZrWNhVBirie95zBISmfoiBEFFh2z1jHO3YGFUhYqpXCw/BRWdHVsgn9Mv5yiKzLUieY+xxERBgLn5WYTM38H3dYQvCIFISpz4aBYnT89i6C/v4NRH0zh9etYIPBUdjcqCsdg6QT+FaVN4BCpi/xnPo/nR1jUpTdJDCi2sAmR8gUxGIOsLE4wg0I7j0oNv6FEZE21KUoQy4dms64BO2Ee7QrHnALMaYIAFhbSlNRdbNuh3AnBpwCK2UiQcv8lvQwHl8gx+9eBtf9c8FkeOHIEQIvGBdYV7/iGnkqbt5h9B+ojTh92lQgFxxCVuHSHtIj/mWipcx/A0EMOpCgCs8EIfceojFdIuckoIHxtRHCgrMGnXSdhpamqyVgESnEigKRaLdh6pv1yY5ZQpcryltikSDv0rFAp47LHH0NPTYzXhNFaqh/juFDI2CAK0tLSgUChgdHQUbW1tNps2t7qQoDs8PIy//vWvCMMQy5YtQ0tLC5555hmUSiXU1dVh/fr1+NrXvmbnj66hiFNUOFVkcnISpVIpMTaak46ODgtS+vv7MTAwgDfeeMPmi+BAZXJy0mrHT58+jSuvvBLDw8N46aWX8OMf/xhNTU3Yv3+/FXwJTOzbtw/btm1DT0+Ppej4vo8f/ehHOHLkCN58802MjY2hv78fzz77LObm5rB9+/Yq6lGtsmrVKpu/YWpqCn/9618TuTFWrlyJLVu2WMd7GkOxWESlUqkJCnj5zne+U9Wf119/3Tppl0olvPvuu6nO4pdffjmuvPJKNDU1WWsUAVuaW/p59913IwgCm6skCAILpKampnDjjTeivb3dgoNCoYCGhgaMj4/joYcewre+9S18+9vfxkMPPYTTp0+jp6cHdXV1aGhowJYtW+xz5NnTGxoa0MhyvnDHeE5j5FHMXCskt7DyY+5PTkFy6YykpOD3c0HfzXDP92s+n7fRtXiUJ54sko4XCgV0dXUlos35vm8tJADss+Hj+j//5/9g5cqVn38eCyrn6hhYGxSIlN/SQcrZAQskBJ8FqVjJg2cEFgKAldxNTgQtPJJGVjtvcmoTAQEFWLoD195aa4UZAO8DwxP2Go0BuBs3WVv076QdFTD0EUaXIA19rFIVpq5YU2/nAlr4SgAzOy4au85FoQX9CoAQSgX2UimECS1MgxBJC4SpX2dENtGV5mchpIdgbhZepk4715pISsTZB7TGXkUhVFQxSe4iqCBCGMwiCsqYn50GVKT9T4QPCA9C+ojCPBAF8KRAFOTgZQMrFMZRmQTC+XmEQQgpcogEEFSk0bTrvisDpvRwBCAVRKSdeCNE5mlpR2IFQw9TCqEi/pgwoqdeP1JFZrF4RnhW2iEYsdCp/1Hm8sjOJfmxaCDy/2fu/2Psuqo0YfjZP869t1zluEjKbadTUaobM6kolZdquiIqwhEFGBGEIwxtNG5NWnLPJOqMOryEnowGPvSjPw0AAQAASURBVGgBAtSgiZq0CG8HdQQZYdRuEdFuYYQjPGDedivmS3UovlTkypsCitflTrldSSpxlevee/aP74+11z7rHl8HMh1gNjhVde/5sc8+e5+znrWe9SyO8iB/DyiiGGZveMj0p5CiFSEEaEWJxD1AVtN+iuc830O5RkQko75uc25IFP3Kk1ohVxYHG91Aq9nAFREYHGig0y5wUbfzmIfgAXC0wqek6ZiSxyOQqFgIGjopWnEEyfsAbUKKqFD0wxhdFVaMibiX1p4ODLBJsSsEQCsCRFykz/pGAnQW2hDIUKaRry3ylE/Ljm8Lgwak5UFDq8DV2GNUQogA+bMcERG3IIoD0/pXBDZ/A6pQ3CRwqCdl1412AD0vZynPyE3uLz1z/Hc/o+By56r3k48h+9mPenW5vy8XmbgcHaveP3mM+vH7RR8kPeuXOa48vgRH0shhehEbHhcuXMhjwkaalKzlCtZ8TJnjIulU3AYGBvL4rq6u4g1veAO2b9+eOfQSCHLVZXmdclwkX5z7X/c+A8iG2Y033pgVgvh+8DWNjIzkiuErKyuYmpqCcw5LS0s530OCXDakz58/n7n9bFg7R4VGAWT6mHMOV199NVZXV/Gd73znkvt14403ZundemMaGBuLsvE4PfHEE/DeY3x8PFfj/t3f/d1fCCze9a539URJuD300EOYmZnJ9K9Wq4WNjY2evI1ms4nnn38+b/fQQw/lpPTx8fEMfuV6LssyzxNO9N65cyf27t2bPf5sBPN9YaAPIBdYBICbbroJS0tLGYjL6APfX6B3zfBcqSdz83byb0mlkj/rrd+6rn9fd1LI3In6cXjushhCvZ9yHvAxJV1SPsvqzy/5jLzc8+a1bK9Z8varBRp5v19wrFeVs5EOGH/BMS53jjrl6JLPInuLSwAsUwpok7ZRItpQP2dkHj4rJ+kc+dBKZyvh0mhFPgCQ/aD8UfJuihINKpKhb2JMxee6VM06RjSaNCmJRpP6miRPldFkFCkD4pFXPwHAk+sVlLoaAHhElEB0QPQUQQBV0I7GJiOKePTaWITosgHE6lCFbSBGj+BBClHBo73xIspuGyE4DA3/FowZpBoXDCoUGcbOlVCxhIID4BBCCVduIpSbiL4DlJtgNSnoRi6w50MH7XID3faFVDejRXKy2pABrRRVCg8RIQLF1m0IzmKza5EjVkonOhKA5J3XhoqqKfYYgykv8u7REbROXvXQQFA07po97Kk2h9JUJRrpM26BZW2FapMPDjHtF4MS+T48v+h3qrDtUpVzmhNRSNYGmJ5oBRvHeZXmaE36DoBRJp9Pcvormg4ZugnXUAQFFGGgyyBpW8vREgCDrQLNosC2rS2025t4YY2jJjYl1NO4MOzyqdZJUFS0TinKpIhUsh0+RihFYMz7smetaaPTPCegZzRgDNBqFiiMQbOxBUZHaJ3GOTqgvZmQQIS1NHcKa9EoWrCmgUZzMKlNWSikRHyweECiTEHBK9UznkSvU2L80lyKSTmKsSWqsWVHQn7wpX3Vbyh5u9lsIoTQE31gI65uuDMPmY1DoFI/qr9Y69ry7GnkbWWRtn7RBulJl4aHtZVkpeRFcwSFjcM61UH2W14n78Pef65gLZOumXIFIFN1ZLE3lvhcWlrqMazkmPB4cmOet8y74KTg0dFRzM/PZ2nMyclJjI+P484778TS0hImJiYyNWPnzp05YnDixAmcOnUqe0P37t2btzt27BhGR0cxOTmJ+fn5TFuanZ3NdJ2xsTHs3r0bs7OzWF1dxd13352jGFws7fDhw9mA3b17d64uzhEJOWfYsOL7yBKhvO3CwgJ+9rOf4QMf+EAez5GREfze7/0e/vN//s95vPgcPK7OkbyrTJKfnJzE8ePHc7VtBjOcJP7Rj34017rYs2dPBmf33Xcffvazn+Hhhx/GxMQE7rjjDuzbtw/f+MY3eiIOb3zjG7OHuR+w2Lp1KwDgyJEj2LVrF2677TZ84xvfyPfQGIOFhYV8zD/5kz/J+8oietu2bcPu3bvx7W9/GwDw1re+Fb//+7+Pq6++GkNDQ7ma94c+9CEsLCzg61//Or7+9a/jZz/7WU7Af/DBB/O4c2TkG9/4RhYcYNrZ8ePHccstt2BoaAgnTpzA5OQkpqamcPfdd+NrX/taDw3rPe95T45yyTnx5je/GXfddRdGRkawsrLSE5H5yEc+gna7jSNHjuT7Jtc/gxGZ58R5QQD65v9wlKFfBBW4FIxISpxcixzlA6pIIre66hpAoHFlZSXTDOX2PG+lSIWMhtQdBgyOJbjnJmvMyPZKTo/Xov2bk7d/WRrUL7PvL9r20s8AfjNnD2n+nB39Kv98pXP087Ze0scAwCQvLrjwG1FPNHv8tQAFMq7AkYi0bwyOXfZZLShvy+7IZPjlQAIqfn8GMpm3RDz3yPwL30WMHt61Ex8jIpQOgCK5zGScBU4Mh4Kxie9uG0AqIqYSRUWj8pJHEJiIvosYKYk6BgeFAI+AUjeIyhOqCU5jpRE0RQ60jgiGQJGKXDMhIvoufAhox4iBLVtTpeoiR3QopyFQpEWlQnSePPZcJA8KKTqTch1MA0jSokj3S2mV6PE+KVj5TBsCLBDp2KFsw4WAstuBhs/ADQwLNSWbqxQJILTBKI+AGwwBGGgDmAIwDSht4cDJ4x46EJjQmmV5ib+vlE6KXGluhKoiN/H3Q66oHYMHSa6Sl57BTfAu5UO4pMgUBG2uouNU87QCyTEEBAAuxpTwzlWzEwHMVGAk5v/QIYP3DMWo0nWPscy1MtK4RZtoa4m+ZhR+66phOOexcv5FbBkaQAgKnc4miQCwChNUop5xJW82zFPNB+VTQT5eRLSuVLrWCN8D1p0CtAd8AIz2aHc9jAGsVrCWnABWa1I+UxHeRQTlEXyAdx5Wt+FdOyeBa12kMbMpKkbznyiI/PhVeT1qxbTJqlJ8VARaK/yQngQxiDBIWh8xgSv8ZgrkWWvRaDR6vNb8MuXiahIwSG+dzBdgI7mfjKp86cu/peEtjf86vUp61blJqpM03NlDLyVL655x6T3kY/PxpaqU7KdUOQKQi7VJr6vsr6yhweMlDSI+t6RXME1LbsvVr9fW1rBv3z6srKxgZWUFu3btyveHj8+1Bp566inMz8/jq1/9aqa/sArOcKoRwH1lY5GNzna7jampqVz3ga9D0jMkbUbeL5kvwtdeNyj5+kdHR/N1SWoOe795TPl39goDZPix95sNtLGxsZxkzSCPaSrcB6m4xb/z/tdee23+3VqLW2+9FV/5ylewbds2TE5O4sCBAxnQyhwIbpy4/txzz2F0dBSjo6OZn//II4/kInXcjhw5gn5t3759GB8fz8DiBz/4AVZXVzEyMtKjzjUyMoLJyUk89thjuPLKK/HII4/gyJEj2LFjB6ampvJ179q1CxMTExl88nxkRa6JiYlMueMEfJ6Pn/rUp/L5GKgxeHGOZGdXV1fxkY98BHfffTfGxsZwxx135LXAuTQ8LzkBX44ZU/B4LchngZxnPJ/4M5nX1S8qKXOUJI0KqEC9jFJe7hnHjalOklJZn6OcUyPzzHhb7iM/I1lpj88jnwf1a5JRwPo8eq3aqwMWl4kCvJLHv/9hLmO4X2aby33G3v30V/Vfdek+ebtfAhj1BTUAGYZIhejyoVQ2atjYl99xo6hEgNKxSuhkj7Bif7bcJ2YDktWhlKKiaACyrKbM1dCK6TEBwXUQYongNnNkJLgSVcyBQY0hIyxEFKGokltVSBGMZNTHQKpNMSDGkqRkfRchdIHgk7Qs9ddZUATEl5VxrDQZ99oCOiBooqUERCAwOIqAL+GjgytL+HIT8ANQlilFKnnaQ86Z1VBpTCp6lVIKMdWc0NpAWTLkVco7QcphoO8TpQmVoapi6q9SiL6E63awuf4CTOhCRwdElwxDys2IAKJ3lNwdqurVSgO6aEHbJoot26BtA6poEd1FNxAi51QY6KihgjCsg0gCF3ORKmEn4z36VECOgVdlbMoq3kR18ijLbqZBsc4QYjXvY4h5fJQi+dPg0zFCoIKEOsJmgzWm6EtVIVrOXY7Q0Fho5NAaA93AtC4GHhpWWeiU2L39ym1od7qwhYYpBgBF4MN7irw4T+DIGJvWgs7rgz37mR4EBlGpOrVSCQyS/G3Vc5qLpSuhlIJRGtZqWKPQalpYq4HCQEdaRSE6qBjg4OFViVJFBF8lihvboGRykwCyKWBMk8B1XrsU0WDgEFIfqihP6pvEEKDxilXH80b0vFDonTm/viZf7gDyi1kainW6kHwBMiWHX5rSIK0bB3ws+VManbwvn7sfxQmo8jO4LzIiICMT/agFMv/jciCjnrDOkQ02vjlaIGlBrwQsZC6INMbrUrZyzBgcra6uYnV1NReIO3nyZK6bwPkCLPVqrcWRI0ey4Xv27Fm85S1vwe23357pURIQSQoL92diYiKrQbFRw9cjIwF8fZKfLu+xHFMGUHyNo6OjWFxcxMbGRk5kZ2/6yMhINko5GsLjJIEYAwv+nPNQVldXsbi4iMXFxZ5tOUrBFB0GngzQZIL99PQ0nnvuuQz0ZHL/oUOHMDc3hw9+8IP5ernfDFC4EvX6+nqPMfj+978ft99+O/74j/84f/aud70LIyMjWFpawszMTA9gBHBJhOS9731v5u5/4QtfwKlTp/C1r30NP/3pT3H69Gm87W1vw+LiItbW1nDPPfdgfHwcMzMzea0yrWliYiLn2YyNjeVrYAD1j//4jznhm/edm5vLORHj4+M4fPgw/uEf/gHT09MYHR3Fvn378jgvLCzAOZePPZxkiXntMLDggodStlWug37PoLqjQVKs6utfUgK5vRJ9qk6zknNYrn8+J99rzoHifCPZN26cRyIdMHw+Brr16K90+rA622vd/pfiIP08Yb8IVPyy9KZXAhrVZ5fKal5u/0u+k5EJ+hDVj8pbW33P+wr1pcSLJ/45GwZITkeOJFT7ApFoCZE8pJpMkpzkKkdTyeBFoljl4lnsaQVx8sl7DjLUEOAceUt92UYIHSgVqfaAIbWd0qlcFMyaRir+1sjAgo13Mlg8YtL+J7pSF8FRwrR3JXm+XUleaQYbbAQFh4GGRcuSio42NnmIAQ9FRpWlSs4qeh5gaGXQbBRwLqD0Ht3NdWitMWCKNP4EwhQAazVUCBXtP5UBoKreNudNGF0g2iKDGpWSxFWSNqWaEeQV1smjbFJirtYGrWYTwZUY2Po6XHzpX9FtvwzfeRkKJRS6gMu3ngAcg8RI0ZjQKRG66widdSjbgG0OwbS2QhctwA6k6E0D0VI0JcInOowAFl5Xc0LMQg0CWFazvK2i80cH1y3hvYdL9CeiPPmcRJ7BD3u2OXKV8kUIwCS6XCSFq+iTN92k5PAIKB3T2HEkIOaoig907hADrLE5sd25LlxZwrkunTtqOEWRB2sMEDy0Aka2DWFzcxNbtzRwsRtQuhKv2zZMxnf0KJ1L1xgqEJOsc2Ns8vwHBBd4ZldGOgTYSKE+mQISEkgO0cOVGtppdF2E0RrGBFijYYxGqzEAa4CiAAIoz6hdltDOQasujOmkwn40n7Q2sKZF66KguhkUzUhzPJoceQmQtySp10UFiSVk3gYA6ASOY4y/ESoUvzTZoy29/ZIWxNvyT3658wvXOeK5swEh60EwJYCTHJ1z+XsJIBhUrKysZAOWjTN+6dYjBLydNDQkZYrpMtJDWU8wlp5K7j8rJvFnKysrWFpayjSxnTt34tSpU3DOYe/evVhdXcXc3Fz2ztYjJc65rMDEwImNfL4H7MU/efJkHmfmwK+vr2dDXxo+0oBhhSG+7nPnzuGZZ57BM888g3e+851ZFer73/9+5vlPT09jYmLiknGwtkpkl+PKfVleXs5AcmlpKV8P06F27dqVr13OJy6gx1GLXbt25egLn1cCuKNHj+Zkc6Y6MaWJPbw8nyYnJ3sEATY3N7OhPjQ0lBWgOPJz4sQJ7N+/P3vtuZ/yelnFiq9vdHQUy8vL+NGPfoQdO3Zkb/8TTzyBJ554ArfeemtW52KA9p3vfAff/e53ceTIEQwPD+Nb3/pWzxqcn5/PQPHIkSNYXV297HrVWuMzn/lMlh7etWsXjhw5kulUIQT8+Z//Od70pjfh9ttvx+LiIpaXlzE0NIQ/+ZM/6cnlePvb34677rorG7v3338/Tp06dYlX/MYbb8Tf/d3fXbZPAPDss89icXERJ06cwOjoaBYd4DH96le/imeeeQZ79+7N847XMose9PvH85GbfAbJ+y/pUtykA4HXHNBbl4bv9/Dw8CWRExnllM+Meg0eub98hsgoBV8HPzMlsJCgnY/LzhqO/EjHz6+ivWq52V8UYbgsuFCqxzj6ZYFBv3Nfdn/FvvvLA4y+15D3U5kikeMgOSrREwbJP5RiYyZ9LPuZIxGVJCupxqBSsUmUEz66BG1KdCIm+orzZMyHGLKyDRlyHr7chCsJXMRQEt2n2STOvtGAtoCygLaIygBISkxIBmKSRHWpojF58fnYnVQl28G7bkr8dQieuf4u5x1c3OwA3sEOaFhD5cQUGzmpeF0E1YrIFI9kMHkf4JxDWabz+BIIJaKmHAemi2iZtUC3jm9IUniipG1tGgQsVC+w0KwEpU1K1tUp+VZXij+aEnGNsiig0CjbgAbaoQsVHDRctug4YsBJ0hxpytSg4AAHeLUJKI3gSyjroEyBaBqIsZmqkhcJXWogEA2NK4wrJNocw5hMkSKvv/cB8Hy+AJ/yF3i+cKG9kIAFDVmqjM1WqlKIgc9HOQqZ+sV1OBLFKUZkr3sMBCwiAoEJ7+FcCedLmkOaPPiqKFLUgPpQWfoVhYr/LoxGq1Fg69AWlC+X8CGk/BOkfBSKUCjtGMcRxgZgdBUBiKaaKzwGshZJVlviaIfkhqUWQFLBMQbQMFMek9IKPioEKFituXQetAowmqJAVAulhNYeRhnAUHV3DcAEj2gKaBvT3ETyWOTFn50UKt8JCQvRp7cpGvqby93OjV+mdY9endtbjwbwtv2iC5IOJKkKnFxb36+e+PrL8IqlwV03CuRx6jQD7h+fs1+UQx6TAYP0KEoZVOmZr6vMsBdVRkWkd7JOobCW8i3qEQ25jaT1MJ2JPcU7duzAuXPnsGPHjh4a1tatW3u8v3Wwxa0fAJPGT32s+xk/cgz5b3m/+HiS/sbXxVx+Sd3ibZnqJPNt+CeDv+3bt+fvFxYWMDs7i6eeeipXh+bj8Pnq1y0NOi5KyODv3LlzmJmZweDgILZv355zYowxfftzww034Pnnn8e5c+fw3HPP9YwRA4nJyUk8++yzuQBhv3bttdfi1KlTeU4xJQyg+hhra2vodDrodDrZOGVver3+RVEUl1DcLly4cEmtjMslq8v22GOPYXh4GN77PK9lxACgObSwsJATvkdHR3tyFYD+9Rv4c7nm5Hf9PuNxr9MqgUtr1cjjyOhEvR+v1Dd5r/lcfF9lJEYCFfl8uFx0VkZfgFew1/+N7X8JWFwuOvGK4KLHWP9fjDagMvQv2S5jhFcAELVruOTY6H9NEoDUEAdSykS1v+ZzsjFDrl1i1ihoVfSeJ/3Kycmqpz/VwYPvwnVKtDfX0G1vouxcRGENGg0LX3bhvUN3c5PkXQN5iY0tgKhQoAGrCpjWFZnO5SO5QpMNCfKQJo90N1XMDgEhegTv4DptBN9F9CVK102Um4CQjdUI74lz7rtdDDQUGiNbEKxFtA6NZgtKA8ZoOB8TNccl6hC1GICNix202/Rvy3AHzeAQQwcqBkAlY18BCDHlFDgacq0QokZMQIGiDhbKNJM32OSfSLUmkuwVfa4LIAEPlYxgrQ3RlUwDRTEA02jClxeJr+/aUL4NlZWfYo23UlFvsoJTjAjdi3DdTTqvsdC2CdPcAl0MELApEk3GFAjQpKrFRfx0Aj9MAktytTFSBeuyLOGcE7kiDNoq49l7Kk7HlCBrbQ+wZRCtNVHBjJj/MQT4GMXx6UKVUghKEyUuBnQ7baqo3m3Dh25OuG40W9CDQ6BDa5iSxQ54DafzRCBEwCJiqNXEtb+9Ex4vIqxdhCs7VAivMGg1W4DSsN0yKW4BzvtMhzKa7mFR2B6qWFbDSnQsFlaIiZpFFK2KThXFs8LHiBAcVAkoB3RKmkvWWDQKg8JYDDQasCrVTvFdIHooOBgFGKVgNRWRM0UX2hYwpoBtDEDpAsYGAvs5QkcASjFNj/0YDCpjhQkZSHEY4zehCiXD8ECVuNjvpSyNBUlNkS9hji5IryCfR9JtOOmWaS8MNFqtVpZnlJQk7o80VLgfdU87ew+l51caMDKBm/vKnv+VlZV8LCl5yXQOTuJkjzRA9SU4d4GNYJnzwZ5bTvxmLySAHolWNjZ4TICKky1zA2QuhqSoTE9PY2hoKHucp6amcP/992ePPxtNbGwzEOHzAJcq7vA4yzFhWVueGxMTE5d49iXtia+PjS32YnNfWLqXjy8jU0899RQmJiZy5XCOTjzwwAOYm5vDnj17MDU1lSuZyzFlSsr8/DzuvvvuTA973/vel+fe4cOH8dxzz2FgYACTk5OYmSHlJAA4fvx4vqePPvpojsQsLi5ibm4ODzzwQI62zM7O5usYGxvD1NRUvs5jx47l+iI///nPMTg4iH//7/99jgJ0Oh0MDg7iIx/5CE6dOoXFxUXceuuteU6xhOm9996LH//4x7jrrrvwsY99DLt27cIjjzwCgJK8p6en0W63c5Xw48eP48CBA1heXsaRI0dw8OBBjIyM4NOf/jRuueUW7N27N9+vmZmZPCf27duHkydP4q/+6q8ueV68/e1vz/QoKX979uxZ/OVf/iXe8pa35FomnBczPT0NgBLc+Zg33ngj7rnnHszMzPSAXAm2eY7zuudnRJ0ixXNU/i33lblX/SIe8twcqZTRkPpaqDshJOiR8r1MU2R6GYPloaGhvAYBZCoYU+7kmgH617R5rdurAhZcTRh4JXAAJPdaj7HCX3Ign3MD+h3rFwKLHGEQvyfjpB6xQHoZ009xbrFtPm/VI4iDC29hMvIT9YjpUZq9yYoUeYInT3vZWYcCy3iSIdhsXZETOaM8dzplD1U994KiA668SEa2cmg1baKOaBjdQgTQaA0mK02jDOmcpoFgCjhVwESb8xlCIO8yggMguObZ2EJKsHWI3sF3qIhYjAHd0mdDtiyJ6+6cgw8R3gU0TcRAQ6NpIoYGCgy1bKbqeE+GplIx05BUVPC+DecD1jcuwtoCIzt2YHDLFlgNvPziKopGC43mIBBIxSoiUOG7JM3KNBxoBRVVKphWQNkGgTltoAxHA+gYHOVQqqB/TEfRFNVgWhgCycQqGGjTRHPLNkTXBFyDCCsp8gIBLngcYyS6FxfXUyEkD3ZMkaA2FfPT61QrIeVkaNsETJOiK8YSVUlpwHXBBf6ssYAx6AaVgFqZq3abXK2dwK5ORqox1awCEpjNyKJXnlWlSE6MZIhz3knFGeLfk+c8gVHX3aRohWuDQRclN2uUZQeNolnV71AVkKmAdYRWES4GGBOxbaiBK7c2oIIDRWciAlySIgYaWxqgOIFC1xHYJVnfNGa5vwGAhtGc1VAVOaR9SNyAwBrAwCzBxlpuCgOgFAnyHt5rdJRCp2NgjUJhgcIYGK3RsCRnrFSEA80D1+lCOw+luzBlNwNKTvg2tkFJ4CZFGntq5VTPi3rEQjz6fiNNcsj5BSmNR+mZk0mG0gMvPXa8f93ztrKykrdh+kM/dSnpuatHM+r0AzYmpaHB4ICjIbJJY4Jf8jIKIY11BjOyaBsbj4uLi5n2MzU1hcXFRRw/fjxTtsbGxnq84mw0yxwUPi+PvbwH3FemX0kgweMted+cX9FqtfDGN74Rr3/96/G+970vS8HymEpqW33MeOz7JZDOzc1hfX0dMzMzGSDKaANfE993pt+0Wq1832XeAQM1Bm/cOD9idHQUIyMjuPXWW/M28/PzmZLGSclM15qbm8u5I7zN4uIibrnllnzsZrOJ6elpLCws5ByDz372swCozsPp06dzbgKDu+XlZXz/+9/HTTfdlI3Bffv2YWpqKsu/MgVw586dPRGOsbGxnjoFXHhuY2MjV6Gem5vLCdtMKVtfX8cf/dEf5X7/zd/8DSYmJnDhwgVcc801ACrwNDExkY37sbExHDt2rKdiNgMTdmKtra3hS1/6Ur6u973vfQCAU6dOZRDwgQ98AACBFZkwzvSq559/Hj/+8Y/71vjgStytFlUxX11dxeHDh3H+/Hmsra1h27ZtGB4ezoUCGVzK9SnFFOqRn1eiRdUdDHJ/GQ2T2/BnDNyBS0G2pDBJwNPvfLJ/7CCR/ea1ww4HCXzqa46fjez04HyjX0V7TahQlwKL6pee/16yzytEDy53HvZwCmBBPy5VQbkUvIQETPjc1SF6/qlMFOmNUiQvdExcHp1rQFDkojq2B0IJ170IhQCrQQaqtkBziF2hPeCn8i4j8cG5OGAgYBEcnCsRAiky2VRtOsaYqxcXtgFlC8AU0F7BB8A58rh6RVx2PolPnnRSQ6Lj+JxMWxnIzjnKpeiWySPt0ek6uNKh0+mi3emiLB1KVyZPcMCmBtqFxrahBlT0aJoGClciGp3qEERoUIE4KAICHpRz0S1LFI0mtl5xBawledH2xgWqHaAA+AJKKxgNoNCw2TMfBSWtMo51MsxVKnKGJDtb3XwFkhuVhfQE3QjMbIowSkMpi0ZjC4IxiEZTjkhMhizPDU7O9yFRxAJRoWKECr5KgneO6GTOI9ePcF1o24IuHFAEAkOICRCyBC3x/KmOiKEZEnySQabrCpGiAgos0yuod1BgGeEsC5t4Vew8YFChEggNIeTIQuAFFnmE0rxNdL3gS4RQJuWz9HUM1EfnoBpNyPoVSskckWpJxEjgcbBlMdiyKLsWPpJcrnMhKTNp2IIL8RH1zscIF2iWxUj0OroHqnJMKBZiAJwD3Tetqegj0+vSzApJsSw/a4Q1H1KeU0AEPG1QagNjNApj0GpqFIYjZCFtSfK4SHNBKQXtXVIFKyj/QlsUMcAESsxn5bgoaFIVcavXhcN0qd8ErpAvZOkNl8nQclvpvZb0l3ruA28vFU04usAeO/m9fLnyS1f2TRoPEhzUaUvSsyk9fP0oWryfpAnJqAz/k0YygJ6E6larhdtuuy0XKOPr4qrY9ehMXe5WjqNM+JZ0HBnt4bHisWPQIXMU7r777iwtK3NQ6pQR6Q2W90YabPxzaWmpR+GpPh4SYMqIFt8PCULYiwtUsr38j415HlvOWWGA9+yzz+Lpp5/GzMxMzs/gon6cSyFBgWzj4+PYt28fZmdn85hxGxgYwMbGBhYWFjJYuXDhApaWlrC0tJQBDoAsyyqTxdlL3263M7Dh6FOr1cLCwkLPfOTEaR4La6k4Wl1mFECujO69x+joaM67sdb21LY4c+ZMD6gAkOfHzTffjLm5ObTbbRw4cABHjx7FkSNHclRhcXExK0Vx+/jHP56BxYc+9KFcOftzn/scFhYW8OEPfxhAb+Ri69at+b6Pj49jcXERhw4dynOPAeMNN9zQA3B5nsm5JBOk68CAW9350M/A59Zvf0njkwBGzmegFzzXQQufTz6XgEpVr348GSXm/Da5X/2a+Fk8NDT0ijS5f0t7lcBC9zX45d/y4wo01BOm0fvZJeCiDgrqx+MNkSMF9T7J3lVUpiozmn1/OlWW1oiIyStIvPKqZWlH7wDnkpeXKh1LMJLe/FBoUoL0gCWvpgIZuFohqgbVC4DOfPDsGVWCTpNUmMggc3C+RDcYbHaBsuugfAeu20HZ2URzoIVGYwBDr9sJnaISzhuESJWe6fgesfQ5CuGdSx5Ylb2v2fOvACQJWO+68K5E5+IG2u2L6HQ6uHhxg5JmfcjqP+z5VkoheDLmzjz3IrpXDcJaDdt0aKgCjUYTwZEaVKPVIIpTLOHKNrRR+K3fugrGWHjXxbl/WYMPHq/bthXdlzex/vwKIgxs0cDrrhqBsQbGauikihQjGX2UG+BhrIOOJZCAA0dziKSfwEXgCskBCo4iG1qnO6LEfdWp8J2GbW4BYgOIrTRmyDUZSKmJKF7e+5z/opKCUwgpShQCtHVQwUOHMknCUn0Ok6lPBkCAhwfTY3xSfCJAwn01GXQTu4u8/1x13NoiGa0VYLCmAEBRKoo2+Z7kZQIcZMCHdC1c1dsom6MAzhGVLaYoF0CqVhYGgIVzPkfAgg+k9uUcjEkRUK6cratnC1fSVoFA+WCrAWMMPICNTpkAGtCwAUY7GNemaKQOGDBNABZRtRA0kqRsgRACytJTf3xAjJroUyHC2pTvYG1FWQs0t8uy7KG1cdE6fqSEVPiQa4EAgIODUgodpXHxYoTWVMm7YTUahUGrWcBokLRwUvnSvpsAVglrLIy2CVgVKJ2Dtp6kfVPULVc0rzlY5D38TbS6cc4vM2noysbGESdDshHHBhV/z7KLEqSwAS85zNLYZz744uJiD82KDVl+MbNm/uLiYn5Ry0rXTK955JFHsi6+pCExr37Pnj3ZkGYAwEZnPZmdC4jt378fzrmeCsbsnZ2cnMyGCoMMPj+PD48vG+Z8/DqYkREdNmDZAJGJoezB5DFiKgtvx9WN+dplxIIT2zlxnA17adDJ/jrn8Mgjj2BqagrT09N5W6ZvsNde9kteK4AseSrnHRuTa2trWFlZwXPPPYe3vvWteMMb3oAHH3wQp06dwsrKCtbW1nDttdfine98J9797ncDAP72b/8Wi4uL+Pu//3s8+eSTAIDHH38ck5OT2LVrFxYWFjA4OIiPfvSjPWCME/CfeOKJfL1LS0t46qmnsH///kynW1tbw8DAQE7kZ3GBtbW1DHr4mjiaNTIykr318/PzmRIzMzMDALjqqquwc+fODE55rYyOjuL+++/H3Nwc/vt//+9YXV3FqVOnct2J4eFhjI+PY8+ePTh58mS+Lq5h0o+69LWvfQ3vfOc7sWvXLqyuruLFF1/M0Zzl5WUcOnQIN954I/7rf/2vOHnyJB599FH87d/+bZ5jX/jCF7C6uoo9e/bk+7q2toYzZ87kc+zevRuPP/44nn/+eezbtw8AcPjwYezevRvDw8P45Cc/mQ1rzg/hCB7Xj+H5ySBYUv+kIS+fSzzH5fyuP1O4SdAhAbIEG3XnQ79oJ8/TenSvHt2V1wNcCuT5+nk7uc6AKhorP7ucc+S1aK8OWKB/pCJTkdCbMNhr8MsIgUqeYtR+Jn+b6rPPZSIYl42c9Os8ABWJjqCJwV4JryoQTzxFNjJVxXWJhuS6ybsfYBstGNOARiNHPypERQmdMWpo2+BPsuEdU9oxKcMmn2MkcFPx9AMQU6QgOESQZxveAclDGqOCj0A3AKEb4eBhOiW0t1DGwKcCbwQeqDJ1CFzgj9R0yHjibvN5UyJ2SLkVZYeARXsTZbeL0lHkxAfOr6DBjYmTr5PhHpVCNwBdr9BxOikdEZQjAyoK+ozPnA4NwLsSG+sOiMRJb29ukvEWI5oDLRSNFrRpwhQFbMPCmAaIzuUBT3U1lDIEBnyAUqS0lDnnSiVSuqZIUmRw4EhpygAaNgkl8T4xz39TFFAwQLTZYx88qy55BJ8iM8ohBo0YDBAdVIhEi/J0zqhNku2l+RODR/QJCAaX6mZQRIUpOLonElhVxE6rJQOM+jpQfI/T/hyZYulWn6RbufgfyxnHyKpflCCOAESV+hjZN17RvzhqU8kpV46CnKuRjF8GP6yOVn3P1DaKZpGB79Fue7Q7gcYoBHR0SLlJXRgdoE1EYT20KgAdEbVGTOBKBUAFT/EdrjCe7msiTVHAgcKVQFQplz31K0I8n1R1ESK6F9PfTA4LKuRIZgwK3muULsB5wBiFwsQMsIqUzE2URNBaVJ4EGKKCgYaOFgYKUEyr4rlJ/a233yTIqL8o2fC7HI9ZvkQ5ugBU0ojsKZfGQT0ywIYsv5TZU72wsJBVherAB0CPsV3nHdc9ltwHqbIiayPwNhJQyeRTa6uCfFJ5ir3FHF3hPnGOBW8r92PDCOilIUmjhI0qmSwtAUfd81n3mPJ5+F7ICEndI1oHM/X7KsePgYUcA+6LNIzqfZNzql9SrDyOjGSxEX7kyJGe4mMjIyM9XnWuFcEVtPkzBgBc5+Gzn/0sjh8/joWFhWwkHzt2DNPT07CW6lZs27YNe/fuxbFjx/L1/s7v/A62b9+OBx98EDt37sQDDzzQ452uU9SYZsXqWXxdDJ5+8IMfYHBwEJ/97GcxPz+PJ554Am9729vgnMOJEycyAOaxmpiYyPNPVrrmqt3bt2/PERJuMvn6xIkT2L59O6ampvDnf/7nAIC3ve1teOqpp/DSSy/l/tYjZ6xCxvUt+Fp4jW5sbKDZbOK2227Drl27cMMNN2SJ4Pn5eczNzfXkufCxZS0NmTPEc60eAeX5ymMi5/crRSfkvq/0Pbf6vK8ft9985uNL4C1zz+rn530lOKg/X7lJp448Rr/181q0VwcsciE4ZAPlkrwGYUjkz3h/AUQuoTwx7Sj/7DVGLkeXulzkhIwu+inVeagqtYdR6V8mEhBdKD9OfIlYtlFeWEPZ2cTFiy8BRgFWY2jbDujmILQeAHlHWaOoso4VNAqTa2tTjyLo+OQiF8aYJ6MtG2keCF2UnQ1434HSgYxl51HAQyuFUpPx5JVCtySg4tfbsFZBGyDCJJ6/p3oWwmPuS5cpMLmmRiRPevQezm3ClV24soNOu001A5xL1CKdb5HRYi4oTia2yfDR8ArohAY2SgMfSfI2RtpWm2SmBQfvFQ1HoCJ+7XYb6xcvYufOq9FsNnHu3DnY5gBag1sxvP230WwNAqpAY2AAzVaLcg1iRPAlXHcT0XWBSLkjwUcgdqEUFUJTxoN0YGOilSRZ0hDhEkhS2qNoJFpZtt1iUuHSaBa8GCsZYPiQais4BK0JlGqT+PseOlb3I9o03p6iUcF3oUuDEBw8qKp7CA5FdDAcZVPkfdecN5BAnEqArkdgIM1/BkwIiSqmuDBcROkpYuUc1QzhhGWWRC2KgnINQkhzKFDuCqpcHAbGmTYUOOG/zHObqmzTnOQ8JlqTgLUm1XigeyDXcogRKihED7gyYmPD4eULXWx0AkXbyi5couYplGjYiKaNGBpooTAENmOivllb5Pukk3ITkwy1SmsFilScYlVAMijAGg2XqHZS9rmikCGBIFRrCVycj0S6FICyrJ5P1pQwWqHRMBhoNdBsUL5MRJXfFBTgooNSRPnSIUIbiyIq+lsbqBypUlCZvsfrEZfkXvw6muQws+et3zZ1qoukCCwsLGQjgmlITNGQyjsSBHACM+u+Dw8P5wTY06dP9+jpy32cc7lIHAML+dJlg449wGzkSSWaiYkJOOcwOzsLAJd4G9mbzQbD1NRUDz2DDZyZmRkMDQ1hYWEhU2YOHjzYAwaAis7ENQPY2JTAAqgoVqyGxOfmYy0uLuZz1+kTkjoCoMdIlMY+gxv+vg4IJD2Lr58pPjICJUEGJ+oyuKpHm2RRMJmYLcEcgJwIPTk5iYMHD+LYsWN43/vehz/90z/FgQMHMtAaHR3Fhz70IczOzuYCgq1WCx/72MfyPJqfn8epU6cAAC+88AJOnTqFT3ziE3jhhRdw8OBBLC4u4iMf+Qjuu+++HF156aWXcPLkSXz9618HAHzsYx/D7t27MTk5ic9//vN45plnevJ2ZOI937/jx4/n6+Xk+PHx8TzXAWBjYwPtdhuHDx/GD37wA/zRH/0RVldX8bnPfQ5TU1O45ppr8IUvfAE33HADDhw4kOWAz507lxN9uX30ox+9ZL1KRacXXngBR44cwX333Zc/m5ubwze/+c18zbye+D4cOnQo54O88Y1vxN69e/P9XVxczDkzHEWx1mJmZgZLS0tYWVnBo48+irNnz2JoaAi7d+/G9PR0jubcdtttPf3ndczrl6N6HP2T85XnY/0Z1Q8011sdJNR/v1yeAzfZZ5knwREc7hNHrOrPyboDQAJ07rfsP88f6Zix1mJwcPCSvr0W7VUBC8P0CgECLok6ZKdwPbKQfof4qdhmUvIP3inv/0p1M/pHLNILn6lFLLqf8hW08lSEK+VcUGK2EgXpSDXJo4CzW+BiAcQmjCHvqjZbEVUTLiSjjxN3wUAiird6BODACjMhVt+xIVIVPSPedUUPcqSgFIEYDUI08N6QTCsCgmmhGPDQIQBKwXkF50tAeXgubOYdQvTgYmoxMM2DE7UdeaW9p6J63sG5Nu2XKDAhOaYp4bnKPwA4SdpQwrGmnAZoC2gFaxS8ttjoAF2v0QgaBc+FnORMhmK300H74iZK52GKJoavGsJGN+Kic3jdztdj6/CV2DayA1u2vi4ltRYwiUITk/GOsgMLg2C6QCgzWEqoBdHTZxoB0BFKWUCDAI9RMAncUbJxCRd8ilzQPDOapHPhiXfPoCGGgMhVrb2n/IIYcsXryLK6mTKTjO6kSATolAfCSdAEPMouqSsp3UkJ3Q0o28oLiLBpSDUokJzpCXSYgqh1iIAK2RD2KVLGxQwjrxPEHMWyFvAeCEERFYhvF4CgQmVgIyUvJ8CENHpaq559oFRWaNLGgtEaF05USuU+8e+0QYRSAVo7ILbh3QYuXmynMfcZOwXv0N4k8P287hIANJR/Q0CwgCkMmq0mGo0C1prsEDGgyF+MCiGkSFag/B8DkDSsVghBw3kCv9558ewJCEEngJNuAz8POKhR/ZLWsoeDQuk0Oh0HazUuNqj4XrNhMdBqoigKtFoDSW3Nk+Ja8PChncGf0SRCoDRRKxlwsoMnCK/rr6utr6/jiiuu6PmsDiLYqGy1Wtm4Ze+8VBaSBsDc3Fw2ZNkAY+NE1ilgWhMbTCMjI3jDG96QvbOScy4N6dnZ2azaw8YG89YBeoEznYiP45zDwsJC7g9z3FdWVjKNZ+/evZlSJT3/0mgfGRnB1NTUJV5K9syyUcDjx+MjDSOZT8GNDfvR0dFMt5CJ8TLRWRr/fD/Ys88Um+Xl5Vz7gvnxHCXi4/C1SoAiDSymiLEXmTX6ZR+YklL3xnLjaxkaGsL8/Dza7XbOUVheXs5Jzw899BAmJydzXQlujzzyCB5//HGMjY3h2muvzYnOzWYT+/fvx9zcHM6fP4+//uu/xtatW3Hfffdh586dmJ6exkc/+lE0m00453DttdfihRdewPr6ei7uduzYMRw9ejSf64EHHshRkOPHj+cxvO666+Ccwyc/+clcoZqNSnkf7rnnnjxX2dg8deoUlpaWYColjh460eHDh7Fr166cu3D+/HnceuutAEiZihPr3/zmN2NtbQ133nlnPs6b3/zmXDm9nkz9H/7Df8DXv/51nDt3DnNzc/nzlZUVvPe978WJEyewc+dODA4OZurevn37cPjwYezcuRPj4+N47LHH8OMf/xiDg4PYvXs3Dhw4kKlpDz74YI5o8D1m9a6zZ89idnYW1lrccccdcI7yJzj/584778zjw1QwWRGbaXFMueRng5yTkobWby31+13+LaOn8jP+yWtUrrX6Meq5aEyRXFhY6MmF4eeHrA1U72P9WcH94mjXLxN5+V9trzp5O1eLvRwlKWMOAQwEbuAXrohTCLoTKmnHy0Yiev+uQA7/zqCCgxRs9Afkyr89/wgMhFRHITl4EaNKBidxtg0aVQEv3UJUNtF7GEHECl+gonOAjp6OSwYpdyuEQAYqoQDqX3AJWDg4RwaFC9QfSnBG4ocHqkWhPXQyHF1OFo5JVjRk7j4r+0Tug6cE4ixP6x2Ca6cE244wiJNHNNV9IN4/gwsDbS2MMTBFi4CFScXnNBVDgwbKEOFSMnmIlPROY+STcR6S8RSgtIVtNNDYcgU2Nh2iMth65dXYduUIhrfvhG0MUA0AnWhIMcKXHSiufB2JHgNPNB4ANKYs+wtSaVLEjQFTYTgptrptBMZioDuoUoRFAylvgqMNPtHGyvSZTNgWnv1sbFZGPU8WWlI6pQAFAQBdSsJ2eTulLRWwC0SHAc9BnvaJIhM10aRyfhBURYeL/FkCIoiJ3ZN5cUQFUID3pJSkFBnetNY5uVlVUTBfpucDKGpVrVT6PMn3Ui0RfiBoXNY5EFmLiddWSZLLZYeiJ3ztaR05F+BdgE8qZ0pHFIrkcpuFRdEoUk2PBorCwpiUnK51WvsEKGKSYdYAoDXVqohIgIcS1z1HZNPnWtP6lFSuysUh7zcHt9J1OQ2nPXSp4Z1HYQ2NsY6ICmjA0D1DpdLmQgmtA4wOiIbutU4/kRTNOGLsBQD8dbU6zUjSY/h7Nlr5Bck0JN6mTpNhygQbnNLAl0mQQKVIxWpKfE72tEu1Fm78EmYP/+bmZj6vzFeQxgJ7/jgXgw1dydmuJ/RKios8t4zsSE9/PSLTj77An0sQxn3l72QOBYM6/p6vp36P6nQSHgceHx53aQjL8/Jx+hlkMrFbAgg5vnycfgaQ7CfXe9i1a1cGlAyYnn322aycNTs7myNdGxsbePrpp+G9R6fTwdDQEIwx2L59O8bHx7G+vo6rr74aJ06cQKfT6ZH8fP/735+vhWtQ8ByYnp7Gt771rewxBygxe3V1FUtLS1km9qmnnsLu3buxubmJY8eO4bbbbsPIyEiPTCjnm3A0jL3YTClaW1vLdK1ms4nl5WU8//zzAMiwHh4ext69e/N9Gxsbw5kzZ/DP//zPmS64a9cuzM7OZtlcgCSFmS41NzeHf/qnf8rf3XHHHTn6Mjc3lylSq6ur2LlzJ/7Tf/pPOHv2LADkz3j+M0h47LHH8j3gPBOeR5xjJHMBRkZG8PrXvx7XXHNNnnc8b4aHh/P95yiepAfWjXwpfFDPv+B8rjqNrz535Rz8ZQ1zuT7qQLkfSOGIKP8tc5fk2uqXwN2PbnW5/vYD7a9VUzG7By/fXn75ZWzbtg13fvT/QqM1IIwBlQGAFgZCT+SAjQOV5ECFJ0+jSiZlMnZU1TEZMWhheKQTJEDCIIe25ShIjIIDnoxqpDwGhQgDn4tYQRFFh0hRbDRXBkE2AWsc5sjd40sKyF54LvrGic0V95y18tnjnbzIid8eQ0zqQVSfgQ/pfBXtCDmhO6ZaDgQSQgwo03cxsFGcDEQ2bJPh7R3ljATv4HwnHdMnlasUlADdC6VTsqgtYIsGRQsUyXsqUDKvUhrWWhhr0WgUKBpNmAQ44LuA7+K3txkMNoFtg5EiRgiAS8nNrouNl15Et9PGlq3DsM0hNLa8Dle8biearSG0tgwl8GJSorYib39S1XGuAx9KdMt2LuIXyjaNY6D6ARqANjGrD2nbyNWPIyzNipSIy/SfGAIVOlMkHWo1YFTMEZCQDPDKeK+Ag5Sbpd/l/WO5Wa4FUtW5iCnxm0ESYkAM3XQfLKLdgqgMgrZQqWqzVhbZgNcaShmYopnvTcxGbWWqV4C4oulRPgpF5ZyjhG7EmD6rogu8xpXS8Eli1nuXHQ9U8ZmQPVcwbzS4lgjRrPg4xhAA5YgHS9ACQFmWaHe7eGnjZfx/557B0vK/4uXNAG0MimYD3Q5RuJiGFLxHt91OUaNADgJ+iijkvhmtYC31Y2CgheZAClunfimo9BDW6PokxQwCxT4CZenp2QUF71wu6hjE2pb3uIoO8fcJ8DL9UdFqYkWuIq2loaFBtFotbBncAmtJUKJbdvOts8bAaBIzYOCvDa9JhW5nE1/86EG89NJLl0QRXuvG74izZ8/it37rtwAge/SZCsQvSfZmypoKHPJnY5KTrjmC0K/xtuyFBJANBzYEZcIre7a5lgBXrV5ZWblEp54NzLVUQRhAliTlqIjMgwAo6sGUq/Hx8XzdTM/g7diwloYQU34k91rSKPpxpyXAYGBRj4YMDw/3RGmkWo081tLSUlYjApDBn3MOhw4dwtjYGHbv3p1BIKs6tdtt7Nu3D9ZazM7OYnx8HGNjY1nFiJOKZZRHgjup2sPeYubpj4yM9ESveEwYaM7OzuKee+7BxsYGPv3pT+cE/Pvvvx8jIyM4evRoBrC33347AOD06dM5gsBzhWU8OSoloyoMzFili3MjOCl6cXExRwqKosDOnTtx4cIF/OVf/iUA4NOf/nTORThz5gze+9735qRwbm9605tw6623Zq/0wYMH8fDDD+e6GhwFmpycxMrKSr6WN77xjXjggQfgnMPBgwezUX/NNdfg+uuvx80335wrcI+Pj+P48eP4+Mc/noHE29/+dqytreHs2bM9SfI8lx588EHMzs7iS1/6Et7ylrfg3nvvhXMOR44c6amc3Ww2MTg4CO89Pve5z2F0dDTXYhkeHsaDDz6IM2fO9AhcvOlNbwJAAIU//9GPfoS5uTk8/PDDOHjwYKay8RqXFECePyznu7y8jN27d2N0dDQLI/D1MLWKnytS/GF2dhZzc3P5b6627pzLa6FulF8uksHfyTVrre0RWeBnnATPDESlI4Hvg5Rt5mcaCwHw8SQIB3qfC/IzCf65Xbx4Edu2bXvN3xGvKmKhE888M5c4v0IlD1+iFWWnI3MVMhWJPfhpO/7JnGBBmUKvHV8LYFR8bBn5oK8q2kEmWimdIyGUWqrTzxSxiFRcDUpVhhd3XUGAA4ZGbChUUYrIPHY2TpOHkT6qtg+Zhy69xzElVjM1iWgdTJ/xoTqeBBaRefreJ29mAFfKpkgEbc+cFJW48iEl7GZKCSrvtVYKxqaK3FpD6QZRbTTx1rW2sKaRkm4tTKJlkFGmEw0mIjhH/3yJ6LrwV2xBVJq83QjplHRPQgwwjSaapsAVI9eg0dqKxsAwBrZsQ9FIydpaUV6GTgx5vjcKCUAEqEgynlUUTBFVJJ2KixBaViHSgAKrFimU7Q6pXZXdHEmhOR9h0j+VUCSb6CxFStEEzicw2fDOOFkjKVYR5S6qfFuItsLgF5HyWAzx5qt7TvffKFAxQGNzwjyvD6b1EZ2Koh6K3O3I/0trjdctkiQtoFKFavrYeZcWUaiWU6w887TMGFTFvKJ7VOC0RlE0YG0BY5muw+Oi8vqQy11GMHkRhgB45+HKEmWnBLTJYBxAqvNAY2yMhYKGNpQzQgIGPkf0vHdQAKxRWYu93S1hrEGj0YAxFoUtMNDSlGCtCTwheEQAOtI8YGARVCXMoFUqOBlUNWYqrQcRKeJaI9XDhp4rIaRj+ADtSLyg2+mi7HbRTMpYxpqsSkc57AEBHqykTLRFAoiu/NV5pC7XpHewbjDzC1smUfNLl7108nvJwQd6q1gD6DH8JMjgl+jCwkL2YgNV7gGDAklFYsOFX/zsZWZaE+d88PEYOEh5U/mZzC2QBnEdOPCY1fMy+PrrXsX69ctxl5EbPi8bU/WcBwA9ye2SzsTbMBhjaky73caxY8ewtraGmZmZS/pVN5pkhEWCKAZAsj/8nYwO9fM+A2R08X2YnJzM0SkGcsvLyxkInD59GhsbG7mfa2trOHLkCGZnZ7F37948b3gOMehYWVnJVcp5Hu7cuRP79+/PfWaPuqSbcM7Eddddl+fDe97zHjSbTQwNDeHWW2/Fk08+meszbGxs4OzZszh16hRmZijH5tixY1hcXMxzWdLdnHO45pprsGPHDtx00035mmQ9gne96134nd/5nTwebIiOjIzgD/7gD/DlL38ZGxsb+N73vofrr78eBw8e7LkvPJ+ZGrRjxw7s2bMHIyMjmbYkGyubzc3N5X252KNzLlfE5ijIuXPn8JOf/ARXXXUVZmZm8M///M946aWX8Hu/93v5mHv27Mnb8/zmcebIhqThsWNAPmsk7U8eQ0ouMyWqH52Ij82UonqET87vOn2KIyuXa3WKIANuCUqkyAF/Vn+OSLGKfvSrflGVenTwV9FetSqUJusoWwD8QuWPaDsyslXSbCdKSmWkVPvEyqiBzsZgNpaQCQTZiOAwP8T50OOJlb2NQEqsFm/xrMPPyZeZqaKq7SJbJUCP8cS5EjEZC7xt5ArUoi4EYgUmeDv2pnrxGe/P1CiShK2K1WWDJFcFZl1+yo2IguIUPMuDltko5URxqrkQstGcDWKQEWiS3n7RaCbKjYWyDYrqwCZvskajKGCMQaNZoGHod9to5WTgbtmpiua5VGAvDgG6gDEEhhA9OF8jIsI2B6BNA1fu/F00B7ai0boiJd8rGFsQttE8FwIZ5ik3gAASSbeqnEdD91hnygrNG5MoWiYVyIuhhPIewXl0LryEbreLdnuTJEl5jBCgosvjiMjgElVFda2T19ui0WzBWIui0UwARpMWmAAZMQLRqKwAFJL6Eh0z5fJApblANJ8QA6xWUMYAtoBTpG0GsMebi+JR3gHTq7ROhQi5doSQnUUChgzNQ44+dNP6iaAcDYUID5otmkC2CHZqUVCPwbw2Bs1mC41GkwMYiBFZWta7quI1r9j8TFA8MwK8jyidp3tz8SJdrTFoNJsEJExBuT1Kw5hIMq66WpddVyYalE/UQA9X0n27uNmBNhehjEGz0UCz2cKW1gCsbkA1DBoNA+VJWS2EABVTrlmK7vkECrRSCFpBR5AaVYpCsSuFnyHsWOgJFGdwxTVCKPpTdrowxmD9gsHg0CCazQa2DW+DKqhoXrtDtEcdHGyRcoRUSJNMwZW//hwL6aWTNBFJ15FG98LCQlarkVKlElSwUcuGj/R2y/wFSRmx1uL48ePZ88f0DucqGU8uODYxMYG5uTnMz89j9+7dcM7lasiLi4uYmZnJxdceeeQRLC4uYnp6OhsbbFDt3r07Gzf1l7v8TBo7wKU1NyT953KeUqDyRtbpHnIfCfCstZicnMzbLy0tYX5+Hl/96ldRFAUGBwczxYelVdfX17F3795sxH3xi1/E2tparro8NDSU5U+ZolYHj3WDTfabFZl4LtTBl5S/5TGT8qb79+/HyMhIluFttVo4duwYfvazn+GZZ57B6dOnMwVqx44dmJ+fzzKqExMTPXQxAFhYWMigZGpqKifss/HJgIqT4Tk6xdfF9/mTn/xkBh/3339/NhAPHDiQ61YsLS3hQx/6EH7605/i3LlzuP/++7GysoL/9t/+W6ZoMTCQwOK+++7Lx+YoDVfb3rFjB+66664cKeO1t7y8jJGREXz4wx9Gp9PBkSNHcPbsWZw/fx4f//jHcfToUayvr/eM4/z8PEZHR3Ho0KG8Jj/96U/jqaee6pmHH//4x7G0tIRHHnkkz7eZmZk8jtdffz22bt2K2267DfPz8zh9+jS+8pWvwDmHz3/+8zhx4kTuDzfOXXr88ccxMDCA4eFhzMzMwFqbgfCLL76IjY0NjIyMYHJysue5wnOe56ickyyywICZ5y2vXX7WcF4W59BIKmMdOMjoYp0ayHNfzm0GjRIESccJ33cGu7x++Th8XxcXF3uomPXzyzGpP0cul8P0WrRXRYX6k489iGZrIL+4lKmSINkooARppv1UdRg4WsFGhdFGKNzYlC+QqEgZOKQIguyijJTwB7VWRRXkJwJaxMqgZ9ASY8yHYpBAp47iH9NJEj0iVgZCBQAqkAEBDBhcVBGL2LNPtZ2sfi2ASSqyxnkSnousxZS4kOk4ZMioZFkHcR9YrjaGUEWdcpVlnQx4m6hMBbQpYJstGFNU1ZKVIuWjQDUBqM5ByFQWgHJqlALY7DUauH5sO67YYrG1WcKXHQTXSZYmKWDZxhYUzUGM/PY4bNEiylWaWUZTPoFWgA9llQfiKSLy/LkzCK6Lwmq0WgMoioIoRSkJngzXFBGIJFXKVJ9Op4Nup42ys4mN9XXEGGGTIhJHZVQCnJUBLI1CiUzT5ww2DCkSmWRgG2NQFCnhVqkKDAq6TKb95TlKESakeaFMA8o0oItBRNsCdIGgqNCg5uJ+XIslKXWpTC9KERxBaaqS8flySIK22+0kNbCSxiFRrAhEGYQQEziuIhU6AdNGil4prTAwMAhri0wDkupPwQcYjkSJ1azSBPLOY2NzE/9yfhUn/ukU/p+fLuHipk9ztIWi0YS1BVoDQznvhulPEQHeEZhwqWK2AhKw9wglzSPnq+hT0WjAJPDVLBqw1qDZbBC9r7CwDb4uC0SLAI3NThcx0v1mWlg30aJ8mmOZ1oaU9yIimPkZw+tdgI5cG0YbeiEZg9bAABrNJhrNZrpuk58rIQTYRiPP3bK7ia99/v/8tVOhrrjiiuztn5+fx65du7JBC6DnJc6UGvZWA8hJ0HXVn+Xl5WzUc1KxVHVhg0IqF3Ekgo8j+f3cJE2AqQdMd5IeQUk3mJ6ezv2S+Q11D6n0SPYDC7/IcyjBiKRZSAMHQM4lkFQWGSng6AMDNQYEnNTKURlOkmeaGtOOWP3qxIkTAIB77723p59sgEkKloxKyeJdo6OjuR6GVOrqR/GShiLfz/vvvz/TR/bu3XtJIbajR49mo/DIkSN4+umnARBl5+DBg1la9U1vehNuuOEGOOewd+9ejI6OZmWisbExzM/PZ0oMgwvuC4+zBMJyHtXvG4MoOd4MYHnsHnjgAWxubmJsbAw333wzdu7cmQvC/fznP8d//I//Ee985ztx+PBhTE9P47bbbsMdd9yB9fV13HPPPRkcM63swIEDmJubw+rqKu644w4sLCzga1/7WqbkffOb38T73/9+fOpTn+rxvs/Pz2NxcTHXXuG165zDqVOn8LWvfQ3f/OY3cwI212+RzoDJyUkcPnwYhw4dyp+zAQ8g55ScOHECMzMzGBkZyQDmzW9+M55++uk8P7hwIRvKnNy9urqKu+++G+Pj4zh06BD+4i/+Aj/84Q+xf/9+jI6O5kRwzp3gc3PEhdeMBADyHvK8lgY/b1Nfj/wcuhyokOuZn211B4OMOvL3XHOEn2GS5imdEBJAcMV1nq/yvNxX7tcLL7yAq6666jdLheJXNpJxoKBFpIINq/SiZgoUhFEHpJewFtvHHoMfivkt+UcPbUBGMS7XQ/QetfqdqScSKKCKLHCTEQberifqwGAi9gKDvA8DhtALGi73u4xK9AKUIH4SHYNpTzF7zysJTAr4JDqOtYnaFSuaTSjAdJtMidEaUAZaaTLmtcnAwtgi1eywaBbNKgm/7MB7TYnYgQaWKxATaKQk3qTOi8JoNBsGjYaFMRHRO0RtCVTECFZF0qYgdSRtUgSpKtaHBOioqjMnSxOVq7O5Ae86CIaqHBeaakKEVKwuFxr0qXq49+iWXXjn0e600WlfRLe9ic3Ni1BKYUANQBmLCFspD4i51MvKi5VByFQzzudRiuhixiA4B2sNfFEkA1wk+wKJspXkTzkCx5EmINGZIkm5BiB6yq/IBf9yOKSiJ/bkQgmaUhVxSXSkGrBg45+L13FVa45IaE0ULYUqP0qngpHaaFjbyOCJErY1vK9WZsY0PJ/SNzwaeSkm8OUcAZ1uZxOujDDGVzldMcLblHdgqW4F86JUqpXCEslGmwwsvNIUFVSlyJOJcCFAOYpgaaPhXAnnGgQwIlGtrE3HTvc3pmhUcBFBcjaTAySmqFm+6B5fjnxiVXkY5OhI9zHNL681fAgoSxJ2UNrCWppP3iflMedyfZDfBBWqblRJw1B65nlbfhkzJ19612QSt6Q6yWPzcdjAlomPTFORL2M+J0dBgMqTKPvHxkidjiM9idy4n2zs8n7cT24SWLwWnkJpxPQbdwng2GCqRzSY7iLpIHwMHrMLFy7kMZIRDx53NiqlVn49QiG/k4aRBBP1qE3d4GODS46hBEqStsLbyETqwcHBrHIHgGivzuVIDV8zG2XS0ON+M3VP9kvuW5+fDIDluMj5w+PJgKkoCrzhDW/A+Ph4jjrIJoEKH4Mjfgx4Tp48mfu+urqK5557LkcPn3/+edxwww0YGRnBe97zHtx0001YX++ttSLPJcee505RFPn7siyzISsjO3LfCxcuYHV1FadPn8b27dtzlGdlZQXPPPNMThj/zGc+k3MdnnnmGaylooF8bDn28rkwOEi5aBsbG3juuedyNWle99IhAFS5DHIc5dqUzxX+W4oU8LHrwhRAr2LZ5dZCndLZb95LYFPvV30+9PtcOh34WuTP+u+vdXuVEYsH0Gy1kL2UukreZZCgEpCoEqfZY56+V6myrrFQMMkoKgBFakIyYgGw4S973AdS1BzI1Uu6ojLxd9JLiFrUgT3SnNtQUZpEhCNG8kwyzSFyoTGfj8Na9PEygOJyn3G/GGCEVAiMIxYaPgMDoBqmmP6wnLyZK/RSkS82wqxtpARRgA1FSnVICdjpflLkguoLUL4AXwspSPk0ITU0ikLBGEDBZSObKk87BL+JwgDNQuO63x7FllYTTRXhyjZc2UGMJbwrUbY3AN2ELbZg9Hf/D9iCvK6WcxqShGsIJbyjcebK6TF4LP/saXTbGwjlJrZtuxIDA4MoXQnniZalFI1pZ/MiNCKMokXFEZ5OZxOdTptyKozBwMBABgQk6VfNx8zW4w+YO+8JyMTgEcHUtFTwLnI9DZqXNkn0tlpNFI0GWq0WJTQbUfFdIRf0I5UyhxBKlM6lVVbANIag7QC82ZIoTRZK2SpSoVSqzM3AgmlKDNz5bLHnB00n2qeSkw3QKWJhjM3StMYkBTDDD0eKzjCo4eJ3zlXyxUWSe/Xe0/NAqQwq8upNvokLGxv4+b/8C773f/8j/p+f/ATtdoBShqJpRQPGFCiaAzC2AVO0oCwlMhNQ1YkelooyKlOtt6QiFqIjkOlFocYcsUwRWE3UzcI2MmVky9A2tAYGYZsteE8A9eLFi+iWZVZ94vnJye18/d6VmYqYx5odBeL5oWr3IuftJDpb0WyhKBrYesUVaDRJorZTCnW0GPDN/+v/82uPWFx55ZXZo8t8aACZlsByoOyRXFlZwfHjxzP1hEGIrEY9NjaGxcVFzM7O4rbbbstcaTYwJKWKDQ8pOcutn+eOveqrq6uYmJjoMUbW19dzcicnktcpEfwCZy993VjpF7Ho50nsBwxkk8Z2u93ORqc0/lZWVrKXtm6w8D58XVJJixPZd+/enYEXRxokQJERJE7k5uRnmWAt+8xGmZT/lJx+6e1lY1juz3Nmfn4eKysrmJycxOLiIo4dO4YDBw7kwoL1KM7Q0BC2bt0KALjyyivxgQ98AJOTkzhy5Ajm5+cxMzOD3bt34+DBg7mP7EmXNT6stdlrzrQvSZmRnvh6jsbk5GRPgrpcC0AlNsDjy2uGx5yTyTnCw/ORARVfO593bW0tq0JNTU3lzznqxBQsADhw4EBOxJ+bm8vrbnp6GhMTEzh16lQeE45ifOc738Hzzz+fi9oBwFvf+lY4RzkWDzzwACYnJzN44mgQR436tTe+8Y14xzvegQ9+8INYXl7GyZMns6Nh7969WV2KPfcLCwtZ5euTn/xkjq7xGuKok3QCSHW2OgiXTgLZeLv6sfutTwa9J0+exMjICA4cOHAJWGOAwnNcUj3rzyHuL9PZJBiVlDuOsMpcERbIWFpa6qG29XumvPzyy9ixY8dvOGIRWaqTwu+9kQpuSbIRQIxJylJrqhDMb0ulEBLRBSxnCmQvda9Hr7+DTwIH+oBpU8hGAW9TAQv2BPfSmlAz7qtEy3SmiF56U5KMDYliIalLIYbch37AIvcj1uhRPVGTKjwTU9SBowJRGCCkYS+067UBDFXe1taScV5YWEMyubawVX4Le5q1pSRtZbJ3mpV5mDJDtCYAsY0YI7rtdajoSUMrKTxFBMAYaF0gBIMQC3gHWK1QWA1jChhdpCJkyTtcOgQf0N5sQ5uI4BXNr+hTsmyltAQE4rXb5HH3HsE5+LKk+hTBQWvAuza63QgfySBXmlWPaF6S0hVy6CvGQAawtakIWco50IlOpCu6n5jiOVIXFNFbglLQUSMGnc4VKbIAStbWAmxzLs3GhoPZJIO0KCgR3lqb6qXolJTM0QcaCy7iRupmAQrkWacKdCbJjTIViteWAEY5sCE+5eiGiGoosX+er57XEoELrSOarYGsGEVATFeqT4rr3iBHQRSQwUY2rAFkVa10fCTHvvcB7XYHpaPaLFWvqUYLkmffhwAbIiwUtImA1mCWoNJMA2N1KwWFJmIM8NFDl0yvc4gptyakKAZFXBN1TRv4qNDulvDrG9jslGg0W3mOFUUBYy2pi3lPVLIYEBPA4rEJvqicByxRzM6XGAn4x8qhkuFWBBBToccYgG4bITjodaAsCWQYWzCMRFd4Z3+dTdJwpFErDX5ubDBNTExkvjgrREkjHyDDfXx8vIeGwB5gjjBIFZV+nsd+0Qn2MEoDX1KmZB4AN2kk1nMI6tsCl2rd82fyc7mtNGjqQIU/q3v+ud883pxvMjIy0pPkyt/LMZCJ13UgdPLkyexlZo8sG6E87qurqzh16lTOSah78rnPMkFb3huZGCujDNwvHuehoSF87GMfw9atWzExMZHVw9rtds6L4fNLrzErJHHi+e7duzP4lTVS2IDjceMx4GPJvkhgyaCNk/cZHEkPNI8ZG39sYDJ4YgNTAuHZ2dlL+jU9PY35+XkcO3YsV2bncVtbW8vgsNUidTOmMDnnci0IWS2eDVC+1rW1NZw4cSIDlF27duGpp57CiRMncNNNN2WjnYvpsZqXcy7TvXbv3p3HuR+oeMtb3pKpSGtra3j66aextLSE2dlZHDp0CNdffz2uvvrqHkDFuRFTU1NotVrZCSGBrxzrfpRAnoN8D9nQ53vL41J3BHCT1D3+yWtJRkFZ/ME5l8dWOh0k0Kmvc/k8kc8/CcblfOj3vONz8DjwtvI5dzlA9Vq0V5e8nSg1ZDSwOg/zGvilz6CiAhyZdsNcdcXvTcH1Zksi79Xb6oEVSVOqPkNlh7LBn1Vt+kUGYs+2/HkvsEDyOAvAkLbvTcAWUpI50lEBCAkses+fthF9y1QRMKhAHpcQ8wVCRRpxbTgh11INCWOhDXmPB1pNNBoWhSUZy4qGQsYzRQdsKrJlMvCreGhEcbJaUcQEDu3QBkKJAgHwHcTo4DWgdBOmGETEFoRgUaoCWitYbWB0I0dAdAzQMQIlRQm6nQ5p9wcFRAekKtUxR2hAkTAVYVJSrvcOwXVQdjYRHFGcjAG876Lb9VCmoNoUVIY8WdQpmdloKOcQk7FPEp8FUbs4msZJzroCY9yq+wNw8TmtFUW8tEYIKgEWIKqAqGPOjYlRISSqTVmWdM8VEqAwaDWbaBQk20vRAAVtTc5FMCrVXIgx5bCEDCyislRtmuWbe0hbFTWqyq9Q6QdLnbLBL/IpRBGmbrfMkQqOVFJ0x4jj6BwqJ6odfWdB6kxBAVSgrlp3BMJiApIVLQwI8MGj3e6AcnlAfeOVETx8kpU1qfaHMkWiz1kCFogw0KA0lCqyog0pw/kQYBs+qYGRVLEvXVXcEIIqliJ8ndKjU14EsIlGs52jTpRMbhJdqUS3SzQuBaR8nRRBYWAtjLgAfmaE7PTIFdMzwEg6doHmTHQpEuI9ym4XRaOJrUNXpNw3Ddf9zQAL4FIDTBq8Ut6VVaN27dqFo0ePYnZ2Fs8++2zmgbP3k42vOrDglyUr37DiizS8JTWJf2eDWP7NrU7xYclL6bmsUyvYGwn0goh+4EEmZ8t+cWMAVJelld/z2Eqjg4/N+zFAYwOKDT8+H/ebr0FGDSRN7B//8R9xww035Ero1lJSNav9sIF88uRJTE5O9hxPekv5eFxpWc4VCTTkOHL+Avd3bW0NX/nKV3Ddddfhtttuy9EBPv+RI0fynJH3lL3wXDdi165dOHToENrtdgYjbDBz/yWw4D5IgMH3hfn+CwsLmJqa6gFpkkIjjeA1UVmcx1waljxWc3NzPQUUea3Mz8/jxIkTPVFABkr33nsvhoaogjt7rFdWVrCwsIBTp05hcnIye/k5mjE9PZ0N0ZMnT+LkyZM5+jU0NIRnnnkGTz75JP7wD/8Qk5OTmJ6extLSEp544okszcwgfG5uDp1OB4899liuDl5vDDxGR0fxiU98Aj/84Q8xNzeHEydO4Omnn8bw8DC2b9/ekwd06tQp7NixA3feeWfOg2Hgwc8LuT75mcP3iuejrHnB946/5+eCXGf8DLHW9tTlkPOVgQ3T4VZWVnL+WL0IJJ+L15kEOuwokc8tuXYYiPH5JK2Lf/I8tbZSdpNgksdE7vdat1dHhfpvn0fRaMAWTTIYkhKL5GADlYc95gCFoF/EyssfGW0oppv0cr0BVBGG6osaOOgFHRW4iMj/q4EJ3u4ScJG3ES93sV31e1WbIB83X3NVuyAdsIpucLQj0tmSbVXljTDASMdhlV7FkQq4bIgSVcnAmAKtVgFbWDSbLdiUG9EsLIwGCh1Qdjfgyw4QuyjLEpubm4iRDO1GswlbNNBoDMB50lQCFIqigaJowKdoAFwXiG0odNEaIFWahm3ChTJVAi8AVQC6hYAGYtQofYQ1Gg2rcd1vbcWWpkXDaITQRfBddC6uYXPjZbx47jkAgULO47+HRiOp/aSIhS9LeNdFWXZwcWMDZdlBZ3MjUa48QtmFVhGFVSgKkgnV1sJ5oOsiyeMaSwX7oqek75T8XZadCtiFxJu3Jud6FEVDeP3pHidx5fw32YMpwT4l2SPGSvI3Cxik+eC5nggBCzpvngS0TQgZ4xmjUuTJotFoJCBpiQJUtNDY+ltQpgUUWxA0ydDyodIyB5DAUY5upc9SdEDlFaAAGBRFk+pFFA2qwSFAtHMV7U96JgloqepnGkul2JimSABX5u52u9lbX8ksc9RIo3QOqy+u4f+3sIh/nnsaZ86ukNJRjEBSqIJSCUyT8IBtbIGxBRoDg2g0B1A0W2g2qfZOCNVzpNFswliqAcGr33W6cAlYeJcSsAPJvkakCCRHDqBIMEsobElVNZJH1nDOpUJc7VQ/xucCkVrp/OwILgGZUEUlachDFRkVzzKlKLhL906n+W3QbA3AFgVarS0IweHY//jsb4QKxS849sjy76urq3jiiSfwtre9LXte+cV69OhRPPHEE+h0OpiamsIdd9yRJTul163OY2cvJL/Q+TuZdM2NX8iSotDPcyeNf+lR5NYv14Nf+P0kItlQAHqjFmyYSzUreRyONMjEaKYeSa+qrLsgz1P33DPIkDLAMtLBCZ/cJx4HVsXi7aVxU/9MRoYuF81hvnyrRYnlCwsLWVqUjdzh4eEsW8ogyTlSXGID++GHH8by8jL27duHsbGxrGjFHt25uTksLCzgjjvuyIYWG/4nT57sUSpzjgru7dy5ExMTExmgSIDIYGB5eTmf4/jx4z3j1Gq1eoxXFhuYn5/vAQ/r6+tZ3IABHxv7fD45P6SXmvvBwETmFrGhPzc3l6vZr66u4tChQ/irv/or3HjjjZiamsK+fftyPok0ZhmsPfzww1hbW8Pg4CBuuOGGDDyOHDmCH/7wh/izP/sz3HXXXbkfq6ur+OpXv4rvfe97Pff7+uuvx8jISE+xPW5PPfUUjhw5gu9///t5v+uuuw7veMc7sH37dqytreHUqVP48Y9/jD/5kz/B5OQk9u7dixMnTmB2dhYLCwu48cYb8ed//uc4dOgQFhYWcN9992F1dTVTGDnKI41tXkdyPcqoRj+D+3LRQRmJ4rW2vr6OxcVFrK6uYmZmJj8fuHERRwl8eD9+jkmHCK8lueYkuFlfX8/3UAIWGdE4deoUFhYWsvBEu93Gtm3b8O/+3b/7zVKhovinIOUmWeUmhyXYbK7IDpF/cHVjlc20fPS6R1/8Lr6oRRp6AQNATm6mOAUmErDxHzlaQr9LcJCOmD2F+diZhlDtU8+NYLMsX4YAFYgyAVeL/E0enSjAU9pZkWGilIZRyWOPImMva02qBK7RagLWBhSNLqwJMMajMCSJqWMJ79fh/SaiLxFLB99pI8TEvfdNhKJALDfhAt0bpQ2iayC6BinrBIdYdgF0oZRH0dhKxqEqKDoCwAcqMBiDThXGY46uKMRM28pUKxSwtoGiaKHRbMG7LhAjNtZfQtloolE0cqE/1+0ieMrHaLc34coS3W4nj5UtGgSirIKCz0a79xGu6xCNp/oEA4NEW9EWUQUEw8ntESrdUwWQMcxqSsn7C3EfZZV5vs/QCQzGkOhQETpSsq0OASGaPL+jSRx4YwFZkyQmVTBPyd8VvS7lbGjyylNUxSNGhSIAttWBhoEynqrFV+UhcrSGfPxagNiq+xVkSvMuRR5IEUtDazZmk7StrnIVdKIBsfOAIzsV3aqKksSQfBHpXDrJsvoM3GOO+qTFB+8DOt0uAhSUsTDgcQx59VBUyfRJZhfzTWsKXqV7QPkXBM4Z6BilUXgPZwWwYEpUJCW2HKmM1RimqUHzPUUnOeJTJFUwpQBXOhhTRUMQAWiOOlbOlhhVNVciRZO4XkqW7Oabm55lVAE+Qnc71fnx628bGxvYsmULgF5KERtby8vLOHfuXDZapedsZGQEY2NjKIoCu3btyh5jGdmRHj7+no/PL2IZLflFlKI67adumMsmv+tHk5Av+nq04hc1CWJkpKIOIOp0rTp4ktx/ee46uJLRivpxJZCRIEPyvOV+9Wusgzneho1v/l5GfQDgueeey9KiQMVbrwMzLhR3+vRpWGuxY8cOjI2NZS4+R1L4Xo+OjmaKHBv+0qvLfZaGHHv/GeixN1veq36RMTn2EkxzngRHGHhM2ciVydEyZ0DSyHgsl5eXc3RA9klG4DjiJsebt2W6GvdTUnj4engbbgzYDh06lPs8MDCQo1c8zlz9WzaOHmmtMTw8DO89XnrpJQAEGF988cUeo/vnP/85vPd5LXNEnCOSs7OzOHbsGE6ePInx8fGcR8PXyvlCEsD3M8Zlq39fBxeX20+uU7mdpNLV11n9OVJf5/36KSOMsg/155f8nI9fp4LxWnDOodlsXnK/Xov2KoGFBlSBEA3RVoDkPc/2CxnedY17dvCmomhssIe8RagMIYhIQj5vrCylSyIWNVCRfr+EepSOI6MUMrpxybHTfj5FGPh7yHOG3nNz65HJ5W0VV/61yeOtck0KSvIVak+JgtJstGBtAwNNC5NVd2g8W4WCUQ4GHVj1EjTaUGE9g5TQ7aYE6g5itwOUJWKwiE4BXiE6ixA1ul2LEsBmcn8qrWCLJkplsakMfCBPr3OUxGqMRqPZAlCgaBhoOwDoAt0uVfMuu21SAIqgCEFBFBurt1FFZq1gUADRQMWtJBHqPdrra+i2L+Jf/t+fotFoYMuWLehsbsK5EmVnE9ZqNApK2lXaoGg2U4KuRbPRoFwOHXFx/UV0NtfhuxfhfZm84hFGWxS/9dtotqjScvAawQfYRhOlo+JpDBwovSJF4rj4GhIJR3ExyJRDUE28PMs4cuGDg2Vvf55bHOVI/4JHyJKkMXPtoye50hgcRWucQ9d3sHmxnak1jVYLRasJZVswTQ8dLXwCF3ntiar2VLciXZev0aJoY/K6G0PSq6ZA4CiOSbU1Uo0NjtjRA4zECxpFQQ9FIYHK0RBaAAacfxUi1ZtwICoPoSFSPVMAFcELpN710ssX0HEBwTRQtJopRwigYU2RzgQorGXKXQOAgfcK3gOFNmi2Wgmsq7wmARBVzxiYVgWYnHPwIcJ5zw+JlIAd0HVlrjtDKWEhR3R6nksh5kJYjWYj73Ph5ZfRLbtot9sVBdIYyuPSIT83OKcqJHBK0V4qAimfLSGfk2p9KOfQLR3UbwBZnDt3DkVR9NA52Nh79NFHMT8/j/Pnz2c5S66iy3KUzB9m2sLKykrmrrM3lw2wulQpfyYpQkxR4WNyY0O3bjyw0dnvO9nqAIWbBEG8nXz5S+NPGiPshWZjWgIua23msQPINJrl5eUshcrXJo1jeS0SuLDxWr82ppzUk8QfeughjI2NYWZmJlNj2EMqaWBHjx7F5ORkjhjwMaWRLfMF2ABmA5lzHTiSxXUtRkZGcn7H+vo6JicncezYMXzpS1/C/fffj5mZGYyPj2N+fh6nTp3qSTDnz9gI/cxnPpPHgTn17D12zmF6ejpThtgwZPrQxMRE7ruU/ty/f3+m6shIA9dLOXHiBJyjPIe9e/diamoKs7OzmJ+fx6FDh/J8feqpp3DLLbfgwQcfzMULFxcXcwSFo0LHjx/PVeAl2JO5TEyf4nu7urqKqakpfOELX8Du3bsxMjKS51m73c6UIo5gjI6OYs+ePRmgcLTof/yP/wGtNT70oQ+h1Wrh0UcfxdzcHKanp3HgwAG8/vWvz2t+cXERZ8+exfLyMp599lmEELCWKtD/wR/8AQYGBnD06FEcOXIkVwPntri4mBPmjTG49tprcfr0aczNzWFzcxM//elPAVACOiepT09PY3x8HPfffz+uuuoq3HLLLXlNy/VWp0pxf+sGfb/1LcExz3FJuZOAmvNb5HyrOy3qfeLz7tq1K98X3pYdJbI+Cf8u81xkdJPvMefKjIyM4KGHHoJzroei9Vq3V5djoQsokwqmJeNFgavwCq9/rGhFpP5SGe49UQYkA75y0F1yDKAXWMjve4z8vC2qzzNtQQIRiM+TPRNl/2T0Im2bz4eUhI6cN5LPy9eGRDDRFb88UynyFSXVF5USWlUBUzQSSCMPpTUaA02LptVo2i503AT8RShVQikPGz10dNCxhEaHPPVQgLaAKqDtIBAjtHFQuoOicIAy8NGg6RvwgYBFqh9MRl1kVSyFEBR8UDAwoMTuRqJ6GBjTQIwK3dIhdNsIsYuNTpkiCV14ZqtAYXCgQNxCRpVOIFTFlBzcaORK3c2iAdelhaW0grUG2haIwcO5LZX0acohIOUfoiwVRQGjAasCwoU1lGUJ3yWqk/IOJnioUKJ74TzQbUG7LbCNFgpTwDaHYD1Q+khqV5GraKucI1AVdJRZREQnqlWBEDM2wuRoBBuCPEPS79lwdLnIIakIkefeO5LU9a6bqph7wDNlKFAl6c0O9PoFtKLB4MA2WA1EzdFDVL1TyAUFAfJoZ65Vms/GWKIRNVpJYUojRgcFleVxOcmbKkBrxGaDvPXBZ4M9RsYyOp/baJ28/UAMBL6AmCqVa/iym0FWBXY0tC7QbG7F1m0eTl9B9K8kRlB6j+ADumWZAYY1BYwmYJQT8RXVmOiUHRQg4GOszTkhPbV10t/8jPCs5MT1L2JEM1BkKYQA16U6KT5whXQCFCFGlKVHCB0YU6LbLWltK42isCnqZNJ+BFr4vrPDgiNVMZ0rV+1OY8e1L5SIoPCzKASqRv/rbnUP3c6dOzE7O4sHHnigh9rC9AyZNCo942xg80tSeiClMVV/UUsDW9KN6kBAesvl7/08m/XPZJN5FxKISEqFTJaut36eRf6dKRZyO3lsSbuSUQ7eVuZdSA943Yjh80vFLlamsdZmhRsZCWDDhnnqzlGBQGttT7/lvJB5G9y438PDw9i/f3++VqlktLi4iEcffRS7d+/OoGXXrl14z3vekyNhvB9Tcvi+D6eaCvPz8zhz5gw+8YlP4Pbbb89GueyXjEDIqs9Mx2OjTtJfJEibmJjAgw8+iNOnT+ODH/xgBtRstO/fvx+7du0CQEnZy8vL2LNnTzZ8x8fHUZYlPve5z+Vcovvuuw/vec978KUvfSkLG3BxRwYvktIno0W8luT1PPzww9mQ/uIXv4jJyUm8853vxNzcHMqyxA033JD3YaN1fHwcX/ziF/E//+f/xBvf+Eb8+Mc/xl/91V/hrW99K+69915897vfxcLCAo4fP46tW7dicnISe/bswYkTJ/Cd73wnF76T1cZvueUWtNttfP/7378EVFx33XVYWlrCF77wBbzwwgt4z3vegzvuuAMf+chHMkBaW1vDCy+8gM9//vP4/Oc/j9OnT+cx4OroTHXiKAYDQTnf2diXEaM6fa/f7/KZJMf9ctEEPi6vO/ncqNMHJf1pZGTkkuiLBANSkY2bzB2pR3J37tyJvXv3ZgWxfhGm16K9OlUobQFdIMtXpo8j00FQM8TFz/x7HXwgZxv0gIResFDRjC63XQ8liUFJrABE5SVm405GLBIIkudA8gQqAYAy+SK15DntiXpA0EJ0lZxOPGlKRqVjxFwITOuk5GQ0bKFhlEJDA1uaQLOIaKg2lN9A6L4AoA0Vy/TPQ4VAVZ2hEMwWRKTcFzMAQJPCkurCGEcJq8qiobbARwIWBhFUpK6EDw4hepRdD+cB5QBo8lw3GlvIUFM6SeEqdLtUIM8FYGOzhHMOZemS8QjExOtvpmTeVL6NFIVB1601RUkKYxDKAZSuBOeoFI0GIoiXz3kCMZnyKhlmJhWh0ypCwyFGqjjsyy4QPFQMUMFBIaC8+BK076CMJQqjYayFaQ1AB7pWSqYOFbhQXFAu0YNUkoMN2XIGKx31gAvN81mAWPZCI6aK4mSAUkVnqhxOhmUFLIwjtSLtCsQELIJLBrgr4XyJ4BzamxehbQuDwUGhgIZOeRYVHZEd+5QYoHg4E/ZIcqzawugChW2QtGxyGuSxENfKClYqAYayLHuKu/F+eVkoXiNVvkBaQtBKER2K1ZEUyyAX0MqiaGzB4CDgtUOjtQXGWjQKi65zcN7h4sXNfB6jKJemURR5fblEPfLewVqNCFaHqkAFq2BZY7L0L91qSsR2SSKW7qnKRSE7ugOfikUy2PCJlhQ9J2gTDcpaAjSFsVQLNAEL7z2U0+n6Q1agU0GntaChOLrJstYxICiSo1bsmZHBU67b8mtuHFqXNIvl5WUcPnwY99xzTzaIpBqLBBYyUiATX+ULva5uUo8s1KMGdeWUOgio//7LRCfqx5G/188lDfvL0THkPjLSIIGS7A+AbOxKYFEfF/7HkQP+vl9/JbBZX1/PtJ09e/b0gDpp/AAVgBkfH88Gi4yScF+kMSU/YwNvenoaQEVDYuNoeXkZR44cwc6dO7O06+joKG699dYMwLgf58+fz9Qcvvc855599lkcOXIEN910U1Ycq99zHqORkZGsQjQzM5M9+wws6vNgeHgYo6OjOH36NL73ve/hj//4jzN9iFXQOAHbOYfTp09jY2MDe/bsyWO+c+dOLCws4MiRIwCo7kan08G3v/1tfOpTn8pFJ+UaYUlgng/1OcHXyBG/p59+Osv2Pvnkk1haWsK1116biwEODAz0rC8GJSdOnMh5Dj/+8Y8BUH7E6OgovPe5GKYxBtdccw2mp6exsrKC2dlZvPDCCwDIyXDhwgWUZYmxsTGsrq6i0+mg3t7xjnfgK1/5Sv57eXkZu3fvhnMOm5ubuOqqq7Bv3z50Oh18/etf79m31aLq6DxHpWBEPZon57EEaDwH5NyV86MeGbjcmq6veQn6+RhyG3ks+fysH0vm0/D97jcn6wCenQIc4eEk+19Fe1XAIkSDECsTiq39HvJQLYJAH/WCBEiDq9qzT/QhpvPGS77vR3/q91m/72OPtaN6jaG8V2KCp021pvwIDaoYzBERNj6bDZbYBFlxEdkQAQJsMmSUaUIZDW0VGoWG1UBTexTKo1AOOl5ACJtw3eeh25vQm20E/zJi6CL4djbyTEHJ0ko3AD0E6ALQTSgziKgH4dTrEFEgoIEydsl48URyD7qRPP8KKnahQgmEDsrORQTvEHyk4ltFgUZrEFAGLii02w6lc8kT6+FjSVQpsK2tUrXuIoOkrVsKbB1qwBrKE1EsM1xrUSvAahRmAGnICNrFCE74R6ySiCslogoY+uhT/0t0Ni9CIaJhDYwi8KV8B67dxcXuOrSKaHqHxtA26EYTRasJ74g/3+2WOWphJKhQSkQdKuABpCJmKULAYKSaxxVNMCZPszQSq38BYKM0kpxqDB7RdxFcSfKl5WZKPu+iSBGN6NroXngez5cdbLniStjWFhRbttGcUDbhCJZ4JmCmxX1gNwHRiAoAVfJ3kSqPK0XqXpk+FYnXr9M4NBoF1RjJOQYAoKlKu/fopiR5IFICeopUqRzFYplhUkhSMcJpAx8BaI3BrUOwWxQGmgVVWC80RUpixMXOFoqyRUWJ0ylS4kOqbJ6iZ0pVilpEcaJmU2TDWptzRqymZOhGw8CHNnxQ6Gy2QeyuBrSlAoXOOzgfUJaphkkMcK6E9yEXswuBKr0jEhu0m/K6fAIpSBTHqBPYTNXhVaC+Rgg5axt65k+IEcpXghHsvFFJze3X3dg7yBSnxcVF7NmzB/v27cvyi2xUyJcdv0SlJ1HWu2CjQBpOskkvfd1Qln2TTSZaSk9i3RCQ9R64SblVbtKYrlMq6nQMacBfDpDIftcBUz2Cwsa0NIJYc7+eZC0pM/yZBBXssebjMOefx8E51+MB5mMsLi7mXASZgM41B4aT0pLMC5BJrGzcOUfqVUNDQ/jABz4AAPjiF7+IdruNY8eOZblRqZS0vr6OU6dO4YEHHsBNN92Uq2jLcbrhhhtw1113YWpqKs8j7oe8N2NjY7lmCSsOzc/PY25uDrOzs2g2m7jllltyBGdhYSF7lz/wgQ/g1ltvzYbs6uoq/vAP/xAA8Nd//dc5cfwnP/kJ2m2SyJ2fn8fp06fx05/+FG9+85tx8uRJ3HnnnXjssccAAJ1OBzfddBPe+973ZsrR0tIS7r///txPBgBjY2N5nfEc4PGcmJjApz/9aayvr+c8ia1bt2LXrl3Yu3cvrLWYm5vD+Ph4Pg4fg6MOBw8eBAB8+ctfxs0334zV1VU89NBDGQQ+9NBDmJubw9mzZ1GWJcbHx3HnnXfm77iI3mc+8xm8/vWvx5133olvf/vbAIBPfOIT+NSnPtUDKnjdMWVqfX0djz76aM6p4b7yPOJ1KH9yNIibrNIuo4n1XIR+TgpprHOkSsrA1te73LcexZPJ3vVnTx1IyGeNBCccnZMOCV6H4+PjWVVreXk5jxmvu9HRUTz77LP4VbRXl2PBHv/s6u/15KeNehxnvJ+MaKTNBMjgDRlwXBqtqOdVXHJ88bP+e96v3j+2niq2SM9/2WjKhmHaXOuKw56lOlN1XzBhhrcjxgwpFalUbkB5KO3Q0F1Y5VHENmzowqAEwgUgdKDdy1DRIUYPBIUIC6hWkhM1CGhCKQIOWm8FVBNBtRBCCyE20Q0aISr4CDhnEDyAQHz7qCOUClW+QFBA0Oh0FLwDggupj0C73EQEKTw558lg8gExGXIx0eJY/acq4EWJ1EbblFSdkrg5MpSM05g81aRUZGn8Eo2H51kIpN3P1Z4poqAzk4ds1ABfdnNFbubhU42BZJyRJQpED9fZhNYGrr0O3VIwpgFlDVQaN4hjUwKyzgY6f5nriIAMYY4Q1IGFmFYVUAoRXru8njK1z6SiiDFCJzpLdBbelNDeAVoheEcJ9sYCPkVnFNGJOpvrcL5MxmoT2jbBiTlRRUBHAKnWBo+RiLBprROISrkZacw5wZnnPK+pnEchwn28rpWqng7Bp1on4Cr27I2vapVUNVrYmPaACigKg0ZQgAcKCxQmwChPczkCAw0CS1EZKtaYKF9UWFAn2qaidZNqW3jPNKEIo7W4vhQZE88iBUWJ3dYk54OCMjR2xjTQCBHexlTpPaB0lL/jvYOzJn1mSV1LRE1VolZpAJ5pZGlt8b3JgDM5OhA0SRiH9Fn6GYNKx+YcDPnQ+vW1jY2NnpexlIOV3t56zgNvKw1B+ZKXxm8/w7pu0MtWN+brURDp3eT2i3IsuM/9zvNK57/c9/28jvWxqFOqpGEsKR5sYLAhIg2lfpGbOpDhffr1iUEYRyWkAg1TZyTFRBpbErDUPbZAFaGS13rllVeiKAr86Ec/wvbt23MUpd81jYyMYHJysiehnQuFAcgVnKXXWo6/NAClQcfA5cyZMxgaGkJZlj2KQ4uLi3nfXbt2YWpqKsusyjn+jW98AzfddFOuqs1gamRkBLfeeiuuvvpqXH/99VkBa8eOHTh37hwA5OrSrDbEAF2O59LSUgZ8bIgynZBzQrhCN1/7hQsX8KMf/Qif+MQn0Ol0sG/fvp77weO4a9cunDt3DiMjI9i9eze+/OUvY3x8POdEcSL6jh070Gw2MTw8TJTk5MAZGhrC7t27MTw8nKOa27dv76HwnDhx4pK18da3vjXTyW677baclzU6Opp/l2Ms76tcI7LV1+HlniV1IF//nueppJxdrsljyTXRL5JRX3P1PtfBjrzO+rytrzfu6y96Jv1b26sGFlQ4qjLUY+8G+Vcl+N1sPPaAiprhLz3B9RyHns/6AAv5ff13cXj6yQYt80BiL81DXpTWWtBaKilYY3RSZLLCyBLJ4pELhqlUFEsnGVRQPoQn4GDceSi3AbgXoXwb0bfhYyd1QSOqQUC1ALMtIRINpVoALDwaCDCI2kKZKwDVhEMLzgU459Fud+FDByF2ESCKtsUIoEyGPtFQKBIQ0WlHuDLAdTsJQHi4QF5h1qIh+kgBru5sG03YokBhmnSt1lB+CQJC2YYOGi3ThAEVvUPm3rOBTTQgrTRUMtwo4lMBDzL0yOCqwAQbxUBhgFA6tNvr8OUm4LtoNCy48nQImox1eJhIuR7tjQsoux1o28DAMGAbLWhbwMDAWMoL4urIDChknoFO1bMZWEDM6TyX8ty7BGojxgiTOPkhxJ79WWIUad3Ae3hPEQtVthBciVB2EB1FNEzZTtGMLtZffgFKKQRXomgNoTGwFUjgIuqqkF6EQ65ZUWhACwljWylhcRRPggn5u3dlvj6u8M5iDBLAVxXuE2CAyAMIkQB09MgayzEiRFIhGxxswOkA7SIMPDQc4LtApMjLgG1SgUOjEEIJ0IxP98cmwGoQYeECUaEAmwz+MtXCiPw4QIjIILRbOmgVoJVGwzby3COJ5YhmMZAqkpskLezR6Wqqh+E1Yyb4QNLH3dLDpfMFn+pwBKJIcnJ3SLVCYtAiAsT1UkCfIYAVu3h/KtxBc0pFDegqKvPras8//zyuuuqq7LHuV1zOuSpxkA1UBhbMKebW72XNL0NpYPfzMtb3qb9EJadZeho5SsHGbd1Yrl9LnQZRf2nXv6+DGv7JuvdAZQTXDYo6sODrkgo+de6/jLpIw0PSQ3gs5DH5+lkVaWRkJHtApVoTy+Jy1eGdO3diZmYme1R5HkxNTeVxl4YOH4eBxcjICFZWVrC8vIwf/vCHOHHiBO666y68973vxd69e3NeTp1qMjMzkz3i7JU9fPgwvvzlL+NP//RPe5Lc6zQzlkVmY6yuGMWG87vf/W6srKzg/vvvzwb0yZMnsby8jOXlZTz88MPYvXt3FieYmJjAu971Ljz22GP43ve+h3/6p3/C3XffjZmZGaytreHw4cO47777cMcdd6Ddbufq1VNTU5iamsKHP/xhAMDhw4cxOzuLM2fO4PHHH8cHPvAB3HnnnZibm8v34+jRo5ibm8O9996bc1H4fvE85jobS0tL+NSnPoUXXngBX/rSlzIl5ktf+hLe8pa35O0YyB04cCDn0OzZswfPPvtslop2zmFhYQGPPvoo9u/fn6MHy8vLOHPmDGZnZ7Fz50588pOfzECHvenf+MY38rz9wQ9+AAB4z3veg2azibGxMXz2s5/FkSNHcPjw4QyQ9uzZ07MegUrKlec93zsZTeAmPf/9krrl73z8uvADgzymWTFwls8HuY54DdYLREqngFwXEjzLxiBe9ouPzdtzIjfn0vDxJPjndf2/BbDw3sP4UEm4QkQCREs+/l6vNHtk057ZBu8LAqpIRj9gUW91v9wlfjph6EXxGRvKfFxdo7EQ84WNRa5wjYqXnTWBFBS4oJhOBeEUGsZBw0HjIlTYAHwbvvM8ot+EcxcR0KUrVERjgnkdIixi1AihgI8FQtDwpYaPSAo3lJjrnEeER4BLjC5LtSRAhoxzZFREVcm8OucI4HkHgBNAuYAfUW9C8HBlp/qMx0+xKpBCa6CRknybCOluO9eFKz26wcNHyt4udMCVAwZNszXnV5BxnkBpUtWxplHd+4icD0BgFGlPuh8B5OWNniIPCCXanZcRXAehvQ64Dowhrj3PQQeVEtKBqBOtR1GuQ3vjZShbAMagOTQCbVswjUEyLgPVosgALHVC52iFEfS3yrDOs00A5FwkUkzCnirtqZo7zXtO1E3rxofM3zdlh3533YoS41xSAHPwrk00NWi4rsPF8mUMXvE62AZFlaAo90KDVJR0orwVRQPWEh2oKCzA6yJ5nHqoXRJApc+9d3l98HeRx8RabNkymK+To08h+ET9clVyuspLE+1NhwsXNvGv/7oKl3KClDXwKqIdNcpOiRiBZkuj1TJoDZjctxAdYiyhVAloSu4OQaXohYFtkIyhNQQyIhR8pD4TpuPcFyQAq6lIIQCuI2mATPFjo19FoNko4FxEjC5HRqi+jEKzpVH6BCaco+TwQFHAwD89U8oqahkXJuR1qbWQIQ4BKmgCFz5zAxHMpd66X3X73d/9XWzfvv2Sz1utVn7h8ctMGoZS2eZy3/PLUlKTLpdYzUZr3aiQ3kzp5a8b1Uz/qdMg6uCgH2VJ9uEXRT1kkxKg/a6pbmzI7/sljsocFVnvgI/BKkZc1E4a68vLyxnYsAed5YDX1tYwNzeXx+PTn/40hoeH8fnPf74n6sRjz0Xu5H3j8eVK0NbanLDMBtji4iIefvhhrK+v461vfWs2lGWBPe4vJ3kfO3YMe/fuzQbXvn37MDk52SNnKmknPD48l+RxV1ZWsLa2lg3oW265Jeds3HfffdmAbrVamJycxN13352pX3Nzczh16hQOHz6MG2+8MfeBjbsDBw6g3W7j5MmTuWo5g+0777wTx44dwxNPPJH7fPvtt+PNb34zBgcH8b3vfQ/PPPMMjh49mmlA+/fvx+OPP47nnnsO3/nOd3Dttdf2rDfnHI4cOYKPf/zjGBsbw8jICP7sz/4M1157LUZHR3HHHXeg0+nga1/7GhYXF7G0tJRzSzh5/h//8R9x7NixnMuxf//+HLVg6g3PmW9961u4+uqr8YY3vAHbt2/PtDKW3z1+/Dj+9m//NudfyPbtb38b1113HW644YYMVu+5554e4Mlj/NRTT+Gmm27Cvffe2/PckNFNnvdSEEAmcst51A+s8JyRa1JGDergRM4xCSBYaICFEfpRFHl7psxJkHS5Zw2DmvpnDCb4ecYOBL6uoaEhdLvdS8b/tWivLmLBFaSZnsSfQxjgsSJEMLE8Co9sHYb0AIWIpFxTBT/qwOJyrQdM9KEAZEoT2NBLQKGCQeQBVL20j+yNTXQJSX8BS+5CZTqFsRqFUTCKcidU6ECFDcSwhug3ELrnEX0X0XfhlUZUBsEMIOomoJqIaCLCIsDCBUVJ0t7B+4iyBJwPCD6gdMyp9olakSgfiqkc6X6kQl1KU1IzA4uYvMNk0FTF/hBj1u6PMQKsimRYclTDWkP0lGZBykSeOOvRkyfdceG3QiF6j0InRn/y9vLsiSlfQisjAF81q6JiHj4T0yowG2JEdF1E30F34yVE1wZcm4CAIu87wPBJpYRgDQ8CBkZRBMSXXZTdTZjOBhoD26BNg+oORLpm75Hzndnq1SlsIsEmMp0oAVbqaJ5bPfS5NFt1Bsuy8FoV/cqFGk1MtTACoC0BC9vM1CFWDEKSFw7eodPtwHmqA5GBoU5qbopyLZTSqUJ7AWOKVHCRkuKrYpdi7fG66olMVoZs9gakXIZemlUBzi/xngABASPfo3pE65GO0+mWuLjZxoWXLwC6gFIGqmggKA2nNNptT4pKsUSEgdIF3fGYcmrgoVQANAG4ECK4qKcxgNJFir6lfJ2o4EMkwYZMWdJ5/BQUCQ/EQLTG/PSAiHwCymjESNGfmBL9jTU5WmQSiHBGk+JUBg60joJPkQqvM6igAn+0XpWimiYqsGyu57Su6n6FWKnS/Rrbtm3bskcM6K3yKj16/eg3QP8IgPyuTgO4HKjgc0twII0AGaXgJl/K9Rd+/fz1vtb370ejqF9z/frqNQvqrR9wqX8v+ybVZNgok/1eXFwEgEvoRawKxZEaSXlijz4bKc45/OQnP8Ho6CgmJydzH2QSN9NylpeXL+GZy/HlSITM5Th16hRarRYmJiawubnZoxQmjTHniFt++vRp7NmzJx9/165dGB8fx7Fjx3qAA8+P+tjKhF8eh5/97Gf4nd/5nZw3JLdno3psbAx79uzJRjkbsWfOnMFHP/rRLBc7OzuLU6dOZW8xgxMGSwzA19fXc14Dt/Pnz+fznz17FmfPnsVb3/pWNJtNtFotDAwMwHuf6VN8PXwPFxYWsLGxgaeffhqDg4O5grW1Fvv378fm5mbPfeH5uLCwgDNnziCEkBO3ASpkyJK2PAY8fs8//zy2bt0K53pV3PjYc3NzfUGF3GZYKMdxtXGOWnAl8bm5OQwMDPTMR9n/+vNG5hddLr9BAmzet98+fK46iKnP7fpx++U4ybksz8f3keerfO7V5+4rNTlvZR7a/xbAwvlU7OsVjH35SUgGggJS0bl+tBD0HCuyJfZLNuEfpr8vxytWqa4CbZQNBwUCCoa9z0CVfKroRhDtJ0GSiBzVIIlKMrYLo6HhYVQX2q9D+U2Ei6vwYRPBr1c8aTsMZQ2AAi4U8EGj6zTKroLzCmUZETzVjSDvJRn6IQZKTg4c+WHKCBD8RfreldkDGmI19lwdGMpmjzsZb6oaQVVRfYoGVe+lCr4tGEP5EmymEwbx6KZCe4gKJkYEH0itqEOJus2Cqhs3W4mqwtKf3lPybKCbbTSyh1wZQGXuvs73JybpVop2OMRyE52LL6F78WWUF9dSbkUJAiIRRplE1XGpyB+BDZ081j6RuxrGILgS5cWX4bdso3ttB6CLVqq+jTypeypX81yVEFtV40lzBHkyS/WhdFcSJYiO0WO7J0ASkkIQ4XLawHK9EyElWgFinfN6FJIiUUkUqkidQM6DMTbXpChsA9YWaA1sgTEWtmhU2MHYBORCrg2TRQuUSrdNQyubk9EpJ4VzBFDxqTJmTNW2XZdAbnDgKuVQiiI0ymHlX/8Vz51/Af96biXL8VpjoYsB6NZWlF7DB+Bfz7+Ur2XLwABsYdFqNZPks4LRDloBhVIAaI5otYGenCClYYtm+p0AgFIKyjCNSsN5BTiF0GbpZIVGw5O8bWFyOnwE0LRNNGwz3+8AZBlan8bRhyLRp2i9hxDgvKc56wOc62Zg4XzIEQuWqA3puaC9p38mQPuqgjdRy369TRqGMtzORk49ysAGbz28L6MYwKVGfd07dzkQwt/L5GxJd6q/qOWx6h7Keh/rBkW/SIOsyiuNYD4Wy0XKfsuf9egNNzZ8Zc0O+V3dw8pJngAydebRRx/F8vIyDh06hD/4gz/A2972NszMzGTFGE62Zq/04uJivp8sG2ytzbKsko4icxOkyhN7u2dnZ9Fut7Fnzx4sLCxgdnYWhw8fztc9NjaGO+64A3feeSfWUn2N17/+9dlYXVpaylWr19fXcffdd2M46fnzNTPtBKgUmWSOhaSH8ZhLry6P49atWzE+Po7du3cDAE6ePImDBw9iz549mJqawt69ezMF69ChQ3j88cexdetWXHXVVTDGZPDw8Y9/HMYYDAwM4N3vfjcA4Fvf+laPgTk/P4+jR49iaGgIk5OTeOaZZwAAP/rRjzA3N5cjSZy/wFK4hw8fBgDs27cP4+PjObq0sLCQ1ZmspWKC9913H8bGxvAXf/EXePLJJ3vmzje/+U0AwKc//WkcP34c8/Pz+Pa3v40/+7M/w+233463ve1teduPfvSjaLVaOHjwIHbv3o3p6WkcPnwYa2tr+MxnPoP7778fH/zgB/H2t78dN998M/bs2ZMFGRYXFzEzM5PB2Pr6OiYmJvLYc60N/nthYaEHnA0PD+O2227DwYMHMw3wxIkTWFxczGPC95qfSZzcLpucIzwH+H7Uk7ylw4IbRwsYvEvRAqA3QmqtzQplCwsLuaAj09VWV1cxPj6e15Y8dz0xvF+0hJuMVNZzLHhtcUROgsnXsr06VagcsegFCJeLJkTxvYry88ttzwnW9PdlQYL4TinVc+xLin7J4+QAQ5VsrQTNhu1Aa3UytCvvbZajTQBFKYpKGB2glYMODio6ILQR/UXE0IFPkQbvC8pVCAo+NuCjhg+ktOQDqEBbCHA+wmUVGY/gYiVfmYBFzlXJHmI2IojK5GNIuSBpfKCgIhuT5KkOwvtudKWpz1GZXJHYUM4DFbxLCdMKxFtPWRrBe3iXai54R7KoIUAbhS1bBjDQaqLZaCRgkZR8UoQkOfqJkpPuB93/mKkmiEDUgegpYLlXj077ZXQ2X0Z380IqsAaQAhIZ3D5whExDIUCrxKHPHn6PoABTAlFTsnPZ2SSDshig3AyloJVJ1ZH7qD1F5KhBjk2oCqgpzbCXjXCVIinV3I1RStCSscq0Qa0MYACTIlAREUr7/H01v9N8NIYAcrqPMXvCXToP9zlmGhfL9VpryWg3JgHPdC8SwNaxogwSwBNrJi0gAhIRpP5Fxfk80x9jpXZUyetWICkrY4Fofl1X4l//9Tyef/5FlJsXyeAHydL6CCBElLFAiDoVN0SiADpYY3Bxs0jRRZUpTFYR6FSIKAqTQJXNa9x5R88DpXK1bmNtqt9j04ykRGmvaD2HEGCMgXMe1uhEk0M1B1RMUbiU7J3mFOeqBK0RUqQmBNrfKQWjPbQiEELrsgIVJilOeUW5HjkqFKiIJUU7AqL+1fBnX6k556C1vsTLXU84rv8uP5M0lTr1R3oNpUFWb7xd3WNZj4hcLvpwue0uR70CeqMz3Oovfv5dysLW+325MWLjol+uh6xwXqdwyfPJ5HmOMDz99NP4yU9+ghtuuKFHupSjDkxl4shG/brqoIy9+HVAycYM04Hk9+zV5m1OnTqVwRBTSN7xjnfg5ptv7vHEM8Wj0+n0qIzJBG3pNa/PpfrvEtDJ5Hcev4WFBczPz6PT6WB+fh6rq6uZjsPXfPXVV2NkZCTLqXI/2QCW82FlZSUXLmMZWBlVA4Arr7wy17BYX1/PhiGvEwne+FoB5JySkZERHD9+HKdPn8a5c+fw8MMP45prrsHNN998CbCQ82VhYQHr6+vYtm1bX3ojABw7dgy7d+/ORjKDgSNHjuDMmTPQWuOWW27Brl27sjHNuSc8DgwGp6am8txgypC1Nv/ORfqYmsdUr7W1NRw7dgzOuTyWktIkI5C8jurzVYLNfhTLfmuO95eRCI4A1Z8f/FPOW4AohwwEmEbG0UI+DoOffvU16ueof9fvGri1221sbGz0va//1vaqgYVPntJfBljQdsiGYm8oIplirwAeZJPb9YCK7BZN30Fl2oncDkAuAMf69SxZSsYuk2aID621gTImRSqA4OmGkCqqgVEKVnkYlFCxA+8uEL2pvAiEEog+Ve4t0PUNtLsKpVdolwrOAaVLRl+McB5JUcYnL6VPVZcTkEv8ap9oIwwqFIMLcGWR9JdSmcKhdaL1pGJ8CRkAaZyKgoz+otFIBeh6a29Q8bGIGEDebGNJ1UFRn51ro9PpoH2xDRUjTDKkjLEYvmIIW4cG0RoYoNoACvmaOTfHQNM4Z28/facVCdMiGavOk+qNVoALJS6ur6KzcQHl5kUY2yQwVFggJslP74A8BkkKCAExAB5c4TkiBI1G+rrZXicjutGk/QAUja1J5UpXORWoDOyYzgdWtmK6jKpyW7Ksq6ZIQV4LmiWJQxUVsVX15wqQmJxPoVwt5yGD8FQxO0WGKNLGNC3a0Dvfo9QBhUR/quqBMEjhhREzUKJ7EnvmXBDxwshQkyJlEdAIWYqYqG9JDth1KYriHZCK/dGzJSJoYLNbYn2zg//3zBmsrb2MbruDZpOS62P08N0S5eYGnGohKgulG8nD77G5ebGa54kCaFhBLHgCGVphcEsLzWYDAwNNWMv3tYrEWkPPCNtooChaMLaZALVBjETdC2muEs3MorCWwEpRyfKqdK90ohGyUyICqUCeRwjk6IghIhgN4zVCIFoaP3OpTkbIxfq89/CagBY/y0IIMPys0D7lUv16W6dD+VnS4ysNS271F7Q0iOuJlvIlX3/h94tU1F+o8nj1YlP9vPv9KA28DfdH0nX4GiR9iD+r07+AS2Un+7V+EQs2MOpSqZI6Iak80oDifZaWlnK+xP79+zE4OIinn34aTz31VK5uDVDOwtzcXE6+Hhsby8Xd2Jjjc0swUjewGOAx35u9urw9G8JsXHJ04tFHH8XZs2dx3XXXYXBwEGfPnsVNN92E/fv396gijY+PY2VlJY/bNddck8/Xb97UwVZ9zvCYDQ1VBQHZ8FxdXcXRo0fx1FNPodls4uc//3ku7nbixIls0E5MTGRPNBvEO3fuxPT0NC5cuICNjQ0MDg6i2Wzi9OnTWeWIi9eNjo7ixRdfRKvVwpvf/GZYa3Ho0CEYY7B161ZMTU1lTz7Tw37yk59gbW0t14m4cOFCPu/w8DAeffTRnKD9zDPP4JlnnsHnP/95HDhwAPPz8/jZz36G559/HgsLC5iensbQ0FCW67333ntzwveNN96I0dFR7Nu3Dx/5yEfw2GOPYc+ePZiens51O9bW1vDhD38YO3bswK233oqDBw/CWouHHnoIe/fuxdjYGHbv3o3l5WXMzs5ieno6qzvx84JzT7hC+NraWo8xPj4+jsnJSczOzmJhYQHf+MY38OEPf7inSGNdYICfLTLHQDo/eF7z80oKItTnh1ybksYkJWjrc47XKM93pnPx/OToG1MGZWSV68pwH+pAiR0Lsq/9IqjcX+7z/x7AIlEiflG+A7eY3tWJ3UF85AQE2BvKnrv6EfsBCfl7z08lFJ1Sq0vCAoA1RaZpVEpV1D9rODmZjEhyigYSm0eESWnKKkYofxExOpT+IkpfErfdcQVeh3YZ0fXAZhdwLsCV5HEPAXBBpYTpmBM2ywQmQkrAjVGoAiVqCf1fpfoTKSkWHGVhj7pNRQG4srCGNqqKtNgCxhZoNQdgi0Yao4q77QIpfmkkD7i1UIYTrenel8Fh/SWmdjF/X6E1uIVoYVqhsMCWVoEd26/EtiuG0CiIglVFP1RS0mH6jgWHL2KioSm+bpDxHpxDt30RGy+9gM7my9hYX4cKAaZoomgOEX8dSF5wj+g1FAiIeKUQlcvVjbmuQAgBKgaYix0Ya9ANGluGOriyaMEHBe0ClC5gTANGN5JRSFGcgAiS5KXzpBlf0aNS9EWR3FLy7lc0KJq2CXww9QscfajWBedBIIMNkqhl2xlAolSlsUpWvWaF1WqSwBYGtjAZHDAQ4nlA5+dIkkr3TKWjsjIXXZ73DqUrkxwvUY5k9CaEgFh6KFPAGk1zPdIc956BnXRQaERQ7tALL63j+bUL6LoASjSPHGpBVDrBGhIZ8Chhi4gYaUydK1Pdm5CuI8KnNaIT0IxKYWNzk5TdrEFREGBuDTRQFAUajQagNXQAXLuNzc12VadFa9gi5XsoyqWgKvANdHj9aVaNM2gUBRn+niOkSHUzNLS1pIZmFCJ8roNioRFStCsEojrRfa4cJkx7szEiWEvP5jSvvfc0v92vhj/7yzQZspeGpfTe1UEAvxwZlPALVVJYpOewHxiQL9E6UOGXOnt46xEPyWuWTZ5TvujltUrQUadh1Vu/SEV97OrXIJMwWc1J9pnBijSMJI+bz8v0DlbmGRkZwRve8IZ8ndJTOjMzA6CKdszPz/dQQkZHR/N9kVSQtbU1HDp0CKurq7lwGgA88sgjGB8f7xs5ApABj7UWCwsL+M53voMHHngA7XYbhw4dyoXyJiYmsueXx/26667DbbfdhnvuuSf3p5+Xut/96TeHOFGcPcU8pvv378dtt92Gu+66C9/4xjfwz//8z/j93/99eO/x93//9/je974HAPibv/mbDFweeeQRWEuqXyxHOzk5mSlB/+W//BcsLS3hrrvuyqponU4HKysr+OEPfwiA6ngwVeiBBx7Ad7/7XYQQsG3bNrz+9a/HDTfcgN///d/H6173ujyWTLsBkCtkP/nkk3j/+9+Pd7/73RgbG8t5Np1OB0899RSefPJJ/PCHP8R73/te/NM//VOehwcOHMgUo/X1dTzxxBM4cOAAADL0H330Ufz93/89fu/3fi8XBDx37hz279+P2dnZLHW7tLSUoy/nz5/H008/ne+nNLJ5HkpqG0co2IDnZ8vIyAiuvfbaPG8ZULCRzzS++v3mdSQpRtIpIBWlpIOjPn/kfjIXo988k3OdwSt/xkC7/myRAKM+n3kN8POV5/grOVf4uDt37szO9de6vbrk7QQsLsNk6m1K5e160iYSKGGwASUOpyr/5+WABf99CcAQJ6l/l/dhDzA0kOQbs0dRV1V4kTyRIURoBhQI6Z9HjG3E0EV0F5OaTYAvE0gIAZtlRMcBF7uRaEKlT5KaicYRKaGdaCoUpYjBk8qLoIXwyNFl6JxIzVEZKizMvHkFZQryqmsCFlpRAjIHKUzi0jcbAykqo1M0wEM5h+hVihakSsziHgYVib4SA0Is03ZAYRspklFQ8rrWaBTAlmaBLQNNNBsFTKL/VApbfH8Sn13rHG1RfE7pkY8UMSq7bXTaG+h2LsI7RwnztoAyBaCIUkKJt6Qepfgw2lbgSJEXnRLjqb6CcgG6DGisbyBAY8vWiyiChWka2LJL420LwgtKifmss4Gv87xJ9Cgg0WCUmK/ZykfMc7FSnJJSrjmCI/ZVCjCmihBW0zvmMcufcXBKqXzaTMxSShj0VZZSpdwmkpWTsRvFulV0QxLFiiI1JnLBwhSNCpQHpBOo4htJeSMp+qIENSsBz3ani42Lm7iwcZGMe2sqaWFEUBJOimQl9Syui6H4u/SZ5pygdM1emRRXQZKXpSsvigLWGrjg0Wz6LGSQFczSmlQp2kFSvSYBRSqUpyMQVEjAh9ZBkQx+o02q9E3jF2KkyIbW+Sbm+86FOENEZCXjGKGjARBgTOUwyXMm/eOIEt/P8lf00vhFTXrO+e9+Bna//eqG3uWM/cvtX291ulNdPYU/f6VzSE8gby9/ykhEP+9gvz79Mv2vR03qhg2DCTZ+5Xb14/J+7KWVgG/nzp05f4L3rStQMdir07Hq48L3jOkr/HtZltkIlJ7fOn9cenRvuummTI954oknclSIgR0b6taSspWsD/HLzqN+AFBGOeoAhXNiGGidPXsWAwMDWF9f7/H+Mr3FWovz58+jKIqcZM3e6ZWVFZw8eTLTkdjYfPHFF7G+vo4LFy4AQN5PAkh2RL300ks4d+4cZmZIvvbs2bN57U1OTmJ1dTVHd8bGxvDkk0/ife97H/bt24fl5eU8ns1mEwMDA7n/0uCUv4+OjqIsy3yN6+vrmJ2dzTUl3vCGN1wyv0+ePJlVo/jeHT16FEBv5Wj21Mtkb75m+TxhypAEiwyYeZ7WBQYYbNQTtvutEf4pI3+8n8wjkoCgDhz6zTU5H2UkT67n+jOmPhe5SWAh+8qfydbP0VEHRK91e5URC/ZY9iKLX5bOVG9KISn/QCCPywODS/dXeVcJNmRERUYuQi6KRS9oayyptaR92IvtQ5X0aDXx83UsKX8ibGbJx9IFdMuIbglcbEeUDuiUIGWXwFEH0pb3viQQ4cukzJTkNhEB+B7QQ30mzyd5lE3ytJrE/TY5Z8EYC5MScXWRohQqKVgpqvHQaJCEaKM1hBCAbtehLB3KbkBhLQpboNnUyVCLue/BU/9iIH+y1UC0CkODW2GNRrPRwOCWrWg0moi+TXkggcarURi0Cg1rLZQpKsoP07AUEn9deMsRwdnSOaclRgRXorN5Aesvn8PGhRW4skNj0GjBFE0EpcFKUUyzCmBZWA1dFDAKUCkxNpYl4NsI0aF0KlVMizh3fg2Nly6i240Yvmo7Bq94HUIEiuYWDGjK5TEmIipbpbgEottoa5MymM7RHE52rs9fDmoEVOCgArXVtlKpiw39Roo48IslxghtdF4/FYuJIx61NZPBDUM52at0/32o+pOulStCU1TCI4YS0XUQXEnnKRpQmu8nGc/e+0wR08ZQHZMYRNRTg2temKKA75Y4c/Y5rK6tY239IrZs3QZbNADvkxGvoXSL+IhapYKSAREU9dLGomUbROHrbuY5xbVaZH6SRpUz5kp66K5f2Eh1PCyarRYajQJbhwYx0Gqg2WqgsATIqFAkUZhMoShIETVF/CLg+Zo1zX+iHBYoLClwWRsol6nTzblMRUF5S0obpFRvGKWgvKruDgMsVSlFkRxximgoBWtM2k7BFwV+3c0Yk1+QktoAIHvnJEUBQDY+2aDgF7XMtQD650Fwq38uz8vn5M/YyJGef2lQ8PH4mOwplHkR7NFcXV3tqdIsX+L1PvM1rays9Bg+/J3kULOHkj3OMnLBhtbo6Gg27vgY8po5j4E9o/KcMrGe6TKy3/LvoaGhbOzXIzdSllZGEfbt25fzMiRgqBuKs7OzPdGXdrudk7JZfnZoaAjvfOc78/5zc3N4/PHH8Xd/93d45JFHsHv3btx9991YX1/H8ePHsWfPnh4+PtO55D9pPHJSuczNAEhRivvGKk9cwZn/npubyxWy/+Zv/gbr6+t4+umncfTo0Zz8PjNT1deYn5/Hj370I4yOjmJ1dRX/8A//kM/HEaLl5WUsLi7iueeew1e/+lWsrKzg6NGjePjhhzE8PIzPfOYzeOKJJ7Kq0tmzZ3HzzTfnCt/cWCp3bW0N73jHO1AUBXbs2JHpRR/5yEfyGrvjjjtw++23Y21tLVdo5kjW3r17sbCwgBMnTmRZ1/X19Z5Ebo5O8Fy7/vrrARBF7OmnnwYAvOlNb8Ltt9+O0dHRHA357ne/m+/piRMn8jyZmJjI48UG+KlTpzA8PIyDBw/mube8vAxrLQ4cOIDFxUWcOHEiV5VmaWT+x/dYrnsJoBnc1EGCXLtHjhzB2NgYJiYmchFEzlXiaI6MLtRBtzzW5RwcsjYFUyvrzwpJi1xbW8Pi4uIlkQoJpCTY4nMNDw9TdP5X0F5ldl+8BFTwxwAqcFD/yZGJWIEAgKhSKm+nhHHUB1jUT5WjG4LlnY2pCmCQAcaeX5mASh7XblntG3r44xStiKFEhIePXCvAo9sllZZ2x6NbepQuoNMt4XxAmWgeMVSeTsRYJdBGl04Rk0JRpOTgFHnQuRCeyRx9Si41yXBLNApD22pjYG2DvKINm72jRUEce6MikORMnQ+JRqNBEqPk6Q4xILgAziBWyeNqOfFVAYVW0CrVBVAlUWaUB8Imup0SSKCCdPsjgjdJ/aYqeMYUIS2uS1jC+T4zeKXkd4fNjRfR2VyD66yTHKpuEpUqjYdnMBFZIjSbyXAxwESWzC1Aaj8WISiokpPrqX4HogJcwMsX1tH1Ec2XL2BoeB2DW19HikHKZLoKRAQMTHFihSHQfaWiZiGDADHFL9t6KXzM+ef9dVI20znaxLK0eY5rNj4ZqCQA0S96mClZqXMp2hJ8iehTUrBuENiLopZIEEXsPNX5CIoLp1t4n/oUU/E7UGJ0Bqu8LpLMbIgRm+0O1i9u4qWXXkJ7kwBLo7kFhbVoFi1stjdJ2MC0YGFhYKG63aSi5PPaMYYeaUWzSWIGwSO6lNxvInQCRzEGaB0J4DPlkCOXiihIZbfEhfUNdDodFJsFmoWhOjWFhTGNlPjdTNdHNK6Q0KIC5fI4R8UfXenQTbksRVEk2WabJX69L3ryvjhy1+MYydEvD6Worg2DVyWjXelemt+A3Gzdu1/3wvWjBkijWdISmMogX779vIx87Mudo+7Nl32TAORyUQv5Mq5/xvtJb3090ZL36yeT2mq1sLa2huXl5cwzZ5qWpDNJPjhfDxtBdYOi7gHtF8GQ/euXf9DPyyk/r1OwOALCBg9TWGT/5DH4uCMjI1heXsbS0lI2/JjPv7y8nD3c8/PzeO655/D888/j1KlTOH/+PDY2NnqSmKVXWV5/PSdFjkP93kuPtBxPBrzS8Ny1axf27NmDpaUlXH/99RgbG8O+ffuwa9cu/MM//AO2bduG3bt349SpUz3qWtu3b88G/1ve8pae6Ear1cL09HQ+DyfOnz9/PlObGOgxsNixY0dP1WqtNW6++WY0m02sra3hxz/+cY9M7H333ZcTrgGgLMucGA4gn5OjAK1WC8ePH8eJEyeyQf25z30O9XbmzBmsrq5ic3MT1pJy2K5duzKwuPrqq3N9DwC47rrrsLq6mov83XbbbTnvYmJiIis7yWdK/Z7JzxjESpEBOc/rEQK+Pjn3JTjmucqAY3V1FfPz82i1Wllml/eRAIbPJRXI6k2uLwlo5bnrfeBj87aS/ri4uJhzguS4XK7V1/tr3V4dsOiDKbIiU91iUpf5XRyG7BkGEfyhEn/0RiXkzokc0nvcKDaApFnoRCPReQ82Wv//zP19rF3Zfd8Hf9bL3ufcFw7vjCgNVXFiOqaeUhCD0DaFMCiLECmFEOj8MQYUeIK6qFrIgP9wUBtwEBcQYBdQHiuA0CqIiziwUKiwgkwbAZkiE2gCT2ACncBjmEjppzRy/ZiWaYvScDScmUvy3nvO2Xu9PH/81m+ddfdcqplGlp8tUHPvuefss/baa+/9e/m+hCrPSCHoGrwFayKZQM5LEoGcAyFCiIbDw8AwRg4OR8Yg+whhVbodo5i31YqyjFaDw1wIrwo3whisL4mFFVdrjFs7OxuHdULIdbYrbsJrhSHrHL2fCfl2puo+jvl8Viq1kdVyyTAMDGOQ77OerkAqhkE6KCEGUbMxhs75ypfoO0vnDVudwzuDs5mYDDElhjGwWEWk4NuJn0Uo1froJbHQrk1JMCR402PToKkAc4r8rBqohTAyDksO9x+wPHxIHPbpSpfDub5Id2YIQXO1SqhVuEuMiWwtDiteDRZR2MFi3MgwjKI0FAVOk2Pm0f4Bj/YPsNawc3jI06cGTpx8WrgOBjC2OYbC2UGw+wJXK+vVSuCNWUvLGmu+J5RQA8kWHqS/Q8IYX5OGtWGaduxshdy010/ObWKhSV4Ls6pvlhUaB0yR7rU+ij9EcVvXa0r3mWMgC0NA5sUUI8LSqdMrdwyhStbWpEQJ2ymLX8X+AXsPHxaPFsOs8/huhn96k/fee8Dh4hBj5wTT49gAv8IGgchJzmroZxtybqxhGFeM48CwHEoiD+LwnWqij82SfJSJdq4YCeZECInlMEjAbx2zWc+s7znx1Dbed3T9HGPFyyUMA+MYiCnjrS88k3XnU/lb1lr6XrxSZrNZSZQtXYg45+hnci3buojWa8Jai4lxDXEjNt2tJGIOOVc5cP/nAIWaQgraB/k0WNUHctvGh3UVUYNpff9xSUO7HQdvaB/sxyUW7X/b902TCH1tCiWY7l+5IccF0+34NIg7ffp0rSxPCdZqmKdBewu9UHz+mTNnjnQFpsfejrGFG+k8t6/DUfffdq7bLkX7uo5rmmRoQKjwKq3STpMeJTn/4R/+Ya2Unzlzht3d3SpDqsHnjRs33uft0HI+dN2ompUGmKrQND0fbTCnr7VKVDqvOv/z+bzyRbRqraRsrSJfv36dM2fO8L//7/87Dx8+rJ2N+XzOYrGoilEq0fviiy+yu7tbYWOnTp3iypUr7O7u4pyrhHAl7+pYP/zhD/PNb36Tra0tTp8+zSuvvMIP/dAPMZ/P+epXvwrAa6+9VoPRdvv93/99fv/3f59f+ZVfqeP+1re+BcCJEyeqJGur7PWbv/mbvPvuu5Xn8vDhw+qE/tM//dMAVTZ1tVoRQuDChQu88MIL/L2/9/fqnL3yyiv8yZ/8Cf/j//g/srOzU7sxb775Jr/8y79cTQU1QdBzrFyrlu+i60yvq/Z867rUz7QdNd0UNjddl60Agwb0t27d4u7du+zu7takub3294ozu3YJtQuonbPpdTRNLNprcsqP0uPTNTyFXmlioeOeJmDTTq9uf5bJhcn/HkzsR48ecfLkSX7iZ/7fdLNNNEqp0Gn95Uinog1Y2j8dDWQmzQqB/NQfGy5FeU1zBwmBBMu9Do5KumEMJcQs0qapwJBC9QagBPzWSpDvnMWZiDUJZ0fEaCsyDpE4ZpaLwDgMrMYVwzAQU2IMxRm3mJNVp46a/LTmWsWYTCvKFvFJMBbn5qKMVGAYphDJfUkotMLZdZ3IwzpH14maTddLsGwwjeyuKV4WjYpMSoRU+DGmwCyMokpEOtcyIn4VKwwBSyzkXIFopbLPMGZisoypY4iJkAtMqhDUTQ7M+45PfPw5nnlqi6dPbFdXZV8SA4p8qGQDJQjLCYNccONy4GD/XYbVPo8ffqd2PjY2t7DOl/Mai/a/6P6PxbMhlSp2XacFG99V1SNbnZ6H1ZLlYslquUSN/YyhqAIZ1N/hqZ0P8cyHn2X7xEk+fPo5XDfD+TnWzQp5tyvKP+K6DlQlKnImpsC6dbf2oNB1Lh0Og3O+JgbVN0LJSBic6wrUzda/q8qTft7aphNhdE2u5XZr6xCzvo7I1VsirBaE1SE5jmTj8d0cP9vE+lKdH1eEYUEYFqRhQU4C5bP9DON7rOvlWkiiYpZTYhgGSSyqCR7EUDwcUuL/c/v3eefdPd56+wFd19P1PU89tYWf9fSbWxwsR5ZD5NGjJdbP6eZPEUxHSIaDg1E6AuMIJkpxoJtJII8tXh6RsQgsCK9oEM5Qc09IqRC+yxRJcppqN03uFQbvPf1sRtf1bGxu03U9/XxOypLErZYr8ZOJsRY1NBFsOyN935d/XUky1gpd1jr6vi/vXd8zdR8pZ0nWkqz7CusKoa6Z1eKA/+0f/B0ePnzIU089xZ/lps+It956i2eeeaa+fly3on1dK9xTT4E2MG6D4TZxaGE97Wv6/unDGdbk5ha6NA3Ip2OemmJNP9OSxI8btx5j24log4oHDx5w586dGlSo1v+DBw+4cOHCkeC9/XzLG5iOWQMi/V3Ny3RensQ50LnSToFCJvQcKcdg6s/RjqsN2o/rFEzn7NatW9y6dYurV68e6czAOvhT+Nje3l71gAD4Z//sn3H9+nV2d3drIPfSSy9x//79WsHd3t7m3r177OzscOXKlSPB13HrcbqW2k7UdH6Xy2UlH+vx7u3t8Wu/9mvcvXuXu3fv1mRjuua2t8VUTjs2r776anXR1jFduHCBW7du8fWvf52XX36Zt99+m0996lN88pOf5Ed/9Ef523/7b7/vHP6zf/bPuHDhAvv7+3zqU5963991+6Vf+iUeP37MrVu3qlP3Zz/72Xp8L7/8cl07Oi8vvPACFy5c4OHDh3U//81/899URSn13XjmmWf4W3/rb/GZz3yGL37xi+zs7PDFL36R559/nt///d/nL//lv8zFixe5evUqr776Knt7e3zpS18C5BptRQF0fi5dulSLEadOnarn9jhVJN2OC5yPe62t8rf3DP2nLuyazJ8/f/6IP4vK7cIa2qnXsyZI+j26RtpuXnt/a6Wj28KMqp9NeRn37t1jd3eXS5cuHUmqpkWZ4wohh4eHnDx58vv+jPjgUCgmCcUT36bRdUPI1r+3eHNTwRpHUN/TfKf+lnP7nybwalFaqmCjZlIlAE2hwDDWykfy4FeSdoQcieNIypEYA8MyEkJmcRgYSwVUlGfWnh4tPEzUmTTBEaiPsWIgZsxawtZasEXW1ts5xpcuRecrlMk7X7X2XcFhu5psSNXTd66o5igOXomzGZIRiEqR3bRJEi4MOMQ92JkkwZI1pcIsZmUUZ+6UTJ3bmESZJiVDyqKIg2Gt2lPGIR0ZqZiawn9Yn/qS+BkwFcpT4FopkvJIDCPjsGJYPmZYPiaGAescruuxrpPEJEeOpqnNsbf7LWNKSZIjY7VyXeSOC1/F+676haTC0TBFgWgYRx4/2qPrPDkGtk88RTfbxM+gm7m1nCnajSi0YJvLAk9Y1mpM6iKuq75CkdpVNOnyKeSqzp12SvJRwve6ml2dNTi6d53v9fWZ6lylOsZcAmOIRGNwviMV1+oWgtW6hBOjwHRs2zXMBQ4W6zVjrRCcAUJMrMaBx/v77B/sE2MojtXC4yAZLCN9J6pnw0rgSF1vSa4n4TDZMo6WbrTkQpi3rhP+kfU1uR7GVVVic7GT74hjUawS3hO6hsp9wlSfjVKoyEYKCoyicGac+GhUaF+51rC1g5opnbMC+zJGPCf0fCjnpPItfNd0OAw523q+20KLdjKcc7riyG7NwTENjOoHvX2vh/sU2jBt3T/p/cft97gHaPveaUKj72+x1m0VtB3bcePQ19ogUz/Tkp+P6xJME4O20t9WNttE4nvNb9vFaDsK07l6UlWy/eyTAu1p50L/e1wQpvPa4sHb75rObRtgt2o8U55Nmwgdt982+dOEpw2u2nmfjmE6R1OI2/R4tXugHYbpXGpF+dq1a9y+fbsakGmC1h63dnQ0gdOEZ7lcHoG16Po4deoU4zjivefjH//4EYfxdrt161ZNxr7XpkHoO++8UztfGthq0tQmQApVm56Dv/pX/yovv/xyTSqeffZZPvaxjwEC17t8+XI9Fg2yP/ShDxFCqJ0bVcOaQoh0HNMAvD2H7Tlqz1u7vttkvoXMHXeNTTsK+pm2qzAdw/R6bPfVSlO3+zlua+GOx63f9vjaY2tVq9pjmK7hH9T2gb7JEDCkyat58l/T/Hs/Qur929oUrwbpDUdibWhW9p/eH6Tq+6JquMckEBeF4ig0wBeJRucK1Ac6G7E2YW2sxlKHByOrVWCxHFitFgJ1igFS6x0hmy0QJiha+LYQMO2aJ4F1Umm2TjwXnBCau74vrr0d1hmcN/hC8pzPenrvpSvhlVvR4bwtrr8S+KSUEDsAUTySrClJ4mBzgRutVYqsyTgiLi+xecSkZW01jCERUiYES8iOkDvG1JNxxWxL1LF6l7BkejK+BGGhmPzlGDE24axlPhP4lHYBVCGoKcAeqZSnFAjjUtSfFgcsHn+XYfUYYxxdN2e29ZRUkYunR8ry3SkEcSsulWn9p2tGoSEhpMJB8eUcimKQ8x0bm174MSEQk+DireuYbW2SY2Rx8Ih3xgX7732XHFfMt59m8+QpTj7zUWZz8L5rEkz1zygJbhJ1Lsp4MevE2Wj7DYUtNXOTWxnaxgBvknW0imYVGlPU2zS2NDoTpYNQE3TTKD6V7hXWEUzpJuWRHCAOFpMosr7FYLAE2+ICXwjFBIwrlXoNdgtvIxVX+FzUy7CWxXDIe3sP2Xv4SFRVMoRRugmHHcxyoOsz826Lza6nd9skPNE4IXYby2a/IuWOnOcYu0XKltWYamfMeU/MidWwYrlcMY6h9mpSyuuKfwg1wY1jEM5Q0I5G6b5oEgwMY2Q1PsbaA7x/zMbmJn3fs7W9XSGdy8WCMQSGcS396r2olIUYGBcBFosKt+r7no35nK6TRHftMeKOnGcApyINHrLL5ORxpQMTYvyBPkjaYwPeF3RNg9fp2I4LHNrPH/eA1KCj/Y72QazBusJb2iBkb2+PGzduVLfbc+fOVYWhdkzHbVpx1ABMP6e6//P5vFax9cHfEien+1L4T5voKAm27U4c1/Fp50LhGFrJVSjPdB51rlsS6zRonJ4PDfh000Cx3XfrBN4GZ22nZFoN1oC5hX2pw7ISuXd3d3n55ZePVMRB7nv379/n7t27nD9/ntu3b/PGG2/wwgsvsL29za1bt+r3qfP2tKOl42u7M8etwfYYdO3oeVVoTGvQd/Xq1WpQ9xu/8RvEGPnCF75QA/jbt29z9+5dXnnlldpZ+vKXv8x8PufOnTt1XrTz8rnPfe5IN0Hn8Nd//df5whe+UP00gAo90u0v/sW/yDe/+U2effZZdnd3qyTt1atXK8F5e3ub+/fv82u/9mtHIEfKG2nXl/e+emL80i/9EiEE/uW//JcA/ORP/iRf+MIXeP3117l79y6/9Vu/xac+9Snm8zlf//rX+fEf/3HOnz/Pz/zMz/Dqq6/y3/13/x2f/OQnuXr16hEhAl0Dr732WvUreeONN/Dec+XKlXqetLq/UwwdldCs61zn9rhrZpqU6HU9vV7aa0kTo/Za1OtUu3xtcqDnU/928eLFI7yRqT9FK6owvWbatavfr4m0Qio1KZ3ysdpjftI9+Pu5faA9x5gwYSxQizaYWTchMgZyqUjW4Klp5Zdq6ZF+RGOdfXwnIr/vra16kSYUqaiyCFQAhMAogbizBueKGpGTRELUVRLjIAZU4xgIIbJcrYghMIZALHAnkd40YNYEcWMLvElJu8YUWIzCmbqqV+99L3yIThIL5zy+U2UnI/wFZ5nNZnjnmPV9kdks6kbGSqG7VFDDWDwBwiimYzmRC9wm51zMxzLOUCvSMQsWPlSsO8RgiNEQI4zRkrMBHNLDsRhfYBvOlwTEyNykkRRWjCGSovgIpCScgo25g+wR8rEEZeKrYQosq3QbTDnhOZXgtHQXwshy8VA6TNYx3zyJ8zMZU0qkTPEBEZWncRjWCUUIxVBMISG6cCBbkc2NMdeAW8+tsYZ+Nsf5iBkHnJcuEcWZvGeDGEYxJHr3HTbGKNLBWGYbW2xt7eD7GV03p+/nxcHalcqykc6PQTxSWlhS7XLUFLt2AVKD/VcZ1++1vV9Fbdq5KclzMaqTxMNU2I9TY0mFdvlEGkZyjIRhiVX1JS9wK+c8KRZ39hTBRDK2JE8FXhUDOcYCORIpV+dErSjExN7eQyFpHuyzGobSVfKAYVgFUjJkRuZbBj/vMf0cby0z50VMISV8XmFsFo6QHcF0bM02yc6D7anWfZtzVqslYRwFDgnk4tytayYV7tU4jqQoBpGpyEKnUOSW6/3mKExtHEdiKm7ZCms0RhShuu7IvUrVt9B7STn/YwjkxQI3rBjGAe+7CpdyBWpnNKEo15BTIr/JgCMVAnpwP/jEYn9/n0ePHlU1oykmv60mw1GDuimJuH3Y6u/63/b9bXLRQiJUarN9yN+/f78Go4rLVqUf5TboGKYV7rbCrGO/f/9+DWTU0KuFTrVGXa2Mph5XGyxoRbsNAtrvaudg2knQ/bba+y3kZxpMwVGDMP3MFNbVdg5UWaedn1ZHvw16pkmkBm3Tc6zH1mLo7927V8ehqk57e3tcvXqV69ev8w/+wT8AqAlUCIGvfOUrnDp1qvpDaIDVzm07B0/qgrRVfl0LOu62YqwqWdPOQuu9ouP5P/6P/4Nvf/vbvPrqq/z2b/82v/M7v1PH++yzzx45z/P5vAaqeo4ePHjA3bt3j1Ta1SPk0qVLfP7zn688h3b7j//j/7gmNxsbG1y6dKlyRIDKG9DjXi6XnDt3rs7N66+/Xt2y22T1537u5/h7f+/v8df+2l9jb2+P//6//+/rPq9du8adO3f42Z/9Wc6dO8fFixcrbElVzN566y22t7e5dOkSP/mTP8nHPvYxPvrRj1ZSup7T+/fvc/PmTebzORcvXjwi9TvtQrZQyrZr1SrTTSFTx3Gnptyodo1+r2JIy+WYQiyPW3ctnKntaHjv6znT7bhrt+2+tNf4cQUYvXbbbqJ2Of6stg+YWGRMjIgqTS4QHwlOFDeuEIeMKSpLstXkolT7atIgf6xV29qliGs5zboPU4IwJX4WI6gxCF5+rZ5TCMJGCMje2kI8LlV7K0EQRbVlHBOLw8RyJWTsMSxKcBchqfa/rQgW64rPg8prFglYU6rh1isPQkzo1NnaOc+sdClE6lYCBGsT3lm8t8z7Gc6Ji28ux5pTqWpbcU9OKRHHgRRHwrgkpRFyIOehzk+ukpdOlHmSOnxTqqUqmWsZAwyFNwGGrqg1GSNE9s6WoLOI6wxBeA3DsGAckqwLUxyjU2BjNkOM1lLpcKWKE68XhyndHllZJdnMkDIxjAzDAZmMcR2z+QmyEfZHauBO6rY8jqEGe4JtT7VjkSoHx5AsIh1s89pfIWcZmzFiGuiKSaBzBUJmsUY6XMsgWP7Hjx4iKBgH1jEMS8Awi8I/EmWfTLamJoc16DemwvFYXwHrH81aBrWuZw07S4dgrUb15K2StlknKrIuYuGglCQ0GdS33aCFdouxXe2K5ZKQYD34jDPFI6Ws/ZSUfJ+A4sVijMDVUgnKtVNSJXSF0P348WPuv/UWi8WSUAjM6okxDlGUj3Ige+i9YzbfwnlD7w1hdYhJI86MOJtwPmNswJge383AWbLtCAkwFuc7hl44F6k4s2dsESPIDKXzFcJY+DoJvxLzSklaxzp3VVI6rju2ISZIA6HAuXzXsbGxgfeerusIQczr1J06rW97UM5XKIkNxhBipOuiXBcm45LD5+K0ne0aAtV0bgFsziRj/lxUoVarFQcHB0cqhnAUjjCtdOumn5l2O6ZBtf6sD8b2c+1ntVPRvkf9D954442qPKMuuK3Kkj78W1iSqh5phbeFjbQBahuctEpQ7XinXRzd/3ROprCMdg7aynUbREy36f7axEw/03ZFNBBpISka6E15FdOgbNqlaLepW3l7fG2S1SaELdfj8uXLXLp0qfIOvvGNb9RA8rXXXuPq1atcvXq1GrQpr6Qdy3Hk9Pb1aWKma6Y9r7r2tMvVBnmaeOrnz507x3PPPVcJwGqgd+/ePc6cOcPTTz/N3t4e4zge6R61c7tcLrl7927tGN25c4d/9+/+HX/wB3/AlStXuH79evX52NvbqzKwX/jCF7h58yb37t3js5/9bK2e//Zv/zbee1555ZW67m7duoVzjk9/+tP1GJS3oipNCod64YUX6nyo8RzAP//n/5zt7W1u3rzJwcEBv/d7v8eP//iPV3Un/VurGvULv/AL3L17tyZj+t579+7VDsmFCxfe1y1or5/pPaLt7rXXV7vGp10rPZ72M/pdU9hju8Z1a6/hNrmZXmvTpF/XeMtTOk4Z6klr90nd0OkxK+dD72HTAs/3e/tgUCirHguGlMUPQaRVA2FYknPGWo/zfSEmtw+9VBKCxtnXWrJW1CmQFcVv14pigbNota9glZWwmhvolFM1I+8R2BM4It4GvM0lpsssV5HVKjAMgdU4kGIq6lAlADMSTGK6ilm3xla+hPOaRHRFscnjuq7wIQSi4b1nNpsLX8L72i2RPkDE5gFXkjM/EyiUdYacV+S45HCVCkfDEtPaeC2Og3Qj0oj4XwjhXHgikVhetd2MlC2HwYgk7phYDrF4PYCENAVa4wyzzmAL0dfEgZxKpXYwDAOEpcyvNZYxiNxsP9tivtEBTtzFYyTFgQ9/+Gl2ntooUBizltWFQt4tYaxZd65ywfq/+95bhFGgIVsnPiLmd74jhoFxXNUANUUJAIdhKHAVSTC0IqzSuu1aMiXYct4TjSr2JFRlyVnByW9sbNakQj1CnHNsdXNyGDnYf8RYbr5PLw/Z2NxitTpkY/MEm1sn2dpe0fdzNjY2K16+3ayx4JDkhzo1peNV1ptd+2CIQpZ02AwOXMHVl+B+3Z3JR6454bfEmqCiXBjtEuVELNessVK5r0Rj48i2E0Wo4maewpKcJSFJuSLo5GflXBBwKZQGSRBRgxxxJWsRx3LhJXznze/w5v03+e7bb5WOjsFkyzAMchPve0yGVRhY5of4ReAps0nfd6Te0/tNfJew3QxrMsZkWSM5k/M+rrdFPrb4OaRIZ8B7yAx1DsxsBsYT6ci5J2fLGEWxahil+BBiZCzytuM4FPGATBxjuR8JhC4ncbAnF3L14aHAAuczvPP0XV+NqIT3MTKOgWFYSUJbjPUUspdzriorzglUqtMHX17D4LR7XLshKRdvjB/strW1xQ//8A/XSrPCQ9SETQNF1ZrXYFRx6yEEzp07BxztZrRB+e7uLsvlsrb/NQhu4TohhBqc3L9/vyr3qHrKT/3UTwHUwFErxfqw1eShxWa3Qfu9e/fY3t7m8uXLvPHGG4QQ+MxnPlMTDR1rWxVsOwFtBfxJyVYI4UjlUvc57ah472sHRpWK2n23HaF2HDpOxbfr2KfJns7PuXPn3hd86ZzqcWl1+rjj0XOja0I/r8Z2GqSqf4XOn0JHLly4wJkzZyqJd39/n69//evs7Ozw5S9/uXaE7t69W5WkLl68yMWLF983f+24QBSUHjx4wGc/+9mq5KRypNPOxqlTp7h+/fr7gjntgKlqlwZvV69erZX7559/nt/93d/l5s2b3Lhxg3v37vHiiy9y7do1XnvttbqmFNaj+3z++ee5efMmb7zxBn//7//9+p3/6X/6n9af/9pf+2v8wi/8Av/wH/7DCiPT9yp8SK8xPR51Avfe88d//Md89atfZWtrq5Kt5/N57cTt7Oywu7vLr//6r/M//8//Mz/2Yz/Gpz/9af7hP/yH3L9/n5deeon/9X/9X4/MiXphtFKtn/rUpyoB+8KFC/U6nSYDZ86c4ctf/nI14dPk/PLlyzVYnnIL2vPaFhp0jU+TYyVlt8pq+jn1P2mvYf2cdu/aNdByjHTthLCWtW0hfno8IYR6vbafn66r5VLcw/Ua0/e194q2ANKu2baoofdN/fx3v/td/iy2/wdPHnMkGJKYxZBr8LjmPAhfQh74UmEPxDAgPgquGHvZwgNQsqx0JWpQldamZ7motwh8pWDPrTpPS8XfFjyyd9KdMKVKK/4SIk+q/hNhFD8KUauhVv/UcEw7Mlr5N0Vi1Hkveva+q8mFkqn7zhUnX0/vHcZknA0S+JDX/80yL8ZmbLaijJQVKiRQJ4qSVOXZ5iy+GilCDpiCcNepTlG6EiElsokkEqHAnGIWgz3KnLgCl/DOljOasLacXWuIAaLstPAgEtiMseJSrGdfoXDzmcVksMzYnDtm3mIKbESkbGtLqqwhhZDITzFFQhiFy2IMs40trNsE64h5nSSoc7N2KBRWp9Ao5dhocKX/VSpDdnndJZNJlYDdGMAXhbAS5JoW6ibwNdP1xJzL9weWhwcCRUuQg5wT6UplQnBypLkr/hZHCdoSSHPEz0Vhhbl4b+ScCaGBCiq8qd2TOUr2XsvLNjAoucJqR1EvXoVcGfKaWFyKB9qNq+TsAs2qRPKs17zqoemvArPTzmQuXhbZCMwqxMhyGHj3vXc5ODxkLQm97urIHAhEzhjhPwS7YnG4Txh7xmFG31mcA2uEy+OtKe71QaB140BmQcpjOYcOk0ZMDqS0L1DJCjVMjHEl1nRZ+CzJgjeZ6LJcQ/2MmDJjnBGjrKswSgcoBKk46jpOea0yZQt3JhcIny21EOscHkq3s7lvlgQsFBM8m9fnLKYkXWOFSeaMN6b6WKz/5Wr++YPcpm35tmI8rci3RGNNLrSCp7+35nRtQA1rXkEbzLdVY9WeV4dmTTy0MjqFK7Tja38+jncwhTXosbZVzTaYb4+7DV6m1cn28+2ctlub4LTdgrZq2lba2/e1425fn0Ippsfejq/9XJsoTb9nuq82EDpuLFP4R5uYqWGafs9OMVH77d/+7SPnS5W39Bw/KZlqz2MLo1GYkSbFemzT45qu5eM6IPqZds1poPe1r32NvWJGp/A5Dfja9d5CenQtP2kLIdTgvT0XQJUzXiwWRxJpHdv29jYnTpwA4J133uGtt97iwx/+MKdOnaoFAN3fc889B8C//bf/lrfeeotf/dVf5d69e/zmb/7mkfGcPHmyHh+s+QBtd0j/6Xjb8zGfz498tj0X+r5pF7D9uV2D7Xk67t503Pun3Y52P0+6Vtqkpr0m9fvae8m0a9mOpR3HtDgw7cC1Y5neK9rv1fe1HRLlyny/tw+UWNRwPjdxmXEYb+i9bwgSlKBFKuowEg73GFb7LA8f4pxlc2NegnGPcTPwPc7PifTEbCSQiBIkKixqDW0CXIEn0YlSkLF0nalcCmcl6BQt+pHlYmCxDFUVZh2alQCvaN9Ld6ITiJIXmJd0amY43yH69cXgqhcFF+86ZkX+te8cfdfhrcXkBSkcMq4eYtKAIeO9OBRjOjTATmFVj3UMhTRaglUZoUC5el8M71CfBkvKjiEaQsgcLMVbYhgjIQUyKms5E5z3zFXi98xbvLX0viOEgXE4xJpU0F6W0VhWGQxSrYaIt06Ov9smxsRyWFewT2x2zHvH1mzOvMv0bsQyEkKuGHWnLtttFK349GHFanlAzInZbIOnnjrJGIRwPa72BbselVcjRO0cC4QqS9crBD2/lGRDq/7rirqJBmdD+XpZxbb4guSccdaRcfiiFiadFUku+rmQard3nmFYLjjYf8jh4z32H+4x699j2HmGPB6ytdFjjfBIYhfxPsp5L0G7YuNNCbYlQVsnCG2QnVIkhFjXpqABc5Eylc/axp+lwp9i6QFm7czId+cigWuyKYGuiBvkKBBFayzGd0UW2RNdV7oPCUIAAiEMxfndi+EcqXYNFV6WS7oalPuEFY89a1isljx89Jg/+dM/5XCxoOtmUpwoIxUugSVmUWpzDkgjaUg8euc+2c7Ab2Jsj/MdJ09ssTH3bMw9MY2iVZAGQjzEDKsyLkPnLNaOGEbich9nPV23RUeCbBgO94AAJOYbm1jbka0n+o6Mx82eItueSE8IEKJ0NGIM4hNTOhoiRx1roqtk+ZQzubh2G2txXUffS1cTxFtntVrVDsXAiDXSwdCMM4RQu7dK7s5A9h5fum66dvo/B+dtfQi2gZEGOgob0eBNq/76Hg0y1KxL/+u9P9KJOHv2bMWAt/AAfa8SY+/cucP9+/fZ3d2tUI7r16/XYLYNaPWBrDAaJUBqhVcDvPY4NdBTmUeturb4aQ18QjjqhK1V2vPnzx/bldDPtK+1426DW63uToOjKSxK516TN+0EtPPQBjItpAfW0sBAVRDSimsbfLVBdft6G0y1VWH9vSVBT4NqJcjrMajykiaVysO4f/9+5T6cP3/+CPdEq+Y6lkuXLtVKsHbQbt++XWFxKvXbkpkVXtdWg6fdIT0uoHIL2vnf2dnhd37ndwAxqztz5gz7+/u88MILR46/PTchiIKSjv8nf/In+eVf/mX+8//8P+fg4IAvfvGL3Lhxg69+9avVbPHnfu7n+Ct/5a/wO7/zO/yjf/SP2NnZ4eMf/zi/8zu/w9bWFrdu3arXnfInPvnJT/Kv//W/5vd+7/f4N//m37C1tcUrr7xSr5FTp07xuc99js9//vN0Xce3v/1tbt++XX0uQKRmP/3pT3P9+vXaKdHrQs+T9yIe0JLg9XhVgEATvbab2PKqppym6TbtTk2r+vq6zrmeL900kdViRft5FYZoP99CIvf29ipRv73+9F53XGIxhSbpNajvU46Jzqd+jyalxyU/mszev3+/cmVef/31I8nUn8X2AVWhprhuhZio9EwpUxYyojWlqhkTruvp8hxT/ApiQLgBjKS8AOPAeUx3gmw8IWYhbpYkxVpLbzM5HpLiQDaRvt9k+6ltUVqyXqBERb1luVgRwshyuWQcSoeiyEkqFMtYU70k1BzPGluCJiFhu04I2L4QMDvfMe893hp6XzD7JuHssnglOExOEETpKKcRn8eSaxmGaMgRshG3a3EgDlXhSKu+ineXar54RyxWiTjGwo0QKdiYLRlfcfIYi3eWrpfjc7ZAwkzAExHf5izSszkTUqm4x1G6IwaMSVibmPcGYzfI2RSisnYd9ukczDbFPdwai3iKBQ4OViRvSX1H3tgAW5JRX8Zo1usDpCodCr40pcjm5ibOeTFOi0o0Lrh95RmoMVyBdSmvIiUqRKUS1uNaxUzhc7FJKpwT+VyRsDUkq07Z60Be+ARawbd0fU/XeTY2NxifOkEcB1YHj4mrQ95761vEYclsc5vtpz/K5vYO882n6Gfiv2FdV9zMNUmU+dBOgkrW6nQrisla6fI559YdvbJQdJ2oP4Qm+Eos1kaABKNCUFZYWUpRKubGgHGS6KaE6wQGGH1fFmEs126EFJAFodKs64KC9kbqwKwQ2I01tZt07ztv8vaDd3jvvfdkvXqHCD5I98TWOS++Ixbhs7iebOeE7FgNCVzAxkzI4A8snbfMO+kkzvu5XJtS+8diyLYjZge5I1tLdiJZO5Y52tg+VZNdk0Yhh4/7pDQIzClIMmPdCeZ+C9vNiZ0nJce4scEQZoSYWQxj5f+EAs8LYawcIF3LKQZiTkURSpJDXySoc06Vx5E1aS4PAuFoOVKfJLEof3cFRqXQvX8Pi6Lv+9YGlFOYgAacGjRMscHqWaBwlldffbW+T6EY+lDVoF27Fi15Ugm18/mc8+fPc/Xq1ZrUqKqN974mEaqIo4HBFFffwjRa/XwNVvX49CHekpzVf6GFVKgSTIuln1YedVzHbW1A0HZydN414NXPtwmGjkXhEtPXp92SacdGz9dxePTjKr/teI9bG9OgSoM2ncf2PGgn4e7du3WMly5dquti2pXRhKdNUloYiB73+fPna6LXwrpeffVVTp06xQsvvHAEMqNQlmng6L2vJnF6LDs7O7z66qssl0teeOGFOqZf//Vfx3tROGqdx4Gq1tWu8zNnzvDCCy9w+fJl7ty5U3lB3/zmN4F1B2d7e7tyErQjMp/PefHFF2vl+tq1a3U+NIF/+eWXefPNN3nuuef40Ic+xCc/+UmuXbvGuXPnOHXqFK+99hp/+Id/yKc//emaIPxX/9V/xZ07d6ri1kc/+tEqr6vnbKe4leucnjt3jtOnT9fO0rVr13j99deriaCu2Xbttp0AvX5Ujatd39Pz38KVdA3o/aPtkrTvmSYebQdV51n3Pf2Mnj+9X+k11Y6vvQam1217DR13/U3/3nZ0pp249vNamNF7xfnz52uSo5Ll3+/tg0Gh1qiKWvE/SiI1rHMP/dmSC5TI+R7Th0qATFHNqsQ/ATPgsrj85mRrsGyMq8pOotI0kElYkrjz+g7jPJCIuUimDoFhGFktpPMRaoBZoA/OiHJTMU2zBUtvrcV14nLtfI8vEKeul4d213k2vMXbTGcSliBdGSNVZWccKYl0ao4jZHHEzUi1PpTKbGaNzyYPa+8JBIaVEOx6yhAiJVBJjCs1g9O/G4xrsNm+qEz1tij3GEl0SPg6CqpLb2YokKJU/2ptxjowzhQFH0tIjpRCCfwGceX2DmccBqkuxxgJw4gJQJHutTlhilJQNoZsDa4kQEpM145Gzpmu7zHGluRAfRJav4T3/0txnUzIv7ViTxtcraVbqWtXOwQWkevVzyi+fd1T0QtAICzOepydk2Y9cRwgjIyrQ1aLBY8Rc7JcsP2SUMn6dyW1w1pszjV5qMIECDRqnRzIa9YKlMcau06wpC1YFa7qnGb93Poa1YQhFRhZCEWtiSgQNltkk82aq2GtFY5LSpJ8ZIUpBjmXpizUvK4pVBRWufYlWZUVH6IIJLzz7ns8eOcdFoslfT+j73rU7ySaXHgR66Qfa0ti4aVjEG3pUpWkezXI+7HEzTl9b7Gux+coMtI5CocpO0iiWCbJrSHiiEkgR/N+C2M9Bk9YPSbnZeENrYhpgTED1s2wOdM56fhhhTUVsqPvPCGB7TwxyPU6DCMxRFajcGGIRpI7LSQovK+4bfviXyGnU5OSsIb9pUx2coJbToV3juRcWQ/uyHr/QW7tg3ZaOW8foq2aif6tDUy1yqaVPX2Q6/40cNZEpE1S9KGun2nNtjTQbyvubdVbK5G633bcsA54NHCbQizaeQCOVJ91DG0XQLfjPn9cNXEaPLWVT3g/gbqd13YMOjb9TDvG6bjapGd6vqbQi3+fCqh+5jhsfJugtR0SoCohadclBCF0twTqNhCbBnItPKodQ5uganK5vb1dOUFakVZMv3Y5pvh7WCvwtGt5d3eXvb29yss4ffo0L774Yp1v5VPo8er36jFpAnP+/HnOnz/PpUuX6nrVTdc0wNWrV9nf3+fGjRt87GMf42Mf+xgvvPACIYTaidHv1rlUXsrZs2f56Ec/yoc//GFefPHF2il84403ePXVV/nhH/7hmsRpsqLzcv36dVH4a+BNeu1qgqTSwjp/Z8+e5ebNm9Wfo00C2jXW/tO13XZ0pttxAfn0GmzXRfu56Zp8EiRu+plpYjK9No67vqff1f7cXtfte9ufWxGJ6dy0W1s4aO99//+RWNTI56iyk1n/hbVUZolucsLkhDOdmMNteFxOGFWSydAroTtDUphM54UToCRpIwlG7Ht5kHpxwMV5VnEgDQsWB4+IYyCMoVRfi9KPT/icMPQCa3Ie64Us7Tpfkh7hRTgrSYR3Hb2fMeukwtx3A5YBmw9hfEgOAzkcSvBjPcZtYHKRWcXhcieQnGK4JjKuhk4P1GYGF4iI9KeoaMFyHAmxEMxDZowUtabSGbAzrDHMt3q6zopBWyGqSxCfSnAhfA7vTTF/zkUpSYNkiQiN8XgXcTZiTCiOv0+toW4EIZyboSQenmg2CdmyCJblIjGOmRAzJI9JjplZsDmPfChlZjbTucwQBywOb3sSwjEZgzhlD6sFqUrlUhKeXNR45OKKGljpssqGlErC1fhWaFVcOxWaRBwlNgvU5qhykuzLlg6PfiYlhRLJzmJKYlDoPXQdrtvE9Zs8PdtiXC0YVwfE5QE5jjx88w6rR28z3zjByY/8BfqNbebbz5Dnm2Tf1ep4Nhlb1Ku8s2o7UlTIDF0/o3pclGNwPjMMK2IUXocKK2j3MBanc5H4LZ2hYYA4ksPIuFoWbkiknwnMzzYkc0kQDH6+hfMz8DPC4TvSMYtRoEsJMK7pZErCKCqqmr1ZYo688+Ad3tvb4/5b3+X+/e9ycHhIV0QOrLXMZxtYa0UBqlwroszl8X5OtjOy6YndjA3bc8JucDiMjLGYziHHfriKHKwCD/cX+FKMMFaEB2YzuaE7ZzG5qK4lUxO7zc0e56UbkDlJtidIs5OQBkwecF48WBxyo8rjEuyIsY7eyf0jY5k7Q8qOmD0hdpJQDT3jGBhDZDWMhJgYYxEbUJlkYBzGqlImhYHSnWgSZb3fjiFgk8Cj1O8ilALJODpJeP8ctunDVx9oWlWbStDqf/Vh/ODBAy5dulTdbb33Rwi4bQW9NdaaBiT63zNnztSg9Pbt25w7d47z589X+NLrr7/O6dOnOXfu3BFsfdthOY4foNXuO3fu1HHq+/Wz6lqsRNA2QGkDozYQ1f1Pq/z6T5OflkOxu7t7JImaJibTpGBasW3VrvQ9bfDSJh1asddAXSEabXVZOxBtYqWBcAt9OXXqFHfv3mV3d/dI4K9Bdgufu3DhQiX76ni1At0mkW0iOw3mzp49W4NohSjp6wonOX36NOfPn+f111+v50G9FECqw8rZUXK1rut2Pxrsnzp1isePH/P1r3+dS5cuVQiWBrjnz5/n7NmzVTXpN37jN3jnnXdYLpd88pOf5BOf+MSRKnibKOt24cIFbt++zTe+8Y0a6O/s7PA3/+bf5MyZM0f4RleuXOHUqVNHBAh+9md/luVyWedXuybKY/hf/pf/BYBf/MVfrP4aX/rSl9je3ua//q//6zqOX/qlX+L69euV6P3lL3+Z559/viZH2hlSWeCbN29y7dq1I9AihQrq3Grydty61vXacjfaNdgmIHqPab0v2gRT14KuvZYkfVyw3nK92sRdrxH93HHXlI5Jrzn93hYmpcfX3guOS/Db+4eOS98/5UDp2HSe2g7T93P7YByLXCrbWiku5Uml4Apvs2DaWRO4bU5rSH120oGwhbxswCH7sIhAqRA9XSEbix+EBoReHuvyLmNEqWUciSEwLFcFLhBFGlMJm9bgzNq1WuVgrVcCtqXzXXW47nshgnYu4e0CayIuH2LygMkrch7EkddYMJ1Upk1PNg5jPKnIuoasLsWJEIaihS+fy8YRovAGxpBI2ZCyYQjapZDjtM5gvfA/vDV01pVugZDVu04SJFO8RVIMBQ4WBASSNAxRN2lVC1KyqMqMzkRdCoEWlZywEMWFAB9zImFKldYVF+JMSJkxRIgBE0esDQQn1fMYA8QIdLgMvte0Zi19KrKqEuAr5h+UjB3rOlpjg2Q9Nhzlhkchf2uVmHSfymNYm4xNHa5N3a8kGbHCp4y1xBiEN+CHUjGWgN2a4jTeSeJK35NjJA4rISuHgcP99whhLGsEyBtQ1jWlgwbFK6YSitVZueFONMl8KkRhZ6XjohxfgcaMNZGqhO/WRVo7PsXUMFsrRQAMVe5JzR+tBd9h/UzO1eDLFbjeMtpBk/RT/3ZweMjB4QFv3r/P/sEBh4eHAHSddgptlR02BjrfkXFot8NYj/FzMvL6MA4kA9lakXrNkKLAKwGCwuaK+phF5KGds6zGUJIZJ9LT2dTrACCSixmdr3Mv68RhcifEa5NxJtN5i88GpeRbLRiQiohB6foUUrm1HcE7Qsh0zhNSYlDCt3ZwW1jZGitY57Ima+sXKFzvmlQno/NAkRT+89nazkMbELRJQYspboPqFsevf2u7By0c50kPXU0o9OE6hTjcu3evwl5aONFxBGJ9iLddjDYh0OB2StZs99EGC9O/T7cptEM3TciO6/a0wc+0CjoNQqYJ33Hjas/HcVuLP59yKqaV5Gl3o63G3rt3jxDWyjnTAK6tFuumyUOb8LX/pl0XndPjEq2W66HwKa3Ca4LQYvm1Y6LJbLv+2sSx7XRo0NwelypgKXdEz+nOzg6f+MQnjnRrVOFKkxmVgd3Z2eHZZ589wlF66623GEeBgLfdCQ1+W+6Qnov2GtWkGKiQs3bcOgbtmLTJLUhn48yZM1y9epVTp07VhAkkAL97925NLlT6Wd+j39smve19ow3+dezHnecWVjUNvI+DHB53vbRr6LhrtL122nUwff9xPCf9/BRSpceuCfOTjnH62vSaa706pl0OvT7aa/bPYvtAe1ZsOxrEpXWAAqyDFf29/L9UFFVmVALjzkPnM85mOif4cCGzdohwqqkBRpWutVR1oTAEwjiK/n2RHB2GlUAjUiRbwY53/Wx9s+8kcXC+x3pRc5p1Pd5ZZp0Xp2tn6bss2vhmhUmPIS9JYU8gWHkENoEeY7fIdk62PdiZ8ESMJ+SxBAquKE5FVqvHjOOS8XBFyp6YZ0TmpGRZBYiJmlQZY/Gdx3eO3lv6ucfZTO8ynRMokYcqsWkLVid5TyARciBGUY/KUc3oLHY2Eyy380LWLTAiaz3eWvH3IDIMK0l6EoRR/EuWQ2QIIsHpXMT5jr7XrDKTxpVAv8YVzq5I1mNTJsWRIQRyntORmVEK8rm4GotteA0sY6mGQ6qa/ilHWLNIZDPrJEBzjTXqyRy5aMZxLH8zNbGQXRzZ43p/WYi0OSecL4mstaRRfFystTWYdVaUhbrOY31PN9+i78WFO6wWrBb7jMsFj/fexvcHhBjF3TpDnhW/FeuwJUOKSXDzpkBi1iRuvdY0pM+EMDAMS+azGTnb4kkh7xuHVeUO5Wb+Um5lbCV7zDGQTEnGHILFyrHE6l5CZ9dhZ5sCt1od1v1hCqwOIzDEXFSPEFfzd/ce8s47D/jDO38kncbCVfLeVz6MJo4mF46Bm4HtGBNgPLhNUjaElNlf7BPzisSA9XLNBXXOLhwGTbgKnQvfU6WD+36O9z0bs74mXtLdyhysUukQ9Dhb/Ga8oZVFtoUgvdE7+s7SAzZbXBauVVlFqIGmE0whs1kvnKgIq1HgmUMIVb9eCN/Cy5BjEFJ8TvnIuta1r6Z6ayiqXg8lwchy/fygtzYYmD7IFSKxXC6PuNW2Vca2Stqq6LT7ftJ3ToP6CxcuHOFBKAl0uVxy69at6oj8xS9+sVa9lUCsHYi24qnjaqujWs2eJg5wtOugsJP278cdix6/BottkqHkZHX1bgMahaxMgyQ9bv39OAhIW9WcVjunY9N9qnQmrE3lWqfvNjjUz+rx6Pctl8vaQbp48WKdnzbQ0qq6Epw1+NetDcDbive0sq2QH920Wq2Qu5s3b7JcLqvc7K1bt7hy5Qree27cuMH58+fZ2dmp3SmF6bVwvCl0TpMSVUbSZGS5XFYXab0O9JjPnDnDZz7zmXps//yf/3Pefvtt/vAP/7B+/saNG1y7do0XXnih+lPo+x88eMDGxgYhhCq3q67up06d4tKlS9y6dYv9/f2KtW8hfdpFms/nfOUrX6mdDt1eeOGFIwnPNMj9V//qX7Gzs1N5Tep9oXCrmzdvcuvWrZpsjePIpUuX6nnXpEfX53y+NrVseVTTQF7X9nK5ZHd3t0rZTq/JthPRJrxtUWPK/TquO9AG53pOp5BBvbdNuxQhhApH0u6SfkbXVivqcNwxTIsI7Rg1WWnXZHvdH9f5+X5vH6xjkVTuM9cH2LpSnBo8+6TqptU7a5j54oRtIjkMjCmwiqkE5Q4/kyqm7/ticufqLlOKhCFWR9wYi1yssWTfifY7hh7ITsjYXd/jXSca8rNZkYTt8c4VsuMgnAFzQGcSPmfcmICRzIIQF0WO05PNSZLZIDEj4wn05OjJyZFjCVqBMGZiyCwPl6jXwmIJIXjGMQt8xFmsE3KrLd0SOekzUZxyHohlXgdJu0rygTUkY2phWVx3wQSDszOsneF9T86R7Ac09M4pE9IoPAgjSVsuQUhMsBoFF35QDLxySoUHIrwFilqRQM0Mi0NL3/c4Z8X3IgyE4ZDEEovj8cFj3nvnXd566z4f/ehH2Xn6abafOtkWXCcdA0kCwOCsmLBR3IbVK871HSla6XY4V5RxfF0jvgjh9F1HjLFcUPKNQoyV/aVSGZ56bIDCxiRQXa1WkuCkKOfAWuHM9DOcNWTriMYQcqDLhh5DLIGf7eZ0GEw3K9Vjw+HhPta/xxgC2zsdzoM3rlSeZUKk+i+BNiXgt9aWayDVDEqnbhzH0mkT1ae1uV6CJJXrlBMxRMbVinFYkcIKC/S+HH/Oxa09YWwUvxHrMb4vnTkxm8s+Y7o5JgZxes+5drGMtTgx2WD/4IA377/Jd759j0cPH9J1vXC5rS0QKnHujkE5BJGUxYvE25koNm3sEJLlcMjELAmp631pjygxXKBiqpREDNjshTuFwWCFc2ELtMoIf0MKHeJX08+9dPxgreoUD8lIB0UU47S7It2J1TDiDHSFUN91YoKnkCRjxKjO2uJfUxo/xhqMc6Rk6YMj9J4YE6uxl/MzimdGTCLTXBOmxpcFTQrXrH1SUbaK2oUzhuHPoWOxv78vPjJNcKUP2LYCHEI4QmzWarAGevr+Fm6g+9PgHo5ih3VrExQNPFvCuCYJf/tv/+0j1eK2+6CQCU02Wsz0NBDX79StDTK0uttCgo6ruLbzdFyHRF/XAFUDhXZcbTKnmwYz+p42ATquOntcMqL7aceljsjKT9D3tITVacW5VbDR771y5Qp7xTxOYWMvvfQS58+fry7QOk71RmlJ79pp0CRLkwLvBT6na6sl7T4pQdVj29nZ4dKlSzU50qRCYUtaFdcgTo+7TaxaMnqL69exX7lypa51Xb/6fQrJ07X+iU984ojy2EsvvcStW7eOBMBf//rXOX/+PF/84he5f/8+v/u7v8u//Jf/snZazp49y4MHD/jqV7/K1atXuXDhAkB1oW8V2lQV69q1a9y9e5d/+k//KZ/85CePrKVLly5V8vSP/diP8W//7b8FYDab1U6EHlcLV7p8+TIXLlzgzp07NfhvYVCw7obp1vJHpl03TcL1/GjRog3W2yRZ50PXj/53Knk7vR6OK5i096Y2YG/HPV1bui5UOKL17NF16r2vIhOtGlYLIZ1u0wRmCsGaJj16Pmaz2bH7+w/dPnjHIh6FQuWUjyQWxjT5RFNVc9bUh6whkVMJKGIkxlwCEwNJ3uvVP0Cru1lcbmOI9QEsFcpcI1RntbPhoJCzJbHwdNYz67uSWIiqk7MZbwOWEcNSVJNKtJ4ZiXlFiAMpG6Aj2w2SOUGiK4RNLxK82VSYmEmJGEZiEIlbMb8KrAYIyRGT+GS47MF2YurXz0Si1nvmG7M1rjqOQpgOAkcS4EXhGZg1uTsWC1+ZW1Mw2q5UlIXUTs6kJCRxlSo1Jq89H8gsBxhD4nCpcJlYJV0NhdCNKfKhCMyNDN5hTZb350QiEZNhuVyx9+ghb731XeYbc3zfKW5jDaMxDaSmBM5K5IX18ZRvatH8tftQYU/VyRvhQJT3aIDprCu+J0Z4FHndvcjktdJRDdzkohRc+xpGNpoRa92as2Jt8YCwWCOqPcLjcVLpN7JGclkb47DEuq7IjhafCBTtVRKLlESlrMDp1ME7VeUwmQ1rDKl0QVLxeJGkMBZPh1iJ8OMYWa0WDMslaVyJepidl31lSBEFNWbKAjOylrCukLKNyCUnCWQrJ8parBGOwRgCh4sFDx484L29PQ4PDtjc2CjXv8jOGitJ6WiKuR/rTijId7h+U6CTOWKLF0nnDS5l8WqpGaolRVk3GFMgmnLOrEEEDEwuLuDiMSHFDoFZ0osvjbWeFMRhexgHcgaR+nVFLc7VZFh1vEQwwdF1idlMurDVnNNkrE3CdWJ9PzMk4X44SXKiFahodE7WUAjEJO9V2dpc1k/SC6W5aOrpI2PUaNAW75kf8KbBFrw/GNWHZgtfmX5WAwCt5rUB7vTfkyp20+BDt2mVUmEobaIw3V9b6WuDDv19Gvi3x9JubVBxHByj7docR/xsxz+tYLbvnfIcjhvbdM6nc3zcnE7/q0nCNCmZBmVtJVmDwDbAUZNDlcPc39+vnguthK4meVpdb/c7PT51UNfgWY+xDQjbwHLaqdG/a3Dfdnb0b22Cp6+3x97CdqbnQQPGaQDe8kR0rE8//XRNpDXR1o6NQn6Aqs507tw53njjjSPrQY9BVbWmlX69Xqebzr92D9vrt+UnfPrTnwbE10K5S21Hr+3I6FzsFONDTdSm3YA2IWiT/3YdHrfm4Gixof1Mu66n14POQcuP0vlrO1JtotyO4UnXzHH3DP27Bv8tnKw9n0BdC0/a33Q+2mvruCSpXc/fK8H+D90+0F6l6mpLEE2BrJRqbwkMTDZrgql1OGfpO4crD+Ph8CFhHFiulqTCofDzLXw3o+vnuMIniBFSDBJAZgmoxjEyFhO1MY4owdQZqSj2nRBQXeel4+EdXTejs5R/AWtHOrPA5FHMsuKIMQnjREkoJvG+SFhS3iDYZ0j0DFHgGAkx5DIlQB7DQIiBw8UhYQysliJzq1Kpgp93+K7DO8e86wocpGc2E++LriuStyjvgcK7gIyj67aKazfkvCLnkZwGSTOMYdYLVj+RSHEkjCM5rgRMZhVHLkFSTqIENIyJMcL+oUhexiyB4joRFLNB18v5cDaLzG9St/VEjgkzBnJ0+I1NbCfV3bnfpPPw7t4jHrzzHm8/eMDG1haun2vvhJZMDWuFK1sC7ZTlgpCg2pZE0RGD8BtiksCwK/MKJcAvgfVQjF+stXRdT065qB6BQqKMlaq5BuTKHwp57WQdQkTkUKnrWpNpgK7ra3ITg/gQpE1wPtLlXOVF0Xn1EOIKBkMYBa4ksqqSQHlnpFIdI24UbkDfz6pSknJOMhnnPX2esVouhMsyFoneGBmWhywOHnO4v8fG5gms84Rk2N9/xMHBYw4f7THvemanP8rMOURUbazdhGyDJBNJZIiLJXg5bkssHvKadFgn/iwmG/703j2++9ZbfPOP/1i6CDmzGkT1o++dJCHOMd/axK5WJBI2lDuJdfT9nG62Sbf1FMbPecpvVFf1bIUfFLNZP7ziWM/XciWu3eMwkrPAog73HzMsD3n83tvE1WFZQ0m6F86L8pvv2NjeoZ9t0s+3yNaRMhweHpZrufBPjHA2lLMj9zgnxYtSHNiYb9TrOiNJ36yf4UvBoPeyD9/Nihy0KGDFlPHOEoMrrt9jgUcFglv7V9TCTlPU0RwipiRE/uyIP/i8gnfeeYc/+ZM/qQ/NixcvHgkCYc2vaCEcWjVdLtcE0q997WtcuXLliEN3+1BvMdS6TQMJDYL0ezRIaPXvp4G5vrZTZGWnwcBxAUsbqLYBlO6rhSSobGlbiWwdkY8L9I8LTqcBsgbvGqi0FfRp8Kb70nk57nX9Ht1nm/wofwWo8DGdOw2QtbLfzp1+37QDpMRiTRwU33/27Fn29vbY3d2t49HO1l7juN4G/OpvMj1vwJGAWJOjneJI3ZLBWw6FjqkNMhXe1M5/23WbOjlPA2z9Hq1Mt+fyzp07vPHGG9y/f59r167xjW98g5/+6Z/mn/7Tf8r169d56aWXuHHjBv/iX/yL6mz99ttvVy6IKmX96I/+KFeuXOHcuXO1Q/BTP/VTvPrqq7z66qt87nOfq9+tnh/379/nzJkzXLhwofpc/K2/9bfq/N27d4+dnR3Onz/PV7/6Ve7fv8/nP/95rl+/XmFfeu53d3fZ3d1lsVjw0Y9+lBdeeIHXXnuNW7ducfXq1ffBB/X3ltDcBuDHJQm6LtuktSVTtwH/cQUJfU39QdQjB+Q+de/ePd54441KytdihHYV2vXfXuPHJR4ttFG/Z3qs7TrS71GxgosXLx55X3v8bbFimgi3xz9NkqZdle/X9sESixRrVVMixILrZQ1rsZgq2+qd4JPjOJQAKzKOUSRS/RzvJBD13bya3OUkMJBCEy4s1eJym5KQfg1YJ74IBov3Hmct/UwM91zX0fU91olaizMRW9SNTIoUKzAEuCKwGuLIqIlFLHjoZAVmZcB4Uz5jJchJkXEYGIvhlZpihTgCYJyl74Qk7rtOIEPelXHJAnBe+Ca+JFPW2BJdCfZf1D0zLiMeAlHUZHLOGPXfwBXoi/gLpDCiLsAUeI0mFmOU5CkVJZ2Moes9vSlZS4rlM7YS69WN24AQ4gvYTKFwEhhbfDcHMl1KbM8NnU3EYb8mIXIBjxWmI4FaLh2rUF8XmddUFKFKApOSmKZ5RwqmwZyzXn8y6zVZEd8Hz2w2I8W1p4UmNb5bE3QLcQF1OV8H70I5oCR8ddl7WaMxJVxKVHWp0h0RGJP8XWBkkGOu8KSUVxI4DguMtfiul7ElI+czjoQxkJwhRlekV4WLoWR3hSEWJnjhhcQCbRNX8BgHxmFBGIfaAXj0cI933n2Ht996i3k/w+A4/eyH2XEOb3O9jhNgiqKbQKGccHMwWN+hxGoRIjBk49k/WLB/uODb3/4OD/f2mkRWeS4FktaJE3kYRzKZrusIFHdq6zG2B9OhJnumQIoMVmSYKV4bJpMtxb+kuFobI+Z6zpCjJN7OejrfM59vEZwjhbHpkCBEcGMYY4BxJNuBVDw9xhjKGszrhRbKqjMF4qnXQFFkWi6WuHKNWytj77seZy3OGPrOlAfNppgROk8uBo0xrjkVxlosVE+KSsbPzXrOIsCQmi5g5Vn8OXQs1vBD2RR/f1yQDGudeA22gVpxVSUoDZjgaEVuWhXV1xV61D48p5XN4yrXuv/pf6ewnmnFsn14t8cK66B9Gjy03A2gBpr6+fYY9bVWuantrrQB/3EV3/ZYj9umrx9X2Wwr+m0g035XGzjpe6cQlnbO9ZjawFs7FW0CMD1GnU/dt76uhOI2aZsGl+3WrkNVLdJxtWtKkz/9HuULtDC+9lwfN5/tOgEhRu/v71fSOqxNBzWQ1O2Hf/iH+et//a8DR7sUzz33XA1un3vuOR48eMDNmze5fPkye3t73Lx580jX5s6dO9y8ebMmNprQ6T6nya8mhRcvXqxmladPn66SsQqFUg8OVcAKIfDqq6/WY9J9fulLX+Ls2bNcu3atnuPp2tXvnp67dh51f23y2M57Cy3T/bbzqftpP6/j1ERT/65rUteqrt0pdKrt+ujvOv5Wuew44YV2/Hfv3q2Edr2eNLF/8ODB+7qZ02M+7m/692n3Yvr938/tgyUWMYKNlURr1uHckUq3cAQszkqQNgwrwrAUSUXrsK6QqrtZCZi6SqRVDHnKqWDOqfCr+vCsSjICv+g6j3eO2bwvsrE9vhPORWccJq8gh7U5X8wUW22gJ+dAGGEZEmOClOYUuLZUU11mYzsXrXzHMB4yDAP7B4+lu1HM2TCZbFJVl5r3G3Sdp+9nzGYirdnN+ioNmguwQZILK+oxYileq8TZGExM5DAQF0MhgyecEw6Kdx2rxYEE50GqtcMYGUIJaJNFCcmSOCXimPBOzOE2t6S62neOFFYFAuUgR6rXeoaUimGZtfhOYDExpbXBoLB+MSby1FaHJ/D4u3slEBZ1KCFrx1p5NWRSkpt4LufGe4cYI6YqxYli1RvNZVMgQ2vY0no1gnQ+jJf/qtrOMIyV2OpLpyGEWKBvuQTJZd5KN06SD03OEqrE0xKPNQlRuJRwJKik4HUQmIpaV8CGwLA8FKfv2YaQ9wtMJoSRcVgJXt+K27zLHmsViihzY4vBnsxDEihXzmtVsDgQwpLFwYKMZfOpU7z33rt85803ufvHf8p8NsO5ntl8zsbGBvSmGNOBiSWQzbF0JVIhCjisn2FcxqRMzKmur0ePDvjugwd860/vsVwuxHOmwPCGct5TqagbY1iVY+z6TrqByWBcT7Y92XRScY8JQ1gnuUnOlwlifudNJlI8T2KBGGEksSjjcl2PU/5TGIg5SCKWxMAulWJJzIj62TiQs0DvtBMLVAft9b1I3lFWZFGIki6YcC06BBZlhKuB5O+zztL1HdvbET+b4/oOUx8CZn1fLQmy+KpIV1aJ96lJaHO2xKSy1m0X488HCtUGCwpL0Ye7BmLtw10D5gsXLrCzs8OXv/xlzp8/z8/+7M9y69atColqA722MtlWPZXTcP/+/Vpd1Ad0O642MTiODNk+iDWgUNhC+/npg7x9YOv7lHR6HBynxegfF7S0yZNCgdrva4NqPdb2WEIIVeFoyq/QfRw37jYRPC4oac+JvjYNqNugrK0q6zxqENmqXW1vbx+pCrf70uD2wYMHnDt3jgsXLlSOhVbIb968yU/91E/VwOxJyVR7jkMIR7Du08p2e971Pffu3asJTNu9aed0urXB5J07dwghVNlVHcO9e/e4efPmkSTu3Llz/PzP/3w9Rk1kWtjTlStX+D//z/+Tu3fvVsO/V199lWvXrlVy9K1bt/jH//gf8zf+xt/g8uXL1RxPncd1TvS83Llzh9OnT3Px4kVu3rxZO0SnT5+uzuZA/bxev/fv3+cb3/gGn/rUp6p53s2bN/nH//gf8yu/8it85jOfOaJKpce/U2SPlUfTJuztGoV191GTgHZ+W8hh+/5pQN8WDDRJahNS7c6cOXPmiBKYJrCtAEDbpWiTo/Ya0Gum7T5O71937tzhxo0b/MIv/AI7jbmgfqfO0/daa9O5auevvWe0hYvv9/bBOBallJYLfMUVx16tqGrhm5xIKTAO0h3IWOx8G2dM5VKYQqKUimsqlUlTH4YxVTQxKnvpnGDk5fuKmZ3tcJ2tkCtrnWDcreCqkxE4FbkXEkJONTkCCRAjjmBnJLeuQnYu088kQMspsXr8iDFBiGL0lTI4N8N7wXF3vihKzTzOKlkz4qzFe4NzYEwi5oWYdOHw1q+VY6K4Ry+W+xK0Yms1WFQsA3lYsBoOCxRsn5zENTqEAt1xZX5Nj/MWbwy9A186NmFcSiLmT4jLubFkq9yIFd3cF3gIgKgJzfwMazzWdNKgMpkxpSKTm0klALNFjSinjDcGkzJ7e++yXB5gbabzrsA8xqJMFEXNJ0ZSHBu4kKwx5zzGjGBS5RfknBlDIIyNt0SzNmsVH8Qw0WZszMQ0EnOUDoJ8ScHjW1KOVY7YWkcuPhVKePcKVREzBFkbpSPmC7FXSO1F3cn5knis1zRIJTrGwDAsGUOQLpi7z1M7I/P5vCY91gm3Qbs34i2RBZbmxIxQjjVUVbahBMc5RYEDGkvOFud7NubbvHX/bfYPFiz+9G2+89Z3uf/dB0CHsZ5vv/Uu20+dxHYdH3v2GTpv6rEbGhnVwhOWNo4X6BqZcRw5ODzgW9/6Nt99+23e29sjFFnemoCVzocmFhogAySbyQ7m3QysJRpLNoEYD2BV+FLWQhZFtpwfY8lsmkwoCd2J2QxmHvBYK52OkPT21knCnyHlk4RkidkSoi1djlR8PiSZzEb6cyHIWMX9upguhkKmjkMJ5FPtbiWZENZtDSNyzzFiU4FsWktnLRtbm/S9+GrEtGBcLBgzmGKiSElm0xNMIdt78dpB3mGaTsXUHPIHtT18+LCSL/XBpRXOVj8e1gGaBpy7u7uAaOXrg72FDkwrz9Mqtj60WylUfa8GBm0nQwP8tnI9JWJOA+qpUks7nnZM+nqbMLSJkD7Y28qxBiJtcKeQCHVVbue2/e62MnxcsKGYbQ3Y2gSknUPdZ5swtMemAWHrON0G4bo/DRansK7jvufmzZv82q/9GpcuXaoBrkKKlLwKa2lWDT5ffvllLl68WGFHu7u7tfreErzbeZquneO2tjrcKhG1SakqhAG8/vrr7OzsVKjKdP5b6dCWF6LnS9elwquuXbtWx64eK5cvX66fv3fvXu2waHKkDtn379/nv/1v/1tijFy7dq2S6+/cucP58+f59V//df7u3/27/Kt/9a9qkKrGe7q/l19+mW984xtsbGywXApRX5OJL37xi5w+fZrnn3/+CHFeuTF6Df/ET/zEkcTt8uXL/OZv/mbl1LRzomtEIYrHJbPtuWyhSm0Cr2u67W6261Nf02uqVRdrO4a69jSp0P3pvtt7hl7DmuhoUjOF++k1owpXuj71elwuRSlMk7e209jen9p7R7tN56dN5tt7jc6RvndVIOPf7+3/EXNDAz1nTf1ZA8JcYDk5JcZQICVGXG+NtaUCLsolscBLjgomylYemwK9cLbKbzonFX5XqtGucCps6ZJYKH4MtYZcIChC3CRFTA6KZCAkQ8qWiK/oLoHLSLShXIlhjIQClcqFNOu8cEi8tXSdBM7zmcfYksOgZHVQ47qUcp2rmA1EkYeVQDEwDkPlVqi7cY5ZEpxxxTAOhBQYxwKBSLbCJKyTRMs7T+esSNTaJImFkSDXGumOWOdKR6R4VuRM39nCrSiBS04ib1uSx2yyGi0Lz6H+Zkp3SiBsYViQhgWHB49YrRbknCTRs0Y6EwWDkoo0aAyh7EX4LZLcmPq+TEkAYywwrlSrujp2aVrk9Wus4TFimBfXfNfCF5D3yjfb4jpN6SYpidmUzpmC50xRPzJmbUa33gqELStnQ7t6pVMURU40hEAClssFs+WC1WrBOEpyaKOpF0DO4HJidNKxSEWKlqweH0LSXndDIjkXiKAxIiPc9SxXI48e7fPg4YJ33tnj8eMDTpz4ENk4lkPk8cGCvcf7fPTZD8maEG2hckjF98Ssf9fzEWLiYLHg0eN93n3vXR4/fsxicYhKUuv7rRFRBmPW50w6PnLOI4muK/cUY4gkTA6YuMRki02GzAh5BFbCiTKqjGtwBbqHEWNIjKXPeX2ejZLSIdKRs2EsUrQplQQjQy7e9Mk4YnFzDyFVR/cQSrctrMR7QjkPSbg0CrnLykETYFxJ0+R/Cao7vPDFUjHLQ85Xb0QJr1xv00SiTRaOGjwe998ffGIRQuBDH/rQ+yq4LQzkuOCurQornKIlb08/qz/rA3Va+ZtWqzVY1PdPPQimxzD9juMgBtNAeTqG6b6mXYHjqtrT16dJRJsQtJsGJ1O4kCZU0+84DgIxDcCOO7Y2eJkGgNNuR1sVPm4f08RQ99d2NPT1aXClW3t+lBD8f9epmO5HoU7H7VePVd/XzlHbsWm349bTdM5bHLzuSz+rqlkadGunQl9vx6dY/XZ+3nnnHYDKHdnd3a37OnXqlHSnoXpjKIG6TUo3NjaqR4bCvlpX+rbT1nafdE60A6Dv0QRG53k6j9P5a9fEcWvye53faWeiff+TruPjuiJtwtOuqePG2763fW16f5p2DNr9aiKhxP52HMcl+0+ag+n1177efmZaUPh+bh8osRACqaX34l7bWw3+IqtSfQ7jmtyrREMlB4u6TkS9F2LBLyd1CQbpAFhbuQhCruyw3tN1m8xcT+87fOewLuP7TjDf1otuUBrIcQFZVJScnRHTwBiWjKt3yXHApmXBJRui2QQ7h+4EGQm2x5gZRzkpw7gkpVg07T1919H7iHMw7zKzmZDGIWBNpHMj0JGzI6a1hGRMowQY1oN1YGEYVoyjZpUjKQbBYjuP7+cF4pFZHQo5VzDpUQJe67BWTP/6WUfnHZvzGfO+Z9b3uDyScyCOB2AkAYjdBkOEtBrpfcZbx7yjQNc6+rkrEC0NuhI5LAgpQ7Yl+CrBc4zk1aoauc37LZJJBEYevPltDh6/y/03v8kwiGa/deCdIcZQ/RlMzqQYWC2XJViH1TJgnaXrfAmec11LIRjGEsgpH0Jel4vDFNnWnCUBjFHmfhwGUkp454qbsxoEClzJ+06cp03xKXAOUdJKrBaLwp2JeCMeItKXaxObdbBMLNK8qJODBJSxkI/FC0SuhcPDA+EYeV+gLk66IEZdwRMxGmIKsiacp+v6kpQlxnEsFXNhHghnJaCmkl0/J5N5d3/Jt956hzt/9C0RvsLyzIdm9LM52Ti++857rIaB/9e5HwbXVXRPNmCs8Cmk0yjJbkyR5WpgsVxx90/+hIcP9/jOm2+i3B7pSmWwhq6oYpk6Y0h300rwnLLwbMw44pKj6x2eRDYRG0dM0u+1JGvAbpONIRiLzbZU6cV/BQYiS+mcOlf5QTk+IucVJh2y4aQDl4rzdiSJdLO1WL8t/7qnMHaDbDwxGeF7WM8QWJOpQ6rrK8QofhQFujeWzkYIUVTl1PvHCJfj8WKBXUqBQfaTpMPkOmbzVCScPcbX/PfYTRO1WJzn4xO6Gz/oTSEqUz+GJ7Xn5/M5Fy5cqMGNSmmePXu2VrDv3LlTK4i6tQ/aNmA5blNy+Llz52oAelwicFyw0VYn20pgy3nQ97bdAO1S6GfbqmiLZ4d1xXTazdBxtsc3TdLawEShLYqH1+BC3Za1Qt4SO1tuxPT42yp7S2i+fft2xdm3HZk2QNXksK2st//29/e5desWp0+f5ud+7udqd+LSpUvcuXOndqxCELL4zZs3uXv3Lvfv3+fs2bO88MILR/Z18eJFLl++XBOF4xJMPba2yu29r/4UagCnEsM6RpVGnW46tvbcHHdOWg+OM2fOVN+OO3fucO7cuboPPR/687Vr13jppZd48cUX+YVf+AUuXrx4hFSuQbuuH+89/9l/9p9xcHBACIGvf/3rLBYL/s7f+Tvcv3+fl19+mZ/8yZ8E4H/4H/4HfuzHfoxTp05x48YNdorM7tWrV+vc3rlzh69+9avs7+9z7tw5rly5AgjvSX0ivvSlL1UH57/0l/5S5U/o2Fp4kXYqlHvVdoTajp5eN+q10V6PxyXt7fpqX2uVvXQ9aKfiuOQlhFCTIv29TY7bRLC9Z+hxtEl9O47jxjlNTJW/curUKd54443aNTl37lzt9EznoU3S2+t1eh+cKrjpNi06fL+2D5RY9M7ReSAcEofIQRyKSRsV30uK5DgSo0iuSuU74m3hYLgiO2sN0RZyrl9j6AUdZTA2AhaiJSbIoyWPlpUVScacA10/Z2v7GU7snKafb0tQF5ak4TGYADkT8vpGMoZBiK0xEUtikc0o3+ml+p+yYTVINTJEqXQ655h1M2a9Y9Y5TFpBHonDSLbbZCufHTMcJq1EjsRkWaPgSyBgMlls7Cr50vUzXNdJgFjI68vVqiQWQuL0ti8BR3HzLUZjs35G13mckU6NYPKzVD2zIc1OYChmbqtHIkGaI53vcXZNMDU21WDP2Y7IIFh2M2JMgBwI44JxXBLCkhhHIQWXxCJ1W0XJJvD2d7/N/uPHHB4eCE4+FwKyuhnXirrAwETGUwN1W/gQwhcR4qwGWLmYocXitj6WynEsFeKiuwtVRUhlibU1puTtcQxSw25gdjmnhgCrCUoqqqv2SDIjUqVFGhdDTFlgVSkLlMo0MrpaeTYG3/X0Vvgd/WyT+Xwu695KF084LnocAumTyj4C/cnF6C4pGbzAonISPkSRntWA1HcdMQtxfzVq0iFdiZQCqzERHw0Mw4qDg0Ocycz8ujMjcDwL2TKOI2PMHC5XPD44ZP/ggIP9R4zjwMZ8xjhagnfM5rM1PKjMdwrCa5AOlCQUocoWGdIwyHW4SoVjo5BLMcos0gsF4lSEFIrEc0qjyLuWLpc1ImXbzWZ0/QznnynFjESiSMd2MkfeFMlswJgZxs5ESrgk5iSwXhJjgVl15DyT813WeyzJhHrrrIahdKcCIXSlm6RttFyQTvJfZxBF6LLGskmENJKIWFwjRmAqsd6UtawqVdnKfEiRRlvAa+f2H+T27LPPHsEStw9lfagqFKDlW6iOPqwfgm217TiFphZf30IKNCi9e/cup06dqsFJG+hMK7/TgFiDaD0Gfa8GidNNg4tpAHLcw35a5T8O2qR/ayub7Wv683QMWtXWOVE4lSZr6sTsvT+CO9fxTaFe0+/+XlXjtlqrFe1WOUk7RkrUb6FrLdxIK/BqrqYBoipAqYLTrVu3ajIyJei352FaqW3Pg45N961rr02GT5069T4yebs+9bh0rNOquL6uHBlNtrz3NVHWfeg6unPnDnfv3uX1118H4Atf+EL1stB5UkiRnks1V/v4xz9ez/WdO3cqvAYEUvjcc8+xvb3N3/27f/dIcqh8EVVzUvGEa9eu1U6QutWDKFGtVisuXrzI3bt3uXXrFh//+MfZ399nd3e3qrlNfSnaQL+9nttke3qdtzyh4wJkfa9CL3U/muzq+mjneXqu9LrXrV1TLbTvuKC+XWf6N4V5ttfc99paXtDZs2ePJB/ThKItcky39p5zXLfjuG7G93v7QImFdwZvEuN4SBxXLJf7WAveC1RJCNwJ0oocB3KRdYSIMwKz6ZyalFmiidWUzDlR8SkogoJrLjKkKRJzYmwwx8O4YD7fJMeFaOR3ljBm0nhIWD7GmIGcI2EcCCETAwQsMRuGlAUCBUIMJWOsQDNyNizHKJV5a0o12TKbeeadZd5ZwnIkpRUxLAje41xPjDPGCIvBsliJWlTIBuMEeuSsLeROUbZKWdgnxhi6vhNHbGBYDaXLsZIKpIFZ19M5x6z39L3He0s/65jPZyJt6YzAY8ZDCcRLR0MiFotJBdaUD8gkssl03ooSl+2ARDLqtCzKRGQj/O0cMHmAtCAO7zEsHrFc7pHSQIoDqpQ1dJuMMbMaIu++8xb7jw9ZLQLGdOKrUaRsFfqmRP+s572U/bMpDs5jKB2tXMH9uUCAYhgZVqs1HIhcEwEx/jOMY6yVXMo8C+chV+hKRtTFTAnscyzsAuVrKEEblRiVQDfGhLXCM3FeiN1RzURIIt1ahAd0k2MWBSjxLHH0s3mRqy1wIZOLy7gE1urrot28Ixj7JMk4IJ9JkigoAFA6IMJRiCkzxsQYpfPhSgITUyAlWCxGVkvHwcEhfefkGkXgT7GQKzIiGbsaRh4+3ufR48c8KtCnmCLzuSS9ITicF1hhiqkofkUGvabL+UwlEdMMKBQ4V4qjXK+pwIYQTsQYDTEZxiDzTbYFGiXqVyrvSs5Ya5n3m8y3LPPNnn5jG1e6Ut4Iybp3Ceeg90gCnTMkKVqQLSkOjYS2GOk514FxWDcTsn2GrqjCjSHQjyMhRJH2LZC3GDvhYkQhl+dYuksGjJNCizOm8ZzIcl6yyCGowl7JSyvnRQz+TL0vZ8BlU4T6TOW+/aC3kydPHpGd1AdfS7TUoBPWAZo6A7eqLG21cBpQTCvkLTn53r173Lp1i9/6rd+qlWegVnbbiraOoU0mNACBNUFaNzVp06D4SUTKNrHQoKPt4Eyr90+qqh8Hv5hCntrv1iBYg5J79+5Vudb5fF4Jt23wPx2PBibT735Shbfd2uPX+dHujlapde70vxrctjwYTTh0fw8ePODMmTOcPn2aN954owavbUW85T5Muy3TwKqtnrcPDEf8AAEAAElEQVTJQ3t8bZdB56mFC7WdGq2ET4NO/R49X9o5u3jxYu1IacLRdrtUwemrX/0qzz//PJ///OePzPPUEVuPfa8YOp4+fZqrV69W4rF2q3QOlcsxvcZOnTrFvXv3agfjzJkzXL58GaCew729PcZx5F//63/NcrnkK1/5CovFonYt9Dj1WpqueeB9SbgmG9M1rfOrfh/TBK99/xTO1nbn9Pe2wzgdU8sNatdymzi0yXN7X2g7evq3e/fu1e7aVH66vd70tbaLqongtIOo1890m86bvtYmyvrak7oa38/tAyUWq71vcTAcACPGZGa9BVuwvEmUjAQqBGRXqnXyd1MqbFYA/IRQoAMpEYpfBRSTNyO67tZ6sB0a0AGlIg9zP6fvPRtmJB68ycHqXR4/XjAMK1arwyKv75jNn2LWbzI7sQHDChMDaQiSSGQrMIdsGUeFfThOnhBSducNfTfgbKBzD4lhRVit2H80EqIjd0/xKHQkE4SwbSzeObr5nM4UaUzlBqRIIopqjTV0toPi9lur2wbmWxtYY3nGivynNRnDCmcSnU14P2AtdN2IswLrGhbCy8BtgOnB9BgjbsLOGkKIpBAZ/UfIaSSnFSl5XDZ0JpDTAuIjVqtD4jiyXB6yWh6wWh0QwqEkhzmzWBwyLBeM46LCb8YC5VgOkTAmVkNgtYzEkAmjwdoR7wP7jx9ysH+CFEYiGZsLGb9UYzVJYERMvgDpQUjQVti3a2KqMcWkEKqjtvV1rfQbxVAsRcawErgNuTpT26JO1he8qbiPSxegKkXlVGSQWUPEMsSkpHCBskgFeu14nGKQJMK70okwdF5gfV3XVU8K5zxYS4hBkDxl7FahUGr02HQyxnFAq9Gu7NtQBYFL8Clcg2EcWC6WPHrvIfsP90lJRAY6PyMUTkc2kELE5Mx3336HFFfYtEk/28DYjsW4ELhSyuzvH4q8cpnX+XwmBm4pUs37khCWQ4iMeSAEmc+oUseJytdIrAsF2n0S2eZc3psIY+RgsWI1CMfJe3EKzZniXxHJxohHhPcMw4qcM52zJSnMuPkWvp8z2zrJbLZB53tSSvRdx9bWBidObNF1HTF6sB5jPbZzGOMFAuk6SQB8lO6eD/V+VKkMWaCFrpN7gJh3qnu2KnXJ+hI1tMRqHOo+YlRuThZjRGPwLuOcFG467wQ+GpYMq0OG1SFdJ9dQP+uxZKLJdM6AcRjbs8w/+I7Fw4cPefDgAa+99toRxZnz589z9erVaoqlAeSZM2fqQ1glOK9duwZQ4VT6ENRq74ULF2pyoNCBqWrL/v4+n/rUp2pApdXvM2fO8Morr/DlL3+5avw///zzNQBsg5s2ONVNv6/1KWi7De379XUNhtpAHo7yFPR49Vg1CZrucwr1mAZn+r3td589e7aqHqmajSZYbQdJXztu04q2VnQVuqOdpr29PW7cuFGDVlVK2t3d5Vd/9Vd5/fXXWSwWXLx4kZ/4iZ/gzp07eC8mhXfv3mV3d7dCaxSydurUKXZ3d2s1XgPka9eu1UAOqBX5NjAH6hpr57ntyLRJwpPOuX5m+r72HGvXQZMY/VkDYU2AtcOgXAV9vQ1y7927x2uvvcYrr7zC7du363l75ZVXjqhQTSE5e3t7nDlzhnPnznHr1i12d3f5yle+wvXr17lw4UJNas+fP18D35dffpkLFy5w5coVXnnlFfb29iqR++LFi7z88suVDL+7u8v9+/e5evVqvV7/6I/+qDp3/9W/+lf56Z/+6fdxDFrYliab0zXWJvbttlwu6zWh15x2r1rYpEK4FM6mMrnt+dN7x4MHD6pnh8Lcbt++zc2bN3n22Wf5m3/zb9bulXqMtNdie21NIYnTIsP58+ePJBVt4tEqpE15EG1H50mJu763HYvOcXsdTBWo2nnx3v+ZKQd+oMTCeYt4vkmwY71pKIkaDMrPxlIVbdZEUKlvS5XZVC8AdcqFgus2RhID39N1G2SsVDPDSqqLJKz1WNuTTc8YLSKO6sFlpLAo2Gzjtsh2TszzomTjyUYgIQaHczMyDtOpnKpnPuvxLuNtwtlYXKVFfnYYIURHyB7oBKutQpOmyHGWKrhlra0v8I5cDLGsqFo5ewTqIAZpHmsMnaUkFgmyLYGGr9AzY0QRKqbMGIq5nCkkd+OhVO41YREL4pkEHcaCGch5YFjuEcd94rDH4cE+w7BiuTxkGJcCe4pFgjYZhuVKAr/iPwCZMSRCSCxXgjsPo6jspETR5E8YExjDyBjESdykBtahQbvCfOp8FBJ1gf607u5gca4XLworfgCimrROLNTAMKXIYnnAOA6MqyVhHBnHQYK3ovikyYpC1o4QX7XzYNbkYyUzS/CYhHFhBSolxO+jxGdjTVV1khtBSRZQSFNE5Zari3jZdChZGyBmnUDk8oajEqOxXEPCYRrHkdVKzpthPQ7tzJC1Ku54+GgfQySHBd1sA2s9h2ORk8WwWgpfQDsS0hkzaC/OWKEqmwLHUolUZy2pcB5SUUiSs1iIzCmRrMXmXNTAMslmcbw3CZ8cAQnMXTeTRDxnbJTkCGuK27kVqdqcBWJU5W1nYDoRaUgGqpR0xqwitov0Ua4npD6Ci3LevIPRGqzNeF+O12tCZwscqekMZOHpSIVE7n/ZZlKEZFLhLkWqQERZK1ZJ8aYUT5wRMQoLKvmccybHKHAqWTxkEmEVChQPkdE2UiAx+QcvNzubzY5AEZ599lnGcWR3d5dLly69L/jVh7PCUGD9EGyN49qKtD5Qp9AV3TR4a7sK+h4NAFSBRwOfaceg7bZMEwf9ux7DNDBo39sGE1MIw/Q72++ZQie897VKrepIx0GSWviD/u047fvjKvBw1IuhHa8Gcvfu3SMEwaG3cLMHDx5w+/bten408dAqunI+NjY2asdHx6AVex1LG4hNuyhtMqGSrxqot3Ohv+/u7nL79u3aeXj++eePJGFaDb9w4cIR0vT/XXem7UQd97527tqO23Sc7flq1/fOzg4/8iM/wkc/+tEjwWmbUGlQqsmh7uNrX/ta5Si03w/rJLflzehcauJ74cKF2tnQrb2WdJ+XL1/m7bffrgnUVHZ3Ok/fq0M3/Uw7hy1H43t9dprk6xxNA/Tpedre3ubZZ5/lwx/+8Pvglu11cNw12b6v3dquXDvuaaFiCkeajv9J36HH075+3Bjbbml73evPh4eHTzoN/0HbB0osnjq5wxg6Ul5JpZBACCMpJIGgGMMYNfCVB6uYR60x9JAw5eGYSvW3ffxJwGHAdsw3T3LiqQ/h/RY5JZaHj1kdPCSsFlg/AzdjZJsxbWBsz+zkBjMjEALjJLCO0TOOmf1VIsS5BKc2VQx5tzHDeY/vZKKds3QGcSEOK8IYCdGwXMFq2bNcbhBNLmRPMfmzzuOM4NKtc1gvAVUNN5J0btTCytlSYe3UIM/T+a4kDgAB0kJgWjnIjFiP6eaFdGpYDrmQRgMhig+ItzN6N6P3HQXDUUm0QvTegJwwaYYJ98nDuzx65/dY7j/i4OEj3n34HsthYCyQGukKlMAyQhgSMUhQlgsJWKrXmWGEnBxkV9Vx1PTOGKm0j+OKMawEymGKQZ2RSM6YVKA9uXBxrOwrQ7JWqr8pFGdox2xjk5NPf4inTj7DyZMfQrsWGqgJD0cSi4d773BwsM87D97i8PCAfPCoyP+WZCXFwgdYJ7Wko0Z8GXDeFyla2cYo1XLrLM54ukLEVo8BdE1YcXh2bv15qdKXij2g7t2d7yvfSOcwhly/W9SyZEQVGpUF6pZjZDkcknNic3OTcRxYDSsODg9ZLJc1sel68VIRgH6m72f0/Yxvvfk2978LMx9Lh8UxlITVOV8gXJ7tE9u4Zo0rd0a7DCmKueWslyBfzQpzyXK18yOxcVHLir4crx6dIZqOiGMrdSxWmTGC6WcybBIdtqiuFa6BzkwuvxjtAJX7j5r5AUG9KwwcDJllCKVbGjEE7Kju7HKfQIsB1tBpp604d2sSrAp52nEySJKQsxgmkhMhJ4ZxRQgiPazmes71Mracmc06us5hjCjspTAwqCZuyJAtnd8AVsRx4PDhXk18bX8CYyPGI6IYP+Dt2Wef5SMf+UgN+l544QVeeuklfvVXf5Xr168fkZNsg3qtdGuQpBXG+/fvE0KoevgaxJw+ffoI4bkNZM+fP1/lbacQFYCrV69y5cqVI0kKHK1Ctw/nVlq1rYLrA3q6nzZQbOE6Gni1QU4LkTguSWoD0Zs3b3Ljxg0+//nPs1MUf6ZyqAr1mAY2CptR7LaOc9r1aJ2gtQugAeiDBw945ZVXCCHw+c9/nhs3bvD1r3+9wpheffVVfvzHf5zlclmJzlqlv3DhAp/97GdrAnLt2rWa3Ok5VxjTxYsXqxO3JpVt5Xt3d7fq/f/UT/3UkQRJz5HO3de+9jX+yT/5J3U+/8W/+Be1E3b69Glu3LjB//Q//U/8o3/0j46QwVsYie6rDYq14t12oVpyfpsoaDC/s7NzREQAqAnBfD4/4tr94osvHqk6nz59upLy9bzra6r8tLu7y61bt/iDP/gDAP6L/+K/qGtPJUx1PMvlktu3b/PgwQNef/11dnd32dvb41vf+hanTp3i0qVLXL9+vQamyrdQXxrtQIYgRH5NctrEZZpMtN2cFnbWwqN0rvVc6nptP9/yTLR72XI5Wghde422f9O/nz9/nnPnzvGZz3zmSLLd3gvaTkQb0E87L8fBlaaJp65zvae08tft+6Zbm2BMu5f6+eO4RnovVahpe/zfi6/yH7p9oMTCbj7Dpv8Q5CCkySza+SnGdaXZqBSn4LvFcMvXhz+FPKyk2zbgFiKq/GxdR9dv4LpNQnakHAm+I25sEbsR4zqy8+Ruju0E1pJtTzJCZCwhKtk6TA9dl3EplFepEBXvvFQpI4xhxZAjIwMmDhAPGRairhBikoDWd/iNp8H2BOOKWo4Y9Qmh1wkwRSFd1uKtOIMLxCvjjAQoztlKxjQ2Y00QCEyCkFyRwRQTN+m2LIXcnE3R3s8kshC6DaQcGIbIOEogKBArqXKmHCEsICxIq0esHv8J4+IBB4++wziIjO3BasU4jqLghSFj11yXAHEUFaUxpHKsHVubzzDf2OZDH3qW2WzGxmzOarlgGAYePnrIcrlktVyQkmGxWPH48WM2NzeYz2YCdcNIpZVCWs65+jPU4FDXksvMNjbo+g1OPv0R5htbzOabWNcTc2ZYDVTTOiSo851nY+spZvNNNre2ONh/zKOH7/H48XuFiL4SEn3hYgClw5RKUKzSn6Z2F8BUnpAprYNWicc5V6vY6+D/6M/ytzVJ3CgsjkSp5SPJQ3OubSwVfe2eZFS9KqdADAMpCpF7GAb2Hx/w4J09Dg5FztY5cSLf3NyUJMU6SRa6Huc97+0fYhHIXd+rlHNfOTHeCrxrDGNJDHIJhiWp2NjYYDablc6RTEHXd8KnCsKnsEekfqn8jRRLDyyvuzxuvk02liEZhpiIGYybCaEchy8eK8YKgT6XaycXXpZ2Q3Jct30k5zBVpS6jJ4F19yflqlzmvBfIoqV2GKUXSeWK5BxrS1nnan2/K0KzBcpmrDwkJNmyYhFioPM9QPFaSYxDkSUuLura3eutL6+NrA4fEsYlw/KQfrZB18/xfrNAOj3O/eA7FhooqMqT975CoNRA60mkSX3QqXZ8C/lQSJOqOj3p4dsGY/q+NoCeVvrbam67TSuB+pnp+DUAnQZQrcyrzsPU6E8Dah2vwn5UMUjx2QC3b99mZ2eHF154oeLNWwhJG7weF6hocNQG4Dp+TZI0+YE190WPQWFtly5dqtyNEISboMHfOI586lOf4vz58zVgPnXqFNevX6/BqQaDSuxVbsHZs2d59dVXmc/nPP/88xWiovh+TVA0gL906RKXL1+u60GPTY9PoVkKi/nrf/2v84lPfKIG7kr6vnDhAv/Jf/Kf8Oqrrx7xo7h69eoT11l7rtv1q/OmQa/+3q63Nhn2fg2j0rWl530Kj9Nj0nOtCcqVK1cqp+LChQtcvXqVl19+ma2tLa5cucJyKT4UV69e5f79+7z++uvV+Vohh7pGdG7a5HNaBdfgdeqboklfm3S1CUMLBWu5LVM42vQabSv67XU6TcI1EW6vwbZKr91JoHpttHyjabdD70PTQH96nU/Hq+vguGREX29hVfp97Xvbe0v72WnX5bgErt2f3l+0w9gWHKb7+35vHyixMN0mfmOOzerJUJ2lGj+LEhg0nQrn/LqcWBSKlLStMBMKAVeVkqS46QFHDJloEtk56DcwXhSMjHUY3xUTbQPWCWwKJTEiMKWivmKzPRL0S5BAkTMNjKOoHcW0wKQVJh6yOnwsCkQZXDejm20wm3UYN2OVLBS1K2MlsRBHcMFRKxyk67y4cVtbjPOoEpwgxmk5SyAEoqs/BMFdx2wZxmIoF6JUYxHok3wvIl+bjZDci0mc8zPBvedMCishWq/eIw/7hMO3Odj7E1aH77BYPBKydIZVCOI9IpgKYTgorCkYOQ8FJ++8x/ebPHXyI5w8+Qxnz/4IW1tbbG9tsTjcZ7Vc8OCdBzx+/IhHjx6V7gksFod4ZwQL7iiQOEmuVLGpdjtol4jwbmbzLeYb2zx18hmcn1VDupgSq5VAdVKBBXkvPBPvO2wvRPe+n+GcYxhXpJwYhmXlYlCgWLlxOPZeOD6JitZDF/O6C8eRcXtfkjr1c1iX0qWb0XCG6rVVAsc15Gv9ngwFn+9KV8aW3amEc4aUJKkoXaIYIovFkvf2HrJaDYSY6HpL50VJLGWw1tH1c6yXRGhxOGJyxNvEEB3eW+ZyhUASV2tXOykCY5RrTqrjEiyLEIHOk5poamfDWuGdNEeOgaIeJterLZ2/2dYW2RjGXLxecsZYTzaeTE83O4FzPbhufd1n5TUFQvH4SMVPh5RrxyIVJ/UjJnjFqDHFVIsjznmMo0DnCsyONX/jSOeonGODqnJp8geY9ZpRR3VVciJnei+drJiNKE2lxDhKESaRMEbI+tkJH2iMgeVyQRhFstp6cNlhbFfUq4SL9ue1tZKOZ8+ercpMx7Xz25+18nbc67pN4QPt1n5+iveeBoltdXH6kJ0G4DqWNqCffkblIPXz027IccFm22HQ6uL58+crPEWDJXVUVgy9Vj11TC2s47hgeFrJ1ONp57flE7QVdK347hV3dDX6Aqr5YQiB5557rvI5bt68WYM9rSq3wah+f0uS/+M//mO6rmO5XFbsvprOaUCt51T3q0Fd66WgFXn1b/jYxz7Gz//8z1disgZ3IQhJ9q/8lb/Cv/k3/+aIMpke53Q7LvBrz3Eb8LVJa9vp0ATC+7UPRbve2mBRX9f36H729/freLUKrUno5cuX61xoJ0I7HcpjAo64jbevTRPtNghuE/cWNjcdd7u2dH22XYAplKf973S+2/U5HdcUAgkccfVuOQc6Tr1OnxS0t0WE45KK48bWft9x159uU2jWcffDJ42rXV/td+rf2nmZJlfHccKOu4d9v7YPlFgM45JILsE/YkxVYBtdgaJ4rR6WCqIokziB1BTHZkogXtABdX85ZWJ0EgwTpY1gUoEyWLr5nHnZp9GApQlickoFsy8woJwzcRxraTSb4l+QhLtgTcKkgTgOrBb7rPb3iMOC3pUwxeQKW1gsl5iux/UbPLP5Ebr5jH62Jd0HY2rF2VhwtvzXCKbd+75i51NaX3TDsCLEyGq1YkxqlKVBjgSgpkI5NFGjkLKLC3l2hJUEXssYMcIiJy/2ISVsWmHSPik85p3v3GJc7BEO32U1FBfRMRb3bMsYDCm5YtYmXJlxKOpIMZORrGjn6Q/zkY98lE9+8i/zw2fPcerUhzl5ckeq0QrLKUH0crXicLngW3/6JywOH/Peew/JKUAKzDc2MIicsHIZUiFxtw7CMRtsgXhtP3WKrt9guYrEw32pFBeC/DAs0UKxrAPH8vCwdM0cGxubdH7Os6efwxjHo0fvce/gkFBgWp2XbkDUDpy1zDfmgCXEVDsUa6JycdcumPoUIxFw8znGWsYS5OeMyORakdLVfXjvC05/nWjmOBaCM+uOSIEaSVFdcPuaPJFTsXaUn22FIHree+8hu3/w/+VwsYJCCu+6jvnGBvONLTIwrEaWqyUhjsw6kRrunC3ecqZ2FcgQiilcOlwU+JollOPLOXNwuCJnkXpVedRYpHBnXS8dD+cZY5GhNlZZQMQgpoHGCtfBZIj7e2QGct4npgNyHsgkrO2xboO5+xE6/wxd9yEynpwdyUjCFeJQkgcDrhjfJelmZvVkKQlpjJLcxjhWoYUYckkkIxa5XxRRWrJziOeNii+UFLB0Pgz6Wd3Wk6hSsXIOYXl4wDgM2CxS0V3n6TZ6WYdb2sXRuY8slwsWi4HDgwPi0GHo6Ddm2M6TjSOsDum8Y2PWkfPig9zevy+bBnnTimVbXWwfqi1OfVoFnj5U2++Yfuc0MZlWitugXl9rx/t/96DXf/p5rcgryfPOnTt88Ytf5MyZM1y4cIHPfe5z7Ozs1Ip5W53UwLINDtu5mFY9d3Z2+MxnPlODS4WltIFVy1s4LtCdBnntnLX4fR2vzqEmiDtFT78N+s+ePVs7Crdv3+YrX/kKQPVq0A6Izq+ScW/fvl15FXfu3OHNN9/krbfe4gtf+AJnzpzh/v37XL58mcuXL1dp1uvXr9d11Ron6pxppf/evXtcvXq1VuQ/85nPsLOzU2FEly9frvPx8ssvc+rUKX7+53+e//K//C+5f/8+L730Enfu3OHnfu7n+Nmf/dnqa9GKBOg5VJWkdp9tF6xNBKbrTRMv7dx477l161ZNdjRRunr1aj1OrbDrubh27VpVKVsul9U/4vXXXz8S9O/s7PAbv/EbfPzjH+cXf/EXa4Kh52Zvb49f/MVfxDnHP/kn/+TINTJN9HUN3r59ux6PfsfUwK8lKrcwqRDCscUD5YVMr8/p3LZ/nyZzeo228C+t3Ouxtl4g6oSt61wTU/28jqE9l8cl5MddS8d1fabJKKy5RPrZ467Xdp40cW7H00IzvRfI1e7ubr2Op55C7f7+LLYPlFgoRloctE2tRlrtHhQCa31/Eju3qPCUKhdLCQZTNTLTxCJpq8EUeIi1GCfBeudF+ceViiaFOKn7Fb/g1HyPSsgqXEE8LMK4wqQBw0hnAzmNpGGJSUsMEthZ53BdR2cdtkvg5rh+jp9t0vWb+K5voBEFrmMKcbOQLZV/EJMEJCABVIiBGITQLPjyKPPQjBcUriUJhTUKuSrVX6cJDVUmtsgToTpBOS0ZF2/j8j45HDAsHrFa7LM8PCw+D5nVKNK3KedCthalIw0oNcDKQNfP6GcbPPfcj3D69H/Ec8/9MM888yG2NrewmOI5EdEqtJj3GYzznDr1EQ4O5rz73RU5wTisSgDroLiMy5rR87eGcVjr8J18d6ZAw8YlsUh9JjUmG4fKtbZOKsMpysWjSU8/m2GtYT7fIMXA5uYJUgyMw2HTNaCNBQsnZA3id06SgZhzE1ia2lnRLl7tORR4F0C2xVncGGUbNB0NJKPIotaUFSdj198jUMKyxrQ7gXQr0GQnZ0JccXC44NGj/QrtgfVNcizwunEUvwZjEt18g845eu9Ry3jnvHRDUqhreC3VYOo6tWXtiZhAqPK5Cukax8CQMykuWK5WpBzFH6bv6Ge9qF+RiXks85EhDmRGUg5VChoMJkZMWGIO3sWPI/2wIuNJWQoYKSXGsCzdC8SHA0m4nJuJeaDfABwOuXflLO7x2TtS9lIAKfcNy4ghEsMSsBjvSIi/R9LIX7dy2Npr0numLAPhTJgiwGANeAfZiSN9IhGDdIEo0Du5r7gK0TKIstfGfAP6OcYYus7hnYg9zHzCuUzvEiEP/KC3EAJ93x/7+vTnaSV0Cjtog4UpyVj3M31NX39S1e9J1cTv9XpbiW2Va9ogcmdnhytXrlQSa0sUnwYT7Xha6JJCv6ZV7vb72oDsSXPwvQKGaVIBR3He0+RvWllWgzol1cO64q1+B8pf8N5XlZ62w9LybLQTcfbs2doFmTpPK/xGuRGKpdeq/LRSrvAqPQ8t/r6tGOvfl8tlTYIuXrzIt771Lb797W9XDoJyDVoPhHZs/z5z3G5tBV8TFZ1fHccbb7zBgwcPKnzs7t27R2CA+q8labekbg2aNcHTtabJ0JQnpAmijkk7VtMqd9sRa/87vX7bNa/n50kQqGnHYrlc8vrrr9ckuuUG/Puu6TZZaTkdegwKz2q5SDpHLW9Jj+9JXZlp4H9c8eRJRYvp8UzvccfNU5ucTBOc6f209YeZbtNz+P3ePuBeJbD3DT/BNEo4R8AdOReJyVS9BrQKnFOWin1xrRWID4ARaJE1eO/wVsjMzoL3hlknzsTOdRi/JsGm8j2GWNSI0lqyMoo6UYyJsFoRxhWr/T3S8IgcDzmxKWRqWzoMzhtiAtt1zLefQoJeCzi62TbdxlPQnyAbJwGW0ejTV8hHzqLhXx14m+p7CK2/AiUfUPKnJE+5VDWdK47Mxq2hGLFU5FF35lxI0ByBmXgzEscDFvt3yHkJcUlY7rNcLHl4MJCCIUUYByNmgClKPpSLc3TO5HpG5bxtbp3g6ac/zI/+6GVOn/6P+KEf+iFIgRwjh/uPqwu2KR0W33UYJ0ngsx/9j1gcnmS5/xiTl6wWS7xJONfhurnWcivxu5rEGYNzPbPZNhtbTzEMkRBX4nMRSoI2rirXR6P0ru9E+td3KKhqtVqysbEB+QSbG5v0Xcf+/mNiGFgcPFp7VaRybjLEEIsruCk4esN8PqsQFkVDVdduY4r3RsIVAjkgcqNkSGJw6Az1e1Q+F8Xmly/PxUtCTNrEwTrFsSQrJQFLAovJKRSehcB/DlZLHj58xN7eQ+GbeOkELhYLUsosixs5ZDY3Z2zMO+bdNrPOM+t70EIBBWIXNYEvsCVjRcCgrI3O91jnJUEetEsYRSbVGg6HgcViyaPHUnWMMTCfe3Z2nuKZZ3bY2N7EYFgNknSknEgGEpGQPJRODSRyDMQ48mh5H2e/S9dLwhmzLdytwDgekEIkBZkfYyzOd2xvnmRjvs3Jpz6CdRvgtuV+Yj2mm2FsTzbzkqxnIAgQLi9Z7T+Ue2DXEY0nZsdQ7l216KJJhllDo3RNSgK8wpkIFlzv6DtwxjEsVoQxMQ5ZsJLAGDPWenyRx0054zB0801ObJ0o9+GMswFvB5wZ6d2IyeLtscp/dgZIT9rah21bGdPgVX8/7qE95QboPjRw1QC+/a42GG6/S/Hix1Xzjnsg69YmMi1EST+j8CCFjGiwtr29zdWrV+tY9YGugfZxZnTe+wpH8d5X2I/+XQPEtoOhEJRpNfw43PQ0KWnPib6mXQrltWiVVwMynRN9/40bNyrBWxWhVDb4S1/6Enfv3q2eE3t7e7zxxhs1QFepYZ2n5XJZCdynTp3il3/5l3HO8ff//t8/8ncdu5L5lRugHQ9NNjQIU7iTcj3UV2UaMGrFf3d3t8rbXr9+vX7Pr/zKr9B1HS+++OIR9Shd33o+jls/rZxoGyhO16GuJ0241NDxa1/7Gm+88QaXL1/m3r17/NZv/RY///M/z9mzZ9/HHWhhYMrLefDgAf/X//V/cenSJS5cuMCFCxd48OABt27d4u7du0eSlYsXL/LLv/zLhBDY3d2t+9afde21SV4bjLfj0eNqOyaakJ0/f77KButctHAzXY8PHjzgC1/4Anfv3uXLX/4yly5dOsJFmW76fW3SqK/dvn2bEALXr18/NklSEYgn3Yd0a/lMujb1vtI63LcdiylxvL0On9S5aL9bu4PqsXKcWlo7j+21rcel89NCwtqxDMOfTfHpAyUW875nvjGrMBxTKoEaSKfCVVCvAA2mU9NBkK5ESQaUZOvVYbZIsCokwHtJMFwJ2ixAUfEZUy0oqwtxymqqV0icKZNCJAwrxmHF6vBdUlphWOD9iPViwJWSOGf7bkNMtLoNTDcjuA2wAjEwxpGsZxidyN6WYF6J2FbVk7LMgcjolip1rWID2BI3GKqsaQZiMcsrnRDnxZHaFdnaWv92hZ1qDdlI8G9SIatnlbNMHL57h9Xj+7z7nTsMITCOkccPHzOMI8tVJMXSHak0AAmSs9Hq+tq92TrHbGOLv/AX/iI/dPYcf+GHzrK5scniYJ8wrkjjyLBcSncmp9JZsXS9ODBnMv1sToqRp0+eYv/xd1kc7GMZcd7ThRFTklRYyxCHJMH1xuYmMWeWy4GD/UORrh1WhDASRwkylfjtnCRpMY7rRe59dda2BatO4VM8dfJpDg8fc3DwCExE3bcVrhTCWD0v5HwZYgh1PR8hUudEipFhtar8C01KxNPNQI6QAtFZXO3uZXJUSNX6u1MUiJ3zXmR8w1g4PBmT1tdUGESljZwYQmC5HPjmn36HN++/ycFiQVKX+RQYx8D+/gGpnKe+c6RgydFJxtAV+V9ra9Vcj1sTWO8cMYFyoqWyPxJDKIpW+lri4CAQQuRgOTCOkWEU4rF1mdmmw/WJyJLDpaiFJXJZ10DpCHrTo+l0dZPOYArxJZlYOl6WNBpigBFHyImYREiJFLHFaPNwuc/+4R7ezen7E2yfOE0/k0DdGrnfZCtwThFR6Mipx2RXqgYLUfhyXmCcQDIGUxI1U5IKaUDpNZ7JTpK/YVwIEZsNKYBEEFfFWKCbEWNhY0NcwLUzDIkUbXlNbt0pjQyrA5IZsARWaVU5Y9+Li/BntbXVR32otpX96cMd1hXv9jO6L/3bk6AQ+vlp4Ny2/KffeVyArTAJrZZrp6HtILRja4OGaVeihXzo2NtjbxOsaVKkAWILe2irnu2+2s/pPw1upn8/jqCuCdP2tjg9qyeABjQajCtsS/kgzz77LH/0R39UfRN+93d/twZcKlOq/AbdhyZjrU8IrMnJ+/v7vPjiiwDcvXu3/r3FuZ87d47Tp09z69atGkypJ8pLL71Uf9cqfRv8TwN63VQBqU3Q9O+f/vSn62str6D1C9A1Ok16p8HqdFMexHS9KMzo0qVLnD17lps3bwLwl/7SX2J/f7/OTXuttMGlnuft7W1+4id+ogacd+7cYT6fc/ny5dop0m6IunPr2tTzcfHiRe7fv8+v/dqvceXKFc6fP3+kw6brXYN6nR8dT3td63ltCwU6r7dv3+bOnTt86UtfwjnHc889x8/8zM+8z3CwvX51a5OE6b3Be3/k3Lb70sSqlUJu+SPHJRfTMUzH037vlMDe3ovaz7T3tfafzpvOQXsfavlS+r5pB1LHoCILbZLRdofaDuz3c/tAiYXzTmQo64POFKxygdMkIY22SYUGlkmhSTEVImouBWlTkomieV9kLLuuo/MO75xwISqOXBx7U8F/pwKbkDG0qjs17SDHkTgsxZk6D3Qu4rzFmr7ADAw5O7KZk2yP81tk2xOYCYHciDcFBQ6TUyYTpTtggGwR+V0KDEMN8Qp1oFQgFftvsCW4XcN9hPBp6H2H9SLPqfKWWgXNiCuwoWjjI0ROVzslhkQgx4Hl47c52Psuj/feYxkzQ4DlwSAk9ZAryduqQYKhEt7RcZYquvOe+cYWT3/oFKc/+jG2t0/grGW5OCCsluKEvViU+Ue6FNZVSJp4eUiQOJtvsP/YMowBZzNdDJicsb4TDw4cufBlYkjkImMcYyLGFYvlonIiwjgKdyEVP4Oc6TqRda3wuBiZzWZ0XYcPnuAkKRm7TqA4sxmz2ZyunxPCYVEVKlCkcj5BumgaYKfSrWjPG7rWS2JJed1mSWQiWU53FuyaS4WMA3J+ja4VU3lLgsIqssVtayRTg9h1YiFqQsvlwP7hggfvvMujx/vClzGqJJbIOch5L6pWdG4NG9TzV5TOJJlNBY5ja/JprJMuUFFyosyzpKO5JM7FBG41EMbIYhjlXmHE/8Z3hm5msD6TGYvqGtKJLBdK5Xk4hxDWbe2GGeMks8mJnFYyDmMkQXdZjDWdzLeJtnR4ImPhKgxhgXcz5uOKvt8s9x7xRXEkcpn/iIVkycmRsxP55zRiXATEWFAI9KYkd9rn0/WhP4v/jjG5rikxztME1EmTw0QUSunKeZAURx27lXtVCis5EYLAOqVTUQjoKbFa/eDlZuHJbXZ9+B0X5B7X3m8/M00O2gf0k4KO4x7aT9r3NIHRwGiaWLRE6fZ4p8HP9xr/9zqO45Ke9r3TBOu4+WvfOx1Hu2ky4L2vnIc2udFj1wBEq6fz+bx2Lbz3xBiPBJTKO2kDoxAC586dO3J8Ou+6KRlbgyHgfQHVfD6vqj4alAM1cD7OO+C4anE7v9rZascfQqjjaf9pItRi8afB2vR8T+de56XtbLTva13Gb9y4cUSt67juAKx9EzS4397erupOOl6VdFZYkfqPaDdIk6i2g7K3t8etW7c4d+5cJZrruXhS0qTjOU7OeRrU3rlzp3Jjfu/3fo+TJ0/SdR2XLl3i/PnzNYmcrvXp9XfcOp8mbdN9TLsP32uNPOk+1I7tuDFNoY1PGueT7pl6Po77juN+131P7yvHff/0OL+f2wdKLGZdh8eV4CsxFn7AMAbGcUCddzU+1QdoNb1TlRW/xmYrydaqxn7nGyMxeTCnIBVpMYEaBTZj1qZqVRpUwmuMAWdGnE30XSAu90lhD0vEuI5+dpJuNsf3M6ybyWM7wipEhpRYCmcclyLOG6yDzgjxVBx+17r4JE2USukfIWxTOg1GScltMGpLp8MUM7y+xztbjrtwMbIGjtL5UKWtrptJRd4ItCKMAZdGLJGuiwzju+Tl29z75h/w6N13efzwkH5jjus9Q8yEWCrNFJB34WpYY6USnxIGv9bX9x0bWyc489yP8EM/9HH+wl/4EcJq5HC1ZP/hO6QYSCFwuP+4wt1sgXDNZjPx9bCOvgT83ncMIfNof2BYrei9YXu+wvkO6xxd19cgOsdMwhHGgdWwYLEYOTxcEEMAEuMgCYZ2wmKIzGa9EJTn8xLwBiTIjfgiBUwW+d2u6znx1FNsbmzx1FNP8/bbIsuaU8RqMoQaEYYqpTwMKzlXamZXOm/1HBtZ99ZauVaMIcaxrEuInfCEvFUDySLuayjQIUtWBQAMIZvSiZGOBlkkhDWhGVcDYxhZDiu+/eZ3ee/hI+59+232Hh2Qc2Y1rArfB6yR89F1jtms48SJbQyZEEaWw1Dga144RNaVirr41Wg3B+tK+qeiC4kwDqQ0klJkHEWAIIQyD87x4Y+cpJt5+rknxAMygc5FrA3COymmkqIPUCRkrS+QK1ehcpVngcH3QnJ2aUaMkjT0pUvW99uobK3CuEIYGFb7hHHBMO4zpiWLxSHZrNg83OKZpz6G2/oItpsxRknkOzPDJM8YeuLQkTP4Yvpo3Mg4hlrQiDFAinjRfsakWBS3KNA5i8keZ0+AMWQctpPzbEqH03Q9cZSuw7ASuFuKmdVwWFSrYi2ZdH0HQBhjda631knhwsi1/oPetOp3XFCnePBpQDR9OLbdgimmXD+v23EB/pQs2r6nxUi3wZEGqG2A3B6PbhpcTYOd6dimQRUcVXBpf27H+KTqp/7tScGABoXtMbf7ngYYOr8qQXrhwoXqRwFrrwDvBcJy584d7ty5w/Xr1ysk41vf+hZf//rX2dvbqxCd9vOtd0fbSWqTldOnT1cyscKRzpw5UwNOPY8KifJ+zQdoj20Kt9GAWWEketzHYeR1P21wrmTkENbu4gqdacm2+t7puWwThvbcTtdJ2+3S86MwFuWJTAP+lhswDSDbBLFda9Ng2HvPa6+9VsUGdnd3uXv3Ljdu3ODcuXOVKL5cLvl3/+7f1XHpvloolCY9baKnVfI2kVDXd/3ca6+9Vkny169f53Of+9yRz8Japaq9LqZdPl1L+rNeA61yVcuF0XFevnz52GD/uOtM56/lZzypuKCbzrMmn9PPtN+p+2jX5fT1tqvUjme6tedAoY1tsUATZt33n8X2gfYaQsQwlu5ErolFKORZpSgrlbFW6s1aflEr17UaX8jfKjEpFWEheyr5VQnfORUqaM6kXEzcVJa0dkQCIayIYYCc8L4TZ2o6oilSnckTo8ONBpcUCy3JinW2ON/KiRNjMkkqRKHJSNcFyDmg8jI1iQL0p5bXKQT1LEGrMVWK1lmLDQGyhGqxNDFqpbzMmzFgXWIcV+XvIBXTSB4fE9NAXC4ZlgesFgtS7sl2jvUj1nZYHM521FJ8sRNwxZjNO8cyJSEkG+r5sM7R9zNO7jzNxsYmznqGxSGr5SHL5SEpBFKMLFdLIBcojCsdi4izDuc9cWMuCactGkYZHryzx7yz9KeexkUhGOe4Ni802WENxGFgebji8aNDVitJJJx3R6qz4lkgAZaxhhDDkQQ3hlCkZSPkKOR8K4Rzaw2d7ytBO6dELrCcZIunQbYlwcukIETjZJoTXNZ5Mg38KRmcNdJdKx4qwhvIkmEYVxMKVQtKRqrYMUqCqhLGOQSiYe2/UOCGMSb2Hj5muVpxsDjk3fcecXC4xJji9N11rIoymlHYnjWSfM3mnNjeZhhWpCgeKjFlVquBYYyF3+LrHMco15xxmXGMlUMkVfpcvFk6cX5HlNswSTxa3IrMipjAmEJgLnwqzLq/aEoX0iRTE8wUc+moKRRKjRXln6w1cDkJd6l0DWzpbLhODCTt5gmGZc8wHvLwoXS6sNJtDWnFEA7x44I4CrldyPm2cHkGVquH5BxI0eEzWD9gk+gxp5zk55yx2WKteNN4XxKmMmYhmcv84BrDvqiqeZZY1iXJyn3P56I6FlDXbjI4X7paxmNjKByjBKYAJ92fD3l7Ghy3f9PXp+97Enn7SdVIOCoJO62Ktp9/UiehfVDD8Qos0+9rA6Xp+KbHON3PNDl6UrWwrYC3W3uM7e/Tv7XHcdyY9DXlEmig1crB7hWDQuVP3Llzh6985SsVs3/x4kXm8zmr1YqLFy9WKEkbvLadBg222ySxJZjq3GpHoOUqtImJjn0aKF+8eJEQAq+88sr7kj7lwbSf0/G0gXp7jnR8bYelncc2mWgT5uk5mq6p7xXQ6Xe2cCOdu+k6bd+v39cmzPp3fV07cG+88QY3b97kvffe47nnnqukeJWhvXLlSu1qgCSIn/3sZ7lw4QLb29uViK+JmyZzx6135RZpYK3XG1CJ+i+88EKFWLWqUJq4tPCy77W18zwlPE/PzXTOp/ei6TXbzvf0s8e93n7ftEAwvQaPu39MCxfTjsr0HnJcUjMdf1tsmI7xz2L7QHsdhkAMS5FoTLlIo0pQp5AQrdDDOsBq9f4NAsFw3lU8fOvMHZUvkRIma0ejVLCzKbCqhr+R0tr5t6j7LA4fsVwsycDG5klCMETmBBMLbtpjB4ONGWtFwcZbi/XFebvv8V6chrvOV9iXyq6GEIpMZaTNHrQRYOp45ZhTea8GuAYhjHddRyrYfecdNq27MLkE2upabKwAM8I4kqLAhDqf6X0iDm+TwiGrg33GMbEaEtluYvuMnwnvwAG96wlCt63QG+ckaer7jmEcS/AsqlPOOaz39LM5Tz99itlsEzAsF4esFocsFwcl6Iosl4f1XOn5jHGoXYrNzS1ZI14hbJb7b73D5syxc2IbZ8T5OHWjdK868QrBSkV+cbDPw709SW6NYb4xL47ZayO0lCIhBjAg3Ahbze5ChuVyQexGcu7pOk90tiR64r8g50xgWALrSaVaDlhbk9iQC7TFUJSZmuQCdeguXTnnCuk+SOJIlmQw2irHnEvzqCYWZS254ursvK/HGmIxp8uG1RBYDSP3v/s2BweHPHy8z3IMhAS+8/R9T993HC5kLM4VuKG1Yma4ucHJk0/x+PEjVktJPFLKLJcrCXSRG7aKEoiCVMZ6z2oYWA0DKQ5yPmYznOvxvofOSKdrY042gcTAYvUWMY3EIdB1Pc44jOnrpGlxIGWRetb1CaV7Z4u0tXYLsRUypYpfOQkcKeWMSUJsNlmSRt+JMeAwn7Na7XN4+JgYg/AhjJjQDeMB3XhAWB2yXP7/mPu3UEuy/M4P/6xLXPY+52RmVWV1Z6tTUsrO8eT8lcJlU4PLOM2/BD1MGbdxC9q4hVvMYAasBxnLWGANFngebPDDPNiMjNtMP4yhwQbLTD+0oQcVcoHauIYpmPJfOSiN8u/J0ZxuZXXXJS/n7L0jYl3+D7/1i71O1D7VXfNXtxxQlefss3fEihUrYv8u38uuFANENSunwHb7gXROfUeXJ+nq5IDJQihXSKJDklbvwDcN1nqs7zC2ESiX68nGSaJY/ECmaS/rHL0XEYNU5HIB3/ale1Fgf8qMypncSNFH1sdewIA/I1WoGn9ev67boSBkWX1dfunVWOA6gKg/r3+7LLGpP69BLFysuC4D9HpMdSJz2Rf6shJeJzqHuhyHgoFl5fSTPlMHMIfgXJd1Tbz3M8ZcAzitSGuApy7L9+7d4x/+w3/I//V//V88ePCAO3fuzNj13W43O6rrOS4DLg0SdX81XEmhUgqv0oq7Xlu97jXvZtkN6PueL3zhC7z99tv87b/9t3nllVc4OTkBmLsdeq1rwvUyeVmul5qcvJw/DYTrpGJJaF5ew09KuJfdk3qfy4Sh/swyyNztdhfmtBYCeOedd/jd3/1d3nrrLZ48ecKv/MqvcHx8zOPHj2f37F/91V+9kNjduHGDv/7X//oFTpGet3aJauWp+hyVTK6yrfr+EMLM5/mN3/iNeZ1+5zvf+VhyVXNeLruf6+C/vq/re2N53y7ncZl0Ln9fHq/e/2XbEgK17LzUf9Prr+tx2f2q5WIPJST1GqjPS4972TgPwVL/NLZPlVgMux3Ot7OJnXTai9dCASIJ/IB9VAClRS9VaG+9UBWyVEZnk6+SgGTtaBgzfz+Ww1TdC6lOC/wgEcZRuB0xly9XS0wN5MzZZqQgv7HK3/DN3C2R8SoMqy2kTDl2GAO7nZIh89wVUXUrUWyS4D8EqSaGok4kBPV9F8cqodnvgztNHEzBpJPFATqnRI6jyIiSiIaC3Z+YxjOBRESFHHk2Z+8Tp105Xkem4+TlW/RXt5w9+z6kCVLAhxNCDAzjIByTAtcS7kxDak6YgqgOKTl/dXSFF176DDc+97O0Tcf2/JwnH37AOJyz250xjRMxRKZxV6BuKpFrmaaJtu3AIIZ0ZJhGtptztpsNuyGx3Y78fx783xyvOvq24cqJqDV1fUd/7HCNZ5p2fPTRE7773VOmcaJpW25+/vMX1pi1Btf6cl2LeSN5luUVidgsfIbiZhzjVJKjCWcNYRwYhx2kMMPDphSLb8heWjSTC0fBzV0RV3gR0nUpKl7GkMs6U3I1JJLdr8OIELG7rsV4J0lNCbBj8byIMQrsaxx5dn7Gdjfy9Nk5IUlguhtEWhXf0TfrUhm3xJTZbLd4J8nk6qgkd8ZydHTEarXCOceVkyvk42O6vpcumve0ViA8KabSBQyl6yGKVsfrFVeuHNM1jdzLu4lxGhmGgb7zOA++tYR4jskjq1XhKtnKg6aAwCiPC3HxzqJQxr5YAW7mZsUkZHrvxUjSmIwzhjhNTLsN5+dPC/cGbLPCtStWK0vTAnR4v6LvO66cjIzjlmF7RkojY0w8CxPb7Uc8fxYJaUuIgd1mENM54xnCVIw0n+Ibh28c3UogfMpDapoW1/TCQ7GO5JqSFMn5YxwJMb6LaW54ik+G1aepcKimKSFi1g7flEd1btG8QjkdQitTONa+UzoOfzY+FoeCKbj4RXwId/xJ+6yrxjWhdxkcajBSb/V7Hzx4ML+nrgLWiUD9mUPncVk18VDXZVntVNUb5SooN6A+p2X1XD93KCA6VLWug2gdk8qX1hVaxeA/fPhwhsI8evSIa9euze7Y3osS1F/4C3+B//Q//U95++23+c53vsP169d57bXX+NKXvnThOIc8C/T61SpXdXKo49fPqETt48ePeeONNzg9PeWv/JW/wr/z7/w7M+G4hnxpx+Ldd9/lH/2jf8S7777LyckJr7zyCrdv3+bu3bsz50Ox//VcH0oWl3Oq10NVjRS6dePGDb75zW9y48YNvvCFL1zgpsDem0Hn4Fox57tsnemYDt039T1QB/91AldDq87OznjzzTd5+PAhr732GmdnZ/zcz/0c/9K/9C/NsC7tVqhUct3J0mBWlcv6vp9N+Lz3s/ne22+/zY0bN2aiPkhS2vc9d+7cmedCjRVVRnd5r+rna2nZQ92e5T2w3A4ZGy43PU8N1g8l/bp+l2pNOhf1tVjyZOr3Ls9leR51EqqJ2+3bt+drrvCrelz1/rSgoPfh8p6r37ucu7o486e5fWooFGbfLShMZIw6AYN8o+UaEMX8N5Mr3gWJmOIMsxBIlClSixJ473eRSxdEsNKkTEylWxIFax80sSh4d7BqCVASAVPUVKwQwou8q8pqajXXGGZyeYxSAU/FbXoOg6wVF1+794AIYSrSskGCoFJFVwK0LcFp24ozsSv8EukOZAxBTjMLyTObvUO4Va+KnEhG4Ggi0CPBqjMGXIPzPZgVxq7orSOEAdtYUhiEwD7JYnLjrpDkhRhui+FelxwuiAs4pUvTr6+wOrrKan0i/IJhx7DbMAxbxmFgmiZCEDUbYyiqNYX8m+VG0LnECql5mibpjmCZYmZ6fi4Ze9uQyXRdR58ywe7wLRi7KsG8rrfSFZj5K7Gq4lLWRZFytboWla8ijubisLznDlhr5s/lFAT3bjLBgIkFzqSrMUuXLNooMKaSQDjnxOMgSsU8m6IWZJiTipwz2UYhQ+ckngc5I7ydAvMrVeyY5WFgjGEYBoZh4NnZGdvtwEfPzsnZisd7gXb5xmGtl8Qiyxw1TUPTNFiXaZt2hh5KN0M6Gjl7DFpdtyW5lvFMTIDDlXO21oqUbyMwQV+UkQajZYaMa8A3CesDtqxR2Z8m8qUDmPdB8L7TuU8W952gGlaYLvCrmLkXpWsVAnGaGLcBlywpO7ouFc5HnJ8BfbfGYWAKpCAQxd1uZDCZrZlIDELy3qXifdHJ9UyGEDPZRBIZ4y0ei/UF2mYbjG0E8mcdCU/OIroAcr9lQuHkmPm8Uqqfl0VKGHVgT8VV22KNK0mFLOtcflGquC3CVRlmD5ef5BZjPMhBuKxNv9yWgfxlwYN+vg5e68/VX/JLXP1lx65fX1b/Do15uc/LtuU462Tk0Jgum7vLKpWXnVedfNTH1p8VR1/j03UfClPy3s8O4Ldu3eKb3/zmDIOp37Os9h6anzpQW8KLlh2I3W7HRx99NHcX3nvvvY/xUerPa8CuhGTnHDdu3JgDqyVP5VA1e3nN6nEvAzr1iFjOaw3/OfS5y9Zh/R7tImnVXzsXy7VQqy7V3Ql97dq1a3OSpgmOXkcNQjWQ1euoiVOd/NVbHYhrZ+QyZSEd1xJSptdrGYxrN2mpHPajbPW98Undifrn5Xq67JlQX68lyfvQvi/bxye9d5lYftL6/KSk5dNs/yyf+VG3T5lYiEfBrGWUFSN9UUoWEG6w21flU4yEHIhTkepEuxhmhlqkBEQJOhLCt5CAI82yjbM2/TTN6lMxKIESRE1GcNUSMPs5aLFGKtreWbzKuTpPLrwOSQ4ETqCcDlXoaYsvgreOmLVSPDKNA3GaiGGSzMntA+uma/HO0fqGvm1pGkffd3iX8U4M7MiBHIX8HqaJhBjK+dWatlvR+I627SSJSANheEoOO0w+n4Mr19zCuh7XX8XQQ+4YY2YMkbPthmnYMo0DZ5tzYpxIYUSDlzgFUhR1Jdc/I047xmFTJILhyrXPcvXaZzg6OmE8e8r2/Bnb82fsdlvON2cFLhJBg/sM3gnMretXtK0EqyllmKSjs93t2G53+LYnAtvNxDieY03i/adn9KsVV65ew3ywxTctP/3TP8uVq1c5PrnCZrPBGMuLL74kCRWw2Z4zTRPDsJvXRU4J74UkHaIkS4ZEioY4BZqmAbKICVhL0zoJ+qLIE2dnSdaWJFrW+txhKtV2+b10JJxUz8lmXuPzB1GDvcLbKHNlnSS5nRdlFRUwGKfIME1sh5Eplp+3W3a7HcMwFtO3YkppnJyLlWp4mGFhGes8V65eJWEIUYLqruvp2p710Zr1es21a9dkTaRUHLMl8JbhZxrvZqf3rm0Lb8MRQiKEyIcfnjGMA8O4oesN65Xn5JrDOeFVNJ0FOmZpahQmWNTiUiLELFV9Y3Glqp+NCCoIl0S9UfSzknSZXPSRDKLiVEjnOUR223Ny9kBD1zQ4ZwlhIE0RazLX1j2p8YzOsTlv2W23fPDBY4ZhYDdOJAPWedbrF+h7R2c9fdfTuY71yZGIexnAZFzb0q/XNG2P9R5oydmSoy1CCSLEoP4cajEoAEVKIpjnNaMiGMM0EWMmhEzbrnC2ofOrqttTkpLSFzUFhmkLVCyGHw9+9pM2WaPDx9R56mBag65l1W/5pV37NdRwJd3qfeh7a1iLkjdV5tJ7P1cC+76fA+SlSpEGZRpQLOEHddVd/35ZUFJXM2sFGuU2aLdCq6x6rhqg6ms6vkMVy/oc6u5HXZm/d+/ePBc6bp0LVWuCi+7HGvxpAtL3Pb/+67+O934eo3ZfdDt0rhr0a9D88OHDC8fQc9LzvX37Nvfv3+e9997jWvGj+MpXvsLrr7/O3bt3L5y3SubeunVr5gco2fpLX/rSvO979+7N3aK6Un4oKa2TD32vBsjqG6EeHjp/wNwV0mtYE751jS4TUV1vuo4fP37MW2+9xauvvsr169f59re/zfXr17l79+7MY6nvl5os/+6773L//v0ZfvTGG28QQpi7c+qIXvM39JjaYVCydN/3fPGLX5yTj2VnR6+Tnvty03PW97///vu8+eabs0jAkkyta2q5XZYw19syoT20LQP7uhOh+1g+C+o1oO9/++23uX79+gU/kVrh6zLDRN0OkenrbkStorZMgJf7WnZQLnte1eeynDct9P9pb5/qm6eWdBUCbhYPBfPxKqNwhKVSbeZqr1Rj81w9lsquFV1JgQFY9VPYV/sxBlOC+TBFca8OkdnMrVJg2ncn1HROgi9jLc66kljIe7I1TNqdKNVjjGj7K5xH3bVVP39v3pZwNmFbB43B0M3wGOssxhmclfe0dqKxO5yBFouJRiraUvMkW4dveqxfk3EY6/FNj28aMclrSpUyGlzTgbN406DqWM5dAduCbcnFxdpYIWavTE/bOELoSASmEcY8Fkx6BgLkgMsTrYdkGrxbz1XP46Oe1arBIKo30zjMxnQhBGIhjaZClp6J+ka5JWmGzqlPx8mVK7w0juwm4VP0/Ypp3JbkzDBFy9NnWwlsm4aXXtxwfHzCtWsnHB0dkzM0TVOcvtN8bUKIkE2prMs1VPnYlCAWmJc1FPJ3xPmGtuvmBIOsePWEteKergAVb6Qc7IxcY69yyFbkP0VdaZwTrEIBUAwfOYtVRDZCJvZtT9N2dKu1OIenxNn5jt2wY7vbstluBepXoH8pgbENzpnSmVBHaZF9nkKcu4ipdKJ809B1HS5It6hrW1arnr5r8dYyDLs50ek6USdrmrZUxTNT6QzGmNludxgMrhH38xASIe4wNtKvLP3K0nYW5zPGJmGUSEy9X+vanQCyEbiX8E5KF0O5FcYIOTkbkUQucrOpdIhmTpcthoNJzDM3U2S7Gfjwgw+x7gzXPMFZT9P2GN/IGssJ98IVqa6f79juRoZxIuSGZA2URMRYSwRJyqYBb0XhyjQNzkrHputEthhgu9uSMTRNxDqPdQ2gz8e9kIX8vPcF2T8/c5GvlY6M8WZOLOR5OTFMYHDlmamdXOZu114y2hDT3svlJ7X1fV+S9n3QVOO8lxW4QxwE/RKsMeuHOhOHSKy6hRBm2dI62NZja8BbJwa6n+UX8KHgZjnW5bb8Mq/3UQcfNbG5Pgd9n+5HA9Y64KgD+kOB2jLAB2b4i8JdlmZnmowpbGq5Tz2Puuugvz969IibN2/OhNu6kq5J3263m4MyXRP1XCou/+bNm3zpS1/irbfeou97Xn/9dZ48ecK3v/1t3n77bW7evMmrr77Kt7/9bc7OzvjN3/zNOTBUVSWFgtTXYpnw1tdQ50uTOoWr6Tmoj8e1a9dmk77Hjx/z8OFDjo+PuXPnzny8pTqXHqdOfnVbJtxKNgdm0nTNtVDis8r61utNYWHqP6LJYd29qYPTW7du8cUvfpHf/d3fFRhrea/ClvTe0a5HDW2q79t6jelr2v3QhEHNEA/BAy/blgnFch0u1+iPUoVXuFrdbaqDcIWBKexL57z269Bzro/9o/IVlu9dJrbLc6/v+eVWr61DnYxDv9fX7f8RBnlJq4wluZCgK81f8MBcSYNKCSnvoUymBA9SyBM1mVw6FgawHrCigqKkTit0TiE2FiWqWORdU6ZImtqC7xekkrWifW+MwEOsEVy2KNdIlS8DIRTDPhLeWBxu351oBBIiWPNMiEGq3ymBSTQuYxuHtQ2N7wTq5BspHtuMYYtlpDEjLm0wBFxGAock+OtsPMke4ZsebE+2pWrsWyFCGxlvTomYjPg94PBuhXhseIw7ATwhJLJJJCM1TGstvW9JrSeFhmk8wxKIo8y9BH4T5InMROMM2XkM7XwN1+uevm8wJpHixDRNxd05FqftiRQVCiVcBuf2TtUppbJOKJ2BjpOTK6Scef/Dj3DO069WnJ09Y9iJMEAIgc3ZlhQDbdOw2Ww5OT4pD0YhUe+GkuCkJEsrCx9AoT7OSvA1S9GaTJj2RnrWOlJK9KtVkfstiQjith1LghsLnM1Zi3qducIjct7SNkKwpqyNaQol8aRU302JKYsbQXYYJy7VbX9CtzpideUK282GMAycjzs228jmfOR8s5V7yJZ5tRbrC1enaQWfD3NXJaUk7uG5OLJbS+MsbdNijXRf2qah71p5zdryYBLvCeWitG2zh9uUcwqT+H/klLDeyj0YE5ER66Dr3ZxYGBeqyrvsJ2Y1kJR1iZHiQyzPE5Mt6lNjsiqTlQAaW5ISEVDQDqed73VDLhDHaQxsNzs++vAJJkunpW87utUK3/bsxh0pJVZWiNKb8x3DlBkjZNtDk7E+FU8L6Y4khN8UJyCJHK9D1sSq74HMFAOb7ZYQE90q0TQdbUsl/0opnpRkAuUiKddLE1GFeGVcctJJjZndVgwIxyCJtMXNRQ9rK4f3GTaWiOknD4U6OjqSLlT1xa/VPK246raERyx5Dj/sy/dQsF4H39oVUJWbuqoHH++cXFYZrLfLgu1DlcRl8FqPtR4DfFx2dpkcqPSqzk1NttYAXY+zPL6qO/V9z927d+egXhWYauK8BkxLAulybpbuv2dnZzN/pQ6qNVmoDfZu3rx5QVVo2blSTsDt27f5z//z/5yXX36ZX/u1X+Pb3/4277zzDn/n7/wdfv7nf57j4+NZ7vY3fuM35nFrgH8IkrdMHJdBm47z/fffv7A+alfra9euce/evdnY7cGDB9y8eZNXXnllXmc/bK7qOdVAVwNZTQrUpK6ey91uN/Ng1GcihDAnmcfHx9y9exdglne9jLcAEuyrEZ8mmurA/ujRowuJxenp6QWp0mWFvCbY65zpWJWfUcvN1ttlFfXlfXhZgF1/ZnmOy31p4lgn3fX10KS75jlokqQqZssCSX2vftL4ftg46zldvr48Vr2m9DPLpO3QWA51Qv60t0+11+2wY5r1/Zlb+AA2S4XPur0K1Myn0PI3GVO8G4STKS611tRHkRRDHW3JWcjKCkdxjq6R6qQSopnhKVqwNSXZMOLqrbsuGY2dIVYGtxaytmvAF1K1sX6uLocQiDliTcB5S0eLzVKh9iUJaRuPa4A8EacPCNsPSeM5Np2X4Mfi2iOs67DtNXJuy38GTIHhlGAz48nGk00DSGBqySQE1hGzBK6p4NQNRjogxFnNKJZTtRgaB4JLj8SVpzMtTerZ7c4IOWJbA6YF0wtsw1h8088E+msvXuVovS5k4kgME7vdlt1uy7ATx+dM0eDHQMwzWT+lXAwMDW3b0XY9TdtycnIFYz1tc0pMI1M0TMkxJE8II3GSzlQYJ+IUefLRRxyt10zjWBKCzFAqDjFExnEipUzbdqxWAr/KSbplU5gYg8itxhiL70gUd/Tg2O12tF1P10mSOsXE2XZXkoNc8WMMbhJoVdO2NE2c58vaxDgMbLdbNpsN4zQRY2IaRRrUGMvLn7nBiy9e55/7uX+Bay9d5+johG61xvkG1zSEScwLd5sN2+2GzfkZ3//+e5ydPefxe39CmIaZZG6Lgpmua1UtMzAn/Z49FHG73TCFxDgOhQweeOEF6a6lKMlj13es1yu8FyW0GMX3onM9jc/0XSKELZmIa7QdA1PeAhHnMuLfISIGslYCs7Vb3Btmpijdm5AjKas88yAwKetL8G1xpnjaNL04U5cOjc1gsiHHKKpptmHa7didb/iTR6c8++gpm7MR71t8Y/nBDz6iac/p1mt2UyRhaddJigH9Cf1xz8p5Xux6IWI38p8xGdKIGc6xw4aVt2KU2a35/kfv8eSj7/PRR2OBZqWyHgz9cEzXHbPur9H3V+RZ1Yj8r3O+JC3lXOz+eWkoErxzf9cWvk2mbUbGMXB+NpBT6aTlUshJmkyouAQXnr8/ye29995jGIa5cl0HxjXefUk8hf2Xag0TWuKN9X31+7X7UEOMvN/DnpaSlcvg8pOCkfoLXAmSGgwug+ga474MlvW8agJsfUwdvwYIGtxqAqCVe4X41Br98HGJzXoct2/fniEzevwaH3///v35fG/fvs21a9fmgBb2ZFi9JoeCuzq5Wo6h5j/o3xQqU+9Lg3JNdna7Hf/6v/6vc3Z2xje/+c2ZiP3lL395Dlr/z//z/wTg/v3787jrTsOhxG/ZqVAugnZqFL60XCOqoKTr7ObNmzPEarcTKVetyuvc1lXuW7duzeR3YO5yvPXWW/zBH/wBv/zLv8ytW7e4c+cOX/va13jrrbf43//3/51/89/8N/k7f+fvzInTkydPePDgAe+//z5f+tKX5m7E7du32e12M6xJXbbrtVkn7jq+J0+e8NFHH83zosnS3bt32e12fOMb3+Du3bu8/vrrF5IInePaK6K+X/UZoPdI3T2qg1vdp67jOjhXIYIQLoo2LPfxoxC26/3o9dJ7SjtRt27d4tGjR/O9p5/RLk69XmsIU71O9DyWCaF2kLz3s0JaDcur4Zx1Irh8/tXXs+5kLe+ny7blHP44tk8NhVIFEuZAvpTa1IUaClN73+K/IDc7V+b2lbo9bt1ehByxxx2D6NK7RuBJbdMK9rvACUC/kIvko29mUraSetXoeq6IGiNf+s6IEZ6VYFwqy3JsaxMmRbINM0Lc5gGTJ1ze4ZPFRSMSommC8BwbnmHiFptFitNkBzGRGMmTBRoyhTRrHeQVzghUK6o/B4WEiy3cESSBysWFuKpykoKQyMM4Y9XFi4ECoRLzMpMmDLHAzYSLYpviGWHF9RrjSmIh89N2RzRNN0NjUhbSfSyeEZk4dwHImWTMnu9SxqJQMoWKee+LEZ4lxsRu3LLbjRKQTxMpTJI0xIDBMo6jcFDChPfMJozVqhJokReyctu0IrtpxJlclHJy6WJRsP1CzA9BoFw5Z8ZxYrcbOT/fkrIkBXaG1hka3+C8o88QYiJECEEco3dbSbY2WzHZiykTQ6brevrVimsvfpYXX/4sL33mc5xcvUbfr3FFyliTuJQ8zopvSN+vMa7h6Oy5JDvPnrA5P0Nlbk2V3Du35x/UyXxNB5YEVxaEqqq5Qjj3ztF4XwJf6TjlLOpakjhRTAIzOUdinvYQL4IkFKbAnbJ4oaTSTUzkfcciFc+IKIloLGT6YqMnO7Rp/tmZgHON8ElyFk4JAlczWboduaiAxWkiFSf2MIW5O5JzkcnFYPxIStLmyNmC9di2p+nXuKal61fSEXIW5y3C6TKQBky0rNsG6x2xMRgCIQ7kPBQBhzTDvOJoCGRGA9ZEUuzIeYVpe7zri9RunuW49VlaMHPVc1Tv8aJCVtTEQsqF7J3m7oc+dvX/0jGsV8BPZvPeMwzDx15bVnEPBaLLvx36gqzfp1/ah76A60Bm+flDX6zL6t3yb8tjX3buy/Es9wUfV3haHlffU1e26/mrk4RDW50I1eTZQ8dcBnb132u8+XKO630cep8GrQqpqhO8Q3N7qONTn0/NJVBFodPT0/k9dbV9WVE+dL0uu+51YFxvOo/379/n9PR0dv8GeP78OS+//PKcjNUQQE2sQgi8/fbbc0KglfF/8A/+ATFGrl27NvMjTk9Pef/99+m6jhdffHFOaGpvB50PDYp1vfd9P0OlDgWk9fWulaVWqxUxxgscmzow1rmtt8u6bDq/uj4vq74f6q7V+9YxLo9Xj+/QZw8dazluPaf6nlqu00Nzdtn5HLqH62dZDfnUMei5Ke+l/kz9vvoero+h+62v03LNL++zn9T2qY6mwWGdGFjn9l+QUHD7JRGwkiQoBlkTBI14HA3GWLxrZqiHK+2LpETXrC7GhsZ52q7Ft02R0Cz10JRKcFu8BYzF+U4CEdsUfHsugbq4dzuTsCbTOgnUE5CjyJCGuFcZapgwNmIZsSlgU8Ckp+R0Thz/hBi3hLgjjgPkiDEjvulwrqFp+tL5yEybjwTOgbgIYwy4NdatMfkmjmtYc0IImWw8uASuBeNL4JWwLmKF044zXqRTYyROZ8S4Yxyf0TQdTdMxTCMpJyYSYZIgfRyKglOawAlEzLi+GJk5vOtFFtO2Eoga6FYr2q4E5ElhN4mUIzHJfkUlaR/guBCKJGhTqrNu5r041+B9pmlEkne72/L++x8QiskYUYzLcpwgRUz2DMOWYbdlHKSTYLTLU/YpHiESCHZF7YhpKgpgnmEUTwLX+HISkRBGUor0XUcIEzFFnj57xvsffsiffP/7s1yt4vnB0PUdbdty9erVkgxbpiJBen6+kZs9BiH9G3ERv/byTT7/+Z/l1df+37zwwgtce+GFMm+R3W5LTkLezzNczEtisT7mpc98jnEcuPrCdf7JP/7/8r3v/lPG4VxuILMnku8fdCW0LOt9GAa2u13RFHD0nX5pOvFDcJa+P6LrOlrfSEJuLU3TCFwwlUJCMcQ822wZpjPG9AysVNdt8drw3leJjHqVGAmCC59KoHNB1qZoxc5drTkBVd8Q6TuKhwcZWzp6ttw/NkMOAr+LGNIUiuu1SDo3vpF1jULyBM7VKK+laWj6juZozfr4hLZr6ftWullpwjtDSpHNdosJO0zYsVo7jIdd3mDMDmMmXFNY3MmQgri2591zwnTGdvqAcdtiXUPXX+P4+AW8fRHcCdY0ONMiMC9bzVmevYFyjnu/npmn5Mk5iIfQFPdFl1pYoPwX/wyct4+Ojmia5kJlUqupyy/PZTC5fL1W1zkUGC8r6CGEC0o9tbxpnWzoazUUQgO0unqo79GxaxW9DnaWAaqO51DwcfPmzRnKosFCXbmvOxZa4VQ36hoe89Zbb80chEPJUU3sree4Jh/XakJ37tyZ91NXpBUqpYFPDbXQ4y33rYH5o0ePePz4MQ8ePJiDnzfeeGPeh5LIb926daGzoMG4zvWDBw/m37/2ta9xenrKN7/5TYALAaD6IrzyyisXxlfPab32dMx19VmDymVAW//97/7dv8vf//t/n3/0j/7Rhb//7M/+LL/1W781e3HUa1mhX//ev/fv8ef+3J+buyq///u/z+/93u/xL//L/zL/7X/73/Krv/qr/MEf/AEpJf7tf/vf5ld+5Vf4X/6X/2V2R3/99ddn/ojC+3S9KsysXqenp6cXDAj1bzou5SB5L52qx48f8/bbb3Pnzp0LhP0lcVznQ0URlFB/yIRwmdzXAfZlwW4Ie5heva7ra6cQr0PXuh5DvU/9Xc0AX3vttXm/77zzDrB3PddzXCY/2rWoz7cm99fnVz9blsmFPgfu37/PF7/4xVnaeTlXtTT1oSRJO6dLrtJyPi8rePy4Eo5PtVepaLoZblRX3HTTDoZif/f/quO2/O6dxxePAW+SVNKZwDqycWTTkJKZdd4pdXw1PWucwVlEVyUnyOKorGlNzBGSQ6U0BXkl70tpQJVaou3BCBSJlET602pVWMy6TDaCAbdGPhYdxrZ4e4U0ZdIUSHlbxpCwZsSYgMkRMLgs5POMIWYhk2Nk6i0GmyJh3AqHxDQY22Jsh8kF9y9AeigSlADJF9hRCIy7kRgmpikybsUd2BiBbXR9T0gwRcsuemJyTKklIsTvpunFxK5pCBlyNsUATuVuSw5kC1nZ+7l6KosyFdhMqqqq4titsA+BrUmCIYZvwl8R4nfAWmispIkhyVqIOWKMALtiFMWn8/Pn9Gkl+3Wi8GUbT4iN8DyKspJzjtaY4j9SOhciMUSKU9n3npxP4YNMQUQBYO8tsjcTLI7wIXB2fl7xigRe56xDRX6yBe8brl57kZ/+mZ/hn/vn/wWOrlzBOHV7leu13ZzLuFMoqCsjDu+lg7Q+OsZYy8svf4ahPGS/990/JoYR74vRZOkA5Spwh1wkZkU+WV+XBExgYClFUkycHB1LJ9AJmX0YR1LO4qBdxA5y3kOtCsAOlcUFqf5rUmH0fxlScjhjcEaECpJJeBPxrkNVsbT1oZ/X6n/KqVTsLSZFrIlYRNFNTRgpZprjODFNotCWnMG0Ht+lIoDQYRuBVsUMTIGcd+zOnuGtYX1yzJHLeJtJw5YwjUzjlrPdjmHY8eF7j+lMYm3hxrVrGOvYbM9xvufo+CpWoUvFvI6cMUYSbevUlNDjW4NjIIxPyUlgWn1/XJ4Djoyo7cU5qdgniHsoqSR5gqC0FcRzD4fTBCWTZ27TT3Lz3nPlypULFff6S1WD2Zr8WFfXNRjRrcb6H8LH6zEPdRdUMUgDxmVQvMQk1/upExo9Vh3oHCJ5H9p07BpcaDJRB2H1+/Sc4aIkZx14KFa9Pt9DQUcNYdL3aMAWwh6XX0OqDknPLo9RB3mHqsV18Hfv3r0Zv1+TlnU+6oBI4SfHx8c8ePCAhw8f8tf/+l8H4F/71/41ttvtnIjoPP7sz/4s/+Sf/BN++7d/e+ZXHArE6rVXV8Pra1knqYeCvN1uxy/90i/x0z/90zx69Ijz83MAfv7nf55/5V/5V2Y4lpKVNbn6zne+w/vvv0/TNNy+fXv2u/iFX/gFfu/3fo/VasX/9D/9Tzx//py/+Bf/Il/84hd59dVXZ+Ut7z2vvvrqBdidJqQafH7nO9/htddem8ne9bXUa6HXSq+FzrVyKJbwKTXNq4+tc1nPUx3cLivz9dwvuxvL9VKvt+XaXV4P/b2GTR66bvX79Zmkc/M7v/M73L17lzt37vDaa6/N10zPQe85nWe9Z/Q1TUJ1f7UMs85XnZDXsCfdj3Kl6ueJfu7Qz8u5qAsBhxSplnN92c9/2tun2rM1dVVMCdKKfJrxSLOErCuJgwSaBQpTsMaN9zRWzLYco1T6cixJBWAdKVtiSS6Ea1GMy0CSCpNpTIQcMDmQs8h8xlzicAzYosyCEZdcIjYNM9Qp2YQxjYy/VP+802A671/PlpxsMfGyGDzO9pi0gWiwvnROEiUgzmCiJCRG7ANFGtIgUA8HpgE8OVliiIQ0gndYTWgKFTOX7MpEIVzLkJwEiSEIoXqaiCExTVvCdEbTSlDVdCtitoRkmLIhZSNzbMu4vKhPNU1DjkG8RWIsUprzJS3XsfL7WFRIY86YvK+cWmPn5EKTEXVIl/2Ij0Mm473dR6RTJiaEwE+xDImBcRw435yBEUWotu3xrikSrY5YkltJFlzheOyFBcSjYiLkRCq8idrkTgmnkogoLG+/9o2VqxGjyOXqGveumc30spUbSvge0tl4+eXPcOOnfoq2E5LvdrtlGnbEaWSzOZshZTqP4mdRpFedpe16To6v8sKLLzFNE+//4PuMgLF5hi6pJ4YSuHNOtF1bVbHlLq0x9zlnvCvJbYFEaXVcFKJUKlruP6PXzVqSEb+RBDO3SZKACtJjBFo4k+gpykYuzV1IU5SXMKZAiTIxB1IOIs1ayEIpyv0g4feeZJ5IpAghTkxxYkwTxotRom8TbdfRtivwhZQfS1KeIuPunNA12Dhg4g4ziQnhOOwYthvOnj1je37G9793yknXklY9Kcka344jWEfb9aVrKokFvkGgaqIQ5szeGNTZRM4jYcrEOBJjV9TpGjDCrUqZ0uEpeUSaswlyLlyxC/420t0xc1Zn9kIZFYT0J71du3ZtxqLrdqg7Uf+7DNr1MxoA1lVt3Wpy7iGYQg0XuSwwWSYUh6rZdRdgOY4fteqnAe0yUFlu3u9lYmvycF1N15+X87msStbnrfOoMJn6vTUM5FCQtwwoL9uWwaIG/8rh0OSxHleNU9cxHh8fc3p6OnMRAP7wD/+QP/fn/tzHvClee+01drsd7733Hv/H//F/cHp6+jFOTT3+5dq6LNg9dN673W4OvH/nd36HV199debx6Ji1kq6QJK1MK/H35s2bc8B6+/Zt/t1/99/lBz/4Ab//+79P0zS88sors8KVJgHLbpAeTxPUJ0+ecP/+/QtGdiGEC7CmumqunS8Ndq9fvz6PW2WJnzx5Mnc8fpgMbJ081+t6eW98UlBbd8t0vPWz4NC2TPaX1/HQM0cTC+VYXCtyxrdu3Zo7ZHoOdXJQF0Hq/emmCd4SSncoYdXz07mvk+tlgvTD5q9+Nn3Ss+jHmUQcPN6nerP3NK2HIg9r2ePmnZKlSxXVWUvrLM5mrA3yZWuyxNRpIscN0qvPWN+TrCfnjmgackkeDJnGFOUpC7YxYALGBAiRmAZCOMemDaRBVI9swjvIIQCWpj0G12JcRxGnxzVHGNOSaUhREoUpWTIeYyRQtSRMTsQ0Cq4ckTC1NJAiaZo4O/+IOH5InJ7SOOlO5Nzi7AnOHGH8dTAdyXRk25LwDNGTcOTsyIiZVrBrfLvCNR3WN2RrScYKPCioaVsuUCupVLo0Fez3OZ17RmJkmyJtE2m8w7cO61twJ5C8zAUK70Hcx50TMqqS2r0n5UybS+U1idTlZBO5d0WaVdzJwTCNUuFPseD1S2fKOo/1Ld1qTb9ayc3iXCHtF3flmPBty/GVK1x98QXhiYSJJx9a4jQSwoB2qXbDjvff/z7n52dcf/k66/WaK1eusl4fs+rX9F1bYlmVf5UEZs8LkaA2honJO4aSrDjvWR2dYJxnGEZ22x3DOBb+ip3XvRSDRb1sDt4SYI0YNZbEQsnebddy5co1bv8L/y9e/uxNVusr+0rgsGO3OWMad0LIjsU3pZSknbF71+9hw2q1xpjMyfGaVX+LDz76iKdPP+LZ0w8IU8BM4kViZq6FVLOnEGialhdfXLFerRnHkefPn8/nZK2l73varqXpOpqum4NSTRhTikxhh28sbe+4/pkr5LyWhNk6rHFzBw2jJGSdN+1kmnIZ05xc7MZB/DnCyBAm+a8YLPYddI2j9ZYwGUI0jIPF2RZjPQaRMiVJsoE1dF1TeN2Zk6tXaduB83zO0dEJ66Mr9EcnuKbBdy273Y5xHHj+5EPOvv+UP/7uH+FtUW0qRo/TODAOg3xxbbfsTq4wXDnhDx7+IaZt2OREMIlIEjPFnLE570UpjAgZyL1Qkm93Pj8nm0aU3548ex9nK9gkAh2LxTjPUaSTcazW12iaDnvSsRsSuyEJ5yUhRReFTBUVtJwzIfzkOxbABZKzftnV1TT9kj7UQai3OrivA4glFKEOvvU9wAXvi0NB4zLwqPdfJ0U1ORW4EKDUVcl6O9RBWSZPdXCrQZl+dvk5DVpqqEZtpHbZPNWwp/rY+hlNNmpoiQb/tbeGzkl97ep99P1e5lS3Bw8e8LWvfY07d+5w+/btCzChunqrY1V/C1Vc+uxnP8t/9B/9R3Pw9/DhwznxePToEb/zO78zq0f9l//lf8mjR4/4xje+wV/7a3+N27dvH1QKq2FxhzgsdfKniUG9dvRc7969y+3bty+Qtb3fKzwpafkLX/jCHDiqstV/8V/8F/z6r/86b7zxBl/5ylf4xje+wZtvvskbb7wxE7CVTK5JyDKI9d7Pycbx8TF/7a/9NY6Pjy9wWupOoXarHj16dMHPQteRrr/79+/Pc6FJXC3PqsltTUSuq/a6RrSCfohXU6/T+m8/7F7Sz9TrppaE/aSgWpNxXTt938/3z40bN+bkWhW1dJ/qu6Lnqspnfd/z9a9/nefPn/NLv/RL8/XW81Vyth5XE7plwqrndFlh5bLzqTcdT829Wj7zLiti/Li2T7XnrvV0xUQLrUoXOIkvqAZvIrbwF1zB6TsF7BtTgjMr5GUjspY4wRqDxRUhdmMKURozk65nI76cCQnIjhQbyC1kQzZJ3mMzxkpgGnMqKlAO2/QY04Bflw6EuBZjMqLSKVX8lK0UCws2mzxB3hHTjhi35PEpKW6IYQDTY5uG7DwZS8ye6I6wtmfM18jZE/Hk1JBxxOyFNOoaXIEI4RuSbYEGshcurNHqcwQKLCiHwnTNBZu/I4dzUhQJzWwaojGk3JBTh4k9NhhCKnFwCXIUxmStVpKVgyIqXa4QZDHCc4mlC2SsxfvirVFgTQqS2VdR7dxFaJuGpixwrZpDZhwHttsNTePpUot1ljCIk7G1huwMPjtSFpB4SolxEohO+6wjxkTfr2jbiZgCSvyX6r1C5qSbZijBf6J0Ncr6stJNabuOEBPDMDAVg8SPiw4U9nzWMyivFD6RNZBMnqv1yj1qux5rXekkCbF4HHbsdlvGUboWSUnwhWztjHQYRFhA9rjabmiL2eD66Ihh3PH8mS2VcTPPuzwo8v4+KcmK9wKV6vt+vtbee9pWZIWnELDDULpQZj4/chb42arBNStJ7rVjp0F0VRQ3aOLFnGio8ECMiZjlXMcgydQwBqaUicmSsySHKRtCnCAHwhiEO1N8HYgipzw/A4JA8IZJyP3DNDKOwnmhyAE3radbtRjnyRaMA+sNzarDeMh2z9GKORDyJEaeBJKNuNaAzwQiQ5pw2WKc3UtgZ0ko1ZdH6C9FrY3iqG3A5EhMGRels+SsJcYgXjg2kOQGI2fhOxlEBCHlRI4BZwechyklgtBJqEwrPrZmtaPxk96WAbW+dqgSrj8fqmwuK/D1F6/us37focrmEkJw2RjqTeFTcFHlZnkul1UP9bPaGdCgc3nsuoq5nL9D1cilE7IGijXOfrktg+Y60LwMOlLP1aFETz9fY/qXn9W5u379+iz9Wlexa+7Mck61wn98fMxf/It/cQ5ONcDWILcOTI+Pj/kX/8V/kZs3b3J0dHQBlnKokl2fz3J9HQpqNfFSfor3Ak3SpKIejwavdcJYr9Nr167x5//8n5+7Ajdv3uTWrVu88sorM5ehDi5/WMKqf6/9SeqEWpOUJdm77/sLPBsd55MnTz6W/C3vHz0vPXZNnF+uvUPzftnvn5QYLNd+/d+hokT9zKnXgc5JCGFWQFuOt/6Mrr+6y6Zz6r3nhRdeOCgSUT97lmP9pCRI761DUMvls++HzVO9z5/09qkSi+P1mvX6aA5KTdMU/fuMYcKkgAsTOW6Lq3TE4LHuiExPooECT7K2BVqk7iiwIUvAFSw8yJevtVa+SNNejUhIpR05e3LuiRwBga4XFSdMwjbn5DQxTQOeFdYe4/rrGCedgzztSHkkpwHrhOyZnSUbxziYouoTMHmLzVva8AFh+IBp9wOm4QMg4/1V2vXn8P3LBHuFlBum1BCzJ2VLiLKfca4cKgG9o2t6+vUK74r6TMwlYCjdGZuAEUPAmoghgpkglagi7khhR5g2hDSS8AR7jSk7QrTk6EWVKabiq5HwVrgJbSMOykrwnYNQ5VRoYJQtiUDIIsMqxOKepm1mgmYKYhqnUBnvPW3T0LYtfdfSda34IqAk4MD5+XM++vBD+k68OlJKjJuJaRDpUmvAuEKILdXYECK73TgbtV25cpWmHfFNIR07V5LDAmPzTenuGAjMBFjhBZgCNWpYrY548vQpT58+ZRhGQohVQlFhoXIujIsCDSrmZIm077CVAJ9i0Od9S4yJYScV8GkaGbZbNufnDMOWOA2FWLxn2VpTyyYnQphouo6rzrPuVpxcuco4jnxghb9gjcVbrYQ3M7F+HEfhbyDXs2kajo6O5iSm6zqcc4QY2Ww37IYdbXHWbtu2JAOBx99/zNVrR7Srl2haOe+Ug7hilwxEETe2eIHMYkR2r/C2222ZQmA3DgXykzjbDhjXYnwnXANjhQ80nZFiYNrtcMbRd06SBYS7EJMkartdZJoi59sNU5DkYtptxWvDgmkMrrU0fUMCzrYbQpxIJnHlpSsz/C1NhfNydgaTI40GPxl8Shg6vGvIDWRvsK1j1feELByGHOPM75ExZoF4GZhTu5JwxBQJCLfFWYP3lmAjxjRMU8LZBm97Gt9ijSOkwDgGht1ICg3WTYzRyvPLeIxr5jU688jsnu/i/E8+sYCPw0zqgFYreMut/qLUALYOpvXLNoS9Z4NKrmqQe2g/utWV28v4ESEE7t+/Pwe+d+7cmauNy3PTc6jhUfWxFP7z6quvfoyAvoSM1MFt/ZoGMbUDuVbDNQCvq7zLede5rq+BBkR1QHYoIKzVZuq51P2cnp7Ole9l4KLV7ps3b/L666/zrW99i4cPH868gCdPnlzwNKmvi5rg3bt3jzfeeGOuEGsQr4GvSnJqFfhrX/vanFBo8nHz5s0Z5rOsFNfzrklaCOECmV6v09tvvz13RhSa9NWvfnUe/5tvvjmvVYXVqHFd3++N4lSi9j/8D/9DvvWtb81JgLpR1+Zzh+RTdZ6WpGW9/g8ePJg7DromtfOh3Y979+7Na+3BgwfcuHGD27dvz7CqR48ezapUSjKv15P+V4sg3L9/f5Yw1q0ew6Hk81C38JO2ZdBfiyvo+ljO1RJuqEnV6ekpu92OL37xi9y6devCnNY8DHVPV8K2brUc77Vr17h9+/aFe9T7iyTv5TgOJfI6Z3VyWD9XlsnEoeTiUHGl7vbUz+MfZ7cCPmViceVETLA0YMu2VPPjCOF5kTNNGNeSm2Nycwy2IdkOmw0OSgVetkRg/kqMmRhhF4QUGqNAi4RPoBKKCBxiVuqRvYj2i4WUidmww5HSEer2nGlIqSGGjAkDOZ2R4pYcJ3I2xNwQyGQzkUlY67FsMLxP2j4iT88Ypg0hZUJ2pPYW2XYEd5VtPiYPa0IqSVKp0Mp4BV+96sTQzBXTPVOM71KYGIJwR2JMRd+/hAUmY4ii/FQ8FbJNQj1IMGwC4xAZdokxIPKo/inWN1jX0HZrvG3orKNtPY0XEilZiLTTJAnaXoGmPjYzjMjlTHaGjcv0xuK7jq5fMY6jKD45K6qXlR6/80X2tW1ForWY0U0hMJ495/vvfZ/v/+AHDNMkZNUUhPRe3MITmWycdDAyeG8FhtV2fO6nfoqrV6/yMzd/WirrBeJkyLIfynqZtIJuiZP4XYRpFDWkDH3fsVqtWfUrHj9+j8ePHzNNY7XW9HxK1b0YQeo61HW7X4dFLhVx+x7HiQ8/eJ+uW9M2nSAAgziX73Y7dltJLNQhPalkr7VzxB4mj3OWcdgxDQOhm2ico9GAsVwj9acYhoGmEVJ70zRzopOTGEDGlIrErogcNI2n96v5ftTkxHsv6wJD13VY6xinIF1Kh3T1SqdLZVYpHb6M/N0YgylKXSllxnGcvResdXS+YbU+EbUn2xKTJSWBqJ0NA7vzDefPJmLYEqdnqNnlqj8qggAOnMd5R9NkMB5jGmzhIqz6jqOTK3RHR0WS1rI+PiZE4W94L125lCWxyymxvnpFyNvTwLDbyFqJofCEWrqjI5q2w3c9PquxX57v95wlaRPSdJ45OUmJ3UWD14IkzQOEZImpKQpxrSTuTYezjhCLFwsTYZTnnjiPF4J4CsxqWmVJ1rSKFP9soFBwUS6yrpovq9RLeINuGrzoe7V6WhMm6/fV1ddD3YjLOhS66XhqnPplyUr9xXwZhEkhFd77C4RR/WLXZGPpRQF7UmjtgVCft56nkrjrSmWdRGgioeZmIYTZ/KzmfNSJ3rKKfwj+VKvmLK/dMnDRYF+DJa38KzFdg3oNgI+Pj3n99dcJIfDuu+/OFfza7FA7Nffu3ZuJyEo+1g7O8fHxBRjRoc6T/lsHXXX1XK9T3UnQdVKrZikERs/n9PR0XpMKP3r48OFs7Pev/qv/6oVugAazy6RvuZ71bzV3Qq//brebx6jGiQpXquekrp7rWtdEQl+rOzN1Yqk/q8eKJh01PK8edw1rWt73h7qRhzpvy0Rbx7LsYCjRXOf17OyMx48ff8xxXE0D9X3693rfyzHX60Hvoddee22+d9X7ZJkM1nNR3/P1eV22aRdIFcW0sPJJ81qPU19bFgZ+3AmFbp8OCtUYuqZScCGTYyLnAHEQqI6VYA7XgT8hmwax64qYlGYzJ/l8FG2mbEURKSTGKRGSaN1T4CEKs3HOCu7YFtFJI0G3EJ0BDClJxS6EgrLyXojO2ZJCFr+JIB2VnAIY0ckXsFDAmIj1EyY+w4QPSNMHpPE5cUoE0xPMimRfJLMi5hNC8AJ/insIlyuqUt57HKKAJQGbwzUCS8lJqtEpyr8xSkdG4RSYEqoaUPZstkLUzAk2m8QwJHbbzBiKg4efaDpD01k8Wr03e9J9gVfEGOfqfS5eAhlV+dE4Sa+VwWTDGKBrTcGDN/uuVUXg1mDbFqiV9/I+qYyn0iEZGYZBrOSNJFiZPZlaXISTHLcYojWto1+tOTo65jMvf4arV69y9do1hoKFV5y7EJjF2C0HlRQwxEmqyqlI4xoDTSOytMZYdsPA06dPSzK7Tyr2nIGMcgd0LTLPlAZ1e06BwHQCz58/59pmw1i6AarcJOZ8gRAmMUjzrhxbRAKkA5TnMccQioJWnCV0rbXCW0h7fL2ao3kvzuNZsfdJjysQpBADJkjS3pQOhqpC6TWIxVlb+TQhJIzLonDmTJEe3hvyAXvfBJPLupPf1f9GKCiFq+Q8XbcSSKBpCFGOsZsiYcjsNontJjINE8N2B8XjZlwJMX61WuFXDqybnbDBYZJAtLpeZGVt48mFwO+txzhxP3fFd0eTU1k/XVFX67CNI4aJGEac9ULS9w3GqWmlmSFr1ora3QzRKtcykyWRSYkYrEC5UsLIxBGnxDRlpphIkieRs0BCk/OEbEpHzBNmBr0cuwCwKGoRAjGVk5mfr/nPwMdCtzpxWMI6llAGfa0O6pZb/YVa8xvqL+5P+rL+Ub9QNTi4DOd8KGFZHrtOinSrVbJ0/8sg4NA+axJrHQTrWOt96FbPrQas6vlQJxH6uRqqVFc99XhLNSf991ASp90EDW7rxEn3v1QYUvy5JgDXimHdkydPuHXrFt77uTOhc6lJhh5TMe0aQB+CpyyvW3385XnUCUlteFf7adTdMk3+9DVNBOv74NGjRxwdHfG5z31uDmjr66/J0TKhra+/nv9yW3byakJ1fQ51BV3Hq0G4rg/9T5O22iyuTpj0vJdwvMtgdofGfOjvP6yivuwELNfPoedBfU/pe2pYWP2++t96q5NN5Z7UxRFN1g99brm/ZSKwTKDq1/T61MIAh7YfZb0fGsOPY/tUiYUlYQkFvGSZooPck22PaY+RHkQi4kjRkTeZnCdSDsQ8FUde2Zfgk6VqHkIowbaQICUAKXZ0RiVqwWXwMeFSwtkJTMS4gFHJxtwWt+zIMEUiCRMTzjW42JDTQI6RMI6kCCn74oib6botvY94M2GfPiJNHxGH7xPsEdFcZWhvMoSW3dSweyama2HakYwE8K5RpSQ3L47jI6WgZ/FiGKTdkFNJLCYJOqZJJTaLkVuBozSNcBm6o16qqyGx3ZyLA++YiNEQbYsrCj5N2yFuwy2rrsUX7stuM3EWBqZQOUpXtfacDal6zZJwTpS3jPWk7BgnyK3HNwKH6rqexnuCF58QZyh+GIambcXNul/R9Uf06yNiFDgTtuEGjuMr1xiGsUBadjx95tmYM8YxkpIh54S1Dc45XnrpOp/97Gf5/E/d5IUXXsA5xzSNmCxJTOPaOamQ80nszrdzQCuKYwKFkrltuHr1hKbt+PDJR3z/++/xve99j2maAE0s5NrtE4z9Vv9uVXJW/lLgUZlh3PG97/3TuSvy4osvSXclRtQZPk+GaZrYbjfi3ZEzzrrZ06XvO4FJJUkwwjSx6jrWqxVH6zUxiBt3CBPTNDEMA8ZACHY2/5umaSazp5hm3sU4innj8+fP52RCycW6fqXD5pimxPnZgN1RzCT9nEimqpuorS5J3uSe9U7cyo9WLVk7BFk+FzaSyEezI4TEMEy8/8EzPvzoKc+ePS/Gdhlr25IIJz568h5t23J0dMzq6gm+a8uaX7FetYQwlOs9MeUMYaJzxYk9jLPZYZ0a5qJalXIucD8x4gsxMI678rwynO12mGHEmV1JJiy+8QJrcnvlu1XfzWtITAOFE5VilK7VMDBsJ54+fyYQsRF880yMKdfHdPY63h3h2pVAxOrumCmFnUxZ87nM+ceTiD+LtKKustZfjHV7v66G1gHeoYqxbgr/qeFRdcB1KCD4pABl+WWu/9Y/L6FJy6qfjudQsKnnWHtgKEyldnU+FIAtgwwdy3KsdQBVB/AafOh/169f5/XXX78wbv2MBvL1udYV9DpAXV6TOgjS37/+9a/zrW99i69//eszmfjVV1/l1VdfneFht27d4v79++x2u1lVqa40f/Ob3+TevXu8/vrr87H6fm9O9/Dhw49Vm2/cuMGNGze4devWnJQ8ePCAmzdvzhCd+houuxh1QKp/1znRa/fw4UMePXo0Q7xOT0959OgRb7zxxlwFf+edd+Yk58aNGzNx/d69e7z22mtzd+Zv/a2/xcsvv8yrr746e1L85m/+Jjdv3uQ3f/M356C+lv/V4F87DfUaXyoDHR8fzzAf3bTTUL9H512Ts29961t84Qtf4N69e7z55pucnp7yR3/0R7O0rjp937x58wLkbNnNuuy+O3SfHupmHKqw1x2ut99+e5b3vXHjBq+88gqPHz+eeSt18roUeVh2Vz5NFX/ZuYCL95M6hS9hYXp+hzoN9Rg0SdNjvP/++7zzzjs8ePCAe/fuXXi+LrcfVgRZFnF+nN2LT7XnkCxTlC+6nA1TVBUS5qppSuqoG0hpRJDiZv6CTQW+ITKqqXAnEhqcOUp3okhbiueFEloz1uYSvhhyMoQRpjAQIyQGgSMZFWo1GDIxTpgC/YGMzRbrDN6CdyPOTPiwxcRIzoFhGojBMYYXGPOakDvGaBhjZAwwTlE4EUXOVIiqDuG0C/RnrhjHyDTPoJIxkxhxVaRda4W467ybCfHOmhIoBnJMhCkyTiNTCCKpa8TIQ4nU0kmQzgjF1GwKSeZmrujnMnvMBFtTjAld8S3wBuncmIRB5t85W8wQzSznOgek5fPeNzRdx3p9xNHxFU6uvsB6fcRqfSSwq5g4miaOjq8wDDumEJimwG635cmzFzg/P+OjD37AdnPO2bOn+MbRdS0/9bnP8+KLL3LlyhXxi8iZWNSodA1p9yWXTtc0TVLBh9lZW+VTFaZlrOGD73/A8+dnJYil+APsQ7JlUvGx1xSGUirY9XWeplGcoEOY5VTnz5Q1GksXYwpikudcxEXxA5mmgG/ifH4g3g9OlYbM/hp478i5Kd4aXEgWdEzGmhk+tXTq1vs3JoVMSXekSc3c7di7UksCZJ0jqb07zGurnCLGZmLp3tkC05H7XeGOab6/pWMHXb/mhRd7jk5eJmFK4WGaOSq+PStkAkeiISaHNKzEo8aWTqZIAUQoSbIxBpvVdwdm12qjyVFR9ioDjdbLw7HtULUlDeZTFqK1ykvLM4ciriaQTmOsdGxKI8u6ojxl1BLPMhytyVmuuywNi/M91ncY3zK7YS46Y5IMZYyS2uf536+/DLPZ6E96W0I56mp4HdzBxxOB+udDX4DLZODQsT/p9UMBzSedw2X7WHZklsGd/ldX2mu4jO7nsgChTsqWAfyhYy7nqA6MgY8FI7VvyPL9y58PVaD1PXWFVivHtTGfVsaXx9Fq+cOHDy8kNwrxevvtt/nWt77FvXv3Lsih1j4WdfCo81uvux9W4T10ver1o1h8TWLqrtFv//Zvz7AyhWy9+uqrF5IkreKrIZt2Wa5du8a/8W/8G3jvZ4UifV2D3iX5V6/xkydP+Na3vsXNmzdnY8P62uj7l9dLE14NfL0XeJl2szQR0uv38OHDmWOgc6H7WAb79X+H7tcfljgsk1V9b/35ZcdBCer1db5x48bH+Ax6nBoq+aN0OD9p+6RuxrIYUJ9rfV6f9Oypx6f3RH2e/yzbJ83xj2P7VInFFD05NMQSnIRQMMWxkCAL4VmJ1loflcBZqoDZCNszRVVjKeImxfcAK4ZaplQDG+9F751MTiMi+wlExzTC+dnE2WYnqkE2Y72n6XrathdYTRB8cwqqOuRYtS1ta+jaTGufYeIz2D4uPg6ZHSeM8YhtvM5u1zAFwczHVAIvcgkiCnwHR4ri8+Gso/UtvvGkWHD/IYhePxQuhVSgFbfvvCtuwZbVqgMMIQr8JgPjMBJCYNwNjGESKBNicGedxTtJZJqmnSFX5OJrkWPZT1FuAupKvAaIzotKkHeO1kHOEzlNgok34q9gncM4kTVVIzpnLdkJtKTtOo5PTrhy5RpXr77AS9c/w/romNX6qEBNpIMQQpiTKvWFePb8GWfn53zv9I958tGHfN99j/W6Z71e8XM/93OsVytWqxW73ZYwTcQQ5+Rivw5jgUIlxmEoZyq+BXvCsqVtRTY3hMjjx3/C02dPmUKYlY7MzKuQ7dLkQl+v/1ziwJzTnFQoHCblVMeJAktLiSlGxlE6eur94AuvwU/ygMlJEiZNIq3CX4waUDbFi0Kka73zM8dCz9/aXCVh+xPUn0MUuGIq5GhjDE2IYmg4Cf9CVb+apsU3Evjm8jzQjptBE4vSQSqlBenUCVQopUSIWdZ9K/4PWMf65BovXL9K053gmjVTCDw/O+f8+VOG3YbN5rk4im/PAUdKlhgS0SZCGFn1GWsEnpkRs03nhcei3UOB/ZXLZfeqc845SAIhcjbJum/cDFPU65CzQJq0uJHJgmBLWVSicpLnmZGkG2tw3hTfDlN4MpGcLOQB0sRu8Fjb0qyuYLsjaFbzvVqu0sUlZpYcn/179NLKM+Ynvx2S8VwGqJcFxPrvJ1Uul+/Xvx/qQizfuwxQDh273mddbVQOQP2lr7Cfvt+7Sdfj0CqzBm7LAGSZaMBFqIt2ImrpV31PHYDU5NNauUn3uzyXugux7ATpudaBUQ3RqZOeek4eP37MD37wg49dpzq4132rVOp3vvMdbt++zSuvvDJzE+7evcvf+lt/i9/7vd/j3//3/31+4Rd+gVdeeYU7d+7MwaOe16Hgra6e67EPBbjLpGJJ0teuymuvvTaTxwG+853v8B//x/8x/9l/9p/xla98ha997Wvcvn2bV1999QJ2X4/77rvv8v7773P79u25g3L79u25Gq0JiqoU1XNer1etyH/961/n9ddf/1hVfLmG62uuSYRyVbz3M/H6nXfe4atf/epsyHd2dsY777zDF7/4RYDZi0QTLd2XjlPnWeFgy3HX867r7BDnpe4e1TCnZTep7/vZHby+lzQpq6GS9X1RJ0CaBH/aQL2+f5ewp/qe0mMsO42f9Fyr56BOuLQro8nnciz68/JYus9P2n5cycWnSiw+errBd6kQbkvVOKtHQJwVfOatBF5ZSQNQSKry2lwh9xIUOe9pvccWlRtb5CqHUQLRcdwxjlIFHreiZkQG37a0qxWuFcOoRGaaBshG5G6doessrZ/wZkfDn+DjgN0EAp6cLSG/zDBZpmB4vsuMEwxTIsZBsMoxkrWWfaHS34gfQreag3OMuB1bIxXFWAiiKalDtZzfqu9wBsgjKW4Zp8A0OKxraLo1CcGxbzZyk02jqBaJOy/zfoTw2bBa9zPUP04lcA0J5yX5WB+vpGqac/F7cOKbkbXSKlXrMWTBeudGOCwGvNeK+z5AgjRDkIxpBIK1Publz97ghRev03Y9MSbOzs6EJ6AmdCHOkCANfk9OrnBy5SovX/8Mm/NzPvrwfVIUMYBV3wip9/lTtufn0uUYBQIUC0RIk1kxK9MuRcG0F/hL4z3WGNqmYdju2O0GtpsNjXO88MI1ht1O9leSZIVW7dezLmtzMbHQP1b4Gucbrly7xsnVqxyfnMxEeWCGGxnjyNkQQmQMgZwibeNJORGTmA4mKB046VCs1iu2ux0ZODs/Y7c5RwjS4uAdgxgo9n1fyNjCMYIS/CuvZq6S70PWOdn0bh+cKo4/GXJJkF25/8MU5TyKEtbew4J5x/sExoqBogHb9GQsvpCGksmcnT9hChO74SP6/oyuP6HtT7C+wTUdL1y/IWs2D4Rpx253hhX/eJJpaJuWtms5f/4em+0zfvDBdwnbAabANpfkvW3wjdyvRh++RqCAc4JUVLqsFcNN32ScbbF2xTimmZskVDIjXUWEK0S5TsptKmAx6aCNkWE3MWxHnn64YRwS263BWFGsW199kbZf47srYOSeNFXHQX1V9p3GPZjxsr5ESj8Zot5yW5JElwnDIXhNLUGqAXEdNCzJ2fDxL/llgF5jw5fdgh+FQ1GPVcdeJ0110Hp6esq77747j1EVflQNSFV5ahz2cryHquZahe/7fg7otGp/KGip52F5HWosuP6tTkRAEpjHjx/z4MGDC7CMOhCrz73uRvR9zy/+4i/y0z/90xccijWYfP311+fA7vHjxzx69Ij/+r/+r2e5VZWm9d7zK7/yK/xb/9a/dUEpSQneDx48+FhypiRlVYKqk6M6+VgS4+s50I6CzsVrr71GCGFeO2dnZ/ylv/SXPrZefvVXf/VCgBpC4J133pkVn3Q/ek00oQL4whe+MHcP9PxrXtKTJ0/4nd/5Hf7G3/gbMxzpP/gP/gPu3LlzwaOkXg+qpHXjxg0ePHjA2dnZTEC/ffs23/jGN3j06BGvv/76TETWjoS6gmt3ou/7+bP1uOr1Wyc4es21E1MLK9T3nX7+soJA3flYJiaPHj2a4WN1saKe4+X9pR0xVfWqjxtCmDs5es9d1uWqt0PvqZ8rNQ9peU6XbTpm9XzRZ6HCu+pnWD03y+3Q3C1/X3Z3/jS3T/XNs90N+AJ7UhKwmjEJSTSJA3Pp/89fjDWhMGe0dO5KQDKTZZnfJF/g5ecpCHl1GMZ9YjEMGCRg8NYUmIbbExqjVIe9yXgLjcv0bsQxYvMW4igQlGiI2TLRMYyOKRg2w8QUElMQqI3wDkqFsCQU4lrt8E2La0RC1nkJGDXhoTpnmSf5XeFEzjmcgRxN4ZyUuSWSg3RPYkyM4yBV00IuttYKbKoEqE0jKjkS5+6r0aaY+gk0Sx2xkWTB7aEy87Us8KlcrqUYwQmUpG9sgZuAMnFNXSE14nHRr9es1kd0fS+JZiyKTEFcvYdhkCQ0pdkIrmkaOreS5Khb07YdTdMwDVtSHJnGbVFT2rLbboWXMcqakERgkrWX4twQoMx5yqlI+ha1pfLfNAxM44A1hr7ruHJ8zJmhdA4yovBT8Ssq5Z09/G0PmtLasXaFrLXi/Nx1tG03B50UV22FMe1J78zdPeni7Ts8+0RG5HxFKhhiiIVDYUhZ5rjmiTSNB5r5OAKPkqQxxqigpfn9M6yq8egSjsXXwzipwOtYcpkjCrnbqsxpznvYV0lEKdx3VXMzVjy0YxJyckqJMWTGIXB+viUEwzgE/G6Hbzra9TF2fYw1Hd6KU3vXtTiizLdb0XUSsNi8w1nD+eYZxkgCQEqkkBnTRM4dPgtkUGBvBf6kaYAR1aZs5Wp4B40TVTJLKpC+rB6h8lFMcb+W9bAvJOwljqcQ2G0ndtuJs7NEmGAMDV23wjVr2tUJTdtjfYP4/FySMBiF3FWJ7AUyxf7v9kCn7ce9LQPj+ncNfGooz6EOw7KqX2+HXqsDhHqfy7Hoa5fBLepxLM+hHtey4nhIFaoOejUoXVZeL9uWUJPl3Pyw4KT+7KHrsQzElsdejr0Olj4pqFGoUl0pr+eslnKtCeXb7fZCEgjMUr+alGhXRZMF/feTCLh1clEHlsv5qNdj/fmlyk/NYzk6OvoYMRouypXqVpPMa0iSEp81wNNAebntdrs5qQBmNbBlQH6o47WsmtdBcx381+/TOa25CTVPpZ47uLjODiXJh+7nult52TpcfqZeB3r+h/Zx6B77YQH5suihn/mk7dCx69c+TSKhW722dUyH1vgnPTd/2Hh/EtunOtLTJ09oSpAkFb59EJuL1GStEqNB2YxdN6ZwB1yRcPRF+36vpDONY1GxCfMX8ziIelIMUTwZHPRHR3OXQ79nU4xYZ+gaR7+CxkQ68xybzjHpHJsCOTsCx5xNJ2ynlrNtZgqRaZwE/pMhaiJkwblmhgyptKNzEty1fUfTtlIJ9b4EXlZIsikRQwCMwFK87KdtmwITMeQkUpTgcU2Lbw1YyzhNfPTknN0wEKZJIBXO4duGdd/Ttg3Hx2shkBpTVIMim/OzmbOxXq3oOk/Xd3OQt91uZ7y8b3yZv2b2UjAGSFkctSf5j5zpG8faH5GmTLSWGCbSrKBUKrdNw/rkhM9+7vP0qzUZw5OPnkiHRRWJQuD8/FygYCnNHBKD4ej4mG614vj4BOcbrl65SggrpnHgT753xvnZhudPn7B5/owQBJYWYiAWXw+F4ljtgqgTdgZjvbjEA3ESv4KcxQ/hs9dfZLx6hXGc+ODDDznfnPP+Bx8wFhhTocbug7ySWH6M0M0+cAaw1tO1a/r+iH59TIyZzIhxI9iRXK6p8D066bgUHwQ1i9RKett2uMYLcVqdxTW5M/LAUMK7Km49ffqUpmno+47j42NJ3rpO1qm1jOM4J7pt2+K9p+vky7Xt2kL4NqU7ludupPKGclnjbdOUbkALSGJ8dn4mpPPCazHGlmxLoEkpC+zqfLObzReHEcYRcT8/P8PkwDBsxCPEt3T9kcCvrCTzXbemWa3E4+MKJAs4xwuf+VleMnDjxk8TxnOmccOTpx9wfv6M73/wmKax+MZxfHJC261Yra9gnRfhASvwsmQM4pFjiiKbw0RD51ohgTVphlQZhX5p9ydnzjc7dpuBs7Mt55vEMGU2myx8kOQ4Pvoc/fGaF09eENfztpXnmBqJWmY53xrqZIzBlNeM0SWwbztpYkv995/w9sEHH/Dhhx/O1W4NqhV3XwcjdaBTt/i1ar38kl4GUiGEuapXf0ZJpRrwLYNz3adulwUQy8BB1YqW2HyV2/zCF74wBwZaGVWt+5rTsIQk1cfQbsAyGdO5qvXxdT/L99Qk3jo50IC+rtDr8XTTIPyLX/zihcBQP1O7++q4tSJdk5X1vFQdanm+b7/9Nqenp/zNv/k357/dvXt3Pne9nt/85jcBZlL2brfjzp07PH78mHfffXcehwbl9bwp1Ojhw4f82q/9Gk+ePOFv/+2/zV/6S3+Ju3fvzmvn9PR0TmSWSZ1uStT+u3/3784k5zt37sxyoDrXDx8+5PT0lC9/+cvz52vozVtvvcVbb73FvXv3Zmhc3fVZztONGzf46le/yr179/hP/pP/hPfee49XXnllPsdDSVVN3lfZ4/v3789/++IXv8irr77KX/2rf3Umlt++fZsQAt/4xjdm8rZCwZRvsUx8PumeunXr1pwI1qpauqmTfJ2UHQrK6/tCndAPdSpqOdbLxqcBut6jdXFD7+0HDx7M77t79+4nQrYOdQEOvXbZ75rI6O+6fu7fv8+9e/cu8EiWHZbl81D38UnXpN70eBcQRn+K26cjb09jUTqpNzNXKqEYQ5dtJomWaq8tVVGQRGSaJkwIpXIo+zIzXrvwNFIiz/KtTqQ2i2qSnSEuBmfBmwGbB2ze4qYtloRxlGBhzXYS87jt6NlOliFGgTekXII4ISd7I1AfY90MGWpKQGZLl8A6gVZo50HPlwL3yMaAEme1I1MSKDlTTS6sBN+pJE9JiLzDMGDINN5ztF7jm5a27+aKtXOuBDW5yI861sYXkqk4WMec2e52hTOQCVGw5TFBHALGBKzVYLYKnpM4p8u8GlatZd1ZnEmkIKaDIYxzoGmN5fjKVU6uXuXo5ISUxXhvs9kwTRPTOJXuRSy8g6lAlYpCksp1JuFNNE1Lv1pJF8Y5fNNhnVTRDXk20LNGyMOWpuDmpfqtC9QWnHvTNHIdjZnXnV4v7yzWNLRezOVWfQfArgTowzTNSZFW4udreEFdyMzHw4KvPCGsVedx6GJPCgFyYho8IUylC2YwJTkwdp+8OoWslaQ1F9jTNImiVghBOhhol0LMCEMIAomLsSQReb73tFOlHRE1iiPvmKxjHMc54U8lUZVErCQLxs5doXEYYITdbjsbxW13m6q4UBIUANuA70nZSRV/txP52xDYbc5lXYSBFAdynEA+RQwjIY3gPck1pKYnp8wUA3azYfPkQ+FV9Wte+sxN2lZ8cwwrsC3dcYtprpHsEdZGWduNK3NgiUm6Ks6Iq3jOlr0ak9wzIQv/hZzlHh1HEVMYJ5HKjhlEBJthCMQA07QGI4WAtm/BSgLT9yd439J0Pa48z/aw0T0JXvj6SgbZd88upLRLPNvcFoUwDfykt77vOT8//1gFUCuzutVV8bo6Wf8NLpK4gQvVykNfqsvAavlle6iqd6jDcgivrIFRHWzUgawe+5C3xRKe8aNsy/fW1d66crsMPPS9GmQtXbvr+arHvgzwltsyGVkmHkoCXv69Dph1e+WVV2ZTtToB0kQFJBBUHL2eZ72earJ0PXZNLJXrUMup/uIv/iLeC2laA3rtAABzklBfQ+UOaLBc+zfUkqMKedvtdrOvQj0P9dzfvn17VgzTzysxulYt0qT89PSUX/7lX8Z7z82bNy90Ruo1W0MK6wBdjQzrZPzWrVv84R/+If/r//q/8pf/8l/m9u3bfOELX5jVzeqkZVktr9dCDQ+sVZF0HusgWq/vW2+9NauV1bCvZeGhXkOa1Or9r5wRhX0dumf0tXoMumbqREnfU4sDfNoK/zI51H/rbmVt6ld/DvZJvSbmdYJ96NyWz8kfttXzUL/249g+1czFEDBmnGESCg2agf31Vv3uihqPVNiVxByL1wAzvMQIeAeQil3KkUQqQaQEQ61v8a4p5NSMJdK3ltZlWjNhwnPM9AFhei5fys0xyV0l2mPOpxW7yfD8fGQMkZACpCSQKmMwzmGsdEE0YZgJzW0rMqAlYBTCs5sr2iEIsTMVCJbg+ktiMZ+3YRpHsKJ2oy65U0iMowTgw7grULM4u1ZfOTmh6Tra1WpfKY97Iqkr0Cjf2DnwHacC9ZpGvVJAMSFLRsabE4axVPiZ/3VaOPXQNZZ151h1DpdG4iQQolD2n7OoDZ1cvcrJlausj46YpkSYRs7PzxnHkXEYLyRUIYyEMEmiirpmW3KMbLc72q4jxsDxlSuzjK5zzQUsO8aQrSSDviRwMUXCtCeGW2tpvJ/NCQ2SWIQitarqY2IqJ3yE3WqFsZbzzYbdMHC+2TCNI9vdjqmQsOclvgCrCJyocG+cF3PA4jlhjHS8SGLoR06iAFaUtrQblmLGeCMJZIGx2fKfJqYpxRkSGEIQXg95dj43xohPCMxE7L0qlkW7Fiq8oAlZmOJ876qLtpTCZb5DIQP3TTsTyIdhJ/yOstZCmBjHQpy3oh6XMwwhg++hCRK8p4wJOzGkGwc2Z8+FY9I5pnFHjCNd54VDESZS3pGCIbuOFCciDjPIs2h79hG2bXHdil1uWK2vsmqPaNuGxq/oVlfwXaDpXoA0SGcyDmQT5RmjXpxODC5TtpSKxCwDbAg4u7+3tuc7ht3A2fOBEBLjmMimA+NI2WFNh7Nr1kcv0XQrVidX8K3HNa64whdBCuWyXICUCrdmNk2sn6kVrHSG9s2/U7peZZ9/BuTtvu95+vQpsA9ANDBbVuv0Z90OvVbzAupOQR101EnKErpzKDhYJjL1l2tNfK73uwx46kRh2SE4lIwcqmrWrx9KeOqtnhsNQk9PT2fCbz3+OrivJUvrY9bV3hoKdFkwVXdJ6qRF96tKQstrXSdp9fV65ZVX5nlWNSSFCmlwqlyVeh1poHb9+nVu3779sTWhYwlhbwYIzMZor7/+Ou++++4Mw9L96PgUorSEzugYdS712LpOnjx5Mqs/hRAuSKHq+WjAqAmTwsbqbtAhaJVe6y9/+cvcunXrgpyxXsMaJrbsvIQQZo6Eyt2+//773Llzh9/93d8F4O/9vb/H48eP+a3f+i2ACwnKcn3qPNXJmHYdFWqmieAhsQPt3Hz+85/nlVdemcercDj9fF1MqPkkKo+ra+X69euztO5ynS/v7ToZryFcurY1sfhhSXa9/2VRpC426LXR/WvSe6jwoddOk9r62Xbo2J9mu6zL8f+IxCKEccaBGwS2I+7Sbg7UNPCTiryaigkmO6RIDhK8aDdDoEVuDsqcVQx7g7EOaxx95/HO0jQG5xLWBAgfEMZnDGePaTI0HoyJGNNBsyLa20yp5XxsGHeC4R7CKOZpJuMbQ2sanBUIk/MO59sSYLY472gbT9uK+3HjhKRqnC1wL4qTsMyIGG45sJ7kChSquIfX5+hcRwiBcZzYDNtSUZ7mJOH45Iim8ayPjkq3xM78iufPnxcVJ8uqbVE42jSFAjfTzolcHzlmL5X2JLLA1uaCDXeQDCYFIGJI+IIvtyScyXgDK2fprcNOiWncMQ07dtszht2GcdwC0PiOl1++zvpozW674+mTZ2x3O87PSmIxjrRNUyr6ZuZGjMV3QbowhcMBpDhhjUB02q7jytUXmIYdz558xO782TzvtlwPNddrXctoRUErxlgSw64kDnaeL1Bnd1mj1sSy/hyrruOzn/kMCuE6OxdI2tnZGWeb/fmo2dxemsDM69oWnk8I0tmJccI3ohBkmpbQNKQw7YvL5b7J1mIaV7wxUvGMEOiPL1LCMQaGcWS72WKMpe/7uUuRcpgThrZtZyJ6CGHubuh/XdfNSaoSucUMjwrqKMFtnqlSUlHYDkNRNosMw04gfcU9XUzhpuLPsS0Fd4NrTvArT+tbht2WFEbM+BSTAjYFWjuBzbTeEoaJMAw0OWCdnQUdKMZ9UzwnDSPG9xjrcU2PdS3GtDx9/32e+6dY32KNL88mSZJsgV8639E1x1hj8UW1yRhIsxrawHbzEdvNGd//3j8t0MZM3x1hjCdli6EBc0Lf/xRH656X1kd0qyN809F1Qpz3zmF9K/els2AKhCqbYmyocskC+RTyeN5z2IqTt8oAa+KBds3K9bNVN8O6dn5ej7v4aR7vfypbTXYG5uqqBiKHOhHL4F23ZVCg1dz6S7VOJpaJwrLiqRVA/Vt9nDr4AS7ALeqA6tAXuo79UPJwKEm6LJlaViB1PPqfBrcafNbyk3XgpnNUkzNrudP6uJeN9VDCpEpHy2sDEni/8sorF86hhsDp7zoPS/J3fay6alx3EJbBXj2G+/fvX3AiPzs74+233+bWrVvcu3fvwvs1qNexnZ6eztdb4Sf1vmuJ1UPdoVps4Atf+MKFAHu3E2O83W7H3bt3Z38OhYjV10gTDd2XXq/j4+NZ+vXRo0d8+9vfviA3W69BTdR0XNpFuXPnzjyP2sn5yle+AsB/89/8N/yVv/JXZlWr5fldu3aNd999d3ay1oRBz0uTQjVx0+um41CyvSZmZ2dnfPWrX+Xx48f89m//Nl/96le5c+fODGnUa6DzUKuunZ2dzepUwAyf06QK+FiXSNevjlHPUVXI6gRIHa8PcRrqZ5Z2H+pnmCaYel2XXRI9l+X6qq+5Jky1qphuS8hmfb8u74lDhYTle733cwHyT3v7VIlFysXAzhTlE8wchOzJq5UT8YFN/6aBnLV73Lj8LEGWdU3xVjB0zSSBro04BkweIT/B5jMSZzjTY40HOiI9KR0x5DVTahmSY4qBkPauy85LpdoaQ+NbkfdsvBA0nadtSjLhRWPfWiMEYCMeGZSKohGkBORcIFwXz1E7EkqClaAiXVikKYrqkmtFDWq1WuEbT993Ak7KRX0rFQMvI5CZ2QNDpUNLEAh7KJn+OzszR31vghQxOeEQvwpnMq3NWCvitOLxkemdLJIcBsK4YxqlyhyCVO+da2ja4gsBbLcbzs8vqnGEEHBW5HFF6SoW2IwsfmMghAnrhEzrnBOTsySEcj9X/n2B7mTE0q+QZk3xdFBXZ6su4lrhzwhIz+znZOaI2BmK5J10G5oSFKZCnFYOgvOO3TCw3WyZwsQ4iSrVrJY1k6whZyHdK2zMWc+sgmUWwgZ5pm3PiaquVVOM2MTl3DDtBpmr2bsCnBMOg6OZ/S5yzsTg5kSjdudW5/W6UyLIPVd1Hwvpuu7LmJJGVUVy6VYEMZ8rfOK9P00s2H9bKvJyijEE6RoNOwwRmyPGpFKQj9WxDJTChUi7liQIQzaa1Jvi+SCciBiDQIhSsaknkotrt3NSUPBeOnfeicO1dRZjIQc5cE4Q0oqYIykfyTlbwB5LImM9znZY27I6EtJ1f7Sm79f4thVZY6t+I654XNTO8EZ8KAwiGW0T0UgXJ5ssyW7KmKw8NpGllnVPBceTCV+StJfX6Ce5afC/rMYtq2T6fDgEEbqson/oWId+rqvw9f4O7eOyL+BloK+vHfriPpQQLauNl42hhmYs93dZwH/Z+A6Npf58XeGux1m/p4Yh1QnNofNf7m+pjFQfv37vZcnl8jy0Iq2Bn+6r5ixo8HV6ejp3Sk5PT+e/1QnBMjBcHk+rysuq7qF5Xa4V7dQsOxuaBKqa0c2bN2dZ1/q8Ds1ZvS2hM0s+gX5ek8s6Wa85BXpM/ffu3bv85b/8ly8kIzVUSgNwfU0TU00Ga3UtHecyqa2J9/p8qO/95flqgL1MRmrxB/1dE6YaZrlco5clz4eS+VosYFlcqPezPN6yY7G855bHXMJCL7sPLtsOva/e52Xv+7Sdjn/W7dMdRYgSVYeiKR2LQsI1F2UQ1cVCKugOZyx2Jg2X6qFzlRNuFriAs/Te0tiBxg4wvQfhnLT7CBfPMWkHBLxpaFZH+P4zGH+NMb3IMFo2Q2YzTYSUEZFYj3eezlMql24OVttCvO7aTnDX3tB6U1DhwnsgJ4zJhXSqsZ/AthJcqDSGWNSOrKFpvSjeTIHNVoPRUby5ksFSOAxHDUfHR6zWa3zbk7Jg/HfbUfwzQpoTMG8Eb78rPg12Dgi5QJIep2kO+hS+Y2bp0IRNQZK11tA2hnXjWLXgncEXwztrDN5BzoGwGxi2oso07HZMw0iKmaOjnuPjExrvGYeB588+4OnTZ7PhHFCC21h1TjTA2hv27XY7Yop0bVdkMjPkWKBqxfDNN8RsiCr3OSdz4tOR8h4OFIsazzCMDAX6JF2LfXCtAzSl49E0EWd9kSRtaJ2ju3KlJIZJuhe7Hc+eSUdms92w3W0JIRBjmhNrSIQ48ezZRzx/9oTz508wxwXyZdwMwVKTPFEQKv/FsOeRGApUqylBaubZ8ycMuw0nJ0eMoxDpjZUHRttK5yKXZFTdt0VQIM7nqkIJogBlUbnntuugQPZU1rg2YVOXbWsMppHKeIgjaRDjRu9LV6YoS61YlaDXEJOToj2Radgw7s4Jm2dYk7AW+r7FGsMUJ7Ix+KbDtD04S/aWOI3iqwJYb2maFaY9wvgO358QYmAKE94Y4eO4FbkQ4LU7NcUJO0WsGZi6Sa5x1+F9I1CzSbqO1q7IpqXpX+L6528UjxlP1/dY57FNM1+/ucM6J4AGYyT5Ea/Gor5l1PE+Q3YF9GmL+pTMwVwomL0y9tBG5V6Iatw+sdDX952NsO96/JiIeZ+0dV3Hz/zMz3ysU6CbfmmrMk5dmVt+AR/COV+WTNT7V+flWlN+CW9ZKucsSc6HAsl6/IeI0/XflwFtHczWgY9WeevgbHkcrewvP7sMYOrzqYOmei6X71tWXNUdXH0WamiN9/4C1KUeq55r/VoN61kGwhosaoW47kQpXGS3282ytzUe/tq1a5yennL//v25av8P/sE/4Pj4mHv37vE//8//MzFG/ubf/JuzdG5NKNf1oeehgX8dTC7nuoawLNedjk+J3KenpxcgOrdv3+bRo0f81m/9Fq+88gr37t2bj/3KK6/M1W81C6ylRRW2dHp6yt27d7l58yZf+tKXLiQldaKuZOtr167NwgGabOk60ntut9t7dPx3/91/N3/uf/vf/jf+/t//+3zta1+j73u+/e1vzwlT7VdRr//aELDedH0p/OlLX/oSr732Gt/61rcIIfDGG2/MVXy9Dg8fPuSdd95BO0CPHj3i4cOH3L59e76PHz16xD/+x//4gkSvOrHX92R9vy+5V7WDea3WpcmFwrRqwYT63tPzrUnpOt+XJaeXFUo0OV0eo35m1f8u12GdFNX36w/bDhUi/jS2T5VYeN/StP3MhxDZ1VLdBNAOhgZFRvHmDtdI8NI1jZi6+UKGNhljJsgTJo+YvMGkkWbY4vIW2JLiBoP4P9jmCsZeJ7sjyC0pr9nmI+LUMkVPTJBsluAwI4GCmlU5Ox/bNU66Eo0E0o0D70qgbtUZOxTISkL9cjMOY6T6HJMpaj55hnY1vpBiSWx2kpiogZuQwFucgcZaVp0rEC+H9Z6cMpvNlpAywziV4DfRNprI2XkhiBHaHh+vwXKdXOScMZUXgzVmhji1DlpnePHY0ze28FRMMR6upWT3rRhvLW3bcrQ+pmt71scnvPDii6yPjgV3vt1xdvaUs+fPhQMQE33fs1qvIEsC6hshLMdAlYyWymxKs4Su8wrrEnO1fYDtic7jXUZlW2NMxFCSlbIfmaei3FOq8uLToQGXktXFkVmuXyiBngZxDpf9zJFZdb0YNnrPbhhYbVecnZ0xTiNhCvO1iKkEslPg6ZOPaJsW+zlL1/Z0bQc5luRBkktKVTqXTg7aTSsO4U3rGcYd22HLP/6/H/LkyUc8efIh47ibEwvnvby/aaUCnyVBsLah79eQM03TzEZ9KWp3a/+fKVwO5xq8k8Ri2G1nPpU6fjvnZxWr58/OGceh8DE8mCJt7MC5NHcjje0xrsX4TPvSVXI6JsUXyjVLtJ0YWs4dE2Pp2vUM8RnHnSiVhQmwWOuZii6T9X6u5NtiICi7cKJElZvyeLIltjeQhW8Tp2ICaWNR+xLKuNzDuZh2OrKxhCTmey4EcFIo0ceeNdLxiAZJiOcOrpe5UddzJPEEQ7rA0VFBgFzuB1eJP+Ty2XwhidBupfoKpfKcskb2Hb3jJ70tq6g1XEArloeq7pdV4JfbMgHR1+p9Ljsmy2r5snq5hDxdVkHXL299j37B15sGCHXFdrmfmnOgwYnCaeo5rMet0BLd97ISe9m5AxcClrrSXPNXNHi+f//+x3gHOja9hnpcDTbr49fnsOxqKAylxsgfHx/z/vvvc//+/RnWUkuw6n61Wu69n4NtDQa99/ziL/7izHv4pV/6pfl43vu58q7jqAnF9Tj1+tZdkfp86g7AoXVUz3/9/gcPHvD48eMLJn/6efW7UI8JPVZ9bkuoX71e62QJLkrkPnjwYE6Ibt68+bE1U3eBfvmXf3lOIn/u536OocB/gTnArqF4ykeo4XH1OtBrqOpdmhzodVM+jhLiYZ/gL5PI27dvz4mbXkdNnGo1sJr/s0x2dd3XHZ0aXqfzod2k5ZrQeVuuiWXSflnXqf7bsiiw7LBoRwcumo0uuxrLQsTyb4eeT/V26Fn6p7V9ysRCKrmiUAP192LK+oLACqwV/XdrRYrStx7fOPpS7ZMgJZUq+gRpB2kD4QNM2uLDE0zayuvZkF2L89cw/grGXSP7l8i5I4aOIUCImalg3rEZb11JbvwcbPiCtW9aL268DrwXKFJjpNMgoV4kEskxkqOoAaVswHiB3VgJEGZUURWoWmsJuQRlw1CctiVAscZgvKF1hs4bTo6aGS4RomEKke0wiRNziCXwFOy79nSmUknOpBnSMxblIpFxjSXok9aKU76LofAzDI019N7QN4YrK0/XWLqm+IooVCZR3J7l+pos59DkzKpfSWjkLC+8+BL9esVmt2PYbdluztmcPxfPkUmC+67voPgCOG9JyQhApcCB5N/MTDAulV8Ntk1OBbYmpHmBzSkXx5TxFhnUvCfBSigm1WCFQYnfRdpXmsu8WmzpTpX3ArY4ZVuE19I0jSg9NeLc7UvgdoF3EYQDod4g52fP8c7zwtUXsRha72TRVF2Jgu+S17UrUDovvniUbLY7cSb/3nd5/uwZ281zxmEgxEk4M0VUYL1e430r3KGS1DdeyNZ9380PnCEVxaAC5csKeyrEc2sdNkYmM8wBrbNu/nvOQcwbtzvCNIn8sWvmbqAmBN6rglpHzoaUoT06lg6BM4QoXT7fruQ1a3GNLx2YowKjSuyGgan412hAvRs3hBQxxqNdqxlWKRQwMXM0xS/HWlIsJoGlgZCi3Gcplw6CTkl5rmmyI8qzSXIGhawZg0PzlQI/JJHiJNeXLNwP6zCmKc+MkkibwslCEkBZhhljMurtgz5n59GUf0tSod5BcuWku0R2hedjiD+htne9LStyy+ph/WW37Epcllh8UuXv0Gu1Gk997EPjhMM6/JeN47LAYbnvQ7CEZWBR7+NQlbUOChTao9XIy4KKJYdEX6+rqhosaYBcG8VpMF6PcflZfa2+jofm4LKKqlbiNbHQ7oMGqRpY6XnVsFo9dk2MVTK0VpbVkO7BgwezY3F9Pstq71LhqE4KluezhMDU6/kyvo8aG6rzdp0gvfvuu3OAXZPT6w5KfV3r+a6D31ryVsep/Io6GVque93f66+/Pnc7lOOgc6ECATo+3c+SJ1J36uoxvPPOO5yenvKDH/zgwnWrk4BacU1J9/X11S6Onu/SY2S5DuskbLnVc7EsQNSJiu6jNvg7VCy4rBCxHMPyvjr07zIxWj7rlslCPZ7Luq3L9/64kol6+1RHWB0d47s1KtouRmrssc7G4L2jaRxN61j3LY2zdM5iOIN8Ts5bSBOEgTQ9I4Ut0/CUGAZC2HHUiUpPu76K8S9h/BHZ3wBzjHEvM2THlB3DTuAnIaQCjs60riJpOgmifWtxFqzLtDbhGGnyU3LckMcRmxpwDbgjUi4CrsmQkiVhyWZNxhKVcFlI26WeWYJf2O02xbhtRwhCxGyaTtSBmg6DmGr1ncXZhLeRs82OECJnZxNjCEwhElRu1Lc0zuOtZ9hOF3DwppA7TCFpN87hjCEZS85ieGc0+MkZbw3eGo47T9c4jleOVZNpfWbVaFCSioqMZEvqoTzj4jM4DMZ5ulUPxmDblvPdjuebDTFObDYbzs6ec3r6T3n29Dm7YeAzn/0sOSWOT45Lxbzg7q2Z1YykyzKRcmAKK+xOkqEYgng4FLjcaiU3lEKhpDOWS2KVimqZGrhJ4hVjpGnAOgslsN1PzR6/rpX42lPFJCsO5yaKTKmzhYNhsW2Ht46ubeWhOgyM01Q8JJ5LEBwmzjdbQsx87nMbmsZjzJqchJMwDgPTOJJSKLA1SRSF0O7wXs47hInvfveP+eN/+k/57ukfE2Og7zpAEqXtsCuJSAvG0zQCX1PlMpMlqcxGb3eH9+3cZRNDNsMwTJgxsDNjkTC2dP16Tiy22y0hDIzjxDCODMOIsR3HJyd8/ubn6bpuloEGZI1YOxcilO+inQ9ymNe19b0kAE5NMx3ZropE7ZoT24lcq/Mitxsmzs+eMI4DKUTxcgkTxkRynNhuzohhQ5wSXX+Mcy2+XZOSrAFTgniBwSVM4RfpuaaKpKAJaErS8Zh2iZxGILBuR4ydyGbLFAYxdBw20rXICe97rPVY15UOJxwdX6Ntj1gf3QBWQCdS0DkRcyQmebqQlEckHZZyR87/CuzKzM7yzlg638wctvbPoGMB+4BEv6j1y04r3xokHcKJ15t+ToOzJdyiDqK1kq+V/cu+fOufaxhH/bdlNbj+dymzWv+9DgbqIHHZETk+Pp6rtzpHt27duhB01QFqDUfSoEiDtprArWOpeRJ14KfnrK7Xej51h+DXf/3X53msK/DLKr7Ob00Wrjl19fkrBKWGnnz729/m93//9/m93/s9AH72Z392ThDqAL1OEhWqoiRtlXt98uQJ77777ux0rR2KJaxpOZ66gl3Dg+rORn1edeBcz/eygwFcgK7du3fvAsfixo0bvP3227z77rt8/etfv1CpPzs7u5AQKbTm+Ph4TlBq6dj6uNqd0M9/6UtfIgSBQf3CL/wCP//zP883vvGNueOj60rvUe/9nETUlfuazFxX0tVXQjswGuy///77fO1rX5s/89//9/89AP/j//g/zmvg13/91z+WhC03XXP1diih1vWq1/vhw4cX1vYyWa8hTMvgXu8bPX7dLVh2BQ4lFHUycSjZUAhendjUz4XlGOp9XpbULH+vuyv1OdR/q//7cWyfrmNRdPlBvoDF9yoXWIf87l3Cu4C3iY6MTxmfEymdk9KOGDbkFEhhJIUNOU3kFCRAblb47gjf9pj+JXBHZHdEdi8AKxJrcafOQoaUwAUMHkyegxhnwfuAM6k4bQdsDPgUhRWRBgSOkAFXyKYj2TRkRNs+ZUtMllACEVVlyRlCVNMwyKVLsNvtColV3MgLjVWCF1P8EqxU/mORuh3HwDRFdsPEFNOcsJhscCZKKdSk0iUqAUQJGpIGH4q3ngNlpcLI+x3QeUfrLce9pWssR72jcwlvs0hoJrMvmlfYGDNDNyg8g0yIkWdn58SUCDkTkwQ6R0c9BsNqteLqlSs4K3Chk+NjIbNWRog1yX+PIc/YUkEOITBNo5DfM6zCNBv4iedCLAF46ViEOJ+7zN/etZrCvcgpQdofj1x5UBSYmW6KaVfTj2wUdmKL50qpChtovcdXMq7OOoZhEh+K0NCv1qxWa7quK07YYkYYQ5AOS4rVWMt4lORtTcHeCyTp+bOnjONOrk8nkCefPXa0WONKYqQVcDm7VBL/nBPDNMn9mgElh2s139j5vA1SDTcgEsxGiwZNVf13ksA3vpjv9aK+5VxRSDPz/i9Kq8r9IBBIU1S5LK7thKRt3T7BRxy6DZZsBIJorfAhWmeYRo81EVpHSp6cGnIaiAEwjhTlmN1KhBl82873rSHtu65lrqxR2ztmV+4ZVmXAIsWFGGAaEzGMUixJI4kt5JGcA6Rt4UlEpjwV3oonKmwyndM0K8K0w7kTnFtjrBQ21I18Lyqr3holuSmtlpypIF/754KbxQhseQ795LdDlUP9+bIq3qFqZx2wHYIbLD9zWeVwOQ59/dCX8mUdix+lU3FoHpZf4PU4l9XS5XHgIpm6rqAug9xDXZ1PCh40aah5KCHsybJL8vOhQKU+znLfyqN58OABd+/enXH0uqkq03e/+12uXbvG5z//+Y+ZsF0G+dJj1EFiHfyqZ0U97vozy3HXld46OaqD0uUYlmvt0JqoA0at8NdJrPeez372sxcSGNhL214WnOq/dSVdExCVva23vu/puo5rxQSu3udSZKVO/pfV8fqaLPdRr8++72fTyL4XiKsmK/q+T+IB/LBgt76mutX7WXqoHHpGHLr/dd/LYLx+//K5VR97megdOqfLPqfzWM+pvucQP6o+70PPuEPndyiJ+n9EYtH2K5xv5yDIY/E+0/iE9xPOBDwjhGeY8Jxm/BDSQAo7xklgG9MwEWMmTJlsPMa2rE5eou2P6Y+u0h79FNafkP2LRNMQ8QUXn0khlaouxRNDiBG2VK6dFX6Es4GGc1zeQXgP4gYTz0XdCMOIw3TXMO0JiYYUrKjUNA04D6YnJBhDYoolEMxBouukJOnEFKZilCWVakPBuntf+CcZYyLORfre46xhd75jtxvZbgemYjInTt8S3NkSwNiUcEjwf7TuSxBhCp8iMU2JHLMEviUpCUrQxWCdcCJWjeV41bLuHFd6xO/Di4GwYM0hJ0MMprg3M0N1jLQWyAUPvg2J7Xbgn5x+j7PNhmfPn+Obhr7ruPPn/3n6vufk5IQrJ1cJU2AYJ7wX6JCSTKXKvg94UnHQluDVXVjoKSbaEOj7lahgkWfzwBiGEj/vOw0SHCshXKH60nXIQa4jUHgN++DdGDubx82mcZqhEUkYLBFCSeq8GihaGu+wtmFlVoxTYNeNpCxcmJjhxRdfLFWhl3DWSrV9lG6FOpjnlFAHZ1uEEECgac5acopstxueP39KmAYZaxbX6+w9MUSc9/Sr9axsZqzc2qkkf5FI2GyLc7MkuiLH64qMsitJaZGMznJtEmHmvayPjubqfelZznMmKmWJECbwe6Up/Ve7KzkL3CwbQ+M8ZCsu5N0RxrdE40gRQshFKMHCFIXrRKLxAe+h8ZnOBxoTaFqPtS3GWsbREKNhPfaSHAP96grWtVjfEzX5NApfijOkSOWOjYWubfHOF9U4oUhIIiz8lOfPBrabzLA9J+URywg2CfzJiwpWjBDSKLDI4vERwsSzpxFjLN61HB29yKq/ytHRbYxZk9IKbBauhXWluOBL1xSmAvsTlF7R4hMEaoF+UoorVhKfn/B2qMqoX4p1FVd/P1Rd08poTcA+JAN6KGCsj7FUXlkGw/U4L0sWDiUUdQCxTHoOfVaDt7oSqjKicDGwrb/8Q9hDXFSnX6uzeq51srGsgOr7a9KxVqAV07+E/GiQqUG69/6Cj4CSZWvoyjJpAmaYzze+8Q1+7dd+ba6K6/u++tWv8pWvfIXf+I3fmI9dk2sfP3488yo04NW1UEOztKqvXYebN2/yrW99ax6rno/Olb5XOxUKvdJjKPfjyZMns/PyIZjasuq8XCt1sK7HqBMITTR++Zd/eXb91uv02muvXVhvei/ofGviVnNW7ty5w7vvvstut+Pdd9+dvS90zP/Vf/VfEYLAw2oS9pID9fbbb18w79Nj6bnVyk71+Or1de3aNb785S/Pc/Pee+/Na7HuUtbB749Sjdf31XwkvQa194cmrSo0sOw06OeWncp6jMvnWJ3ALT9Tj2051kPnVEPK+n7vbVFzajQ5rknzl3V3D83TJ3V66vdsNpuD+/z/d/tUicW6NTQtGAImR1w+w6RzGJ9jd88xecK6kRwncgxsJqnih2kqMACL8Ue4bsXq6lWa9XVsc4RrX8TaFlzH1KwwpsHknhyV8IjAZzBihuYkkTBELBOODZaBHJ6Tw5YczknxOSlPBVnRkd0xk3uBTMuYWmLwxMkzRqkSxmjIbMlsmaZMzAj0ocA6cg6kkEpFPc5wCWfFSO9ovS6BVJoTCt+KL4azhvOzc8IUGba7udPQNKKxDxnhr3i6xmMtOJPFqM9abGMkcQjC2wiT3ABafXdFtrdrRJffO8eqtXTecrzy9N7QeuicQJzMzEcQyFYsRFwNyvX1nCFk6VJstiPvf/ABT54+5f0PPiDEKHClNJFS5smTp7xwzXL1ylWca0gxs4oJLQuHwn+AXDwQRI5VuBAi++u9ODKnpBwJ9p0YclEfK12KWfGmVJiNCAHAXICWsMupGpQBmsI5EIIxCJxPjeOUhJ9SnivZKQlUStWNjIGQ8pyUNG0ja6BpsNbQNg1XrpxgrGN9dMLx8THr1QprbfF9GNjttgzDljCNs4nZXH3OlrZpaL10PwDCONF4z/HR0Qx/6bteJGyNoW3Ek8I6D+rZ4D2aAKQYiveKzL8pwXWIkTgMtGR5OJXzzNlitWuSC6E/CbdIdKb3FfIQppnIrXMfRk1KmRPiPfHbza8Z67C+x/oVuDXJeGIGcsCaTNe2GNtgXE/IkiDKgojEaSKNGww7rqxPsE5IFWnVk1LDNBbWhQHfFJ6Dk/s6J/ZeKmEkpsKPGXeEOAmsD1VcYz4v5WBZ42bJY99Ayo6cW2I2JJvJ0Yucs4uQIyYlsmtwYaIJgRzGuTM47p4Spg3bzUTTHLFeXWNKW1KeMEgXrGkbnF/jbcu6XWNshzUdMTtiMozRiAJeElhgLlydafg4zv/HvX1ShfzQpkFy/SX/4MGDj5E49W/1vg4F83Xw90mJQx0Qa3V+GWTrMZddjMsCnjqQr+EzdQUaLkrMHqpavvnmm9y+fXt2ll5WJTWoO/R52Hc06q2uKGuQorAM9b5YqvrU17KGJGmSUQeTGugqXEeJtV/+8pd58OAB9+/f57XXXpsVlGq+RT3+uhKvFfY6QK8D0/rctSPy6NGjC0Fw3cXQYH4ZMNfSrzV8rD5OnfDWn7lsLdaJ5zKpBWbic72+ag5BPa91J6Mey3JNaUdEVZsUzvTkyZP5vJdEdj1vTQi+8IUvfAxyqO9dJnp1sWDZBajP+ZAc7TI5r4/1SffXck41OXr48OEFB3XtmtRJv67buktX36d1kUDn9LLEUX9fdjQ+aasT/2VBZZlwKdxNr1/dFTrUFTm09pZ/X87fjzLmf9btU+21saMEp3nEMGLjh+T8jBQ/wozPII/gJohS7ZzGVEjVCcUSO38N25/QnlynPf4crj0BdxWyE+KhQSrEuZBckwQHBo1pcpVUBCw7fD7D5i0hfUAKG+J4RghnAgHxa/Ad0JHsMYmeEDumkAkhsxlHSSKyISeB3AzDJFXu4qkgePBCjg6RUIjBolzTFWfupgS0EyIxKTAjg1RDd7uBcRDyqXMG34iEpXReMk0j6lCaWBiSBHJkQhyJMTMOgWHYMY2BYbebO0dd1+KNo3UCeWobx3Hv6bzlZOVobJZEBWROokBxlMisXASlrWpSkbJhO0WGKfL8bMcHT8/48MOnnG12GKBrPTkJSfz8fMvR0XHpHrgCOxL4VCpEV4VBBUwh/8qxnN23HJXToXAgJQHr75o1KKwGs/+5VoACZhlZV7g3ygFq22bmkMQQ5/dD2EOlyrbnIZT/tKNTyMHWGowHl8Vo0XvLke/wTcvVF16ka1uapiEGIdhP4zA7VOeyH2eFW5BLEO+933tKZOmQeedZr9fC8zCG1rdCsjaWxjeSOEAJvg3WN6XjYohBKu2hKEGZvDdcizHgoqtIysVEsEDVDE4UyLKFpBAnKZELtC0VozedR4Ma5WEKoGc2yrQzAVwUHhzYFuO6GYYoUB85tkjXOqxvpDuXMzFMhDSRw444nOPMgDcdxnqMzWRrxQgy2xmiaV2auwA2F7pCCmQmbN6R0ohJQXhXQdzl1UPFGDWZy1gjqlnetTgvbu7WGYHGJeHwmAx4I8lETkAUEQDr8NaT3FTGKNLCQvYeGOMTYCT3EMNzQhwRp3iHNQ3WHGPo8O4a3q5xTu6jmBxZCeBZCyIyT+P0k+9Y1F9c+vuyRV//XCu0wF6jfhk4159ZBpaH9r/sSPyw8S4rkIe+nA99EdefrZMKDdq1+n9ojIcCToDHjx9fwL1fVmmteQL1GGqolAYvdQdC/1sqKy2PtRxnHXAtYUraSXn06BGPHz+epUHv3LnDb//2b/PgwYPZ+K7m3SwlNuvzrMdfz3U9njpgvcyQT5OIOpg6NO/LKnVdza8Tz3pMNdH3MrnVev/LRE0D3mVQW1/Pegx1YrH0wNB91oRvPW9Nbm/dujW/X5OnWqK1JkXXnRpdU9rdWSZWy225Zutreujeqs/j0D1Wz8WhuV3yJeogvp77uiNR72dZjPi0wfsySTpU8Kh/PvT7kr+l81zfw4fO/bIk4dDzYzlHP67tU+253z2gGXfk8BzSQDZbwRTnAFm+WIdQDOBixFiPb1tWq6t0Rz9N07+MW/0cybTE7EkYQjT47HHG4owjWZFRzTlhXEFaF/UokxNhPCeOWwjPgBHYMU7npDQxhlSqeC8R008Rs2N73jBFCAmm9Jycz4TAqZXxWI5HEpIkElypfKNWzr2TzkTjCtTJmGKSl8V1mFTka/fKO0+fPBXYV2DGSBsn1dvGGjqXcC7TNAlLxKSR7bmoQu3Gke12kmRiFN5GIpdKsUX09oXk6gi4xrPqGo47OFp5rqws3hpaJ6pKpCQk5xCZppHddsc0jQzTTqqxzszBu/OtwHmy5bs/eMp2GNnsdmw3AyFb2n4t+8yJHMUv4cMPP6TvOsZxwrtGDOCS7JcMnW9nWMyw2wEDfankr1b97AswTaEkai193xfJ1YZQuCzSXSiyqFblg9u566BdBVGYEphU3yvHI8+KWWMIhSdhUai9fnbfGWGGl2UNtGcSskjckjU58TTdinW/4ujKVXxRsIohMOy27DYbxnFguzljGgdiCBwdrchZnNG32w2x3PRd19G0LSkV2eAYuXpyBWNFhQmg9U0J0iXxjSkW75J9B0e7T+M4EEJgGMaZRzFNoySQhTvhnBNYUBQPFFcIwd63uOTIOc1z37Yt5EQMAmszxs7KU5rMmcJ/wkpS53yLysXFWEzu6LB0mNzBOOw5F4hM7rANJBK4RCjXbfPsI7bnT3j+9Pv4eEbbJFJ4QtM6XOf2kKw0zVwhVRpzjccWDwnl4yQxlcFZOFrLmHJuoChPTVPlkI4rXJYWZWNIU0k5OrLf1MUi8GVLoSST0iSd3DRB2HepbJkfTEvOBWK2jdjQgINMYJd2nD17InLMxtK4FW2z5vjkFq65yqq5zqrtwHjG0BOi+IpslET/E97q4KE2OKu/vE9PT+cqcl2JW1aND1Uw60BjGSTW3Yf6/fV7NPiupTMVm65E1Po89Fg1Mbx+zyGlm1oxZ5lYHApQ6gDyr/7VvzpXYQ+5Xdf8ijfffHPuBux2O05PT+cg80tf+hLvvvsub7755lzFVnflvu9nAm/dgdAxXL9+ff57XT1dBr/6eh2k1jCv09PTmbz7la98hevXr8+J0/IaaVJQB7eaEB06dz322dkZ3/nOd+b3qDOzjkex/fp53epORX2d67leJlXLhFfHoPvT99Tr/RDpWzsr9RpcJlL12tWAXo+j10hhQTUBvx5vDaNZ3oda3Qc+tsZCCLz99tv0fc+9e/e4f/8+Dx484A//8A85OTm5II1769at+ZrXc6Dnfugc6nldrqflNdb31F0Fhazpdb579y6wJ7DX9znsHbqXScXyWbG89rp9UoGj3i5LWpf7rD+7JIvXn9Hn0bKIUic2Okd67vr3yxK/ZSfmx7F9qsRi3LwHfsLkHRAxNlCkiaSQnAu+1zQY1+CaE2xzRLP+DLb/HDQvks2RkD8Bm0PBJYxScJOobcYOW+1O5EngD3EiDDvCNBDDthC/J6YRQrAMAWIyEoRk8RWYYsGY51wMq8p/GIWIl011YEzBNpsizyrVVmfF70JlR0VxpymEcUlExjEwTrE4ZUdiEG4ISZSZrBU3b2fBW8Gjhymx3ZQgL4vkbEqJaYqMk5C7Q8hKGMB5h7eOphHokPelO9E4rq4b+s6x8uBMwGaIkyQVaU4sQpFHlcr5MAxz9X0m6TaJYUpsh8CTJ0/ZjRPjODFNwgvIqVy3FMgxiFxv44uc7563kIt2v9qUG8wc7Psml26Cpe/6Ge7kYYaX2ZLMWWsxKc0VeGMtfb9itV6zWvW03Uq8UpxIs1prGHYDoRDBbcH4h2mS16aREKRD44phorXFVZ39PGAKF2Xe8oUfBUefpBtS5F67rscZS06JcZJ5DtPIUMj9KQXxLnEtXSf+CilnvBd+Sc559q8QdaqJ7WZLSonGNYgwliiB2ZJUYEWS1TlfiQyU5CcV+CAUbH4qRncNcuH33Yo4ihN8DEHUmbDlfszzSat7tCmJrS37VnUiTQ7kvJB7ICfimDDWY710FzAOTINNBlP8YmIMQk4vyrvG9nNnY7vbMo0DabdjHLbEYWAad4wu8eSjgabz+M6yWjdgLFM0ojQWR+mmWEnoW98Vn45iJmiY512laU2RqDYZnGuIScwdrZF5kn6MQPtMTpptlntIXNCTyeSieqWStBgLyRe/DFPkdQUOmYsgQEyZruvwjSvHiqTksRgpggTx19nFczLv4fw5rh1xvsO5jrZZ0zgx3iQ1n+bx/qeyLauKdYChPy9x2nVioZ+5rCJY/+1Q8LHkO9QdiWV3YrnfGk+v1dkaLnGIO1L/W79eBxB10LasumsAtKyk1udSw2F0n3USpepIZ2dns6ypJiSqOKXzfOgYdfW8Pq52AJTfUEOY6k7Ja6+9hveeb3zjG7z55pu8/fbbs2rTEo52KNBZVmmVO1AHwoeCoTpYU3M6Pf86UX3//fd58OABwBz87nZ71+a6E6EJl45B1+mhNVqrJtXrql6b9b7rY9ek8zqpWM5Tvc/L1teh+dSgWsd9SKXs0Fqu16bCy2q44ssvv8xut+Mf/sN/yF/4C3/hAl9jeU2W+17+fGjcy22ZBCjkbilgcOPGjQuJsr6uPIt6TdTHW87zoWfPoTEuA/sf5fwOnddlx6nfd+i+OZRo1PeHPh9q7glw4Rn3acb7abdPtdfts1Nyb7BeICDONiVYtIVEaPDG4XGAx68+h2lewKx/jmyvEVkTkzgIWxuweQImcjwXSAV5xog742dSdoobYhwZx60oKYVUAu7EMCR2o2eaPNtROiVTHEh5QFmNGiQK+RI0ODVWlXTkbylJcmExeO9puo7ZswuBxDjraLuWpmlZr0trKsPzYpS23W0KBCLjkXNtbMb7jHeZo96jOPFnzzfsxpGz8/Oi519wGtngcFJN1TmxHucauqal9Q1H6xVd6+h7z8kK+sZy3Ld4KyZ4Jk/klJjGMHMW1GthHAeG4guw3W6BglYpZGc/BZ6dbXj6/IwPnpwxThJwiixtFqhXiqQoKkON9xytV6z6TroIxX0Z4zCpQGLmeXf4plS36XDO0rUNUxDJVU0kvBcFsplnYua8Aus96/6YF196iRdefJGj42Ma39C0rQRl3vHkoydsNhuePn3GdnvONA7sNhKciheCdKKcNZKkNX4OimcYVjF6E9WwAhUrMCEhvQtp2RYn+bbr6FcryBCmkbOz5+x22zm5MAYEitXSNg3HR2IAl3JmtZIvIOV0OCeB5jiMjEMAK2tv1cs4bbnvlMOSM3i3N0ucQiAIBoqkyk6o50eSB0q5h2NJQsa0K14cEwZfumP79a+QsxgjvqngWpQuj1U1p5J0pSRJaYicDxHnO3xn6Vf9nmSeIqSRMD5nGDZ89OH3GcdACpmrV18W3oiFJx++z25zxsqKMpXBst2OohbmJ5o+0faez/XH+MYSEgzTIAn0uIEsfjVH6yMxd1ydiHJStgxDYIqRbBzOdyWxK4IJTYCp8Mas9ikmgUqlwlkqc2ANheeTyERiGnHGyZo1AnOTjkzhwVg/82K0g2pSxPt+vl9yzoQUmHxPjIFpNzANO8Zhw2bzxxjb0K7ep+9XdN2Ko/5nMLancT2N7T7dt8GfwnZ+fv4xHLMGOksYxSHlm/rLXoNq3ZYByjIghIsyjfU+6yrmoWqe/q4B+uPHj2ccvHZdbty4caECW4/jkzgNumkgqt2Semx1IqOB/I0bN+YgqoYracD35MmTWUnp3XffnR2lb9++PQfNN27cmAN/DZKXiczNmzc/RnLW/T98+JBHjx5x9+5d3njjjXk8em0eP37MMMj3yenpKf/D//A/ANJJuXfvHq+++uqFOVlW++trqMHao0eP5oC1PtdDQbheu1dffZX79+9zenrKa6+9NneMTk9POT095a233mKaJl5++WX+6I/+iPPzc/7G3/gbF66T7rP2lzg+Pp7hQ4e4HXVHRwPwelzABSKuvu/mzZsfW4O1Alh9nKWQwaFqt2511V/Xh86lrms99qEkQH/33nP37t3/H3N/H2JJluf3wZ/zEi83Mysrq7t6pnq6Vqp9npJdkmtwGfeiXuhFbdNGLWhBC49gDGMkwT7sGCRYg40NXiMJBJaw/lgh/SHjF9awxmsYUJudhx3Q/NFiW2wLlUUhldjaZ8ve0m7NbO10dXdVZea9NyLOy/PH7/wiT0bf6pnWzowdTdGZN++NOHHixI3fy/dlXgPe+5nDcPfuXX71V3+Vn/zJn/yUcV09j7v2/bzX6s/tCqR1bep4lmNVKJzC+zSpfvjwIScnJ9y6detT3JH6mEtI5vI7qZ7bOtivX/u82zKpeF5i9bw5XL5en5tynequ1POSkx/F9rn23Kxams5J4IoQTTOWHC3RNmBaXHsJ11zC+ovQfIFse7K9ILKVFnwJUhRfkJMh4clESIGY1jPMRJVVthuBcmy2k1TxY2QaJ1LMAjWaHWjF8VagIAJ5mPEr+lC3Z+ZTGNWAlwSjsULWtqVTIdAnkYl1s4+VODSHKfDRRyfFcEvIztKdSDibcS6z1xeteSwhSHX78cdPUHWYYZiKF0eex+NbcZdu2x7fdHjvWe11NM7QeoNjwuaEI+BdonWJA+9pHLg4EafIlCIpBYFPReVM5NkZGsSnYZrE2M05Kxh1IKfIsJkYt6fE4ZSVjfStwbkWylQ6a8r+YgnMG75w+UUu7K1IQZINmx3Gl+6FLdXvAjjCiWSrIVfwJVMgNV7gTc6Xccm1iykxjBOHR5c4PLrEK1evcnTpiMPDizRNU/DoEuQba1jtHzBOEy+tN3z88cccHx8zTImExcYSAOZMjtLFiBnatsUZVznDC3wqxsA4JNQ/JKek+R8xZUxMYKzAkcYt41ZgZuvT08JPiDSNL3MlHA+BSsm5OxDzP2tLJ2WO14twQYaY5ZiyxIVcXSVBhZZdlruhaxpa35DaRCw8iG3p4ghciLPPZOEmrPoe72xZ43L8KYzE5AgxoPAuk6V0YJyYTkIxiSz32enxKcOw5eT0mGE4JYYR13QY57Abz/ppLh0E5ctkxnFNCAPr9THOSvU9B0umw5ieoxcvkl+8yHj8lGFzyvr4CfsHB7TdIUdf+Alc02Obnm61wjeZZnXKZvOEzfaYzelT4jQSwsDpycipGXl6fFLu86bwgIwkPkkS+pCCcGacwJTwjvX2mCmMDMMaUhCfCfV+gULwR0wqi6P4nHhhZqd1X1TIrPPCk3FSNFD+ivfuTCwA+c7EO7yzdE1L2luR40FxkhcUqsmnhO0xDx/8PimLp81q9dLn+Xr/oWxLOIMGNLXiSQ11WQaV9f/hPMl613Hq99QBsf5bVuo1sK5VdnbBe+puwrKKuXy9Pq9dQYd+ZhcOvIapaNBZQ67u3bvHdrvl5s2b3Lt3j/v3788EaHWa7vt+Th7gDCevgfvVq1dnmFHNDajJwHUQq5tyIn7913+dvu+5e/fuuXFrN8Ra6eLfvHmTv/t3/y6/8zu/w5/9s38W7z3379/nr/7Vv8p2u+XVV1+dIVBLsuyys6FJRd3l0bHVAVTdvTk4OODWrVt4L/yR27dvz/M5TRMvv/wy77zzzrmugQajum8Nnm/evHkuydK5qcdZE5d1LPq7Jl5LkrsmKsvOi55f3S2qz1n3+zz4yrJiXV9fnR9NNJ+3lutz0H0eFedrTbgfPnwIwJ/9s3+W11577Zw3Sb3VAfiuv9XnXc+XHnd539XFgVdffXVWDVNjQVUFU3iYdrveeustgDlB3dXpXJ53bcCo922dmO9KbPX3+v6qz1XPa9nl0HOtv8vqudCEaQn7/Cx+CzBD03Z1SzWB1ULmj2L7fIlFs4dvHJZUQkRHwpGyJ9KA6bD+RXLzIjSXxH/CNAjsIhVv3CDRUQ7EKLCaaQribZECYRqJKTCOEzFkQkhsNhNTSAxDYAyxwFlCcb3O4mmhYVJRblE5f+YHtMiZWmMEvlEgJHaG0DQztEm0+yVQcFb8CoQqUEAQUSr443YS8nMqrsTGCMzJgXOGmX+bTfFfSGyHUIL6WFSICmegQH+6VYtvHF3pinjfsLfX4a2hcRkTRWXGpoS30HpL48CbTE5TMQoLhCjYcPWogKKupMnF7PJcqrBnb5JFniKWTF8q+d57IeRmIdVmcoHfiKFh45yo3IwDPiXxOMAWNR6rIa/g0g2z2pYGxXqVpBMmztvaZdKxp5w5OLhA07a8+NIX2D/YZ29vT6BHhdgrO4Wm7cS7wDdMUWA4T58dY6xUhwXvHkmxkJVjJOVCgy3Yd+89RpWmrLgpU2B0Qm5P5CxEXYrk6jSODNuNKKEVuU9jwDlbHOfdbBin3QnF+2sCqLAwlIhdzg+kFm4QgQMllWu3UANTU9a4MWDxOJOJSc7bhki0UcQJypzOyUsSHkyqOjTyngSRIqdqMbYIMoSIb+QiVdYtojKWiulhGsl5LApXAcKWmAfh53jQQkAMY/EmmQSq5DOYCCaSTaLteqx1pOEZYUoYM9C0B3QrT9uLlKzxK4zrcU7uCyGhW3JIBDuUjo0YMcYA0WZsPpN7JhlMApvkHKzNkniVVtkUkX8BeW+GNHO7SycvJ5ERzrlwxfK8BmxJLrwR7w7r5btHvn9a6WI4S04Nrhg66jXVRNBZizWe7CwmFAGGnEhxJMWJk+NnAt0yKJP//9Zt18NvmSzsgpEsuwLLgGBXpbB+uC9J4MuxLIPs+u8a2D7vuPWxlp2LXZXW572/nqMlDGsZTC2r5HWXBnZ3A+p910lNPYbleOvgTrfVajXPRZ0IaAX4r//1vw4wczhu3bp1Lpn5yle+stMpeVdle5kILs+/vg719VZpVSWG19yR7XbLpUuXzjk66370PXoMDeA0MNMgvz7urmB01++7zrdej7sS5uX7lxXyz9qWa2rX9oMQzJc/a6dFr792KeokcRlsP29cu6r0y8/uek99vWseVp20LX9edii+33wvj7X8B+eT9vrcPqt78bz1qz/Xa1yTy+9XTFl+jyyvod5Hz/u8/q4y+z/szeRaAuc527Nnz7h48SL/n5/7Ck1b1E6MxbhLTKFlCA2b6MG1rC68MLf4jWnmQMelCZsDJm1ISYKuYdgyFQz5FCLjFNkOhhASw7gtakhBpEU1zlLZoCxVcEPVeSgEZKmA+0IabQrsSQnPhsZ7SZCcYJyt9TRtT9/1kmA4W4izE8N2LbyCILj8EELBmIP3TcGVS+LhPez1UonMxnC6ToxjYrOVQGv2ccAi7sfCMWg7qVh1bcfBvsW7QGOOiWFNihMpemKEccqYOGFzZq9xrPqO/b0V3gEpMW02TNNUYDDFeA07c1Zm3H0Mc8A4jZocpaLSlAuPQq5z0xRTNGAqHIVpmgp/JRZSu2W1J67Le3t7dGUe+/192q6j61c410gwZW1REkozHEmDWXKmac8gSRJwefYPLrLdDqzXG1764hdZ7e2xv78v5zqN5DKeFM9UnawTU7SuFdgNUKRyH/P73/0uH3/4iGGzIYWhmKYJt8F7z95qj1UvxHHnLCFMrNenhBhKghgYR5GNlc+1vPLKVXT1jZsNOYvDtPcO60uSUng2ucCVZhlcY2aYWiy8kHGa5iS473tRJFOTP5Q0fYYPUyKw8wIlc6Xj4r3HNX6Gb+m5CilZsoFUZIZTOf44TWy3W6YQGGOZ25zJovOMdb7I18JqT77M27arOh0RiGQmjJnAJLx1TOOW7fqYafuUnCa8Z4aRJduSTEvgkIQoRAWL3CumwWNwOZNHVX47Jts9rOvpDq9gXIfxHS9cfJG+W7G3ugBGVJmm7feIYc00PCVGhGtlWqYY2UwDm+1AiAnfroQHYj2TmGgg+bLMty1GdNaJrLOzBqO+KTmy3WyYppHT0xORsE0DsQg7GFOghOS5MCP7KwIMxs9wNREjcEzBFBPCBmsLl81Kt80aCNM0c2ZyEMW64+NTKVyEEWt6/tH/9zd4+vQph4eHP6xnxmc+I77zne/whS984VOV3l1qLHD+gbysctbvrbsPS5IicC4RqL0Ilko4NYxCOwV1NbOuii/x8MsuxbKTsTxn3Wd9TnVlGs7gL3XX4t69e3MQXFfT66r08wKHuvpZj1GPUweJaqRWm9fVsqzvvfceDx8+nDkbilPXY+lxtKvivZ+hUuqg7b3ngw8+4OHDh3PHQjs7NYdiOVc69zpXtdt0Xc3XjsO7777La6+9xltvvcWdO3cAIeyqSIDCdRSmpx0RJe1r5fvBgwdzN6ZO8JYJ6vMC9zrZ0WuqRO0aMrSrGr5cU8u1s+tYdaX7eX/btR6Wa6ZWplrylHadX32v1IF87TGyPN6uBGMZEC9hX3XHp+7q6X53dSWVH6PQxeXaWs6HfmfU13l5/g8ePJh5OXruuxLM5VpezkXNy3lSnOSXnbgQwpy01fe43hP6vVYnUkvS9vKc6yS9Lqg8e/aMV1555Yf+jPhcHQvbv4JpXQlYDcnsEa0lWYuNhmws0wTGRmxIWDtKsJEjU5zIMTKOG0KYCs5/QwihEG0F/hSiuAVrAF+3aiQ2Ut6EmnAVgy9jZ/KlNRbrCha7wJo0UHVKoHYSIEgSJAFZjoEpBkY0yApM01bgDoVo7kxRkDKFqK7E3yywrOPTkZQHUoLtkIpbNfM4XZEJdd7Tt0I27ntP66FxAy0jNk6Qt+QQxBDQOKJxZGsxyWJspOuaAqlx2KSwsTj/02o3wJkvRamqT+Mc1PrG4bMrSkGhfJ65Aq6pELmo2yCQM6lIl6o2jhCk2rzZbAkh4V3xJMDQth2YIGpb2QhUpIxZATx6nY1NcyVe5rUoPDlH23U47yFnTk9OmKaROE3EaZyhWcox8L7FeU+YglS7naPtOy5cOGS8PLFZn5BSYjMNzG7jBaIXY2As++zaRki62hUpgfc4CaFd1lViGkUeVDs+CmmBEtBHSQoiSu5P+ieBAk0iR5uiJH6hOIuLV0QoHgrirKzwmjyDn87geLl07UKMWCuEcB9LJ64kiNkwe2TY0n0SXoT4tLimkW7eNDFtZF7HohaVUiakrSQjCdr1FutEOtk7g3eGCxcaGm9oWm1jiPeD9x19L7DCGAamcMrsKm06sD3WrebXxAnbgMmYNAIj3p6S/YQzhlTWScoTOWZyihyfWLbjmiEG2iJw0PgV3nnaRvgMGUsyHVOMtMNIN2wlEceQspoKDlJciOqnIp3QhHQSYpIxmtJ9sqahWTW4NuLafenA5lAKCuLCLZBKc+a3UvXxFB5qivqWMYa2KG5Z6zT/LC7b8i3ojEElbU2S+6Lrm1KYCZyup8/z9f4j2z6rmv/9KrHL4H4Z/GvwuST51jCf+mFfw6Z2HXdXxb8+bg01+azxLB/u9VbDG5bciXrsdaC3DBJ2zWV9/nUgU3NegHOBpF4bfU2TDfWP0Mq9fv7+/fs8evSIe/fuzUZqem0eP37M/fv3uX///jmVqd/8zd/k9PR05lvUwVCdENZVcQ0W9bU6mNStPu4HH3wwdyv03DTAvHbt2qf4C9vtdoZJPXjwYE52luaD9VgfP378KTduPZ9lwlUnjIr7r4PfXcnhrqStDtR33UN1kPi8bsCuNV8nNfV6/qy1tUwC9DN1ol+rVNWJrvJxlPNRQyXrfdZJQn29ltd9uVbqZKBeU/U81PO1PDdNqOux1Yn8UtFqmUx81vfYrgRD57ze767vjDqBqcdSn+/yuHruu15fzumzZ892jvkPu30+9sbqKsb30vYHQrZEm8k2YWIqZOERTHGgtQFDxMYt0xQIU+R4vWUYpSI6lsQilOrpLPwDFGCM/DNnBEkt25kSeIrLcPEpsP4sgfBaaS8JhHe0TSM4d2exJmGtTK4xAtcZtoO4aJcKeM6RlKZC/Mw4Mt7m0rExGBMF3uINIWSmkFivtwxjIIQ0486NczTtCmccvm1p24aubdhfdTSNZdWBZ4tjS56eiqHZlAjJEZIjtY04hNtGpP9NoO9busbjnRMn6ySypyFIMOSck7ksJGMNuEV5ZyzVePXSsHMQOwUj+vc2F2h/msWQUulyxFTgaCkIDM1kMSWbQvEvEbfmjKFtWthP5X0laCvSsamCaqgbtzGxwKQMTSPkU6n+O7pekriYEifPnkmHIgp8rlZCEmWlqXQtRvooZoWrvX32LxyAtXzyyWOpLp88Rf01hNyfCJNIlaYY8c6iXhYp5dKtGBnHiWGcxKMiJsZhLPOdZ9O9s8SOOdlLMTGGqXAvBE6lXaCYJLGYZY7LNRnHUcjpzkPjS5X7DFqmGKSYBCanm3YxmhiLApefeUbOyz3jnSu20mbuTDRJOpLWjZyOEymI4/O6cJw2gyZyuRD1wVtL11i6ztF2h1jr6YtilEgta1LdYb0jTFuG45GUwSaLNT3GrrBNP3OVTBZyNCZi2EDe4OwpxmSyNURjScaISWOO4nIdBpxv2YTA3uqAVbdPu9fhXUdjVzjfCq/Cdkwh0o4Tq2EgxIlhHAhhYiqeIyHAOMXyHWSkY0NxqIeZjO2sxXhP04pC3N7Zoi4qXXLPOCfz7axyMQDERI80FJW1CVtEGwxlzaTytWfOEhkDRGeAiLWhyHUbjPOECOttIv3Bx5/r6/1HsX1W8LUMVOq/6e8atNRkZ/1cHcgvk4f6eEucev2gXj70dVtW/pddlV3nqJ9bqrEsAz4NNpVsrceoFXb0mLugK88LYJZKQJpYPHjwgOvXr58jzy85JpqAaGVWK/pLgr2a3f2Df/AP+DN/5s/M/gi6j9/8zd/k//g//g+mSZJaJfOLqMZ5patdgXAdZNUQrkePHs3H0WtQB0j/5J/8k3PVZOUDXL9+natXr/LBBx8A0p2pMfSPHj2aOxbAnMCo2ZxeB+2M1N0t/bfsuuia1DlTPoCqZNXr83mwF91XDcOqDfHqa74rMdt13y3nueYi7CKx19sS518H8PVY6/nTe0H//8EHH8y8jFrAod50fpbjrf9fdxP1/fUafR4ksOa8LPer4647evV4luOs53Upsbv8uf69Pvauc63PeZm81snWsvBRv1aPb9dru8b1w94+114/OY00zViCt8Q0pVJlLQ6zJKxNGIS8KJr9ojw0jZJYhGkoMphRHrqqNqMxplHK4iyQNMtY2mKwpQkF6uPgW6z1hSOh5FshmjZNM3scNF49CwQHHVNgsy3jKTKbgvNO8/tFchNyjnhnaLzF2j1StgxDZr0JTGEtFe6krs0OV3gHzjU0bcfe/j5t69nfM7RuovenNOYJJmdMhJgCIUVSaknJMcYJ13Y0rmWYVoQpstmesO8DrecM2hQDKY2ENDGGkSlWFXE0gMlFwUg6ElqVNZmCxS+MGScqOYL/L2RvQfOXzozB44jelWRCqqbWCMg+k4k5cXB0wP7+AV965Ut0XUvbNTx9IoG88D8kgJ75BBnUydpPbZGObTB7QqSPMc/Ss6fHJ4QwcfKsJGAFOmSMSN7GAgHzzYQv8q8pRdzgxQfDiYLVhQsXmMaBx3/w+6QQZsMyXSveSxcrZSHxavCuHYTtdsvJ6Sld2xJjZDtsab0X0nlTkjVnUDmrHM94LM7KOtQOxThOldfE2Xr0jXYaKEpSLW30s3yuys2qPLIQ5BXOFku129KFTsQJmli6dJacBNtvijeL945EIclPQbqNxsiXmbEFCmVoY6JfrdBbNkZZ81OI2DZjW5jiAONIyhZbnM/b1hZPC4fzF7DdPgftvnQAjCPbHnBgHLDB5pHh9DExTRAnjAlAYAgbWWvJ0PQW4yIhScdhCoGm3SO3K5rGcrx9xnHOPGk8fddxdHQJ32asT1gPOVvAY13CYWnbIoVc/sWo5n+SUOfSVTjjwRSOkBFPmxy1k6kcmaLqVrhlKSamEJmyGOPllKQTmiLkbWHmTzhbcusCf4sxzR0LTUysRb5rlf+VDSEZDD2hwOVWBz9+udm6Pa/Bhj7Qa83+mgOxTCLq6qk+0NWfoYYJ1HAZVW6qq/31A18fsLq/OtmoFYfq7kMdEOoxapWiOqjRfSoEoz6mnpdCYeoq840bN+Zqro51V2dimdDUAUMdzO5KgGro0KNHj+b3qjqQdieU7KrH/cY3vsH9+/e5cePGDGG6du0aV69e5datW2y3W+7fvz9f1ytXrvAf/Af/AX/8j/9xvvGNb3Dv3j2ePn3Kz/3cz/HVr371nFJT7Xuga6EmnNZBqQaqy4RROwx93/Nf/Bf/BTdu3ODJkyfnZGR1jPpaCGfeAJqwakJSj0U7SXCWbFy7dm0ejwbvdZeoDhJ1zdy/f5/r169/CnK3PI9d11jXvyZ9d+/exXt/TmlrV2CqfBOtvuv76qRX14WuByWt7wrK9X7w3vPw4cOZgL4M5Os5qSFKyyT64OCA+/fvn+v+LbsXn7XVQfkS3qPnVXf69N5ViKR+fyy/F3RN6Bqsk7ploaFO3nZ1nXaNuf77Muivt11/21XQ2HWM+n06T8u/16/9PyKxGMaJkPKZa3MoD86cMTkAkZgnUppIMbA+PWUcJ7bbgTAKrCfHaSan6mP3LJVg5kxg1AjOntN9n83RfOlUWIctiUVTZEytK9jyYrQ2E1qNPOxjiEyFBB6jnMssKZoj5ISxufC7Cz8hSWVWoDyiBjQW2dspiFkYOsYipdm0bXHTblj1hqaJrPxIa+WfK/XmGAq5O0JIZf9ZlJOcceRsisLTJFK/CoVJiZAzcZoIhVsRo1SdbZIOQS4dCw3g4YwMqnwBhR6lEjDN3aFSUTdYnDv7rPMyck02TAFzWCP+GvsHFzg8POTw8FBUncqVrrkVKZ0lFymlM8WuonTkiq+GEJflPAwU5/GBYbsRoroa55kzF2jtrIipm5shPr5paFq5mZRPoYlxThFb1K6E9CtrdBiGOdnQhC3G0rEJEe/lmDEGYvFKoEiMzudmKEHk2b101oFDuiNq3DeNcg1jKoaItniDSFIdrcymmAUWwQDvZ9hfLixfSWISKSlJPJ2NpRDHrRGPE1MAhq50ilxRRHPe40PEO3H+bhpwLuOKm3oq3AKyyBDbYqYdc8BEOZAriQwmYB3Fn8RLlwMn91M2JOPRBWtyxKQJ0lY8buIkjGpkveaUyBFsMxZJ3BZDxBDxDryTZDdm+R4a4kjOkXbb40LC+gbnpSuD8aV7VGR+rcUUXlYWhvvcQUopzqIFSnxXpTDpdgkvIyFzkguz20iripyDGOTlab4ndP5Ik3AwTCHIG8hGVe1mQCKZJMT7xHzdUpTEImfxe4mZAuH68ZO3l0HuspuwJHo+7+H6vL/VVdM6QKsfqru6IXUFclcAt+s4+q+Gtei46nPbNZ46yN91Phqc1D4DP0jgsAw6dgUg9VbvWyv0u/ar79VgVM/ZFY6Xvk8DNpXyfPDgwZxkqTwvnHdC1t/rQFT3WUOylsmUjkmPXcNn6gBNx6MdmtrkUK9BnVDWQaf+rPNSw6vq4HOZ5NWBbL2m9Xzq7lBtGFifh45/eS/sqjbX16r+/K6t9olZmhzW81oH3ru2zxrbrtd2dWCW3YRlMqb3yjIxq8fwvLEt52WZqD3vvbvWWa3wtQtmtCv5q+/Hz7oen/Ud97xzWCYiP+i2fH89z7uO86PaPtfeT09OySBV1RjxRjwIVn0LJhHDyNOnH7HZbMQnYQjzQ1gepMyQk/nn0tc3peLqrCsPfDsHS8774nirEqC26OA7XNNgCwSqLRVeVxILlcEDCbSG7YYpjKzX65mIbAziUN14Wi9BbZi2YioXE03bFIMxx3bInKwzm+2pYLJTKoaAjs6vRNmpbWn29mi6jsMLB3Q+su9H7PQ9TDqG6UNUoYrmCyQ61qNjip6QHNvhFEOSsYxWJDdjwMQJlwOt83SNFd7KFEkhMG7XQoLfblH5UVu6MxnmhEHI6hK8CyRqYrNZy/s1AISzQLp0P6DgvpEUsGs7Gt/gbOkQpEzKlr1+n0svvsgfufaTHF68yMH+iu12zXp9UirmBTMeIzYExjTOAbWJkWTEzM04XyqzrkjVmtLlyhw/e8Y4bBi2a6ZplMQoSwLYBo96kQiUqpV16lXWU6RUm8bTeEfjHWEKpCgkWCGqF1hRqRaP4zjD7kAC8nGaCKGs7dKlCqGQrVXOGJFqVR4JWRJCNauTjoMaBhaeRJbORwjCX7GTuIt3bYt3luRd6RDIuCj3T9v2AmtrWjT5U05FDcmqN03CQgzYEUgJ3zZYoHWOvX6Fdw3jlIgu07qMd8I3CcXlWzotgRQihBGHo/WWKQ1SPc+O4qONWwe6vmVvH9pyHzfekqKopeUs8CpSIk+npLDG5AFHwLiiiJUhhVS6dBNmMPi8Yv/iy4TU4wMcXnwR3+6BPyDFgRRGtsOWYRp4/PFjMP6sy+k8rmlnOGBTFSOsik4ULkomz9c8xUhCu60iJ5zCSBgHYhyJcSvviUFJNJgcS1IRMCZgbZ6VwiwWbFOgn1KYMNaSGkssELdUFKfIgZAjOUZSyKSYGDYT1hRX8NYJOT8mNpsf7IH2w9yePn3Ker2eq+Dqerw0V1smARowLuEnanB148aNnUEonMEcNCBY8gq0Mq6BZF25WwZKWqnU42pV/ODgYB6Djl+PU0NcdD/q/qzwJtXgr8+zHt+SGK3b90scdFtKsGqgpBKceh737t2bj1nzJ+r9P3jwgG9961uzH4ZWp+u5v3r16vz+Dz74gIODA1577bVzweGf/JN/kr/yV/4Kv/Irv8Lf+Bt/g1/8xV+c1YR0/u7fv8/Vq1dn6dw6AazhUHVCVM+VVt/v378/dyO0Q7B0Sl8GrzVWXwPxW7ducf/+/Rm2o5AorcLr2JWXUQfvcNYJqxM0TbZ0TYQQZslZXbs1+baG3dQdB91PbSC4K+nR9XpwcMC3v/1t7t+/z1e+8hWOimmhvvf69eufSlSeB83Rc6nXQn0f67Hr7p2OS6/H3bt3Z4iafk69WpaJ2pJPUidby2BZ56/uRNTXWP9fy9LugqAt779ayWwZmNffX3WyWm/LwsKufe3alonZrm3XPnZ1J5QztFRDqxO8H8X2uRKL9ckzgV0grXpnIUwDx+OGaTwlTCOb7akE7SGIh8Ic5p0lEpJLiNOxKThl7U5YK9VXSmdCTeysdXjXFJdkh/cNplRWbZHwFK8AV8zFJHA6PdnOAXKIVSALNM6hSi0pjCDoKvZWLbkQl8cxs03ikC1SkwVbbiy2EfiVcw1dt1e+uBraLuN9pLWPcGkkj0IEJTlCfEmqyNkQNpaYAttxKkFKEvw4hs3kmeKxdB+aXhx+4wQZTBIZ3jBNDNuBzeZUOhbTJN0cKwEKwBQCqvul6ktzUFz4DpAhLKroQNM0Z9wHOIOAzMRrUbBxznN06TIXL13ii1eucPTCC3RdR8qFpJ1FJFWqqqYQzbNAorSSr4dOAr3yzp+tC01yYijdii3Hz54WJ+2JnDLOGvq+m5NUK852DM6RU0P2Bf4WG0nUcsIZ6LuGccxl/saZdK3wu1hI1NaedXrc7LLdop0xCjRNFLdS+UyBoeVUVJwUBiV3gypECaG3JB7WYxtH8nlO8NoCrZKkpmD2YyxmaxTisYgmzIaP1p5xMarLmpK4RluAnJmGTA6B4BxtCkUeWCRqxXTeEGNiO4zCPSpKY8K1EfK/kJItjTW4DFZdpGMkZgmuXcokBmIeaMe1eLX4DjWwbH1RkMMSG4ixZWtUFjhIRzQnmn0n6yoHjOsxvse3B1g8Pnus3wPrwUgXzPiW1qhXikAnKdwTY+2c3Fl7JnQgS7J04swZZ0W7QUahfzmRwkiMI2FYE6Y1KQ2kMKBdDC1wWOMw2WDwQCxNWSuvZZhCLPep3F8mQzCSRIYcS1dF3LzVjybGRJwim80WCj+t63oRsbAg6lw/3m273TIMwwwnqIOyZVVeg0vv/TkVHg0G6gC5DgyXAc0yQVhuNeSqDtR0DPr/OlhQTH9N9n3//ffPkU/r81OohUKGdL91QrMruK3nYtfvtWSuBlA1h+LBgwc8fvyYmzdvAufJyXVF+s6dOzx8+JDbt29z8+ZNrl27xsOHD+eAtQ42Hjx4wO/8zu/MvAzvRWnn/v375yAzeq2Un3Dv3r05Yfn5n/95Hj9+zHvvvccrr7zCzZs3d0JQlhXs512TWuFHz6826lO4Vp04ggTzSiq/fPky77zzzs4EbnncGha17C7UCahec01+9NpoIqTruvaAqKv09VYT+XWrz6dOuHeRenXTwLnu3tQJe53E1Pvedf/oazXxXPdR30vLwH9ZAFDImV4jLTjoGlrCmnZxMHZV8Xfd+8/7eSnJ/Hmr9suOzzIZe14n4HlJyWeN9Xk8k11bvZ6X+9a5fPTo0ZwI158bhuGzT/pfc/t8UKjNGusb4S04cZVWWMrm9CkhTIQSWNUS6qJoc6ZqYspD3haFG8H5FxiMOusW46g5obAW5xrpXjhP09SypOJP4X3hAVjHOEkgulkLHCuEqSiocIahdxZBRwkURqvKbdcVzDJstoPI4G7jjCu3hefRtB7fdvimY7Xap208eytP57d4s4XwEblUTWGfnFuGeEiIEkhsh0EgNCFirODI27YhJ8cwGtbbU8Y40u/t462hM5CTEzLwFBmHgc12w+l6UxI5gazIoheVoGkK5xKGlBLDMMyvxTlgOQugXOEzeO9nuJIE1blUbjVgsTRNS9v1XHrxMi9cfpEvXHmZ1arDWsN2c0LMqtREUd3Js6lgjIozz+dq6gJBO0s2MZaUhIcwTgPDsGV9eiJeEYVnIfr/U0k8Lb5pwICb1MG9qFFF6VCoT0fbNKW6HJmmgC1IPJvFnE/VqlLiDHpkxUCvbVv83EUzZ8F06YQ5a2YpX01mrTFzwN82xRQN4ao4I9wgjCkQMgl4G1UeAznf0iVxJotwqch4CebeJgxuhreZOZFReFQmxzIfwBQSycYSWCeBP5Uxqdt5LF2a9WYo/g7NDFeU+Uaq5UZQO+oaH7JwV1QVKeWRmLZMYYt3DWZ1odzjnmYuGjREb4mxlQQ0jOQwYNOEyQHXiJlmIhDpwLY4v8JZUZUyVjgPEMv5e7z183qfCdCz4IOZXbEpfK+c0qy3lfJZ1nsGESxcixQlWZ0GpmFNCqekNEIcixO5w1uH98KNMDg5To6F0C7CC1m5ZgVWKoz2IpSQU4E3FlnZcu1TyoSYCTHJd91U4Kkp4xtH0/pZzvnHvW2327nS2/f9p7DNdWCj+HU4r7ykry0fhPXnlwZlux7q+rDVALnuGiw5CRrkaPCmiYX3gi2/e/fuTFaGs8Tn4cOHs2ypjmsZZOmcLCuqu7oTu7o5dZJQ70PhSFoBr9Wx6s/cu3eP3/7t3+bhw4fcuHGDo6OjuXuhAYge79GjR/zBH/zBfI5w5sK97G5ol2C73c5k6YODA77yla9w+/Zt/pv/5r/hz/25Pzc7H9dJRX3Ntbuzay1p4qkBtX6uxsCrXOwysdAujXZg3n777U8dY9eaqeejhurUwbSqPWn3Bs6C1wcPHswBtY5bOw11p6SeCw2m66RB1+mu4LQO3mtZVq20axV/SbLelVgsq9369/q86uPWULflZ3Xu9HWdO+006Rj173XxoYbh6f24vK+XQX093s8K7n+QROJ5n1/emz9ocvK8vz/vOLs+97wEWN+3/L7Q1+tEVJPaXffvj2L7XImFtdA2ljBtGbeRJ9uNPFjDWHEnmB/KmBqWceaurEZQ1hZitVdpWIv3Lca52ayuTiy8wlk0MShKN5AKWXzNNIg/RghxDpY1oBKSuTgYe9fjrePCwQUJGLKY7oUQ+eTJRsigKZKyJRuH7zrBmfuGdtXjG0/XN+w1md4lGp5hGDCcwihWgDEeEOIhQ3Bsp8QUsygnxYkYB3Jc4y1cPDzA+kOMbXn88VOGYWKzXhPjKAaC20DXeJr9njBOjIh873YYWK+FOC4QjUxKglnvO1BjuzM4Gp/6v/cNSjBN+lpJKhrncUrc1aA5RSGTYrCu4dILl7l48Yif/H/9JPv7++wd9CXgKgZpIZBCYBhGcfreajIVmLbbWZFJHLedwskLpEmc3WMIrE9PePrkI55+/BHDdnOmKBYCMQasoSgCSQdhtdqTRoz19F2PK87FOQbWp8d88vFjnj19VrgF0hnYbjfkDKtVmqFhEktKgK9JhnqEOOdou7YkA6JWFUKck+gITEG6d2OQzoopn3POybico/ENfb9P1xu6vYt0/YrV3mpOUtanp2U/4jmigW9MSHIfJmDCDIMkhM6zv39Q3LwLlLBAuWKKs49GWQgzyXgKDU3b0KUoPAQMq1XDMHmaxpLW0jEJaSo8EoUcSvAecsCEyIFvaFpL21vCnESqfHS5L1Niu302+1jkPJWEpcH5PZy9QL86IIaR7XBMawPORGzektJITCMWV7oTei4Ut+5MNBGReBaYWZ45N0V6mmJ8l8P8uiSJpasx8xOUdG+qcxCTvZwSjoC1Cd9aaHoMDdbuyyer7z5bmEhkMMIcF49Km0nG0HTdfERbuk0Cw5JESdWl9D5NWbkWiXAUODk+ZnN6ynp9ynYj1zdMP34o1MWLFxnH8VzwUROalUipQbsSYjXB2EUerR+edWejfp/+rBX958l46nsUqgXnK476AL558+a8H00K3njjDYCZwKr71gBT3a81oKsf9joPS55GHRjpfOk5ql697lODUlXfefLkCXfv3uV3fud3eO211+axqZpTnSS99dZbvP7669y9e5fr16/PiciTJ09m74k6abl169Y5UrYmY7rPb3/72/z6r/86//gf/2P+5t/8m9y8efOcKtMHH3yA956/9bf+1hzovvvuu3PlWrsctW9EHeRosqHJjJ5PHXhfvnyZu3fvzvNUQ+40Ubl169ZcKQ8h8P7778/H0Kq5zrHu+6g4byvs5/bt2/P7ai6GKmepN4omndpJ+uY3v8n/9r/9b/z3//1/z61bt86R1uuE6tGjRzx+/PicI7fOhSbCel56nGWVWoPyel1p90y7bZcvX56v665tGSw/LwHRc1dokyZWmowrPExf03tN57cWclhuu/gNywC4vmf0/0vid51c1+dUb8uuT/3Z5Wu7fq7np56n+rVlAvh5uyX1uS+ThuVxdA3Xm97rt27dOjf+x48fc+fOnZ3GlT+M7XMlFikG4mSZxmGGpUgVWOA0pig6mfIwnNWcrHQUMELwNYVgba0vZOcz0rVgn0VVyRU4lHcisemdelKoGy6EUEz0YmDcbgWGVTwBZhhWqRB3XTeTXRsvXhKiS5+KYgvEWDTqKRVH54u6VEvrPV3jaTuDc5nWb+jsRGMDLm3mIGWKlhAt4/x/w3bKAl2IpUJZVKiySQzbLcZmsolsihzvOA6l4pixKZKKzGqIUeAw08gwjAyTmtkxz6E6iwvGvuDTFetfttnJOavnxZlwaYxChk4q62vOgmr9nHWO1WrFhQuHXDw64mB/j7bzWBIhRXIKBXpUgv8QZriRdgi0UzF3SJybFZMEPgUa0E3TxLjdMA5bpmmYE4pYXNiNEUKzT6l0E+p1eRbghRgJw8Dpes1msykQ+ELSVYPAFOfXFSKjHQuMEfUwnYfSvVJyb4pBZD/JxJyLYaFIGOd8PrGw1tKZDus8excOaZoO04ihYL9azWZ5JyfHDMOWcRg4PT0hjCPb7UZI5zmewaKUnE8s/CE7j03ugwrOVpH01Xk9xCC8YmtpMhhnaZwt676h9Z6UxLVaeVMxifeDYLIE4rcdZSE1ncM5cE6S1ZnXMa1JOaJmcQ4wSRKGEMC6AetWNN0hznta9jBpS84TmFY6dimSrScjQbpCyebeV2YmPc8Nu7Nc4VOwv7kDURKQXL1XukqG4uIi/1KQf1l4EwJvKvfIPK9n6mtnAhLVYHKe1fGUS5RLIpuVgK9EqfnMTOnAlSTcWFzniCGUYk7xI0mZMP7f42NRB93LIGCZEOhWP3h3PZzr99Q/fz/4wa6qsP59+cCuj1Nr6eux6i5HTZDVqqoSdpfV2l3nvfynAVfdNVmelwaidYJ2cHDAT/zET5wjI9f7UxMuDVpVCaqGVC2PqR2mZcVZFX402FUBDIVZXL9+/Zyy18HBwUwarrsN9TXclWztut7LtVL/X9ecXou6c6Tv085BrQBWr7ll8Kx8Bp1znVOFe7366qszD6cO6vTnK1eu8Morr3Dx4sX5WBqA6/zquLXzVV+3Gm5Wn3e9Xur/7wo06w6Anrcev050dyXoy+uwq7JdQ/KWf9/FYVgmjrqPXfO3POd6THV3ZrkOnrd9vw7B8z5Tj+Oz9vWDdh8+7xj0M/+6nYXnJWi65rqu+9fa7/c97ud583a7ZhwHpknI26mooMgTrcCalHStMAztUBRMsxJyxbiuKf8XMzPvG5wvQWYjE6IwJyXGugJ3CuPAOAycHJ+w3pzOE6adksyZ4pA4ODdcPLpE23b0q32Z5Bg5OTkulfStyOVgca7DeUfXNqK/3Xj29jr6BvoGWp5i0il5+h4pbkjTSGKPnDtSPuRkaNgEy8kgD3nSSIzijeBsU7DWjmEMxDCyPtkQkiUmw3YsHgcEqX4aT9uKW3UIge1gxVdgc8o4jgzjQNModKkTSdJGiNVnHaKEtZmUwhxgK/xpGs8WrFa1QwgE70ltom3aOSlMSf0WEl3f8MKLL/Lyl77Eiy+8yIWDHiE9DySt0g9bxu2WcTswDhsZ73YtZnE5i3uxczLmtinn4M51B7IRx+9x2DBsThkHXYPqVC1yrVLNTSLL2ja0jcjWYpDugyteJes1T5885eOPPmazXgNqiHaWOE1TwHuJlgWpVcjvBfI06VornQ5xSQ6EaSRME23jMWRyjAzjwDiNTKV6bJEg0xUSt/Mt7WrFyz/xRzg8eoFLL36xwOsayEIYPj05Yb0+ZbM+5dF3v8Pxs6d879Ej1tMJ4zASUsA5T9+L0aFAnEI5L4Gt6dySNdg2M1xKglzx1zAxMIWJtg9439J2e+z3LfFgr8zLiBmmAsORBAYMAemeWAshTez1jmw8/crRNJam7QqfKXB6ekoII9YmGtfQWCANTNPE6fEzYmrAtHzh6p+g6fbp9y+yPsmMY6QxHSHDOAXwDTk7MIm2Be8dOdty3mf8CT1HDdpVbUxePwv2YzzjL+hmjC0cL4udeQuRnEZSGElpwKQAeSpJBxBdyQXyDH9DoZ3OlQZhSbIGMR5s+37GnqWiGBWjdoA5By2txQSE5+S5cHjIwYULxKpzPG5/NPjZz9qGYeBLX/rS/Lv3Z2Rq3TTgWwboy0BJA3k4L+9a71u3XcFofQz9nJJur127NgdY9QNXA7r6ODUcSAOau3fvztXnWnpz13j0vPT1OkjQMWjlWv+ugXJdkb137x4PHjzg5s2bc3flxo0bXLlyZeZJaLX4yZMn879Hjx7NXYyrV6/O0AjlS9SO0Appqg3d6mvy3nvv8fjxY9566y1ee+21uWuw3W55++235+t88+bNeZ/37t2bk48rV66cS26uX78+V03rQFjx4Pq35yWheq3qLs17773Hdrudz1UTNg22dQzaVaoDL+2mXbt2bVa80tcfP37ML/3SL3H16lVef/11vv3tb3Pnzh1ef/31c5yiK1eu8Oabb3L16lW+/OUvz9Czt956i9u3b/P+++/PSZeOA+D27dtz0nHr1q2527BrjHpdNbl8/fXXz82LQtcUpldDxO7du8eTJ0+4du3apzhBy/WrPy+r8tvt9ty6rxOeOknQBFbXt45Px11X2WsvBpWmre9zXRsPHjyY521X16NOYJ/XXai35wX+9XfDruRr+V3zvO2zEqDl/neN43mfXf79efvatZ+joyNef/11vvvd737f8f/rbJ8rsQjjIP4RKRUPMwmODOYc/twUvXpri8qOU/6ExZcKr7Ee612BNYmykyv8AOvMXNF1BfZEhjBNhTMhcCetfOdCpk5ZHslk6NoV3ntWe6uiCOQBQ0iZp8+eFalZkYnN2dF1vRCxvafvO5rG0DaG1mywrPGc4MKEjaMo15DIBELeI3CR7bTHMBlOT4ofhZAxcNbhuxbr9uX4IUrlfTtwugmEcWAaNqL8kiIpl8DHiURnMo6cPeSGxmVi78jWF+iEBJ5KWG+bBu8loJrdsrWSrnK6yOKa4kShlZyrpKYkJodZGOYSUKvRoJV52m/FwfqLX3yZi0eHrPZbcpaEKISJsRB9N6enrItB0vHxM0KYiKGYClo3V7z6ri9JpJrRKb9CJGSnYWAapxmqpl0KDQKV2CoVeWY5YDAzV6TxHrKh8SKH2+/tEVMiTlMhZlO6E2fQGY0vVao3pkDOmfVmU+BhgmlvGl+SRln/uUBVwixicLZOE1nUl5zj0uUv8sKLX+BLV/8oL738Mnv7B7SrfQXNoHK5e3v7dH3H4eFF9g8OOD055eLRZb73B494+vQTTk6ezH4YbVMI0OEMeiS3oMNH6QopL8Q6MXRLuXQTEGjNGAKmELVTcRxvu5bDC/v0fcfeODJMgWEMbAZJNMmWVMj521H8GtbDmv19T985Lh62Iltrx1LpF46QSRHfJuFBNA37h18gZE/Knu04MqWMn0a2wwlxGnBtR8KSrMP5DuscqXznYBzYjMXQ0pDCRJoGEVuwkngAmGyI21BUobrZzTzGs6Bd14IpiaM1DmsLHyjlAvPbotKxpsClclFxoiSj2ncbpqIahqFznhQj65NTTtdrxnHki1/6Ek1RW9PvgpDEuTukMMMRlfxvZt6a8FzmrfA1oHQjf8zb8kG+DKR3VdC0KryrCrl8WC4f5p/1sF7+7L2f/Qzqz9YB/K5j1EmHnteNGzc+xZeotxq2sivJqImwmljpsZYB0bJKrX4GOgb9nJKUNdhewnX0M7uCSA3AFcJSw7pUxUfHfXJywte+9rU5+fmLf/EvcuPGjTnxefz4Ma+++ur8+RAE3qXQoxqKpr8rJKomn2uQXwef9ZgVKvX48eNz47169eoMJQNmWJAG1RpML6+XBsv37t3j3Xff5a233uLq1aszPK7ve1577TX29/e5d+8e77//Pr/xG7/B17/+9Zlro0nbw4cPZx8UvZa3b99mu93OMLt6fep116RX57l+3507dzg5OeHVV1+d574O5Os1ppwG7RjVXalr167NxwshzKRznfc6aavX6K6tXq/L+7fuymihQBN3nZf6/qx5G/qzdlrqfSifZtc9Wm/fr9L/vMLErvfs+v/yu03nb/nZXUT9XeNcdmJ0U6iiJuS7xl9vzzsXHe/3I5v/MLbPB4VKCXHVVliTVsQN7lMQJz+TPI0zUKROm1mRxeO8xThJHKzxONugijzij3AGIcgplsRiw3a7YRi2QJ7xyPKgdQWOZWnbjrbt2D84KORwx2YzEOPEZtjOBEhrJKFpvKfpGnzj2d/raF2m8wEft9h0CuEjSAM5D+TUkvEk2xLoGPMep2GP7RB5tj7BELAm03YC52raBud6wBDilpRhDIFxikxjZNgOpDiKT0WBf9G0AuUwkUzCmUxoXAmii09H8HMCdkZIdyUoynPwKz4LStLWDhNzAEKZZ/27EI0NAQ2y3MyLabxlf/8CFy5c5OLFS6xWPW3ryHFboHIj0ySJwLiVa7XdrBm2W2IMGMxsqqeJoytmdNZYgS8Jy18HKX4V4cyzQnweYpVYqGZ/OYd0ZkYnxnrFDM4YnG/o9yyrvX1RO8qnJSg9ExY4gwudQWIksRAS9jCOhALD8r4hBkmgRRbWzWOox6ckeMi01uLbhgsXL3H04ku8+IUrHFy8RNv1GOvEwyJGcvEi8N7TGA89dF3H3v4FrGsIKYO1TGFkHKSDp3Om3TrhTgSSk2NbYzH+bO6tFWUi8UAoPg2hKIcVBSihuRuaxguZ3Fv8OBVX8kCMEBOEKLwPVU9bbwMhZoY+0baWxkdaH4gJcpJAPjlJwowBZzzd6gI2WXGdj6FwSgIxDKQ0kWllfTiHKdLEtnQeUk5gcvk++4nfuwABAABJREFUMqQciWEQbou1GCfJWk6JFMHkTjwrKoyU7MrOME6Fk1ljxOcjS2fGEMUpm6Kqxtk6SXqvQYFWFehZBpMzuWlJIXK6XnO6PhX54hhxYk4x87dDFFjhFEMpCmSisaWxUdxjjMEm4WJosqH3tkABf7ybq5KculL/vG1Z6VwmHvX2WZW/XQ96DWrr92iAuQyI6rHo63VyAufhHQqVqc9jV6CyrPwuEx3dalJv/Td9fw0l0up/XWnWOaxN/OpgT+VY62pyPe4aNqXBbd350P1579lsNpyennJ6KgqQV69e5cqVKzx+/HgOqLVjoUGrBvd6XWr+DZyZFOr4ap7ELt5NvZ9auUmTmBo2pnOrlfzluqjnV8/jvffe480335zHrnN248YNQDpfv//7v8/p6ekc8KkClW61KZwmhHXHZtc6Wa7R+u/K5akTx13rrr7OS1Ul7WrpNa/nTxOzXUnCrvnfdX/W51F/vh6zXt96TJpE6PvrJKMej87Pcnved8Xzfv+s8/g83zvP25eu7V3zVidr9ZwtVbZ00/u6Fgmo97u8/rv+tivB+n7fzX+Y7XMlFm3b4ZsWgT2ddSGMEeKjBJ/N/Lr1GpB6jFf3a+FTeOtE7aYkFlqlde6M6D2NE+M48vHHHzFNI8MwFGlOQ7fqpGI8yzQaLlw4ZLVasb93IHCanNhsN4ybtSinZFV18vStOGP3vRB7m87S2g3OjLTpu5jwjLx5DHkj0ATTkExHMhfJ7oiYezbTPqdDZDNGNtsBY2B/f4VhwpjEatXjfUPTrDg52bDdjjx9+kRgQcNGqtze0/UrptEScOKfkQxMGWOK/GzOTCmxJtG6TAotL148pC34uJwT3ln2Vquz5GCaZjWiMIU5EJ4r/CUCSSnN8ChgVvoROBmzVwM50+3t0XU9l7/4MhcvXuKFF1+kaxImCaQrjCPDZst2vWa7HXj2yScSPJ2eCo5cry8SfI3FD8U5UbCx1kI2WCtBWCr/YlR+ikCxplHUsBRLnmZ5V0uM4v5eMFBY62nbTmQ4radvW5quZ7U64OT4hN/5P/9PUv6QzXZzxjnIcKZ8xcy3mBOLQeBNsh4tfd+zt9pDHeVdgd6cwc6qJM5YLhy9wAuXL/OT/8af4MLhJVYXjgghM05rxnE7c3DQyjealBj61Yq2afmj165x8egSz54+4+6/uMPJ8VOOnz2hbYSnoj4MIN0KZx1d29M2RdVNk0Vr8VYUtLDCQTHWs12vCWEiYdiMkdNhgsJPunh4kf39fQ6PGg7HDdM0cnyyYTtGxjGSNkWxaITjMLE+nQhjpmsNq97jzCHewcGFDmsnkhmJiGFddpaUrXT8Yha1tLxh1Qo0zTDORntBvMJp/YpxWnO6fkzbHUiRw2TG7TOm4ZT9/kVMtGxPTtlsnhKmgf39I5r+AN83YiZnLDHZWXAildans6UD4CzeIymWzZgkLvTDeNZNUI7OOE0zDCqVhD3m4nlBEthlyuQms7q4R28M27hlux7JazvvpzB1SDmQcoAcSXEql6ooSJU1JWR6kbWV1zLT+Hm+3X94m0q1Pg8HXQcyz0sS4OzhvNx2BeZ1dXoZJOl7lw/guiKrQeqy+roc3/OCmmXCUL9Pq+e1kZwGszVOveamLHHxNZRMuwEaxHov+H2t5OqYtNvw+PHjWZVJ5+So8tWoVa5u3bo1z4nCbW7fvj1zKE5OTnj55Zf5q3/1r84VaO3KaLVfr7+euwbltQqVqobptVPojvJAdJ+71Ir03LbbLW+88canAmH9TA3/0W6CwrfqpDeEwHvvvcejR4945513uH//Pnfv3uXOnTsAvPnmm7P61pUrV3jw4AF/+2//bf7j//g/ngn99+/f586dOzOc6Z133uHBgwe89957c2fpb/7Nv8lbb73FV7/61Rl+pmT7vu+5c+fOPHYN/r/97W/P11g7HfU61Tk5ODiYoVF6bT/44IM5Ab158+YMR6pJ67q26nuhJunXnar6mJqk1bygo6MjvvWtb82wOE1s9HNXr16d11R9b2qyd/fuXa5evcrNmzdneN3rr79+7trrtV4mh/q35XvrRKsuYOi29KKBsw5B7Zey3Jb3e/2zznOtjPdZRYd6jLqu6yRc7wn9/lC+UN2FquegPu86WVke/3nfvz+M7XPttWk6fNuLaoqxRS+9yHsWkzpXFJyMNdKR0NecxbgiCWsszvhSuUYCyVKljkkCOE0qxlHw6RIwnvkL5Jww1tG0jrYRCMFqbx/vPBjDVKqdU0oCL7KOtoyrdZ7GWxpn6JoRawI2bzDTCSYP5LSW7kScSIjiTzYrEj2JFcO4x5Q86zEzjIlhKuTpUtVUWFiMgTAFTo43rNdbcSFfnxDCSJjGInObSBiMa/Cm2CoXcuZMeLfCEwBRGRqGzDAOErwYU3gqcm4KsldpWKPoHiCEaQ7OdR41sUjeF/KrbnkOlG0hr9qi2tV1K9quw3qpWKc4EadAGCemYWC72bDdDoyjJA7WGHxxQLfGnsFEkiQM0yQwKlsC4OwSRv0tAGXf5iJRq67Xc2dBiec5z6R1SQYKBajwfXzT4L38a7sV7RhKglz8SFTdqVSIVU1L/4VCpp4Kl0JVm+aErTg0y3U4w8fPF8EanPPsHxxyePFFutUB1jWiFFY6S8N2TY5igKZ8iDwT7GXdxy7impau6zg4POTSiy9hrGUYNlhm/FaZOiFvm3L9lVaspHlrPNjK2K8QvMUAbwRjGScxU4wVz6TrV7R9T9cJnA1jcesBZydyMkw2Fd6BnMOwDcTJMI0WZxLOwjCCsRPWjFzYFyUp5xyudFUSI2TpVjiriZL4PoibtSPjiDmRwoY0rbHeY20rxQ7bYNp9+tUFuYZDpmlWWOtomn286xBXeeF6eXX/LnyieQEVYvc0jJAmUjghhYmcBWZmEelea4tSrHNn86/rIJfORi7iDUoSL1djGIfinSNwMhAJYkkqi2t3loTTzFwRLcI0GOvle8AUbpWzdSPlx7Z99NFHXLp06VwVTh90uwizy8B/WanXbVcVru5yPK9DAHyqclgHGvX+dlU1d8EF6qSlPvbys/U+66rtcn91UlPvv96vVvyfV4VWT4oa0qLwJ+Ur1OTY+hi1MpQGptevXz83Pv2c7ufVV1+dz0WDFlXLUrM7PXZ9veoxqr6+8hdu3rx5joT+vACyXkc6F7WqWE1Y1k2DYE1iNDBWPkWtfHV0dMQXv/jFc10FheDoWPb39+dxaPB25coVnHNzhRmEa/LgwYP5nDRor9eBjmtXd6buXuzqai0T73qfCuGq561WpKqThHv37n1qjBrcLu+9OrGr91V7f2iSUHf2dK6W5PElD0bf8+jRIx49esSNGzfOcXaWXavluljCw3Ts9bksk1A9l1qyuP5svYZ3FTaWP+8qiHzWpmuvnlM99vJ7aHl8nfPP4qD9qBKI522fr2PRH9J2/VztNAWOMKvclIe5cwbrDN5rMNoU+U4DPiJesw2EBDkCW4yTB+PpJjKOE0+ePClJxVSgUZa27SW4yDBOWi1uuXR0idVqhXMt4ziy3mzYDJtCLBWuR9M6Vq3He8uqa8RJ2EZc+pAcPiEOD4njMSkOBCzGdBi7TzQXSPRke0CiJ+aepxvDMCVOh+2M72+MK8RckU41JrPZnHJ6subjj58SQhTScgolEE5n5nQYbNPiFT8tuByUd5pFuwpDZhxHUhzovDgFt74V9azSZVAFmVwIoNZKspMMhEnmczsMcyCZci7XyJdxC5wiZx2jqNy4IsfZdj1dv0fbdnK4GMQgbBwYhy2b9ZrTY/mCGTZbcobWN/SrFbbwD6ZRzPwUdrXZbCThtAJh89Zh45m14uzhUMjMU+nAaPCWFQKi0BXnRMozFTgYktC0XV86al7Ux3xHSEiC2nR0feGIjIY4piIfG2ZY0VgUxzabzZk/RYE5SYIh7tgmlnHVYDNT/FPajouXXuLFL3yJdrVPwnKy3oiEaQyMm9Mi0TvNakbqR2CMYRwH2n6FsY6u3+PChQu8/MrV8sX+hGlYk2OQABcnVfMQSUgSG3xgmhy5E0dyazopAFRiRSkmhmFku91iG880JaYQGEoX7HR9ympvn739fV555Us0bcNqtaJpTmjWG7wVR25vM2MQnsB2M5U8SaSdMwlMxJiANZFXrhyxf+C42Akc0joYOSGGgXE4pfUO51QNLolhZHCkZEnZEeIIaYtvOrzPGNPRNHvQtVw4fEl4C8bgmg5ypm0O5fvLWNqmxzctpmkBUSSbwiiQtClAEijeMDwjhg3T9uns0q18B1V0MmQac8azySmKz0hRZbOyMCVJzqIIlTJkbS/M4heWYGV/hlx8djRpNGSjct0e77vCN2nkNSf8k9EvlK9+DNvv/u7v8tJLL80Pxpo0WQei+qCrK6O7Au5dnQ0NLuqKv76/TmB2fb5+TYOZuqpa718f4HX1fRkk73pg7wp26s5EfR4aVD58+PDc3zXA02PW/AMdm1apNZBTOVEd/507d7hx48aMya8DEq18a1fjwYMH875u3rw5B3L1tdPKKfCpSrLCh65du8bNmzfnQEdJ8kvpYT3v999/nw8//JCPPvpo7ibU51y7VetWV5L1XO/duzfPWU1ar4PXx48fz/4SSgK+efMmt27d4tVXX535GdeuXePLX/7yXHGuE5Dbt28TQuCP/bE/BpwlU9pRuHPnDh999BEPHjzg+vXrvPHGG3zjG9+YvUY0idF1cVT8RPT9y+Dwxo0bc+BYK5Xt2pbrvF5T9TXU+am7Hd/4xjf45JNP+PKXvzyvNV03dcCrn6kTAf1d33NycsK3v/1tXn/99XPwHX2fJl2671ppTD//+PFj/sW/+Bf80i/9En/lr/yVmRu17A7oeSyT8mUS/fjx43OQON10TnWudEy1Ylq99urzXiaCenzdb5246VYXQOq/1/d9CGGWNdbzqRNBfZ/u50nx0NFO37KAs6vwUY/1R7F9rj1/4Qsv0vU96kKMPTMwc0Xz35okRGzrpaNhwNpUCJCWFCI5j6R4SkpSqY3REzaBKQycboe5Il0btYFAfgwiLXl44SJt17G/vw9YcjacrNcS4JHwXUdjDI3raL2l9YbOT1i2mPAd8uZjYnhGnk4EYpAmxAV4H9tcwDZ7mOYQay+S6RinFTEaxmDADdgUCqxHHvpiB5E4XY+sjUhRPn36CdMYGMYJZz2+aWhcV7k6h7mDAJVUpTqQK5SmyOmmMDGmLZZIGgf2V/scXjjkQt8VeIslm1wgZV74CEGIsoY0G57JXOY5YM4zDyDOXAvvHMZL9ycbQ7YG2zQ0bcfe3oq29ZKEDVvitGUzVytOGYeRFDN916Nyw8aJWs84DCSyBP/5TLlrCgL9GMcJ10z4kNi7eKmo8kiny3s/KzjFgh9XhSXnHF3X0fUdXduzWu3RdSuaRjolosxZ/FMK3M47y8XDQ1Zdw3R4gZPjZ1ItefoJIURiGhnG0pkIk3ArQpDkriQ1wzDIXBrI9HgvTuFGJvlcVwVDMXhswHi2w0hOmWkchUMQJobNiSSrio8vXA9XeEe5SNoaIOxPNF3P/sE+61NJ9tbHTxmHLV3jsSaWRFzGGqMhBCFwmxwLZyKDzfjkibEYDubEpUtHpAwn2wEzBrKPrFDEVCYbS46JP/j979E0DfsH++z1e1y8cCiJXwgFMhaKEaIVt/VQRApSJMSRcdwyDhuePNny7HjLRx8/5fDiiv2DjtYnwpA5eRLo9xzdquWFyy+CdcRsyJsBm1LheqgPixUeggXjEtYFQtpgrOPg4EBI1ylADhiTcNaTw5YpBfI0ScemSLae8XQs1jSs2kuksMe6JDdC3ld69lkiLLpOym2SzqTNEzlmiBlnPBZIJgnZPDPLzZriXSHctFwS+mLmiRH+kBxO5jVnxpghTWAi5FE+azecPHs+cfFHtb3yyivzAxo+3UFYVkrh092KpapLXamrk5C6Or2Eb2i1V/dTV331tRp6BOe18OsKrH62hqAsz29ZCa3x4lp51Y5DvV8N6B88eMCbb77JlStXzilgadKjwUXNOwBmNSQNsDQIPjo64itf+cr82TpJ0uugwY+qEAGzcs8HH3ww8wE++OCDmVCsQfHt27dnNar3339/Jpdqd0S9HWrojkK1dAwHBwczvOfo6GjuGvR9Pysy6Wfq66CBqQaQcB6ipuO8ceMG9+/fn6FNfd/zxhtvcP369ZlLoWNR0nkIgdu3b/Puu+/y4osv8sf/+B8/R5JXJaWrV69y//59bt++DYgnxquvvso777zDq6++yl/+y3+Zruu4du0av/Vbv8XR0RG/8Au/wM2bN+drCmedFk1iNKjU6193qXYF1ropfEbXwvXr1/nP/rP/bIaA6blevnyZe/fuzapMyqd5++23zyVk9+7dm71GltBFvY9qwQHl19SJrXpvfOMb38B7z5tvvknf93M3TPeh93GdNF25coWf+qmfmhOd999/f5b6ffPNN+dzVVhQbT5Y70e/S5bFg3rz/gy6uPy+2tU5XcIk6/urlp5edhiWx1xex/r3Gp6oycZyfdSJkCalu74z63PR66n7/uf//J9/amw/jO1zJRb7K+i6JA9tIFtXKuMCYZBqYihBkECfhEwZSyU8YRCZ2pTFZCommIJlnDLDIBAMhZOI2pHsm5yF3GxEfWdvT3Dzq9WKYQhMocBjELx940X5pm86WpdofaJlA+mUFB8Tw2Py+IQ0jQV64MH1UvHzexi/j2kugDkg5Y5p8EwxMYYkeGlT1JKMBJXGiFfEFCIpirzsZr0tD38hBmuSZIrqjJgCxmJ+JTCXwiLGVMZm0VgSRsjRKRPTxDoMOOvYW61KcG3nIFLHAxTy9kJCk1yRkpVYmgmlewGQrMXq30pyYZwrcCKHs5Ci+FKEcZgfesMgiWFKuawJwfHHfOZArWX8WUozRUhnqlQ2ZRyGcRhoWklkXUkIMGedAO2sGCsqWiorLLyWlqZpZtJ2jQqRoF+S1Lb1ONvTNk7WnbGcrk8L9MzMXhLqRxFCmKVpQW5YYwxN05wFo/lsfPN5FpiWGrQZY8XDIETGcSSOW2KYGAchwaci2ZXLWL0rZOtSDRfjuwZjjZxrK+eq8ruWXHgWoIQaawuEkESMEnyLWaFwEhQCllOkW+1hrOVkM5Qzqcjb1hBzFsJ2CNKVGgOrvhc3cu+JMdB4Q4iFo4MjxswUEiFMwrGZHFsHhsiwGeQenhJtI2aGprWMA6xPS48vJ6bJY31Dtr50qOJ8rVw2xCTJgXz3JHKeCGGNdZ7Gt2gHLIVB7j+SdLeymmeqDG3xjTACJ7MGGu/EzK7ZIxaTPPI0J8hnFPAz/oMKjWWT5Zds8LZFzB9ruJ7yO4QoLxlcwlkrRpXOFehiLuTuLN+hKRHzVJoZ9X0e2Gx+/CSLixcvnnu4fVZVbFeXQl+H748BrhOGXe+rq3o/CHzheceug9r6eLuCjnpcutXJj45LExX93tTgbanrvyupqo+37ALVsCV1xNZ9LzklOjY4q9xqolEnQnAG19FAvzYJ1E5HPZYlLl/PbVlxv3LlyixDWwdBOu76Wu4i/NYdqOWmwV0IAefcpyReNamoScw6H845hmH4FCSlJnOrIpXOtyZldXfo9PR0TpyuX79+TiVMj63zv+wKLJPV5TkuA9bl3KsilHIadJyaaOgcK+Ff18uywr6r4l4fr066jypfF32/Jk91AaD+fJ1oanKsa+/y5cuzqEA9Zp2vet3XSmy7xrrrfOr1tes7YrnpWtv13bJr/8vviV1/27XVPCE4S6KXa0Tfs7yvnneeyzGfnp4+91z/MNvnSiyO+P/RFVhAzpmIk10YR9cKPCNgcH4Pa3tyVFUoiEEw9SQHtFizIsQ9xgCn241g51PCNQ2NdfRtM5O4cwhYIt5GmtbSeEO7akgZkZ+dRJXG2UYSkcbStg2NM6x8xsRTTPyEcHyPHJ6Rh08kWMAy0kqXwDqaxuG9pWlasl0ROeB08GxD4pPjZ4KrDwFUEtY0hTuQ2W7XxJhJ2bDeiO/CFIQ427ZNIa1LNTLlPCccORuMcSUOkXDUYGl8R7/ao20FnhGngXF7wulTca8+3Z4Kib1puXjxogQbdfehVLbjNDEO4hEgQWDpjMwmcHJt5wSi/D/GSMqJtqjwWCswqNXePpZMCiPDsGZzesK43fDsyTOGYWCz2aKGiMYImXoYJ043p8W5WwzsnHMlASmBpiY/MYF1ZHfKwdElsoEL+xeKG7hyJOTmVtduW7oivmlLsrnH/oULrPb2WK32pENQVINsjoBlGjeM4wZHxjiLsy37+3tYC6frlXhlhMCz42eM48hms0aN5DT5Us8LkKDdOovz/ixaBAlSC+cDI18mjT4Ik5Dst+tTxs0pYRLYTwhiLqgVcOcMjZNgO4aA9418MRiIaeLg6AWcleRmnCbWp2vGbZ7NK5vi6dE1DX3f4Wxb+D2WnCMhDIQkXIqYRCp2tScR8fe+9yHbcWIImcOLh/R9x/7BHn3fz4T4KUSePjvm+Nkpm81I1/sirDDRNR2+83jXFF8Jy+l6U8QYLEPn2Vu1Mr8pFW+TlrD1fHSa2GwTnzyF9PEawynf+e4xe/t7XLx4RNvtyTy2GWOK2IGT69B3Hdv1McP2hJP4XZxv2F8d0TRF1jg8k26c9WBXGNfS+ktgvAg1FN5EjBEjKrOMExg8/d4LhLAlppFsTslhZJr9Z0Qu2VlL2zS0TQckpu0pzrY422LtBYxrsd1qVqdLibOkoUD4QhB375SjJGg5E1KYIX4p2sLTaEhZoG4iiSwQ02nYfP4nwh9ye/HFFzk8PJwfaoqxrh90z3uY6t924YRr2c56f3UVtX7gL/e5/HkZhNdBtwZDGvQofEYDtbraX2910K7H0Q6DBp6K1X/w4AEnJyfcuHHjnKeCEkl102BXP6vQHA1g9VivvvrqnBBocKhwCjhzEteqtMKCajz60dERr7766vw3JY9//etfPwctqs9Fg9Hf+73f49vf/jY/+7M/O7up11Czmvuh567j0jnT4O5J8Zq4du3afMxr167Nyc2Sq6IdB+163Lt371yycPnyZd544405OdFAuO97Hj16xJ07d+ak48qVK3zta1/jK1/5yjm4ko5Lr3N9Pvv7+9y5c4df/MVfZH9/n5deeom///f//swN0HHcvXt39pXQDpFCpI6Ojnj33Xc5ODjgtddem9dX3anSYHtXklt30Oqu1C64jl6b7XbL3/t7f49/+S//JT/3cz83d3Nu3rw5czvq5KFO5ur7UY958+bNOcnUztbBwQE///M/f24NH1WyzXV3UreDA/Hl0PtQu2XvvPPODPF69OgRDx8+nPk86iQdQuCdd945F5jrPNbfL8tkVJOfpTjDZyUZNfRy2RmoE95lB6X+7vpBOBH19dOOz/f7DtVj1d9r9b5DEF7Wn/gTf+K5+/nDbJ8PZGUdmIzzDRkLeIxtMbbFuk4gPBms67C2I6ZSaUyQsifhiDhSdsTkiVl03pWz4T2l8uqK7wCQM9aNmDxiOaZtD/BtD6YVrDFgnSk8DKmke5/xrHFxJIen5PgUE5+Qp09EFhVLTDKeKYnEY2PBuBbjVkT2CblnmjxjMIQgkAS8F16BqpsiVd6cxEVb+BbQtj3eeSGSFwK1KecocKss5OyCgW7blezQCC9AtOkb2rajaaX6HqcGS2A49UxGiJlhmlivxScipchq1aNc7aTk6ErydO5OVJdU+OGm/KyqSImMwSQjak4pc668SkkIRpE5HbZDgfMEhGyciNkQhkGgXiHOztMgVVepFIskZgiVYlUUf5BsJ06OT3CuZX+1j7FGOhFekrTJbkull9KdkA5F23V0nc6bL7AnuVZGeyQ5MWw3DEX5SOfeOUvXdhweHs7jeeqfElwo167g5G0uU1FAMPnM7ThKhCgJD5X0rZFqtSZSYRppq2syjgPTKO7aIq0rc4IxeG/J3pOKlGcUG3CaYSuQsorobSVHLpVySWrOkYZVMKBA3+T8wTrpWtnSfbHOg7GsVntgBrIJMwdonALGjKTCT4kloVVCsrNOOnDFqTzn4pQtvTLESE86IMxQNjEEdPN9YnAp45sGa2C7kbXUdXuA43RjOF1vMQacK0pNJpNNwDnD/l5PTpOoa1nIMXIaT4s3SyJMJzhv6foO1wxY35Biwvke51cY1+AoUEdpjRVjRwnaYxrJacLbLFCpSi0P25Quh3ynGRLO7JWkosX7PbAe0/jZ5DHHXHokooiVM7MXiahKydxOofAyStIoRYoAMZBMLB0tWYNd9+PnWMDzq5z1/3+QJKPediUMux7Ozzv2ruMtK8G7uhX1mDWorR/Uz6uKLiFXGozXQUetzKNme8vzrAOkGhaxPGY9bg0atcr78OHDWYVIIUE1dv7evXszrESDloODg1mZRxOfWib1xo0bczJ0cHDAhQsXzs2nJkcPHz6cE4s6iKxhWLot8fI1bG4Z+OnnNNjWQLaG1yzJsHUgruehiZ6O6+TkZPaoePvtt+dz1s8ukyXttrz88svzNVTIkQa0y+BR4WHAuf0vVYTqYHLXegW4d+8eIEph9bbsBtQBsCZgIQRef/312QdEA/jlcWrOkI6r7gapcEAtKlDLB9cdK3j+Pb+rU7Pch66tOqgHzkHm6gJBnTgvk6Il9FGvv/5cFxeWc1h/bnlN6v3ten256fx+Vof1s7oby215jHpf9Tn0fX9OHvyHuX3OxKIlWY9vVhjjybnD+g7ryu9SQsUUw7spbUXtJkNmRTIdAU/IAhma0kTKCVWK8s7Tr8T1GmPkYRsTTXqGSQOkJ7TtPr7bYxO00yDQKIvB+xZnI95O2PAUwlPS8LtSnYzPyGFLzpaY9wi5ISTHGDc4n+mcJES4AwIHjGnFNjUCfUpiahWtJTonPgpJKrKi8DTNQTXAqt/DOct22xFDIISxBPzSnTDWgJWAWDDUzWzKpf4MMSWaxuMbx/7BBcLYYNPIqfezSdY0BU5OTnn67AkhTgU2JtXSuapZeylUuPFZ874kFhrMATOcB2tLYlGrIxW5WiLjOBRn7c2skqRwrpwz22EghMgUAjGLQ7N3vpC2z1SUYghiWJgECiOwFzh+9hRrHZdf/IIknqUCHPzIYFVW00gC1rRFVrajW/W0XYsv1WkFT828h5TYrtesT08I4yCxoGLZe4u1R3Ni0XUdU5jEiC2lkhQi+5wbE6pwJXA8hVlZKEG3SodCiIFxGhjHLX0sAXkxJdxut0zDUJKKqTh8Z1rvyU1Dapp57pgTAEeOQRKGXMj6Tj1mhLReqMWFD5TIxbAvGghjkaalweYC1fICq8rGsn9woRDeN3gvymHjGIgh4dxUEZcLlC+n8mVlC+nclOp6wCQKLO0ssXDOk9oOUU6WJEMlhHskmL+wv+Lp0zXDEOhWR0whsN5si8LaVOCWklzEuMU5uHiwom89betoOkcksT09Ybveilv5eErXNxxc3KNdiX/NFAba9oC+v4Bv9+eCh1rOhTjJPMdATiNQHNq9pXU91vZgG3A9GUPMBmcF9GQbCtm6wbedKE+ZhJ0mrA1kV4whrRRtcoZUuqMqXBBTxpWkM5T/5ySJuTHCjylmHRib6FbN530e/FC2OoBb/v68h55uz4MKPK9yuKwWLj/7WUlOHcAtA5VlAKHBrQawywrl8lzrYHJZYa8TCw1ctAui+14GU0tS5vPmRAnd2pm4c+cO77//Pm+99RYgJm03b96ck4UnT57wm7/5m7z00ktcvnz5HJznm9/8Jg8fPuSrX/0qN27c4NatW7NZnlbcdWz6rw701LBPeQX1tdHf68q3qhhplb8OElW+s+/72c/h5ORkPm4NP6qr7XUHqg5U6yBbOzmaPL7//vv8rb/1t2ZX8HrOa4lfDdBv3LjBwcEBb7311vx+TcpU3rUO6pQXoNVnJbcvA3tdO7uutf5+9+5dgJnbUP+9Ps8aRlYnPV/5ylf4yle+Mity1WaItXpXveY0adP3qZt9TVjW7k59PnWXZ9c9WY+7Xs/1vVUnrTo2TfBqknPd6QHOwQJ1jdfEcl0zmhD1fT93wfT+rO/r5Tksr9GuQkh9fvX3R51Y6Os6fzVXo17Pn7V9v2Tks87hh7V9rr0Oscf2l5g4JOeWkAxp1KACqfpahwlSLJ2mIicaIiFOxDQSSlU/5VwqlZ79vT0a5/HOEcLIOG2JOeDNFm8HyKdCFG9+giEfsh1aIhRsu6W1HmcyNn2PNH1MGP6AMPw+Jq2x8aQE1Ikpt6TsibGVoJBM01/Adxdo9q+SzAHBdMTsMa7lgt9jLwrpdLtesx0HQghMo1SVp3GcA3aDEDC9swUqY2nbPfy+Z9WvaFrhVsSCOU8p03WCR9/re4S8Lfj4FGMJGkTSsnEZ3xjcfsdw4QBnJtK0JhV8/kePP+L0VKBRe6sVfd/NgXLyvpDDy2YMrvHYUnGPKZxh/1HviqIrlTK5dBqatpvnUfD/EkSPYWIMoQRfwriZxmHG+qsQkHeNFNApPJAS6DtraduWBkmERKZ2ZBy2PH3yESlGrr7yExgyfd/R9S0xdIxjX+BFovbUFPnV1WrF3t5eUSkSaJwcUqBB4ygdlidPPmaz3pBjxGYJ5FwJxruu4/DCBawxHB8flxt0YhwHYgqibqZV5ZKAbDbbkqAVaFapxKsxXkqZHCbWmzXf+94fME0J1/QCbwlT8RmZGKeBaRSpXhCIlQPGAo0JIdA0wusY2hbnPSlIN+Hg4EBUtVyDRfhGmUzfdTNfyTuHs0qGd+W6S3LRdC0xwxAi3/nudxmmSG72cXsXONy/KBKrKZFSkGA3JWJIGGtp+56YII2BDz/8SDxrGleSh2LaOHfMzhgv1hnRiNNvopyIpgTPUZSxGm+5dKmXa+QgJss4dWy3kszlIolsjSNnufeca4g5sp0iJ9uBaRo5PZZkctiuCeOpuNW3JxwcHtCtei5eavBtxjcDzj2ROfFuhqT1XYf3jr5rsL6VhMvIF1/OIn2bsyWOoSQCkaF0ssQXpRC0jUN9V5y1IrttJQm0TtzcY05M43DG8XCegn0rCVvCNQLbam2Rqc5n3VSDYbv58UOh4PyDq652wqehTsvP1AHh0ol2VxdBt2VgXycOOpYlRGH58K4f+nXFVQOQ5T6XY9Gxa0VaX1MvibqKrlutkFOPc3ledeV2qTq13DQQ0iDxypUr/PRP/zQAf+pP/SkODg64devWHPD+1E/91JxsKDxKA7CHDx/yrW99i3v37nH//n3+4T/8hwD8J//JfzLPp0KolHwO8MEHH+C9n3kFei51wKtzpTCrpZt5fb51YPzuu+/O10ID2vr9OvcaqKvykAal+h5VI9IEaLsVV+xXX32Vv/t3/y5vvPHGp4wQdW5Vxen69evcvn2b27dvc+fOHW7evDknG3pt7t69Swhhhpndv3+fW7du0ff9rAimyZLOiXaEdC0s4Ug6bk0SdH3p3NZrR9dZ3VXYbkWOWKFP2t26e/cu169fP9fF2bW/k5MTbt++Pa8xXftqxFhLHNdbnaDp9XhecWFZFNh13y3/rgmPHlfnR+daO3DL9ahrQgniIEm4JuDK79DvirpY8DxBijrRqZO85bh1rHX3rk6Al1tdePhBuxj1HOl+j46ORFL+R7B9rsRiGxsIHYmGjJdAIueiZ5QKrIFSxk2ESci64xgJ6UzrH4TMbI1FIlwKCTEXw7soCic2CvkyAsaRc082jmwSuKKUY0qgZJJ0JsLHMH4Ppk/IaUvOEzkbUnIkXBl7Qy6Sjq7Zw7qLJHNIyB0pO7LJRVFK/DmigzBZfLb4ZElRgqGcDDmpqZspwVRbyOAC+Wmalq7fo+tbXFFGEnnSRFPUXrxXzD54bwkkUdYZt1K53mZyDIRpQwhjIWiWJCBntuNAyomT0xOplFuDL9KuFQBoxvkbtIqvrI6zyrtcHDM7R+vvGkDPjs4pzjAOua5nHZIYBRMeUywKNfYMclWp2ihcxzkniUbORV1Mqt/jdsvWC1xJIC9F1rj8Pxf1HCHF67/zXxZimidjJ0uys91uGLZbQphwhf+g3QwwhRDdFLPFfaZpom07YgqkKZXKfEXKRkjQ0zQxDGcBO+Xv83+lCr3dbFj3p1Jtx8wQoly6KbFAlGQeDKGQrtVDQhXFUuny5JKk7+3tzXwKkogY5NIJs87MAb4mQBrc6j61K5NyEmfdzUB3saFpuuKuHsEIdFEUjwJximLyqLAnIIaItbncE0WQADt3vEzhJmvXTNfsWWQsHR9KN8QYP3NWMiJgIE0/R4xG7kdVojOtfFfgCTnhc2KKATOMbLcGYyXhEvK1IeFopgZcw+na4MaE9ROWgDVyPypdZtVHvHeMq04SfWdwXiWOmc3itRuXCwGfwqWi3H8qH5xTxjgKqduSbQZTZGpzFmRVuUaa+IPF2kzKHuME82YLzA5M4bAhnY78o2lz/yBbHQQBn3rw7np//bD8QSpzut/6511Jx3J/NUyiPnb9/vr1ZdKzHPMSN12fQw3BWXYulue9nI/6/3Uwrtuuyq8G4RqsKzZft+Pj41mFSmE4Ct85OjqaVYQAfu/3fo8HDx5w48aN2RdhGIZz5/xZOP4lqXQpUVpfvzpY09+fF9TWkCoNbFVpaFf3CM57Xyz/Vm91F+mz4He6T52/vu+Zpom7d+/yO7/zOzPR/ebNm/N7NSmp5Xd1XjTwX17zXVXlXfNXy/k+b73q3NXdoOetvWUnbtc6067YMvmr53s5Xt3XZ30X7PrM87Zd9/8yMa0Trl2FiuclLzqPtTzv8wodNQ8Gzq/17wcBq78vlmN/3jzV79v1XbH8/nve+dWiPj/M7XMlFo9PLsI6Y3kKFCWTslkrAZnR4KQQU5OamZUKqm+7wj9oaUvgtz4VwmqYAnt7+zSt52DVEqNhCo7tkCWACGDdFutHutUKmlbUn0yCPDCufw/Gx5jhDzA5QjbE7MjZkXID9FjTYpt9jD/E+H1sd0TKjpPTTIzPgMRq5bFmD4/HNKLINOaE7xz7ez0pNqQYmcZu5h74psH5lrY7YJoksFZVFmMtTdvRtJ6ua0tANjFuT4lhw9OnJ0gABSlaNpu1PBTWTxmHNWkYyFl8MFLcknPEloAyY4qR4ED47sjFw0MuHh5ycHAg8r4a5FdJBpy5Wgs0DBJxDt6sc7MaUgZcSvhGIDpZk78UGKeRKUyzx4EGxIoDDylK56TAYjJnQZUEs64kQY2oRsVUXKItFtisT0gxsVmvabtOTOxcRd6mGN+V37tOZHe9b+YvAOccn3zyCev1muPjY2IQCV5XgjXfdrN6Uk6ZbBM2G/oi4fvii5exznG63RCSzOV2OygtYz6XOojoe6ls57adg+hsCr9iKkTF7XbudKUU50BfjfJmjxMjXJqmEX6JblP5IkpRIGarfo8rX/wS3/nd32V9csy0neaELpUkw7Vn1XEl8bcFTjW7hCM8kU8++YQnz55xMAX29/ZxFy6iJonOdzw7Oebp8THESN+vuPjCCzNJ3XrhFsUMaUxz4iDdHKB0dbw3aKfOI39zDtoG8Rpxq1JQaIhhJMaRzeZp4SwY2rYlpYZtcLimxbc97WpfPHFcQ9P0NE1P1x4yjROffPwJH37vEc+efsKzp48lyXGG1Z7AvU6HSN6W5DlGcsrENBY+QyLnJ5iSbHRtQ9t4LlzYo+sb9i90HFyQzuQ4jsJAM0bkuZ0UNZzzWOcJU5C1UO5h6RCKN4VBZJ29tRy0B6Wr4YtyVelqGDGSNEWQYJwG8WtJYF1DwjIlQ0jt5/l6/6FswvdKOwOwOtheVva0+qrVZf3b9wtAltsuCJM+9OtAru6GaHC0hC9pZbiuUu4Kumr52F2JxdWrV7l+/fo5aMlSJ39JJNdArVaOUmlZHUet9nNUZEbVAfrBgwfcuXOHf+vf+rf4mZ/5Gd59911OT0/58pe/zJ07d/j1X/91/vpf/+vnOiWPHz/ml3/5l/He8yf/5J/kn/2zfwaI87RyMb72ta/NkKRaoefRo0d885vf5J133uG1116bie51wKx8gLoaWysY6fWqlbGW8DA4cx4/Ojril37pl3jy5An/w//wP8zBrlbB1fRNE49lgKdQpps3b85+EUoYV28JlcTVrYbW6PV54403Zu+Pv/yX/zK/9Vu/BcC//W//23zrW9+aOyfaPVL51L7vefPNN3n8+DH37t3jq1/96tzRqvH/ei/U94NyO+7duzdzf5Q3U8PO9FwVCqRJ5ZMnT2aTw1oVSiFFKh/8vG6FdhwU1qWf0XmunaNr5atdgbMG4cuioI7/eQlKPa46qK7nSe8t/Q6qO1D1/vQ9ShoHZg8WNTjcldTrP+3ovf3223jvZxf1vu/PecI87zzqc9H/1/Crz5obncP63OtuyfKYdQfxR7V9rj1PoxjZKaRhJhqXIA0j5lJJMdwxzhVd9Q+wBQqTQmQbNqgrsrWObtXjOg8GTtcjUwlcxygPXmcy3niMNWQH2WUwCZGYHWcjuJQLGTJnQvISnBTXbes8vjvEti9g/CG2OxAS6nZiGAVHPUwUrf0tzhuwlhwMOWuXIpeKvi2ciMg0JbABuwlYK9X0YVjPVX7DRJxacmghRTHdGooL97gtcqoOi8XkSI5C8J2GgTgOhTRaiMAZkhgnAFo1T4zTyHqzngNUrxjxGGb4WUppVmPSn5VTIZwLCTyV9C1uzGaGSwl/IxEKDCtMYd5HiokwxeKknQpxGWIO54jhWq3OxmK0SVIK1N452tItWK9HMoYQokBUZodxhZQwQ49cSTA0SHZFRarrxEAwp8zp8cm8Zo1vMK4QyU2WeddKOgXv7i0XLlwg5czJZiPwvXIz6vqey9lQiNmBYYAQhCsgyU0xPXOWxloOj17ghctfpO1WpBSxIZag3MxzBmbef5qL+ancb2Z2/Ba/jYhvWvpmX5TEuhXTsJYPWbnuOUa2w0DjPY0XRS5jAmMItKVzpktKuzspRk6efEIaB3IIwmlC2OHjJIWAthHHcmPc/Hclno/DILg6JIFxzhbJWku2BqIpCZ4XqKARtbGYZD1QuEIhbAjTSEoTakhnXCJlkZb1MWDyhAmBOBiM72n6FSlZxpAJaSvfRd6yOjzEtg1Nvy9cGJuxriVjsP5MnUw7gyGOpBCJVu7zsngFjhUs661hypZoPNm0tJ10eDCJbCLjlDAhYW0iRSH+p6SmjR7xrDHk7MkZxpCkK0bEriOzD4wRuJrwsXIhrEs3JUQ7iwSIOWMiYUV04ce8nZ6esl6vz+G462C8rnIvZSf1Abn0o1gSYH/QbVn5ravruyrtu6qfuzog+vuyE1EHYTVpVPer0qR1crUryFiee92JqPd3+fLlucMQgkCu/uk//ad89NFH9H3P17/+dX7v936Pb33rW7zxxhtcvnyZt99+m1/7tV/j9u3b/MIv/ALHx8f8s3/2z/gLf+Ev8NZbb/HGG2/MUJy/8Bf+wjlPhevXr/PBBx/Q9+IHoV2OX/qlX5rfp/OsiUI93mvXrs3Bj86FksWXyWAdJOl+dF8aHB4dHfHmm2+eC/rqJFbfpwHwMulTr416jAqJ0iB0qf5VcznqdaMkcFX8evPNN7l+/Trf/OY3Z5Wly5cvc+fOHW7fvj1fS91u3bo18yVCCLz22ms7k+RloHzz5s1za60mMC/vGYXHaVJSd7JqMrwqV6mKUw3J0vm6fPky3/jGN7h9+zbHx8f89E//NG+99da8FhUOWCcodZC7hP4tuwH1Oddz/f2q/rteX+6vXivLIkF9v9fJnb5nV1Cuib1CC733s0t7nVwrCfx52/L75/sVVur1twtyVr/+Wd3NH8X2OROLAevPTL8E8mDF+dlaMpkwDXNioYGp8ZbGtFJBFfyOmHFJqY6ma2k7R9t3WC+B62Y9MI6TBDBWsNhtK5AHrJXyps0CmWKEPBRibXGMLhKOMbuiZuVw3uGahnZ1AdsdYZojbNOTQiKnrZBlY2KcMiGI+65v5MGeC9xAsOWGlAwxMsO9YlTVmy1t2+GcYxzWhZgccDaSQguhwxAxOTBuTohR3JxN02CzF5x2DOJlEEIxZ4sl8FfisEAiShgISMAeQ2I7DPP1arzHN80cvMdCMB4rbsgUirN0TgJNg/kYuQTtpkBwbPGkELhTYBonIV3HNMtmhhBn6JFB8qGUc0kGIOcSLGVDtomcLSarHo4Emo1vyF1mGFPxwCiBWKn42uJNgRGXch2XLT4Pmux67+RaeHn/Zr3BgHTMjPoCyDFygWadJRay3729fWLOHG42DKOY4U2jXDMYixpSWXclcRvHCecUAiTjFBd6UT86vHiJSy9cpmk7QpgwVr0iNA43JSHMMl+F0JGzVIJTKlCkpGZz4r/R9ivabkXT9XKPFMC9msfFYuYn3SJxvnbTRNO2EsRDMSAs3bAU2Zw8I4dJEo1CAY+5eHFYh+1XWOfL2pfkKCaYpshmI54c5Exa9TSN+G5IP6OoF3khcDvfYciE6UzhCisJ/jBuidNASpFmJqYDOYApJHICxCjqadlhOvHNyCmQlH7toT/Yo131tN1hIdkXTkNMWDfOUL5pEhUqFz0xFOnmqH4VuRCqDUOwRBzZeIzz9KnhgmswLmAYmaYthkTj5N61Vs4dY8q6dGC8QLdCJsSJcRrLPRQlkVJPH+vkO9BlrEtFuUvgcjnm4mUhn8HkOan7cW7brXjZ6ANYH6R1gFxXWOF8YqFwgrqS+VnbrgfvMlCtq+t192GXCtMPegw9J5Uz/awHex1g1FXGZQKi76sf9ruSMn3/0dHR3LXQoPG3fuu36LqOl19+ma9+9at84xvf4H/8H/9Hfv7nf55bt25x8+ZNfuM3foPHjx/zne98Zz7O//w//88zV0KlXlXiVUnVV65c4dd//dcZhoFXX311xtH/6q/+Kh999BH/4X/4H85jVi6D92cqVRp4gQTwJycns9xsfa3rYHJXYqEBcd/3vPbaa58KwvTfrsSxTnYVRgWizqT+HEt4WL3V16kO/DUReeWVV7hx4wZ/42/8De7fv883v/lNvPdzcH3v3j1+7dd+jWvXrrFarfjwww/5mZ/5GW7cuME3v/nNuSNy48aNT/EP6nWgm3ZaNHjVtb4MNuvOoJLS63NRvlHtJaHrtSYQ676OimP4e++9x3a75eWXX567jXoPK29DFZvq61vf7zW07XkJfb0WnpeE7rpHlxX+Xffy87oJS/jc8uc6KVK5Yv3b1atX58RK+VrLtbQ8Xj2WXefyvO86HeuSz7Zr7dfzK0XQgR/F9rkSCymGmVLRlGqsLRXUqVT4YgilsuaxXcFvW0NKEKbA+vSMULha7dF2QrrNZFHpGQRSM8RpDjC8aXA4GmtpXUPrOw58jzcjXfyYdPKAYXpMWn+HGCYx4soNMVtSdjh6XF7R7f0RfHuI7b9AZkVMDcOpKNyEybCdWsbJsN4WbgYj1q/FI8H1c0VbE6dxmuR45SIp7lyryqtVQ44TcdqyfrZmcIYTIuuTY46fPWEYBlIu/hsF5pOxpJQZp4Bveg7bFTkK9EiCKyF0q7JPipMkPiUQzKVqvt5sSpANzkqVOEySCEzTVDgRqahZyWaM+E84L2aHFsMwiYnhdtiyGTZshw3OZmIYRUIWgXoNw1gkdxOr1QqDYb0+RQPbkv+UIDcSEeKzzK2fsf9t0+J9xjcdTX9I0624/IWX2d/fZ29/D28tpyfHtE3LNEpXaw6uknaaCpm3dFguv3CZVdfz+9/5fYbNlvV6TYolSC/r2HsvbtVOoCfaVen7FTHDwcGWjz76iJSg63raVgLhzWYzrwHFRmmFOecCWUqJNhvaruFg/yIXjy5z6YWX8L4jxgxZvEtMMZpMUdyxgzXEYJjiVK4Ps1P7OI6l+1KgMa6haXuarsc3XYkpizJVlO7DMI7StXCew8NDOmtpgZATJkamceTps2c8/M53+eSTj9luhuLnIMnl3t6eqEVlwzRO5V8gxS1T+Ii2W+FbUTpLyYFp6PuGxhv29/awzuO8QIXiFBiHSRcee+se7wzOKr8iYzYClco5lM6UcCdijmeJprUcrJoZkmisAzNi0u8LKd05rO/KGslEJ1YpqfFz9yFEKUKE6ITrkB2GFWCxriGGPIsRxJDEgb1wwrCuSL5GhmlDSAObrcFa8dXwFrwzHKwaVv0ebbvHZiuCCKI3JXwyaxMOaB3Y7EnWSUJduE45IZDGMGKdw3hH1wmXqnGZlLektGUcnhWejMHZz1/l/8NuR0dHXLhw4VNBoAbWSlatFX20AqoB9S6jMd1HHVwsDbeWgVcdUCgURB/ydZDrvZ9x7xoQ76pswlmCpPCf999/n9dff/1cVVeD6WUltpatrJMRHZcetzYEU7WeumJ6584dvPcz6VaDwuvXr8+BNohHwmuvvcb777/P+++/z7vvvsuf+3N/jj/1p/4U3/jGN/gH/+Af8D/9T//TPL9/5+/8HV555RXeeecd3n77ba5fv473nrfeemsOQP70n/7T3Lp1i5OTE37lV35lJi2/9NJL/ORP/uR8XktYGZypPulrdeC2hJnppgFcnRTWCZgSo19//XXu3r3L+++/z8/+7M/Ogbzi45WDUQeDep10vvu+59atWxwVudh6jT2vmlwnRSEEfvInf5IYIwcH4ob8zjvvzApa7777Lt57/tJf+kszBOm9996br99Xv/rVef/1fMB592sdW30uev/UJHBdp3UCq+dWn5/edw8fPuS/+q/+K/6df+ff4datW+fOT5NwPdftdsvP/uzPzu7utcmhJjA6r7W3yq65q+/vXUl2Pf7678t7vP5uWO6n/uzyWi73U2/6PbQr4F9eo2XQr99N9biel9zUx14mhPXfnnesZQFCz1Pfv+y06b//R5C3562QPdUNVqraRbvfec6ES0GlOFUZRwNIdaG2xs5SpVOciIOYdEWT5wB9hro4gXG0zuDZ4OIpKf0BcfyQNH5SAm8IyZGMVBGtW2HdAcYfMOUDQlxhRvHjyIgpX4oibyquuw6Rzi0O4TEVg6yCy1dCqXUCR8DMxncx2gJLkhZBmEapquYo5+ukG5MwhIQQxQHjWrAN2UjQhslYl+nahsY7vDWEMDFuLdMk0KZkAhGpUgrMyKKtiaQdJRJEyC5hM4RUcO8YYuFXUKBlrnQUzs6HM8LxLKUqykiNK+ThJCR0JXBnROXJWTfPgSpA6abKUuqYnUkkI9V9a+3MVfHdCtt0tP0ehxePWK1W9H1PvBToejFjHIt/xnbYYOaxciYSUKrzXdeRc2Z//4AUE8NWoDHGFHlfY0R61YDNtpCQS6jvRYq2Lf4q4pBsUflW59zcBXHe0zSefiXGberGnYovSNv2rPYO6Loe35zxJcSdvBDTZ/J6kbMlz8R4VbZKyc3z55wrHUM3f24mZGW9hnLvCS8DJhNo2lauV+NJBtw0MYwTx8cnbGbYl2XVrcTrwYnhm28aGt8xbAcGN5JsC9aTsiGkDDHN/B1jfSE1SxcjkQkpMU2pqMWVTleGmAcxAvQGb4sInHMlQfRIgpEQ6okjZSB7WaumBfXQUGJ6ljUvXPCAkOQjJlscFmczM2ioNJa8kwLIDCuqvu8wBYJn00xSVxndlFIxoJzK9+GMHsQ7g3cOkiuiFImME4ljBzFO0qFMRQUsi/+JQvyygWxkTmUsVm51CtG/EP5TCMQQCaF0lEHI4z/mTb/X4dOKScC5ZKMOjPR9y+qlbvXruwLQeqsfqPVrGkjW79Fgqz7OsjL5vH3C+argEt5UP8BrQu3zSOMaxNTjqTkGS01/PV7NWah/V35IndCAkLJ/5Vd+hf/lf/lfds6fwmDee+897t69+6mqphq66bhWqxX7+/vniKv1+dYY+hp+oWPUc1wG/csqdT3/moxpxfvOnTvnpFJ1jvV4dWJYz6H+0yCwDsh2Vcafty3Xy507d2Z4jFbxtauhEC3lb9ScFU2y688st3pOlI9UX+PletNx6bXQ+dFzrSF8Dx484OWXX56vi16TGsZXr7W+72cFqaV54TIIXq71XcnB8pyf913yPNhUvY/njeGzruWuBOOzugi7kpTleGt+1zJ5WH5mOb7nrcHl/nbNw/Izu8b+WWv6D7N9rr0qCkehT01xhSZn2lI1V+MtxSnnHEkplMp5kcTsOlarfUIQMuvTTz4ufIoRihqMnHSL8S3O+eKqvGKv83RNos3fJY3fYzj9bdJ0So6BafKi+mTaAk3oWO19CfwL4C7x8RpCAswG7ye8czR1gOcczhj2nC3GbqL0k1MmEXDGS2fB+1n1R9SEYNyKytB2uwGke/Ds6fdwJtG3hgsH+7RdL3wRu09inxgFItSvVmA84uSViWFgu37KwV7DqvccHPSM48izp09Zn54yjRNxGhm38l5rRZ0qW6Bo4FN8KRKFC5MRVSyj0DAZuzOCf++7pkjcluSkkLdB+BlTIR2frk9IcZoD+WEcxRwvRoExdV0hDKsdmnpgiNN4LKRYMthGOiOioCNOxxf6fY5efImXr17jwtGLtP2KrlvNCebhxSPhzgTB+I/DyO8//Fecnh7z9MnH4uA+RcIUiY0E2P2qp2lbrrz8MtZaTk5OiCliIgKViRmIbMIo6zoITt65hC9dn65raVrxO9hsC98hZ8G8Nx1933PhwgUODy/ypVeusre3x97+PienJ5yenvL06TEYS9fv0a/EIyGEVJISR9cJ92bwbeETJGIWNbWYEjYlXLaEGHEulaDVF1PAFu8dOSeR0x0GJJWhKBKJNOw4TkyaxKdI13dsi8N3zpnNdmCaAsM44RtPt+q58sUrMt8xsepaun7FpRcus90ObDYDm2SlM1gML8eYyWGU4oHvyE6StuPTkZgmYpJVURYpIYinTTyewBjaxrHXefrWc/GwwTeOvvNMo9xfwxhIyZKzZ0qejMU3riQBma4XyKNvPDZaTLS4JFDBME2SADrxl4iFTB9xJHGbECGCYSJMSZLUrOcHIY3itRInprHILY8qwZtmQrx0NovSVlGretZP7O9HDg4Cly9fomtbmq4hbp4xTgNxPMaaTOMNrqi+ed+hHjOp3NO27YjZEpKshSGKX4zcVwD7pWNsmMbzrfEf11Y/0OugTpMKdejVSi3IA1Cry1ptriuCiuGvg53nwY/qwBQ4F6zUbtQaUKr0p1aR4UymUsem76+7DJcvX+bVV1+dK+laXa05FzWuWsemFV2tBOumwW1NZK6TEN0Uv/3kyZO5+qweFB988MEsVXr16tWZsPvo0SO++MUv8mu/9mv8mT/zZ/i//q//a97fn/7Tf3rmE5ycnOCc486dO/ydv/N3PnVt+77n1VdfnQmp3vuZeK+O2/fv358rpHqdt9stt27dmsmwmjzdv3+fK1eunAvAgTkh2gWRAgli1dgP4O/9vb/H9evXzzmQ10TkuvJd8y00CVNol461lhteJpu61d2req09ePCAv/bX/hpvv/02P//zP89/+9/+tzx58oT//D//z2cCvq7rN954Yz63X/7lX+by5ct85Stfmd2llWtR3yf1PyWoKyQqhDBzWeo1pB2K+/fvz8dXiJKuwSdPnhBjnCVx6/P/4IMPePDgwXytXn31Ve7evTvLBKtb+2uvvTYnmDpnS5iVriO9H/T8ahGFJcG/DtDV02R5j+p7lBtSw4N2dSaWxYLnJT7Lvy23+r5eJtQ6Hv27zkktg7v8fqg7fjW86bOSjnqMdSL/PKjncu5/2NvnTFfEmderkowTMyayykVSAhkNJFtmvUWjqjCWEDPPnp2IpGoQZ+aMxfm2VG0dbdfRtj1t03Fhv6Pxhr7dYNMxZnvKNP4eORyTtmumaIipJdAhztYW73tce4Huwh8h20OSOaCLpzCMnK7XaA2mLdr0TdPOBOWUUiGUW5piSlZOjRDE7Var6zPsaW+Foefi4R5xGolhZL87FHffrqNtL4Jp2G4GbOvpL3RsNxtiTGwn6HqpipMmfONo/IpV5+haR9s4DJ5V3505MyOJUNN2pChBZU6xBG0UoqjF+0aC7Zhm9Rlwsz6UK0ToGDNhnFD3cErV0xWYUs6ZYZzYbLZ0bYs1pSptBL7TX7gwr4XNRlS+XPHzMKVSHWMkTOOMVXdOEhypnLc0bc8LV65yePQCq8NLxGzYbsV3oqBWRHmsSPta42i7hiuvXGUcBg4vvUAYRb1qCkWydwolSXC88OKLjOPI0ydPSSWJlYpzhEBJfp3QdwqcSfgG0t3w3tN2HftZ5GVTCKx6qdb9sT/2b3B0dMTFoyMODw/xXpKQcRhFhnYMJZZ29HvS0dhstkAmlkQmp0TbtcTYE2IglIqzqEaZmbgviXfpHrQtrhFVrdOTp3z88WM++uhDhs0pFqn8j8PANE2crteEEIoccKRpPOv1Zk6UjXWFa+IkIc2GzWYALBGYnq1x68DpIB2yjGXiTGHsrKuiyaR4c6QcIcZSIOgRQ0wwBIwH7yxEmfuD/T18wRw+PR3pgsd1Hbbr6DpP0wXGMbDdjKSYiUlUzeQ7xrKNYGzGN9ItcM6w13vhlNiJcTqFcaLvOsDhrMdb+az1PTE3xL09EpaUDTE6YhL41HYcCDGyHUZ8OxGmSNOpUEGqunHMME6DdKBihs12JBZeU9t6+lWLMQlLwtsebCabXBTaEkyxqO1lYgJMxvtiKhnBZI/NGWfkQicsIURCzowhMQ4//o4FcK5iCJ+GKGllsyaPasC3xHPXZmg1fly3XQ/0OhABZkhMHbSqqk8d/GigXgeJu2AFdcW2PkeFUel7NCirx6p/U/J6/fk6mNCA+M6dO4QQZgWf+ri1ERwwk641gFP1H02W4MxQrd5+9md/lvv37/Pw4UOuXbvG1atXuXnz5pxYXLx4kadPRQnyf//f//c5uKylWR8/fsx/+V/+l3zta1/jrbfeOnetdhGn9bNKFPbe861vfYvtdsv169fPqS7puWqgppsmNSEE3nrrrXO8CJV2PTg44MqVK3zwwQfzZ1V9TI9bw9IePnx4TtWoXp/12ltWzPU6vP766/M6uH79On3f89M//dMzbE7n99133wXgjTfemINQVRJ68uQJN27cmJO3+t6pg0dVZqrnWudkSbrW++u1116bE4tvfvObs2LZ3//7f59Hjx7x9a9/nTt37vDee+/R92IS99/9d/8d//6//+/zMz/zM+cSdB3X3bt35yTt9u3beO9niWLl1iyJ0HouWijQ8dciBfW86nkBM4yxhhDqNfTef8qQUM9/V4ejntPv9/rz/v683+sEof4+0nti1/6WIg3L75MfZNzLwsqu9zzv9x/W9vk6FpnZ+MsWGBQI3EJ11g3mDA5Ucg2j5ASY+QjDVgKuFFNRa7JY24qpmfd0fUfXdnRNy35vaNxEY09Iw2Py9DFx+11SnIhTIsSGiCc6lQ41GCeO4La9SDL7GFZYO2DMJBX2pA7XUUilxuCcP+e5cB6WcgYLSkQsGYeQJ421BbIkGOlpgDhl+nYl8Jhuj5T3BaKVI8YZms4zTtIJiSmAtTivRlcW41sab/Fe5sYlW5mNqSqSxXpf1GESlOBdk4OcJVgLQZ2u5ToYa4ruvSQGkogkQvFGmJWTjF6XwpEJUs1OKWMsMxHYOc/eqi+8k1GSxWkSKdOSeDGVym4JatVdHCNqYq1vafo9Llx8gb0LF3FNL4Z0MZCmCU2JbDEgbNpmdty+cPEiMUR823Jy/Iztdl34PmlWJrPOcXBwgYODE/YODtieHsv6iaGkvnIu2Qn3wqU4J2sCZcpFatXT9UaSOxe4cHjEpUsv8P++/m9ydHTE4UVJKjTRVmJ7xsydgxBiIb3LRYrTiG8aUgx43+KbiSa0eOcLuXya7zW9n6x1c3JhnGWaAs+On/Hs2VOeHT8lT9sCcTMM2610IkplW9XA3CgV+qYVo8auW4l61Qz1kiKAMZlsnBjmTSNjXOObDu9bgi1SqWmmORRooay57TgS4oTNmbY14DI2F3lfOZmC7pG11rSNwJpSYrOdiMBeyLSNwPWMt5go8sg5i6s3KRU2iSGEkqiGTOMlwXCNxZmMyYYQRlLY4F3E2gZjV3hrsBach2wcyTbgWnK2xOgJMRNixjYNU4gYO+L8RPSBKUzU/iOpTjCKOAVI0jVOEyGITLP3ln7b0rVekozWSLpf9iUYqERKBuPkewebsQW6mYNA4SzSdTTWkozwMKQzmBnDj18VSjd9sC2x8/qA1UppXZGvK6T6mmLg6+BqKcWp761/1op+HYjVicaVK1c+pdJUK9jUsBz9t+tBr4GgBknLbQnh0uM/r1Kox9LzVuUixenXx15ySzSIrsncuh/dHjx4cO54f/SP/lFCCHz44Yc8fvyYGzduzImFbr/4i7/IX/pLf2n+/YMPPpjfo1Cek5MT/tE/+ke8+eab5+ah7uDUr9Xnq3P/27/925yens5BV60wpGTYOrGoMf/1/NR8AJ0nTWA00NVj1MmaHnPZGavHuawCL6vIGkQrvAmY5WbVNFB/hjPy9cnJCR9++CExRo6Pj2e4mR5bx6XBct1VAeZ7qu6w1HOtybd2lbTjo2P+h//wH3J6espf/It/cTbs+/DDD7lz5w4g0K5/79/79+ZzqiWha6Up3eeVK1fmpLY2Maw3vTZ1hR2YE/xadljnQYNyXeN1Z0m3JSxMz3+5/uq/L7fP+tvz/r7scuhc6XiWa3dXx6HudNSdz887tu/32q6OzQ9z+3wdC1UXKlV750SZyFC08rOSc+EMIy4whFTw3kYVfnzLXteLzGwrCUXTNvRdR+MdfZshPoHwB9jpIQynxPCEOG2JYUKULB0pr8imB9PStgdY3+J8T0iOzdbz5Pe/B6YD05FjJEwTKYyI23EkTAPWOTbrE5quw/uGpuuka9K2c/U1hDCL1eQCLxrHcU5KcoGpxHGLSc/IeYvBM42W9QbGfEJMuQTmxSCvdbSdo/F7xewPYvZFXcexnkbWU2TfeEx2mHaFbbbYSXgJyRqSteCKklEKEAKESfDoCbaDkIdTlkq/KCkholKIOpdQSFORpU0zt4IM1reo89c4BTabLev1aXFwRlyznWN/b8UwbBmnEXXV9t7Ttg1d25KzkF6HcWBcB7bDSNsFWufp+hVfuPpHufTiF+gODpmS4XsffUIYNqQQSEEUv6STYOdE1PkG7zz93gFN07LqV7R9T46RJx99DwwM24GmbekMXDg8nE39/tWD/5Pj45HNycm8sKVTJDye3HjAC5QvRqZxYAoSGKYEXb/H3t4+/+a/8W9y+fJLfOHKK2Qyp5uR9enH5JRwTrWuzBy8t11P17X0xrBarRiHgXXflnMzjOOWTCbGQN+vxFQxhpln1LY9Xbui71asVvus9vbBwkefPObOnX/O7/7uAz768BE5ivmeRPASrIYoFWxjRGXIOo9zDQZLzobtMIkcc9PSdivaruPoxRdomhbfdmxGIfKbwgXKuZxd6URKYm7IqZmljaEv3TFLzIYpWcYgMqw5USr6lpQT05RZrz/BGoGIkSwnxyMff3RCShtylgSzaTq6fo+LR3vsFf5MDEn8VUbpQKVxYgiOcXQcP9vMfBWbO6xpWE+WprH0Dey1Fu8gTB8VsrfHtodgW2zTidoc4PfEDyfu7wmROopynMAm4xnMLBTzwmkqxZM4O4SnFMmD3GPmqXSAnREehveWpnV0fYP3jr2+xRlwtpgGmkRMJzN/wyUpfDRN4UrhSX1PzDAm2GzOfIZ+nFsdEC0D8brDUAdpdWW27mzUHINlxb5+uNbYcSWoanCpMKr6MwoP0c/quGvzsCV8SgPOJXxh2Xmot/qc6yC1/qy+tjTV0ip9ndRodVYhFnXgHsIZQf7Jkyf803/6T/nyl7/MO++8w/vvv8+DBw/41re+dW58/+pf/Sv+o//oP5p/V3fov/23//b82rVr13jhhRf4+OOPAfh3/91/l//0P/1P58Dur/21v8bjx4/5X//X/5W+73n33XdnrwmdZz1XDbh/+Zd/mQ8//JA//+f//Bwo/9RP/RQhBK5evcqv/uqv8k/+yT/h61//+kwiV3KwVtNv3rw5z319DfT8lWD/6NEjbt26xcOHD3n33XfnuX311VdRaI3O8WuvvTZfG339+vXr87kuoW16jvp57fy88cYbPHz4kHv37s3nrCT/K1eu8Au/8Avzmla+il5DlXx98ODB7Kvw+PHjOSGqIXbqF1J7LdRJTe0YrWtL4Wl6jzx+/Jif+Imf4Pj4mPv37/PWW2/xta99jW9/+9ucnp7y27/92/zX//V/zdtvv82dO3fmTknN5VHonTpvK+RL+SRKvtetTn7qwFvXvt4TdRJRd77073pf1+IHd+/eneV/dU7qfSoXp+Ys1Qp1dbFBt2UyWQflu4L8+jX9bP29UX+2FrjQMd2/f3/uvug51MmczuWDBw/OfS9p0aTe6mMtv7s+K0H5w2yfe68GJUdmYghnRFxUEvOscol2NPRnYzDOliq2o/ENzjv6TqQo27ah7zzeJpr8jJQ+Jk/fg+kjctyQwkYw0TERY1M4Ax7re6ztwV0gZM8wOsYxE1Jmm44xdsCapnIWLg/4WKrRBS+PEV8DjLgQZ+fRVstMUkc8IrKRyDvFwJQTKUyYHLF5IIxr4rRhGg0peyID2XqyERKrwkUKZ1QSr6hVc5EZ3W4Hcg5AZNhuIQVyGNmcrkWeFoOzHrz4I0DG5ki0o/AWyuKx1uMtBaNdYFIFqkaBeBmk4kmyZ68VKJhzjQTzzhJCYLNZc3zi6JqGVQmIDbAdBqZpJKQggb8X8ztXeCwq0ink7ID3Ces9vm3p9/Zp+z181zOFQIyZYQyMmzUpTOQ0FUJsxjt3lli4QHSyhGMxumtagdN1fS/XJgSmaZSxeEleDw4v0K/2GIeBLSeIDwriCl6I6kpIdwgDWHlDZIGH7e8f8NJLX+DSCy9ycOGwdCDkWJu1dEy8OyPET+OAbzwxTsUozWGseDf0fc+4twIym/UJ4/j/Z+7dQy3L8vu+z3rsvc8591Z1dXe1pqQpRTVRGUq4h5ShhMtQIm1oQwu1oZ00ZIJlaIiMxyBDG2SQkf5wiE0Izh8G648xKEQgBcYwxIZ08AQ1chu3mQ4uMmVURkVUCleZklSjqemux73n7Md65I/f+u277p5TYzWZGWvD7dt1zzn7sdba+/we38epH4eQur0kHsZK4tNIt6brOlrfcvzsGZ98+2O++fAP6bcn5b4U4zwhmiuCSuVvgdKNU2IyRf3JGov1Hb5d45qORENInhwMU5D7u20FhmasJaPV9YyQVmSenLWYpkElb2PMkAwxG4FNlXGW54kaxWVSKt2pnEvCk8gxEONASgHI+CYzBgOupR1E8lq8ZdJMXG+8L2u3YTBFCjlFYoaYI7vRMEbDOME4JbwV4njTWlrb4LMk89MYpeOUsghUZMgxY/EYJ7420jdA7kFrZmgUpUsl13sKl1KjyZzTLHQhvDVDM1qRK/aOcQg4a/DO4px0/tom4ZwVIQhX3M2VT1NgVRhDYwzB/cfpWCyruMvX4Dvb9s97T52YLHkX+74k68rzvk2/5GsCcf2Fuy9B2Ae/qhOg/1BFcfn+eoz0POrrqM9Ng67leakMrAaR2p1YJkV6fQ8fPuSTTz7h1q1b/Jt/82/2jo1uipfX7d69e5w7d46PP/6Y/+w/+8/4iZ/4iTOBoAZ8P/ETPzGby9XJkb6nPn/9TB1UKbfk4sWLvPLKK3NgWgfFGnjXAfnyeutArg66FGa1lAeuOxZLkvKyK6TvXXqK6DpR4ru+t/bCqNeZJoePHj2ar0ODyKVpoX5Ok8Zr166dWRt10rrswCwDcT3vC8VlXd+jnRPt1Ohrly9f5p133uHSpUtnEmxNfur5r7uL9VzoOary1ne7v+vO0DJ4X/7U9+y+QF4TweXzSM9xmagst+W4LddKve0rKOx7bd+zcR8PpPby0XOsOUjaGdMEuk7alp2I7/Yc/tORWBhbnF8l2B5naIV84Z9+jUkAozh1UyAkwksQOI9vGql2q0tyU6rbLmPzDrbfhP73CdsHkLfFBdcRAkzBSmXfNGTXYrtDbHMA+RX6IfLkeKQfSldi2s6GaauDA4EMJHE3zikUVSVLSJFExsZASAHnPI1vEViLnau8zlhSlkAo5kQIUqVM04g4AgdOnj6l3245Pu7BOFzb0q0PBT7SCOE9l1GS7geYEhBtNhtCDDz+5CnCD088ffxt4tQTxhNcgaKdP3eBxrU01oGzGAuOzDTumAbL1O8AI9h91HxNFLdyCMRJrsGbQlp3tqh3GTBJgvBGrt9Y6XIMw8g4DIRpYLNeY168QEoRZw27/qQQvqcZPmWskS7AqpD8jZGKfcxkxI28W284vPAi7eYA41tOTsT7YxpGdtsT2R8IFt3k2a3dlY5FcJ4wjfhW3JnPnbuAXa3ZHBwy9DuOn25x3pByEE5C43nxxRd54YULxBB59vQphuJyncXUbxonvJ8kKepWBa40kWMxe2s7XnzxJT73uR/nlVcu0bYt2+2WcRgYh55+tyWnRONcIfTK57x3tKuVrCnnWa3WNO2K9XpNzonGNxw/e8ow9FgrikfK8zEIDLFtO1bdivV6w2a9oes6vvFHf8gfPPh/Ofp/fo/+5BnkGltf4G+FBKx/ks7PKaQO64ACwVtt8KtDXNPRTw1MkPLEOA1FErij7Txd2wLSIZjGUqlPqbhmN3SrrpDjI30Ms8qS3MupPPzSzB2Z+RlJyd1FBSuqlLF0So0JuO3I8TbQNC1tuxJCtrN4Z2gbcWFftQe0zYrdFJhSZDdNQswOgTAWWGNMNFbW8LlDz2az5nxzgM0HEA27k62sPZsxTqCTQ9/TNAc41xF1iJ3B4AgGxrHc27ManrjK63MnBoXZiYeGbMX8z55yiazzCP9L4FLeO1ZdQ9c1rLqWts24DM5EnJ1wqliHxWVHZ3/wPhb7tvqLrv5df/ktg5H678ukYRno17ABDQJqnHYNw9BgTAPImutRf+HX3YOaK1Afc0nerQORZUBa48jr7omeR9/3M+lWOSj1vmustnZhlLzsvZ8hK8ovODw85Ny5c3NF/fbt2/R9z6/92q9x69Yt3nvvPf7JP/knAPyNv/E3zsyVujPr9t57783Hf+edd7h58+YMedFrVoWj+/fv89FHH/Fv/+2/5Ud/9EdncrvKr+p137hxA+CMRGlNaFW502vXrs2dJIUyKfegTjLrSnPN01FIjY79G2+8cWYO9dx1X3fu3Jnn/o033jgjg1yvJSWH1+tbA/JvfOMb8/VcvXr1jMKTJh963Q8fPpznrDZV09dv37497+fDDz/k+Ph4XieaHOjaUl+Rei3W16bBvao4KX9ntVrNXI8LFy7w0Ucf8bWvfY0/82f+DNeuXePNN9/k/fffnyFwKsDwuEg06/ko6Vvvn/p+DSHMwgzLro+u6zpR0PtZYXzL5FGhlLVggu5TYVj379+fCeq1YpUmTeoSvgzE63tBz02Tkdp0UV/T7bt1MJ63X923rtV63eqc6TkqZ0rHUwUbNMlYPlP3naeO8/d7+3QcC1HaLLj1U/w6RQFFAuVTLLi1RS7WuRkb71xJLJwv1WuPbUWK1ZuMGR6Spo8Zj/9v8vSYnHekADkZISDnViAczQG4NaZ9Adv9ELgNz7aObdixmyZ2Qy+V22lEhC4T2/6ZVIB9U3DkhhDCDN3pOMAjZG6SQBniKKo55FzUXDMxqQ+EBHA5Z8ahh5Swc3Vbuh0pRWLf07Qdpmk4PDigaRua1pNijzVw0K0pJgyEONK3gXFcEcaJaYjkXjogMZyAsWRrOUmxGNc5TCPVY1tgMykGsMVEDpHCNdlg/QqTE5gA2RR+gVaLwbsOnCQ7znu8b+aqe4wTYhCYOdkO9MPIyckJq04kVg8P13NXxxduRYqR076MSBFvNhKwrg8S3eqAbr1hvT4kx0y/6xl2Mm/TOLLbnQjvwFnEuyPQm9O11ratwJxWK/wk1XELxGlkszkoEL3MbnvCNO5onCiNtb7jxZdewmD4+NuPCGNPCCPOMkshA3PwqyZ63jm6puWzn/0sFy/+EAcHB/T9lu32hN12SwijuKUXp/TJmtIVizP3x239fA9sNod0qzUxnqNpWjYHBxyce4FxHLH+GdYZXCyu9tpJMkLIX282pQMSuP+7v8s3HnyDvoyXvk9vWOU+naoAm+JxIsaR3WpD261EGckYxmnCtwHnPZu1FADarmWaBsiZrpHqumFCwFAesAUaFGlaCuwvMAw7QpjY7Uay8eBE0EGeC6eKbDbnU+RWud9iGbsYG5qScKRUw7mkUyewRlVhsvRjIuaewwPHgXGsDzrWwDo0nGx7hsEwTQpfivN89T00Tc/HH59w7vw52q5lvW7FhX6aCP0oa9m0GNthXYfPskbCNBDGUbgr8vCDtpXk2jdE35TurnQsUk7k4qyu/Cgoni+lcGMw5GSYpiTKejbRDxHrJrzraRuPs4auFY5X4y1d2xRYXWQcvz/mR99tWyYFy8Rg3xcynIUg1K/vq6zVQfvytTpw13/vq9o+evRorqwrZOrx48e8+uqrcyCsX+C1c3D9ZV8nMvp3DRLrym0d8IAEWu+99x5HR0e89dZbZ6rlGjBqVXnfpu/R/dVY9mvXrgHMfJG6M3D//n1+/ud/nps3b/L222/PicU/+Sf/hD//5/88b7zxxmyAtyTb/szP/Ay//Mu/PPMFrl+/PnMDPvzwQ0CSmlu3bnHlyhX+5t/8mwB88MEH/OIv/iLXr1+fTfGOj4+5efPmHDwvq9LArGyl57+U3dXzWioG1UG5jmcdiNYkcO0aKHRK96lzff/+/dlQrv5bPTeaMNTdFA3QHz9+zN27d7l+/fp3mN3pOd24ceMMCX4ZqOrfjo6O5iSiVmzS87hQzBLv3bvHzZs3z3Q9dCx0Deq1vPHGG/P9ohwWTZj+4l/8i3Ow+qu/+qtcvXqV11577Qz0SPeta2K1Erf3Ghqma6+u+uv61Nf1XtFE4dGjR2cSTn1fzZHS8VkG6ctkXIP1+nw0sar3sXyG1EmRdgf1Ptcu2L7Oi57D8jmo+933XFtCpZafr+GcOpa6ZnScPvroozME9uU51ufxg9g+ZR9E4CypEFpBEU5WvwvnxGL2uSjdAufd3DnwzkuQV3DFzoI1EZcDefqEPD4ijB9D3JWKp0dctBEsselwzQbjNtCcI9sNMa8YwsQYUtHrD8QwQQjkHMgIlEiI1lI1ds6TsnYvIm4qGPHYCoTBmOJ+XMznZpLmKJ8rakFkGIde4A8pzx0OaxwgJOWcJLnxvnRmVg1hCjgDm02neAlOdmPhLnhyCASQpKNAlzKJHDNT7lEFLBNlnI23pypdxglEo5Czcwm6bDaIrL4qDmVBslCUkBDZWuu0om1njoxMsJlVl4a+ZxgcbesxNpe5dRjTgbOkWBzQERiPsaLCZX1LmzNte0C7WtE0Mt5hmuafcRyIQfDpBkmYYphmNSuFpKUs7u45pdnrxBhYr9boAhVDtsy06TEYvG9Zr1aMBwd0nUCm8jRI4qQ8mjO+ERL0WSvKUC+cf4GDzQbnHMMgxOhdgSClOIl/CUVut6hOubImJDHwcwcvA9YLvEkhXE3bSjJuCp9EFaFghpd1naiYhRj49qNv8fTJYzHpK4R6hThJ8lDq2JVymy1wLJFPbnG+FcW2IsEawoTzwjHBJGwxepvHpBQXMC05i4eLNhpSzuRYkuRZFWsS8nHWLklRJDPCQzmF85QfipJckjWILUToypvBlueLfijnU7+M3RjwbcCHiY1dzd2MFCdMdsW7IjMFMxsIhghjyIxTJFvHKgRcU9ZeDCJRbJ2otxlPNg7Vpcilc5tTxNmmQLxE4CK6RCrdKxEt8LMsd06iAJVjLLCyAictv+d7NCc53ylibMAYS+MizlnG1tE2iaaxxChKWN7BOH1/zI/+JFsdVC8reP+hit6fpI2/rDLu62zo63WlU/+uyYQGO/r/qihTf8kvq771serEou6S1IpSy2sCSSIUSlLvp04snjdOS7hTHezUhPjl2AB87Wtf4/r163MCopsGLsMwzJVo3Y6Pj3nxxRe5devWGcy+JmPK9VDZ2/q8f//3f3/Gv6tZ2sOHD2cOxr4qK5x2Xuo53Reg1QFljcWHU45O7U9Rb3XwuISjaHehHoc6CNakbnnutRJTPad116S+biXb14F2fV76OQ0unz17dka+Vc9V50lhWMv51/mtK+618pUeU69Pg9iHDx/y9a9/fXZir8e5Hiddf5oIaedimZDX17Yci3q/9bzuu9fr867fq3+ru4LLca3vt/ra9xUxludSq1ftS0iWz7tlcaU+f33/8vm0PBdN4paiCLpfvQ91ne0rSOx7Vn4/t0+19ylEKFUwYwxN28xVQsVvqwGe4PL9nEyojKxvJLFofUPrhQDs8xYzPcPETwgnv0caH8P4tKj6QEyObBzZNvj2PL45wHcvk+gY04pPHm/Z7p7x9GQrX9YxksaBFCZSHAse30kFfYqc7AZW640Ylq3XTCFwfDwwPX2KtSccng807YquE/ddCWjKl39KpDiSUiBMQpA1GGxtVGUFyrA+PABTcNYGQiE/h2li2BkhjlvI0wwS4enTHeMwMmxhHA0hWtpz53BTR5zWpCmQQyROwsHIOZL7WHDaBdJiPbZdYZ0hS1G6dJM0GbQ07QpyDUcJxEKYyMCUikSoAtyKpLB0RgTiEuLAeLKD48jjJ48FOuQbNpuN8AAaT7aebnNI13h8Yzl3vhNInXOs1ufE4Mx6phgJoyQP4zSw3Z4ogIswDUVNTByujZFuRR5OoWhyow3kNBGngXW7ASPu7k8+fspu3OGsZb3ZkFJkvWow5hyvfOYS3/7WQ4ZhO0N5vBJ4o3gVTNNE3/fCrdi0vPjiBZxzPP7kY7bbk9Jd2ZbkM0kyXDpeqbiht21buhaW9XpD17Ul0BVJVmcFJnbhhfMM/QlPn6wYTnxRivIlkM+0bcN63XHu3DlCmNge9/zxt/6Y42dPab3AmWQlmQJDVBUxJVNLwrHanKNpOzYHh4zDyEk/0bQrphDlmmLCnZzw+MnjEufnOakTM0RJvNpO7qODwxfxrce1DeM0MI6B7UmPCiMZ68FETOglwSo+ONY1WNdgsiSHk0ILcyzEcFM4W5KEtU2HK27tNMJzcN6XsS0BXYwMUyCf9AyTJLzrVcO5gxazadh0AjMapsRxP3K8nRimxDBMAiPLkWfbHc+2PY8+eUbjLU3jODyURLTtXiAjClRhiiX5TXiTcDbjGwdFWUq6rCL+EAsPZxhHEQQoxO4UE4apJB4Rhc7lAs3TJFf+lmcBBkkbTKViJ4mvc5a29TTu0zzdv3ebwns0SNYv5DrIWH4p1192+76Y9yUO+qVaE0OfF2RotVehMVrh1Yq1Bk71OdbnUqsrLQOAWo1niSVXRaKHDx/y4MGDeUxef/11Xn/99TP71uCgVjjSgLOueB8dHZ1RSLpw4QJvv/32XCHXa1J5077vefbsGavVip/8yZ+coRM/8zM/w//+v//v85wdHx/zcz/3c/zjf/yP+Tf/5t/wn//n/znvvPMO/81/899wdHTE7du35y7IlStX+OCDD/jwww/5R//oH80dhvfff587d+7wta99jY8++oi//bf/9gzhWa1W3L17l9/8zd+cvUOuXLlypkqtle/vlqDVSUAdeD8uru51hbtOEIEzAWcI4UxXQa9Lz+fq1aszeVjXnyYptSdDvc5effVVLl++zJ07d7h8+TJvvvnmdwScy8D8zp073Lt3bx5DraivViuuXr06B8E///M/z+///u/zl//yX57JyerQrvyLOqiu19Cv//qvc+HCBf7cn/tzMzzt7t27XLp0aYaoHR8fc3R0xJ07d2YvDu89v/d7vzcn2Fq5VwWx4+Nj3n33Xa5fv87bb799ZnzrRKPuBNWB/cOHD2e4ksrt6hzo/Vqvj/rerxMW5VOsVqs50b1QZJC1k6RrRGWNtZOk3b8l/0OPc+HChRm6V8+5Jtn6Hv2pn2fLuV92OZ5XQKjXih7z1Vdfne+NO3fucPfuXR48eMCFYsSo51J3AutErd6nHmNZhPhebZ8qsdAKmi28CcWA27kaW3kMWJFCFVlMhX9Iy14D0IYdNvUw/AEpHEN8QhyekMKOOEpCEZMh+zXYDtscgj8g2hXT1DBFw26c2G7FJyAWaIF6DhgDoRBzxZOhwVrR189JFKHyaoUvsJSxGJNN04Sx4m3RNF6q/207dwNi7EjFKEvJ6vqaKZVFYwyuaUpFM+NdxnnH5tBhjccYR1QictMVxrthtbG0XeLgIDJNO0LoOdi2hBCYxqmoWgWmYUcMEzFIknPa0TAkY2m6VXHBbWZOiG/aAoGxM2bdGq38S4BmrMJn5JrCOM4Bc8JiMbjGk5MsnVm2Vzs7OWL7kRgz1jrpbEyBrkjvts4XYrcT9+cMwxTo+5FxClJhz6fOwxTZ0liM4hQKowo8rkDsBEbiiopXUfvyDY1vpHOUDUO/K5V3i283GJPZHGw4OV7Tth1jL1KdqUiH2hhhmhjGkb50pKwzxDCWrspEvxOozzjsTgnxWaGCYSbthmmqOhaicuW9OLUbI+Ru5yxNty6GhStOnCeWIDqXluBqtaLtWqwzDMPI0Pe03rNerWhcpQJUkbI1rQwxlVTNsNoIgf38hRd59uQp291OfD9iwhiH913hBDUFhjaV6jr4xkuuDfimwzhPzIk0BQixBNFJKvq+wON8W65fzBcxCUOoYFoN2VpsLoTwZPFeknpXvFhyLoaE1mGsg3L/YAVqKZ2ghhADu35XiNSRk+MtYXTk2MrcO+natcABFms7xgB914mMcJGFTfEU7im/Lf0QGANIx1M6HzGKUV4IQsrGUe7HyDBN4iMTplmKNoY4d8I0cUBpJRV08PS5q4mFqrUpn+0sOdsYQ0zifRGiW+zlB7vVgeCyKv0nrZbtq7zWn695DsvX6s/WSY12F/TL+PDwcFbcqVWYvpukbQhhTh7qavi+4FUDrDox0CqvBlt1tRfYq1ZTH7uGStWvaxVaq87Xr1+fK55N0/Dyyy/z+c9/fpaH3e12/NiP/RjPnj3jL/2lvzQHYq+88gogcKTVasVP//RP03XdmeCpTvD0fFTSVbcrV67wV//qX+XGjRtzgnN8fMwP//APz6pWyjGoYRz1eNek2eVc1wmHBtW1P4l2pZRXUCcD3vtZVrXuUqgMsQZpy6R2GbDpvvpejPEePnzI8fHxHLDW17Lv8xr0Knl6CYerJVcVPqZdoZpAruthmcDrmP/ET/zEzAHROdT7p5at1SBbx0mT4NotXM9b5+PmzZszX6FOmOrkoU5GdM3X5HUdx3qM6m1f12JfAaA+x/r5UMOYXn311TPzp+ukTn7qY+57Xukzou421EnAslOynPfl80L3qX+rz6+Gdi3nW9eKCh8sOyPLrkj99+/n9uk4FoDhtArqSkdCPC2YEwvtTrimmcmnTfkibhtJSLxz+OkTTPyY8eT/Jk4nxHBCivIFHEZb3CI8xh9i/AFu9UNkGkJ2bLfQD5Hjk56xVDlFvlK7KR0uebRSm3PClcEUff7AGHs26RDfdpxfHfL0WIizYRyx1pG6JCTutsX7FmftzB3IOTOlSQKqIrFrDTTOYAuzIKRczK8iBx00jcV3DSm3pNTKu4zFOpHvJBvOrV7AWZGQjOGYGHb0Jy8yhcgQksB6QqDfnjCNPUO/K2MWieMgRnQpsVqvcdbijGEcB1KKNG35wnOOaSxdAGNmaVDXthgrC1OD+pP0tBjyBTCWZAyuEa6Gs4YhiheJKCdJ1XlgIqZMt1ozxcwwBMyhBKurtRD1XamuT1Ng2u04OXnGrh85d+48IPtWMWOt6qpPgOLStUorXbJMSs0c1I/TQGstXbcSSdVs6Xc7yAlDZmNEovPg4IDj9Ya2WxOK10ZMksyYGAnjyDAM7Ha7MleWod8RYmK73TGNIykEQhhnwrFskmRp8DhNocADTZFKFsJwLjCradjhnWW9WtM1DZv1hie+IYRJktUs99hms2a1EnfzaRzo+x2rVSdEfzUvUVWzrDCawgMKkZgNEcvm3ItsDg556ZXPEJJlDJnj3WNRKnLivdKuDmi7TtbX1BOnXpLkthMDOSytb0QQgVz8YcrYGYv17cytWnVd6XikorQknQFTgmprPRmDy5LY2pSFl1Qc7nVunPUz2TwXUkYuiUnTtrStlwIDeV4vz54ds3OGsW944fwGt1kVIQDw1tB1HSE7+hHGITD0A/1ux2SKmeAUGYuvhrWW9mTHwWbDarVivVoRgrwWoohYuCaRjSGFkV3fE4KIGpzC69IMq0yx8Cvy6fTlOcmot7Ndi3zmDflUOiMiSeWoa+sHu4UQaIu08vO++Jdfas9LIOr318Gk/n8tMbuvCwKnFT/9Er53794cEGhlWJ16FRcP35kc6Bd9TUTV7ocGUTUMpj4XhQjV56/dkjpoWAYa9VjVkJyaNLwMZmoo16VLl3jw4MHMC7h48SKvv/463gss6Zvf/CY//uM/zj/9p/+Uu3fvcnR0xG//9m/z2c9+ll/6pV+aYTpf/OIXZ8hTXbFfJhrKodD9X7x4kV/+5V+eq8Eqifq7v/u7cyD+O7/zO/yFv/AXzvAY6nHShEH5EDWnooauaYB69epV7t69SwhhJpMfHR3Nikv1mCrHpg7a9FrqwF8/U3dRaugSMHc+FIqkjtn15+sku4bhqEndBx98MHeuVL1K53q1WvHmm2/OSZImZvW41Z0B3bfeIzdv3pyJ9bqGdH5rA0VNIDR5uXDhAl/4whfmBKdOeo+Ojuj7nrfffnuGnNWdwbojpOunTui1g1ALKejYLzsTy2eAbnUnSd+jSVPNfVLy9uHhIa+//vrMDdK/1RC/umP23QLwZZdUj6PztSw61NDLupNTP2OWXYUl16pO5p9XuFi+t36+7Evavh/bp0osmrbFt+qOXSrchbCrJAuJA4rMbCpOsqXSbE2G3GJywOaBNH1MHr/FNDwhhh0hDAU6YMh2hW022GZDdK+Q3CGJVxjGkXGcePJkSwhiNjarGeUAGFIucqTWsnJegu4Z1pMlEAoCQ3m2PaGZAqu1SJU2bYuxFt8Ub42upe1WbA4ORerTebyxkANpekZKW3Ieita9KURbCyRiPCbniRwn2uYAZzusT2LY1azJ9oCMI5pECiJxKi4WActTQv6EyJbN+Y6QLENo2PWZaXJsuqbIc4rpYEyRcRoYpoFxGjnYbPDWYlJme/yUYbfDpkyeJsYwiSFf12HXG3IWsq3A2kV5yFon0CrXCiG4ZG2iToSMY+o43GywJFatcEdWq5XwBLyn7drTitx6I94XjTCIc06cbI8Zp4lhGPjk8cccn2xp26ZIrDoMiZylEq3Y/hwhZYGt2Lk7BjkFrMlFsUy8DuRaVjMkaBoC45CxJknFuelYr1vOv3CeEES1aBoHqcwX/sPJyQnb3Y5nz54hKlueJ588IoTIdjfMEaAmCbkkmtp1mYNAWzowOOl2TZm+N4VsHTl+9phpGkV2lMyFF87x9PEhzltMEhdz5y3nDg9pmobtdkuYRqyBKz/2Y9JNsaX+X7oVs+N6wfbvhpFxSowhgV/PXa3Dc+clgW688CGmAd9IQpaS8DEafwBdW67PYq0HI+R+MaQUqVaB/tnS+Qsi75pg2wfplZhMHFX5KWHsiHWR0UyFcC5CDs42tE1XHNYhmsJXyZPA/TxgPGRE6nfq2cWBYStr0xFZrRsa70ix9Gmy4eRkZLcbOX9+Q9MYWg8bL+MYXSKtDPG8ZTcdECNMwRDGAokLxXyuSOGOU8DahPcdL/3Qj0gimZO4gicxCVwVrk/9UJ+N9GIo/CAj1JFsoMhRywO0yPiqcle5b56/ncIWyZDDfxznbfhO0vTztn1fcnW1dV/no6641dyC+m9ahVyeT42N19e1wqmOxfplrRVt3b8GYpoY6D7qY+9LgupxWCYbdSCxDKw0MNRrUriLXt8+Ympd7daEQiE29bj2fc/f//t/n9VqNSdJq9XqjMFbzSfQIPG/++/+O46Ojrh+/Tp/7s/9Ob7whS/MUC/tkBwdHc1Qs9/4jd/g6tWrs6He1atX+Wt/7a/NDuHqBF1fa50w6XnrmNTqN3XXpybY14GYdqI0oVRFqQsXLsyJx7/+1/96loXVnytXrsxB4pJD8PjxY27fvj3PgxLZFVJ3eHjIvXv35uB9OT91tf7OnTtzEPnaa6/NEDa9dt3fxYsXeeONN3j06BFf/epXOTo64ujoiF/8xV+cVZl0q6FA2jnRxKsmi++rqquPiUKLluv69u3bs8JXLY9bB+OPHz/mgw8+4PLly1y+fJlbt24BkhzrfGqyeP369bmbodwe7WzUpG9NtnQt1NV7XQ8K59N1oh29umOhXR79t95b9Zr5btu+AkndFVh2C+r/r8dI368B/zKZqosL+reloWd9ry+7e/pvHcManrrsaH0/tk+XWDTi9DtDnWoIlCYWRSpxJpAqBlhqz5g8QpzIaVcSi8fE2BPTJFAXHNl4jD+A5hDTHBDShpQ68mRLVTExjAonOC3v2RkFXrbC9aDAf7Si7L0nW4uJnpSKrj4ZXzowGFMqo8Xd2kpw27YNbdPSWYvJjuROCg9kxNoEpsjrAjkbsg3imeFSMQ8TTLnzTcFhOzJOiNtWPDFIIzBi8hNMeopNPc5CNl6kZo2Y4+GEXJ4NUDo1uXFgO5z3rNcHEmjOfgEWSxIzvByxzoM1GOtISeZG5VQpCZLzDav1ppDSY5lOM8+lJdHZjHeGg3XLquvYbNZ0XYf30pUQ34WWRrsgJjOFiWkaefr0GTFFqThXiao6tUvPIp06oMNc8ZXgTGRTp8lATqUj1uCspVsJJ0L4AHLeKWViiEJOniapjLctbduy3mxoiiHiNBZn7JzY7bZsdzu22y3eewyZaRwYxpHjZ8coJMa1DerFsAz+jDEzvyGV8SMnwiQr1jkYxx5jbPltaFtPt2ohR2wWGKGKIEiHY5jJ2ocHB0CeO2oU4nBMiSlKNTzmRDcMDJOY00U81stYSTdBkirjBiICYwNT8P+GoksMhflijC8+HEIwF5nUcp9R+ExJTBzSXF0v92dxW587PClhjHZ0wFtxnG+cdKKYeSviFSN+DbI/jECnVN8glo6UsRmLw9kCCcqGnDIhRAiSmOZksVgamxHV5kQ2lmQcxhlStsToCK0rXQdJwEOEVOZSCfBttwIkiQvRYEuHzTmBu9XPzBAEIheNqcQByto2wpKZYXXGYItXEJwmqymddsfyd7Y3yvYfz8fiT5JUfNp97qtU6mv6N/hOJZw6+N4HCagr1PV511/gNQShrtzWFcA6IK6Ti6U6C5wllO8jW2vg8R/q5tTjUweu9fG1EltfmyYPdTJWByr6fj1/3d+5c+dommaGz2gAroGiwsmWHIllErCEPmlgrvt53vjX47dMJuvXl2tF91X7Rly8eJFHjx7RNM08hvpbK+oaoC2DcL3+EESxSSveS6Jt3/ffgd+vj6VQocePH88JSj1PdQW8nsM6WNZrXN4HdTV/Gdwu76f6nPbB0pb3RD0m9fw+fPhwThLqrofuow6k6+6CXmN9H9bzV/NS6vW+PLdlV6M+x/q4wJl7eN963Xes+m/7nkHLLtVyDOt5r89tOc7L4y3v5+Uzdll0qZ+F9e/lMb6Xz+h6+1R7PTx/Ht90cyu/TioUP21AFIoKRMpaQ+NtgR1EfPgWefqEafeAMDwkhWeM046ULDl5fHcR6w+x6x8isCGw4vhpZJwy4/ikEHklMC0U1QJ/AmPkAZEROEsmF6lb+fIHU7oRDetCvBhG2Y8aqBlTzLawglAo1T/nBPO96gxrZzEZohnZxceE8G2iMWA6sC9i7ApjHK5AN1gdEP0lsjskm4ZgJEAxeSDnRBgHxuGEMJ4Qh0+wuac1zwSDbhJj6pliw3bqCEHMxlKIjEPPsDth6E/IOdOsNnSb85w/dx7XrgW6lAwvdAdynDgSYxBoVBjFQG7YEYNIpGYkOCRO2NUG5x2HL7yANZYcQplXQ7dqhWzsDStv6LzjwvnN7LLtSxIhsaNU7GNJBnb9lo8ff8KTJ4/5gz/4A9q247Of/Sw//MM/gmtaQogiNzsVBahsMLRinBcCY5gK9Ggq8I/MOPUF3iXrYrvbkg0FEnauGBqaMuYZmwO929GERGdFSvXchQs8fvKYKUXCsKU/3jKMA4+fPmW763n85CkXX3qRrvWkFHj29DH/7+9/g5dfvshmfUDjDtFO3ZxkOzd7vvT9jjAlRnLhGQnPJUyOGAaMcaSYxKditaJbdZw/d46pa7GFV5IpiVEIpNzLGk+Zrm2lW2Y4VSSzvsCE5D4E4cOEkJhiJkRDSAKPWh1sSJsNIUZsvyNhcNZAivRDX+CN6oEh3QqbDS4bsvXlqgtfYBYIgFVbiOQGSaLLOsit8GiIAUMCIq1NBQIYsY3DuoxvhFN08vQpY98Tp0k8VxqPzSt808p9Zp0ISifIWZL5ME6YOJKmdg6vpZsoYgpPnhzTNI7NuiFsPG1jWa8K2zkHWnkrpnWYtfIeWkBU6UJ2xGwJRQ0rpVw4ZYb1+kCI2iEyDMMpn6LcC7NDd/kdUyFyl3uEWFTkYpgJ3TmrLHQsicopqTsXGWhJMM4aX/6gNw1k4E+G5a2/BJdfyHXwvQ8mUScJWl3X4Obhw4ezA2+N614qq9TnWQcdGuTWPAaV4tyXVOj/134Luqls6hKiooHVMkB4HpxiWRlejhmcJWYq/Oj27dszTr4OcuvParX48uXLc1X8xo0bM5xKA5q///f/PsfHx/zar/0afd9z7949bt26NQdUV69enbsdV65c4d13352PqRAlHUvvT+Vb9VwPDw9544035jF+//33Z5y/XptWo5WwWidzek4g3Yrbt29z584dvvCFLxBC4L333uPWrVtzRfzq1avzv5fdBe3m1H4I+4Kyf/gP/yEAn/vc5/j1X/91vv3tb/OlL32Je/fu8dWvfpV333137pTonOm1KNH7o48+mgnjr7322kwcV4ja/fv3Z4L5W2+9xdHR0ezqrfOu+9dOQv232o15X3Kg86dwtyUnSPdz/fp1Hj58yEcffTTzKtRtOwSRpj0+Pp5N9WrZ2BpKp5K52rmqoYnaBazXcwjimL1arebOhd4rmiTqvVk/E/T66r/rdavzel3Z1zGouyJLv5L6/+ukRLfl8fT8l8lSPb777mX9d/2s0IKJPjdqF/Ra0EG7XPtcxpcFhu/H9qkSi65tMc6TYipkaDvzKkyRtFSZVWMczmesjXgzYMMxpC3T+EcwPSONH5OCOBRbd06kYznErC4RzYqToWWKljFEnh0XnPIYCulYnYUlWHClkqrfpEZN/IzBKGzL2uL7oJwQeX3lxD3aOYNv2gLBseQUSWkix55pjOS4IQYYBghmFChUMATOk3yLpQFhVGBzwDIIPtx6jO0Q6NCINaN0JfIwBwUuOxoy1rcE86J4aHChVC0h+xXgWa2bU9OtMBLGgaHf0h8/K27L4IyHmJj6E1KCEE+r57Ho6KcYyViMbWg7h/MR50ORbrVs1gd0bUfXrmisQFNW6462a2lagcw4a3A20zorOPXWFTiQYNIBjEpnAtt+pB8nPn52zLNnJ5wc7zjZDcRC3l6f79hsDun7gcmMhJBK0JlKAiG/xYQvMPT9vO6sMRifSS4KpCyID0aYpAtWk2JTzoQkksQYix17QjIFuiLKZ0+Pt+z6LcPQ0w89IU44Z+m6js1mw6pbs1kfcP78CxwcHNJ1K3zTzOTcnE+5PnBaN05ZSNxkT0q2YOtFXCCECR+a2ePAFOJ1zpRz1bUt+1MycypYfT2Q8E0sTUPp1MnIUVA11hpaI27OKWcab2e40ssvnGe3ammcw7kOMLitIwRRrkpZJGGdMXhfhBi8K50s8XkxBtqmKSIOzKpouzJfq6YtCaMYOjoLziHdTOQ+TLn0xMJEjkHu30Z8I7qDcxjXgNPxzkwlOI8xzqpwIQRMHzFmh06ISMwWQnsG5xzHJ57VSowTDzat+EG0YkonJoIFRmUMxkxAxNqMsyJX7X1LSoZJeO1yTxdnbUwWZTZs4QXl0oQ4FbjIiNyzS2l+JmViIetnUpbna0qGnJMkaUrCKPLWMven3UbKZxWe+oPcnldx+5N8Rre6yrbEOtdfwho46L/r6vLFixe5cePGmSpynUCoklQdLNQVU2CGxej+6+PU1cb6HLSyvIQs7KsiLhMn/Ywes06u9pE+64p1XcXWc9HATWE+uh9NIupATs9HoTk1TKu+Hq3Mv/HGG3PgpVKmChOq+SMKrfLen+E56P7q5EAdpe/duzf/Td2edb77vp+JqjXUrR4/DQRriNxXvvKVGf5Uw6kU915j8OuAUROYJSwI4MMPP+To6Ihbt27xu7/7u/zKr/wKr732Gn/lr/yVmZB+7dq1+dzrgF7n8+LFi9y6dYvLly9z9+7dWeFJj/PRRx/N3JF6Xepc6Hnuq6gvE9b63JfBb732NPFdQnv02Aqx0kC+hrApXFATBl1ry+6IcmN0nfR9PyeRuk50/T8vodN5XxYFlsHyvs/UXZDlPbSEWC3HYl+npD7Wcqtff14hYPn5+n31+cLZ+1HP7+joaJ6TJdRpmdTU4/GnAgrlfVMpzcgJWmewroZCWSyipOT9hCFg8448fIs8fkLY/b/k2EPo5YsWi23Pg70A7iKx/QwhNTw72TKMgXGc2G4HCWymcdbPN6b4RSCGcbKddlGcdRJYuVPlKlGmERMwxaE3ncdZK5KSbYvznsY2hKmn758xhV3xU5gIk4FkiDmUyqjBmvNYfwHySojDcUfmKTmPkthYD3QC58gjMEHcQjgWdRwczp/H2w7bdBh/SMqGkCBEgWmZ4vmx8r4EYIkUBuI0sBp6Gr9hGgfG3W7uuExTL2o1kyjvYAypyMmCnZV1fOMlwExJKtbGcnB4jtZ7cbnOE613vHBuw8GBEIcFVw/WJJx2qlKRyywGfbkEP0XEhifPthz3I3/08TP63QlD37PrR7CWMUacb1mtDwSaFjMwzGtKyak5izpUiJOYyJVKejYGmyE1VWA5jlLZVygUEuClLN2sEILATMaBiCuQOFFOenayY7fbMow9KU2klMUcr+tYrdd0bcfB5pALL7zI4cEhvhX1sDAFcp6ee//kclxjMjlbIWUjcqixyM7WppNQSNfTNMMLjTGVStGp14bCY6zC/yjGlPYUKqO+CtZKMpizpXEwpUxMGf/CIeu+xWDxviNjyCbR9z3bXcBk6fh4Z2i9pW2lGyhzY7ASQrNe+dkU0xjxbxj7Ld6Kc7RKUjflvmu9JaQg85RF8WsKkTAO5BjlfBvxjti88ArZNEScKHLliSHuEL6VdHRyjMQpFlWuKPApwNrMbG2NwhydJMyN52CzYb1qOdh0bNYe74QzZm0uz5sS/OeIs1nEGnwjynWIWEMu0K9MgYRai0V4IDN4qcT+c2IBZ4odKTMnFtJhUcijmdXaTBGMwGZyVB6G3Nu5JG61WekPavv/01qvv8yXQbm+vvzCr/+mgYJ2GtT1WF2n68C+5irsg9tokKWvL4nDNUZdNw1K6iBXj1Ofd03aXl47cCaxWHZG6iCqTqz0+MvESIONZbBey3fWeHqV/FQ5WDhLUlXCs3YQNKjRQFUTCz3XmpxeV83V/fjy5ctzh0kDyo8++mgO+LXKDaeyvFoFrwO+Wna27gLpfPzzf/7PuXLlCm+99db8Xh0vDX5rCFcdYCp/o95WqxVf+9rX+OCDD/jiF784k+GvXbvGz/7sz55JluAU0lTLwmoCfPPmTW7cuMHdu3fPSA+HIJyGq1evzolFHRDqPpfrsF5T9fuX76nXaV3p1nFcdsbqZEu5GzWkTrsOet31teg60nPStVB3J/7lv/yXfO5zn5sD55rXsrz2ZbW/Tl6+m6Kbfqae/zr4ru9rHZM6cdpXOFnu+3nbssux7CrV71vOE5w10Ky7otpVqxPgZSevTjJqONyfisTi+OQpWJEw9UXKtPGexntR3jGlSpmeQXxG2n2LFJ4y9n9IGp+Sw46UJsFqmw3twWew/hzBvMIUG4bgOXkWGaeR4+MTMUsLgTCNM2495ygu0MiXfIqO5DPOelzTliqtJA1izifu3s75U5O+Rs7dOY+3bemyQDYJTCJxgvcjLxxOZCMBTUqRYZzYIUZsBotjg7MJbxM5PsTkLZYnpCBV59icAxw5OY6nKCpRvsW7jsa/iGvBWIfr5H0mW1zKmCRKMXZW9BHTsX6KErinCERSNKTcwPpFfJex5/IcvKRpwgMHBUdvjRFVJCT567oO5yzT0DNNA+OwI8ZJqsY2sWoNB2vPufWGrvEcrkVxx3uPc0JUjqH4dsRYZG9lblKRWVXn6mkM/D8P/pBn24EnQybHUfwmxp7VqsW3K7xvZa5ci28STRtovHAnpmlAS+4xBGKIaAeCLH4q3gk1XyBUEM9VyjolmvNeOAukyDhFppgIOeN8i3HFNG9zyObgvEiYelGZUvLzMI48ffKUVy6+wgsXXuDiD31mVkHqxwFje1LODEMP+dQw0FmLs47shC8SizGadwIt864QusMkUL9pRYqZcQoM48QwjbKfAmlKZVzHcSwJxmm1OmeBBzo/FPd0L8R8mfkqyS7cEOclwLeGkMG2lrRpmYLAls5vDlg3LQerFb45FW2w3mOdJ4Ys4xOtdF9ynjuKMRYOQU54F2kby6pF5rxAFG2B18XtQIpixNiPI/1uZBonrHN0m3OY5hBcRzCn3jm+c+AiUxCYVYqZZBLZyaPNNRaXhaNBziWRB2boEGL2uA2Q4cnjp8VczrHZrGjbhvPnz7FZi/qT8wCRnAesFeU453uM8WDlvqbx5OzIJBKSeKeU8cYKhyxGKRikhLWuSCjLMyWmhI2RZG25Hif8ipQw2skqayenNHMxktHnhHRwTOGMiZjFD3br+562bZ/7Gjy//b780q2/6OtKd13JVBLra6+9xoVi2lZXhBXTrxVePXYty1p3LvYlMbqfOuhYVmD1M/UX+fI9yyry8tq/2+tLiNMSylLvv/5/DUrqAF8D1brirQGOVvT3qQ0B/OZv/ia/93u/x507d7h58+asfgQSgF29epVr167NcCRNrPQaNAnQwFKD0YsXL/ILv/ALPHr0iFu3bnH9+nUuX77M22+/zbVr13jnnXfOkOw1UanHWDkUei6/8Ru/MRO2dc7rOdSxWDqr6znWa65W89Gfv/W3/hZ/6S/9Jb761a9yeHjIr//6r/P48WPee+89bt68ORPW62SlDprv3bvHL/7iL/LWW2/x2muv8e677/L48WOOjo5maVmdSzVUVM7G9evXZ7jUvi6abvUar8eovs46ydU50rHS49db3ZVTGJFuX/ziF88k3xeKN0j9t5qHoOPw8OFDfuInfoIrV66c4f7s63bUyX6dWOpWJ+H6+TpR0eeD8mTqblS91dd4+/bt+VqVlL58fvxJiirPK5LUf1uO+bLjoYmprlEtHugzrnaU1/uhhmLqmNTj/L3ePtVex3HCNQKByTbPzscpZ4Tqqco3UaA+0yeY6Ql5fEyOPTlHjFuBXYE9R7Ivk8whfVwxBsMwwq4fRU9/CnMAZpTIazNiVXEqNwpgohjE2eyUbFGqha5I47ri6eDFQ6NrRA/feRrXIJ2OOENWHBaTPZYVMSM6TTHOsawqI9kcMURIAZIY1iUDsUBdYujIRvT5h1EgOC4jfJLsBGZhLdFmPe0C7C7+FkgFNOYo1e4YC7wnknMoGQcS2BR4uKmuAWNoShJorCGEUiEvEsDWGsIotfxcAu5MJieHNQ2NM6y6hq4RmWBnmUneKaWZ75JiJEyaWITZvyEqbGkYOTk+5mS7ox8LEZwAKpM7V+mZZYxFolggac7VfimaMFYSx6UCPVfws4pvmuLTIUHyPELGkMhCbA/qLC0Ee9804t8QAjEroT4Q08BY+Dj90NO0HavVWirrsfwUN2tV8NH1Jj4OnkwWyWORAJJgsCQmqbg/x9Jl0S2TZ3+WmuSrDyQ1XTvL3zW4GHDBE7w/XRXmdAxzSkTnaLyQ3o21WGPxNrNqPNYkYhK4UOukq2Csjh2S5MUo90cqZOKS1eZQ7k1bqu5lLIy1EshPohrlUpp9U8IkwbIxVrgWrcc6Ua3q1itwDVjLkFLhTDmsa4nBQsoE55lcIEQJ1kPpoM2u1sU/IudUxl1N/kTKOJfEwwbDaAX21RRfFaE9GLqVQACNKoAlII9gE8ZlMfTLTcGrFRjfLA2bKzjU/h/m9+rMV3C3LM+CXHxRxHgxnnIwkjyLc9JOliT9/zG35wXgy+p7/d5lcL/vc/W/66ocMFfNa7JnHTjVAVh93Od1IZbnsfzCXyY9+8Zg3/6WiccSrvAn2fZBWeqgSwOPmrNRJy/LgFSroctuio7P8fExwzCcOW8NcLRzocRsDWTroLo+bh04apD/8ssv841vfIMvfelLfOELX5iTxbpjUldY6wRueW31GGkCotV4PW8dK+3Y7IMU6TXUY6W/VY3po48+4vDwkOvXr3P79u0ZLqbHXwbt9b4+85nPnCGT18Gw8lSWxOV6LJbred+60uB431pcjmc9Nsut/myddNR/16BWjQp1DOpigX6uPp7OU92tg7Nwt32f2/dbt7rAsO9alryren3tew7pOGpCouNfy1Uv52Pf2C3vg+X1PG/b9xyqE8RaMlffU49nvWb0s9+v7VM9yYahZ+O7Io8oBl0xikpKTFKh7XD4ELDTSNr+IWZ6igs7cc52a9pz/wnYCyTzQ2ynlmE0PDl+WjoTE+NuJ9ruxhS1GOYKWM6JGMRvNqeCNyYTGEnZka3FNwZnW5xvivKRkre9KP80DV0ncqrWiFkWBGCa5UqNOSBGyzgZpmEkxIkpbemalnVnaHzCmojhGJsGchwhQMQT7A8xpY6YHLtefB+wEKcAOdGGyGjBuswUR8T0a0vTiDrRarWag2hNZISwKyZc/bCTavU0SpLUtLPkJ5psGUThyggJ1zvxepi8YL1l1xM5JsJwwtj3TP1WVIFMpiVgN46uWbNZOdpGYCE5BcIYxa8gTkzDgBh/RU4NwAq5uFRix2liHAf67TOG4y27k5MyzhnXNExDz/b4mZDHY5yVnchrvLPkHGl3K6ZmxDcNTdNgQDoUhdxKPoVJObyoZSFjZ62QpMdxlMAV6diQBSI1hUgyEWcirl3RrjLt5pCAJdmWaRyEzN0fE0OPs4Zvf/xtjPWcP/8yxnpsdtJliYnoI94HrDGcOzyYgzznHH6aytqVoBAyU4jk3M9wQvUpIecCJbKS0CyUf4wx85fGbrebx9sppAbm7oLIB5ekzAgEaByEb+GLWaX3nna1ojGOZtMU+L4hZuHphNiKXG2I7HYDUxQSuPUtIMZsZcgB4V81TVk7XvxUpmni2cmO+PREHj6+wRiHNY4WgVitVg3nD1pss8Y0XYESGeI0kGLPCLh2TXNwQIxrUoRp05+qfWWBJO2mOCdd6jUyTYMkvVEV5SIhjKRimIkR3gkRtrsBO0zs+pGu27FerXn55ZdYrRo2B11JUEQQIZsRrMHaAWMbrN0UdpAICIjztiRikoSGklDGWXo2FoU7vYfESE8MO3OUTqASujUZT7PTe/XvFOdEJobnw/K+X1vf97z00kt7vySXX4bADJtRbLa+ru9/XnKhX+gaMGoVtu5OaOCg5GE9P9200lrj32tFouU5LIOwOkhcVmSfB6+qx2kZ5O4LCPW86+BWg8SrV6+egXRoIKHQntVqNWP2lWirgWsN71iqDdVjXlc+Hzx4MOPqX3vttXnOlOD9la98hZs3b/Lqq6+ecdGuq9O6T00q7969O8uy/rf/7X/Lr/zKr/Bbv/Vb/A//w//A3bt3eeedd7h69eoMi3r48OG87zqIrmVZ9TWtmCvXpO/7mSCu83J0dMT777/PrVu3uHLlyhnicz0+y6BTifxaudZ96rnVnbNlcAfM8LH/6X/6n+akTfdz69YtvvrVr/LgwQN+9md/lkePHs1CBBo03rt3jw8//JC33npr7rjUa7E+nnYplPNSB8CPHj06MyZ1Fft5Ae+yQ7BcL8fHx9y/f39e1/u6XzW8TeFiej+rV4eu1bqrUn++Xq/LoFsheTUBu050dD0uz13vLx03XVNXr16dIUfqPq7r/8MPP+TatWvzddbJyr5zq8e2vsf3jXU9jzVPqk68dHyOjo7mropesybVKsWrHQx9Vk3T9+c74tOVSLJUt2MYiBFMtDgf8U0uGPCMyRPT9IjUP4Dck6whteewzUtYd57gLhFSyxgaTvqJcQzsdoNU4qdJSMi16lSFLQdL03QATGNhsZqiZGSEU5HLb5zDek+32pzCtWbpySCBpDOzVn+YPEMMQva1oVQKgTzgTKC1I46ADT0l9pDKcfTE4BhHqfBOKRHzKDyJCCBBvRCeXSGUZ4wXmVEymCRBYgxSsW28p2mbmZg7TcIp2PU7pmkkpiTXUuQqxyjMUTUn9N7PUKe2sRKghIFp9zFhEuWk1osrusiJZgkurVSLzx+uOFivWLUOkwMpJKaQZnJs329ngrQGWKkESSEqtj3PHYycEy9deIFzhwe8NL5wGtTFTNutiMNIGkdSGMUozVLkVcV5eb3qSHFFCBviNDE6J67j0ZJiED+L0snQLkCREpCEahoZdjtiGPDe0hbJZKmqKw/AlBqxIWIYY6IfZU1OIRZVK1E+Oj4+5uDgPDEF4UoYVQ3zYg5W9i3mckIs9t7PUrEKZwvTOHcipuLMHacJdRf3TgJ+U7ouSlzX7ZQsnov78/gdiYUNEkirjLL4k0gHLxszJzkxCnxH4D0NIPvx1uIt5MbS+JXMWdMyTEmka5N4ZUzlXBSmpRV4Zylu58W/JBVXdSuStavO0nUNrREZ3pTEeDCmRCrJkPPaAcgkMnbYMQ7HuGYtXC6XaJyBzpBpSdmyiU7MF0Ngt5Vk3Hk38y608yccrFEC++q85w6iEWftfhj45JMnNK1ns21Zr1q61rNeNViTy9gljI14F8A4snOEKGpkORfBhPLwSDmdSSxCuWfkHgtzYpFT4Q2lUCUWp8mH+IrE2UMlqzRt/g95Xnx/thjjGYWmGoLwvC9V/fJdBovP63bo/jUICuHUjVoTCoU6LYOlOhDXgGxJDt3XGdHX9N/Lij6cDVSWMBINRjXgrKvr9fXrz75zWVbn6+RgXxdBr00/E0KYuQ36N33PEmsOzAFUHXS+9tprc1Kjx1WjtDfffPM7grY6GauTDJ3Dy5cvz4HovXv3OD4+5qWXXuLzn/88ly9f5nd/93fx3s/H1bmtA8B6vOrx02NpgK9qRqoCBcyEbq2Wq1rRPrUuXT8PHz7k/fff5xvf+AbDMPD666/PnZqaP6PXq9CVeq3XfJO6w6SJjJ7T/fv350RRDQjVPE8hXrqedD/7qvyq1PXhhx/OgWntpl2vC00etetQQ52WYgbLa9D1VKtg6TnWsCYltWunSxPUx48fz8et52B5f+7rCNUdCr2+fXNYj8vy3zVHQTt99bzUzwxN8tSL4+7du7MAgd6fdRK03OpixDIB2fcM1OtbJg81F2jf8bSDpLBQ3c+9e/f4zGc+8x3n9b3YPjXAymCE0JoTOVl8NoAndUJmJo3E8JgwPsKaRHYN2R1imh8C/xJTfokxZXbTyHYYGUf5iVMgjsKdoMA/bIFn6KYV2EzxC0i5JBamQCoKDKWSu21b8VDw3mOymRMLKKo92ZKTIQRDPyEa9UZkXjGRlgFnIh1RPhfl2AlLSC1TcIzBsBvE4G4KkWwKYTjlQiS3NM5jnJUui8kYm7BKsszMZFPvvVTWramgMgViVLoDgt9vBGRSAjkyWO+KU7FAbxrvaFvHGEfxCZmkO9HvdsSmK6o2q0LWbcXn3FsONivWXUPrXcHKB0JJKlKMDAo/KHwGSkAYk1SNYwl6UipBT04cHKxL0V2M06YY2PUjxnriJApXYRxoVnYOPEXFx0iXqe2YVivGvscYGJHgL5Wu1SkcSov7GhlSOhYDYerJqSkKYSrL6mblopSYORPKb0hhIhRn9xgjicx2uxOH9jAJDK1ArrxzZO8x3s/eJ8FMEIs7uLVlDO1cYU4FVqawsRglgJTO0ikPQWFQNWysdnHWgD4VdSElBwtMUEUNBEKWnZfAsxC4c5k7jECfyAlrxVHbWTfLRzfeEZPBuZZmDHgXyUNfzlf5A6l0MgXWJRTiLG7rtnBOinRzLslw0zpcNpAiwzDRDyPDGMRE2hp8YwsECYwpjuuDoVtPYmTZujlhEtUsS5dbhskxTh5SYgoO4+wpobskXRTfGZsioYwpBSal2gExRfIEz+IxzjnGoSOdOwCkw2KMJrFivmhNlG6TtxgLtpDjM5lUJGpNERWYlaSSOnGX+yylshZigXKV5CHGU8hT6YZoQnE2mZhvhB/opl+WNba5rhDre3RbBg5wVmJyX/VUAyetGNb7rw2yanWdej9KKNUv5X3cieWxl6/X16vb8zDpOg563Np0rz63GsKwr3ugY1NXLvcds67YL89DCaB1ElOTWet50fPV8akDq5rnocncjRs35qClTuT2jYkeT30vjo6O+PrXv07TNPzTf/pPZ+7M0dERL7744nxddSKkgd++9aTvr1WfHjx4wO/8zu/MRn46RkpE1gq+Jqr7EmGQyvr/9r/9b/ze7/0ez549m+VxtUOyWq3OnJvOY73OanhXnTDqz5UrV7hw4cKM7YdT+VTtziihW4P6fYlFzUHQzkc9TnredfdPt5osrOf6PLhYPT4awNb70XWyTJQ1UdP7Uf+t93G932VSAWcTnfq5o6pcy3Nb3q/L+71OYOrP1gmhzmXNcbh3796szFR35p53jy7Pa/m3fc8hXctL0QI9N024l+euHau6W6Xj/KdCbrZpOsFXG4+10HYNnfesG0trPsaFHqZvY6aPsQTac9fI9jwjF9kOmWGXOD55xjQFxn5gCsOMYXfG0qxWRZ4RwnQKrRkGgT/ZgvE2rmG1bmd5W1Mw4r5pwRqysbTtSmAzVvD0IUXWqxZrpdK77TMpJqZwXBQbi9KUyaytwTBh6HFGtFXGZBknmAIFxy2TFtMk3FBORVGdlWCw6YqBWDEEizFANsQJ2GZS1sDLlcA1MfTbOVHyjVSs1+s1B4eHXHjxRUIJ8o9PThjHkWEYZm5L48RTomsbvAVLJE8TU3/CsDuh82vawxXnz10QaBqWaBohsyZY2UznDefOrVgVTsXU70hR1LlS0g7KeBrcAmCKWldpIWXDbEg2Rcapl88CmEyI8pNiIk8DYeh5+IcNu+0zfuQ/+TFEFMAJ5yMnnDO0bcNmsyGFiWEQmNc0jcRg6AfpIhkSGIuHovQjviYhjEzjjqHfESdPChNtJ0aCXbeiCIgxbLc8e/yEP3xwxMnJCcOwI0wDuSR1JgtU7umTZxxsHvPkySPadiUdANuIBO+qw1kxkYuFQ2AKRM17j9tsiijBJMkigZAKx8JK0iiyq9Kx8c7TtR2+OMjXD9cYVGJVCNtNkbxV/kaMEWPE2M1aSTJVVWoKY1ELK8Z7Vrpm1toCjRIHdOm0eBrf4BpRcepazzhZhilgnwW2JMb+NIlwbTsHuclo8Kz8GUfXFfJ265iy4+kusj05ZugHnj57KnLVVrqN1jpMMDReIH2Nc1L1T4mYE77JdKkpSc0OeIr3lsNzazZdx+G6Yb3yhOjoQyewzZg5Pt6Jy3g/ELwjhlDEICQhyiW4l06AXFtO8gwatg3Hx8/wTcOFC+c52HRcOH/Iwaah8U2R2RXo48qLDPWq6cjZEJNhDCUBGydxJw9hxq5PqmYWI1PwJdEIxFQgUGHClfvCRuVYVK7vqiZV5uIHvb3wwgtsNpu9rtByL4YzBMqaOK3BZq12o6+r70FdQdUvRiXI6hftgwcPzsCBlNRdQ04ePnw4B2YaYGhArBXL+pyXgYl+Qet51r+BM/vSv2slWH/XUKE6kDo6OvoOCIcmJBrEAzM3QPelWw11qSE/IYS5ogqnJM5abraudl69evXM/NXXV//t1q1bZ5KVep91oFMnGTrXh4eHPHz4kK997Wt8/vOf59GjR/zcz/0cN2/e5Pr16/P13717l0uXLs0Bq1Zo9yn26Pw/evSIhw8f8uDBA+7fv8+FCxf4i3/xL3L//n3u37/PF77wBR4/fsz7778/e3aoBK+ObT2XOsZf/epX+a3f+i0ADg4O+Gf/7J/xZ/7Mn+HGjRtcuXKF1WrF+++/z7Vr13j99dfn9VMHhMtEWyv2ei/oPNTO1K+++uqZ5HPJD6jXjCZr+tqdO3fmcbh169YZRTDthuicf/DBB7O7ul6P7qfmxCwT75pIXs+J/k2JxRcqUzztzmiArnOg+1JIlc7H8fHx7N+h11mvrfpe0HtlGWjXsKxll66+j+quwL6upK6v999/f379vffe4/Lly7NqWt2NquFYOjZ1ErqvU1kH/jVMrx5nvf5ld6MemwsXLvDw4cP5PvBeuo4HBwd8P7ZPlVg47/DOF416Q9d5Whto7DFMj8h5S8zHEuS5c2R3gWgOmGLLmAaGEBmniVCMzFTRRkBOFOK1uBFb56Wqn+yptCYIZ8JavBVstrVO3MCLygxGpBnbRlRvakJviBGTcoEWZFKSKrc1IifpbMCZhLcUQIwcMybDboApZHEtzgh0JheNeosYihX8hHMCzVFYirHFECwzB+eSSAgZuPFtUWMyTCGcXisg0JmWZMys25+Kl4U1pkC8yny0jrY1ND7jzYjJiRRHkffNEkzn4uWQsKQiDSxNFEPnYeUNjbMYRPWprtZrN0CSpQxZSMqi2a/QtLL/0rFQCFGIp6TSkMTMLJXKvCHT704w1nD+2Yus1xtW641A65CkSTD7QurOKTE6R0rSUbHWFo8FU9ypGwn4nRcydCHvyrmmuQNkDJLYGoNFZERNjticIBceRKYkeZ2sSyPk+nGKPHt2wnqdaJqGVWeLypjKvZbQzlrIBXZFRiwNUoHOiFTyrGKmUs6lVB5KtyQVrpF2QSAXgz0ESlXgVtr5OJWXlUBYuxhS2ZZk/JTwbcjZk50TBSUH0USsccyE+IL9FwdoizOZ1lusbRhDEhGAODHFYt44k42TQAaRJEfPiSx8gnFMwEQGtlsJ9McgCb4xiZjN3FlqvPKFCvUoZ7rs8E0ml8eYOII7QoTdbsL5jHMBY2ReOi98jQCzqaAE7o5kEyLHm6VLauRaC8UbzZlBFNpiTGAC/TDK+TUjvpHCRedFECKlVAQa5PkCtqhhWWKUjlTjwpzQhRDwzs33nJssMUrnQrpREWvdDF8TyGYiRlu4FkkU5ZQonn7wicUyCK2/qJeV5eWXfv2luwzk62rvvk7Cvi/smjRaH7MOzuqKcX2871ZdrM+v/v86OVheb3385XnWx64rspoQwFk4BpyVG9XK/zIRqoPu5XGXW30d9fvqivu+8anncRlQ1vuqx6TuZtVOzRrAqzJQnXxpcKkQKk0idVt2RnSeteOiHRblKtRdD+VuaLJS76/epwaIOgcAJycn/OiP/ujs4q1BmyYDDx48OLMO93XClgndclz1/7Wyf+XKFR49esT9+/e5cePGGQWrfesfmMdCE3cdEw2OP/zwwzP3kwb/dYK+XCP71vcy4K1f0zmtk6G6s7bvmaFJaC0jXHc/lomVnoO+R4+5b83X17GvE1Ovvfp8dYy0SNH3PX/0R3/Et7/9bW7cuPEd0Dz9bA172ld4qJOdejzqsa6fGfu6E/XvehxreF79HDwVC/nebp8qsei6hq4TYrTzjk0HLn6Mnb7JuP1/CHFHsA7ffQbbXiTYi0zZcxICu3FgHMThWXH+qEuvNUW3Xb60jSka/OZ0QmOpUBrnMM7huxXeedpG1HncPMB5VpGSyqyo+9ic2fVT+cJlVhdaty3OJpxJNGbCUuBY2ZBwDJNlCPDkOIoCUBCvB5GtLVK2XvwgrEJHoAruTCEQn8KDQhAiqXQnwB1C27R43xCPJyF4plR8OmCcRkIMDONACCW5CCJRudqsaBvxK7AeWm9pbMLRk+LINBxDCNic2Ry+RMyGfiywNQwWW6BalvOdYeUyrRXfjn4ScvbMeSna/0K6NWUsyzWZAKbg4FMiFEJpCOL2PI7jHPjGAgOxzs7mhdvtMbt+x6rreOHCi3RtiytQkpwMOTugZdV1GERIQCSxMrZ0E8DQFAL84cEhjW/o+50E5zlK8leUnlKwJCA4keXFZbE3dIZ11zD0lslYbNMKDKhtC5fe4IBxSjz69mMODydWqw7n2kK6b2a3be8sJluScZWjQAkCi1ISOZGdqjVJpV47XLt+y3Z7QgjTXO13zmItMzQuTJkQxkKwDkIMLnMln7HS6SMTgsV7SSymqRCDE6RG3NJNIcYnY0ugbeZkMBVVJRw4L0leZx2uaRlDoO0ake+NiRDinFSGLB5u4yC+KsKlCkw5Fz+RKB3MEEoIX+BiaSSenGhLbL5uwykksusDbdsxRWjbTrpPdkXMmY8/2WLtgHOJCy+cwzvPqsC7TLZs1mtx7C7kboN4yhTaDSYLo0MeStKRNIXLo/ycnGE3TOI5kyzGrkh0rA820mWYehEqIGNdmmFtLZ6UoYswFZL5OI6EGJnCOBddxlGMIqfpNLGYigpbikHEC76DuF04FiljjPs0j/fv2VYHGM+DATyvBa8BY13t06ohnE0m9kEZ6mBD91eTa5dB3bIKW1fv9yU6S3hRvb+aLFoH5vvGQAOIOniuoQ76/g8++ABgVkiqydkKGam7NTVEqSZ2Lk3l9NyWwewycKwrpLpvfe/zKtfLoL8Ogo6Pj8/g+e/cucPR0RHDMMzk8C9+8YtngnmFtXz00UdzonXp0qUZx++9PwMvqxWp9Afgd37nd/jSl77Ef/lf/pf81E/91Bz4Hx0dzZ+5efPmmbmqq8o61spt0E25Je+///78md1ux8OHD7l9+/Z3dBr02vXfOq/71lU99h988AEhBL74xS9y9+5dvvKVr5yp7i8TelWUAubE8+tf/zpHR0c8fPiQK1eu8ODBA+7evcu/+lf/CoA7d+7wzjvv8IUvfGHuctSJ3r7EYnlP1K/p3CuBXjuHuq50fnXf+9acztO1a9fm+6SGhdXQv9VqNc/p3bt3z3RnloH+8lyX46+wthoqWMsOawfRe8+///f/nv/z//w/efPNN2f+US2WAKddML0mXa/LBFnft0xo6nNb3nP6//WY1q7ncGoYqXyLS5cu8cd//Mffce3fi+1TJRbeO3Fe9g5voZmOyeGYEE7IzYvQvIJrXyZywJjWnDybGKee7bBlGgIhlOAE8I0/VcE0zEHrLM2IJBlQKsbO0ViLKZKebdvRNg3r1QbfSDA2TZNwElJmmqYihSsDb42hbVYSNJiAyRGTA63JmBwg74hEYpYALEQYQ2Yq/hNTkCorFFKsF/6Gb3zxyRBJVyVVw2mVtuB0gMw0jUzjyDD0RYHK0O96dtsd5LJoXMNmc1C6NlaIBMbgvGe1cjgL3kw4RM2I1JPTyNh/gpsMOMOURdI2s8K2G3zj6JMlxEQ/RRmflLAYWu/xXUP2nkRmGLdMY8849mX8pTNiSrfIYOaEYgqnykTa2RCCucA25FpHpkmcxo1q9GcFj4HxTREGsPTDxGqYCNOENR7rLArtoAS4ou5UvAy8o/VNIfs7unZF18kPGJ4+eco4DKQYcUaCegnUDZhMk5sZo960DYcHB/zIj/wI3XrDs5MTximAtVjfzv4lKhd73EdOhsc0zjOOmRfOn+PCeUfXSXJhCvcgp1Q6FXmWBlXStiagIrHbslqtMdYwjDsef/Ix25NjYhjxpVvYdaKQ5qwkDNYyE/rVGRsjXZ6cE9MYCGEszuGJpok45+VeyaKQpckvSEcthDDfi9p1k2koXYgQkE6fpWt8Ue+C421PjIPwcXImF/K8bjmLm/04jaQoRoXCyT5NUkPhQCgxeZ53bX2YPD80tidbnLU8+eTj8rBtWG8OaJqO9eaAnBtydjx+Ak0Dq5UrymKOk5Md2WZYrWm9OJ6fnJxIshbGIiKRi3N7kbe2agypHSaDa1qs8yQsu3GErWWzOZAuou9KQSTjSifM2rF0PxyNX+GsyE9734rCXmgIYSWJRScJxhROyeZTUP6KuMynMh9Zx2xWikrEqfk0j/fvybasVtcBfP235et1tU6DBIVM1SZa9XvryrfCFZYdiGVSsuxg6N/12Msq4vOurYYeaOegDgZqnHUd9NQk3eUxNPDR6rcSifXaj46OZiz64eEhN2/ePFO9r6uRui0rsTWEqyZa1zC0uoK+TMiWc6uf0f0tA2c4xdjXfga6LyUpv/rqq9y/f3/Gfl+9enVWadLzUWWrr3zlKwAz3KQ+tgaxehyFf4QQ+PznP89f/st/ecaa37lzB+89P/dzPzfP/bL7pMeur+3ixYv8zM/8DF3XzQGc956bN29y//59Hj58yOc//3lCCN9hiKfnVa+Vejx1PnTd37t3b97H1atXZwy/elnUPgX1nOr9UUNxAH70R390hg6q0/Ubb7zB//K//C8A/Ff/1X/FpUuXZrO+umOw3H8tolCvjWXSX3M06u7LMhmq13JdnNB7W13h64S5LmDoZz788ENAlMLu3bvH/fv3eeONN2YFLJ3TGkJZJ796L9QwTX3W1BBP9UC5cuXKzC969OjRbCKphP5l8q5jsnwGLMUI6sLKvmdqvV7rJL9W3KqvS+dM52tZWPhebp8OCmUszlu8A0/Cxp6YRoHm2HNgVyT3ClP0jNFysj1mnAb6YUsMufhUleDcCezDzMmFmSVmcwk0dLPWipyjkyDeOic+B02Lb5o5kM+lSppSZirqKdadwmm88ziHqLekgEkRlxOZQMoTMQqBd5pgDDCMSf5WgiRji0pOSSSatsEXyJVWMQ0UAjUVRruCBlVKMM7L+6TCKwGnJCpWJHYraIwxFuvE7bh1hsZKoOLIxHEkpp4pnhQSqCGxIpsV2TVgWsiOYZIgZRgl4E8p4gGXG7IXnkU2UgGfppFpEoMyRy1VKpCnTC4V1jCrVtUE5JQFqy5dnuJJAmIYVsbDInwYFMLkxLRQOzUyqXn+XWv+C69bqvxCOAZr1f+ipfENU3mIR63iWzn3lGsoVJzJyc462rbh8PCQYQpEDHYcZe5dg7Oi0BRDIISJcexJ04BzE5v1wGa9OVXkkQUgakYFglSvAyVtK4zMFrGBpkgrD+PAbrdlu9ticiQnT/YJ7225dkpiSsHfJ9Rpeb4fCuwrx0SMBucKZKioSIGpErdCIiaRY8bYKLC2lItR4+lPiglrIzlZkXU2llXXCiwISUyi3jMzHLDqoARZZ9ZkgYphsLF0LbP6YQg8LVN5k4hMm54tIYuS1jD0s1dNCIGuW9M0HdZ32OxIWbw3fAPOi7KdIQjksSRGMYlJ4TRZ7GgI1skaLU7aFKUoLRCY6r7Ue70fJGk42W1pm4au8WWtSmEhk0pxQtS3LH5WvctQjBSliBJTwgWBQvkYCd6LulhwcycwTqeJhSYV8hzJkCJTJXzxg972BZj1ti/R0C/SuupdK8nUAUCdhOwLCvT99Rewvl6/Vp9DHaB8t+up91MHyksM9Xcbl32Bgm7KO1BojY6N8gY0KKmx38vgRQO7+jqfV+mst30QoGUAU4/XMiGr96Ovq75+TaTW4E6TJMWALxMP3bTrpATf5fnsC96Wa+Py5cu88cYbZ9bJ4aH4T6gyUf05/f/lmF64cGGuhNdzcPHiRe7evTsHb7qe9ZqWyebyHlkGgArT0nHTJEYThStXrszB/b4OUX18VfjS7o/3/gwxX7cf/dEfPfOaXnPNM6mT6/pallX15TqrX6/nWBMgHZ8llKheHzUxfTnnej4PHz6cr7N2ga+TLT2H7/ac2vdanbTq3NeJ+Je//OUz47I8z3qOlv/ed4/t8x/Zd+/uS9KWBZb6/3W8/lQkFk3X0foGl44xqSfzjGQbUvMjTGwIybB9smMchOzbb3cFHzySjSVj8a4tVUwzJwym+gL0jQRWcQpzRd8WV+WYZPDatmWzPiBnGPpeiI+VCg0Gcd1tHF27ZtO2bLqWpkmIY/WAYQIiIU7EnJmiYbuDYcxst9u5ot60K5xvOFwf4L2bcf7Wyv9rQnSKcRfpUKncT7M6zligJ4aMtYb1Zs04DOSUsdayOVzTdS1d1wGCWTeIytW6W5XrbvAGTIz02y0p9KSwJSUhU0/5gihOZVgd/BDGrUis2J4cs9ttefr4yZwEULpEnXeQO1adK1XkRBjHUq0WmJcmTiBdmGEYmKaJvu/LNQaGvp8lZ2M85QXEJEpKWPHQCDHOHJGMmK5lLOfPv8S5cy/wY5/7MbpVR9s2TMXNW6v7ypcQgnJR4sHSNatCjm442BywOTikadrC7ZCbSTwhJKAlw9DvGI0hhon15oD15gDbCInZezFg895JcJeyyMAWta9hGAXqEgMOS2NbDg7Oszk4ZL3ZEMeBlAJRNaINoKo/IdDvduLvMcgDzhYejvOeg3OHDOPAk2/9MU+fPmbod3hnGUd53zj0eC8EaGMFlqQVfihJeIEBxuKZoBwL74MoXo3T7JUSiFBgODM3JMFqlYqiWiNJrY04TZjJIqscAmtjsN6zaR27xrKz8OTJY076gePdxMHhId2q48UXznHu3DlWXcPQn4iQAdIRHMbEs6c905QITcC4qhMTxb9FE/R8mnJKEJ1zUVqTdGG7G0QGN2TWB4esNge8+NKLOO8IRPqnT8lxZN15Gtey7jzHW4HKHW5WhNhK8j2Msn6mcCrrOku9hmJSmcl5QDtqT3MCA9/65gMOzx3y4oULHB6ekySDtnRgYhlLKQykkrgYK6pZq65F7EY9KXeliyFwwpiyyD4nkXWe4ligladEc0kyhHcz9ttP83j/nm/7KvLLL1Ctlj948GD+cqyVVeqKuX62Tjbq4+h+lORbB7YaeCkMQCEJ+86x3pYBQB001AFGHcgvv8T1c7r/OrBdVltBYD4Kdfroo48IIfDqq69y48YNbt26NX+uroQvAwo49emoj1cHiDVWW/9fA/j6ujXgh1MH3+X5L+EwCke5ffv27BCtDsvqLK1QnZpMr+dw7949vvrVr/L+++/P8KOf/dmf5caNG7z11luEEPjoo4/OuE/v4+zcuHGD69evzwGmwq1Wq9UsYVtXyOt52rc/nZ+3336be/fu8eDBA95//30uXrzIjRs3ZmjXw4cPuX79Om+++eZ38EKWPIPl+tJr007LtWvXeO2117h79y537twhhMCVK1d47bXX+JVf+RWAM9j+WqhAq9PvvPMOly9f5q233uKDDz6YOQpf/vKX+Xf/7t/Nx//KV77Cn//zf57Pf/7zvPbaa2fWsgbtGkjrvbCEGi6Tvfr666q6nuOdO3d4/Pgxb7/99pw0150+hUpdv36dx48f88EHH3xHYhpC4P3335+7fFeuXOHatWtnOplXrlyZvV+UsK4cievXr5+BEi6LE8t7a9nF0+T5zTffPLNe6qRSk+JHjx7x/vvvc/XqVW7evHkmOaufD/X9tu8erp81y4RLx3hfsrKv0PC93j5dYmEDjZkEj2wg2TUxWUL2DKNhmhL9dmIaJ/lCDqlUGSUgEVImBVpRpFEFBzUTVhXO4bzAl2yp5llraNqNKMr4hhhKkDRNBSYgX/5aVXe2wVvHqnE0LmLNbg5JnPHgDBiR+wwh049CzA4xC+QHJPi26vpccN5KEM8Ct6J0KVT2UZR6QqkqCjRr9uSYq/3mlARtJdHICWLITCaieZaMVYI8YIhirh0nkfuNxyIhmyZSMsQEu2kqQaAlGuGwTKln128Z+h1TL3r+MUa8b/Desd5sWK87VqsV1kyok6+1pijclIBcpS1TYirke00wYhD+h5J8Feed42nAq27UOQs8LCP7b7uOzeaQ8+df4IUXLrBar3HOlqp+JCa5mWO5qfOZALpAeVxZU6WTJR4dBt94NpsNpIlptOQYIEAycg4pJYZxFHK9MXhkHJPKfKYIRVxAZFJFPsqqbGwIrFcdm/Wal19+mcMDUSIjTRAs2ZrTdaE+HypfW7gryp1oG1+MATPjOHByfIwxcvM7I0F0CFKN9iWZOCXVn8KqcrnP9J5TOVOQh4pU9mX8pBB/6ugtZHqBQ1krwgdtKyZ1PjulMRcOiXRdpmnE5YhrWhoHq7ZhteoI2TAEhTcaximRknTBwjRAzqy6jq7rWK8dq27FNAZOtjsoekZ5tZqhWVMJnjFy3inlU6WkWWo1y/EwktiPI8ZatidNeYhaSguSftfjXMA30lFyQt6Qmz47km+wRsj7oTxr5q5NYoZu5RQEcpkk6YVEHC0pDMSpZ3dyTNt2HBwcSlHCe5yHZDNkWV+ZjLUJnCNbI4pSWJxpsE4MzL0TsYiYvRC6U2KKXgoByt+Kwt+KyochfprH+/dlW3YZlpVUDX6XAYxWYZ9X7VsGkjV8oa541smI/q3+jH4562vfbasDC/3SrgOR5fkuk6h9YwGnCi51gqHQH32fciS0GlsnInVVvr6OZSW5Dkp0zOu/1/OiKkz7gsX6eM+rYuv+L168yHvvvcfR0RGf+cxnuHLlCjdv3pzJwar6o5h1DVRVwejP/tk/yyuvvMKrr746B4l1Z0EDzHq9aeJZz209TnXF+uHDh9y7d4+bN2+eUWWqx+X+/ftzd0KPoUFtvbbq9ymvRZOeGtZSz019bnWydnh4eGZftTSoJhd1V0GlTmtlJk1O+77n2bNnALPZ24UiZfvjP/7jOOf4v/6v/wuAf//v//0MudKEXANi4AyMZt99uG+rux77Nj1vhczVa67+0bmuif06j/Wc6GuaPNXdimXwXnNylgWP+plRQ+6Wm16bnn+tAFXfH8tOhm7LeV8mM7o9757ft7/6eVqP0fL9y89+r7ZPlVh0dqQxkI2YPU3uPCFbxmTYbUX+dHcylKC/qAih0A3BmSuEwzkv35hm5mcCRSIT6FqR7TTGEGLAOcfB4SFtIyTZJ4+fME5TwYorF6NALlxD4zpa79i0Dmd7rOmLOk+DsYcYGrKFOCbGFDnpE2FKpMQpvMqoqZgp6i4SwOaUSVkIyQrlslarxKEKIgWLromUNaJwRYF2aHDsrEBOhsJD8d7SdR5jxA085wFSi8uZGI5JsSemYyG/ZkNMLVPMPNueiOypa2D3jJRgnAIhCAl76qdi1gWubWmbRuQhVy0H6xbbP5mTAe8b2kJYzjmJ/G9Mc8A2jiND38+k03HsK76AQFp00erY6I9WeNuuY73e8MKFC7z08kUuXHiRrutKV2RHKF2BaRRoVtCuT87iGWHtDK/SzlbXNLStzF/bNpx/4TzWJsbe029PZp6HKSpbfd+XIG1iY5wY5AXxr8hxgjiJ/4JvaNoW6xqyMaQgnaiLL73EuXOHXPrhH8ZbcCaS01hUsxy5qDpNoxDwp1GTMVVEszTO0XUdXdeKvPKu5+mTp3jrcK3Bkun7WLpNw6xCVI+rdstcLoIB3pRKfhntJJ00eV4ZSn48dzbE7Z45schl/oQQbWnbZk4sdOxSikzjjhgdrck0znCw7jh3eA7jRgJNIRBbdjvpPqU4QQp4Z2mbDQfrDYeHBxgrggYff/sxU6BAtxQOCLt+IISIcc1M+h7DSEpBeAcaqJWHiYx5T0oTOQaapmG9XtE48UfZ7nY4Z2jaoZhJekD8Y3AG2kZMAzMliavWb0YKJjmRonTswtTPxoeQ6U8szx572m5F26548aWLHB6e5/DwHE0rkrRhCsVUr8DCsvCnQObG+Xb2DwGH+PS0pAwhZlHhSqmYUsbTbmlKTNOfjsRCt2XgpAo3NYa9rsQvSdD1Vgeu+ppizZeYZt3qYFNfr4mY+wiocDZIr4OCWhlIuQH13+rgbhks1ATWOuC4fPnyTM5W11xNLg4PD7l37x537tzh5s2bZ6rs9fGWZOrl63VQXev8K/RGq7kPHz6cJVg1kdnXqVhCcGry+YULF7h27Rp/82/+zfk9/8V/8V/wD/7BP+Du3btzUH/t2jVeffXVGeqi/JJ79+7x9/7e35tfr+FUGkjqOdSBunI+6rWgECINtDUQ/Oijj/jSl77Er/zKr8ymeTWn4HExlVPp2zqg0wD34sWLHB0d8S//5b/kp3/6p+c5q6vpKv+6THTqrpGet577hSLF+uDBA27fvj3Dr95///2ZxH7t2jUODw+5ffs2N27cOJPIaCeo5sAoJ+Dx48f89m//Nn/hL/wF/vpf/+v80i/90pxcqPO1KmiprO/x8fFsbFd7UizX4vL+qRW4lp0yYCbha8LkvZ/Hrp5j3Z/6eCw5FpoIqwLW/fv35/3UfANNjvSe07VRB/chnJpJ6rXptdTXppuuW4Uq3rp1CzibvGvnZsmbWELK9hVMlp1J3edyrJcJXP3M+Q+pY30vt093lOEhmEPwh2TbEeKKKYwMu4Fx3IkmO5Sqm4UcsRiMbWeSqHP+tHpffhtrC9E6s+pWIiFbpGIhc/7gQpER9UVZSqrlWml1BdbhOyFw+qZj1XjxcjDHkA05rhimlpwdydiZfDyOjhgNqyZiWidQJS9GYSJj22GMGINJUD3RD+IhIEnNKQF3JupqdKOg7Pm3BGhN09I1Ld4LKbZpbMF9iyqRMYXkmwM5R5wFx0QKiTQFUjRMfVuCq0C38aw6j20Oip9Cw+7kGSEESWjW5zHGEoqpYCxJjbMGE0fCGOjzgAsDJk4FwlO4MIU8OxUfC4VZQKYpC9mkOCsISUIlYyAdJyEZx5hKsO8LxMrz4ksvc3BwwMsvX2S97sg5cPzs6an6TQ4zvEMI28wJRevNDFdzyskoXZFpGnjy5GNs8TdZrdcC62kahr6n91v6nYUpkErVfpwm3LAjGyuk82HHsDshxIy1XqAqKWEcrNfSOdus1lx86UXWXUfbWHIU1bMUpsIvGZmGce7uxBgKFyUUx3PpiDljaL3DO8s0SsJweHCIdwIfG6d+hguenGyJcWK73aJysH0xpEulE+Wcwzjp5njfkGMiZWQObMY6ZnUuSqJlrS1dKwtZOS/izp2QNZO1qm8ocCVLiDL/kMG1eOc52GxIOE6GxDiJaWJyTsBrtsU78fwYxgnMCSEOrFci9Xp42NL4Dc53bLdD4QQFzp07IGM53g3kkAqJPpCSJjnl3ivXFBmJk+RKu2dPym1oaBqP947NwUbEF9qOFLV7IHyb1nuaxpNp6A7XhKnwiHrxmhjHoajbjYQocrnaYUspkhEeinpiDP2OYRzoVh+zWm84f/4CXbfi4PAQZ2XZOmto4ilnyBpLSqVbalxVfNFnnsjipmwZiSTrSN7inNxr3kdy6j7V4/37sdUBeR3QaWBWV+mXFUj9//rLXquM9f614r0MfjVYriU/r1y5Mu97mQjA8/HQ9fnBWXLvkrwKnOEV6HXuU5zSra7CA3OQX1c7tYK9TzGmrl4ux255LToWCnGqYWfXr18/E/TV+9IK9vLc9Vx1XHRsHj16xJ07d/iH//AfztegQaRCorQDc+nSpTmwf/XVV/nWt77FH/3RH82KRHXH5PXXX5//XcM9aviMzo0GewqN089oAFp3iB4+fHhmLnV83nzzTUIIc0dCP6vE4Ndff/1MQgjM0L5agKC+B+okSPk0h4enJnaqgOW9ENzffPPNeZ2/8847Zzp+OrYPHjzgvffeI4QwJ3V1MB1C4Pbt2zMh/r/+r/9r7ty5w5e//GX+zt/5OxwdHfF3/+7fnav4dUKkm57rnTt3ZojS3bt3uXjx4hmfhbpiXt8n+rpeSw2p0nFVKODzEpWlGEN9P9f3QA2jqpOZBw8ezOfw4MGDWflK1/bt27dnaJ6ORT2fdXIEp34Xen31fVmPhY5n3/dcvXr1zD14fCzO3RcuXJgLHZrU1Wt/2Ymoj1UnEctCQz2ff9IO7f+f7dPtOe4gCQcA40jJFuiIqrgUB2RrUdaEqPc4LK7AVmylBmUKHMjMyjC+aUp1/xRL3badVGeRoDaEMGu021KpdtaWoKEpBF6Hs8XdNotcaQiOhBVn7CoYsSSsS0XS0mKdEYx963GuJeMZR4F1hRxm7HqMp+o1c0KRBNqAyRL8lM6HuCgXuI53dK0XMqmFtvEYI/wLb4vXQ0ykKPAHUppx7WEMBfJgiNGQYgnaSZI0ZTAzHyEACYPgt7GFJJpB1XbGcZDjBMPKBiGz58K1CAFHUeuZJlKpZs/KRlDItacwEaD8G6wv148tMDgxcWvbjrZtOdwcsFlvWK06rBFvBSUip1k68zRxs9aCo9BoTom99pRVK92g4g4uMsDiceK8p+m6GUYTgpCdYwkEc6bI4ErXaZqE4B5jxvqMcQ25FdjaatVxsN5w7vCQw82axntyHGYJWHF3LjCdGOa5SLODsiTMpiRdc2KUIRTp3LZpaBtfLlZgdyEErBsKbycVEnxGPVVSgaJhDK7ci0oKFylgc0oWrsQR9E4zc6JfglvnyhyrgEH5l4oUGDsbI8YYcFYq8Y33ND4W6eVYjAWLD4e1+MKhgEwIEzlPGAS+po1C7wzizp2YjHjoYIRYbbKZXe2VkH/mWqTNVjqLWboWKYuhnj81/QOD9+Ie75zDF9ifM5lkEf6X8wUGKe0cO5XnUE6knDCTurjbohRVEb1LtyPlTO530kkIorg1ThOYIh/sDI0XJTpjIt5JwSFl8cRBl7cBa1QhLZeGb8aZ4gVkMtkpqd/SNv9x5GbrbdnKX8Ia6mC9/gLd16lYfoHW/7/sONQBtyYjSy5ADYn4tNdQf2bJSai3fV/e+/72vCSgPuay87EP1rCsaNb7eF5AUuOzl6pCIYQ5wK0DpHoOtBK7L2A5Pj7m1q1bs0LParWauQka9KvqUc2t+dznPsc3v/nNueKs+62r18vrrcf3eWtn2e1SdaUlHKbe1+XLl+fzXM6JzosG88vxX3qJ7EsoldCuUry//du/zdHR0Vwxr4NerdgvA0dN/JZrVbcrV67MHSINzjVA/8Y3vjHDtvS99Xwrh8J7PyuTaYBar4l6vS3XpY55nfwt50f3V3dd6rFeruV6/vV84WzSr1t97Fp9SYsPmhRpt+7o6GiWja2P/7xkZ5m81M+HfeOzD36l5w5nIVf1ml2uv+Vc71v79Zgtx/z7tX2qxCLnHdZfJLmWnBumMRImMeeyztMYN3/x5ZxxXhVhVDHJzDjwlBPeS/cipEjrCim6YAFiCKy68kVQIETbkxMxWkPgSpSKtW8arHd03Qrn3byfTGYaNsQo+OOcBvkidqU7YBLebzEEHEEMrnyD8WsJFKyXBCprwCMqOquuIzUNoY3FRVknSDgEYZKq9DAIXtwYz8HhedqmZd21tN7g3QRJSOLRdOI2bCy78ZSATrLkZOl3/dwJ6HdbYoy0nQRIftXx+MkzhmHieDsUqEYq8C0xbTPWY60XBR/v8U1HCgIzOnn6Cd7BqrVcevkc68aBLUpDY4RShZ2GAQUxxQKJGsaBcRSYVYjTDJkZx4LXR/DuwpFxpZp9wOHhIQebjTysGg9JoFRKxoVTZSMQno21jmwsxp/+HVVgigoHEgWkEGX8TZEF7lYrSTjbFc53tKsDsC3jMGDdCTELITYXk7Ltbsd2d8LxyTHjOOF8w3od2aw3bNqGH3rpRQ42a85t1qQ4EYaesd8Sp5E4jYQwlAp2IIZRjBBzxJqMdx7vpEsi49XStE2B7ojHC8aKe7o+IEpCaMtcDsPA8fEJ/TiQQ6Rbd7PkbMgZEyM2iEt34z1u7cqYqlGfmfkIzaxqZqR7Q8YZOZb3XrhUSSR6Q5D71ev4I0pcklTKPW1zYtU6puBoBV1E9qa4UosAgUB7MsM4MAwD25OBp09CWSeW1ep4Vuey1uA9oj6XDeu1wwzi5t41hsZ54iDuIuXKSpJmZr7QNEUSAWIgTGGG9Tnf0LQd586fY71e8crFl0tyk4lxIocAOeMKdCw3Fm8bfOPw3jJ6j8UwjSPgcEVsQCBuerecFkhiiMSwZdj1Rfzhm7TdSrxXNgdljYoymnOOzUYEHdarNau2wXuLdwmycICaRhIZb4e5uOOs8DSSMzT59Ng/qG1fYFEHVVqF0/fUAapuWjWGs1+wS+7E83DDWgGt4RRaVdwXHC/JkMvKv55fHcgtuyb1tQLzNdafra+17sQokVSDt5qY+rxAYV+QsKxY1uezTEa0k6KVUh0bHTsl6T5+/Jhf/uVf5rXXXuPdd9+dSdDqWq6VfO/9LH9bX58G5VqZ//rXv87/8X/8H3M1+NGjR0zTNHeTQGR133jjDX72Z3/2TIdk2aVZjsUy6QLmAPro6GgO4GvJ0IsXL/Laa6/N+6rhSHWioFXkugp98+bN2fdCP6drSbsv2i3QYL6G+NWQq9VqxW/8xm9wdHTEvXv3eO2113jjjTdmyV0NcmvI3TLYvX79OtevX59hRyp9q2pQKoWqcJ3Lly/z4MEDhmHg9u3bXLt2jW984xvzPl999dW546dr/ktf+tI8ZrpW9VrVf+F5a7S+ty5evDifY53k6RqsSdz6uiZOy4SjDuzre1jHQbt9mjTouWiyq+epogH37t3j+Pj4TFK77ErWXBD9u3YltUOgY1Are+mxL1++PCeDukYvXrzIgwcP5nMMIcy8jXod6aZjWcOt6rW6LHjo+q2fe9+v5OJTJRZTnATqlEXhyTpwjafJggVOMSFFzqLMVKrkp0GiBpzMMCgA72wJghpSFgJp23aF62BnrwTFx3vvS2XyFEplCt4+Ffx1iuKcTUzYHDFEUhowpuDQSzE9ZktODVNuGAcLoyFRzLpMAgZyNrLPUj3XjolCMISJrZdlca6RRCG7EltYqSIiYxOlzQNESVhSBCMnVXNGnDVzZV4UgGC1Wc0Y+CkkdsPI8cnIOE4M/TB3UHRcBBqW8V6CxZwKTKNIenovpFvvpauixl9ypqng4sMMnVFMdyqKS6J0g7KE54BZScnzHFtH4z3r9Zr1akXXdaIOljPTKNX+PK+N+T9IYlZzc2whBDN3nVLpbChROgMEwcuLd4CdEx1TukertSShxko3YAqBXb9jt+v59re/zfGzY6ZxwBhL17a8cP4cL7/0Ii+8cIHDdUfjIE49MYzFcG8kxYkcIyYX6rQ1tI2Qr6NzmgdVnR2BcelakjkrV54LH8cIpKltO5x1NE3HNE103ZqT7VYggVl8MHLOwhmJEe8Tbg74CzeC4sFizaz0dWqgR1EtM5Dj/BnpuhjpkIWANRCrezqX6rx0XsDYTNs4Vp3ncNNygiTEKQl/CAJhUvGDUeSIYybhyr2VibvAMGZi3GGtB+Nnc7nGg6XBIJyoGBPmcDPzTAQNlYlBiOUqFa1cp/k5pJ2WlMg5sj3xDH1P2wq3aL05kK5G4ciknLFYgYA5jzMbunZF23SEMDEOAyGMxbxu0W07Q67PuqoB6TKFmBiHqZgcJpwTJ+5xmnDe0zYnrLoW752YYUpTmFUj8DGSGkRmMCIjnI0lp+9fReq7bc+rmi4D5OdV3Op91F+Cy88uv9j3vVZDXp4XoNd/r4OW+j011rlOFLz3Zyqg343IuqxcaoCvwbwGp3VwpsGIBqXe+/l9ywpwnRzVx9MAVs9ZP3N0dDS/rhCrOsjTcXj99ddnzf8aklYH3fX4aXCl79MK+K/92q9x4cIFfv7nf55/+2//LScnJ9y4cYNr165x9erVuTOi57lUTlpWfet50kBPEzUdT4XC1EGXdgbqBEP3o8Gh7qMOEuu1oPyMo6Mj3nrrLbSzUQd1y20fdr5+//Xr17l06dKsXnSheG0odHBf92Y5DvWxlANSr916LWnCcePGjRlKdenSJT788EM++ugj3n777TMB/Wq1mpO0d999d+a/aOJRn1d9v+0LXrUbo/ChfYlyHfDrmtJjaMKwTPL1dU3MdVtymnRfNUxR51zhR/X9WQf3tYpZnXzu63zq+qnHRM8BmOdHt1oUYPmMq+/rOlGpP1v/Xm7Los/znonfi+1T7TXESCgBaTYO68DnphA6bcHfnyo/qbcDRtVxpJo6u1ErR8JJEOq9ZxpFaanrVkWFxzCFQnblFA+uAeYskalwlphJKZRaecLlgDERawIm7zBZoAbCJLeispItIbjiHJyZCjxDKriy95RiqZzbU4WYoupDMY1TvIKzIgXqzSnhVc5T9ibBulaxDSYnsslkE+nHqRBDJUDzzgisyoAvFe6MZbsdmYaBk5OR7VZuwmmqzMWgVKQhGyfKRyX2SHr+GNq2o3GGtlFzP51t7TzFss9YHIAjY5gWZGxT3mvmxELkTWV55Zxp2paubVmv13QrISrPJOAQziREdZUXVPHJksvcS6IAMQssJ6HeEBFVQcqpkPmLNK2LCWt8cY1vpIvRyPxgBxID/eMnPHt2zMff/ph+KF/Y6w2rruWlCy9w8aULnH/hAptVQ06BMPbEqUjPhkAuUCetmlsjUqyprBmZfk0vcyFwV0FnlXCYkjSp2lXrG2ha1htJOFarNU3bstv1DOM0JxbDMBYYVp4T0BRLslXIvMaIp4s6n+t2qg6lUJ8sKkpIYhfCJB2/kljUP64opxkLrTHE1nGwbgnTUBTPRpLJTBPzvRNDREB8DmPEjXqYJpikEDBOkvh2nafrhOTeNgbvDW0j90AIkVXr507oOEEMib6fZkUpSfMUrqRIqSScpSAcCIDHj5+wXq85ODjk0iXpIkKBt6VI066k82ccXbMCLF0XFtC5cCpRW3xr1JQxp1gKJyXD5LQDOE4jNjpiTNK1NZbUq5qcdEm993SdGJQ23rFuHc6IYIA3RQtDiDvgnBDl/xRtdaCxL8lYVqTralwd8Ndfus/b976ffe/d10lY7rvmiOzDOC/x4M+TeawJovXx9dpqWU7dany7Big1OVk/X0Nl9h2zTlo0MLl79y7AHIDWnSINwL33vPHGG3MQXlft9Vh1dbb2qVgGz++//z5vvfUW7777Lu+++y6PHz+eZWcvX77M7du3z5DKda6fN371ONWBpyYVR0dH39EdUy6FBtXLNVMHmRrQK/RI962vffnLX+Zf/It/wbVr17hy5cqcQC2Tu3rdLYNQPYe+F8nTOqFRKVbtHql8qq6xen/L7oUmOvrv2ttB14DyJG7evDnD0y5dusQ/+2f/jN/6rd/i5s2bc2dBx/fSpUv863/9r/n93/99Hj58yOXLl/nwww/PdA30/JZbfV8/ePBgJqfrfNT3Y32/a9ekhsrpOlvyjfQzz+M8LJ8Tly5d4tKlS7PkrSbCtV+KJl36PHrw4AH37t2bj12TyJdzonO8fK7os0TXo3ZxdF4fFynpZZJWr+/6HoRTp/l6vJfPuuVa/FORWLj1f0KyrxCimDWFUMyjkMq4VgVr1Z25qq/78H6uHGpI4xtxiA0xzgZpzrkznzXW4IybA7AQIyJdmtFoeHYjNhaHBCfELSGOpDRiERnNmNcMu8wwZXbDcFqFL1wGCbyZsfCKaZZkRM3wxPVZOA15lsk1WIwXOIPvOqwXOI61cn4H60OsSZic2PUfE+PEGEQ9CgytjWSbyHmi8RJMWNNJsDQG4iSQlSm3mNazciu6w/MSIOdc+htUMqQanAhmO0ZIU5g5D23T4b2haW25rlSI9iWxsJbshBTqYpHJLByLmFLB7J8qP4UQSqdCcPptK94cB5sD2qZhs9aEEUngzvAp8pmqci6BuHYcRIa2hMjxlCOj3SxKN0Aw8LlAwRwkSCFCMjg/FUiYwIOapiuV9IlhGBkGCUiFq9Ny6dIlXrzwIp/9kR/h8GBNazPj9tncpdBOSyxk3VwkRw3FOwNJ2OpkNJeLSynOXTfrLM57fNNU3InCowhBOEhA2wlB+oXzL3CwOSTEKN4NQ8/xyQlN09L3O1JKleu1mUnwtpVkx5X52u12c/dCxzCR2G5PZmib9wKpMjkyOsewKwmesWwODjCNxxhX4EiOaQqcHG/51h9/i48/ecJ21zNOEykFSSZUMthZXNPgfIv1ogCVkpmD6WEKtG0Qkz2bAHnQdr7Br1ZsVmtijOz6AY3XT5gYcyCTZrK59a10D5OTDlvhX1A8TebkyDWkbOnHyKNvP2W1WvHSixc4ONjQdg0n261wyrJANXOGKcpvU64F5zCumXlCBOHWWAMpWkwZg0yWjkKOGGtI2RfSdodvOnzjWG8Ois/LaRcRDOMY2PUDH48jpEzxGp2fpaZ0SFMYPs3j/XuyLb+s9lUrl19++rnvti0VYPYlIfrvWnWp5nLUX+qqklJ3ATSQrANoPba+/vDhQ7w/C3Wpg0OtZu6DSum+taoOzMHe1atX5wCjrnBevHhxhkqBQKyWwfLyuvTfCv+pcdsa5BweHnLr1q25Cq3704RAScSPi+Oz7n9fslZDcxRG9eGHH3LhwgVee+21uSr7cz/3czx+/Ji/+lf/KgCvvPIKX//61+fgtoZq1JX55bqpOxLLpEw/r9CSe/fucfv27XmfGgjfv39/VuGq1+hSBWt53b/xG7+B9+LWDVKMUXJ4TTqulZLq7pRC82rnae2qaIDtvfhvHB4e8tWvfpU/+qM/4n/+n/9n/sE/+AdzcL0v4KznsE6ENTmqSdLqpXDjxg3efPPN+dh93/PX/tpf46/8lb/CG2+8wePHj/noo4+4efMmV69e5f79+5w7dw6Ajz76iA8++OAM3LCG1yh/QWFcev8cHx/PsLf79+9z//79+W8678uxv3jxIh9++CEPHjzgww8/5J133uGNN97g9u3b8z20L7jXc6kTjVqdqSby191NDfTr+1rvCZCkXqFmt27d+o6uQi3GUN/Peo6a3NXHqedUX6sLC3Un5nkwyToZ1+PXz4Xv1lH9Xm6f6ggxHzBFR4iZmMMZCUbFb6tELCWxwCja+JSwagrUxRaFGQ1yEkVJyJ7CX0ovQovi8/E0wCw2awJ7KeRGQ8Bk6QjkNJLTJFVlDEQY48QwJsYp0w9TMbcTIzcN0LMQQcqVn7JDc6moW5vPIKiNlkLnn4z1QkBtOuGeOGtofBTlHRwuNDIqqs5DwpkkRFsjhE7nPWRPLET0mIvXAoZsDc5YjPFCOlUuSyFCJyWVl6hEICm5SIsK+XPVNXhrCu4/lmD3dM5nJ+kSsNdysTWG/Cw0RgLPpmlYrVas12s2ayE5N01z2u0o3RXtVmjXQ2RQzZlzSKWLE40EpZpYaKdCt1ltTM+swKNSMsVAUWc0z2vz1AOjpWs78b5AkqXz589zeHhYOizicRGngqVPBfZSEotc/p+c5s6PnM/p2k15saZKpT2mhEkCXyoLqrwlI7oA0nmJMeGKIlPbWprcYKx0+4w1TNOI98LDKIYLiIu1xbWWrhDnG++Jle/LPNdySoQQ5oSUwhkYEehWdOJS7p2X63dKEi77KcphochBj9M4O7PHEogD2GRxGWzK2ETpKDiskUQ8pTwbTWrXsGstufFYY2cBh8ZZ8HIdISaMyYTYYY10Q0PwZb5CgQGmGQply/hgVLFOIGvDOAGGfhgl4Wule2JSZgxpvl5XIJiChjTYlIlG13UxFLQymdHI8ycpJ6jMr0nyzIJMMBY3qRllwOZT6B+IOWHOqn5VxlyhgcAUdeFk4vgfX252X3fiee973lZ3KfTf320fdTC3rNTVf1tWEesv5bqCutzHvusLIcySt/r5ZZCwDMjr3xrw18HgEuq1L3hZdie0Er/s0NTwHA08a77IvmtdBmhLj4F6/3o+un89profP378eK5Oa5LkvRfTzNVZ5Zr6GveN/XIO63OA0y6PyqTW5HL9TNd1ZxIGTb7q49cJk+6/5nxcvXqV//Q//U/PJCPPm+N6fOrr0XWir2kQq74d165dY7fbzcZ7Khdbj0W9/3r9LM+lXuc6Nxq81pAx5V/oGNd+GiEEXn755Xmc//k//+czhCuEMJv6qRFdCGHu5NTzpgmsksH3reX6mvS89XzrRLKGEdbvq+/neh6WHcXl/VfvR3/XxQM9Zs1DqhOH5dzU9/7zEp/ludZrtS6S1ONXb9/tGfvdnpff7bn7/2f7VInFybjG5Gn+YhToSgkymqZIi1qpsmoHoGCNT4H78hnrTjsbrkjLplRAC1aqcPk0bkV1+lWRSANChdw4Z+kckAdS3JGm41IRzKQoEKndEJlCZNs/niuPZI8injUaVfLnmUyhqFcZldK1AraSv9tTs7/ieYGJWDvQNC0HK0/jEs4mnO3JdMS8oetewPtIME/JccDkCetEecj6lnZ1gPMrdjsEDuWSJEs5EVGjOGi8yPM2bVfGwkk3J2cMUe1CmIIGfGGG7KwLrCdOA9M0EHKgq5RnYhDIyhROVbAoY69BlQbLMhenkrovvPACBwcHHBwc0Plm7mKFMBKKepKuI+VqiKyqJhdCxs05kmImlMBcVIikYzKfD8wdEu/8nBulJBOdcxDoVIqFLD4KhK3wQLqu4+LFi5w7d47z58+XsTW8/PLLdK2oVk39wFBMzUCo6anAXaap4NyT8jxy2YesG0leJamzcwIocMAYA7kXw7aaMwQyBmlWkoI8pNIRonRVxIk+btYcHG5YrVbsdjs++eSTAs8ZyMVV++DgQBTTGk/K4n3gCiTxNME7NcwD6PtAdI4UAyMC71LfDdqOGKbZ0NAo4Cpn5tDbUe71jDOFn+AclCp8RDqVxAGs8JPaxuKsPFdyziKtWzpvQ7+j61oONhumSThKF15oaTtL1wlUaoodL7zQMY4T4xToh4FYSNzTFATSOakZZHmwKuwxCwl9GCfGEBli4txu4NzhIT/yw58h58wnjz8puYihadeSiGmXMyOy20W9rm08qRhnjtNQEixZHykaStYo8sMhMo3yZWKc5fjkWEwk21VJHGVNdI1n1Qnh21mHdV4gZRlO+kFcucPEFH7w5G3d6i/9uluw7C7UX5a6Lb80621fN2RfILEvoVl+UStJUiFASnBVqIsqFymZVIO9OoiooUYq5XnlypU5yagVfLQjohXM1Wo1BycXiszmMrjSIEPlKetxqgMUhatowKXQJt2P7ruGWOwb5xoypdj7WglI8efLwEiDO62Ov/nmm3N19b333uPevXu8++678zF/9Vd/lUePHvHmm2+eCWLr+a+TtfqYdQCo56twrsPDQ/77//6/59vf/jZvvfXWHLh//etfZxjEs+anfuqneO21185Uw7W7U8/N0hMlhMAXv/jFGRrzC7/wC/y9v/f3ziQbS3hVvT51XWmwDacO5drNePDgAV/5ylfmdfbzP//z/Oqv/ir/6//6v/LlL3955jdoklgHwjpHS++Hep50bC9cuMAv/MIv8N577/HLv/zL/I//4//I5cuXZ6f34+PjuRuhUrd933Pv3j1+6qd+ir/7d/8uP/mTP8m/+3f/jq7ruH79Ojdv3uQf/+N/TEqJn/mZn+HVV1/l1VdfPeM7UsOHHj58yL/4F/+Cz33uc2dUqmq+Qw1xUxPD3/zN3+Qb3/gGH3300bw/NXSsk9Nl4ql/rzkzutVSuTXkTsdC7z+d+/v373P37t352XD16lWuXr16pju4vL+WCcGyEFL/re6yPnjwYFbmWu7z0aNHZ5JgvdZ6DXp/ypmqj3N8fFxk67/326dKLIZxwOdTDwpX4BD6hZdSKgHUWcw7Js9wi8a5matAqeYaoxXoQNO4Ga9NqsiORv5mjcE40dS3xs7yrc4avOnJcSKmHRMSOMQI/RDZDZFdPxFDYpxCQZYU4ztTEoRyLd5qsmGkQzEHRL4E7urFIdAqa23x3wBrIyY+gbzDM9Dg6GIrFWMaVt0FsCuyWTF5gdKMTDPpE9uRsUyTZ4qQTSBEM1c3G2/x3tLNw6dQmUiOE8kkTLbEOGENtN7OPh/OGkJI5BDE5DBF+pMTxn7HdvsMkwa8Nbxy4RBljdTmW7nARpz3M6xnmqYy74mmaQT2dHCOrutKpb+TRIfioVH4COJQHmcolGzS7ZiDPEpPJCuHRjLNTOEBxChBKaUzkGFiJFm5oebarQblNs9rFOtOHdYLhK8rOPamQPOsMay6Dmvd3L2yRgN+If6OJYgU2WJJCijOzCklYo4QTwn/Ocm9YKxkziHFmTyuZHclKmsCnebqtIxPjKJ41raRlERe2SBE8YPNhsZLV6jf9ex2ThyoSyKivKUUTzkc3jmyc3OCodAzneNkIedTIn4ZgDkwT0kS2ZQjJguXyFhD07XiON2uGKcgd1RZizlDX4LsOHNARP3LWYfFFPdo4RjJ+pUA3sXEFAO+kft+HEaM8XhraFtHiyOblphaYsxiEhnFU2OaYiFLB4FzxnGGqaVUHNdj4T4Zg/MWbzI5Tox9T9M4XrxwTrhcmdItVC8e7a4pjSLPELldv2OcxNPEN51wMcaJnGP5qTsQlb8Pdu7CCJTTMoVIjDu2ux2zWIQmo9aWLumKtvnBJxZ9359JTOsgcVnB/24Vs2VAVwfyy3Z+XfGtOxD7jqmBg/5otboOkJfnfe3atTMQIYVV1AGSBota3dVj1pVVDUCX0Kx9CZD+vQ40ltdav0fPYTmeepzla977M6Tg5XzVSc1qJc7Od+7cmeEjr7/++lzl1p96U7UfEF+Kq1evzpj4S5cucfPmzTlRqTsouqmSVJ2MabCtJndaTVdojwbVr7zyCiAO1Rqw/tRP/dSZAEsDQA1i63HStbEvAK2r/c9Lzup5DEFczPX86o6DHqf2gPDe8+abb87QpX/0j/4Rv/3bv81nP/vZGZb0S7/0S/zkT/7kDDPT89D1pWO/TALr9aJj+uqrr/LWW2/Na0jHSOF5uob1cxo8f/WrX+Wzn/0sf/AHf8Brr73GZz/7WS5evMhP//RPA/Dmm2/O/AUd06WEat/30lnnLLG97tbpetekpu97/tbf+lvz2tP9q0Ss935OAuoxqbtFtTLU8t5c3iO61X4Tem8oBEo5GfV510WAujO2TCD0OMvnnY5ZLQxRJ7D181OfSzXvZvl8XXZo9h33e7l9OvL2VIjQs9+DVF5tKS+nXFx8C0kxRYGEqD+E935OLGaSIZBKFTgnUZ1xWmLnFJ6BUT+MLPyAEqB452m8ES33HElpIiMwqJQTIVqGMbLdjvT9OAdP6p8hMHRbVKIKIdz52dAvC4EA30gVvvEtjW+koo5Ugp2xbDZrvM14M5CmQA47bDzBGYNPDcZ22LyicQ3GebACj4pBcNjRRIIBjCNETwiOKWViClJZN+J54X0xzWrEzA8D/UkomHyBepCt4KuNwbimQMQEx59jgjSSo5CN++0ztttjnj35BEOkaz0vnduQrcFiitv2wkvCCGZfw4eclB8h6kUHBwcCf9psZqM1CtwpJZEnVkM3xaKbOpWYoVenVWT5lYWEjlbyS5WdLEGrZBEkq27v6tlwSo42STpq1pdeVLIzjK9pvHR+fAkW4bT7kdMpQszYQmgXBbKYpCuUzWnSrfeD3gthqngggC3jqd2gUzWtykNihp1VMLMCIZz/mnO5vyQgX3Ud3nlCFMhd3S2sVbpqsrhCEmchBH0t59JxLPvRbpJOQIHaZeXIpES20qXEiNz0ar2maTOryCx/LIlLxm235eEX5+TSUAgDuTiA67wbEN+RPFfkGy+dm3GacBaidzRdI88Jb8k4Mo4QEzFmhikyTZkQM8MgXjRTHEWONkamaQcpkGPAl2eUdRZvMyYHwrTDuxXnzx8yTYkYMinLc8k3viQWgHVlnKysjxAkAQoNY2iwrpGOxjgR01TEHOIpRDDrapcRSTGTXIYkHcpQOrchqgeH8GCc96J2Zi1N2+BPefk/sC0EMYFcwjD2JQT1tvxS3/e3fYHzvurc8suz/rz+rgONZYUSzuKdNRDU4FCDwWUAoapAdTVZAxJgbxC4b/z2/fu7QYPgtHK/TyFHk6Ll5zRgrPHe+t4aUuW9n3kT3/rWtzh37twcICtPQROm+ro1ANfkoSbAqnnb8th6jUrYrc0N686PXo8e/8GDB/O5K6zlG9/4xpz06NxcvXp1JirrGlCOhHJp9Jqfh0nXa112bvYFfSEIPEiVky5fvszFixfPXIMGyDqHyjd59OgRv/7rv06MkcuXL8/yrP/qX/0rvvnNb56Roa2DWpUPXqpI1eevx9XPa7dL15DOmXbi9POXL1+eeStKWP+zf/bP8uKLL57h7Vy/fv1MwrlM8uuguT73+t91QSGEU8jW22+/PcPrdK51HnVN1Ne4TMbrrp6ey74ErD52bXipr12/fv3M/bxMjvReqIP6+p5eBvvLxEMTGdhPzK4Tl+U4Lt9Xj2Vd0PhTkViIlmNxuzWGaVKYkCoK2dnczhmDKaZz3arFN2usayBGYgpMYcJ7IRqG3UROJzQ8pclrTGrog0B3QhBCsjcG41vBlztL51qcSXgzQnwKqWccnhKKU++uh2GEx09OGIaJcRznQEq7DYI8r8ytnMe6BtesimGWp2lbXOM5OHdYTMtakWUlYfIWS8TmQJgekMP/197bB9lxlWfiz/novvfOjKwxkqMxFj8LEGFw5GXAA5ZBFDIliGqRE7ElFmfjVLy73oqzyy4sa3adilmSKlfF2RBIggmugoC3yg522QGxmNjE3kUsIohlwENZNjJW7AHLeIxke6T5uLe7z8fvj/e85565HtmWZcmEnKdqpJn70X369Onu9+N53ncBaI5ASUeOTzEGyGFYtRqqbMFLhW7j4esleP8U6moRpjHodS2M17AoAanhvYAzFt4TvUZJD60kypKavFHEW1NlJOuBVidEXxtyqEyDpu5BeA/byBghd9ag6i5h7qnDWFxYQNWrUPeWYOoe6moJrVJhaKiNpZetRlkUKJQiyockwS/rAWAtvKAKUCrw61u6QKczhDPOWI3Vq1ej1SIuPxvjHn1HhMSzBnXVi0YVV8sR6NOEqLGbhItOB6i3ANB3Bjh7EoTjLji6Aj46Fixkl5LE0YUi6hiVMhUxm+JCaVEbumKTqMIllajIEWqCxoJFuDJw7ek4Q5YnUKRs8rtzRMGRUWeE4Hz06WU20JZYTE3OWhnLxFJnbKJc1UGQzedBhetJSWBkZAhlqdHutLC4uBi7RwebP0bUm6aOmhSeS85kULdzDQFP3dilApSEKsuggwoOprFwtYEHOa4Lx+ax2K1QdRepb0hZoNMegi40irKg7uYOGFoaJspR3afFITiM3vXLxEKqoGNw6FU9LC4u4PDhCu2CemMMD7VRD7VhnUdZUzCjNg1lGaWCLmn9twqFVlEAUBChk7eDQlU3qOoKTx45ROWpncFQq4RWCmWpyfj3PfimgkULZqkJVC0qDy0goWwBWBJaF+1OoEUChfTwhcdwpwVrC1jXQa8BamNJ1G5M7C5O+p0qVBqjks7CAxBhPoSH9xSgkSo0FqWVE/UwjfVobIOlHvVUOd3Qmqh5/DsbLakRMegsPNf20s+l308f/KkBtZJTkT68+SHND1g2UNj4BbCMVsFOEWsEUieJnYx0PNydmB/i7Gys5GQNGlL8/qCxkRq8g+Jl/jwbzrztVDcwaOD0ej3s378/Gsm8rfHx8Uj34Ag2QHz6u+++GzfffDPGx8dx++23Y3R0FBMTE8+oOKW1jjSk2dlZ3H777VhYWMAVV1wRhespv5/nKD1+NhivvfZabNiwAX/2Z3+G/fv3Y2ZmJvbN4HEbY6Lh3m63o8D2kksuicbZ3r17sXbtWuzatStWRmI6Fs9tt9vFV7/6Vbz73e/Gf/yP/3FFKhTjeH1MGPv374/rnilBPK5UUzA6OhoF/3v27Im0t//yX/4Lvv/978ft/fjHP8a/+Bf/AkVR4NZbb8VXv/pVzMzM4Oqrr44ZNabu8VpmGlmquRmMdLNzwTQqdv44M8dZIy6tevDgQfR6PczPz2Pbtm2xTwk7cr/xG7+BkZER7N69O5bO3bRp0zOuz3vuuQcHDx7EzMwMxsfH4/jScqu87ge1Izw21tCwkZ8GCGZmZuK2uV/KaOhqzWNJe06k13OaveBsAAvL2YEdDVXTUkOdx8jg63QlzRPvKy22kJ4f/sxK6yy9nvm64bXGWbt0P4MZijRYkWaXX0yckGPhQqRZBGfCM4UoGFVSINKYiKbTr5PPQmxjTawC5FxDEVzbhUAFKS2oAopEYzxsqLakBHP6RShNK6BUA+kNNZkzXVhboeoZVI0l6lOPqA9VFco/WhJwsMhaCCL7iFCKVanQQE4V0IUOmZASZasFXWiUBVV6gqBIvgjOk/SWdCeuB+9rEL1qmChNajW86MCLFuAElWy1PXjXwPsKVa+hUpNGwgsFL1WM1pPjE4TcnrpwNzVFyYVqIIQJ4laHuiEBemMDz9872LoXxKmALsjAMk0P3aUFLMw9iaWlJTR1A9NUVE6zqWGEhKkFmrqCFB5SFCQnAdFbHKUJAITouej3QyjKNlrhYU0d0Ll7Ohnt/Qg59Q1wibHNGQ+EbFRfwM0aCxKzE0T8fbBUqhPcDbwv6QH65Vxp232Hgzfpw3GRk0OlQQUbawiaFylDlsWhaSqKJ3tEbY4NlCzvfaiA5CJFbNn/1tI4gwO0zJAPg+a/+RitlfA+CP41OSWCsyKpeF2kmiBydlqtFjldTT9KSzQuA25eKDwb8TFR2M/AJLw0uqZF/EwaYec59CCRvLVkKJdFK3aal1pCSgehJKQTaBUSEpr0VFaHLEwoPOAsrPM0BqlgDGUdmhjHD3MXNFukbXCwtkcJDwFIB1jhAUkN7qQQkCL0jhFNcAkttGrgVYN24QAFSC9D92sPIGiaDNGm6sbDYQFKa6LIcZ8UY8hxFhKiCYEFap9NncdDYV0pHKAEFBx8WUFLwGiBUhUwVqFRImhaLIyx/cUsAcDReRNUZlbyPQyc3wiFMny/zPDpRq/XQ13Xz4iwpw/dZ8taDCL9/mCEOH1/pYhj+n8aUebPspHExkVqAAwaMvy9QWEssFwUm1Ky2DAYjGamx8b/Dwp70+NOjyndbzp2HkfKSU8NiEERaGpgcFdpNnLS+ebvt9ttnH322bjllluW0XnY+WBHhn9PjWc2dLhkaGqwD44FwDKDjastcVSYnSeuOMSGIFfP4gwRfzet5MW6gdSIZuOO6UrtdjsKygeRHuPg2ksN9rTp4NjYWJz3wQZtR44cwZ133omzzz47GoicITjrrLOwbt06PPHEE3H/nU5nGW2NjdvBXijpOk2N8sGsXLqm+f10HKmgmc8jC7svuuiiZQ712rVrY3dv/v6gY5bukytIDdIHB69h3ufxqmGl2UC+JtLeLzzvaVfylbKS/PpKgYz0Gh7MNA5ej4Nr+PkETla6bx3v78HvpddReg853veeazwvFk7IsWgMdQVmowtSQSoykHSgvJRFcCYEkzXoKU+lOD26vQqAg1Iepq7gvQHsMSjlUEgPJ0oY30JlXBQFK6IOQyuqlKQloHAUznVR18fQVBamcZg/5tDtWSws1aibmkSapt94jcctmfIUhI/cgVeXrdCQqgWtC7RaSSpUBqOxNvDSUtduYSBcF7CLQNOlHndqLVCcBagzUKMDwMP7BqgW4G0PdW+eMhJOoqo9nJeALKF1ASUU4AMtSHkIQcLOpmlQ1w6m8bB2MVCxBYlCAy3EOofGWZpx7wFDfHFnDNrtFspCo+rNozt/DE//7HGK4gcjzXsHCQvXAI0ElhbnAT8U5l3SeZaSuowHbQHCGIqC+N1DwyPoDA2RQFgXVKEKzNO34YcpHAbGNmiaOtB7QhYpcOz78JHyBCCIe2UUeFPJUzJz+5qAviaHbG+qKEXGOmUiVPge2eEOCDx4F24EdVUF21zAuSKOxhgqHWqtCWudIrPeuShuZ9FuFEJ71gkRTdAkYvMyVMhiXQPQd1D6NC4fqSXee5Shq7zmKH5wWqLuJPwuQ6Uo7h9iHTXPa0Kn+MY0IOl00ERAhOuExioF4CXAaSYpZCjOEIIK6ZyDKrqJcK6tMaT7sRaFFGgXCu22gvMWja1Qqg6UUmhpj1JJDLkWAB31JdbWMKZGr66pcK/U6PUqNDVgpEBRasgWZVKUkmi325BSoWmApd4iIIDhM0bo8DwZ+U6RdkcrCykNPLqhuISFdA4FLM5om3CXKEjj7xyqyqBuHGrj0TMNvDcQT1coCurmPtxpQSlASQepHaQEaitRqAKlKiC9h/AODl0ABhIGLQAlgEI7ONWGQwuuswrGSPTqNlXdcw61sf0eGU0P1lnUpoawKmZjpCAqZl9jofoOZj/Rd9pw9OhRHD16dFlNdn7Yp511V8oqDIINXI4asoGRRuL5JzUEB42l4z1wv/CFL2BmZgYXX3wx1q5dGznhWutYo58F3fz91Ijnfa1kqDEdYyVnalDzkEYu06giR47ZEOPtsBE2MzODjRs3Rn4+d1ZmWk8aLWWjM6UW8dhmZmaiQJTfT3sAcBR9586d+NSnPgUAuPPOO2GMwb59+7Bt2zZorWPTuZGREezbtw9aa2zatAmbN29Gr9fDnj17MD4+jm3btsVzwR2IBznwPA+7du2Kx8CN9NrtNqampnDbbbfFc79582bs27cv9lTgaHna9OzQoUO47rrr8OCDDwIALrzwwjiXP/7xjwEA/+bf/BtcfPHFy+g06VpNqSm8babUsJE/OzuL3bt3Y8uWLdi+fXssk8pRdD6W6elpfPzjH8fw8DB27NiBzZs3Y2ZmBjfeeCM+9rGP4ZprrsHb3va2ZdfE+vXr8ZnPfGbZ+pmdnY3HOhf6d3BWJi1rzPObrtNBA5odac4ApfSf0dHR2Lxv586d2L17d6zwtWnTJmzfvh3vf//78cMf/hCve93romPFazydx61bt2Jubg7r16/Hpk2bln0udVA5w5D25ODzwJ/l9czZJ3aKJiYmMDMzE4+Hv8NZsrRMbKopSh1Gpu0x2IFlJ5Q/k2YLOOPHwYr0OjqeU5dicN0Ngh0cHjf/zY728ZyHlQIwpwonlrGwFtAOQqqYhvehnwUiLUZDWhHLRXJzN+cpG6EUPQg1BLyr4H0NrxycKFC5Nlyt4QVQSBG+60PzNodCVvCGeMm1IX52VTksdS3qhnQUpqFIX1orH6E5HFfo6WcnNMr2ELQuULbaECqIt3UZ6UNk1NcwxgTxuIQoBZywqMwiYJcAV8GjBeckatuCWzLwOAYv5gFvAd8ArqGmaqYXMz4i0McERMgaAE1dRYOHm5zVNRusTZ/HLWTQH3BE3i2rsgQXeO5CwNoGPSmwdOxJNL1u6ErOdCMZyqUKGFvD9yocPnwYQ0MdDA8PYdXIGdA6lPdMKUnMz9fU42BoeJjEz4q7AdvQE4Q0CPw/GUkkYjU23ChClSN2/PrCV47ES+oToBT1QYGIxrQNugOOYxN3BNz2oR/fTrIDxjSUhQgaIYSIMkeVnTOxAzxXDfJBM8T0JNpyPxtRVdQ93AQHI3LlOaUhgmYg6YqutIJ0NAb+njFUGYo0SaSJsE7CWAMVSqVprdEqyijyJv0K4EXfsYD3cEFbowqqmqbkMOqmQVM36PUqeBf6uhgqx+y4MlfQNAgIyg5qhUIRjYx1ID5UQmqMhZcNRFNDegcvJKpeD71uD0tLi4AsUFmgcgW0VtDlEBxIZ9EaKuGhAWgYQ2VYa2NgnYKFhpeULZHQaBWAlhpaUTlqrUkw7p1Dr+qSMW49mrBmlqo+pWxxsQelJAot0GkVKAoKiCC4RDIca1GugnfsoFkY7zBfd2GshHUCBrQ2nQUqQ3qzpV4TsoseSpPj2x7qoCgEylJSVlN4FFJASksZm3B+vLPwwgJYAvwCCiVRtAt4X8BDwnoBajqpUTcdylB6CSELCFmEbikewvXXm+Uxeo/eS1QVimkDqWHNWOmhNxghX+nz/B4bB8DK/TD493Sb7XY7Vt5Jo6Bve9vb8IY3vAHj4+PRKGPHIjXI00gk0ybSzATvezBavJKBwPoDnp/9+/djZGRkWfWo9OHP4+F9cmYBAMbHx2NPBjai7rrrLrz//e/H5ORkHBMbOWkn5pRuxE7U+vXr8YlPfAKvec1r8MEPfjBSXNjRmJycxG/+5m/i8ccfx5/8yZ/g/PPPx+TkJO666644Z2xcTU5ORsoI05W2bt26TLfB5yrNarADxOf29ttvx4YNG7B582YcPHgw0lIOHTqEBx98EO985zsjZWc09MPgCDM7hCMjI/j617+OxcVFTExMQGuNxx9/HFqTfubSSy/F2NgYZmZm8IY3vCGOmY1xdu54fCn1Kn2NnQtjDHbt2oWxsbHoELNDyFQu7qjdarWwY8cObNmyJR73pZdeiunpadxxxx1x3Vx44YVxnX74wx+Or3/+85/HxMRE7LGwf/9+bNu2LTp4/JOu03RtpmvYGBMpgGmPD17PnHHi42Ynj49nenoaGzZswPj4eHRM9+7di40bN8Zrjo3g6667Du12G5OTk8v0EoNZgUFaIK8ZHhM7gExJHB0djc5xeh1zBoW1LEwF5OaGg/eh9JrjikyDgYL0npRmrnhcR44cwczMDDZs2LBMM/J8MeiEpP+nr/Nrg1Wj0s8e7757qjIYJ0iF6ot4AXose+/hLUe+qRoMU5/Iseg7GR6ALlqkbfASVJnfw0kJhwIOHTivAC+gmU4lPQpF/SkkLBrbhW0q1FWFxjh0K4/F4Fh0K9vvJYBAcxbUdReQsRqVLgroooQqCrTaHShdoCxbRCYIIlYRhOUcfTZ1DaUktBYUzfQWda9LzpGrIGQJ6zR6jQo0k4a0FrAQroniVuOaEKFHLNELQUarsw5V0B0QLz8YS5UnwbOr4ZmZIribsAB3B3O238Hah14KTks4RxSppcVFONOEzAo1sdNaUzUceFhLpUcXF5eiqLosiErDlYaioDqcb57PsixRFAVlFHxYG9wfJET5iUrXj+xTnxMEkS0i/QfgOv+0P6L/yCDYp4yGiBQc/jx930P0tSA8VgHA9x0LZw2sTeYvrEN4irojjN1acvB4PCyeVkqwSIGyMOH46EJtlondA+9mmYg87lMICEW/c3UtcmBlmFv6nvMOSjl4r2Ak3QiUkCiiULx/LbJDTRkFC+cklGfBv46TorWGNWTgG4T1Zcgol9LH4gWR6lZQx/Io8A73AuMsYAREU0M4Bw+JqgrXZ1NTqVdoWDQo2xIdpSEtSFatEUrrFn0Kn7OwXlImT6iQySK9DQXiaY2VZQEfSuYuLi5RNL+xMDasi9qS46YUGmFCVlXAdCh7pzU5ewiZUCklSt0OzowPVE8L60lP5iUgBGmO4KnviAt6Bl4LRKEUgJIwwRHRgRpqlICCggrZIQEShAvfA4SB90sQQqJQrVBQQsNJFWhnEsYIqjYlSkAWELKEYcG8qaP+x4TiUtZJuOL0q7fZSBwUMg5G6fn1legZK21zkKIw+Hv6d7pN3jdzxVOjnw2K9evXx5Kq6XgH93m8hzP/n/KzB7+b/p06IKl2YjDaOOiQ8E/K856ZmcF3v/vd+DvTu3hf7DClZXJTmhKDz9ljjz22jHOeRo43bNiAq6++GrOzs7jiiisiLYnHwwYuO2iD55AFwcc7x+l54+2wVmFmZgYHDhxYxv1PHUiO3LIRy3PGx7a4uIhej8rubtq0adm554wKC86Bvg4ipZelxvhgJanBNbJp06b4+UFjr2kaHDhwIJYx5R/uhL1x40bceeedmJqait9j4/Txxx9fNm+8Dtg458zgIHVopWtlJWN1MIJujIkUp3QeAMQsGutxZmZmYvngkZERTE9P47777lvmdPJ3brjhBpxzzjnYtGlTdKgGHfLBeR5cL+lneZ4H6U28Frg6GDtcqUYp3d+gs8WvDc5XOq+D1zjvNxXor3TfeyEYdE4Gf382x+XZ7l8vNk7IsbCmgTEFNfMSApYpUbG6k4ftMvXDRUdDa41Wq4OyKFHIggwmeCh9BrwfoVKdQkIIhbaSVFbR9igiCQs0AsY59OoGvbpBZQyWlnwoIVkT9cK6aBDQmHSkPQVvgRpvKYVWq43W0BBa7TaKghwKNuyd81RtRRAtQoeKVqtWjUAJ4kjXvSXUVY2jcz1YV8N6C+96kfNNEWKF4aEOtJLQZQtN3YXxFqauonFd11T+1jQOxjnilMd+DiJyqCVIXI7QnZmr6wgWnoN0GD5EnZnLTw3cGlTdoKOwHkKUEK0htIdWQRdkZDV1F1V3HkVZg/pf1DTPdQ1jPdplC6tGRmL/BdMYohQpRdmeskWGZyihar2NhqILVYOco/4BdV3FbAVnFRprgjbHh4ixgzGU4RJSQiuqWuQ9UYVIb6NjZiNmaRAcSdGnT5EzqUj4GrIVzjVUjjdkDZinTt9xKCTgDGUujHGJrKOvQ3DwMEComuTR1xEhZo7IQaAvO3Zc0B+bdS5W8GmaBj5kI7jzfL9ztg/GvSYakJDP1DckTgUlbgS8MVRxyhpIpVCUbSgh0CoLdDpE01vqKgBUKpX4T3z1OggIGAcoaEBJeImQBSEqmncOvcbA1w3MwgKM8zDO4ejRBRhjURsPgxqyKdByBqoBFnoWzizBuwZCOKoeNjyMshgC8Q2DFkEKSNUCQmatWVpC05CGA0LCeYWiNYRSKYysXgPb1GjqCkeOPBX6W+jQsVuiu7gUHT9vyemWTN0sNXRLoyg0Vq1eTT0iCgUle1CFQXsUEGoIkB30bAHnBTwkTG1gGouq14trvDPUQVGW0GUZ7ikexksIB9Q1V7ILTj0A7zWk6NC9tGkg4KCkR6sgjQflJIgSKQQ1RizKUNJa9uBMl3r1iB5sU8N6A1FoQLYhylFUQ8srBJ0OpKJRNigAxGg7PxhTqgY7IysZ1mwYDFY7GjQqmXKQGofT09MAyKhgKsTExESkKDAHmykbgw9m3kdKa0qN2PQzAGJHbB47G6ts1A+OW2sqWcl/c+Qzpa3ceOONePTRR7Fq1Sps3rwZExMT0cC+5ZZbsGHDBrznPe+JzdR27twZRaZMieGKQoNODZcl3bp1K/bv348DBw7gqquuwsjICA4cOBDniStEMX1Ha419+/bhs5/9LK677jrs2LEDExMT2L59O2666Sbccccd+PKXv4zVq1fjsssuw/bt26OIdjCLlUb62TDcvHkzrrzyStx8882xzOrExATOOeccnHXWWdi6dSs2bdqEG264AXv37sUdd9wRMy4bNmzAgQMHAGBZd/QPfvCDOHjwID72sY/h1a9+NTZu3IjLL788HguvMaaEzc7OxqxDavjyD2sEBiPcacaJs0R33HEH9u/fjy996Uu46KKL8M53vjPSotihbbfbuPzyywH0s0xzc3N47LHHAAB79uyJlK5PfOITMbLfbrexb98+zM3NYfPmzdi5c2d0DLn6FOs6eIws0N60aVOc/7SHROqA8trmtXDw4MGY0UgbA/L1xBk1Ywzuu+8+3HzzzXjsscfifWHdunVYXFzEE088gSeeeAJ79+7Fli1bMDY2Fmlxacf4AwcOxCzIYMAidURTJ4CpTlzeN6UR8j2KnQxe33wtjI+PR6fWGBNpWKzHSe8FfK5T2mBabYxpXoPZzdTZXOl+M4jBz3BW8HhOxErOEf89+J3jOfonixOmQqTMiawAAFZCSURBVBnThGZw/brpRNcgY9LBUSM5IWJpSa10MLwCVcMRVUUE8USwR2GdR103RKOpl0KpThsa7nmYukFjLBrrUAcNhvOk9RAgihUbWQwJEccopKKIt6Byl3VjghY50LrYUEOg5QQVuozcfopmO4QGYEJDSA8Z9a30O1MihKAKQ6Y26HUX0NQVet1eqBREzbq4aZrra2T7NCmJ4BSFyG2M4IpQJcZChK7I8J7oZoHz7h01hhMu0Le0RlGuCg3IOmh1hlEUJUotYE0HZriDul6CaXpYmH8a1jbU56LXgw9N3bi2vzWWqn212rGMMHeY9vAha0TZIxZnN7YhPUhdk1bDMMUI0SlgRzRW7+LKQ8EgjxqKEEFOERvLgYXf/a7SLNq2nqgvxjn4mvalbOirEtYAN+CjTAv1OuDt87qQQMgS0Tnn80ZrXcEqGWlPPqGmIJwnzkh45+FE6Lws+93KmW7ECQmI5aViA08J7PGwcDd2HRciqRgUHBkRNBRSRSfFmH5fC3qfjkY4H9hbNGYTSuJKx13VReg7E64FZ1HVRNNjAbMqFFqFglcaXjg0zSKMlWgaCQkqK60LBWsder0GztZA6NlgLGlZfCLYb2oKIFAGS8FYj8IgdEwnhwRCYKjThiktnBNU9UuS0NkYg6qqYIyN15vz1GG7CeP3okC7LGDKgppVCgcdMnBCAU3dwAsJpct4zpm2FimWodRxZMHBkNOPBmkpXXZPyZlibZGCFw4WlLUl3XkoOiApv2t8Sd6dA6wp4J0ADBV38E5DiQICJST0Muri6QQbsAx+oLHBkdIpUjxbJI63mxoQbACk1Ww4CsxRXAYbPoPZBDbqASyjjKTZi7SKTHqMqTbi2R7Qg1FNNnRSgTj/zftIxbhAn9PPdBTeH5d8ZWODDV42ipiCktI1Bp0x7pac9mZI54nHxbXy2cHauHEjdu3ahfHxcYyOjmLv3r0xW3HhhRfG7EBKfxp0sAazAfyZtLLN2NgYtmzZgpGREQwPD0djMeW4czaEheg8bqajsGF6wQUX4JWvfGWkPq0krj906BD27t0bDe92u72sGhgb2Qx21phCNTc3F8u4pjSa73//+9GZePLJJ7G4uIjFxcXoROzduzeO+cCBA5ibm8O5556LI0eOxPKyk5OTGBsbw8GDB7F3717s2LEjRuFT3YfWzyw6wHOSOunpvPPfvH7495mZGezbtw8zMzPYvn37MjE0a2eYLscZI62pqzqLugHg0UcfxY033risElGqZUmvN14fGzduBIBIKUqvkXSMqQOfNoNLMxK8ztiBSdciO2OpozIY6ODgx7MZ7Cl1Ms0yphmWdOyD9wneXvr3II73vUGslCk5XTixjIWzcFUVI4FFQT0S4AVMoENJAWhRQKkSZdEKXbkVpKIKK6ZhcS2gFQlRC6lgGwvbGHR7PdRNhWrxWIzsm2B828Zw02Og4A7FGkKWsS8BOJKbWOpcRYcNcweQA9NQVoKNY47IU+KjT52ivgKUGfDOUxxRUCbCOYm+lUsRb1UoosvAoakrdBfmsXjsKOqqh263Dg5Rv4+ACHQxEsZSlSoRIrNCaghdRME50XQ8PIi+xFFwMgmDE+aIygPnobygMr+qRHt4GGWrg+GhM1GWZRTQUulcg4WFOSwtzmNpcY6yKE2DbldQt2JDFB0ByhrQ94v+OpBkNDnnQrlMAxurI5Fg21qDqtcL3Y8ddCJeds6T46KD8RXEqEJIOOsBSdXBnGdRu1hGKaK1F0SsApQpwPLeDCR2p7K0te9nNHRwCPizTNkypuk34EPf8RPewUtF5ViljO9rSXoGrp7WNIljHMQxHv0LPN5gfcgCKE1CYO79wftTItLn2FwlhzMwoTxChF8Fx2L5dctCa+dsyAwJtFolrLPQBWXAQo4R3BSPj9Z5AYgGXgjq6RFF5qGcrif6Vrfbi2u3NbQKSpfQZRuNdWisR7c3F53e4U4bqixRlkOwXmCp16BqgtbIOvQq6lDtYftOZXwWhXWhKmhd0xpuaZSFRKsQGBkZBuBRVw2EKuj6GenAWIOlpSVUNWmw6pqCJHXVha0pK9WrBNpliU5ZQkkLpYB2u4AsAKkMFpcaCKnQGVLhvkRZN278ybospiHSeagBYSBRQQgFKTSiixr0OtSIrwjzTdkY7yS81LF0d+AXorEC1gPWAtYKKv1sCyD0gilkAeUVlCth3OkvN8sPMjbEACwzbgEsqxYz+MA9Xjp/MDrJ9BimYRw5cgRN0+DMM8+MXGouHQsgRkX5tZUMWzYu2VBhcCaCjfGUe836hOM9tNkISUWWaWScDXkuw8pCUzZQjTGxbwRXG+Isx4EDBzAxMYGxsbFYhSg1jjgiy2Pm8XCUnKPxd911FyYmJqIBOEgxYWNudnY2Unymp6cxOTmJSy+9NFKwPvvZz8byolzWlasi8TpgpNscNNTZ+Dv33HOhlML4+DhuuOGGSF1hOhQ7T1prTE5OYmZmBvv3719WBergwYP47ne/G43v9773vdEJuf766zE2NoYdO3Ys2++ePXvwgx/8IGZnNm7ciJmZGTz00EMoiiJG0BlMBQMQ5zbtWp72k3jqqafw1a9+FatXr8bRo0cBIGagbr/99riWu90uOp0OLrvsMuzZswff+c53MDExgZ07d+LQoUO47bbb8LnPfQ67du2KpVYPHDiAmZmZZeeNxf08X2kRBb4OBqlQ7Jxx9a3p6emo62DHgUXoc3Nz+PM//3NIKXHWWWfh2muvjc7k2NgYJiYmsGXLFiwsLOC73/3uMqfirW99KyYnJ5cZ8ex4s0M3OTmJ6enp2GUbQCzbC9C9ZC5U0hofH8f69eujMJzPBa8Fvj648V/qgA42LRykHnKmczBgwv/zttPv8fbSwMOzOQ18zCtRs1baZ/r+8Shc6f/Ho8WdCpxYxsIYyCB+IGq/g/WshSAedFlyuVENGUokGkuRcwHA2y5VeCoEfFPANALHlmo0dY26rlHXPVhjUPe6sYlazAc4eiBTt4NQJlZLSE3VUcjwoWhtMMVo4N4ntfsRufvw6Df7E0TZInoE9aqgqlGhEo6U8E7Bo4CDIW522xO1wnm40KxKSOp63dQWS4uLME2DpqpgjIeDhtI+9AOx/Uh36NkgpYIsSgiloHQLUupoeMCH+bYmCLs5ko6+6FkU0IoixWqEs0UCrZIE1q1Wi7I2mqKjQghoTX0PlARqZ2CcQ1F2ICCgpSLBMIButxs1AloXodwmG/IcgbeAs6irHkzToOp16SYX+lRY59CYhiUhENL1OfSB+hV7F0AEXYRIrPpwXj0idSjV/AiAKuVICaWDOF32S+V6AI11qOombtN5S00MhUCrKMjxdA51Reux4f4KwYkQJB4KHd9dzBKktCQbdBaxNwPI4abMm0UTqkAJUP8XpVUsyStE6JxclNFhsp66dnN5Yc9zYR0Z3xBQoN4GRagaFddM2Ge4gIiCKIF2iyiAnU6H+lwYg4WF+ajRMZbKrLY4gxLE80Ri7DuDzlNZaNOY4OQr1FZAFS2UbaJGWetQdel6NtagNx+us6EFSF1A6hKFakOK0J8lZJusZcdbhqwTX86kLeh2SYB+zBlIEShUQYyttURn+Ax0hkZQliVKLdF+2Sjplhw1yGuMRdWr0JgK1lmK/nuPXr0Ea2sADmp+PlSMK+FFcN56FVplC8NDdL0JWAhRoSipWlhRDgdKpUVdL8LaLqp6DvAetXfkcHtHdDDJFeqKEDjgho0SqhAxuAFHQQethyBkG1K1IDz1BPECgNQU8PAKwkkoB5jk2jhdYGNpamoKR44cwdatW2NnWo7iptH9lQyclR6qbEy2223cfvvt6PV62LVrF/bs2YMbb7wR11xzDTZu3BiNuLm5OezatWuZwcJRfY78j4aKM2yIpvQGjo6mWYW0vj5HrtMI/yAGv5N+N3WOmMZ0zz33YHZ2FldddVU0EgGKiN9www3Ytm0btm7dGiOn7KAcOXIk7iet159WCeLsBFNL+FyMjIxgx44d0dDftGlTHBeL8A8cOBCdjf3790enZWpqCjfeeGPM8MzMzODWW28FAHzoQx/CxRdf/AzNQ0pH4f4SnHXiY2Pq03XXXYcrr7wSU1NTuOuuu6Kzun379jiHDNbQsKiaM1Rbt27F+Pg4rrnmGgDA1q1bY2frXbt2xTljB2VhYQHbt2+PBu/c3BxuvPFGjI+P46KLLorO8V133bUsUwCQM33w4EHs378f119/PbZs2YLLL78ce/fuxd69e1e8Tnid9Ho9vP/978fevXvxx3/8x8ve27VrF3bs2IHR0VFMT09j/fr1eM973oNXvOIVUfQPIF5nTCPidcHO7EqR+HTdp3+nuo3UIdy9eze2bduGyy+/HLfccgtmZmawbt26mJ2ampqKDtldd92FBx98EDfffPOyY//VX/1VfO1rX4uCbx4j9/Fot9v4/Oc/j6qqcN1112F0dBRbtmyJOqLbbrsNF1100bIGdWNjY1GIzTqjdH2wWJv1RhzsGAxq8Lb4emLw/B08eDBmYdKKbTy37EjzvPFcDgZQVir+wJmx9H7EVfDSDCOvQd43X7uDlC/e9krUw8F9v9g4Icei32sA6PPNyQgkzrImo5Mj/wjValyIzsHD+x4ZPErC1BbOAUvzS6ibBnVdwdqGKFdNDRs68vYJEYK9GKI6kHcTxiT6hi4bVkzM9wCCYbYsyi/CgzvQR2Rwjrjvg0yrX4Wos7PcFdqTJgC0eTKWKdrb1FT5qNvtUk1/7rocIvHUI6A/gzL00ZCqgG61qElf2SJDS8joVDhryanzCsKZ4MiwjkRCSIVCFyiURtlSUArQ2qFTFsHZa9HcCQnrqPa/lwI+jMd5wHrAB72LlDpQkCgqzUanUrRs2LmgRmmWekGYhqhOTYOqqtAY4vm7MIdU6Ym7N4dzEPpExHMWftJ+FrSOfBQpc18IFlTHcxmSRzR+Eh/3eyxQ5L4xNmSgEHqlUAUrXrfOuViqmLpiU5UtqajkqglGuwjZLoCpTv3rJHaijofJx8K0NWpuB0UR71QfAf58pEyJYIhSpSeABNaxX4Gnkqae10NwrpZn7/wymiDpY0i8D0F6j6quQ0UrOt+xFG4YO9OzgH6FKxtF8R4QDlIqONmDthR0sGEbTZ10Nw5rtXEOqiihdQu2MJBSQ+kWOfHoU7zixNBiDM6ShwmZMdPU8I7KK8MTzarVKsC5POdaKIoSQ1pBlRqAhNJA0xgoqVA31DvDNtS80xpS0HgXuohLBy8sVKGB0IVcSYWiUCi1BGDhfE19dqSCkkW8bpRsyIHwFRVJsNTB29kG1laxMpyUNC6iRIUshhEx8+EdOR26GIHWHSjdAdCBh4bzOvScoR8Zqttxdul0Iu2F0DTNsvfSB+yzpehTI5z/Zu0EOwL8gE0rRKUUGmNMLFHJUUve3uCDP0VKdxnMZnBEksd8vOwK7z89tvR40m3wfPV6PTz99NMxi8HfabepWWta8pO3MxqqOjGXPM2MpM7LYNUioJ894Ch9SvVJKUmDUU52dtjxYj58r9dbdr7TErYpfWow4srjnwtdpXmNcLaFS/5y5PjIkSPYvHnzMoE5sLzpXLp++HOc0UrP54YNG6JDkq5LjrTv378/ZgLWrFkTszW8fnjfnE1KS8r+4Ac/iBHuqampZVH2QXBGjI3iFN1uN5bO5WwGzyd3L0+rX3EWKqVCpfORrteUHpS+z/PDGbO1a9finHPOwWOPPRYz6fx5pRTWrl2LNWvWxGtzfn4ec3NzsazvILZs2YKvfe1raLVaeOihh+J5ZGra6OgoHnzwQXS73WU0Iu7E/sQTT0RnNNVLscPAtEig3wSPzxlrIFLtFu970AngdZpmHdPretCATzNoafbh2e4TPJfpdtJjTq+R1DlMv8e/p+t/kM54unFiexUCSmsUZStWFWJnojM0RBxjaBhboWkq1LYm/rDXEK4CnEFRdMmwNQWWFmvUtcHSUi92J+5TCAASJfdZ7H1es4/OQDQ2rKUOvYKcGMsOgHPRsLI2NCZTKpbq5B+lNTkUWoVGcNTnoVAUxe5VXdi6galrWFvBw0IIG3j05EA1jcH8/DyqqgvTNLAmZDEg+lkSqSCEhoaADNQSrVvQRQldtNDqjMS+GjFCHuhPZBxT9oXnibQsxPEWWkGLAlpqdOQcFBah/BNEVxMSRp0BhyEYnAlnFKwFunUX1lQwdRdPH34C3cV5LHV7gLWQHqGJG/rRY1A0vd3uYGRkBGXZgpQSNpRbtU2NquqiaRp0e1306hq9qgZ0CQQnSYL6JBQtyjKVRQFEI5Aj0+zQCVjnQ7d2A2NsdHAZShXkCBYaWpdUnUeTrkeFjIW1Fr7bhQkZC12WVOWrbKHp0Q2M+zRw74heVaFXV+SICupMzTdWF6hAMvydNt6jNRqyGOG66Te8E3Ho3GU7ahyCw8tGPsBzb2O2CKWCFgBlnCjzROeGBO9ah+aKSSZLhGyJtxZGCsAAutWCkoDWijI0dY2lpSVQVSueY6Cuq8RpV/H36NSIVDfgABgs9Sr4UGwAYf2zQ9M/twJVtUjbVBJFqwOpSuhyGGVrGLpsRymC8cG5AZVlphK/BtbWcNzBPVDtyLnwWFwEjh49Rk67Vmi1O3jZy9bizDVnYXjkDAwPdWCaGgoNykLCOUmVoSmnA2sA5xtYUwHCQAgHpel+1+4ItMpFFLoLpWhMTW8JtXeU1ZBPBwO/gFZAoRVEOQxrK1hRwfsujPBwxgMmNOCDDXe8GHFAAwFqJkkltilLBChdQOsSqqAgRNEawtDwGnRaZ2JkeD20KqF1B7369D9UnnzySbz61a/G9u3bASDSMFKqUfqwS8XbQF+fkYqZ5+bmoni1aRq8853vhDEG/+2//TdcfPHF2L17N3bv3o2pqSkopXDJJZdEeghnH7iqzUqVYCYmJuKDmWktbMQDywWO6TiBZ1IPBg231Ejn452ZmYlR0ZSD/6Y3vQmzs7PYu3dvpGKxcX3RRRdFCsv09DRGRkYixWSwKlLqzGzYsAEbNmyIrzFnfXCc/Bk2Rpkawo4Pi4C//e1voygK7Ny5M0aM77jjjriNSy65BOvXr8dNN92E3bt3Y3Z2Fjt37sT4+Hg0+NLzzdkHrTU++MEPAgCuv/563HHHHdi7d2/s4AwABw8exIEDB/CZz3wGb3rTmyLdiqlZXOb2rrvuWia2HRsbwxVXXIG1a9fi0ksvjXQqnjN2XoC+08dUIDZK77//flRVhe3bty+jjLGDwmL2qakpHD58GK9//esxMjKCO++8E//zf/5PAMCv//qv48tf/jIAYHh4GLt27YodxQ8ePBizfK997WvjOL73ve9h9+7dePjhhwEA69atw7vf/W4AQFVVOHjwYHQ0Nm/ejE2bNkUnjp0ZpgCy0Z7qUxjpGudrlDMdGzduxNTUVHQy7rrrLrz73e/Ge9/7Xrzzne/EqlWr8Oijj+Luu+/GWWedhcOHD8fx8rFu3LgRW7Zswac+9Sl85CMfwSc/+Un0ej1cf/31OOusszA6Oor77rsPo6OjeM1rXoN169ah0+lgdHQUU1NT2LNnD/bs2QMAsd8Hi/E548fHkBaCmJqailkKfo/nhWlio6Oj+IM/+AMMDw/j3/27f7cs88nXB2+PS+yy05o6FalTnxaDGHR2B+93aSaTReypxou3zQ4RH0vqWLTb7ZipYWoXX+t8D11J/H6qcEJPnlarjaHhkWXiba3LwLenCGnd9NCYCo1t4BAMYVdDoYKEiU28TGPQ65IY2xoThMfBkRBAbNwVfwcAESNxqR6Cy5YaYyCsi5xxAMsitWz4UZYi0NRjJNmREdWI0C+BGqA1DUXJe91ebPzlHRkaWgVqlfPo1TWamiovkbyDMisEGSLpIjoL1EOioCxDUYbytyWKogWpNZQuoyhUMBUoRsX7xyOFQNkiEW7RKiG8g/QOOgg8XaVQNw7GeCy5LoxrUNsl1IacBWdILO9dg+7CUVTdRTRNFZpuKRStVuhVUhOVRtBiL0KJWY7wO2NgTY2mqkKmokHV1DDGwnlABVoXCdcdVRcK2pZWu03ReO/R1KQd8eBGhiLqUXxodiZ8v1t1RKDjLXstzXVJiUIXRJcTMvR78BBKEmWlabDU60IFTY2xNjq7CNkM5z2EC0agX75PzkaQEF30SzMLzulRBL5fEhehlwUdP4uzUwqfMRacjfO+L2r3jgTVQiro4DwQTYq0Hek1oqQMjr0lrQpIK6U425Nm5HyfMtbXavTHE/MHQqJfsIqb5TFNEfEHLl2v/GL4WwDeOljvILwEpIZ0oGaRBWUpi1YLtBkPBKqYVIoCDc7HeVWqgAzrxQXHAkDM3CilIYUK81PBuh60LuBdDfhFCF9BwqLVJt2Q0oHy6AyauhtKyzqqdibqcL2UcJYyBQgUNoigV0IDOAPrevDWgNwFAykdZIGQYRCAU2FeQjEGTn2CM6EuOnCceKV+KgYWgHEGQgoYswRvKzS9Y3D1EgrdQas8Ax795o6nE2mkn38fFCkz+KGZRmLTz7Nhyw96jmT3ej286U1vwmhoYMfVVzibwVHowSwDZzUGI5LsyKTGAr+ffj8d9+DvqWExSMUAEAWvqZCWRaccKU+zFTyetGIOG/48z8DyrrspBikuvE3eR8r7ZscrpW8cPHgwCpE5ss8VftLu2Bs3boz7Z2E1G7GpmJezLWxcGWNiU72xsTHcd999qKoqUla01rHy1datWzE5ORnHdejQIdx+++2xuVrquHH2JjUQU4ObKxcNan2A5Vm1NEPy0EMP4Z577olZC3YKeXucafiVX/kVFEWByclJLCws4LHHHsOFF14Yz/WrXvUqPPnkk9ExS9fQ9PQ0ut1u7MUBAHv37sWqVavwxje+Eeeff34USN9555344he/iAsvvBDtdhuPPvooLrnkktisECCHmZ2IlEqYRr3T9Zuu79QgTvUJbKhv3UqVubg3x5o1azAxMYEzzzwTCwvU4fyhhx7CU089hcnJSYyMjODb3/521JawI8dVrGZnZ/E3f/M3GBsbw1vf+la84hWvwOjoKPbv34/du3fjM5/5DH7jN34jGsy8XnlsaTQ/LbbAVLFU/8A6K6b6tdttnHPOOVi1atWye0FalnYw+zB4/xh0IuaSvhzptblS4IGvpTSLyO8PZkj5vpFm6vhz7AiyU5IK3dPtnY4sxgntoTPUwfDwSGxOJqREWZZotdowhjjlvXoxin2FDlQl14NQNaS0cLZEXTssLTah8RsJnj34fyD+w51+WaUaDESOnlJEN1SaEtxnQMaSo2yRsw2kpO732QAAOHC/CucsTKAsUcWjFrSSoZeERbfbi5WOhDBQAkCg2Vjr0es1FO2lup2RJ83dpFkrIXWgD0kFqQoy3ssSSpdQuqD/FVOjQoQ4infDkQRnivnXnaE2iqJAZ6gNb3twZgmu8nCNQGM1FpcMel2LuaqL2hh0q16kNsFQEz0lJHpLc2iaCqapIIoSUAWKdidUh1qCDwJRrQsUOjgWUsSmc6apUdUVqrpGYxoqpxv6l8hg0JtQkUeE5mw6ZD/Y4TCGjHc2IoWkBn5UaUokJVj7mQE2fpdVRQpz5Tx1bRegLuE69GIw1gKOMnDGWNQNRbu1UtSpOvbd6FeFigauM/CKjGMVKp7RWnTx8y5qJkS0zQVrRGiDlG0Kxk6nQ92ovUNolGfhfS86Cn2nMmg1jInOtYrrkHQswvabw7Hz4l0QtQd9hHVE1eJqV2S0+ji1saIWz2t0LvraFSEk4Hw4x46/2PfnkPzqwb0LwYInx0a094Bp4LyAUEQ9E4J0IICAcRamIYqkUAo+ZDCIBEddrr1Ucf45QCElORStUkMXCtTQsIazXWjdhrMVvJ8PFaCAoXaJVkuj1R6CVA7eW/R6mrQ2dY1eRdoIuCo6F97RfYjuRyxMbMLaaWBQQcCh0BJKakhZwPkSUjI1lJxMFzIXztp4L7Tc50UgVMhKnEBnYUwPHh6N8GiqeWhVoOkeRlkMYbizBq3WmpVv5KcQ7AywgbZSacRBx4Kj+Bw9TB/i/MDlUqJcbnVhYQHbtm3D7OwsDh06FLs5T09PR4M17ebL4O2vXbt2WRlONiDShluDD/LjcZUZg4Z+msFgw5KNUn7I8xg4up6Oi43f9evXY+PGjThw4MAzei0MUoJ4bHxcg8fPkctBsTRTeNhQ11rH/W3evDlyvw8fPoyiKJY16uPqSam4nTMtbHxqrSNfPKWnsEG+du3aGOXet29fjAjfcMMNeO1rXxs7eG/ZsgUf+9jHMDMzgz179uCaa66JFZ84q8IGI2dhtNZxjPwZjuoOntPUsdi3b1/UCT300EN48MEHl2lzWOSc0qne9KY3xXXKeoNrrrkGWmtcccUVeN/73off/d3fjSVxWcfQ6/UwNTWFtWvXYufOnZEedc8992BsbAzbt2/H9u3bI+3q9ttvBwB85zvfieP/7Gc/i7m5uZil2r59+7J1lq7HldZvum7YAWHjlL+3Z88eaK1xySWXxOj9gQMHosaCP7djxw7s2bMHX//61zExMYEnnngCX/3qV/Hrv/7r2LFjRzSCL7/88qhLOXr0KI4ePQqtNS6//HKsX78e09PTuO222+Ccw+TkJLZu3RodYV6DfD3zPLKTsbCwEDMZvO5SJ4Ej+r1eD+eff/4zjpuvQe5wn1aFOp5xnjoWaZBh0CFJMxVpdiI9F+n5YAcodSI4w8ifS6vt8b2XAxGsxRgM8pwqJ+OEtqqLEpWhDsBSSRS6hPcOi4sL6IYyqo1tSFgtJDQMhLRQ2sA7AWsUji32YEwotRoo3zLRTvSjmmyNhdc5yh+MdKr6Qz9c5pEj3GQs+WgsxU8KUg2buulXZWID1HFzP4l2u4W6otrwnJFomhA9BtBpt6MomKoMWZRlG1q34EqK7ltrYOpejDZyxJ50CSRyFUFs7oUikWtTwfcqkANFmQylC7Q7LXI2Cg2tFNF+lIqOhVSkk1hcWoIzNWzTYGEeqCuB+XmFutvA1AZNvUTc7rqCqRvSsFhDcytDyU6oWM0LDuguHAv6DhOi1dRTpLFUglQIAacU9c8AwKkgD4HG0Gsekkp1grjsSlJX6bJsoSzKeMF5kDHYGIOqqum71kburoCA4OMW/X4fZNiRE8m6CjqtLlRjEsEJEMHJAC08AaoGFaop1Q1VIYMQqBrq49E0DbgLtrUWXji4YDxLJ0F9MWTUSZBhC3AndGdoHXJ2p581kxjqdMiB1RpaaVrHpY7OMhBuMM6GzFooZeocNdQLn6PGhKSXYM1Hf1+SjGrv4bwKZWJtFF3TNdh3gmL/FHZiE24iZwD4fyEkdKkDXY0rGgFWgNa60tTjJDiiSkpoKeE9lfHt1b3Q61wAkooVqKINXRRBr0AFFTq6g6XFJXJau12iO0GE4gZEi3Se9BBSGbpOpUC73UarVWLVqiEUhUarrVGUEkUpIaXB0HALwyP/H2wTMguODPjKVtCCjnFoZBTDwVeytiZKXt0lbQkkdDkcMkg1ut05mKYHb7sAAAUqJqCURlGUIZBQoiw91W9wDiI076S+KeSM2NBYsmoqGNOgMTWUI4fLKQuuGFfq1YFm1nfqHArUxqNZnAMWqxO5vb8oWLNmzbIMA9CvRsKRuTR6mpbH5Icmlz/l+0K7TdVh+EGaRvE2btyI8fHx+IDkrsxHjhyJr/NDPhURs9HM22EHJn34puNm8AOfaT1MAeLPryTk5uPm6ClXd0orQx06dAgbNmyIzc3SGvgzMzPLDEN2WgadMR7fSjQXnkuuiDNoVM7OzmL//v245557MDo6ik2bNuGee+7BwsICLrvsMkxNTeH666/Hddddh/Xr1+PP/uzP4niuvPJKGEM9N7Zt24bx8fFIOWLhd2oksZEzNzeHRx55JL73+te/HrOzs/jKV76C3/qt38Kll166rLIVd94+cuQI1q9fj23btmFkZARTU1O47rrrsHXrVlx22WXLjp+Nz7QSEFNJeC2kjjBnKg4cOBDfu+GGG7B9+3Z85CMfwWc/+1l84QtfwMMPP4z3ve99uPzyy7Fz505UFV1rX/7yl7Fu3bqoA2G62NjYGG6//fbolLDQeWJiIn53eHgYW7dujdoJrTVuuukm7N+/H1/5ylegtY4Vqa666ipcdtllcR2yvoKduJmZGVx55ZW48sorsXXr1mW9FlKwU5QKtFOxd2ocz83NxWuKe1i02+1IyeP1mDr4559/PmZmZnD22Wfj61//+rLu6TzX7TY1V/zEJz4RHdK09PHY2Bj27t2LzZs3wxjq5p1mI/mHz98999wTgxFpZH9kZCRS8gAsc6537NixzIDn64ypcin9iTGYWUgztUyj420Ofp7/5rkcvCbT7wwGClLqVUqp4u2xZoorxfE9MO3pkWZLTgVOzF1h2ofkhmIUWTXGxM7BHoAIFWS0BFiCaY2HNS5kKSg6TUgdh0CRQN8ootdZ4Ei8ciGXZy801/iPZWO4+3ToqwGWYpDjYhMRMDH+6XcFFakrCEJjrmAUQUIJ0lTUDeqmQdOYQH1CFGJDAM4VIdqOfgaDjwlcBpXGI4KhTF3MBWADpQYe2hCPXyoJKBUjyggOFHd6NqaBbRoYU2OpZ1FVDt0KMCZwyEUBIQXV/XcSgOkLi4Nj5gNXnzs7+FCmNFG4wBoqxVpVFWJjuJAhSnub8PE5CsODdQRI9hn7LQS6lwwZJalCp+GYwhLxuCnC3qcFUTaBtx3eZccRHj4ci+BzG6L2ImS84PvfcSFjwJ3BY3fwMO5gwgXaEPVSCZ5EX1PB2woicxatk0Her/SjNWk2JGfjEvoR905xXkLBJ8Z8KB3rfeyKnf70OUf9HwEBSAHhJfWoAJV1NeE4l1XXEiJmFtKsRcxi8IkKp0RrovNBFLCOSqE2zpLToTU6nWGUZQvtshVoZpK0OM5AVK2gaZCALChDqYroyzhrYABohP40IVsiFDmY1P2brmAIypoIoSEkUGiJVruFdruFoeE2Ca1LDakEgj46FmrQiooPOBPE284AsABovFKqkAW1gPWwSvfXZlg7QgBKCnilABQxcaMVOWpa6iCupspaSiaOhZDwMlTa8iqsPQswjUsqGNdQVTiYcB+hBoFUjpm1Xj5qdqz3cPaZ9JhTjeHhYaxatWqZMDp9OK5k1AJ9Ws5gqp4NiMEHKH8nNQT4wc+RyeeKxqVGByN1LNIH+OBrg9tIf0/F0imdJM3cpAYtG3GM1Kg4ePDgMtoRUx0GI4+MdL+Drw+ON32PsxhsTKWUqYMHDy6jmKXUmjVr1kRBNxubvC2uFJX20Ej32ev1YgM4rTVe/epXx+/x51O6ChtOvI/U0Nq3b1+ki7HBy/vt9Xq45557oh5ikGc+ODesJVm1alU0vNeuXYvNmzdj9+7dMSvNTRfZMWAcPnw4ltHlqD7PTzqHxphl32WnK23oyBkfpulwhJsrE91zzz3o9XqR6pUas6nQml9/NioMO9HpdZu+nl4HvFZS4zb97L333hsYAjpqJTZt2oSDBw/ioYceigb67OwsxsfHsXbtWmzZsiVuO90/G+lMpUsj//w/G/UpdWswU8pIry9+n7ObaWYhLXQwuM+V7mnHuy8wVrrvpfeVwddX2he/xn+nAYV0e4NOTep4He8e/GLixBwLL9Bud+A9GSTHji0EI8wFo1qiLMp+lFJ52KbC4kKNxcUlVL0KdTggEoGKqHFg5wGhKRobulKoYEAp6CAAprKPIerdKknU7By6iwsU4Yvc/r5XQBz3YMQGw1eyVkRICEm0FsVlNYNlYIMwW0kVysqS4W1Ng6eeOkzRX2eDiJmqMgkhoVUBaIQmYlzxhyK7wlNzOx+agPlgnFMkvl95x4TopYCALjT4SJzvOxOkDalD3wSiIDVNjbrXg7MWZJ9oqJZGWZwJJej46rqLxlToLs1TrxFdQMLBmhrHnvophPeQrC0QHrYhY9J5i153CVIAT3eegsAo5NAQdNiudxpKaxq3FPDGwhhHrcG4ehWCESzIQDfWROoQG7paKdjQkJApP6Q1cCFC3P8OPJV/VVLFAgDek0MppQSUjwYxNQ+k8+cB1L1uqCrk4jk3tn+jYPoTUfbQXzcQZGhKCQmKTsfLJPw4IPDzbbzJy2Tt6oLK9jJlj9cSQhZBCAHN3wsOl9ZFpAlR1TLutyKCA8SNI03sEs0Vq3hMDkC320NV1+gudWPpXna8WEshwJ3M+9WJKEDuaM16gXa7hbI1hKFVa9BYoDEeC90FkC5FYPWZZ6LTGUKnTUYwQNkg4yxKY0P2TfcrfsGh16tQVxXm5+fp8hUSMlADW51VJLrXigxqZ2FNjUILlIVAZ0iiLBWGRkoUJfXQoYpVMtLxOPPmIGC9gNRtSCHQGqKu4LbpwjTzgPeQGAJ8Ces0jh1bBBcPoLkVqEQFIaiEb6ssMNQuoYSCgOvrJZZpJPrzKMO1IISAKPie045BkaFAiWtMg6quYKxBXVWQsoDSbQyNnAkpJeq6C+8aOGcAT/c95xya6vRnLM4991y87GUvi8b1Stz/wcopbExwdJm552kEkMEGBm9ncJsc3Wajkt8bjGqyYdbrUYMvFrWmxlMaDU0zLMaQHiKtdsTHwoZNqvEYrDwE9Lv/Mn0k5VqzYcxN3NLjZoOOo+Gp8wP0DYhBGha/P2gEsqE7MTGByclJrF+/HkeOHMG+fftiv4wbbrgB3W4XO3fuxB/+4R8CAN73vvdhcnISExMTuPzyy7Fu3Tr87//9v5cdy+zsLA4cOBCzBalhzBHwffv2xWO97LLLoLWO4us77rgjUrM4ym8MCYinp6dxxx134Morr8TatWtRVRWmpqYwNTWF7du3P2MO3vOe9wAA7r333phNS2kkjIWFBezbtw8f//jHIaXEqlWrcMEFF0T62q5du6CUwsc//nEcPHgQd9xxB97xjnfg//yf/xO38ZrXvAYbNmyIfT44gzY1NRUdSo7Yf/rTn8bv/u7vAiBKGWcs9u3bh+np6Vgq+NJLL430qL1790Zdyi233IJer4crrrgirtH169djfHwcf/qnfxp7eXAmYzCrlkbpV3KiUxhjYt+WjRs3xvLIrOXYtGlTLLn7uc99DqtXr449TTiKztqQr33ta1hYWMDRo0fxoQ99CJdccknMlKTX1fT0NNrt9rLO7Tt37ozOLh8Xa3X4Okmvb75eFhaok3e6j2cLPqRORjoH6e88Z4M0M6YpruQUDM7pSvt5rnENUrbS7/A1kjrgg+PmbSwtLR13PyeDE3IspKQKNLWhCizWW3jhIRWikUMRPuoYW9cNmroJ+gMbmpvRtoToNzRTQWsglQ7N9zhiq/tGb0KDEkLCS8B7i7quonFYdbuhW3LSSA8hWyDJ2CdtQ0lJkmDQq+C0aE29ALRivgw5G94LongYG8XisVJPKMFqjQndcX2/Nr0qqFFe0c8wsHElWAcCARc0ALGLb3yfvsONt/r79QnlhaLGWmkUqiDBsbMw7SZEYRtOJhC9KUA1LZTWoN0ZoSZcUqKuFmAqgVarg1IrlFqj111EU1chKE+ReWMM6rrC4uICRoaG0CpL6LIIx6xCZJoE3h4CzptotLMAmyP1HIHn7XOWwFrqkE1if8OB4Vjq1jnufA0SZWsqnwqg3+AtyT4h/K+kRLvdRhOi9XWgOxljovFPWgXq1E2lXCnzIHnxom8k8ripD4KPom1ymGzMWLDw24lkbFJGQ1cqOgfGhDKnluhnLq4vwITj5qyGANHYyoI6MMuwbqWnnisstmcNiA1Rba4CZQLNqxMqfC0tLaFpaAycFeRsDyAgQvUtpQuURQtl2UKnMwJdtoj21G4DSqE+TI6akgJl0UKrbKPdGYL3JEj3xoBKvlJVMB2bwzkY04MK178U5JR7b0K3bImyCD1rtEZrqAMhgF73GJS0KJRDpyOgtQd8BdMIGBsCCuH+gYQuKYIzLEPGwSgHuJqqQ7k2BICmKWCaCo05hu7SPGU2dRseCh5BX8H0MXiSlAkLGe5vnM3gNUCOBi0eKkfswjyHe4BUTOKEkAK6LKAKDVW2SKA/5CCVhlLh2rIW3htQlToHIciJh5QQ/vRXhRqkBKQPu9S45YcxG8rcf2DQ8B184PL30/cZadSOswDpZ1KROEeF50IjOv4eC4FTYyvt9JtGCNnhSCOAaRQ3zaIMGjGp8wD0qy9prZdRxXg7g8L1we2l4tXUQEyNCP5/cL4GudlcCYiPZceOHThw4ACmp6fx7ne/G3Nzc7j11ltjd+gLL7wQRVHgYx/72LLs0b333osvfvGLcexsTLfbbdxzzz2YmZnBzp07ceONN+LBBx/E1NRUzFCwpoK1HSldZGZmBr1eLzauM8bg7W9/O9asWRObBqbnyBiDt771rVi3bt2KjmBKC2E6z3/4D/8h9p64+OKLYzZk79690dk755xzYIzB6173OjzxxBO4//774xoAEJ0Jjn7v27cPhw4dwuOPP44Pf/jDkZZy7rnn4sc//jFmZmZwzz33YGJiIlLc2EjkuTOGKHVsPO/YsQPGmNgg8NChQ7F5H++bndj0Ohi8dlJ6EF9fTLNKHXWmJHImjXuRcPf1dH2tWbMmdgbnub744osxOjqKm2++GVVVxQwn75vHxE5f2ocjdUyZ6pTuj69jnp80e8djSyle6TWQFplIr4/Be89Kxn8acOD7WEo5WslJSO+Lz+ZEpGNM/0/3vZLjMuhIpPeM9Bifa98vFCe0Va7qU9cGxvZFlsxrl0ISj10AQjg0dY2qqlFVJhriHC2USB/umh6WuoAMDb6Ihx8MZl1EGgaLoC0cmtqhrnpYWpxHXVVoqh4JN/kxLUTf2EWo768KaN0CpIeQgJQOWmm0yjaUJmqJD6UfvSfRMUCdxb0jh8m6QOUKGQN4KofqQSUrFQpIycJeGR0DNhyiIJbpQokgOdWJpF5YFCO7fqWYyHPXoaKQ5zKglFlgGhNlCxCOycM4C2VaJAB3LuRyPBZhIbxDq91Gp9XCUKsF25ABCoh4rKSRadDrdslAtRYtlH26jVSQ0kJrDes8lHOBBkWOBXeJZuE8V1Li8TluBBgdC3I2nHWhGlFfzExN/ri8LBt3XG41nETWEYQMTFkW0BWJfU1wKoyl3hY+VOiJHcw9/95vkMeksOgMhXmhErQuanus4+yBD0JcARn6TSBZyyI4dlSKNjl+zuQEIS/NhQXrSjjDwI4hLdDgCASqITeMDOm3ON6mobKySlKhgqGhIRRFSQ6086EHQvgeO8WygNAaZauDdnsI7U4HrbJNBQmUQnuog6Js4em5ObiopaGKZ2XZDhRIxG1qRUEDranvA2VsiAZHjkVwOBEoaV5AFLQGlJIYGupAKQGBHgRqKGlRloBSDtY1MCZoSGJWUqNPRexrtpSwkPBwkq8FQIJ6vlgjUVWL6PWOoaqOxuwmRAkSoQsA/bUMT/07IHiN99d1v2mhi046dzt3oeiDlMFxFNTFnShuGsqzriw4Q0phaWkezpFjIbwF4CBF0JRJAfjT38eCH2KD9AF+D8CyaBv/zvSOQVrQszkWqeOw0nfS/bExyWLG0VCJhjUbqUPAP+k+0uMC+rqJdL+8DWOW17NnahAbS2nWhSPh6XEOZlv4+2z0pUbi4PGyUZsaVTwHg44e72OwfCVThtiA3rp1KwBgenoa27dvx+zsLL71rW/hBz/4AcbGxrB582bMz8/jpptuig7RBRdcgO9973vxeyyuZ+PuwIEDOHjwIHbt2oVPfvKTAIDFxUXcf//90QFgx4HnlsfMtCwuI8yZBNZGsPOYZmquuOKK6Cyyo8gOVeqMHTlyBGNjY9i1axfm5ubQ7XYxOTkZG59NT0/jsccewxvf+EacffbZ0FrHqlmpY8GZqqmpqeiksXN29OjRZSLja665BocOHcJ1112HqakpHDhwAOPj49i4cWOMxG/YsCHSkdavXx/XBJ8bzhaw0c06HnZGB2kwg048XxfsWLODy+eM53/jxo0xC8KvccnbiYmJZWvs7LPPxtatW6OWyRiDzZs3Y3x8HJ/73OcAAK997Wvj+FJjn6+BtAkhnyOe3zSzASx3LAYN7pSaOWjM8/5WytSkwYr0/5WuO76/cMAgvZ4Gt5du4/ng+Y4p3e5K2ZXBe8Cpwgk5FksLR+EFiXcBEIdOCIrKo6LSp7qEdwZNDSwuHg0djLvwvl8bX3ggdomDhBcKkBpCUxUiXWi0ypIi31Ki0KFRm/OoqgpVr8bRY3Oo6wq97hJRWawFvI3OhAhGfVG2UBTUObcsO0EDANA/AqVuQWuFTqkRAprUvCxQnnq9CsZYGOvI6JcSTV3DNHVwigqKMEZnQMMLBS80oMrI46aSvCRm5WaCbECQIepi92WaJOpPwRWuuOoPvcUCZZH8oM9hgYBAQfab7Eec+5SMvq4AzsHbBs5WKHQDWxc4Y4ga8CFQc6w1gOdGdABAhnKvqrC4tEh9Alol2H6VSkL7cKMQRN3q9npBF6BRFApDnXaIsItQlZQr+SAchIRvHCA8Ra49R/AVpASKot/5u5AKQnh4U1P/BAGK/EruY0LHbBxx6JWiNeW8CxQTS93BKxfmDpTR4GZ63CE8GIk6ZJ08POogLGf6iXVBmBscMBsccOc8XdBlibJFhh8biDJxEAol4a1BY5uYDWuMDXQxakBH9LcmZvTgXLxW2u0WhCI6otYaAiI2s4t6Eu+hNJcyJuPaQ5DTXUhAtWJFLolQWUpKOFAQoLNqNdqdIbTbQ/1+MGUBq6gHTKszBO88dKj6BSGw1CXapGkatFvUb6TdHqKu3cZhaakLAY+R4REISHgH9LoN4BAyjeRstIoCSgC+qVH1FqC1QFly7w6Hql6gDI+lYgEOrPsR1EMmFH1gDUuhFYpCQPNtARKAhi/akIq61atCoyzbqA83VHJaOkAT1c+xo+AcSk19aeBcyHa5frNQdnaFgFYk0LeCOtW7kL1g2hQ3+LTGBKfOAqCbk5JlaCLaQMKikB6yVdD7nqqnOe9gHBXIeCmQGrGpYcsPX6bCsFGSGttpJadU+8CGQWrwp1jp4coPU6Yizc3N4cCBA9GYZ6N08+bNy5yaNDKYPoxTZ2nQQB/MhqRlYfmz7BCkY2WjKHUW0v0M8s1Zl8H7HtxeasTw97TWy4zswc+mr6cOTSoi3rZtGyYnJ7F3716Mjo7i05/+dKwkxRkE7pcwOzuLa6+9Fu9973sxNTWFrVu3xk7FHC3fvHkzxsbGMDU1hd/7vd9Du93GLbfcgvvvvx9PPPEErr32Whw8eDBSgNKKUtwjBeiX22y327j22mvx5S9/Gbt27cLY2BhuuukmbN68OVJ1+PjSakLsuHGlsfHx8ajRueqqq2JknNcQvzc3N4eLLroIW7dujZW7xsfHcfvtt+PIkSO48sorcdttt+EjH/kIPvCBD8Su0Pv27QOAqI3YvHlzXFtXXXUVFhYWcNddd0VBc0qVS2mDPBephmPTpk1RoMvjTLMA3MRvsBs6V5ICEOlFrIlIs0T79+/H2972NrzjHe/ArbfeGtcU07XSfX7lK19Z5lzzWubj+KM/+qPoOHCGJjXS+XpIr/c0y8nrDEDUsvBrvBbTjAZfA2z4D17P7GwOvp5eeysZ4qkzke4vdV7SbR8vEPJcOJHMQnofYaykN1kpaPNi4YS2akwdjAwysrR0UCJ0nPAG3gJNRUZ5YxzqqoumIdpUKv6NVA7BtB8RI/taK4pkKkV6h1BWlnpf1KjrOtBXahhD5WGlkPAKEOBKSQpSF5BKoWy1qU9EWYZMRTCzgwPSKgpoJVGUwTiFJ6F5qEZE+oWQJRAS0ssQJfSBs00RYRkzNjo0vqNorNIqljlViio9xXK5nJCQLCJGpDqFoGfQBATu/GDvhgRRhC14PhNqVRI17YfbgyHjLLxy8EYB7RJGWvhGw1QNmrqmCDmo8o4XfVYRQNmTOnTYNoYMdiWW07pk0ABE6ocM2aSB/gkhlBtF02wEs4YiOkKBWqIVl1MV8bvOk4g3OlpOhE4q9D0XtDi8DXYP2ODr61Z8jOgbayF9yCgoFYTN/QwTU5WMNbHKkhBkqHsh4byAsx6NMfT5oi9CJl16X2jO573/e6BBuUA9tOTk0LXQEKNKh+7YXEZZyNhNvj+/bln1Jx+OgZ212jSoa0OCZHBRBB27QgtBx+I9YIMuwXoB4wAlJVGCBPVkEEHP4OFgrEO310VtalpnoXzv8MgQpGih0BLChgyb5U7fVPms3WrBdKhJpVIkWhdSkABbAEJ5dDrU/RrChyyTpe70LpwDZsCFf0Rfcx4yg3T/4SVmA3/Sw0EoCy8lZTsUaRqkLPui7ZBJ8mEe4QEjBJTvl7cmf9mBSwZI/k30KZj8WRkGF3zzfmlehKyoQNBmNf3rIvTsYPE/hAqlnBEcrZXvFacSg5FRfg3oOxep3iA1rAcF04PbeK4HPH8ujWzya8cTejNtgQ3MtLRmekyDx5a+vlI0kF9fKbuy0rGsFAkdpC0MRlqPN86VtpnOzUpIv7tSJJSjsBzRTulTnFXYvHkz7rvvPjz55JOR1869J3jbbMhyFaPU6Nq0aRMA4P7774/nJhW38zkddArYeWQ6D39uLnRn5mOem5vD/v374/dSShDPc0qVYTE6j53HOjo6ivHxcbRarVjelr8/Pj4ejVsWZnMW5eabb47zyeNNy/ZOTEzgyJEjmJ6eXnYuns0gHHTeU0eU6VSDBv7gto/nsPP1yo7UwsICWqG30KAhzsfEc5c24UszJnzNc/UodpbY0edzlzbWHFz3g8ea6qv4uh6kCqb0txQncq2sdP9Jv59SrZ7rXnW8/a6E483Bc31ncHynEyfmWDQ9tFottLSCUgJKBbGgpeZb1DG4IfpTTc3v+gH4PvUDoh8plaHqidYaZVmgLNi5IIqLkipkPWrMz8+jrqtIXwFIXyCLMlKlqCqTgi5aoVRrh/ahyUHhH60EtBRotQGlBbQWMA1gGoemqtHtVVhc6qJpgpg44e9zVYiybKMoS+iiQCss5FIXULrfa0OGsrIptxugCLcPmhOu7iMgqAyvdWhMAxPKn9ZBXEvHu7ykKFeBEUJAKA0tVSjr2XcwJGctvINgIW+ItEIEY18BpWyh1h7d+aPoVT0sHHsazjUQwqMoilAGk4wv6sjt0ev1ICCwamQVyrJAqwi9QnwQyHNGK2Q6uBcGNXWzka7hnQUL0Xn7zpHegJwg1hZ4SAmULaKowQPWNDES76JR3TfaHPrOmgsGbnQookOr0e12YYyJmguuDhXF2qEqmRd9rYwNHbi7VRUbI7Y7JZULVtSE0DYGVW3gvUCrZCExGb7WeQjDBRBCs8FQOpU1NbZp4pio1DJlr6Qg4b/3DkoWaLVaMZNDGax+0zyuqmQt0bOMJ63UUreHY/MLOLawiF6obiZVyCCG8kkOodO4p67v3bqBFRVqB5RtCQ2J0ksKrAsHC+o90fR6OLpQUaO5qkcGvZQ482VnYtWqVXjZy86MOhO+2Qrh0G53MDQ0hOGhDhVV0CJWPtKFhJBk+J955jDKsgwBgC56PQXTFLH/CDl7lhKjfK2Q24uyaPcbMBpDXbOdp7UCC+E8dOFQlh1IaCjdQVGMAOjB+YaaDTqLwIuCAzWJlELQwzdkKWy43pRU8EIG/QjRSpUWsE5AWgGqhB1JcgNZRhe8BQCmDuvYh9gAUwL7mispBbQQsDoRmp0mDOoS0kjxaKj4wz0m2LBkcSaXEk3pPGwQAMudBuCZXbABLDMoedscvWQDlI2AtHkbP3jZWBk8pnQ8KdJsAO+DP8MG1qCTlNItVopwDjoqg0ZB+l76WR7P4Jwcz1lIDdJ0fvn3lO7F+9uyZQt6vV6swrRhwwZcf/31GB0dxVVXXRWpPFNTU5Em1ev1e3ikvQTWr1+P9evXY/fu3bjllltwxRVXxKzI+Pg4xsfHo4HJ3zty5Aj27NkTI92c4dq3bx+mpqYAYBm9jYX0c3NzmJ6exnXXXYfLL78c27Zti5kzbqrHFbf4+NkgZp0HZ6Q2bNiAq666CjfccANuueUWbNu2LRrwO3bswOzsLPbt24fHH38crVYLd999d3xuAsDv/M7v4KGHHorCZF6PTL/itT1YcGDQiWAjNtU0sTMwMjKC7du3L1uvKUUnrUiWRrbT9cjXy/79+2N1rw9+8IMYHR3Fvn37ljkPfO2yvoWbCW7atOkZ5VbZmUgLPPD5Sa+ddF3ymPh9FpCn1wA7poPV1/h42ZlNAw6DDsegsH3wukt/jufcpdfS4OcGxdbHc0KOFzRIvzc4tpWch9PtUMT9nsiHh4Y6KAoFAQt4anBnjEFTNyEzQcJe7lQL9B0KKVlvUEApDa0KlCUZ/61WC7KgCi7tQoaqLxJNU6NqDLpdyk5wVFUIibJsRQdFSRmrSKngWJStFlRB+2B4byGER6ksJBpIYVHoNiA0nNWoej3UVYPFJaI/CU9C9CjO5si5R9A2FCjKNsp2C6tGVqEoFNqlhhA2RAwDr1uVsJaatcUGXiBdhrMWTV2RwWctTMNceo60A4CACJVw2ECKAve0p4WWUHBQooF0NQBqliZCdB9OkrFjqfqTdwYCDRC6TdS1ozk2CA3VFISgXgEUq+7Trpi3X9c1vPd46umn0Wm3MDzUgQpaAarQJFCWJTptg8YYGBN0B8FJCS0myDl1joxLAE4gZi/6hvFyDQY7qs6H0rCW+z0IFNAxM+ZZyS+S77Nuw/UNeBZyc5Ut/ixnffj/whXQAtHJoOpPiCJhSAUhNWkCRA0IFV4mapAK+hIuz+ycQ2FMFFZT5iVoOQK1TFkJF7I/Qiq0WySOV6Eymiqo8ECQB8NY0svACyo6ABqvcyGTUNVYXFrE4cNPYqnbQ9U0fTG5Cs0n6QKmruVFQTcLQfNZN0Qhqy1paVquQdlqodBUEcnZBr3uPLwPncsFVcFqt9vwTmJpqcJjP50l57wgvY9SEkOdIdI58Xk3DlXtYmZI1QZCGQjVg1QNWmUbRdmBUALtoWE41wlrvN+B2zgTSwN78v7grA/VvxoI0QCwwYmme5UWCoBBr9uFlkSVWjU6Cmtq9LpLaKyhZo/hGvWB/kRHW/UzhyGQAu9hPWBCVoIq6OmYRZJJIQCAqsWpsqBsDsL1JvpVu7iyMO29n2mDFPBeQobzfrrR6/WWVRqZmZmJfHBgeWSPaUNAnx+dRiKB5bz/wYc3vz/4QE4Fz6mxBSBSPga3OYhBStRgJoKN4zQ6yg7DYKbhubIUx4uMDu4zpZ5orZ9RmSp1Nga3N+icPZezwfNzvG1prWMkmx2qm266KY6RG5Nx072RkRHceOONWL9+fexHwFWhuD/CwYMHcd999+H73/8+vvzlLwMAvvKVr8Rt8TncunXrMicRIGNycnIS3/rWt6Ie5corr4xGKzsKr371qzEzM4O77roLV1xxxbKMSLoGU0Fu6qCysb5nzx5MTk7GHg6cIWAK3MGDB3H++efjDW94Aw4dOoTdu3fjiSeeAECaE+5G/fTTT+MVr3gFxsbGcPDgQUxNTeHaa6/F1VdfHRvcAYgZIJ5/drTSkqiswUhpRKlzzut10Dl+trXCNKP0nAN0vaYZHd43NxDcvn17PA/79u2D1hoTExPLMolMTZyZmcHatWsxOTkZj/XZsptpBiQdc0q1ZAxWf+LrZHC9Dzo/KdJrZVD/xHM0uL3jOSe8vUEH7njOxUoOw0r3pWfb30uB5zUKNuqkpIeesxVc4PDWTUNlZKt+mcNoD0uBWM5ViPCc96DoM4tWw8dYY2AEvLewzqLu1eh2e+j2KhgTBLCeHZagHxA+6cYtY6UpqVhI7qOQFr4JRr8BfA8eDbx0cF6jcQ7dpSX0ejW6S0tEeWARr3ewpoqUHAEWKMtA8XChCoyHEhZCkJAyWI0ABLzlRnt1nCdaVA26i4toGqqgZQxTVRAck9AAUGugLAC4UPGHSnVCUQUgL2VweAyEN3BmEfAWQBN58PCaDKrGomm6wbEwZPcIgboW5FxU5Mg54+DCuNkA9z6UGqXudag9HYdWGsY0ADwKRRmSpib9QXSQgmNlgvEuIGL2xRlysuq6opyS8CG63s8QxeiwsyEyS46WaargmPSdH+c0c8n6EIG+ZQzqpo4OMWcD2KngniwcZXLew0NAqQZCCBhDtB2vEPQZLuhfiF9F3dfpb+v69CPnuaIYzVlV19H4lJJLy1I/ksY0VOHMcvSdrgkHAQUgJuCA2G27NgZCWEhLDoYIJWj786fRWIfGOSx1l7CwsIinj87BGAcbKEkCxAuyzkB4SRoX9Hto8Pi8acjJNRWULkIltiGgLGGaHpqqi6q7GK9VrTRQaEghwjxTA8LO0DCGh4bRNBVdT560Td5RYQZrLYyz0dEWogepakjdA5xB1WpjePhM6n8hKYtFaqA+FYjYcjZWi/POo+7RGq+qJSA4Fh4NpKCKS6WVMNrCGx+yqBKlJkcbXsIa0tA4sI6nT7NrBMI9KCnaQDfS0J+Gsgq2oKIUSJxm70JxagFo+OhscOEAXsfpsqYgRXDUo36KKnCl9+9TCd7HkSNHYK2NRunPfvYzvOxlLwtlcWssLCwso5myU3/48GHKUCuFsizjdrnfC1cy44wmI40gAsuNYW5aubS0FPc7PDwcP59ub/CBPBhZHNzf4cOH0W634ZyLn11aWnqGofDUU0+tmE0YdDQGsxCDn2fDaXFxEQ8//DCUUjDGYM2aNVi9evWy408jsvz/So7F4Fw+GwazQouLizh8+DCeeOIJymZbi7//+7/H6tWrMTIygqGhIQDAY489ho0bN2J4eBjf//73UVVVLJPLYm1rLVavXo3Dhw/j3nvvXbbfhx56CCMjI1izZg0WFhawuLiIV73qVXjyySfxk5/8JN7bvPdYt25dsDMok37eeefhgQcewE9/+lMMDw/De48zzzwTs7OzePrpp9Hr9WLw6Omnn4YxJlJ9tNZRZF1VVVybZ599Np588knce++92L59O84//3zcd999MMbgl37pl8CMgqqq8PKXvxznnXcefvSjH2F6ejo6Fj/5yU+wbds2rF69Gj/84Q8xNjaGoijwk5/8BD/4wQ9w9OhRPPzww5ibm8Pw8HCc8/QaWlxcxNGjR/Hkk0/CGIPVq1djcXERCwsLUEpFY5rP1dNPP43h4WGMjIxgfn4eAOKzd3CNp2vUGIOhoSF0QjNXfm9ubg5VVcXmtVUoD/6zn/0M1lqcd955AIC6rvGTn/wEWmucd955WFpawuLiIpaWlnDkyBE88sgjeOqpp7Bu3Tq8/e1vpyBVq4Vut4tutxvXdKvVil25h4aG4v0gHS9f4+m165x7RsZxpawCr++6rp+RJUzn4vDhw8/Y9vMx5nn77Ajy2NPrcPA+NnhuBrOQg+fthTgVx44dA/DiPyOEfx5bPHToEF7xile8qDvOyMjIyDj1ePTRR2MN/FOF/IzIyMjI+MeJF/sZ8bwcC+ccfvrTn2LVqlUviSAwIyMjI+PE4L3H/Pw8Xv7yly+LTp4K5GdERkZGxj8unKpnxPNyLDIyMjIyMjIyMjIyMp4Np7+DUkZGRkZGRkZGRkbGLxyyY5GRkZGRkZGRkZGRcdLIjkVGRkZGRkZGRkZGxkkjOxYZGRkZGRkZGRkZGSeN7FhkZGRkZGRkZGRkZJw0smORkZGRkZGRkZGRkXHS+Pno/52RkZGR8Y8avV7vhLo5Z2RkZGS8tCjLclmn7xcD2bHIyMjIyDgp9Ho9vPKVr8Ts7OxLPZSMjIyMjOeJsbExPPLIIy+qc5Eb5GVkZGRknBSOHTuG1atX45FHHsHQ0BAAwBgDYwwAwFobf+fXn+299PVney993Vr7jM891/ae7TvHe2/w9ee7vRdzDM65Ez5HGRkZGSvh6NGjOOOMM1607eWMRUZGRkbGi4IzzjhjRcdipd+f7b3T/TmlFJRSy37n96SUkFLG3/l1IUT8Sf9+LnjvwfG89PfB/UgpowMxuJ+MjIyMn1dk8XZGRkZGRkZGRkZGxkkjOxYZGRkZGRkZGRkZGSeN7FhkZGRkZGRkZGRkZJw0smORkZGRkZGRkZGRkXHSyI5FRkZGRkZGRkZGRsZJIzsWGRkZGRkZGRkZGRknjexYZGRkZGRkZGRkZGScNLJjkZGRkZGRkZGRkZFx0siORUZGRkZGRkZGRkbGSSM7FhkZGRkZGRkZGRkZJ43sWGRkZGRkZGRkZGRknDSyY5GRkZGRkZGRkZGRcdLIjkVGRkZGRkZGRkZGxkkjOxYZGRkZGRkZGRkZGScN/VIPICMjIyPjFwPHjh2DMQYAYIyJv1trn/H6s72Xvv58t2etfcbnnmt7z/ad4703+Prz3R6PgX/4b+ccAMA594zfvfcAAO/9st8zMjIyfl6RHYuMjIyMjJOC9x4jIyN45Stf+VIPJSMjIyPjeWJkZORFD1ZkxyIjIyMj46QghMDCwgIeffRRnHHGGS/1cH4ucezYMbziFa/Ic/QsyHP03Mhz9PyQ5+m5wXMkhHhRt5sdi4yMjIyMFwVnnHFGfog/B/IcPTfyHD038hw9P+R5Ov3I4u2MjIyMjIyMjIyMjJNGdiwyMjIyMjIyMjIyMk4a2bHIyMjIyDgptFotfPSjH0Wr1Xqph/JzizxHz408R8+NPEfPD3menhunao6Ez7XrMjIyMjIyMjIyMjJOEjljkZGRkZGRkZGRkZFx0siORUZGRkZGRkZGRkbGSSM7FhkZGRkZGRkZGRkZJ43sWGRkZGRkZGRkZGRknDSyY5GRkZGR8az4y7/8S7zyla9Eu93GBRdcgG9+85vP+vlvfOMbuOCCC9But/GqV70KN9xww2ka6UuLE5mnL37xi3jnO9+Js846C2eccQYuuugifO1rXzuNo31pcKJrifGtb30LWmtMTEyc2gH+HOBE56iqKvz+7/8+zj33XLRaLbz61a/G5z73udM02pcGJzpHN998M17/+tdjaGgIZ599Nv71v/7XePLJJ0/TaE8//u///b+45JJL8PKXvxxCCOzevfs5v/Oi3bd9RkZGRkbGcXDLLbf4oij8Zz7zGf/AAw/4D3zgA354eNj/+Mc/XvHzDz/8sB8aGvIf+MAH/AMPPOA/85nP+KIo/O23336aR356caLz9IEPfMD/8R//sf9//+//+R/96Ef+937v93xRFP773//+aR756cOJzhFjbm7Ov+pVr/Lvete7/Otf//rTM9iXCC9kjn7t137NX3jhhf7uu+/2jzzyiP/Od77jv/Wtb53GUZ9enOgcffOb3/RSSv/nf/7n/uGHH/bf/OY3/a/8yq/4nTt3nuaRnz787d/+rf/93/99/zd/8zcegP/Sl770rJ9/Me/b2bHIyMjIyDgu3vzmN/srr7xy2Wvj4+P+6quvXvHz//W//lc/Pj6+7LXf+Z3f8Zs3bz5lY/x5wInO00o477zz/B/+4R++2EP7ucELnaP3ve99/pprrvEf/ehHf+EdixOdozvvvNOvXr3aP/nkk6djeD8XONE5+pM/+RP/qle9atlrf/EXf+HXr19/ysb484Tn41i8mPftTIXKyMjIyFgRdV3je9/7Ht71rncte/1d73oX/v7v/37F73z7299+xud/9Vd/FVNTU2ia5pSN9aXEC5mnQTjnMD8/j5e97GWnYogvOV7oHH3+85/HP/zDP+CjH/3oqR7iS44XMkf/63/9L0xOTuJ//I//gXPOOQe//Mu/jKuuugrdbvd0DPm044XM0Vve8hYcOnQIf/u3fwvvPZ544gncfvvtePe73306hvyPAi/mfVu/mAPLyMjIyPjFwZEjR2Ctxbp165a9vm7dOszOzq74ndnZ2RU/b4zBkSNHcPbZZ5+y8b5UeCHzNIg//dM/xeLiIv7lv/yXp2KILzleyBw99NBDuPrqq/HNb34TWv/imysvZI4efvhh7N27F+12G1/60pdw5MgR/Pt//+/x1FNP/ULqLF7IHL3lLW/BzTffjPe9733o9XowxuDXfu3X8MlPfvJ0DPkfBV7M+3bOWGRkZGRkPCuEEMv+9t4/47Xn+vxKr/+i4UTnifGFL3wBf/AHf4Bbb70Vv/RLv3Sqhvdzgec7R9Za/Kt/9a/wh3/4h/jlX/7l0zW8nwucyDpyzkEIgZtvvhlvfvOb8c//+T/Hxz/+cdx4442/sFkL4MTm6IEHHsB/+k//Cf/9v/93fO9738Ndd92FRx55BFdeeeXpGOo/GrxY9+1f/BBARkZGRsYLwtq1a6GUekYk8Gc/+9kzoluMsbGxFT+vtcaaNWtO2VhfSryQeWLceuut+Lf/9t/itttuw7Zt207lMF9SnOgczc/PY2pqCvfeey/e//73AyAj2nsPrTX+7u/+Du94xztOy9hPF17IOjr77LNxzjnnYPXq1fG1173udfDe49ChQ3jNa15zSsd8uvFC5uiP/uiP8Na3vhUf/vCHAQD/7J/9MwwPD+Ntb3sbrr322l/ILOqJ4sW8b+eMRUZGRkbGiijLEhdccAHuvvvuZa/ffffdeMtb3rLidy666KJnfP7v/u7vMDk5iaIoTtlYX0q8kHkCKFNx+eWX46//+q9/4fneJzpHZ5xxBu677z5MT0/HnyuvvBKvfe1rMT09jQsvvPB0Df204YWso7e+9a346U9/ioWFhfjaj370I0gpsX79+lM63pcCL2SOlpaWIOVyc1cpBaAflf+njhf1vn3Ccu+MjIyMjH8y4NKOf/VXf+UfeOAB/8EPftAPDw/7mZkZ7733V199tf+t3/qt+HkuW/if//N/9g888ID/q7/6q39S5Waf7zz99V//tdda+0996lP+8ccfjz9zc3Mv1SGccpzoHA3in0JVqBOdo/n5eb9+/Xq/a9cuf//99/tvfOMb/jWveY2/4oorXqpDOOU40Tn6/Oc/77XW/i//8i/9P/zDP/i9e/f6yclJ/+Y3v/mlOoRTjvn5eX/vvff6e++91wPwH//4x/29994bS/Keyvt2diwyMjIyMp4Vn/rUp/y5557ry7L0b3zjG/03vvGN+N5v//Zv+7e//e3LPr9nzx7/hje8wZdl6Tds2OA//elPn+YRvzQ4kXl6+9vf7gE84+e3f/u3T//ATyNOdC2l+KfgWHh/4nP0wx/+0G/bts13Oh2/fv16/6EPfcgvLS2d5lGfXpzoHP3FX/yFP++883yn0/Fnn322/83f/E1/6NCh0zzq04evf/3rz3p/OZX3beF9zgNlZGRkZGRkZGRkZJwcssYiIyMjIyMjIyMjI+OkkR2LjIyMjIyMjIyMjIyTRnYsMjIyMjIyMjIyMjJOGtmxyMjIyMjIyMjIyMg4aWTHIiMjIyMjIyMjIyPjpJEdi4yMjIyMjIyMjIyMk0Z2LDIyMjIyMjIyMjIyThrZscjIyMjIyMjIyMjIOGlkxyIjIyMjIyMjIyMj46SRHYuMjIyMjIyMjIyMjJNGdiwyMjIyMjIyMjIyMk4a2bHIyMjIyMjIyMjIyDhp/P/ZZxSuLzHNxwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "torch.manual_seed(0)\n", + "np.random.seed(0)\n", + "\n", + "gradient_shap = GradientShap(model)\n", + "\n", + "# Defining baseline distribution of images\n", + "rand_img_dist = torch.cat([input * 0, input * 1])\n", + "\n", + "attributions_gs = gradient_shap.attribute(input,\n", + " n_samples=50,\n", + " stdevs=0.0001,\n", + " baselines=rand_img_dist,\n", + " target=pred_label_idx)\n", + "_ = viz.visualize_image_attr_multiple(np.transpose(attributions_gs.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " [\"original_image\", \"heat_map\"],\n", + " [\"all\", \"absolute_value\"],\n", + " cmap=default_cmap,\n", + " show_colorbar=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3- Occlusion-based attribution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let us try a different approach to attribution. We can estimate which areas of the image are critical for the classifier's decision by occluding them and quantifying how the decision changes.\n", + "\n", + "We run a sliding window of size 15x15 (defined via `sliding_window_shapes`) with a stride of 8 along both image dimensions (a defined via `strides`). At each location, we occlude the image with a baseline value of 0 which correspondes to a gray patch (defined via `baselines`).\n", + "\n", + "**Note:** this computation might take more than one minute to complete, as the model is evaluated at every position of the sliding window." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "occlusion = Occlusion(model)\n", + "\n", + "attributions_occ = occlusion.attribute(input,\n", + " strides = (3, 8, 8),\n", + " target=pred_label_idx,\n", + " sliding_window_shapes=(3,15, 15),\n", + " baselines=0)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us visualize the attribution, focusing on the areas with positive attribution (those that are critical for the classifier's decision):" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAG2CAYAAADiPRBgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9S48kS5Lvif1EVM3MPSIy87y6Xl3Vl/cxQxJDcAhwMAS4GG64JD8AvxsX8wFmR4AAAYKYLVckhnc4IO6dizvdfaurqqurzjmZGeFupqrChaiamXt4ZLrneXRVj8lBnohwt6eampn8Rf7yFzEzY7PNNttss80222yzzTbb7DuY/mMfwGabbbbZZpttttlmm232528bsNhss80222yzzTbbbLPNvrNtwGKzzTbbbLPNNttss802+862AYvNNttss80222yzzTbb7DvbBiw222yzzTbbbLPNNttss+9sG7DYbLPNNttss80222yzzb6zbcBis80222yzzTbbbLPNNvvOtgGLzTbbbLPNNttss8022+w7W7xmoVIKv/71r3n16hUi8kMf02abbbbZZt/RzIy3b9/yi1/8AtUfNoa0vSM222yzzf687Id6R1wFLH7961/zq1/96nvb6WabbbbZZj+O/c3f/A2//OUvf9B9bO+IzTbbbLM/T/u+3xFXAYtXr14B8H/8P/3vCbHj8fFAmiZyLqgKISiGo5+cCyKCiBK7gIigKnQxEILSdTvMAiULKUFOheNxJOdMKQkAEQgRNAiq/rebLQe1CoqpKCpC0A5ndwk5F6wuLyqoBgLqxyNK6AIhBkQixYw0JXKGYoKEbt5nKfW8SqEUw4ofoNXvczHMDAGCFLqQoWSsZMxGwBApFMuYFRCIIdKFDtV6PBGCBlTEj6Hgx2/tDAqQMUYfBTPMQFWIXcdud0cMkRg7SoFSjGkSigm5RDAfE6ljaCWTS6JYAekJYSDGO2K3Q0NHDAOIUlTJde8pF8bH94zjE+Phj2BHAkdEEqIFGCmWmFLGbKJYoUxTHUDY33XEqIQApSRyyfP1XI4MDMFM6jEHBEVDIKgSgv8DKNnIOVFKoesjqMzXulkpUHJBJfiEMUgpM00juWS/biKO1EUwSp17gRAiKoqgvu8YiOrz2cznlmghxuBzS3sMJRflcExMKfH09I6URkqeSGk6OVcMLGdy8bkl9T8/bsPMjy+GyJuHz/jVL37FL37yc3baz0vWu241JwxVRVXpYjefWwh+fn6vhiUyYWd3lRU/Nyt13vq9pyKICMXqnCyZkhIlp3oiBpaxUuafNm+1+D0aBjQOSH/Hf/P//Xf8+ne/57/97/6NnyuCAWJGNON4PDKlBFF5eHPHL/75z4k7RaOCQcmQcz13EbquQyRiEgHBzO+fnEZKHhmPj6RpZBrfYyVhVtjt9nRDz27/QNfvEYkcDomUJo7H0Y+73melFEoppDRRciJNk19/YNgNaJ1zJU+YFUKMdLGj6yPWnh/ZKKWNbRvHQoyRGCNdH9olQMSfC0EU0YBIh4SISqDr9kiISIiMWcilkFJinI5MU6JkJejAMLwBE/7r/+r/PD+/f0hr+/i//3/+r9y/ur96vfW8v2p5Eczs4wtWs/rfY35kyuNV66SS+Hb8lqkkUslXrVMoHPMR8PvlWhPq+0iuehUDECWwj3u+2n955U6Ez/sv2Ic9u3gHV473oD1BI9muGwOA3N5zN5jgD5rAycv+o+uoKLmk1bPmw1askCzR60DU68f7U83f39cdm2Ec85Ffv/8f+C//2//qqnWmUvgv/y//Nfz7tzDdNuY328/viJ/f8ebVHpXrItu7Xc+w63n77SMpp6vWOY6Jd49P/Itf/Yy7+91V69w/3PG//PlPeT3cMYT+qnX6EPl8/5qvD2/59vj+qnVSSfyHt2/5djzw7ePxqnXMjHdvHzGz2Xf5mIm4T/3l56/5P/yr/9XV6/xvfvKf88XwJV0YuPYeP74/8D/75//J9/6OuOruWqe2Yxe4u7+j5MI0TQ4iqoMrIlhpjqG4M10KOU+kDMWMENwh7rqOoEKJhijVGYm+Du6Iq1RHTwOIv35EFAR8brtL0seOGAJ9N1SnX7HiToGZVNADaXJwUAqIgZSCSAKEEJUY/QEniv8UqduAnMUfEu7Rr8bFt++HU7AykqdCTjC1uacBKeDOrVEwppIqAIOQlRIMDaF5cgSNGNURqS9SI85On5kRY0fsevqhd2cmaHV3hD4HzJRSeqwoZjI79HkySkpISagWYih00YhhQkOkiztMe0x6iu4wAkZgiAMpJ8bxActHSnpPyU9YPpLLETWj69y5NzMmeQSbEEvsBtBgQELEEHWnXnAQ2kAFFZRKBYjtOqgPCyLulBXLiGUgk8rk11MUxR1nQU/3U7cbYqDrd+54lkJKuc4nQVRRhS4Gn2coORvZMiU7uAuqBMW3q0YIPl9UsjvvQSgoGpRikZAyORdCrg8MDagEP28Tcs5MKZFTquDAwbRWUNDHni/ffMXnr99wv79nkOhX2ECkvbSsThGbgUOMcT7vBmAdmAU0nAGLOslzThjF53EFBEEdtIvqPO/MCpYzJWf3hK1gJTmoMHfCqWCbOu01Dkjcof2eL7/6kjEbQ/fvSanUPQlR4D4KYxDGaeJdnhAVQtfR7wZiHwkS/B7OuYJT/FxVEQk1EFCBZ4GcFQlGTJHYq7uZ5veahEgmUJKBJcaUmKaRcTrMIMEQrBTf3jRVgJF8J/X+d8AmlOygJaWJSQ/oGNA6j/24FmDRhj+TyZaQMKzmfZ0rfQRzIJvzSGnztz4/d/sdhlKKUqwB0ojqQOxekaqz8WNQk9o+7l/d8/D64fr1fiRgoUkYc3fVOqkk0pgqsLjOISpW0OzX7lOAxS2OrgOLO+731wE4EeHV8MA+3LG/CVgM/wSBxUSvuz9RYHHg2/BAfz9ctY6UAn2ATrlyN59ufUCGgA7xasqM7iJhF9ExotfdRv7OzsHX3V93v8a7jv5+YBgGdvG6setDZL/fc4gTx3jdwYUS6MqRLhYi181xMyOk7pOARXfXs3/YX73Ow+sHXg2v6G8AFgft5vW/T7vp7sq5RVEVU/WIXp3RQbU6/cGdeX9resS7eDTSipE0E4JA8OV8XTD1GGy27JHmVKoT4EBEGpoQqsM0e0U+GcVw/CHuvwd1cFNk9dItcwRSiuFOQXnmgIn6d1IzE2ZUZ6tFSQtUB76BCwHMMrkUB0mluOMFSBGWkTLEqNvw52gDQQo1QukOKnU384tUWALExvLQEgPcGWzAQtUBnmCYmI9BvSiFCbMJKxNIi1IbViZMKngpuY5r546/KCF2iEYQKCmQJNXtZLDs+5VACD5ZSw5YPoKNGAmzTCm5zg9Fgjv7qoHSHowqNfsU5nNsD+hiIPU6eoYr+5zMNSqu4pmG6ry3cRKp11jDfM0kCIpipDqNDDXckcNmQJeLVQ/QwILP0yioGWI+7lIEEwPx/E7LOAhlnps1abA46qKI6bxvq1HxluGLwbMmfTew39/Rdb07LFYfGWarZ4fM7+M2l9dmdVljvc78ZY3MF0rJ8zyqk95nvC77bavbaj/WkPt8NO2X6jKK37sNSA59z27YeUZI/H7wjJ+wC55JDFZ4tKnutI6XBlQjKkYWgexH6Bknv87zDYJDfhHzjEIMmAyr+8iPqZhgU6YYpDSR0+SBkDT6fdyeHcXIKVFyqSCQOfupKpSoFVjVa68gORE0VuAsp8DC2tPEgyghac2s+U9VI0Sfr2ZCyX4ufv8UhII6ukQIhLou0qPaE7s9o/7AUczNNttss802O7ObgEVKTm3pug7VQK+BcRw5jkfGaaqRyQ4N0Z2A4C9Df8872BjHyekzMhFDcGcwLpSLKQdyhsaycI+oRpvVo60igpEppZBL4jhmkirFijtuIRJCxF119Qh3aU4XaBRCNGI0us4dOacf5BoxaaBFKNXpg1yzHQUzzwCkmR7lFKliTr2hAotsafa3VNWjrxrmyPFMYxFDYyCEQIh17LSbHRErEXf4pupQF0pyZ8jImB3r8UyVcgGqPSIBxelhKh65FUvAEdGESiEEz1pAwghArDkYBykqdxWoBST4NYwhk8PIxEgoE4VMkohqj8Y7+uE1IoGn44Hj8ZHj4R1P47dgE4aikhEt7LpIiIG+6yh4psok12i9zFHxaRorNcz/dievjoMVUp4WgBucmhRDj2pwIFRduJzzDDBCN0AQCGWmNlmpAKwSjUApNeKsOO0NBLI6MMyFcmzOJCABpNGlalaFQpACwdyZZfLsl/kcbxQm9/0rnauC4y527IY9n73+kt1wV6Pf5gDRChSZaX6NTNaoUDMWbekNln3VRWcHvJREzpmcxzkDUe88LOAg0AQJ9UHQQFX7RwN+DaRUx75m9xZ6miFW2O967vY7YjdQ7Ag5I0Cvwud9z0RhksL7rqe/64m9R8nUKuMteEYohDBnUErxDMbheJid7wYiNQoqHZ3sHKBpgEqXmsaJ4+EJywlsQtXo+wAWyAg55fnYG8hNFWwKxjhNaFAiTjmTGmBpNLLY94QQiF3nx1UK0zR65qNksjlgsaeDH6/53FNVit15VjL2aJ3XoeucwqnCcaxUrwli3BFCT4w9EhUhehZts80222yzzX5EuwlYiCopZ0rxl6DlzDRNTOM4R0UlJXd0Qmhx/Pkl715Oqf5IIUummBBa5F+lRhghxlABQXVcrJFlFopFe3lD5TGnRBFFckE1AU6PmKP4gZrVMEIwNHh6yrcxh4JXZ9ycJndqrWYrZrpCozYV51BbBR4qTu+KfagBVHOqjciqVmABFijVCdYa2VVCiDP1Kk3Ow8/ZyMlqDYYfwyRGCMlrUjT5sRSn6XjtSUHr+ZcKSpCEBipg82xBngrBlFA8wivqzq0UQN2RFYI7x1YdIBP3PLFaa9ATusEzFhLp+wjaoWFHzneUMpHLEcEpTFmdx58BkYSSKPbkjmIusyNWskd1S61dac5rsUIufk5W50Mp7hQXcWSqwsyBNyseoc7+U6TRTlr0eZlLbZ5qaHVCSqjZFCpY9mvS6D8G0uZczXrUY6XWciwxf8WK1604WDXEtNLCpGYODMGB6NA5J1hwwCJt9mmjeDlgFpYbYn1vtO2uMxk2g4JWQ5Dn8fZslZ9rqdSzRtOSOo4ezV8ARsu6NCqU0DKNS/avEQe9pqBDoyJJkOzbCAifdYEnAo8aeb3fE+/3dF2sGVGZnwOtjsKfEZmcEymNTJM/i9TTf6sx93N2+pYHAHJOTNNEKZNnGaQQoyDi1EqbAwk+Zjklci6MY1quQVCfY7X+R2pmSOrzpOsiIQS6rpufYyn1HhRptDIzxBba5cIkkfnZhQQMJWVDM2hUVJ3u1uHPD/9XM2LzWW+22WabbbbZj2e3AQtRUkqk5EWzlEJO2f9uEcLqIHvRaHPKqoNW6UzNKbTc6hhalFVqtF7o+0hKS6GjSKmO7BkVSp1faMCUGyWnHa8QYjc77SH6i1+11no0mgRU6styrtb+mc10hRncVHqGGrXgm5opcEdBah1JDHHemlVOtmqYi5HbDjU2B8ij5CIBnQvIrTo/wjQZKXnxKszhY0bNhGxoSEuBLQnRQBdn14SSR6xGW0PNaFiJ5Jw5jplQfFxCVNQ8+qrFEApIdgeVAEWgCFYCZl4wG0JPiD0xDpUuFen7jtDd0e+M4zS6I5emWkCbyfJUt5voOKAyQj56cXmeZue1ZCNbqUXOeQZrM+ioPCpRnSPYuSQQQxGkFvUClJxJuWWwAhpjFQlomarmTLZiaC+y9+JtrePoRdcpFQfattDeFm+ugkzOHftK6TMhpeTF29kIxJlW05x3BxaRXb8jhrgAdRrwWwHACgROnElZ+dYrs1pQbytgkXPLBhVKTj4/RSutx8FOmIu+W2GzO9AtW1FWGSUHNg5a1WQuABegj5G+q8BCfQtKplPhi175RgMWjc++/BzdDcQYa6aygpoGDKpQgQOEkTEdKdmL5Ls+VFBTD9kACiknJHvxeSt69voQB6EhBq/ZGFoWaAFkDkYK05ROPm/j32oa11QyFywItcDcAWCjlOZ6LTwoUjOi2WbA5Ohf53+GMiWnfIYi9F1fqYQAEZFQwa/n2uSGWoTNNttss802+z7sJmCh1dHVIHPKvxsiUIumzZ1epyiVqgRg8zoqa9oGpBp9FenA1AFGsQo2GifZo7c5GzmPtYjXI+RSo/8zu6NUB6eYK7iYVeWkSOw6ojWKgqHJna4YOgRXh1q44ZXy0njp2Bzhh0rTAc8KRKUvitC5ulQaa6R6oZSYSXVmC8WMLhp9DMToACOGfnYwNUSakyDuSWFFKTmQUsDMHd3dsEfUi8+tHEiWCOAc9BjQWKlQ0pFSpqTM+OTR/VTVvBDxws8ipBzQbKgUyjgSo9J1AY3vnDpUMxLupFe1pPiA0VFKquMOaTxikhHt6PevCNrTacfQ32GYF9tVqsqUjuQ0Mh7e8zRO5CmRxyfEEkKqGRwhs9RLaC0uLtlI2YvqRbs6jl2dm5XyVs/R6uVsYC0EKm/fa1naOq24yiyuPHIvjJ2mibEqgOWUZ5qaT5rq5NcsQQMlLZOCLcpKok5LQ10IgZqNEXNFAa00nxiUN68feHP/iqHrUJyOVElNszNbZ349x9VxNCfXFnpUqyFqdL+WAWmD2yL0rW7FgbnRGDW5gh6aahTU+8+BVa5ZplaQ39SN2iHPYESEIHjmqDrrX/SRnwwdv3jo2dOzwzjseiaFw/FQgwOulFR9dlIFFqWA1doep2ni2TK8CD/PykyFPCVSnhgPB3LJpDzNzyhB0FyYprxkWEq7xrWWAyU2kYVVjYmPI/OyXltTM7O5ZTLbvPTsVKyZXQMmy2QyltOs6NV1A6pdzQB65nVKRiogY2LovUh/6L1onQKqk++D4DUYm2222WabbfYj2m3AIgR3xOyUbuHUj8Ybd0UkoHKda7q/QNFKImpOVnO8KXNhbk0HOEipxbnQKBbZI3ECpTjFIEo3ZyystCLt5sR7nYAU0CLuhIrTM4qCFI/AO+Cx2SFsijhU6kXLXPhH1SkTT5YoggXnNJeSKVm8/HVWc1ooMO0Y/atV9BqdKRE+Hm1/MtOVXIGoB7wwOXY9LkELpWgdM8Fj9FWiUgLgoK1YqONZqsPbJDp7d2jVi7eLwVQSWEIlASOqQkYxSU6/0AF3tCIaDJPgdSXtuEXrNW6ZqwjqijzBwkyZEQITkaSFYgO5HJimruZFFO288NWv2ARlJNdxKglycWCktRbCLGClFmgHmR2+bMv4tOvqjl8Duw1gaMUJOi+bi0eVU8qkXNz5rkpSzEXZzZFuvmYB0zli3iLfDjIWOpQGZ5mpFq9hqFFvVT+moesY+s5lR9uxV3uJ5tKyaZdUHtpn0uZ2u3HWVp32YrXgPS8ZQLVaJL6qwXANh0U+1YrVmooFUMyZv1Z/0X7WrCel8Dp2fN5HHrrIk89af1YUI+WMhOrYr7bdbrFiy32iCkHrPUOjFi7UL6tZgfacWEhDLXvTlq1yyCtZZM/AKjHUuSTM2TJrCFJaVrPWl9Hu/iYQUZXBVFFbiJ0lF0oq5CnXDG9TNquUvaokproChLMk7pJBslJcfMJ+2IZ4m2222WabbXbJbgIW+/2Oro8zRQdLc4QuVfnOSfCC0qwYrvyUM3M/ClGb5RmZI9FWufL4C91aL4c8yzs63cH5+YLRd5Gu67i7u8OkRab9Ja1VPUpFZ2nNnBO1lcBcQ6AqiOUqgRsYp2nuc9BUnBqFJYQl6huD08JC0LlQ3Vs2GONxIk1HSi0UVu088k+sUfNSFX9c9UdEFkpNcQe/UGqRe3Apwm5P7IT9fgVSLFPKkZSnqnbkYKUUH/diAZVI0AGKVqfw3illZC+0DpFhd1e9s8TTuz9Wvf8DzTcRSWB1/ColIw6vkNBBGFDdIfh+3f9yZSZRJYahHlsFGhX0EAAzgg50XaaLO0IIHA8PlOTF41GFfhiqMwfT9Mh4fMfT0+/I6VBljf0alezR8ZRDpS4F+r5zJ73SnpqL16h5fs39Z4wQOtBYs0SEmiEz0jgyjomnw5FpdOpSq5XpuoXTrrVeZJ68aq5QhdOe2rG6U19pK0FAMsbUxHW9VqZGtoe+Z+h6n89zUXQj4AvSHONV9qI5r+d2CowXdzrPyMJmn91EPMtVClnzHDyIMayAhdX1K7Wx9hTxUquFkmW1aCCnXJ3dUgvFk2dFciKWxL96eMMvHnZ8vu/4diwwZXR0+dZjyd67QSPDEP35IepO/DwuFRTWrGWaj9EoSH2eVNnoIoTQEejaUNZnhB+XPyuSF7WnkSbxHEIgaKDrkmchzFyuuF2PpvSmVZ1KlkJ2pYFY7zGiGuhjP2OrlDIpZY7H0edUjNiDVnohVWQiMFTBCw1CmY5MaSSlJktd6LvOgXz3REkbuNhss8022+zHtZuARcmuD681GgfFm2VZngtRm4Z1o5l4D4VWscD8nRf7ujuVktcoNHWcJvdZaqR4mtzBENHZuZqy8/7HcZoj5Ig7F1lqKFOojdBqhLw6SCFWOkMI2NxILGAkcik8HY5zdDXWwlEsUKQ4J7w2sdIcMXMa0DQFciqkMVByrBx+d6oSuR5bjYyrzQ5+y1qEqASErnOJrFLPsxhzgzcRrdmGTC5Hch7JeaynX7nhNRoq6hmLILViPSgBJWdI2QhVaSZ20alJBcrQ0UWPnsZOCF0BnSorrDqeKohmz4aootJ7NLUWH8PCp1dpxbst6lsQmcCm6lAXd/47g32hj5Ghe4OK0NWGf15zkJkmZZwKu6c9uQiUsUbdwZscCtPkv4tE55/X2oklgl5pP2Q0ZFSNGOsxqEfpXZ64SnyaA0PvcWJYCUgpcyF3jDrXZuTWFLHKxvqUV5elRWqxeC32LR1SVX6EgnRdrXtwPouiBI10cU8Xh9X906iDlXHfqEYtc1jrLdo9tr7fTou3Z4iDF+X7MqXtxRZKVGnpx0qb05lG1Z4J7rqnNNIawFnNJgIzZZJaV0XxmiyXbM3sorLXjp/ulK92gSEqXYaYjT5lJoOn4mDHoNKUSgWz/sxJOdGOXlpDPmGmnYl2nk2ttKl2fWcQVrM3agYWXBpbKwiOHTJnKGvdkQYHqsXBQ5mlpXPN/pUVHW0Ze583OiuXyawHbxQR32cIdcyk9hWhqs6VCmp6zFy9rWjGDMbjNCthWc7EGOtz+bpmUZttttlmm232fdmNfSxAk0djVVyiNFsil0SqBYkuyhOgdsMu4k74Emlt/QYCMXar70pVSimz/+eFmY0O1fTqF0UYkcKU3NFAnFpybsVK7dBcKQYqdO7CryK7DiygZh3GaS7gBYFIpbqU2qqgUi1EneefjGlqNKfglBwzXAoWrGZFpDqkTpMoMy/eMyLubHSdZ3mm3DoZG60HQL0KDmbKsaosTbUjdFVlqp2gGxUpILWDdCCI1uho7UkRqgZ/yeRkDEPEijc29GvUIqFSaRi1yZ14PQCiXqitXc0S1ayErdW7GiUsefaD94h4b4t2TYN2qBilV+7uHtyBir1TgETAjkxT5jgd6YddpZ/UYllRRHpSEp6e8ux09d1upjf5mNRGZ8U7g4tOiGRUWx0MM0UmZacqgcsbB1O6CGYJyaVeK/GGinPNRyKn+jO3viQrdZ7myBKwEMAiKrE28DNK7fNhlhCNBO3owkDUwektjaNUsYOKVOe5gav6r83oC8Di3KydeLtWq/uuOcvronQrrXP9QqnKlQqV01SFA8pcqwGVPhRA55qTTK6F00ZhH4Qv+8hXu8DnvdAHpQsQ1OjJjDULZlW4wTMEUrNovr+Uaod7GoWJqgZWhRJCbVK3Yl+tKWntBJ26Z2D1eVDH10FFywTpnBFFDEk+fnnVVTsEr2HS+uwT5ETQItTjkrCiz2Xv56G1saHTrOozVWpDwhAIgmcLRbAUPKgxujCCWUGxWd1L4o+fsZCTfNV1y1+9rPi25/49N9ot+7p52yf3xW3npKI3rqMv3tMfsmXcrhu/NQX4n479cHPg3OZ+SNcub07fLreO+Y3zYFnvhmUbw+OGeTfXFdagzFXrqM5U0Vvmdzbv4nXts2EtvX7tfvz9TfWFrjsfrylkZr1cayGEWaXyh2xw+qnP0o/ZTcDi/buJLoLoiFgipScKmWIJxJ24vh/mDsZLsHOJGC+yiNH/SaDvqEAlgyUHF5TqaHvnbc9yqJPSxZV5VLx4UWtUNMQlAphzVUhKRmjdmAVC8GxJ1/f0fUfsAqIw5YkYI/t9oORKiyiZoXc6DiKzBGpKASF4vwztiUMkRqVkf8mnZB759qSK13MoRPGCXedeV+UiE6IoUs83hOro6boJ3Hxa7tRT6LpECEbMNjs9sQpNuUCXR+aLZO/tVow0ZaflEJwmkcHINcqbiZ1fj6Bdjd5njseEmRC0w4vKOzTuEN1DvMOk9xqL2dcSj8KbYXbAe2wcQL6m8ISVb8AOgPfeUInEuKfvdoTQEbtdVUfyegkrMI0J4z05vyeVkVISSPI6DPG+JF1Q0EjJLgLQ97V7ZRcd1IkX1k9pYhwPHjFvDyJrNUKVtlVaB3M3FaWrMrplLkCujrx51FpNCdGpQxqcltYkea0IOXmxQZnASkI0ozLODklu0rSq9HFg6O8Zuh19iMxHI4A1ytWisuR+aPv9TIGKml0TaWShlbUMTs1YmDd/m8aJx6cDU5rI07gAmepkWzl9WTZgoepN7mLfEWIk5UzsejQUghpoxNT49t073r97xy5n/nIf+J++6vmqUx7UWXL7oNz3yuvaL+StGIQB0whlqtkHEEkz/bAUpy6lNM31GyHWJoP9rt5bkdZsMafaRXtVvO3LC1GV2Hnxt1FcaUmbHLGDCzOlIGjsybnQpeTqUhSiehBDArScXSvuzrkQg1dC7YedAwkNHCcPkhyPI+NxJKfEcRorgFSIEbPAUbJTHEOk7+6q8ltXMxwZJFKKchgh/iP0x9uFPftwXbdYqLTVK60Bi6lMVYXw41YoTGWi1bhcd0yBqLXWSy5Eqy6Y1QxilEi8FOG6YILQh/6mY2vH12tPr7dlpMx8LK43P/+bnQ8zz7Jf67CBU0blNlBaKovhWqDkQbZw05z7LjaWI++mb69a1qzwN+//mv/+m3/Hf3j79qp1ihm7/cDhqwmON/SsGTOoEH/5+up595Mv3/D69T27XX/1OjE6I+Krv/jsNuddZa5du8bMjH/9m9/yy8/e8Plud9U6933P6+GBXjs+G15dtU6hsI8DT+nI+2m8+ti+/uwNQZVdvN7dvu86Pt+95i/2X129TrHMIT/NwaxrLJcfptfRTcDCspCs1Jf4yDQdPcpK9sLu6B1jNVgt6qz8Yl3qHwQBU+fIF6FUukCLGEpthBXiItUK7tjEGCrHwd1hEa3SrU0hqvWGcOdBKre9ygBVeVmf8B511lr8ad692Vr2wJWPDKWpIK3Ec6jFB7SeBXNDMnP1qFipLDm70ylixOB1JaoNaOn8cnSpTkPMQYRIi16kueB6Lo71XuY14+HFqDF4BLdIt2RKmrMkjVZmHiU2oBa1euA3zzSnxihDtDb5a/0U3ESaHG6PqPeqmF8e5tsRw5vwWQJ7BxyAJ+BbsCPwSLEDVo6U0iLDDqSUvjrFLQMTMFEswjQ1h67JE3c1Il17flilq6m74bFzZaWuU1RaAX6Z6Upz4e+cU2jRa8+61IGgJa0aZUbMZsd6jo8YdX5rnT9SI+JeX0ERSkne2K8CVgcBNjtLrdhfggOLuVbBJ8OcqUAaeFjuyxNAMYOJdk+dgo2TqKVVrFo31jIN0zR508txJNUHqGcAWvbF5ne59+vwrGAMHm3qEUITYhCtOYE4j9i7t4+8//YdOzNeq/BlF+mqsINaJhboipGPEyZC33Wkmv2ci6O1ASUHAR4MaJGogq0yFq3fB23czOasACL1erbMjc5NOP1kndak0urG2zhWeqIquRixBCgRrNTGdJ7ByHM37prFstY3pMpo1+hX13lwxIvLa9ZWqF3opdZ3OUxpilMatGZao0teFygElOD3p970eP9ezHvnXO+43QQsWOb41Y74yj+5xWlVhHIRjF+2Yq2ORgly/bgHiTUSeluWI9yY5YB299nVa5kVyg+a53HzOrFP38u1R2gtEPQjmZkxlesc0GKF99Mjj9MTU7kONOfiQQ+CwC3ZSedXsxu6q++j3dAzDB1dF68H6LW3z9DFOZv3MeuC0ofI2+ORfOW1yrkwHieOOV89dqkslP1wZfZBTBiCg/lrM3kFYyqFIMJd1121DsBdt+Ou210dpIDl/r4lD/FD3Q23vXksMh5Hnt6PjOMTx/ERf8kboYt0nfPou64QYiZnO3HUW4A0Z+fDuxSmn1qtj1w6J8eOpBPTJKR0dI35TmsxsDidRdwxDV030wyoL+4orrQUYz9zmxvtRLVJR4pTGDJgedV3o6PU/g0lBwdBlFovsgJB1IJMMXKZEIyug7jzG7bk6E4OqVKhIESnELXIeKkpvCknsuWqXOXDnWpB7DSmSrWZyNnBHI1KZcJuSMQ4MHSDS2gmI5tHT4PmmX+dyjTvb+FgVNCmgYLRhW7mdJecXea0csuRgEkHugPZAdFpT5aAg9NQLIE9YRxBvgY5gDwBo6dv8IZkKWWmZIhkYhZSycQ81mOOdLEjao9qJAx7cho46AQ2AEoXA10XvVYnuAOfK1UFUWLn6kAhCFSHPk2ZacxMo+F0vRkyrf7VeVTlZlNNFxktqgaEUGsQWhO/5mhX+lnw4myV6CDFhFIOLlk7jbUeIUGlyvl8XkC4otwNO5BSM3nVy1xnI2R5fDQ44fUEyzIN9LaUdDvTxdEt1GbeqAiWMmmcOB4OvHv3jsfjE8fjESrwDLL0RGlPJO/v4n/H4IXDu6nQ9bG2QRQ6A40DhpCz8Zu/+y1f/+4feJONn4TAL4bOy6iLoenAMBX2x8zbPz5y6Abuv/iCRyscLfs8qmpsXReAQNc/VOqWZyDcac/1WdJehA0o1gZ+KmgJaHG1NMwI6jVO/dARY1OTyhX0tbqJpiLm4HdXQeXygDbvhj2OHJ6emA6jb79epyDKlDyVO45HEM9k9v3Oszo1epFDQGRXC9WFpsTldVgdXd+z2w31WdWRTClZmEpHjAP73f2PFpndbLPNNttss2Y3AYvYubM0dR3FMlMaPYIoEEKHhohZR84e7c9p8oig5Zk316hLTe1n9lBqNsGyu0utyDhnSKlGDVOjtnRI39R4qspKcEc/5exNpioPX4MvF4ISou8jxMXZKqVxq/taJA1WJk8bj0YufoxL4znv1k1tzOUKmFa5+p6hCFoj0Vr7WVBcWlSFbujc2dGOKZVaA7JkGNbBlyY1GWPn6jtZycWLOqfxOEdBPV0f6Do/p9i13uBOyfC6iQKp1pxYWQpRJbTDJqeC5YkiXigag7IbHhCp11UiVvXxRSagYPkJKyO5vMVswuwIMiJkROsylEUdygIlCzkF0uQ0lJQSaTJCmJiOrprVdR1DtyeG3jMyjMSY2e/8Gg276P1JglPSrAhTcg5+Lk7psZYpazLEpY5Fqs3cjNqEsUaT2xztOoK6slWraJaygF4RIafMVBJjzX6kXOWNS+3qrt7F2ed5JPQ7MgGZKuWJJcMhLOpSQYXd7oH97p5Qa2WY08I2O8qisqTQKkhcc2AbR3XJZFDP09dZiywEDWQzUik8TRN/OD7ytowcyeReK82u1btAGsss5OBlQBnLR6KMBIWUdwxTX7t4O97selegGkvmj998y+//+Ef2j498u4enQ2DfR9QCEpV7Eb7slD0TgtJ3SpZMksyYR884AC6Z7KIFhtethFpMLlIIIVaQt0R3F26tZ4iKFdLUslil1hZ5LRTizx9qlsxcz5osRsQIodB3vT/jkLlo30Lv9UtB0RhqjdjM4qSP3tl7Nwye6RWB4vRBFSFW2WPVUMGxeuPBWpxdaM0bvZEmYU9nPRYLIe4JsWM37Oc6l80222yzzTb7sew2YBEChUKMkVw6f6nVtHwI7jBDxGVPhWKKmKtJhaqmEkJcFUICtjhNs2NdfzUTCkquPQFShhC9JiFo5dfXPgmqgSYLWWp/A7AaWfR0V9CCBqkAqQKLzJwhkUq1maI7uyJSKTNV977+57WghllaZTDKTNNwsOVqRk6JaNQXTw26w9N5HYXLR1UVl5p4lqWRmApIUKePaSCLR85LleL1ouNaj2B4dqFySd3ftJoCxns8mJ9PaMWkEus2ihcfW6FIZuh7JHZeBK0dKXvHbW9/lpCq81/KW6w8kdM3mI0UO4JMnhmympmpXbzB50ROwSV2p8kBlaQqaypMYQEWNghdLNAHzCZUM33vDm7fB7oYCdFrdWoz6VkpqORUMV2lsWXDcutsbHPDwnFMs7MZKkXODKyDYHGhwBWQqHNxGSbk5NersuCqRG2uVC1qZqwW7saOYILGydWHRIFcQW0gapyBxdDvGPpdpTuAo5tK06qJJhXvlzLjck4pT80WUOHUhjm9sPoecQpHKsYxJ95OB96XxCQFqc36NMbarwRSzhWIeNGcFacSKolAccnXnJ3PXAFlyoVkxmGCb98/8s3790zHA++OgffHjjdN0SpHBlVeReVeHaQNnfBoxsEqFdBaMXsdD3XwgCiSi38edM6gNGEGaby1Sidqj55pTE5RSy2zAKK2UB/n8fMsUcmp0pG0FuA7jE/mHXAc1HWeBYK5AN6zew4sQgheb0WTza1UOGzJNOkiPiBilIyLOljtt4GCRER7Yg9EIfZ3tVHgQK6Zkc0222yzzTb7sezGBnkQu45se0IXISgt9tr1/hLv+qFKyQacwe4KSKETgquezpHCXKNwXovQIq1dLdru6Spv+t3TwWsNzDhO4p1nxakusXOZRiVQrCNlOFbn0inZQqxMCBF3CGaOtkqtK1CnKamTSu7ue7ou0PeRNLkjejx6dF0a17zK7bai81YLMU1eF+EO7uSR8TJ5JDQGXr8ydvvCfl+zJipobIWiVutXCqmkGrUU+r5HUOSVUvIDOReeHseqmmXErvOMgHp3XkNq0zB3hHNuNRaeiTHziL3HzMfK63YHq5ihKK/fvGE3RLJ15BR5OiR36rQg8h6RhHEkl3cUOzKVg1/T2o+kOWRNfrVkqYpL3isgpUTJR48ugzuF9Z/3Cgnsd3u6buB+/8qBUPDPG8OjFENSgeDOZBAliHOjU20EOGanP6VUeHo6Mo4Tx+PIlNMsVdrqbEJwWlU/DPT94DQ6iTMHWLL3bXFqmBcpE6ArkSlFz5bkjFmVFo3RM2mqdMEzIcPQe4R/do793LWqHgmF169e8+bVa6IGByG0pMQCLKBxkzkFEyuc3jKC7k83QNG2ZycfmcH7dOTr8ZHfPL31egb1LKXFgPaB3W5P1MhQBqYRxtF49/6RNB44vDcsHZBy5Ol4JI6Z3SFzf5jYDQceR+H9YeQf3r7nd7//B/7w7Vt+dzgQpZAM/oufdnwlgVe5MKjSh47/9V/9jKcYebwfyE/emf1JWbJQVrCSCKHVZwldbIEOEMmoFGINZjiX1k/Y1XD9wTCNkZyV8VjvlapEZyVT8jiPeYiKFThm4/HxCSuZQ/eeGAN911VHX7CqGIcqu2E3A8E60eaeJU5n9NoukLmfxeFwJFVQEGNkGAavIyKQTMg5MBbBnvz51+17wrCjjz2xGzyTIYrZ0y2P980222yzzTb7znYTsBDtasTfQCIDYfZjWjG0hs4jiC6NAxSQqQKIUikHuTqgNbpsC+2nsT+0VhNrULo+OBvEqiMu7oC1HgUmsb7MO7QTelUHKxgmE6kkbErEXJWUzFyZpfYgEDEsiPepEHVFAjFCBPDoc0qlNs9a5G9F3TEIOVTaljGNVpuL1SZglshlIgQlBuMpHNzxLkao0pLz+dcszuyI4M6j1joWP+daA1CGeZ+t6toLSluBdQV2EpyWVry5m1Vuj9XagDJNlJTJU56bfQ19XyndgZzd6U7ZryNMhDKBJOBItieKTeTiKlzeKLHKDtd6F8tllnLNZWlCVpLXgbQKBi8jqGCoXpuUUqXDuIqXBu9AbMW8C3cxtNT1zbt7+/j53Ey5MCVjmgrjmJmm1nOlsYikZnSk9uhohbstE7Xm59siQyxenBYlemZOlRjrHDc/j67rZurUXO8sTQhAwfLi6pfm4RfEW7ot/WJqpF0alQnaWrO1Qv42h9oiS5SeeW5hS7O+ZWvGcRo5pIkxZyQIUrs3u4JZZkpHiia8c31AuoD2EbGOHHaUIp45k0IW7wJvU+JY4DB9zdvHJ37/x294fHpiSi7P+4enif8hPvHrV3cgsOuVLgSiGp8PPXd9x92u44/WMwZ4exQv6isVMEnNFtJkg/2MXBkNTIQiyedM647esh3UTvUtC1QFJyxXgYqcgNrHRT0rWxRCVlKqz4QpEVQY41TFK5yepDESpdViVCBRx33dc6IV+cegtW+KZ8RM/U5FAsUUzOt1JHSoVEW9sJv/hdgTun5uuino6VzYbLPNNttssx/BbgIWIQyEGOnpCV1B+1ZAvKJXqKfnXVUJvEBVyNMByFCO5JznAsZaCVEj1hBiqQCloCFC6NntdzXlv2NW2iHVtQuoYhL8+LRDtKt69Ynj4VuO03vy03uUA0ELu6EQo3khNbUTuGanMFTiiKi4nGyIlCJMyQtDj4cDqUbavceev+hLUXIW0iSMY+suPLkDb5kYCyFkcnpH3x857B4ZBm9SR5XNDTHS9bEW4UaasyS1V4KJEUOPxEDUnpRhnKzWagjgSk0u9cdMzTI7kstEtq5Sj4yUJ3KaePr2QDoemA6PYE5Dim+8ZgE6jqNnN7wh4RGxA5ofQROQyIxky0zFtfxTWjnupfLwkzdGa4pVDVjYlGfOf5GJxtlp2aSUJ2LoyNnY7/dIuCeW6rBiLnMMwFR59F5grrUuxZvcFaYJjqPxdMyVrtSanTkAadAmVKpT7Dq/HiHMzQmtOMCiFELJtV6oATnmuezKXX7VtKnyVKpZAySNYlOKK3ukNlhmkAsle/NDwSWVTeahqXQ/mUHRmvbUKF1rJalmMh8V80+ryKJgZDPeHZ54fzwwlkQnkSgui2q5kGzi/fTeaYWhJ3Z75/MPEWGgPL1izDuyJpIkgho5Fg7jCE9PpPd/5Ntv3/L3v/s9754OpCmTU+G37498c8z8bLfjKWe+vA+ErARRvnzosd1Auh84RCFME1/HyJjNnfrqoMOEkauKWXEw5j0pKbXuuahipVHUPIhhuGRsMc/0hRBc4coSOR2qIEOaQUeIQqjd46dRKRnev3sE82fIMPR0XWS339OZufpcnctWilcblcQ4jrX3z4iYz7GhV5dbDh1D74IX2ajPUc8cikQ0eiatiwNx95rYDXTDvTfyjHGmxMHSV2GzzTbbbLPNfiy7jQrV3RG6DokQijkDBWo9gQvZFVGMKhOaco38PTq/v0qMOo/feeMiioRGN1E09EvNQwUJGu/R0BO6/dx0zPIBKwmrHZhFlNj3iPYQBoq5k9dFZTwOjGHg6a0x5kee3r0lhAkNhaF38NBFwUgeNKawSNkWPHIvYB0a7ggaQaDrGjc+kMZCVO+nsOu9cPJwfGQajxyPj5TJe2owjoxy5L04p1+C8++H/Y5hN/Dw6qF29y6UlLDa2E8a31qyR8d1QLSj77wpnpmSiVUytDq5oqCBuNsjPfQ1ol+kOro50cc/cnx6y+H9HxEb6WLgsy++YNg9UIjV6fJC1WJHrLynlKPLruKqP8UUtYKZEsAdIrPaMM6j+N40r4AUvPN4lXqt9PKgYa6RMPPal1SMohmpPS8KMI2jZ5qsSchaLZD2upuWaUDU5WxjR9wpJWZ6kwr40tx8xqRJx1K7okulzjjQnVXSpeWCbNUAsMX9PeIvtag450wxY0xHmsxyKY4mrJS5Y7ZnDwpiXmws0uRwJ8o0zg0SpR0AVtEArahiphDCKlpvPr5mRsmt/qeqWrUAQGNh1SxMShPvHt/xeHh00YWSKVmrUpKrK3WxRcMjSHPGB3Z9xF5/Rs6BXFptUUI5kg/vyMcn3r//LY8FDqV4XQaGKUxWSCnx//77P/Lb9z0ihX/x+Wv+8lXgYUpoCAw58RfBZYj//fvEtylxGBOpeBG66Og0vRlcmN8njcJUC6DpIkFd4jonTxKVLIyjeFAgUbNrPkegIJG5B4jL2QpT7iiqSLcjDPuaiStkqbVbGjF0zlxKnRstq2S1l4zRUUzIRcmHyQv+gyEakBDpw1AbUA6gd6j2dN09Xezoup5+2NXgR7fQ5JZHMifIcrPNNttss81+BLuRChWQ0PvLM+ANmBtlpMm3opT6zySjecJm56tqv1urvWiN7boKTrzGIqjW4uaIaCTGAQ09sdt551kMS5M7AJN33RYtdMGLNgmh1hmw+GPFeOJbcgpMx4xKImhCihCDYF2ojllzVpyHXWKuDqAXgcZOUSKi0MVAEO9oLZWrXyu750yOIpSUam+HqipTO0AjyQt7e/OxkUA/eDTcz83pGK33RQiKSFoinJ0rN4XQYXjTvpxrzYcJ3vK4J2h02VjpfFy0Fdx6zwCPqI4okS4qd3f3hH6ozk+oQMtqb4tUG9RRqUeNysMSirdlzF2NqX4ga39YkFDHSalUriX5VYrXSpg55URDQo4jlFIjsQu9J4RYu5rr7FC5c+dj6rQUpeszIWdyaTQ9ZmpYo7s0VSBlUUGafbTZT6u8+BUtyWrHeGCWoh2PaaFAzY6lZ4VacW7rrRGiA5UiBcEBOXWbF3XaZenoORddVKpULa1onyzHK+0aLP03qAA8l1ylcKuSlzXqWqoBhJZVbL0+fECCRiR27HZ7ivWYRQoFswkrB2jPgm7Auh7pIzKNnkrQ2g3bCr95fGLKmZ98PbDrB+76nmFK9DESc+E+CFNQ7sU4mNc+OIB2ueMGLLxQuvi9VYfGWrZCDIJ4f5viWbWc4HhUUoY0NdUsnxPeX2DpnWI5VrDtqk+hF7pK8cwpo9Epi018wes1Kq1tBqFNqrr2rajzPmWvszGMqN6nJXQ7RHtEd2i4R8NA3z/QxeiSs11X5YU9a3aeoPghO7Zuttlmm2222SW7sYNSBLq5y3JUBwdIIMYdIpEiHY3xbI3CYxlKgpJI+eBOc5rm1vUxdl43IeL0C8EjjOLAQsPgnGIFNXfSp/wOm56YDu/QEJ3XPPSVRtTjgpBCpHfqSpmY+p5gHWWKlDwy5UKQTA5QshJroz0hzIpGrQeGRkV3PdJF+m7v0d/MfF4j78BAxQuxQZj6SEn3TA+vXO+/eHR2SrWfQSmYePF2F3uUyPEJzNzJK5ODJ6Qg5tHyYt5Uqx9Ghn1m9xDZ3Q1eAC5djU7n6gQGJO68oDP0xLD3TAyCtOsxwPFOedwX1BIhKA+vvqDIQGLAbI+ZX69UIjlHxsNY6wBqlJhCsdrJuDQalEHySK3X61enNzhFSAWIaXaQKd4vpORMqqpiWqVCTaOrOB0PpMkd8i4GmqJSKq7gpVUpzLFu8jGoEd0QPMtTagMyjxwb0zTVrEVt8lh7FGDuUJYEzUtvFSq5GN7fINRu7IUpTXjvCj+PnI2n91MFkVVyF8edpQsOEi1X2duJPrrogROdvJO1ValioVHbTvHN0g17BSxKpgi1xqZlLpyepRJmQFAZ/FCzOClNlKq8te+b8wtWHpmS089y7gna0Xf3XnOA1o7aRt/56Jg4SC5FyFlJHeS7nv1D5M23b3j47I7f/e3f8vj2PcfHRE6uxvSYM8enA/+Pv/2a3zxm/oevD/zv/lXgSzO+6nruHwZCDPyr4Z4uG/9Q3qKlyjSLZ33MHCmYFZKWhqMQjKyGJfWslHj/mpK98eLxWJiy4ErACgQH46rEHNGaOZVw545+vHc54DAgITowSyNp/Jacn5iOX0M6IvlI0IRKIQTzeRg7urDHJDKZ1z8VU6ZUM74IKfS1l8trYtzRD3cMw32lSvVzZq01WDy3tZLVZpttttlmm/2YdlvGotEuKpVBxOZuza0zsSILX7xFSOeKbAcHJWRKiDN1I9aO2R5t9dqJAjPY8O9aoaM7W96ZuqonGagJMU0EGYnaeSEuiogR1ShRuNtFOh1QG5ymkGWOHgc9pRI0J44acW7nGFUJZJdbLe2fd1ZsWQqzPNN8RANdNzj9ywyJRiiZrrj8puE0JwneJdhrQ2pWo67TKDHYwt+3opADkhQtkWgdQTqgNiyU4Bmfmu3xTFDwbFEZsemRkg+k8RtyfvSIbxCnpYUO0Z6gO7DeC8RLIjPVWgrAEmKTO5NmNZNRVaGs0XCaQ+5gidpgbem4XikxZjWZI6TJHS2IiESvn6FJq1oFTDVKKx4HLpWaZMVqx2WZr5sjA48WtzoHqxQaq8pdVKlgITqoFCc6CV7Qb1XFTLLPZ6cX1eLfKkeci7lCWG3SJ2L0Q72e7dDraIg4195yrgAlUUqHFY9iF3NJVy+AXxomtnm4JCl8w65Q1u5RlgLlCuaWca+A06uU6+pGyiPH6cDT8ZHD8ZHRxpmuBYYGb75mGULwcbICJVgFsgHRA0ZVNzNvhim5EGxEJBF7g/sI5YHx6Q19H3mr70ljYhonptGP9ZAzf/f4hFH4i9/v+cWYCd2OoY9Ejfx0f89jgc8OB745jhyz3xOtD0VOY1WQm+b6HTOrzn2a+0aYuXqT0WO6r0XPrROtEnRpuqkaHWiEoQpYDITQV6EKl4rOsTBKJE+R46SU4mICJas3wJxSzYYJXbdDFCwEB/yxZ9jvHAxKRKpEbt/vicEb3nVV7SnMvUrqQ2r1bG7P03/MREXU6M/fK+3mztsIRb2j+TU2jwnXd+sOtXt4JJIbAP/oOq3RaMcQhqvWUYR93H9SZskz5dd35W1k5XLluLW1PN94wzWqwgG3WcuA3mZWn9K37KUxI27az5zdvh6xG951+9vxm6uWz5b567d/w19/+xveHY5XH1fXRfRVvxL1uM5iiPzFF2/QK7tOf/Hla+4f9sQrlwfcV1LhJ3f3DPE6V/O+63g9PPBv/vBbvj1eNw5fPx345pt37O8GhnD9PZEt080NVK+z0N8x5sTrYbpq+WLG6/5Ap4FdvO65ICI8dHfcdXv28Q69cr6aGWMZ2dn+quWhedrfv92WsajOht/QtYu1FG8E1RxFa4WoVbtdXCNfQgcGMdQIqi0a6ypUidZEyo1RYzNtxtVzasfc6lD5Q9IdcCM7pWkanRKkHYEwFzHH4Geqdz25ywzhjnHEezPUDIBqKzavYKhF0htfxJkbTlMoTskp05EmSBOsRhsrBcJ9au/OG7oeqvzt3JhOlUyL5PvypcDhMM7OeWZVD2HO27dKocA6rEQsBULpsdIj0tfIvVSnJxDigISAqDe2wzKk96TjH0jTO54OX8/F1CEMLlkbOiTuCOEOsw4y5BLII4wlMo5g5Qj2WOVxzSPFxSPwa4rQLKpE9nEtVZ2nnrsrTjWFMKGUAZGIhMGPWYXWCNCsNTOUWXLWr05Z6FZBa+G504xypW9ZrZYWab1OPLLtTRwd3Jn27tg1J0SWl7Fz7htVZp4SYK2/RAC1Wivh9Rr+kJNK09FKDSuk0aWJ0zjh0rMTJe2wKn1cCkxTmbvRz2UjwpyRmQu0Z3DRgH9tzjirf5U5zVF8eFw9anUuUzpyOD7y/vEtj8dHRpschDb53+CZodJDCBkrEEMihhGNT75MrOdqIMV7nlBc0SxgaCd0IbAbXmFp4t3dHgzGpyPjQXlfvJh7Kplfv3/iHw4H+j7wL54mPts/8JNhx0MUfnH/mlEivz5MPI2PHCwxFcWyq4/lMZDzxHEq9ZnSmmWCkGujyno/hIEwvGJ/9wWx39MNe6d7ilORvO9MIKhnM7uq8OXPixp5sFxpT0I0JYlSjl43MUnLaBnj2J6Hxn6fCTESeiF2O/rujvvXX3kAIO6ckydKjO7guqjEGjDY6lVT4erKsfjHzFhE7W4DFrc4rfj9kS1f7RyaNLDlFLir9iOtD5DUzPV1FgkMYWAXdlfv5z7ez07/tdYc6lvGGaiBuOscIoAiGUFv2k+ogRl34K+z5iMUu97JaQGpJQDyw9ncweqGG6tQOORHfvv026uWzyXz3/z9v+Wvv/mG9++ul4keuo7XD3f08XoHOcbA0Hf89OdfXr3Oz9+84su7O++7daU1Rsp//MXPr3aqv9i/4Wd3P+WY/p/8+t11oOztOPL3//AN9/c7+iuBRTGvixu6/upjCxJ46O7JVsjl+h5BU0l0GtnHu6vXeeju6bSjC9ffe8UKUx5J4YZ7/KZAw/V2IxXKTWu0zAtZcSUbWpflxEkjrtpPoak+qXgBL6xegEJ1YvxwSo0wi3qRKDTnyqrku6BxIBjEvhYLi1LEOwgzHQGPSLpzNQFeq2AxEPodXVC0DFiVpRVr2K1K2gYvIO/6O1dh6e/mIs50eFs53qk2plOyDFjtJaEhumMWoh+HCaVKuTqVIaDRFWjMFgfIzIj75GcflJadKWmsdBbzcxIlxj0ahkqV2LsDNF8hqc6T/7SaPaEUSk7kNHGYjkzTyDEJKTvFqUw90Tr0IMReCYNnPUIUhruIdIHh7hXH8Q05jUzjE9P05L9P7yl5ckWjcsQsebO82iTQm+oVKGMtuvcO6V68WqeiBGL04w4YJgkpRgge6UWUKRdygZTdiW3ZkTa3VGvRrs9OzKT28ciUqtJVSqa0nh41Ih9UKWnypm6hA+lAAtnCDP5apDjESimS1pm7Ru7Nj631SnGuf51fCHO/AnP6z9PTkxd6lwlVZdgN3N29xtSL7m1ZhYZmak5wKcNufRCqgMKcrZiBQ54pQVRaFLV2pM2V4zTx7jDy7nHi8ZhIJaPqACnWpoGxc8DSMgOTPHn0uLT7Ud0pV++ADQolzCcQu6bSJTB8xk5f82X/Jfkwkp5Gvv7tbzg8veft49cOdoD/7vfv+f1j5v2x8J8+jfzVV5/zk1/t+GL3iv/0L7+gv0/8fjS+zrVzeDbGx69J0xE9vqvHWrOCIrMoRAiBGHtC3DHsXjHsXhGi103M11hinVMGZYQykqdHSp7I00gi1yxclZZOIymN5Jz9+qtSNHp1hfaEsHfALBHi3httBJ9j1nq3xEjsu1nyWOd6lnZNL0VNX3J25APf/XDWaU+n/XUL18z3LeaZ8uuj4kEDvfU103FllgOj1/5mh9Wd/UiU65wBEWEXdv58uWEcsrlaXJTrX99Ru0/KCkhjIVw5Firq2fJbdmLmdVm3zIUfCT2bGakFQW/Yp2F02vPF8MVVy2fL/Cdf/XPeDNcBEXDn+HAYeXo8cDhe70wexqkKS5SrMxa7GPl8t+cv7r4gXJllfD088Kq751+++ZcMV4Lth+6Bh+4Nb/o3/OHwh6vW+bvH3/J/u7vjr9684bPh1VXr7OLAL1/9nCH0V2cYBeWhu79q2bW1QEDQ67MpLSN57bgB7MKOTjt6vX6dLIerl73FPglYzI25Zo2mmoaXXJ25SpUyH9SCzcWLekbbcABQ/9ZaGA1YrW9wrrevM/PnZwfbaQk2c0RqgzhzOhFzFqXqxtdlCDWyXwJFrKVI6sPQi4rd+e8I/Z4QB0L34GdqhumIFcEUTLyg02RXQYVr2GsFFl74aWh0ad4Qu6p1HxwtloKUhFbqE8HpNBrjTGuxPIFVwFU7GWvoq559R4h9BT0LUlseGHVwi18Hd8ZdwtKkA7X64vDuyhIiJrVGpUphtkh4x65mQjpSnqqG/h05TUi4o5SJnI5oPnhzwHyoQDNXQDGREpQ01kgudXzC3Ptk3qeK19QE8eaKKmio88kMy9JYaLPLFdSq4pShWhsZIDUb4n1IWn+CNFWqDEIohqmr9agWtNSeIkJ1NoHWNV2FGLtl26k1uytzlq0VP2dLnkmxRqxy/n7JXmQ8pTQ3Y5uqApKDR+b9U8/tkpOzdjal3gNSOVeNBtTWn+/bRo+aN6Lk4n1KxixMScml1qooUAv4vd6p1k4kakYEcspeJxQCoasAozp+QgDz7tJSeqyefxwC2glhMOyYKPuRckzErmPMT1WuyTikzB+ejvy7b97y+R/uUQ3sPv8c7iKf3d/x1YMgo5BTYDQhFSNqR5qOSHe/CnBU+tDcjdsBRow9fb+n7+9c2rplK/HO9H6/1yaXNpLLI+SRkg7k4vPaxGunck4us2w1xaSepXWgV4G+uDR1iD1Bg2ctws5rNdR7tITaUHEew/kSnjo1z4LvJ9//44CKtu+rHVgRuDFK3e6l246mZs2vXK9Q6LSbs1O37CtovNrhFxGnMwk3RethceBvWf5mClALiNwEsNa5tB82k/BjmGcqPp0uEvW6uaDmTuvr/oGH/jpgbmb0fWQaAzJeDyy8Dxc3PSI8axt51d9dfU5v+td8PnzG58MXVzvIg+64jw98MXx59fwuGL96/Zqv9p/xqr/O8XdA0bMLe/orswKCfvJzAbg5UBEk3BQ86LQjSLyJXnotzepW+yRgUV+VhJmjMbNDmBOHldrTvvGeDw1e1PV0FZGrflTovGjaaUS+fo09Ay26X8g5kqlyqrWxWdc1jnRVm8ktI+COaLYBk46sHZmqJNMYJS0aLIKquRPZRTTuIQxYePAzMaN0PRYyMlD50K4vL+J87MZdWdSwILZ8SPUUzAwtThtSnBpmltHiEWUNXeV9K2HeTnNymxLMaeS5eRu+SJ0wZlhOHr1V3EnUB7SPdDHR7yugazQPEVrRvGhXgQUghaBeED/07rjMDeOKMVnrOF4L83NhmsZKs5o4Pn7DeHjP10+/ZpzekcZHpDbw8+ixd73uBiV2Qj8o+/uerlf6QTGbyHnkeJxq0a2RRiMlV/YBBxMhJIIW+t6890DQ6lhAaWo9xUjZazoMQZKhZK9N0UDXR2IPsWv9RVwNbOgHuhjpux4zyKnw9PSWnB00SQXCOSspZ45PiWlMpCkj5t9Fjd6kb8pMY20UWDLHcURUvPO5KrFz5THEYXmjZ53OqmqW5+tfql+7ZC5m0a1KK7R5vtcf3g8lKVO+Y8xKzpmojQayo5RISpHjsTZibBwtM1JyHqzEnt3dK/rhnmH/us7fvhbqBzT2qHhRdIg7z4SF6GppOfHZZ3/B+29+z/7fR2x8okwHDk8Hjinxr7/+mq+niZ/87g/8bw/GL372E/7ZP9/xH79+zXvtkffKU4k8WYSHz7BipDmkYfMzyrMAtZaqKtO5yLHXnOQ81s8LIRfEMjk9kcdvmcZ3pOldBRATU5qcslifHN7IzouxkR6JShd1Fp7ourta59R57xuNdLojBJ9fXd9V1TenkjRcKQ0jiNYIf4N0tlzDZ9Y+/WH4s5ttttlmm232kt1YYyHzP6l/z52JZzJ95R+bnETVtEZ+10lfsdOCOv+1gQ2rzeUS2VJViqrN30K31C2EShGpUd7ZAasRe7PaITsUpMpThlKVquaC8Hou9fiDZrzLdVW9qo6/iFM9Qr93NCLMVAZpgKJup8XVbI4eNvLKEk30Yk1D8Ei901TauQR0lRFC1pkiYYkMrgZZVh2e6yD739UdrVkmAkT6mimo3X7DGhA16lpYbV9rQ7WlcHQuYFb/3LMcxYFXMYbsBd3FCtOwZxyf0BA5PH3LeHxPTgcHk8H55CEK/eBd0bu+0Pe1kWHtcK4IdJEsIEWx4D07ihpYQcQlWkvxTt9YYy87JcrBqgB+vVpdQhAHIa6ypMQ+0PWB2CvdIIQAXRTv1i4upVqqklJOj6RU6V34tksJ3ogvhap6BFZ8TiUp5OR1OM0h9QJgV5IaDxOTZnKHM6nOYiMNVCxRtKW4e/l+cUo943fuYNbIOq4OJdoRugfuXv8CGZzO01fKUIj72uXZAbSXdpT5X84eKdPYs9vd0fU7+v7O7xON9f5ZgKtW8N1AmJgHB+4++4rQd6TxPYdvf8/47huiKn2aKMcjjznxd4/v+H/9+j/wd4cn/jBN/PQvf0V3/5rP9AERYzIwUe+OXYMSSNPjovLs3TVvQQfDeeSYeadty2CJVCl70/SOaXokTU9+vUsm5Vy73kOrh0CaKltE444oAbQjhAHVjq7buypUBRcuj9zPzfr8GJipW0WlUhuX62/SAgcthLP8DjL3lmnlN3/+8eLNNttss83+3OzGjEV9Cc6hNE4caf/dqQ+cUXHmJl5zn+PlR90MCw/dv7TinH2zEVMl6M6j6PSELiDm5BIruabU3YVwydmwOMq2ckzB6SJVCndWiqgpaV9jApu8jmKOzE9exNqKsefzkZmKNVO7Vufm6jxtGFoWYQEJzaqQ0UxnWhzEM/dg9hwqqFhnLFYLnYALhFbtLGLeg0Q6IHo9Q/DIvPelqLz5th7MlKFV8Ldu2ylDftw6F0rWlZZLbEbaPTBNI10/8Pj+G56e3jEe34JlRApdhBiNvs8ETYQwEmNG1RY2tQIheqasRNplb1Q3D6J7k8OWLZOWCqtOv4OL6C0+zFXNYqiU99qIMMZAHJSuE/rOv4sBB5p4z4KcJ9J0YJrek5MXsHvxuWLWed1NCvVfoeSWqnY1slKj0KICpl5rkozjIbELhdJ7sam0MW/YvV0EmydY9SL19Pq02VPBesv4NZri3LOlyjNrVO5f/5wwJVIq7PodMURCv5+bsMVK7XFFNs9OWUmAEGJH3+/oYluu0XlkfZvP83kJKHiPif2bL+h3OyhH3gbhvRkEGMcjRYy3hwNvj0cefzvym/fv+eP7A/9Z3PHlV/D6sx0TgXcYhZpV0cXpbvv0eeo1KZaaIlf2LAbUzJ7T5XJ6ouSRcXzHlI4ut5xzLYCFnJVcBJXozw6NTmmSjhD2XvwdBu/Box19v/dsjXYVoMkyRqssZpu3amB6+ow4H8P1/aU+qHU6tJqj5+tuttlmm2222Q9pt3Xenhtk4c4bi4NscxR9oTCtchPYrKFfucxVBtO/LvMLtLVcK6V4kWQ6cDy+RVVJQ6LbOW3GI4TUbP9MeJg9sFktQmpU2wxak7raU8IzBFoVYroZeOS8FBc3/71IjYLKXLrhheJ136rqzv45DljT3D/0opfZ5Vp/eLZQc0Ceb/KDm9ZGoGlrCASt2YKW3VGnr+EU91MStyzX6tmxtezVkqM5cSRrVkv6nth19LueV2++cErJdPSf6Uia3pPTkenwNWN+9FoNSYhmus5czScIAXfknLLUISGSjhMlJfIxY1mwYuRkrvffA7U3geUeCAiR3SCEaPS71mPAvKGbZcxGhImSlTwN5EkZi5Im776ckjnlK0+kPFZFKq1ZG+fT+0yu0ewwMN8tEugGj2yLeD3A+PSe43hgnIR+eEXhFYR7z5DNtJhSs0W6GmMfbwfkZ0XZsuS1mMH8Ik27aLvhdMIY+OqLnzJOhSklr98RpeurzGkTJJCWiTy9v1tdwCmsqcH8Og9O2FvzJPaAQEawbuD+y18S+gf2n/2cr//Dv4Gnd3yhkVfDjpQT3x6O/OHpid//9d/yh6cjP//iC/6L/+w/Z797zavuFd+WSKk5GqVl1XQGydmAImSaYpfLGwuCSUeRTJFE0o5CpnT3SMyEUtCaEehlySSqhlnpzWlM6tKwEnwe1Oeeis+JpaGhrcYCZnGOGTza3BhzCcqs77wq981y2WcZWlmexZttttlmm232Y9onZCyWqPsSFZfm45w6oJbnaHlzZBZHtG2yfVqdp/mL2uCtUgwKkM270y5Mc4/2NfnSOesxv7xrZNdskSNt0qXgjh+VhiDN+Wg85lrYPW+r8qdtoSTMY7D22T8gaTh/81IRz4XPF2HJ58jkZLer6OyMZZYd1k9PYtn+U3UeT6OClvmkPmZnxyMrCsYJP8edYy+O9n4apRRyHMglMU1HUoik6QA5k6RmT2wEcuWyNwGAStGSAbRHpaOzHRom73I+gWUhavKshCrg2Rl0j+AOfegMDYbqhIhHr62oU4OsUsqKea8R8y7U02iUDCk1RSqlWFwyBqjTy3C1H5FAiDUr0VXpVvXiXacX9UzHJ4QIVbWl339ON9wT+ztmRbTWOZsmirByIGvmY30NhEr5kWU22HyzrmFfBRtWZsnkUPtqULJvLJnTxix7jxMJrlhW65poTvbK+Z0xQxNFOJvXC9i2eRkqVS3EHf3+NaIdu3ffMMWBYynE8RGZjgyxcLTMOGX+4e23iMA3X/+R/DoQX++xojVvWZ8LpjMQ8n1WMFbv99YB27+r9KzaxwArRO1qlqfU45YZLMxS2uKZu/Z89IafWsHEGvqfBw0uaDydXyIuc5oWBTBW4LMCufrFP6bs7GabbbbZZv/jtNsa5NHecfLshYjh0VBb9P6XwslI5SbMW5K6FaluvDRFnZmTHQldgLCjk50XY0skWw9lqaHwVaryTHUgXI2qHmOBnL3bsn8baJ2xUamynkrBpWnBMBXvxiydq7vUgmY/tnAmZLKudfiYM15Hb7XY9/HyP41kXmOyZBKqU+VUHhbnqW3tqo0uJ7Fu1LXsbf3T6SMWXHrXrNDHPaV/RcmJY/8ZKY9M04EpTzUz4MXROY9kSz7iGpFuQLuBh7sdUCA9kg9/pIzvUHmPaEFjgbAD7VB5jUqPMJDKSLFEyu8YxwM5FSz7eHSxc319ERKRXIQpCzl50zNp5fTq8rZNz9VK8H+6cwAVBvraTG0Y7jzqXxueedFuz9PTO7755u85PHk/iK9+9isedh13+4CFgzfxaV2lW5ZQxNWqbIl+O08/cCom1ZzSOq9nCWirQA8ft/GAHUby2yN5cmWvlAtmQg67ueNz6PZelL3bo12PdB1a5YGpIL1RIl0My2WUobBE3mVBH/PPpprlcs3D3Y7hDrrhFe++/QO//Zt/w/j1b8jpW17vAqlL7LqJb57e8fgPT/zr//7f8uUvE1/cPZCTkiwQtIBabcSoVRGuDYwS4rAAmzkH4IejGHGWCfbvlzyPVF+/ZWBstR2rMZaVuMLJPWTrW+XC3dP+9muaz0pj1vfVOh/VCvUXYOG0vvzDSJRvttlmm2222Yt2Y8YieyfjE5qF1aLB1m1bqHqZngmYY+PLi7qBChX/u/VWpkak/U3pUpVIRze4GpHVxlXUegi3hULkNI9Tqa16KHPUdP5/K7SuxbycfO+0IEKjavkyulpi3veK/jHT3mVpePQses9qmE44QxeGW073dckpOdnuC7+ffzA3+arbdN/OzkDFyhGrRH852dwZeFh9qavC+ZN9O+/GN201NyRe46ECFpQQxDuO50Suil7O5V81XqwelDfQC5gIZpk0DowGSXpK7mlFymKdO93hHtGBoANqXrgc0htyHMnpSM5PtOLd0ua4dq5WFZXQ2dy1208mO11F1WV4pUOkJ8Z7VF3O1KVzlRi7mariNBklhsh+7zKq+VVCRLl7+JwhmAsI2MEpezTqnnl9iQpza/rqkotVqV2WYu7zjtwn2SS/dREzpnTg8PSed99+zZSrPHDt4zEKKBOTjYQyer2FHYhlR8eOPjyAxWXOm2GtqZi1rIXPoUvT3Ud57sqxCi5A3D1wJ4GvRPnjbsf7r/+eP/z2b7BUIGUMmIrxb3/7W57u3qBfHbD+vqqpFUyawhzPkzXnE9dO/5zHtYGK9nxosZIlXbtkMGeKU/v79I5c7neZPzs7mNXnH0b0S6ZydV0x70MpDkqmtKUsNttss802+3HtJmDhRdC5OqZAe+1amTMViHijuJoVWJZrcb8FWDRwoRWciIcLK3VB3bkT1wY3aQXiq0jgbEvhNCwgwhpFRc/0etdUqdmBXh9pOIUna+oGy+K2Or8GFub9Loc2/734LHIxU/EcDDxf6KIW8joQKheioucZBGmym0v0+KShZjuPE//nubMzZ0pWx3TCgGLlz9kyG2Ynrm1VFAkVGHZhXqn2nvNjqw7q3IK+XjaR2nCuJEZRByESKGMEK5iUWsgfEL1DQ+/dyPFeFCF4rUSOE1M6uLpTHueT0eCZqkCoKmWFUrxhoXdyduAQ4p4QBoLu6Pr7Kisa5/EIq870DQ54BiPSdbu6OyV0OzomVI6uLyDmwKJR+hAwPS3yr/VKUoHayRRZyQPN/m/9v4jfujlPjOMTh6dvSNnBknb3SBCyFMcw5lkttUSuAgAhCmb3zEkRGkBdgQhbDmN9x7RypJbhgLy41fUG025HHzteDwNP6cjR4PF3v4EyEnKhmIOZ33zzLcO7R744TtggaKj1LTNIPr0F7GRH6yzA6W+yWl/OF1pQWu0d0s5rCaNclZ443fEHbXmutU3ZfE3LfKMtC6TzlMdmm2222Wab/cB2G7AoLtEq7c1cpUTNvLuyO2KdO/Pi4OL8Bb/m+mstrPTuzDCHz2FxlFbrzq6oNXiyOrbVEos1oLE+jnOTk60/P+nz7dkKHq1dpecZCDlffV7uuaN/RZDyZVvt6GObmR3PqubkkXD/rpwc96X8x2nFx/m3JzmN82zF6js7+7l83mLEvnxznkO9dD5MsZ7HcjzFAmYdXdez2z9gxZvO1UD56rxlBapqlsrmPtVzVqCpi1Xk4mNTMyeYd56mZn2ChtoHpHVMbpz9Rgmr8/jE0/bjDmG5N8yR1ywMUEzJ5iIGhTSPb+uoTuX3z179mibTxqqFs205f780hkq9EwMu0yxGSolsSujv2L36KXH3Ct29dunY2gnUsyPUc1Yf+1z7hNTu8X68fhBS1ao+HjtXbwBZr0ObMgIMYeDnP/1nfPHZX1CK8s3f/y2//9v/H2K1Udj+gbG/573u2VVVukWM9wq7/PCYr9XzBZdlrf1+lQ9//qT5PjMKy13VfitbwmKzzTbbbLMf2W4DFhUwtEZtJoXWV7tlK4p0CLFu2pVQ5pqGFVRQEbKLQzpQKVKj2jio0DyvI+JR7NMA47kLvY4Urj+Ss2Vffqm38vLVCfPinzb3JV2oEKcbe7brl97zl9tcvewSnWRkLiw+i1OdbXZpgHfq5BvLub0YaT33vuR0qVPRqAb+qsNesxWnLtp6e3a2wVXE+GwY1uBlvqLSaHDeh8LMCHE+gNMsStukLLUxS6B3BaDW44mrirVOzlaaGk8DElLrfJaxtYpqZAYXp+M4F1834NwG0MDwWo5SxG+LspLNreu1v0VW/bebSpk1lbJ15mAVYV/dCq5YpN5pPvSo9uz2b9jt3xB3r6B/cBBR/2vHKDRA7N3u56RSA/2yulYNOK9tTZ9cX6TqqVuTY6sfhzjQI7z54idYHjm++wfEMqqBu9c/Yf/6S6TbYY2G92y+ro7BluvwITud0vbyd/Nxnm/zciDju9qlx81608Kzw/3RLNzQEXrdwvC6FdbZpevGsc3vSDyVw/7IcYVVgf4t+2kA/Np1onY+Djd0d9aqYhau7IAMTr/0eXH7xLh2rNuytywPq3fOjcf23e+k62zuGXTlXIBlPvQ6XLV8ofBmeMMhH/liv79uHTOGXc84JvQwXn1tcy5zEOjadYIIQ+h5M7ym0+s6VX+1+4ovdl9wF+8JV3aQjnXbD92rqzt8iwj/0ed/xav+gT5c17W808h9vGcXd1efjyDs4t77i90wF1on7Fvu8WLF50/or76fovYECVU05Dq7tRv4tXZb8bZ0EHY0fR5CfYHPDkyVlRWnnvg6wlzUOTuM3oZdagMzMe/ebBlCKIhUUdoa+dW6XWyJqrutnIeVE3Xi8K5qIC6bO6SLrv/qKM9We34PNnBxefvOkPjIjXuOd15cbHU81zwLTgdh+bkCJY2y0hrfncY8ZeUrtav70rGuenfYpauwjNTJ+az+Woe17dn3z9eYQ8WynNaFLT47jvW2bL3DtVd2upPVFk5D7y1zt3aNbIV+2zWb8e1qB60moYGRdT9tI5KBVJSEUNRcFlhkJevazmIN2VbKRbWWZbkebb/+u1UlptZ4MsaBYf+G0N3z5vOf0d9/ifZ7inZ1+fng6nmuRshW86k1xqzSu2sQc+o7GFjCLCFkf7YQWAISy3gUiveJ6AM//cX/hPv9wC64gpzGjtdf/pL9w+d0959hovV6tPyHj4XjzpptsTYQLnO9BAxa9GI9Cc4Ayvzp2smFRkE8uUUv3K/ruXQ6L76byclAt3vix3K9FosSiVc6EQAT1zu7tdoIWF7W11hXFddusdbM8RYAI+ItTW9xQJ3UeBuwKOaKbcr1YzA7Nzd0Yy9VA1luOCdtimo32amIwrX2Y83uZF7/diUuhRlkRl73r69ao1jhVw+/ZB92fHN8WxuYftz+/ZuvweDdu6drD47DcVo9r6/bzy5GXg/3/NXDr6523n+2/wWf9V/4fXTjs+jz4aurl/2s/5Ih7KoPeD04NYwo3fXAQoRd2Ffn/fo5HsQbBydLVx/XMR9QUfbh/ur9DGFXgxrXj/VRjlcve4vdVrytA+jgTj7yPNDsCy3OdqNbrE7Ui7D9d6lN6ihaI5/V2QFaIz3/PcwOAtQU/5Vj582iPrzwyc111bbX3uLLCy91H2cbvRjdPPny8mezQ/TSsnbyA5bzF2ofkvp5seZ4Pd/aiZ916RBtcVoWyGFnZ7kGQk69AXeOW0HvpXLe0zP60PieAZeTP+VCdut0s/Nxnz9Yz7YzfyBnn1/AT/b8QD5gywaazHLVR6O5UMkKqRRMl80uVK61612hnVUakQolpxkWOfQw5JkjYoi5CtYw7Ll/Jd7UrQuIjZCM2kwBh/frppPtxeQ0SJudEIAeL5aK1Yv3BpNeGD8hJMwm0vTOpW0tE6M3ldNwBxJ9X8TaBFPmIEOv8Or+nv5nf0kRBe3Yv/6KEHdzG0B/4nidhSGeDZ2vW531tS6ikul4fkE//BA4mV7tk1V90/PvL//947v+P6ydP1M+Zpeyki8v65mHInr1fWYCkVj3dP1oCyA3OA8tuyGn1XwfWWk5ppuBRV3/luPzJ+71V2cmpd4yDie9rm6ZCbftB5Yxv9X83Xfl/KnXpfW8us4WoBjlOqcVgTf9ZwD81au/vPr4/hc/+Zq/GQan/l453sfjyHGaFmGNK+zr45Hfvf8Db6e37Mp1GZVxOFZWyg/bT0dEiBLZd/urx7tlkwrl6nHzAEC+OUhh1de6FowYsAt7r7m8ISspVfr9lvvoluzGLXZjxiJiEqEBi7Mo2dpsfihdkKZdLWOtWtscOJSq0W9QaSTUF/bawWs3xCokeO74ffxsFvbFOc3B5OyZ3c5l7QqsnH0uLbuc5ZIGWWgrC03ko0d5upAtY3u64Nk5+InMu1gK7lkyFWsfSuYrdnpYJ+N86dhOPri8bP28ZY+eQ63Zaz7583SOrdepv8np6vPprLw6s9Pr0SLsstrSiV3qQyKtRkJOl5nD9evrs4z56S+rzcn6wJuTuyzvdQrFaywuwK+T9e0UwLZDKqWc7Fvk+ai3P1WUEAKxi74xS1Uha/SpK96vQrV11HZpZrOClAnv8TCxRDYLEOvL2MAKJT+BTcCI4PLBafoW75qeETmC9U6BtJq1kA4PVATWFVddhHi/J6Oggb4PddwmaIpU9ZkwV+pYy+zY/J1fWlkVXNuMCD7+BJGTazzPj9XUEC64B9eHPVd7WqbaxS//pOxWaHHhOfKCKUIRQU+kyz92NEYLSN0ELOZn1W3r3EQFkgqabx6vW0fY7TzI9/H9KB/OyV8+thMK5FXH9Sn3xKeBinmfN2TJVitdv/16aNc6bobR68Au7HnVP1y3jhlf7t5wTCN/fbe7ep3drj/5+xo7pMS76cCYp6vPKZuLnZjYTfPuU6wBhWuzpaqRfbgjWSKXazMJhfETCtcWN+t6YCoSaoe1G0BCff/ekk35k6BCoS2SuC6EPgMOZ8d5wRWfP59J2SLeL2Ju/NViK9UNt1JVoVa9Mb7XiXrudL207QvO2bPfz7xdlj9PAuhXncItEZznr5uZMqN6cmO3YZ9XOz/Q1YcL+Lq82HK25xs6dYdN1mK9zcnTC8uuccX5IJ0z5+XCN5ee/8/H8Za4nWOHs4fjGvx8aIsfCUvPjR7NKU6t87xQKq3I6RVNfU1qP4vTbesCLpp61Pxub46z/3PQLA48zEumS5mwfOTp8e+ZsmcgVAW0FYsrqoGu27uKVT/Ugm/ByhGzREkT1IaWJnvMAmaBXI6UMnE8vAMSIgnF91Fs8nNWhTxhFij21vvOlOrS1ALwYq4O1mSHxZL/FMHyPRoGVPeYerbE0No9PBLDgNeGdZicCkoIXijv/Pt11PjGF8gL3t7Jx88egB/e3KW/P8Wh3GyzzTbbbLMfy27sY8Hi7L3kcK69zWqnkZJ1eFkWx4hWgOtOkUfU29+1E7KUFYe9Ra2ee23Xo7AWzb7k/V3a7urzhc81f3ZOx3nZq5QzlHFpsTkR/YHjX5m1A7QTb6ZF0Rafs+rp29mycrYxWZ1jO5ZVLc2Jx3SSVVgrR60VtM52IutczOn4LXW2Z3PJlu08H9kPjTdz5uLksq1OYdnCOeKqgMJYdvFCd/Wlu/z5TbF8dmluWtuPFdRGrIxQDlgYvQahzc9WQF6Wy+P3DbV2oEXpL8WHGp92BbLECwBzSd6UMD0y5YRqwSSgphje3NJMybmARVQTIYYqtZv8mEK9jyRTGDETShbERsQSIUx4o7x2/wtilXurSzE64suIVJokVZja2nwq+ACYN7EEpAjK5GOXI4bijLBA0IDFHd7gsscq6BCpXcS1q/UdusxcWWedXrr/nnVyqRdlve5yW57MzPVcumBzQODiNFoB6Gsfc5ttttlmm232I9ltqlCwsHqaM7h2xS5So06dnNnxElirSbkTsXCd8wp/zAWhZJZsibHGA/YRN+Di+ZyjopeAynzsL25pteTLzu2zT1fg6jm2uYDOzr46ywnMv61PY3bYWEDFyWkXzi/XauPViT/hYl46Nzv51S4s1sa6gczzrTwHZRf2IKvzO9/var21apadLzkXXK/XKSvMICffLHDhdBzmv1dL+zG2M5zhAjM4WeOktdfYJG4tI/k9lCPFDpgcMFlJMeOZBqm0NZ0b5Lnii7R6mpNrLyuQDrWz3rzrIkYqE2M+MKb35JKIAio9aEDUaPK5JWcwRdKEao/G3kEBAmFRfss21YxIgZIQKUjn97loJOfKazVPqasKhLXCVs3jWC3V1XqNigOXFnhohajJCpKPhBLIxc815YLWtHDf36Eaga4+c5SgPRp6LN4j4QGhB/pngZJ2Lz2/919ABjMoWKnGsVz3Nd2qgetLdIS23/M7pVFLZwj7ASrDP0bx9mabbbbZZv/jthuBhTsOZQYVK/sIr+s0Y3H6uvX/N5nIUr9ZNPprUNPV6c1laE08MmkWltrM1da49NEn8gguuq+zX/FSdPrKl/p5gPwT7ZSocxY1rbzA8rH6QLtwPLNnvs6svHCwz8b3edZFXl77k+1jl/UURHzYXo5Pf3iZ530/6r/W48WSy6Na8r+lYCrM0DyPUCby9C3ZRpIdGXuhF0XEi+W8OZ/7rkFbV+lVv4yVpKqGMNOIWt4or5RXlqi4sNsNvHr9wM9+/hNyKd6GRpuSRwXyxlwcFjR6t3RvO74MSh0YpapDRcW6gBUjW6m1I0bQUuV7bcHWumxnpkfhhXiqSh/l2Qy3BpqtBhna+VmtManmyruJXEZyyr7vMCDsCCETkUrRqseYM1qfcio9pgHTMD/3vF6DCtpWN9UVz5fzMEu7FrfKgK6fMp/4WNtss80222yz791upEKdymL6R6sX5VURsuVV2JzOZYuLd9Iix61HQevS7V82+LGqubDnuz91Bhcn5KOH94Jd8JuXxQ0WVZgbX/dzINxOUMv1RYDz/5b9XswYnH54UhdhZ07/Ou3wgVNpTtH5kZ5e1QvnYSc/Lnz5kczIB+x2rfbVnLywqjuxvtw8ymtKyurI/PuafSsTLqmakTICCcrkNB+Kd/6TBkCOUBKU95hNGCPuWHcnx2e1ruB0LFra6cJVkPOo+elygncA7/uO/X5PmpvT1SDCwktcba9eW2t5GjnZdU2U0CRnTYAifs9W1SppAgIs0fd1wnN+NlQVLNVaa1KbAraO3dbuaTOwshxbaUXbBqLeaNAKqgWKoUHqP9BgiBbvuk7CyoTh6h+iBayD0mS0Wy+fNhtWz8MVyFnHHF5+LLZ17cI15fS58MLaJ8+4sx1tGYvNNttss81+bLsZWLz02UsvsdMY45n3YWsCk+Ic7FCXrt5JdTIcXGRnRQC0mKLQCFWLc/+9x8RP7eIevmNW5HTjt5+DnP1xEhdtdRU3bWXlfMolZ/27j/FHz/KKXVw33B/e0FVZlBV6OKW2LJk8WgFweYJyhPQt5CcoB0p6qhmL7OVBImjXg7jaMmQQQzuPlkeULgSihNqhvu5tfRw1U5Fzdsd7bg7nXbBVbdZGELxnxbqfTAObqoGgPSIdIi1q77LO2QqleLdxpzfZ7OgHVYKoF3I3WVptgQBX6liDB7/fhRhctlZa7ZSZy+O2GpLlCJGWEZj7S7hOvoh6KqJu28SwitX8odAoYAJVKSQiIAHRwLD7DA07NNz5Xsw4Hp/I+ZFU3nuGSaCTAU0RtUDUHWgP8TWFQDvSc7nq+Rb+0Fy6xlbIYctKbLbZZptt9udgNxdvt8D3KZD4ALiwC3/MkUmZMwhO43CI0Iqk56LN+oItEmp0b3GQmnb99+XXX20nnvvp5y85qZc6Zl+m2FxwdS9s9Dz/sHy2HMRSFnC2zYsHeRlY+J8Nvp3t9QXAcfr56TK2lr7lhWs3e2ayUrD69Kts6xDyvLkPw4mXOpufb8lnYK6FykckfwN2xOwdIgnTTAkZy4kxjzW7JsRYN1pcH9sokDNFXGQ2S6Bo8IyQtAj5xzJusppnzOu2I20ymqcZrCXq7usIpSYBmkPvYMVBx1RcNcqbQLXCa5kBRmMotd4lALlRn4pVEFJHrgKWnFOlelWJQrMZoLRzF5wWJeIgSnSpy2hTvuiaAub7CCGgGomhRzSCdMR4X3936VwRb0LYdR2wh3oMZsY4HSnTBLwjhIH+zpBwR9CBVNo5rrKVdkqMW/5oKOGl+/D5fPyoFOfZvXRxt5ttttlmm232I9nNxduX7JqU+4svuTMq1boIuf0s5hkLM1Apq++rY8Fzhvvz/T/vdHspiv/RM/nQud7wJn+26PrgnhUYr5e5cIzrBfX0EG1BgjwHLM9BwcUeGbP7vwIsFw7s4ponzvniAJ5ch5MN2rO//f/1ep8clS2+Wj2CW9gfNoPaj3cg/VAE2kdtQsojUt4h+Y9gI2ZPIIKpc/GzFSabmNMI5kXXWCGXTLFCScl7Vyjk0M/O/AIY/D4oZe5dd3I+a1FfX7Zmq2YH9HlfmfMZYavf23VvjnouhSlNM0Up+AD6vkNAtDXw862usyhWjLICOqWYU5RyJmWnjOX6s5RTUOFHImgFL541iZ6pCaFmbIQYOv9drKpNKZ1GNA50/T2ifVWC2gGtXiwjQAiK0BNCpBQHUsfjE2N6ZDy8hZKJ3UDoA1EDKh1SH6Hz9PnIPFqebh8GybfS+RqmObEb7oXNNttss802+z7stozFR6Pcn2qnEXY4jb/b7Ik2R6B2ERbmv5pDetkxXm9zdcRXBIBfONrnH1Tn7ZPDhB/lBX3c1tChVAfUzr77Pg9hPdbzEHzs4K44hku/n3/2HB79Y3hRDfRkLD0h6Vskfc1+OCJaSAjFvOmjWsCCoTHSusonS7MnX6pnqOrfm2TGnBhVyWaorcHh6gjMahR/AaO6ul98mQonZLlKs0IYRrZMqbK2Wmu11bSVLWC1UVYISi4ZmRQrNkf0zSBjkLPXpdc6DAcfICq0DRerPSrMSClTiv/LFUCVgtd1YNTa9gUKCUgxpNaBqGQHEzEgtZg8WiFooI8DUXpC19PvPiPGHbG/93MxIZcw3x9lduIjol7LJYJTyUSRGAh3d6TxCTEhpYSoN/pzW/f1ObMXPq7KwKvrtIZ0m2222WabbfbnabfXWDwrELx6zfmXU8pLc4hOXdOF/XIpSi4nP5tjeTFqd8FO93/23Zqa9QF7EVxcWnZFTXl5A5c+XJ/n0hrwknPt+1l9VsP+VqP4z9ZZyb+u6RQfc24uZSra58uxPacQXcq+yNkXdmELyzw4X475HE+O71k4Xp59+PzaXu/QXYwkVwe8ZMNSIQSrBcF1380vFtDg/RLM7AwM+O8Rz8rlFcVnceBl3k471/XvMyivYGN9gAvzqW1jyX6YeTYltzqK9XxtIgoIGhzMR4s1++A9NQyDsvS1FqkZBQlzgz3RMG8zVwCB5pn6FEpxMFwyrRFmy3Ush73KaNZaDxEhxEqLCupZDAmE2BO6gRAHQtihYaijKydzy+pDw2u6KhUTAzUwIRJBhpolAYoRSqhiWK2zuJ1NszPYe+nhJ+3HBUWoWzDyd6AH/imYX9Erj128keQt3cvb1m/qiM0Cjm8xqe9HvWU/FVjqDbtqUg03day2ZRSuXW+587n6Rf8pHZbXx3Tt+pdoxR8zw2u4SlV/u3adS79/9PjmZ/714yYIQxi4i3dXrVPMeD3c83565H7oVwGSD9vQd6TkMubXjsOYE4eUmMpELDd03v6RnksqXnsX9MrO2/XtoizNez9mn9o//Pbu9e05olfPn2XNf4wA63O7CVh8Z5WRT3H6zx3/FZhoX52rqP5QQ/sB7FDte0g7PNtj+/UUXFxaco57lnXfcm6c1p9wbPN+rrVLZ3EKoj62vedbeGFkblaIut5aDYMZpBI5Tj3jsef9ONIF46EH1YxocakBMaQLLJm1Rt0yQqUWDeryyVmMvhRU1ClDAuHsHFst0skxFZuLw5u1F87c2Z72vYAVci5MY+J4OLgqlArCqq9EU2WqHbgdHLWXkm8wl5aHEYI6oIjaEUPvzn6IIIKhlNpfvGVpqOBm2Wad5w1DYKvzWaRlnRbptDHfNgTxgvIo0YvLQ6gF2pGcZb4v5p9zVkTweouC1Wul5rK+0QZKHLB+5wgyZ4zo4LAdr12ogBHm+5azz5/7xn/eAKHZ6ZPnCrvBgW/T/dYnmWfP9KZnoIp+grpc3d8PrMblMs0V2F9phQbYy9XjMGvN3TB2Uh28W6yN863rATeBhGKZsRxv3gfcCOLw55lKIMr1LlYMHVEjP7v7+dXrFMu8GV7zh8O7q4HFN28f/Rl+w/z++v0TxeDb8VvGMn58BeCYDxTLH1/wgt0ytwE67RjCnl3Y37SeihKrrPk1xzSVsd5/1x+fWQFRwrVzQYQo0e8lrr8nPuX++aHsZipU0LMJ+TFfur5Xr46RzI7Phe2c2UXywOp45lf1efi7OXRy6XHRHK7zj2v85uRzW1b5kJ1EMlvkaPXRCyarnb08futl2nGvN/rhXETLGjw7jIvj3aK9i9Dm5eNaDfgL123ZRbtYdjZOZ3HfVcHrHKXn06MIz47nmbO3nl1y9vPCMhIQ3SH6iuOUmNKElUQMRpBCyUc/WsHpNap0fe8RdxWwXAuj8zzOCUgKE4VgihVZJNCKzVN1LmBG5tk1q0GJQGmOujvlrYleAcoKNEhVeJq3WR0y8JoOsVIdmsUx96xBoO8GNPRI6GoNQ0DFswetmJp6vZrgwqxQtdoeyCkWPCugl9VnUsdzHe7VGv/0uZlJOVPSI2Lqew4BxPtStE2VWjie0kjJmZLyKnMJKRVSLrXGS+g6p0yJyur10o5p/Vc97FV09cNzdZnYM0x5YYXnj6fnmY9/knKz54XxHzOp0fBbHZz59ropzujz/CZcdXvkvTnT5YaIcKmR+lLS1fvJlJsDM8GyB0NuAj2lOuIfoBSeWaNaFstXj53hzUDbM+na/WgVeLh6JMxV6lQCUftr10JF6bTnTf/51fsZ9yMqgZ/f/02V4P/YKsbDw+/JOfPTL99cPb9/9vDAV3cP/OzupwxhuGqd+/hwvTN9Zre81TvpeNV9RifXAYRPNc8o7esz6Pr7Ilv+5NDuLWCh3RN/CnbTVa+BwdlxuWZoW5Tp0ovw9O8X1v8eBqo5z6u/ePbXzBd6wYk8o6EsCGY5sw9PnecR+ReX/JRzXo2xrc5jDmrL8t35GZ448B/YxbNo7Pzh2gFvjvYVD7nV/+fg7nyMcvXxGFeM2YWXz/xCktU4zYudeLfM47l2ElfOnEjwwuBwz3R8qhqyQpeNoJl88MZ4qgYa0RAIwdOdqjq/XKfSOmMLQb3XfGsuV0P6y+mEdjzVBZoVn5bjOzn/+s/Vlpza09SdVGo2wkodj/U2l+wMWM2IVVNfpos9sb8ndjuMAecKnUc6F9njRfZ2TU1a/T0vt/zvWaxBGkhaO+QGFMwSObsSF+mImBBQpBvQ2IEMtBbeOSVynpjGI3lKpHGarzciTFNmmhJGIITI/i4SovfBOOUfrlZbzaAPOT7nL6gmwfvRp+uF6f6n8FK5lXJ0K53nZmrFauyvXreCl1vpUEEC1OjktdaocLeclzeaLDdFg4tlCsXBwpWWS6qg7IbraQURJVu6+oycipkIEq8eb6lUkVvAj9eTJaIIwa68RiKEqkZ5NYARgwqU4pXUnMXi1VF3A970n5Fs4vPd66uBxeth4Lif+Nn9Q220+nH75asv+en9F3y++5z+SrC0j3cECZ/kUt/yLAsSubt5nG83EaGX64Fis1QmvzY30vbgTysLcYvdpgpVmKOfH4u9wWpy/IB0lE+2s0joioT+6XYpXLnscLXABxf8DtYct2cu2LPfPuVMZybs7IXDaaahLXjd+V0z4rJa7gebRe3daecj9fE9eh2FPwAG3dH1PcNuwCxheeJ4fMvj8T3f/PFITkdKOhDkSFD4yZeF3d3A/f1+vqeKFUQKqkrt2V0zC75EsdYRWtzBlwJNYnV19K0QWs9oUa1ew+sD/LMYlaHrGPqOYF5j0aKHrcEetMsq2Nz4TkA6RCIx7jxjQaxdtUsd2ub4Kza/zI25MWC7uuc4jrNnjDUAufq+Zjrm5nLmTkrJiePhPcfHPzA+/ZHx8AeETAzK3f1PGXafcffwM0yUqRhv3z1yOCYOx8kLy4sRY0Q10HUDqKCDEELnNSOxX0lyfQzQni+yBojPXxp/io/KzTbbbLPNNrvWboR5tYj0JDJ9+cV6gjjPCmi/a2Tt+4rMXfSHbe3GXorlf2TfLT2yzpCsopjtt5cjVJ92bpe2Jutvz6NOq4ruW3yZk22uPzyLsi78/xfAzvMq6xd2KBevxofMLsy1S3PmhD5ycRCu2HPNrqgoplYj6D3FIkU7YoFigW53QKcjWZ+gjJhkphyIuR5DzRyItXP2yHUpkFuyQVcHuZYkPvfPbYmunRd1g0u8tuLuBlJCcEqWFcV0UXXyn8w/6xoelRWhWKhzKVPyCCVTWm8H8WJqkzXwEVoDSJNKzWqnswYPZ2O8XAJZBQJWC7SBsFaQrhgBk0gysFLIJRHGJ0R7uvEAGirjXAgaiV30dQuEGBENaOzmYw8aK10selD6o8+hVXaJS3Pwpbv244B8s80222yzzf4U7TZgsXJYPv5Svd7+FFL4p3YliHjJrgjYn6cHvz9n4QKA+PASH93EM1vzqc65H8/WlXNcebqpa47ne7CX9jFTT5q/e2KXskxnX6/JH+IZBK9DAotCjDuG/RuG/oGcJtLxwPH4jpSeGO3JgQfQBSWESgUyKBkohWLCmCDP1O0FUFScMGchbOWZL8Di9KS8+Zxvod13UYQ+BDoNGJnMWkDVUMQD9C37MKs9BVLy3hY5PVVVqdbt2yP8dHdoGNAQfIBrJmQG1guLaca+J93BV+N8ioRX37eLVzciqKtC7V4RQkCyZ4qm9MhhHCn2jqB/RGOPxB1Dv2cYeh7kjsJSN2Hz1H4ufyDIGVi/PMGff7qaaC9mNuvPP7XH4mabbbbZZpt9xG6jQn0HAPASePgUUPExJ/w7vY9PfIVZF+MDy6+zN2291WonTKHFUZWTFVYymh+0K5aR56DlQ8sum7T1r35dznYnl/yoVYdsj5hfjtI6uPgE+GSNerc+jpezEB/ax4KFmgd7Ru2aF2gX7Qz8Xdi2zFdSqs9YszRtLIKgGgj7e0pOpH5A+54pHSnTOxKFt4+FGCZECtiIiPdS6LuABJiKkkwookuPCpP5fpwVYsr5mBileFO5Nl5znUSb2wZiBbHC0+N7r/EIwR3yWhRuIk6rqtQfUaOU7Fzq0oINibldBbiiRQA4QvEGgA5IOs8E1EZ3bRRL+2nrArR1vcXKuW8Yop4760JREdQUDT2xU/ZlYD/0lDyRykgQpziF2GosGlgCCX791Fbgok0XO50ey5ft99OFPsyZbzfeByMPz+ITtvpus80222yzzf4U7UZVKDnzLqvzuXYub7RLfSM+CDY+4ud/rzyB8+D/Wcyy7fDZ8crpr2tZzuff1yj16vNLVJ5r6RHVrT09XlsN2vnYPQM/H9nJi2NvcAZGnhfor/7+EABYZTg+9XJK29AlW48vLUL+spTvh3dyltNYA02qM25K6KAEl10tomjqGUXAEmNOpKKITVgeEYVQVYdUlCkrubjTrdquqs73gqsN+dibrOfccxDWxrZlN6RKpooZ03hkLIZ2Aejn+gyTWtNBnVOl/iZSJQ49U9Mwj4rWR0XGmDAzb6wnESgE6aF4l26Ws8FYgAk1k+TbXI3n6hxnPf8Z17crqASFiGJEuq6n1O7mbUvehqJQUp6fa6qt8J35nngG0k8m5nq+X56pH5yHtz7HPvbs22yzzTbbbLN/ZPtEYLF6of6Jveg+9XA+HOX/vgg7l7z6tVv63VHR900t+hiseemor5fz+/j3xm2j8+lz4PmeX1KBWmyJJy/HGZ4fq4AGkBC46wanLqXXnsVIE8fxPSmNpOkdZZooZeKQI0MEHTK7IOx7iLW2wb19OM9QNZWkZ6pQZ9/PR2zukIsV0jgy5YxlZdhBjBEhrDxt/+ndsZ32RN2extbnQgghVsc+ABPCRMkGBErqIN6hGim5w2V6FUKcazjm4z7hplWC1Op813OjZTLaOqU27CsmxBiXK2ULGDEg94ZZYAZqLQGSSpXVvXTPvmTfzz3c7PuMkWy22WabbbbZj2GfoNF1GgG15Y3+0bKLc3WaT7ILq932Ol9cEbFVlH3tpVxc/vz31RJzxPT8gE67/M5R/ZNY6Grndrb6as1GnXju/K5j7i/Bo/MDPLcVg1xOPj49hBfXXS8n8+9Lse/ZccASxbXnh3U+NW4BCmsVo/P9XoxAr4/rJFN0uufZWcfrAy5lJ9z3vny06xJ0rR6yxVj7RrhTm+NADB2lJEpOxCioGlmPFMmcNOU5v051Gmt1zE//rcZGlussZhQpqEJU6KKSKCTAahH2ySnWOo5SijfEq126vReHA5V2/mZVBrJd5ixIy2qUA2aBko4OKDQS9M7VrVTb3bm6atCoRjo/Q6TWixgljeTsY4Z5Z/NiQjFvDih1uxoi81y3pVO4q1V5KsdMmBUsW2bnfNacB1XWWYv5u+fkRjn/4yWMerbGj9W9drPNNttss82+q93eebs5XI1asfr/zdt6wS5y2T9Ao7Gz3y9u+9wzMKdMzGHMZ8us993WWRZa6/svC17i78iqKHX5/6lPcgoJ5r9mSc4aVb54bEvW4wO44fyg1l+sscAzs7PFPpaJeOaAXZCjPVUMWy3+QXqUnIzZS0t+XPX5pZxOOftGns2zBg7miHmlmK0dv1Mn8LwbR2uiVf8MAVUlhEg/eBYDc4fd/2XEEpn3FHlP4bBkDRRCLVSei4zrVDgHFSLLmC/N9FpQoKCaiBF2QyBLIacCVbaVuWi7dduGVIycSwUWIKpYBi0Omqxkp0nptGQTCCDRwUVOGEJKBqFDYk/oO7zbdy2GX9EHZ1pXgxwrUGolMz09Mh4PjMcn3w9CMiEXIRvEfofGjm7YoRrn7fi1q437Wm0MBYqDkw+78/LxaMYHbxVZUidnn7+AL+Zz/oTH7WabbbbZZpv9KPbDdxXZ7Jmd5yo+tvTLKRU5+/npkc3vOyb6DOzx4/hDP5zf9TxXtP7dnn1xfsYfBk3tp5kRRFxFySJCpMeQMFLsgBUwbXBGnvmlTSHqHAC+RI2i7ivkyHQUHt8bXz9O3N8pXa/0gwOfGCKtX8TERFGnQkmonbmtYClTrND1kRACUaPXRxtY9qZ1yRJpKvO+u3hP3/X0MSAhkCV4RsQK4+GJNCXG47FFDNjt9oTodRPHpwPHw4Hf/fbvOBwOHA9H+uGeEHpit/MO4KFjpzsCEQ2Ddz2vzfuWKyMnP1+eRD/wDL6Uxdhss80222yzPyO7TRXKVi7ux7IKy1rtW/4phds+TuV67kqf5hXOHL8Xt3EJVFwCF7eaXPxzOS+ZP7tWZeois8PWtQct5v/CPGhJggsO1sXxOWlyuM74fGjND83R9aZXtKj1vlbR8vU2Bbzj6tlV9jFY/loP7/lx05z/VXbG82oRkVAb01mlXM0H9uy8zo/dKVxn+6qrCl6YrRLAOkouHI/ZezpIQENEpCNaD+rAxylGhWIFLd6VNqWJPLUsixKjO/BWi7BzKljNxFhJAIQQ0FCwIo6WTMFcgSpl43CcmMaJ4+OBlqkQ6YhFETHGyThOxtOxcDwaxxEIgSgBsR6lJ0gH0gMRs8giZavPL+N6HK1dz/bn6orIMnb1qj5b/ezXeZsnv8/pK1sSpycZvsv36Ga3m9k1fYkXKxTU9OoxbxTJ65+W38Vsfq5ev0aVpF4rqF21TrlpnSI+hYuVqyl8uXjAwW/J60ZP0ZpfLFfTqmf1vBO59I/baa78ujW+k4LmlQcnQNBIpz1d6K4ehyEEYgzsu454Zefth37PQ3dPrz1Ru6vWUSfmXrXsP20TFL83rrZ1A6o/Q/ukjMWnwYOXou7/lGx9fnLy6XcHAz98OPOUYvRyxcY12zn/3RV8rrj2cvl++vSczA3j9sKiN76Hnq9fN262/uu6bIaPWqg1A+50izYVJX915wKq/vDyAuql+R3gHbqrM6LqDr0/t3y/aoEocLf/Ke9Swp4S75PwWISYA7uhZ88eLUIpmW+//YacEjknokLJmcMhcXw6Mk0jd7ueYRh4eOjR6MXmxydIyUhTdiUmIPbC/Wvh1ZvI69IROi/mHlNmmgpf/7ECiyNoUFQDk0W6LjJMkVQeyHLHw1d33Nd6i64fUI2E0KMIQaRmKE6g1/zz2SX/UKbi+7r9PgaaL032P5tH5q25ydsH9SaXujrg2dLV65kZ2RIqgSDh6l1F7dCzp+iHbRmnYvnq/WTLmBWypavXSWUiWybZdLUDmixRrCD5cPV+WnDxkJ6uHu+xjIx5pNPuatEPRYmtYeUN801F0S54IOUKE/y6FisUuRJgzVnj65z2Z8d3w3qvu8/otOeXD7+46roaxl+++neICP/zL/8ZUa8bh//os3/JT/Y/5cvdX6BXEI4BhrAj6EaKiRoxs/psuM5GO/6AR/TD2ycXb1+SRPWb6Xs5rmd2SZb2xWUvffghP66+Cz/J3ZfzDZ+/WK8FFBe817VM7KXvOfv+Znt+PC8qH9nlvTyj3Mw/L2QBTnZ5+v18Fi+cxjV5h3m5Z5mMZwN7YU05+/iFvMfZqvNxP08GPP8py4ILvDj3Hl+anMtPEb/PtNUj1Mh3o0aZ2dy7YgmFM0dBrKzgY/WDBOH+/oFXorxBsfpyCwFiDITOqVCihd0+kkumFC/GLqUg/UjcjeSc6btAFzvCMCDBjzlqQnMhZs9cAIQu0O32EO6ZckfGZWpzUcwi3XCPxkLsCyIOmLp+IGjACF4EH4xd38bNaoZFEQnI/F9L1qydvvXz63KSQOaL+pxytjzo6j1/CX3aepmzXZ8se5YCWS27zjT9ORRx3+oYXSjB+uDCc9T5SnMqXrktSCJLtPWWMc8lYRJuWkdoimU3XluRGge9zoIEECHndPWLLpdMKteDl2aG8Zgfr75Ox3zkkA7cd/dXA7mokUhEuX6+iQiddETtrnZ42zzQmwCMZ56vdcC/i6koUSI/3f/06jn0Lz77JffdP/DF7rOrgVyn3ZzBujbyPme1PwFg/VOzS33BPmQq4c8nlnTBbgYWM63ixe+fMy7m7+rP733Aznf4wR18AEFcdWAfOovbAcWabnG61Gme4/t0KWa/5sKwGQtYOMcAz/MNayf5ux/T+udySV8agedj+txlvPDliUNpF75/vu21O/rMH3xhufXfi395STlt9bqqF+U5sKs1AQ0jVZzRwMXJoZj5fuoRtPt13Ym7XKi3UBEeHh6Y+oGn/o5ioW43sR5ZM+Mu3M+1HKm4073DKLlQzAjalKIUapRPd2eDIRBCfWGrkkpwR17A5XqVft/NIyQnI7WABYVa/7G+jwTwAuzFQbf5miwfLt775R417aw/pHh3BiouTdc16nw20c8X/vO2W4FF60VyrbUs3S30HAdtcqpe/AFrHeZblu/KPZCYcFhxbTRc5uf/rTPAYcUNDptGsLyC2h+3UrMitwC55ky+G9+Rr1zvkJ94Pz2iEuiudPilZiKjxqvnW5DgtCHp6OQ6Os8sgnEjML0+z/XdLUjkL/Y/vXr5f/Hmn/Gqv+ez4c3V5xUkkEsiW0LsuvHOkihtzv1QEec/I7tlDMKPOoO+f/sRqVB/wvZJJ/NDjsKHtnvuwVxnL9ItPnmrLzv2F7+9RU3q2j1Ldeo4V9JpEeAPQuCPbP159qABhdbMTc5+noKK5/u+tkHgUljcnA4hmzvfZs3Rl+X8ZOGCFzMo2elQsxO7ONBWDLNMjK6eJNU7F4E+FvpcCOqN6Hwfca6tamclujhc/byLhj5XTrgsUX8fn7qeLI640F7edamGeOXUbVqUuM5RbjsyXUHxBYYsUbxLwMHWG7rw3fl6l2x1Hc/lhy/ZetJcY/+kHrSbbbbZZpv9U7cfmAD3PJV8/p587rqdLjn7KCdFs81x/JQjqpu5IVJ4Knd57nBc9hJOGVLrqJScfN9kLS9t+dlxz5SzT/M2nsf8n7tdp87ZywfUzuU00H96/W4CF1a31rBCHRU5kfBdjna5jmsh3uZAf8hR9N/l5LOzqP/5uvMmzp3ItrVlO89n1AuxcLlwxS+iP1d/Kii5NaurYKo55evzamdndmHcTGjcE6tRdqkARYBOIao51apuhwvbb9fp9JyMU93b1T5Pxqk8P9ETUNE+Ohv7tvuWUp7ByRqsSTu61Xz+8H16fhbQLnMDMs++PjugU/rnfGYCa0D3oV0++7oBOflzID9tttn/n70/25IcWbYEsS2iCpi5R0RmnuFOVdVsFrsemlxc/P9/4AN/oLlYtbqrb93h3HNyCHc3g6oIH0R0AAxmDvOIjIg8FxLLw8wAnaCqAGTLuNNOO+3U6FcEFtclv9voGiOwbPfziPTu19RtlWguy5cx08XZmy19ZlXi1chMn5nW2Ppb5ebl12stWcfLVpbfL/tquHIbUHy91ddpHbisXCPNfygCMgZMOkL0o4MGQk29DXTbyqT/lrtuPosErYAji5utMAEcwER4iMBxMjV+XkzlGvS6EBnMLueSa2689q37elF+caxVp25cpeGmN2qigKXafrlHbphr6K19u9RRbaT+1q/Vd/iw00477bTTXwfdDSy2MVatlAkYN9S6FG/bx+o71yWvPWexleO7JiW8o+6NA9frXVxHAxhXW6GezV2zvS/tbOj/1nHVWT9rPdTzVaPQN3KdyVpb+3k41LnuoDR524rT66w6RC0doq31Hj6YzewtAKGrWqEL35PFeK6P9Do1/wHX1pQZozZzrJbILbvvAVDTul3qXNRaIOpD25Y57jdid4+6H0ZkYAjAyBknicil1dk0aw2l2MBZPXUD/5Y9VgzJFmcXAGTZ9GLI6wcaymgfND/Z19CrA35F03B1PN3BG6HE6vVdu9Br9bogGTvttNNOO+30LdJn1VisOqfUd/cWJrwxMlaXLqsRLV7M92oO7qfbTjdbwcU6gKAN47+U3r+NsbjGFm+lLkhOExDjeiSwYrlys80iW+6jN63xZHRlBi62iC6AT2m/VaiuCc55XvJp9Oqe/ZTdtoyoNkvVpp7NurPBIWKoMgTBmPo+ItEMPLRRGV9bpPp9nYXEvoAEBSITIisGFkzu5O29uDPrOlDser3YmlrNougq8OhBa39sfZ8vHKm139XLe+ltq3Trfp8x9Yvu7Hbozl8JgnDxY6W/X+9pttNOO+20006/Hn0bQYZ/k2/RzzHot5gjLU03ttW/Xer1sxc80VcUmn5K1w1U0OzYLDHg7POKwumTxnApnicIAAE0IQAIbvOjICQwRAMSIrJGZEWNymTanQ5s+7kSbpb8Avvs3gAQQjOjUrVYO4EyRiY8hoyzKNKWi15ODi1Pbqm0VlZBHn5229zPdRGbatB94URv0Rro/U0+1nbaaaeddtrpE+jLAYsr3FkTJK9zKLdlxreZgreEOHutztyJ/L42qn34ikR+3SDj8zA9r4aUe20qaR5hpzeLaetEldG9pFsmXLdCeV4ZK4CLxBHz4S4qLPYVNQt8AJ5/ZSHJ7z6X8O8t8vDLvC8z46KqAio5HtqcwxJSg0xj4XoWAxaLC+6znBdH7arq0ZY4z7Ub1AEOVQWTIJC6A3e7wGKsNaNOaeIdzid+zVyO2liWwG3pDF+0LEut12U+iXKZLa/7Ur11/X68DLt7jeYBHPpr6DPLXwKMa/f58tw9d/p6rpn1cjvttNNOO+30JenrayxWmUCa//wm6Q0v7Z4jXVpC/Ep205uZi42i4VvD3Lpc9EpA+atRO6n7cs/eoLnfxTrQujTJ6oP69FLoe+TwbQi0AmCsgqqFiVUVSPK8DyCX2BMQBMQMJvN7KGZoWsBIqVF9KQAVMTMrJvTZAmpc9gIqqM0IkyIEwSEoiBVulTW7vgsGut6yDdyU41S1Lt5HH8npImxs3x619pZ4hhYgrfa1uLkcVN0C1Z/2eGnPqs+h97h3LFvBxU477bTTTjt9SXoTsLjOrK4YAayJeuetNRxBi0Kr780mHyyy8rk8+srYbkrkm9z9ZqH+89pYV+ZmKVwnrM9hL820ptZsTFbGuJTid2MzwfX84q+un9dbsG1tzPCETtp3RT5/OpOyXzS85BN1frw/SwvhN1Q7d5s+oVxjpK9cjH8oaG2tZs1cbtReOXVN8tw395ph21Ir0jLVE4giFAHUJXuyREQEMAEkUBogGpE1Q5FsEZQgbOngpCSvJLKs3JU5d0ad2KqU0aqPiYwBD1BEBsZBECcFMyomKdCs+sSgHWvLuD5T5Vw1x3IgUjV4XbtluACgvV9SByhWEziWPdifKSDxQpGmfbXZWGfbZKll0jL4We+oCfTU7tkedF3etT7v3Ywtr3vZ9zVau4+bZgXXboyddtppp512+tXokzUWazzqJmftRcVrzO764QWj3P3/Gl3pZUMtZwVmzDtaZKKeJ6G5wcRFyter0viuVs1K1hq/nCOdfdMrc9pHn+kZtWvjuDzVINxaPCXj39ZYt8tL7H1552yXzgr2ZkpLjcPcbOa6TFor6Olmthv8mhaiB1VrsO4mXZg73SqqlVm1osF6DF2/ReLv50EC0QBRgkDBnoxO1SM11bmqg3AGni6uRxzUaAcu2LpHDLAkeSh7ara526p1l1jvjTK3y3uiv0vnt1AzfVqbp74PWlml2UabAzfba3Ow0G+AWY+LPTHvr+zDJs7oYUnd0mU+a/2LqwFweQ1rdNH3Pec6TdtfK92VCblW2ljnjZqgBry31e+B+lvonhno3mB30z2aMfV/WQWieVOdkq1bIXfPxz2ZxGvZImj5K6J7srBHHjCGEUyMy3Dc10lR/Pru3w9bl3U332z01vv1W6Cvbwr1zVPPdt6m1yTW8zZv9eNmMSJQVQSOIMbKw3DOts15LFqU6zmeBQN1Y6Rz5ptmTVeJO83L32adqDHUs3J08X/pq+VteMtLeAsjN+M8Xy39ao/3PBwXCI0KwCiMrBbQyFBEJAzISACdQCXbNNHFeGcmT8yLMWl18gaRv2cZLBbG9jhYsrxAcNOrFUZ8Zfjz/luJlvDwPrrmzkSLzy8tmL/UWXTgYoaarozsrVv5r5CYtjM2hQxI38g/siyrCqI+xMFtKvdDkgkJaVs/UJzyMyINiDxsqsMgBAqbys7GV56SvP31HWAM/IleNjPvWTNO+YRJps39TDJhkoQ/vfwJotvW6OfzL/jx/AvGMOIYjpvqBIoIY8DAA+LGeQgUMfCIkUcMPG6q81ugyBHfjb/bXP5//eF/xY/nHzHJeXOdSSac5YyX/LJ5zwYyDXzceK8CnluJAhjLd9a/L3rLc+FboruAxTKOujF9S+fb9c0wkzn/Cvtl2eSFb++1l/lVTcni+GqDl1/X2NJLpv/aWGaNoLxCZqFYsZzvZY8987+Uri7KUn/28nouwcflq3ktwlH/03jKS9awFz5fttlqqxZIc6EWWig+eiluNxyXWl/dezMktAINaYPkYGGis/x+WXwxH7dMC2d7i5ARPZ9F77twxw2lF1/QZKfWaiA1fwtS5Hp/02r05/l1rHSn8/Vsl+V78cb8usKmX1nrZrGYNy9/gRlL2Nx5WNgb9V9peAku2oGVG7z3i1j6pOBOQLqBfgvY5V5pOAAIBLqRaTVJuAIq2+eDCKSKrHmz1F2hmGQCMSHoNqYgEyFrNn+qOwFWC/iwjQSKLAlnOW2e83M+4ZzPOMt5c51JJiTNOMt5M7A4y4QkGepai61EIBzCEZG2sTFEjIFH8G+caVujewD6Q3iHcIh4yc+b1/UpP2HK57ueUaKCLMmEonc8ZM3kersm6lunEnXxrjquxX+L4OVboE/SWCwDwbRNdw1c9D+ub5qZycObhNS05DVvDeu1xkCVu1myONfa79n8xoDMTJJuaB+Mm2IQCYpKwN1rZ1pcXTDCZYhtFS5Bx7UNfjk1ayBifnSLn0iz6V8UWuH01+akXW9r5RK2zfm0C0k3ARcp96o/QmlhvplXsfI1AfRWENHtoWX411K2SsPruqMmwxOFhZxFhAgjsNY2bZ6alkIA8MJZvEXtajoiKhClMF6kiCSIJAiQbszzyGCvXf9s7rtQviUR4OrpWaNrh7q1bhNVx3DzJTm7VdpaL7UPays5d7pfv7f7srdo64u5F+Lc7ah9+zH8TVE1ldhSVhUCQZIJW18MooKsCXdNhtraJp28r239nLNJgLcyA6QMoWjP+o3La7ejtZ90mzYFqkiakDXhY/q4GZA8pSd8nD5ikrSZ4U+SXdNxhsgddTaWLcRkTNcYjjjwNi0HAQh3aHn+Wund8AEP+g7HvF17NaYRv0y/3KVJEM1IOgGy/blXngfjXxH4MxOy7WZ+xeSMiMD029Ss3Z95e9Vh8BWp4ayBe3v8ukR3v6WXuoPrLV7tkzwpGs3Dg663ahtwxmth/tpdgxPbGRzuer1z8bjPr/Cp8tNVTtM+rjGq14a7GMvNG576L59DBnyrjdIHLY628KuTDDhLRBZFAEBsn6V2H0K29FZ8KOyAzFU61LRiqgILapsxIGPgjJdcfDTuowvseGuKV1FcV5XQMV5vXIOVMbxJZuF306sz8ht7zu2000477bTT56A3w/elWVR3Zkvlq+0t25pL57fU+TRaM2fpwcUtBvnS0h1YSsK94ZsqDyqhMjtp8Xq5taOX36shFM1Bza35o9n/l7DiYv2dcWvM5IJBXBksVR66n/P1kZTrmJ9p0u/ZPinHQJ2WaE3Podd53s+9t+aTV7/q7GSvlSlz3gONZgol0mnAoKtrdGmGpsXqqR3ppQL+wRAEEjDNnaorSLl1mZ0moGk42vV1K921el1v0G8R6jfYxTD6DPCXK1qUeytPkXk/rzxn+utZkzLfMg2cj0cvy9+gaw7b/57tkHfaaaeddvr2aNcLdnTPS7qXLc+NI/SSudvcIjowUVqfA4vr0t3r9iRV6tuVWkq2ays3gNOlLH0+jLWcdTPNCbXxdGjHz13tdt5J3+o6Fp11ugQOHUS8WuazUuOKje7sqGNjoWBkjUgakBQY2eatN7yoIWfRQAOJgLi4el8xhSMCiMEKDKoYgmBgNe55EQntHqo9UrfuN65yWXf+3Roxv5v7TCeuNqzzr/Srboaddtppp512+uumzxZudqvj6lIKXmmF+9sqXb92XhfnXpMS3s7PYRzHMrpOP0iDALe0LB1I6Jns2fmeyV6yVjo7Pzf5mbe3JiO+dL69ChXKlczWaZUfow1O+QvfhdmvS+6xa30p2W8juxjJhd3N+riby/NFCzeoScqva+rWibprLAz21fqE+Yzr4iQAM1YiZDWHzNVhLByEFVrxQd0fZRtqmS8FHHoQAyEoYhDwpMi+vxpAWNu1N66/X88ZwLq86WfawdbrvEW6tW9XlQ6d380Vw7cKfJbBEcooy1x3YSguwKJe1Po16Fa42Wvldtppp5122ulL0F3AwtN1LYhWwcVFqdm5V/wMNr6TV52HN47hfqDi5kmzX7jOG3dtVLOWNef2NXH6gv22usuxlCJzJtxqzhmvls9BVxZwUb/riMuxWTKBVqvUXL2EK7/L0WZ905jftfZu0zWAePs810UsLOPlWs3oE/bjagzvq2vQCpS91RJUO4tODizAUOTSg28Fv54OtM6cgC8SzJGhDVUoBKQR8IhQMQiGKGAIBOzgwmrVHBVLBn+hKVr71VzAe13M/L7oc6WsYKse562u8FbG226HxRio0/h0+0QdlZVxt/usDEJL0U20FaC+di33At2ddtppp512+jVpN4V6M90hsV5AjxV48aZ+Cz9jwl8BsgB6BjABlKDEEB4BPgC0Lbb6rO0bB6+6iVxtrwc+1/vQ0ngpoddKXqMV5qs7RysnegO29eveCpi307ZIP3rxy0BDABChsMRSIgLuHLRpOeY+qpG2iBMFUBV4ZWtDACmOAzCpIrAiu0nVMp+F6TjuuOaLbz18uCdR09tppkGxS33dDO9CM1GOddoLdafuGQB7faR3R3zaaaeddtppp2+Y7o8KhTsZyjdoCd7inHgt9OnS7v9T+mikrzIjvQR8JXBrY657pqWKgps8tjfhaLUXLalAJUOmF0DPYJxBnAFiCCsoRlCJ9X1H+K7KRvbahU5jQeSS8FutLP0qeurNYRZoo2kyaFnhCs3NUAqDvGx++aOb6Rtte9kre6bdE1dMe2jdZKllSV6u7fXrVCogyHNZKOZhapejUK3mTvVcp7kw34qlaZEiMjAEWE6L0vJraHJtb13ZH+v3K83WS2flSk7jpdbtEhCurVM7ojMN3MJvfQXKlfM6NyWrdQklmeHM0f1KmNjldc9D2V7S8lqugZDNWpqddtppp512+hXpTRqLnr/4Nc14P9lGmO4HQrdpa0tNLr+MqgPMmZP1PpYS3eu9AIBKgkwvePnxv2OgjIEFIQ6wTM0Z4WFAOAxAaFLhV00sbozQ6q8Y8FyLXLPWkq5c3Z3rtQY5mk1+Z2qz0uCC3dvY4/UaS8Z0ObalU/DaNd7eF2LMLRhCwSJDKUMVkCxQApgZzG7Apgoww5FHa7Waf6mZMnEBDASBuCBecWCBxIwxJGQhnCWCilahy6QquLK+12gN4a2Y2hX8cI3Rf72TyxVe7rftq653lu/6+MwaiV3DsdNOO+2007dMd2feJlpm4L10duypd5jeqiW4KzrTzc7hgtbtfb3Wd5UNF8nqBkf1nk1fLX3VNr0/SVhyq82QhKAUgPE9lAAhgOIAJQbzCBpGINyegzkQsJG2CFXr11ZPr2SsXvrUXFxof4Rae43tVWc4F5PjP7keWgY0XYxvhfp5Qxn+khHtQdLqNS1BTG3I+nY0U6LfXiTb7r7Q6vrPr6tqNsiiQyli1ViY89PrUu/ie6GqIPaQUi5ptz3g4xQgwJLkjZwxKSOoQIhn6910EXSxVO2ClvtipcjlgC8OXkQc0947YtlHydiumO+Iy4aWw6YZAux2yRqQbpW6offPu1b/Ut/YyvX1lrQG1j9Fi7vTTjvttNNOvya9TWOBT5f4burnFencp7w47zHR2tAagKVZzaXG4nrN9WNLaa0qNZt4AkgVSmaioRxA43vAE+tpiAAzQgymqeA5Z7Q0wbg5B3Rdd2JMVweg1grdEs9f+10r0rxIL9xemM3Y93n5Mld6pcS13fWaiQpd7Mteqr3I/7BStDfxWZrjlDrz+6wwqATPNIESTqHO0mugWOeMdr0WIrT83tYaQzFAMIaMkwQwpF1h3Q9l4CsXcG1mV0IuqZus9WDrKgjty2gDFXMGvHTTa2rWx3Ud8vZDpVdN/lqdBlarOR+tGUO2L2t77XPk7fktAIut2WhL6T7gwq9JJfvtPdly39KHfW5/g86FDffNnbrkYOtYpc719tDOJcvwl6K7dvhv4H74lulaiPpNtHmvXgqV/lronmeE3vVU+PboLmBRH7TVtgO477H4hemLDIsWn6+VA269Fl9rZSadd06bQgBzwBDHJl2lklHZZftCWHBuy9Zu9rlW4uKKPvd8NweTOaC4q41r0uAG/wq7vZaHo6flbDU4+foDo/S1fOW+ei0+QCJyIBlgsZrYIxURTPlAroG4bLH4YIRyngEE7jQYndaRbKTEAEPxMCjOIvg4CVQzhGqsMOhNh+t+ZjfQDEVtq7M0L3ul0dWz/efnZFabW/e1Mbwytt+oyZOoBRTYSlnSHYyuIGtCVouGtoVUFYL7xlSY8LOcMcm0eWyn/AJdCBVuEYEQeUBA2PxQs2IMUcGk28YGAE/TL3jOz/jx/OPmOj+e/4Kn9IwkaXOdJAlZBU/Ty+b9e85T3QO0MYgDgcDEYAoIFLbV2YFFJSbGIRw3lxfNIDCybr9fkyac0xmHcATTtnVlCFQUDFvbLUREdQ9s3XMK9Wtaf2deHx/fDZ4zBOrPrq2UJPk7YHs/kQcw+JvY5/cBC8yNBJbf1ujSfASrC9kkjIvWP8XZutq8dCxhFbJeGLLMer6VF2N+bA1YLVnupUR3katgRUK7fnvMpXXVeIiMMQwdq9zPszmrLoHFLUBo5auMdhVRrM3aK9Q7cl/qY+qZ3kl8bZh1WWenfG6KFsNNe1bHSV0/y/ZnffWS9FvX2M356unrd8sqtFubbwfzzvZDYZopoGgsijSJZp3UJHkw4FSkTvbX6tullsmz40TAwIpIpZRWdnl+IXey5ivFbL/q5fmu6aYhQV3oFvK2fz70ffW7TWcnFXMzpSXu1u5HCVSweh0+r/24bbmKpmNlZ1A/3u0vgq2RpmxYX/8F8yrZxN5XBdc1jWvNkxoTuh2oEYof0Wazs0+Ya/Vwz5vKAjBvKIFo3txH0gTRjEkaE/8anfOEcz7fBcqKpmcM26MQRo44xowP4wc8xIdNdd4N7/AuvgdT+CYYqd8q3QPqJznjJKfN91GSCUkTCITA20DCyAcQO/O+VVOmFoL9HiZcoS6gwDyc/iuUndm/S3iiyercofkTFRAY6Q4wQmqmygHb5vrXpDeGm33bjfxVbv9LrPKWIhdlCy0Z27UYUMbQFDamlNrW/sWZmbaoQIDL8RgbWKIjlRPXOOjCcK2x6u0LLX7fo6XYqte6kOMuMVr/deVce7j0attLhvta3xdd+YB4MTCtDFE/b69rfdbPLaHLGuddIIX9LxgcXBRtS7nGbgdcvAAYRO7gTdyACNAeeq69IABMindR8BTEp6/sKm59XFugFVpG0tpCaxD4Euhdm3+af10Znl5s7r7KfEUuwUVBINev5rrm4XUwdi2q1LesyTAp8vbQwUELQH6dCNn7kFd2WkeqEBIH2BuroJkLUd5WSUiQeEKgsPn6+xw+dzHveoZAkDZqU4CmSTrLefP+eUpPeJqeEXk7mxCYMYSI78b3TVv+Cg0cMfKI/8v7/xnHjVL0d8N7fDf8bgcVbyRRwTm/bC7/y/QT/nz+N/x8/nnzXn1Kz3jJL/gv3/8vGPmwqU4cB4w8mqbxjnsiyeTGutufjaJSgfD2OhlJEyY5byqvqnjxeb7nPhp4QPRInvfscKWIEH5rwKJI5l651Os3eycKpGXZy8X9tJCwqz1ffLvGkqza2BcpqQ1opcX2slgV6K5d6q1jV64A6J2XC0PpV6IrNXqe+qaz6IIR7+uvvJd1eV3XaCYBxmKMDZD1AG/1Vl/0M4/2ZAyXuuQ9UGeKUmzcCZVlsP5KMOA5C9n2hK9lX3+2B0oNQpN/r4z55nPrNmM+wwmludI5M4gDiDoNVTUfKxocnTWkMNtpdlDU3CNaXgvy6gRgDOp/ghchSNF+QUEQ6A3piAnx53OynKH1rd4xz6v84OWkXhV89/Nx8axZbqhybmVUdRrL2Khc4GpbPQi5dAjvGr3yXFtz1N7qvP0tA49PpVdvp89cb6dvlXZA8TXoLb5Efy307/na76U3RYXyX6vnvwZ9Sgz3NYnoa+X7z8q0rpS5oFtDW5qMbZhLkyzPR3RhmtUxlFaqH8SaZLwHRytAsK9ZebZLAHgr2o0WHIQ5u9VStfU9lfMdOrqIYNXf9Capr0OmFt2Kumxo9QqryH/e4nwWr4Hf7vg1XlTvZ2jKeOfXVY7ZyBQMkP1Rp2KtIGnJaZdcFzPA3IHR2T5u3yK7ORSrr9kKcF5Fs6s/L+ieew/o7otVc8o1ab7OiutM1dXvW/99BaCUNWkChwX4XvQ367NvZ3bFhGsvqz2j9k477bTTTr9F+s1n3t7GgF/h+hbM8lvauS6PfTvIutZPY6Kvtz6r2wtUL3UyrRD1X7+WJOiKFHmF1kqU6w6hbGljAImBEAI4MMYhgJjATBABVBQpZw+xqshialERXYAN3BZ5XhdwfzIVzcrcN8D1BcrIGtwHYjmeueZiNjbVBRgswK3Lc+IS+ZEEx5jxfpjwIgekIrmfjaQx+w3e6Qbn6u10T4jV25Hkrp3ZNtDel6JilNWqN+63XfK100477bTTXyndrbF4Ky2dGz+hodnPCxnylTFeZuC9XuZ29zc0NUVE3ct+a7/NUZTW6r7eczNXqUc2mEZQL/W8hCRNAbWiIejaWEsyV69nwcxdhLG9qLswY7k41651rc/6/6ximwsmQowBITDiMGAYAkIIGIcIZgIxQUUhqphShogayEgZWQRTykhTRs7ShWida2Jar30Y2H6cXYDb6zy+z09jOqsrdt1SvXamdGrOapYyjywbN12UqotWNY0roTqrBJ76bPJllhXwfBaHoAgkHhOjm2//XubAlrv3JlqMCTp3SbhyQ968z67QLVOhuSN/vz8vh7HeTVeQuh2h/amCOGbo68rCl4+1sd7WYmwpt2s6dtppp512+hp0p8ZiXf3/uZLd3TWMa3SNebtV9RUwsvkcrX6FmZnQgkm8f86KmcsaEzQznaCe6b8YTS2/lgRuvV9cBxcL06db1BjjlWPAbB06Vn5WdgkPlyb0MRBiYLx794DD4YD37x5xGAfEaMDCtBhWSURxTgkpG4g4nydMKeHp+YSnp2e8nM5ISd1CZgl0GpxY1yC1SExaOem1WW5mVFTrzQHAxe4l01YIGBktelfR0FhJdZszmq11GevC9cJ/rEUwEgwseBcFAwnOyF2oW0avsSiMts3J0uysXO2tufg0us1QX+6ZptRpgOR1hry7ps7xqOS5WHMSfusz8Fa9W3lWyrndsXWnnXbaaacvTd+OKVTlN15hVH8D78rKiNekY/Nz6+Enb13YUho+lxdfkNZpvC+S4z08353rsODl0F/F56AYA46HEe8eH3A8jHg8joiBMcSIIQYwM2JgN/txI55ACBSBGAEFpnFAEsHj4Yjn4wEvpzN++fiMaco4n9PVuVyCi+V648p5WimHRZl5+R5wsKOWJj4vmbOJek8bZzLLNcMZzy5cq0gGKcAIAFnEqH5UkYHHQXGIgrMITrlAvMVOrkx1k9yv7fV+5T+nudRryTRX/X26Y1tBxZeiXeuw00477bTTb43ujAq1/cX6mkT/8lQvtn1NCj4T8TZyburVUV6R4s/LbJPAX776L6W0jfEs19WzZCvie10eWI6FFsPTS0a0gItei6LzEa+bf1xnj5dRNa2fdcnpmi7kbWxZg1DLTM+F0WYmhMAYxwHHw4iHo/0FJgRmBGYwEQLNr05h/hal3RAIWcRDRgIxBKSUQZiQUnbGvTDtc9n7fL37Oe4l3Nfm6Nr8rEGQNhta/1CjYTUrnJLMUtebKD100aOIXQNRndztWpksMlRx4j7nUscabjKBa2s9P96Dntdo/ly4Trr4XBvHZZS3V7u/3d/MvGrex68JCl4DSDvttNNOO+30teiraizmL/rPIA0sjKMuDzfm5HOEDKvhR7EEF9T9XQxtdTytzY49JaCFcG5g5MaAUOyUSn4F7SrVURFg9vkXA7oc7GyaCit9P60Om/QGU7c+f7fo4eGAIQYcIiGfnvA8PWOkD+BxNMdtn3HNZV6WA7TrYxEAikMEAo84jBFEiueXMwiK59OEqQKMTiOAV3jUiofaetQM9qX7RYXrs12OByhFKAWoWgxvggJivhIlBC2h01qV+6OYR5UW/bolZzAD9l+jQIJICQ8x4SyEj5M9NngBqZq531KHszYd1+/ET3kSrGmLrpe9d0cv9U6/DjO/+0jstNNOO+30W6X7nLdxS4uwfu41O98LR9+NbffS89Xs3quN3Dy7zr1fs2P2lpTmjJUlGHtN49I129mCUM+zUM9gW5nL5nqWtjOUWfqU9B6q1LF9dJ01mulKqLveG/zO3FG7ScsvBMUznvOG3J6Wx/sDYo7aVStRtA4BQ2SEYHnIRQRSEmvB/CuIuswVtVmfYyiYgMAEAptJFbOZCvETXk4Tns/Jr6PoobTtBZ3nc57/X0LBeuhWqmm4ainbQ8ujZcJabg4tNl2wDNo15KxqX7ztI2IUO7BZXoW6Fm3zFX+Btu/s9xgsr0XJizrbJReInuanFjRzRei/fIoWYe32XfR+meDuvg4vwjkvz78CCLY4YL/VZGsHIzvttNNOO31t+ioaizWH4i0AY+mAOpf498zzikS8Mvu3xzar1jyjuwKzjAmXbPFGZ+a59Tmh94wujpc645TWmaBlVJuW+G0+nk5cPZO5lhmtn10XC8hkpUp/a0xMX/cVAHI7+aH1c8EEdp7aBGP+YwyIwSJBERTDEHEcBwwxgghIaULJxs1EpsFwiXzhr2m2N+xaI5H5YDwckMcRD4cRRAY6zilZaNqyJp1Di/ZS+7UtQItPNHBKxb+oTKYWg63eJMr+xKGEMkBgMBnsIPXySpZFkTyzMbl/iZeD6hwUVxMe12AQGwDyeWECDgE4BAKTIGvnNF7G192UxSzKwOjKZlhFG1eOX6HX2GhbnbVS3di2d9fVnde6h6H/nEDiLe3utI3u2IY7fQYq77w94MCXpbc8IbbmvVcXdn2Lz6EvOaKSiPeuOqr1Hfrtzd7r9NmAxVbNw3rdO9vHunQSfYnKPesMkNxquwnbXep/hwajl6jfjOYCXLy1enby9Vfa9fP9mfVrvQLY/JNXWK0iiL493/3Vb+lxTmsRblqY10ICwCI+xRjx7vEBD4cRh8OIMYbKWAc2kJFz8nwNGSoChSIwQ4QvXmBM/YuNwSHYJxFIgRCAyAF/+/vv8P2HRwz/9hOeXs74+HxCzk3Cv5zzQLDxBsI4DoghYPCQtwAgYtGoppyRkiCL+CdBhCFSWHZB0Yb1oFELwGCbfXZtlf1Svw0UpBkkUjUVQjCgofCxtLlQFeSsYC55QLjihWMUTJoxMAHCNafFcpGvGnGtZZNeb+JV0ivf19vpe/ktPqb/eonpeub2JRFZQkvWojHbUsn2tMU42Lr2dk8rv16ykKjgTGf3z9pWkf2JCyik2b6+3hcEohmTTJvrZM3ImnHOU2X4XqPn9IJfpme8Hx429xP5gIEH/O74e8SNa/t+eI93w3v83cM/IPK4qQ6DdxDyRprkjCQJfzn/afO++5eXf8afXv4N//L8L5gkbarz48sv+On8C/5w/D3eD+831Xk3vEOgiKTT5vvV9vXLprI9EQhJp833kariJb/gLCc8p+dtdaD48fQjIg/4MG6bAwB4P3zAqGMd51ZSEox8+Or3xidk3l4/v/Z9TuvmMWtajLV2iLpcDr3Udy37c/d/Ybhaoev99JYk/WBvxclvsODGgjqX3rOhXeaC64PzITQNxrLspSPxivyyK1Vq3pYkU48mFtLka+Znq1dfrW5uPyiaL8CcbSS4yVMIOI4RwxDx7uGA42HEcTQnbeOZpY4hpwlQgUj245Y/QeQyFKe6RJ4pmJQfofZb9iUz4TgOCCHg/eMRIGBKCScRZGpjLyMvzt+HMWCMjONhRIyMYRgMsBAg2ULdpkw4TxlZCFMgpAxksT+F+jVY46KuVXKEWh24qX3vV0XR7xurqArXZlxbOdeWLLbZwIqRFZEEua7RCjSgtiObgV6TvtCi5k1gsBxW9+PaCOY6uTUI0mmUXn13WaF7NQhbqXeev3V++X09V8dvDzTd9QLUuoPv7udz+NZt7WfrOghJZeyybmPWACBJQtJ0J7BIyJohmjfPRbkOZgZjG1gaeMAhHPB+eIdI29iLd8N7fD/+gJGPiPztBKr8ayaFIknavBdEBVkSfj5/xDlv26v/+vxn/OvTR/zby5+RJG+q8xAf8cP4ByS5D1jcc/80IpzyCWc5byotKnhKH3HKJ3ycPm6u85fzjxh53PysYxBGB9hbhRTGqzCI/Vn3lV8FX+EuXkY0+tW7e3WS50AEV50n+TV/kc0nC5NFl6duNdExsK8RY+2y5WZv0rGl17Qf92kl3iIhVs+RYCMCgBgZD8cR7x8e8MP3HzAOEWNkZ7AVefGgEwDTNEE1A5oNJPraMROYecZsF+k+D+yuCLQAyfY5BCAy4+9+/x3ePY0YQsCf/vwTTqcJGYUXVzAphsj4/v0R798d8Xg82HihUJWmUcAA1QDVjOzZsLPAzZwYKQMpK06nM1JKSDnhZRKoEDAFCA0QjMi+rgZSucAJKFmei2xiWwTNpuMgBWuZE0dV3fzPvpL7c4BwiCZZfRgYeYJHhyqPfw+tvLhH5IK5n+/CG/BkOZoLWjtHr5WoZpJb9mURKHQt/grM+68FCL4UM/0ppHdoH0xKfzYNxNZrU4VsNt6Y1zvLfUzHWU53SUABYOATRAXpjjonKXW2M1OTJCSZkO/QjDwODzjEEd+N322Wmr4bHvEYH/HH499sBhYP8R0e4zuEO7RXO72dBh4RKOKH8Xeb7wtR05r/f3/8bzjlbffE//HTj/jf/vlf8cPx/4PvDtuk9f/pw9/hxx/+gvfDe0QeNtUZeMC7+B5Z02YNTAFWT+kjnvM27YOo4E8vf8Ipn/GUnrb1o4q/nH7GQzxAdBu4KnSMR6S4/bmQNOEhPOAhps085T2a0nvoswCL7U7XtyVu7dBKe6+YM6322XErlZG5IXXve575JszO32K51+ehmlp1ducXF6K9tmFF31APLZj1BZNUmMXa1kLT8NoMzs4utToXjq+4VD0t6/r4Gns51wTY/83ER+vogRAiYgz4/sM7HMcBD4cRQyAwBDkl41A9gzYAD5dqFEPwlrkOp47UfQjaWpexuglEkSKTs+naj9TyOhwPEd+/f0CaJjzHgJ+fThBViFrY2iFGM9WKETGwmRw5EIIKRBUq2U21cmOWRMFEYGIMHKBMeODgGgzGWQYbTwaOdECkM0bOsHR5TWfB3eZXCKAZmk5QmUA6Ach1j5SlWIW52vYew8LNPoyEsyqeRbt96a1deGV3G2GmIVmnNeg72/rlwHIb0+XXtb18eT+s9NVVvFcGsgw3+5qW4d62f4taic9FX+zKHey8FZhtrVfeJW/p6946b4RXAPwpunHvUo3Bd1/7O30FIlq8028VfaP/i5qWPW/UWKgqsr8LN2vWvpQ2sj7T5e7nsKpuvv8sFMucF9nax7ciTLobWNDKt6vixiu1110XrgTYLPxrd7Z190qHHYfx1umeMVsXjSxARz8l1JfomIsZMLitsej3VGt7MYgrc0/dGN7C3BTpe19Hu/+7XtCbvawNRy/qNu6ueAQQzFSpggsChhhxOAz44bsPOLiWQnOCSoJItvCx7kRN5C8/LaAkgCiASVDiw6rYA0FEQazzLazOtIlCSCx6VAFovjfZLywS4ThEhMBIaUIMjOdTMnWvCGKIGIeAh+MB4xAQ3e+j+I2ImImW5AQV06qoulpaS7QrxjgczMdhiBCNEAAZAfboiWA8gpFqJnHu5pcrh6zWtiTI+Rk6PUPzC5CfQcgQyl29bsV6Rty/MBSRFI8D8JTUnLhBuHDi1uU+X+4IXN23/amLuksQ099XM6zdPSs60FiPvfqwXgoT3vb8+BwgYGayt+KLtFb23zP42GmnnXba6evSb8ag8ZKVWKfP77Sy1FxcY51p9mutZJ+qokrvq9nPSs8044du00ISe03B9Rpz8non8w4vj6xRp6HoQQ76DM/FddwcsMfI+N337y3ZXSSQJOSTQCQZ4xrMsZiZILM04y61VwAqSCrOvBuzrGJgpOV74HoVIgKmjDCYtiSEUB04ieDAx4BQCMb8//6793j3cAAxkLI5YL9/94jDEPE4DhiCJegDATknnE+TSzyK1IMAimCOtkGK07oqpmSmSxwA5oBIhKDZNBAk4EAgHsFxsPMhgjmAiCDiUhJVBA5NfSUJJBN0+gWSXjA9/whJT0A+AfoMVjOeqlkwFIAoQAKQWU19d8h4yoyfkiCn2HPvi51wh/frVZrffyXi1aXH0HVau4XWjjWY3/W1uLR7tAZf24Fup5122mmnnb403Z3HYvn9tVfsLYfny1avH3qtr5sv8U96vyt6+6ne9GNpLqVFSuzMh195AxidichsSFraWxv0K7YbF8PtwohembCb4KIwUIvy1wvT7c2w1KTQNUl202YNMeB4GHAYAg6RwSpQl/Krioc/HUDEABgkhRl3J23XCqBj4BW6cIQS87NwZ8bCsAqxaz/KshNKvFWC5YIorKcSMEQGEPH+YXRgoeZgHhiBzC6VIBARqCT/a+ZP81SLZAx8yZDue8gcttXDxvpMufN1VUwAADE4RHBx4lIFiYJDRMm2Qe53ghBB6QTRAJ0O0PwCzQEiE5BfZm4X5GpZCz+rGDwL98CKMzmLr77PPURtG9h8A8z2UrnMtS3zKf5MXakCVmdjuFK6jpb6u3ZFf/IFAMO9Woce8DSfsR3Y7LTTTjvt9GXpN6Ox+FrUWCO90B5cY9Cb6c+8hfrzZm99+1faeH2wt3n9z8IYbW/jsqQx0c0isDClhIeR8Xg84HffPeI4ECJlaD67+ZCA2EycYowAihN2CS0r5rOgGTmb0xMDlknatQaGLQqQcFMqNSbfhsCAnMF6AA+D2fwzIwwjlEtOCTe9AgBScAD+8OERWRVZFefTC5DFXTms7/P5jJwTck4GMoq9JpofSL9xqAAaIkBgIWIV4OBhFonMT0MFImcEiWYKFgjMpgFRNU8Kd6tGjQdDEXH4AWFQxOMfkPMJks+Ynv8NOv0Cffk3RHkC64TmTqme34IwBOAYgfcD8JIM+KiFo2hrvUW9eMMc6nrhnt5qpHSblqDiWzAt+py+GjvttNNOO+30a9GdGotmJqDzExe0lJ71THhJEzEv37V15T3+iiD+LnotXOPnenmrmsS0houlZpXiJby/pWS1oIT7xqGlU2vV/3cGdcW0ox7X13uiTjuxymsV2y1dNN+NpUc+RaitEAR3cv7w/ojjEDCwgkQsZntOleceePAkd8Gk5C5iVgEyMiRPEEkmnydDEnUtJUFyMtAhnjhPzQejlCcQNDM0B6RzsHMcENzciCggxBEcIkIcHSgoJAuIGZEDNEQLJXs+IXkfOXs0G00OZtRAjI9R69x08+eO+ETBnOyCrwIT4hAMSBBA6vtVMmSakLIgDNZuCOZMqapVO6OqEO6ygCOAaER89zsgvwMd30FOP0HTCXn6CEICIVe3zECCh5jxYST8eCKIBmRt4wWaox5hqS9Y7qm13/0zZk1jUL6ttz3Tts2O3tae0rzCF6GlD0V//LVQtLfa2mmnnXbaaaevQXcBC734f3bi1RdbDzYuGeseNVxh8J15ee39eetF/BYHx35I217el21XMHVh+tHN52JMbzFluDQ0agz9tSte5ADf3tGidGMKG1i6rLQApu51GyObX8JxxBgIgTySkQpyzmaKRGwx1Tl0YMns/oUAcn8KyRnM7HyugQVTUJg5kqQTRM5mEqQCcqm+1rIEzdXgCUwMCYM5g3OADA8Ig8WZzg4SVKxcIIJyQBbFlAWSzlCZrD8LY4XiTA4yfwgwXyAx2wqu2SHx8MEEoeBmSua7YdGmvD0VSwwoYkn+3OeihNYlVVhsCvusa8VsYIUGQDP4cMTEI+T8ZOOQE6AniJoGiCEYWfE4mDlUyuKtlrV1t3d3KqrRb65o+G7tuet3adljN+5jdWBmF29zeeW+rzuTuj67oq8BmHtpTeDSUznef/b17uljp5122mmnnb4UvckU6usbBnxJquLju6osTZLWi5kc/mqZyjTdxyAUBr844F5jMGqq+QWYm7fSSm8fQImn1DFQzrCX86XxEBjHw4AfPrzD43HEwBkkyZhxn/dweACHgMABMQ5V0q812lMGPJwdBwaxmUmBDDIkca0EAaCAEA+IGKwuctWywDN0o2iPnBEXyUgygcFgYnCaQOcBfDphPDwghAFhKONijOMBMgzgyDg9/4LpJMgvZqIFzaCiIcGE6pNQQBIHX44GnEzDMQJxhCaBaoQwEDCYtoFLOSDnM7ICWcU1K2LaHfcNqXnxNHcrauNh9ezj4QHjdw8GxF5+j3z+Bfn0I+T0BJKEEQljBD4E4DFalC1J6rDp8zGzS+XaJb2yJ4kcT7Q0fZc9FO+TG23dFUWhVPm8oWF3kLDTTjvttNNvge7UWNwfJXdN0rZmcnRLctcVxorI/1Va63uLdqWVuceYA4sxEla1JJ3dRYdDVuamnO1L1ZYxs6vqtAgXWGhlmA1U9CNvgGKewXiuC5n/0lq2131cKiy0Sc9BCAEYY8S74wHHMWCMZGFSmaEeVhVEYAcT7CFk+9DEZU/a9bL5FszMyBjkTt1mORQAjag+Fh0rTCUiU10b0wKYH0MCXDshDkIkncEhQFURB7bQsFRmyzKFD+MIQJDzBMmT+5fnqkEhd4ouC6ZSZfFoTtwZKoqcxfJqkEAyQwqAE/O1QM41XnhJaqdoUm/jj/26c677ZRGDAGXPEjEwvrPrYoIgAvmMjCcoGKyMMRJGAV6SAAirJo61+dfuucW321qCLfemOqhYmhjNW7jITaPlm82/Lc2NsW98nr0GNNaeE6tzNtOk/PsS8+y000477fRt0+dz3v4MErVXmf4anvOTu7odGWlJlXnv2elbjEZX8kqxtZaWjEcb4wqo6E3HujIdnmntdCDm+kAvznSM17Vr0VmJWyZVa20cY8TDccTvPzwiBjOxMVM3M+MhDu78HN3/Yd6tmTYVp3pjfpn6Tsy5m4srAxW44fvM55uDm1hRK9cu0ZL7TNMZ03QyB+zk/hn5DHkRhDjgIUTvn32rKEKIoOMjhvEAgJDSCen8BM1nqGQDPG7CVGbJIlh1i0KWvULyBGRGGAQqI6Dq0bIicj5ZlKnsvg3ECGrhc4OIjYMZxAHVbKr0SGjzDHa+WsFqifro8A44PEAfPmAafoJML0gv/+bgKOPxIBAAP50ETR/yaczurDa1JE7UT0s90Ne7BBDt2PyabesX8Fmg4CWk2XIlvcnS5yh3D5XkkjvttNNOO+30LdDnAxbaXm+3bIa3NXVdYrcm9btP+/BGcua8SpOhTaJ8o8qtXi+Y75tjbKz+xZxUdki7xHxLbce1zjtwQCtaBjTJbV+trXXf3Bxc9OPoR2KZpQnvHg94OEREVncMtohGROSMcHNurv2K5a8k7aN0uRO3Unc1rnMp16QA1PPPSvaxKpgZyBkqZF4HFVyUERlYOAxHhDAgqyJNk+2pbk5SSrVyCWtrZYxxPz6+R04jzhwwnZ+R8wRGGQdQtTMcFutnQEA8ZC44AGT5NTIEIhOm80s1ByuaBgXAOSHnjMPxEcG5adO+5Dpu07BYPpUY2h7TbC7YwcswMYbDO+hwxDAekNMJeTrhIT0jUUZ4yhBB9cMo2hK6sv0Wm6SS9purnqeZVaCtp3bgAFC68x4v+3aGdss9XYps0ZyUIW7r+6pZ4ieYTc01i8tv3zbdA4pEM5KcISVL/Zb2VZE13d0XAJzyCZNMG/sRnOVcnxmb+yBG1oxzPm/rB4rn9IKsCbkKJF6nLJaAU+6ocwwHMAX8cPh+8zW9G97hIT7iu+GHRXjv6zTwiEBxN/f7gkQgPITHzeW/04QsGVkEp7Rtr/6Pjx/xj//4J/y/x4jjOGyq818//An/5y//gv/HH/4Lvhu/21Tn+8N3+DB85/f6tgzfWTNO+QUf00f8fP55U51JEv7H0z/jlCa8pNOmOgLBL+cnHONhU/lCTAGneHqT0OjDcEbLEXab9I7nwT10nymUthTjb3kI3DKL+rUfKrf6uT8a1G3txdWoM2vHO23CxcN7w1C0Y36UFsc7TcbNpvqTPsZZ+VXO6rLNmbJg3miVqxawxUyeTTsgdHWIDFBwcL8AalLlNeZLHRCZT8K8jDHO/V4rZk0Wqckcf/tx+Tq45oGIPScEIXBAiMFHElEiSaGEfNWMEvK2+UZkwP1BYhws+7aIvdyJwZ7nwi7BrjdwdOa5k58LvH1zkiY3+TItw2K2q19IQgllS86AM5FBmWLyZcU9JC8B2vJ0lOeNSnKAF8BxAHQAxQiaBoAixqQYZUIIJ/PtEK3X1IDwa4zzgjG+dv+s/Co+MUsq90MPPi+a1rY/arLCCo59X9zwr/hcT6xbwpLVeesePdfm5K+SRdNiiijQqylA5yQqyH5v3ktZM2QjoyIqdzHtlRTIkvGcX7YVV8VzekK+A1yVegA2M/sAMHBE4IiH+LAZWDyEBzyGR4w8gim8XgFAoHDXuHb6dCLyYB0baeARD/EBkc3XcQtlEZzPE37+6SNOG4FFEoGo4o+PP2y+9wIx5DEjSdosCBAVTDLhlE942XjvTZLw8fyMUz5vBxaqeJpeIKp4uANcPKUnAMDI4+Y6Aw8YZIB4QJot9Gtpu39zeSyKDXv7/Vt+hfbS0QXHc1Hm9nUW3npe7zqDNtc/rI1hG71Wo9Oz1GNMisglozQ1cxzyiE/ExhAXyX8P5JibLwSTichL1u6SDE+kAgJ0zP80nWCRmcz8SFVrFKXi3E2uTQkc3DyKwMGcxsN4BHNAYDezUbJrIAIHZ+MJEMmQnHA+PYMcAHAcQBxxfHyP8fAIqFrmbGJQaM7m7WVMKPnTLZGfMVNEYmNkqgywpMnC6KYzpvMJOSWcpsnYS1UM4wHD4YgQI6bpjJQmpOns6MHmgdQc3cnjPpFrSzQlCAdwVICirUk4YogjhuN74PAIHF7w/vkv+OWjmYrZoKkDn/PIRrf20rUSV/fZZ7792ziL78m2sV9v5746a3QrktVvncx0cNs8MUdEHUBqMdK2kBYt5Z1robjPo1BUEJ2puStyFwiJEpJrVbbQWSICjPHfSoXR5zvHFjjgu+H7zdf0GB9xCA8YwgFhI7DY6dunQBHH8ID/8sN/3syIA8AfHh7uuh+YCEkEf375afM9O0nC4/D4pnt8KxAB7H54HI4AgHPedr8SKSYRUD7jado2b0SEp+kZADCG7eDvkA8YeEDStJmXk98SsPjcdsRL+twZZd8WwcUlpdUc6lYY3AvbjkXZHjwoLlmG+e9e+9KiLi2L+hed53Zeb9HHtDLqmRZCr+lobtMcJimYCcyMwM4gd5NB7ghhPF0njS7X7GUIbAyDm8koioMyu5Kgxj9Cybxt/XDHMKgx/lSAhY0lENXvJYt3ygnIycK+duoh8mzYtqa2riEwiAJCip1/S2ekVYEJLPmeh7It42srId38WRsl30YNpwtA4+hhdhPieEZOGXw+Vd+TMJTcH4w4DBVwqbREgjaeMk+K4lBuQljL08FB2oYgAihgGA44Hhjff0iQDOQsSElQlSLdRlneZ/23arq2Ys5T9+Aa3oZpqnqqs7247ajbx7XsQpOpDjD7TtreeZ3eIhl/07Ny5VouT/42aPP1Vy3NVnkc6r55E9DDdrOmt76TqP7baLrQaWq21gHMtCL0OX3uGRttnwd2Ic/nfkfv9HWprGYg3gwYR44YY3zTM/Fes6YStOTXpi8hyG7Jc/VuXnrNp/Br0H0J8ojufsHeU35TWe0YBP/tHS0O3KZlX7dMpG6Oi3qzqI0vIerLroMIorVztxqd6z/mB8nNYTrqzGGKZBaLj8I/3wIk8zbXAM4asABiJMQQEMPly87Z3rkJSrfuFVwooTeyMoZbXaJZLrMz+Qmx+kaoWjQo0+o20xFG0QbYDEhOEKg7TwcEKFQdtJABBKoO2/AkeQwVBkZBytltoS1vBMHCyaoqsigiWf0QopsDUJ0BoElmi++HXT87sHAflHq5CpEEyRnD+QTJAhXBMIzmwB0YFBghRjABKU1Qzea3UpFO8x2xBxugoiBk83txTQ3cVCwORzzyiL/VgJwEU5rwMZ9n5laztV2Y+Cy1jwTyfBuXKGL9NrSJ17Jnlm2ibRrqylwU/IZplSneMPadudtpp5122ulL02/OFOotVCHHr4A2L0DHay/8DUP4pGFWUe1Ck7KU+NbB6LLySpl5iav83Y1BNfZPMA4HPD4cMcTQTCGoL1nKLoLYdlJ1BaoJU+G5Ci+rsIR1cMa4gj+X2BWTJ1DRbDQQU6aqMPJBMwrMCmymQClJ7cNgjTHrFaBRAAfG4RgQHVhoiyMLUtc2qEWGEskIwX0r3Navt5JvBkW+YuQKE/cR4TpLBOJoJg8hQkRM08CMGvLK90McDgghInCwzOYq1ak+BlsTEcHp/OJToxhwQAiWBwSAh9clDIHx/bsj8Le/w7v3R/zv//gnnE4TXk7p2m5p10Y+LR1oXNs/W0H2xTYsgHQpkCid/QbAxefMh7HTTjvttNNOvybdByzWhZB3a96XL8pbGoFld1ctIvqQlGtU7L0/I7ho41622Zm9lJ+vdFuYqxvDf72Rixb72SK0fAnzplbn86Kd/mR/3bpYpGW/7asSEBiIMWAcXEJPJhGfX3vXRnUc8X7UrQLdkbNK2uuwyvHm3EgeBrVo3IopEWDMcYdIajMFWDSnQsusbWWk9q1KlfHualcAAyKQePbwMjYoqnGBmkmSRWdwkFPNuxZTWPBR1dL0JzvtFBXncwFTs6KcjZAtclSMEZkMpJGimqdpN6fqGc1zIkDNByYAgDucMwhjZLx7OICY8OfHjyAipJSRZbE8ZSRVg+BAr19jXOygxRWsHb9hEb/Qds1o9XlQei/PlCtw5zWfkVsO2F2ZtwKH7XBrp5122mmnnb4M/eY0FkvTnG0v1y+gqViljjG+NtArCo/PM2LXE7jd+KWhyNVhtOOzCb+VqWJWaaVlBQMYYsDxEPH4MIJJqrKAREHsUZXQmdxVpl+atsJDjao2Ux0A7rtg5aZ0Nn8J9y1gtgzVJcoUUXddvY+HH2Q0cGFFPeiuO1GXCFM5A6qMGDxyUufzYrjCQExxKldVS2gnFhFKRZFTAtMZKoIY3UHaQYY5n64wuEoooeLUQXNxdp/7rPQr3rQmztuDiBBDBFha5m0CKFB1fE3TCedzwvn0C8wZ/IhxfIfDgUGItc7jGHEYAvCf/hY//fIR//2f/hW/PE04n6X2ebFV+h+L89tcdF8pQYt7Sj/PnfVr0d1AY+1ydgXHTjvttNNOX4neDCxWGYLKVL1RAndLkzGTsBdJ9AZOfXl8I+d+V8jYWYFO1LxkYrT7oMu2ertzLvLcKvVcF65q12hbhkvo1eb22tq4v4L2R/y/lhzjQrvRpPWlzLxE9X+AOTU/PhwxDoNFVlpIqJc+FXZaZ9qJGbBYakscpJSyZR5myfW6+ZlPZynbzUc1mzKX76pNYI/H1PmLzfduWUeanZfyZ1dhYW+JQBnI7LH22TVLVK4XdQ7LmOz6m0xfi28CiQOJ7vqIKoNu9YpjdZ0sN9Nq4y+O70QAs5lVhRCRzi8WcStP5sshCfDIWaTN8f3xYAn8pj/8DiH8gqfnM56fzzaupfbi6u20XKN+Y67sYV3RclRwSrMyy/twXuXrJpybObevOJZXWjzO+h99Xpuddtppp512+pL01TQW/ctyzXH7vnwS3ZFrTuCFaa888u32r8WWbyYijfGZCZLLkGr1xRhfUbH04KLv76okc43BqKc6oLcAVBe5OxYN1Hn08Vb80JchXTmIS8aPzA8gMOPx4QGHYUAgch8JoLG+VCewjLk6ATtT3udSwfIaqDDwzVSJmSuDTdq0DxczRV07PncFWDDBNRECrVJ9QrOSMpBwuT6drsDPl2sQLcACgIo7jAMSGEQWmUkdPFlUImP2VRvQ9IECPiaoh+/tgD6DUBIMioOy4pti4851nBV61nuIEEI0TUsY8CJAzhkhJzffyq654QZgiPAwDohsIXpFAKaPOJ8n0+4s9trsVqg/LkEaluV0cba7H9syuMFZd3De2rfLeK8BjNfK7bTTTjvttNPXpm/GFGopYb6jJl5VP3QlP4XWQMvVNpdKg0VZ8vbWtDy3QM+1SFWF16Lu9+uDXLQNda2F1r7IPV+rxBtFqjvHD0W23vdnDL39ePf4gMeHEd9/eIdAJaRpp1Eovg+dCZRIa7NIl82sCB1TrjVbdX+dFvmoN6mypHRbtksPFnutRakfQ4ASQbgAIe9b1Mycih/IjFGeRzoioppQyy4jQDQjp8lAREUthmyohJ7N64Mv5lCiBiKYCUDTPABAIEuQJyrQlExb0WmUypir9RsBpAFxOCCGwXNlTJ64yJP95QTAcnsUiEgw8y8eI/7jH7/H7z88gAF8fJ7w81PL2vr6Xfvaxl22cOcd3qsvdtppp5122mmnT6b7Mm8X6SmWTDJ1JRZ1llLlleO3O9XG5VwOqPa61vbs2I1xrdFNh03qGMr++3KUpLhwClmOp5dMXrZwdbwzjULfN8ETyLVo7+r96HLhNvQzH+y878aj62W7hLpXmAjHw4DjYbTwshAbo2sZCiMKlOkskZ7aHJtg3gGId1f8MZrKyK/bIz3RIkdGfz1aTdY6bUU1v2nx2+eXZH0FZigRWNBARI1CJXVW2gQtVpbmmpi6h4ofRgUy3quW3Btz+LiEuAoC3LzKbptyv5Z5gZt1Ae5K3mmYaNZShRsEEAKIGcN4ADMjpanL+q3Vr6WP5EUERDbtBRPhw7sHKAgv54SUSibkGwC6+79OW2fadHnHabfj+0ZWslDTle/zzjfTtWfJlmfcp2ocPsX5e6eddtppp50+N71JY3GNJfjSr7ftuorP119h0nvn4s7yAk3OXLlVNMb7UtuxVVOxOp41sy/tvhSNQBnjGyas16pcL9Rbp/RMvkUZGmLA99+9w+NhBFdGt2gD2P/mV19Aifk0eL6G3hE6Z4g0RruAqkDBckjMtAPlEsR61256iIvBjI++Me2XS2eZsWkYHAgES0wnGUmTmwaV5HcduHWthzqAKPtIJFctDUEt9Gx2syfXwlTGsdQv88YL1+YCsh2VqBKUFRQKdrG6zAyKEZKzm1WVjOHcJqtrkhykgIDjw3uoZpxOz2j+Q2bOJpIBNq1IP39jYAxhxH/8+z/i4S8/I6WEnz++YJo+79PiIlJWN4Zfg9aY+bmw5cvRDi522mmnnXb6VujNplA6+67YwhRf81voz6++JJdagSXzs2j7WpjHXmL/WkK8a4xDYZ5bWftdNAWVGasS1NJO69ycWPscidraAOpsrk3Dcryr5lnU6yv60bePGQNZJLuvRMwpQn5qldDvhGVtAnAYBrx794DDEBECAZ4h0/htrn91IGVetUILuz4HF2X+a7QlFA2DARYRBdjaMW0JXDFQ0I/NtpkKdRoXb6euS9EW+JqIiIMA1GzhBIK4WVfOCoKYQ3M3ry2RHYO6/S05m79C9Ymw3VXD1Lrmozri2sZqpmJFs7GYcOp+mFan7dp2ijwhn1RwQ0Sd1qUBSreEg6j7mRAjxtGRUdm7zfclu8bExix1nh6GgO/eHTH94XvkLHjCGeepmIJtYMMV8/uh9tEKbGKt6224Mi/zpi/uv5UhLZ6Dn4+W/lUXfS8GN48Y5se+KLz59YnBCBRByFtXu3s36Wa0V1oWzZAu0/UtypprRuIWovp1YmKoKCJvy2asygjEYGI8xofN/TzEBwQKd5oZ25w/xkfwxizfYzhg4PGuPr4UiQomOSNQvHuN/r0TESPygL99/FtMMm2qo1Ac4wH/8vRnnDfW+eV8xr8+PeHn80fIRmFJFsFj/CeMYQBvzAoeiHEIB2TJm/shIhzCiCmk9h5+hURtfIkI57xtDgDgOZ1ARDjHafNz/CxnHPUA0by5Toks+bnpPlMonbPJs3NVtOvnV5j7LdmtV8vrrOHu9/rkXTWFmgl4r2+m1zNuN9F/FehrJ8TVa6BiMZ7FOIp5SI2ltAQMuqw9/76U15LqRbF+jGU8t+LgFGa7/V6hC1GtmqM0A+Mw4N2jJcMLxa/A7XzYNRUXEKUDAT4Rsw4UWvNPlCsgLYz5nFm1mS83z5pMuwNcxWlEFYoApgaYbQqMzQhgyzcHGOCBGoCB5aRozVPto/9fRSHZktd5vCysr6m6VqFk7b6cau1+kM9VAdpUzKuKxkObFD+ECCWpoyrzWkBmb0LVAzKAEeMAFTOty5oqgBE1cFV3SeHlyDQX744jFO/x488fMaWM0yRlRroH4Xw3rD/zqd8snZuLLvZKT22dZ01ufKlcCCnQt7NcmTLXl8eXdEvb8HZNRAHKnxPqfH0yQYExefcCi7siZBXhA4XNDDUIFUTfx7QGBJLNdRSWT4cpYAjD5n6O4QGR75cjMjEO4WEzRB14RKThmwS16sACDNBW1udOIPbXSkyMSAN+N/4eSdPrFQBEingXHzGG/4rndNpU51/5L/jLywtOOQF42lRHNGMM/4L34yPGjaA2cgSBkO9krCNFBOdbthADEFUkEaSeN7hBRIQk2f/S5r5EM7JkZElNWPt6bxvL3UffjPP2TVry5+X7p7b5pjZuVJqFAG288V1NVBn8FtKuzpI1LQx2M5kR56raRrW+et1JqwOvs5Qqz8FRz5b2o2YmPB4jvns84HfvHxFJTVuhZurDFGabf46cyfsugLCfE2eNiUDUMVDqTD01G38AnnzPfS6I7WodsBjTUfw0GNAGQCzglWsaXKIvkqEiyJ4YLnBzOGdmSE6uAWAQMzgMIA4gDsaIi0CmhDxNkDQhsPlrlHGKCjjQzHQJlVnWDvv4NclicxGZtmb5IJIFQCOY/wkHBM9XoSI45VQ1YCw2VxSsvJI7zMO0MCEQKBA4G1g0UJK7/WPrJGoaGWbFcQgYhkec/vb3ePf4hP/23/8ZKStyt/TFL6Ssf9lndV2WTOKFxOAWuFgypJ/GePe9rHh4LEr9dTH5X4MMwHoema11PN+MLKDgln7O+YSTbGOIsma85BcwcdVcbKGBB2TNmwGkPbMYjPtAZ9YECO4CF5EiBh7wLr6fvRNuERfT0m+QIS9S90gR4Q0g698zRRoQQsTfPPz95jp/9/Af8H/7LuE/vPsPeMkvm+r86eVP+J8+/Df86/NfcErn1ysA+PH0Ef/bn/8F//mHP+B3x+821XmMR7wf3kEhNYjKa6TQCqq2axgVH8YDhjDgh8OHTXUA4PcP3+MhHvFueNxUnsAYeUSo49oqMNs8pLvoTo2FS0KxkJxuUNX3x66Vv5bXodap0lQA3Yt89XV+RdpXNSMrdZZjvBivWr/zBpeNqTkZaxvnTNNQNC4XU7BET2vjn1dqDr6LedDWRgvd1LFnhVGnxfGVb/2R2h06iW1np194PPagRsfDAYdxQGQGJM3ms1+H3lmb3DFXdK3Hqp9Ak6T7uR5NdNPSO2nXM9SY9N5Ugri1V8OyOlPN5Anp/LgyQcG17eLYDZQIV2wO6cWEy7CPh501Z+cQ2P9C9TMp89N/VrF/Pw/Vb2a+VlSOzcBjt+UIFfXabwMQ4O7eKIOt81ZMuEof7VpRTMJEui5nndVxEBiRCY/HA1IWHA8RL6eELI1RLJqnHrTOL7Ht9ausywx3aHfMAxh0BbawP+uhX+c6lqItKgNe4p3NneFTNBU7Xac7dBZawpTo9nVQEwzcqx35Gut8jzaByGHMRgnotwoqCrVn1073UNHG3cMyMilYGcew3WTvGI54HI4IL9u1fgrgeZpwztNmc6OBTdv31vtvqyZTqJhQb78vmKiaO2417QJ63naba8KvSXfC9iLp/QbuzdckkytA5b7mN9afIazCxOiMySgcRWUE6dbD3UFFZat6uiWJ7cfejpbrWECSq+14rVm5TcwXMJPYxhDw/Xfv8XA8IDAhi9Z5MedjyzpdQ9t20ndxW33mUH0hZmOv69JpiMqm1O6m6p1Cuq+zMft/xU/DePaSc4Jg8ZMICORmTpZ/gsAzRrr6i7AixAjyxHLq7uqiGSKKnMXABRTDYUAIATEM6EFU0Xj4jw5TFKjavl+C78LUF+jXHVOF2wHMfChsjgNCCsg5Q0TMrMnBhY1nzlSXP2J2RU/G5Qx341DfH0L48GB74ocPD/gLveBlOlVGvNe+rTHn974GGqzp7812/rM8xi6wOy0G//mZxx187LTTTjvt9C3SG/SBHSO3ge5h7l9LBNW3teXFek0L0tv13zeua+YOfraJdJt0vmNdZiNZ+om8Mk3Fxn9+PTQrsDaykuisgBmtDI/eXMM1B/n1gvYfFc4disM44OE44OHhgCEWMyQCQjCcTybhlpxbI70zrv+1iEkLzUXlEecXoEXC3mG6ql+bXUADJG19pM6NeAK5qkUhgqqHybUjEAJYqWo9AAJzdBOo2LQUKEDJ7R9zAqAIgTAMBiwCBxTzIQvq1DQfAEzrUfqRxngXoKbuWD7XrAlUPA5Wba+PJGVXogoIDGDEGMEhIORcfSZYpGbXDp3WomwKc6KnLkJXr2voVMxa838jQHGMwB9/eA8RxdPzCae0LuWv14nFs6TdaitU5ui24ZNhrdefBOshmOfQf1lEZxOFflu+rb+3lNnY30477bTTTjt9LrrfeXvlJX/T5GgpUcXbtQk3I6G8UudivDPzkq39dd9f7fl62b7ZNf/0OV5Ynlj87qWkN3rXWcSnnglcK7+iJWgjqsdm06/N52EYAg7jgHEwh+2qqYAnuHNNRbHZL6ZDgNv798zpCkO2dDKeD5Vmkm9c7MOOHazajK6dYurkWguUvaqMokRQJUAIWg+gMvbqmosS1lZULW+eWAQmEamZvGMMppWh4BoQh611gA4WitbCQ8iWQAkV8FUtUJdbQgCwwBBQyT4+BxU9xlAFKAQEVTARUkr1ficVQIvtdL95CzAzcNGD1go8vGAZsxmQCSIBHx4O+Hl8xhAY5+TZ0hcrfY07Lmz9Gn/dnjNd+W7cs2fSyrHV/tbMEnttZCdUWBvtcjy3+rglNFnLZ7NeEFfnbqeddtppp51+Ldo9mO6mhabhE+hTW3gdoH1KD2t116+9YjQHFx/ePeD9uwfEYBJ9AjqHRoJpB8R9FuDmNJZjotdiFCYckbq62vGbPfe0AoYq59m0HdV1QLUM2RhnCKSYZhXQ48fNXihAsrmTqzCUA6CCEAYLP8tc5fOTAFCBiAELVcV0erEs1XIGx4AYA2IIbkPZbJh7u+5matW0WmbWxtWNxhj2Zu9ZYKFIhmYfOpoPx6VZHGq4PQuja74hWQSSEvJ0RgiW+wJd/RnIJkYI0Z3XfY5g4+x9PQw22Hkm4N0Y8cP7I07nd5j+9AtOk7j52SWE7te3ms8tFVGXO2Chn0E7orrKe28VXrQEf9fBzz30WZPp7YBip5122mmnr0Rvz2OxZp7wyvmeYaoCvtXq2xjiIvEu/dxisi/C2trBm+3fbK+WuT3GtX7mJh1zCfAFCzTjsHTGJxPWcn408x5FYb7mYv8l49rLbxtb13+u02K4ICZEYgxDxDAE1ChLCoCpjcsZZDgTb6FLPRNFjdBQmDatTCBUANdsVC2Da0PKIKj6JGjVJBRTpfpRoiRVUyABQVBRh1pfqhlE5nRMHvkIzvirmq9ECIqSFlFh5kMFoORUoiWZtgKaQQBiYAwx1LH2YUmrf4cUszcC0IEC9twaZL4SDKo3lEJtJF6/tsPsEnv16+r24HIvOmoo4MGiXMEc2ZkMPDJ3ii0bO8HGxjCQONNc+NxUzYj3RbA8Jx/ePeDw8wuyKM6pAMcGSPrhbWLke41EWXNtW7XbEU3rg/Vm547bF2e7792+6461Ok0IsFk7UgDUlfHstNNOO+2007dGn2wKdSsGezm/lo+hmFToalK2yzbXfCWW42HmRZ3ZL2+5cjodONgGjmYSUmcirr3n3+aVX7jaRd3Kd5Zzcwm8D3IBCkrxeXsz85CVruqB2t/8WnTRfN8IE2EYGIcxYhxMws+FCe7aoO4SRBWaM8DUdVnW0kLBGoAkv8aOCa/AsjhszwEUETzbdXHMdn8ElJgv1j+TAOLakzKGCixK1x0ahkCV3Akb1cynJIhLWaCiyMmycqsKNJ8BKAIDQ4wYh8Fi1/dmL2rAIufii1HWw6JDMDM4BvPjgJmVMbPHwC/3ggMxVaRkGgR2MGGghUFk46/ARm2ebC7m2yCnZPMVGJo9FC1Hr8++O3xtaujcAih9b5B24/PG1Q4/HgZwDPjnv/yClBXnVJzAF/uxtregtXt3wZj3uBJtxFU7dBMvLI9RO9CEI5f6lXlEoQZk2xCvPDeXQ+iBzdqwumfUvO6KmeBOO+200047/cr0q5lC9YDiUyM03aJ5u1cYknruOoDYPr6O8X61yvZrptn3tcYLF3PB4fhpNWl+J4olFN7uRnsXR3uX1CvwqHN+r8wszM7+MDAiAcE1DWB2gXquGhRIMYMyTYHCfQHqddj36oNRJOxkuRMAQLNUZt58G4A+f0IfHZE6KbwSG4hxsGHeEMGuM9uYRRLSdELKEx4eDjUZXgjG1JdLQ9FcKCG7diCLIKcEyRlpSoBfJzQjBMZwGDAeBgzD6G2ZFiG7/0VOFn61hW8lMAX3rQhQMbaYQgeCqjYDNSleubNLjO7m01LWKjSNRzfvNp8ARwZxxJEem/Yi2xoKoSYo5Jop0OafiCAkZYJsbbWxuaZVYR9DxCECAxH++MN7hPCMp5ePdZ/04aQ75QjK14WoAPM9rhVMXGWwO9zRIfRlKw1wzup0GTe0RBVD3ZMW0nge9m+buVO77q6719vQ+Q9dHtppp5122mmnL0C/qo/FElwU6mPiV6n4G4DHuiaktVu0IVSllbfAxbrwsx/7LCZUYd6v1anFLgusObSvsBDzn7T69aJKLzztMEaTHvuZHnBQ34C2C1sIr2eQo7+OXmoaQ0Agz9qs7a8waMWMqDCe/eAJxgiTxTZFiWxUvKbJr0MBd7BuuUIqdhJ2vwkfO83n2vZe8f0wR2JS0wqAspstJeQ8QfIE1QGWKI/Anm+iREyqPhkOBLL/aU5QyZA8gWBhW5nJgMUwIMSIEIJdsVr8ey3AwiMylfWqvtsEb6tMZF3YutJNak1gtuzk/f4qcfaLFgTaifG7HVtDFHPAMJiWB5prOVs/an0rtf1CJXBvc7D3Wq2+YxGLoGWJBt89HHBOGSE8QbJHs+p2B3X/+yi7thflegVCRdeL2N4NGWNO1aCsFqPl+W76i1FVM0OblwH0VXPJizEtxrUGEC6jzi0jYO0ai5122mmnnb48fRXn7V9Tg/Fr0jXZ6GfvpUjoV6nJatfqrh9eII5StjJ+SxktrRyft2dS5T7jhYVQPRwGM6fx9PXGI1O1+bfrs8hLfSbnAjgKo44CPqlEh7Jkc5os725OLeEePKpU+WNmy/hMBfhZmFgDBoUJDgAUJE3yn/UFkk84n352MyaBTCOEGIGAEAwQpCymMUHGlDOAjJSlZt6un+lsmWiZ8fj4AeM44OHxASGYWVPOgqymRZCUTSMgYiFovUwferbkkyBSY/Td70GyAQb2ZHwFQAUOGOIAoIGVsqqEOXNepP9lNYs/Bwd27UuukZ9atKxyL7u2yPcsM5tlmWbv09e98sACkK0FO2v8++/fgQPjn/7tFzy/ZJzPGcVgaQYqahumDWl6EL+qOl9WmJXAyLAM6266pgQB11ugvzNeY8XnApF5rZmp5AL0/FrPi7XoWOod7v4YO+200047fWm628di+f1zAYRbIWvva2ddk2EN4sab/gYjPStz2V+hSxm/g5HVZueGHEUavxzPhZ+I3mJ+Fj4fK47zi8NtzP11kGXAvpz+ounoJb9tHxCAwGSMY+Fu4O4LHYPZ1oC6ay7aDfOnUOm6KSJutdCtBj46ppUYhhACiNUzZveMqBahOkBs0Y9g5XI6A5JBmjCdfkZKJ0ynn0EUECiYCZf3RWW+1M2RiGvUp5wmiCSP/JRBKmAoxiFiHEc8PBwR44AYYmX6ck7mT+EgiYgwuDYjxAh2EKTLfaFwDULTOigRRLQ5eRemnADx5IQlKZ6rdgCwaR+qZmTuo6RanOoLgPOaIgi1bL9Py5y7ZghuiqU6b4MIIKkydQIwxoCHMeL9wwjJL0iT1rnulQvqvi+QjORaHsm5AtDDIbrfCaCSoJKAPKHqFzhCKYD4CHBAQKgguWR7v3hENLVfd83andKL+3KmL+gAzGvU8qKUW+NSK1ObXT4zF+DitwAsiqneFlKIQUmdze6GemU+tvclmpE0IWt6vTCArBnnfEbkCOVtYyMQggbTWN5xPVXzekcd0wQXjeU2Kpl/iXhzvW9dYBgo3DUHO83p3rljCvhh/B0yvt9UfgwHJM3488tPeE6nTXWepgn/x5/+gnfjePEOu0a9f+7W+yhrhqh0uaFeJ1bGIYw4xBGPw3FTHQB4jA84hANGHjfXiRRrRvCtz/7tT8T76FfXWFwDIPfmpFg3H7p3MGg2Mh3jW5p7zRG9q1jr9hyD8QHzsjMe3OvNWAX/6G+HIoEk7sy5uv+XZmSXY5yf7mP4l/o9oOgdovtrWvZzWxJqjr8xkEmHS99VsoyL6zZetE4+ql2+mxkxAe5g4cwpdSFhpTkJk3j+CDdIqR7XbcxEJaWDQMWS3UEyptMTSBNIE87PPyKlF0ynjxgPjwjD0UyupPXVR1MidwbP2bUUeYKkyV/gisCEwxjx8PCAx4eHqjHJntMiJQMWKSWbD2pJ82Jst2YuZl9F60AEWGoJQBxUFeaVQwMWxdxMS2SqYuLkgIJgIKk6Yft6FIaWWl4RrckB20PZiraVLVRNBn2vlIzl9UYJDobUnMgVhDEyjoeI796NOJ3OeDaPcm/P8wIqINnAguQJ58nn72xzHkhw4AM4MgIDmp4g6QWazzZKCtBwhPIICtGd57lq3q4+ZGfSg8X+bRftQOry3ujhCN144M81Dw1crLHRMyFPV78cuLA0/IZp64u9ajzvAhX+T2UziFEokiQkSZhk2lQna8ZZzvcBBBACBcidr/dwB6NfSNSCOADb35+BQmVUvnXAsIWYikntb/9avhbdsw/KPH8Yf9hcZ+ARqor/30//FX95+XlTnadpwv/4H3/Ch/cPOMZtLG3xLSzPhi1UgrMAQOTwSulW5xBHPMQD3g0Pm+oAwPvhPYYw3gUsAoe6xzfTHcKWe+jfXx6L/rlfY1Hi02wVFB1D9glNLI9J0xos/RvWqYr4F60tgMPszK12t01M1dMQ3NHZnYS1JEajireKRmmeKboZtHSIpH0yQz3Rm2quDEZzn6WClswxHC6hAwBSk3A7o88AmBQyvSDnM05PPyGnEySdkdNHmCZAkEkRAIRwBIQh6QxJI4TIwtX69ZpDgEvFZQI0gUgRmDEOA8ZxQPTs4yoZCks+l1LCNJ0NKAEGKJgRhsGyjVfzMPXkes10zPomCEvVarQkgwoQgzg0iUzXRkm+xszmuM7BgEkBA0pg4iotV5S6nd9M2R0eyhYw/w1286bG6DpkreZtdlQ5uGQ+Q5QBIQQEHDjgD9+/x/PTCU8fn5CS+CrbmoEUkBecp494/vhnnF9+hqRT1UgkAuh0QBwiDuMRkhOyJKgyOI44PHwA+BEUjlA9QsF1L5V9PPOj6vZ1v9er4qc7ulVCdOuOaqZUbd0qKFkBEheAoivR7qdvm0Tz5nGKZmRJSJruqnPOZ+Q7+lEosmQkme6aw2N4wMARAw+byhMRDuHo98m9kmDucgO9ToECAgccwnbmZuDxr07CfzfjtdMXpWN4wD88/if8v/7w/8Q/PP79pjr/8cM/4uM04f/+h7/FHx9/2FTn/fiIx+ERg4w4hK3CA8HAg2sz8+sVnJIkjGHE9+N3m+v8cPgBkSIib2fRrfyAkQ/LF9R14m0a2XvpbmDxTfhHzMDByukt7wJCdYTVGd+94CLQXurr2caLdHg5OFr8tmPXhtbX6q3K59/XarRztcfZEPqzfQtzZ9YLUFOZpwUrVBlOr+e+G6Us1XwJBFWubemsXap1l2GDy+BLTB1gfq5Ky33QVCT1pKi5KEy0XY+rTIAKhACFSS7z+QmSzkinnw1U5DNUTiAoiAmQBJEECy1r/g+SE4TZpew+SjeVMn8C01SwAywOVKX6zTyLagZucYDCzOZTEYIloyvaFpmDiovwyqoQ98NQIjDDHdGlzr2ZbF1q3bTksyi+Bs4xU1ld3y66Iv5eBja19oC16GPkYxV0m6AAQlVY6FsGqUmRjuOAwxAwxKadKrgdsDISFYEzAk0gToCDTVVgSgmiALGZeoFGKEcgHIDwYJ88WHSwxf1YgkrU6yv7vwMS7b7o7wmt2p01Wj2+Zvo5O9wBiQ4gXp5dv7uv9vsN0tZRFoMhMx3aJmnLbtIkd2gsAAMkUny+NlIgdvOhbcwrwfK+3FPH+jFm/546xawpzJJWvtIPDLx89ff9Tv9uiMEYeMRjfMT74d2mOt+NH/CHhwd8GB/xGLeZGx3DAZEihARyx/0aOSArgXU7qI8UMIYRcaPAgUEVVNwD7NnNt1v+q69Hb9JYfF1wseh3q7ZhCUZmnPjGNj6BGmt2vbM1SHK75LycFgbPj7YYQbfsca/1sn78piGCM2KFyTNJrpmxFCm/McyoOQ8KWCimUH3EKGNwA0SChzedv+gZQEm8YF1n973I0DwZQ80ATc/QPEHUfCA0T0jnJ0ieADkDmhEgxpi7tgCakdILDjoBSsiJcD4xckoAB2MkAeTpZDknZAJDwdH8TMjHlXMCJoDZnbHB5lsh5gzNHBAH870wgMFVw5Bznn2W4wQgMEOIqmlNCf8KwPvJnVYogsiYqh6g9OZVBk6cay6ic7/HG5ix/wL1/jdtnxSznbLQ6uMKZCZMNr4GJKyOa1lUEYjx7jDi3cOI9w8jQMkBiwUGYwICHTAdMx6GCeeX6HNJmJLidFY8nRSQiIwPOB4fcDwcEDy0L0Jo1yz92JtgoL/8blPjFvtLN0DFGl2942b37u36q8d/I0Bip5122mmnv176YqZQd4ORa2V7wWcnWe0q3ngp92LHy3bXis6KXPXzaEzz8ph2J9akimvdN4du6qTIqL4ScwBSpOJel4qElaqkd+3SCuu+9K+4rsMoR2nllEEXUnV/BG+R+llwptelA9Wsp/hLFKfcMjKVblQONoQBKdGgpH26k66kMwgZDKl2/aIKaKraBAudKiCGOe7SADOJyTWZH4dgEm2CaS3ctMgctMXNh4quSsCkyMjNFMwZb+svI2fzxVAQOFj0piLvYPYIUO78LlmqQ7IUQFEc1YvmwDUUNcLVwpm+L0dEnlzPxjQHKaYxsHUqmjeCQlqb5EgQavNAQLFrU9UurO98POraoSI94RBqSN0CHKmMV1wCTWTggRkxDgjBfBY6jIOSmG84jKBwtrlSYBTgmIGHZLs6xAHRHeHJgWBVcUH9XiIwUQUv5dlCZYur/+caClVZfYZ18KTOyy26Jjho9/394GGHFDvttNNOO30L9MnA4nNpL2bmRjfau2CSV8R/2jE7y2OFSaAeoVx/01/0eTm0XkZ7HQzV+uXn60XRDG76X/OyBTjQ4hoUxbm276iTNHcmR83XwUtdmX/jKYuT78VIvFlPyNaF85zPHzUNRT1njKUxbqiMcXWqKhGQoBblp5hCaHZA8QLJE9LpCYHEclOQMc8pF8l977wHC51KlgRO1BhqQgmxGg1sEBlooQBmRZYEkgwwGxBwRpsJyM5EN1DhwEKl5rlgLuVNBG95JticMX3OJWfPvO3hZ9WyeNe5KPyxa1Zmvip1OYpzdWOeS3jXuemZOU8DRUzf+Ud05mpFm1Th8VXOlxrwnG27EgK4ZUovbdoGUSi36FTFNCywgIqmy7VxggCiEWF4B45mHCP1VjbH+Ka5m8NaO+TrxB14b6Na3C3lSaErZ+fzDdceKeb3z+z52IOCBRicNbdsfr3Xq7RmOrXTTjvttNNOX4K+OeftZj9/DVzo7NNe93cAm046uSZ5v33+laavajQuevnqEsZ+fFSP9XPZPi8iei3bArlFElWe0SCLVIavzWXJ/tzPFcwXguy0RWxgAGbWJNPkTC+5xFsAJGg+QfIZmsyciXUCF4ba99EQnAFnBlGs11V3kWaQZIhms9kiAmBSbvboSaZJcW2KM/JxiDgejiaJV8XzM3lSvFTnjDmA44gQBhwOB5RQeCFE01h0aFCyRZ6apsm1FFJD2Sq0ghkuYCSETluhrc8emKutQb+RS86QnHO1Oy/5MggNeHDoQIv2rHUxn7J1VRHHfFK1CezIKgPN1IqDmW3l5NeqIBGU3COiGSCG+uoTyEIeL9cLgHLBJZ0fiaNY5rK7LGyWgmwefSwlyhp3wFb7xst11udA0xiW9bvGuBMzuIK2OdVQv9qg/sV9tDCpWn7fgcJOO+20007fOr0ZWPQahls5KN4eGvZXjGniIn4tJlFFUl/+V8wduj9dIYOeZS+Mi85PY6lfKFqKa92vzfF8vpfaiuvAh3xM83NN9FxNq9DraLqyS0G2opq3NJMrQGro0a6gsX8w6KA+OQpRN3GS5AxoAKgxwWKujxZ+FQxwAFHJm+xrS+QhWAOYS7Zr1KTTpGyaC2WoR0dq2gQ3WFI1rQkBACMEyzAeY6zAYhhG5OnsJlg2IcxskZ5CcF6/84GhzgjNzYEunLQLE8qee8Ml/+UTtFzfuoN92D3HTLPiirnTfAMRDQyUCnO5/yXV8L/qzs9UAAZD0EXP8OPVcVwVxObsrr4g5o9jkbaYso+bLditwqJy+fCa206vEWj+RCWULalrO3xfFZBRxt4S982auYn+iybiQiNx63lXNBt1RRZ1ujYv5hfrz9rS9w46dtppp512+hbom9NYfDJteL+uuUdccO9v0Fhc6W1zQ6ulOiXKGq+zDtzmWodinrNsYQZIHGT1GotlsplSnjvmrSTGm7O0haRauzBbpmvJeTFCZ1hVwPC1cY2EpGfkdMLHjz8ixhHj+IDx8B7MA0I4QClAKEIoGuOPDO6H7EipSeTnkYAaA2oRnZr9P6qWo0IpSW6mQziMA8ZxxDiOLiI34PQCIKepzkuM0XwFYjRzJhS/Bjej4mAASnLn+9BygJTs1xRbJm5QkeJTdw1UcVSbeq2RnhSFKS0MqAMZLSCG2xwVPwkmMHf9aDHH8mNUwLH5WWjOnkzPnbuZoeYk4SFFTeLPIeJ8eoaIZdYOIYBiNL8cVWTNyOkFmj8iAlAOAB9s3VyjIbDotVK1Yz2V8AIKbcsJVa2mWKq9BmPJxPegA7DoZsWEy/ZCb1I2M+0rZmMdAJiZRfX7/obgpAcssz66czvttNNOO+30LdKv5mPRS6nX6hT6VP8Mk7Le7mfOWNvoVlrCTCpbOQCalWhtL8awHFOtcRmj/GK0Lu1HNWu5DhjasG5rhFrIsd4Mxtro16xIqUG60Fj42JftU8ke0YEWL63UzE4MLHjEn7IXFCjcnkDB6Mp6aFHJZ0iakKdnpLP5TpCcASGoGDgxBUUL92ZmWGLaCi5rLUVhUa+FiZtOqJr3ZKgag88lS7Sqmx2hMfIE1z4whji4U7AlWAMADgpmM6EimD8HwULL6mTzparI0iJEDcPoxzKIGTEwQgw1EhS5doZjqEx/i6aFZuIjllG3l16XdRVtuSvITZSYGeNhhIh4cj4DfKUPZkaxN2o+T03jUeb08t5TlIzeRIQQInLOloPE63GZN8nI2cCaCEEkAmRoIZ1+wvMv/4TzdAZRQIgP4HAA8YAQHhApABQgvp6mo3KzpzI3sD1tAEL8WMsNUk3MUABGwQTNXAoKB4Jlp+rs/lmCC4EBBlmAgVKm3nOq5qtUnk/9vdW1uUZbfNp28LHTTjvttNPXovuAxZWX1YV0ji7P2eHPogJo7b0ZlMyMESqZVHVRDNud0/tir10rzQvPP5fnLwpuBRaLRgH01zNjdooUetbXEpDBLpLmV1fABTpgUUxQOrscFM2EFkl5rzswGxhPVHfC+fwEmV6gkmFycPO3qJm4iQ0McbBP539DDyyouHwD0DlTXiT35rjdOUdDITlZKFjq9zQhMCFw0x4USKXkYMHNf6irpyLmmi6WX9duBwUQUCJfiSpioKo1yMkiX1Fn9lQZ/IaL/LNAs2ZmNTPNKUCPOgaXDWQxc80cXgAV2KMkFVXTDPT2eNs1WrmH6Tpbc6ZLUM3uK2ImTdmZeDMns9tNkKdnTKefME0fQRSg+QEhPoJ5BA8ZxAOYBjBH02JQsDYQIOo5PahdQglpS9oYd9GWFLCBDd8b/ngwTZtHyermfKlJqM8/n6fez2INCJCvzZrp2r3PtFXNyALI7LTTTjvttNOXor8SU6hPtFuaKxjs64JxV533cfud3WsKLgu2tntpZdVVzA92dS41H3NQoJ3Ueg1YlChBqpZ5eTZcuNO0zpmUVebEDwnaPDiL3YTWrv4IxGAOSDm7yc/kuSbEQ8Gao3KWDBGFSHI/BUKII+CmNgYggmkqiklQHMAYwGQahlCjNQHkwIKcqS9mWQBmwMKyYftYg9n/p+kMpj7pH4EoYBwfEIcDYhhtPHXRmskVs/lTlPktTGxO2cYcAoZxcBOpAapAGIaqnYAqEMn8Rdpw26SXsddPD6ELQLvcIKCmD+o44rqmxYk7xghC72htIW8zWdI57h8RRUEhiuDJ/xpyM0l8Px749ThE9T2s5niuAkltvSwyGAEQS5anwPRygmrGGR99jzM4HMAhgkNEiEdwGDAMB3AYwDwg8ggiixxVTKey+9ZYIOJiSlXMohpzXkzhig+IzTFVbVOLVtbMndTnVNQ1fg6YleY+LDMNgmsr6p21oqVomouiSaHab7cpXMMy72PXWOy000477fS16E2Zt3taZTwLP7M0OeoVGksp3qdI16jv9M52St0eC3R0cb2Lb5fDppXvc0Cy1Oz0SoHed6GvT+WY1kOdlqEDE532YC4P7fq7qu1o4VK7I4trLCBGm0+EN01FrKswnwLxiDrEbfzwOXVmHyKQPFXmmcNgdvVEoJLNWl0zwRFc/kKszGrgoq0oEYUAJos+Rd2+KDk+ivS+zrZfQwEWZhZk0aVsLg0whDiAQ3SmvwCz0r73V4ANFSddk+IXM6Y4DFUDoQ4AGJbnoQALIgYoe1LBbv+pj7iCmetS8VKhvweZlmtpAEg8mlHNLVLqdpocU2ZQbbVqbJq4vQHfwgB3jHBvMmf+JTwvX65LAeIBFB6h9AyBmNbA91UWAyesiqAJnC2iFvHZ1ogHzw1ygDn7R4AjLBfJ4CZqbBqNMotUAhOwD4Uc9FaljwEIlQYyigbEL5+q1oPQA5Den6NN7dwUqjeB6smmkPyzm1P4RF4IO+aA4regsRD02sLbZDHOBFkTsubXKwBIknDOJ0jNe7NxXCqQjdm9CwUOiGwZc7cQgaw8ba8DAAOPd42r9EVEiHfUZY5g8OsFd9rpM1F5hn0YvrsQpF4jheL/+v3f4G8ef4/347Zs3cdwqPfc1gz2oiWU+X1CG4Fi5BHv4uPmOodwQKCIwNszfAcKiBTBd2TrJtr2HL2X7gIWyygy5ditF9gaY67dC7K2g1W+fpVuvjB7kHHBVHex+LtScwVDu675S9qTg80xwcp4ili3nVtqD4pVi/1YSDIXwORC80D9UFtD1JWfmTfNrp+uTnIBMtSPEYURpEU5Z3AXQ2NydYVzYxZ61fZHMYsRIpOOi4CQPETruYKGMDxC1fNPyNSABZwxDybppzBU8yOLvOrmUGpgghB8LOYUXpO8OdX1dSm/SfHNUVdCRjGlAlBBRYgjYhydYe3yilSQYnPCRE3740xpCJYfYxxL2NliTmPtxxDQhzPlzEgpeaZtrQ80raCCGtdbwWhbT/WH4PJeKPtD65wGBPbvNI/YZT4vLcpV/whSVlj0XgNzmsVL9WDBQV51nrfjpi0pGhpULYGXBodHhOEHaDBWkmKAqu2VKQkgBEIAiTr4PFnWczbmLjBjjAeEOILDAMQB4AEIB4QwwsIOmxZDyM2yQC2MrVjbdv/3ZnuhAQXRxfqjhgcuALD355jtuYX2YemgXfaF7RFb7wJYCgjqwdvyWVw+Z1rJb5TUTSO3kGhGloSX/LIZWExyxlN6epMGp5g2bqWRRww8bGb8iQiHcMDA411gYeSDPUvvAD6iAgZhDMfNde659p12+lzExPhh/D0+DN9vKv9h/A5P6RmP8QEDD5vqBAo4hiMSbxdSqCoGHkCgu+4NJsbAAw533HsP4QGBw13A3nJiBUQaNvPSAWlz+/fQJ4Wb3SIRu0dqdg+4uK/FJdDomfnGIC8Z6GsmQRdAYoZM1suuaQkK8zDj/+eIxXsoTOxifLMybsp0obHo+qje2V0f6Mfl4KIDT1yrL8bfFSrNMVcZMFQVORszqHlCjBEgQmQCB4YiQNIZqglpekYc34GIzEZeXQXB7MAiOwDJSNMZAGEMIwKciS/X5cnRoBbG1LnEMjqbxXrtzanZTJiM0bVEdrleIocADgFhGIwpDeWWKRJtA1J2rb5KxSfCfoAB13YEsIMSEIE5evQlM8OZhQNmQggWZla0haHtQYSZjr3OXJBnES8O5XNNQ2P8TWNjTH725HzFEbvMzfK+L18ViiyCnFPdL1zD5IbarpbrUHNaV5/DAQpwgIJxyoSPE+MvpwgRQYxsUhgyvw5bkwjy9iS9AJqBnIHkvjXnMwK5r0wwDUmIEUM8IISIwTUaFAKCazRKFnYwO9iA7UUHEyURn2kwpB63/Q43BWvClAougHrNc6CBWblysAKHAg219SG1bVQtSU99+1+DMZzkjEnOm8oqgHN+2cwgF5Dwy/TzZmbgnM/4efrZQDL09QpOohkDDwi0UftAhGM44BiOdo9vIAYj0oBIAwbaxhDZM3TYLJEsVHbqDhZ2+k1QL8V9hQIFPMYHfD9+v5l5H3jA9+MPVQuxhVQVWVPN/7SVsmZEjhj5sLnOyCOoN2feNkAUk+rt2p5fhz7Jx2LNLhhYBxOvaxm8jfnPzwBe+hYXra9oKm47Q6+ZGcwl/WtjIhf/N7OiphUoTZSRXXRPlRWs+pa+/d4BtG9/DcBoP+Qr11GAxWJaFm23KhXcqJkfzfaDZAgBUIKQJ0MridKggGRInizJnR4AHYzxRIu2ZNGk3MlZBDlZTguVZPNBzfQEmit2UgcVNWJSaQv2ku3H2QMLAGbuVPYyB9OkhMHzYRTpsLfkDHPPdDdH69azRZEKs+dl/wCouR1KvYXmqdc0LOkqCNZukw+mQAABAABJREFUjbr/L3BlV7+Mo8+nsTSPK41XjYjCfAo8D0c/hqrp6+aq1FUVZD8Wgif3YyCJ4pQUT2dBzoqYFMHD38YYwTAwQO7wnzU7AGADGCixohRMAg7Z6uYJkhNiiEBItrYhgnxtwYJiPsVFqwQ0Uyk3fSoWao2JL2Z2fUjfrcBCbbQLvxT1502pW0yiUOu2Z+2aeepbHME/B73lpbsdWEw4yxmTTEiyTdJ2ljPO+Yx8JwMhmiFBEDaaCpBrKccw3tUPl8hvG8EIYIDkt2DmttNOb6XtrDFAYASKGHnEcSOwGHnEgY93mWICJnAQ3PeMSzKBKSBu1KYAQHDhgd6hlTSLiXtmzmr9GvR1nbe3g9LrTdzxgC0M/sUgegb5Zh9r4IOuAgbqkMKsa2r1CnHPrC+AVsumvA5eiKmbyjbG1t910NSbU6Go3dwZmvo+dK2+zsYQgplDEZv5kkqqJjmStM6TigCaMb38iDSdcT59NLAxJGRWcBgRxocK5kQyRBJEJ5xefsY0RRCyZbAO0TUB5JGcCMRk7hs5YTqfMQ4jOIT5DFVmmlqOCBgjDBCyZ78GzL9ijGNdj2IeA7WxqYjlr9BiPlU4emMYuCTJY9ccVB8L86OQ7I7DRPV6+g2joheM5JpN/traXmia2tJ1WhV0bdm89M7nhUKgeh5Q5DS5Az8hUHDNSq4AqZrAOfAsZOuZIUjIycLOhvAeYAIHxSmd8dPHj/jTn39CShmh+OiAEGJACBFxHBCG6HNLYIrmQ+G+GwyLDBWgCCwQZKR8wss0AfICyI8IRBiYEQeb82E0Z/AQR4R4AHO0HBrkMIWigwwPb6sNXNkaNbCh3dytmkP1S6EK8Xwo/bFZHeulZQzv+1rZBwbWdun0TjvttNNOX5buBhavMfLL8ze1F3P+3D50UeYNY7haltrvprso5jEVXaxineumUH6sQwa1OfJfsyE0kLBk+maaAGf2CCXCUAFA/Tgwkzb3QKAfxxLwzPvsQVM5pjNg0hhxb7ec6CTixkQCRGLMsgVZhWUWUGjOnpDNTKMkT5hefoakCZJOyBwtWlQMxnxjdAmv+0YQoan5FJImk05LApNFaQoUYZm33TdABYEd7FTJhF1ncZYmcG3Xziksr5sgOyNXpezSM3rG0BVg0cxPfC6YamhV2xtatQG9xLrTgdk8q7rWZp1xLN97E6i5bf58n/bn+Mp9IzNNQ1nYvn4POrp7SLUCIgqoGosCKjrFTbu9YHkeSn6IEDxUbxjNNIwYQwgYx8G0ESkhidmHExE4BzBPCOlsgNJBGzODA5vJmYfSDWSgPGTbP4wB5nQfQJpr+N80KTglTOmjR5uKGAYbD8cRzAMoRBAfQAgwHw3XABJBlYCglqIF3WdZmw5sLE2l6rotNBHXgMVs7xRzKS2+N3VHoCQ93GmnnXbaaacvSXcBi62g4rY5UflRD3aHqGNA5ozRp4xn1k//4RxPcbptRkcLzHOhoWjMUs+0Wzmuv+fH18Y213a0coreFHbN1KXOUZG0LwZd2591vQQyNCtbSjScZQzxah10Y/ULZfYoUOp5AkqkJAiynCE5IecT8vSCPJ0xPX80YKAZSRWazuDjaBJoHCtTZpoRgEJAyYWd0xmaCcqEIZi5TQEWBEXKZxCAGNjHlZHFzLFADKbo2cCpm6v2fUqmbRFn0iDNP0Dd/EcKsOiY72ZWxQ4uChNuoCLLnIEs/Ybgdv4qNQt1oTUn4BYudV6OuVuZq/eOm+9o8YUx/5UCHtduqxKquN+Lpa4BwWY+VZIU9m315lTiWb+ZGRQsikUcDmAOUGKMw4jHw8EAZE6Ypsm0EA7YSsPFjKRqrULAeDi6s32wUMfUNG9Vw0WABZ/1fZrPgCSQTu5kzxiHiBAC4jAgDkfEeEQc1bQYpACFZrLnN4y6MECpQbHqG9OByKbpuL7O/Vrbir2uCenbAQDeNRY77bTTTjt9YfrKeSxo5duN0q9oDeaah1rwZjvtN1WGfa2fYv5RoMiMkSdjJJsPxJxBK+EyzayJu/bmWoXKslMbC2bApJcY6+xyjakpzrBw6W8NetRNkQ2MtPTGFSVRK9TAEwRVybKsKwWQKYAE0gSlCcyKAAZCdBMmr8oKylaOZAK54zNgoCLlDOifoTohDEUyzO6UbpoMCymrgCaoJOQp42n6iEDAKRIknyDpjNPLz4B6WFQOxgAiII4HDId3eHj8HnE4IMSj29dzNUdTKHI6IU0JIUZkj9CUczbn2TIvxbfC59E0E8UszTQcWRIA8YhBMBMrn+TgGbiJA0SS2fCLZdwGM7SiyxKtyU1uRDwKk5tjoeQlsTkyb3C/Em1J8QIViXrRnlio1pQmC9ka3LmbujCq5A5hi/uikKr5sIQQUPwNen+V5v9SNDoGEJQI4IgYImI0EyY4Q/67Hz5AQ8Q//vOf8GMM+PnnZ7y8vOCcJotGVcGYaScyp6qlmE4nG28ooKL5z4QQ3CTNtGvMnvSQIogCSAMGEAYmkBAyFOf8DD6dQfwRMf4C5ojBo01xiVBGwbOp2z5Tz5th93uYaxpsUsw8UBXF8amA1arFUqBkALdjS2DRtBQzx29FPbdrLHbaaaeddvrS9GZgca/z2HVQsA4u1rQf24AFZmDipinW/OCrwIIAVM7dcyKQO90159q+Tvkrzp/ale2HugAVizI98DAM0LtxF+bevhfpKMHNRzpziSKhbyJV8raapL7OBYz5mgGzel3l2i0XhTH6E4AM1VSLVgay9AWaayC8fcuI7NGVzs8gDkinZ4ThwZxrPZJSsdkHTGKvkqEyeZI7gSZBTs+Q9ILz8y+AivmfUAQogDhC8hGQhMAESQeEMVlSOw5oUZkI+XxGThlMBwgBaWKXtHvSMqhfL2w+WUFiTrwC8dUyQKBw8zBVZC0oi5z1tP3DKr5ZgjPPag7BKExn+SuZyztQVuJrk2er6xjNop2oydu0OZuLWM4OydmiYZE5Es+ALFs9Knu+rOFC09jMn+b3bfUN0W5cdVMTamZxNIb6eBjxnQLvHkacXgY88Uudc/HkiaatyO40re48roCbYkG4OrkWDVLOAg7iGhXTfoTALbGiuuGe33ssBWBbxC4RgMkcwEuSvphHz8YewcFABoWxXpuWLU8VQ/hSUp0GezbYvVCysatSF4gA9VjViHRLoF3D6mBFoHsEoJ122mmnnb44fTaNxb1Ao9Z7pa27fDa8QX2ljWt9LE2OLo65/XvOE4ASphTg4GWqKcllO9Bih18iJ3HVfDBx5RJqfb+W1owz5J1VfpF8okvRQGqMflD15HNny2ativFgERPMjMbH6iFPKbAxRRRgduTtEwCyGY7DXFcFQIZiAjQBmk2DAMugrSE6E2XSbg4RoqkyQCU61BBHqGZIhkWIkoyXj3/GdH6BSML7H/4WIbyzHBcFVJAxxilNIJ1ASAASRCak6RkyPUPzCZieUaJJgceaYC/LCS/TR5xffva8GUcLJ8vBGGgiyxQuClFg+PA9JEU8nyOqxorYzZEAuK8GB2rZl9FF85mtnrVg2bkZJCOEbN65SNg9NwcxQwoA6ZLkSAlr20VtypKgXk+FOn+fsr/se04JOSfPcm57QruQtYIw01YU5rjepVVb4+dgof5Kf72EvJnpGKPruMY0KLD8AHYZFto2Fm0JgHfHAYdhwPcfjnh5eca//UXdlyK6Q73NS4Fd2XOdCFnSOiLzpFBL2Y6sCiIDYzlPs3uNA/s+N6AXGAgBOB4GDCHgMD4isILZ51kT8PLsSEARo+2dIUaMwxExjBgP7zzaVATBHfFRgge4yRQImWg2n2ZeR938+V5SjxxVNRptbosgoT74vC7tzts77bTTTjt9Bfpk5+11e/231X2t7OUxoLyZq4S0Hi+Cfqqft/pYk7ZejFEABJfioiR+s2g/XCT+3IGCXq9QNBFeVyUVkX2NFlTLFnGkM35VkYBm31+BTLVbMjt34zfMblw1I6cXuNE+ZEoAyEyTnDmT4hgOQohu7x5HwJOIkWfBZjQpucLAhOYzVM2JWiWBIMgQTDyaKU8XEtLmiiFsmgNmhQQDRaQlZ4JC8xlZBC+qeHj84JmqS8IXcp8GMU0LeSK6bBL7kiQPBNfOuK9DGAEPLQpfL2Jy8/jsEaxyNRsCIqDWtkwvSCKYzicwcgVuKLCQzfyIXBNgaKOgPANuCAZgwAEIAxBGEEckFOfxDBYDE8wlLK/Z7xOxR+TyvSEtI7fZ70vNqK2SYSFXTUpfwI3k5P4QySMySWc2p3W4bZ82kKxiwUCTqju8l6zZbvYUGhjR+p81KTkXKGaZrmfMcsmV4fOm0c3C3HwtEP72Dz8gpYz/8S9/xuP7B4gQTqdnCwJQojCBzDyOSibvwph7zgfKnpCv3ER2X5FfqyLPwHoigDOQBQic8XLOCAGITIjRhACR2SKfkSInhVCGZEFOGZFfkNNLdQJnHnzOomvFbP+bCWJ5/FK9H5mK2WTLFK9koLXhB38SqHRqEL8/1MEVfhsJ8nbaaaeddvrrovuAxRUtwC2J/3ozVxj3K2WuHSvSff/V/qfLOrXcBmC0CmoAYwzhiehqU1SZmsLs9+cKmVZCQKzNobNIhKnIs/s6WhnIEh2KyJKiAahhNXtfDaZiHiOQdILoBEnPVTMiaULTORRQE4wJE8UgQ3NuJXENhjP1Kha1SQWqk4WSzWeInAHJHlrWxpsiTAOSp8YcExtzzxFggbCZpQgUkAKOFMgTsiakaUKenoH8AIrFpIhc0i7VZ5ZBPifNvIqIoJ5zgjmAojHyFKKvkfkw2Hk3aUJjVEl9vETQPCGdT3j+5d8Q5AzWBGhyxtB8MxSA5mS+D9KyVxMDPBzB8YDh8XtwHEHD0cxdeISo7x0KYGWQdIy1dE7g3V60TNjOvGv2BHIFeDVms8/ibaZOGdN0rmZQJc4QtO17Fa3zQ2ThTyV7GyKWkJAVsTKs6tqXliG637tFQ2NzwaiqtQJ0pZh1FeDBiBTB7tj9N7//Hi+nM+LACMMDQAY+cjbNS8oGjkKIfi9wvT+KZL+aB6GAKM9OTeRg0MLftpHbXpzSBCJCIEaMjBgIx0NEjAwMAax2F4kmkAoSMjJNmEghuTmKhziaM3lwgBwGhHAwcF3vXdNoFOAgPoam5fGx9RgCNl/aBl4L2fOC7srautNOO+20006fg95kCrUmCXsNVGw1b7oFNNqxy7Ca1+pfnOs1E3YQ7aNJa9v5UreLvuR28WZ/XhgDuNCxaBJaXUDNLEFNQsrGkpgjqZtt1DH2ygs3sarJs4qkFWaTb9JzGKMGQUomLc3TC0ROIFLLPRAs2s6UqCYFi2H05G9jBRaFeTeGJUM99r+ZK50hyR2m02SS7zSZVLqAjcIEScLDGHGMFkWHQ3QJMZBBxlRFy+RMJYOua38O44CUBFPOOD//AmbGQxh8/g2EEYAYGSTSzP49DYBl9Y7VbyLwAI1DBTXmr+FSY8/iDDKpMLtEObhjLnPA8XCApAkPH36Hpx//GeeXn5BPP4EwgXAGUl16A3AFJKppY+Q0Qc6/QE6/gOKIeHiPcPwAHo5AfHDtzQiNpk1RZDeH6YBF5rYnul3IMIAVuYS3JetfE9J5Qs7Znc6Tmzzl6kRewU+RbBfNlfuLGIBxczm1CFeaXZoezDlcFSBWn7uiCdCqVclifYsKYrCkc4EZKZ2Rpgkpna1vZSQyzUMMAZAMJuCP37/H8/MzPjyOeDoLpjThd9//YMy3ZkzuUJ+SNBDj3HkI0SX/AklSdnZj0tGBDVf19S4g4iBZNCNNDE6Mc1IEZoQgiIERAuM4PiAGYBgAgfkZvUwTOCUwnRHCyRP7DdXBO4aj3ReD5c0wbYbvcQ1V8yLol8Sj1ymhxxK93wYAsINjVd1NoXbaaaeddvridHe42dc0DFfBBdGMOdoKDNb6vlqfiuz+OsBYvYZaj6qJRNWDVK3ETA1SP4gKM+OH+3FWTUQLyQqYQ2eJYlOctEvrPWijbhDq5ispGzMvKjWyjTFyGXl6RpoMXKhMZu5zOJjNfmCAI0AR4AilAIsiVEBSiRRkmY9RHIK1tH3yLNkJOZ3d8TdBcrH1T9Xv4On5BOSE+MCIwdKJUWFyPHmdomTpLfH9jWHKWZBSwjR5P3kCZIKy+TgUcxHuvRZs6cqCeIQnc9rmMBqwoDmw4BIJioM767I733KL+MPmiBsoYgBhnF4ABl7kDJIERqocXdEYFCfpommqpkGSgARkegaIIXkCxQQKAzSMUD14VvLB0SUDYmZoJcM4wc3mCoypJlIm9c9ZgFz6E2T3Xyj7pSTaEwcWNmWeGbtwqURQKf2Zj0I1/Sp5ONzESRVV6q5iwEIhBiZyRkoTUp5sD7FJ8GkYXGtgY2icfjOhKr+HwDiOAz68f8T004Qs4v4ncH8U01AQp4LjUBKiBm4aAA1tr5Q56HOR1GhLRdvR24Y5CSxUsKrAptn8mIgJWQkCQmQuqfPAJAhsWiDLhTKBOSNQAIJld2cAQTI0DOCovjfhEot681chBdWV6GEhVkbr2tCvgCuyZ0LfRmqZtzeWT5KQJWGSCZNMm+qc8xlnz9S9tq6ro1JF0gSBYuBtmW8JhEgB2VR82/px73x2n6Oddtqpp+uC6lkpIkQOGMKIQzhsqhPIzL4tSMrGe6/4YGoLrPJqFZTgOHxf5m0qfpXbnwtyR5buQlufiffSm4DFNe3ETXAxY9bfqG1AY/QvylWMcANALK7hou2VjTwrWxjYNhC4y0Srz6XPwsyYaNcsawhMw7wf/1qck2k2nta45DPSacLL819wfnnGdHrCEAPGMSJPZ+SccH5+tvCuYlLiEAdACQNGRBoQjt9Vc66sJgoVanMqLunUs2fMFrEU9jkhnV4g+QzNE6Z0dpMbgVRmVZGz2Zzn8xkPI2H84yMkRmhMGA9HEAMhMFJWN81JbjpkpAJ8fDrh5cX+Hn844SAJKicLTUvO7BMAUfcpSDblTBD1UJ/koUhDBIWDS4ND/YTnmkAJD8sDiAfAgQc5E8wczFwpjBiGB4TxgDw9mb1+egHlF1CN/KQLu5VmelMjOKlCzk9I52frN0RwPCAcHsHDgwGbwc1kwgABW1StksSPHfwUIzAPV6tqGaynaUJKqfMVKaCtMc85W3K68pCMMc6AbQHRFv6VELr9ryLIql37dqFEBCE2kzgVnE8vllH9/IIs5+pwPR6O4HfvYU0zwlSCHZR72PtRQBSIULw/HvA//Ye/R8afIX95QppOlghvCDgejgAx4nnyiFtAyrmaQwW2NRyGODMVq9Gw3ByrBFZQN80yE61mTqXdsyKrWmjgCaAEnCbbSzFEjEPAECIexhGRPHdKPgOaQUgIBAQiRE7mjD6cwXFACAPi+ADiASGKgf2qoTMARcVMr8gxCqjUhgkLkCpqjK/BrE5ywlnGbYVV8TH9shmIvKRnfEwf8ZfTj5uBxSmf8NP5Z5xz2tyPquIsEx7jAx7iRkaFGVkzxjDiMT5uqwNjcALHu5iOnXb690Br/NgaMQU8hAd8N3yPY9h27zExxo0g5FNpkjMIjMi/bnaH7MIT6QV2r5Do/WBkC911pSWbMHALHAAuXpsxK+VkUeQX34C1tl4FFp1mon535mSpsYC/jO2z67srW/ttI0LXeCctdCbfTY+KeRQXaTJZRB7JJmmfTr+AUMJ4GiN4OH5XHTm179u7nJmq11GYdiBNT8ZkU8LxEN10hBH4CAUwHt85l8aYxPsMIyQMSDQgaKz+DCK2BSEJQGdrXpktuINtguaEfLIkYqqC85QrIztNZuueUkIWRU6CQ1A8jIxDULx/GPD+GKupTs7GaBJpNUMiJeT8gpQFv3x8QowD/vh3f4d3j4+IDPz053/FMB4xHt4BYlGsFGKJ7zw0azHDARNIyROmDaA4GpjjAApFG2BtFC0H0WB/xRyFTatRzMIgFiaWEMDhgMPj99B0ANJoBiuueakSeGe+iw8BacvOTSIuwVbXBL1YMj/+BcQB0X0yOB6AcDDtSohmqkQMpDNKgr8YIhACzkIO1KaatTvUbO0GdtmZ1BDargIczFZkMQ/PSq7JUTVGvPidtIdW+e6Scwej6fxs2or0ggK6zLmZMU0njMPBI6qFer/XLOUwUM6kSCoIQfH9+xG//zCCPCeIqkKQPBQxMD6OMD0B4ZwM7FpYX5+zOl4BwAhcvBpakkOrY8ENDKwBBZg5bFz4phQA5JqgnJEz40SE0ykgBsIQgSEEBGaM0cIZEykSbB+k0xmcMojPCNO5Asri8B3iaE7gwTWNs1w57XmxfIV0j74vTgOPGHg7sHiMj5sZ/poDCISk6ZXSRudsACFpSWS5YVhQJEk4hAOGjQx/IMZDfMD34/f4MHy3rQ4HjOGASF85ndROO/0KlMXAPM80sLfJTMPZrRk2aj5VcQhHMIXNwpStoOVzUPhC93fJmcTA5mf/ryXQ+CymUJfAon2Z/X9R54b24Fo/RcLZAQv7uIyCcglexIFJ6bs1MfujaijSDgJVCq1uy8M1B4RpLlrbGZAJ6fwEgiAyjEHlCBzeF1HoDPw06XJTn9XwtBCIJEtkJhaRKXq2aVWt2YuHOILiAIQBnAlZgJRM4prJbNlLJ9kl6RYNydrJ1Zm2McgpJfOlOE8ukc44nRPSlHA6nfFyOmOaEqY0uSRY8MzAy8D4/v0I0oxDGDGkCRrY8xAoGJYgDmRAIMN8Ls7ThGE84MN33yFGCy/68vFnyx1AAPJgyd4YwMCIVTKvnUlaY47ZGXPTRAQDDRzbRiWChRvtE+l15kYolk2KQAyiiHF8hIQADWw+IuqMbNkbxTk/i5uIiZlCqYIkNyf4lMycLGXU/BHpDI5H8JCAQQwMQR0QlhC0ZudveUSC7RDJHgbZrkvUtAKEEqa3M70DoYQRrmFh3a6qCA8KqCAHoSJSNQtVxqFlhnzfurme5Akik0c+89MqNsaUQOMBff4Kot5HpN0SqgYe3x0j3h0jpnNEVguXm5J4ZCZGHAKKD04MthZJbJepmnmdrQE1wQSVQAxASrB1Y7akj8W8zneWeMSy+qzpuHlxPyeBAtkKTBwQAmMIAccDYwhFQyZe0sLjwvcCEYFz8qhgg/lfcMSggiDmmF8ix2n3km6GW3MRTjGX+gq4AoHCZkZZSRFlAFe1/20SFaRgUrmtYOQQMgaOxqjcofYXzRh53CxlJBAO4YCH+IhjfNhcJ7pJxk47/bWRQJB0QkDcrn1wLb1lg9ouTR/DeJeG9pY/8OemL6U57gXrWyn8Ss+eO4FFy6h73cdifqwHEIC/7KoGgRblUNuYg4Jle6UgqqZgOaZ+dM2UqXlGF9kfe2ZphkJdKgiaO8vW0I45ASm5lJfNLAcNjPibH4SDOUg/RJNqkqFJZoLSaPkCwFDpe0BN9mV/Uk1LRBJSnnCWgOczMJ0TKJ+QzidMp2ccHo4Yxwe8/93fg10rkXKAqGV6tvYzdMpVC5FTcgksVelrlfwTAA8Bm9MZOU04PX3Ey8sTTqcTnp4+mtNslhr9p0i+iQiSjZn73//xzzj/4Z1F1TkkjDRgHA+QZC/58Th69u0JaXoBB8Lf/u0fEEJETmf80//5F2TJ+N33H3D+6Rm//Ol/QBEQhxG/+8MfEWJAiAz2qEiqxvSZb0BGiAmsE+DAoWhzzEjfwYU4eBABIZlmg9lXhLp1ZU98x4iHR0BHQI8+Z6g5GSxSk5l45Zyr/wt5BCcR1xKJgGMCSQbL5CFhLT9HqKZPAYAgI6OYx2SP+GSApIw1VNBt1l0m/S9ZvWMcnGltgCEGk1SIFG1TnmlPDXAYAy9+LZa1mk0C44VTMgZPXcsFWFSriAAgIqVcNWCSxaJ9pYQQXAPqAKPP1m3aC3POjwy8O44IISAD+HiaHKABYxQETgjpxbSRLHgIBwARSkcIw19SA0QE05RtPFmgymY+JYoY3d8hxmayJra3p2mambUV09rySBFPfFhygQBAQgIR4USMpycFM2GMhDEyxiHgeBgQGBZa2KN8cT47wJoQg5nHGLAaMKUEjtlC+7rWjerLai5g2SiU32mnnXbaaadfhe4DFljXVFRTJMwdBucMf68hIJcUY/Hp8jZaqXNFg3FVc7I2eACkZo7AZsHeAq8SzE7cNRvVVCWdzQwpnV26L4jjESGMYIxV+9EQlTl0qjI4juVIZbzV3Y4tMqzLHNXATbPTF0BdUyAJCpNsIyfAJaSqhKzAWQA5KxIywmkC5wgKAdkTvBl4sMzUIuoJ/iyajjFPZdilX3fEFvetmE4GLF6eMZ3PmJJpTrIU/wqbXHWbfHbGXYlwFuCcCafEHunIoJwxUNqZz+Rq08EAcprw8ZcEqNmkvzw/G/OmisPDEcN4BIcDwjAgjhEhjDBzrgxky6tBFAwMZAGRRVqqkgMyAAhl0yRpAQfJIk0FgBE9UFKpo3X/h2EAIQAaq8Recom6lCHZNTOUoMJQCYAmkKiZRWXrUzl42F7bPyoZmh0ISvK8GaZRKSY4PNMEtozYfrdUgLG8D6issdcvmqkSujV76NaS/K+EM1YtUb/MQRwCKPkYtcjGm/lX0dq0cMpNUFB9NZz5LeCnREdr54tpm2mzjMHPeHnJeDmJzZEITizum3RGYAEHxRAzmAaAFcoMdXBFApBk0++UDOO+rm40ZQoHU1cCSu7L7uNSdM8nahfRaffUfxfjMCGpmkwVQs6MKQlSBkIgDEErwBrcmdtMEmH3ImULwKCEAAZrRAABVMyqyt608S5pBxk77bTTTjt9aboPWNREcKgMyoVfQ8dI1GOlfgdELkyeUBiixhi97m9x6UQ+cyotdtKdU61lpc4I5H/VkMDMhaqCPU/Q6QXTz3/BdHrG09OPQCAgMt5//3fgwzswP8CkoyVGUeOOCYwh1NzaNiKFtW8i8o4Zy8a0VSYtA3LGdPqInE8gFmOWU8aADCbCxMY8ZSKcJwMq+ZcXxEjgACiC2/lny2fRSczzlKoJTM2poSZJ15yR0jPSdEaaTji9vFjOgJTctIjrEgXu9gIVZ2JPQkeMTMBJRnycArJayFtVK8vB2TRJyJlsOsSS+L28vOCXpyf8/d//Aw6HA/7pn/4J8fCA47sP+OFv/gMOx3cADRgfHnA4Hs3XQBWSJ6TzMzSdATXfEckK6BlElgiNQobFgS3RIDwsqSiSgyTijGF0s7LKu6lH4WIchqNvkhYGGFk8t0KCMBso5eD2+xmsbT00+nxn00ZJPoOnAJGEDMvqLpIwaEIoWjYy6TsXvwEHceSAbhZgwPd/AUwQNxWjkhhOMWXTWKVkOUOKw3IJiToMg/kaiPgeEvNdQfPFKcC4mg1Jcfif6t62LNu2J4sfk92TQIzBczzYGvT3sqiChKAZSJPi48eEn34+4+NJTNs2nZHcNI8wYYyKQ1S8fzhiCAY21U3fYhzqOrFHbipGhkx+r4AsipO2BJJCQAyM5KZ2fdjnZkIGB0Fo9xJKcj4L0kUApqk9n2KYEJgwjgEPxxGH0fxlFM2/SQhImkBkJl8sCg4Rg5L95gCqmioCVfO9cj/iDsOfnXbaaaeddvo8dBewCMW8ogMBF1qHKhReahb8O7pPKjwT9T9KpVr/Vt6MdY2Fv/CLaVEJuu/+CkzZknC5z4U5ZlOXkM6iJmUMSPERSQdADwjBpKscPkDpgCTO9BXHXRQgod1bXQEk5/FM6l7ts50RaUnPzO66mQcli6CkgGqAaEDOwe2FBRKOGB4yWAQgQsqElCeAMnJJbJYTRDNKMjWVYuZRHLWTSaVztqR6OSGlF6vnJjDigmlzeG7+B0Bxkg7mcMzm0wCOABNiIGSO+HgCzpkxCmMoe6E6ORujeD6d8PL0jCllhOGAH/7wHh/PiqeU8Lu//1/w4Yff4/s//h0eP/zOnVoHBDehUWfeMZ0QESDhDMhUwZKjFmi2YwwBWEEUAYYBnkAIDu7M2XhCkuyaC9tngd0xKpvdfQENKgItWa1zNv8ClZrxWktY3Woy40y3RyQC2P1AihO0AY/pbNGViE/u0D2C4rHeQIZNxXNQwIXpDjrC4CHxFCCpjHB2TVlJZqjlPoFWLVaMQM6ACJkpUFkuAELSGGy487IDJvjsMdOsDohqhCYOEQWtlcSJRFTHVL5bAQWRgDkB+oKcPuLp6cXnPFfsJDnh5dnA95/4bAAwmP+NAcEBYQg4HA8YxwExhioQCTDNnypBxDVZYv4/AbDQsEwQYaRs4Den3D17BCLsAMeXoTwPilKjffF7OSOBMCXG6ZQQI+NptOR7hzHi4XjAMAw4Hh882lq2iGuSkeWlgr/A0TPIm2llAZxFwGPPlZ122mmnnXb6cnS383bNFnvNJKlijg4YdLihvHA7PUVn7oQW2vGqJmL+u4Gc8r2AiqKkKEy/oGb+nf0ZGBDPo+ACXqiSM5xmsx0wtgRefIRSdPOegiC04Qs0cw5Y696uMaRlWCJiDGousc+NESY3hUrJGIokNh5zcIbbh4vlouAMdsYxVWdh9bCiUm33S2QfLWPI5kBcw9PmBEkv7mB76hhil4h63gez+y/gIoBjRAgBYTgasAiefI4tGRoYmESR3Jlc1JzebY6yM+fizJOAOCKOI8bH7/DxOUEp4MPv/wHf//6P+OFv/h5xfLAcAOxmSKrI0wlUMl+rmccgmxkPAJvTEvYXFqWJzDammsIUp9i2bAbGVGwFyTUsDLjfRNE2ZDcbm/xY77DdSfYrs9mY+rJZ7JZidwGSDgAmd8JOtRxxtAR2YuYwKHuwbHs3kVE2M6nqHwRq5nBajjkQgbp1T7WLQ87ZJO7ZIiURGeNt93pxbqamBcuTPx9gWqt2p9pxD99ruUTKA4FxVTigJRZTubcmC7k8nUx7Uq7d76OUBDkJskc5I1YMZOFyD0PEMA6e02PEMESE4M7pzH7vG6BQD8PMAMBsuSoUDnjMcT0XjawfZ7b7szflaiKOfr2LcsuvKzESZ/DEyCljiMHmmBVKwIiA6sSotj5JJjALAgs02Fqzf8IjmhWNce4A4E477bTTTjt9Cbov3Cz1NtMAUL+0sJVYaA465oBmvwHWEqWmmHsQZkgDre0ZUQEk1JWqBlkdQ7IgMqdcmWkXAhQMM4pypplgEX844BhHt3aYj0EBTJoqVrHAMcY4lqRvxbG52Z6XWPlF4u1SZLdvV1GPHmT5GUqTKTdth1SHbvVcDgYSRAWTn1MpTLEziIWxdcY7J/MZkZyQ8snbzB7lypUSIMAzV4MYFAfEYTRtAVl4T4I58xIxYowIMWIcBwzjAcEBB/IZyGc8nQGibFJ/yqY1SO7crAkhBoyPD3j88A+Ih/cYH3+H//y7v8fh+B7Hx/cOXoI7apNJ+z2qTgoBmQSiFkpW2FyeyaXxgcx+nYPW6EMco2c/HqGIUBS/FK3mPyoC5GeQuKGJwhlaAZdIQZKhUDNXY2fwNRj4CwytEv1+/Uq4WYsOJAJD38oAQjXVMeZVoHIyUys5IWUDW8IR5FmbmSIqA89atWhFa5JL0jzt74zyrZnplUhagDktl2RfRJZlWkRn9ziRA1z/qyBdMopGK3gG83EsuUQCQhw6QQT1HzOgkQUOqoF0PiOdnsEqiCFgOIw4n8yEK4yMGAWSGecXc86WJDg72Ho+JYBewH/5xbSOTIjRzL0eHo44PBwRY0Qchtp/DKZFlKzt0RQtGZ6axwMIhJySRZ0Sm3eFmhasAEjpNBdlLxTAq4Sc7Zk3nW1f/vzxCcOPPyPEiPfv3+F4POLx3aNlmgdwns61vRgCAlswgwL8OZR7kjDlbbkedtppp5122ulz0X3AAlq1D3CpWHHELrxoCb8K+Et2ZopUJPhernwWm+DOZApzPn6hwNAroAJFTVFsMOwccdWEGLBYAAwlZ0qpMV5l6IQOHBRoVMxImpZCix17YU5dwmiHWnmpdui99FjdsbqYJplZRzGfyf9/9v6sTZLsONMEXzmLqpl7RAaQ4Fr9VD9dXf3MTV/M//8XM3czU9VVTYIkgEQuEeHuZqZ6FpkLkaOqHpkgIlhkFkjaASLDw91W1aPm8ol8S98f7wgsdPD0W/NuZmckZdskwm4/OCniXPnugt2NUsLevQ4ixOSJ3CEgYTKqTTDeegiJFCcX3Sai0zKsKAtOg1F6rfanFbSutK8eUAnW7ab7U9o56dqJ08wcM1/92f/CdHrLdP4F54d35MnF2kFMlxG87B7nRjAg1juiVqjv2FSMKuJPNUII03AhCiAM1yKh3BZzuyrrNkmxPa9E/yOOIkeJPqxIbZow9ARxK7w3EB4cmDjlTmU7LUZb0UGLUtOxRAPc+zm38x8FCwOMaRPMj+tj0PoMV1ixK4aG2P7n19q4bnFLWhBPqLZv11b9Iur75aR7Z94us3boyB8ef/wdAjlPpJSJadB1xnGR7fo4Xu6v+gp+EfYOrTZqKZSlQIgbGAc858GOcYwJIRCiaUbMwKBtE73WKgKkKFug4G0tBmyniRgTOWXOp2AC6xBow6ENCGr7YACLLrsxQxAPnOyyHzPx6+EwKRpZI/uHjX2u9O6P0TrBPHBZl5WyrszujBVT3FzpTMPe6TSGk7LRFs2Gt5bPy3q4r/u6r/u6r/v651pf7AoVRDdgweEX6viW3c6KbHHPdqOk7EXKfh/dixrCj6YgO9FItyJijPk5PB+vOrHHV6s+pYDDb/HNHXmILzemiuy327qN8Kp4GloJ9WJh3FZHAvUhFwLdwcS4XXceezt8b9x/UKPMEnYPq9sKki0VePjymzZCDxSn3oY9aNmK0iEUt8yFvhXNW0GMFYHR/fbzNDvlJiFpwsLikgeaBaaciTEyzZkp2tdpOm1i4LUse2he9YA9fQMhE6OBIbQx9BqKkuYzIU58/Vf/O/P5LdPpKxffCzFlwzZh7IVuhblrAwwgmXWrbDoaO8dho6zYvolO0YoekKe9IK3Ra2N5+sC6rtxuV7MkHceIjmjdjiM6wCV7onoI3vVOTPOJmBJ5mh3ABPMCO4AMVdAomwNQd/cle0zX8iC+F4zm07WTgiAxQspUMW8zsPlR2ELxTHcw6FUheBDhyI442M7iwHBA8+6uYSKrXz+KaTQExSYRYsIUjoFj4RCoN8B8iJF5PjFNsx1rPU5GhFb3xOtxxW6fCTJ2Rqc1pdRm5+ZysXcbI9M8G5CInoUggRjVbFzDfl2utTgNqjk1sFGLnbfLdSHECxIj8zQxzyceTmdSmJApMk0Raeas1ntH1LVmPt1rDgqCCD2IDa1c9D4+l3R8Ih4aC6/C2jZwNTJCzK62LCsxRp6fIo9vHpnniXe/eIdkC827LUZ7DL2SsmuEpPsmE2q5ayzu677u677u6+ddXxYJGA5UJsUDqo6QYoAH79AfchjG90LwBAmJ3kkO+2P+aI3Rx48JHAYbfvp++qOffQIt9EBVYEwDdH+6vjvebIW/7rdTv88QrgIHALCDDA7AYICLfWKhr+6z3+6Yfn0AJh6yNnQSbYSsqQsXOPLmhTxZXH0/nIdhV2tibzuIg8pkSb8WzmVUpkyImTSfiDHvacki5nzULRPgWjp9qfTny75NvIBOAabJPPm/enPmzUMi50LDUzXVwv2ynEjTA3l+ZDp/RcynDbRufjdq2QWtl10H0mwi8t03f0evKzkFTqczU85W3CmMPA7UOfilszgAar2xLAvrcqMsV16en1FVkjsijamMOODcC+DD3mo7Ml3H9wfYiOZIFL3AjjGSswtuZVTa3fIaBIiy0/50B5R0J+yJQr2AWpZKTicIkS4WNBhGuN/IYnGnLvGE622Cc8ijsafao8PGcxpYitTaPW8CozL593tXB8f7pCI4MJ18eiVBSNnSo1X3z4UxvRvX8TZBYQBye9wBeNZ14enjd/zww2+5XJvv0RNCQ1MmRROF52x0PIebtGpgIoVIRJnPOLBv9GL7qLZObQ52vRi/Xq48Pz2TUmSeJ6P35USaMlGCu5BFzAag2mQmRppPI3q1qQie1L0DRiFJtEkTn3zGjOv9ADq0C70JtUZqLaQYubxcmOaZaZ45nd8Q/HnL9WrC+2na9m5Zlx99Nt7Xfd3Xfd3Xff1Lri/MGh+8H920ETusGEWD00QGBWr80dGhZ+Nx/wgCKFaRup5hyBqOtIHjFOMPvUJeP+r+9aCeHIEC+2RhrOOEYdzu1dRhgAl9DQy2+wzA0F+Dhj/09XEq8Rqg9MPfRscYtCfduue7BeYAakFMQ2DULt1pNj0z6DYbJSYEkEiQYPqJEDdgEVP2zI7EnOddhF8WWgsmxO52YEcCsU0FrBB1d15yDMxTNJARFW0VDcmmFqoMV6QQs7kjhegTpD2sDwd0luo8xNJG5VquL7S60KOlHOdgmRDdw+q2oMHm6eGtsZaVVhu35cZyu7DerlyvF0SEs5yRmFDS7jxw2EuvWXm6F4SDaqbdJwRidLEY6bWSUqTl7AX4QewLTtly+9MxgRuTJnA6k5qVawdtpq/YAv+2cchOT9z1Cgd6EnKYuDgd6fj+fO+J7OF1I9V6TCRCMIqW+GRigJoYorkxpWkDTybYDpvOY0zJ/C2NAYv9exzhrXtgU5FaK+u6sC5XalFibLumS5WWXHeQghftNhYSz0oZFskxxA1YNAk2FRSbZoyJQu0dqTbBCjFQa6HWyQCGGtUqJX9sP7/q06helX7kbDowVp+abW/6OK149Yk1JpP+eeT8NvH91UKg9U4pZuwgIZGS7afW3HnMAzxD+J9DhRqUu8++rQTrV33GihIt2Tskgn5emm3QgMaRnv55a+jZcjCq5+csQcghk8PnJ4m/nvPf133921qDRQGN8Jn7XLfPwdc12R9bUeIXffbc17/s+kJg0QBzicHDsgijsNnpTxu4YFBJ9v+6zQ4WTedrozn5L+DDAEQ3NLDfVD/9xXz8uaOQnb60A4ttMjEe45Opw+hID23DTmk6TDhUrTM5aA46gsbaq+mFvdWfBhR/6HvjdQ2A0T0IbEwsAjalMPmoFaPWywaGdiBGZEvotZCvUYSlNLl4GUahaFIHF2B76rRNLixfwPQC471Unz51YhQezyfyV0KMINStyLbk6UpvV3KEOcObx8T5NDFJJkighohqodVCKSv1VihtoXfjsYvY+0QHfazQe6FVO84jOZ3e6eVGub2wlCuhF/T8SKmF2oyWJWLHdLleCChRoNa6dZJrWSh1tYI/RmJKBAcEIe75AFsZcCiGGdz51owK0812dIh0y1ooqlyePm7gKLlF7+k0k6eJ0+lEzhninsYugrlqIfSQ/Ng3ei1oL/RaiL0S0pkWH5zSZBa6m9ZCPEwRnyxsNKUB3I+TRl5dRykmiJmk07ZXwzaxSBi9sdtExyc7KSXv8p82UDPC78Y0rnfdaFPWoGA7tlvLQPvGOjN6XaGWhVpu1LXTJFJLIZWFGDOlrMQ0EfMJSSZkNqAaCCmRRiijRDT5+crVJ4fVQGY7BDV2panSaqfUKy+3m0+IJnLOPD4+8vDmHafzzFcPj7RmAHVdVxe92/uIMRpQ7GIRlW7f3GrZqIh2rmUDkbaljtosELHMdxGh1sqyLDy/PPPx+ZmcJ95+9RXTbBa1y7Ls7mhfUEz/c60pzkxx/uzbb42Pz1gxJKIkow3+gcbSTz1+6+3VhO5zV5BguTGfffvIFGfmcPrjNwYQsYLon/Da7uu+/tRX6SvP5SPxM4E2OF130/19/jrHB5KkLwD19/Uvub4MWOiw6rST93pSMZZbNgKqbmUZgiUEe2cPEbqLHxl2prB1qV939H66wXcEDvYN2SYbG8VpIF8ORbs/4AANx4nFDgx2YDE6qK/oTW4Z2zeqw05dGkXBq4nDAURsr+Mw5TgCjFdvUqz4G0ztob8YB8Q87A/e9SFCtORtcz0KpJxI0WxyU067vmV0mkMykbbErTsdwlF8bIJ6kzfcUFXW2zOizTy03OFJ6RAjIWR6j3TNtAopCDkFYszEkD2EzLvDpdJb53a9EaLSm9j+0uZi2WG5ZSA1iCLJO+6t0WullWL5FL0SArR6Y12VpsYQkzBcj2xfqsgexaFWxIqIgYmulsnhAGuE/m0mBfsW30BGF7N17SLWHe3Bn0ttsoCJtcNIox6gUTsvL5V4vXG5XIzGE6K5a8Xgf9Letfa06xHiZuCyI1hn3RLootuNDirUuLb21y7bYOPw3QPtbBdf7/ff9msb15J16kNQ5tOZGJ1KFyMxBrK7KyEj94ZtCiKwgY2tsAZeU6XsAKtCa53bbaFUy2bZX7VltOCd/dY7qSsJIUSFYCDN9sCggQV/rYIwo9pp2ghl0Osq6tqa3kbxOkCZoCHSVLithfb8wnUpTPNp22M5Z2JK5i7WmgUmakcdYI1j01vemwfDotgpkKga8Ne9YbK1RxRQD3rUDuuN3ivhGUo5kfNkjlv2ilnLn74r1JcUEZ2+FeKf281Uup//L1uKehf084CFiIVXjqnKZ97pDiru61/Vqr18NqivWlj7yhSmz97n29xBPnfGATh3Jjjz4r7+568vE287pcaKhuHOs7ccj6PdUdwDO+1GAPTgiHPkeu8UgZ/atp/+IjnSlPbvsdeho+DfXG1+ajKgr247vv8aWOBd8wNg8Nu/FmAfrCS3SccOII7A4vXz+20Or23v4r62zrVm6g68RO2IhzgEuckyJKJ13FOKnE8z05TIKZBT2h9brHhO2ZyexJN8B/DbeWjW9U5BbGJC5dZv0AuZDm1BtdICSJiJ+RHlgd4TRTIhiHHcw7RNQIJ2giqUG7131mUx7/4uoBU8pVp9QmPHooMo0UW5rVV6XSjLlV6N4hQjtLayrg2J2bIpLIbcK2oXM8eA1Ip6sR9CIKds1K7gYXVD5Bx2MDbWqy67jMcQm3iFQO/igAVUOhp008aoCt2pNqUUO+eCA4rIaZ6Zstn22jRACCkavSxaLoP6tRKc5T+AhUqytGkZblHHj+adGvVjq1e34N20GAY0h05krHUtW4je0Oacz2ezFd4ex4rncYDEqSQJc2fqggfU7dedgTB1IMlGC4NO643bbaHWbkJ3b0gIivZG652uED37Q2J2+lwyYIGZw5oMZZ+shBi8m91JU3M3sGKOaaXu4YYcqGI+4VtKYykX4Mo037apk4nJo9OVCutqNC4B1+sYjWx8LtRatz+d8ZnRt6bHlpi+AQz3sRvWttWE9r01yrqSp5m3b76yiaUE6vqvAFgQ+MTJ+w+uqI3q1CmVzwUW/wRQocpQd31JoWKFTfzsrul93de/pmVU0fKZsAJqr5RebJLwuZM/8anFq9rwj93FKZV3YPEns74IWKh39ST/xPhWD8WMqNNPRp16oF8cOpPmlmKFzGHc4Lc7gAw9lNc/AgevQccOLja23o/AxLjdj8DFdpvDL/fD7fav92yC7XHHezr83B/w1WHq47EPv/KOfPF+eN1gF1naxK8Q1Ip/oypFYsycTpmUE/N8cmvPzJwTMUAOnbK+0MoFLStrKVyvV1St0J7mmZQnpulMbeapBELOEzlPNJ8GUFfQG8LK6ZyI8UxKs33QaAcyKpkqJzoTGgI1KSkGSIGYz55tYaLemCL0lVaL5TBoRduVcnmPTOb2031i0Uqh1ZVSFi4vL5SysFxfnHLV6MXSlo0CY1kOIZoo10SvEykl5l98DdrQVk0n0CqlLDuw85yGmOKm9ch5OnT97RzvXUwlbhMtF9i7yB7V3fJ3MzDw/dvsdrkasLDntYcvpVDWleenoVmBGMUnT4lpmhxIJqQL0pU4rzalSDM9mDh4XE627JyGbfohm3Yk+HTApgaNMW3MOROivf/ujmWnU/KCeKf9HR2xDGg5wJJdMyISiDmjahqHkczd2pjA7ZM/fLIRgmwi/6VWJGSm+dGcjlQxWqZ/3IwmQqvU1ahAEhLTfCbPJ+b5bLQ/z5WprTKlmZQSpzwxrv66rFQHFq1Wd28z21fFJ5BjcoBsWZxmW9uI1+vmqhaCMA+g0RrLcmNZ7XYjIDKIGQyEGLfPNe1j3qBmXYvvqePnk3929Gpanl4rtRTi9UpZFlLOnE4Pxw1wX/d1X/d1X/f1s6wvAxaHP8JxHD287bexxFY2b2QHHX+NdOORCXHgeX/a0T98ffjBJ5OG14ABcBmHPd7wu9lpT2NaYl8fwYE/4tYp3B57oyHs9/lUGzGAyfY2/PYDGI2iS9xWd7x+Ozp6AE9+ZzGXHZFA9AID8tY8TSl6EnjgNENKnTytpNiJsZGjWWIGLbT2TGtXtBW0VNpyo6urFNpMzxktV2q3cyMhonVC62TOOr2iZQVWRBp5emvFoWSbjgCtW8Cg9uAJ47pNVwTdaFsb1YpMShM5n5jmE62uoMrL8wfKNDPlaQv6q+tKb6bHuN2u1FJY12U7VilPBqKSIJhQu9ViqeVrRWOzfILzo9FWQkKl0+MQtyvi51TAMheGm5J3fzmcx73jv59ngu5Fcg82xVAT24be6Rp30BydAx8TRo0a93VXsOYF40avc6ewYF15m6oYCMgd0mkhEJHYLC1+j4fYpjVWqobtJaP7y98hk+87BwvmiBUsdA+24xBC3PZ+cBrQaB6Myc5Ot9qnJNqNrSX+XMFtWdsG3HWb+vjFR2udZV1NYxATkXEc+3b12FQp/oSY/bDfQrDhlZ8DE9AbOB9AJ0ogt0ZNB2AxKFFqXP1tUqn7MfStYfvdp5Nj4pPdFUwEaqnEuE9DUCCMqaN/njDSv8fnkoGsvjVkdmtexucZPhHrSliX/fm5r/u6r/u6r/v6edcXAosAkukavbOGd8+3+sUK70897keD15TCW8G+S/Z2u0s4TBK259W9UvrRxOITUOFf/4h65I9znFIcpxs/emy/X/MJw/g5x+fsr597LCviXt8escnECPAC2TIpuo4sCu/gOgVlnk6kNHGeE3Fz3bHjecpClEpkIckHAjekP28gpa+rC6gXdF2gFLQntAo0QWuia2BdEwW4isPFIKQ8UyRxlUjr1umt1bjKMQam+QRk8hQJ6Qwhs66W5l3WmzkAqYuPs1FsUnhHjAGCEMmgEdG3hJDorXF7fs96u/APf/vfmKaJh4cHluuVWgtluZJSYMqRELNNEubZBbqJeZpMyxGUy/MPLNdn2nqhtcK6rvSuxJDIf/EfmE+WtNxboLdOmmZKtfC0ARxMXuFuSCN8DSfhyAiDdA3BvvG2XTYmF61XUn9tHbztxK1D3Rgp3+Pf6lONVk0E3+pKqZW1LVwvt41aM51O5NOMpBNxbgRNNAcX27U3aFFDVzPeV/uEFmU3NrpOjORpIsbMSNs2zUd0wGHAwvaFWUm31phyNgG3U6O62xo71DC6lk9EulreRMWoPIaGzPVMwELwurl3ffj4xFI7PU7k0+wTPrDDOqakBihSGpS7CYi0JrQGOUTm08nBumzXJGBUvRiJpx0wmR2xUlsbHxIeKtlZa9lyZ0wS1je91KvPpa7Ms01Gpnna7vP08SNrWbndbjsFMkbTcYW+fW4MTVV3cGqTCwuBPH629O05LetDamUtFbkji/u6r/u6r/v6mdeXaSxCRqIHpnnxIowU3kPXX/exvYjsVpM6iqrDbexB/uBjwGtgcfz5qyJ/uy379zfawhGIcPi+1zN6fH3H6QWvKAgoLkLfdSPb8473hhNMws4v36gU2zvqPpRwQatkYp4cpFmHMsXAeU7MKTCnlaBXaBdECiKNpI2glaCFwGKdegRCAsmE9AiqhFiRsJBzBYk0jcxtonUDFp4fbEWdDlcsoXehdSESMWH35BzxSIwTqsJaKn290XXlZSk+SVhpg62C8HjO6IMVVcFBqKiLs6ZpS+qe80Rdb8ZJD0JKkZAy2hu1PuzWp64hMNrTyC/IxABJOv3pvTnzrJZzIa0Se0N6YX36PawnQn0gTSdyzKT5DalBaUqrRmEyOYZsGoE90PGoIjI60e4Zte+zcbbjNo0YheDYIf71VjjWLeTQLHStc99qcfrh6inmDdpIZjeqV7suhOcnThp5PL8jBdAwpofsr07YAgXBOtob18r3c4yJmDLTdDLdjQRUq1GawkGjgdPFJKDzZN16d94Z15jIPuFADGRatx+0G/gC9aTyQCvrBrJ2sBMIITPPb3n7rlHDV+TZxOIpRkpr9NZZS9kARoqZGAwYbUJ8EZp2lrKQMeATU9poXCOwL7o1rmXt2Ptow8lp5F+oMvfhcNWpa7Fz1UdCugGKrkopjd4XYiysa/E8kEDOyadO0e9noGWc99GwGJMq9efaUrv92I3sCzlMUMZnUe+WRn9f93Vf93Vf9/Vzri8MyEsQMk4IeUUD2IryYyF++Hv7+lPwwa42eK2BOIKFnWb0h273ipI0QInuAGLvEo/i7jixcBB0fA68EygHALSRL3x55/TV1IMDLSTsAiRzkDIxqj2GevFqzkzi1qYpB6IIU4CHGeasTHJD2gt9/R64IVr8T0N6t1RnhB4fUNwdKJ6BYA5LshJjNcGqJCZ5oKkBi4iCNuiF1qtbpDZqA6lAsM71ND1YoSbBrXCFdW3U2qkdXq6FWiulVC8eQZ3XP7uY1+PbLMMNe98h2JQkx0gvZ0otDI1KniYUc+gZOgH1Ul68MIseQhdECVRULeSslRV6Q7QjvSJ0yuUDoS0ULeQYTPNxOhO6vVcTU/cdXIjseQwi7mCDWw3teoUdbPgeCWM/H0Ds6EKjnihuBaglOltyuBWWO7CI1dyKQs2oA4tevQCvhdoKvVZu1wshnXjsFSGbIDYEjnTE0di3JG0Zh9Oxh9uxhkQMmZwms5b1psF2LA7vdThYiQOGUsrrcDe/33ZZyLhGhl5gAHSb5DXVLQtEZdggZ4Ik8vTA4yO0UJlOD8SUmHJirZXaKpfLdXueKIk4Qvr8+qpOPWqtklJAGe5QO6gYLlgpRnO1igaKunbXUBQv7m1fdwcSS1hoHhY5wEZzWpK2IdA2GlRKBmhyTIQIOLBorSE1+PvvmwOd9ODXQkDGdHPYWmuni9lRy+jMHIenI7flvu7rvu7rvu7rZ1xfBCy6RvrRwmMUSPs/DpSPw80+AQkcC679nj8xfVB/Xv3Rz3+K/vRT3/upn+urakdeF0PbvZwJ7jcNwV1CgN5GjoVuxec8DYtNrIpTtkIEOskLGYkzEgMhCVMOpABzaGRpZKkEfaL3K3X9jnC7Eq43evuI9pXebluRF3M2jUOYILyBkCHMSHxEwyNVfomS6UwUXa14aUZy72Hyzr8guiK9QF8oy4XeKr2phW/lzHR6BInULtxulVKrd2IbTYtRpRi1tnhad95A0tuHzNs3EymaTkSGzfAnS4NACuR4xg+ZQTtVhngV3S16dyeiHRg2bf76C8v1gqBMKRLFwJe0hXpbuazPBFHmVpnevCNMM/k006rx59e1bFOLeAQVIoepww48QCzEzCcEW7L2to93mqB6p/lYJO5/OoyiVE2MrL2hbaXXYval5WqJ43U18XdvaL2xPn3Hd2Xh4auvSacH8sM72xOHXAuzeDZgFg7nYbQJjEaUgV38nT15XMTcvTb6lBqvP/hxmKZsGSObxgAgWEp7a6wukgc1AbpPqmSbYg2bYXNIElVqiDQFQuDx7RvSg3CesyWsZxM+d1Uuy4NN2dQS54czSOvqgYV+XmR31DKKk63kk43kFs0AycPRpinS+o3WheV6w9hdEyFZQGFtldo6pTRGwn2thdb6FmbXPekdNTbo6rqu5iAFpzhqcLCpDhi6vVblYGed+qv901URF8Fvn49qdrR3JtR93dd93dd9/dzryzQWo+O/tfpfd/L9Rq8aZ+N+x4mG3+wAMsYNB+D48bTiU13Fjx7/8PenX2/3+/T1jerpoMU9/ncUTVth6DcPYeewb1adnu7LIMyM2xljhhjNIcfq+YaEyhRWkjSy3kh9JVKgP0FfCPUjohXVBl1QEsjJ7UQjnRkRAw4hvAWZ6XKi9xNdZ9Ye6Co0hVojvQHd+PYaPIBuaAS6QA8si9Cquc3Ya4RbuaIESjM3oNa6u/lYIadOi4spetd32LSakDqG5KJqF3GPyZAXp+qdanMqSnb8nMYz9lnv5t0/0p5tohA2Jo/VqJ1W1i2Re/DwLWPAizOrREEbdbkSQqTengknIcYJSRHx48bhsTdfbTnM6cY0Y4iXdZ+8fQosDttqB0pdaaFu19NG7YseiqhKcDqL1kSLhdAqBKG3agL7mKD5dEaMTrRcn6mteLE6E9LMEOaoKBZz7Fkb4xgdJmwheEDR0Gb4MR8C57HnxzW16SgO475xXYvsnw69edYJI8V+dOP3rJI9o2UU0w2kk3Nk6gINcoIcO1Ga7WWF82RgSSVaWKNTvrqCanDapth149kWrQ2akBJDOLw/n4wdPosEMWF3it58ECTasYtxYupKS+pJ751STb/TWqWm6N9L5q51mJqKU6sC0AaNzK+tcW42wOmNDnowC+Pu3/O/tYs/9tBgHD+07uu+7uu+7uu+fp71xcDCgqP2Ql1f32D7Ug787lE8vgIVnxT+x07wpxqHV9/7CWBx/PmnXx8e3v4eBe3ggehrmsfxTYUQDrSW3Qo2xuCOTOlQZB3E4joCw8RDsexPjJgeohlwiPX3SH2B+gPSbmi70XTxlxBQeQQ5QXzniCQgcgISjYlORENC4lcgM5WTUZNq43ZbaX2h60ofheQG8Aqb0e/oPndluSm1dOq6OIBo1G5d4eFFY/SR7AAikqaZlDM5zvZeUzR9CZaIHXrgFGciFnrHxr0fBbbRgIIExAs3m/jswMMKPSu4djAximLIEXqp3G7PtHKFtjJNyScKgd6DFes0oprW4/byRFkXQpo4/wLSdCKkTCQSk+mCRjryABRHnUHw9OwBLDjs6W0vbXvvR1AbVSU6J793fXV/6FuHWrtNMVqziYWUE70WelnQahONWG4+zVh5/vg9IkKvhXx6w3R+Cw4uNOxBekply6zIAcLBwjjtTlhjincEE8evW90DkzbbZDdjOAL4PeHeAQMHHUBXA9Ce5u0fEHQ1F7LHx4kaOqEqkUagQltBbfJyTrOnpQu9F7Ad7+cnOWCNKInajQoFyQv+4lkYOj4O6MoGQtdSCdIJEpjStO29rp2OMuezJ5JHtxZuLGuwPIwWBmaidVirspZG9efrzXM4ulEkh7i7e1aI9nCYAI28FOx7dIZj17i/BXfYnhINEPapzH3d133d133d18+xvghYtNaIre8WrhwmAYflPf7XXenRkfV7bjX4T4KAfZLxU8Di0/VpX+5HfbpDoaeH741CeTxu+ITGYsyXUSyOhGt2XvbmCSQII1AseCCcMMVKoBK4IP0F2o22fIe2K7Ve6Kz2DsVoTMRfoiRUA71nmmZ6D7QSaIo73Jgwt9aG0uhUZ3QlOtnfC9RqRYXKbvNaazWA1yowBKAjwM+oN703aln2743jJ8MVSDidJxf5znQ/27Wu1NJYe6Opqbdz6Hx9jszx7aavsOLcQam76qQ47ede2fQABkbxe9r56FiXV5tNHuiF2/KRXhf67RnqQozGtR97sCIuSMfjVoQkpnW4vXxEUoYYmd/8GSGdiNOjFZfdsig2AOYvImzTinigv+2F9bbbDgB5C4k8bMJXKe2e5m77fgh1/bppfePvx7LY13XdKTHuHtVbpdWb0dQI1LVyKR95/OqXpMmmSohpLwLmohSc8pbzREpGB8rZbVsBdcrQK2rXEUD591ur2/UxfqbjmKTEw8Pj9j7H9Kn35tSvuovTZbs0uV0rT09XvvnmW6prgiRFmig3DZSloArzKXA6RU7nuL22rhXVgkiBYOLu3sWnF5E0nUyfEw1kKEJTe82G6Yb2BQewwUIKgZEjGWGj+I2iXxTmKVOrolq3yYjlywjzKVCag4laTRzebQrYx99tUMp2atkIJhzXZQgHG+LekR4MXLSNG0iP9dNPwvu6r/u6r/u6r3/R9YUBeZ4gPehJ4/scCnDdCRGDWK6HjuynMOQVUFC2RNUNeHwCLP7QegUmfoICsFGaGIWeA4UdBlkHUF7TPrZurNMljvQXhuUustEpYgrkKEQx7YT0BekvaH+Pthf6+nu0rWhbaRJQifR4RsMMMqPMKIlOonYxkXSrtKaUArV1euuUOjjVzakVTvmQQeXw8xE8DyOYqHkAC/XusBU0e9gfqpt3v6rCcEWKw3I0kFI0esqczZmoGWddm3XS6wh+y4K2Rg7O6Pdu79g96nqJIPEA+PZdpTJ4+IOYtoPZrorWFW0L68sHtN6g3gwIiHXfYcAncUFwoGHAIIpNQFpZKeuVuLwwnd8R4mS5A2rvuTU2vfOoeoOPTY5gk41O5IDVXui2t17R53y3hg0sH4PX9unXFtQY1bMwOoRkwCLNG3VoOAbh9sK9VZZ1oTbLgdiAYXA3NzGthUjwhPZMjNkDF00UL2Mfcbj2xnX1ajK5F7JbN8C1DK9pVpmhL2nNAIEBo/bK9ciuR3ucZS1crjeePj5ByIhEJE90CVQJ3G7NHJW0oEQkZDvj6poaGiIdggG43hUL0rDpoYTs0zfX66jQupphw0ZZCtvxE8SMB7QbrXH79OAw+QSJAVWb/qgL/WOK27QoOoioMZjj1AYc7DrqzScVLWygwgL+7HoVsUwT6cM2tw1Z136+uu6udH/KS2Rz2vus2+5H/PPu4tQ2vuBemx3xFz/Pl63PTRa+r3/e1XVnT/zRpda+C4cm5B9bgnj45Y/rnT/2ugSI4cs8dX6ONY5Zp3/2taGfGHV8yfrSK+N+Jf1prS/awbV52Nc/Uuwfv9O9QBDw0LmfooXw6rF0VGKfueSTj/Q/+GEtnqtgN9oKB8GAQgx7mvgmPhXM+UaCi3T9/RwoMTFYsZ1jINCIshLaM9Ku9Mu3tH6lt+edJ51+gaQIZGrPtB5Ya6CsQm1CKUpvlhth3Usr9Lt2Eyf3MfkZlBHo7WI/r2XrgHbdj70MdypJW8fdijfZj6DsVJ88nUk5e4LviRhNLzHKdMMgjdWD9lAhqtJbN7eixYS6c56JKTKfnKoyrD9bM/Fst5MdA1uHXCLIxt0P2/lRt261aUdFy5Xl8oH18pFyee/aioIBESVKdKpO9ZA/AxvBO9bNyV1TjPRaKJePtId3dq7TmZBPnr7NtqlfJVePvXqE2LIfT9sjbJv56D7kZ8UpQfYYr2p3ByTdHYIMl9sN0sg7OViJ7oA4bLoewR2JilGo1F4Emw4mpi2TIqeJlDKn8wMxJlKeduwQkwO5vmXDbKYFIn7aAkHSJkY3TcrQCPiBOtZ2ToHrdTWQ2ysjpRwRm9BI5bfffMNvfv893/zut5sdb4qJkM+E01tKC7QO3/z+w/ZeHs5nUk6cTrNbPgsxVIJAFgFsjwR54ZUmSAIpz/61AQARQeKgUQVqE6hCvw3rZGGamtnb5rjJ4RWY08yU5u18d9hsaJsfx9az06fseu+9U1uzPds6ta4bsKitbxOLYVHb/XMhtGZ/Yie4A5ZZ0f7pU6HisD3+jNV735zZPrdUOaYlfVGRRyfKIRzzjyxBiCE5Le5e5vwpr5f6xKU+f9Ztb+3Gf3n/X/gPj3/NX5z/6rPuEyXybvqappVbu37WfVSV317/nsf0hv/w8L9+1n3g5wOnt3ZhaTcu9WWzpf9ja2k3lr4whemP39hXIhGxSfrngvWwXXufd63e17/8+jJXqG1i8fpD+g8hWD38XPT4/T90+yGwtn//YxfNTleSV4/9o9Cv4+NsA4ZdbC0Hms2oA1MKXmjv3dvNjtYBiohNJWLoBKmEXhGt0G9ou6B9ofmkobVsWoUuNJ1oGmjdnJZaxwLaeqc2pW4uMo1edbevdGCxaVW2DvEoIozK1LS7FsSPD4LoKCatU90P3fcYdk/9MZXZEomjaR4s8M4F04Lx1rGudG+NVj1zoVWzRe2dEIWHhzPn08w8TQ4s3MnHJyTe6DdKjp8PO/+6UU1Q0NCNnsKwe20st48s14+s1ycPWANzQLIPvdbHhCwgdII4h37r8De6QCygwcTOZblaQZnPps0QIUj0dOSfcHtStqnBNpuQHahJGLB3FOHik5R976oeLWitWB20wSARIkSfQCmKhLb9fN/fvh9jNIDs51G3Tnj15xmvWTca17DrtWC75JbCssMlB9hBd8qgAbzDNeMXkAEJxdy/LJyvDfqj7m5Hu73uDpI2ZyyM5rfWwjff/J7vvvuBcr1YwY/Z0jYFulI00zV4uCFOAaykGLlcs08XZaMwJTHQKSg5RwdVabvGa6v2eSCypXXHlDy/J/mONKF0E7uee+/EGKm1kWJwmhz7HhD1KZyLvX1PDa1KD8E7lULvdv8qQgyNIAZC7LrcQUV0x6kmpvXYpkLdQixt2tHRP8HO5//IEgJJEl36Z0ME1U7g828P9nsoipp1sXzeMbT9Honci5t/Detzi1bB3PAUpfT1s+7TJVL6StNK7V9u+dy0fXZvNfDzANkoiRwmplCM6vwZq2ol9GIZVJ8N0H2STvjs9xUImz36ff1prC8GFs07pZ8DLOx2bIXi69aUl2KfuXmOt3sFKra2qP8M2Wgnx9sBG9Ie/vXDstSK3UGaMT50CBGJ0ScV0Jvxlc0VNRJFSNKIFEQXWn0yelO5QC+gzZN7M2ubuK1CacKtCLVCqV70qVIb7ijTvEvZPHXZgZzzq5vTRgaokAEuGMki/i+RjcIRgtN6PIzPkQH4ccrZiv48TR5A9zp7w8LHFO1YNzsm5nkGsddc641lWbhdbojaL2REiTHxi6/e8PbNI6fz2bIBhO09D21OJNhx3rr99rMgZkyLF6u1metNEKi9cHn+luXliXK9ENNsYCgnULf8bBW2Y+BWQHS0Q2MkPCu9Byb/8Xx7tiJ6mu1+QJ7eustV2DUV7AW2+vMxnK0GXUZ2bcv4wJNgk4LtWgjDkrjvU5G0pz/vgCRuegqpn2geNhDuidk+GUoeADdeEiitNgsPHFargtOf9jyQAVLGhaEbULJzoq/2XD98mOuAmjYpUwj0zYrYqG9uB1xXm6K0Ch72Z58tSg9wXQvP14W//fWvef/+I+ttYZ5NXK/aaGuhXF+ockIlIWHyDn/jer3s+9wpgHE4iPVmICMIjw8n5nnifJ5JaZzXfRKbon1GpGki5xMxzQ6oI6pG3eu+V41mlsgpGVjJuy2v+LkKTiMcTQkFD8hr9O7Uia70GIgt0LvR0sZnruVk9C2sr7VGCwa0xmdZ7504PitCcy3Vv50VJJDDZNPGz6VjiG6f+19KyZjC9NnAAu7Upn8tKxBIIX/WbWeUd9M7kiTKZ4KEJo1bu1om1GeCEUXJYSKFRNPPv27z4ffLv+Sa44kcJmMO8HkTC0WpvRAl2mTyM9YAIJsz4efch/DZj39fP8/6whwLPbi7/PGl/rva2R2IEZE3qscoGscv2uP6KSBx/PrV33JwdPL1qSUsQIp5o2nsTlX2+lIc4mQrIq0p2s1sHiW6TFlUkXZBtVLahdKKcdvrSOCt3IqyNriumEtTsY5771C7uGBaN8FmcTDRXYCrenAFcmqJ/V88f8JFsYwpy+ioJw8FGMnCgRBln7SkTEyZ03wm5cmP0c7drt0cv0a3IKaExCG0tnNfeuX5w6B2Df6+cHp8MFpYEHKCh1PmL//8a9599YYpGwVrn37IRhmwbmxijC/UaWgy3jdWvPdaWW8XXj58z3L9yMvzM9I7Mc/k+Y3x18G74A1tAcGASBNBpW7pxiNXoPeOaCdeFmKKrD3w8Gbh63yidSHUjoRMjBMxTF4U2hSno5glrz2P7/idHuXTFzG7Je/u7zQo27YOPgb1izF92K+LoYNgAxtmUTtqZ8ApVX6svKoPw2F13ySkHEk5buBgAKGxD+z5xyRJ/JyJP+pw5rK311ql1OJ2vFin/DC96b2jpSExk2Kwva62x1sbwO5Y7AUU0w59/+GZ794/sdaOCc11jFpQCQ5rzGSgUUhZUbVjWmvx3Jvu70Npfo0EB5oqwsv1as5uKZKzAebTeSLnzDRNEAKhQ73duF5ve05LCKTseg8xLYWlwE8s4/oLwzUuMuVshX8bE9KRmxEIycb3EgWlbTkoiUD3aVfvRnWy87w3TAbtLanSU7LPZt/XrTXb3/Xzipr7uq/7uq/7uq9/rvXldrOH7uo/ukS2272STTgoGWADOTyc7Nj7DwGL8e8fAYzDk3z6s+0+owNMALdv3DqKYU/hxTuRvSthAAq6/2mo3tC+ovXibjadVhwk9M61KEuFy6pGEyrNLTWdxqEmaDeaik0ptDdzeTnQQsaRs7cRNiH1mMpYsPDgzQsSs3XVgwGLICZAHkOK6Fz6eTr7VCb4NKAhtaJNfFrgScyHc9hFjb6ina7Fbwc5TT7JyCZeD4Epw8OceTjPzFMmOv1nd9ga58f57GHnTct4zmNHXm1iVNYby+2FdbnQajXBfMpIzCBGKTHhrblHyXiYkHZwJNZvMWG85StI7YTSmZ5f6AQe3l7IPRHnSCqrHe+UDS+IHPZz2Ar8sO0bp0eB02DksF+3Kh/d9uLuOHW0ct0mOIf7ikCM+4Rw3966HbPte2M4JbI97UbMEjkU9LtKaXduO4iVvdjVw3UrdkKcYmWTmqgjsNCnUd10QMFB1TiRphvx6YscqFkOPG/LysvlytPLxYr7FHdrYRQT4fgky92zRi6GjJ/598LQBPl7bhJ9roLby9o7zzmTUqT2xjy3zchgczDza1J82mFWvdGBogXlBcUoOu66FUMge8EfQ/Skbzt+XdUmGyFsJ3E77yOIsys6nIxVCRqBToyvu3hGM7U/Y6I0zmeJ9y7efd3Xfd3Xff286wsnFqNj+RpZ/FNHwCK48w8H5PGHgcGP7y/bXY9g4zhROU4u+haKZb+gU0zm1uL3GV3s1ncOYQrGzw9aTD/Rr5vlY6mdtShrgctNKRWWgjm79DF1MG/51oqBiFbcmcntNlGgvQI99pqt82kd5eid1ujc77hpFmJMRBfihuxTCnEHK7GMh2kyC9Hp9IbeYV0rpVTK2skpkVNmnoMXarq99t7s9Wm3fnIKoEl48/iWFAPzNPH48JZpmtF2Mx1It+M15cgpB6PkxLxTfgYNS3D++qFbjjLU0pumRZVeC8v1ieePv+Pl6bfUstgxmE7EPNPdgaOrbjSrzrCFDYSciQLiwlgtBdqNrpVSxRPTlN/9/j3ThwvrqvziV3/O41e/pCvk+YFzMC1PjIpK2jr32o1uE1JyZ7CwTXOG2PnT/TuGGp0dHOygdr/t0alrFPqTTxzGhENVCTFs18/OYhoTj0+umQ3cDCh3fFV+/lvfX4+/15EIbVOJhvaC1oVeiz1PnpAwzqcVz621jSIWYrQcE+2HqWdgZF7EnGlr4dd//xu+ff/M++cLD2/fkfIErXkRH5BwMj5iEA+U7KiL/UJMnNJkFL71uu2pkdVy1CcFds1YLUY9eH568RyPxHw6MU2Zt28eOZ8m5tNETgbILCjSKEwxiw0pNNjET6GN9xzCluadcyan5HqWblqmZd20TDl7OGSIuNSbKII02c/OAFiyO0WZHbFPNERIMfrthJY/j+5xX/d1X/d1X/f1z7W+UN2nP81t3ZufP/33mEzoDgLAqFKy3U4OxdFPAItPn2qbbhxY3lsxtQMMK8BG5/coQLWO61r2+/ZX/HGbVmgvKI2mIyugsa7m0nJbGmtplNpZ1kJtneI0D+17pxPVXUCr1Z9CnU+oJg72yUPYgvDixtE3cWn0ws1pFNFuG2Ikpcm6olPauqM5G8c+ioJbxdXWnUYT3GLUOt1dO712hoJYvOOahvBVIAchiOcCSDHKjDToV9algIMK8+1XeovufrMHng2KUDi8r0MlvJ3nAV5N/F65vvzAcn1PXZ7NDjXMRqXy49EGmNBhEbqVyVTtRB2WuRlz+0n0LkgZ4nrL70AFaufj0zNrU+aPT7z5xTOPb39pjkESN7oKhwkYg+I0HIaw82qhZn0DAYct/gfXawrf4PyP+wd3NgvbtGnY0m57PIzicwAVBxA/NT3cKFn+4nza0ltBm4uCw2RgTw9ZIv0QYtcs56PLCE5PtOavST38DhNGb2B1XBduM9tVud4Wni9XPnz4wO1qgGWaH8gpMecT19vVjA3iyZ1DErKu7qLUtmsnRvtIy/NsZga9odXF/VEJDo5UOyGoAfxBORyTSzEKUlkLT88vLMtCvmbmHC2nJidinFz4Pfv7MxpXd7QomJanVgt/rKWyupYl5+y2zWmz+G0tv9J9jcndq8bINv1qiFiuzQCvcpx2+bmM/xrsZu/rvu7rvu7r39T6MmDxE5hic2T6tGKSP/D14WGsnhkgYnxTDv94PZU43tnJIa8fVw834EizCE4jCds9RtFaN3tGXKArpABBGkpF9UanolqpDWoTLpfKWhovl0Kp9hi1Lj7tKBbetnWU7dWO4lBd8DroRogQkgOLYKnWSNyTnSUSoglyY8ieJrw7DIUYmdJs4tt5uPtETqfZO7WN5XZjXVfWYiFmISSyUyrW1SYotVVzsxEhx7TpJaYcyEl4zJEUhRiU1oXWO2upXJeGNXyz5VlU79a3ZMBiTG0cYFjxNt7bKJqcmOP2syNArdZCWW9cnr/ldvlAW5/JPuWIcXLrToVaB1bbBLWD7tJaR0MgEiyrIWAOOwQkFta1mNNQMzqNNuXj8wsfn18IQfjF5cIv/2zl7btfmtZBAAmH9+CaHYy7b3Q136/BCm9kt5aVIP8olXAUkkd60Pg3dETSBhr2wLQxsQsb5eZ4/agegcUAeUea1XZj26FtRdy6N6Rm+RCetj6uqfGY2ipqCgE7LuJBhD6pG1duqXWzrN1AyRBsd7W8iucX3n/44BktwpwTKc+kXz7www/fcrlekHCiykTkDGkhVKPIGWYVpvls5yYIa1koZWW9rQ7kwRK++wb0CWrgww90jB4kqJ1aO7d1tYI/ROZ5Yp4m3n71hpQyeTohwbJc6rpSSqV1JYXkOpN98jn0WyEEpsmyUuZ5dqAcyLURY2Sa7VoO2yba90QIAWltp7jRDtOtbmYOqpsHUrpToe7rvu7rvu7rZ15fOLEY3dm9u/wH17F4ejXBOFBCxtThU+DxE/SRV4/l1IyO+fzvt3O4IYKXmG5t2p2GVLdsALzgD8GK/BgDQVdC7wQKYGLTZW20otyulbKuLGVhXVda75TqybgeTjaSOnbwE7yDHBCyd7R3zUOIyYvBkzkjOQ1DXEieHFCMDmfO2exhYyRnc7PJkxXLghxsd8WzLDqtQ4iZPEckuz5GnGYhcD4nD4yDQMHyKhaESqC5OFcQDZS1s2inlpnWA6Vn1tapajQpxDPAtJJCZp4tF6F7mjDiuSAHbrmhAXW3qw5Uaq2U28rL8/esyzNPH35rnPyYmc+PhJjM8rQ3pHcQNiH82D+tj7kFVvC1hqYBMsNmJXp6fIBrwPBJoXalaSdFK6I/fPhgQW2XG1//+V/y5u07/vyv/iPkGTht9B8JllathD2lW5UQhaBKk8o+L3jtqjF0PQMcbOxAkb2I39UNr6h/Y3KxX3QDMIxDPMwRdrtd9dGhqiDNwIaF11m2RK8rdbmgraDyQson0vxASNadb9UoZcPBzO5XaapIa4Q4bRoOs5W1wrs7DUr8fbTqGQ6989//5m/47vv3PD89kfPENE2cw0JKynSK8MsT58fMx483pgT5lKnyQO3Cy0uxiUApIA2CEPLMw8OZQPAsj0ZxgwXTFa322loljryQ3p1+59hHQMK4vdJvK8tSuFwXpvmZnCfOD2/s9Z5OhFNGVVlui+XJtMZRjD+mC5fLZQMY9ic7yIisq9OjQmSaJj/Hr53uokZzSAv2eVZK2a3A1Sx1QxBaugOL+7qv+7qv+/p515dToWD75fuP32xU1wdB9vj5kW8uO9v7yPr+1Hlq+5fq8a9D4XVkaQ0HmxEmZZSL2qvTMHbnI/vFP0TaDbTRSqFro7XKemvUqlwvleIdUHOe2TM9jvQwc2caAMeoPhIsQExkt7ANAYLb2qZwQpJPKXLaqEwpps1rPzoPO25gw7qeKUd3zcF58EM4q9DFKCpuuxm6F7UCEUsPjtIJIqQg3mG2sDI8mbt32Y5t6+ZM07vQ1RxxEHbXHn8d4hqKFIdzzuH4jC65gGxUHqdr9UbXQquFsi6styfW2xOtroQYiXkixGzARBuvZ1aH9358XH9NvYsDvdG5drtj16uklLe8kO4aDXEHorUUnj6+J+eEtsqbt1+R5wfSDHmOu50pYxrhsuAwqtNOYHdjGiniOxB4dXUcvnf4jlOutmM3JiVHCswGKOxKOtKePj1O254V2ahAQ2OBgwyzpW00EWLKdE+tPlKwjinhtGY0nXCcGqrTwdp2zYQQGAbUtXWWsvL0/MzzyzOtVU+sNh0HXQgUpmyuZ+tidKQ8BXqc6EQDvSWQS0BdMB9iNv1RSJs961qWDYDGlu05WnHHKtM9MfaQf07IlrPhjQoVayhQzOFMouVobNQ+v9YI2wRV8cmZ075ELHNinI+hOdn0FikfJhyCatjO93GCO8BGjHHsODTuGhw50Kju677u677u675+jvVFwEKoyI88jPWTv+Xw549MNfx+A4dsRfpBI3Hs9AHDFN8e+1BcqQ6XJeP5r2vZqTiDGpDcojFGp/pADo0QOiG0LVjq8lJYlsr1trIsV6M6tQr9mB1hK3j3mxFUE1yAGXadBCESo4GImGabVMRMniZP7c2EKMQkJBd5nuaJKSWbSqShrcjEFDz11wqf3jsWB2COR4aaugGHoE432l2KgiiRRtQbQQvSb86FN4547UqtgaqRqpnSJ5ToYVvmjjXFTkCZUJIXYdVD/rQ1JHRiCJxmo09Z8Tu0Faa9PZ79rVPeK7XczP3p+sL16RvW5QmRSM4n5sevjOLkmR5d7bl7rZZW7J3p8WfsmUENqbW7BiX5OTTHoJgy54dk+phaad148SFm5scHtDWuLx/5rlx5/uEbtC2c3vySh3d/xruv/5r5ZNknO8Ac+RkOcLu5c+GvFzlM5Vx3MvbzEU8fRdoihwC8T1DH0dFso8a4e9uoLWUcid62QEWwqeHRZSo4nau64BktaIW2BqTjtr4eMOjFtqXAu6CYikTv1I9i13Ub3VPh1d3LCIHreuGH9x94/+EjLy8voFCLTRMuGWat5Ek55Uce8sQU39BJNIkm7JbAw7TQNaN6QsIjXQNL8cLaJ1NNO8u6cLstlFLHKzMThtHxr3UDuK1U0wzVMeVsbmXsIBhYS2MpT4TwQkpPnB8emKaJxzdvNkrn7Xql1MpaduvXlMylrLZKuVa4Xje61TRNnE8ncjagu2eMxFfnGSAOk4YEGhXtiehT2doaKf3bCsi7r/u6r/u6rz/99UW/eVrrSC3uOHQsZg7MFgTUO5Jb8bQXQt27pa/mEYfo7J+eROiPbnp0LxqAorsriwl5wQSMVojHIMTobkTRgIS5q3TKagFUpVRqbdyWhVYrpVaa053MelNAdoG4UXp2ao19LzpwCA4mzK8+pcn0ENmARYyJlIezk5h+IQbmeSbFyDxNbrPp7kYSnIVmYKkWzwSoxULHtKPd6Daq6uFjShS2jnRT48LXjesOrQqtCa1BaQFVASI2wwlIMhrGFJMDELFj0wu9LpTa6M1yBHo3TcH5FEETJj62oix6YFtrzV23vCu/FWqDew+9Fm7XDzZhCpHTwztimu019U5XPAfEKDllXXdAUasHirl25oB3NZhtbmu6Fdzj3EoQpvlETA0pK9GnRHgy+cSZVgvX65X333/HuTSzDiYwnx95fPwFaZrJ+cQ0nTzBOnpnWWzyI6bjGY5XG8Vp7OlBH9LhztUORb++ug5+av3YRe3TyY2DZw+qM+Ah47C7MBzfw5mQOn0taGvU9WYJpyFZ/kIQp7l5OntvIA0lOHhyelWraLOwNpscKjGaW1FtnffvP/B3f/d3PL88s6yrT5XMIWldKr0LSuH0KKTThEwnUgjMMZmZQu8kXZCgphEKBSTzOD+gMUGY2KL7Hk4sy41aitEhAfXk7rFnumuvSin0ZgGR3W2he3W75e3z5jVNrZRC656WPWiNIuYIlfOrz6rhvsX4LPHzX2pFr1fiurCWlZTyRpeKTpGUASj8GopDyC8KRLoL0Gu8A4v7uq/7uq/7+nnXFwIL41CbK406xceKEzZxsmx/908oQvYD6/ZtoMF+uHVttylF2/ny22O4UwpD+OlBUKWaW9PunuMCYTEBcgrBhcfetQ9WBOGuLaV0rpfObTExdqlXL+4a9OH9HzYGS4ie8zDsNd0CVrwbHtLQQVgI3Ui2jjEx+5TCrG6D86eN059S4DTNxGgpvurvVbt3tYOlJ/feaWWlt0ItN3ovoBXVdTs+ulleRtcwjIRvvFs6LHMDpcJalNZNKJHdrUnEhOw5eNHp5jprNbH3ul4pa7d9IZ4Y3SvnecaC1rpPuMxeE6DWOjaETXtsZznYVOhKq4V1fTFdQMzMp7eomPqjH+hOI225lLoVe8Zt79vEom8aHKEHzDo46J6voMZHR8RCA6OHBMboFLJAEJtw3apx+Z8+fsBYMBFCZF1vgDC3B0Dd2UfRIBs43Ip+kY2Ox34F7F/KboO67edRdvqEYHej+sNrE22zAxXbF+Za1qqD0C6M3HZhNNoDEvI2FVMHJIQESYniGSm+93sf4vsOeBaLGweY81NzLUbfJ45qgu6npyd++7vfcb3eqC5gHpkYZW3mfKQVTTClyHx6JCZhSkJdLkgvRCnE0IlJkVARmUh5hhjQkKkdkEBMmXUyzUX3ZHYluBmBsvrkq9biCeWdtJiOxEBr2Y7dZind9oltbR36SnU6V8qZ8/lMSomc8xZetyxm9ND3jz3w81Ud2CBCbY2cm10XosQeSepJ2xp2CtRhcgsQVOkid1coXzvV9o/Pz+/r51//qKbyX2J94fOMNOhP2qH/6NqaRF9wny1P6DPv8z9lP4vg1oh//KaH/33RU9yv03/168uoUGFkLAhdLQ/BrFUrdb2hqoSQiGlyYfLxl153QHBI9g0BHR11nLIy+NtbR9HpLKPb51zl5t7teqBOxeFmlJLTniDSSKGSgnpNp9yWxrJU1rWylJXeurtDeQEmVkwieeOsB7NMctHvABHZHZsSMWfXQxhFI6XEPJ9ML5HSNi2xOUAj6Ep0cJZmo0KFKKguaLtxWbprNAKt78Frraw2jegFy79oBOmuE2k0/27IM10DlypmiVs6t7V51gPYr1un1kRhzkIQ62xLW9HundpVWFeoNzu+QQKlmt3sND9yOmcgWrp4a/S28ud//kt+8dV5+1DZbHXBxbv+4SH7R6g61//7H35HLUYNeXz7FxZ+lzKtrpSybAVqb1YAruvqdJW2ibSNCjKK4n0viRdbMSWaDMeeznBZisF48ufzwwYqRkZIjJHHfEJr4eX5I+X9e56fn/nl7cL54ZFluXB+eMvD4zse3yxM04nz+WHjyx9XkAARAz9sh8YnXr7fwi7GNYcsm7AJEaLz6r2436cz+uqaM31L2wAqQwszpkTaaX7NSrDO/djvXSIasjlCeZp5rzdUDZB03Rh09vXQXFCJvfqApJqpgTaioxZLLDddwj/85h/4zW9/wze//51PdMwkYF1Xaq2kaUIUlrpy0w+ka+UreWCaMn1KTOmBlDshzwQx0XIpi0/onolTcPtYz3PojSyQEijrdgxknkESjYzqhGqgNHOsWos1H2prFLe3LWV1UwilleafR0ah024J9qhNH/rlYrTA00yKiSlPnM9nANd9FEqprOtigNaD9QZlT1VZloVaDaxM0+R5GMknTuEVRWqbhnT1bIx/O8s+gwNBd/rgH1vDmOCfUqx8DoC/r59ea18PjZF/fDWt1F55TG+I4V92z3btBAJJPi/jJcTIL+evqb1S2ucl2a8oH9cPpJDIYfqs+wjCKZ5Ikin9857H/ROJEj/7ef5HVpDAHM8Hyu8/vlQ7S19IIVk99ZnPYTb5R9fIf3zdgcif3vonXMXyqhiymkXQrXg8ONmY+hER9Q57pdUVy1GIHuwVfAMNsaxNJbaiqu+hZ+ruLUZfce55GMnT1vEPzkdO0aYT4l1ay5cwt6CRP1GL5VGYW83+i2QEjo2JzOj8i1uMxpTMzz7lDVwMMfWUoyf5JqYUEVFiqFb4oPvfasdFghI0QDdhqFGFjOpkXP2wXcf2Xoo7KFX/WNGtVuzNphK1d1QanU51mlNTC9jDj0l0ukSKwc9oJwQ/u0FoFZo9qOsgOgRFgqUUj7M/qHCnOSAKgZmHU2ROAXHaiFnZbiMp30ODQmJftd7Mlcm7teb+9AAh0nQHCSO5eUwoBq1uUKOGxmYUV+PvIWXQqPuUzA6qFewiQHKHMC9y5Uh1M/qa5Imm6s9fuV1ejIrWQaudE5tKKbVGe6eaPd/itUDbCmle5bkMWqF69oaqUuuBKjjoTcdHktdi791e9kCDYvwieiVw2ShXgu7CYm8ejGncJs52atYmJNdxzW9+aP5Po9mNyaR6loW5LEVqa9zWle9/+J6Xy4XdEnqf6tgxMIqciOkfali4Xp6pZaKsM1MOxAhBTMuTgnh6fTVqXVlRrnQtfg4j0guild6fjSq5UQ07pS0WTaemZ+kBkigtql1D00zrSmkzrdm+qsUmQLUWm0j4Pu66u0wF186oU/iC90JCjCTwaefhc9MBWPUQvHDoELbebWo8aJKqJJEtx2L/o1v457+19SXFvnDUEN0LkH/ppTp+J/XP7rx/fk//f2x17dReaFrpP9KK/vRSd7EDvuA+StVKIjF9AbA4pwefBn/+dRsYuUk/z4pi0/jPWSlkHuIDOUyEz3yNQSJxWKp/JmC4A4s/vfVlydujnD80jEQikoQppR3Jbs1R66hDoV7esy7P3C4fiDHwcD55MZ6QOEOaiOlEY6KpWCHRrEgctKid2gREpyeRzSlIAjnLpqWIwYpO86Iv3K4r11vdXGH2Dz0v8Nz73qYT2ShKyWheNqmZiSm7f70HXE3m4JJiZnb71ylHppxJISB6pdcLZfmA9BVBSWlya9LMKLB7Xbb3Wlwj0LxYtVdoVK4peeCdv/quga6RtQm1Ki83y5ZYS6P2iuL6iGk2nvccN+H3nAIpBKaUqXWlrBeCdL/8A0UCi4Jg3WpopBDt/ec3tNa5rXsH++1D5jRFHucTp6xMsRAo1KobRz2OlO1jFT346evCcnuhaWeez3z11TtKNcF1WZ6Nu96GrsaE2tqcQqU29TKqieU6GNgYXf+9oy5NiKH609suDp4LoqrEEFEiyd3CbLJi4GJyUe2bX3zNervy8vyBy9N7nj+8Z55+YP3F12i58HieCGI6kpYbKTU77160D268eLFtAG0HCMciu/dGrW3bm8YGVLcytfuGQz7LRn9qPgPUMZlxa9pu3xcVL3TN3ECbURSDBCRlt0VOtJh9+tChVswOePXk92SBc/RtajjoZepwtQ7tE8Ey9oJwXW58+PjE3/zt33K5Xsl5tuaEv1LTEgSamlNbjEAv9LXz8bvfomGG9ICEiZgy794+cj4lzqdE68W8CvpKbRdkXfx1CTkGQigIhXZ7JoZEzo9kOqiwXt4DFeiczg+EkNGQaCmjJOL8FRomGhO1Qm020WitWk6MTzTMjrptQHeI5bsq6qndEgIxZ6bJpppg2TrLsmwTipVCEJtgDMRZXUw+NEUxRvu4TYnkU7exd6Z78jZwBxQ/5+raaHw+qAAvjkP67A71cQ0g8zmraeXWrpS+UrV81n269m368sc0bscVJTLHE1/ld593BxEe09uNdvWnuqLEz54WnjiTxH9PfC5IkODg5b7+Na8vdIX6dHOMTtCwnvE2pYsRg3hXs3Vinsh6QjyvoFVMG0Ch6xUkQkxIfotKMt/4LhuDI4TAFBRtF3pbUWlM0wNvvnpjTkshGZXI3Vtu14VaC7fbjbL6hMLtJAcVS4JsWRIjHC9I8KLJRNgxmwA7uQAzp8xpSqQgTMk5+9KJ4UYIQk4R0Q7VnI60F5IWx1rC2gRtoGJp15ZAXDeHo9H1HXx36+Z3alGuS6eV5toIs4JtGlASgyePBFIM5MneXwxOCZNKomG5zWrWs6rU7h33Vmw6IiDSCaFzmgQJZ1TFhcpj6vBMjjA/WHp4kIBlilVeXhZ6CvQpo+czBAejyV+j7PsDrCNUS/GCqfHwYNkXrZvOpveRZN73TtgIhnNa19BV9M5GUdkE623vMg36XDuAihjNPtcsbIUeRh7GXsibnmB08AN5msg5cX44U756Sysry8sTbbnww+9+TVtvzA9vePPLv+bhzS84PXzFNFv+RojZ08wHSLTjMSYJw7J2HO7BYgrBpnwxxn2i5xtl7BPZpolHGuE+zbBi1ATKg1bWe7OOuQhINKDbOzEbDbClyTdh82u3Qa/YhhjWrHtDYcxGthcWTMAuQbZp0t/9w2/4/bff8cMPP9h+TREzfLDpSdiOefZrE9OzxAkNJ6pGlrVDrISmVIX0EsgpcMo2STxNJ7s2rfdPQNCQaRpBMxoCGs2ytvgxOr/5sw3sSi8mDi/P9L4azakamAnxLaf0SMgnWk70HinnM2udqU25rmXT/1Sn59VaNg3Q2Mu9VZp2d4SyX73JLahV+6bj0AGaq2W8mEYr0qduwMJ/Hp1GNah7X1II3dd93dc/77p30u/r3+v68uTtrYb4qfGysF9L4+uAOpUopgmZ6iaA7G2ET1l+ArIS1VJ+tYetWBaJm7OTuTStKJ1At3TelJGYgE5Tt0xdK+taWK42+ahbgenUhyjm3JSseAnOpQ8hELOlXMc0kZzilCf7pZ1z4pwCKShZOoFqUxmxrnKUSO9mnaqtgFoirmLd+uqdWWXnZ6Prnj2B0bA6xl3vCrXhhUqnLNaVL2X8XJB44GYnd5magjv3iAEdOml7FWwpvcrqlKK+/TQEtaC7KO7gE6g90nv1wm+1VO4UjQuJdZdba9S1IBVw696gHXGnIBVBgxAdADGobj7RUFXyNCESHByMnIRjXsKP//S2gwn7szv2HIur3bqVbe+OCUHA7HrHfQa/fZ+pjAvAKCwxJGI40eeJVlaohbJcWK5XnlCW6wvqPF4DVLb/o0M7ws4V13EdjWvLu/7sf9mkww0JXlENdHe42o6pjvvt1+gADN1pZLW6WxPNKGzBbZNl12qEEEzj0ruBDx00xWrnUnyj6t5T2FhYfu0bWLUdX5sZJHz3/Q98+913XK83pmlmyhMj76SJui5iB/2E4MAi2cSgBZ9SOeheVrs9gfZwYpoCIU4kbWYjrc2DCiN0cywzcCs0Iq0b5eg0PVrnlERdnlC9uW5oofUrIishzgRVcrSJH8FUU1UjU07UDiEnWrXrdV0LrTaWYloYmhi4G42EQe/ztO3k+RV2OgcoqTvtrysa7QQfNRUpRnqMvh/iq/1+X/d1X/d1X/f1c61/UkDep85Osv+E3SrTqxvtiHaiZAuHOyeidmQ4yShMQ9Ct0AdNJifTBAyRtBjAaNNkv0iTmIAxJpa20tcr15ePtFKppXr31Z1+UidpR5iM1hQTIZlYOubkoMd0ETEYiEgxM6WZOVuHecorgZWgFygf0Lqi9WLFT0hIPCPqNqtEomaj5Hjgmtm4Cnm80aCssdIw609z0YJbKdTmAvOqlIa7NflkIMwEEU6PEzkHC2hzoboV8d2LC9NzpGTF38j52HWPVhGKJFJsxNAQqZ74+9VOdaOa4FxWBx6JJg9UDVxr4HbtlGLJxPSE9MgsVx5OjV91ZQ5KjsraVgKRFCY6pjEptRiNZLnSN6tcHPCou/FU5673V0Wz2ds64DrkVoyu+JhUDBDxWthsVJvXzkn2WMEnPOM+vQ8qkT1Y690CClOCnIn5gTg98Mv5kbJcKcsL7faCtsKH3/xXlo+/53R+y7u/+F+Zzm84vfkaPT2gKW/dcRUluHtVimEP5g52BvI0s2Vc+HuISVnXhdZM1zGMFcb0sHnSuVn8+mRoXaEVtBbKcnNtSGOajeYXDiJzAwhCOj0S0wxppl6+s4lZa0Zd6oDEQ2fOAKO5qA70Fmja+O7b7/jh/Xt++7tv+O1vv+HlciG7yUEIgdN8JoRgDlB+rZgzVyKlExpmVCZanjmHibfhzGUtlOahc9h7vyyNl6Xy4flK8maEBDMemGfLkIgxIOqua102YPfwMBGTTQOUd2h4S5/fQV8RXYnJMlgi9kGl5QahICEyxez5FIFTFLpGmiZqywao1olSKqU2lrVQW6c0NxsYNslAWcvmUmaNAZ9OHIDy+LwttRK6bMLuGCPVGySlRAO893Vf93Vf93VfP+P6Mo2Femd7dIq9PTkkuKbbdE47u4A7aN8p9RptAhFcvCwQsccImEGpCT2ji40tD2IUhMl+rdutRMyppRRaray3xekCzawxh2AzCFH21OphBxvSEGAHcspbwvU0mRA0x04KV4I0ol4QXRFdUF0tkVcCSLbOtEyoREQS3W1dq46U4k6tq3vh2/1UIrWZbqDUTlehq7DWMaWw9xmiEJLpP1IQcog+LTCxes4GkMSzRXqrTgerRgLpowwZadLDLWiIRYfN6GzuUhi1yDGhC8VNAN+00xHv0kZPIVZqV0pt0CrSCiFUarTueWsVWgMyUSFNA9bs1qfmHmIF/uD8wxBjt20f7dwg248HjfJBR2E/OzoxjcccOoY9ZOy16HmbS2wgo230KQmB1qrpBtLqHWMr2IN40ng24Mo0oa3R1sXEynXl8vwDtRbfI4Cewfc1PkEDz4rZBMUjWfmgnTiA+e5C4Rhs4qIHEFVr2YDUJvg+pkiPiY+HGmoI1gRA2OyeRvhjCJAyIc12rtbkV+C+lDFBM/g5fvZyufByeeE3v/0tzy8vXC4XAHIek8Kw2Q6LQE4ZJTKmHRISkk4o9v21rHQBDcGsXhV6M3olQB20OXcfC5g9dIyBpVQHM9Gsp1W26wCgoR5Gt/O9bZ9ERLMJr0WJouQUSCoMiWEYDQO6mxj41MdF5SFkaorUquSYqL2zDsH3mOAeaWU7V3A7lhtY27+Ba703UN1lHAfcUvi+7uu+7uu+7uvnW18ELAa3nVHE9b1AAfZiZfzb/2sdxWEzaoVxTpCTEoOSo/ERTcyaMeNU2QqMzbo2sLkL1bVSSzH/e7ccXdfFqBG9ocG443maSW7PmLIBh5gmQjI3pzlPpBiYc7Kk6xiYspo3vixIfwK90et7o2BpAR6ACQmPaDihYYIwm05EElWLFwrRHacay/JEKTfKZaFroulM40TvgaVC62ygSiSQciLlyJQC0ykRgzJFJUejEiXYLDaDc3V6SlQ6VSutmXuUthFGFwjzbFzumEys6zSiEBIpBMv3oLGui4GeDrVYfsltbazVLDhjbMSUmaaBKpVeFqN+lYUYFnpIhK70VlhrRfVERpnxhrx6qrHFhm+FZfNuOPTN079rg11FYkt2EDCwxs56klepw6UU/5lswMIe4tUj7o+nJqRV7cTkQDYEerEclxDCVszGYM5COSdCmsinR6bJUrjrcmW5PlNuV57e/540vVBbs3RrBZ09byVEgiOk1o03L06J2UXc41obJb1S68q63jjNM6rBMynsdmVdNu2QHo5f16ONraFHbZUuDsYixsXS5rV6stI5ZsL8YHSr5bI9HuK0OsRoiOquR1iq+ffvP/Ddd9/yX/7r/2WTRtcqpZQ2PcwAjqKuMYgzhEzpgCSID3QValeer880XeishGTXXB3J2a5hGIDL5Vykic06eJpOpDRxnqcNeNl0S3lZuk8IJmLwvJkkHG2Rgwukz1NkyoEJCBqIalor30WMAM1onELmeTJNVIOlGD1zrRbEV2t1wbfpMuw9mCheu77a12Pvj1C9nYo6rgcHGGrXz33d133d133d18+5vmxi0Yfdp26/wPZO8dE14ZOu2+jeBWFOnoQtDa0rpVeW1r0oj6TZuphpmjzkLm4P2Xujrm1LxG3N7WIloCmb9zvCBGg0MXaeJlLM5iE/z24JO5FidLHjapoBeSFLJ6kSSwcKypXarm7HmVB5R5cznRklUZnQltAe0eZFK1CL0qpyu9y2rIXrDWpNlKJGH4mBEE3cGnxaklLidJrNcSomoPlxXQ12OfggCF1kayxb6i5IFWKYCWEmpQnVhqaVUXprV2ovpoMQA23qRUjrsBTjhb94gJf27joQ0y3gbkVGNROul8A0TcQYLPeirtT1QudGIPL08sQP333P7373W/76r/+aX/zyl7z56t2x4frJxMBAAAgxWAgbnjY8LNHjlOkt2LQjRnfGSdseSW6EM+VMa43b7bbtRxPG2uN17wx/mrEBgzZmheqyLAZwerNzEIJpZqaZGAQNkSZC1UpWYUJoXviFfCIjSJ69eyxcLs+E9AOlVt78IhMTJIneebYDYt1/K7Txgj+E4NdA3xDUOHSlFJ+0mevTHq7XoVvnumun1UZZFsq60OtCAKbk71/V09o7EprljYSEpMkncxY2p0mRfEJataR31W2KJSEQLWSD55cXfvPb3/APf/93fPzwgZwn03KH4BQqS+5utW3C/a6WRZLCbI5N519Qe+CyKk0NkMYp+XhkCMONKjackmiVoMm0UwhCMM1FcGqVmH7DGh2WVzOdkk38YHd1ahcUm6CYY9yYrth0YlkLUSC7oD5nC8EblCQRC6oLwfNrfPAjQZAY6T0w1UidEq11ljLZ+SmWmdG62TRvgOmQy8IAhbtq36wwVWhjCifCep9Y3Nd93dd93dfPvL58YtFeU6G06ytgIa/023tXLQbZfskKHe1eULRGa+qFiUC326aRHzC6u2opt6227RewdSh1q1BjGJONCC7ONmCRyCExT9mBhbk6xaCkUAkUhJu5Jnm1rhSaLtS20lWAjIYzXd7SyS7YTGbBq7LRxKR3Wi20aha3Fn5VWVaoPdK65WRETRCyhfpNs1nUpsTpPO+86lZMMF2NjmTEC9cZyC7ubh7ha8dWnKMdvaNsonZU6d1E4sOqVET3zAeU2wqldi63QZdpm6Wr4IJuxO1DMZobCikSRO322ul0Whdut4X3Hz/wu999w+l8Ik158DZ2Go0cKDVeOA8hL+zvx5/pyObfpg8b7WlL8sY0EH6bUWDGED33RExHofv0QtHd6Wgr3NjC50bGiUigSCGEuGtWQvAMiEAQc+0xHU+0Tr/YHlHfG2W9EWJ221HPiWCwvRxY9G4uZU6nGwnefXMOs6MRROg+Beme8WKgsHmmQ9uE8KU0luXKervRy2LuYeHkj6XQG4PUqPgGc7coQnRRtphdcrdCdtNEhUAQ0xiUWrlcr3z77bf88P49l5cXHs5nv/7NdlaCgdIiHu7HPgkFe444PRh1UhvBs0hyEmJXy2rZEGqgN9s3iDhF085ZEMzAQNRTwC1jwpodRrNkslyaEBK9WsL2WlZUcavf6G5xcQPDw8fLDBMiOXfm2aawWzinKCF00zqxf54J3bQf0UBOC0YVbdFCoUKttG63Hba16vunjwvlcNFspw9FRtBg8OyZ+7qv+7qv+7qvn3F9EbCwrmvwIhqnrHi31wsDUdkFpiESY2DKkei/jNfLB2pZuS03umso0umRlGfydCK6nqA16K1aAalWUJXSKB6iVlphCEyjWEdxyiZAjTnZxCNFcp7JAf9TCaGQ5YposbCsVhDpSDQnodYt+6IT6Hqmhq/pTKzN6BgdC3ERL5BLXamtcrleqKWy3BanYZhVqvHnIylnUoyccnY6yMQ8W/ZFznsgzKC7mO4ClEjOj57aDaoLqgXtq8EMEebJuPqdTm+FWgraFiOThcEjtyJJuzkBraVTGjxfzPKyqRWKOxC0sME42fmIQc3mt4+09Y62jpSKtkg6PxCydXdP6YGc4Pv3H/n2ux/4/bffcn58JE6nMTvhKKaG3eEqeKHd1bqtVlQHB4qRVk3f0LoVhtmPK3iB74X1ulh+QQiBnCe0q7sewaBESbCu+SjIh36o6p5kXWtzO1S2fT3ANEDO0wZuWrUcgv4AMTWy6mYvyjiuCWpbYBVqMbqS2aoagEpRrFPdGrGYNmCa5s0paWhOFCWmxKQzy+1qWpbiFr2tsd4uXF+euDy/5/zwlhATtQvPzx95eXni8vE9pzwx/9VfM8eImaqVbZqgoRqY6GZD7JHg/r4DzTPkB+gI0fJZRIW//bu/45vf/Y7/9t//u00RVFnWYqGRUzQQEiOnxwfCstDphOqfJCEyTSfy/EB+/ApJJ75K5y1VXYPpg5oKt9vNU7HLdr5ui6V2l7WgarSoy/MT6+3C0w+/py0X30PdphcxmfNbypzf/IJpfmA6PaIh0hUul4tfy64/EdNsDM2OfcZFa154c+B8Om/XtWKgb55mkjcMpmSPkfLsdtDmgNW6kmKg1eip38XpUZUa9/yKrbFzaOoMDNF6NyG/RtodV9zXfd3Xfd3Xz7y+DFj0tnU1rUJ0Xi87rSUgm21risZPbmX1AqtRSjOL1HQiRStEUz5tIXfajQbiMmFXqXrKbe8m+hUI0XIRhOBuToFptsC9mDN5mgjR3FqiNIK7G0m3+B57pRNmhdqgFcoAFs350D0YzUpA0pCXBytyeqOsK8UDr0YoVm0WvCMxMGUTiaecjTKUor8uoz3FZHqT5GAqSPDqyrj/5u6pRMUyBJq5yagqMvI3iE59sXyBXsuWAozTawawKM3AU3cnHUXIU2ISRy29+X3CJqwfadwCJoh3stmgwllhHEj5BCi5d96chBw6bX3eQEitdfPyVx2FmvrEqm7fN5vX7o5QDmB6t9C0FOlVDpxz9v1nR30DK5b7kJjnmd72TIsBalI+BDL5dGKknO/Fu0kOcMC3bftke7T1TuydzV3KpyNGY7KfG40MtOlGT+q6WOG4XpEQSHmy19bFzmcr1FLpUWgtuvWqaTGG2H3QEF0J7rqQ5tQ2SwVvbaWsV2pZtwnAxw/v+e777/j9737HaZoRIn/1l3/OL2IkBd2u4w6IO7oZFSqaNgchpMwQVpsRgaCSeH658ny58vd//w98eP/+AGSHzsUpadmSyGspKErOmYqnU4eEhAkkM0L2xClFQjAbZjxrQxQNeH6Jp1qLWLheFLQZ8I4hkdPE6fRIjZFey2FCggnBRSitQiloWOme6VFa9T2o+0arvuvEKZ7jGnBHptv1RvRrPAR77VOeiCEQRZiyOO3xwcIIY0I9oLG1XVMhwfJqRybFJsbXw35WM2DohyngprO4Tyzu677u677u62deXwYsWoPQNhGt7OXcq063aQQCMViRtq4Ldb2ZpWKIhOii6jx7wZQ3Ie3gkHftzjlno19tvzw3JxmjX+ScSDEynya3jZ1I2TQXWSKiC2jdw/ma4rHawIRqpRa41U7p0PsJp2tbNzUq5zfqXvmRtVxY15Xnlyebbng4G6Ko9M1d6jSdyTkxTTPzbNaaeZ42a1B1YoOBi2DuMRYpvnWJVQRpHa0r7bq6GLwTo2lQUsws1xcrzqt1a9fSWKsXtD0wBMkGnDqtdFK0cLiHx/OWGN7r4hSoCNrYstYVevfAshBI2Wgxrfc9YNBUv4g0vnrMJCpP37z3QtjcoZpT30bnVVB6NztZ9XOTUsSCEftmxcngqm+BDQ6YYCuyBu1u7MwQLBE+hLi57axr2YStyScNtTanvqkXyX7cfBpn4GOAs85w4jkKjwcIGXQp00iwiYL3IrC7W1cl1Mp6u1jS93w28b7TZGotlHUxvn6wtPmoiRAGFdGOTfCAPTsO3ahcqrsrWFup9cb15YoSePjqz/jhh+/5h9/8hv/7v/8tp3kmxon5dOJ8PsMkHkwH0ryQ1eZTie5CgUhIMxIV6UrTvu2vjx9f+Obbb/n13/4dt9vVMmechrf6ee/eURcRFn+Peco2DeyCxAkNEyrZOu6tI9Qd5HY7X1It/C6J0vDMk+YUI8SAhb+umCfi0D/VlabVgFi3ALvuzZKmmPtZWVE16t2YxAJbgvb+WWS38B3pDlE2BTOtRXZalJhWA8Pvcw7kKfPmTSPNJ+KUkc1sQPbPVQfIlqtiU9khvO8HQKsaaH3YWh+nGHdgcV//tteBVPsvcvv/0fvd14Eaf1//btaXaSy8laZOX4me2Ds6qqPxjXZ6r5TVpgNKIJzeEEU2LYW4iNI6rt07k7L9Mmx9YxMzbC9jNI68PZ+H2YVMzGGjXIUQjeMejFfdxehU6GQiBO0bOAIrEBuRGmZ63LuQOSrTbAWa9s7y9JHSoTYL+uoKMc6kZDzuPByl5kQMQ6zZiCGQkhAjiHSaXi2ki0gKaXeOaZYefb09W9FK2LrB5mJZ0fXKsl6cCvaMdkuNHjoAjX58ZSKmQBJhipB8YlPLzYBYemsp5xLQMLQRC/mUnB4CYG5Cc5oJkgiSbUAlSundbXKV7gVYcDci7UoSQbry/v333G4vhKDkFJ3mUdyZqJmbT2v0Vg50IdtjMSZECkjf9AWqSqmVWg7ZEoe9uXXxwQITgxKa0nqhabMJgj2J8/EDXdtmRxxCRD2nYgje06CqWBiC7Q2fiCUX9pqo3d2dYnLgse9psE50a5V1vVFqtSlY/C1f/aJwOp020BOiaRvG9MayJdRoadHCCO291s2VbfXiWHszOqAEVAMxTZxPb/jdb3/P88uV69/+nn/43Tf89ptvgYyExN//7nvefPWOkDP/y19+TU6yvXfhYKPqOmEb4ySjrqGUUni5vPDrX/893/z+9/zw/j3VbXk3AOaTjwEsRoEM0IOiEU55hhBoElCptPYCi+ulQgA1RzbVJwLKgyjVAd3beYY5AYkQbNJR+/h4ywb4Fbq+o/ZA00Btwacc3XM+DEyq2HyuVnutln7toYseVNfb6oV836Zb3Q4I+1hDzO65NUJ3ymYI5BA4Pz4wTZar0fqVcr1SFMRDFHEw2/9AKOTxs3hPkI/IYVLxaTjkfd3Xz7GaNooWDwL9vBUkIJIo/fNzV4bbotFWPw9AN23c2tVcE/uPf4f81FLM8ORLgUUgcI5nHvLbz7+PfP4x+9ewotjvr3sC+b+/9YUBebZGoReDbF+PglCdlqO9U6pTSsRSbyUE74Cbc0lzeslrw0Rb/mvTqBcxbPabMVqHP3o3OrqmIviUJIDnMWw9ZP/gMeEmvSFaB5OB2oWugUba2F1Gl7FqY2gl1tKoTpVSF83GZBqSFAI5W+F8mhMSHMMwxOowgut61+1YNRVoZg9rhWKlrOumrRjpxtrUAE5ZWMtK7ZVSnALRw0aTCNGAVoqJHINZ1IZuwEKsyA1i05EQo09EPLNClSkH11Z44aLd7G0dPKroCFo2ncP2L/HplFHY6nqlr1cuLx9Zliuq3YBeEJtMOAeluzVoq9UfxfQtBm5ku53iALA1p3H17cNqvHYbWuj+PXZ6jAXmtf1Xg+sF7Lb2zMFTp/Fpku8CowP5FCLgrlBhCHE//UXgFDYdmo0x1fNJUTM70VorHbjdrsy3K8typRQDh6HJdgGoQtROiTax6G5Fi46MDxNp79OQhqpTBEXMRjhP3JbCx4/PfPvhynffvefp6YW3b3+FSuS2Np5errx/euav//JXtifMW8jfkueeyP7vcT5q67xcr3x8eub7H77n6emJ6/XCsKQetw9ipgwi+zmziY+d80YnZ/9MEaHREa1IuyEaCF1QCmgBFtNEyXDGFaJT9xALhkQCk+p+nmWI0qGRURWKW9H27gBDQT2bvkukeZp7rX1LdK/Vp211seyJoXnopqUZlDsdGjQjxjlMs/912NLhTS/WPSwPO1+TmBOeX2+fAokjWHgd8PhTf9+BxX39/GtXXn7mUms/tl4/u4Dv2mlqbnefX/QrKSQzxJDPu4+itJDt2v1MAAMGYlLIxOFq+e9wDeOU+/r3t74IWJiANDB5eu0URvHXWLz7XMsu7h1CwyEONnedxsheaM5f7iMlGGwCEMKmRTBxZSakRM4PzHFiSpmUIyEqacrG+Q7JfIP6irYrqLkoxTDT+kqpN8ryPdpWQr85L1lo8gDhBPktihXbpSmlVG63G2u50XtzT/vElDNTasQIp6zMs4nGoRKkkWMBMqqR1ncLydaLFRghQYgQYF0XSqk8Pz+74LsaFzsm0nRyioeyXEyca5z0ZgVviIRgoX/TnMkp8nCaOU0T8zQRtaBaaeUFxABAy2fWBn0pTElJIXLKOHUtM52iU7RG0dXReqV2BQ1efHnx3Bq6LFuQ22l6pEunUvj2N3/Py9P3/PY3/411Nc/+ECFFobW65TOIKr1VltvNi3VYbpUQAzknL55120u1CsULuaGHsO+b0FvctlXVAGBrduzLutJ7J8Xoac4jINDoSillS54WzymIEXPS6izXq2tnGkksQ8TmckdgsxfLtPELaCQ5WEHZXHxsWSB2LVwuL6YxcupcCNGmIDJSwTutCa1X2xMxkfPkoKxTSvGOuSkPTLNSGaGSeTqhKN8/3/j1777jv/5fvzbjKwJf/2pmmk+oRL757geWdeX/8X/8J4h5Y/eogATTU9ik0cBu643bsnK9Lfzff/M3fPjwnn/4zW82bY9NpRSCkN0VS7YjhnWxghXPXU1nI6UQeyRPkURHpRFaQfp43kAPAuENKkKVQNDgXXrLX4GVxs0mpzFu+iBtH1FdkH7hHG0C1z15u9HNujkEQnpjf/JXSDijkmhdTO8REmtlF1PXvu2v2prlUTh1r/hko9ZmrnIj+0dMy/F0vRJu1mCwx+k2YYqZ+dTdwjkhacO/P7kGUGuePN/+wHTjvu7r51opZIJG1n777HK/9UrVQunrZxfvXTulF97kt6SQP+s+USJzPNs05R+7sA5reAra6yufdR9Qbu3KFObPvP193de/rfVFwGKKkZyAeqGtjZe2ekgbG7+X3tBWaM0sV63z3UjBNRjRbWeD0IKLc9POoTd2lCChAQFaoHXQEtASWIJZMqpW8nTi8c3XvP3FXzGd3lhRV2/09QnEPPar4oVApdTVhK2t0xxYqBR7zmTd/67Cslo3sjbrdMYYmfPMPEXmHJG+gBbaWtDwBg1236Jw6aMTWWg9sLPgvRAQRS3GbhNfxmkm5mwFoovXb8viwMJEnClMXnB4mq8Hjc3TTM6JKDapMU6+WtdThT6/RfAwt+WjWZBqI6eJGHaBqYS+FXsxZBqrcdmlIFJBK7VcKeVGrTdaKyYKdmDR86M72VR+/83f8/z0xOXyYjx5dQHySDPeOupGAzMbz1GoB9dDrK696Li0AVAPQ2uetl68c9y8Q+y+u7C5CA1b4jEaG+LtUrw7dqDZqfbtl+EOULq7roZXYMasSt0aF6F1NVpVV6NSycFGd3SeRUh5Ygqm75jmB06nk+37YFM807iM92GUPuvsY9Qf9aC7PsTgTovSbnoIt54dvzdTzjQ14f5SBuiwqUTvlaV02seVdV14ebkQRZnTPpkxOl4ADZRSKE253BaeXi48v7zw8vyRUlbOp5lSAjVF5tO804P8ePdqugabQBmgqJttkdDX1a7DpbvGZlAuLSjTrRec4uRGCm7x3Hsxe1efcgUxK9s8z+RpJqavvZnR6bh1bLZjlMQtswGRGQmzWQk7MKdDSAaMjWaVUZ3tfPt+bw4mRrbOsq4+narUmn2aNMZo6kwn+zsK5gjte0ylU3uh0wjEgxmBbMJ68b08XKo02PGwJs0YAe/J7fd1X3/q60uB8JgAfuna2RGf30m3Jtjnd9/veoz7+ve+vghYpCgk6ZRyoZWF2+2ZECAloyqZgLtDX9C2om7rCI0oRrPJcYSUBZq0rUMRo7n4OIvAec1uQ9obTTvlwDley5XT6QFtV/PIz4FalF4u1NsTIiuqjVpWalVahUqgqbB2NQoUmDAURYJRM1SFW2nWmQ/i3eTAPCdOOXDKgXor9L7Q6pWaEjFOtDZTGlzXwHUxt6iqgkSjHsUQXNxpzlZjhCsi5ClbIjawLqtPORbrQArMeSLHyDwlpimRUmCaM6fTbNaWUYweUy5WiPtEwyqWgHSnNekLSkdFySmYE1fIQKfLSFo2ZyJUTL+tFdEV+pW2/sB6/cjt9p7eV3pbGU5Za36gNGVZG99/9zueny4s14pItlwNt7Id1Lch9Ndx3r3tr+IJzqX6REs3cr86BajVwrosOx0I3YCABf8JpbStk4sfZ9M86EZdUcxdTLywV8Mnu15jCLQZFqNW6LbWCcF0JjGZsLuNMBG6Wbe68cBY9p7NAcoySyLTfHK7WqcLiXrKuBXWI9dlTPNecey7gXHA7tMNKAwCoE1ATKPQulJapzSbfEQHMK1XeofrtbDcIi8vF6Yc7RrF6E/NxRWKWcYua+HD0zMfn5746NSn1hunk4HeWiMxGa2wt+6OX411XNN+PrsDsYGAqtO5eit2vXanDWGaiNKE1oVS7XijwalR5n417F1RJYTAaXrg9Bg4PUxM5zdEn0olMZH1FDsxwpQwAK0K3ZoWaKC39WChbUF6MWaQSIizie0VsrvClVqZSrHci5g2yltr2fjgzcTl2ny6JCDRGi1R5JA5YZSQrmaHMBz2HJdumhcL+JPtc1mBqOJGfbJp3+7rvu7rvu7rvn7O9UXAYnn/a17WF6AgosxTgOBc3i7Gbc7Zfllr9G6d/Vy8wxaMwG+0CS8Mq+dVgIe8ifm6h2AhcqOgA7wjD6d0YpoSZym0l9/wsnzP09OVdV1Ylovb60fm01fM0wPz2zOsC9Iqfa0GJDQYzUEDpQzaR+TdWxNl5yRMeSWGSo4faHWhLgvPHwu1RTR/xcea6VJNsC2BFCP5dCKLW2MObUBvdJq51gQhhwye9rt1twVOj2eCBL4OZv8ZRBEWonRy6KS0EgLkXIjBaF3r1XQZxDPIBDIhYmnCMYhxw2ujpL9Ae0H7Qu+JqEKWivYrtI8sy4VWCrfbheX2wrK8UOvFwKEq1+uF9XallOtGvylO5bitjVo6y1pZbo1WlVqEEAopVZ6fPvDy/JZeCw0lqIvxvRs7QAIFC/kCbAZhRZtxjYZA2wCIhRQeErVD2vbKdPZAsd4odTG6DbolUwd3J5vOZ8A5uz4F2JyitLsNMjtFTKH1IQo3Kot1oPfE496qgYgUfRIh5GS0vpzzlkkRozmT1VaNyeOvPQwq1Ah6PEwySlkZ3ejojy1shsBefJrWYC0rt+uNjz984PnDM72byUBOM9U1HSrQa0NU+eb339HbQugPTPMZCZlruRpdqSvPzxezV/bjejrNFuDWG1t4XzfBcq2Noiu12vFsw+q4s+k1OnujYEyfzLZZ/badWhov14VlNY1TSkYvUMXzKxoqYhkRKbGuC6pKjsFBoRJPj6TpxPz4jnk+k9NE750pZx4fz7x9+0jOmdYShISERMgRkWQUyJgNAKRm071Ut8+jTcqgRi2M2T4DLLxzpGcPpy7bX+aG1lnKuj1Ga0OboxaMKEKKSozWuMkpGn203liXC+tyIWe7hqZ5IqA0UXIUkIiEiZveJxb3dV/3dV/39fOuLwIWMQUs882KnZDkIEkcxaB9LYHN0WYXglp/27rMsmUBjKRccF63iAGDNJHzGSVYN7Mu1l2kE0IihAmVidICZo6aICrWWDRutsRHNJxoenInm4SKUUKESIwzSkTysFNNnOaJFJUUOjE0T5U2+9m1QG2RquY409UEnzKoB+4MNDzoh7e+0TvUA7GCuVrF8IrqYAFpiSBCDjiw6KDBC420Uc9EzBGqdaVUD5cTF7lLAu/cD8BiEcSzFR0SQFZUV9bbe1p5pq3vubw8s64Lt9uFtdyM9tTcgrYL622xwq8Mlwyl1E6tndtivPNazGWnd9yTvyNSKbVQqiWJSz/QOkbRPmg+2/FwEbVTf47p7hCIcbIsimB5AOaatAOLEWDYe+N6e6GUlbLcqKVQymrFmzs+DbAyKGuvhK9j8iC7+HiIma147Ka4CEaVMuH3a+GzBNlcnVJK/vr2yZxqY9gtbynivsZL0TEAkR1AqN/gtcVo82vINEylFJbFzpuwv44xmUFHVzzy4eMzQkPrlTyfCSFxKW4ni7DcTC8wJhI2GRPGLE6CSZXF6VjDIjWGQHfNQ3eHJDuLLmTunR4CQdXdwJQe1BLvpZN6pGKFecyzAXFVQjNwRBBPOw9mVatqFKPN3nYGyWbS0AU2K2lFlkbIjanZ9YT1R4jNzluKUIIQgpKSv980AF1wOtJhMqCm07EOiX3+aVB6gy7dtUuNzSDC90oYonjx5kkUM6MIMCyfVRVtzehUtnlQOnWpTsXDbLTFGiTyBWLT+7qv+7qv+7qvf471RcDiq3e/oNRM18U6hXjoWe1GQRGhtFH42i9WC4/aOfTQEf/l2L37e/z1ZwWHQMicHt7x9qtfkdIj2ju3yxPLywfqciWkGeJM4Q2ln5EwMb87M4tRCCRaYd1aohTleenUdrLiNPSNQ57PMzElUk4b7SkLlkJcF2pp1CbcFlhuE7fbmSbqYk8L+QsxEcV46SFGQrKCais3uk1uBvcyBu+w5hGQl8gpO3AAqNCvRtNSSzuXkJB8ctGpcFvVRaOV2iwHJIWZKc5MKeMcjk1Ea0LvM2hH+ozU36Lr93z87v/N7fkjLx8+8v2HH7itK8UpNTYV8MKyQV07rVpRpi4Ctu61shbQHkHj5o4zQu9ErNNeykKpi1E5xAPqxCo5ke7UHnUtTrDHUughWPe3V0+GjsznB9798ld89e5r3r371Ta1GIWa6XAMWHx4/x0vL8989+3vuFxe0JePbv/rYKU31wPsoJb+OohPgZiSW9HaKs265SEGoiSyC7FHxgBjTwRLeI5xv7916b1jD4z07pymTW80jmGruj23uWXZK9qoUWpUN22N23pBtfPw8EApK8u68HK5cL3dNmCTJ8tSMYK+Mk0z0zTz69/8nt9+A3NqPmGJrA5YY0xO4Uq8efuGeNjjQzszpgy9WbjlPFmRP8IK1VHumPxYbexuWS35+x3vTmiSaUQee+a6KKWBTLO9bDqZ4K5rrjUYR0b9HzImQP75M8L8gDqyKwReVuVWq09LG0IllJHObp8TjGZAEPKYtHly9wDBwyFvTJwEAwmqFpiIdqp21rJY3sx628L1Ypzstakyz5mcIyLmsNfryjo8cauCBnI6AwutrFw+vN+Ab5jeIqEhCTPFuK/7uq/7uq/7+hnXl7lCPXzNQ/oVaDXRpJp3fm9t7zTLsOI0frcFbqXtlz8uHh6i22PBbUJU+zrETJ7OxPxA1Wie1SnTzo+0XJCY0ZjQfCJko7VomOjiwk68MxoiMkHOSuzVv8tGUUkxWZeyQakLqzYKK9JWaBfW64uJMFu3gjZl0vmXECaqRHfLsaA+E/RGI6YMSlcIpGDJ4EbxUqJYgRJj2MSYEpQg1SgwHWqPboNpIW42bbmZuFnFvfeVjpqgW6BrZV0bpVghaBQr63J2bVCvUK/05SPL099Qrt/y8vEfKKvZ2L4sC6UUc/BCUMKudanQirkoldr9vWYeH77mdH7Dr371l8zzzHk+sdyurOvKh48fuN1uLLcrvQvX68LT0xMPD2dO82xUN8Q6rbhoWXXLZ9iKw7GXojKfz+TpzLtf/gWn8yPz6YEQJ5oq67KyhdZhRV3KifPjV8ynBx4eH3l5fuLjhx94evrBheiLiehdiwH4hKl7UTysP2WbLoBsOiHx0cHRiSfGuHWx9+L/9df2s/HHOuGDIOS9fAw8HM51aN7RH9MTZbhXaa+0utKbCbnXdeX56YVvv3vPy8XsbGO0JPKHhwcDKSEaWMgTMSV+eL4QMMrdNA0r52nTxKRg9K5SiwMD9WLYQMX5fGaeZ58c2SHIUzY9VTU9RXhl9cum3+jNZ2C6T3ni6Q0qgbULa+s0BYmzCcqJJM9YkWACevVrR12XNaYh2vaxj2EO2VzqlHES2Kc/XTfnspiSURYD24QxDI9+3SdOI5djHKv9885lpk5lk4AbJgTTprl2IqcJwLNWOmV1W2JPUR/TvSkk/15huXyglhvr7cI0n8nTiZQenNKZiPE+sbiv+7qv+7qvn3d9EbCQ/EA6nwg6Mhm2ZKlDnoUXBodJRYxpbye6Q9FmK+c0E1yAO5ySrLmZgEirSpOOxgjTGUnmYCQhIil7iLZAiEabYogYMZqSu68EDa+KfisScDvTSinmdtT6FekL0i4slydzIFKIeSbPZ+Y5I3Fm6QHc7UqCAQtLBDce9aCD5JwsjTsED85js+AEC05TtUIIzFd/rca7bhpYiwfK1WbdWIz6ZM+L2deqmMjdQ+Jimo33rkqviwmtlx/Q9Zl6+T0v7/+G5fId1+tHE0srLLVa9ohxKkzhMGhNVew8OE8+pkSaHvjq3V/w7t3X/G//23/m8fGRN4+PXC/PLLcr3373LU9PH/n48aNPT+B6vZCiGBc84pQ4A1fDsWmbdnDcIqa7mU+PnM5v+Ord18Q0b4F0rXeWxag63WlBKZnOJKVMmEzoPk0zMUbWstC1s663TYuBU7H0kHCckml8Ohtbj7GZ9ykcr153Sg7qRp7D3kq3acZBM7RdW1447pSv/TYKzs+PPpUJ/nDDwlmhdwMVPiVqtXG93vjh/QeWZaW2Tp4COZmTWFcIIZKnEyEZELpeCqKNFDpri6QUONkVAt1SreM2STEao11z1h23YtmMCMZxGiGaY7IRgulODu8cAXcPs+s1+ORvfnxERSjqWS+qSEioJJSJPL8lxgli3q97HbqmSvWMj+55OnTdJhbdk9RfheB5UGNvfWuOxJiQiFPnnGbHrt94NTnycywMV64B/gDZ98xIVB9OTqgyJZtkNRVzmuqdUqwJ0+mImFhfo1tttsrtdqUWs6wOCaJGJGR3rzIt2n3d133d133d18+5vghYrOVGQ734x4KpnLaRnYqSRvfQO4jmTBKNUuOJzXgh7uyA7fG0K61FK4ZpNkaQ7lSGQD6dOPljyihYDkWM9u6cfaMBqSqtlK01quL5Bd20C0E60ldaWVmuzyzP72nrlSl6mSK60RautxuSJ+J05uuHvyCfZqb50aYPIlvHWQLE4H+LcdpTmjbufO91s79d14XaGsuyUPoIyhpFjhWgslE5BlDDRdmeQq6RuljhdWsNMRU5en2G3gl9QfozvT7x3T/8vyjX99TL9yzrjVort9I8PTtQqtB79LA208qU1d2RmqIYKvrFL/+cv/iLv+b//D//n/yn/+3/4M/+7M959+4X1o0etBwvom/LwuV25dd/+zdcL0/88MMHtFfoldP5jGB2wkPL0F3EfUwQbioEp3i9+erPyNOZ29Jol2frFLtAfl1vjEax7YPI7XLxqVnkfH4gpxN/+Vf/EZHIx48/8HcvF6rTtHKyaUAbE7gQOJ1PQKC2vk0odqGyp2s7p763RgPi6YSEQPEiXxWzyQ1mpTseI6XkPP0daGorLnBmn4g41cia6sbbH+AJ7R7taF+HjYKY+OGHD/x//r//Py7XBVwUnnPmdD5zOj+iwLoUbsuN2gpzNqvhHINny8k2VUCheihcv1ydvhao/v5UlZfLgqpZvQ571OZWuHOebOIRE6W5DbWEoQKieWigBNM6iEJ7fo+yovpM6y+oriidECZCPHOK/5mcvibnX6EkVCNdDHDVtjp4EIgefNdtmqkjk8UBaWsGblsrm9FCq+pAshGwzws3pUVjxDJvhvmCQ0CffAjjvmPtB3FYxdo5hNvlhbKuBDWr6JwT+TzZPnwcU5xx7Bu325XrdeXy8kJbM0JmOs+EnFCJ1OVCTpHznFG9fsnH+33d133d133d1//w+iJgMTjSlqAtWzcyjOmBC1i323eLc2uDnrLZxeLFYN+CzAaw6GPUIE4PCQGJVqznZM4/0TuauHByPK7lBffD8wwL2UFXsAyLWhakrwiFHCraC329If2GYIVdiJGYMzlEQu4QT8TpRJofyNMDKU8HaoTTdcSFmy62HPqD1q0gASugaqu0aoJm45c3Ow6H1wuDrmWAIsigXHn3Nw5Aw2YT6/ZEDJ8g7TfK9fdEfUbrC+v1I8v1mdvl4jkPylLM+rarutjanI5GQTkKLAXyNDPNZ/7jf/zP/NVf/Qf+43/8T3z99a94fHgkIJ450RhdaAvvEyQm/uzP/oKXlxPff7OgHcq6eAEbwVPGbc+M87fTOEKIpGzPrTg1rNxobvXZRzBZWTetdYjWGe7NwvMG6JnmmRCE0+lMb5WHh7f0Vinr5TA14FgLuiZkJ/HHaGCgqR4KS9kmK2OKt80cnN4FoMGTxUWG2uAw0cAQhZpbkw6eTNifx6iEvsfGdAKbVjDAjiq1Lbxcrnz8+LxRe8AyXW63G8XpdaVYXoNIJ5/O5BiZnP6D2Dmkd3rfnZB2qwbZ9mnwvWdmAnWzzx2UrlIqqyq9XbktC12b5cNMmWmezP0KpWnx46HQVpRC17pZQYMgrSH1hrx8TyqFaV1QEl2tgdF7p9SbTy+wHA4McMU4W3hgOgORiH12qVp6vKZI12QNEP/cCBSERqs3ICAp0rF8jz4q/7H8bY9Z0/jMtG1gmglxA4YgkCJotET6TqdVmwLh1Dv7XIn/f/b+5EmSLEnzxH78FhFRVVvcY8vMylq7ehog3IYIh7nh/78CBwwIjZ6eqlwjwzczU5XlbTgwP1GLrO5J96rOoKoa5SRP93A3M1UVERXlj/lbdoqWoM5eh+kAw4SIEKMneDV7GEPF+8bgK7lt3OpWt7rVrW71U9YXAQvQxj680ifIKyecH5E7WjOLybpnDfQpcKtNJ/aWWqsUHwBRapETQvAEp2Jm7zSRe4yaTOx9RMJVBFvtcYRibkT1allZ1J2olEpeV3JaWV8+UrcnWrlwf1QxtbMNgw9CqeBiZLp7QJteB3jieEc8PMBwTxOvDZb07jPslI/W1MN/T+B9NX3P+XW+AoYHuvhTwVOzqab3lsgs/krFKDaRp6czNxNB8yOaSZBESWfml/9MawuUhby8sMwLn84bNQu1QNpEwwBrUTzULDm6Ndp+RvW8HU/3vH37Lf/z//y/8POf/wV/8zd/AzXTSuHy8rynYIttWEKMiFcQ+LNf/AXz5ZHl5RlpC+u8EKTifcTHqc9yd+H3HhIngvcD43jH4fTAthVyWTXnIhtAS+uu9eldehyiWv+GSCdVrevC4XCAds/xcGSIkZeXZ0remM9P16yKauemQcnFUsHFePTCNI07haWzofbUbhHL3qh4E5ADajdKg6oBh17YH6fb59K5+fbgzbIkNKRNE6xrSQZWDIBVpcW0mk1nofSf87rw6dMTHz9+Ur1J0E3gPM/U2lgsjRwax+PIYYpM8Y4xBsZhgD4owCh2pQN4oy2JUwMDuzZiGHA+KEDe+pawqE2qEy7bxjwvPD2/8PLyQimZaQq8efPAV1+94XB3RBDWTUFHbZUqUCnkGsA2NVBpJVNK4mn5Hd59TxwUcJbmTLuVSelMzYWa9fiIOHyI3B0fOUx3PD58h/MH8Hd6P3EBiSPiBppMBtYbkJUI1xbWl096D4yRIoHSPJvdu/ahSwcZcqVG9WtSAfCKlwIO/OAZoiYCb/NKTpW0NeVKAqk0nAsEs8etreER4nTk/nRv9+GGd5ngNrwkBp+Qptkea1v+9C39Vre61a1udav/gfVFwGIaBqbDuNNwxCaBvZGuplXoWQG9ma6vNgi6lTAw0EW2oSfMmgVrpwSEoADDW9PmAMzFJ9V9oNxTiGvroXom4qyNmgt5W0nbynp5T60rwkwICRc0gKtWTc4O8aAhWvGAxJHsD+CUYiDiqS6wJa+2t9bMdyG26+5JTY+B2ujalHqfYgM46xuE3da0AcXC8mwT4oMmUnuzrd3n397UqU5oos2/VBOrt25nWbm8/8+sz7/j/W/+M1vOpFR4/vTMlhLLWqjFtiO7DECb5CZ9ui7Xptl7xsOJv/7r/8Df/O1/5K//5m85Ho7M5xdyWqkpsS2Lbmdatc2KIw6awNxoDONELYW3j9/w8vw98/kFR8KHQMwJMZAKVxviXLW5PhyPlNZYlo3zy0Wta7eVnBMlaZPZhd/eK0grJV0v8hD2ZG1nXHVMT/Hw+JbL5Znz+Qmk0NO3O10p57RnXuj5EkrO+/X8IyF1q9RS2NZ11190UKKZbgKtQM0U7/D7dq/RSqdUXR+7FqXY+RDUxjcn0/A0pF7fU3lTlzZaZcuZZdn4L//wG377u99ynmdqT5mvmZQyLy9nqp2nIXpqdrTiFTFEs/91bp+a99fdAWzwnlKha6J1sp8oOZujVf+7yvmcyblwXjZSKmxJhcfON8ajxw+VwsJlUbewSrPrGrCNYJCBDqf3NOkGYsKXKsU2Xo6ahJIh4cmtUqoaKVELzoI2L8sLL5ePBD8xDPfc3f+cYdRG3Yneb5pTOqeaKERaHZDmbWowq8OXD0rjBKoIYkBNDFToAqq/xxvNK/jb0qxCbA46ACmgqYrFqJsFcXA4aAp43wxDpRZnf6e37loT23qmyoYjs9Z114wtyw1Y3Oqnre4Q92NTlv/j2urCp+2TJs5/pkVypZJr5j7e48X/6W8AvAS8BNNAyZ/+hlflxDN8rmipNQS3v0f/PVRpqlML/45e063+fPWFORZebSj3DzoxrrLRaaqKRl+Din6DqZ2aVKoJUZsNpMXAhHnem41ljJEYPMF71ULsPHJN7K3djcZoE/ocXrvu7LCDVhJlWzSZum1EX/DB4WQwmoHQmqfJRHUDPpxobiAzqoBcNJsCo8O02mgU3Q4I0Bxqv4vRMHognkkHbALZuf+Cs+b2ehPtN7shRFxQe85ub9mnoA1NBRbMGx8Vcvp9UyJUMq1sLM9/4Pzxe54/fmApjS3Dct5UpJ7bLvJ2PSBB2AXv9OdpU3QfAtPhxNuvv+Hnv/gld3f3eOdY5jN5XTQJe57t+KNbCud3SppmeWiTOE4HXp4dW8p414glI63hQtQMDjzN9DIlV5rZGJdSKWVlXuZdE5FTUu1CtTyD1ohRbV13elwpjONIjJGQA9krKEkxKhVnHBnHiThM5HwxVyGjItn5BN2i9Qa72rbi9XmjX+sGLLG/d02BTKHp6W7KXfPVxDig51f6tSK7bklZWGZb/Ho10tib2CuwUDehZdl4ucz88O49T88vqpeR7iRWaS3reTdXK6K/0gb7+TOnMwWz1eg4bgef4rxugczJCTvOCkebAWcLgVs3cirMW9J7hWj+TYhCHAUXGo1krmvoJtLeKLvOw3tUsO72bZiIV2TTKq2u+jxEFKD7psGaXo+3FGcbnkIyrcKWZ4IfmdLKMBzt3qO5KJ5Ks+NfcFAdrXpa82r/XBPiC6DBgiqgFwN3fc/Xr4/+Z83fEWn7NaXBeR2Ael1ySKFTKb2dB4U4PbG7a69ssNIqOSutUzcVJkCvlXW92c3e6p9fXwIOfvR9NIqZDnxOLWVhzhdSTZ/9eLVV/frWri5tf6IcsgOfL60v+b6Gft69Mpz/t1+vNq+3utWfqi8CFmOMBLw1X5Vk+oAtZVLa6Mm7/e3UP0D30LvushKu3OwusnXdYz+GV0Fi+sFcs06kNQQqKW1GrqFquzWotteIgJeEd5UhZsryQs0fcRTER4bxkThOhGHE+VE/tgusubDVyqKacXwt+CA4D1FUeKoJv1dffGoHSjb6RwXb2KZBuij5dTPqbNMhFoY3DATv7HWbFqP1xlE3H91pK8ZRJ/Ki1IqcMr4mHIUYC1t6T1v+wK/+y/+Hp/fvef50YThM+CGwlUYuNmnGSN6m1XDidBJfK0K4+uuHyOF0z1/+1d/zN3/zP/HXf/335DVxWRdePr2jlkzNmcvL8053c0bhGsdRcz2cZ7CGP4TIlhtPLxvbujIE4W5a8SHivCfGYW+iW2lUPDltrNvMPCcul5mSM1BJmwKMvgkruTCOgwqUp8kaXrUYrrUQzAqYpva7MQ7cPzxwPJx4eHjLH/6gtqytFlwHQ/QgwrxbKW/bqueqh9nZ5m0/x6LXvXNO3ysilJLsuoQSVScUXA+QNHNfwahDjtYdABByE9vE6EaDphbCHdCkdSPlxLKt/Pq33/Ph0xO/+vUf+Ph0prXGuq2m99HJm3OeGD3jGLm/v0No5JxYts3oa0E1RM7bRF3zavo2B+cN/nXThUpOG7Umai2kpAYEOdtx8J5vv3skjoFhCuRyppGJvuBcVt2JhUqqP4BZyLpglCu/U+V2nQVCGFTk7OtIKQoaBtuSDcMd3ba207hy3tjWF3Ka2dILqS7M84UmK8fLia8efok/fYeLI6kokI8yIjWQ8kDZIq1BsNBH8YmU8j7QKCVDLQT1fkZqMcctjDrnkBbw7h5EaHhc1PMstuGUOFCSbh22VelutTTW7WKuVWUfmcQhApBT2ZPrnfM6uBB9r9/qVv/cSk2HNoXrZ9efqopexx/Wd+SWP+t7zumFj+vHz95W6ONch5b70OVP1RduKf651WgsZSZID2z9vPrXvA3497R9udWfv77oasm5ICTbTrQdWGQTz+o894pr90m9XO0X++R6n8ab+LtbTOpEWMWeXfzaBd+tmhS0NWqzELduS7pvRLJmE+QNWiWEqMnURIqYVWcNlOLxSfC1c6EVrDjvLPnWAvO657zXFary3Pu0MNPtZXYQBfQ/vdZ1qkC9adNqzlbddtLlDE1btWL31n1SbsdNBJyvpLTav4NOTAstPVPqRlkWtuXMOs/UNtDchAsJ5yIOj3eRfRRvcQLegtmC9yy1qiBZ2M+H855hGHl885bD4Yh3gW2+sC4XluVCzZlaCsu6AM2oMN42FgXvPD4EymHSW6wzD6MGP7z7yBQdwzdv8UUFxq1cwwuleZxA2TaWy8rz04V1VSDhg//RdFYzC7TBEifkkn8EcIsFkrVaoBUV5zsVnDsnxDDsAu1WK81oOdVZpkFzBvAaNavQuAo/+sAVEaq8oj9VwTvR7ZplqKhuoCnCEL8Diu4WVEWn2KUoQO0Wxi1ninDNXzC6YSmVj5+eWdaV83zh/YcnzpcFEUv6jpHVnNGk0/acKPgaJ+7v7ti2lVo0Q6XUxrpubKmYviXsx7gUfc+Jb6RUdg2RTumbZbNETX5HnduQqhktfqWxUiqImIDZ9FTIdb8otoWUKnsjUEuzjVqnQvVgRf2l1xr4VlW7ZFsDZ5sNHzVA0h3v2ZaBLV349EmbJpxuW3Nd2fKFkGZKUnF7MUqDank21vUTrWVq8YQGLmy4qn7MtVX9c2u45nBOs2nU8vj6nFVkbg2HfxXYV7prnqPYdUl1et8LzVzHMj21mwY+2FZLAq5k0xhVECNO+pt4+1b/gmrXjeRnby52hsLngxEzGgfY9XB/+mF0sPGvt9of/f6n6t/RduNW/6evL7Ob3TIlL2rRWJtZo2pT1ykhfUIP1wbrNZ9RUAqGD37nw79O5i5dL1Er0vpGwybYTfab1q7fqPWa/GvuPvPliWVeaMDh+EjOQmEiSzHedMBtgisN59TBJjiH68nbw0AImjQcY9hpX912NedsNpVl55jDvrDYBdT9vlrta3uDK6hgPMZINe6+Dx5Xr1uYZo12Ty0Wp8SMnBK1KE0ohsYQKmX7AzVfWM8vpFRZt0pzR9zQCKPqDjww+IGsctudeuO9gqZhiGwpWfOsrlPee1wIDOPE27ffMI5HQFjmC+t8YZnP1nQVluWyn6t+PkvZ9i3F8XjSayR0Cpvjd79/x3H0vLm/w4smH9eYdHsVNSsEpxP5+fzCp48fFdyKMB0mS8y+BqHVWsglg2DaCLeH3eUGyzJTYqK1gRgDxTsDes7yKuwDq1aj9VSblgPO7SA2N6O2CObM9Apc0BO6bSvnvYnuswJHmoLB4nY75mbLox1Y2LXkLdXZh7C/1lwsnK4J65ZZt8Tvvv8D5/OFT88vLCmTK4QYGIaBYYhcZn0u3hvd0DkNMzweeHx84Pn5iXVR4FFrY1lWbXSBaZp2UwJ1kGq4EFi3jXXbqGXT8zGOeD8QwgBRdNN1mGiSqWzM6+8pNVG2TIwDXjwiw37QegNTm1o99+sTbHvnzNq6bwtxO2WqO361qnSk2hpSVdgsTUFjiBoMuE0T6/rC5fJMKVn1EKIhdFs6E9OZvF5YlsWGAeqa1Wpmnt/p5jSMjC3pVqdlpKmgvFMSPQpag4cQI84FXBgRF5XK5SeaeAWKlgeS0tXWuYSgJgbV7HKBMEy2vTDan10lrTVa1KGPXh9XAwNurlC3utWtbnWrn7i+CFisy4IPwx5ip5t2y1owIpLSD/jR2lFX9DqFDi6oVKHpZHQP+TIA0vpGQ+THYL/LGXb6UzH6QSVvm2o7SrMPV0epEVrj5bJhzG9c12+EuG9L9Pl2GtZgokx97LxllqWLIdu+FenuVurYpM1/zjpNzOZOpAL16xbHdUFzuDZ3HTiIcdJpmgDdaqWVTW1EqRTBuPuJtL0oJaJ0ylHg8vIDJS32eCONkftv/5bpcebl6XuoCWom5HtyyazbqhoTo2updiZS4z0pq+tQF+cfTg+8/fo7fv6Lv2GII/P5zMf379jWM8vyQtoSJRfSthjVrVvkOlJKDMMIggbS0SBtzJcz8+XCslbmeeP/+b/+F+4OI9MQebhXt6ZxGpnuPD4GUlr48OEjv/71r0hbIg4Df/nLX/7oGnNO8EOw82rhjbTdllctYpvqGSzNuJRk4CjhnZC3lW1doOadHpZqsdyQq7Voo5lGwe9zJm+6CN26mIuXCM2usy6uhkp11+uwoELscRyQ4BXUWINdLPOilKK0r23j6fzCvGx8ejqTqzamy6rWqoSRKR5tMu4otXGZZ4JXMHk4GbgTx+l04nA44L3n4f6BdnfHOE26RQuBwSmFp5ZqW8BsWw91tLo7Hnh4uGOMUd/LS2JLG+u6Mo0BHyAMjlzOSNs4HEyr5F5l0BgJDLtdaIp3U4cyrsMK8Ls2q1QV04egQZIiDS9CSYm0XDifP5n2Blw84IcDh4MjDgAjIRyYppGH+41tm1nnF2rd2ErlKSfm+QPPT4VcZ3LJLJdVQ+cksOZkQZqfCNETomc8KIWv65BiHPBxUh2K81QfDRTp60c8FQ2+K3VfeGpOhut3U9VQpVRRM2tPiHarbsNOd+6aDpWVdTrWdVO6rbcci1vd6la3utVPW19MhUKu2wJTIiM9CRj0E629JkSx/5u0V7oLKqWWnWahlCgxq0VtvK8/otkWRLnS1Eapti0pyrXPHVj09S2uRwIYEBBzU3EqCDd7126r2ae5Iuzi8lJ0Al4tbXpvg5zTFF93zYDIOZm1bNYmyKboXQDtrDkdBk0m9qYv0e1AQ8j6MpuKPJtcE8Jdz6polSpKR1ODHm1WvQj4iA8TyAFxBybnyXnFRUfNqwrYkzaIfltMJK/CcGeBe2P1+Kwp4NiWZjo+cDg9cjjeq75gXViXC+s6s60rKSW10E2qIVDXGhP/NnVk6scSp6LmlJJuR3Ck0kjPZ3LOTEOk0RjHkak2slsIA4g7WDPfrzfbCuz6lfJqiotdF2bl6vq12PUqmmiuCctX7YBzsn9fq1l579LIAlKMztSvxqZbsuKK0pgMQHjvNeOg6MS8ibkFCTuoaK3RXFExdKuaedCa6XaM5mdT7GIcZRFhXVfWdeXp5YV5XvnwdKY1pxnvRu0K0eOcpX43PUYxRmKMON8Y4rBTD3WboRuN1gJCn647A9f6fBIJ8Hh7zc45tfKNShMM5oy0Sh8zNHyEECsuZJxdo/rzOpC3DWC7NsHXTecVLF43Qa9phfVH+ip27YVtrXKmpMQ2Z3x11OYZx2qaj7LfA6bxiEcgZWpWiuKybKzSmCVRWVXkvVTLvhj1fFYhl0aTQqUhwRFwuGDUNhcRF5Xy5zyVQGtqugD6fmtk0+TI/rpqfX2/NCthegJ7tVRthxNvoEIv62b/YeotnBlXNdgzXG51q1vd6la3+qnqC4GFZhTszMbWOdI/tpIFVBvsr1P5Wgq5ZUrKOz/SGb2hUy1qBYo2HRXVW2jDUXfbxt2bPqXdfarkLqAERCeiPkZrmMPetDjRiXbwjtDtXH2gma5DwYHSCbqmozv0DJaLEJyntD4p3kjbSkmJkpMiJ39trOM4ELxnCJFpGIjRM00jwTeCb7S6QMu0ouL3nBIVDZQLhyPDeCCGkWEYFUTUlbx+ouUFaee9ufLxb3F+wk+PCBO0ka00tlx4mS+kdSZtKy+XM6Ukat7ozUtJmVrUXclPT5S0sK0XswiGhzc/4/HNd5xO92wvn5jPT8znJ5Zl5nx5MbpIgd7cN7Uj9d4xTgeGQZvVWhsk3ejMy8I8L4RhogDzJbFtZ5xUfvj0wnQ48PD4Bnk3E+LAX/3V3/Dw+Mjd/QOXywURx1dffa2ACrjMZ1JKrOuyXxetVtXIOEcuCpaESi1CSZkYI9DUTMA54uC16StqT9y8ozpnIFqv9X3DZNN2/W/bSHidntNkv8b3b6QH7Jluw46V8wpyxxAopewGBlsqrCkxrxup2J/nmWVZWNfNQt8slFK8vhan0/C808IazgceHh+pCLloUz2OE+MwcTwdOR6PvHnzRq+JWi0xWxtvffqNGPye9D4Og+k2PDlXci68f//Cuq2s24VxEo6HwP0bj/eqq4ijA0Z2a2o6TdC42LWSS9Opvji1jhQNTKwF05L0bJT+vQq6pJk/kqAuTiY6b7mwzGdaC0BkjBHvHTmv1FRw0nhznKgxsHnP5TywzDPv3v2OdV1ZtkQVcD5wPL5lmjyjC0zjxOhHjvcnNfcSQBp+GJiOR+Iw4UIABlpztOLMKEGNGHo+R48YVIIiBgTbfs10E4w1JUpp5NwYhgPeRcZweLXtMVBie1ExGqYzqljJN8HlrW51q1vd6qetL0zevlq6qgC3aYaC/NMpo2qEdVIt+7RXp7Ftnx7rZNepr6TSAFzPU7hO+xFBrJnPqWh6dS7sYW6vHJiu24keOqfNlziHd96AhX5Nc0Lq2wmbHiPq7d/pPD1du/vnX8PbKt5V3OAhCsK402Ocd4gXvNOvGVwiugUvMOCQIjrR1pknzXlCnHDhSMMjLhDiRIhRQ/KiTSmL4OMI3hEk0t2xvH8AN4AbaJZiLU6F2QeZGKIn55FKJm2wtc046Q3I0DK+JYYAVSLBH/ep591p4nCICOp6k7Z1D6bLOVNMNFpNLL0L9aVrS+pOnes5HfcPD3y9bSxJ9RTTdCBts4EzIRXHp6dZG9sY+fqrC3d397x5c8/pdEdrEGO0pO+6n5ucCzSxybqew24fWysUo3k5wcTfBR8iwzjuAIPW+eoV5zQ9vRNUgug42Iue49DtkJ3af6q70rYDLJMAdA4frWlURBMVE4dhIg4j4+GoyeG18nJeWNaFeZm5zLNS/Yz6VyuIi3gvtpnoidJq+5xy2beI1TZRIUbGccRn3RaNw8DhMDGNA8E51nXZgc44qjtZjINNxRvJNoOlNOZ5QRB81PTznCu5LIgrTAfHdHAMo8OHhriqihLtqa/Xet9OAE2U7qW6E9tidG2FiIqTm6glstnNVtsQ7ZouZ4GDVcMzL6kwX1bev3uP8y/4+BHvAnGYkBD1GmsV//aBUgrLeWFeNtYtkVukOgEDIuIcBRSUpZXg1OFKYsQ73diMo9oWA8zLTEOIseB8wPkI9Pvj1chC/3zNBbneP5vZ1+pGRoLswELvl4k1geDtntk3uezbrqtltFDqNcvlVre61a1udaufor4IWNTd8cGa8dq91WUXLPdJGrxyQmpXKpNY86CDPHWTabaxEMAFwDV45RbjVM6pwkZzoipm71obZmnqjN+vTCXn1PteROkhTpSXrc41ZlcH5GyBfVSCODz+up2ISglRrnkjl6zT71pBKtE3XPQ4F4lhVKpTiDo8dg1hxrERZcPXC0LGN7RxqMq/bhKo7kSIE7iJ5mxqHAYVQos+31YrpYrmPeAJ/oBmbATE3wOBnCtNKlV0humcYwoDdQjUHEnbC45M2fTYa+OXoCUaieiF5gPCsJ/D43FimiIilVoSKSVLdy6WtJ2opVOhVMvg/TWputZq1wm2GRi5v3+gtsYP7z/gfWA6HHh5eWJd1Bgg58zlZaaWzBAjl8vM/d09d3d3gIqol9UATq16aTXVA3Sqj3fafO1WtNLI6Rqk55yn1sp0OJjdrwERNG27GMAtRmfzztGzzrzpiHxwDFEF1ti1kVI24IlN38V6SksjaB7xmlI9TPeMhxOHhwfmy4W8rpy3hctcuJw3zpdZ30POjqtzuGBanTgoPx/2rUqtVdPDmyWyO0f0jiEOONHtyxAj0zjo3zlnIWqaPdG1KMMQr3Qbe005af5HqxUXnL4HS6Ww4TyMk9+Bhfj8avKuP6e0HiCp1yWiw4di9xNpjp5TI607k1kDjTNQogYKfcPp9ve60IzimLbMfFn48P4j0nTTMg0j4+FAGCaWbaHWysGpUPpyXlhTYyvQ3ASx4UK1TAvdjlRU31QSUNWO16PXxGGagEYqmcs8k0tlPFRiHBkGXtm/YsMTAxN0LVLXenUg2ileDV+9blJLY5k1gHDLCqQdfh96OPcq4X2njVVKvVGhbnWrW93qVj9tfRGwmNeFtPv7s6/wAVzTCZ/zVxeoXU/Rx980xLIbVJOpKbVOXj+KQoyeaEtrKlbudBTvGaNOJ7sgmp2e0ge2YmBDNNW7/2hDNG6nWAn+qGJtHyGYqFpc2KfLOWdKKzjJ+OAYGXBNJ9TBQMgQAz4CLVHSO/L8nrqdcfVszY/DDyecH3HDG1ob7JeAGA3Hms1GoEmgSQS0MXU0KkrrKE0b12o8dUF0A0LZ3YyKvVSHED0oL71QDoFRBmKdWJYXciu4QUAGkElpG+IIcdoF9G++euR0PJqYuFByYllmlmVmXTTxuZl3uSBQ2i7Wr7VZgKEwDCPDOBGHgfv7B8QFhvgrSt1IRUjVs9ZAzhsl6WYqb4mSCh8/fOB0PJK2zQBBY10WPTe5sG2JWhvDMHI4KP2qVd2WpZzYstqtllIsd6RoOnr2LMvCME6Mo4LUVCov82LgoL3Sxwg+KbUqDgMxlv14OVfZ1pV5nrlcLmwpUUolbWoNKuL49ruf89VX3/Af/u4/8ebrbzid7hkPR3yI+BjJScMLl8uFeb5wOb/w/fe/5+Xlmd/9/rfktO4ic2cOZv267q5lAjvoD1ypiPN8IeXKtq0mBs+8favbtVoUPI7TyPF4IAR1QitFcy9GPxFDYxorOc80Cj72dQykNgMF7xua36EmBnqtZPZot3INzKxFtze5FWrr9syr0qRcsObbaVKu120e/rqhcQ2kCa0UdU1zkbQsLOcLv/2vv+LpwycuLxshDITo+MMfPhCHM+PxyJIKFcdwrDoMmO6Z7iYOPvDVOKkQO+ovkQZ1Q9Yzbr1wCE6DMscj33/4PR8/fM+HD5tRs6pdD8K03jGOdxynN0zTg96rotr/eh8MtNhrcdf7pWAWvPt+15nepjHEjW3LnF9WWrVNWrNBTu1goptL8KP7761udatb3epWP1V9MRWqO5CwN/I2ausp1GBK7euK/0d2s/tk7jqpu/LW3Y8pR1x5x6C+9D4qPWmIg3K/jU4A/QPZLB9D3EXZXdTb83f2iaiIfuh70SA8p824Tpb1sZ2rSC00l3eGuGsr0hK+LYTq8EXUQrQmyM+4/ISUGdfUilOah1KpbLTkgEjDRLPOQzvgRalapedzYCJcnGlHUADVLIX41ZSTmlVEnredq65ZDBiFSsPLpCaEYnQz1aK4aJkRTlOvEW/AQo/PMJ6IcdypMbWp6L5YZkSj7FsAWqOKXPUu9lw6laxTxboDF+IopbJsM8uyaUOeEjWnnWYlOLZtUw1KToTAHsL46qpSapGJlYc4qO2maEKrOuU022Jh3H4V5mfL4WitsW2JZdk4n2dqU1DgdmqdEEPEB8/UNHcgFzQETmCZFWxdZg3ZK7VRcmMcJ6bDgTdf/Yyvvv0ZX3/3C+4f3zBNR7xZGXcQV2vAO80NmaYj4iOnl2cFO08fuZxf6Da38grce3/VH7wG86/lwApw9YLormreBOfBe2II1vjqxqk1dddS4ISFBDZaK5SWrhQvsgIKMbpT0yyUattEDbKyjUW1zIiiQLSYmN5i9PQHurr/2UvG+6h6ktZUU4LS1aTptqOZC1hJiWpJ7DnlfTvSmtnkIkjYqFXXHK05cAE3TMTpiI8D43TQjZB3+OBQTZdAXZHiOA4RFzwlCkIml5XWVjNwqDvNq2xCprEJOCnUMtLaARkmgp/Marftdtz9XmqcuVf30f4eNxcycxPLtZnYu+7bj37b7f+vG8PXV8CtbnWrW93qVn/++iJg0ZvD18DAeX/9gATj7RsQcAoSOge5A4Te8XgiIo7g40718La+qF3o2nqKsRB9YBgHwhDNQtPmobVac2vZAuLwYdRGxEXjtzdr1DW920vFSWPw2qhXoBW1Ic3l6jIUSYgrODZczbiakfqJVs+U7beUMpPLQtlWaAWRjRBHvI/EONnmo5EuH5TOgaYIIwL+iPNHpP0lnjc4uVc+tQTwFfwAEqzxqjhfcKppx0tQ69RSKOmFUha27YkYR2IcWdNGbZVEJSdt0rfVHJxqAq8UMfGTBZl5gp/UFtMN2ogKjIcDw2gNee20m0pthVL156pL0rXB8TmbJWi06azfdS/eR0JoxKiWvPMy88MP78gWMkbR4LJWEtSCtMC6zqzLzLbqJkH6lsd+pmaEaCM4mtsRKZkDWGDdNJPAx2AvopDzRq2FaRzJOVFq4dPTEz+8f89vv/9+t6vtfH4QxmlkGAYeHx8NDDuSWZCezxdy7lQ5UFH1wJtv/5Jf/vJv+L//L/8P3r59y5u3b+24FZZlplUV77edLhYUWBzv+Pq7X7BtK49vv+F//9/+f/zm1//Itp71DSRXIfk0Tbx+Y/XJ9bquzMtingKeaZwIIRCC1zwE75imE+M4MoSogNw5YoxKF6w2SLBAzJfLzJpe2OoTOJ2uO8vaCCG8AjI9q0S0CTY9lVLnsl6b6hW7b7V2ANpzQ3TvqBkeNJxt9Jy9f1yDlpV+VxBq6qnXaukcQ9Trmk7JUzpX7LqWGInTSDwdOd7dM4wD0zToNqsmghdqLVzmGckLkhcOR48EWNoFkQWRhI+m4q5CzZra3pZncnphTu/Y5gHnI+P0hru7twT3Ffh7nES8DCjNy706Zm3PBmqtXPN6dp1SoLWsGUKpXIcur40F7Fe5JW/f6la3utWtfuL6ImChE02/041eT9x69Q1G5/5ef++J2/rfwQeCZQwEqTpJJ4HzNPE0idQqu887NsfvoWfRC96hviqtQtNE5Q5rSitQPd1KU5lX+nW1rnSnluImEKUiUataf7o+FdawLmmiHHAn+m3FI24guAdqatSUqW2251BxsiGSkVYAwTcVnzeE0lRMjuihdwiuFvI2q4ZEIuIGxI1IM96/EunBLCgBajDaUc5sy0bJiZQK26zpwCJK2xiniVwhFcdSAqV6Uh0oqPA7xklD7GIkN2hNLACu290aBnImVrYkcm/ZH1CNNlNfTVU1sbvTPpS2pgBDA99Uv6LC74xzEJ3CxFz1WiitIKLErlLU8el8fmaqB/25Xh2+XAzkElXnYc5K3nsGEcsfsc2FWgxRS7KffRXnY3qQZKYAcM0WuYYJWiJ8zrycz690RUqv887TTX6agxAij2++4q/++q/5D3//nzg9PCA+8PLyonSvnJgvZ33e1ayGRTTh3TZIx9Md4hzffvsd67IA8Jtf/wMlb4RgQZO2AWqvGndoZjGr9sn97xWAKQ2s1kItlfvTnW4CvYrZ122jtqYJ2mZ20NqVamUEO7otLuj0v4MK6f/XoFaPF8GLGhVUqQQpBD/SXbH66qN/f5/+a3Kv2dPWgpOCQx3deggjFqa5bYmU1KGtekGGQBirGSCMuKjUqtKAlGltYXl5IjjheH/HyTeCa9R1JqeNtM28LAvruvD+979jlMrRwc/fvEGc5zKf8WHidPeI69QlC6+jNUQUaDvfQwkDYRA8K3n7RKtK05qmO7sPeBrqtld2UHEFiFcqqYI8ZVC6VxTPKx2uA5RG27VNt7rVP6e2urKUmVQ/P2gx1USumY/bB8uj+dN1Ti982p5+xGz4U+VMo6QU3M8r+eyv/KdVbZj2uV+7lJnRNYKLn/0YvvkvOga3utW/1voiYOHk9VSsC6Q782nnI+0Wst6AgzaaRoUxrnEMgeg0bMuz6aSvFQMVgPPU5igGLlRrYcFloKBCGlEKtIy0TGtq81ma9eEIOHNmQTQll4Kr6051qq4iEvX52/Qv+N5Mt+vfN0erzkK8HELAuwmpFyiCC7Y5qVhD3ECKAhLR+EC1hhSU6uFBIhBo1VFyIdcNgsd1QGNSzGboSooKrvUpeW0Sc1ZBdUqUXElpJqcX4qBNVRwPlObIVUhNqE30GDt7XkHdp2KMtJI1W6QUs9LcT6mdx1d5H380IS2tIe06OXXidnDRwUhPSNefozkOjUYI7tqRpkapqIAfiwwpmW1bOV9eQNQRahgmgo9m0eopdkNWsOBN43E1FtCMikRulWq6idchd9VE4wpEOi3veu2L07NRitrl9ms8+LiH6TWnbyjVe+hm49tvv+Pnf/EXDKOKfOd5Jq0LJW1cLi87pawfR82zMOtV7xjGifu7R95+9TUpJX74w/dsgLi2U5d6JkYXcLdWGcbh1RRb36WvOfetNYI3cGuUqD4dV4eobhWt7z/p5805qmjeSIVd26Qg4BWlR5RauIvoMWcjX/ctpJjzEiJGJWqUlqktqzWriYVq0feDtt9XkXmlUgvkkkglsdWEBA1KDENlGEeG4QDBRPnFQHktbMuZPEZcWZGyIElDCLd1YZ0vvDw9MZ9f+P43v+J+HKiHiVr1Gp+3DZxnGCfbmiqwIESUqqYOYV6uwaDeVVrbyKlRykYpo7nTRRDVVtWGbXgMR9QdTdCaacV+lG+j2x3ZUZ1cjTJeUUhvdat/TqW6cclntrJ+wfckUku8pJf9ff6nai4LqSajCH5eY90QNaTvhgh/5lKK5+cBi9Y0zyq6uht5/MkyNsW/BPzc6lb/WuqLgEUIgTiYiFI0bbs3Z76LpW2K6p1j8A7vGs5l/bCVpj11TbRyQXf1DRcmqgu0NlIk0gw8CI0o5jzlwEUByYhkyIVSV3I+4+oF6qquR64SPLScAUcc7sAPiB8xc3p8PCEy0IjUokAhVUcjIKKNqqMirVLqprxy1MLUEaEWakq8nD9QtveU9InodTvR2oB393g5IeEbkJEqI80NVAJrCVQ8rXkaGqaV3ZEwHPBxxIVIc44qTulBuYe2NaNa6aTS12Tc7zOjf6KyMdfCEAsxeMLgcWEAfw816LGg03vQ9HHvVYzaRe0hUFtjaDZ5rWp1mVylTd6sWTWdHIS0ZQsmNL6+baacD7gwMB6OTIcD0zSpLas1z601cqmEYeDu4YHHr96qTiQnPr53lLSR80rfUi3rwg8/fM/5/MI3337D8Xjk4eGR4/GOw3RkGgfrZbv9q33Q7LoQbWpLTqTgWQ2s+BA4nO4RH1jXjWVeWLfN9CvXDysdBqt72d68VcCJBjUasOhi72EceHh4w3/8T/83vv3ZX3I4PtimIpPXheXyQtoWFWQXy02xkbQXd039Xi8cDkdEGvd3Rw7T3/Luwwc+ffrA06d35JSRpFkksmstdJqdcibGga++OnA8HNm2jefn5/01OeeYpolhHIjjSBzHvSntgLHWQsoLITqGyfPNdw+0dlTA7DxO/L5BQ7oIuR+3vskUO411BxfLtmo+R95Yc9JfFrA4jTBGzxAcOQm5CNvq8G5AXECwCWBVsIETxjGarrtx//jIMKyc25nT6Z7j6YHpdI+PkTAOLMvCtq08f3zPy/ef+Idf/38JzlybLOgxbSvbupJzVu3M/QPrwz3/r//8/0aGyKVVslQKVcMUW8O1djWlEDUy0PeCgW9/3u+TMarz28enH/DuFW0SpY4VC87zmHUynsPxDTGOuPuRZa0sa1XNS0WHLp0yZS5orTXV/9zqVv/McuIIEhD/+c1u9AOtNU7hbr+n/anqAyYn/vOfG7odf4xvGf3hs7/vn1veBVz7vOfXaHx3+AVmrfLZj9GM+u3kzw+UbnWrP2d9EbAYh8BoIVr0qbTRSYKxGoIUnOkXvPH0fSfsi1hz5lS8LGpriVeuMTi8GbGLmFAa2UXXexBfa+QKNE8tEdoATWhS9WtcQ5w2pqVVW5t6XJwQiRCOtoHQ1GKkoS6dOsWvzemw0LjZtARtodSFUmba9olaLpS8gky4GGk+0HCUFij+hHMTW3tDa4FCoNVIw1NaUNGoj3ijCBEi1Q1AhBZUCyt9+lwAowW1bErXZtz8hZbP1KIWmk0iRYTaIq2OSJlwWcjV+mBrcjqNybk+Se4aFHXp8iaQRVTnUmwLJM6pbsKHXUjaSTLXKarbtwhDjMSgG4s+NYfGtq3M84UYA2MdcN6RV00ydk5oXgjN76vnWitbUorO8DRSSmWaDgxDotS8T610et8pc/ohIFjzX7Gthl1fTrcpwziSS2VdV5IFJP5T0wFTz7f+CuxvTE/kBKr06Ler9mgYJ5zztklSYfG2LizLzLbp1qJ2EbyJrb3ohkGNBfQnHuYLg4UNHk8n1m3h+cnZZFz2467UtHZ9n9gHe6dKTdO0n+sQAsOgtsIpZ9y62hZK9tdHa0o/O0R8PCi47xu73kS/6h2EDrzYgUY3HihFJ36lFLasYGrdMqk2SnW0puCwNiGXBC2Tt6zaGct1oKid8n4PyErBW5OK+9e0sW2qecHsgOMQGA8D4gPNgXhwQYiHEQnQ3FWjVVomt6RBnmSqK/hBIDQyhbUmfHOId1cL7KaAsufyqPzl2lJUW/dIK5Ta8EU3S945SsmaheMyVd9gtKZ6J0FNEGqrtJLxbsUHSLWSVU7Cq9CKf3LN9o3GrW71L6mrxuzzyjVHlYrn86+9Zvcr7/xnP5YgtuH4cY7Wn7M+93HUcv+f8d4zHeitbvVvvb4IWNwdjxyPp70plRjN/74hJKRmfE60MluqdEEIOH+iMVGJYPQk5wZgQOeOShtyZLxx4UE/fJ1z+kFar25EKiodaS3Q2kThBGTGSV2ckIqLZ1pNpLQSOODcHX76BvG6OWhpobaNVlecV7Fn844mnm0Vc/XJSJtxbWbI78jrO9LyB9L6DmiE8Mhw/AVh+pbsHqgtkmqktEBtjlz052z75LAL0EfGODEdDwRv7jOlWcNg2xlXgQ0h46QgFJAE1bqKslDzQk4Xct2oBLJ7Q2qeXBytBHVlKtVyNSrBqTZhiJqg3AW+exPaNRW9MWqOSiY3tWFVYfFEHJQ6FUKgZg2N61SZEAJDjAzDwDQOjOOguQh0EXDmfH7mw/v3TKNmddRa2S6JtKp1qRN0SlZlF7PmXFiWbQ9qe3h4JA4bIZro2HsDh0ZjC9G2O6IZgCaAVV2AGNUocjic+PjpE58+fWJdN3Iurz5AXt3kW19UGzXIwskq9bphswYfC+gLYaCUyrroBDyljXWeuZzPrOtMSasJi68rdievbZMrOSfiOPLoA8fxwP3DI9u28c6pfsGJI7g+CY+7sH7bNtVvoOczxsjpdNpBzDiOeO/JpXCZLyzrwmDJ2sMwGBjI/O773/H45sRw+Jo46OuuLWsqtiGQzrhxlgWymxG5q8PbssyknFm21Sg/lZd5RfyAhFG1BuJUD5ReqCWTlgUvnmn0ChZQ7UKpCtSWpZBS4TxfSFnBRVpmzdpwIFHwgyNOkQq8zBdySVSpPHz9sNPfajLNy8sLJE/dhJCEUCvCSPCRFqEFwQ2ewzSRm2oYWim7vkefY1OKl8AO7QxwlFrIqLbFOyEER3YFkUhKFe8iwU3EMODEk2tm2zLrslFzxPnEVpzevyQgPu7XaIfM3l31Lj7cgMWtbnWrW93qp60vAhYP9xqC1Ru25myaXzbIz2ZnWhE/0OIdLd6Bi1Q34ppyItsrnmJF04C1i2mUAktWUWgpSi1SPUG3UETpED+aolTlWuKgNkoTFjy1nuhpz41IrZGSG5JXWn2hlplWEq0JpUUyjSaJRsW5gOOC8AN1/q+09MSaLuTayM1Th7+luZHsH5nbHW09kquBJJvQ6vNVfvVh1EAzb6F7YsF3NSfWrNqRUqr5+1tbIA2hqPOTZSo0V1V6UGG9ZLa1sC6VLaP2qOETLkScjwzjkeAio/MMQyAGFZHSVEibkgK0qwPN68dmpxH51mheuPjGJI4wjozTgW3b1PHJO3W9fOXH77vt6zCoRauF0aWc2V6e+f733/P9H/7AmpKKVWtW0bulhVcaTbxuMBoqVA6RYRj5xV/8BY+Pj/z1X/6VTtaN4iQ0/TnY9ZL6BN1RkuZd5LSpG1KDaRo5HI4cpgO/+93v+d3vfkdK26trrb8em7pbEGS/Dvt1e70OzS4VTfvetsT7dz8wjkeGOCoDMGty+bIsLLMCi56QXrtlr3N7x55TwHvHti6kdSWPieg9sTeMdo56PsW6rsSoovYY4w50WtUAyFKrWeyqyUGMgSlcaQQdnIQQ9LpAGMcR5zxbyrql9OhWzzZd3WYV2/A19N9FBDGnrlob27bt2QvOecYQORzv1e3JDZTqqFUpai/rynK+cH5KlDxT0hM97PIwncwQwIMP+OCJsYEERCLOtAiHaeR0/8B4OpklreN4d0cuqt8IQbdytSmwa7VyfHxQ8XZaWZeLXislm05oYDydiMNIGCdC68F+bX+/t6agTUXTbdfk1C7sNg9eBwqaV8jVUWo0h7hBgXsc8c6Ti2WxkMib3vc0edwE4jXvE9t+Sb6WVdRyo0Ld6la3utWtftr6MipUFMb4ysGFRiuV1jKUVak6Tps5/AjhniYRjesqSK17mJN+f1FvpubUESlXtlTJVb3uMXpIp9l475R37Mx0UrTpVqEzgFCrTuxyNpZVCCp0bo6am+ZNZN2otJpB1CdfyUIZkYILCSlPSH5HTe+o2zMlVbJMZDlQ3Vc0DpR2T85B6U/lSuHy5ioVQsCjDljasHl8VFpKq9VSq/X3UnQj0+kUiLWqAl092xzYS+ZyqaxrZZkbW7YEj5CIoxBHR6BP7+Uqujd6RSlln943yxJodJef3if1cyVIE7YM4yDGB4/XrdUrAXdvtp1RrULQr9PJeLUNyca6rmymZXCi8tcuptYU4aqPa4FocfBMhyOn0x3fffsdj4+PPL55w2pc+M5zVwGzBru13C0FhJJ0qlzNGlcEYlRbWhHHsq58+vTJwOwVVFw1A42uHejXIvuR6k3dVVOgNJ3M8/Mzby4XNtsGdOcmDefL5Jw0IC14e2w1CdANUNufc7FMD9Wy6PXknFPdQr3y63s4WgiaPN469772x1UKUi4ZyQrao20wuitUPwfFkrW7nibnivimDmdezHr4GsgHXHMTpNl1p//d829UgmJaJR8Yx4NSAiWSiz7Gkgp5bSyXynwppDWxzgtYxs12UGH84XAgHDw4vydhg0eqUrTGSW1lXQw0E/AHp3zx2rzSM7v8w0Bda6O5q4246Ck5UfKGd0FF+iEivodWyk5Zc07d7naKlp3LRlMgUyslO6Vy1YrogaOkSkqNVCpVcRKtKSW0+kBuYhuxQN4V9PrYRsDC3CKUYqovZr+/tluOxa1udatb3eonri9zhaLiyEZecqTioU00NyHDHbqDqBQ8tXjapdFaorZMackSefVnKT9Zp+Y5Z2u2VQSpDYjF0Um3qAXfIJSKrxXvEkhBfEa6ZWMbLC27sKZCoSKl4n3El0irK60U8rZRC9QWLBG3MY4zUygESbhP/5WaPlDW78nuRJFH1uEvWfPAkiLLk4au5bRQRRt4H7tTUm+qA3enLkFvmsWw6rqhVQMWSZuOlLrFpgW5GR0lRtUyjKdJp6u5Ml/OmsC7VUoRihvw5uATh9HShgcO40Aw7ctySbzklZRfJUq/mrW3JtRXf+eoeK/OW+ICtXm2BG0IhKh0qHGciCGQg+aEeMHyMIQ4DJpmPR0YpxPT8UQpSmfCRX6O5+7hDeu6GaVl4dNT4CIvbFuhVqG1inMR7z1ff/0NP/vZz/jlX/wlb9++xXtPShvSFMSoYPDqwNFaZTnPe0OrjmNKhdJjG3l8vCcOI+8/fuD773/Pb37zG1JKQAcWeu6uAONar//bdctZ/RejRzXWbeE3v/nHfSvy1Vdf63alFATVYLQkpJSY54tmdxjPuGe6TNOoNKmqACOnxGEcOR4OnI5HStY07pwTKSXWdUUEcnZ7+F9KaRez11J33cW2aXjj8/PzDia6uLhfv7ph86RUOb+suAULkww7kKyvtol91aXgTd+zwWta+ekw0PqGoOn35YsC+SILOVfWNfHDuyfef/jE09OzBds1nBsMCFc+fPw9wzBwOt1xeLwnjINd8weOh4GcVzvfidQa5MToLYk9b3vY4Wto2My1qrZmdD8N4ssls22L3a+El2VB1g0vi4EJR4hBaU3+6nx3mMb9GtLQQNVE1VJ0a7WurHPi0/OTUsQ2CPFJgymPd4zuG4I/4YeDUsReb8fEBjvNRK+G2PZt46u6wYpb3epWt7rVT11fBCxydaSiH3StCal0FxL2qWmtPVE3U+uGMsVl/4CtRt9QG9Vq2olKb866hZw3a0vNvOiC1oZzzdoXoVUhb5DySilQWZWOJN2oVWVUpSTEqD/QcM3hvBAcBL/hJRHyjJRCa5k1rZTs2fJbtnYkt5GtCFspbBm2VFQTYXamKlT1qKZdqT/7xLgU0n4EuxizahDXK9Gucyrc9cHvgnjvxBrFTCuVnApb2kg5q6WuaJBHF1LrJkE3I1ioWcpVj80+0W929KALbMWCCb3lFgRBNzdSEfT4e+8sDFF2O9e9IbXvDyESx5Hj8cTp7oH7x7ccjycOx5PSrkrllBKnuwfWdSHlTEqZZZn5+PSW8/mFD+/+wHw58/L0iRA94zjwF7/4JV999RUPDw+aF9Eaxdyo+jXUty/NNl0pJZ3gw56s3e1TO01LnPDu+3c8P79YE4vlA1xbsv+WYO9Hf9dpKDbBfn2eU9o0CTrn3U51/x67RottMVLWkDzvC76o40lKmRDL/vpAsx98dxqS6zkIwdNatGwNfgQW+nMSJzt96o+Tuvv7t9ROmdLtSKxx33ZcU6kVADnvqT3eHfZry14i4hrFtnfOaDr6fu90x7q/v3VjB+N05O1XE6f7b6mIDR7SrlEJw4uJCTyVSKkeXVhpRo2zTaZaARQwkCwiuNZzd2BPrZYOjszZy55ocUFvjsNId1vqzXxtKrTu9tJ6z8HM1ZTSKeJ0Y2OLLOfNeUp6JJ5jPR1pTc+7XhoOHyZcGJEwsKdh/tFmTMFQQ7qofT/+1+uvwR42eqtb3epWt7rVT1VfBCxSCbQcKdac5Gyc4mIiSBM8d6F1n49q46xTwCaq9qylu7GYuYnlHuA0UEtsGhhDUL93Gq1uqO0nUDxpg/NL4uWyqGuQa7gQiOPEMExKq8nKb665uw55DsPAMAjj0BjcE1KeYP6d5Tg0Fu7Zyom5fMOyRFJWznyp1njRrIkw+g6eWtSezzvPEAZCDNRivP+c1a8fTEuhE+jO2/fBW1qw43AYASEXpd80YFs3cs5sy8qWk1KZ0IA75x3BK5CJcdgpVzTLtWjFfo45NwGvJ/G9QfTmEhS8Z/DQWqLVpJx40XwF5z3i1da0B9F552heqSXDOHJ3f8/DwxseH9/y9TffcTzdcTiejGqiG4SeF9GpQfOy8PT8xMv5zG9+9Q98/PCe7/1vOB4njscDf/d3f8fxcOBwOLAsMzklSi47uLheh8WoUJVtXe2Vam7BVbDsGAa1zc258Lvf/ZZPT59IOe9OR7LrKrT+u+Ci//3rf7Y+sLW6g4pOh6mtvu4TlZZWK6kUtk03ej37IZiuISTdPLSqgKmDSLc7rPUAymhZFGpdG3zYNRb99TvXXoGw6wvsf85F6YrVxNEiQsxFAw2T6i+661eMAyFq49vsftA3bkIHFrZBstGCbuqUKlRrJZem1/2g+Q84z/H+DW+/eSSO9/h4JOXM88uZ8/Mn1uXC5fKsieLzGfDU6ii5Ulwl543D1HCi9MyGhm36oDqWvj1U2p+dLnd1nfPeQ1UKkXdVr/vod5piPw+tKaWpDzcaTRlstalLVKt6PxMF3TjBB7HcDjGdTKFVB22FmljWgHMD8fCAG08QD/t71c7Sjy8x+WONz/Vr+qnVe8ytbnWrW93qVj9dfRGw+PDpQhirCW5tatx6RkDZHXz2ssarddEAmEhV/26fkAdtinwIDCHgzOXGmV3lumkjum0L26ZT4G1WNyMahGFgOBzwgwZGVRoprdBE7W69MI6OISSCLER+Sygr7pLJBFpz5PYta3KkLDwvjS3BmiqlrMpVLoXWZ9k/mvRHzUMYD3tzjmjasROdKBYTiNbaE6r19R2mES9A26hlZkuZtHqcj8TxSEV57JfLorSWTV2LNJ2X/eeo4DNyOE471b8ka1xzxQcFH8e7g05NW7O8B6+5Ga1PWnVqveWmXO8WVcMiEEKfuF8bJKg7BUkkKgXreMe3P/s5b7/6hmGcKKXy8vKiOoEeQpfLTgnqze/9/QP3D498+813XM5nPrz/gVrUDOAwRRX1Pn9iPp91y7El06YoRaiDWQ0r61sK47Qb/SWGgBNhiJF1XliWlflyIXrP27dvWJdFf56B5H8SbtRxRKdHyR8hilf8Gh8iD2/ecP/4yN39/S6UB3a6kYinNSHnwpYzrRaGGKitUqqGDlawDZxuKA7HA/Oy0ICX8wvL5YwKpDXBu2QNUJymycTYqjECa/67rmafkl9b1h1sBn9tTjuPvwrNALK3939ORV+HOWFdMyzYf/AVwDgNUBRwcaLhCCYaqtJ4OX8k5cSyfmCaXhine4bpHhciPo68/ebnes22lZwWluUFp/nxVIkMcWAYB87Pv+cyP/GHd78mzyukzNwMvA+REPX9KiHs56oniyttrhrA08DNEBveDTh3YNvqrk1SKZnoVhHVCmHnqWubjCymG7StsC6Jdd749P7CtlbmWRCnjnXHx68YpiNhfADR96S82jj0XJXrpvFKZvzv7SVq/aLb+61udatb3epW/+L6ok+eeVkJRnvqIuAexqQi0aoJzLb/3z8YXwsKW6OPzr01JLtYlv2L9APc/pxMvLqu2xVYrCuCNgzBidE0/FXQWHQ6HKQRHETfmPyGZ8O1GcqmFJQilOZIjKybJ2XhsiZSrqSsVBvVHdiE0ACFplZ7QhzwUS1kffB7ZsBrgnPXj+xMGKMTee/xAq2IaU7s2FJoWbcnpVS2bdWpqYmLnXNKm7IGNcZgic3wmm8tFuqn1KyeiI2CBX+lyuzn0uhTzc6lBsEplWSKzugm0JW48npCKppxMR2PHI4nxmlSoFnMkSlrqve6rgpCa92D4GKMjP6g4Gg8MgwjMUbSOlPLRtpmc1OaWeZZdRmbXhMKBJJee7XsCwHsmNdWzdLX3JbsV1pX0rbiRJjGkYe7O14E2xw01OHnlb7ilfPOlf52JU312XHfCjnnNPl5HBmGcW86sVTtTmO6it7Zt3u6xbtueK5Axu3ah9ag5GIaCqG2smsq9OkKMQYg7o+j9CgFjaWUTlrav36nVcVAv4SL5XqI1wl8fy7NjhEm7nbd5rS1K+3LgCimfe9ubuI0Q7tUFSfXWtlyY1sz5/NMzsK2ZsKyEOLIcLzDHe9wMhKcJrWP44Cn6PH2B8ZxYpomXFvwTjhfnhBRAECt1NzYaqK1kdCUMqi0N6M/dRgg6trUnJ6N4CF6dSVzVKP0tZ4Rqt+KWPq1Xg/XQcLV4jjlzDInljnx8lLJCbYcGccDPh4ZDvfEYcKFiOb8/HcAg3TK3Ssg+yMxxfXf3X9j03arW93qVre61Z+zvghYfPr4kWhNkk74rk1sM6vJ1y4xvSnbuesiph3wZuEYzPv+6qSTts1cbPL+wbyt6p5UctFMBg/T6bRvOfrnbC0F54UxeqYDRCmM8oyrZ6SecTXTmidzx0u6Z04DL3Mj5ULaktJ/GpQOhBx4H3fKULd29F6bu2EaicOgk9AQrPFyKpKtlZLVTjf4gAT9OcMQjSYitKpWlBDwcSAMAs6xpcSHj2eWdSWnpJQK7wlD5DhNDEPk7u6oAlIRcw0qXM4vu2bjeDgwjoFxGvcmb57nnS8fYrDjF/csBRGgNk3UTvqL1pii5xhO1NQozlFyou4OSja5jZHj/T0/+8UvmQ5HGsLHDx91w9IdiXLmfD4rFazWXUMiCKe7O8bDgbu7e3yIPD48kvOBtK389jcvnF8uPH/6yOX5STcVVR13iuV6dCqO61uQnoTdQFzQlHigJM0raE3zEH72zVdsjw9sW+Ld+/ecL2d+ePeOzWhMJo29NnkGLP+JoJtr4wzgXGAcjkzTiel4RymNxob4DdxGs3Oqeo9RNy6Wg9DDIvskfRhGfAwqnO7J4h3cCWYPq4L37rj16dMnYoxM08jd3Z2Ct3Hc3by2bduB7jAMhBAYx0lzSMbBBN9i27G2byO7bqjZNT7EaNuAAVBg/HJ+UdG56VpEnKEtpSbVprSr82XZwxfXDbYNTT8/vyAts64XzQgJA+N0UvqVUzA/jkfi4aAZHw9QHeA9b7/7G74W+PnP/4q8nUnbhY+f3nE+P/H9u98RoyNEz939PcN44HB8wPmgxgNO6WVVBM3IEXNk80gRRj+oCCzWnVIlnfrVtz+tcb4sLJeVl5eZ86Wypsbl0lQPUj13p18w3R356v6tpp4Pg97HepCoY7fzfU11EhHE/k6kXwLXtVMHtrz+91vd6la3utWtfsL6MvF22szp5HXJPqkEC4a22kWiNu11NhUFBSIpJcToFTv3f+drm06jVtpu3+rVatNck9xOcRG8gyArrq24NuPTjKMiHmsWjsxJw+PmLTAnx1qK0htqsyZOxclBlOojzu+UoWgNmbMtgfNKreibh/56MbpHE4EunO0bGQNQ+ko7uHBGbzLwVFXIu64rQiOGwOl4JMSBYRr3ibX33pqaZvajnqMEE5lqgnVpjXlZTDPQyEW55aVCWTMiGed6M/uqea6anK7HVTgMjuPo8FKpWUMHc972RtOJ4+7hkfvHR07399SmwXuXy4WUEmlLtr0opjtIRlUyh6Ru11lVNxHjwHQ46BbGe0IccV6n6ELbA/ScqHjYEY03r9PvfoE647nHGPU8iuzXXT9fwTucRIag4XKHaQRgsQZ9TWkHRX0Sv5/DH7kLyf54OAivMiGc68njMJaJmjW3I62BnJNtwQQxcCDuCl59p6wZaG1Ge0pJHbVyzrrBoG8pNIww56yUuFIMRLT9vdc3VX0j0oPiaAvJebZt2wF/NaCqQMzAgrh9K7StK2ywLPMeFDcvl1fDBQMoAC5CmKjN6xR/WdT+NmeWy1mvi7xSy0orCfS7KHkj1w1CoPpIjROtNlLJuMuFy8f3qquajnz93V8yDJqbIxzADYx3AxLfUN0J54pe29HbMXCUqlsVL5oq3prj6sak75ncVP9Ca/oe3TY1U9iSWmWXBmqCzbpmSoaUjiA6CBimAZwCmGm6J4SBOE54u59daaNXEbzq9bsY5Lo9+xGk/WM+274WhZxWbnWr11X/mN75J2q/p31m9TticPGP9D//B98jOvb5kgTt/rO9/Ouk+33ua39dW10RcYx++jM8o1vd6qerL3pXlpwR2XaaRKcG7cT+1/Xqv7258eiEvYuYi2UNsNNLRMk7gE7saitUqjWR2gwNYSD4aOLUhqMwDY7BNwZJSH5G0jtyetYP5XhH9Y8Ud8c5HViS8Hze2HIh1wy1KqVKBPEecboF6YBhFzQPg9qAWsOogme/T7S7sLMaBUt5/QYs9tctpG0Dp243PSU35cq2aQO+botRzcqeWv1wf08cR4bD4XrzLVchqTdqVIhub3y3ZFSvtPUzBVgIWRWz+K0Im0342X/3fXAaYIyO4+g5jB5fN0pSClG2n9+aug3dPz5y//DI8XQipUpOG+fzmW3b2NbtR4Aq542ckwJVemq2o5XCPC8M40gpmbuHh91G1/v4Iy47IjSnYDAYgCu1kNNVGO6cI4awhxMKCiyyWa129zENlVM9wnI4IM5xvlxY1pXz5ULaNuZlIZkIe7/E/+jDQ+lEpr3xQcMBLXNCRDdeVA30o1V1ADOnrb4Nq6UhQRRAGo3N2a8OTGstOyUw56y6HtqefC4imhMCuxD76orl9q1FN17ogCynsr93e4q2jsL1eGcTA09x2AXk67qovsOutZwT22bCeafuca3BmhuECWLW5r02JC8aSLetXF6eVWMyetK2UMrGOAbVUOREbQs1C82P1JIoeGTVe9H88gE3DPjxwNIih+Mjh+HEMERiODAeHghjJo5voa66mSwrTYreY3oWp9eAy9ocNpHYbYCFjHfX99Z8XliXlZfnlZwr21ZpMoJ4avM4GfHuyPH0NXE8cLh/IAwBH72lwpshRdey/IhSqtqaPTTx9T31Fa10p/bt/41tvexn3sTbt3pVOrArf/oLX5XD4cR/dtOv2zTH6KbP/p4ggeDiFz2vf+31JWAM9Nykuumm+8/0nG51q5+qvmxjkbedBy4obUfTpf3eqPXGTyfyPVRMOdm5FlrWG1vfZii1yO9NmXedwx4R53HimcZA8I4YBe8rTjLkd+TtifXld8QGMYBIQWSEeKC4/0iqA+ctsi3K4V7zpuFp0ghRGCTinVKYfPD4MFiDOeCDZ4iBYdD04+hVpCreGd0LSxLWI6KBWx5coHqjQll6+OvX6P2oDk9b4rLONlFOO0i4uz8RY+B4Otm2xO36iufnZ3NxchyGgU5HSykb3axvTvT86GNOOmmvagvsXDNuuIcqSM1AQagE45c7Kl4aQeDgHZPzuFRJ20JaF5b5hXW5sG0zADGMfPvtNxxPR5Z54dPHJ+Zl4fxiwGLbGGK06Zfs2ojNchd0C2MaDqCWhBOl6AzjyMPjW9K68PTxA8v5aT/uzs5HD9cb/MDmtt11SoHhaMDB7ccLerK7XqNOil1/nsM48rPvvtspXC9npaS9vLzwcrm+nh42d7UmkP26dqbzyVk3O6UkQlSHIIkDOUZqTtfhsr1vmnNI9JaNUS0zQqk/wayES8ms28Z8mRFxTNO0bylqyztgGIZhF6J37UX/c86ZcRz3D/4u5NYwPF5RHbW5bbtUSicK87qas1lhXRel9Fl6uobCJcvnmG3gLvh4TzgEhjCwLjM1b8j2CakZVzODS+AaQ3DkNZHXldgyzrvd0AEL7kvlTF03JEyIC/g44fyAyMCnH37gOXzChQEnwe5NCpKc0S99GBnjHU4cwVybRKDubmgr8+UD8+WF73/zj0ZtbEzjCZFAbQ4hgtwzTX/B6Tjx9fHEeDgR4sg4qnA+eI8Lg74vvQMxClUTCzbsdslK+VTxeLtq2CzJu9sAd+BB35rZ+XOvthnOD/v9elu+rIm81b/v0qyWa5bNn6pUE0tZOIbTPhj6UxWcfqZ6Fz57Zt+NCXJNlqf0p6u2Qq6JyR8J7l/n1uJLSkQ4hBP/HWXVrW71Z6nPfV9/aX3RO7I2C7ATcz5B9ibkKl69+q3/t6r/W2/knLvyxvXP2mQ5Hy1bQRhj0kbXFTwr0jZoH3HthcoLXiacBGCkMFHribUdSXVgrZ5UMrleU5d90Em1EyGGQe09Y1CBpg8M0cBEUI9950QFwKIZGdhEUZQpAa0ZhevHr7FvJLoIVpuK+qMGrxZ1XfKDukEdDgdCDEzTqOSkZu5b1QK8RCkzewZGtw5t1zV3p5L13/dk5tK/tkItSKt4NK/CS2NwDefUnFYzPhqT14uk5ZW8LaRNp8zZbIW9j8TBciGAeb5wPr+wLAvLsuyv0zu1x1Wnq2K0GZ2oiqAp1F7FtN57DTmrKigP++Q/GHWnoZF+JpoVy3Toqc6up4j3CX9DSXpyPSa7RsTtVKTgddsQrSmsJpzuGgQfPMu6Ml9mUk5sSV2pdresXWQNranovtPG9IP2Cr5/ZGzQdtn2DlT7tSoWxKYp50JaVkvs7tkV4L1qGDxxz7torVGy34HG63Tunrz+elOizD3/avsotpZ8tZcRg1Gv7kW6rcgaPmd64ms+TTHuv7OJvL7EkrNujdYFoeBaQaTaQL68eiwBG1yotauBIIQmHdSLZT6oJqKUrBSiajH1FJqldnuvA4UQdHMXvCZcO+8QBy3rA7cKuR4orVDbSV+zA9ydAhkX8G7EuYHDSUXX0+nINB0Jw6C2xq7njXjLuHidDC+aQyGoZbSrFNEtTpOmYLc2pHUdm9pS63XPKzqeHvA/Fmn/8Tm61a16fS6oAL2HVTON/2xaE70b+Hw6UP+6yn/Die+/U7VVStPBzr+XcuL/9Bfd6lb/BurLoL4KJV5tKKJtLEyEKz+2QewpFjpB93hxuF00fE33vSbhNqULeMcUHNGtRLdC+j3kM3X5gC9npC5AJkgkHk6E6TskvGGrX7FujsvauKRErg01iQ0EHxiD8Tm935vVwYTX4zAq7zoIQxBjhavugVYRaSY67b2f0rYq/GjSmIu5HTkhDkEdb1LmMvdmdNNsrio4TMNwipzuThyOR8IwUZty/Jd50/yMXHcAFkT59ovlNLi9IeRHIuktpb3p6/QdoYOKiqtZwdogDFE4Rs9hgOCFYIF3ToTgobVMXlbWWV2Z1mUhrRu1NE6nibu7e2IIbOvK89M7Pn162gPnAGtuy6vNSW+wroF9y7JQamEcRrPJbNCKUdUs8C1EShNKt/vcwZzmdNR2pQMVc+NZ143VqE+6tbg21/0Jim08Yix4F8ySNDJ4z/jwYMCw6vZiWXh60o3MZb4wL7NtSOoOrKGSS+Lp6QPPTx85P39E7ozyZbQCbwLwrpnYf5V81ZEIRtWK1qQ2np4/si4X7u9PbJsK6cXp1mcYdHPRDIz29G01FCj7a+1GCeoA5Xa752EcwSh73db4dQhbT9l2IkjUyXguG3XV4MYQbCtjzlIHDtb0CqV6HdpTSOuFbTmTL084qTgH0zTgREgl0UQIcUSGCbyjBUdJm+aqAC44YjwgwwkJI2G6J5dMyokgonocf6CZAL5vp1JJuFRwspLGpOd4HAkhKtUs6dbRuQNNBuL0Nd/88ueWMRMYpwnnAy7G/fztG9YdAAoiCn40q9Hct6Qn3jdo3kifztyn9Bjsg4I9K+NKbezaC3WNuwKL/vfXzUa+bj3ql/Hpb3WrW93qVrf6l9YXAYsQBuIw7XoItV216SZA32D0pkg639zjozYvY4wa6tbF0NIQSdAS0jakXZC6EdcZ32ZgppYLguY/uPiAuG9o/gRtoLYjcztR0kAqgVKhuqbNYUMbhR5W5d3+2D563UpEbaSjh+CtUXc9GTsbZaXS83IbHhGdPpcq5ubTdmpXDCaKpXJZFJj0ADcVgQ94gegch9EbxcvjQqDVxuUyk2tj3ZI1v5UhdiDnVGSLhb5x5cf3Zvk1uGitIa8mQE5kpzgNHgYvfHUXmKIznYpY8PBrK9nrKiY4xzAMnI53jMPE8e6et199xfF0p7zzeeHl5RMvz8+qASiVaZo4HA/QFICGqILlknkFRm0yW+tuoetDp3VpuNq1wQ4UHwi+0W1bS6mUbGDFfo4eJ3Pusam85nT0hquL1TWRWc9ftkavN3Ee38KukTmMkwY2hsCyrhzmAy8vL2xpI6e8n/9FGO4AAQAASURBVItSrZFNmU8fPzDEAfcLxzhMjMMIrRh4UHCJTaWbbXLo2zRLCI9DYN0W5nXmf/sv/5mPHz/w8eN7tm3ZgYUPQb8+DjqBbwoQnItM0xFaI8a4B/XV0rdb119iWg7vI8ErsFiXeddT9cRv78PuYvX8dGbbVqMzBBCzNvbgfd23keImxA9IaAxfP9LqHbW8tXNWGUYNtNw3JuIYh+NO8dm2RZ3KcgIczgWSzVKdOcP195hqWowa6DSRXF+Cs95eoKnepiQLgXTF3L5UMq7v4WahnZ4mjlw1fM/nDF4HJf2250Q3HkVQQLxvcIMem556jgJPEOqPJrrdEKDZ+8G/Mn9o9r3tRyCibyt7rlC1+5QT/dkl3Cagt7rVrW51q5+2vhBY6CRXHWr4ER2wtv4XSitwTv3fnVMryjAEQvRMNu3TJqXaFD1BXaBeIL9D6kzIH5E66983ofkBH94g4QHxb2jha1obKXlkzZBLIxnnHdcIzhu4CXuzEYxrH4egabxeg9+cQBTdNGirVygUWim0om5AtQlIUNqN0wZhZxW9alSdc+RmTdm6WtK2NihOBAnC4IUxCPenuNMlchFSLsxr0iTmXKzxVO573+kkmyQ36k7p2cy5SG1cizV9ulrxXe8imD5DiE6YgjBF4eEQGKNjjJYr0qkyFUt71vMrTV9DbI3DdNDWyDvefvU10/HAZVlYl5n5cuZyftbMkaTN/TiNYLkAPjhqFSWoGB1If2/sAmOb/PZmW1o12pqK5pU217U4Ys/XbFDbVQRrrGJ18+EKXkqt10mzHVeHs+2UfS3gLCnbobqWGKM6PUVN7g7WuP1Id5FVA9GzQc4vzwQfePv4FQ5hCF4vmldbCeN36d/3rYBtXoJllFzmRZPJf/Nrnp+emC/PbOtKLkk1M2YqcDweCWFQ7ZCB+hhUbD1N405NW6s5BhmVr3XakwnPnfO4Ukiy7g2td37/99ayhjfOCzkltT/2cd8GdkBwdVAbaU2oDYbTnW4IvJCLbvnCcNC/cw4fg21gTkajqizrSrL8mt5QL9uFXAsigb612mmVKgHTMEexvBznqMVCAm2BUIu+z2qzDUI/JHZf62BHnWerYoZOWRPB0/FK569Xakl6fmmq/XAekWj3DAPSYposFADqZdgQafRsH/p9dn829ruBip4dpGdOt0s0bzofoYR/+9zzW93qVre61b+t+qJPnsPpjjAe6abtGqTGlessQgieGD1x8Byngegdo3cIL9DOtDZDTZBXanqi5pm0fqLklZwXTqO69AzHRyR8jYQTLfwc5A7x37I2T2qedVH6Sc7VyNGNwb8SaXptosPg8A6cbwyu4tmI7ROtXGjbhqsRfAR/ojYzcK1CrY6Ko8mRhqN0waWJtm2eac0vLMvFgtsWclYhZoyjugPFEUFDtabR4V0luMLLZSHnwstLYsuZlAu5242GgegDwQXWOf2IBy8m7hATaUfv8SJUcbSmgXfSm5/WCE4ITrgbA2P03B08h9gYQuMQe1NSzUVG0VL3tNh58Q08gvjAeJhABDcMnJeF58uFUhKXy4WXl2d+9at/5OnTM8u68t3Pfkarlbv7O5uYG+/eye5mpFuWRG2ZlA+4RcFQyVkzHIwudzioDV+nQulmrBmwquZa1gPcFHiVUogRnHdgje310Fz5630S/zpTRarThHMpalPqnWkwHG4YCc4zDoPapa4rW0qWIfGsTXBOnC8zuTR+8YsLMQZEjrSqmoRtXUnbRq3ZaGsKFFXQ7glBX3fOiV//+h/4h3/8R379q3+glMw0joACpXldDIgMIIEYlb7WncukKahsuzWjJ4Rh37JpIJuwrgnZMotsZmHsGKfjDizmeSbnlW1LrNvGum6IG7m7v+eXf/lLxnHcbaABvUac2wcRXe/SNx+0vF/XLkwKAHwPzfQ0dzCL2iP3blS7Vh/Ubjcnzi8f2baVmotmueSESKGVxHx5oeQLJVXG6Q7vB8JwpFa9BsSaeKXBVcT0Rf21vhaRdgBaq2480lJpdQMyx2FDXKLJTMqrBjquF91atEoIE84FnB9twwmnuzcMw4nj6efAARjVCtp446Xq3YXadUS6YbF35P670q5kT5b34hhD3DVsw21jcatb3epWt/qJ68s2FubLD/oBrLlXzWgd+t/BV4LPBFcZaYTaCK1S65laF0q+0Gqm5o2aL7SaaDVrgxwPhPFEGCZk+hr8ieZPNP8WOFA5ajp1UzGkNi4gBJC2NzHeQQgZL9WStjOuZEItqoqoK0pHaIA3selGk0hDve1rc5TqyNaIdFeW1iCXHhoGzbYEy7KYiFXTyE3Gqs2LWF6C08l/MavbbcukVFjWRCp1ByzSBC9FR6FSbUtkDYQ1DbU3H51vvTfKXQqjX++BMXiG4LibHGN0nCbP6CvBNbXQrHIdmr/ixshO3cB0Bo1cCk8vZ0qt5NYoVRud02lCEA6HA48PD3indKH7uzsVs74KQnwt8r9yyBvOJsjqYrSp+L3BIac9wE8zF4o14LaxyGV/7Xr8rqnVmPai1Qr1+ni0VxkURjPr1TntPfSjSaedOMtcsamwwBAC4ZWNq3eedU2aQ5Ej0+HI4XBkHEdLwtYwwpKzblhqefVc7fl0kbcT494rJen56RPbtuj5GZXyFFrAbWoJqcCoT8BNEGnAv7XKmpK+XxvQxeF9mi9uf92CTsMF1IJZ+tAgvpr+ewXwMVj43qTuW96bQ5rsP//H1qr6flAKpJgrl8MPo4q0nb8CfDShW3A0UQqic6qHGLyQtoCTAoOn1kCrkVZXSgbEU4s+5nhQY4YwDPv7VqjXrasdKyc99o49lXunVQk4dLhQMqStUvKmw5K6UZmhbbSWoc6mkyiklky3EiidNlnPxHggpwXv7/H+iDgdbPQ08qvItmdrGLixVUtrvKJ8Xe8LfjcjcHYfutWtbnWrW93qp6svAhbDdMCHYW+CAo4QGjFUQkh4yQQ2yE9IfiZu76Gu1LywJaVtpDVRSiOnRpOAuIHD/dcM0x3T6ZHh9Be4cE8LX1EkUgjGi2/UXG2qi2ViqDDC2eTaO9VHeJeJnPFtgfx7KBeknNXdCGHDI+MbZLinEqnZqUtNjOADyESusOVKKtYItqzdde0i6UrKyYKydFItGNc9BNOfNEQK3hemKeCdsJwXlmVjnleShcxp0rc2d84aGFcrHm3+T8fJmggxPUUlpUorTRtfAyW5C3QRnFdNxCE67g4Dx9HzMKF5H0EDhJVrDq0KJYulN7NTdURXCzTjg8+5Ms8r//uvfsPL5cLT8zMhRqZx5P/6f/l7pmni/v6eh/tHcsqsWyIEpQ51kalO2a8NT7UEbW1e/a4hAailMuTMNB3UBYu2hweWvFr/fN00aHPcBeGdqq9bh5b1PAKma7g27yJuD4/bQ+M6QqNQERwFsoG60AMUHTF4nIsc5MCWMsu4UZtqYUqDr776ijdv3vDNN1/jndNp+6bbip5g3mqlJzg7M0IApaZ552i1MM8Xnp8/kdOqz7Vp6nULgZILPgSmw3F3NhOzYKwG/gqFfJktuVmBrtrxerNR9gZKzTK66bmp5F33cjyd9um97Sz3Y6YuZVU1EOHqNNV/79uV1pRu1kSIPkBzmkI+npAwUMRTC+TczCjBQSqqdaISQyYEiKExhkyUTBwCzg2Ic2ybUIpw3CYFx8B0eMD5ARcmSgef0ulLZacUdUcacTAOA8EHc41TiYQCYdWnPD+tzJfGOp+pbcOxgatKfwrqglUK5LopLdIyPnJOPH0qiDiCHzidvuIwPXI6/UdEjtR6ANdUa+G8DReCbU0hGe1PWXrmv6MMVKN+YsMVp8DnVre61a1udaufsL4IWBwHIQ4gZKQVfHtB6hm2Z9zyjLSE8xutJFrJXJJO8XNKRgNwSDjhxwOHx0fi8RtcPOGHr3BuAD+S4gGRiLSJVrrgEaXPIBqG5hVICAVHwnPBsdLyMy3PtHymlmdqS8asGGn+juTf0hjY6kDJgZICW9EpYSlCY6Yxk1KjNJT6YLSO1jI1V5uol50u4Z0G6Z2OR2uk6g4owqC5GN4J55czORXWedk3DTGqxz40068ExhhwDrw0DepzDhdFgUNW3UZOmWVZ9um7N9veMaovf/Cew+AYg+PuEJiCMAQYvVKcZNcjKGWrmBC3N+X971uD3HRLcZk3fnj3jo+fPvHDu3fkUpSuVBO1Nj5+/MTbN47Hh0e8j9TSOJRKHwtn0z9AswwEtWNVLYTa/oagicy1do0E100MzdzHbEuxO97YhFnUCAD2AbS2Xb67QQkQTXOgAmNQOl8Pjusi/FrbPsmuValS3d1IBHJtOyiJQ9RrIEacE4YYeXi4R5zneLrn7u6O4+GAc85yH1aWZWZdZ3La9hCzffrcHEOMDLb9AMhbIobA3em001+mcVILWxGGqJkUzqt4WsThgiZHNzQorfZNDX0Tpee1rCsDTTeR9jpbc7i+NWkm6K+qLVKf6euEPOe0C7n7sc9bB6XsgPgq/Pb734nzuDDhwgH8kSqB0oCWcdIYhwFxEfETuSlA1AuiUFKibheEhYfjPc6rqKIeJmqNpM1UFwIhms7B6/u6Va5ZKnmjVNPHbAu5JKX10R3X2F9X12A58bvlcYhQm6e1gdKE6hqtBLVz9gVaQWql+YjPiZgzLW/7ZnBbPpHThfmSiPHE8fCGVGdqSwi6BYtDxIcjwQ0chyPiRpyMlOYpVdiKqANeVVpgM61OWpcvub3f6la3utWtbvUvri8CFtFt2py2DWHDlfe09kQtH5DtCdoGPkHRaWfaqomqK51L7MMb3HTPcP8Nw90v8MM9+EdoXoWHgk6Im4lcqzYHQu9p2itQkXEshPaCazO5vqPmC2V7IecXpYCEI4QRGKnujspELiMpN3JuXLZNQUQTWlXKzbomnXJbpoLywU0cnQvZhMHqXDNaMne0hjahFpNKMxJ0GrosK9uq4lPvhRDVwlI3L40Y1R2qAwuhaiNHI5eNUhrbmlnXhbRl1mXZN0fjOBDEM3ilPA3RczcFxuC4P3iiawpUQI9JUSpOFzJ3LUKXrXZQUZswp8KaCs8vC+8+vfD+/SdeLgsCjEOgVRWJn88zp9OdbQ+80Y6UPlVN6NppUBkx8a8+lncq1g0h7JqOTgfqIuD+3x01dFoNcv3zawcoYLeR9aa96RqgYYi7hqTksn895CtVyuqqQ7BffaNj4mDnBAngmwYthuA4hZEQBx7ffsU4DMQYKVkF9mlb94TqZj/HO9UWNGviuw1zf7xSCsEHjsej6jxEGMKgImtxxBAVOIA134IL0TYuQsk6ac/mBCXtGrhWSsYX/0qkbCGCXfSPVwey5qB2ipOZNIjYNlEpXbsYvodwiRF69qBMtwvA1eHBgxsQP+40RKX66GOrda3HhajbudYoOZFrouWFsp7xshJkRFxAXKM5p0GQze0UTefrvgVwzeQKNdNIuLZQ64bUrLqrrOnyPUNFpIfMNZyoa1bwAz5omrvzotS4qhoeaUAQBROtAkVNAJwnuED1yZ6jWgur2HtlKx+BjTZByc/ksiEIrXqcRJzcIYwE/4bgjniv76NSPa0LwFsfiOhx2tJtY3GrW93qVrf6aeuLgMW0/K/EbaHlZ6grTWblFLcMTT9Y12wBcKUgLhCGgcPhkfH0V8TpW/zh76gyUFqgIuQihBbw4vDiqU5tVFuriDemtblHSavk7UzZZshPwAYsbOlMrYktV5vifU2pf0FpnvkcSQVyhVSfae1FBZx9Ml7s8agqkkSbq27f2CfnwetmInqjOolYSF7T1GGq2ddenXc+ffyktK/MzpEWr9Pb6ITRV7xvxFhxFKRuzGd1hVq2jXlOCiY21W1Umk2KHeq3ryJXT8bHwGGM3I1wOgQeDo7ghMGrqxK1qsg5F1LaWOaFlDbWtOg01svevPswKJ2nOX79h0/M68ZlWZgvK7k5humoP7NVWtG8hPfv3zONI9uWCD5qAFzVn0uDMQw7LWZdFmBlskn+4TDtuQApZQNqw54qPQyRbFoW3S6YLarr9sHDvnXoWwV1mFKa1DR1jUfbHbM2s+N14uhU+/69180IO72s9UZ7FyGrxS2tg5NAHA8cpwOnh0fNRvCekjPrMrNcLmzbynx5IW0rJWdOpwOtaTL6PF8oRgMbx5E4DNRqtsGl8Hj/gDh1YQIYQrQmXYFvqcWyS64bnL592rZVnaDWbddRpLQpgDTthPdeaUFFM1C8CYJDGPDV01rdj/0wDNAqJSutTcTtzlMdzInpn3AK6nwY6HZxpVjIHSOOEWkjbOtVc4Ha5K5zplLBV7Kdt8vTB+bzR54/fU8oLwyxUvNH4uDxo79SsmratULdaczHgLMMia7HqRoqg3dwOupzai2COU+l9CohHW9aloGuxtClUtfo6M+tYzGDL2eDkkatSTe5NUG+bqmcHR9koDWjmM0FlyN4aGSWuvDy9FHtmMUR/YEhHrm7/1t8fOQQv+EwjCCBLU/korkily6iv9WtbnWrW93qJ6ovAhbb5fcQEtIWoCAuY9ZEOkhuxu+ViPiIj/e4eCIev8NNv4D4FU1OKv4EXMvGS9h04KZd284ddn070ZLSH0oirws5rZQ8m/A7kTbI2bFmKFW0CWmaK5CKccxbs8Aq+4V0irhV94ER4zaL2bPqtNU7zbvotqPquBNNMK5AZNsyWyqWlF0oWbUhVHVmck7TvL2D4JSPnlNlvliT19RyttZKSoUtqbg759YFA/jgCc4T47A7B91N6vb0eIxMo+cQwEvGNShJQUXdgUU2e1SdnK/ruk/fd5FurKypMq+Zjx8/sWyJbUukpLqAVu281UwrWe16YzA736tuoZl3f48pF2Rv9kNstk1wTOO0050C7PQyZ2DOOYfUuk/gxTmm6cDheORwmBjGg2al+LA7Ka3LSjYhuDOOf05J/y5t5KwbGm+Bic5ZqjrX44CYFmWv9qM/Ko++6jbE7F7HccKLo9XKlvQ457Sxmri/1qzZJX5gHDVfobZGCH7PHun5FepOlZgvM7VWoo+oMZY6gTkDFTi1ZPU+vDIZMPBTjT4Ixs2vFnQX0RN/3VaUTZPgS87qzoSz92PbX3RPjxYDts5+dncn6uBAXxf6HmiVslXEBVzQ7QLiQSKuCmJ5MaVkFaeb8664ad9szMtM2lbqsrCtM2VdSdvC5isfP6zEMRBGx+EYQRypiDqNlU23KU4B/RBGy+mwMEHhmvli1rRiFtXSwPtIqRru6ESPk+5jlNonrXa0ae8hTUGv0mjmetUtaREHNVhehpi9rtIhmxkClNoYx5EQvT1WodaAQ3QIkjVfZylnGr/HhzN+2PBhxPuRIR6JXoM3qfFLbu+3+j9BNRo7Uv4TlVsm1/ynv/BViQ0IXRf9fEHVmil8Xqhjrhvn9MLoxi9KrHavTDr+NdbnppXf6lb/I6p+5vvtS+uLgMX89CvaJLigFBDvojWLzkSEQhBPwAOBcPgFEt8ix7+juTcUjpSqCcLOZVxLQKKVs1IqaDtH3EvYRdm1XChlY9tmdVLK1RruyrpWli2QUmDedFOSykptK13V2JtEFV9Cb07FdScd/bdaFVw4RLnN48ie2YVSYrzzDONAjAPH450emAbPFpQ2LxejQDQC+lqja4TQCL5xmq6p0k/PF5Zt4+V8Nj9/42k0wePtpNsxcQHvI2McGELkdDwwDp5pCtwfYIqOu2kgOA3Bk5ZotZK2vGsWetbCtq2slgswzzNgbBUTO4eUeXq58On5hXcfX9iSNpxqS9uU6lULtajLUAyB0/HAYRp1i2Dpy4hHqlFi9uPuCdGm24x47xiHSMpqudqBRAjRgvJ6kOKOK3AhcJzu+Orrr3n71Vec7u6IIRKHQZuy4Pn44SOXy4VPn56Y5zNpW1ku2pxqFoK+obwTBWkx7E3xTsOyoDd1DTOqmNGEVPSuomVnSfLDODIdDtAgp42Xl2eWZd7BhQhGxRoYYuTupAFwtTUOh4mc867p8F4bzW3d2NYMTq+9w6TP09n7rmtYWlNHth6WmHImKweK2p2d6JkfVTUV9h4uBkK2ulgWR0IIth27Xv+dclZKIcRXdC1sy+O6m5OBrloVlObCeS34MBJGx3SYriLzWqBu5O2Zdb3w4f33bFum5sbj47eqG3Hw8f0PLJcXDk6dqQTHPG/qFhYScaoMU+AX0x0hOnKFNa0KoLcLNM2rOR1PGu54uFfnpOZY10wqhSYeH0YDdmaYEDMk0425vqdISpWqplmyY+AE0/lUGoVSN7x4vWZFaW66kTEdjAu7LqZvUKUWQpj290trjVwzKUyUkknLSloXtvXC5fIPiIsMhx+YpgPjeOA0/TXiJqKfiG78sk+DW/27r+4q9jm11Y1UN/v6z2t4nTiCBLz78gyV1BLlM4HMOb/ww/IH7uMDwQ2f9T36+fGvF1j8awc9t/q3UbV9PlhoX/C1X1JfprE4DMTRa+OKCk0bjlYcxUWQAT+8xce3uPAI8Tuam2juXm0rHQRrUvrUpFWhEmgUqJlSLzvNpDurLLNSOeYl6RS/FNKWqKUp1WhPoNXEW6WCKOVh56/0D3V3DZ9Cuge8AozoVKztbFOh1Ce1ifV7jpUmNOeUeffuxQK3VOys24mKdw3vG8fJvOZx5KzT7R/ef9zdYdY1WRZH259PGDRdehgmQhwJIXA4jkQvDEHwJFyreDLBVwZfuQuB6MGXREmFVAu1ZqVPla6ZaHsyNLTd0nXbNhXWOksvroV1TmzLmbKeObjCNAje681bRJtx/XnFGvPId998zf3xQM0KNlzzSLDthbPpd/9w8mrZKrRX9CUxSk1QepMP9rz03JVaWbfEw5u3PLx5yy//8i958/YNDw+PxBiNj65NvjjhcLpjS4lvLzPv37/n+fmZNVUqDlesAWyNVnSLURoMw6DTtj0ZXulTpWS2tdLzQ1qtHf9RakNKBXFKR9oWtkVpZpfz2fQJhRiDHSvVeChVSl+7Bw3/c842Kddhn/byDUrTx9RLXMXVr0CQybLtchfGGBlCpA6VYjqIxbY4Shfi+j1NtQmHaSJ4Z9e4Pn7KG6V6csk7vUuajg7Ea+gkWEikvc/Oz2fWdeHl/My6nil5w8cR8R43By6fmm0Qul6msW0Xcl65XJ7xTqfvLTsaIyITb75+pH39yPb8iXU+c3n+yOnujmF84M13f4WPEy5OjIcDITbi4cw8f2RenpnPnyhpI+eV88vGWTY+Pb/Y+zyaDkgU+FQF9LlmbZK80pQInsvyTMob63qBmjVnome/gAn80ZBKSxTfgReyJ60HcyFzPqhOxuvQoOtXQvBXswD0nknwBO8Y40A9HmjlzpLklYUq7UxenvnVf/0ttWmmzeHw7Zfc3m/1f4L6kkaiVLVFrwbKP+vn87mw5Z/W4EaqfOaWTYS1rLoZ/+yp661xv9W///oSgPol274vqS8DFvFIiB5HtRbRU/HUFihEkBEXvqbFryG+1fwJiSjtolo2btbuqGVKUVpNSlmzLWomp41SM9uWKLmRc2WeEylX1jWz5WJ0lmyp100zLXqbZM4t3c6f/QNa7UydiNI3jELidgpN3KlN6t2vjYJ3mlegUgEjQRSd4G9LUvFztVRiEaU5efBe2PW3TSx/obKs2Zr6Yi5Ephkw6s94GAjRM9pWJITI8TgSnBB9Q4q6zLhaCQ6G4IgegjRaTRYUlslFueE9owK0gWsdXOwpzzaFvX6RWr7WgqMx2SQ/hGBrdBXVNprRbzTQMHqvLjfbSqhVMw5w5sbjesurvHRhd9vqTXE/S7oJ0+TtvmXqz722xt3dPXEY+Prb7zjdnTgej0o9MmGv/lCIw6jZBSGSitJwPj09I06nw8p3L9RiYuVSqM1ksMZ9DyEg3WnKaZoyRqNTcXulNRXqYparadtYl1md0MzuUwS8d5Y47/fAuL6d6Hz/DgA7LYwuxLbXBzoLF9TgoIvK+7awN6Zi17gIOAJeGqXq63a5UFxRcwI7pjt4qaqDqa82NPo1FQpmp+oQZ4YMuRCinqRX0S3qMlYt9LButLaZw1WGvFDaqvqcAH0QUPJm2SRJqUqhgRSQQpPKME4456nrEzlVRFbicMd4CAyTWslKOCB+wnt9X6gI3dFyJbvVNjYaxFgyFNdw7Wr3TBWkgqv6GpxrCrxsVZYK+iujX9ug7tpu2+S1qjbCrZlWrO3XgDNwEUSzO1zQe4/efwbdYnhHqxFvgY79nHYg6J3DSaB5h3QDhlapZaOWxMvzk1K3hK7kv9Wt9rrmo3ze1+7/+0z61OfSrP5bpXq3z0MwXjzRGBOf+4g3ktGtbvXj+nNtyb4sefvh74mDuZ2IQ/xbUh7IOTKXAH6A6SuKCzgXEII1jBmfEq1lcp2pVZuudV1IxiFPubClwrKKUpy2xdyQslqL9j6r2wY1nYJL/+VkFyDrBDyYaDQa7akLnoUYggIkrxxn5wJxmJjGyYSszoSziXW5kFMiZeXlKx+7Gq0lEr0gQelHITSOk04imwjnS2XbKvOSKLXbrQ4QJmLwHIJqDIZxYpomxmHk7uQIPhPlmZIv1HKmlkBJMF8aUhKuNY7RE6eR4xgJHqiFbZ5JKRkNxoLXcLtmZefdl6zWqGNE5GjgqF7tVktjCCPxPuo2wC6+ZBqFlNRiVFlOQiuNdz/8wDAMHI9HRjuO0+nEMI6M0wHv9SLuWoZaxfIsOsCppqkxt6JaoejkXJs03ST97d//Rw7HI6fTiZQSz88vtP58ytXVyXkNRRuHiW++/o5vvv6ON2+/5od3P/Db3/yG93/4Hes80xALTatI0oawB0HGqNeC98r/zyXb626komnbtTWiXSslZxbObPNMa5owHYLHBQMpprNRYJnY1g0MFHSaWjFdyJbSDoKnaVJHsh7yRxdNX/lhXQjsg1LJvG1cQggqWg6e6KO91i5KVjRQzWa4TpNS5Y4nlmUh5cxW9Nim1tg2QAoub9TLSmtwOE6EEBiGcd90jFNknBz3jwMib0AqwXnStrBcnkmL6qNCYKeRVXdPlYHMAxV1iMoObfglqP1q3piGjcFVTuNAcwXnZ7byDuEFYSSXrwnhwBTeEO8feLgvpLvvKflCWj9RCqq1koFUCnNamZeVXCoSDlQJpBJIGqKB98kAecO5EScTx7s3BOfwTpCem9IKyzyT0sb5/EJtG6WuRu2oiFSEols6G8y4LAYyPV7CTldTMwJPymIhhBHnTMvmdNvmBHJKu2amZXWs21bNAEl5Y3n+3f+Aj4hb3epWt7rVrT6/vghYuOmXyOCtYRWqHCnOUZ3DFaGJIyUQV3C54tymzUYrpJJopbBtMzkn4/nP6lZjH+wlV3LRtODewO95BnRqe9dN9BAuC/gSt4svnTicNy620ZrEOZ0OdgG1F5zvPGdtyFrJpJLZULeoUjIpLUp3MKG5F3OQEhOqd+FvU1rW83mjtpVaYVmrpVWzP09vNqE+BKZBxcbTFBgCRL8ysOFKgrbQctZAQPEU8TTnkOoQVxjHaJQaj6udNlb2X33aDXDNpbCpetp2ClKIntA86hSU7fvZJ+B9p0EzdxuUcqYTaZtq48lZp83zvJBzJXjLJEAYhhEkK6BoolQRe86dwNPPs7i6T+KdJW8rUPAM44gPAVrj/PJCShslJUradmpW1xiEMOBDIKes027vGaaR+/sHtm8S8+WFWitzWtnTxo2iV0pms585DlFFun0rUtR9aUsqaNfrqpI2tQftG59OaQHVY9SioKDQxf21/5NSgZLa0dZSDcSUffugAnRtOv//7P1pkyNpkt8J/p7TDIC7R0Rm1t1Dsmd2SJH5/h+EsrsvVsjlLNnsqq6uqswIPwCYPZfuC1UzeJI77Ixpdi6lB1ri4lkefgB2APpX/R/B3USRspOfbnQ8sa1d6x3vVRAeu23iDCCKY8/I8LZ9Ul2E5rSElHSbVyv1qse1mFvUGEIbi4KRAfmy4INaJ8fgiMHx+JhI0ZHytsbQ7IcYJ+ZZaYW9rdR2Zk+VdhP4GR8O+9c0CduBE9woQCH6MxIrwTmGXSdDKtIFGZ3XN89SLqy9kc3gIMUDMURyUj2D4BluovZOXgvTuigQx6FeC0Ifqw4X+panopvQgW4S+tDH6Gz75F0iHRIhd0I+6QZWmg0UNIVbKZXulrfybo+30UOduW8558jmuOV92PCnpWzrq2Bwjs3S1g29L6Y52WCmcb7Ur3l5v9e97nWve93rH11fp7A6/BUuaqKtAE083QviB64PEwsXcJZA6xuOju8LtTZa7bxeFtZSWczdpTUN0NPG8P260t22Ee4mkNzGds4aT00ZtpwCH28AIm6TdgMQMZBTUp578Hg38B6juyhdZ11WTdG2CbhIZ4xqwk8hIEQvtrFxONeV3hKdTQkHl8vCWhqtjZ137kIg5QPBBWLO5JyYcuJ0mEjJc5ggshBYkPqsgWZ10EagjcDISRPCfVLrf9eY58yUIjEEnfwPtT1tTZuhEIIeSxMZbw23Ou8Um8ZvWRp+b2Jrc+p/78Wo/WMnzW6T/T6Mjjaa0tCcaChZbZZfomnNgiOnDKdh32dNm1nHjndUjS2N27luNClHSio+1el/YJoVxPUxeHt50Q1FV/rceyckdVaqtrUozF3DCg/HE6fHB/Cez5//otPlt2e2fA0V9w9aVavS0TsxeLYsizEUNKirVmUtVTMq+qCsxY637KF7N2DHDvZGH5RWTXuhdKptC9SHAovd5tjOSSlFxekhQoo25b5RyzYOUh9Kk9tq22Kk3s2BK+46oxD1nom6StIG3abfaehG0ofCuVRG08Tni2mcrusG5MSE+pryPiXPNAXy9IT3kdkco9RqeQPVEz4GWl1YXwtDwA+PdzPOH/Bp3rVKTlQcjes4riBXgj/jnCDe0Z1nOKchjdI15bqthJi5tsbx8MBhOpGPEzFMJH8gxKy6Cj9RWyeXymFdab2ylpXWKtUyR1qDUru9Bjk0Cca2bbCLsYP3uBhJWR3ijreL2ly69J4JQY938JsWA0BD9BiruaxVvJk2OOyaGfay525AxgE9OKDjfTO7bocLkdbhsgzG3//wVS/v97rXve51r3v9Y+urgMXncyelYs3boNZhU1ZLmGXgva78hwzz7FfnoVoUWLS6mg1m1zdd45bvREm3SRZ3g6TdxtJbwNYGKNhyHGLG+2gaiU18q0LTlNKecZDillmgPOg+GtfFHo/ZbCrPe+zfr5abINKJwZGix/sjQzzrKlyujdouOuEeW2pzIJjuIIREyhPH04mcI6ejI4fKHM8k9wUnguvQR6ONzhiZMQKlV0KeSCGz1gOtdq7LG6fYyJEbtak3xii0USmtUPu7iThbAyPmYKQbiW0q6wTj4ptiJqhLjvL/TeytbH7bzDgigR6DgQmdmnrlK6n+RAYPHx84nR747e9+yzRl8pR4/qKNfDea1ug3W1Q1WrLchJrNOjbhjkp/6l1269nz6xutVd5eDIAZdcg5tbztRgGLqRLN/nWMTlij5mAEdbB6fHyklpW//P3fMVrbA8u2ayVG3WINacZD1OZ92yAsy8Lb+cyUM713lnUhx6ii82RgLTg2OyvpN55y8HodbhuKUuq7rInb9RjTtmnAnKQyucfdPnezm93skVWcaEYGrdu02zO1Sc0JUrctnUeGcvudZbPEGBiYSL423TY6xzyr5etGR8t9MB8Ou0izd73ma+v4LPgMta9QCkM83pLPc/aWaREI8RE/nXjIJ90AuID4GQjgAnDFS2E9/4U+KvSKcw1orO2q19pwpNnjQqcN3TjU1kj5iOQDKXlelxdeRfiSIvM08fHjJ2IWfBz4CCIeiPgwCHhyNitk++h9C/9TQL1Zdd50MKYRcpppI33bZG4amc2BR7Vlow9q61TRYDwZQzeho4MspsyvBG/Y2uhvvY99Y7EBEw1n1L8XTMfVhsMx04wud3i4283e6173ute9ft76KmCxlkobckttbvbGKYKTBnS6VMaojN64nM+UUtWNpiitR3rdxak347ubZMtt/tduC4LzP/J938PRom0qfMAbsEhmY+pD2NOLc96C2YyCIEND4kwE3rs+l91SVDrIwHkxfbfpE4ZOZpXKo25AxWxva9OwMLbHaFaaKWdL004cZkdKnUMsZK8fwebNvZm4u0Mb9vtFnZOCC4g4c3iqavW7UWHGoInQazUdiFGnRPBDNwRiG4utgYebGFQF5W2nHg1rmPbtkE3UHZ4Qbj8boj7yDWw4I3N4p/kap4dHnp6eeHp6UlcnO9MbtW071hu4GGPcHLvM6ShYroYKl/V5OLDk8ZV1uapQfQvOc7cU6G2zoqFuYaf4xJRImV0/EWPcgbGMjje3KxX96jW6rusONjbA1rttbFonRv2bvTe6ZSVgFqP7c3NYE3m7l24bOHQ7sgX31aLnsA8LRPSWDaKguns9mhoWaIYBMe60PzGVr5huZYxNJD5uj8WE495pxokzgmGwTVEwR7QQI7F1YtDk75QgBCFYmvowbQGiNsTewrS7NFzXPxQMyOAaPmD5JFG3HAS9n8QxXGS7YJ103KgwFs246VUV1ej1KmMgHXwqZombTb/QiQFiULDbRV+H1l4Q6eRlJrSBj4kQdSuDi7Y9Mptf73GmyxJVuO8bpDH6blqwCd83pzDddqkuY6DHREzZ7XRVhUjTgDyp+z2xHT9GxZkWw9uWVtzmarcTEhFU26Sh7Sbk7wosRDTvpQtG4bqLt+91r3vd614/b30VsDi/nRHQqWrvRKcZBIc5gxv0Vnh+/p7r9ao5CWvb34QxS7iNcrL/t+31nU1cgw/2hu/3ZinEaIm3mwWoNx/8QEhJheLek23CGwxYeK9hdqCN1rpcqa1wuVx2IbJzaEJ1iuSoTW2ri4bK9UHKyQLGAssqvF2E63JWTvYYFggYmOJBnZ1yJh2PpGni6fGBKXZOseDrn3DjFeqf2RyqSL9kMHEpgdojbQSW9Yxj6GMpXi03e8P1SpBGDpEpedWt1M5ojbJcVAS/LGz2o962MwI7YFCxujbvSomqXK8XcxHakqu5NdK2/QDjfaMQcMoTKSaCtw3BEIZ4jvOJT99+y7/4V3/N04cPPJwOLMuFy+XNJubGGe8d3xpllL2hdr0znIa5uRBtMhvMqtbZlkt4fXmhrFfW5UKtRYGRKADMLbJlkSiVKut1GjdbT7VSTSmSYiDFQKuN0VUEq0J1oxXZtLiUstPuQBvyUuueObFtqVozsfVmZ4xatW46EkQB4RZWpxuHLTDQdBKim4/WVL/iq6aLTzkTg2fEYBsCfVzY/ZPzrLS2lNnA36apeE/Jel8bCGu94QswBjEnPJBD4DgfiCFR6qAHIQchBtWbNEv51k1LY7QOrRAI5OipY9XpuWhQlsMTLo1pzhxPkO0+TtEzurqliSi9ijGQema0C05WAg0XzBFLYLRhW7qKWx1RDpw+/IY2ZmKDpw/fEvMR4gOjr4xWWNaFta785Ye/gIu3LWeIhJR3OmB6N4zwNozYtCiC7Od89M5g27aqnfBohVZWei/0vuj39LaJaHDSDVQ0nGt4L7tTmMeDT0b91MGE856RPN0obsMcp5BGk470zmjC6IP1WvHOUsFzMHOBwfX6deFm97rXve51r3v9Y+urgMXl7UVpF+iqPnhodeW1XKnlTKuF63LWpr01zVDY27wbkFAsoe5AznjK23bCe52+YpuJLcTO+0AMyVKSAzEmnE1WvVl4alZAsHAxbZzOb8veILf+rpEFUgg6JUQYrYCyqzgeMmLC5VKEZWhCtlpNGrfceXxS+lUIiWk6EmNknhN5EmLsZP9HwihIUSEoI9D6L3SKLI529fTRWEq1JmUofxzHtUZqf9XtQ5o14bdXEHBDbXhbrazLyvV61o1FrbrN8dqgANTW2BwANyvRvSk2vQMItP9iig6klG7aB7hRQHbhtTrYhBD5+Ok7Pnz6xK9+/Ws+fvMN0zQxxETaoiapOlV1JjQXpURtk/ztTw+lXsUQb9fFBnJ6s23FwuvLsyVpV2QIwTvmedpBqtdkO9YQkJGQaPS3nhSoySA4mKdEKWLHr+yi641+101E7f1t0xP2lO28b8YwalrvbZ9+e280NBnm4rTRoPRuUErSMEGvAQ8f8SkwouwALxu1SkGNcfZ7t7A1THispgl74KP3Ny3Gu9M6hqZGewAR6ipIa7QQyKOZPbBa1GrovKP3wbIW1R6Z05hqbVT8r6JkT/KOIOC3FOne6aLNdRjCYKXLSi4XzWqJE1uAZY4K6hyenqD3zOI2W+CmG1EZpFPQ60oaLsy4OBPzA55IlIiPR/ARnG7BXMxkt2WlKHUS054473dw5/3N6EAvSdvEuZtmZdsGuY36J4PRCr0X2nqh1QtjrIy2sm0xtgGHdwEnDkcEui1lvX5NoLZu96neX06gOQWRTbptVTTNe8uj6X3Qa+d61bRyB0zTrCYWHtQj+F73ute97nWvn6++jgp1veCjWpD6oKnSGy3len7W4DdrrN5bqKujzc3VxNmbvDeHG+X5Gw1mS9a14KgdUHhPCEm3FyGS3iUlazaABUt5R/SBUrURvV6UjtVaZQsH2jn0waPsKKXCbFPlPE3GWYbrsqoN7tJ3Xrk3nUfKkZgnYpo4HE7kFDkeIlNciG6B9j1iU1M4IZJZ+xOtayOxrKtSaFrHeeWR55yQEViL47KcKb0wH09E75gcyAgqBq6dsq5clyvny9WAnFJWYozEqC5BtbYfAYYxBuu67l/re8Nya6CC6RlijDtdSZtqscnt1rB4UsrkaebTt9/xzXff8stf/4bDYcJ7x3J9o8vm1AS7tWuXvTESy4B4D2mUgnYDmzjPGKpDKHVlXRcu5zfNijCdhfr/VwOenpgSOAh1S3A3N6quG4otpyOnZNPlTq0Nb0w8L2phvLlVjcGNeuS9Waxm4r5Fc7dm2jZhwbt3Vr4KZr1ze8Ofk4WioVqV4FQbhHNGIdOGN23OY6DP17YkwYkal6qNl3Lu/cARdnqb24HMRo8SpNvxAGobDN+tsR5Kf7LHtKWdd9vSXK6r5Tukna6ox1uDdoJT1s6WGt9EtSubK5JasC7UthBDwh0e7R6PpH1okOjR03tWANoK0lb8qDhphKRhmoNGZwKfCfFA8Ooq5bxqHqDb849EH/frfRdA74YPbk/FxvReMsbutzXkhnpvFEHTWoyuYLWu1PXCaGfGKNCLJZEHog/EqNoIR9C/I90E7Wq8IJvWzGilqmg3owQZRm80W1k792MIrQutD32tq0ZPHUJMgZTjni5/r3vd6173utfPVV9nN+shJ0+rC2XpfFmu+sbayjvtBPubMu49LeOWrrwFQXlvwuq4WcN6DYoKYQ+rew8s4kZn2YCBOd3AMLH4hbpqPkZrfW+Wt4ZKReaaYBzDTPSBx4dHbRhEQ/da63z+clUx6OgM8YgLxGlSnnlM5MNMTJFpThyTMIdB4gXHiuMMRaMAe3+g9SfWFljqoHZR56Re6X1F+oXo4cPTAz4+4XzmLz88s66V6+VC70UDBJfGlCLpNNNKpaD2vcu6crmocFwpGsIYylmfJ9iC7W50NP6rzzEmNoHp2L5moCKFSNiEu1vTPLqKSXH4kPj0zXd8+PCRv/6f/5rT6cTxYbaGywLSWmO0xroWTfpeNjDVqMuyOzJp4nbY6ORGadJk994al/Mbz1++5/mH71mX681RrDXN5XCYI5BuEA6Hoy5ifGSeZoIlF0tvXM6vfP7hL7w8v5i2QDcDy3JFBA6HsVPDtJfUBn8DGVtGSAiBPGUDA+pW1VrfQXQHatPtXWm6WXH2cyEEfVwhkGJink9Ms2M6fmCaDxyOhx2kXM5n+z0ayLg1vn2g4L5VoOLWVQFhiJxOD5bmbVRCo3L1oRS+94GIm8i4tkTKiWl01SHgOBwSa42k5BkX3Zi0UU1HslEOtXlv0nCt8xATKXvy7Gk7iNzso+2+HINledlzLESqAZZEiEeCf2Q+PNBbYVlfyb4RXMfLwhiFPgqeYNuJ7blgad1Cdx21eFaameyaG7OexoLvpO1fV5BoW41dn7CJ7t2756AhezIGgYb3g5g9pBlHwvuT/uS71z5vSiQEnCrHNaPSC8M50jTtf9HbtklpWAqUNnep7T4dsmktBu1j4+31lev5zOVyZrnq+W31ToW6173uda97/bz1VcBi9EavnlrWnZaiU2Cl0zhzdHL2Zri7OXndKOBU4OtMYO19NLHzTXSt3Gd1VQpGh4pBLTZj2DIptjRcaM1C9HqjLIvSsCwTYKdh2YR4mqZd7JqiZkmoL/0wxxbo3TzqsYljiOYulckxMqVInhwhCDlemXwl+UYY171Jqd3Tuqfsnx1LFaUudJtQmguVuMG6LDgviOtczY63lNUmjoIfnWE2q613pcPUwroWVgvJEmE/hluyuHLsjZ++cf2t9iRn2TIvbsalvasYemy2vu7WVG8/50PgcDjw+PjEh48feTgdyVPEM2ijI6MZ9ciaf7MVrrXsG4JtU7FvSELYHZOUPgVbQ1drpSxXyrpQ67oDim4p7M6poDmOYduE99flrcFrvdPWlfPlwvV6NQq8iXRN5N5H37++UWS2jQXOqXvYdhxse7WJe0dvavuJ0EUssFAtjEV+DCy890xuwofI8fGJlCZc0kDB+XDYw/Le3l5Z14WyrpzPb7RSWJaris6l32hRmzifbvohvz82vQ/e0dneifS3ZN3Wm+qKvScJuOBJwdt1n8gxMoamVm+6qT40+0E5WUrxWyz3L02BECAEBau7rqNeGHILiwuAGwoYWgMfVnw4kKYnQoxkjrixIFLBZd3YjY74iKBN+kYl23dfwi563hd2N6zwX9H+9g2EARB59726VXJYiot+jKYforoJpTfZPbIf15v72s1A4t2DEdnd8TYtkRiQlU2Avwml9mfmbANnINx5whTordkwx/JIhtDKPcfiXrfa3g9/avr2+9RtcT/tZ/4x5fE/+e94F8gh/9f38X+z7mYG97rXz1FfBSyW5UIpK7WqeHuYC4q+oxmtaRNdbzSMbUNhnOZNkKvBdck+a5hZjIkQrclMceeve3tD3vz3vXe0slLWlbfXNy7XM63pdG7blAg3x6EQ9Hd/+PiJnCfmw0mn3b3z9vZqk/RF7XLwhDARYmDKiWmaiClyPE7MCeYEmWfcOCP1T4x+ZdTC4IjIxJAn3tbEtXneVn2TZxR612yE4JNxrQNrafRWuLxdacPTh2MplnFA0+mni+TsEVFtxLJ6zRW4nimlsJaVlDbq0qSWpEmF1bcN0cB7YYy2N9gb/amW21Rzm2q31mgxMvIgp7yDwjG2vIXBNCe++fZbfvPb3/LtN9/y+DCjoueVsU3p14WyLJRlpaxXfbzLRcPiRDS9OAR9zDnZcwg/2g6Iw1Kqr6zXM2XdrsEtqVrtWnWaO9SWNSdyUttaHLp9CJZVcrnw/OWZH77/gevlAmyBaDfgVGsjRu2Wlall4nejPNXtWrNNh6Yka55Gq5WcIg5BemctK6UWqk2PPdpkBhNxh5jJhwO/+Z/+BU8fv+HTt78yel0CUcHw+e2Ny+XM9XLmj3/4Pa8vz/zpj3/kUt8oa6GNRgiRedagQ6U4NXteSlvbji2yNdtup0tpk6v5Gq43aqvkuRFjJk9HTnOmPxztuBTcWo2GowAGHA3dnngPbVSOc0BcZD4EUvKkPJmeqXE+n2mt4P0ghUTywFiptXJ+faGPBC7zy7/630jTifn0gcubUEonuYkmUGqDmBAJ4AY5Q4wBEW/P+6af2J7j1rRvbmP69Vuz3/tNv7CVc940Xh6/6xY6MgqjFcZYcaOBVAMdQA+GBWSnv7FRO0OwBaGBrFWDB/M879yzYY5RvW8bYH5ELX1vJqA6p8jj0xMPj4/0d5vjsqw/9aX9Xv8XqSE/nR6n2TDtq35mu2J/5C74Eyv4n96OCMIxnBSM/MTHJ87/w990r3vd6x9dXwUsWlk1P2IMyzDT5sjhfsQ/d+ZX77257IRNP+GJNuF1PuJjMFqTOjsF0wf44PaJbjDaEwKtVtNMKN1pm3yLiamH6FsyAlM+EGPkcDyYI5DaWbYhPL+8mNWs2sSKBKZpViF2jMzzREqOnBzZXfFciLwRWsX3os41DIRGkyONDyz1yFod5zfLo1AxBsEH4pTx4aR/v3WdvC8r52ujlZW6XtX5ZXSGWOMT1KJzuIBIBEmkIPQ5ID4adUIbz02wnlMiRm2o9rTsbZK+2emigtLaKyYr+dEkdQwNORRVmGtDvQUNej1Op6wJ1r/61W/48PGJwykjooCotUoxoe/1fOZyPvP29sbr64tSeZqFCvqwW77O02wgcguj2/QVaiFb15Va6k5V27YUWxO4CVt1Is9uBwxu14qkGEEcKaod7nw80seg12rCbGw7caPObP3lZtXbR0NEuFyvRg9TTntK0UCjXv9iVJW2mxjcrtOBqPtSCHz67ld88+0v+e1f/Ut+8ZvfcDw9kA+njTTDZpd7PJ6Y5omnpw+cHh44v5358PE7/vT3f+T5+TNvb1/2PIycTADdbtQjvQUDsetWaNOF+KCBbkNsm4BSa0prOBNqD0scz1Pm6fHEPE8cS2GtjbU0rqsCTcQzTJy/FM1ruKwXTqfIPAU+PGW1rfXFJv2qEXKjE/NQHURKnJ5+SZPIkMhSCnUIsRaW9Y1eV0KeGHiGD4Q44UNg2GsOLoAXPI5MYrTKqKuaLXgsCR2cOPrSzBVq2tPMe7817du14Aw4ehfw3vRAQ4zmt7BZxzqjSwkG5gyMbnu3tZprGI4pREbvXN7OnC8XSin86re/JZnb2vZa0IYmd2tzp79vE/+7XbemOpe9TK8Bto28172sPJ5DPP7D32j1y/nXfMqFQzztOq1/qJLPykr4SlDxteXxRJ+JfgvC/Yfrpz6H/1+16Qt/ajVp6ofnwj/8zVb+Dnzu9c+kvo4KNQaaqr3RmraJuCP8VxSnuIs8XXBgVqdpd2SJhOhxQYGDd5Hg0+7Io/kINwqBjG7A4sqyXFnXBZCdj6xvtMHoWJ6cJ3KeOD08mDg8cL2u9F65rssugPROAU2KkTQlYoqcjhM5CFNsxL7gxxna9zBWRFZkZITI8JnGRJEj53ZkWTsvlzccDe+EPCmdK+VECDPgaH1hCJTWKLVTS2ddVkYvmlNh9C9SViqH6wiD4ISWgjXRltPR4g7AboL0YE2R7M2v5ixsIu1tw/TjlfhtiyEmNHY0tiYr7LqYFD2n0yOPjx/48OETh8NMzgHpi1HlCrUqECiLnqvlemFdFnpvONweqrcBx2BhdN55pS+pyn97kJpX8S6zQnMe+jtgsXn223MYtzA6DdazMDjnCDExHz2H40ndjuRsTenNWOBGF7pRYhRYqAh7LYVmNKwYE70pgFZb2LA/hvePbxPBg5C9J+bE44dPfPz2F3z7y1/z8OETeZpxPmiGRe+IZRHEGEkuwgzTNHE8PeJDog0B76mtUFbd4G3HbNvWqXaiMYL+be88Lt6OvffqTKQZCJbT0Mw5zBygVObuSCmqmDx6YqmWSt7oHfqA1lX3sbmnXZZG68I6D3L2pNjJsdEHyNBGfgQFYc5BcJHp8IgfXlPnezNNSaO3lTEqQtbrIwScWRN72zwMGeDEXo8cQzq9rapt8R4XFKzJGIwOTibNrHjHkdJf5Xca50Yn885pzofoZsbRNSkbc1Xjdp2M7V4Do1bZBFfAiSApM1rnfLlwvpzVvrh3goZT7Prt1pVWWHuzoYDQnbfFhqXHOIcfqsXYwMZ2bysV8F730nLOkVz+yd8/xyNJJpIzs4afUMGFn6VBdmbz7n+mv7ebK/ykbxYdQjn/VcDiXvf651JfBSxynogpo7Sn2xbCORU+avOZ9q/7uDWkERe39GvVU0Qf1O3GgMU2pQ3hJvSupVJK4YcfvqfWwrquZs3pmA6TTox3m0bH4+MTh8OB0/FB6TQyuC5XyvWizik6xMf7yJw1GXueVdibJk/2V4Ir5PEHXHtBrn8BuSo1wSWGmxjuAxI+0mXmWk+c1861dK7LinNwOh1wVJwbHA4zMSZSOvD2dmVZCs/PX5QWtF51yh0j03ygFk8jaH7GcFAF58x+VoQ6BhcGOQijZb798ESeJkCbpRg8x8PhBg5q3d2IWm17I7xP+O19Yoyx06OA3elH6WTsWQ2IMB2PTNPMd7/6DR8+fOKbb79lSgM3lNLVSmG9LiyXC8uy8vL5szZP57PyyLfzizZfxfJQQlAHG+89iMN7bcKGffS+6VOUilWLumFtXPKx27t6etf0d+NA4X0k50ltOH1kzpk0zRwOD7y9vvH/+Q//gSF/5rpcb5oD4Z3zFbveYgcWq9Kb9Hr0zPPM8XBkS5QPRr250c7egTjnefz4Dd989x1//a//Nx6fPnF4/EhrQqkXSll2DQ7b5JsNlDjmw4GcMv/yX/0rPnz8xMvzC//P/8e/5e31mdeXL+SkOpUthwF0WxF8YMozOZmr2wYWvSd6ddDCqwbF+chyudBaZeC4ls55rWD6pA9PHzidTjx9TDyVK7UWXt+uLKVTSmdczbGowGurXM6VVoQpOw5zJLgnYoCHxwnvK8MVOhpYJ8EzxOvGr4u6pcmVQ1ZqmqPsQXtNs8LJ8UCpF86Xv5CnBx1yOKEsL9T1zGn+Ftc9y9uZ6/WZVldOp4+k+YE4Jw2Tc54+/G44MWz1GbxtAIInRhRiecENTaFfy22bsGl0Sq07DWoYYO9imRcMpV0OQZJw+HBkdo6lLyyXglz8/ntMqcOQxpAG0hm92qkyBym7plRM/66RcUItX/Pqfq973ete97rXP76+ClikNBHzrK4pzptfutl7WkhdMAcn551uJLavBY8LZgnrPMFFm1yjjaRNqfvQBm4DFaUoP10bxlu+gMjA+UDKgZyUQnA4noghgnNUm3bWMZRe5APZHlcOkRQ9KTimVPCu4eWKq284WZFx0e1ErwzU8UfcgcHM4MBajtQRuRRhLYO1mnjappobLaz3RquNt9crl8uiKeSXN1ortFrM5nYwcLiQiM5ilU2cuQveveoEQF2G1lVYy6rNi3OmU9HntpHst9Wt29g9oFQka86347gBixGjiV+3kr1R9iZe9ebaNU0H8jTho06sR6/02milUteV5XplWVZKUeDgnSNaArp3/kYTGQoYalUalbcGWMLAbfkWsE/LxCxqt9TrfbOwCc9FdtG6ggGTAJneJ6ZEjPqRpwO5NAPIlkeyuTvZhHhz09o+mompq2kpNtemHbBZQrOehxs/fj8J3hFC5PTwxNOHb5kOD/iQ1CnMNkvrckG6BqBtegjZBfZ63fepE1JmmiYenp749O0vcN6zrlc8O3/LDp2Kt52d/01WvInmvYvg3wX7mcBbA/AKOE+pGqbY3+lMpvlAnmemSelsOE+4rARfkeGofpjuQJ/DujR6ddTiCW4QPKwFnK94V3g8qZNUCIFgW5VBAdFtRfAbUNLcB02zDgiBLoPRrox6wceI91mHHT7h8on58KjncBVSOuB9IKUTMUxoqrxqveKW/m16ov0CMmF3XQuMymhvjFYRUZqZR617vTen2BBux3+7DsQ2G2LmDZtI3M7GWlbLzlE6GagFsYJKS+0WBZxu14psQ5iE81FfB5xpq4K/a1Xvda973eteP3t93cZifiJP8z7tdEZH2F1u7M08BIcPjhi3ZjSZfaeD2NGs2QRtgHRgwQV9YzxfO6VUvnz5YqCiGjXKk/OszYVAqdu0OPPp4ycOhwMhZEopXK5XruvVhKWq9Ug5cMiRGD2HKWmSsO+E8Wekfaavf0svr4y+0vA4N+H8ie4eGcyIf2Aw02Xm+epY6+C8Lju/P7lgwly1TnVOuF7PnN8u/PDDM611FS2PZo3wuIXT4fApEzf+tPJy2HSnot5VOIRSCqOvTFGTgnPM6p5lWwZ2hydzlPIKdoaDVvV4Luu6N5JDxM5RtMetdAqR7TGqy00wO848zUzzkZwn/XO9aUBYWSnrwvVy4fz6xrIsrNcFEcgxMR8OeNMf1KJhfhvt6nq9mmhbKWzRB3y/RSvuGQ4mZq62gdmaN9koIBt1JQS18hxGB0MBTZ5m26hFdR+LE22gADVNTLNpRIqjl2H2sW2nFRVzHLter7d8CqM5KcDQdGzXb+4re2/nLD8lT3z49Au+/eVvyYcTA8/b5aoWpr1Rrmez6K07+2DLI3DOUcpKng84H5jmI4+Pj/zmd39FjJG3ty/U9YL0pg0uQafmrTNQENtio9aATJpI7t2kA4B3ZkWjD9a1sCwLPkVqHdTWWG0Ldr6cORxPHE8nfve735Jy4nA4kNIb6XIlek3kjl4oTXUCy7UaTnJgk3tcx7mGd53f/fojp4fAh0npkD5A4Y3eVsp6JsdACJsb3NDAyBYYwzMk0HqBsRDTRIyCcxMpHWHKPD79QnULzhHSBCLk9KSvX86T00xMGZeUJjJkaGp6H4zaYCgVb11f6O1KXZ73lO5N74A5OjmE5G46Gxldc0bMlc3rhakgWdQRagjItl7YzS88zevvc4jl7Gyg0SnNwqs2LcbJ9CZJvxZUf1LiPy3P/V73ute97nWv/7K+Clj88pffMs0zWwox/hZgFszz37uhQmwfdaPhwPthAkjPaB2RwuhnhjlO9B5p10ZtK+dl3SfS74PaQCk/DrWWfHr8QJ4mTqcT4BFxvF0u2uAxiNNEco4UJnL05OiYYsWz4NrvkesP9PaC1DelGIyKpgCf8OkRn4649IT3HxAmSj3Qu6M0B2HFj2a0Hn3T1ziIwflSuDi1onx+/kwtjbVUgo/ElEhhepfq3PYNAryzqtwSyDcqjdnpjlYpY8HTGWXldDjx9PjE4zwZvUXt+pRSFlWP0FQo6xh74JkeS9kbZtl1AH3XWsQQcFG3P+Ic4h0+JVKeOB4P5BwVhK0LvS5c3xRMvL2dKWthdGGeZja7YRfUraesKwPR5l9uzl21KfWjlEpIldgGxw+fzJVHN10xxt3BqRt/fHNYCiEwTRPTPDHlmcPhyDQdSEk3JerMafkpRreLwfPh6YnDlKhPj7y9vrAsC1+eP6tIfBTWYpuJVlVb0ZqCOwM167rqsXQgzMSoSeFOD/KPtio4LOAxgYssa0GGUEtRDUGrrNc3BasbP960HsF0R2KWtg5op0qaZk4PJy5nBXuX12fKujCliHfdgLg+1t4dramA20k3zYSAF+KI9G6BgzL49OkjQ+BtWXGlIbFzYGNMCeI80gd//3d/IqXE6eHEcT7y4fFJgV9rRhlrFoToNW29mUnB6LReKGWhrFe+fFl4eV34/odnnj4cOD1M5Dhoq/D2pTEfA9Mh881334IPdHHIdcWPYVqPLYfFqw7BgwsDHxptXHE+8PDwoKLr0UAazg2Cj0hbqKMhterGxixbbzodj3eJQ/7EaEcuBm5UvL/Js29AWH2dNm2Tbia9VKQLdCG4iAeGGyo2F3a7WWfZFapNEwP0FuaJU/2Q/jk9riKULjAquA5S9Gf9lbeXe47Fve51r3vd6+etrwIWpwNM09A3bUB8sMm4Uhh0mtisCVLqk4opu03CBw61qR2iIVN9QG2eUoV1VQrGRidRtyP93YiouNmp+87xqLz5w+HAujZqM3oMyrdPUZ1v5jSRwyDHQeYK48zof6G3vyDlC6MWox5ECLNO/OIRF0+49AjugSETdY3UPihtKF/amVuS06bSOc2KqK0zutrLXi+LvfmrMHgDSc5cZzQUsFv4ldJcTEWMexds1p1n4FQcPYQ+Kpe2EnzgeDhYc+33JnJ7PICJt/8LC03knSh5E5YKzbYXAMN7/PZvBi5cCEYnCgQPo2suRSsry7LolmJVYDiG2DWhPP4utwTqbYy/W2mODuPmSuWHEHCUdSVlBbLBAAHutgnYNivOq4vWZiusupZMSmkXbb9nhWjTryA150jwMzkFve6c53w5G/XM7VkSWx5Fa223pgW15nXOkVK6NaNye3z78zSa1hbQ5pzXDIPWKaXQy0JvlbKqCH6YZZfYY43BxNY2Ddfgu4TzTp9r1ue62e96xHQWsAlqvDcKIYPetfnWsELVJGwUMBmd6XDEec/bdbVn8k687R1dRAXbrelWqjQO86xp5DHSeyNFR+um0SHQu1DbUO1G75QaWAI4Out11Xu4DnLSMEOXPWWFy9l2fDKoNeJjQny0DVXfz1UQRx8KDvS1ZyBSae2CD5EUM9sGbLRV7z+GbrdkC8/cbGgtN8Ipncw7SDFomF060i0kD6k7QL5JwG/6h81oTJzo/xFH9BkNf3xP19v0HSqUVwQ3CN5rUGUIRl0UE3eLvoaOQZdqy4z393njer2LLO51r3vd614/b30VsPjIv2MyWoCI0An6K1xgykrPaDhCPOL9jPTNFQp6U049IwAZ7w60fqQ0OC9X5c6PQUiJ5ANzTruIW1rD04m+k7InRUc+JIag9rNVXWmCTwpEkifnRAqOQxRcP+P6Z9rr/wtpL8j6WZsFPIWsWwIfSCkQoyeljPgDnQfOa2Rpg8+vL8qrbw02S1iXTDsgLMuF3oUhjstVcxdqU+FszslE6zqNHCI74BBxOBesD9F21OFJcWI+HMlZ6Rm9rpTljfOzplefl7OK2FPmw4cP2my83z7YZLvXSlk1I6CZBSmg+g74EcDYthW6TekMGWRz4fFeaVCH4wmPMFphXS9cz2+U5crLlxfWdeV6XdgCEZ1TMfVaKufr2ZK7x55P0kyb0Fq9gZ8+wAcknHn4+Alx8Hh6tDTwTSOhtsRbare3rUhM2cDmkdPjI4fjkcPhqBsCcw3y0gFPLVdKuRIQXPAEnzmdjngP58tBszJa4+X1hVIK1+uFLSxqA19b5gVo0+6DJ8R46xZBm1TTfODYKWcxRhgqsl8uZ8r1TKtK+9FAwbpPwENwpKDNdm+NGJPmtjjoo/Lw8RuCV3BTauVyvlAW2cMrk2V6TCkxzxPBZ9P3eEQ6ra20oVqKPtQq9nDUjvhPf/ozS6msTXj68MQ8T5wejszzvAvia+s8v7zy+nLmei1MczRjhcqUJuIUiSFZroTnfLmaGYNnnSLHQ9bjO4Zlm2TaEvn+PLgug8/PMH644Djz+z+8cjwd+fDhI3k66nHMgnNmdhD0PMzTxHJ5ZV3eeOt/IMTE6fCRlMzWuL3oNs5H8AdcyOT4CVxUowbTTfTeceoyS6ngiMzHb2htoY+CuDPSCnXPn1G75OA9OSVymoBBXc4Enwk+4/0jLmT8dNjd6cbgBhqMwteapnsP6QrQRGij7RS/0b3pNBJDlOqmlshKMa3r9evfEe51r3vd6173+kfUVwELfAAnhJgQPBBxPuN8xodJKTwCPkx4P9GHTRoHDIkMAp3AkEAfkS7q875pNmLEJq/BcgcAEXwoOCl4Xsn5gZhncFm5xoAPznQYOkmPUYhcCL0g7Rnpz7j+Bamf1RYVTx/6eOpQi8fkwYWMCwc6J5rM1BopzdGaUhKIUXUFm7spOuWVoSnaqreAnGdiiCokNwG1s+eodCtRcbZxoHM+6C90qgtQb/pEzhMp6/S914SnsZ4j1akws9XK5aI5EWN0DoeZTas9NnH0O8vTfTvx7pSqPtzZf2+uSAPB4YZTN6ch/Gi8igGCojan67IanaehYuNBF0dbV6V6tb4nT4NOXXVSrJaYrb1zrOqaDyK+8vb6RgiZ0+GE8043EVFBWvWLTXqx7YRuKPI0MU3bcYtGe9Jz5bYdiQzW5cpqzkfbsQ/BM+WJp6en/fE8x2daaHbujCfvxQ6FkWDklnbctUNUwMM761un0+oNSLVayO/OSSkrtWi6dn+XKo5zxOiRGBmWV9A1Bpy0Lkopeyf09oqRbVKuoOZHouHNMMCob/r8wQfdWnnbvvigguzD4QhuRVzbNUClNpwrDNOndAO0myA5+KAbOEsqF7GkbN2VoUF6ugFhp7JpIGDY7xNHGEJMCe9gueq1NE1HIHC+Os6XBecgBHNqcoK4RgiO03FGRlV3LQ/SO+d+tmyWQatvhOiZ5omQVnxMjD4IcSbEAy4kAkZ11NWYBTtq095HQUYlelGq1Du3PMxb39trmmMQ3NFARSbGI/iIS3EPeZQutiNRRywR9iwSdZXSY1ub6TIMNOqQokFvDNdto6XX4DTdNRb3ute97nWvn7e+Elhkho/EdMC5iMiEjxM+2P/XESrOAu/qWNTtRkA4MNxEI9JEKUN1VIaM3Skqhsh80NRrnNM32z5I4wU3VhhfyPlEnI5c27ZpUGqUxxFjJvhO9BXfnqE9M9a/0elkf0Hagoiny5EmiTYCpV8JUZiCAiLCA40HyjiwjKTUp6GhVt17egiaozB0IqsOT3VvqgEO85EQPMsy0VujtWINv24nnHfgtSFWDnXaQ7m2fIY+BilFYgqcHh5pJeFH4RzjHpJVa+Pt7czzyxdar0Yb02npPtV8n6Xwjje+e94bsNiaOWCn8+C9AYv37khmV0unlNWSta+7S9JG5xIRlnWltU5tjS6a0BxDNNH2zUWpWwp6H0qFUdoLvL48433gu29/qcDTJsAtFla/2Wo6BWApm63sxHSYyVMm2nR6I0/tuocxWC4XLuc3Wlm1F9y47LPH+487sJimidqqBrGNYaAQ/Z37YmJzuFI63kaz8mBN92YdCq03Sl0pZWHu1pBbKOGyLNR1NVBRLeFbyDEiKTFS2o8dOwAISG8KGMTE+mHLmFHRukmLTQ80EAvs6w5aMWtaEl6MqhWVViXOc3p4NMH71cTejlIavQ1CqO+Ey0blk2Gp4t5E586m6w03MFraDViEEBl5Qp2TFWRsFsIz2sw/ng48P19Y18Z0+Ehtjct1MYe1anRLBRe9L4QAHx4OzDmScyBNgc5gOb+xXBZNKy9npjnx8OFIPmh+TW0rOT8wz4/EfNoHHlvkXOtVj3NvyCiAJbRHTw4z3s/gE4QZwdHFEbySnnzCxNaJmCd1nnIDXyveNyRYMKTXoY0IDNuObsYFfQjBQGezzzK60fFUH2NhHTg/mA7pa98P7nWve93rXvf6R9VXAYu1z/j5E5UnRDJtOEbZmgp06usDrumwtFazE22d1it9FJpN9YeITSojp+ORFCIxBForlLrQpRHdQvQryFmF4ul/YpUnljXTwbjtnuwjwQl+/IlRf6Ctf09b/w43Lvj+Zg31oEpmSKT3rE0hQpofidMj6fRXDPdAcxNdIi5kHuORY1fR6XK5sJRV+fZFp8q1lL1hd6gAMwZvVBlPzkfiKXKYD6Ss2opunPMxhGlSPvpxnlHxtvLjR+/WNKilZQpCTI5wmlgfHwiuMuqFYfz87//yPeezUqOOhwPzPO2N8ojRxOFWzhFSxNvEvY924/6zZVeYr9QQxDYNKU/7cVT+vzbRpVVKa9Z8qeKmlnXn+m9GQDEkHaBjOhBr9IP35JxJKBBSm9pCWReev3zP6J2/+t3/hEOY54lpzvQ2Ucps9CJ1e0pmv3o4HDgej+ZSpNQ4zEJ1DAVD67Ly5csPXC9XpHe8aCMXrBmfpomnx0e8c7y+vhJjNLeolT6aupttU2UDINfrYgDNqFk2id+C8cYQpFUu1wt/+tPfU+sgpFnpLa1azkil1JVa1KoXlGIVgGLUmNYaKamuY82ZECOj6Tbh4eFBXbVCwqN6I0GYp2nXK8UQCH4Twwc77wou0pTpAmvr/P4Pf2CtHUknwvGRp9MHtVgdgzGaNrtj0NvAeU+eZ/qAURp//vP3mlmTgoEHC23cN2Y3xYsPTj3itlciGXRnzXNXZ6wUPZ8+zXqOAvThKXViWRTMiVkiexcQ0XsvhESXzlI7b8tKrYXzq4LJdbnQylnT6vMbD08PTIeZD58SMQsxrYTwRY9JDDslbZ4mYgzMU8LHrIDL6QufiFrfinh6aQYEOqttsjQXxQTalky8B0Q6FeZ75/FB09y7DGpZbxqPYFa4BkZhEJLStrI3m2q5bVMdjuV6p0Ld6173ute9ft76KmCx9ARtYpAQojYSIuZnNIzWgI1xB62qWLeUThs3r39QMbN3Hu1wMRGiWOBdV4cT31V82QEXEJkRFxA3IJhTjrNGyQ3dTLQfoPwJ6mdkLIhURBxjBAbBHntCzNIxpCM+fGC4J5pMDAmIE3OU0nyOHqBVTxRPHJ7RtRmS4ZCxhbo5a6ayicGV8pNSZpqPTHMmmDOS2pMOkrm9xLhx9iFGT2Oos05ZdHK9CNIbrV5prZhA00CACEtZGTJ4O7/ppNw7olm7viMA7Tx/xzbF31Qdt8m7nhy3J0dv/39roPdE59F3Goee19uGpHflhPfRzaHG3yhX71xtNrpOCEGBhoi5i+n0uywLS1S6klJezNbYPou556gofvuIP/rQ0Dx97IiCnWW5si4LrVWC6R+2bQY4E0QnC1s8UWsl54k+GqMOm8y/E2WjIuhaK+t6a9ixf9//Z1Po5XrlMp+NhuR2CpHYNqUbRUmPg6OZ6HrLkNgcxYZtecRA+vF43PUUDDUxENuE+eD2Bn8DQFtzu/3ObSszZHA+nzlfV6YPiZQmS1fv4JS6qI5HjV67hjz6W6hibx3vxe4JMyTA7xsvZ9rkbWu2XbO3zlg3Ptg2xLm4a1YENTDQpV+gd6f34+ZE57K+VhBpMogyqL3h1sKyOJxXwKXia8cgkGqCkDhfHKEMfKx4Gt7p/bjJZQ5zJ8ZAOUwK9IMjxM3imD0sftvGiQnwMS0Vdv9t9sEyBBcwUbdHvIAzm1oRZVbZOdqAP3i8F4ZEXFDOmzeaHTjTsKGbDrmn/t7r/3x5e5/Q+/Sn0ep+6vf996g91PWfsNRtrjO4bfv/wZ9B6NJwxF3T+A/W/8nnsvVTP0f6+L3u9VPrq4DFX94+wEXwPAPmZGLlvTZkbmtOTJg6tjAzm6DGPJn+IJOt8bucVbDaauN4PJFy5OGQ6d1RW2BZRRuIBj4s+FiYDgdIWd2f3ABZKZf/DOUvuPXvcdJBHF0CIoEhCZjxLuPTCRefcPGEnz4yJPB2Fnp/AQaHQ8S7I5GIS+rIVGQQp8DpODN6YvROLdOuPYgpEWImTw/Uqo315srivCfliZQj05StIauU5UxvV56f39AGCkb3XK8X/vjHP7JcninrhbGuiGgOxugLIh1vDaXgLEhwpf2h8OHpiQ9PTzw8PKi979bkvwMZcEu1VmoYDPrevPkQdjckAcIYxKQUHdnA32iUWqit7hkHW0O88cDb6Lo5MVqMcGuqtJkNBoKSukb1YSnR+pZ2vbwx+uB6uZCnSUPswjvxNhZ8Z/9/mtR2N8bEPM+7SPzz589cLhdeX1/pTS14gzVrMU+7e5IMQfzAi2M2C99vv/0OHwLn5UobeiyXZd1kGftzaa2xLAutNeZZJ9uS895EizN9RdXvm5dl33SN0fdGfwvK2zNOnGppUlJ9yVbVthejK8XsMB/59a9+y+//5m+4vL1Sl7oDumEgI+TbdHx7w8tGp9pTwlGdyOfPn/ny8sJDbZyOJ8LjB7aQxBAnXt5eeX59hd6Z5wMfvvlmF6n7qNqiLjDK2IGDbnMA2+rE6Ng2dRH9txAgJzRrJBxsoJDordB74Xp9Ns2CI+fMGImlBULKxDyTDyfNxAmJlGZSmpnyE7VUPv/wmT//6Y+8PH/m5fkvCnKC43BUutd57chi4Ll3ZAh9FNMzDES+4AxsTDmRU+Tx8cg0J06PEw+PupkspagCzTm15w461Agh4kOk1abXgt3DuiHUbAqH2jpH73nID7bViOZcZVsNp0GSzgwJSl01r2WAD4mBpw5HG/lrXt7vda8fVQ7T/78fwv9h6X3wT399DwZv7ZUh3ei8P6WEOiqHcPxRj/TfKie3Ic/XVBsaQhr9T6c9er7+79zrXl9TXwUsatEgu43SsAuNrUnDKYIeG4e79x3lb/kB3qgwo3WWdmVLRfY+MB1mwhTBwflSqNa4lq5vvMEJ0UWcd0gACQJuoBazZQ+CG2JiSBHaUNcqsdRtHyJxesLnb3DxCT89qAh1qaxFedRrxbz2F0J04D3SHCLblkJsou9NE9GpdYBv+GvDe52mr+tln/I7Kr1mpGUYXUO3VkvhLovZqQa96aUjXQW+dV3pZTXRqAmBBYYGJwDb1HxQauFyvewNatw44r3t9LMxxu7GtP33pqlQzYU2npvoW9OY3U6XUv3GUBpUKbTa9t8x+qDVbknaw4TL6PTmnTB8m1aL87htSWID6hgC2bYFl0tBcLTWlaKyJ4xvlBJ26lEwgLE1ycFcpKZJAwRlCOfXt/2adTHhggnJndiLLTc9gvO46Hl8fGSI8Ha9Kn3PMlW265t3U6xhgXrrCq2pVkDBjYWeBU/ynqeP3/DNd78iTwfG6PjWrSl3+zEDt//+sQ/zh91vbk/81ryNTkyZOZ3USWw6UNeL/pDX8y69s6wrKUZSVEcu5xqlNbJtzrZLatvujN55+/KZUVakNdU0oerwUnUQkJMmljsX9n/fhOdlXZVXhwKYELxZ1nrEO+jOAF5UqqBTt7E+9HrAtEKtXWm1MEZlC6RzYTBErWVjbzipuNboq8PFmTQfGMNTmtDGoq9F0XN4esLnRJpPqoXxgg8ZweHjzZ1s2wy2Xhit073e53bxKh2reS6Lo4qnu4i4TJ50w4MbiOuUOnBt4P1gdBX+j7GFNqpAXoFeRARKG7oVo+MvnT0HxildTfVYYoJ13aa07neTAA1nHAy8mi7c614/c23Ogv8cSkSoo9hH/Yd/AN1YrH2x9+Cf3vBHn6xn+Wl/B+DaLwDMP/knIPn8s26W7vV/vfpKYLHi4y30SykPXpOfvUcQWl13YLE1pi56kss6QVX+joZx6aiONGXyFMjzhI/auF4vK6VUbWC8crFzVsoD3ut404tSpiggqwlrLTHaLBy7BHOzCoQYCCmRD4/46SMufcSnmdEGMhYVy/ZBqUJrmr4bk76xi9ENlFvuGMPROzvdq/fN9WYh54kQAmW9mDC5EXxntAxtwtFx0ijXN3rXNGeXEl6i8rR70ywDc0vqrVvjvwmHlRJhbSCgDXtvg2Vd9/OVoobybc17N4FxeacNqVuytIx9nbr9DbGm3RkFx1smhdKdGrVUFV33sdtmttZ36pFD8dAQMTAAItYsiUP8QMTjZPPD0UYzxYRMwlqGZWBYI2YTX2/ZFNiKfntc3nIeNrAbY9BzYYni18sVB7oxc1sugP4NMWrWDVjo7z0eT3QRnq5X1qJheLXoOYNibkh23RlwK6USwkYB0sepKfTqfvT04ROfvvmOlCelPPktK2Lrw50BQtHjZYIOEbXqHcOoSGMLm9P8jTwfyNOBNM16jxjhfguP6xbmp9siTb4OtZJy1iYeLIDQtmGjc317QVpVoGES8C6WxeEDfj7gQ7RrX8FRH1Br53rVTA5EGIeZlDR3Q/cZ5l4UVcAd4oRDaPXmcIVXgL+WhV5XxuikXZgOSANnInIa9K7uaRJwk+ZmyGhKY0AgwvxwJB9m8vRkInvTNPSBD2Wn8tWqLlShR3oz6+a+5VWICaoda/N0AuIiLkTmkXgMCRcajkKtC45BCnrveq/PHefsugzgolK3mtB6pdRi91BXILVl+vigr4FB8GGYc5fS5aSLZVnoz+BkB3X3utfPVdv98c+ncRVKX1nHSh0/LRdGRLi0Cx7PMZ5+0s+ovlFf53/q3wFYDFhEn37yEY8Sb7zNe93rn6C+CljoMMzZRFN2lxjvHdUmfL01m6xF/GT8be8YA1ptXM43QeHhcCRPKroVRF16VqXUrL3uDUZ0iUAgeU8OiRwnHuJMdIWp/8B4+4+s9S+My+/prWoQlyS6eIYEAjNBDkzHf0HMT/j5lwgH+kisZ3W4adWx1Eypjsti2gwKPl40IyHM+0R7A06lVv17Gy3FeOfbVPlwSEiv9LpwebmwBscbncvbK68vX1jXlSGWv2E0H8EzhlBqI6aZp3xAulKPtLlSQffm7DN6VeBjjaDY1PxyvVqTDcHrlLhVBQK1VtNEDHOz0nJO8ydC1LBDj2OtGmK4rAvX9cqyXgle6K2ohSxK9VrXYpa7g8PhgMNxuZzZGlvDPztntaPCZz22cef+55TVLjhNpPmJNB347pe/4XQ6cTwdid5zfnslp0wtutXam6uxbZpMzGsblu+++Y7DNPN3v/871uvC5XJh9LEnee9UKrOnDT7uW5V5PtAFHh4Wvv/+e8aAaZrJWRvh6/W6XwPbK/s2YRYxytIYZHHkKfFw+sCHj9/x6ZtfEONE7wKi2SXOgiZH13Ts5h29OWqvdn7Yk9pLKbZ9MWpMSKQ8k6aZmCbrKc2Zquv2YS1FtxYh8vT0xOQ9GWgycL1TS+H55YW//f0f+Pz5B5brankOCi6Px6O6RYmjlmofjdEXavuePB2IWZ3OxgjgEvOcSNFxOh7xIRKiUoV6bZS1bhcex8tMDI7gN32F4K5KlRJptplS7USXfgOa3vNwSDsl0fkAruDG3+GwLWCc7BoRetColJHivn1oXYcQrQfVOkjAcQA8PiR6k92MoLehCeymCcMHs3ztrPVKGyvXxeG95mpEDzE4Hg6Jw3wk5yPXRQ0R1G9K9WTeDwKQA3iJDB8UUJvWSQZKaWwFHwIuBqZJtVQpCEMWxlgo64vpZBzBf80c8173ute97nWvf3x9nd3sVib23NJgdapt3v0hcjMuhc2Kc3PG2RrILYXaO79bldZe6auGdHUne4O+U12C0jhycESuhH5mjL+nlz8zymdrvKGNwHA6RfThgA8PuPhAlQdaP+CK5nEIGso3utqbaupuQK1zLSG8DwvIMl7+Jij1QekIuD34rndvtCRdEbRadKoqXZ9v0G3MwNEGKhQHXMjgE+K0acMJPghTTqQYiN6pK9HiqVWpTcM1Ojql1LWzZ1tNjG2jxIAOEgZeoA3jvePopq/AqGXBNgq358NNcLxbqaozUgomHh4qQt8E3IK6PAUf9mOAbPNdrc1ZakvMFgbD6XTfe79rVeJ0wKeJPB95+vCRw+HAPM/0T41p1jDGYvkZy3rF7Y+Vm0mATeenaUJEOJ0eGH2wLkqNcc7sfZ1T61UHXryJkK3Vj2pFmy1fRROSPZt9awhh34KEGEkpMh80uG1L4x6WC5LzzOH4wDTNxHRbkWs6uQnTd/G62dkiuzB+c7YaI+zHL4RgG8Ow/9wuupftHOq9p7oMqK6RctbzlSLDQaiVtVReX9+47rQvz2E6aNZD0MC3mBIpTqzLyhoKw2fwkSGONgT62PU7zkcTNesWYyC0Mah1mFucbboEuqwaBBgd0ZsJXAgGECMKMAYqPQkMASTqteoybBkamzBd9JpXLXhDRfIdJ56AJ3hhJw3ZYikGHYDstKJ3r3c4o+D5sYvUNxvdMYYFUFZ7PdzZg8TgiCHACKgpxUAIanEcoPeqG8phLmCi+ScbxU8ciNNjqo/F662OCf1N8D9ao7dOa7ZRBhWP3+te97rXve71M9ZXAYuNhbNRn5KlQiNCtqn5Fry18ZRFOmM0m5ybJeY0cTicaE3FrM+ffzA9RQFzg9EpcsbFTAjRUpUPHKfIlAZZ/sAof2I9/3tGPSO9UWtU1yeXjZowcTj+FuI3ED7xwwXaANyVGCsxBNL7Bi8EgnMcg7dgN3X6kSEMGsFF3SyY6Hw/JgLFXIaW5Qro9uDl+U8EN5iz4/HhRJ5m1Yv4E4MTvStFaD4cwEU0yUvobWW5PPNwTBzmyMPDTCmFl+dnLucztVR6LZRFv9d7dacSD5gHPpZLMTAtjKCuWG6jhuljD0757/OUzOLWwImJt0H1GdVEx+fLG6PXvZFfS9FwvN6VxjRNJhje4tC2DAxNGu8mikXAJ92MqIOOJh0/zic+fvsLfvNX/4rHj9+S5wPTdNgB5tOHj8pDNbF/WQt/97f/ifP5lecvP2iCe+202ulJG+z5MJNy5te/+Q3ee97e3uij4zpKlekCdK6t6HXdlCcfwiDa1meaMilr3sF1Mb2DiHLe08Q8zzw+PvL09IHf/u6vOB6PHE8n3s5vnM9nnp9fwXmm+ch80IyE1oaBksA0qfZmjdn0BIMu6qbWx8CPQRBP650QhjWt0UIBs4rFZaid7rqiUAZzJFJr2FIqdQPxozPNE4slfIsI12Wl1sZaKjFFpsPMr3/1az3efXCYMtN84NM337EsK9frynV43Qxa4GXpgrSiw4M4IUFB2+u50Eelj9vKHzR8srZOf63gHDkFjlNkzpEPT4mYAvMUqUXvr7U0xvCIROqICJ6YgoEAYZqV8hhTxHeP654wlCrYalUAGDRfopuYvhMYmjahRgRrpdWhIFW25wdtFM1a6ZVazG65bBa8YxfE62bTnLbMreplrpxOnYeHxnfffWLKmTQl+vWFUld6ecU7IUVHMNe3GCe2jJlh97TPE108bei1sHbNi9H7CuBkG2NHLcvXvLzf6173ute97vWPrq/cWGgyb9ycZIKGMSGbXSTWyGyNZGb3W3SbK4yndeHl5U0tVZsmMwueELNNbQN5msh5JqeJx9NEio45X/HjFbecqeU/I+2VsVyo3dFHpjGhydaeGGdCfmR6/BeIf2K4B6Z+hrVwvlzYlAjZvOlTyrtAeYxhgnJPslAye2q0pmm323R9pz0dDzhmPjwd6bXQW+E0PWm67zSR8wdwieW64nNkfpxYrld6HywVplmn4oxKTIEUDxymwJQDOQUckcM83ZKZUSCU8sTo2lTK6Na0YUJRT4xJm+0+dvcZCGz+UMGE0L0LrVS29HBs6hmMpiQirKVyvS5MOeOdTaWd0nfmx8f9Wrhe1eUrWJ6Hs0l1751Wy85VD0EBjk7OMynPfPPrv+Lp4zccnj7RxbEsmjthrBV1HjNrX+8CeUr8+nd/RVlXnj59QyvqXlWbWfbWZiAh8M2331JK4fnLM8NArE6cO1j2SvBB5TtGZ1K9gW43YozkaeIkai87WuMwHzidTvyv/+u/5uPHj3z4+JGnpydiVBBS1qI2tKVZLx2Yj7rRuF4XQOgGZGQM8pTpfab1RrOJs7pGuV24r8Dbtgc5E5K6ap3fnvnhh7/w/fd/Zr2e8ejkv6wrtVbOl8uect56J6XI5XLdgbLzwbQmQQGpOK7XFfB0oL5cCJfGedUNmeCp3BzGbluVDUxqNseQDr3bgGC2QExwNFyEGDx0PfYPpyPROIfP58LUImGa8NPENEXS1CilsVwLowt9qKuZvsZ4lg7OCzHptiAEx3GOqinxlVLPUCrzNAGB4CPR68/6ONMl0Y9HBp4hjt4DfSh9aikrrXeWtRBzpdVOmjajgvFuG8dO43TmwNIFrkuhm64p58h8yDg38Ayin8EL4sQc2gbUbm57Qh+AE2K0UMkOTiJehOD0RA88rXWaCKUNynrfWNzrXve6171+3vq6jYWwB395o0GB0i02n3WHu9GBDGu4TZwAux5hXbThGn2YW5PH+6yhZjEyzRNTnphS5jQ7Uqgk/8ZY/4LUH+jLHxi90uug9UQn0sNmHepwQRPBff7AcCccB7xfca7qhH1sCdddRaXOEUL8UebCj2kpN1rQoOMRAiqedN4bZUk50nWFXoU5H5QeMx0ZclKKlnRccKQpUqpuQvpo4D0hbkFXHhczKXoV/QZPGP5d2NjmiuTxMZo7zABr3jdwIKLNWmtb0rWeB+dViK7nxhsQGTTLRtidk9x2Xkwj03SaPYbg/M39I4TI8TCb7qQoWKxVrUwNeFFtsmtN7ZYujlM3sRwzaT7y+OEbjo8fCGnWQLreGLWyQSJvAYQppz1x+/HDB3rrxJx5e31hWS6m9xm7M5kPgYeHRx4e3jg+PLCcX/X66c2grz4XCaq9CKPvYE2pTGJWq5FpdgruQuPx6SOfPn3D//J/+zd8/PiRpw8KKjagvQnbBbdvDlrrJnrXk9RrIabE6I0YMzFVUsvEEE1cXvd7bbufvA87uHDBU2vj5fWFl5dnXl6fkboYxc2xLotuImyyvbmBhaIT+pSz2fUe1L1qp3rpEMA5QVzQwLxaKP1CTBMxZpo3q9SxyxyMWqjX3FIKrVe8CDk7CIIXs/fVJ2PsHr3WUk5KaxqD61LpwLEJOSldz0WP62qPLKKp3oxhahJHawZUm5CiAoyQPMEJTpy6PbUrMXS8Tzh/IHqH9xAiiAsMnyBkRDy9R1oXWhd8StTWcb4QYqXHRm2V9/kj4z3AMHMKUNBVaqU1tWmO0TMvmSlHBRnZKdy336UcqMEYDhf0dQcveKNuSlMqnEe3js57hlMdhm4GhdLurlD3ute97nWvn7e+bmOxuQvZ1D4EC9DBvPJlE+fCjSOuNIRhfG+3OfzEzHGa1WY2K6BIOTFPEykG5izQv0D7e3z9W1jP9PaFXhd6q6iTZWDIAXEzuEzOD/iYCXGmjcB1iXz5uz+Bm8BNSO+0WhmtWNpxp9UVHwLXyxtpmogxkaZJtyY579PX1tpuViNGLyql7KBEjKbSy4IbL4gsOCK1eC5XKPJGH2KNuQXk5UCeAikeLewPukRz1wlcauFSOycXcRJw+YBPC76qLmF4x/AegjkZjQatQavKRx+wrCoeHqKTfnVSQk2lUHculZAOs6Udu7YCAR/z7iBRauN6XbhczpbgjKZmh8DpeGBdF0otbKnaMUZyTkw5I6Ki17WslEtjWQt5auQQmeYDv/yrf8mnb3/J9PBEHY4/ff+Ztl4ZrTGaOn7pJsHvQDTERAyR+fhASpnDfCDPM9I7X77/EzhYl5WUM5ODx6enPdTvP/3H/8Dra+H69rZf2LopUh2PpAhEpfL1Ti0rtVUT6cM0HzkeT/ybf/1v+O67X/DLX/8OQThfC5fzD8gYhLB5Xbm9ec/TzDRlZuc4HA6UdeUyZ3tujlIWBKH3xjwfNFSxt11nlPPMlA/M04HD4cTheAIP33/+C//23/7f+Zu/+Y98/+c/Il3D97SD12a1dZ1gO6cuQz5EQkg4PCKOZa1qx5wyeTqQp4mP335DSpmYJ65FhfzOtEAi9uxsE6nA3CEj7dbGMNt2zNPFUYenNLVhlYFN9D1DBrUKl8tnvFOKGMPz9lr44fs3xrgiogAzpYlpPvLh45Gj6Wd6G5qvUnQDNUplbYFSAq8v112v4mXCu8SlelLyzAmO2RMDtPq9ib0jPj+Bz/g0qdscEI+ah9NPRxVSd3WOU9pkv9HMLF+k12rDk74nhI/RkVXvMfesG+DgVIcRoyflwDQnYgwc50xwELyFBrpBH2+7fiMMHXykZFopImOe6QJlwPV6d365173uda97/bz11eJtxyaOFHprNyEumyXmbXLJttHY/ts5XPA2xQ6kmAgxME9qRZlzYp4i0Q+SvDDGD0j9E9TvkX5ltKtyovug92SagYiPM97PEB5pEllLoBShDWEZrzi/4l16lyxsb/DdptHGl8dprgFOU4glRLZVyy5SRzMixGnnPXqjymC0ipOOl5VWLvR6pRbHkEhnRXxEnIpYN7qIaUYVePVtaq42o8uyItKAzrosMBrSCtfzRe1pcQQfIWo+AgheOt0X1S2Y25P3kegxjrbRpIyqhlG8HDrxZPjb14wKFkLSZj54Wmtcrxde3wJTShysIXbAsq7UWmijaeMfNfwumI5lM+lUcXYjxoGPkZgz8/FEno/Eaaa2Ru/CWhrlemG0ioxqglghhnADFqHRg17C3YLuUlY63TTPem5ao9aijyUqeH14emQ+HCnrysIbmoOCpoKbUH0TpAdUAbzphhClh51OD/ziF7/k0zff8vD4ZBsI/VvXi25MYrgJ4mtZiSnSe7WgtIDzmt0wzzPleACE6+WNUm55HCrqjgo8nFfgk3RbM00TOWbeXl/5/P0P/P0f/8ByOdt9qcF5KjTfGFSb/S2whTGZMBlzf/LO4+NEzAdCmhgk2ohIc9Sm93fOSkNz3iNs03VBRSt6noL3uJTYLG97FxiOLk5pU3ac9fVkC4oTxrDtlIgBnoH0Ru8rYzRAiEkozUHI5FUtrzVbZuzC9RSjXbuJ1ZkV8uh0gS6da3GU7igVSh1Er8LxlD3ZJ6IomK+l68ZpiBpUCEgXPBEXNNdG9wboPejdTo3CtlT6fG90qS1oUmTsRheqW3Ok4tWuOAbK2gjeEYMnBN385TQIwasRRLB0801PY7QqnCM5Rwv3jcW97nWve93r562vAxbOW+KlNttlp1boG/7tbUwbmI2n7oxCoroEpfPElHTavaUkJ5tuB8HLFS5/D8t/ol3+FuRiKbhBXW2a18m+S0jI+OkBn04gv2BZO89vhWW1rUS97IFp8+mklIGh6cYymrkqedroDATfG200QoikmI3W4vcpb3CeIdoIdRm0plPKUQuaCNw4v7ywXC68vS3gAiFnpsOD0keSCt7FjpJuP8BZQ3Q8Hmm98eXzC6oPH7x8+Z5eF1o5E4yK9vT4kRQyyQcIHuchINRypa6eulwBp9x9tvA1ddyS1uhVn0N0JloP3ty7HLihTXjS5++8bjnWtVDWlVZXjocD7tNHxugE77guZxN8150+5bzTLcBsIn/ndGLfBUHTyKfDkYePn8jHEy5mzmfN/qhr4Xo56+8D5aI72dPag20sWoi0WohZ05kfHz/i5wPH0wPrcuXt5UKIjiFNNQkp8unTJz58+EhvndeXFxyWci0a6ldLJcaqoGiaja5UkW5hb3ni06dv+Ou//l/4xS9+Tc6Zy+VCWVfKurBcL8gYpBBM0Ks/F2Mgz7NeUyEyzwdSnjkcDogMUky8vb6wrgveq+PRpvNxKA0x54l5mjkcjhwPR6Zp4j//3R/4/d/+Df/xf/8PLOdX+FFCrNHfTAS8fUk3PzdKHT4ARsGbj8T5gZAmlpqgwpBKqatZAk/kKTLlDOiGoBab1I9hqdmJaZ5MHN9ZettdlvReHmYOMHbtyK7PGJu421yw+mZlrJtS5xrhUni7NFLK5DyrIDt4YnDkpCnscz6R08y1NuroXGtVYXZrtGK0xj5IXq/hx4fI8XjgKZ3wcoLuuJ4veu15wQWlTq7LQkonQpjo2yEODkegOSjF7u3dDU9T5bfXnd42mp1maGhZ+J+/aYl8iKb/UrpUjIF5SkxTYp4yOQtBILhO8JWwOdbhCRKY/D3H4l73ute97vXz1tdpLNRp03jrN/465oCijfKNC+692cWGsHPjQzBgEaJNryM+qxVrdIJb/8ioP1De/h1SvyByZTSQ4VSALFkpHOkE4YDLH/DTLyEceb0ELu3KtVau66KT21pQo8vBZXnVCXBMxiN3SnGyRz1xIqJiboZSGXpR1xxEzM1V6GPLgdAGTkQo6wJj4Pfptm47xuj0ZSHlCZcSD6cTKSdSjoy+4B2cpgMWwkDrhSU3SplppVLXjiy6AentDM4j3nMe3YLrAi7p9NgbbWb0Bt5C5FArXCcOH2ecDHANxJm+YJsWQwwTBAU7IUbl8NvUvfeKBgQK58vKshbO5zPzpBarDw+HfasTTVsxeue2l1Er4uNRG9bDaTDNJ6bDkcPhAenCcl1Yr3reailcr2fVHQSPZnc0Fne71nLOSnOaZ2LV6bgHei0cjyej6AnXy5larqSgTmM5Tnz65hscjh++/wutLLRWCJ7dChnYm98tRC+GwJQyv/vd7/juu19yOp1YlguXy5nr5aIp6rVQLSm9emdbsb5rf8Il7vfA8fjANB/o/ZGUMsfTidPjB0op+PiKD47QLdV+2yQ5FeQfjkfbgDT+3//+3/Of//Y/s9jx2r5vu2E37dPNBdhZxokGR07zkTzN6ozkHKVWYm6EGDkedACQp0ytK4gwJZ2uOypKhlJHM6UGdVLGaH+Ndb3SWuV6LYiLENTQQV8Xbo5sXuTG3LL7rdux6z2RDHCM8Z7OpZs6pTVuLkyepQy6LDycAicXOJwmDsChJc6XhXV11LrRl/p+vpYFUlr44Yczj0+P5ClzOGRNoa+VthS9ll3G+QkfJqIMcyhbaaWodkVf/CBnBdcx0WOy7a5uLIYMxJLVN30UWOaLDW4cDhmOWoc66/nBsnZ8qMSwkFMkeMeUVeOVomfKyWh1nVJuYZn3ute97nWve/0c9dWuULJNEd9bK5olp37HjToUgja8IagF5LY5iCFqk2e84uDBu06QhtTPSPkLrfwA/WoTz4imaKNcYjcR0hEXjpAeEX+ky8zaKqUN8+tv9FahNUQaglKJVGitU+MQIkO27UUnVOOI96wUBucs/djC53aRZtGfM7cgBMq6KP1hyL7h8C4AKlKWoeBm1x3MiVYbwcHxOG18Cc7XYtqFiLRGAwUdRl0SBtKFKgubA5brepxd9DeXLheUomHibLGmy4tDbfU3xyFRJgvmhITa1vqwTbT9rpHRE+x216V1WVjXQM4R58XObcC5CYJndEtAR2k8zqsLl4+ZLELOJ/I8k5Ie71br/lHKSm/KT3coYOqt7m5WGyVtiKa7yxh71olzcJgPbBeoBrIJ9bjgcMSYOcwz5XRimpQyJXVV4LTpaH6UG6FNn/fqDPXh6QOn45EQAuuqwuirUZBGr5pfgtntmutUsGtCgUHcN3gCeKM3bRSulLOCcWd6ks0RCnZ62TSpi1nrje//8mdenr9oSJ8J6jeKk4IHm2O/c27zRsdS++RMiFkd28yCtbVKiKoxwQ28Bb3tx8SGC7iMiGa4bIuGIYJ0A8m7K1ZV8bFsWxJzJHOqQ7nReewDc5Ibeg3iTQj9LpvB2+vL9kMit7yMa2nE3IitcvTzvs0YveIkWHaFUJvbAwRbh9KEUjviA3NrhGTXXm9qUeyDure5iLjA5kshtrmV0Qk+GcVLDS56GAzbXqlpQdxtuWWoA5T0brQyo5Pa5/0elaGPt3acbzjnSaETgqfkQE6DlDy9qxNWDFDqT0/wvde9/nvULZf+n08N9H2m/8RcGEHo0vePn1Je3VC0v+KnbxrbaGaYo9TLe93rf4T6KmBRWwebgjnnSDntU8KNv70F4CkvP+5gYrORjUmBRY6JHFUAHOWCq6+4/pl2/g+M8gXKi7n6QB8BcQHxiZifiOlEnL5lMFHGzOcvFy7XV17OF32z7p1RVkarjF6Mjx90gl475+vKfDhqYNnhQG2Nt7eV+vKC92cenhopz0yTpu9qQ2Nv/mMwemGMRqsqkHU4/PugKq9UhsPDCZzxrJ0mj1+vC61W1qtT4bgHqTtJhJeXK2UtrBcoxdG6Jz8+EupErwdGbUjr9KoaDJGOLN142kZp8RGfZ3xwiA6lbZu0gUFPyjPIezpKo5tgQoA6zCJ0e5MwS2HdjCjFpfWVcr7CW+fL8xelDsXE8XhUHUCKiI9MxwemFInJ8/g0KaUuBObDowac+UjtnVYUPJS6crmcNwIXra7mJqYJ187ptkLWGxUtxkhrKzIqva4c8hGcprs///DCtVwJ3nM4Hhmjc5gTzj3yi1/9mu///EfW9bJTeeIm4O19d7halkW1FcfMp08fCSHw5fMPXC5n265cDHwOBcO28RqWhp5ztq2F53A4Mk3ZGl21ZA1eaWIfPzyxLmdenmfWczSnqGiNvJBz4nCYeHx8pLXK5W3hT3/+E2+vL+SodCa9kpzREDcXsU1MrYBjPj6S8sTx9EBZC+elkvJMbV2fUx+E85kvz1+sz5cd1GkYogKvPOl9dHr4RMyRkBOlrpTSuJwXNmMk5yO4jmuLAizLwfEh4UPCiYLDulELpZsw3JlmS0FYThPB0tpJqnMIMdqxhWVZNN+hNuS8sFYFvIc58XjKuGPiOCnNaK2Dt6XwdqmsdbCuVWlk0nm9XHm9LPzl8yspelIKPDwoEM3TBwRnPgndwO8gukHwQkwBzFlKt6yy2/z23lhLUUMAE3aPPnBUAx6djTonRs3bQK5+TXYDBoUN7p2LnQLfEDw5R1L4mlf3e93rH19dzOUwTLif2OhumS//I9aQwaWdubQL13b9ST/TZfBl/UKZCsnnn/Qz3nmO4cRg8FZffvLj+/PyJ7zzzPHwk493ChP3l4Z7/VPWVwGLbYLmTTexccD9Po19lzHg1QpVbTE3+oeu7LcGNHHFjwXW3zPaG/Rn+vrMaFd6UUDRh0PiAfyETw8QT3Q/U2uidse1VC4XzQnoRi3YMgecg2bCXM1kSHiv/voy1BFK5plotJRiwWS1VpzXbIuUok7/c963Ab1PDAvK2sTq2785myw65wgp2URTiEEIMXB8CHgXcS7QNyFymkzx7piPnjwNTqdOrVdaWzhdMq01aqnmatWo65XeKr0pyLltNBzDedI0W7p52jUhMWWjwPids+7dNvnXBs35jT6jz6mVsjfMA4/HEVJEhommN9vebbMjHb8Uehe8D7rZqI3JrHdziCbsDpr+LLDWxrIUSm06YZdb8jBmW9otKG6jwmwOPMEodkojCebiZW5fMZFi0s2RONblapN3T8xHnBOOpyPntwM5T5RFrTqHWYf63qFW1lJYbCPlg6O3YluVynJVqk9ZrzdBvGxUwbaLdlut7zYW6nIVoya1O6fi7hA8aTpYYOHMOUS6NdFib7zzPJOnjA+OdS2sy0KOkcM8k8I7F6B3ouwNVrY+DKo55qMK2J8+fuL1+YXL9aq5H33gXCDGyTRByWho1abrEFNUrA3ENOFCpMtg1AatWxM9dKIfjR4Xsz1/DV/EDRztHU0rId7jxQThwxOjgvpgWSwiFkjoA84HsPsHr1RL3QQlWm9cl6sJqTvntwutBKRnPfdBt3YZOOHxfqI0WKZJbYTNFnb0G91TP3uWtVEatvHUzUfvGpSnznGi7EMZIJ21Vs2RaXW3ou2t75uwDTiwyUreUQdvr7sbsNjc2raZ8I8nw845+tDsi9bDT2wz7nWv/3Zt7ISf+r2dgR9tp/T9Q6XLQ09w4X84gOGd5xhP+hrl/D/8A+gxaKMyhemr/laTZqGo7Sd9/zbcGQzqKD8ZWLRR8Xii/2rvnnvd6yfVVydvO25T0GAbCc20YAcW23YipLSLT5O9EeekgCSGQKyfcf0Hyvnf0euZ3s6Mrm/ArXhLi4i4+ICLJ8L8S4REk8DlAsvaeTsvFJtyqn3ltk2ZCCOyTWpFBiFGex6e1hulLxzHAzFPPM0PvLypcLaVgveBMQ0VcedMjJng/a4dEBHqqNpQmcWud5CCw5uyoA2x8KvOaYKUPHFKDMmMkfW7nMcHte9EHI/zB4JXC8ne3ujtynL+RG2dtQ2l9bTGcjlTy8K6XO2YdXpZNYhuDObDgeA9wTlKWRmjk/KsieYhUIttAZzbrUFDzjgfiTYBRoTzeLFAvgbOM5wjJNVqBO9Yu2aRqHOSTp1XKn0I03ygdmFdG+5Bm9X5oEL9YNP1Whv1euV8fuW6FB4fnwD93ZuZ8TbV3XICNl76NqXVLZkwRtqb+lJXsvdM06yWquJZrleQgUM4OrXoPJ1OvB2O5OlAs6yNPhTMuN5ppbCuK9fr1c6VZ12utD64XK7UUhit0VrZBcdaCrK25rHWZvRAZ1bJKhgWo1nV9UoMnsN8YEqJ4+HIc0y0VhWsit5jx+OBedZ081pWluXKPE8q9N/CSzZXM9loNKYDap0ujo7n+PiJ4+mBb37xK9rwlCa8Xb+oU1HQ7JU8n8jTpNdXXeh1UZCcJw2Qw5NjUkMExPJh7Ng5j49511bN02Qbj2FOS7oZcNZUex8RHEEU2PohqkuyhPvt3AQfd7G5mChDDJiknMk56oAB2a+X19c3rsFRlsSHpyPhOJsRAETvmKaJJoGlQFkb67KyXK9UZ2GCtVMsV8N7Tz5fOR2PzPPMYZ5pTf+tdTWxCGkgzjFa4bosmluy5V1sAvVtw9lNXyG30yc7yHhfP95ayI++4R39pKMNXdmurXvd6x9X8pXAYkinvtMK/UOldgMOH+af3Bz/XOVwPKQnkk+k9tO2DxsQyz7/ZDDinKOOQpdGHfWrH2fp5SeDMgUW7g4s7vVPVl91ZaWciXlLx7YJtwl2txcR7QPMZnZYkqxNmr0TkIyThpeVUX9Ayp+p6zO9XWltNeqAQ/yMT0d8OtLDLxjhgcEvWEuhlMrz84XWNGxsdzOSBjiGmB2p98whatO903pEG6GmNJTXy5lUG/NBrUpTzjjvicmyNaZMnmaOpwe1+gyR6DxIY9RXxrggohNo5bF7EA8Men9DpCK9ktOJ4Cd8HBrYlQ6IPyEEuhuMphanmmLR8LzQ5DOdC8eniTY8a0tcF6HWwHFKZs+poYN9dEpdWetKqYXT8Uj0HjeEy9sL6/WKH4LUSmlVA/mmCX84IqJiW6W1q/OQ90GpVSGrINhQm7oTocdxTDwcj3gGc1btyDzPqhOIkTxl5nlmnmceDkfNvkiqIBYZnC9vlFpZ15XPX37g7Xwh52QWqwHHQEQn0Ru3X7q+cK9rNVDhlU42Gt6JOZZp1oE+l3mnBNW1UVbBu6ET5zRxOGSePjzRmroW1bLqZN70D+fzmcv1yuvrK+qyFXn+/Bda61yu694BbiBBDGhuW5e9CfS2gSHotqsKy+JMbN15e/1CrUVtRxE+fnjk5csDIXrc0BTzED2PDw+klLhcLrRa8A7+1b/8l7pN8e5GK3D+lrhu3P7rWih1UNqAeNi3Wg+PTwqgU1Q9RF2JSQHZGKrHSPEEU7bn5/E+glNxvwZSqlWrUv+8bf6a2rsOuCxNdyVO6GVzfho4X/ChU1w1wbkaOQSfyGmyhHXozvQqUpXuFwEXQVCr37pw7SvrRa/NQGc+JFIMjG57GnGcz4XrtfD0dCQlR45wjHocexiM2dGfPNd6oneozdGKUeKahc+ZFW6pDe8HMU5888vfKpCUoangQ0MCZ9P6NNN9bZQo1Vg00wc5lY6IA7Oj1hdQs/Flc/SSf6DJu9EWEZB2T96+173uda97/bz1dcAiadLvTnV6T4HagIVZJe4C0o0DrLNnnBToFRlXAxZf6H2hj6pUFwLiIi6eID3g0ok2jowxIdXbVHGwlo1OcBvv+Z0FbmVaD4z+s02UY4yI97geGcN89RGibWBwziajlm7t/S66zikzeY+TwAhn04EUvB/gzF4XEHGIb5qZEYaFhymnPMRkPOyAEFS47TUTg1GAgpNn3HjBj4XgQVxUq1mn4XgEFZeLA2xTIymAnwgxcjictNHc8wI8nqFheNLxIYJ3OB8YQ8/NZqeKAaQQE/PhaKL0bqfT7efSM5i8EIPjdMjM08TxeGCaJqOlWOBcyqRtC+KE2iq1Fl5eXumj68T5HVDdktp1ZzFuCeiwT3y1OVPb1FodyLCNWCJ4zzSrJkL1APq4xxB66ypOrlUn4zmTc+ZwPJIsELEWS8aWwfV64XK9crlclF6HUMvKWgpvr287JSbkxJbF8F82f865Xd8w7Pghg1b1ig0BSllwzttnR86Rac4gHS9KI9xMEHTDse5i7YfTCZB9o4YJh/sY1K7T8C6DaV1Zq4bTdSI+6rHSbYKCKhdWOkpjA2f8f4f5EoMpX5yLlsOhAnO1SbX7DNMzDQ1xGPt03e5PS1vfNzxj4Ny20YHoNXE+Bd1EsetWNCtG8xr09+GUOrX5G3TbSDkveALBGyVIHDKE1jo0BaYyPB5P8oK6Ng/EeYYLuOAY4uk90HKwrYMC8NZh2LncBPB5msFEnq07vG3YQlC62/vXzM1prDv3zhzArm2nKpmdVucc3rKC4AZWx7htx+S/Xm9Y/fMS0d7rXve6173+x6+vAhYPT0/ENO2r/PegYuNPO1CHIqNIee9I0RvtoBPbn5H6mXr9W9r6R0Z7pdQrY3hkROL0HT4+4A+/pHGkMfP20ilVKOXZhLzamJpE1ehP4JzaVwpKZxHErG71zR+cbSMSBxNerEV/zxag5pyFbeGVoWDTvxCU8z1PjkPwOIHuCtf+hda+pzsHbgL/CednnAsEo24wn+jx10h4QFyiOW1QnKyIDFpZKeuZVs709TNeFrJ7VQ66G5SxUHviUida07Cx0TplXVivZ9bljIiQ5iPT8YmnxydCPih1aTg+TCf9O73Qe1NqVCsaILde6U0tUgVtDukVPx8JMfDw4QPeeaQ1O6+Oac4qNo6OOTqmGPj4dNxTtjcqlfaOOrHvBgauy4Ufvnzm+fkLv//978l54ne/+x2/+c1vCSnTWle72WoOUOJwZA3Oa43SqlGPqtE/hFIXo3fpdXG5XhCHUcIeLdDQ2TEXvDSWcCW1weTVSvXx40e+PH+hjk5bLyxvF9ay8uXlhct14cvzC99984kpR8ZovL584W/+03/m22+/43g4kcID26ZuB9kh7Jkvy3Kl1UFBTGekOpdWA72tOBcYfWhOxTwzzRNPj4/UKeNNVyIYMGqNIYte40OYcjYOMDdHMh+NJqT3IageprVB7ULrjjaUHjWfjozjkdY7frkycATvYHSWdTF645aBodsKL44gDvHRnrXpBXaDAJizCckdCqLtOpCsOhp6wzGATvbDKIAdnwI+CDGppuj88kJZFnqtmrmSIl5mYsp6n/mghtIDRBTMt1JxvTBq3ttr3SaqmcLz8xspBY6HRDtGcvIcZpM0SiPrt+JywB023UMG1JWuSaCLp5kb1hhimjLH4XBSoXbrrOt601PYvbAndNvnPkzIbfcI3VzketsF3SKbLXQ3oHITdYvZQCvA+HHw5b3uda973eteP2d9FbCYcsaFyOjDxNB+11U4d3N38E7zFUIUvO9Et+LbG4wLtfwd1FdG+YHRNKHYh0e1juUBN/+a7mbOa6Z2T2md1zfjKZdmouMtWVibhWCT1O2d1G0hfs7hNtqW95b7sGlC9N/noOnRIThiykbB8cjojFGRvlBLR/qR3mBdobmiVKjmaDwxYsaTQBUVeGl4VuWH+4jzE0odKnhXdCsh694UBAkkBB8zzX3SDA0+2tQSJM5AZD6kW+hWK7Sysi4XlrdXS1uG4CL0QV3OjAGt36bn3Xz0R+8IHucTeQqE2AmxmXWr53g4MeWJKc8kr9SU+TCRp0zKSpkJ3hG8kINXnnoORgdSTjqA26wzgctSWErlh9c3Xl/PnN+unK8r3cTbh6eJ4/GBZVmprtDasKZzGIDQzxrC11iXZb/uvHO4KIzQlVJmORit6hbsvSh2iNCGWhLjPL4stOGMuqLOZy9vF67LhXVdWNaF1isheKZp4ng8Mk8HjocTT08fOJ0emKaZmNIuzhW5aX3gNjceoiJuJDKGN269mgu0Vokt7RkHzoTXIthj3a5t/X2bmHkYV3/7Q6o38aSEber0yGGsGu8d2Wma8xAhRb/Tlb798MR1zqQQCGECHOESjL6j2S0OCM4RoxkxxGCbLM15cQ5ySmbiwO6KdrXzNadsgFEDHYOHENBtJnofDrGdWKtIb3r/Js2NmE6PuJAgbMdbqNac9953V7jWGm7pOHdlOyFqMWuCdoEQAm/nyDxrcOLpmDUPImsonYYIGo3KOZyrQMd7IXi1q44xM4ajqq5d72lL1saJOrNhVpJ2P2yueWo3rHbPYYz9NUnoJtYXhujr6xhqKSnbpkcFNOw+0HLbNmI/+1M57ve6173uda97/feqrwIWMaZ3TjPoZDo4fHhPhfJ41Ekpxoqj4eWKrH9Gymfa9W+QvkBb9I0Wj89P4D9C+I6ef0UbidfzhbU0SqlcLqs2NrXs/vnOWV4EGhindduiBB+0sQo35yp1ptEQsI2HnqZI8F4tJXMmxEjyiVYXluWV2q6Wp1Bp1cFwdGk2GXV494SPH0FmFQ73K8ILIkWBjY/ApHQOKUCFfoH2pu44BEJ8IvoJnyZcfGCIow1oXWlazjI/5hitARuMttLryrwupHiklpVyve4bl1oXdaup6ryDcwyzkwW/O+vEFLXBHEMn1s5zengkx6gp11LJMfDh8cjppMJh5dWDd4OwbaqG2WVaQJ9Y82MmNjy/XnhbCn/3wyvL9cy6LFyXAt5TeifEzHw4KTWtC7C+E6OZO7p5ibdeNUTOJuniHF5gpHeNZSk75WSb3wre/MjV/hPn8GWlE4wSp85Jr+cr1+uFtSyMURlDNBxvmpgPB6Y8cTo+8PHDJx5OD8Ss7mGtNkT+j4V3Yn/XOUHEqygbtUPtZjv7PnQSTHRd604vdE6zJLbvez/FHkM1Jt6yHXRjeKPKbLkK3isYFPGkAHUIfQjxwwOHJePwxDghOMQNlmXhcm040Y1PDI4cPTnrNlDPjcNrC81hjnsopnOa31CWC9FrcvRmSZ3svsvR00bT8yTq+FVbp5UV6V0fb9LsiOOHXyAu0QnqyCWVtV9Nb6UbHemdXru5cnWlTwHeC3u0NRvNMShgTpHT8chhzpyOE8dDJAbVjHkv9npjzb90ghc1a4hJnetQswYx6pdglFDv8agOZCcvWe+/Awv40bBjCDuw0A3LRnk0aaudhyGAF6RvOgy9t8WA2/uw0nvd6173ute9fo76KmDxdn4BHyyRWT+nGEkxqvOOsynleIX+yrj+mdFeKMsfGOUFaVfGqMrVdkfy6Vf4+Ehzv6D2xNoi59dOqYW3t7OGpbVGq2XnrYt0TYFG3+RHD4woBB8JKduUVkGDhvNpuncI8RbSl8IekBd9ti0LiBvgBoMzMRY+PFTEaUMzRmctlSsaxObwBI4EP4h+IP2POLngeWY0nTr39AgEZATealeXqJiJYSLFT4QMzgfCpN/nxBOG4IY6xfjd0UdDx5batXEfHeiM7hiS4PCJOAn+UfbmZdRKBE7Go/fOqSsSCv6maSIET10Xal0p65Xeq06N/WDOjtMh8ng4MqXIw0Edd9Q6WIXKvVluR+9me6vnZpjN6pZcXUvjf//bP/B6WXleBelF8ybKwjxnYp7VdSskQsjENEi5kaJqJ2pd2UbuvTV662wbCETzVGJQab5SqKA/vnPWsW4uRtUsMDqldmofNBFCzLhgoXnHB46nJ7UwjeoytYmf11J4eX7hF9/9gg8fP/DdL3+1uyAtZcX5hSHCui4gt8DA4D3BBySoXqRbMFoMSi2LwQTdrSrVr86MLpTaWEtlrUV/j1Gahh3XUooBjNu0WkTpgSGulp4eVZivZ/4dyDZtSIja4HtHE/DZM46Z2pS29HQ8cUiZ0zwT0820wceID5HeRI9P97p9Edk3ir2bhkAGMXRy8swZPedGUfRGr+uXldE1iHEpheVaqKXiQ2A6PuLSA4SJ5m7ZOXEKEDq1Kc1qdGG4gQR9aQvJE0Q1GogYkAd26hAa9nhpIPD85cXC5QLH40zOiaenR44HdX8KEaAjsuK9OseFuOBcBK/3NSkiElATSAXeYwjRedWQ9a4DgzHwPpiFsr6m9DHwvTO8t+cTVF8xBm7bZNm1I2PsWozhttcJ3eA404ypmcW97nWve93rXj9ffRWwKKUSklJgxMuefDxEUKnn5nzTlepTP+PqM1K+IH1BpOPCDH4G/8jw3zLcA0ufKc2xFrguRf30a9sbMLcJeb2gURU3u1EA1zUgzkvYxBY2LQxmjRss0yFqhsaU1A8/RFJI6Kaj75SVgMdJxDPT5f/b3r/Fyram913w7z2NUVVzrrX23t22u9tNnJgvjgkSAWw5xBGKhIKRQERcICKBUEAgYSGEAQEyCsJEQkKAiERQAlIUkhsHIgIBLgLEF2DsgEAJjoRo9BnFDqI/p53u3oe15qyqMd7D8108zzuq1tq7e8/Zax/a3e+/tXrNPdesqlGjRtV8Dv8D6tNU61bLdmckLxVHhVagaWBdc1CN6lLLjDj1519WpeAEQfUkEpRm4T3VSz9sI3ZbvgU6Aa1Sddpdq9F7KiLFOg60sDF6uLt6DjhHsibQeUcpNiE3C2DvHWXVWb5YwS0I0gLeJVJw7ObEnNQmOHg2kXdrbdO7tFopuTcWZctvqJ22tKzc391xfzxxXk0IToFuk7tN6dlsjNWiWClpIVznpfSG8cri2CbQ2wRfuvmms5wOLZK3M+QcDVFhe+nJ0iqwjylpfkMpVOmC+kJtC6vpcc7LmTTN7HZ7naxX+2Np1t3Bp19vmuMQEUQtj9UCSItBa0yapT9X27J0CLLls1yLfK8dhmotlybKnmOohVAiJcbLVeEu51Bao4ZAiip6d97jnSd6YZci3jVqU7rQFHSr4Hw/d2iTV6u+P5qJia2rlWLvTW9TdzsXznst5LO6RoXWttyUkrVYds6r1mKK+KCuVfN+ByGB9yytmWYq4MNELR6aUEIkh0KpWqwX26BtqdaWHyHS7Lz3kD+1MhZrPHxxrF5pX8lyVVT24Jh3SgF03QGsAbKCb7ggGugnyfhqRuPbrGHlig71wX/Yfra/8ld0N9HPArFcFA1erBcNRtPPYml9k6VN/8DAwMDAwCeJRzUWy3LmEGezR9SArlrVJaU2ndDOBGIp+LzSjr+Gy88J5aTJ2WHP9OQ3gX+D5r6XY55YVsd7d89tM5FZTyf1dnfO3GI0ZRl0IleL5s1KM74xQmGlSUC8JyZH8BMhJnM+6uLtqM4/KTHPaqfqnYZlQQHyZlfq3A21etbsyMtKqZncjsxpYj87Umx4V3Hc4duC1BUKVCLFfy+5zdQWOJ019wEPNatl61QqqwcfhFxXNPTrSErqTrTb7bYiujcyKtjVEK7zctJpdV61SUrTZvlJb7Yc6nDlVIQbg2Y95Khcb73rjNRGWe5Zz2fy+aiuQE6YKPhDYE57DrvAlJQWIq1Q1qp5BTWTl8WCv+pVAFjdKEitNdacWdeF8/EFy92R0/29nWchpERezhzvXqh4vNbN2QnZE4NHpDKdduS0ElMipYQD3VCYuBW50KQCUd2y0HPnvYqk13XVwhXd2CBKkcql0lwluEqYdkw7YTrcUvA0P5HXRcXc5ztqORO84+tvfx3nI0+ffgbnI16Cbllqo8ZKjAXvHE9ub7YiL4RAzNmuXS0KQcilInLe6IQ9pwQRoxJ5bWhecf5xzm3Nxel02s53CJeQqb5dUPtga8rM6WxdVG8RLawyxsi025FcIB2S0fcdVVSnU+qkdrWlcjot5KoicB8nQIPZ7JQDqr9Kya6dqHkqOWde3J+oz+/1wycmnAt4F5hQitVul3h6M+HTHpdmoxI5al5o9cwKhGlPurmh1j2tQj6cL25fopSkU65b09WzRnJetOmt3VGuUspKs8BMnOpOqHA8LfglczqvzPOJ/W7PZz7zFrtd4nAzW4OihgjiVvAO7xecT3h/MHWQGgho8rY2YtqEFmso62Y9W83hrr+HNEhPAzul6iawC7p7M962pPer/251a2Rqebwf/sDAwMDAwOvgcQkpotPtWhZqBVc9IVZiEuOAC04yOX+Ndv4yyJnmHW16gk9v4cNTSvgcpU2sJXF/zqxr4XRadBKfs4qQr12nrrjl4ElJ0yzzaipWZ05GTjUVYn8TAj5G5t3hQtfarCeLFpLBbV79JUeWWlTs64tNCgFZCK4w+ZVAwZczVnvo5LhGagmsq054c2tUWVUnUQG0qFfBczBBueCi2owi4JoWibXoxDbFSJrSJszNWTUFp/OJnFdqa/pczK5yraoc7eGEMcaN6jQlrwVKWcintylZnZMmS0VXO1HR4tLrtPjp7Y6b/Y7dFHBSaKWRS9vEsefzcRNI9wKrWZFUaue2y7bBEGm89cYzntze8Nb67FLUVWGad9Rlpa0rrawalOYxe1VNXt7vZlrdUcqBmjNrCJo6Xj2tFs2zsE1G3wKYlYA2VHllOZ2oZSFGz2SWyTpV7zoAZzNiR8Wx1sZ51Wsyl2quVup8dHd3x83NU2orqpVw3TUsMk2T5oc4Z+FyKizu9rsgG52t5HXbRGRL5q4509PFY0iWIG8hhrYB6riIxcXSn9f3NRa+aCHdbZQ1n0Q3eOLc1uTUqvQdpfckQO8nek/0IMmT4k5fszSx5KbWtU2zMrIdS6dp9Ql88FjaueWXNEtV92pZu5s985yYzIa3NQ0erK3RrBkKsW8AhIbglxPrckdIe9VyhUYKDmaHMNHEc6hBwxdL4XTUZjzEsOku+uZPNVirFvZXx71tEJ0ma5+XhXfeeY80RQ7Hif1uYp4i+13CO7Fz13C+EkMBF5AQKFXdyETMMME+PJq0lxqLYu8ZfY+VrbGQZrqhVq4ai0vzIRZI1jNUpFvTyodlXgwMDAwMDHz0eHT0osOpoFUa0jxRHBBps4qZaSu1vEtZv4Z3DQkJCbe49L0Q3yLLW6xNOOWV47Kyrvqn5kJdVTuB0T+80TM6+gRWsLyAJtZYOKNUGA3lyu52mjRDIcaIE7c1FmCuPeKR5ijFcc6oR71Tm1dcZWIhuMpM1dtVfeyGp7SJXAJrcZwWDbjLpSLOBMNNTEjuSSHigtctixOcb/gushQ2sWmMUSfr3l1RZYxiZNsB5e8nJZlYIYeAj8GSipV6k2JgmgJrXTUnJOt24nw6UdNsrjY7E+tOmnMePTeHHfs5McVgXPlCsaai1cpyPm8bpu571KeuJRebvlqhaUnYNzd7G7prcFquhdN5xflIzepwVdaFtPNb4akuPk63TNNM3u1Yz2ecgxUt/pptrS50qD7c75UhtrFYKPmMtGQOYd2WNWzORa2xaSa6vqGVTLFk91orDeF4PGlCe8lKQzPKVQwBiREX45Z9UlyGaung3ts59NuEuRmtrNPGatUCUjdLFx1Cp0Fd08auU5x7Qd/MXaiLg5Um2E0NlEImIWrhaQJusdcOp9QnpOG9JmoHHzb76BQDtTlCmEhrIYaKLGc73q4faLbJVFqXSohF09a9aU7MulmsGU5TIIiDVlmWzHlZWdaiIdLeEZM3ChI4Z4nri2PeZw2ynMLWMKlrlmeWiSUH1hyhNXIJuOAvgm5rurDcGd8qxc4pRpPq3gG1VSTDi3pHCIF1mWlPbgDdsDjXm1gNX/Su6rYpepwHb+J4QWhmUevMVGBzkmo9idveZ63ZtVCNymXNQ60XypNtQ3pD8XIzsb0RBgZeC4+5ijoJVVCtz4Nu4/qnxKuJ8t8cD02afi309zYv1yIferPNCP/haDYUkEedcUU3bHjYz2qeVXvk4OGxz+cTeX0Gvi3xyIC8WfnVLuI9THNijpF98kzubUI5Q/46Lr+NpzA9+WHEP2XlsxwXYTk17u5fkHNhPS/ksmwc9uA8abcze0Yo+UKtWRalP3njeLuQ2O2nzd7WGUc8pgm8Q5xnmnZKm/HKpy+tst9NeK+T3uNZaLWRy505NprTlBP23uHIOM4Ep94qa/OsGXLBeNyapltbVm0oF1PU4LUYTLMFiFkgWK0FxFEzcBSa9MIrWOHaWM7HrVGKSSfW+/2em9tb3njzTYoV+Xf396zryrIsm7YlBc2UmKdE9OCpSM7k8z3L6Z457pludzx98oZS0/BUl1TM2mDnhTk6njzZsTNNRT6faFXduVrrG5T1UtwC4Myty1ZI4tgCyXJlzWe9LYATStU/rTYkL5TlzFd+LXE6vuALv+kHzBQgqOZDGiE4pilxOBxoJbMsSvPKeaUWx3nRLZKjgfNEMKcfzTUpZSWvJ5bziZojrWSmWYME53mHGYixHI+8ePc9fu3Lf437+3uW5UTJC2JNnROlyj1/7wU3h3d5772vMU073QD4pBa8u5ngNUSumobAGUUtxkg4HMyUIGuzSKE001h4bRrVdlU3NjFE5mkmWoJ8jJFSCuez0n90wq2C7WSWt12/UWvFOQ12816bzO4qlctqbmEWvOd1a+a9N2qUJqDrpiWSYiIkdXGap8iaPUsu+BeFI431fGkiwjRtRW5zvXju+pnAPJt4ewpkCTw/VY73dyznhecvnqtdtddto/cBVxwpKqUvhaBT/9ao0ohJmFuypuYEPCdGz+2TPYd55naf2O8ipQbOZVbaZhXu7k6aMn5eKDFQSzEzCG2IxIp73QToc5Omn0HLMXF394KYEm+88ZSbw8wbT2+5OSRSTGazq9THXVQb6l2aEXHU5liLNWBr1nTyUliWxYwOzM2sVnKJ1mgUajMKVMkEe1/42jUWV6nv3U3KXouBgW8VIlqClrY++EqqYtcq7cFNQtcS7ZpuIB+C4ALJT2Zt//EVsMEFnqRnrGHHru4fdJuGkHzSRuER78G7ooGxua0P+vnO6gBY6vnBj8MKU5hY6unBNwkumgYvPbjB8M7jXbA4gIHvJjyqsQgxEEM0j3rHPEcmX0j+DvLXEDlS5U6LvPAECW9Q3Q25TqxtYSmVNWeKBZl1RxslOWHCa00j9iHqVL/5i7UmqGbCe6JXbrb3QdPAzWUGp9aMU1LXm2tBb6kV18SoBUJrOuX2Tu0kgy8E14geI8ToY9bmOC2Qi2hqsaDUGTGPeo8Gihl/IgSl5nRaivMWCCZsxbk2EioGTnEyNyZHNjrG5eNIaHWiObf59jfLsvDOGcXLXo8pME2OFIXoVpw0Wl3V3le0mBaMVoOnmTWwLlEcc4RddKTgcajr0/W0vm8DtFkSEBUpq2d/p6bZ/dvGolOISr2ISkvTMLNmk3mHcD7d47zj6Ys32e8P7PYHpdahTZNy9lXULa2xhkBrulHx3lvGgrN06qQFf4gqhjbxrh5r2zZAzqGNrXN41EbUScVLAzEdhGBN3qzXpVNx/ZorL17cs983UkrsZm8uY93u1Uo770GMdoWgkQbNqDNqlby5mHUrZ/tlUWxb0kxr1LcgIBawh1KpjG7VNx8Xe1kthPsWQyfb2oxfBN8OkYiEoA5KAaqr9gvebdP01polQHuCE6bo8T6xlqYmADWTq4U3bmLjppRBtMnpx4SonmBdG5AR4HjUQn8t2uA716jits1Sil0vZNIjEWYJxCSIfYxpInigVDidMiEKIRSc09dljqrXKLCFCmrhHmi+oXa8opNJp8/VJN70nhnUoa3WBq5wXlY9vrQSkw4u5qiGEK01M2jQzxfw5oblqVU3UimUraErpRBD2N5zIXtq1c2FbqMq3oeNvqaUzUat3rQWTR3lulC8jcZi4PWgwZuPKwyddxRrxh+CKlDJNNrD1yPO4WnoJ/fjNwMPhUijSFEDlUc8xhxmqtRNe/YQFGNSPHgz4iCIhZ/Kwx9nqWdyyyx+efBtgjUIh3j74EYu+Ql/lS828N2DxwXkzYl5VmF0iIHDDKG+jc+/znr8FUo9UXwgzt+Hnz5L8Z8lS+S+FE7rwrpownPn+dNTer0z33b9pe2cefA7PTzdDOiE0oWAC4E474ghMiV15wmxPxXjR+NtMqvuPl6E0znbL1w2d6H9NBF8I7hGchmP0bHE0Qgs2bMUeO+uqgNQ0awHta01K9uoeRC+U0fgqrhzJiC+0IOKCUl1OwHhFqY0EWOi3mUVeLZmOR2w5pVSC8u6UIo1F0UtKneHHVPSvAIfYYqe5BuBM62u5OUOSsGLcLh9iyqO82q0NVvxKlXL83R27IIwec3tOGcVZ2+aF5ROo6JbZ+fSnpMr4IwH3xrFBKWlaNrzuq5b4VuNBuKD38ILj8c7TucTu3nm2RtvMk8Twagk0hwiAZjYzTMONRJQSyzB2zYBHMkE8Lc3t6SYNPG6ZJpUbf7M6akVTwNKUFtegmi8YXDs58Ry9mTn8WlSGtA0mZbeEYA1N7729Xe5vc3sdjMhTCa6T1vadgweJ57mwtVnqxWBqFMS0pDQ3Zp0Ut83XKfzkePxnlLyNu0PweM9GzWuZKGU1QTWRYXB9lrpbbxu+hBK8cSojUXOJgxu0JKmpTsTxjfnrdB2WzPYzFWJACFqkzf7QEgTaylMc1L73toopW5NZRHNcFsXzVVRLVUhi1ieSNUNZilWwhtdrK3U+/ut0OjP23GhRM7nwjTN5ArTNOv2ye+oIrz9zhHvF0JovPHsCTFEdkbvcuI57Pea2G3ibodmypjsBic6SdUPJaN2mJan63NE4LRkzZxpHud3NGb2NwfdMuSzGhUg+NA2WttEpAnMFbKJzNd1pdRKLus2dFlXDYrM+dJYZHNha7WoecH7hNs2KW6CG5PCgddAp/hNYX7U7USEcz1d3j8fgtzsdwxmk/ygB6mUljcL7segmS7pIahSucvvoaG7Dyv4HY7kZ6LY78UHwjUjUMnDK3GH0wbmEY3F2lbLc3r4bao0vHN8/vCFB28gbtITYkgvbVYGvjvwyIC8oMnLMRA9pHyHlDtKuUfSm5C+hzB9hsoNa9tz/yKz5jPH5UheCqVYcQLEFC8umI6taN2sGdEmA2xiHALJe5xZek7TzJQS+92BmLQYyzmrJqEJOWf7AFHdgneOKe20aHAFJxUnhckJTgrIiUqlihZgpcJahGz5E7nolBVMFBtVvxFTtJwMtXTtomq4TGmNpwMIOa/kdWVZzuZA5TifzpyOJxANHYwhcTjc2NbGq5DAOUKM7HaB4CG6TEDdjGhnpK2s53cI2UFwZFFLW2GHnw7EFDg3T6mNc656flrD45hiJM4JiZGGsKxH8npmXc92/nUz4mxb5HBbQ5GvnIn6ZkMF5krb0Oe6krMmjbvu0X/FJXUxmTGA57xkdkum5Ix3ER88ndqBFbjq7mRZBjEwxf7hFZinHfOsf8Dx/L3nrMtCq5XgtKjXQt2BE5KkjaOepsTtzQ1f+MIXmPcHXtzfs+YC3uPjtOWXdLvYu3PlfnmXFCLrKjx7+oQ3ngbmWZsLZ9oDac02FbJZg3bRdm9A1WJ3Yrfb47xjWU+8+87bHO/vqGUl2rZwntUhLXhtGLxnE/T3ZGycbnlEGnktlLJacngjpUoIUd8rotOx3vyCbtQ0xE9fp75105fBthCloJs+z5yiuXfB3fFMrYvqcUQQE893iGia/ZpXWtWgQtVkX5rUYhqILkzeXve++ujEbec43h8J3vPeO2/r+yYm9ocbUprZH24QSYgE3n0PUoLdLpizWOD+/oR4gd2eKWri+f39vTZrZTUTCbHkdrO39j0Ysm+YHCFN+BBpeE7rCkfP4XCjW8Q420BECLYJ83617UcgxR3Bq/10jJM67JVEKTttLGZtMHK5iM1z6foVTZlv9npIP2ebU1Sj5vSYj/eBgYGBgYHXxuOoUM4ToicGiDR8PVPbqtQc/wT8jha+h1wja/XcH+9Y88J5OVKLWE6VFedBaR9uay6MAtKUrnEtPPTeq51j0CLeh6A5B2kiprQV8mJT0taEbO4pPlzoNDFEQkDdW1rBtUqQhlBokqlVBbw5w1pgWZt+z4ok580lp+dhTIlolKs+xXRgAmquONpX1KArJ5gQ9ed0wqsFpzYqXi12r6gxznl80LTjKTiS10IlINR1pbYzud6bCNTR2CFuh4QEbgIJLFmLlGXVgr+1SgSCJCSqzkKcTsBzXslZA8oC11alSnkSxCasZXOtuhYgN1Guum55LJMENDDMzodH9TB0ClPQ0MK+qdEXVba/rz3/VdetU34VHIP3Pf9iIsVE7lqEPsX3euxNrqlQdRMnBx+YpsTt7S1LLlQcfl31tQ+J4NWhqZZCKZl1PdPyQgiZw37hsD9wnTiONRYYBen6Ouii7U4j82Y2kMxaeVkXTqcjx9MRJxVpEYmNGL09d6wxxfj3jZ60vL0fjPYltVGrIwSjDJmLFLirxs1ExDSkCs5XpbU1saDGy59WG95XpHm1dXae3TwpLQhtTGp/z2x0wKsNStHrzDtRqhgOX21raZRBREkOXdDZNmrPRR5aRJ20luW8ZdWUUpjnPSnN+DjjJdBEszdighDBITiKUh6tMapNQwpz9vjVUXzQa9SStBHZXKKMdLW9L/t7/bxo03B/OjKlxJyiXas6WBCaDSfUfcsTN9c7AQtS1CFKbY1QlAoVa6XEqO5iJWybwJovjUVvKvRzRKBV8iPEpgMDAwMDAx8FHifenmemmAjtDtfOCC9oPtHSF8gcKM1xfO/EuqjY93w8GT94RZxH8MQw2RTTbQ2Du/oFGJMWVjWXbaLvLVW5trJZeh72N4jAcj6r8PHKhQaHpu6mwDztOUwTh3kipYYmVi84MlApNVNFyNVxPMGyCsfjcZuop2lHiInb/Y1ubIzn771+3RuiC8ddrUN1cp83d5zVqCcOwXvH/rBnXRakCd57Drd75nlinmdAOesOdbnazzt73onowNXK+XiklTOtHGlNxdRZ3lDHKYHdzffiwo7GjuP9HafTkefvvrc1AdiWaI4BZGY3B5siN8q62rRaaV69cQLdwizLQs6Z8/lsz7GwnM+b5WytF11AbeqkhNcMjVLrphERNHRN8Dx9+hZPnjzjB37LDzDvZqYpkS3Nu0/3u15CBcoXt4457Uwcnbg53HC4uSWlybQdxlsNOm0W5biwnE+szlFLZn+4YX+4wScVMceoAWwxBi3umqgNrLl9LcuqVJdaCHiSn7i5ecrh5pb94UBdF1orVMutUH6R0cZK4Xw6ab7HohshbzqcECM3T25Z1oX3vvo3eP78XZbziRg866o/ty5nYlQBtPNKS+oTfrAm3GiA1TITusYixqKOV2veslIKFYyGs2lDGux2zRzVkja1vhJ6w4yorXIp7J3Dx8hhCpyS5+Thvffe5f68cHfK3NzeMu9m3nz2hCdPnrCbE8v5Xo0M0I3gsjZePD+Tc6OkggtXm5iq+S29QZdLy6lFtIg5rWm7cDwtaoNbhP3NLbvDDW++9SYhBgqV8/PnSF3Zz5EUJvZz5O6oVLnbw45SJ22+l1Wvn1wutq6b1WuxkEpBZKFv1J5LAwdf/fUvc/vkljffeIPb2yfaZDDZBqbaudTBQLPGxXl1zdrNExo3Gmky2xZD6YS1ido+N7V1znU1auVFaK5Nhupu1vPxMR/vAwMDAwMDr43HNRa+kFxWPrKD5vfU5ikSWVZHzo3zMZPXrL+QS7MpoxYkKsrEqBVmjao8qE2w2ukcwehL3qZ53jvSdFBHmZioxYqknI0moL/8+1Q9+ET0gV0KpFDx7rSVJMFFCA6c2n2WIpxXFWaXKkr5AS2+fU99Np53F4iL0q2wLUW3fVSnnmJTRaVmbZkc27TfXUTQXhsNaVCLkF2l91l6rhrIgqNquHbNavdb79RCtmVac9QGp5ytCPRUpxqW3M6czkeW84l8Pm3bgxgTMQb2hwP7/azBfC7Tk3y9d+ZwYwV5t7ZsjWzi+95g1KL6jy7y7TxvqZeCt6dRi3FBBb3/aZ45HG55+vQZz569wW6/JwRvU/1KbZYwbZQreamANipPsGvKNlma0eGIKXI4HKBl8uqRWqBAc3oMrTWWdVVxvXNE9Dy2bvPZKpi5gNqkqn2U77axpbDfzRz2ez7zmc9we6NOZLQMxSPeXa6LnvPR7WtNu9K1E1OKFgworOvC/d0dzik1LjgtokvRaXS0ZuIiqr/QqsTeZ/091+1MARMJB9vaWeaHXBK9VUyvdCjv1fhgmjSkLkroMmbTkOjWJeeVIJWQJlKA3ZTY7WaKOJbS6Y2ONTda0y1YyQuIsJtn5nlmvw/s5h15LdwfT+hOAWS326hZ2YpnnB53a3JxStqsVkUfD6eN/brivOd4n4wq5bEVJOfTmRAKMelGKah4Q9/0Emgx4Z2K94t91mxbm8ZG3ZJWlHLZtOmFRl09rSzUfOZ0f8c0zdzc3OpQIkZChOYFRK8vQfC+QQiId+oohSe4hA8aYB6DmkVUiSrobo1cow4Cun6rtoserVQ0bWdgYGBgYOCTw+PE234lORCnYU85PKWIZ22O01HtT0/3ixX95iJEp24oz7xTOEKI+hvTvWwEUWvFAfOktp3OOUothBC4ub1lSiqSfe/d91hzNq5412IY5SIkUpiZYuAwBYI/493Z3HkSzt/iSIiHujbWVrk/N0putMaFXuV6qJgzdxctYKWpB/S6rhuVy/s+JS5XRaRy0Xsj5Z06XGHUjl4cB6+Uk8V0KDF65jninKaBiyzQJoIItdzR6pna7lT8Ko7aJnIVXhzv1fY0JDi9oDVYc6EUFWHnc7awLgjTxJQSz54947CbuNlP+PN7WzMQY2IywbJIU/vf2raCbV1XlvN5E52u6/lKL6CUlh7m1s9N/9MnvNM8s98fePbGG7z1mc/yxhtvMs+zbUVOFNsK5FWpWaVvfUQ0M8L7jV7VN1tzSkyTvn7TlHj67CneN9Zz5Hy833Qezly2zuezFWmZgwsakFc0v0Jqhpo1fyEm0jThQ0KcoxXdRH32rbd48uSWz33+80QPwVWkrVrcS0DM1SmvKsDPa2/GuiOaJ4XAPM/M86T2yqczz997TvSBMDk8wvlcbdu0bC5E1+e1b8uCmGFAdDbJt7PddJOmHgcO64+3zYam3bM1FmKvnwqiPdOUtsain7vWKnk9UWtgckIKjpv9zJPbJ7iwUkgmIPacTrp9ajVDK8TgmdKBm/2B29sbnFdDg7e//i65YNStTgeE03mhlIoLaRN9r2WltaK6A2s8+4eJnvMzrWWkFlJK7Pc7UtB8lOPpRAiONC0WJhkBzY8hOJiShgYK1sRdXb+CDkyk0apu7Eo+b8GHIJzvPS/ejUzzjmna8eZbn+X29im3t09Ik1rSllwsVM9oYaL6KdDXJsRpyw+BgOb0TDSBUkVduFqzUMp62Za2Rs6jsRgYGBgY+OTxuIC85SvgbiHeIn6m1B25rCynhXU9qSc72NTNg1Q1g/PTJhINIV6m9/a3896E1sJu3qmFrFnFgvD05g2zEY3mLKXT8j5pDUbriLMKOGOa2aWoWQ7uDsQhdceSJ0QCzflNfLyugVodu1RxU1CqUtSgMLWxnXFOg8G0qM6cF80Q0Kbmyq+7C3V7ddNJ2dvfWqClNDGniRhVFJuSN963uhI5ZyJfKYhUgodAppVGy4VWHfk8WXFVmA+R3Rzx6cbyFBKn+xeaNuwDfv8U5zzFQgWrNTXBO1xdKWvhLAuhLLiajcJjWhgTz2bLseg0CxCSZSq4VjcHIW2o9BzoxklFxrU2K/ajUawib771GW5ubvjMZz7Lfj8jUrh78fzifiNlo3eoYJutoZii2+hqoWsybCuS88J7772Nt3yT3X6vtJ6UWM5nzvHI+eQhF5pN7decCcsJcV5F58uJ5XRPqYL3UakqreEC7Pe6OTvs9nz2rTfZzzNT8khV17NWsulLVvKybtudWotpUYolnutGLDjHFAMxePKqDcPtzS0xKH1szeeNLnh/f6TWzPF4pNvBni2QrtkmKoSAC7rNiTEhtdEEfQ284AObOxfWaHnvbWvlQbrmRdO5G3rNSJ/qO4yu5ClVX38QCBMxRG4OBxqB+6WxZg1NbCEoec1PxKCZH8uawd1T6sJ+p1avt7cTKR4IceZ4XEwTVHjy5AbBc3dakNJMRF9orTc59t6z51RZqVl7pdOL9+xt6EgpEmPgcHNQ84VpptW+PVC9zRQjKUWExHy7p2TTEZ01a2JdF3O3WylV7XL7hq21iqA6lJ6JsZxPLOvCvHub3f7A06dvMM87bm5vCV4v2+AdqV40Q955WrNtqQtXw5f+mae2uE08K5XmAy16QtD3WowVaY9z8xkYGBgYGHhdPK6xqCdoqgHABVrzRh3pLi5mK+Y9XTWh7j0BTzDaysXXuKcBq6hWp9wxJZvuX7jU0zTrdBYtaos5toBuP3wIapmatLFQAW8geEu3FbUrLSXQ8JqMfVWMeBo+NLO09PjglGM/RUKYECLrqrSuImXjrtd6ca/ZGopmoThOtPixzYemKBtdJwbmKaqY1MOUIs6p/iJ6y3qojVaV/kBrG6+9rMUoD45aHa1a0U7TpknAbXqEAjQcyt/Gm0hUoLvtrOuij1McO19UzC6mtSiFgLn15EyzafbmbAQmrr3QRAD7b/DRnj/eaHAa4jZNM9M0cXu44bA/sNvNeMtW6ELktllnXho37z0ETEZzEfb6i6pWt0GWDq42wJpxEmIkzfNGoylFxc7VCkERzAZXt045q8C9VsFHwYWETEpb2+1mbvYHntzecnvYk2JE6rJZwGq6s9F0atlei7YlKGvD7Kzp2hoj0ewKJ8KUElOK9mSVdldKwYfFdDvNRPBCz1RpRkXDOYK9F7soXK2A3UUsfGWO0N9pbmv0rbg1K0ehGxjYf3WTAue3YMRaC8HrJD7FSIrVrJerBQtaDof3RNNQgChdUDIOpa/1RWEMztK5G9lphg5OhdVO3JZq3wX5Lz0XXbPZZlF0a9FEA/XiJfQPHDFqenwIgWi0v+CE5lH9V4hGg9R1js/2OSSNJg2Xe4q7N6eoK6G3bTuaCHI+6SbBHLfWnMGZfXBwpKhOdM5VYtCBQxPNxKFf3g686w5pYgtfITjLAnKChC7q90xp2M0ODAwMDHyyeFRjIXLCx8/SwoRIIq+VkjUExodIcmH7xScihNgdYbpjktt44E2aeuc7R2mVKZgo2rgAtRR2847dbgdGITre32vQGkpXwibWMSV8DMzzjhDDdj+CkJcDtSr/WNqiv4iDbQdcI8YjjkKgaMBVTLi410LBR22gpBc86qKzm2daSpSpWopy96pWDUHJOpVeFuWLOxe5uX3KlCb288QUHTFkaCoSr262BFHPab0I0GkeaZ7z6bxtAs6nI7VWplkLpLibefe9FyxL5u64GFWjGX1LQ9ucj3gf1cEnRmKaaebedP/8HWKA3eT53GeesE8BvDkNrRVsCpuXhU5iqkaJWtaFdVWaVal5o8ysq/H1Ub67amSCTbNvuL295eZw4Pb2Vm2Hm1KpuhgXLs5GoDob7wPiPC5evk93YKqdDqQOSKXq+XdmCzzvdkZl2hHizLS7AT+xLgs+3FPN01sspOx4OnE83XN3f8e6ZkJM7PeVw/7AYUp871tvcnPY8+Swp9VMWc6s5yM1r9S8UspiE+xCLasGIUrFOyGGSAy6JdHzNZGmZNQdzXjBeU1P79ks1hB6ey2XZeHu7p7zuiClMu/nzXK2iOBqxRdN6U4xEvbBzmkP6nObHiFtrmZOtzcIweljxaiW0CoQzpSi79fYzz/qxKVNpb6nvTR2UyCXwKTsIiQ6S6VWAwKl9gjLurAsC8f7hefvFbtOPLvd3ebO5b0jRtR9Thz7fcAtmuY+J0cKkbpouog9M2vS3KYXyrnSKFALJZeN1hdiIk0zT54+Yb/f8T2f/Yw1N0KtGSkFRAhGHZOkybMxBWL0rDHiceR1BQLBzAaU4tbfLZcBSS2VWo4sp7OZP/w607zT7JXDjV2j6owWQuBwUEOH/W7PbkrE6ImhgagGKCVtZKJftuFO8KrTaMGRHuGHPzAwMDAw8FHgUY1FrlmpTqIOTz5ASJEkygVutaFDTnNmsin5dThKpy91GhRokJgWQUlTMUW3FKp18FtWQufHxxhtMnmhUjnj2zfjX7eqydnUhpeKo9LagnPGQ7dhehWPtESWxLp4WB0NC+tyDVgQcXqfNj3vG5NOwVAldn9anhCSNgoSrLbwOkVEz03VNQ9QtWFpFZwe1LVmJHi3TebVAQh2h93Ggc+lcVpW7u5X1jWznJdtg9LPi1LDhBi1WJRmNA2z9IxRRbcx6lalB3/pkTbjxZeNOtM53c0cl6SnmOpqaCuYuyh5e419IMXIfr9nv9sxz7O6g4mQV532y3ZtbP+HNmbX2hxvgmC2rVOzzUYXSgtAUb68Zgf4rdFxtj3a7bUJdV63AbkUTucTp9OZr3/969y9uCOvC8555mni2dMnfOatN3n27A1u9zMpQM1nalktcG+l1YzUihOTTnvHlFR8XUPofdDVZkdpXP1a0tfMnrmYHscppWmaZoIPpDSTc2ae99wfj0oJFM3BEBGz163E2AhbwW/aCCyDxbvN6esSoIe5ljmQut1Gty5ON2Sl4B3Uq/e02HReNy/gvDClwG6O3B4m7qkW6liMIlcouZsfrGpHXIVGsPeWUE+FZRVqPeF9BBe3cLkUwZNwqCaq1oa7PWw6E2VDCbWosLxbRXet0/Y51DctrSFSOd5HlvOZaVJt0f5wo1sN08g0ETxeKWAhEtyBedoxpVmth5eFUlYLr3tl2/aSuF76VQ3olqnUxrpkCzlshKBJ3GvOhBiZ0j27edLMlhRs+wO7pPQxWg+IFHBqIyzOI+3h4VwDAwMDAwMfBR7VWJRaKVaQigv4AFGSCTq98e8vzk892wHX3XF0mrqlUXeNRNAiNMZIXtVpaZ535sLjyMXErlz44L3A3CwyO52lCq0Vm5U3ghScq3hXcHLCiVINVEnu1WVFPKUESw4WstEzdIKr995atcm5vzjEmKsPFhrX+QrBqxVodBfBqx6n3psW632K7XDSECeIq5zXbMJQLdBicEqrchBtwi14jseVvCzc368cj8XSvK/CxcAm0iAuqPOR1R6tHz+OaZpJwTGlHu7XX+2+eap2n9USgCtrya+IsZ39rNsaC7U3veQmpGlinib2+z3zToXKmwi4lJcaouspL3THJ4/Ya6+NAlRRWk6jZ0NUuguSNBPzmzVtqA3voqXGJ91iJH198AuNhfO77/HixR1vf/1tzsuZUgq7/YHdPPHWG8/47Ftv8PTZGxx2CWmFsp6p2axnS0GM6tSn5t6sWJtdM/ry9/ZSTMB9VXReNRzOmqbudjXFBGlif9CGY7fbk6aJ0+nMsuatsViW1WhYsjWgrfY827qdzxjilnzecXGH6lQfURcltLErJevGzxqL6z/BnNOch8k56hS42U+UvJjj2UpzQs5s751aKkriCzinadRLzpB1ELBmbXznOTLPKnKfkiNGx5T0PVBKZTfFbRO6ZqilcT7nzVFK27xOV+pMqaaaJdNAALz77nvs93tubm753Od0iwhGb2uVNO108+cCc9oBnnkur1DnysWi1nJreiijtGqDE+swuWwA17zia6DWpltb52nn7ianW9IYI/OsAaUpBvZTIDg1DIjOvDBUuAMhqFB+YOBTgP5GeNjGzD3w5z4QV0O9R9xoa/Af9pN97/54PPS5bQMH94qbzUf4GN/oMR/2s40m/lG3GfjuxeMC8va/iea/h1I1rKkUC49CJ+N9KnjturNN9ft9GP0J2HQYMWlCbKl1C0gLIbx0W+cdwYWtACu1otalQq+GtzRi5wlocUI9UupKaysetdGssmc5CUsWTstymcKblkELbzYufOc0azPSw/A09Vk1DbLZ5Do8LiqdIc4zPiodx3s9vpv9Ld41nDRO57epNbOaexQ4Jl8R3xDJpDhbavisxdJaqFkpK1km3BTZhR3z7VN9w4vYfoMrG9JenChnu1ZouWyahynNxOhIk7fn1Uxob42F90hQUWioZpNpGovamnH2L85PpRTbVChPf5o0m+PmcMOUEod9bxjRBu4lPYW8NFUWK8T7xkFtaK1E7gFzpgXZ3Hr6pN22WyEEaNBKheYIMRslTOlBKc02Sc8sy8qyaEGqWp2Jz33uc7z5xpt8/xe+wO3NnskL6/HFtqXom5ZqYl0xy1GHZWegDdt1Myr25Fqr29bNB0+IkZjSlXbCdBSlqAYJmGYVSD97+oybwy2lVs1uWM7c3d+T0sT5fKK1dpV67TYRvJ+02Qn2ep1Op2170c9ho3E83m/Utk6pclJZQ2A5WYPnPIebG1yKOBeMjhTIuXB/d+Srf+OrvP3OexxPZ9acaa1oM9Etg4MnpESIEz6qA1Rrbiuml1yYpqIhe74Bkd1uxxwTcbfjsNtTa+V0Xuj1+j2ZVQpC28TmPk66PWxBN2ymv8AyTbbmKCSaeM5r5Wtff85ut+OtN9/g5ubANCfuj0fVlIlSNUUgV/3b2XMhBFxIm04Iy17xDlr1ODsHguhGQSrOO5pEE23PxDQTU2B/uLGcl8sWERzrWjidF95eV2iCZY1un6XONqStLI/5eB8Y+EjgnGMKuwf//BmoorTDh7L3mujvt9Ie1zwLjXM9sdSHvTdKK7y7vsOT9ITb9ORBtwku8CS9gdAoj9waBqlcFKofjugiuWWWsrykm/tmeL6+4FxPvFjvHtwo3K33NIQpJCY/Peg2yU/sw+FBPzvw0eGh1wFAbuvHcgyPaiyq3JBroFShSnnJgrHzt7tFLNZY4Drb+CJYdUZ18eYw04uchjkJ+Qv9ZZsumBjyYq/ZJ35izlNqI+mdpuo60Y2AtBVpWafKOKiw1syyNtYsnJds4XYa5NYLdFEhiD3zywslNlH3Xl5iULs+Ct3+CD6qADXNqj0J3pFiVecdAqEkPSvdnYdGcE2Ftk4FnSFGkEg1IXoVy1rAId4RnMe5qKLTrmUxIXTronK70JSSImYtquLP3ZyI3hnvv1qxe3nNtyRpK9iv7WKvOeQvU2O08Ewpsdvt2O/3HPYqck4pXbYdtl3p24q+9VAbVPfSMTTb4lSnRWlvLPqmomNzG+tHZvSo1pwFKPZXVLZr85KBMTFPs2ZfoM3S06dPub29tQ2LZlzUbFz6ZrQXayzEvkbatvnR47lcu01euaZs0l5bwzWlL9kFZT8iqC+Abl5qbQRzZJomT5KE87rtc96R80qMqsOwwAU0xdoTJs9swvkUI/Uq92V7rfWQ1O3LGlJMM7Ci1K0aNKU8hqjPP3SRsN2POYcVs4Ne87ols1crxAF88wQB3wTfsI1CwDttxFuTLWiybw3nySMp4p3fDBxS8BD1eZTacE4odcY73YaWEu31KkYDbBsVytv5wXXHOqWsLWsGHOdl1YZv0u2Ja8Ja2vZ8g1EwdXDq8E2orl/XFijo9cWsTj9/WtcE2evrmn5mgVCcJ+QeRlnwcqH+gYYTinT3KzvnnRoI5NovHKGuw2524NsfHjNxAR66fnA2xGxSHz5DF6FKZakLSz0/6CalFc7lzOQnpvAwl7XggjZKPGYrIPqcXqFsPuBmuv02E5KHYG0rS13JLT/4NtWGXP0YH4Kuqx347sOjGov7dY+TvP1iVOqKFRkpmbWo1ylr3wAY1/hC3Nfb+HDZbASzlm3NSAtep3ByqVvpPv3dkagXhJ1yE4JnDoAstHqi5TubCAqtKkXqtFRyqRzP726TR0TdYTZav+sF6UtdAph7letWul7JVvp9fwn7s8wLXMX7hZQmbnaRFBrBN4I/I8xUOTDPz4ixUtxzpC44yfigzkM+Tky7G0LccTqhdKjQtFmSRqUHxUGKas+bptnORdBtjgiO2uNCyKUXfGWj7OyN1lPzQs4LRQrzlfNMLUpZyeXigoWd+15U9WJZX4uLpe6zZ8+4ubnh5uaGOaZti1XKqiFxtWzXUddqqK1qby7QDYxUWhWKFebqQqQbk+14YNuQxBC3j7PW9IUWKUqdatXE4qtS2EwHMs8zn/3sZ3ny5AlPnz61c+v4zGc+wzypa1U+LywWagYqTW9Gd8nZeO6t6zzE7kOvG21etanzWwOodMBaC3LWwLZrzRDoOWibkxTI0mwjhG1VNIm+Hvbc3B7Y7XacTifeeecdo+csiKVq39zcqGNaijTR7INglMRLg3cJzAM4nws1BFotrCi9q+duMM3UkrdAw04XqCJspXfA3utCcKZPCAFsCl/RTSV1Aa/6pCl5gtfPFRFRa13bvC3nE/M8cXM4kLNqlN54NjHNnnlWqlSuM8+ezaxrZs2F87JQTcSdc1FKZ+5hkNZsdtqjqAh9WTNrqSy18eS08OT2li98/vsQEd559x3rRRxp2msj1recgtpum3vdlCLNgjPXvFiDpddHqw7rGtV+uFTyWjifz7jgubu/0xDJaWeNo14Tc4rsZhV8Bx/wISqlTOD+vGgqd8nkMn6pD3w6aKKDuociumgDt4dds70ZKXKl8/uwY7L/wcMLftHdJ0td8PnuQbfpxXRwgeAe7swWXNx+Rz4UuWVyWzk/sFECOJcza12ZH9goAezjnslPvDG/+eCNxex3BP8449GB18djGtPgPp7X51H3uqwLUS4ZFMHoEP0XXmvNCqiXOe842egWKYRNq4BNc53rE+hCSmHja9OuxI5Ov+edwwVdmXrnN/vW4B3RnZGaqe1ERguHWuG8VE5L5XTO1NJYc7GVqwXfOWsQ7LlE35sNpxuKrSCKVrj3LA6lVnnvLX8DvK+4+h7IichCIjDXSSfGJHbzG+B3iNuRo1JpVvIm+sTPCJ6cI7mCuEKpbptupug1QG87fZ0qU5Gaaa7hxFNrxjuYot9yPoJ3arNaioYctsr5/p71fOJ4fIFrC9E7vueNW7pq5Dp8S4w2EmLcaD05Z3vdGyklpT3dPGGeZ5v0z9rooPSTbr+qCeV1o0IpdNuxFXnYTsSmMl3PIZgOoFYtSrlwUzMrzZdN4K8bISvKvWzXKD5cEtZtSjQbjz0ZNc87x26e8T5s2yvvesGvwt/Viki1LdamAEtmbq1RpUK9CP6l6XvBee2cS6ubeLyL3btQuTfQbZtO6/mpVbmu01RpTe2VHSoUvzkcSFG3QufTmdMpaAK1NSJdt9TqRcMRQ0BC2BqMTj3rr3HzIBJe/sDaNkGF1rSRbVJxoloi5x1pnjRxetqx5qLvKLsWReBsRXbdNCDq/hV8wOMsPVo1Rnr9agEfaiPXQkz6vl+XFeci0TumKTAREDdR20StoiGRVTM1cq4mli5K56zrRlNrzRLXq2mfnCNET3SC1Mx6PpNS4M03nqiWS7BtYc/i6ds1rMmQjSJ3Op9Ys2aaxDSrFmPNiFT7c72BuMr3wW9bGKVyenKp1HrieDqxmUX0ZtR725LumNJoLAYGPio8tBn5Tp7Sfyc/t4GPDo8Tb2cTQm95Dzp59TZebmIpviZSbFUpIT0fIsa4NRabyBCdbmi4nLrOhD5i54ov5noehqg+wAqUGCIpOvVyl0prGUFpUE0apXqWtXI8rpzP61Y89fwMpaF7c4kyQXiIW6CfqICAmHQKn+JEikkn6ugkODjP4bAneiG6hZYLUk74ek9wjtgSzs942ZFCwoUIXulRtSgPu7pKcYALlBpVTN6E2opO1p1mXsRooVlJw/xwcL4vxslXqgfilV/tHC4ko4gpj19qg7YiVcXG5+MLjsc7Xrz3Do7KPEXeenJAvMPjLG37lSwJp5z9PleRLcNE3Ytubm6U/nQ4bEFrGN2pNbUn7oFunYvurluJjXp1mSLrX6IidPok36bsfY2sXQTN97T3ntlwEUe7phs1H20X1fxG40sp6ubHdEAOLtsPaZePVOdN0K4OZLXpVkjcpenu74f+Xij5SgcCeDuffRt0cdO6ypDYaGdXNDOjEG7fFbH3lxbku3kmhkipSrm73hZeu3Rdi8U7JXEzQuj/JmIbR7ufvk3qL4BR7aRrZFpDvG4pcWo3vdvvSZOwq2z2x9q4COF4pBQ1BOjNpcOmlmIJ4P11d0oWqE22iXyKurlZcyZ4qDGQ5qSfE9EjBIRAqY1ahSVXchZKFZZFs2hyXdWOtlZyPkErSC1E+4zywRO94KRQ8okYdjx9ekvOjVqEJvq5FFO0xgLwwc6T1+ujFG2ASmItCR+SbjTWTG3ZzBzqhSIo/WrXM9Kq0IJA0w1lsc1tqT2DI23ZHLv9TjN9pkR8OFV7YGBgYGDgI8Hj9iCtXdJunSPnThPqjkJ+C7cLzuEsdG7eTcS0x4cEtVJbIZdMjCo0LKeMtHsSz0myx7XEuSh1pxQVJEfncHFSfnnwzGEiuEZ0K9Tn0M6sy3OKJfWezrCs8O579yxLZl3XrZDq2wZlnl+FW4WID4mQdhaYFUnTREiRmye3Flo2qS0rDSdHPBUvhZK/jJQ7yF8j+KaNT/oc+BtqeEaYZsQHTlmQ9YjI26zLPSUXzqdKkUhlAh8RcbRSEVF6TfBCDJ5p0pA3nXhHdUaqAvPepq9ZG6qSyesZJ0LNfpuQt1pYTkfeffur3N/dsZwX1vORsp5ZlyPzFDgcdhzfesaUEikEpXx4Ffx2PQC1Ik4doILx6+eY2O8PPH36jGfPnjHPyuXvxbhwaUQQFa6uy3krqrpbjuNCE9JgN//SSl1MJ7E1A317IroVaNboOmRrLLqQ3XsVR6eg1DG1MnXbNqWZtWi1VGwVVbQrJypthLJpLLoI1xvXXp+nbXmMIlWvvm5NKTh+0xlhzceFXlaNttTF1NqsTZtNrCZjK+VqNUF2fx2CvZ+Ch9vbA9MU2e1n7u/vt/Roq/m3iXrO66ZJ6eeybzI07TziEE1j9wGCJ0yT6aCswSyVthYEbVzvnr/g/rSwnO41N2RK7HcHYoqkKWm6eYPD8UYpR+uFFoc1jNIuNrH4YDqGxnk5c39/x1e/urBLmo1xc9ixHnbUJkyrDjPWknXL6ANx0ut/ToE5JSDgLMm7EVjWzLIufP1rX1Z76lY4zBMxBKYpavEvZyQvVGbKMRtVS+2hHZ5QE1QVWqfd3miRkLwgSbjZz9SaqG3POcNaqoraS9nSxVW/s5jTmFo6OwGcnQ8niOiAxgcLFtUrZ9PD5CrkmjmeNVNlYGBgYGDgk8SjGotmk2ZnzYR0CpEVVd6x0ZiUpnPxye9C7FLL5gLUWtYJbj3hWPC+og4onlyEam5LwXVOvzNrWkcIGS9FQ+bKiVoXlnNhyVWpT2elPiyL2T9WFXB0kbWKxRzOrFhDsAC5kIgp2iZkYppnYopMSZ2ecM74ndo8eamqO2lnRFaUXnWjlKbwDHF7xM3QnFq21jPSMiILyzmr1WTxiAuID9u0XhsfE3KLpnDnVafkLmScKyZubaxZBei5Gs9fGnU9mzgVYtICq+Qzp+Mdd+9+nePxSF4zJS9qp5lXivOU1ZHXBe8E75LKSVB6S9M1AWDTc3fJQ0jTjnmngYaagN7T07Vov0zINTegXRXbfeOBbaMuAu6usVAxu8JtX79qldpc589eJD1wsXPV+740HP0uxZ6XNjnNbFXtZzDNi/e2ZWnkvOg8Wdi0OdUoWSJiDkhto4i99HetepzWAL1UyNtB9//uz7FWj4gJ/qM2Ja5vRa7F6+5aE6TNzjzP2nRl5e73Y6yt0E0UnfQi/sJw3jYwV7w0fU9fluHXE/Z+DgUVydeqhfKU5i1p3keP9w0XPL455uTxRNVT1WhbGDMeaJXaRI/BB0rRrUPe5vh27kyzpdqGRq1nXXg48A2qE/AacOedwzvLjnHZWsJKDBkJmV1qEMCLt/RrAUzTVJQ2tWahcUeIUSlyPSelFG2cncdlGyxofLYmj5uxrncNgiPQkGkheijRMYVEqYEcnGlaKqXUy8XsAZq+bk5tZn3/DKPvN8woQy42wwMDAwMDA58kHheQVzQVeHMu8AEftECKRnmZkjUTrpM19Le8WnEKp/MCNEIQyrogUqA+J4RG8kJzE0VmltI2UXBQ6jAxqFNS9BB4j9ZOrOtz8lIpufHieeN0rtwdV9a8qkizXILX+nH7Tnky4WNP4I3TbIFUMzEmZkv+jjGCt6JxLYivmtrtCq6doN5DPmnGXfgspO+B8JSVPSCIZFjukHpmPb/QjUTzLKvQxIOflP/uAojRgoLgnAo7c86sa6NkodZ7o2I7FYUaLaS2Rm5Vz7gIFOWLt1LY7WamFFnOLzi9eM47f+Ov6xTfijSRhqfSMmQPx/sXIAc7715fZ+81Zdy0BdgxpKT87sPNLfvDQQXCMalDFZ2nX+1Pp3AUSs3kvBq9x7ZIxrG/QDbKE2DiXtswGSXIWwF+0QRcNDlae6ujlBbruokIdjutwxsYD75ZEOO6LFabO1pL29EUsw6ttdi1riI2aW0Tt3fR7iaElq4TUppguRKbT+aQ1XUNcGlQLjQuYV3V6UlEmCxVPvYpvjUtm+7EvvbmFNXzQ2rT8LxsSfG5ZFQ6bZoInL1P9Fi9A/HQ10zeeTNnsKHC9Tk3gaOz17qWorqfWknesUuB3S7QpJLrwhT2hBCYozAFz6HNQNz0JbWulLJyXlc17vWR83khr1C8I00RP+smJQTPbrfD+0DOcDzfg4Obp7f69ESL/BZUuxNDxfuCcDJziYpvjUTl6a7Yp0RSjX9rLEthzY21COeSESm4dxZS0jT3m/1MCBB8w8eG97BWTwqJKSS8CE4ajRNQ8BRmYAJSbLSwozHT9k8oxXNed+q61xprqZeMjHymtspaVlwN2zbGO6ViXjQW4dJgPlw7OzAwMDAw8JHgcRuLWiE2nA/bGl4sz4KNFhPx1W12kT3cTW3hbOPgvBIs2oLIioRGc4ml7WhrRBwk7+y2YuFtjeQXpCgveS3Kz16WxvFUWbPqKEquxtm+eOVj4XDdoeeynYhMuwMxJqZ5hwsm3o7TRh/Son6llGLicY+bHM1VlnIP9QhtQZhpzbPWmXYsCM8R9wKkgmRoWUPVynnb+DijjzmcbQ0gr8tW8PSQs3XtBWu+8LidN/1Bn8i3l1yWaMZzd45aM2fvOD7/Ovl8slTyTjfyZpfqKHVFzgtf/epXORz23NwceHL71LI0Xg7H2fj5lnFwuLlR8XPoacDVMkFUg9D/1iJJRaylKq0pmstRb/wuwtc+ifeaExCC5qDgtmK6mu6gz7GVO8Lmh77Nt6+2A6Vk3UKYRgibKPepcmtlS4DvrkFimqFOT9J7vmwjlkXTw4s1GBtXvq80nGkGrlLRQwz4psfQb9dtXlWTpJqI2jylFoJZpcUYmdO0ibxVvwLiLo0FIjTT1oSkrmnB37DmTF4z5/OCNMt1KWrH3Lozl2kaHE63gzGQgtLIug5ERLn+uVTEZ1xe8dIQ51nOZ86nM8fjPfjEUmFpiRgDcTrQUJ3FfJgQIhApRW1Y11KoLVCJiNdtiScyJ4g+EoPaUceognFpjfNy0mK8CtmumeNyoZTd358JwZOiYz8nUtKBCNYSeXuuaXqCtN6gVYo0XqwnSvXU5ijotdkqLEX1Zsdztu2iEKI2vrvDnpQc0+R1q+mE5B3eV93Y2OsjrSKuAkeQO1LwpF1CJCF4qjg0dDKy5r1uKMXjfML5ZGkpgmuX6632YxThPFyhBgYGBgY+YTySCnUR8YL+WhYRpPbJt7rBdOqTNhaXJkOAmGbVNohHnfmF5j2NRGNPkwDiiJ1O5YUUNJ/CU8n1RM0L67KQS+O0CPfWWJyWeskSwGjOTlN3wW9uVDElYpoIKTHv9oSYmKZZyQQmYnUmLO/T57KuhOCJ0ek0Uyrr+aTNUVtwfqK2yDkHo5lk1VpQcS1v4tbSsk3o2Sx6cVq0ttpYTHegvHwrlhb1qa5tRTozxfU0YUdPB2v1kmAtlqXQoqc1pUgd7+9pJdtmRUPsYozqhoNQq1qP3t8fN1H1lJRK052GNkG1vd79fE7TREpJNwpi10bPB7Epv1LpLpN9zTnBRLZs9B/oPv/6eEr/8SbY142G2yg4/ef19oK7aEH6sTpALo1Fq4Var86fXYeITt2xY69VG7x+PF08HYLrIgXdwtjzUyFyfknsbrybl0Tk22M6hwv6dXfX0gbW27ntXu2NEBoigeK10QnOkzah+OW92Btq3ShUWvME6YL/uJ2UGCO1aIFfsOuraFHuvWzmBRvVLWli+Sbwts+C0ioUh8srrjUEz7LY+zOvavVKpJKZdp59iPiKyqojZq2bLhS+VqnidZPngm2yVG+jg3i9xqYpIWaZe39/1Gl+rpRq18VatXELgeyKbVUdZa/buxi12cM2od57prizZkaM6lmponoy8eCcao4QzR1ppmfo14JSKNVloVgjEo0aWoIjEAh0L3gVhDs5gyuIHHHOk8JshhKR5oPRzjylOHWbchP4hPMTpQvmy7rpf4qZS9XmaWmotwcGBgYGPlk8LiCvZEpJGublHLVTojZ3J6GeOvWjbY1GjJF53jOlieSTFkwIIT5F5FatOp3HucAueLVVrGedSFIhO0prnNfMec0spXA8illIrkq9qG0rCPSY4kZ7sm5Bg7dCYJ53zIcD825HStpQ9MK+NVG3Fae0iGiOVk+e3BKccqTX85F1WXnv3TO1rVSpSDtvnG+dEAduDnti8MRpJq8nilTKumzF9bqq/W3JjdKacsq3PAe3cag9Ki7H0pm7u47rwnNUhyE2de5cfg1wyywn01FUwbkJNx/YHZ4QkxZZeT2xnF6QphXNv1j1PK8rpQq7aebJ7e2Wv1ByUUpRCLrtmWYtPM1CtUrdCsVmrkGtaX7Aui7btqJvFXItps0Rmxg3StENl/OeGNS1SESpQqq3idtmY9vSYI2ku9CntJkMKny1bUVrWe14bWvQeep6m0by0IpuLkppV7KOiw6hIRQw1yThoiNi2xxpg6A3br1x4XJstbXNwSfnjNg2oifPX5KzxYr7qDQg59+vb7hqKnRx45BS1HGqFnwIpGlHcI55Suz3StM7ngKgVqnKf+rv3obDURoEIgSPeGwLolQ0aY1zLsiaKXd3lCaU1njvvTtKqaxFKKz4nJhbIWS4O1daOSIt41xT97CbG6Z0QPmGpkXwDh9msM1aPh7JWTUcOE+TQJoPTCFw++wz1LyS14Wvfe1ty7eIltjtOd0ft8ZPqjbdvlM3p0icIylFnjx7phkRKRD8mZAKuzfAhQP4PeeaaOIQPGUtlFxZzuftGt8f9qRpIk6TfaYIRTyuwbp2Jztr6gGRiHd7/SzNGUcjeGFOqvHQnYRSIp3TYMQ0maW1P9PKSbN63JmaV6oUXIrgd7jpDZbD7WM+3gcGBgYGBl4bj6ZClZItDO7im650DS0mG02D5JzbrCVjiFZ4GVWjKVXFmXjC6lFqE9Y1K41mPZpVZ7XAPaGsmVwquTZW02A0Ua2HQylWvcjq8LjtGJ0POvF2ane55mJaZKN19UINo+WYCt1v3H6dZjcsAMxFnBf8pm/Vrzslwjl1GCpr4Xy6I68L59PZnII0rKuHprWLRvZCk/JYU2ST222C68wlpuIsFRkRpZsZ512aBsO5ZvStGEnTEwsg2zPvb0hpYoqOWvaUmz3reqTkM3cv3qHWrDkX5zNioW7d27+Wqm5f826zEe4J04LY1ki3R12cnWtWPci6qlajdIoRW1PQG9HNvas7D1lBvmkobIJ8jS1Yji78vqRKd9F2FaW+lNaQVR8rVMtVsWugB/DppkWzDvr99+vCg22J9DXvr5te64Ea/EZ7kitqCvY69Y2ENKE5S172l7TyTjfqCwncy1axxlOidzxduLuljjt35RhkjYwzDYUPW5NSyiXXQv9dn41rYuwtPeZilri+9VR1Z7kz9l5olWVVml4XMIcUmFNAQkRcI+d7SvXk7PGorXRMgVob53Om1RUss6FU1bLIlWA/rzpA0A1WoFQhFSwxXRsSnOOw31GmSmtOXb+8Cp2VNrkoTdLeb000YTvb8YtL7KZEmZKGVbpGtA2cC5DXjDhPiNP2mnfa2kaxNKvjjQVH0aafzLWVbm9PtZnq2qKAuEZFt7aqOzfTAa/73SKTdncNaklIc1DU3EFaJLiEY8ITX6IuDgwMDAwMfBJ43MaiVdqybJPAlDQjAXEUo0N5B9ElQpiY0myp3AEf1GGl5C6uhRhUiJp8oOZKzYXT+cyaF5b759tkv1jxXXPpoceQekJxxPlpyyWgT3KvKvXuotML8wbawGTdSvTiuE/kdfFxoU5proBuBqSJzhGdbiJa81yqXJ14hxSULkMjrwunuxfcP3+PdTlzOq3WEF1yBJzRxVQYqy5VziazzkdcTJvgXGk6gqD0pT4F15LQmrCmVB6aEMSpzW+Y2N3cMM17bg5vMk3TJqBV69zC3d27HO9fcLx/V7coOXM6OU0rNoqOQ7cGevt0uQ68Fk2tNbPLLNTNHUkF27UWlvPZ0o8b8Uq83Jpo4xKt+DIxqnOeVgW8uoM16aJ29xKlSK89E7E6dFPAy9kMKnZXW9pVLhuNaA1B/9lO2SolXwL4uDR+Thrig9qxer/9e/SqZ+juaTlfNcYmjhGUhqSPYxez2BYgRBUC9+yP/njBbfS5Xq5qw2lMKMEm/MEai5fft11o3Vq1zZBjnidqq8SkGzDbMdJD8fqzbeLAZcQ5zfTYROZmpytK3zqdztu1Ox+eEOJEnHbk2shVOJ3f3Zrem/2OME1M04EqjuM5s2TTGtXGedGEaqFemsrN4Miui7AQ46rX8ByZkmdOjtvbG0BYl4wLSd8/t3tKLRyPR5ZVNVjrqkOSdTlRV91KnRfHbprYTxPBV0KA3S7hE/hQuD9mnA/sD8E+l3Tr1oM/uy6r0xD1dVjBFTwLzgW8i2wtqul1NIgv2fnWbYw0j/i4WXcbv5BcHVWgVqjVqfVzTWBZMMknggRCmyht2M0ODAwMDHyyeNzGohS8iR+U2t+o0rUQyoOepm43GvFmkViqTs4dIPWkDk/JITlRsuP5cSWvK+u6sq5naims59MWorbtA5r+Qta0A7OJjR4f1R1FCx+d1loppgcucuXdz8bdR7iE/TlnqdrBcgOCuUaZE473SAsIiUZRbvZOlFrRhGZhVc5r6nVeK8f7e0rO5GWhFKERCVEsD6ReJt2W2eB9wKcJFwIhzngft8IDsfNdiwm7+ySdi+jZJWLQSXG47dsixzypwHqeZ93aRJ2OOueIUXMPgoe1FUprpGmPwxF9UMEwcDqdNo1AjMnsNnsh3yfwFVplXc6UnFnOJ9UdWE5FbY1ccpeE4Hy7cOiN+rVlF+BMF+Guqnp7XYWNOnSt+XGgTjneE6KJ0/3FKleAXBvLmrf7bFI1xNA55pS08WyNddHrMfd8BWsinIqHLPG9bVuCa1pSNZ3Fls2ANty6eatkc4FyaP5LiGGz5HXOkpPTtDVMVTS1u9sLSz8XtWnxjSOg2QbJXKO2a8Ye095ASkH0sJuVArjf7zXnohTu7l5sGp1S1WZ17hsUE88rifHSDDZRW+iSizX5gbU6QpqZdkqNqrWxnPT9XGrh/MLeZ4c7fEz4OJHCDu8sn8W2TbX2xtvb1qm/nVVbcDqpAP15K3hnFCoTY8fo2d88ZX+4ZZompujZvfWG6paaBuTlUlnOC7ks1FZ1+i/CeT1S6wo0wosX5hg3Ic6at/PCPM3cHPT95qg4t5AmdQtL041RKivrek+tJ5b1XRBhlaYNtzSlg/nuUJdscNADGz0huW24QdOhQ4wHnN/hw4wTzQQRB/ioAw8JuOYJDcrVe2PguxvNdHePuSLEEoTk0tV/+G2kqUNc/937QAQXCT5um+MPQzcfoXGdkPQht6kUyY86LtDfEad6JreH3dY5x7memcPMPh4eeGyOJ+mpPd7Dz3eRzNpWlrq89Lvwm+Fsz+XZ9GxzVfwwHOINt+mGp+mZulc+ANGnD/+hgU8V3n08OrxHNRaXrAG48M21CFTOctSis0/+MbeaZtM5BJGzFjzBU9ZKa3B8cWTNmXVdqDUr5SqvVEvkvRAiXO9ilOrQhcvIRknwXh2EXOeQdG6TFWYvTfmd/eI2+oi35qjnPvhr9yubOrfaU6FFNQHo3WuxrNPevKrz0el0Uk//nrpM13oYFcyelbccDR8ScZ41pG+atdByfmsqWq3a1EnAtWKNTNeReJwPpJhIITLNgRAgxsZ+StbszXrunKc29f4X7xA7niZQBcT0Lt5HoyC1KwvVpnkesDUXGpRWNQuiZKU65cyyLGTj+Tc7h+r0ZL92xF4Dy4nYXjP7c51nodeRbCLlngvRBdXba2nvEz1+FR9fMhZ0cp9LtQ0UlpWiDlb9um2tbVbFmoqtLls+qOVqsaLd2bYLOtXp8j7Zkqi3p9mfS6etabgdQSfe1/oI+s9vlClnhag6PYEKrLe8AlFLU+nXgzVXL2/v5CWaoOpjVLyPU73Hsq7maKWv92aFa8fe6VlwcbiqmyhewDW8DzR/JlYdOlS7j7yeTdxeKHat5tYIaSLGmZoK3kdCnLWJ50Lx2k6MXozWLAnFNmMlr0hTe2VEaVbznOi7vNZmUpo4xECYIuAJEXIuBB9Ys2Zn1KzhnbWogkaapYj7hrhKSBEshTz4QEqBKXqg0mTVnB0fCD5t75vgszYQsqhJQtUE71YztS6bM5z3elxKibItRnHb5kOaNh0x3RLjnhD3wB4h0iRa5oz+8eZu17dLAwPaVPRW4eG3AahSH/04XYf1EHhrEh7TiujvAX1/PrSxaKgZR5W6UVw/DP1nm2tUyoOPb3UZQYj+YSWWw+kACXnU+a6tbjq/h8KhNcMuzBd67YfgNt1wm25JfsI/sLF4aAMy8J2HxyVvO0eIkTTNm6tQbyb2h4NyjImUupDzwlpX5Q9LxLUFWiGlkxa2JXG8X1nXwvF43tKJLxQCUFHyhcV+4TXL1gxsxUatmtDrtImpvQFobSusarVgshA2q87+J8SoDUUMFgSnOQ8p6BT7vJyoa6asK7UuCBXnqn2QagOVc+HFixcsy4mSM7XYFgN32ZL4gHORiMMbtSTGmZgmYpqZ97dbrsY2ITf6kxbHun3p50m1LMrxdjEQXSL6yN6/S+CeIL+udDXnKeEpjQOFN2klUCuc1hO1LJT1xDtf/XVO9y84ns5QK16wEDcu02N0mr7b7bm9vWWaZrz3VLNbrXllWU7knDmdT5zXlfOyQpzAmiSP5iSkWbdMU0qwFYF9Mt0bOkdtYmntRUXdXa9gCCFpI5giMU7qzhNV1xNsY1FrRU4nim0s4jSpy9c0k88nzufzltPQsyPOy8J5XbQRdZpM3SlKzahA3v77OnhPr1HbYtj75hJ457ZD7ynbm8bBGt5e5EM/93XbFjEFogPdOOnmSV8bFbzHaOGKV5ssZ9sSqZXiHRSI80zwEGPQDc26cjwezdWqbr+o1nW5atrD9vXW1PQCQuz9SuF4XhAzG8Cu/97QXF5bx7Lc630GT5r3+DARpxum+YY47TYpQhFrblBbZrX4LdS60nqCu1HttLkQ7u/hvfeea9MeA/Nuz1tvfZY3P/M93Nw+5eawp+SVQGZKnta8OkPrTodaoEmmlgVcwblGiPp5t9s75umeFE+EoMeUz0dWabrV8O9YgZ+IAVIMuOmGWheqWxA5UZzQikCxAD6qfeJtEwcyDg2TVItt3RJBiEktsZMOIdJ84HDzGfbzm9zefJEYJmLcc14f9/E+8BsLDy0mbRyzGUg8FH07+ZipZh8IPKao7J9Ta10e3CTUVjjXE0XKg89Do1Fa4b7ccSqnBz5O5S7f4V0g+oc/p8lPHB/4GNvxWSP3mI1FFbWO38f9g2/Tfxd9z/57HrxZepKecog36lrHw66Hj2saPvDtj0f95pnnHYeb25fE2zFOxrfXCemaz+SykGtGl6KCayuBBU/ZQrxKLpxPKsaupZjw2BoJB1tw1/Y1gNsmcdd6iG5bWkrB1bZxxoGXJrW98NMthdHUt0ly0yIqO8tL0AC0nPVD+Xw6b8Ff0rTQiMGoVU04ryt5VecllXfoZkXhbZLutmZBMySSbhnSZPa3EynN+BgJcdpEoa5TgbYP0Mvz8c4xzSrCTfOEk4aXRjSBZ1sCa26UIhzbidIyaz2yFm0WWlGxvLTM6e49ltM9OS8WuhVI82xZJatSaZxqBJJZzPYJfyuFWlbystimIrPkVcWyAsFoXSpcb+ouZNqWebfTabwIeS32a7AHGbpNjyIWdubkkla9weh4L09grnZd3pNiUrqc85b3ILjglbKSM8fziWCamlLr1uxi24wmgmtWBMrLj9m3ETrlcxdrZtd3evoL92KJi2VZ6PPv4uxrCl8plb6NE7mI2qWpoNr5QLRfykqTUm3H9XskeG+NfVWtCvrLMvRtz/VGTi6UsYtW43I82/7AeS6GVT0sr9MU2f7Qrq/X/k37bwdSG1UaTjz4iG9oWGTSLWWaZ/RuBIwq5kPQQUOT7byGkPB2vTRrLIBtcxNCxLtg52ehtjMxJqStIPc4WfBU5p3qhkI0ymMr5PVk1rJNf4m71d4vE63qpgCjsOFMr0SGVqjtjNSCtgsF7xs+YRsGBy3YeTEzhr76pG9C29bA9cWr5qkUKlBawXlHKUekLuTzc9p6JMU98/QUYVARvtPxUIH+JynkfywNCue2z8eHNj69WRKRBzcjm7HJI5qr6w1Pe+DtvHPb7R76WPp7oQ9QH/9aPXTzAJfXx+Ee/FptRig8dA818N2MRzUW+8Oem5vbLZzMec80TczzjlKUU35e7zexr4tGVWpnXFjxvtLqxLo2jvfZgt9U8Cz0v2H7v57021WqViD26alOdM1pypx/lK/vrR7Siry/EYKPl5wNABo9r6K1SjHKkjoezcTgLUuicjqdN6cj5wrBAUazqVU4n7NOe9W3c+NJO6M6da2E7/QhH/AhafE+TYQ4EWLSv0OnRtmEeBPv2jOxZqrzr/eHHSkl9ocdUs+0cqQtQsuOXCP3x8L5VHl3ObGWwmk5b9QmioboBec5H98l54WSF1yaICTSbm/uUEfEBKIxJlK0xsK7LXSu5JVlXVjWlVyy2ulafom3gr6YI4+zcLZo24/ecJSixXsvIp3XAD91mnJXFqyXzUAvfl9yRbJz1URT2x2aEh4ti6HUCk03cKVU1qzT7hiCJlVvuRsXV6itwG0FCVocB3M802uxbT/fNs2E22rzlz7I7RhDjOx2O/Z7TaOWhgXlVUTOW6Nw/Qu3iajeyV+yJsQ2crU1XL2Ew/XmRZqJ2pEt1E+sOduagf4Y7voXibs6x/pu6toV5TiLvcat3/Cl3zzbl0LPLqQLnlovokWgZJo4XFDqmXOqAwFHaZWSlSLpQkBsg6EkOE25Fh+2898HFN5rQzFPkZgCGmi40uqJGHe0uiDywhyg4LCbmOfIvDvgQ0Okcj5H1dqsK+dFtRG0ZWsupOnnkH4e9QIn27WTKSw4Gil65ZD7RJMJ7zs1VJvMZpuLVuv2WVh7zovDHLKumsBWKeWMIGQn5OUFMSTy6atM6cDN/jPM82c++IN8YGBgYGDgY8KjGouYJpaiCcA+eFKcEGnc399xMhvVXLMKq50nUnC+EmJBmqOWwPP7s9pX5rKlSPutIPFXU81ejdn3+5TfinR1/dE/3eaxT7h799+Lpe0nnaqGy5ovrky9AG093M+z282si3rD941EzjY9Bva73SYKVpehyjTtiHGmTTrdr7VQ1vM2bewTe9UlqMjVmdhcXFCRa16Q84I2ULrJCDGx28/abKRIDEFpPyFsjYUPqpO4Px5pZaXmzN0LWBfHixeB9ZQpayGvR+V2rwtlzaphqUXPrTfLTsLm5kWD091z03cUm1ZrpkiuakHqnKOFYFxX6KsgwZGLfk/watWJctmD11TpaZqZ0kSMSl0StBjMpbAsq962alq3XhEO15+3u+R9aGGnTWTXVejL2syNyVkT4KzJQC88p6nf3U1pzepChnMsWXM8cs70FOxaK+IazYpn37zlYvhNJ6GFLfQk9Fb0OuzbncvWzHPY77WBjZEYol7HU9yaZdAtXGnVNmtmZdqaBurZz2kwYdiczfp56ZuxmIIV8sFsYusmutb34KUJ2vJTehN7xU3sG4D+t3OeOEWjq3VHI6gOvdZD1IwTa0SD90TvEVEb3/N6tqxzB17NCkLaEVMyvYIaKuzjnuP9UZvW00npTjgzN1BaZDO+tQ9F36fesdvtmOeJJ08OpBSZd5E0edLk8b5wuJm5uf1N1GybhaYF/FIXotPneLh9gxvrlWpdlZK3nlRbgidON7ZBWjmd3qXkM1KVAhFQM4EQIilNNkiYmCZR/4bWcBbeqbkp2oxUC5Zc8kIpmVxWQtOGqwWlPuA8U3ymX8ulqWsk1iLk+3fhfnnMx/vAwMDAwMBr43Ek3E77sIm/Ts1M5GrWogI4c5CJnr7gpBahlmZbCp1OK64bB6NIcCmK9Ptd4Ki8cudf3l7E7vHfJ67dAcPWpL2xENHGpbbrlajfvg6EjbqCCY27g9EGFUqopmLNrDmTczHqE5sQGwetJZu2c9lg9OdEt0HV43FWKGuKuYNqlBqEWJTb6YOHELaJMtZA9aTnUjI1Z0pZOZ4ry9I4LVCKcchdwnmnvv/NA5oL0IXC6sqkXP2e7CBmU3qlcKFawvSyLGzBcLYhus426c+v6Rhej9dO5pY70TcQRvfytlHywZKGtxWW2563TtgvtCDdJvT7tn/tjaOyhLeNT5+7a1HnNppcv02zjUFPBt/Swe24rYQz2pBmqVgncdFU9PsSFZl30boW5Benn+5C5vs27op+1LNTmngCclXMm3WsyJaKff3nwjm6/HE48A4nXjMqUFvXYs/zJXct57bNwvXWYtti9BfKXpIYlc6HS9SmVqi5VW06YmS/v2GaZnbTbDQzr1qcVnDLjM7tPfikG8qQtl6m1UIBIpZPY9sSF7TB1PRvfQfjdGviXMR5SNEz72Z2u5nDzU6F1lPEB4fpozejhhjUfKAVE2+3AlRAj9f7YFvQClWoIV6uTbt2nIPgHRICkLbFTQzaqEUfTVytzlrBXzUWziPenLYk2LVXodO4fKC0rK5wFPsc0YBAtWPuWi/ZNDtVhFbP7/sIHxgYGBgY+DjxuMZCHLvdHhEtSJ4/v7MirFlR7ZnSdJlSBqHmhfu7lfv7I8t5YbVgNBWBuk3j0JsHLBStF7reBSugAtEEwGr7aFPveVJRc2uc7u90wrdx+y9dgXI4rYi1wtd3rYjzOK+0ltBtNa0yqCbMDj6YrawW3rVk3n77qzr9bdVEzOrK5JwnhgQRCxHrjj862XUiiFNalTiHWHGuk/iL806x6aXDEVOkP5Mml2ZCtSGr5SYoBSnnlfV8ptWK1ieRMEem9CbB6fNb1xO5LJyOLzRrJCY8jVpWnr/9azgRPKYtcELNWkw2qZxPR7yDd/Zv43gDfzgQ7X6lRUKMetzeIaVSStNosO5ehRXBTgv0UstGHeqFbgyBaoGEnfKjWoNmE+LLbRC1fw0+bAYAItpQeu8hyFYQC2qLW0tGgPV8Mlehtr3mxVKaSykb/Ukpe1yuG5wWml6lbNeyvl7SNzB+ft1E3/7q2o1JbXs7Za9fS9gWwTlH7LezhivGtNGE1LWs5604a4B6cGTZUqI7N7gfUwNOpzPLunI6njbr3t54dS2FoyeZX9yJdEDe9JoVx243M80HDk8+Q66Qi3B3ukN1KY5nb77Jfn9gv9MiGHQbVFplKtW2b/Hi+EXjfF5Yl4UXL17o29d5vFED5/0TFd3HoAV1q9SykqJjSo79wTNNgcPtRJo0Q0cdq/xGx+ubt4ajisPHHd455oOmgtd8ouQXIILnADJRW+T58/vNPEDPrWNxC86phe88JQ67ieACjnbRS7ykkbicR2/vBeccLvXPnN02FDkYJS6XzLIulFpYlwXvEyHuONy+ifeedT0hLdNaAdHPvdYaeRkbi4GBgYGBTxaPaiy8VweatagDS5WKOMEHtiJHJ3yaGLuumbxm0x9UCzfT+3LuEmgWTGvgQ7TwvT6xjZei94oG5ZxHPIhU1nXZisPldLK05KsgPWxb4LXYV23DpEsSK+iDNS0xahZADJ0vo82GiFOKR6mbWHxz6jEL1lqKpePKxZs+JA3KS5cNQy+uXNeB4GimAdhSfLd/19v04K3L48oV5UWnxjFEUkgqOG6Vsss2hc19maD0JkPIM1Mt7Pa3GsLlPetyR1kc87xnioEpRs6ne/K62FBeJ/OlFNZ14f7+jtvDgXmaiFOy5xxsMq0Cb8HRpGxFexdg90l9n8D3++9bglo1IVvF/qUPhjer29Z68jUqyo5qnwpcAt6utk/Y38F7drsd2ab1q9GdSilb8a9aBU3qVitX3Txce373IrEft+YgyCba1oapbhuLLvxu7urYvN8KXR/0NSjFbE6r0s/adn1BsefdtxoOpbFNSROYvV23XjRzpYvtuwakdstJc4EqRvPam8PX8XgkZz2GvhXs2x5wOHPfCjExpZlpmtnvb4nTrLSn3Q5CYP2qNmrBO6Y0M087dvsDIipIl1JQy1d1BYtbOFyjlDPB3v/eaVMuUiwt2zMly6yJkfmwxzk4n54TfCWFxn7viFFAFkp2lGoDBfv84Iou6awZ9rZxKKFBW9Udqu1wQM6Jkhdyec7p+EI3m3GHEBBMX9HpY4hKylzFu+6KItboypa+3jcdakfc7DzbZ4APncSJ8444JUKKhGlWgf6h4UMkBHtv1YpIQV3qGs5pE4/3OBmuUAMDAwMDnywe9Zunu/qsa6HUi8iy89q988pjd+BcI68ry7KyLGUrxPu00HP9yz3qL8uY8BbwpTx8K5hj2mgYXQRdaeS1sS5njvcvWJeFvJxVuNl/TXddRggEzN8/JM1z8ILz4H0jhsg87QhRqSVi1o8iKjoGTRaXpg1TbUblso0BonaoglpWBhLed2Gv3xqDXjhsgthOF7oSJF/rRK67sE2M3C5OMRvPPZqjkHQbUN0sdBqTbguw5ySUVgllVgF4a7bLEe6pOGnMux37eeYwz9SsBSi47bmqRiZzPp20QK2VmelCt/EB7ysxRmoTQmtGg9LGoqdEd+F8d1Lqx9d6EODWWGiz0WozN6KLmFlD/uKmL9Dirtut2ovYdQS2gZmmRFxU7FusqShVsy3EHHq2BHPpX18C8jopbGuG7LyoBW0PlbKsjStKFM7ht5Cqy7XsrLFTK9qr5983OSbk1XNR6bqSvmHojaFeoNYIGNWwB0ba+m073pzVVjZ4NSo4HA6kNGkD3cQyEOx2vSn2CRcj07xntzuw2++Zp50aEoTA7rAnTTPvvPsubdPSqOPZNO2MAsl2nzHo0CDGtFErW1ManDYW1nBilDRxuKTXQAiew2FPCA7HGcdK8JVpghAatWUNpRQsl8VS7Dcq4kWzFVzFIzTf3wvg0cyXWjzLcs/5/JxleW/bbuImVITugMu1jGh+B65f45fr+hJa2LYmvaedNzN98N4aR6cp7kpxiwTpujJrhkLgeHxBa9pYOKlAwzvTlHkHMuweBwYGBgY+WTyqsTjevYc4Fe8C6rLjnE7lWdT6NE5IK+QV7u/fswTjEyIXb3wnsKXE4REXwEdcVBeimCLzNOnk23tStKC2JizLwnJeee/5u6zrwvl0VCpLrSB1ayacFfVpmklJk3OnaW8aAND/c0xxJsbAforYQFPDy4zydD4vqiOpTYt+78nrSsmrNUVJJ4xbMxARFxAXIUwbj1steVXM2sMEewGhhWjb0pf1JGk+RXe46q4/+k9doOyu/nDhsOBwJK3f/GXifKFkXHQFtIbUTKsLKWbqmnh60AA+jJpTawHpQXQAWiifl4X7473mBMwTvX71wRNF3Y5wSt06nc+mC4ikFDjsdzZhd+ZK2p18sCfhkdzAiU6upU/wA95DSpfk7+QDzglSVs1PcOjk1/ccE33OpSmHPgS9ppo0o5hUTQdfmp07dKPRw/R6QrgVidG2ToKwmrC8009qM2GuNWDVGvDWRMPopolp1sKvF4j+qkFIwSO1kGvetmG5VKOLaQCd0t/yttGjte29stvNuKB0xBgjDreF2W16EhFC7FbGWlwLTpvu5CHMmyOXx5ylvKehQ4D9k2fs9gd2u8MlD2ZK1KAZMPP+gDQhmusXznE8KW2y5Mxu1ryR3e6gqd2lcTyecAi3N7c4PNLgfMrQsE2jNhtzSgQHkleW8x0xOqapZ3c0lvVONzxVzQIaXffjNEPGTB+6hiXFQEqO2D8W8EBE0g4fNK0+pMg07Vi/mtVy2jeISvVrvVFojSlqLg2t2barXcJCe7PrHDGoQL86Tapvtr3otKke8FlLsaauAvrhFPxkIaIZTyV5wc9J/13UPa1JozQ1yBgYGBgYGPgk8ajGopTVigwtsqJvBGeJE1KQCnnRojyXxrqcyFlpU9fi343K4Trtx22T/RiDTjJDUL2D2cpq9sXKuq5GX1m3dGDvPBLA0Z2SAj4mfAhM805zIqbJNhVWZlsDMqdEDJ40WXGKqNDc3IhUv2BbAufx4m1KKMbZ1omw3zY20YLvdBobYthsTkNQp6fNLrcvJHwXEbNRnWzoaZpdVceaAAAYy0lEQVQA486/mt1whU2E7fr5vKJWXU1NL+N2K2RaRUJDSoDdRPEVyZGyZPK66oQcdd4Rd2EVgW5PVkvYLuYWFtzLtC5vGoCN+uFtm/RKfoKNcjfRdC+Cu4Zia4SMWhJDt1N1222bqIh3a7SasyQVvV0zLU6/j94e9ILvoluRbaJfasWLbRRCMGHzZcPUqUqlls1lyTkt1MV5mjhaFXIp+vPpIkJWXfpFaN5f98vXRoNqRj2s2uToeyEroypaOna3UXZ+S5O/nN/2kvuT2HPozdpaMutaVJBMN0WIWyq0c/pcRKCaLqGKozQI3islyGkmgzM9g9AotXE6n1jLqteZ2ffe3B7wbiZFj6u2Yas96Vudz3bzTNlrSGUIKlp33qkA24ELwn6v6dc4sS1T1XT6Zq9BZ8DZ/7mL5tw2g/r50y+xavxJoeFCRbzXbUdQTYP300W03XrkmLONFRTnCHKxt9Z+udEtA3z/yl0omP1nvR1c17Zs1rzYVtRh2qx8eV9YZkcX/+OCWTljjdYHf1YMDAwMDAx8XHhcY5HPzPPMHAMhOEIwsWDV8C1NDM5Kf1o1/O4ygL9QP3CXSak315MYI9OUmFJvLpTiEnywrcfKixcvWNdlo6+A6gt8mjaqlLoyBWKazap1r48RtUHpf2JwRO+YdxCiI0ZHyVByIy8rp/PC/fFEziYmvuLv96yCadqRpomYEvNup88hJkK8ZG14s5W95naDTrjFNCfd3cfh1Ia3NnLJFLM/XU1cq8/3ZUvR7gLjnMOFSPTBbD0vDYbvWwtpuC7ktUkrzor9AJOfWaNwevEe5+XM3fN3aC3jnJBSMhtMLb40kVs4n884HE9unzBNiTlZVoiYQL5vtGzT0bMwNNStbnQNaZUuRO/335rqDbQJ6toCwXuYZqWoIVBL3ibxbSuqL0Vb49KsNStwt4Zia2gjp9NpczgrpWzuUJtY21zJxF20MtUSuE/LsgUj7vaT2gUHDSGsubCsBRHHPHUhsRa+tQmudAMECxs069Suqak5b8ekVsu6vfJOhf8ijeAT8zxvmxzdYF1C87qrUq1KzyqiWqnj6czzF3c8v7vnbO5mPtgG0eyTGpY0Lpr6floz1S2sDaadJ+KZxOtg3TUqmj2Rz2feu1s0aG45a0HvPW++9SZPnjzhrbfe3HQmXSzvXGO323M4HLg57NVUIbrN+Sgmj/Na+L/55g3TNNkA4MT5HCg5bfkj2uxVXYz294q2vUxpdwlgLEVTs5votULFNSGmxjTt8URC3JPSLXCmSdawwVYxXhQNDYn0zjHPs24iTacDZv7gvOlHlFYaoqM2h68OdcLeSHKvbBmbdQtAWe06FpsNdErgRXPlvSM6R40PT/AdGBgYGBj4KPCoxuJw2JNSwFFBNOCulEJes20mVNjbk2rh0lB43/UGiRAiMSSmSYv/eZ7xSR1cdsmb64sn55UlF06n1QTDOlV1zjNN89agBO83F6lgjcU0z4Skj9EhUnFOmELFk/GukuIOXKTVyHI+sy6Z+6PSn5yoEH0TZ/fJuWDahkSadky7mSe3T0gpsJsizlWbGBqvO0zUqmFtW4AXqstotZLXRQu+Wim5c+n7pB3A4cwJpxdIm8D9OtMiegKN4DK+rYCGpTmb7tO8FjtV3Z+kFRwZLG1iXZue44IFqgWc06wAnVVfaFedt7+uKyLC2++8w343c3PYE0wroA5Njmma2O8KuRRKMd2BNSkWMaHNaWtaXALNsW0vLoXxyxqM3qg2MWvY2vMeHIm4bcakK/nd1e27bqNdCvgu5O4uW/1n+9an/51aIjq2JkPdn9hEwviA81E1AW4FF+zbSg0Kpi/p9sytNVIpm7BaNy+m5TBqWaieZtsf5wO7WcXxwZzRQlLjAZMHU6rqZRCnpgPo8bZmm4Rl5f54z1e/+nWOpzNLzhcxebDwSX0Da2p5Svph4fR8rlkpZGtVLc3cMtM8k6I6IrWaOZ9eIGLJ5U5dsHa7HdI8x+PC/+/XvqLNeVK9Twiew/6gOqf+upfGsrZtMxTWggsFF874kJmnHWna44Jjd7ihtb1d45cE7tLKZg0s2v3Rqpj7V8a5DFRrovWzKroAFM6nE9ErVerJG29Qy8r5dCTXomGP9h4Voz/ps10um0MbpCBCFSi2lVAHvbhtkfyVEQCoW1yYkm5zsPebu7h2dWdhffTLpg3vEPF4e90HvvPQ7POs//0QdI1Zb1kfClMjXf0u+pCft8GZ75qjBz2Gfq7mtpLb+qDb3Jd7vnr6KuE6c+dDH0c1jPf5ntMDrZhLyxzLiegj0T+8XNrRdXYPoyM651jrineB6MOH38AQvbImdmH34NtMfiL4wNPpGZ6HvU436ZbJ7wju4efgsdfawHcOHnSV9KLOe/2l1+pCMw7vmrPayC4Xm8PtM8g7NjtX5+z3vKDT5y5atR/rGoPiEKnUVlnPK6fTmdN5oRQTwEpvWEw/4OQqjdtvTlM+dCG5bEJaJFvRX0DOCBnxjSaR3Bqn45HzeeV0PCrloYt4pVHLslFyHF2g7I3i0cwFRgiu4pwKKa1qBBxSe9Deup2nYnkQp/t7clYHrVI6VQVrTCwAMEaYEtDM8UetOgnqACTeW8NTcFJo5R6kAnnjwSNRC6pcyflkjUXRusc51tVpc7FoI9dKo9lx9wJcxKxGNb2OVfR5xBApJQNCCrohyavqD7ZfStZYFSveHW7bvrSiTda6LrpTcmLT9cuGaJsOt2qTWW20Sl6sMbk0P63FziW7wBl9qxTWvG4Ncd8G9KaiZ7L07UwT/ZUcQsY5t1HwJGD6jGb6F+VXafq6/ndtF/pRk+4opudsWdet+PS+W8uKhaJldTirffqu74mGIwDbAg62tO21FJyr+KoNhjML2sv5i+TayK1xPB25u7vnnffepZRGNUqSQ3lBtRWceHCC55Kh0Y9PStYmtyyEmMyJ7QDTRMln8nJiOd1v79UYIqSId87OswYQ7g833BxuyHnR95OotkmaGjPUWimtbo22c2d8WPHxDK2wzDtubt7U/AuvWyyxUuhS5Oi12t3ipAnrWa/xZTmCNRZCxjt1XJqqp8SKFLEtqmeK2mgjnlpUQ9PoOp4LzS477DPoyrRBP0gtn0a3CjWpKQVXTbM0M6d2EJGt2ejGAf06frnMk22beNFPqQPX9ef3x4n+GC+ev/jYH+u7Hc1ymjYb8wfe5rFwj2gOXoXf3OQe9EA4HO8u73AuDyv4n5fnfPnFl9mF+cHH6V1gCpH7fGSpD7Nirq3y7voeU0hEnx50G4cjh0xw/lENVnTK3pjD9ODbzGFWi/pHFPHeecQpPfehx3cKK9VD9kO39Z2E/nn9Uf+OeFBj8eKFPvjP/9d/6iN98IGB30h459M+gIGBbwEvXrzg2bNnH/tjAPx/fvMPfayPMzAwMDDw0eKj/h3h5AGtSmuNX/u1X+PJkydDEDgwMDDwGwAiwosXL/jCF76wbQY/LozfEQMDAwO/sfBx/Y54UGMxMDAwMDAwMDAwMDDwzTASlAYGBgYGBgYGBgYGXhujsRgYGBgYGBgYGBgYeG2MxmJgYGBgYGBgYGBg4LUxGouBgYGBgYGBgYGBgdfGaCwGBgYGBgYGBgYGBl4bo7EYGBgYGBgYGBgYGHhtPDyffWBgYGBg4BvgfD6zruunfRgDAwMDAw/ENE3sdruP9D5HYzEwMDAw8Fo4n8/8lt/ym/nKV3790z6UgYGBgYEH4nOf+xy/+qu/+pE2F6OxGBgYGBh4Lazryle+8uv88l/7//L06RNAU11B81df+n+RV757yWi9zmvd/lXefx98wG3kG97fK4/2AfcnL31f7BgvP/HSv109DxD4Bv8mD7rvVx7n1dt/wH0jLz9Oo73v/vvX7Rs9rgjtpefRXnrcV2+nX18ep73v/q6PvV3uuz+rl27XPvAYXn7MRutP9+p4XrovaS8f6yv3d3nM9r7776fS7sHu7+Xn1OTV4758v8nltWnbObz6N3s99T74wH+TV4771du9el5efZyXn+P7/02/tu9vl87leK5vr+f85WPi6utXb3P5uav37Ad8//r+tlfwfffHK4/1/vvur8v1v7UPuw0vHyuv3F+7HPb73hvf8BiuX8Pr5351TdnBvfLfV1+/+v2r49sOqv/39fc/6OfkA27/jR6XD/h+bnzlF7/Cuq6jsRgYGBgY+PbD06dPePr0KfDBRX3//svfvfzSe0wj8PJtrgrbb/H+vmnx/wEFfr/vb/RvD24svtntP+y+5aGNRfumjYW8dmNx/XV75b6/1cbig57HR9NYvFSEf4uNxTcq6t/fWHzjf7t+7t9KY/HN/k2//vAm4fr7rxbR3+g231Jj8ejH/eaNxYOaEfng2yCC277e/pGrO3nl3y7ff//t+jnm8nOv21jIB3z/wT/3wMfl6rYfMYZ4e2BgYGBgYGBgYGDgtTEai4GBgYGBgYGBgYGB18ZoLAYGBgYGBgYGBgYGXhujsRgYGBgYGBgYGBgYeG2MxmJgYGBgYGBgYGBg4LUxGouBgYGBgYGBgYGBgdfGaCwGBgYGBgYGBgYGBl4bo7EYGBgYGBgYGBgYGHhtjMZiYGBgYGBgYGBgYOC1MRqLgYGBgYGBgYGBgYHXxmgsBgYGBgYGBgYGBgZeG6OxGBgYGBgYGBgYGBh4bYzGYmBgYGBgYGBgYGDgtTEai4GBgYGBgYGBgYGB10b8tA9gYGBgYOA7A8+fv9i+FhFA9Ovr/xd55bvyym14+V/l/ffBB9xGvuH9vfJoH3B/8tL3xY7x8hMv/dvV8wCBb/Bv8qD7fuVxXr39B9w38vLjNNr77r9/3b7R44rQXnoe7aXHffV2+vXlcdr77u/62Nvlvvuzeul27QOP4eXHbLT+dK+O56X7kvbysb5yf5fHbO+7/34q7R7s/l5+Tk1ePe7L95tcXpu2ncOrf7PXU++DD/w3eeW4X73dq+fl1cd5+Tm+/9/0a/v+dulcjuf69nrOXz4mrr5+9TaXn7t6z37A96/vb3sF33d/vPJY77/v/rpc/1v7sNvw8rHy6v1dDvt9741veAzf6LlfXVN2cK/899XXr37/6vi2i77/9/X3P+jn5ANu/40elw/4frn6/keI0VgMDAwMDLwWRITb21t+6Df/tk/7UAYGBgYGHojb29uXBjofBUZjMTAwMDDwWnDOcXd3x//7//6/PH369NM+nG9LPH/+nL/pb/qbxjn6Jhjn6MMxztHDMM7Th6OfI+fcR3q/o7EYGBgYGPhI8PTp0/FL/EMwztGHY5yjD8c4Rw/DOE+fPIZ4e2BgYGBgYGBgYGDgtTEai4GBgYGBgYGBgYGB18ZoLAYGBgYGXgvzPPMzP/MzzPP8aR/Kty3GOfpwjHP04Rjn6GEY5+nD8XGdIycftRx8YGBgYGBgYGBgYOC7DmNjMTAwMDAwMDAwMDDw2hiNxcDAwMDAwMDAwMDAa2M0FgMDAwMDAwMDAwMDr43RWAwMDAwMDAwMDAwMvDZGYzEwMDAw8E3xx/7YH+O3/Jbfwm6340d+5Ef4hV/4hW/68z//8z/Pj/zIj7Db7fjBH/xB/uP/+D/+hI7008VjztN/+V/+l/y9f+/fy/d8z/fw9OlTftfv+l389//9f/8JHu2ng8deSx1/8S/+RWKM/O1/+9/+8R7gtwEee46WZeEP/sE/yA/8wA8wzzN/89/8N/Of/Cf/ySd0tJ8OHnuOfvZnf5bf8Tt+B4fDgc9//vP8k//kP8nXv/71T+hoP3n8T//T/8Q/+A/+g3zhC1/AOcd/9V/9Vx96m4/sc1sGBgYGBga+Af6z/+w/k5SS/PE//sflS1/6kvzUT/2U3NzcyP/z//w/H/jzv/IrvyKHw0F+6qd+Sr70pS/JH//jf1xSSvJn/+yf/YSP/JPFY8/TT/3UT8m/8+/8O/K//W//m/zyL/+y/Gv/2r8mKSX53//3//0TPvJPDo89Rx3vvvuu/OAP/qD8xE/8hPyO3/E7PpmD/ZTwrZyj3/f7fp/8zt/5O+Xnfu7n5Fd/9Vflf/1f/1f5i3/xL36CR/3J4rHn6Bd+4RfEey//wX/wH8iv/MqvyC/8wi/I3/q3/q3yD/1D/9AnfOSfHP78n//z8gf/4B+U/+K/+C8EkD/35/7cN/35j/JzezQWAwMDAwPfED/2Yz8mP/mTP/nS9374h39Yfvqnf/oDf/5f/Vf/VfnhH/7hl773z/wz/4z8XX/X3/WxHeO3Ax57nj4Iv/23/3b5Q3/oD33Uh/Ztg2/1HP3+3//75V//1/91+Zmf+Znv+Mbisefov/1v/1t59uyZfP3rX/8kDu/bAo89R//ev/fvyQ/+4A++9L0/8kf+iHzxi1/82I7x2wkPaSw+ys/tQYUaGBgYGPhArOvKX/7Lf5mf+ImfeOn7P/ETP8H//D//zx94m//lf/lf3vfzf9/f9/fxl/7SXyLn/LEd66eJb+U8vYrWGi9evOCtt976OA7xU8e3eo7+5J/8k/zVv/pX+Zmf+ZmP+xA/dXwr5+i/+W/+G370R3+Uf/ff/Xf5/u//fn7oh36If/lf/pc5nU6fxCF/4vhWztGP//iP8+Uvf5k//+f/PCLCr//6r/Nn/+yf5R/4B/6BT+KQf0Pgo/zcjh/lgQ0MDAwMfOfga1/7GrVWvu/7vu+l73/f930fX/nKVz7wNl/5ylc+8OdLKXzta1/j85///Md2vJ8WvpXz9Cr+/X//3+f+/p5/5B/5Rz6OQ/zU8a2co//7//6/+emf/ml+4Rd+gRi/88uVb+Uc/cqv/Aq/+Iu/yG6348/9uT/H1772Nf7Zf/af5e233/6O1Fl8K+fox3/8x/nZn/1Zfv/v//2cz2dKKfy+3/f7+A//w//wkzjk3xD4KD+3x8ZiYGBgYOCbwjn30n+LyPu+92E//0Hf/07DY89Tx3/6n/6n/Jv/5r/Jn/kzf4bv/d7v/bgO79sCDz1HtVb+0X/0H+UP/aE/xA/90A99Uof3bYHHXEetNZxz/OzP/iw/9mM/xt//9//9/OE//If5U3/qT33Hbi3gcefoS1/6Ev/8P//P82/8G/8Gf/kv/2X+u//uv+NXf/VX+cmf/MlP4lB/w+Cj+tz+zh8BDAwMDAx8S/jsZz9LCOF9k8C/8Tf+xvumWx2f+9znPvDnY4x85jOf+diO9dPEt3KeOv7Mn/kz/FP/1D/Ff/6f/+f83t/7ez/Ow/xU8dhz9OLFC/7SX/pL/NIv/RL/3D/3zwFaRIsIMUb+wl/4C/w9f8/f84kc+yeFb+U6+vznP8/3f//38+zZs+17f8vf8rcgInz5y1/mt/7W3/qxHvMnjW/lHP3b//a/ze/+3b+bf+Vf+VcA+Nv+tr+Nm5sb/u6/++/m3/q3/q3vyC3qY/FRfm6PjcXAwMDAwAdimiZ+5Ed+hJ/7uZ976fs/93M/x4//+I9/4G1+1+/6Xe/7+b/wF/4CP/qjP0pK6WM71k8T38p5At1U/BP/xD/Bn/7Tf/o7nu/92HP09OlT/o//4//gr/yVv7L9+cmf/El+22/7bfyVv/JX+J2/83d+Uof+ieFbuY5+9+/+3fzar/0ad3d32/d++Zd/Ge89X/ziFz/W4/008K2co+PxiPcvl7shBOAylf9ux0f6uf1ouffAwMDAwHcNurXjn/gTf0K+9KUvyb/wL/wLcnNzI3/tr/01ERH56Z/+afnH//F/fPv5blv4L/6L/6J86Utfkj/xJ/7Ed5Xd7EPP05/+039aYozyR//oH5W//tf/+vbn3Xff/bSewseOx56jV/Hd4Ar12HP04sUL+eIXvyj/8D/8D8v/+X/+n/LzP//z8lt/62+Vf/qf/qc/rafwseOx5+hP/sk/KTFG+WN/7I/JX/2rf1V+8Rd/UX70R39UfuzHfuzTegofO168eCG/9Eu/JL/0S78kgPzhP/yH5Zd+6Zc2S96P83N7NBYDAwMDA98Uf/SP/lH5gR/4AZmmSf7Ov/PvlJ//+Z/f/u0P/IE/IL/n9/yel37+f/wf/0f5O/6Ov0OmaZLf/Jt/s/xH/9F/9Akf8aeDx5yn3/N7fo8A7/vzB/7AH/jkD/wTxGOvpWt8NzQWIo8/R//X//V/ye/9vb9X9vu9fPGLX5R/6V/6l+R4PH7CR/3J4rHn6I/8kT8iv/23/3bZ7/fy+c9/Xv6xf+wfky9/+cuf8FF/cvgf/of/4Zt+vnycn9tOZOyBBgYGBgYGBgYGBgZeD0NjMTAwMDAwMDAwMDDw2hiNxcDAwMDAwMDAwMDAa2M0FgMDAwMDAwMDAwMDr43RWAwMDAwMDAwMDAwMvDZGYzEwMDAwMDAwMDAw8NoYjcXAwMDAwMDAwMDAwGtjNBYDAwMDAwMDAwMDA6+N0VgMDAwMDAwMDAwMDLw2RmMxMDAwMDAwMDAwMPDaGI3FwMDAwMDAwMDAwMBrYzQWAwMDAwMDAwMDAwOvjdFYDAwMDAwMDAwMDAy8Nv7/MsqDqIsSXB8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "_ = viz.visualize_image_attr_multiple(np.transpose(attributions_occ.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " [\"original_image\", \"heat_map\"],\n", + " [\"all\", \"positive\"],\n", + " show_colorbar=True,\n", + " outlier_perc=2)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The upper part of the goose, especially the beak, seems to be the most critical for the model to predict this class.\n", + "\n", + "We can verify this further by occluding the image using a larger sliding window:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAG2CAYAAADiPRBgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9S5MlybLvCf1UzdzXisjMqv26+5yz7z003TT0oAVaEFpAYNBMYMgH6A/AkG/EhAkjPgMCIoxgAII0tMBtmm7uveeexz571yMzI5a7mSkDVXP39YjIiKys2o/jWpIVa/nD3Mzc3Jf+Vf+qKmZm7LLLLrvssssuu+yyyy67/ADRP3QHdtlll1122WWXXXbZZZc/fdmBxS677LLLLrvssssuu+zyg2UHFrvssssuu+yyyy677LLLD5YdWOyyyy677LLLLrvssssuP1h2YLHLLrvssssuu+yyyy67/GDZgcUuu+yyyy677LLLLrvs8oNlBxa77LLLLrvssssuu+yyyw+WHVjssssuu+yyyy677LLLLj9Y8ksOaq3xN3/zN7x79w4R+bH7tMsuu+yyyw8UM+P777/nN7/5Dao/rg1p/43YZZdddvnTkh/rN+JFwOJv/uZv+Ou//usvdtFddtlll11+GvlX/+pf8S/+xb/4Ua+x/0bssssuu/xpypf+jXgRsHj37h0A/4v/9H9GygMfPz5S5plaG6pCSorh6KfWhoggouQhISKoCkNOpKQMwxGzRKtCKVBL43SaqLXSWgFABFIGTYKqf3extVMbo5iKoiIkHXB2l1Brw+J4UUE1kVDvjyhpSKScEMk0M8pcqBWaCZKG5ZqtxbhaozXDmnfQYn9thpkhQJLGkCq0irWK2QQYIo1mFbMGAjllhjSgGv3JkDShIt6Hhvff+ggaUDEmnwUzzEBVyMPA8XhPTpmcB1qD1ox5FpoJtWUwnxOJObRWqa3QrIGMpHQg53vycETTQE4HEKWpUuPqpTamjx+Ypgemx9+DnUicECmINmCiWWEuFbOZZo02zzGBcHc/kLOSErRWqK0u93PtGRiCmUSfE4KiKZFUScn/AbRq1FporTGMGVSWe92lNWi1oZJ8wRiUUpnnidqq3zcRR+oiGC3WXiKljIoiqF87J7L6ejbztSXayDn52tIRQ6lNeTwV5lJ4eHhPKROtzpQyn40VA6uV2nxtSfzn/TbMvH85Zb5++zP++jd/zW9+/VccdVyOjKdusyYMVUVVGfKwjC0lH58/q2m1TNjFU2XNx2Yt1q0/eyqCiNAs1mSrtFJotcRADKxirS1/bWm1+TOaDmg+IOM9//f/53/J3/z9b/l//Of/0seKYICYkc04nU7MpUBW3n59z2/+3b8iHxXNCgatQq0xdhGGYUAkY5IBwcyfn1omWp2YTh8p88Q8fcBawaxxPN4xHEaOd28ZxjtEMo+PhVJmTqfJ+x3PWWuN1hqlzLRaKPPs9x84HA9orLlWZ8waKWeGPDCMGevvj2q01ue2z2Mj50zOmWFM/RYg4u+FJIpoQmRAUkYlMQx3SMpIykxVqK1RSmGaT8xzoVUl6YHD4Wsw4f/wv/tfL+/vH1P6Nf63/5f/Dfdv73/06/25iiIc0viD2siaEfmnzXL+bvqe/9O/+T9TrX12G//H//e/5NtvP3zBXv3pycPDiX/7D7/DzD598FPy//0epvrlOvUnKIf/7q/5T//n/+PPPv9+GPhf/Uf/S475y75bv//+e/57/63//hf/jXgRsNi6tvOQuH9zT6uNeZ4dRISCKyJY64qhuDLdGrXOlArNjJRcIR6GgaRCy4YooYxkPwdXxFVC0dME4sqUiIKAvzddJRnzQE6JcTiE0q9Yc6XATAL0QJkdHLQGYiCtIVIAIWUlZ9ekRPG/ItEG1CquLLlGv5kXb9+707A2UedGLTCfYtI0IQ1cuTUaxtxKADBIVWnJ0JS6JkfSjBGKSDzURl6UPjMj54E8jIyH0ZWZpKHuCGNNmCmtjVhTzGRR6OtstFKQVlBt5NQYspHTjKbMkI+YjpiMND1iJIzEIR8otTBNb7F6opUPtPqA1RO1nVAzhsGVezNjlo9gM2KF4wE0GVAQMURdqRcchHZQQYBSCYDY74P6tCDiSlmzilgFKqXNfj9FUVxxFvT8OtFuyolhPLri2Rql1FhPgqiiCkNO8cOs1GpUq7Tq4C6pkhRvV42UfL2oVFfek9BQNCnNMqlUam2k6uvFAWTycZtQa2UuhVpKgAMH0xqgYMwjv/z6V/z8q695c/eGg2S/wwYi/WVvsURsAQ4552XcHcA6MEtougAWschrLRjN13EAgqQO2kV1WXdmDauVVqtrwtawVhxUmCvhBNgmlr3mA5KP6HjHL3/1S6ZqHIb/ilJaXEnIAm+yMCVhmmfe1xlRIQ0D4/FAHjNJkj/DtQY4xceqikgKQ0AAzwa1KpKMXDJ5VCzGoCkhKVNJtGJghakU5nlimh8XkGAI1pq3N88BMIpfJJ5/B2xCqw5aSpmZ9RGdEhrr2Pu1Aos+/ZVKtYKkw2bdx1oZM5gD2VonWl+/8f483h0xlNaUZh2QZlQP5OEdZW5X7+8fS/o17t/e8+bdDiw+VxxYHH5QG1ndKPJPWepUObw5/CBgke4G0ulFKtKfrahV5JAWHeS1YgYMCu0HAJM/A5FDYnzz+c/1YRh499U77r4wsOjypX8jXvXU1NqtqIqpukUvtJOkGkp/cmXefzXd4t3cGmnNKFpJSSD5cX4umLoNtlp1S3NpoQQ4EJGOJoRQmBatyBVIMRx/iOvvSR3cNNn86LbFAinNcKWgXSlgor5PwjNhRihb3UraIBT4Di4EMKvU1hwkteaKFyDNQUmHB2JEG66bdBCkEBZKV1CJyyzWAmE1EBurVVgMcGWwAwtVB3iCYWI+B3FTGjNmM9ZmkG6lNqzNmAR4aTXmdXDFX5SUB0QzCLSSKFKinQpW/bqSSGkAoNWE1RPYhFEwq7RWY30oklzZV03re0clvE9pGaPFOmsGEvfRPVzV12QNq7iKexpCee/zJBL3WNNyzyQJimKUWEaGGq7IYQugq81CAzSw5Os0C2qGmM+7NMHEQNy/0z0OQlvWZjgNVkVdFDFdrm1hFe8evpzcazIOB+7u7hmGERX3ukis+63m3t8LfS1vxeJYY3vOsjMs843W6rKOYtH7itf1uv1021zHOnJfetM/hA9G/NntQPIwjhwPR/cIiT8P7vETjsk9ickaH22Oi8Z8aUI1o2JUEajeQ/c4+X1eHhAc8ouYexRywuSweY68T80EmyvNoJSZWmY3hJTJn+P+7mhGLYVWW4BAFu+nqtCyBrCKe68gtZDCeuyeuA2wsP42cSNKKhqeNf+raqTs69VMaNXH4s9PQ2ioo0uERIpzkRHVkTzcMennK1W77LLLLrvs8jnyKmBRilNbhmFANTFqYpomTtOJaZ7DMjmgKbsSkPzH0H/nHWxM0+z0GZnJKbkymFfKxVwTtUJnWbhGFNZmdWuriGBUWmvUVjhNlaJKs+aKW8qklHFVXd3C3brSBZqFlI2cjWFwRc7pBzWskB20CC2UPqjh7WiYuQegLPQop0g1c+oNASyqlUXfUlW3vmpaLMcLjUUMzYmUEinH3OmwKCLWMq7wzaFQN1pxZciomJ2iP3NQLkB1RCShOD1MxS23YgU4IVpQaaTkXgsoGAnI4YNxkKJyH0AtIcnvYU6VmiZmJlKbaVSKZFRHNN8zHr5CJPFweuR0+sjp8T0P03dgM4aiUhFtHIdMyolxGGi4p8qkhrVeFqv4PE9BDfPvruTFPFij1HkFuMmpSTmNqCYHQqHC1VoXgJGGAySB1BZqk7UAYEE0AqWFxVlx2hsIVHVgWBvt1JVJQBJIp0uFV4VGkgbJXJlldu+X+RrvFCbX/YPOFeB4yAPHwx0/++qXHA/3Yf02B4jWoMlC8+tksk6FWrBod2+wXisOXRTw1gq1VmqdFg9EPHlYwkGgCZLiRdBBVf9HB34dpIRiH969lZ5miDXujiP3d0fycKDZCWpFgFGFn48jM41ZGh+GkfF+JI/Zx2XBeEvuEUopLR6U1tyD8Xh6XJTvDiI1CyoDgxwdoGmCoEvN08zp8QGrBWxG1RjHBJaoCLXUpe8d5JYAm4IxzTOalIxTziQMLJ1GlseRlBJ5GLxfrTHPk3s+WqWaAxZ7ePT+mq89VaXZvXsl84jGuk7D4BROFU5TUL1myPlISiM5j0hWhOxetF122WWXXXb5CeVVwEJUKbXSmv8IWq3M88w8TYtVVEpxRSelbsdffuRdy2mhjzSqVJoJqVv+VcLCCDmnAAShuFgny6wUi/7jDcFjLoUmitSGagGcHrFY8RPh1TBSMjSZKwNuAu6m4M2Iu9LkSq2Ft2KhK3RqU3MOtQXwUHF6Vx5TGFDNqTYim1iBFVighBKsYdlVUsoL9arMzsOv1ajFIgbD+zCLkVLxmBQt3pfmNB2PPWlojL8FKEEKmgjA5t6COjeSKam5hVfUlVtpgLoiKyRXji0UIBPXPLGINRhJw8E9FpIZxww6oOlIrfe0NlPbCcEpTFWdx18BkYJSaPbgimJtiyLWqlt1W8SudOW1WaM2H5PFemjNleImjkxVWDjwZs0t1NX/dh6ySLc+r2upr1NNPU5ISeFNIcCy35NO/zGQvubC6xF9JWI5Vpu/Ys3jVhysGmIatDAJz4EhOBA9DAfnTeOARfrq007xcsAsrA/E9tno7W49GbaAgh5DUJf5dm+Vj7UF9azTtCTm0a35K8DoXpdOhRK6p3H1/nXioMcUDGhWpAhSvY2E8LMh8UDio2a+ursjv7ljGHJ4RGV5D/Q4Cn9HVGotlDIxz/4uUnf/bebcx+z0LTcA1FqY55nWZvcySCNnQcSplbYYEnzOainU2pimst6DpL7GIv5HwjMk8T4ZhkxKiWEYlvdYKaMbRTqtzAyxlXa5sjdkeXchCUMp1dAKmhVVp7sN+PvD/4VHbBn1Lrvssssuu/x08jpgIUophVI8aJbWqKX6924hDAXZg0a7UhYKWtCZulJotccxdCurhLVeGMdMKWugo0gLRfaCCqUe0GnAXDslp/dXSHlYlPaU/YdfNWI9Ok0CgvqyjtX6P7OFrrCAm6BnqBEB34SnwBUFiTiSnPLSmgUnWzUtwcj9gpq7AuRWcpGELgHkFsqPMM9GKR68Cov5mEkrqRqayhpgS0E0MeRFNaHVCQtrawqPhrVMrZXTVEnN5yVlRc2tr9oMoYFUV1BJ0ASaYC1h5gGzKY2kPJLzIehSmXEcSMM949E4zZMrcmWOANpKlYdotzDwiMoE9eTB5XVelNdWjWotgpzrAtYW0BE8KlFdLNi1FRBDESSCegFarZTaPVgJzTmSBHRPVVcmezC0B9l78LbGPHrQdSnNgbattLdVmwuQyaViH5Q+E0opHrxdjUReaDVdeXdgkTmOR3LKK1CnA78NAAwgcKZMyka33ohFQL1tgEWt3RvUaLX4+hQNWo+DnbQEfffAZlegu7eibTxKDmwctKrJEgAuwJgz4xDAQr0FpTKo8ItR+VYTlo2f/fLn6PFAzjk8lQFqOjCIRAUOECamcqJVD5IfxhSgJrpsAI1SC1I9+LwHPXt8iIPQlJPHbBy6F2gFZA5GGvNczrb3+e+09i2VzBMWpAgwdwDYKaU17oUbRcIjWm0BTI7+dflnKHNxymdqwjiMQSUEyIikAL/ua5PP5EXvsssuu+yyy+fKq4CFhqKrSRaX/3DIQARNmyu9TlHyH/GurGmSoLikRc8pYX0VGcDUAUazABudk+zW21qNWqcI4nULuYT1f2F3tFBwmnkGF7PInJTJw0C2TlEwtLjSldOA4NmhVm54UF46Lx1bLPwQNB1wr0BWxqYIg2eXKlNYqldKiZmEMttoZgzZGHMiZwcYOY2Lgqkp05UEcU0Ka0qriVISZq7oHg93iHrwubVHihUSOAc9JzQHFUoGSqm0Upke3LpfIpsXIh742YRSE1oNlUabJnJWhiGh+b1Th8Ij4Up6ZEvKbzEGWisx71CmEyYV0YHx7h1JRwYdOIz3GEZtJTJmNeZyopaJ6fEDD9NMnQt1ekCsIJTw4AiVNV5CI7i4VaNUD6oXHWIeh1ibQXmLMVrczg7WUiJ4+x7L0s/pGafM8kYj98DYeZ6ZIgNYLXWhqfmiCSU/vAQdlHRPCrZmVhJ1WhrqiRAIb4yYZxTQoPnkpHz91Vu+fvOOwzCgOB0pSE2LMhsrP8a46UdXcm2lR/UYok736x6QPrndQt/jVhyYG51RUwP00LNGQTx/DqxqeJl6QH7PbtS7vIAREZLgnqNQ1n8xZn59GPjN25E7Ro4Yj8eRWeHx9BjGAc+UFDo7JYBFa2AR2+M0Tdxbhgfh1yUzU6POhVJnpsdHaquUOi/vKEHQ2pjnunpYWr/HEcuBknuShU2Mic8jy7EeWxOe2do9mX1duncqh2fXgNkqlYrVsmT0GoYDqkN4AN3zOhejNJCpcBg9SP8wetA6DVRnvwbJYzB22WWXXXbZ5SeU1wGLlFwRs3O6hVM/Om/cMyIBwXUOd3+DpkEi6kpWV7xpS2BuuAMcpERwLnSKRXVLnEBrTjHIMiweC2s9SLsr8R4nIA20iSuh4vSMpiDNLfAOeGxRCHtGHIJ60T0XvimUMnFniSJYck5za5VWxcNfl2xOKwWm99F3bazX6EKJ8Pno15OFruQZiEbAA5PzMOIpaKE1jTkT3EYfKSolAQ7amqWYzxYKb0/RObpCqx683QzmVsAKKgWYUBUqiklx+oUecEUro8kwSR5X0vstGve4e64yqGfkSZYWyoyQmMkUbTQ7UNsj8zyEX0TRwQNf/Y7N0CZqzFMrUJsDI41YCLOEtQjQTrIofNXW+en31RW/DnY7wNDACbocW5tblUuplNpc+Y5MUixB2V2R7rpmA9PFYt4t3w4yVjqUJmeZqTaPYQirt6r36TAMHMbB0472voc8RXPp3rRbWR76Nulruz84WwmlvVkEvNfVA6gWQeKbGAzP4bCmT7VmEVOxAorF89fjL/rf8HrSGl/lgZ+PmbdD5sFXrb8rmlFqRVIo9pu2+yPWbH1OVCFpPDN0auFK/bLwCvT3xEoa6t6bfmykQ96kRXYPrJJTrCVh8ZZZR5DSvZoRX0Z/+nuCiMgMporaSuxstdFKo841PLw9s1lQ9iKTmOoGEC4pcVcPkrXmySfsn3ZWoF122WWXXf4w8ipgcXd3ZBjzQtHBymKhK5G+cxY8oLQqhmd+qpWlHoWoLekZWSzRFlx5/Afdei2HuqR3dLqD8/MFYxwywzBwf3+PSbdM+4+0RvYoFV1Sa9ZaiFICSwyBqiBWIwVuYprnpc5Bz+LUKSwprVbfnJwWlpIugepessGYTjNlPtEiUFh1cMs/OazmLTL+eNYfEVkpNc0V/EaLIPeEipKHO/Ig3N1tQIpVWjtR6hzZjhystObz3iyhkkl6gKahFL5xShnVA61T5nC8D+2s8PD+95Hv/5Gum4gUsJi/oGTkwzskDZAOqB4R/Lquf3lmJlElp0P0LYBGgB4SYEbSA8NQGfKRlBKnx7e04sHjWYXxcAhlDub5I9PpPQ8Pf08tj5HW2O9Rq24dLzUFdSkxjoMr6UF76ipep+b5Pfe/OUMaQHN4iUjhITPKNDFNhYfHE/Pk1KUeKzMMK6ddI15kWbxqnqEKpz31vrpSH7SVJCAVY+7JdT1WJizbh3HkMIy+npeg6E7AF6QrxhvvRVdeL+UcGK/qdF2QhS06u4m4l6s1qtbFeJBz2gALi/OD2hg1RTzUaqVkWQQN1FJD2W0RKF7cK1ILuRX+/bdf85u3R35+N/Dd1GCu6OTpW0+teu0GzRwO2d8foq7EL/MSoDC8lmXpo9GQeJ9E2ugmpDSQGPpUxjvC++XviuJB7WWip3hOKZE0MQzFvRBmnq6434+e6U0jO5WsgexKB7FeY0Q1MeZxwValVEqpnE6Tr6mcsbca9EIiyUTiEAkvNAltPjGXiVJ6WurGOAwO5IcHWtnBxS677LLLLj+tvApYtOr54TWscdC8WJbVJRDVujUzaCZeQ6FHLLDs82BfV6dK8RiFnh2np/tsYSmeZ1cwRHRRrubqvP9pmhcLOeLKRZUwZQpRCC0s5KEgpRx0hpSwpZBYwijU1nh4PC3W1RyBo1iiSXNOeBSx0poxcxrQPCdqaZQp0WoODr8rVYUafQvLuNqi4HevRcpKQhgGT5HVYpzNWAq8iWh4Gyq1nah1otYphh/c8LCGirrHIklErCclodQKpRopMs3kITs1qUE7DAzZrad5ENLQQOdghYXiqYJodW+IKiqjW1Mj+BhWPr1KD97tVt+GyAw2h0LdXPkfDO4aY84chq9REYYo+OcxB5V5Vqa5cXy4ozaBNoXVHbzIoTDP/lkkO/88YidWC3rQfqhoqqgaOUcf1K30np44UnyaA0OvcWJYS0hrSyB3zrrEZtReFDHSxvqSV09Li0SweAT7tgGJLD9CQ4Yh4h6cz6IoSTNDvmPIh83z06mDwbjvVKPuOYx4i/6MbZ+38+DtBeLgQfl+TOtXsZUS1br7MWhzutCo+jvBVfdSJnoBOAtvIrBQJom4KprHZHnK1soxK3c68BdH5VfHxCErQ4VcjbFUZoOH5mDHIGhKLcCsv3NKLfTeSy/IJyy0M9HBvalBm+r3dwFh4b1RM7DkqbE1QHAekMVDGXFHmhyoNgcPbUktXcP71zZ0tHXufd3okrlMeswKRhPxa6YUcyZRV4TIOtcC1IyYefa2phUzmE7zkgnLaiXnHO/lH1ZobZdddtlll11eK6+sYwFa3Bqr4ilKqxVqK5QISPSkPAmiGnYTV8JXS2uvN5DIedjsa5EppS36nwdmdjpUz1e/ZoQRaczFFQ3EqSWX0qxFheagGKgwuAq/sew6sIDwOkzzEsALApmgurQoVRBUC1Hn+RdjnjvNKTklxwxPBQsWXhEJhdRpEm3hxbtHxJWNYXAvz1x7JWOj1wCIu+Bgpp0iy9IcFaEjK1NUgu5UpIREBelEEg3raNSkSJGDv1VqMQ6HjDUvbOj3qFtCJWgYUeROPB4AUQ/U1iG8ROGVsG32rk4JK+794AMiXtui39OkAypGG5X7+7euQOXRKUAiYCfmuXKaT4yHY9BPIlhWFJGRUoSHh7ooXeNwXOhNPidR6Kx5ZXDRGZGKao+DYaHIlOpUJfD0xsmUIYNZQWqLeyVeUHGJ+SjUEn9rr0uyyc7TFVkSlhJYRiVHAT+jRZ0Ps4JoJunAkA5kPTi9pXOUAjuoSCjPHVzFv76ibwCLS7E+8H6vNs9dV5a3QenWeuX6lVJVgwpVyxyJA9oSqwFBH0qgS8xJpUbgtNG4S8Ivx8yvjomfj8KYlCFBUmOkMoUXzCJxg3sIJLxofr1SosI9ncJEZAOLRAkpitRt2FdbSlofoFP3DCzeBzG/Diq6J0gXjyhiSPH5q5uq2il5DJPGu0+Qs4QWKfolaUOfq17PQ6OwodOs4p0qUZAwJZLg3kIRrCQ3akyeGMGsodiS3Uvy7rHYZZdddtnlp5VXAYsP72eGDKITYoVSHmhUmhUQV+LG8bBUMF6NnavFeE2LmP2fJMaBACoVrES1zBaKtlfedi+HOildPDOPigcvalhFU14tgLVGhqRipF6NWSAl95YM48g4DuQhIQpznck5c3eXaDVoEa1yGJ2Og8iSArWUhJC8XoaO5EMmZ6VV/5Evxdzy7U4Vj+dQyOIBu869jsxFJmRRJMabUih6ui0CtwzLlXoaw1BIycjVFqUnR6IpT9Dllvkm1Wu7NaPM1Wk5JKdJVDBqWHkrefD7kXQI633ldCqYCUkHPKh8QPMR0TvI95iMHmOx6FriVngzzB7xGhuPIN/QeMDat2CPgNfeUMnkfMc4HElpIA/HyI7k8RLWYJ4Kxgdq/UBpE60VkOJxGOJ1SYakoJlWPQnAODp9zdN9uveolIm5zEzTo1vMO+HNeoxQ0LaastrknVI3RBrdtgQghyJvbrVWU1J26pAmp6X1lLzWhFo82KDNYK0gWlGZFkW99tS0qoz5wGF8w2E4MqbM0hsBrFOuNilcZaUfnXsnOj0q6FqbMS0LakORaubF3+Zp5uPDI3OZqfO0AplQsq2dF17rwELVi9zlcSDlTKmVPIxoaiQ10Iyp8d3793x4/55jrfzzu8R/8G7kV4PyVp0ld5eUN6PyVdQL+V4M0gHTDG0O7wOIlIV+2JpTl0qZl/iNlKPI4HiMZyvTiy3WElW0N8HbfryQVcmDB38bzTMtaU9H7ODCTGkImkdqbQyleHYpGlndiCHJ78sSexRgKCePhLo7HB1IaOI0u5HkdJqYThO1FE7zFABSIWfMEiepTnFMmXG4j8xvQ3g4KkimNeVxgrzXx9tll1122eUnllcBC6tCsRY/4hPzfHIrK9UDu7NXjNVkEdQZ/GJd4x8EAVPnyDehBV2gWwwlCmGlvKZqBVdsck7BcXB1WEQjdWvPENVrQ7jyIMFtjzRAkV7Wa2S41Vkj+NO8erN174FnPjKUngVpkzynBx/QaxYsBcnMs0floLLU6kqniJGTx5WodqClkaKXSNVpiDmI8GDTRrOyBFwvwbFeyzw8Hh6MmpNbcJsMq6ekK0vSaWXmVmIDIqjVDb91oTl1RhmiUeSv11NwEenpcEdEvVYF3RJu3o4YXoTPCth74BF4AL4DOwEfafaItROtdcuwAyllDKW4e2ASJoplmOeu0PX0xENYpKPmhwVdTV0Nz4NnVhoGRaUH4LeFrrQE/i4+hW69dq9LTARLRqme3tVsUax7HI7r5+t6SEnCIu7xFTShteKF/QKwOggwejXqHuwvyYHFEqvgi2HxVPR4iq0D4gxQLGCiP1PnYKMXEvROs8QRAYunYZ5nL3o5TZR5iucv4qQgHoTeis9HrYWcvIjliJB6IgbR8AnkZcbef/+RD9+952jGVyr8csgMkdhBrZIbDM2opxkTYRwGSng/l+Bo7UDJQYAbA2BJFrHxWPR6H/R5i8xUHZX5/eyeG12KcPpgndak0uPG+zwGPVGV2ozcErQM1qIwnXsw6lKNO7xY1uuGRBptIu5icOOIB5eH11aIKvQS8V1CryYu4gHe7mnNnvK6QSOhJH8+9VWv91122WWXXXb5wfK6Xx7LTKeJhw8T0/TAafqI/8gbacgMg/Poh6GRcqVWO1PUu4G0VufDeypM11AiPnKtnJwHis7Ms1DKyXPMDxrBwOJ0loiNSMOw0AyIH+4snmkp53HhNnfaiWpPHSlOYaiA1U3djYEW9RtaTQ6CaBEvsgFBEU+gYtQ2IxjDAPnoFsRWsys5lKBCQcpGzwRFUwcVGHMtVKuRucqnu0RA7DyVoNrM1Opgjk6lMuF4KOR84DAcPIVmMaq59TRpXfjXpc3L9VYORoA2TTSMIQ0Lp7vV6mlOg1uOJEwG0CPIEchOe7ICPDoNxQrYA8YJ5BuQR5AHYHL3DV6QrJTKXAyRSq5CaZVcp+hzZsgDWUdUM+lwRy0HHnUGOwDKkBPDkD1WJ7kCX4Oqgih58OxAKQmEQl/myjxV5slwut5KhduCi9RvFkIJd5GHB4dmnVLEIPQifl3RDvpZ8uBslewgxYTWHj1l7TxFPEKBoMr5el5BuKLcH44gLTx5oWVuvRHCAhI6nPB4gvWYDnp7zEsf6aroNqKYNyqClUqZZk6Pj7x//56PpwdOpxME8Eyy1kTpwMLru/j3nDxw+Dg3hjFHGURhMNB8wBBqNf723/4d3/z9P/J1NX6dEr85DB5G3Qwtjxzmxt2p8v3vP/I4HHjzi1/w0Ronq76OIhvbMCQgMYxvg7rlHghX2mu8S/LGeyNL7JaooC2hzbOlYUZSj3EaDwM592xSNUBfj5voWcQc/B4DVHa4BubVsKeJx4cH5sfJ24/7lESZi7typ+kE4p7McTy6VyesFzUlRI4RqC70TFwehzUwjCPH4yHeVQPFlFaFuQ3kfODu+MY9Hbvssssuu+zyE8qrgEUeXFmah4FmlblMbkEUSGlAU8ZsoFa39tcyu0XQ6pJisVOXerafRUMJb4JVV5d6kHGtUEpYDUuntgzI2LPxRJaV5Ip+qdWLTAUPX5Mfl5KSsl8j5VXZaq1zq8cIkgZrM2aNeTJq8z6uhee8WjdRmMszYFpw9d1DkTQs0Rr1LGieWlSF4TC4sqMDc2kRA7J6GLZslZ5qMufBs+9UpTYP6pyn02IFTRIK1uBjykOvDe6UDI+baFAi5sTaGogqqXebWhpWZ5p4oGhOyvHwFpG4r5KxyI8vMgMNqw9Ym6jte8xmzE4gE0JFNI6hrdmhLNGqUEuizE5DKaVQZiOlmfnkWbOGYeAw3JHT6B4ZJnKu3B39Hh2O2euTJKekWRPm4hz82pzSY91T1tMQt5iLEsXcjCjCGNbkvkaHgaSe2apHNEtbQa+IUEtlboUpvB+lRnrjFlXd1as4+zrPpPFIJSFzUJ5YPRzCml0qqXA8vuXu+IYUsTK01cvQFWVRWV1oARJVzwHFFmCET4I13euaZCFpoppRWuNhnvnd6SPft4kTlTpq0Ox6vAuUqS2JHDwMqGL1RJaJpFDqkcM8RhVvx5vD6Bmoplb5/bff8dvf/567jx/57g4eHhN3Y0YtIVl5I8IvB+WOGUEZB6VKpUhlqpN7HABPmexJCwyPW0kRTC7SSCkHyOvRLiuo6rE/zRpl7l6sFrFFHguF+PuH8JKZ57OmipExUmqMw+jvOGQJ2rc0evxSUjSniBFbWJyM2St7Hw8H9/SKQHP6oIqQI+2xagpwrF54MIKzG714oxfSJN0x2IjlRsp3pDxwPNwtcS677LLLLrvs8lPJ64BFSjQaOWdqG/xHLdzyKbnCDBlPeyo0U8Q8m1SKbCop5U0gJAvHm61iHR/NhIZSoyZAqZCyxyQkDX591ElQTfS0kC3qG4CFZdHTgyZtaJIASAEsKouHRIJqM2dXdkUkKDOR9z7+81hQw6xsPBhtoWk42PJsRk6J6NQXT1HrCs/gcRSePiqyuHi2m56m0vn3IEmdPqaJKm45b5GK14OOIx7BcO8CgkoKfdPc2G14jQfz8aQeTCo52mgefGyNJpXDOCJ58CBoHSjVK257+bOCRJ7/1r7H2gO1fIvZRLMTyOyeIQvPTFTxBl8TtSRPsTvPDqikRFpTYU4rsLCDMOQGY8JsRrUyjq7gjmNiyJmUPVYnikkvmYJaLYHpgsZWDau9srEtBQunqSzKZgqKnBnYAMnySoFrIDnmTJN7SErbcOiJFLU1qFqEZywCd/NAMkHz7NmHRIEaoDaRNS/A4jAeOYxHD14HHN0ETSscTSpeL2XB5ZxTnrqsoMKpYIt7YbOf4PGXZpxq4fv5kQ+tMEtDolif5hz1SqDUGkAEatDxrDaUQqJ5ytda0aCzgVJqo5jxOMN3Hz7y7YcPzKdH3p8SH04DX/eMVjVzUOVdVt6og7TDIHw049GCCmg9mD3mQx08IIrU5tuTLh6UnphBOm8t6ET91TNPxSlqpXsWQNRW6uMyf+4larUEHUkjAN9hfDGvgOOgbnAvECwB8O7dc2CRUvJ4K3ra3KDCYaunSdfkAyJGq3hSB4t6GyhIRnQkj0AW8ngfhQIP1PCM7LLLLrvssstPJa8skAd5GKh2RxoyJKXbXofRf8SH8RCpZBPOYPcMSGkQkmc9XSyFNaxwHovQLa1DBG2PDMGbfv/w6LEGZpxm8cqz4lSXPHiaRiXRbKBUOIVy6ZRsIQcTQsQVgoWjrRJxBeo0JXVSyf2bkWFIjGOmzK6Ink5uXZfONY90uz3ovMdCzLPHRbiCO7tlvM1uCc2Jr94Zx7vG3V14TVTQ3ANFLeJXGqWVsFoK4zgiKPJOafUttTYePk6RNcvIw+AeAfXqvIZE0TBXhGvtMRbuiTFzi73bzKfgdbuC1cxQlK++/prjIVNtoJbMw2NxpU4bIh8QKRgnantPsxNze/R7GvVIukLW06+2KpFxyWsFlFJo9eTWZXClMP55rZDE3fGOYTjw5u6dA6Hk2zvDozVDSoPkymQSJYnQRCL9cWOqTn8qpfHwcGKaZk6nibmWJVVpj7NJyWlV4+HAOB6cRic5wJ4g1eu2ODXMg5RJMLTMXLJ7S2rFLFKL5uyeNFWG5J6Qw2F0C/+iHPvYNbIeCY2v3n3F1+++ImtyEEJ3SqzAAmBbw+KswnX87R5B16c7oOjt2dkmM/hQTnwzfeRvH773eAZ1L6XlhI6J4/GOrJlDOzBPME3G+w8fKdMjjx8MK49IO/FwOpGnyvGx8uZx5nh45OMkfHic+MfvP/D3v/1Hfvfd9/z94yNZGsXgP/mLgV9J4l1tHFQZ08D/4L/xlzzkzMc3B+qDV2Z/UFYvlDWsFVLq8VnCkLuhA0QqKo0cxoykugzYs+H6i2GeMrUq0ymelchEZ63S6rTMecqKNThV4+PHB6xVHocP5JwYhyEUfcEiYxyqHA/HBQjGQltqljid0WO7QJZ6Fo+PJ0qAgpwzh8PB44hIFBNqTUxNsAd//w13I+lwZMwjeTi4J0MUs4fXvN532WWXXXbZ5QfLq4CF6BAWfwPJHEiLHtODoTUNbkH01DhAA5kDQLSgHNRQQMO6bCvtp7M/NKKJNSnDmJwNYqGIiytgvUaBSY4f8wEdhFHVwQqGyUxpBZsLuUYmJTPPzBI1CEQMS+J1KkQ9nakYKQO49bmUFsWz1vS3oq4YpJqCtmXMk0VxsSgCZoXaZlJScjIe0qMr3s1IkVpyGb/2wFs2KT3FswKpxZgjBqAdlmv2qGsPKO0B1gHsJDktrXlxNwtuj0VsQJtnWqnUuS7Fvg7jGJTuRK2udJfq9xFmUptBCnCi2gPNZmrzLFxeKDHSDke8i9W2pHKtbS1C1orHgfQIBg8jCDAU96aUEnQYz+KlySsQWzOvwt0MbXG+eXVvnz9fm6U25mLMc2OaKvPca650FpGER0eiRkcP3O2eqC0/39Y0xBE8myW7Z06VnGONm49jGIaFOrXEO0tPBKBgdVX1W9fwG+Il3dZ6MWFpl05lgn7WIj2Qv6+hfshqpWdZW9harG9tzTjNE49lZqoVSYJE9WbPYFaZy4mmBa9cn5AhoWNGbKCmI62Je86kUcWrwNtcODV4nL/h+48P/Pb33/Lx4YG5eHre3z3M/Nf5gb95dw8Cx1EZUiKr8fPDyP04cH8c+L2NTAm+Pwk1FHSLAUlkSuvzAMFAFDARmhRfM706evd2EJXquxcoEk5YjQQVtQBRx0XdK9sUUlVKiXfCXEgqTHmO5BVOT9KcydJjMQJIxLxva070IP+cNOqmuEfM1J9UJNFMwTxeR9KASmTUS8flX8ojaRiXopuCnq+FXXbZZZdddvkJ5FXAIqUDKWdGRtLQ0LEHEG/oFeruec+qBB6gKtT5EajQTtRalwDGiIQIizWk3AKgNDRlSCPHu2O4/I8smXYocXYDVUyS908HRIfIV184PX7Haf5AffiA8kjSxvHQyNk8kJqoBK7VKQxBHBEVTyebMq0Jc/HA0NPjIyUs7V5jz3/oW1NqFcosTFOvLjy7Am+VnBspVWp5zzieeDx+5HDwInVE2tyUM8OYIwg305UliVoJJkZOI5ITWUdKhWm2iNUQwDM1qee5XKhZZidqm6k2BPXIKHWmlpmH7x4pp0fmx49gTkPKX3vMAgycJvdueEHCE2KPaP0IWoBCZaJaZW6ey7+UjeLegodfvDBaz1jVgYXNdeH8N5npnJ3uTSp1JqeBWo27uzskvSG3UFgxT3MMwBw8eg8w14hL8SJ3jXmG02Q8nGrQlXqxMwcgHdqkoDrlYfD7kdJSnNCaAyxaI7Ua8UIdyLGsZc/c5XdNe1aeoJp1QNIpNq3hc9Ynywxqo1Uvfih4SmWTZWqC7icLKNrSnjqla5tJqossvWL5a4EsGkY14/3jAx9Oj0ytMEgmi6dFtdooNvNh/uC0wjSShzvn8x8ywoH28I6pHqlaKFJIatTceJwmeHigfPg93333Pf/w97/l/cMjZa7U0vi7Dye+PVX+8njkoVZ++SaRqpJE+eXbETseKG8OPGYhzTPf5MxUzZX6UNBhxqiRxaw5GPOalLSIe26qWOsUNTdiGJ4ytpl7+lJKnuHKCrU8RkKGsoCOlIUU1ePnSWkVPrz/CObvkMNhZBgyx7s7BjPPPhdr2VrzaKNWmKYpav9MiPkaO4zq6ZbTwGH0hBfViPeoew5FMprdkzbkA/n4FXk4MBzeeCHPnBdKHKz1RnbZZZdddtnlp5LXUaGGe9IwIBlSM2egQMQTmFNwRDEiTWipYfn76Pz+SDHqPH7njYsokjrdRNE0rjEPARI0v0HTSBrulqJjVh+xVrCowCyi5HFEdIR0oJkreUNWptOBKR14+N6Y6kce3n9PSjOaGofRwcOQBaO40ZjGmsq24ZZ7ARvQdE/SDALD0LnxiTI1sno9hePogZOPp4/M04nT6SNt9poaTBOTnPggzumX5Pz7w92Rw/HA23dvo7p3o5WCRWE/6XxrqW4d1wOiA+PgRfHMlEqOlKGh5IqCJvLxDhlhDIt+k1B0a2HMv+f08D2PH36P2MSQEz/7xS84HN/SyKF0eaBqsxPWPtDaydOu4ll/milqDTMlgStEZlEwzq34XjSvgTS88nikeg16edK0xEiYeexLaUbTikTNiwbM0+SeJuspZC0CpD3upnsaEPV0tnkgH5WWK6NJAL7CEuIjPXUsURVdgjrjQLeTZ5DuC7JNAcBu93eLv0RQca2VZsZUTvQ0y605mrDWlorZ7j1oiHmwsUhPhzvT5mkpkCi9A1igAXpQxUIhhI213nx+zYxWe/xPZLXqBoDOwgovTCkz7z++5+PjR0+60CqtamRK8uxKQ+7W8AzSlfEDxzFjX/2MWhO19diignKiPr6nnh748OHv+NjgsTWPy8AwhdkapRT+b//we/7uw4hI49/7+Vf883eJt3NBU+JQC/8seRri/+pD4btSeJwKpXkQuujkNL0FXJg/J53CFAHQDJmknuK6FncStSpMk7hRoBDeNV8j0JDMUgPE09kKcx1oqshwJB3uwhPXqBKxW5oxdPFcSqyN7lWyqCVjDDQTalPq4+wB/8kQTUjKjOkQBSgPoPeojgzDG4Y8MAwj4+EYxo9hpcmtr2TOkOUuu+yyyy67/ATySipUQtLoP54JL8DcKSM9fStKi38mFa0ztihfkfvdeuxFL2w3BDjxGIukGsHNGdFMzgc0jeTh6JVnMazMrgDMXnVbtDEkD9okpYgzYNXHmvHAd9SSmE8VlULSgjQhJ8GGFIpZV1ach91yDQXQg0DzoCgZURhyIolXtJbg6kdk9+LJUYRWStR2iKwyUQEaKR7YO5rPjSTGg1vDfWxOx+i1L1JSRMpq4Rw8c1NKA4YX7as1Yj5M8JLHI0mzp42VwedFe8Ct1wxwi+qEkhmycn//hjQeQvlJAbQsaluUKFBHUI86lYfVFG/rnHs2ptggW31YkBTzpASVa3V+teaxEmZOOdFUkNMErYUldqX3pJSjqrkuCpUrdz6nTktRhrGSaqW2TtNjoYZ1ukvPCqSsWZAWHW3R04IXv6ElWVSMB5ZUtNOprBSoRbF0r1APzu21NVJ2oNKkITggJ9qUWwqi2DKPS9BFUKUitKJvWfsr/R6s9TcIAF5bjVS4kcnLOnWthAGhexV7rQ+fkKQZyQPH4x3NRswyjYbZjLVH6O+C4YANIzJmZJ7claBRDdsaf/vxgblWfv3NgeN44H4cOcyFMWdybbxJwpyUN2I8msc+OID2dMcdWHigdPNnK6bGurdCDJIXLvTYHwcYp5NSKpS5Z83yNeGV0tfaKVZzgG3P+pRGYQiKZy0VzU5Z7MkXPF4jaG0LCO2pqqNuRaz7Uj3OxjCyep2WNBwRHRE9oukNmg6M41uGnD3l7DBEemH3ml06KG5VW99ll1122WWXH1NeWUEpA8NSZTmrgwMkkfMRkUyTgc54tk7hsQqtQCuU+uhKc/GaCgA5Dx43IeL0C8EtjOLAQtPBOcUKaq6kz/U9Nj8wP75HU3Ze82EMGtGIJ4QUMqNTV9rMPI4kG2hzptWJuTaSVGqCVpUchfaEtGQ06jUwNCt6HJEhMw53bv2tLOOaeA8GKh6IDcI8Zlp5w/z2nef7b26dnUvUM2gNEw/eHvKIkjk9gJkreW128IQ0xNxa3syLao2HicNd5fg2c7w/eAC4DGGdrqEEJiQfPaAzjeR0554YBOn34wCne+XjXUOtkJLy9t0vaHKgcMDsDjO/X6Vlas1Mj1PEAYSVmEazqGTcOg3KoLil1uP1Q+lNThFSAXJZFGSa1wtptVIiq5hGqlDT7FmcTo+U2RXyISd6RqXSPIOXRqYwx7rF5yAsuim5l6dFATK3HBvzPIfXIoo8Ro0CzBXKVqBr6T1CpTbD6xukqMbemMuM167wcdRqPHyYA0RGyl0cd7YhOUi0GmlvZ8bsSQ+c6OSVrC1SFQud2naOb9Zq2Btg0SpNiBib7rlwepZKWgBBMPghvDilzLTIvHU3duUXrH1kLk4/q3Uk6cA4vPGYAzQqahvj4LNj4iC5NaFWpQxQ70fu3ma+/u5r3v7snr//1/+aj99/4PSxUItnY/pYK6eHR/73//ob/vZj5b/+5pH/6b+f+KUZvxpG3rw9kHLi3z+8YajGP7bv0RZpmsW9PmaOFMwaRVvHUQhGVcOKuldKvH5Nq1548XRqzFXwTMAKJAfjquSa0fCcSrp3RT+/8XTA6YCk7MCsTJTpO2p9YD59A+WE1BNJCyqNlMzXYR4Y0h0mmdk8/qmZMpfw+CKUNEYtl6/I+ch4uOdweBNUqXHxrPUCi5eyzWS1yy677LLLLj+lvM5j0WkXQWUQsaVac69MrMjKF+8W0iUi28FBS5WW8kLdyFEx262tHjvRYAEbvq8HOrqy5ZWpI3uSgZqQy0ySiayDB+KiiBhZjZaF+2Nm0ANqB6cpVFmsx0nPqQRdiSMszn2MWZVE9XSrrf9rJFm9FGZ1ofmIJobh4PQvMyQbqVWG5uk3Dac5SfIqwR4bEl6NOKdTYrCVv29NoSakKNoy2QaSDEAULJTkHp/w9rgnKLm3qE3Y/JFWHynTt9T60S2+SZyWlgZER5IewUYPEG+FyhyxFIAVxGZXJs3CkxFZoazTcLpC7mCJKLC2VlwPSoxZOHOEMruiBRmR7PEz9NSqFoAprLTiduAW1CRrFhWXZblvjgzcWtzjHCwoNBaZu4hUwUJ2UClOdBI8oN8ii5lUX89OL4rg30hHXJt5hrAo0idijIe4n73rMRsizrW3WgOgFFobsOZW7Gae0tUD4NeCiX0drk4Kb9gzlPVnlDVAOcDcOu8BOD1KOU43Sp04zY88nD7yePrIZNNC1wJDkxdfswop+TxZg5YsgGxC9BEjspuZF8OU2kg2IVLIo8GbDO0t08PXjGPme/1AmQrzNDNP3tfHWvm3Hx8wGv/st3f8Zqqk4chhzGTN/MXdGz42+NnjI9+eJk7Vn4leh6KWKTLIzUv8jpmFcl+WuhFmnr3JGDG9i6DnIcasJF2LbqpmBxrpEAksDqQ0RqIKTxVdc2OSTJ0zp1lpzZMJtKpeAHMu4Q0ThuGIKFhKDvjzyOHu6GBQMhIpcsfxjpy84N0Q2Z7SUqskXlKbd3N/n+6Oil122WWXXf5Q8jqPRSgbRs+37j/YmjwocqWERFUs/AdPxbOZYJBTWFBtzbGuQqRoLZTaGTW20GY8e05UzA2FyoN3XQE3qlOa5skpQTqQSEsQc04+Ur0fqUPlkO6ZJrw2Q3gAVHuweYChbknvfBFnbjhNoTklp80nekKaZGFtDAqE69RenTcNI0T626UwnSqVbsn341uDx8dpUc4rm3gIc96+BYUCG7CWsZJIbcTaiMgYlnsJpSeR8gFJCVEvbIdVKB8op99R5vc8PH6zBFOndPCUtWlA8pGU7jEboEJtiTrB1DLTBNZOYB8jPa65pbi5BX5LEVqSKlF9Xltk54mxe8apniFMaO2ASEbSwfusQi8EaNaLGcqSctbvTlvpVkkj8NxpRjXoWxbR0iK91olbtr2Io4M709EVO3p1a4l11jn3nSqzLAmwXl8igVrESni8xiFF4DcV0KCGNcrkqYnLNOOpZ2daOWKR+rg1mOe2VKNfwkaExSOzBGgv4KID/yjOuGT/aoubo/n0ePaozVjmcuLx9JEPH7/n4+kjk80OQnv63+SeoTZCShVrkFMhpwnND35MjrEaSPOaJzTPaJYwdBCGlDge3mFl5v39HRhMDyemR+VD82DuuVX+5sMD//j4yDgm/r2HmZ/dveXXhyNvs/CbN18xSeZvHmcepo88WmFuilXPPlanRK0zp7nFO6UXy8SJmsnr1ogmBwiHd9zd/4I83jEc7pzuKU5F8roziaTuzRwiw5e/L8LyYDVoT0I2pYjSTh43MUv3aBnT1N+Hxt1dJeVMGoU8HBmHe9589Ss3AOSjc/JEyVnRyJK2vAv7c7W+lH3Lxk2xeyx22WWXXXb5Q8krqVAuGtYyD2TFM9nQqywXzgpxRT2FnvVJxQN4YfMDKIQS491pYWEW9SBR6MqVRcp3QfOBZJDHCBYWpYlXEGY+AW6RdOVqBjxWwXIijUeGpGg7YJGWVqyTQyKlbfIA8mG89yws4/0SxFkevw+Od4nCdEqVAxa1JDRlV8xS9n6Y0CKVq1MZEpo9A43ZqgCZGfmu+OiT0r0zrUxBZzEfkyg536HpEFSJO1eAljskoTz5XwvvCa3RaqGWmcf5xDxPnIpQqlOc2jySbUAfhTwq6eBej5SFw31GhsTh/h2n6WtqmZinB+b5wT/PH2h19oxG7YRZ8WJ5USTQi+o1aFME3XuFdA9ejaUoiZy93wnDpCDNSMktvYgy10ZtUKorsd070teWagTt+urETKKOR6VFlq7WKq3X9AiLfFKlldmLuqUBZABJVEsL+OuW4pSDUiS9MndY7s371mulONc/1hfCUq/AnP7z8PDggd5tRlU5HA/c33+FqQfd23oKHc2ET3ANw+51ECKBwppOtQOHulCCCFoUETvS18ppnnn/OPH+48zHU6G0iqoDpBxFA/PggKV7BmZ5cI9O68+julKuXgEbFFpaBpCHnqVL4PAzjvoVvxx/SX2cKA8T3/zd3/L48IHvP37jYAf4z3/7gd9+rHw4Nf6jh4n/xq9+zq//+sgvju/4j/75LxjfFH47Gd/UqBxejenjN5T5hJ7eR1/DKyiyJIVIKZHzSMpHDsd3HI7vSNnjJpZ7LDnWlEGboE3U+SOtztR5olDDCxeppctEKRO1Vr//qjTNHl2hIyndOWCWDPnOC20kX2PWa7fkTB6HJeWxLvEs/Z66SeVcnkIR8sy+XXbZZZdddvlx5LOAxVKYa8nRFG54qaHMBVXKOi/dluBFvaBtOACI7xqB0YBFfINzvf2chT+/KNhOS7CFIxIF4szpRCxelMgbH8eQwrLfEk2su0jC9udBxa78D6TxjpQPpOGtj9QM0wlrgimYeECnyTFAheew1wAWHvhpaPbUvCkPkes+uXW/NaQVNKhPJKfTaM5r8GmdwQJwRSVjTWPksx9IeQzQsyI1VV0+A14NGQtl3FNYmgygHmCOeHVlSRmTiFGJVJjdEj5wDE/IQKlz5NC/p5YZSfe0NlPLCa2PXhywPgbQrAEoZkqBVqaw5BLzk5baJ8s1VTymJokXV1RBU6wnM6xKZ6EtKldSi4xThmoUMkDCG+J1SHp9gjIHVQYhNcPUs/WoNrRFTREhlE2gV01XIedhbbv0YndtDZyOz9WKe1KsE6ucv9+qBxnPpSzF2ObIgOTgkeX6xNhucem3yqbEMyDBueo0oH7+8tx2etTSiFKb1ymZqjAXpbaIVVEgAvg93iliJwrhEYFaqscJpUQaAmBI0BBJYF5dWtqIxfjzIaGDkA6GnQrtbqKdCnkYmOpDpGsyHkvldw8n/stvv+fnv3uDauL485/DfeZnb+751VtBJqGWxGRCaUbWgTKfkOHNxsAR9KGlGrcDjJxHxvGOcbz31NbdW4lXpvfnPYpc2kRtH6FOtPJIbb6uTTx2qtbiaZYtXEzqXloHegH0xVNTpzySNLnXIh09VkO9RkuKgorLHC638Bwk2OVyONu/g4pddtlll13+MPJZwCJ+KkkLR2Nhh7Dy5l3p63u85kOHF3GebixyoUelwYOmnUbk54ftGejW/UatmUqkU43CZsPQOdKRbaZ2j4ArotUOmAxUHahEJpnOKOnWYBFUzZXIIaP5DtIBS299JGa0YcRSRQ4EH9rzy4s4H7tzV9ZsWJC7PyQ0BTNDm9OGFKeGmVW0uUVZ0xC8byUt7XQlt2eCObc8d23DDwnNwwyrxa23iiuJ+hYdM0MujHcB6DrNQ4QeNC86BLAApJHUA+IPoysuS8G4ZszWK45HYH5tzPMUNKuZ08dvmR4/8M3D3zDN7ynTRyQK+Ln12KteDwclD8J4UO7ejAyjMh4Us5laJ06nOYJujTIZpXhmH3AwkVIhaWMczWsPJAe/KtB6tp5mlOoxHYYgxVCqx6ZoYhgzeYQ89Poing3sMB4YcmYcRsyglsbDw/fU6qBJAgjXqpRaOT0U5qlQ5oqY78uavUjfXJmnKBTYKqdpQlS88rkqefDMY4jD8k7POl9VIVaX+9+sU6VW4KGs2wha2WL7NrweSlHmes9UlVorWSUSGBxpLVNK5nSKQoydo2VGKSdfc3nkeP+O8fCGw91XsX7HCNRPaB5R8aDolI/uCUvZs6XVws9+9s/48O1vufuvMjY90OZHHh8eOZXCf/bNN3wzz/z673/H/+TR+M1f/pp/59898t/56is+6Ih8UB5a5sEyvP0Z1oyymDRseUe5FyBiqSIznSc59piTWqfY3ki1IVap5YE6fcc8vafM7wNAzMxldspivDm8kJ0HYyMjkpUh65J4YhjuI85p8No3mhn0SEq+voZxiKxvHgPSceWSAE28j7ZAOlvv4ZX0re3m3l122WWXXXb5seSVMRYLwTuoFZvKxAuZPvjHJmdWNQ3Lr21+DMXOC3z5xw42ojq0FaqVyBQVxd/SsMYtpKCIhJV3UcDCYm8WFbJTQyI9ZWqRqWoJCI+xRP+TVrzKdWS9CsVfxKkeabxjicYNKoN0QNGDeqM1W6yHnbyyWhM9WNMQ3FLvNJU+loRuPELI1lMkMUcLT2YZw5relBg/9KoL3ctEgswYnoKo9pu2gKhT19KmfY2Camvg6BLArL7dvRzNgVczDtUDups15sMd0/SApszjw3dMpw/U8uhgMjmfPGVhPHhV9GFsjGMUMowK54rAkKkC0hRLXrOjqYE1RDxFa2te6Rtb66t4PYlED84V7R4hIYmDEM+ypOQxMYyJPCrDQUgJhixerV08lWqLTEq1fKSUoHfhbbeWvBBfSZH1CKz5mirSqMXjcLpC6gHAnklqepyZtVIHnEnFebLZDipcue/34XL/qpS6x+9SwQzLOp4dSnQgDW+5/+o3yMHpPGNQhlK+iyrPDqA9tKMt/2qdfXXkkePxnmE8Mo73/pxojudnBa4a4LuDMDE3Dtz/7FekcaBMH3j87rdM778lqzKWmXY68bEW/u3H9/xf/+bf8G8fH/jdPPMX//yvGd58xc/0LSLGbGCiXh07jBJIz8fl97rXU+lGB6P6M2HmlbatghVKUPbm+T3z/JEyP/j9bpVSa1S9hx4PgfSsbBnNR7Ik0IGUDqgODMOdZ4UKcOHpkcelWJ/3gYW61VSC2rjef5NuOOgmnPUzyFJbpoffXPu4dtlll1122eXHlVd6LOJHcDGlcaZI+2enPnBBxVmKeC11jtc/0QwrD913WnPOvtmEqZL06FZ0RtKQEHNyibXqXPNQITzlbFoVZdsopuB0kUiFK73fEejtZ8xgs8dRLJb52YNYezD2Mh5ZqFgLtWszNs/O06ehexFWkNAlEhktdKZVQbxQDxbNIUDF1mOxOegMXCD0aGcR8xokMgDZ4xmSW+a9LkXw5vt5sFCGNsbfaNspQ95vxTY0t07NsPhcjm+Z54lhPPDxw7c8PLxnOn0PVhFpDBlyNsaxkrSQ0kTOFVVba1srkLJ7ylqm3/ZOdXMjuhc57N4y6a6wUPodXGQv8WGe1SynoLxHIcKcE/mgDIMwDr4vJxxo4jULap0p8yPz/IFaPIDdg88Vs8HjbkqKf40WCrjXWug1VtQpT6Yea1KM02PhmBpt9HoL0ue8Y/d+E2xZYKFF6vn96asnwHr3+HWa4lKzJdIza1befPVXpLlQSuM4Hskpk8a7pQhbDmqPZ2Rz75S1AggpD4zjkSH34zqdR7aP+bKeV4OC15i4+/oXjMcjtBPfJ+GDGSSYphNNjO8fH/n+dOLj30387YcP/P7DI/9xPvLLX8FXPzsyk3iP0Qiviq5Kd7+mr1OPSbHSM3JV92JAePacLlfLA61OTNN75nLydMu1RiY6qFWpTVDJ/u7Q7JQmGUjpzoO/08Fr8OjAON65t0aHAGiyztHGi9nXrRqYnr8jLudw+3ypT2oshx5zdH3uLrvssssuu/yY8rrK20uBLFx5Y1WQbbGirxSmjW8CW3LoB5e5p6MFiMrA0BVrp9jUeaKUR06n71FVyqEwHJ024xZCwtu/EB4WDWxJlylh1TaDXqQuakq4h0AjQ8ywAI9a1+Dirr83CSuoLKEbHige11ZVV/YvccCW5v7cD70sKtd248VBXQG5bvLZprUTaPoZAknDW9C9O+r0NZzifk7ilvVeXfWte69WH82ZIhleLRlH8jAwHkfeff0Lp5TMJ/9bTpT5A7WcmB+/YaofPVZDCqKVYTDP5pOEhCtyTlkakJQpp5lWCvVUsSpYM2oxz/c/AlGbwOoIJITM8SCkbIzHXmPAvKCbVcwmhJlWlTofqLMyNaXMXn25FHPKV50pdYqMVBpeG+fT+0oOa3Y6sDwtkhgObtkW8XiA6eEDp+mRaRbGwzsa7yC9cQ/ZQotp4S3SzRz7fDsgvwjKltWvxQLm19S0a243nE6YE7/6xV8wzY25FI/fEWUYI81pT0gg3RN5/nz3uIBzWBPG/FgHZ+ytZRG7QaAi2HDgzS//BWl8y93P/opv/s2/hIf3/EIz7w5HSi1893jidw8P/Pb/96/53cOJv/rFL/hP/uP/IXfHr3g3vOO7lmnho1G6V00XkFwNaEKlZ+zy9MaCYDLQpNKkUHSgUWnDGyRXUmtoeARGWT2JqmnJ9OY0JvXUsJJ8HcR7T8XXxFrQ0DZzQU+it0HtthTGXI0y2ycv0n2z3vYlDa2s7+Jddtlll112+SnlMzwWq9V9tYpL13HOFVCri7W8KzKrItqb7FtDeVp2RIG3oBg0oJpXp12Z5m7t6+lLF6/H8uMdll3bVH/uqUvBFT+ChiBd+eg85gjsXtoK/rStlIRlDrY6+1VU5Xb2+ocnjrmxfU0seY1Mzi67sc4uWGa9YGw9s2X7X9VlPg2WZF7PQ5WrES3dXygYZ/wcV449ONrrabTWqPlAbYV5PlFSpsyPUCtFwntiE1CDy94TAARFSw6gIyoDgx3RNHuV8xmsClmLeyVUAffOoHcIrtCnwdBkqM6IuPXamjo1yIJS1sxrjZhXoZ4no1UopWekUprl1WOAOr0Mz/Yjkkg5vBJDpG5VD951etHIfHpAyKADgjDe/Zzh8IY83rNkROuVs+lJETYKZHg+tvdACMqPrKvBlod1C/sCbFhbUianqKtBq95YMaeNWfUaJ5I8Y1nENdGV7I3yu2CGnhThYl2vYNuWYwiqWspHxruvEB04vv+WOR84tUaePiLziUNunKwyzZV//P47RODbb35P/SqRv7rDmobfMt4LpgsQ8msGGIvnvVfA9n1BzxJP84o1sg7h5WnRb1nAwpJKWyLYP7Z5wU8NMLGF/pdGgxs5ni5vEbc5TWsGMDbgM4Bc7NjTzu6yyy677PJTy+sK5NF/4+TqBxHDraG25vtfAyczwU1YWpJoRUKNl55RZ+FkZ9KQIB0Z5OjB2JKpNkJbYyj8lMg8EwqEZ6OKPjao1ast+95Er4yNSqT1VBqemhYMU/FqzDJ4dpcIaPa+JeyMsr6NdfiUMh6ztznsS/z4n1syXyKyehJCqXIqD6vy1Ft7UaPrILaFutarbf86fcSSp941a4z5jja+o9XCafwZpU7M8yNzncMz4MHRtU5UKz7jmpHhgA4H3t4fgQblI/Xx97TpPSofEG1obpCOoAMqX6EyIhwobaJZodT3TNMjtTSs+nwMefDK6iIUMrUJcxVq8aJn0sPp1dPb9nyu1pL/06MDqHRgjGJqh8O9W/2j4JkH7Y48PLzn22//gccHrwfxq7/8a94eB+7vEpYeqVYZelXp7iUUz3Aktlq/naefOE8m1ZXSWNebuhe6KJ4NpkfscaJ+f6LOntmr1IaZUNNxqfichjsPyj7eocOIDAMa6YEJkN4pkZ4My9MoQ2O1vMuKPpa/PWuWp2s+3B853MNweMf7737H3/2rf8n0zd9Sy3d8dUyUoXAcZr59eM/Hf3zgP/v//Bf88l8UfnH/llqUYomkDdSiEKNGRrg+MUrKhxXYLD4A745i5CVNsO9f/TwSun73wNimHQsbyya5wtkzZNtH5cbT07/7Pa0XoTHb52rrj+qB+iuwcFpfreyyyy677LLLTyqv9FhUr2R8RrOwCBrs1baFyJfpnoDFNr7+UHdQoeLfe21lwiLtv5SeqhIZGA6ejciicBURD+GyUoic5qFnPY6uLFbT5f890DqCeTnb77QgUqdq+TG6OWK59ob+sdDeRc7IKpeeiGWazjhDN6Zbzq91Syk5a/eJz5cbliJf0abrdnYBKjaKWBD95ay5C/Cw2ambwPmzazvvxpu28A2Jx3iogCUlJfGK47VQI6OXc/k3hRdDg/ICegkTwaxSpgOTQZGRVkd6kLLY4Ep3eoPogaQH1DxwOZWvqXmilhO1PtCDd1tf4zp4tqqspGGt2u2DqU5XUfU0vDIgMpLzG1Q9namnzlVyHhaqitNklJwyd3eeRrW+K4go929/ziGZJxCwR6fs0al75vElKiyl6UMlF4tUu6zB3JcVuc+8Sf7oImbM5ZHHhw+8/+4b5hrpgaOOxySgzMw2kdrk8Rb2SG5HBo6M6S1YXte8GWYrXXIpKCgXFLnlbwcl2+fFz8/Ht9xL4lei/P545MM3/8Dv/u5fYaVBqRgwN+O/+Lu/4+H+a/RXj9j4JrKpNUx6hjmunTWXC9fOvy7z2kFFfz90W8nqrl09mAvFqX8/fyLX512WbRed2Wx/HtGvnsrNfcW8DqU4KJnL7rLYZZdddtnlp5VXAQsPgq6hmAL9Z9fa4qlAxAvFhVdgPa7b/VZg0cGFBjgRNxcGdUFduRPxNKfSA8Q3lsBF1sBpWEGEdYqKssRPxAEsVKlFgd72NJ3Dky11g/Vw24yvg4XlumvXlu+rziI3PRXXYOD6oFv1DM4MoXLDKnrpQZCednO1HretdbSP40z/uVZ2Fk/Jpk9nDCg2+pytq2FR4nqrokgKYDik5aSoPed9CwW1lzHst00kCs61wiTqIEQSbcpgDZMWgfwJ0Xs0jV6NHK9FkZLHStQ8M5dHz+5Up2UwmtxTlUiRpazRmhcs9ErODhxSviOlA0mPDOObSCual/lIm8r0HQ64ByMzDMe4nJKGIwMzKifPLyDmwKJT+hAwPQ/yj3glCaB2tkQ26YEW/Tf+L+KPbq0z0/TA48O3lOpgSYc3SBKqNMcw5l4ttUKNBAApC2ZvWJwidIC6ARG2dmP7xPRwpO7hgLqq1fGA6XBkzANfHQ48lBMng49//7fQJlJtNHMw87fffsfh/Ud+cZqxg6Ap4lsWkHz+CNjZhbZegPNPsjlfLg9aUVrUDunjWs0oL3JPnF/4WVnfa70pW+5pWx609YBy6fLYZZdddtlllx9ZXgcsmqdolf7LHKlEzby6sitigyvz4uDi8gd+y/XXCKz06sywmM9hVZQ25y6qqHV4sunb5ohVOtDY9uNS5Kz160FftmcbeLRVla49EHJ5+nLctaL/AiPl07K50KeaWRTPyObklnDf1876fcv/cR7xcbn3zKdx6a3Y7LOLv+v2biP247vynOLW+TTlGMfan2YJs4FhGDnevcWaF50LQ/lm3LIBVeGlsqVO9eIV6NnFArn43ITnBPPK04TXJ2mKOiC9YnLn7HdKWKzjM03b+53S+myYI68lMUAzpZonMWiUZX57RXWC379o9VuaTJ+rbs62dfx+awyVeBITnqZZjFIK1ZQ03nN89xfk4zv0+JWnjhX/594RYszqc1+jTkhUj/f+eickslV92nauXgAy7kNfMgIc0oG/+ot/h1/87J/RmvLtP/xrfvuv/1+IeUKJdPeWaXzDB73jGFnp1mS8L5DbL4/lXl0fuB5r/fOLdPjLN82X9CisT1X/1HaHxS677LLLLj+xvA5YBGDohdpMGr2udvdWNBkQcjTtmVCWmIYNVFARqieHdKDSJKzaOKjQupwj4lbscwPjpQq9tRRuN8nFsU//qPfw8s2AefJrWI+F1Up50djVpZ/6nb9d5upplejMI3Pj8CU51UWzawG8cyXfWMf2pKX1UvuS86POk0Z18BcKe3grzlW0bXt20eDGYnwxDVvwstxR6TQ4r0NhZqS8dODci9KblDU2ZjX0bgDUdj7xrGK9krO1no2nAwmJOJ91bi1QjSzg4nwel+DrDpz7BBoYHsvRmvhj0TZpc+O8/l1kU3+7ZymznqVs6znYWNg3j4JnLFKvNJ9GVEeOd19zvPuafHwH41sHEfFf76PQAbFXu1+cSh30y+ZedeC8lS19cnuTQlO3no4tNqd8YET4+he/xurE6f0/IlZRTdx/9WvuvvolMhyxTsO7Wq+bPth6H56T8yVtT+9b+nnZ5m1Dxg+VW6+bbdPCVXd32WWXXXbZ5SeR1wVvywDpSM/PQ4of8EWBibSy4tQTP0dYgjoXhREakd0Gz0pjzbAKKTVEIiltWH412sVWq7rLRnnYKFFnCu8mBuK2uEK65vXf9PLitOsf6w4ubrfvDIlP/MJf4p0nD9v05yVKw/kkrH83oKRTVnrhu3Obp2x0pX53n+rrpnaH3boL60ydjWfzbWvWtqv912cspmJZh3Wjxat+bNuy7QW3Wtn5RTYtnJveu+duCwxtg377PVvw7eYCPSahg5FtPW0jU4HSlILQ1DwtsMgmrWsfxRaybTIXRSzLej/6df2zRSamXngy5wOHu69Jwxu+/vlfMr75JTre0XSI45fOxTg3M2Sb9dQLY0bq3S2IiVfFZi4LZgWh+ruFxGqQWOej0bxOxJj4i9/8N3lzd+CYPIOc5oGvfvkvuHv7c4Y3P8NE4350/4fPhePO8LZYnwhPc70aDLr14syCcDZ/69b1nvuU2gK4lrNuPK/btXS+Ln6YyNlE92fiCzW+yy677LLLLi+U1wVv6wH04Ep+tzBfGSN7GseuMJ2rhB6E7Z8litTRNCyfoewAvZCef06LggDh4n/hb6bdSHd565hNB1/Q9lZbfPrgNe7jotGb1s2znbe3LQrRU8fa2R9Yxy9EHZLY3qwrXtetnelZt7poq9KyQg67GOUWCDn1xq3lXak9V862oPN821PzewFczr7KDe/WebNLvy/R4kU7ywa52H4DP9l1R56RjXck0ixHfjRcKa4Ua5TWMF2bXalcW9U7oJ0FjUiFVssCixx6GHKR2AAMMc+CdTjc8eadeFG3ISE2QTGimELA+23RyQ4knAZpUYjB+zTiwVI5tHgvMOmB8TNCwWymzO89ta1VcvaicpruQbJfixxFMGUxMowK7968YfzLf04TBR24++pXpHxcygD6G0fpaSFom5W9yYy1ArpN0c4ngMSlnC2vvmUT33S9//b3XfXfZZdddtnlz0le6bHImGTowOLCSraVboFdqRrX0nNCYd1s6BWIl5CDTbzFqln5mVcmwUvF79OjuR1sjVud5UZ7nW5zdo2rwW0tw72vKxDZKnsv6ep5jEk0d+ukC8/IVskV2ATcs3oqtjqULHfsvFtn83yrb2cbbh8b27v36BpqLVrz2dfzNbY9Jz5dWISX4Wy0OrPz+9Et7NtcZWdyqw6J9BgJOT9mMddv78865+cfNs3JtuNdyV2P9ziF5jEWN+DX2fl2DmB7l1prZ9eWy4xFrF9VlJQSecjemJXIkDX50hWvV6HaK2p7amazhrQZr/EwL8YEV9SzU8fEwBqtPoDNwITg6YPL/B1eNb0icgIbnQJp4bWQATdUJLYRV0OG/OaOioImxjHFvM3QM1LFO2GJ1LHu2bFln99a2QRc24IIPv0GkbN7vKyPrQ3g4t7FBT/Z8vWV1qV2c+cuu+yyyy67/JHIKz0W3ZK4DYS+AA4XP3Q3VPFl+0LKFvF6EUvhL/+R7z/LZi2yQm1qY3zRX9RLpeuptm8oZ1efL7Rd1q9nBvQXDeHSwvyc3LChdsqMKmdeow1Ou+7Dhd9B1nNuHbaO9rKhc3XYZJustyt5euPYLa64nKRL5rzc2HPLaXA9jy9X7ySwwzmV6wz8PNfiJ8zSS6FHc4pTrzwvtKAVKb2EIda8mJ1dtq0ruOjZo7riLF1x9n8OmsWBh3nIdGszVk88fPwH5uoeCFUB7cHiimpiGO48i9V4iIBvwdoJs0IrM0RBS5M7zBJmidpOtDZzenwPFEQKil+j2exjVoU6Y5Zo9r3XnWlBFIsA8GaeHaynHRYr/lcEq2/QdED1DlP3lhga1cMzOR3w2LABk/OEEoIHypsY5xHYrwQA14/f9earF+Dzzd36/npYsssuu+yyyy4/nbyyjgWrsveUwrnVNkNc/7llXpZVMaIH4LpS5Bb1/j0qIUvbcNh7Rpxrre3l3OJuzb6l/d1qd7N95XMt2y7pOE9rlXKBMm4dtmZHepFY76CdaTO9ZsWqc0Y+fbs4Vi4ak80Ye182sTRnGtOZV2GbOWqbQeviInKdzHOl+3B+naXxtZ3rmX1uvlfPxdlt2wxhbeEScQWgMNZLPFFdfa0uf/lQrNturc3Fi2UNtQlrE7RHLE0eg9DXZw8gb+vt6XUrPHagW+lvRf304O4NyBIPSq+teFHC8pG5FlQbJgk1xfDilmZKrQ0so1pIOUWq3eJ9SvEcSaUxYSa0KohNiBVSmvFCef35F8SSz4euweiIHyMSNEkiMbX19dTwCTAvYglIE5TZ565mDMUZYYmkCctHvMDliAXoEIkq4jpEfIeuK1e2Xqennr+rSi5xU849Vv2xPFuZ27V0QxaDwM1ltAHQL33N7bLLLrvssstPJK/LCgUrq6crg1tV7CY16lzJWRQvgW02KVciVq5z3eCPJSCUyuotMbZ4wD6hBtwczyUqegqoLH1/sqXNkU8rt1dbN+DqGtvcQGcXuy58Asun7TAWhY0VVJwNu3F5uzaNhxLfi5zdHsV5T2wd1tkRZsuRtxTfa1B24wqyGd/ldTfnbbNm2eWRS8D19py2wQxytmeFC+fzsHzfHO197CNc4AILONnipK3W2FPcWkXqB2gnmj1i8ojJJhUz7mmQoK3pUiDPK4FLj6c5u/eyAekQlfWWSzcxSpuZ6iNT+UBthSygMoImRL2qNwitVjBFyozqiObRQQECac38Vm0Oj0iDVhBpyODPuWim1kjra57gQVUgbTNshR/HPGWwFwJsSHPg0g0PLTwMxRpST6SWqM3HWmpDIyXvON6jmoEh3jlK0hFNI5bfIOktwgiMV4aS/ixdP/tPIIMFFGyyxrHe9y3dqoPrq/fQ5rqXT0qnli4Q9pmYnj14e5dddtlll59aXgksXHFoC6jYiDxP2zn3WJz/3Pr/e5rIFnvWHP1h1PTs9OZpaE3cMmmW1tjMTWvc2vSZPIKb6uuiVzxlnX7hj/qlgfwz5Zyoc2E1jYT2Z0XwnurLtcE+/m49K0909mp+r70u8vTZny2fuq3nIOJ5edo+/fwx13U/4l+v8WLF06Na8e/SMBUWaF4naDN1/o5qE8VOTKMwiiJy561aI0pokLRXld7Uy9ikVNWUFhpR9xtV2zxziwIsHI8H3n31lr/8q19TW/MyNJqWjG5dsxZxz2LS7NXSvez4OikxMUpkh8qKDQlrRrUWsSNG0hbpe23F1rq2s9CjGLw9VcYsVyvcOmi2MDL08VnEmIR45t1CbRO1VL92OiAcSamSkaBoRR9rReMtpzJimjBNy3vP4zUI0LZ5qF7wfrk0s/R78RxAuN3OJx0fu+yyyy677PKTyyupUOdpMX3T5ofyRRay9aewK51ri6t20i3HvUZBr9LtOzv82MRc2PXlz5XBVQn5ZPeekBt683q4wZoV5pU/94sh3M5Qy1NpbK/kTNnfAoDNJTZK5XpZ2X45V/q3bodnhtKVosuent/VG+Owsz83dn7CM/KMvFZJO1uTN051JdaPW2Z5S0nZ9Mz3h/etzXhK1Yq0CSjQZqf50Lzyn3QAcoJWoH3AbMaYcMV6OOufRVzB+Vx0t9ONuyCXVvPz4wSvAD6OA3d3d5SlOF0YEVZe4qa9uLfW/TRyduklq3GknDUBmvgzG1mrpCcQYLW+n9fXWPuvATQUiUDyWLvSs39Z/Gtr31oP2jYQ9UKD1lBt0AxNEv9AkyHavOo6BWszRkUQRBvYAK2n0e61fPpq2LwPNyBna3N4+rXYz7Ub95Tz98ITZ5+94y4utHssdtlll112+anl1cDiqW1P/Yid2xgvtA/bEpgU52CnODq0k1AyHFxUZ0UAdJui0AlVq3L/xW3i53LzCj/QK3Le+OvHIBdfzuyiPa7iVa1slE+5paz/8Dn+5ChfcImXTffzDb3Ii7JBD+fUltWTRw8Abg/QTlC+g/oA7ZFWHsJjUT08SAQdRhDPtgwVxNDBreUZZUiJLCkq1MfVtv0IT0Wt1RXvpTicV8FWtSU3ghfC2/R1Od8DtJOOiAyIdKu9p3Wu1mjNq407vckWRT+pkkQ9kLunpdVuCPBsU1vw4M+7kJOnrZUeO2Xm6XF7DMnaQ6R7BJb6Euppk0XdFRFtmxgWWM1fCp0CJiD+mssISEI0cTj+DE1HNN37Vcw4nR6o9SOlfXAPk8AgB7Rk1BJZj6Aj5K9oJHpPL9NVL4/wc2vpJbJBDrtXYpdddtlllz8FeXXwdjd8nwOJZ8CF3fiyWCZl8SA4jcMhQg+SXoI24we2SQrr3qog9dz1X0qvf7Gcae7n259SUm9VzL5Nsbmh6t5o9NL/sG5bO7GGBVy0ebOTt4GFf+3w7eKqTwCO8+3nx9g29S1P3LtFM5NNBqvPv8u2NSEvzT0PJ56qbH7Zkq/AGoHKJ6R+C3bC7D0iBdNKSxWrhalO4V0Tco5Gm9GsOq2mVpp4ktkqiabJPULSLeSf8rjJZp2xnNt72lP+nnuwVqu7nyO0cAJ0hd7BioOOuXnWKBUl9et1UKHa7QFL7RKA2qlPzQKExMwFYKm1BNWrehY4swWg9LELTosScRAlusZl9CXfdEsB82uklFDN5DQimkEGcn4Tnz11rogXIRyGAbiD6IOZMc0n2jwD70npwHhvSLon6YHS+hg33ko7J8atXzpKeOo5vF6PNxLWXt/vy8s88X2XXXbZZZddfmx5dfD2LXmJy/3JH7kLKtU2CLn/beYeCzNQaZv9oVhwzXC/vv51pdtbVvxPjuS5sb7il/zq0G3nrgKMt8fc6OP2QD3voq1IkGvAcg0KbtbIWNT/DWC50bGbZ54p56sCeHYfzhq0q+/+/7jfZ72yVVeLHryG/WELqLUbAOlcnrNA+6zNSPuItPdI/T3YhNkDiGDqXPxqjdlmFjeCedA11qit0qzRSvHaFQo1jYsyvwIGfw5aW2rXnY1nm9TXjw1v1aKAXteVuVwRtvnc73tX1GtrzGVeKErJJ9CvnRKivYCft7r1olgz2gbotGZOUaqVUp0yVuNva+egwnsiaIAX95pk99SkFB4bIafBP4tFtill0IzmA8P4BtExMkEdgR4vVhEgJUUYSSnTmgOp0+mBqXxkevweWiUPB9KYyJpQGZB4hS7L5xPraH27PQ+SX0vn65jmTF7xLOyyyy677LLLl5DXeSw+aeX+XDm3sMO5/d0WTbQrAlFFWFi+dYX0tmK8bXPT4xcYgJ/o7fWGUN4+20z4SV7Qp2ULHVoooHax70t2YTvXyxR8qnMv6MOtz5fbruHRH0KL6qCnYuUBKd8h5RvuDidEGwWhmRd9VEtYMjRnelX5YmXR5Ftohqq+36Qy1cKkSjVDbQsONz0wCyv+CkZ187z4MQEnZL1LS4YwjGqVFmltNWK11bSHLeApWo2UlNoqMivWbLHom0HFoFaPS484DAcfICr0hptFjQozSqm05v9qAKjW8LgOjIhtX6GQgDRDIg5EpTqYyAmJYPJsjaSJMR/IMpKGkfH4M3I+ksc3PhYTakvL89EWJT4j6rFcIjiVTBTJiXR/T5keEBNKKYh6oT+XbV2fC3lic2QG3tynLaTbZZdddtlllz9NeX2MxVWA4IvPXD6cU166QnSumq7sl1tWcjn72xXLm1a7G3J+/Yt9W2rWM/IkuLh17Iaa8nQDtzZux7mWBrylXPt1NtvC7G/IGd5Z99t62IZO8Snl5panom9f+3ZNIbrlfZGLHXajhXUdXB7HMsaz/l2Z4+Vq4/W9fblCd9OSHAp4q4aVRkoWAcFx7a4XC2jyeglmdgEG/HPGvXJ1Q/FZFXhZ2ulj3X5eQHmAjW0HV+ZTb2P1fpi5N6X2OIrteu1JFBA0OZjPlsP74DU1DIO21rUWCY+CpKXAnmha2qwBINC6UJ9Saw6GW6UXwuy+jrXbG49mxHqICCkHLSqpezEkkfJIGg6kfCClI5oOMbtytrYsXhoe0xVUTAzUwIRMBjmElwRoRmopkmH1yuJ2scwuYO+tl5/0PzcyQr0GI/8AeuAuu+yyyy67fGl5FbD4wVlGPkfpv1T8N2Ci77rMovpj2a4/7eD4Am6Hqyv2j+fg4taRi92zbeuW+5y9OMPU5/Rtuc5L5dYozkHUp9q7buGJmXl1hqiXS49hMIPSMqd5ZDqNfJgmhmS8HUG1Ito81YAYMqSNZ61Tt4wU1KKDevrkKsbYGirqlCGBdDHGHot01qdmS3B4l26RXyrb0/cLWKPWxjwVTo+PnhVKBWFTV6JnZYoK3A6OOsjyBmvrfhghqQOKrAM5ja7spwwiGEqL+uLdS0OAm7XNWOeL99I241lTyzot0mlj3jYk8YDyLNmDy1OKAO1MrbI8F8vfxSsieLxFw+JeqXla32wHWj5g49ERZK0Y2cFh76/diIARlueWi+3X1LodIOyyyy677PKnL6+mQiXVqywoz+qs8bv6sp/L1eR+hWFu6YzcaHfTn+Wn+tL83RU6uRUa2RWuy81huT3bvlI0npUzS6Z3cGvEfEpkc7Gn5297TO/3ttHnfRHda3DTA3N1pW7tXRNt3u7XZsKfuG/rJfrNsot5urD7bgJeFys9HTT9MOlTdn1vL/08tzwdfQ0kRI+IvuM0F+YyY62Qk5Gk0erJeys4vUaVYRzd4q4CViMwui7zXICiMNNIpliTNQVas2WpLgHMyLK6lmxQItC6ou5KeS+i14C2AQ0SGZ6WNon0rnhMh5gHlTdbFXP3GiTG4YCmEUlDxDAkVNx70IOpifvVEy4sGao27YGcY8GLAHrZbJOYz02qOE9JS/d9VUqttPIRMfUrpwTidSl6Uy0Cx0uZaLXSSt14LqGURqktYryEYXDKlKhsjBq9T9tv0e1N0obn1+q6sBeY8sQJ16+na8/Hnm52l1122WWXn1peBSzCMLgoLi8BC92oeuuH8Pz7E+d/gR/HrjxvvnH1beELPaFEXtBQVgSzjux5FffaIv/kkZ8z5s0c22Yci1Fb1n2XIzxT4J+5xJU1dtm4VcC7ov3p1bH1SyzG3aWP8uL+GC+Ysxuei0URk808LYedabcs87lVEjfKnEjywOD0hvn0EDlkhaEaSSv10QvjqRpoRlMiJUFxpb7RMGvMrVfGFpJ6rfleXC5M+utw0sbzwDbj09q/s/HHP8+25NSent1JJbwR1mI+tm2u3hmw8IiFqB8z5JE8viEPR4wDzhXSi2diTXu8pr3dUpM235fj1v9d2Rqkg6StQm5Aw6xQq2fiopwQExKKDAc0DyAHegnvWgq1zszTiToXyjQv9xsR5rkyzwUjkVLm7j6TstfBOOcfbk7brKDnArEvTRs9Be8n3643lvsOJHbZZZdddvlDy+uyQjUW6+enbG+w+aH7Eekony2XqUTP0m9+ptwyV64X3Bzw7IE/QOwMVFx37Gnb+0tkyb61aOFceBr6gS8b30tmXDbH/WiryLaUmMsrPy8eR+E1Gw56ZBhHDscDZgWrM6fT93w8feDb35+o5UQrjyQ5kRR+/cvG8f7Amzd3yzPVrCHSUFWiZnd4FvyIZr0itLiCLw16itWtdyriGPSCFtXjNTw+wLflrByGgcM4kMxjLFQc3PQCe9Bvq2BL4TsBGRDJ5Hx0jwU5qmq3mNqu+CtmPe7DWAoD9rt7ieO4eMdYB5Cb/eHpWIrLGZ6ythZOjx84ffwd08PvmR5/h1DJSbl/8xccjj/j/u1fYqLMzfj+/UceT4XH0+yB5c3IOaOaGIYDqKAHIaXBY0byuEnJ9SlAe3nIFiDq9eF/hK/KXXbZZZdddnmpvDJ4O4JIzyzTt39Yz6xnFwG0P9Sy9qUsczf1Yduqsbds+Z+4dnePbD0kGytm//R0fvrPG9ut1mS71y7a3UR0v0aXOWtzu/HCyrry/58AO9dR1k9c8LJy9KfFbqy1W2vmjD5ycxJecOXwrqgophYW9JFmmaYDuUGzxHB8ROcTVR+gTZhU5prINfoQngOxPmZZ0srW7mzQTSe3KYkv9fMFPKyOinVePMVrD+7uICUlp2RZU0zXrE7+l+VvnOEeCRGapVhLlVYnaJXWazuIB1ObbIGP0AtAmgQ1qw9nCx4u5njjWtwYAjYH9Ino2a5MMRImmWJgrVFbIU0PiI4M0yNowmt1C0kzechLJqyUM6IJzcPS96Q56GLZHTKffA9tvEvcWoNPPbWfBuS77LLLLrvs8scorwMWG4XlxemgXiB/fC78F4KIp+QFBvtL2tSXUxZuAIjnj/hkE1ey5VNdcj+uzpVbiZnWpl7Sny8gT11joZ50ffdMbnmZLnaHYuo6t3sQPA4JLAs5Hzncfc1hfEstM+X0yOn0nlIemOzBgQcwJCWllcrUKtAazYSpQNW+RlZAEThhzRq10cxXYHE+KC8+5y305y6LMKbEoAmjUtkmUDUUcQN99z4s2Z4SpXhti1oeIqtUr/btFn6GezQd0JR8gsMTsgDrlcW0YN+z6uCbeT5Hwpv9/eZFI4J6VqjjO1JKSHVP0Vw+8jhNNHtP0t+jeUTykcN4x+Ew8lbuaaxxE7Ys7ev0B4JcgPXbC/x662ahPenZjL9/bK/FXXbZZZdddvmEvI4K9QMAwFPg4XNAxaeU8B/0e3ymK7TY8EyLW27GFlD0086YQquiKmcnbAsDPicvOEauQctzx65N2vaj35eLy8ktPWpTIdst5rettA4uPgM+WafebfvxtBfiuWusWKhrsBfUruWAftMuwN+NtrfF21xnDC9Nn4skqCbS3RtaLZTxgI4jcznR5vcUGt9/bOQ0I9LAJs9IJMY4JCTB3JRiQhNda1SYLM+jsaZ+lYub1JoXlevztcRJ9LVtINYQazx8/OAxHim5Qh5B4SbitKqg/ogarVVElNq6saGwlKsARBSPjz5B8wKADkgG9wREobs+i63/tU3MBNt4i41y3zFEjB3b5IUTQU3RNJIH5a4duDuMtDpT2kQSpzil3GMsOlgCSX7/1Dbgoi8XO18e687++fyg5ytm9wfvWcvDlX3CNvt22WWXXXbZ5Y9RXpkVSi60y1A+t8rlK+VW3YhnwcYn9PwvyhO4NP5f2Cz7Ba/6K+cft2k5r/eHlXqz/RaV56X0iFBrz/trm0m7nLsr8POJizw59wYXYOQ6QH/z/TkAsPFwfO7tlN7QLdnOL91C/nQq3+cvcuHTuEgvqiJgShqgJU+72kTRMjKJgBWmWihNEZuxOiEKKbIOqShzVWpzpVu131VdngXPNuRzb7Jdc9cgrM9t925IpEwVM+bpxNQMHRIwLvEZJhHTQaypFp9EIpWte2o65lHReFVUjBkz88J6koFGkhGaV+lmHQ3GCkwIT5K3uZnPzRg77F9j8PsdVJJCRjEywzDSorp5b8nLUDRaqct7TbUHvrM8E1cg/Wxhbtf77ZX67Dp87XvsU+++XXbZZZdddvkDy2cCi80P6h/ZD93ndud5K/+XIuzc0uq3aukPR0Vfmlr0KVjzVK9f6on61FG9/dfMzuevgesrP5UFapXVnrz2M133VUATSErcDwenLpWv3ItRZk7TB0qZKPN72jzT2sxjzRwy6KFyTMLdCDliG1zbh0sPVc+SdJUV6mL/0mNzhVysUaaJuVasKocj5JwR0kbT9r9eHdtpT0R7mnudCyGlHIp9AmaEmVYNSLQyQL5HNdPqgKfpVUh5ieFY+n3GTQuC1Ga827XRPRn9nBYF+5oJOef1TtkKRgyoo2GWWIBad4CUFml1bz2zT8mXeYa7fEkbyS677LLLLrv8FPLK4G3oP6yLcrL+on8y7OIyO81nyY3TXvdzvqoi0pP9bzXXqzGc8R1uHbCxmF526LzK72LVP7OFbi5uF6dvzuzUiWvld2tzfwoeXXbwUjYMcjnbfN6FJ8/dHifL5zXY96IfsFpx7bpbP6wQ8a05WGb/iRnqVuitp+j8youyjscH3PJOuO59u7fbEHQNDdlyjroRrtTWfCCngdYKrRZyFlSNqieaVGxbCvLyPsUy1lDMz/9t5kbW+yxmNGmoQlYYslJoFMAiCPtsiBHH0VrzgnhRpdtrcThQ6eM3a2xjcawK0r0a7RGzRCsnBxSaSXrv2a1U+9O5uWvQqUa6vEMk4kWMViZq9TnDvLJ5M6GZFweUaFdTZlnrtlYK92xV7soxE68mvngtbqyaS6PK1mux7LsmN8rll6cw6sUZz9Oqdtlll1122eWPR15febsrXJ1asfn/q9t6Qm5y2Z+h0djF55ttX2oG5pSJxYx5dcz22v2c9aBtfv/1wFv8HdkEpa7/P9dJziHB8m1JyRlW5Zt9W70ez+CGy05td2yxwJXYxWGf8kRcKWA30tGeZwzbHP4sPUrO5uypI68TeF7KUz6ddrFHrtZZBweLxTwoZlvF71wJvKzGIYvVHYCUUFVSyoyHQ9SqcIXd/1XECpUPNPlA43H1GiikCFRegoxjKVyCCpF1ztdiet0o0FAt5AzHQ6JKo5YGkbaVJWi7V9uG0oxaWwALEFWsgjYHTdaq06R0Xr0JJJDs4KIWDKEUgzQgeSSNA17tO4LhN/TBhdbVIccGlFqrzA8fmU6PTKcHvw5CMaE2oRrk8YjmgeFwRDUv7fi9i8J9PTaGBs3ByfPqvHzamvHsoyKr6+Ri+xP4YhnzZ7xud9lll1122eUnkc/wWOzyQ+XSV/Gpo592qcjF38+3bH5pm+gV2OOn0Yd+PL3r2le0/WxXOy5H/Dxo6n/NjCTiWZQsI2RGDEkTzR6xBqYdzsiVXtozRF0CwKeoUcS1Us3MJ+HjB+ObjzNv7pVhVMaDA5+cMr1exMxMU6dCSYrK3NawUmnWGMZMSoms2eOjDax60bpihTK35dpDfsM4jIw5ISlRJblHxBrT4wNlLkynU7cYcDzekbLHTZweHjk9PvL3f/dveXx85PR4Yjy8IaWRPBy9AngaOOqRREbTwaueR/G+9c7I2d+nF9GPvIJveTF22WWXXXbZ5U9IXpcVyjYq7qe8CutZfS9/Tua2T1O5rlXpc7/CheL3ZBu3QMUtcPFakZtf13HJsu2lWaZuMjtsG3vQbf5PrIPuJLihYN2cn7Mih1uPz3NnPrdGt01vaFHba22s5ds2BTBZx3UG9Wz9tp3ey37Tlf+Nd8b9ahmRFIXpLChXS8euxnXZd6dwXVwrThU8MFslgQ202jidqtd0kISmjMhAthHUgY9TjBrNGtoShlHKTJ27l0XJ2RV4iyDsWhoWnhhrBYCUEpoa1sTRkimYZ6Aq1Xg8zczTzOnjI91TITKQmyJiTLNxmo2HU+N0Mk4TkBJZEmIjykiSAWQEMmaZNZWtXt/G7Txav5/96+aOyDp3cVevTr/4uLR59nlxX9nqOD3z8N1+RnfZZZdddtnlj1U+y2PxefDgKav7n5Nsx3dGquF8zJ8z/h/fnHlOMXo6YuMl7Vx+9gw+L7j31wykvvmq7ZfJK+btiUPPynZ8hixkNtt+e5k3w2ctRcyAK92iPYuSK6S1gaqgEAHUa/E7wCt0BxpRdYXeWVd+XbVEFri/+wvel4I9FD4U4WMTck0cDyN33KFNaK3y3XffUkuh1kJWaLXy+Fg4PZyY54n748jhcODt2xHNHmx+eoBSjDJXz8QE5FF485Xw7uvMV20gDR7MPZXKPDe++X0AixNoUlQTs2WGIXOYM6W9pco9b391z5uItxjGA6qZlEYUIYmEh+IMei1/r275c56KL/X4fQo031rsf66vzF122WWXXf6s5LODt2+lRHW6xRfp15XcSkv75LG3Nj6nxwUO+Cx1Xy4bvvRUvBRQ3NBet2lib+3nYv+r5bo/T2Y+sttXuaLcLH9veAHOLnkZvxBbnxjGS/wOy3FXnoyrib1xplxsfsLvcXHq0u9rZ8D1X1kPXOHFpfb41OJc/4r4c6Y9HiEs350aZWZL7YrVFA49l6q1DXwMNCkIb9685Z0oX6NYKOMpQc6JNDgVSrRxvMvUVmnNg7Fba8g4kY8TtVbGITHkgXQ4IMn7nLWgtZGrey4A0pAYjneQ3jDXgYqnqa1NMcsMhzdobuSxIeKAaRgPJE0YyYPgk3Ec+7xZeFgUkYQs/3VnzRY6b99ft50EstzUa8rZ+qKLZ/4W+rTtMReXPjv2wgWyOXbradqDuHfZZZdddvljl1cDi4VW8eT+a8bFsi/+fnHs8UwdiRsHP73/RR17bhSvBxRbusX5UTcoNV9IFr3mxrQZK1i4xADX/oatkvzD+7T9u97Sp2bgek6vVcYbO88USrux/7rtrTp6pQ8+cdz2+6pf3sqctvFdxE25BnYRE9AxUuCMDi7OumLm14ke9Od1W4m73Yi3UBHevn3LPB54GO9plqLdwnZmzYz79GaJ5SjNle4jRquNZkbSnilKQRxE6PFiMgRS8jodokppyRV5AU/Xq4x3wzJDcjZTK1hQiPiP7XMkgAdgrwq6Lfdk3bhq77dr1PRRP5fx7gJU3FquW9R5tdAvD95ll1122WWXP135CalQf8TyWYP5MWfhuXYvNZiXyZN0i89u9WnF/ube12STeumVe7U3LjPpdAvwJzxEz7Z+7T3oQKEXc5OLv+eg4rY3aD3gOWWyBxZ3NVio5sq3WVf0ZR1fpKsFT69Kq06HWpTYVYG2ZphVcvbsSRLauQiMuTHWRlIvROfXyEtsVR+VqC1tjsslOvrcKOGyWv19fuI8WRVxiXlZPAod8YqeZfhaM3FdotzeM91A8RWG2LkGf/HZtg3d2Hd53i259I59AiRsF81L5M/qRbvLLrvsssufu/zIWaHOU3H6lnN5gnCyHLnoKGdBszeoAy/uUTTzCkvhebrLS4XjtpZwzpDa2knlbH9Pa3mr5at+L5Szz9M2rm3+12rXuXL2dIf6WM4N/ef371XgwqK1jhViVuQshe/a2/U+bhPxdgX6OUXRP5/7Wi6s/pfnLk1cKpG9tbWd6xX1hC1cbtzxm+jPsz81lNqL1QWY6kr5dlx9dGY35s2EHhxsYWWXACgCDApZzalW0Q432u/36XxMxnne2801z+apXQ/0DFT0TRdz3y+/1J3ZgJBlv/TeXfg2lpN5Wjb9tPW72NXuiw6d0z+XkQlsAd1zl7za3YGc7OSnXXbZZZdd/rTkRwQWT1t+XyZPKQKX7X4Zk97rY0NeatG8PL73Wa72PtvSFw5eeTIz0xeWW2r9c8edH3/7rEvV8bqVy8/X11px5cuA4qdb/bTcBi43xijnX4xEZWC2kWYfAjQIS+lt2Cwrt/577brzWRRsARy1gYpXykYTKsJdhuPslSDqxVTegl5XJoOz4Vxrzauu/dxzfXH8xbb1dNn0qze8+o1WU8BlZZPLNdJ4Uuy5dXvpo3qhbB/95fQdPuyyyy677PLnIa8GFi9TrNaj3MD4grOuzdv+5+Zvblhet5rFSzW+p6yErzj3mQ1Pn3c1jhVgPNmKbNXcW9z73s4Lrv/cdrOz69y6wrJ/8ShsG3laybp178/ToZ77DnqTzxe6i3POom63LV6ro1v44EXYngMQdtMrdBV7ctGfp3v6tKzxA+Gt6TMm68ypeSG3GrEHsJR1u/a5mLcgsk1t2+d4uxA3z2jEYWSFIcGolVPL1N7q2TSbz3tv4dwR9Az+7WusE8ku9l4AkMumL7p8e8OKMtY/cr5ze4Y92eFPeBqe7M9m4zOpxJbxPTXQp87bJMnYZZdddtlllz9G+aIei5sZm5bf7pco4asi4+fK9WnbCsxnms2PZ31/PhPVS8HFbQAhL+j/tfX+8xSLp9Til8omSc5qIObpTGCdufJsm922vM3edEsnkydm4GqJ2AXw6e2vJyyhCaF5Xutp8sk1+0NW22VGtbNSbRbVrDccHBHFTGkkV+q3GYnOwMPaK9dru1V/e86Fxb6DBIOsQlZj0MYcQd5xFc8Wxm2guLnq1dK0hRYlTwKPLWjdbru9zi8CqW27qi+fpc+7S88972dK/cXl/HHY7H8iCcLVlxvX+/HeZrvssssuu+zy48kfR+XtP8lf0S/R6c+hI11SN152/vNHfXrvlU70BzSa/pBLr6BCzradFQY8+/uEw+kH9eHaPC80oIEVEpCC82MIBaVZopCplqnGkpXJvTsbsB37erpZiQFuq3sDpLTSqMy8zkWSyqjCfapMzSgvGfTl5MjlzpecdOtYQyL97Mvm/twX8aIz5DoG7HPlFuj9k3yt7bLLLrvssssPkJ8OWDyhna2G5NsayvM24+eVgpfUvHjtOedB5K9rY+GH37DI3yZkfBml55OF7j41lXKeYWdLi1nvkyyK7rU8R+F6LpXnE30FrgpHnHf34oSLdSUrAx+I+isXlvzN30v49zn28Ou6L2fkosUF1Gs8rHOOF6RG3GMRfhYHFhcD3lY574Hai6vH1sJ54d2QDeAwM1QaSSwCuNcBdrLWmWycJnHB84m/RZeTtS+XwO0yGL57WS69Xtf1JPow17rul+6tp5/H67S7T8l5AoftGLaV5a8BxlPP+eW+1zzpt2vN3D5ul1122WWXXX5K+cN7LG4qgXL+9Y9SPuNHe6uRXjIhfiTe9IuVixeahp/r5ktv11n9iCe68gQLZv3wmrUh53EXt4HWNSVrm9Rna4V+jR1+7YLcADB+gpmniTVrtBJ1H5Cw2Aukhqii4nEPnYZmHYz0M5ZYCrDWnGalQq973vux/dc5SAKoGCk1DskQNYKVdTa+KwV6eWRXcNO3y+J1iWtsMzldpY3dtidre5d4Ri5A2nKti4crQNVzoPqHvV7Wd9WX8Hu8ti8vBRe77LLLLrvs8lPKZwGLp5XVGySAW6be89ZWHCEXB9383Vztg91Wfm6PfqJvz1rkV7v7swdt/z7V1xtzc2lcF27P4daa6U3d4pjc6OOlFX/TNzdcnw/+yfsX512obWufES/oZ9tLScyfnVnZrxq+1BPtfPt2r1wYvzHbhNtsC8qtivQTg4k/hty6V2fNXC/UrXPqKcvztrlPEdsuvSJrpXpBJGMkRNaIC7GgK6mANEwGmmWqVYziN8GEpl4OrvXilSJelXtRzkNRF/VTem8t+iSugCeMrDAOjTwbqiyYpEOzJSaGddt6G2/PVN+30LECiCwevE27vbsAto1L2gCKmwUc+xrc7ukg8cqRZtvTzvp6tkwuvUzWO392dZYCeubP7BZ0XT+1Me+bGbsc9+W1n5Jbz/HqWeGpB2OXXXbZZZddfjT5wR6LWzrqi4K1L058Stm9vflCUd78/1PyxFVecFaoAmfKO2tmoq1OIueECS4t9E9a4zdnLVXJ1sav58jOPtkTc7rNPrNV1J7qx/WuFcLdyqfk+tst1e16iNtY3nO1y84O3NKULj0O57SZp23StoCezcxuOn/LC7EFVbdg3bNyRXd67lBblFU/NPkV0+a63eIf+5FGs0QzoWFoFKMzi0xNy1wtnQgFXq7G0wLU2AZcqF+enPAiefQ1dba417u2GeLybPS5vXwmtk/p+SO0Up9uzdP2GnLjLp0ttHPg5mvtHCxsF8DZFS/WxPn1+jpczRlbWLIs6T6fy/lXowGux3BLrq79mn0bT9suu+yyyy67/JTyh6dC/dHLVu18Xj5lsT5v87nrBC2mNcyMpBlRbmgq52rbuY4lF8dtNR5erDSfK99y1vRicZfz459XnWRVqM+Ok6v/92utdRs+xwT7EkXuTPP85NGfvOJruO0XCE06wOiKrHXQqBiZwkClgJyQXm1a5Kq/Z5Qn1Ys+2RLk7YHdIKJo8zS2x8GL5SUhqFc3FPEb3T+//nrEWvDwdfJUOJNc/P2pDfM3/LIruDhDTU/07HOX8i677LLLLrv8kcurgMVlHnVX+i6Db2+rGmc25x/BlHbZ5FVs75MW+if6e8WFf1qpv1Ssb9n7rwyrT3ottvu21ZVXdeq8a5dX3Cr/l9bVi2Nlu/d6PNfg49qufCvD0far65TXquHW+Hzd5nq2WYc0V26hC8fH1oq76U5YrZ9ce2dI6AY0lFujvmzjnKJz+fn68Iv5eI5aeLa2hEqOehbb2IVXPFB29SE+W3gOjCTm8RZi1OX5lpvZn8/HceNydn4/12HFWnxmfsNhs72zfpmLm/ns8C8wY0+be54W9pnzP9HwJbhYN9x4wLdxEZcxKbwSkL5Aduyyyy677LLLTy0/yGNxmQhm/WF8Clxsvzz9I3pGefgsI7Vc6prPdetTjSGLdnOp4jzV/lbNXxWQM0rSM94H16YUkUZ3CUR47UKXh60lf9PCRhFblLfNEU+FmV5PzS0Qcb71JXEiK6f/4qAbmv6tOVnHe077urziVk+7snQLXJXcW+IRegvni/kmVn7KAP1SELFZQ5fpX/uxizV8ue8sxfCa4SlnybSmJLWlTZ+n1UvRAL0IFl+zdq0+IukQxdpC28vSyNJItE2fzzODfWr8Z3O/SeXbCwHe3H3W6K1Nm3u9TtTSh2fjEs4elfVeX3ofbt3J86D728/29tjn5KXgYWvEeXWg9vOv4V122WWXXXb50eT1lbdvBgx+wmp41sBrr/iHFXn1r/Sl7+DpFp+8pkRRNDlPD3q7VVc8znQtznXgW3Di5QqObq76ypun2/oKP9R+elPT9D9PKapPOgLO+/JsTh/ZfvgSNuBPUbKuvSY9tgUR5jYwtUxtRgJE/W8/e5tCtl+tx1D4hnbu0pHVK2bW8KS2lYHKoJXH2mM0XidX2PG5Kb6J4janChsvxWfegxt9+DxinWAvmZE/sffcLrvssssuu3wJ+WyPxSUtarPnJSc/2d5lW+fW+Zec88PkFp1lCy6eU5Cvme5waQmPhp91eUhPlbmxFt8+7tbW688LEUrOQc1z8ydn/7+GFVf3PxS3VZm8UBBvdFYWHXo757d70sdxvme1fp+tk74N2XiJbvk57Gmd90uvrfPJWz7a2c6tV6bP+RZorFSo1rbsPLt5j65paNZZT+uWrVUg/iiNJA2V86DqBaQ8N8yNJ2D1cKzj29zpTatP+w22S0S2C+yqG9sK8Nd3tDv3brxFzq/ziffMdjy3siY/Rw087881fe45eSpg+4+tVoWyRP7s8hlyaRj4HEmSUNFPH/hnLFkSgyaSff485CGTh3/aYajH1nh7f/fZ55sZ3/96hql+wV796cnPv3rLu3H87PPvh6OTlb90ivEfKWX5P+2n5kJe80Lf2pbPyRF2rdy9uEU2YKK3fg4snrbuPs0nWay+m6Oe+gF7buFe29LPu3GrZt2Z50TW/mzQTux78rLnF9m2ehuLnl30EjhsIOKTx3xRWbVil1deaKPGYijVMsUSxWBUn7ftT+eScpYVNEhriHaF7wkqnAiIogaDGUNqDGquPV9kQnuNLFeUzX1/ZpSX555/9kY87uayAv0rO7W99LYXP+pi+POXrJmswx+6G3+ykkS5S3c/CFwc0pEs/7R/2pMk/p2vf0P7TMXJzPgP/uJ3/MO7+y/csz8tSaL8j/7Dz1eIRYR340jSf9pA96/e/oL/8Jf/7c8+P0lmqie+9I/TQ/3wRdvr8sXSzb40cPXSCr7IDe3vpdb1p/bbxb5PWQmfr8/hGsdldp1tJx0CPOdl2YCErZJ9tn+rZF+qVna2/5zyc97eLRvxdfDtk1Chj+TsPt3Ux+QFQfkXsQtn3661x03r55brbc+uenLFu7nd7zXk+aqFZ2S1lD/tqbstshljV7CfPF84n3G72Ak4WUmoBg27bXC4CBA2bMEHy/roy9D6fBkE9BCFlIycGjobNdbXChBurdpnxr+9n2cA6/qhP/MOrlc9b1GeW7e3jTBr3M0TxLcF+FxXgrd+pvUeXgDbmzStHw+dPJdu9qnjdvmnI/4b9E/73js9WNDPnQYRkjxfYPOfggyqjCl9+sAnREW4HwbSP3EP2iGNpB8A9pPoj+Kx+LGKrL5qpFGu60LkJri4Oups3yce1xeO9Wbw8Av78HqgEvSks288rRtv2lhoLSLXR90yp1+o337uZV/6IedKuJ95rnit9Rzsxg28OH9zoU5pkLNiAutZ/cybQ3jie9+6sm9W5fdWe8/LUwDx+f3Lj411lfH6Xp3JD1iPdsYPe6pbN5TnOG4tUB0qugSwQDFqv0IshRjPBrSeBQFfFZgTRxtmGA2xDJERKqfGkBtKo6EBLvyspUbFpYJ/4Sm69W0NAd/6Ys6fi22tlBvYaovzbt7hlyre/jhc9EE2Hp/NOrFAZb3f63PWO2H90BfJSwHqp8byWqC7yy677LLLLj+m/NP2l/4geYXF+gJ63IAXn3Xdrs+48bdBbWATMIMUTJSmI+gB5HX0hJt92+ILeZ1NdhsD8Nz4rTfej7CnjnxKbihfm31yY8eWwHZ73C8FzC+Xl2X6satvDhoSkDEaLeqd6CZAWy77vM1qZLZmGur9iNb93giIcRxgNiOpUYNSdVnPwn0crxjz1actfHh5Sz9EhT7zoPhQP03Du/JM9G0b74VFUPcZAPt0T1+d8WmXXXbZZZdd/ojl9VmheKVC+Rlegs8JTnwq9ekl7/+HXGMV+6QysrWA30jcuirXW6VlMQWv9tgthWM9+6Ila1irtPkRbEKZEK0gSlNDcka6G+7FY91Aga13YeOxEAlL+HOtXMZVbGVLh7lAG6snQy5PeELOaShdQb5s/vLLZqafaTuOfWLNrM/EE9QeuU1ZWqskX97bp8dp0kFQ1LIwztPUXvbCbKE7Lfs2nguPrbikFhlZYUh4TYve8qfQ5K219cT6uP28ytn9srPjLLxkl163a0B46z6tW+zMA3cRt34DyvX9dk4lW84VejHDs0D3J9LEXo77PJXttVyO5SkQ8mIvzS677LLLLrv8iPJZHoutfvFjUjl/ME9UXg+EnpeXtrTa5S+z6sC5cnL7GpcW3aevAmCt0OZHHr/9NwxSGbSR8oBXaq6ku4F0GCCtVuFPUiye6aGff4PA81Tmmlst2Y3RvfJ+3YIcKyd/Q7W50eCFuvfCKz59xqVietm3y6DgW2N8fl00V25RmiTPDGWKGbTaMAFVRTUIbGagSiCPtdWF/mVOZdIOGIRGC0O8cdBGy5UxFWoTppaR7lWQtunVE/f3KbmF8G5Q7Tp+eErR//RFru/w5Xp7+V23Vx6/ucYX9kjsHo5ddtlll13+mOXVlbdFLivwXgc7bmUbMP1SL8GrsjM9e3HC0Prya33q2ottuFtWXxCovlXTbx79JDd9u1O41FZXIolgkmB8iwk0AckDJorqiAwjpOfn4BwIeE8Xi+wTY1t236hYfRlTczXQ7RZZ21vVXguF82Jy4qsumy4Tml7074Zs543e/UtFdAuSbo7pEsQsDfm1A8307LdXxbY3H+Tm/T8f1+LZEM8OZeTFY+HBT5+2evfYCzNDNFJKhaXd10D0s0HCi+SNWplNSdZoomf3e/VFyNWtWgd0uS5uHHLd4auNVxnHbBsdcXmNXrHdOF8R1w1ddlvOEOBmldwC0utJm65v33fr+df+xvW47XmXcgus/xAv7i677LLLLrv8mPJ5Hgt+uMX3Rdf5hHXuh/xwvoai9YLWgEtazbXH4ukzb2+7tNaaycqJFxAzTJyiYZqQ8S1EYT1LGVRJObmnQs81o0sKxrNzIE/7Tlzp2gCoWwc9Z55/6vtyopwfsjVuX9Bm/PP58X2u7Ikjnlpdn6KoyNW63Fq1L+o/3Dh0S/G5pOP0c86fs66gClFpgp5OYZmlT4FiO1e0l7GIsNb39tYUY6AxpsqpJZS2jnBZD73jNwbw1Mxe9tHAgrK2BVtPgtDtMbaCinMFvF9m66m53a+nIe+2q/JJyt96zgpWFzqf3CJDrh9urbUvUbdnBxa77LLLLrv81PIqYOFc7m4q3/4k/5H+gP0k3ZKLv586Dp6jdHyqlTPrfLf0p4RqYsjjal2VXlE5bPtNLjW3y9aeveatI65G9KXnWzZK4RZQvKqNp6zBK/zr6vatOhxbuZytFU5+mprSr3VZfeGTY4kOikgAyYTnatLIVCS480HCA3HdYo/BSH2/wv+fvb/rkhzJsQTBC4iQVDNzj8jMyq6q7pneMzs7Z5/2//+cPWd3dqa7uicrMyPczVRJEWAfAPkglapm5u7hEdFJ+DE3NapQRCgUquICFwACdx6MzutINlNigKF4GBSzCD4vAtUMoZorDHo34PraY/CW6/QZv+2UawvHvU533+1/f0uCUQvrvjWHV+Z2UJ4OOeSQQw75Hcr7gAXWJIHtqz25po9gV/lpFsZN718TbF05L51KWI2sV0SW1cj36mKsj+0Bq63KvbXobmoV7Fho91UKXb1HTesEERA6VblfZwtW3QKLe4DQ2lcb7S6i2Fu1V6QP5L72x9R3+iDxvWk2KlP/VqMe2VC0Q3FaW9hrsDBdN6l9apvVnQsDcMeivQn03ruW1Uz31tvBvKv9Roei3mNRctfTapBaJA8GnAqd0X7a+XapZfHsOBEwsCJSaaVVXV5fyDtV851mtl/1+v2u6+YhQb3RLeVt//nQj9XvNl29qRua0hZ39z6okqhg9zp8XVceQTRwsOu1pH6+b4fKb800ZdP61kj/kEMOOeSQQ+7LF6ab/bIvrF/la+4aq3xJk6u2RbaK7X5JHQWoqDGl1dv6v3pn5S1qlvDtfEwNLNmRyhu3NOiicO2p6u0Fbf5+j5firX6tKzvuFqP1L3feUy0+gb5I1LXCfWvsq6F8QryZmJqm2c34vgX6njp4nep2T/MukML+FwwOLoq3pVxjtwOulFAGkQd4EzcgAkCKL8W9FwSASfEUBc9BfPnKruI2xq0btCPbTFpvkT0IfA30bq0/rV/uTE+vNnd/yvqOXIOLgkBuX81tz8PrYOxWVqnDk3HIIYcccshvVd4HLIpl7hW14LYFrjMF0rbt9Zfl16WE3R356tUtlWSXY1+spDahnR6bMrJr0N271HvHblwB0AcvF4XSr0R3zuh16rvBohtFvD9fr6el2+u6JSsLMDZzbICsB3i7qtNmnHW2J1O41C3vgToqSuG4k71XLPwFeK3BoHZ7olir+4J1/R4oZxCa/Xtnznf1wPuK+QonlO7K4MwgDiDqPFSVPlY8OLrqSAGIKthBUQuPaHUtyE8nAGNQ/xGchSDF+wUFQaC4XZXVjPjrNdmu0P5W75TnnX23t6gV5+1NAuWCtg/bdkOV93ZmtfKEeZuVl2Jznf1euQoI7zq98bm2F6j91uDtA3gccsghhxzya8kXZYXyv3bf/zXka3K471lEX2vf/65K606bK7k3tavsOa/PyCzL6xldUbM6hdJa9ZPY56RcVSPugWB/ZtXZrgHgvWw3WnAQ1upWK9XWj1Te79DRVQarzvLslvo6ZWrZrairhlavsJr81z2uV/EW+O2O39JF9TU7/rWU+a6vqxyzmSkYIPuhLnKjgqStpl1qXawAcwdGV/u4vYrsdChWv2c7wHkXze7+eSXvefaA7rnYpVPuWfN11VxXrq5+3/rfNwBKuSfN4LAB35vxVmP2/ayumDb3d30tNt8DJBxyyCGHHPL7kd995e23KeA3tL6Nsvwl/dy2x345yLo1TlOib/e+Orc3qF77ZFoj6l/+OuDwphV5R/ZalOsOoWxpUwCJgRACODDGIYCYwEwQAVQUKWdPsarIYlWpRXQDNrBnJL87oW+lDhbPyjo2wP0FysgaPAZiO5+152I1N6++XZuX+05dnRO3yI8kOMWMD8OCs0xIK+ZQmUlT9hu80zcEV79d3pNi9X4muVvvvG2ifSxFxSi7p9553r7Z7jjkkEMOOeSQ35a822PxpbINbvyKjlZ/XtmQb8zxugLv7Tb3h7/jqSkm6t72W8dtgaK0d+7rIze6Sj3yBmpER8nYgyTrbEDr0fo+9orM1evZKHNXaWyvzt3QWK7ea9e6N2b9f3ViWwsmQowBITDiMGAYAkIIGIcIZgIxQUUhqlhShogayEgZWQRLykhLRs7SpWhde2LaqH0a2H6eXYLb2zq+r09TOmsodt1SvXemDEoQkJfMI6vGTVet6k2rnsZaHK+bf7HAU19NvqyyAl7PYgqKQAKuM+r9Sm0N7Hb30USbOUHXIQk3Hsi7z9kNuUcVWgfy9/vzehr7w3QNqdsR2r9VEMcKfd248eXX3lzvezHe0u7wdBxyyCGHHPJryDs9Fvvu/29V7O5d07glt5S3e6e+Akbe/B7tvoTRTGijJL5/zQrNZU8JWlEnqFf6r2ZT2+8VgdsfF7fBxYb6dE+aYrxzDFjdh06VX7XdwsMthT4GQgyMp6cHTNOED0+PmMYBMRqwMC+GnSSimFNCygYi5nnBkhKeXy54fn7B+TIjJXWGzBboNDix70FqmZi0atJ7q9xoVFTPWwOAq91L5q0QMDJa9q7iobGW6pwzWt3rMtdN6IX/sZfBSDCw4CkKBhLMyF2qW0bvsSiKtq3JlnZWrvbeWnyd3Feor/dMc+o0QPK6Qt5dUxd4VOpclOdvO68vkXvn3auzUt476lgccsghh/z+5ff2Wf7boUJVfeMVRfV3sL5VEa9Fx9bv7aefvHdhW2v42l58JVqXcT+g9bVh3nLOO+/DRpdDfxXfQmIMOE0jnh4fcJpGPJ5GxMAYYsQQA5gZMbDTfpzEEwiBIhAjoMAyDkgieJxOeDlNOF9mfPr8gmXJmOd0cy234GJ7v3Hjfdpph02bdfsecLCjlmY+L5WzifpIG1cyyzXDFc8uXatIBinACABZxqh+VpGBx0ExRcEsgksuEG+zk6tS3Sz3e3u9v/Pfki71WjHN3Xif7thbQcX3kt+j1yFyQOTbAf2H3JdAAVM4fZUi8RSfEHn4hrP6/UmggH95/OcvfoYEiv/1j/+CPz789I1n9vuSP55+wP/rn/6fX24cAeN/+/F/wymcvvHMfl8iKi3z4hfKLDMu+fKNZmTyafn0Tfsr8s6sUG/fXK9Z9K/f6s22r1nBVybeJq5NvTrLG1b8dZu3WeCvP7aurbRN8SzX1atkO+Z73R7YzoU209NrRbSAi66d1bPQdbvyXm13Wz3eZtW0cfYtp3u+kC/7aGoQalvpuSjazIQQGOM44DSNeDjZT2BCYEZgBhMh0PrqFBZvUfoNgZBFECiACYghIKUMwoKUsivuRWlf297X97tf497CfWuNbq3PHgRpq6H1BzUbVmPhlGKWut9FGaHLHkXsHoga5G7XymSZoUoQ95zLOdZxswncutfr4z3oeU3Wnwu3RTe/9+ZxneXt1eHvj7eiV63H+CVBwWsA6deUbY61Q94nRITA4avWMPJgBpN/YBl4xEN8+Krn4ofxw2/mufq15D88/hH/+cN//uLzmRj/6fE/YwzTN5zV708WmfGcPn9FD4r/fv5vEM3fbE4AkHT5pv0V+VU/fdZf9N/gy6gojro93JSTW1lY3jVMl0FnrapT93M1td35tD479ZSAWo6hAyN3JoTCUyr1FbQ7qc6KAOPnX03oerKrZSqq9Ptld9qkd5S6/fW7Jw8PE4YYMEVCvjzjZXnBSB/B42iB277imsu6bCdo18ciABRTBAKPmMYIIsXLeQZB8XJZsFSA0XkE8IqOWvFQux+1gn0ZfnPC7dUuxwOUIpQCVBdIgRhisRIlBS2h81qV56PQo0qPft2SM5gB+69JIEGkhIeYMAvh82IfG7yBVI3ut4YP+8tx+0n8mk+CPW/R7bbv3dFbv9Mvo3QcMRKHHHLIIYf8XuV9wdu450XYf+81F9pVoO8b++6t57vVvXc7ufvuvvZ+i8fsPSmtFSsrMPaax6XrtuOCUK+zUK9gW5vr7nqVtiPKbGNK+ghV6tQ+uq0arXwl1F3vHX1nHajdrOVXhuKVznnHbk/b4/0BsUDt6pUoXoeAITJCsDrkIgKBoXyGxVcQdVbV2q2vMRRMQGACgY1SxWxUIX7G+bLgZU5+HcUPpW0v6Lqe8/r/kgrWU7dSUW2b/d720PZoWbBWm0MLpwtWQbumnFXtm7d9RIzCA1vVVaj3om2+Ei/Q9p39PQara8HFG9LvkitET+u3NrIKRehffI0XYe/x3Yx+XeDufQNepXPevv8KIHhLAPaXUrYOMHLIIYcccsivLb+Kx2IvoPgtAGMbgLq2+PfK845FvCr79+e2Oq1FRncNVhUTrtXiNwYzr9nnhD4yugRe6kpT2leCtlltWuG39Xw6c/XK5lpWtP7uhthAJmtVxttTYvpzXwEg94sf2jhXSmAXqU0w5T/GgBgsExRBMQwRp3HAECOIgJSWWo2bicyD4Rb5ol/Tam/YtUYii8F4mJDHEQ/TCCIDHXNKlpq23JMuoEV7q/3eFqDNbzRwSiW+qCymZ6Ralw60H3EooQwQGEwGO0i9vZJVUSSGlnoXVLCF9a07z5yqezCIDQD5ujABUwCmQGASZO2Cxsv8uoey0KIMjO5shl20ceP4DXlNjba7s9eqm9vbh+vOXZ/1HoX+WwKJL+n3kEMOOeSQQ35J+WbA4q2eh/1z39k/9q2T6FtU7VlXgORe383Y7lb/d3gweov63WwuwJXy1KuTr2tWt9/v39m/1huAzX/zjqpVDNH317u/+reMuJa9DDctzWsRAWAZn2KMeHp8wMM0YppGjDFUxTqwgYyck9dryFARKBSBGSJ8lTGHqYE5IgaHYL+JQAqEYEGp//ynH/Djx0cM//4Tns8zPr9ckHOz8G/XPBBsvoEwjgNiCBg85S0AiFg2qiVnpCTIIv6bIMIQKSq7oHjDetCoBWCwrT67t8r+Un8MFKQZJFI9FUIwoKHwubS1UBXkrGAudUC44oVTFCyaMTABwrWmxfYm3yRx7VWT3u/iVdEbr/f76Uc5lO1DDjnkkEMO+aXkKypv77+/93ot+/SYPS/GXj9EXS2HlSPh2gK+UthpQ4q4Gn+t7KzUrU1A5r1g5btBd66l92poV7ng9uR8Cs2DsW17HUi8Y7/sWpUz71uSqUcTG2vyLfrZ7tVX1s19pa7FAqzVRoJTnkLAaYwYhoinhwmnacRptCBt05mlziGnBVCBSPbjVj9B5DoVp7pFnimYlR+hjlv2JTPhNA4IIeDD4wkgYEkJFxFkanMvMy/B39MYMEbGaRoRI2MYBgMsBEi2VLcpE+YlIwthCYSUgSz2o1C/Butc1L1KjlBrADe11/1dUfT7xk5UhXszbt053XCV7O2BFSMrIglyvUc70IDajmwEvUYKo82Zd4HBdlrdH7dmsPbJ7UGQzqP0Ks5wv8c7PQhvlT54/t7729f7tToO0HTIIYcccsivK78CFWqb0egXH+5V5WENRHAzeJJfixd585tFyaLrt+510Smwrwlj77Ll7mjSU6i6469ZhO/7UN6r7KjXSLAZAUCMjIfTiA8PD/jDjx8xDhFjZFewFTmnzXUAy7JANQOanc5js2QmMPNK2S7WfR7YQxFoA5Lt9xCAyIx/+dMPeHoeMYSAv/z1J1wuCzKKLq5gUgyR8eOHEz48nfB4mmy+UKhK8yhggGqAakb2athZ4DQnRspAyorLZUZKCSknnBeBCgFLgNAAwYjs99VAKhc4ASWrc5FhGydoNh8HKbhSwBxVdeu/ekkezwHCFBWigoeBkRd4dqii4Htq5c0zIjvUoX4X3oEn29lcyd579FqLSpN8y74sBoWux19Aef+lAMG3SFRxyCGHHHLIIe+RbwIs3h50fd/i1g7t9PcKnWl3zE5bqYrMHat7P/IqNmH1/j2Ve38dKtWq451fXYj23oY9vnQ/zkb5u1rX5tVZB0rvDXw1jW7im+u4CnzFtetpe67Pr6mXa0+A/d8oPlpnD4QQEWPAjx+fcBoHPEwjhkBgCHJKpqF6BW0Ani7VJIbgPXOdTp2pxxC0e13mqk6f8pmSq+naz9TqOpymiB8/PCAtC15iwM/PF4gqRC1t7RCjUbViRAxslCMHQlCBqEIlO1UrQ9XoWhAFE4GJMXCAMuGBg3swGLMMNp8MnGhCpBkjZ1i5vOaz4G7zKwTQDE0XqCwgXQDktWeO2jWuRNveY1i62YeRMKviRbTbl97bVVR2txFWHpJ92YO+q61fDmy3MV2/3NvL18/Dzljdie+1gWzTzb7mZXhv34dX4pBDDjnkkN+yvBtY0M6rm+bGG2fvhy7cSLBZ9NcVCaIce2XATsP40q/jlbJ11ckGdPRLQn2LTrlYAYP7Hoteh2h9byZxY+2pm8OXKDfF+t6fo93/3Sgr2svedPTq3KbdlYgAglGVKrggYIgR0zTgDz98xOReCs0JKgki2dLHehA1kcVWlEULIYAogElQ8sOqCFTV6FCs6y2srrSJQkgse1QBaL432S8sEuE0RITASGlBDIyXS0KSDIgghohxCHg4TRiHgOhxHyVuRMQoWpITVMyropps9bRku2KMw2QxDkOEaIQAyAiwaJgIxiMYqVYS5259uWrIan1Lgswv0OUFms9AfgEhQyh353V3rFfE/QVDEUnxOADPSS2IG4SrIG7d7vPtjsDNfdu/dXXuFsT0z9UKa3efFR1orMfeWQjvS/xubxvndVlR9m7UjNm2PcDHIYcccsghv5b8bqroXKsS+/LtS59vPRe3VGda/bXXsi9VUa33lfazMzKt9KH7srHE3qrx+Jpy8vog6wGvj+xJ56HoQQ76Cs8ldNwCsMfI+OOPH6zYXSSQJOSLQCSZ4hossJiZIKsy4261VwAqSCquvJuyrGJgpNV74HoVIgKmjDCYtySEAPUpEsGBjwGhEEz5/9MPH/D0MIEYSNkCsD88PWIaIh7HAUOwAn0gIOeE+WJZquzHV4wimKNtkBK0roolGXWJA8AcEIkQNJsHggQcCMQjOA72fohgDiAiiNi9FlUEDs19JQkkC3T5BElnLC9/h6RnIF8AfQGrkadqFQwFIAqQAGSsqR+mjOfM+CkJcoq99r7ZCet6GF8m6+evZLy6jhi6LXuP0N6xBvO7sTaX9h6vwbf/LDrkkEMOOeSQ37a8u47F9vVrX7H3Ap6ve7196LWx7n6Jf9X3u6LnT/XUjy1dSouV2JUPv/IGMDqKyGpKWvrbm/Qr3I2r6XZpRG8s2F1wURSoTfvbjen+Zth6UkqO16sGzZs1xIDTNGAaAqbIYBWoW/lVxdOfDiBiAAySoox7kLZ7BdAp8AoFU6/oisVZaEZJEgslCLF7P8ptJ5R8qwSrBVFUTyVgiAwg4sPD6MBCLcA8MAJZNieCQESgkvyn0Z/WpRbJFPhSId33kAVsq6eN9ZXy4OsVdYcYHCKYLFZEVUGi4BBRqm2Qx50gRFC6QDRAlwmaz9AcILIA+bwKu7DYEIWln1UMXoV7YMVMruKr73NPUdsmtt4Aq71ULnNvy3xNPFPXqoDV1RxutK6zpf6p3fGffAfA8F6vQw94WszYAWwOOeSQQw75vvK78Vj8WtJUI73yHtxS0Bv1Z91D/fPuaH3/N/p4fbL3df1vohi9vY/rlqZEKzbgiwgPI+PxNOGPPzziNBAiZWienT4kIDaKU4wRQAnCLqllxWIWNCNnK1XPgFWSdq+BYYsCJJxKpabk2xQYkBmsE3gYjPPPjDCMUC41JZx6BQCk4AD808dHZFVkVcyXM5DFQzls7HmekXNCzslARuHgo8WB9BuHCqAhAgSWIlYBDgZ8QGRxGioQmREkGhUsEJjNA6JqkRQeVo1c1psi4vAHhEERT/+EnC+QPGN5+Xfo8gl6/ndEeQbrglDvmXp9C8IQgFMEPgzAORnwUeKeQfU29+IdOtTtxr18KUnpvmxBxW+BWvQtYzUOOeSQQw455JeSd3osGk1A129cydZ61ivhpUzEun3X143v8VcM8e+S19I1fqsvb1WzmNZ0sdRYKd7Cx9taVgtKeN88tAxqvfr/rqDuUDvqcX19JOq8E7u6VuFu6ab7bi498ilGbYUgeJDzxw8nnIaAgRUkAoFYLIJPeeDBi9wFs5K7iVkFyMiQvEAkmX2eDEnUeykJkpOBDvHCeWoxGKU9gaCZoTkgzcHe44DgdCOigBBHcIgIcXSgoJAsIGZEDtAQLZXsfEHyMXKeHfgkBzNqIMbnqHVtuvXzQHyiYIHzwe8CE+IQDEgQQOr7VTJkWZCyIAzWbwhs16RavTOqCuGuCjgCiEbEpz8C+Ql0eoJcfoKmC/LyGYQEQrbK5QACCR5ixseR8PcLQTQga5svvNK535n7nsbdv/vPmD2PQXm13/fK27Y6et97SusTvotsYyj646+lor3X1yGHHHLIIYf8GvIuYKFX/6/eePWLrQcb14p1jxpuKPiuvLz2/Xnvi/hLAhz7Kb3ty/u67wqmrqgf3Xpu5vQlVIZrolFT6G9d8aYG+NsH2rRuSmEDS9cnbYCpR93GyBaXcBoxBkIgz2SkgpyzUZGIwcym4FewZLx/IYA8nkJyBjO7nmtgwRwURkeSdIHIbJQgFZBb9bW2JWiuhCcwMSQMFgzOATI8IAwjAFgFbvd8MDECEZQDsiiWLJA0Q2Wx8SyNFUowOcjiIcB8hcRsK7hnh8TTBxOEgtOULHbDsk15fypWGFDEivx5zEVJrUuqUEghi7V7xWxghQZAM3g6YeERMj/bPOQC6AWi5gFiCEZWPA5Gh0pZvNdybz3s3YOKyv665eG7t+duP6Vlj915jtWBmV28reWN577uTOrG7Jq+BmDeK3sGl17K8f53f957xjjkkEMOOeSQ7yVfRIX69YkB31Oq+fhdp2wpSfvNzA5/s01Vmt6nIBQFvwTg3lIwPJ/SFZhb99Jav30CJZ9Sp0C5wl7eL52HwDhNA/7w8QmPpxEDZ5AkU8Z93cP0AA4BgQNiHKqlX2u2pwyIWck5MIiNJgUyyJDEvRIEgAJCnBAx2LnI1csCr9CN4j1yRVwkI8kCBoOJwWkBzQP4csE4PSCEAWEo82KM4wQZBnBkXF4+YbkI8tkoWtAMKh4SLKgxCQUkcfDb0YCTeThGII7QJFCNEAYCBvM2cGkH5DwjK5BV3LMi5t3x2JBaF09zd0dtPqxefTw8YPzhwYDY+U/I8yfky98hl2eQJIxIGCPwMQCP0bJsSVKHTd9Omd06167llT1J5Hiilem7HqFEn9zp611ZFMop3zY17AESDjnkkEMO+T3IOz0W7y+5tGdp26Mc3bPcdY2xY/J/VfbGfot3pbV5D5kDmzkSdr0kHe+iwyE7a1Pe7VvVnrHiVXVehCsstDPNBir6mTdAsa5gvPaFrP/S2rb3fVw7LLRZz0EIARhjxNNpwmkMGCNZmlRmqKdVBRHYwQR7Ctk+NXHZk3a9bLEFKxoZgzyo25hDAdCIGmPRqcJUMjLVe2NeAItjSIB7J8RBiKQZHAJUFXFgSw1LZbWsUvgwjgAEOS+QvHh8ea4eFPKg6HLDVKotHi2IO0NFkbNYXQ0SSGZIAXBisRbIGdkBVilqp2hWb9OP/bpzrvtlk4MAZc8SMTA+2XUxQRCBPCPjGQoGK2OMhFGAcxIAYZfiWLt/7ZnbvLrvJXjLs6kOKrYUo3UPV7VptLyy9bdbc2fub/w8ew1o7H1O7K7ZypPyj2XmOeSQQw455Lct3y54+xtY1F5V+mt6zq8e6n5mpK1U5b1Xp+8pGl3LG832etoqHm2OO6Cip451bTo80/rpQMztiV690ylet65FVy3uUar2+jjFiIfTiD99fEQMRrExqpvReIiDBz9Hj39YD2vUphJUb8ovUz+IBXdzCWWgAjd8n/l6c3CKFbV27RIVWTKWZcayXCwAO3l8Rp4hZ0GIAx5C9PHZt4oihAg6PWIYJwCElC5I8zM0z1DJBnicwlRWyTJYdTeFrHqF5AXIjDAIVEZA1bNlReR8sSxT2WMbiBHU0ucGEZsHM4gDKm2qjEho6wx2vVrBaoX6aHoCpgfow0csw0+Q5Yx0/ncHRxmPk0AA/HQRNH/I1ym7q7OJ6n2iflnqgf68awDRjq2v2bZ+AZ8FCl5DmrdcSU9Z+hbt3iOluOQhhxxyyCGH/Bbk2wELbV9v9zjDb+vqtsVuz+r3Pu/DF4or59WaDG0W5Tun3Bv1Svm+O8em6l+tSVWHtCvMt/V23Bq8Awe042VAs9z2p7V73Xe3Bhf9PPqZWGVpwtPjhIcpIrJ6YLBlNCIiV4RbcHMdV8T60j5LlwdxK3VX4z6Xck0KQBUCr2tR6D/MQM5QIYs6qOCizMjAwjScEMKArIq0LLanujVJKdWTS1pba2OK++nxA3IaMXPAMr8g5wWMMg+gemc4bO6fAQHxlLngAJDV18gQiCxY5nOlgxVPgwLgnJBzxnR6RHBt2rwvuc7bPCxWTyWGtsc0Wwh28DZMjGF6gg4nDOOEnC7IywUP6QWJMsJzhghqHEbxltCN7bfZJFW031z1fVqxAu1+agcOAKV3PuNl367QbnmmS5O3eE7KFN829k1a4lfQptaexe2rQw455JBDDvl+8j4qlOoXBRH252/P/Zr+vnbs7Xtvn8d978XNrDN7xztvwpVa/4apaKf8KG2Od56Mu131b/ocV+13NavrPlfOgnWn1a5awBYzeTXtgNCdQ2SAgoPHBVCzKu8pX+qAyGIS1m1Mce73WqE1WaYmC/zt5+X3wT0PROw1IQiBA0IMPpOIkkkKJeWrZpSUty02IgMeDxLjYNW3RSAqADHY61zYJdj1Bo6uPHf2c4H3b0HS5JQv8zJsVrvGhSSUVLbkCjgTGZQplC9r7il5CdBWp6M4UVSSA7wAjgOgAyhG0DIAFDEmxSgLQrhYbIdovaYGhF9TnDeK8a3nZ+evEhOzlfI89ODzqmtt+6MWK6zg2PfFnfiKb/WJdc9YsrtuW8/NZkbvKR54yCGHHHLIId9Sfnd1LAqHvf39e/4K7a2jG43nqs1rNIs1sLjnL7n2P+zN4W3y2hmdn6UeY1JELhWlqdFxyDM+EZtCXCz/PZBjbrEQTGYiL1W7SzE8kQoI0Cn/y3KBZWYy+pGq1ixKJbib3JsSODg9isDBgsbDeAJzQGCn2SjZNRCBg6vxBIhkSE6YLy8gBwAcBxBHnB4/YJwejcoUHEiFFmzOVCpHEEr9dCvkJ1AIiMTmyFQVYEmLpdFNM5b5gpwSLsti6qUqhnHCMJ0QYsSyzEhpQVpmRw+2DqQW6E6e94ncW6IpQTiAowIU7Z6EE4Y4Yjh9AKZHYDrjw8vf8OmzUcVs0tSBz3Vmo3t76VaLm/vsGz/+bZ4l9uRtc7/dz/vO2ZN7mawOOeSQQw455Lckvwiw+NY84q1864qyX5bBxS2llQ51Lw3uFbdj07YHD4prlWH9d+99aVmXtk39ha5rO+/36HPamfXKC6G3fDT3ZQ2TFMwEZkZgV5C7xSAPhDCdrrNGa4NCRm9iozU5TUZRApTZnQQ1/xFK5W0bh1e8e+IIogIsbC6BqL4uVbxTTkBOlva1cw+RV8O2e2r3NQQGUUBIsYtv6UhaFZjAiu95Ktsyv3YnpFs/66PU26jpdAFoHD3NbkIcZ+SUwfOlxp6EodT+YMRhqIBLpRUStPmUdVKUgHLzXFidDg7SNgQRQAHDMOE0MX78mCAZyFmQkqA6RbqNsn3O+leVurZD56l7cA9vwzxVvdTV3jx21O3j2nbjydSSPawbpO2d1+VLKE1f9Fm5cy3Xbx5yyCGHHHLI95X3FcgjevcX7Hvav6mtdgqC/+0DbQ7cl+1Y9yhSd+dFPS3qbddK1LfdBxFEe+/d63Tt/1gfJKfDdNLRYYplFptfRX++B0jWfe4BnD1gAcRIiCEglkrSmz5Lute+kz6eg4hA6gXtKrAjMCtIG0WoFRkDOMQaG6Fq2aAspKFRRxjFG2ArIDlBoB48HRCgUHXQ4gHCVAO24UXyGCoMjIKUM7J7BkxxtnSyqoosikh2fgjRYzOKp8k8Mf09atfPDiw8BqVerkIkQXLGMF8gWaAiGIbRArgDgwIjxAgmIKUFqtniVirSabEjVkwPUFEQssW9uKcGThWLwwmPPOKfNSAnwZIWfM7zim61urcbis/W+0ggr7dxjSL2H0Nb+EZq2+63tmmoa3PV8Dcsu4aPN8z9WxtgDjnkkEMOOeQ1+d1Rob5EKuT4BbwoV6DjtS/8N0zhq6ZZTbUbT8ouz2R7cG/yG2/J1ZE7p3ZvNvVPMA4THh9OGGLwLEoN9bTweJ97P4fOqq5ApTAVnavosgorWAdXjCv48yrchfIEKp6NBmLKUhVFPmhGgVmBjQqUktQxDNaYsl4BGgVwYEyngOjAQlseWZC6t0EtM5RIRggeW+Fcv54l3whFqE4yq/1m8+K6SgTiCKYADhEiYp4GZtSUV74f4jAhhIjAwSqbq9Sg+hjsnogILvPZl0YxYEIIVgcEgKfXJQyB8ePTCfjnP+Lpwwn/+3/5Cy6XBedLurVb2rWRL0sHGvf2z1tB9tU2LIB0a5Aog/0OwMW3rIdxyCGHHHLIIb+kvA9Y7Bsh3+15335R3vMIXJOIbjAi+pSUe1L43t8QXLR5b/vsaC/lz1eGLcrVnem/3slVj/1qOWVkxS9Zz3Z/hG7ytG3l/ete+2vLsBIQGIgxYBzcQk9mEV9fe9dHDRzxcVQcO2lLJrAqTFCOSwdSzBNQPG6FSgSYctwhktpNARYlwxNglbWtjdSxVakq3t3ZFcCACCRePbzMDUb9oXIdYoHZ1UNR6V2bJSz4qHpp+jc77xSV4HMBk9SWqxmyZY6KMSKTgTRSVHqadmuqXtE8JwLUYmACAHjAOYMwRsbTwwRiwl8fP4OIkFJGls3tKTOpHgQHev09xtUO2lzB3vE7SVc33q6V7H4elNHLZ8oNuPNazMi9AOyuzZcCh7fDrUMOOeSQQw75PvK781hsqTlv+3L9Dp6KXekU41sTveHw+DYzdj+B88aviSI3p9GOrxb8XqWK1Uk7PSsYwBADTlPE48MIJqnOAhIFsWdVQke5q0q/NG+FpxpVbVQdAB67YO2WNFu8hMcWMFuF6pJliqi7rj7Gww8yGriwpp5014OoS4apnAFVRgyeOamLeTFcYSCmBJWrqhW0E8sIpaLIKYFphoogRg+QdpChqpA9BVfJ18o8cTYWX7Vr9x0AmtfEdXsQEWKIAEurvE0ABfKxBWm5YJ4T5ssnWDD4CeP4hGliEGI953GMmIYA/M//jJ8+fcb/8W//Fz49L5hnqWNebZX+j837fH1oR15pQZtnSr/Nk/VLybuBxt7lHA6OQw455JBDfiX5YmCxqxBUpeoLLXD3PBkrC3uxRL9BU98ef6Pm/q6UsasGnal5q8Ro94uu++p551zsudXquW9c1a7TdhuuoVdb21v3xuMVtD/i/7XiGFfejWatL23WLWr8Ayyo+fHhhHEYLLPSxkK9jamwt3XlnVgBi623xEFKaVvWYVVcr1uf9XKWtt16VNqUhXxXbwJ7PqbcDa2biQDo6UxWsdt/7Cos7S0RKAOZLZuSsnuWqFwv6hqWOdn1N5u+ltgEEgcS3fURVQXdziuB1XWxnKbV5l8C34kAZqNVhRCR5rNl3MqLxXJIAjxzFmkLfH+crIDf8k9/RAif8Pwy4+VltnltvRc3H6ftPeo35s4e1h0vRwWntGqzfQ7Xp/y6BedWwe07geVVNh9n/R99XZtDDjnkkEMO+Z7yq3ks+i/LvcDt99WT6I7cCgIvSnvVke/3fyu3fKOINMVnZUguU6qnb+b4ioulBxf9eDctmXsKRn2rA3obQHVVu2PTQV1Hn2/FD30b0p2DuFb8yOIAAjMeHx4wDQMCkcdIAE31pbqAZc41CNiV8r6WCrbXQEWBb1QlZq4KNmnzPlytFHX9+NoVYMEE90QItFr1CY0lZSDh+v50vgJ/v1yDaAEWAFQ8YByQwCCyzEzq4MmyEpmyr9qApk8U8DlBPX1vB/QZhFJgUByUldgUm3eu86zQsz5DhBCieVrCgLMAOWeEnJy+ld1zww3AEOFhHBDZUvSKAEyfMc+LeXc2e231KNQ/rkEatu108273PLbb4ISz7uC6t9+u4r0HMF5rd8ghhxxyyCG/tvxmqFBbC/M7zsSr7oeu5dfIHmi52efWabBpS97fnpfnHui5lamq6FrU/f36JDd9Q91roXUs8sjXavFGsequ8UOxrffjmUJvfzw9PuDxYcSPH58QqKQ07TwKJfaho0CJtD6LddloReiUcq3VqvvrtMxHPaXKitK9Zbv0YLH3WpTzYwhQIggXIORjixrNqcSBrBTldaYjIrJCeSiXESCakdNiIKKiFkM2VFLP5v3JFzqUqIEIZgLQPA8AEMgK5IkKNCXzVnQepTLnyn4jgDQgDhNiGLxWxgLRDMCL/eUEwGp7FIhIMPoXjxH/059/xJ8+PoABfH5Z8PPzvFrn+/Laxt328M4nvHdfHHLIIYcccsghXy3vq7xdrKfYKsnUtdics7Uq7xy/P6g2Led6QnXU16p535vXntwN2KROoexfb2dJiqugkO18esvkdQ8357vyKPRjE7yAXKsJoD6Obm/cG8ZZT3Y9dtPR9bpfQt0rTITTNOA0jZZeFmJzdC9DUUSBspwl01NbYzPMOwDx4Uo8RnMZ+XV7pifa1Mjor0crZa3zVlT6TaEWbcGbjRWYoURgQQMRNQuV1FVpC7S5s7T2xNQ9VOIwKpDxUbXU3ljDxy3EVRDg9Cp7bMrzWtYFTusCPJS88zDRqqcKNwggBBAzhnECMyOlpav6rTWupc/kRQRENu8FE+Hj0wMUhPOckFJGq3S9L3v+hQYSe59Tu/frKhjl9J0q1HTj9XrwN8utz5K3fMZ9rcfha4K/DznkkEMOOeRbyxd5LG6pBN/76+3tvopvN15R0vvg4o55gWZnrtoqmuJ97e14q6didz57tC/tXhSPQJnjFyxY71W53ahnp/RKvmUZGmLAjz884XEawVXRLd4A9p/11RdQYjENXq+hD4TOGSJN0S6gKlCwGhIr70C5BLHRtVse4kKY8dk3pf361lllbBoGBwLBCtNJRtLk1KBS/K4Dt+71UAcQZR+J5OqlIailns1Oe3IvTFUcy/ll3XgT2lxAtqMSVYKygkLBLnYuM4NihOTstKpSMZzbYnVdkoMUEHB6+ADVjMvlBS1+yOhsIhlg84r06zcGxhBG/E//+mc8/O1npJTw8+czluXbflpcZcrq5vBLyJ4yvza2fD85wMUhhxxyyCG/FfliKpSuXiveohTfilvo39/9ktx6BbbKz6bvW2kee4v9awXxbikORXlube3v4imoyli1oJZ+2uAWxNrXf9bWB1BXc28ZtvPdpWdR76/oZ99+rRTIYtl9JWNOMfJTOwn9TtieTQCmYcDT0wOmISIEAiTX4Ruo4DaRsq5aoYVdn4OLsv412xKKh8EAi4gCbP2YtwTuGCjox1bbqEKdx8X7qfeleAv8noiIgwDUauEEgjitK2cFQSyguVvXVsiOQd3+lpwtXqHGRNjuqmlq3fNRA3FtYzWqWPFsbBacuj/Mq9N2bXuLvCCfVHBDRJ3XpQFKZ8JB1ONMiBHj6Mio7N0W+5LdY2JzlrpOD0PAD08nLP/0I3IWPGPGvBQq2BvUcMX6eahjtAZvUq3rY7izLuuur56/nSltPge/nWzjq67G3kxunTHMj31XeHPIIYcccsgh76VC6VpNXr1XTbv+/o5y/5bq1rvtddVx9/f+F+dNKtTKwHtbDXi94nYz/VeDvnZGXL0FKjbz2cyj0ENqLqUtYNDt2evXW3stqV416+dY5nMvD05RttvfO3JlqlULlGZgHAY8PVoxvFDiCpznw+6puIIoHQjwhVgNoNBaf6JcAWlRzNfKqq281BGubdod4CpBI6pQBDA1wGxLIBAAAWz15gADPFADMLCaFK17qmP0/6soJFvxOs+Xhf17qu5VKFW7r5dauz/I16oAbSr0quLx0GbFDyFCSeqsyroWkNlTqHpABjBiHKBi1LqsqQIYUQNXdZdoxWcYA+PpNELxAX//+TOWlHFZpKxIpwSvd8O+ck/9ZunCXHSzV3pp93nV5Rst/VdGCvT9bO9MWevr41u55234ck9EAcrfEuoccsghhxxyyOvymwnevitb/by8/to+v6iPOyetUoA23fhdXVQb/FtEu3O2qmlRsBtlRlyraoDFxtKNMkeV0FVU6X5Ga3DUq6X9rJkJj6eIHx4n/PHDIyKpeSvUqD5MoXkqAJSaDP0YUmak/Zq4akxkAeA+tsUn5KpYt5htRziwcQnrdLVVESYGtAEQS3jlnga36ItkqAiyF4YL3ALOmRmSk3sAGMQMDgOIA4iDKeIikCUhLwskLQhs8RplnqICDrSiLqEqy9phH78m2WwuIvPWbJVr2QA0gsWfcEDwehUqgktO1QPGYmtFwdorecA8zAsTAoECgbOBRQMluds/dp9EzSPDrDgNAcPwiMs//wlPj8/4//wf/w0pK3J360tcSLn/ZZ/V+7KFwVcWg3vgYgstv07x7kfZifDYtDqU/EMOOeSQQ/7Hl3d6LNwSio3l9A2u+v7Yrfa36jrUc6o1FUD3Rb77dX7D2lc9IzvnbOd4NV+1cdcdbjtTCzLWNs+Vp6F4XK6W4Nq7cT3/9UktwHezDtr6aKmbOvWsKOq0Ob7zqj9Sh0Nnse14+kXHY09qdJomTOOAyAxIWq1nfx/6YG3ywFzRvRGrfwLNku7v9WiiW5Y+SLu+Q01Jb9ZyLfgDQJeW1ZVqJi9IVwKsmaDg2ncJ7LZ1tdgRZm4ULsM+nnbWgp1DYP8JNc6krE//u5r9+3WocTPre0Xl2Ao8dluOUFGv/W0AAtw9G2Wydd0KhauM0a4VhRIm0g25GqzOg8CITHg8TUhZcJoizpeELK06ePE89aB1fYltr9+EDyvcod0xT2Cw8TW8JvupX9c+luItKhPe4p03D4av8VQccsghhxxyyK8r7/RYFEvvXaPg95HXLJM7QOV93b/x/BXCKkqMrpSMolFURZDu+SSaF+G6xT1LbD/3drRcxwaS3OzHz1q1e5PyhTX1IoaAH3/4gIfThMCELFrXxYKPrep0TW3bWd/FufrMocZCrOZe70vnISqbUjvPSR8U0r1czdn/K3EaprOXmhMEy59EQCCnOVn9CQKvFOkaL8KKECPIC8uph6uLZogochYDF1AM04AQAmIY0IOo4vHwPzpMUaBqe30NvotSX6Bfd0wVhiCwiqGwNQ4IKSDnDBExWpODC5vPWqkuP8Tsjp6M6xXu5qG+P4Tw8cH2xB8+PuBvdMZ5uVRFvPe+7Snn71W3G6zpn832/jf5GLvC7rSZ/LcHCQf4OOSQQw455LcoX0CF6hS5N8h7lPvXCkH1fb3li/WWF6Tn9b9vXrfoDv5uM+k263ynuqxmso0TeWWZCsd/fT20arA3M6qWZZ99VXj07j3cC5Dfb2j/UdHcoZjGAQ+nAQ8PE4ZYaEgEhGAkKzILt+TcOumDcf2nZUzaeC6qjri+AC0W9g7TVf/a6gIaIGn3R+raiBeQq14UIqh6mlw7AiGAlarXAyAwR6dAxealQAFK2X5yAqAIgTAMBiwCBxT6kCV1ap4PAOb1KONIU7wLUFMPLF971gQqnger9tdnkrIrUQXEvVcxRnAICDnXmAkWqdW1Q+e1KJvCguipy9DV+xo6jpPW+t8IUJwi8Oc/fICI4vnlgkvat/LX68Tms6Q9ajtS1ug+8cmw1uufBPspmNfQf9tEVwuFflt+2Xhf0uaN4x1yyCGHHHLIt5L3B2/vfMnfpRxtLar4cm/C3Uwor5xzNd8VveSt43WvXx35dtu+290MNCu8sH1j83dvJb0zuq4yPvVK4F77HS9Bm1E9tlp+bTEPwxAwjQPGwQK2q6cCXuDOPRWFs1+oQ4Dz/XvldEch2wYZr6dKK8s3rvZhpw5Wb0bXT6E6udcCZa8qozgRVAkQgtYDqIq9uueipLUVVaubJ5aBSURqJe8Yg3llKLgHxGFrnaCDheK18BSyJVFCBXzVC9TVlhAALDAEVKqPr0FFjzFUAQoBQRVMhJRSfd5JBVBPy9tXRayeNwMXPWitwMMbljkbgUwQCfj4MOHn8QVDYMzJq6Vv7vQt7bjW09l5v33OdO27ea8+k3aO7Y63R0vsvZGdUWFvttv53BvjntFkr57NfkPcXLtDDjnkkEMO+aXk9xG8/ZuSjafhK+Rre3gdoH3NCHvn7l97xWgOLj4+PeDD0wNiMIs+wepLtNZFcbcaCEansRoTvRejKOGI1J2rnb7Za087YKhqns3bUUMHVMuUTXGGQAo1q4AeP258oQDJFk6uwlAOgApCGCz9LHO1zy8CQAUiBixUFcvlbFWqZQbHgBgDYjBQAbSUuwaaioJZpt28WkZr4xpGYwp7C4IvsFAkQ7NPHS2G45oWV+JZShpdiw3JIpCUkJcZIVjtC3Tnr0A2MUKIHrzuawSbZx/rYbDB3mcCnsaIP3w44TI/YfnLJ1wWcfrZNYTu72+lz20dUdc7YOOfQTuiuqt7v9V40Qr83QY/75FvWkzvABSHHHLIIYf8SvLldSz26AmvvN8rTNXAt3v62xTiYvEu49xTsq/S2trBu/3f7a+2uT/HvXHWlI61BfhKBVppWLrSkwl7NT8avUdRlK+12X+ruPb226bW9b/3ZTNdEBMiMYYhYhgCapYlBcCtDF2l+7gSb6lLvRJFzcxUlDatSiBUAPdsVC+De0PKJKjGJGj1JNQ6IeVXyZJUqUACgqCiDrWxVDOILOiYPPMRUGo2WKxECIpSFlFh9KECUHIq2ZLMWwHNIAAxMIYY6lz7tKQ1vkMK7Y0AdKCAvbYGWawEg+oDpVCbiZ9f+2F2i736dXV7cLsXHTUU8GBZrmCB7EwGHpk7x5bNnWBzYxhIXHkufG2qZ8THIlidk49PD5h+PiOLYk4FODZA0k/vTYp875Eo91zbVu12RPP6YL/bdeD21bvd627fdcfaOc0I8GbvSAFQN+ZzyCGHHHLIIb81+Woq1L0c7OX9vXoMhVKhu0XZrvvci5XYzoeZN+es/vKeq6bTgYO3gaOVhdSViFvf819WnKpotZtzq95Z3ltb4H2SG1BQmq/7W9FDdoaqB+p462vRTfd9J0yEYWBMY8Q4mIWfixLc9UHdJYgqNGeAqRuy3EtLBWsAkvwaOyVcWkLSVaaobhyrdl0Csz0ewa3n6uMzCSDuPSlzqMCiDN2hYQhUyYOwUWk+pUBcygIVRU5WlVtVoHkGoAgMDDFiHAardt3TXtSARc4lFqPcD0vPy8zgGCyOA0YrY2avml2eBQdiqkjJPAjsYMJAC4PI5l+Bjdo62Vqst0FOydYrMDR7KlqOfj777vB7U1PnFkDpe4O0m593rnb4cRrAMeC//e0TUlbMqQSBb/Zj7W8je8/uRjHvcSXajKt36C5e2B6jdqAZR679K7q63gZk2xRvfG5up9ADm71pdZ9R63N3aIKHHHLIIYcc8gvLL0aF6gHF12Zouifrfm8oJPW92wDi7fPrFO9XT3n7NdPq9V7nRYu50nD8bTVrfmeKJRTd7k5/V0f7kNQb8KgLfq/KLIxnPw2MSEBwTwOY3aCeqwcFUmhQ5ilQeCxAvQ57XWMwioWdrHYCAGiWqsxbbAPQ10/oSmQ4OHBlkthAjIMNi4YIdp3Z5iySkJYLUl7w8DDVYnghmFJfLg3Fc6GE7N6BLIKcEiRnpCUBfp3QjBAYwzRgnAYMw+h9mRche/xFTpZ+taVvJTAFj60IUDG1mEIHgqo3A7UoXnmyxT1ALaal3KvQPB7dutt6AhwZxBEnemzei2z3UAi1QCHXSoG2/kQEISkLZPdWm5prXhX2OURMERiI8Oc/fEAIL3g+f677pE8n3TlHUF5uTAVY73GtYOKmgt3hjg6hb3tpgHN1TldxQ0tWMdQ9aSmN17Vd3kZ3atfdDfd6H7r+Q7eHDjnkkEMOOeQ7yC8aY7EFF0X6nPjVKv4FwGPfE9L6Ld4QqtbKe+Bi3/jZz32VE6oo77fOqc2uG+wFtO+oEOs/affl1Sm98bTDGM167O/0gIP6DrRd2MZ4vYIc/XX0VtMYAgJ51WZtP0VBKzSionj2kyeYIkyW2xQls1GJmia/DgU8wLqraVIuT9jjJnzutF5r23sl9sMCiUnNKwDKTltKyHmB5AWqA6xQHoG93kTJmFRjMhwIZP/RnKCSIXkBwdK2MpMBi2FAiBEhBLtitcJ4WoCFZ2Qq96vGbhO8r7KQ9cbWO92s1gRmq07e7y/RUunbr1c7M363Y2uKYg4YBvPyQHNtZ/eP2thKbb9QSdzbAuz9rHa+YxHLoGWFBp8eJswpI4RnSPZsVt3uoO5/n2XX96Zd70Co6Hqt5HfIGGuphLLajLbvd8tfSFWNhrZuA+irdMmrOW3mtQcQrrPObTNgHR6LQw455JBDvr/8KsHbv6QH45eUW7bRbz5KsdDvSrPV7p27f3iDOErbqvhtbbS0c3zdn1mV+4oXlkJ1mgaj00iuQ1faULFiq2Ve6is5F8BRFHUU8EklO5QVm9OkEChyagX34Fmlyg8zW8VnKsDP0sQaMChKcACgIGmW/6xnSL5gvvzsNCaBLCOEGIGAEAwQpCzmMUHGkjOAjJSlVt6uv9MM9poUj48fMY4DHh4fEILRmnIWZDUvgqRsHgERS0HrbfrUs6WeBJGaou9xD5INMLAX4ysAKnDAEAcADayUu0pYK+fF+l/uZonn4MDufck181PLllWeZfcW+Z5lZmOWafYx/b5XHVgAsnvBrhr/6ccncGD8279/wss5Y54zauHCboZNjzZvSPOD+FXV9bLGrARGhlVYd+qaEgRcH4H+yXhNFV8bRNZnraiSG9DzS31e7GXHUh/wiMc45JBDDjnke8u7Yyy2r78VQLiXsvZ9/ex7MqxD3Pmmv6NIr9pcj1fk2sbvYGS32zWRo1jjt/O5ihPRe8rPJuZjJ3B+c7jNub8OsgrY18tfPB295bftAwIQmExxLNoNPHyhUzDbPaDumot3w+IpVLphiolbLXWrgY9OaSWGIYQAYvWK2b0iqsWoDhBb9iNYu5xmQDJIE5bLz0jpguXyM4gCAgWjcPlYVNZLnY5EXLM+5bRAJHnmpwxSAUMxDhHjOOLh4YQYB8QQq9KXc7J4CgdJRITBvRkhRrCDIN3uC4V7EJrXQYkgoi3IuyjlBIgXJyxF8dy1A4DN+1A9I+sYJdUSVF8AnJ8pglDb9vu0rLl7huBULNV1H0QASbWpE4AxBjyMER8eRkg+Iy1a17p3LqjHvkAyknt5JOcKQKcpetwJoJKgkoC8oPoXOEIpgPgEcEBAqCC5VHu/+ohobr/umrV7S6+ey5W/oAMwr0mri1IejWuvTO12+5m5ARcHsDjkkEMOOeR7yy/usbgFQN5bk2KfPvTeyaBxZDrFt3T3WiB6d2I9t9cYTA9Yt13p4H7eSlXwX71KVyyQxB2dq/t/SyO7nuP67T6Hfzm/BxR9QHR/Tdtx7ltCLfA3BjLrcBm7WpZxdd2FOlMn1Xk0RDyQmLQCEAV1KWGlBQmTeP0IJ6TUiOs2Z6JS0kGgYsXuIBnL5RmkCaQJ88vfkdIZy+UzxukRYTgZ5UraWH02JfJg8JzdS5EXSFpAZAHigQnTGPHw8IDHh4fqMcle0yIlAxYpJVsPakXzYmyPZi60r+J1IAKstAQgDqqK8sqhAYtCNyuxIAV4sAMKgoGkGoTt96MotNTqimgtDog6F2vaW+59acoe971SKpbXByU4GFILIlcQxsg4TRE/PI24XGa8WES59+d1ARWQbGBB8oJ58fWbbc0DCSaewJERGND0DElnaJ5tlhSg4QTlERSiB89z9bwJbsjKerDZv+2iHUjtGB+633RH2V97Hhq42CM1rYw83fnlwBXT8JBDDjnkkEO+g/zj1bFYWfSLBo2v4yoUK/5XfJHvTUGleQ228Q37Uk38m942wGH1zr1+37Yw1U9D8EBnDxLWUhiNKt4qHqV1pehGaOkQSfvNDPVCb6q5Uqpa+CwVtGSB4fBYDQAgNQu3K/oMgEkhyxk5z7g8/4ScLpA0I6fPME+AIJMiAAjhBAhD0gxJI4TI0tX69VpAgFvFZQE0gUgRmDEOA8ZxQPTq4yoZCis+l1LCsswGlAADFMwIw2DVxis9TL24XqOO2dgEYalejVZkUAFiEIeqfPZ9lOJrzGyB6xwMmBQwoAQmrtZyRTm3i5spu8NT2QIWv8FOb2qKrkPWSm+zo8rBLfMZogwIISBg4oB/+vEDXp4veP78jJTE77LdM5ACcsa8fMbL579iPv8MSZfqkUgE0GVCHCKm8QTJCVkSVBkcR0wPHwF+BIUTVE9QcN1LZR+v4qi6fd3v9er46Y6+1Ttw74lqVKp23yoo2QESV4Cia9Gep0MOOeSQQw75fvJuYPGbiI9YgYOdt9/yfUqogbC60rs3WgT2vS596kyqpvF+crT5247dmlp/Vs8qX7/eO6O9V0dcTaF/t+9hHcx6BWqq8rRRharC6edRo9zY72IlJ6gXbmuBrA1YlHO3aYPL5EtOneLBKO9Va7lPmoqlnhS1FoWZtutxlQVQgRCgEIgK8vwMSTPS5WcDFXmGygUEBTEBkiCSYKllLf5BcoIwu5XdZ+lUKYsnME8FO8DiQNWq3+hZVCtwiwMUZraYihCsGF3xtsgaVFylV1aFeByGEoEZHogude2p0pzWnjQt9SxKrIFrzJXa49tFd8zf28Sm1h+wl32MfK6CbhMUQKgKS33LILUMVadxwDQEDLF5pwpuB6yNREXgjEALiBPgYFMVWFKCKEBsVC/QCOUIhAkID/abB8sOtnkeS1KJen1l/3dAoj0X/TOh1buzJ7vH96ifq8MdkOgA4vW7+0/3zXEPOeSQQw455BeUL/JY/LrgYjPuW70NWzCy0sTf2MdXSFPNbg+2B0nut1y3a5l47GjLEdTx5Hf72htl//jdXDOuiBUlzyy5RmMpVn5TmFFrHlTuf6H5dBmjTMENEAme3lRWyhIDKIUXbOjssRcZmhdTqBmg5QWaF4haDITmBWl+huQFkBnQjAAxxdy9BdCMlM6YdAGUkBNhvjBySgAHUyQB5OViNSdkAUPB0eJMyOeVcwIWgNmDscEWWyEWDM0cEAeLvTCAwdXDkHNe/a4F7wAEZghRpdaU9K8AfJzceYUiiMzb0QOUnl5l4MS15mI692e8gRn7L1Aff9P2SaHtlButPq9ARmGy+TUgYee4l0UVgRhP04inhxEfHkaAkgMWSwzGBASasJwyHoYF8zn6WhKWpLjMiueLAhKR8RGn0wNO04TgqX0RQrtm6efeDAP95XebGtdqe7ft74CKPbn5xK2e3fvn7x4/gMQhhxxyyCG/snw3KtS7wcittr3hs7Osdife+VLuzY7X/e41XTW5GefRlObtMe3euE1I2logy1nUWZFRYyXWAKRYxf1cKhZWqpbevUsrqvs2vuK2D6McpZ23DLqQqscjeI/Ur4IrvR70W2k9JV6iBOWWmal0s3KwIQxIyQYl7bcH6UqaQchgSOX1iyqgqXoTLHWqgBgWuEsDjBKTazE/DsEs2gTzWji1yAK0xelDxVclYFJk5EYFc8XbxsvI2WIxFAQOlr0p+JUxewYoD36XLDUgWQqgKIHqxXPgHoqa4WoTTN+3IyIvrmdzWoMU8xjYfSqeN4JCWp/kSBBq60BA4bWpapfWdz0fde9QyWrFIdSUugU4UpmveC0TIgMPzIhxQAgWs9BhHJTCfMM0gsJsa6XAKMApAw/JdnWIA6IHwpMDwerigvqzRGCiCl7KZwuVLa7+n3soVGX3M6yDJ3Vd7sktw0GfyOG94OGAFIcccsghh/wW5KuBxbfyXqzoRnf6u1KSd8x/2ik722NFSaAeodz+pr8a83pqvY32Nhiq55c/X2+KRrjp/1q3LcCBNtegKMG1/UCdpbmjHLVYB291Y/1NpyxBvlcz8W69IFuXznO9ftQ8FPU9UyxNcUNVjEtfNQMS1LL8qCuimh1QnCF5Qbo8I5BYbQoy5TnlYrlvoIYAS51KVgRO1BRqQkmxGg1sEBlooQBmRZYEkgwwGxBwRZsJyK5EN1DhwEKl1rlgLu3NBG91JhiBWr0Jydkrb3v6WbUq3nUtin7snpVVrEq9HSW4uinPJb3rmnpmwdNAMdN38REdXa14kyo8vqn5UgOeq21XUgC3SumlT9sgCuWWnapQwwILqHi63BsnCCAaEYYncLTMUlIfZQuMb567Nay1Q36fuAPvbVabp6V8UujOu+v1hnuPFOvnZ/X52IOCDRhcdbftfn/Um7JHnTrkkEMOOeSQ7yG/ueDtxp+/BS509du+7t8BbDrr5J7l/f77r3R906NxNcqvbmHs50f1WL+W7fdVRq9tXyBnJFHVGQ2ySFX42lqW6s/9WsFiIcjetmrQDMBoTbIsrvSSW7wFQILmCyTP0GR0JtYFXBRq30dDcAWcGUSxXlfdRZpBkiGajbNFBMCs3OzZk8yT4t4UV+TjEHGaTmaJV8XLC3lRvFTXjDmA44gQBkzThJLONYRoHosODUq2zFPLsriXQmoqW4VWMMMFjITQeSu0jdkDc7V70G/kUjMk5wxRizcp9TIIDXhw6ECL9qp1oU/ZfVURx3xSvQnsyCoDjWrFwWhbOfm1KkgEpfaIaAaIoX73CWQpj7f3C4BywSVdHImjWOayuyxtloJsHX0uJcsad8BW+87LddbPgeYxLPfvluJOzOAK2tZSU/1qg/pXz9GGUrV9fQCFQw455JBDfuvyxcCi9zDcq0Hx5alhf8GcJm7i10KJKpb68r9iHdD99Q4Z9Cp7UVx0/Ta2/oXipbg1/N4ar9d76624DXzI57R+r5meK7UKvY+ma7s1ZCsqvaVRrgCpqUe7hqb+waCD+uIoRJ3iJMkV0ABQU4IFDHbPAsAABxCVusl+b4k8BWsAc6l2jVp0mpTNc6EM9exIzZvghCVV85oQADBCsArjMcYKLIZhRF5mp2DZgjCzZXoKwXX9LgaGOhKa04GugrSLEspee8Mt/+U3aHt/6w72afca87ouiWIdNN9ARAMD5YS13f9aavpf9eBnKgCDIcitoR+vgeOqILZgd/UbYvE4lmmLKfu82ZLdKiwrl0+vhe30HoEWT1RS2ZK6t8P3VQEZZe6tcN+qm7vov3girjwS9z7vimej3pHNOV2fV+uL/c/aMvYBOg455JBDDvktyG/OY/HV8obv173wiCvt/Qs8FjdGe3NHu606J8qerrMP3NZeh0LP2fawAiQOsnqPxbZgWmnPnfJWCuOtVdoiUtkuzFbpWnLezNAVVhUw/N64R0LSC3K64PPnvyPGEeP4gHH6AOYBIUxQChCKEIqm+COD+yk7UmoW+XUmoKaAWkanxv9H9XJUKCXJaTqEaRwwjiPGcXQTuQGnM4CclrouMUaLFYjR6EwocQ1Oo+JgAEpyF/vQaoCU6tcUWyVuULHiU3cNVHFUW3qtmZ4URSktCqgDGS0ghtsalTgJJjB342ihY/kxKuDY4iw0Zy+m58HdzFALkoBoydDF4BAxX14gYpW1QwigGC0uRxVZM3I6Q/NnRADKAeDJ7pt7NASWvVaqd6yXkl5Aoe12wgrgSbuWek1bJb4HHYBlNysULtsLPaVsRe0rtLEOAKxoUf2+v2M46QHLaozuvUMOOeSQQw75LcovFmPRW6n3zinytfEZZmW9P85asbbZ7fSElVW2agC0atH63sxhO6d6Bl2tw9Vs3dqPSmu5DRjatO57hErQbD+aKd1rK2uxUoN047HwuW/7p1I9ogMt3lqp0U4MLHjGn7IXFCjankDB6Np6alHJMyQtyMsL0myxEyQzIAQVAyfmoAh1SkbDEvNWcLnXUhwW9VqYuPmEKr0nQ9UUfC5VolWddoSmyBPc+8AY4uBBwVZgDQA4KJiNQkWweA6CpZbVxdZLVZGlZYgahtGPZRAzYmCEGGomKHLvDMdQlf6WTQuN4iNiu6yzXpf7KtpqV5BTlJgZ4zRCRLw4nwG+MgYzo/CNWsxT83iUNb1+9hSlojcRIYSInLPVIPHzuKybZORsYE2EIBIBMrSQLj/h5dO/YV5mEAWE+AAOE4gHhPCASAGgAPH7aT4qpz2VtYHtaQMQ4sdabZBKMUMBGAUTNLoUFA4Ey07V1fOzBRcCAwyyAQOlTX3mVC1WqXw+9c9W1+eevCWm7QAfhxxyyCGH/FryPmBx48vqyjpH1+/Z4W/iAmj9fTEoWZERqphVddMMbw9O75u9dq20brz+vX3/quFbgcWmUwD99ayUnWKFXo21BWSwi6T11RVwgQ5YFApKx8tB8UxosZT3vgPjwHihugvm+RmynKGSYXZwi7eolbiJDQxxsN+u/4YeWFAJ+Qaga6W8WO4tcLsLjoZCcrJUsNTvaUJgQuDmPSiQSsnBgtN/qDtPRSw0XcSiS9QngICS+UpUEQNVr0FOlvmKOtpTVfAbLvLfBZo1mtWKmlOAHnUKLhvIYuZaObwAKrBnSSquphXo7fG2e7RyD9N1dc+ZrkE1e6yIUZqyK/FGJ7PHTZCXFyyXn7Asn0EUoPkBIT6CeQQPGcQDmAYwR/NiULA+ECDqNT2oXUJJaUvaFHfRVhSwgQ3fG/7xYJ42z5LVrfnWk1A//3yd+jiLPSBAfm/2qGvv/Uzb9YxsgMwhhxxyyCGHfC/5H4QK9ZW8pbWDwV5uFHfV9Rj3v7N7T8F1w9Z3b62svor1we6ca8/HGhRoZ7XeAxYlS5CqVV5eTRceNK1rJWVXOfFDgrYOrmI3o7W7PwIxmANSzk75WbzWhHgqWAtUzpIhohBJHqdACHEEnGpjACKYp6JQguIAxgAm8zCEmq0JIAcW5Ep9oWUBWAELq4btcw3G/0/LDKa+6B+BKGAcHxCHCTGMNp960xrlitniKcr6FiU2p2xzDgHDODhFaoAqEIaheiegCkSyeJE23bboZe71t6fQBaBdbRBQ8wd1GnG9pyWIO8YIQh9obSlvM1nROe4/IoqDQhTBi/815GaW+H4+8OtxiOp7WC3wXAWS2v2yzGAEQKxYngLL+QLVjBmffY8zOEzgEMEhIsQTOAwYhgkcBjAPiDyCyDJHFepU9tgaS0RcqFSFFtWU80KFKzEgtsZUvU0tW1mjO6mvqah7/BwwK61jWFYeBPdW1Cdrx0vRPBfFk0J13G5TuIdlPcbhsTjkkEMOOeTXki+qvN3LruJZ9Jkt5ah3aGyteF9jXaN+0Hf2U87tsUAnV9e7eXU9bdp5vQYkW89O7xToYxf686kc03qo8zJ0YKLzHqztod14N70dLV1qd2RzjQXEaIuJ8K6pmHUVFlMgnlGHuM0fvqau7EMEkpeqPHMYjFdPBCrVrNU9ExzB5SfEqqwGLt6KklEIYLLsU9Tti1Ljo1jv62r7NRRgYbQgyy5la2mAIcQBHKIr/QWYlf59vAJsqATpmhW/0JjiMFQPhDoAYFidhwIsiBig7EUFu/2nPuMKZm5bxcsJ/TPItL2XBoDEsxnV2iLl3M6TY84Mqr1Wj00ztzfgWxTgThHuKXMWX8Lr9uW6FCAeQOERSi8QiHkNfF9lMXDCqgiawNkyahHPdo948NogEyzYPwIcYbVIBqeosXk0yipSSUzAPhVy0FudPgYgVBrIKB4Qv3yqXg9CD0D6eI62tGsqVE+B6sWWkPx3t6bwhbwydqwBxeGxOOSQQw455HvLu4DFNotMOXbvC2xPMdfuC7L2g129flfufmH2IONKqe5y8Xet1g6Gdl3rL2kvDrbGBDvzKWbd9t7We1BYLfbHxpK5ASZXngfqp9o6oq79it60un66ucgFyFA/RxRFkDbtXMHdTI3J3RWujVnqVdsfhRYjRGYdFwEheYrWuYKGMDxC1etPyNKABVwxD2bppzBU+pFlXnU6lBqYIASfiwWF1yJvLvX+upXfrPgWqCsho1CpAFRQEeKIGEdXWLu6IhWk2JowUfP+uFIagtXHGMeSdrbQaaz/GAL6dKacGSklr7TtVvBC12noqCnlWINco1n1wKRT8AuVB5YxK7C/pnXGLot5aVmuuvxOUFZY9l4Dc5rFW/VgwUFeDZ634+YtKR4aVC+BtwaHR4ThD9Bg6XIpBqjaXlmSAEIgBJCog8+LVT1nGFWNGWOcEOIIDgMQB4AHIEwIYYSlHTYvhpDTskAtja1Y3/b897S90ICC6Ob+o6YHLgCwj+dY7bmN92EboF32he0Ru98FsBQQ1IO37Wdx+b3ySh5yyCGHHHLId5CvSjf7FovYe6xm7wEX7+txCzR6Zb4pyFsF+hYl6ApIbNwde233vARFeVjp/2vE4iMUJXYzv1UbpzJdeSy6MWp0djdG7+3w6+i9EFxP38y/a1S6Y642YKgqcjZlUPOCGCNAhMgEDgxFgKQZqglpeUEcn0BExpFXd0EwO7DIDkAy0jIDIIxhRIAr8eW6vDga1NKYupZYZmerWK+9BTUbhckUXStkl+slcgjgEBCGwZTSUB6ZYtE2IGXX6nepxETYH2DAvR0B7KAERGCOnn3JaDirdMBMCMHSzIq2NLQ9iDDqWO9l2BfyKuIloHztaWiKv3lsTMnPXpyvBGKXtdk+9+WlQpFFkHOq+4VrmtxQ+9VyHWpB6+prOEABDlAwLpnweWH87RIhIoiRwVQC2NnvSQR5f5LOgGYgZyB5bM08I5DHygTzkIQYMcQJIUQM7tGgEBDco1GqsIPZwQZsLzqYKIX4zIMh9bjtdzgVrBlTKrgA6jWvgQZW7crBChwKNNQ2htS+Ub0kvfT9l4KQhxxyyCGHHPK95KtiLPZ4wcA+mHjdy+B9rP/8BuCl73HT+46n4n4w9B7NYG3p35sTufm/0YqaV6B0UWZ2NTxVVbD6W/r++wDQvv89AKP9lG9cRwEWm2XZ9N1OqeBGjX602g+SIQSjlpAXQyuF0qCAZEherMidToAOpniiZVuybFIe5CyCnKymhUqy9aBGPYHmip3UQUXNmFT6gqlr/Tx7YAHA6E5lL3MwT0oYvB5GsQ57T64w90p3C7RuI1sWqbD2enUeqlrboZy38Tz1noat3ATB2t2j7v8rXNmdX+bR19PY0uNK59UjorCYAq/D0c+hevpW1KrigRFkPxaCF/djIInikhTPsyBnRUyK4OlvY4xgGBggD/jPmh0AsAEMlFxRCiYBh2zn5gWSE2KIQEh2b0ME+b0FCwp9iotXCWhUKac+FYZaU+ILza5P6ftWYKE2201civrnTTm3UKJQz22ftXv01C8JBD/kkEMOOeSQr5VfN3j7Ssv5gi7e8eVZFPyrSfQK8t0x9sAH3QQM1CGF1dDUzivCvbK+AVqtmvI+eCGmbinbHNt4t0FTT6dCiRvwYGjqx9C983U1hxCMDkVs9CWVVCk5krSuk4oAmrGc/460zJgvnw1sDAmZFRxGhPGhgjmRDJEE0QWX889YlghCtgrWIbongDyTk2U9ggCSE5Z5xjiM4BDWK1SVaWo1IuDWfRCyV78GLL5ijGO9H4UeA7W5qYjVr9BCnyoaPYHJ+m7paZuHQNXiKCR74DBRvZ5+w6jolSK5x8nfu7dXnqZ26zqvCrq+bF364PMiIVB9H1DktHgAPyFQcM9KrgCpUuAceBax+5khSMjJ0s6G8AFgAgfFJc346fNn/OWvPyGljFBidEAIMSCEiDgOCEP0tSUwRYuh8NgNhmWGClAEFggyUr7gvCyAnAH5OwIRBmbEwdZ8GC0YPMQRIU5gjlZDgxymUHSQ4elttYEru0cNbGi3drt0qP5WqEK8Hkp/bHWOjdIqhvdj7ewDA2uHx+KQQw455JDvK+8GFq8p8tv373ov1vq5/dJNmy+Yw8221P5uvotCj6noYhfr3KZC+bEOGdTuCGvaSXmXipq0VvpWngBX9gglw1ABQP08sLI290Cgn8cW8KzH7EFTOaYrYNIUce+3vNFZxE2JBIjElGVLsgqrLKDQnL0gm1GjJC9Yzj9D0gJJF2SOli0qBlO+MbqF12MjiFAyJxEUkhazTksCk2VpChRhlbc9NkAFgR3soOfxt2BpAtd+7T2F1XUTZFfkqpVdekXPFLoCLBr9xNeCqaZWtb3Rsg31FuvOB2brrOpem33FsbzuKVBrbv56n/bv8Y3nRlaehnJj+/N70NE9Q6oVEFFA9VgUUNE5btrjBavzUOpDhOCpesNo1DBiDCFgHAfzRqSEJAIugCcHMC8IaTZA6aCNmcGBjXLmqXQDGSgP2fYPY4AF3QeQ5pr+Ny0KTglL+uzZpiKGwebDcQTzAAoRxBMIARaj4R5AIqgSENRKtKD7Xe5NBza2VKl63zaeiFvAYrV3Cl1KS+xN3REoRQ8POeSQQw455HvKu4DFW0HFfTpR+aMe7A5Rp4CsFaOvmc9qnP6Xazwl6LaRjjaY58pD0ZSlXmm3dlz/Xh/fm9va29HaKXp69B7Vpa5RsbRvJl37Xw29BTK0altaNJxlCvHuOejm6hfK7Fmg1OsElExJEGSZITkh5wvyckZeZiwvnw0YaEZShaYZfBrNAo1TVcrMMwJQCCi1sHOaoZmgTBiC0W0KsCAoUp5BAGJgn1dGFqNjgRhM0auBU7dW7fWSzNsirqRBWnyAOv1HCrDolO9Gq2IHF0UJN1CRZa1AlnFDcJ6/Sq1CXWQvCLilS123Y+7uzM1nx+k7WmJhLH6lgMe9x6qkKu73YjnXgGCjT5UihX1fPZ1KvOo3M4NCBFNAHCYwBygxxmHE4zQZgMwJy7KYF8IBW+mYqRXiK7Ew43TyYPtgqY6ped6qh4sASz7r+zTPgCSQLh5kzxiHiBAC4jAgDifEeEIc1bwYpACFRtnzB0bdGKDUoFiNjelAZPN03L7P/b22O/a6J6TvBwD48FgccsghhxzyneVXrmNBO6/utH7Fa7D2PNSGd/tpf1NV2PfGKfSPAkVWijyZItliINYKWkmXabQm7vpbexWqyk5tLlgBk95irKvLNaWmBMPCrb816VG3RDYx0jIaV5RErVEDTxBUJ8v2XCmATAEkkCYoLWBWBDAQolOY/FRWULZ2JAvIA58BAxUpZ0D/CtUFYSiWYfagdPNkWEpZBTRBJSEvGc/LZwQCLpEg+QJJMy7nnwH1tKgcTAFEQBwnDNMTHh5/RBwmhHhyfj1XOppCkdMFaUkIMSJ7hqacswXPlnUpsRW+juaZKLQ083BkSQDEMwbBKFa+yMErcBMHiCTj8ItV3AYztKLLkq3JKTcinoXJ6VgodUlsjSwa3K9EW1G8QMWiXrwnlqo1pcVStgYP7qYujSqZZ2H7XBRRtRiWEAJKvEEfr9LiX4pHxwCCEgEcEUNEjEZhgivkf/zDR2iI+C//7S/4ewz4+ecXnM9nzGmxbFQVjJl3InOqXorlcrH5hgIqWvxMCMEpaeZdY/aihxRBFEAaMIAwMIGEkKGY8wv4MoP4M2L8BOaIwbNNcclQRsGrqds+U6+bYc97WHsabFGMHqgWl1H2XFmm5tkoa7gHLJqXYhX4rajvHR6LQw455JBDvrd8MbB4b2DgbVCwDy72vB9vAxZYgYm7VKz1wVeBBQGomrvXRCAK7X2y4M2e2lSAgAKV7tBbb6u3wi+gn0OHJ2obwwB9GHdR7u11sY4SnD7S0SWKhb6ZVMn7apb6uhYw5WsFzOp1lWu3WhSm6C8AMlRTbVoVyDIWaO2B8P6tIrJnV5pfQByQLi8Iw4MF13ompcLZB8xir5KhsniRO4EmQU4vkHTG/PIJULH4E4oABRBHSD4BkhCYIGlCGJMVteOAlpWJkOcZOWUwTRAC0sJuafeiZVC/Xth6soLEgngF4nfLAIHC6WGqyFpQFrnqafuHVXyzBFee1QKCUZTO8lMql3egzONYDIg0Jb68D1Ar3qYt2FzEanZIzpYNiyyQeAVk2c6jsufLPdx4Ghv9af3c1tgQ7eZVNzWhVhZHU6hP04gfFHh6GHE5D3jmc11z8eKJ5q3IHjStHjyugFOxIGyQlKh6kHIWcBD3qJj3IwRuhRXViXv+7LEUgG0Zu0QAJgsAL0X6Yh69GnsEBwMZFMZ6bVq2PFUM4beS6jLYZ4M9C6Uauyp1iQhQj1WPSHcLtOtYHawI9FfJCrX1rh7yPqHu3yFfLkyMx/hYPYPvFVXFnx/+iIc4feOZ/b7kD9OPGHhY6wHvEAJBIG5g+8cV2aS7f6+oKoLrmt9S+BfoE/iGHosv/TLZO+segHgVKJQv6neAixV42BmPqPviFrHq0ShpSgEO3qZSSXa+XLXw8EvmJK6eDyauD24936+ldeMKeb85C6Wi27OkpugHVS8+N1s1a1WM0wlA4ef7XD3lKQU2pYgCjEfefgNANuI4LHRVAGQoFkAToNk8CLAK2hqiK1Fm7eYQIZqqAlSyQw1xhGqGZFiGKMk4f/4rlvkMkYQPf/hnhPBkNS4KqCBTjFNaQLqAkAAkiCxIywtkeYHmC7C8oGSTAo+1wF6WC87LZ8znn71uxsnSyXIwBZrIKoWLQhQYPv4ISREvc0T1WBE7HQmAx2pwoFZ9GV02n9Xdsx6sOjeDZISQrTsXC7vX5iBmSAEg3B5+KWltu6xNWRLUz1OhLt6n7C97nVNCzsmrnNue0C5lrSCsvBVFOa5PafXW+HsAAoU6Xm8hbzQdU3Qd15gHBQwmhl2GpbaNxVsC4Ok0YBoG/PjxhPP5Bf/+N/VYiugB9bYuBXZlr3UiZEXriCySQq1kO7IqiAyM5bysnjUO7PvcgF5gIATgNA0YQsA0PiKwgtnXWRNwfnEkoIjR9s4QI8bhhBhGjNOTZ5uKIHggPkryAKdMgZCJVutp9Drq1s/3knrmqOrRaGtbDAn1g8/PpV8peDtQRKRf2RH+OxYmrmmhv1SaoegfVwYM+M8f/peNMeN98j8//d++GJj8jyLkRpyvkUt+wQXnbzSj36eYhzq/3vDW+aoGlL9iP+/2+wt9VH918PY+X//Lzn2t7fUxoHwzVwtpPV4M/VR/3xtjz9p6NUcBENyKi1L4zbL9cLH4cwcKer9C8UT4uSqpmOxrtqDatpgjXfGrjgQ0fn8FMsVdQcZzN33DeOOqGTmd4aR9yJIAkFGTXDmTEhgOQojOd48j4EXEyKtgM5qVXGFgQvMMVQuiVkkgCDIEC49G5emsFLZWDGHzHDArJBgoIi01ExSaZ2QRnFXx8PjRK1UP1aNjMQ0CeIA5g4BsFvtSJA8E9854rEMYAU8tCr9fxOT0+OwZrHKlDQERUOtbljOSCJb5AkauwA0FFrLRj8g9AYY2Csoz4IZgAAYcgDAAYQRxREIJHs9gMTDBXNLyGn+fiD0jl+8NaRW5jb8vtaK2SoalXDUrfQE3kg1E5Jw8I5N0tDlF/92pdU+VPgUCIKl6wHupmm1rUILgC3AoX+QKQHIuUMwqXa+U5VIrw9dNo9PCnL4WCP/8T39AShn/9b//FY8fHiBCuFxeLAlAycIEMnpcVcaKYu41Hyh7Qb7yENlzRX6tirwC64kAzkAWIHDGec4IAYhMiNEUv8hsmc9IkZNCKEOyIKeMyGfkdK5B4MyDr1l0r5jtf6Mglo9fqs8jU6FNtkrxSgZaG37wTwKVzg3iz4c6uMJRIO+QQ77U0g4YCfcfHVgAaz3my+UffB27eLivkW9tMPilDBDvAxY3vAD3LP773dxQ3G+0uXWsWPf9r/Y/XZ9T270BGO2CGsAUQ3ghutoVVaWmKPv9e0XMKyEg1hbQWSzCVOzZ/TlaFciSHYrIiqIBqGk1+1gNpkKPEUi6QHSBpJfqGZG0oPkcCqgJpoSJYpChBbeSuAfDlXoVy9qkAtXFUsnmGSIzINlTy9p8U4R5QPLSlGNiU+45AiwQNlqKQAEp4EiBvCBrQloW5OUFyA+gWChF5JZ2qTGzDPI1afQqIoJ6zQnmAIqmyFOIfo8shsHed0oTmqJK6vMlguYFab7g5dO/I8gM1gRocsXQYjMUgOZksQ/SqlcTAzycwHHC8PgjOI6g4WR0Fx4h6nuHAlgZJJ1iLV0QeLcXrRK2K++avYBcAV5N2eyreBvVKWNZ5kqDKnmGoG3fq2hdHyJLfyrZ+xCxgoSsiFVhVfe+tArR/d4tHhpbC0Z1rRWgK4XWVYAHI1IEe2D3f/jTjzhfZsSBEYYHgAx85Gyel5QNHIUQ/Vng+nwUy37/gV6SARAZRY8c6Ijkbua2F5e0gIgQiBEjIwbCaYqIkYEhgNWeItEEUkFCRqYFCykkt0DxEEcLJg8OkMOAECYD1/XZNY9GAQ7ic2heHp9bjyFg66Vt4rWRfV4Q1jvnkEMOOeSQQ355+SJHyJ4l7DVQ8VZ60z2g0Y5dp9W8df7Ve71nwg6i/WrW2vZ+ObfLvuS8eOOfd3xY6sbozgXUaAlqFlI2lcQCSZ22UefYOy+cYlWLZxVLK4yTb9ZzmKIGQUpmLc3LGSIXEKnVHgiWbWdJVIuCxTB68bexAouivJvCkqGe+9/oSjMkecB0WszynRazShewUZQgSXgYI07RsuhwiG4hBjLIlKpolZypuAfd+zONA1ISLDljfvkEZsZDGHz9DYQRgBgZJNJo/14GwKp6xxo3EXiAxqGCGovXcKuxV3EGmVWY3aIcPDCXOeA0TZC04OHjH/H89/+G+fwT8uUnEBYQZiDVW28AroBENW+MXBbI/Aly+QSKI+L0AeH0ETycgPjg3psRGs2boshOh+mARea2J7pdyDCAFbmktyUbXxPSvCDn7EHnySlPuQaRV/BTLNvFc+XxIgZgnC6nluFKs1vTgwWHqwLE6mtXPAFavSpZbGxRQQxWdC4wI6UZaVmQ0mxjKyOReR5iCIBkMAF//vEDXl5e8PFxxPMsWNKCP/74B1O+NWPxgPqUpIEY185DiG75F0iSsrObko4ObLirrzcoiYNk0Yy0MDgx5qQIzAhBEAMjBMZpfEAMwDAAAoszOi8LOCUwzQjh4oX9hhrgHcPJnovB6maYN8P3uIbqeRH0t8Sz1ymhxxJ93AYAsINjVT3qWBxyyCGHHPLd5d3pZl/zMNwEF0Qr5eitwGBv7JvnU3Pb3QIYu9dQz6NKkah+kOqVWLlB6i+iosz44X6e1RPRUrICFtBZstiQU05K7z1oo24S6vSVlE2ZF5Wa2cYUuYy8vCAtBi5UFqP7TJNxdgMDHAGKAEcoBVgWoQKSSqYgq3yMEhCspe+LV8lOyGn2wN8EyYXrn2rcwfPLBcgJ8YERg5UTo6LkePE6hQU0VYqHK0w5C1JKWBYfJy+ALFC2GIdCF2F0a2u3rtwQz/BkQdscRgMWtAYWXDJBcfBgXfbgW24Zf9gCcQNFDCCMyxlg4CwzSBIYqWp0xWNQgqSLp6lSgyQBCcj0AhBD8gKKCRQGaBihOnlV8sHRJQNiNLRSYZzgtLkCYypFyqz+OQuQy3iC7PELZb+UQnviwMKWzCtjFy2VCCplPDXvRaF+lTocTnFSRbW6qxiwUIiBiZyR0oKUF9tDbBZ8Ggb3GtgcmqbfKFTl7yEwTuOAjx8esfy0IIt4/Ak8HsU8FMSp4DjD2AACNw+AhrZXyhr0tUhqtqXi7dhx2wssVbCqwJbZ4piICVkJAkJkLqXzwCQIbF4gq4WygDlbAF6w6u4MIEiGhgEc1fcm3GJRH/5qpKB6J3pYuEcycG/ogSsOOeSQQw75zvJFwOKWd+IuuFgp61/obUBT9K/aVYxwB0BsruGqb+xfUw9ANogDHjLRzucyZlFmzLRrzBoC07Aex1+W4GRazad1LnlGuiw4v/wN8/kFy+UZQwwYx4i8zMg5YX55sfSuYlbiEAdACQNGRBoQTj9UOldWM4UKtTUVt3Tq7BWzRSCaITkhXc6QPEPzgiXNTrkRSFVWFTkb5zzPMx5GwvjnR0iM0JgwTicQAyEwUlan5iSnDpmoAJ+fLzif7efxDxdMkqBysdS05Mo+ARD1mIJkS84EUU/1SZ6KNERQmNwaHOpveK0JlPSwPIB4ABx4kCvBzMHoSmHEMDwgjBPy8mx8/XQG5TOoZn7SDW+lUW9qBidVyPyMNL/YuCGC44QwPYKHBwM2g9NkwgABW1atUsSPHfwUEpinq1W1CtbLsiCl1MWKFNDWlOecrThdoQTFGFfAtoBoS/9KCN3+VxFk1a5/u1AighAbJU4F8+VsFdXnM7LMNeB6nE7gpw+wrhlhKckOyjPs4yggCkQoPpwm/Of/9K/I+Cvkb89Iy8UK4Q0Bp+kEECPOi2fcAlLOlQ4V2O7hMMQVVaxmw3I6VkmsoE7NMopWo1Np91mRVS018AJQAi6L7aUYIsYhYAgRD+OISF47Jc+AZhASAgGBCJGTBaMPMzgOCGFAHB9APCBEMbBfPXQGoKjQ9Iodo4BKbZiwAKnixvg1skIdcsghhxzyjy3vAhalmjBwDxwAbl5bKSvlzeLIL7EBe329Ciw6z0R97crJ1mMB/zK2393YXds6bpsRus47a6Er+U49KvQoLtZksow8ks3Svlw+gVDSeJoiOJ1+qIGc2o/tQ66o6nUW5h1Iy7Mp2ZRwmqJTRxiBT1AA4+nJtTTGIj5mGCFhQKIBQWONZxAx6zIkAei45lXZggfYJmhOyBcrIqYqmJdcFdllMa57SglZFDkJpqB4GBlTUHx4GPDhFCtVJ2dTNIm00pBICTmfkbLg0+dnxDjgz//yL3h6fERk4Ke//l8YxhPG6QkQy2KlECt856lZCw0HTCAlL5g2gOJoYI4DKBRvgPVRvBxEg/0UOgqbV6PQwiCWJpYQwGHC9PgjNE1AGo2w4p4XdOCirKOq0b1KcT0ScQu2uifobMX8+BOIA6LHZHCcgDCZdyVEoyoRA2lGKfAXQwRCwCzkQG2pVbtDrdZuYJddSQ2h7SrAwWxFFuv0rOSeHFVTxEvcSeMMldduOXcwmuYX81akMwrosuBmxrJcMA6TZ1QL9XmvVcphoJxJkVQQguLHDyP+9HEEeU0QVYUgeSpiYHwcYX4CwpwM7FpaX1+zOl8BwAhcohpakUM7x5IbGFgDCjBz2LiJTSkAyD1BOSNnxoUIl0tADIQhAkMICMwYo6UzJlIk2D5IlxmcMohnhGWugLIEfIc4WhB4cE/jqlZO+7zYeiy6j75DDjnkkEMO+a7yTahQ18CivVj9f3XOHe/BrXGKhbMDFvbrOgvKNXgRByZl7NbF6ocqUWTtpXArtDqXh2sNCPNctL4zIAvS/AyCIDJMQeUITB+KKXQFfpp1Gc4HL1XHxYCFJCtkJpaRKXq1aVWt1YuHOILiAIQBnAlZgJTM4prJuOxlkOyWdMuGZP3kGkzbFOSUksVSzItbpDMuc0JaEi6XGefLjGVJWNLilmDBCwPngfHjhxGkGVMYMaQFGtjrECgYViAOZEAgw2Iu5mXBME74+MMPiNHSi54//2y1AwhAHqzYGwMYGLFa5rWjpDXlmF0xN09EMNDAsW1UIli60b6QXkc3QmE2KQIxiCLG8RESAjSwxYioK7Jlb5Tg/CxOEROjQqmCJLcg+JSMTpYyav2INIPjCTwkYBADQ1AHhCUFrfH8rY5IsB0i2dMg23WJmleAUNL0dtQ7EEoa4ZoW1nlVxXhQQAU5CBWR6lmQ8oBpWSHft07Xk7xAZPHMZ/62is0xJdA4oa9fQdTHiLRHQtXA49Mp4ukUscwRWS1dbkrimZkYcQgoMTgx2L1IYrtM1eh1dg+oGSaoJGIAUoLdN2Yr+ljodb6zag7ysmU6bV48zkmgQLYGCweEwBhCwGliDKF4yMRbWnpc+F4gInBOnhVssPgLjhhUEMQC80vmOO1oUo24tTbhFLrUgSsOOeSQQw753vJOYNEq6t6OsVgf6wEE4F921YNAm3aofaxBwba/0hDVU7CdUz+7RmVqkdHF9sdeWZqhULcKgtbBsjW1Y05ASm7lZaPloIER/+YHYbIA6YdoVk2yQiTMBKXR6gWAKx+8Wkapo9N4FiZTyBJSXjBLwMsMLHMC5QvSfMFyecH0cMI4PuDDH/8V7F6JlANErdKz9Z+hS65eiJySW2CpWl+r5Z8AeArYnGbktODy/Bnn8zMulwuenz9b0GyWmv2nWL6JCJJNmfvf/8tfMf/Tk2XVmRJGGjCOEyRZNqjxNHr17QVpOYMD4Z//+Z8QQkROM/7t//wbsmT88cePmH96wae//FcoAuIw4o//9GeEGBAigz0rkqopfRYbkBFiAusCOHAo3hwj6Tu4EAcPIiAk82xwSTNI3X1lL3zHiNMjoCOgJ18z1JoMlqnJKF455xr/Qp7BScS9RCLgmECSwbJ4SlirzxEq9SkAEGRkFHpM9oxPBkjKXEMF3cbuMut/qeod4+BKawMMMQwAzEtl3qa8Cl42wGEKvPi1WNVqRqBYvQApGZVN3csFWFariAAgIqVcPWCSxbJ9pYQQ3APqAKOv1m3eCwvOjww8nUaEEJABfL4sDtCAMQoCJ4R0Nm8kCx7CBCBC6QRheErZASKCZck2nyxQZaNPiSJGj3eIsVHWxPb2siwrWlspWlc+UsQLH5ZaIACQkEBEuBDj+VnBTBgjYYyMcQg4TQMCw1ILe5YvzrMDrAUxRASODqwGLCmBY7bUvu51K97SzrLi9w2HHHLIIYcc8qvJ+4AF9j0VlYqEdcDgWuHvPQTklmJsfru9jXbOueHBuOk52Zs8AFKjI7Ax2FviVYLxxN2zUakqaTYaUprdui+I4wkhjGCM1fvREJUFdKoyOI7lSFW81cOOLTOs2xzVwE3j6Qug7imQBIVZtpET4BZSVUJWYBZAZkVCRrgs4BxBISB7gTcDD1aZWkS9wJ9l0zHlqUy7jOuB2OKxFcvFgMX5Bcs8Y0nmOclS4itscdU5+eyKuxJhFmDOhEtiz3RkUM4UKO3oM7lyOhhATgs+f0qAGif9/PJiypsqpocThvEEDhPCY45x/wABAABJREFUMCCOESGMMDpXBrLV1SAKBgaygMgyLVXOOZGT0tk8SVrAQbJMUwFgRE+UVM7Ruv/DMIAQAI3VYi+5ZF3KkOyeGUpQYagEQBNI1GhR2cZUDp621/aPSoZmB4KSvG6GeVQKBYdXnsBWEduflgowts8BlXvs5xfPVEndmj11ayn+V9IZq5asXxYgDgGUfI5abOON/lW8Ni2dcjMU1FgNV34L+CnZ0dr7hdpm3ixT8DPO54zzRWyNRHBh8dikGYEFHBRDzGAaAFYoM9TBFQlAks2/UyqM+3110pQ5HMxdCSh5LLvPS9F9PlG7iM67p/53IYcJSfVkqhByZixJkDIQAmEIWgHW4MHcRkmEPYuULQGDEgIYrBEBBFChVZW9afPdygEyDjnkkEMO+d7yPmBRC8GhKihXcQ2dIlGPlfM7IHJFeSq0o/p7rYzcokvd8pyY0mW/++w8VpU6I5D/VCKB0YVqKHFeoMsZy89/w3J5wfPz34FAQGR8+PFfwNMTmB9g1tGSo6hpxwTGEGptbZuRwvo3E3mnjGVT2qqSlgGZsVw+I+cLiMWU5ZQxIIOJsLApT5kI82JAJX86I0YCB0ARnOefrZ5FZzHPS6oUmFpTQ82SrjkjpRekZUZaLricz1YzICWnFnG9RYG7vUAlmNiL0BEjE3CREZ+XgKyW8lbV2nJwNU0SciZbDrEifufzGZ+en/Gv//ofMU0T/u3f/g1xesDp6SP+8B/+E6bTE0ADxocHTKeTxRqoQvKCNL9A0wyoxY5IVkBnEFkhNAoZlgdWnVbiaUlFkRwkEWcMo9PKqu6mnoWLMQ0n3yQtDTCyeG2FBGE2UMrB+fsZrO1+aPT1zuaNkjyDlwCRhAyr6i6SMGhCKF42Mus7l7gBB3HkgG6VYMD3fwFMEKeKUSkMp1iyeaxSspohJWC5pEQdhsFiDUR8D4nFrqDF4hRgXGlDUgL+l7q3rcq27ckSx2TPJBBj8BoPdg/6Z1lUQULQDKRF8flzwk8/z/h8EfO2LTOSU/MIC8aomKLiw8MJQzCwqU59i3Go94k9c1MhGTL5swKyLE7aCkgKATEwklPt+rTPjUIGB0FozxJKcT5L0kUAlqV9PsWwIDBhHAMeTiOm0eJlFC2+SQhImkBklC8WBYeIQcn+5gCqnioCVfpeeR5xFXtxyCGHHHLIIb+0vAtYhEKv6EDAldehGoW3ngV/je43FZ2J+j/KSfX8e3Uz9j0W/oVfqEUl6b7HKzBlK8LlMRcWmE1dQTrLmpQxIMVHJB0AnRCCWVc5fITShCSu9JXAXRQgod23ugJIKBlmRNt7RRFpRc+Md93oQckyKCmgGiAakHOwNK0QSDhheMhgEYAIKRNSXgDKyKWwWU4QzSjF1FQKzaMEaiezSudsRfVyQkpnO88pMOKGaQt4bvEHQAmSDhZwzBbTAI4AE2IgZI74fAHmzBiFMZS9UIOcTVGcLxecn1+wpIwwTPjDP33A51nxnBL++K//D3z8w5/w45//BY8f/+hBrQOCU2jUlXcsF0QESJgBWSpYctQCzXaMIQAriCLAMMATCMHBnQUbL0iS3XNh+yywpc5FNt59AQ0qAi1VrXO2+AKVWvFaS1rdSplxpdszEgHscSAlCNqAxzJbdiXiiwd0j6B4qg+QYVPxGhRwY7qDjjAYtQ4KkFRFOLunrBQz1PKcQKsXK0YgZ0CEjApUbhcAIWkKNjx42QETfPWYaXUOiGqGJg4RBa2VwolEVOdUXlsDBZGAOQF6Rk6f8fx89jXPFTtJTji/GPj+C88GAIPF3xgQHBCGgOk0YRwHxBiqQSTAPH+qBBH3ZInF/wTAUsMyQYSRsoHfnHL32SMQYQc4fhvK50FxarQX/ixnJBCWxLhcEmJkPI9WfG8aIx5OE4ZhwOn04NnWsmVck4ws5wr+AkevIG/UygI4i4HHPlcOOeSQQw455PvJu4O3a7XYW5Skijk6YNDhhvKF2/kpOroTWmrHm56I9d8N5JTXBVQUJ0VR+gW18u/qx8CAeB0FN/BClVzhNM52wNgKePEJStHpPQVBaMMXaHQOWO/erymkZVoiYgqqoQCbnyQHFgkpmUKRxOZjAc5wfrhYLQrOYFccUw0WVk8rKpW7XzL7aJlDtgDimp42J0g6e4DtpVOI3SLqdR+M91/ARQDHiBACwnAyYBG8+BxbMTQwsIgieTC5qAW92xplV87FlScBcUQcR4yPP+DzS4JSwMc//Uf8+Kc/4w//4V8RxwerAcBOQ1JFXi6gUvlajR6DbDQeALamJe0vLEsTGTemUmFKUGy7bQbGVOwOUihJXuFxE8XbkJ02tvixPmC7s+xXZbMp9WWz2CPFHgIkHQBMHoSdajviaAXsxOgwKHuwbHunyCgbTarGB4EaHU7LMQciUGf3VF4ccs5mcc+WKYnIFG971ktwMzUvWF788wHmtWpPqh339L1WS6R8IDBuGge05GIqz9ZiKZeXi3lPyrX7c5SSICdB9ixnxIqBLF3uNEQM4+A1PUYMQ0QIHpzO7M++AQr1NMwMAMxWq0LhgMcC13PxyPpxZns+eypXM3H097s4t/y6EiNxBi+MnDKGGGyNWaEEjAh2z9CytCVZwCwILNBg95r9NzyjWfEY5w4AHnLIIYcccsj3kPelm6WeMw0A9UVLW4mN56BTDmj1N8BastQUugdhhTTQ+l4JFUBCXatKyOoUko2QBeXKyrsQoGAYKcqVZoJl/OGAUxyd7bCegwJYNFWsYoljTHEsRd9KYHPjnpdc+cXi7VZk57erqGcPsvoMpcuUm7dDakC3ei0HAwmigsXfUylKsSuIRbF1xTsnixmRnJDyxfvMnuXKnRIgwCtXgxgUB8RhNG8BWXpPggXzEjFijAgxYhwHDOOE4IADeQbyjOcZIMpm9adsXoPkwc2aEGLA+PiAx4//EXH6gPHxj/i///FfMZ0+4PT4wcFL8EBtMmu/Z9VJISCTQNRSyQpbyDO5NT6Q8dc5aM0+xDF69eMRighFiUvRSv9RESC/gMSJJgpXaAVcMgVJhkKNrsau4Gsw8BcYWi36/f0r6WYtO5AIDH0rAwiVqmPKq0DlYlQruSBlA1vCEeRVm5kiqgLPWr1oxWuSS9E87Z+M8qrR9EomLcCClrPY3iGyKtMiunrGiRzg+k8F6ZJRPFrBK5iPY6klEhDi0BkiqP+1AhpZ4KAaSPOMdHkBqyCGgGEaMV+MwhVGRowCyYz5bMHZkgSzg62XSwLoDP7bJ/M6MiFGo3s9PJwwPZwQY0Qchjp+DOZFlKztoylaMTy1iAcQCDklyzoltu4KNS9YAZDSeS7KXiiAVwk522feMtu+/PnzM4a//4wQIz58eMLpdMLj06NVmgcwL3PtL4aAwJbMoAB/DuWZJCx52f8cPOSQQw455JBfSN4HLKDV+wC3ipVA7KKLlvSrgH/JrqhIxYLv7crvwgnuKFNY6/EbB4beABUoborCwbD3iKsnxIDFBmAouVJKTfEqUyd04KBAo0IjaV4KLTz2opy6hdEOtfZSeei99Vg9sLpQk4zWUegzWVp/PbDQwtPP2a2ZglIp2zwR1r5wUsi58uIBu5VSgma9ZiKE6BW5mUE8GtWGjbfOHBHD6EG3EcFpGaaUsdNgFJKS/eQFmmbkHx6hxGbthviQdk9EBWGcMIUBP/z5f8J4+ojx4Q94ePwRw+jB2kwWl8Gudpd7QzAgJgJSU9QbNiWjivhQpQhhLFmIGCCUrEWE5XyxbFfLXD0ptucVwX/IUWRR0UsqUvMmlHiCUBXvCsLZgYlT7pTqbTHaihZalFocSzDA3e653f9AsGKAIdaA+fJ8FFqf4QpTdsnQEOo/f9bKcwtPSQuQV6i2wyknf4ikPU7aLPP2mOXOIt/1X34zYxhGxDggxELXKetC9fnoH/eVXcEfQhEgp4y0LFguC8ChgnEAXufB1jiECAKDg8WMWAKDXD16OScQgBioFhQ8z4sB23FECBFDHPBwYguwZkYuGdoAsNo+KMBCqCVmYPKCk0Jtzcifh85TVGqNtA8b+1wR8T6ygC0HLubLjGWeMXlmrBBDzUpnMewCQUbJpGy0RUvDm5aEQw455JBDDvme8u6sUExagQW6L9RyyNqZkk2es90oKU1JaedoU2rAV16QRjTSqkQUNz+68bCyxPazVfdSAN23eM3DX4IvK1OFWrtqbQRWylOJlVBXFkpbLRWou7oQ0AYmSjtxHnvujpXzCzXKUsK2YnVVIalVgUtefouN0I7iJLmkB12qUloCxa3mglSluSrEMCUweL79YZycchNBcYQVi4te0IwxDgNCCBinAWOw13E81WDgebm0onnJC+zpB4AHhGBgCJpR4jUUijg9gMOIP/3r/4rp4SPG0w8efE8IcTBsw2UviCnmHhtgAMlSt1KNo7F7zJWyYvsmOEUreIE8lQWUMyRlXH7+O+Z5xvn8YilJyxpBQJrqOkILuESrqM7sVu+IcTohxIhhnBzAsOUC60CGKqCBagYg8exL1qfH8oB8LxjNR1QQmUAhAHFAIsttBpj/iGtRPIs7KPQqZi9EWGpHdGln4cCwQHPxrGFEsz8/CovRICjME0EWmIIaCwGr8lz7dDDPIWCaThjHydZae88IIadW8bo8sfUzgcrOEOSsWFK2e/P8bFcbAsZpMiARBovtIUYIamlcuT2Xc1qcBpWdGpiRFrtvzy8XcHgGhYBpHDFNJzyeHhB5BI0B4xhA2TKriQhIPdbMvXvZQQETQZjMaeVB7+VzScsnYmdY6NeugatSI8TS1S6XGSEEfPo54OnDE6ZpxI9/+BE0WNG888VojywJcfAYIRLfZIS0HDEWh/zjCr3e5K7c4D38Qwl99Soe8o8o7wIW4I7KpPACVT2kKODBLfRdHYZyjNkrSFBwSzLj9iNcXB/XBA6DDfvn6dV7G2ihHVUBxRugbThpGW+q4q+tnfo5JXAVQAcAGshABwwKuGgeC12d09r11a87YOJF1kqcRC5F1tQDF9Dz5gnDONl43X0o6Wot2NsWsVCZrNKvFecyKtMADgPidEIIQ6uWTGSZj8RqArwsArkkyKfntk1cgY4MjKPl5P/hwwM+PEYMw4IMU6ShVtxvoBPi+IhhesL48APCcKqgtea7UatdkGVpcSDZPCJ/+W//P0iaMUTG6fSAcRhMuVOg1OOAOgd/EVwcAGXJuFwumC9nLJcXfP70CaqK6BmRileGHHA2BbjbW7kh07kcL2AjWEai4Ap2CAHD4AG3VDRtsXoNBCBQo/1pA5QQJ+yRAukZUKulMsQTwAFCVmiQS3G/UovFM3WRV7iuHpyuHo0NJfWKypgGlgJSEq83AaMy+XERdXDcPBXswHR07xUxIQ5WPVq1fS4U7115jqsHBQWQW78F8MzzBT//9Bf89a//Fc8v2ffoCYQMjQNisKDwYTA6nsNN5GRgInJAgGJ6gAP7DFlsH6UsSNnBrivjL88v+PTzJ8QYME2j0fuGiDgOCMSehSzA0gAk88yEgOzeCEnmFYFX6m6AkRApmKcJm8+Y8rx3oEOFIJmQUkBKC2IIeP78jHGaME4TTg8fwD7u8vJigffjWPfuMl+uPht/aQkUECi83vCQXWFiBApfpdD1mRr/UYU44IFPrze8Kwe0AG7rWW87F/jvL/8Fl/z9P4t+SxI5YgrTF59PIEzh4Zs/10v4ZYxP7wMWRTFQrbERDVYUpcFpIoUCVX60WOhRedxXEEBhGqnHM5Swhp420Hsxbs0Q617b60I96YECmmehSO9hKO1WXocCJnQNDOo5BTDIGjTcet17JdYARbrfRscotCet1vOWArMANSaLITBqlzaajQwodJtKiWEGKNgXWhwt1agDixAHr9kRMQ1TC8JfLsiZLRBbbGFLBWLzCpgi6tl5MQTGNAYDGUGhOUE5mtdCFSUrEofBsiNxcA9SK9YHB3RW1bkESxuV6/LyGTldIMGqHA9sNSHEi9XVQoPZq4fnjHmZkVPG+XLG5fyM+fyCl5dnEBEe6AEUIhSxZR7o9tKaladNISxUMxX3EJDRxUKApIQYA/IwuALeBfsCTtny9KfFA1c8TYDTmdRSuQqg2eIrasG/6g5p9MQWr9DRk0Cdx8XpSP31+d4jasXrSlXr4pFgNooWuWeigJrAwbIxxbGCJwvY5hrnAbSq1mU6PQ2qAP3SQNWqv8/zBfPlBWlRhJBbTJcqcvS4g8iutJtbiLxWSkmRHDhUYJGJzStI5s0oHoUkAkrmweLASGlBSqMBDDWqVYzet99fdW+UJIX0nE1X8NS9ZvWie2/F6hOreCb988j5beT7KzMji2BZLLEDcUSMtp9y9sxjXsCT+dehQu2lAD/k7XKAgm8jBELkd6o3h+zKyrv63nOhWGTBLP/YwEIgGHn88g4IYHCrxfWN5JcyAr3zycsALEsMvFgWuCg2jf5UwQUKlaT972l2YKXpXCrNyb+AOweIVjTQmur2i7l/31FIoy81YFE9E6WPjdehWKRLbEOjNHUeDlWzTBaag5ZCY3nlvbBL3QcUt46VeRWAIV4IrHgsGOalsPBRU0bNlg2gxA6EAKoVeq3IV1HCYhw9eBkoiqKFOngAtledNs+F1ReweIFyLcm9T4IQCE8PJww/EEIACKkq2VZ5OkHyC4YATAPw4Sni4TRipAFMjMQBqgtyWrAsM9J5wZIvEDEeO5FdJ7TQxxaILMjJ1rlUTocIZDljOX/GZXkBywJ9eMKSFqRstCwiW9PLyzMYikBASqlaktNywZJmU/hDQIgR7ICAQ6sPUCFGpwyjcOdzNiqMWNrREqS7zAsWVTz//FMFR9FT9J5OE4ZxxOl0wjAMQGjV2IlgWbVAEI6+9hmSFqgskLQgSALHB+Tw6JQmS6FbYy3IiynCPQuVplSAe+9pxOo5iiECYUDUse5Vrh6LCKM3inl03LMTY3Qr/6kqmKX4XfHGiWilTZmBAnVtq8lApbLOjF63IC0XpOWMNAsyBaRlQVwuCGHAsswIcUQYTqBogcwGVBkcI2IpykgBGv1+Dck9h8lAZu4KNYoiqyInwZJe8Pl8dg/RiGEY8PT0hMcPP+L0MOGHxyfkbAB1nmcPerfrCCEYUBSyEpWevjmnpVIR7V5TBZG2pfrYLIDIar4TEVJKuFwu+PT5E3769AnDMOLjDz9gnCxF7eVyadnRapavQw455JBDDvk+8j5goSVVp6GctaeiiKdsBKDqqSyZrUKwW/ZABPHgR5R0pkC1Uq8tevsGvh442AGqno1KcfI2DVgUS/Ca1oSNct8CLX0kxZre5CljpVIdGnWpKAUrj0MHIuo8dEOPWnlNmntGqWS50hp/URbEcth3ues5AMEqb1vWI0YcImKwNLlxiC2+pViaOVqQNoVqnWbug48toN7CG85QVcznTyDNlkPLMzwpBAgBzANEAkQH5AREJgyREcKAwIMXIXPr8JIgWXB+OYODQjLZ/tLswbIl5ZaBVCYFRbe45wxJCXlZrD6FJDADOZ0xz4qsxhAjLlmPbF8qUSvFoabEEpGBCVGryeEAqxT9u7IiUgMZQpbWVYjAylBhH0vNswAL1uZSjbqARhV8/pwQXs54fn42Gg8Hy64V2H9is1p7tetSxM3ApYBglnWrQBc83WihQpVnq82dqmOjO9rRzlrwdTu/7tdcniWz1DMrptMDQnAqXQgIgTF4diVQqXuD6gUhoIKNqlgDWFOlbIFVgZwF5/MFS7LaLG3WVqMFbtnPIoiiiCBwUIANpNkeKDQw9rkSCBNUBVkzeCn0ugT12BpxLwYqKCMoB2QlnOcF+dNnvFwWjNOp7rFhGBBitOxiOVvBRBWoA6yyNpKHZjwoKYqdAglVA/7aDCbVPKIA1As9qgDzGSIJ/AlYlhOGYbSMWzZjzMuRFeqQQw455JDvK+8L3nZKjSkNJTtPMzn2IdxFuQfQaDeFq17o5ei53o0isOd427rjeppSO4amhxaFv2a12fMM6KptOb4GFnCreQcYvP06ALtLJVk9HQ1A9MBiPb636ebWrLjr1LlmTG3Ai9RWnEMJyI1WQyKYxT3GgIfThHGMGCJjiLH1TaY8x8EyPZFX8i3Ar/HQzOodmcxjgoSznAFZMECAfIFqQmaAeEIYnqB4hEjEQgOYyTjuPFYPCKuAVYHlDBHBfLlY7n4hQBPgVarVPTS2FlZzInhQbs4Jki5YLi+QZBSnEICcZ8xzBoXBalNYGXLXqD2YOTAoJagr+8yMIQ5G7WIvVleCnLmBsSIrKzuVPsg8XswQIQcsgJJAWWtsjCpBnGqzLIvdc4IDioDTNGEcLG2veQMIHIPRy4LVZVB/VthZ/gVYKEWrNk0lW1RPqWjUqOtUr56Ct8ZicIunCM1VOs9LLaJXYnMeHh4srXDtx5TnskBW98Q+aESyVbOOoX0WlH0v6kCy0cIAQZaM8/mClMQC3d0gQVCoZGQRiALBa39QGJw+Fw1YwJLDWhhK86xwsMxwWQRxzJ4NbLGMaUtqxQ3RUcXcw3dZMi7LM4AXjNO5ep0smDw4XWnBPBuNiwCP1zEaWflcSCnVH0H5zJBq9KgV0yvA8Dx2JbVtskB7yRnLPGMYJ3z88IN5LImR5gNYHHLIIYcc8n3lXcBC3apHQ+gAQXmzU2ZInX5S9NSOftFZJi1biikynbvB23UgQzv1+gocrEFHAxeK+m8DJkq7K3BR23Rf7isa1AZE9FmhyjV173uHq2WS0jcaV7/ni0s3b8CUoViDXwFWU/6NqhQQwoDTaUAcIqbp5Kk9B0xDRGBgYMEyf0ZenqHLjHlZ8PLyAlVTtMdpQhxGjOMDUracSgBhGEYMw4js3gCkGdAzCDNODxEhPCDGCcmrTAMDlAYkOkEwQpmRoiIGBiIjDA9e28KCekMMgMzIabE6DJqg+QXL899Ao2X7EfdY5GVBTjOW5YLnz5+xLBdcXj475SpDFqu2bBQYq+XAwYJyLeh1RIwR0x/+BGiG5mRxAjlhWS4N2HmdhhBDjfUYhrGz+ts99uTKABSherQ8wN6D7KHaUv7WBAa+f7O1G5IBCxvXul+WBcs849PPUjFeCOSep4hxHB1IRpAQSBRhms1LEScIW3BweZxM7J5y9X5QjR1h9w6Y1yCjeBuHYQAHu37xjGWnU3SFuNH++oxYBrQcYFGLGSFihGGAqsU4lMrcORcPXPP8wT0bzFSD/C8pgXjAOD1ZpiNVGC3TP26KESEnpNmoQMQR4/SAYTphmh6M9ud1ZVJOGOOEGCNOw4jy9KfLjOTAIqfk2dss7avCPZDFcwCqtTgtbW1GeHmpWdWYCVMBGjnjcjnjMlu7UiCSyRIMcAj1c02l+BvUUtfC91T/+eSfHZIslkdSQloWhJcXLJcL4jDgdHrsN8AhhxxyyCGHfBd5H7Dofgh9usmS2766JaraXMkOWn6V6salJkTH895a9LvX3RsbT8MaMADwMA7rr+S7abSn4i2x1z048B6rpbD2XWkI7ZxtbEQBJvUyvH0BRkXpIk+rW+Zvq6MdePKTybLsEDGCKxjAUI2nMQavBM44TUCMgmGcEYMghIwhWEpM1gU5f0LOL9C8QJeEfDlD1KMU8gQZBujygiR2b4gDNI3QNFpmHUnQZQYwgyhjGD+ackiDeUcAZLECgyrsFca1elcIWmlblWqFATGOGIYTxumEnGZAFZ8//R3LOGEcxlroL80zJFs8xvn8grQsmOdLXas4jAaiIoFggdo5LVa1fE7QkK0+wcOT0VY4QkkgoQS3K8jvKQFWc6FkU3LrL7r72FeZr+CRtSnJwubFUAu2ZRGIhgaag3PgQwT6miTqWcGyK4yVXueZwtis8uZVMRAwCBBPFzACKGSrFt/KQ1RvjamqXKcMbdNvkMn3nYMFy4jFVnQPqOvAHOreZ6cBFeNB8ew0ulXzkqgYW4t8LPa0rLkCd61eH3/4kLPgMs8WYxAiAso6Sn16zKsUdoLZu/3GbM4rvwcWQG/gvACdQIwhZ6TYAYtCiVLLxFY9ldrW0LeG7Xf3ThaPz+BZwYiAtCSE0LwhUABcvI7+eVKopNUAYiBLqkGmpeZF+TyDe8REwfOljY9DDjnkkEMO+b7yTmDBAA0QDW5Zg1vPq/5iivc2x30x8FqkcFXYW2hhS3cJdJ6EOm6jA1x7LDagwl9fUY+8n95L0Xs3rvr287J7GMr76MeU9dhFTIlbtweZZ6IU8AKo1qQQLbUo3ILrFJRpPCHGEQ9TRKhZd2w9TwMhUELABZH+DsYZJJ8qSJF59gDqC3S+AMsClQhNBGSCpghRxjxHLABeyOEiE+IwYaGIFwrIYpbelMQ8DYExTicAA4YxgOMDwAPm2ap5L/PZMgCpBx8PRrGJ/CNCYIAJAQOgAaQfwRwhOeP86W+Yz8/4P/+//2+M44jHx0dcXl6Q0oLl8oIYGeMQwGEwT8I0eYBuxDSOFsvBiudPf8Xl5RPy/IycF8zzDBFF4Ijhn/8TppNVWpbMkCyI44QlWfG0AhwsvMKzIZXia3ASDpVikB5D0DZe3WXFc5ElIco6dXDdidVCnVGqfJe/1b0aOVkQfE4zlpQw5wtens+VWjOeThhOEyieEKYM1ojs4KI+e4UWVeJqynXlDS3KGhtdJwQM44gQBpRq2xbzERxwGLCwfWGppHPOGIfBAridGiWe1tihhtG13CMiavUmEozKY2jIsp4RYEXwxLJ3/f2nn3FJAgkjhtPkHj7AlrV4SQ1QxFgodyOAgJwJOQMDB0ynk4N1qs8kAKPqhYBwaoDJ0hErUs7lQ8KLSgrmtNS6MxYSJjVeavW5JIppMs/IOI31nJ9/+gnzMuN8PjcKZAgWx8VSPzdKTJU4ODXPhRWB7D9bpI5ptT4oJcxLAh3I4pBDDjnkkO8s74ux4AEUvGCaKy+EUoW3s/prc9sTUUs1qUWp6tpYJzf7ANbAon9/peTXtmjHK22hByLojrs+o/38eu8FVhQEKDwIvcWN1HHLtcEJJtz45ZVKUa9I3CnhAa00IAyjgzSzUMbAeJgipsiY4gzWFyA/g2gBUUbUDNYE1gWMi1nqQQBHgAZwfAJUwSGB+IJhSAAFZA2Y8ogsBiy8frApdVqyYhFECFkIAQEW2D06RzwghBGqhHlJkPkM0RmfL4t7EmbkwlYB4elhgD6aUsUOQkk9OHgca6XuaRiR5rNx0pkQYwDHASoZKT221KceQ2C0p1K/YEBgIJJAfv6bZeaZrc4F5YQgGSQL5p//OzCfwOkRcTxhCAPi9AExA0tW5GQUJgvHoBoj0Ao69lFERidqOaPaPit3O1RvRFEEyw7x11VxTLXIoaXQNct9TovTD2evYp6BXCqzG9Urv1zAn37GSQOeHn5EZEC5eA/RZkeoBQUBs2hXrpXv5xAiQhwwjieLuyGGajJKE3cxGnC6GDF0Gs1aL7kq7KoFy3AdOzC7tR9QMfAFqFcqZ+RlriCrgR0G84Bp+oiPP2Yk/gHDZMHiMQQsOUOyYF6WCjBiGBDYgFENxCdCVsFluWCAAZ8QY6VxlYJ9wVPjWq0du45cMjmV+heqmKRkuBKkebF7JaVCugEKUcWyZIhcEMKCeV68HghjGKJ7nYKfZ6Cl3PdisCieKvWxatVuX7tS+4I6D0r5LBKxavSHHHLIIYcc8j3lnQXyIsADnBCyogFUpbxXxLvf9fUWfKBFG6xjIHqw0GhGt9qtKEkFlGgDEM1KXJS73mPhIKgfA24JpA4AVfKFi1tOV14PdLQQbsHplkHKglGtD3Xl1TIzkac2jQMjEGFk4HECpkEx0hmUP0PmfwdwBuniPxkkYlWdQZDwCIVnBwoPANgyLNGMEJIFrFLESI/IasAiQAHNgCzIkjxFakbKACUAbJbrcXw0RY3YU+ES5jkjJUES4PPLgpQSliW58gio8/onD+b18m1Www123czmJRlCgCwPWNKCEqMyjCMUlqGnxAmoq/LkilnwInRMCkaCqhU5y8sMSAapgCSBIFie/w7OFyy6YAhsMR+nB7DYtVowtTRwQaWgnNODyKhElmqoxSs0sOF7hMt+7kBssUJDvaK4KaBW0dkqh5ti2YBFSJatiNMAdWAhyRXwtCDlBZISzi/P4HjCkyQQBjDY4ywaHbEY9q2SNpXldOzh6Vg5IvCAIY6WWtaNBnUtumstGazIAcOyLOvibn5efSyoPCMlXqAAdPPkZdVaC0SppEEewBQxjI94egIyJ4ynR4QYMQ4Rc0pIOeH5+aWOEygilCJ9/nwlpx7lnBAjQ1GyQzVQUbJgxRAsq1UwUCQqHkOxuHJv+1ocSFz4guzFIgvYyE5L0lwCtI0GFaMBmiFEcADgwCLnDErs1y81Ax0J+7PAoOLdLGmtVSBk6aipWGZ652mp23LIIYcccsgh31HeBSxEA0SbClW0/RV5aONBsENrkIBe4Wpn7ngf1MfVq/f36E97x/be15W2Q2tlqJ7lTHBvymzxEQxAcqljoVX5nMaSYhOmxSmqIgIIoisyFCZQYHAkjAMjMjBxxkAZAyWw/gyRF6T5L+DzC/jlDMk/QWWG5HNV8sIwWIwDjwB/AHgAeAKFJyg/IdEfoRggGLHobMpLNpK78OiWfwLpDJIFkAuWyzMkJ0hWK741DBhPTwAFJCGczwlLSm6Jzci6GFUKRdcmr9Y9VJD08XHAxw8jYrA4ESpphjeiTEBkDOEBvmQG7VRRglehLUVvy0TUgGHW7PNfcHl5BkExxoBABr4oX5DOM57nT2BSTDlh/PAjeJwwnCbkZPz5eV6q1yL0oIKo8zo04AF4ETP3ENTK2nUfN5qguqW5VxLbjwBFKVULRlbJ0DxD0mLpS5cXqzieZgv+lgxNZ8w//wV/WS54/OFPiKdHDI8/2p7o6lpYimcDZtzdh2ImMBrRAKAFfw9eeZzIsntV+pQar599HcZxsBojNcYAANiqtOeM2YPkAbUAdPdUUfVilTTDliGJVJE4ICsAZjx9/ID4SHiYBquwPljgs6ji+fJoXja1ivOliFAW9YKFfl+oZdQyipNJdM9G9BTNgFVKDRwwjgFZzshCuLycYeyuERytQGHKCSkLliWjVLhPaUHOUovZiVd6hxobdPa4ruwgBU5xVHawqQ4YxOaq6NJZR1ntH1EFeRB8/XxUS0d7MKEOOeSQQw753vK+GIti8a+m/rUl3xutDGflvN6j4c06kFEaFsBx7a3YxlVc9d/93r6u523nV7SnLha3/78oTVUx9ObMjcNeU3V6dV8UwkxpZ4wZhGAZckyfzyBOGHlGpIxBz4gyI2AB5GdALuD0E0gTVDMgBEUE6OTpRAMEE4gMODB/BGiC0AkiJ4hOmIUhSsgKpBQgGYAY317ZC9CVGAEhQBiXCyEnyzZjcwTOywsUjCVbNqCcxbP5mCL3/2fvT/okSZMzT+wv76Jq5h5LZtaCwvRgaXaTlznwNzd+/09A8jRDYroHKACVe0T4Yqaq7yI8iLyqFomq7o7pYZ5MgKiM8MXcTBdzeUSeRZ0WF1P0qe+waTUhdQzJRdUu4h6bIW9O1SfV5lSU7Pg5jWdcZ72bd/9Ie7aNQtiZPNajdlrZ9kTuwcO3jAFvzqwTBW3U9UoIkbq8EE5CjBOSIuLHjZvHNgFy2Bv08ck9RwRrhMeG4JfA4uayOoBSV1qo+/20U/uihyKqEpzOojXRYiG0CkHorZrAPiZovp0RoxOt1xdqK96szoQ0M4Q5KgpBAc/aGMfoZsMWQnAQ5doMP+ZD4Dyu+XFP7TqKm3XfuK9FjneH3jzrhJFiP6bxR1bJkdEymukG0sk5MnWBBjlBjp0oza5lhfNkYEklWlijU766gmpw2qbYfePZFq0NmpASQ7h5fb4Zu3kvEsSE3Sn68EGQaMcuxompKy2pJ713SjX9TmuVmqJ/LJm71s3WVJxaFYA2aGR+b41zswNOH3TQg1kYd/+Y/1e7+GMPDcbtm9a97nWve93rXr9OfTGwsOCoo1HXz79g/6vc8LtH8/gZqPhF4387Cf6lxuGzj/0ZYHH7+V/+/ebh7b+joR08EP2c5nH7okIIN7SWwwo2xuCOTOmmyboRi+sIDBMPxbI/MWJ6iGbAIdYfkPoK9QPSFrQtNF39KQRUHkFOEN87IgmInIBEY6IT0ZCQ+A5kpnIyalJtLMtG6ytdNzo3oW2qQGE3+h3T566si1JLp26rA4hG7TYVHl40Rh/JDiAiaZpJOZPjbK81RdOXYInYoQdOcSZioXfs3PvRYBsNKEhAvHGzjc8BPKzRs4brABOjKYYcoZfKsrzQyhXaxjQl3ygEeg/WrNOIalqP5fWZsq2ENHH+CtJ0IqRMJBKT6YJGOvIAFLc6g+Dp2QNYcHNN79fSfu39G6iNqhKdk9+7fvb90PcJtXbbYrRmGwspJ3ot9LKi1TYasSy+zdh4efoZEaHXQj69YTq/BQcXGo4gPaWyZ1bkAOHGwjgdTlhji3cLJm7/3mrZX99um+xmDLcA/ki4d8DAjQ6gqwFoT/P2Nwi6mgvZ4+NEDZ1QlUgjUKFtoLZ5OafZ09KF3gvYFe/nJzlgjSiJ2o0KBckb/uJZGDreDujKDkK3UgnSCRKY0rRfe107HWXOZ08kj24t3Fi3YHkYLQzMROuwVWUrjeo/rzfP4ehGkRzi7u5ZIdrDzQZo5KVgH6MzHLvG91twh11TogHCsZW5173uda973evXqC8CFq01YuuHhSs3m4Cb8hn/51PpMZH179x78D8LAo5Nxp8DFr+sX87l/s2c7qbR05uPjUZ5PG74BY3FmC+jWRwJ1xy87N0TSBBGoFjwQDhhipVAJXBB+iu0hbb+hLYrtV7obPYKxWhMxK9REqqB3jNNM70HWgk0xR1uTJhba0NpdKozuhKd7K8FarWmQuWwea21GsBrFRgC0BHgZ9Sb3hu1rMfHxvGT4QoknM6Ti3xnup/tWjdqaWy90dTU2zl0vjlH5vh211dYc+6g1F11UpyOc6/segADo/h32vno2JRXm20e6IVlfaLXlb68QF2J0bj24xqsiAvS8bgVIYlpHZbXJyRliJH5zW8J6UScHq257JZFsQMwfxJh31bEG/rb0VjvV9sNQN5DIm8uws9S2j3N3a77IdT1+6b1nb8fy2p/r9tBiXH3qN4qrS5GUyNQt8qlPPH47mvSZFslxLQXAXNRCk55y3kiJaMD5ey2rYA6ZegzatctgPKPt1b3+2N8TscxSYmHh8f9dY7tU+/NqV/1EKfLfmuyXCvPz1e+//5HqmuCJEWaKIsGylpQhfkUOJ0ip3Pcn1vXimpBpEAwcXfv4tuLSJpOps+JBjIUoak9Z8N0Q/uCA9hgIYXAyJGMsFP8RtMvCvOUqVVRrftmxPJlhPkUKM3BRK0mDu+2Bezjv21Qyg5q2QgmHPdlCDc2xL0jPRi4aDs3kB7rL98J73Wve93rXvf6/2t9YUCeJ0gPetL4ODcNuB6EiEEs15uJ7C9hyGdAQXHnmmP58Utg8ZfqMzDxZygAO6WJ0eg5UDhgkE0A5XPaxz6NdbrELf2FYbmL7HSKmAI5ClFMOyF9Rfor2j+i7ZW+/YC2DW0bTQIqkR7PaJhBZpQZJdFJ1C4mkm6V1pRSoLZOb51SB6e6ObXCKR8yqBx+PoLnYQQTNQ9goT4dtobmCPtDdffuV1UYrkhxWI4GUopGT5mzORM146xrs0l6HcFvWdDWyMEZ/T7tHVePul4iSLwBfMdVpTJ4+IOYdoDZrorWDW0r2+sntC5QFwMCYtN3GPBJXBAcaBgwiGIbkFY2ynYlrq9M5/eEOFnugNprbo1d7zy63uBrk1uwyU4ncsBqT3S/tj6jz/nVGnawfBu8dmy/9qDGqJ6F0SEkAxZp3qlDwzEItxfurbJuK7VZDsQODIO7uYlpLUSCJ7RnYsweuGiieBnXETf33rivPttMHo3sPg1wLcPnNKvM0Je0ZoDAgFH7zPXI7kd7nHUrXK4Lz0/PEDIiEckTXQJVAsvSzFFJC0pEQrYzrq6poSHSIRiA612xIA3bHkrIvn1zvY4KrasZNuyUpbAfP0HMeEC70Rr3dw9uNp8gMaBq2x91oX9Mcd8WRQcRNQZznNqBg91HvfmmooUdVFjAn92vIpZpIn3Y5rYh6zrOV9fDle5e97rXve51r1+pvghY1OZhX/+FZv/2I90bBAEPnftztBA+eywdndh/Y93Mh+3ff4lXLJ6rYF+0Nw6CAYUYjjTxXXwqmPONBBfp+uu5ocTEYM12joFAI8pGaC9Iu9IvP9L6ld5eDp50+gpJEcjUnmk9sNVA2YTahFKU3iw3wqaX1uh37SZO7mPzMygj0NvFPl/LPgHtehx7Ge5UkvaJuzVvchxBOag+eTqTcvYE3xMxml5itOmGQRqbB+2hQlSlt25uRasJdec8E1NkPjlVZVh/tmbi2W4nOwb2CblEkJ27H/bzo27datuOipYr6+UT2+WJcvno2oqCARElSnSqTvWQPwMbwSfWzcldU4z0WiiXJ9rDezvX6UzIJ0/fZr+oP0uuHtfqLcSW43jaNcJ+Md+6D/lZcUqQPcZnvbsDku4OQYbL7QvSyDu5sRI9AHHYdT2COxIVo1CpPQl2HUxMeyZFThMpZU7nB2JMpDwd2CEmB3J9z4bZTQtE/LQFgqRdjG6alKER4OBT7Zixu7PVZiC3V0ZKOSK2oZHKt99/z59++Jnvv/t2t+NNMRHymXB6S2mB1uH7Hz7tr+XhfCblxOk0u+WzEEMlCGQRwK6RIK98pgmSQMqz/90AgIggcdCoArUJVKEvwzpZmKZm9rY57nJ4BeY0M6V5P98ddhva5sex9ez0Kbvfe+/U1uyabZ1atx1Y1Nb3jcWwqO3+vhBasz+xE9wBy6xo71Soe93rXve6169bX+YKtW8sPgcIf2mboDefF739+F/6+iGwtn//RZBw8zkR+eyx/03o1+3j7AuGQ2wtNzSb0QemFLzRPqa3ux2tAxQR20rE0AlSCb0iWqEvaLugfaX5pqG1bFqFLjSdaBpo3ZyWWscC2nqnNqXuLjKNXvWwr3RgsWtV9gnxaCKMytS0uxbEjw+C6GgmbVLdb6bvMRye+mMrsycSR9M8WOCdC6YF4627SqO3RqueudCq2aL2TojCw8OZ82lmniYHFu7k4xuSoZdAwn4+7PzrTjVBQUM3egrD7rWxLk+s1ye267MHrIE5IFnD3frYkAWEThDn0O8T/kYXiAU0mNi5rFdrKPPZtBkiBImejvxn3J6UfWuw7ybkAGoSBuwdTbj4JuW4dlVvLWitWR20wSARIkTfQCmKhLZ//ri+/XqM0QCyn0fdJ+HVf854zrrTuIZdrwXbJbcUlgMuOcAOelAGDeDd3DN+AxmQUMz9y8L52qA/6uF2dNjrHiBpd8bCaH5bLXz//Q/89NMHyvViDT9mS9sU6ErRTNfg4YY4BbCSYuRyzb5dlJ3ClMRAp6DkHB1Upf0er63a+4HIntYdU/L8nuRXpAmlm9j93HsnxkitjRSD0+Q4rgFR38K52NuvqaFV6SHQfVPTu31/FSGGRhADIXZfHqAiuuNUc63HvhXqFmJp246Ohi9zE7/Xve51r3vd67+3vhhYNJ+U/rcAC/s69kbx81WEt2L/BfBwW7df9xmo2Mei/jlkp53cfh2wB8AN//phWWrN7iDNGB86hIjE6JsK6M34yuaKGokiJGlECqIrrT4bvalcoBfQ5sm9ma1NLJtQmrAUoVYo1Zs+VWrDHWWaTymbpy47kHN+dXPayAAVMsAFI1nE/yWyUzhCcFqPh/E5MgA/Tjlb05+nyQPoPs/esPAxRTs2zY6JeZ5B7DnXurCuK8tlQVSJ3kjFmPjq3RvevnnkdD5bNoCwv+ahzYkEO877tN8+F8SMafFmtTZzvQkCtRcuLz+yvj5Trhdimg0M5QTqlp+twn4M3AqIjnZojIRnpffA5J+elxdroqfZvg/I01t3uQqHpoKjwVb/eQxnq0GXkUPbstu6BtsU7PdCGJbE/diKpCP9+QAkcddTSP2F5mEH4Z6Y7Zuh5AFw4ymB0mqz8MBhtSo4/enIAxkgZdwYugMlOyf62TXXb/aFOqCmbcoUAn23Ijbqm9sB1822KK2Ch/3Ze4vSA1y3wst15Z/++Ec+fnxiW1bm2cT1qo22Fcr1lSonVBISJp/wN67Xy3GdOwUwDgex3gxkBOHx4cQ8T5zPMymN83psYlO094g0TeR8IqbZAXVE1ah73a9Vo5klckoGVvJhyyt+roLTCMdQQsED8hq926BDu9JjILZA70ZLG++5lpPR97C+1hotGNAa72W9d+J4rwjNtVT3ute97nWve/169YU5Fnrj7vJfL/Xf1c7uMD6yA4ExDR2Tu18+4p8DErd//+y/cuPo5PVLS1iAFPNO0zicquz5pTjEydZE2lC0m9k8SnSZsqgi7YJqpbQLpRXjtteRwFtZirI1uG6YS1OxiXvvULu4YFp3wWZxMNFdgKt64wrk1BL7f/H8CRfFMrYsY6KePBRgJAsHQpRj05IyMWVO85mUJz9GB3e7dnP8CvgEPCUkDqG1nfvSKy+fBrVr8PeF0+OD0cKCkBM8nDJ/9btveP/uDVM2Ctax/RB30hn0ncRYX6jT0GS8bqx577WyLRdeP/3Men3i9eUF6Z2YZ/L8xvjr4FPwhraAYECkiaBS93TjkSvQe0e0Ey8rMUW2Hnh4s/JNPtG6EGpHQibGiRgmbwpti9NRzJLXfo5f8Qc9yrcvYnZLPt0/aFB22Tr4GNQvxvbhuC+GDoIdbJhF7eidAadU+bHyrj4Mh9XjIiHlSMpxBwcDCI3rwH7+2CSJnzPxRx3OXPbyWquUWtyO1yhHt9ub3jtaGhIzKQa71tWu8dYGsLsdUAQU0w79/OmFnz4+s9WOCc11rFpQCQ5rzGSgUUhZUbVjWmvx3Jvur0Npfo8EB5oqwuv1as5uKZKzAebTeSLnzDRNEAKhQ10WrtflyGkJgZRd7yGmpbAU+Il13H9huMZFppyt8W9jQzpyMwIhJXNDi4LS9hyURKD7tqt3ozrZeT4GJoP2llTpKdl7s1/XrTW7vuvGve51r3vd616/Zn253ezNdPW/WCL7130mm3BQMsAGcvNwcsw//xKwGP/+NwDj5of88nP794wJMAHcvnGfKIYjhRefRPauhAEo6P6nobqgfUPrxd1sOq04SOida1HWCpdNjSZUmltqOo1DTdBuNBXbUmhv5vJyQwsZR85eRtiF1GMrY8HCgzcvSMw2VQ8GLIKYAHksKaJz6efp7FuZ4NuAhtSKNvFtgScx35zDLmr0Fe10Lf51kNPkm4xs4vUQmDI8zJmH88w8ZaLTfw6HrXF+nM8ewr5tkfEzbyfyahujsi2syyvbeqHVaoL5lJGYQYxSYsJbc4+S8TAhHeBIbIpuwnjLV5DaCaUzvbzSCTy8vZB7Is6RVDY73ikbXhC5uZ7D3uCH/bpxehQ4DUZurte9y0f3a/FwnLq1ct03ODffKwIxHhvC4/LW/ZjtHxvLKZH9x+7ELJGbhv5QKR3ObTdiZW929ea+FTshTrGyTU3UEVjo26huOqDgoGqcSNON+PZFbqhZDjyXdeP1cuX59WLNfYqHtTCKiXB8k+XuWSMXQ8bn/GNhaIL8NTeJvlfB7WXtleecSSlSe2Oe225ksDuY+T0pvu0wq97oQNGC8oJCl+7Ax+6D7A1/DNGTvu34dVXbbISwn8T9vI8gzq7ocDJWJWgEOjEeA5P9mvE/Y6M0zmeJd/H2ve51r3vd69etL9xYjInl58jiv5XO9MsSwZ1/uEEefxkY/Nvvl/1bb8HG7UbldnPR91As+wWdYjK3Fv+eMcVu/RA9pmD8/KDF9BP9uls+ltrZirIVuCxKqbAWzNmlj62Decu3VgxEtOLOTG63iQLtM9Bjz9kmnzZRjj5pjc79jrtmIcZEdCFuyL6lEHewEst4mCazEJ1Ob+gdtq1SSqVsnZwSOWXmOXijpvtz782en3abJ6cAmoQ3j29JMTBPE48Pb5mmGW2L6UC6Ha8pR045GCUn5oPyM2hYgvPXb6blKEMtvWtaVOm1sF6feXn6jtfnb6lltWMwnYh5pktgOEUNmlVn2MIGQs5EAXFhrJYCbaFrpVTxxDTlux8+Mn26sG3KV7/5HY/vvqYr5PmBczAtT4yKSjokLt3oNiEldwYL+zZniJ1/ef2OpUbnAAcHqD2+9tapazT6k28cxoZDVQkx7PfPwWIaG49f3DM7uBlQ7vZZ+flv/Xg+/lpHIrRtJRraC1pXei32c/KEhHE+rXlure0UsRCj5Zhov9l6BkbmRcyZthX++C9/4sePL3x8ufDw9j0pT9CaN/EBCSfjIwbxQMmOYluvEBOnNBmFb7vu19TIarnVJwUOzVgtRhl6eX71HI/EfDoxTZm3bx45nybm00ROBsgsKNIoTDGLLSk02MZPoY3XHMKe5p1zJqfkepZuWqZ127VMOXs4ZIi41JsogjQ5zs4AWHI4RZkdsW80REgx+tcJLWfuda973ete9/o16wvVffpvQMX4MHCAg1/+d2wm9AABYFQp2b9ObpqjPwMsfvmj9u3GDct7b6YOgGEN2Jj83gpQbeK6leN7+2f8cdtWaC8ojaYjK6CxbebSsqyNrTRK7axbobZOcZqH9mPSieohoNXqP0LdoUhNHOybh7AH4cWdo2/i0uiNm9Moon1tiJGUJpuKTmmfjuZsHPsoCm5nWlt3Gk1wi1GbdHft9NoZCmLxiWsawleBHIQgngsgxSgz0qBf2dYCDirMt1/pLbr7zRF4NihC4eZ13XTC+3ke4NXE75Xr6wfW60fq+mJ2qGE2KpUfjzbAhA6L0L1Npmon6rDMzZjbT6J3QcoQ11t+BypQO0/PL2xNmZ+eefPVC49vvzbHIIk7XYWbDRiD4jQchrDzaqFmfQcBN5f4X6zPKXyD8z++P7izWdi3TcOWdr/Gw2g+B1BxAPHntoc7JcufnG9beitoc1FwmAzs6U2WSL8JsWuW89FlBKcnWvPnpB5+hwmjd7A67gu3me2qXJeVl8uVT58+sVwNsEzzAzkl5nziulzN2CCeSCQiCdk2d1Fq+70To72l5Xk2M4Pe0Ori/qgEB0eqnRDUAP6gHI7NpRgFqWyF55dX1nUlXzNzjpZTkxMxTi78nv31GY2rO1oUTMtTq4U/1lLZXMuSc3bb5rRb/LaWP9N9jc3dZ4ORffvVELFcmwFe5Xbb5ecy3u1m73Wve93rXr9yfRmw+DOYYndk+mXHJH/h7zcPY/3MABHjg3Lzj8+3Erff7OSQzx9Xb76AW5pFcBpJ2L9jNK11t2fEBbpCChCkoVRUFzoV1UptUJtwuVS20ni9FEq1x6h19W1HsfC2faJsz3Y0h+qC10E3QoSQHFgES7VG4pHsLJEQTZAbQ/Y04cNhKMTIlGYT387D3SdyOs0+qW2sy8K2bWzFQsxCSGSnVGybbVBqq+ZmI0KOaddLTDmQk/CYIykKMSitC613tlK5rg0b+GbLs6g+rW/JgMXY2jjAsOZtvLbRNDkxx+1nR4BarYWyLVxefmS5fKJtL2TfcsQ4uXWnQq0Dq+2C2kF3aa2jIRAJltUQMIcdAhIL21bMaagZnUab8vTyytPLKyEIX10ufP3bjbfvvzatgwASbl6Da3Yw7r7R1fx6DdZ4I4e1rAT5L1IJRyN5Sw8a/4aOSNpBwxGYNjZ2Yafc3N4/qrfAYoC8W5rV/sV2hbYNcevekJrlQ3ja+rinxmNqq6gpBOy4iAcR+qZu3Lml1t2ydgclQ7Dd1fIqXl75+OmTZ7QIc06kPJO+fuDDhx+5XC9IOFFlInKGtBKqUeQMswrTfLZzE4StrJSysS2bA3mwhO++A32CGvjwAx2jBwlqp9bOsm3W8IfIPE/M08Tbd29IKZOnExIsy6VuG6VUWldSSK4zOTafQ78VQmCaLCtlnmcHyoFcGzFGptnu5bBfRMc1EUJAWjsobrSb7VY3MwfV3Q483alQ97rXve51r1+5vnBjMaazx3T5L9Zt8/TZBuOGEjK2Dr8EHn+GPvLZYzk1o2M+/8fXOdwQwVtMtzbtTkOqezYA3vCHYE1+jIGgG6F3AgUwsem6NVpRlmulbBtrWdm2jdY7pXoyroeT7bGBO/gJPkEOCNkn2ofmIcTkzeDJnJGchiEuJE8OKMaEM+ds9rAxkrO52eTJmmVBbmx3xbMsOq1DiJk8RyS7PkacZiFwPicPjINAwfIqVoRKoLk4VxANlK2zaqeWmdYDpWe21qlqNCnEM8C0kkJmni0XoXuaMOK5IDfcckMD6m5XHajUWinLxuvLz2zrC8+fvjVOfszM50dCTGZ52hvSOwi7EH5cP62PvQXW8LWGpgEyw24lenp8gGvA8EmhdqVpJ0Vroj99+mRBbZeFb373V7x5+57f/eFvIM/Aaaf/SLC0aiUcKd2qhCgEVZpUjn3BkUFxXOeHWHtnB4ocTfyhbviM+jc2F8dNNwDDOMTDHOGw21VfHaoK0gxsWHidZUv0ulHXC9oKKq+kfCLND4Rk0/lWjVI2HMzs+ypNFWmNEKddw2G2stZ4d6dBib+OVj3DoXf+8z/+Iz/9/JGX52dynpimiXNYSUmZThG+PnF+zDw9LUwJ8ilT5YHahdfXYhuBUkAaBCHkmYeHM4HgWR6N4gYLpiva7Lm1Shx5Ib07/c6xj4CE8fVKXzbWtXC5rkzzCzlPnB/e2PM9nQinjKqyLqvlybTGrRh/bBcul8sOMOxPdpAR2TanR4XINE1+jj93uosazSEt2PtZKeWwAlez1A1BaOkOLO51r3vd616/bn05FQr2X77/5S8b3fWNIHt8/pZvLgfb+5b1/Uvnqf1fqrf/uWm8bllaw8FmhEkZ5aL26jSMw/nIfvEPkXYDbbRS6NporbItjVqV66VSfAJqzjNHpsctPczcmQbAMaqPBAsQEzksbEOA4La2KZyQ5FuKnHYqU4pp99qPzsOOO9iwqWfK0V1zcB78EM4qdDGKittuhu5NrUDE0oOjdIIIKYhPmC2sDE/m7l32Y9u6OdP0LnQ1RxyEw7XHn4e4hiLF4Zxzc3zGlFxAdiqP07V6o2uh1ULZVrblmW15ptWNECMxT4SYDZho4/Od1c1rv31cf069iwO9Mbl2u2PXq6SU97yQ7hoNcQeirRSenz6Sc0Jb5c3bd+T5gTRDnuNhZ8rYRrgsOIzutBM43JhGivgBBD67O24+dvMRp1ztx25sSm4pMDugsDvplvb0y+O0X7MiOxVoaCxwkGG2tI0mQkyZ7qnVtxSs25RwWjOaTrjdGqrTwdp+z4QQGAbUtXXWsvH88sLL6wutVU+sNh0HXQgUpmyuZ9tqdKQ8BXqc6EQDvSWQS0BdMB9iNv1RSLs961bWHYDGlu1ntOKOVaZ7YlxD/j4he86GDypUbKBAMYcziZajsVP7/F4j7BtUxTdnTvsSscyJcT6G5mTXW6R8s+EQVMN+vm83uANsxBjHFYfGQ4MjNzSqe93rXve6171+jfoiYCFU5BfT1hsosH/V8ee/stXw7xs4ZG/SbzQSt5M+YJji22PfNFeqw2XJeP7bVg4qzqAGJLdojNGpPpBDI4ROCG0Plrq8Fta1cl021vVqVKdWod9mR1gFn36De+EHF2CGQydBiMRoICKm2TYVMZOnyVN7MyEKMQnJRZ6neWJKybYSaWgrMjEFT/21xqf3jsUBmOORoaZuwCGo040Ol6IgSqQRdSFoQfriXHjjiNeu1BqoGqmaKX1CiR62Ze5YU+wElAkleRNWPeRPW0NCJ4bAaTb6lDW/Q1th2tvbs79PynullsXcn66vXJ+/Z1ufEYnkfGJ+fGcUJ8/06Go/u9dqacU+mR5/xjUzqCG1dtegJD+H5hgUU+b8kEwfUyutGy8+xMz8+IC2xvX1iZ/KlZcP36Nt5fTmax7e/5b33/w188myTw6AOfIzHOB2c+fCny9ys5Vz3cm4nm/x9K1IW+QmAO8XqOPW0Wynxrh72+gtZRyJ3vZARbCt4a3LVHA6V3XBM1rQCm0LSMdtfT1g0JttS4F3QTEViT6pH82u6za6p8Kru5cRAtftwoePn/j46YnX11dQqMW2CZcMs1bypJzyIw95Yopv6CSaRBN2S+BhWumaUT0h4ZGugbV4Y+2bqaaddVtZlpVS6nhmZsIwJv617gC3lWqaoTq2nM2tjB0EA1tprOWZEF5J6ZnzwwPTNPH45s1O6VyuV0qtbOWwfk3JXMpqq5Rrhet1p1tN08T5dCJnA7pHxkj87DwDxGHSkECjoj0RfStbWyOle0Deve51r3vd69etL/rN01pHanHHodtm5obZgoD6RHJvno5GqPu09LN9xE109p/fROi/+dJb96IBKLq7spiQF0zAaI14DEKM7kYUDUiYu0qnbBZAVUql1sayrrRaKbXSnO5k1psCcgjEjdJzUGvsY9GBQ3AwYX71KU2mh8gGLGJMpDycncT0CzEwzzMpRuZpcptNdzeS4Cw0A0u1eCZALRY6ph3tRrdRVQ8fU6KwT6SbGhe+7lx3aFVoTWgNSguoChCxHU5AktEwppgcgIgdm17odaXURm+WI9C7aQrOpwiaMPGxNWXRA9taa+665VP5vVEb3HvotbBcP9mGKUROD++Jabbn1Dtd8RwQo+SUbTsARa0eKObamRu8q8Fsc1vTveEe51aCMM0nYmpI2Yi+JcKTySfOtFq4Xq98/PknzqWZdTCB+fzI4+NXpGkm5xPTdPIE6+iTZbHNj5iOZzhe7RSncU0P+pAOd6520/TrZ/fBn6t/66L2y82Ng2cPqjPgIeOwuzAcv4YzIXX6VtDWqNtCGO5LKZm1cEz05unsvYE0lODgyelVraLNwtpsc6jEaG5FtXU+fvzEP//zP/Py+sK6bb5VMoekba30LiiF06OQThMynUghMMdkZgq9k3RFgppGKBSQzOP8gMYEYWKP7ns4sa4LtRSjQwLqyd3jmumuvSql0JsFRHa3he7V7Zb395vPaWqlFFr3tOxBaxQxR6icP3uvGu5bjPcSP/+lVvR6JW4rW9lIKe90qegUSRmAwu+hOIT8okCkuwC9xjuwuNe97nWve/269YXAwjjU5kqjTvGx5oRdnCz7f/svKEL2CZv27aDBPrlPbfctRTv48vtjuFMKQ/jpQVClmlvT4Z7jAmExAXIKwYXHPrUP1gThri2ldK6XzrKaGLvUqzd3Dfrw/g87gyVEz3kY9ppuASs+DQ9p6CAshG4kW8eYmH1LYVa3wfnTxulPKXCaZmK0FF/116rdp9rB0pN777Sy0VuhloXeC2hFdduPj+6Wl9E1DCPhG5+WDsvcQKmwFaV1E0pkd2sSMSF7Dt50urnOVk3svW1XytbtuhBPjO6V8zxjQWvdN1xmrwlQax0XhG177MpysKnQlVYL2/ZquoCYmU9vUTH1R7+hO4205VLq3uwZt73vG4u+a3CEHjDr4KBHvoIaHx0RCw2MHhIYo1PIAkFsw7VU4/I/P33CWDARQmTbFkCY2wOg7uyjaJAdHO5Nv8hOx+O4A46/ymGDul/Po+30DcHhRvWXaxdtcwAVuy7MtaxVB6FdGLntwhi0ByTkfSumDkgICZISxTNS/NrvfYjvO+BZLG4cYM5PzbUY/dg4qgm6n5+f+fa777heF6oLmEcmRtmaOR9pRRNMKTKfHolJmJJQ1wvSC1EKMXRiUiRURCZSniEGNGRqByQQU2abTHPRPZldCW5GoGy++aq1eEJ5J62mIzHQWvZjt1tKt2NjW1uHvlGdzpVy5nw+k1Ii57yH162rGT30420P/HxVBzaIUFsj52b3hSixR5J60raGgwJ1s7kFCKp0kbsr1L3uda973etXry+jQoWRsSB0tTwEs1at1G1BVQkhEdPkwuTbX3rdAcFNsm8I6Jio45SVwd/eJ4pOZxnTPucqN/du1xvqVBxuRik57QkijRQqKaj3dMqyNta1sm2VtWz01t0dyhswsWYSyTtnPZhlkot+B4jI7tiUiDm7HsIoGikl5vlkeomU9m2J7QEaQTeig7M0GxUqREF1RdvCZe2u0Qi0fgSvtbLZNqIXLP+iEaS7TqTR/KMhz3QNXKqYJW7pLFvzrAewlsapNVGYsxDEJtvSNrT7pHYTtg3qYsc3SKBUs5ud5kdO5wxESxdvjd42fve7r/nq3dmpMHLY6oKLd72NlWNzpc71//nDd9Ri1JDHt7+38LuUaXWjlHVvUHuzBnDbNqertF2kbVSQ0RQf15J4sxVToslw7OkMl6UYjCd/Pj/soGJkhMQYecwntBZeX54oHz/y8vLC18uF88Mj63rh/PCWh8f3PL5ZmaYT5/PDzpe/rSABIgZ+2A+Nb7z8eguHGNccsmzDJkSIzqv35v7Yzuhn95zpW9oOUNlVyb4l0k7ze1aCTe7H9d4loiGbI5Snmfe6oGqApOvOoLO/D80FldirL0iqmRpoIzpqscRy0yX865/+lT99+ye+/+E73+iYScC2bdRaSdOEKKx1Y9FPpGvlnTwwTZk+Jab0QMqdkGeCmGi5lNU3dC/EKbh9rOc59EYWSAmUbT8GMs8giUZGdUI1UJo5Vm3Fhg+1NYrb25ayuSmE0krz9yOj0Gm3BHvUtg/9cjFa4GkmxcSUJ87nM4DrPgqlVLZtNUDrwXqDsqeqrOtKrQZWpmnyPIzkG6fwGUVq34Z09WyMe93rXve6171+vfo/8JtHPmuGrGcRdG8eb5xsTP2IiPqEvdLqhuUoRA/2Cq4DGGJZ20rsTVU/Qs/U3VuMvuLc8zCSp23iH5yPnKJtJ8SntJYvYW5BI3+iFsujMLca9unfCBwbG5kx+Re3GI0pmZ99yju4GGLqKUdP8k1MKSKixFCt8UGP/6odFwlK0ADdhKFGFTKqk3H1hwjUxc69uINSRZzhPg51b7aVqL2j0uh0qtOcmlrAHn5MotMlUgx+Rjsh+NkNQqvQ7EFdB9EhKBIspXic/UGFO80BUQjMPJwicwqI00bMynZfSfk1NCgk9rfWm7ky+bTW3J8eIESaHiBhJDePDcWg1Q1q1NDYjOZq/HdIGTTqsSWzg2oNuwiQ3CHMm1y5pboZfU3yRFP1n19ZLq9GReug1c6JbaWUWqO9Us2eb/G5QNsaaT7Lcxm0QvXsDVWl1huq4KA33T6SfC72Puxlb2hQdoftG8Vx8w7KlaCHsNiHB2Mbt4uznZq1C8l13PO7H5r/02h2YzOpnmVhLkuR2hrLtvHzh595vVw4LKGPrY4dA6PIiZj+oYaV6+WFWibKNjPlQIwQxLQ8KYin11ej1pUN5UrX4ucwIr0gWun9xaiSO9WwU9pq0XRqepYeIInSoto9NM20rpQ205pdV7XYBqjWYhsJv467Hi5TwbUz6hS+4LOQECMJfNt5877pAKx6CF7Q45y13m1rPGiSqiSRPcfi+KN7+Oe97nWve93rXr9WfVny9mjn9aYvk4gkYUrpRiCBNy02UYdCvXxkW19YLp+IMfBwPnkznpA4Q5qI6URjoqlYI9GsSRy0qIPaBESnJ5HNKUgCOcuupYjBmk7zoi8s143rUndXmKM18wbPve9tO5GNopSM5mWbmpmYsvvXe8DVZA4uKWZmt3+dcmTKmRQCold6vVDWT0jfEJSUJrcmzYwGu9d1f63FNQLNm1V7hkblmpIH3jFyGgJdI1sTalVeF8uW2Eqj9ori+ohpNp73HHfh95wCKQSmlKl1o2wXgnRnewWKBFYFwabV0Egh2uvPb2its2zHBPvtQ+Y0RR7nE6esTLEQKNSqO0c9jpTt2y568NO3lXV5pWlnns+8e/eeUk1wXdYX4663oasxobY2p1Cpbb2MamK5DgY2xtT/mKhLE2Ko/uPtKg6eC6KqxBBRIsndwmyzYuBiclHtm6++YVuuvL584vL8kZdPH5mnD2xffYOWC4/niSCmI2m5kVKz8+5N++DGizfbBtAOgHDbZPfeqLXt16axAdWtTO17w00+y05/ar4D1LGZcWvabh8XFW90zdxAm1EUgwQkZbdFTrSYffvQoVbMDnjz5PdkgXP0fWs46GXqcLUO7RPBMvaCcF0XPj0984//9E9crldynm044c/UtASBpubUFiPQC33rPP30LRpmSA9ImIgp8/7tI+dT4nxKtF7Mq6Bv1HZBttWfl5BjIISCUGjLCzEkcn4k00GF7fIRqEDndH4ghIyGREsZJRHnd2iYaEzUCrXZRqO1ajkxvtEwO+q2A90hlu+qqKd2SwjEnJkm22qCZeus67pvKDYKQWyDMRBndTH50BTFGO3tNiWSb93GtTPdk7fvda973etev3J9oSvUL3ndg2IyrGd8TOlixCA+1WydmCeynhDPK2gV0wZQ6HoFiRATkt+iksw3vsvO4AghMAVF24XeNlQa0/TAm3dvzGkpJKMSuXvLcl2ptbAsC2XzDYXbSQ4qlgTZsyRGOF6Q4E2TibBjNgF2cgFmTpnTlEhBmJJz9qUTw0IIQk4R0Q7VnI60F5IWx1rC1gRtoGJp15ZAXHeHozH1HXx3m+Z3alGua6eV5toIs4JtGlDSzpNHAikG8mSvLwanhEkl0bDcZjXrWVVq94l7K7YdERDphNA5TYKEM6riQuWxdXghR5gfLD08SMAyxSqvrys9BfqU0fMZgoPR5M9RjusDbCpdS/GGqfHwYNkXrZvOpveRZO4ORC5eH4nNXdl1Fb2zU1R2wXo7XMwGfa7dgIoYzT7XLGyFHkYextHIm55gTPADeZrIOXF+OFPevaWVjfX1mbZe+PDdH2nbwvzwhjdf/zUPb77i9PCOabb8jRCzp5kPkGjHY2wShmXtONyDxRSCbflijMdGzy+UcZ2MfIgB8IeweCwCrBk1gfKglfXebGIuAhIN6PZOzEYDbGnyi7D5vdugV+yCGNasx0Bh7Eb2JxZMwC5B9m3SP//rn/jhx5/48OGDXa8pYoYPtj0J+zHPfm9iepY4oeFE1ci6dYiV0JSqkF4DOQVO2TaJp+lk96bN/gkIGjJNI2hGQ0CjWdYWP0bnN7/dwa70YuLw8kLvm9GcqoGZEN9ySo+EfKLlRO+Rcj6z1ZnalOtWdv1PdXperWXXAI1rubdK0+6OUAYOk1tQq/Zdx6EDNFfLeDGNVqRP3YCFfz46jWpQ9/5rYv973ete97rXvf7Pri9P3t57iIO3fpRwYI/x94A6lSimCZnqLoDsbYRPWX4CshHVUn61h71ZFom7s5O5NG0onUC3dN6UkZiATlO3TN0q21ZYr7b5qHuD6dSHKObclKx5Cc6lDyEQs6VcxzSRnOKUJ/ulnXPinAIpKFk6gWpbGbGpcpRI72adqq2AWiKuYtP66pNZ5eBno9uRPYHRsDrGXe8KteGNSqesNpUvZXxekHjDzU7uMjUFd+4RAzp00v4s2FN6lc0pRX3/bAhqQXdR3MEnUHuk9+qN32ap3CkSJSLYdLm1Rt0KUgG37g3aEXcKUhE0CNEB0BCmj42GqpKnCZHg4GDkJNzmJfzbP70dYML+HI49t83VYd3Kfu2ODUHA7HrH9wx++7FTGTeAUVhiSMRwos8TrWxQC2W9sF6vPKOs11fUuf0GqOz6jw7tCIGguoOH3ZgAo0Yd4MA+FoJReYKEA2DZWnB3uNqPqY7vO+7RARi608hqdbcmmlHYgtsmy6HVCCGYxqV3Ax86aIrVzqX4harHTGFnYfm9b2DVrvjazCDhp58/8ONPP3G9LkzTzJQnRt5JE3VdxAH6CcGBRbKNQQu+pXLQvW729QTaw4lpCoQ4kbSZjbQ2DyqM0M2xzMCt0Ii0bpSj0/RogYck6vqM6uK6oZXWr4hshDgTVMnRNn4EU01VjUw5UTuEnGjV7tdtK7TaWItpYWhi4G4MEga9z9O2k+dX2OkcoKQetL+uaLQTfKupSDHSY/TrIX52vd/rXve6173u9WvV/6GAvF86O8nxGQ6rTO9utCPaiZItHO6ciNqR4SSjMA1Bt0IfNJmcTBMwRNJiAKNNk/0iTWICxphY20bfrlxfn2ilUkv16as7/aRO0o4wGa0pJkIysXTMyUGP6SJiMBCRYmZKM3O2CfOUNwIbQS9QPqF1Q+vFmp+QkHhG1G1WiUTNRsnxwDWzcRXyeKFB2WKlYdaf5qIFSynU5gLzqpSGuzX5ZiDMBBFOjxM5Bwtoc6G6NfHdmwvTc6Rkzd/I+dCdxmYdoUgixUYMDZHqib/vDqob1QTnsjnwSDR5oGrgWgPLtVOKJRPTE9Ijs1x5ODV+05U5KDkqW9sIRFKY6JjGpNRiNJL1St+tcnHAo+7GU5273j9rms3e1gHXTW7FmIqPTcUAEZ8Lm41q87lzkj1W8A3P+J7eB5XIHqz1bgGFKUHOxPxAnB74en6krFfK+kpbXtFW+PSnf2B9+oHT+S3vf/+3TOc3nN58g54e0JT36biKEty9KsVwBHMHOwN5mtkzLvw1xKRs20prpusYxgpje9g86dwsfn0ztG3QCloLZV1cG9KYZqP5hRuRuQEEIZ0eiWmGNFMvP9nGrDWjLnVA4s0m0wCjuagO9BZo2vjpx5/48PEj3373Pd9++z2vlwvZTQ5CCJzmMyEEc4Dye8WcuRIpndAwozLR8sw5TLwNZy5boTQPncNe+2VtvK6VTy9Xkg8jJJjxwDxbhkSMAVF3XeuyA7uHh4mYbBugvEfDW/r8HvqG6EZMlsESsTcqLQuEgoTIFLPnUwROUegaaZqoLRug2iZKqZTaWLdCbZ3S3Gxg2CQDZSu7S5kNBnw7cQOUx/ttqZXQZRd2xxipPiApJRrgvde97nWve93rV6wv01ioT7bHpNjHk0OCa7pN57RzCLiD9oNSr9E2EMHFywIRe4yAGZSa0DO62NjyIEZDmOzXun2ViDm1lEKrlW1ZnS7QzBpzCDaDEOVIrR52sCENAXYgp7wnXE+TCUFz7KRwJUgj6gXRDdEV1c0SeSWAZJtMy4RKRCTR3da16kgp7tS6uRe+fZ9KpDbTDZTa6Sp0FbY6thT2OkMUQjL9RwpCDtG3BSZWz9kAkni2SG/V6WDVSCB9tCEjTXq4BQ2x6LAZnc1dCqMWOSZ0obgJ4Jt2OuJT2ugpxErtSqkNWkVaIYRKjTY9b61Ca0AmKqRpwJrD+tRsVa3BH5x/GGLstl9HBzfIrscbjfKNjsI+d+vENB5zd/jaeei/TLiW/XENZLSdPiUh0Fo13UDafGJsDXsQTxrPBlyZJrQ12raaWLluXF4+UGvxawTQM/h1jW/QwLNidkHxSFa+0U7cgPnuQuEYbOOiNyCq1rIDqV3wfZsiPTY+HmqoIdgQAGG3exrhjyFAyoQ027nakt+BRyljg2bwc3zu9XLh9fLKn779lpfXVy6XCwA5j01h2G2HRSCnjBIZ2w4JCUknFPv4Vja6gIZgVq8KvRm9EqAO2py7jwXMHjrGwFqqg5lo1tMq+30A0FAPo0v7sbfrJCKaTXgtShQlp0BSYUjywxgY0N3EwLc+LioPIVNTpFYlx0TtnW0IvscG95ZWdnAF92O5g7XjA7jWewfVXcZxwC2F73Wve93rXvf69eqLgMXgtjOauH40KMDRrIx/+//aRHHYjFpjnBPkpMSg5Gj8cBOzZsw4VfYGY7euDezuQnWr1FLM/94tR7dtNWpEb2gw7nieZpLbM6ZswCGmiZDMzWnOEykG5pws6ToGpqzmjS8r0p9BF3r9aBQsLcADMCHhEQ0nNEwQZtOJSKJq8UYhuuNUY12fKWWhXFa6JprONE70HlgrtM4OqkQCKSdSjkwpMJ0SMShTVHI0KlGC3WIzOFenp0SlU7XSmrlHaRthdIEwz8bljsnEuk4jCiGRQrB8Dxrbthro6VCL5ZcsW2OrZsEZYyOmzDQNVKn0shr1q6zEsNJDInSlt8JWK6onMsqMD+TVU40tNnxvLJtPw6Hvnv5dGxwqEis5QMDAGgfrST5LHS6l+OdkBxb2EJ894vF4akJa1U5MDmRDoBfLcQkh7M1sDOYslHMipIl8emSaLIW7rlfW6wtlufL88QfS9EptzdKtFXT2vJUQCY6QWjfevDgl5hBxj3tttPRKrRvbtnCaZ1SDZ1LY15Vt3bVDenP8ut7a2Bp61Fbp4mAsYlwsbd6rJ2udYybMD0a3Wi/74yFOq0OMhqjueoSlmv/88RM//fQj/99/+N9s0+hapZTSrocZwFHUNQZxhpApHZAE8YGuQu3Ky/WFpiudjZDsnqsjOds1DANwuZyLNLFbB0/TiZQmzvO0Ay/bbimva/cNwUQMnjeThFtb5OAC6fMUmXJgAoIGoprWyq8iRoBmNE4h8zyZJqrBWoyeuVUL4qu1uuDbdBn2GkwUr10/u67HtT9C9Q4q6rgfHGCo3T/3ute97nWve/2a9WUbiz7sPnX/BXZMivsNn/0XU7cxvQvCnDwJWxpaN0qvrK17Ux5Js00x0zR5yF3cH7L3Rt3anojbmtvFSkBTNu93hAnQaGLsPE2kmM1Dfp7dEnYixehix800A/JKlk5SJZYOFJQrtV3djjOh8p4uZzozSqIyoS2hPaLNm1agFqVVZbkse9bCdYFaE6Wo0UdiIEQTtwbflqSUOJ1mc5yKCWh+XDeDXQ4+CEIX2QfLlroLUoUYZkKYSWlCtaFpY7Te2pXai+kgxECbehPSOqzFeOGvHuClvbsOxHQLuFuRUc2E6yUwTRMxBsu9qBt1u9BZCESeX5/58NPPfPfdt/z1X/81X339NW/evb8duP5iY2AgAIQYLIQNTxseWXFxyvQWbNsRozvjpP0aSW6EM+VMa41lWfbr0YSx9njdJ8O/zNiAQRuzRnVdVwM4vdk5CME0M9NMDIKGSBOhaiWrMCG0YQWaT2QEybNPj4XL5YWQPlBq5c1XmZggSfTJsx0Qm/5bo403/CEEvwf6jqDGoSul+KbNXJ+OcL0O3SbXXTutNsq6UraVXlcCMCV//aqe1t6R0CxvJCQkTb6Zs7A5TYrkE9KqJb2r7lssCYFoIRu8vL7yp2//xL/+yz/z9OkTOU+m5Q7BKVSW3N1q24X7XS2LJIXZHJvOX1F74LIpTQ2Qxin5emQIw40qNpySaJWgybRTCEIwzUVwapWYfsMGHZZXM52SbfzgcHVqFxTboJhj3Niu2HZi3QpRILugPmcLwRuUJBELqgvB82t88SNBkBjpPTDVSJ0SrXXWMtn5KZaZ0brZNO+A6SaXhQEKD9U+3Z2t2tjCibDdNxb3ute97nWvX7m+fGPRPqdCadfPgIV8pt8+pmoxyP5LVuho94aiNVpTb0wEun1tGvkBY7qrlnLbatt/AduEUvcONYax2Yjg4mwDFokcEvOUHViYq1MMSgqVQEFYzDXJu3Wl0HSlto2uAmQ0nOnylk52wWYyC16VnSYmvdNqoVWzuLXwq8q6Qe2R1i0nI2qCkC3Ub5rNojYlTuf54FW3YoLpanQkI164zkAOcXfzCF87tuIc7egTZRO1o0rvJhIfVqUiemQ+oCwblNq5LIMu03ZLV8EF3Yjbh2I0NxRSJIja12un02ldWJaVj0+f+O677zmdT6QpD97GQaORG0qNN85DyAvH6/GfdMvm37cPO+1pT/LGNBD+NaPBjCF67omYjkKP7YWih9PR3rixh88dCceBIoUQ4qFZCcEzIAJBzLXHdDzRJv1i14j6tVG2hRCz2456TgSD7eXAondzKXM63Ujw7rtzmB2NIEL3LUj3jBcDhc0zHdouhC+lsa5XtmWhl9Xcw8LJH0uhNwapUfELzN2iCNFF2WJ2yd0a2V0TFQJBTGNQauVyvfLjjz/y4eNHLq+vPJzPfv+b7awEA6VFPNyPYxMK9jPi9GDUSW0EzyLJSYhdLatlR6iB3uy6QcQpmnbOgmAGBqKeAm4ZEzbsMJolk+XShJDo1RK2t7Khilv9RneLizsYHj5eZpgQybkzz7aF3cM5RQmhm9aJ4/1M6Kb9iAZyWjCqaIvRrqFaad2+dtjWql8/fdwoNzfNfvpQZAQNBs+eude97nWve93rV6wvAhY2dQ3eROOUFZ/2emMgKofANERiDEw5Ev2X8Xb5RC0by7rQXUORTo+kPJOnE9H1BK1Bb9UaSLWGqpRG8RC10gpDYBrFJopTNgFqzMk2HimS80wO+J9KCIUsV0SLhWW1gkhHojkJtW7ZF51A1zM1fENnYmtGx+hYIJd4g1zqRm2Vy/VCLZV1WZ2GYVapxp+PpJxJMXLK2ekgE/Ns2Rc5u+UtQ/eA6y5AieT86KndoLqiWtC+GcwQYZ6Mq9/p9FaopaBtNTJZGDxya5K0mxPQVjqlwcvFLC+bWqN4AEELG4yTnY8Y1Gx++0hb72jrSKloi6TzAyHbdPeUHsgJfv74xI8/feCHH3/k/PhInE5jd8KtmBoOh6vgjXZXm7ZaUx0cKEZaNX1D69YYZj+u4A2+N9bbavkFIQRyntCu7noEgxIlwabmoyEf+qGqR5J1rc3tUNmv6wGmAXKednDTquUQ9AeIqZFVd3tRxnFNUNsKm1CL0ZXMVtUAVIpik+rWiMW0AdM0705JQ3OiKDElJp1Zl6tpWYpb9LbGtly4vj5zefnI+eEtISZqF15ennh9feby9JFTnpj/8NfMMWKmamXfJmioBia62RB7JLi/7kDzDPkBOkK0fBZR4Z/++Z/5/rvv+E//+T/bFkGVdSsWGjlFAyExcnp8IKwrnU6o/k4SItN0Is8P5Md3SDrxLp33VHUNpg9qKizL4qnYZT9fy2qp3WUrqBot6vLyzLZceP7wA229+DXUbXsRkzm/pcz5zVdM8wPT6RENka5wuVz8Xnb9iZhmY2h27D0u2vDChwPn03m/rxUDffM0k3xgMCV7jJRnt4M2B6zWlRQDrUZP/S5Oj6rUeORX7IOdm6HOwBCtdxPya6TdccW97nWve93rV64vAxa97VNN6xCd18tBawnIbtuaovGTW9m8wWqU0swiNZ1I0RrRlE97yJ12o4G4TNhVqp5y27uJfgVCtFwEIbibU2CaLXAv5kyeJkI0t5YojeDuRtIbHgWGEVeMVkMrlAEsmvOhezCalYCkIS8P1uT0Rtk2igdejVCs2goAEgNTNpF4ytkoQyn68zLaU0ymN0kOpoIE766M+2/unkpULEOgmZuMqiIjf4Po1BfLF+i17CnAOL1mAIvSDDx1d9JRhDwlJnHU0pt/T9iF9SONW8AE8U42G1Q4a4wDKZ8AJffOm5OQQ6dtLzsIqbXuXv6qo1FT31jV/eNm89rdEcoBTO8WmpYivcoN55zj+rOjvoMVy31IzPNMb0emxQA1KR8CXRcuMFLOj+bdJAc44Nsv+2TXaOud2Du7u5RvR4zGZJ83Ghlo052e1HW1xnG7IiGQ8mTPrYudz1aopdKj0Fp061XTYgyx+6AhuhLcdSHNqW2WCt7aRtmu1LLtG4CnTx/56eef+OG77zhNM0LkD3/1O76KkRR0v487IO7oZlSoaNochJAyQ1htRgSCSuLl9crL5cq//Mu/8unjxxsgO3QuTknLlkReS0FRcs5UPJ06JCRMIJkRsidOKRKC2TDjWRuiaMDzSzzVWsTC9aKgzYB3DImcJk6nR2qM9FpuNiSYEFyE0iqUgoaN7pkepVW/BvW40KpfdeIUz3EPuCPTcl2Ifo+HYM99yhMxBKIIUxanPT5YGGFMqAc0tnZoKiQEAuyZFLsYX2+uZzUDhn6zBdx1FveNxb3uda973etXri8DFq1BaLuIVo527rNJt2kEAjFYk7ZtK3VbzFIxREJ0UXWevWHKu5B2cMi7duecs9Ov9l+eu5OM0S9yTqQYmU+T28ZOpGyaiywR0RW0HuF8TfFYbWBCtVILLLVTOvR+wunaNk2NyvmNuld+ZCsXtm3j5fXZthsezoYoKn13lzpNZ3JOTNPMPJu1Zp6n3RpUndhg4CKYe4xFiu9TYhVBWkfrRrtuLgbvxGgalBQz6/XVmvNq09qtNLbqDW0PDEGyAadOK50ULRzu4fG8J4b3ujoFKoI29qx1hd49sCwEUjZaTOv9CBg01S8ijXePmUTl+fuP3gibO1Rz6tuYvApK72Ynq35uUopYMGLfrTgZXPU9sMEBE+xN1qDdjSszBEuEDyHubjvbVnZha/JNQ63NqW/qTbIfN9/GGfgY4KwznHhuhccDhAy6lGkk2EXBRxPY3a2rEmplWy6W9D2fTbzvNJlaC2Vbja8fLG0+aiKEQUW0YxM8YM+OQzcql+rhCtY2al24vl5RAg/vfsuHDz/zr3/6E//7f/4nTvNMjBPz6cT5fIZJPJgOpHkjq823Et2FApGQZiQq0pWmfb++np5e+f7HH/njP/0zy3K1zBmn4W1+3rtP1EWE1V9jnrJtA7sgcULDhEq2iXvrCPUAud3Ol1QLv0uiNDzzpDnFCDFg4c8r5ok49E91o2k1INYtwK77sKQp5n5WNlSNejc2scCeoH28F9lX+BXpDlG2BTOtRXZalJhWA8Pvcw7kKfPmTSPNJ+KUkd1sQI73VQfIlqtiW9khvO83gFY10Pqwtb7dYtyBxb3uda973evXrS/TWPgoTZ2+Ej2xd0xUx+Ab7fReKZttB5RAOL0hiuxaCnERpU1cu08mZf9l2PrOJmbYXsZoHHn7eR5mFzIxh51yFUI0jnswXnUXo1Ohk4kQtO/gCKxBbERqmOnxmELmqEyzNWjaO+vzE6VDbRb01RVinEnJeNx5OErNiRiGWLMRQyAlIUYQ6TS9WkgXkRTS4RzTLD36urxY00rYp8HmYlnR7cq6XZwK9oJ2S40eOgCNfnxlIqZAEmGKkHxjU8tiQCy9tZRzCWgY2oiVfEpODwEwN6E5zQRJBMm2oBKl9O42uUr3Biy4G5F2JYkgXfn48WeW5ZUQlJyi0zyKOxM1c/Npjd7KDV3IrrEYEyIFpO/6AlWl1EotN9kSN9fmPsUHC0wMSmhK64WmzTYI9kOcjx/o2nY74hAi6jkVQ/CeBlXFwhDs2vCNWHJhr4na3d0pJgcexzUNNolurbJtC6VW24LFb3n3VeF0Ou2gJ0TTNoztjWVLqNHSooUR2mutuyvb5s2x9mZ0QAmoBmKaOJ/e8N23P/DyeuX6Tz/wr999z7ff/whkJCT+5bufefPuPSFn/t1ffUNOsr924cZG1XXCtsZJRl1DKaXwennlj3/8F77/4Qc+fPxIdVveHYD55mMAi9EgA/SgaIRTniEEmgRUKq29wup6qRBAzZFN9ZmA8iBKdUD3dp5hTkAiBNt01D7e3rIBfoWu76k90DRQW/AtR/ecDwOTKrafq9Weq6Vfe+iiB9X1tnkj3/ftVrcDwrHWELN7bo3QnbIZAjkEzo8PTJPlarR+pVyvFAXxEEUczPa/EAp5+158JMhH5GZT8ctwyHvd6173ute9fo36woA8q9HoxSD730dDqE7L0d4p1SklYqm3EoJPwM25pDm95HPDRCv/tWnUixh2+80YbcIffRodXVMRfEsSwPMY9hmyU1BMuElviNbBZKB2oWugkXZ2l9FlrNsYWomtNKpTpdRFszGZhiSFQM7WOJ/mhATHMAyxOozgut51P1ZNBZrZw1qjWCnbtmsrRrqxNjWAU1a2slF7pRSnQPSw0yRCNKCVYiLHYBa1oRuwEGtyg9h2JMToGxHPrFBlysG1Fd64aDd7WwePKjqClk3nsP9LfDtlFLa6XenblcvrE+t6RbUb0AtimwnnoHS3Bm21+qOYvsXAjexfpzgAbM1pXH2f6o7nbksLPT7GQY+xwLx26F1dL2Bfaz85eOo0vk0aImbxzdkgz4m7H4kcYXRHOYVNh2ZjbPV8U9TMTrTWSgeW5cq8XFnXK6UYOAxN9htAFaJ2SrSNRXcrWnRkfJhI+9iGNFSdIihiNsJ5YlkLT08v/Pjpyk8/feT5+ZW3b3+DSmTZGs+vVz4+v/DXf/UbuybMW8hfkueeyPHvcT5q67xerzw9v/Dzh595fn7mer0wLKnH1wcxUwaR45zZxsfOeaOTs7+niNDoiFakLYgGQheUAlqA1TRRMpxxhejUPcSCIZHApHqcZxmidGhkVIXiVrS9O8BQUM+m7xJpnuZea98T3Wv1bVtdLXtiaB66aWkG5U6HBs2IcQ7T7P867OnwphfrHpaHna9JzAnP77dfAolbsPB5wOOf++8dWNzrXve6171+3foiYGEC0sDk6bVTGM1fY/Xpcy2HuHcIDYc42Nx1GiN7oTl/uY+UYLANQAi7FsHElZmQEjk/MMeJKWVSjoSopCkb5zsk8w3qG9quoOaiFMNM6xulLpT1Z7RthL44L1lo8gDhBPktijXbpSmlVJZlYSsLvTf3tE9MOTOlRoxwyso8m2gcKkEaORYgoxpp/bCQbL1YgxEShAgBtm2llMrLy4sLvqtxsWMiTSeneCjrxcS5xklv1vCGSAgW+jfNmZwiD6eZ0zQxTxNRC6qVVl5BDAC0fGZr0NfClJQUIqeMU9cy0yk6RWs0XR2tV2pX0ODNlzfPraHruge5naZHunQqhR//9C+8Pv/Mt3/6T2ybefaHCCkKrdU9n0FU6a2yLos367AulRADOSdvnnW/lmoVijdyQw9hHzeht7htq6oBwNbs2Jdto/dOitHTnEdAoNGVUsqWPC2eUxAj5qTVWa9X1840kliGiO3lboHN0SzT3JqXkeRgDWVz8bFlgdi9cLm8msbIqXMhRNuCyEgF77QmtF7tmoiJnCcHZZ1Sik/MTXlgmpXKCJXM0wlF+fll4Y/f/cQ//G9/NOMrAt/8ZmaaT6hEvv/pA+u28X/7j/8eYt7ZPSogwfQUtmk0sNt6Y1k3rsvK//6P/8inTx/51z/9adf22FZKIQjZXbFkP2LYdjNY89zVdDZSCrFH8hRJdFQaoRWkj58b6EEgvEFFqBIIGnxKb/krsNFYbHMa464P0vaE6or0C+doG7juyduNbtbNIRDSG/uT3yHhjEqidTG9R0hslUNMXft+fdXWLI/CqXvFNxu1NnOVG9k/YlqO5+uVsNiAwR6n24YpZuZTdwvnhKQd//7ZGkCtefJ8+wvbjXvd6173ute9fq36ImAxxUhOQL3QtsZr2zykjZ3fS29oK7Rmlqs2+W6k4BqM6LazQWjBxbnp4NAbO0qQ0IAALdA6aAloCazBLBlVK3k68fjmG95+9Qem0xtr6upC355BzGO/Kt4IVErdTNjaOs2BhUqxn5ls+t9VWDebRtZmk84YI3OemafInCPSV9BC2woa3qDBvrcoXPqYRBZaDxwseG8ERFGLsdvFl3GaiTlbg+ji9WVdHViYiDOFyRsOT/P1oLF5msk5EcU2NcbJV5t6qtDntwge5rY+mQWpNnKaiOEQmEroe7MXQ6axGZddCiIVtFLLlVIWal1orZgo2IFFz4/uZFP54ft/4eX5mcvl1Xjy6gLkkWa8T9SNBmY2nqNRD66H2Fx70XFpA6AehtY8bb345Lj5hNh9d2F3ERq2xGM1NsTbpVSbYd/Q7FT7jQB2AJTurqvhMzBjVqVujYvQuhqtqqtRqeTGRndMnkVIeWIKpu+Y5gdOp5Nd98G2eKZxGa/DKH022ceoP+pBd32IwZ0Wpd30EG49OxrSlDNNTbi/lgE6bCvRe2Utnfa0sW0rr68XoihzOjYzRscLoIFSCqUpl2Xl+fXCy+srry9PlLJxPs2UEqgpMp/mgx7kx7tX0zXYBsoARd1ti4S+bXYfrt01NoNyaUGZbr3gFCc3UnCL596L2bv6liuIWdnmeSZPMzF948OMTsetY7MdoyRumQ2IzEiYzUrYgTkdQjJgbDSrjOps59uv9+ZgYmTrrNvm26lKrdm3SWONps50sv9GwRyh/RpT6dRe6DQC8caMQHZhvfi1PFyqNNjxsCHNWAEfye33ute97nWve/1a9UXAIkUhSaeUC62sLMsLIUBKRlUyAXeHvqJtQ93WERpRjGaT4wgpCzRpeyhZjObi4ywC5zW7DWlvNO2UG87xVq6cTg9ou5pHfg7UovRyoS7PiGyoNmrZqFVpFSqBpsLW1ShQYMJQFAlGzVAVltJsMh/Ep8mBeU6ccuCUA3Up9L7S6pWaEjFOtDZTGly3wHU1t6iqgkSjHsUQXNxpzlZdTX0iIuQpWyI2sK2bbzlWm0AKzHkix8g8JaYpkVJgmjOn02zWllGMHlMu1oj7RsM6loB0pzXpK0pHRckpmBNXyECny0haNmciVEy/rRXRDfqVtn1guz6xLB/pfaO3jeGUteUHSlPWrfHzT9/x8nxhvVZEsuVquJXtoL4Nob+O8+5jfxVPcC7VN1q6k/vVKUCtFrZ1PehA6A4ELPhPKKXtk1z8OJvmQXfqimLuYuKNvTZXFwy9xhBoMyxGrdFtrROC6UxiMmF3G2EidLNudeOBUfaazQHKMksi03xyu1qnC4l6yrg11iPXZWzzPuPYdwPjgH1PN6AwCIC2ATGNQutKaZ3SbPMRHcC0XukdrtfCukReXy9MOdo9itGfmosrFLOMXbfCp+cXnp6feXLqU+uN08lAb62RmIxW2Ft3x6/GNu5pP5/dgdhAQNXpXL0Vu1+704YwTURpQutCqXa80eDUKHO/GvauqBJC4DQ9cHoMnB4mpvMbom+lkpjIeoqdGGFKGIBWhW5DCzTQ23ZjoW1BejFmkEiIs4ntFbK7wpVamUqx3IuYdspba9m0GM3E5dp8uyQg0QYtUeQmc0LtvKjZIQyHPcelu+bFAv5kf19WIKq4UZ/s2rd73ete97rXvX7N+iJgsX78I6/bK1AQUeYpQHAubzcnI6MKARp9WmefF5+wBSPwG23CG8PqeRXgIW9ivu4hWIjcaOgAn8jDKZ2YpsRZCu31T7yuP/P8fGXbVtb14vb6kfn0jnl6YH57hm1FWqVv1YCEBqM5aKCUQfuIvH9rouychClvxFDJ8ROtrtR15eWpUFtE8zueaqZLNcG2BFKM5NOJLG6NObQBvdFp5loThBwyeNrvPt0WOD2eCRL4Jpj9ZxBFWInSyaGT0kYIkHMhBqN1bVfTZRDPIBPIhIilCccgxg2vjZJ+j/aC9pXeE1GFLBXtV2hPrOuFVgrLcmFdXlnXV2q9GDhU5Xq9sC1XSrnu9JviVI5la9TSWbfKujRaVWoRQiikVHl5/sTry1t6LTSUoC7G92nsAAkULOQLsB2ENW2uvj2EqSIeUniTqB3Sfq1MZw8U641SV6PboHsydXB3sul8BvD0cdsC7E5R2t0GmYMiptD6EIUblcUm0EficW/VQESKvokQcjJaX855z6SI0ZzJaqvG5PHnHgYVagQ93mwyStkY0+jojy3shsDefJrWYCsby3Xh6cMnXj690LuZDOQ0U13ToQK9NkSV73/4id5WQn9gms9IyFzL1ehKXXl5uZi9sh/X02m2ALfe2MP7ugmWa20U3ajVjmcbVsedXa/ROQYFY/tkts3qX9uppfF6XVk30zilNNuVoXh+RUNFLCMiJbZtRVXJMTgoVOLpkTSdmB/fM89ncprovTPlzOPjmbdvH8k501qCkJCQCDkikowCGbMBgNRsu5fq/n60SxnUqIUx23uAhXeO9Ozh1GXXl7mhdday7Y/R2tDmqAUjipCiEqMNbnKKRh+tC9t6YVsv5Gz30DRPBJQmSo4CEpEwseh9Y3Gve93rXvf6deuLgEVMAct8s2YnJLmRJI5m0P4ugd3R5hCC2nzbpsyyZwGMpFxwXreIAYM0kfMZJdg0s642XaQTQiKECZWJ0gJmjpogKjZYNG62xEc0nGh6ciebhIpRQoRIjDNKRPKwU02c5okUlRQ6MTRPlTb72a1AbZGq5jjT1QSfMqgH7gw0POiHt77RO9QDsYK5WsXwGdXBAtISQYQccGDRQYM3GmmnnomYI1TrSqkeLicucpcEPrkfgMUiiGdrOiSAbKhubMtHWnmhbR+5vL6wbSvLcmEri9GemlvQdmFbVmv8PH8AlFI7tXaW1XjntZjLTu+4J39HpFJqoVRLEpd+Q+sYTfug+ezHw0XUTv25TXeHQIyTZVEEywMw16QDWIwAw94b1+WVUjbKulBLoZTNmjd3fBpgZVDWPhO+js2DHOLjIWa25rGb4iIYVcqE358LnyXI7uqUUvLnd2zmVBvDbnlPEfcaT0XHAkQOAKH+BZ9bjDa/h0zDVEphXe28CcfzGJsZdEzFI5+eXhAaWq/k+UwIiUtxO1mEdTG9wNhI2GZMGLs4CSZVFqdjDYvUGALdNQ/dHZLsLLqQuXd6CARVdwNTelBLvJdO6pGKNeYxzwbEVQnNwBFBPO08mFWtqlGMdnvbGSSbSUMX2K2kFVkbITemZvcTNh8hNjtvKUIJQghKSv560wB0welIN5sBNZ2OTUjs/U+D0ht06a5dauwGEX6thCGKFx+eRDEzigDD8llV0daMTmUXD0qnrtWpeJiNttiARPRuN3uve93rXvf6deuLgMW7919RaqbrapNCPPSsdqOgiFDaaHztF6uFRx0ceuiI/3LsPv29/fVnDYdAyJwe3vP23W9I6RHtneXyzPr6ibpeCWmGOFN4Q+lnJEzM78/MYhQCidZYt5YoRXlZO7WdrDkNfeeQ5/NMTImU0057yoKlENeVWhq1CcsK6zKxLGeaqIs9LeQvxEQU46WHGAnJGqq93ei2uRkRVjH4hDWPgLxETtmBA0CFfjWallrauYSE5JOLToVlUxeNVmqzHJAUZqY4M6WMczh2Ea0Jvc+gHekzUr9Ft595+un/xfLyxOunJ37+9IFl2yhOqbGtgDeWDerWadWaMnURsE2vla2A9ggad3ecEXonYpP2UlZKXY3KIR5QJ9bJiXSn9qhrcYI9lkIPwaa/vXoydGQ+P/D+69/w7v03vH//m31rMRo10+EYsPj08SdeX1/46cfvuFxe0dcnt/91sNKb6wEOUEv/PIhPgZiSW9FalWbT8hADURLZhdgjY4BxTQRLeI7x+H6b0vvEHhjp3TlNu95oHMNWdf/Z5pZlz2inRqlR3bQ1lu2Caufh4YFSNtZt5fVy4bosO7DJk2WpGEFfmaaZaZr5459+4NvvYU7NNyyRzQFrjMkpXIk3b98Qb67xoZ0ZW4beLNxynqzJH2GF6ih3bH6sN3a3rJb89Y5XJzTJNCKPPXNdldJAptmeNp1McNc11xqMI6P+DxkbIH//GWF+QB3ZFQKvm7LU6tvShlAJZaSz2/sEYxgQhDw2bZ7cPUDwcMgbGyfBQIKqBSainaqdrayWN7Mte7hejJM9N1XmOZNzRMQc9nrd2IYnblXQQE5nYKWVjcunjzvwDdNbJDQkYaYY97rXve51r3v9ivVlrlAP3/CQfgNaTTSp5p3fWzsmzTKsOI3fbYFbaf/lj4uHh+j2tuE2Iar9PcRMns7E/EDVSNdGTZl2fqTlgsSMxoTmEyEbrUXDRBcXduKT0RCRCXJWYq/+UXaKSorJppQNSl3ZtFHYkLZBu7BdX02E2bo1tCmTzl9DmKgS3S3HgvpM0BuNmDIoXSGQgiWDG8VLiWINSoxhF2NKUIJUo8B0qD26DaaFuNm2ZTFxs4p77ysdNUG3QNfKtjVKsUbQKFY25ezaoF6hXunrE+vzP1KuP/L69K+UzWxsX9eVUoo5eCEo4dC6VGjFXJRK7f5aM48P33A6v+E3v/kr5nnmPJ9YlyvbtvHp6RPLsrAuV3oXrteV5+dnHh7OnObZqG6ITVpx0bLqns+wN4fjWorKfD6TpzPvv/49p/Mj8+mBECeaKtu6sYfWYU1dyonz4zvm0wMPj4+8vjzz9OkDz88fXIi+mojetRiAb5i6N8XD+lP27QLIrhMSXx3cOvHEGPcp9tH8f/53+9whEpdBi6Pjs3wMPNyc69B8oj+2J8pwr9JeaXWjNxNyb9vGy/MrP/70kdeL2dnGaEnkDw8PBlJCNLCQJ2JKfHi5EDDK3TQNK+dp18SkYPSuUosDA/Vm2EDF+XxmnmffHNkhyFM2PVU1PUX4zOqXXb/Rm+/A9NjyxNMbVAJbF7bWaQoSZxOUE0mesSLBBPTq9466LmtsQ7Qdax/DHLK71CnjJHBsf7ruzmUxJaMsBvYNo+0i2bUiqk7jg/1YHe93bjTrVDYJuGFCMG2aaydymgA8a6VTNrcl9hT1sd2bQvKPFdbLJ2pZ2JYL03wmTydSenBKZyLG+8biXve6173u9evWFwELyQ+k84mgI5NhT5a6ybPwxuBmUxFjOsaJ7lA0RNuDZoILcIdTkg03ExBpVWnS0RhhOiPJHIwkRCRlD9EWCNFoUwwRI0ZTcveVoOGzpt+aBNzOtFKKuR21fkX6irQL6+XZHIgUYp7J85l5zkicWXsAd7uSYMDCEsGNRz3oIDknS+MOwYPz2C04wYLTVK0RAvPV36rxrpsGtuKBcrXZNBajPtnPxexrVUzk7iFxMc3Ge1el19WE1usHdHuhXn7g9eM/sl5+4np9MrG0wlqrZY8Yp8IUDoPWVMXOg/PkY0qk6YF373/P+/ff8Pd//x94fHzkzeMj18sL63Llx59+5Pn5iaenJ9+ewPV6IUUxLnjEKXEGroZj077t4PYSMd3NfHrkdH7Du/ffENO8B9K13llXo+p0pwWlZDqTlDJhMqH7NM3EGNnKStfOti27FgOnYulNwnFKpvHp7Gw9xsV8bOH47Hmn5KBu5Dkco3TbZtxohvZ7yxvHg/J1fI2C8/Ojb2WCP9ywcFbo3UCFb4labVyvCx8+fmJdN2rr5CmQkzmJdYUQInk6EZIBoeulINpIobO1SEqBk90h0C3VOu6bFKMx2j1n03Frls2IYBynEaI5NhshmO7k5pUj4O5hdr8G3/zNj4+oCEU960UVCQmVhDKR57fEOEHMx32vQ9dUqZ7x0T1Ph677xqJ7kvpnIXge1Nhb34cjMSYk4tQ5p9lx6Dc+2xz5ORaGK9cAf4Ac18xIVB9OTqgyJdtkNRVzmuqdUmwI0+mImFhfo+mBSqssy5VazLI6JIgakZDdvcq0aPe6173uda97/Zr1RcBiKwsN9eYfC6Zy2kZ2Kkoa00OfIJozSTRKjSc24424swP2x9OutBatGabZGkG6UxkC+XTi5I8po2G5aWK0d+fsGw1IVWml7KNRFc8v6KZdCNKRvtHKxnp9YX35SNuuTNHbFNGdtnBdFiRPxOnMNw+/J59mpvnRtg8i+8RZAsTg/xXjtKc07dz53utuf7ttK7U11nWl9BGUNZoca0Blp3IMoIaLsj2FXCN1tcZraQ0xFTl6fYHeCX1F+gu9PvPTv/4/KdeP1MvPrNtCrZWlNE/PDpQq9B49rM20MmVzd6SmKIaKvvr6d/z+93/N//Q//d/593//H/ntb3/H+/df2TR60HK8iV7Wlcty5Y//9I9cL898+PAJ7RV65XQ+I5id8NAydBdx3yYINxWCU7zevPsteTqzrI12ebFJsQvkt21hDIrtOogsl4tvzSLn8wM5nfirP/wNIpGnpw/88+uF6jStnGwb0MYGLgRO5xMQqK3vG4pDqOzp2s6p763RgHg6ISFQvMlXxWxyg1npjsdIKTlP/wCa2ooLnDk2Ik41sqG68fYHeEK7Rzva38NOQUx8+PCJ/+V//f9wua7govCcM6fzmdP5EQW2tbCsC7UV5mxWwzkGz5aTfauAQvVQuH65On0tUP31qSqvlxVVs3od9qjNrXDnPNnGIyZKcxtqCUMFRPPQQAmmdRCF9vIRZUP1hdZfUd1QOiFMhHjmFP8DOX1Dzr9BSahGuhjgqm1z8CAQPfiu2zZTRyaLA9LWDNy2VnajhVbVgWQjYO8XbkqLxohl3gzzBYeAvvkQxveOOg7isIq1cwjL5ZWybQQ1q+icE/k82XX4OLY449g3luXK9bpxeX2lbRkhM51nQk6oROp6IafIec6oXr/k7f1e97rXve51r//u+iJgMTjSlqAt+zQyjO2BC1j3r+8W59YGPWW3i8Wbwb4HmQ1g0ceqQZweEgISrVnPyZx/ok80ceHkeFzLC+43P2dYyA66gmVY1LIifUMo5FDRXujbgvQFwRq7ECMxZ3KIhNwhnojTiTQ/kKcHUp5uqBFO1xEXbrrYcugPWreGBKyBqq3SqgmajV/e7DjcPF8YdC0DFEEG5cqnv3EAGnabWLcnYvgEaV8o1x+I+oLWV7brE+v1heVy8ZwHZS1mfdtVXWxtTkejoRwNlgJ5mpnmM3/zN/+BP/zhf+Bv/ubf8803v+Hx4ZGAeOZEY0yhLbxPkJj47W9/z+vriZ+/X9EOZVu9gY3gKeN2zYzzd9A4QoikbD9bcWpYWWhu9dlHMFnZdq11iDYZ7s3C8wbomeaZEITT6UxvlYeHt/RWKdvlZmvAbS/ompCDxB+jgYGmetNYyr5ZGVu8fefg9C4ADZ4sLjLUBjcbDQxRqLk16eDJhOPnGJXQr7GxncC2FQywo0ptK6+XK09PLzu1ByzTZVkWitPrSrG8BpFOPp3JMTI5/Qexc0jv9H44IR1WDbJfp8GvPTMTqLt97qB0lVLZVOntyrKudG2WDzNlpnky9yuUpsWPh0LbUApd624FDYK0htQFef2ZVArTtqIkutoAo/dOqYtvL7AcDgxwxThbeGA6A5GIvXepWnq8pkjXZAMQf98IFIRGqwsQkBTpWL5HH53/KH/ZY9c03jPtMjDNhLgBQxBIETRaIn2n06ptgXDqnb2vxJ2iJZiz1/l0humEiJBzJEUze5hTJ0Zlip2qG/e6173uda97/Zr1RcACrLFPN/oEuXHC+YzcoeoWk33PGhhTYO1qE3tPrTWKD4AYtSgIKUVSMDFzDJbIPWdLJo4xI+kQwXb/OUJzN6J+WFY2cydqrVPXlVpW1peP9O0JbRfePpiYOviGISahdQg5c3rzDmt6AxDJ8xvy+R1Mb1GJ1mDJ6D7TTvlQNQ//PYH3Zvpe622+Ao4HhvjTwJP6VDNGT2SWeFAxmk/kGenM6iJoPqOZJCm08sr15R9QXaAt1OWF5brw6XWjV6E3KJtYGGBvhofUk6NV0f2M2nl7eHzL11//jv/5f/5/8Ic//A/83d/9HfSKtsbl5XlPwRbfsKSckWgg8K/++n/gennP8vKM6MJ6XUjSiTET82nMcnfh9x4SJ0KME/P8hvPjO7atUdtqORfVAVpZd63P6NLzlM36N2UGqWpdF87nM+hbHs4PTDnz8vJMqxvX16cjq6L7uVFotXkquDiPXjid5p3CMthQe2q3iGdvdKILyAGzG0WhW8BhFPafM+xzGdx8/+HqWRIW0mYJ1r0VBysOwLrRYrRX11kY/ed1Xfj06YmPHz+Z3iTZJvB6vdK7sngaOSgPDzPnU+aU3zDnxDxNMAYFOMWuDQDvtCUJZmDg10ZOEyEmA8jb2BI2s0kNwmXbuF4Xnp5feHl5obXK6ZT46qt3fPPNV5zfPCAI62ago2unC3QatSfwTQ10tFVaKzwt3xLD9+TJAGfT4NqtSimv9Nro1Y6PSCCmzJuH95xPb3j/7veEeIb4xt5PQkLyjIQJlZODdQWqEeF0YX35ZO+BOdMk0TSy+XvXPnQZIEMOatS4Jg0Ar0RpECBOkSlDlMh2XamlUzY1riRQmhJCIrk9blclIuTTA28f3/r7sBJDJYWNKIUpFkQt22PV5b/+ln6ve93rXve61/+J9UXA4jRNnM7zTsMRnwSORrq7VmFkBYxmut9sEGwr4WBgiGzTSJh1C9ZBCUjJAEb0pi0AuItP6ftAeaQQdx2hei7i7EqvjbqtlG1lvfxM7yvClZQKIVkAV++WnJ3y2UK08hnJMzWeIRjFQCTSQ2Ir0WxvvZkfQuww3JPUjoHZ6PqUep9iAwTvG4Td1lSB5mF5vgmJyRKpo9vW7vPv6OrUIKhY8y/dxeo67Cw7l5//gfX5W37+139gq5VSGs+fntlKYVkbvfl2ZJcBWJOsMqbrR3pziJH5/Mjf/u3/hb/7+//I3/7d3/NwfuD6+kItK70UtmWx7Yx236wE8mQJzIoyzSd6a3z9/re8PH/P9fWFQCGmRK4FcZAKhw1x7dZcnx8eaKosy8bry8Wsa7eVWgutWJM5hN8xGkhrrRwXeUp7snZwrjqup3j3/msul2deX59AGiN9e9CVai175oWdL6HVul/PnwmptdNbY1vXXX8xQIlluglog15pMRD37Z6ibVCqjp/dm1HsYkpm41uLa3gU6cc9VTdzaUM7W60sy8Z/+qd/5U/f/onX65U+UuZ7pZTKy8sr3c/TlCO9BrRFQwzZ7X9D2Kfm43UPAJtipHUYmmib7Bdare5oNT7WeX2t1Np4XTZKaWzFhMchKvNDJE6dxsJlMbewjvp1DfhGMMnEgNN7mrSCuPClS/ONV6AXoVUoRKp2WjcjJXojeNDmZXnh5fKRFE9M01vevP0D02yNehB7v9FgdE4zUchonxCNPjW4msNXTEbjBLoI4kBNHFTYAmrc44pGA39buZoQm7MNQBpYqmJz6mZDApzPlgI+NsPQ6S34x+ytu/fCtr7SZSNQWfu6a8aW5Q4s7nWve93rXr9ufWGORTQbyv0XnThX2ek03USjt6BiNJZ9UJNadyGq+kBaHEy4573bWOacySmSYjQtxM4jt8TePtxonDZhz+HWdWeHHWgrtG2xZGrdyLERUyDI5DQDQTWicqKHiZge0TBRmU1ALpZNgdNhtCtKs+2AABow+12chjEC8Vw64BPIwf0Xgje3B93HBJ/ClDIhmT3nsLccU1DFUoEF98bHhJxx35QInYq2jeX5B14/fs/zxw8sTdkqLK+bidSr7iLvMAIShF3wzniePkWPKXE6P/L1b37LH/763/HmzVtiCCzXV+q6WBL29erHH9tShLhT0izLw5rE+XTm5TmwlUoMSm4VUSWkbBkcRNT1Mq121G2MW+u0tnJdrrsmopZi2oXueQaq5Gy2rjs9rjXmeSbnTKqJGg2UlJyNijPPzPOJPJ2o9eKuQk5F8vMJtkUbDXb3bcXteWNc6w4s8Y8HNSDTUDvdaty12F2MA3Z+ZVwrsuuWjIXltsW3qxFlb2IPYGFuQsuy8XK58uNPP/P0/GJ6GRlOYh3VaufdXa3I8aANjvPnTmcGZrvTccIOPiVE2wK5kxN+nA2OqgNnD4FbN2ppXLdi7xVi+TcpC3kWQlKU4q5r2CbSb5Rd5xEjJlgP+zZMJBqy0Y721Z6HiAH0qBasGe14Swu+4WkU1yps9UqKM6eyMk0P/t5juSiRjvrxbwToAe0R1Wj2z70gsQEWLGgCenFwN/Z84/oYf7f8HRHdrykLzhsANNqSQxqDShn9PBjEGYndQ3vlgxXt1Gq0TttUuAC9d9b1bjd7r3vd6173+nXri4DFnDOJ6M1Xp7g+YCuVUjZG8u7oT8cv0D30brispIObPUS2YXjs53QTJGa/mHu1ibSFQBWjzcgRqrZbg1p7jQhEKcTQmXKlLS/0+pFAQ2Jmmt+T5xNpmglxtl/bDdba2HpnMc04sTdiEkKELCY8tYTfwxefPoCSj/4xwTa+aZAhSr5tRoNvOsTD8KaJFIO/btdi6GgcbfMxnLZynm0iL0atqKUSeyHQyLmxlZ/R5Qf++T/9rzz9/DPPny5M5xNxSmxNqc0nzTjJ27UaQYJN4ntHSIe/fsqcH9/yP/7Nf+Dv/u7/yt/+7X+groXLuvDy6Sd6q/Raubw873S34BSueZ4t1yNEJm/4U8psVXl62djWlSkJb04rMWVCjOQ87U20NqUTqWVj3a5cr4XL5UqrFeiUzQDG2IS12pjnyQTKp5M3vGYx3HsjuRUwava7OU+8ffeOh/Mj7959zQ8/mC2r9kYYYIgRRFh3K+VtW+1cjTA737zt51jsug8h2L0iQmvFr0to2XRCKYwASTf3FZw6FNDhAIBQVXwTYxsN1CyEB6Ap60aphWVb+Zc/fc+HT0/887/8wMenV1SVdVtd7wNB7HzkHJnnzNu3bxCUWgvLtjl9LZmGKESfqFtezdjmEKLDv2G60Kllo/dC741SzICgVj8OMfK7378nz4nplKjtFaWSYyOEaroTD5U0fwC3kA3JKVdxp8rtOguENJnIOfaZ1gw0TL4lm6Y3DNvaQeOqdWNbX6jlylZeKH3her2gsvJweeSbd/+O+Ph7Qp4pzYB8lhnpiVIn2pZRheShjxILpdR9oNFahd5I5v2M9OaOWzh1LiCaiOEtiKBEQrbzLL7hlDzRim0dttXobr0p63Zx16q2j0zylAGope3J9SFEG1yI3ev3ute97nWve/2a9UXAotaGUHw7oTuwqC6eHRLlIWXcJ/Vy2C+OyfU+jXfx97CYtImwiT2H+HUIvrW7FFSVrh7iNmxJ941ItWyCuoF2UsqWTE2miVt19kRrkViE2AcX2sBKiMGTbz0wb3jOR8viMJ77mBZWhr3MDqKA8bdbXacJ1NWaVne2GraToVZQa9WaLzH2SbkfNxEIsVPK6p8Hm5g2tDzT+kZbFrbllfV6peuEhhMhFULIBCIxZPZRvMcJRA9mSzGy9G6CZGE/HyFGpmnm/Vdfcz4/EENiu15YlwvLcqHXSm+NZV0AdSpM9I1FI4ZITIl2PhngDO5hpPDjTx855cD026+JzQTG2o7wQtFIEGjbxnJZeX66sK4GJGKKn01nLbPAGiwJQm31M4DbPJBMewNtJs4PJjgPQchp2gXa2jvqtJwePNNAgwM8pVcTGne5OcF+nXe5oT91IQax7ZpnqJhuQA1hSNwBxXAL6mJT7NYMoA4LY62VJhz5C043bK3z8dMzy7ryer3w84cnXi8LIp70nTOrO6PJoO0FMfA1n3j75g3bttKbZai0rqzrxlaa61vSfoxbs3tOolJK2zVENqVXz2bJlvyOObch3TJa4oqy0jqIuIDZ9VTIsV8U30JKlx1g9qa+URtUqBGsaH/sWoOo3bRLvjUIvtmI2QIkw8NbtmViKxc+fbJNF8G2rbWvbPVCKldaMXG7ifODa3k21vUTqpXeIkkhpI3QzY+5a7e/qxI0EIJl05jl8fGcTWTuCfHxJrCvDde8QPPrkh7sfS+pu45VRmo3CjH5VksSoVXXGHUQJ07Gu3j7Xve6173u9evWl9nNbpVWF7No7OrWqNbUDUrImNDD0WDd+v0LRsGIKe58+Ntk7jb0Er0jOjYaPsFWcVrVjX6j9yP51919rpcnluuCAueH99QqNE5Uac6bToRNCE0JwRxsUgiEkbw9TaRkScM5p532NWxXa61uU9m4RQ9jESD787XX3P1rR4MrmGA850x37n5MkdCPLYx6oz1SiyUYMaOWQm9GE8pJmVKnbT/Q64X19YVSOuvW0fBAmJQ0m+4gAlOcqCa33ak3MRpomqbMVoo3z+Y6FWMkpMQ0n/j6698yzw+AsFwvrNcLy/XVm67Gslz2czXOZ2vbvqV4eHi0ayQNClvg2+9+4mGOfPX2DVEs+bjnYturbFkhBJvIX19f+PTxo4FbEU7nkydmH0FovTdqqyC4NiLsYXdVYVmutFxQncg50WJwoBc8r8JBbO9O6+k+LQdC2EFsVae2CO7MdAMuGAndvpWL0UX31YAjamCwhd2OWX15tAMLv5aipzrHlPbXWpuH06mwbpV1K3z7/Q+8vl749PzCUiq1Q8qJaZqYpszlas8lRqcbhmBhhg9n3r9/x/PzE+tiwKN3ZVlWa3SB0+m0mxKYg5QSUmLdNtZto7fNzsc8E+NEShNksU3X+YRKpbNxXb+j9ULbKjlPRImITPtBG8OBrmb1PK5P8O1dcGvrsS0k7JSp4fil3ehIXRXpJmwWNdCYsgUDbqcT6/rC5fJMa9X0EGIhdFt5JZdX6nphWRYfBphrlvbK9fqTbU7TzKzFtjpaETVB+aAkRgy0pggpZ0JIhDQjIRuVK55QiQYUPQ+klMPWuaVkJgbd7XKBNJ18e+G0v6GMUkWzDX3s+jgMDLi7Qt3rXve6171+5foiYLEuCzFNe4idbdo9a8GJSEY/4OgKwFf0NoVOIZlUQW0yuod8OQDRsdEQ2X8/+o+52V7YdNroB526babtaOq/XAOtZ1Dl5bLhzG/C0G+kvG9L7PkOGtbkokz72XWrLMsQQ+q+FRnuVubYZM1/rTZNrO5OZAL1Y4sThqA5Hc3dAA7inHTUEqC1d7RtZiNKpwnO3S+U7cUoEW1QjhKXlx9pZfGfN6PMvP3d33N6f+Xl6XvoBXol1bfUVlm31TQmTtcy7Uym57eUaq5DQ5x/fnzH17/5PX/4679jyjPX11c+/vwT2/rKsrxQtkKrjbItTnUbFrmBUgrTNINggXQolI3r5ZXr5cKydq7Xjf/3//KfeHOeOU2Zd2/NrWk+zZzeRGJOlLLw4cNH/uVf/pmyFfI08T/+u3/32TUWghCn5OfVwxvR3ZbXLGLV9AyeZtxacXBUiEGo28q2LtDrTg8rvXluyGEtqqhrFOK+FYmui7Cti7t4iaB+nQ1xNXR6OK7Dhgmx53lCUjRQ4w1288yL1prRvraNp9cXrsvGp6dXarfGdFnNWpU0c8oPPhkPtK5crldSNDB5fnRwJ4HHx0fO5zMxRt69fYe+ecN8OtkWLSWmYBSe3rpvAatvPczR6s3DmXfv3jDnbPfyUtjKxrqunOZETJCmQG2viG6cz65VCjcZNE4Cw98uLMVbzaGMY1gBcddmtW5i+pQsSFJEiSK0UijLhdfXT669gZDPxOnM+RzIE8BMSmdOp5l3bze27cp6faH3ja11nmrhev3A81Oj9iu1VZbLaqFzklhr8SDNT6QcSTkyn43CN3RIOU/EfDIdSoj0mB0U2etHIh0Lvmt9X3haTkYY76amoSqlY2bWkZT9rVonBq4Ymg6TlQ061rEp3dZ7jsW97nWve93r160vpkIhx7bAlcjISAIG+42mt4Qo9s+J3ugu6LTedpqFUaLErRat8T4eQn0LYlxputK6b0uace3rABbOd4cwIgEcCIi7qQQThLu967DVHNNcEXZxeWs2Ae+eNr23QSFYim84MiBqLW4tW60J8in6EEAHb06nyZKJo+tLbDugCNVepprIU+VICA8jq0I7XYyOZgY91qxGEYiZmE4gZyScOYVIrSshB3pdTcBerEGM2+IieROGBw/cm3skVksBx7c0p4d3nB/fc354a/qCdWFdLqzrlW1dKaWYhW4xDYG51rj4V82RaRxLgomaSym2HSFQmlKeX6m1cpoyijLPM6eu1LCQJpBw9mZ+XG++Fdj1K+1miotfF27lGsa1OPQqlmhuCcuHdiAE2b9PezXeuyhVQJrTmcbVqLYla6EZjckBRIzRMg6aTcxV3C1I2EGFqqKhmRhau2UeqLpux2l+PsVuahkcIsK6rqzrytPLC9fryoenV1SDZbw7tSvlSAie+q12jHLO5JwJUZnytFMPbZthGw3VhDCm68HBtT2fQgEi0V9zCMGsfLPRBJM7I60yxgxKzJByJ6RK8GvUHm8Aed8A6tEEH5vOAywem6BbWmH/TF/Frr3wrVWttFLYrpXYA10j89xd89H294DT/EBEoFR6NYrismysolyl0FlN5L10z76Y7Xx2oTZFpdFRJAUSgZCc2hYyErJR/kKkk1A10wWw+02prsmR/XX1fvt+6VbCjAT27qnagSDRQYVd1ur/GFLx4MZVCnuGy73uda973etev1Z9IbCwjILdy0gHR/pzK1nAtMHxmMr31qhaacWtOhlbDNmpFr0DzZqOjuktrOHou23j7k1fyu4+1eoQUIK5yRiv2hrmtDctQWyinWIgDTvXmFDXdRg4MDrB0HQMh57JcxFSiDQdk+KNsq20Umi1GHKKR2Od54kUI1PKnKaJnCOn00yKSooWYIdWtJn4vZZCxwLl0vmBaT6T08w0zQYi+kpdP6F1QfR1b65i/ntCPBFP7xFOoDNbU7baeLleKOuVsq28XF5prdDrxmheWqn0Zu5K8fREKwvbenGLYHj31V/x/qvf8/j4lu3lE9fXJ66vTyzLldfLi9NFGozmXs2ONMbAfDozTdas9q5QbKNzXRau14U0nWjA9VLYtleCdH789MLpfObd+6+Qn66kPPE3f/N3vHv/njdv33G5XBAJfPPNbwxQAZfrK6UU1nXZrwvt3TQyIVCbgSWh05vQSiXnDKiZCYRAnqI1fc3siTUGeggOou1a3zdMPm23f/tGItr0HJX9Gt+/kRGw57oNP1YhGsidU6K1thsYbKWxlsJ13SjN/369siwL67p56JuHUkq01xJsGl53WpgSYuLd+/d0hNqsqZ7nE/N04uHxgYeHB7766iu7Jnr3xGxrvO3pKznFPel9nibXbURq7dTa+PnnF9ZtZd0uzCfh4Zx4+1UkRtNV5DkAM7s1NYMm6G5xvVOb2lRfAtGn+ipmqGBakpGNMr7XQJeo+yMJ5uLkonOtjeX6imoCMnPOxBiodaWXRhDlq4cTPSe2GLm8TizXKz/99C3rurJshS4QYuLh4WtOp8gcEqf5xBxnHt4+mrmXAKLEaeL08ECeToSUgAnVgLbgRglmxDDyOUbEoBEUcSCo+zUzTDDWUmhNqVWZpjMxZOZ0vtn2OCjxvag4DTM4VazVL4wpute97nWve93rv7O+MHn7sHQ1Aa5ahoL82ymjaYRtUi37tNemsbpPj22yG8xX0mgAYeQpHNN+RBBv5mtpll5dG3uY240D07GdGKFz1nxJCMQQHVjY12gQythO+PQYMW//QecZ6drDP/8Ib+vE0AlThCwI806PCTEgUYjBvmYKhRwWosBEQJrYRNtmnmiIpHwipAeUiIREyidSzhaSl31K2YSYZ4iBJJnhjhXjOwgThAn1FGsJJsw+y4kpR2qd6VTKBptuzklXoIJWohamBF0yKT7sU883jyfO54xgrjdlW/dgulorzUWj3cXSu1Bfhrak79S5kdPx9t07frNtLMX0FKfTmbJdHZwJpQU+PV2tsc2Z33xz4c2bt3z11VseH9+gCjlnT/ru+7mptYGKT9btHA772N6hOc0rCC7+bsSUmeZ5Bxjo4Kt3QrD09EFQSWLj4Ch2jtOwQw5m/2nuStsOsFwCMDh8qFpUhIqJidN0Ik8z8/nBksN75+V1YVkXrsuVy/VqVD+n/vUOEjIxim8mRqK02T6X2vYtYvdNVMqZeZ6J1bZF8zRxPp84zRMpBNZ12YHOPJs7Wc6TT8WV4pvB1pTrdUEQYrb081o7tS1IaJzOgdM5MM2BmBQJ3RQl1lMf1/rYTgAqRvcy3YlvMYa2QsTEySpmiex2s903RLumK3jgYLfwzEtpXC8rP//0MyG+EPNHYkjk6YSkbNeYduLX72itsbwuXJeNdStUzfQg4EBEQqCBgbKykoI5XEnOxGAbm3k222KA63JFEXJuhJgIMQPj/fEwsrC/H7kgx/unun2tbWQkyQ4s7P2ysBYQor9njk0u+7brsIwWWj+yXO51r3vd6173+jXqi4BFH1NGBxfWdPX9FzywT9LgxglJDyqTePNggzxzk1HfWAgQEhDMBWWIOoPJOU3Y6E5Uze1du+KWpsH5/cZUCsG870WMHhLEeNnmXGNTPgVq9cA+OkkCkXhsJ7JRQoxrrtRWbfrdO0gnRyXkSAiZnGajOqVsw+OgCFcCG1k2Yr8gVKJijUM3/rVKoodHUj5BOKHBp8ZpMiG02PPV3mldLO+BSIpnLGMjIfEtkKi1o9LpYjPMEAKnNNGnRK+Zsr0QqLTNjr01fgW0oBRyFDQmhGk/hw8PJ06njEint0IpxdOdmydtF3obVCjTMsR4JFX33v06wTcDM2/fvqOr8uPPH4gxcTqfeXl5Yl3MGKDWyuXlSm+VKWculytv37zlzZs3gImol9UBTu92aanpAQbVJwZrvnYrWlFqOYL0Qoj03jmdz27360AES9tuDnCb09liCIyss+g6opgCUzaBNX5tlFIdeOLTd/Ge0tMINCLRUqqn01vm8yPnd++4Xi7UdeV1W7hcG5fXjdfL1e6h4Mc1BEJyrU6ejJ8P+1al927p4eqJ7CGQY2DKE0Fs+zLlzGme7GMheIiaZU8MLco05YNu46+pFsv/0N4JKdg92DqNjRBhPsUdWEisN5N3e5ymI0DSrkvEhg/N309EAyOnRnQ4k3kDTXBQYgYKY8MZ9ntdUKc4lq1yvSx8+PkjorZpOU0z8/lMmk4s20LvnXMwofTldWEtytZAwwmyElL3TAvbjnRM39QK0M2ON2LXxPl0ApTSKpfrldo687mT88w0cWP/ig9PHEwwtEhD6zWA6KB4KbFH26Q2ZblaAOFWDUgH4j70COEm4X2njXVav1Oh7nWve93rXr9ufRGwuK4LZff3Z1/hAwS1CV+IhwvUrqcY428U8ewG02RaSm34/7H3J0+SZEmaJ/bjt4iIqtriS0TkUtU9XdNNDdCcccAN//8ZB4AIM5ie6qqszKhY3N1MVUXeigPzE7XI6qEZr6yOwXQpE1m4h7mZLqIiqvwxf4u8vReFGCPRlt5VrDzoKN4zR51ODkE0Oz1lDGzFwIZoqve4aUM0bqdYCf6oYm0fIZioWlzYp8ulFGqvOCn44JiZcF0n1MFAyBQDPgI9U/OPlOtPtHTGtbM1Pw4/nXB+xk3v6H2yLwExGo41m51Al0CXCGhj6ug0lNZRuzauzXjqgugGhLq7GVV7qg4helBeeqUeArNMxLawrq+UXnGTgEwgi9I2xBHisgvo33145nQ8mpi4UktmXa+s65Vt1cTnjnnwI1D7LtZvrVuAoTBNM9O8EKeJx8cnxAWm+HfUlshVyM2ztUApiZp1M1VSpubKp59/5nQ8klMyQNDZ1lVfm1JJKdNaZ5pmDgelX/Wm27JcMqmo3Wqt1XJHqqajF8+6rkzzwjwrSM218XpdDRz0N/oYwWelVsVpIsa6Hy/nGmnbuF6vXC4XUs7U2shJrUFFHN9+91s+fPiG//5v/iPvPn7D6fTIfDjiQ8THSMkaXrheLlyvFy7nV77//k+8vr7wxz/9AyVvu8jcmYPZOK+Ha5nADvoDNyri9Xohl0ZKm4nBC+/f63atVQWP8zJzPB4IQZ3QatXci9kvxNBZ5kYpVzoVH8c6BnK/AhXvO5rfoSYGeq4U9mi3egvMbFW3N6VXWh/2zJvSpFyw5tvhxTJt4qLJ1LahcR2kC71WdU1zkbyurOcL//Cf/o4vP3/m8poIYSJExz/+48/E6cx8PLLmSsMxHZsOA5ZHloeFgw98mBcVYkf9EunQErKdcduFQ3AalDkf+f7nP/Hp5+/5+edk1Kxm54OwbA/M8wPH5R3L8qTvVVHtf70PBlrsubjb+6VgFrz7fteZ3qYzxURKhfPrRm+2Ses2yGkDTAxzCX7x/nuve93rXve6169VX02FGg4k7I28jdpGCjWYUvu24v+F3ew+mbtN6m68dfdLyhE33jGoL72PSk+a4qTcb6MTwPhANsvHEHdR9hD1jqDrfSIqoh/6XjQIz2kzrpNlvW/nGtIq3ZWdIe76hvSM7yuhOXwVtRBtGcoLrnxB6hXX1YpTuofaaCR6dkCkY6JZ56Ef8KJUrTryOTARLs60IyiA6pZC/GbKSSsqIi9p56prFgNGodLwMmkZoRrdTLUoLlpmhNPUa8QbsNDjM80nYpx3akzrKrqvlhnRqfsWgN5pIje9iz2WQSUbVLHhwIU4am2s6cq6Jm3Ic6aVvNOsBEdKSTUoJRMCewjjm7NKqUUmVp7ipLabosnk6pTTbYuFcftVmF8sh6P3TkqZdU2cz1daV1DgdmqdEEPEB8/SNXegVDQETmC9Kti6XDVkr7ZOLZ15XlgOB959+A0fvv0NH7/7HY/P71iWI96sjAeIay3gneaGLMsR8ZHT64uCnS+fuJxfGTa38gbce3/TH7wF82/lwApw9YQYrmreBOfBe2II1vjqxql3dddS4ISFBHZ6r9SebxQvigIKMbpT1yyUZtvERr9tLJplRlQFotXE9Bajpzfo2v53LwXvo+pJeldNCUpXk67bjm4uYDVnmiWxl1z27UjvZpOLICHRmq45enfgAm5aiMsRHyfm5aAbIe/wwaGaLoG2IdVxnCIueGoUhEKpG71vZuDQdppXTUKhkwScVFqd6f2ATAvBL2a123c77vFeapy5N++j4xo3FzJzEyutm9i77duP8bY7/qsbw7dnwK9Ti1tY/OFXv9//VkrfC9xfdBvq2HhPRywt8/ZT4mvrL30d/luobtqwf/7vW98m/l/uQf2fsIIEgvtLNG9inxv//PP5v3ir/5XO8a96pqM5fAsMnPe3D0gw3r4BAacPenCQB0AYHY8nIuIIPu5UD2/rizaErn2kGAvRB6Z5IkzRLDRtHtqaNbeWLSAOH2ZtRFw0fnu3Rl3Tu700nHQmr416A3pVG9JSby5DkYy4iiPhWsG1grTP9Hampn+g1iulrtS0Qa+IJEKc8T4S42Kbj06+/Kx0DjRFGBHwR5w/Iv2v8bzDyaPyqSWAb+AnkGCNV8P5ilNNO16CWqfWSs2v1LqS0hdinIlxZsuJ1huZRsnapKfNHJxaBq8UMfGLBZl5gl/UFtNN2ogKzIcD02wNeRu0m0brldr0dtUl6dbg+FLMEjTadNbvuhfvIyF0YlRL3ut65YcffqRYyBhVg8t6zdAq0gPbdmVbr6RNNwkytjx2m5oRoo3gbG5H5GwOYIEtaSaBj8GeRKWURGuVZZ4pJVNb5fOXL/zw00/8w/ff73a1g88PwrzMTNPE8/OzgWFHNgvS8/lCKYMqByqqnnj37V/zV3/13/F/+7//P3j//j3v3r+341ZZ1yu9qXi/73SxoMDi+MDH735HShvP77/hf/mf/yf+8Pf/mbSd9QKSm5B8WRbeXlhjcr1tG9d1NU8BzzIvhBAIwWsegncsy4l5nplCVEDuHDFGpQs2GyRYIObr5cqWX0ntCzidrjvL2gghvAEyI6tEtAk2PZVS54qem+oVu2+1dgA6ckN076gZHnScbfScXT+uQy9Kv6sILY/Ua7V0jiHqec2g5CmdKw5dS4zEZSaejhwfHpnmiWWZdJvVMsELrVUu1ytSVqSsHI4eCbD2CyIrIhkfTcXdhFY0tb2vL5T8yjX/SLpOOB+Zl3c8PLwnuA/gH3ES8TKhNC/35pj1PRuo93rL69l1SoHei2YI5Xoburw1FrCv+n9Ab/lh/sjj/Pjr3/F/I9XBhkv/fFCY2rZ/bv5rLS+e2uv+mfTPqclN6sL2r7hqr2xt/effgGkSZ7/8b//sf8M1+5nJ/fOPgQCzP/yLg93k/+vQZb8KWOhE0+90o7cTt1FjgzG4v7c/R+K2/n/wgWAZA0GaTtLJ4DxdPF0ircnu847N8UfoWfSCd6ivSm/QNVF5wJraKzTPsNJU5pX+XGsbw6mlugVEqUi0ptafbkyFNaxLuigH3In+WvWImwjuiZY7LRdav9pjaDhJiBSkV0DwXcXnHaF2FZMjeugdgmuVkq6qIZGIuAlxM9KN969EejALSoAWjHZUCmlN1JLJuZKumg4sorSNeVkoDXJ1rDVQmye3iYoKv2NcNMQuRkqH3sUC4IbdrWEgZ2JlSyL3lv0BzWgz7c1UVRO7B+1DaWsKMDTwTfUrKvwuOAfRKUwsTc+F2isiSuyqVR2fzucXlnbQ2/Xq8OVioNSoOg9zVvLeM4lY/ohtLtRiiFaz3fZNnI/pQbKZAsAtW+QWJmiJ8KXwej6/0RUpvc47zzD56Q5CiDy/+8C/+bf/lv/+3/9HTk9PiA+8vr4q3atkrpezPu5mVsMimvBuG6Tj6QFxjm+//Y5t1Tf3P/z931JLIgQLmrQNUH/TuEM3i1m1Tx7fVwCmNLDWKq02Hk8POlHyKmbfUqL1rgnaZnbQ+41qZQQ7hi0u6PR/tEEy/tOhNY8XwYsaFTRpBKkEPzNcscbqY/z+mP633mxi75BWcVJxqKPbCGHEwjRTyuSsDm3NCzIFwtzMAGHGRaVW1Q7kQu8r6+sXghOOjw+cfCe4TtuulJzI6crrurJtKz/96Y/M0jg6+O27d4jzXK5nfFg4PTzjBnXJwuvoHREF2s6PUMJAmATPRkmf6U1pWsvyYO8Dno667dUdVNwA4o1KqiBPGZTuDcXzRocbAKXTd23Tve71r63+EmB2r3v9/139C28q/mvXVwELJ2+nYkMgPZhPOx9pt5D1Bhy00TQqjHGNYwhEp2FbnqSTvl4NVADO07qjGrhQrYUFl4GCCulEqdAL0gu9q81n7daHI+DMmQXRlFwqrm071am5hkjUx2/Tv+BHM91v3++O3pyFeDmEgHcL0i5QBRdsc9KwhriDVAUkovGBvYNKjR2qn4hAoDdHLZXSEgSPG4DGpJjd0JVUFVzrQ/LaJJaiguqcqaWR85WSX4mTNlVxPlC7ozQhd6F10WPs7HEFdZ+KMdJr0WyRWs1Kc39J7XV8k/fxZxPS2jvSb5NTJ24HFwOMDLStt6M5Dp1OCO7WkeZObaiAH4sMqYWUNs6XVxB1hJqmheCjWbR6ql14Cha8aTxuxgKaUZEpvdFMN/E25K6ZaFyByKDl3c59cfpq1Kp2ueMcDz7uYXrd6QWleg/dbHz77Xf89ve/Z5pV5Hu9XsnbSs2Jy+V1p5SN46h5Fma96h3TvPD48Mz7Dx/JOfPDP35PAsT1nbo0MjGGgLv3xjRPb6bYepW+5dz33gnewK1RosZ0XB2ihlW0Xn8yXjfnaKJ5Iw12bZOCgDeUHlFq4S6ix5yNfNunqWLOS4gYlahTe6H1otasJhZqVa8Hbb9vIvNGo1UoNZNrJrWMBA1KDFNjmmem6QDBRPnVQHmrpPVMmSOubkhdkawhhGlb2a4XXr984Xp+5fs//B2P80Q7LLSm5/g1JXCeaV5sa6rAghBRqpo6hHm5BYN61+g9UXKn1kSts7nTRRDVVrWObXgMR7QdTdC7acV+kW+j2x3ZUZ1p3oQbD+xe97rXve51r1+xvgpYhBCIk4koRdO2R3Pmh1japqjeOSbv8K7jXNEPW+naU7dMrxd0V99xYaG5QO8zVSLdwIPQiWLOUw5cFJCCSIFSqW2jlDOuXaBt6nrkGsFDLwVwxOkB/IT4GTOnx8cTIhOdSKsKFHJzdAIi2qg6GtIbtSXllaMWpo4IrdJy5vX8MzX9RM2fiV63E71PePeIlxMSvgGZaTLT3UQjsNVAw9O7p6NhWsUdCdMBH2dciHTnaOKUHlRGaFs3qpVOKn3Lxv0+M/svNBLXVpliJQZPmDwuTOAfoQU9Fgx6D5o+7r2KUYeoPQRa70zdJq9NrS6za/TFmzWrppODkFOxYELj69tmyvmACxPz4chyOLAsi9qyWvPce6fURpgmHp6eeP7wXnUiJfPpJ0fNiVI2xpZq3VZ++OF7zudXvvn2G47HI09PzxyPDxyWI8s8WS877F9tXbjrQrSprSWTg2czsOJD4HB6RHxg2xLrdWVLyfQrt5WjDoPVvWxv3hrgRIMad1600u2meeLp6R3/4T/+D3z7m7/mcHyyTUWhbCvr5ZWcVhVkV8tNsQmbF3dL/d4uHA5HRDqPD0cOy7/jx59/5vPnn/ny+UdKLkjWLBLZtRY6zc6lEOPEhw8HjocjKSVeXl725+ScY1kWpnkizjNxnvemdADG1iq5rITomBbPN9890ftRAbPzOPH7Bg0ZIuRx3MYmU+xlbDu4WNOm+RwlsZWsXxawuMwwR88UHCULpQppc3g3IS4gRL35pmADJ8xzNF135/H5mWnaOPczp9Mjx9MTy+kRHyNhnljXlZQ2Xj79xOv3n/nbv///EJy5NlnQY04badsopah25vGJ7emR/+f/+P9CpsilN4o0Kk3DFHvH9X4zpRA1MtBrwcC3P+/vkzGq89unLz/g3RvaJEodqxac5zHrZDyH4ztinHGPM+vWWLemmpeGDl0GZcpc0Hrvqv+5173uda973etXrK8CFvMUmC1EizGVNjpJMFZDkIoz/YI3nr4fhH0Ra86cipdFbS3xyjUGhzcjdhETSiO76HoP4uud0oDuaTVCn6ALXZr+jOuI08a09mYuUB4XF0QihKNtIDS1GOmoS6dO8Vt3Oiw0bjY9Q1+pbaXWKz19ptULtWwgCy5Gug90HLUHqj/h3ELq7+g9UAn0Ful4ag8qGvURbxQhQqS5CYjQg2phZUyfK2C0oF5M6dqNm7/Sy5lW1UKzS6SK0HqktxmpC64IpVkfbE3OoDE5NybJQ4OiLl3eBLKI6lyqbYHEOdVN+LALSQdJ5jZFdfsWYYqRGHRjMabm0Elp43q9EGNgbhPOO8qmScbOCd0LoftdNNZaI2Wl6ExfZmptLMuBacrUVhjCf53eD8qcbtMEa/4bttWw88vpNmWaZ0ptbNtGtoDEf2o6YOr5Pp6Bfcf0RE6gSd+n9UN7NM0LznnbJKmwOG0r63olJd1atCGCN7G1F90wqLGA3uLhemGysMHj6cSWVl6+OJuMy37clZrWb9eJgZVBlVqWZX+tQwhMk9oK51Jw22ZbKNmfH70r/ewQ8fGg4H5s7EYT/WYoLgzgxQ40hvFArY3a9bmmomBqS4XcOrU5eldw2LpQaoZeKKmodsZyHahqp7y/BxSl4G1Zxf1bTqSkmhfMDjhOgfkwIT7QHYgHF4R4mJEA3d00WrUXSs8a5EmhuYqfBEKnUNlaxneHeHezwO4KKEcuj8pfzK0NS9QWkF6preOrbpa8c9RaNAvHFZpeYPSueidBTRBab/Ra8G7DB8itUVROwpvQin9yzo6Nxr3uda973etev2Z9FbB4OB45Hk97Uyoxmv99R8hIK/iS6fVqqdIVIeD8ic5CI4LRk5ybgAmdOyptyFHwxoUH/fB1zukHabu5EamodKb3QO8LlRNQmBd1cUIaLp7pLZPzRuCAcw/45RvE6+ag55XWE71tOK9iz+4dXTxpE3P1KUi/4vqVqfxI2X4kr/9I3n4EOiE8Mx1/R1i+pbgnWo/kFqk90LqjVL2dtE8OhwB9Zo4Ly/FA8OY+U7s1DLadcQ1ICAUnFaGCZGjWVdSVVlZKvlBaohEo7h25e0p19BrUlak2y9VoBKfahClqgvIQ+O5N6NBUjMaoOxqF0tWGVYXFC3FS6lQIgVY0NG5QZUIITDEyTRPLPDHPk+YiMETAhfP5hZ9/+oll1qyO1hrpksmbWpc6AfEmiLVpbCmVdU17UNvT0zNxSoRoomPvDRwajS1E2+6IZgCaAFZ1AWJUo8jhcOLT5898/vyZbUuUUt8AijdcqN5NcWHUIAsna7Tbhs0afCygL4SJWhvbqhPwnBPb9crlfGbbrtS8mbD4prJ18tY2uVFKJs4zzz5wnA88Pj2TUuJHp/oFJ47gxiQ87sL6lJLqN9DXM8bI6XTaQcw8z3jvKbVyuV5Yt5XJkrWnaTIwUPjj93/k+d2J6fCROOnzbr1oKrYhkMG4cZYFspsRuZvD27peyaWwps0oP43X64b4CQmzag3EqR4ov9JqIa8rXjzL7BUsoNqF2hSorWsl58r5eiEXBRd5vWrWhgOJgp8ccYk04PV6odRMk8bTx6ed/tayaV5eXyF7WhJCFkJrCDPBR3qEHgQ3eQ7LQumqYei17voefYxdKV4CO7QzwFFbpaDaFu+EEBzFVUQiOTe8iwS3EIOKRksrpFTY1kQrEeczqTp9/5KA+Lifo7uOzN30Lj7cgcW97nWve93r162vAhZPjxqCNRq27myaXxOUF7MzbYif6PGBHh/ARZqbcV3wYBN4rYamAWsX06kV1qKi0FqVWqR6gmGhiNIhdqcevRX1fnHQOrULK57WToy0506ktUgtHSkbvb3S6pVeM70LtUcKnS6ZTsO5gOOC8APt+p/o+QtbvlBap3RPm/4d3c0U/8y1P9C3I6UZSLIJrT5e5VcfZg008xa6JxZ810pmK6odqbWZv7+1BdIRqjo/WaZCd02lBw22SyFtlW1tpILao4bPuBBxPjLNR4KLzM4zTYEYVERKVyFtzgrQbg40b++bnUbke6d74eI7izjCPDMvB1JK6vjknbpevvHj98P2dZrUotXC6HIppNcXvv/T93z/j//IlrOKVVtR0bulhTc6XbxuMDoqVA6RaZr53e9/z/PzM//2r/+NTtaN4iR0vR3sfMljgu6oWfMuSk7qhtRhWWYOhyOH5cAf//gn/vjHP5JzenOujedjU3cLghzn4Thvb+eh2aWiad8pZX768Qfm+cgUZ2UAFk0uX9eV9arAYiSkt2HZ69zesZcc8N6RtpW8bZQ5E70njobRXqORT7FtGzGqqD3GuAOd3jQAsrZmFrtqchBjYAk3a9ABTkIIel4gzPOMc56Ui24pPbrVs03XsFnFNnwd/XcRQcypq7VOSmnPXnDOM4fI4fiobk9uojZHa0pRe9021vOF85dMLVdq/sIIuzwsJzME8OADPnhi7CABkYgzLcJhmTk9PjGfTmZJ6zg+PFCq6jdC0K1c6wrsemscn59UvJ03tvWi50otphOamE8n4jQT5oXQR7Bf36/33hW0qWi675qcNoTd5sHrQEHzBqU5aovmEDcpcI8z3nlKtSwWMiXp+54mj5tAvBV2Ny07Jd/KKlq9U6Huda973etev259HRUqCnN84+BCp9dG7wXqplQdp80cfobwSJeIxnVVpLU9zEl/v6o3U3fqiFQaKTdKU697jB4yaDbeO+UdOzOdFG26VegMILSmE7tSjGUVggqdu6OVrnkTRTcqvRUQ9clXslBBpOJCRuoXpPxIyz/S0gs1N4osFDnQ3Ac6B2p/pJSg9Kd6o3B5c5UKIeBRByxt2Dw+Ki2lt2ap1fpnrbqRGXQKxFpVgaGe7U6Fmr3B5dLYtsZ67aRiCR4hE2chzo7AmN7LTXRv9Ipa6z6975Yl0BkuP6NPGq+VIF1IBeZJjA8eb1urNwLu0Ww7o1qFoD+nk/FmG5LEtm0k0zI4UfnrEFNrinDT+7VAtDh5lsOR0+mB7779jufnZ57fvWMzLvzguauAWYPdehmWAkLNOlVuZo0rAjGqLa2IY902Pn/+bGD2BipumoHO0A6Mc5H9SI2m7qYpUJpO4eXlhXeXC8m2AcO5ScP5CqVkDUgL3u5bTQJ0A9T3x1wt00O1LHo+OedUt9Bu/PoRjhaCJo/3wb1v436VglRqQYqC9mgbjOEKNV6DasnaQ09TSkN8V4czL2Y9fAvkA265CdLtvNP/H/k3KkExrZIPzPNBKYESKVXvY82VsnXWS+N6qeQts11XsIybdFBh/OFwIBw8OL8nYYNHmlK05kVtZV0MdBPwBxcQr+nn3nJ3BjjV82c2d7UZFz21ZGpJeBdUpB8i4kdopeyUNefU7W6naNlr2ekKZFqjFqdUrtYQPXDU3Mi5k2ujKU6id6WENh8oXWwjFii7gl7v2whYmFuEUkz1yezvr/3/gByLe93rXve617/u+jpXKBqOYuQlR64e+kJ3CzI9oDuIRsXTqqdfOr1nWi/Uni2RV29L+ck6NS+lWLOtIkhtQCyOToZFLfgOoTZ8a3iXQSriCzIsG/tkadmVLVcqDakN7yO+Rnrb6LVSUqJVaD1YIm5nnq8soRIk4z7/J1r+mbp9T3EnqjyzTX/NVibWHFm/aOhayStNtIH3cTgljaY68HAaEvSuWQybrht6M2CRtenIeVhsWpCb0VFiVC3DfFp0uloa18tZE3hTo1ahuglvDj5xmi1teOIwTwTTvqyXzGvZyOVNovSbWXvvQnvzPUfDe3XeEhdo3ZMy9CkQotKh5nkhhkAJmhPiBcvDEOI0aZr1cmBeTizHE7UqnQkX+S2eh6d3bFsySsvK5y+Bi7ySUqU1ofeGcxHvPR8/fsNvfvMb/ur3f8379+/x3pNzQrqCmOinHVTo82ms5+ve0KrjmFKh9NhGnp8fidPMT59+5vvv/8Qf/vAHcs7AABb62t0Axq3e/r8blrP6L0aP6mxp5Q9/+M/7VuTDh4+6Xanqre68p2ch58z1etHsjt7xzu+ZLssyK02qKcAoOXOYZ46HA6fjkVo0jbuUTM6ZbdsQgVLcHv6Xc97F7K22XXeRkoY3vry87GBiiIvH+asbNk/OjfPrhluxMMmwA8n2Zps4Vl0K3vSaDV7Tyk+HiT42BF1/r1wUyFdZKaWxbZkffvzCTz9/5suXFwu26zg3GRBu/PzpT0zTxOn0wOH5kTBPds4fOB4mStns9c7k3qFkZm9J7CXtYYdvoWE316rWu9H9NIiv1EJKq71fCa/rimwJL6uBCUeIQWlN/uZ8d1jm/RzS0EDVRLVadWu1bWzXzOeXL0oRSxDiFw2mPD4wu28I/oSfDkoRe7sdExvsdOyc73bM/ymIuMOKe93rXve6169dXwUsSnPkqh90vQu5DhcS9qlpayNRt9BaQpnisn/ANqNvqI1qM+1EYzRnHttOmLWlZl4MQWvHuW7ti9CbUBLkslErNDalI8kwahWETq0ZMeoPdFx3OC8EB8EnvGRCuSK10nthyxu1eFJ5T+pHSp9JVUi1kgqkXFUTYXamKlT1qKZdqT/7xLhW8n4EhxizaRDXG9Gucyrc9cHvgnjvxBrFQq+NkispJ3IpaqkrGuQxhNS6SdDNCBZqlkvTY7NP9LsdPXaBrVgwobfcgiDo5kYagh5/752FIcpu57o3pPb7IUTiPHM8njg9PPH4/J7j8cTheFLaVW2ccub08MS2reRSyLmwrlc+fXnP+fzKzz/+I9fLmdcvnwnRM88Tv//dX/Hhwweenp40L6J3qrlRjXNobF+6bbpyzjrBhz1Ze9inDpqWOOHH73/k5eXVmlgsH+DWkv2Xki5/8b03Fqu3b+vrnHPSJOhSdjvV/XfsHK22xchFQ/K8r/iqeSA5F0Ks+/MDzX7ww2lIbq9BCJ7eo2Vr8AuwMB6TONnpU3+e1D2u39oGZUq3I7HFfdtxS6VWAOS8p414d9jPLXuKiOtU2945o+no9T7ojm2/vnVjB/Ny5P2HhdPjtzTEBg9516iE6dXEBJ5GpDaPLqw0o8bZJlOtACoYSBYRXB+5O7CnVssAR+bsZQ+0uqBvjtPMcFsazXzrKrQe9tL6noOZqymlU8TpxsYWWc6b85SMSDzHdjrSu77uemo4fFhwYUbCxJ6G+WebMQVDHRmi9v34386/DnvY6L3uda973etev1Z9FbDINdBLpFpzUopxiquJIE3wPITWYz6qjbNOAbuo2rPV4cZi5iaWe4DTQC2xaWAMQf3e6fSWUNtPoHpygvNr5vWyqmuQ67gQiPPCNC1KqynKb25luA55DtPENAnz1JncF6R+gesfLcehs/JIqieu9RvWNZKLcuZrs8aLbk2E0XfwtGrR9c4zhYkQA60a778U9esH01LoBHrw9n3wlhbsOBxmQChV6TcdSFuilEJaN1LJSmVCA+6cdwSvQCbGaadc0S3Xole7HXNuAt5O4keD6M0lKHjP5KH3TG9ZOfGi+QrOe8SrrekIovPO0b1SS6Z55uHxkaendzw/v+fjN99xPD1wOJ6MaqIbhJEXMahB13Xly8sXXs9n/vB3f8unn3/ie/8HjseF4/HA3/zN33A8HDgcDqzrlZIztdQdXNzOw2pUqEbaNnummltwEyw7pkltc0up/PGP/8DnL5/JpexOR7LrKrT+V8HF+P7bf7Y+sPe2g4pBh2m9ve0TlZbWGrlWUtKN3sh+CKZrCFk3D70pYBog0u0OayOAMloWhVrXBh92jcV4/s71NyDs9gTH30tVumIzcbSIEEvVQMOs+ovh+hXjRIja+HZ7PxgbN2EAC9sg2WhBN3VKFWqtUWrX837S/Aec5/j4jvffPBPnR3w8kkvh5fXM+eUz23rhcnnRRPHrGfC05qilUV2jlMRh6ThRemZHwzZ9UB3L2B4q7c9eLndznfPeQ1MKkXdNz/vod5rieB16V0rTGG50ujLYWleXqN70/UwUdOMEH8RyO8R0MpXeHPQNWmbdAs5NxMMTbj5BPOzXqr1KvzzF5M81PrefGS+tvsfc6173ute97vXr1VcBi58/XwhzM8GtTY37yAiou4PPXtZ49SEaABOp6vf2CXnQpsiHwBQCzlxunNlVbkkb0ZRWUtIpcLqqmxEdwjQxHQ74SQOjGp2cN+iidrdemGfHFDJBViL/QKgb7lIoBHp3lP4tW3bkIrysnZRhy41aN+Uq10ofs+xfTPqj5iHMh705RzTt2IlOFKsJRFsbCdX6/A7LjBegJ1q9knIhbx7nI3E+0lAe++WyKq0lqWuRpvOy344KPiOH47JT/Wu2xrU0fFDwcXw46NS0d8t78Jqb0cekVafWqXTleveoGhaBEMbE/dYgQdspSCJRKVjHB779zW95/+Ebpnmh1sbr66vqBEYIXak7JWg0v4+PTzw+PfPtN99xOZ/5+acfaFXNAA5LVFHvy2eu57NuOVI2bYpShAaY1bCysaUwTrvRX2IIOBGmGNmuK+u6cb1ciN7z/v07tnXV2zOQPKhVt/N5nNbyS2Ax/vENv8aHyNO7dzw+P/Pw+LgL5YGdbiTi6V0opZJKobfKFAOtN2rT0MEGtoHTDcXheOC6rnTg9fzKejmjAmlN8K5FAxSXZTExtmqMwJr/oavZp+S3lnUHm8HfmtPB429CN4Ds7fovuerzMCesW4YF+w3fAIzTAEUBFxc6jmCioSad1/Mncsms288syyvz8si0POJCxMeZ99/8Vs/ZvlHyyrq+4jQ/niaRKU5M88T55U9crl/4xx//nnLdIBeu3cD7FAlRr1cJYX+tRrK40uaaATwN3Ayx492EcwdSars2SaVkoltFVCuEvU5D22RkMd2gpcq2ZrZr4vNPF9LWuF4FcepYd3z+wLQcCfMTiF6T8mbjMHJVbpvGG5nxf20v0dpXvb3f6173ute97vUX11d98lzXjWC0pyECHmFMKhJtmsBs+//9g/GtoLB3xujcW0Oyi2XZf0g/wO3v2cSr25ZuwGLbELRhCE6MpuFvgsaq0+EgneAg+s7iE56E61eoSSkoVajdkZnZkicX4bJlcmnkolQb1R3YhNAAhaZWe0Kc8FEtZH3we2bAW4Lz0I/sTBijE3nv8QK9imlO7NhS6UW3J7U2Utp0amriYuec0qasQY0xWGIzvOVbi4X6KTVrJGKjYMHfqDL7a2n0qW6vpQbBKZVkic7oJjCUuPJ2QiqacbEcjxyOJ+ZlUaBZzZGpaKr3tm0KQlvbg+BijMz+oOBoPjJNMzFG8nal1UROV3NTurJer6rLSHpOKBDIeu61ui8EsGPeejNLX3Nbsq+8beS04URY5pmnhwdeBdscdNTh542+4o3zzo3+diNNjdnx2Ao55zT5eZ6ZpnlvOrFU7UFjuone2bd7usW7bXhuQMbt2ofeoZZqGgqh9bprKvThCjEGIO73o/QoBY211kFa2n9+p1XFwDiFq+V6iNcJ/Hgs3Y4RJu52w+a09xvty4Aopn0fbm7iNEO7NhUnt9ZIpZO2wvl8pRQhbYWwroQ4Mx0fcMcHnMwEp0nt8zzhqXq8/YF5XliWBddXvBPOly+IKACgNVrppJbpfSZ0pQwq7c3oTwMGiLo2daevRvAQvbqSOZpR+vrICNVfRSz9Ws+H2yDhZnGcS2G9ZtZr5vW1UTKkEpnnAz4emQ6PxGnBhYjm/PyvAAYZlLs3QPYXYorbv7v/wqbtXve6173uda//mvVVwOLzp09Ea5J0wndrYrtZTb51iRlN2c5dFzHtgDcLx2De9zcnnZySudiU/YM5beqeVEvVTAYPy+m0bznG52yrFeeFOXqWA0SpzPKCa2eknXGt0Lun8MBrfuSaJ16vnVwqOWWl/3SoAwg58D7ulKFh7ei9NnfTMhOnSSehIVjj5VQk2xq1qJ1u8AEJejvTFI0mIvSmVpQQ8HEiTALOkXLm509n1m2j5KyUCu8JU+S4LExT5OHhqAJSEXMNqlzOr7tm43g4MM+BeZn3Ju96ve58+RCDHb+4ZymIAK1ronbWL3pniZ5jONFypzpHLZm2OyjZ5DZGjo+P/OZ3f8VyONIRPv38STcsw5GoFM7ns1LBWts1JIJwenhgPhx4eHjEh8jz0zOlHMhp4x/+8Mr59cLL509cXr7opqKp4061XI9BxXFjCzKSsDuIC5oSD9SseQW9ax7Cb775QHp+IqXMjz/9xPly5ocffyQZjcmksbcmz4DlPxF0c2ucAZwLzNORZTmxHB+otdNJiE/gEt1eU9V7zLpxsRyEERY5JunTNONjUOH0SBYf4E4we1gVvA/Hrc+fPxNjZFlmHh4eFLzN8+7mlVLage40TYQQmOdFc0jmyQTfYtuxvm8jh26o2zk+xWjbgAlQYPx6flXRuelaRJyhLaUmta60q/Nl3cMXtwQpoenn51ekF7btohkhYWJeTkq/cgrm5/lIPBw04+MJmgO85/13/x0fBX77239DSWdyuvDp84+cz1/4/sc/EqMjRM/D4yPTfOBwfML5oMYDTullTQTNyBFzZPNIFWY/qQgstp1SJYP6NbY/vXO+rKyXjdfXK+dLY8udy6WrHqR5Hk6/Y3k48uHxvaaeT5O+j40gUcdu5/uW6iQiiH1PZJwCt7XTALa8/fd73ete97rXvX7F+jrxdk7mdPK2ZJ9UggVDW+0iUZv2OpuKggKRnDNi9Iqd+7/ztU2n0Rp9t2/1arVprklup7gI3kGQDdc3XL/i8xVHQzzWLBy5Zg2Pu6bANTu2WpXe0Lo1cSpODqJUH3F+pwxFa8icbQmcV2rF2DyM54vRPboIDOHs2MgYgNJnOsCFM3qTgaemQt5t2xA6MQROxyMhTkzLvE+svffW1HSzH/UcJZjIVBOsa+9c19U0A51SlVteG9StIFJwbjSzb5rnpsnpelyFw+Q4zg4vjVY0dLCUtDeaThwPT888Pj9zenykdQ3eu1wu5JzJKdv2opruIBtVyRyShl1nU91EjBPL4aBbGO8JccZ5naILfQ/Qc6LiYUc03rxOv8cJ6oznHmPU11FkP+/G6xW8w0lkChoud1hmAFZr0Lecd1A0JvH7a/gLdyHZ7w8H4U0mhHMjeRzmutCK5nbkLVBKti2YIAYOxN3Aqx+UNQOt3WhPOaujVilFNxiMLYWGEZZSlBJXq4GIvl97Y1M1NiIjKI6+kp0npbQD/mZAVYGYgQVx+1YobRskWNfrHhR3XS9vhgsGUABchLDQutcp/rqq/W0prJeznhdlo9WNXjPob1FLorQEIdB8pMWF3jq5FtzlwuXTT6qrWo58/O6vmSbNzREO4CbmhwmJ72juhHNVz+3o7Rg4atOtihdNFe/dcXNj0mumdNW/0LteoympmULKapVdO6gJNttWqAVyPoLoIGBaJnAKYJblkRAm4rzg7f3sRhu9ieBVrz/EILft2S8g7Z/z2fa1KJS8ca973ete97rXr1lfBSxqKYiknSYxqEE7sf9tvfl/b248OmEfIuZqWQPs9BJR8g6gE7vWK41mTaQ2Q1OYCD6aOLXjqCyTY/KdSTJSXpD8IyW/6IdyfKD5Z6p74JwPrFl4OSdSqZRWoDWlVIkg3iNOtyADMOyC5mlSG1BrGFXw7PeJ9hB2NqNgKa/fgMX+vIWcEjh1uxkpubk0UtIGfEurUc3qnlr99PhInGemw+E2Ka83Iak3alSIbm98UzaqV07jlQIshKyJWfw2hGQTfvY//RicBpij4zh7DrPHt0TNSiEqdvu9q9vQ4/Mzj0/PHE8ncm6UnDifz6SUSFv6BaAqJVFKVqDKSM129Fq5XlemeabWwsPT026j6338BZcdEbpTMBgMwNVWKfkmDHfOEUPYwwkFBRbFrFaH+5iGyqkeYT0cEOc4Xy6s28b5ciGnxHVdySbC3k/xPyOrKJ3ItDc+aDigZU6I6MaLpoF+9KYOYOa0NbZhrXYkiAJIo7E5+xrAtLW6UwJLKarroe/J5yKiOSGwC7Fvrlhu31oM44UByEqu+7U7UrR1FK7Hu5gYeInTLiDftlX1HXaulZJJyYTzTt3jeoetdAgLxKLNe+tIWTWQLm1cXl9UYzJ7clqpNTHPQTUUJdP6SitC9zOtZioe2fS96Pr6M26a8POBtUcOx2cO04lpisRwYD48EeZCnN9D23QzWTe6VH2PGVmcXgMuW3fYRGK3ARYK3t2uret5ZVs3Xl82Smmk1Ogyg3ha9ziZ8e7I8fSROB84PD4RpoCP3lLhzZBiaFl+QSlVbc0emvj2PfUNrXSn9u3/j2297Db/jxBv/5c+C+71v7tkf5/8y47hm7PkX3H1v+g4tDd033+t1fmz96Cv/v1/3cfvbf1relf8uo1FSTsPXFDajqZL+71RG42fTuRHqJhyskur9KLNy9hmKLXI702Zd4PDHhHnceJZ5kDwjhgF7xtOCpQfKekL2+sfiR1iAJGKyAzxQHX/gdwmzimSVuVwbyVpeJp0QhQmiXinFCYfPD5M1mBO+OCZYmCaNP04ehWpindG98KShPWIaOCWBxdo3qhQlh7+9jl6P6vDU8pctqtNlPMOEh4eT8QYOJ5Oti1xu77i5eXFXJwch2li0NFyLkY3G5sTfX30PhedtDe1BXauGzfcQxOkFaAiNILxyx0NL50gcPCOxXlcbuS0kreV9frKtl5I6QpADDPffvsNx9OR9bry+dMXruvK+dWARUpMMdpEX3ZtRLLcBd3CmIYDaDXjRCk60zzz9PyevK18+fQz6/nLftydvR4jXG/yE8ml3XVKgeFswMHtxwtGsrueo06qnX+ewzzzm+++2ylcr2elpL2+vvJ6uT2fETZ3syaQ/bx2pvMpRTc7tWZCVIcgiRMlRlrJt+GyXTfdOSR6y8Zolhmh1J9gVsK1FraUuF6uiDiWZdm3FK2XHTBM07QL0Yf2Yvy9lMI8zztIHUJuDcPjDdVRm9u+S6V0onDdNnM2q2zbqpQ+S0/XULhs+RxXG7gLPj4SDoEpTGzrlVYSkj4jreBaYXIZXGcKjrJlyrYRe8F5txs6YMF9uZ5pW0LCgriAjwvOT4hMfP7hB17CZ1yYcBLsvUlBkjP6pQ8zc3zAiSOYa5MItN0NbeN6+Znr5ZXv//CfjdrYWeYTIoHWHUIEeWRZfs/puPDxeGI+nAhxZp5VOB+8x4VJr0vvQIxC1cWCDYddslI+VTzebxo2S/IeNsADeDC2Zvb6uTfbDOen/f06rfVr3t7/ReoQThzDw69+v/+tVO+NSzn/RQ3ZWlfWev0XfFT/56veO6X/ZcC6tPKvvjEOEjiE4z/79wXhGI5Mbvrf/uH/hiv6mckvf9Ft7IyIf8H6l769UV8FLFq3ADsx5xNkb0Ju4tU3ScT/hRr/Nho55268cf27NlnOR8tWEOaYtdF1Fc+G9AT9E66/0njFy4KTAMxUFlo7sfUjuU1szZNr0TcJS132QSfVToQYJrX3jEEFmj4wRQMTQT32nRMVAItmZGATRVGmBPRuFK5fPsexkRgiWG0q2i8avFbVdclP6gZ1OBwIMbAss5KTurlvNQvwEqXM7BkYwzrUmkC4UcnGn3sycx0/26BVpDc8mlfhpTO5jnNqTqsZH53F60nSy0ZJKznplLmYrbD3kThZLgRwvV44n19Z15V1Xffn6Z3a46rTVTXajL7xi6Ap1F7FtN57DTlrKigP++Q/GHWnIzZPkj7OJ2cJ495sVbXdH05IStKT2zHZNSJupyIFr9uGaE1hM+H00CD44Fm3jevlSi6ZlNWVanfL2kXW2iCktO20Me8CuwuW/JmxQd9l2ztQHeeqWBCbppwLed0ssXtkV4D3qmHwxD3vovdOLX4HGm/TuUfy+ttNiTL3/JuJs4mu385OxWDUm89a3VYUDZ8zPfEtn6Ya99/ZRF6fYi1Ft0bbilBxvSLSbCBf39yXgA0u1NrVQBBClwHqxTIfVBNRa1EKUbOYeirdUru914FCCLq5C14Trp13iAPtQ/R+SjtQe6X1kz5nB7gHBTIu4N2McxOHk4qul9ORZTkSpkltjd3IG/GWcfE2GV40h0JQy2jXqKJbnC5dwW7rSB86NrWl1vOeN3Q8PeB/LtL+89fo1ywvHi/+f/sH7/VfrDZYAH/B69d60238v+LqdLb6l1EB17JS/9wZ8F9ZTT4SXfxn//5uzPNfqYH9P0vpZ/9fdgz+0i3mr1lf50eoQok3G4poGwsT4covbRBHioVO0D1eHG4XDd/SfW9JuF3pAt6xBEd0G9FtkP8E5Uxbf8bXM9JWoBAkEg8nwvIdEt6R2ge25LhsnUvOlNZRk9hA8IE5YJNLvzerkwmv52lW3nUQpiDGClfdA70h0k10Ono/pW01+MWksVRzO3JCnII63uTC5Tqa0aTZXE1wmIbhFDk9nDgcj4RpoXXl+K/XpPkZpe0ALIjy7VfLaXB7Q8gvRNIp573pG/QdYYCKhmtFwdokTFE4Rs9hguCFYIF3ToTgofdCWTe2q7oybetK3hKtdk6nhYeHR2IIpG3j5cuPfP78ZQ+cA6y5rW82J6PBugX2retKbZV5ms0ms0OvRlWzwLcQqV2ow+5zB3Oa09H6jQ5UzY1n2xKbUZ90a3FrrscDFNt4xFjxLpglaWTynvnpyYBh0+3FuvLli25kLtcL1/VqG5K2A2tolJr58uVnXr584vzyCXkwypf4nYI1QvLUQci+arnpSASjakVrUjtfXj6xrRceH0+kpEJ6cbr1mSb9AOgGRkf6thoK1P25DqMEdYByu93zNM9glL1ha/w2hG2kbDsRJOoEqtRE2zS4MQTbypiz1IGDNb1CbV6H9lTydiGtZ8rlC04azsGyTDgRcs10EUKckWkB7+jBUXPSXBXABUeMB2Q6IWEmLI+UWsglE0RUj+MPdBPAj+1UrhmXK0428pz1NZ5nQohKNcu6dXTuQJeJuHzkm7/6rWXMBOZlwfmAi3F//fYN6w4ABREFP5rVaO5bMhLvO3RvpE9n7lN6DPZBwZ6VcaM2Du2FusbdgMX4/m2zUW5bj/avuym6173uda97/fr1VcAihIk4LbseQm1XbboJMDYYoymSwTf3+KjNyxyjhroNMbR0RDL0jPSE9AvSEnG74vsVuNLqBUHzH1x8Qtw3dH+CPtH6kWs/UfNEroHaoLmuzWFHG4URVuXdft8+et1KRG2ko4fgrVF3Ixm7GGWlMfJyOx4RnT7XJubm03dqVwwmiqVxWRWYjAA3FYFPeIHoHIfZG8XL40Kgt87lcqW0zpayNb+NKfod9ZeikygNQrvx40ez/BZc9N6RNxMXJ7JTnCYPkxc+PASW6EynIhY8/NZK9raKCc4xTROn4wPztHB8eOT9hw8cTw/KO7+uvL5+5vXlRTUAtbEsC4fjAboC0BBVsFwLb8CoTWZb2y10fRi0Lg1XuzXYgeoDwXeGbWutjVoMrNjt6HEy5x6bymtOx2i4hlhdE5n19SvW6I0mzuN72DUyh3nRwMYQWLeNw/XA6+srKSdKLvtrUZs1srnw+dPPTHHC/c4xTwvzNEOvBh4UXGJT6W6bHMY2zRLC4xTY0sp1u/I//3//Rz59+plPn34ipXUHFj4E/fk46QS+K0BwLrIsR+idGOMe1Nfq2G7dvsS0HN5Hgldgsa3XXU81Er+9D7uL1cuXMyltNo0JIGZt7MH7tm8jxS2In5DQmT4+09sDrb6316wxzRpouW9MxDFPx53ik9KqTmUlAw7nAllfXZw5w41rTDUtRg10mkiuT8FZby/QVW9Ts4VAumpuXyoZ12u4W2inp4ujNA3f86WA10HJeNtzohuPKigg3je4QY/NSD1HgScI7RcTqGEI0O168G/MH7r9bv8FiBjbypEr1Ox9yonedg33zcG97nWve93r162vBBY6yVWHGn6hRml9fENpBc6p/7tzakUZpkCInsWmfdqkNJuiZ2grtAuUH5F2JZRPSLvq97vQ/YQP75DwhPh39PCR3mdqmdkKlNrJxnnHdYLzBm7C3mwE49rHKWgar9fgNycQRTcN2upVKpVeK72qG1DrAhKUduO0QdhZRW8aVeccpVtTtm2WtK0NihNBgjB5YQ7C4ynudIlShVwq1y1rEnOp1ngq933sdLJNkjttp/Qkcy5SG9dqTZ+uVvzQuwimzxCiE5YgLFF4OgTm6Jij5YoMqkzD0p719ZWuzyH2zmE5aGvkHe8/fGQ5HrisK9t65Xo5czm/aOZI1uZ+XmawXAAfHK2JElSMDqR/dnaBsU1+R7MtvRltTUXzSpsbWhyxx2s2qP0mgtVWTKfBgwaleRftNmm24+pwtp2ynwWcJWU7VNcSY1Snp6jJ3cEat1/oLopqIEY2yPn1heAD758/4BCm4PWkebOVMH6Xfn9sBWzzEiyj5HJdNZn8D3/Py5cvXC8vpG2j1KyaGTMVOB6PhDCpdshAfQwqtl6Weaembc1oAkbl64P2ZMJz5zyuVrJse0Prnd//vfei4Y3XlZKz2h/7uG8DByC4OajN9C60DtPpQTcEXihVt3xhOuj3nMPHYBuYk9GoGuu2kS2/ZjTUa7pQWkUkMLZWO61SJWAa5iiWl+McrVpIoC0QWtXrrHXbIIxDYu9rA+yo82xTzDAoayJ4Bl4x+iGNVrO+vnTVfjiPSLT3DAPSYposFADqadgR6YxsH8b77P5o7E8DFSM7SF853S7Rvel8hBruAXn3ute97nWvX7e+6pPncHogzEeGabsGqXHjOosQgidGT5w8x2UiesfsHcIr9DO9X6FlKBstf6GVK3n7TC0bpaycZnXpmY7PSPiIhBM9/BbkAfHfsnVP7p5tVfpJKc3I0Z3JvxFpem2iw+TwDpzvTK7hScT+mV4v9JRwLYKP4E+0bgauTWjN0XB0OdJx1CG4NNG2zTOt+YV1vVhw20opKsSMcVZ3oDgjaKjWMju8awRXeb2slFJ5fc2kUsilUobdaJiIPhBcYLvmX/DgxcQdYiLt6D1ehCaO3jXwTkbz0zvBCcEJD3Ngjp6Hg+cQO1PoHOJoSpq5yChaGmzAnRffwSOID8yHBURw08R5XXm5XKg1c7lceH194e/+7j/z5fML67bx3W9+Q2+Nh8cHm5gb797J7makW5ZM64VcDrhVwVAtRTMcjC53OKj4aVChdDPWDVg1cy0bAW4KvGqtxAjOO7DG9nZobvz1MYl/m6kizWnCuVS1KfXONBgON80E55mnSe1St42Us2VIvGgTXDLny5VSO7/73YUYAyJHelNNQto2ckq0Voy2pkBRBe2eEPR5l5L5+7//W/72P/9n/v7v/pZaC8s8AwqUrttqQGQCCcSo9LXhXCZdQWWXcbl7Qpj2LZsGsgnblpFUWCWZhbFjXo47sLher5SykVJmS4ltS4ibeXh85K/++q+Y53m3gQb0HHFuH0QMvcvYfNDLfl67sCgA8CM009PdwSxqjzy6We1afVC73ZI5v34ipY1Wqma5lIxIpdfM9fJKLRdqbszLA95PhOlIa3oOiDXxSoNriOmLxnNtb0juA4C2phuPvDZ6S0DhOCXEZbpcyWXTQMftoluL3ghhwbmA87NtOOH08I5pOnE8/RY4ALNaQfdG7ZXazM2mDR2Rbljsitz/VNqV7MnyXhxziLuGbbpvLO51r3vd616/cn3dxsJ8+UE/gDX3qhutQ/8/+EbwheAaM53QOqE3WjvT2kotF3ortJJo5UJvmd6KNsjxQJhPhGlBlo/gT3R/ovv3wIHGUdOpu4ohtXEBIYD0vYnxDkIoeGmWtF1wtRBaVVVE21A6Qge8iU0TXSId9bZv3VGbo1gjMlxZeodSR2gYdNsSrOtqIlZNIzcZqzYvYnkJTif/1axuUyrkXFm3TK5tByzSBS9VR6HSbEtkDYQ1DW00H4NvvTfKQwqjP++BOXim4HhYHHN0nBbP7BvBdbXQbHIbmr/hxshO3cB0Bp1SK19ez9TWKL1TmzY6p9OCIBwOB56fnvBO6UKPDw8qZn0ThPhW5H/jkHecTZDVxSip+L3DoeQ9wE8zF6o14LaxKHV/7nr8bqnVmPaitwbtdn/0NxkUfyYuG5z2EfrRZdBOnGWu2FRYYAqB8MbG1TvPtmXNoSiR5XDkcDgyz7MlYWsYYS1FNyytvnms9niGyNuJce+VkvTy5TMprfr6zEp5Cj3gksOJN2A0JuD67JoB/94bW856vXZgiMPHNF/c/rwFnYYLqAWzjKFBfDP99wrgY7DwvUXdt7w3hzTZb/+X1qp6PSgFUsyVy+GnWUXazt8APprQLTi6KAXROdVDTF7IKeCkwuRpLdBbpLeNWgDxtKr3OR/UmCFM037dCu22dbVj5WTE3rGncu+0KgGHDhdqgZwatSQdlrRE4wo90XuBdjWdRCX3bLqVQB20yXYmxgMlr3j/iPdHxOlgY6SR39xoRraGgRtbtfTOG8rX7X3B72YEzt6H7nWve93rXvf69eqrgMW0HPBh2puggCOETgyNEDJeCoEE5QtSXojpJ2gbraykrLSNvGVq7ZTc6RIQN3F4/Mi0PLCcnplOv8eFR3r4QJVIJRgvvtNKs6kulomhwghnk2vvVB/hXSFyxvcVyp+gXpB6VncjhIRH5nfI9Egj0opTl5oYwQeQhdIglUau1gj2ot11GyLpRi7ZgrJ0Ui0Y1z0E0590RCreV5Yl4J2wnlfWNXG9bmQLmdOkb23unDUwrjU82vyfjos1EWJ6ikbOjV67Nr4GSsoQ6CI4r5qIQ3Q8HCaOs+dpQfM+ggYIK9ccehNqEUtvZqfqiK4W6MYHv5bG9brxv/zdH3i9XPjy8kKIkWWe+b/+X/49y7Lw+PjI0+MzJRe2lAlBqUNDZKpT9lvD0yxBW5tXv2tIAFptTKWwLAd1waLv4YG1bNY/3zYN2hwPQfig6uvWoRd9HQHTNdyadxG3h8ftoXEDoVFpCI4KxUBdGAGKjhg8zkUOciDlwjonWlctTO3w4cMH3r17xzfffMQ7p9P2pNuKkWDeW2MkODszQgClpnnn6K1yvV54eflMyZs+1q6p1z0Eaqn4EFgOx93ZTJxe2s3AX6VSLldLblagq3a83myUvYFSs4zu+to0yq57OZ5O+/Tedpb7MVOXsqYaiHBzmhp/ju1K70o36yJEH6A7TSGfT0iYqOJpFUrpZpTgIFfVOtGIoRACxNCZQyFKIU4B5ybEOVISahWOaVFwDCyHJ5yfcGGhDvApg75Ud0rRsDsWB/M0EXww1ziVSCgQVn3Ky5eN66WzXc+0nnAkcE3pT0FdsGqF0pLSIi3jo5TMl88VEUfwE6fTBw7LM6fTf0DkSGsHcF21Fs7bcCHY1hSy0f6UpWdefMpANeonNlxxCnzuda973ete9/oV66uAxXES4gRCQXrF91eknSG94NYXpGecT/Sa6bVwyTrFLzkbDcAh4YSfDxyen4nHb3DxhJ8+4NwEfibHAyIR6Qu9DsEjSp9BNAzNK5AQKo6M54Jjo5cXernSy5lWX2g9G7NipvsHsn9PZyK1iVoCNQdS1SlhrULnSudKzp3aUeqD0Tp6L7TSbKJed7qEdxqkdzoerZFqO6AIk+ZieCecX8+UXNmu675piFE99qGbfiUwx4Bz4KVrUJ9zuCgKHIrqNkourOu6T9+92fbOUX35g/ccJsccHA+HwBKEKcDsleIkux5BKVvVhLijKR/f7x1K1y3F5Zr44ccf+fT5Mz/8+COlVqUrtUxrnU+fPvP+neP56RnvI612DrUxxsLF9A/QLQNB7VhVC6G2vyFoInNrQyPBbRNDN/cx21Lsjjc2YRY1AoB9AK1tlx9uUAJE0xyowBiUzjeC44YIv7W+T7JbU6rUcDcSgdL6DkriFPUciBHnhClGnp4eEec5nh55eHjgeDjgnLPch411vbJtV0pOe4jZPn3ujilGJtt+AJSUiSHwcDrt9JdlXtTCVoQpaiaF8yqeFnG4oMnRHQ1Ka2NTw9hE6etat42JrptIe569O9zYmnQT9DfVFqnP9G1CXkrehdzj2Jc0QCk7IL4Jv/3+PXEeFxZcOIA/0iRQO9ALTjrzNCEuIn6hdAWIekJUas60dEFYeTo+4ryKKtphobVITqa6EAjRdA5er+veuGWplERtpo9JK6VmpfUxHNfYn9fQYDnxu+VxiNC6p/eJ2oXmOr0GtXP2FXpFWqP7iC+ZWAq9pH0zmNbPlHzhesnEeOJ4eEduV1rPCLoFi1PEhyPBTRynI+JmnMzU7qlNSFXUAa8pLbCbVidv69e8vd/rXve6173u9RfXVwGL6JI2pz0hJFz9id6/0OrPSPoCPYHPUHXamVMzUXVjcIl9eIdbHpkev2F6+B1+egT/DN2r8FDUy9t1E7k2bQ6E0dP0N6Ci4FgJ/RXXr5T2I61cqOmVUl6VAhKOEGZgprkHGgulzuTSKaVzSUlBRBd6U8rNtmWdclumgvLBTRxdKsWEwepcM1syd7SGNqMWk0ozEnQauq4baVPxqfdCiGphqZuXTozqDjWAhdC0kaNTaqLWTtoK27aSU2Fb131zNM8TQTyTV8rTFD0PS2AOjseDJ7quQAX0mFSl4gwh89AiDNnqABWtC9dc2XLl5XXlx8+v/PTTZ14vKwLMU6A3FYmfz1dOpwfbHnhGYGe1/A3e0KAKYuJfvS/vVKwbQtg1HYMONETA4/8Hahi0GuT297cOUMBuI+tNezM0QNMUdw1JLXX/eSg3qpTVTYdgX2OjY+Jg5wQJ4LsGLYbgOIWZECee339gniZijNSiAvuctj2hutvteKfagm5N/LBhHvdXayX4wPF4VJ2HCFOYVGQtjhiiAgew5ltwIdrGRahFJ+3FnKCk3wLXai346t+IlC1EcIj+8epA1h20QXEykwYR2yYqpWsXw1tQHmKEnj0o0+0CcHV48OAmxM87DVGpPnrfal3rcSHqdq53asmUlullpW5nvGwEmREXENfpzmkQZHc7RdP5tm8BXDe5Qit0Mq6vtJaQVlR3VTRdfmSoiIyQuY4Tdc0KfsIHTXN3XpQa11TDIx0IomCiN6CqCYDzBBdoPttjVGthFXtvpPoJSPQFanmh1IQg9OZxEnHygDAT/DuCO+K9Xke1efoQgPcxENHjlPJ9Y3Gve93rXvf6deurgMWy/r+JaaWXF2gbXa7KKe4Fun6wbsUC4GpFXCBME4fDM/Pp3xCXb/GHv6HJRO2BhlCqEHrAi8OLpzm1Ue29Id6Y1uYeJb1R0pmarlC+AAlYSflMa5lUmk3xPlLb76ndcz1HcoXSILcXen9VAeeYjFe7P5qKJNHmatg3jsl58LqZiN6oTiIWktc1dZhm9rU3553Pnz4r7auwc6TF6/Q2OmH2De87MTYcFWmJ61ldodaUuF6zgomkuo1Gt0mxQ/32VeTqKfgYOMyRhxlOh8DTwRGcMHl1VaI1FTmXSs6J9bqSc2LLq05jvezNuw+T0nm64+//8TPXLXFZV66XjdId03LU2+yNXjUv4aeffmKZZ1LKBB81AK7p7dJhDtNOi9nWFdhYbJJ/OCx7LkDOxYDatKdKT1OkmJZFtwtmi+qGffC0bx3GVkEdppQmtSxD49F3x6xkdrxOHINqP373thlhp5f10WjvImS1uKUPcBKI84HjcuD09KzZCN5TS2Fbr6yXCyltXC+v5LRRS+F0OtC7JqNfrxeq0cDmeSZOE62ZbXCtPD8+IU5dmACmEK1JV+BbW7XsktsGZ2yfUtrUCWpLu44i56QA0rQT3nulBVXNQPEmCA5hwjdP720/9tM0QW/UorQ2Ebc7Tw0wJ6Z/wimo82Fi2MXVaiF3zDhmpM+QtpvmArXJ3a6FRgPfKPa6Xb78zPX8iZfP3xPqK1NstPKJOHn87G+UrJZ3rdBwGvMx4CxDYuhxmobK4B2cjvqYeo9gzlM5v0lIx5uWZWKoMXSpNDQ6erttrmbw5WxQ0mkt6ya3ZSi3LZWz44NM9G4Us2vFlQgeOoW1rbx++aR2zOKI/sAUjzw8/jt8fOYQv+EwzSCBVBZK1VyRyxDR3+te97rXve71K9VXAYt0+ROEjPQVqIgrmDWRDpK78XslIj7i4yMunojH73DL7yB+oMtJxZ+A68V4CUkHbtq17dxhN7YTPSv9oWbKtlLyRi1XE35ncoJSHFuB2kSbkK65Arkax7x3C6yyL2RQxK2GD4wYt1nMnlWnrd5p3sWwHVXHnWiCcQUiKRVSrpaUXalFtSE0dWZyTtO8vYPglI9ecuN6sSavq+Vsa42cKymruLuUPgQD+OAJzhPjtDsHPSzq9vR8jCyz5xDAS8F1qFlBRduBRTF7VJ2cb9u2T993kW5sbLlx3QqfPn1mTZmUMjmrLqA3e91aodeidr0xmJ3vTbfQzbt/xJQLsjf7IXbbJjiWednpTgF2epkzMOecQ1rbJ/DiHMty4HA8cjgsTPNBs1J82J2UtnWjmBDcGce/5Kzfy4lSdEPjLTDROUtV53YcENOi7NV/8Vfl0Tfdhpjd6zwveHH01khZj3PJic3E/a0VzS7xE/Os+Qqtd0Lwe/bIyK9Qd6rM9XKltUb0ETXGUicwZ6ACp5as3oc3JgMGfprRB8G4+c2C7iL6wt+2FTVpEnwtRd2ZcHY99v1Jj/RoMWDr7LaHO9EAB/q80GugN2pqiAu4oNsFxINEXBPE8mJqLSpON+ddccu+2biuV3LaaOtK2q7UbSOnleQbn37eiHMgzI7DMYI4chV1GqtJtylOAf0UZsvpsDBB4Zb5Yta0YhbV0sH7SG0a7uhEj5PuY5TaJ70NtGnXkKagN+l0c70alrSIgxYsL0PMXlfpkN0MAWrrzPNMiN7uq9JawCE6BCmar7PWM50/4cMZPyV8mPF+ZopHotfgTdo/PzH3Xve6173uda9/Tn0VsLh++Tv6IrigFBDvojWLzkSEQhBPwAOBcPgdEt8jx7+hu3dUjtSmCcLOFVzPQKbXs1Iq6DtH3EvYRdmtXqg1kdJVnZRKs4a7sW2NNQVyDlyTbkpy3Wh9Y6gaR5Oo4ksYzam44aSj/9aagguHKLd5ntkzu1BKjHeeaZ6IceJ4fNAD0+HFgtKu68UoEJ2APtfoOiF0gu+clluq9JeXC2tKvJ7P5udvPI0ueLxOU8cxcQHvI3OcmELkdDwwT55lCTweYImOh2UiOA3Bk57prZFT2TULI2shpY3NcgGu1ytgbBUTO4dc+PJ64fPLKz9+eiVlbTjVlrYr1atVWlWXoRgCp+OBwzLrFsHSlxGPNKPE7MfdE6JNt5nx3jFPkVzUcnUAiRCiBeWNIMUdV+BC4Lg88OHjR95/+MDp4YEYInGatCkLnk8/f+JyufD58xeu1zM5bawXbU41C0E3Ud6JgrQY9qZ4p2FZ0Ju6hhlVzGhCKnpX0bKzJPlpnlkOB+hQcuL19YV1ve7gQgSjYk1MMfJw0gC41juHw0IpZdd0eK+NZtoSaSvg9Nw7LPo4nV13Q8PSuzqyjbDEXApFOVC04ezEyPxoqqmwa7gaCElttSyOjBBsO3Y7/wflrNZKiG/oWtiWxw03JwNdrSkoLZXzVvFhJsyO5bDcROatQkuU9MK2Xfj5p+9JqdBK5/n5W9WNOPj00w+sl1cOTp2pBMf1mtQtLGTi0piWwO+WB0J0lAZb3hRApwt0zas5HU8a7nh4VOek7ti2Qq6VLh4fZgN2ZpgQC2TTjbmxp8hKlWqmWbJj4ATT+TQ6ldoSXryes6I0N93ImA7GhV0XMzao0iohLPv10nuntEIOC7UW8rqRt5W0Xbhc/hZxkenwA8tyYJ4PnJZ/i7iF6Beim7/u0+Be97rXve51r7+wvk5jcZiIs9fGFRWadhy9OqqLIBN+eo+P73HhGeJ3dLfQ3aPaVjoI1qQMfkFvQiPQqdAKtV12mslwVlmvSuW4rlmn+LWSU6bVrlSjPYFWE2+VCqKUh52/Mj7U3S18Chke8AowolOxtrNNhVKf1CbW7zlWmtBccuHHH18tcEvFzrqdaHjX8b5zXMxrHkcpOt3+4adPuzvMtmXL4uj74wmTpktP00KIMyEEDseZ6IUpCJ6M6w1PIfjG5BsPIRA9+JqpuZJbpbWi9Kk6NBN9T4aGvlu6ppRUWOssvbhVtmsmrWfqdubgKsskeD+BHUrvxG6vWmMe+e6bjzweD7SiYMN1jwTbXjibfhvhCK+WrUJ/Q18So9QEpTf5YI9LX7vaGlvKPL17z9O79/zVX/81796/4+npmRij8dG1yRcnHE4PpJz59nLlp59+4uXlhS03Gg5XrQHsnV51i1E7TNOEF/8mGV7pU7UW0tYY+SG9tYH/qK0jtYE4pSOllbQqzexyPps+oRJjsGOlGg+lSulz96Dhf87ZJmXv1824oEPtep96iqu4+g0IMlm2ne7CHCNTiLSpUU0HsdoWR+lC3H6nqzbhsCwE7+wc1/vPJVGbp9Sy07uk6+hAvIZOgoVE2nV2fjmzbSuv5xe27UwtCR9nxHvcNXD53G2DMPQynZQulLJxubzgnU7fe3F0ZkQW3n18pn98Jr18Zrueubx84vTwwDQ/8e67f4OPCy4uzIcDIXbi4cz1+onr+sL1/JmaE6VsnF8TZ0l8fnm16zyaDkgU+DQF9KUV1cx4pSkRPJf1hVwS23aBVjRnYmS/gAn80ZBKSxTfgReyJ60HcyFzPqhOxuvQYOhXQvA3swD0PZPgCd4xx4l2PNDrgyXJKwtV+pmyvvB3/+kfaF0zbQ6Hb7/m7f1e97rXve51r7+4vg5YxCMhehzNWkRPw9N6oBJBZlz4SI8fIb7X/AmJKO2iWTZu0e6oF2pVWk3ORbMtWqHkRG2FlDK1dEppXK+ZXBrbVkilGp2lWOp110yL0SaZc8uw82f/gFY7Uyei9A2jkLidQhN3apN692uj4J3mFahUwEgQVSf4ac0qfm6WSiyiNCcP3gu7/raL5S801q1YU1/Nhcg0A0b9mQ8TIXpm24qEEDkeZ4ITou9IVZcZ1xrBwRQc0UOQTm/ZgsIKpSo3fGRUgLkrDXCxpzzbFPb2Q2r52iqOzmKT/BCCCnK7imo73eg3GmgYvVeXm7QRWtOMA5y58bjR8iovXdjdtkZTPF4l3YRp8vbYMo3H3nrn4eGROE18/PY7Tg8njsejUo9M2Ks3CnGaNbsgRHJVGs7nLy+I0+mw8t0rrZpYuVZaNxmscd9DCMhwmnKapozR6FTc3uhdhbqY5WpOiW29qhOa2X2KgPfOEuf9Hhg3thOD7z8A4KCFMYTY9vxAZ+GCGhwMUfnYFo7GVOwcFwFHwEunNn3erlSqq2pOYMd0By9NdTDtzYZGf6ZBxexUHeLMkKFUQtQX6U10i7qMNQs9bInekzlcFSgrtW+qzwkwBgG1JMsmyUpVCh2kglS6NKZ5wTlP275QckNkI04PzIfAtKiVrIQD4he81+tCReiOXhrFbbax0SDGWqC6jus3u2eaIA1c0+fgXFfgZauyXNGvgv5sh7Zru22T15vaCPduWrG+nwPOwEUQze5wQd979P1n0i2Gd/QW8RboOF7TAQS9czgJdO+QYcDQG60mWs28vnxR6pYwlPz3ute97nWve/1q9XXJ20//njiZ24k4xL8nl4lSItcawE+wfKC6gHMBIVjDWPA503uhtCutadO1bSvZOOS5VFKurJsoxSmt5oZU1Fp09FnDNqjrFFzGl5NdgKwT8GCi0Wi0pyF4FmIICpC8cpydC8RpYZkXE7I6E85mtvVCyZlclJevfOxmtJZI9IIEpR+F0DkuOonsIpwvjZQa1zVT27BbnSAsxOA5BNUYTPPCsizM08zDyRF8IcoLtVxo9UyrgZrheulIzbjeOUZPXGaOcyR4oFXS9UrO2WgwFryG2zUrO+++FrVGnSMiRwNH7Wa3WjtTmImPUbcBFh6XTaOQs1qMKstJ6LXz4w8/ME0Tx+OR2Y7jcjoxzTPzcsB71d8MLUNrYnkWA+A009SYW1FrUHVyrk2abpL+3b//DxyOR06nEzlnXl5e6ePx1Jurk/MaijZPC998/I5vPn7Hu/cf+eHHH/iHP/yBn/7xj2zXKx2x0LSGZG0IRxBkjHoueK/8/1KLPe9Orpq23Xon2rlSS2HlTLpe6V0TpkPwuGAgxXQ2CiwzaUtgoGDQ1KrpQlLOOwhelkUdyUbIH0M0feOHDSGwD0ol87ZxCSGoaDl4oo/2XIcoWdFAM5vhtixKlTueWNeVXAqp6rHNvZMSIBVXEu2y0TscjgshBKZp3jcd8xKZF8fj84TIO5BGcJ6cVtbLC3lVfVQI7DSy5h5pMlF4oqEOUcWhDb8EtV8tiWVKTK5xmie6qzh/JdUfEV4RZkr9SAgHlvCO+PjE02MlP3xPLRfy9plaUa2VTORaueaN67pRakPCgSaBXANZQzTwPhsg7zg342Th+PCO4BzeCTJyU3plvV7JOXE+v9J6oraNasYOIg2h6pbOBjOuiIFMj5ew09XUjMCTi1gIYcQ507I53bY5gZLzrpnpRR3r0qYZILkk1pc//gt8RNzrXve6173u9b+/vgpYuOWvkMlbwyo0OVKdozmHq0IXR84gruJKw7mkzUav5JrptZLSlVKy8fyv6lZjH+y1NErVtODRwO95Bgxq+9BNjBAuC/gSt4svnTicNy620ZrEOZ0ODgG1F5wfPGdtyHot5FpIqFtUrYWcV6U7mNDcizlIiQnVh/C3Ky3r5ZxofaM1WLdmadXsj9ObTagPgWVSsfGyBKYA0W9MJFzN0Fd6KRoIKJ4qnu4c0hziKvMcjVLjcW3Qxur+NabdALdcCpuq57RTkEL0hO7NKajY77NPwMdOg27uNijlTCfSNtXGU4pOm6/XlVIawVsmAcI0zSBFAUUXpYrYYx4EnvE6i2v7JN5Z8rYCBc80z/gQoHfOr6/knKg5U3PaqVlDYxDChA+BkotOu71nWmYeH59I32Sul1daa1zzxp42bhS9WgvJbnOeoop0x1akqvtSyipo1/OqkZPag46Nz6C0gOoxWlVQUBni/jb+SalAWe1oW20GYuq+fVABujadXoauQo+82Jpg0PG6be1KrTingvBQbRNnALELe0aGs+2T6iI0p8XHqNu8nMlXPa7J3KJa65S2KhhpMF1WnFfr5OCF4IXHx0gMQpzGGkOzH0KYWRalFdaykcuZPVVaZnALzh/272kStoB0pCUgEdyZHjJehGbnSeuZXju9VV5eHWu6sNXCZAYHMRwIPjBF1TN0HE1mcq1MW2LeVgXiCOq10Klt0+FCHXkquglt6CahNn2MYtsnJ5F4iPip4qeTbmB7sYGCpnArpVJueStv9niDHirmviUiTOa45Zwf+NNStvVd0IswLG2l6XUxL9EGM4XzJX/N2/u97nWve93rXn9xfRWw4PDXSNBE2w6U7qiu011DajOxcAKxBFpXECquruRcKLnyclnZUmY1d5dSNEBPG8Mb9cWIMfolN4HkGNuJNZ6aMmw5BS7cAEQYk3YDEMEzxag8d+9w0nAOo7soXWdbN03Rtgl475XWsgk/O55OcN02NoJIVXpLEJsSNi6XlS0VSmk771y8J04HvHjCNDFNkXmKnA4zMToOMwRWPCs9f9ZAs9wozVOap01RE8JdVOt/KSzLxBwDwXud/De1PS1FmyHvvR5LExmPhludd5JN40eWhtub2FxE/e9dN2p/282QxmS/NqOjtaI0NOkaSpaL5ZdoWnNHmOIEp+J32RUAAO1xSURBVGY/Z02bWce2N1SNkcYtUo0mJcSo4lOd/nvmRUFcbY3XL190Q1GVPvfWCUmdlbJtLRJL1bDCw/HE6fEBnOPnn3/Q6fLrZ0a+hor7GyWrVWmrleAdI8uiNQUN6qqV2VLWjIraSFuy49330L0bsGMHe602UsmmvVA61dgC1abAYrc5ttckpaTidB8gBpty36hlg4NUm9LkRo0tRqzVHLjCrjPyQa+ZoKskbdBt+h2bbiSdT5xTphVNfL6Yxum6DSDXTaivKe9zdMyzZ5qfcC6wmGOUWi0PUD3jgqfkle0l0Tq45nCyIO6Ai8uuVZKu4mikIlyhX/HujEinO6GKo4loSGOvmnJdNnyYuJbC8fDAYT4xHWeCn4nugA+T6ircTC6VKWUO20apmS1tlJLJljlSCqRc7T1I0CQY27bBLsb2ziEhECd1iDveTmpz6dJrxns93t4NLQaAhujRNnNZyzgzbRDsnGn2tic3ICNA9QJUnCtm1y2ID5QKl7XR/vTTV7293+te97rXve71l9ZXAYufz5UYkzVvjZybTVktYZaGc7ryb72ZZ786D+WkwKLkzWwwq37oDreZ0WPKkCzuBkm7jaWzgK0BKBg5DmHCuWAaiSG+VaFpjHHPOIhhZBYoD7q2wnW1x2M2m8rzbvvPq+Um9F4JXojB4dyR1h3b1rlcC7lcdMLdRmqzx5vuwPtInGaOpxPTFDgdhclnlnAmyiekd6RCbYXSKq1NtOZJNeOnmegntnyg5Mp1feUUClPgRm2qhdYSpWVSSeT6ZiLOaGC6ORjpRmJMZaVjXHxTzHh1yVH+v4m9lc1vmxkh4KnBG5jQqalTvpLqT3rj4d0Dp9MDv/+r3zPPE9Mc+fxJG/lqNK1Wb7aoarRkuQl5MuvYiByV/lRr361nzy+vlJJ5/WIAzKhDImp5W40CFmImmP1raxW/Bc3B8Opg9fj4SE4bP/zpH2il7IFl41wJQbdYrauIdzTvY4Owriuv5zPzNFFrZd1WphBUdB4NrHlh2Fn1etOxeKfn4dhQpJTfZE3czscQx6YBc5KamGrY7XOH3eywR1aBvBkZlGrTbsdcZjUniNW2dI7elNsvls0SgqdhIvlcdNsowrKo5eugo021sRwOjEu2Vj3nc6m4qeMmyHWDlGjd4Sz5fJqcZVp4fHjEzSceppNuAMTT3QJ4EA9ccT2xnX+gtgw1I1KAwlaueq41IS4O8ZXSdOOQSyFOR/p0IEbHy/qFl975FAPLPPPu3XvC1HGh4QL07oCA8w2PY5rMCtm+ah3hfwqou20VbjoY0wiJZtr0OjaZQyNjrm6mLWu1kUsldw3G663pJrRV6Ksp8zPeGbY2+lutbd9YDGCi4Yx6f950XKUJwkIxutzh4W43e6973ete9/p166uAxZYypfVbanOxD87ekV6ASu2Z1jKtFi7nMylldaNJSuvpNe/i1PGxe4MSoE5OQ7SoCb1vfd/3cLRgmwrncQYsotmYOu/39OJpGsFsRkHoTUPiTAReqz6X3VK0V+gNcd303aZPaDqZVSqPugEls73NRcPCGI/RrDTjNFmaduSwCDFWDiExOf3yNm+uxcTdFUqz2+/qnOTF07uYw1NWq99BhWmN0js1Z9OBGHWqd1zTDUG3jcVo4OEmBlVBedmpR80apn07ZBN1weH97Xd90Ec+wIYYmcOJ5mucHh55enri6elJXZ3slR7UtnGsB7hord0cu8zpyFuuhgqX9XkIWPL4xrZeVag+gvPklgI9Nisa6uZ3ik+IkTix6ydCCDsw7q3izO1KRb96jm7btoONAdhqtY1NqYSg91lroVpWAmYxuj83wZrI27V028Ch25ER3JeTvoa1WSCis2wQBdXV6dHUsEAzDAhhp/11U/l20620NkTi7fZYTDjuRDNOxAiG3jZF3hzRfAiEUglek79jBO873tLUm2kL6GpD7CxMu/aCVL0jb0AGKTiP5ZME3XLg9XrqQpPAOGGlV6RlaKtm3NSsimr0fO2t0Su4mMwSdzL9QiV4CF7Bbu36PrTVRO+VaV3wpeFCxAfdyiDBtkdm8+scYrqsrgr3fYPUWt1NC4bwfTiF6bZLdRkNPSbdlN2iqyp6LxqQ1/N+TYzjR8uIaTGcbWm7DFe7nZBIR7VNGtpuQv6qwKJ3zXupHaNw3cXb97rXve51r1+3vgpYnF/PdNCpaq0E0QyCwzKBNGpJfP78I9frVXMStrJ/COsHKTvlZP+77fXFJq7eefvAd3uz5EOwxNthAerMB9/jY1ShuHNMNuH1Biyc0zA70EZrW6/kkrhcLrsQWQRNqI6BKWhTW/KqoXK1EadoAWOedeu8XjrX9ayc7NYsENAzh4M6O00T8XgkzjNPjw/MoXIKCZe/R9oL5H9kOFQRv6Mxc0meXAOledbtjND0sSSnlpu1IDXje2HygTk61a3kSiuFtF5UBL+uDPtRZ9uZDjtgULG6Nu9KicpcrxdzERrJ1dwaadt+gPG+UQg4TzMxRLyzDUHrtO44Lifef/zIv/13f8PT8zMPpwPreuFyebWJuXHGa8WVQmppb6ilVppomJv4YJNZb1a1YluuzsuXL6TtyrZeyDkpMOoKAKcSGFkkSqWa9DwNw9ZTrVRjDMTgicFTcqFVFcGqUN1oRTYtTinttDvQhjzlvGdOjC1VKSa2HnbGqFXr0JHQFRCOsDrdOIzAQNNJdN18lKL6FZc1XXyeJoJ3tOBtQ6CPC7t+pmlRWlucGOBvaCreUrLe1gBhpRZcAlojTBEHTN5zXA4EH0m5UX1n8p3gVW9SLOVbNy2FViqUhMczBUdum07Pu8dytPGXwrxMHE8w2XUcg6NVdUvrXelVtEbPZ1q5IH3DUxBvjlgdWmm2pcvIJoR+4PT8O0pbCAWenj8SpiOEB1rdaCWxbitb3vjhpx9Awm3L6QM+TjsdML4ZRjgbRgwtSqfvr3mrlcbYtqqdcCuJkjZqTdS66s/UMkQ0SK8GKgoiBef67hTmcOCiUT91MCHO0aKjGsWtmeMUvVB6pddKK51WG9s148RSwSdv5gKN67V8zdv7ve51r3vd615/cX0VsLi8flHaBbqq9w5K3nhJV3I6U3Liup61aS9FMxT2Nu8GJBRLqDuQGE95bCec0+krtpkYIXbOeYKPlpLsCSEiNll1ZuGpWQHewsW0cTq/rnuDXOqbRhaI3uuUkE4rCZRdxfEw0U24nFJnbZqQrVaTxi0Xh4tKv/I+Ms9HQggsS2SaOyFUJvdHfEv0pEJQmqfUb3WK3IVyddRWWFO2JqUpfxzhmgO5vuj2IS6a8FszdJCmNrwlZ7Z143o968YiZ93mOG1QAHIptqmAYSW6N8Wmd4AO5c+m6ECM8aZ9gBsFZBdeq4ON94F377/h+f17fvPb3/LuwwfmeaZ1E2l3NUnVqaqY0LwrJWpM8sddN6VeBR9u58UAObXYtmLl5ctnS9LO9NbxTliWeQepTpPt2Lynt0gPRn+rUYFab3iBZY6k1O34pV10Peh31UTUzt02PX5P2Z72zRhGTau17NNv54yG1pu5OA0alF4NSklqJug14OECLnpa6DvAm4xapaDGOPu1WtgaJjxW04Q98NG5mxbjzcvamqZGO4DeyVunl0LxnqkVswdWi1oNnRdqbaxbUu2ROY2p1kbF/ypKdkQn+A5upEjXSu3aXPvWaWzUvjGli2a1hJkRYDkFBXWCo0aodWKVYQtcdCPaG/Hk9bzqBfELEhbC9IAjEHrAhSO4AKJbMAkTk4ysFKVOYtoTcW4Hd87djA70lLRNnNw0K2MbJIP61xutJGpNlO1CyRda22hlY2wxxoDDiUe6IASg2lLW6fc65FLtOtXrSzoUURBZerWtiqZ5jzyaWhs1V65XTSsXYJ4XNbFwoB7B97rXve51r3v9evV1VKjrBRfUgtR5TZUetJTr+bMGv1lj9dZCXR1tbq4mYh/yzhxulOdvNJiRrGvBUTugcA7vo24vfCC+SUrWbAALlnJCcJ6UtRG9XpSOVUo2BxVuHHrvUHaUUmHGVHmaZ+Msw3Xd1AZ3rTuv3JnOI06BMM2EOHM4nJhi4HgIzGElyArlR7pNTeFE7xNbfaJUbSTWbVMKTamIUx75NEV682xJuKxnUk0sxxPBCbNAb17FwLmSto3reuV8uRqQU8pKCIEQ1CUo5/ILwNBaY9u2/Xt1b1huDZQ3PUMIYacraVPdbXI7GhZHjBPTvPD+4zd8+OYj3/32dxwOM84J6/WV2odTE+zWrrXvjVG3DIi3kEYpaDewiThaUx1CyhvbtnI5v2pWhOks1P8/G/B0hBhBwOeR4G5uVFU3FCOnY4rRpsuVnAvOmHiuq4XxcKtqjRv1yDmzWJ0I+xZNbs20bcK8kzdWvgpmncje8E/RQtFQrYoX1QYhYhQybXjjcB4Dfb62JfHS1bhUbbyUc+8agt/pbbIDmUGP6vRqxwPIpdFctca6Kf3JHtNIO6+2pblcN8t3iDtdUY83Oi0XZe2M1PjSVbsyXJHUgnUll5XgI3J4tGs8EPehQaQGR62TAtCS6GXDtYz0go8aptkoVGZwEz4c8E5dpcSp5gGqPf9AcGE/33cB9G74IHsqNqb36q3tflut31DvjSJoWotWFazmjbxdaOVMawlqsiRyT3CeEFQbIXi9n15N0K7GC31ozYxWqop2M0rozeiNZitrr31rnVI7pTZ9r8tGT22dED1xCnu6/L3uda973etev1Z9nd2sgyk6Sl5Ja+XTetUP1pLeaCfYP5SRt7SMW7ryCIJyzoTVYVjDOg2K8n4Pq3sLLMKgswxgYE430EwsfiFvmo9RSt2b5dFQqchcE4yDXwjO8/jwqA1D19C9Uio/f7qqGLRVWnd08YR5Vp55iEyHhRAD8xI5xs7iG5EvCBvCGZJGAdb6QKlPbMWz5kauXZ2TaqbWjV4vBAfPTw+48IS4iR9++sy2Za6XC7UmDRBcC3MMxNNCSZmE2veu28blosJxpWh0WlPO+jLDCLa70dH4J3+GEBkC0za+Z6Ai+oAfwt3RNLeqYlIE5yPvP3zD8/M7/ua//xtOpxPHh8UaLgtIK4VWCtuWNOl7HWCqkNd1d2TSxG0/6ORGadJk91oKl/Mrnz/9yOeffmRbrzdHsVI0l0MwRyDdIBwOR13EuMAyL3hLLu61cDm/8PNPP/Dl8xfTFuhmYF2v9A6HQ9upYdpLaoM/QMbICPHeM82TgQF1qyql7iC6Arno9i4V3ayI/Z73Xh+X98QQWZYT8yLMx2fm5cDheNhByuV8ttvRQMbR+NaGgvuSgYxsmwJCHzidHizN26iERuWqTSl8bwMRh8g4l0icInOrqkNAOBwiWw7E6GgX3ZiUlk1HMiiH2ryXXpBSeQiRODmmxVF2EDnso+26bI11/bLnWPSeDbBEfDji3SPL4YFaEuv2wuQKXiqur7SWqC3h8LadGM8FS+vuVKmoxbPSzPquuTHraSz4rpf9+woSbaux6xOG6F7ePAcN2eut4Sk41wiTg7ggRJw76W++ee9zpkSig6hyXDMqXaeJEOd5v0dn2yalYSlQGu5S4zptfWgtGuVd4fXlhev5zOVyZr3q61vynQp1r3vd6173+nXrq4BFq4WaHTltOy1Fp8BKpxFzdBL7MNzdnJxuFBAV+IoJrJ0LJna+ia6V+6yuSt7oUMGrxWbwI5NipOFCKRaiVwtpXZWGZZkAOw3LJsTzPO9i1xg0S0J96Zs5tkCt5lGPTRx9MHepiSkE5hiYZsH7zhSuzC4TXcG3696k5Ooo1ZH2P4U1d6UuVJtQmgtVl8a2rojrdKlczY43pc0mjh3XKs1sVkutSofJiW1LbBaS1Tv7MRzJ4sqxN3764Ppb7UnOfWRe3IxLa1UxdBu2vnJrqsfvOe85HA48Pj7x/O4dD6cj0xxwNEqr9FaMemTNv9kK55z2DcHYVOwbEu93xySlT8Fo6HLOpPVK2lZy3nZAUS2FXUQFzaE12ya8PS9vDV6plbJtnC8XrterUeBNpGsi99rq/v1BkRkbC0TUPWwcB9teDXFvq0VtP+nU3i2wUC2Me/8lsHDOMcuM84Hj4xMxzkjUQMHlcNjD8l5fX9i2lbRtnM+vlJRY16uKznu90aKGOJ9q+iG3Pza9Dt7Q2d6I9EfyeqlFdcXOETuId0Tv7LyPTCHQmqZWD91UbZr9oJwspfitlvsXZ4/34L2C1V3XkS+0fguL84A0BQylgPMbzh+I8xM+BCaOSFvpPYNMurFrle4CHW3SB5Vs3311dtHzvrC7YYV/QvvbNxAGQPqbn9WtkmApLvrVin511U0ovcmukf243tzXbgYSbx5M77s73tASdQOyfQjwh1Bqf2ZiGzgD4eLws6eWYsMcyyNpnZLuORb3ute97nWvX7e+Clis64WUNnJW8XYzFxT9RDNa0xBdDxrG2FAYp3kIcjW4LtqfGmYWQsQHazJj2Pnrzj6Qh/++c0JJG2nbeH155XI9U4pO58ampHNzHPJeb/v53XumaWY5nHTaXSuvry82SV/VLgeH9zM+eOYpMs8zIQaOx5klwhJh4jPSzvT8Pa1eaTnRONL7TOtPvG6Ra3G8bvohT0vUqtkI3kXjWnu2VKglcXm9UpqjNmFNlnFA0emnBKbJ0btqI9bNaa7A9UxKiS1txDioS7NakkYVVt82RA3nOq2VvcEe9KecblPNMdUupVBCoE2NKU47KGxt5C005iXy4eNHfvf73/Pxw0ceHxZU9LzRxpR+W0nrSlo30nbVx7teNCyud00v9l4f8xTtOfhfbAe6YCnVV7brmbSNc3AkVatdq05zm9qyTpEpqm0tgm4fvGWVXC58/vSZn378ievlAoxAtBtwyrkQgnbLytQy8btRnvI412zToSnJmqdRcmaKAaHTa2VLGyknsk2PHdpkehNx+zAxHQ787t/8W57efeD9x98YvS5CV8Hw+fWVy+XM9XLmj3/4e16+fOb7P/6RS34lbYnSCt4HlkWDDpXiVOx5KW1tHFv6aLZlp0tpk6v5GlILuWSmpRDCxDQfOS0T9eFoxyUhWzYajgIYEAq6PXEOSsscF0+XwHLwxOiI02x6psL5fKaUhHON6CPRAW0j58z55Qu1RZCJ7/76fyDOJ5bTM5fXTkqVKDOlQ8oFQqR3D9KYJgjB07uz533TT4znOJr24Tam3781+7Xe9AujRJxpvBxu1y1Ueku0kmhtQ1qBng10ANUbFug7/Y1B7fTeFoQGsjYNHpyWZeeeNXOMqnVsgPkFtfStmYDqnAKPT088PD5S32yO07r9731rv9e97nWve93rX6S+CliUtGl+RGuWYabNkSC/4J+L+dU7Zy47fugnHMEmvOICLnijNamzkzd9gPOyT3S90Z7oUHI2zYTSncbku5uYunX9SKbDPB0IIXA4HswRSO0sS+t8/vLFrGbVJrZ3zzwvKsQOgWWZiVGYojDJFceFwCu+ZFxN6lxDo1Mo/UjhmTUf2bJwfrU8ChVj4J0nzBPOn/T+S9XJ+7pxvhZK2sjbVZ1fWqV1a3y8WnQ28fQeoEei79TF010w6oQ2nkOwPsVICNpQ7WnZY5I+7HRRQWmuGZOV/GKS2pqGHHZVmGtDPYIGnR6n06QJ1r/5ze94fvfE4TTRuwKiUjLJhL7X85nL+czr6ysvL1+UylMsVND53fJ1mRcDkSOMbugr1EI2bxs55Z2qNrYUowkcwladyLPbAYPsWpEYAnQhBrXDXY5HamvUnE2YjW0nbtSZ0V8Oq97aCr13Lter0cOU0x5jMNCo5383qkrZTQxu52mjq/uS97z/5jd8+Pgdv//r/45vf/c7jqcHpsNpkGYYdrnH44l5mXl6eub08MD59czzu2/4/k9/5PPnn3l9/bTnYUzRBNDlRj3SS9ATqm6Fhi7EeQ10a922CSi1JpWCmFC7WeL4NE88PZ5YlpljSmy5sKXCdVOgSXc0E+evSfMaLtuF0ymwzJ7np0lta12ySb9qhKRVwtRUBxEjp6fvKD3QemBNidw6ISfW7ZWaN/w003A05/FhxnlPs/ccxIPrOISJSCuZljc1W3BYEjpIF+pazBVq3tPMa7017eNcEAOOTjzOmR6odaP5rQzrWDG6VDcXJwyMjr3bls01DGH2gVYrl9cz58uFlBK/+f3viea2Nt4LStPk7tLKTkcc4n/ZdWuqc9nL9Bpg28h73ete97rXvX7F+joqVGtoqvagNY2JuOD/CcUp7CJP8QJmdRp3R5aADw7xChycBLyLuyOP5iPcKAS9VQMWV9b1yratQN/5yPpB642O5ZimmWmaOT08mDjcc71u1Jq5busugHSigCaGQJwjIQZOx5nJd+ZQCHXFtTOUH6Ft9L7R20Qn0NxEYSb1I+dyZN0qXy6vCAUnnWlWOlecIt4vgFDqSuuQSiHlSk6Vbd1oNWlOhdG/iJNSOaTSaXjplOitibacjhJ2AHYTpHtrivre/GrOwhBpjw0TewOCHefx7yo0FgqjyfK7LiYGx+n0yOPjM8/P7zkcFqbJ0+tqVLlEzgoE0qqv1Xq9sK0rtRYE2UP1BnD0FkbnxCl9SVX+40FqXsWbzArNeahvgMXw7Lfn0G5hdBqsZ2FwIvgQWY6Ow/Gkbkf9bE3pzVjgRhe6UWIUWKgIe0uJYjSsECK1KIBWW1i/P4a3j2+I4KEzOUeYIo/P73n38Vs+fvdbHp7fM80L4rxmWNRKtyyCEAJRAiwwzzPH0yPOR0rr4By5JNKmG7xxzMa2TrUTheb1vp04JNyOvXPqTKQZCJbTUMw5zBygVOYuxBhUTB4cIWVLJS/UCrVBqar7GO5pl7VQamdbGtPkiKEyhUJt0Js28s0rCBMBL4H58IhrTlPnazFNSaGWjdYynUnPD+8RsyZ2tnlovYF0ez8SWq/Usqm2xTnEK1jrrdEqSJ81s+INR0pvyu00zkEncyKa89F1MyNUTcrGXNW4nSdtXGtg1CqjnnWQ3ulxopXK+XLhfDmrfXGteA2n2PXbpSqtMNdiQ4FOFWeLDUuPEcE11WIMsDGubaUC3ute97rXve7169VXAYtpmglxQmlPty2EiAoftfmM+/ddGA1pQMJIv1Y9RXBe3W4MWIwprfc3oXdOmZQSP/30Izkntm0za05hPsw6Md5tGoXHxycOhwOn44PSaXrjul5J14s6p/Th6hRYJk3GXhYV9sbZMbkrXhJT+wNSvtCvP0C/KjVBIk1mmjzT/TtqX7jmE+etck2V67ohAqfTASEj0jgcFkKIxHjg9fXKuiY+f/6ktKDtqlPuEJiXAzk5Cl7zM5pA7oiY/Wzv5Na40Jh8p5WJj89PTPMMaLMUvON4ONzAQc67G1HJZW+E9wm/dSCttZ0eBexOP0onY89qoHfm45F5XvjmN7/j+fk9Hz5+ZI4NaUrpKimxXVfWy4V13fjy88/aPJ3PyiMfry/afCXLQ/FeHWycc9AF57QJa/ZV69CnKBUrJ3XDGlzyttu7OmrV9HfjQOFcYJpmteF0gWWaiPPC4fDA68sr//P/9D/R+j9yXa83zUHnjfMVu95iBxab0pv0fHQsy8LxcGQkynuj3txoZ29AnDge333gwzff8Df/8X/g8ek9h8d3lNL5/7H3r02SpEd+L/Z7rhGZWVXdPTPAYoE9XNKOzqG+/yehSXohI0UauQSwWAAz3V1VmRHx3Fwv3COqQIoma4IcibbpsLLGdHdVZ8Yt/e/+v5R6o5T10OCwT77ZQYljPp3IKfP3//Jf8uHjJ56/PvP/+L//G15fvvLy/IWcVKey5zCAbiuCD0x5JidzddvBovdErw5aeNWgOB9ZbzdaqwwcS+lctwqmT/rw9IHL5cLTx8RTWai18PK6sJZOKZ2xmGNRgZdWuV0rrQhTdpzmSHBPxAAPjxPeV4YrdDSwToJniNeNXxd1S5OFU1ZqmqMcQXtNs8LJ8USpN663P5OnBx1yOKGsz9TtymX+Htc96+uVZflKqxuXy0fS/ECck4bJOU8f/jCcGLb6DN42AMETIwqxvOCGptBv5W2bsGt0Sq0HDWoYYO9imRcMpV0OQZJw+nBmdo61r6y3gtz88XNMqcOQxpAG0hm92qkyBym7plRMr7a2+ntCLd/ydL/Xve51r3vd66+vbwIWKU3EPKtrivPml272nhZSF8zByXmnG4n994LHBbOEdZ7gok2u0UbSptR9aAO3g4pSlJ+uDeNbvoDIwPlAyoGclEJwOl+IIYJzVJt21jGUXuQD2V5XDpEUPSk4plTwruFlwdVXnGzIuOl2olcG6vgj7sRgZnBiK2fqiNyKsJXBVk08bVPNnRbWe6PVxuvLwu22agr57ZXWCq0Ws7kdDBwuJKKzWGUTZx6Cd686AVCXoW0TtrJp8+Kc6VT0ve0k+90a1u3sHlAqkjXn+3HcgcWI0cSve8nRKHsTr3pz7ZqmE3ma8FEn1qNXem20UqnbxrosrOtGKQocvHNES0D3zr/RRIYChlqVRuWtAZYwcHu+BbCrb8UsavfU62OzsAvPRQ7RuoIBkwCZ3iemRIz6lacTuTQDyJZHsrs72YR4d9Pav5qJqatpKXbXpgOwWUKznoc3fvxxErwjhMjl4YmnD98znR7wIalTmG2WtvWGdA1A2/UQcgjs9brvUyekzDRNPDw98en7X+C8Z9sWPAd/yw6dirednf9dVryL5r2L4N8F+5nAWwPwCjhPqRqm2N/pTKb5RJ5npknpbDhPuG0EX5HhqH6Y7kDfw7Y2enXU4gluEDxsBZyveFd4vKiTVAiBYFuVQQHRbUXwO1DS3AdNsw4IgS6D0RZGveFjxPusww6fcPnCfHrUc7gJKZ3wPpDShRgmNFVetV5xT/82PdFxAZmwu24FRmW0V0ariCjNzKPWvd6bU2wIb8d/vw7ENhti5g27SNzOxlY2y85ROhmoBbGCSkvtFgWc7tCK7EOYhPNRnwPOtFXBv1+k3Ote97rXve71s9S3bSzmJ/I0H9NOZ3SEw+XGPsxDcPjgiHFvRpPZdzqIHc2aTdAGSAdWXNAPxuvSKaXy5csXAxXVqFGenGdtLgRK3afFmU8fP3E6nQghU0rhtiws22LCUtV6pBw45UiMntOUNEnYd8L4E9I+07ff0ssLo280PM5NOH+hu0cGM+IfGMx0mfm6OLY6uG7rwe9PLpgwV61TnROW5cr19cZPP32lta6i5dGsER5v4XQ4fMrEnT+tvBx23amodxUOoZTC6BtT1KTgHLO6Z9mWYXeQEROAeq9gZzhoVY/num1HIzlE7BxFe91KpxDZX6O63ASz48zTzDSfyXnSf643DQgrG2VbWW43ri+vrOvKtqyIQI6J+XTCm/6gFg3z22lXy7KYaFspbNEHfH+LVjwyHEzMXG0DszdvslNAdupKCGrlOYwOhgKaPM22UYvqPhYn2kABapqYZtOIFEcvw+xj20ErKuY4tizLWz6F0ZwUYGg6tuv2ut6TzZzlp+SJD59+wfe//DX5dGHgeb0tamHaG2W5mkVvPdyM9jwC5xylbOT5hPOBaT7z+PjI3/7m74gx8vr6hbrdkN60wSXo1Lx1BgpiW2zUGpBJE8m9m3QA8M6saPTBthXWdcWnSK2D2hqbbcGutyun84Xz5cJvfvNrUk6cTidSeiXdFqLXRO7ohdJUJ7Au1XCSWjsLA1zHuYZ3nd/86iOXh8CHSemQPkDhld42ynYlx0AIuxvc0MDIFhjDMyTQeoGxEtNEjIJzEymdYco8Pv1CdQvOEdIEIuT0pM8v58lpJqaMSxlQR7LailLSaoOhVLxte6a3hbp+PVK6d73D7ujkEJJ709nI6JozYq5sXi9MBcmijlBDQPb1wmF+4Wlef55DLGdnB40OcbtddyTGyfQmSX8vqP6kxP/C+epe97rXve51r//J9U3A4pe//J5pntlTiPFvAWbBPP+9GyrE9lE3Gg68HyaA9IzWESmMfmUMndT2HmlLo7aN67odE+n3QW2glB+HWks+PX4gTxOXywXwiDhebzdt8BjEaSI5RwoTOXpydEyx4llx7XfI8hO9PSP1VSkGo6IpwBd8esSnMy494f0HhIlST/TuKM1B2PCjGa1HP/Q1DmJwvRVuTq0ov379TC2NrVSCj8SUSGF6l+rcjg0CvLOq3BPIdyqN2emOViljxdMZZeNyuvD0+MTjPBm9xSNOjFIWVY/QVCjrGEfgmR5LORpmOXQA/dBaxBBwUbc/4hziHT4lUp44n0/kHBWEbSu9riyvCiZeX6+UrTC6ME8zu92wC+rWU7aNgWjzL2/OXbUp9aOUSkiV2AbnD5/MlUc3XTHGw8GpG398d1gKITBNE9M8MeWZ0+nMNJ1ISTcl6sxp+SlGt4vB8+HpidOUqE+PvL48s64rX75+VpH4KGzFNhOtqraiNQV3Bmq2bdNj6UCYiVGTwp0e5L/YquCwgMcELrJuBRlCLUU1BK2yLa8KVnd+vGk9gumOxCxtHdAulTTNXB4u3K4K9m4vXynbypQi3nUD4vpae3e0pgJuJ900EwJeiCPSuwUOyuDTp48Mgdd1w5WGxM6JnTEliPNIH/zTP/6RlBKXhwvn+cyHxycFfq0ZZaxZEKLXtPVmJgWj03qhlJWyLXz5svL8svLjT195+nDi8jCR46BtwuuXxnwOTKfMdz98Dz7QxSHLhh/DtB57DotXHYIHFwY+NNpYcD7w8PCgouvRQBrODYKPSFupoyG16sbGLFvfdDoe7xKn/InRztwM3Kh4f5dnvwFh9XXatU26mfRSkS7QheAiHhhuqNhcOOxmnWVXqDZNDNBbmCdO9UP6z+lxFaF0gVHBdZCi3+sXXp/vORb3ute97nWvn7e+CVhcTjBNQz+0AfHBJuNKYdBpYrMmSKlPKqbsNgkfONSmdoiGTPUBtXlKFbZNKRg7nUTdjvRnI6LiZqfuO+ez8uZPpxPb1qjN6DEo3z5Fdb6Z00QOgxwHmQXGldH/TG9/RsoXRi1GPYgQZp34xTMuXnDpEdwDQybqFql9UNpQvrQztySnTaVzmhVRW2d0tZddbqt9+KsweAdJzlxnNBSwW/iV0lxMRYx7F2zWnWfgVBw9hD4qt7YRfOB8Ollz7Y8mcn89gIm3/wsLTeSdKHkXlgrNthcAw3v8/mcGLlwIRicKBA+jay5FKxvruuqWYlNgOIbYNaE8/i5vCdT7GP+w0hwdxpsrlR9CwFG2jZQVyAYDBLi3TcC+WXFeXbR2W2HVtWRSSodo+z0rRJt+Bak5R4KfySnodec819vVqGfuyJLY8yhaa4c1Lag1r3OOlNJbMypvr+94n0bT2gPanPOaYdA6pRR6WemtUjYVwQ+z7BJ7rTGY2Nqm4Rp8l3De6XvN+l53+12PmM4CdkGN90YhZNC7Nt8aVqiahJ0CJqMznc4473ldNnsn78Tb3tFFVLDdmm6lSuM0z5pGHiO9N1J0tG4aHQK9C7UN1W70TqmBNYCjsy2b3sN1kJOGGbrsKRvcrrbjk0GtER8T4qNtqPpxroI4+lBwoM+egUiltRs+RFLM7Buw0Ta9/xi63ZI9PHO3obXcCKd0Mu8gxaBhdulMt5A8pB4A+U0C/qZ/2I3GxIn+hziiz2j443u63q7vUKG8IrhB8F6DKkMw6qKYuFv0GToGXaotM97f541luYss7nWve93rXj9vfROw+Mi/ZTJagIjQCfojXGDKSs9oOEI84/2M9N0VCnpTTj0jABnvTrR+pjS4roty58cgpETygTmnQ8QtreHpRN9J2ZOiI58SQ1D72aquNMEnBSLJk3MiBccpCq5fcf0z7eX/ibRnZPuszQKeQtYtgQ+kFIjRk1JG/InOA9ctsrbB55dn5dW3BrslrEumHRDW9UbvwhDHbdHchdpUOJtzMtG6TiOHyAE4RBzOBetDtB11eFKcmE9nclZ6Rq8bZX3l+lXTq6/rVUXsKfPhwwdtNt5vH2yy3WulbJoR0MyCFFB9B/wFwNi3FbpN6QwZZHPh8V5pUKfzBY8wWmHbbizXV8q68PzlmW3bWJaVPRDRORVTb6VyXa6W3D2OfJJm2oTW6hv46QN8QMKVh4+fEAePl0dLA981EmpLvKd2e9uKxJQNbJ65PD5yOp85nc66ITDXIC8d8NSyUMpCQHDBE3zmcjnjPVxvJ83KaI3nl2dKKSzLjT1Ibgdfe+YFaNPugyfE+NYtgjappvnAcVDOYowwVGS/3q6U5UqrSvvRQMF6TMBDcKSgzXZvjRiT5rY46KPy8PE7gldwU2rldr1RVjnCK5NlekwpMc8TwWfT93hEOq1ttKFaij7UKvZ01o74j3/8E2upbE14+vDEPE9cHs7M83wI4mvrfH1+4eX5yrIUpjmasUJlShNxisSQLFfCc70tZsbg2abI+ZT1+I5h2SaZtkZ+vA6WdfD5K4yfbjiu/O73L5wvZz58+Eieznocs+CcmR0EPQ/zNLHeXtjWV1777wkxcTl9JCWzNW7Puo3zEfwJFzI5fgIX1ajBdBO9d5y6zFIqOCLz+TtaW+mjIO6KtEI98mfULjl4T06JnCZgUNcrwWeCz3j/iAsZP50Od7oxeAMNRuFrTdO9h3QFaCK00Q6K3+jedBqJIUp1U0tkpZjWbfn2T4R73ete97rXvf6K+iZggQ/ghBATggcizmecz/gwKYVHwIcJ7yf6sEnjgCGRQaATGBLoI9JFfd53zUaM2OQ1WO4AIIIPBScFzws5PxDzDC4r1xjwwZkOQyfpMQqRG6EXpH1F+ldc/4LUz2qLiqcPfT11qMVj8uBCxoUTnQtNZmqNlOZoTSkJxKi6gt3dFJ3yytAUbdVbQM4zMUQVkpuA2tl7VLqVqDjbONA5n/QHOtUFqDd9IueJlHX63mvC09iukepUmNlq5XbTnIgxOqfTzK7VHrs4+p3l6bGdeHdKVR/u7P/vrkgDweGGUzenIfzFeBUDBEVtTrd1MzpPQ8XGgy6Otm1K9Wr9SJ4GnbrqpFgtMVt751jVNR9EfOX15ZUQMpfTBeedbiKigrTqV5v0YtsJ3VDkaWKa9uMWjfak58rtOxIZbOvCZs5H+7EPwTPliaenp+P1fI1faaHZuTOevBc7FEaCkbe0464dogIe3lnfOp1W70Cq1UJ+d05K2ahF07X7u1RxnCNGj8TIsLyCrjHgpG1VStk7obdXjGyTcgU1fyEa3g0DjPqm7x980K2Vt+2LDyrIPp3O4DbEtUMDVGrDucIwfUo3QLsLkoMPuoGzpHIRS8rWXRkapKcbEA4qmwYChuM+cYQhxJTwDtZFr6VpOgOB6+K43lacgxDMqckJ4hohOC7nGRlV3bU8SO9c+9WyWQatvhKiZ5onQtrwMTH6IMSZEE+4kAgY1VFXYxbsqE17HwUZlehFqVLv3PLwybYc+kxzDII7G6jIxHgGH3EpHiGP0sV2JOqIJcKRRaKuUnpsazNdhoFGHVI06I3hum209BqcprvG4l73ute97vXz1jcCi8zwkZhOOBcRmfBxwgf7bx2h4izwro5V3W4EhBPDTTQiTZQyVEdlyDicomKIzCdNvcY5/bDtgzSecWOD8YWcL8TpzNL2TYNSozyOGDPBd6Kv+PYV2lfG9g86nezPSFsR8XQ50yTRRqD0hRCFKSggIjzQeKCME+tISn0aGmrVvaeHoDkKQyey6vBUj6Ya4DSfCcGzrhO9NVor1vDrdsJ5B14bYuVQpyOUa89n6GOQUiSmwOXhkVYSfhSuMR4hWbU2Xl+vfH3+QuvVaGM6LT2mmu+zFN7xxg/PewMWezMHHHQevDdg8d4dyexq6ZSyWbL2crgk7XQuEWHdNlrr1NboognNMUQTbb+5KHVLQe9DqTBKe4GX5694H/jh+18q8LQJcIuFze+2mk4BWMpmKzsxnWbylIk2nd7JU4fuYQzW243b9ZVWNu0Fdy777PH+4wEspmmitqpBbGMYKER/5rGY2B2ulI6306w8WNO9W4dC641SN0pZmbs15BZKuK4rddsMVFRL+BZyjEhKjJSOY8cBAALSmwIGMbF+2DNmVLRu0mLTAw3EAvu6g1bMmpaEF6NqRaVVifNcHh5N8L6Y2NtRSqO3QQj1nXDZqHwyLFXcm+jc2XS94QZGS3sDFiFERp5Q52QFGbuF8Iw284+XE1+/3ti2xnT6SG2N27Kaw1o1uqWCi95XQoAPDyfmHMk5kKZAZ7BeX1lvq6aVlyvTnHj4cCafNL+mto2cH5jnR2K+HAOPPXKu9arHuTdkFMAS2qMnhxnvZ/AJwozg6OIIXklPPmFi60TMkzpPuYGvFe8bEiwY0uvQRgSGbUd344I+hGCgs9mvMrrR8VQfY2EdOD+YTulbPw/uda973ete9/qr6puAxdZn/PyJyhMimTYco+xNBTr19QHXdFhaq9mJtk7rlT4Kzab6Q8QmlZHL+UwKkRgCrRVKXenSiG4l+g3kqkLx9L+xyRPrlulg3HZP9pHgBD/+yKg/0bZ/om3/iBs3fH+1hnpQJTMk0nvWphAhzY/E6ZF0+TuGe6C5iS4RFzKP8cy5q+h0vd1Yy6Z8+6JT5VrK0bA7VIAZgzeqjCfnM/ESOc0nUlZtRTfO+RjCNCkf/TzPqHhb+fGjd2sa1NIyBSEmR7hMbI8PBFcZ9cYwfv6Pf/6R61WpUefTiXmejkZ5xGjicCvnCCnibeLeR3vj/rNnV5iv1BDENg0pT8dxVP6/NtGlVUpr1nyp4qaW7eD670ZAMSQdoGM6EGv0g/fknEkoEFKb2kLZVr5++ZHRO3/3m/8NhzDPE9Oc6W2ilNnoRer2lMx+9XQ6cT6fzaVIqXGYheoYCoa2dePLl59YbgvSO160kQvWjE/TxNPjI945Xl5eiDGaW9RGH03dzfapsgGQZVkNoBk1yybxezDeGIK0ym258cc//hO1DkKald7SquWMVErdqEWtekEpVgEoRo1prZGS6jq2nAkxMppuEx4eHtRVKyQ8qjcShHmaDr1SDIHgdzF8sPOu4CJNmS6wtc7vfv97ttqRdCGcH3m6fFCL1TEYo2mzOwa9DZz35HmmDxil8ac//aiZNSkYeLDQxmNj9qZ48cGpR9z+JJJBd9Y8d3XGStHz6dOs5yhAH55SJ9ZVwZyYJbJ3ARG990JIdOmstfO6btRauL4omNzWG61cNa0+v/Lw9MB0mvnwKRGzENNGCF/0mMRwUNLmaSLGwDwlfMwKuJw++ETU+lbE00szINDZbJOluSgm0HaBPXcleK+2215BoA+a5t5lUMv2pvEIZoVrYBQGISltK3uzqZa3barDsS53KtS97nWve93r561vAhZrT9AmBgkhaiMhYn5Gw2gN2Bh30KqKdUvptPHm9Q8qZvbOox0uJkIUC7zr6nDiu4ovO+ACIjPiAuIGBHPKcdYouaGbifYTlD9C/YyMFZGKiGOMwCDYa0+IWTqGdMaHDwz3RJOJIQFxYo5Sms/RA7TqieKJwzO6NkMyHDL2UDdnzVQ2MbhSflLKTPOZac4Ec0ZSe9JBMreXGHfOPsToaQx11imrTq5XQXqj1YXWigk0DQSIsJaNIYPX66tOyr0jmrXrOwLQwfN37FP8XdXxNnnXk+OO5Oj9v/cG+kh0Hv2gceh5fduQ9K6c8D66OdT4N8rVO1ebna4TQlCgIWLuYjr9LuvKGpWupJQXszW2X8Xcc1QUv3/Fv/jS0Dx97YiCnXVd2NaV1irB9A/7NgOcCaKThS1eqLWS80QfjVGHTebfibJREXStlW17a9ixPz/+Z1PodVm4zVejIbmDQiS2TelGUdLj4Ggmut4zJHZHsWFbHjGQfj6fDz0FQ00MxDZhPrijwd8B0N7c7j9z38oMGVyvV67LxvQhkdJk6eodnFIX1fGo0WvXkEf/FqrYW8d7sXvCDAnwx8bLmTZ535rt1+xbZ6wbH2wb4lw8NCuCGhjo0i/Qu9P7cXeic1mfFUSaDKIMam+4rbCuDucVcKn42jEIpJogJK43RygDHyuehnd6P+5ymdPciTFQTpMC/eAIcbc45giL37dxYgJ8TEuF3X+7fbAMwQVM1O0RL+DMplZEmVV2jnbgDx7vhSERF5Tz5o1mB840bOimQ8K3PN7vda973ete9/qr65uAxZ9fP8BN8HwFzMnEynttyNzenJgwdexhZjZBjXky/UEmW+N3u6pgtdXG+Xwh5cjDKdO7o7bAuok2EA18WPGxMJ1OkLK6P7kBslFu/xnKn3HbP+Gkgzi6BEQCQxIw413GpwsuPuHiBT99ZEjg9Sr0/gwMTqeId2ciEZfUkanIIE6By3lm9MTonVqmQ3sQUyLETJ4eqFUb692VxXlPyhMpR6YpW0NWKeuV3ha+fn1FGygY3bMsN/7whz+w3r5Sthtj2xDRHIzRV0Q63hpKwVmQ4Eb7feHD0xMfnp54eHhQe9+9yX8HMuAt1VqpYTDoR/PmQzjckAQIYxCTUnRkB3+jUWqhtnpkHOwN8c4Db6Pr5sRoMcJbU6XNbDAQlNQ1qg9LifZ4YLm9Mvpgud3I06QhduGdeBsLvrP/nia13Y0xMc/zIRL//Pkzt9uNl5cXelML3mDNWszT4Z4kQxA/8OKYzcL3++9/wIfAdV1oQ4/lum67LON4L6011nWltcY862Rbcj6aaHGmr6j69+Z1PTZdY/Sj0d+D8o6ME6dampRUX7JXte3F6EoxO81nfvU3v+Z3//AP3F5fqGs9AN0wkBHy23R8F/Fno1MdKeGoTuTz5898eX7moTYu5wvh8QN7SGKIE8+vL3x9eYHemecTH7777hCp+6jaoi4wyjiAg25zANvqxOjYN3UR/bMQICc0ayScbKCQ6K3Qe2FZvppmwZFzZozE2gIhZWKeyaeLZuKEREozKc1M+YlaKp9/+syf/vgHnr9+5vnrnxXkBMfprHSv69aR1cBz78gQ+iimZxiIfMEZ2JhyIqfI4+OZaU5cHiceHnUzWUpRBZpzas8ddKgRQsSHSKtNrwW7h3VDqNkUDrV1jt7zkB9sqxHNucq2Gk6DJJ0ZEpS6aV7LAB8SA08djjbytzze73Wve93rXvf6q+ubgEUtGmS3UxoOobE1aTgNlxo7h7v3Y6K75wd4o8KM1lnbwp6K7H1gOs2EKYKD661QrXEtXT94gxOiizjvkAASBNxALWbLEQQ3xMSQIrShrlViqds+ROL0hM/f4eITfnpQEepa2YryqLeKee2vhOjAe6Q5RPYthdhE35smolPrAN/wS8N7naZv2+2Y8jsqvWakZRhdQ7c2S+Euq9mpBjweJx3pKvCt20Yvm4lGTQgsMDQ4Adin5oNSC7fldjSoceeI93bQz8YYhxvT/v93TYVqLrTx3EXfmsbsDrqU6jeG0qBKodV2/IzRB612S9IeJlyGLu0vhOH7tFqcx+1LEhtQxxDIti243QqCo7WuFJUjYXynlHBQj4IBjL1JDuYiNU0aIChDuL68HtesiwkXTEjuRI/7PknH+O7R8/j4yBDhdVmUvmeZKvv1fYyzwYTZjW2D1lQroODGQs+CJ3nP08fv+O6HvyFPJ8bo+NatKXfHMQN3/PxxDPOH3W/uSPzWvI1OTJk5XdRJbDpRt5t+k9fzLr2zbhspRlJURy7nGqU1sm3O9ktq3+6M3nn98plRNqQ11TSh6vBSdRCQkyaWOxeOP9+F52XblFeHApgQvFnWesQ76M4AXlSqoFO3sT70esC0Qq0ttFoYo7IH0rkwGKLWsrE3nFRca/TN4eJMmk+M4SlNaGPVZ1H0nJ6e8DmR5otqYbzgQ0Zw+PjmTrZvBlsvjNbpXu9zu3iVjtU8t9VRxdNdRFwmT7rhwQ3EdUoduDbwfjC6Cv/H2EMbVSCvQC8iAqUN3YrR8bfOkQPjlK6meiwxwbpuU1r3h0mAhjMOBl5NF+51r3vd6173+hnrG4HFho9voV9KefCa/Ow9gtDqdgCLvTF10ZNc1gmq8nc0jEtHdaQpk6dAnid81MZ1uW2UUrWB8crFzlkpD3iv400vSpmigGwmrLXEaLNw7BLMzSoQYiCkRD494qePuPQRn2ZGG8hYVSzbB6UKrWn6bkz6wS5GN1BuuWMMR+8cdK/ed9eblZwnQgiU7WbC5EbwndEytAlHx0mjLK/0rmnOLiW8ROVp96ZZBuaW1Fu3xn8XDislwtpAQBv23gbrth3nK0UN5dub924C4/JOG1L3ZGkZSk2D498Qa9qdUXC8ZVIo3alRS1XRdR+HbWZr/aAeORQPDREDAyBizZI4xA9EPE52PxxtNFNMyCRsZVgGhjViNvH1lk2B05Ty/XV5y3nYwW6MQc+FJYovtwUHujFzey6A/hti1Kw3YKE/93y+0EV4Wha2omF4teg5g2JuSHbdGXArpRLCTgHS16kp9Op+9PThE5+++4GUJ6U8+T0rYu/DnQFC0eNlgg4Rteodw6hIYw+b0/yNPJ/I04k0zXqPGOF+D4/rFuan2yJNvg61knLWJh4sgNC2YaOzvD4jrSrQMAl4F8vi8AE/n/Ah2rWv4KgPqLWzLJrJgQjjNJOS5m7oPsPci6IKuEOccAitvjlc4RXgb2Wl140xOukQpgPSwJmInAa9q3uaBNykuRkyGmOXX0eYH87k00yenkxkb5qGPvChHFS+WtWFKvRIb2bd3Pe8CjFBtWNrnk5AXMSFyDwSjyHhQsNRqHXFMUhB713v9b3jnF2XAVxU6lYTWq+UWuwe6gqk9kwfH/QZGAQfhjl3KV1OuliWhX4PTg5Qd6973ete97rXz1XfBCx0GOZsoimHS4z3jmoTvt6aTdYifjL+tneMAa02btc3QeHpdCZPKroVRF16NqXUbL0eDUZ0iUAgeU8OiRwnHuJMdIWp/8R4/Y9s9c+M2+/orWoQlyS6eIYEAjNBTkznf0HMT/j5lwgn+khsV3W4adWx1kypjttq2gwKPt40IyHMx0R7B06lVv33dlqK8c73qfLplJBe6XXl9nxjC45XOrfXF16ev7BtG0Msf8NoPoJnDKHURkwzT/mEdKUeaXOlgu7d2Wf0qsDHGkGxqfltWazJhuB1StyqAoFaq2kihrlZaTmn+RMhatihx7FVDTFct5VlW1i3heCF3opayKJUr20rZrk7OJ1OOBy325W9sTX8Y01up6PCZz228eD+55TVLjhNpPmJNJ344Zd/y+Vy4Xw5E73n+vpCTpladKt1NFdj3zSZmNc2LD989wOnaeYff/ePbMvK7XZj9HEkeR9UKrOnDT4eW5V5PtEFHh5WfvzxR8aAaZrJWRvhZVmOa2DnRu0TZhGjLI1BFkeeEg+XD3z4+AOfvvsFMU70LiCaXeIsaHJ0Tcdu3tGbo/Zq54cjqb2UYtsXo8aERMozaZqJabKe0pypum4ftlJ0axEiT09PTN6TgSYD1zu1FL4+P/Pb3/2ez59/Yl02y3NQcHk+n9UtShy1VPtqjL5S24/k6UTM6nQ2RgCXmOdEio7L+YwPkRCVKtRro2x1v/A432ZicAS/6ysEtyhVSqTZZkq1E136G9D0nodTOiiJzgdwBTf+UUXpIeDjZNeI0INGpYwUj+1D6zqEaD2o1kECjhPg8SHRmxxmBL0NTWA3TRg+mOVrZ6sLbWwsq8N7zdWIHmJwPJwSp/lMzmeWVQ0R1G9K9WTeDwKQA3iJDB8UUJvWSQZKaWwFHwIuBqZJtVQpCENWxlgp27PpZBzBz9/yeL/Xve51r3vd66+ub7Ob3cvEnnsarE61zbs/RN6MS2G34tydcfYGck+h9s4fVqW1V/qmIV3dydGgH1SXoDSOHByRhdCvjPFP9PInRvlsjTe0ERhOp4g+nPDhARcfqPJA6ydc0TwOQUP5Rld7U03dDah1riWE92EBWcbL3wWlPigdAXcE3/XujZakK4JWi05Vpev7DbqNGTjaQIXigAsZfEKcNm04wQdhyokUA9E7dSVaPbUqtWm4RkenlEoz8uyribFvlBjQQcLAC7RhvHcc3fQVGLUs2Ebh7f3wJjg+rFTVGSkFEw8PFaHvAm5BXZ6CD8cx2B2g9tqdpfbEbGEwnE73vfeHViVOJ3yayPOZpw8fOZ1OzPNM/9SYZg1jLJafsW4L7nitvJkE2HR+miZEhMvlgdEH26rUGOfM3tc5tV514MWbCNla/ahWtNnyVTQh2bPbt4YQji1IiJGUIvNJg9v2NO5huSA5z5zOD0zTTExveglNJzdh+iFeNztb5BDG785WY4Tj+IUQbGMYju87RPeyn0O991SXAdU1Us56vlJkOAi1spXKy8sry0H78pymk2Y9BA18iymR4sS2bmyhMHwGHxniaEOgj0O/43w0UbNuMQZCG4Nah7nF2aZLoMumQYDREb2ZwIVgADGiAGOg0pPAEECiXqsuw56hsQvTRa951YI3VCTfceIJeIIXDtKQLZZi0AHIQSt697zDGQXPj0OkvtvojjEsgLLa8/BgDxKDI4YAI5gpxUAIanEcoPeqG8phLmCi+Sc7xU8ciNNjqq/F662OCf1N8D9ao7dOa7ZRBhWP3+te97rXve71M9Y3AYudhbNTn5KlQiNCtqn5Hry185RFOmM0m5ybJeY0cTpdaE3FrF8//2R6igLmBqNT5IyLmRCipSqfOE+RKQ2y/J5R/sh2/XeMekV6o9aork8uGzVh4nT+NcTvIHzipxu0AbiFGCsxBNL7Bi8EgnOcg7dgN3X6kSEMGsFF3SyY6Pw4JgLFXIbWdQF0e/D89Y8EN5iz4/HhQp5m1Yv4C4MLvStFaD6dwEU0yUvobWO9feXhnDjNkYeHmVIKz1+/crteqaXSa6Gs+ne9V3cq8YB54GO5FAPTwgjqiuV2api+9uCU/z5PySxuDZyYeBtUn1FNdHy9vTJ6PRr5rRQNx+tdaUzTZILhPQ5tz8DQpPFuolgEfNLNiDroaNLx43zh4/e/4G//7l/y+PF78nximk4HwHz68FG1Myb2L1vhH3/7n7heX/j65SdNcK+dVjs9aYM9n2ZSzvzqb/8W7z2vr6/00XEdpcp0ATpLK3pdN+XJhzCItvWZpkzKmnewrKZ3EFHOe5qY55nHx0eenj7w69/8HefzmfPlwuv1lev1ytevL+A803xmPmlGQmvDQElgmlR7s8VseoJBF3VT62PgxyCIp/VOCMOa1mihgFnF4jLUTnfbUCiDORKpNWwplbqD+NGZ5onVEr5FhGXdqLWxlUpMkek086u/+ZUe7z44TZlpPvHpux9Y141l2ViG182gBV6WLkgrOjyIExIUtL1cC31U+tCrwi5SWtNMm/5SwTlyCpynyJwjH54SMQXmKVKL3l9baYzhEYnUERE8MQUDAcI0K+UxpojvHtc9YShVsNWqADBovkQ3MX0nMDRtQo0ItkqrQ0Gq7O8P2iiatdIrtZjdctkteMchiNfNpjltmVvV81y5XDoPD40ffvjElDNpSvTlmVI3ennBOyFFRzDXtxgn9oyZYfe0zxNdPG3otbB1zYvR+wrgYhtjRy3rtzze73Wve93rXvf6q+sbNxaazBt3J5mgYUzIbheJNTJ7I5k5/Bbd7grjaV14fn5VS9WmycyCJ8RsU9tAniZynslp4vEykaJjzgt+vODWK7X8Z6S9MNYbtTv6yDQmNNnaE+NMyI9Mj/8C8U8M98DUr7AVrrcbuxIhmzd9SvkQKI8xTFDuSRZKZm+N1jTtdp+uH7Sn8wnHzIenM70WeitcpidN950mcv4ALrEuGz5H5seJdVnofbBWmGadijMqMQVSPHGaAlMO5BRwRE7z9JbMjAKhlCdG16ZSRremDROKemJM2mz3cbjPQDj8oYIJoXsXWqns6eHY1DMYTUlE2EplWVamnPHOptJO6Tvz4+NxLSyLunwFy/NwNqnuvdNqObjqISjA0cl5JuWZ7371dzx9/I7T0ye6ONZVcyeMtaLOY2bt610gT4lf/ebvKNvG06fvaEXdq2ozy97aDCQEvvv+e0opfP3ylWEgVifOHSx7Jfig8h2jM6neQLcbMUbyNHERtZcdrXGaT1wuF/6P/+P/5OPHj3z4+JGnpydiVBBStqI2tKVZLx2Yz7rRWJYVELoBGRmDPGV6n2m90WzirK5R7hDuK/C27UHOhKSuWtfXr/z005/58cc/sS1XPDr5L9tGrZXr7XaknLfeSSlyuy0HUHY+mNYkKCAVx7JsgKcD9flGuDWum9nH4qm8OYy9bVV2MKnZHEM69G4DgtkCMcHRcBFi8ND12D9czkTjHH69FqYWCdOEnyamKZKmRimNdSmMLvShrmb6jPGsHZwXYtJtQQiO8xxVU+IrpV6hVOZpAgLBR6LX7/Vxpkuin88MPEMcvQf6UPrUWjZa76xbIeZKq5007UYF4902joPG6dANVBdY1kI3XVPOkfmUcW7gGUQ/gxfEiTm0Dajd3PaEPgAnxGihkh2cRLwIwemJHnha6zQRShuU7b6xuNe97nWve/289W0bC+EI/vJGgwKlW+w+6w73Rgfardt3cQIceoRt1YZr9GFuTR7vs4aaxcg0T0x5YkqZy+xIoZL8K2P7M1J/oq+/Z/RKr4PWE51ID7t1qMMFTQT3+QPDXXCc8H7DuaoT9rEnXHcVlTpHCPEvMhf+kpbyRgsadDxCQMWTznujLClHum7QqzDnk9JjpjNDLkrRko4LjjRFStVNSB8NvCfEPejK42ImRa+i3+AJw78LG9tdkTw+RnOHGWDN+w4ORLRZa21Putbz4Pzue6/AQIHIoFk2wuGc5PbzYhqZptPsMQTnOYTAIUTOp9l0J0XBYq1qZWrAi2qTXWtq93RxnLqJ5ZhJ85nHD99xfvxASLMG0vXGqJUdEnkLIEw5HYnbjx8+0Fsn5szryzPrejO9zzicyXwIPDw88vDwyvnhgfX6otdPbwZ99b1IUO1FGP0Aa0plErNajUyzU3AXGo9PH/n06Tv+9//Lv+bjx488fVBQsQPtXdguuGNz0Fo30buepF4LMSVGb8SYiamSWiaGaOLyetxr+/3kfTjAhQueWhvPL888P3/l+eUrUlejuDm2ddVNhE22dzewUHRCn3I2u96TulcdVC8dAjgniAsamFcLpd+IaSLGTPNmlToOmYNRC/WaW0uh9YoXIWcHQfBi9r76Zozdo9dayklpTWOwrJUOnJuQk9L1XPS4rvbIIprqzRimJnG0ZkC1CSkqwAjJE5zgxKnbU1uIoeN9wvkT0Tu8hxBBXGD4BCEj4uk90rrQuuBToraO84UQKz02aqu8zx8Z7wGGmVOAgq5SK62pTXOMnnnNTDkqyMhO4b79LOVADcZwuKDPHbzgjbopTalwHt06Ou8ZTnUYuhkUSru7Qt3rXve6171+3vq2jcXuLmRT+xDUmchhXvmyi3PhjSOuNIRhfG+3O/zEzHma1WY2K6BIOTFPEykG5izQv0D7J3z9LWxXevtCryu9VdTJMjDkhLgZXCbnB3zMhDjTRmBZI1/+8Y/gJnAT0jutVkYrlnbcaXXDh8ByeyVNEzEm0jTp1iTnY/raWjvMasToRaWUA5SI0VR6WXHjGZEVR6QWz22BIq/0IdaYW0BeDuQpkOLZwv6gSzR3ncCtFm61c3ERJwGXT/i04qvqEoZ3DO8hmJPRaNAatKp89AHrpuLhITrpVycl1FQKdedSCekwW9pxaCsQ8DGzJ3+V2liWldvtagnOaGp2CFzOJ7ZtpdTCnqodYyTnxJQzIip63cpGuTXWrZCnRg6RaT7xy7/7ez59/0umhyfqcPzxx8+0bWG0xmjq+KWbBH8A0RATMUTm8wMpZU7ziTzPSO98+fGP4GBbN1LOTA4en56OUL//9B//PS8vheX19biwdVOkOh5JEYhK5eudWjZqqybSh2k+cz5f+Nf/57/mhx9+wS9/9RsE4boUbtefkDEIYfe6ckfznqeZacrMznE6nSjbxm3O9t4cpawIQu+NeT5pqGJvh84o55kpn5inE6fThdP5Ah5+/Pxn/s2/+b/xD//wH/nxT39AuobvaQevzWrrOsF2Tl2GfIiEkHB4RBzrVtWOOWXydCJPEx+//46UMjFPLEWF/M60QCL27mwTqcDcISMd1sYw23bM08VRh6c0tWGVgU30PUMGtQq322e8U4oYw/P6Uvjpx1fGWBBRgJnSxDSf+fDxzNn0M70NzVcpuoEapbK1QCmBl+fl0Kt4mfAucauelDxzgnP2xACt/mhi74jPT+AzPk3qNgfEs+bh9MtZhdRdneOUNtnfaGaWL9JrteFJPxLCx+jIpveY+6ob4OBUhxGjJ+XANCdiDJznTHAQvIUGukEfr4d+IwwdfKRkWikiY57pAmXAsrzlDN3rXve6173u9XPUN4u3Hbs4UuitvQlx2S0x3yaX7BuN/f87hwveptiBFBMhBuZJrShzTsxTJPpBkmfG+Ampf4T6I9IXRluUE90HvSfTDER8nPF+hvBIk8hWAqUIbQjreMH5De/Su2Rh+4DvNo02vjxOcw1wmkIsIbKvWg6ROpoRIU4779EbVQajVZx0vGy0cqPXhVocQyKdDfERcSpi3ekiphlV4NX3qbnajK7rhkgDOtu6wmhIKyzXm9rT4gg+QtR8BBC8dLovqlswtyfvI9FjHG2jSRlVDaN4OXTiyfBvv2dUsBCSNvPB01pjWW68vAamlDhZQ+yAdduotdBG08Y/avhdMB3LbtKp4uxGjAMfIzFn5vOFPJ+J00xtjd6FrTTKcmO0ioxqglghhvAGLEKjB72EuwXdpax0umme9dy0Rq1FX0tU8Prw9Mh8OlO2jZVXNAcFTQU3ofouSA+oAnjXDSFKD7tcHvjFL37Jp+++5+HxyTYQ+m8tN92YxPAmiK9lI6ZI79WC0gLOa3bDPM+U8wkQltsrpbzlcaioOyrwcF6BT9JtzTRN5Jh5fXnh848/8U9/+D3r7Wr3pQbnqdB8Z1Dt9reAbeN2YTLm/uSdx8eJmE+ENDFItBGR5qhN7++clYbmvEfYp+uCilb0PAXvcSmxW972LjAcXZzSpuw46/NkD4oTxrDtlIgBnoH0Ru8bYzRAiEkozUHI5E0trzVbZhzC9RSjXbuJzZkV8uh0gS6dpThKd5QKpQ6iV+F4yp7sE1EUzNfSdeM0RA0qBKQLnogLmmujewP0HvTuoEZhWyp9v290qT1oUmQcRheqW3Ok4tWuOAbK1gjeEYMnBN385TQIwasRRLB0811PY7QqnCM5Rwv3jcW97nWve93r561vAxbOW/KrNtvloFboB/7bx5g2MDtP3RmFRHUJSueJKem0e09JTjbdDoKXBW7/BOt/ot1+C3KzFNygrjbN62TfJSRk/PSATxeQX7Buna+vhXWzrUS9HYFp8+WilIGh6cYymrkqedroDATfG200QoikmI3W4o8pb3CeIdoIdRm0plPKUQuaCNy4Pj+z3m68vq7gAiFnptOD0keSCt7FjpJuP8BZQ3Q+n2m98eXzM6oPHzx/+ZFeV1q5EoyK9vT4kRQyyQcIHuchINSyUDdPXRfAKXefPXxNHbekNXrV9xCdidaDN/cuB25oE570/TuvW45tK5Rto9WN8+mE+/SRMTrBO5b1aoLvetCnnHe6BZhN5O+cTuy7IGga+XQ68/DxE/l8wcXM9arZH3UrLLer/jxQLrqTI6092MaihUirhZg1nfnx8SN+PnG+PLCtC6/PN0J0DGmqSUiRT58+8eHDR3rrvDw/47CUa9FQv1oqMVYFRdNsdKWKdAt7yxOfPn3Hv/pX/zu/+MWvyDlzu90o20bZVtblhoxBCsEEvfp9MQbyPOs1FSLzfCLlmdPphMggxcTryzPbtuK9Oh7tOh+H0hBznpinmdPpzPl0Zpom/vM//p7f/fYf+I//4d+zXl9A3nPrjf5mIuD9t3Tz80apwwfAKHjzmTg/ENLEWhNUGFIpdTNL4Ik8RaacAd0Q1GKT+jEsNTsxzZOJ4ztrb4fLkt7Lw8wBxqEdOfQZYxd3mwtW362MdVPqXCPcCq+3RkqZnGcVZAdPDI6cNIV9zhdymllqo47OUqsKs1ujFaM19kHyeg0/PkTO5xNP6YKXC3THcr3ptecFF5Q6ua0rKV0IYaLvhzg4HIHmoBS7tw83PE2V3587ve00O83Q0LLwP/+mJfIhmv5L6VIxBuYpMU2JecrkLASB4DrBV8LuWIcnSGDy9xyLe93rXve6189b36axUKdN462/8dcxBxRtlN+44N6bXWwIBzc+BAMWIdr0OuKzWrFGJ7jtD4z6E+X13yL1CyILo4EMpwJkyUrhSBcIJ1z+gJ9+CeHMyy1wawtLrSzbqpPbWlCjy8FtfdEJcEzGI3dKcbJXPXEhomJuhlIZelHXHETMzVXoY8+B0AZORCjbCmPgj+m2bjvG6PR1JeUJlxIPlwspJ1KOjL7iHVymExbCQOuFNTdKmWmlUreOrLoB6e0KziPecx3dgusCLun02BttZvQG3kLkUCtcJw4fZ5wMcA3Emb5gnxZDDBMEBTshRuXw29S994oGBArX28a6Fa7XK/OkFqsPD6djqxNNWzF6520vo1bE57M2rKfLYJovTKczp9MD0oV1WdkWPW+1FJblqrqD4NHsjsbq3q61nLPSnOaZWHU67oFeC+fzxSh6wnK7UstCCuo0luPEp+++w+H46cc/08pKa4XgOayQgaP53UP0YghMKfOb3/yGH374JZfLhXW9cbtdWW43TVGvhWpJ6dU724r1Q/sTbvG4B87nB6b5RO+PpJQ5Xy5cHj9QSsHHF3xwhG6p9vsmyakg/3Q+2wak8f/6d/+O//zb/8xqx2v/e/sNu2uf3lyAnWWcaHDkNJ/J06zOSM5RaiXmRoiR80kHAHnK1LqBCFPS6bqjomQodTRTalAnZYz219i2hdYqy1IQFyGooYM+F94c2bzIG3PL7rdux673RDLAMcZ7Opdu6pTWuLswedYy6LLycAlcXOB0mTgBp5a43la2zVHrTl/qx/laV0hp5aefrjw+PZKnzOmUNYW+Vtpa9Fp2GecnfJiIMsyhbKOVotoVffhBzgquY6LHZNtd3VgMGYglq+/6KLDMFxvcOBwyHLUOddbzg3Xr+FCJYSWnSPCOKavGK0XPlJPR6jqlvIVl3ute97rXve71c9Q3u0LJPkV8b61olpz6N96oQyFowxuCWkDum4MYojZ5xisOHrzrBGlI/YyUP9PKT9AXm3hGNEUb5RK7iZDOuHCG9Ij4M11mtlYpbZhff6O3Cq0h0hCUSqRCa50ahxAZsm8vOqEaR7xnpTA4Z+nHFj53iDSLfp+5BSFQtlXpD0OODYd3AVCRsgwFN4fuYE602ggOzudp50twXYppFyLSGg0UdBh1SRhIF6qs7A5YrutxdtG/uXS5oBQNE2eLNV1eHGqrvzsOiTJZMCck1LbWh32i7Q+NjJ5gd7gubevKtgVyjjgvdm4Dzk0QPKNbAjpK43FeXbh8zGQRcr6Q55mU9Hi3Wo+vUjZ6U366QwFTb/Vws9opaUM03V3GOLJOnIPTfGK/QDWQTajnFYcjxsxpnimXC9OklCmpmwKnXUfzF7kR2vR5r85QH54+cDmfCSGwbSqMXoyCNHrV/BLMbtdcp4JdEwoM4rHBE8AbvWmncKWcFYw705PsjlBw0MumSV3MWm/8+Oc/8fz1i4b0maB+pzgpeLA59jvnNm90LLVPzoSY1bHNLFhbq4SoGhPcwFvQ23FMbLiAy4hohsu+aBgiSDeQfLhiVRUfy74lMUcypzqUNzqPfWFOckOvQbwJod9lM3h7vuzfJPKWl7GURsyN2CpnPx/bjNErToJlVwi1uSNAsHUoTSi1Iz4wt0ZIdu31phbFPqh7m4uIC+y+FGKbWxmd4JNRvNTgoofBsO2VmhbEw5ZbhjpASe9GKzM6qf163KMy9PXWjvMN5zwpdELwlBzIaZCSp3d1wooBSi3f9ni/173uda973euvrG8CFrV1sCmYc46U0zEl3PnbewCe8vLjASZ2G9mYFFjkmMhRBcBRbrj6guufadd/zyhfoDybqw/0ERAXEJ+I+YmYLsTpewYTZcx8/nLjtrzwfL3ph3XvjLIxWmX0Ynz8oBP02rkuG/PprIFlpxO1NV5fN+rzM95feXhqpDwzTZq+qw2NffiPweiFMRqtqkDW4fDvg6q8UhlODxdwxrN2mjy+LCutVrbFqXDcg9SDJMLz80LZCtsNSnG07smPj4Q60euJURvSOr2qBkOkI2s3nrZRWnzE5xkfHKJDadsm7WDQk/IM8p6O0ugmmBCgDrMI3QluZimsmxGluLS+Ua4LvHa+fP2i1KGYOJ/PqgNIEfGR6fzAlCIxeR6fJqXUhcB8etSAMx+pvdOKgodSN263607gotXN3MQ04do53VbI9kZFizHS2oaMSq8bp3wGp+nuX396ZikLwXtO5zNjdE5zwrlHfvE3v+LHP/2BbbsdVJ64C3h7Pxyu1nVVbcU58+nTR0IIfPn8E7fb1bYrNwOfQ8GwbbyGpaHnnG1r4TmdzkxTtkZXLVmDV5rYxw9PbOuV568z2zWaU1S0Rl7IOXE6TTw+PtJa5fa68sc//ZHXl2dyVDqTXknOaIi7i9guplbAMZ8fSXnifHmgbIXrWkl5prau76kPwvXKl69frM+XA9RpGKICrzzpfXR5+ETMkZATpW6U0rhdV3ZjJOcjuI5rqwIsy8HxIeFDwomCw7pTC6WbMNyZZktBWE4TwdLaSapzCDHasYV1XTXfoTbkurJVBbynOfF4ybhz4jwpzWirg9e18HqrbHWwbVVpZNJ5uS283Fb+/PmFFD0pBR4eFIjm6QNiDlStdgO/g+gGwQsxBTBnKd2yymHz23tjK0UNAUzYPfrAUQ14dHbqnBg1bwe5+ntyGDAobHDvXOwU+IbgyTmSwrc83e91r3vd6173+uvrm4DFPkHzppvYOeD+mMa+yxjwaoWqtpg7/UNX9nsDmljwY4Xtd4z2Cv0rffvKaAu9KKDowyHxBH7CpweIF7qfqTVRu2MpldtNcwK6UQv2zAHnoJkwVzMZEt6rv74MdYSSeSYaLaVYMFmtFec12yKlqNP/nI9tQO8Tw4KydrH6/mfOJovOOUJKNtEUYhBCDJwfAt5FnAv0XYicJlO8O+azJ0+Dy6VT60JrK5dbprVGLdVcrRp1W+it0puCnLeNhmM4T5pmSzdPhyYkpmwUGH9w1r3bJ//aoDm/02f0PbVSjoZ54PE4QorIMNH0btu7b3ak49dC74L3QTcbtTGZ9W4O0YTdQdOfBbbaWNdCqU0n7PKWPIzZlnYLitupMLsDTzCKndJIgrl4mdtXTKSYdHMkjm1dbPLuifmMc8L5cub6eiLnibKqVecw61DfO9TKVgqrbaR8cPRWbKtSWRel+pRteRPEy04VbIdot9X6bmOhLlcxalK7cyruDsGTppMFFs5cQ6RbEy22EpznmTxlfHBsW2FbV3KMnOaZFN65AL0TZe+wsvVhUM0xn1XA/vTxEy9fn7kti+Z+9IFzgRgn0wQlo6FVm65DTFGxNhDThAuRLoNRG7RuTfTQiX40elzM9v41fBE3cLR3NK2EeI8XE4QPT4wK6oNlsYhYIKEPOB/A7h+8Ui11E5RovbGsiwmpO9fXG60EpGc990G3dhm44PF+ojRYp0lthM0WdvQ3uqf+6lm3RmnYxlM3H71rUJ46x4myD2WAdLZaNUem1cOKtrd+bMJ24MAuK3lHHXx77u7AYndr2/VsfynOds7Rh2ZftB7+i59yr3vd6173utf//Prm5G3H2xQ02EZCMy04gMW+nQgpHeLTZB/EOSkgiSEQ62dc/4ly/bf0eqW3K6PrB3Ar3tIiIi4+4OKFMP8SIdEkcLvBunVeryvFppxqX7lvUybCiOyTWpFBiNHeh6f1Rukr5/FAzBNP8wPPryqcbaXgfWBMQ0XcORNjJnh/aAdEhDqqNlRmsesdpODwpixoQyz8qnOZICVPnBJDMmNk/VvO44PadyKOx/kDwauFZG+v9LawXj9RW2drQ2k9rbHertSysq2LHbNOL5sG0Y3BfDoRvCc4RykbY3RSnjXRPARqsS2Ac4c1aMgZ5yPRJsCIcB3PFsjXwHmGc4SkWo3gHVvXLBJ1TtKp80alD2GaT9QubFvDPWizOp9UqB9sul5roy4L1+sLy1p4fHwC9GfvZsb7VHfPCdh56fuUVrdkwhjpaOpL3cjeM02zWqqKZ10WkIFDODu16LxcLryezuTpRLOsjT4UzLjeaaWwbRvLsti58mzrQuuD222hlsJojdbKITjWUpC1N4+1NqMHOrNKVsGwGM2qbgsxeE7ziSklzqczX2OitapgVfQeO59PzLOmm9eysa4L8zyp0H8PL9ldzWSn0ZgOqHW6ODqe8+MnzpcHvvvF39CGpzThdfmiTkVBs1fyfCFPk15fdaXXVUFynjRADk+OSQ0REMuHsWPnPD7mQ1s1T5NtPIY5LelmwFlT7X1EcARRYOuHqC7JEu73cxN8PMTmYqIMMWCScibnqAMG5LheXl5eWYKjrIkPT2fCeTYjAIjeMU0TTQJrgbI1tnVjXRaqszDB2imWq+G9J18XLucz8zxzmmda0z9rXU0sQhqIc4xWWNZVc0v2vItdoL5vOLvpK+Tt9MkBMt7XX24t5C/+grxZZ3QUVJb92rrXve51r3vd6+erbwIWKWdi3tOxbcJtgt1dZKF9gNnMDkuStUmzdwKScdLwsjHqT0j5E3X7Sm8LrW1GHXCIn/HpjE9nevgFIzww+AVbKZRS+fr1RmsaNna4GUkDHEPMjtR75hC16T5oPaKNUFMaysvtSqqN+aRWpSlnnPfEZNkaUyZPM+fLg1p9hkh0HqQx6gtj3BDZzOvemdDWA4PeXxGpSK/kdCH4CR+HBnalE+IvCIHuBqOpxammWDQ8zzT5TOfG+WmiDc/WEssq1Bo4T8nsOTV0sI9OqRtb3Si1cDmfid7jhnB7fWZbFvwQpFZKqxrIN0340xkRFdsqrV2dh7wPSq0KWQXBhtrUnQg9jmPi4XzGM5izakfmeVadQIzkKTPPM/M883A6a/ZFUgWxyOB6e6XUyrZtfP7yE6/XGzkns1gNOAYiOoneuf3SYYjSVvyxHQMZDe/EHMs060Dfy3xQgurWKJvg3dCJc5o4nTJPH55oTV2Latl0Mm/6h+v1ym1ZeHl5QV22Il8//5nWOrdlOzrAHSSIAc1963I0gd42MATddlVhXZ2JrTuvL1+otajtKMLHD488f3kgRI8bmmIeoufx4YGUErfbjVYL3sG//Pu/122Kt/m/bSuOxHXj9i9bodRBaQPi6dhqPTw+KYBOUfUQdSMmBWRjqB4jxQtM2d6fx/sITsX9GkipVq1K/fO2+Wtq7zrgtjbdlTihl935aeB8wYdOcdUE52rkEHwip8kS1qE706tIVbpfBFwEQa1+68rSN7abXpuBznxKpBgY3fY04rheC8tSeHo6k5IjRzhHPY49DMbs6E+epV7oHWpztGKUuGbhc2aFW2rD+0GME9/98tcKJGVoKvjQkMDZtD7NdF87JUo1Fs30QU6lI+LA7Kj1AWo2vrtzl903/+16oy0iIO2evH2ve93rXvf6eevbgEXSpN+D6vSeArUDC7NKPASkOwdYZ884KdArMhYDFl/ofaWPqlQXAuIiLl4gPeDShTbOjDEh1dtUcbCVnU7wNt7zBwvcyrQeGP1nnyjHGBHvcT0yhvnqI0TbwOCcTUYt3dr7Q3SdU2byHieBEa6mAyl4P8CZvS4g4hDfNDMjDAsPU055iMl42AEhqHDbayYGowAFJ19x4xk/VoIHcVGtZp2G4xFUXC4OsE2NpAB+IsTI6XTRRvPIC/B4hobhSceHCN7hfGAMPTe7nSoGkEJMzKezidK7nU53nEvPYPJCDI7LKTNPE+fziWmajJZigXMpk/YtiBNqq9RaeH5+oY+uE+d3QHVPatedxXhLQIdj4qvNmdqm1upAhm3EEsF7plk1EaoH0Nc9htBbV3FyrToZz5mcM6fzmWSBiLVYMrYMluXGbVm43W5Kr0OoZWMrhdeX14MSE3Jiz2L4L5s/59yhbxh2/JBBq3rFhgClrDjn7VdHzpFpziAdL0oj3E0QdMOxHWLth8sFkGOjhgmH+xjUrtPwLoNp29iqhtN1Ij7qsdJtgoIqFzY6SmMDZ/x/h/kSgylfnIuWw6ECc7VJtfsM0zMNDXEYx3Td7k9LWz82PGPg3L7Rgeg1cT4F3URx6FY0K0bzGvTn4ZQ6tfsbdNtIOS94AsEbJUgcMoTWOjQFpjI8Hk/ygro2D8R5hgu44Bji6T3QcrCtgwLw1mHYudwF8HmaAQVxrTu8bdhCULrb+2fm7jTWnXtnDmDXtlOVzEGrcw5vWUHwBlbHeNuOyX+93rC651jc6173ute9ft76JmDx8PRETNOxyn8PKnb+tAN1KDKKlPeOFL3RDjqx/Qmpn6nLb2nbHxjthVIXxvDIiMTpB3x8wJ9+SeNMY+b1uVOqUMpXE/JqY2oSVaM/gXNqXykonUUQs7rVD39wto1InEx4sRX9OXuAmnMWtoVXhoJN/0JQzvc8OU7B4wS6Kyz9C639SHcO3AT+E87POBcIRt1gvtDjr5DwgLhEc9qgONkQGbSyUbYrrVzp22e8rGT3ohx0NyhjpfbErU60pmFjo3XKtrItV7b1ioiQ5jPT+YmnxydCPil1aTg+TBf9d3qh96bUqFY0QG5b6E0tUgVtDukVP58JMfDw4QPeeaQ1O6+Oac4qNo6OOTqmGPj4dD5StncqlfaOOrHvBgaW9cZPXz7z9esXfve735HzxG9+8xv+9m9/TUiZ1rrazVZzgBKHI2twXmuUVo16VI3+IZS6Gr1Lr4vbckMcRgl7tEBDZ8dc8NJYw0Jqg8mrlerjx498+fqFOjptu7G+3tjKxpfnZ27Lypevz/zw3SemHBmj8fL8hX/4T/+Z77//gfPpQgoP7Ju6A2SHcGS+rOtCq4OCmM5IdS6tBnrbcC4w+tCcinlmmieeHh+pU8abrkQwYNQaQ1a9xocw5azbMsebI5mPRhPS+xBUD9PaoHahdUcbSo+aL2fG+UzrHb8uDBzBOxiddVuN3rhnYOi2wosjiEN8tHdteoHDIADmbEJyh4Jouw4kq46G3nAMoJP9MApgx6eAD0JMqim6Pj9T1pVeq2aupIiXmZiy3mc+qKH0ABEF861UXC+Mmo/2WreJaqbw9esrKQXOp0Q7R3LynGZTO0sj61/F5YA77bqHDKgrXZNAF08zN6wxxDRljtPpokLt1tm27U1PYffCkdBtv/ZhQm67R+jmItfbIegW2W2huwGVN1G3mA20Aoy/DL68173uda973evnrG8CFlPOuBAZfZgY2h+6CmeWlrvNqnOBEAXvO9Ft+PYK40Yt/wj1hVF+YjRNKPbhUa1jecDNv6K7meuWqd1TWufl1XjKpZnoeE8W1mYh2CR1/yR1e4ifc7idtuW95T7smhD98zloenQIjpiyUXA8MjpjVKSv1NKRfqY32DZorigVqjkaT4yY8SRQRQVeGp5N+eE+4vyEUocK3hXdSsh2NAVBAgnBx0xznzRDg482tQSJMxCZT+ktdKsVWtnY1hvr64ulLUNwEfqgrlfGgNbfpufdfPRH7wge5xN5CoTYCbGZdavnfLow5YkpzySv1JT5NJGnTMpKmQneEbyQg1eeeg5GB1JOOoDbrTOB21pYS+Wnl1deXq5cXxeuy0Y38fbpaeJ8fmBdN6ortDas6RwGIPRXDeFrbOt6XHfeOVwURuhKKbMcjFZ1C/ZeFDtEaEMtiXEeX1bacEZdUeez59cby3pj21bWbaX1SgieaZo4n8/M04nz6cLT0wculwemaSamdIhzRd60PvA2Nx6iIm4kMoY3br2aC7RWiS0dGQfOhNci2Gvdr239ebuYeRhXf/+HVG/iSQnb1OmRw1g13juy0zTnIUKK/qArff/hiWXOpBAIYQIc4RaMvqPZLQ4IzhGjGTHEYJsszXlxDnJKZuLA4Yq22PmaUzbAqIGOwUMI6DYTvQ+H2E6sVaQ3vX+T5kZMl0dcSBD24y1Ua85774crXGsNt3acW9hPiFrMmqBdIITA6zUyzxqceDlnzYPIGkqnIYJGo3IO5yrQ8V4IXu2qY8yM4aiqa9d72pK1caLObHjTBYktId4MLgS1ew5jHM8koZtYXxiiz9cxHCJDQdouwjB7az33b9tG7Ht3euq97nWve93rXj9XfROwiDG9c5pBJ9PB4cN7KpTHo05KMVYcDS8Lsv0JKZ9pyz8gfYW26gctHp+fwH+E8AM9/w1tJF6uN7bSKKVyu23a2NRy+Oc7Z3kRaGCc1tsWJfigjVV4c65SZxoNAdt56GmKBO/VUjJnQowkn2h1ZV1fqG2xPIVKqw6Go0uzyajDuyd8/Agyq3C4LwjPiBQFNj4Ck9I5pAAV+g3aq7rjEAjxiegnfJpw8YEhjjagdaVpOcv8mGO0Bmww2kavG/O2kuKZWjbKshwbl1pXdaup6ryDcwyzkwV/OOvEFLXBHEMn1s5zeXgkx6gp11LJMfDh8czlosJh5dWDd4Owb6qG2WVaQJ9Y82MmNnx9ufG6Fv7xpxfW5cq2rixrAe8pvRNiZj5dlJrWBdiOa2oXp4qoO1TrVUPkbJIuzuEFRnrXWJZyUE72+a3gGaLbrNaa0kzKRicYJU6dk16uC8tyYysrY1TGEA3Hmybm04kpT1zOD3z88ImHywMxq3tYqw2R+t+8f8T+XecEEa+ibNQOtZvt7PvQSTDRda0HvdA5986l6C1rY6fH+J3+hwVT+jeqzJ6r4L2CQRFPClCH0IcQPzxwWjMOT4wTgkPcYF1XbkvDiW58YnDk6MlZt4F6bhxeW2hOczxCMZ3T/Iay3ohek6N3S+pk912OnjaanidRx6/aOq1sSO/6epNmR5w//AJxiU5QRy6pbH0xvZVudKR3eu3mytWVPgV4LxzR1uw0x6CAOUUu5zOnOXM5T5xPkRhUM+a92PPGmn/pBC9q1hCTOtehZg1i1C/BKKHe41EdyEFest7/ABbwF8OOIRzAQjcsO+XRHW5tzgwj8IL0XYeh97YYcHsfVnqve93rXve6189R3wQsXq/P4IMlMuuvKUZSjOq842xKOV6gvzCWPzHaM2X9PaM8I21hjKpcbXcmX/4GHx9p7hfUntha5PrSKbXw+nrVsLTWaLUcvHWRrinQ6If86IERheAjIWWb0ipo0HA+TfcOIb6F9KVwBORFn23LAuIGuMHgSoyFDw8VcdrQjNHZSmVBg9gcnsCZ4AfRD6T/ASc3PF8ZTafOPT0CARmB19rVJSpmYphI8RMhg/OBMOnfc+IJQ3BDnWL84eijoWNr7dq4jw50RncMSXD6RJwE/yhH8zJqJQIX49F759QVCQV/0zQRgqduK7VulG2h96pTYz+Ys+Nyijyezkwp8nBSxx21Dlahcm+W29G72d7quRlms7onV9fS+A+//T0vt42vmyC9aN5EWZnnTMyzum6FRAiZmAYpN1JU7UStG/vIvbdGb519A4FonkoMKs1XChX0x3fOOtbNxaiaBUan1E7tgyZCiBkXLDTv/MD58qQWplFdpnbx81YKz1+f+cUPv+DDxw/88Mu/OVyQ1rLh/MoQYdtWkLfAwOA9wQckqF6kWzBaDEoti8EE3a0q1a/OjC6U2thKZatFf45RmoYd11KKAYy3abWI0gND3Cw9PaowX8/8O5Bt2pAQtcH3jibgs2ecM7UpbenpfOGUMpd5JqY30wYfIz5EehM9Pt3r9kXk2Cj2bhoCGcTQyckzZ/ScG0XRG72u3zZG1yDGtRTWpVBLxYfAdH7EpQcIE829ZefEKUDo1KY0q9GF4QYS9NEWkieIajQQMSAPHNQhNOzx1kDg65dnC5cLnM8zOSeenh45n9T9KUSAjsiG9+ocF+KKcxG83tekiEhAGAwUeI8hROdVQ9a7DgzGwPtgFsr6TOlj4HtneG/vJ6i+Ygzcvsmya0fGOLQYw+3PCd3gONOMqZnFve51r3vd614/X30TsCilEpJSYMTLkXw8RFCp5+5805XqUz/j6lekfEH6ikjHhRn8DP6R4b9nuAfWPlOaYyuwrEX99Gs7GjC3C3m9oFEVb3ajAK5rQJyXsIstbFoYzBo3WKZD1AyNKakffoikkNBNRz8oKwGPk4hnpgvq09T70cvuzkheOo4Oo8HQwLrhoBvVpbcJcerPvxWl4ARB9SQSlGbhPd3L/rKN2G35FugEtEvXaXfvRu/piDRDHGhjY/Rw9+494BzJQKDzjtZsQm4WwN47WtFZvljDLQgyAt4lUnDMU2JKahMcPIfIe4xx6F1G77S6A4t25Df0nba0Fa6vr1xvC2sxITgNdpvcY0rPYWOsFsVKSQvhfV7KDhjfWRzbBPqY4Mtuvuksp0Ob5OMIOcdAVNje9mRpFdjHlDS/oTW67IL6Rh8bxfQ467aS8sQ8n3Sy3u3L0qx3B5/9etMch4gganmsFkDaDBowGZb+3G3LspcgRz7Le5Hve4eh3tsbiLL3GHojtEiL8e2qcG/HUMagh0CKKnp33uOdJ3phThHvBn0oXSgH3So4vx87FOT1rvfHMDGxoVppdm96m7rbsXDeayNf1TUqjHHkprSqzbJzXrUWOeKDulZNpxlCAu/ZxjDNVMCHTG8ehtBCpIZG69qsN9ugHanWlh8hMuy47yF/amUsBjx8cxSvtK9kuSoqe3BMs1IA3e4ANgAp4AcuiAb6STK+mtH4DmtYeUeH+v/8xfF39zP/ju4m+iwQy0XR4MX+psEY+iyWsW+yFPTf6173ute97vVz1jcBi21bOcfJ7BE1oKt3dUnpQye0E4HYGr4Wxu33uPpMaIsmZ4cT+fFfgP/IcL/kVjNbcXx9fbbNRKUsi3q7O2duMZqyDDqR603zZmUY3xihURgSEO+JyRF8JsRkzke7eDuq809KTJPaqXqnYVnQgHrYlTp3oXdPqY66FVqv1HFjSpnT5Ehx4F3H8YofG9ILNOhEmv8ldUz0EVhWzX3AQ69q2Zpbp3jwQai9oKFfN1JSd6J5no8megcyKtjVEK51W3RaXYuCpJQPy092sOVQhyunItwYNOuhRuV664+uSB+07UpZV+p6U1cgJ2Qa/hyY0onzHMhJaSEyGq10zSvolbptFvzV3wWA9YOCNMag1EopG+vthe31xnK92nEWQkrUbeX2+qLi8d4PZyfkRAwekU5eZmoqxJRIKeFANxQmbkXeaFKBqG5Z6LHzXkXSpRRtXNGNDaIUqdo6w3WC64Q8k2chnx9oeIbP1LKpmHt9pbeV4B0//vQjzkeenr7H+YiXoFuWPuixE2PDO8fjw+Vo8kIIxFrt2tWmEITaOiLrQSfcc0oQMSqRV0DzXzj/OOcOcLEsy3G8w06pgWO7oPbBBsrM6axsqreIFlYZYyTPM8kF0jkZfd/RRXU6rWe1q22dZdmoXUXgPmZAg9nskAOqv0rJrp2oeSq1Vl6uC/35qg+fmHAu4F0goxSreU48XTI+nXBpMiqRo9eN0VcKEPKJdLnQ+4nRoZ7XN7cvUUrSUvsBuvaskVo3Bb19d5TrtFYYFpiJU90JHW7Lht8qy1qYpoXTfOL7779jnhPny2QARQ0RxBXwDu83nE94fzZ1kBoIaPK2AjEFoc0AZT+sZ7s53O33kAbpaWCndN0E7oLuHYyPI+n93X+PfgCZ3v7btLx73ete97rXvf5n1DcBC9WACr1t9A6ue0LsxCTGARecVGr9M2P9LcjK8I6RH/HpO3x4ooVf0UamtMR1rZTSWJZNJ/G1qgj5vevUO245eFKaAKjFVKzOnIycairEfiUEfIxM8/mNrnVYTzZtJIM7vPpbjWy9qdjXN5sUArIRXCP7QqDh24r1Hjo57pHeAqXohLeOQZeiOokOoE29Cp6DCcoFF9VmFAE3tEnsTSe2KUZSTocwt1bVFCzrQq2FPoa+F7OrLF2Vo3s4YYzxoDrl5LVBaRt1+YlW1TkpWyq62omKNpdep8VPDzOX08ycA04aow1qG4c4dl1vh0B6b7CGNUmt79x2OTYYIoPvPn7g8eHCd+XDW1PXhTzN9K0wSmG0okFpHrNX1eTl0zwx+kxrZ3qtlBA0dbx7Rm+aZ2GbjH0LYFYCCqhqYVsWetuI0ZPNMlmn6rsOwNmM2NFxlD5Yi16TtXVztVLno9fXVy6XJ/poqpVwu2tYJOes+SHOWbicCot3+12Qg87Wajk2EdWSuXut7OniMSRLkLcQQ9sA7fUmFhdLfy7/FbDwTRvp3UZZ80l0gyfOHSCnd6XvKL0nAfpzovdED5I8Kc56zlJmq0Ota4dmZVR7LTtNa5/AB4+lnVt+ybBUda+WtfPkmaZENhveMTR4sI/BMDAU4r4BEAaC3xbK9kpIJ9VyhUEKDiaHkBniOfeg4YutsdwUjIcYDt3FvvlTDVbRxv7d6z42iE6Ttddt4/Pnr6QcOd8ypzkz5chpTngnduwGzndiaOACEgKtqxuZiBkm2MNjyPgLYNHsntF7rB3AQobphkZ7ByzewIfmivQjQ0V2a1r5/5Z5ca973ete97rX//j6NmCBtmtjVFu7e6I4IDImFTMzCr19oZU/491AQkLCAy79EuJ3VPmOMoSlFm5boRT96rXRi2onMPqHN3rGXvsEVrC8gCEGLJxRKoyG8s7uNmfNUIgx4sQdwALMtUc8MhytOdaKetQ7tXnFdTIbwXUmun5f13974GkjU1ugNMeyacBdbR1xJhgeYkJyTwoRF7xuWZzg/MDvIkvhEJvGGHWy7t07qoxRjGw7oPz9pCQTa+QQ8DFYUrFSb1IM5BwovWhOSNXtxLos9DSZq81sYt2sOefRcznPnKZEjsG48o1moGL0zraux4Zp9z3ap66tNpu+WqNpSdiXy8mG7hqcVntjWQvOR3pVh6tWNtLsj8ZTXXycbpnyRJ1nyrriHBS0+Ru2tXqjQ+3D/b0zxDYWG62uyEjmELbbsobDuWgMDs3Erm8YrdIs2b33zkC43RZNaG9VaWhGuYohIDHiYjyyT5qr0C0d3Hs7hv6YMA+jle20sd61gdTN0psOYadBvaeNvU9x3hv6Ye5CuzhYaYK7qYFSyCREbTxNwC127nBKfUIG3muidvDhsI9OMdCHI4RMKo0YOrKt9np3/cCwTabSulRCLJq27k1zYtbNYmA45UAQB6OzbZV1K2ylaYi0d8TkjYIEzlni+uaYTlWDLHM4AJO6ZnkmyWw1UGqEMagt4IJ/E3Qb6MJyZ/zoNDumGE1q9w7ooyMVXvorIQTKNjEeL4BuWJzbQayGL3rXddsUPc6DN3G8IAyzqHVmKnA4SY09idvuszHsWuhG5TLw0Psb5cm2ITug+EswcdwI97rXve51r3v9bPWNAXmT8qtdxHvIU2KKkVPyZPcToa1Qf8TVn/A08uP/FfFPFH7gtgnbMni9vlBro6wbtW0Hhz04T5pns2eEVt+oNdum9CdvHG8XEvMpH/a2zjjiMWXwDnGenGelzXjl07fROc0Z73XSe1uF0Qe1vZpjozlNOeHkHY6KYyU49VYpw1Mq1IbxuDVNt4+q2lDeTFGD12YwTRYgZoFgvTcQR6/ATRiyN17BGtfBtt4OoBSTTqxPpxOXhwc+fvpEsyb/9XqllMK2bYe2JQXNlJhyInrwdKRW6nplW65M8UR+mHl6/KjUNDzdJRWzDpi9MEXH4+PMbJqKui6Mru5cY+wblPLW3ALgzK3LVkjiOALJaqfUVb8XwAmt69foA6kbbVv5w+8Ty+2FX/+LvzdTgKCaDxmE4Mg5cT6fGa2ybUrzqrXQm2PddIvkGOA8EczpR3NNWivUsrCtC71GRqvkSYMEp2nGDMTYbjdevnzl97/9j1yvV7ZtodUNMVDnRKlyz19fuJy/8PXrn8l51g2AT2rBO08EryFy3TQEzihqMUbC+WymBFXBIo02TGPhFTSq7apubGKITHkiWoJ8jJHWGuuq9B+dcKtgO5nl7a7f6L3jnAa7ea8gc3eVqq2YW5gF73ndmnnvjRqlCei6aYmkmAhJXZymHCnVs9WGf2ncGJT1DUSEnI8md7i9ed71M4FpMvF2DlQJPC+d2/WVbd14fnlWu2qv20bvA645UlRKXwpBp/5j0GUQkzCNZKBmAZ6J0fPweOI8TTycEqc50npgbZPSNrvw+rpoyvi60WKgt2ZmEAqIxJp73QToe5Ohz6Dtlnh9fSGmxMePT1zOEx+fHricEykms9lV6uMc1YZ6ThMijj4cpRkAK1XTyVtj2zYzOjA3s96pLRrQaPRhFKhWCXZf+L5rLN6lvu9uUnYu7nWve93rXvf6OeubgEWIgRiiedQ7pimSfSP5V6h/RuRGl1dt8sIjEj7S3YXaM2VsbK1TaqVZkNnuaKMkJ0x4rWnEPkSd6g//Zq0JqpnwnuiVm+190DRwc5nBqTVjTup6817Q23rHDTFqgTCGTrm9UzvJ4BvBDaLHCDH6b/bhWDaoTTS1WFDqjJhHvUcDxYw/EYJSc3ZaivMWCCYczbkCCRUDp5jNjclRjY7x1hIIo2eGc4dv/7AsC++cUbzsfORAzo4UhegKTgajF7X3FW2mxbIcBp5h1sC6RHFMEeboSMHjUNen99P6fRugYElAVKSsnv07Nc1+vm0sdgpR62+i0jY0zGzYZN4hrMsV5x1PL584nc7Mp7NS61DQpJx9FXXLGJQQGEM3Kt57y1hwlk6dtOEPUcXQJt7V1zqODZBzKLB1Do/aiDrpeBkgpoMQDORNel06FdeX2nl5uXI6DVJKzJM3l7Hd7tVaO+9BjHaFoJEGw6gzapV8uJjtVs42Km+2LRmmNdq3ICAWsIdSqYxutW8+3uxltRHetxg62VYw/ib4dohEJAR1UArQXce7wCGIN+6/JkB7ghNy9HifKG2oCUCv1G7hjYfYeChlEAU5+2tCVE9QygAqAtxu2uiXpgDfuUEXd2yWUtz1QiY9EmGSQEyC2GNME8EDrcOyVEIUQmg4p+dliqrXaHCECmrjHhh+oHa8oltSp+/VJN7smBnUoa33Aa6xbkVfXyrEpIOLKaohxBjDDBr0+QLe3LA8vetGKoV2ALrWGjGE454L1dO7bi50G9XxPhz0NaVsDnr3prUY6ii3C8XHHVj8r1jRJcT995+7h/RI8ul/4Cv6X6/qqLTx15kXbH2jjPI/6BX9r1lDZnrq/93frywR9xfMk3+O5f5K6+//1YzDvy0gb0pMkwqjQwycJwj9J3z9J8rtP9D6QvOBOP0NPv9A8z9QJXJtjaVslE0TnneeP3tKr3fm264f2s6ZB7/Tl6ebAZ1QuhBwIRCnmRgiOak7T4j7W5HDRUons+ru40VY1mofuBzuQqecCX4Q3CC5isfoWOIYBLbq2Rp8fe3qANQ060Fta83KNmoehN+pI/CuuXMmIH6jBzUTkup2AsID5JSJMdFfqwo8x7CcDii10HpjKxutGbhoalE5n2dy0rwCHyFHT/KDwMrohbq9Qmt4Ec4P39HFsRajreHweKNqeZ4mxxyE7DW3Y60qzj40L+b9r6JbZ8fS3pNr4IwHPwbNBKWtadpzKeVofLvRQHzwR3jh7fbKsi7M08SHj5+YciYYlUSGQyQAmXmacKiRgFpiCd62CeBIJoB/uDyQYtLE61YZ0hX8mdPTaJ4BtKC2vATReMPgOE2JbfVU5/EpKw0oZ9PSOwJQ6uDPP37h4aEyzxMhZBPdpyNtOwaPE89w4d2DwZpAc0pCBhJ2tyad1O8brmW9cbtdaa0e0/4QPN5zUONaFVorJrBuKgy2c6Xf43XTh9CaJ0YFFrWaMHjASJqW7kwYP5y3RtsdYHCYqxIBQlSQN/lASJnSGnlKat/bB631A1Q20Qy3smmuimqpGlXE8kS6bjBbsxbe6GKj0K/XfSV2vG/HGyVyWhs5T9QOOU+6ffIzXYSfPt/wfiOEwccPj8QQmY3e5cRzPp00sdvE3Q7NlDHZDU5U0aEPJd1IOtPy7PocEVi2qpkzw+P8zGDidDnrlqGualSA4MM4aG2ZyBCYOlQTmZdSaL1TWzmGLqVoUGStb8Cimgvb6E3NC/4r4bZpLIbgXPiWx/u9/v+gvPOc4vmv+hnJJ8Y/c31NHYW1L8fn8H9PPdcXnsvL/8BX9b9ePaYHnvLTf/f3q5W/R9N8/vnWPzdg9Y0BeUGTl2Mgekj1FWmvtHZF0idIvyDk7+lcKOPE9aVS6sptu1G3RmvWnAAxxTcXTMfRtB7WjCjIAJsYh0DyHmeWnjlP5JQ4zWdi0mas1qqahCHUWs0KV3UL3jlymrVpcA0nHSeN7AQnDWSh0+miDVjrUJpQLX+iNp2ygolio+o3YoqWk6GWrruoGt6mtMbTAYRaC7UUtm01ByrHuqwstwVEQwdjSJzPF9vaeBUSOEeIkXkOBA/RVQLqZsRYkVEo62dCdRAcVdTSVpjx+UxMgXV4Wh+stevxGQOPI8dInBISIwNhKzdqWSllteOvmxFn2yKHOwBFfedMtG82VGCutA19r4VaNWnc7R79spPHwMVkxgCedavMW6XVincRHzw7tQNrcNXdybIMYiDHZGL/wJRnpkm/wPH89ZmybYzeCU6bem3UHTghSTo46iknHi4Xfv3rXzOdzrxcr5TawHt8zEd+yW4X+7p2rtsXUoiUInx4euTjU2CaFFw40x7IGLapkMMadBdt7x98arGbmecTzju2svDl80/crq/0Voi2LZwmdUgLXgGD9xyC/j0ZG6dbHpFBLY3WiiWHD1LqhBD1XhF94O3gF3SjpiF+ep72rZueBttCtAY2hZpSNPcueL2t9L6pHkcEMfH8XiKaZl9qYXQNKlRN9htIbaaB2IXJx3nfVx/7JNc5btcbwXu+fv5J75uYOJ0vpDRxOl8QSYgEvnyFlGCegzmLBa7XBfEC84kcNfH8er0qWGvFTCTEktvN3trvwZD7hskRUsaHyMCzlAI3z/l80S1inGwgIgTbhHlfbPsRSHEmeLWfjjGrw15LtDYrsJgUYNT2JjavbdevaMr8sPMh+zE7nKIGvf7znlrf6173ute9fv76NiqU84ToiQEiA99X+ihKzfGP4GdG+AW1R0r3XG+vlLqxbjd6E8upsuY8KO3DHeDCHRazYo3GXt57tXMM2sT7EDTnIGViSkcjLzYlHUOo5p7iwxudJoZICKh7y2i40QkyEBpDKr2rgLdWKA22MvT3rEly3lxy9jyMnIhGudqnmA5MQM07jvY7atA7J5gQ9e/phFcbTgUqXi1231FjnPP4oGnHOTiS10YlIPRS6GOl9quJQB2DGXEzEhK4DBLYqjYpW9GGf4xOBIIkJKrOQpxOwGst1KoBZYH3VqVKeRLEJqztcK16L0Aeolx13fJYJgloYJgdD4/qYdgpTEFDC/dNjZ5UOX597/mvum6d8qvgGLzf8y8yKSbqrkXYp/heX/uQ91SofoiTgw/knHh4eGCrjY7Dl6LnPiSCV4em3hqtVUpZGXUjhMr5tHE+nd8cefQCUDcjoyC9vw520fZOI/NmNpDMWnkrG8ty47bccNKREZE4iNHbe8eAKca/H+xJy8f9YLQv6YPeHSEYZchcpMC9A24mImYgXXC+K61tiAU1vn2NPvC+I8OrrbPzzFNWWhAKTPp+zxx0wHcblKbXmXeiVDEcvtvWUvY8DKWnCe+ySdSmbX+1NFEnrW1bj6ya1hrTdCKlCR8nvASGaPZGTBCiOts5mlIeDRj1oSGFtXp8cTQf9Bq1JG3MKWofELh39+V+r6+bgobrciOnxJSiXas6WBCGDSfUfcsTD9c7AQtS1CFKH4PQlAoVe6fFqO5iLRybwF7fgMUOKvQ5IjA69Z/ZlOxe97rXve71//v6NvH2NJFjIoxX3FgRXhg+MdKvqZxpw3H7ulA2Ffuut8X4wQVxHsETQ7YppjsAg3v3ARiTNla9tmOi7y1VuY92WHqeTxdEYFtXFT6+c6HBoam7KTDlE+ecOU+ZlAaaWL3hqECn9UoXoXbHbYGtCLfb7ZiopzwTYuLhdNGNjfH8vdf/vwOiN467Wofq5L4e7jjFqCcOwXvH6XyibBsyBO8954cT05SZpglQzrpDXa5O02zvOxEduN5ZbzdGWxntxhgqpq7yUR2nBObLL3FhZjBzu76yLDeev3w9QAC2JZpiAJmYp2BT5EErxabVSvPagRPoFmbbNmqtrOtq77GxrethOdv7my6gD3VSwmuGRuv90IgIGromeJ6evuPx8QN//6/+nmmeyDlRLc17n+7vegkVKBt3E8+UZhNHJy7nC+fLAyll03Yoz1YzIbShRWBbF4pz9FY5nS+czhd8UhFzjBrAFmPQ5m6I2sCa29e2FaW69EbAk3zmcnnifHngdD7Ty8YYjW65FcovMtpYa6zLovkem26EvOlwQoxcHh/YysbXP/2R5+cvbOtCDJ5S9O+VbSVGFUA7r7SkfcIPBsKNBtgtM2HXWMTY1PGq1CMrpdHBaDiHNmTAPA9zVEsKan0n7IAZUVvl1jg5h4+Rcw4sybN4+Pr1C9d143WpXB4emOaJTx8eeXx8ZJ4S23pVIwN0I7iVwcvzSq2DlhouvNvEdM1v2QG6vEFObaJFzGlN4cJt2dQGtwmnywPz+cKn7z4RYqDRWZ+fkV44TZEUMqcp8npTqtzDeab1rOB7K3r91PZm63pYvTYLqRRENvaN2rMMcPCnf/otD48PfPr4kYeHRwUZZNvAdDuWOhgYBlycV9esecpo3GhkyGRbDKUT9iFq+zzU1rn2YtTKN6G5ggzV3ZT19i2P93vd6173ute9/ur6NmDhG8lV5SM7GP5EH54mka04ah2st0otVT+Q27ApozYkKsrEqBVmjao8qEOwutM5gtGXvE3zvHekfFZHmZjozZqkWo0moB/++1Q9+ET0gTkFUuh4txwtSXARggOndp+tCWtRYXbropQf0Obb76nPxvPeBeKidCtsS7HbPqpTT7OpolKzjkyOY9rv3kTQXoGGDOhNqK6z4yw9VgNkw9E1XLtXtfvtr2ohOypjOPqApVZrAj3dqYaljpVlvbGtC3Vdju1BjIkYA6fzmdNp0mA+V9mTfL135nBjDflubTkG1cT3O8DoTfUfu8h353lLf2t49zRqEaWHCfrz8zRxPj/w9PSBDx8+Mp9OhOBtqt/pwxKmjXIlf9FAG5Un2DVlmyzN6HDEFDmfzzAqtXikN2gwnL6GMQZbKSqud46IHsex23yODmYuoDapah/ld9vY1jjNE+fTie+//56HizqRMSo0j3j3dl3sOR+7fa1pV3btRE7RggGFUjaur684p9S44LSJbk2n0dHAxJuo/o1WJXaf7ffcbmcKmEg42NbOMj/kLdFbxfRKh/JejQ9y1pC6KGGXMZuGRLcutRaCdELKpABzTszzRBPH1nZ6o6PUwRi6BWt1AxHmaWKaJk6nwDzN1NK43hYwPyOZ54OaVa15xunrHkPenJIOq1XRfw+nwL4UnPfcrsmoUh5bQbIuKyE0YtKNUlDxht70Ehgx4Z2K95s9a46tzeCgbsloSrkcCnph0ItntI1eV5brKzlPXC4POpSIkRBheAHR60sQvB8QAuKdOkrhCS7hgwaYx6BmEV2iCrrHoPaog4Bdv9XHmx6tdTRt5173ute97nWvn6++TbztC8mBOA17quGJJp4yHMtN7U+X62ZNv7kIsVM3lGe+UzhCiPqJ6Q59JmAWmcCU1bbTOUfrjRACl4cHclKR7NcvXym1Gld812IY5SIkUpjIMXDOgeBXvFvNnSfh/AOOhHjoZVBG57oOWh2MwRu9yu2hYs7cXbSBlSEMUUHyTuXyfp8St3dNpHLRdyDlnTpcYdSOvTkOXiknm+lQYvRMU8Q5TQMX2WBkggi9vTL6Sh+vKn4VRx+Z2oWX21VtT0OC5YUxoNRGayrCrmu1sC4IOZNT4sOHD5znzOWU8evXAwzEmMgmWBYZav/bx9GwlVLY1vUQnZayvtMLKKVlD3Pbj83+tU948zRxOp358PEj333/Ax8/fmKaJtuKLDTbCtSi1Ky2b31ENDPC+4NetW+2ppTIWc9fzomnD094PyhrZL1dD52HM5etdV2tSaucXdCAvKb5FdIr9Kr5CzGRcsaHhDjHaLqJ+uG773h8fOBXf/u3RA/BdWQUc80KiLk61aIC/Fp2MLY7onlSCEzTxDRltVdeVp6/PhN9IGSHR1jXbtum7XAhen9c921ZEBPMRWeTfDvaQzdp6nHgMHx8bDY07Z4DWIidPxVEe3JOB7DYj90YnVoWeg9kJ6TguJwmHh8ecaHQSCYg9iyLbp9GrzAaMXhyOnM5nXl4uOC8Ghr89OMXasOoWzsdEJZ1o7WOC+kQfZdWGKOp7sCA5/4w0WO+MkZFeiOlxOk0k4Lmo9yWhRAcKW8WJhkBzY8hOMhJQwMFA3Hvrl9BByYyGF03dq2uR/AhCOvV8/IlkqeZnGc+ffcDDw9PPDw8krJa0rbaLFTPaGGi+inQcxNiPvJDIKA5PZkh0LqoC9cYFkrZ37alY1DrHVjc6173ute9fv76toC87Q/gHiA+IH6i9ZnaCtuyUcqinuxgUzcP0vE4nM+HSDSE+Da9t1+d9ya0FuZpVgtZs4oF4eny0WxEozlL6bR8n7QGo3XESQWcMU3MKWqWg3sFcUif2WpGJDCcP8THpQR6d8yp4/L/u723DbVtPe+6f/fLGGPOudbe+7ykbZLGp218WmsFqyakNkUKUiMoFj+IBUWqKBhEjIpKpGIsCKJiwUqrUGr9kmqxWh8/VG0+aEyrKK0piJGn0kQxT02b5Lzstdacc4z75Xo+XNc95lz77JOcffY5+yQ59x/WOWvPteaY423OdV/X9X8JSlWKGhSmNrYTzmkwmC6qE8dZMwS0qDkJcFehblvdNFL2+n9doA3DyDSMxKii2GHwxvtWVyLnTOQrGZFC8BBI1FypKVOLIx1HW1xlpl1kM0X8cGF5CgOHmytNG/YBv72Lc55soYLFiprgHa4s5CVzlJmQZ1xJRuExLYyJZ5PlWDSaBQiDZSq4WlYHIS2o9Bz45gjhHaVUW+xHo1hFnn7mWS4uLnj22bew3U6IZK6v7p/cbySv9A4VbLMWFGN0K10tNE2GTUVSmnnxxefwlm+y2W6V1jMMzMcjx7jnePCQMtW69ktKhPmAOK+i8/nAfLghF8H7qFSVWnEBtludnO02W97yzNNsp4lx8EhR17Oak+lLFtK8rNOdUrJpUbIlnutELDjHGAMxeNKiBcPlxSUxKH1sSceVLnhzs6eUxH6/p9nBHi2QrtokKoSACzrNiXFASqUKeg284AOrOxdWaHnvbWrlQZrmRdO5K3rPSOvqO4yu5MlFrz8IhJEYIhe7HZXAzVxZkoYm1hCUvOZHYtDMj3lJ4G7IZWa7UavXy8uRIe4IcWK/n00TlLlz5wLBc32YkVxNRJ+ptRU59t6zYyoslKS10uHqRXsbOoYhEmNgd7FT84VxopY2PVC9zRgjwxARBqbLLTmZjuioWRPLMpu73UIuapfbJmy1FgTVobRMjPl4YF5mps1zbLY77t59imnacHF5SfB62wbvGMpJM+Sdp1ablrpw1nxpn3lqi1vFs1CoPlCjJwR9r8VYkDo90sd7R0dHR0fH4+LRCotygKoaAFygVm/UkebiYgnI/mQupu49AU8w2oo/c4NyRgdyqzNMHAbr7p+41OM4aXcWXdRmc2wBnX74ENQyddDCQgW8geAt3VbUrjTnQMVrMvbZYsRT8aGapaXHB6cc+zESwogQWRaldWXJK3e9lJN7zVpQVKU24EQXPzb50BRlo+vEwDRGFZN6GIeIc6q/iN6yHkqlFqU/UOvKa89LNsqDoxRHLbZop2rRJOBWPUIGKg7lb+NNJCrQ3HaWZdbXyY6NzypmF9Na5EzA3HpSolo3e3U2AhPXnmgigP0bfLTjxxsNTkPcxnFiHEcudxfstjs2mwlv2QpNiFxX68xT4ea9h4DJaE7CXn9S1eo0yNLB1QZYM05CjAzTtNJoclaxc7GFoAhmg6tTp5RU4F6K4KPgwoCMSlvbbCYutjvuXF5yudsyxIiUebWA1XRno+mUvF6LuiYoa8HsrOhaCyPR7AonwjgMjEO0g1XaXc4ZH2bT7VQTwQstU6UaFQ3nCPZebKJwtQJ2J7HwmTlCe6e5tdC3xW0Ido2bgYH9q5kUOL8GI5aSCV478UOMDLGY9XKxYEHL4fCeaBoKEKULSsKh9LU2KIzBWTp3JTnN0MGpsNqJW1PtmyD/1rHomM0mi6JTiyoaqBdPoX/giFHT40MIRKP9BSdUj+q/QjQapI5zfLLPIalUqbjUUty9OUWdCb1t2lFFkONBJwnmuLWkBM7sg4NjiOpE51whBm04VNFMHNrt7cC75pAmNvAVgrMsICdIaKJ+zzh0u9mOjo6OjieLRyosRA74+BZqGBEZSEshJw3n8iEyuLD+4RMRQmyOMM0xya088CpVvfOdI9fCGEwUbVyAkjObacNmswGjEO1vbjRoDaUrYR3rOAz4GJimDSGGdTuCkOYdpSj/WOqsf4iDTQdcJcY9jkwga8BVHHBxqwsFH7WAkrbgURedzTRRh4E8FktRbkE8qiHISbvS86x8ceciF5d3GYeR7TQyRkcMCaqKxIubNG3YeQ7LSYBO9Uj1HA/HdRJwPOwppTBOukCKm4kXXrxinhPX+9moGtXoWxra5nzE+6gOPjESh4lq7k03958nBtiMnrc+e4ftEMCb09BSwLqwaZ5pJKZilKh5mVkWpVnlklbKzLIYXx/lu6tGJlg3+4LLy0sudjsuLy/VdrgqlaqJceHkbASqs/E+IM7j4ulxmgNTaXQgdUDKRc+/M1vgabMxKtOGECfGzQX4kWWe8eGGIiqIFQsp2x8O7A83XN9csyyJEAe228Juu2M3Dnz1M09zsdtyZ7ellkSejyzHPSUtlLSQ82wd7EzJiwYhSsE7IYZIDDol0fM1MoyDUXc04wXnNT29ZbNYQejtWs7zzPX1DcdlRnJh2k6r5WwWwZWCz5rSPcRI2AY7py2oz616hGF1NXM6vUEITl8rRrWEVoFwImd9v8Z2/lEnLi0q9T3tpbIZAykHRmUXIdFZKrUaECi1R5iXmXme2d/M3H8x233i2WyuV3cu7x0xou5z4thuA27WNPdpcAwhUmZNF7EjsyLNrXqhlAqVDCWTU15pfSEODOPEnbt32G43fNVbnrXiRiglITmDCMGoYzJ4oh+IQyBGzxIjHkdaFiAQzGxAKW7t3XJqkJRcKHnPfDia+cOvMk4bzV7ZXdg9qs5oIQR2OzV02G62bMaBGD0xVBDVAA2DFjLRz2tzJ3jVadTgGOT02h0dHR0dHU8Cj1RYpJKU6iTq8OQDhCEyiHKBa6lok9OcmaxL7s6mD42+1GhQoEFiugiyYB/RKYVqHfyaldD48TFG60yeqFTO+PbV+Ne1aHI2peKl4CjUOuOc8dCtmV7EI3UgycAye1gcFQvrchWYEXG6Teuet4lJo2CoErsdlieEQQsFCba28NpFRM9N0TEPULRgqQWc7tS5ZiR4t3bm1QEINrvNyoFPuXKYF65vFpYlMR/ndYLSzotSw4QYdbEo1WgaZukZo4puY9SpSgv+0j2txovPK3WmcbqrOS5JC2LS0dC6YG6i5PUa+8AQI9vtlu1mwzRN6g4mQlq02y/rvbH+By3MzrU53gTBrFOnapONJpQWgKx8ec0O8Guh42x6tNlqEeq8TgNSzhyOBw6HI5///Oe5vromLTPOeaZx5N7dOzz7zNPcu/cUl9uJIUBJR0peLHBvoZaElIITk057xzio+LqE0Oqgs8mO0rjavaTXzI5cTI/jlNI0jhPBB4ZhIqXENG252e+VEiiagyEiZq9biLES1gW/aSOwDBbvVqevU4Ae5lrmQMr6HJ26OJ2Q5Yx3UM7e02LdeZ28gPPCOAQ2U+RyN3JDsVDHbBS5TE7N/GBRO+IiVIK9t4RyyMyLUMoB7yO4uIbLDRE8Aw7VRJVScZe7VWeibCihZBWWN6vopnVaP4fapKVWRAr7m8h8PDKOqi3a7i50qmEamSqCxysFLESC2zGNG8ZhUuvheSbnxcLrHpi23RLXS7urAZ0y5VJZ5mQhh5UQNIl7SYkQI+Nww2YaNbNlCDb9gc2g9DFqC4gUcGojLM4jj5k83NHR0dHR8ah4pMIil0K2Bam4gA8QZTBBpzf+/cn5qWU74Jo7jnZT1zTqppEIugiNMZIWdVqapo258DhSNrErJz54W2CuFpmNzlKEWrP1yitBMs4VvMs4OeBEqQaqJPfqsiKenIMlBwvJ6BnawdWt11qsc+5PDjHm6oOFxjW+QvBqBRrdSfCq+6lb08V662I7nFTECeIKxyWZMFQXaDE4pVU5iNbhFjz7/UKaZ25uFvb7bGneZ+FiYB1pEBfU+cjWHrXtP45xnBiCYxxauF+72m3yVGybxRKAC0tOD4ixnf2uWwsLtTc95SYM48g0jmy3W6aNCpVXEXDOtwqi8y4vNMcnj9i110IBiigtp9KyIQrNBUmqifnNmjaUinfRUuMHnWIMen3wM5WZ4wsvcnV1zXOff47jfCTnzGa7YzONPPPUPd7yzFPcvfcUu82A1ExejpRk1rM5I0Z1al1zb1as1e4ZvfytvBQTcJ8tOs8KDmdFU3O7GuMAw8h2pwXHZrNlGEcOhyPzktbCYp4Xo2HJWoDWYsWWiXmd00yXlnzecHKHalQfURcltLDLOenEzwqL869gzmnOw+gcZQxcbEdyms3xbKE6ISXW907JBSXxBZzTNOo5JUjaCFiSFr7TFJkmFbmPgyNGxzjoeyDnwmaM6yR0SVBy5XhMq6OUlnmNrtSYUlU1S6aBAHjhhRfZbrdcXFzy1rfqFBGM3lYLw7jRyZ8LTMMG8ExTfoA6l08WtZZb00IZpRZrnFiFyWkCuKQFXwKlVJ3aOk89Njc5nZLGGJkmDSgdYmA7BoJTw4DozAtDhTsQggrlOzo6Ojo6niAeLSBv+39R/VeRi4Y15WzhUWhnvHUFz1131q5+24bRn4BVhxEHTYjNpawBaSGEW8913hFcWBdguRTUulRoq+E1jdh5Aro4oezJZaHWBY/aaBbZMh+EOQmHeT514U3LoAtvVi584zRrMdLC8DT1WTUNstrkOjwuKp0hThM+Kh3He92/i+0l3lWcVA7H5yglsZh7FDhGXxBfEUkMcbLU8EkXS0umJKWsJBlxY2QTNkyXd3WBLGLzDc5sSNviRDnbpUBNedU8jMNEjI5h9HZc1YT2Vlh4jwQVhYZiNpmmsSi1Gmf/5PyUc7ZJhfL0x1GzOS52F4zDwG7bCka0gLulp5BbXWWxhXibOKgNrS2Ry0kj06ZZ2DRAOfBiVLAAFWouUB0hJqOEKT1oGCbrpCfmeWGedUGqWp2Rt771rTz91NN87dvfzuXFltELy/5qnVK0SUsxsa6Y5ajDsjPQgu28GBU7uFrLOnXzwRNiJA7DmXbCdBQ5qwYJGCcVSN+7e4+L3SW5FM1umI9c39wwDCPH44Fa61nqtVtF8H7UYifY9TocDuv0op3DSmW/v1mpbY1S5aSwhMB8sALPeXYXF7gh4lwwOlIgpczN9Z7P/tpnee75F9kfjiwpUWvWYqJZBgdPGAZCHPFRHaBqdetiek6ZccwasucrENlsNkxxIG427DZbSikcjjNtvX5DYpGMUFexuY+jTg9r0Amb6S+wTJO1OAoDVTzHpfC5z99ns9nwzNNPcXGxY5wGbvZ71ZSJUjVFIBX9v7NjIQRcGFadEJa94h3U4nF2DgTRiYIUnHdUiSbanojDRBwC292F5bycpojgWJbM4Tjz3LJAFSxrdP0sdTYhrXl+lI/3jo6Ojo6Ox8YjFRZFLkglkItQJN+yYGz87WYRixUWuMY2PglWnVFdvDnMtEVOxZyE/In+YrOI1hRfX68tMC1mTWkvJm50ZJzoREDqgtSkXWUcFFhKYl4qSxKOc7JwOw1yawt0USGIHflJHSrWUfdebjGoXWuFrl+CjypAHSbVngTvGGJR5x0CIQ96Vpo7D5XgqgptnQo6Q4wgkWJC9CKWtYBDvCM4j3NRRadNy2JC6NpE5bYqUUqKmLWoij8300D0znj/xRa7p2u+Jknbgv3cLvacQ36bGqMLz2EY2Gw2bLdbdlsVOQ/DcJp22HSlTSva1ENtUN2tfag2xSlOF6WtsGiTiobVbaztmdGjanUWoNiuqKz35ikDY2QaJ82+QIulu3fvcnl5aRMWzbgoybj01WgvVliIfY/UdfKj+3O6d6s8cE9Zp73UiqtKX7Ibyn5FUF8AnbyUUgnmyDSOnkEGnNdpn/OOlBZiVB2GBS6gKdaeMHomE84PMVLOcl/Wa627pG5fVpBimoEFpW6VoCnlMUQ9/tBEwrYdcw7LZge9pGVNZi+2EAfw1RMEfBV8xSYKAe+0EK9V1qDJNjWcRo8MEe/8auAwBA9RjyOXinNCLhPe6TQ052jXKxsNsK5UKG/nh9WxTilr85IAx3FetOAbdXriqrDkuh5vMAqmsiEdvgrFtfvaAgW9Xszi9POnNk2QXV9X9TMLhOw8IbUwyoyXE/UPNJxQpLlf2Tlv1EAglXbjCGXpdrMdHR0dHU8Wj1RY3CxbnKT1D6NSV2yRMQxmLeq1y9omAMY1PhH39Tk+nCYbwaxlazXSgtcunJzWrTSf/uZI1BaEjXITgmcKgMzUcqCma+sICrUoReowF1Iu7I8vrJ1HRN1hVlq/awvSW1UCmHuVa1a6XslW+rg/hf1Z5gWu4P3MMIxcbCJDqARfCf6IMFFkxzTdI8ZCdveRMuMk4YM6D/k4Mm4uCHHD4YDSoULVYkkqhRYUB0NUe95hnOxcBJ3miOAoLS6ElNuCL6+Una3RekqaSWkmS2Y6c54pWSkrKZ9csLBz3xZVbbGs1+JkqXvv3j0uLi64uLhgisM6xcp50ZC4ktf7qGk11Fa1FRcqxhUp1CJkW5irC5FOTNb9gXVCEkNca6Na9UKLZKVO1WJi8UUpbKYDmaaJt7zlLdy5c4e7d+/auXU8++yzTKO6VqXjzGyhZqDS9Gp0l5SM516bzkNsG3rfaPGqRZ1fC0ClA5aSkaMGtp1rhkDPQV2dpEDmahMhbKqiSfRlt+Xicsdms+FwOPD8888bPWdGLFX74uJCHdOGSBXNPghGSTwVeKfAPIDjMVNCoJbMgtK7Wu4G40TJaQ00dI1wJcK69A7Ye10IzvQJIYB14Qs6qaTM4FWfNA6e4PVzRUTUWtcmb/PxwDSNXOx2pKQapafujYyTZ5qUKpXKxL17E8uSWFLmOM8UE3GnlJXSmVoYpBWbjfYoKkKfl8SSC3Op3DnM3Lm85O1v+xpEhOdfeN5qEccwbrUQa1NOQW23zb1uHCLVgjOXNFuBpfdHLQ6rGtV+OBfSkjkej7jgub651hDJcWOFo94T0xDZTCr4Dj7gQ1RKmcDNcdZU7pxIuYu3Ozo6OjqeLB6psJiXmSinDIpgdIj2B6/Waguo25x3nKx0iyGEVauAdXOdax3ozDCEla9NPRM7On3MO4cL6qnvnV/tW4N3RHdESqLUAwldOJQCx7lwmAuHY6LkypKyMUss+M48Lp0dS/St2HA6oVgXRNEW7i2LQ6lV3nvL3wDvC668CHIgMjMQmMqoHWMGNtNT4DeI25CiUmkW0ir6xE8InpQiqYC4TC5u7W4O0WuA3nr6GlWmICVRXcWJp5SEdzBGv+Z8BO/UZjVnDTmshePNDcvxwH5/hasz0Tu+6qlLmmrkPHxLjDYSYlxpPSklu+6VYRiU9nRxh2marNM/aaGDZWiYHkETystKhVLotGNd5GEzEWkaGq00BdMBlKKLUmwyIJBYqD6vAn+dCNmi3Mt6j+LDKWHdKHyT8dgHo+Z559hME96HdXrlXVvwq/B3sUWk2hZrUYAlM9daKVKgnAT/UvW94LxWzrmWVTzexO5NqNwK6Lp2p/X8lKKOZ+NYqFXtlR0qFL/Y7RiiToWOhyOHQ9AEaitEmm6plpOGI4aAhLAWGI161q5x9SByEuLbCVgX5rVqIVul4ES1RM47hmnUxOlxw5KyvqPsXhSBoy2yy6oBUfev4AMeZ+nRqjHS+1cX8KFUUsnEQd/3y7zgXCR6xzgGRgLiRkodKUU0JLJopkZKxcTSWemcZVlparVa4nox7ZNzhOiJTpCSWI5HhiHw9FN3VMsl2LSwZfG06VqTUchKkTscDyxJM03iMKkWY0mIFPs6n0Cc5fvg1ymMUjk9KRdKObA/HFjNIlox6r1NSTeMQy8sOjo6OjqeLB5NvJ1MCL3mPWjn1Vt7uYql+JpIsRalhLR8iBjjWlisIkOgWhdYqrrOhNZi50TPwLU8DFF9gC1QYogM0amXuxRqTQhKg6pSycUzL4X9fuF4XNbFU8vPUBq6N5coE4SHuAb6iQoIiIN24Yc4MsRBO+poJzg4z263JXohupmaMpIP+HJDcI5YB5yf8LJhCAMuRPBKjypZedjFFbIDXCCXqGLyKpSatbPuNPMiRgvNGjTMDwfHm2ycfKV6IF751c7hwmAUMeXxS6lQF6So2Pi4v2K/v+bqxedxFKYx8sydHeIdHmdp2w9kSTjl7LeutKwZJupedHFxofSn3W4NWsPoTrWqPXELdGtcdHdeSqzUq1MXWf8nKkKndfKty47oolWrCKpvae8ts+EkjnZVJ2o+2iyq+pXGNwxRJz+mA3Jwmn5IPTHEnDdBuzqQlapTIXGnoru9H9p7IaczHQjg7Xy2adDJTessQ2KlnZ3RzIxCuD4qYu8vXZBvpokYIrko5e58Wnju0nUuFm+UxNUIof1MxCaOtp02TWoXwKh20jQytSJep5Q4tZvebLcMo7AprPbHWrgIYb8nZzUEaMWlwwQDYgng7bo70NwRWTvyQ9TJzZISwUOJgWEa9HMieoSAEMilUoowp0JKQi7CPGsWTSqL2tGWQkoHqBkpmWifUT54ohecZHI6EMOGu3cvSalSslBFP5fiEK2wAHyw8+T1/shZC6A8sOQBHwadaCyJUpOZOZQTRVDa3a5npBahBoGqE8psk9tcWgbHsGZzbLYbzfQZB+JJl9/xJoKjF5RwRk9+FThRrusX/+WvYFQ5/X19LLh+T76Z8GgBebWe0m6dI6VGE2qOQn4NtwvO4Sx0btqMxGGLDwOUQqmZlBMxqtAwHxJSbxi4zyBbXB04ZqXu5KyC5OgcLo7KLw+eKYwEV4lugXIf6pFlvk+2pN7DEeYFXnjxhnlOLMuyLqTatEGZ52fhViHiw0AYNhaYFRnGkTBELu5cWmjZqLasVJzs8RS8ZHL6NJKvIX2O4KsWPsNbwV9Qwj3COCE+cEiCLHtEnmOZb8gpczwUskQKI/iIiKPmgojSa4IXYvCMo4a8acc7qjNSEZi21n1NWlDlRFqOOBFK8muHvJbMfNjzwnOf5eb6mvk4sxz35OXIMu+ZxsBut2H/zD3GYWAIQSkfXgW/TQ9AKYhTB6hg/PopDmy3O+7evce9e/eYJuXyt48T4VSIICpcXebjuqhqbjmOE01Ig908dS060GwBOBUDbXpiwvFqha5D1sKiCdm9V3H0EJQ6plambp2mVLMWLZaKraKKeuZEpYVQMo1FE+F649rrcdqUxyhS5ez7WpWC41edEVZ8nOhlxWhLTUytxdq42sRqMrZSrhYTZLfrEOz9FDxcXu4Yx8hmO3Fzc7OmR9uaf+2op7SsmpR2LtskQ9POIw7RNHYfIHjCOJoOygrMXKhLRtDC9fr+FTeHmflwo7kh48B2syMOkWEcNN28wm5/oZSj5USLwwpGqSebWHwwHUPlOB+5ubnms5+d2QyajXGx27DsNpQqjIs2M5acdMroA3HU+38aAtMwAAFnSd6VwLwk5mXm85/7tNpT18xuGokhMI5RF/9yRNJMYSLvk1G11B7a4QllgKJC62GzNVokDF6QQbjYTpQyUOqWY4IlFxW157ymi6t+ZzanMbV0dgI4Ox9OENEGjQ8WLKp3zqqHSUVIJbE/aqZKx5sPwUWCe7Q/7V9pcDjGMJ0ak68Czx1f4P+7+rXXcK++/PCW3VN89e6rX/Xzg/P6+cibu8vh3Jvr+B/p06dap9lZMSGNQmSLKu9YaUxK0zn55Dchdi55dQGqNWkHtxxwzHhfUAcUT8pCMbel4Bqn35k1rSOEhJesIXP5QCkz8zEzp6LUp6NSH+bZ7B+LCjhaF8M5Jfs4s2INwQLkwkAcok1CRsZpIg6RcVCnJ5x28p0VT16K6k7qEZEFpVddKKUp3EPcFnETVKeWreWI1ITIzHxMajWZPeIC4sPardfCx4TcoincadEuuQsJ57KJWytLUgF6Ksbzl0pZjiZOhTjoAiunI4f9NdcvfJ79fk9aEjnNaqeZFrLz5MWRlhnvBO8GlZOg9JaqYwLAuufulIcwjBumjQYaagJ6S0/XRfupQ665AfVssd0mHtg06iTgbhqLetbxcOv3D1qlVtfSwE+SHjjZueq2TwVH26TYcWmRU81W1X4H07x4b1OWSkqz9pOFVZtTjJIlIuaAVFeK2K3/l6L7aQXQrYW87XT7dzvGUjwiJviPWpS4NhU5F6+7c02QFjvTpH9cc1LuftvHUjMtvNBJW8SfGnzrBOaMl6bv6VPv6rzD3s6hoCL5UnShPA7TmjTvo8f7igseXx3T4PFE1VOVaFMYMx6ohVJF98EHctapQ1r7+HbuTLOl2oZKKUcdeDjwFYoT8Bpw553DO8uOcclKwkIMCQmJzVAhgBdv6dcCmKYpK21qSULlmhCjUuRaTkrOWjg7j0vWWND4bE0eN2Nd7yoER6Ai40z0kKNjDAO5BFJwpmkp5FxON7MHqHrdnNrM+vYZRptvmFFG67aWN3e39c2KW5TFNyucNmHa3O9RIQipZvKbPAsm1fxYxZmc//HoeNPg0QLysqYCt0UXPuCDLpCiUV7GwYoJ18ga+lderTiFw3EGKiEIeZkRyVDuE0Jl8EJ1I1km5lxXUXBQ6jAxqFNS9BB4kVoPLMt90lzIqXJ1v3I4Fq73C0taVKSZT8Frbb99ozyZ8LEl8MZxskCqiRgHJkv+jjGCt0XjkhFfNLXbZVw9QLmBdNCMu/AWGL4Kwl0WtoAgkmC+RsqR5XilE4nqmRehigc/Kv/dBRCjBQXBORV2ppRYlkpOQik3RsV2Kgo1WkiplVSLnnERyMoXrzmz2UyMQ2Q+XnG4us/zv/Z/tItvb3qRiqdQEyQP+5srkJ2dd6/X2XtNGTdtAbYPw6D87t3FJdvdTgXCcVCHKhpPv9hXo3BkckmktBi9x6ZIxrE/QVbKE2DiXpswGSXI2wfWSRNw0uTo2lsdpXSxrpOIYM/TdXgF48FXC2Jc5tnW5o5ah3VvslmHlpLtXh91L2tdxe1NtLsKoaXphJQmmM/E5qM5ZDVdA5wKlBONS1gWdXoSEUZLlY+ti29Fy6o7se+9OUW1/JBSNTwvWVJ8ygmVTpsmAmfvE91X70A8tDGTd97MGaypcH7OUUc3Z9e65Ky6n1IYvGMzBDabQJVCKjNj2BJCYIrCGDy7OgFx1ZeUspDzwnFZ1LjXR47HmbRA9o5hjPhJJykheDabDd4HUoL98QYcXNy91MMTXeTXoNqdGAreZ4SDmUsUfK0MFO5usn1KDKrxr5V5ziypsmThmBMiGff8zDBomvvFdiIECL7iY8V7WIpnCANjGPAiOKlUDkDGk5mAERhipYYNlYm6vUPOnuOyUde9WllyOWVkpCOlFpa84EpYpzHeKRXzpLEIpwLz1a8HOjo6Ojo6XhUebWJRCsSK82Edw4vlWbDSYiK+uNUusoW7VdFpRAj6hzDikDojsiChUt3AXDfUJSIOBu/suWLhbZXBz0hWXvKSlZ89z5X9obAk1VHkVIyzffLKx8LhmkPPaToRGTc7YhwYpw0umHg7jit9SBf1CzlnE4973OiorjDnGyh7qDPCRK2epUzUfUa4j7grkAKSoCYNVcvHdeLjjD7mcDY1gLTM64KnhZwtS1uwphOP23nTH7SOfL3lskQ1nrtzlJI4esf+/udJx4Olkje6kTe7VEcuC3Kc+exnP8tut+XiYsedy7uWpXG7+7Py8y3jYHdxoeLn0NKAi2WCqAah/V8XSSpizUW7QdFcjlrhdxK+tk6815yAEDQHBbcupovpDlofW7kjtNiHU3/7bDqQc9IphGmEsI5y6yrXmtcE+OYaJKYZavQk3fJpGjHPmh6ercBYufJtpOFMM3CWih5iwFfdh/a8ZvOqmiTVRJTqySUTzCotxsg0jKvIW/UrIO5UWCBCNW1NGNQ1LfgLlpRIS+J4nJFquS5Z7Zhrc+YyTYPD6XQwBoagNLKmAxFRrn/KBfEJlxa8VMR55uOR4+HIfn8DfmAuMNeBGANx3FFRncW0GxEiEMlZbViXnCk1UIiI12mJJzINEH0kBrWjjlEF41Irx/mgi/EiJLtn9vOJUnZzcyQEzxAd22lgGLQhgpVE3o51GO8gtRVohSyVq+VALp5SHRm9N2uBOavebH9MNl0UQtTCd7PbMgyOcfQ61XTC4B3eF53Y2PWRWhBXgD3INUPwDJsBkQHBU8ShoZORJW11Qike5wecHywtRXD1dL+Vto8iHLsrVEdHR0fHE8YjUqFOIl7QP8sigpTW+VY3mEZ90sLiVGQIEIdJtQ3iUWd+oXpPZaCypUoAccRGp/LCEDSfwlNI5UBJM8s8k3LlMAs3Vlgc5nLKEsBozk5Td8GvblRxGIjDSBgGps2WEAfGcVIygYlYGyeudZ/zshCCJ0an3UwpLMeDFkd1xvmRUiPHFIxmklRrQcHVtIpbc03WoWe16MXporWWymy6A+Xl22JpFhU81wVpzBTX0oQdLR2sllOCtViWQo2eWpUitb+5oeZkkxUNsYsxqhsOQilqPXpzs19F1eOgVJrmNLQKqu16t/M5jiPDMOhEQezeaPkg1uVXKt2ps685J5jI9nyE33z+9fWU/uNNsK8TDbdScNrv6/MFd9KCtH11gJwKi1oypZydP7sPEe26Y/teihZ4bX+aeDoE10QKOoWx41MhcroldjfezS0R+fqazuGCft/ctbSA9XZu9XlVKiFURALZa6ETnGdYheKn92IrqHWiUKjVE6QJ/uN6UmKMlKwL/IzdX1kX5d7Lal6wUt0GTSxfBd72WZBrgexwacHViuCZZ3t/pkWtXokUEuPGsw0RX1BZdcSsdYcTha8Winid5LlgkyzV22gjXu+xcRwQs8y9udlrNz8VcrH7YilauIVActmmqo681eldjCbstEmo954xbqyYEaN6Foqonkw8OKeaI0RzR6rpGdq9oBRKB8GTrRCJRg3NwREIBJsOOVQQ7uQILiOyxznPECYzlIhUH4x25snZqduUG8EPOD+Sm2A+L6v+J5u5VKmeOry5eL0dHR0dHW88Hi0gLydyHjTMyzlKo0St7k5COTTqR10LjRgj07RlHEYGP+iCCSHEu4hcqlWn8zgX2ASvtorlqB1JCiRHrpXjkjguiTln9nsxC8lFqRelrgsC3ae40p6sWtDgrRCYpg3Tbse02TAMWlC0hX2tom4rTmkR0Ryt7ty5JDjlSC/HPcu88OILR0pdKFKQelw539ohDlzstsTgieNEWg5kKeRlXhfXy6L2tzlVcq3KKV/zHNzKofaouBxLZ27uOq4Jz1EdhljXuXH5NcAtMR9MR1EE50bctGOzu0McdJGVlgPz4YphXND8i0XP87KQi7AZJ+5cXq75CzllpRSFoNOecdKFp1moFinrQrGaa1Ctmh+wLPM6rWhThVSyaXPEOsaVnHXC5bwnBnUtElGqkOpt4jrZWKc0WCHpTvQpLSaDCl9tWlFrUjtemxo0nro+pzJ4qFknFznXM1nHSYdQETLmmrEWAfY+KSeXJ7HwtdoKF077VmpdHXxSSohNI1ry/Ck5W2xxH5UG5PxL9Q1nRYUObhySszpOlYwPgWHcEJxjGge2W6Xp7Q8BUKtU5T+1d2/F4cgVAhGCRzw2BVEqmtTKMWVkSeTra3IVcq28+OI1OReWLGQWfBqYaiYkuD4Wat4jNeFcVfewiwvGYYfyDU2L4B0+TGCTtbTfk5JqOHCeKoFh2jGGwOW9ZylpIS0zn/vcc5ZvES2x23O42a+FnxQtun2jbo6ROEWGIXLn3j3NiBgCwR8JQ2bzFLiwA7/lWAaqOARPXjI5Febjcb3Ht7stwzgSx9E+U4QsHldhWZqTnRX1gEjEu61+lqaEoxK8MA2q8dCZhFIindNgxGE0S2t/pOaDZvW4IyUtFMm4IYLf4ManmHeXj/Lx3tHR0dHR8dh4ZCpUzsnC4E6+6UrX0MVkpWqQnHOrtWQM0RZeRtWoSlVxJp6w9SilCsuSlEaz7M2qs1jgnpCXRMqFVCqLaTCqqNbDoRSrtshq8Lh1H50P2vF2ane5pGxaZKN1tYUaRssxFbpfuf3aza5YAJiLOC/4Vd+q3zdKhHPqMJSXzPFwTVpmjoejOQVpWFcLTasnjeyJJuWxosg6t2sH15lLTMFZKjIiSjczzrtUDYZz1ehbMTKMdyyAbMu0vWAYRsboKHlLvtiyLHtyOnJ99TylJM25OB4RC3Vr3v4lF3X7mjarjXBLmBbEpkY6PWri7FSS6kGWRbUauVGMWIuCVoiu7l3NecgW5KuGwjrI51iD5WjC71OqdBNtF1HqS64VWfS1QrFcFbsHWgCfTlo066Btv90XHmxKpNe8XTe91wMl+JX2JGfUFOw6tYmEVKE6S172p7TyRjdqAwncbatY4ynRKp4m3F1Tx507cwyyQsaZhsKHtUjJ+ZRroT/Xo3FVjL2l+5zNEtfXlqruLHfG3gu1MC9K02sC5jAEpiEgISKuktINuXhS8njUVjoOgVIqx2OilgUssyEX1bLImWA/LdpA0AlWIBdhyFhiuhYkOMduuyGPhVqdun55FTorbXJWmqS936pownay/Rc3sBkH8jhoWKWrRJvAuQBpSYjzhDiu17zR1laKpVkdryw4shb9JM6tdFt5qsVU0xYFxFUKOrVV3bmZDnid72YZtbqrUPKAVAdZzR2kRoIbcIx44i3qYkdHR0dHx5PAo00saqHO89oJHAbNSEAc2ehQ3kF0AyGMjMNkqdwBHwQo5NTEtRCDClEHHyipUFLmcDyypJn55v7a2c+2+C4pt9BjGFpCccT5cc0loHVyz1bqzUWnLcwraAGTdCrRFsetI6+DjxN1SnMFdDIgVbSP6HQSUavntMrVjncYgtJlqKRl5nB9xc39F1nmI4fDYgXRKUfAGV1MhbHqUuWsM+t8xMVhFZwrTUcQlL7UuuC6JLQirCqVhyoEcWrzG0Y2FxeM05aL3dOM47gKaNU6N3N9/QL7myv2Ny/oFCUlDgenacVG0XHo1ECfP5zuA6+Lplqr2WVmyuqOpILtUjLz8Wjpx5V4Jl6uVbRwibb4MjGqc55aBLy6g1VponZ3i1Kk956JWB06KeB2NoOK3dWWdpHTRCNaQdB+t1G2ck6nAD5OhZ+Tivigdqzerz+PXvUMzT0tpbPC2MQxgtKQ9HXsZhabAoSoQuCW/dFeL7iVPteWq1pwGhNKsA5/sMLi9vu2Ca1rLTYZckzTSKmFOOgEzGaMtFC8drRVHLiEOKeZHqvI3Ox0Relbh8NxvXen3R1CHInjhlQqqQiH4wtr0Xux3RDGkXHcUcSxPybmZFqjUjnOmlAtlFNRuRoc2X0RZmJc9B6eIuPgmQbH5eUFICxzwoVB3z+XW3LJ7Pd75kU1WMuiTZJlPlAWnUodZ8dmHNmOI8EXQoDNZsAP4EPmZp9wPrDdBftc0qlbC/5suqxGQ9TrsIDLeGacC3gXWUtU0+toEN9g51unMVI94uNq3W38QlJxFIFSoBSn1s9lAMuCGfxAkECoI7l2u9mOjo6OjieLR5tY5Iw38YNS+ytFmhZCedDj2OxGI94sEnPRzrkDpBzU4WlwSBrIyXF/v5CWhWVZWJYjJWeW42ENUVvnAVX/IGvagdnERo+P6o6iCx/t1tpSTHdc5My7n5W7j3AK+3POUrWD5QYEc40yJxzvkRoQBipZudkbUWpFFaqFVTmvqddpKexvbsgpkeaZnIVKJESxPJBy6nRbZoP3AT+MuBAIccL7uC48EDvfJZuwu3XSOYme3UAM2ikOl21a5JhGFVhP06RTm6jdUeccMWruQfCw1EyulWHc4nBEH1QwDBwOh1UjEONgdpttId868AVqYZmP5JSYjwfVHVhORamVlFOThOB8PXHoXbMHbNfNmS7Cna3q7boKK3XoXPPjQJ1yvCdEE6f7k1WuAKlU5iWt26xSNMTQOaZh0MKzVpZZ78fU8hWsiHAqHrLE97pOCc5pScV0Fms2A1pw6+StkMwFyqH5LyGG1ZLXOUtOHsa1YCqiqd3NXljauShVF984ApptMJhr1HrP2GvaG0gpiB42k1IAt9ut5lzkzPX11arRyUVtVqc2QTHxvJIYT8VgFbWFzilbkR9YiiMME+NGqVGlVOaDvp9zyRyv7H22u8bHAR9HhrDBO8tnsWlTKa3w9jZ1am9n1RYcDipAv18z3hmFysTYMXq2F3fZ7i4Zx5ExejbPPKW6paoBeSkX5uNMyjOlFu3+i3Bc9pSyAJVwdWWOcSPirHg7zkzjxMVO32+OgnMzw6huYcN4YZTKwrLcUMqBeXkBRFikasEtVelgvjnUDdY4aIGNnjC4tblB1aZDjDuc3+DDhBPNBBEH+KgNDwm46gkV8tl7o6Ojo6Oj40ngkQqLU9YAnPjmughUznLURWfr/GNuNdW6cwgiR13wBE9eCrXC/mrPkhLLMlNKUspVWiiWyHsiRLhWxSjVoQmXkZWS4L06CLnGIWncJluY3eryO/vDbfQRb8VRy33w5+5X1nWuRdbOq/cnMbMulrXbmxZ1PjocDurp31KXaVoPo4LZUXnL0fBhIE6ThvSNky60nF+LilqKFnUScDVbIdN0JB7nA0McGEJknAIhQIyV7ThYsTfpuXOeUtX7X7xDbH+qQBEQ07t4H42CVM8sVKvmecBaXGhQWtEsiJyU6pQS8zyTjOdf7Ryq05NlIYhdA8uJWK+ZfZ3nWeh9JKtIueVCNEH1ei1teKT7r+LjU8aCdu5TLjaBwrJS1MGq3be11tWqWFOx1WXLB7VczbZodzbtgkZ1Or1P1iTq9TDbsTTamobbEbTjfa6PoP3+SplythBVpydQgfWaVyBqaSrtfrDi6vb0Tm7RBFUfo+J9nOo95mUxRyu93qsVru17o2fByeGqrKJ4AVfxPlD9kVi06VBsG2k5mrg9k+1eTbUShpEYJ8qQ8T4S4qRFPCeK13pi9Ga0YknINhnLaUGq2isjSrOapoE2y6t1YhhGdjEQxgh4QoSUMsEHlqTZGSVpeGfJqqCRainiviKuEIYIlkIefGAYAmP0QKHKojk7PhD8sL5vgk9aQMisJglFE7xrSZQyr85w3ut+KSXKphjZrZMPqVp0xOGSGLeEuAW2CJEq0TJn9Mubu12bLnV0dHR0dDwpPFo8p3OEGBnGaXUVasXEdrdTjjGRXGZSmlnKovxhibg6Q80Mw0EXtnlgf7OwLJn9/rimE58oBKCi5BOL/cRrlrUYWBcbpWhCr9MiprQCoNZ1YVWKBZOFsFp1tq8QoxYUMVgQnOY8DEG72Mf5QFkSeVkoZUYoOFeMR68FVEqZq6sr5vlATomSbYqBO01JfMC5SMThjVoS40QcRuIwMW0v11yNtUNu9CddHOv0pZ0n1bIox9vFQHQD0Ue2/gUCNwT5VaWrOU8Od6nsyDxNzYFS4LAcKHkmLwee/+yvcri5Yn84Qil4wULcOHWP0W76ZrPl8vKScZzw3lPMbrWkhXk+kFLicDxwXBaO8wJxBCuSPJqTMEw6ZRqHAdZFYOtMt4LOUapYWntWUXfTKxhCGLQQHCIxjurOE1XXE2xiUUpBDgeyTSziOKrL1ziRjgeOx+Oa09CyI47zzHGZtRB1mkzdKErVqEDe/n0evKf3qE0x7H1zCrxz6663lO1V42AFb1vkQzv3ZZ0WMQaiA5046eRJr40K3mO0cMWzSZazaYmUQvYOMsRpIniIMeiEZlnY7/fmatXOMSzLfFa0h/X7tahx57qBCmT2xxkxswHs/m8FzenaOub5RrcZPMO0xYeROF4wThfEcbNKEbJYcYPaMqvFb6aUhdoS3I1qp8WFcHMDL754X4v2GJg2W5555i08/exXcXF5l4vdlpwWAolx8NTq1RlaZzqUDFUSJc/gMs5VQtTPu83WMY03DPFACLpP6bhnkapTDf+8LfAHYoAhBtx4QSkzxc2IHMhOqFkgWwAfxT7x1o4DCYeGSarFtk6JIMRBLbEHbUIM047dxbNsp6e5vHgHMYzEuOW4vLnTlzs6Ojo6njwe6S/PNG3YXVzeEm/HOBrfXjukSzqS8kwqiYothOtCYMaT1xCvnDLHg4qxS84mPLZCwsEa3LV+D+DWTty5HqLZluaccaWunHHgVqe2Lfx0SmE09bWTXHURlZzlJWgAWkraJT8ejmvwl1RdaMRg1KoqHJeFtKjzkso7dLKi8NZJd2uxoBkSg04ZhtHsb0eGYcLHSIjjKgp1jQq0dsVPx+OdY5xUhDtMI04qXirRBJ51DiypkrOwrwdyTSxlz5K1WKhZxfJSE4frF5kPN6Q0W+hWYJgmyypZlErjVCMwmMVs6/DXnCl5Ic2zTSoSc1pULCsQjNalwvWq7kKmbZk2G+3Gi5AW1Y4ILcjQrXoUsbAzJ6e06hVGx7udOns26/KeIQ5Kl3Pe8h4EF7xSVlJifzwQTFOTS1mLXWyaUUVw1RaBcvs12zRChejuZM3s2kxPO/AnS1wsy0KPv4mzzyl8ORfaNE7kJGqXqoJq5wPRigelSam24/w9Ery3wr6oVgXVSoU27TmfyMmJMnbSapz2Z50fOM/JsKqF5TWaIusX9fx+bQ/avx1IqRSpOPHgI76iYZGDTimHaUI3I2BUMR+CNhqqrOc1hAFv90u1wgJYJzchRLwLdn5mSj0S44DUBeQGJzOewrRR3VCIRnmsmbQczFq2qtuZW+z9MlKLTgowChvO9EokqJlSj0jJaLmQ8b7iB2zC4KAGOy9mxtBGn7RJaF0LuDZ41TyVTAFyzTjvyHmPlJl0vE9d9gxxyzTeRTiFO3Z0dHR0dDwJPFJhsd1tubi4XMPJnPeM48g0bchZOeXH5WYV+7poVKV6xIUF7wu1jCxLZX+TLPhNBc9C+z+s/2lJv02lagvE1j3Vjq45TbmWM+BXy9G2Im9roODjKWcDgErLq6i1kI2ypI5HEzF4y5IoHA7H1enIuUxwgNFsShGOx6TdXvXtXHnSLU26aSV8ow/5gA+DLt7HkRBHQhz0/6FRo6xDvIp37UismGr86+1uwzAMbHcbpBypeU+dhZocqURu9pnjofDCfGDJmcN8XKlNZA3RC85z3L9ASjM5zbhhhDAwbLbmDrVHTCAa48AQrbDwbg2dy2lhXmbmZSHlpHa6ll/ibUGfzZHHWThbtOlHKzhy1sV7W0Q6rwF+6jTlzixYT5OBtvi95Ypk56qKprY7NCU8WhZDLgWqTuByLixJu90xBE2qXnM3Tq5Q6wK3ZiTo4jiY45nei3X9/bpqJty6NndNI6Ib1GlTjGw2G7ZbTaOWigXlFUSOa6FwKipNq9HE9O5E9ypFdSyunMLhWvEi1UTtpo8oValaze1KF62yntrVUaud17W4OGlXnPNQxa5xbU881XOcfSu07EKa4Km2RbQI5EQVhwtKPXNOdSDgyLWQk1IkXQiITTCUBKcp1+LDev5bg8J7LSimMRKHgAYaLtRyIMYNtcyIXJkDFOw2I9MUmTY7fKiIFI7HqFqbZeE4qzaCOq/FhVT9HNLPo6YwT3bvJDIzjsoQPcFHvB+oMuJ9o4ZqkVltclFLWT8LS8t5cZhD1jkts5DzEUFITkjzFTEMpMNnGYcdF9tnmaZnH/5B3tHR0dHR8TrhkQqLOIzMWROAffAMcUSkcnNzzcFsVFNJKqx2nkjG+UKIGamOkgP3b45qX5nymiLtz7QTp65mW43Z463Lb4t0df3Rr2bz2DrculiSdbG0/qZT1XBe0smVqS1Aawv382w2E8us3vBtIpGSdY+B7WazioLVZagwjhtinKijdvdLyeTluHYbW8dedQkqcnUmNhcXVOSaZuQ4owWUTjJCHNhsJy02hkgMQWk/IayFhQ+qk7jZ76l5oaTE9RUss+PqKrAcEnnJpGWv3O5lJi9JNSwl67n1ZtlJWN28qHC4vm/6jrzqUnKtpKIWpM45agianwG0UZDgSFkfE7xadaJc9uA1VXocJ8ZhJEalLgm6GEw5M8+LPrdoWrfeEQ7Xjtud8j50YadFZNNV6GWt5sbkrAhwVmSgN57T1O/mprQkdSHDOeakOR4pJVoKdikFcZVqi2dfveVi+FUnoQtbaEnoNet92KY7p6mZZ7fdagEbIzFEvY/HuBbLoFO4XItN1szKtFYN1LPf02DCsDqbtfPSJmNxCLaQD2YTW1bRtb4HT0XQmp/SitgzbmKbALT/O+eJYzS6WnM0guLQez1EzTixQjR4T/QeEbXxPS5Hyzp34NWsIAwb4jCYXkENFbZxy/5mr0Xr4aB0J5yZGygtsorqIXzI+j71js1mwzSN3LmzYxgi0yYyjJ5h9Hif2V1MXFz+X5Rkk4WqC/i5zESnx7i7fIoLq5VKWZSStxxUW4Injhc2QVo4HF4gpyNSDgAE1EwghMgwjNZIGBlHUf+GWnEW3qm5KVqMFAuWnNNMzomUF0LVgquGQnOMG+M9o5mdirrKwJKFdPMC3MyP8vHe0dHR0dHx2Hg0Em6jffgWKKad1ZzzmhwsgDMHmeihSTBLFkquNqXQ7rTivHAwigSnRZE+3gSOyit3/vb0IjaP/9U2pqVPW64GTYqhhUs5EwEr41+/D4SVuoIJjZuD0QoVSqimYkksKZFSNuoTqxAbB7UO1m3nNMFox0SzQdX9cbZQ1hRzB8UoNQgxK4/fBw8hrB1lrIBqSc85J0pK5LywPxbmuXKYIWfjkLsB5536/lcP5JOw2AozMa5+S3YQsyk9U7hQLGF6nmfWYDibEJ1nm7Tjq9qGX3UEnL3mmrdgdC9vEyUfLGl4HWG59bi1w36iBek0oW3bftoKRwSxY3Ht2lrX3tnECzk9p9rEoCWDr+ngtt+2hDPakGapWCVx0lS0bZnIvInWdUF+cvppLmS+TePO6EctO6WKJyBni3mzjhVZU7HPv06co9OXw4F3OPGaUYHaumY7zlvuWs6tk4XzqcU6xWgXyi5JjErnww2UqlaoqRYtOmJku71gHCc242Q0M69anJpx82SaBg9+0AllGNZappZMBiKWT2PTEhe0wNT0b30H43Rq4lzEeRiiZ9pMbDYTu4uNCq3HiA8O00evRg0xqPlAzSberhkogO6v98GmoAWKUEI83Zt27zgHwTskBGBYBzcxaKEWfTRxtTprBX9WWDiPeHPakmD3XoFG4/KBXJO6wpHtc0QDAtWOuWm9ZNXsFBFqOb7kI7yjo6Ojo+P1xKMVFuLYbLaI6ILk/v1rW4RVW1R7xmE8dSmDUNLMzfXCzc2e+TizWDCaikDdqnFoxQPe3VroehdsARWIJgBW20frek+jippr5XBzrR2+ldt/qgqU426LWFv4+qYVcR7nldYSmq2mrQyKCbODD2YrqwvvkhPPPfdZ7f7WYiJmdWVyzhPDABELEWuOP9rZdaLhdmIhYGKLc+3En5x3snUvHY44RNqRVDkVE6oNWSw3QSlIKS0sxyO1FHR9EglTZByeJjg9vmU5kPLMYX+lWSNxwFMpeeH+c7+CE8E3bYETStLFZJXC8bDHO3h++xyOp/C7HdG2KzUSYtT99g7JhZyrRoM19ypsEex0gZ5LXqlDbaEbQ6BYIGGj/KjWoFqH+PQcRO1fgw+rAYCIFpTeewiyLog1PFCvnwDL8WCuQnW95tlSmnPOK/1JKXuc7hucLjS9x6Pd6fVtYl8VjJ9fVtG3P7t346C2vY2y1+4lbIrgnCO251nBFeOw0oTUtazlrTgrgFpwZF5ToptjVdunChwOR+Zl4bA/rNa9rfBqWgpHSzI/uRNpg7zqPSuOzWZinHbs7jxLKpCycH24RnUpjntPP812u2O70UUw6DQo18KYi03f4snxi8rxOLPMM1dXV/r2dR5v1MBpe0dF9zHogroWSl4YomMcHNudZxwDu8uRYdQMHXWs8isdr03eKo4iDh83eOeYdpoKXtKBnK5ABM8OZKTUyP37N6t5gJ5bx+xmnFML32kc2G1Gggs46kkvcUsjcTqP3t4Lzjnc0D5zNmtTZGeUuJQT8zKTS2aZZ7wfCHHD7vJpvPcsywGpiVoziH7u1VpJc59YdHR0dHQ8WTxSYeG9OtAsWR1YihTECT6wLnK0w6eJscuSSEsy/UGxcDPdlnOnQLNgWgMfooXvtY5tPC16z2hQznnEg0hhWeZ1cTgfDpaWfBakh00LvC72Vdsw6pDEFvTBipYYNQsghsaX0WJDxCnFI5dVLL469ZgFa8nZ0nHl5E0fBg3KG04Thra4ck0HgqOaBmBN8V1/rs9pwVun15Uzyot2jWOIDGFQwXEt5E2yLmxqwwSlNxlCmhhLZrO91BAu71nma/LsmKYtYwyMMXI83JCW2Zry2pnPObMsMzc311zudkzjSBwHO+ZgnWkVeAuOKnldtDcBduvUtw58236bEpSiCdkq9s+tMbxa3dbakq9RUXZU+1TgFPB2Nn3C/h+8Z7PZkKxbvxjdKee8Lv5Vq6BJ3WrlqpMH325eTovEtt+agyCraFsLprJOLJrwu7qzffN+Xej6oNcgZ7M5LUo/q+v9BdmOu001HEpjGwdNYPZ233rRzJUmtm8akGJd7eYClY3mtTWHr/1+T0q6D20q2KY94HDmvhXiwDhMjOPEdntJHCelPW02EALLZ7VQC94xDhPTuGGz3SGignTJGbV8VVewuIbDVXI+Euz9750W5SLZ0rI942CZNTEy7bY4B8fDfYIvDKGy3TpiFJCZnBy5WEPBPj84o0s6K4a9TRxyqFAXdYeqGxyQ0kBOMynf57C/0slm3CAEBNNXNPoYopIyV/D2+damGe0e0EJDbx61I652nu0zwIdG4sR5RxwHwhAJ46QC/V3Fh0gI9t4qBZGMutRVnNMiHu9x0l2hOjo6OjqeLB7pL09z9VmWTC4nkWXjtXvnlcfuwLlKWhbmeWGe87oQb91Cz/kf96h/LOOAt4Av5eHbgjkOKw2jiaALlbRUlvnI/uaKZZ5J81GFm+3PdNNlhEDA/P3DoHkOXnAevK/EEJnGDSEqtUTM+lFERcegyeJStWAq1ahcNjFA1A5VUMvKwID3Tdjr18KgLRxWQWyjC50Jks91IudV2CpGrienmJXnHs1RSJoNqE4WGo1JpwXYMQm5FkKeVABeq81yhBsKTirTZsN2mthNEyXpAhTceqyqkUkcDwddoJbCxHii2/iA94UYI6UKoVajQWlh0VKim3C+OSm1/astCHAtLLTYqKWaG9FJzKwhf3HVF+jirtmt2kVsOgKbwIzjQJxV7JutqMhFsy3EHHrWBHNp358C8hopbC2G7LyoBW1dtT2ltumBmBDX4S1vgrN72Vlhp1a0Z8ffJjkm5NVzUWi6kjZhaIWh3qBWCBjVsAVG2vht3d+U1FY2eDUq2O12DMOoBXQVy0Cw57Wi2A+4GBmnLZvNjs12yzRu1JAgBDa7LcM48fwLL1BXLY06no3jxiiQrNuMQZsGMQ4rtbJWpcFpYWEFJ0ZJE4cb9B4IwbPbbQnB4TjiWAi+MI4QQqXUpKGUguWyWIr9SkU8abaCK3iE6tt7ATya+VKyZ55vOB7vM88vrtNN3IiK0B1wupcRze/AtXv8dF+fQgvrWqS3tPNqpg/eW+HoNMVdKW6RIE1XZsVQCOz3V9SqhYWTAlS8M02ZdyA9x6Kjo6Oj48nikQqL/fWLiFPxLqAuO85pV55ZrU/jiNRMWuDm5kVLMD4gcvLGdwJrShwecQF8xEV1IYpDZBpH7Xx7zxAtqK0K8zwzHxdevP8CyzJzPOyVylIKSFmLCWeL+mGcGAZNzh3HrWkAQP/jGONEjIHtGLGGpoaXGeXpeJxVR1KqLvq9Jy0LOS1WFA3aYVyLgYi4gLgIYVx53GrJq2LWFibYFhC6EK1r+rKeJM2naA5XzfVHf9QEyu7sixOHBYdj0PWbP3WcT5SMk66AWpGSqGVmiImyDNzdaQAfRs0pJYO0IDoAXSgf55mb/Y3mBEwjbf3qgyeKuh3hlLp1OB5NFxAZhsBuu7EOuzNX0ubkgx2ER1IFJ9q5ltbBD3gPw3BK/h58wDlB8qL5CQ7t/PqWY6LHnKty6EPQe6pKNYpJ0XTwudq5QycaLUyvJYTbIjHa1EkQFhOWN/pJqSbMtQKsWAFeq2gY3TgyTrrwawtEf1YgDMEjJZNKWqdhKReji2kAndLf0jrRo9b1vbLZTLigdMQYIw63htmtehIRQmxWxrq4FpwW3YOHMK2OXB5zlvKeijYBtnfusdnu2Gx2pzyYcaAEzYCZtjukCtFcv3CO/UFpkzklNpPmjWw2O03tzpX9/oBDuLy4xOGRCsdDgopNGrXYmIaB4EDSwny8JkbHOLbsjsq8XOuEp6hZQKXpfpxmyJjpQ9OwDDEwDI7YPhbwQESGDT5oWn0YIuO4YflsUstpXyEq1a+2QqFWxqi5NNRq0656Cgttxa5zxKAC/eI0qb7a9KLRplrAZ8nZiroC6IdT8KOFiCY8hcELfhr056LuaVUquapBRkdHR0dHx5PEIxUWOS+2yNBFVvSV4CxxQjJSIM26KE+5sswHUlLa1Ln4d6VyuEb7cWtnP8agncwQVO9gtrKafbGwLIvRV5Y1Hdg7jwRwNKekgI8DPgTGaaM5EeNokwpbZlsBMg0DMXiG0RaniArNzY1I9Qs2JXAeL966hGKcbe0I+3ViEy34TruxIYbV5jQEdXpa7XLbQMI3ETEr1cmanqYJMO78g9kNZ1hF2K6dzzNq1VnX9NRut4VMLUioSA6wGcm+ICmS50RaFu2Qo8474k6sItDpyWIJ29ncwoK7TevypgFYqR/epkkP5CdYK3cVTbdFcNNQrIWQUUtiaHaqbn1uFRXxroVWdZakos+rpsVp22jlQVvwnXQrsnb0cyl4sYlCCCZsPk2YGlUpl7y6LDmnC3VxniqOWoSUs/7+cBIhqy79JDRv1/30vdGgqlEPixY5+l5IyqiKlo7dbJSdX9PkT+e33nJ/EjuGVqwtObEsWQXJNFOEuKZCO6fHIgLFdAlFHLlC8F4pQU4zGZzpGYRKLpXD8cCSF73PzL734nKHdxND9LhiE7bSkr7V+WwzTeSthlSGoKJ1550KsB24IGy3mn6NE5syFU2nr3YNGgPO/uNOmnObDOrnT7vFivEnhYoLBfFepx1BNQ3ejyfRtk2SxM4jAtk5gpzsrbVerjTLAN++cycKZvtdbzvXtC2rNS82FXWYNiud3heW2dHE/7hgVs5YofXwz4qOjo6Ojo7XC49WWKQj0zQxxUAIjhBMLFg0fEsTg5PSnxYNvzs14E/UD9ypU+rN9STGyDgOjEMrLpTiEnywqcfC1dUVyzKv9BVQfYEfxpUqpa5MgThMZtW61deIWqC0rxgc0TumDYToiNGRE+RUSfPC4Thzsz+QkomJz/j7LatgHDcM40gcBqbNRo8hDoR4ytrwZit7zu0G7XCLaU6au4/DqQ1vqaScyGZ/upi4Vo/3tqVoc4FxzuFCJPpgtp6nAsO3qYVUXBPyWqcVZ4v9AKOfWKJwuHqR43zk+v7z1JpwThiGwWwwdfGlidzC8XjE4bhzeYdxHJgGywoRE8i3iZZNOloWhoa6lZWuIbXQhOht+7Wq3kCLoKYtELyHcVKKGgIlp7UTX9dF9WnRVjkVa9UWuGtBsRa0kcPhsDqc5ZxXd6hVrG2uZOJOWpliCdyHeV6DETfbUe2Cg4YQlpSZl4yIYxqbkFgXvqUKLjcDBAsbNOvUpqkpKa37pFbLOr3yToX/IpXgB6ZpWic5OsE6heY1V6VSlJ6VRbVS+8OR+1fX3L++4WjuZj7YBNHskyqWNC6a+n5YEsXNLBXGjSfiGcVrY91VCpo9kY5HXryeNWhuPuqC3nuefuZp7ty5wzPPPL3qTJpY3rnKZrNlt9txsduqqUJ0q/NRHDzO68L/6acvGMfRGgAHjsdATsOaP6LFXtHBaHuvaNnLOGxOAYw5a2p2Fb1XKLgqxKEyjls8kRC3DMMlcKRK0rDBWjBeFBUNifTOMU2TTiJNpwNm/uC86UeUVhqio1SHLw51wl5Jcg9MGatVC0Be7D4W6w00SuBJc+W9IzpHiWdCs46Ojo6OjieARyosdrstwxBwFBANuMs5k5ZkkwkV9rakWjgVFN43vcFACJEYBsZRF//TNOEHdXDZDN5cXzwpLcwpczgsJhjWrqpznnGc1gIleL+6SAUrLMZpIgz6Gg0iBeeEMRQ8Ce8KQ9yAi9QSmY9Hljlxs1f6kxMVoq/i7NY5F0zbMDCMG8bNxJ3LOwxDYDNGnCvWMTRedxgpRcPa1gAvVJdRSyEtsy74SiGnxqVvnXYAhzMnnLZAWgXu55kW0ROoBJfwdQE0LM1Zd5/qdbFT1P1JasaRwNImlqXqOc5YoFrAOc0K0F71iXbVePvLsiAiPPf882w3Exe7LcG0AurQ5BjHke0mk3ImZ9MdWJFiERNanNaqi0ugOtbpxWlhfFuD0QrVKmYNW1reg2MgrpMxaUp+d/b8ptuopwV8E3I3l632u23q0/4/1IHoWIsMdX9iFQnjA85H1QS4BVywh5UaFExf0uyZa60MOa/Cap28mJbDqGWheKpNf5wPbCYVxwdzRguDGg+YPJhcVC+DODUdQPe3VpskzAs3+xs++9nPsz8cmVM6icmDhU/qG1hTy4dBPyycns8lKYVsKaqlmWpinCaGqI5ItSSOhytELLncqQvWZrNBqme/n/n/fuUzWpwPqvcJwbPb7lTn1K57rsxLXSdDYcm4kHHhiA+JadwwjFtccGx2F9S6tXv8lMCda16tgUWrP2oRc/9KOJeAYkW0flZFF4DM8XAgeqVK3XnqKUpeOB72pJI17NHeo2L0Jz3a+TQ5tEYKIhSBbFMJddCL6xTJnxkBgLrFhXHQaQ72fnMn167mLKyvfpq04R0iHm/XvaOjo6Oj40niFRUWbVHnvf7Rq2WmGod3SUltZOeTzeG6HvaO1c7VOfs7L2j3uYlW7deaxiA7RAqlFpbjwuFw5HCcydkEsNIKFtMPODlL4/ar05QPTUguq5AWSbbozyBHhIT4SpVIqpXDfs/xuHDY75Xy0ES8Uil5Xik5jiZQ9kbxqOYCIwRXcE6FlLZqBBxSWtDesp6nbHkQh5sbUlIHrZwbVQUrTCwAMEYYB6Ca449adRLUAUi8t4In4yRT8w1IAdLKg0eiLqhSIaWDFRZZ1z3OsSxOi4tZC7maK9X2uy3ARcxqVNPrWESPI4ZIzgkQhqATkrSo/mAtkKywyrZ4d7h1+lKzFlnLMutMyYl1108TorU7XIt1ZrXQymm2wuRU/NQaG5fsBGf0rZxZ0rIWxG0a0IqKlsnSpjNVBMERQsI5t1LwJGD6jGr6F+VXafq6/rvUE/2oSnMU03M2L8u6+PS+WcuKhaIldTgrrfuu74mKIwDrAA7WtO0lZ5wr+KIFhjML2tP5i6RSSbWyP+y5vr7h+RdfIOdKMUqSQ3lBpWaceNW4cMrQaPsnOWmRm2dCHMyJbQfjSE5H0nxgPtys79UYIgwR75ydZw0g3O4uuNhdkNKs7ydRbZNUNWYopZBrWQtt5474sODjEWpmnjZcXDyt+Rdep1iqBjpRgZQtV1a3OKnCctR7fJ73YIWFkPBOHZfG4smxIFlsiuoZoxbaiKdk1dBUmo7nRLNLDvsMOjNt0A9Sy6fRqUIZ1JSCs6JZqplTO4jIWmw044B2H5/f1tqksEJ91U+pA9f55/frifYaV/evXvfX6uj4YljqwvX++lXf+4JwvD4yv8lDJo/1yM1m/6qfH5znyl8xhuU13KsvP3gXiH541c93QHTDa05vbZ/Xr/XfiFdUWFxd6Yt/9P/5R6/pi3d0fDnh+Td6Bzo6XgWurq64d+/e6/4aAP/313/T6/o6HR0dHR2vLV7rvxFOXkGpUmvlV37lV7hz504XBHZ0dHR8GUBEuLq64u1vf/s6GXy90P9GdHR0dHx54fX6G/GKCouOjo6Ojo6Ojo6Ojo4vhJ6g1NHR0dHR0dHR0dHx2OiFRUdHR0dHR0dHR0fHY6MXFh0dHR0dHR0dHR0dj41eWHR0dHR0dHR0dHR0PDZ6YdHR0dHR0dHR0dHR8djohUVHR0dHR0dHR0dHx2PjFQXkdXR0dHR0fCEcj0eW5c2dsNvR0dHx5YRxHNlsNq/pNnth0dHR0dHxWDgej3zDN3w9n/nMr77Ru9LR0dHR8Qrx1re+lU996lOvaXHRC4uOjo6OjsfCsix85jO/yi/9z/+Xu3fvAJrqCpq/euu/Ig88espoPc9rXX8qL90GD3mOvOz2Hni1h2xPbj0uto+n37j1s7PjAIGX+Zm8om0/8DoPPv8h20Zuv06lvmT77fv6cq8rQr11HPXW6z74PP3+9Dr1Jds73/d62nY7qlvPqw/dh9uvWantcM/259a2pN7e1we2d3rN+pLtt1NpW7Dt3T6mKg/u9+nxKqdrU9dzePYzu566DR76M3lgvx983oPn5cHXuX2ML/2Zfm+Pr7fOaX/On6/n/PY+cfb9g885/d7Ze/Yhj59vb72CL9keD7zWS7fdrsv5z+oXew6395UHtldPu/2S98bL7sP5NTw/9rN7ynbugX+fff/g42f7t+5U+/f54w/7PXnI81/udXnI46nymZ/9DMuy9MKio6Ojo+NLD3fv3uHu3bvAwxf17fHbj57+6D1KIXD7OWcL21e5vS+4+H/IAr9t++V+9ooLiy/0/C+2bXmlhUX9goWFPHZhcf59fWDbr7aweNhxvDaFxa1F+KssLF5uUf/SwuLlf3Z+7K+msPhCP9Pvv3iRcP74g4vol3vOqyosHvl1v3Bh8YqKEXn4cxDBrd+vP+RsIw/87PT4S5/XzjGn33vcwkIe8vgr/r1X+LqcPfc1Rhdvd3R0dHR0dHR0dHQ8Nnph0dHR0dHR0dHR0dHx2OiFRUdHR0dHR0dHR0fHY6MXFh0dHR0dHR0dHR0dj41eWHR0dHR0dHR0dHR0PDZ6YdHR0dHR0dHR0dHR8djohUVHR0dHR0dHR0dHx2OjFxYdHR0dHR0dHR0dHY+NXlh0dHR0dHR0dHR0dDw2emHR0dHR0dHR0dHR0fHY6IVFR0dHR0dHR0dHR8djoxcWHR0dHR0dHR0dHR2PjV5YdHR0dHR0dHR0dHQ8Nnph0dHR0dHR0dHR0dHx2Ihv9A50dHR0dHxl4P79q/V7EQFEvz//r8gDj8oDz+H2T+Wl2+Ahz5GX3d4Dr/aQ7cmtx8X28fQbt352dhwg8DI/k1e07Qde58HnP2TbyO3XqdSXbL99X1/udUWot46j3nrdB5+n359ep75ke+f7Xk/bbkd163n1oftw+zUrtR3u2f7c2pbU2/v6wPZOr1lfsv12Km0Ltr3bx1Tlwf0+PV7ldG3qeg7PfmbXU7fBQ38mD+z3g8978Lw8+Dq3j/GlP9Pv7fH11jntz/nz9Zzf3ifOvn/wOaffO3vPPuTx8+2tV/Al2+OB13rpttt1Of9Z/WLP4fa+8uD2Trv9kvfGy+7Dyx372T1lO/fAv8++f/Dxs/1bb/r27/PHH/Z78pDnv9zr8pDH89njryF6YdHR0dHR8VgQES4vL/mmr/8Nb/SudHR0dHS8QlxeXt5q6LwW6IVFR0dHR8djwTnH9fU1//t//2/u3r37Ru/OlyTu37/Pr/t1v66foy+Afo6+OPo5emXo5+mLo50j59xrut1eWHR0dHR0vCa4e/du/yP+RdDP0RdHP0dfHP0cvTL08/Tk0cXbHR0dHR0dHR0dHR2PjV5YdHR0dHR0dHR0dHQ8Nnph0dHR0dHxWJimiQ996ENM0/RG78qXLPo5+uLo5+iLo5+jV4Z+nr44Xq9z5OS1loN3dHR0dHR0dHR0dLzp0CcWHR0dHR0dHR0dHR2PjV5YdHR0dHR0dHR0dHQ8Nnph0dHR0dHR0dHR0dHx2OiFRUdHR0dHR0dHR0fHY6MXFh0dHR0dXxA//MM/zDd8wzew2Wx417vexcc+9rEv+Psf/ehHede73sVms+Gd73wn/+Af/IMntKdvLB7lPP3zf/7P+V2/63fxVV/1Vdy9e5dv//Zv59/8m3/zBPf2jcGj3ksNP/dzP0eMkd/yW37L67uDXwJ41HM0zzPf933fx9d93dcxTRO//tf/ev7hP/yHT2hv3xg86jn68Ic/zLd+67ey2+1429vexh/7Y3+Mz3/+809ob588/v2///f8vt/3+3j729+Oc45/8S/+xRd9zmv2uS0dHR0dHR0vg3/yT/6JDMMgP/IjPyKf+MQn5AMf+IBcXFzI//pf/+uhv//JT35SdrudfOADH5BPfOIT8iM/8iMyDIP85E/+5BPe8yeLRz1PH/jAB+Rv/s2/Kf/5P/9n+aVf+iX5y3/5L8swDPJf/st/ecJ7/uTwqOeo4YUXXpB3vvOd8r73vU++9Vu/9cns7BuEV3OOvvu7v1u+7du+TT7ykY/Ipz71KflP/+k/yc/93M89wb1+snjUc/Sxj31MvPfyd//u35VPfvKT8rGPfUx+02/6TfL7f//vf8J7/uTw0z/90/J93/d98s/+2T8TQH7qp37qC/7+a/m53QuLjo6Ojo6XxXve8x55//vff+uxb/7mb5YPfvCDD/39v/SX/pJ88zd/863H/uSf/JPy23/7b3/d9vFLAY96nh6Gb/mWb5Hv//7vf6137UsGr/Ycfc/3fI/8lb/yV+RDH/rQV3xh8ajn6F/9q38l9+7dk89//vNPYve+JPCo5+hv/+2/Le985ztvPfaDP/iD8o53vON128cvJbySwuK1/NzuVKiOjo6OjodiWRZ+4Rd+gfe97323Hn/f+97Hf/gP/+Ghz/mP//E/vuT3f/fv/t38/M//PCml121f30i8mvP0IGqtXF1d8cwzz7weu/iG49Weox/7sR/jl3/5l/nQhz70eu/iG45Xc47+5b/8l7z73e/mb/2tv8XXfu3X8k3f9E38hb/wFzgcDk9il584Xs05eu9738unP/1pfvqnfxoR4Vd/9Vf5yZ/8SX7v7/29T2KXvyzwWn5ux9dyxzo6Ojo6vnLwuc99jlIKX/M1X3Pr8a/5mq/hM5/5zEOf85nPfOahv59z5nOf+xxve9vbXrf9faPwas7Tg/g7f+fvcHNzwx/8g3/w9djFNxyv5hz9j//xP/jgBz/Ixz72MWL8yl+uvJpz9MlPfpKf/dmfZbPZ8FM/9VN87nOf40/9qT/Fc8899xWps3g15+i9730vH/7wh/me7/kejscjOWe++7u/m7/39/7ek9jlLwu8lp/bfWLR0dHR0fEF4Zy79W8RecljX+z3H/b4Vxoe9Tw1/ON//I/5a3/tr/ETP/ETfPVXf/XrtXtfEnil56iUwh/6Q3+I7//+7+ebvumbntTufUngUe6jWivOOT784Q/znve8h9/ze34PP/ADP8A/+kf/6Ct2agGPdo4+8YlP8Gf+zJ/hr/7Vv8ov/MIv8K//9b/mU5/6FO9///ufxK5+2eC1+tz+ym8BdHR0dHS8KrzlLW8hhPCSTuCv/dqvvaS71fDWt771ob8fY+TZZ5993fb1jcSrOU8NP/ETP8Ef/+N/nH/6T/8p3/Vd3/V67uYbikc9R1dXV/z8z/88H//4x/nTf/pPA7qIFhFijPzMz/wMv/N3/s4nsu9PCq/mPnrb297G137t13Lv3r31sd/4G38jIsKnP/1pvvEbv/F13ecnjVdzjv7G3/gbfMd3fAd/8S/+RQB+82/+zVxcXPA7fsfv4K//9b/+FTlFfVS8lp/bfWLR0dHR0fFQjOPIu971Lj7ykY/cevwjH/kI733vex/6nG//9m9/ye//zM/8DO9+97sZhuF129c3Eq/mPIFOKv7oH/2j/PiP//hXPN/7Uc/R3bt3+a//9b/yi7/4i+vX+9//fn7Db/gN/OIv/iLf9m3f9qR2/Ynh1dxH3/Ed38Gv/MqvcH19vT72S7/0S3jvecc73vG67u8bgVdzjvb7Pd7fXu6GEIBTV/7Njtf0c/uR5d4dHR0dHW8aNGvHH/3RH5VPfOIT8mf/7J+Vi4sL+Z//83+KiMgHP/hB+SN/5I+sv99sC//cn/tz8olPfEJ+9Ed/9E1lN/tKz9OP//iPS4xRfuiHfkj+z//5P+vXCy+88EYdwuuORz1HD+LN4Ar1qOfo6upK3vGOd8gf+AN/QP7bf/tv8tGPflS+8Ru/Uf7En/gTb9QhvO541HP0Yz/2YxJjlB/+4R+WX/7lX5af/dmflXe/+93ynve85406hNcdV1dX8vGPf1w+/vGPCyA/8AM/IB//+MdXS97X83O7FxYdHR0dHV8QP/RDPyRf93VfJ+M4ym/7bb9NPvrRj64/+97v/V75zu/8zlu//+/+3b+T3/pbf6uM4yhf//VfL3//7//9J7zHbwwe5Tx953d+pwAv+fre7/3eJ7/jTxCPei+d481QWIg8+jn67//9v8t3fdd3yXa7lXe84x3y5//8n5f9fv+E9/rJ4lHP0Q/+4A/Kt3zLt8h2u5W3ve1t8of/8B+WT3/60094r58c/u2//bdf8PPl9fzcdiJ9DtTR0dHR0dHR0dHR8XjoGouOjo6Ojo6Ojo6OjsdGLyw6Ojo6Ojo6Ojo6Oh4bvbDo6Ojo6Ojo6Ojo6Hhs9MKio6Ojo6Ojo6Ojo+Ox0QuLjo6Ojo6Ojo6Ojo7HRi8sOjo6Ojo6Ojo6OjoeG72w6Ojo6Ojo6Ojo6Oh4bPTCoqOjo6Ojo6Ojo6PjsdELi46Ojo6Ojo6Ojo6Ox0YvLDo6Ojo6Ojo6Ojo6Hhu9sOjo6Ojo6Ojo6OjoeGz0wqKjo6Ojo6Ojo6Oj47Hx/wMe+4lt0VV+awAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "occlusion = Occlusion(model)\n", + "\n", + "attributions_occ = occlusion.attribute(input,\n", + " strides = (3, 50, 50),\n", + " target=pred_label_idx,\n", + " sliding_window_shapes=(3,60, 60),\n", + " baselines=0)\n", + "\n", + "_ = viz.visualize_image_attr_multiple(np.transpose(attributions_occ.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " [\"original_image\", \"heat_map\"],\n", + " [\"all\", \"positive\"],\n", + " show_colorbar=True,\n", + " outlier_perc=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " ## 4- LRP-based attribution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's try a different approach called Layer-Wise Relevance Propagation (LRP). It uses a backward propagation mechanism applied sequentially to \n", + "all layers of the model, to see which neurons contributed to the output. The output score of LRP represents the relevance, decomposed into values for each layer. \n", + "The decomposition is defined by rules that may vary for each layer. \n", + "\n", + "Initially, we apply a direct implementation of LRP attribution. The default Epsilon-Rule is used for each layer. \n", + "\n", + "Note: We use the VGG16 model instead here since the default rules for LRP are not fine-tuned for ResNet currently." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "model = models.vgg16(pretrained=True)\n", + "model.eval()\n", + "lrp = LRP(model)\n", + "\n", + "attributions_lrp = lrp.attribute(input, \n", + " target=pred_label_idx)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us visualize the attribution, focusing on the areas with positive attribution (those that are critical for the classifier's decision):" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAG2CAYAAADiPRBgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz927MtS5bmB/2Gu0fEnOuy9z7XzDyZ2XXp6u5qgVALtVotCbolwRvGRQYmQ2DGn4BhGDxg/Cu8yAyehMGTjAcwDDBMFxMGArpVXd1Vpbp1Vl7OZd/WWnNGuPvgYQz3iDnX3PucU5UnC5ktP7lzrTUvER4eHu7jG+Mb3xBVVZ7aU3tqT+2pPbWn9tSe2lN7ak/tL9DCX3YHntpTe2pP7ak9taf21J7aU3tq//lvT8DiqT21p/bUntpTe2pP7ak9taf2F25PwOKpPbWn9tSe2lN7ak/tqT21p/YXbk/A4qk9taf21J7aU3tqT+2pPbWn9hduT8DiqT21p/bUntpTe2pP7ak9taf2F25PwOKpPbWn9tSe2lN7ak/tqT21p/YXbk/A4qk9taf21J7aU3tqT+2pPbWn9hduT8DiqT21p/bUntpTe2pP7ak9taf2F27pm3yo1spPfvITbm9vEZHvuk9P7ak9taf21P6CTVV58+YNn332GSF8tz6kpz3iqT21p/bU/vPVvqs94hsBi5/85Cf8+Mc//qWd9Kk9taf21J7ar6b9yZ/8CT/60Y++03M87RFP7ak9taf2n8/2y94jvhGwuL29BeC/+W//14lp4P7+QF4WSqmEIMQYUAz9lFIREUQCaYiICCEIQ4rEGBiGHaqRWoScoeTK8ThTSqHWDIAIxAQhCiHY39Z07dTGKRYkEESIYcDYXUIpFfXPSxBCiESC9UcCcYjEFBFJVFXykikFqgoSh37OWv26aqVWRat1UP39UhVVRYAolSEWqAWtBdUZUEQqVQuqFQRSTAxxIATvT4IYIkHE+lCx/mu7ggoUlNlGQRVVCEFIw8Bud0WKiZQGaoValWURqgqlJlAbE/Ex1FooNVO1gozEOJHSFWnYEeJAihNIoIZA8bPnUpnv75jnB+bDV6BHIkdEMhIqMFM1s+SC6kLVSl0WH0DYXw2kFIgRas2UWvr9XHsGiqAq3ueIEAgxEkMgRvsHUItSSqbWyjAmCNLvdWu1Qi2VINEmjELOhWWZKbXYfRMxpC6CUn3uRWJMBAkIwc6dIinYfFa1uSWhklK0uRVGlECpgcMxs+TMw8Nbcp6pZSHn5eRaUdBSKNXmlvh/1m9F1fqXYuL5zQt+/NmP+ezTH7ALY/+kP3WbOaGEEAghMKShX1uMdn32rMbVM6FnT5VWuzatPm/t2QsiiAhVfU7WQs2ZWrJfiIIWtNb+U/tRqz2jcSKkCRmv+P/8p3/AT37+Of/wd/6JXSuCAqJKUuV4PLLkDClw8/yKz37jB6RdIKQACrVAKX7tIgzDgEhCJQGCqj0/Jc/UMjMf78nLzDLfoTWjWtnt9gzTyG5/wzDuEUkcDpmcF47H2frtz1mtlVorOS/UksnLYvcfmHYTwedcLQuqlZgSQxoYxoS29aMotbaxbeNYSSmRUmIYY7sFiNi6ECUgISIyIDERJDIMeyQmJCbmIpRayTkzL0eWJVNLIIaJaXoOKvxf/rf/q75+f5etneP3/vAfc/vslqIFVIkhUbVSNNs9BqIkm8O+yFat5LoQJPpa/thzVtXn0dl7S53Jtfh7whR3F/tX/ZmNEvtrtr4qqhXx87bPqdben2/aqtaT62rnAC5GcVSVuR4RCQwyfG2kp2ihaiFIRJBHfVNVKr7XAGMY+zW2z/ZrPhuLr7uG9vf7rqd9v40ncHLe7PtC0coUp37+QzlwyHdM8YootlZFif39qrVfdzvepdfmcmQuB39+AlfpuvfrWA4IwhinR2M/hrG/ttSZIJEUUh/PYzmQwtA/tx0HgKwLQiCF95tT23Fs88x+L31+iwSSJJ+DStFMlEgKA3M5+n1LZmP5HMh14dX8FVEiQSL7dEUU27/aNdwtb3jI97ycv+LHN79+MjatPeQH/h8//w/49We/waf7HzCEsY/t2+U1h3zPB7tP+n25z/eUuti9CokxTO+cF7lm7vIbprBjiLaHqVayZlIYCAQO5cAvHv6M/+SL/zf/+mf/Brfjcz/PHXfLawRhiBPPxw84lgPHcuDf+Z3/Nb/2/If8t37933zv2AOUmsmbdWgII0udKTUzxZ09VyLMdaZqZdpcz3Y927aqlaXOREkX73/Vyqv5S78v1yS/L20+VN9nAIJEqhYKlXS2RoLP4bP5eiwHQognc7Odt40v0Md4O/+WOnP39o6/+Rv/xV/6HvGNgMX24tIQubq+opbKsiw2wd3AFRG0NsNQbIGrlVIWcoGqSoxmEA/DQAxCTYoE3BhJvii2RcMNvRBBzJgSCSBg98ZMkjENpBgZh8mN/oBWMwpUxUEP5MXAQa0gClIrIhkQYgqkZJaUBOyniB8DShFbCMyi34yLHd+6U9E6U5ZKybAcfdBCRCqYcatUlKVmB2AQS6BGJcTYLDliSChuiPjEU1I3+lSVlAbSMDJOoxkzMbi5I4wlohqodURrQFW6QV8WpeaM1EwIlRQrQ1JSXAgxMaQdGkZURmrYoUSUyJQmcsnM8w1ajtR8Ry0PaDlS6pGgyjCYca+qLHIPuiCa2U0QogIZEUWC9sVRpJnIPv5u0NP/FoINCyJmlFUtiBagkOti91MCATOchXB6Hj9uTJFh3JnhWSs5F59PgoRACDCk6BtjoBS1Db0YuIshEAN23KDEaPMlSDHjPQqVQIiBqomYC6VUYrH5YgDSDANRoZTCkjMlZwcHBqaDg4IxjXz0/GM+ePac6/01kyS7wwoibXNTnyLagUNKqV93A7AGzCIhngELn+SlZJRq89gBQQwG2iWEPu9UK1oKtRSzhLWiNRuoUDPCcbCNT/uQJiTtCOOejz7+iLko0/CH5Fz9TEISuE7CHIV5WXhbFiQIcRgYdxNpTESJ9gyX4uAUu9YQEInuCHDgWaGUgEQl5UQaQ9+wQ4xITBQiNStoZs6ZZZmZl0MHCYqgtdrxlsUBRraT+PNvgE2oxUBLzgtLOBDmSPB5bP1agUUb/kKhaEbitJn3PlfGBGobcCkztc1fXz93+x1KoNZA1QZIEyFMpOGWvNR+rO+6tXNc3ey5ub3xO9rWUN0AzQ243nyvGbTv6m+puRv/29YMzFwXRMIjYLEFD0A3Htp3t33avn5utG6Pd9739nqlXjT4z9u5gWn9Cv33NkerGxjteMdyYC4Hprjvxtz2GhqAa9czbIyN874aMH73eG8/O9cjghn7Nkfla79z6bhtXOc6M4bJjydc6zVVX/R18RHQ2xigUSJFC0ULuc5MYdeNPTv+OgYGUu0ZnOrYjbJmTI4MbhCPJ31s313qTNHCWBNDnPrnmlGWJCESOJZDH88xjBeNT0VPDLvtPKpaqNQTwFjcsdTufQMQFX1kdFat3NQbM5q1sktXj4zIIUeGHLm7f8N0bfbS9pncxT3XesW/ev1f5T/6+X/A/+Z3/nf8L/7F/ylX6ZpjOfBHX/wBf/DqD/nvffxvkcJArgt72SEIFduPixZ2Pje3196cCs+4ZakLVQt7BzbtXivK3f0r5nok7AM3z665GW64z295Js/4QD7gZw8/IYrw7PoZVW8omvm3/kv/HfbpimfXz05AdHNWHOsBVLkZDKRsr3k7v87XhTbnggQGB+iVyv3yhhRGByKBUjNvlldEMQekHTcyhZ2tS5r56r5wlfZ8uPvw4nryx3d/wP1yxwfjh1wPt9zGZ/2Zm+Ku3+ui131+tP7ELKQwsIv7/nzd5zsGiaSw68/sdj608yra14hf9h7xjYBFa6U0L2pAQzCPnt+oGIIb/dGMeds1zeNdzRupVcmhEKNAtM/Zd0GD+WCLFvM05+Y5MiAiDU0IbjB1q8gMSFEMf4jZ7zEYuKmy2XRr90BKNdwaQouwrAaYBHtPPDKhihtbzUtawQ34Bi4EUC2UWg0k1WqGFyBVWEdKEcWPYbZJA0EB3ENpBip+mr4ICauDWDcPiSjY492BRQgG8ARFRW0M/KZUFlQXtC4gzUutaF1QcfBSi4/rYA++BGIakJBAoOZIluzHKaDFziuRGAcAaoloOYLOKBnVQq3F50dAohn7IURqe96DePQp9mtsD0FVEL+PFuEqNieLbwZBLNLgxnsbJxG/xyH2eyZRCASU7NNICYoZcs0QUaVUdQtQQaPN0yQEVURt3KUKKgpi8Z0WcRBqn5seNFgNdQmIbryI7hVvEb4ULWoyDhP7/RXDMBLEoi7i835rubd1oc3lbVP/rLL9Tn/TPfOVWkufRz7pbcaH9bzt67o5jzbk3nvTfnHTRezZbUByGkd2ky3MIvY8mCdb2EWLJEat3OviJ/XxCpEQEkGUIgLFemgRJ7vP/QHBIL+IWkQhRVSmzXNkfaoq6FKoCjkvlLyYIyTP9hy3taMqJWdqqQ4CoUU/QxBqCg6s/N4HkJKJIfnGKafAQttqYptBzMEja24MBSUmm6+qQi12Lfb8VIRKMHSJ0Ly7AWQkhJE07JnDanT+qlrzhm83snbf+2e2QGMzju8/7uOpC/hGG0HW57idc9un97Xzc8vJTL/UF3UD+OxcHWy+5zo60NHLUYe+3vlckdP36oVrWa9vAxhE+u/n64H4OrLt0yUQENzgW39vW5Ce3M/z9i4jxQyiSmj7pR9nG52Atu1t79/5BWt/fs6PHyRYhFELS10YwjZqUik1s9SFotmiRCeHXedli86afRH65xp4qVpRWZ0nbc/QC8dqoHZ7stMxsvtxbvy1a1o/JYSzOdPmUQoDVHNUnIOOFuVoUYxmgHZGhxkZBIncDM9ZauZ3Pv+8g4W3yyu+PHzF6/ltH/+ihSSJGJKDIDtmiwxVLQ4EDfyKBFIYOJYDh/JgUSnMZkwyoH5MQbgergAomjmUB3ZxzxQmXs+viBL5/tWPnE0w8P39Z75ushlvPXE4rNEgeTRvg4Tmpe7fDb5el3pcx9ifmUUXqPQoUjtvoULN7gwYIGzmhK7j3H5f3WnCXI48lAf25cA+XdNYEe0ZXu/9pp+0Z0D9Os1RrViUq6+97b8La8A3cYL8edu3AhY5G7VlGAYPv0TmeeY4H5mXxT2TAyEmMwKibYY2lgY25nlBJCOykGI0YzA1R72wlEgp0FgW9tC5tzmYt9UGsFCrLRTHuZCDPTAxBEJMxJgwU93RXW1GF4QkxKSkpAyDGXIWPi2+MbRNT6hu9EHxaEdF1SIAudOjFK2Y8V4qOLAomru9FUIw72uI3XPczqOihBSJMRKTj10YuiGiNWEG3+IGdaVmM4aUgurR+7M45QJCGBGJBIweFsQ8t6IZOCIhE6QSo0UtIKNEIGExGAMpQa4cqEUk2j1MsVDizMJMrAuVQpZECCMhXTFOzxCJPBwPHI/3HA9veZhfgy5mckhBQmU3JGKKjMNAxSJVKsW99dK94ssyOzXM/jYjz8dBK7ksK8CNRk1KcSSEaEDITbhSSgcYcZggCkQfY+w+VoWK9LlT3eMcMNobCJRgwLBU6rEZk4BEkEaX8qgKlSgVopoxy2LRL7U53ihMZvtvPIgCQxrYTXtePPuI3XTlC4saQNQKVTrNz038ToXqWLSFN1jP5R/tBnitmVIKpcw9AuFPHhoxEKhC3/sbqGr/aAtcAym+GHp0b6WnKaKV/W7kar8jDRNVj1AKAoxB+GAcWagsUrkbRsarkTQmuy51xlu0iFCMkRZBqdUiGIfjoRvfDUSGJAQZGGRnAC1EUKNLLfPC8fCAlgy6EIIyjhE0UhBKLr3vzejLDjYFZV4WQgwkjHIm7mARs+1I40iMkTQM1q9aWZbZIh+1UNQAiz4crL9qcy+EQNUri0qmkeDzOg6DUTiDcJyd6rVASjtiHElpRFJASBZF+xU3M2BO6UZwakiJiN0vLf5ZeecG2NqWAtMMNQNt9r1BBhTb+IOPY3s/Ei/ihB6BPgcWIiQ53Ro7baH19szzfG6sX2pbj/rq4Z5OjAAw4zASGOIpvWEME0kGN6q2iKP1IbAL+7W/TonCjZLze3AazVnvwRpVGDu1ZnsNl4BaM76+jioVJDJuvLCXqFnb8V0Nn9SvOYZEJDHoePE8tWbmOvPF8Rd8PH3CzfCcuR7Ng10OHSh9svt+jy60KMgh3zvQjezC7oQ6paocyn03VBNmqO/T1QkFrLhBCzbHWmTjXWOiPi9OgAcbO8TbeSTE+t3mkjskPOrR2lyPlJrNYAW+t/8+N8MzxjCd9sH/SyHx93/wr/G3Pv5bXKdb3iyv+Hd/73/Pv/ajf5W/99m/Zt77dq/8eqKY7TKEkf/4F/8+v//qP+OffPXH/Os//rv8cx/981ynZ/3evl5e8kdv/pDf/eqf8Hx6xj/z4d/k+/sfsk9X/PD61/h0/wN+89lvESRyn9/y84efcjs8Yxlm/r3/7P/Iftjxm8/+eh/TFok4uf/OeoEVbJ6O9+U52iNRHhlrlLS5HhmcgjyGiWM58HL+iu/tP2OMEy/Gj8i6kGvmPr81/057FkT4/tUPPQqVqf683ee3RsmXxK/f/lYHR+3eXaWb3scGlE6dM7UDsWM58Pnh53xv/xlT3PFi/Kh/t2wA5K+yfStgISGQS6FW2wS1FJZlYZnn7hWVnM3QibE/HG3hsolY3R6pFClUFWJbSIK4hxFSig4I3HBxA0ZYvQRt8wabLCVnqgSkVELIgNEjuhc/4lENJUYlRDVjwFzAzRW8ueJmNJlRax7fSqcrONKv1TjU6sAjiNG70hjdgapGtRHZ5AqswIKAG8HBPbuBGFPf+PJiPPxSlJLVczCsD4soMWbLSQnZ+lKNpmMPlXmIQKgOSpBMiDhgs2hBWSpRA7Gah1eCGbdSgWCGrBDNOFY3gFTM8kQ912AkDpNFLCQxjgnCQIg7Srmi1oVSjwhGYSrBePwFEMkEMlUfbKEttRtitZj3oXruSjNeq1ZKtWtSnw+12oJSxZBpEDoH3hZwQYv9bDxgm0fS0jR8rtk8DbHlCQWiR1NwsGz3pNF/1L2mDfhq7yvdI9j+BbRa3oqBVUV0pRhUzz8RDIhOw0QKqXs8uhnic6oBZmF9ILbPRjvuI+53BxY21m28LVpl11qdetZoWuLjaN78FWC0qEujQgkt0mhgTKT5gdVzCgZCCkgWpNgxIsKLIfJA5D4knu33pOs9w5A8Iip9HVBd85AscpXJeWZZbC0KFv7bjLkbW6WAOwBKySzLQq0LqgWRSkqCiFMFuiPBxqzkTCmVec7rPYjB5pjn/5h96VkjgvU9RoZh6OtYzqM5RXT1aImutMuV3SJ97UIiSiAXJRQIKRDccB6w9cP+eUSsX/VfTmsGqOVOBOLGMNzEK5xjbCthcCfSlv7Rmsde/Q9xgLfmZTSvsmhbta1taT+PvHb+vLQNulEM7BSPR++Sl37rvZdNfy/lhLQ+BM+OQs84/d7rsHmOH/eBy9ey5W37XtWu79yD3Y36BjvkzBPq/S6eC5RkePT+yRhso5UXoqXngAZdP3cJkF26T4/AFBvDyc+v3t8gZuRepStEApXKEEbnwQ9+b5RFF7QqKQy21rLhr5+NS1t7Uhi7w2/rQQYDJy2uIx6daf0XjLsfCScA4Txy1TztnN3jdl9hBRgrKGsrRXOQrt9Lkmyf8JU4ex4rWG7Iq/lL/vjtH/HJ7lNuhls+mD5mins+aHRdCXy8f8Ht8Iwp7ldwJ4m75Q1FLT8hhZFBBv7Kza/xfHzObz77dX54/SOm0CLT9r3rdMsPr3/E7XjLFCY+2n3CGKf+HKcwsMOA7KE88Dtf/SN+7favsIs7/v6P/mX2aU+UxKILuSwWOQkD126INydhdcO70+t8kWn74HbOns+1NZcpbF61/jeAsQUs9kxHUoB9ujqdF6oMPr/AolKIMMZdnx+BQJS4mcfbaNcasTgBGRKI3p++/nk0qkWliu/jp4Dk3c/qL7N9O2AhgZwzOVvSLLVScrG/m9fDDWRLGm1GmRtoCDR+mFa0tMFqXlZxb70wjomc10RHkeqGbJscPRTQN6alNEpO668Q09CN9phs4w/Bcz0aTQKbkNsFrm1OLSxd+wKm7gUWguIJ33ikwAwF8TySFFM/WkOvIcSejNxOGFIzgMxLLhIJPYFc3fgRlkXJ2ZJXobuPmUMhFiXE3EO4SkZCZEjdNKGWGXVva/SIhtZEKYXjXIjVxiWmQFDzvoaqCBXEQ6xEqAJV0BpRtYTZGEdiGklpcrpUYhwH4nDFuFOOy2yGXF48gbZQ5MGPmxk4EGSGcrTk8rJ047UWpWj1JOfSwVoHHc6jkhC6B7vUDKLmvfSkXoBaCrm0CFYkpOQiAc1D1IxJdQPVkuwteTv4OFrSdc7VgLautLf1GXaQyblhb88AKuScLXm7KNG9X2aM23w0YJHYjTtSbIaZmwzBjYYGAB0InCwVsrGtN009ob6HZR0gWTSoUku2+SnBDO5gYKdxSD0j2TfFNVpRNxElAzYGWoN637x/Y0qMgwOLYEcIFIYgfDgGXoWIJuXFRx8QdhMpJY9U+sbRgIELFRhAmJnzkVrMUziM0bdS77ICVHLJSLHk85b0bPkhBkJjipazMbUo0MYoK9WiHEs+eb2Nf9uHtlQyEyyInmBuALBRSovfC3OKeES0aAdMhv5D/6cElmyUz1iFcTDeuN2WhEh08GuxNnnH5vldtq0XumjhUB5s8wsr5cA2f3cANA+4+isiJNKJUdeO22Z39e9vqS7dCOhUjzVfwRJgV2DTWucqa1n7xrqRW183OVpn3++GgH/mJClTDVxzZpxGVkNHqRzKA2mT+NlB0Htg4SOevsjmmEpW2wfGOJ0Yra1f50b6Fvy0cYsS/ThrsvC3bZ0OtAES2/5v//66633X+0adNmO5+D59Fa+JIXGlN0Sn9k5h189baqZo4VgeqKFaYqtTYhq1p2wM8G0/RjG+fdFyCsi0knUxAO2cdhW6EQgwl4MBnI3ZpagbiaE7lebmNfc9vo1jS8SNpHVs7QPG7LzgnU9hIGFUo0plrnM3vuc68ztf/Q7/zj/49/hv/Na/xG89/6u8GD9ijBNjnCg1Ewh8dv0Zt8OzDrranPri+Au+On7JD69/xHW6JaXED65+zA+u3q0Od51u2KcrfiS/ftHAb9EPsGjLf/BP/7/ID4UfXv+Iv/3J3+30o4f5La+Wl9znO26HZ1ynG3Nqub1YtJB1IcngRns1p213Asgj0NtarsaA2MX9o0ifgaiBoY49ytD77YB2vbd+D2ToYKc9e7sgZM0sde6f347H9t6eg0XbL82x1ObCLl51wGtroEXNRs8FsUNtXTqXHSW/rPatgEVwQzdE6SH/YUqAJ02rGb1GUbJNvBlrIYpTXGK/nOzeV5EBNBjAqC2k2jjJ5r0tRSlltk1TzEMu7v1vc9OoLGbg57xQVV05KZGGgaSNoqCEbGt+igOCqUP1YbYkCJB2g7V7+MFpOmBRgRQYq/H9qqpzs9ekVgBVcWO2UlUZkjKmSEoGMFIcu4EZYqIZCebNUbQGaonkHFE1Q3c37ZFgyedaD2TNRDAOeoqE5FQoGci5UHNhfjDvfnY1L0Qs8bMKuURCUYJU6jyTUmAYIiG9NeqQRyTMSHe1pHSDMlBr9nGHPB9RKUgYGPe3xDAyhIFpvLJNvmZXzKos+UjJM/Phjod5oSyZMj8gmhGyR3CEwpovETy5uBYlF0uqlzD4OA4+N8UBpPR5idDBWozYZiyWy9K+0xSnVNPGIrfE2GVZmF0BrOSyeYjxueJRA6GDkhZJQVdlJQm++AcTQsCjMaKmKBCc5pNi4PmzG55f3zINruigzVTWbsz6zPdr3PSjGbm60qNaDpEh1g1PvEUd3EPf8lYMmCuNUVMc9OAePwF//gxYFY8yrZ6zzYJoKL0v5lGwyJEb6x+OiU+ngc9uRvaM7FAOu5ElwOF4cOeAKSW5zU52YFErqOf2GE0Ti5ZhiWulKzNVypLJZWE+HCi1kMvS1yhBCKWyLM3TA1LbPfZcDgKpiSx0A8+NPJ9n5nzQDoSaIlSQNi9tc0ke2VVg0UKhoCV3Ra9hmAhh8AigRV6XrOQKMmem0ZL0p9GS1qkQwmLnIFoOxq+4zXVmrkfbaAncpFsqlgg5yNj5y4FoeUmb1jzJ53QOoBtGZjxoNyIah3oIKy1ma0w3LvbWGG9GxximHk1pQKhH17kcGdi2dxm8DUA0Y+L8WA3QqBjlpqIdgEWJbmxuQZRFZx7RzDYgqGwcaltvp/WhdHCw7de7rs8MY3HoY9Qt8QivRVss0tKiLi1BtHnfReTkuhX1KOxl4/ebtkvJ9pbEHrrx3owuMDrJCkYtCtCUkxCnOaqYAe3jmnXZ+hd9vmTOE/kFAwrNY77UmVfzV7wYP2Tsilc2x5sHuVFsWss18za/Zh+vuuhAkMgu7rnPbymauR1edGP0PBnfri11x9G7xlXV6DxJEj+8+isdSO3inn3acSyFh3xgLvPJ94JEljrzH/7Z/5Mf3/yYD6aPT6J7n+6+z4vxA+ZqalWXzq+q/PzwE6JEPt5938YRs23uljf8Z29+j5fzK6oW/uaLf4ardMP1cEuumSGM/C//zv+EwZOl44aeaM9+5kfXv9bH5W1+w7E88GL6mOC2Wnuuc7nvx7GxX3izvGIME0OcEAxw3pc7BwmnCfIW6dFVXSkMzPXYwUL7znYMosS+5zYHdatJXahOo7OE7G1OU6PcbudaH0/WKLCoKZG1udDcfNmBsynErZHTrwPwv8z27YBFjGaIaUN97Z9flJp8bHGwX2vjn1ejhAcnETUjq3uVak/M9XCAgRRPzqVtKLWYJ06gVqMYJBl6xEJrS9JuRrzlCUiFUMWMULFbUANI9QCoCCE0ukebALhR6tDiJESubiCYia3ROM21FmppKgnNayn9X+ujvbXxXhPYJvms5xMaXckUiEbAFsY0jJgELdQafMwE89G7RKVEwEBb1ejjWd3gbRKdoxm0QdG6mBFdM2gmSAZmQhAKAZVs9IswYYZWIkRFJVpeSeu3BL/HLXKVINhDEzV2yowQWUjkUKk6UeqBZVnD0mFwbiqCskCdKT5ONUOpBoyC50KoRrQ6Zzs2aolSdB2fdl/N8GtgtwGM0L2M7bOlmlc550Iu1YxvV5KiJ2U3Q7rZmhU00GBAM1NsI27zIRg1TzEBAW3AwwBRCMI0DEzjYLKjerogvGt5aNG0ywZD64nP7fbgbJsb7eZpE6SsBktQcUyy5mCYhsMqn6pVPadiBRQ98uf/GsBwbWSolWdp4IMxcTMkHmzW2lpRlVwKEt2w3xy7PWJV1+ckBIjBnxkatZD1vB4VaOuE9OezRW/aZ10OeSOLbBHYQIo+l4QeLdOGIKVFNT2/jPb0O5D1PCvLGVmJnbVUaq6UpXiEtymb2dyiKcaEbeJwixytESSt1cQn9LtJyvvmTVYjcktX2XgJL21y5wbKloPfPEjt24HVoKzY3Mvq9Kgzmgra9qlNBLo9n488hQqc9uHbeuwbxecSdWj7/ho1qafvbcZjK1X+7n5sKBOs0UH1Y5zQwd7Tr5Y02gyX0BwnZ/32D3fwIe1azoyidg3fVRN36rwr6tJa2fTBwFK5OE8as+ARhWTzfXsvPHq90dmqVhYW8yqfUeHaOWwuVnKdKWE6mX+XxqsZnkA37rftUh5BB5h4Qu8ZDStK5Pn4nH/20x/yvatPuRluTo7RonBXw66DozfLK5IkrtKNg3lTqzrvz3lOgKk05e4cUJRjPXCX7/r3t1HOqkbhfjF+dAqytVG8I/u090hUcKDrziEEPIIQpO395QRQnw1WdxLJZl0x58Xmvm0BOdIdEe8CdO1562uYan+USjVhjyjx5NlvuROt35ee9pN5qafzsk2ddh2WgxMIMp4f5jtt3wpY7Pc7hjH5PVDQ3D102eU7F8ESSktAMeWnUuj1KCRol2eke6LVufLYhu42R0tUzjk73cH4+YIyDolhGLi6ukKleaZXjxDiIXL3QpeS8VICPYcgBEG0uARuZF6WXuegPZYtDB7j6vVN0TwvMYaeqG4lG5T5uJCXI9UThUMYzPPvnoUQqyv+mOqPiKyUmmoGfqV6krvzDoc9aRD2+w1I0UKtR3JZXO3IwEqtNu5VI0ESMUxQgxuF15hyTrFE65iYdldunWUe3n7lev8Hmm0ikkF9/JySkaZbJA4QJ0JwybkafFKbMpOEQIqT982BhoMeIubpChPDUBjSjhgjx8MNNVvyeArCOE1uzMGy3DMf3/Lw8HNKPrissd2jWmwhyCU6dSkyjoMZ6U57aiZeo+bZPbefKUEcIKQmORc9QqbkeWaeMw+HI8ts1CURy5UZhpXTHjxfpE/eoKZQhdGeWl9tn3baShSQgrLQ4iMxtegGTOPINLiWeDPGG+hFkGYYbwyOZryet1NgvJrT64ar3WZXEYty1UoJpTsPUoobYKH+fTeMvKaIrZ3r0mdGenXvYACqJ4pni4qUTKqZ37p5zmc3Oz7YD7yeKyyFMJt84rEWq90QEtOUbP2QYEZ8HxcHhR61zL2PSkV8PXHZ6CrEOBAZ2lD6GmH9srUiW1J7nmkSzzFGYogMQ7YohKrJFbf70ZTegqtTyWpkmZqL5eoMTs8c09ixVc6FnAvH42xzKiX0Jji9EBeZiEwueBGiUJcjS57JuclSV8ZhMCA/PFDzrx5cjBuvYGuN3rCNCGyjCq1d2qCb5021do78pXbI9zyUe/7wzR/w8e4Tno3P2cWrPhObEWkG0pYkd3ru5vlvRgqcervPczC+DnS0hN7t5ysrP98oMysoOG9LtZyhloh+qc/NCSV+nUPjfiOew3JqJDejuRlqJ55ZN0CFJi+78vkbzUREGGRclXc0Ywp4A40u3NbaZuC8HxStx29jsu3reo12Xy7V39i2uR5Bld0m6Xz7nfv8lmN54IPpk0fH6vKcm7m4zTFprcmQRhJJBqa442Z4xiHfM5cDr5aX7OMV1+mG0Z8HM1TbqtnuUXBj0uiVljh/ZIy7LjXcksGbZ/4+v/Xk4qHz67etUQGzR5WaFzvrwt3hLZ/sv88uWpL/bz37m/zP/vnf7vPj/B5dp1v+u3/1v83z8UOKZv7d3/t3+eHND/j7n/0bTGHHLgws9dgBcotWWQRuYAgj39v/kFwX3i6veLO8troU+Y4xjPzg6jM+3n2PfbxCRHg9v+Qfv/pPXXr1hsn7CRYhAtilK26H59x64vaxHPji8HM+mD7mxfhh/3xLvF/HpLDUmSGMpDDwwfTxiUd/CGOfM6oWRRQRvw8RIa7iEA6oAK7D7akzYPOMi0in3mVdiBpBAodyz6jTiZw0wLEeech33I4vSBfkroOEU0EBVtASPRJkwhNGkXo5fwHAB9PHj+bwd9m+FbCoBWpRgnvjoFqxLC09EbUnLIltflZDoS029Pcs2dfMqZwtR8E8mo7atRWlKixL7gt0M66WYrz/eV66h9w4dFDEXZmCF0Jrig127piczhAj2guJRZRMqZWHw7F7V5MnjqKRKtU44dWARSgJdR7qskRKruQ5UktyDr8ZVZlC4/cZn1+7gd+iFjEFIsIwmERW9eusCq3Am0jwaEOh1COlzJQy++U7N9y9oRIsYhHFM9aj8ThLgVyU6EozaUhGTapQp4Ehmfc0DUIcKgRT+5JmeAZBQrFoSHAkLLEnH8PKpw8eHbLrtOsRWUAXN6irGf+Dwr4ypsQ0PCeIMHjBP8s5KCxLYF4qu4c9pQrU2b3uYEUOhWWx30WS8c89d2L1oDevZyHEQghKSt6H4ItPtcKCqvYzhMFrnChaI1JrT+ROKfTcjNKKIrpsrE35YLK0iCeLiyX71gFxlR+hIsPgeQ/GZwnuWRrSniFNm+enUQedcd8MFmnTX7qRfM5pXnM8oG389mv1Ywq1nUVXSlRt4Ufx6FCL2PU1wT1veaYVgFOPJgKdMknzylbLyTLJ1sIuBfZh4Hu7wMe7yJQCQ4FUlDEXFoWHamBHwWlK1cGsrTm5mGFj/WobBZ12JmFA1VS9aqXf3w7C3JMdVEGjSWMHB8FpwGRrm7Jb8LVCLblKPDpaTJDAon+1LUd0A0uaAEDoymXSclZQqoidM0YfM/G6IrjqXHVQM6Jq6m01FFRhPi5dCUtLIaXk6/Kv1kvV2nbD2xpuQpPvbjzg2j2p2+JSWw+eec5h0YxK5VJTVR7KPUULv377m91w6FGiloi6ARlDGK1gFmYcNOnMBh6qbhIfN97r5oEsNXd/sPHq/XW1IlzJ87qqFiLmDmhRElVFnI5ia/tjD/VJMTzhnfSwPrc2HvQe3ZEmCBG5ZNRfMibjhhL8KBcCOV1XsLFN73j/0jEutTUXwwHWBcfISaTkwjVsm1GdLhwfN8y8hkZoThE28+pb9HebG9Faci/+c/nAgfB4Mu8a46Fx66/SjdNZQi+AZ/kVm+RgpNeuAHq+SJDYxwyM3pPrwuCG52rcWn2XUceuLKa6LViYeT2/5N7B+Q+vfszz8UNezl9QtXIzPCMFM67/9R/9fXZxZ9ft553i/iTfQLB6HifJ7w5Ur4cbxjjywfShFx2cCIgXmTMJ18+uftSpT6asaGORNlSwlrRvdU0yXx6/4Nn4gkb7slsZuuG+HcvtnMl1YdHFgA1r4rZiYL45I07nmR2jgbNLc74xEFo/cPnjFEYSgX28MsbHGXAodeH18sqOHWHsAN73N6ddreOQ+2Nha5LbrSH13I7zZ2RbaO88uvjLat+yjgWEbN7YIBXIFM22QHtCoonyGCozVRkf2M3D2yoApzRs3quulNISS1tiZqNDNb16Ax9W4buyZDM0EKOWnLeq1Ss0O8UgCIOZ8BvPrgEL8KjDvPQEXhCjMUowg6ZgMp/u2cgFSlaWBac5RVRdBpPiERmLiogbpEaTcOOzR0TM2BgGi/IspVUy9g2iT95iYKYeXWVp8YrQrsrklaBxCkWkKWpEogT3jnpNiuga/LVQsjJNCa22Gdo9ap5Q9zwFrMidWD4AEixRuye/eVRCt+pdjRKWsWKEd4hYbYt2T2MYCKLUMXB1dWMGVBqNAiQCemRZCsflyDjtnH4ingYREBnJWXh4KN3oGoddpzfZmHihs2qVwSUsiBRCaHkwdIpMLoJRIUzeOGpgSKCakVL9XokVVOw5H5mS/WexObpCLWwMxbnlMYImgiSsgJ9Svc6HakZCIoaBIU6kMBm9xYEFjh2CiBvPDVz5vzajLwCL86btwtu92jx3zVjeJqVrDR0w+ksUp0KVvNAkF1uuBjh9KEJQXUGxJ04rlX0UPhoTH+8iH4zCGANDhBiUkcLsUTB14QaLEIhH0byQUfYK9yhNvMHUwFwoIZoDo+rKvtpS0toFGnVPQX098PE1UNEiQaFHRBFFso1f2VTVjtFymIKvfYKcCFpE75fEDX2uWD2P4IUNkZVKWsULEsZIFCxaKILmaE6N2YQRTKlGu7qXpL8cOlSjDNhvF3jX3Yg0T2qQQGLjGd+o4gSns1WqAb93tId8TwqJj3ff668tdUYIj7zSQQIDA4f6sBaUC0LEqQlUlpoJLrl9yXgtjYbGmhOiWILtUo5Wo8eBheU2BC9gZtfQPJfbGgtbqkwToGh0k4v89Y3R0PM2aFEyc2q9L6fh0pqwNcC+rm3pQpdAxaP+fl10B9571ksc8UvHu1RdfZtMP8XdiXe9dmrRZfWp82voFLoL15xCIpE6sN1GlSx/BnPEeEHHq14oTsl17gbf1ig/r7Ww9cQXVqqqFYQ79siG5fHYPtTUjHbSonC1RzFyXfijt3/IF4cv+endz/l7P9zxbPyAP7v/pwxh4Ddu/1qf47/17Ldpxed6f86ka81rfhblERMiCRoZw+T5TaaGdigPBrTixBAGXowfdqBSNHcIk07UtCxvq1GJ3ixvurRqKy4XJGxESPTROILl1BzLA7uwAzHqUEvebjk65/Q08XuyjcyeU5LC+f2DTmlUUVPYujB3ixYe8r1FN2qEMHbwZ+c+ddZsnTC5Li6bnJnYmbLohn7V+tnm3ujSwd9F+1bA4u7twpBAwoxoJucHKoWqGcSMuHGcaBWMV2fn6jFeZRGTI7bIOOBApYBmAxdUN7St8rZFOYKR0sWUeYJY8mJwr2jsG6kpxVStaLYQkX0GYrRoyTCOjONAGiISYCkLKSX2+0gtTouohWk0Og4iXQI1ZwuLhZiIYSRNiZQCtdgmn7Oa59uCKpbPESCJJewa99qVi1RIEhC/3hjd0AvbInD9ssyopzIMmRiVVLQbPSnQ9hMz/ClUKVbbrSp5sWQ1JRpNooBitRagkAa7H9El+WotHI8ZVSGGAUsqHwhph4Q9pCtURsux6LaWBeBFFdUDVmPjAPKSygNaX4EeAKu9ESSR0p5x2BHjQHI+ZwiWL6EVljmj3FHKHbnOpgIi2b06EJIwxAAhUYuJAIyj0ddM7hNELLF+yQvzfDCPeffutRwhp23VVsHcWpDA4DK61SNZ3ZBX81oHDcRk1KEQMY+4c/+1CiUrKNQFtGYkFILM3VAvTZo2BMY0MY3XTMOOMSZ6bwTQRrlqVIMGKNrv2+jE6jEJIhsfU2sbL6FvsiVnlnnh/uHAkhfKMq9Axo1sraee4wYsQrAid2kciCmRSyENIyFWYlAICQ3K67dvuXv7ll0p/HAf+Ru3Ix8PgZtgLLl9DFyPgWdeL+SNKMQJDQnq4tEHEMmdflirUZdyXmj5GzF5kcFx58/WqqZSslfR3iRv2+eFFAJpsORvpZrSUmhyxAYuVAMVIaSRUipDzqYuRSUFc2KY41R6FKiBoRQtE2o/7QxIhMhxMSfJ8TgzH2dKzhyX2QFkgJRQjRylGMUxJsbhypXfBo9wFJBErYHDDOmyg/87bW0Dbxvy7DSJ6Jrw5n1dC0sd64GIbdLHcnD5Vft8cvpoo9O0TXfaKJ20dj3cbjbwlsNlz8SWn97fx6rODgzUs826ebWr0xe6l7MZ3SJEtXyfRndogChKJKSr7mE+Mf43tKfmGe9UF81YjCP0KE5TdGk5GI2b3hKxLxnZW49skyf9Nm1L+3pf2yaLb8fgfcDhoiFV14joJaP+nHr2/r4/rqLcxqQZUCYJuzrqWnL/+/r46BqcVdGkkrd9bvPsfPxEhCitmBxw4f5B8+yvtLcGjrdGdbvW8+rwY9wxeOK4qSIKXxx/ztvlDc+G5+zTFft03UUCprhjYoei/K2P/nYHYIPTDQ+enF608FDuqVp6MvlWLOFd7RyE7eJKTdte+xgmCNPJa2se1vDoPBZl0n78q3TDf/njv9PB3Bgmcl2YiyVXSxEWXZjC7qQmi43v4uPzAtXCodzTIiQAx/LAV/MXPGSjRX26+z7EqWtyVq19bKpWrzyeHkVgg0Su021/no/1gRASSRJHp3jt0xW34wt+a7jdgF16rkgTrDiWQxcC2IK6IYzkuvCzh5945KV9Np3M+1b1HPj/D2ChRchafROfWZajeVkpltidrGJsiOpJnR5+DGv+gyCgwTjyVahOF2geQ/FCWDGtUq1ghk1K0TkOZg6LBJdubQpRLazsoUrntrsMEGFTI8O8zqYwU1WterO26IEpHymBpoKkboM1iottDO7BbQXJ1NSjklNZSjGjU0RJ0fJKQmgPTeho06Q6FVEDESJmrFXNPeG6J8daLXOPeKjpcEdb7KqHOJWWmKhEabQyNS+xAu4FRBqwUPd++2VJsGTsXk/BmnlRLEIgwWpVtA0SteOIYkX4NIO+BQ7AA/Aa9AjcU/WA1iO1Ns+wAanA6EZxi8BEVAKaYFmaQdfkiQf3SHvND3W6WjAzPA2mrDQMgeBJtOZNL55k7N55mgHevNdmxvhA0IJWjTIjfh/oswy3z9f5EKO4R9zyK6hCrdkK+zlgNRCgfeNryf4SDViobjxiukYqkAYe1ufyBFB0MNGeqVOwsS4k2v7XF+4WaViWxYpezjN5mf358zwp8AehHcXGo5RMilbEckSITYhBGkkj9RF7++aeu9dv2anyLAgfDYnBhR2CFlKFoSrluKAijMNA9uhnT44ODSgZCDBnwOrt1U3EotX7oI1bM4Acldn9bJGb0Itw2sUarSlIyxtv4+j0xBAoVUk1Qk2glSCr4EQL2TeaZ1CcwrXy20OweSoSPLnco7Zi654BmyZFvCpOhRg80pqoDrYqrroSBrhQUOu7bt2QkG3xM2stSbN7XNUNWTn9bmixvs0kDyH55l26wdwSSqvWXjBr7Qf4w2KG5cZA7Qa/PyNRH9MFpEdf+wucfWB9PjfXbkbJ6rE8Oa6I19lYN/NV5KP12d4NbKIHfSzX7670ocfGcP+7GcDvSTD9tq17ZlUfjcG7+vPe1g3Ix+P5bfpz6Xvb635fFOLbnPNcmercMHuf2lbrb1GvxSS1R+zafFe0g2toYE3Pvr9SXoJT9845/ojRp3Zxx1xm3uY33Jd7xuU1n+5/QIx7LPdiYalzB9trlM1zgKRVXzcqT65Lpwxeau3aHslFv2dMzsUaLDrZhCvWdaRqcWGc0vO1Wi2bKe46tdEiFebICK6yNufDo6KXVStRIlfpiub4bspT6z5qIKrGut7vTXSi0faFlpN0wX23SQ9oi52B0kI9o9I12VoDlKfguGL7x9ZZ0RyCDVDb9Vx3et3UnRMV9eP8staC97Vvt/NoYj7OPNzNzPMDx/ke2+SVOCSGQTFveiWmQil6Yqi3e1KK8eFVLVkZaPmga+XkNJDDwrIIOR8JAnEIngwsqC603Ig4DJ1mgG/cyQczpbFzmxvtJIQmHSlGYSiAlk3djYHq9RtqiQaCqJ4vsgFBeEKmKKUuCMowQNoZyq4luZcpOxUKYlKaEhQ1GKhAWYol+JhylQ139oTYZc5OtVkoxcAcjUqlwm7KpDQxDZNJaGb10FklhtL51ybNaOdD1o07iElfVpQhDp3TXYujXOeWIxGVAcIOZAckoz1pBg5Y4n0GfUA5grwEOYA8ADPGI7OCZDkXlqyIFFIRci2kMnufE0MaSGEkhESc9pQ8cQgL6AQEhhQZhmS5OtEM+OJUFSSQBlMHilHADfq8FJa5sMyK0fU6ZNr883nkC3suLZmTnoRIjJ6D0Ir4NUPb5oUl5VvyvDi4qPVgkrXL7PkIGZwq1zYQcMoNgatpB1I9kudW5jYaIRsjzpcZyydYP9NAb8t5aVe6GrrVLBi1OaC5kOeF4+HA27dvuT8+cDwewYFnlLUmSttPa/PAqUk3x5jYLZVhTF4GURgUQppQhFKUn/7Zz3j58y94XpRPY+SzaTCfYVVCPjAtlf2x8Oarew7DxPWHH3KvlaMWm0fBw/uDSToO441TtywCYUZ78bUkbRZ0oRfwC0KokVBNLQ1VYrAcp3EaSKmpSRU3/lreRFMRM/C7c1C53WpqmZnnmcPDA8thXqU2saTzJZuXdp6PIBbJHMedRXXce1FiRGTniepCU+KyPKyBYRzZ7SZfqwayBmoRljqQ0sR+d/0r2UDe15qx6GQwHvIdcErlyHWhBZqNGsFJzYHWRhnJNbOo6e8HhF266lrw0aPf67k5MXzPZV8jqxpLCKfUGfuqnHCzv9n1hvd+xyIWq/of4NEJWZPSVXvfT74rTXFpAy42IONdVCnthnDqQGx7zMfXsIKER9GDs9e2RkqLqnwdlei8fV1k5JHBfP6a/9fqgzTa8Eqp41vfx/c1S1TnRPp12z8zfumJtI+/v/TaJarKQ37LFPdW64XAogtvj6/ZedTLznN6vXeevB0lIepRM0wZyQrWWf2FKe6Y4vd5MX7Mf/LFf8w/vfsJv//yj/kf/fa/3StIf3X8nD9684d8dXzpOQCJD6cPeDG9IIVkXH/fL6oW7ssdo469MvR5s8rmZVOQ8NuZmC3BulVnb69lzTyUe3Kduc/3TNFyRY7lwBhGbscX/v7Cs/EDGzfPgch14ef5rifR2zErczmwi1fcDM88whO4GZ4xl2OnVQ1h7PRKS0q/f9TnBj7GzZzYPmdN9lW1eg6O7UVVC7NWzyc5fQ4uza9G5Tqpg+JAc64zu7AjhsRHu0/7+1OYqOiqJPYr2hO+1V1PgxlLyzDYBMizeRAFYhwIMaE6UIp5+0teDIVr6RKLjbrU1H66heLRBC22XLYk41IgZ/ca5kZtGZCxqfG4ykq0BS2XYkWmnIcfon0uxkBMdo6YVmOrVo98hLXgidYF1coyK6VaH9fCc1atGy/MZQqY6lx9i1DE4J7o4PUsqCYtGoRhGszYCQNLrp4DskYYTh1c1reUBlPfKYFSLalzmVuCeVucI8Ng15SGJoZnlAzLm6iQPedE65qIKrF1m5IrWhaqWKJoioHddIOI31dJqOvjiyxARcsDWmdKfYPqguoRZEYoSPDPUFd1KI3UIpQcyYvRUHLO5EWJcWE5mmrWMAxMw54UR4vIMJNSYb+zezTtktUniUZJ0yos2Tj4pRqlR1ukrMkQVx+L7BuA4kUY3Zvc5ugwmApLCLSMZqkr6BUxDfSlZmaPfuTii0f1qu7BqjjbPE/EcUchIotTnlgjHMKqLhWDsNvdsN9dEz1XhrpGGZqhLEG6EdpAYgingGILMLq54N/ZelFiiBRVcq08LAtfHu95U2eOFMoYnGbX8l0gz7ULOVgaUEHLkSQzMUAuO6Zl9CrehjeH0RSo5lr46tVrPv/qK/b397zew8Mhsh+NfyspcC3CR0Ngz4IQGIdAkUKWYlrrbnyZZLKJFiiWtxI9mVykEmNykLcaOw1UtdyfqpW8tChW9dwiy4VCbP3Bo2SqlqBRREkoMVbGYXRPo/SkfY2j5S/FQEjRc8Q6i5MxWWXv3TRZpFcEqtEHgwjJZY9DiA6OgxUe9OTsRgOwiMwAcc+gI5oqMe2JaWA37Xuey6+yGf1p7l68FkkQsWRH5VSKMsoKCFoE6uR4J8akEVBSGIktDiap58p1L55voI1S1I3fM+9y80C26tdxQ6E5p3G07zdgsv1u06/vkZZN23qwDRzI2THbSuDAQTBvLY/7AadJ3KfRyfWz7Xr7frYZ78e5GKvX034/9R636+6fl000ZwsyRC5e/5+3XQIRlwz17Ti161v7Ex+9/67IRmsNfDUPMKzgr9XxAEveP89fWceFPl7ngMY+EXrF5OY1FxFLuq7CLAd3g7jCj5iyUCt8eCJM4MnZDZxGjRzLA60eRrumv/b8t/l0/z0+2X3Ml8cveHn8it99+Y+5y3fcLQ98uHvBR7uP+Jsf/E17vjwxvNUj2qUrdrrvMr0A9/mOUhemuPd6IokxTLb+Ip22s32OGoVnLke75nMD2m2ebVvqzH2545AfyG5EGyVw4YvD59wMt0zpyqiNnktSqn2uFYl8Njzv52qyt48inB4twce1762buTGGHbDWlQkEJqcjbaNP7f70qLQ/++2ebSlMLaJaXQa71+Xxz7fozHkUtx03khgCj8bN+mwrpcpjRwG4s/Q7aN8OWERLbEspUepgm5qH5WM0g9lkrsTVdSyUXAtEV1OJMW0SIdmElTaGtf+qKlQCxWsC5AIxWU5CDM6v9zoJIXh1RVp+gy0AwaMQMQRiqIQoDpAcWBR6hEScarMkM3ZFxCkzrnvfvCMBLIk8byIYntDcrHQRhEaJaNQXk6g1g2ewPAqTj3IVlzZ5tIc3g4DEABrQEClik6G6FK8qHlUx6V4JLZIS3d60zcoEqqKPq/r9cO6zmhJUcaBTpTCNI5IGS4IOA7lYxW3DvRlxnf9a36D1gZJfoTpT9QiyWGRIPTLjVbwNpQcDFbmSF0uSQrLLmgpLXIGFTsKQKowR1YUQCuNoRso4RoaUiMlydbyYdFcKqiU7pnMaW1G0tMrG2gsWznPuxmZ0ipwq6ABRU7fdtYIkH7MQLUKSW3i0ReLUqyoHFwqw/BcJgZAGogohLZaEKgEoDmqjq24YsJjGHdO4s+R1wNCN07R8bQli9VI6LqcB0dOQ8woqzMDo4YXN+7jRk6tyLJk3y4G7mlmkIl6sL6Tk9Uogl+JABIrT8bRUAplINcnX4vxfB5S5VLIqhwVe393z6u6O5Xjg7TFydxx43hStSmIKgdsUuA4G0qZBuFfloE4F1JbM7uPhYV8kIMXlTGPoEZTmkTZGgV2/uAgEWA5PKcUkcdtYBu33vrXmLa4lY3SkYFEpV3fK6iWQQkBksCgQ9AR4i+4ZsIgxWr4VoT2cDph0jTSFVXxARKkFE3VQfL4HkISEkTQCSUjjlRcKnCj5cfXg77xpU0yqBgo30YkhTgZqN57vGFIHCd1of4dHurVGF4DVG9045dDmvJAVtrGkS0Zm87RLi0aenZf+rJ62dk4zDNfXTofiFJw0o55H0YDVCOnG3AbM2LFqf/191J1m0HYg4/1/ZKBvIh/bc3VVLOrJe23daPfuUgTg20QFzg39LZ1nqyomKo+u+ZyO1Az0c8Np+73zaz3vx8lrKMXnL9CrbEddx6466XB7jC2ou1RrYtvfBrjDxsBNklBpgKaty0blyRRP/t8AiwZ2Wl4HkepGdZWKhp1HUCo36bbn/bycv+Kr41f8g89/184bEp9df48Pphd8NH3v0Vhb/o/t4ZYzZc/eUmeWeiSGwaOAa4J1qSZGYmBoLaoXNaKeL/U+o7ZRs1oF+LvlLUtduvR0c/S+ml/Z/Xehg1ano6jJ7TZlp7EVn/TIyzof1rve7qFFDC/3reUrNAqW3cuhS8q2756AfpV1f/Y52WhZ27nerqtoJqmxHrqQg+dvbTck3wE7AG0AZdu+7pn8ttTDb9q+ZYE8SMNA0T1xSBBD97gMo23iwzi5lKyJ7NlGWYmDEE31tHsKi3vhLBeheVoHT9oeGZw3/fbhYLkGqhwXscqzYlSXNJhMYyBSdSAXOLpxKYCokMz2R8QMAtC1joUjPQleWAvh6npkGCLjmMiLGaLHo3nXRZxr7nK7Lem85UIsi+VFmIG72INdF/OEpsizW2W3r+z3HjUJQkgtUVQ9f8W4l+a1FMZxRAjIbaCWG0qpPNzPrpqlpGGwiECw6ryKyZuiZgiX0nIsLBLT5RSBwOy8bjOwqlrl0mfPn7ObEkUHSk48HLIZdaEicodIRjlS6luqHlnqwe6p1yNp87vJr9YirrhktQJyztRydAME3/wCraheipH9bs8wTFzvbw0IRXu9PSu1KpIrRDMmowSiCFXE5Y8rczH6U86Vh4cj87xwPM4sJXepUlXLc4nRaFXjNDGOk9HomsyfCFKsbotRwyxJmQhDTSw5WbSkFFRdWjQli6SFwBAtEjJNo3n4u3Fs1x5c9UioPLt9xvPbZ6QQuxKONE/hxmlh/VoBhQ04/WeLCDZvTEfssBrWHcTDXT7ycr7npw9vLJ8hWJRSUySMkd1uTwqJqU4sM8yz8vbunjwfONwpmg9IPfJwPJLmwu5QuD4s7KYD97Nwd5j54s0dP//8C758/YafHw4kqWSFv/e9gY8lclsqUwiMceBf+Cvf5yEl7q8nyoNVZn8IrFEorWjNxCj+DAtDao4OECkEqSR3ZsQQ+gWbGq4tDMucKCUwH/1ZcSU6rYVa5j7mMQW0wrEo9/cPaC0chjtSiozD4Ia+oM61JQR2064DQZ9oDhHB6IyW2wXS61kcDkeyg4KUEtM0WR4RkaxCKZG5Cvpg69+wH4nTjjGNpGGySIYEVB++zfL+S2tDGFxP6bTFMxlQgGfDi/X9kDp8aMbtUo5U1HXuQ0/8Ps8byF4duskcAycSnc3Itqq0uVNGWgLk+QbbPfuyGovdgGzgyPvzLi99o1wVp3ckcQNsw/XeGhhzOVCpJ0muJ+Dga0BFO9/5axcN3E2Uop3nXccx7zMm0uJ9bYUIt7U9thGdr2utoNkUd26gzoxhh2DV24t75xufv3l4qxY+P/yMlmB/Pdz2iu6tbWsTbK/hUmSnR5/OPAiW+5P68WpdOFK5SjeP5mlL3s114Wq47Uas7YeZbTJ5k0LOdQEtJ8DbJFUHbofnJ+AbIBJIPi/OI2gNlLW5vU/XVK3clzt+9+U/5I/e/DF/9flv8mx4zgfTh3yy/z5RIv/Sp/8qD/mOL49f8P2rz2z8LzwHo4zc57csdeZmeN4Bwc3wjKZ2dU5ZU/BK8anTh7bVrHdx7+prc4+6mHNr4e3ymlfzS2KI/Pj6NwzoaWGKE2MY2afrTlX63v4zo07LaZJ3lMgYd7w6fsFcZ26GZ6b2pCbFGr3QcPtOCgNbsNtAzbva1knRCtoNYtEi3dzLbeL1NtrTgFNTA0PEKKAbwKioScOCj4/NqWM99AjGECfLqgupH7M5WUwL9HH9m+19+q7atwIWEgb3+CtIYiJ2O6YlQ4c4mAcxNHRVQRYHENUpB8UNUPcuazOOTDLWjHcxgysGhjEaG0TdEBczwFqNApXkm/lAGIQxBAMrKCoLuWZ0yaTiSkqqpsziNQhEFI1idSokmJypKDEBmPc55+rFs1b5WwleuKlEp20py6xeXMyLgGmm1IUYAykqD/FghndVoktL9utvIf1miOAeDiyPxa7ZcwDq1M/Zsq4tobQlWDuwE/cQVCvups7tUc8NqMtCzYWylF7saxpHp3RHSjGjOxe7j7AQ6wKSgSNFH6i6dO+dFUp02WG1CIKW2qVcS12LkNVseSBm7AVPI3Aw5PcmZ1dIGUzFK0SXdqxqVbirEqp/X4Nv+LinxyhKS1aWpTLPhWVpNVdapFM8oiPg0YXmxadvRvbPIle1UwJCNM9T9YhMSj7H1a5jGIZOndIWXJAmBBBAy2rq12bhVwT71+vFuKdd0M1icLootET+Ew143Xrp6XMLX/hl846iHJeZQ16YSzG5TG0UEgOMSz5SQ0ZQaojIEAljQnSgxB21ikXOpFLEqsDrkjlWOCwveXP/wOdfveL+4YElmzzvlw8Lf5Qe+MntFQjsxsAQIykoH0wjV+PA1W7gKx2ZI7w5CsUNdPULEldKa+MAuDIaqAhVjMqg4vKuG1+PCTS0NcfHsbhARcmA13EJFpWtAWIJ5OxrwpKJQZjT4uIVRk8KKZGk5WK4Pe3jvq050ZL8U7TCbS0ipsGeVCRSNYBavo7EgSCuqBd3/V9MI3EYe9FNIVysB/CdN39etqSYrtK0MY7bJgiPvcj9ULQaFE4t1cc1Kc7biezjBSO3bdKiYY2ebAzO5nVsns/tec6NvUfvb7zu7bqbgbyNJGwNrDUB3SlufRjPvPdaTzyhv4x26VjNoRUvcOMb1UlZozw9stPGAHWnxrmh+bgQnzq/vGo12kqYQILLsq4eZdW17kMby6qmkLNdBS/R19rr7ads9tXWHkU7xGhU7XMGEgqlZlPZkdQBgd1PE43ZRofbd9WN1G608jh35wTo0IDnCtbaf+F8PmtLAtaTYwSJnrc5c52u+fHNj3rBuTHsuipUO/4HPmpZF3N8dGN4NbRzzRzKAzfDc6oWjuXY64E8esaaZ57VaAfPAdxQ1Swa1YRS2ljYM3OVrGDeq/lL3iyveb284pPdp5sCmeprivg+tkbv2xww5as9yQv1tfHt9LEL/e7z5D3P2bou2b091oPRsMTKJ/QIg66qdq2OzbHnbK4FP0Nba3oEtaBumpsz5qw3ut6j4CDk9L0mQnO5NeDdnqPvon0rYBHjREyJkZE4VMLYEog39IoQHOkHf8U8uGU5AAXqkVJKT2C0Ld5pDAIxVQcolRATxJHdfoeF/Hd0pR2yf7tCCKhE618YkDC4Xn3meHjNcbmjPNwROBBDZTdVUlJLpMYrgYdiFAa/HRLE5GRjolZhyZYYejwcyO5ptxp7ttHXGihFyIswz6268GIGvBZSqsRYKPkt43jksLtnmqxIHWK5JzElhtH4uhISzVgSLHlURUlxRFIkhZFcYF7UczUEMKWmXiDIozOqR0pdKGoFUxAll4WSFx5eH8jHA8vhHtRoSOm55SzAwHF2RYhSQY6IHgjlHkIGMoXZPXKm5Z/zxnCvzsPPFVyTX1mBhS6lh/+rLN2b2aJJuSykOFCKst/vkXhNqm6wot2DBosbLZZgHjwvxYrcVZYFjrPycCxOV3K6SsAXYZtJ0alOaRjsfsTYw9JaDWBRK7EWzxdqQI4+l025y+5aWzBQo5o1QNIoNrViY9YGSxVKpRYrfiiYJ0SlDw2tcnEDRY828LZ5+rlak94r+k91ZGHJXcrbwwN3xwNzzQySSGKbmZZqVVuXO9tI40ga9sbnnxLCRH24ZS47SshkycSglFQ5zDM8PJDvvuL16zf84uef8/bhQF4KJVd+dnfk1bHw/d2Oh1L46DoSSyBK4KObEd1N5OuJQxLisvAyJeaiZtTXVsl5QSmuYlYNjFlNSqr4PAwBrY2i1jxCJhlb1SJ9MUZTuNJMyQcXZMgddMQkXhgqssyBWuDu7b0t5kGYppFhSOz2ewZVU5/zuazVzKBaM/M8e+2fGVGbY9MYTG45DkyjCV4UxddRixyKJEKySNqQJtLuGWmYGKZrK+SZkhvObtx/R2Hu97W2fm4NjqYok5yWYIWvVm12M4ZOudbNODn36F5MUtZVhaZymk+w/UyLMkTF19dTr6+izPWAENifVbp+l9Ha2ipxe1qb4j7f9c0/a3Zp3b17vbeFrjwPhzOj0w2oQiW+B0y9K3fgfRGE87E0ecqHzpd/9NlN5MZUZirbOiVbkLSNymwrdhs4DCzVpECv9IZcF+6WN1ynG5IYHdVoqHWVO8133QBNctkLW7HPb98/p03BKehpqmJtvlZtBUrXezPGiaymnvRQ7tnF/cm8bIpEuNG6bc34xEFrS7reVpDfGniCnCQ8t6Jn1Xe9c6BbtJjMtmbGuOsJxForD/mOH13/mhvXl029QQYk3fBmeUXVwj5dM4UdY5xO5vtcD7yeX/HR9D2WOvOLw0/53u4HpDP51tY6cFHtuR7n7dLzrNiz8NH0KZXK//3P/q/Mrlr1/f0PumRvq8GR6kB1OmpbM6oDjhQGno0vLp775JwXnp8tWH5fv0vNvJlfWhHBtBa8m+uR6jLGPTdRs1d9PxIlcjs8e5S43ahnoUaPuqzzrNEoFWXyyNe2tdpB56+fX+NaY8gdFt9B+3ZUqOGKOAxIgljVGCjgiMqW6CoBxWVCc3HP373x+11i1Hj8xhsXCUhsdJNAiOOa8+AgIaRrQhyJw757wrQc0JpRDyOJBNI4ImGEOFHVHq4hBebjxBwnHt4oc7nn4e0bYlwIsTKNBh6GJCjZnMbOezQpW9N4KEVAB0K8skVXYBgaNz6S50oKVk9hN1ri5OF4zzIfOR7vqYvV1GCemeXInRinX6Lx76f9jmk3cXN7Y1GYWqk5o17YTxrfWop5x8OEhIFxsKJ4qoFCcslQN3IlQIik3R4ZYXSPfhU3dEtmTF9xfHjD4e4rRGeGFHnx4YdMuxsqyY0uS1StekTrHbUeTXYVU/2pGghaUTU/T3GwaQXjzItvRfMqSMUqj7vUqznpzUuLRzjUcl9yVWooiNe8qMAyzxZp8vOrU5hEWjEcjzBIMDnbNJB2gZoKo4oDvkxP8ZGG3vGq6OLUGQO6jTyDtFiQbgoANr+/Gyhq9I9SClWVOVu/wWhbqFqCcAvBCxahUEs2FmlyuAt1mXuBRGkdQB0N0FyvPvdXT0v7adhCqcU9+tIStbpbxw7jUZicF97ev+X+cG+iC7VQS3ClJFNXGlLzhieQZoxP7MaEPntBKZFSBcstygSOlMNbyvGBu7ufcV/hUKvlZaBogEUrOWf+k198xc/uRkQqv/nBM354G7lZMiFGppL5JAoikT+8y7zOmcOcydW9VmFGXYOqSSRHKT0S0RKgGRIxmMR1yRYkqkWYZzGnQMajazZHoCLJoocBcTlbYSkDNQRk2BGnvUfiKkU8dysklNAjl+Jzo0WV1GvJKANVhVID5bBYwn9UJEQkmlfUClBOEK4IYWQYrhnSwDCMjNPOnR9Dn08dOEqbJL/a1jyy2406SGSMa1KjNe3gIrhT4H3AYdHFQcnqzd4m6kY82fQd17ylvKhHECtebwftfZuC6fpvk06nsOu0jZUb31Sa6mpw+2JWaPQQS+xsFM9mIti6Zc+ByYWa933cJJ42akjbF2td3AFTOqVqe23valtP7vs+v6rWmNf1XTSpXgMkrnUH2jgZRcrqybT+t+NWlMRqeF2lG1s9xQqnXaebE6PcFLSE+3zXOfFTMCPszfyKKJF9uqJFNOZ6JHtxMys6l04AXgMlF0Eh1TVoTuffId9bTqkMtFoEN+lqrcOy8eibMlAr+LuO8zrn3Al6obWoyKX70nIsAnTQ1rzloVFoQ2LHKR1sCCMfTB+TZHj0TLUxtboKkUECz4YXFC3M9dgN9/ZsBhm5SreMwaRLxzjxvd0PeoVveAzQtmPwbdoYJz6cPuH3Xv8jfnb/Mz4/fM7fePHX+c1nv9Upgvf5LYfywKEY/XrnlMZcTgvbbfv2UO47aH85f0Gumat0bbU/ZOAuvyFJ4nZ80eftXGeX4z36dyP7dH0C1oNEPpg+tudWsws52PP/kO94q694MX5EkMAuWoJ5i96eVtAu3Oe3GwfIWSSC9TlLZ/NsHX97TorXeLPE7VXEpbVWBFSdMfFdtG9JhYpIHG3zjFgB5kYZafKtBKr/UymEsqB9AXLtd225F62w3eDgxHIsYgie3JyQkEhpIsSRNOys8iyK5sUMgMVDxKEyRLFE52hGT93wPbQqD7ym5MhyLATJxJCRKqQo6NC4os1YMR52TcUNQEsCTUMgkJAAQ4rugQiIc/U9s7tHcgJCzdlrO7iqjFeARrIl9o5qYyORcTJvuF2b0TFa7YsYAyJ59XAOptwU44BiRftK8ZwPFazk8dgTmEQGG5fgBk6xmgHmUZ0JJIYUuLq6Jo6TGz/RgZa52NULkZnn3aJSRuVhdcXrOuamxuQvyNYeFiT6OAV7cRv8qtVyJVSNchJiRo4z1Oqe2PWRiNE8FtHBgM3H1MfUaCmBYSzEUih1TYJq1DDfv7sqUC+i1Bz/jlesOS9+Q0syrry/61K08zGvFKhuWFpUqCXnttoaMRlQqVIRDJDjx7xoLIn2cVxDyR6xYB0eJ9/QM/jb89M+4wC81OJSuK7kpY26lt2B0KKKLcxqAxJDQtLAbren6ohq8kVrQesB2lowTOgwImNCltlCCcGrYWvlp/cPLKXw6cuJ3ThxNY5MS2ZMiVQq11FYYuBalINa7oMBaJM7bsDCEqWrPVs+NNqiFaIQzWtquT8GMI7HQC6QF6csuEdHxDyQrXaKluRg21Sf4igMTvEsuRCSURab+ILlazitrYNQ6dE1keBUCcjFjARFScHqtMRhh4QRCTtCvCbEiXG8YUjJJGeHweWFm4F9NkX+MiIW8pim9K4EwnXWtufwfcmcvg6zAovTY8njAXhX/7TRJ/zs2p4L6VzlpS7ep1PDuYq6+MLl4yt0sAJs1t7V0G4yqKv/0VozGLMuBIWtdKqqUiiI+nrX9tQNBeZxX1agtfU+v8tDq9DBTDPGL609zajtURwLn3p/6knxvG3bfqcp9LSoyhBGmrZ/N06Vng9jfP3YKS3NcGouzV6LwQ1co5KGdtNP+tjG7eTetr82Y1NYDXmwxN0hjGtezGZMG4XpfLza8boan6z3bDueW+dQpZ4ahNruj0XDz2MigdMoR7u2JmFrVKZlM79Lv0fbyKApKRkbY1srIkhkCIPTfi0nsqkW9evr/Qu2Z/05156A0Yv/6M0f84ev/4SP9x/wfHzB8/FD5mLgseUfNEpWlEhx2elK5YqbR+evLjYD8GZ54zLXVqCuxshXxy/Zpz23HuFoz0B1kGW0I89NlWB7COs42zwtfZ7ixvtDvuf58IHLYQcr+tn7ZLm0LSnbHAqrfPB2/kCbb+9WX9tGIJpu4vZjJ0BYv9u94VtWUErAYDYGkIKHoCWS0g6RRJWBxnjWRuHRAjVDzeRyMKM5W00FgJQGy5sQMfqFYB5GMWAR4mSc4gBBzUhfylt0eWA5vCXEZLzmyXl0YcQEIYXEaNSVurCMI1EH6pKoZWYplSiFEqGWQPJCe0LsikatBkZIgbAbkSExDqYTbaJPdl0zb0EhiCVig7CMiZqvWW6skqJW884u2esZVCtaElJiSCOBxPEBVM3Iq4uBJ8Q8KjaxbbMYp5lpX9jdJHZXkyWAy+De6eKbUkTSzhI640iKe/e2CdLuxwTHq8D9vhI0E2Pg5vZDqkxkJlT3qNr9yjVRSmI+zFgegHuJqVT1Ssa10aAUsnlqLV/fF+1oFKEgQMrdQKZavZBaCtlVxYJLhWpIpuJ0PJAXM8iHZB7BEKLxgqXVbGhBC9OlFvfoxmhRnuoFyMxzrCzL4lELL/LoNQpQMyitMOy6CVWwXBUtVI1ejb2y5AWrXWHXUYrycLc4iHTJXQx31iEaSOwFvxbGZKIHRnSySta2SFSERm07xTdrNewNsKiFKiCd92ubvRkNTX5RutGER3FyXqiuvLUfm/ELWu9ZstHPShmJYWAcri3ngOAVtZVx8I1FDCTXKpQSyAOUq5H9TeL56+fcvLji53/6p9y/ueN4nynZ1JjuS+H4cOD//Kcv+el94Y9eHvj7vxX5SJWPh5Hrm4mYIr81XTMU5Yv6hlBd3UMs6qNqSEG1kkPzQtrVlqBoDhaVEqtfU4sVXjweK0sRTAk4AEYFCSGQSiJ45FTilRn66drkgOOExGTALM/k+TWlPLAcX0I+IuVIDJkglRjV5mEaGOIelcTiCilVA0v2iC9CjqPXcnlGSjvG6Yppunaq1Ngja63A4nnbpBn8yls3jPQxh7m93yhJxkueumHWKCGX6Dtx4307T1C+JOt56bywGjzBud2dqoIZH4Ho3sWVvtEMw9GN3+7hltApQye8bFmPuc2ngFMaxTano9Xu6CpVF7yVuS5mZLv6YpDQPfX7ePVoDHpUhdNIjroB3UEBG5C1XvRF4+WxvKp0P/ypAbR+fvudRReO+Z59uiFI4G55zRAn9umal/MXADwbPugAp26AQjveD65+bOfzcc0189XxC56Nz3k2fsCh3JuyTrjp587NsSfBqxI3BThTDDIVo8qi5rhLIbF3D3mQgAargdDUslq/bF0fLgLqFpFrdQdawrHiMqweydnFPZPXWFjqzOvlJbfD8/5aiySkMBDPoirnFKeWj9Lqu+zTNVEDv/f6H/F8fMEPrn7Mdbo9uV/bex49N7Fo4VgeLFJT7rlKNwxh5Mvjz02dSatJuHo9CcH2l1bnIzH0efBN1MKaAX2sB97ML/mdL3+PN/M9/8O//j+wRG+t/Ec///dJIfIvffpfIUo0qWkHGa/mr2iCDjau9AhKkMB1uu3352Ov89CEI6pW/uD1H/Bies4Prn7cn40p7hjD1CMglWpRLC0UWnE+i0QUzZSaGcaV0rlPltPSKGvnyeCHcs8Xh1/w6f4HTHHH8/HDdTx87Irmvia1SMOjEKSPcZRIldBFK87BagOKY5j8nry70OFftH27iEVH0G1z0JY3TKtMHBA6X7x5SHtGtoGDGgs1pr7YJ6+YbYuz5U5U6GDD3muJjmZsNc9ErtmMbhVSXogyG8csiHsFlRSUmoSrXWIIE0EnoykU6d7jGE6pBM2Iwz3O7RpTCESKya3W9q8SZY1SqJZO85EQGYbJFyJFkhJrYagmv2mOKUGiVQm23BCPavh3GiUGXfn7WgOUiORAqImkA1EGwAsWSrSIj0d7LBIULVpUZ3S5p5YDeX5FKfcoxby5MSFxQMJIDDvQ0RLEa6aweC4FoBlR8+qZJz57v60+hNFw1u3Kivo5ju4V1xvPTz2YI+TFDC1IiCTLn6FJq2r34jV5UQUHWx6FaXOxRQpqy8WRnuegTqFRV+7CpYKFZKBShEaOqFLXzb7YfDZ6kRsl1Q2EqgSpNml93o2T38/VKWr3R4xrr6U4QMnUOqA1OA3BJF0tAV66o63NwzVIYQfeVmbt7/t76s+hjbsDTstS9q8rucwclwMPx3sOx3tmnTd0FiVEK76mBWK0cdIKNaoD2YiEA5ZwZrQ8FKRUos6IZNKocJ2g3jA/PGccE2/CHXnOLPPCMltfD6XwZ/cPKJVPPt/z2VyIw45ptGJL39tfc1/hxeHAq+PMsdgz0epQlDy7gtyyeglV3bjPvW6Eqqk3KSMa9p703CgmgRjWopshJAMacXIBi4kYRxeqMKnokiqzJMqSOC6BWk1MoJZgiZRL9miYMAw7JIDGaIA/jUz7nYFBSYhL5I7jnhSt4N3gak+x1yrxRWqzNq/G87dZ1X+57VI0YduaB9b/6Jv99vVLSZXbmgQn5zuh/z32Frc+bb/b6EX99/VE/XudHrUxlld/IR08bIFQ8zJux+Fd1KzWtw4yNn1sdTFgm7shrmaTTjyWImEtDuctu9zvStkxEY82Rx5RmDb3bBNXWz93No7v80ZHj5Jv5UJbK54AvejCrkWoGlNhQw3ZGukxJErJvJpfsktXTJwaqnO1fKWb4db2dgcO5+j6XCEqbKQ7i5a1H6z1F+ImV0O2i3A7jgiyAdCX5uC2lkiLRLQ6FkUzpazUI3ukhX28Ohm3Jk8bW5SzUUk9miAiXQLVDNFAn7GqEMRoP2Hqxvd5e3CDWWwHJITExI5jOfCnd3/MZ1c/MpAiRh0PHj2KEnu/23e3zZxap3PmxAuv2gUO2vH26Zq//8N/maUuntxfeLs88Pnhc67SHkFcPeoNn+5/4PPgAEiXp13rifhetOnDzkFikMB9fsvd8obJqX0v5y87ZSpK8tocBhaCBlePisblkE39HYlmx22eQ7PBYCsf3ZrlzsAu7lgjzqdrVO35lNUdjusz/651RXgHkHP2jJ49B99V+3YRixaapemt24YdoiVFQqOEWEgTfFMQUzNBIUWfbD3x1mwxk2jNZF8TGqXDbBv3itfaDaq2qJdq2vZShbTMKBEJQ5cTQ+ycJAhXI2UoTPGKecZqM/hCG0LoyyyCewP9b38tCEZTqEbJqcuRJkgT1b2NToEwm9qq88ZhBJe/7YXpQqDQPPn2+VrhcJi7cV7Y5EOo8fbVFxd0QGtCcyTWEa0jIqN77sWNnkhMExIjEqywHVog35GPX5KXtzwcXvZk6hgnk6yNA5J2xHiF6gAFSo2UGeaamGfQegS9d3lcNU9xdU/QhiIk3cVebFyrq/P4tZviVFMIE2qdEElInKzPoVEBQFU8SiFdcrbRKDrdKgZPPLcHsjh9S9UGWLySdXUPlRVxNHCnYTTDri1C3XhonPtGlelTAtSpQRIhmKEtYvkaU/TEbwoQnBpWybNJE+d5waRnF2reob4I1QrLUhsjp4+hSAPbzRDzjuhKi2pebKGpf9Ue5qg2PKYetbmWJR85HO+5u3/D/fGeWRcDoU59suc7UkeIsaAVUsykOBPSg30m+bUqSLWaJ1TTjYkoYRCGGNlNt2heeHu1B4X54ch8CNxVS+ZeauEndw98cTgwjpHffFh4sb/h02nHTRI+u37GLImfHBYe5nsOmllqQIupj5U5UsrCcam+prRimSAUL1Tpz0OciNMt+6sPSeOeYdob3VOMimR1ZyIxWDRzcIUvWy/c86AmQFCKkDSQJVCPljexSItoKfPc1kNlvy/ElIijkIYd43DF9bOPzQGQdmb0SiAlp3yEsK6F7blaF2V7ZWNI/WVGLOB0E79kbF3y7rbX39Xe51k7Bw7b17U/H6thDY8NzdZWBae6ifC149Vu9DePdaF0D+H2mM24raxqP+d9a/1oHsU2Vo1qs70GAS9clk7OkyT5nrABFmoy5ykOJ+eCszH2paxJA699PL2WrapVkPdTXVIYSAwuk7mCBVWLuGRdOOQHrtMtUVrel7VGj9p+J0liBj4/fM5Hu08enW8uB7JmboZnPWG8JTxv2zZKtFKkGh1lMXUeMSrGsRx4yHdmSJO2+P0k8iVtUWYFo9ux6Qm+XkvC6GVNVjmR68KxHJzGs4Kr6+H2Ud+HXrF5jZYUzQw+f4qrNh3KPbfD89ZZv0zh+fjCRRPKSd9ae7u8Imvm+Wi0nVZJeqkL//DL/xRB+P7VZ0zRVKW2Eb1Ws2Ob4N/7SSVsIoxb0A42Ny05u9jcEcsf+xc++bv9O6/nl/zs4Sf8/P4LPtw9R1Hu8x1fHr/ir9z8pj1DufboYNZM0NXD3+hFre02Ceev5q/4/de/z+1oUYk/fPP77D05/3a4ZRevOrAQkR5FavOsPbdBHpvS23o729ZykQQsP+QdFNC2jqo7q9dCopejwe+FChvg/AgsfwftW1KhrAX3llkiK6ZkQ6uynDkpxOX1FJrqUxBL4IXNBiiOwpputPtNJFiSKDTjSl3yXQhpIiqk0ZOFJVDFKgizHAHzSJpxtQCWq6ApEscdQwyEOqEuSyvayCHiidKWQD6MV6bCMl7Rkjjz4Y1zvLMXpgsUmVCvJRFiMsMsJuuHCtWlXI3KEAnJFGhUVwNIVUl7Q7ISAy06U/PsyF/tmiSQ0p4QJ6dK7M0A6ndI3Hiyn4p7A2ullkzJC4flyLLMHLOQi1Gc6jKSdCAchDQG4mRRj5iE6SohQ2S6uuU4P6fkmWV+YFke7PfljloWUzSqR1QzVY84Xwwrqlehzp50bxXSLXnVp6JEUrJ+RxSVjFQlRvP0IoGlVEqFXDwBs4FQn1sheNKua2ioitfxKFRX6aq1UFtND8wjH0OgZi96EweQASRSdC1S0zzFMbnBIaHnlogYoC4VWq0U4/r7/ELo9QrU6D8PDw+W6F0XQghMu4mrq2dosKR7Xb9CQzPNE9PTsLXlT4iDfYMyKwgqnRKEQE9k1HWuHJeFt4eZt/cL98dMroUQDCAlLxqYBufSemRgkQfzqtT2PAYzyoNVwIYANfYLSENT6RKYXrALz/ho/IhymMkPMy9/9lMOD3e8uX9pYAf4nc/v+Py+cHes/HMPM3/l4w/49Mc7Ptzd8s/98EPG68zns/KyeOXwosz3L8nLkXB86311T7NIF4WIMZLSSEw7pt0t0+6WmCxvot9jST6nFOoMdaYs99SyUJaZTPEonEtL55mcZ0opdv9DoIZk2RVhJMa9AWZJkPZWaCPaHFMHDykl0jh0hZOtbGBT9XocEXgXipD3vPfdtUdSmqyKN9sNUc/Qz7sSirfHvdS2kY5zENO97sKjzfR9EQ4zkixXqNTc+dHbhGD7nI+yJ2w346Xn5vR14EK/WelSIkLQlgx+SutqScyjy2w/9oiv1bxbs+rH2sfmkrRmu96iJqE6OqUlbcDUef5GP+bm+++KzGxzKFr0s+UnTPt9B2Om9W/7/uTG6pZmNISRq3TD96++74mvVjfCpER37qT0SDRGddqn696PUjOl7+y2LzTaUzvf+TOVwsDVcNsBXvaod5vLihrH3ufnFPfvBMuwRmqyFz5rLUridnjOXX7DV/MrPpg+Pn12/FrbPtVqubQidUMYuVteo5ixfJWuuUrX3QBtydZCq3AtvZbCUmd+//Xv8vHuUz6ajBoUJDCFXf++3ceBv/Hir/PZ9Y+4TrdOM7ucQ3PetvTFooVDeWD06titNSpTccWkIYwnxjsYELsZbvmvfPZ3ecgP/J/+9P/Al8eveMhH/tkP/xZDGLlOz1i8/kmpmSEMxHBKs9w+32DP3Ue77/F8/KA/ux5fQVjzo87Xiu4I8M9uFdS2kcZLa5YBydIjIimNbGmPbb62uhxBQwe22wjj+bW0c5/PwWM5AFys1dPG4Ltofy5g0RfrHpJ1T5AUN+YclapvLGhPXgxntA0DAP538MRoLIRlyjyhb6qdP98NbKMlaOeIeIE4NToRPYriuvH+GaJ79mukirYQSZtulgcQo1VLHvfENBGHG7tSVTTMaBU0gIoldKrsHFSYhn1wYGGJn0pIJs0b0+Ba96aNTa1IzQSnPhGNThNSotFatCygDri8knGIVrwthIGYRgc9K1ILIfTfAah2H8wYNwlLlQGCeigv2DljQsVzVHQtIiOiDOw8EjKQy+Ia+leUvCDxiloXSj4SysGKA5aDA83igGIhZ6h5dk8uPj6x1z7p5wxiOTVRrLhiEEJshoqiRRoLrT9uMagrTikhVNpWUj3PoZTc6xPkxakyCLEqGhQrbFcJ1cAlghubgHjV9CCkNKzHzq3YXe1Rtpb8XDRbJEXbYmX8/VosyXjJuRdjW1wBycAj/fz4tV1cFDYLjfgzIM65ajSg9v3+3Oq6KPlDR6lWp2QuwpIDpXquSgA8gd/ynTx3IkPjPJdcLE8oRuLgAEOabySCWnVpqSPq15+mSBiEOCl6zNT9TD1m0jAwlweXa1IOufDlw5E/ePWGD768JoTI7oMP4Crx4vqKj28EmYWSI7MKuZrUXl6OyHC9cXA4VaVX4zaAkdLIOO4ZxyuTtsajlVhlenvevcilzpR6D2Wm5kOvLKtiuVOlZJNZVg8xBYvSGtBzoC8mTR3TSAzRohZxZ7kawWq0RC+o2Mew38JT4+dR7t3J+385oMK6cdZPNvPwrM9fRxf6i7Z3bZrnfWyvnXv2RY2C2YyER4aCU2Hedfyvuy5BLvbl0ufeZwBcAhuXzvMoctT6uwU47+HDX0r4flc7Se7e9ktW/7XqaXG15t1t3vhcF+fwm2pUUwRrXveWi9KLgF0CT1h02vpvMtbN+BzdgG21ByqrcRZozAx7lmzvrB3srhS5r28NGDQqU7t2MBBjqkUPvLh4tC2gWe9ZwBPovXf291n9ibACxCirfK/42P7s/meMYepRiuRGcq4LS1l6ZO7j3SdMcc8QRuZ67PO6Ue4M/J4a09soRgd3m7l+KgMMWxrheYsS2ccrvrcf+OLwOf+3f/of8my84cPd8z4eKSSy01/Fd8at9PBKH1uBsiAGdOQ0stfuezi7V9s70vcV3u30WCNn0oGnsjoatwIEpydQVN6tcHfSD1YnxXmkeAt+vsvoxKX25wIWvlUSO0ej+VOhB2/VjL72jtV8aPDCvxc2Hjm3o+JgSdNGI7Lvu+8ZaN79SimJgnl2kxc2G4bGkXa1mdIiAmaIFp1QGShhoOBKMtLmu3uDRQhBzYgcEiHtIU5oNHk8VaUOIxoLMuF8aNOXFzE+tluirGpYkJrXxC0FVSVUC5cHjBqmWgjVPMohDs77Dl2/vBXzQoSmzrOuRc297Q9qm0iqaMnmvQ2YkRhuCGNiSJlx74Cu0TxEaEnzEgYHFoBYFVRFmEZbbFW9YFxVFm0Vxz0xv1SWZXaa1cLx/hXz4Y6XDz9hXt6S53sE4/6a99iqXg9TIA3COAX21yPDGBingOpCKTPH4+JJt0qelZxN2QcMTMSYiaEyjmq1B1zmMgjUptZTlVwsp0MRJCuBYrkpITKMiTRCGlp9EVMDm8aJISXGYUQVSq48PLyhFANN4kC4lEAuheNDZpkzeSnOxQ2kkKxI31JYZi8UWAvHeUaCUFW9loYpj+Fa8W1xOJ1V3rT0+1/drl0jF110y+6j08r6sqRYPZQcWMoVcwmUUkjBvSXsqDWRc+J4NE60No6WKjkfbc6lkd3VLeN0zbR/5vN39ET9SEgjwfXxY9pZJCwmU0srmRcvPuHu1efs/zCh8wN1OXB4OHDMmX/w8iUvl4VPf/4l/8pB+ez7n/Jrv7Hjrz97xl0YkbvAQ008aIKbF2hVVvV37WuUGU4WkWjKdJaqaDknpcz+eiWWimih5AfK/Jplfkte3jqAWFjyYpRFXzmskJ0lYyMjkgJDCl14YhiuPM9psNo3ITGEHTHa/BrGwVXfLAek4UppGEGsj9ohna738FFrr343GuXva/XsnFu6yLZ1mtL2c2dtS5fY6vxf8pp/083zpCDU9hF6R1+6ZCqn+QJbOs15Ynjb1Lfe0mZoXRoHemTgjHq1McybwfSuyMO7rr0nWGs9Marsd5Ma3UpTbo91yQt/Dha213H+2Xd58bc5G9tKxK1vjfv+i8PP+I3bv8YQJ66dItaOV7VwKPeWj3CWwPxmeQUoU/y+1VhSk+qNITHFHfc581DuuBpurVaAjBzLgVpNurRoZi5HmpLXGCZzmnkuQPBoyXl7l5daHEzth6t+/dvk8Xa+9vd2/K7STc9LaeB2S0O6TjfAaUHDolYQtEWCWrRoLgfu81sE4VAe+PzwBbu049n4jNvhRY8k/OLwU/7xy9/lxfSCD6YP+fH1b/Q50WlWwJvlJQ/5no92n5rKkEhXPXrIdz368Da/RggnNSVyXWiUwyiJFIcTute27eKeXdzTch3//T/9ff7nf+e/z7/4yb/S1ZhadClgzqNcF14dv+DZ+EFXEmsV3psE75bS2BS3muTyuUjBeSG5Jm7S7uclcP96ec3b5TX7dEWS1BPdQ0+eftwaTa5daxNeacdsa0ADLdLoUW2d8md80YWlHJnivoPNXyW4+JY5FtL/if/dDPlmTJu33IycrVctuOd3uyyJni6U9msDG+rF5ZqeMj1piDiseQvREaB7ebsBFtYFVEJFY0VcnjJWV6rqCeF+Ld7/GApW5dpVr9zwFzGqRxz3hkYEGpVBGqDoyLT5Oppl0MgrqzfRkjUVwTz1RlNp1xI3SXpuGG1/svZ3O4CqdIPRrh+HZe27ASIkRo8UeLXfuAVEjboWN8cPXlBNeqSpo/Bgr1uUoxrwqspULKG7amWZ9szzAyEmDg+vmY93lGzl6mM0PnlMwjhZVfRhrIyjFzL0CucBgSFRBKQGNFrNjhoUtCJiyh+1WqVvdMXyVk+iecfsfokbm1EMhJjKUiCNkWGMpDEwTEKMMCSxau1iUqrVlZRKvidnp3dhx641WiG+HF31CLTanMpSKdnycJpBagnApiQ1HxaWUCgDxqQ625q7qdUXunY/tu+vRqktgOcGpnvWMXUoCQNxuOHq2WfIZHSe0SlDMe29yrMBaBE29INKKYvNjjSy210xjDvG8cqek5D8+VmBa3Dw3UCYqDkHrl58TBwH8nzH4fXnzG9fkUJgzAv1eOS+ZP7s/i3/r5/8U/7s8MCXy8L3fvhjhutnvAg3iCiLgkqw6tjulECaHpcbOmqmeXM6KMWeCVWrtK0FNJOdsrcsb1mWe/LyYPe7FnIpXvUeWj4E0lTZEiHtSBIhDMQ4EcLAMOxNFcrBhckjj71Yn3iSYaNu1SCb2r/+LDeDr7tw1t9Bem0ZkXV5+lW3c8P40uuX/r54rO4ceb93HBzQ6Oq9+ybn2BrD2++Zsb9+7utUbS7mkOgKit7Xlwa8DPPXzafl5HsdiOnp+c456xev89zj2ry3frZz5aqvvdb33IpLEZhL42Mffvdxprjnk933ToCH+no9ekG6XGcuBIyYy5Fzuoj6ngVWvOzN/JoPp0/6uDXQ0M616MKAKVw2I7iBry1V6H10sPUz7jk+9yarUnUhSvIciMu1LFphtThEgoxn4M+oRC35uyX2KpbY3pST2rUlSd3g/9uf/m2vKl7ZJgQ/G17wN178NmOcHhn7XaYWyzdoVLZ137HfWlXudi/7PPbxWnokuHjSdmKuJh17qcCbXatwMzzjf/wv/Jv81Wd/DYA/efuH7NOeH1z9uMvlWjHDhYfywLU+I+pajHOlYcnJcVvkUTfj0BKs2XyjJ1pvvl89x9Nqnqx0yRQSV8NNH4uWH3W+nrQxPc/HsLXB7cazebYFNu38rTXAppzmTllyf+lAq92P76J9y4iFX1B3pXFiSNvvRn3gjIqzhg43cllbRkYzmDsaUSsUVo6ozmgIxLAzLzojcYhWxRMz2izT1UwIk5yNq6GsG8MUjC6CceL7wu6J3vaNBXSxPAqaZ36xJNaWjN2vx9WgZDW4t4a9tE1qs7C1DXC7DrmQUacznT+ovXXLwUHFNmKx+dAJuOgTFETUapDIACTLZ4jmmbe6FM6bb9+jTT7p1yH92GJGMY0LvHUBrsYPquTdDcsyM4wT93eveHh4y3x8A1oQqQwJUlLGsRBDJsaZlAohbGq7BiAmi5TVRLvtjepmz58VOWzRMmmhMDf6DVwkK/GhpmqWolPeg4HTlCJpCgyDMA72XooY0MRqFpSykJcDy3JHyZbAbsnnAdUB1eDAInqhwMUvwtTIqnuhJQhosFyTrBwPmV2s1NGME2ljLm3KtXvRJ5hbkeH0/rTZIzZwLeK3DQmDOigeCSlw/ewHxCWTc2U37kgxEcd9L8KWnNrT9L1rLahXnI1pYBx3DKl9rtF5ZPuYrwZT36ysxsT++YeMux3UI2+icKcKEeb5SBXlzeHAm+OR+5/N/PTujq/uDvzttOOjj+HZix0LkbdYYB4xsCv9WWrPKgQsJ0VzU+QqFsUAj+wZXa7kB2qZmee3LPlocsuleLInlBIo1bj4lrifjNIkAzHuLfk7TlaDJwyMo1dbDoMDNFnHaBPFbPM2KGg4XSPOx3D7fAUbVJ8OLefo8Xe/63Zpw2pG68lrX2Ogbtv7Ptveax5gHCC0OF8frQ7KHg/KJQBzuok/BktfZ4Rvk7ItYhoeeT3Pj591I2XL+vxsx+4cRHwd4Hqf4duomyHEC998d/u6a3/UJ738nfcdZxf3TG6QtZyINgnGMDKrcuxJ0afe2Kz50TW36BEY8LjLdxZhwIzq1XNtRlmpmRQTgiXaWh0DW68bH7+NbVNTClvp4U1/2nG3160+ZxcHFpZ8fln5LGvmq+OXXMVryzPZAMw2rxadaWUbrehiIdfZJdgDLYO0VXNOMnAzPOM+3/F2eeVGs537erg1idUNEGpzsF0rEnqOyjbZvn1nWzF6G2Fp45urAYtc7foDDubCSOIysAArrPj3fvBfA8zw/0cv/xEf7T40YOF5HK0OzbEcKHWhSLSoRhi6tHC/F30/OlVmMipzkwduoHLj0t18rtGeixZijH0cktcRaTk472rVC9VtE8xls141UG0UKXt/SzlTrZ4MbntK2OT/NOd/SxhvQgX9nn7TRfhbtm9XeVtWjiDKKoElzQh1YOEG0CY2gfaHxrnMat5Ee7v2DbSzBmu1JMl84Hh8QwiBPGWGndFmzEOIR/s74aFbYF0uU9yrrQpNy9prSrSqqdJyI7wTpazJxc1+r+JeUOmpG5Yo7ucOIZixf44D2hD0Dr6jyboEbl48+1AzQB4f8r2HDo1A074hEO1qY2zRnWCLHUZxPyVxy3qvHvWtbdxrjObEkPSJLeNIGgbG3cjt8w+NUrIc7Wc+kpc7Sj6yHF4yl3vL1ZCMhMIwqKn5RHE+bXTK0oDERD4u1Jwpx4IWQatSspre/wh4bQItIxARErtJiEkZd63GgFpBNy2ozggLtQTKMlGWwFwDebHqyzmrUb7KQi6zewvs/iviG3WgRX6IE/1pkcgwmWdbxPIB5oc7jvOBeRHG6ZbKLcRrmpKN2ZdmEIt7MFb42RLDz5KyZV0E6WB+laZdtd0wOmGKfPzh95iXypKz5e9IYBhd5rQJEkjz/p0+3y0v4BTW2OX3TesEd7ZJbA6BgqDDxPVHPyKON+xf/ICX//SfwMNbPgyJ22lHLpnXhyNfPjzw+R//KV8+HPnBhx/y9/7232G/e8btcMvrmmiq900BoyXygws9VKHQFLtM3ti8mgNVClUyOQxUCnW4RlIh1krwiMAo6xYTQuxKb+Ic52GYPDJjhZLMsLQ5sXLBNx4mhY1d3O9VK4x5zufuLg1ZlfO0P2v+gq/Ff1ltuzGev7b9uxvbyjs/1157X27E1pO6+dLpT94ffWhztBkTa7zz3ddwKbFz+/2L9Kl3tG3y5Xnk5xLAaUpDdra1GvP5NQmPQd2la/tltHP60yVu+zdpW4UhkcAUT5OKg5j050N+y4HA7fC8j8/39z98BBCbVxzgejCjObmcKHglcHeYpDDwYvyQk6Raz8so7oxMWlx9q3KV1noZd/ktuc5MYdfnXa7zyRwEGGSgxojU0Ku0b8UNsteKaLUrnjuNqL2+Rk88+blmq7Xj/0VJ7OIKVJIMFCkc64G3hzdEiXw4fcIYrNK15WCoG+f3HLx2BQhLPTKGnSVEb6JbK7BaVcMil6MuJ02EIQzA2Me93YPzubNGNiqDU7NXWeLAj29+5JXWDRDt0xUP+Z4vjr/gj978EX/89o+5Ttf8sx/9rZ44H8Na6uBddL0WXac7KbaCGudNeyRo+/4gAxrT145H2GTH9kiic5pbHY723vmxTPlK1rKhqmSsiN/g0a1KpSmOqZg6G9gakzfqrL/M9ueIWGy9O3TP9Wq3bq0HS+ZG1lSo1RBth2yvuvHU3/ACb04xqEBRQ2M9QoJ5+5p8aY969M1bfNfWVY7UOea+deNpUFhNhGYYCxVP7O7Hcv600ikJfQy2Nvt7Khr2d9410S68vip+PEYmJ6ftpubqIV670l7dGn2+gYXQx1Nx0NIv6uvauaHASsHYXosbx5YcbfU0aq2UZNU+l+VIjom8HKAUsnj0RGegOJe9CQA4RUsmCCNBBgbdEeJCQKgLaBFSyBaVCAGw6Axhj2AGfRyUEJUQFkTMe63VPDum+IFx9bVFrJRlVmqBnJvHKVA1rREDgtHLMLUfkUhMHpUYXLo1WPKu0YtGluMDQgLfFMb9BwzTNWm8oiuiOahoy440Olq3KMPJPRDEKD+yzgbtD+vWOHOwobVLJkevq0E1bXeyGm1Mi9U4kWiKZZ7XRDOGNsZvxwz+7D02xtZfepK5U9Vi2jHunyFhYPf2FUuaONZKmu+R5ciUKkctzEvhizevEYFXL7+iPIukZ3u0Bo9b+rqgoQMhO6eDMX/eWwVse8/pWS1c7Rt7U5zRvtatCj3NgWGJkvaaFfxslIkt9D93Gjz2F+n5LUIvPoqrAljbBDdAzt/4jqLc30k78cq/IyrwLnBx9qHNiIv/fXkte+d5LqyT37b9eb53/p33AZrtp05B6llU6Buc7138628anXnX935Z3tDmiZWz58c884+jQFsqTQNbWwMtiuVabIFDM14Vy6XZ5iystUoCceu40fAoKrgqVLUn3iIZwmkORqPL9fyWRwbruqb2nA4H4nq2jjfHhdV2OvOmu8Hfxim5OlR3jGz6c6qK5syT/gonnz9vcjYP39XakRpACRLJWNL1uYxqmz9VC0u1/V3DKWXow+kjhjAw17nTjVIYuEk3fLz/mK+OLz3idAp4zsfo3aBXNg6qd6wj7wDo78pRenz+dpQtm4AuxHLe53f30hzhomuk8+yJOXFe2GvfTft2BfJ6R+TxFFLMG6qr3n9/vCTBRjarTa9mzgrVuc90Ay2ERBwixB2D7CwZWxJFR6jNy+5HC6484waEqVF5HyuUYtWW7d1Iq4xNEJf1DFQMnYKiQawaswym7iJ+DeKe75O1bH1Iv/42+ehtPvbL2PxPPZnfpEn3hLbF1ag8rMZTO9o3OujpZna++cvJT6OPaDTpXdXKmPbU8ZZaMsfxBbnMLMuBpSweGbDk6FLmnpgmISHDRBgmbq52QIV8Tzl8RZ3fEuQOCZWQKsQdhIEgzwgyIkzkOlM1k8tb5vlAyRUtNh5DGmiVeTOJUoWlCCVb0TNp6fTB5G2bnqvWaP/CzgBUnBi9mNo0XZnX3wueWdLuyMPDW169+gWHB6sH8fH3f8zNbuBqH9Fo0nSDU/nwiJKImFqVts1HfeONnLBn+sLk87pZraoO9LBxmw/oYaa8OVIWU/bKpaIqlLjrFZ/jsLek7N2eMIzIMBBcHhgH6Y0SaWJYJqMMtc83GyjvW//ZVLNMrnm62jFdwTDd8vb1l/zsT/4J88ufUvJrnu0iecjshoVXD2+5/+KBf/D7v8dHP8p8eHVDyYGskRgqBPVCjMEV4drABGKaVmDTDCzvTkBJXSbY3l/jPOK2vqyeFd2MbQN2Ei48Q7p9VC48Pe1vu6flzGZ6nLPg/y+9Zw4sjNZXvpkq5F9qu0Tt6a/pZXBxqfVEVViB4Tc4t6InVcIvRVre1y5FK+DroxPvOtY2uvBeQ0JcolbM2aKNLsFqkJ0IkL/nWEZvOZMJdk8nqn1s3wdAthGedszej7PaG+9q7wOUkUhLaG1gYYo7qz109p2TOh9hIGg8yV+4xOG/y284loN56Td0HKPVzB2MnLSNbGr7rAlUaK9hEENi8murWrryFDTL4fK4bCtqj76PzOXo3uetw8KOt9/UZtj2G2w+tKTlF5vqznA6Z1sUJ4Vbrrntx2nXcZ4D8Giuf4N73Oa4SQV7xKPWPl+2YBcsJ+SoD7yeX3I7PGNQq6/RANYPrn5s1crnL7lKt0xh6rK7n+x/wJ/d/wnHcrxYmd6ur/S8g/N51woanlc3P2+qSnFZ/YHh8XE2BuP22dzWI1G066GugDy8UxBge+4WGW3n3coBb+9ZA9edpqmlP9u/7PYtj1qskvEJzUI9adCtUhFcL9Mfmj5VaBt1AxVB7O9WW9k+4zujmFQlMjBMpkZkeu/mDT4HKWYs+/c3zbuy2TD8/z0SYa+Hbu27j8CMruae8M+EzSf6uZuxxAoSttw16d/f9KkN09aiuLTuy+m5vs4hcO6Lfteb7eEOfkyz7fQMVGwMMSf6y8nhzsDD5s2wSZw/ObeCjTVdiljEcjyCgMZAjOaVqcXCzgZ4ilcf98KLbkFZAb2IiqBayPPErJBlpJaRlqQsOpjRHa+RMBHDZDxEKjE/p6SZko+U8kBL3q1tjofB1KpSIA7aq3bbxRSjq4RgMrwyIDKS0jUhmJypSecGUhpoVBWjyQRSTOz3JqNabjMigaubD5iimoCAHoyyR6PuqeWXBMF3KNr2JOpSu0i/F+cVuU+iSfboIqos+cDh4Y63r1+yFJcH9joes0BgYdGZWGfLt9ADqe4Y2DHGG9C0znlVtGVU+rwy2/yMItd/NlCyfV48+W13w5VEPpbAV7sddy9/wZc/+xM0V8jGS12q8ns/+xkPV88JHx/Q8drV1KpXGV37cvH52UQfT+ex9P9080bPedH1S7oOuL/W/j59ItfnXfprZ53ZvP5+w7Z9ooGhvsYWu++lwpL/8kMW28rUl7zpJ8pHbTw2XOJL4KK1dxny39SIXdVgtNNK/qLtEiB5H1C4ZKx/q8/1dXQ1Vr9ppKBLk26AWK85ImEDXFagsQVh3Xuu63PQ/tvSls6NxRMKHPT5AW5WbebJuTpPnw8O7qsAqid9OU+wtfOt4GkQE6bYHnsfr5nCzmuWrDkDwEm0A+hc/ilMj6IjY5ioDCfSsq0Pqzz/BoxtxnLb30sthmR5gd8ggiRYjZB2b0KM3YIpbkzfLa87hWeMu0fA8k/v/hCAF9OHTLK/XOzN79clY3p7Xy81ozCuuQGtsJ3Ny1UNKUrkdnjmak3xRCHuUO6pajVJmhzx2+W1FSXUwk265dn4QZ/rLTphOQcLQnCRkcf9tOKTRg+7VJSug++NPWwFgv0eSDgx5C/dowaaYZOf1p4peb/8M9BzuNrx4DRX4+R8ZxEU+SWsd+9q3wpYWJivbEIsvu1qpUUqELFCcR4V2F5yK9zVfm/gIjg4EXMX+qYSzLgT01ZWaQniG09gb82YOn0w26JJoOdP+AfcCNga0NuentVC7IbxGuI0m3y9vgYW+nnXrm1CjOv5L0UqHoOBC5Px0oO6dYTKBa/oeQRBmuymdMukbr2j7TpO7J/Hxk476mmI8fQw3Z7TdTb0B68dVQISHRgOsX/Ja89Z39xAbUlo7ba1TaPUzCzBQIhE6pxAKyrVE/kjEq4IcbRq5FgtihgtV6KkhSUfTN2pzP1iQrRIVSS6SlmlVitYaJWcDTjEtCfGiRh2DOO1y4qmPh7RE3PsezYWFsFIDMOqpx6HHQMLQY6mLyBqwMI9++YxX1mZ0u6vg/TOs9/e+63d2++ifU4rlLIwzw8cHl6Ri4GlMFwjUSji+u5qUa2gmeICADEJqtfeh3a6Fq08nSSNitU31o5t2rNYVrPaH7Aw7BjTwLNp4iEfOSrc//ynUGdiqVQ1I+qnr14zvb3nw+OCTkKInt/Snu9+/u3x2y8bY/fsN9l8X84/tKI0D1m36+om/smx15M/fulrMMT6MTm9FjNM7PfaH7T1A/k85PErbo/UiLYX3wGDvbYaCzz+zjvAxfZ43wYUrHkQTluRdXP+uu99Lb3oXSDofdfxDY77vu+fGgtGsfk6cNHO+SgnYrurbd7rlBrPpVtpNhuAYIv5o2O2863AcXNNm2s4AZjdS/c4Z+Tkp6tPNkNUW/L7BuQAPR8lSHBJz9O2TTbejoWd68xZqZW5HMy7v0k0bh5/OAUKrZ0XjmzXfWksLrXoDtVtHs+75k43WNv+s3mvJU2/ml9ylazo3uDHaonEVQt/8Pr3CRL5Lww3vTjhO59D3a5Pa+2Xr3uuuoAAwYxyWefC6jSIDHHqhrhuVKyyJ2JPDowU5VgOzPXIXGc+2X2/J4/3p95BqMnUhouAyc67JvVfuoztPG1zrbLWG9lakQ1Mn4MtcZu2ReHamJwI4bx/AH0vPV0Dvq41R883jcx+2/btgEU1idYmpYdLiapaGMgMscEWAzFwcb7Bb7n+QVoosIVutgtKi26s3+2mqDZ4sunb5hNra4vQth/nTU6O/viiz4+nG3i0NZXO7PduOF045AVD/4Ld/s3b5kRfd5hueLqak3nC7b160u9tH7vFsl7rhXdPJul5tOJk83p8jHb0dStYC/5Fv3U2TE2be+1P1YjqwDCM7PY3aLWicwqrPkDb8Dqo8iiVNrirPSrQ1MUcudjYeOQEtcrT+MYVQ/Q6IK1icvNUNQ+tz+MTS9v6HeP6bChmqDZhgKqBoh4mJvfxbRXVuzejWfUn3mDWiJiui/524Q/iT2LEZJpFyTlTNBDHK3a33yPtbgm7ZyYd66F9i47g1xxs7IvXCfHq8dZfcSMjtEf2a1poSuI2vj7+Akxx4gff+zU+fPEJtQZe/eJP+fxPfxdRW/zj/oZ5vOYu7Nm5Kt0qxvsN2uXFo9+rxx9cP6vt929kw5+vNN9w8/hGbX2q2m/1l3n4b9oLPas5cbaRwrkXOvTPdWPiAiC5tAG+yxO47cu7aAl2zICI8pi/z8XvNIPa+n3ZmLvUTgz0rYHNxsDUx97JS5/dXu+lcZHNf+9qW+rSebtkZBUt/Z40Q2tL5/GLfKeBdh6Vat8//7xRQujRo3ddw9ZA65EWmsPGC8+q9gJxXzce7ZhfNyZrlCHw3ClFrdZAG4P3Jfm2z1ZqzzE4BxhghecaDW2M0xotakphbhSqVkvU1a+n65z3A5SPdp9YtCIYqDqUB3731T/k5fElXx1f8jtf/D4/uPmE337x2zaeF57jd0XSeiVrv1fb+76tVzKc0cna95FGFSoeMYp+f8NJ/svN8KyPXxvLZ+OLfs//7OFPmcvMr9/+Vj/voTyAqtOfvl5Q4V1Oixbx3LZWrya5elepuSeLGyB6xzPSno/Ns/JNjP6TSKWu6l3r++8+xi8jQvuu9u2AhQOGVqhNpYWSncogQpUBIfmhTQml5zRsoEIQoZg4pAGVasa1GXSKhNK/I2Je7FMH47kJvfUUbl+Ss8++e1PXc7hyloh98qeuy5BeunntlJtTv2sLvOxdeveEOInIXPh4F6c6O2w3Ljf9baaTnvTxIhw6PZGcfuoUYDfw1zbD9uBvP7E9np4dcN0QzofhBJmfXJcdIwRb7GLqHTiNorRD9s1+k+zex1NPvmMeHPfOqdGhDHM0ICGe57OOrTqqkQ4uTsdROmjxf20AFRTL5ajVQv1affHuH5f+t8ha1aABGdWmUraNHPSHa702cbAiwULlcSSEkd3+Obv9c9LuFsYbAxH+X+uj0ACxVbvvQaUG+uXU6HiMIs1j7OhnvUluqWuTY/OXY5oYEZ5/+ClaZo5vv0C0EELk6tmn7J99hAw7tNHwHs3XTR90vQ/va6dT+tzY3bZ3PHAXn+FvBHXe2965V6yP5sWI6F92u7RRXjKMzy/wfRvspZyubdsaPief0/ZMfr0h/stsl3PQvoEBwbujEOfvfaOoyreYH1swdRKhuHCvLn5/Ayq2Ht7t8U899pt+Xur/O8argY1LeQvfxIvbjnE+zqfX3yI2tV9V39u0mi2g7wCeCEjwlLzHc3w1KJ1hcXaMLfBZYxZw7tVY6tzH9FLthEYZmusMde5GdhBTnxrCwD7tecgHPtp9cGKAb0HdFnC/r70vevbePCKky0b3UgFnxvCJcaz0a96+16SoTwC1O73+Is+9PUehW7Wm7NUA0DpH1ghTewZad1cwAR5Va8+IrKvTN2mrU4bT753NxXMg+E2fi2/bvl3ytgwQdzR9HuK6WLRHQl0NpyvamHucVfvJ/r/i6jaYKo1WRQvEWBFxUVr3/AY/Lrp61a1tjIeNEXVi8Ipsv3ChmUHajTLZ9PLsa4/3rzZNLx/f5sfXrODneOedH9v055tsCqeDsP7cbLKNstIK3536PGVjK60L3uW+bmp36KW7cLoo9uvZ/AXbB+7SA3X2ihugbf2Vs9vV4MrlwXJAuD3h1io7PcnmCHpyuP8fe38Sa1uypglC32+21tr7NLdx9+fP34v3oo/IiMwsQmRWZjVJI5VKNQJEMaQQNUMIBkwRI8QMiSFDJMQUkJAQEgiVSkAJVSEqJapKmRlVRWREZka8iBf5Om/uPefsvZbZz+C33+w3W7Z2c+697v6SNJffs/detqxvvr9vg2ABSIDYXJ6ZkLEtU4KgHHJFAgYwBgQAS3RYQIiOxS0wkXHrqr2wJJvxXJRsWcp8aL3yWVSrRNLg/YBh2GF38wp+vMOrj76H6e4TuOkG0Y0pf25c6qcZITbrSQNjJte7logxuCJ9WcC8gBDkbIFHYUiU8YiIEidi8vjsV34Ddzc77L14kHPDiJef/BA39x9hvHsNTuJwZPlHuqZZOk+M/DlFIDQMA0b2L92sgXbRr4BQUkGstmhnv9q1VK+Ld0tUDbTuia8HLLftqPa5cldx2t1oPkmf0eZL3mm55txp62b5Zs9em3ocXavvfYqoseDNZcmfXXdFInSKuNoqW9MpfXhm0YNXjztzUpVRMHUp1zOr7UDd1pv6EZMeu/bnNOA7Nw9njV031Xk4B9m1KcQlt0nVY47xmPYvYaQRQIl74OC6RrG63iqVFxRvSMUwfdtlq5UWyXUrLvNt/x6Wt9k97s1wh8nVge4GNwKR8MXxzwEIofHd/fex83v85ovfzeX8xovfBIGwT5GjtX5Vs1JPWj01MjsHRRp0XZI1EwHjFvhU6u3n0Y2IPgU+TOvMBvRb1XmBWqImq5qm70wkEphoVPNKJC7pj9oi6Z5Q6ZT+5YSNT0lLqjanMyFH405rTAnZ5zAy3jVdZ7ztdoDbCcgHKQJsoJu6cVTA1HAnQPkipxSkDtFBOJ8J7EAmBFBZiM8AAUgi/gvH5iL9VW5u/rNlW7R46gDUPE2hBbH3y976LQOirbxc/QFK//OBnn4vC39dWoWzek00VHAhObjppSWERPUG9hJsLklLdNa/bR4B9bfqK3WkW3Wxud3thdyUk3+g5vcO/cTrhpxIpQB1s5z8o0FAccDCEUuMYFeKLapcFnon0o6TGpEjxKBRQ4u3ljUnj0EsXrB2uxvcvSAJ6jZ6EB+BhZGCKUDIext0UgkJUYPkHEcAACaIsdSQULwEmBTD+BmEBcwzlvmNuLblgGGQoHLO3wI0SF0YUhBMykyGyQEv7u4wfe8HiOQAN+Lm5Xfghz00DKCcOGJnwSCRhuZ5S6s+cYWSMh3WE3r6EKiWl/5i7JvWz/vfv37o//Wklit2isvce6eXWs72tRGxAQMgTd3ngOi7pEtAcO5Xe0w1KlRAe5eyAezm9xPqWlttsEnbE3gBM2NIrrAB633r8pWb+0h94pFARR+dqJunl+zdXjzdFO59a4ys6jjKALBgVQO89oislatSECZXguSKxZuMeeSIBUvSDHcrgL1uVwGa2T1MT7WI6zoIyZ7DZF3inKIrLzkGBkMCo3kMleG9I4fP9t/PhtwgwuPygD99+yf46eNP8YvD5/grr38XL6dXAnopilvyql3Knz+ddK2outol6RCeMtGS3++M37l0P77CjV+SZy+fCaQes0A9NHkMK+JP31ECMPCCOc4giIcri4nqNtYSdAaSK3iNnZT1XtJ9xGacLh/b3Bcu58KWlLPyUvWBRNtXSiwGMA2AEhYNl8wmNhO31XT1CSXWV0I4xOSjXydACjGsTgXlLUuwBX7ne1O0L1o1By7PbHmqblPVseqc5i29LGKQoraSF8SZpipXujSujG2dsemDdCRXocSF/JwkFRZDEVeLmaqCzoOC8lKvbSm3EhdoQVVGzdXXeo3Zd9Inql/P3TGojrmeD07/kCmpSr04JKQ2ElTn0cLsO2bM6w+mOLINV5Bb8isXI7D6rDHvtu+z9q0Qd2AgxtrgjGg96vrVkYP3HsM4SGG8JA9ZR1m65ABKdiSU4ogg6YzGGWIEK4dslgRgSNwmBjgihkeAZwBHEMR98DJ/CYmaHkB0AHgSFUhOUgsaIYwKD2txNQ7AcHeDAAc4j2lSztEMcOEOyRJJ0lVWyQ7nZzK1ZAyuOVMEVx3phLI+zNLoHuuXGuVVNZWl1n34S5yukQJY5Y9nc92MmsE15XwI6U9btwUDluippBtU798ecHjXMVIArpzmEa2U9PLxqPS9T90jVIBzW/YWoaTEWPf3Tp9OgTYl4nq2Fj2gv5JIcDonjQ2P3bBFx35twL1VT/tMx8FypW35IUXyFhs641YU4twESeoEyLraD7dY4oIlSV8iB/z86ef40ds/x1+8/Qn+yuvfhSefvDV5tPYESoydS9eq3gGizhU5Ym+iVhdblssJi8lNiMm7E3CeKBGJUIul6nmMKVaJerSymg894iI2BBmAaj+JcXjBg457K3SdMmHNuiYcQEo419jJcCY3+/Y+05USC+UkWkPohnBoRqMDxfPvUKVsIokXkQN/1ZeIUvXltwZsv3NqQddW2R1wtvrcoF2Ur2w+X9aFa4xrDJrWX3Txulq0rMOeX2sbWh2q5Z1ettLbtqAaDnM2MpJ/ZdW4Tl5LV7SDVLZBu/Xqzd/2aT2Ol2+ntHGpvmwq4udUie1yWT1OxFbiJmnkeUJMakUOGsIQnLhG3JatMVwoT26WCpICZ/lfiGYSwoPFZDrGGRwOeHz4CeYgEgjnCHBqLO7gnMc43ogXq2mXDL4JHA9gXhCXGUgBLZluwOzB7BHiATHOODy9AbCAaIFLPr8jz9Jn54Awg9kj8lcSdyam65NENSKyeAdTt8PEi/wlAoc7OL+DczfJr71IKyR6+IDB7yC2YSOYaocScqHqBWkvgCsP3PX2W/+8OgBPF9f7/mGugfeXPhQHzHLsexz2i+0KjOHoquwNQHuqTVldA6hUeKwKWJdLn8FS6ZcCX1t+VhtK4EF/q/oEc1+miL0E6o5Ly5HXPBZQq9cgjXJsyxAf+YyB1rEg2nqYY/apb8fBwXfdd1rOtPY190zHApQlDdZrj7YzA7UmaV4wg7oB6Uq+5yRVD1KD8a60BFG866HcV4581e/2XR1Hq8an/bVc9cALjvGAQ3jE7fCizCMLt/6r+QvcDvd4NX1UtXtI8SmICAON+Nuf/qv4W5+q6qLHMRzw5w9/is9uvo/b4R4hziJZMeN96fhsrZlev9/MX2KOM16Mr0o+XO+9TY3DdQ6WuFRrWseXSFzctuXrvC5xQeAFh/CI0U3YD7eFEE5jrfEwpNwADXyYCTySvG0dq7XSEPFbKeO7RsWul3TsiCipTH1YntT10TEUpGwBTos2U5JONFdjxeFL2pVJbYLTeVnsHkTHmymi6LCrR5z18FzOXdKJ6Q1zr1zze9Hnyr+16jjbqNJS8FyyN3kuo1tNMcqVNmgmb/6MOTlpgzR5qSmMTB+1LcaWpkJMlVTBeo5Svk2nErKymHr8yn3ZrCUu5axH9tR4I0suqmkzXSgltBRXIigYpYqN6OqUe99uivJbXz0j1cMRjo/geATiE9gfwbyU9Zm4Xsk0ILuZI0KyHeA0ZL0jSS9qc/iQGKWHuEhQwuUBc1jgXASTT+J3CW7J7BBCBHiAcwv84JOr3UXa5NM+ooCII5gJMRCIjyBe4P0MCZSn+59AnA74RKTIgpA8RElNEskxtQIrRMgAsASxBECR4DDL2IUBDAfRCPPwzoOHPSTA5QRORAdRiiLuJP5IsQMDVKpwev+t+I1pUuy7ZVtWK9OupU7KF0Z3GRkC+kPeDF9zOkccbHE9FZSc80R1qoz8rNcuFPeqm+1rzr/0of6N+3WsDCvNettSc2jfL6pUie1mGAu2XuWac/o9KBHDyHEXCmdfYubYeBTSpvJvbvOJsYvq0lcJizSWSJGdLeGk7yiQVsPdfH/pjZI876w8U51I0YBzSu+c856zFWvjVDrVFuEoP2/TRrA5W9YnvKhdpcjTNCRi0cGx2EIc46GUlQk3AdTq9aoniRnckKJbT1Di9xSX+1KPRFXbU7nBzOvO77MqV0FCZR0D9V6o44wsIBYCVA3Z1bsWI+IYRdKQ1azIYYlz7pu3GgRV+UK0M5BsNTSkQotECNbYXde4RsTW36s+KQrg4q6W0zstwXBJzJPeGBdCpKjEP1vyeyZd5xUKCmYAmAEp+LI0t6S66Rl4EWC9SQmIKLrOwZzP2SAUAUVawrD0QK3Ic2F/WqrIEg7tz7ll3ZJMzm1wu/rVEFdr2oY6eetH9U+lDbYbGbChEBVVtyPa6TKFJxCfbCI2elG3hEu3qhz5MOgD3zVR1qmBTP/aes171UXa5swG1/admGfOevjSFWXBhb7YXkx5BnIwwUwuIBMnlk6yqJFZ2sABFN4C8YDIT2B6ApNxxQyRNFBSW3M5QF7yRKH2NNXcJwWg3NYIS1xEYixxxjE84bi8RYgLBgIcTYDzIMdQ97kxBIAdaJnh3AQ3TEIUgABfPL8FnpNEJAJxAVEEjbLPyQ0IIbn15RQYyBHgrYetJMdJhqJwaY6iEC7KeFDu7sIRFA7w0SNE6esSIhzJoTxNt3BuADCmM8fBuwnOT+DhDuTvQZgATCtGie6l9d7foAwyUVCuRLu1rbqVEtc9zrjW2+OgMQoBf4qr/iHUd86l54rWT4FvTacMWhkloNaQXHleWsYpYGz/1lJfe4KcHmcFLAostuq7xGakR+QQERBLayvg34yrcrwZEo1ZV+nO7zHSINzMTAisjUepw4lv+1+84HBSHSlRuKUtArA9AypBsmd2QOHSO0qBRSFgTqVDzjICmtRbg0UCAtl3tA7St3rHGOA68lUk8610iqA9x+FvJUnrtshYC+FQx0jwEPsBdlO2iYkUs/3HMR4yAaE2AgsvOVjgVhrdhI9236nbgm2C0hIePVDc7Xcan4WX7Gp472+hisBt9OkahOvdWqQ3c5zF2QCGbKsxJvevkSMel7cgSoRFqlv3giMH7khWtH4dwxCXFLDP5b5asK+Rta1xfUX8JOImqwCmdY+GCHfJdXpr82HzXJL69h8f7o64krAQ4KBaijUWPHMoVoi1vm7lXzVyUYqt+OhPTE0ZYhY3tEzCmWT2xTbTlIbeT8+78/rwNeOKLlux345Thb/j/Dbme1WRnBzaV0HwttrSticjcza/bzR2Nb5rqQttv/3sdG5aayLidNrK0aHrmudcfcv/a4wXXsQ9Ki/ynSLYETJpHo5AnBHmLxH4iIUPOE6EiRyIUoAfjkghNOCdAORM+KHoWwISaVXViFRuFNjsuQyACfv9Di9e3uN73/8uQowShsapuDgR8gkQqCqC9xLHIu97M7EOLMyAwYFHD46MkPRSIxjexeS+N40aAeRKOVk9KgWfcs5hGmi1wlmJZk5MBu0fJxuTlMTz7oIQjwhLkLr9DoQ9vA8YQBAVrdTGEODSKedoAjsPdr6YHrIS74RK7/iC86Vls+hcXO3VB/VJ+suU2mjcFoxYrr1e9DatQDUEvDAIYOWQx+oy3kpnpSQoHNougdeoMVlXrNy0EajBwVW2JSb/1joh5agqcMdW/4XZAOYMUC1QXZLe+N7fFPfSbXvASWdf9mSrykIkxsYgwFFsGD16LvKmxM3DiZttVvUhkZw4kDhsgJ6uZSxaI9t1r2W9aRC1kGJFKPGkKluefK43k5WJ0x1YDKGlvgjnBjiUGBItANbf1hz32J2jlljMe4EcRpoMcbZeA1YiY+dAiZkX4ysc4wE/ffoxXoyv4WnAY3gAOcIE8eoUOOBxeYvJ7bqengDkSOO9PWHH2rarfbZFfHl4gBOjKx7AHLMEBlQ8bRFR9sB1jIdE9BUoaw2+b/ytgTQSjVz7pup+LhG6zBFznPPa1ronv5PYIonR5YhyTCdNYuDvuoTQEmepnUqcE9J9iGKrImpy0i/K65yB5jy7VHLUOz+/rnSlKlTtFlN+MovkosOyXIXNdoNFJ1nPjChxaLkY1bCSHzq4CnzqmmowWEDI2eZtpA5uLtkZKF5hrrzuMyOcK6rlYjFVBfYtAWCqMKCyVEv2Sw36cz9wsivlAGybZGe10w+u/nQe9uH7Jel6PW+zJjuvCoiVfHmUrUqKaZk8T9K3OENcqgZQPAJYgDiDKD33Duo1CXwA4gLEt2CewThCgPVYtY9ZL2rbUBU7dWZBueL5aZ2PIBHAp2nEzc0NlhycLjERil6iKU8vSDkR6o0gr0oTkxoTAYjikzzpKCWOfgEIpFXCFqdgQAgNhyRiprR2Sb1/cfq/XOIc1WibAXISaJAjnItAZDhP6X/AeQa5KFHXsYDjDIaI5clFgEcgqhtt0S8u69qch4bIsTyH7WOxAOj1nKI+Fzbers64pqJvQmLxLqm9KJXLfE6KoeCWCZUL6JNqOipBPZHnlOpUL5+FUO9r5KtzxoBna2tR6qRTi22Vig64z4BICtoOdpcqT4B/W7XHqn5k9Q+KaW/021lsXRwcA0w1eBIOrt76wpzIZ7IBYqc4udkuY7XXMhmR147WCpKzi8BFOsZpwt1QBV1siWb9Xdvf9udcqs/bVN6GwbQQ2b56V9PgRhzjAV8cv8Dt8KIK0DfHIw7hSYy/4xGOHAYeu6D0UkzSlRpxsZPZan+7DqWsukxCYiIk+xr1dqjElV27ao9jGRY+GXNLyIME2uuVBTDyvlDGndTd32c6T8FK50y7y92rZ45bvat3OzGVenLNlzOh7DnxTaWrCYut3zYP5/ypAYuJa1IG3EF0sFOUS528BDKEuAhwuYjEUySoQlUB9+/tWO+nbg0Nrn+3wq/vAzVf7PdsV3FVKQZ8Ug+sv/sYn+3lBVVcNtynC+pB8m5Fhhii6udUghoAx0cgHoDlSyA8AvEJcXlMEosg5kFEcOMEkHhbBgJADDcKt3yAw+g9BvLiXlZrs+1IB14IQYC3K9y8GBnOybzLNpKYFWx6q8Smcx7eTSAaQaRce7EDDRwRo0QbF/UmzkDfOwdPTgy51S2tU0ZA8miTx4jTficMXtzWyiGJVF9Swci6p0gjq3rg2m7Vy3YiikhlMzE40WpyKKgKGAGJ0zWAAPIg57Hbv4bzezh/K7Uw43B4RAgPWOJbgBcQASPt4JYBjj0GtwfcBAwvEeGhLa32BpstfGotXZIM5fDNXhOXp1OqPt38ljBIa2SBcV2ciIVzgKaoIRRQoaDAcletNMR+b5MSHKfUVyqpBVGZczKRh2GNoi8LKNbWYfujRqJEDoNxi2nVMHrGy6WMFKGaXDamVSNfVRnpAcoKrJCoZF7iZ38FjEncRw80bAJXUeHsqFwl3XB1p6rSFWU4OHKJI7w2DLd12Xbbshkai0LOQFUpIpZ5tEblUV2Ex8X4ICnjo/EM5GchY4pEx+HcPumpmWUpc2f9qF3CqbTEBZ8ffoGPdh/DkcOL8RUeljf4s7f/GP+nP/m/YA4L/mu/+W/guzffg6cBk9vl9WTbe6rtSrjN8ZjzakC+EBcxblZDeqznZUkG/zfDXSUNApDtRPb+Jhul27bM8YjAC2783aZURKUWOocREcScx445ZpUktfEIyRDb05B4eGKsrWdTJXVKc2ON7oekzqe/237bu8O7oats10qjTkcCZ7S2M99Eutp4Wxnf9cSdIC6480WzJeIiv8tCIlC6UbLRZrpgY1qgZACS+q5/X7j+4lQh9/r3reOiJ85uXjWfmlI6hdY/sfmtNKKYBTRldhvZJyzkq5JvTa0bBEf9e0PBE1Xz1Z27cksXooieP8tsWci5uNMXfNWHJms9bwwgJEPlAyh8AfABzG9AtIBdQPQBHBYcwxFgqXsYUqFR9ZAjEAIiyQERyCM6n0COHlpn+k5k1hnyu9pSSpKIWoJVOCPyDiEmIYACeiFW5MKdo3iNcuTgtT4lKpxTfgA0dgkABFV9ipyIkDRyiWAJYUmqXqJHLe0ukgyFJ84JcHDOpboSiEh1RmdVwKQO7z2cGzD4CeQGgEYMw136LK5ziSQI4TiOAG6A1AZmxnE+IM4zgDfwfofplkH+Ft7tsETto240OdN6x16hErb24Xo9nuU8NXupW+3XmM6J54E+MMlee4jgOlyQzIm+UrpQcRwtMDpxZ10q8WzztVGBe+0/V9a5MymXwYmYTgRQl3hqpDGW0BLO7pA4yC4tX3MvtSpnaXyV+FOmQU/9B7BB0QqXvjUM7tbR67NVCwKKOkkiNLSOLaJC69qqw87LwnPKV9S6kgILsn8+jXdBZSUp86SVLmhZ1NRzCfHdrpcsGUn7RJhFa917Bc0hLpjclLn2O7/Hr7/4DezcHsJdX/C4vMVfPvwYr3cvsqepOR5xDE9iQ8Cu9NVIAwlrzrntU4iLAOW0xo7xgJ88/SU+3n+KO3e/uRcCL3gKD7ijF4VRlvozByEsRhrxGB7w5fFz3Pgb7PwN9v4GD8sbvF3e4JOdS3V7s1ba+uTOtd7JRBIh0jJozJU039nGwhA6QjisCQtLgBMoES8maN3GmK326xn1PptPemQYKSpV3GAS2PwfIl1tvN1Ll2ySzebbd4lgjZD1r3jQE+6ro2iep4Okuc56dWVxlKmuN6Zne3Kqr1fM0SqrbdzKwNjm6bTRZmyk0xlAZpC3RRFJyX2DOAWhhmDpNKz7ZgXOCwCs5qEqkFff5d8031WrMtVUtt/5pbhqG9H5DXaKAy2jNoPiAyi+AYVfAHwE8yNABHaiix84YuYZWYzAKbwQR4QoUUzjsgiP0wHBTxnMF4JB9kGMOXZd1R/r1Bd60DAMAF3HlWlXBJvPOu8K1EOMmJfkJpbE+TTSxS9eojSAXwIBRorCkRENoRMji4pSCFiCqIyF9DfGmqiQlhBcIl5EajKIpMb7JLEhDH6Uz8TJ25TD6Aa4YYdxugO5KXmC2gNQe7EAAuC9A2GC9wNiFELqcHjEcXnA8ekrIAYM4w5+8hicF8NSqKg9T8L2QjFju00OaDHXHfhK01Tpir3wdaRzl2SJKMxr4gznwfk2oExvpn20RaS0qivKAOj2paNu0HMxavuRAUyvnQasbUv/BfhYgG/dYLf96q2hwpUvzyzgMSfHqv9WGmLVT/pjuVI2yhxUrfvcfNpUgzeXpB4GyDaeonr9lndr4Kb90u/CnZbAb5mQMXZklALVlXVVXDRY5JL7yBGnImlvpZ7KSyYacl99Xi/KqVbJypJco0pfCmGx89/LMSLmeMSX85f48cNf4tOb7+B2uIEjj0M4gEC4Ge4TEZXUQq19QNVj7Xf5PXCAx5AlDoED/vGbf4y78R53w/3meARe8Gb+CrfDfR53jZh9TFKQHQd8dfwCP374MT7efYTXOynrq/lL/PTpJ7gb7jHxDtCzvl1jaW8qwaRtr6Vr9TNNVgpwjEv6VGB0VotMUkVHLttYYIPotfOre45zG9PYnyEQ9LtK25j6SK7Kj/UZ9r7SdRKLbkvfx+1lAGsDFAFk/fYCBMRjhb6mnnc4f+6nlmQBmR+va+36hwTenj1PloH8zGRJh5gAKDfP3mcT7FjnITjXuAva0Pvc/rYmj74JFKUbNICXR9DyJWj5HDe7A8hFLBCXf5FJAgx5hhsGaFT5hZeM5GNChs7Jc6aAY1hwdA6BWYLm0HoQmTlx8Qsx6sx+kTyJnKAyS0pw6CUQk1tbl2y1HTt5HgFOnkW8dwgxgGYHjkq0SDkBDISQIs5SPqgdQXy7p4IjpxgVzFiWgBjl/5AIqBghdh1gJNv2QgoRQJFBUcXJQYiJwYOSMfnAEd55TMMOA03w44Rp/xrDsMcw3UlfmBCiz/sj5gt8ADmx5SKCqJKRAw0e/vYWy/ERxIRlWUBOAv1Jcthcfxs/y5zYebIk3S9vOgeOgT5otcmTT6omCsyNMeOZsm0KHMr7oIqoONk2GJBUcZ5rkH2qHPWEVOo73eZLjCwVPPYMhLtqRQ33E0COPtxGhfZuqGwmttqj42hZPN35ICXklM9PXaBmkxpQrwilhnDptW1L7cMCNDsHdp4t42JwY7HlOpFWhrTJxselkbG2GNThVG8lsRsoMRC0DxaoqgG6HiKRI47xgIFEQuAJoEg44knUxcJB3MUalaHH5QF/+Pk/wIvxHv/ip/8iXu8+BoHw88NP8dX8JX788GPcDS8wugkRUWJ0dNa8EjuVShMcbobbyt5joAG/cvsr8CQuYAcaERFxDIdKqjK5HT7efUc8XDFj4TlLv15Or6HG9jfDLV5OL/C92x9gcmKM/f3bH+K7N98HmHGMR3x5+Kf4ePdppSKWmXTssoSmlSpkZxA69oiVZCNHK0chtnWNFnubstpWwRSbpGtUA+5JPLcSMLJqe0pWCqNnrsTLABYsyT1xn+jXefuQ6Xobi6aRlxLiFsxXXcqAqIamFZdHiY5VaTavuvs835a6/ubZxSLpzg8bc2VVU7YL6P1o+8l5dHrgWuoxvyW2P4Mqeqc855KN7HFxGce1bUHdNl5lWZWqbTUPuFNCWQdtPuQ+Vu1bseNp9WNPLHpp6nKSEwCPgcFLhPecDIJT3YqLCXBeDi0LkIQYkM8DRCoXjIpPAfCUy9G+2s+ZKE/Ehm1g0XzSMij/LoGsIoLaUdj1ag4v54WYH3hI0geJqcFgIJa41nIBJk8uKcAeOZ/LDImAgAtZ9cnHpI0eCyBT/nVptpFoMmfJiB+SWpR3IsUgDz9M8OMOftjB+z2c36XRpWptcTo0xKYrqWKCkaxHMWAAaJekJAAiw0efVMA1sjg3y6whe3uHH+mfjjHeNTRyXsvfbqLkUrG+Jgsu9URQEHcpSGvLKtIDAbznCIwW4L5LKif5OzJAEigioKjrnOpHR12rx9kXAHK5TvYpqYiWx2aNX6r60wM8Sojqs2s83WxxZXt1ERF8Iq5OtdkSI7ksIoklpOBbY/Cc6fYlhDKD6zbpEUjI3G3bHjXIH90En05RdafKavBMhBu/x/34Aq+mj3Dr73IQNfEO9YDAAUMm7lweM0KxierNPxHBY1i16eX0KnvdYj03V++6RAStgbU3bqQnt8Or6TUmt8ueqkY3YUjEiOew6XZaJUx6m0RE8ZxJBJdAvcu3T2JukFH/YhlHfX/FjBBSFoC7ihFSkI+yIvReWhNzaBgzeR0k1cZzNb7zOXQmXUVYXCvOWxdwPssK9LfAP09eedSaqn2oITtBO6RkW/W+atSPNXHRy6nt41gfp3o0vN/Uo4IvTb1e1ETUufLWJWyMzAfSIdSilWO/xAGHecLxMOHt8YjRM+4nwLkAclFcDRCDRp8Oo3R0JOrKJ9WinRP3yYEYUzKQjFGidvqmj2QIhdymyNk4XJNy5HNke+hzuQBDiJiPCw5PT+IVyqnYu+inqnG4cz4RRwoqpMAQVQ5D8E4IisGNGPwkYN8PEI6xQ4TqZ6f2J+KmlJnWuV6gsIczZ9eyohbJYppFcsh7EoPygQYxLvc+GWgPCIHyvsh/03ITTqyHyPpkrhyLW9+Bd4jDDjztBTCEAIZw1Ejby7Q+Hwh536L5fa1a98tBIFySttWHYgp65k56h9EyCmjhvNa2OMldY1BoRHUBAiH9Va9DPfCYXcZ2gJw8v5DxpESqckg7YL6u9zwAqVTFLmiD1bvXMT9X9rnUU/fqzWOJih2STd35++eU0XjgkLz1cMV97+VtYx5EDplrfK6fVof+XButHYnMr4kofokEKnHDlVOuBIICZc3Trp1WcuASGM9EAwiDG3DvXuZ2/uXjj/C4POIxPOAHd7+Gu+EF/uZ3/uX6nkgeoUr/hMmz9zf5N3XTawP29casHeeBRryePoH150nksB9ucz91nfoczE6ifxMcNKaFAv378SVeTq+rOnQ+RjdhdBPuxherduX9TA6U7FBEYh+yytXe3wrBktaM3nK6niMKkwMsbtx70eAJImU6F/9E2yQ3cq0u5Rs1ulMMGh3zAadtmXStvQ+GyVa6WhXKO1dTqeewdLpXL7suqXDytnCnScohXf2YOSXpp5b9rYCO+ryMirOYf06c2+p3Lq+cShUns1Ck594lU9n2+Nk82m5bKHVyNk+504zueFO1pLcJLTPgG/NWqtDJ4mac6lfZsH4ylx54L1tDh2w9tw17eVWTyUMe5PYg9wKHecG8zOC4YPAMTxExHKS1BFGvcQ7jJBekdwRwgBhGhzzOC4DFATMiPDtwpOICLeaTCMVgkfLqUmkGEeXgWcRcuGqUnOIaooFIPDzlMg2QixEg1oBFBZiL1MBjGndwfgL5MdkweDgasn5x8ctdHC5kD1WmPMAY6wM1YajHA+ecshaKq7jMV5O1GbCEgLg8JC6vA3kPkMSl0KJiMhxfliNiCIhLMAASWJaIJUQwS3/HUVSmyJFhamib7LfUbMPdPQNH88uZTNl4YX08nTam/DrTlhFiTMDeat+f4wyLTUE0O40v5gJWRAE5eBYCfevEUEPd6v22b9oKPmNM3rnIruFenkpXl5FUZtSGQOjd8x6dLmrHmYtdCMnnJw2CSYmbzGTsKVAihWcA1rTHxg14l7G3LmUV6CtBYaUGlxJ7uj4s0aASg0oaskFAtc90r1Dzu3onuh3usMQFP316EG9LKTr3ITzhMTwkqbWo99wOdxhuBlGPg1vVm76sCJze+tbfiNRTmsv9Z3C2myAI8SH3SxkHZSq5BFVFOrQ2khc1JFFRCliSFyefCVKJiSHMLiUkJCaJXJSOxCPTBPWmxHhKUpuZZ9z42+wlzKeLKB8tzTgQShDDS9GJZQMz12VWxtZQ5ojPz3oqj3l9bZ1PSsx8oDviKsIiMQYzcLmEWKD0T+8irL9vvP8+DmJgBVpX3/KhtAEiGzWUQsHUl+SZVqze6eZ8Tp/NGLPph45/xiy87mEF4E9UseLG5h8tAFegfX51sPlXDkTbRrq4PYwLxqwjucgHJZlxytkqdAs0GzUbzeWDzYthsL/DfHhMPmQJY2B4FxCeJDCecwy4Ac57eC+HrXMuH35z1MjYBO8k1rwGlxN0pcAGgNf2yP+ZuODOIa+6UqzelkS1R707OUrSCI5pPGyZyGUCnCRiKTnJMw4ThukOw7gHYyeAEO3BykVdC6XdZR7N95yv/NPOsBJOuZ+sb0cwLwhBPHFhOYCY4OFA4w5uGAHaQUN4h2VBCDPm4wFhXrAc5zzfIMI8B8zzAoaH9wNubgf4QeJgpAPRNKr8KfvxFFtgTQxwtac2Ume5f1OExLVJXXWKV223ecFZ7mKWJNgD7IKkF7SqX7gzw3qtms1pIqUGBvr5GyP4IHrcLkls+B3BNnDhufsOVSgxLowJKUiD5nECkwDAG95/tmxhrlJRyWeuuv1MIL5RRbmorAQMe9GY+cKxYnM4Zj37E1Ih5eJPfkr2G+I1iVkCzP386aeZqLkdbnHr5X9P4ha856gAQCGCrE6urbchotq9FTikCNRpfvP9L8C5cPL7Ll3tWBAo2T4sAAgeIrlS18SBF8BN8Dwg8JLzKuGp0ibvBiBJko7xiIVnPC2PYgfCviIWtBXr6PR01q6iHSftg8rT0ZDjZc65ItatWpSWc+kZ9iHPoeu8QkVk7uc53htgGv4B1VGenRpOKIxax7NTBbZXFZoMJzO+Q1LgtoJgq0/P6WnWSs0oHKglDZrxsv5dMuJk8n2wVcQwKjFtzaeT2FEkP+Juj3GasNvvwLyAw4zD4Ss8HN7ii18cEJYD4vIETwd4B3z3k4j97Q53dzd5T4n+a4RzDilmd5IsSA7h5gjnnCODKQJubVinhtCuUYtSew2xD5DfhsFhN47YTSO8uvxMF7mUm/qa5p1z4DsCaATRgGHYi8QCQ4qqrRw+vewdmMtxmAMD6uy2dByaM4aVgDTPGZmjpRmYI2JYcHh6i8PDz3F8/AWOTz8HIWDwDrd3n2G3f43b+++ByWGOjK/ePODpsODpMItheWQMwwDnPMZxBziC2xG8H8VmZJiMS65zwKrNYgnEnurH6eK+7ekUuBN7FVSGtNnDDYrI34K+HmDqEiFn5iGXs6Fuc+qSte1S9QcYgqXXLstJ1d+zwacGjrP5dV1s9K9t77l8Kp1Y98VlAHWt57GtenrtOMZjVs3xLIEle+pqW16lNA0pAJ0FkC7lV487kQMWzPBukDgJZ9K18UROrZ1z9QResm2AtnmrnMCLMEB8X3WmN341x77zHAJEQ1xwP7zE3/z0X8ZAMqZfzZ/j7fwGczziV+9/A5PbV8jkGA+YwwFP/ID9cIspxaBgZvjqaOb8dyVtObHEHErsjbwGuARuBEwkdBObRec9cKjirqgBv34PvFTrYYkzHpY3Jcq6UeEa3ZSIE1WNEjXkvbvBfYr38bC8wUAjJr/H7XCX1cKWKBKzc2p0W8mecZFV0aysd+2TdTeskrytyO3fdLpyJDgdrpYzvc2xMV+qG/ODc0kuTF08nAmMFhFYrvypxqW8bH4wXEz91OMAXFT+RuqVZq+tlRWZ2fTXXC9VmfbHhsuqIHST2Fldahv9JurOxqnUu+y3OKI5b3cQLqjZcFTYqdh3QuQB0Y0YIhDZY9w/wc0HBPcIxCOYAubgMYTUhiQ5INY+C+c6RiCosMGyW61L4hafZ+IBWVBRxkVcvKpxtxIp3otKFkcHdgX4yF/kv+kNuRyJENmntRQQwxGIAVFjO5AYUzNZwoegASCZkmqWdscSD80YlykgwwgwGXQgmFOfHRgeTAMWBjiKPq0/PoLchPH4BDiflQ+8GzCMg7wbAT8MIOfhhjG33bsk3naDYIOz51CZA6C3Brd27XmC/JcxZT1ycnlQLCixRqgtYL2EcHhu6hlDbtaha7Th0vaIqUuBe2t8e0k61dYCwtiMb+KQJ9upc2Vou2y+1r2lfu7qkHOx72BbVsP8sKplJz1RSUNyrfVvtCrbtveSvvZSD7S37Tq7Zq5UBHundZyCu7WBE4WQHOHJC3EAWSOeBtwkG4chAXSRaHl4OIQ4IySPSEokukZSs7XGL1n7LdOgjWBuf1fPTIAQDHJP1BJxsWdAPl8KYqO8EqNRBcyG5Ba3JEm+lqte1DzJXSKxMcioWJm9sKECCtOO8+uldqrfnoFMJfjmNoYs9bflfF0S0+sICwNYzl+ql6dvE6Ul6UIiYitZsn8zS3MIPq+mE5Xr1x5377oiVqkS2RqqqYvBqaUr66Iuac97SFt1ZNUTxbtVsq3rlJAIpnw8kkgQxA4J4IEwDHvsbl5hN90jLDOWwxMOhzdYlkcc+VEIDwCjd/BeLklmIAYAMSIy4bgAwekaKQRFohOyFCJzPQ2oaQ94CT4nJei+G4gweY/ReTACAqwDVZbgUM4cjNnbk8eySGyLsDwmr1JFR9T7ERhv4fwOznsZ4CQJyYcilaHk/Jlg+6njXFPC5rlOXiqE4MQr1P4FvPegIJKieXnA0/GIyG/g3S/ghgk07LGbbrDbTbinW0QUu4ni1Wbt/kBUAHqMh84SqZJZaN1XuPz9th2L7yGJrrzLQcZkCTOQpBiqi90D6u87WeNm+eHSesq5cE7SUUlfOsBX61ai65J0liBAsWVR9R3Zu25lDHquHG23GhorYFMVJJyYL2IFdMlkX+2szJioxErHc8tt7hbh5eGggThbTr7ak4DorAFtL2l/feLwi5pNSYMbT5Z7SWTyqjwaTuKqc2VpNGrnb6v6HdURrPXZ/fgSkSPux5e5j2+XN9i7PSa/x1fzlyAivJ4+yeUP6HtaAhqisQHUlyRLTKixto575IjJ7cBgHMMTdv4Gk99V74vqltdKc5lihF4IlNHtMsEQKD1P6ml2nJa4ZCnTzt9kg26RUszQQIUDjXLnomYQRA6JMDPre8OJgkpl8vnXGTNK69jB5bW5NbRZypcYIB6+OBvoSEzfd7pOFeodGnLSiOTKdO74fafhqrBCTD+cKNHqZliCQl9j215zIVUvCE19Pl2Qhy7fyDVzlO3HrhizmqpMexkijAwHsuHSCnHxDPKJi9Zhacf2pX6qjkILKYJtVLtyBp20bQ5YKdOABkKKTspJfZ8BT3DOw9/cIYYFy7SDmybMywFxfoMFEV89RAx+BlEE+AgiiaUwjR7kgTk6LEyI5EqMiqRjLK0trl+pmaQYJaicjle2k9C1zQBxBHHE48NbsfHwXgB54k4xkahVpQucHCNG8XgRojIbFuRwFRCOkNhHH4AoAQCFIBlFEpAC3ekoqnJCZHvgWXsLA+6VhoCCUsNNTMDV+QnD6HATd7jZTYhhxhKPEgnWefhBbSyUWJI7iViMRAvPt2xxuzzKQ/1cZzrNTdKNd5LzsOJPsHn2bU1K5J5U08nrr6jMRRI+HDNyROnnGhe3nPWVeoZJdv9efhfRSQDYppbbXXSp6zzvetkr+FcVjarOpAJ1TfmW2FGQolGkcyAujohUPBtpEvWfpK6hLhUMIaVjcIxHgUrJUFjXjoKgc2125FfzXEtsCMTKLqnnW733RA4ijQRl4kGk0MXGQDj1o3gFYgGWLo3pUwpEZ+MlPCed8nim6oNk8rbSA03Sh2GlMpTrMUSxxLR4i/vxFRw53A73Ob7Dx7vvABBphrxX75NThsLXSuAA4/UsEcUhLnizfAU9+Sa/x5AieV9qw6ArTj1neTfAJ6+EM8/wyS2vroeH8Da3f+f3uR8DDWKjhRSDPbnLlTX8hIHGbBhuwA8GDJkIP+cJT85DuVToBAMgEzBnJY7GCJ6L97LMTHl/3OxVutIrVNuZBD4tuLwydT0cnBqwMzj/vQ4WtV+p87BziVL9URdL/7l0yOLYvgj3jNjL1tdeqGwGrR27FfFzppLNsedEPZiiT3EdTxEAVB4/dzqVU9VNdnyhHHI+3b3NSix5qHWW8h0RwA5+BKIXt6uRHNwy4UgE8IJjWLBEB+IZHI4gB/jkdciRwxwcQhTQ7VzWusx7IatSsEx1WXNrIkzHNqt/MOf/5+MBx8hwY/KPkewzmJJNB9Kainr4UXJlK5IapXnkwgOIAhizcA9jANEAIMLTBESJ0o3SG7kAMq1BhSFjREnO9FHJ/nyO5xl08A4Y4MAYMI6TcL5iyDMjYSgi4hLyueacGr4j74nVRVAtTLve+yv15Dq89hw7d/Z9C5K9tC4Bsb2LtuX8Pbcd7edTnNZLAbcqZm6pbG21Y6tPlsh4Vw6iqpMVtTIApHCi7uNVnrWa9spfJ/ZdumGafMXTUXFbXXGkUzuXOAM0gNhVa1uJTyYDinrS9w1pBlfEBap9qu0JsXgHcuxXbVRdf62/EFoxExiRIp7CAwYaMkB97jz2+6EqPDHNZWrbxlrS+A9KWCrxZNefPlMutsS4iHA0VBIJdQVrud/nGMSniPpTSYk3cbJA+fydk9colxw4EA0YaFy1Y3M962GOotaU+xTlHbXNiBwwxwOoI1XoGo8Tsj0GU9l3egpqLA81HjjVd5XrFbT3bmegnsPFG2PZQ6361odIzyQszIX6Lbvontucc5Tk++loD9VbWPruk/y+WqrpHFmz1erLL+rzzxnXjc7z18C65lY3cb0RCz+5tNOv20qA8wB5j9sx+eleXooUY5lxOL7FshyxzG8Q5xkxzngKA3YD4HYBe0+4mYAh2TakMK8A1WtXjUW3DlprTJoBIBjEEcvxiDkEcHDY7YFhGEDwBmnLX4mOLWpPSOW5QeNcELwfErD3AGYQZsTAADziMgLDLZwbEMMIcdPrAD8kbGIu5ko3Tb3DWHBT1gbpVKR3YgrYF5kwDMUfObgQIwwgTAxmj0yoqQBkicmtbm/PbqX3s4c1fUCG0gdN5/TmrQFrpY6UibYk8XumPnCWiBgORY8bfG3ZRapwuTqRJRzU8UJrvHvq7mndnJ4CrsVoNZHXieOuILQnObH1aCwZC7aqsk27i7qGOjHoJykzxVHP4LicqXM8iG0aEzwPGVyqxyDGEQ7Jvoldt239OmvpiBKD1sCWU0QGUZURb3yT2+V4BnlsVO2Ey+6XqNFPeAqP+M8+/0Pcjrf41btfx93wIqvoqATpUklRTz9/4SXNpQS9A0QlqacGM7oJA0YhlNLDKcWEsGW/nb9C5ID78RX2/gY7v0/SjQVfzr/Ajb/LthdIdR/DQWI8mLW/1SeNqO2S6p3HsLo7iypcMVTW6N4eXgg57/HZzQ/SXIn71zkeRfKQJBe610OKVdKqn4U0v+AFQyJKtE97f1OPeWrJ3u8xugnHeIAjj4m2HQJ48rgbXmDhGXM4YEpjCYgqVUzuagkixbPqcyqJWuKclAWpuGc/cSZYQ26bClNBYvWolKo+Y8uZdFqq/m7pGWbs9aLicqOflQ5fYvRzNnVeu+46L1AkG+BZ5Lrqg/2xD9sLx7RtUB3lN7HxcjmUnyii6fXHltDCHMq5az5arw/dpudyLBVeFW+bsPmuzUf5swLFVTuAchmtz8eVMOOa65+oNwZ59DdGqACaunk1YFfOVeZANNIJwUYbHB2zwFxCyDwMKW6EgNow7DD4ETEuiGHBMBCcYwR3QCS9/HKB9ee0jNVjSv2/GRsq80zMiBThHDA4YBwcFkQsADgZYVddVM5KjBIQL0XpJhLXuHKoKWiodUA5EEilGvEJzB5xOQhB4QZ4dyverZxqpJKZNUBVjVw+Q0gABDPickQIMmZgiWwemRBZggNSKtf5AXmtc4kULt6qBIQyExRHyJbsrJqWqWKlFvnZWrmR2i9bNGrzxoe8AN53snq9lyS9RIXrB6h6IqGA6eekTEi8oxSgKvMEqAf6hJAFVOXM6JTd4cB26zgzJpZrzQms2Ajd56U3kqznpC3DT6uOsSV5YpT5tMSdtmNwUzKOHaqyHQicudQaM+LCRJRMrqz6R0lV3xTMGVyTXVODsrpXKdrBY8Dodnk8v3/3K1l9SMtvPTNZIrud265KL8ya2fitJx1w5MAxYgEjhlj2Vwq2OjhR2YlsCATo3SYRrXuEmxI1W9JI61pW14xIhvp9zn03PdyyR9IyBydxLlQFjFBU1zT2hNpkqOczvUucactWEt90kk8JORvHY/M9SnZjbmjaDYAoB6yz60OkUAFLXEofLvBoZsekvRey+nrLuDDYxb7/IdP1kbcVcOUFUP69uqyN1NVlt/mb59x87pbdIgMmAGoRexp4kxJPBjiXw9ZmVBBUV1yMUsu/NSapJz1/yy45hUTpNY9UgrTd/PSgt7FrYqKXg5ts5zgvKwDWcUdblVFN6zaAsgRDGZV1uiDeadvKlGLzhFbrzHK+ACR7inqD15vdEo/le+6+93DOwfsB0044S2AB7PJ/APGCgLeI9BYRTxnxRgf4ZKicjYzTUmiJCqIy5iWYnjIFIpxbMAzAfucRKCIsEUhuW5GNtjXaNrBERggxERYAOQcOgItCNHEMICJEN6OsTg/QIMRFWMAgLAsDfgQNE/w0QqOOEhLRr6NX6fIacMdS1/z4gOPhCcfDo9QDwsKEEAmBgWHaww0jxt0eLh/+Ond68SmUjUAU4uQ0nKfz3IyTWyWdpas136m3RhfPOW6/vmT6U7xAnW+wcuGUuFDi5DlSi1O2GZfaMmwRCSffAecLvC8trAH+Fsi3gLEwMi4n1Jy6g07vWaB4rhwlSgIvUFmHp6ECjsB5Q+KYGAt6ZjJ45YWHAOzcPgcuq427xcMPZ6KiEEjnkkZcpzwXEmQR+c4uXoaUy22lKFY6E03gOCKHERJE1Br5/vr9byPEBYf4lNZsiVOhRLPc526lliSVbq8tSkqiEuk6eTRCCaiXGp0AtxBICy/CnEJMBJvLnP7BjV1bEFWbuR9fdtsh/R3KWFi8kiQzGuGcQMkWoqiSyfj1g3hqWbJmyv0FFlUjlUL02h2j7OfRT8meRAzYRTIwCLFAdTRz22e7XwmoggJOVwB9sd1oUiI4vCuqWznKN0eRcqiql/HWtsVIWqk357VVzpstacemx7X3yHix6XmOd/95eqfUyirO5S452zeo+ft8zub75omuiD18PXjow+Eu2vymM1M/aHt8mmjSv8wMTyIGBg8gDJjAIH9E5CdwBEQdWa6nFpduGc9uArRUlw8D5gPh4S3j84cZd7cO4+Qw7YTwGbxyFBkzZkQnqlDkDRdmkQNznAZ47zG4Iam0ABwkaN3CC5Y55rrH4Q7TOGEaPMh7BPIiEeGI49MjlnnB8XBQjgH2+xv4QewmDo9PODw94Z/+5V/g6ekJh6cDpt0dvJ8wjHuJAO5H7N0eHgOc3wlQIQneV2aGqr/bi+gDr+BqIf2SpkTJWg4wgApQAqguw+p1Q3BlgLbBmLiG6LDE6XNsCy4tH0gRlLkPwAuIOe2ONquTnSA+8n9pHAroF8cL1xjAy7i7ihiMyX3pEp5gOfvnmIKqjsEoBquVRMDst9FNQgxZHXblAJMNgNfffS0RlhkqWl/6LZoxlH44Q+BR1cZ2XArREauoz9b4uwL5mdFTymVwUu1KUl8jNfFNe2zScbGzqKpOwlZyiBQxhyPGZJO3d3tIyKDS1tFNOIYn/Pjhz/CPvvoTfDV/hc9uP8PO7bDze3z/9ocYaMCbFK/hYXnAD+5+DaObshSAmSsCMM9BarPl7rdSIDu3xWPXOvCdruc8Pmf2+uimRAiHNJZDdjwCoCt9eTN/CQBZhSlwwJg8O+38zUVSiq1kY4m4pF5bS+JkXQvB5LFz+xwwNO+UDaN8OxbFK1RCAo2mxKXn3IdK13mFYgNxz0kVylv6FN9+dtvl6bwq1xpKk/m3fbYlKOwTFT3i4tpE3a+lX5R/u5Rb1tXsqFQbCv+q2+4EQnsAqzs+dg7M2tuWZ6Ffb6f0Sh/U1mW45bZMAsBU+lWRely+2eFt2w09PI10hgA4DCDy4OS+EWzGCW2B67ZbQ8622wQxzHbkAR4RQ8ThECSmA3k4P4BoxMAT4JLbSS6XqovilWVZZoRZpSwOwyAAXowvgbBEcJLEcEyiX+/hfARHEmqJHcDigWoJjKfDjPk44/DwJGNMJG2JDkSM48w4zIzHQ8ThwDgcAXiPgTyIJzhM8DQCNAEYwDyguLJV7lCbyvyysfFgOyNUxi7N6ur15mMus/pMOiephJWEr79H/1lNFbDK3M0aWOv6/zal1V2QwKUlHgrXfQ2ynkPEZMKDk5SNk/sDKoCT1/6zN1NWo0ABxKoCJPrr17trBQQurc4dU+cp15qw4vJcXntv1tJi+9yC1pZwsYSHVV3awjUqaRBpR71WK2C9BQgZsJYf2euVeutq+rQlGcpnuVlP6tZXJ7AXqI04YiGHYzziq/krfH74AnfDHR7dI0Y34rObXwFIiJYv5y/x86ef43s3vwJHXtymcgAzY0Sfi08omhltuy0RvEXA2SSEmvRlOANRlRCOLE44nBkdYI1JV0QLp/YRko1Dn6joORnaCkgILkrLbV+1zjwOjkCV2uFpF8XV3geyOv+7qI1+iPQsicXzyIMtrvs/S8n2j6pf350Y6KDt95zK0STfnrtQW/wEqAefC+ZeiYv1z6uyL0tXjNtG1o6d3FVJoQWz/UarHFuNYvhkMyCgm5x6UZIjJkTAORGQiwF1CX4HQCJ0pwPPOQH0zOWwdOwxEHB78xneLAv4ccHbhfAQCUPw2O8m3OAGLhJiDPjyyy8QlgUhLBgcEEPA09OCw+MB83zE7X7CbrfD/f0EN8hle3gEloWxzEE8MQEYJsLdS8KLVwNexhF+FGPu4xIwzxGf/yIRFgfAeQfnPGYeMI4DdvOAJd4j0C3uv3OLu2RvMU47ODfA+0mMPqmoUKxJT15PeXeie8TkO6RzRHNvsf+SHJk9AA3UwNWCjDaPAj3NqfltOmcnUOVtVHjelYvXAxOtagKIoOop3JHe2NSzO2zVGVppD1CDzzzeCWBle4Ur12vbPu8GOGbx+LbBRe2VIaDb7rbtu+QUiCISlZpKf38FFE2U4gulM6fa0Fu3HgMCSxTqhWYx6HU7MU52vgK/PaPa3FawkHxEECuIxJ0nUVxzSTrX62uWShFhbIyJCYTRjSf7r65kf3h3ix/e/Ub2BvXTp7/EP/zyj8CQOd65PUJc8JcPP8bDq7eYeMk2C+raV9e5ttESZXZvW89fgQOO8YAbf4vJ77rxP4goqZQdpM1wmIbz6khEdJH7WW3Pi/FV/m1009lo7VZi45NDBAA4hCcAwN7fFMcJSQUtxJBirPgslbPtVXsR5ghnooefa0cuo7cX0h3fY35u7Z8PlZ5tvN2z8JfF/17atUo9inEzb+/HUzgu0QHPgvvUFlwTFZcTFB30at3E9p6jeX516l90Xc9HGRSs8zc509+OFKCqsn6ee7HRjUvkDjnfSpKxGtjOm+1FvCH3aF7N7V4LA9Z/qWQs0KhFj1uLs/wlkn3mVNSeON+qGsXMOXYFDDGjuuscDfmYqEkC4e7uHi/I4RUcWEXJHhgGDz8KWCEXsb8ZxFVjFN3hGCNoOmLYHxFCwDR6jMMIv9uBvLR5cAtciBiCSC4AwI8e4/4G8HeYw4gAcVMbogPzgHF3BzdEDJNces45jNMO3nkwvBjBe8Z+0nHjJGFxIFXbSJBGlqklne351RcSFPHyWuWsHHRpz/eoT7Z5mqqrvKSTYN41zdHz9QMzFt5X2gKR9mxR4LGlDqU631vPLMf+1IWZOYRf04WaJSvPqO5cHzRZzu+KW3pBeW06JzVRQqUP7Le9z5mGAegbhF/Sti1CVOoR+4mAKEQQTvflufFCijGwevw5JhuC2gja/q36kYiKfKKQg8vnQVKPQtx8/1QqDKYFC+aK8NZxm9wuEwHHeARzxOhGvJo+wm+8+E1x4ZoIlNe7j/CD+x/g//vFf4bb4RY/uPtVPIS3iByzC9pzzAP7XQkSn/6q2lL1LlQi7UQtCWUN6Rroge8eob+VNMZLT51LbUd6kjnda+2elvFNREcKXKdqbjEuYJJQdo4l9kXX1on6EruttJW3j7e+ufviasKiiOK2nps7t32W/r73I76t8GQFJyiIixp2qhfXExRWXN1uNfvb+1wiGdd0ho1hOXB15Wt5gwXJ794m+7dM6dYI9A7vfs76RwsoufN8XbaFoys8uJHPfi/4kjp7wxwVaVLWhF2yCVAaKdEZSlxUTWGWelILdL9mXWRm8ZTUNMQR4f7+HvO0w+N0i8g+lbvAjiwz49bfZVuOJQro3kO8kERmeCeXhHcOoHTw75vBIMD75K3DOSzRC5AnQNz1Okw3Yx4hqkaqEAsOSPYfdh8RADHALgBdud/l3+xsgdoDu53/3ryZvJao6C1XeyOtFnqb+Zc7nQNtl3DSKz18o0Ovqagb9L3IdOv8mlMlcXgP81txPLH+rJKSsxq6TcrSkA7xpWPfRm2+5N1ufpS5dHxeArJyRdzJTiCAHDguKSjpNlBTewir/39JUlA7IEVYZnE169wAl9TEZM32g9b1mKLa7lJHzORim/eyRjJmnqvgiPncJ8oxNgBgTq5j78eXuBvusfN7DMnAeKARL8ZX+MEd8H/4h/9H3E+3+N7N9/H54Rd4DI9JZWrb3XKP2BBVr0HinkAIIMv5t2PiSYKzVl0DJ8nU+mw5x8Wv8wYsPMN3YG9IUba7hAVRulPrO0bx0hJFck9UmB4BEnQ2sstEaUVYNFLJS9I5FSnzJati5p8MiPs6zsOvURXqW5ye1ZkPOQqnym0RzGVpdd9s0GLX0M6n6ljj59MlX9ObAsQTqAM1/Utb/mSdWzewHYm11IJRgrlR87cmKtZ111y8UwhADxC9iAmBBXwzK9Cn0j8qwaUiMxCDqEMZjph2iSODOWAYxHsSJXROBExDxBQivEPiphFAQ7at0l6R41zmlKvQg8uAcELm+sv4KEAoIIHSuGSJglK8VJvQ5Qs314MKlLPRrtX/SevMv6P5zLagzrP2vV6qWHRo18wq2UVzSfpn6qCVdM3FZgmHtQG4XvDfnkHKetumnafiGNQB2Z5vNArIWAw0XDweNvAZOsbePTWt/N0QCelD9awtJzuVAJDd4Z6QNlnvSZLnhEErFyNxBaAAEmfc1heT4bMQNv4EQK7qSOeRByVbA7EAUK60GNICzFHctTYgUrjhLN61Ujuy+hBUEkNY4mzGY1ithxzThDX+RsSY1GgGN8KxQyCtW/p1iE9iNJ5sQxw5zDzjcXmLp/CAm+EOt8N9tWb2/haT2+G/81f+LRARbvwtiAhfHL+oweoJSYJNjhwixLVwSA48iMRA363GCWbOyRh5r+fKMrkZEvODY8zSmVU7khewmKJjW1sUJQxP9QFqXp3KnoyXKp1XrUeNwXPbUUtoexo/NrUE01Y+m8eejqfsRXKbr+VCXJE+sFeojq/dJscautU5M0ap9MYUOD6nRamYKziFtbvLFnD0UUKtIWX5pFQ9V7eWvZJX7c6L8nkX6Zrnv4ZdNTjbbpD2pWb01/N3FXHBqTSlFdKoUOXCt7S2zKPV51UAfQooymeqfqvX2urdXEQLIrW0Us56RW3wwqkz413qT66eCIegweoSMaWg3PZLe8fcGTcmqHEwJw6gXJpS1uiAwTGISlwUdMrXear7xCjSCNM3bscprjtaERX6UzP2Wr1yvDNxYok10taZ9Xx6n7a9AHSalZBZPW4aVKt/5p4RynrZqrbTRS2EU+Uf7uj/5Us90P51pmsuYiMzPFlepbZyhbrvVru2gHqvbAXI8t67JauepvXR6ow8ZW2x/d4pTrQNsFbaIHkjRFWTuDx9Lhmq56RGCNniOGe7CRSVq3yW5sLICEvTGcsnolA1606JisABQ6pPI1NLULo6IF0V/wiAh8PoRsxx7q5pde+qZR7jEZ4GvJpede+9cyBZywQkeCPn1VDyC+GpwSCpuCY2tiXtmDC4vp8qCVfdntaJQj9xQ2yv89p2WOBeuREmIEuvzB1qienqXHgPx1kxCr+8OG3Ph0gfkLCwUPU5jd8CAm2573okptKuLubaI5nN3wa444KevGfxFb/HsTuVerD+VL46f/+tFjquS2k/r+sqdOVlhOL5Us+nPuHS6SPVXxgeASNmnhD5bToMCDn0NmCWlXD/JXZdPYpkDpIQ0wXiCHAejgg3A7CfJRJEaIayR3qtWAZVd9aouWDtU/u6yd/8Vl4n0y4tmFGvnB4Xql0j28aW5n7qP3zOuWa3fn79nx3yIV+eJ86rUwD63LtEZLzgfDtTy+nXMWmBiPwN0Pgt6tmmZ9i6lSwQarn6Vo2sNbCV3/VfeeecIXX1HWT6kDjocUFx8zkkg98Su4GhDAvuSnFC4iTbParj0/OOxGDMyV6gcOok6Kf2uxD3wjm2sRBicvignoW2uO+tdynHXmw1WuBJ2o8FMQVb8zRkznhxierXxx0BHut4IdaGQMF3SF6aYvofhCwZrtTkKBlDhye8GF/nfryYXuOOI57CAxyctKvpS+CAf/dH/w4el0f8+otfw199/dfxnf33VmOjkhBNGj27lzJXvQ2emvq8pEBxwuVX97tFAtVLKhnS+XDskotiVYjVaOVzujsox9cofSieokKOhK0R0+tgeVtErsY+kVAcMRu7q9Qle1E0kbU52QZ5600srdeehOZcKkTM+bOxp2L6PtPVhMVlXbWLGycXxnbBBjD1Mqtrzx6+vKCeZwHErTZe8t6qH4XA2CyF7LG/5ff8goWxVUEGOFzV06shP6dyVpdCtkFWb+5bDpvWYYs8FyMTAFi5182ztdyglszIxj5FQHBXKrSyPWnas93S7aTHeZbW6IhRGTkJeCUSC06KWG0ondwyTtcScZmnzDGxC9Hs0SRSHhwwemByAYc4IGip1TCzjLuWYIe6YSDVSdeYKpI1T9f3c29qT/9QqIzyh+qH9o0Vx8s86dd3rj3mxw2dcPtaa9t9utyy/j6kCPtd0zk9Z02WW7bi7nOf6KjqMQHInqMzfLm7dPOOmahLjEZ755z9vpLmd1x0nlNn2JKMVATaxnKR51nx5GQ9bRJQLgRD4AAGJzC2VltZ6Xpv7I2ei9wc8bkhOJVD62lApFjMohOBVq8vKcdjTVxVaiaMFGtC0paqFIGyJ6H2aTlyO2OauOCXuBhWrntFKIAAcogxZqlDBrvpGVLgteNywE8P/xSePMYUHE69G6kHpRAXBADEC+a0j7xRpftbn/4tRI64He5wM9wBAOZ4BMFhcAPmeMyuiImkJT2ZlBKMDJnjwY35HTv2A43Zta1Goz6GA4hc6kfxntSTlrgUfXs1X4ngUCjdk0IMbiyg3vcDe2Y5FG+rGanKVEQ0gRcZTLWkS+fLrc5+sx6fmc7t556Xufed3qvEojsY+e6+ZKAKkJF3af0aWTWYVIF590Ok05N8KXHRn2q6oP1r7v3zFsUWLL40GSc5hUGMbU9gjFNAU/NY7mW5CHsYsjsCqyXCDeGj5ZcX9LMSF2uMQWfX7LustlZ0XIVq4xTN2ujgSLArhwgvoL5sEHuTVa1ivZRI/5rJs73Qg4yBwREGxxhdxMxi5J1qEdE6+oSihQ3t0uTMQaFNwsMSrfa3/jqnuozMqbP5e329PF3Cbe9VJ9vBPG8J0c66tPmqNlzW1G9duuZCVBBSqdBcQFxconMMlLnaUqNoQfk14Jo5QoPQnVI92ip35UFnfYphy2C1Vw6bPJe42LXP64jXl42BEhURqj4S8/smVnbdVqgeeETPyLpwcht1KAVCzZoohsHmPyLMMa7GwHciG/fAYUiBxzJR11mHYuR82qB9Mx7CBWtta+6KehPD0YDJ71YxGUAOIRzxGN7ij7/4h/iVu1/BR7uPASC7mHVOOOQBMUkPkIH8QGOyERnw/dtfXXH2Q1wSgB8k2GmcQW4nd9hGrBNO3HoB1g4DhjXxmcZ0iZyD1jGLRIrIIabo7G251quSg0RFV1sNm2TuW2xQkpUi2V6oWpsQq8jE4VZqA/4V2w0hqFUaI4UnSVTLYHgXjNYhnL6J9O2IvP3Nj8Mz0vto9Cmu+VZqVTcue/90rvNPV5joG2SavkvVhaig6rcCBNagdNX/d0zVRZXbEwFEgBd4AJ7lVwZhgUNkjwUDAg+ip5r0T0GormhOz9TdLKUOZmlL+ut9UaPSy9BTwOQItz7gGBnLJZ1uB4fah5e81Mub3DPSpWNfURuXvUHvT6WmR/T+Uh5rX0NqQTWArF+dMjTPOtzqzu/6W/58hkixIO8SIqWUV5SJti5xKy3YJJCIKg81K9BJJICPi8tX257IAZSAleqkqzvVLWBrde/bflf67ig676AauAMS44KZ4cCIFEDw2Y1nr9xriLgekLf5V56AQDmoWkzjAghY9OoS1rTp1NhIxG8B23M8mmcuxyU4yXhI/eu5tfVuyCoxmrptUclGZ305ctj72zKeeY5cntuIiNvhHn/ne//VHIDPkcMhPOFnTz/Bpzffw97dlHgOzPgnb/8E/+Srf4z/7X/67+C/+bv/FfxL3/1XZF25AZNKZ4jEE1ZihQ00gByyJGFbTUjczB6DxKcgEG6Gu1XfRAWJMdCIYzwk9SYB5bIPElnKQQy1OVYG1Lk+FLBu55xZJAdivI28dy4hplWSIyqLhlDa2Gvd4Iwb1eh4qirkVsrG+xv1qjRQveW1kpXKy9oHTl8fYbGBzvIwrnTDGm7fpQXaHM8QJ50XwVv25HVlJKzY5cj33nhfC+AsBXtuKCkL9FK7NBXCSDlN/ap6hVuO/OnmrdoKACcM2OvyOuuK6sttDVBq4qIl/9akx/m0NnBrAFDiRGmMhzLmkIDUIJFYIEkOeK3qZFXaWA21oSCOS+A8VYEwBIfoGkd44mTAXTooLWl6m+chV1gPPLeZ03O2L5miLGjSCzVJSapiO/SIdFMvYdtnHZ6t/XgNh7YFRLnj5tOawNja5+2za3a6BYfn8n1bkyUuVCXNqq6s8m6ka7jstrwVAXKCAGgqzGVcAkoulX6tVHPSXzWv7raxA8BbzzOnCK9TyVpiEKNS27NMCjk3hMd7ClzaPtm2vOsa7d2RVhJzDXgsXoYciIqKFwBQst0guOK21ujg1+UkANiAu0KccrYJ6CYqa6A3RlV97RpAUWea/C7/HjniGA/46dNP8PHuO4A3MRtInx/xs8dHLDFgSN6TYgiYwyG7pLVMLGmHQMhTBKPw7ItHJgW3rf1I7QFKFKuIAY1JxEixKJKkJRgma0uEncQ8154XKHtd94+0XWrlTABd59mt3a+qu3AO923jFr2DItSRiUaJJ6rPlQ+dvnmJRRcEUv31W5meMUEWkVbABx3E9H7SxQf3hazhU828dLqIzmycrYLIfLhmbZAeS/p2n4yTrAVEZ7s/U1UHYlfN22pSe4jYapnFTSxzRFzUZZ0cx0QE+AhyDo7E7kHV0FQszvqGAgoAHJMxmyNo3HNth/0/oXoQAEcM7yN2nkGOkbSyqv6tAHTesoW40d8pUdL5yrGenDRfj2pjKuW19Aw1RFquq9lciag6yRnFuxwv5ax6H3KPa9tyKXHxbU72sivefWpO47n3LZe+JZS17D4X1RmgdyFxkdc2nXQhe0la1Y0aMJQ2atAtkU5o/AeRdqxVT9qAeeqFptuGE32uVnUeU1E90Xe0ndOZyMW5TCN5sMHy3iUpwFPw50BAB+SdC4xXVIpc1SIrgVBj78gBj+EBO78X16aw6664ghWiokhLVJ1G7FIWENMqZkPLaQ5xQc94XVMbd4GIKgN1TYEXfHn8HP/JT/8efv3Fb+IOL+r3IMHxfvDiBb5/9z3cj6/wZv4Cb5c3+NHbP8PvvPoreDV9nAk1QCQVqq4EGBW4DsHracCNG3AIT2KbkeJG2PlX+4/BDYiYsr3F6CZMbsISZyxxyYbrdo6Y48rm8pzkK79v1ObOSssSUWMdEqidyWCkGpcmW7Y6OjiXV6Umdn/bOm0ZXt0Wc33ear/f1cX1VnoWYbE9cBZ+rT/2zxDKvxM1mbr3ZuEP6jDV/OiNtp3kyGfYdTqT/bvV1s7YrCM2bh3mbVHcedppY35x3TZhXNed3+aUyD8NbCttBolxHduqKI0fw3LZVwW3OJHr3+1TapjfYDbmNmaGDZDe6Ez601yuzQurdZc3cMnejlh9+Wznq+up6xBCQz4TDWAUgzYAIE7qSo4AimAaEXlInLRFJoEJ0Uk4uKgcNyKJyp3BeQLq5FIQqdRaPWzS4enBGBwwjRHDzHAOmSZR0qyAoPJbmcb+SOmzfLAlQkTfhSlXmwskjp8Z8FZnvlpLugbtEyUSuW0V29eqtlbLpJUysTa+qh05gB7LnrVE13rXpnE3I9b2u617K3XVeyzX/xugO55L7BSOoIKz8ttWHZmQaMDxtcaJW6Ciah8pbC2Xe68919SZy16fbEYqoLrh8n9ASOfjNthU/XQpEwC5rEOvQLeOErPuK7jof9uylONce+Zax1w42/8EwOdYCIzBjVCC5tR8ZE9TrFGPOXvh6em46+dTSQlNOwbF/Wk6L9L4Mzhx8Ke1alQiDPQcz25nE5EhZTnMcZbnHYKn6h8iEENuB4OxxBmjm7oEBADD+S9j4WnA6+kj/K3P/ib2/gaRIx6Xt1Ai+bs338PHu0/wq/e/hk/3n4GIch3elbgY6kXqEJ4w+V1WO5I+uLNqRmq4rbY5EouDsucltVsaaADDYaASJVufe/bZ05KOVzvfynDQZ5dEXFdC26oL6TjqmZJtLVDWVFl7Pu+Xngc429atpHX1nENEtf9hkUowkDxKWQN+lPuFKBNCYotUz8mHlGi/s8Si17Y1UDv/4qb4tPtzA5TNv+fSRi0XvJWWUQXeUahki0kMIBLw1Fxym9x485asHtjC12PE1SfeGNNKjG3r22jH+pGOsBpbNjCcsJqorS5maUTV36ZGMsCLlWCpWBGmnu0rg3XcTE1sGm8hYjVfubd128+mlbrTqaxsQBEAeKnRm3oT8ub0HBQR2SMyifljCkYnuqME5LHKjUgAnlb9iYmoYUNcOKkeg4cEyYOuqWpxl1mz9ykA62yB2z1hd2m9hfLF1B2n6s7uzFK10KpVmdZaTSzYBVDV2KyJuj5dh4WdYcmSvKR1PPP7q94AWPehl3rA9eJnymg+WcOHS89VTxKpU7rSG8PMqnxz6eu7m205tbZOzMFZFRSTz9pyaHuuJTZaUGTrLNzRmFeQYwAbIEX17O3qzEAluba0bez1tVZVU+4CIcawGjdP1885p3qV4AEAxwmkM2/OfV2GUakhBXju6rHXtMqv57OpT04AB+9GDLRFUIlSS9R7PB3ylvud9eHZeg9a940TgaFOXbMB9gnHAT0XvY4cdv4Gv3L7Q5E0QCJ1EwvRceNv4ccBL6ePjJH3gIFHjG5MBM0iUdhZDKxHHivMQSAU57P1HtUkRtJe3AQjxeRATGGJKHuWUvetNmUiIeOxUMB9b28mkL+pCmvWSaWWaOK7tEsw58v3rGATZ+fV5M1EitrNXLBPNqXRSdVZiQVA7+f+WBPUHbV80TPjXaWEl6RvXhXqW58s7Dydevza7TJP1ZPUYpJ3C+/ESGqNVGrYVmMsavJZxNMAqBMtrcG3XuTpmXLcqc5/GjoZLmOVj1b/al2cweBzuKGXALkKeZ7NfbbGay60appEbkD5ICr0JZMDY8CCEQELQId0DAOZ+9+0If/vWrWNxPVQQoQgHNAobmz3owTL84SketUB4p3m1/WXHJwJ5OuSlRj16rwMor//ZPcEzGdZpZZq2mjZc5fyL0k6BeaBbQ6ecNnEZaYAzz6X8awL1gTgTklPCldQgUIN1K6xu6gCzSnH+sxNcC5mRCt1YeV8A1n3nzUWTUeHv7zH4KSqIWfvWuqi3NxeO8BlTSv3VgGzjnMmDhJIvUR6MbgBkcV16hLnynXp5HZAklrpWrJlLnHJBryjGzG6KavGBBNLw+6x53BnVdVUXKlKYQMNK2lRJUEDmetWSMGACLehdiJjJ5xuq9akANzzgJlnzMtDqtfj1fQxAi84hEeR8pDL7zIznsJjcuv6IhOl6q711fRxbsfL8XWuz5HDEmf84vBT/OXjj/GTx5/gX/3sv4x9IkZ+8vhj/JPwJ/hrr/8ARA6T26V1EDKRc+QDRhpPStM0yZxFeB5wjAccORhbndNxXErwPiFErRtdPS9aVcGt+eo919gXtRRd5lY9U6mUjMFYIEQkc/KYxYwjF8P/7EEtxkSMeiHQmrRlE6W/2Ujh6sJ3tZ8ZsJHXsx+2ZAfydTGbriIsVvqrBHDimppc/XdhwM8H6F1b5Mq2d+sy35SUtKTqNqhvgXVb0Rr0b7WlKgR6pFOF3tvxbmu04N8WSOu8ZJ+u+7MmPtbXTy0GXndHMOUaGlrm87rM8jazkjQtC9xITqq+lupKMSfWXkUJdUhD6vW6LWN9UJ3korbjsZm3HhwGIWBI8Sys7cIVG4pXH9Jn1TNleGKxtyBGyPubut6f6350quN6Pku30lo8Mb7KaaH6FyOlqAnds21KQHG1Jp91Hq2JrXoZdja45UQV6tw8fr8H4zdFu1zDEdviLivBfE0ZbTlWhaUlUIQA2B6jc2oTnVaUP1QD9+ckBQkr+wvUAFVBQ6ta5VfnWDMubMcnIph6WnUJ6xBbVFHYxJto3AUngsASO1WfbJMgLkaZSlC7yBFLAmiuIewqwikBR3U3q2C0VSuzawA4T5R2ddw5SSmoJsysbr6tQ9VQbPvbPTHQAJAxeN/CTURwSY1KYz+oOg4lVbVKTJraGylFzE4G5kuyafDkEeKSuN6MQ3jEl/MXovJEHpPf46PdxxIjwwkIVpWrh/lBon0nQsbIrgGKWQWsJeo3tVESwehz/AnFJ6clDbZcXftCHPelP2VYeLVPenl6z9fOOwyQR8scIbgsraj7Kv2Lm8R8iw22mDRaT/dcQ1EN03tdR/Yatax3Se8ksSigQVLp4NZCsl+2F02l8vAsJjW1WPNUs84VhsyFWEGcrfLXizPh2/x4vWkaiEIORBpRVA8el7jLqZgGCGsTyyysiY4t8f/G0q1/aUDgJXYiRae/ydRB+r0xKf21XLh1jRanrTjdBKxC7mV7BC2hXsz1Wu1WfKLdtpoWwNagY31x2jJ11qXyyBCXsxgQo4N3nMuUcSrcmgjANYdz8dqlh6SsCJGQqMiUMVDEQBEe0bS5HFOX9L8ae7bHa30JVo+rQns/mbkuA5XbcFK/v9oqZa5LyzarbS65/t62eU+li1VjDBPnbN9WLzd/v8aU7R5O5UGJwMt6OeoFyci/aXmnkuqiw5SjqUgSEmevcb9IWTpyHWOg7a8uiQjOgL67J65VjzKSF9E9LxLsVKCATANwc5TgM2pbCiwF5nD2RqdubS23d0VkUYn4zcyGk0NZraXbn2ZBEhEGGuUJEZY4Q20IxEOdT89h2pzaCQdn4hqc6q8QO5yC911DWJT703W48DqGQ3K9W6I1p352iCtNCtbP6f4rUTy4MdugPC5vMSRJjUSrboghEkPxx+UtboY7jPA4xoO43/Uex3jEEo8IiPiTL/8I//5f/If44Yvv4Yd3P8Df/M6/jFfTR1Vxt8M9PA04JqnSwEMVU0L2YFmvRCaWBHMOyNemLAVIUiBRj+oQSieSqonJX6nzVAyRHJV7Y3+qTYyWY+0dbNn2fOr1j6AukFWlM/2WdqA6Y7BSKiup1HW+FSvn1Dquykzt1Fgc0iaHDy27uD7ydndCTtIJTQHX1vjNpooqvyhZ4HG6xM06E2eEdRE3Eou2PiIFfSVHLW1Yw8HLLzfdSL26zyRX+vruHmy6SFP+bAHVreZ2uALnq21H9bnpVBlaR3MBK9eCCHMccYwDQmR4AOQ4QwDCGthx+q1QW9EAAUCJcDnUhOvjETAiYHQBT0FtNK5LK9rx1BB3qTjzKsGAlWfOQacNz+JZQI1LL6jvn6eTKXNcscEpRkvUld8qzn17IfeYNsxgqn3B67tC616m/7zRkVTG9opS0KJS0VYycKrPwrV2iCRMhkxAEUBw0r0EyBhFitGCD0sE6fui0oG8XmMyihXO9JBctq7bmG0ZqBh5SyTnCOZFgqzBVeobNlU++Ykw0Q6OvKg4xRnKabWcXonMXdx7thoU7bpQtTSAcFjeAgCG5GGobVc2zoX1ykeZYN2KN8GIWf1qy1OYctYPy2MmEEI0xvSnGFOJKB5pymePnYMBA5gjDuEJAw3wbsCNvwOjEIoKqPU2nvwu2VlE/ObL38HdeIc/+uIf4vPjF3i7fIXJ71eevrzzmNyUVXmq/kEYWSppEp65K1G0Q5A1bKRKtf2Hh9itiP2Pqhi1mEFUvAj74Xb1rnhNLJ60bDk2FQN6VIH0bJ3SVrOGsFZNPJdUcuDhkoMBZXSktbqhlmSZK+KwIeb9/5yzSd9xnJxAEJKEUhghug7fd3q2xKLd1ObJJS9vlteWVXPnL3nn3VKPa2WJi1MAuX+xdKguc8C3JcjjdPmQ/ta5KNEpduOzQtXKyw5Ojx9V/67JitX8J+BWwOSaO9VWoGEWbMnrJtUguX5SOBvVOtHfQEZK1JNz8Dbmfd9rqx68/JGrh1Yqo2NuCY2iChXVVXXOvZ4jBpp+pwkyP7HlCqQ/DhGeIhzVYthMpJzqppEEyNja9ltAbvu8LTewS4TsAls1w0aAX8+oCvc6p0hdz5lzxvanx5k9pRpYt+d67nX77jXvf5vTOZuMVmrTqrcUwJWe8AYtm4gL/ZylXe/Y/sLW6ZdUiB42devD9Rxq3lq6UkCyJUgqtRwSyePJtrbnMtbrSokgPqPrbtuQCcMEtlGpS9Xl234iSWMcOfgk7wkkxsetBEpBXjAzq2VaQqUlzBhJugDA8dr4fNWvXN9lsQl0VZ7LFziA2MGxr86Rdl3XXogiVIVJ8yrjUdpKAkJjzGtb9fc1rxKKDMYhPOX9tvN73PhbfLr/DP/kqz/FEmd8NX+BFyjBBTUtccHRBAysxouEcFfpoUaLZ9b5iAksF7ucag2rhLKxg7D7nBGTJKtPLFtpyZKYZ5GiOSOQicRUaL1jL4GtF2Syay8b2BdT/ipfPqjaejKjQj1BOUSKiTgweTp1bz1X5rRjQoDuvXh2Lzw3/XPjbZOuuaTtVWJlFC1/9woaN7WhLb0mLLa5u72aysWp+vEZlzWc7VzKCcJp8+rUvdp5WElO7EVeqJ30bLPauhJbau+dBlG0AKNAV97M815TQcWSrqzIwFgwHAIPWNhjYWASBk+l5JVdzqIQDRQjyKmpd78BItVwcAyMzBh9xOgYVXSsZyCwXCOZeT/Ry/bd+rMUInY3pwHU2UbZqm0rPuhi+P+/1HpeKdq+AipF9cBVwKCXVtGWG2Btubn5sszvUAYVNgKv5tviql+TVFXpdJJ1rp6esuoGF86+ekoSDmo9Hj1POaX+NTi7NGVCgo0tCiOplyjhXYiATUkLWDwJGUWLYDjlGsla9OqHZKBc3lcwO9B48i5WwGvVsRaecz0ST0DGYeEFMS7Y+9v8bs84WMdPiJvzKlPyjkuedmoCaLPdTqQHczwme4miNhQ44Bie4MjjdrjDwnP+3ZMH3JSZHtoXbbdjh9HvVm2wYxg54J8+/gX+6It/iEM44H68x7/2g38DRA4DDfj05jv46dPP8H/70f8df+3j38ev3/8mXo6v87r8szd/iv/3j/9j/MEnfwO3QBV8T4zpRYVo4QWECJ845EQuz8EhHrK72bvhxckx0z1yDE95HBaeq0j1mhgpuF6ah8ENWOKCQ3jKpKlVhazqTe9kSZWxEdEyM1GXGFtqtdCTUPW+D0ZVaolz7guAbn8AJJe8EVCXyszZo5s4jq3VHTVoo5IvHjVhqGWCfCZsVcXyQ6T35m72cv3U+kLIqYP+KmBxIae0V2TLXd8qa7uOQkLUeWqKM/OTMlG85rGXzvW4ZS3IbqEVV89rlZ+6vIJjDeeG2vq2uWypJ9U8dfEYXWCUT3UZ1bc1ejSlm7Y3LVu1pGpE3a+6Cl79dh5HFk75tqSun8j0UQH25vuEesS5eQhxtRdBCKyeKHrNzY1NxZTouXl96DJkHS8GEiAgB3jPGHyEmxkhra9CIPRW7Yn+2/msCKz1pq+kg6XWukQ6tW7RHZO8Z7Z4NJnwIbTHQIarrC1sCFtG+wGXrKrnpi3pxal835ZUVMnK3/zsGdKb6reKSDRGtSinWS/vu6ZWYpL1oxsArqo1gKoP0Uli5JwkZ/O9E/ecdYFZrx19x2eyQPvFiVnRGi6vQZQxTkU667mw2tTmJXIEHMAN+LlGiqf9CHHJ4yTqSGWMhVBwICeEhhxjp4mA9s4D+nYQxQVwOQZ66me23CGpJdkbKANCjT2RfndJxU1d6Nq1o+VVY9Zpt82783t8Z//dTACPbsrjM/k9fnD3q3i9+wivppfYuR2+mr/E5HYYecLkd3i1e4Xv3X+Cnz39BNhxJiwK512ja2tAQIeYCApVTxzdiIHGFeA9NReiuiR7YUf7PlGY+lH9ZgiCQihSIcBR5s2OW+0dygL3kGf7HBPkfK9MFPG4bKrDka4IAqwkUtejdZIg3zmrWykW7a1Hew4+53y5JF1FWKRwXU0qF/FJ1Zrq2ZnuXHjob14wF+S/nlDR68l+wzY2NmWwmchVrh47HTX8lnfbtmiWGoTLmzXwKvEceqK35n3LIdPfqmAC5S19s9uFje/6a9G+KeC3V97ptFE6nX7u8iQqZFzPVZXeYT0ql6POeK4Cymsra0+k35gSYQEHLkLNtBRSfwzRagkhai5uAiEpXYIRQTwAySPU4CPGIcIlk8RgxlTVilYAv5EU9b4poVGpFJkjXr8XUr5TDLerthm9C4G3bIemDWQkPmadcKLK8uUCQ/SYfXipKdGlBOq5vlxL6H7dKUsqDBAlJNUZI/I/l3pehnp1aZ4KiHXA+zWX6kUMKS6rGkl9BSjEhQIB+xsALEYlq/Uy9NxUoOu6HJVMqDFnbk8aL5/ASNY5T2SCb+IiaBTqFohp1GnbBm2HAp+ICESI9znjCvtUu3t95ORBisGY3JQDleVySAxrL4OxqQ89I/CmXbVBb+Ji61LbsNMRzvVYORtQiZ2VTLgkIRAblX7q2SOdc198O9zjxt/h5fTRysDcY8DO7/FR/AQfTZ/gi+Mv8MXxc+yTqtToJryePsKv3f8Qf/72zwEAr3efrMandRywcLFjIBAmt8eQPE1dJhFKQROZQEzZlW0vn0MNzgnFqJpQ27J0ieLOmrNt1GjflMZLggZelixhKve6nBeRIxYsGDc8WVEi1kStK+kbcDEwt1YaRKIOpypv8ryopbXlru6995z+uSrUs9MVHOuG9OiQF8+qV/GMXmYIEeAjgBmgBUwO0U2A2wHGu8Zl7T7947VMP8slONV/1sI1B2/l3Eod8GWeUeeBAFlq8tp82/U/lytsdca3E6++CdHgAQxQt3UxRjgqQCofXvlFc5AakKcElZJXMjcEEGM/AjMzvGOEBH7aeBYi47iiz6tPlny4vKR3gdCVBEW6emp6c75VxaSlKeWXOPAVAXa+pZetg1/utMWNkyQTYC+4HpC3hpbK6MgXaKt3DfXezolo3ja2z0bV8qXLPbxkjxMRfDKkjRQzB3olH2Mxq1XuPQEgdtXBkwHRFWdLNFKSUrbUryoSBIiXJVKOeLn+LRjPf1PTVZWjBbQ6Zyo1yPEtQFCf+eX+02jdCuykjMALwCnXCVehbdI5n1KwtyqGwXsAS1ay00oDZK59ItLquAstI4DREF9JUgVA1PFSPAJAiAktS8fUel9q+64qYEBRqSEQZp7hQKt3Iwcc4xGT31Vev0q5HvvhFju/x6f7z/Bm+RK/OP4cf/zVH+FXbn+Av/3dfwWAeO/6i4c/xYvxFcZk5M3JjmPni6qcxNIYs6cxy0R8XB6gakKnvJiJtGas5reX7Dna5mEgq595N1y1r4SIDJh5TtIFsXdgxGKovkEkFZuTsmYEq6ltJ+cYLoDM3eh3leG8Sqtc2scgZHU9WFstqEc3l6UWczxi8vuT++FDSbWv9wqFKwHlM6QEzzFO7F9eWOn9v0sdJVkAcbo9jN5BZ4gLC1oyK7jwYzMebAkKWxJHcAyI8xPARzgcQS4A5BAdg4YBpJfIxX01pIAB4MjtUabLaQ85K7sKm9j82FAb5RCi9oWNVIv1FSC3xbdfzEifKDvl3VgzZU+sZTfajr56DtVjkN/a7ieTEkEplgXrBda2JX1nzupO+Zk5gMW2opE8gDE4YPSJq6gln6Mme2trY31sgk0zX1zlM8omncmsWt+Zp/ILVxK4IjlDk6/+RuBalSy/Ww74Fhz3iIbVpbfB4dzqyxYRcrGU5luSMpefzqsVqMQDqM/0U9xhcH1mtuV1fizri0/fCVvngASP0+NbCc56b8qTWKQT1mC1AfdtnVttWhtFm3/ZSBAaTzdtGe14WeKitV/pnpdG+lI5tCQhLtR7lIOR0lTn0na09a3+qoTiUp/8tp/n151GN0bOX7pUn4WbcwOuiD49c1uD7fy2AYuXGNa2xKtKcuLGGBJSgEXmbIswx2O2Udn7G7ikJnWIT3gKP8P/40f/Pv7N3/qv49Ob7wMAHpY3eDN/hdvhHkOqO3BIQHYHJKJFiQvfSAty3xjZwL+vWleI3N7Zar+HFKhPx0RHoxqXs6O5nQgn5rjT9s1zGjouPtlZGeIDZc1V76T+q3eprRVLlLzHQSWNReXxQxEQW+lZEgu7pz5ke995MOh6Quh0urQkQgUsm7cbDN2pgzqf+7UAAMcFcX7C0xc/wkgBo4vwwwiJ1Bzgb0b43Qj4vleBrorFiRbK++vR2CqzjIZJ3OndlfPVIzmKTn4pvee9p7lCL6xx+432KGvbRk3Hen08vS5iukIcInnxDMUOzEAM4hHEOSeqBYBcUE7EqJlg1d+RLnRi0QsjAjj5oAcAYuxcRBwCJr8gRMIxFoNIkNH3xMb8bqUehddRtVP6YQvon69kPcPtert81pvL/4r0viUS33YJR6v2dCoRUSbyenrslmtc4DIJlxeXMQOkHtX950xwMMcsnfAp8vE56GE59lllqSFCuhzMrI9P2gqA1O+RQ6ve0frNz8CpUUcC+kBZ+SnR/Dckjq9IUtblbBEb7bM2GB8gnPaYYkVQaofvSH6896L2k4K1taB45hnElGM8bCXl0ms/LtXZV8P4Eo16yAH2eqCWWYjAGGM3ojjl+eQinWgMegklPoeomIldSUgxDmJ2jeoTV31IqjbnVbhUvarbV5Q1o+3xTsr94vgLRA54PX2CL44/xx9+/g/w9376h3i5u8e/+Zv/LUxuh8GNeDV9jH/01R/jf/y//N/gh/+T7+HX7n8rj+MxHjG4EZPb4Sk84BCf8PnhF7gZ7kCO8n5WaYVtM4Gwczv9IQPrrXgXdv5UAmeNl2ee8Xb+EjfDnURtB7KanErPNFbGtUnV6fZ0K1KZpBboU+wSO85WkqSETusYQud1hBhyH+MRPkkoxM3ytq0Op34Fjhjcuj8+Edm6B0V6Kd6xiM8zcN5nujryNlEbgbdw1Xup9QpiyzpVzzVt2q4cAlavqOtc3fkgVM7qyfw1VNwEYJbzsfmQ6ocGmDNIXANO9+KrnQAaRjA54T6ME+BPj0FNCKSlSf0W2VyJzF7lq8dlzUGoekelvAJ7OQHOZnDSV5d/str6Nvc27LDjBm1+C0QtwOn2qSVickFSd+bEmCGq3i0fqDv/db+gbSTxDsUYoBILMX7ant/MJTJcI0o+w2VZKRcttTMCHhIkb3IBMzt4jojkqvkusghaTVXpULsuOlnWDV79uPI4xlZLtK0j2UQYQJrr4XYO62ZTRQGaVdIjpMtLpun2vCvv8+qtmjt9jSTiXaS4X1e6+Ky3N4nhUNpyZH0WmBVT2ao2YsF15aIVtL0vKHmC4eLDPtepREPTH/t7/ntOCg+CBsjKv+XAfeu1b+tQwKr92jrR1us/eeRB7ct/q04ABmz31XraulqQkomJM+MihJc12I5FFW0jqYGzqko5U8810YMZLDYZaUwHdxpsKTd5S7lKV50FcisNDVbAtybeCEX3n+DAKSZD23cdIwXrGiivxyVXolkBeyRk4l3f2fub7MZ25/f4wd0PMCRvWW/nr8CjrCFPHr96/+v4n/0P/i389qvfwlfHz3E3vsTgRnx3/1kmVkc3IXLEi/GFBOwLT1BDekrenVZzlTBH5FBHB0/PLEG0tfeAoiKpxugKvDW/qgUNbjiBCM4n3cferAadX+1XL5DeKYN+Rx6DG6WNidFxap/LOqK87rhzT+pacvpvbkcKDIjadfGHSs+TWODdOb4X1XOGO/cuF+c1KloXlAbAHtyFhDi3mHtP+zBcwBKR8c7DLHqaBLDzoOkeIAmsx34AnIMfvEgqXI2MWq7iyTGgjnTBtjW/S/1Mp9jzW9/zi/VBbPMpIK+hYJ1fx4o3cmytrnNcV1qtS8vVbuI/dLJaFR/9aGvLBIl5qcBUhwgPdaeQR+kcUcw10M59IUKJ7y2lOTBGREw+4BB9R9X2RwABAABJREFUMgRLrczrQRve6cDWyLZtZCT/+zWxtUmE2jzcHPK5n1qNldT029Xfa21T6azKX3lHL8MyPm38GFsvqL/WThlqX5q+KcJibVdwAQA/AUTb5xaotGDKJvu8bZty74FCcAPollOecVr+J86FBDasWtOKSMngQCl50zZmOCdqEkjn+0miYmPdqOQkwlovaa3rYIAKXreCvNn6em1Ryc+5ZCU6CvpyZOwT/QwcpPQrJBRtUjsAmDE6pwrFHOE63GGT66zhtDOqQfl3bUGK4XFKTz8HmksceHEbuh4rHUvhQTEiMZzGlQDyO5Pb5fU5JXuKF+NLHMMBPz/8TAAvDSBHeD19gv/RH/wP8eX8OX52+KmoP9GA+/GVEDhEGGlKLBy1RxAJGUh8Ndn627GLHODT79o/DYRYE9ixvG+fpbNgdFNStdPYD9K/CPGIaOf6WgaN5t1a93KWtMRvcil9gaewIx/AQHaaoLh3JfEjL2bb2d6sf8eWwKHyR+OYKPGb69hEP++eriIs8iEt5Lf+ig9FWLxz+lqaRc3fc/mATdB1QSkVdz4hbfIeznmMw5TBt4KZfCBGC/p7c7fdJt7IserR+x5vXWPNEruqGtqizAv5p3C7F4fDpna0Cjl5foNqXS1v7mxfUgNFxYHB5CG+mpxwxIkgwgf53ANFaoPh9bkD4J2RYBipI0lLyQEOjJuRcYwRb+cI5pC9UwhBc4pbaEf2glRRUZe9UwkXzhfafWr/vs9jljLRutWGM207w1T5tiYiWgH6wj183oXeppZDaCUaVqWKGwCpHFIFc12iNP2WVX64GHQPZ1Q1bJvPER8xlkBtCo4cHMhlyAmcAJynyraEjfYz8ILAAU8hRX82ffHkC7fVNLs3X629gE09jm2bsipLMqR17BF4wcILBho33WOqkfC141H1hRJ3PS4wcHsz6RxsxdUQA/i+0XE1/p13VZVGk65bS3AygKfwAEcOk9thwpTv817bRa++cOsJGpl6LUnR90caMQwDJr/HF4ef4X/99/93+LWXn+G3Xv0a/rVf+dexH27l2dvP8U/e/Cm+e/N9TG6Hnd9Xc6Hl2LTEGYfwJP1N861g25MHE2E0RKYCclWJ0v2aGp3LDXEB3JBVGAkSUV3HTXCPz6pBOjb5Hs1nQX+9aht1nE6tOVV7UumWR8FZpwjGxUS8pvQOKWGk9fM6xo4SI+eSSrpskEf1I6X9l734DvGgTqTrCAtYzjBWn3pprT6CLvgpHMam9I6qwMUXk6I/q6qjf2ilyFLV3Kujd803CitNKbYR9mdzLOTHrXyil7h6RgV1gggpbqn8ZsdZI7bWhMUpglDyZx5tl6LojdqZpO3pFGrHkWxbO83M01o90ktaq6KOilOe/FJPW35Vl+Wkn+qjGfPu4+3d0iXteuOdiPkE+8EQyRSgEgu9PKiqRC9UghBOerDK/+V9C0ZA6vMbGB1jIM3FGS7XHbkSmneyyXrl9XNTdJGQoHAdya6G9Ljafna1cfWwaL3XVdXLXsFnh0A1Lyqgs48y56m3Msi293KgfamnKWnW5eV+U8mqll6s4oU1ty1flsrZNOvZEhBW1aSr6tMSdCc52us2XJzMepE1WNZJZcvxTMPLSi5LBJXuWXWlAjxIF3jVDjTt0nIL+K3vZ5X2bBGRFVHSzIlw9blra2P3lnWK0KqN9Yid1gZF8iL3oQvQ9R3tS+pr25+L1OA2ko6FcrRXeRMjSV240hluttZHKBKdlnBWsKnqQ5PfZfA8QIiL3/noB/j05hO83r2Cqic9hrdw5PGd/ScJKBfAnw2mG2Ja26hqb1biQya/VfVaUmDI3HbLVWdO+1rmRb25RQOelRhT2xvbph6A1nrZMA88+ST1ienuqONF9BJBXPMr0+2Sc7eCHOTEyYq2K5GIW54SL7YVMWtEg+u1e/lD3RHPdDf7vMZ8I9fcmlZ5TpZVXk0tsO1PFQOkMEZzXVb+6kkCmLb+Hi7WwzODdMJGTm3fFlQvH6j5zm0xJ9IpMsamGiKum1l97DwrXhXsJbMG3Ft1r6pKDXJNwzhdxAb1ty2v0ik4uHZ120Pe5cgiECLGRFykuc5EhVkBKxAqOpfiO145aengzS43haAgAI4Yd0PEg49p+HRVuVLH1gR10loV4Hxar0qsRmt7/Kn+2Gkerxa3faWekTVxoRTIdm+2JQ/nibHeu78skoyW0Mq/baQuUN0Ai1sSAeXYEhewDiSOYyrbGlhuql+dkTgABahYjy7njE9t0gBoZECSLVvAV4olwf1x2EpbUh5H4v5TObszi5vLwQ0IcUEg4XYr2FXwXfnhbyQiMgYlHgOZ/wQcl7FU4Di0Bq2Ju/y4PIDB2LkdWgNzIspSJPF8U1z66mxLjAFfgUj1vDPSCFWpyQbcvr+PtC9KhBX9dOR4CT0CyLZ1a/3outZo1DPP2Ll9DjhXvUfArbvvlt9LeY4x5Dmx5cUksXpY3oDB+HT//TzGjhxeTR/hv/fX/vtVmW/mL/Ef/Pj/ib/56d/Cb7/8PQDAMR7xkLxCjW7qEnOi4jRgHKbqvGqjxztymHnBEhc8hQf5DRK0zyebAzvvolrmcnC5wIusB+eQHB5X7lqrelHvewbjEJ7wFB6x83sMNGLn9+mWA0Kc85qyZbRzcWrf2/qsWpSVRDhVaU9niTrAYIpdlfVLiIFVWzecNXwoddnrCAvSRX2GUt9srF7E5aPVNW/Ts6QUp2tefdqCJN2LJ4vWsQL35fMa9hh6IpXTedb7baMHgDVeVkCZesKdNyym7kiA+g2tDzi9rG3itl9byUx7/UHBqvTDEnjdI7+pp/b2pBxLOTA8lZKVYy/Do3CjRP5teC1mTaS5tO9Xa0DfUBjTRadn8PZpYF7RCVqcVu4cyHmQBnUjQ1iowXYR4eQaIjNcIoo0u46/9lVtPCbP6f+Ip0iIKv0CQ2J9bus7CwZpQOGJ3tsXc7s76643qJnO6zUC2qF2s7ULSp91WmU4lqwEZQWeW/Br1grZ9jbzvXGu9Ti+l6oSfRsIj+ec3T0u9XPOfatjrdxgBeiWw3q2nI5BsyYLeM4fgOuUOebpELW2DZtB2p45HoC5l5TbT2xiEAgoHxoPSfls7BB2bVsIVIEle6rqfFhpifXxr4BYYlIIQXVKLz276Mw2L+n0Td9b2xVXSalcJi6Uc9/Ob74NmMXbnqrUqN6+VZXh06oymt9+joiY4xEEYOdvTtqMbNlfdTUq9MxPZ41dU0sUdbPAAV8ev8AcZ9wPL1dxE2xZb5Yv8bOnn+DHD/8U//nn/ym+uP0cv3H/2xhowM1wh588/RhP4Qm/+eJ38x47hKccUFE55Gr/0KYQFzzFJ4xuymtRo5APboRPjgeUo697WaU3TAzP/TW3lfLaJkoeuoZcd+AFh/BUPJql9rdxNnTt5pgjyQNU20dx6xuxhBnKklNiycbAyEyYrGaMTCTNPMNLeMrVXWAlcUrsAvXZVPDohyMieulZXqHSt+7zbyL1Lt+L38Xl3HTNb/9m0NrJs0qnmtY7vM+1hcwhCAWOTW8MoJRcthE9zjiqxZizZQBq3szn7xpE9FTYcq1KB1XtKm0z0N00y1BHtr6q3+ltNqNACp4JZKKh5R5mln9dYj2KLSDt/L6FRfkcH3+dtL11v/Q3aRmrfi85kOF25qO1RdppTFBdSoYYrdZx+TS4pA7lOM0ZNTlyT9tXe19X6VpYltu+wSlcrzeusrNduLDrNn3fIFB0Tsqlrv+3qS2z5RnYHm8b0J3aP79M6Rr1pue+CzTj1KjJrNSkLi0T+s7ai8olbTtFCGbD5XThr4KoNSCxVefR8p9LtMl5WmxVNgmIC8sD18byFciK8puHjWdQpCPa51affFWnIRDN6FV5mMv5L+8IMaFJoZvOLcN1t3E+abMqKTWCSc7nZpu6xEC6l9TFbIwLiFyKJr09zlsSq03iAv01qoCdOeIhPOBpOeAQxXtTj7AAgEN4wsPyFksM+NHbP8fb5S2+f/tD7JKNxZfHL/Czw8/xG/e/DSSCbY5HqceN+eAbaMjr3KaQCKyRRolk7Saxt4lIkd59cuWaMIMxjC6dLAbuOAOe2/2oxICqP0UwIh9BbipSCFoTjgyxq9C5D7wAGKrzJlUo0bWzi+OImNwWjylSvI6LlUTIfIsEJsYFztHq3Kokhmkf6Bor3i6TM3hzEX1dGP2XPvL2ZQB8A/U1YPk55bTwd+vJNWmrngKit0uv3iVUy69O5ugl+/GbIQ43ucid1Muh/fZel7QcvOTEf7rzDtPoQY7gHCFGgCNjCUGAZGSEmC6tyA2xgXLTXNig9wUH84FhLxUkeQE7BPbJBqJtT4Wk67YlUWvOrvNe6cHKgTRRxH4IuB9nPMUdFuXcVy0pYL+Qd8nb1XsaiGsA1GlPcltPLmtope8NnFgXJ/bbe1sd395kCaNTc/dcY1ybrJFncd9ZE22qgmH1/PP7bb6UxPtOiYR8iIdMuE8p1oKAHwlcpXxnZomIrHV5GjIXNCZu+RIXUdFxEzwrZ7YB66mdlsgICZDmdqemZ910w7m8lEuZCYJn2nOsAsA1B2KPYFCXuD4B0mM8QqWKVrJh56PYRSC9c6g4/lp/TzVFoxt7GsQgORkQ9+9aypGegeStiGrbhU3j9M7Zo2tRJAZFUqJqVr24IlqWxsBgjhj9bhVsrkcwKrf6GI8psrWqEIl7UweHwAuelscc92HVZiK8nj7Gy+kj/PbL38Mff/mf44+//BP8u3/2f8Vvvfot/PWP/ov43Vd/Db+DmI2yGUX6o16sdNwHN2Lvb0R9KcVLcnB4Ob5ORt6PeV37ZFNCdN5QeYkLIgcsvGByu+yIwHLxdd8o82yAxP5YeM5ShafwmNv5FCNcdNmtb3m3OKYIHHBcDkJEw2EhcZWr8U7E4N9hIJHczEl97Kv5p4gc8J2bzzDSiNHvMKDESFmSepfGWGGqpYg67931lwhq3SdCaFkPbLLFXKfM952ullg8N9kL+Z3SihPQqWer/k7+S949l6dQqPrP+oLIB2L19Jox1cuy5neeLYPsYbcmSYoAqiWRagKlF2Qu96cBcz1uVp3qH9YzWvraqzP/23KQUn2OCMPg4b3DMI4YRw/vPaZxgHMEcgSOjMiMeQmIkYXIWAJCjJiXgGUOCCGJ28249ThRMg7t+Bmu2TbGT+NTQGc2xc5LykpntFJCBKWQeSTRuGmVK09aljRmgGLar5cTsRlPHWUGUjyLnWd4iiuv+Lq6dQxkuq01UdMmcM3529iQJ/fZRjrNIbaV2fW5bka/GpORzIpg+0gpjor62ph4/dNr62kpxiX5vmlJR2tc+yGTAKo6FgXQH9u1hBOZKNFzRwFJdfkSVcCycAebcrnYJVh1BCKJipufZXWeKB78zkgHlGvNZOqXCuVPz/EBTu+JXh2XpucQIa2qBiBGsyAHZ938GjUPy+lWt6sESsTZLF6e4DaJhNxWqNFxhBg4U+aAax6VtIjL1FncsnLEl/Pn2Ptb3A53q/5sqcrZMlVFR8CgBBplYjizPrfG05FLXocYGlH7nJeiTJSldRI5ZpseOCRVrLlbjl33LrmLdc7h05vvInDA3/v538dPHn+Cz+9+jrtkY6GJKMXYYAHjTD7HlwBz9oTkshPa2nMSUXFEcmkSgslV0rBa9p7GIMWskd9cxi6OHOAGDCxExODGZIMTgESAMIqkK8QFjJjmpbRB8y28iBaE03aUfwcnkpkYI5Y4wzkHHxfA1zA8nSAQAtejNda2apF23SixnsfAnBVsS1Y1aO4btb+PdKXEgtDCQOD0ofVBqKJTRW6Bt1OvniFGLn5G3Y+Z2q1B4vVjprygHgiqVCfIgv5Va3L+igrebE16e4u4yIv6AqKsU1k7TjZLC0rL6uPVK6pCP3jC4B3u7m6w2+1wf3eL3TRiGISwEClGuqgi47gsWIIQEcfjjHlZ8PB4wMPDI54ORyxL2sQrQqeQE30JUporAjgj6d4oswGZ+l5NAKxWL4m0IsIhoHjvUgmN5GQk+XE119rWxvQifekBwYjRRdwNESNFHBGMq9vKS3kG2jImRcpS0xGnxuLd0mlwtF4zmSAw4Os8uDJ9MoZHcqGX/de26znpnFj/JJA6A1Y/ZMrGyMygE/rjmhe4box6AbeUkxiTisJKHSclO8fKCZ7jLGdLAjnMxYBZOcAOrooIrRKHyCFH9bV6z8oJZTACCIgAuTFxO5ekmhLhsgHy6WTVo4Byf0QFIbrvjMQgq4BtEHjtOF6q3qXjppz2S6ROyn3X/IEXMEfshxQ52qibBQ5QHXMBQAKm5zhjjkc4clh4wePyIMDV0cogvG3vkLjqGt16pTefvQM5zPGIN8tXeDV9hBAX/P2f/z387qvfxY2/rcZIpQ/O7VcgT/cAc4na7WiqnuU2ZiIR1TwIx34EIiUJQEjreqrytX3NHGkUexQb8TnEgMflMdk++Or9hRcxpkc9Pt/Zfw+vpo/x937+9/GjN38B5r+Lv/np38aracrEiEuOQSJGPOFRo3fkco7xKUf1toB2cGPVhkjxoj0BFKmiSiHacSGS9aNnA4NLbJgsWRhzO/f+Bm/mL3HkQx5DJQxUCiQSiQGRNPjemFXNjklCoy6VdS4cyflxzxGH8JRsbOT3saOiqdG8J7+rzqNKRZL1DOPT+zAvL85zrGfCt4Sw+IAp440zQPWbuSuvShmI56Bj9bPupjl5qNPqG3d+z4nzMHaZpWerueSdK+ehwXKwvXgfaRg89rsJd7c32O8m3O4nDN5hHAaMg4dzDoN3IEN0sU9i82EAGJinEUuMuN3t8bjf4elwxJu3j5jngONx2RzLlrho5xsbz6mTD02eOr8lOFyiWqhw0VkJLGtpk0Cm9hkJeGZAx4gxgFg8noBKtE4tYXDA7cjYDRHHGHEISuI1KzmD6sJN7XONTZ/e4zI4rQLVJxrsb5cSFV9X+qalDs9NepmfPtMk9WwHgAKScpk4Tyipuod+Ptk+qBEzYXKEkIiEp/CY61LDagWG1Jxe2k5lHOkas773NfL1wosEsUlg0SWPbluGrafabcdI3nXVOCqA0ut9q/yWWLkmUTMeShDI3deP7msBpCN1l91PKvEZfFFJmvwOoxMQGHiRiM0dcCSccc4B3MDCaVaQHbAgMmHmWdoCh4flDSIHfLL/DKPf4SWJYa/kLTFHPj/+XNSS3CRqRomgURU3D6N6xBIrSDyVFYCtz9pk53CJcwKTPnPINRbBKZuYao2SSuYDOBZA+juvfg+/9VIIJZ2nQ3gSQikumPwezjm8Wb4EgbD3t9D4En/ne38Hf/72R/i7f/kf469//C8g8qts8JyjSAPYmSB8mXhhznfLqTW/FaRRJUSZcQKJrH3K2L8YWquHtWD2bqzDeyUAv/c32StVJi7SOrLG1yKtEalbBGFBkWiAGENqkk9RzUcacXRHDCyufVUVqkTHFimelaqq6mOR8tXepbJntKzyxGbci8qkEvIqpcln3AdiPl3pFeryRpzj6K8fWbbtGeKiymtSQlNnW2nq2M5zvq99TLTm0hbgqf2yF2mHfc/tD21bqGlerQTA6Z/swEff4rrFPcnHKXjcetWUerZ8aq9red4SLiRUWSM6xmkDOYL3DtM0Yr+bcLOX/70jeOfgnYMjgqe6dwyxt9ByvSeEGNNBAAzeY1kCCDOWJSTgrqC95r3X823H2KyHZgDWs9rvez9nUoNKtXHmXpQ2qLrGRuFSg3JAmEEuSSCykTung0g8Q6kR9zHoO1Jw4QlszXX9uyV6zqX6XNhO3PzttWO1Tt8Bt3P9z6qOD0kUnCOQvg2pldA+N2X30QkEnwPh11yUGYiRAydAoJevh888c0dR1rq5vJGABrAmsVv1lyy9IHGAIOo/wgk4pcJztv0bm0LBV8Q66m9PL/9StaYsXercz6q+AVB2UKi/t0nVkc7c7qtkbV6IVc0nrPJZaUBpm4DGgAjPItmJGqSMvBgp84KP+FNkt7xJZe1uvEsEDXAIjwgxwI3CtbaxJXrSyqoNldpKHzhbSVTbt0uI642aCygH4254sVoXczxme44x7Tm1LRAbEyGGv7P/Lh6XB3x++ApP4Snbjci5PuTZVmKiUhU70/RTLnwBFAkgB3EBSw6W1bbdexk7l+7LSrUo7WWXfpf2Dhg2GdsFL1hXvQxxhyv7vUj12NQpUiOXyh+SZCh5rWPOZ936LGn7IzEusppbI8mwgfHs2GbClTTexnak+3dN36jEol5A76GDChy5/bmAk/dx2SkHOBXZwKYGzZsnvfaUMs1pTEBhwhRi5ESDoHpKGl+BzUu5VQSIfv6qQevGVsOkUPr61G028YmzoD9+p9LNzQ7j4LEbCOHwgMf5ERO9gJsmMdxOI85Bx6VtoPTPReEY7AbAuwm7aQAR4/HpCALj8TBjzgRGAcd9ArOto6z3DNm30DDWilcl6e8eTAOYPJhn6BGGKLYS6oKWUGiLvD9UPUpLTP2OIcCJUm1Vo6eIgRbcDAuOkfB2TpzQhqQqYLImH/rDsb0T3+UkWJPDp/Jeu6Jtn1T+8/7Tt8FG4l2S5SieS+cIBRnlmCVsqkIEIkzU92ajSfXxL5EIDG7AAHE9qZdzTIQ5M0uMh7jk/ePJC4eTSnSXrA5CE1RaPbhBVB9SWzQC8ftMKxs3iC1GG8RM8/be76Xa7qBE8u1yy0GVC01NjhyWKEayS5xl7OAqNZxKhYfk1BpJdPOVSGjXkicPn4yBbXtLfknWGJY54vPDz/Byeo0d7XE3vszlHuMBD8tbvJm/EA4xCI8p6vXf+ORvQ42Jb/wdyAP346tq7By5HIsCqNeegrqZ5ww+e2tySXETJpqy4e7Mcwa/KukqkrE14ajjoG3TOVH1l1YSqOlnh5/gEJ7w6f6z/O6r6WPM8Ygv589xP77E3t/gxt/hk/2n+J2PfhVfHD/H6EZ8NH0i9gPkBbuYOi4FrqqiQwCI+zYzGrviKT7hxt9i58YLDnkF4kLsuATulbBXaUAvunrv/GCOCKRjrJoAyc4jGdertyvO3qoARCDAiQG+G0S1DRHgGZOqXCLZ/7ihK7WxUgt1GBGSClagopLZShM1WXsNmaPwjDvwsnSd8TZOc4SeY3C5MvS9sGzLPV8fcluFnHzaR+9bh24qiW37QZAAY9tciVWxRhck/8b6pSZf1sVZSGsUZao2mYKNREerOAfudMhyf0+sQ6oKLNzyFaO4wpw9qqb3qCU4xI+4y1IJeea9xzg4eC9xyGOMiEgXLAjkFFRTU6weEQxHgHfC47jdTxicE06je8DTYcbjcUn90MOFy1pg5TFYXor+m2pNnEtQOX41l6yh9lcdsBKbg1WnC5QOEg1wxzZ7WUeUDlPSdZkmKs9FWXxqL1DWnXyfvMS10NBZ1SrJBFozeVTPmqaKuWc/vIsUobd9m9prwH6WJFzXcYJgWpffaU9HL/qSMi5R2fo2ESMtF7zn3KEybjV5S4wDzkargILX2p/8KaLhOdy4bGNBgE+LVImbhWdpQ/oPSV2qV4szF7gncaXZM8R812QNVi1H0mdd9f5c9Ma9WmNmX1hup62zbYcNhtc8zb9nAoRcfU9ynRsoQFLzOKOakuuk2mifQAU4ak84JmaL6Lnb6M4RMRuB349eiJ8EBlXdqQpmlu1uQr5AQ1yylKOns176bk7ZjpRIPFGVehSeMXFSedk+P9oxsM8kyNsgubp2dMA+jYtP4BQQr0kzzziEJ9wO93nM9/4Gv//R7+HF+DKPT08lTVPPJqrtQ741mRGxrFQPtV9boHkrWWKqSC3kjrR1nBpXK0nJc9RRO5M+esilN0rQO8NwkFgxAyJ5uKTiVHl4S5/aK6ayAURRj1IpCJmxaZOqACqhpv8xJVumD3RnfCMSC+oA/EsIjNYAtcKgFXjucMTzIXa6bdVrmpmqWbZLYLXELzVmrrc3wVpGq+4bV0ipD4JstyUX5U1at8MA0VX7ufytDvjySWG3/thdkPbdMwTIlhcp29YVCMydlfZ6J96fBi+eoAiMcRywn0aMwwAiYFnmDEwckUgwnOq6ItFhdm1IXwciscG42SFME252E4iE6Dgui7im1TkxBi0Mw7Xv37H1XxTiVHW68ypngTR16ED5X7xCAewgUIeE7CBO+ZNnCqguMyX7kpQPSb+8nQNmiASDHKBSD5LI4zsP7DzBUURgYzSu7TObUtWi9LLYHAebTmP2bvZTSWanl8u07fLqzLv1W9d607n2t0vK/zapRxElN49JdalnL2GNgJkoR7cFilQiGmI5pKBbrfvRU8TFc13ZkrbHnHWBi/Exs8turb2qNW3UHZIRZ2ugeo1Ky1b+lZFqAnfKOUZSZVFwk8sDZ+PSbSI1RRaHEFWUzp1tBabt8RbbFwH7CsBP6tiTQ0gB3ZakGw4I0BfgWwBSW4+qttm+sjyEh8fe31QGy4EDHsMD7oZ7OPL4xeEnmJOE5ePdpyt3rAMNiODi/QeiHuXdUKlP2Tpy+9IdViRAtWrf0BAwLgHREBccVf2uSbqvVIXPllMbSJ+Gejf+Dju3T2MsbT+GA47xgMfwiNemrL2/xe+8/L0Uv0EkKarHL5z2ep8uWdK3YQeRDOfFs5u4qbXG2Hb8VOp3KYGu6l8aSR2GKNxyZVudV8wICNn98Llx1LPDub6dSD4XWg9zTXudOQ+t9Ic5YuYZI8SdrY1BYiV/mlTiNfpdZliqxITjvFIbfF/pvREWl0oe+u9eWT763EnYHIU1UBEkp8ouzPa0ia+QYFh+xKn+M4D2bLZw8jyy2n5un/T7ukGwpb/FCVvzjM+Nt+39JTXWqXdxMrcATvR3B+8wDAPubm9ws5uw202YBp+BtXdCZISwJL3FAI7JLaBziNFlwk2To0LMETk479PhSCAGvAcG5/Hdj1/i1YtbjD//Eg9PR7x9PCCEwuFvx9wTpL2eME0jBu8xJpe3ABCjeKOaQ8CyRIQY019CjA4xKmRPFzvXRCMrgeH00pd1K984bQMGcQDFmCUVkSCEBiO1xYAOjgiB4ZzGAXGZXtgPETMHjI6A6HJMi3aSt/ZZzwPQRhFnE2987pdja/n2cPX/WU5dj0yWVZFAYOgYJOrzAYV7iuRtJSSiQ9fuOa9T75Iy8ZOA+d7fZgPgYzxkg8yImqNvU88V6bn7sdU1P8+IKe21f7fAl3JqMyg1XNX8fn6XQeomFxExCijbCqrWSyrTHajmbBcDVFEZCVEjYQ9CzJDDnvb5zm2JicgRT+EBkSNuhrtKfSQm7zveDdj5PQiEBQHHeMCtFyLgMTzAgXA/vMxteTV9LKPCnInBJUkk1GjXoTVEL2o7IlWp1cUUOJ9LS7bz4Yr4cuRzHyJHPCxvMLgRk9vleWQktR6UMZ3jsagoQaUBsatmczvcGclU6cvgRrwaX1VSG08eN8NddZ4ndlzVb03HeIADbaoAahRtkSwRvAk2Z5OVzC9RGIbnnB9IDBmAeBEiQT0icceldK6nEOkSzPf87XSJhzVrfH6MBww0ZPW5zITB+o6szsVMyAExLghNBO923NTNcB7jVL5LalkOj2f79pz0DpG3+897n+ukA9e+C/RgQW/SexKL3sFbAXZqhnxVfw12KrhlRPe9NtniTorpEkq3MFQOhva93jjASDDavGtD4g7/0uTSN09zkqsN1XCTt9TPur1X4v8MqCu2ADVsJCSVJ++xnwaM44C7mx32uwn7SYy0BTMX/dqwzACnizB5W2ASF7PtOmYS4sKRFy4/fK5X16VzhP00wnuP+9s9QMC8LDhE1bmsupqNv3eTxzQ47HcThsFhHEchWAiIQVzdLoFwnANCJMyesAQgRPmfwakPUnjkJFVKFGo24Kby2c4Kw64beZEZSZqxNXNJWtIss9ExJscYKCLkOeqQBlRWZFHQ45ybmjdPEgZts8yXrRbUMrkeCWIkSmfve8l0rQTh0tSCwa3n7efeGfRtUoWySVVduneC3YeGwaCifQVK6l3pfesEt2d6l/jlZJRM6uknGbaCTfyI2oVoD7Bc0hYL9nsSn0vUQCwXGx2wof3b0re3hIyoTUDmT2CvKARcKXUhKDAsyXq5UfU3FSNrqy1or/rI5Tyx/bZSAE4uj7N7UabMUc8yePIY3IBjOCBCPAJxViNrT6o1EaZjVPoUwBAJQSWVA2eCo03af5EA1OWplzGRfImk4+3yFW78XTIAVhBOec1ZV8f2HLcSwhUATVKAwMEQSaJCNSWixgb2s/YUh/CU15HagaycBqx6XZKeDwGnVaa07qzqtVGqPQd1/3g4sZPKxITLc9l7v5Ww5jqvXPen+mHPPnvubfVJvZNJEEBZZyp53OrDprphOsuuUSu7Jn0DqlCE9zAv11R3FjzUhMiaQ6TJnWn4yafVQz0Uaf3oVBEGwJ5LJVSKTfFkbdHA0gbPlTb02rVZ4kXIrUksQJikRQAwDA43+wn3Nzd4/eoFpnHANLgEsBkhLFUJEcA8z2AOQKOb6hzBOVeBbeXuu9ElU4QaFOjH0QODc/js45e4e5gweo+f/eJLHA4zAvQMZzhijIPDq/s97u/2uN3vpL3pYJdrgAGMYPZgDuJJghkhIqk5OSwBWALjcDhiWRYsYcHTHMGRgNkj0oiIKR3ISXcyaZEK6JE4F0FuAHgOIEQQMVwGeomqMuNffaRkzwHCbhDVk5vRIcxI3qEKDwRApV4lc9GC+3oVniBP2tasUu8ZncuR1SQvWZd6mZgSPwB4/1AEwfsG4e+Sti5jJRiqvOnStdx+1V+PiIkDV3Tun5tUx5glxJoYXnIAIKoICiiWOEN96hR1EYmLcIwHjCnK7mLiU0xODLi3gqf10sJz5lYr0NTov+pWkomyLUNrl6JJAfbCc2YO9Ti7CmQ1UrUFTStw1wxzT5XnXGoDDGobrYqGS8ar55JyZ++S7j8gno2O4YD9cCsxANweczziMD/ibnyJwY14vfsk57817/7p23+EN/NX+Bc+/hsSZT084na4FxUnKtKJQ3gCEVWG2pboe1jeYOYZr6dPEDngEA/iZRAOo69VnTQ9hYfs5lhsPV7mZ4EXvF2+wl88/Agf7T4GAPzhL/4Bvn/7fXz/9oe4y20sc/i4vIVI2G4qqZWqBPWAaOa0GxC98/u0lneY4xGPy1swRwxuws1wC0DW7D/4xX+CQzggcsRfef17uBnuq3lRdbJToJzBeAqPGGnEPpXdS5SM5HsqV1qHgm4YYk7U/oTYPCfl0PgkoxMjeo17pWX3IqVfsg9yHjqvmmaTEt1vlq8w0IC78QWO4SDRv1N0de/rOdXI5zlAIcqe0aQaGh8ivRfC4lIphr3M+zqj+VOvoKaEC9pj0EoGMtTJZ99dPaPm+SnI3R+HzA0zeuerjnDh5vYAQcEeDVhvQJKCxVxWI2k4N4LV06Y7xG1/UVHddea6fQVe1pIA+beo+HBuPeD9gGHwePXiDvtpxM1uwugJDhFhSX7ho0aSRHKXKmnwPpWsB6bpTrIhKHOtbU2GXsoNS9FRC9MnCXwdsN8NeHV/g2We8Th4fPVwQGRGZHFbOw6DqGoNAwbvROUoEULgiMgMjiGpahkOU2Q4SoFznAc7wo3zSYLhcIyjtCcAe9phoCMmFyDh8orMwpnFL5y7AF4O4DiDeAYQ8hrRqeiSuVzWnoO4m72ZCEdmPEY26zKVVkk67KhzqehE6pG+1dLXH9plTOuPvbW83g+duixn52Rr16nlfF+iwnJN2d9WqYRNXXsPbAes0/Eu3LUNXX0kH/eSKXNfZWkVsN3lODYgvLLhkEbnNipnF6r+4gZQdtcZk7GuTzrwIwLEY5RylSV6rzA1kCLwrkB9NqpUffhiSGk5surys7VtUGBuv9t3RZXMBA3rrGQ9G20ZhBKLoyctUJCzcGHm+Kyrznlc6noIld2DIYIcHOC0f1KXBgfb2i9bKiyOPEa/E+9KENUbNW59WN7AkauICZuewiM+P3yOQ3jCU3jAXz78Bb5/+wMQEf7s7T/B/fgCL8dX2fj7cXnAU3jAHI/4ePddEBGO8SgG35gM8RThqKgj6drz5MHg1FaHnb9JxtM1QCQQdm6P793+IEe5/v3XfxU3w62oRxl1sjkehRhNAQCJJIq4GqfrHEtMAyHgSpyHYtxrJT86l6Mb4djhKTyKx6OFsXM7OPL4tfvfyNz0m+Eenryoa9EoxKI1UO5ILtVz19PygNkNWHjB5HbZg5qOmWIjVVFy3KrTxRy0UqUSgzkXRPpZ5mHbNqvPsJDx+XBc/i3CS5kM2t45HqHSCI4RAUJgqNe2KRNOidhEXzID9M+F95GuJiyo82mT3bjxdl8ivuFgU/Er7CGqv52p0CCM517HFdhaFdIQHXZIyOaoL7l2wLZ6Ye/nUnbTiI2xJ9OG54Ab5b7bd9bCZ93q2g/uNodX7xZ0V8S4oqqUiQsCxmHAbjfi9csX2CUpBYcFHBfEGMR9bDKiJhLbisz98h5EHo5iAvMsthbMog7luF7CKTonYhKDOz1ky9p0qWMDEfbjAO8dlmXG4B0eDwuWGIAoQZ2m0eNmv8M0egzJ7kPtRmIUFa0YFnAUAMJJ9xOs3q4cpnEnNg7jgMgDIoAAD+HXDnC4hcOSOSrOjK/LCJml7LggHh/B8yM4PAHhEYSASMG8Z2bMAvH0wYExEON2BB4WFiPuTMqYPcrtOm9XBDbXrX20erclYuy+qmhtc1YYojH/dhact8yE550f74MIqFVyTovhW6Lmm0pdxkgCK+eMkIFTRsAih1UpR0DIEyO6xMV2INcH5N9zW9JFrReuqvsoYaEARd8QEOig+u8BJaquI5eDiylgHGjAU3wEIPYJPpH8tp+BAxZe4LwXoJ5cjWZvSSrBRApe6dbGrFnVBTXxrX31zq9UIlbj3lGzkrHVWBMNQZNiQWjMA4bEtxGpSsTo1kSU5ZSu9fiTdxuVFilXeEOFS9vQzqlGR/dOQC0DGDCKsbVz+PnjTzH5CbfDfR4T285jOOLt8oBjPOAXh5/jT776R9j5PRiMf+9H/z5+/eUP8Rsvfh2//fL34Mjhq/kL/OXDX+DL+Uu83n0Hjh2WeMTO7YvEhWUsrYthCxLVVmd0k7iY7drjOEx+X3Hx7xriSAnBYzzgEJ7wevo4G7kf4wEhLtmwXNWZmFThNwU2pGIXIuUV4i3bl7DHU3iQtRtmsRFwO3yy/27VloVnvJ2/ws7vsScHl9qy5TUq8JKinb8BQQykX08fC3GBIY8ZkQNY41hIH6z3JpU0xETgewyyH4wUjlBcGG+dRy45O9G1atfZcx1CtKlrV7pBeEXEStI0xzkH7wOEKTFH1YYgjDTmOTsXWft9qHX10rcn8vaZtIYS/fT+B4qav1vQmapvvZx14CD5l7LaT6fmgpPPp4YTu7Wc3k1HkJvP1Pmll4yEwhI5mWMmvEglU7wjTIPDR6/uJdjdQKC4IByiBDVigDyBnEgCYhVmPHHtGQBHLBwTeBewzFGIkRLvweVexBjhKMCPIi3x3kMDpBIhET5CCHkv4P/jl/e4u9mBHLAEMcC+v7vFbhxwO40YvQToAwEhLDgexOiMWQ36CNAIrsS5D2DGvIjqkvOAcx4DETwHSGTPCOcJ5Ca4YZTnfoBzwnmKUS8chnfJSwwzEBdQnMHzG8TlCfPjF4jLAxAOAD/CsShP5SgYDCAyQEkFhYCXu4CH4PDlEhGWwaL3ZiW8j0O43n/q8aqQs+dTbwv1fitkvqmr6do1UoMPdWh/25OCe00KgMVAkzNnDSg60D11qC0DxvwcYzamVp3pYzhU+Rw5+I6+d0wEvHK2W+AbE5Fft8WlSMwJ6CQO8+gmjGiNmVNAtrjApQjQ1n5DONuJWCCHwahnqOpV3efCAVef+1xJB5HLBmTvz/GIntqGpuw9qkmOXPI6UwN3lVQEDtnbjLU5aCUgW0n19fXdEOeK067qX20qBEGRpOhcPC4PmNyE/XCLvb/N/TiGAw7xCf/Rz/4jfLR7je/sv4e/fPwRfvr0E/yV13891enw1z76A/z+638Bk99h7/b4ZPcdMQgnh3/79/67cOSzbvtTPODL4xf43u2v4Nf8b2EOou6097dVuz0NuPV3FcHgDUEKcrile8zxKJKA5M54cCN2bo/BcPvr/ruk6hJy+z0G7PxNihJfxmdyOzCNeDt/iZ8dfoo//MUf4u9877+El+NHZkLqsV7ijDkecTPcAYwsiXPkJH6HIWZDXCrVNZEMeExJXRBIXpgSt7A3r2qo/un+M6hXLQBCeEeXx03bauN5ZCknUyYcnJsyodQjcjUKObnz5zODcYxHCWTXUb0Czgf2W5WZ9qZL9j2alBAIMeR6NGK2aDAUtSY9U70v0kI9N2ae4ZNqp56v56SA7ztdHcei/Xzuij1l8Lwudfunc3WdHLB3GkuG1Z+yqh+tuhQrlziL4+VZJjByMc32Yi2v1+htuN5vLhc9940BO0lcKIBq8m9nptOLoXvx9TjZ6YAgYBw89rsRu9FjNzg4juDE5Vef5C7pNQMOFBWMJyNtiFQABsCvVTEimAnIF5zMc0wcQ0c67YRUoVycpKSFPB8HETne30yJsGAxMPcOPhkAEiJiFHUJ+b+oP1HVfxIAr9aSaQ2JwTYnt7FppJLxdRZMAAA5OC8XjTB3GBQZzg8J7BFIVTT8AFoOiOzB8w4cnsDBI8YZCE+V2YXYhjDE/SxjTFG4R8c4UoL4nNZ5clFbGtZyPNkWnLh6nSVz5gC8bEeo3KSu4cxqTmPcsgdMqV/D4Xyt1KEFrsDqlPnaUkt8qUTg4vcvnd1kb1C4NcrtLvri23Wk5111WMoqV5ZjSemJVeMUqYhlKiX1FxjpgwUD8iETNcqlt60oEb/XHMdWR/rSdLWxdV+tIBlAS6yImLxIFGlU4a5qO7sB3Np6EmcfCSi2IK1dS23bMmHTEKsxceiXOON2uME+2QwsvGCOGnhOylA7ACICuxGj+v4HYfS7rKoaU19VMjXQgEMU42VKnssAsU8Qtbq6va0kJqvyJAlZkhvkHKoyp6pJcpsgedFahPmV5tazA9woBCW55J5ZJPdEDqMb8WJ6gbezSHSWxPl25HBnPGOFJP3Y8428W02ezJODEwKgc04psV5UoFJfUWJIVGMCsYEYaEAkkQ1aEFztUxb15J5ESzwfFcnE1nq/ZBfovj7HwFJGCahEvz65fvX3hIO2AH9mxnCRqlpCKSQ7kiJ1LMxqWatu1VEdez2H3pf0pZd+aSQW31Qq0IhXe2jrsC6TXJeQv56szZa/Ucb5xp7G+u8FGF1xSXV/UZUFIMM4ItxMDrf7HT56eYv9SBgogMMxqQ9FkJODchgGAGqEveQNzix2CyHMABLP3Dn5n5BUfZWQSKpUyYuGNMEB8QjHO7hxFJ1/5+DHCew0poTqbAIghvPAJy9uEVj83R8PT0CIyZRD6j4ejwhhQQiLEBmZ65MIFvliCLt0mMptLS5iGXA+HUJEYqfBETEe4eMgqmCe4JxIQJjFkkKP9xxnkwYM42v4kTHsP0EIB8RwxPz4c/D8Bvz0cwzxAY7n2pt2FK8towf2A3A/Ak+LED5MTi4MO8VnuQ6bC+REZpsuqeT61BIV37RqUduGXyZJSAXKs0plLdFYvXOif+2Z26otLLyIbnfmElP1jupqO1eCkelze9E6U6a2VZkT6vVG3XeWuSl5d/6mIrAsgRARxSMLFaNsUSUKGVCoa1NgScyFkMHzJfNPRCkoGjLwaQHdNSkb9zoCc637vvCc3JhKgLkFx+Tmc21vof0XcCrcZ3IOjgtHdiUpUWKtU17mpDeqYqoac4xPeFje4m98529lo/jb4Q7f2X9atU9Bshrlx7jgkOb37fwVjvGIOc747Ob7GNyAl9MrAMlgPB6wxBnHeMxShB/c/TrchXOlc67g3toNqDH4w/IWr6eP0xiJ2tUcjyn44iAc6mQL9JPDXwAA7oeX2Pk9BjfifnyJ+/ElfnD36/gP/vLfw9/72R/ijz//c/zay8/w+x/9Dv6lz/4OBicqVof4hJ89/QT348s0j8Uw/CG8hSMvKl/ku1x/Apn4HyrVKqo5kYOxyymEoNpEyLz0vYFt3RV6DlySzjkHsHYnanife9KcP6pKpkEV1Q5D35Hy9JnLjhcmN2GJEnxw5/c5jo/Ov7oe1vaqqqDahqhaGyXpvUru9ASydmrKgBFpkJyRDnWk+PedrpRYWO5L9WCVem78yuc1o4gtyNi4c84w4q9KXYLgA1zenChEISwpc5xrokH6Vl+2SiVc1w7WSqXU9K9S/Ab5VWIUrkHhRiJtfNV+m4G0w3Xxpi2W8lGmNiPCJyPnF/d77EcversxGWOFJWPu0Y0pyJ0XLnniHnIEAgJimBHjAkJab/ZwjwtiWIToSH6wwTFxDDlzQTg4cPBYjl6eOQ+f1I2IPPwwwfkBfpgSocCIIYKcw+A82A/iSvZ4wJLqCOGYCJ8lETNykCK1kfPYmPFL3E4iL4bzPs2CIwyjF0KCAFLAEAPiPGMJEX6Ucr1PeufMUOkMMyO6BPmIQfAgmjDcfQSEO9D+DvHwJXg5IMxvQVhACFnj2lPEzRDwYiJ8cSBE9ghc2osU6TzNzMn92q45Mv+y+bddZkjPzgnJuPq1PpO6733NNMQpzlbPAPzSsr6p1DNAtt+BwrW1d0Tbx+yqU0lvBbbNeFmuZs6XAKGA1FJGqV98Plkj4hMdqiQgmUvbECEMljgMCTALmChcVTseesEDVAEQzZV7niWaDLW/qPOfTpnjaiQfXVegPX3vhhiz9hy2fHXjKvlEWqSGwy1Rl+09UjuKy09DgBKt2kPpDFxYbOtU/Wbvb3AITymORbFBeFwecIhP+PO3f4rv7D/FR7vvSAyNVOatv8sekx6XB/zk6cf4ZP9d7Nwex3gEiLAbbvOJMVBRuVNPSY/xQQAfCHfDC+l/XhtKKMbkOewJIS6ZQHhY3uKzm+9jcnvcDLcCYJM6ULVOIZz/Ocx4Ck8yfzq+TmwyIiI4zggUsMQjQlxwP7xERMRjeIsvjr8AAHx2+4NMbP/+67+Gl9NL/J//6H+F33r9K/gvfPIH2LmdtDU8wcHho90n1Vpb4oyFlwz6i5ODpJqVAhqqxyUHn9cMJVbNMR7TXFvQHTMBprFBrlEr2kpKHKhKlJ4Bl5SrNlaBhQGg47blgKG44dW+icSg2vtJyiNSryieLEkIMAeXPcwNNBoVOJccyPScXkhpKvG056wlhnJ+KFeVMzHyrYm8zat/qwdnJ62+SOqX87tcfluVmcDLubVxarCeY+Bom3TZgl+XnYkpbp+a8ewc3Nemli6zqjZbPa4PsysqanIXUFiIpfVLDWGarG6HwYldwn7C5AmekicjjgghiCoSOTjnBOBnYkn0/iNBPLfEgBhCinyJfMjLGSfqSHE5IMajcBk4Qpy0ovj3ZgIHbWsy6PQjiISgieMN/Cg61SERCRw56XMT2HmEyJhDRFyOEuEyHpHcWCXiiwHlyji3osRkKUgbmCLSkYBIPqkpie2GeJtK5bEcWByjBPlLNhfqWpc4C/MTNyTNlROXegONAAe43R6zmxCPD9KOeAD4gMgiAXKImBzjdhR1qCVoiDCd23SVJKOiDKo2JHyn1tz2LtU1dmIfs4EsqS1b+z6vTDJ1mqznCJhrU4/hYpP+bv/a966p4+tOts0tqLfppGQiceH08zmxfcspzOoJer52iBDdCZeMUgYlq/O7lLfkvqrKhxAgCmyKlEPtwCjr3zOSuqM51xLvMe+gawGXJeCS1UgGMZXufupUy4nVjlo1oMK9RT5brZ1Mq8pj59+CH9VX1zm2qi299jhyiDFgTpz6CTvA32BJUbJFbUfyH+MBXx4/xx9/+Se4G+/xye67cMkLU+SIKakpaYC9f/jFH+F+fIGBhmTrMdbc3CYY4ByPIkFiOQ2nYZfHpZW2RA7ZzuPN/Aa/OPwcP3v6Ge6Ge7wcHYDbyhtUO78ugUQFycpF19U+xyMCAjhK0LU5HvHJ7rtYeMGXx8/x06ef4Ck84fXuk0xcvZo+FgcDy4IX0x0+mr4Dhuj9P4YHeBpwM9xWXO+FFyxxzgH3dE3nviaDfiUOrMRPjK7F3kiiZuu6qvfmNa6Z27QlSfCGOG4Jt61yANV+iIC1iWmSeKAqjh5E1Vg+K8tCiUPdu6pZMfOMAQMGP+V6lzjDOVGt7p53zMYpUJp/ntGeSD1pj+4vtQeR4rYDe75repYq1NfM1PuGU2YfX/UK8gI4lU0W8WaeDJquAwh6fWZe0MZllA/9hpirSym5L2+A8igMgEqAXZ9r4d477HcjXr+4w+1+wugCKC4CxtO4+90NnPfwzmMYxszp5wSoOQYgRW113oGcqEmBhGRYYpJKEADy8MNODCeZwUiG3QwgReiWIUllQ2w7ljhnbp9bZtBxhDscMO1u4P0IP2q7HKZphziOcIPD4fEN5kNEeBIVLXAAqYQEM7JNghJJzqfpMAAjMpgnYJjASwTzgOgAjxGEIo7mCIRwRGAgcEySlSjSHZLjxOmcZl/fOjsMx7JWyN9genkjB8/TxwjHNwiHLxAPD6C4YMKCaQBeeOB2EC9bceFENr0/MFvAyVY6syaJEj1RwvStayBoaMFT5fRFdKdeeb+uYb8N0ohLU6XLqxzcM+1XcAokkIAaaCgHMiDmCM49XfvR73IsCWlLDSrshU0QwCOc15BVNGqd+KIGkduUjzHKKgxAraev/ciqVInIUMPonp6z/uYTt9e6AX2XRCSuZwVYhzSexROQbYMCDzsf3g0IcQFzMA4syu7Rfmd1L1LbEXFJO7qp0rmHmVdVYXGGGM2ubpu2ierNDrfDfW7DzXBXjTkADDTgxfgSv//R7+PL4xf4/zz+h/i9V38Vk99j5/e5rT99+jH+7O2f4j/56R/CkcN3b76Lj3Yf4358eVJNxNOAV9PHOW6JxKCQZL1CiacyMe4f3IhPdp/h1+5/E2qjoWtrcAM8e1Ep4xKfhUiilYsa06uVmtSSDIAjR/zF44/w6f4zfLL/TDjW7PG9mx9g4QX/+Kt/hP/p/+t/jsE5fHr7Gv/27/+38fHuu/jf/zf+F5jjET9+/BH+7k/+Lt4c3+Lj/Uf4g0/+AN+//dWuup9G+7ZEq7pfVmN3MRZekvrYEffDC5Ewta50DTHZJuXE2/WvkoFz0ezVacIxHuCSB66BBrFLSYRjKxmzDiRUJWvBkgmuwRWDcU0aZV3PDAJlb2k+GdVbaQmAfB6Iq2w2ZblqXXfXXWPoHTjiF4efYnITboa7XOdI4+aZoUbg2oYPla6UWFxP3/Q4bT2Vo1OcO5MZXZbRmdSr+xLpSslzqsJeObaNVPWxfq3AnVzTamz0qc2VS06PVJxS2rOihTrNLESFbXl9aeT+5DaU4mpg2hIinS1CXLjnIHgPTMOAu/0O+8ljGkjcpDoHTm5VQQSXiAnn1RDNasEreQa5oNwAzu0VKE3JqFs0hzzAA7KNhYHClLgVZW5ECsBJ5xZJOhETERKXY3IXyRhGJ65hSUdLIoWP0wQgIoQZMczJvly8ZDBHqTMHbROVLuXrFSNu4UiFEMUAjiJicIhKwCVXcwhB1DGAHNSOUQ5Qwcep3yHk9ZKXeZ6wdHGQA6Y76ZcjRAxAOCLgAQzRi54GwhSBpyUCKNyovDK4FHt2zzWfTksJ/n/s/Xm0JUl6Fwj+PjNzv+vbX+wZEZmRe2VV1l4qVak2lSiVSgKBkEBiEcs0S9OtFtAcZmAGzpw+9HRDM9BDN3RzZqYR0KDWaY4EYmkhkIRKJZVqUZWy9qzc18jY337vdXczmz8++8zN/fp970VkpirFGcsT+d5zN7d9+X7fepy96QOoaO6pxnZBe6UmnNqwyoU7u7ia451nRwGNrnOic8wakpQ3FptnEbFwHOPhQ997XtPK11KIdj2UvKf0XDykDcJN7WwPaGFdx2m/SDgARNeYJCCrY9rmpfOLdfTbnrQOk2bEfsd1zV/qLp1kJAynZuMQJUJEDATi8yCRCftFjM/l3aF7J+m7EJOL+lC5CjM3xdO3nsBKvopzowshWGEdm8AGdZ1M5VjKlqCJPRQpNc8FznUfa711vHnzIZwansLQjDBzMwx8NVe38xYWjom2BPS6FBDDB3UtF+NGEKno6jXGTSFC6cvgKt0jD8CDfB2tROKaVL4Khs0MNpkLr6OL1p4ZQnkVJFE2cr1ZAmAw0AOs5Ct4y4lL0KSx0luO6krjbBkH1R4m1QEMGfRND2dHZzAMACHOTeiv0ARtyYAEAcwSyY6Dh3UlCjuFD6piqRQT/oj9DrmB67yH7cH0zEwBAiX/SW+6ksSGABAJdA0djPWDE5hWG9KxkN9FRQxCuAfJjTAhWGLh67gbvunW97ipclWwsynrtQgmHipfBhuubklLPAuOIcG50/TaGW+/Bhy1I4l+HwjG12AsbstLRrykUnL68Esw5lyQraukLj3jJrhIvo/yRNSACwnfNb2jEhCzuKFzbxpbsbsvvpGjuemaqauMvjEY9HOsLw1hNKvYMHeT1XhI6WD8LByBZrWs2uTDXcTEr6K0EjbuVmLKQAI3wjoL4610ULGiOl/dRdadLssCZTljA+wq2GfYAm7qoE2GgTahfhWWCruCo/4QWd4DQKiqGariAN4W8M4y4AkqTDJKXtQh4uXM0SucLQGroDMH73Lm5ngH7wysnbGXKRtsG0hBe3afq53jdigFUhpRbUpqJNTjDBXoag/lOVAf9UZAbwA/WEKZ7cCVU1TTmwEcWQx7fF3uzBxqecirI3YbXxPFeaJ0WOKD9Lt5AFE/a/aZl76AT4GC85DmOD3p0gt/NfluJ7VVEt4Iqam6VRvHptz9OylTg6UF1oWYLwsuTRXWsSMXZxiYJ5hrDrqoT7V0+48gZo7b7tTDTCSSOkDn7dQtnFQh3A2ZTmIt6ppHnevaba2ndti9er+kBE+UIEUvQwvu4DA3chdIfArhbLe5ykBTYiPcXkNNskQI+6k9wIv7z+NH/sFfw7vffC/+xgf/PDb6J2PUYTaG5YjZGfXg4bGUrUCTmYu2rEhhNV/Har6Oe5buj98/s/sEKlfN1T1zUxSuwJJZDqotClkYC16PDKmmdgLnHZaymmPd031Yb7Fbbkcu8UG1H71TnRqcwZJaia5HvWcXp6Uv4bxl96qaYlBCrQeofIW9ahd9MwzG2ey2drfcwlq+GY3QB3qIu0YX8Jb1d3QSmZoMhmaEu5cvwpDBfSsPR7WudI4WSXA8PHaKW+gH1SmTOAwoXIGdcgcrSbTz1MPVscCFr2OWLCK85+JNhPIzyiMY6jLYThk5B9VetMsamjGM6kPc+lYBALA6Yw2eutrDEb7Z8xiv+zq+jVIq2mRYX4E81dIQf3uuYGd2gqmd8J7RPRCxQb/3HqVjl82ZykDoll7I+fJ6ScJfO2Dh6+vtMJ3h4xW1mGPXxfW7PenDHaZAnEduMrPQcBjpkV5qC4tM/z60jTWpPzcmkRxq6uDV33Sxx9JywwPqvspSQpfaX8X6JGcLAIVv05ZwZGnCaNjDoGdgVK2bqwREKJYABMq3rtcFs0fvE/o4GHF7SnoTjhTpkwcgYl1nQ1s96zRaC+/YjV8EIAm3Q5FCL+tD6wzWe1RlGS7bekyqqoofq5RQARPu/eEYtspRKI2ymMDaEgrSDiBKZ5RuzR8DASecHqUB4vgaFg7OlSiLaVQHE0mDB6BsBWstev1h0DX1QfqSGJtRILg8weh6jXnLJtg65FGkkPVG8FkfWd6DrWaw5QyDaoKKLPSBhXOIdhhMwFADDCxMKQhOF1d8Tw2tQJ5Pn4ADwNNt7nFZtw20K3tashxHciJNPF7dh3GV7zQ1JYvt3751qc3du520iMkkTg8OK0/2rHOs7ueDW9Sj2vBaXrIpUZaqQyyq43buRgEGRCowVyy87o4WLC5PgXA/JC5Cu3TOU6NPaZOLapNHrypRD/EhJg+3M/EtF9rfNRbM2RfD+7ou6yvsV3vIVQ/3LN2H//FH/lOcHp7Gev8ERzl3FW4V11FYJsZ7egANHTw0ZTFOQpqcd9gtt0P8iQGuT69gr9zFOFtqENHWV7g6uRwiXQ8iUFaksFfuxIB0Ymw70MNAgKokGB73f2jGKOwUhZthrbfB4wSPl/efxxcPPo/3nPj22v4DzNnOVR9EDCoKOwOB1a16qo+13mb0rrSSr+PG9CquTa9iYMbooQejMpS+xG65g9XeRsPbkYy9URmGZoxpNcXN2U1cnVzDmdEZbPZPsgoXmag+Zl2FZ/eewjgb49TgXGONWVdhVh1Am3E07u7pPlbzNRyUuyiCZyoV1oasu9TeR+Y+VUksXQG9wOYg3QuyqoBIJUEdAkbq+eV4IAMzgqgspsBWQTUlMX4+ZkW0E4qXCkVbJh5jLk+Aog8ABr62I0vVvay3DXUmmbcUHPX0IHg54zu/sNNgf8NaG2Jk/61Kt6cKFcQ4wJ0dwoepRb3eOsSH1XP73qAOl17c1uURqd6Oy/cYTfHJkZ/6imeOXpMbuzClL4nmHnVTVvNlUuPDRqEQvqqALaUoRNPW0Mk3RAwolA52ASRf+E7iKxo7egKomYcJ53StiVoTe2qi6Idd2hXmQdV+0TkmBEErDW10aIkBBFiEy1NE18xhCRe5s8wNJYIxGRQRx+MIXBgV4lxwF7i/WoVoocn68k5E42wkTeHwYClDa7S92IWIKalir1FgMGch691L9uCSlwCv4ryKEMW7KgA8DWUywGcgY0BlBpBBXnnkroTWM7btcD72qQbCRxHOLcJ40f7p+EtsYtpJ9kMKPueKTjhmPpFINsAwNQo5pD13ng5jlnSOW3L0LBqT1/c0PX66EyZTqlqSnjLRQPhYhtxvjBGY85L1Gtx3qdHlcdSTiShx29pSoWq1o3O+bqNt6dgzkVgd8UWddPBy5JxtLGwH1tnv6wEyleO9J98HpQwyyqIx9/XpteA8w8QxqVzJ0ZtbBJbEsphU+8h1D7nq4ebsBrZmW3i4f4KdWECkFQ4H9gB9M4i2PZIqx0T7Sr4egzA2bGa8i/EGFBRylbO6kq8athgzN8MLuy/h7ZsljM9CGy278A3gsfIVqhBAD2Bi1SAlNDlK+G65B+sqWDIwYNBVuoLPMKqj0ks5wklnY+9dPDd9CZoUhnqIUbYEUmKEzjYdVydXYH2FE/0zSRk85qUvY8R2BRUNuad2EomTdH3UwCDY16BWExKagIHHvKpibY+VuoSunSdEjvwhYD6Oc4hMzhdv7QWu3V5pT7sdbWcIJPcu5LzSIV8V3qee05rUmUjIHOkoxfDJ3q0BoQF5Qq57tTQFYp+DY/X99Uy/7eJYMIc1/fuNcYHcWVrE0fMdeY7itjWBRU3Cd9falD90teF46agvEjlLfKbIwyiJKE2I6jgUPD4RR3FNDSdjq5WqbSEUMYtctHt9CIbnXAQEwvH33qEsZ2B/DR4IecWLEnywwQjSFK10UI8iKM1G4zrvQykNrYKajSfuAxGUFreYgHMWzlYoZhNQAADKZCBl0B+OkfeGgPccOZsUSNfG5jWXgSC+JTiQn2NOB7G+plJy4Hm4qmQ3ulWBspjBVhVmZcnkpffI8h6yXh/aGJRlgaoqUZVFQA88DuyCTqLnSjRyD19VcEpDGQ+Q4TnRfWQmR9YfA70h0JtiPNnC3j6rinGjKQGfTc9Gh62lRTkWrrPXePvX7QzSlmO2fXE5t/dNV1pUzhv55IuXfdL0xvlyiBpEqrfcVeZh9ngpN5z3kjBWbg9spAT4cXWfU86lC/sVqHW2C1dESYPyaqG3GSlLmBQigWmCAj4TImOig4hIjcdF6uAhEp/u874L+Jgj/P4vSty/pkelNmHZxWRsS1JylWM134hjkKkcMzfFS9Or+OdP/yu8sHMNn7jnA7hv5f4YP2Jmp7gyuYxzw/MYBgNvSdvFTdyc3YBRrCIlUuae7mEpW41ApPIlQIR7lu6Pc5AmTRoDM1i4jsVTkvUTKHDU6p7qs4vRpKyHVt+CB1behJnlmBsODtPqAFWIujy1E9ya3URfDzA0wznALWloRjjR32y80cqwJAh8qptWvA9JPd3DSr6CU8NT2BxsIte9EGncxfHar/ZwanAafd3HdnETo2wZucqx1tvEzE6xX+2itDN4xW55led4F0Mznh8b8TQWOO7p+PogyYH30V4gTY11DdlzQavhmIAibUfhChSuaBk2q071qe79Wu8ZWcO8Z5LvCTAw8X1fD+pXSTvFTmxmpyBQVOHTrXrFG5omg54yMYij9RYzO4XS3TFkgCbj5vVKrwuweK31iNvpteZG3QkRAOGURnUoIUQW5G3W2MqbggePeZJh/sKQdkfO5lzW8IunRundJYY2dbSa0swJnXA7M9CESR5KEZRS0CoQyK2NBWF4+4QbHTl/cjmxvqIPajIeYhipgpAg+j+qCQ4iACrZUJ4JfxJgwW3R4adwUZxzqGwF2IrdvibiIfYEFcaPeF61ViDS0JVJ7FvqkaMITMDB94IrW2lfPRO1ZxspQ+JtRHe6ALzJg5vdCiYvYCsLVcwgtic6k9gfCibLIuDyrg4kyO2RcfIQg3KmlThOh9KuXhBEAGlkWQ/9nsLKUgVnAWsdqsohCkWShdLeZ+lvkdOE+fdxDXbhbTCXKU1xtFvbjpJ1HPO2CCkfAGZaSb12jk53otJ0R2dlR1/mX35rUsqlv93L67C7g5L5EGDS5sCnSbi9t9OGlGiJfehoU5eUu6H6RQR2FOFjfmlLPXW+AUbm+r1oXRCBfOCE1qbSDW6qtEV+std7QHzZLxqT+DwKD1+ftRS9dnVK6+bVlkQXHQCuTl9B5SoQEU4O15Epg9NDJngLN8OVycs4KPdR2GKun96zx56RGUVVkpvTq9gr91C6MkgFGAyyQS+Qtwhj6y2m1QH2qz0cVAfY6HVLTSUZlUMnHoUIhK3ZDRBRkHboSMQLINVGwYK9G9kQf0iAUPumto7tLQo3Y8lKYtDe0wOs9XRQzbIog7oYwAH02HvTDNcm1zCtpnho7SGMzBi5YlWqmZ3imd2nsD3bxsROsZQtsc2JneHbTn078qAGJi0Sd7g8j/x0ZqeA9+wZLGEY8i0+H28hdcHsvQ/R08VVbXNdz9EjQTJz3CTG/ZWvILFiKDD5uvamRJVP3em6cFF6+Gj/VQMlagDz1MNWF2OBkHjDC4C3i97lWDwAYtwQFR225GGNtMesK70aFdzD0u0FyKOOw29Bul2R77HBSHvdxJV16E07l44lAj5OHyjhph/zQidK83aDCKKud4cVmuam1kMK6jBJStRhhDOL1g+hnw8DJM0yuwBOF7AAjCEYrWG0mp8LCPHgG4VItgguQhRLkWgwwe1BPhVHy8UOKM0cA0LQ/QWbLCC57BVEGsAj4GwFBx+Mp4MjSB9AC1E4x8RgGyFInoJ3CsgdKmthg2QgHBtcsvewzsNQOCS0iQdRvZ5UY47q/qsALIINSuyuh3MVnLXIihmcdfDOIctyNuDWCqQVtDFQBFRVCe8t261EpFPbjvDBDnjnQbBs9xIkNQiHsMn6GKocJ72GrRzKqsS+LRrqVo25ban4+NY7AgV//vMoonsb8sALN3auTNSLhpI8cxnfwKmT8XGMtn8r1IFcm5BPgSQJ4bCYS88Zu89cCuLqVBpSE+fBwLjlktEBcCEirZTdKK+VRGfbwkH4+mnU6k5un5+/G6OhOtV9q+0uKDJOXDgX2sasR80dB8hiKWM6BqwSEVy4JgRc1D8nCoGxbHe54TwVQ1YZ4ztVqzhcBVnWSuht2P9CWMm31leY2AMMMQIR4Us3voSRGeKe5Ut4aO1BAMBdowtwcNgrt/Gvnvk57BX7+Mj572iALdHhl2jUBMJ2cRNfufkVFK5AT/cwsxNAAxoGhZ3BwWGoR432V67Elcll7FW7qFyF85hX1UlTP1F7knZ8c/txGKXx9o33xLLFlkGS8w43Z9dY1QYKAz1A3oqpAbDu/rO7T2EpW8ZyzlIEqW+UgKKZK7BbbuNmADX3LT+MmZvh1uw6nt5+HgPTw9nhhcb+PKj28MkXPx3Xt3MO1ydb+PLVq7j0kXuxkq832mKChCTt60G1B+ct+poNzQ1MtKFwaEoBiNhJg3VVBFnOc/wSpfuNdUigoLEAhKXaOOOPc/4ZxTY40+oAoDq4nNh3RKATqhHXujWwqN1gkycUbhbWNSJgTIl7kTSocFalEr3o6lkZ6CNIc3Z7rdltvoxdOEeMMqhc2RizNN0ZI/320m87Vag7SRFyvA7cl7kD86j5OkYTXlUzI6u2BjuU0qpzjfHtjzvyNHMspO8OaVRN/jnkWQ/DQR+Z0VG8LYXWh0Jy4dQvE44iogqT7BGhZT08vAukpkcN/khFqUKUjAQOXkMigpqQ195CYJZWrApUVS7WIY4WtTE1QCMNpRV6fQ0TgIWv/ciyW0ECOKYF6xRrHWwrIvGUwsSaO0NgAo1jv3G7VBwlAinDB582cM6xpEEpRJdXYT2YrAetDbTSHNncu2hUb3TwX+4cZsU0DI1Hhh605jggAIJ7XUKmFVZGfeDkGkbjPl64fAOzWYnprFq0Wuq+hQshof87189xQfbcMhRA2sXI6twTb7z0el8Cr2Vqc+G6SK5FxOZxVI5ScCG/i25+W1eZSECMQbRPAnCY8becLe23beI6SkpY7Ijo6aYj2Rgjg+2oPDgYFuvQs9G18+LSM9h10bzqljxrGHz65tgtAgHp30I4LQJvbSlNe1zb5R2WFuVLjcrFYNXQvJH1QbUHIsLYLEVO9vtOvz8YXQ+x2T+JvXIH/+Ab/winhhu4e/kivv/S92JoRtEmI22L8qzuor3DQbWHwhUwSuPs6CLG2RIU2BPQpDqI+us3Z9dQuBkKV+Ds8HxdFhavI4CJULbj6Df8oXl4vLj3Im5Mb+H65Doqb6FJ4cNnvyuCi51iCxO7DwWF5XwVJ/un8djNL+CVgysY6D6W8iWs5qu4tPwAnLe4OrmKr9z4GrZmu/jYhY9gs38Sa73NGB1apD5EhFPDs/De4RtbXwbA++d7Ln4Mhgxuzq5iaJai+tg4W8YfeuhHGnYqlSuxX+3j9OAsZnaK/+P5f4WVfBl3je/CyCxF1T8Zp6VsJar2GTIN4/GmVzCWQmnSsCF85SCAOuoY6/a5mHL3D1ufNnj9SsFeHmxU4H00LtctmxofLpGEbQu+T1WMcaVJxyslnjVJWzKVwwTXw21pTRvQASxxasfPWJQkCn2m8njWNfod7DTTuBuvl0Ty9oBFNxPyuHd+XUxrQRwqqumoap6XiZowXFSULIjXcCDrds9fQ/JcaM2jxkiIq0Oaf3QhcyWmo0Wo4yU0i+ocz7ly0pdpv31rktr11r96ArQCjNHIgzs+EHPEm31PyoiGI6GewA1gQOFrTntsljyvOacU3KDKZSqqRAATxwkiicUIsKg3e+0iT+wS+B9Fwjv5OgIYEIFciB4ubZPLX/rheMNHCQVRY6pi6YKP0FIxaSweigQVERu++TSbtFCxaoQxBpYYpJFHVE/zyZiK5xlbEeB1LYYNhJICITcKo0EPpAi3hvsgIlSVhXWt6ZGWkMxwAHrpHGNuBbV60PX8EIWXBFTMre/O80BqP5yIOtJmpCWdWZTnToHD8eHWty6lgdYkLdIRv53UJiDItwh+rii2wQrREF4cr/7jgtkjygv1xuBm8NHrj0AZT6IW4js9z3SlLlWN4/SrC7R05blTQ/OmuuNiwNVoc7JEGtGBw9imXPBxthKMg01giChc3b+JcTaEJo2N3kkMzLBRVzqm8T8iZCqLXH5eJw7wbDzO3oEsKl9iUk0i4QYggr/DwLBHHeitnbTSsM7h+vQmAKCn88YJ5uBgnUVueshVjr4ZwnuPaTWFdRZaGQzMIH6jSOPawU08eesVfPDcNAaTE3Uq6behDBllcLC4ObuFkRliJV/FUsZqUU/vPI1Ly/diaEaxjGFUjTJxLNcCt35mp9gpdtE7JKBgpvIIbNL5kHFsjFi8+rlf6bwvAsK+9fei1FRznGdqsETLzj3jlnWoD4Z7WiFhqCQerhbdSGxjBbRV/tJ2WsdeJn0CdI5KPpHwSD2SnNif/hZx0n7bSSzaqjnHu1xf++v3eIdtQhgvamjrWQfd/yoSVyp64z4+O7IZ9fPGgDe0iBdX29B5r4GBApAZjX7PYDjI2duDMP2cBykfCOzkUo1Ef70xGEyEzesDMAGC7QLnKyvmzohtgVIcoZoi1z7pF6W9CpwU1OCCswanu4n403sHawHvFYwOnpOEmIQAFAYxYlTuveeAdo4vOu88bFVBUQHvHIwJBtKByODDruOC9wTxie4DaKaESxT707iza6lJoO1BRDDaAMrVkbcJIE1RdaAqZyiKCsVsD/AeWd5Hno/Q6ykQTPxmmBv0Mg3cdRI7e/t46cp17B2UKIpaxWVuqaR/tN6r+Ucd6Ygc1NpT/rXZWa9Xum2g0dWdN5iAY17VkeJFdztBodrldV2U4k1H9p8KkXElYnbbvWM76RCIzHnEc6FTApAQvke3V8FE95N84IkqQyRovEUF9m0vUZkXxf3g8bOYuRmrcrQ4q4elVEe8K9W2DzVDQiPRbQ8/U+K/7idFDjmBYnAxo7LOaMmSNOkYi8J5h8JOYVQOozjqdDul6kAv7D+L69Pr+EMP/16cHJyORt7tJGot4kpWOOkDPcJyvoYv3fgCrhxcxSPrb8J6bxPL+Wr09rPeO4GhHuHA7sexyVUe27Fo7IkYEHWtnfecfA8m6xMYZbDe28TQjBvtXsnWsJKtNcb8LetvwyNrb8EwW6rvKVIoXYE3rb0JL+9fxpeuvYiL40tYylYAALPqADM3xVrvBHqKufL75Q4m9gDL+RJOD85gs38an7/26/jS9a/iJz77y/hLH/khfPzC92Gv3MF+uYvn957DQ2uPYDWoPQkRfW1yGfvVPv7A/X8I1lsUdjoXLyRNHh6Fm8VxVaSRURYlGCmIEMcLi9zMCoMwozzeU0ftAYkfIVG0u+ZLJWtd7CVkHcvcSTVyprTb5sFezKqwFwZ6GFWnJFbLXLT6MK4xaB6Jm2phOB6d+mYI5x0m9gAZZY0o81N7gEzlDQne65nuGFh0EgR0/MO2Kx0qyWhw2IUTfQxKvf38mJT7oovnSECRsprbREzKSKP5slK9c4liWl+i3czVlDtXT8M89KrHdtHciAg8fRL+VwfHaHIHIIyFBDW1QEWqQ6u1wnDQR55l7FmpxaFuVB6FCIHTKP9SYJF2WsYgAg7fuAzTEak5Zc3+87tkPITIJgTTxyBNUFxeqqbcXLs1XzR97+Rf4H44F7y+WMAqFs96RTyGJP1FHENpE/e/5ulLRFD2GFXXS6FDQqDzd2JYHQcrqGnV7RfDdyJAKVar0tqgKqbsccuWbMvhKiB4zqIASjQRhj0O4FdurEHrPRxMCkwmBberLb1YuJ3ac5QuzI41HIBS400Ep9TI096HzU++tQHnGtzeFsfYz23OVn9jv3zj5xsxzUnd7qSMsBeaLiDlbpA65jngAIKes0IbpMR2JVz9hXcBCMKhPIyoSYlAHxgsDWkqsYvOOgiXAryD9b6hNiLJRWPejI2Cjwkq2ufi4nypC8/AEvLNcag55TWHVoyMU0JPAuQd1iagnsvKlbg5u45hNuZ4DSGuw6J0YnAay/kK+nqAXghqdm1yGQf2AAoKS9kyct3H1B7AUDYX6E0Ru4G9ML6Izf4mTgxOB69NOq6J0hVQymBMy5HQ7OsBJtUEQIHKsRtYrUwgDNkzD8Dc/tIVqFyFQZA6eHDgvrFZApFCHvTg98odEDignqzpXPdQuQqFm7KXKtCcaox1FV7afxHrvTV87J63sYE3UYijYVG6Mo4xPKv9ECmMzVKMm3F2dBaFK3D/2W+gcAWuTS5HkLDaW20Aw8IVOKj2kOke1vUgxNKgQ0GFSEvE+bCJgKJbzeewOe9S86MFDCMZRzZSL1DaGXLdi2p1Eu8h2vUEmoLvft6p5G3c5wpU07kdEj1Zx1ymaCbU9JeopTmxzfC2AXQE9AvwUMGo3/oKhrqD3UWXwmBpaOXKRtBIPv9evyjbXelbJrFoHOgdh92xJQKtwVp4cArRHmnkow7X+UuvwU1MiNMGI1maFD9vtfEIEUsKLtri6E5OZheBEV8ll2kLUM15NWkVEMcxtDfihzRP0PFvPsQ84Uc+GCspDAcD9LIMmijYSITLNVYUgFBoczQCDkR5VH/iRjb7QELA16pKSiVu6AI4o7nRojiHqXhegIUiBEmEg49cfaoD/3oGCfPzU/8t76UPzguwAOBdMBgHnFYgYs9MPoAn1idnYt9HlY/YdCC0CT64702AvgrET2h9lJwIqHDOxnZG6Bn3EEFrw5IWnWHqAGsttK2C+pYNkhtVAxgiDPIMRrGLXucARfsoipKlO6211tgK8Y95kIZ2Pt96m+zHehoCcZg8bJb2xiW8uwDGUfl+O6ZjO+1Y9D2CAbQXMCDnXl1mw898og4la1HAZBfQOZYazxEpzeu9h6N0qXsAbHPlvURwron7rMMexAbLlWwBoXFY8p3a1+l7H8FYBFokIGjxnc1cWpvsM/GMoxvgIx0PABGACKCrfInLBy9jrbeOtd76wojPklayNfhstS7POzy18yReObgCTQqXVi7hzPAcbs1uYmRGWM5XY1tElUlRjpODM/DeN+pzZAHPhHRf9dHPhphUBxCOc6YyTC0Hr1NeQ8PAhmjaO+UWRmYJy9kStoqb8N6hr1l1yXmLkVlqjoN3uBVc4K7RRoyynakclS+xX+4Gxo1p3OdEXP9T20/jwtJ5vGn9Tcgk0GAKLBI1IDFeX85XkIWYHZv9U+ipHt577hsgEJ7eeQqXlu+FURnWeusxHwCUdoZXDl7ChfE90ZUsq6bNe6xKx9qQCTGkfAQ/XfmA47t4ltQISttiFjhv2aWsnWK33MESlmvXxZpVzYSwT9UaRYIgMSkAxLUqecMvjb7UdqM60hF1Wxh4umBXVLmSJY4qZYJSYx0WbobKV+yApYPerXyFqZ0kjICa2VK6Eh4ugr9Xe94eN71hVKHaHObb+BKHUuqtnK8mdU3KwjJpPpNvvfaJGCK91I7L4WlXl45E4+0xOx4vErkcYn8D5zwFOWjiB+Gtp/UxQc9/jIYDDAc5VpZGjOSp7nvD9iFymT2cq8sU7jKrFSEhyn2MVp32kz0fpSpVHJTuOMslBYup1EK+N1rDE8EpAUKhbudZzUnUCBqEcpNwEY6SZPNe82FTlQwi4sHKyIbE9aztbryoQznPIEIpAlBLHgBAEwfIc97BV1W8bGTFSZuj9hsB5DVM1oPRWYiVUQYdzhDsz1YAOLaHQEQCq3+p3ODc5grWlwZQAPYnJXYPaj3bo3ftUQu3XcJt7nC6g2/+/+k1SQKEhcPdpW502CUo6kMg8SLU0pxOJA4+0a8Xdwup96q2apDYaCHs0eMQOQ3bqUPuLyJqqjgFZogKnt7knIhSw2SNW1fBhuCX7Fb7GDsoSnld6wTqzlvaGRvOJuoYGk2ChgKThjmutQF66v0mSpplfgW8hW8kpdz3ylfQZPDm9beBVcHUoSpUAPDK5EVcPngZn3zx01gfrODc+CzevvkOPLz2Zlw+eBGb/ZMYmSWMzXKcx71yB1M7wVK2AkOGYz1QFgGUJEMZWDlmBlEzLdwM1lfw3mMpX8FabyOounA7p9UBCldgo3+qbruvR36/3MG16VXcNb4befAINI3qShsQT399NYjcfEMGAzOKEaF3ilvYq3axW+zg0vIDGJgRvu/u70+47ybE0Kjd7W4VN7FX7eLl/ZfwlvW3YZwtN9TGctXDam8DP3z/74trRFR4BCBKGpgRLi090FBdEuK9p/txfU+rA0zthIEXKWSUIdf9IDGZX7spIJD4FO35Z8lYHXRRDJHbZcjv3sn5wiBtLV+PEiKWFpgoCehi0nS5e+0CP2KcnhL3KvHaJPtehZu8dAV0mNfKlahs1fAKVrmKmQBB+tHviB7fZg4XdgYPj74ehjJKpqnQdFPcbd/y2qbbi7wthx7aRDIlOVrftLnKHc8Pr9TXVM58g2KtXWU3OSqL29WVDrvQAntJMqYs0hYH1mPOKKTdnpQzOV/CwvY2JApp3YQQQE4UAUIW71PtmYWpc1zaQol4UUhr/Xy5hLhWFBH6vQz9Xs7uZeG4jUHKIIQoIMPpw7DUY8yMeaovNfDFxgXU648J6SDCVAsueQ++RAIlHUEEas5iF4FAoS6t2Ge0csJZRHB75+s21c3B3MySjLMH0vUUpAk+AplQq5fYG0342Ia4HgQE9SreNrJfZVy4XAUgmJKjRohN7mOEGwQQNEgpZHmPo7RWZRL1OxAtPqknzKNRLL1QRFgaDeBBmBYVqsqG/h/GOa3/H4ctgsRU5lTPfb3i00I6+LO04Pdm5cdOi86S45xxr1bicNs2Gb9FaRED5DjfHCeJRC3lHi6sqU14+GO0i46vqtUk3hHKT1xoHgNswNeqUnInRJZOwrtIdb1vh/t4Oytk8f3eaHR9hkHARn1uugDMDhvDuHO9gwWDGhBhoIeY2gMc2BmW8tUY4yEdR+H8PrH9TXzz1tMonY0xCfp6gFz1sN7bQF+HiNkdBOLEHiBXOYaK1ZU4WJuKBHrlWd3TNU4bCveVjmpowjYiECb2ADvlDgZmBE8OFVgNKaq6BHegTTqB1ZskOFvlShjNdkHiMct5B6XY+9nLBy/ioDrApJrixGAbQzNquJUFEFRTFTKVYWhGkft+UE1wdfIKCjfDcrDhAISAzjA040h4ikteRSq6L5XgfrnucdtcFbwricqPQ+EtDsrdWHZhZ7w+NEF7Cx1U5tqA/rBUa3I0ZW6p6tKCL0P/2OOaoxA8F6LapOIZGtX4yLVc2R+9h8XlbPgjen1KwT/vVxXWAsW1ZhFsORKVTbEVQ9zjauF+p2CvUktYeAeL8X06zukZm7rAfq3THUksFpEEv9XX2zGYz695fUKk10ROcnRSbWYTDzEhLJss7KS85qF1W+3pWmg++UUkAtLGOxiwVKqyOFN6GaVEPnsZyozGyvIIw14OFQndcBmRipwZahQZDg8iJmIDVRwNoa2FczWhLaBKk+YYEum4RuzBR5LchyKFSPmCNbjomjrm3FCWBSCgOTCdsyFKqoV4iWoQVkHq4QOAkHXknI1SGoJn17M2cCtVHWTIB3At7pJJxiTdcUJ8BFTiPcErD9KCXQKXRSmQMXCW2yoEeTzgW2CcAkgBAf3BGN5bzGYT1PZDrM7mnAUUS0XS8cu1QqZznDu9icHWLqqqwu7+FGX52p4W6SVQP3v9zocuIrhJjP3WpTcSuKiDfIX1H9ZJFwGRtjvl9AHNy3BRarjAjMRKIOCES0zzTALhHtbRf5uXq3DfRUJwlLtHKaNyReT2CzEr7aQjuO+iAgGEIFqByBEveDI64qaViFiNqEO3vB0XoAlagrpSJ1agSNzahPjrSgoKDhYWPspfakP0bimPSEFyqskOUQepbInrs6tQUDg5OIPfvP4b+NWXP48/8+ifwkAPY4A84YaXrsBeuYO/8Zl/hhdfvIp//cf+FlZ7G42YEycHZ2M9latAYA73OFtGXw/xuWu/hs3+Ju5feROuTi9ja3YL42wJS9kyRmaMm7PrKFyBcTaORq+5ygHqoa8H2Cm2sF3cwlJmkWl+9uL+C3hm51kUa7MYT4K55D0QEcbZ8pxBel8PWE3Ke8zsBLdmN7DZPwVFOkoztostnB6cQ+VL/NNv/Aw2B6u4uHIOv3L5kzg1OIlvP/XBuJ9Exaun+w0ueK56qFyJf/bkz2Jruou/+M7/AgMzinlkzYkUJ0275Ta2ilu4MLonqNUAMzuB9RZjWmYwpvuY2gm2i5v4x9/4KXzs4ofw5rW3RamFfDOzE1bHCjYvQtSnLmpTqV4jNk44LyTQXuUrKLD9RlcSUNjXAxSugA22L8zw1HGPyh4WaZScAQ4cG4rtILqjWTvvUPmKAWGQ4nAMCe5FqpKlyUTJk9QtY1ADAY76LrSXcyUsBXfMUI1xAti5Qm0MbuHhwv4VA/Pm2Ueg2Nc3FLAAmpfoYQdQ45uOy68taei8JNtSgTbx0yo7Fak16k9YMV0XxVH2DAl/JsnLf4NqAl7Evk1ip66cjVjrN5EbTZIrYM6OYWi3t1M9i4TQare+/tEgIIWze4THHGHyU/0R0pXQ/poA9LIMo9EAvcxAawKcuEJDAipq/efIrfM1D5KIgAAuItkhIAORVwJCUJ9SXA4fHtxEIc5l3JXoNCZ9oHReSOrhX51z4cBGjBZOILig1mWtBwU1hXRc60B2CpSsb2ct2ytEmwheXaJ6hSD5iAQXL6xaVUwkG60BT44QLjHhKtavKATkcxHcEFEidakBJYXxcz7YmZCCMXlARrJ2fVyLNkhMuM0ujtMg01ge9VFurMBahwMUKMrE08ZRyaO5H2IddYZjkdZxG3aMS7Pouf3X0aTWOfjapfQMOuysSvO3G3K7jIrXIx11N6TvUuLBU7c71UUpVdUQAsnDhZgx3d8K93nueQTw7BbSeQsxfuxS1/LB25NSBnAVKjChIR6eKjEgVYbVe1rB0rokozXQCgBZAD5qzioQOOENJherirTVVyJocRXHuum6N4QACnXEeBcd/RaJkfK1PVw8RxZsBEq4prX2A3sDUqSw2TsJgN28nhqexqMnHsSk2sdBuYsX91/A3UuXMMrYNawhg5EZ4/e/6dvw8vmrWM3XMan28MzOEzg7ugs9PWhw8dsEoSKFB1cfjoBhbJagSWNoxnhy+3H8m2d+Eb/nvu/B6eEZjMwyskAw2gTMXZtewVPbT+Ls6CxG2Rir+RpW8lU8sHo/pnYKAqFvBsh1D5oMdoutWP8wW4pAs3IlKl8Fl6451vsnoEmjsFP86iufxEZ/A/cu3w8TAqf9wYd+ALnuYaAHeOzGY7gxvYFvbH0ZEztBYQu8ZePt6Kl+I+IzwATs6eE5/MC934v9ah/XZ9ewiTownyJem1M7QVFOMdBD6BDte2BGwS5CYbfYwte3voZLy5cwNEvNOlSO5XwNn7j7ozg7ugtECten13h++6dC4DvbiA5e+jLem1JfuiaBeq968tDxr6OdAxgyUcXNBRDbC8brhJSRKNoQFCUaRATlPRBiQx1WjyYdGGuGVTS9qP1Z+EiLNGOB+EDYi4MCFYJd+qBeCEKjf4WbQoGN/cWBg6g4GeIAuD54nmJaRTcYHGmS8+H1Uoe6PVWohBhuD3EqsgW6ifujiPmF+X2j4OTv7oleqArVYPAuJgOOFuNH8jpqssAnTFy/CFS02tNqh6iHRF9Kcwd/++vm721+LXk/ly1tI+KmWjwaQmzXf3ekOVatZ0NpBeRZhtGQg+HpREQOSKwFSsYiaZsgq0BQpxV4+Bh/Ih4LXgjzJrHKIy+ovIunnQAu0bH1Hh4aKvEfzUPAmp8aCkqI+CA5UKHf3iWuoohiHen/vfNwloPXcfka3XPqg1RBonbPD7VP/qAwVgK0SdSrROIRhpUANsomiVhcj2tKvERltwSQAQrGZKy7SuxtQwCM8wyu4irxEZ8h1wqjfg6PMbZ391FWFrPSyYgkh3ZzNXQT9ynx4mMe4VB3p3qeG0Uek9M/x6RAWk57ZmSs55+302HShjuXRMhl/FpCnd+aFE+/ROIgzw9Lc/rOQnzTYneNx1EjYvUCC4mXIAQ00CSQw4kBH4gSGzjkKgTv895BOwCkG1F1u1Q5hMDxEOZC7SUwPa1rt5TSllpaxIRS7WlG1pKFY2Kpi0kloEK4mESRwOocP9Q2K/L3YeMqEo1UbazW4VfIspqgXO9t4O6lEnvlLraLLXzx2pewlC8HTjcTS1oZvOvEO3CwdoCBGeHG7Boeu/5l5DrHRu8E+qofx0B1gJrVfAMAS03Yo5FG3wxx+eAV/OSv/Dq+6+J34Ly6yIQoApc3xIQAgO1iC09vPw8AWO2twXuP5WwZK/kqntt9BkSEXgALCgr71V4Ey30zrAlrV6Jw0xggcGTGmNkpJvYAn778m3jHyYfxyPpbY+C5B1YfiWP99a2v4+b0Fr526+t4ae8Kbk13ce/yfdC5hoFpcMs9WGpxaflBVL7C1249hqVsKY4LwIRsaWe4Nr2Cjd4JlrSA7SMyw16fdssd/NILn8LJB05iOVuDqL7JuslUjvtXHo4B5q5Pr8OoDPeRBqg25I5xXVzF4MI75OH7uC7jWq7PgRSML3LJnK65OO9BKtAlDZU9h0CQC5EfgXXShjRF2ypSMFHdTu4uMdR2IQJ33RYXpAqVK6M3rTqad62iJWPhvUfp9qBIwfgsBNj0dVBJ4thSMg/CsF0EHhg0qTcGsPiWpTZ9Lr+/2jLvqIxDPmq4AK1p49sqAgIujpOEq+WTv+SNENi1yoybu8SaF1VNkCSXNNpc5SY4SsnStNVKEYZ9g+VhD2vjIQx5llZ4Hxd8iqR9QyQXuGvSIp+OSSCNiUDRW0kgRJyNhHXEpC4gnLD5SQgOL4eW2Gmwi0fpGTu8CpKGwIlzzsI7BxvEizpILlSQnjhbBQmAAikFpTOQ0iClmRB3Dq6sYMsSriqhFdtrSDudd1A62Eekc0RCfqOWbpAKEoZ02Agh8k7zuWsBNALbnygNHeJVeOcws1UtSnc8VqQ5v6dgMA+WwmhNIE1QlhJCTkS5Ks6T8yyRUcqjn2lk2RCzk+sYDQ/w3EtXUVkPm0y92IXI/Ms6i/PShsFzHIPDwEUbWr46wjutpcPCo5Xrtx+RfyepHXn7qNRlG2fFyxMQL3UXCAI6RvlCrDKopdpLS6tO9lMfVmpHufJdymlMU02weSkYhjIYb+CV5AiG4uQjwRJVO5K12j7xpQ+VL+ONICDCoCa4JJ8Fj0/kcKaqVWnMiQRUVI7dlxplaklDOJ91Iq3oSlKmxP1I65L2d6VYTziTS1fEyOTMuWVCaGjGOD08i6d2nsCN6Q3oAPCsq1BSgRf2nsH/9s1/jm8781ZcGF8AAJwdXsDvvfeHUNgZZnaCr9z6TYyyMcZmjM3+aRDYruLlgxdwY3oDd43Oo/IVdoptnOifxDAbw5DB77jr4/i1H/sgKlegsDPsYisMjcNze89goAe4d3mIS0v34dTgNDZ6J6CUaajMLedrsc+i+jLOllG6ArMgzZC0U97CS/svYqO/iaVsGSvZGv79i/8Wj137Ov7Iw78f671N9BRLFQo7wze2v4K1fB1rvQ3sFDsY5yN8913fg1+/+qv4+Wc/hS9e/wLuWb4H96+8CTvlLdyYXse/e+EX8bXrz+NzTz2Hn/i9fxn3L78Jj6y9Ndp+bJe3AO+x2tsAAlD4+1/5X+C8x9tOPozV3ipW8mU8vPoW9HQf96zexV6lAuFb+QozO8HPPP3TKGyFP/bQH4vud5/YehpPb72Mf/HkL+CPPfKDeGj1LY310dMDZD7HxB7MEe+pep04DWlLYnhZL7Y3cp4D+Xl4DMyocz+nEsAovTiCCqtjvvjGuUcgDLOlaJdiXcXSTCCub1Fdgm7ulbifPcf78HYGrdjehiOYs5evqT2IMTk0ane5rAI3iOA93ZddYOr1SrcpsUAU6zQ4p8cQ1afPFuXvEs026ojcVED4JUD3lb2I2xe5TR3ftNs4117P9TYLbBfm2cjY1+1sSBpE4jI3BG301NX+5keRId4eB1+XUbtuSsgzIdSp9bzjt/RJrA4JxzbR0xcaTwWnRv1eD708g1EKcFVjPNN5SI21yYvv+a4a00uYkrH3Qh00R8qjYaQd31BNpNeXope7DgjgwwfPU55YDUjiPXjn4BVB/LsL+SMTIrYjSqlahSvQEex2lo2dtVbhX9Ofd/snKG1/GAdZX22VGHnWAI/JkiNE1Mt/B1d6Ktkb0tg4bqLCJXXUfRUChlXFpMpGZbEdBAWjCMN+D5V16PcMprMK1tXmkSJ5SkFrs4v1Wl94LDZwh0+e+SCxS86VRWWkxSUNqH9vylhEWiQNbuOdY1eGxWfXf+xJQKMCwVNz+GqVQNfIv5CbLnsR9V6au2PCOX0YEE1Ve7rlus0LoCbq628ICj7YaoBEMigr/PC6yQeA3+iLSk4zUeGo90sKKoTrGlWPknPG8QnWqK8mPmpmRFck8Pa4pupZaWqPueRt1Jn48E/L12Swmq8xePHs4lVAliKNns6x0d/Aao+JeKMMDAzgPSZ2H//hxV/FvasXcXHpApbzVXBsihr49HQPmc9gTYVc92KgwZ7uI1c9XJ++wq5mYxRvhZV8FXlQP+npAYzKYiyItH8i4RKuvfMWU3sARRoDM4RIQNg7kMZKvoqBHkSDbdbHV1gLBuj1XUAsPVAZNBncvXQRWmn09ADnxxfwbWcfxanhKQzMEJUrcW16FU9sPYGf+cYXMJ0W6A96KGyB0peNQIN75Q7bS2TLkSA9MeSxPzHYxNWDq7i8fxkXx5dARHhg9X7kqhfbpYIN0dNbL2K/LBp76oHVe6FJ48vXnoljL2MlfXVIgsIdevY1baLakkpZO0fZRKXfpES37JXjeIOT86pLTVBDw5GF9wou2a9SX+pBLbbLt84RaWtYUwyyOAYGS6/EfUAT1CcNaUh6OsfidbpnblNi4dPz5lubjuJMHoJgj1f8Mb9vICy5gZK2JSpHkRCkxRMdQUV9TaQVHKsZKZCRfrSW/sJywleNfMcivgCkHFujNVaWxxj0e9CKYF3NoSMijpLt6svIu3Szs66+UjraQjTaHuelvtS9LEqfXNapUUjya6PN4X8k0IgQCX/nCew/iQBNQc2J409Q8D0vlUd7EeWhjQGFwHI+mKs7b+Gch7WOwQU8sl4GrTWMzpCCKJF4hD8STCFQtf59HnwLUS/QL3nmPRhBhO+IwSWPsYauNKy1cM6xWlMAF9yeJlEt/0ipIOixmB/hpB0+rA9HWBrwmlhdGmCLppiWs0iIp9K3LuL8do/BGtake7N+/5ocY771E9Rq/Gt/eP/HCD7aXMKUAGdmQ1BJCtzhtmpS/E7UE9qnXivfosi5XXnbbRIOJXvMqZDO8RxBkhQV/dgHgkEfQbxIWWmZXeoftUpUzaW0vmKCT5kYYyIPevKhs3MxXI3KGgQvRLWKmpHA58c8JXiaKh+qZeeSuuU8LBKwIoW7l+5D6QqcGpwOKkncxs3+SXzn+ffj/pWHMDJLjfHpmyGuz67ir//Mz+J973oYP/jQe7He28DIjKEVg5WRGWOjf4oJ6H7ibCBh6uyWu6h8idODc5BAhUshDgYADDo45xLdebu4iYEZxQjYlavw1M6TuHvpHqwPzgHg+Bg3plex0lvHZv90zDe1Bzg7Oou+6WNkxg23roYMzo7Oo6d66Jsh3r75nvju3uUHce/yg7Gcid3HF699ET/zzc/gl3/qV3H+Xffgb/zQH0Wuc+wWW1jvnYjnyNXJFczsDOu9TRSOvTh9392fwMCMsJqv46ee/Cf46cc/gwfXHsDZ4V1428a7W+vGQNMIz21v4drBQTxnFSl86Ox34e2bW+jpn8VyvtIYq5mdYGIPULkSq/k6iFQdlyYkARzEl1CQ+PEdLfEwPHxwoBIcJ6ApQTDKoHJVMM7m6Cmpt6ueHgQgqIOHMNcATl3pKKmGJgNSCuTlrNCY2SmctzH+BzAPtj18kASm3qEQYpjw/hma8ZzkRtSuuN/CLhW7zcXn2euR7kAVKiHkjpFuh7g/7KJsE/rHuVgXSUFSvf7ba9cidYfwtmbp1hdUgwvTKLT59Ihh4uyu1R9qZOjkp0XOcmh9JHj8oXPYtk9Z2LzAmSah3OHRyzMM+hkGgx4yI2pIBGjNvCliDrezti4kcstj8yBqRlFCIa2JNGKzA/xnTYj7yMXzrQ7UgKSeHxfHRoL4RCkKEbwPbnL5CRwBylOUegAEpUxQgTKIUgoIULL8zzIRojUhyxhYaMVeYwAKrmYD0S5zoFRNdLua8Bag5oNheVOy5uBd8IMVy0s9SYVjx4NDVBFgjGFPFtZCbCaUczG6tk6kFrIoiAhKUeKhy0NGvVZmAlg3hN9pePQNsLk6hnMeB5MZZlU3lz/2E62zpN5qHUnG6HDFJybEjj4JOvP4JvRvZ/GNgUK6LO+svjvJc8z6XuuUXpSHcf0WMW9E/YFA0fDS+wo8iIG4oFqnm7c3E6/CCRTO53HunzRfV/6juH4pAXNUfVGdy/uaEXVIe7h7Pno1As1HXpY2MLOg9nJjveXzxEvwzlryQUQNgrXdRnE1yn8fxggL35BqcE+jLnurrbIyhFgsXRGDly1lqzBBfaZwM8zsFL0Q2XmcLbO6jZvh2u6TeHH/Bfz65S9iv9rHudFduGfpfuyWW3hh7zn0dR/WW/zUn/q/IdcZcpXj5uwGZnaG00P2FFV5juPj4DCp9iHquWlchNPDc2BOscZ+tYut4maIoD3ARu8kZEeLa1GjTLAbzLCSr0f1FBsMkx9ceThG0v7G1pdRuhJnR+caY6tIBRuFh+C8DXXv4ZWDl7DZPwlFClcmL8f9f/fSfQ3PT2k5Az3ER859Jx5ZfxMypfDuM5fwwbMfQk8PULoCf/ux/x4fPPdevOvEt+P+lYdQuRI2EL3jbAXw3HfnHTb6Gzg9HuNP/vTfxInNVfyeB9+J33XP78RG7yRmbgpNGpnK8Wff+SMoXQlq7fu+HuBD5z6If/bEP8fPP/MN/N/f/6M4Pz6PE/0zMCqD9Zbd//oejBlFekCkAhJIUaSBzgOeHKZ2Uq9RYe611BpFAsHjkjh58B46GGZHew8vwXXdwjXclYRhkK4fgkgATdxDmcrgvEbly+jSVgzDRa2SgYV8g8ZYyt+sFoiGIwjeg6L2tDiqeXudvB7p9o23Oy75Q1WO2hxVLL5QjlN/Vx3H+WauvYEgvr36kt+PrHlx3rTYhmCj4wM/96L1d8olPaR232BNpURgV/52WenfCchqPCaIzUOWafTyDHnGBttRUoEQ4C5IKkRnX1SHAEqIEh+naJ4HXhP9c3AqqC6kes/c/5rQo7ogoS7r/D6oOsllLGvVK6jI6CPAEXx8IH0gNt6k4FTXM6hwnlWgnGNpgETyNkazVCa4o4yANzYwECoitQguZH0AVxHwRSlQElvCAVAOjIAk+ngTVKQYw3uAtIb2HooIVVXF/U7eAV64RuniFYKDwUUKWiPwCBmlzaxA5mAIWBr0sJtPkGmFogoHemumF1HHQtZ30df1OZPkT9rdFDnPP+usb+59GDS01lfnNhTi+NAqGmfVovbMg+mFA/QtQxZyOS58fwxQlF7ONchAIhR2jRqIAOVVY/yPrXIra3MBE+qodLs2JRQN8I75kRfCChzThrrbK4DKicqmcGkWdOEwOwhxx7soX9ccpgSY1K06uPqAh4KOBF/lChxU+9ENq6wfG4h/AUHOstXdzdkNXDm4iqv7W7g2uY6hGeLCuMJeuYtndp7BWn8dm/0NvP/0h7Bf7WK7uIXnd5+D8w6ncbbREnEVamDgW+pMQzOKeWZ2iluzmyhdiSW3hLV8M3KTS1ewbY1aYgIzqPUIIBSieJwtR2nQs7vPAQAuLt0zp0YFAKOW16gb0xtYzpZhVIaD6gC7xR4Oqn3cNb4b7djkqURts38Kq/k6/sCbvhPnRuew3jsBANgptvCvv/EVrPWX8Zb1t2NkuO075S30VB8DM4z2L7vlNqyvMMwyfO3x57H+yk2s9Hr4yF0fwnrvBEo7Q0UKpStwafn+hKCuk1EZTvRP4+s3XsYv/dIX8Ecf/SDWe2s4M2T1NesttoubncbG8R5KGcvhHzsPCd7FKEPNq2+vuNoQO95HsmZVbXwurp75G/Yqdxxij7/1DVliZHAIoCcOt0jgaOntcfJAdJ6g5W7tsP1KwZbUJ2dkgwGL459hr3X67WG8/YZKKXH26tKrLeHoRfNqauj6trvvEaMFcLE0GmA8GsBo5ugTUp/zBEAIdxbxsToNx5hIpRhChMNQ8m1NVDeppw4wFCnPerOJFAHeS5OZcIaDE9UsAT3hOVMtOl5s3il4xWoCWmfsflapyJ8vHQDv4BwDC+89ytmUo1S7AspoGKNhtA4clNrlbqqrXKtaUd0lYh6Kj0PhESxF4ygQOK5ECEzMh1lihN4eKRfqYze6bBtinYOrKtiygNYc+wLJ9w2QTQpam2C8HsYo8HqSToQDO7jmJGCUG6yO+5gVI5Q39jArXVA/66K75hkZfjHNNFdG/XsCIOfqOD7zwsd1tRj83E56raQUnPFVNuZVpqO523XU+Wg02UG8ilifiIkGMYIWI86YZD0Er0hyiZeuAAVOstRV+RLKs3pQWjd7/LFz0aOFSLvT1KUPHr2/UE0kVK6qjc6TNSd+9XncdNSz9kRzKlEsZQybnqihmy91Vr6C9sxeOY50pQsges9G1y5GBubzy5CJgIedhzTHTfz0i1qR9CtTPazkJnKTNWmMzFJUcapchdLO0A8uZM1KjvtWHsTHz38P8sCtvzm7hkl1gDOjM7hn6V70DUeNHptlDPQQX7v5VWwXO1jKlrGcr2C9twkihVyZKLmRsS9cgVl1ENVVdsttaGVwYXwPBmYUPPxoPLf3FJ7YegK/fvmLePvJN+F7L34/vrn9VTyz8yyICEvZEtZ6q7i0fH+UEmzNbuCVyWU8tPoglnKOfi37pfQlZpYD2J0Znov1L2UreNvmu6KtycXxPbh88BJ2dnY65630JcjXamZGZfjoue9u7Mtc9/Bj3/Y92C338I8f/8f4fff9EPpmiL1yN36XqRxPb30FH/+7fwGnT6/j7jMn8OR/9b9Dk8HVySs4OTgD7x1uFTfxuaufw//6lU/ir7zvR3Fp6b452kQMlv/qe/8z/MlHfwAPr72lNmDmRcX2LD7xqhiSGCyzy19io2Vit7SGWNpRuFnDm5MQ2mI31FP96IlJ9qH1FUupoDG1k6hK1NcD5KldC5reltI+SdLKdPqnatvniQcn5es4VVK+xJVwcPCOpUV5S1VQK4NBcJiQtq0KY6KDS+LKlSjsNEpvDlM5fD3Sncex6FJPOOJ9SjBFBl/n58cjiIXjLfUcarDTao8Ql4elww2AJM/hbeyqp6nS0eQAz5FADQrLN+jkTkMnqi92DyG+qHUPNwnXlH9bk3Xpz+7Uai5IEQwpZJlBlmlEL0segKrF5FHdJxDx7Lo0uC6MF7EQbT4SgfAOCJKNKGUI0hBpBAl3P+FCiqpS/CFekiCqQA4kep1CbXoH7y2I2PiSol6wj6JS5xy09pALlDlwPgIUW4m3JJZWwFsQAKMVMqNjWymdc7HvcKL2RgASUKAo0A3MSVGMNuJ4sDMaH4zEQzkqcDnhQ7+SNdheiwE1CHhgL1dgQ3ZFDB6VqhFMaDuB26bAIDEOpNDxgXMawUAAdr0sw9JogN7uFNZ5FJUAxybnRZp3LEI+lUjInPt6qSYrIv5s1pQW1a6/8Tb5PVl3ybP6m/qiPbZ0JBLM3e15o6bbsf/wXiLFd8dz6PpbSdRHhD1Hi/Kr1hNx0ZoAB9Txe+SsaMy5ECl3yPVr6E4n5TRVZOdhtCQlTAQ09+wi8Cac8kb+Rnl1348CgO12Sh+E+6tEepK+T4m61jfR/oOIOfneorBTqBC7YFLtA2jaXYieu8Q9UKSjG1nWhy8j+BplYwzNCAMzjGUIl/jS8iU4OKyESN4MMquGR516jBRMsEWJ9iDxDmJe8cyVGJkRLiydBwCcHZ1J5oAwzkYYZUP0dT96GvLeo68H2OyfwMhw0D1RdxKVG0MZVvIVKLD+/83ZNQCsX7+Ur8KQQS+U4eGjxykgMUQOh7P1FgfVHg6qPXz91tdwYnAC9yzdjy9c/xyuHlzFQ2sPonQlJtUEhZvCVx7LWe3pyXker9/zgXfiwvIJnF8+g5V8HVM7wdXJVfTNAEvZMsbZEu5fvQ+/64E9nBycQqZylL7EpNzHbrkd1H8cDqoDfO7q5/Clq0/g/vWvYpQNsJQt4dGNR7GSr2E5W4lAEWAVsq3iJnLdQy9xHawDoyyl6dg7kopzhtY+E0mhAA85P+S9DobQLqznGO08YUw0VZKOdx5Ivd47VHAwMJFZIu6LJYmHNQSabf70qstsHxfB32VkZEjEdlHdj7Zd0XD89XM1C7wGqlCLLpDD1J6YsBFCqmvw5svsElO326NUS2TU+KQ+UKWKGhwcDxw1OKSBiFh0fx534bVqRJPUSeoSoqqm6Jr1UxsUSPZmeWl7fUdV8UGsr9kX3yo+LUQRIcsUerlBnjGHXwkRnF6kSRec9/DWAoqSKmUu2RUsA0hKLtSwdiKwTMSASfuIEKJdM+8NFOwRIknB9StygAvSE2lDBBZSNSWD5+A9BSNsxMPAezY6ryxzHGzFUbm9d/C2AOChFZAZgzwT/9MJEeaZ0LJWbDFkPoI/aqWgjGY7DrBamVJyQCSqD2FfVBVLEFQAEwxaFIi4/RHYeB4nHovmMrBVxeOlFbwNBIUy4XsRPIe5ia5zBVCGtUE+aV8o3PPjYS+DMhpXt/ZQWY+iEiPw1nqM5bVS195tEeYprkTd4kgEHYoX2s+oflAzR+YJwyaBWgPZuokLzs12ExpEbkezkjOq+e3h6kivdzrOpeXhQ8AxMEhuGfkuUvXhP/gHq/2Iy9emasGcSkW4eKUMMaIWgkRBRdUK8VQEYKHqUaPsznuu3pNCjNcc/kRtCTUXv53awfTabesan0ak4uRbHja5y1hCfFifOlXJIKoaIfCY99EluRDh6Zim34gESpNCYacoXYHtcgsr2SrybIQX9p9F5UqcGpyJ7Td5Bh08KUnqJ79vFTewV+5hnI0xMONGUDxJihTuW3kYAK+XSbWPws1Q2hm8Yju3NBllIjFpw/yUrkDlqshln9oJxtkKNvun8cDKI/Hbnu5jvbeGU8PT6Os++noQ59DDYZgtsUtXMPE3rQ6Q6x4U5cEAmrnUDqx+9csv/zIAYK23hm87+V7k+SqGZoSe6mElX2+AMIn+3NeD2Obn957Bl298BX/pp/5XvOdtD+Bvffi/xJ/+yf8ez7z4Cq7+9X+PgWbJztM734SDw71LDyZcdIvN/mn8rQ/+143xuTZ9BZ988bO4tPoy7hqfxXec/jDW10/g0fV3xn4dlLt4cvtxfO7KF7HWX8a0muHxm8/hn/7ir+PKp57hglZymPPL+Jt/7EfxiYvfjXOji409W7oCn736GTy89jDuXrqvbkAAhpExAIqc/aiK5gkU8qVSO8njkbhgRh0kUKRxhZuiChG3xXbmOKlLfVCRQhUM1VUYbx6nCoWd8Z4mzap3jtuQOkHoSk21MAq2MBY23P/WVwFY8J5UXqGwM5S+RF/1g21J/roxql43Vah0Ql9PPa9muQsIkvhuMYA4fvsSwvvIT47fZ2r83lW4UDFzFE547YHgJUVob4LQdoeUN/c0NUldAI8oCWonxCxYz76XKRgCdJA0QKnAUOcAPd6Do0Z7VjXihR9sAWI/wsEmNhhyqROBdFhT1kVinm0bmEMpwCvdkwwOAjFJikFMABtsDaG5nzZclK5CVc5Q2RKDQQ8SDE9rJuqlaxDJhSfYIB2wzsFWFZy1qMoKCP2Et9BaIetlyHsZsiwPZXkgqGG48K11LnHfyocG21ZoeMfEQ3Ro40PfiPssQfFkZ6cqJy5KEghKcQGRKxLGnccTUEaBlEGfhgjDB2d5Dh0hBihUMVIgjz8RwZF49WAyg+nqKO8JhBEDlJ4BMiJsro6h9QQH0/24TlJ30mEo6m0gzxokVOssIMQ6O1OCOxKE3i6lBpyNb5KIGymHNqxJdmnc5AofT92p7ndS3dFl+OYfvv3oDZpkSkW9504YMhTnQgKY1R6bJAmxrUMMmipwCoVIj1z+FChHVs08Ad527bhYgkDxbVc5aYwNidKbzlxqDMrAyMb2papQXQRNGgys1vcWqUyICyDnB2ju+87+gIBgPCpPNKXghxk3Ypwdx4lYnU1SpnswKovc7Zuza3js+mMgEE6cPRVUOtTCca1ciamdQJHGcr6CsVmekzx03euKVFB16QWbkOZ43ZpdR18PgttVXlXWWwzMCLnqsd0HCMv5aqvfDLDODs/j9OAsE27hPNya3UDpSiznq/GcmdkppvYAz+09gwuju7Gcr2FqD0BQyHUPs2qKSbUPowy+ev1J/PIzv4C3nvkUHjlxD/7wAz+KSbWPa9OrGJphAEI5rk+u4MbsBt628S54eFwLKlWnBmfw3MdfxkpvCc/vPYfJdAZ35QB/9Of+Ev7EWz+Oj53/XpwdnYeoCj52/Tfwiy/8Kj5x90dxengm8VhV4qef+d/xS889hp/9ld/AW958Ce8/fze+/fQHG2pACgoDM8ZDa2/GpeX74hovLxb40Tf9IG7+Jzfx1M4zeGHnFXzmpefx3tPvwsnBGShSuDW7ji/ffAwPrDyIgRninSfeiZGpg/hFyRfVAeXSNSLG0rJWhcET1Yy8Q6ayWkrUtl8Q6YfXMMotBPFHpfm2agz0CIAPgMVAk0Ffq6iGxaqbHBSP21s7URAJR/sMkXOMUNtniPF2X0s/mbnb1wo5ephUB1Cev6v38WubXlcbiza4kMScm5grPrvd1C0Jqcv1UcRdc/EWg4tu5mfadkqvfCHeF30Ts3VwfVpj0fyiXUJS3/yvc5+kzNMEYwjCiBlTwEFpAb7uWIt53YAcaT8aIkmtoYmvr0iBRzGycPFqwjNtPKGOJhsQSDBCFq8riGV5lxr7Uo2dnGoYeabGxtHAOnhzEkNiVoVQALF0wbkK1pZwtoT3GThQHkHpWgSbqjwhAAEb/nlbwTsLZ0u+ZAMBrrViT1DGQGvNPfbBfZ4Ai+CRSeYr4Cn+B18HyIvDVwO7mmtNUMqzq7tkfdWHcOhvI1hAvWJl35LSyDKW8iAeQDJ/VNftqV4vkYARjr7sPF9/H7AIe9DiQIOjQQ9FZaH1AZwN3qyS1UHJ/0Mrk7Jb+ZI9gIiuW6ofNTJGM0WFspiN2u+T4RdOea2G1swD+IVnxFxqbIfF4IJf12dS3e5mL76VEovDUlvVCwjz7V2MMd+lQiupza0DqeiRb/EJzykayiK4jOYC63HsUlU6xgQ2VICkjKAGcVQ5UXUsrNPULF0l5YqBqMICXhFad1WiZjZXVyqB9T7aexyVutQwmoRPfFLXhWbZYmsR1aJsia3iFma2QE+zypOh2uZCbEfEmFiRRuUK7FW76IdYEpnKGQQEY2kBqypIolLJzyJ9eHjPEY2DVKJwM1S+im57e7qPaXUACjrrLngOioDGexhl4GFiTAwiwsROMLUTBhaxKv52a7aF04NZ/Fvmu3QF9qt9rPVWsdwbwTmPV/b2sDG4DpH0Te0EWulISBauwLSaMkCFx8zNsK420dMDvO/su1G5EgTC2bOb2NrZx1cffw5PXHwWHz1XQYcI8YWd4cb0Bp7fvo6ZnaGw7LVLB9WsT7/0VXzlhZext8/emHJtQrk8T0Ika2WQqx5Gvc3GEI+yJWz2TwYi2ONr+SthzDxuza7j+b1n8eXr38DZ4Vn09QBL2WqwrUimCfXS71qzDYPoQOCLjYSvT5iF613sIKjFPEjTUXEu2ucvoXZ5K8GLo72F0w01JUWKeZxy19JigD1PaVK43VVUHaxVKIM3OgRGTpe0/jVK3xLj7W+VpfqrTYt4o695Lf6wy6zm1XZ92/24hTgkbyT82jxa6njeLI8Pbp8sa3ah2utlrE7jbKw6qg0JF9t7jkKdRHIWwCGEOgR8kniH4mBzvuKL11a1USNz7BNXc0rB+ZooR/CowsBAiGANwIOcABbA+imcnaGY7QY1JgdX5nCkoAnQmgFBZR1LTGBRWgvAorIuRt6OP6uCuYVKYThcQp5nGAwH0JrVmqx1QdTu4SrLEgHn2AVtyBM5ntJHFcCStzxOiuAsAwYVgvEJgNJKIzMZgBqsyKwSmsS58ERlNsWeQ2kVpC82en6Sspg28QH01IbaSinWLAu+86OsItLADggHnhyZ6ysjKK1w5eYeJlOLogic2Qgw5HBM12Bi9yK9iuPFmZUnKLBIGJHgIDiouAXSnXHUQdtkiDS/YmkDms/iiL4+SXqe0t4+VPhGtceolRgQ59gFHWT4EL3bM5fPBUcPwn0nImjUagLCiReuaFtKJCkSAcF9ZiqhaHvl6eJkLiwPtTTEegsN1eBkpxKJw+wSidqcf25L6QpEKZ9IXTv6GA3QE+NUiXzMhDyPtkbidecOF6UY07eTIlXv1pb6iRDLlee4AYo0rKvw7N7TmNkZSlfhg2c/gHG2jKVspTEHhSuwW2zh1175FL5240nct3YReeA6f8eZD2BslkFEmFUT7FW7uDm7jsLyuI2zJTaizjcb4KIraWVwanAuApRvbn8NW7NtbPY30BuxelGqhjWxByjsFCv5OiQY3uX9Z7FdbOHepQdgVA5DBv3UHWwYl74ZwsFjZEYgsJegnh7AeYtJtYfLBy9ht9zF+059EB84/RH8p2+umUJGGfRUH6cGZ6LkhEBYydZw3wp7nfLe4WT/dJAMGbz/9IdiE/7NH3gUN6bX8Le/8L/gxHANN2fXcGN2HYUr4L3HO0+8Gx89991QxEbNz+4+gfXeJhQpvLCzjfMnN/DD73gvfuDe34X13glcmbyMqZ3goDrAX/v0P8Tla1t468Vz+KNv/n685+T7GmP8D77+D/F3f/7f4pkvPAtYB4wz3Lu2jvedewf+6s/9EwwGPdx3ahPfc1FHKVEK1OHrPZ+uM2CxGpIAc63yTkcOi+wNFp0BNUjplkA2UmuPpXtE0sAM2d1utQ9StSQPaO71rvakLqMFLMt51HX+s1OBlQha3jDuZtu/v1YAYdEg3H4589/59HZfeNMfxeuSPPP1SZrn8Qcw0lks1e/lr8YY1Bzrxje+qxVJbQ32bTfXLy0ztjntB/mgo7ig/PRFsg4IgFbEhKNQNwjmCwmBWc9BwjVD4Nh55igk9leILG7PrlsZfCREKykwQtAg5UPE7JQQ9cJUZ9SuAk/dOdiqAJwF+QrlbBdVNUM52wUFzx/eWw6M54V0JcALR05Fr0+2KuFcFTw/WZB3UPDIM4M8zzEY9GFMBqNNJPqsrdieIoAkIkIWpBnaGKgAgnx7XXgwsEikDp4IztXBcCJRToALwQkjpxIEBK8tPow3V9Xh5o8SzzBhGpxzSWCvdJ3WXF82hBUdeN8sgwgglxCXQG40BrnBeJDD2Smq0sexjivEC6fFAs6iClIeZ20EoL2eCXYngHcVvKsAW0KAgFcGnjRI9QHFHkEEJEu097kjIp4bKZDwySs/ty8b/KoEwByV6rgosjWaACVNc2dmC1y8UYGFJJFcE9AABgIVXVCfBGrudg1Fm8n7xogfXm/yfWdZrUv5KNuK9rfWVXM2E0IgHPdOEyKKwUYNwfg8cJ09TYnxlH+pjjDoPioddywWvU/tSAxJXAAFSwYbvc0AqjSWguFw220tgQmoh9cextnRWazkK5EYZKNezquVwcCMcKIDPFa+AoLf/+3iFg6qPWz2T0Vd9rYamofHqcHpGBG77Z0HADLKomqupM9c+Qx+8+o38Bff8eMRyIzMEgZ6iFz1oBNpaKYyXBhfxNCMoclEu4oX9p7FjekNlK7CTnmr03Yk8OHDmQ6IkTp7DGTvaayKZjGz07lgb4oULq2ewpnhmRBsLcNeuYtvbH0dJ/onI8Gaqxwn+qeQh+CEf/zRjyFTBufH5zE2S6hciceu/yZODk/i0tK9+OCFB3B5/QbefupBGKVxdfJy8G7Uw3LO0peNzRWc/r53YX1piEc2T+LdZx7FSr6C/+yDH8MoG2Kzv4GN/gmW+rRpOYjns+BeOll3tbvYeTWnrv0o2hGLjKQldakgNdok51aQHEn5qSRPxlz2ZZu5rsBesyRuSFI4PPF5dFwQUEtfFzMxKLDa3hDA4k7SIgBymHj7sHKOk3dxIUDtCB2Qq16KO8oQPfkwfptSDEwHNPM2aPDwXYNUCD/S6RUOJKlEnSv5f5Nr2tXG5us5zx2+CSiECG18R/P1HM4JZcNfo8OSlbojZxlz/ZaLMjYqkWg4FwyJyUcA4kGJS1hXGwmTC/EjgkKKEM9Ut5lIQjo4eMfB7uAsytkByFcgX6GYbKOqpihn+8h7Q+iszypXrq6rFisG4jmoLzlbwdkSripBxHrGWhF6ucFgMMBwMIgSExtiWlQVA4uqqng8qA6aZ0y9Na2ofYnUgYiNvBQAF0CVEK+qDhAm44kgDYrAQ4nnDDBIikbYYT6EoKU6roiPwQER28JZ65mVFFUGw1qRiOVxo+gAhjwbkXsQcqPQ7xksj3LMZgUmbFEeygtxAT3gLIMFZ0sUZRi/gsdck0NP9aCMglaArw7gqim8LbiVpOF1H17lIG2iKFokbwsF3w3uQWv91p0OQGp+b6RwhBacMdLPuT3nWyAlNql+MgeE6q30hk3p5SeLhcjHiNSO+KRMOZOLlRcSMIZuiUWjbuouiYgAF1Z0qkJ5SHlxZgIBzO1ngiUSEXdI1LNkYP6KrrxIqeaDxrbbGm0rXgXIbKt0zL0/hMkYAV9QEwIAJIa2G/0TMCrvJNw5D4PLXPVwz9L9UQrT1Y5M5chU3iDCp9UBpm4abCMADYMrk5fx7M6zeP+ZD6GnKAIL56p4ShGpEPOBQuCzeeWpXPeQt6JI/OwTn8GnvvB1/Pjb/jRyz5KKUbbU2bdM5TgxOBPHwroKB9UeHrv+ZWTaoKd7eH7vOZwdnusEFuJZy3ndsKMRUKBDcL3SFRyhOqyDwnLwwUsr53FmeBpDM8aIlpCrHq5NbmCyPGmAwbVEneljd30iAsGZnWK33MLPP/s5fOLS+/CeE6fxXec/hN1yFxfGF3FrdhNfv/U19E0fG/1NLOerODnYxFsvnMMPP/xxXBxfxPnxPbgyYenMu0++r3Oc28m6ijWXKYkRAYKFizYDaSA8CmAWaO6ZWrq3uM7azeziPAJ2oho30PD2lXqiazht8Gg8z3Wv6XhBNELETvKYjInj7vk3jFeo/yhSOtbRFyWOx048rMxIkL2KItrPXC01aIvPupPkaZfWAg6NN4eVe7yBkRxECIbOwUjYS2A0inhLJEryTx4KlzJBJPVPpeBDoDefcJZq81kStMSG4RAuAwDyzOEOhL4CoMjDlVNYW2B2sANbzeCqArbaB0sCHCxxsBut+4BTcFUBV+VwROyuNvSXDQICV9yVgK9A5KGVQp5lyPMMJkQf987Cg4PPVVWFsiwYKAEMKJSCzjKoSPwLyHLxXxxzIjjlolRDVKX4tFIgpRsqGPK96D0rxY73SGkGJgIGvKiVAELS8reJ3YysjuDKFoH7E/3TJ2tLCCBWb+OnXunAmbdwXgGOVTR6SmNjZYzJwQwH+weoKhdmmecM5AE3RVHuY7J/C8V0F66aRYlERQDNejCZQS/vw9kK1lXwXkGZHL3BEqCGIN2H9314qLiWZB1HUJSu72QLRNDfQhXHJdwO21G1KlU9bxGUdACJOUCR5Kj30xsvdXlrkp9RPY8S15CojQwZALJd1GEeoBaloyTt0hIhrPjkXHyhC1HKedmTnU+57XS0WpUQ38ftgxBf1KrnsCT7XiJ4t9U/hIBKY0xEoqcFkG4nUTgvHdhOK+UksyH1sJGfDW0trK9QugJPbH8DRhmcH13kMhzwq5d/GVoZbPY3sNZbxzioOnWNQa77MCqH2NQAwFq+jmpc4drkFYzMCKNsCZPqAJUvMc5WkFHWiDwusUMkMrWMRUbZnHrV3/7wX8LBd+xjNV9vELddSWxHbsyu4urkClbyVeyWO9BK4d0n342TgzMxZgbAIIljXUzDvxm7oG3NSyrxmVR72JrdwpJZxoGd4OrkMm7ObqCwBR4M7ma/cuuLuH/lYfTNEL/r7u9H4WZ4fu9p/J0v/gNcWj2D//zR/zyWnRL+mcqhyeD/+PXHoIjw3lPfjovjS1yvPcBdo4u4e+k+KFAciw+c+TDec/K96OthHLuN3klWVTsGqADQAO3sVcmFtrFdjjC/QMGex/vwnMdbBXVA8Z4lEkqRMIir1v1yJxhYD+YYBRbiRbI2Io/jT814NF07s+FkwbEnOvGmFtdN68PjMibmpKhhT0m7Ukne65VuG1i8IewjGuCg4/Vxzj9CNISNdqjtAluSjG6DQuEOtxtHrb/52aKmpV+lWuXN37u+qN/FGhtNSN+mJTQ5e3OgJhJPLVIoEpzhOwqtDHkpxksgeK9iWb5Rbo3ShXhuG3SKtjPQfBe55aHRwRMkON5EYhTubHzuXQl4B0eABNGyxQFcVaCa7TKosAW8m4HgQYoAV8G5Cuxalu0fnK3glApc9tDKoCrF9gQsqVABYClNkatfq2dRjMDtAkBRSrFNhdYcjA7EWMk1QUU6TkQE5T1csMPwRFAKwVjUxbHnA659KPkgLQjEEE8XhOsa1fcCt7zN/qa5tS0qcvNkM4W2Mic3qT+Uy65vFcizh6p+nqGXaWSmlk4Jbgc4jzMeWlloKkGqAgLY9B4oqwrOA6RCgC7K4ZUBdA/QA/6pshBlt7kfa9WchJse2p0K1hpqX8nDReCi83nHM2o8ToBEAhDn33bv7oX1vgFTzWAIP0jWbc15qwGfrLXXoL4FqSmFS6LGL/iOQFFbM4gRYzmHSjuSs07+Pi5H8rAy74QAEVexvrFPk7wL2tilHp3mZ2Jm8XQd6YUqcMcpIYqibdYCyZNwfcXLDpGChoKDw361B6MyrOZr2K/2MHMGAz+Kc6Uw71GMz0cK5yPBgUEGiAETB2+0mLophnqEkVniSOHeMZAL7ewC1KWvwYq4ml3vrWE1X4tSisqV2C93G8DOKLar0NETIhOo1lv2tOUK7JU7eG73Wdyc3cTFpXtRugKXD17G1mwbHh5rvTWUvsROsYvdYgtDM8Y4W8ZeuQMPj88/+wJunZ7Cv8U37ux6nBkAGqORBQcrPc3xJqy3SfyJ+puhGcfAf3VfajuB0hWY2SkGCfCQGAzyu0ifAIq/C9HMzAg3tyqo43xuql/Wa1+C90aJBtUxIhrqTMn/+Uqo12MK+rtSql7FzJJwJ3eM8+0mcf+cynjjvZ6ktsrna5nuSGLxrQUXrXqPe8m0wUiDEj9mGa8i1VfV4sq6IMnhOZv5vFy64WmqZ7uY27Solu7nXWoZMQVCTIg85uSyGotw+ZlgRox5IGABouaTeIxiAlfDOR3cm7rGRlAAU/CxahtsLyy8LZmgVgCVE3hbwnm2gfC2RFUcwNkScAXgLTQcE+ZBWgBvUVVT9HwJeIKtCMVMwVYVoHQ4bABbzjjmhCuh4KEM25lQaJe1FVACSgVjbCi2rXBsDK2UhsnY9oIBhooSBmtt46c8JwBaKTiiqFoj7l8BhHpsIhUyIOLDJgUoqXoVg5NANQvrvHU4UnimqZakpetE1HZkon1olyZWYeL21UCCvwlSFu+hSWHUyzEa5BgPcoCqSEQq9hIMTT2UfYtBVqKYmjCWhLLymBUeBzMPOAOLJfT7A/R7Pejg2hda1312adtrxkDa/WRRo5PakhyHgIqutHDHNfbu4d93Pv9tAiSOTC2REBNmaawWzuNw+8aHR3L2wePbdCfL+6gd6VpSg/MP19gHi/SzUwPLNlFyuynV4/besa59sndFGpKqVjUIKi/8UrAnnBZhbUNgz3Yb23YtwrllgpoNtHPdW+yFaUFfDBkYGPR0H29df1d8Lum7zn1PI387Vb5CYad4dvcp9HQPPd3H2eF5TO0En37lU3jHiXfh1PAcXt5/HpnKoMlgbJbAkbh7c2MnLkN1IIBLV2DPbqN0JQDgZP8M9qodfObKp3FicAJL+TIuLT2A0hU4qPbYtkKZyCGvx7XCbrGFlXwdpwd3gYijfm/0T0QXqwDH6vjVV34VHz77nVjJ17CUrXSO3V61i63iJs4NL+DG9Cr+5m/8z/jSK1dgrcP7f/CD2Ct38OnLv4GDchpiiRRY661ipbeCn3vh32IpG+N33f0DGGfLyHUfe3sTXN7dXThXW8VNXJm8gj/0offhQ3e9t6EytZyvwnqLypcwyI5NL96cXcOnLn8Kv+Ou745etKb2APslt8ODue9DMwpuWS0MmTmwIklHSUW3oquAvsIVDJTEXTUIAzOCIYNc5cGw3TFwAq9RFz0rsXtl03JNWxt5N897NhyvQkBEtiMhHwAUBU2COzwLnHco7Szu1Uzl0bFAKpUU6c3rJdX+LVOFum0wsihvg6FSc1aTDw+ZkpTtOF9uV9ZGluTi7rS7aHwzh2c7uYpd1TdEVZGLjKj32wQgwhUP3ybBnITT29U1Id3b9hXzBFX7W+p4xdCFvA/2CKFESkeh5mABSdR07wNgCEa50rKGgWIAG04BTrxBufpnMNJ1VQGChYKLev3Oe8BzPAkx2IZ3IMURPD1lYJUYCwnmp7RmjjaBpRZBtYgNtF1QHxKOgIMiDwtbq4IFwpvrs7CWbTE8CEqz9ya5aJUKHqCIZ8JZFw2SnQAKMVQXyUGQUFCiBlUvnmY+VsXQbLBOaIEUlhjwPInkjZjjI2VSQILwPA4EiF6b9z4CBGq1h23K6+jhSuvoUleAI0l7XXADSMTgQSkYk0FrtllIMA4kMF/Wy0G64LHyQO6AvgUGFa9qbTKYYAhPAQjypIX1FaQrisT7GOLZQpH7HP7HVFUgMLrAdoQncVwOS4sYB/W+v33w8EaEFG3CUxgckTu8ABS0nQjIt/Jb46x8HZhc89YczCixvoptOxTQHLM98SwNKjG8J159RNzIeU3YQG2AQ+nFQAB5FdZ+Uz2qLpPbKYakInGUuRQ33DKvHLl6AVusNWeieqKCVGFS7SMLnnEMzROl7W+ZMVKrnyiwncFd44uJBIL13fumzxIQEFbytXqWOzjFwjCYuWkg0NgORJHGyCyjcDM4b1H5CkbleOvm2/D1W1/Dc7vPY6AH7MLVO1htoZ1GaWcwKkemMlQxWvgy8mSsCjvFUztP4MGVh5Frtt/IVI5Tg5PYK3cAAMvZapAWWBiVNQz2JUZQpnLctbSJrekUM2tBUFjOVvChc9+OiZ2yxCWslRvTm/iJL/wKqpJjPbz75LtxZngXNk+sYtzL8crkRazmG+jpPm7OrqJ0JZx3GJkx7hpdwA/d/zux2T8Z14wHx4v5+q0v4eef/w/40Yd+BHvlHv7G5/7fGOU5TgxX8GOP/hlkKsPEHuD5vWdwY3oDS9kSvn7rcfzLJz4PALh35RIeWHkYN6bX8MLe83jT+ls4eGBiY5OqinWt27jm41pXDfUoec+Rt1lzIDJkUw9rpCGWsFJe6pkOyT3YaEO4P5mX5RL6p2Iaw/korShdAQNhDFJkGHSpItZB9izSs8p5MV9X0VtYOhYIDAYmD97ANhav1cHeUDc6TNTb+rvLn7dvTXL6TIgEShHK4pt+rs75pqU82sVgKH4vfx6dFbXwP/2rmVfWNLX6wCi6zftMOM2JGL6tirBY5I8QxKrd/pRrLWoAtTvP5vilPtvlHROWTLjJWvCxrOgBCZ69/Ig/am8DoJjC2RLV7ACaHMemICaeKyuc++QgANh1KnEQOOeZoCZQcLFqGGwQMWghDaXY2ws5CyjFQCAQ2orAEYQDUS2EKUkfgiqTUpKfOHCgYu8ommqdWGdtiLwd3M96juIdx0Lo4yBZadiqxOkInNCEeEaiO12rVLHxNAKAFSlMugZIWPjCWY3EUPcKicRSY9mJC+A6UrqUyQvEw6vaO5WohmnlQCLpCsSdgwZRDp2NoEyI9Bu3MhvG15K7JqzlR2GeVALe61a1dktNDM+/bY43gvTIo7l/GudjCgpaYLBRXLv47loXpi7VqW9Vqm2d0jFhrniX8TF89/kj70QlpZ2Osp04dgrcw9STEsAg2QFQC9oXP2+dg4vusqjWg1rNQnBvl4TjdtrP7U3ODEReQJPQCFxNF13w1Xui5tY3T3ApU2JFMIGmwr6qHUcsAkc1KKnvAuctKldAE8dEuDG9hpV8FTDBRXh04lCPi5Tjghok286pCAoNZVjNmxICIoVxNo4E1cAMaxe9rWB5aX9LV4S4AEwucQC4IZRVwYVuBUPsqvax67+JJ249h7OjsxhnIwzNiIk/YqJ/aEYAgMoVoT3LsS4X6npu93ncvXQJIrMwlGFzcAK75Q5mdoZxtsxSGTero3oHqZML9o1GGVxYPouZLTCpZmxTYIa4f+UhVMFO48rkFewWe9gubuJrX38GWzd28D/3c6y/fw1nhufxwOYGZtbia7e+hrdvvgO5ynH54GXsl/soXIG3brwdS9kqxisrcV255J764vXH8Pf/3S/iYxc+jJf3X8Y/+Pv/Gljv4cSZdfypN/9xKFLYK3fwG1e/iK9efwbnl07iq9dfwNefehE/l38ebzt1HedHF3F9eg1Pbj+NRzfejoEexajSEtNk3pthaovYtEciEEpXxN8lRoSOEWeTchwDfQBz79tqeO0zv3l21BKIuG6ReEsM0tfKV1BeM20Dka7zWSnlpHVIXz3ELjLQUaiZuO3zNVXVSr1qvdaJ/DFun52dHaysrOD3/Rf/HfLeIDYsFnJcDs3t5CNqzzOA9E7xzfz1X/EU7QQWIQsh8dgUiW1q/t2kt0OZXXUu6ENaYeunby/ijjJq7cnub9J6unT6+FnqFrT7nktbRx1tbYyjlJRuMrCjn6WhwcmVHMOcvUP5aFZWZ9Yx2nQCLHwIbOQc4HwdPVq4eIRA9FLgeDsAFbydwdkCvmJ1JrgSGomdR+gwKR2IcBPbEsnVYCPhvAUFr0laaUC+0TmUzmGyQUT7pAyyLEO/12dOvPeYTPZDULyKDaOVgjE5lMmhdYbBYBQPwAj20nF1zLkvyzJIKVx0ZcsqYYEbJ2BE6/hMiF6WToS9oxIJQoKcbQJcBFRKvIxIUHgPpRPQEghmrXUN/MIikDgdpExU93LBPqUsi6AHF9zeWo5oTnEc69gjxmhAKThSuHxtC9du7WF3v4TgioA/apBQLyFEmZ4HYqwKcBA/D+JxBBJAlRzMSM6GpC6qFwgCmRYzzJXhfdKupt7qHJHva6jvZDV25O/6/bhAQfIVswl+8v/557C9vY3l5eUjvnp1Se6IKzcvN+pqqyBE9Z8jCNDDUm1Y3VTxPC5BnqoHdb2TdkqZ8ncKkhYZmqbqM3XD5vvaVkWKexhMAN8OuFjU5rr6JFBdR5lRjQq+YTAfy++4nXyyL4QobxuDy7dC7Kd1i0ejmZsGYFGxzYOd4vr0Ok4OTmE1X8PUTlC6EpPqAOfHd2OcLaN0BQo7w161w2pGZDAy49gGG6IRp4bVk+qAn5Fm1awgTSjsFDslqyO1XbJKPybVPmZuikl1gFG2hIwyVmsKZ+NOucXqVBlLMay37Io2zHsVoz5zrIKdcgd3jS5GNRXrKlS+wnN7TyFXPZwenI3nonDora/wa698EtenN/DeU+/FdrGFq5OreM/J9yFXPeyV2/jM1U/js5e/hD//9h9D3wxR2lkwMvYYmjGctyhcEewzVIwR4+GxX3L8j3/9zM/j43d/FA+tvgV75Q4+c/XT+L7/5v+Kn/wv/y/43ff8IApXYGt2HZ+9+lms9laRqxw7xQ7uXbkX9yzdH9cGEeHq5GU8tfMkHl57M+A9ntt7Bqu9NSxlyxz7Ayw94MCHVVSlq1wJozJYX+HZ3aexXWxjt9jDR859FEMzbqx36ysQVO1xLFl7h4Fb2QuphKWdxD6mK6L7ovND6hdVJwGUUp98n0a8ngXJF8DezyTYY6NO1CqL1rGELLX3iH3xjgMaJuv8sLSzs4NT62de8zvijiUW6eR0XXhtgvcOKrhtTt3xywYTqt43uK+RI+vRNOh+lUwwKaQm7xCNjpPXSEjO+PAQPmnnGHcDmlB/Kwp1u/pUrSV5Gp9JWxqXeURajaEMdF4IdJcgdhddjyYZmfxjsAcfBsfD+aDiFPQeiXRN3IODnKkgWQAUgwGSuMlhbgVYkIZSEu0aMeg0ecWSC8/+vwFKpAl1RFUE39mAgtYcYdwYE4FFluWwZRFUsHhAlFLs6SkQ5IBw0hGBswAr32WkLUSoCrE3AudffoLa8xtXcGh2SjFTI3s8qJJ9HLnCQrVH7mc9T12J8wfXsV7KCt4yUB+gIFGZCIbj3oMUG7v7MCFsj8OethTZ0G7F5nge7JUrNK822xEOAPdT1qe4siUfpB1hXQkAkLbXgfsaxSzqbvxOzr6GROKw804kG3FGWt8kZc6NL7rP2i6Gwhs5RTAQxr1zHI9RBrD47mmntOw2N3Gu7DgX82O7UBLVXVBrDwkwqf+u+xP+3+KCpnW1AVS7jPa7dGyafvG7zv56TvgcnwdsUl8taUF9qi8Yh7pMSgCUEHxCnPEZaxSi+tBG32OccWyFLBjnWt2DSFcKV6D0ZcNzVzp2VeJattFPoqheFNtHFOIHMKA6qPZhyCBTeVBXctDKwPgMPd2L6lr71V6M+i2MEgANY+XKlSjcDIayECFbo1RM2IuBMEhFT08EQk/30DdDTKoD2MBZ1+BI373Q9qd3nkamDJbz5RCDgXX2+7qP0+MNZjyRhjZDJmLhAvjRyHU/xu5IU18PMDRjvPPUW7He2wAAjLNlXFq+hLc8eh8ylWG33MbILGFoxrhrfI5VuMDMLOddNAAXQDfOlnH/ygPB+J5wcXxPNMQv7QylK7BdbmGtt4m+HrKqEBRMxt+z56sCfT3A8ng5SoxS6YP37XuwTouiY7fVlRpS6wTwByKGScIWeJe88qwNnCXqfUo/pd/UTMZafVBR7Ta4k6aW1iZ9mjuD4v3C4KUL1P9WpP/43M0e435tjPEi8HAYRX9bqV5cx8nZ9VCa0kXrdC8YavwU9Zx2CQ1Aklwq8m1bxCj5VXLxUFjITZJWkhgysi0B4DmYWaOFsoEdS2gIEImEqyaw1Qz7+9swJkeeD5D3xlAqg9Y9eNJwZODIMOEPC5U2OSClmiPf9ARUE6Ds0anW/0fgwovMiFWwiFiFqpdnyPMceZ6zVbHnw2EKwFZlHBdjDNsKGMMSCYhdQ1CjUpoBlLOJ7UMdA4RE8mDqSNz1BZoSFxRxVD30Pnp68hBCI+E0Olcbn3lVj1Ei8VAqqccLFzY8I8RgbhwI3IZgesG4Wyl4NpKIvujZfsWgmE3gHB96WmuQMWyX44OryWoKb/dhAHilAdXjeSMFD8UxtF0UhrRSfSn4ejoDl8jVfYl9ahPxKegA2LuZEGaBnKJastNQ7UuIyU5iNF33hzBOUkK7UUfy7rdLmvOEE7husmZTnX3yx7sE0/cxsu4i4tbXLiZJCNy47xd/lz4XbmJ6HqbqPHPfJcwDrscltTahA1FNGHWNldQlxDKzUIKednChKoQEgaBa7k9dsEVrE9/tNjsxMm0Qbd2ARvrGa5giZ7bR9gYBJi7AbSSepL8Dxe5mnXdYzvRcOaUbJfcfoXIltmc3o7tQcXmacmandgLAo5dEvNbKzPVcDH9XAyFdugJP7TyOjd4mTgzOYLfYAgCs905Ew+vKVZjYfTy58zguLd+PFbWGvurHtZG2/6Dax7N7T+G+5Ycw1KM4hkZlzKWHw0iNMan2cWN6DScGp5GrXvh2DzvlNlbzNfR0H0M1xunhGRSuwE8/8e/xvZc+gA9svhuZyqN9ziPrb8GjG29r9FukFL9y+ZdxYek8Hl1/JxalgRniA2c+0nh2z9L9+Oyf/N/w5PbX8fmrn8H7z3wY42wZb9t4dyPf9ekr+PWrv4ZvP/UdGCvmfIsHqN1yG1WwT7oyuYybs1tY763hub3n8U++9u/wZ9/5I7i0dD9mdoqe7sfvpf1nRmdxsn8mRqMGagCQuoGt57VK/jJREpKeLSJVaNtoeHhUrmys1TS2BBPrqqEqWRPw4gWzKaVN3WOnakpy/8rabNtEpPmY6cR7XYyvUzUpoMkQEFUxKM6/yPHE65VeNxuLlEvd9Y2kV4uk+CA/vJ4mYc2t6ygJDa5spACokaMuu9WGdpviF/OH+Vxrqea6SP2LAEPdLDoknzxvghomuls+yuUiJN+SWIS2dyBiH3lWTWDhqVY7YaohePyRteABofYcfCJ0Z/az9x7OFnBVCVtOUBVsO0GuABzBOwYnLKCoNwo7YHIg8tFIGcHlXD3vsrFDf4S4hIX3TOCr0DbvPRSx+9Z4GROC9EEhM1kwClZxYyvtoRQbCvPm5wPPOQtf8nh572Fd7SEqy/LwzIKUgtEK2ujoCUo4YcroSPTX3rRQq/i45qEZ59cHHfeUI0wMtPJeDudcCM7HgE/qUErx3MVvZC3EJVCvjVZASISI3kQErQ2rXDmK3ykZN2dhLYM15wjOGYAYLVSzHUz2rqAoCxBpaDOA0j2QyqD1AIY0QBouzGfQsEZwOMz9Bq9pBhAuPKtjg6REkw8SDcYEHhKUEh4BCMpK9Y390wYXDgwYXAsMRNUf2XPes62SnE/p3krK7ErH4ey/kcFHyrmPYBdMDIhRrUJ6cR6tMtWlvtJ8r1CrEtSqOUBzPNtj2yasU7uJmsvfff7Xc586oahVnZpPmt+0z3bvfSM6sHyfRnGWtymXloj1qNsBUhf1L+1F2y//HHcWFKI712WlbRbww8e+j2dirDvMhxTQ1geXpMlAuK9sLO2w2tsI7mZVOGebhOMg2DGkfTRkYH2F/XI3qCBpTKo9mBCzogoGyfeM74VROUxQbUr7JO1sB1+TmBfRoNZVeOngeZSuxEAPcGN6FQdmiI3eySDhEPDG+YdmjHzYi+2ScktX4N+9+PN4cPUBvHXjXTg5OI3VfA1n33YOG71NGJWhsFM4eIyz1M6BjZO14rgODg5/57P/Gh+//014dP2d+MzVT+H65AY+fv578cUbn8Nf/8w/xd/76F+Owfpk/rcLBnAr+TrODO/CWm8DL+49i+V8BZv9U415WspW8a4T70FfD+C8w0G1B5FYUbCl+JfP/BvszPYwqWYYZUN8/cZl/PtPP4aHN87goxcqPLT6SARWgERbfwRZCKBIjT3Q3MONczisBUUa1ldwnphob82jgUnGjMGDlaCDEuSXCDqtF4nasFBCLekDuzeupUJiP5WufS4rSCowf7bJnks9S81FCO84d8gH5kIAFnGPd1wZr+cdcXvAYkFD5rhzNP+OH786ENFOdw5KhIBvc1lac0X89Ngi+pShc0RfqZm5+bP9fi7jcYFFq1AAaX8axE4gnpswqg3IwJ2kNtetFolHYhcUpSBcbS2Z8ImbNmmTZx2YEKhuhqI4gCun8M6C+eDsRjZG4ibFYEhp/hnoX50CCxKTbwC+SZQL554Nt31NNMAHOwmKHp6k31qx/YVIDwRSeQpgQS665Dvv2MzRuWBW50MDoBNOnofRta2DrdhjCCVqT5HAr3FR+Flf+PKsVufwEUCBEgI3RJtVSsXI4QKooIKXJKH4GqA3xdtBomVTmO4bc646OKQqGL6zSpMNRLyuuarewZYTlLMdlOU+iDS8HUCbIZTKoTILUhkUZVDKsBSDNJcBDedDTA+quyAubcnXhLvzdVDAGmyEtRGOB49g5C9Rx5PxbYOLODbE8UXaoCJNFOaGWmN6O+pAccS7JCMtIPNGTCJpC7sQ3gf+u4AA+MDpCzv4Nm0xUlCSppSQ71KFmG8jeO0nEiYGhojERacUIBIe9ZOu1MXp72ozUe1Oun7W+tb7WkKRnvGgObDV6B/k/E8ItRYAm1floLBHfLM837xXmElTE1iRGISATFv3L6QUJKTBx8TQemjGC+1V4BFd6rbtPDxYmkFEMEQoXclMFNSE5VK+ispVkXve5nYLISj1c/+a3GALh5f2X8TADLDR28RBtY/SlVjvnYC44xX7CoBjP6RSBgaS/N+Xrz2BlXwZb90ABnqEvh5iYEZRSjMN0rS+GcU4FpVjewVRBfPe4atfewbnVhgoPX7rCTy99SK++/wn8MVrX8K/+qlP4q99x59qAAsA2Ct3YZTB2CxjYEbo6wGe23sGDg5r+UakoLQybBuQS0T1GgQCwMCMMLMz/LtnvoZMKeRao2928Oz1m7i5vYfnd67j2uQaHl3vg8IcyRpeyddxVIp7uUWeEgDr6+B5bXWmLglhdEqAurgG6Ee99+pnsqbrvZvGQrG+YkYdyR4RQNI8nzr3aIMxUaeFHvVAQV0vOH5J7U3bZaO+p17r9B+JKtQ8SLitlNLgkY7sOlBTwv6oAhcR9mnZyVuS6W89TL5ZeEmGb3xy2XQBC/ES5L2PB2qaRYVGpBdWJ3ESHjnU4xBI7JppHbhkmhSU0qisDSo/ZYg1wcbJ8GyobJ2Fc57dsDnWrdcmBxOECACCjaohKkEmg0IGRSxh0NFbE0ABWFAg6kUtC0ADWHA07NBWHSKslgUUiXG/EGkaeT6AyXowOuf2xEkLB5XivhIhjq8Qsbay3GatkeVZUJHK4D2gs0RP13vAENuL1M2tB13aHn96dqELwCexQZCIXROKOM6pCkb0xrAY1qIu11kHS+JtJTkiKBDdzkOH4H81ckM0upf2CEGWHsYEz4bn3sFV9Xyx0TUBcOyVxwPldAbvLQrshzWuoHQPShsobaBNH0pnyLIelM6gVBbcXLLnKFGdssG2hh0RiyqVqEXVxJKowokNCI9xsPyJYEE4reFZGFPng8RPiBxR8UkARj2ODLrjzuqQUtRcuDCdcpFRvQ64qPk63sgSC4IYQ9bMCAID9ZRIBYT4DJLHBfrSR9XVJgIkpeoNMX8y/nNEKSFKmDxqcNHFbZSyhCMphK/1VTgaWZccRA2itYvQEE6+FikOFhuNSr6u1GmoLudeizCOnM+ObxbprEdVyUQ1RbwcyTfT6gBG5RiYIbx3mNkpntt7GqcGp7HeOwECRz3eLbcw0EP0g40Ar5k6VkEKVMQXvw4SicqxtyR+ppGrHnLVw9ROULkCPujxcyC6E7EPqZrNF65/Fn/lkz+Bn/jEX8HJwVnslTvo60Ek/okIIzNi43M7QR4ACMB2FaWdYVpNcaJ/AmdHFyIorVyJr9z6Tfzcs7+EH3v0T2MpxGlIk4zZOFvGMFvCH3n492G1twYAmLkpdost/P2v/AQ+dvFDeM/J9zXiN3xz+2v43NXfwLtOvgMn+idxYnAGE7uPW7MbGA36GAfC/4fv+wPw8DAqw7nxGdzztosYmGYEdEUKZ0cXMLUTPLX7OM4Oz2OcLePR9XfioNrD49tfxczOkKkMD689isqVOKj2wjiwV67c8NgTCOu9DXznxYfwtpNvxt1Ld2O9twnvPYofmKGnB8hUBqMMHt/6Cv7eY/8U37xxAxdWVvB3P/L/aBhmp2lOjTXsVZlLiT8Cz4EIxa6lDB65hmbcBIykoL2eUx8Ug3KxAdEA0lgv0o50b6T7mM/xBIQsYPos2qM2qmIm50OLTpN6HFyMWl+6Ai7YCKWudWPejjPwtUp3FHk7TZ2Ep9AzXRBSfnSIce44UVrpbZYj36ZYIElz/W39Nt9s6vi9CUjakh1Kfo9iMmqCE5JnEUbXgKLBVaL0wm61ZwFoSjNQJPTqmpvZBMT42iYiFE2EyCZmL0fByC/oBjZAWiD24RycLSPxrHTGevVEIIlm7YNkQhko+adN3Cg6qClrVUd5VcRu9yhZFxLjA5QAi2RcBFiwWhAfBjyWDBi0yaC0CUR/09uWxHqQ8RMpjgdz8UWNyWRZlED4AAAUOM6DAAvWu7YhqGCy/oRDGMHMYq64fJDuQUXtuWQA5JTiKN7ONb9NJDkszKBYapTYRPSTcFqFAE4IYRkPXgfBOD7NL/3yAKkMpIfwNOHDXIkdA2AdgxPlPbSvoKyHsw6kCp4jlYXYID2wsb8BlGGCJ/h8Zx3ZegTZNgQgqNAUCqBXgAeCm1NXgwwECUjoPkWpB9VrS56hdY4EQCKEagQpc2crAxuS9SpjijCQc8yOJgH9rZBYtPvRpSYke0e4+kJ4xUs39Klhy9V1OB+WqAYVjfbFPZMErjqk6JR5E50GivTCe3ZO4Lm+ozywiD1ECihBtUoVNzu9YQ735tSVFhmsdqYEIM9L1Y6uL0oJwu+WnUE3ywn7rZ041oXBINhJzNUngD1EEe6y45iThkLFgGjWVbCoYhwMTRpQOc9TIFTTcZrY/UiIGaXxifsfwSBIAV7cfw5nhueSYGMaa72NYPStG+1wTPHh/NIFDPQgeluqfIXVfBWvHFzB5b1t9tYUknjIEoK4jrvhMcrGIChM7QTT6gB71V6jzwfVHmZuiisHl/Hk9pPYme1jaqfYKXdgVIbdcgfXp9ewsbGMM+MVAGgYsN81PocPv/1hDM2osQ6897g5vYqpnTbmxyiDXPewmq/h5YOXMCkmmFT7qFyJnXIb3ntkKsNabyOqNt6YXcGVySsYZn1s9Naxlm+gpwcgEHp+EF2lPrf3FF7efxnrgxHuW/fYGAzxyuRFDoZHGYbZUvTmla6j9LyppVN8jyrmAvC7oDqrEnubNjNH3MDyuyQ+SABMKpxRjXXYsTfTsUy9N7XTov0aA2gm51W7j3N1Jne2AAcHG+6p+XP09bwdbgtYNMT+yQI87NDrIsxTX+SxHBy/o4cesinImCOqo2UA0lyN0z7pV/OCDMHBmpigoz3UADdNlYQajNSPWpzMFjCZkzwQmpuC0h5Roz6a6z8tHGQBMpS2EUIIUitfuKBbTVPkEYPZeVYpEmJb1GIcEXPHnQOhCi5aiwgadMZcqspakCtrYIFAmGvm9JPOovoRe14N6lCewQRBh7awUXgM8hZSnF+V6CMrNtR12kJUqQBEUKFNDmPyQLDWRKUQxjImiqiW/gSiVGuOj5HnvXBgyYXO5Rtd++P23kNZhaqqQqRtnxwaQIKOaqIczfPOR25Ecy/I+vBxTDW0Et3Qpscu72tje4BS/07wyoO99wbjUdtSK5H9jdR4np+ztKQO1CNSgpAbSg+hs1V4zQoxZDS857VSVg5wzOUm5wP4nEHBQymwqppSyE0P2uRQOgNMBqgM0D1onYPdDrMUw1FQywKJWQm847J5/6dqe7oGCs635h/RPbAAwFrFqgaAqbQjPWtSUCDrgtcIz7cAFgFBKXhrn8XysyGV/C1KPGOJyouss2RxpgS4dVVYpQ4q9VbjW5fgMQnrWF8HqJD2+aCOwu+7x2iRK1oPmT8bA1sJyNR6gQva8J9O9OdF/1n0pmvpYt3XRepai+5c4eAvan/nt97XDBc06z5O4v7XtgXsYAKxDaLHzswIE9en2BOcGJxCT/UjsU+eVZlUUiYzj+bHViQrEMIvqP8cVHsoXYGZm0UpQ0pMd6Urk8t45eAy9so93LdyP378rT8OANgrd/AfXvxVfODcezE2y8hUjkzl2OidbOy7eu8xV/vepQexXd7CN7e/jn/19L/HzmyK333/d+K5nRexVxQ1gwBA4WYo3AzLgfEhgfist8iC29Wd4hZ2yh3slbu4sHway/kSvPd4+eAFPLH9JP4/j/08Lq2u4sLKSRS2wI3pDTy1/SQmdoq9Yh8PnT+De1fPz/X77vG9+PF3/GEMgwRGPC85OPziS7+ITGX4znMfhQlRxwH2IHV2dAHXpldx5eAqrk2voHQFdoodTKopxtkIJwdnon3ML730S7iyfwPrgxUs5ysYZUuRCy/SiKmd4h997aew1l/GB8+9G33TR+UsfuGFX8SJ4SbODE/jTWuPghRFV66pLdE8nVlLIoBEvU4RlNNxfabJgSUT9bc1eWwoi3N9nL0hzAIup/tcELW4rrMqjYrNZ6pvnKls39T+xkH+k7u/8lV0ipGOA4/b63c/vCp3s8cZ4Nvhmt0OuLi9EttAIyXmawK5TUAvUgmaAxINZNKdt+vAFuKhQf83EUuoQYjYVvsaeRDRtDxvYFNCDWIag5y2K4CLBDyp+Hmr/UkmKU6pyAOG9x7WMjHobQljDEAEowhKK3houKqA9xWqcgKTj8JFmriQUyoAixBrwlpUZQGAkOscGoGIl36F4GjwngOgMZUoreNRjH2vjZol7gQRhUB2NnZRaQ2lNXSWMVGqZcsIR5uBFPc1zJJKuGvEVyRLOzQfMgEQKmWC9yVWw2m4A1YErdnNrPO1G9oURLDq2LxeZjuxBKQZQCrdCtJ3ltgwsWRDcD4xxJaxae97+ZW5hA7WVnG9qOgmtw7246Ufno3WfRjDDB5QGh4KM0vYLxW2ZgbOORgTOHhEkMjoShtQKM9VU8BbwFqgCrY1RQFNwVZGs4REG4PM9KC1QRYkGqTZ3zdIxSjsHE9D7C9U5KhLID6WYLj4nNc7gipYzUyJ4AKIfW4CDTTyycMIHOR68HUdLpaNKCVJU1r+q43gfCcprq+O1CXtFg8nrvmK30FHj2KLLuAa9MnftW1FOg6R+GjNzXGup5SZVpcr3Evhai5OqTqUlCd7MAVhDTDW0bC0/nYeBmjiFGM+pcapoTBuGwj6Va2Tug1GzbsxTaNCi/eklPE1MkuRwKlcxfroRODYFmXwmMP5CztD5Sv0FDNn2obUcSy8DVz7bZS2wMDcwlpvE85bXJ9exUq+ip7uY6BH2Cpu4JOXfxknByewnC/jTWtvhlE5ZnaKf/HsT2N7tosfuu/3YJQtNw2viXBl8hJe3n8JL+9fxunhKTy0GgyNNcfDGJkxHlp9BOcfvQDnHcbZMl45uIInL1/FZ65+Gg+uPoS7l+5DT/eRBQNwSTIWzjvkqoehGWNkllD1S4zNGK9MruBLN34SD609iLvG5/CH3/wh3LdyL84Mz0UPVs47PLnzOJ7ffQHfd997cHHpAvbKHVyZXEblSty/8iYMzQjnx/fgyuRlKFK4MLqE3XIb16ZXsF9OsDHoI9c97JU7eGH/WfwPX/xHODtexXff/RGcGpzGudF5fPXml3F6eBoPrT4CH7wtPbn9DXxz+wk8fvMZ/MB934fVc2vQpPHlm4/hF178Rfy+e38/+qb2CEak8J4zj+LU8BTuXbofRArWV9jor2M1X8NKvlarqwlDLllrqeSic+8kZ0eqwpTmVVDRED9Nab7j0rNpfWl5bQkL959Vv1OpXLqu07Mj9ajWThI9XDxBcV8QY9PUkpe6ja/XHfGqbCy69IKBBRN72ISkDJTmn68BeElLbJWe4oEjFg4/962/60Lai3EOXJAsNvkmARFUt2yueqqv6kQrex6woFl+F4DxaZMX9EOARWtYWmXXn0Rw41n9qLEenIUjAJ7giA8PUjqogHjAWThbcpA73wN8xoQnam9LBALEyNk52Ird1nlX8XhEboUHvI3YyQdQET0mSVlgoqJxoCTAAgCrO8laVpolKToL8TDk8g8lBYI5JbqjJInqmtmLVIhnEbFZvW5ibAf5jpoHUyppaKeFINgnc5T8fw5XJt9LO9J4Glx+u1Y57AIxTT7G4kjbECV9yVhFHq53sOGZ1iG4nwIq5zGrPA4KB2s9TOWhg/tbYwwUGAxQMPhn7q94sgpBFcFexxQ5KG35W1vC2QpGG0BXPLfagMLcQnH0YETOeQAXAWSI6pNoqNVEvKjZpS59jwss+Mhv26X4cN7It6ISFQnj5KztItiPy/h5rdOiOtsAoMGo8M29kJZFUAlzoKPchKsnP8NUdAOcML7CRT9OaqsepG09jiRBvuniqrbbsGiPH9o+WWML+tMErfXvAOBfJWFRXwWLObOStDJRX11UiFJOuNyvbHzqQ6C5WtXIeRuBJrxD5V1Sf31fCKfae4+pncJ6i5V8DdZbHFT7GJphDEK2W+7gMy9/CR+/54NYypaxlK2iciUmdh8/9/QXMK0q/PGH/k9RopIaku8WO7h88Aou719FpgwKNwvubzVs4P6Ps2WMs2V471G4GUZmhP6gh/3yAAfVPgC2vah8Ba1NOE4DRPQOmgyMypDrHib2AKUrsTk4hauTq3j8xrN4cPUBjLMl3L9yH+4aX8Rqy9h5KVvC0Ayw0lvBSr4SPDbto7AFPHwkQJ/cfgKFLbHRO4GDag+T6gCrvWX0dQ87xRae33sez+w8gy88+wKeXd3CydGX8DvvvoDlfI3HnYiN5hXBWofHt76Jr994Ck/duobNN5+M7fLe45ntlxMT6Xr9nB+fx0Z/M9qeWFfhRP8kg6psqR5/uV/ba/GQ865x36femnx6V7EXtTnmBealA6l0ON13h9k/LWpnZBIFe7k5ABBpwPkzp10Hy/J1QpXWY7Xou9cjfWuNt+eonDso4jYuTyHw5xqREsiH1tEFPkTsnr5H/ZPqZ4S0mOZFqlJiPSneI+i20/xgxQ2hKBnKuo11fV3tTsqIz8VFoA+qS0kdvut732iD1qwORYrVl7yrIKoCrvJxnLxzgLcop9uoygLFbJ/BRlbBKg+lc+h8EMGcc5ajOfsSs+kuytKAYKG1gdYmSAIoeHJicSccR3ouiwJ5lkNp3RyhSExTHSMCgKgp2RD9GmD7itzkcT5EPQae2+ad4/gVXtSnhKLny1ZJkLygJlDbWLAdhbPBcJgo9iddMN75OUKyrarXlRoEUHvu0vmklJscLubE+FyS1hTfAx62KoMBP0XdVxekEAJ2lIxz0lSeTwuHCrZit7NajwFFUNpjVhXY2d/HjVs7qCoLLTY6IGijobWByTPozISxZbE1qSzafiiwZygND61Y17SyM0zLEnBTwG1DEyFTHJBJaY0sZ2NwbXJo02O3farH4BUKnkwAGcG9bbxUfJijGmz4ZOw61aHSqfAeTjW9/sx9w7VAJaDksHXAYO23XmIBHKFGhPkLjmix0TGfGfPxDYCmFEPKjwS2x5z6jNTjoWop5zFTm7jQIoVLAI3zrM/cjkIt6TDuYFMNbp4IavdDkrijZAlPUCdqgZ2a26mRB+LfQ6IWUyznqLZ2ti3Jdxxf+RN7gKuTyzgzvCty1iUZlUF7Dk7HwdGmEBWyjHIYlUF5jjswsQe4Pr3CRr9kWP8eCip4MRrqEZaCu1gPj4EeQpHG0upKHCMiQuUq3JpOcWF8EXeN7oYihe3iJj5/7fP47FeeRN7LGiTwzE5RuBm2i1vQyuDhtYfx0XMfq43OMYL1FluzGxyTIbRh5qb47NVfw13jc/j/fuIv49TgbOTAf/bqp/ELz38Kf/Gdfw656mFS7aNv2Hi9l4zRX/30f4dv3riBf/H9fwdvWn8LVnurGGdLyFWO1ZzjabTTWm8ddonV7lbyVSxlK3hk7W1x/naLLbx88CL+xE/8v3D15hb+0g9/Fb/7vo/jkbW34eHVt+Cp3cfxvf/wz+MbTz4Pt1/iN//bf4gX91/CX/35f4z3nno3Nvun8B1nPoLLBy/gZ5/751jrrWK32MP/9Pmfx49/2/fhL7zjz0U1IgB4/+kP4b2nvqPhVlaRQq57eGj1LY22EymMs5WG8bYihZxydKWUodMl3exKXSCicTeiuRei7YN30GBVL/GA5eGjVK4NDLpS6jnKewbSPtAWmcrBGhwOhrK4ViQKe+rOtp006chEEBqgy0bp9Uy3DSyOalz7/aHSiyZ9zj/80fXcNphI6oic2Vilj4R+TfAfXk5nnxJkEIsTrlmjCTVIaBN9KX4hEpG5eBgSAJS2AwmBjAYQSNvRBjzNOlPQJM9kQdZvELnWCfc64YgzEQkQOSaW2ckqOLKAh7c2XIKsGuVsiXK6C1eVcNUMVhn2FmU0E9/IA4c32EYQQcToBA9XlcyddhUUsZcm9lXNnGpn2fBbqwB2IGVxP8VYmv1Sy6ZjgpnjujnYQMhFLrtLCT0m6ARY1GoXYSwURdeqvDZ8lAakHOs5Hq73QWrTTTjK76kK1CKiJOV+eu+j8XU7uYakQSY2/T4FHcke8j4CItKIEgsBFYJZZWhlvzkvgQLZPkYpDaXzoIOtkGmNPM9YGlFVqJwLfusJymooVUJXBQPKANqUUlBascoZsQRKE4NybXn9KGRgzqYGeRvd/1alh6oqlNV+8DZlkGXcHmVyKJWBtAGpHggabKMRJIBE8J4A7TlEC5KfMjcJ2EBLohHnrSWJWAQsGmsnzA3nTWfUQ4IevpFSm+t/rG8Ouwc6TurU4PK4Kd03XVL3wziEKdUpElRgserWoiRExKL60jUzFw8CHT7uO1L6LZ+izcBg4kWHsMCgu02EhXNwkfEp0FQ7KX0J5yqYjkBg6RlHCIwKxbYWbWkEEUs6VvLVQDApZMFIm8/zQICi35TSJO1x3mF7dhM75TbOjldQuBkOqj2Otg2PB1YfwI997OPIddbow0G1h4NqH5PqACv5KoZmzNIPN0PpyigNY/Wmmhgs7Ayfv/IlPLr5ME4OTuGFvWfQNwPcNbq70X8+/9govHIlfuP6Z7CULeHs6Dw+dve34YPnp9CksVfu4JtbT+B9p9+Hnu5jr9yNqkVSHgcAzDAwQ3zj1tcBACcHZ0EgTKoD/KPH/xE2B2s4Pz6PP/o7vgOVs/johfejr/u4Pn0FO8U2tmbb+E8+8GG88NYrKJ3D6eE5jLMl/Jn3fwz/4aVP4fPXvoAfue8PYiVbxaMbbwGBMHMz/Ml3fhSnh6dwfXoFG/1TyCBG9Caqtc7sFDvFLSzna8hVD4WbQZFGhix6ZjLBoxHAhuoA0NfDxnqQMW5z9BdJEBfts7akuWv/xm+SfWTIwBGf8ymR1bUHFkp0Ud+zREmMHFBsDz/rNtxu1+cRbEYsB+zNVQ9aNQNJyhp5PdJtAYvjgorDxMH1H/Fh8kiI5zr/YVzZ2wI5LTBD8VmYRBJSn9JsHfUIJz8WEovnfCr+3Xze1bamtKPO5xtu27tUXeIYCae91ehYfqPqNpChRl7JEYFRILQ7v0HS1tBRpYIXKB/iBIinJDhYV8DZCtbOYMspbFmgnOwzMPAWlffwVQHVz5kDjX4kylgyApDmkFAEwFYFvCV4Rcg0XyYCLAgelS1AAIxWoV0W1gX3c6TYUDS4jK3Hqv69rFja4gKRBlfbB8imdwIsEuK7VqtSAVzIIcegwibgROaEiCUVCN4xvGtetG2AEQl6zOdTKpmZhXuHEaGUaS3brwh47NpW4qo4XYvyLQPBWn1KghSmZQnQQMjnvONx0nxxmKwHpTQ8KeRZjmGvxwDSVihLNqgTqZQUHF1xitRKa+S9fjC21+zqmGrJW5RwEcDOZ8M6tQXgKpAvg5G9Qp4ZaK1hsgwm68OYPkzOBqgsvmPON0jFDcMhUTz/RN1XHxCkPGtwuhfMczrXPGNHS0LScgBAfYskFovSQulZkm5HhStdhzKeR3lmivXIuYbkEidqzEtqHHpUG+T7hrQAi4mAw9o09zxKYzree1abUcFPv3hRkvbLHepEbSiVMDSIDFYp1OkFfASTz8v+QZOry/XZcJ+rmLewU1g49HUdqRqoucBy/4oEFETQAThwO4KXHwC5ypF3xDiQ9eO8Q0/1GmOWzof3Ds/uPY3rkxu4tHoXDqoDXJ28gr1qF6cHZ3Dv8oO495EH5/p7c3Yd+xW7vz5thlgOajvee5SuZBsXql2ZAkDlOVr3Lz37Taz1l/Hw2sP4pZc+idXeMn7w0kVkymCUD4EAqHSQUhzYCf7bX/9JPHLiBH74we/HR859F4Yh+N/16TV88oUv4kNnP4y+HuLq5BUsZSv1mILdqhqVYWTGeOzaN0AgPLz2KABgv9rBn/1v/h7e9pE347/67j+Ev/COHw/2LoSX95/Hl258CV+98TjuXrkLf/KRPxU53t57LGer+IMP/Cg+9I//CD7/m4/j9/71H8JSvooHsxWOQQGPR9ffief2nsLnr34OHzn3XcGtOcU9wmpqB/jSzS/hnSc4gvik2mdVMsOgCkA0vvfeY7u4xXPf7yFlIHhh/rUkAF3SB5l7AI0o9XNSZFk3re/bexxAQyLTPIddsKHK4px0qlq1JS2ozyFFKkj3ay92DLY7mA8QcKPgwY4c9qvd0Eggp6bnOpZavgGAxWufqOO3Q3K3Jri7OGoWtpCob/8ti767HlH/ECjSIOSJD7/aBqJJoIm7TA+0LqumVCGS7FS3BQ1gknKMfaO7TNSIMSwC9zc6PUqGiBtGXmpTESVRnakGT3ChDbEx9bdOAJkHUIF8BU8llPIcFVaboMIUPlUeZDkfuRLkxbUbg4rKWsDfgvcldCacYRWMJFmSwS5lPeAreFfBlhYH5T40ATNDcHYGVxWYTXcBH9yiKh0uOA2T95D1RhgMV2CyHrTpB/16FdXRPDxsNUNVVtDGwAYPTdZaNp6VcRHbijCOLJmguEa8E2NJFzwGgVWswiDrEIGblIZz7L3BO464DaUS/Wfx1uSDG18XvDDxZDtIXBIdTh4FCUEtFy0pgibhqIv0hF21VlXJLlu1iod/hD3kAxeze8/5wCnSWocDsg70x+99bCcgxvYcxA7KwGgDY7LoTcYDWFtdgtcGl6/ewLbR2N2dYDqdoqhK9kYVwRhzE62qopSinM24vVpARW0/o7UOKmksXVMqBD0kAyIN8hoZCJkikCNYeBR2AjUrQGofxuxBKYMseJtS4qGMdIimzuvMh7gZvN8lirRcHohcVHZpS3HNyTDVkg0Zwy5gUUspfP1LeObDGfDGAhYpMd/5vn25HxNkpJKDBuf7qG8DCIxqTQkBrtXRV6MQ8kJ0dRENXWmRi0lpR5psiKKcujVNOa5CbNcqGuKFT8XvJXBaV78EBFS+dnnq4dk7DlFw4Vp/I6pXAAeCc94GDjPfbWzv5ObaK23OVI6+HoRI2Bb75S5ylUdue5wDUjCozyPprwAVKXNi9+G8w1KIPE1EuDW7DucdRmbM6lWh/U31Fo2HVh6BXea+CzG37FZgVIb9ag99PWgQYooULowvobBTXJ1ewc3ZDeyWOzgzuAs93ce54QWUrsBeucPAItR3+eAF7JW7+J9+x/8ZS9kyBnqE9535NjbYJsLFpbvx0fMZAI/KVTDKYLu4id1yB3/tA38CK/kqNvunGupD9yzdiz/xlt8fJSYXxpdiYMDKlZjaCa5MLuPk4DSWshW898zbcXp4On6/mm/gsb/7kxibJazka/i1K78CgsJ3nvsYVvI1PLrxKN514t2sfhbWd+Uq/PLlX8CpwUm8ef3t+Knf+19j//v30dcDvLD3DH7xxV/CR89/J9Z6mwA4wN5TW8/jfaenHE8keOaqXIV/+dzPYJyN8PbNdwQ1NYWlbDWuuYNqD9ZXULQO6yqUvsRabzN4C6PAaKrVUYXojusaPnpWIt+25UFc44p0BOCyxipXwcHF8WxLmA+TRKb3niItUS8gEkHfAUxElaqmvwhw/D07AmAaqHJlAE86grzSFU0ATsSe1KCQqx7GZhkuRuGeV3fUC7zivdp0x8DidtSR2vnbEoD539oE/VFltAo4Il/3t0cDCwIQKXcSNFy7EOTJTr+Rf2L86ZO8aVNboKKVJwUejAFSM24h7vl34Y4SgvpIoi4hHPqapUqhrJpTH8cCTHw1gFnsl/SdY1EwoV8CsPC+ilkjASl1gSKQiMArAJXoXamYgJRGNZtAZwM2rg3cKwpEKcAce+8svCtDkDsHXznYagJXTVFM9gDv2P6EDEAapAyc7QOuglYEV/Wg84qD2imN2isTwRYFbGWhqAdHQFWqwGnntvMhY0N3CFAe5NiIt/b0woDAI6iHeQ/rBWVRID2D67tolKYD8exD1MyEE+E96sjlCSgTooIUUiJe3gNUB28L3B1Rf3JBWuGcg6LAM0mBrOLvSNa8zGG6R1Iw3Nq3UcTvk3bFRR0IoxB/RAjqfi/HsgdGgxyzaYYDNY1j7kLwRL4MbDCa9sF43ANBFQtO1QRfkCBZ66C0CxIVln5orerAij4o7oW9p5wAbPbY5RygiA3AJUifsXmIxm6gNIMM0nnsm5clTxFDhKmkOAx8NvBekPgK3lPiiADxWZSIJFPgk4J9ACvCOf3tmg6TVHel9no7Mj8SZxbh+9utMwLGeGzWbejiSkZpSAIAFvXjsOftdhKpBGzUt4mAgMh9XVB2DXZDNtRSHEuuYTnRIOLCnnbkQryABbY1ntViFbF9hCETdcX3yh2Ms2Xkvt+QsLSJt3T8FiU5H4TUFLWu9pgKCMuTaNeVK/9/zP1psG1Jdh6GfSuHvc9whzfWe1XVXUPPE9ANEMRACsIkCoQ4gCAoUgTFSRItB4OSESGHGbLDYcpWWBIVYTNMRyBoOxSWB1EkTVEMmwyak03SFEzAojA3hkYPqO4aXlW96d57hr0zc/nHWit3nnPPfVWv0YVGVry6956zx9y5M9e31re+pXKrqlJWEuCmZ2ut12jLMiwxlKF6fC1PIHOuuStFFZKYGb3r8cz8uarc88zsDszrvgzHuLt49lKxRU8eLyxfQvT9pXyUmV/gueX7sM0bJE5YaqE88+xv8hpWcyNQwPX+eo12AJLP8pHTT9Z9fvXhl7BKG3zHnd9e63ns5zcAjCEPeGvzFr50/qu4PbuDZ+bPVUC5ShuJ2mjlcgeHZ5Y3sc0bBBewzheY+QW8Pv/oIhZBkrKHMlQ6GyDVqrd5iyFv63OPFOHI7yipWWsjCVPhN/P8740btUkYu4Z2/Rq779GhcfdunB5XzUkHaYZ6XfWc7dxk1qECDDsGgxvpXdlKnoXSkRunselB7p/7vZKc/ZpFLJ4WaNT93uFYh6MLTzi3LdRPAS52wMOB803hbvEW5zwCMJlSwHndhqaIwqVzsvHwJ/10i3w4sgEwARHFEs1aoAZ5O8htsm1KNBCLoe+ZtfjcINWsmdH1MpEKjUavVSVPyTsxishDeOTTTwDIpqAAhtQuzmCMACeAM8AJDKmgzT7oi6FFanxA4VQNIFOHiqEDc0bJEIWokrG5eIBx2KCUhKNrz8D7pdS4MFBBslClNIJ4BCEBSChlRBrXKOManLfAuIapScF1tcBeLltsxgsMmzOtmzETOVknCU9icHqkIhKY8fgUJQWsh6D9L9cvdCQAmqvhPE3Vl206axZrxvQEpTq3A5UOhaTfnXnYtTYHOSc1h/Uza8VkbRvVplwSWPfjQk2+j40v+T2nhJyTVjmXMcGNZG2BryBYRxMsmd3GW+NWAUEWPztf6yGfaDpi6CquUaNBQtZyGyJtGyxaAmA5i+hjxOnxDJvNGvcfsuZSBE2ol34xMy2ziAUUYk2eFVY2S8l2ZGYQiZGV87jzrjnvdJyLOeUd4D0w6yOi9+i7BbxjOKf9zAnYrBUJMEKQsRNDQBdnCL5D1y9VbSqAoIn4MPEApUyBkIl2+hMMlBqlaKMPAvgqtsTUt+ZIqBOf7ktfx+TtQ6013N+NUW10FjAObvuk89g5nrTNoagJEVUv5VVt4sKb0SEqdvvGvMOUcG71JUzRxoEOei7bc9i+XiO1bduXjBSutETtQsPrX+cVzKzom+rQl+4bJm850TC8cvwL847BZ9t7F8T6KcBYRvV+KofbhBw4I1vldBDmflGPczY+wiqd4/Nnn8dzi+cQXMBMPdeX6gsoCLH7tW0cORy707rdkLfY5jVO4rXqiT7UhrzByKPwzinUom/1+zJgm9cH9wWkzsaN2TPVUdKqYbUVrNfpAm9t7uHZxfsQXaf0HgY5wu35s3W743iKo3iyc72n3Q2cxOtXjn3L4fibX/zrAIDf99IfAJHUR/lLP/ef4fmjZ/DHPvon62eLsMTMX07uBmQ++el7X8QXHjzAN9z6J9ikDcaS8AMv/O4dYOEp4Hue+z78w1f/Pj715/4o/uq/++/ju577Hsz9Es8tX8C//pEfwbZs8Gh8iMcXj/Ds4nn8oQ99Ep979Fn8/IOfwz965SfwRz/+B/DRa5/CD738r2rfOdzfvomL8Rx3F883ScmEsYx4bfVl3Jrf2VG7akUC9t9loVit4cmj97Ma8Xund6pt3oV6hkkcYRqXNrY9whMdATtzBZsDQIBvbBLQ+yuey/49dtRVQGFRiLFs4Sns1NBpo5KbtAKDcb27Ka5QTfz+au31d9t+3cnb+x7KJ13wO+37Ttte/gywETJN9JMxPqHA5sMrznHI23rpGgsAr15cWMhZ1H6cIkO4BhS0A16vw/blkiqaNLWguq25I9Xwqx4x8xfZYmsvlZ0a5qQW3jhzRk4bKGkfZUwASDXjZf9iieEg+KB899ABWkSMtAq2w+QlZwiY4DyAWZKouSQQCjIKRtcJlcc007X/HDkUJ5ED5xjFCyiiGqZjcB6QS8GGGfPFsVaqjvaUNaehAJpg7kBAVo6uFskDQaMzmuvgO0ClRaHPixwpPT6rglVuJh9ZNB0IZdwglYJx2MIhV+AGg4VOJilSz5ygDUN5AtzgBcDAecBHwHcgFyB+LfG8uyJgwjmT5RX+PpFTRS4dG2WqyC38/QKrqM0lQyRXxUtv4KZkARE5J1Vk0iR6NfR3sGodU3ZMYW0nZk14t6rZ0geWBG/AwRZbBlByNigGR/vGstXK0H7joLQwpa95wjM3ryGljNfffIDF0RylELbbtUz2psIEEnocmXFnhqXWfKCsBfnsJZL3ivReGXkHrCcCXAZyAbzL2AwZ3gPBEUKAGm9OlM+IkROjUEbJBTllBLdBTpuaBO5c1D4LGhWT8S/eJJt+qb6Pjow2aRK2cp3FQCqZe8H6zQaGvh/MtSDSbzYqFNB4//jA4vtenfNdeBcPNfN8tp7kfTqXfdd61NtaDbat0BfUIYGy45u2fe2Y4vF2OzScXfrT5bUxUADtAY6wQ2HK1UC6FA3ARNswI0hkSKHzKlVjimjKebDrFrqMGLBFC/8Z9cRoUUbfMJAQXYejeIoPHH8Ay3hUE51zSdgUqfYcSCRcgUmj3/rw0PP05NH5WaVhZc3zcOQwlKE6jogcOuprnzGLsk/iBAsFevJSHbukHUPNxmugUCPKLYBswYGngOMGMIwsTo39LKDMSetzzOqxRo2GiDfaI5hULye8evFriC4iuojzUSRr39q8jqN4it7P8Hs/8P2Yh8XOc6vAFqgFBFfpQuRwwwl+6MP/Is7HC3zy+qcUWG3wxbPP4bg7wXOLF/DFs8/hyxev4KXjl/Hc8ln8r/6NP45P3/x0VS/y8Oj9XKiirsPFeA7SiMndxXPofI+z4Ry9n2GbhRpl9zr3Ull7yFsEV6qhbRW8LVpjeRfBxUvVygvnOsai0rfsPcAhRy8OCyy0z9BARUE5QBl65/nE5rc6x4lBIGvPVzknWcsKLGx82JgXJ0OuwHuhkSyjM9t1TXfx3sy7TwcsDhjc7e8HPfUHD3OF4X7FNld9Zt59/Wv6P13ep273LoDRQVADiGGISYHDgM3OZE2731mTqEQBOTMIue5r3s/2PgR8TF5J0mMWTf41WU0ycAKpIwGNipS0ReERJa3NBBYlJVjMwUCNFyOsMGKJU3IriaY/kRr1XES1iQuYR5GSzQNKGYCSVVpWrjcFSAQkj5NxTE6MexcAV1Cc0FIKGCgGjhjIo0y044g8roE8BwWjFJF62kvNmXUg7ZOJXkVEYK054ZwHBTHkyStS1xwG+Z4h0ZfJUCWe+IqcR6Rhi/X5ffgywHECdOEHSW4GA+CcJPehTNWryQEuzuBCj7g4hQsdKM6EGuA6FJWmJPLCzy6NYV2aJPBmLEolbPP8Zi0gZ8BrMjbbxV+oThnjOKDW3LAYCk/jngvX/iES+dOS9RhFKBHOMUI1WFmjL1OF6HbsWoRG+sKhhtYM6BajdRnwcFJ1VxO7b984xWY7IEQHH+cACfjIWSIvKQs48t4SA119P8yzj2ZiZ3X5E6nHWIGO0CfsymUsjkk45p4cQnAInjDrA0JwQPRwLG9R4QTigoSMTCNGYpQ8JYr70EkyuVeA7CO87wVc13eXIMK48voXvYYpyqPX1mIISH/xdOF1I6OS7FMrfrO01jh/Ut7FISP6ymM+AaC0RvvTLOgtL/pQM0Oh3fYQtaD1qhYUiXw1crfmgWwN4jaJeso7sDXugFG9lztBJLxyMf5LjZZ47B7D+r+NFNj17stspjKqYtH0/kuStFWKTpLPgYKAKI6rIlz1Kam2IJWEzvfo4dDNO8njcEaPylinc1A4QvBBKDXkEPwC5jW+KpLlXQDx9DysT5kZqQww3nts8i5s2yFvsC1bFM7o/Qwzv1DvcpH14EB/2bOxn/sUN09BjG2lV+WSDooLJE4YyyDGNiZgMZYBgSKCiwiw/IkBn33wWSzCHCfdSY02f2X1Zbx01GEeFvjUjW/aubf96N0mr3F/+za+dPYlfOj0QziOp/jWZ75dPNv9LaQyYihb/L0v/z9x2p3g2cX78fP3fw5/94s/iR/5+A/ghaMX8ac+8W9P168OREceMxcw7slDn3Y30LsZNtfXmIc5xjIIINF7nYcFCs/waLgPBqNzMsY61+FE8y5s/IEIAVKNPJWxAliJjMlzMrBhAgZXtf25Z/8ZFqXwtXRHa1+NOd6+U19NNLZtBhiNXmjjaoruScSujaAdvKb3yKHzVVGhDnnC3glUHAITT/ruyRGLy7KaV+1/6bvmOGL774EENOCg/g91wdApQ34XvsU00VNzjmZfgIWWwOIhlQJARRJJiXaWfzOY5TSkBp9yAc3TCuHkkyX8sOQ6pCTe0jxuUMoWRCy1B7yo7YyJalGw4Dst/tZVYGFLsBgsGaza/0JXGlCSJkynUTzfaRSvtIENM4JKwrwLmAVR0XE+yHUTkEFiVAVZdMhUCUi8en0XkVLBmDOG9Tmcc5j7qP0vIIwAhOBApUy0f7GDtap3qHkT3kVwiBXUkIbqSaVNpWaEeIWdepS9JuY65zHre5Q0Yn58HatH9zBsHiNvH4MwgjAAVsgWAtnIQCJLNKZsR5ThHGV7DgodQn8EPzuGizMgzDV604GDRFMYWekwDbDI+2KS8peDAKzgTN6W5PyckIYROWdNOk9Keco1iRzNpOqc0yx/guWLCIBRuhyLwhVn9cB4SQ5nBsix9h3p+OQaVclFzl24IHgxLrxzSGlAGkekNMi52SGRRB6C90DJcATcOj3Cer3G8aLDaigY04jrp9fE+OaMURPqUyoTiFHr3PswGVXJVGfs3qdFhZlrqK9df4uC5MIZaXRwyWFIDO8cvC8I3sF7h1k3R/BAjECB5BltxhEuJTga4P1WC/vFmuAd/Ezeiyh1MySaoWOcLelV8j2mR2K89ym+wmjAhn7oFBwz828aKtS+R96qYxsAAq5OaL7qeEAT/WiO6eEvna81xCcv35SXsG9A22cCbDxq0iPt6sGbd9+a2zPuLTph19salbkkFBKP63QuOW6bpDuUoQIWr8ZC5ZDb8YFLdCU7n/SRr0DGEl5bJSYRL5iew36f2N/BdfJOU0anSd4toAokjinbvnARKo09ayJ4F9A3IMaMxE1aofMzobC4WTXGez+7dI3tPVi/tXU43t68AQbj1uyuJDKzqMoF9aYboDXlKu8ClvEEC6XOGrAa8gYDD3h7c0/qZagRK9GWE1ykcwx5g9PuhlLBdkGDJ4+Zn9frXYQl2oiLJc478uhcj7EMcOQQXYehDFinC9yePVvHjSOHmV/ge577vurM/Oi1T0g/UjwoOOC1jtJLxx+CWRqn8ToKF/zwX/8f40999/fiz3zjnxGbhW2fgJn3+P73/QAs6vA73vc78d3Pf1+lj1lbpQv8hz/x53Exjui8x5/9lj+D3vX4K7/0N/F7Pvg78JmbQmFyLuDG7CaO42mlvLWNueDh8ACLIN8dxVNNSCas0gUuxseYhQUCBCxH19V3B0CVs23bTlTugEPBxBJs7mFIQnegUJOugd15pjn45c8OtCupUs2cdNU7Z2CqlYmdIooOEkuVcZBLqpS8zJOi5Y6qWjPH7M9NX+v21HKz7xRhuBJcUNuVVwONdwcsrtifpgd2FcA4eA91P1IDeLrWKSrRXE8DRtrFRRyQzbY1EjFJsgKS0GkqNnI9E5hoQRs1F8FKX0lZjHl5GVRxqmRwycjjGmkUcMFlFLpPL+ifvANcACgALoDJQ1SEDCSpd46l8jEsIZjt2Futkp2Q06CJvwklG9c/wfIOVustkBPC3CF4KSdGZuRo8TqGoW59bdVgyrkgpYRx1PPkESgj2EmOgwAQgkPTt/Lo7IGowhOBKMD5ToAF7QILZ0pQzmuyrtPkWzcp/jhJxPUUEEHoxg3ggE0ZQCXBIVWLzvxZliRtkSb7nksCEpBpDZBDySMoJJCPYN+Budeq5FHRpQOK0NBMH5+gtDmDMWxjRLz+ORcg2/kKsuYv2HixQntFgYV0mVbGNiuVCFzsfAwJ3bKeT+twKMWJGdXrzkWABaMImMgZKY1IeZQx5MSDTzFq1ECuYbL0zVhE/Tt6h1kXcXy0wPh4RC5F80+g+SgSoSCXDMfVIs3eTREA9tNYsT5ovVOWC1PrlBxYSApEKpi5QLpZ8pjIETITCgjBSYzAKn57J1EgqYUywjlJDoWHJH8D8CWDfYQLrGMT6rGoL391UlB9Ei0sxIGr1WjobwJccTDp9sAacTBiQYepUu3nV7X2eLtriUb1DnSOGXq2fxtR2T9me11mGLTXVJVmeHpe+95ugijQWLTgkIHhQCg0GRA714umfyvAvMLpxpfH9f5aeag/7HvztlrCq33n9vp5/xqpue66T0vZ0j4qauhb1CKygR4vx9gzEqtjABPA2Lknvd7CGakMGjlQbzGM0mtvkxldvoIlo32Bgfvbt3HaXcOJ76txnrRmhZ0jc8JYRnSu28m5aKNADpoYjgKU6Q5M9XD/PqJT1TtO2KS1Rn78Tr0Kz6HeSy4JCWM9b/Xcg3GRzhEpIrjjaqg+PlvhYlxJn3DGkLe4v30TC7+sBfoKF6zTChfpMc7HcyzCAqu0whvr1/Hh04+CQHh7vUZ0DjeWp0hlxFgG/KMv/Cq+5e434DM3tR/gMPdLrNI5Hg0PcL27KZEYU2siElABV6lSLVCSaNWUN7MvbyxA+wlj+Yrvp+ddmjGlLlaiXcexXcvee9O+908TAXhSBHLHeaIRk/Z9lPtX52i1PrhGBD15id4pYDLWC3BZcva9aF8VsLgqOvFEcLFjrL87UHH4OwA4sF3FCE8AEHv3cOnYVyxuLQDZQxzQlIlpf2fnNGNGJjFh1hAcxd3z6K+WnEw71zMdvOQBaTtis36IYbPGuF0hBo+uC8jjgJwThvVa5F2LeIl9iAATIjrxaMxOKp0rs7w0akMCEOOImcGDVswuys/MCWm7QckDOI8Yk3jRRG7VjFVGzsI5z8OAeUfobi1QQgCHhK6fgRzgvUPKrNScpNQhaVyAi9UWm438W1zboi8JXLYiTUtq7BNkYi6SNO4IgCMUVqlPUilSH0C+V2+wrz+htSZg8rAuglwEFHiQGsHOeaEr+Q4xzuG7HnlcgZmAtAHlDagqP+kEMLnEK7CoCk7MKMMKaVjLeX2ACz18v4CLcwE2UWkyPqLAKQ1D6WROwQ/0M5WrZZYK1uM4IqXUGBcG2ibjOWcpTgfdJoSwA2wNRIv8K8E3459LQebdcD90Ai7khBLHBcN2IxXVhw1yGWrCddfP4JZHkEM7+JEqFrRIn14uCgMBjKNZj/c/dxcZD1AerpDGrRTCix6zfgaQQxhGVdwCUs6VDuWdPMMYwzT1cqOGxZq4rsIKrNQsoWjpIwPvUGEyi2IMjQAlYDvKWAo+oIse0QfMuw6BtHZKHgDOICR4AjwRgkuSjB4HuBDhfUTo5iAX4UMRsF8jdAKgSCMR1Y9hoJInTGhAysIYvxlUoSYjbooCWGMcpiq0C+hVVCkzSM0wuPTdgTYt1tg1JJpF3Dj9vVNnA7mqHbMb2dB8AzSUCdgSof+R1WOQfYzz3xZOW6VzBAqYhYUqCJWdZM5LMplNlKfevQKSSo+Ar+dv+4QwRQ4OrXX7/VyLlGm0QIx1oz1lkFKYrJ/aftxZh/X3ts/2z+nJY9Aicw+HB7g1i5iRq+drW+Zc+9aqc7eqSUdNPYfECeu0wjKcVCM9K4AxuVe7Zus/oyYtwzE8Jfzq48/jM7c+g1NNIE5lxHk6w9wvsHBH2JYN1ukCr1x8CS8evYx5OELR3Iz2+h05pJKQTE1K7yE20QbzoM/8vEZXzsZH+Jm3fwp3F3dx0p3izvz5OhaHvK33tMkrrNMaRISjcIybs2dQuGAoW/ytL/4/8MHTl/Htd75Tr8Xj2Wdv4vZC7mmVLvDG6nX8f179Z/j+F7+3VsEe8gZfOv9V/F9/8b/CP/6Vz+O3vvR+/OQXX8FP/Bc/jv/oP/rT+P4Xvxff8uwH8fEbH8Wnb34TNmmFn3/wc/inf/Mn8F0vfxA/8MLvAQAEF3DSXcPf/OJfx3/1S/8U/5Nv/zdxZ/5s7VNPHnfmz+N8fIzXVl/GPCyFTgegdz189DsRijpGNQ8icRJp4QPV36sTCZJ/djlaYnOIiM1Y8+QrZXxnvDZj2oQTbN18p+rzhxwiV4HmGoXT700Nq51D2mayvBc6Nj35ao9aFIOBKuTg+L1bH54KWFg1YeBJ4ABQ99qOsWJfWiCfaHpghwz/q85hu9XJyX6n3Qc+7Uv1mqhNttqbXMmM+vZ67Sb0HLsPfOLTOvMmE4EcCW0ojxi35yCYjKcYgv3spCZycntuPSXX/02NINGBNK7EyKaEWR+UOuLg3QwMoJst1UpzGIue03coPiJRFO+G5jOUIr4TlAQxuFCLvYmxBfHO5gTOCXkrRcSYC4YxV0N2HIXrnlJCLoycCnrPmHcOvWcczSOOZqFSdXIWQ5OIKw2JmJDzBikXnF+sEELErTt3sFwsEBzw+MFbiN0MXb8EiqhYMYoUvlNpVigNB45k8vBejPDQCZhzHuQtGiDHUBQHoij/jI7iJKphtDAUkYkleDjfo1+cglMPpA5k9Sw0SmEWqfUjs9C9rLgelaIebNZI0EaK+blzkPMImpPhQg/4HiBNOtdkbqQBVuAv+AB4j6GQArWxVu32tVq7gF2nRuokHiED29n7RgD25FllXErRvpLVg0c0gSfY7+o5VzCahrVEK9IGZvxIcrPDOG7RxV4V1Xx932uVcggod8RIXOA94/Sow43jDqQ1QSSMm1SKGOgWHSROQBiSgF2R9dU+q9dbADh4FVjwmIocyj6yQAhYA1CXG/m5m5tiAEgjQTkjZ4ctEbZbj+AJMQDRe3jn0AWRMyZiJMg4SNsBLmWQG+DHoQJKS/j2oZMkcK+RRmpr5Uzzxf5S1Ux9X/dGEBUsagzifc//oeh0G1UCXxaGrIbzNIm+87U0XuM2H2LksQICq6FwyAAGsKcHz/XnZBDI/Trwpfsc8haO3A5wYC7IyBiV8vSkNkXZtNq9etStMk4bCbnkmdV9Eyd4nrTwL52jAXIObpK8PkA/k/4MO4Cl3W7y/Ks89KGoC4sxFyjCs5ecgnlE1xhOhadibxLlGYRbrmISaIAVK/3KzmOgTTj5Bat8gc719VhjGXCe14iuF2lWF+HY17yQsQz4O5//CTwzv40Xjz6o/ewx9ws5BhEiRSAs8f7li2BmrMYzDGWLeVheMgAtkhCafmYIWPENgAskUQUiwjws8ckbn0Lv5wgkUYwhb7EtmwraC2es0goX4zleOHq5jrHH40O8uX4dn3378zjpjup1RNfhX/uWb8OLJ+/Hg+1b8ORx2p3iQ9dewlE8rs8muIj3LV/EH//EH8IPfvABTrtT/Gsfe4Rf+rbvw3c+9y/gWncD33Z3xK3+dgVD7z96Ac9/4/vxy/ffxN/4wl/DzdkNHMdj3J4/gzvzZ/AHP/ZduD27A0cej4eH9Z4lEdzh9uzOjvCAjY9DTggD/h6Xq7nvjFN2zZi8XM/BIhoWK263e6coRBuhmqKXrX24F6HDBCDFSrtMrywKadrcibaJYlupyfPWTxER17qbO9vZeLLueTeFP3+97WtChboMLKZfdv5/aZ8nRA+uOo95OBtgIT8uq6BcBi9FgYmdezrEzj8CTM1mB7CyTdBieLtaA0IHZD12BsqINKxAKKKuwUpF6o/MFboDfibv8uTxkUm6CLAoSQqZFVFkClptmplr9eIYOlCIgI9wmZALkJJ4XDMJl91OktWTLmpIirxrMu1kIKeUJJdiGNUjnbEdEtKYsN0O2GwHjGPCmEb1BBesHbCJDqdHHYgzet8hphHsndYhkPCvV8UpYkKG5FwM44jY9Tg+OUEIIi+6uTiT2gEEIEcp9uYARIdQPfM8RY4a49ipYS6RCC+gQXm/Nk5FbrQtpNfQjaB2KTM8ORAFdN0CxXuwd5IjwmrI2tiw5PxcwOYpKEKbopKnJPiUhE6WhFpEREAa4MIMLiYgFgFDYAWEJkErPH+pIyJelVKyyiCrd4NRjSOnYLNS7yBhfwDVgJNwK1XngYEKUhBairw7RDQZeWw9pONW6XoljyhlVOUz/ZqLXGNKoE6L/rip8N6UIzK9EswCHpezgOUsYByCJohKXgWpglaIamBAqHeZGanIKGMWep08A5ocE8ZbBpAS5Lk5J0UfwfU6pgWGp7mmseatsFEBA1k2GJ2H9w7Re8x6h+gtQlZ0S5HHhY4FIoLLSVXBouRfuIDIBb5IYr4px3FDk2r9w3XO08/baevr2aZ5epqH23wKG3+HwEXhKdphRje1x7L1A5epUVclcxvlyBZuABKBoomLjL1j7R63XMoHORQ1sWtoz585gfcS6gUUFAUsT04sb+k/YKH77berolQGSHJJEpmF21uDLrf9vt2/T5lb3E7f7/SDzS17Bs2V16zvZIcpx8QMsMwJniUHrmii7o7ajraC3eJ8TiMCBqouxnOELlZqmRjkF1gEAlwHz2LcmyFbuOCVx48rZciutwWHljTuosdqPMMmr7HO651cmdYTLXkLU18kYxg0j6I1VjvX41p3qwINQCIx27xW4CIJ/5J0PWDm5+h8j8IFZ8MjvLZ6DW+v19jkbT1mcBG//dlvxSzMcD6eYeZnOIrHeP7ouVoTY5XOQURYhmN86ORjAKao27fc/o769535XSy8gKgI4GZ/C5/8+EtYpxF/63P/DB++8QzuLm/hUzc/gev9dTy/fB/mYYnCGefpsb7HTuf7gHlY1vs3elg7X1ixR9AkULEfDd1vbYSzPhO1s9o5qoJ75t15pgHP7TO1c9vfFqEtKKrmePiadqKle5u0DpND92R9kDlLVEfP45RCPSNfk9tNIaodizvneo9WiacEFnvIauc7+3z3sxZAALYwYPezS+BiHxTsH8823PXO7BzjwLW1mdHm+3OQKlgODFavoEmCWateopyAlNTL64SWgwmM6MoPQi8J0vMgXk2SicI5AlMn9QLgwKU9A2qxL/lXKrWklISURwzFYz0A45BAeYs0bDFu1+jnM3TdHEfX78JpVCJlj8JS6VmOn8FjrlGInJJ6YKl6X6vnnwCoZy6nATmN2K4usNmssN1usVpdSNJsLlX9xzzfRISSxZh75bUHGG4uRVWnT+goout6lCSJRd2s0+rbI9K4gfOEZ565Ce8DchrwxqsPkUvG9dNjDI/XOH/7dTA8Quxw/eYt+ODhg4NTVSRmMfokNyDDhwTHI6DAAWpgC0lfwUVR8FAKCEkiG85V7+P0XF1d0EK/ALgDeKZ9Joa8ybiWIhSvnHPNfyFVcCpFo0SlwIUEKhmujCoJK/U5LOFK6leIR9PoMVkVnwSQ2LX6CrqF3SXef6vqHas0NPkAAQAASURBVEJUo3UCDMFLmLkUizblHXtKDD4x4Ivei1St1kq8unFKQmVjjXIBomolSuABKeUaASu5iNpXSvBeI6AKMNpq3RK9kOT84IDlrIP3HhnAxXZUgAZ0ocC7BJ82IGLAFcx9DyCAaYbioJKyEaUUjGOW68kFzE7oU4URguY7hFDfPynAyBjHsToUwFwTHG1KKVr40NRZACAhgYiwJYfViuEcoQuELjh00WPWR3gHkRZWlS+XBwVYI4IP8C7oQhsxpgQXskj7atRtCtnvOlieYBN/Xdo+baCtwuya9QTYTWKsxioRiFmkP6HASVAzolIlzDPO4J3wvlEfWq62nb9Aan3U6wTVpG6rs9I2Bms+hN9JJJbr9VX2sb3v/X4w6cf2nFbZOFBAQsKTmkQ3JnJGVrnNDnTpfPvNPLsEqHKT5HaYl769pisjSLZQYHJa2PcSVRirYRZdJ1QgPhwZSRop36d67TczItuE37lfTtdV9sYTdo8XXVejE4GEjlNpRkSY0xL9fI6z4SHub9/Eg+19LMMRrvc3cBxPcdrdwF/53f/pQepJvcaSwAA8HI67azjiU2zzut7bUKSW1FZpdgTCMh6DQBJBIo9IXe1HA65tPsH+eOxcDxcl+pFLwiqdI7oOp921Srlap3NEF/H88n34k5/6Qdya3cJQBgQKiBTxDTe/WW0gVye0WxpJGMuAb/vf/lFcv3GMv/NHfqxK4X7u0WdxHE/w3PIFfY4j/ulr/xQfu/5RfKK7BgA46a7jL/+uP4/XVl/BF8++iMIZR/EIzy6ew2l3XRPaLTl/XvMyvnj2q7jR38Qz8+dg0cOL8TE6P6tAbpUv8BNv/De41l/DcTyW2hf6PkbXXUmFsmYJ2zXvwOyWFjgcAKyH2qH3xMMruFB1Jgucw3J+JErRJuRX515zTIv0MrOoF9J0PQyJ8nmIepjs52qUp/0s6ny236oM8RVFAn+97emABfaM96YTqpHf3MOuwd9GCEgWDPmy+an+NjqwzxURjCsjJ4cuHpCQPIlUpOTVlwoMihmfMM511gTihJQG9e4XhG4G7zs4dGhcoHoiSehkdnDBkqcmyglr2rEowxpqFXAz8fQLwBopKAkM8WwjJ0A9pMyEzMBQgDIwEjL8doTLAeQ9shZ4E/AgsnmlsBb4EzUdMZ7ssu28LF72orkV41aAxWaNcRgwJomc5GL5FdK5rJx8Q81MhKEAQyZsk1OlI5nGxIBShSuNmkC9wA5ATiMuzuWl9ETYrNdivDGjn88Quxmc7+FjROgCvO8AiCGMLHU1iLyAgVxAJEpLk2dMACDYSSSJDRwkUZrygENQoSTbh+v49zGC4AEOMI99yaa6lFGyRmYogYsDFw9wAhUWWlSWc7LzKtsr44dLBmcFgiVB6mZIRMUoOK4F6OBaEVvflgow9t8DsmdMZuTJGDfp1qzSraZaYnLGzKb6JQniKACTXiObb5wn76RGbew7oslRMIWB5ZoM/Jg6WhsmhlJniEkN/IzNJmOzLdJHpWDriuYmDfCuwHlGDBmOIuAY7BxYwRUVgEqW+I5VGNfnqnO/BBzMW8RK4bHrYpvYtQ/tJproHuvfeudSkdgOWQg5O4ypIGXAe0L0XAFW1GRuZmgplAJQFgEGJng4OA4qQ2q0Khubcr377TcLyLhEj1FvXk0nbBdT7FIVbK1wdazJ+LN3cTIaqG7berIPyr9Cko5JKRDOTTk4rTnRGnk7axzRnjE7jZVDbT8pu/Vee/L1Oqkpjmj9tUujcJeKQR8CAoeiNW2hrzonNNdzlcPwEgWKzH+7t/bCqFPT39YsGgMziMjDclL2W+v1ZQCbvJKEZT/fMQSt7Xuq9z3KLbA1x8c+ncvDI/oeSzA2SQrjrdIFluEYwUUswxEyZwxlqB5yoqluhyly1QgORLWooGCVLjTS4CrQsLm6cMbj4QHmYYnezeozYi7YFsmdKFzQuR7zIBWrW7DhZVYAyGMRloha3wH6bLwLmAehbC3CAnO/2JGgFhAo85RHwCav8P9+9R/iRn8dx90xvvFjL+GD16/rGJXtP//4C7jeX8NxdyrHI4eXTl5E72c4Gx/VPliEI9ye3QEAPB4eofc9juKJ5kl4bPMapJEfpoJCAZ3vah4M2ePSfh7LgFwkSpM4ofMdjruTmtBd8xib4duqhl1KsD4QTSCSuRZXvMdPavZO23iU57I/o+h5QDv72PywL0Vs8+Gl/SCMj9J+r/deIzCkdbggEdH9mh0Es8fem/Z0wKIWgkPt/PbF3aEqXQEEgN3JcB+coP7cNUauoktdFTkRo0t+tuo8UpU6w5P+m5Y3ZHKoqcR5BI8bjGcPMW7XWK0eAZ6A4HB0egeuX8K5OcQ7ahpFk3VMcIi+1taWK2LI8cVF3hhjWYy2aqRloAwYtxfIeQtyRYzllBGR4YgwOjGeMhGGUYBKPt8gBILzAKvsohi7oxi86jHPY6ooudbUYPGkc85IaY00DkjjFtvNRmoGJKELOI36EADvmrFAlkysRejIIROwLR0uRo/MInnLLNs6r2ZaSciZpDuKFPHbbDY4X61w9+6z6Pseb7zxBkI/x2x5jGu3n0M/WwIU0c3n6GczyTVgRskj0rAGpwFg8YiVzAAPIJJCaOQzYKocJMoKAiIZSUESuYzYKa2s2m4MUeFy6KOFwZuwaS5aWyGhOCeg1Hnl72c4np4HB+3vLNGokge40aOUhAypzlpKQuQkIXMdGkw2YU0gjhTQTVE5G8Bm8EIVSCYAwsQYs0SsUpKaIZawbJKoMUbJNShFx1CR3BVMuTiTAaNnLJbwP9axLd5fGZNEzdTIQAheazyEHeMGkNwHKgTOQBoZFxcJj88GXGyLRNvGAUmpeYQRXWD0gXE0nyF6AZus1LcQYn1OTpWbZLrV+hk6C3hHYJ4KSBYCgndIZhI3ss8ThQwKgjC9S3r9IBHpIgDjOM1PwY/wjtB1HvNZh76TfBnGlN9USOgOREL5coXhfEBkkr+dB9VIlSxlzcRZF7Wvd6ucY5gTRcY2XNDFXYEsTTS9rLr4bX2gdo0xD7Edt/UATtDlcsVoa2Zcm5HmyVdqQXvdUqQsXZLHZBZajUNzXXuL9G70pdTognxndVO4Fmnz5MXAqndkYHV6t/c91/u863p9+p/jKSIkNCzU87Xe06KJ2AcTY9GANFxOfJ369HLVcgMJY96KEY4iicphoa/N5etnsOabyL5vb99E73qJbiv4aq+hjSS0xh2gPPVm+wLGWEZEJ9fSereX4Qhzv5DibukMb2/ews3+dv1+LAM2eV1zLxx5rNMFhrLFrdndHaOQiND5HhfjGd5Yv4bnlu9H72boabfC8jqv8PP3fxYvn3wAN/vbct/q8vjlR7+Er1x8Bdu8xUvHL+KT178B83C0k0djnnpPAafdDWzzpkrWmnGfSkJB2clZkfGQsU4Xer0OR+EYr66+jB/+d/4sbv6W9+E7vvlj+D/8y/9BTa4GJFH8H3/5/4dr/RLBBXzs2idxFE/wzbe+DQ+H+/jlh5+Fdx5H8RgfPP4ojuIJFmGJ11Zfrsnbdu63tvcw83NNJPYIjnGzv13zWqACH4Fipas9Hh5inVc46U7w3OJ9uN7f0iholmjfHpBua8MYuKiOAjqcaL3/fr1T1MK2Y57km+2Z0J5DYZ9CaTVtklaVn/l5BTxT1HZygu07YJz2ZduIqAGwhFy2cn3EWmRycuLtv69fy/ZUR/bqYWxBgPxoflan8C4Q2Ld7WgxR0VMLolqvxBPqZhyOWOiCb9QiE93XfAVHWYpwac6FPChqCtKJalJGRAoLJI4A9/BevKvOH4OpRypq9OkAAAxIcLOqM4CkNp543e07M0SmomcsnOtKD0qioMQAs0dhj5x95QgXP0OcZ7giyXwpE1IeAcrIVtgsS4VKK6bGxWgeuS7yzBmcsxTVywkpbWQ/pcAUdRZKwvOUfwBYkrSXhGOndAAXAEcInpBdwMUWGLJDVxyijQXz8rIYisN2i81qjTFl+Njj2s0jXAyMVUq4fveDOL52A6e37mBxfF2TWiO8UmhYjXeMWwR4FD8AZaxgSVELOMtnDgVwDKIAOAjg8QSv4I6hIKVkjVyYB0gZ0lkpHXpeLgVsVa1zlvwCLrXitfCyJyBnYJdUkQhwmgeiYEuB3jiIuhK5rSZ0d6Awqy+QYFPJDbChZpQv56MmXjJAJgnMyBopq5OWvSfgGsUKAcgZKIWECmSPC0ChMhnYsEmVNXdGAZijnX2g3jNn1c+r129KEm+59hMNhkFU4FwCeIOcLrBabbTPc8VOJSds1gK+33aDAEAv+TcCBCN89OhnPbouIgRfjVUPifwxE0ohgAkokv/jAZGGdYRSHFIW8JtTbuaeglKcAhx9DDYfmDNp+kXf5YwEwpgcttuEEBxWnRTf67uA+axHjBGz2VzV1rIorpWMXDYV/HknIgTkhFppgNMcPDKvfH2b0UgLpgrWQZPTHZwujLxnBEzGk1EWdiRYlUZhijdjGbAIRyBQBQPMQnG7ylu438YyYJtFrW2noFt7L43H3AqWTUCHwWx5Xe7S9do4L0pnMkMkNiqBQqmarrOlHrdVpKfj7oKd2t+YfjdDxVOoz4Kac9Tt9u5TqF8jGKyF9kz1ajeyuB9VMSMLZFWAE5wLNbnWnm2bTLr/fKLrqiPwzuxZWK6cnLNgKCOcRgBSSWA0Saw8XceYt3JudjhPZwCAo3CMgoJNXlePuxmnDFGXkijF8Q5oiRThvMMmS0Sj93MgAB3PrhxT7bPYB7jbvAGB8E23vgWd6xBch8739Ul84vqn8JHTj9b+n++B2/ZerYWm8J+N1VQGUUxqxrQZs0X7zahJt2fP4Ef/7B/Eiyd38YHTF9C7CQit0jm2eYM//Y1/AoMW7xvLgE1aofdzLMMRPnrtE7UvztNjdK5HdB1uz+8il4RHw32s0gU2eYPT7ho611fjXaqUn6qnXd6foWzxCw9+Rmu5MO4s7uIknuLZxfuk/zEZ1kYpbMdR9d43fWZ/m+PA5FpbAGLtaVT1ZFzzlfubHcB752ibyWBfmrPModh+pvZX5lzpjAyudXoOncOcCG0dkvcqrP3Uydu1Wuwl4DAhBwMZ1lyDG2zBbf08bRCE2z/2zn3o7wnk2O8GKqzPzOgv+o/3/gkYKFpHQR28YCY1OIWz7dFNBbzcDExB6T2N74ynP6coCaMGpNiUAGS7ovzQIihArq8kBRYJKYlBkYpcjyQ4A8IPL1KLwmU4NRxTTRZmlRUtlbtvyj5VjSBLAnGVp80JJW00wXbbGMTqEdW6D8L7N3Dh4UKA9x4+zgRYeC0+56QYGhwwFkbSZPLCkvQufZTVOC9qPBWQCwhdh25xgot1ApPH8Y1ncXrjFq7dvovQzaUGgFMaEjPyuAVZ5WsWegyy0HgASJ+a7C9EpYmEGwOjwlhS7PTYBIxxkSdIGmFxgOZNWLQhK21s1M/ahO3Gs1+Nzcmot8Eir5TTFKDSAMCkSdipbkcuAI5RitBhYGPQhr1SZNgpN1ONCRnnkzxwTYatE2LrQRRjFgTkPIXWSzEwb8nNNEXB8qjzA/YKhck+TuV7pZaITQhud+5o3/OGLiLv1iiSy+NWlXv03vU9SqkgJ01OhaiFRRK53D4GxC5qTY8OMQZ4r4abc/ruC6BglWF2AOCc1KpQ44xZEteFuUaTd8nJ+9kaXJOLo33eMgyyyuEiOSSX4UaHnDJi8NLHjsEEdBDKSMGk0pbKCOcKvCtgL8/a6U/JHRI5ZjF43xv+7LttEzWOq7Epi3eziPNEipGnsDsW9pOy7XPCREWxCIctrK2n/dC+V12r6b8zWbRt1zBpCHSXczCYJyB/xfU2G8MiEnDT5y1Vqr3WVlzhqnbV/do1mwGdLSZiEUJGzb1o9zHn1W5itsBDG/dtFKpeqxnTLNsDqIbiVaDoUn+BFJgU9H5ej20RmtJcsdEuL9HnYBELqZw+lkFyGVyHbdlOa0N7z2CpQ8GS8D2BGZ7Grm4v4yTsjJH9qCuRE0nbA8Ajq5f6KJ5cAmaFSwXK1enSADhTJstqJApw9FXaeCyDGOsIIhWhRrSngOBCHSntta/zCsyMP/DhHxDaVFggo9TK50PeYps3eG75Asa8xb3N6/UdtOs4iicVtDwc3oaLHj3NMPNzDNji4eY+Hg+PsMkb3OhvVY+5vR870Scdo4+Hx1jnDXJJuDW/BUmcn+84JYDd2gylWdtacL3fBNQwoPlR9q7szzlXzRn77UnRjUPvp43zK17d+h46kObf7tu9u+9TViEZclfMcWYY73z23rSnk5tVb7P9A+ovNYcA2IscNMYBYXfitVAtwegeNP2EHl+PvdNoPzQk/7efV02yVizEfC+sxjHDQUhRajQTRPHHecxCJ1fNlx/IyKliFS6AWaVW9M0Sm3cW2DJNhGbkGb+dC6t6kNRnsEOmbINMqTS6LzRngrUA2qjfcTGjWA1EW5jU8M5JckZKTkh5q8fMcMbVd9qrWrka5EAhIsROogUk8p4ESeYlcgghwIeArouIXQ+vgAN5APKA1QAQZfH6U5aoQdLkZk7wwaNbzLE4fhahP0K3uI6Xr99FPzvCbHGk4MVrojaJt19VdZL3yFRQ2AEUUJykPEtVbhZuKgDnuaoPuRC0+nEHRgDD8lK40n+4FCCvQUWJJgw1aAsc64Mv4ukiJ1EQsRe8gD/vYLkMU5LvBDa4iDpQKRADgx0kBdBAAgFcwGUrVKuyRcoCtooLIK3a7CigGvBGwjZgmBOyFc3j9s2w3yaanilpAZK0nItOVCRVpkvZ5WKT0SnMS2kgvWR9K7WeiPPoOqsl4uFDQ1Gpx0NzXPXSFiioBtIwIG3XcFwQvEfsOwxboXD5ziGEgpIdho0kZ5dUMCjYWm8TQBu4h+cSdXSEEITuNZ/P0M9nCCEgxDh5pL160jNPU1OQYnis3GYCIackqlNF+p3BEgUzAFm4cTbYu69GDRNyljlvHGRcnl2sEB+dwYeAo6MlZrMZFsuFVJoHMIxDPV7wHt6JmIEBf+ftnSSMeTw8D/4GNDPu9+BhNWYmeo+M90Pe931e8H7zWrHYvI2tLGnQgmPA7qJ7qDoxAETj0kPOObIA5Y66ZmWZriOVpONCxAw8mUTkk40QghV9s+TM6b0B9px0TV9cJX9bt2vfbDOyD+QfOHit07BF5w9729kMURfga06ErJlmELsmOmNRS0sGB+1STCog2KOGHGoFBdu8xjZvMJQtTrsbIkHrguYvELrmvqLrUFgiEAbWZkE0/Od+WUHtte6G9L0LmLdVjJt+oaYPW+WpsQxYpXM8Hh/h2cX7RV4WqNx/qzexP04Xfon58qWD92uJ7g5S0Ty4gFwSNmWDN9ev43p/U9SdXI/MCdu8qbU6Hgxv4976dbxy/go+dv3jOO2u45pSlgoX3Fu/Bk8e1/tb6F2P6CL++Vs/gZuzW3j5+MNCiSGHZTjGo+E+fvHhz+P//qt/D0fdEj/6mX8HDE3Kfv0fYZsH3F3cwXE8xiIsAZaE6/ctX2rO9yqW8Rin3XXc27yGh9sHeGvzNj5y7SNVYaqg4Hw8E0qUP9Vr8DtgOvFYn0AqQgn+zme/FxfpMd7evIWz8THOhjN84ezzeGZ+B9e66zjprl8CFet0Ae8CZn5eaXWd31VFMmWvlsIk5001egXIHBPossBACyKvVGJTm8+UAw9JPLvGXt3/vnDBOl8AkHyJWVjAwVd1MAJh7ptiiU3NnHqNIFEF5bwTtZpENN4baPF0wAJcow+gxhND6uEjRcHmdDSvTKUimQff0DKmF5KgFZD1ZJexRNMaA0f/X782tMn2rRhAFgkRYLEHMJjUKG2mFrt0BZQCDgwa6f95ilKw8djNOFUPo3w0bV8qD731HrMmVhs1SWgdRp/JZTpeCyzYePo5qzezwCplSyRCtodyUki58kUTdiulBBPCd0TwQRcH50CuE6qNE966cwHBd5p0G+CVliFGmVMaDKOkJP/yCE4D8skCTE683Sh6yskT5bsevY84ufU8utkxuvk1zBeniJ0mazuSvAynZrc9G4IAsSLeKeLJEARIqCJ6KitCGEyFyAEEUy0ijJutqF2NQ42kyJhneP1HiiJtMrCXU6IJlk9gPEY3gXCnwARCuROjYhqmhY0WpZ4pT7qw2TOX5+9lhkLxoSbM2/tBNL1XAjBFqGDytk3vWvWW1EWatEK1fJxy0pfIOPL2TpgXDQBy9SyhPb79dA4xdgghwgej61i/UH0/2td9x6+gL2EpQE4ZaRwxbkfA+QrGAWidB+lj70VK03nJGREBAwFzSfNgCEDwVAsKboZRgG3XwfuAGCLmMycJ1s4hsyq0AXAs46DKVdIkzOBIC04WmvqM9H1oIkVWa2SabGReKUWPkQucaOBi2A4YhwG9KmP54GGqdJLDXlCQYUrKQluUJN00Plll6L1s1D5RXcS88vt3DOcDC9shAHJVc1RJNiCgem7bRbRezxOOJTxvqLSGwvvG8GyLz7VqVpIQre/7gSq9hzuHqnqV3X0FJXve1f2ozaHE7Hp/9Q+381nL7SY1UrjJQxjKRsGR9hmJAW7qdLmkOofsUzKsD57ct64aWfv9s+/lB0sF6aB1evafIyBGp1P+vd1TUKoXCLgYz2Bywp2bXaqGbXC35dgfem7iAJi84bkI3ZHB2ObNJX777r7l4O82pjvXgyHCATUSoWPgtLsGAu3kXBh9EBAu/u3ZM+hchzEPWI3nFVgQCEfxRLtSRGEcHE7iCRZ+Uc9vADf6HsuwxKef+RhmYSZF1sqAbdngxeMXAUj+SeKEoQz4uQc/hWv9dTy/eEG9/AVvbu7BkcNpd706FJZxgU3e4Gx4iEU8hiePW7Nn9N1RZUF97qt0XiMqnoIoeen3wQXM/AI3ZxKtkNwmh5N4KhKqzMjIqHUjWKKWKMBIQx277Xgz1aToOn1XJgruNNamSOo+vajWn2D3xPlpn67WbpuLFDVMPNZaE8WXnWNKzZO+zm225tRr4HKlo8TO50gijFM9moluZTbKe9GeWhXKEVdggWZBtY9kO5tEtCJpDVmZAWv71LQUMNylKAjBngtXI4Ko8TTYhfGh5Un3JlePYW0SQjIP8wQi6hnNKgF2jCfZRZFombZlq0Dd1IVABQ2lbleUx56bz2x/o0aJJOxUrK4aJGxUG9Pll9wIbihOJZs86FiNUksUl5oLpRrN1SCGGIFe9fZj1yvlJoBCBykWF7SgmUMXI7z36PqIzsvvoZvVZOBh3E5F85IW2OMjwEV4L2AInGH5GgxG6OdwvsONux9APz9GNzvR5HuCD1GwjbOxUMQwV+qBACSRbqWaRyPP2JEt1jJuvFK0vBbI4zKCckZJGduzRxiGAZvNWiRJrY9QQJxqP4Ing0jWYeHyi9c7oOtn8CEgdr0CGCcGSwMymAH2VBWASlN4i1QpyYF0LAjNp3BBcATyHggRiUTbDBDPh6tF8STvwOhVzmkhQnL1euqkosCwTliqGkY06PvDkBwNAkMWWtHA3zV4avKtPlOh6Hj0/Qxd10tf63tm0rI5mfpaqW9snRPIRkZBzowxZXk2q5Xcrffo+l6AhFfaAjl4zyLj6qb3ckij0qCyUgMz0ijPbbXewvkVyHv0XYe+n2ExmyO4DtR5dJ0HZVFWK0XUjDxRje5lBQWOCMWRBK006d3mJbYZsXEs7ITbK7iyGiEiVztuB3jvcX7msTxaou87nF47BUUpmrfZCu3RlYQQNUeIzMgjpPHrl2NhxotEXRMyJ3TUH0gQlmvcVathdQS886K3S7ERrrR5uPe3e/fHudzEiz+i0zwzrxGRjAwr/Pa0nGyq48IUm3a1+3cYAM2cIxe0a6i8k9d0Oq/BA3nPslam7nyPSKUasJbsy8wY1ZjzFKohU+lnldaFZkE+dL+HQdc+VYUhogXzsNyppt1uvy0bfcaxHts80syMVy6+iLPhMbzzeH7xfsTuhqqAmVEm9J1W4vrQ9SVOIFCtVGw9KcnE5wpiQ323dyNNU8TO5FyrSAEI87DAfmMuUtCvu4FVOq/5Q53rsdSidYDQp47iCW7N7uKXH/08zsbH9fxEhNPuuqhYad0KIoc7i2cvVa72LqB3M9yc3cJ3PvudICKs8woPhwc4Gx/jo6efrDKvD7Zv4bXVV/CXfvqv4Zvvfgg/8pEf0WhKxpfPv4J5mOMu3qcgSKIS27zBq6sv4+XjD6PzPa73t+r5ha7l9Nhv48H2Pm7NbuMonmDuFmhN017lZgkOjILezSSngryK0oiBHlSsQSIOBayReptbbKxuNU+m8/3OM7cx0OaiMATo0h6lzQo/vmOEkkiZE3vgRgHFWAYFyl6rsaMCXknAXx48rimGXSXnPJ3fYnEClDKkQC+pc+OQo+Br0Z4uLdxZ1AFqs5fqoawfNnkMXL3rqX7mnFaQUAkzQ4yHmx53h+c5fXMV5YkvfbcHLXgy6A202GIGoIIEOTU3/6bBKbijUYGpAGACGWiAgYGLKWLBO/tM27XVrxtgwlJkzfIkshVZY01c0AUKkMEcO5loS/McTK5Wkr2lE43KJJV+pTiXUJkinI8I/Qzex6laMpEoHxWpCbAeC8o2oZy3BYTkPQoO6DpZjE6O5jhaBMQ4IkMMabAU94s0Q+gWiP0S3fwEPs4qaFUzViIRBchlnPJAskRE3r73ZZQ0IAaH2WyOLkYx7hiwehxg5eCPBVsFQLlkbLdbDNsNxu0aF+fnYGYEVUSyqAwp4JwM4GZs5QmZDva5gQ0vikReDWzvPWLUhFsyS7tIvQZxt060P54AJYoS9oiBtAJYaqnEMAOcRyEpNCgToiXxTrUwyPn6nsq597zG5kGv470oWPJIqWi9CVTPrHMepbCC48mz7BSYdhq9IkcIUapHM0/zAjC9X9WXAKrnh9JDDPAMwxZnj9/GgwevY7XOOkZnIGRwiAheksJjFDqewk3kJGAiOA8PRj+HAvuMMso4SrkgZQW7aoyvV2ucn50jBI++74TeFwNCF+HJqQqZh8gAJInMeI+s0YiSJCqCYnx2A4yEQF4iTdibY+x9b0AHF0LJhJQ8UhoRvMfqYoWu79H1PWbzIzg977heS+J919WxOw5TQayvRzNqklWzbpvxxL3x1JvxeEit5Z3aNm8AAL3rd87VGtZXRUCuolzteNmJlBKEmjApx5yoBYcUm9rjHlJxku99vUbGbjJ0G6E4ZMRITQoZOxJ1CdUggp57X8bSvK9EwsNfhqMKdNricvvXuZ+Qbtfl3uF5mYeXoMnrnKqBDVDzu4GEGZglKtC5vvaf3atRRqzPmRlD2dacm+cW70OZF9zfvgUiqjUlLMcglREjj9Xj23L7p0rFUyI0ACzDCWbLRc0LOI6nCigvy4Ra/1TQCNQ5zagxh3J02voVc7+owCpzxkU6rypON/tn6vM76U6lZkVTUdyeca9UNyLCSbyGi3SOX3z4szhWtaZr3U1EF3EUT1UtzOZyuYZXV6/gKBzh9vxZzPwCzy9fwH/wHT+KzkvehI2J73rue+p5b83u4AZuy7ydN5LPAslfasG+p4CxDHi8fYDXVq/ibDjDy8cfukRZakUL5mGBoQy4t3kdN/vbFWwVlty6EDp4CljGYwyaWD5TmV4bWwIUJ8Dajs12DE5td15ot2fwlNfwBMfETrRM55RAUeyD5nkFmsQmLtI5UhnkHfAzBAoCcBWkGv3S3oOs4H//Okz2Vn6X8WgqcO8mIvzVtqfUm1LDwNCxvljUfqfJYWLVlekfm4ceoAom9iCAITvT86bp48mrdwkmXLpC7B51+p3tWA1QwBRZsNZGGGy7naiDgQneBQZ1HwMMZfpuH0DsgonJiNwFKKX5KXQMoz1V3WZbrJgrUHMkOQSgRheeC1AijG5TKTHOAcp19KETqVEFFj5ErdkR0Me+0uBo3CJnJ4nYRTrWeIQSFRBDVNV5Eb1D33kBGZ7BOYFdANiS1kUVyfko6kjOy8eWJKzbMVirOluytFC5tusL5LRF8VLlODqpCVG0WF0tNJi1enjOGMYBOWVsthtsNysMmzXW6xWICHOag3wAI0zKA81Y2nkVLTKlSluVu2gREi+5JiUlhOCRY1QDfHqpGVDKlsqfWgTOIk2Q94LAKDzK65Qlv6IW/IOFQ6gaQhNfWz+336v30yqN7npTzPvlLMKhgMUiEs4JRcsWIQM13nlRYwpdBU+SsO1qnoeMPX2XbTzpN9Yb9VVUL19KCcOwxbBdI40M7/OU08WMHDTvIDg12iUsRForxSSSvfMVWGRyEhUkiWaY1zGVAkoSwXLeIaURKXUCMFioViHosfX5MsQpURKjtBO1LmTchsQNUDYjahpZ5r3W+Yj0Oer4ys4hl4JxFGEHcgEhyHjKWZXHtICnc19fKtRu7o1lDmHHs2seXWAClsD+wv7umhkg5KYE17aZITAtBZdpOVc129aZM6w97jtc675H3q5lf3/C4UT1d7421LmxJjKjrb9x2ehtQYp4mDs70kFjw6KQ+8ew9q4iNRXgPfkexaifFKz2JWMBaIbTBOha0QlJ+BY522U4qka/gDqp3i0JzRlMsV5NmxNkjpfW2RFcqEpgcs9XF8wDpigTyDXX9+Ttd8C1C9UIFedgmXKzmjb3CySXqmjBVU2AlcdYRoxlVPlh1jyRLbrQV8NflKJm+PL5Kxi7Abfnz9Ycl5N4bQJ6Wp/EqFcALgGDyVOvnn+aonuZM+5v3sI6bXS9kSjgJq12InpG0bNClNu8qX2RVd3KKncXSCJ5IAVpKhxwKCeivm8617Z2YtsOjdj2Hb5kE+xve2COcOQ0ZxMHAUGtM6VguWi+D9NlmqjZeDLmdpWndmmGAMhVe5AOAOKvVXtKYJEBiEoMtFgWnBk25t0RIKFBQwAmwKqQQHnVUppOm4GG+jJOn7eLgW3K+wtz+72iEDMU7C/7rvUSYi/qYB5py22o27cRDmbxTKrxNxUay/U4pkXPVwCKqz6z6zKAUbQQmEUsHCRKIemj0Ox/8aKBNHfAe1Ct0CsJgmaEhdBp8jJghqKkOmgCtladlsiF1BeQfAG7l6TRpwLvCcv5DPGE4D1ASNXIlsrTCSWvET3QR+BoGTCfdegoClfSeTCPyGnEOA5ImxFj3qIUaKhOFRvY6GMjShmRk/SzVU5HKSjjBuPmAttxDVdG8HyJMY1IWWhZRNKn2/UKDgxPQEqpTvhp3GJMgxj83sOHAKeAwPlpUa0QozGGYdz5nIUKYzxclsVrHEaMzFidPa6La1CJ3tmsR+w6zGYzxBgBP1VjJ4KoaoFQXNC+zyhpBJcRJY3wJcGFObJfKKVJJHSJzEDQYoqqojLRlAy4Ny9a8wOAeOV9ROCujlVXIxYBQm8sEtHRyE4IQb38s8kjqvkmFo0rZapZIA4K1L6tLgMulXUm9LoRadwijRukoSCTRxpHhHEL7yPGcYAPHXycgYIkMgtQdXAhIOhYd+TBQZ9XTLpYJwGZuVQJWxRGZkZOBWNa42Kz0QhRhxgjlsslFkenmM17nCyWyFkA6jAMmvQu9+G9F6BYSEpUqnxzTmOlIsqzpgoiZUi1uVkAkTLwiZBSwna7xfnFOR6fnyPGDscnJ+h6kajdbreTOtq7MGjeq2ahekASo4OL6nHOdWEMFLHJaxDRQdrLfjND65Ah23q9N3ktSdwUKo+8jQiYkpTRfvyeRxGQZ9I6pwDseFyN1gLsJifX6J0aM1npNBbZeJKX8J1AyiFetVxT0GRXqvdWUOBpoge1Xv/WiCHa1bOvzjJwjWxEPLk6drvvVc8GJNWgiRz6J1TbnpJq5RqGvIEVUpO8DwCuq99v8waMgrlfgvbqRNzob9e55zw9BnGTi4GJ4gRAZYoz5n6x8xyYuSpK7fPZ3ykZfQecNMDNEt7397UigBXk6LmtJkWrFGXttLtRqVm715axyWv0flZzUY7iCT55/TNIqlroyOGN9av4R6/+Y/y+l34fjrXORCDJa/ilh7+Cm7Pr+MjpJw9WHr8YzzCWYYfi1LboOvWse2ROOKsStBEBEdu8xj9/67/DS8cv4UZ/F9uywePhIb509iVc60/R+x6LsMRpdx3H7rTOj52XqGThgsfDQwQndTwebt/GOq9wZ/48ej+reSzW/zZmEoutYtF7e662Zte3nkRZMpVRhGj0mVcHm77jZW+eeFJrx0QGwxzt+/1nYO2UbyDxqDQp2fdShIwnVTQBWJMS26FzV2XS97A9HbBgk+q0MDCAS14IlWwEwKyJMc5JhWCwWmeEYokoJmcKVC/1rkfvsIOvBQ7ygRJUKnjgncEkxzFP8AQa2ojFBAwmYGEe1B16kz6YUqYJwKhLZhTsRBwaEFGvw/ax43B7P4a0xPgzT0/1ztji52i3QJrzgJfK26J65BBiQPAikxtiQM1vMU+zC5KkTb56p51rk49JUTUA3oCZMWzOQZxFQ0sVnhgF8B7ORZTiUTgiJyA4QgwO3kd4F7UImXqHx4SSCzbrDZxnlEwyvjhrsmyxBwqgCK89qMc9Z5SUkMdR6lOUBOeAnDYYBkZmYYiZB5NZxiUTTaU4WIxYIhIwUVhqcijAsqJ/l2gINIGMQiLrWkg4i1ycnoslsgBJ1nYm3WigkQsuLhL8eoPVaiU0HudFXcs7/Rcmr7VWu7YibgIuCwjiWZcKdF7lRo0KRXUyqpdeAxvNpxbdaKIa1Oxfx2u2d0k89c4x+tkc3iuVznt47xBVXQlkdW8m44aACjYmLymwS5WSDmYGci7YbLYYk9Rmma5aarSYtymXglAYAQTnGXAC0mQM6D1pHpFcRw+TbHSj0esSWHNrSjZlEANlBHYemQmbYUQ+v8B6O6LrZ3WMxRjhQxB1sZylYCKL3GXbNyXHyXlgEsVKgQSzAH9uvevTPATWQo9cgGGDUhLcOTCOM8TYieKWXDGG8TdeFcoMo0qdUYN/t9jaFIa3ZM79ZjQq44W/kzffaEpJaTZGoSEdSK1hR3Aqe3xYM77+/gQ/pBmsNSIMrvfBPFEldON6LNvvKkqWRUesf/ZpGJnTQV51vdb6OdX7q46ExtF2FQiw62ZmFCo1IX3/GFeBoKvuDThsgLdgbIf2pU7GQ9XB6/lZQKtEGVT6tNLApAXNC+ksCZaUcuIkWltgyeUT0M8N8DSlKyvkaMd2e2PHIkWHagjYdhbJflLhtepclR0RXMA+baWNTMh1OHQKklqaHohELStdwLuIQAGd7+HhUQCcDQ8RKOCbbn0acT/SAOD55bM47U937m+T17Bo9d//8t/FL93/Ar712c/g9vwWbva3cHt2t0YtzsaHeHP9Bl44/qCClTnW6QKPhvt4Zib0qt/6zG/FMizRuR4zP0cOCSfdMZ6Z36mKWEYlSpqrRSBJJs+bqgAGSG0RoxbZu+Lpci2bQBFokplztSUnr7bNoTaP2f0fjljuvhv2+ZMcIajH320tRdT+BqBKcpOgRAtMxSkcdNxKMeTgYpVMvjweMdmM71F7uuTtGkKhGqWofCWyF6jt5GYSMoMG3CjitC8hVYP50BKyv7C0NKXpM0x2qE2OVdXmUGSAd7a1z3eBBdRr3gAG3X43AbuRkqyRjglAtMBi9/y6TXNtkxd312smztQJeMmkDzhvCblBakh48biH4DGf9ei6gBgcYgjTsUmM5xBF6Ym0kq8Bv4mHJi9TcCQRE4gkHsqIiALkLZgTsgPI9fBxCcYCpQSMFOEcCcfddTUC4lgSiDBuUErBsN2Kdn8hgBOgVapZIzTSFwUghtek3JwTStpi3K5RklCcvAdyHjAMGeSjKJ9IGXK1qDWZ2TtQksJKzJL3E0MUapfTYnWW5OwmMGZtx8tOdgySiJdzKIUUsABMBey45sYwE4pSbcZxlGdOUEDhMet7dFFkeyUaQHDBC73MS10G1nfFKcvfgAVTkGrTZBNQO3FMhgpNg0B/qARvzcUQoEkkeSLWhmGsRfQsN2c+n1dvDimQiDHWDpK6JzLRlJKlmnXw01xg474wTPfeaGFAQS4Zm80WKRVJdLdFFgwuGbkUFAa81v4gH+XYHARYQMRhJQ1liqw4L8mYuRSELqsa2CiKaWOaihu2Kv8a4duOGdtxBWCNrt/UqJMkk3ulK40YBqFxEaD5OkIjs3khpVT/FdicUarTA6Y0VwGG6tiZtG2SRPuSM8ZhQOx6HB+dSMSSHNLwdQAWmICFGXL1czTUNG2y8F9uRaU8TRqzBQaHmqeg+4xVJnXyVso4AHOVavQmGfyExfXd0Jys3gMAjRDJPU/z9q5hbvsdug+hPExVxPe3YaU4Hdzf3mUDFLxr5LZGMZjr9L5zfJ7UcRhFnXW0G6m54jnY8Z8Ixq74zsb4/rErMDTnGu8BP6IdKVAbM7pCyzZO8kgsCRlQWhB7pVnZOjvZHZkzhrJV+U63S0vS9bA6bpp7uCqh18CC9KmrttITI1d6MVX5au9cbbMoj9FmjIdPIKzSBVZ5haNwLNGLJgn57e1bWIYlPnDyEVFY2mvPL5+vSeZ2fxfj40o7/Mu/8E/wz3/2c/iZT7+Kb7r7fnzzM5/CyTOnFZC9vXkLP/32z+C55fvRBSnEd2/9Gr5y8WXc6G+j9zO8ePRBmLxrdB0yZ5x213Da3UCkiPP0uNIopWaG0DtHTUw/idfqfGLP2Gl0bCyj2BvNfLMDFPS8pvhm0QAbc9P2U3HGfUedbbP/XCpAP2jNtvvuA9RSrxsAEo9VmvfSuZgBjXYQpFhkLiNW+QJzv4QL/nD+04F7+Fq3pwIWrF49igcy0bkxZkhkLrkGKFqPR5PcDdPvdvoiTUbz5F2BepzsPPvgYBd0TOCC64PdBxO23SVwUbdpFvdmu+n3qTZBPa7dU/O9HnCnm4odGxMvr+WLl+a6ATGGQk1+BRyL8S9UJQ/vI2aziBAD+n6m0p4RfQzwDoiuYBwukMcVeBwwjCPW6zWYxdDu+h4hdui6OVImxeSEGDvE2CFrNABpAHgDwoDZPMD7OULopTorFwARTBGJZijowM4hBUbwDggOPs61toUk9frggTIgpxGOAsAJnNcYVw9Bnaj9FI1Y5HFETgPGcYvVxQXGcYvt+kIpVxlllGrLQoGRWg7OS1KuJL12CCGgv3YD4AzOSfIEcsI4bidgp3UafPA11yPGrnkR5RkbrQFgeFhESxPsuWgtEp4kf9kEDHT8ZtkuJgEWcl45/DiOGIcB52eWswJ4Txp5Cui6ToFkABUCFYbvpYIoQo/iJDnYXidp8kxdjX5QzR1xUNAPgDnDoo0xSnJZjJ3U4CgFs1lQg3ii/RmYkCrHcsFcpglYkr4dfIxglhwHq8yds0Xgpsgf1LhxjmqS/zaJKkfXL0XpiBlCy9TpBhZRSUiDUIHIBXT9HLGfoe+lyFbRujIpJ+EUh4BZVPUbMNJ2QFJgkVNS9bZUjR6uEUo5sdXiFNnaDL9eV1U15wi9AY2csd1usB1kOysQ6Sxs7X2d17iYr4xFuhY6ptr5SeeOktQDmhLSOMKv1xi3W4QYMZst2gHwG9bMU2gGjFB0pJnRl0qq9KiiIf795Y8gtJXECSmJ4ENQKUp7HmLIuQo+CDSJE+wtnJbEuBu9u7y4vpNHfn87ObZsa4v/JQ73Xqu1H7AbnfAkVJ/9KIXtE0icDZkTEqsSnOXHNfSIQEG42AeMUQN6h5KHq/GOXYN9J5Jghs2BCMKTku6rk48tWqK1PLQfCmS+NNqTNaPgVDrlgUgLs9RAIDjMw7IaXea93480SHSrMTaJ6jmJCJ6dVvJukvFRqhSrI4+5C9jmDVIZMQ9LaBysGqqHaCgBEUXfZ3URXKrB0EaqrjL+9gGx9a0lits7NfNz8do7qWp9Pj7GP3ntH+LW/BY8eXz+8RfwkWsfwc3Znb3EfLn/9x+9XK+Pdd270d8WojsX/O9+x/8M6ftGdL7HWEas0wp/78t/F955/J4XfwjvP3oJdxfPy3WUhHVe4d76DXz+0RfxYPsQBIkyffTaR3Br9gxOuxuYa5L4+fgYb6Vz3N++jee00nbnOjBL0b622vR+32mvwJQWixr5Birqc6YwFVTFXn/zRHEy2WVgF/Ra318FONpmuZdU10U3zVnNs/QUdsCQAT6T07Vz7NesICJcpMd4uH2A19dv4IMnHxSBgSvmsVRGrRczXHnNv572dMCi+SeTQuOVIaVAWYdXZCXf604CJhjgWhNiGgitEV5pS9iboC9FGnYBAwBN4+CdwdFOnGbYg7EDDvSI1VNYj23GBE/7tNEGTHtOt6HbGzAyo4tUVteuX3qHG/CkO5Oo7MjCqR57xDqYQvBaCdxh1gMhFMRuQPAF3mdEL5KYjkfkfI6c1+A8gseEvN2gsGYp5B4lRvC4RiqkINiDUwdOnSjrlAQeBwADiDJidyzGIUWJjgDIRQoMcnEoaqhbdIXAlbZVqVaICKFDjDN0/Qw5DQAzLs4fYex6dLGrhf7SMKBkycfYbNZI44hh2Na+CrETEBUIpJrWOY1StXxIYJ+lPsF8KbQVF8BUULwltzNInykBUnPB1JTU+4vmOU4e/+k5w/FkJBfxiDiWZFtXCgr7CTR75cD7AKFG2b6qCpbVYKz0OlUKc+KVl6iKgIBYgDDbwsGDfJZq8aUxKRl10mM1gWzo2e8TZNJxp2BBFLGcFN1DY5Q4X8e+c9NE3UZ2iKbz2ndcAJsPGaoQVwpyBe5coz768iHngu0wSI6BD2K8MAP1zSaNKvkDyezNeHNOglf6DCSBXsC5AR1PDjFnpNAAC6NEsSix1UglT32oQ0PGu0YnLeITVRWMCEhjgvdTNAQMwFnUUecTWPVvm5cEZE3FjCyCZ5ONGtlZCmK6YTudH1+fRs1/1Xhu6S07d3CFl5vU869G2P7Cb9HxfaCw7wG8fNjJINhvu179w/s96a6n69o/rtAtDqkHyals7tmLbFQQ2Rgz3FBh6PDyPYmjXHWl725kHOqr/evb/+xQa/vVbAcwS9SkjomJStYqAT3p2IfATc17QRGYQ5OAiUUabNsdcNgCAR1Hh/rD6Jx2nYnH5nsnOS6Qedwqfe/sz+p81dbSmqRGg4C6J9Foru4Tqyc2Ga+ePIrWh/AUMA+LWtfjRn8dC7+4DILgai0YBjCUQWsoSFFgi2idxGs1P+HN9Wv4ufs/h1fOpDjfLz38Odya3cbSErupmRWIMFfqVuFS++jB9i3M/BzLeAxHHtFFLLQAnESQhNa2DEeYhXlVUdoZXzyVMHAkxSAdX13vgcjBMaOQq0/F1sT6G+2+2++WQrQ/Xx3a6xJNaQ+gTE6Iad286v0V1bPJIdBS5xKnWuPH5mWTvH0v2lMCCwdQRGGvnjWo97zaLzrx7b20Nm4lU7ga7NMrtZtMUo32el6e5snGmL9s3E+T3SXqEaYJfIp0QIEAXz627pc1wmDfoz1n2T23NQutttuDJDJhBbwAqjUpClstilLRr/MefTdDCB3mvVZAdR5aYBezSPCU4LFFoEdw2IDKeQUpZRg0gXoLHrbAOIJLACcCMoFTQGGHYQgYAaxJp3xHCLHHSAFr8shFPL0pFYk0eIeunwGIiJ2HC3PARQyDVPMeh40oALEmH0eh2AR3Cu8d4AgeEWAP4mM4F1Byxub8IYbNCq/+2ufRdR0WiwW26zVSGjFu1wjBoYsezkeJJPS9JugG9F0nuRyOsTp/gO36HHlYIecRwzCgFKm4G595Dv1MKi2X7FByQeh6jEmKpxlwkPQK9VJY8TWgaqHb5A1qlp8JTcIiF7kkhLIrHVxHYvVQZ1iVb/ubWaIaOUkSfE4DxpQw5C3Wq41eo0M3myHOelCYwfcZjgOygov67hktSg012H3lxtibNha6jveIXQfvI6zatuR8eAUcAixkXIjHJ+eMLkZJ4LZEN5U1roak87CISGGpN5EgVB5BQ6J6RgDgPHIR9a5Hj8+wTQXFd4izXiN8gHSrLtQKKEIwyl0HwCNnQs5AdB79bKZgneo7CUCoet7DzybAJHLEjJSzTRJaVLJgSGOtOyMpYaXmS+3MS4XR9xIZ6fqu7nP2+DGGccBms5kokN5LHpcrdd6wnKqi4FQ8klIEsp1bSj2n1PqglDCMCe9y/fuaNkeuUiHMK2/excnbFuq4u3LBhXhzk8Lh3olHmTEZk+GAYd3mY0zG7O76sBtB39u2Gu2uAkqoQdhGIuy/HU78ofsgKXSWs9RmsGO0xzJvuHehFsiaEngFVrX9mcp4ybO/3wfA5WTyq1prmNm5i1KpnmTcV+986/3fA0dt37bXtn+9pM/Scmv8XvSnPX7bb8TNmMJkSAGirGT0GXvuLbTLSl3aj7QQSLzUzcg0o8xoRrK/VMQ+ilN9CpNYvbd+DTf6W7g5e+bSvaJ59onHei+btEJwEUcuqtoRo3sH9SmgiRYdeEzBdbDCaifdNXzrM7+tfvfBk48ePF5wAZ49NnmNVAas8gVO43VE3+PV81dQOKPzPZ6Z3a0G+z/8yj/En/gL/2v86I/8LlyfHeN7/8KP4oe/+1vxb33jD+Pj174BvZ9hGY9xY3YTzy3P8Nvu/Is7ClKbtMJf/Jkfw7fe/TS+67l/CafddZziOu7Mn8fFeIb72zdxa3YHMz/Hc8sXdq63zpM60iyCuQhLPBoeoHDGqVZe349e2b+qYje52HQs7EaIDtp7V4zRFiRYhOSraZWq9Q5RkZPuOuZhWevAWMuccH9zDyfdNSzCUX2nhrzFOq2uOtyvqz1djoWLIK8F05rQ0GSXNwY/pkm8Sk2yGVXNNnKQK48B7AKL9vsdI79ui+lzTJGNekxG87naM9xeX7vY6Lb1fNAkdEWDO5GzaUASnNo5vl4Ug5vhKh5PIlvkInzsFKSJhzJ4h3kf0AeHPgxwvAbyCkQjiDICZzhOcDzCYQvRnSHABYAiXFgCzHA+gdwWMSaAPDJ79LlDLgIsNLVSjDo2dRNCKYRcZMKSxO5OOeIe3ndgJgxjQhk2KDzgYjtqJGFANrYKCMt5BC/EqHIKQomVrtB1tVJ3HzukYSOcdEcIwcOFCC4ZKYlXRYq7Ce9VaE9WvyDCOyBQQTl7KMo8g9S5oJzgSwaVEcPZm8Awg0sLhG6G6CNCf4SQgTEzclK1CIIk/BJq8rarHpfWUDaIuDP66qjxNRphhqCNEP29Go6pFjkUCV3x3Oc0Kv1w0CrmGchWmV2oXnm9hTs/w4w9lvNTBAews+ghpqsj1IKCgErNmcdQx7P3AT5EdN2sJreyJsuZPK5NblIB2oH7DuKoz9VgV1tsmnBJQKZ4+wEuAr4AluiId8jjUEHWZJg4OBfR98c4Ps1I7gSxl2Tx4D3GnFFywTCOFWAEH+GdAKOaiE+EzAXbcYsIAT4+aO6MVWEn0iryKqerc0Q2JSerf8GMvpjCVUEaRnlWxSqkC6AozBjHjFK28H7EMIxaD8QhxqBRJ6/7CWix524OC4tUsZ6rVu3WvrPaF9REUGwuKkWq0f9GtzayQKAdr2KNM5ixbcY03E5C67Twe8Q9L+G79ba386156OqxnwAE6v58uO92vPf13SK93oY6U3PDpA9ExGDX8G2baygnbY6KXXXbP1LY62qg0F7fvkF0kP7VeEHN47ufnHzlOQ4db+9ch5Lv6zM+YLQFrdAOiMJXHUc0Kd3sgD69zrEMGMpW1Z5s7ZW+EzBmnnxfDcpDjcEKOg4l9ztkTjgfH8FTwHG8tgOsguuQUfALDz6Ll45fxDIeV3Wi1XiGTou91ePBwZHUbiE1BlNJes+XI1zMqjS2R3+7qgUKKM5h5BGOJcnX6Ipn4yP0fo5lOLq0HxGJqpMLCK6TgqGQfJvo5jjprteciAfbt3Bjdh1/5Ae/G3/gwz+AeZjj3r/0EC+cPoNXzl7BJm1wY3YDLx59EDf72ziJpxjLIMXhOGERlnDk8albH8GdxZ1L19L5Hqd045Jhzsx4MLwFTx7H8dru9etzm/l5Hd9PBAfqnCLougygza97N+/Pu52bANT6FxKV2q0Av38OA/d2/GnfXaU6B4dIEc/M7iK4KGpWJPPrMh7v0BsDBZx011D8u5gMv4r2lAXyAuAilBBSu1Fs6mniroY4dh9iNbDQAgsGNw/v4H42DTUL5/52O5QkAyU8AYj6eTXuKs6pQIfac+iwYmoAUF2otKnnFLy34BgtpKnsKQpSkowqx2A1XkWZiVTaNEQHT4TOAYse6COjow0oX6AM9wFsQDzqvwwqBU7hTPELMFQdyM8BOFFYogHeJ0lYpYCOFsgswMKDAc5AGUWmkDPGISNlgBIAJ57rrltU7p9I4RKGISOlglSAi/WIlBLGManxCPW0EfpoRWBUXcpBjdUgBqsjRO9RxjnGNMJyVGLXgSEKPWoFg9WUJzXMvBahc8RwSGCWImd5HICSQVxAJYFQMK4eweUtRh4RvZOcj9kcrsi9SjJ1mcAF0VSPgWyxhUoNWRSgBRs6RpyN5wbEmhcarIIUYoBKRWepHC6G5QQsfBK1IpciWIFFSWqApxEpjygpYbNewYUZliWBEIXra4UoddTWCLyJZ5ujH4AlIjoX4F1EDF3DgcbUF829moIVKWAYx3G3uJvuV18Lsndk0ovXVwiOSOhQpo5EJoMc4Sggdgssl0B2Cd1sAR8CuhgwpISUE1ardT2PhMu1SJ++X0mpRzknhODAMHWoCVSYClbwXlSt/OT1lRyKUY17GddFgcTWbZG1WKSBjay0JM6WoC00qBAE0EQf4DwABRY5Z1Byev+lKtBRcfouOJBFN03WmgsKiRy1UUt2DGbWui2/wa2NBkh0r+Voo/H2ZgxlwEK57LtRhTIZkU/wtD/Vde28oXzps+YG6qI97bvbWkP8Sd58mUeMzrqbd7HzvRoTNQ6iSeBicOgCo00M4nf2Yj/p2p60faUKPiFP5EkgbwfMMe+MBQJNoMpAAV1+Ll6NX+aCIW9lHHlXk3in7a135HkkTlinC1USm3IrWKkgjgnJwOqTgIWBekxJ29YkMZhxNj7Gte4GOt/vRU6EQvT6xZs47U6QyohIkgtwf3gbp5psXJOygTrWHUtRvVTGGvVrn4GNkcRJamrsySQfet4GEFMZ60A24HR/+zZu9rcOAgugMVqVqlS4oPc9ejfDMhzV6NKrqy/jKB7hD3/id+Bj1z4J7wJ+74e+B4+2j3A2XuDN9X3cnt/Ate46juM1zfd4hG3Z4iKdVwnaZ5d3sQjLWona7j+67qDcLYNxf/MW5mGB0+7GwXs4lJR+aNy2hnsBAJ5YNE+cL4BpsXuKZlEqe9efmFOzHynlRpRo7x3zJFSxDB3zqmjWuX4HiHoXMKMFgv9NELEo7FFaOQkzkKY/YNGCtu2DBOxHDZrtLm2LSc/9SuDxhM8OfT99R0BD22JuFxGdsnRT50i8CwBKnrS+zfjsO5PYhFhxjGqIAAVBDRnyPcg7uEDookNwQO8yImVESnB8hlLWSMPbcJs13HqDkh+Dy4CSN9XI8zECFEGuA9wR4CLgepBfgt0Sia6DEVHQYeRBjJcsJPfiOvX8E4gHUBmBssW4XaHkhJJZim/FiG62BMgjFcJmkzCmpJ7YjMyjUKVgtjZpte5YQdLxIuL4qEPwgKSGH/aEsSMgOEQ/h3aZQDtm1BAlTxK9kxLRBAwzZ73+Edv1CgRGFzw8CfiivEXaDFgN53DE6HNCd3QK1/WIsx45CX9+GMYatfAtqFDaw2QU0yRlyqxKKxMYmcYxJgAKrl7nSSnK/hXAjFKWZGQuGZwHlDSKfOm4lorjaZDk75LBaYPh7G28PW6xOLmBMFsgLk5lTDR1LUTiWYCZa56DuQmERhQBTMnfUSuPE4m618SVF16/037ouig1RmqOAQA4qdKeMwZNkgdYEtA1UkVkUSyTGRaFJGJGch6ZATiH5fERwoIw76NUWI+S+FyYsdouJMrGUnHeJuJcTPFDnwtNilpCcZIWNLIRVKIZUDqA8+g6j1w2yIWwXW8g7K4OLkiBwpQTUi4YxwyrcJ/SiJxLLWZXtNI7WBatQfO6soIUKMWRnYJNVsBQzMht5KxD2Rk/hRmUrRjdFB0j45R/nVvrrbYK06nIgmd1BIyKYLUvJOF28vhfabzvOXP2Wxs5OfR9GzmwbQoXKdHUFCPz7PSzVu3q8DW1FCY57uVk2xrBod3rtvsxlrEU/pJ1pwUzT9sOgYP2u6mY3uX7ehI4qTkztEsxuWq/XJI40rALGG3f1tAfterwvfVr6P0Md+bP7SA8GzePhgcYy4CZnyM1xdIIhKFs5TNN0GVMz/dQP4jBLWMwowBlQOGM+9u35J5AuDN/DtF1eHb+PtzfvolXzr9Ycxk63+P27C5mfo4//rE/Dqcgw5HDKp3jx1//cTzYPMZq3OC/96l/E8fxVNXMys4zkMRx6VOrKJ45offzGt0rNPV14YIhb+CUrrWfT2DRBwN2Dg69m+Glow9dAldXVaG3a7zV36nRpDc3r+H11Wv48dd+Eh+/8WH8ltu/tVa1/vi1T6D3c6lJAsbP3/9pvPg/+kH8H/8HP4o/9KE/IrkX6QxfuXgF17obYDBeOXsFv/jgl7BNA37wA78P164AC/W+QLi7eH7H47//TA/9/U6Au8pkv4s5qKU4mQ1CwDvSnmxeMKeeRQmfuE+znc0zIr/rLoGGUgYUTXQHZC5xtKsR5cihPwC8vhbt6XIszONfXf27nnzdCPvT2E6kwvYwA611tFXAcTlasUORumLAXAUs6n7712fWk44Z2vu/GU3VMNTNnZsGgHh6TbNd9hQPom5H4sD2XhRyxJ7PIJfQuQGBMiJvEMoAjxEoZ0DZwqXHIE5gzkAhMAJAM5UT9SjoQSTAwbljgHoUmqGUGQr3GIpDYUJmICWPkgEU4Yey0wJ0pAH1QkBx2G4JOYnajFwjsBnXYDiMWdSAci6q5iOGHCstzgdfvXMi00ogZMltCBLUF/39xnNpBnVRCWMXpP+UxmPjrBTR7jf97MnTZx5vAFyQx6FW5DYevtQYUONMLFGAM9J2Dec80uYcbkbwvgMFD9J+Q3NsmVhcNdDty1pHBGIIW4RgH1g0w2oCSoWRXarvU6X2eTEqCzOc0lk4BWQ/wuUEOELJSRLsfQCyRmdI6ETb9TlSHtVY7eFCD0vMYWLAMQCttWF91ETYnDNetXKJtc8twdnGvL1TNY+C6gtV32syrXAoGMdUt0WuYaL1WL9AnznrcwcVxOjRFQIyEAMQfYEnUT5hBuadgCUmL8UalfJVGGB2StskeW+0tkXOZlQyvHPN/QnMmqJNYtB5cojBq/OBQF76zvsOXWHkIF7OUgrGJPk7OSek4PWzIOpaNoeCQUqtcgCyGWf6btmzqYBTHR0oTiSMi36mP7mQHttyMNpJ6+vbzEhq8xGcPg9gMsabPZ7K237I6JYZ52qD+p0POhnKTCS5NHWdeLfX9g5G+YHPbC6wObIFR7/edqVx9Os8ZhsZ0A+v2ngy0g48mrbQYNLq0Mt4tFPIDpBkYjvXNq8xlAFzvxC6lF/U/AgxpDzIASbWWaPOe22ySyb5UahneOZnOB/PsU4rXO9voXcktTH8DMt4hDfX9zALM1zrr0veRdmgd7Od/vYU8NLxi9imX8EXH72OVMYdMMGQYn9G1RrzMIEcTlinFaijWkG7pV9J11qE7wqvN1r5ZXlfJlpUruOr9c7XqFEZqqKXcfetxsxJd4qP3fgQnls+V1WoAGCutSksj+L2/Bl8+tMfwi/e/yL+X1/5u/j2O/8CCITOdTgbH4GZcX/zEG9vHuHx9hyPhgfo3azmthxKvr4EmPZzHfZAu/3X5tRUB3EzKvYjFE9yIgCH84ba1ooRNBc30eqt76+IOl3VjD/Q7m/X62DqZ7K2uupURN321zU/vkN7amAhhaMmQ513N6i/khrZtp9JNdpml7wovPty60eXPzsALNrv939vDi8/a6jboguTYVVtoxqlcA2tZZKC9d6pIlNojKwmWZytYBhpUSz55z0kHyILcPDpTVC6ANIDUN6A8waZt3oJDkxLgGaAP1VE4iDVRQMyOhR4sAsgfwJQj4SZUJNSxmYzIJctCg8oZkhWgDeiCv2a97kwthtGGgvSsFUAkZGKeIUrdifhvZPmOYSuR4gR0fdyr0EmcoJUxHbFYeZ7eEjROzFC1dhnpb4UKWpFarhJxGcCHmLoicE1gQkzioHogTImbDbnyOMayAO6LmhEwaEUJ8Y6MjxLrsfm4gzjsIULHebXgNDN4EKEh4cPkhdk1ZENULR5Bk6rZxuwQDOm61iqY+8S1AYzwysnvxTe2R8o1UPNRaIYOUvEgsYZShpRxi04SUTDjxuNZgw4f3xfPK9pRJwdoZsfAwou2DlYIT1G0rHrQNEBrpEwDpMSlkXxWjDR/p7TWO+vyiaj7M4NbAl2E1CsP2tOQQa0mrdOECgsKmTLZYfkClxieGQ4JCAPAMsEOg+9VksnlDICMuL1+QQFrB6MgFSECgUENfhHrYXBNh2gMCoIHcYER7JodaGrY69osmAf5xpu9iotnLEdnNTDyM4wE3IBhsQYxoyk5ytZ63AUoUhacnfRWiFcXBMBsnopkM/UM+sc1/2lcIeMKWIHuMnr/vVuu/SoiSe/y2ee5ED3F9hD0YmrFsa6L+/9/YR2yLiYIuYqJ8mNl/EKc9yMxKtkXd9Ny6bggqlqfbsOTu/buzv2O0Udniap9JDX155j0nwsgC5FaQBcMob3W+GMrLUoxjIglRG3Z8/u8MgLF6zGMyQeMZYR5+OZGMmzWI1ua5G6nZrhRiG56jqq9K1WWwakj0+7G1inNe6t7+H2/A4QGAt3hNPuOo7CMT7/+FfR+x63Zndxf/smHg738dzihZ0x0vsZvv3Od6L3PX7h7S/W/IKOpujE2fgQAGHuF3hz8wbOxzMcdyfYpDXub+/jhaMXcRxPd2REzfFxVSK/tQm0TgpDFi0Zy1AL8UnF9gnwD2WDe+vXYRGl9/kXUVCwSuc4jqe40d/Gy8cfrud5PDwEo1yiJj2/eAF/74/9GP7w3/738R//hf8Sn/1LfwM3+lu41l/Hrzz6ZXz5/FV84dFX8Gi7wf31Gr929mtgZhzFYyzCEgs30bXaNciUq95NFXSjuO3k9ejzpsk7VtepVmHpUNs/J+kc0YI7ZsaQt7BaI9Y8+UqFaqOlZo++29YWwLMoq6lneQQpB0AiFdz2DUOquhul6mvdngpY5Jzhs2kwYwdgtI1s6LZeafPI6p7VBj8IAqZIxiFgsd/2H8Olx9IYetx8ZoayHddhl8YijhWbSMUbINQNC1/ZgyIQrKCY04JwhM4nOCQ4rEDlAsgb5O3b4LxGSisUDHKHJDQm+OsQXqdDKRGZI0pxyKNDZqjCjSTmppTBwqQT7z4FFJ1GmYGUZJCxGtdEDiklAXg5AbAEUCvgJ9SbUjLSuJ0+s/4jUwUizOadJvn2qhENpDQgjRlDyTW5KLqCG3OP3h/X/AoxzhWUqqpO8BN/ks0zSFAwCt1TnkeBeHk5S+QBZcRm+xglbVE250DawnsLRcoYTCBNSIeWWyEEklyHzcVjUIiA9+iPbsGFGXy3FOOyqLY6FIDpRbgardCXWi1SM6zraGsAsm3XOPbrRNJO+DLuLVFX35tcKn/fj1v5PQ0TJUbVo0pOyGkjNDU4pCFhNT7G8uQ6QidRJVG7megITilvMXYIQehAMapsKwBWytAhykbLp8851ffDvmPrkxCwWCzrfVr0qZSs1K80JadTfTWxWSecna1x795bSJoTRMEjE2PDDuN2BDPQzxxmM4/Z3NdrK5zAPIJoBJwkd5dCGr3wCN1M8nO8gAwGIbNcs2A6y32BAlgnRQoBmACLByrFz4x+YqDvIlJiMKcaGZH6MoR+5jBmBRMpSXJ4kShgsZ/ZKGUTtcwKE9p76VwjQ1wKqDgBF5kmYObT/kz4nrfqcX/C4mj0KNIXQmaDJxudO97WA1wWW+RbgPBOXn4DAeb9zvZi8qTyY15u+bjsGB9XRwAIk7zp7jUeolXsew+NT273YnNKfe9w+F3cb0kdNlfVrLD72a+lYF7OnXuFvAPt9dtxrNCYeduvUpJqP8ucwSiqgjVdo9B5JBrAe15oO593AVwYI0bcnt9FpFg914DIlhYuOOmuSfJqk/BtSlCHIlzQCIcIPzlMdVICbs/u4KS7VilXXzr/Vdya3cHcL/Ch0w+rt14kZlNJ+LGf+zGcDxcYcsKf/sZ/q6pDffj0Y/gzn76N0+4GUhnxuUefxb31PTzcPsJHrn0YN/qb6LsZet9jLANuzSSZ+bnF+xC9VA9fpfNKe2pzMayt06oajJ3r4CnsPB+LPtgzkTGiheF4Gl+i8NbhWnddz+OxyhdIZcQqXaD3c+yb3lZQDwC+cPYr+Ml7P4lXz+7hmeVNfN/7vhd/7rf/Mfwb3/g9+PM/+b/HB6/fwQ9+4AcwloRlXOBPfOIPw4rb3Zo9AyLCG+vXEFzEApLID0hCdjOoqt/+EKhoRRQsOtMqiNU+0Uiv5Xu1TgWr4N2qrdnYsONkBcWhOXYdt5AI/c5nbO/2BAz2o0X2DA61Ooe279mBeaWlie0XCoyug8P24PF/ve0pC+RpBWnsRitaAGBFoxR6wYzXakDtwZAdoMBQ5Zo67i8Bi6vaTpdeFWZGtQEnoDDBIJ3gdmkf1TukdImW/lLJsKBKp/DBIXqCJ8mdoLIFlQtweQjOFyjDm+A8gPOATA5MHsXPwa4HqAejByOgICAVkiTpnJAzYxyBlAtKLhiTcaqz2BFQyodaZXXBcVoPw0lSswELVu+wGDRTsT8wV+1+ZgZMFcmb5KhDCF7oKX0UZaIsnHXO4klPVvgtEjhnRKeMfvX22ujhYi+PbwDfNKpYx4951nWITNGjNIDzFsPFI3DaAGmjRZbE+w4YfCJNCHbIEGDgSSIgeRwwDmv47QW6+Smc76TuAMs954ya72xWr9OwSQs2YZGMmnOBCqQJe/Q5m7grWG4LrwETX16ThT1rLYwCuCDAIvSYal8opUjlhUtO2A5bpCx1ICowdKrmRhIWJXJaoT3C+6gFFyUpnmwcoXn3qid4z3tcI2FsL5csYzSBD6fFjLgU5CyAQIBR3lE9qhQWBrbDiNV6g7PHZ4CLMgnHDoUcEjlsNlkUlXgEw4NclCfOmlODDKICOAFwpTBg1XQ9QC5q9E2JEkzIhUWwgbm+V9Z/BBKjg4vQGuvsgeppIgLIOzBL9Ic10d8HX6NFXkFE8k4UpypwkPeoZI1UZFdBBRFV4EEkNU2oGFc/W1rX9LwKT6p0vwnbfs4B8M5zvBm8hzjyE0hgBfBThOTdNAH1EwXJ8bQ+1DyRdxEhqHkHT7iHQ4Cnggg13A+tla1Bbz/3aRtTtN8K0uEgmLFt6gQFm1cniuA0tM0w4gpw2murf9m7/g79ZIYZ69xuV7YvxXvoeicPr4CRmZuha6hSzIx1WiFzxlE8gaO9McVcbYy2VfAmMwkcOeQyebFnYYEZFmBdHx8Pj3Aar6F3M5x218WAY64G6D/44mdx//E5xiHhX/3IGziOp3DksQhHONLaDufjY/zKo8/hCw9fwb3VA7x08qJG7AI616P3I3on9ybUS0IqCW8P9zAPi0pLksjCto4Bk7AlQJyWBPXK74LMouuHI3cwimNUss7P0KnIwsPt2zV3JZURW0jSfCCpbh5dB2bJo3pj9Tp+/Cs/jy8/foyP3XqE73n+u/Hxa5/Cx69/A/6Tf/A38PrdC/zgB6WmRXQB71u+tBOdGlQ5ziJZlr9w6dntgP/LQHsaq1c/97ZWhB1zGjK7L7SA6YLQJJhXymrzLk3XcNkRcClCamso0cF58JAjY9/Zt388izIdanbfTxMdeZr2VMAiZS329QRjv/2k6OREgNAdAOxPlnW/Olni6ln5QNv3PVzZUaR1FWSjajgQBCh414SULPmUIMo35DRJV++nocR4J8Z29A4OGZ4GuHwOymuU1VvIZY2Sz1F50uEaKHgAEalE5OIwJIdxIKRMGEdGyVI3QryXMpEZ2hbajCwbavmg5JV8n8bqAS089T2ZOhUFmMddFhXD+mow633Fbo4Qo1bwncF7AkFpKmBNhs0YtNAemOCZUXIRtaKtJOr2sYcPHv1MqSom/ZmzJM8WedjeoS7a5AFi4+67+nzEw80a7UjgcY3t6hGG1WOMq4eaWzFCgAjXiqs5JS3yJ2DDqcc6m0fHe5Q0Ylw9Rl6cyrMOc7g40+rbqIN6p3K1jdUWYtPUnzJGUAdzqz6kT0UpQXKMHdtdAUlRhSDB5bJBsHonjZToBIhdzeshqCLRKBQqlotAzYPxodakiKFDCBGz+QLeB4TYTdjBh2pwWG2YahAQ6WNzcBRqMnr1spLhDZ4QPQAoBa6kQUBukQRLeeYkERpKeP3ePbz25n3ce+P1KscbfICLc7jZMcbskAtw781H9V4W8zlCDJjNepV8JniX4AiIRABkjDi6mPpC+yXEXn8XAEBEIG80KoeUCUiEsjHpZELXZZG3jZPyPQPoQ48u9PV5F6DK0Gbtx1yi0qfkfS+lIOUsYzYXpDRUYJFyqRELk6gtOi+4nOWfL3CqgCVStL/xVKg2ivU0rU2kbqMS+1420G4V3db7zs1274YmNBmTNCm06Jzj9kBZ6+Wezsl7yekTmPEk703Lr7ZtW838Wq17P8H7gFe99pXN/UQ1amV86qyy4QxWuoWsFVaYLbhw8NiyX0bWxPrO98glgcEIFOu1Se5DVvpMROf6ne/rM2zAR/ssUkkYyrYas9VT/i7aULYiU6zjeubnIldMUx2CgoIb/S2ACJ3rd67LkdupnZDKCALt8PfbisaWlyB1NULtu7lf4BPXP43z8THe3r6Bm/2dSt9b0jGCi/iDH/92PNqeI5WMn7z33+JXHv4KPn7jE7g9u4PT7rr2ecKXHn8FN+an+ND1l/DR00+i95Kbcb2/hWvdjRqdCE6iMtuywX/+2b+M73vhO/Fbb38HiAhnw0P857/4f8Gym+Naf4Lvf/+/UiMHRrHZpJWu/V6jO8BqfIzOzeq21RMPADRJQM/9Qoqp5Y2qOHW41T+DX3z48/jco1/Ff/kL/w3+6Ke+C7//A38QADDyiC88/mUAwO98+Tvw7Xd+G+Z+WWvZjGXAt3/kZXzq9ot4+fjDePnoQ2DsSqfas7i7eA6FCx4N96UgH13eph1bUmcbcOzq2Gifv+cAK2LYVmVvt2upmPtjBpD5xQQm7DhWO8NqphQURIrwLmDuF9P7w5JbE12n11Fq0dexDDAZ4fa9SCXtRE32o3jt/dXP65w4zceWgL/fz+9FezpVqBqx2AUIV3mauPm+dRJcCS7sm2pkXT3htJN4e+xDC1v9uwLIKdmaGpqN2YEhODW0J++teQAMoMjiAXhX4CjBlQTiBJQNOK/AZYuskYaco+QqFELmDpkdchGlpVwgBdpKQcqMVFVkMkriSb5SgUXNVakeYjMihMqUuWguiPYPCMRmTIqnujTed+8mTX2LytSKxF5yHqTgnUknQnjrtiDnjJy05kJOIotaCpwnLBZzzGc9+q5TYKFKPhohUUc/qvQf7XoOvY4FdkXoKTC514zt5jG268cY1mdaYA0QBSSlNRRb3BwIBY7Ug1M9/BmFAD8C7CTZedyuxaCMc8nN0IkYrgULrVcANWpQYxO2aJNuryCC9G8xWKaxK5PQ9H44N+XCOPKAB3zjJSSX6/fT+Nbx6L0AZH2OXD3hNtnZNXOlcZlcrxS2CyopTBNcUoDtePLMCMBr3hl9gQRIiJlGgE60XJ+pqR1N8roTSDIKDUNofkMace/em3j77QcY1ysx+CGytJkBFMbIEYWdFjeUe0spIXiP1TpqdJEqhSmQgE4CI0avoCrUdzxlUdiQd1/60Yeg9XuCjkhJlM4k73MpBd57pJQRvFOa3GQEEzFgxScJqjLmqwequGkBL0X2T0TwLsORgBB5LydQ4VVxKqvRUKNCRYpYSrSjgH8DFpCvpu3n6RzYQMHr5foHwK438dJ3TzDIn7gP0+TIeIf9p/XAFmwhUe0X7LPjtsezfdGsW22UwrbZb22fGf8/ktB/LFplx7LmLDKJ3TXXjHDaA20iUx2q99py4fYjKEYPMlDUGi6tF/RQPwoN1cDNZfA3gTFpF+kcnjyW8ViN/lijA3ZFdl7WaJFw498NwJ2u+1AzO0eA2oiSc6UeeXiVMpXciOg6HMUTbMsG63SBsSQ8t3wGLxy/UM/x2sVrWKULnMRTPLd8AdH1+Pa734J5EOM+uojECRfDYyyD3O/r61exCEvc7G+DVf3pb/3cz+LF0+dqsTtHHi+ePIeT7gTX+mtiwLcgFVTpdUQOYEbijDfXb+Dm7DbmYYGN0qcM7LX7EpEqo3n0vsfZ8Bi/8uhX8HD7AESE3/eR34KhDPivv/B/w635LRzHIzy7eA7LeIQ75S4W4WhHLtaTx+/90Hfh9vwWHBxeXf8aHg+P8PLJh6sxbufu3QzbssVWaVCXvPR7YNzWqf2ide02Nu5srBXOapTTu5o/ZG4/kCjOYk8STd7xNqlcxqmUE7Dx6mx+oCkKV52TNkeqe2CfgmjXYm+CFdecrskd2IcvvafvRXtqYJHLxGW19qQQ9k6IeeeBqSn2Lm9ufwDZz0rFsO9AlXbSbgc0fDty1cOplzcl6kL40M55kPcaqQBKFr6yqKJ6eCIEyvAYQbxFTmdCbxpXQBkBzlq5N2LIHTYDYcyEzUhICRiTGn3MSBmqKJPVS5m16rICOeVXZ6WNGKggAxewyiL6F2m9BzOQmMSwrtagDF7nHGIUoz92nRag2629IcXHGFwg3mwf0Pc9QHLNKW2w3W6xWW1AzPBqSHkfcO3kCMdHS8zmc6kNQKj3bLk5Hk76uXr7zROoS6IaqymL6o0jWVhX529he3GGcb2CD72AoRgAVsnPnIDaByoFhAIuQIZVeGaU4tDp1/3mXIzorpf9AMTuWFWu3JRTgcnAZj0fTNkKpKel6gm3iYqcRArqu+BMkrhMUZEwVX+eAImv+RSU9nIeKgjXitkaGQpaAM4uCWDklKV4oEmtEpT+NNUDaScjsNDRZOKTZ8I7Y24q2iV/y2dQW9op07eot4CLygEnqUTMOUEKnpjRzCgOWA8jztdb/Norr+Dhw8cYNlv0vSTXM2fkYcS4vkCiGZgCyHXq4c9Yr1fTOFcKoCdVECtZQIYjLBcz9H2H+bxHCPZcp0hs8DJHhK5DjDP40Cug9mAW6l7RsSo0s4AYgoCVOMnykj4rpzRCc0owoAXyMkpR73thFO/gs0MpQkuzOVfqZJRarC/njOwEaNlcVkqBt7nCZc2l+s3T2gXRDPNDTqaJQHgYVBym9cgeh5KG30172iTr1vhIrJ79A8vpoePWfWnfgODd75tmURpmkSB1cFXK02kEWyIjvhoarTGXyjQWCmdNHJ6kmU1ic1+Osj1/4iRqMyB45fu3VJCsuvn7Bk7bPPm67sq17Br1FiFwynX/tfMvYBGW+EA8rvUMjPeeihQLTUhC1WGCSW++mzFgtkMb7eI6p5EYdNq3qYgBekQn1aichwU67vFTb/0kTrtTfOj0BBfjGe6tX8fj7QU+eu0j+PTNbwEgAOmvfu6v4PH2HJkL/tQn/iSO9yphA8DZ+Ag/e/+n8emb34S5X+Kn3vppvP/ofbje30RBwUU6x3/7t/87/PhL78ePaM509D0+c+ubcNJdwzwsEWk384GIMGtyH4a8xVC2+KWHv4yPXpfoyHl6jLGMOO2uoxVSqM/NBRA7zP0Sn9/8Kv6Tf/ZX8b0vfQSfvPlh/P6X/yD+xhf+Gv7w/+Y/xSc+8iK+7aMv4y9+z//yUgE/sxO9C/i+57+/evb/7it/Hz/x6i/jP/xt/54ASH2PHDnMwgJpTBjLiNLMB23uRL1GjTa19ughsF7lyDkjlUHqWilg9fCa7PzOzot9u5doEqawnmvnO+ayGw1hcfLauYIySvbnuBY825xpVEKjnu3nDl3KqwLX+be9pveqPWUdCwvjvrsLYl0bxFMsryrsZQbqILCFtm2HgET7+85PXcDbg+xLwgJA8HHHO2TJwQQgeEtOFiPSHqa4Rxle05SJGZRXYE4Y8wpjHoXbnqwCb8JmZAwZWA8QlaZRPO6lAKmQJkxzTdgcFUwUTcBlblSBzDOmA1DqT2hSrF57HYwuQDJIrbKwg/PaNwT4EOFDxKyfI8RO+2jibqcinjdbnH0IIK84V2sCjCXh/JFRu4y/T5gtF0ILc4QYgMUs4s7tGzg9OUIX5YWZoh+yABIZfSeoZ5xUehYqS6u+Ns4oKWHYrHDx6D6268e4OD8HlQIfe8T+SPjrgHrBMzg7EASIZCIwpVrd2OoKlFJAXOBXW/jgMRSHxdEWN+IMuRBcKiAX4X0H7zo1CiWKU8AQSV45j454VHoUmbHjlIKkv+tTk2Gr4IOn+hwWFbL3wvIgbCwAyVgQsNdCKFXmlxSrXh9tAywIIXqEaAnO5gGhOg7k/BZJIn1m5hExZS65vZwTxjRCC5SLp7yJ3pRSwGMG+YjgnYx1ljGeswG71kHhwJDcofuPzvH2wzMMSUK5DmyhFjA5hTUiMpAxIkQGs/RpSqPQADVqQsTI+o44BZpMhIv1WpTdgkeMAphn8w4xRnRdBzgHV4C02WC93qDWaXEOIWq+B0kuhVSB77C198+ZapxHF6MY/tkipFY3w8GFUPnTjFzroAQ4FI12lSJUJ3nOk8PEaG+BGSUEmZt1XOecZXynAb/RrbDMgXqhO8aFheeL1bMxp5DNX3UM6n3i8iK739qFUvZ977xwwLQYtxzpQ8W7ntSu8oq2tCozuoyuYYovjhwWfjntA5GR3uZBgJUL2mcHPKr1PB4Bh6+hvc/9vnQgpCJjqteKxlUylQj1qM1+bcXwQ3QpU2BKnJqcAfEgS3XgU8z2FI/EaNJII2jn8+rB5cv88v3cEOu7Gt9XTz40imzH6/282izU0K7MafTC0YuISpfxLuBafx0/8pE/tKMCNPNz/NAHfgibtMJFusDnzz6Hs/EcXz7/Mu7Mn8Gt+S187NqncDGe4R986Z/ixeOXcLQ4wTfd+gxOulP0fg6JPETgmTmCc1inlYBLLljnFX78lR/HZ9/+Av6H3/TvYh6WSJwkRwGljpnCIgHfsdDEzsczPBzuYxlOqqzroXHxYPsWHg0P8eziffjGm9+Mv/Q7XsTf/tLfwU/d+wV87/P/Mr7//T+An/yffgw/8n/+n+Of/Mwvgb+bd/zIb21ex5/78b+Aa7MZbi+u49/+5J/CLCzg2OH3f+CH8Lte3OCkuwaCqxWjbbzM/QLdrN+JCO47JVp6Ybvv/lgUQYCpKrsjjwh5J2oS+4F9bI7aoWYemGv2aUq70UpXx2YFAJiSxW1OafeRXA5xWNVjM2pC/liGS7bzVYnf8re78n38Wranl5ttvKtPbBoaAiZvkh5EvrZfqTkcTV16FbCwvy8BjOYkhwaVTeY1FKbyjdWj6KYqvNCHXwrDGaBA0X8ZzBtwGcBppWo2BXlUkFAK1iNjm4DVwEITGrNKaiqNg1nqGOQpSsHqEWlpIdZzchuuJlJbVEYKCxtvnkA+ilfdCbBwJAnIFqTwyqXvu7lGZZxGAzIoJXCmOiETSS6GPZxCLPQVLiiaHOYIiKHTSEaU5HXn0EVg0Ucs5j36LsIr/WcKpU8GBJHUWDD/pIUUq9Ws3VBywjhssN1cYNiukFOShPkQQT7COKGSeCvqUWSHcWECRyRedEmMl/oKlArcWNCdX6DAYXG8QiwBvvcI4yD9HaLgBaJmPLtq4Ls6boBaHEuzvqfxWq18cB2Lk+JUu5jXCE6zLxHgfeuFqS9V7bP6GRn4oHpam7LkHlryxHR+KB2pRlrU2OXmvSV5IEqxkkiNZ6NFqGekiKfPKaiyByl5I7YwG14wugWw2Q64WK1xdrES4z4INUtugyFJOKTzRplAOCw3gmoExFlOkN5zJi8ACeIksTuPMSIEj1Qy+j5XIYOqYKbvJGm0Q6R6vQJFKZTnGChUFPjIexDV4PfOa6Vv6b/CLJEN5+pDrM/dCnEWBts6wgzHHkCB9wfURfSfRZTseY5+12P4G9Us4kC8a1xMwXh9lhWP85U1Ili3e6dF0Bws70V7J0faVyMpe+gc7bpmdNcCK4QlzgOn0TFrEwUDdf2c8rimtm+Ited6t63OE7r/fr+00Yv2+xaEXbpvKNGDp7yR+jmXqmrU1lo4pHTV3tf+de1Q75prqWsNprFp99fec5t3MXl9py3nYVnpjdD187S7cYm3f627gcEvsYzHOBsf42I8x1fO7olTAIyPnBY1FrVwKoCxjBqZkeN2rsfHP/EyPnjtWTQi8AgU8erZPfz4K19C+kyyi625Q/uAypPHSXeCVBLurV/Di0cfvJRLYE1yHB7ijfXreH75Apb+CMtwhOePnsWgUdGT7ho+ef0zeOHFu3jwQOSALQ8wUMQ6rfFTX/oynr11HZ5cjT4QkVbjlvsoNUo0PSeTTr2qtZ74AsaTZr39CKnV/iDryQOggsG1js1VtLlDDpCner/MGN6/JwWwrYOmZSvsgwgD63QFwHmvHS/WnjJiYR7LyyGgr6YRQZV/sDMPXgUMLu9vw2F3otxJaGkiF6UWxZIFOvggai26j3mxc5mSHoMTfr7jUfInyrpKPo6pYBgZwwisNowxAdsRouxSLOog2vI5jwIi8qjKTCq3CQaQd0CPXLN4PgHl5ZMUAHMtcHAO3gd4TcR1UaMUpApWJDUeuk4kRLvZEUoBhiFhHBPGoSCGgBgi+t7BQr9V1jLL9XERf3JwAAfC0fIYwTv0XYfl4hhd14PzBsxC23DE6KLHLDqh5Pg4UX6MhkVQ/nrjLQfDsqVrTgszShqxXZ/h/PEbuDh7HWncSh90M/jYo9SkSCtAJgFtpxEBFyM8AaSJsTyOQN6gcMKYSLg6mfHGmw/RPVphGBjXbt7G8uQ6CgOxX2DuCMSA9wymUD33XIRu40JQZTBXozmW7Lw/fi2oUTDZQhOonbZtlbrM0O804mARDmaG864B1aifVypU+85UcGNQrr0qff65TNej92oVocUAyOAygtMWJY1yntiBnD1PMZ5zzpUi5rwHtNbCFPV0UIkH+BiRhxGvfOU1vPXwHA/PV1gcnyLEDshZjXgHcjPhIzrSgpIFDIl6OR8wC51Q+IZ1HVNWq6XNT3KYcsbSKIvj+dmF1vEI6GczdF3E8dES81mHftYhBjHOpFCkUJh8JAlSsJOIHwPZ7tm5Ws07xogYguazFMll2g41lylGLQ7pPDTVW7i4eTLmigEsmpSiWMKA0udECN7rdoQcn6zD/l60CioOeOVb41a8f5P05Q4HuG5jsPfqWgvVePsar5etsTI5oCa51Sd5+9v2bvjMllRpdStqI0l0NdWf3s/g+LJRTSRe9XcGX42M5TvI+7YGujiZVE2uMWAOGfeZrY4KQE8AANYYQO96OE1wtcrrRtcxStT5+FiTZANmeq+HiqIBu0Avl4SMggjJO7DiaO29EaZ+FhlXVyllwO4zrA5KEEYeUUrCIhzpvSecpzOs0gVuze4evN/OS9G4b7zxWzBc2+Jj1z+OR8NDrMYViBxOu+v4ox//Ydye3cFQtvhf/H//M3zLsy/iX//oH8K17iaudTfxE//9/2LH2Awu4n3LF/Gh6y/h2eNX6vV1vkdgUeOb3hNX9/mWW9+KX3j4s/g//cJfw7/3zX/mYC2MXBLWeYUvPP48PvfoC/iMUrsA4He+/3eD38/1OogI//Xv/YsYy4B769cEEIHx/qOXcRSP8a986lP44Q/9bnzo5GM74FgS8pPKn7p3rB/RPjdrreOrjQrsrrsWYZP+aOeUoQxoeTPMjE1e6fV0ddyv0nlzDTIfWP0U/0RIMzkcZWdXr8kijF6do5nzDiCMiHX7/WYSxxY1tbkiuA6evAowTNG8nb56D0HGU2b38SVQYR8DmCb3/Z8WmeAJBACCAKluR3X7g8Bi/1QtyrTv9r0+1QCzSaFNQBWP6zBO+5YaJRC/pkMRAwpZsv2LaO0Pg6i0bLYZw5gxpoLtMCLlglFpHlwmTyeYpwRaTnoKe9lZkoN10na1EJ6vHH1JLvVquCmNwsu2znuE0IlXtAvVOxqjhAM9MaADNOWiTiGnEqNcUW9JBZZNSOpxDZb4SkB0BEdaF4BGEAkVCGWNYTsCCipEt59Rslf1m6ngmbnWXHNfjSVcn7OBV0l+T1hfPMB2/RBpey5yqK6XkKX2RzYwwRoxQDWTkbjAs0nmRojaT0ApBBotuV7qd4AJSAWPz84xZEb/+AxH186xPL4uikHkK10FtsBISEQ/01wMk2ak1qO+M8SvbLsUPvWL2YRETpXNXI02GXezjnFnxqcBFQUQh6KHsG314jTaUvIIzpoU7DqZ1GpSHCpNDyyCAQRRXpac/oCczQOpxe8gidEVrNp7oTKzhRnrzRbnqzUePXqEzVoAS9cvEENAH2dYb9YibOBnCBAPFg2Dqijl+u54L1Na7HsRMygZnDS53zOceaG4wDkWgK/9WCOXJBSkcRhxdn6B7XaLuI7oo5c6NTHA+04Tv3u9P6FxFUWLBMnlSUlqCaQxYdBclhijyjaHKvGbc9zJ+zJv6o5jpEa/Moikro2BV2qjXfos/ddDbtaM8CtGui1w1VBjqv1lakY23vcXxK/+knY99e+07Y5n315ae8/IvasISrv/uzH4ReggT9FOlQaVJGl5F00jv+WXH1or9+/7aYDQznUdOOZB/fy9e9EOqtdw5bZq6OeSsC1byZNQQ43IIWikmaBUFZiy3pRM/qTaIJZLkjlLMVsQWmrW7n1JBLLofwKcFIRYfKIBUwyGhxaLVZCxSufoXY++6y+dw3jwDAGRZ+NDFP7/M/dnMbJsa34f9ltDRGRmVe199j7zufPt291ssJvdJEWKbBIaKFGyBEqAJRgEDQiG9GIBMvziB8MWDMOAB8CAAQOGZFiy5RfLNGzADzJkG4IhGRZA0abECRya3c3uvrfvvWfeU1VlZsQaPj9834qMzMraw+07KA722bUrMyNjWLHWN/yHyuP+bW7TDbu8Q6TybHzC/+7v/J/5N37tv8H7649IpfC7zz7jr3zyV/gnv/JPkSXzf/qtv8wHF+/xzatv8P76Q1Kd+Ntf/i1u0y1/6is/z7/1t/83/PI7P8+/8M1/6eg4xrLnxfSUh/1jTTp8z6PhMb/09rfPBvMNolYk860H3+bDiw+PgvE2FvZlRyoju7LlreEd+jDwqH/Mbb7hOr3gxfSEXDN/4dt/ng82XyH4ON/z59MToosWnGvMUmo+xGocFOBetrUE9BB6nilEo92ns8/ComsK2PPWLeJM3WYSvMUAImow6BaBPHDHKXzZ5RIE3xAGi723JABUcqbBfvXwzsvNdr47UyTQ42oJyrkE7Ce9vVliceaYZkWm03vl7vl5sRuNZ9rE2H7pFv847kosP3xu8RJZvIEW+xzUjELw8yda0JpneUaMoOuIHrwrCBmRPZWMSCYXyMWx3WamVLjdJlLWfeQ8WrcjqXnbXFHWoz0slnV+UJydq4+WWHidqHDh4OzsAj4oITf4ztyE3aww5EOgj4OSb4em7hNYrQar1BbG/Z5pmpiSmph5H+kMUjFN2kHJJauajXN0Ic58ib7zdNFx0QVicAQvlOootTKlzG4saMG3Uz+LbNX6EjWxaF0bSzA0eGvndkJxMvnZZqCWcyJNe7Y3X7DfPqdMN3TW5QihN+lOgZxbrjYTaoVWNa+I9wS8ejV4VGEHjwuJaUqqNFQUTiNFeHFzy4ubW7x3vLXd8uidiauHj5Tr4ADnF+dgCx2mSuKDDmEAr4E37iAt67w7+xy1rQWSS3hQ+zdUnItz0nAwTGNOnBvkZvn8SMu22pWWRVX5pEKqSeGEM+leH4v6Q9hi356ptk8pWpUq1m3SoNySoZn7ASnnWbJ2TkoaYbuK+lXc3PLs+XPzaHEMXSR2A/HRhqdPv2C72+L8iux6AmuIIz4rRE5zVkc/rPXeeMeURlKamPaTJfKgDt91TvTxosmHXegQzEhQKjlX9tOkAb8PDEPP0PdcPbgkxo6uX+G8ernkaSKlTKliAZFQF53Pxt/y3tP36pUyDIMlyp4uF0II9MNgeNpDFtrGhPceV4pNkZq6HLpbavCEHCr+8WcAhXrZsvWq6nLTktf9yDx3/8GP6SRReMV723cfJTXuYHr3MmjP6XZfUN0C47YOtKp5k1KNJi0ZrBCyDPuWcIyXHceyO/TjrE6+MlFawjCsqHHfZ4ILjLJnm69x8QHRR6LrLIAd7r9+LODCZ5LPBh8rxjMgrO8kjcvjanK9rXskCL0FoUvw03Jb4vFLyTzZf8Hj1TsMfnXP8eSZdP7bz3+LVVzxK4//GJ3v2JU9AJ/sPubf/b/9J/yFn/vHeX/9EV0IfP/FC/7Df/j/5U++9yfpw8B//y//H/nFn/8a/9Vf+aP8Y1/909ymLf/rv/F/51/8hT/GP/Ler/FP/s//O/zyL32Tf+Ff+5fmsVWlssu3/Maz3+DX3vljllhE3uof8Yce/cIsj7y83qkmiui8/eHmqwxhNXeb27pSpLDLtzwZv+Tj7cf80bev6Lsrrvq3KFSejk/44fYHXHUP+COP/7heC1EhgG2+5u89/Xt8sHmfB91D1vFi0VHDijOVYGau922vmzi3rtvrbp3v79z3lljMBPCa2ZfdzP9o7vPnoVs2N4tCsj0H3kTrVNgJqaiN81aNd/fOOef4XUty+gyl4gQK+Qcs1rxqe8OORavOHqrL927L+3HUwVhkTy0bPE08XtaqaQXYavjBempE0iZRU/CenaXLXDVthn2gmGlvAZmXCV8rngQo2XScCiUJ+10mTRNjGpmmiVIrKZszrqg52YwgnpMfbxVkj7N21lxR9qhPgvOEsFJlJINhOCOSR0soWoWz61SKTaETqmbT9RosO9xCdteZl0WlVPChoxsCrjN+jDOYhYP1WrkYwYEnoX4VI46Mpxg51+HEk6bKKJWcBkr1pNoxlUoWhUmhcTVOMtF3DIP6IlRzE8aZL8gCW67ZgJjaVQUyOWfSfuL25gnTeMP180/0AQkdw/oCH6JKntaCq2pK04jwbfyU2voWaMBXChJbkulnKdHVxQZ2Hs1PErkKRSoxaBD9/PlzNWrb7nn87vtcXj3k3Q++Bt0ArGb4j/PqVi34mTOBCD44vAjFZQ79gmOcprOAviUH7eNzZU7a55Zmjm6usB+qEMuEoV3iJo5wkNsVax2KOFxZBFPmLVHzRB63SEmIuyV2K+KwwUetzpeskLKmYKafyxQRXCn4cJiQVVZWA++2aDs7j5LNw6FWfve73+XLJ8+4ub6m63r6vmftR2IU+lWARyvWFx0vXuzpI3Srjuw25Oq4vU3aEUgJXAHv8N3AZrPG483Lo5BMYEF5RZMeW8mE5hdSzS3Zci9VIG3vF+p+YhwT291IP9zQdT3rzaUe72qFX3WICON+VD+ZUub72bqnIsJ2u50TDP3TWZIRmCaDR/lA3/d2j4+V7oIEVUjzOp+llA5S4KKSut47SvxZJBZ1buNrF8LPBaRXKTY1OEEzMJuldP+Ai+C9hmuvgAQsF+JlNfR0fy0QbR4Q96kSKdxCA9LmEbH0Wuh8f5RA3HfcjdD9qm32+XhJ1+BH3U47BS3IPHe/lona6Zarmqtdxgd0YaBK4en0BbkmBOHR8C4eR6qJ3vd4F5jqqJ1Vuz+eYyhYg2MJqpozhPX83efgKstr2bnuyEBPdEanddLqojC43Iaw4quX37TqsbDNNzS4UnMF1/vbU33l8erx3IX5xuXP8ZWLb9D5nk3c8PPf/goP+4d0vuNf/ZV/hiqVdVyb8/eG/+K/+78nmNdII2X/e//sryiUyAX+l//av8r7m3eBgwLU3336t3myf8qT/VN++fGvzMd9k675jae/ycPhLd7qH7EK69kQT71MwpwAl5r520/+Og/7t/j2g1/gt1/8fX7v+vf4zae/y7cefo1fevRLPJ+eMtY9j/p3eDY+4e8//Q2+cvkRl/HKvu8F23zDs+kpvR/4R979E3z/9nt8//b3GcLAJl6yiZc8n55QJPOge6TQ1zfYzo33c52tZaLZPDaWW1t/l5C7u4TowGW8mpNpJVVXck0zIRxaV1LD+9NnZJnMNg+LZl44P1+83nPs0M5mS2BmyenFd/40uhZvDoWCefF9+dtadH24hPMlWd5cN+cK899w9+Tnf4ks/1oEXofftQ5Bw/xXg1zkmg2GcVA+0oW/kbQLSKGkRJVCKZlpX8hZ2G0zySqgqjxz8PRYfLEO3ua+bGRS59VAzLmDhK334E3WNvoVLlqXooszlCmGOGvtB8NhhznZ0Kpn7IKp5mA4eDHirEB1ClEx2U1fLah1EFD34OAq3jmid1ZhVrMyzJm7Vjdf21JVmaZWRxVVxMFxUO1p1SkUPhVDU845hiI4q8a6GcojzKZpkig5kaaRaX/NtL+m5AkfAqHr8aHTxMTIjIuRdDj35X7tmGp1lui1yrWhwY2vEmM3+4UomU7HhgBTSly/eEbXRaRkLq8e0A0b4gDdEA5yprRuhD3EvkWnWp2Yj2chRqfj5OjpWPxu8RunSf187RaQgCUc4lDNlvmZOt57u96H57PO16rOxygWGEOhOEeIHdVcq5cQrKVLOKWgSlnLrqEtyLXMz4z3fg7TcqmMaeL65oab2xtKyeZYrTwOqsOT6DuH85FpVDhS13tq6KkETXqTp0uq8oJT2FsIUdvuJs86pXFOQEPp9DtKMsUq5T3RxpDNE04OZHOtaDotKJBU4cwF9dGYoX32rOHnDqpgnTODfTmnnhPtfrQq4My3iN2iw+EQOUBAlh3clmwEU8dxgIQDB8f5P3i1/023+Ym0zklTAnStOvyS6vUSyrUMRF8nsVgmCa+LIV5W9O+ex93zEnf3vUuC51xY4rwyy2ySes9hvQkJfHme922v+/qbJh3zentPFfW+185B0lqi1QzzltCX2jqLzh/tqZmQ6X4ORaoWKLakpHkynMqeLrdThadlAHaQpz94j5y7Fo2D0tEdxsFiLLf9qByvBnoX8XKG77Rg0jvPVfeAP/WL3+ZB/xCP59sPfs4SJDXIiz7ylYtvzE7U2dyppzpql8t3/Mn3/zgbU9jKktiXLT+8/RgR4d312yx9KoYw8O76bXJN3OYbsOsf8KQ6kerEi/Qc12vA+uX+CX04VMm9CzwYLnirf8jD/i2eT89IKbEJF9zmG27SLRfxgovuYr4eDeK3CivW8ZLL7krnP3fgiM7j5TU6fqfbOVgcLILzFmAvgtgftauncPNjMQUn/mjf7f63sX03wTGrgwVM1F45X6B/xfE4PE4Kxj487O1Mx+4ntb1RYuHIuJNq6yIVmN91+PM610LmPGQO0pcTxaLSBzRRfN33IrgSaSpLivOfpnSA4rSsNJpEYwgG9YHOF7yveF9mY6ntbWIcM7v9xDjuFOpUMtSld4Ru3qrfNOKdd6bMdOBJ4AMhaBIR4qCditDR9b259nb44AjREY3kuRp6+hi1KxEbt6IjRFWD8l4Dn1orageg7TXNmqomDr5BCQ4qRd4JgUKQPV4Sru61U1AVI56rkLMnSyBLR6o9QjCzLVXH6kPFI/QI0YKwbCZ/UgrOV4L3rAaFT+nk27gVxwWIo0p5zeS0V/Wn3S2768+YxmucC3TdiuHiAQKzp0cV/e6as7oVW2W6/WljplW2cq7GQYl2D1VXI8SO9SYqPyZnqzx6fOgYLjZIKexuX/Bl2nHz9DOkjKwuH7F5+A4PH3/IsFLvk0OCqYudNwlWqarOhR0vbrGoayY2j+dlLHDgCNkE1gzwTibApaLZDI0R7U612NK1K1HLbKgIqOfJvEibQpUPZC2zgyQkQ5k8rmKyvmYwOAdUCnUrpegcEcpiktSJs5p4QakVMfUyvGc3bXn67DnPnr/g9vYWBHLSbsK2g0EyXS+sugs2XU8fLqlEigtK7HaeTT9SpUNkhfMXVPGMyQJr60wVqYzTyH4/klJuR6YiDK3in/Oc4JaUlTOUW5ezmJSxJcHAlApjusb7W2K8Zr3Z0Pc9F5eXtJbRfrcj5cyUDtKvMSp2PJdM2mXY7Wa4Vd/3rFcruk4T3YPHSDi6z4CSTL3DRZAgSI0E68rmUojxp2+Q5yxwqmhFPhunzOEQr7419xGxj/dzpvL9kmCiwQg0uW+V7DNKKsv9Lebx5aLb8NNtuy/gr1LVw2LJebCgIZmJXe+OoQotuFDojR3DS5Ktl23nAqhlQN/UYe5IYLrD68DZ+7GEW53C1U7f176vOfoeJRAcIBhz0C2ibhjO3cGiRxd5NLwz7+cmv8ATuDCCdJXKaLCh6DtWC+fvXDOpTlynZ3jneTy899KktFWKc53ownDnPi8D3HNjYE5KTjDuDjcfLzBzEJ5MX7IJG1ZhzaPhbe2mSmYqe1KdeNA/4v31V/if/dn/3uwq/nMPfvHssQfrdvydZ3+Dv//kH/CX/95/xn/9D/86f/bDP8MfeuuXZ87ENt/yyfZjPrn9nD/89i/y6+//40eJ1nvrj/jzX/2Q79/+Hi/Sc57sv+Td9Xs87N7iB9vf57PdZ/ztz/8+v/7Rn+DDzUeaRNn5fuPqO3zt8lvadbPr/OX+c55Pz9mmWz7ZfkpwgW9dfYeLTjsWF90VF93VEbn9G5c/d+f8NvESkWqB8d17WI0/APHe57M9D8tnQpPIMBc5ljC3c/d5mQS8ToFjqSDW9jnVETCZ54UU7vwe+7tfwJqcYGWZ5bz0evyu5grehBDaXNaggS25/XGo2d23vdHKU0rF5WSKQ8tg5jAPCw7EKpKymKhtq1YtPUqWlq3Hs50IufPWFnQ106gGd9LdCw0JE0yWNXhHCKZGFDSRUHWVSprUgCqlTM6F/ThSciblTDG407zYuANBXCE9B2iN/i5Y4uAtmVC9+hh75UN0mliEEIldU3Zyyl8InmEYiCEw9L2qGjlTN3LeUGiaLOVkngA5qemYVKQq3EZEzHxMCI65Il1EsfB5xrpDyY5SHKVAKh4RBwS0h+NxUWEYfYiWgDi9NjVR80jKhVoEEaews5JZrwJIRMnHGpQFM2wrpZjqllXl50CtYe+h5sR+91w7TD6w2jwkxEGPqVaqYD4gCslJ03RIKHI2QzHjzizyXfEqm1uKzAF3u7fOO/phRYgFlyaCdYkwZ/KeNSUndrsdz558yToVlQ7GM6wvuLh4i9gPdN2Kvl+Zg3WwyrLTzo9DPVLkAEvSA2vPThvvTZ3rkBw1GdeXbcsJZ+5aHHVuLHk2ozpNPFy77EYMx8Zwh4+VOiWkFPK01wqgj+q/4J3B3MydvRZwBcFb8mRTYslIUbM27RwKIeiil0vl2bPnfP/73+fm9oZxmrTaYs7u05ip1SEkVheOuOpx/YroPUOIKqZQK1FGnBflCPkEruNi2CAhgu+Zrfs2K8ZxT05J4ZCAmHN3GzPVuFcpJWpRg8hqstA1m9zyPN8cw9RSSpRqbtkN1uicKkJ13dFcJaLqW7S5xO5/yhnZ7QjTyJQmYuxmuFQwiKRrCYU9Q6ER+Z0AgWoE9Bx++omFtwXLuW4ex9ACaDkiSL7ptlxkj34vYhAVCBygLK9agFuFfH6v3K1itk0D0DQH481XQIO0xQLtDlyM00AkuHj4/UkV/nW3++AQd6qR6DN9p/NyNEeckS6+J4g6FEIO3dEWmJ8S7E+DtmXC1rwjlsfRqu8t4C1S5mB7m29Zx80cqDsc63hhY1+T1EplO13P53QRr2zuNfnSWmdi8PIcW2AVDap03/ay5M+584Fvu2aCEF2HD553hve04IRKBotUdvmGXd4y1pGr7i2apOw231Cl8rB/TCMIJ9Hxty87nuy/5Ifbj/l3/uZ/iHeOf/NP/yW+dvl1HvXakfhi/wn/3t/7P/DPf/Of4muX3+S/8o1LrrorHPCbz/8un+4+xeH59oNv85WLb/B49S6X3RXPpqdcxiuGsOajzdd4d/U+X734Go+Ht+nDwK++/av0XtWjFLqoz/tY9mzzDfuyp/MdH118lXfX7/ELD3d3ZGxFhF25xeHpfc9UJ4TKOlzM1zj6bg70TyE8M5/wnuD4qBMnh+SgSj0qGLTX27hq3a4lhMl2OI9ix6Gzdfp9p0WP00R/+cQvvX5al+HuuGLeL8ufT+ap+TOLZ9OhSXtFBUuwc3It5HevJsT/QbY3TCwUQ62qNGIQHw1OmNs9bv67yplJ2qp9h5vBssFx6FKUA15+3kcbCJZUNCOolFWt6aCeYwRhpwTk6L0Rj61q7zUIwlRbUqrstpX9qGTsZAoNIgWqHvkc2GPQIqck6NaRmP0jggVeQeFK3iqmXa9+D4N1KVTq1ht+WjH9MXpW/UAI6uIrdq5Srart1T251kpJE7UkctpTawLJiEzz9ZFZ8jIYh6E5fGPV0iaZ60kZpiSUqkSJztSanFMie+ct6DRxnSkr2XuadqSp6rgw3K/UzHoYUKM19f4AldcEyLk9UE3xBXTH9uhWoeTENN3qQxk6htUV4pT9URtURWR2W04pz8GeYtvr3LGoMwfHUT14J3gvB38FUTw6zqlpYDCTwBAMQmbtdO/ZZ8XyX794jqJgAvjANO0Bx1A2gJiyjyDezcnhPBE5N8PxODwBhx/dQQb1IE/XkoQ6T1SvJlAudORbgCfWHbIEDASpjqWOjxYJPM53c1dMLCHBR4hiSjWG+/dBA2wwwQLzYnEOpJjyUzEuRnNA13NNOXN9fc0nn37KbrcnG4G5eWKkqajykWQkQh8Dw+qCEB19dORxi6uJ4BLBV0IUnM841xO7AYJHfEeugPOE2DH1yrmo5swueBMjECbrfOWczKG8EkflkWjSmuZrN0tKl0PHNpcKdSIbnCt2Hev1mhgjXdfN5nXjqEIP9TDtgd2vbIkNzpFLoevUYRUnhBqIYk7b4g8QqEXnFsCLUJ37mahCucWCJXiKa/Nyqz7dr+Tzutu54LopNr0JJ+P0vUcwqpPjqxbctc5IH1a6vnCoUJ5CHk7D+qUs52mw9Dr46dNA5ex7lvPDS+oQp4nC6XZfh+duMHI+iWvfP8sJc1Apu5u0qKmiesRocLfLtzxPz6mLhKOd/yqsj86jSuFFek5vfIqLeDl3QqRqV8m7cCjgLJNdjn0xzsG12ntPj7sFoy/j6DSoU/RROQuWREUXyZIYy56bfMNURhSAq1Xtfdlxna550D+iUJnqxL5s2VlS8ZvPfov//JPf4D/9a3+Xr370Ln/8n/1HbQ7RNeKT7cf8O//Rf8yf+Ff+CL/06I9w1T0EdIz+/ae/wd/49O8RfaT7RuSjzdcZ/Ipg2P4+rGZZXIC3V+/NROD1cDHvxxuHtEmcPh2fUKWyCivlRgAynDEqRLhN18oXdZ6p7u1zm/kan1b+l/cLeTlscHmvjhLpM2P99FnMkuks8T/cQ2ieIaEVIxaJ5rIjd25rRen2X+Mj4Rxe3JGhX9teZu647PxxbuwJNMJ2qRlDs8/k9fu8OH6c25tBoXzzWHBUUT8ElVbN5GmvGaaPhNgbMXm56FVLCBbOvt6b6YheskY4aVh5ODzoc7XPsMrFtNuXOLzQ1IxiNNgTBArRZ6IXi+mE/VgYx8w0ZcY0UUs1dSgLwJwGk7jOAq2m4+2M9NuSiM4UmyKh64wPoRCNGCPDsFK+RIxzt0T7AAUvE8GSszgoFMoHh8iIlD3bUVt2OE+pYgGeJhRSMtSE+l8UVI5Q8BSK/dZ3A1U82+xUEjdV9pPCh+qczRm0JjiGzuGdPkKuTEi1Su3kmCbIe72+3nlSVrnZfrhgte6AoO7ipVDLxLvvPuKtB+v5QZpldeG4mucOj6I4TUSfPP2UnBQacnH1nprfxY6SJ1Ia5wC1Fg0Ap2kyuEqZSdoKBWlB8WEsOQu2QowU1xR7DF/rVGLXh8B6vZmTiuYREkLgolshOXF784L07Bk3Nzc82m9Zby4Yxy3rzRWbi4dcXI70/Yr1ejPj5Zebdx4CmvwwXxrreNl48wcyripkaYfNESAYrt6C+0N3Ro6eOeW3lDlBpU1GrUsklWLPrPNauW/jvbqA+E4VoczNvOY9IpqQVN0FLVeYORdkQs3WIMkqaiCFYFlLRZPQXCo//PiHfPzJx3z2+afW0XE48UzTRM6Z2Pc4gTFP7OU5cZd54Db0fUftI33cELuK7wa8U9JySqN16G4IvTf5WKPE1kLnIEYQpvkauGEAFyl0iPSIeFJRxaopafEhl0IyeduUJhOFEEoqNh8phE6qOtgj2n2o263CAlcDMUT6rme91sBIeR+JlDLTNGpCa8Z6DbInIozjSM6arPR9b34Y0TpO/ggiNXdDqpg3xs9mO6qgO63zRdeqtLdE36mjrH/9Y1wGf6fcIkEQKeSaZ5jE4Fd3koOpjke67/d9R3u/oKTsLJksiVXYGEn2DLabY5+Oti6d8j+W8KFlInAKx3KLz8/ve0kiMD+DrWK5gLyccj7OJR6vw0lZ7mfpdH0uWXTO4cVbTnm87yatGX3UQoUlyUUKUx3pfM87q/fYhIv5PHblllST8RO0cLgvO7IkNvGC6Dsjwy8ku2mk2cOxNe7A92+/Cyjx+v3Vh/Rhxb5sDWZbZjfqKsXO0c0dCn+SxB7do5OOyHJrECbnlMz99vAe3nmejF/Onw0u8s7wPm8P783vj90DLuIlWZTs/nj1Nn/y/T/JX/zFf57n0wv+8m/9+/y/v/d3+c0ffMr/4p//b/Le+n3+k//Wv8XT6Qn/+ef/GT//8BdZhTWbeMk/8ZU/x69/8OtcdA8QqbxIT/kPfu8/wOP5i9/5SzMHY3mv/9pnf4W/+fnf4S/9wl9ERPh09zFfu/wmvR/4jWd/h7dX7/D1y2/TVC+dczybnvDp9od88+o7R89MlcL/43v/Ty66DX/83T/O28M7ZjJ4PllYJmOg0DKnA2yGYS3H1/3QRdvPgqjd4GzNcVxhdaeJ0AHqOAsiLJKL+blvY2AxLzncDEtbHmeb9163wLKcH9SZPhwdpz73i/fbsTYe3mky8brFlx91+xFWHncUDGnMopq7reQ6wy9EK23OiVXYMyVPqI9CMGOvZrpjgRBW6WhBVT2Ynomptyh8xW62b87TWvH3hkeOQbsTzqq06i+hakHNfyIn9aPQlu7hJjfDsdaRaZV/ZxKjIUbVs4/dnFw0MnXfBXPyjfQx4JwQfNbABzn8LXpdnBedfKtOXAoVUqgTJrPWiih6LskUlDIzAs8udS3alci1Ik4X12wwpyJqsIddk2BwiRi83dGK93Z3vaNkKLpT/Y5awQvOq0txu/sNCrcaPE7AM7BZBYbocQYbUSnbuSVlY6g16vWnUouqMlm1VtWfNuADRQ5JQnNubh2KVg1r0KjGsWnBVfsba/pIsKW7PVdO/Sb04TaJx2BBrltC3RS+5rqeImLfn9lvbxWKVkGy3hPtSgk5m8ibdOZvsXyYWyDNkZ+Lsz9i3hsiQs7HrVCR49pIuwfzexq2yd47VxVp3Yl5ZzTIlUMOxGIrHrRuXAtYMGiWXiuPk/bMt6pO+6fC7FpnUszLQlWWArkU9tPEk6dPuN1ubZ8LxSA7HzGInHPKf8h+ZLe9IaeeNA30nScEw64GFSBQ9/qsi0GaEHZUSXYPA64mnGRqvQGB4FpXqZLKqNZ0onyW6iE6oQTRZ6gfKFVIZaAUHVc5aQco56QdCRvHVQ4qU+qIbc9oVQ1z57QrFsG6nYt50xKwbCZ4frFilFq1a2zJoxchOjf7WBz+yGz++bPcjhZimOfqZeANx1VkMcjCoShxXNFfSrK2rRoBstj4Xmq7L7HW92G2T7dTrwhv3JBwCpNYbMuORzv+098vA4Q3WdyX7z2Cepx55/J4fpzbfRXfewq19x7DYf46vueTJK2wSqFzHcF3RN/N11uJ2E1VTsg1ayCOCZ/Qxko9MEEtuTkOBJUo3hS51mG9SBgOXRX1nFAJ0VnsZZFI3NfVWXY97iMXt/EVfGQIa97qHx1dX4VKCfu8xfuo+HvnocI6bmju2W/1j7hJ11Qp/KG3vwDgQf+Ah/1bXHYP+O7Nd/mNJ7/Fh5uPiFZgWYcNg1+xjhuejV/yO9e/jYiw6dc0WdptuWUIazrfcxEvueqv+ODiXYKLvEjP+Ftf/m3eXr1L7DouOiWij3U/J4H7tGMqexXPkEyQY4WkDy/eP5ZotWSyXdNssG7tNB166ue6Zm8yzs91Fdpv2nMOHClBgY1Zd3hfG0vt38eQz/Odkld1T153m+FYi+JEi6buvHdRnDjtzv4ktzdz3m7hvCziMhdw0dHHyBwBz8VRrahDIm+fMY037LfPCcGzWa8sGI+4MEDsCXFFoaeI00CiaJDYYFEHaBMQsISkU6Ug5+k6N3MpgtegU7XoE/vdxG6fZ1WYwwCzAM+077U70SlEKSrMSzs1AyF2pl9vBle9KrjE0DGY/GvfBfquI3qPkx01b0njc5w5O8bYmzRpRwuwax7nc03GESgWrOoRKpSrj2Z4Z0dfxVMlMBVHzsLtXr0lplTM9dL4Ef2gOO8hzMTvIXqi9/SxI+eJNG3xrtpj5UnOMwo4tFoNheiDnn93SSmV/XSoYF9tOlZ94GJYseqEPiQ8iZxlxqiH5rK9jKJtykjTyLi/pUhlGNY8ePCQlJVwncYbxa6XxqtRorYUg1CJdr0UaqK+DppstKr/oaLuiiP4fFRF8+YLIiIEHxAC0alamAZAGgz1Rqq9fOsx037H7c1zttfPuHn+jKF/yvTWYyRtuVj3eKc8ktIVYix63y1o12DFJkqnD0zrFOjfhyC71kLOZR6bOqeJSZnqZ/3Cn2We4Ir1AJs2to0F7d5UnDgLdDUgk6IQRe88LnYmixwpobPuQ4WcUTngyZzfoxrOccCuOocle5qu5sZ9wqvHnnfsxj3PX1zz3e99j+1uR9cNWpywI1UugaeIKrWFANREnSovvvwE8QPEjZoSxY6HVxesV5H1KlJqUq2COpHLFjeNdlyOLni8TzgSZX9D8JGuu6Cjgjim7TMgA5XVeoP3HeIjJXYIkTA8QHxPoSdnyEU7GqVk9YmxjobKUZc50W1k+SqCmGu3857QdfS9djVBtfDHcZw7FBNJ1WZinDPObGTyxikKwUjAMRKt69bGTv8zcN5uWwvCvOvnij/o+FoZP2G56GlVWKuDqU40x9v2mWpjVqETIyBEfyDINqWg6ipDWM0dicO+dXSd4r3be04x00WyQf483vVEkdkZ+KXnfbK8L7uIbWuKR6cV7lNo1rnPwnHScwTdaVXKM8Hsj4KnvoMRP0kS5+99gyClVYhbERL03k114ov9p+SauewuWXWbWdmobauwBoNB5aowolVYE+bfZXKdyOQ5edCYIVigipmxaYL44earOq8vuldLmNVUJybrbnRmgLb0HTgNLlvH5TB+wnyv2/VrW65JK+6u56p7OEOVjq9V4ePdD3jQPeTt1Xv2PV4DftfNY/nR8A5fu/wW//hH/zS5JlYLed2//+Qf8H/9jb/OH3/vV9nEDcCRw/bv3fwO//bf+L/wr//av8yHm4/YlVv+5hd/nf/0B3+Nf/TDX+UbV9/gFx7+YX7x4S/z8w9+ic73fO/md/m3/+p/xM//s9/hlx494JuX3+FFesbvvvgtHvZvAfDD7Q94f/0B768/VDM8mCv3wUf+sQ//nHFobng6PkEQvnl1oXLTIoxlR5UySwW35847zxBW8zh8o3FtSWXbjuBFrajm/CwFvUyEdH4BmkHe2aQSaJDMVySg56B3923L42zws7uvK5rhvoTlJ8mnOLe9oSrU6UEfqlD6g5UpnbNKnVU1SyV0PZ2scOZXUDLKDSBRZQcuQIi47gpxUXXjq5sRHN57ei9I2VLLhLhC32+4fHCpSks+KpTI1Fv2u5GcE/v9njRZh8LkJBWVocFk85Jo5njeeQualIQdOiVgRyNgdrFj1Ueid/TRMPuuEvwe7x1dDDipkFXpSGoiSrJF0zEVhxQQp27XIgI1zwpHrepryBGr5ldyEnZjpaRi3AiVgi3iESItp8d5YvB0vZ5f8AYJc5lIwWPI8uo08apWcS9JuyMOnKt4X1n1DufXiDgjKreuww1dgGEj80KmnmKZ29uRGj2175D1Grwlo9GO0R3GB2h1KadkAVNhs1Hvi1KVZ1NrczI/uPJKM4YzWFfjVdTKDFGZCevl0AJs8LmySCpCUPlclbB1VN/8MA6BvPIJWgXf0/U9XRdZb9akB1eUNDHeXlPGLU8//X3KtGfYXHL56EM2l2+x2jygH9R/w4fO3MxbkqjXo3USHG6u9tuPiI3/GFUhiNbRs4HSxomjdRMPkyUcuhkajCpBucHKai1aMXcOmklUrYROYYAl9jYIiz27BWpGB4R1Ixa8idYbmQ/MK4HdeTd3k77/w4/5/Isvefr0qY7XGMCqirWqd4pe886eTZTPEnrEr8gSGKcKIeOLkAXiraeLnlWnncRVv9JnU2v/eBziO4oEkA7xHgkqWZvsGq0v35mTXVeTksPTDdUkHSVrMuPDFat4ge9WlC5SayCt10x5IBdhN6WZ/5MNnpdzmjlAbSzXkilSTRFKk8NoEtQideZxSEuas3q8KEcrUPuqiYW9HgxG1aB7r7No/TQ2VUNxRwv1HcgMgRbGRt/jLUieg1oOCVMTd4am7FOMTN2C62Moh37HGRM1UdL3VEY6q44f9OTj3fVOFhW1e7bTCv5pwtKgDHoNXu7rce93vOQgzp3j6XG86Xedcg3afn+UfWqSeLiMc+Uez7ur92lGYacwrlQn7V6gieVUR27SC3VstjDGO68JZTuuk/FfpbDN+zn4B+YkQ7uVJwRip9Dq6OMsXXvuuiyvcSOnY4pkSvjXwktcKBgtna5Pu1lFiq2rgffXHx1dC4dj8Ks5Yfk3/7P/EQD/kz/9P5yPdxlE/ovf+gv8mQ//FF+7+AY4x7PxSy66qznxfjQ85h/7+h/mG5ff5Kp7iPeRX3n7V/nK5Vd5e3iH3mvy8g+e/x1++/k/5J/72l/g65ff4n/1z/23+frlt2bPls53PBoec9U9JLjAw/4R0Xd0vuP59IQg8UgpSxCiizzsH3PZPdD7xwGmN4Q1QjXjPlPhq+OcCLbn7BQe9LIAus0hBw7YIbGfYYospaMPV70VOXJTjDzpZgBH89v8ycUzcqq09rqdy+Wcct8z5/B2nX6ypOzX3d7ceXuOIc5NWG4x8bafPeKcSa32uD7PBMhamvmU+ifgJoKoy6/UpnXvcE4r7cE7U2lSFQFPVXfe2OFCBCpFTDJ1ykxTYtxp5yPPAaZBH4JT5aaowYs3LL33ntCpy3WIPdEgTl2vi3bXRdbRE73QuYona1fGaVU5uECtKp0qJYGoI66g1fpslVnhgM9GpoP3BArDqih2vQrkggUqlTRqVT6l9rrDhQU2O5rKVO9NucdpokMlzkfB7NIrTAYpqvOr3osa3QVnCj6eXAO1Zgv8JnXljmYGhVaXSynkKeEyYNK93uT4GqFXvObVOK/fXw8dDRGh63uc85YcNJ+EpV/C3T+1HJIJ/XNQ7FkGVwfpVuax2zoEHq12ts80fPuhp9IeAIWwBB8JfkUdekqaICfSuGXc7bhGGHe3iLWeNaHS8R8stcN7vAUqwvHkIVb15/CXdjpMkGBOsHRmnRWu5msq7XOLBYuDilo10QMpBaEohM2bbLKpT83dldBBrZp8iLOkJuu9dDZQ5VBTmFFY9uxrsqojPhcVSPjyyVO++PJLdrs9fT/Qd3rPRYTixHgRh6Qf7y2xiNoxKN66VJZ0j5O+H0/ZrOh7jw89UYrKSEsxo8IAVRXLaBVGAqUq5GjVX6jhIZE8XiOyN97QSKk7nJvwYcCL0AXt+OGVNZUl0HeRXMF3kZL1eZ2mRMmFMSkXhuI0uWuFBINMibltR/Ov0NvZkpJ8gP1VQYLe4CWnIoZADcHGQzga7z/rrcFVlv8+9542/oNh4s/BoPS9x9jiKvUIRrHc5nXqZMGd4VFWXfbiiXQzB8z/AYjvLwu4NQiqNMW4P+j+T6FVp4nMj3qcP8ntlMfSkqyVXyEI+7I7uVdKwA4SwSl0JtdkakKLRMdihRkyRzn6XkFUzdBkN6PrUD8m3X+VSvGW9LXx4paixYft3gBvhsn4eWy2eRp3XBk/PTZEye5FMg2Wu+zaKMFb5qSgSOYv/8d/Fecc/+M/LUZ4Pt7v++uv8N7qI6Y6si9bvth/NkOccs2swopvPvg6F90VK+toXHUPWYcLBhMoAPju9ff4Kz/4W/xTX/nzrOMFv/L4jy26T6p4dhEvGcJqJiO3/3LNx6aD0uYvf9Q9WY7XuOBeVQ7PuZN61DVoY7+YtPLLttOOINxNnJlhk4uEj8OcUyTPRcB2zMtn775n7ggqxaufzXPHfu9rdlZ1DtAPfjA/q+1HMsg7VXZyh1fmAFBx7WKBdSW4Ts3h1pEgFdeUZAT6RugWjMHuoIvKCWgkaaeTRul7XUijUwJjiIxlok47drcvKCmTU7bqqyn9xEqUiqNXWFOI+Khk6dBFS3qUFxG8JhExdPRxYOi0wtx3E54JL1tIz5E8IXmrwY+PuLDGicmsEgjSKSRHqlXPNTzt2ol6YQqZgkp/qooW7FMiFyOYZyEVTK3JOgN+wDvH6qKn67watBlRXYP4asGF8jli1OBPq/dlUXRrpiyRGArBF5zLqOPvg3lIqgN3xbvJEo9IcRuyeHbZs99VUlJnYmrE1cDgdmxWhberMHihC8JUJjyB6HuTQBNSTgojGXfUWSqX+eFWNZ5s2PV6FDSrvK0lXAvfilYVb52KQ/FqiUFXqM0RNlJ0X946PO0ztS4WJ6eO5t6rtwhdR+g2hH7Do+GCNO5I4y1lf4uUxPOPf5vxxees1lc8fO/r9OtLVpePkdUGid1cHRcneFOvisE32xFTIXN0/WDHqsfgnCNEYZpGSlFeRxNWmCdAczp3Tjk2Iup+TUlITqRxb9yQQj8ozM8vSOaaIDji6oIQB4gDefuldsxKQcSpEJxbtl81YVQV1Za9eYoUvvziS54+e8Ynn37GJ598xu12S2ciB957VsMa770qQNmzospckRhXiB8Q11O6gbXvufJrtlMiFTOdQ899OxZux8zzmx3RihHOq/DAMKiHRAgeJ6a6Vt2c2G02PSFqN0B4iPgr6vAQ6oSTiRDRAgc6UUnag084H+hDZ/4UnlVwVAkUieTSaUI19aSUSbkwTolcKqmY2ECTSQbSlGaVMi0MWHdikSi3+TbljK9uJnaHEMhWIEkpaML7U96KlNmB+nQxXC6ubSHONeMwTLn9d450vFwko1fPmFYJPqeqAouq4MLJuyUTrRqqc2p3UGxCr22DzrRjc+7YCOtH2VpQEYx4eR9Mpm3nkoT7krLl9Tnq1LxGcPEm3YdX7e/0fF6179aV8gvYUOe6I8hZ8JGNuzjM1yKswoYH/SM8+pl92an6kovMHhmLcRR9JMhd0r5Yh2QdNlQq37/9PTrfsYkXXHUP587CkuS7PNdz47W9T/DGqbRutFNuRan5aMy2QtFYJ3Kd2JZbej8QfcfanLUrlb/8W/8+n9x+wb/xR/51ihRu0gv2U2I9nBciaFuqE//u3/3fsssjV/2G/9p3/mWij/zGs7+Dd56PLr5yNLZv8w1f7D/jG5ffxpsPy4P+Ae+sH/Ibz/4uH22+wkcXX58TL4DeD3R9j0glSeKz7cc87B9xGa/YmBng0TFJOio2iMjM0Ti9R4cOwd1umXPKoWndrHYP7iQMZ7Y23pZzjLdC6VHXoiVJzgF3O5nFVMcCYXZmv5PA2D7amGlqaaDr7EuLEa+AfbW56TQBPk1mlud9+p4f9/ZmHAuxynarFFt5Uidjy/Iapt0mcKTp6FocJUE7EN7Iy06bhg5tcVcNkxAXjGysfhAtIIy6rNOs0dM0kVOi5My0Hw0uUFQasxE2vV14c61ucrA+NgK2p4vd7HDd90oE7UIl+h3eFYJscTLhZERkUkde58F1Wpl2PeICzkWqybpmaS7FlZwn08LXz4kL5KK8gZQrVRxVHFNuXQo9Tx8cPir/I3pH54N1C5Ss3nWaIDnzFqklGxwsKwiktqWyuUk7q6Y0sqizjHzAO63WleYHUjGiuKhpmJhavPdUAupCLOQqpFygZFxJeJ/JQavnpWQoBegIArFvaY3M0qcHzO0B8w+NjF3mcTSX91t+26rjc7Ihc4V/qcTU9uks0D6YjB1gQrq5eb+aZJQZPuW8pxRVMslxsoqLLkzemdN4p4krfY+UQplGJSvnie3NU3JONkYAWYONa6yDBuYV4xbeJYAWoo8rHY7Gv0ja/kZmcplCY9KhxduCKVm4SLeOj5kaivdaBMAxyz0ZRBDvIXb4OOi9mqI9gYdNaB00TT/ba7fbLbfbWz7+5BNubm/ZbrcAdF3rFDZ1GZ0futghmDeAU9K8iysE/f2UJqoD8V6lXgVqUXglQG6wuVZ5RuWhQ/CMKVsyE1R6Wtz8HAAUxMzo4nztdZwEnHRKvHZCcEIXPVEajU4TDsy3RUUMrDJppHLvO3IM5Cx0IZJrZWqE79bBXcLK2riUw7IwLz6HX2ihwLUkuKpJJtblbNLOP8WtwfHm+f/ktdPt4D+x+MwrYlw3LyaHfd4XwB7gJcrBiL7TtUgWgetSYcW9PHR+WYD/OrAjhzt6Tpfn8LLve5MKpN6D46DiVZ99E8jUPCLl7vvbd/8o+2tB16niTdvPZEiAVvEPLlBqprDgTC7gSaddnNMEbKqaePsGAZXKhalLdVYAa34DGgwK0gjji4LKyzpqy+Nfvl4MDjfvx85HfMcg2rnJNbGTG4KpXRWp7PLIWPZ4gwT9K//Mn+GiUx+OXd4ylh3RdxTJPB2f8NbwmOAC71+8TfSRDzcfzF0Ch2MdNjwaHhNcJNfMi/SUH95+n4+3H/PVi2/QAFtfv/w6/iNnfhY9Y9nP6kr7siM6ldOt6Lza9o9zFvQfj4PmNn50jRYB+bnxczwnH1/b9p0zyuFoj+c7ecvxsETg3CE6L+/zmefosArcfc7ujI3l64vE8tyz1M7n3H5ftZ1yoZaCGD8qjPFNtjdKLBq2nRbE1UOAAsw/HyZD/b9WFJvMqAbGXYQuCsELXTgMAXEdKpzq5gBjlq71zMSVPGVySqp/b5Kj0zQqNKIWxCt2vOsHoskzxk4ThxB7fFQ1p6HricEzdFGdroOn70S18d2Iq9cge2p+phAsScAG6HH+AvErxPfgB3ABTJ9aA4UwY4DH8ZqU9qTtSJVIkYHCilo9Y4ZSmZMq5zyxi8Qu0EdPv4oEL/RB6IJCiSLK71A3bcBBjZGMtnVLUfUoKc2MzuOHQbHcISpZVxRG5H0keq/+HhSmadSkp0JO6l+ynwpTVgnOEAohdvR9yyqFmkaFfqWR4Eeqj/gq1JKYckZkRYcwYAV5MVdjtQ2fA8ti1XCos6a/mlIdYEnAYgE55BqHOMYduQ6nlOw1NycWuoujPR72J0qkFamEaIms99SkPi7e+zmYDV6Vhbou4mNPt7qg77Wimscd4+6GtN9x/exzYn9LLgVv7XIZzG/FB7xlSKUqbt4ZJKZNAAfp2RbSCzlPTNOe1TAg4s2TQt+XJsWjqiHf4fopTGzx3EpV8zpnyVgAxKFmejpFOByEDj9stEI1buf9aZCmSV+RShZTPUJF+p48e86XX37Bb/32P9TAzrhKMcaZDzO3xsU4BmEA35Eq4CKEDVUcuQo3uxuKjFQmfNRnLjfnbOMwtITL6FzEnlk6uO9XxNizHvo58dLulnA7VusQ9ARvfjPRsZRF9k55S+s+0HeeHvDiCaJcKxtFNl8pcRQXGIZeOVEFxqTwzCmrEV/O2QjfysvQc1BSvFQ5Gtdt7DvXCgLu6LU5wRB9fn5WWzOSa4FmRTHVp2ZqGigeqttVCk0RrX3+dLvPFOu+YFZlSZUnM8teLtd3C59E5AjnfW6buypnADKvCv5bB2UOvl8zWXiT97Zjb9XRN9lagDPv4x5o2TJgeVll9tzrp9vS+6NxT5b8g+U25i37suOqf2vuEkx1MugQ4JrrsMyJwul4W37vPm+JPrKJl+yzysw+7DUQDz4ylj1JcsvcaeFqcGGW+56r0CKLyvrhWiwhd8vXx7oH4Wg/fRiIolyfbb5hn7c8ybc8Gh6ziRc8HK646J7zIj3nQfeQTbzkf/rr/4O52/N0/ILfuf4dPth8wJP9E/5f3/v/8Oe+9mf4+uU3+LV3fpVHw+PZ8TrXxCqueTQ8np3Ot/mWv/75f8HvvvguP7z5gj/9/p+dyfJfv/w2X7/89kxmv07PedDpffhy/xkP+of05l6uXYdu/lklYY/HSOd7lkTqVnU/6uKcPGfB3Q9PnAURpFJay18OvIqj7sgy7bBrX2qeE/6zkEn7zDlFqrbv08TjXDfgHBxrKeSw3Np8eK77+7Lt6JgXsbgTMQXKn3xy8WYdi9rkPmVewA6V4rq4kCdVt1a9844hmhO2K0ieSDUzlmpBeSAOWsWMfW8md2HeZa2FPJXZEbcUk4t1Homdar/j6AEJSsbu+p4YOtWQHwaThO2JIRjZcVLOgLulc5UoQkgVSAg7ctmZHGdE3EOqW1MZECKZHikRqQEpFrQCOQklC/vtfvZa2O0h50hKAi7ggscHBz7grVsSY2S1GlRxKkSg2HWd9CGw5APvqM7NhWVpAyY7gh/wfiDGHpGCxIkWekvVKkieEs4cY8WCkFJhTIoLvzUDL6nVeCANdqAPqULNHLutp+97QvDqe5En8rSlsscTuL695umXT/j000/48MMPeevRIy4fPFwWXDkd2yklwJl5jgNzG25rZOg7avHa7QjBlHHiPEairUl911FKYb/fz+NRibG6v1qXE8WhYgZ6PZt62DiOmuBUw956rw9oPxC8Q3ygOKfGOuLocRRblH23osPhusGqx47t9gYfn5Jy5vKtjhAhumCVZ70gWv3XQBsL+L339gwcWqjt0qWUrNOmqk8Hc70KVSvXVSolF9I4kqaRmkc80Ec7fxFza684X7Sd7CMu9taZU7M5iYLrVriS1eldZO5iOW+GYSFwc3vLx598zA9/8H1ePH9O1/U4hylT6c0PIVJymYn7VdSLJPpBFZvWb5GrZzsJRTQhDX209ogzYrhCxZpSEiXjJSp3CofDK+fCG7TKKX9DCx1KkOxXUTt+cFB1KlsE7aCoYlzrrmh3YpwSwUFnhPquUxO8BklyDryo+aIqsekf5x0uBGr19DmQ+0gplTH1en+SemaUqjLNc8K08GWhBdGWoOKw1rqjYF0455h+Bh2LFkycLmyWEVv3oMxj1w4fwObPcBSQvQzSsFy471v4ixR108Xjfa8Jj3XUW0A2BzNnAoFzFcf7guX7Ep7T/Z+DLpVaZiJse+/LAvj7tvsChuW53Xe+L7vWh/1oeB1coEhRBS/ncY1Sb8Fzg/dMZa+KSgsI0Wmw1uBzGmyi1fAzHied7xFgn7czZCb6SEc/f3c7v9P7dAqPcTiGsJqDSixAjL6buwVj2dMcoRvMdCojDT51WqU+B8HxR0nz4fXOK2xoqpMmKhbneOeJKF9hFdYMYTUTqP/pr/550keJdbzg+fiE7978Lr/01q+wCrrovb16jwf9W0QXeat/xK+99wXvrt9jEy8QZCYg6zrn+HDzVa6nZ/zNL/8anRGtf+nRL/HLj3+Z6CPrsGEqI0/Gz3nYP2YdN1ocmHmoWnRSxSphm2+Ut0KdA/2pTsQzQgj63B+vu8sk8GXP2bmtBeFV6tHz5TgE0suxcbqddk+OoNOvOI4jSHV7Zu/pQJw77lZoyDXZ+DgkoMuxdTjW1+OSnHZ/l12Z5Xt/EtubdyzKMRRKZuxvtZtxXFVuVbXg3bzIOipSLaAohVLEAhMHVd+rcp826YtOaLWo83RbgLVCKXOE2rCwzgcwcrYmFpHOR4a+s8RCVZ2CF6LPeBKOvaomWbQuJIqM5DJRxQEd4tdUd0WlM8JmVAlecTNMzNVKyYmSVeJWza8y4wS5BkpVn4wgEXynpn79oBK1MbJaDwdcdUlKmM4KR9LJWyuYaizYCKxg+YaGUt5p8gJa8TU8X61KEm9Spc7JwfMBYT9BypXtvsFlyizp6jBCN87kQwERPAIx4J3o+6UqAa069vuRZy+e8+mnn7Far4h9N1d/ZDFG5p8tcG5EXjicj33TIQixcdUSBf3loeHaWcfisMho9dj55poOyKF7IchB6WgO3JjN5+bqhvMkl/A+HDgr3msi4DzeqWqP8niCVvqdjhGxsZGmPT50JjvaKmwWg7XEolZVKTM4XXPwrrNymF4N7xzVuiDVPF40KdRAXWqZifApFcZxx7TfU9Oo6mF+ZfsSqIVlfZT52VKuk7Rn2kfLaN2BE+U93imuOOXMdrfjiy++4OmzZ2xvb9ms1/b8q+ys85qUJmfmfhw6oaDfEfoNSMBJwZsXSRcdoYp6tcwZqqcWHTc4ZxBNvWfeoQIGTs+vVvWY0GKHwizp1ZfG+0jN6rA9pQkRTOpXA9AQw5wMNx0vFUwIdF1lGLQLO5tzOsH7qlwnDvOZoyr3I2iSU7xCRUsw7H3OlKrvbbK1YuOn1XeXD818+xBcMxr0OhZ+FtsyID4kP8sF2sYXx/1Cff1ucP+633W2WmhrU/PPgLnMcmdf5+ASR9/1Y6jy3f/51+tKvOwYflS89DIwetXWwqd5XZ6vpCnptX3iKGgSGVCe5VIJpyUoyjso5DoZYdcZZl1J00sOTgu4prq3pNUR6Y+IvnDwOVkqielRH/Mdoos2FpjVnFpAbJZ48zHOSei8s0P192WJ6fIaH2P5VR1LamYWbDkKsDuCi5RQ5i7Mw/4xtGviHNfTtZ6Tff8QVjPMqVD56OJDrror5WpYUnC4DrDyK7YucD3dEH1gEze8t/qAVdzMsrupJG7yDZt4SVe7+drOq6rzDH4gSybVaeYzNY+QKgXOcKDuPv3H1/J1n7Ojjtc8Gt3R/pcdivv2/SqOwxtBBBefe9W+59eFo2Ofx9KZ8fu6x3PnPXJ+3vtJbG+UWGjV1QhnAgpZadOK6TqLLWzOXI6Dp+8CwRbjafucnCb2455qHIq4uiB2A12/IhifoBSoRScVJxpQpVRIZqKWisJbBMUpeu/pOyWghi5qxyMGum6g89ifjPeJzu1wktQsqyScq7igSkKlqvdFxVNlTfaPqfRMReEYFQ6tKRFSnsgls91tySkz7keDYahUKk4rlLHriCGw6jqDg/QMg3pfdJ1J3tJ4DxjvAoRA111o1RMQGRFJSJ00zXCOoVesfqVSSyKnhJQRh2hV3TwLctZAUyhMqZIK3GxV8rKIBoqHRFDNBkOv9yN4UZnf2tzWK1IqLmWkBOJ6g++0uruKG7oIT5694Isvn/L5F1+wvrgg9Kt5UV9WBOCgcOUt0K7W3m4tZE0UAyUrv6FUDQw7u65gAb4F1tOo/gXee7quR6qY6hHQkgSvVfMWkDf+UJaDk3XOxeRQmcd1S6YBuq6fk5uS1YegbiDEQicyy4vSrmuEXEaYHDkpXEllVTWBisFppboUQlJuQN8Ps1JS45wIQoiRXgbG/U65LMkkekth2m/Z3V6zvXnGenOFD5FcHTc3L7i9vWb74hmrrmf44EOGEFBRtTR3E8RnTSaqyhCbJbidt6copX9OOnxQfxYnju99//t89umn/M7v/q52EUQYp6SmkX3QJCQEVhcb/Kgyjz7bTOIDfb+iGzZ0Fw9wccWDuJ5d1cUrP6iIY7/fmyt2mu/XflTX7jQlRBQWtb25ZtpvuX76OWXc2hjSQMeHqMpvsWN9+Rb9sKFfXSA+UAW22609y8Y/ccrZ0OAKm+OCFi+sOLBerefnWtCkb+gHohUM+qj7iN1gctCqgFWqEIOn5GCu38ngUZkcDv4Vc2FnUdRpOUSpVYn8Eig/g7yi1MxU9nMi0aBHSzO7ZtQFCpm6d6G3hXDpVH0afMzPwqLiWKTxtvS9Q1jf+Y43XZz/IEH7uZ+Xx6ABWjgKGu6DFL2yo7AMnrn/u192nKdbq863wLolhdFHooUQp0GUJgaB2ngQrjD4lZq21jTzWoIL7Gri6fSEx3PiMBFcpErlk933GfzAu+sPaeqACi9WCNTgV5yGMTfpBYJwGa/wtC7l3SrvcUfk8LN3nt71ELTSfyQz23hvZxzjX9WxOq3CN0+G9r592eLxrOJmLu9swoVeM0kEmthA5Kp7yLcefNucwQ9jZE4y/IrvPPhFhrAiuo4Lrs6e/zurD/j1D95jl29JdeImXysULazngtpVd8WL9Iwv9p/x6e4ThjDwaHjMB+uvsI4bVUgkzslE+/5i6lvVnsflNVuSxVvCWSTjxJ29tsvrWU0ByjtvXSWZu6TM3TBnMZXGj+4eGFWbP06Vyua/rejnbP2/D461nK/afSg1U6lEunufr+Vc1rkDab0lcMvvy834FffK47lvW84xS/joj3t7s8SilrmqqRFiywjnpoHqj5tCTQwOzHW7mL9ESkUlUuOKGDQQjd1qNrmTqjCQRurDAYbFztVUhh34EO0WelNz8vSDGu6FrqPre3xQtZbgCt7UjVwtVofwKHBFYTWURGqJRTE8dPUKs3LgorPPeA1yaiFNE8kMr5opVi4JABc8fack8dh1ChmKwY5LYU8hKt8kWjLlnbfoSht4qu4pBEE9BIqqyYgIrvlvEAz6ov4CNafZBRhpi68mFqlo8lRNSUdwdH2kd5a11GKfMXM4x+zG7UAJ8QY2a1A4DYw9sVsBQlcrlytH5ytlupmTkJzzrOUv0gI1sY5Vnn+vMq/VFKEsgalVTdNioGbH6bNw6GS4eVFW34fIMAzUog9QKQdVmNgdCLq0lqEzGdM5eG9q5E2NxIZ91DFaaiXUeqj4zcGA4Ox1hZGBFKHBk6qMGjhOO5z3xK7XY6tO72dJ5JSpwVGKypD6oFyMRnZvMEStaGgy2q5XFXUFL2UiTTtymuYOwIvnz/jyyZd8/umnrPoBR+CD99/lrRCIXubnWEl4dSFSEJSbg8PHjkasViECh7jIze2Om+2OH/zghzx/9myRyDaei9642KkTeU4JQei6joy5U/uI8z24Du2TgROFFDm0ylcxrw0niMf8SzBytVNzveCQool38JEu9qxWF+QQqDlx6JCgRHDnSCVDSoifqLZQpZJtDMphoGUbde4gHanzncIE9rs9wZ5x7/XY+64neE9wjr5zBnvcqBlhiIgZNJYi8/h2XhH/zZOije22IJS5e+zseW7D+SAt/NPedD6Is9fEq+A1uqAvAmF3UHZp0q+nVbtlBxEOwcExL8MtOhR3OwHLKv25gP/0M29S1b9vu0+tqQUlr9peJzloY+N1Kr/3vdaufYOmLAPiFqzd991Hv0P5Eo2bcIBi2D23dd67wGV3CHwHv5oDz8Z50aBKP7sxPwSHI0ui5mJk6yY93NFU4uDNO00Nq98kgZdwlCVpe7ndB91r47Udb3vtNHB07uDfsrx+zmnXGoSp7BHUebv3A4/6x0RLwG7yCwvghbf6x0buHhjLnq3csg4bkiRu0ws28VL5DHXSudH39H4guEh08UiVKbjIZXxAkkQJKk8bfTRZ2TCPk3YO87G75mId9R6fXKtzz+OSBH0u4F++r92PloAHF2a51eWcwuInsQX83FhYwtSOjs0diuenx3w6f5xCOF+2vUq5qn2+SLnjv3G6n3Zupx26c1t7Bs/dgx/n9maJRSngiz1sy4bTcaVbOQKe4DVIm6aRPO1VUtEHfDBSdTdYwNQyOjdjyNugwTHDr+bFc1aSUfhF10ViCAyr3mRje2KnnIvOBZyMIPlgzlcEs9UGekQyOcE+V1KFWlcYXFsfiiCsLzVo8QSmtGWaJm5ur7W7YeZsOEFcndWlVv2arov0/cAwqLRmN/SzNKgYsEGTC6/qMWopPleJxTlcqUieKLtpnvRDUA5KDB3j7laD86zV2ikVpmwBbdVgWQRLnColVWJQc7jNxXp2DK95tKpQACkoo0MDsFrNsMx7YqewmFLrwWDQdF2cKzy46Ihkrj97ZoGwqkMVg761yqtDqFXlZMXuTYwBNUassxQnFlg22BI21hQ+1GBLy/andj5c1L+b2s40pZnYGq3TkHMx6JtYkGzXzbpxbRHU5Kxa1b7xjQ6wqdbEbMdVhZkUfAgCq6l1ZXzOTPutOn0PayXvO4XJ5JxI06h4fa9u80Ei3jcool4b79qCjR5bsYpNUwUrEznv2d3uEDybB+/w9OkTfvjxx/ze736P1TAQQs+wWrFer6FXaJX34IoFslKsK1GNKBDwccAFwVWhSJ3H14sXt3z2xRf8/ve+z36/U88Zg+FNdt+rVdSdc4x2jl3faTewOlzoEd8jrtOKe6k48iHJrXq/XFbzu+iEYlVtKQYxwmliYccVup7gjP+Up9lFtVQ1sKtWLCmCqp+lCRGF3rVOLDA7aB/mIn2HjUhaGBaCiUSEzmBRTrkaaP4+dJ6u77i8LMRhReg73Cw2sAzizC1dZObZNOJ9XSS0Ip5Sm6z1sovx008sWnfidU2aNJk4nO8cWHBwL17+ThdEaO62BiK8u9+G9bfg9VxweQqRgFfDWV5nuy+QnSvLRwnQYd8/ju9eBmY/6iaIQZP6O9X+NzHfap9dBj+ImJePbtXM8NZWmXd41uanMCcJzpMlzd2DddjQoEU36YVWup2nGBznIj6Y4VEzV+WegPLe85cF0Z9DsnWftHHrrJ0ji59LOJra1FK9cOkA3sYuWFzlItfpOVkyq7CmD8PsvD2WPZ9uf8g2b5nqxK+9/Y8w+BV9GHg+PeHJ+CUfbb7KdXrBbz7/B/z8w1/gsruiSGGFelocHOk38zE0uFj0V6Sqscfj4d1DclTzUWJxurX7P5XRILP3JwxwXJ1vfYf79jsnv3PQHWiiJsHHw31v58JBMOHcWFjOBcuCRUuqzx3LufnjdLsveZDGWb3nszMkT1Q2PnDe/C+bTH9FjubPc9vymi7n1J/E9mYcCxvoYhcqmGNvq6i2wjdSqTWTpiYE5/GrS4JFB00a1bfyaMMyGuQJNGiFVsA3YmhQjLx+n5nZ+Y7Q+Rly5X1QjLt3OCdUp3AqpFcSgtQ5OQINEAuB7AdqOFQhuyD0gwZoUivj9QtShVzU6KsKhDAQo+K4u6YoNUSCb2TNos6d0RECOFcpsoMagED08aAcU9Q9ere/0aAVP1eDVcUyI9OOcdoaFOwGqeoa3XgAEuz6up4QPdE5+gDROjY57TURi1fqcu484gXlRox0q2jwEABVExrigHcR7zptUDkh1WoyuUK1AMzb4i1ViM7hqvDs2RP2+1u8F7oYDOaRTJmoqJpPKdSSFnAhHWMhRJxL4OrMLxARUs7kdGx81MbmXMUHNUz0gi9CqckIglY7c1bNdF7bqiZH7H1AzKfCwnVTy7JqgSl4dNYRi0bsVVK7qTuFaInHYUyDVqJLyUzTnpRVgcKFT3jwVmK1Ws1Jjw8OqszdG/WWEIWlBdPYFk3ImirbZMGx1KJwQOcR8YTYs15d8uknn3Nzu2P3vc/54aef8clnXwAdzkd+8OkTLh88xHcdX3n/MV1087k7FjKqragqQIgKXUNIKXG7veX3f/8HfPb55zx99oxssrxzAmadj5ZYtAAZoHpBAqy6AbynOI+4TCm3MDq9vt6DqCKbyDUeYeOEbAnd1TDAEIGI99rpyLVNb50m/AJVHpKrp4gnF29djmo+H5pMitP+XM56rOp+baaLZlRXy2SBfJ27W1UvCIe2hlO551LwVa9m8J7Oe9YXG/pefTVK3ZF2O5KAMxNFLJltajOnf5ZzcVu0Qgi4RafiJ9nmftW2XACLqT7dF3y0hZ5F4NEWSP3cYUEVkRnDvVxAK6IJsDBXwFvLf/neZbBxX1CwrDraG892NO4LUu+rWC7P69z3Lr/7vu11MNuv2serKqUtmOpPjMveFNN9SsjVpPCQ6LaKvRK2HQWrzC6ui3eeR8M7ZMnmjq4k8KVU6xBUmrXzPVIOngTLY4BDUvo6iZHHHyUVy+t+X8IoyFyEmDk9HJs8FlHeWxHjLZ4cy5J/0l6r9QD7acl2lqQQL/NbiL7jm1ffmRO31sVo1++BuWB7H/m5B9/h0fA20fc8G7+g+uHo+5cwo1llyZzAoz+G9Ix1T6mZtflUnCZDbVuqfB0VD2Qh5GCwnnYNctVEUuknd6v1fnF9j5IB5Oh7ju7dKxKAdkxLON+5btPyGE7vX9vqPAbOE6/n+3tPYtaew851dt/L2Y7EvD8bg+3ZOD3e+xTiflJdix/J8acFesG7+ecWEIrBcqRWUjZIiVPXW+fVqQJxOAdFLHu0/S5Psd1OQZOIJr8Zglb4g1Wjg3EqvHVJPKB+DHMN2SY0JW5SC05yQzKQq6OKp2BELtcmIX34G1diSoVsUClBzztE5ZBE7+k6DZxXQ8R5y2FoZHVoxnW1ynytijgo5vpZVWUnTdPMrWjuxlJEE5w0MqWJXDMpGQSi+vlh8EETrRgiXfAqUeurJhZOg1zvtDviQ7COiHlWiNB33rgV9pBIVXlbSx7FaY9FA0wxWTe9ztqd0sk1TzvqtGN7+4Jx3CFSNdHzTjsTNgFWkwYt2drcKL9Fkxs3v0+wBLAUg3HVxUTQuhaHpMSG1QyPUcO8csjNjS+g79Vv9uY6jXWTWn7vrHOmyZPTMewbEfd0QtA7rQmWcY6wxMKUfXJTQQL2+x3Dfsc47khJk0NfWoRl1XappKAdi2pStEjz+FCS9qEbUhAxiKBzKiPc9ezHxIsXN3zxfMeXXz7j+vqWq6u3ERfYT4Xr2x3Prm/48P23dUxwUDxpSVgrJtA6MlUT7NvdjhfXNzx5+oTr62t2uy1Nkrq93zsHdVkJah0fveeFStfZnOIchYqTjCt7nHh8dQgJJAEjzlWca8q4jmDQPZwaQ+I8vcjhPrtGSodCh4gjmRRtrZZgCIh501cXKObmnrN2Aqoo36bWSsmjek80zkNVLk2D3EnjoOEsvThUiyoG9ZRqfLFqZnno/eq1+oY9b6eJxHLxWgaR5//+2SQWbTt08o5/B+eD42VQLmJY/HBcxWwL8QwxsQ7GIWHQ7VWVO5sw7n3PaRfjTaA0933mXBLzqn2c+/l1tzc95qPPnlRp77sGr3NtGtSr0iTD3XyfvfPa9eT8uIi+gwoje+NtHKvlHAez3hSIzid4LxsTR4nQSRC6TEJPx2973l+n8ltqXpzn/cn2ctOxqtXt4CK9Z34+CocEZulgvctbnHOswtpMIAPVAtPL7sogV6/+bk2Y2rnpNck1KRTVFJhwRtDm/ut7rzw0i2dXhLLcRyuo2nN69nk6kyy86Zh/FQzR3fPdP+p2uq+5C3tPB2U5vs9tLQFsTu/ALJv74+he/qjbGyUWSiD19OZe2/sW/BVGqz7ndCD3NqJhIwdrFlZo3gvF8Mu1uQSDdgC8n7kISq7s8DHSdRuG0NPHjtgFfBBi3ynm20fVDaoTUna24HiCHyh1IuU9aXyClAlf9xqUi6O4DfgVdFcIGmynIqSU2e/3TGlPrcU07SN919HHQgiw6oRhUNI4ZLwrdCEBHSKBUg8SkqUmDTB8BB/AwzSNpJS5ubkxwndWLHaIxH5lEA9h3Co5VzHpqlehEphq+tcPHV0MbFYDq75n6HuCJEQyJd2C0wSgdGumAnVM9FGIPrDqMOhaR78KBtFqQVdF8o5cBcRb8GXBcynIONKM3Fb9BdVVMokvPv4Bt9dP+OTj32GaVLPfB4jBUUqe/RmcCLVkxv3egnUY9xkfPF0XLXiWeSzl7EgWyDU+hP7eXHJNtlVEE8BS9NqnaaLWSgzB3JybQaDClWLs1HnamU9BCKiSVmXc7Yw7U4hOPUS0L7dMbA7BMsWkeWlODjqBFiMfqxeIPgvb7a1yjAw6533QLohrruCVUpQEFkI0gnBvSVklpWQVc2UeKGcl00wlu16reU9u9vz+p1/y2//w91X4Cs/jtwf6YYW4wGdfPmWcJn7hO9+C0M3oHnHgvPIptNOoyW6phf04sduP/N53v8vz58/44ccfz9we7UoJeEdnqlhuvmJod9MHW5SUZ+NSItRA1wciFXEFXxKutu/1VO/AXyLOkZ3Hi7cqvfqvwERhr53TEGZ+kJQXiIy4umUdtANXzXm7UFW62Xt8vNQ/3QOcXyMuUqoD1yE+MmUOZOpc5/GVS1E/CoPuJets5FxUVa55/zjlclzvdvi9Fhh0PxURvWfDqpqEc8TFl8a+B0iCOc+Xe7obP6vtdOFvFVAAhbH6ubsAh8UU1J/gy/1nvLv+gGAKNVkyY9kx+BUNCtP2MUNLbH/LwO/0eKrUg6LPmWDoTmC5uJZLnsvLgo1TyMWygqpV4TM+GK1TIodE9PTavE6F8dWclpd/tlWSj/T8uVvxn/X35W6F9HwwqfPiKVwoS2ZXtqzC+p77oXyBcxK0DepWpRB9NwfY1RLTc585t011pEphHS7uvX5aJrDxK27x2YkGG1pW0OfriKdS2ZUtQ1jNikvt+I+4CWhB6LRbEIAH/Vvz+/Zlxz5vWceL2UG+nfd3b/4hq7Dmm1ffIUsi18xNek7ney7ilRkRV+tA3PWSaFs2A8HO9/P7nk1P2OZbnk/P+PbVz7OJl2zzjX7O90eSyS/bWqci+DgbH1Yq0XXq50G0mPAYwrQ81nb9lv9u1+C0i/HSboU7ftZf9vrLtmWhZ5mYn3a+2vGdhVfZe5Jd+yGsXv3Mtn2dHOcpp2su2nA8l/0ktjdKLPoQ6CKQt5SpcFsmvJF8G76XWpCSKEUlV7WqVIjeBm4w2VnvKN7IufGAoXfOTtgXwEPxlAqSPJI8ow+WnWW6fsXF5WOu3vqAfnWpQV3eU6drcKqxnwULBDIpT5ppl0qxxEJc0u+MWv2v4hgnrUbmopXOEAJDNzD0gaELuDqCJMqUEH+JeP1sEtjWVolMlOqP6mjKGRFEbexm8mXoB0LX6cRr5PX9OFpigfIafG8Bh7n5mtHY0A90XSQ47dQoJt+ULMRRhyscZuY2NoJXoYvaVm4EU+frHOwF31GYFMvuEs5lkExOO1Lak/OeUpKSgi2xqN2FKdlkPv/sB9xcX7Pd3ipOXoyA7A7VpoYfDz6YjGebKLzxISbjXlSsMAKImaEVc1tPVjlu2vSmuwuzilCTJW6tsbZApmTVowXM7uDYeeiEKOTFWpeLZEalSq1SgKNUCxiqKJTKLWR0W+XZOWLX03vld/TDhtVqpePeaxdP5uDLAQrp08o+Cv2xCm2tDVpgsCipCgcx6dk2X8Suo4gS98fUkg7tStSaGVOlvJiYppHb2y3BCUM8dGYUjudBPCklUhG2+5Hr2y03t7fc3rwgpYn1aiAlT46BYTUww4PsetesvAbtQGlCkWfZIkedJn0Ox2ocG6xLokaZJr1gECdN7pxo8ldrUnlX63J5p1K23TDQ9QMhPrZiRqUaVjV0eo2iU/ieAM4NOD+olLAl5lTwURNjhVl1iAx6v228F0smmrfOOE3Wncrk3Fk3qbXRxJBO+ndwqCK0jTFx1aqCZfZ00GfF2dyoV6QtujgQr9dDizRij4A701H76W4tIG/PdqrTDIHp78Hv6zOn6idDGI4CguCCEXtNlnfOgE0VyoL3ts8mVdqclVtgvKx2v/L4FwH+UfX7vuBzUQE99x5NMLTj0jDi8+/tsy+ros4Vzh+xUrtUeDo9T+DOPWnf2bZlZV+scn0f72D5mQbv8UaqLlULZL0IwalnwmmA3L4r14nr9IwH/SPCScgSfFS/mJNkRaFSkQar8YuEc4nzb4kJZwLK08Ds9L60IK15eXShu/PZZUCnCk13Q64ZJnd6DW2sgHY7bvONJj/xAodjNXNRCi2Uc6g/xdJAMJWRTXc1J1mW4rIJF5qUG89leexV6uG9iw7hxvw1HnQP6YyXoU7fhZ3J0oYz53i6LcdYQIVA9D6e+EksEurWGTlW6TrzjNk1P0Y2yEs/096zLAicS1pet3txNmk4KQ6cPsMHH60GC/dnX2+fXRYtll+3/O75u+w9R8WKn2Dh6Y0Sixgc0VVS2lLSyH5/g/cQo0KVHOBchToiZUJM1hEKwSnMpgvNpMxTXJkvVgiq4mMoAsM1mwxpLRSppAXmeEo7VqsNUnaqkd95chJq2pL31zg3IVLIaSJnoWTIeIo4pioKgQKc6tHgvEIzRBz7VLQy751Vkz3DEFl1nlXnyftErSMl78gxEkJPKQOpwG7y7EZVi8ricEGhR8E3BGm1VqJVe5yj6zt1xAamcbIux6gVSAdD19OFwNBH+j4So6cfOlarQaUtg9NWYtpqII5YkhABj1MWN53cIlTECV30qsTlO6BSXXNadjg0KVHD5oyTCeqOMj1l2r1gv39GrRO1TDSlrKnbkIowToUnX37KzfWWcZdxrlNfDZOytZhIk0zvkXbfrewvzhycU7aOVqtU6H0vxXwGxvEAB0LmREArgY6UylzJxa6zgJrbGXRFUHUxZ4G9wbQtKDZFJws6VWJUA91SKt4rzyREJXaXZiZCVelW51jOG3rOqgClniWBfliZXK3BhZzY5KmBdfN1sfjxqHIqVZNxsIWlaqLQmtbaAXE4r9KlqVRS0c5HsASm1EytsNslxn3g9nZL3wV9RlH4U+EwIY1TYpwSz69veHF9zQuDPpVaWK006c05EKLCCmuppvhVmNozbfezWiLWMqBscK5akj6v1WBDKCciFUepjpT1eiMehUap+lWTd0UE7z2rfsPqwrPa9PTrS4J1paJTknUfKiFAH9EEWgSqBqyIp5ZpIaGtVfEQOnABHwYl2wt0pgqXcqZPSX0vQpwhb6V0ulAXJZdLse6SAxe00BKcW3hOiJEiVQ6hKew15E7jvKjBn5vnZQGCOGuDWzLyE6pGvcmmTvCA82TJR52FyF2HZWfPPxxXSttnltAo3IHEea5SOvshuGMy53146zswF4QlvOB1ugXLz9+3KfzHzE9PjuW+zy49INqxHR/8q7+7wXaW3ZIlrl84BHwzxp7jrkkrbNCCcqkE+8r78OJV6qzy6OZzqbYSypFs7dFnLJBMkng+PeMiXjWZvvleaUJ5/nz1OucZKgLHleTDOR26aEfXC12TjgK8BeyqBZ9NCrbBkpxTWXCcm3kQYN4O9xzsfQGrOVdRpPAiPWMsIx/4ni4MDL5nn7fzmtW2h/2j+edcJ3Ur7x7OAXm7p6u4ma+zLPD7Sho+Jq9n6yg04nw7ZkE5HbkmtuWWIW7OeNLf3ZaBsSZ9/ug+nt6nV3GHjvbdkkc5FGCOnhc5fk5On6uXdQlPO5Hntld1SJbHeRrky/ys3N3DofDZCseH4zjllLTjeBOxhR/n9kaJxfjs97mdboGEc8LQe/BaldQAyBtUCJBg1Tp93dkN9grgV9iEBYbZ/CrATN6c6rp7ryZyLaADrCIPq7ii7yNrlyi3H3M7PuH6esc0jYzj1uT1A8PqAUO/YbhawzTiSqZOWRMJ8eA6RDwpYbCPwMMrJWV30dF3E8FnuvCckkfyOHLzIpFLQLoHvMgd1WUlbDtPDIFutaJzJo3ZuAG1UCmqWuMdne/A3H7n6raD1cUa7zyPvcp/eic4RoKrdL4S44T30HWJ4BXWNe2Ul0FYg+vB9TinbsLBO8WG50KK7yE1IXWk1kgQR+cyUndQXjCOW0pK7Pdbxv0t43hLzltNDkXY7bZM+x0p7Wb4TTIox34q5FQZp8y4L5Qs5OTwPhFj5ub6Obc3V9ScKAhejIxv1diWJJBQky9AwxIN2hDNMmdiqnOoSeHCUdsMlsDRr52ZxRVSHhVug8zO1N7Uyfq1tqXV/VYXmVkpSqrJIHOAiAmU2kjhCmXRCrR1CZxT/xXniTFYJ8LRRYX1dV03e1KEoMpkuWRF8tixN5yvNKPHRScjpYlWjQ62b5042wQD3rgGU5rY7/a8ePqcm+c31KoiA10cyMbpEAc1F5wIn33+JbWM+LqhH9Y437FLO4UrVeHmZqvyynZdV6tBDdxqscVUk7FcCjkXkkzkrNezNKnjyszXaGo9IjJ3n1S2Wey9lZwKt7uRcVKOU4xaJRPB/CsK4px6RMTINI2ICF3wlhQKYXVB7FcMFw8ZhjVd7Km10ncdFxdrrq4u6LqOUiL4qNWzLuBcVAhk6DQBiEW7ezHP85FNbyAKLQydzgFq3tncs8WUuiywQ89tTNO8j1IaN0fUGNE5YhBC0MJNF4PCR/OeadwyjVu6Tp+hfujxCMUJXXDgAs737OVn3LFoVUNb3NZhg/hKqpNVrfNRwDcvkmgQNoT1ERZ8ri7b+1t1fVnlzjWprr5TF+Vz3Ynm9NwqsufkMucF2oLD1+0ItGD8Vfryqrt/vN/lZ+/Dj2vl9lhlSV9cSKsuq5Qnnw8L34l2f6a6V6iRP19xb7K/SxLxWPaG+VfvgqlOfLH7hLeGx7McbNuEahX3FwxhzZV/yDpeAOcJsDP8ZyHF+v76I7qgndCx7CjofKgyqWEeR0vitF7nqGIii2tx2iVzOBPJaIltmd24Pcrhmq9LE88VTUS0E7FWKvXiHjQIFCffNXdirFJw3zjZ5huDZ1VWYc1FvOKD9VdpQWU7v13ZkmtiV7ZzR2gVN9oFcJ7L+ICLeMWubOfA9Mn4BVUqX7n4unWb/EwoB8g1zapYbYumtLRMPhoHI7qO3g9IVMUvkdbFCWcT/jvwr5OxPr8uzMWnpsjV3j/fj0Xye5ys3J1XGnneu4AT6zaVkSTJClKRwa8QJ0fzwnJ7nUD9ZZ9tx3teRtd80nBnn3/vApXmOabcTy/+zrWciwzLucJgH6ed15/U9kaJRYgeTcQ12PGx4d8OEBTsZ+eZFW3mE3F60bTKrHCIJpPYBrVYYuEC+NjTdWsEq3DkUauLVNVK9z3ielLxqDhqhCBoYVGx2S5cIH5FkZV2P4iIU0iIIxDCgBBwXZNTjayGnhiE6CvBq6yniMrPTglyCWRRxZkqSvhsLUNMGahp0DdtfYV3iBlieVW1Cn5ugTZ4WAwR7xydxxKLCuIt0Igz9Mw5VYQqVUgZqlhAGgLeRbDKfUtY8A7CoEGH8+AmRCam/TNKuqFMz9je3jBNI/v9lintFfZUTIK2Oqb9qIGf+Q+AkHIl58p+VNx5TqqyUyumyV9xLpNyImV1End1AetoQfsCNtFgUt57rRhxqLbpgu8JoVcvCq9+AKqadEgs9AFT/P1uf0tKE2nck1MipUmDN1N8aslKeyKPiK+t87BYnBqZWYNH1ehW871G/HbzZ53TbkhTdYox2vEdOnMym4S544osh8BVWgNkPobWyJH52jX/D/OopJRMSolx1PvWFtAQwqHKJa0qHnj+4gZHQfKObljjfWSbTE4Wx7hXvkDrSGhnzM1qLs4rVdkZHKtJpAbvqcZ5qKaQpHfRiMy1Ur3Hi5gamFC9UMWBq8QayGhgHrpBE3ERfNHkCO/M7dyrVK2IQoxmedsBXKciDdXBLCUtuLHgu0Jf9HlC6yOEovctBkje4b0Qo51vbBO/BTDLhVOUp6MVEp3/xAu1QHXVuEvFKqVlHiveigvVWfEkOBWj8NAkn0UEKUXhVDp4ECp5zAbFQ2W0nRZI3KJ1/tPejitnC8EF5+eAXrtrd7cGlzm3OLfq4xLqcF+Qct8C2j5zbpGdK4ccdzje5Jz/IJ2NN1n0HdahkgN2uslY3revJRTosJ/FnHX2e5SLVMpEb8H9dXrGOlywjheUqjKvowXCcAj42jVRVaF+rpq/LEA7lJUO3YQ+DBq0Iox1D7iDSpFrMJnzVd6KynW+DL52VDme7+PyaA5J23IeBpQw7g4iKsyvuzuV9vl73N2jXb7vKLGy/ZyDUS2TQUQQd+z9srzeYmNkCIN2zDAfkbkA4WAxLpawt3adzo0d7Y4GOnfgbOg1vWeMv8bztEzs70uUzz1v55KWw7Eu5uz5da8S/xx8IH4cgffrQK/ObecKIcv9OFkcnXVkzu7npKvUxsOyC/OT4lfAGyYWDx6+RcodVUatFGKmZ9naq86RSgt8dWH1ToOWw0lUnC2O1aq/y+VPAw4HvmO1ecjVg7eJ8QKplf32mvH2OXnc4eMAYSBxSaprnO8ZHq4ZnEIIXNDAupRISsLNWMllpcGprzOGvFsPhBiJXZxhT50DakLySE6FXBz7EcZ9z36/pjgxsqea/PkQCc5pMhECPmpANd+22h09kMFbhbVrBnmRLnaWOABkqDscWRWsDIPoupWRTh37SYw0mslFJ9joVdu6jx2G4ZhJtEr0XmumWwdc/gSZnvDiy7/F/uYFt89f8OT5U/bTRDJIjXYFLLAskKdKyRqU6XNj+vlVmBJIDSBhVsdppnfOaaU9pZGUR1TS1wzqnAYbzlWD9ujEEILXfQlUr5jcXLM5QweG9YaHj97mwcPHPHz49ty1mJeD1qqvhefPvuT29oYvv/iU7fYWuX1h8r+WrNRifIBDUovh/JfjMsRoUrS6paLVch8UbtEZEbt5DNDGhFeH5xAOn9cqvVXsgebe3cV+5hu1a1iyzN/tG+6AQ0KhN6gipbCftDK12WxIaWKcRm63W3b7/ZzYdL16qYAmX30/0PcDv//x53zyGQyxWIclMFnCGkI0CFfk8uqSsBjjc8XYugy16OI29BrkN7NCsSy3dX40Nja1rBLtfNvZOYrrKAQuasduFFIB1w962FQ6vMbvOPudfVbsH7a4+1Y1s4RQgNy8KxzcTsI+Z+uWFhwZnyz4tHmCVgzwjq512py3zqqfu1Dt921hDXYfnd2jLJUpjeo3M+1tftREWWzhHoaOrgs4pwp7NU9MTRM3C4ini2tgpKSJ7fNnc+Lr+yucL7iIimL8jLYW+M9/S5o7CJ3v5+ohC45B2+4j2y4X/Sra+YguHszUnMcv3GuX7z2tUi/fd3rcrbLbArRXErUbnIj7K52vs73u51r1cXZddocAtlDxrwHVOBDfPX0Y7qgEHR2L8+zTNZ/tP+GjzdeoUvmrn/5V/tCjP8Q3Lr/NNt+SLKlozthFMkUKuSZWYc0QVkfKRefPq62PcYbojHUkWBUetOr8+f4zHnYPZ8hPlcpoY6GNsXYfpzqRJXERr14rYFzi+M8R1Zdcjfa7Vtmv1JnIvvRfaccDx2O47bftr/GPnHOatIULpjq+dFxcdQ+pUtmX7VxoWnJV2rbsIm3ipXa/q3r6VKAPK7TCXeZgO1tnsUkCt3Ns5zRLCYvB2RbP7dJF+giG+BoBbbu2wBzsn27nOoPz7zjI1rZnt13neDK3hBAYWCQpP6Zguy6i2mVX4WUKWW3dWORtd7ZDcsSd4z3LCWkxp80VOl8c9vWT2t5MFWrzmE18GyRDw+ZVVUJxR4uqLazeSLtWodKEWMnDjXR7nAHLHOD50NH1a0K3IYvKpeXYUdYXlC7hQoeEiHQrfKewFvE91TksNdEM3QdcD10nBDMTcTBDVGIw9YECKY9MUkhMuDJB2TLtbpWEWaoGtLEjrh+B78kumFqOGvUpoVeNWlpy5b0nenUGV4iXEJwGKCEYWR3leHiXdYGokGswGUw1cdNuyx4RVTTSOEPF4EJQWdsqmWkqpKSBIM4m2GKLeN5B3lHHF4zX3yXtvuD2xQ9Jk8rY3o4jKSWT/3MI/sB1yVCSqiilXO1cOy42j1mtL3n77fcZhoH1sGLc75imiecvnrPf7xn3O2p17HYj19fXbDZrVsOgUDecVlqttY3I7M8wB4dtLAVhWK/p+jUPH73Han3BsNrgQ08RYRonZtM6NKiLXWR98YBhtWFzccHtzTUvnj/l+vqpEdFHJdEbFwOwDlO1oLhJf7q5uwBu5gnNpKhF5yCEcKgQzMH/8c/6WvujlfA2dVstH00eFvfaF6vot8lZaOpVUjMlT9SiRO5pmri5vuWLL59xu1U52xDUiXyz2WiS4oMmC11PiJGnN1s8Crnr+ybl3M+Vp+gV3pVyssRALBjWpGK9XjMMg3WO9BJ0fad8qmyY45ZMsujGIJqMoklB6/KE1SXiPFN1TKVSBFwYlFBOIJrHivNWjbNnR4+nzN0QKYe2j+Ycblapm+Eklu00OFJTLgsxKmTRM3cY5yBMDh2n5svRrtVhvmsLnCXZHhNM8MpNs2JSF3UhLtaFSJPJEpuLuj0G9D7a7xLj9jk57Zn2W/phTdeviHFjkM5ICD+7jkULPFqAMfcH2gK7qA6+yWK+rFIuoU5nj2FRLV4SOV/5fa3a+poLbyP/+jOwj9fd7ju+VwU8p3KUAX9U5T3dlh2EJcTp3NbkUaPvmOrI92++z3urD1iFNX/6/V9XyI2LrOMFXe3mfU9lzwzLCeu71fx7tiwJ0KDUWUFgOOElOBzvrN4zXH+mzYLBhTkZOBgRenrfE4lG4PYz0bgFw20OaOOwEf3PdT4K1boTx4HbMimbu2FySGrv2xSGNtK57ogAvxwHc6IkMkOjnHNMZWRftjw09+3et6TtGN8/lj1ZMpuF2lXrXiyhTssOXUvWGwypdcG884vuxuEzgpiU/TFsca6aL5KKdt6nSfidTsMrnr02n5z6pSw/5/Fmhipz8eG+cfjjrt4fd0WOn+ezUChOOgxnigOnHaTT7fQ6A3fG5qnvx09qe6PEwnUb4nqFl+bJMDtLcfCzsMBg0akIIS6ysGJJiT1wOrOhQRSzUpIWNyMQKFkoriIhQL/GRVUwcj7gYmcm2g684lY1yNDdC35WX/Hij4J+DRIwOdNMSqp2VOoOV0dc2TJur1WBSCB0A92wZhg6XBgYqwdTu3JeEwu9cYqjbnCQrovqxu29Gedp8Noeu1KyBicG86kVlbYsjiKeKZmhXC5ajUWhT/q9qHytKGGsmElciINl6kLNoxKtx6fIdEPefs7ts+8ybr9kt3uhZGmBMWf1HlFMBcIC1pSd3gfDyYcYif2GBw/f4+HDx3zzmz/HxcUFlxcX7LY3jPsdX3z5BdfXL3jx4oV1T2C32xKDUyx40GmwCq3GNAffzWDuMESUdzOsLlitL3nw8DEhDrMhXamVcVSoTjVYUIzKM4mxw/dKdO/7gRACU9JJepr2MxcDm3Rk4XAco3J8KnOHnDaY70wYdtwxWlLX/BwOpXTtZljYcvRsWeB4gHwd3iNg+PxgXZkDnljb8wK1alJhXaKSC7vdnqfPnjOOE7lUut7TRVUSqwLeB7p+hY+aCO22CSeF6CtTCcToWekTAlVdrcPcSVEYoz5zWh3XYFmFCNp1aiaarbPhvfJOFmeOA1MPs4a0df6GiwvEOZKY14sIzkfERYSebrgihB5Cd3jupfGaMtk8Pqr56VBl7lhUc1I/MsEzo8Za6lwcCSHiAgada+Hmgb9x1Dmye6wTdxu5raV/GDPNUb0pOSFCH7XyVsSp0lStpKRFmErFOSXrS7Bqfcns9ztyUslqHyFIwPnO1KuUi/az2l4FKfhxQA7ehPsAh4X33KJ9dGyveVyHqmgLZF/e1bjvPUv41Zt8/3y8iwRqyVk5exyL72gQ5ja/nm7VIGyRjiKZbb4li3IP3l69N3cVOqfPfA76WpZMdN0cyJ+SwE/PfQnbWJ5TC4REFrA3HCvfJGXL/Nklln95jorzj0ZyFiKd7a8goknE0jF7LhQtysZH9/luxnGYzxbj6pRsvzy/5XGWGfNfz16fudJMnVXVoouMZcez6SmX3QPlkdzT5cvmRp58TxAr+rYkakGzbsmx0GBYnly1M7xMtM4lvfcF6+dgSXPcJ3KI0ZbQgDPf87L9ztKtJ+Po8Lret+De/Pn6cXQxTr9rOR7OfuciwbtvnnpZB+t0/6fX/yfZpVhub5RYTGlPQSz4R42pDLbRGRQltuohWkFUZRIlnYg5NmOBuKED5v1JFUoJGgxTtI3gzEnVebrVipXt07WAZRHESFW1FTXJ0sW+pDSXRsWZf0FV7oJ3FVcnSpoYdzeMN88o044+WJjiZIYt7PZ7XNcT+jWPN+/RrQb64UK7D87NFWfnIRhnKzjFtMfYz9j5WvMsfztNI7kUxnEk1WaU1YKcw0Tazl8TNYyUbS7kEsijBl77UnDKIkd2N1Arvo64ekPN13z5w79J2j0jb58wTntyzuxTQd2zPSk7ag1m1qaLTppMHalobQbveevRu7z33of84T/8q3zrm9/hnXfe5eHDt3TAN1iOBdH7cWS73/H73/suu+01T58+R2qGmlmt1zhUTthaN+rEXQ8uzUqEc3iDeF0+eIeuX7MfC2V7o5ViI8hP0167T7Y77wP77da6ZoH1ekMXV7z/wddwLvDixVO+f7slG0yri1o1Kq0D5z2r9Qrw5FLnDoVrHY3mru0ceEcthQKE1QrnPcmCfBFUJterlG7bR4yR1tZsiaaUZARnDh2RVtUBRBQP2iZMpJq1o/6s6lLKs3n69Dm/8Q9+k+1uBFuku65jtV6zWl8gwDQm9uOeXBJDp1LDXfDmLefmrgIC2Uzh6nYHVjzIdn4iwu12RESlXps8ajEp3KHrteMRIqmYDLXTRB+gmGmg88p1cALl5hnChMgNpd4iMiFUvO/xYc0q/BxdfEzXvY0QEQlUpwlXLpMlDw6CGd9VB6grebVGhZrcaXJbSpqFFkoWSyQLHp0vdNJ2SAio541N0zbmWufD0T7btsNFbFKxeg9hv70lTRNeVCq66yLdutdxeNG6OO3aF/b7HbvdxPb2ljJ1ODr69YDvIuICedzSxcB66BDZvcn0/mPZ5s4dh8r4j3PfwBvtuy2my2O6ryJ4us+j7zt5v85LZYaLvEza9+i75VAdn1+3oLUNmeUxnDvGe6Fii0r3fVuD5RzBes4EGweIjh7LW/3b/NkP/wk+3f6QL/ef862rn+fz/cf85rPf5E+8+4+yihsuuwcz8XcZOLbvPL0mp8c6Q4qW8KCamerE0/ELHg3vsArrmR/gpNAFJW8vITHBBXLNPE9PjAeyOfpuTSKw/RfGstP9yKHbc2dsyd1r1IxtW7B+Ok5Ok5TT5MrjGfzAWEd29daUm46/N9fMVEd2+XYWJVhH5bY8Ht6lScE2Sd07EKhwQfI9f+OL/x8X8YKPLr7KJl4SnfpHtI7tKm7AOca8pQsDvestOWou6YeEaXkdW5K2/HeryC8LLqdjbNndOx2vr+puHcEmzyicLbsg0SkiZXls9/EfFAFSD93UN0woThOkc52BpdDE3N1avKe93lTjGiekoYGW57l8f5tXflYqUKfbGyUWet004HK4uRrpW/fAH6sgSFU7t9LgKQ1+oCVDdUS2oLAlFnWejQwe4j0uaLDeRSX+Bato6oru5v2qQnddfE+TkG1wBfWwyGnE1QlHovMZqYk67XF1j0MDOx8CoevofMB3FcKK0K+Iw4au3xC7fgGN0OPQ+NKBkS0b/6BUDUhAA6hcMiUroVnx5UWvw+J4AYNraULhXYNcWfU3tISGWSbW5InsP0HqnrT7nCA3SL5l2r1g3N2w327N50EYk1jlSYxsrUpHLaBsAZYAXT/QD2u+9rWf44MPPuJrX/sWjx+/zcXmQmXxzAm6TSNq3udwIfLOO+9xe7viyWcjUiFNowWwAcxlXMdMu38LjKIPxE6/WzBoWNpTTOqzNmOyNLX8BB+0MlyLylu2pKcfBrx3rFZraslsNlfUkknTdtE1YBkL6li0RQIs4Eed4w+B5aLyZ128uecgMsuJim/YZmdBtSw6GugCZouyNJyMP3yPQgltjLXuBNqtoCU7IuQycrvd8eLFzQztAfV02e/3JIPXpaR+Dc5VutWaLgR6g//g9B5SK7UelJAOUg1uHqfexp6KCWSafG6DdKWUmUSoZcd+VDOqEAJD39EPvapfIRRJdj0EyoSQqJJnKWhwuFJweY+7fUJMiX4aESJVtIBRayXlvXUvUB8ONOEKYVDzwLhGKZ06d4moe7zEQJWoBRCbNzwJR6HkPeBxMVBRf4/aIv+22WnPNUk5XCcd12oQarkoMYAEp5BSKiVrFwin0DudVwwzXHUcdDGyXq2hV6O4rgvEoGIPQ6yEIPShkmXiZ7EtK+g/rf2+DlnyNMB9nQBmud+jn62K2wIkx3m4z8ugMEfH5ZzycM4EWS87p9NjfZ33tWD3XCJyUEPSZClIC2AUlvSgfzjPzcEF+tAdHbN33szNDpDBo6TqJcc3OzgfJVaKAtjEi4VKlM6/wQVVPzqTGDnn6KxrAhgc216ztVLaRO/a3P1y0vupHK3H2dxy/L432ZxTN3FxQWE7aJLUAssWgPZh0OsjC6I+i27ZmWNuxxMIvLt6bw6uW4Qwd0PcYR/BhTN8m1bMKmcD12WnYHmv4TDOljAv4dXjdFapui/Ru+96cngOznWf2nZfV+C+rtqd7/kRnvNzxzDjVk6KJrxk/lzGIi87pp/l9kaJBWhgHxf8BOcOSjhHpyViEpN19hpoVWCpohV7c61ViA9oaonBVwLRK5k5eHXkHjp1Jg6hw8UDCbba9ziKqRHVg2RlUXWiUip5HMlpZLx5Rp1eIGXL1UbJ1N46DCE6SgXfdawuH6BBrwcC3XBJt34A/RXiggZYrkWfhn3XU6eWenDgXVTfc176K2D5QCN/avIkVtUMwRyZXThAMYpV5DnoaCsJmiOYSXSJkm7Z3fw2Insoe/L+hv1uz/PbiZodtUCanJoB1qL5kLWdkaMGKM57NhdXPHr0Ln/0j/4pPvjgI77xjW9AzUgpbG+uZxdsZx2W2HW4oEng+x9+xG77kP3NNU72jLs90VVC6AjdqtVyZ+L3bBLnHCH0DMMl64sHTFMhl1F9LrIlaGmcuT7tiev6TqV/Y9cEAhnHPev1GuSKzXpD33Xc3FxT8sTu9sXBq6LavREouWhya10KcKxWwwxhac/y7NrtnHlvVMIC/yymBERVg8PgmL9HRCE6bRJtXy7mJaEmbepgXUuyZMUSsKqwGKnZeBYK/7kd9zx//oJnz54jQIjaCdztdtQq7M2NHITNZmC96lh1lwxdZOh7aIUCDGJXWgJvsCXnVcDAxkYXe3yImiBPrUtYVCbVO7bTxG6358X1DTc3N5SSWa0ib731gMeP32J9ucHhGCdNOnTBg0oh1wjWqYGKlEwpiRf7Twj+M7peE84i3rhbmZRuqblQs14f5zwhdlxuHrJeXfLwwXv4sIZwqfOJj7huwPkecStL1gXIqCrTnvHmuc6BXUdxkSKByeauuejSFgS3XCD0Z02AR4Ir4CH0gb7TAGnajeRUSZMoVhJIRSUQo8njVhECjm614eriyuZhIfhM9BPBJfqQcKLeHqPsXz2l/5i3JRTkR91eliQsg/07i/G8g/s/Ny/k9wQWy2N4VXDinKdbVkxPKtZtHjtVuGpFr9OA5rTrsQzUXgfC8LqBxTIwOa3YNingIawIHDwiGtH78fDu/LnBr3h//QHeAtQsWZMNf9efpAXCDYt/7lgncxtWXsZhHJ0Sv6NXn5374D+gz9RF92A+r37BJ2hdrGprTOMUvGzMLmF3h7GhYKK58nxvQnIceIsciLqBAL5X5EHNeFcJIcydH2fHt44brtPzOfnKkkllVINAF47O79y1+PaDX2AqI7f5Wo/bRwLKU8l1moP4YXHtxZKu6AKpTlSpBInH45sDx+Tgv3DXg+Lc9bhvc86pwbAZ92nX4fW6k2BBvj2Hp8fREg89fuWOLBPsO9ClxTM47+ee9yjkSq/PqxKNNi/Mx0ubP+SQcLxm1+bcv+//3tcz+PuDbm+UWKz6ntV6mGE4ziqBLZCuxlVoXgEtmK6LDoJ2JSwZEJmDnvag+mBqTcZLiFGrcd45wwybik+qc0G5uRBXaaZ6RuKsQs2FPI2kaWTcPqHWEceOGBM+QjWIRK2e2K3VRKtb47qBHNbgFWLgXKD6yJSCyt5aMN+I2L6pJ4leA5XRbeZKrYoN4C1uaAPcfl/MLM86ISGqI3Uw2dq5/h2Mneod4mwIViOrS5OzrGyf/Dbj9Sc8+eFvM+VMSoXr59dMKbEfC7VYd2SmAWiQLK5V190haA6BYX3B17/+bb7xze/w9W98k816w+72hpxGakpM+712Z6RaZ8XT9cP80PXDiloKjx6+w831Z+xub/AkQox0OeEsSYWDDHGuOm2tNxuKCPv9xO3NVqVrp5GcEyVpkNmI3yFoklZKOgzyGGdnbW9YdewBe/DwEdvtNbe3L8CZaRXMQUXOafa80PvlKDkfBQf6oGoyUUthGsdDhcaSEvV0cyAFaqYEv9BHF8RknGfOjnPU4hT2FqPK+OZkbXzB1cMzlSdVaUMqU87s9xO/870f8vEnH3O721Gby3zNpJS5ubnVSpj39F2gZo+UoBlDpwpV4v1cNW/n3RLYGAKlQuNEa2U/UXI2Rav2u8rtbSbnwu1+IqXClJR47IMwbAKhrxT2bPeqFlYRG9eAdQSj62np9Bx8CTgjvlRXrOPlqclRMiQCWSqlqpASteDNaHO7v+Fm+4wYVvT9FZdXH9APGqh7p/ONeIVzqohCh9QeJ8GqBjtV+ApRYZxAdQ5niZpzLeC1rlNbMIImf1Pa4Rz0rLUAUkBdFYtBNwvOw3qtLuCtMwyVWrz9TqfuWhPTeEt1E57MWMeZM7bf//QTi/u20wX6HExgfu0VC99ceV0kC23fS7z8uf3OQQCHzy3fe3SccngW76sstmDq3DlpN/suoXs+jkUCtSRhHyVWr5FQtPNefuZl13AJGck1cZOvWYcNQ1jRLdzOU51IdeLj7Q942L/FW/3bR0pA63jBB2GYZVC1GORZHvIymSuS73g7gMJ91JBN5UrPHfvy/AIHuMgy4J/qxFT2rMLmtUmqGuAfiwDkmmY1Ku8CfRiOEsymduVbx+Q1ArV5rWAR/HIXWtTmt9b5aVK20Ii4OjaiUwXLQl1oBB2OH1QBqSUEvR8IPpozdpiPJ7iAMwdtOH72lp2LZmJ3B8KHHHV6BJn9ido9aF2w+zw7Gpm+dY1akh3gSJHqZdf2DtSuJflnxsCcYJwkfO0cjt530h1o57z8nXPqJyHO3b0+ct6kbllEaAmFd0G7R7K8Dj96EnAuifhpdTXe0MciqAzlvNA5wyobnKYqaXSZVLSbVu3nWqoRUcUK0s6SCdO8NxnLruvoYiCGoFwIq1Yi2pKrzhIaAewGtu/AfneocCbKtFdnapnoQiFElRxUmIFDJCBuRfU9IV4gviczgHlCeFNZ0vhREIp2BxwgHpXfxWAYzRBPP9J4IK79G2/B7d3FoI8dPqo8Z5O3dPNi5sEI6OLNmViqSt0CIo5KRsrE/vpzbp99xvWzp+yLMGXY305KUs8yk7x9M0hwHMFInd0bnAa2q/UFj95+hw8+/AqXl1cE79nvbsnjXp2wdzu7/miXwgcaJE29PHRSGlZrbq49U8oEL3Ql40TwsVMPDpRQJ1VhIWIyxqVUShnZ7XczJyKnpNyFan4GInSdyrrO8LhSGIaBruuIOZKDJiWp6xSKMwwMw4quX5Hz1lSFDIpk9xO0i9YC7GrdiuV9o411Syyx33vRRKYgertFsWuhGhkHDALRxoqbeUsCOLFlY9kaEeYg9pBYqJrQfj9xs93xxZdPeHF9o3wZ15TEKiJZ77upWtGF+Tmd758pnenE2+Qs/Zx8Oh+0C2RKTth11nRULHE2E7hxIqfCbko6Vzjw0RE7Rzc4fBSEZKpraCfSHpSZ5xECSlj3tG6Yc0EzG6lIHfU4nNMEPQj4Tl16xeOKXnORQjKuwpR3xDCwSiN9v7G5R31RAhWx61/wUD1SAyJB5Z9rwoUCqLHgHNzOUIU2/7D4Wf13nJN5TKlxXktAgzY5XKFBKYPdB10Cq+7DtaqgFVakkrPCOrVTYQT0WhnHn53c7LntVZW/O+9/SXVtTtyXHYy5RHK3I7D8XJsrluTRoyrtS7Y3hXm97PhfZz+vG7S+7rYMonLNpJrY5y2DEaKXwV+qiamMXKcXDGFAmn2XaxKj3YEMfSQav/g+DtCbQ+/u7ruq1COn55edX5uL9B4u4SQH0zZeEvCf7u+0G9FI6fqr40CzfVYT2IP638u2c/fnNKHFOZwwJwnOpLSXfBpV2rJjdgexinY8c9JC6/8zd5J6Buvy3FVSW0Kr3nizTkdbBw/navOfxWltjbtvH+2eYdelwcz+QJ1PXu48vbzny8/A3QTjcKjnr9Fpt2O+ptYVOfuZ0/vgnKmJ3eVh/ajbT6tDcbq9UWIxdB2RYMFXJRk/YEqZlCaa8247jbaAzqZ3zlRWYltMtSreKsIxRgsMm5GYjsWatSKtJlBJH5sFOWiWBsVuioPgEsFX+i5T9jfU/AxPwYWOfnhIN6yI/YAPgy7bBcZcmGplr5xxQi2E6PABOqfEU3X4PejiU1uiZKV/zMXTOg36Po6DUW+dDmdmeH1PDN7Ou1V3WuBoOEurZnTdoBV5p9CKnDKhJjyFritM6Qmy/5zv/84/4MWTJ1w/39KvV4Q+MhUhF6s042g4M++0PV2yqgo5IrO+fuxYX1zx1a/9HN/4xs/z9a//HHlMbMc9N8+/pJZMzZntzbUFns48GzRo96HJmmrAH2PHlIUXNxPTONJHx+VqJMQOHwJd18+TtRShEshpYpx27HaJ7XZHyRmopEkTjNYJK7kwDL0SlFcrC3hVYrjWQjQpYExDv+t6rh48YLO+4MGDR3z+ucqySi34lgzRjAjzXFGaplHvVTOzs87bfI8Ns+q912fFOUpJNi6hdMoTir4ZSJq4r8OgQx5pCgA4sjjrxDibewUxgjkipHEi5cR+GvnBx5/x9PkLvv+Dz3n24hYRYZxG4/to5cn7QNcFhqHj6uoSh5BzYj9NBl+LyiHywSrq6lczE0x9sPSviS5UcpqoNVFrISUVIMjZrkMIvPveQ7oh0q8iudwiZLpQ8D4r78RMJVUfwCRkvbbAxYd5qZx5FjhiryTnUAdK0aShty5Z31/SZGsbjCvniWm8IacdU7oh1T273RZxI5vtBY8ffIVw8R6+G0hFE/nODbgaSbmnTB0iEEVNH11IpJTngkYpGWohqvYzrhZT3MKgcx4nkeCvwDmEgO/0PjvrcLqupyTtOkyj+QIUYZy2plpV5gCt6xVyklOZneu9DxaU6LP+X5atLZrLjuB9W/ND0H7lXULqK77Julj1jivtnc2CouY/AFpVd7hj4zEOAXkLXAUNSF+3Mv461cM3TbyO9iN393faxWjH3475s90PyZK57K7OXuOb9JwX6QU/9+AX6P1wJE+6/K6pjodAefH75oQevXId2v04vRbBqWfOfff5vvM7vTynx3h6Ldr1FQtkD5wJmRWSisG5LuODO+cJB0jYOUfpN9laAtegzBFv3a/FWJFj3s46bOY1tiU/zQBvX3YmuevnDtLsJ1IzEnQ9Cxx3DbIkpjoZHyUc4EzOzfK/Ae186Bp4ceCtuEP3qXkkNLPUurg0S8jasls2XwsfOe1lRHf3+Tt3vc91K05fb9vLkvzXedbu6z7ct89mhNq2ZfIHx10V3MFrw78E4tfO99ycc8rHuu96/ZcOCpVzwZGsOyFzYpGNPKv13ENVYq7UuwarOeAr52q8c6apfyBk16pkT9f2Z5VUqUYFFaGKmbg1WdK5I5LVmyBPIJUYO3WmpqM4rXpSI6UEQnKE2treliEHb863ZpjXNOeDenEozr1VCzNNXmZOooAFYm6uKChBXTRodbqfJjvpcwaTviu2FsyVcrtuzoEPlZRGex20YlqQdE2pE2W/Z9rfMu52VOkRv8LHhPcdnkDwHXMpXpEudq4aJO9rVUKyY74fPgT6fuDhW49YrzcEH5l2W8b9lv1+S82ZWgr7cQ+IQWGCdSwKwQdCjJT1Sh8pbxpGAl98+YxV5+nfeUQoSjCWcjAvdBLwDso0sd+OXL/YMo6aSIQYjqqz6lmgAZbzjlzyUYJbzJBMagEpSs73Sjj33tHFfl7ApFbEYDnVm6eBmO67E2rWZbq6xQ22cV6tQ+WcQ6ojeKfdNfNQUd6AaIbhwpxQNLWg6rSKXYomqA2fLTlTHAf/BYMbllJ59vya/Thyu9vy5OkLbrd7nDOn765jNGU012B73mnyNay4urxkmkZqUQ+VUoVxnJiSapiHEOdrXIo+cy4IKZWZQ6RVejFvlg7vzF3cB3BVPVrCiDBSKjhnBGbjU+EO/UVnXUhXD0FKLWIdtQaF8q2lBjZ/iECQqtwlacRa7WyETg0k/eaKad8zpS3Pn2unCy8WAI1MeUtMO0pScruS871xeSbG8TkimVoCUcDHCV9Vj7lK1Z9F8OLxXnBeTPL4cMxKMjeH+LAw7CtNNc9TbFxSVZVFopjqWD4sVgIhWlfLRXzJxjGq4AxWEH425O032e7FIlsF91XbXYjVqzddyA8BwkEOVSvF93U6kGWl+LBAv85Cvazmvhym1GTYW+X6DZKL09+dqUwv33fRXZHqxD7vWIUNIsKuaDEC5+j9wKP+sRVO9Nhv8w0ilUvjL4AmBi1QP63a+kUA7a3T0Nyel9fvZecpIgfY00uSuBni0jpYJ0GU4xCQyzzvnl4jU4ayz5Wa2eYb+gXPo3UB2jmcnjNwMibvP7cl1OZIDQydF0+hdcv9V5RzJWj3SKQaL+GQWHgXiN7Nx1xqVhfzdl/QMXdblHvxoHuL/z91f7YsyXLm+2E/nyIiM9dQVXsA0AD6NPoMPJKJopGizCjpQia9Ak3TvR5Kd3oL6V4ymYm6kyhRNOMhedjdQAMbu/auqrVWZgzu/unic/eIzJWrBhwMLYdtVNVamTF6eHzDf8iSSmFzfZ6ypCZd64qEbz2Oati47Vq8mAjUYunmPD+WMGxdvz93XF7vBtm68Np4aZ/bbVxe/2vH9uJxmBW6dv5zc/bj7T39GHyqfuYluOdfojPx0vgyudk5kuKoEo1ZijSqBnV1gtQKPawB1vnDrRAM513Dw2+duVPlS+TiYmko+vFarawXtvE38uqqWtV9TscPjKcRAXb7e2I0JAaiSShu2mNng02Ctapg463FVuftrsN7dRoOoZKVTJNdjTEWmcpUn0w9Pj3BRqBubcry2RrgGpQwHkIgF+y+8w6b1y6MlEC7uhYbq8CMuCzkpDCh4IXOZ9L8e3I8Mj09siyZac6I3WM7wffKO3BA5zpiXfxLXOacJk1dF5iXpQTPqjrlnMN6T9cPvH79NX2/Bwzj6ch0OjKenkrQlRjHY7tX9X6mNLcuxX5/0DniK4TN8tvfvWXfO17d3uCMOh/nsGj3KqhXCFYr8qenR96/e6fJrTEMu6E4Zq9GaDknYopgKNwI7cbkrD4d43gihQWRjhA8ydmS6NniV1EWjZwLrCeXajlgbUtioxRoi6EoM50HNpqMloXJuUK6V7OphMokSrJNjlmMNo9aYlHmkiuuzs77dq4xFXM6MUxzZJoXfvvd73l6OvL+4ZFxicQMPni6rqPrAseTHotzBW5orZoZ7nfc39/x8PCBadTEI2dhHCcNdIFhGMoLrSpICdZ7pnlmmmdymvV+9D3OdXjfQTDa6doNiIlkZk7T70h5Ic2RELpS8evaRasXvkEQAAEAAElEQVTFgSwq9bwtfibJqBGlwdZuYcVyl24boglZ9YMx2WjyIpo0+qDGgPMwME2PHI8PpBQxRsCoCd28PBGWJ+J0ZBzHUgxQ1SzJkdPprb68fU8vi3Z1JGJECeUVkujQpNU78CFgrcf6HmMDxjiMG1QFxuh6p54Vq6xz8l5FDHKRywV8N5TuRYH9lVkiIkjQoo/Oj1XAgL+QKtRHR+myweZFvqnCtQBl8/dPVSufwUr0ly9mGWcBWoNhlGfO+BcDwcvA7kvHltx69ffbboho8nMG0/qMxOTyeC/HtmJ9E+7UD2H6gbvuFYLwfv6xkIgtr/uvCLbjKT7iCmn4/fQDiyzs/U17775EojZGicfbQKwF9i91Ia5dFzJRFjxKVD4Lyq5cm/qzLYm37lvQ/esKX8RnWLk2l3MjSuR3p3/k691P6GxfAufMnEa88VjrG+dD2Mp/fjpBPOforZ/ZenZ8dBQomDWWznRMaVQ+g1XORO2+eKM+JDEvnNJREwN33iP43ekfccZxH14TJamrvQ0FVWFb92kEgg0MriYmeo0crhSU1num0M4LQYKSWCKaiL7Eh3oJWre9bnXUblz79+Z3a5L5MiRpe2xJYkuGyw+fdwbY+Kp8ZP5eJgefkpFeE9+Pb7v6t3yq+/D/NxyLaRxxvmsmdkUcTisTVG1oWxAc6wloi16r0N768m7Rymgz+SoPmNSOxkVWV2LhFnjn4tqdUibOs3I7kpSXqyXlACI8Hme0Hmyxlb/hQ+uW6PFWGFZXSJm67zhHxrGSIaV1RYwxmFLpr5ChGLWaGIs6kRLU1y6OrYRmvwZ3NXEwBZOOqAO05IykWWVEySSjD0ZKC8v8qJCIVCFHnuPj96RlLPvrEXpuv/kbhvsTjx++g7xAjvh4S0yRaZ6UY1LgWsqdCeRwyxJVdaiS83eHO15/9S0//dk/ows9p6cn3v3wlnl6YhwfWeaFFBPLPKJQN0NVCluWha7rwaCGdAgsM6fjE6fjkXHKnE4z/6//8r/hZtczdIG7W1Vr6oee4cbhgmdZRn788R2//vU/sMwLoev4xc9/fjbHrDW4zpf7WswbkSbLqxKxoljP4mac0lKSowVnDXGemKcRcmzwsCWn4huySosKUjgKri2JrvAitOtSVLyMQWyt4ii5GjLZrvMwoUTsvu8w3mlSUwLsVDwvUkoK+5pnPjw9chpn3n94ImYNTMdJpVXxPUPYl8q4JWXheDrhnS7eu0NJ7ozlcDiw2+1wznF3e4fc3NAPg3bRvKezCuHJKZcuYCxdD1W0utnvuLu7oQ+KsZ7GhXmZmaaJofc4D76zxPSEkZndrnCVrFk9aFgJdMZQXLxFFco2L3pwjZuVspLpvVcjSWMEZwxpWVjGI09P7wv3BmzY4bodu50ldAA93u8Yhp6725l5PjGdHsl5Zk6ZD3HhdPqRhw+JmE/EFBmPk5rOGc8Ul2Kk+R4fHD44+p1C+CoPKYQOFwbloVhHdqEkRXr+GEdGje9Sbg1PrMmIraupIFZYlloFdvhQlmrpqHlF5XSI1EpgkYzWaco8/fl9LC7H9uXWtOQbub0s8JtkYvtC3SbszU158/tthbp954UA49pIJVh25vw12CAKH/l+q8xeS2qortU1912DTeG8appERdIrvEY2hNkahBm5CA7OkiI9361Of/19kkiSRJJI73ZYbKnW077jiuKQiBqw7f0NT8sD//D0D9yFe3buwI2/a8d8G+54io/833/3f+Xb/U/4Zvi2KSqtRFtzDn9pVe01kGyY/s11TjmWa7ter8f4wJJnnuIj3ww/Ye9vXrwnSSJzmhncrkGW5jwT09wM+5wpHLxyTDVIdGiBR4P1FY7njOeXN786c8a2xrFze7ak5e0xZIRgwhqAXhRX4Xw+XybIn+XPgnaD2nFaT7BdccxWR+8fpt9z372mdzuC7fA20LuhBc5ZciGB77nvXrVtV+ia7qf8zHjEdjgbNKEytknCVt5GhWjVz197LiqfZdvluEZkrwTz7TjjUpV5cy3Bf7ZWSIlLP5Go6f59+94Z96Leo3LcFQrXumkbPsjlzy6f08ttRlGvp1pMAZ5B1rbnX2Gal2tPvR/mYh/1Wmy7MX/qBOOLoVCYtVtA6U6YTcaubzlT/9VGgzk0yFAm5dRgFgqJMkVqUQPvdRO1+lQmZBZSLt2SpFj7WBMLabewWgKURMAUNRWrhPAi71plNWs11xgauTwlrYDn4jbdwiBrIevLv3pAxLgUadmoQVCpomsHR8/NWUvXqUupK/wS7Q4IhqinKUrylKJ1r9elxKSSyUbhaMaCKS7mzhhwAecHMDuM3TFYR4wTNlhynJTAvmiA6OaxkOSNEqeL4V6fHS6qCzilSzPs79gd7tntbzHGMk8j03hkmk7M08SyLCqhuyiHQFVrCvlXVJGpXkuskpqXZdHuCJYlCcvDEzFGhk4X477vGbIQ7YjvwNhdCebrfCtdgTL/apJZJ4zOiyLlautcLJ0wUUdzdVheuQPWmvY9yRE1gBOiAZMKnKnOxtKKTDZpO70kEM459ThIWjEXU9SCDC2pEBHEJoyxupgIGJHC26HMG61iJ6kvWsM0TUzTxIfHR06niR8/PCFi1eO9QLt8cIrPNNoVct6rCEIIWCd0oaNCD7WboR0NEdV41+q6Lcm1Hs/CAjhcOWdrrUr5BoUJ+qKMNJlaZhBcAB8y1kdsmaO6vZrIm/Isr0Hw2ul8Xm2q4aL+M5/xq3SPtOctx0haFuZTxGVLFkff58L5SG0NGPo9DgNLJEeFKI7jzGSEk1nITEryHnPxvuj1fmZDTIKYpCRJr/ho6w0Ydb42NijkzzoyHhEVXQB93gQNOnM27bxy3q6XlWNQHdhzcdW2rWLbkgtqxV+vnS3CVQLNw+UvNSqptwbG2xc9XCQBF0nFi9u8Esi/BFe4Nq5VA7cv+z9Ej/76cdaj1T/ri/16Z+U8UarHL5utNGjG9vnY/H4bnLZzqT/ZBkgXx2mMZef3LdgMJfjsXUdzn98oWwXb0buBx+WR1+l1XVl1vhUu4Eth8Tbg+9h1u6wPg0qa1n1sg7vnxNvn911Yr9X2XkfR9/lZ3tbmT27HspW61Y+YZ8loPT9N5BLBrRwBc7Gmbe9TfUa2a13RZPx4YtsC+ZIoVt+Hy8+Uvdeug3bMz/sBxliCDWdBqC2+GvVuWOM2SYW7up/t+BhfxqBiJtcC+MvPXo620n1BYGyMUfTL5cy6UtH/3KTu/Hsf715un8mrXYaL879U+brc9+U2z/d1+fz8ZcYXJhbqUdAmpVAw0mVhK1KyABgKj0L/y0kxemmJrf1sC7yhQi1yBpIGHbkqRBsDJjfZxqZNvyxNfSrFSqBEs2CruGoNmH0LWqzRirZ3Fl/lXJ1HMCXwWBqcQLSB0BR6uuKL4K0jSa0UzyzzRFoWUlw0c3JrYB36Du8cnQ8MXUcIjmHo8U7wTpA8gkQkKfk9Los2y53H7/Z0/Y7ge7qu1yQiT8TpPRJHjDy14MqFv8G6ATfcYxhAeuYkzDHxeDqyTCeWeeLx+ERKCznO1OAlLZGcVF3JDR9Iy8g8HcsCDnevfsL9q285HG6ZH99zevrA6ekD43ji6fhY4CIJanAvKkfqnKUfdnSdBqs5Cyza0TmNI6fTiO8GEnA6LszzE9Zkvn//yLDbcXf/CvP2hA8dv/zlP+Pu/p6b2zuOxyPGWN68+UoTKuB4emJZFqZpbPNCclaOjLXEpMmSIZOTIS2REAIgKiZgLaFzGvQllScWZ8nWliRa53rrMJXFUf9dFken1XPEtDnevkgl4xXeRrlW1mmS23tPSqkJGMxLYloWTtPMksrfTyfGcWSa5mL6VkwpjdNzsVoNjzXAzoJ1nrv7ezKGmDSo7vuBvhvYH/bs93tevXqlcyLn4pitgbcevhC8a07vfdcV3oYjxkyMiR9+eGSaJ6b5SD8Y9jvP7SuHc8qrCL0Fepo09UXglHMmJtGqfqnaYtQwMScKl6R6o6wv/SSxvSyyQVWcCulcYmI8PSHigUAfAs5ZYpzIS8Ia4dV+IAfP7BzHp47xdOLt298yTRPjvJANWOfZ718zDI7eeoZ+oHc9+9uDinsZwAiu6xj2e0I3YL0HOkQskmwRSlAhhurPQQkdKmGUWv0uc6aKYEzLQkpCjELX7XA20PvdpttTkpLyOjGG1ikDS4pfaFP0Rxy1pT/nScGXhVRa4Q/oEV/tRMB5YF3H51baXuokiAhzGrHW05nuqvzli9jmmiRtAvyPcQO0+1BhIjX4eh4yfMyxe1tl3O5z++8alNYukMG0Cqi3AWfcmWTntpMwJ+Xr3XdvWiU5SaK3g/6sEXNTu2+D3+Nt4H/w5t/nrnvVuBZJElMa6Yx7RnzXSqxlSmPrGmwrvO2aXUKqjOW+ewPo9V/yzJhOTOlEZ3sO4ba4cCuXoHYjttvtbEcw4YV5o8+N38yDFTL18WDxcuTS8TnGR5LE1jWB8yC4urU7q5XxSGpyu12FMOWZrnQfXho14au8ijlNLWE5+Fv2/lC6Kuu+x3Tkd6d/5HX/Fb0dGJwW7LYFrPqnwTBnfWd6PJ3r6ejPj4FSNN1c723V/vLc688b7KwlLZ8vznDtGaj7ucaRuDyuOraQo5oKX4M8bfdZ5/HZ8ZSk5fJnlQ90OXJV/DNr177O+0t1smfnXjpCL3VJ65qTS2H4WferFKL+HHCoL3TeXiVdtXog6qFw8UIACkdYK9WmVXu1GltbShULreoCZarZ6qewVvsxBlOC+bgkda+OqRxPPlNgWrsT1XROgy9jLc66kljoZ8QaltqdkBUT2IVCmrW2uWubzQMjJThwNmM7B8Fg6Bs8xjqLcQZn9TOdXQh2xBnosJhktKJdheGsw4cB6/cIDmM9Pgz4ENQkL5QqZTK40IOzeBOo6ljO3YHtwHZIcbE2VonZOzPQBUeMPZnIMsMsaogjWYAIEnGy0HnIJuDdvlU9bw4Du13AoKo3yzw1Y7oYI6mQRnMhS5taoTeVW5IbdM4Y05SYvppnxkX5FMOwY5lPJTkzLMny/sNJA9sQ+OrNkZubW169uuVwuEEEQgjF6Xs1mokxQSFoKc/DNvnYnCEVmJc1FPJ3wvlA1/ctwUAqXj1jrbqn17DAGy0HO6P32Fc5ZKuveFVXmluCpddDrwUl8U0ZpLzofDcQup5+t1fn8Jx5fBoZp5HTeOJ4OinUTzQZyRmMDThXlCNKsI5R2ecllk6T0WfTWoMPgb7vcVGrT33XsdsNDH2Ht5ZpGlui0/eqThZCV6riwlI6gykJp9OoC2FQ9/MYMzGNGJsYdpZhZ+l6i/OCsRkhlU4b61yXdQEXo3AvraKVLoap18woOVmM4s2L3Gw264uvPevO4LKaZx6XxOk48cPbH7DuERfeKUygGzA+6ByTjHt9R0qJ8WnkNM5M80KUQLYGSiJirCWBJmXLhLeqcGVCUCUT7+n70PDKp/GEYAghYZ3HusAqe7l9eZXuhbYdN+unFPnagq33piUWul4uTAuYqpS0Wny3btf6jjOkvHq5/LmGBk6r8EaoMAmq/KJ6xVRRgm1g0AK60s7fejvUGuvHqt11bLsisHpbACWgs2c/+xy8tDGqVX+2j884Bmdc2/a1Wv5L59Mw1BeJTB367kub67LFha8BkUgmkYsfwvm+nPXts1G0uBBsVzpzsQXZY1Y+Qa3cW+O479/gsKuiEJbOds+q2dtrEWyAzXls78FLo0LKQLkEui8VW35aFCYlCLfhnmp2dgmteelebQPcs6oyCmXRdeb8+LaeDDWQnZL6xTjj6N2uXft6DNvjscaWxMtsfpbJxTOjdhfO4o2LbkuFjLUuZfm8rixrYHpJkg+24+vhW4VF1fkgej+D7ciSOaVjS2rqObz0fGyfzzpeKhTUcflstmt+rZL/kX23710kEtt7+dJ3PjY/tmZ12/O/hDBl8oUT/EVysTnmbZfh2vOu3bgL3siVmHpbyPjYulHn7LXPfM76+ccYX5RY5FplLMmFBl25veCh3lgdTQlJ6guwPMR1bmVVk5HSsTCA9YAV2KjFtDZoddBORbVAFKNsKynVaVBrrUrYVt17W9wpvbdFuaa2iSHGYthHxhuVY2vdiaCQEIzuO6ao1e+cwWSCE2xwWBsIvleokw9aPLaC4YRlJpgZl48YIk7QwCEr/lqMJ9sDPgxgB8SWqrHvlAht9HglZ1I26veAw7sd6rHhMe4W8MSYEZPJphAArWXwHbnz5BhY5kcskTTrtdfAbwFZEBaCM4jzGLp2D/f7gWEIGJPJaWFZluLunIrT9kJOFQqlXAbnVqfqnHOZJ5TOQM/t7R1ZhO9/+BHnPMNux+PjB6ZRhQFijBwfT+QU6ULgeDxxe3PLzc0NoCTqcSoJTlaJPkT5ABXq46xb8Y1ZSEaIy2qkZ60j58yw2xW535KIoG7bqSS4qcDZnLVUrzNXeETOW7qgBGvK3FiWSCXuuapzbnXuC4YsDuPUpbobbul3B3Z3d5yOR+I08TSPHE+J49PM0/Gkz5At19VarC9cndApPh9aVyXnrO7hUoISawnO0gXVh88504XA0Hf6M2uLiZp6T1QuSteFklgA5Zziov4fkjPWW30GUyYxYx30g2uJhXFxU3nX7SSpBpI6LzFafEhlPTFigaIwJVWZrEpQViUeFVCoHU7bnnWDFIjjMkdOx5Eff3iHEe20DF1Pv9vhu4FxHsk5s7NKlD4+jUyLMCcQO0AQrM/F00K7IxnlN6UFyCrH69A5sRsGQFhS5Hg6EVOm32VC6Ok6NvKvlOJJSSZKYrFyvWoiWqErgstOO6lJGE9qQDjHCjdxrehh7cZcjQobyy0A+XOOXDD9FZMezCr/ueSSdBtDZSedv0BzC5RtKfK032cpGefnjcvKXw1cHFs1m/q73ILSz9nmlxzDFit93SjrI8nMR4IkXb1XCfPzBHX9vnodJX1XXIxthXM1qdP7lVkro3MawQ300JKdg79pBnq+dAm2EqGXpHNBnisJwbMK8OVIFRYoufEEgu0Y04n3yzueliessRzCHa7MLQ1GP73tl0bFyKva1fPjMXJ+7aZ0whjL4HbKYbg0ktuca00u6rPpjCMRW0KxrfhvYVOyCdjrfRekdQG3CWydN7klR2ticSnHW+eotx0pR+3oUWwBPhEQ1++fXbuLJOil71zjL1zrMH7us/kSnOrqZ8sxXnYsWxGjqIbVZKtyo9p8LvdDqHzgjz/X7e9y/Xn/WOfzsgtTE7OPrRsflW3m5STujzm+KLE4TSNL0/cHNhPEilb4rNtUJCqfopa/EUzxbjAGcIIxKvu2Dk0xqqMtIkpWrnAU5+iDVicrIZoGT6kFW1OSDaOu3nXTJaOx9QYZg9srWdsF8IVUbaxv1eUYYyHiRJy39HRY0SXblySkCx4XAFlIy1vi6Qfy/ITNTyX4sbjugHU9tnuFSFf+M2AKDKcEm4JHjEdMADQwtQgZhXWk0ubOBaduMNoBITU1o1RO1WIIDhSXnkg7T286Qh4Yx0eiJGxnwHRgBoVtGIsPQ3lgDK/e3HPY7wuZOJHiwjieGMcT06iOz6q0UWACSRpZP2d1QgdD1/V0/UDoOm5v7zDW04V/IOWZJRmW7JiyJ8aZtGhnKs4LaUm8+/FHDvs9yzyXhECYxlHvTUzM80LOQtf17HYKv5Ks3bIlLsxR5VZTUmlQyUnd0aNjHEe6fqDvNXZZUubxNJaFXF9UCqkzuEWhVaHrCCG162VtZp4mTqcTx+OReVlIKbPMqVQiLN98+1PevPmav/3Vv+LVV19zONzS7/Y4H3AhEBc1LxyPR06nI8enR7777nc8Pj7w29/9I3GZGsncFgWzOq+NqXOBlvR7Viji6XRkiZl5VkfwlCKvX2t3LSdNHvuhZ7/f4b0qoaWkvhe9GwheGPpMjCeEhAu1HQOLnICEc4L6d6iIgc6VqMkUNN6RiAb0IhAlkaXKM08IBkpFmUa01G4ebu3QWEE9EVJS1TQbWMaR8enIP/7bf+DDj+85Ps543+GD5fe//5HQPdHv94yLetV2+6zFgOGW4WZg5zxv+kGJ2EH/M0Ygz5jpCTsd2XmrRpn9nu9+/B3vfvyOH3+cCxwhl/lgGKYb+v6G/fCKYbjTtSqoEotzviQt5VzstrJVJHjXGm3h2whdmJnnyNPjhOTSSZMSfOaaTEh5aXC2/v45hzehQW8uX17ehNZhSRKZqsdBe0EXd98r37VnULjnL9uXoBdbiITICy64G9jCS9vZjo+9mOu+/hBjr8t9vxSA18+FzfWs57lFz9eg8RJ2VDtDFY7hjCeA8njKBr2pxneJzg3NG+ExfiBL5i68wpvwDHpUj+9xeY81jkO45TfHv+OH6S0/P/yS3u04+BvezT+SJPGm/+aj1zqY0GBeZ/yIvPDj9AOvutcKz9okTtuAsZ5rJcdW2InOBe1AawC+XiNrrLptl2uRiu9RkqQmfqUiXBOrm3DHnCe+O/0jvVMvjdtwjy2+EjU52IaxUVQlULJ6UIzpWD6v8KYKYzMYpjRyjI/chDtNDgil6Cqtwh6sqkLNaeIm3JVr4Mu1isx5Kh2VoZ3/Unwq6tV31nOwNwj6uy0p+2Mj5diu3/baP5vP22TiSiKx5TfV5zVL0utWigxZMkuaS5Fm9buo11jP5+PH6wrpfW7SubXzoPHUOmeKktmV49OkU1qi/VK3BZ53Ri7J3Zef264vrZMr61qgXd3ynF54hGz389L4JwmFkoLTqjfW1FJbdaEGTSI2FZTz7I32vVqpW3Hrz1uAK1a9qFgEhSd1oVPsd4ETQH0h63E5Hxopu/be2hpdK6LG6EvfGTXCs9B8bstL2tqMyQmxkYoQtzJhZMHJiM8Wl4xKiOYF4gM2fsCkE1ZUitOIg5TJzMhigYBQSLPWgexwRqFaqfpzUEi4KN5dd6zeDlUTv15LclTMYJwbVl29GPTUJal5mckLhlTgZkbdzkPxjLDqeo1xJbHQ69P1B0LoSwVbF7JUA8eUEFLrAiBCNvXa0Y6lQskqVKwqcGEsKWXG+cQ4zhqQLws5Lg1mZbDM86wclLjgPc2EcTOrMMaU7Qa60KnspimEulRe9naVyKvStLH4cIgI87wwjjNPTydWrfMCt7GG4APOOwZR34GYUBM4A+NJk63jSU32UhZSFPp+YNjtePXmJ7z55id89e3PuL1/xTDscUXKuCZxOXucVd+QYdhjXODw+KDJzod3HJ8eqTK3tfWNKaTxK8n8toajCa5OCCnQKlcI5945gvcl8NWOk4jRwNpY1SrIpkhBJ5IoUV8PIGpCYUAqb0c0odSkQdaORS6eESkXomPeJBYF1mVz+7szEeeC8klElFOCwtWMaLdDigpYWhZycWKPS2zdEZEik4vB+Jmctc0hYsF6bDcQhj0udPTDTjtCzuK8BdSzhDxhkmXfBax3pGAwRGKaEJkaXrfCvNJsiAizAWsSOfWI7DDdgHdDCeikyXHXtVQv6ApvQuozXlTIippYzFLI3rl1P+qy2wASxlwQwv8846UK3rNgXKAqAlb35I9V7rbbuIStnFX2r3z/Eupy7ffb4/9Y9XPbAdl+508xtLu/rXxfqV5ujw1pgbKwwkiu34+14gq0YuEKj1kDHoe9npB94n7VDFcJ4b0GztTgvSgTbeA628Bom/wseeHD/GMJxBx34ZUmLf6Gnd+fcUjq969dzec/MeUdex7klnLdszmjQacq1lWoUD2mmvjqn5YoUYs7Fa6KMKeJMZ2KL0aPN0HjD7MqarUSgwiJtHYiSsBbg/i672ZayubZKwnmOlc2a8Sms7n93drxsKS8qLyv82ff2V7bs+f5CzuJ22PYQnueX2/a+lj3KWwhXucKap87UoFjaqBur02Ni+PYPIOsa9U1NatPjZW/I1ePuc37TRpq6nth85P1/798XHaL/hTjixKLGhxuEwPr3PqChILbL4mALbjWjUOx/ql/OALGWLwLDerhSvtC4UlrRm6tIThP13f4LhQJzVIPzWWSSPEWMBbnew1ErMrO1ha8ZvkLzmSsETqngXoGJKkMaUyrylBgwdiEZcbmiM0Rk98j+Yk0/yMpnYhpJM0TSMKYGR96nAuEMJTOh7Acf0SBX+oijDHg9li3x8gvcLzCmlvFUxsPLoPrwPgSeGWsS1hlAurCJgIpkZZHUhqZ5w+E0BNCz7TMmt2TiYsG6fNUFJzyAk4hYsYNxcjM4d2gspi200DUQL/b0fUlIM8VdqNa4CnrdlUlaX0AXYxFEjSU6qxrvBfnAt4LIagk72k88f33b4nFZIykxmWSFsgJI55pOjGNJ+ZJOwmmdnnKNtUjRAPBvqgdsSxFAcwzzepJ4IIvJ5GIcSbnxND3xLiQcuL9hw98/8MP/ON33zW52vXlaeiHnq7ruL+/L8mwZSkSpE9PR2KsUDlQUnXHq29+wc9//s/4j/+T/zmvX7/m1evX5bolxvGEZCXvS4OLeU0s9jd89e3PmOeJ+9df89/9t/81v/n13zNPT/oA1WfRGHUZ3zxYtXI9TROncSyaAo6hH/De471TPwRnGYYDfd/T+aAJubWEEBQumEshQZQM/ng8MS2PzPkDWK2u2+K14f0WNlC9SowGwYVPpdC5qHNTtWJbV6sloNU3RF+d6uGBYEtHz5bnxwpIVPhdwpCX6nqtks7BB53XVEiewrlC5bWEQBh6wmHP/uaWru8Yhk67WXnBO3VOPZ5OmDhi4shu7zAeRjlizIgxCy4UFnc25Kiu7TI+EJdHTstb5lOHdYF+eMXNzWu8fQPuFmsCznQozMturpk0byCRtPr1NJ6SRySqh9CyKsGcCQuU/9JfwHn7mqpSTby26kIaIEgL1OATxGmpSmofr3Reuk3DRTBzpdvwqX9fPabti34DTbgMtj8FO9hiyK8dRw0wqv9DktT8FK4fFyyykCXhCwTYim3HW4PRrZHaWnU9r9zqfrWSXROCzvZUmdbteV8ed+/3De//7e6v+Hb3V2efuetebarm0irAoPetmrn1buD99Jb/w3/+f+S22/PV/hX/q7/9XzO4Hb+8+dWL17WeV5tTF4d57T4147FWpNEErcK8jDU8zO8wxnJj784Izd4EXnVvCmnb8bC8J1t1s/bWE3Pkh/l3/D9+95/xf/5v/jP+03/vf8nf3P4N//zuFTf2jssxp4mcE9btcMYx+D1RIlEive1Ld6/EEeX5CLajsz3Vcbt1PqynAqAyNaBe+T/WWDyhVdLnPDGmY5OvbcH0JjmphP6alNTxMY7FZRW+fn5bVGhrhSmiIdv7iaxz164iARWutE24XpoPgjAl5W9eigycHevF8bak9wvC+WvJUhItAhtjC3RvXffquWdJRYRj7aA10RNqUfXl6/vS2ELryg++KCH7kvFFiYVWNF2popmzilsdtYNhjGkvOrupXFun//bO44vHgDcZDQ8WsA4xDjGBnJWUKgVGRancWWMIzuAsOvEko3JriZrWJEmQHVVK06DOvOphMFGVWpIdwCgUiZxV+tPWqrCadRkxigG3Rr+WHMZ2eHtHXoS8RLKcyjFkrJkxJmIkAQYnBiMgGJIombxiXi0GmxNxPimHxASM7TC2x0jB/QsqmSUqQQmQvVHYUYzM40yKC8uSmE/qDmyMwjb6YSBmWJJlTJ6UHUvuSCjxO4RBTexCIAqImGIAV+VuSw5kC1m5OJG74v0BucBm8qaqqo7dFfahsDVNMNTwTfkrSvyOWAvBapoYs84FJc8psCslVXx6enpgyDvdrlOFLxs8MQXleRRlJeccnTHFf6R0LlRiiJyWsu2VnK8BbmYpogCweovo4r1WgJcYeXx6KkFwmVklcK+roFjwPnD/6g2//Ou/5m//+b/icHeHcZ7Hx0eFe8WF0/FJjzvH9pL2hURurGN/uMFYyzfffMs0KkHwN7/+O1Kc8b4YTZYOkGwCd5AiMavyyfXnmoApDCznRE6Z24MaXTmnZPZpnski6qBdxA5EtjUviykvIa2Ia/W/Vc3q/wnk7HDG4IwKFWST8SbhXa8v/XLttSavY11cc6nYW0xOWJOwqKJbNWGkmGnO88KyqEJbdgbTeXyfiwBCjw0KrUoCLBGRkfHxA94a9rc3HJzgrZCnE3GZWeYTj+PINI388Lvf0pvM3sJPX73CWMfx9ITzA4ebe2yFLonKFyOCMZpoW1dNCT2+Mzgm4vweyQrTGoabsg44BFXbSy2pWBPEFUpaKs0GnSN10W0BXrmWpauc/gJQKKn3rgy7ednXDrQghezbt4DiUy/srWfAOX795Y7FNQhG+84f2GW4fBFvq66fSlquVTi3GPLL39dAdxvUXFOy2h5LklggZ6F5Giwyly5ZhWTYxjW5PMbq7VEJpXW/ghRSvtHi02ZU8rISggtB2XiWPPMwvefD8p4smb8+/IqEmst1btBOyAalcN410P/mPJHJ/Ms3f82/fv3v8c3wbREIWOhcz9Py0IJtb8NZsHg5T+r/LjkQ9bNrMpVbZVyPZfUssIVbMaeJY3riFJ/Iktn5fYM/GQw7p4nA4/KhmQnehdf8h9/8R3y7/5af7f+K23D3jBhc1z5bIDoVyeFwZ8en7yWdGxktnFRDu3rc3qwJYZU3T5JwL1xznUOajOyNcmiSSU2talutv4QsVmfv6l9RE8/tfdg+H2fzaxs/Ys6Tu4vEwxrXEqvtdz7Hp6J244JVDmlNrOCclF95fefXRZ4lWNfEGM6I1lc6etuu3aUi3NY7ZE2y0gqpa8WR3O59vdYvzevtcZ1BK6kR9T+BxKLq2K8QptUWvl1AQ5OQdSVx0ECzQGEK1jh4T7BqtuWYtdInqSQVgHVksaSSXCCiQahRzruz4IwQTAKJGImIxJJ1lzgcA7Yos2DUJZeEzVODOmWbMUaxhLX6510NpmX9uVgk22LiZTF4nB0w+QjJYH3pnGRKQCxgkiYkprh7CiitzKL8iQB4JFtSVBk6vMPWhKZOmZJdmSQIGiiLOA0SY1RC9bKQYmZZTsTlkdBpUBX6HUksMRsWMWQxeo1tOS6v6lMhBCRF9RZJqUhptlta7uPG7+OiQppEMLJWTq2xLbmoyUjLwG2F2+gC7n1tRxpYhJQp7E0l5+YUmeeJp+MjGFWE6roB70KRaHWkumBZ28j81UfENI+KhSiZbEwJTleTu1xI45qIlIVz84waq3cjJZXLrXPcu0A10xOrD5TyPbSz8c033/LTv/orul5JvqfTiWUaScvM8fjYIGX1OqqfRZFedZauH7i9uef1m69YloXvf/8dM2CsNOhSfWmIrB2lru82VWx9SreYexFprW5bIFG1Oi4i9H2Vitbnz9T7Zi25mj9RX8iUJGBtbGMUWthI9GVRy24NPE1RXsKsOFKt6ESyJHIhC+Wkz4OG3yvJPJPJCWJaWNLCnBeMV6NE32W6vqfrduALKT+VpDwn5vGJ2AdsmjBpxCxqQjhPI9PpyOOHD5yeHvnuN//Abd+RdwM56xw/zTNYR9cPmPKcIhl8QKFqqhDmzGoM6mxGZCYuQkozKfVFnS6AUW5VFkqHp7yTK5RJBJHCFTvzt9HujlmxEDShjA2E9M85dKnO5Rk6r+KvREgpgdPnQQi2L+jLJKEGfNcSivWY/rjXob7EK/So7nobTF07lkvIzQpXfH581yBX22v6sWOrHYbmXVCCk/rNy+DtfL8FSlkq4VojKIWBggu/VEqq8rbW2eZCXTsj7+Yf+e70O5Yc+cXhn5FzZEwnlZy14Sy4OgtAS7A45wkR4eeHn/M3t/+cu/CqSLqqdLPyE06YcF/267hWsW5pheQiFvOp6u7q1bW9Ts441Alck4YfpreknPh6+IY3/TctKfE2qMFmOjYOyM7v+db8jFdFQvesY7Spimu3aWtSZzYJmBSJ3XpeBX5K1l6uMSqKY1Y+Sb0fCVEVRbu6aV8b3ngwgWN8xJrM4HbPPntVvjVHcL6dy7P5ztrlOl8TPh6Mn32P5x0JhZvXN8+nk4uaVJ8ldNVv56X5UyBnZ0nQtefnSoFjO2yBXl1em7bNkjDWUYug5/vQ/98mFZ9yFt/2KsxmG3+qd8QXJRbee0JXSJRGJ3sNzlwlS5cqqrOWzlmcFayN+rI1ojF1XpB0RHv1gvUD2XpEepIJSEkeDEIwRXnKgg0GTMSYCDGR8kSMT9h8hDyp6pHNeAcSI2AJ3Q24DuN6ijg9LhwwpkMI5KSJwpItgscYDVQtGSOZlGdEEgmVMLUEyIm8LDw+/UiafyAt7wlOuxMiHc7e4swB478G05NNj9iOjGdKXpcAcQhqphXtHt/tcKHH+oBYSzZW4UGxmrYJlElmAJeXgv1+oncfyMyccqILieAdvnNY34G7hez1WlDhPaj7uHNKRq2kdu/JInRSKq9ZpS4Xm5HBFWlWdScHwzLHYkxY8PqlM2Wdx/qOfrdn2O0YhkFlWcvCISLElPFdx83dHfdvXitPJC68+8GSlpkYJ2pOPU4j33//HU9Pj3z9zdfs93vu7u7Z72/YDXuGviuxbJV/LQ+Y1LZtaaHGhcU7ppKsOO/ZHW4xzjNNM+NpZJoLMezshQcY0ZdtfQFkwBo1ajR1sdMXUdd33N294l/8q/8+3/zkF+z2d6VTEYnTyHh8ZJlHJWSn4ptSHnVnbEtUlunIbrfHGOH2Zs9u+Bve/vgj79//yIf3b4lLxCzqRaKJfOkmWssSIyF0vHmzY7/bM88zDw8P7ZystQzDQNd3hL4n9H0LSmvCmHNiiSM+WLrB8fW3d4jsNWG2hWhYqW3tBVyvW+1kmnIbVxLlOE/qzxFnprjof8VgceihD47OW+JiiMkwTxZnO4z1GEpFMmuygTX0fSi8buH2/p6um3iSJw6HW/aHO4bDLS4EfN8xjiPzPPHw7gcev3vP3/36v8LbotpUjB6XeWKeJmKMyp25vWO6u+U//zf/X0wXOEomGn2ZS9ZnxUrh4xjA1CrbRq7aPbV1MgRVfnv34Xuc3cAmUehYKsZ5rrxELY7d/hUh9NjbnnHKjFNWzktGiy4VMiXSDD5j/PN3LNwGb17HGanYlO5t4dhsg5+aeFx+fztegt58bPwhROrt2Fb7VJFr9bLZvswvNfzh3Fn7WmfGW9+SeXsRZJ99VtZgpXZ+nvlAGIe1w1kiZczqEnxt29cIn7XzUXkExhiFb5LaGWw7LTunzt1znouJo1ZTOzfw14df8cvD32iwbQLeBTo3tO1ejpRj4SAMBNvxu9NvCDbwn/zkf9b8L/b+hjlP/Dh9jzGGwe0Y01F9LvLIjb87I7XWe5NLcBjzgiCtY3bJO9D7Es7uY60ed4X8bDD8bP9Lfrr7Ba2zDbyb3/KwfGBw6hNx371p0rTGmKZsVbexvQZznjDoZy7vhyDl3W/PXMDnPBefn7VrvFV+2nbBdH5sYOs11BTanPasjuGV8B2zdsHrdrZJQ+tAGIvfcF2uPXPXSP4imaUQ2Xs7PJsT17bzKZPLT43rTt/PQ+Etp6kqcV3Oq+02Ky9z69UDW8nkVfnrpS5n7aqAzo8t7PGlxApgy5e6Ntp9a343dX//bmvjS+OLEou+8/TFRItalS5wEl9QDd4kbOEvOKPoIVcB+6aQ0YxFCKp8JCiXAG0/uZp5mkKUxjTSdTPiEyFmQBw5BZAOxCAm62esYKwGpklyUYFy2DBgTAC/Lx0IdS3GCKrSqVX8LFaLhQWbjSwgIymPpHRC5vfkdCTFCcyADQFxHsGSxJPcAWsHZnmFiCfhkRwQHEm8kkZdwBWIED6QbQcEEK9cWFOrzwkosCCJhekqBZs/IvGJnFRCU0wgGUOWgOQekwZsNMRc4uAS5FQYk7UbeIJIqYaKVp1KKTQjpNIFMtYqb8L5RiStbbu1impbF6ELgeC1Y1Gr5iDM88TpdCQET587rLPESZ2MrTWIM3hxBX+t12FeFKLTfehJKTMMO7puKWS20i52VpNXVqK2oQT/mdLVKPPLajel63tiykzTxFIMErcPso6S50s9g/KTwieyBrKpKEhd8KzTira1rnSSlFg8TyPjeGKetWuRKwm+VC+d0Q6DCgvoFnenI10xG9wfDkzzyMMHWyrjpl13habJ+pyUFapCpYZhaPfae0/XaUt4iRE7TaULZdr5IaLws13AhZ0m97VjV4PobUGVmnjREg0ply6l4kqbEnPUZGqaI0sWUraIaHKYxRDTAhKJc1TuTPF1IKmcclsDokLwpkXJ/dMyM8/KecGqHHDoPP2uwziPWDAOrDeEXY/xIHblaCWJRFkU300k24TrDHghkpjyghOLcXaVwBZNKKsvD1I6tuXVkUu7x0giZcEl7Sw5a0kpqheOjWR9wBBRvpNW8/QFLyni7ITzsORMVDoJW8vgyzlbOxr/VMZZkGwqVOJKtezi5fiHECT/VEPWJ+PFimSDem2gCmsf7zzZquNzYVmXFX1YYTt1PzUwqes68GJSc1aFvniOt90m/VMT3EvIyblSjitJx7pfjCXmRaEyLOWZSS3x7jZBsCYvuZja6rvpJtw2k786bEnuNFjWd0usHiNSQExX5k09r9pBrVj/CjfZfm577pffr99b0qTqSUYVnByeYDsO/qY5VAuK6Teow3kNDlMJQh2OuW3HX+0k1Wv1vNul72pTOTAixLycJR4V01/hTLUyv73H2wSjzh9rLH1NAMtRtOOpXcJnx/kHjPLuRr6sCHIJc/wSaGM1BPRXwt9t0rJNNLXT8PHqfu0gPD/WUnSElrRtE7S1Q3fR3eHz173POf9t0lL38akOzx86viixuNnv2e8PLSg1IRT9e8GwYHLExQVJp+IqnTB4rDsgDGSKMYwNWNsBHVJbyiZhibiChQd9+Vpr9UWaVzUiJZX2iHhEBhIHINIPquKEydjwhOSFZZnw7LD2Bjd8jXHaOZBlJMuM5AnrlOwpziLGMU+mqPpEjJywcqKLb4nTW5bx9yzTW0Dw/p5u/zP88A3R3pElsORAEk8WS0y6nblVDisBvacPA8N+h3dFfSZJCRhKd8ZmYMYQsSZhSGAWyCWqSCM5jsTlSMwzGU+0r1jEEZNFkldVppSLr0bGW+UmdEEdlCvBtwWhpcjcAiOxZCJRVIZVicUDoVPolPeeHF1rmdfgtguBrusY+o6+79QXAa1y5Rx5enrgxx9+YOjVqyPnzHxcWCaVLrUGjDNKiC3V2BgT4zg3o7a7u3tCN+NDIR07V5JDPQfnw7oYx1I1TbnwAnShdi6w2x149/4979+/Z5pmYkybh3RbMVxf30o21uuVyWuHrQT4Sqx2eN+RUmYatQK+LDPT6cTx6YlpOpGWqRCLV5atNfqoGwOGTIwLoe+5d559v+P27p55nnlrlb+glaJaCQ9UYv08z8rfQO9nCIHD4dCSmL7vcc4RU+J4OjJOI11x1u66riQDkd9+91vuXx3odl8ROj3vLFFdsUucVWMkW7xAmhiRXSu443hiiZFxngrkJ/N4mjCuw/ge9WSxygdaHskpsoyjEhd7p8kCyl1IWRO1cUwsS+LpdGSJmlws40m9NiyYYHCdJQyBDDyejsS0kE3m7qu7Bn/LS+G8PD7C4sizwS8GnzOGHu8CEkC8wXaO3TAQRTkMklLj9+gxikK8TH1h69xBIOVERLktzhq8t0SbMCawLBlnA94OBK9GYzFH5jkyjTM5BqxbmJPV9ct4jFuNtmrK7OxauXT+z59YtOrqRSBiOFf92VbP6rhuuKUFh86c6+//OUc9XsWnX6+0v/S9y+sA55XQFsxtfn6tmv9SdbYGjrWav00uqlO42XgcbMcWtnHW5eAcRlP3eXkPqgyroAXArnCnamJVh7plj3S2I0liTKfGhwjhdTuuKasT+N7fNOWe193XV693NaNTSVSVft3KhObir7XlMLQC1AWnYUojvRvOAvLLUbtTdS5kyXw/fcd3p9/xpv+K++4Vneu5DffchntNpPLClEd+nN5iMPzi8Ddt+7GYVzrneIwfeDv+nl/d/surhGKF7zyX0KV0her9mdLIKR05+Ns27+Y0seSZ0HXaHcgz3natcg5rR7EmOnXe3hZ42bUk4ksS/ZeC/3peBtPWgs9JFJ5BmK4kzR8bsSQW/cXPtVOXGk9ku7+PnW/rHhqr8dlHrlXMkUzCmq4lGQZa9w9o87Zu+zpk8csTqsvPv9Q1/GOML0os7m7VBKsGbGJLNT/NEB+KnGnGuA4JN0i4ARvItseKMvxF1iAqo27AGsUIKcEYlRSakkKLMNuLiMIhzhbsjGq/WMhCEsOII+fDil0kkHMgRcHECcmP5HRC0oKIIUkgIohZEDLWeixHDN+TT/8WWT4wLUdiFqI4cvc3iO2J7p6T3CDTnphLklRBbGimaqxl16uhmSume6YY3+W4MEXljqSUi75/7YMJhqTKT4p3QGxW6kGG6RiZp8Q0ZuaoL2Dx77E+YF2g6/d4G+ito+s8wSuJFFG87LJogrYq0Gz3TYMRORHEGY5OGIzF9z39sGOeZ1V8clZVLzd6/K7KvnadSrQWM7olRubHB7773Xd89/vfMy2LklVzBMkFk291iTNOOxiCEpV9oOt6fvZXf8X9/T1//Ytfav2wQJwMotuhzJdlfRmkRf0u4jKrGpLAMPTsdnt2w47f/vZ3/Pa3v2VZ5md4TyhV9/KiqvOwztt1HtryM3X7nueFH95+T9/v6UKvCMCozuXjODKeNLEw9ZylSPZa2yL2uHics8zTyDJNxH4hOEeoAWO5R9WfYpomQlBSewihJTqS9cWRci4SuxoMhOAZ/K49jzU58d7rvMDQ9z3WOuYlapfSAabco1pRr4XcXKQPywvYFKWunIV5npv3grWO3gd2+1tVe7IdKVtyVoja4zQxPh15+rCQ4om0fADU7HI3HIoggAPncd4RgoDxGBOwhYuwG3oOt3f0h0ORpLXsb26ISfkb3mtXTrHB6gGzv79T8vYyMY1HnSspFp5QR384ELoe3w94qcZ+0p53dZWupGkNsFJSLHhOsejvqgYU2ZAniNmScigKcZ0m7qHHWUdMxYuFhTjruqfO44UgXqUnSzKqa+W6Xuf054dCtX1vKpD1BbYNyj7+XVWcsYVrZKW+gP80L8JLsvnlqGtCDfquVSXr2GLHXzreZ/Cbi27BWfX4yth+t2Lv62cbsfdsWwWwWK9jCbBrR/glXsKnRoXPVE+Gem6Xl8cbrwZ7bkCAnT+0Y1xkISb1g1BotW+8kJQjthTAkqj0+ApBM/S2p0I5bEuopf1MoWvnyfWWW1C7F73bnQXZ2+teEw9v/WoeKIkxHXnVveFV96Z1Ti73U3kSbvDrtSn7eD//gCDch9c443jdv7m6f9AkZEynRo6vJOlgNVkQhDlPWCw7tz8Pso1pga41jlD8OS4T/SXNIILz+7P9wnOY0GUC3K7nlW7L54yzbttnjO0czxuo4cc+HyUW2WSnkKuLz7QO40Ux4KWxvU/b5/VT0KItMbwed+scbQoOl0mGIE244UyIQNak+Z/S+DIoVDD0YaPggiApIxIhTQrVsRrM4Xrwt4gJqF1XwuTczJz0+0m1mcSqIlLMzEsmZtW6p8BDKszGOau4Y1tEJ40G3asYlyFnXWCiCu2oXKUoETxHUb+JqB0VyRGM6uQrWChiTML6BZM+YOJb8vKWPD+Qlkw0A9HsyPYNwo4kt8ToFf6U6kQQXFGV8t7jUAUsDdgcLhRMbc7FtVr/TEk7MhVOgSmhqoHKnpXSjZMMx2NmmjLjSZhjcfDwC6E3hN7iqdV7s5Lu0Q5ASqlV77XCXVp0uU7qcndzWT7EMEfoO1Pw4GHtWm0I3DXYtgVq5b1+TivjuXRIZqZpYi5cBmuU/lrJ1OoiXJ0uNVgPnWPY7Tkcbvj2m2+5v7/n/tUrpoKFrzj3qk2dM0gsnQkMadGqci7SuMZACCpLa4xlnCbev39fktk1qdBzqm3M+gBvH+KaXLRfQFmwY4w8PDzw6nhkLt0AKddezfkiMS5YazDelX2L3mQpdMlyzKl4eiiXReeTtdo+lrzi63WxQ+eZ1RdyLs9cc0pP6t9hoibtoXQwqipUvQepOGtXPk2MGeNEFc6cKdLDtKQUWH0TjJR5t1ahavJhSjfHOk/f7xQSaAIx6T7GJREnYTxmTsfEMi1MpxFKADXvlBi/2+3wOwfWNSdscJhsMAb6QWVlbfBK1rQGbz3Gqfu5K747NTnV+dMXdbUeGxwpLqQ446xXkr4PGFdNK3U/KmqgancNolXupSCayORMilahXDlj9MKRlsyyCEvKZM2TENEXT3aeKKZ0xDyxMeh13wWARVGLKGRb2poJFOnvv8z4WJt9C925/vv1/00pLtXvfSzg/lOM7cu+Gmu9lFhcVhE/F2pwCXto+6yP07WKJbreUTucmySiVj/rvxUcVBOM6gGw6Zpw3mWSzbm8uP9NEKbN2+edmTqs9XgxKtl6EbTPxdTtYfnAXXePpXZh0tl11mBSj1FhKfp+WK/dcwPFRBFW+Mg1N5jGc7k8t3XfCZFV9jdJYskzO39Q+d0X7nOtdFdI1HYsWSGXg5swWHqrnYdMPutO6M9KYmUsRoSYZ+1CU+o5pTvSueFZx0MBbJuOjZi2n8oZcriWRGwT4pUfdP7c1blXk7bLYPjatf7Yc/CHPM+ZumY/T8S2MLhVBCE3T5iXeBLXkopPPb/PxCQ2n7/WVfgYj+qyYNB+jpytQw26xuevMX/u8WWqUGQssYCXLEtyIANiB0x3g/YgMglHTg45CiILWSJJluLIq9vSB0Kr5jHGEmwrCbJO4ur3oBK14AR8yriccXYBkzAuYqpko3TFLTsxLYlExqSMcwGXApInJCXiPJMTZPHFEVfo+xODT3izYN//W/LyI2n6jmgPJHPP1P2CKXaMS2D8oKZrcRnJRgN4F6pSUg2qPTeHSkEX9WKYtN0guSQWiwYdy1IlNksWWuAoISiXoT8MWl2NmdPxSR1450xKhmQ7XFHwCV1f3IY7dn2HL9yX8bjwGCeWuHGU3kxHEUPe/MyScU6Vt4z1ZHHMC0jn8UHhUH0/ELwnevUJcYbih2EIXadu1sOOfjgw7A+kpHAmbOCnOG7uXjFNc4G0jLz/4DmaR+Y5kbNBJGNtwDnHV199zU9+8hN+/le/4PXr1zjnWJYZI5rEBNe1pELPJzM+nVpAq4pjCoXSaxu4v78ldD0/vPuR7777Hb/5zW9YluJE2ioP2wRjHWcLRZWc1d+A0RfBNI/85jd/37oib958pd2VVBZr55DFsCwLp9NRvTtEcNY1T5dh6BUmlTXBiMvCru/Z73Yc9ntSVDfuGBeWZWGaJoyBGG0z/1uWpZHZc1qDonlW88aHh4eWTFRycZ2/2mFzLEvm6XHCjhQzyQoZ0ERVr0k5//bS0WfWO3UrP+w6pHYIRL8Xj5rIJzMSY2aaFr5/+4EffnzPhw8PxdhOsLYriXDmx3e/o+s6Docbdve3+L4rc37HftcR41Tu98IiAnGhd8WJPc7N7HCbGkoJULJIgfupEV9MkXkey3pleBxHzDTjzFiSCYsPXmFNblW+2w19m0Oq2iJI1sQwx8gyTUynhfcPHxQiNoMPH9SYcn9Db7/GuwOu26FytJvumCmhkpSXZcnYLl9wdY39S49LKc0qeVmr5M9e5MacuShvpVfheuC1/T1cb/Ffg+jUn7303QrH2eLbXyKTXu7rxSBrU22Eter/0rjsRDzDYUudw7Qkon6iGYEhjVTvqwIitOqqFpySmliW42oKUCXw5Gyb2wTFNJL3S9e5s91ZsrQ9hyiRd/OP/Obp1/wPv/oPcVh+e/w1r/uvFNJTKrbOOOY8Izmz8weiRE7xiaXAp27DK5zxWjyoHaH6bCBn17Ge89lcuEju6qhk8fr9p+VDg9LUYLyz/bPvxcL9s9QOicDGJ+Rn+18yphP/9uHf8PPDL7kJr5jSqOuGXUE6BkMwChmr92VMR1y5t/XYpzTqc2PP4WqD24HbaaKQI3NxC08SOcUjt+GO2+4VYzoR86L7cz3dBqqTU2qeFqmgArZGxilHrNFi1rXxx+ZHWWM5xifmPKnEL1bXlBKZPsUHhcrZoa0ztdtzLQnZdgPq+NgzDOscbrDOsgZfzqnaVbi2HtXPbDu6l4nGlvhdP58ktk7lx9ajbdLx5+aofVFiEbNlSfqiEzEsqaqQ0KqmOVdH3UjOM2DQWkNVLdksrjkX7kSmBmeO0p0o0pbqeVEJrYK1Gwm8bIgzLHEiJchMCEUStl1WIaUFU6A/lBttncFb8G7GmQUfT5iUEIlMy0SKjjm+ZpY9UXrmZJhTYo4wL0k5EUXOVKsnDuW0K/SnVYxTYmlXsJIxsxpxbUi71ipx13nXCPHOmhIoRiRl4pKYl5klRpXUNRYcjUitnQTtjCC5+C5kvTatoi/l6lGO2xQ5TFO2Y/AG7dyYjEGvv3O2mCGaJufaAtLyfe8Doe/Z7w8cbu64vX/Nfn9gtz8o7CplDsvC4eaOaRpZYmRZIuN44t2H1zw9PfLj299zOj7x+OE9Pjj6vuOvfvZz3rx5w93dnS5eIqSiRlXnUO2+SOl0LctSFgeas3aVT60wLWMNb797y8PDYwliKf4AH6/Wnf3MtNc064/1Pi/LrE7QMbKV1avXXReJAneJapLnXMIl9QNZlogPqZ0fqPeDq0pDZr0H3jtEQvHW4CxZqMdkrCkB6eZFm3P7s8J4FDKl3ZGQQ+t2rK7UmgBZ58jV3h3a3CqniLFCKt07a/Q9r897hTvm9nxrxw76Yc/rNwOH22/ImFJ4WBpHxXcqOYxzZAIpO7RhpR41Fu1kKjI/QUmSjTHrAm9A8Xu11axJtVV2us4vW6h9XV/WLWnBfC5V4SovrWsORVxNIZ266EvZhwon1BzUlorUdNgjovddp4bF+QHre4zvaG6YLbFY55sYwVRSe7v+6/wTaGajf86xheFc/Z2xjY/0pdttK/qVKuXl/q9VC7fwD9hW/ta/aQV+A1G4ID5vA9OPnv+mer79+7Pj3CSFW3nRa8f+rMBRj6EEJGI445fWyr4G+u7smLfV61Zxbl3ndTTYS913PdZWRABlclFgGfXNG1rQNeWxBaTOOFUPMvqcBdvxqn/TCNrWWO66+6aMVBMZNfRbhQ0slmAD1c2lKl/VpAcp53wRTLZODsrLqJC7VKTqtzKv28r3kmeWvCg81ziCDWe8lpQjUx7bdfYbRa1KEJ/jTLChnWewgW93P6GzQ0t06lzb3pNz6FGBbpVguo7B7Z7xYrZzqMHLJOKsx+HLeWgiEmxY91vusTeeRCou4vV4ahFmJby/1MGr8+fa8dTfVePLem/q9j4VCHvjEVtd5tf5adBE113e+0+sFy+Nz1mntvfrEiL1KRnYzxnbJAahJRUfW4P+0p2ML0osluSRGEglOImxPPSpkCAL4bkSrVfzcsVVG6ySdEr1mPJCVc8EDVyxaqhlSjUweK967wiSZ1T2E0iOZYanx4XH46iqQVaw3hP6ga4bFFYTFd+cY1Udcuy6jq4z9J3Q2Q+Y9AFOvy0+DsLILXM6cEpfM46BJSpmPuUSeCEliCjwHRw5FUk36+h8hw+enAruP0bV64fCpdAKdMXtO++KW7Blt+sBQ0wKvxFgnmZijMzjxBwXhTKhBnfWWbzTRCaErkGukOJrIalsRwPfNQg2JYErZnZFJcg7R+dAZEHyohPZqL+CdQ7jVNa0GtE5axGn0JKu77m5veXu7hX396/56utv2R9u2O0PrW0pQvOLqNCg0zjy4eEDj09P/OYf/o53P/7Ad+437PcD+/2OX/3qV+x3O3a7HeN4Ii4LKaaWXKzzUKs4OWfmaSpnimLopRKWLV2nsrkxJn7723/k/Yf3LLGoS5kagKzz/sXkoi1a21/ofyK5JRUVDpMlb+NEhaXlzJIS86wdver94AuvwS/aeZCsL8uaRNoKfzHVgDIULwpdaH3RE1c/j5pYySYJO2/9A8SkcMVcyNHGGEJMami4KP+iqn6F0OGDBr4i9SWxVkw1saiVk1yeX/0vJk2WYhKd9536P2Ad+9tXvP76ntDf4sKeJUYeHp94enjPNB45Hh/UUfz0BDhytqSYSTYT48xuEKxReKagZpvOK4+ldg8FoVp6GLuqzjnnIINkhTNaY/DBNZhivQ8iCmmqxQ1BFMGWhSxF4aRUk5yqW+C8Kb4dpvBkEpItyAR5YZw81naE3R22P0DYtWe13KXzKWY2XYz1Tpb7qf/SNebPOyr08qXfXVaK6/hYsvDsszyvfG+D8Uv+wrbruO0uVG36WpkVKcIZJWB60Q9Brgc+1xKC7TFcq4pvibiyWZefbfvqz86PoXa0tlXKy4TksjtT971NnvSarG9vKSqBzwN0/dyS5xbI13N0zmuXnczT8sDD8oFgA3t/YMfK6+gL96J6OwDcb/5eCeJJUjPBA3A4BrdHXNlfkXTVYo0G3J19Tvivc7ByJ6rhWiV/uwKL0oQglSC3K3Ct9+z8oZzHzdl2l7zwbvqBvsCR1Cxv5XrEvPC4fOAm3G2C+Y6vh5+249aq+ZXKNWsAbjAc/E1JdOYWZB7C7bNz3Y5UXLtjXjiE2zOVLb1WA87E1uGCwinKppgUrnM3lftR50E9ysuxhe9sTuYs8Fbug2MLa6vfvUxCtgl6sB2ewJxGjLGEIixgzCrReqkItt1W/exLcKT6+88ZLaGtQgFy/jP3GZt5BqOs1+5izawdwk8e0zY5/QskGF+UWPz4/ojvcyHclqpxqYTXv29NuNhMoPqCVJKq/qxVyL0GRc57Ou+xReVGpS1hmjUQneeRedYq8HyaSrsTfNfR7Xa4Tg2jMsKyTCAGa8A5Q99bOr/gzUjgH/Fpwh4jEY+IJco3TItliYaHUZgXmJZMSpNildMGsXlW6Q/qh9DvWnCOUbfjivFLhSCac3Wo1vPbDb1OOpnJ6cS8RJbJYV0g9HsyimM/HkeFtcyqWqTuvLTtKOEzsNsP1Hg3LSVwjRnnNfnY3+y0aipS/B6c+mZIrbRq1XqOgohFpXBUicf7WnFfAyQKTlPhAkEhWPsbvvnJT3n95mu6fiClzOPjo/IEqgldTA0SVIPf29s7bu/u+ebrbzk+PfHjD9+Tk4oB7IagpN6H95yenrTLMS+Fm6IQoZrMmvIizyXJUEMghb8E77HG0IXAdBoZx4nT8UhwjtevXzGNo26vJMlbl0qdz3Vam/PEov7SrH91PnD36hW39/fc3N42ojzQ4EbGOEQMMSbmGJGc6EIhL2Y1HcxQOnBardrtd5zGEQEenx4Zj0+AFJihXlsMDMNQyNjKMYIS/FdeTauSr6+Elmx6twaniAbK2SAlQXbl+Y9L0vMoSliVh9KGbBdqqwaKBmwYECy+kIayER6f3rHEhXH6kWF4pB9u6YZbrA+40PP665/qnJWJuIyM4yNW/ePJJtCFjq7veHr4HcfTB37/9tfE0wRL5CQlee8CPujzarxv96o6iytsLpcETw03fRCc7bB2xzznxk1SKpnRriLKFaLcp8pt0q2WDtqcmMaF6TTz/ocj85Q5nQzGqmLd/v4N3bDH93dg9Jk0m47DWtWr68+2O3B95PxFy/ufZHxuwvC5lcGPfb++yBu0YPP5awZfNe01UiAFho9WAqF2AZ5XkitE4RI6tA1uXtL2FxHEXIdTXI4WgFwc4zYo21ZvL793Df4jrElI/fmWnnPWrTFGBQuo8862bkGwXZGWXblqViz33Wtuwt3mvpxr+T/FRx7md3w1fNsC3ppQOFaewphOpPjAbXjVvv9uestjfOBh/sC3u5/y1fAtTqoU9KoIVTsfIC2p2flDOQPtAtQKuvYgXbuvSt4OvBm+PYOu/Th9z9vx9yRJ7P2BN8M3HJcHjnFicDu88SVRUTjdm+HbBrkZ4xGAYUOWtuY6lGjOEw/zO36Y3mKN5Z/f/WvtiOeZwe3PAk0RhQJVCNf2Hmq3KBQ4lMrbOuNw1iuxvj4jZlXTEjJzms4SEfUsmQo8Srse9V7WhKN5pwhtPriNZ0ut5td7ezmfX4If13tUZ64mmqYVB7QQ+vwZvuQ2iKiT/KXi0xaadG1sE4BLSeNLIval8tb2PNYO4Pn2t9v8VHf2pbEtrnxsfM5n/tDxRW+e0zjhC+ypkoCrGZOSRLM6MNfKSX0xyrrsiQi1dO5KQLJmju1D+gIvf18KeXWa5jWxmNRMxnmHt6bANErFRDIkrQ57I3gLwQmDm3HMWDlBmhWCkgxJLAs90+xYouE4LSwxs0SF2hhq63dNKNS12uFDhwsqIeu8a54B2wlT+SMNCVPgRM45nAFJpiyE5dqSkKjdk5Qy8zxp1bSQi61VybwaoIbgi2MzgGxePsr5UGhWdcRGk4XqhO7cei8LfErKvRTFruAcDEFJ1Vqm0gW6QoY031CPi2G/Z7c/0A+DJpqpKDJFdfWepkmT0KwVYWsUwtW7nSZH/Z6u6wkhsEwncppZ5lNRUzoxnk7Ky5h1TmgisOjcy4naEKBc8yy5SPoWtaXy3zJNLPOENYah77m7ueHRUDoHgir8bBaYOj/N2q3QKmT5dVlSalfIWqvOz31P1/Ut6MRUFZfVuby+omt3T7t4a4dnTWRs4z6IQIqpcCi0ulY5FXq4hhA8ENp+FB6lSWNKdXFeF7oGqwqeOoVT8fUwrqr0lPMu14hC7m6qLFKrv7WlbkrkslYLjVUP7ZSVnJxzZo7CPEWenk7EaJiniB9HfOjp9jfY/Q3W9HirTu193+FIer3djr4fGIYBKyPOGp6OHzBGEwByJkdhzgsiPV4UMqiwtwJ/qmmAUdUmsXo3vIPgVJXMkgukT6pHqH4VUyAoOh/WQsIqcbzEyHhaGE8Lj4+ZuMAcA32/w4U93e6W0A1YH1CfnxcShpJUnCWyZ++H9ff2C19I/1THtvL5UtD/OZXGFjRstlHfVfXvL2Ghr217m1yAJuFOpCSrn1/5/NxA4KXj2B7nH1KdbPWQTbBj9I+ypp2f57agYqD5IqweDOfXyJuAp0qOC5dQFymqPWdXoMQM1RDWCCWYXlqV2xlHlIVTPPJh+cCr/nWLL8yV66ndlaVxIrZdjpowRjkvjBrRAHKrClVHVRuKBeYVrPISTvHEyR/p7cDOeu2GkNm7w9o54yPOy1dGre5X+Jp+trpxV77Hmhhuz74VBNFqd5WW3X6uyaVSeXCpPStXuVCb/z1LhMszoJfQPAuet/PoS1WNhCqNq8NtkpIVH/OHjW2h4GP7f+m+XXZnPvUsXnZ0rm73j7SG/yEJyr/L+KLE4v27d4QSJMGqggIUaMC5Ssza8qKpByl3wBUJR1+071clnWWei4pNbC/meVL1pBSTejI4GA6H1uWo79mcEtYZ+uAYdhBMojcP2PyEyU/YHBFxRG54XG45LR2PJ2GJiWVeEFk0YKuJkAXnFCvq7IrZc06Du27oCV2nlVBfzW2skmRzJkWV0/XOY7xup+uCBkPWIDmVDNXjQofvDFjLvCz8+O6JcZqIy6KLoHP4LrAfBroucHOzVwKpMUU1KHF8eqRyNva7HX3v6Ye+BXmn06nh5X3w5fqF5qVgDJBFHbUX/Q8RhuDY+wN5EZK1pLiQm4JSqdyGwP72lp/87OcMuz2C4d2P77TDUhWJYuTp6UmhYDk3DonBcLi5od/tuLm5xfnA/d09Me5Y5ol//M0jT49HHt6/4/jwQTsVWRV3UvH1qFAcW4IDXew0Oq4GQhZIi/oViKgfwk++fsN8f8c8L7z94Qeejk98//Ytc4Ex6VK1EiIpieVzvPMaOIMqofTdnmE4MOxvSEkQZoybwc5IuafK9+i145Kqw6kmQrWS3nU9LnglTldn8ZrcGYo8rBLeq+LW+/fvCSEwDD03NzeavPV9U/Oa57klul3X4b2n7wf1Iem7Qvg2pTsmrRtZeUNS5ngXQukGFCnGnHl8elTSuUhJamzJthSalEVhV0/HsZkvTjPMM+p+/vSIkcg0HdUjxHf0w0HhV1aT+b7fE3Y79fi4g2wB53j97T/jKwM//ekvifMTy3zk3fu3PD194Lu3vyUEiw+Om9tbun7Hbn+HdV6FB6zCy7IxqEeOKYpsDpMMveuUBBbWF3NJFxu2XUR4Oo6Mx4nHxxNPx8y0CMejKB8kO24OP2O42fPm9rW6nnedrmPVSNTS5HzPguASMJmSPEhL8mnBYE0q2u//wuOlALhev2ukyYqRvzyJRhhtBY11W1v4z4vHchEEfQrH3eBRFaaxCdDO4UwFZsta2d+qGime/XNkKJ+PFyudl5/7RKX12s/bPq/BukyB9G2+vyWhbo8rsULuWkfnhaDqWqC59zcMbo++fnKBEHocawXXWa9u2GTeT28Z3I7b7hXBdtyGO3Z+z84fmvnZ5T1SB+mF78ff8dXwLd5qNT9JYkqn4onhCWYlmtvC17QmlSJLPOMxvOm/4U3/zdm1X/LC+/kd/93Dv+Vv7n7Fr27/Jb8+/j1Tmvj33/xH7brsS7ekXhPDWgG/HIPb0Q8DX/XftvtWIWSgXJHfn35L5zqC7bjxd+04a6emJniduXRveD6SRJa8MDjtcLzqvqJCzPS6OiW0X5lvyoM53962E/MMDliS8JcC320HUp8rdXiv0rFrMrtuM+Wo9+0KabpuE1bX+7U7owaD3oarAhGXEEs9/PW5rPdwe12uQbrq51uXs6wc1voXn5tPjcv91OdsfU89L178KRONLyNvLzNb63gdVaWkVm3W0U62VHttqYqCJiLLsmAKvKLVjIR2s1OBD0mTb3UqtVlUk2yDuBicBW8mrExYOeGWE5aMcZRgYc9pUfO40+w5LZYpJYU3ZClBnJKTvVGoj7GuQYZCCchs6RJYp9CK2nmo50uBe4gxUImztSOzqUwZanJhC7ypJE9ZibzTNGEQgvcc9nt86OiGvlWsnXMlqJEiP+rYG19IpupgnUQ4jWObVDEptjxlSFPEmIi1NZjdBM9ZndP1uhp2nWXfW5zJ5KimgzHOLdC0xnJzd8/t/T2H21uyqPHe8XhkWRaWeSndi1R4B0uBKpWFqsp1ZuVNhNAx7HbahXEOH3qs86UQUmAoThe4LAZL0EpGgZrVCVpbkSEEvY/GtHlX75d3FmsCnVdzud2gC+9YAvRpWVpSVCvx7R6eqQuZtfVpwW88IaytzuPQp4Ec1bdjmTwxLqULZjAlOTB2TV5dhayVpFXPM6kZXEl+nHOluqfEdFAeizEUCKH6c9Rnr3aqakekGsUhI4t1zPPcEv5cElVNxEqyUKqIiCiXZYZxPDWjuNN43CygJUEBsAH8QBanVfxxVPnbGBmPTzov4kROE5IWKKTQFGdinsF7sgvkMCBZWFLEHo8c3/2gvKphz1ff/oKuU98cww5sR3/TYcIrsj1gbdK5HVy5BpaUdRF2Rl3FRSyrGpM+M1GU/4KIPqPzrGIK86JS2UlARbCZpkiKsCx7MFoI6IYOrCYww3CL9x2hH3BlPasTROo6QoGjbOAJK8TlbJGlfXH7bwNxmfinMuq74CUIQP0MnHcRuHj5XVb3W8D/qa7AxQv7ErN9+ZKtQYxQvIOMebaP7fE66nuuBhqWjx/RH3dcdmK21dBL74ZPBRQNVlLGuW/AcwWss+TQGMxFQPd+/oEpjbzpv21rpKrdnPMyNKHMZLHrWnpxDDWorVyLwe3xxc/BWzVFTQXO5DbXoW6v8hMe5ndaBJRMFA0mraxd2W3gWI3z6nu0BqDO+rOKOcB995rB7fjJbuQQbsmS+ar/milPquZUCN+X0rsfuzeX7uBzmrDG4Yvnh8Fy171aYUWbzkNdS4pA9rO5rqTu51ys5tlSPl/fe1FKodN4KnSvJt+XXiD1Wp3NvXKtqmJZJeVfwqG2z9YW2qek945Gc7/yTC6ylIKQuarYdS14r/u7NMf72PhUx6mdf07t+pwlGeX6WWuu3pt/13F1rdwc4z8ZKFSKEWO00tkOsS64lxdk829X1Hi0wl5JzKl4DaAVjvLgVv3ejJRKUC5BpAZDne/wLhRyqmBJDJ2lc0JnFkx8wCxvicuDvpTDDdndk+wNT8uOcTE8PM3MMWkLM+eyeBiMcxirXZCaMDRCc9epDGgJGJXw7FpFuxI7c4FgKa6/LLjtvA3LPINVtZvqkrvEzDxrAD7NY4GapeZafXd7S+h7ut1unXhpJZK6Ao3ywbYFYF4K1GuZ650CiglZNkXiN2OYS4Wf9qerhVMPfbDse8eud7g8kxaFEMWyfRFVG7q9v+f27p794cCyZOIy8/T0xDzPzNPGeA6IcSbGRRNVqmu2RVLidBrp+p6UIjd3d01G17lQFpZ1vonVZNCXBC7lRFxWYri1luB9Myc0aGIRi9SqdqJsMZVTPsK422Gs5el4ZJwmno5HlnnmNI4shYTdpvjFwqJwIu1oOOfVHLB4Tpi64Gc19EOyKoAVpa3aDctJMN5oAllgbLb813DkOTVIYIxReT0I1fncGKM+IdCI2PV61M+oX4hC7WpCFpfUnt3qoq2lcL3esZCBh9A1Avk0jcrvKHMtxoV5LsR5q+pxIjBFAT9AiBq8Z8HEUQ3p5onj44NyTHrHMo+kNNP3HoOQ40KWkRwN4npyWkg4zKRr0enxR2zX4fodowR2+3t23YGuCwS/o9/d4ftI6F9DnrQzmSbEKI47Vy9OpwaXWSylItFkgA0RZ9dn6/Q0Mo0Tjw8TMWbmOSOmB+PI4rCmx9k9+8NXhH7H7vYO33lccMUVvjTPyxKYzyClyq1pponbNbV2U0F/t/29ULpeZZt/AfL2tXENYnDJgdhW8l568V++lOu5V8jOx8Zl1XB7PLUCuU00RPKZ1r/2Dp/DHXTbH8d0f2xcdiSe/f4iGHhpXJfRXRV3KlF9Sy796HFRk4n1GllThCA2+xOkVcfXDtsmmBHh9+N3fH/6Pfdfv8GYUvgopnqhFiZLAKrnm/CEs31U/L817gxS1LvhzEG5Br/177moUdakZPB7TvGR9/GJYFbDw8Htm/IRnF+fKn/cKtaF32CMedZxuwl33IS7s/3fdq/Y51hM7lQVyjn/LJh8GddffSp0X1Me6WyPR4N7Y0zb5/Y61MQYNlyei+cwF0+OdRhVrjKBAkZv814oRnOi77dK9M6Stcd+kcDW+7Z2kVT21RrLnGdSjix5pndDKSZ8XP63rg2XDvD1fGsXIOalzXdvwvPE4nIdaWdusC94XLw0niWHV+5hKmqFL4lB1ITprGj5hQnGi53Kdu/O163Lru8fe3xZxyLOJZAuC12BOZgS9GhgunYoqhJSxWTHnJCowcu2guVKddRa7TxoshIwVjPZofd4ZwnB4FzGmgjxLXH+wPT4W4JA8GBMwpgewo5k/wVL7niaA/OoGO4pzmqeZgQfDJ0JOKsT3XmH810JMDucd3TB03XqfhycklSNswXuRXES1iuihlsOrCe7AoUq7uHbc3SuV4WneeE4nUpFeWlJws3tgRA8+8OhdEts41c8PDwUFSfLruugLEzLopAdY2vnpFRanMOYQReYLEhG5XpNaU9mg8kRSBgyvuDLLRlnBG9g5yyDddgls8wjyzQynh6ZxiPzfAIg+J5vvvma/WHPeBp5/+4Dp3Hk6bEkFvNMF0KpqJjGjZiL74J2YWx7eeS0YI1CdLq+5+7+Ncs08uHdj4xPH9p1t+V+VHO9znXMdm6qU5oY9iVxsO16QXV21zlqTSrzz7Hre37y7bcNwvX4pJC0x8dHHo/r+VSzufqIbqsAFgHJxKidnZQWfFCFIBM6YgjkuKzF5fLciLWY4Io3Ri6eEQr98UVKOKXINM+cjieMsQzD0LoUWWJLGLqua0T0yr2of48x0vd9W4wqkVvN8ChFAVOC7EyF9daO3GmairJZYppGhfQV93RBiGkp/hynUnA3uHCL33k63zGNJ3KcMfN7TI7YHOnsAlbovCVOC3GaCBKxzjZBB4px35KeyNOM8QPGelwYsK7DmI7333/Pg3+P9R3W+LI2aZJkC/zS+Z4+3GjlsKg2GQO5qaFNnI4/cjo+8t1v/r5AG4WhP2CMJ4vFEMDcMgx/xWE/8NX+QL874ENP3ytx3juH9Z0+l86CKRAqMcXYsMolK+RThGZ4mEUajEFE1cNq4kF9ATUIwFq5s2596c7jKkf5lxprcHfukVCrl1toySXMZovFv1bdreev3fDPgDUhZ6TSOupLvVbFG5694PBfUpd5KQn62LWo53Xtdy8FHl866vltISg1OfqchEc7kqvR2vba1w5DCypLYJQlcYpP9G5H59ZQXxD++vArfnn4m8ZBWPKs3QVM2U5eSavV/I41wavBqysS0G3d2pCzt/sLtiNL4sPyjs72dE7XOodj5/Z449n5G00sjNbyayKm76ASy1x4jLRnDE1QrlWZY5Gk7YpcrsMhRmGO9diq3OzltW3nsNlmLoltJUhnScxpIuaFOU/s3QGM4Rif9P2Kbdc5FYduu+GS1Cp5hRZZo+paS55bMF47AQ41hKwkZ2/C+o5gnV9b1aMoCp/uXF/gRQaqM7tkVQWldAasrgW1Y3F5Hy/HU3wE4OBvmNLIkudGUK8dpJpA2irreyEosu2mRFmoMKQqK/2xsX3eLwPya9yhJkBwBeKkcYJtvJ3tPRFEVSB1r8+6d8/mB+bqPNoe87aDuS1W/KngUF+UWGQpBnamKJ+0xX1tcpmyKDzrYJRRf1cDOWtX3Lj+XYMs60LxVjD0YdFA1yYcE0ZmkHdYeSTziDMD1nigJzGQ84FJ9iy5Y8qOJSnBqrouO6+VamsMwXcq7xm8EjSdpwslmfCqsW+tUQKwUcwlpaJoanFGpEC4zs+xdiQUn5nagrwN8HJS1SXXqRrUbrfDB88w9OWhLOpbuRh4GYXMNA+MKh0qG2OUWq0ofzZn5lQ/myEnjGQc6lfhjNBZwVoVp1WPD2FwOkkkTsR5ZJm1yhyLrLBzgdAVXwjgdDry9PTIOI6M49jO01mVx1Wlq1RgM9VsB3Whdkqmdc6pyVnWhd63yr/CoXIWTH2lSZ1PpX1uXZFV1SVSgzFBQXqrcszKESmEZGtU1thaQgkKc6nsVQ6C845xmjgdTyxxYV5UlUoXGdMSZb1tSrqvsLG6uNQk4kzYQOosqZNI2lw1xYhNXc4NyzgVx+7qXQHOKa7ZEZrfhYiQomuJxtaduzqvbzslxhS5VbM+07r+bJZEs1Z325qQq5P4TDn1jT9N0uootlTk9RRTjNo1mkYMCSsJY3IpyKfNvrSKpWRvs/rlYBBTk3pTPB+UE5FSVAhRVsUpSEghOTqnBQXvtXPnnTpcW2cxFrSwpvuJeVdeDAc9ZwvYG01krMfZHms7dgclXQ+HPcOwx3edyhrb6jfiisdFCZIkKx/GaIIvxmJtJhnt4ogRTXazYKRCEFSWWuc97T5qm0UTi+24vEf/NMf1Y74GbfhYNe4P3vsnXqiG6q5+rpb0pxr15b89tj9GNbEe+8fgH9euxccCFYTm9G5K0J8/cm1qovGsA6cbLNApSkXsPH6oHQdBcDwP/k7xiJDZlS6GoQhC1ACtrIWZCqWyBdpkz7wmUo6UHhWqLGjaOW4DsppsONzV+5Nr0rWZt1WetXICPrebBWvFuUK8kqxKRjX+2v4Ps/XAqEIhK39jG0y2uWFM69AVl5mzY9DET39aCwFnssXbubIJYNu2W9ImVNK8ytbC1ofiUtFtu50t4kH/vSpS1ntTz6lu3xm3gYOdX9Pt2f2hjg+fFZSXc7kqT70J+i+Prbq1bccZDFG+vLBxeU3/yXAs0JLHpkMRSsfClHik/Hm2EEupoDucsdhGGl7dfVcnXFG4gLMM3hLsRLATLL+D+EQef8SlJ0wegahtxd0BP3yL8a+Y8xum2XKchOOyELOgIrEe7zy9p1QuXQtWu0K87rtecdfe0HmDosKV94BkjJFCOq2xX3HVhLNKY0xF7cgaQudV8WaJHE81GJ3Vmyvri8tZw+4QONwc2O33+G4gi2L8x9Os/hkxtwTMl4dmLD4NtgWEnJGk52VpQV+F7xhqUpGxOWqy1hm6YNgHx64D7wy+GN5ZY/AORCJxnJhOqso0jSPLNJOTcDgM3NzcErxnniYePrzl/fsPzXAOKMFt2nROaoC1YkDHcSTlRN/1RSZTQFKBqhXDNx9IYkhV7rMlc1oZybLCgVJR45mmmalAn7RrsQbX9QBN6XiEoNUFlSQNdM7R392VxDBr92Ic+fBBOzLH05HTeCodktwSa8jEtPDhw488fHjH08M7zE2BfJWKqSsE8IrBbP+lSOORGApUK5QgVfjw8I5pPHJ7e2CelUhvrHZ9um7FxaaYmvu2Cgqkdq4iCt1TBSjb5J67vocC2auyxlsTtuqybY3BBK20xDSTJzVu9L50ZYqy1I5dCXoNKTst2pNYpiPz+EQ8fsCajLUwDB3WGJa0IMbgQ4/pBnAW8Za0zOqrAlhvCWGH6Q4Y3+OHW2KKLHHBG6N8HLdDCgG+dqeWtGCXhDUTS7/oPe57vA8KNVu062jtDjEdYfiKr3/+0+Ix4+mHAes8NoR2/1qHtSWABmM0PFGvxqK+ZarjvYCop4/FFvUpvQatUNC8Mtb2uJT7qqpxa2JRf752NuLa9dhKf/+ZRr4IqowxqmRTqqn1ZbgNcHKBeihe3bYOAlxPOD4lx7rdbv38p75T/1cDtlpRP6tYY86KN/X8Xtpm+97mWtTtXBu1Q1WrrDXk+VjwsIW3nEG5NtXTbbVyu60sSQtgLxBVX0ryamBdNzWnCUHY+cOzyvP2GJY8N4z8khX90Nmubaf+rB6nMQq/PO9cnZPv/9uH/4oP8wf+x9/+T4sfgmGKJ7Lkhq9XKI52LR3KTXg2SoJTuyfK2TAl4E1Ug7neDeck9vYs1muUzwNA4BgfSRK56948uz7XxmWXpN6zp/hAylG7LjY0HgTQ4ETGmEay7i4kYjHn0K3tfqY8kSUVUvb5UN7CSJbM3tysPBnRYOjMV8GYM5PG9v288GF+x5vhm1alz5LV38T1+DI/3MYdvp53vR87t9/sRpOmKPFsThtjGqkdlIheuz4Wy7ZT5PAtoeKiO/WpcQ0Cdf5sFRGCMidf+v7lc1a3U4+zzqW8mVcaZ7iz7Vwb19aga8WbP8X4osTC+47QDevLwdq1ugn6ZylbGqNkSFOIoi5o8NKHoKZulQxtBGMWkAUjM0aOmDwTphNOTsCJnI4Y1P/BhjuM/RpxB5COLHtOciAtHUvypAzZigaHggYK5UFQ9+gi2RmcdiWCBtLBgXclULfVGTsWyIpOPAW5OEypdKRsiprP2l4MvrYdM8dRE5Nq4KYk8A5nIFjLrncF4uWw3iNZOB5PxCxM81KC30wXaiJnlWRLMX1jxcfXYHmbXIgIZrPIWWMaxKlz0DnDmxvPEGzhqSjHQjGp5cUuayvGW0vXdRz2N/TdwP7mltdv3rA/3Cju/DTy+Piex4cH5QCkzDAM7PY7EE1AfVDCcoq1OG6orUl1nnatO6D7V3O1NcD2JOfxTtriklImxZKslO3odZJW7THGFJ+OGnBVsrqqR+j9iyXQq0Gcw4lvHJldP6hho/eM08TutOPx8ZF5mYlLbPci5RLILpH3736kCx32Z5a+G+i7HiSV5KE0YmvLv3RyqN204hAeOs80j5ymE//tf/NvePfuR969+4F5Hlti4bzXz4dOK/CiCYK1gWHYgwghhGbUl1MNkNb/TOFyOBfwThOLaTy1kKQ6fjvnm4rVw4cn5nkqL3wPpkgbO3Aut26ksQPGdRgvdF/dI/mGnF63F3HXq6Fl65gYS9/t2yI4z6MqlcUFsFjrWUpIZYsyXH3GlNNCUXpSR3I9BVtie6MVyZxJSzGBtKmofSllvAVnrmzDWGJW8z0XIzgtlNRlzxrteCSDJsTUDq5WR6mu52jiCYZ8UTnTQ6ytercRf5BWOd0mEbVbWX2FclmnrNFtJ//pIOaPPSpB8RL2c1kpbdXc6shcO3oXYc3nVuSuBfqX370WhLfvyPnnX4IJrBXkTx9Xqw5+4mW+5QJcHvenzv+yqluLFfXfl12WCs9oZGiUT3R5/bb3cPuzMR7JyJmq0VqVXQm4lxVyY1YS9EvHVkFJ23PWIHR1na7bnvPEKT7hjOO+uz/7Tmf7ujIUR+1MNrZJAU9pJElk5w7kYvCn7zwIrm/XQ8nkCttRePDqNN3mh5zfA3V9Pp8fn5NMbMdL8Jbe7RCbWyAfc2yFqu3nteCp6km1g6A4f0O2vhHItzDFYAPQtYQaYEyndg+s2LN5Ve8tz5LP5+T+t9N3iAhvhm/o7QqT88bzqn9DKET2razt2fxDu0fbc/TGY5w9S5QuYU911C5GPT7ZbEeTzS/rIn3O2M7HaxDIa1C4a/d9u52PHeM1WODl9uu//1Aex5eML0wstJKrLw/OOmZZ6g8UVmCt6r9bq1KUvvP44BhKtU+DFA0akQXyCPkI8S0mn/DxHSaf9OdiENfh/CuMv8O4V4j/CpGeFHumCDEJS8G8YwVvXUlufAs2fMHah86rG69T4zdrIBjtNOjilkgkJCUkxZItGjBeF1GrS11DFW0CVWstUUpQNk3FaVsDFGsMxhs6Z+i94fYQGlwiJsMSE6dpUSfmmErgSSN6ASylklwrKzmlAslJRcY1laCvVhNqgEPhZxiCNQzeMATD3c7TB0sfiq9Ihcpkituz3l8jeg5BhN2w09DIWV6/+Yphv+M4jkzjidPxiePTg3qOLBrc90MPxRfAeUvORgEqBQ6kf0oJDG2r/NZg20gusDUlzStsrjwYxpTjLTKoJeiq90RKNRjW5CXlvFaa2SzGqZ6vplVWlIhvUV5LCEGVnoI6d/sSuJ3xLqJyIKo3yNPjA955Xt+/wWLovNNJs+lKoPgu/XntCpTOiy8eJcfTqM7kv/k1Dx8+cDo+ME8TMS0YQ3HDDuz3e7zvlDtUkvrglWw9DH2Dpk25KAZpybvsthYCyjOTEouZWkDrrGu/F4lq3ngaicui8scutG5gewE0BbUeEUMW6A432iFwhpi0y+e7nf7MWlzwpQNzQGFUmXGaWIp/TQ2ox/lIzAljPLVr1WCVRtcg46rcrXZSciomgaWBkJM+Z1lKB6FekrKu1WRHlWez5gzUTMzgqPnKSpbMadH7iyj3wzqMCWXNKIm00e4IFXpgdLvGCNXbh7rOtqOpgaq0rkTF4hq0u4S4UvU2JP9lDek/9ngJy3v2MkVVbXx78a8vvUuYwOfu69p+zqrKV7og117AL43PSXa+BDZVIbJt65/obHzJduufNSES0SBzlU79dOKyPY7qySCyJv1V/+rSm0JPYiWLbwPHKEuDK6lRm2+Fni38bNtdaJ2l0uH6cfoBb8Mzh+1tJT9nJQ9bkcYVq/yEwe3btirMqaNUi00JrEWwvmPr8bAdl8nFJZl7+7PPuZvb5PdyKCeknFeDVz13V6/HVJW3QDsG1ljI+q4AzuZDJTm7zXOo6lOWwe3KWrVylT56Dpw/az9Mbwkm8MubX51fF+vZ29XEr7qIn51H/fvFOVrj1MTwc4Lj0qnJUsFussY1LxQQvmRc6+5tA3jYPOMXnY3tNvT353C/a0lGS1RqIaE9F1ckZ/9C44vePLvDDb7fU3tdaqRGCYb0BnnvCMEROsd+6AjO0juL4RHkCZET5AXiRF4+kOOJZXpPihMxjhx6Venp9vcY/xXGHxD/UzA3GPcNkzgWcUyjwk9izFoqROjchqTpNIj2ncVZsE7obMYxE+Q9ko7IPGNzABfAHchSBFyzIWdLxiJmj2BJlXAplMBelyINfmEcj8W4bSRGJWKG0Ks6UOi1EmNh6C3OZrxNPB5HYkw8Pi7MMbLERJQiN+o7gvN465lORZLU0EjgoLwOgyE4hzOGbCwianhnavAjgrcGbw03vacPjpudYxeEzgu7UIOSXFRkNFuqj3dBwZAE9SJ1nn43gDHYruNpHHk4Hklp4Xg88vj4wD/8w9/z4f0D4zTx7U9+guTMze1NqZgX3L01Tc1IuywLWSJL3GFHfYRSjOrhUOByu522OCsUSgsmUhKrXFTLSuBWKvMpJUIA6yyUwHa9NPowt4qa8+1BjTFisiULWJNUptTZwsGw2K7HW0ffdSqXOk3My1I8JB40CI4LT8cTMQk/+9mREDzG7JGsnIR5mljmmZxjga1pomhMkVb2et4xLvz613/H3/393/Prf/g7UooMfQ9oonSaxpKIdGA8IYBIbMplRjSplNaydnjfrQtRIdlN04KZI6OZi4SxpR/2bdE6nU7EODHPC9M8M00zxvbc3N7y81/8nL7vmww0oHPE2laIqHyX2vlAYpvX1g/6UilcJmMcYndFonbPre1VrtV5lduNC0+P75jniRyTernEBWMSkhZOx0dSPJKWTD/c4FyH7/bkbApeWIN4hcFlTOEXrZjsyzayrgkILGNG8gxE9t2MsQtiTixxUkPH6ahdC8l4P2Ctx7q+dDjhcPOKrjuwP/wU2AG9SkEXuEXKpZqbK49IOyzliWx/2gLVqM7yzlh6r4RUY0oS+2celcNUxzW1oiSxBRHehLPvfyzAvwy6Pgcedb0y/jyYuIQPvTTq+vAp0uQWAlT/rN+t7sRa8LGbY/ryqumnfDvq9WqqM0ZUcck55Sx8hER8Ce8AdYrWJXRNzs4CeVmVtGBNuGvBxBiLFcv/7bf/F/6zf/x/8n/6z//f/O//J/8L/rf/8n9HsOHFqrNuO5FQxcRgO/765m/Lb4Q5jVjjVunSej6idz+XLiHl7/UeeBvYG9e6OHOe8EY9M2onY2Drjq3KR0uey7Uxz4L7Fb6o5xxsR4BnErPVYM+V467XfAtNq9ezdprquVTIUP29s75JuLriqF0hQSKZd9MP7PyefXfTrnFDcsjGZ2ITnFZ53Jtw1+bxtfm2hRxuFbTq/Nn7Q/v5x4bdJDXX4EGXkD6FqZ27X18Ob8IadLMxCJRVJW277Uvp3I+N7fHU7V8L7NffubO1aLvm1I5eLEpZW4L/1X1v9ru9Hp8z/ulBoYouP5RKhi0vaEQhTRa8y3gX8TbTI/gseMnk/ETOIykekRzJcSbHI5IXJCtOLoQdvj/guwEzfAXugLgD4l4DOzJ7sqhEsRgpgQsYPBhpQYyz4H3EmVyctiM2RXxOyorIEwpHEMAVsumMmICg2vZZLClbYglEqiqLCMRUTcNASpdgHMdCYlU3cl3ESvBiil+C1cp/KlK38xxZlsQ4LSwpt4TFiMGZpFUSk0uXqAQQJWjINfgoDw0tUC59o/J5B/Te0XnLzWDpg+UwOHqX8VZUQjObtWi+wcaYBt3QK6WmdIkPj0+knIkipKwT+3BQjOdut+P+Tg16xmni9uZGyawbI0R9oeqyvF2Ebakgq4rRrOR3gV1cmoGfei6kEoCXjkVM7dz1+kn7N5gGjyKv+0PWV2aFmdVRMe3V9ENMhZ3Y4rlSqsIGOu/xGxlXZx3TtKgPRQwMuz273Z6+74sTtpoRphi1w5LT5ljL8ZRFQtWu9MUwjScePrxnnke9P71Cnrx47Kz65ZoY1Qp4eYmWxF8kMy2LPq8CVHJ4rebXwAN9pnPhthi3Kr5pJ6JW/50m8MEX871B1becKwpppm1f73U9R30ebIELmPrMdr2StK1bE3zUodtgEaMQRGuVD9E5wzJ7rEnQOXL2SA5InkgRMI6cdJ/9ToUZfNe159ag509t5wHWlJcLNFfuBqsyWpmVLOpRMWdSnLVYkmcyJ5AZkQj5VHgSSTXVC0wsVdhkfiKEHXEZce4W5/YYq4WN6ka+voCqt0ZJbkqrRYQN5GtdF1y93taWdeif3jBN+efzXobXuhZf8hL9nK5HrfJ+ybG8VFl+tt3N99bAiHYNRCP0T+/8M0fb5pVj0XXLalHqE8nYtcDGtur7+b3bBmaZTC7vdO2KyGogKJrMf7v7lv/eV3/L7//5A399+4s1EaO+OZ93lTAGW9aGqtjVkjWjfBGMKdh/3U5VejLGt4B6hWulck7recYcWzeFTYB7FgRqqvby9d/MOSkQlcvr1YzrNsdzdVusMCBLVeRaSeTIOndMicZUdW0NjhPCU3x8dj+1o6FXvcLUtvNb4TW5JdF6fZbNfa33fk0kr82pV93rq52ca+Na5/Hyd5fX51PjsgNgpIgPXVsX6nvzBWhRHa2wsHnWXloPLmFdL40KTUsSCTyX1P3Y+Hftbv6xxxclFt2ww/muBUEei/dC8BnvF5yJeGaIHzDxgTD/AHkix5F5UdjGMi2kJMRFigxbx+72K7rhhuFwT3f4K6y/RfwbkgmkSrDJQo65VHUpnhhKjLClcu2s8iOcjQSecDJC/B2kIyY9qboRhhmH6V9hulsygRytqtSEAM6DGYgZ5phZUgkEJVLKBaXCnlniUoyytFJtKFh37wv/RDAm4VxiGDzOGsankXGcOZ0mlmIyp07ftmTKGsDYnHFo8H/YDyWIMIVPkVmWjCTRwLckJbESdDFYp5yIXbDc7Dr2veNuQP0+vBoIK9YcJBtSNMW9GSpOxCCtmp0xnGLmdJr47/7hNzwej3x4eMCHwND3/Ot/758zDAO3t7fc3d4Tl8g0L3iv0CGhvlzlLODJxUFbg1fXOCQAOWW6GBmGnapgIc08MMWpxM9rp0GD4w1W2WiAmAUk6n2E0rqXNXg3xjbzuBrk55qhkQpYI0EsSZ2vBoqW4FXabmd2zEtk7GeyKBcmCbx584ZXr17x9ddf4azqwC+zdiuqg7nkXF4JlOPR83dWydCSE6fTkYeH98Rl0mMVdb0W70kx4bxn2O2bsplp6h2a/CUS8Xgqzs2a6Kocrysyyq4kpUUyWvTeZGLjvewPVT9+1Z6v10xVyrJyIPyqNFX/rN0VEYWbiTEE50GsupD3B4zvSMaRE8QoRSjBwpKU60Qm+Ij3ELzQ+0gwkdB5rO0w1jLPhpQM+3nQwAAYdndY12H9QKrJp6nV1NQgRRW+YSz0XYd3vqjGKUVCE2Hlpzx8mDgdhen0RJYZyww2K/zJqwpWShDzrLDI4vER48KH9+ov4F3H4fCG3XDP4fAvMGZPzjuwolwL60pxwaNdU1gK7E9ReqWibKDE6sWDRudNilt9+j/PqKnZSy/Y9r8XOgZwHuhtsfqXv/vc0SAEnxEAfGxcVkzrzz4nybmEN51VReX6dbtKvvyMcQkj28Ik2j4/cR1fqgRfCxCbApOs0rDH+KjVbntHosI8ViPI/+Cr/5j/4Kv/mP/0b/837bo2YvzmPlWitEgx4jNOPXDQBLz+vvIGrLEc0xO5wISqItPOHjaQJNOcuJ0VrFmrw1kSs0RiXhjcrnVjcumUGLTr4I3/KCxoC1FxV0zXlqRQ1GBfDiDrPXO4M4hShUCpnOu6//qzMZ0wYjYdC+H3p9+TJfNm+LYd25Snlgju3eGMA1Ovf1WiqudwSkeccezMYU3qionkS7Csr4effPIct/f9S8ZnFSYunqutP0p7LjfduVgUwq75ZcBKpN6qc1UTw5eKJdfWu8uOYEZheUue6e3w0Wd02438d+lAfC7U9EvHFyUW+84QOjBEjCScPGLyE8wP2PEBIwvWzUhakBQ5LlrFj8tSYAAW4w+4fsfu/p6w/xobDrjuDdZ24HqWsMOYgJEBSSXwhVKBMGqG5jSRMCQsC44jlgmJD0g8IfGJnB7IshRkRY+4Gxb3GqFjzh0petLimZNWCVMyCCeEE8siKoWWS0QBiERyzKWinqhwCWfVSO+w35dAKreEwnfqi+Gs4enxibgkptNI7TSEoBr7IIW/4umDx1pwRtSoz1psMJo4ROVtxCUyjmOrvrsi29sH1eX3zrHrLL233Ow8gzd0HnqnECfT+AgK2UqFiFuD8vpzEYiiXYrjaeb7t2959/493799S0wJA+oYnoV3797z+pXl/u4e5wI5CbuUqWXhWPgPIMUDQeVYlQuhsr/eqyNzzpUjwdqJQYr6WKlKNcWbUmE2KgQAa/HPYNRc0VYJvVA4B0owBpCcm3FcJeHnqq1XEjl9IZfakoGYpSUloQs6B0LAWkMXAnd3txjr2B9uubm5Yb/bYa0tvg8T43himk7EZW4mZq36LJYuBLrS/QCI80LwnpvDocFfhn5QwqsxdEF12q1T8rQxFusVPy2oUVqunRpqJ0rva5omOkQ7keU8RWyR2tQKoTWafBqLJqNmrZDHuDQid732ca5JKS0hXonfrv3MWIf1A9bvwO3JxpMEkIg1Qt91GBswbiCKJog6IRJpWcjzEcPI3f4W6wxYS94N5BxY5sK6MOBD4Tk4fa4ls3qpxJmUCz9mHolpUVgfVXGNdl6Vg2WNa5LHPkAWh0hHEkO2giSvcs4ugSRMzogLuLgQYkTi3DqD8/ieuBw5HRdCOLDfvWLJJ3LRWPfe6xzz6jC87/YY22NNTxJHyoY5GVXAywoLlFJtXabxS5b3P8ow2/9dVHvrz156EW6DdaAFwn8I2XAbsGyD+s9NBK5t7wzGsA2Cyl8rNKMGZIbrgeO1veuxlUB1A0+qyjt2A4/5IsiDbI5XzgPeek+2xmYVlrFV0PnUWBNCx3/94b/k//PDf8GcZ/727lf8j77+T/DGq4wy54HU9jgvf16hKpiN8zRunQ+lAFevxZa/EWxARNfGGuBsIVZ9SRiWrAqNwXZMSVWPejfQiZBdVoLwBtKWJZNI7dp8LNltCfGVYFtElCQuwpZPcu26bEflxhzjI774NKgDdmaOk8LArGfr0l2P71/c/0tNDOJjgdmoeO8siSmdGNzuTBvMGMPr/uvCZfmeu/BKr5sJbY5sTgjMijyoXbHt+V47n/qza3DFy4D3Y0lHhaZVz45ncMoXChmXnZ3t9WrKbBdrV/399s/12flMzgcvP8PeBqqvihLun6tVrciPjycVf2hh4o8xviixCHbW4FRmDDM2/YDIB3L6ETN/AJnBLZC02rnMuZCqMxVL7Pwr7HBLd/s13c3PcN0tuHsQB6Ka7xmDlUJyzRocGGpMI5ukImIZ8fKIlRMxvyXHI2l+JMZHhYD4Pfge6Mn2hsxATD1LFGIUjvNc9JQNkhVyM02LVrmLp4Iu0IUcHROxEINVuaYvztyhBLQLUrSZndXgQ3JmHCfmScmnzhl8UAlL7bwIIag6VE0sDLm8X4SYZlIS5ikyTSPLHJnGsXWO+r7DG0fnFPLUBcfN4Om95XbnCFY0UQG9JkmhOJXIXLkIUKFVlKq94bQkpiXx8Djy9v0jP/zwnsfjiAH6ziNZX3xPTycOh5vSPXAFdqTwqVzatbX1GzGaqBVvA2eVrOu9Lx2TdTHYBgU1qSinUT/Y/q4ViPVBrDKyrnBvFM6j96ouJSmmzUMXW7JWx8pDKP/Vjo7GsRroe3CiFTPvLQff40PH/es39F1HCIEUlWC/zFNzqJayHWeVWyAliK8yzHV/KSW88+z3e+V5GEPn1b3VGkvwQRMHKMG3wfpK9DOkqC/qWJSgjKyGaylFXHIbknKpdBp93RmcKpCJhazXQK9XrSTmYvRWr6OBFiCV10EzyrSNAK4KDw5sh3F9gyHqIq37Vulah/VBu3MipLgo2TKOpOkJZya86THWY6wg1qoRpOjybI1gXW5dACu6jpAjwoKVkZxnTI7Ku4rqLl89VIypJnOiL2Pr8K7DeXVzt85gcEhWDo8RwBtNJiQDSUUArMpcZreUY1RpYSV7T8zpHTAjA6T4QEyK4ZbssCZgzQ2GHu9e4e0e5/Q5StkhlQAutSCi12le/vwdi7OqeLtyUq7l58MhLuELH/38RbLwsSrcl75gLyFMVz+zRu/1S2tg/Dn7YP385dFd2/+1rsa18zrDgJf/VXWf1bDQtESmkkfh8ztDIipxjFF50x+nd/wXb/8N3npe96+edU8+tp3teW7//+znbW0yF9ehXu+idGVf7o5563HimPPUuFQ1efFmp48SL/FtpF2nmrhdS1avEXW310C7L8/J4J+6Rqr2pN2O2vWqgTW2K5K558NguA2viKLVcFsgYJUwXx226z7quXRWk5/H5ZGDv23P9jM56LKXF4+73ZnPDLovk8xPPEmVg3Ktm/bRwBu5ekTb81s/Z5595vKY/12Dd32T2IY2qJyoT8GrXhqfc93/VAnHFyUWw/hfEuYRiQ+QJ8ScEIkgEURfrFMsBnApYazHdx273T394ZeE4Rvc7ldk05HEkzHEZPDicQUzma3KqIpkjCtI66IeZSQT5yfSfIL4AZiBkXl5IueFOeZSxfuKlP+KJI7TU2BJEDMs+QGRRyVw1sp4KvsjK0kSDa6qfGOtnHunnYngCtTJmGKSJ+o6TC7ytavyzvt37xX2FaFipI3T6m2wht5lnBNCyFgSJs+cnlQVapxnTqdFk4lZeRsZKZVii+rtK8nVEXHBs+sDNz0cdp67ncVbQ+dUVYmcleQcE8syM55GlmVmWkatxrp1EXa+UziPWH79+/ecppnjOHI6TkSxdMNetykZSeqX8MMPPzD0PfO84F1QA7is20Wg9x0VFjONIzAxlEr+bjc0X4BliSVR65qrdNcFYuGyaHehyKLaKh/cta5D7SqISPH+ULNBTS6kKWbNRY5XK091WSzwndYZocHLpAbaZds5q8QtUpMTT+h37Icdh7t79UZwjhQj03hiPB6Z54nT8ZFlnkgxcjjsEFFn9NPpSCowsL7vCV1HzkU2OCXub+8wVlWYADofSpCuiW/KqXiXrB2c2n2a50mVoKaZyqNYllkTSGOaj0UWDXbnZVEfE2tUYSo7RHK79l3XgWRSVFibMbYpT9VkTjs6gC368VVZxao8sD7ZPZYeIz3MU+liaLfE2sB00pY0LhPLfTt++JHT0zse3n+HT490IZPjO0LncL1bIVl5oWbIVWnMBY8tHhJSujZZTWVwFg57PSaRAEV5alk2Dum4wmXp1kDN1XljoWw396kIfNlSKBFyXrSTmxeIa5fKluuD6RApELNTwsYADoTImEceP7xTOWZjCW5HF/bc3P4NLtyzC1+z63ownjkOxKS+Ikf7p3lpfM5Y4S3X3b+vVc3r+FQAcgbxqdXyjbfA57wsX8JQbwP1mKMGmzY8+5x+NpPIjQTdzsX6Ivf8wijHV4PKmBfGdGLvD7iLfV0LYLYjSSKTCVwhBuelFQjm4qy8reqmrB43Rmw77uvn+XKXRxB+c/x7nHH88uZX/KtX/5pvdt8wuKFJ0sYcm+yrtf4ZxKRW4k/pCEirxFtjm7GdummvKlLbQC7mhX/7+F/T2569P3AItwSUi3V5HtsgsRrWAQ02dAlZq9dSFZP6q9XjmGPrBtUKs3aItPhY4Z/6eXtW6a6VdvcCubl6Ulhj8dZjxXLfvWnb1+ukTtfedko8F78W8kohaHA7YPcsSO5szyHctWOqXbckSiJOOXLX3TVORe8GkqQ1uSn35vK6XXYdt/egzptt8fBj3cTL5Owy0VD38N0XBfcKZ7v+XNff1z+v+byc7//L4ZlX94nBFLWry+P42DF+7Li2MMNr3Y8/1fiixGI+/g78gpERSBgbKdJEulYWnJ0zAeMCLtxiw4Gw/xY7/AzCG8QcNNsHrESt/qZZqwQatbVKg63dCVlAVDkoTiNxmUjxVIjfC8sMMVqmCCkbDUJEfQWWVDDmIsWwqvzH2ibWsVY8FNtsijyrThpn1e+iyo6q4k4ohHFNROY5Mi+pOGUnUlRuCFmVmaxVN29nwVvFo8clczqWIE9UcjbnzLIk5kXJ3TFKqZhbnHd46wiha8pBN4OqPd3vA0Pv2HlwJmIF0qJJRW6JRSzyqFo5n6apVd/rQ+5DZloypyny7t17xnlhnheWRXkBkst9yxFJEWsgBF/kfFfeghTt/pKBlZeXBvs+SOkmWIZ+aA+AhwYvsyWZs9Zi/n/M/VnsbVu+3wd9RjvnWuvf7ea0dW7dqrqdfa8bfGP72sZOjB0QcUQeMFJA8IIAQYIQj3nghRcUxFMEPATxgkBCPPCAELFj0VghOIgkEsS+iR03t6m+Tp1z9v43a6055+h4+I0x11zrv/67qVtV16O06+z9/681mzHnHPPXfJuc5wq80pq+X7Far1mteny3Eq8UY2clpXEYiZUILvFVIYYgPwsTMUqHxig9S9iWxWLSEouTV9PRXwVHL8Q1VeVeu67HKE3JmSnIPMcwMVZyf85RvEuMp+sqfrcUrDWz90jzryilEGNgv9uTc8YZhwhjiRKYrkkFWiRZjbELkYGa/OQKH4SKzRfhAXDIhT90K9IkTvApRlFnQtfncS7F0txOVU1sm3ShJAVqTg7kvJBnoGTSlFHaoq10FwRv7dBZoapfTEpRyOlVeVc1nKk27Ic9YRrJw8A07knjSJgGJpN5/WrEdRbbaVZrB0oTkhKlsTRJN0VLQu9tV306qpmg4uD5YppTrcjtqgLGOFJOh0BUqUqtruTLWpmUBIaaJEBWhVJVr5okLUpDttUvQ1V5XYFDlioIkHKh6zqsM3VfiZytaNCnRInirzOkLYUfYewW4yeM7TCmw7s1zojxJvnpF+fPajyuotWw4C0Bw/uMZbVuDmQ4QH3OjRlSVJVZWvCkUE8mDi3gEYOtM1VyVTtUy25JPY6ngg2lVC1gMR9/CxrPVibP/OwRbKkcAqoG8Si0Y5AtNDiSQGDk/ZufgOG8Cbp2yr2QavghMO11z/PuJSFPjGngB7vvcOGuqlmdmSEmy0p9ropHTrvaQ9E1aatmgYug9XwnQbEyKzrTS+CbI0UVvDqe5za28Z4xDWzsxSxD2n7fVJaaclQLdq1y5431OE5GGhQIWidqAUs6eTbatX+TGti5jodp6kLq8HtTyenCK5FAJysplh5Bl848I8uO0uFcBPKJVqyUOVJ1KiUzpQFv+sewqDPzcvqzBuM5HW97hpefa+T6mRfSmoaL5OQcb+ttam5/mOOneUxLdbafdJ39g4z3Siz2d9+l9AptBQJiqpmK1vXglcIqg8UAFrv6BOWeodbfpOgbEmtSFgdhrSO6BCBQ0rY+zIWGEZdMvHYE0o6UJqZpL0pKMdeAOzOOmWGyhGDZT9IpCWkklxGJRJsmvPyrVKiIqjALge7I73KuEmQowTZ3HbNnF5VIpQ2+8zjnWa+rBnOB+2qUth92FQJRsMi5Ol2wtmBNYdMfXKXv7ncM08TDdlv1/CtOo0iWnJtylTIobTHG0TmPt47NekXnDX1vuVxB7zQXvcdqMcFTJVByJkxx5iw0r4VpGhmrL8B+LyY4jYagtMaGyN3Djtv7B758/cAUJOAUWVpZLAXKISpDzlo26xWrvpMuQnVfRhlUrpCYed4N1tXqNh3GaDrvCFEkV1siYa2rRnnNSHHOK9DWsu4veP7iBc+eP2dzcYGzDue9BGXW8PrVa3a7Hbe3d+z3W8I0MuwkOBUvBHmxGa0kSXN2DornF2o1ehPVsAoVq614CqIQlFJNMi2+6+hXKygQw8TDwz3DsJ+TC6WoUCyPd46LzbpWiAqrVU+MceZ0GCOB5jROTGMELffeqre1MqbmhACEdG/NwSwxxEgUDBS5KTvRPD+ycCrqM5xqEjLloXpxBBS2dscO93+DnKWUsG4B16J2eXRTc6pJV86SlMbEdkwY22E7Tb/qDyTznCBPxOmecdzx6qvPmaZIjoXr6w+EN6Lh9VdfMOweWGlXF0vNfj+JWpgNuD7je8sn/QXWaWKGMYySQE87KOJXs1lvxNxxdSnKSUUzjpGQEkUZjO1qYlcFE1yEUHljutXIg0ClcuUsqVYBpfJ8MoVEqk6yKOFn6Pp86eoCLDK0kmS1DqrKCWv7+XkppYgEoe1JKRKGkTAOTOOO3e7bKO3wqy/o+xVdt2LTfx2le5zpcQszqp/XaC/9Q3HoPLTmXGX40bbeUCk/xeXPRNozgUkumTQTMvVRRfY0sVh+t1X4Yg41aDsmt6qijs5zST5+03ktPyvPssHrnnNGaufOP+VU18K2Vh2IvRmRMC0UOt3PgZw7dx0WKJwjKFntNC0N7+bflYNMZ/vetX8+/763a3zp+XL4ET8ePufvffnb/IWP/wIfrj7B60PF/wDFqjAkMn11Vo45EIsUYZw5vjbn5lUrzZW/wWlPb1a8nr6i5PHI0E7XNcNqyw933+M7D9/hP/vJX8YoO5OTtdKkKtQS8sSQdjPvAgOWZXB9uDeXleCDd4Sa57ERn7N67IFhTzpNbdvLc1teFzkXcxwcF+bjr/+kFYF0Nftr98G5Z+QIjlUWyS4C7zYnCVUskftwx3PTYbU7+5y+b6X9nDDCk6MUEcUoiZXdzHOxTIjb31MR5SuvDh2v+Tyf6sK9AV740/j8z3q04kIsEV+7bMtr9PNIrt6PY7HyuM5I4AoVz6cpSZO0A+Ux/hnGPUPba3AfUnRP0ZciW6nB1iClZe8lKzKWQoIcSXk3w0yassqwFyjHfghSxU+JMAVyKgI1mh1oxfFWikgCeZADVXPQ3GAa1OqjQDckwXBasJm6dioE+iQysaYF3hSUisQQ+fLLh2q4JWRn6U5kjC4YU1j3VWseTYxS3f7iq9ezOsw4hurFUebjsV7cpb3vsa7DWstq3eGMwluFIaBLxhCxJuNN5sJanAGTAikkQk7kHAU+lRpnoszO0FBmSddpmoRYq6t7cU6M+8A0bEnjlpVO9F5hjLSvZaGpWu451cDc8eHLF1yuV+QoyYYuBmVr90LX6ndbMIxItirKAr4kXQ5nrcCbjK3HJdcu5cw4Ba5unnF184yvffYZN89uuLq6xjlJcEuWIF9pxWpzwRQCH+z2fPXVV9zf3zOGTEajUw0AS6Ek6WKkAt57IcDNzvACn0opMo25PohS9W/WAikXVBLMbcqJaRqYBoGZ7bbbyk9IOGfrXAnHQ6BScu4GxPxP69pJORRBJZYvkIrsU25xIS4ukqACczijlKJzDm8d2WdS5UEMtYsjcCEO3ynCTVj1Pdboeo/L/kOcSNkQU5zhXapI6UAZMZ2EahJZn7Pt/ZZxHHjY3jOOW1KcMK5DGYPeW3a3pXYQDpWladoR48hud4/RUn0vUVPoUKrn5sU15cU10/0t437L7v41m4sLfHfFzYe/gHE92vV0qxXWFdxqy37/mv1wz357SwoTMY5sHya2auL2/qE+567ygJQkPtlUdY4oL1cjMCWsYTfcE+LEOO4gR/GZaN4vUAn+iEllVQ5ZVlub07pVunZ7rPBkjBQNaB1Daw5iAciaiTVYo+mcJ69XlHRRneShaFBlSxzu+e7v/YBcxNNmtfrgfZb3n+qYK95veIE9xY14nxfeKbwlc6jStu1JR8DNf2+B01MSmKK8E+dqX/vuI+4HtTPbKqhvOc6jpGVJSkfN0qmw8C6gQZeOiaRL4vBySPdC47RA9ZZwjvMB+aHbePzzQ3U3ljib6Xnt65ycbkccru+m16SqqGS05YP+Q/7sh3+WF90HR0nF4ojnc5HOUJrn22ClW/rEuQ5xx6vpy1m5aWXWjHnky+Fz+ZlxWO3mAOt2+gqrPTf+OVoZnPFSdlQaOMyxqfAoq+zs4N28MU7nejkOsKMGrT30t1pnTNfuSCxxhnO1+3U570qp2R28N+uzMMFTeIvh0Ik7/fwRRHARULdEdGnOqCt0q74pQan5mEvJeN1hleO6Omafm4ufdMQcpKhc9JNEaEkWUuW7HXf52vk1P4+mnmUWvh3Ljt4SfnbaBXy039Nuk1Jn/76EeLZrc1BNa8/7MdF7ue41FbMGr2xFiOX23jbkfrDzPdu+v1SykjUuPTqvn9Z4v8TCrbHOoMn1choyhlwsCQeqQ9sXFPcC3DPxn1AOgV2IFKMiSnRUIikJrCaEKN4WORKD4PqmKZBiIcbMfh8IMTOOkSmmCmeJ1fVaCC5zmKQkkFctjlWLx1zJC1u3SmuFcgiExs3QJtHul0BB5OhExrE0EESSCv40BCE/5+pKrJTAnAwYo5j5t0VV/4XMMMYa1KeqQlQ5AxX606081hm62hWx1rFed1itcKagkqjM6JyxGrzVOANWFUoO1SgsEpNgw5tHBdSbviUXpZkWlaObniJJBzmhKfS1km+tnasdRteXaW68EoszBkphmkZszuJxgK5qPO3l0FrZzGpbLShuV0k6YeK8TetS0LLwwsXFJc57XnzwIZuLDev1WqBHRQirslFwvhPvAusISWA4t3f3KC3VYcG7J3KqbeCUyKXSYCv23VqLakpTWtyUqTC6UloAoASmVUolZ0+Mw16U0Krcp1JgjK6O86YuXszdiYb3bwngsrJ0WOxrdQ9J6nN7YbSgof29/tHtHsZiVCFlOW8dE0knESeoczonL1mwsnnRoWlqKCSqnKpG6SrIEBPWyUVaWLeIyliupod5opSpKlxFiAOpjFAyxUIrBKQ4VW+SIFAlW0AlUImiMr7r0dqQxztiyCg14vwF3crie5GSVXaFMj3GyHNRGsY5ZqIekY6NGDGmCEkXdDnIPZMVKoPOcg5a11BSysOEhPyJyGcL5JnbXTt5JYuMcBEGx+GlUWWkVU0slEZbWXtk/ZGgTRtNyQ5TDR3bNW2JoNFSOS9Go5oAQ8nkNJFT4OH+TqBbisbk/0Mb52Er9XdPvNDeVu2H4yDgUMXV87Nz7uV7FGw9EWgvj6Hw2GPgFNtN/f0ykFhW4d9WFTyCdJ0EGfMzufh628+5hGiJp39X6EOuIiMpp5rYHJKtFvTKZxYGd8v5WEKm6udbt6FTK5xxdGaFM93j+0BJQUN4FLCstc8dHXWcmC6ve6YwNSOxYmplPjOkPb1dz0FZyFOFZTUEA6zsimt/NfNQUjXca0GlrKcaXcw858v9t2M4Pp1DAWH+2TwvLT6ZJw5Ug/4Uysnlaty4Ry7fnPiTLO6P5b007/vMvfdUsA5t+S71ujcYTXs3HRIQrfScZP7Ux5n5ODcahOzs81VapFYO78Y6lrCpo6+8Zd1Zzvs7PV+lzMTrdp0PvaQ37KcmPkqBLnAQVjheC9rP3ghDK4/XrLf5c/y0xvs5b1/9Es7XG0xplHlGiJ4YHftkwXjon5O0rdmkrYtzxIRAKZGY9+QsQdc4DoSKIQ8xMYXEMCqBOE1DVUOKIi1aFosttUwnr+qaSKiZgCwVcJGKM9ZV2FMjPCuctZIgGcE4a21xvqfv+kpk1ZU4GxiHHTEEQhRcvuCxxVzLWoczCmUFfmRtYd1LJbIoxXaXmabMfgik3LJDD7bHWcPKCsfAdz1939P5jouNxpqIU/ekuCOnLTlZUoD9rqBSQJfC2hlc37HuHNYAOTHt94QQKgymGq9xqAjNuPsURRq1cyi1rslRPsitpoK3He7SSTeg3oihchRCEIlRQTkpSip8+cUXeO9Zr9d0dR77zQbfdXT9CmOqjFvlMuSsqp9Fe2nlyqmpakU5Q5LKuQRp0kn6xi/9Mqv1ms1mQwiB+/sHSjuedFB10kZM0Trf8/LFh7x88SE3z17wxZdf8IPvf5+vfvxDxv0eMRSq8I0gAWEzgnRO7gVjBP8fU6znXQhJ3LZzKbh6r6QYGdgy7feUIg7T1hq0rUlK5dlIYhmYxgnqwtdgaqnyQqYQ5iS473tRJGsmf5RKmm6Zl5qJwMYKlMzUjou1VkjL1uCMq+faSMmSDUiCVMh9L1C59YZhGAgxMiWZ21AK0wSohI4TeTdSCqzWPdZavK/u8gq63tH1mstrj1I3oDJWG8I0MOzuCYPwo6xlhpFlfUlWnsgVGVGIihoJ+JUV+dU40fsJrzObzlN0Qps9U/oSxQOKjpheYO2K3t7gLq+4ukyEi89JcUcYb0kJ4VopT0iJfRjZDyMxZZRdkZUlJEsQEw2MCTUhL2jdoVXP+uIGqzVGK1SdO0pi2O8JYWK7fSCXiZRHUcwho1RGkVCUuTCjY8M/mxkrrFBVjMAQoqomhA6tS+26SrdNK4ghzJyZEkWxbhrFAyTEieH+hz+FV8T7jXMv3WWlHY4DtGXV/l2D4pgDhUJXMd5PHssbgvom3NCOZxmItSr2aXB2emxLDkbrELREvFWpveneeCxL+McycG7HsBynajXnzukcDOxctbOUwm14xX2444v9j/lo/TFX7oYLdwUI3CXmiQKsFlXz5Taax4HTHqsd1+6Z1BBPxrmKbv3FyfkeRsgTUx5Z24uZPBsa/MWsWdsNX998a57DRibeuEvGtCfmgPeeh3DH93bf4ZPVpzNB++PVZ3y4+pSHcMd9uOX72+/z68/+2Hzuy+POOXEf7zAIdLE5W6/s+uhzp39v5nOFMnedWlDXuBrzfYOQvpfPhTc9npNE5fT5WMKkTu7nZbHwqWS0dTqMMnP1ukEGJTDOQuxX+kg2WTpsUmh8So1p+Uwt/35Kvl7eV077488tE9dF5d9WCP65e122pbH1vXFufTg293s6WV+Olhwsv3vKN5qfv5OEoCU3y6N9aj1YusKjhOM5yy0rPXec2lyYys07XV/b8bbOSCmFWBZJNPqoS/rTHu+VWOj+ayjfTkSR1ZqkNVlrdFIUpQkBlE7omNF6kmCjJEIKlJSYpj0xhorz34taTX2xp5iJCXJmDuBnPwNq9V9eyXO2qlQ1+FJ6Jl9qpdGmYrErrElpLdXBRqA2Cm0azlkCspIiIUUmRC0qpUgIg8AdKtHcqKogpSpRvRF/i8Cy7rcTuYzkDMOYq1s183GaKhNqrKX3Qjbue4u34MyIZ0KnAGWgxCiGgMqQlKFojcoapRNd5yqkxqBzg42l+Q+12g1w8KWoVfUwzRAk6wy2GAoQQqzfZ66At8WRUtVtaoVLKtK1qo0hRqk27/cDMWasqZ4EKLzvQEVJKIos1rkeM3XhaNdZ6TxX4nV13pZEweC7DmOlRb59eCCEiRQCKUw0aFbjGFjrMdYSQ5RqtzH4vuPy8orpZWC/eyDnzD6MNTBsCWuFPtVtdr5hSPU8f1MI8mcK9b7KhEnw2q3j0yAttTRFTpIUJBq5P7dfUYr4D6Tq7yFJTJorkEJAV3VBP5AZD1WWAxyvBTgxJbQWQrhNtRPXFjvF7JGhdav6UpOzhHFOunkhEPYyr1NVi8q5ELNovpcMfjegjUgnW6OwRnF56XBW4XxrY0hr29qOvhdYYYojIW6ZXaVVB7pHm9X8M3HCVqAKKk/AhNVbig0Ypcj1PsklUFKh5MT9g2aYdowp4qvAgbMrrLF4J3yGgiarjpASfpzoxkEScRSitVBIeZTiQmp+KvL6z0gnIWU5RlW7T1o53MphfML4jXRgS6wFBXHhFkilYvZbmcsglZlShAze4Jq+Km5pbVr+WV22ZRU0StEkbVWW56LrXS3MRLa78D7L+09lLIOfFty0QOKUcH36vWX1/ik8OBw6Fee2UR1Y3niMDWokXJcnKn4ciLhv7TxwrqL+bmTRd+0uvGnfy6r6KVa9wVpOg1KlFL1ZY5Vjbdb0dj0HdmMe+GL4Eb3pMcoK10H7may73MZyvueAp2ReT1+xTzsewj1f23yd3qx4CHc47dnYy7PnMiZRvOtMj1FmPp42zMJXou0PJIj/9sPvcO1vuHbPqnpi64FI97Q3K7zu5uuh0XNi6mvQPKZhTj4O+9D0uq/PucCE3lbxnQ0CtaMz/aGo98R35/ujrt+pxBmG9NS+GtSyBYenQfu73leniT0IZ0Sq7frQEW+fn6vuhwr/KX7/dHvt84/gRKeJ+rl14cxnzj1PTxLC31DVh6c7GMAc4Ld9ot58vEvI2Wn3CJ7uiiyPzyiRYG/fawnj6bfedn0V1V18sW1dqQF/0DXnXcZ7JRasPkNZcbQtQCyapAtFZ1TKlSw8gaoOtDqiSOg0EEIkhsT9bmCcAkNVd4lRDPQkMFx2e+TxV1TjsHmCpGynauApLsPVp0DbQwJhW6W9JhDW4J0TnLvRaJXRmgp3EbjOOIziol0r4KUkcg4I8bNgKFhdmDWqVRJ4i1W1SpjZ7QbGKRJjnnHnyhicX2GUwXqP947OOzarDuc0qw4sA4aBEm7F0CxkYjbEbMjeiUO4diL9ryJ97+mcxRpxIiWL7GmMEgwZY2QuC8K1WPgWTNNUq/HNS0PPi1OISvTvtUBzRGFCZr5V9lOucLSqvoEqYkoWYvUvEbfmgsI7D5tcP1eDtiodmxdQjebGrVSqMCmFc1Ltk+q/oesliUs583B3Jx2KJPC5VuFo5+lcqF2LiT6JWeFqvWFzeQFa8+rVF1Jdfriti1JtBZdMDCJVmlPCGj0vTjlL0iCqWoFxCuJRkTLTONX5LrPp3iGxY072cspMMVTuRcUx1y5QypJYzDLH9ZpM0yTkdGPB2QUOtLXGJblIWWBybbQuhkupKnDZmWdkrDwzVlpJEqDX6rfL0pHUZmI7BXIUx+dd5Tjtx5bIlUrUF5f3zmm6zuC7K7S29KaRSiW5kKS6Q1tDDAPj/UQuoLNGqx6lV2jXz1wlVWp4phKKPZQ9Rm9RqlC0IilNVkpMGksSQl8cMdazj5H16oJVt8GvO6zpcHqFsV54FbojxISfAqtxJKbAOI3EGAjVcyRGmEKqa5BCnGBqt406bdUdXVmL86IQN9cyS64qXfLMGCPzbSoMUC6VmOiRx6qyFtBVtEFR75lclz11SGQUkIwCElrHKtetUMYSE+yGTP7RV++1vP+0xhIWcs6d+IhfcBJ8tO8VDoFYe8EeOgrmbGLRtv2mMZM6xS3pyZfssvtwymk4raQesN3CyzDKVL+IVmk0j75/hHs/My/njvv070vok3TGZFQZFAS03ALQx9tscrBwc3ReY9rzT27/MZ9uPmVtN8QSuXLXRzwVOJCWjzsSgsf/J3f/mB/tfsjv3H6Hf+lbf42PVp/y7Yff42X/ARfu6uy8D0mERLqa0Jw6QRtlMGeSwVgi/9EXf5c//uKP8dHqa4+2q5QSSJb2ErRXHkVvVvRmxYW9YhvvGdJuhkS1oZWmX3QnlgpST41SMnfhlgt3Oc/xDHGBuZo9B6zL79b7HoVIFj+xK+E9hKN7s0GWTsnWTx3vskPSPrOs3M/P42K+mxqTFLDMAbZW2jNTk+uTYzhNeE6f06fWg2U34E2wyuXzeLrNt3G5Tn/Xnv2WWAiE9WDOeO577zLeVqCAyvGpzy0ckhHpli2SldNCwVuSMrlewjd5l+P4g473SixebRPOTTV4y4SQa5W1OsyS0Vpa/rnkqtkvykNhksQihrHKYCZ56VLmYjFwlFE1gmyTsdRKV5dpXdViKozAerS2lSPRyLdCNHXOzR4HzjZileCgU47sh3o8VWZTcN55/rxIbkIpCWsUzmq0XpOLZhwLu30kxJ1UuHNzbTaYyjswxuF8x3qzwXvLZq3wJtDbLU69RpWCSlJ1iTmRsydnw5QCxnc44xnDihgS++GBjY14e8hmc4rkPBFzYIoTIS0q4rQAplQFI+lItKqsKlQsfl1UjKjkKMWsJNV0xKUzo7AYkjU1mZCqqVZKdP8ppJK5uLlgs7ng0699Std5fOe4fS2BfKowrZwOsqilLkpaK2zwVTrWodYCf0qpzNKz2/sHYgw83NUErEKHlBLJ21QhYNYFbJV/zTlhRis+GEYUrC4vLwnTyBc/+gE5xtmwrN0r1koXK5dIk22kdQOiOJ8/bLd03pNSYhgHvLVCOnc1WTOqRp9IRb0uDEbLfdg6FNMUFl4Th/vRutZpoCpJeXyyNPncJjfb5JEFqSz7EW8NOZcudiJO4FLt0mlKFmy/qt4s1hoylSQfonQblaLvRfK1wdF8yvSrFe2RTUnu+RAT2he0h5BGmCZy0ejqfO69rp4WBmMv0d2GC7+Ryq4yFN0DBpQB9ugyMW6/IOUAKaBUBCJj3Mu9lhWu1yiTiFk6DiFGnF9T/ArnNPfDHfel8NpZ+q7j5uYZ1he0zWgLpVTiphEvAu+rFHL9k1Iz/ytH7eVDm76+TJV42pTUOpmt2l5V3RBuWU6ZEBOhiDFeyVk6oTlBGSTBIGB0za0r/C2lPHcsWmIi5oyyP6MkeYtZoeiJFS63uvj5y80+OcqxeWWrss/KSupYqjOXxJQnfCUilyKJQKuQPwrIzgQm5yAYQuY0R9CgpwOW2p0+o2Mfc6gk38Mc1/4a0CRBDwHkcjx1jKe/W57bU9XO5b7zgrAqnXvRxBeZ2cM5Nt5Bc2A2ynAfbrmfbvn2w+/T255fvfk1rvwzfPWPiDlwH26FWK0sa7uZg5uYA6Cw2vJ6+orvbr/N/+Ef/Fs86zf85V/48zzrXuC158JdVj+FA1xjGchKJ6M8mpPTeTuQUUVxySnHX/j4L3Dprh/Ny41/waW7eSQpXErhId4Rc2AXtwxpqDAlL92ZE8f0mANTnvhy+Bxv/FECE3OVlVZmJl1/sPpkJg23Y2/HsHRUXnbNlve/rl3edu2X3Ym2PYMRsnxhDugVYi7cPhcrtMkp92j+UpYkq0GzDvj+w33bPteQIEaZCteJ8tvaKUglMqWpEu+Pn6c2J7FEVmY9d4UOEB/zONFYdODmf5fD75bJFBw/w7Em2QrpOC07ik2NTLr/CyO6ReLT4GBtpdEn8/4u403B++nzfA4qODt/c5xMnH6uSWE32WRoYgFNejjNjYA2e8vz/lmN90osxikQczm4Nsf64iwFVSKQSCWQcyCnyG67ZZqCqNFMAuspKRwmBRaXk/q3pu8q1TmUPtJ9n83RbO1UaIOuiYWrMqbamNm92PtmzFYhCCWLSVwlgack5zJLipYEJaO04MV1dfAsWSqzAuURNaCpyt6GKGZhtGOsUprO++qm7Vj1CucSKzvhtfxpdbcUK7k7Qcx1+0WUk4wylKKqwlMQqd+2EOVMLIUUQuWBVOhUKegsHYJSOxYtgGd+0VIJ5bIoooRrcJTdl/bi0xhz+K6xcuQt2ZAFSB5A5zybi0uurq64uroSVad6pRu0rc11Sy5yzgfFrqp0ZDRzMtmQSgqq8/jIOOyFqN6M89TBBbp1VsSQycwQH+sczjPzJ6y1c2JcckLrA7aTGhyO4zgnGy1hS6l2bGLCWtlnSpFUvRKoEqPzuSlqEHl4lo4WnbIw7guTXMOU55a+bg7i2pC0zKaYBVbBAGtpsD+BdbVFI5NzI4nnw7Eo+ZlW4nGiakBkaqfIVEU0Yy02JqwR52/nwJiCqW7quZTD81LEx0GburAl2ZGpiQwqog3Vn8RKlwMjz1NRZGVpN6wqCZUD5EE8blIQRjVyv5acKQm0mwQipjzCX0hYA9ZIspuKrENjmigl4YceEzPaOoytLsPK1u5RXaC1RlVeVhGG+9xBylnIrq0rludnReav1EU8I3NScmulF8iJUqIY5JUwPxNt/sgBVbkYunZpi2qqdjMgsVbBqebvlcifJLEoRfxeUqFCuH52L473Ga0tfzqWa80BkvH0Vua/nQu+3xJ4P9raOwYIT81gS4yW8BbFobq6hLY8+u47vtBPP3d6jseV2PrObMHQMlk5k4SdIwZL8GvpTc+FvaTTHUZZxiIQpVlNhsgubmezvftwC8CFu6KQcdrx2dVLXq5u+HTz6Uz0vXSXR1j902He0Ik6nYe2TieEV3ftn53dttUOW4kfp3CZObBDXMPPQU5asC3V66aiJMfYAlBVy5XL2WyB/PIazgo/pUgHf67ylzl5bp9rSfjh+61YcahWH8QCymH/i+epILKssURRWOTAZTkE0yfv/OVZzPfw46E4vq/mQsHiGKDFD4fuzLs+oy2peWq8+XlfzMcTW3/Tdtv+5Zl4NyWmR3t4h++0czjqRrb9n6yLb9zX6fPN4gxbAYxDrH26r5/FeK/EYvuwpYBUVVPCKvEgWPUeVCbFidvbL9nv9+KTMMb5JdxEs5ePoGSUam7zgwRPtISiBkvGygJmTJMA1VUH32CcE6K41vha4TU1sdBazOxALtA47AlxYrfbzURkpRCHamfxVoLaGAbIEtw576rBmGEYCw+7wn7YCiY75zmL7+xKlJ28x63XuK7j6vKCziY2dkKHz1H5HsKP6w1rwH1IpmM3GUKyxGwYxi2KLMcyaZHcTBGVAqZEvLF0TgtvJSRyjEzDTkjwwzC/ILTV883UEgYhq0vwLpCowH6/k8+3ABAOgXTtfkDFfSM3cec7nHUYXTsEuZCLZt1vePbiBV//xje5ur7mYrNiGHbsdg+1Yl4x4ymhY2TK0xxQq5TISszclLG1MmuqVK2qXa7C/d0d07hnHHaEMEliVCQB9NHSvEhA/ClySjXJFBlbRREVK2tw1hBDJCchwQpRXWat+T1M00SD3YEE5FMIs+dE61LFWMnW+rAQhTjNPBKKJITNrE46Ds0wUPaZi3Q+YhT+ig7iLt55jzWabE3tEMhxUZ8f73uBtblK95uP4+BGfjpaEhZTRE9Azljv0IA3hnUvko1TyCRT8KZgjfBNYnX5lk5LJMcEccJg8FYT8ijV89LMuDRmF+l6z3oDvj7HzmpyErW0UgReRc6UsCXHHaqMGCLKtCo25Jhrly6gRoUtKzbXnxBzj41wdf0C69dgL8hpJMeJYRwYw8gXX30Byh66nMZinJ/hgG5RjNC1GNG4KIUyX/OcUoWbFEQJKpHjRJxGUppIaZDPpFgbFpIsSVIRUSqidZmVwjQatKvhoBQmlNZkp0mUatAnyQ8lEkuipESOhZwy4z7Uqp/BeFPFBTL7fXx03X/e480Y8QPxs1VKtT4YlvlaUdctwToZ57oUy3HaCXifxAPqi7hVNE63rbQUhUqkyZU2yc+jyvPJ+beCB285nlRN41pHpJldyXGVw89qsHjOvO2p+ZEKpz3yPtjYS9b2go9Xnx19PuXIj/c/5NJfc+OfM6Q9Yxr4R7e/zfPuBc+65/yt7/zbaKX5y5/+ZS7dDb/+7GP+6M2feLTvZ93LuRJ7lmvwDteolDLDvrQyPMQ7Sslc++dnt7nsVLXzbqNxPZ51Lx8RcdvIZB7iPU47rPZ80H80n8MubRnijufdB/N9vORotHu8nt1sMifFgUPV/JC4yP6fSr7m6jTtmXh8b7V5TCUxpoFtuGOXdrzoPsBpT2f6RSdOzefYnOtbcrysphtl52S0Bdz2pAOi0Djlju6pdv6dWZ19Rs+R9pfV/CX06FFCzdPdxllGmQX/qLT14DyJvQX4s0TtApZ4CkF6l/E2bkc7PqUW4g9zMnOcHJ6FOdWkb/nczwIBdU2QjoUkdqfwuOVx/izGeyUWu4c7gV0grXqjIYaR+2lPmLbEMLEfthK0xygeCos8qSUSkkuIOpBSzORrlJCplZLSZ3OmbQmFNa66JBusdahaWdVVwlO8Akw1F5PAafswzAFyTItAFnDGoJCKbY4TCLqK9cpTlOCop6kwZHHIFqnJii1XGu0EfmWMo+vWWGvpe4fvCtYmvP4hJk+USYigZENMH0gVuSjiXpNyZJjCXLFQlbC6D5aQ7qX74Hpx+E1BHpAsMrwxBMZhZL/fSsciBOnmaAlQAEKMtHtHeAL5EBSXMhOwiY8fGufcgfsABwjITLwWBRtjLDfPXnL97BkfffwxN8+f03UduVSSdhGRVKmqqko0LwKJapX8tussi5c19nBftCQnxdqtGLi/u61O2oGSC0Yr+r6bk1QtznaMxlCyo9gKf0tOErWKO+47xzSVOn+SRFhrZvhdqiRqrQ+dHjO7bPu5M0ZbmFJTDRO4Ss5yXUXFqcGg5GkQSFKuhN6aeGiLdoZsy5zg+QqtkqSmYvZTqmZrVOIxKJ0Oho9aH7gYi8uac6GQ5PVRCmEslBiJxuBzrPLAIlErpvOKlDLDOAn3qEijVrg2Qv4XUrLGaYUpCPyi3lupSHBtciEzksqIn3bi1WI7qJAAb938YksOUvIMqlRZ4Cgd0ZJxGyP3VYko06Nsj/UXaCy2WLRdg7agpAumrMdXKJtUn4wQ02vS2pI7rdtiLl2etsyXhalV6wYppQSOVTI5TqQ0EccdMezIeSTHkdbFaAUOrUyF/Vgg1aaslp8VCDHV51SeL1UgKkkiY0m1q1IopSY3Db4ZEvu9uJUroOt6EbHQIBrBfzjjXFDblGdK5QC0yma77sfEYClkvI0zcYrJPqpI/wSVxnbsqZrMtWM8hW2YBTzqXBV8OY6UmVBHAeFpINGO+5S/0PggLaBoRngtYHLaPzrfJZzkmDdgMFogKrEEHsIdl+5ayNzaknJkzAOd7ikUXk1fYbXlxot3QWDkH7z6h/zS9TfZ2A2/9dFv4bTjwl3z4+GH/Hj/OalknvfP+frmm1jt5H3JQUDiXCB/JCO8SAhakCwwLHMEnxJulYgUbMM9r6Yv+bD/BG+6twZNy/lqQdmUxhqUmZm/0JvVLMerdUdbUDuzqgH201C6WGIN9tRRR+aQJByUgM6JEhxV0Bf7SVmgRUtOyFJyGaQDtHGXrOwGb/oZotSw9kU9np83QXhOn60lhGh5rG3EEglprNdCILLOdEfeLKcjI2aWTyk/HUGjOCQZy88dQYwWsc+7jNP1pP33KQ+JNyXvb9xH4dExPzoPpeaE723HCseJZTu2VAv6huMke97nT7hGvm28HxRqv0NbkSDVRqNUmWEp++2tGL/VwGopoS6KNtSA59Bikqy7ae5XGExz1q3GUXNCoTXGOOleGItbOCWLN0A1ltIKqw1TkEB0vxM4Vozh0GpsGHqjEXSUQGFaVdl3HYJZhv0wigzukOamo648D+ct1ndY17FabfDOsl5ZOjtg1QDxS0qtmsKGUjxjuiImCSSGcRQITUwoLThy7x0lG8ZJsRu2TGmiX2+wWtEpKNlQCqSQmMaR/bBnu9vXRE4gK9ZarBWVoBDi0c2Tc2Ycx/lnaQ5YDgGUqXwGa+0MV1ouJM3EDTTOeXzX8+zFS56/fMGHH3/CatWhtWLYP0jlbVYsqtKuqcyBUakeEEeNZMVBxaj+yVl4CFMYGceB3fZBvCIqz0L0/0NNPDXWOVBgQnNwr2pUSToUzafDO1ery4kQIroi8XQRCeOmVpUzB+iR1lVi1WPnLlpLLFJNRgRadJDyTTVQUnPA7101RUO4KkYJNwilKoRMAl7XlMdAzrd2SYySulOV8RLMvRZMeIO3qTmRaYtgoaQ6H0CImaxTDayzwJ/qMTW381S7NLv9WP0dXH2YVZ3vGqwoUIXZNT4W4a40VSSRYB0IccAah1pd1mfc4uaigSNZTUpeEtA4UeKIzgFVIsaJmWYmkuhAe4xdYbSoSiktnAdI9fwtVh9IoBKs6YXgQzWuU8jcFARqVWctl0PWe4AICkSq5CTJahgJ444ct+Q8QZqqE7nBaoO1wo1QGNlPSQihXYQXSuOaUTF/uYBumPlc4Y1VVrZe+5wLMRViyrLWhQpPzQXrDM7b2V3+D2scYaErpGSGKJ7gqs9XHt89qfgDHedJdbEglUulJBVoo/0MDiTXc5XJcwH+LNH+hqr8cRB5/LnlXLT7pCk+AQL3OQlW5s+dbEPJncg+D2zDA9/ffY9vXDoxhCsiPbqLW+GKKc02bLlyop5nauHvBw8/5mX/nGkz8bXNL86chK/GL/k7P/j3iTnxR57/Ep+uP6s+EwtVusX7piyCm3P+JPLzxJSkGy/vd+mcNlhS+96Q9nz7/vd53r3EFX80n2/yoFiOUAIGc+RUfqQUtbjuXvtZwefRtazH1zpPGYWrx3sANqqjz6rSyhEn26oJ7jIQTNUz5JQ70irgFMHSn5LRl/NgKoej3UPt+8tzOPfzo+PiOOFo3To5jiTzWaxwbtNW3p/mcddguU8xiHs6ND1aV84cwx9kXWgB/jKBKSVLEfxNz215+36XSciTidDp8bxHh+R0e0t43Qy3W1yfn1VSAe8rN6vBO00MA9OQeD3s5cUapwV3gsNlV0tYhjq81JWu0JtKrLZNGlaLUZQxs1ndMrGwDc7SEoOqdENVvtjvdoRR/DFiTEeTCqWSzAtFgTU9VhsuLy5rBimmezEmXr3eCxk0J3LRFGWwXSc4c+vwqx7rLF3vWLtCbzKOOxQjii1MYgWY0gUxXTFGwxAyIRVRTkqBlEZK2mE1XF9doO0VSnu++OqWcQzsdztSmsRAcIh0zuI2PXEKTIh87zCO7HZCHBeIRiFnwaz3HbX6bhdwNB7911pHxWvUIEqCIGstzliM0jOUKqUmMyvEcG0cz56/5Pr6hm9+65tsNhvWF30NuKpBWozkGBnHSZy+h5ZMRcIw1IoD1XHbNDh5hTSJs3uKkd32gdvXX3L71ZeMw/6gKBaj+HIoqiKQdBBWq7U0YrSl73pMdS4uKbLb3vPqqy+4u72ToL52BoZhTymwWuUZGibPnrzQWpLRPEKMMfjO12RA1KpiTHMSnYAQpXs3RemsqPo9Y4wclzE46+j7DV2v6NbXdP2K1Xo1Jym77bZuRwwZW+CbMpLcxwAE1DhKQmgsm81FdfOuUMIK5UpZIHzzQiSRNFAI0eG8o8tJeAgoVivHGCzOafJOOiYxB3nBqgY5lOA9loiKiQvrcF7je02ck8gmH12fy5wZhrvZx6KUUBMWh7FrjL6kX12Q4sQw3uN1xKiELgM5T6Q8oTG1O9HOherWXUgqIRLPCtrLoeSZx2OQbinVUXZeX6ogxFzqolUA1eIcxGSv5IwhonXGeg2uR+HQuirBLNa+qm0kLyBhjotHpS5kpXBddwgAa7dJYFiSKDV1qfac5tK4Fpl4E3m4v2e/3bLbbRn2cn1j+PlDoZoMZoMyNNfemKeZkOqqBCecf3GeC4SW8Ig2lkH9UzCYc9tvx9jgAo8SA9ShYrroEljtZhjMqRdH+9wRZKRutxG5f5IX+VKCtSVlDdfv689ySWzDHUa7hdLTIZmLRdzhNaJwtKyke9PxS1e/gjf93J0JeeL7u+/yrcsVG3vJP/Pyt8glsYsP9GbF2l7wr/zx/26F8ESmNJByZGXX/PqzP8mvXf8GBSFmt3ls8z2mgX3a4XUn/gl5xGqH1/4I1hGqIMnKbrDKcelvjq9RrebedC+gdmRuuhf86Q/+nOxzEQiWUvh8/30x7tMdl/5mJpE/GvWeWSaOklCq+dpLB2U/E9lPYWi5ZB7CHdDM5ETd8NX4Y5z2ON2J1G0jOSvpWu7Tbu7QeO0x+uB/kUsmEaFIV9sqK55FHHcxUr3eRpmjhChlgR5v4/1Men/WvXzUfTs6j5pwaI5V3OZkZP6Zqc+Sn5W91naD1504riPk7qB9heAtlKdOukpSZHusolZozxUsIYHtGX18Gcv8nLRE4ann71EXZLHWCB/m6X0Aj9ak07Esai07Ssuf/6TjnLLXsmNx6j/yB93fu473SixyiqSgCdM4w1KkCixwGqUWGV+tujZYim4VzurnINVJW8nOB9K1YJ9FVclUOJQ18oBZ0zwpVFsDibGa6KXINAwCw6qeAAcijCzqXdfJomGt4Kmtrbr0uSq2QEpVo55acTS2qkt5vLV0zuI7hTEFb/d0OuB0xOT9HKSEpIlJM83/VQyhCHQh1QplVaEqKjMOA0oXikrsqxzvNI214ljQOZGrzGpMSeAwYWIcJ8ZqklUK8xw2Z3Fp3daqT8P619Fu7lya58WhhpKSkKFznTetDkH1/DAZw2q14vLyiuubGy42a3xn0WRiTpQcK/SoBv9VVjiEae4QtE7F3CExDcbV4APQAroQAtOwZxoHQhjnhCJVF3alhNBsc67dhOV9eQjwYkrEcWS727Hf7yWlqhXoXEnuKaf55w0i0zoWKCXqYW0eaveqkXtziiL7SSGVUg0LRcK4lOPEQmtNpzq0sawvr3CuQzkxFOxXq9ks7+HhnnEcmMaR7faBOE0Mw15I5yUdYFGCL0GRKn9Iz8cmzwHzwrZcaFsVI6YovGKtcQWU0Tij633v8FY07VNs94HAoXJBBKmiQPyG6vvnOoMxYIwkqzOvI+wEU4+YxRlAZUkYYgRtRrRZ4borjLV41qg8UEoA5aVjlxNFWwq2BhbSDZorfgValjqvo4dc4fHi2joQTTlk8dlWLawuLvInR/lThDch8Kb6jMzzelBfa4UVvTyY0jxh8swlKjWRlVuyyANZn8/6WqgduJqEK43pDCnGWsypfiS5EKefv49FG+2eypXQrquM4imu+ind+9PxZLXwiYBhWUA5Wwl8wzaVUkdqVeeO4anvPjV+0pe5wJ3KIUhUcm9IR/EUOqaOFIdacG0wEvwrhc01yahYflsTAKPs/D2jDNf+RvD/ZG6nr3g1fcWPdp/zmy//NJsqo9rUpUKFIpVSmNLAkHasF14VrcCX5hWdGWbUfh9zPFY9OnM/nM65QImkO/p6+opO96zs+ihxbKMzPbZErHLkkgl5oskAH3Vy9DFMR7pXB8hZU0WSSryZ15YpjWzjPRt7KR2VOseNywIFuwisl+cnZmV2TsIakmN53m1WCpJsNrgWSKIzpP0MMZoVhc4EsE47cjE12M7zNXmTQdxpF2PugS26KC1416jqdXVQkpIjl/vtwKk6PPfH+xJK+rnnS83/VW9MKo6/c0j43zaW2310rovzb3Py8wjQ33WcSxqWULDTz/2sx3slFsOwY5pGQhDydntpyLFWWJM6KBrMxnXqgGluhFwxrnP1v2JmZq3D2BpkOjvj13V9ITf9fa0VcRqZxpGH+wd2+y0xHiTGUDUIKFItNUa2fX3zDO87+tVGqt0p8fBwXyvpAzS9fdNhrKHzjq7rsM6yXnf0DnoHnltU3lLC5+S0J4eJzJpSOnK54mF07KPmYZSXPHkiJfFGMNrVl5ZhnCIpTuwe9sSsSVkxTNXjgIjCoZXFezHmiTEyjFp8BfZbpmlinEaca9ClTiRJnast69YhymhdyDnOAXZrR4fpUNVsVe0YI9Fass945+ekMOfmt5DpesfzFy/45NNPefH8BZcXPVBIaSS3Kv04MA0D0zAyjXs53mEnZnGliHuxMXLM3tVzMEfdgaKoLtV7xv2WaWz3YHOqFrlWeXllkWX1Du9EthaFdB9M9SrZ7bh9fctXX37FfrcDmiHaIXEKIWKtRMuC1Co1yZAXX2j3Wu10iEuy+GnEEPDOyhKVEuM0MoWJUKvHGo7awcZ6/GrFJ7/wda5unvPsxUcVXuegCGF4+/DAbrdlv9vyw+9/j/u7Wz7/4Q/ZhQemcZKXsrH0vRgdCsQp1vMS2FqbW0oLtuvCqGrkWsRfQ6VIiAHfR6z1+G7Npveki3Wdlwk1hgrDkQQGFBHpnmgt0ozr3lCUpV8ZnNM43yF8psh2uyXGCa0zzjicBvJICIHt/R0pO1CeDz/7dVy3od9cs3soTFPCqY5YYAoRrKMUAyrjPVhrKEXX8z7wJ9o5tqBdqeXL+xDsp3TgL7ShlK4cL42eeQuJkidynMh5ROUIJdSkA0im5gLVzlMpaNBOY2qDsCZZoxgP+r6fsWe5Kkal1DrAHEFLW6Jc/4W1lsurKy4uL0mLzvE0jO+6tP/Uhp4D3EP11Cn3ZIW4kVu1MkcJ3ykeuI3TROEneblLsPFm19mzHZBF0PEm3PNT1c05GHriu+f2OURZozbuckGKTUff0UqzYi0Bb5WRbY7KLZDbxQdCEhNPrzu86Z4kCfd2zS9e/NK8///N3//f8//+3u/yD/7ht/k//3f+Z/yy+yMAtfrueTV+IeICFP6TV7/Nv/f9f5//4jf+Ki+6l1zXjkJLNEG4Ca2STZbk6dRl22grcNQa7MUcpEpf9fyXcxjyxL/z/b/Nrz/7o/zK9a/PyVjjnSileNa9nD+/i1t28QGve4y2eOXna3fuPhXHb7mfN/aSXDJD3OF9N5Ni78Jr/ua3/yb/wtf/BZ53H4galbJynvVYb/zzs/NttcViH5nztSHJnuwn5shX449Z2w0reyHFshz43bt/xGcXv8iNf46pnJ7G25DnStOpnt6sZjWrxtEpFJTuHt1/Z+/jGqme4xwopbDaz/dh49aAJC5rezF/Vrre6hHf4qhLuNiuQs2ArXPP2Ll1YclPeGPR4oniwWm3FDjqgrxtW3NisljXWux1DnL2k6xl7woXfRcy+U9zvFdiEadR/CNyFqzwgn2/xJ+rqleva0sS0/gTGlsrvEpbtDUV1iTKTqbyA7RRc0XXVNgTBWIIlTMhcKdW+S6VTJ1Lbd4V6PwKay2r9aoqAomcZcyF27u7KjUrMrGlGLquFyK2tfR9h3MK7xRe7dHssDxgYkCnSZRryBQisayJXDOENWNQbB+qH0UBaiJlO482G9l/TFJ5H0a2+0icRsK4F+WXnMilBj5GJDqzMpRioTicKaTeULSt0AkJPBth3TuHtRJQtRt6rqQ3OV2EUBpSoNJKjiqpOYvJYRGGOQfin1zjruvZeHGw/uijT7i+uWK18ZQiCVGMgakSfffbLbvtloeHB+7v7wTKE6upoDaz5Gvf9TWJbCoQjV8hVZUwjoQpzFC11qVoQWAjtkpFnlkOGNTMFXHWQlE4K3K4/XpNypkUQiVmU7sTNQitJF5oiYW0k0sp7Pb7Cg8TTLtztiaNcv83OEScRQwO92mmiPqSMTx7+RHPX3zIp5/9Ih988gnrzQV+takvU2hyuev1hq7vuLq6ZnNxwfZhy/XNSz7/0Q+5vX3Fw8Pr2Q/DO4Wq8LHWIZBH0GCTdIUaL0QbMXTLpXYTEGjNFCOqErVzbQf7znN1uaHvO9bTxBgi4xTZj5JoUjS5kvOHSfwaduOOzcbSd4brKy+ytXqqlX7hCKmcsD4LD8I5NlcfEoslF8swTYRcsGFiGB9IYcT4jowma4OxHdoYcl1zUAa0VM08jhwDOYwitqCpTuigiiINsapCdbObeUqHoL3dC6omjloZtK58oFwqzG+gSceqCpcq1GSuJqOt7zaGqhqGojOWnBK7hy3b3Y5pmvjo009xVW2trQUxi3N3zHGGIzbyv7xc6/EuMcv5YEi3DEB/nqNV/Ftl9o3V0FYdbDCEk8rim16IbwsWDl3Z467I8mX7tu2cntO7jnPV4jd1Xc4lUSCV9pgDXww/pDdrerNCKxEwuA+3M6RoyqIS9xQkbG0vZrx/g5UsP/sQ7hjSnr4ayc1eAxR+9/Xn/PmvfZN/7bf+q3y8+lQSxhroa2V4CPcYZbjxL/gjN7/O1zZfm+VfrbJs0z0xBy7dtazrpXAfbiklc+muCSUwxB2pJJxykkTN4i5yHRt5eub5VV+Jdm/9xY//0mxkZ5UFRQ26BYb3o+EHlFK48td0ZsXKXgiZWalH0LUGo2mVf6c9umhMydJZUHDTvcAtPEwu3BX//Gd/Fa877sMt//fv/l/52sWn/JGb36hdjPfzIl6OBneLOZApXPvnWGVnlSmjDN+4/KX5OjYYWm/WNJy9rp2WmEKFxkGvD/C3mMN8DzZvk/NdgzcH6q2wYBpHcjGWvBiUmjuYy9+fG29Kyt/0DJ/rVLzPs9+gUMvPPUXiPjdax+BcAnZ6bvKPReK2EDl4Wzf37Lbavpbr67lO/c9ovB8UKmfEVVvV7kSriNeXyBHEyc4kT2UUVKlTNyuyWIzVKCOJg1YWo92syCP+CIeWU8mpJhZ7hmHPOA5AmfHIsnBLa1Kh8b7D+47NxUUlhxv2+5GUAvtxmAmQWklC46zFdQ7rLJt1hzeFzkZsGtB5C/FLyCOljJTsKViy9kQ6prJmG9cMY+Ju94AiolXBdwLnct5hTA8oYhrIBaYYmUIiTIlxGMlpEp+KCv/CeQRDkShkjCpEZ2oQXX06op0TsAMh3dSgqMzBr/gsNJJ26zBxdBMu8X9CNFZEWpBVFTGMmAZuNpdcXl5zff2M1arHe0NJQ4XKTYQgicA0yLUa9jvGYSClWAONRQeqdqGMrS6eEt0xK6cUxK9i4VkhPg9pkVg0zf56DvlQHRNjvWoGpxTGOvq1ZrXeiNpR2daglFlY4AAXOkBiJLEQEvY4TcQKw7LWkaIk0CILa+ZjWB5fI8FDwWuN9Y7L62fcvPiAFx9+zMX1M3zXo7QRD4uUKNWLwFqLUxZ66LqO9eYSbRwxF9CaECemUTp4bc5atw6KdC+M7FsrjbKHuddalInEA6EGHbEqh5VCQZNqc9o5K2Ryq7FTqK7kkZQgZYhJeB9NPW03RGIqjH3Ge42zCW8jKUPJEshn00x+wChLt7pEZy2u8ylWTkkkxZGcAwUv94cxqCpNrGvnQRxrG0ZayIMpjsJt0RplJFkrOZMTqNKJZ8X8HFTYlNIzjLPBybRS4vNRpDOjSJAjhaqqxuE+ye1ZgwqtqtCzAqoUivPkmNjudmx3W5EvTglTRNqpFOlQxCSwwpBiLQoUktK1sSHpp1IKnYWL0ZKN9mwLFPDnOw5rjBIifw0InxqqKeHU7/xB9nvuBb4MSk5frueIn28a7/qCf9txnf0c5exnhaicRZlJObLusNUMa6yEZrSv0MLFunkyOtMLZKZ2QFpyARLEhDxxN91iOgkoG5+kUHg1DPzl60/4rQ//4gwzyiWTVUZXKFILiq78DVf+5uhcckmELPhIjTxbIY9MaeLKP4NSGPMo29ELqAkH0vXpPSSmfRPU5OVF/+H8uyOoXa3MfzV8OQfOne7nSvnMF6jX6pCEyv8tE2PNgZfTyMXt/vK648PVp+zjlrvpNX/3x/8phcIvXf0yqazQ5dhD4n0C3NZ9aAnBym7mALcJCly4K7bhnl18EEjV7C9V5uJhyQLryjnW+O0gOhIqT5V6lVpidjqegh2eVv21No8+I0lF9Wc689Q99Tw20vG57uW7jmXX4U3Hfvrz04LA+z7/7/P506Tg6OfvkBSU+WrXfbc1j6fP/2c13iux8L7DOo/Ang5dCKWE+CjBp5t/rm0LSC3KygvaVT6F1UbUbmpi0aq0xhzwoWEKTNPEV199SQgT4zhWaU5Ft+qkYjzLNCouL69YrVZs1hcCpymZ/bBn2u9EOUWuD1pbei/O2H0vxF7XabzeY9SEz99HxTvK/gsoe1l4lCOrjqyuKeaGVHr2YcN2TOynxH4YUQo2mxWKgFKZ1arHWodzKx4e9gzDxO3ta4EFjXupcltL168IkyZixD8jKwgFpar8bCmEnNmR8aaQo+fF9RW+E1JYKRlrNOvV6pAchDCrEcUQ50B4rvDXeyznPMOjAFlwKkej1N83o7Buvabrel5+9AnX1894/uIFncuoLJCuOE2M+4Fht2MYRu5evZLgabsVHHm7vkjwNVU/FGNEwUZrDUWhtQRhuf5JqfFTBIoVJlHDaljyJt0n3hvi/g6qShZbvO9EhlNbeu9xXc9qdcHD/QO/+0/+Cbn8mP2wXyz2LJSvKnKlwqVSSoyjwJvkftT0fc96taY5yhslid0BdrZYNJTm8uY5z1++5Ju/+utcXj1jdXlDjIUp7JimYebg0CrfsymTol+t8M7zi9/4Btc3z7i7veO3/97/j4f7W+7vXuOd8FSaDwNIt8JoQ+d7vKuqbi1Z1FqURQSzI9wMbRl2O2IMZBT7KbEdpXVtrOX66prNZsPVjeNq2hPCxP3DnmFKTFMi76ti0QT3MbDbBuJU6Lxi1VuMusIauLjs0DqQ1SSyeEpTjCYXLR2/VEQtrexZeYGmKabZaC+SgYS3K6awY7v7At9d1GC2MA13hHHLpn+BSprhYct+f0sMI5vNDa6/wPZOzOSUJmWpYCqlareqYHTtABiNtUiKpQsqiwv9OB26CY2jM4Uww6CyavrohVKkSDANg3QDXWF1vaZXiiENDLuJstPzdmRNFGndXCKURE6hXqoajNd7Ssj0B9w1qhCm91ndfzojlEAsQaq9re3/hs8fCJKHiuSpedvbxpv4FA2H30YzKDvH9Vi+fJ/yWXjX43nqs0fSs4uK6hwELhIhgE73eN2xdpc0CMY+bUklzUlHgz/JvvMs69uq5PM6cAJHuQ2v0Giu/A2X7pq1vcBpz5gGfrj7Li/6D1HAyjlcVR9qgbZZeBN8tvkGpSY6rpKwQwnoIgnKpbthYzMP8Q6nPRt7wbV/XktBkrw3UvipytGQ9rXLt6rJkHjIGGW5dDdvDZa89jjl+OPPf3OeiyHtuQ+3XLprKbQUxTbes49bfrj/AR+tPuaj1dfma3HgSTR/EemwxhxJJbKLDzjtuXBX7OOWbXzgv/Ub/w2u/DWX7ob7cMs+brn2z2cyfbteUx7nyn2bC61Ehr5QjubD1y5SzKF2TuxiDZBtfTV+yTcvf2UmsBvMXEi02mLUhmIOyUyTrbVKkpH3qcjL/VbkHJS40Ic8zYnWMpHKJTHV+9RXVa/z2zFYZY+D+Seu8VsD7eVzeBKYt3WmIEXAJb8n5kAuWeDk7X9n9vWu/LDTY1omSS1xOddtgGPp5TmEWCSl7TwasZ1a5F/up/29bWPZFXnftfZdx3slFs51WN+j6ktM9NKrvGc1qTNVwUlpJR2J9jOjUaZKws6kpqrfr+sNoDQpSwDXkoppEny6BIwHf4FSMkobnDd4JxCC1XqDNRaUItRqZ8hZ4EXa4OtxeWNxVuOMonMTWkV02aPCA6qMlLyT7kQKZETxp6gVmZ7MinFaE7JlNxXGKTOGSp6uVc0GC0spEkPk4X7PbjeIC/nugRgnYpiqzG1F7RmHVVoA8gpEaaF2hrTwBEBUhsaxME6jBC9KVZ6KnBsVZD+/oBq6BwSKVIPzNo8tscjWVvJrG2UOlHW9+XVV7eq6Fb7r0FYq1jkFUojEKRDGkWG/ZxhGpkkSB60Utjqg69oKb4FYSpkQBEalawBcTEY1fwuYK5mlStQ21+u5s9CqMq1SqnRNBlohVCAt1jmslT++W+GnWBPk6kfS1J1qhbipabU/sZKpQ+VSNNWmOWEr1d1aq5oQ1FNoF0ErjLFsLq64un5Bt7pAGydKYbWzNA47ShIDNGqHo8wE+0q46xLGebqu4+LqimcvPkBpzTju0Q2JOlfChLyt6vVvtVpJ8qRTiF4Y+ynm4HiaJlCaKYiZYioHnknXr/B9T9cJnA2lMbsRowMlK4LOCO9AzmEcIikowqQxKouO/gRKB7SauNyIkpQxBlO7KpkJinQrjG6Lt1TCxc3aUDCkkslxTw47tLXo6vRrtUP5Df3qUq7hWHBuhdYG5zZY0yGu8sL1ss39WwmfaL6BSqHkRBgnyIEcH8gxUIrAzISwKKp5uVB5FHX+231QnXtlW40gnuvsKMZprN45AicDkSCWpLK6dhdJOFUtp85cNuVQ2so6oCq3yuhlI+XnNuoVkufwJ6jwv8s4h6c+h1t+Cj5xDp997udP7fup7b7p8237S2hCSx7b704rtgfI2+nxS9dKCNeqBhO1gq7ErKzBgOAAx1PIdxo85nZ6hVOOK38zE5lBAo6Nvai8l8JvvPyUl71wFFogI8H5a368/xyrLWu74aPVp/OcHAv1ylGIr1Ek5kjTWGrdgsYHMRxUkJrMrNGWXq2ZYbJtTUcSglQSF/ZS1tlS5kr8PF/qoOiklSbnyD5uiTnQmZ6NvZSAVrtZfv0w18fX+TjglRHyxOvpFb97/4+58c941r2YIWUSQB7ugWWnqM3TMqlYHDQU4VS0Sn+DJ4XaJW3zMW9LGVZ2/ShpPrp3Fp2gIe4kvkDPc/QumPwWkIc8SZKlLGoxvy1hPN6vPgrez1XQ5fzO9TLe/mye6/wcrQeUR8/5vM2TTQuB/PD75Xfb9+aEYBGwvzNE6g3rT7tPlhCoBqlarg+nyUaRN1CNgQ7bnnkiiw7M8r3ws+pivF/Hor/Cd/1c7VQVjjCr3NSXuTEKbRTWtmDUVflOBVZUKzQOYoaSgAFl5MW43SemKfD69euaVIQKjdJ4388TM4VWLfY8u3nGarXCGM80Tez2e/bjvhJLhevhvGHlLdZqVp0TJ2GdMPnHlPiKNH6XNN2T00hEo1SH0huSuiTTU/QFmZ5Uem73ijFktuMw4/udMpWYK9KpShX2+y3bhx1ffXVLjElIy7USUcgHczoU2nlsw0+javWxrS+53uiFaZrIaaSz4hTsrRf1rNplkJum1BtNVI2MVmQFMch8DuM4B5K5lHqNbD1uudVKaccIRVXvBmPxXU/Xr/G+k92lKAZh08g0Dux3O7b3DwzDwLgfKAW8dfSrFbryD8IkZn4NdrXf7ytpWyBsVht0OjxGs4dDKTWwlw5MC95KPeaWVGhjRMozVzgYktD4rq8dNSvqY7YjZiRBdR1dXzkikyJNucrHRhqsaKqKY/v9/uBPUWFOkmCIO7ZKh5fI/Ayr6p/iO66ffcCLDz/FrzZkNA+7vUiYpsi031aJ3tDyqdmPQCnFNI34foXShq5fc3l5ySdf+wxrLQ8PrwnjjpKiBLgYFJBjIiNJbLSREAylE0dyrTopALT1pSBuzuPEMAxoZwkhE2JkrF2w7W7Lar1hvdnwta99ivOO1WqFcw+43R6rxZHb6sIUhScw7EPNkxTUyj0qoVREq8TXPr5hc2G47gQOqQ1MPJDiyDRu8dZgjKrHmcUwMhpy1uRiiGmCPGBdh7UFpTqcW0Pnubz6QHgLSmFcB6Xg3ZWsX0rjXY91HuWkiphLFtf0lMkhQhYo3jjekeKeMNzOLt2HwEMUnRQFpw48m5KT+IxUVTYtN6YkyUUUoXKB0toLs/iFJmrZnqJUn52WNCqKanLdFmu7yjdx8jMj/JPJ/vxa322Yirt/G6nwdMwv8fI44Dj63BMv7/NwhuodcRQMnvnc+yQKy6f6iWDiNKBp/h0zmbgGdsKhOryC3/Ulb7TFoR5V95cjl8yUx0o6bsIReq78xxL53sN3Wbs1n26+XsUM9MyduOleABCAP//JP8PXLj5bbDvx5fA5/8/v/7v8H//B/4erruPPfvpL/Kt/7F+dz33JKUglVp5QIqKY8iASrEpXx+kyV6obf2TKIyFP3IbXrM167i60eWrX4fu773A/3fMbz/9khXRm/ELOeDkf8o7QTHni1fgV39t+n1+4+Ixfu/ljdLpDAW5BOD53bZd8ITGaM4xp5O+/+vv8L/7Df4t/46/8D/iFi28efUcSvcNxNPPFJsfbzulRAqNgrPKtbX8KBbmQVRVjXzxnXndc+xveBD1so5TMbXhFb9aSRC6SiqcUm9rvmlzx/fSaKU98vP5s/r5TjwUB2j3vTXd8DIvk4qnvtt89fR6Hd239y5OfL7RK4+E+WnIZWifTVCn15bZlTg7FOlO9ohRqdk0/u7acKYKcPS6WBod1nV+sXS2hP+1utCJBTUeA42t/KF4dfve24/lpjPdKLD788AVd39NciNEHAzNTNf+1ksXSaCsdDQVa50qA1OSYKGUipy05S6U2JUvcR0Ic2Q7jXJFeGrWBTJJCpCWvLq/xXcdmswE0pSgedjsJ8MjYrsMphTMd3mq8VXQ2oBlQ8XuU/VekeEcJDwIxyAFxAd6g3SXarVHuCq2vKXRMYUVKiikqMCM6xwrrkZe+2EFktruJnRIpytvbV4QpMk4Boy3WOZzpFq7Oce4g0HCetXOjdXOeVjV4l2BzygOaRJ5GNqsNV5dXXPZdhbeIm6ZAyqzwEaIQZRW5ic7UuSxzwFxmHkCaq3/WGJSV7k9RiqIV2jmc71ivV3hvJQkbB1IY2D9IMvHwsGUaJ3Iq9J0kglqLIlMuReBPFAn+y0G5K0RZZKYpYFzAxsz6+pk8xLXTZa2dFZxSxY8rpeb7pOs6ur6j8z2r1ZquW+GcvMwLVA6QruaOCms011dXrDpHuLrk4f6OYRh4fftKSOJ5YpxqZyIG4VbEKMldXXTGcaxQDij0WKuhSua2zsy8ECiqwaMDZRnGiZILYZqEQxAD4/5BktWGj68Ljam8o1IlbRUQNwHX9WwuNuy2kuzt7m+ZxoHOWbRKNRGXY01JEaMQuFVJlTNRQBdstqRUDQdL5tmzG3KBh2FETZFiEyvk/tGqUJSmpMyPfvA5zjk2FxvW/ZrryytJ/GKskLFYjRC1uK3HKlKQEzFNTNPANO55/Xrg7n7gy69uubpesbno8DYTx8LD60i/NnQrz/OXL0AbUlGU/YjOuXI9mg+LFh6CBmUy2kRi3qO04eLiQkjXOUKJKCXt7hIHQo6UEKRjozjyfhGSu2Pln5Hjml1NboS8nzl+tSmkDtu4TdKZ1CVQUoFUaqUZshJMuS7McrOqelegFMqUmtBXM08EJ11rBzKvpTClAjmASlAm+a7e83D38/exWFbll+NduAZvw52fwgie2vbhc2YOClrg1oKZd+U+LMepZvy7fF+CF/Ooip6aI3N5szrVLm4BjvwprLJzxVkUixJrezETb9v8p9rlguYefVDgscXyJ178qUdzufy+HL/mo/XHOOV4CHeszJopT/wHn/8H/NL1N/mf/5W/hK5QpoMBYpklV8XsTONNh9HPZf1Az0GyvB+k46JqovEQ7wT+ZTdYZQl54tsPv8Pz7iUrsz5KXH9h803yOh0CfqX50f57hBwqgdxhKw+jndelv2FtL/js4hexlYCtq+TukAYewgMXbluJ8o+5HfL5Q1fgwl3ymy9/k3/zv/AbfNh/8uga9mbFXXjN/+Q//J9y013yycUH/NXP/vOigqUMD+GObbjnef/BXLVvsrGdWbW2uxDvS5NuftxZaHKuy/v71OG8/VwrwzMvXahMYYwPFIqQwqs/RxvLfSikO5tL5tLfyP2NFjPAnM66ap/tJjyRRJ9Cgt5WoDgNys9t72ifTwTVM9+mrhXLzyw7F+eO/ak173Qf546rJQby4YOvScwBVdRcjADmrtujrkO9Z+Zko87h7PtRj7KN5T3xTwUUarOCrsvy0gaKNnMmZEzTdI41CBLok5ApU71AGUV1oixiMpUyhKiZQmEcBYLR4CSidiTbphQhNytR31mvBTe/Wq0Yx0iIFR6D4O2dFeWb3nV4k/E249lD3pLTF6T4BWV6TQ5ThR5YML1U/OwaZTcodwnqglw6wmgJKTPFLHhpVV9wSoJKpcQrIsRETiIvu98N9eWPnE9NklRVnRFTwFTNr9T8EhB4zsHYLClNRgk5OhdSDuziiNGG9WpVg2s9B5Fl8fyUsiQ4y1CUFmvOga8qhVi7FwBZa3T7XU0ulDEVTmQwGnISX4o4jQzDIF2KURLDnEu9JwTHn8rBgXpRXKAg/hPkWi3JGZ0LBsU0jjgviaypCQHq0AlonRWlRUWryQoLr8XjnJtJ28slR4J+SVK9txjd452R+05ptrtthZ6p2Uui+VHEGGdpWhBpXqUUzrlDMFoOxzefZ305NIM2pbR4GMTENE2kaSDFwDQKCT5Xya5Sj9WaSrauC6AY3wku1jlfBQLsLL8r1axa4a/QGq0rhJBMShJ8i1mhcBIaBKzkRLdao7TmYT/WM1mQt7UilSKE7RilKzVFVn0vbuTWklLEWUVMlaODIaVCiFm4GykxBcNgQJEY96M8wyHjnZgZKq+ZRthtDwtlCBZtHUXb2qFK87UyRZGyJAey9mRKCcS4QxuLs57WActxrMFNlu5WaeaZTYa2cgOUVKi0AmeNmNm5Nama5FHCnCCX+XqXOZlrQmNFFflHEUlGqTcyo62aCprA+GoFQGeM1mJUaSQAFf6FSCTnUnlUJdRmxvI5j+z3P3+SxdxuPzOeCuaXXIOf9rGwgBD8tPbxPhCvc1Cm5WjE5yWEZ3mc55S9ZA3Is59CyBN9Wcn9UzJqodaI0hg4kmqVXwrhV0jQYYZLOeXIJTGmca7id6Zjl3a8fnjFty5/hULhy+EVv3rzK3y6/oW5Qj4XikoiFzGZLCWDPpa+PQ1U5zlFoH9D3OG8n3kIooB1x7W/kXV1MffNtyLmQIPz7OOeIe1x2rGqCZmt7wHgkWP2knNjtUDFUg6U2lV54/VFVRWtFWu7IebAmIZDUFe3a5Th915/yccXIxu/qklChtqhGdIwE/BNmxulRJpeHYjardNxDk5zzuzxyeNW0kFIJc3E8Ja0C4T6DVV/WY3xqp/ldmXJy7zhVj/7/P8kCf6bzulscsFxF3SZuCyPY9kFeDME7h06m+9wXueO4/T3S5jVm+CfrQv6aMyB4OG4lvNR/mlILG74h3QVFlBKIcmSBcrQeYFnRBTGrtG6p6SmCgUpCqaebACPVitiWjNF2A57wc7njHEOpw29d/NklhjRJKxOOK9xVuFXjlwQ+dkgqjRGO0lEnMZ7hzOKlS2otEWlV8T7f0CJd5TxlTzwaCa8dAm0wTmDtRrnPEWvSFywHS1DzLy6vxNcfRT3S8n6XeUOFIZhR0qFXBS7vfguhCjEWe9dJa1LNTKXMiccpSiUMjUOaehEjbMd/WqN97IApjAyDQ9sb8W9ejtshcTuPNfX1xJsLLsPtbKdQmAaxSMgxjjfSGU2gZNrOycQ9b8pSfXJVxUerQUGtVpv0BRynBjHHfvtA9Ow5+71HeM4st8PNENEpYRMPU6B7X5bnbvz7E8SKzchxnBIfpK8iIrZcnHzjKLgcnNZ3cAbR0JkiRsxVNeuiHW+JptrNpeXrNZrVqu1dAjqg6dLAjRh2jNNewwFZTRGezabNVrDdrcSr4wYubu/Y5om9vsdDWvZkq9SysGfoiU31h6iRZAHu+JOUcyQM2stZCHZD7st035LDAL7EUPBMNdHjFE4I8F2ihFrnfi2KEg5cHHzHKMluZlCYLfdMQ1lNq901dOjc46+7zDaV36PppREjCMxC5ciZZGKXa0lIv788x8zTIExFq6ur+j7js3Fmr7vZ0J8iInbu3vu77bs9xNdb6WaHwOd67CdxRpXfSU0292+ijFoxs6yXnmZ35yrt4knDpYvt5n9kHl1C/mrHYot3/v+PevNmuvrG3y3lnn0BaWq2IGR69B3HcPunnF44CF9H2Mdm9UNzlVZ43gn3ThtQa9QxuPtM1AWlJNEHjGLVNVkdgqgsPTr58Q4kPJEUVtKnAiz/4zgno3WeOfwrgMyYdhitMdoj9aXKOPR3WpWp8uZQ9JQIXwxirt3LkkStFKIOc4Qv5x0bXVLMFhyrpLIAjEN4wFG8fMep1XKd+1WvOmzTwXpjzgUi8/NWOgFjvm0u/GmRGH58n5feNebhtNexEXillgkGL3xL3DaE0uYA+3uCVgPSs3baMpbkg4zH2sjas8BYymz5Gwm43VHyBPf2f4eUxJFuV+9/nVeT1/xN37/b/DXfvGvceNfsItb/k//5G/yv/y//C3+b//Df4Ovb77JN65+gUzmy/HzmfTdmV6SdISIe+r+3GA0iYywKZoBq54D+Jwz9+GOTT12pz3FFD7oP6Qzq0eyrQInjGzjPZ3pWdsLPug/ZJ92fDl8wT7uWdkVvn/s09C+H3Oo1X7LL1/9mqAo5lTrzfeAUoqNvZx///sPv8N3H77Dj/af05mOK3fJb37wZ7h0N/ybf/Vfp4Wlyw7WtX/OlX9WkyNdSflSSBnTgFEGbzqsslKgKGVOWJbHccohOCdV+uhZQVgNbVud7jmFUi2/E6uq1MHAVoYQ+s/LSrfOSSwRU/RRAv0UP+FUhva0U7kkJJ92GB7tn+M1qM3TEvIVsnR6/SyCcBz0v6lA0KB5ItzSDAATLV1+Sgji0AlRc+GsbW8WY1gmF2eSm+U6e/r7I66NOsgWL++9n345R8b7iStrA6pgrKOgAYvSHqU92kh2rwto06F1R8q10pghF0vGkDDkYkjZkooQyxpnw1pq5dVU3wGkkmMmVJnQ3OP9Bdb3oDwUqURroyoPQyrp1hYsO0yaKPGWkm5R6TUlvBJZVDQpy/GELFm206CMR5kViQ2x9IRgmaIiRoEkYC1KwQFuJ1XeksVFW/gW4H2PNVaI5JQaWzbZRV2DIIOuGGjvV9Q7R6QxlUIbh/cdzkv1PQWHJjJuLUEJMTOGwG4nPhE5J1arntb6yqWSoxeSp3N3YnFJlXr88pdgRaGyEjWnXOZrIQFzTQgmkTkdh7HCeYQsKMokijiOAvWKaXaeBqm6SqVYJDFjXChWJfEHKTrwcP+AMZ7NaoPSSjoRVpK0oIfWIa7dCelQ+K6j69q82Qp7kmulWo+kZMZhz1iVj9rcG6PpfMfV1dV8PLf2lmhivXYVJ69LnYpWCT24HSeJEOXlQTlI3yqpVrdEKoYJv7gm0zQSJnHXTgtXcZTCWk2xllwX7iQ24LhxEEjZguitJUeulXJVX9i1i5LzQTCgQt/k/EEb6Vrp2n3RRgjZq9Ua1EhRceYATSGi1ESu/JRUE9pGSDbaSAeuOpWXUp2y6wIqRnrSAUE1KJsYApr5OVGYXLDOoRUMe7mXum4NGLZ7xXY3oBQYU5WaVKGoiDGKzbqn5CDqWhpKSmzTtnqzZGJ4wFhN13cYN6KtI6eMsT3GrlDGIYAD6QBKx1T4ERSByZUcsLoIVGqhlod284vfWlBkjFrXpMJj7Rq0RTk7mzyWVGqPRBSxSmH2IpGAUOY2xMrLqEmjFCkipEhWaa5mkzNd99OpBL7veArK9Ic53pSsPNXJOP35uUDtlJx9rgr5VOIiP9dozJGZm0bw3c1L4RxmvkGsrHao0gjALbmQ9bqZec04cjJjHiSkXyjerM1aTOOCFE+c9nzt4lOGtGcb77l0V/ylr/1Z7L9k+KD/CKU0V/6KS3c1JxWmSuAqpTDYuXB3Ok9tdnLlWQkPTM57iDtiiXzQf4Rb4PFzSdxNt2zsJZzErlLhN5J0KCk2edOTKYQSuNCXrO1F5ZskmefF9WjzM6WBAosuycHno80nPBG4Ln72u3e/y29/8Q/457/+z9GbHm86uqqQ1KAnAhGLtXt5kK1ddiLmIt88Bwexh6Vr+SnUaT7exd9bN+PpUaVnAbXY9nLM+0HETtRCPjfVTstbzdrkxE5+dibxOfM4PoIfPfG5R987c72Wppxtu+385ff5KJh/03ktn/9lx6iR2d+lu3HaWYVF1+QkWZihUyf8i/bf0zXrUXfwpKv1s1qh3zOx8GRtsW6FUpZSOrTt0Kb+GwUpo6rhXchDzZKgsCKrjoglFoEMhSrr1ZSirLH0K3G9Ril52aaMy3eoPEJ+jfcbbLdmH1unQaBRGoW1HqMTVgd0vIV4Sx6/LdXJdEeJA6VoUlkTiyNmw5T2GFvojCREmAsiF0x5xZCdQJ+ymFolrUnGiI9CloqsKDyFOagGWPVrjNEMQ0eKkRinGvBLd0JpBVoCYsFQu9mUq/kzpJxxzmKdYXNxSZwcOk9srZ1NskKIPDxsub17TUyhwsakWjpXNZdeCgvcuGS4gGptNgnmgBnOg9Y1sViqI1W5WhLTNFZn7f2sktTgXKUUhnEkxkSIsRKcFNbI4p/SQUUpVRf0lAUKI9k73N/dorXh5YsPJfGsFeBoJ8amk62UJGDOV1nZjm7V4zuPrdXplvdLfiEB9rDbsds+EKdRYsGGZe81Wt/MiUXXdYQYxIgt55oUItucGxNN4UrgeA1mpaEG3U06FGKKTGFkmgb6VAPyLKaEwzAQxrEmFaE6fBe8tRTnyM7Nc8ecABhKipIwlErWN81jRtWXEBxIwJlSDfuSgjhVaVoculSolhVYVVGazcVlJbzvK9lbMU2RFDPGhLpIVR5OJSZL5UpX0rmq1fWIynXx45BYGGPJvkOUkyXJaBLCPRLMX25W3N7uGMdIt7ohxMhuP1SFtYDALSW5SGnAGLi+WNF7i/cG1xkSmWH7wLAbxK182tL1jovrNX4l/jUhjnh/Qd9fYv1mLng0y7mYgsxzipQ8AdWh3Wq86dG6B+3A9BQUqSiMriRLRyVbO6zvQCnxAQgBrSPFVMUbLUWbUiDX7miBCj0rmJp0xvrfklOF4wk/ppp1oHSmWz1N7v1ZjtMqIrwf5OEIF/1zSE6WlczTqubymNoLvVVYl1XT+XMtiV8kG+07p/sD5mCySX22nwnpWjhATwU2RhmKchVz3yB8h+No/AYWpNAh7ujtGl/Vw7QybNwlX4w/5iFsJTDXHb98/cuMaWRKP+Zl/yF/6uWf4c9/9M8CMKWRK3fFjX/Ghbua5yeVKFyFMx4GLSBq89KCN8vBdX2fxGNj6ZINUiX/YviCD1YfPbpOrduxrjCvQpHOSa0gr+yKjb3gIdyhVKApUi4hWEZZdnlLKpEb/+LsfM/X+A0JBsB//OV/yt/57j/hX/nj/72zTtpyXHGWZLbakisc6aAixXxsS6PYVHmYdsF/OJtY1I7WoSL+tgi8zNt86l5r108C8BrDAA36pltR5YkhnZEDrwbenOy/6d/Ln79L4H46Gtl6KX5gjzgleVYra3wX+fkB1TF/do4tjhOQp4wq3+Vc2pwW1KMOXSs4mCdkgU/Xr1Mo1eME7afXhV2O90osxtSj+2cErijFE7MiTy2oQKq+2qDEf4UQqpxoTMQUSHki1qp+LqVWKi2b9RpnLNYYYpyYwkAqEasGrB6hbIUo7n6BsVwxjJ6ETJZzGq8tRhV0/pwcviKOPyKOP0DlHTo91IA6E4onF0tKXoJCCq6/xHaXuM1nZHVBVB2pWJTxXNo16ySk02G3Y5hGwdtPUlUO0zQH7ApE0tToCpXReL/GbiyrfoXzwq1IFXOec6HrBI++7nuEvC34+JxSDRpE0tKZgnUKs+kYLy8wKpDDjlzx+V9+8SXbrUCj1qsVfd/NgXK2tpLD61AK4yy6VtxTM8upyUpBnKtLDZZL7TQ4383zKPh/CaKnGJhirMGXMG7CNM5Y/wIUBdY4KaCj5hevAoGMeI9DEiGRqZ2YxoHb11+SU+Kzr/0CikLfd3S9J8WOaepluVSi9uSq/OpqtWK9XleVIoHGyS4FGjRN0mF5/for9rs9JSV0kUDO1Iev6zquLi/RSnF/f4+1tqpFjaQcRd2sVZVrArLfD/XhrdCsWolvxng5F0oM7PY7Pv/8R4SQMa4XeEsM1WckMIWRMIlULwjEygBThcbEGHFOeB2j9xhryVG6CRcXF6KqZRwaqQgWCn3XzXwlawxGNzK8qdddkgvXeVKBMSa+9/3vM4ZEcRvM+pKrzbVIrOZMzlGC3ZxJMaO0xvc9KUOeIj/+8ZfiWeNMTR6qaePcMTsszNrIC8e1lahkkqrBcxJlLGc1z571co0MpKyZQscwSDJXqiSyVoZS5NkzxokhWEg8DCMhTGzvJZkchx1x2opbvX/g4uqCbtVz/cxhfcG6EWNey5xYM4eIfddhraHvHNp6SbiULHyliPRtKZo0xZoIJMbayRJflErQrq3o2SBSCYFVK4024uaeSiZMY038xQuIWriRhC1jnMC2vK4y1eXQTVUohv0fDhTqXdx0z433JW7+Qcfy5Xuuq3BaSdUn5fL2oj4ldcs5SO8gUbtcLJKIxcu9QTzMCQRFK4M7gbuc7iOVNJN8Dz8TKVcFR4TlKY/kkrn2z+b9iBwtXNhLfvnq1/jFi2/NAe8n61+AUtinLf/a/+tf569967f4L33jv8yURnJJfOvqV2eCb57Pz9IgHQK3kmBUyMBmPkaRihe45JhHOXql2birObka08CUx5l0/ouX32AXt2zDA7u45aZ7zsv+o7PXA6Tz8CvXf2SGOF24a1Sd11wSU4lMacAqS2/XXNhLWjfgdDx1P7f7NZY4Jwn/8q/8df7aN+6OgtaHcEcpmQt3Tapmgdt4j9VudgsvFHbxofI8/PyOtNrN52QW902DtLUgueQD6Vgv5rqNXXwQA1LTH6BA5DnJ8bp/kszb7rFZTUkdd0uWidq5RKfB7JZE5OX8vQmK+NQ4t66cKxCcG8sk4tzQjQxdzyXleHg2y+Pzb0aSKcdHIg3L430K9tXGsiPa1prTLmnrVD6VULVzf1tH53St/WmP90oshuQgdmQcBSuBRCk1t8sV1kAt42ZiELLuNCViPmj9A1KhURqJcKkkxFIN7xKoBDpRSiAmEPmvnqIMRWUwVSlH1UBJZelMxK9g+hzCK0oeKCVQiiJnQ8bUY3cUJS1m49Zoc01WV8TSkYuhqFIVpWSxSAZi0NiisVmTkwRDJStK1oipm6rBlEfI4AL5cc7T9Wu63mOqMpLIk2ZcVXuxtmXEYK0mkkVZZxqkcj0USorEsCfGqRI0axJQCsMkL42H7YNUyrXC6maMMgOAaiDe2nRl/plql+xQjpmdo9u/WwBdaheEnGYYh1zXQ4ckJcGEpyxQHlUVw5RSAkWpu2pwHWNEvUWVUtXFpEIzDQODFbiSQF6qrHH9r5BcGym+/bFHf8Q0T46dIsnOMOwZh4EYA0bpeQ5adqwqX0HMFjeEEPC+I+VIDrlW5uuc1gUuJSF4j+MhYIclBKDMVehhv2fXbysMSTF7GtRuSqoQJZkHRayk6+YhIRyYKAlo7VQYY1iv1zOfgiywhFI7YdqoOcBvCVALbmcIRu3K5JLZbrds9yPdtcO5rrqrJ1ACXRTFo0gKSUweG+wJSDGhdanPRBUk4FA1lQTz0DVr9+whMpaOD7UbohZGUAURMJCmnyElJc9jU6JTXtYKLLFkbMmEFFHjxDAolJaES8jXiozBBQfGsd0pzJTRNqCJaCXPY3uHrfqEtYZp1UmibxTGVjiLORTsWjeuVAK+JKH1RaCY5YNLLihDJXVrii6gyqysI0VoVbuZrfWt0bqQi0UZwbxppSR7R1UOG9LpKOcxzz+vcQoTOv1dG39YkKnTF+vbApKnuhnz71swp1T1L2mlmqff8XMweKLff1pdPII0qGa6mA7JipIEJ1UFQIUUJKrPozx3tMA6k0j12dMYbemU+C40rLlVsnZOeeT/+zvf5peffUT8euDV9AW5ZD5efUYsgV31g4glcDfd8rL/8MiE7xEs5+Tf23CHNz19hTKBBMGzfwPNV+OSKY9zkCod4/PXK4saw7EK1lHlV4KumMOszmn0+4E3jkaR5xbgxj8XaVxE1naMO6Y8PVZKqscvR3PoVp3bdlkU5AASwgsJeZLkcQnZ4vGzdi4IbYlpS4JnLtL8rmriFepRcHs63gYVyqXGAT/l5/xcZ/Rdxtuq9HPBgEMH8k3HcDChq/DDckgCTp/ZN3G5zv297WMJe1Ll/FweOoMHaNYBrv14vf2nJrH44uEadgXNLXB8gbSWgEy14KQSU3MzM6sVVOu7yj/w+Br47bZCWI0hsl5vcN5ysfKkpAjRMIxFAogI2gxoO9GtVuC8qD+pDGVk2n0Hpi9Q449QJUFRpGIoxZCLA3q08mi3QdkrlN2guxtyMTxsCyndAZnVyqLVGotFOVFkmkrGdobNuicnR06JMHUtusQ6h7Ee310QggTWTZVFaY3zHc5bus7XgCwwDVtS3HN7+4A83JCTZr/f8cMf/pBhd8s07sjjSCnig5HTQCkJXQPKgqpGgiPx+xPXV1dcX11xcSHyg7kF+YskAw6u1gINg0yaHyBtzKyGVACTM9YJRKe05C9HpjARYpg9DlpA3HDgMSfpnFRYTOEQVEkwa2oS5EQ1KuXqEi3L7H73QE6Z/W6H7zoxsTML8jaStLR/d53I7lrr6Pt+Jom/evWK3W7H/f09KYoEr6nBmvXdrJ5UcqHojC6Kvkr4vnjxEm0M22FPzDKXwzDWqjDzucQYGYaBGCN9L5Xt4v0cRBdV+RVBPtcPw9zpyjnNgX4zyps9TpRwaZwTfkkboXYvchKI2apf8/FHn/K9b3+b3cM9YQhzQpdrkmH8oTreqjG+wqlml3CEJ/Lq1Ste391xESKb9QZzeS0vQK0xtuPu4Z7b+3tIib5fcf38OY2krq1wi1KBPOU5cZBuDlC7OtYqWqdOIBHSkfAO8Roxq1pQcKQ4kdLEfn+LcBYU3ntydgzRYJzH+h6/2ognjnE41+NcT+evCFPg1Vev+PHnP+Tu9hV3t19IsGUUq7XAvbZjogw1eU6JkgspT5XPkCnlNaomG513eGe5vFzT9Y7NZcfFpXQmp2kSBppSIs9tpKhhjEUbSwxR7oX6DEuHULwpFCLrbLXmwl/UroatylWNkCdwk1Ytn8JILgUR4HFkNCErYj6vC//zGO0ldyAkVl+VMxCi5Yv4KdnIn80x1orrAkbztkDl3LGdwldKKdVJnBre19+d6YgcgsJM4Ty+vQVnS1iGEHv3OOUqXMqTqvFb41scgsRcfSAMIU8Mac+QdjzzLwV+W4TL0SBMBYEfWUTW9kc/esU//OqH3E6v+F//9v+WMU38j//s/4ivxh/zn3z1H/O7d9/m7/34d/nf/dv/Lv+r//Z/n7/+rX95rn7XkJRSClMapBCkDKoUhrTnb3//b/MnX/wJfuX619FKs40P/J0f/Dt86+pbfLT6ZE5wGqxoee/EEoTPcRL0xhKJeWIb7untms6Aw8333mw0V5OoJZ/ibeO0izVXkOvPWwcC4Efb7/E3fv9v8Vc/++dmGJdVFmVgXTbztTfaYrCPfB6aEaFWupL6qzx/kev8enrF1y++Nc9NynGGSx04GjI3y2Sv/W6IO5z2rO1mhqZppQl5IuYopsdFEUuVkeW4Gv+27k4zOkxkdHkzgfmpMRu8cXCrn7/PQT76EU/j5PtLB+q3dUiWgXnd0dFxLDkrR8UAIKRRUjWl5NlcdEeeusdO5V+l+KaPj/sU/nfuuOt6G/OErX4sy+5KS5Ia/+NnpQgF75lYhEmM7BqkYSYa1yCtXYDcMNzp4GLZ/AN0zbxzTAxxLzeX1mht6FY9prOgYLubCDVwnZK8eI0SLKDSimIQa3qVEYnZaTaCy6WSIUshZlGtKtV1WxuL7a7Q/jnKXqG7CyGhDoFxEhz1GKha+wPGKtCaEhWltC5FqRV9XTkRiRAy6IjeR7SWavo47uYqvyKQgqdEDzmJ6dZYXbinocqpVqWMkihJCL5hHEnTSI0sZD4L5HJodZXaIZrCxG6/mwNU2zDiSSRBW0ehqTG1vzdORatQaK1m0reSiHeGSwl/IwsMapqIIc7byCkTQ6pO2rkSl0VP/VDtazJ8NZBqTZJaoLbG4Gu3YLebKChiTAJRmR3GG6QEGvTI1ASjBcmmqkh1nRgIllzY3j/M96yyDmUqkVy1RYu5gq6URlnN5eUluRQe9nuB71VPlXZ/L6sZQsyOjCPEKFwBSW6qbrvROK25unnO85cf4bsVOSd0TDUoV/OcgZq3n+difq7Pm5odv8VvI2Gdp3cbURLrVoRxJ1/Sct1LSgzjiLMWZ0WRS6nIFCO+ds7aLdW6OzklHl6/Ik8jJUbhNKFAG6YghQDvxLFcKTP/vhHPp3EUXB2SwBijq2StpmgFSdUEzwpUUInaWMq1AFi5QjHuiWEi5zC/FJTJ5CLSsjZFVAmoGEmjQtke16/IWTPFQsyDrEVWs7q6QnuH6zdQMkoXtPEUFNoe1MlaZzCmiRwTSctzXm9egWNFzW5QhKJJylKUx3fS4UFlikpMIaNiRutMTkL8z1leb1oJQV4SPUspMMUsXTESepfq9a6yzUpVPlaphHXppsSkZ5EAMWcU2q/KP58A/amxxB0XFvwFyhGMQ3Fs9vY+XIw3VQDfBo1YFsZOq+lP8S7e5dhOK4ztpW5OmceHg63Pzpu2CY8+UavZrXsBAjdZVrH3cctX45fSwVBGEgZluXTXmIrv38YHvO5myNJDuOXvfvkf8Sdf/Cmc9vzX/8qf47c++ROs7QV//Zf/RemKKM2lu+Y3nv8xfvHyG/zmh3+SP/3xr/GbH/zm7Pgta/Th+ttKjG4Bpdcdf+6jP8eluyLUqn4pmZvuGZf+Cm/66sWh67E2SLPAtZoCzym8xiiD1h24WnnOkT3Cr/C6q/UaxcpuKnwyE+t76W2di3PCBGfVpnLk2j/jr3z2z/Ky/xCnD0mDQJJW8rk3EJ8VavaFaBA6pRRedUQdhJuCQNrGVGMptFiLFX0UuD/yYEEUx1rgu433lFLo7RpFMwo8yBa/rco/K37V+9AoI14+JeOUe3R+7yrwcK7TOUN9QK7lm7qMHCBh7Rl/apvzd86tFYvvLAsmINf68F1Bg5xyntqYjTEXyegBInhAjJzb52kH82i9Wqw3toqHPCJun8xBu74/i/GeicWItmXOoATyIJUOcUcuxDDOiUULTJXVOOWlgir4HTHjklIdrvP4zogknJXAdb8bmaYgAYwWLLb3AnlAaylv6gIqAROUEVVJnAJ1kEpgKqaqWRmMNRjn8KtLdHeDcjdo15NjpuRByLIpM4VCjOK+a5282EuFGxQgZUXOipSY4V4pNdWbAe87jDFM464SkyNGJ3L0EDsUCVUi0/6BlMTNWTmHLpaCkHFziuSqlpRiqoF/Iw5L/a+GgYAE7ClmhnGcr5ezYsrXgvdUCcbTghsSmrP0omrT9lFq0K4qBEcrSSAF7hQJUxDSdcqzbGaMaYYeKSQfyqXUZABKqcFSURSdKUVs6OWMJNB01lG6wjjl6oFRA7Fa8dVNk3yuGOk5uW1ZuriJG7kW1VF8v9ujEE1zq5ovgOyjVGjWIbGQ7a7XG1IpXO33jJOY4YVJrhlMVQ2p3nc1cZumgDENAiTHKS70on50df2MZ89f4nwnkCfdvCJaHK5qQlhkvmqloRSR6s25QpFyM5uTCofvV/huhet6eUYq4L5UmFqqZn6yMGdQCRMCznsJ4pFr1eBVJSf2D3eUGCTRkJkhlerFoQ26X6GNrfe+JEcpQwiJ/V48OSiFvOpxTnw3pJ9RMaxWCNzGdigKMRwUrtCS4I/TQAojOSfcTEwHSgRVSeRESEnU04pBdeKbUWZIRQEL/cUav+rx3ZUkFnWtSCmjzTRD+UIQFSqTLClW6eaU5wW9AKkoxqhJGIqyKGPps+PSOJSJKCZCGFBknJFnV2s5d5Sq96UBZSlYYizEFJjCVJ8hCTpmTx9tZA00BW1yVe4SuFxJpUL55TuoMid1P+9x+kJ7hEuvAYg4EINBUzjgtN+2zflnPMYsnyVdLz73psrfXNFcJBI/ybnDyTHVZ3C57fmcoL5bFi3Qs+d8/liWXQlqUNFUmkop7NWO+3CH0w6nHTFHnnUv5gp2zIFX45fc+GcoFM44tuGB/8d3/r3aNfiU/8qv/ot82H/Eyq75o8/+xLzvtb1gZTZ8uJJj/M+8+DPEHGdnaa0MdhFiLOFIuXIvvn7xLaY0MuVxhkI9625Ymw1ed0x5pCgRg2r3TcwBU43czgVbzTnZaseUJ2KemJLI3zrlJJlXYurXZrYpBZm3hETn4Ebn7qNUEiu75ltXvzZXhpfVcm+6ufvQ4GnnkgtT1bt0JXHrImaDUx4PnhslsosPIkmr/cwJsNjaOWs8oFaJF7GcJbl8H7e1S+Hw2h+7up/pIp7e5wXhE4US5F42Hbl2UMTU8Hgb7wpjWq4jp+Z1y9+/cRvL75w8Z+/6jD/FDQGkI1Pf2aocYpJz55crMVxxEIGYYWgLaNxbuyqLZGmZPMn3zNHv2vGXUqu3tSBhFkaTP+3xXomFFMNUrWiWWSVGa0WoFb4UY62sWXRXs2atyBliiOy2B0LharXGd0K6LRRR6RkFUjOmMAcYVjkMBqc13ji87biwPVZNdOkr8sPvMYYvyLvvkWIQI67iSEWTi8HQY8qKbv11rL9C9x9SWJGyY9yKwk0MiiF4pqDYDZWbwYS2O/FIMP1c0W6J0xSC7K/BUiruvFWVVytHSYEUBnZ3O0ajeCCxe7jn/u414ziSS/XfqDCfgibnwhQi1vVc+RUlCfRIgishdDdln5yCJD41ECy1ar7b72uQLYuT1poYJBEIIVRORK5qVjKUEv8JY8XsUKMYg5gYDuPAftwzjHuMLqQ4iYQsoLRmHKcquZtZrVYoFLvdlhbY1vxnbusnhPgsc2tn7L93XuSCXYfrr3DdipcffsJms2G9WWO1Zvtwj3eeMElXaw6ucus0VTJv7bC8fP6SVdfzt8aLUAABAABJREFUg+/9gHE/sNvtyCnPTt4zlKrK08piLg9j369IBS4uBr788ktyhq7r8V4C4f1+P98DbR1pFeZSKmQpZ3xR+M5xsbnm+uYlz55/gLUdKRUotdKEroRvcceOWpGiIqRQrw+zU/s0TbX7UqExxuF8j+t6rOtqTFmVqZJ0H8Zpkq6FsVxdXdFpjQep1qVEmCZu7+747ve+z6tXXzHsx+rnIMnler0WtaiiCFOofyI5DYT4Jb5bYb0oneVsQDn63uGsYrNeo43FWIEKpRCZxtBuPNa7HmsURjd+RUHtFZApJdbOlHAnUlXM0Ebu64uVk3dmKeJcrSZU/gGK2gW0Xb1HCsmIVUp2du4+xCRFiJgMFE0pBsUK0GjjSLHMYgQpZnFgr5wwtKmSr4kx7Il5ZD8otC4olbEarFFcrByrfo33a/aDCCKI3pTwybTOGMAb0MWStZGEunKdSkYgjXFCG4Oyhq4TLpUzhVwGch6YxrvKk1EY/ViV5mc9Hr10a5BzBJGoABlbYTxPVWzftO2W+J+OJdSqxeLLl/RTyUir6J/bz/JnDb8/f5dDYNnkVh8FFHXNa5KsM8FayRwUKaEffa8Zl5lSuYDKng00mlNyU+axVUUql8wuPuC059euf4P6JJGqZ0MbWmku3SW9WYtnhlI8717y3/z1/xovug8wyvLrN39irm5OeYJS8KZjFx/YhnuedS/nQLQZ4S3nr1VpUZqYA1Me+eHu+2Qy37r81flYnPZ41fONy19GoUglHkmwxhKJJbIy6/memtJIJmOVO5r7Ukr9uci++9oxkOOiHush/FEcgrV2jUKeAHXker685xr0qAWVZhHQjXnAKkdvJJGB43uuVbmtcjyEW7bxgQ/6j0EppiRJg1H24CgONSmSv/dmxQf9x7iaSGyjOIWvzJrmobDsvrRrckrObtemJZq9Wc1zeAQjOkmolFIMaU8uiZXZSJCKKHsWCjGHarwXKDWBW94LT5GcT8cygVmqM53O5+l3ltyGNpZ+KW3MAfdiPo4+f2ac/tzhDseoF7DIuu+YJSY0VdJWnyQCMwztRDVrPp+5lLU4bs4XR940WsKCqolgSfwkxZN3GT8ZY6lmWc0NVqralRxmLAfhUoDa+i/y3xZANhdqrfQsVRpSII1i0pVUg1mpA9TFCIzDG4Vlj0lbcv4RafoxeXpVA2+I2ZCVVBG1WaHNBcpeEMoFMa1Qk/hxFMSULyeRNxXXXYNI51YjoZSrQVbF5Ve4h9JG4Aio2fgupZaVy8WKYZKqaklyvka6MRlFzAhRHFDGg3YUJUEbqqBNofMOZw1WK1ElGjQhCLQpq0hCqpRyI2paayK3jhIZEhST0QVirrh3FKnyK6jQMqMPmEGtDwtkKSykVEUZyZlKHs5CQm8E7oKoPAlWd8ZpHT0UTVmqlCKQNjJZSXVfaz1zVWy3QrsO36+5ur5htVrR9z3pWaTrxYxxqv4Zw7hHzcfKQSSgLjBd11FKYbO5IKfMOAg0Rqkq76uUSK8qBAuqpDKvUUiDTAwXm5O4aEhLjd4YWSxsDZqds/QrMW5rbtyycCi871mtL+i6HuuW0A9duxkLrkOR85GXQZmvqSROZp4/Y0ztGB7w6zPpvhyqpeIKH4kRgoo47+V6OUtWYEJgnAL39w/sZ9iXZtWtxOvBiOGbdQ5nO8ZhZDQTWXvQllwUMRdIeebvKG0rqVm6GJlCzJkQclWLq52uAqmMYgRoFVZXEThjaoJokQQjI9QTQy5AsXKvKg/1hWVqN0MVueeFCx4BJd2fojFojJa7MpNn3oc1UgCZYUWL9Q5VIXg61/ujQgvrcyAGlNX9V9Wv1G1aYyAbRJQiUzAicWwgpSAdylxVwArS96ndwqKgKJlTORYtjzpFiP5F/ptjJMVEjK06jpDHf87j9AUoc3UIaEp7sqqa1ilu+m3jNNiXXah3CjbeuN3TbZ6pNi4rg3Iuj/ZC472dBgiNv3S07XKcUDw69lLIKqPKKfm49qxrEjF7l9Tgq6kytQBOEolSgxd1FKwqNJ3uj6qXVnueL5IFqx2xRLbxQSA3NAOvBpE500l6PMGLWZQEKOTAPu1okJ8DbAqGtBNHcbMWiNbyvGcTsiqrWmQG58CpzWWRTkTmIKe6xJUfJT3AEu5zDi4jXZhFIKdUfeU+TiblXsnCA1GHZO/caNcoVRf2ptaUVZ67Mqeu2loZvPYiIqM0G7vBVFz9Oex8m4+38Rrm+yenOWlq1fdzwW1TRFpuu3EQtDIYyhwDzMev3lKNP4kZ2r6W0Mm3dTvOPe9P7fN91p+nxpu2cXBUP8RVKYf5mSt1jt50SqeduZ/0GOekqzzxnP6UxnslFqr+X4M+ueoKTSn4WjVvxlsNp1xKIudYK+dVErPrWK02xChk1ttXX1U+xUS9Q2sV2aOsxxhbXZVXrDtL5zK+fJ88fc64/UfksKWkSAhWVJ+Ur9CEjtX6U7DPwTzjqx3EDKg91gasMbhlgGcMRinWRldjN1H6KbmQiVJBsA5TSefznBSYqsrQMOwB6R7c3X6OUZneKy4vNviuF76I3pDZkJJAhPrVCpQFNJRCiiPD7paLtWPVWy4ueqZp4u72lt12S5gCKUxMg3xWa1GnEn5UVbGpC35Gqp6qIKpYqkHD5NiNEvx737kqcVuTk0reBuFnhEo63u4eyCnMgfw4TWKOl5LAmLoOpSQZqSHFDH8ohSoPKguRdtIZEQUdUWG47DfcvPiATz77Bpc3L/D9iq5bzQnm1fUNpZSZ7D+NEz/47u+z3d5z+/orcXAPiRgSyckC2696nPd8/MknaK15eHgg5YRKCFQmFSCxj5Pc11Fw8sZkbO36dJ3HefE72A8I36EUwby7jr7vuby85Orqmk+/9hnr9Zr1ZsPD9oHtdsvt7T0oTdev6VfikRBjrkmJoeuEezNaX/kEre0vRHidM6ZoYkoYk2vQaqspoBeyeMkipzuO5FaZq2tWqhCt0JL4nOj6jqE6fJdS2A8jIUTGKWCdpVv1fPzRxzLfKbPqPF2/4tnzlwzDyH4/ss9aOoPV8HJKhRInKR7YjmIkabvfTqQcSFkdFlLEfDLERLoPoBTeGdadpfeW6yuHdYa+s4RJnq9xiuSsKcUSsqWgsa4JMRa6XiCP1ll00qikMVkCihiCJIBG/CVSJdMnDFncJkSIYAzEkCVJLe38IOZJvFZSIExVbnlqErzLAOUQADe1qrs+sNkkLi4iL18+o/Me1znS/o4pjKTpHq0KzipMVX2ztqutcjHNQ2m070hFE7PcC2MSvxh5rgA2tWOsCNPwPsv7T220ZLZV6VKOApFAgjev359Ufq6DkGZYpZ515xtJ9DSwPyeD2cZ5/sV5yIUqkuzJPpDixWGlm++BJRRCKUlm25AOQ/XrOTGxOx1LWMtyaGXoqkRo+3c7ximP8/fkGMrc8XAnc2+15dLfzERbkTu1XOirGbYR8sT99JrvbL/Nj3afs3Fr/uLH/zk63WHcMZxCcPUtANSz5G2bC6stVls+Wn3KlAa+ff87fLT+hOfdB4BAs27HL/n9h9/juw/f409/+Ke5djd474+6F5k8O2Yvq8TLYZRhm/bs45Zn/oVU8BdkWBD+35gGSWBq4Dcna4vQS5LjdHRfte7M6WiJV0vGLuwlrQPTtrd0aF7ZDWt7wT5tZ7jKkAdySazNZibiHl//QxfQKscHq09ODuKxCpFS6hHPRyrY0klqoylONdUxwew/DuYblKpV5FU5JEBO+bkb1xLdpSztU6MlFW2uGrskI8RoAH/GH+T41M94zBQpaJyTDn70rL/lGE/HUgkKmN9vqh59KEEQN+3zJbOP2wpdc3MHdC4MnsDiTjs1T8HI3qW4ctrJ/VmN9+xYiDOvbUoyRsyYKE0ukhrItEBSKiUtWZAqnCamwt3dg0iqRnFmLmiM9bVqa/Bdh/c93nVcbjqcVfR+j873qGFLmL5DiffkYUdIipQ9kQ6Q1rG1PcZf0l1+naKvyOqCLm1hnNjudjQmgq/a9M55qfhUDoGqmH1XTcnqqRGjuN226voMe1qvUPRcX61JYSLFiU13Je6+XYf316Acw35Ee0t/2THs96SUGQJ0vVTFyQHrDM6uWHWGzhu8Mygsq747ODMjiZDzHTn9/5n7k11JsjTPE/udSUR0uNcGH8IrIiszKyszq4rVrC422GyOAHdcccsVF3wCgk/DV+AbEARBgguSmyYarG4SINA1ZeUYGRHubnYHVRE5w8fFd46IqF695m6REZF1Ahbmdq+qDEeOiHzDf9CgUkpeFo4SRS3eBw22c1nUZ1QRW8/JVSJ0zkKaI809nFr1dBWmJCJMc+R8Hum7DmtqVdoofGe4u1vWwvmsKl+u+nmYWqnOOZPivGDVnXO1LQcudIRu4P03v8f92/fs7t+RxTCO6jtRUSuqPFalfa1xdH3gm5/9HvM0cf/uPWlW9aqYqmRvTDVJcLz/4gvmeebjh4+UmsRqxTlD9V5x1il9p8KZlG+gAYz3nq7vOYjKy5aU2A07DocDf/Inf8rbt2958/Yt9/f3eK9JyDzNKkM7pxpLO4a9djTO5xEQck1kpBS6viPngZQTqVacVTWqVmWFmnjX7kHX4YKqaj0/feS7737Ft9/+kun8jEUr//M0EWPk+XRaXM5TzoTgOZ3OS6JsrEOkSlIiiBjO5wmwZCA+nHCnxPOkHTLBElkVxtauSksm1ZujSIaca4FgqIaYYEgYD95ZyDr3x8Mer5E5H59n+uRxfY/te/reE/rEPCfG80zJQi6qaqbPGMuYwVjBB+0WOGfYDx5jCtjIHJ9hjgx9Dzic9Xir37V+IEsg7/cULEUMOTtyUfjUOE+knBmnGd9FUsyEvgkVlE03jvqyaNV57RCex5lceU1d5xl2HcYULAVvB7CCGKkKbQVirmp7Qi6AEbyvppIZjHisCE7L1xQsKWWSCHMqzNPvvmOxrWI2iJExFm/qC/RHwh9+kNRZq8ULJICXcJMX2/0RFbpb3y9XycLFC9ms1WCFm6y+Fq8RLNt/f+rFviQbRj/1Qs/erIZj1/Pljb6fDZqYnPOJvTtcQH+255ZKZMpndaoOb5aA2RpLlsycJ075xJhG/vn7f85duGcuEzFPTGW6MJWb8sicR47hzfKzuUwkSezdYTnO1g05Bg26pzzW4zPcdW/5kzf/lD+8+0cc/P3Srbmo3BeNMZIkrNgXHZ2mqDTlM2M+X1wH7WJU+BT6HollJklceBewekWUklS56RU42q0A3tuAE1+Jy64G9asZXqrX09vAnMcLSdpSMp3tNag3yqPaJoo/lDAvpOvN52KZaZ2iVCKCOqxHicx5rJ3WNbEyxjKmR4LtOHD34py3w26Oa0veXrokejB6vLRnpPICrxOm9h3bjD7NZUK+3Dk/ssuwJqL6PH7hqM7L+/J67q7Hi46KyKbY0OBGrdQldFbRASpQoLwjFUpopoRu2Z7U4oTcOMfLbqksx/Jjjvl3PT6vYyFVgacmFVvcatNZbw+6dUXVE67/3fgI06gBV8mlqjVZrO3U1Mx7+qGn73r60HEYDMFFgn2iTL9C4nfk8a8pOZJjIeVAxpNdkw41GKeO4LZ7QzEHDDusnTAmaoW9NIfrrKRSY3DOX3guXMJSVlhQIWMRJXoZo3Ky3uGtYqTjBDkKQ7dTeEy/p8hBIVqSMc4Qes8ctROSSwJrcd4qF0EsxncEb5X06yyu2I3ZWFNFsljvqzpMgRq8t+RARIO1lJrTtV4HYw3tTjDG1kSkkKo3wqKcZNp1qRyZpNXsUkTNZFtV0nn2u6HyTmZNFmNUKdOaeBFrZbcGtc1dXCUsoPMdYdhz9+Y9+7s3uDCoIV1OlBhpKZGtBoShC4vj9t2bN+SU8V3H0+MD43iqfJ+yKJNZ5zge7zgen9gfj4zPj7p+cqqPHD0Xccq9cCUvydqCgbS2rk2jyZ1L3N2/5d279/zjP/4nvH37lvs3mlS0RLsR2wWzdA5SypX0rhcpxxkfAiUnvO/wIRJSh3e+kssj1y8ua92SXBhniTHx8PjAw8NHHh4/InGsEDfDNI7aiaiV7aYG5mat0Ieuq3K9O315LVAvLQIYI4hxapgXZ+Z8woce7zuS1SsjpZYQalKrvIPCOM+kHLEidJ0BJ1jRIoOiCExF9+haC11QWFMpnMdIBvZJ6ILC9Yy3mKzyyCLq6k1RqU7tgNRENQnBa4LhgsUZUenENFPSGe8y1gaM3eGtwVpwHsQ4ig3gOkQsOXtSFlIWbAjElDF2xvlI9omYlC8hy723STCqOAVo0jXHSEoq0+y9ZRg7+s5rktEZTffrthQDVSjFYJw+d7CCrdBNSVLdmrXraKylGOVhaGdQmNNvr9X92mjPjYWLUIOOtQJ8eUwvSKCvtPlvBRMt6HjBl/gNJS/rZxuM6/WAplVs2QQVy3fNbWjUDw1jLG5TpYTbQdD1aIGexZKNdtjEvb4WimSmMnJKmoA0hce2jyKZVBKxRL7ov2LnD5zTM3OZOaXnBZ/vrdcOQBk58maJBdTnQt3lqRAMJVgLe3/QYqOkZZ10tqe3w8s5qsnkVj1HpFDM5fVsVd9UIrmktXpdP9Oq6KsksHYTEJDNflsXRyvSVgser4zr9aTnB9sQawtTWswN67lP+cyucjmEspCoF25Pc8Csx7sUO6W8SJdfI5Nbs85NW09Norhz/ZKcVyDlTf+NW+NlF0Bgk9w0edP6geU5YBdkxeVY7iWzyk8rDO1lwnRrvAoVuipstMr/9ee36+hmIsnambzYtn6Za9iYM35Jgl2F/DW1r+V82R7X541bz4ZPjQUS9RkJ2ueOz+tY1DPOtWrvnCoTGapWvrSF27oWLdhQjLAgi3GQ9R37flCZ2U4TitAFhr4neMfQCeQPkP4WG/8Spmdy+kCOIzlFVMnSUWSHmAFMR9cdsb7D+YFUHOfR8+FvfgGmB9MjOZNipKS5uh1nUpywznE+PRH6Hu8Doe+1a9J1S/U1pdSKkLqwijDP85KUSIWp5HnElAdERgyeOFtOZ5jliVykBubVIK9zdL0j+H01+4MsCu8QHKc4c4qZg/EYcZhuhw0jNiovoVhDsRYcGgiWBClBioiUSrpW8nARrfS3Cpje66rOpRTSUmVpq4d2PVfru+Xmn2PifB45nZ6rgzPqmu0ch/2OaRqZ41xvWLTC3wX6rkNESa/TPDGfEuM00/WJznn6YcfXv/cHvPvia/rjPbEYfvHt96TpTEmJklTxSzsJdklEnQ945xn2R0Lo2A07umFAcubDt78AA9M4EbqO3sDd/f1i6vcf/uzf8vg4c356Wha2doqUxyPBAx71D8nEeSKmWEn60A979vsD/+RP/wlffvkVX3/zMwTh+Txzev4OKQWnpWQMZgneu36g7zsGY9jtdszTxGno6rkZ5nlEEHJODMNOTRVzWnhGXTfQdzuGfsdud2C3P4CFb7//Ff/qX/03/Pmf/xnf/vLnSFbzPY3gNVhNuUIUjKoMWedxTqt2IoZxiirHHDq6fkfX97z94j0hdPiu5zwrkd9ULpBIPbvaidTE3CAl0KSNYUC7Y5Yshlgsc1IZVinUir7iemMUTqfvsUYhYhTL0+PMd98+UcoZEU0wQ+jphz1v3u7ZV/5MTkX9VWbtQJU5MiXHPDseH871WSRY6bEmcIqWECxDgH1n8Q5S/LaSvT22uwfbYUOPqQGI36sfTj7slUidVTlOYZN5hZlVf5EcYy2e5MUhvJSMTHqPmY/aAXZGeRjeW0Ln6IeA94790OEMOFtNA00hl6da+ABXKuwgVK4UnjIMZIG5wPn821H8+DFjDazW0V6AF5rqV+opn4ODvg56FmK0qPP0pwiiP8TFuK72tpd9Z7sXkqTtfFql0sl6Tir8+7pT7mtjq6GvgWGCDU5/heZYriEucx5VVrbi8/f+yGvSkqoOtKNzA++6sjy7t7+/796RJPGX/MXyc2NUVchZz//9b/5v7P2B/+k3/3MO/o69Py6meYjQu4Fd7YCM6cTH+D3vui/pXM+7/ssleBcpzGUmlkllc21HWOA0eSl6qEQr9FWcoEFnTJWgbR2KY7jnGO4RKYxlJJHY+X3lPDhy9YUoWwfzbefHBpBVferHrKVrT4K0IaBbo8IgVhxTGZc1sfdHdv6gvBgAUU6IiDqfO6Pk8ybf2oLUdvzt3+3+etO930Ct9Hh6O1AkVzWpsCQRj/ED/+pX/2/+5O2f8rZ7x4E7nuMjvxh/zte7f7CQ3m+NVDR22CZA7sY9d91NsawV+gVGxSUc8FZ3sc1Xk+i93nYbWdICS2zcHV+9arajiSk0OOL19loyeguG1mKiW13JbaKwqsFVZdT6+97tXnYk2rPn6mftcy3JKpQFUbL9/DWzZjmGTeKxTWZ+m+OzydumBhJGhJxqICqKp+cimWBtB7X/NgbjbK1iO4IPOO8YepWi7LrA0Hu8LQR5oJTvkPgLiN8i+UxJZ8VE50LOoXIGPNYPWDuAuyOJZ5od8yykIozlEWMnbG0PK5m2vuBzrUZXvDxGfQ0w6kIsTluzUKvEdcG0akeD0kQplBQxkrEykeYTOZ6Js6GIJzMh1iNGSawNLlLrW5p4ZZYFWLIwjhMiCchM4wglIWnm/HxSeVqq6oNXfwQQrGSynTEGSlV7stbjLRWjXWFSFarGZiEba6HY9WcVCuZc0GDeWVJKnM8nHp8cfQjsakBsgHGaiFGNdYw1WK/md67yWFqVQsnZCe8L1nt81zHsD3TDHt8PxJTIWZjmxHw+UVJESqyEWME7tyYWLpGdLuFcje5Cp3C6fhj02qREjLMei9fk9Xh/x7DbM08TI0+oDwraXq9E9UZIV/LZyhtCFB52OBz56quveff+C45397UDofs6n7Rj4t2K947zhA+enGM1SnMYq94NwzAw73eAcD49Mc+rH4eSur0mHsZq4hO0W9P3PZ3veHp85Ptvv+Nvf/7XjKfnel+qMohWjBuCqlVUgdqN0/uy8XGqdK/v8d0OF3oKgVQ8kgwx6f3ddQofMNYitOq6oKQVvU7OWkzQ7oMmsALFkMUobKrOsz5PmlGcUErtTlWMqkhBciLniVL18X0Q5mTAdXSTSl6rt0xZiOvB+7p2A5OpUsglk0VfTOfZMGfDHGGOBW+VOB46S2cDXjSZj3PWjlMRFagQkCxYPMapr81akZPa3avdCjT50vNd4VLNaFKkLEIXylszhNmqXLF3zFPCWYN3Fue089eFgnNWhSBcdTdvwWCFVWEMwRjSJ6rUf9/DYFZH4TquX9ILr+ITQd01IXarH98Cg+0+t+OakLvd//azDarQYF3XoyVJrVpJ7dqo8tcrSi+bfd9Sobo1Y8u8beaoUComtSnE2Qq3YEnctmTnW4HYcs6mFQrXir1upvCcnvgPj3/Bf/L+Xyg23HjEOKw4DuHIripKLV0KSZqMm8AW8mJqR+KSiKwy9KX+KBt3UeVekRClcscur/FyvWoCtvJOWnJm8aJV4ymPS7A5lxmpkKStS/dyXFUQZUto/iE1o3Z9FqOzW58xy6pejlPFVvKaEC/fbNvLyzu0zYhl5RY1rL6wkc6t61ak1N+v3bd2DsF2vB/ecxfuFv6NIMRy6RXSxpwnGldHj2GNj5ai641gfHvucDuIfjFELj6wrbTfGi3B33qDbAsXC5x4ezw/IuH/VHeznfdr43qfWyjjLZK61ETHokmPQtj0ubAon0nrit7uVDRVMAM3n1fX5/bbGJ+XWCwPLj2ReYFW6At/+wiH1djJVAiJ8hIUzuND0Gp3c0kOtbrtBCtnOP0tjP+BdPpLkFN1wXWqapOsVvZNQFyH7Y/YcAD5inHKfHyaGafalYinxTBtOBwUMlD0ISElVVUlSyqqHmFzIpWEc57guwprsUuV1xlbFTeELIWUtEpZ4ow6AieeHx4YTyeenkYwDtd19LujwkdCu3lrUoHoMdSAaL/fk3Liw/cPKCet8PDhW3IcSfMzrkLR7u/eElxHsA6cmuI4hDifiZMljmfAKHafZr6miluSEjnqOXiDktadrepdBkzRIDzo+Ruri3SaZuZpIsWJ/W6HefeWUjLOGs7jcyV8xwU+ZazRLsBQCYPGaMU+C4K6kfe7Pce37+j2B4zveH5W7484zZxPz7o9wJiCNbK4tbvasUjOk+KM79Sd+e7uLXbYsT8cmcYzTw8nnDcUScpJCJ53797x5s1bcso8PjxgqC7XoqZ+cY54HzUp6gd9YcWI5Gr21vW8e/eef/SP/jFfffUNXddxOp2Yp4l5GhnPJ6QUgnP1QV4f/t7RDYOuKecZhh2hG9jtdogUgg88PT4wTaMqvjSRhBDqC8fQdT1DP7Db7dnv9vR9z1/8zV/zV3/55/zZv/u3jM+PIFtsvamNi01QtHR+Vkgd1gEVgjfs8cMRF3rGGCBCkcgc9aXShZ6u9/RdB2iHIM61Ul9Kdc0O9ENfyfGZMafl8af3cqniAFqYoHU7q7Fia5mp63WTMtZOqTEJd5p5OiVC6Oi6QQnZzuKdoQvqwj50B7owcI6JWDLnGJWYnRJprrDGXAhW1/Dd0bPf77gPB6wcIBvOzydde1YwTqGT0zgSwgHnenKbYmcwOJKBea739qKGp67y7bmTU4PZqYeGjmr+Z1uuV808vSMEhUt57xj6QN8Hhr6j6wQn4EzG2YiriaPB4sTR29+9j8WnXlQ/BKsodS2sFTlZAr7ty/PSTbcssJKl2FLHSki9rSvfArCF0LtUvi+rpz9UsW4B3UWQVf++xWto+14Si7rfT5Fb25XdBioGS64k22Ic1no609E57eI10zRvvUKClm2ZiwBvmQfMBVdBRF2Tc0n8/PQ3/F//7P/Df/GT/5zB7zlU+JOI8Ed3f/Ti2s41gN93x4ufB9tx8HcVHrJ2ItR9ukn2ViPdzXE645lqJ2aonYrW5WjXKJVEkkhn+xfH07uBucw8zN9xDG/oTM8pPmKNY3C76otxTZBft5FF44LeDS+S4RcQN4EoUZ/Z3PYzuA7YW/Jg0c5v23ZLDmKZ1yDZsCSQuXoYDXZYkq1YZooUlS4XLZ468Zp0LEmw7nfnD/zj+z/hLrxZeC8tkmuBeRtFCs/pcfVKuVYqM4Zc9F36Q/f6ZTL76bHtACy8jRv3YuOvtHvputuyTeCvt72Fy10foxaAflz384cC9QWO1yBucglxy6xE9yKZp/hQ+T2Og/9hae4GAWxFDkfrlrmb+7/VGfpNjM/jWNQOkOLWV/x6ewBooLypRNgqF+vcgo13riYWztfqtcd2KsXqjWCmn1Pid8xP/y0SPyBypiSQYpSALJ1COMIB3A7TvcH2X4Pb83hynNKZc4ycp1Ert3FGb6fCaXzUCrAPy02aUqK1f3sOeJTMTVEoQ55VNQeRKi2nUmFl80AWEeZphFKwS3Vbux2lZPI4EroeEwLHw4HQBULnKXnEGjj0O6oJAynPjF1ingfSHIlTRkbtgOT0rC9Ba3kuuRrXOUzQ6rGtsJmSE9hGNFMpXCMG6weMFDAJxFR+QasWg3c9OL2hnPeK4a9V95wjahAoPJ8mxmnm+fmZoVeJ1eNxt3R1fOVWlJxZ+zIqRbzfa8C6OxT64UC/27PbHZEsjOeR6azXLc4z5/Oz8g6cRb07EqNZ11rXdQpzGgZ81Oq4BXKc2e8PGDR4PJ+eifOZ4FRprPM9796/x2D47ttfkeaRlGacrcGA05uwBb/NRM87Rx86fvazn/Hll19zOBwYxxOn0zPn00ld1ONMrE7p0ZraFcsL98ed/HIP7PdH+mFHzneE0LE/HDjcvWGeZ6x/xDqDy9XVXtYHsfeB3X5fOyCJf/Ov/zV/8Zd/wVjnq32u3bCtOraqALdqjhpJ9cOerh9UGckY5hjxXcJ5z36nBYCu74hxUmhD0Oq6IaLhlCqaKTQoEzoq7C8xTWdSipzPM2I8OBV00OfCqshm68tuKQCJdjSKZHIOhJpwlLKFc2mFVWGNOr/WWsa5kGXkeHAcjGN36NkBuxR4Po1MkyHGBl/Ky/UaRwhh5Lvvnrm7v6PrO3a7Tl3oYySNqmuP6TC2x7oeL6UqlE2keVbuij78oOs0ufaB7AONtJhzhTBUZ/XGj6K92FpgikGKIcaiynq2ME4Z6yLejXTB46yh75TjFbyl70KF1WXmeTXL/F2N64rk8nLeVPW3QdUa8K4vOdsWQl2nt6AIDSve9rmtyrfAeQv/uQ7KW3f4Ouhr1U5PuPh5C0hyNVzcqistlX5jVqnO+m5owZrBVF+EanpmLLfClOt5a2RlswlQt5VuYzsshSmdMKJ8vc71GAxTmehgUShqQVewHcF2THnEYujcsFyfKY/Lfzf0fm97/vTNP+V/+5/9r/jJ7h/gsEx5XGAk7/ovl2v0cf6ex/iRL/uvl3P/94//mu/Gb/mXX/z3iRJ5ih+5797jjWfMZw1S3UocbgpYDR3Qrl2wHV78xXXdOpZnScx5WkzwrufVYdn7O07pie/zr3hblaIcynPIWedGPSziAhlqAedNeI55uX7avgoKUQqmW9bsCmtZ12uDH7frnkqkdb6C7S67MqxJqSD0tqd1NVoXo3UTtt9px+qMI0ok5cskKUuuXV1NzH7v8PsKsSrxQsXNoATtp/hQpYD91T13ybfYdgTb+bbOWdu3JkI1wTRu6dhcJzXbLtj1tW1u8N5YjFhySTzOH9j540r+3yQot65jSzDaaNdeo0dVftqSzm8R5291bG51Ssum+Gc272gtrKz3f1fvVW+7F/O43f7FOqzXuRU1rn+fJS/xxGsSyH/X8dmqUNKqiMtDvU6MaZ/YVGucBrzOqQRk6xx45zXIq7hiZ8GajJOExO+R+Vek+TvI51rx9KiLNmA8xvS4sMe4PYQ7xO7JMjClyJxK1etP5BQhJUQSgkKJlGitVWPn/PIikJJxsWLEc6cQBmOq+7Go4lLFquc8L9jMlkHP06jwhyJLh0MfHkpSlqLLc+EdDIEUE87Aft83vATP57lyFzySEgk06ZBWxStIFqKMNAUsk3Weja8BqEi9OWtwKfoAttZixaCy+k1xSBTJQlVCQmVrrWsVba0KLoXVmpDEpH4Q0+ToOo+xUq+tw5genKXk6oBOewmqCpf1HZ0IXXegGwZC0PlOMS5/5nkiJ8WnGzRhykllbmF96TRTKill8ToxBnZDVfcwphqyCXGvuFbvO3bDwHw40PcKmZI4aeKkhXIaYb85W7dg2HvPm/s3HPZ7nHNMkxKjzxWCVHJU/xKq3G5VnXJ1TWhi4JcOngC2wpsahCt0nSbjpvJJNgFRg5f1vaqYpZz49le/5OHjBzXpay+vCnEypkkLmwvlNlvhWCqf3OG8PrhSlWBNKeK8ckwwBWtVZWmZk1pcwHSIqIdLazQUESTXJHlRxYpKPpbWJamKZKbV9Rqcp/6hQkuKrkFsJUJvvBlsfb60L4msfhnnOeG7hE+RvR2WbkbJESOqSoURYjKLgWDKMCdhjhmxjiElXKhrLyeVKLZO1dsqFMSY2p2onVspGbdUuLXKlV2h1O6Vihb4RZZbiipASc5Iq9Qv64/1HpWixxszxqpCTHAZ5yxz5+hCIQRLzqqE5R3Mcf68x/tveFwnFYrGvIQ3tBf3CiWCtVD16UCgVOLqNohqAde2snddVd4G7S8Pek3sbo2Gc39xPGy3X7shZg1EhEbA1ST6Oghr0J+Xc3a7U7IEcrVwBC2oLQSrgXVTP9qcXDXdqwm7JIQ1SGq49LJJ8lqAt/dH/vjNn9LZQc+nJhVFMkPlWgCc0hN/e/o5X/RfL3PyGB/42/MvlqBrzgpBEqOQKSevdwq2VeabBmfXQVs9R+Sl4aEG6oFTyox5vODLpKyJl69V5CwJJ25T6Vg7Um2bN4m9df688conXTiL9RiE5dq3ALPdA0viQJWiEFZPqYtKeIXBiFSPH02qbF0Tl5Ky5uL+MMYSs8pQd1YTUGf8kvTq/KvE7JRHTA2A13dtXcui8UyDdG5FGj41pH7PbDoAhdp1rMe4JhaXcKFSUg2a/UXXokalII1vZClQeSefHzhvnw/XHYiGNFk+J/JiTV6P62LLdjtLJ7Ld53L5zLO1E3nd4Wrz74xf7o/lO+1/rx2XrE+ZZXH/hsdnJRYxZahVMGMMoWtyq430ZBYDPMXl+yWZaDKyPmhi0flA55UA7OWEiY+Y/D3p+d9S5g8wP1RVH8jFIcYhNuC7e3w44PsvKPTMZeD7DydO50cenk/6ss6ZMk+UFCl5rnh8pxX0mHk+Twy7vRqW7XbElHh6mogPD1j7zPE+EbqBvlf3XX1T1Jd/KZQ8U0oiRSXIGgy2Jh0lJbIFYw2746G+XBQ/mir5OcXIdDZKHLcgcV2qDw9n5mlmOsE8G1K2dHd3uNiT444SE5IyOSoHQyQjo2Izna2QFuux3YB1BtGidH0UrUZAoRtAtnCURK6ECQFiqRKhbeFJNTe0FusU4pLyxPx8hqfMh48fFDrkA/v9XnkAwSPW0++P9MHjg+XuvgejjsjD7k4fnNYTcybNmjzMceJ0em4ALlKcqpqYOlwbo90KmVYomveelCakRHKc2HV7MOru/vG7B87zGWctu/2eUjK7IWDMHV/95Bu+/eXPmabTAuXxjcCb86JwNY6jciv2He/evcU5x4fvv+N0eq7dlVNNPosmw7XjVaobetd1tWth2e329H1XA12VZHVWYWJv39wzjc88fByYnn1VivI1kBe6LrDb9dzd3ZFS5PQ08otf/oKnxwc6r3AmXUm6L2ObilgjU2vCMezvCF3P/nBknmaex0joBmLKek654J6f+fDxQ43zZUnq1AxRX5Zdr/fR4fgO33lcF5jjxDwnTs8jTRjJWA8mY5JKG5rqg2NdwLqg1aBSiA1aKHl5UQogoklYF3pcdWsnKM/BeV/nFsZxVH+HmJDnkSlqwrsbAneHDrMP7HuFGU2x8DTOPJ0iUyxMUwTJIJnH05nH08ivvn8keEsIjuNRE9Guf4Ngqk5CrslvwZuCs4IPDqqylHZZZZH5zTkxzbMKAlRid8kFQ6yJR6ZB56RC81qSqz9bA3ANBUwt7pgl8XXO0nWecJuv+zsdS1Bo3YuAXCoHwNXPvZCefCWohkrUrsTPLdykVFx7lrIEjddQlYUMzUtcfbDdi8Tiuvp4Hcxe68wb1k7F9jMNmnGrA9OSIj2HvAY3uIvg6kU11KiPxyHcE8vMOZ80ebiar94NFCm1Ip+JZVZZ2ppUNKfkznYvOjlZMt4G7u27m7CPBkFxxvGr8Zf817/6/xJc4Ce7b/jJ7mf80d2f8A8Pf4CauhneD18tHR93RZhu290SVn9otADd28Cd7fgwf4uI8MXwNakoybnB2ZzxvO+/5n3/9cW2+403gpiyuF7bSjq3cqlIdDupaMmDqOKUsQTXa/eVFaKzmPUhiwmdq91ig8L5rqvKrVrfJGPXwF45VQ1/3z7f5m7peNVtd6bj2/FvOaczf3h3XLwU/n8f/huKFP75u3+5dGz0HtFxSk9MeWTn1VcjmFATgsSYz3gbbit5XQ9jFs+HBnvU6+KW+7XNExtIWeuUIJBo0Ll6TWoycoqPJEm86d4z+P1NgvSnxnr/bgP7ywD9MunV9+D2Xvuh9dqOx78CkdRngVf+TH2u55KQK7PEMZ9IJXLfvdM5q0mXwdC51wn3oB3TljxnyZ/87K87PiuxaAmXrbyJhgG3drN4m8eAVSlUlcVs8A9t2bcANHDGlhGmv6KkJ8gfydNHSjqTZ00ocjGI34HtseEI/kC2AzEGYjac58jppD4BuUILjNEXrDGQKjFXoJI5RQPyoopQMgz4CkuZqzFZjBFj1dsiBG29mq5bugE595RqlFXh4cvvTK0sGmNwIdSKpuCd4Lxjf3RY4zHGkRsROfQ1eTQMe0vXFw6HTIxnUho5nDpSSsQ5VlWrRJzO5BTJSZOctaNhKMYS+qG6m4eFE+JDt+AmG2bdtva9aIBmbIPP6DmleV4C5lJf4S54pNSHQJPtbZ0dydhxJmfBWqedjZjoq/Ru53wldjt1fxaYYmIcZ+aYtMIuq/Owzrdi23NpgReLAo+rEDsQRFxV8apqXz4QvOqII4ZpPNfKu8V3e4wR9oc9z087uq5nHlWqs1TpUJszxMg0z4y1I2WdIae5dlUi41mhPvN0ZiHES4MKpoW0m2LcdCxU5cr7tT0e50nvj35XDQsHnp0n1yC6tfyHYaDrO6wzTNPMNI503rMbBoLbPNRqx2Kti6jJnaYHhmGvBPb7t+94/PjA6XxW349cMMbhfV85QUGT1xxrdR18aHhd8KHHOE+WQokJUq5BdNGKvq/wON/V84eStQtiSEugZl1ArMVKJYQXi/ea1LvqxSJSDQmtw1gH9f7BKtRSO0GBlBPn8VyJ1JnnpxNpdkju9No77dp1wAGLtT1zgrHvVUa4ysKWvMI99W/LOCXmRO14aucjZzXKU+U4UfShFJDMFKP6yKS4SNHmlJdOWEscWvFr07LZPHdbYlG7GBcVp+0lV4yztYaUHT/+lfqbGw2itLT26/8axOgammHkMlC7/v01BOU6qG5E3iUQ5YcDUd3PZTdj6XTcgNC05KjdvxbDXObq4L6+QhdyqbHahaJVNQv5qqr44njMFobxiXm6sY0WNDrjFVZklNvYuWEJYBpEpwVhbZ4WaVrj6jxeehJsg/xCEyVgMU3bziXAV8PX/Kdf/id80X+5eEI8xo98nD9wCPc4bPWP0DkPTv0argmut2AmjZy7rd4uyWqdA2ssz/EJQXgvX20v5PKZpqa05c5s1cBURSgsa+HaQ0Q397JjocmxpslLotg6YNII3fMCR2tXOVceREvq2nVeOwPSJAAu1ueyZkU72xdrgsv1kkqkQY32/kCoHQlvPd4E5jxvSM8qnd/LsEC22vEGu/pyKInYbtbcpY9F62gZtmulddLrv0XXrZiXsrn6+fVczWat3ro/nPUX0kg/NqlYeF1cdQ9+4DvXcMZPkbyvO1YXP6ujoS9M7Ta2deGtW5TF2nlb43B2s864fDYsiBrMsu7bea0qdvZVDtjfdXy287ZhrYK62pFQTwuWxKJ1J1wIC/k01BdxFzQh8c7h4/eY/B3z839Ljs/k9EzJ+gJOs61uER7jjxh/wA1fIwSSOE4nGKfM0/PIXKucUuoxGkPoelzxtEqtSMH5hjmzpJyY88i+HPFdz/1w5OFJibNpnrXC1hclcXcd3nc4axfugIjUrL5UvgVYA8EZbGUWpCKo+VXm0EMIFt8HinSU0umnjMU6le9EDHfDG5xVCcmcnsjpzPj8jpgyUyoK60mJ8fRMnEem8VznLJPnSY3oSmHY7XDW4oxhnidKyYRuUEdz54hz7QIY9QIopeC6DmM9vlaAEeG5PFRDvip3aAwuKFfDWcOU1YtElZO06jwRyUXohx0xC9OUMEcNVoedEvVdra7HmIjnM8/Pj5zHmbu7e0C33TRKWlW3+QRQ26+tSqtdMqGUsAT1c5zorKXvB5VUFct4PoMUDMLeWDCew+HA025P1+9I1WsjF01mTM6keWaaJs7nc71Wlmk8k3LhdDoT55mSEinNNTJcMGOo63wlhEetrjpnqlSyEoalwqzidMY7y27Y0YfAfrfnow+kFDVZFb3H9vsdw6Du5nGeGMczw9Ar0V/WF5l1riZJK7RmTpkshoxlf/eO/eHI+69+QiqWOQlP5w+IFKxT75VuOND1va6vOJLjqEly16P6Q5bOBxVEQKo/TJ07Y7G+W7hVQ99jajqiSkvaGTA1qLbWI6hUJ8ZiiygvqbrqtmvT8OlYNSPDVMcNp2aBXee1wIAs6+Xx8YmzM8xj4M39HrcfqhAAeGvo+54kjnGGeUpM48R4PhNNNROMmbn6alhr6Z7PHPZ7hmFgNwykpL9LWUUsXCiIMZQ0cx5H9S1pfheyMRCspO7W1pGrP5fjsmtx2aLfvKAyGsjMZgkCf5ejBUNuE3w0LL6/YTD2UgP/MiBo56VQD8tWcnXRtb+qMG63dWu0ALQFZgt0RGSBnrRtaGdOr6fDLQHTlM4U63EvHLHr8Rmjyok0bCUv5ExfPb4bn/kxlXtnHEOFKhkMg9stc9NgUrYGl27TQTLG3KygNj5Jbwaa0/WCc990ZLbH9sXwNW+79/oMqtfnr5//ij97/A/8w8MfYt1wwTsZ3O5FgLUkpFcBfVtH23lswXsLdkWEp/h4sT39nP6/NZaYI6l6NGjHbJU/RS4dtRt+/5r8fx0ktuNWuNZGUYvGGaowujqnvhYXLVbNBsusXhJt/S5H3O6JSzncJlqgv7u8btfJNwKxRD0v5zj4O1KJnPIzPTu8C8Ta2WmJ22LOV0fvhouuznY/jR8DK36/EcebEM4aEL/s1jXI0VymZR5pXVjZ3Kc1uL4m2bfteNv9KHfv7VhJ1E2h8IfbvO072wT3FjH85ffKxfbbs7L9K1Vej7OBqcxLR6FDu0rbjq83Hnu1r+29ol2nuc6HFkNaQrYKVNx2jv9NjM9KLELX4bvmjl0r3EYrkm11axxQF3/RlmBTQ7FGQDqMJKxMlPgdMv+SOH0kpzMpTRU6YBA7YMMeG/Zk9xXFHSl8xTTPzHPk48cTKanZ2KJmJAkwFKlypNYyOK9B9wLrEQ2EksJQHk/PhJgYdipVGroOYy0+VG+NvqPrB/aHo0p9Oo83FiRR4iOlnBDRCrS2/C2IBQo5PyESkRzpwgFne6wvatgVdog9IDiyKZSkEqfqYpGwPJDkezIn9vc9qVimFDiPQoyOfR+qPKeaDuaSmePEFCfmOHPY7/HWYopwenpgOp+xRZAYmVMEa9XReLdHRMm27UHZderj4awF1ykhuGZtBk2gQDCl57jfYykMnXJHhmFQnoD3dH3HMAwMw8Bxt1fvi1CBD1J4Pj0xx8g0TXz/4Tuenk90XagSqw5DQUQr0Q3bL1kf2tMUa1JhFU5WEtaoLwCo14GeS33RWkecEvMkWFO04hx6druO+zf3pKQvzDhPWpmv/Ifn52dO5zOPj4+AIQTPx+9/RUqZ03laIsCWJEhNNFvXZQkCbe3A4LTbFYVxNJVsnXl6/ECMs8qOIrx9c8fDhyPOW0xRF3PnLXfHIyEETqcTKc5YA3/4B3+g3RS7qbYYuzquV2z/eZqZY2FOBfxu6Wod7+41gQ5e+RBxwgdNyEpRPkbwB+i7en5Wsb1Gyf3GGDV97GyF/tna+Usq71rgNCYMaraX56b8VDB2xrrMbLSihlEhB2cDXej1+hrIRpSvIlHhfh6o7fKUMzmOnPPEdNK16cgMu0DwjpJrn0YMz88z5/PM/f2eEAydh73XecyuUAZDvrec44GcISZDmiskLlXzOdFqzxwT1ha873n/9U81kZSiruBFTQKHyvVJlffVIFHKsdBkU4pR6ogYKJuguMn4LpXKimd+daywRQQk/e6dt1vgqodxGTC2sf35CzOvTQIFl5Xb667GttqsClDmgqi5rTQvUpSLbn4jRa8Bz6WDw9oJuKUP37Y5phPBdktgu2yrwmGsrP4WbV+3lGeuuznLPHxG26lxLtpxbLH26uC8Hn87zk+NRvbu7UAj8p7SE8YYdhsX7e1QGeq1sp5L4h8ef593/ftlntocNPjbMs+ymse1dd8CeFA4zlxG7sJbvPHqCYFFjFRXY1VK+unh91jhbquUbDvvzvU46xeTv8f4wE92P2Xn9+v81+8vyReAserdUKvBoQaysDHTK7kGnavLtq/HObgdyWhypspnOl+D3xOk5y+e/j3OON527+j9XknorJ2JlhzGMtckwy5u4FtvhyRpKTA1I7ZG6G/XKDjLsQaWxhj+2bt/XhO0S9jPRQfSmAUy1xTXrtdCqp4vQbpFrrZB+14oYW06BY2rUapkgPJbqvJV5QS1buGtDhI0eV3DXKb6HLqEOm6J4+381u/eJjrfGm29XhdCfqgjub03F87kwoVq3dI1cRTWzmCDQK6yx/quTbKKC+kXYa58mcaVue7CbJPsz4GKfc74vMQiqNPvAnXaQqCWhyr1wdKSDaPdDK09Y2SGHJFyronFB3IeySUq1AWHGI/xBwhHTDiQyp5SeiTaWlUsTHODE6zlPUtDgddhaqBfKxOtouy9R6zFZE8pVVcfwdcODMbUyqg+IK21C+m6Cx29tRhxFPdceSAz1haoLWgDiBjEJl00rlTzMMWUOx8qDtshOCVuW/XEoMzAjJGPmPKALSPOghivUrNGzfFwSi4XA9ROjQQHtsd5z2530EBz8Qtoqte1AuM8WIOxjlL02jQ5VWqC5Hxg2O0rKT3Xy2mWa2kp9FbwznDYdQx9z36/o+/7CkuphnOhI7QuiBFiisQ48/DwSC4KEtgmqrp2Wou9LOtMUSCyQJVKUdnUGA1IqR2xgLOWflBOhPIB9LhLEXLKSk6OUR9cXUfXdez2e0I1RIxzdcaWwvl84nQ+czqdFF6HEOeJaZ55enxaIDGuC/XYXgZ/xpiF31Dq/CGFFHXFOgfzPGKMrX8bus7TDx1IxorCCJsIgnY4poWsfTwcAFk6atTKSy6FmPUFlqXQTxNTVHO6jMd6nSvtJmhSZdxEplVuTcX/G6ouMVTmizG++nBoG16fc02esPKZikANsNu60mth64Kt1dxSMKZ1dMBbdZwPTjtRLLwV9YpRvwbdHkahU03fINeOlLGCRSuzmgcbpAgpZUiamEqxVUVFUNXmghhLMQ7jDEUsOTtS52rXQRPwlKHUa9kI8F0/QCX2pmywtcPmnL6ct8/MpjSWjdmIA9S1bZQls8DqjMFKWaBQLVktZe2OvV6df71q/9sc25dnSwzqqvzh77Zgcrstad81F9vffkb39XK8VkU0vEx8PqfSaStk89Xz2B73Jqlox3Trv5eXv6y//dzxWqDwYzoeL7bF5ZwYY5aA+PXv1C78RlFn5w90tn9h2nbru9vE8vpMLmAnm2O6Xv/B9ghKDLfG4Vir4qloAWnrMv3a8WxJ7Ot+N3yX+rNU5fZh7bRglB/wHB/Y+yPBdpqgmTWRFBqfRu/3czrhrONO7mnk9hdzc3Hua1J2saZaMiTrpG27He2ats5RkcLO7et3Lx3M2zm3QPoCulPXQpSIlcZFaGeGPrtYg+WbY7l2Urt8+s5vhep2fkZa3f310dZeqUmP+xG387Yb8ncdt7pYF8f3ahBfI52rQL91wK49XaT9DrOKM5gVztkS9i0sdLvdJuX82xyflVgc7+/xoV9a+dukouGnDahCUYVIWWsI3lbYQcanXyLxe+L5L0nTzynpkTmeKcUixeP7L7H+iN19TWJPYuDpITNHYZ4/ViKvBqbQDJR0HZolw1c4iyBV6lZf/mBqNyKwqw/wadbtNAM1Y6rZFlYRCrX655xivofesHNq6JPNzDl/IKVvycaA6cG+w9gBYxyuQjcYDmT/DeKOiAkkowGKkUkrQfPEPD2T5mfy9D1WRjrziCFhTGEuIzEHTrEnJTUbKykzTyPT+ZlpfEZECMOefn/P/d09rtvVm8zwpj/ofvJMzkmhUWlWA7npTE4qkSrow4ocscMe5x3HN2/0oZxSva6GfuiUbOwNgzf03vH2fr+4bDco1fLyFvUtyDlzHk989+F7Pn78wF/91V/RdT0/+9nP+Af/4Ke40JFSVrnZWBWgxGDo1DgvJeYUK/QoLo/ZOY4V3qXr4nQ+IYYKCbvTaqUxdc4FK4nRnQmp0FuVUr17+5YPHz8QSyZNJ8anE9M88eHhgdN55MPHB758/46+85SSeHz4wJ//h7/giy++ZL87ENyR68BHlZ30v8fxTIqFGak8I+W5pOjIacIYR8lFfSqGgX7oub+7I/YdtvJKhJoYpUSRUdd4EfqumhUZVkUy6+vDRu9DUD5MSoWYhZQNqSg8ajjsKfs9KWfseFbNDmugZMZprPDG+pAy2q2wYnBiEOvrWVe+wCIQAENXX94GTaLrOpCuBmU5ofXgTGdLhQBmbHBYJ/ignKLnhwfmcSTHqJ4rwWNlwIdO7zPrVBKwgIgm82mOmDxTYre8CrWbqGIKHz8+EYJjvwukvacLlt3QIDGJTj+K6Rxm1x7EHaCqdEkcWSypqmGVIpVTZtjtDkrUTplpmlY+Rb0XFofu+nculchd7xFyVZHLakBaSkakyULnmqjIsj2RbUB2aXz59zm2lbZPxOAXnwdevJyNUUJikaYeYy+qtO3le32+26TiFmzjlJ4X0m+DBbgXtOfbx9n4Az/0OcMK5XgJpVkDVKGwVcNpQVIbC+zlqvr4mxrXnAYRoavQF4VKBbwNxBI/2TW7RXQ/+vvleHNJRImLSd2tYS7+ez3Xu+4tx6vAVxET9oKw6o0nSeKcnumcmueKCEkiD/MH+grH2vsjB3OvClZX86kQOSVUlxr0ApXUvZ5nkcJD/B5vgrp8V0UiZxzfjb/k//Tn/2f+85/8Z/xk9w3f7H5POQ00fmLiOT0xl4k5Twx+R2/7Os8zqUScVbL3QtzF0vmOT40WJG+5CNvzaz4xjSSeJev1qIHqSq4um+Sgza36WvVuUF+REvnF+a8Z3I6dPzBYVQhb+Twv4Y/Lta1VfN0nF74TF50TLKaef7s2t8bSKeR2N/SWdHXrKqn64u31+FIZar2ft8e0JJxye//X596StXa9/GaeWtJ3LQJhjFk8YDRKXbsvscyIyAKBNMYwZ4WXXdwfNiydqE9BRv8u47MSi77rMM5Tcm1XNRiEbUmFqTe6+is4L1ib8WbCpicoJ+L8NxAfKfN3lKQOxdbdqXQsR8zwDdkMPE8dMVvmlHl8qjjlOVXScXMW1mDB1UpqeyKpznCtFDXYlrXV96FxQvT3g1P3aOcMPnQVgmORkiklInkkzhnJe3KCaYJkZpBESYbEPcV3WAIoowIrCcuk+HDrMbYHBFNmrJm1KyHTEhQ4cQQE6zuSeaceGrytVUsQPwCeYRdW0600k+aJaTwxPj1Wt+Xa0suFOD5TCqS8vgSyVKhOzki9Wbve4XzG+bTIye13B/qup+8GglVoyrDr6fqO0ClkxlmDs0LnrOLUO1fhQIpJB6rcnr44T+PMOEe+e3zi8fGZ56czz+eJLEre3t337PdHxnEimpmUSg06m8a3/q0mfIlpHJd1Z43BeKG4rJCy6oORonbB9N7R4LCIkIpKEmMsdh5JxVToiiqfPTydOI8npmlknEZSjjhn6fue/X7P0O/Y7w7c37/hcDjS9wM+hIWc2xAMl63Hqu4RI4inFFux9SoukFLEp7B4HLS2qAj1WNva1u01MnOpWP22I1thCCFQO3XVFMloHGOtoTPq5lxECN4ucKUv3txzHjqCczin+uju5Cp8R71bDOCMwfsqxOBd7WSpz4sx0IVQRRz0gEXgXK/XELqaMKqho7PgHJjKS3JOoYyCUdf1nPT+Deob0R/uMC6Aa/MtxBqc55wXVbiUEmbMGHOmXRCVmK0VNNEg8+nZMwxqnHjYd+oH0akpnZoIVhiVMRgTgYy1grMqV+19RymGmGuAKFITAgEjqsyGdkul3g/GrAIXgiAGXCnLM0nIlawvFNHnaymmVjHR8xHt9Cw60Euw1zrFazD09zmWYHpL2KyL+LUA4YJjcQU3aNdygRjW/771Et9Cj66rsADBBqT6ImxhUa+N18iZt7gh22O4rii382gFZQM0uc7Xxud0U66J0D9mbI+xqSxt1aGyZHJJKz/iB7abF2nQl4ma2fwvlbQEfEu3pkE+WB2IG4RlG9ArB+MGrMV6rOixe+uXbVscO3+gSCbmqXagX79uTcTE3EhQQf0XYomkEhd5cE1HdH933Rv+e1/9C362/z32/qjJcEma9OQTBujtgLdeuSbIZt86PwpluvRjaeO167wlgL9+bmv3YnHovkp+23aWIPrqvrRGxQvuwj3ehIV83hyjGzTth5L1W129i9+37t+NwkNbB7nyVqyxSjC/IeLQ4JCtu+lsm9tPJxWt+yVSFone5bjZ3P+8fg6vnvsnuhg/+L2rR4oqSamCmK7C26Z+c55onbqtn8ZvcnxWYuF9M54x9d8e6wzWrYtOWzB6wbyPGBJWzsj0S2T+nnT+cySPkMZ60Sy2uwf7FtyX5O4npBJ4fD4xzYl5jpxOkwY2cV70842pfhGoYZyOtYvirGL0WmKhcCZd+GIa3MYSeo+zViUluw7nPcEGUhwZx0diOlc/hUiKBoqSX7QyarDmHuvfggwgGclnhAdEZr1ZrAd6hXPIDETIJ0hPqo6Dw/l7vO2xocf4I0UMqUDKCtMy1fNj8L4GYIWSJnKcGKaR4PfEeWI+n5eOS4yjqtXEtNy4pcrJgl2UdXzwGmCWohVrYzkc7+i8V5driXTe8eZuz+GgxGHF1YM1Bdc6VbWS1Qz6pAY/GmzBx8cTT+PM33z3yHh+ZhpHzuMM1jLnjPMdw+6g0LQswLS5KepjT1QdKuWoJnK1ki7GYAVK2ASW87xATtptL9gqU6nynxiDnScyrkLiVDnp8fnM+XximkdKiZQiao7X9wy7HX3Xc9gfefvmHcfDEd+peliKCZHm9vtySN2vMYKIVVI2SnTLVXZ2azoJ+tCaY1zgha0K3D63rWKXohwTW70dtGO4DXzcEtR6q1yI4CAWIRfBvzmyGzsMFu97BIOYwjiOnM4JI9rx8c7QeUvXaTdQr43WZi2wG/xiimmM+jfM4wlv1Tm6SVKHet913pKaUZqo4ldMmTRPSM56vEG9I/ZvvkJMIONUkUsiUz5XvpV2dCRncsxVlSsvWuzWCou1NZqAWes0YQ6ew37Pbug47Hv2O493yhmzVurzpgb/knFWVKzBB1WuQ8UapEK/ND7SDqlFeSALjKG+15fEAi6KHUVYEgvtsDTIY31t1etQBLCC5Nocr/d2a8nfBgf9bsePwR+38Sny9q3vN+36LbxkO7ZB6K1q59bk7pPnwKU/xsvjeLn/W/jrhTtgGlikbrFWhT8VrG8NuT71uW3F9nODnO35ZC2RbQK4KlFrw4+CVbVu0jXBldrFWTgYkgC3bHPlWzSfHJbPGTxbl/RW6b6Ftafiy9t+2xoY3I5TelKeQ1sXt5LSH5FoxhKZ87hc16X6XL+2c3v++P5POYb75ViyZOYy8avxF3S24/cOf3gRtOeSmMqIqfAt90rF/1MwvlvJ3DYJuSWf2jgTrlazG5ym8SCu17auXIs3BusOFc+/KpCpnLGqTAqvqyX9mHlun7v13y04ThIrH89eSO9ezAGydigwuCo3/WPWc6pu5p3tXyQ6F2Z1NwoYv87QYsOPSC4u/q1ImlRmLWjzspPbkr5SPUjyr+Hz8WPGZyUWT88PYF11ZNa/g/cE71V5x9QqZXmE/Eg5/5KSHpjHv6bMD0g6K/7NODB7usNPsP6OZL4i5sCUPM+PmTnOPD09q1laSqQ4L+1Xkawu0OhLvmRH8drWc6FbK2PGVnM+dfd2zq8mfcEtBnnedrXLAmIKmELhGe9n3hwjYjSgKSUzzZEzasSm9Y89zha8LUj+OUZOWD5Skj60crgDHFIcTzGrSpTv8K4n+He4Dox1uF4/Z8TiimCKKsXYRdFHTcfGmDVwLxnIlGwoEmD3Dt8L9m7FYJYY8cCh4uitMaqKhD5M+r7HOUucRmKcmKczOceayReGznDYee52e/rgOe5UcUelg5WonFP17ci5yt7qtSlVZrU5V8c58e/+8q95PE18nATJs/pNzCPD0OG7QVW3XMC5Dh8KoUsEb0CKOj6jJfecEjllllqfqJ+Kd0rNVwgV5LsFabBEc94rZ4GSmWMm5kISwfkO46pp3v7I/nCvEqZeVaYa+XmaZx4+PvDVl1/x5u0bvvz6J4sK0jhPGDtSRJimUVvN1TDQWYuzDnHKF8nVGM07hZZ5VwndKSrULw6ULMwxMc2RKc66nQrjKHVe53muCcZarW4taOen6p7ulZivV36TZFduiPMa4FtDErCdpew7YlLY0v3+wC50HIYBH1bRBus91nlyqpWPrBKbRmTpKOZcOQRS8C7TBcvQode8QhRthdfl00TJasQ4zjPjeSbOWgns93eYcATXk8zqneN7By4Tk8KsShaKKajkvFeRBBGaFLMm8sACHULNHk8JBD5+eKjmco79fqDrAvf3d+x3qv7kPEBGZMJaVY5zfsQYD1bva4JHxNWwRxPvUgRvrHLIctaCQSlY66qEsj5TcinYnCm2vtCzU35FKZjWyaprR0pZuBjFtOeEdnCM1C7VRof+P9axDcBzNXQLhKVK2KqQ6+fWYNfXz7WKpcXcdOWFl7j+H+uP0AKsX7djsB2twLPd5pIE/IjOwqeOeVUhWiFWzRx1+TlrAHodnF3vx3OpruNN2Kgq/vCxqsrOpcFYw4O7DeSrJXdbiJseg1uvtSi8KUpkStMC9WgE5jU4TlXtyVWVoMApPXFKz/z89NdkyQQb+Nnh97kPby8I960rksqMrfCj1+a7SFkcyoPrOYQ7smQe4ocq5drRPEN8tyYULfE4+Dv+4FjP4WofznoGs5LIXwuofyggX9WOtHhlWiHlan+tg7JNYFoSvcDjbiS9a1JjFnnjtl+DUc6G+c3D9q4THQOLB0brUry2P1dVuG4lSVso4EWiVxPBFUXAi31s4YNbisCnxpZsr+dhrq7vlcyyrL48nxptC6rolhY5Z1i9SO7CG2zrUpmnH9zmrzM+K7GY54gLCoERK8vNWEQW/0/FlGeF+sTvMfEjMn9A8ohIxrgB7AD2jmK/oJgjYx6Yk2Ga4TzOqqcf0xKAGQMGC1ZQqwqhyY0CmKwGcbY5ZZoKz6pV+aYypEGxI/RB9fCdJ7iAdjrycqs4LEY8loEsIFhSzkssq+cJVjKGDCVBUcO6YiBXqEtOPWJUn3+aFYLjBOWTiFOYhbVkK+2wUWB39bdAK6BZsla7c67wnow05YeCBja1SGE254AxhJoEGmtIqVbIqwSwtYY0ay1fasAtCFIc1gSCMwx9oA8qE+wsNJJ3KWXhu5ScSbElFmnxb8gNtjTNPD898Xw6M86VCE6CJpO7VOlZZIxVolghaW7TdTJLwriROK4V6KWCL+trVH06NEheZsgobtZUMrc6SyvB3oeg/g0pkaUR6hO5TMyVjzNOI6HrGYadVtZz/VPdrJuCT1tv6uOgDpnO++oeXYPBmpiU6v6ca5elDUEWf5YtyXerMJRz4jKWMbiccMmTvF9XhVnnUEohO0fwSno3rdpjhSF4rCnkonChzmlXwdg2d2iSl7PeH6WSiWtWK6nem7ZW3etcGGs1kI+qGuVKWXxTUtRg2RirXIvOY52qVvW7AVwAa5lKqZwph3UdOVkoQnKe6BIpa7CeGhZcVmPLnKqBoaAchrruS4OV5YxNhtkq7CtUXxWlPRj6QSGApimAFUBmsAXjqta8BL2RpcL4GmSnBnzyiT8sn21XfgN3E30WSPVFUePF6i9TE40ipf5Mn48l/f0nFq/Bh9pYgk1ce7wuXbnrb11DitrnMKaq8RhMeRlAXXACfmSF9HPO4bXx6neWrsXfraq5bu717bQuy/W+tsT6hqXfzsst2d7XpHxveU6YTeJ0Pd/X+0klkSTehJm0c1jgOJjFJVqhQjeC/zq3qahijjOO3vWL0V8zvnvZGfvx18Msx6gKULkk5W/YfkmWWuLQkgpB5UZ1nl4PvVp3SlWS1p/9ukM7Buv3GxSmd0N9VtWOkJileHU9/9sK/fr72pndJN5rory9/17O62tdmB9zn92Ca/3YYYxZOCQvt/vyeNpoidethPyim/gjny3Xn3sBQ7vejjEXBYDr+W5mfc34rilsqeFn+46tSfdlh/C3MT4rsZimkb3vqzyiGnTlrCopuWiFtsfhU8LGmXL6a0x8wKWzOme7Hd3d74N9SzFfc4od02z4+PRQOxOR+XxWbXdjqlqMuiyDTl5O+lCRUvHGCImZIg6xFh8MznY4H6ryUSNve1X+CYG+VzlVa9QsCxIQaXKlxhzI2TJHQ5xmUo7EcqIPHbveEHzBmozhCVsmJM+QIONJ9mti6cnFcR7V9wELOapka5cyswXrhJiVbOPdiRBUnWgYhiWIbm9aJeyqCdc4nbVaHWdNkkK3SH7Ski2DKlwZJeF6p14P0SvWWzcdkVxI0zPzOBLHk6oCGaEjYfeOPuzYD44uKCxESiLNWf0KciROUzX+yhsDsLxAkEopzDEyzxPj6ZHp6cT5+bnOs+BCIE4jp6dHJY/nvCg7ITu8s4hkuvNADDM+BEIIGNAORSW3IitMyuFVLQudO2uVJD3Pswau1Id0lXOLKVNMxpmM6wa6Qej2RxKWYjviPCmZe3wipxFnDd9+9y3Geu7vv8BYjxWnXZZcyD7jfcIaw93xsAR5zjl8jHXtalAIQkwZkXGBEzafEkQqlMhqQnP1cDbGLMnF+Xxe5tu59YXZugsqH2yXCqAxlnlSvoWvZpXee7phIBhH2IcK3zdkUZ5Oyp3K1abM+TwRs5LAre8ANWarUw4o/yqEuna8+qnEGHl8PpMfnvXh40N90To6FGI1DIH7Q4cNO0zoK5TIkONEySMz4Lod4XAg5x0lQ9yPq9qXKCTpHPOSdDWvkRgnTXpzU5TLpDRTqmGmYrsFMpzOE3aKnMeZvj+zG3Z88cV7hiGwP/Q1QVFBBDEzWIO1E8YGrN1XdpAKCKjztiZimoSmmlDmRXo2V4W7dg+pkZ4adkrWTmAjdLdkvCxO75t/l5akCzm9Dsv7XY1bQcn2JRzLjKF6HxmHpRFPLaZ2JLZQpluETICxQmcSkd4NaxCMtvtbcuFqCazc2Nb1uOCC3IDcXB/Dj50PhYeusKZfF7IEG67BBle/gGRkVdfRQGOrztX2+cOwqVYhVojSywCqdUkKa+XV26A/23AjXHUR31acRYS5jDzHR971X76ARLXtz2Wmsz3BWn5x/mvturuBg7lbAjvdr5q1Zck8xg/s3J53/Ze8679cjndLWL4c5qbz+na0hGzweyUv167gVCb+7cO/4b57w8D+KrHVpGI75jJhMC+8IZbf122vidBt2N4t+OALIj6XULvvpl9ySif+8O6PF2+LD/N3IHLppbFU8/NCBN/yCdQp/Pb63/5sgYptErdtZ3EL63qNL9XGa/fL0rG7mo9bPJRbJoO3JGhL5f11VSb5+rjmonLzg98vAX0zEnxt3CJ2X3dNrrsX7bO5pOVzrbOSKQu8q3mkpKJu6Od8Znc4LF47O79nx9oN+22Oz7PdE61u5zSRM5hscT7jg1QMuGAkEuOvKONfgowUayjdHTa8x7p7kvuGVDrmFHgeI/OcOJ8nrcTHqCTkrerUBlsOlhCU3R5nfehrAdqi8CqL1L9xDus9/bBf4VqL9GTSQNKZRas/Rc+Uk5J9baqVQkAmnEl0dsaRsGmkxh5aOc6enBzzrBXeWApZZuVJZAAN6pXwXN1NnWC8yowiYIoGiTnpCyJ4T+jCQsyNUTkF5/FMjDO5FD2XWqmbszJHmzmh936BOnXBaoCSJuL5O1JU5aSuuqKrnKhocGm1Wnx/HDjsBobOYSRRUiGmspBjx/G0EKRbgFVqkJRyw7bL0sEQKbx/+4a744H385s1qMtC1w/kaabMMyVpG1osVV5VW/m7oafkgZT25BiZnVPX8WwpOamfRe1ktC5AvT01oYoz0/lMThPeW7oqmaxV9cYDqHr5GDKGORfGWddkTLmqWqny0dPTE4fDvd7oonwT55okcaf+IcZUczklFjf5XZAFzpbivHQiYnXmzjHS3MW9C9VBvpoY1g5QGytZXKr78/wisbBJA+kmo6z+JPoyEWOWJCdnhe8ovCdAJX55a/EWJFiCH/SahY4pFpWuLeqVEeuxNJhWq8A7S3U7r/4lpbqqW4MxnqG39H2gMxoSlaLGg7kUSk2GnG8dAJWvtNOZeXrChZ1ie10hOAO9QegoYtlnp+aLKXE+aTLuvFt4F63zpxysWQP7zXEvHUSjztrjNPH99x8JnWd/6tgNHX3n2Q0Ba6TOXcHYjHcJjEOcI2VVIxOpggn14VGkXCQWqd4zeo+lJbGQUnlDJW0SizX5kIoxbh4q0pQ+akL79zG2lcfrl+TabdZ7xJnW666/31TuWkeiVZ9zxVI3p98tRyLYjlRmnuPjEhg2JR1vvPIwWifzKjj5IbLz1iDv+vyuz/s1vsX256Z1K2RVddnq6//YsXIuLGtw34J2c5FsaGC4mQParJtlPq6DnfbetXKp9HQ9mpeEHlNz667nVQ3tlmOmrB4INZBXX4V+CdQHt1vQEA2+0tk14H3Tva8Bra6dZuTXkh/QYGzvj8x55Gl8QGrQ/KZ7vxj9WbNJAKSxNlDi9/Wa3XRN2rHHMjPmkyoiuT3/4ot/yc4dLubmAgomdS4Mi0fF9Vj5I5frKJe0dFkuxAja1dwkvi25VGhXpFDo7ZrAbKFOy3rcPCsayXnKI60jozC+rUHfazLOL3/WFM1umTDCep+nEn8052E7rrs76p1RXlyvZU1vjnG7Zq7v6bauW/KkSfBEczAf02nx3WhmduoX8+nE6ObPZL2W2kV8+Rxp+2rFQYPBSYUuGk+x6jMVzUzvBt7wbnG1fwFlE6l+JL+drvZn+3kbjBJapSDF4sUAntIrmZkyk9MH0vwrrCmIC4g7YsLX4N8T5T1zEc5x5jTNzLP+yTGRZ+VOgL5gGxmnjVaBFapfQJH6XDQVUlFhKBu5265TDwXvPUbMklhAu6AWKYaUDGNENeqNyrxiMh0TzmR6sn4v674LllQ6YnLMyXCe1OAuprza0xe9oM5agvMYZ7XLYgRjC7ZWwkRYyKbee62sW7MEya3ymmt3ABGcC1r5qoEcAta76lSs0JvgHV3nmPOsPiFRuxPj+UwOfVW1GVCybodF8N5y2A/s+kDnHYqVT6SaVJScmcZx6TC1x1uruqaYavW1Bpq1kng47GrRXY3TYk6cxxljPTmqwlWaJ8Jgl8BTVXyMdpm6njgMzOOIMTCjwV+pXasVDtWK+y0ypHYsJlIckRKqQliTZdVkT0RFdhpnovEbSoqk6uyesxrZnE5ndWhPEWMUamSNVv/Fe4z3i/dJMhFydQe3ts6hXSrMpcLKGmwsZw0gtbO08hAaDGoLGxNZXZxbQF+qupCp3RqFCcryMHLOIc7ri7QSuKVeO0yV45SCteqo7axb5KODd+RicK4jzAnvMjKN9Xgbf6DUTqbCurReJuq2bivnpEo3S02GQ+dwYqBkpikyTjPTnNRE2hp8sBWCBMZUx/XJ0O+iGll2bkmY9Blt6aVjio45eiiFmBzG2ZXQXZOupvxiSybVOaXCpNqzOJeMRHjMTzjnmKeecncAtMPSXlbWqvmiNVm7Td5iLNhKjteXuUrUmioqIHWfDebU7jFdE9pJkQ2vQnJeIU+1G9ISistkYoO1/3sct0mUayqxVbx5ddSXYCwzUz5jvHaBt6GZN55CYswjnRvUQE38ZSBhNEB7kexsKqm3OhOtY4HZJAlXn7uounJZdb2G8pgGazAtqPsNXKdN1VONxC6TuhZYaQJQ18Zmbm4ZFd4KuF4LjFo3Q5AaYLWq96UfQ3OMbtvvTK/FAePV7KsILImFQpyNsXjrl0Rqa2TXkoqlitu6shg623NKT/zi/Lec05m3/TvedO/JolwMqftpKcXSTTFgNkpGS1ohNd6o86KGgSfedZq0vHdfbc7z9jVd4NYbvPyWywOXYgMLyb31gxYp2Cto22ZNtjWlpGYt7Im9VLayFa67XZfb+6AZIuoXVgO57f5uJhavJOb6fPx0wlAkf7JbdGss78JNMrZ4lEihqa19znre/u66M5ck4cRqwbKqggUTli7YAmT9gWLFrX1dEPI39+e2m6OftWtC1N5fVzBFZ/xyzyzPr82xtE5U/i3x8D7TIK/XrNB4rIWuD/TeswuWznyHSyPEbzHxOyyJ7u6fIvaemS85TcJ0Ljw9PxJjYh4nYpoWDLszljAMVZ4RUlyhNdNUnQQrxtu4wLDrlgenqRhxHzqwBjGWrhsUNmMVT59KZjd0WKuV3tMolFyI6akqNlalKSPsrMEQMYy4mrHOxTJHiImK41Y33VyickPr5S+IuidbVZxaTMOMEkURQ47ASSjSAi9XA9fCNJ6WRMkHrVjvdjsOxyNv370j1SD/6fmZeZ6ZpqkuLDUU672j7wLegiUjMRLHZ6bzM73f0R0H7u/eKjQNSzYBNQ+DwQq9N9zdDQyVUxHHMyWrOlcprYMyb25oAFPVutrb17AYksXMHEf9LoARUtY/JRckTqRp5Od/HTifHvnp7/9BFQVwyvmQgnOGrgvs93tKikyTwrxinMnJME7aRTLog8RDVfrR0COlmTifmcYzOXpKinS9Ggn2/UAVEGM6nXj88JG//ss/4/n5mWk6k+KE1KTOiELlHj4+cth/4OPHX9F1g3YAbFAJ3qHHWTWRy5VDYFqb3nvcfl9FCaImiyRSqRwLq0mjYe3YeOfpux5fHeS996SUGEeF/2iFWx+aoUregmiymjPGqLGbtZpktgdYTPPyYHJOpYJTUmlXhUapA7p2WjzBB1xQFae+88zRMsWEfUycKMzjmkS4rluC3GJa8Nz4M46+r+TtzhHF8XDOnJ6fmMaJh8cHrcxZ7TZa6zDJELxC+oJzWvUvhSwFH4S+hJrUnIEHvLcc73bs+57jLrAbPCk7xtQrbDMLT09ndRkfJ5J35KQGfY3nIjW4106AnpsUfQZNp8DT0yM+BN6+veew73l7f+SwDwQfqsyuQh8HrzLUQ+gRMeRimFNNwOao7uQpMU1TFTqoamY5E5OviUbSAKpkcoq4el/Y3DgWG9d3Y+pdqdfidz1WxZjbFX1geeFtq7BwG+bQ3I+tsez8nkPYqjKsQ2UmO94PX12QSa/HNQFyGwC0476u8NmqbLYEWqwO30BVNCtL8HXTbKsWCrQyu0qstiDy18HQX+v2G8yF7n3zJHipuFQuArgfgrJ83jG5BY/e9q/VUa3oWmPZuf1SxQat3nu/zufSqTCWvzn9Bd563vdfXTgpt8TDGkeouv7bUaQw5hMAx3DH//5f/R/4o3c/4X/3n/7JUqk1GM75xF8+/Rk/PfxD7ZSUSiK3K+xrmWezuh9PecQax8EfXwTDRQrP6ZFgAoPf65oWNUO9FWIWWhKlRQrfiNSi3ZyWIMQq4avKVs88xwfe9l/gTbhMjtEg/Tk91jlzF/fVl8M3tZu8zvldeLO5hro2j+GeLAqr0QJhUwAsCwTMGEv3Ckyrja0/xXUnYctBab4pqaS1WHNFYm7faaO5qzdvBj2m6203E7kfFmF4rRvZYEiDHWgcrvfD17pZLu+lprykXAc1iPwx91P7rj4TXnZ/tAhzmbDcOh+3gW0ZVBTjnJ+rB4tbr8dnJnGfMz4rsXDe4Z2vGvWGvvd0NhHsE8RfIXIiy5MGee4OcW/J5kDMHXOZmFJmjpFUjcyaoo0BzTFNy8AE67xW9YtdpTVBORPW4m3F5FqnbuBVZQaj0oxdUNWbLaE35YwpUqEFQil6+axROUlnE84UvAUFxOg+czGcJ4hJ1LVYQJoMJFYz+pr0YAzO6Q3RYCnGVkMwYQnONZFQMnDwnQaT1hArHGP7uiu5oxiz6PaX6mVhjakQr3o9OkfXGYIXvJkxUih5Vnlf0WBaqLAaLMWoNLA2UQy9h8EbglNPx5zKRbW+dQM0WRKQWvWo2bVW9er2a8eiQYjSIo9aSEXNzEqtzBuE8fyMsYb7x3fsdnuG3R6ztCFNxewrqVtKYXaOUrSjYq1i4w2mulMHDfidVzJ0Je9SH4qtA2QMmtiaKsomKk1qpYBUHoRQk7xe16UxYBxzzDw+PrPbFUIIDL2tKmNrZUYwKoW8tNYFtTQoKHRGpZJNW/dG64zthk+1W1Iq16h1QUCqwR5QIVKtS7TtaLTOT+tiaGVbk/GV8G0Q8YhzqqDkIJu8wAxaNb2UUh2gLc4InbdYG5hTURGAHIm5mjfWe05KUcggmuS0Y0KUTzDPBVCC5emkgf6cNME3ppDFLJ2l4BtfiLpehV4cPghSH2Mq3elIGc7niPOCcwlj9Lr0XvkaCRZTQQ3cHcUqsdLU4AGj59rcd1vODKrQlnMBkxinWY8vzPighYveqyBEKaUKNOjzBWxVw7LkrIFmcGlJ6FJKeOeWe85FS87audBuVNbgtHEpbKrr2eq1LUUV5WpFWsrvPrFo47Lqehtq0Cr2t77bgilgCTCaiV1pnjYbKEergjc1H/MD8q3XY9ttuIBKLNAT5WW1477+9vL5VwKXa0WZLUTjRx/jtqJJ5aE0GMUnzvU6WLqu4H7OuGWkt+2KXI9t4tgUeZRAu85am48V7pYW8RFnnMqH3vAl2MJYGhRqm2wJCoe7D2/4o3c/4av9O+YyYbELt8FhFx8Gi71IXi721d5vy3lV3oj1mtDXfTes/ZhO4PcMy7zIJwO5pTJduw4LDMcYmmxoFkUmbGWHtYTw0mfCUBXSNj9LJTLmM4PbY4zh++lX9G6oHhvr9cy1kt3I9O3eWo6zHtOtBP9W8P/inrqx9lvV/bWg+rVtF43APrmv66Trh8Yt3gp1zW6J6q2AcCsZMcZixapiX42RPud5tPUQWX+mM/OpTnRbLxc/oz5DMVzAI2/cU7+p8XkGeX2g75UY7bxj34PL32Hj3zKf/h0pn0nW4fufYLsvSfZLonieU+I8T8yTOjw3nD8VFWesWR6MpV4ANZzRw9POgFYojXMY5/D9gHeeLqg6j1sqHhUfXaXuYlX3sSKcx1hfuHWBWMuu63C24EwhmIilwrHEUHBM0TIl+PiUVQEoadVFZWurlK1XPwjboCNcLk4lEK/woFSJpNqdAHeELnR4H8hPUQmepVSfDpjjTMqJaZ5IqSYXSSUqh/1AF9SvwHrovCXYgmOk5Jk4PUFKWBH2x/dkMYxzha3VxaVQLct9bxic0Fn17RijkrMXzktdmEq6NXUu6zmZBKbi4EshVUJpSur2PM/zEvjmCgOxzi7mhafTE+fxzND3vHn7jr7rcBVKIsUg4oCOoe8xqJCASmIJtnYTwBAqAf54OBJ8UMfrFCmSNfmTynFI6pCanMry4tQz1TvDrg9MoyUaiw2dwoC6brlBHTDHwq++/cDxGBmGHue6SroPNLdt7yxGLMW4bU2DpuDgvQcpiGtqTVqpbx2u83jidHompbhU+52zWMsCjUtRSGmuBOukxOB6rfQ72rYFISWL9/oCirESgwuUoG7pphLji7E10G5KWzVJTBkcOK9JXm8dLnTMKdH1QeV7cyGlvCSVSdTDbZ7UV0W5VIkoUv1EsnYwU6rBQIWLlZn8/Ly8zNt5G1ZIZD8muq4nZui6XrtPdiCL8N33J6ydcK7w9s0d3nmGCu8yYtnvdurYXcndBvWU0WSMGvjUQLJ2JJs7a+PniMB5iuo5UyzGDhR6doe9dhniiDWi/h6uLLC2Dk8R6DPESjKf55mUMzHNS9FlntUoMsY1sYhVha3kpOIFL4jblWNRBPNjYEa/pbGF/9wiZL4W1Ioo3GDOI4/xI8dwX0m7a1W0vagzeXHLjtVh1tvuBU77U/yFCyhSLZBcByfLd29so3VpP9V1sFdJxdYw7HOCjUJZiLDGmIXQq4H6ywDqIuiWtYr7WqVzPZ/Xj+1aCUeQi/PZBqAv8PKb9digR9sQ5JxPzHniw/w9gxuUnB3utKNxBR3S5H/tXsQ8VcOzbg3kUNlT6x3/y3/0v0AQnuMjx3C/JBaD3/NT//vLtt3meF7M56YSbk23qDXGEtUs1nS1szDz7fQrvjRfrZ2AGpi243/BVWg8mTp322vU5H8j8/LusMbS2WFxKbi+Vs56DvaOMZ/VrBAY85l///hv+KP7P8Ubz//z5/8P/unbf8Ifv/lny76UW3HmnE+8676oaA+FjS3nL/ogFsqLOWqGa9f3n4FXk7YtR8caS/N2uR4NtuO3YasITeSprakXz5rN3L42tpCq5Xube2TrT3L9vSatvCWAd6ajmApFEpVBv+buvDb03rZLp2/hU7REhk8nKduOaUs0lKPk1mIELG7rv43xmQZ5Tp2XvcNbCPEJSU+k9IyEdxC+wnVfkDkwlx3Pj5E5jpymE3FKpFSDE8AHv1woTQQ0aG2KJqBJBtSKsXMEazFV0rPreroQ2A17fNBgLEbFaOYixBhr5Ut5C9YYujBo0GASRjJGEp0RjCSQM5lMFg3AUoY5CbH6T8SkVVaopFiv/A0ffPXJUEnXRqqGtUpbcTqAEONMnGemacTWit14HjmfziBqOuhdYL8/1K6NVSKBMTjvGQaHs+BNxKFqRpQRKTPz+D0uGnCGKLa2Lgdst8cHx1gsKRfGmHV+imq/d97j+4B4T0GY5hNxHpnnsc6/dkZM7RYZzJJQxI0yUetsKMFcYRt6rjMxqtO4aRr92xa+D1qpwTJOkWGKpBixxmOdpUE7qAGuqjtVLwPv6HyoD2tH3w30vf4Bw8PHB+ZpouSMMxrUa6BuwAhBAg2jHrrA8XDgpz/9Kf1uz+PzM3NMYC3Wd4t/SZOLfRozz9MHgvPMs/Dm/o63946+1+TCVO6BlFI7FbJIgyIrPwKoErsdw7DDWMM0n/nw/Xecnp/IacbXbmHfazDhrCYM1rIQ+pszNka7PCKFOCdSmqtzeCGEjHNe7xVZA43WZSmLiZ9ep9Z108tQuxBJ28/WWPrgq3oXPJ1Gcp6UjyManmlS024DdbOf40zJalSonOw1SU2VA9GIyct1b62P9nY2htPzCWctH7//Tu8bH9jtD4TQs9sfEAmIOD58hBBgGFxVFnM8P58RKzDs6Lw6nj8/P2uyluYqIiHVuV2TK+2eVEntOm8udFjnKVjO8wwny35/0C6i72tBRHC1E2btXLsfjuAHnFX5ae87VdhLgZQGTSx6TTBiWsnmMTX+irrMl3o9pM3ZohRVyPE2QfR3MbZVyVvEQXgJt2kVa9CX3pvu3ULu3Y6VVLlCe7YQoOv9bMe2k1IqJrqpv7TK8qdetlulnPbOuqXw8neRB23HWSRf+Assyj43Dq/NxTYp2gaq278/NRr/Q0Rdr695JFsoUpK0GqttIRY3zgVWadlYZoINCxSnVfmdcQxux0/3R+YykSXR2+EFAXV7TEtys7gos+wr2LBcn58d/oAmqwvUY2hqkxrAFYSuelAsAgPcXrvGmEVEIDZpa3TdWmv52f4fYq0nllkD6k0HbZv4tE7ID1XWrbEMdlg+s8LHKvHarBK12y5RKpFYZnYcSJL4fvqeIhnvdvwPf/I/Ur8JIIqegzOezvV4G3iMHzHGcBfeLvfX1ttiLQavncN2DbZwvySxFuT85v6p91yd4+vk+9baaWIMF2urJs15uR8Nc56Wz9slprx9Dbf7XPlTNf7k9vPremya2QsZevuNopUpMhkrep++5kmxPV7tXLmLY2g8oB+bpLRttuv3UlXvt1N8+jwolLE4b/EOPAWbR3KZFZpj78AOFPcVMXvmbHk+PTHHiXE6kZNUn6r6UnGVXrYkFxo8UxSusW33WGtVztFpEG+dU5+D0OHD6rIotUpaihCreop1K5zGO49zqHpLSZiScVIQEkUiOSuBN0aYE0xz0Z/VIMnYqpLT/DC6gK+Qq1bFNFAJ1Gww2hto0EYJxnn9nFZ4NeDURMWqxO4GGmOMxTp1O+6cIVgNVBxCnmdyGYn5uZJADYUBMQPiApgOxDFFDVKmWQP+UjIecBIQrzwLMVoBj3EmRjUoc2ylSmvrHakV1rSoVm0JyEUUq65dnupJAmoYVufDonwYqBAmp6aFrVOjF3WtJsrmz/JQqnJ5CFjb/C86gg/ExkVoVXxrait5C4XKCznZWUfXBY7HI1NMZAx2nvXaO30RGmPIKZFSZJ5HSpxwLrLfTex3exZFHl0ACp+oEKTtOmik7QYjs1VsIFRp5WmeOJ9PnM4njGSkeMQXvLf13KmJaSUwliYmyeYhVKFRuZCzwbkKGZLqjYHZJG4tKCpIFoxVIl0pUo0a1z8lF6zNSLEq62wsQ98pLAhNTHK7ZxY44KaDkqh4ZVGoGAaba9eyQgYRbd22l3BZoD0raCWJKmlN07h41aSU6PsdIfRY32PFUUTlRX0A50GxzkkhjzUxykVNCmO02NmQrNM1Wp20tUrMUiAwm/uy3evjpEnD8/lEFwJ98HWtylLh0+KEqm9Z/KJ6J1CNFLWIkkvBJYVC+ZxJ3qu6WHJLJzDHNbFoSYU+RwRKJv4dg9tfZ7RK6xLU3kgqXoPhlBZw1HkNxi9VzheBpVxWFxfDp81747VAbQt7KsgSmOmllZrn/oD/RiMLcxmwryCcX3+sKjfa7WpdH3g90Fl+Jtv7//XjuAn32P6eS1jJ9XUrrIpkP7T9xpPpbE+hLEF9C3KSJGKeFOpmFaYkqdRikFuu7a0106751vhsTbDWn+39YVFJaoHtNslsWHypfIVr5/FboylWzcw1OcoVTuXo3W7ZjzOb+0Jero/r6/Xa2tsmYhiDM3bpRixzwev3l2FVZjIYDv5u3WbRxMrVe84bw/f5V3gbeNMN9RlclvuzyZ22QLdtc4WiVb+gZe3K1TG2sP3TY3suN7lL7XOyKj61NbkS+lfjWLj0zrmxoVf3/9rY/rZRyNuTQTe5UdwyPwxAuuR3vSxaNL7P53QbPtWx/W2MzyNv9z2dD7jyhCkjwiPFBkr4KZE9qRhOH8/Mk5J9x9O54oNnxFgEi3ddrWKaJWHY4k99qE6cMS0VfVtdlXNJi6TnfndABKZxVOLjRoUGg7ruBkff7dh3Hfu+I4SCOlZPGCKQSTmSRYjZcDrDNAun02mpqIduwPnAcXfQjk3F+Vur/90SohXjrtKhWrmPizrOXKEnBsFaw26/Y54mpAjWWvbHHX3f0fc9oJh1g5IQd/1QzzvgDZicGU8nShop6UQpSqaO8haMYASGw9cYN1AYOD0/cT6fePjwcUkCqF2i3juQnqF3tYpcSPNcq9UK82qJE2gXZpomYoyM41jPMTGN4yI5m/PKC8hFlZSwislMOS8cEakkOcFyf/+eu7s3/ME/+gP6oafrArG6ebfqfuNLKEG5wg+w9GFAydGBw/7A/nAkhK5yO/TBq54QVNlJmMYzszHkFNntD+z2B2xQErP3asDmvdPgrojKwFa1r2maFeqSFQscbMfhcM/+cGS335PniVISufpWYICm+pMS4/ms/h6TdoSsMerA7j2HuyPTPPHxl7/g4eED03jGO8s86+fmacR7JUAbq7CkVuGHmoRXGGCungmNY+F9UsWrOS5eKYkMFYazcEMKDEOpimq16mczriXMiMoqp8TOGKz37DvHOVjOFj5+/MDzOPF0jhyOR/qh592bO+7u7hj6wDQ+q5AB2hGc5sLjw0iMhRQSxm06MVn9W1qCvqU/lmYGVzMtwXA6TyqDm4Td4ciwP/Du/TucdyQy48MDkmd2vSe4jl3veTopVO64H0i50+R7mnX9xLTKui5Sr6maVAoiEy0Me5ACBn75t3/J8e7Iu7dvOR7vNMmgqy+YXOdSCwOlJi7GqmrW0Heo3ainSF+7GAonzEVU9rmorHPMc4VWrkRzTTKUdzOPp895vP9Gx3UAvIUabHXxt0OlOFeCaBTlngiGJBErimlvQWAqEWuVkLgEHZtN3nqZlooXFz2o5XPLsWwTo6U59jJx2JJLW7DqCbTOwa87lNwdaTj7Fry1qi8olOpWwtYKP9fB67ZSvwTfnwgobkl+brs0bY68DZVovOFOsJK1Fb7h+W76JQ/zR/7o/p/odS3zEtwBPM4f+LcP/4b/7vt/+cLXIUrEIzc7UvXkACrXYdX4FxGmMlYPgm45r64a5YkU5VtURartjLVr4J1fz8VowrAkpZtANZW4kKXvwhuVPpaIM/7F+XwKhrblrTTI263Kdju/ctWdULiOWxIAaywHf0froN2Hd/wXX/9PsMYRy8x//e1/xT88/j4/O/yBHhurKIGILB4aAEkiuSTmMuNtYO8PldDMBUztoqNRiz+9G5Zzbuf4qSRhO7afu8Wx8Isqo13mpSWiqcSla7H9TjNPFavwZrbXZHOftKRi25G5Hg1qJEjtmljlhFYvlRW65uhsd7N78kPBfbueIEsC29lWeL79+U91Wm4Z7f2mx+clFjYRTMSg0pTF7sjFksQzzYYYC+MpEueoL+RUapWxqVI0fXizyFjSWrtLW62q4lT4kq3VPGsNoduroowP5FSDpBgrTKC1L03dfsBbxxAcwWWsOS9T6IxHywgq95mSMM5KzE5ZFPIDGnzb5vpccd6NIC4Kt6J2KZrsoyr1pFpVVGjW9qHPksXXirvVREMK5CREk5f1onNVQCYMWfPrHFXuNz+phGyJlGLIBc4x1iDQko1yWGIZOY8npvFMHM9L98D7gPeO3X7PbterMZ/RG05JoqYq3NSAvElblkKs5PuWYOSk/I9G8m04b8lrwNvcqKVWEwTdftf37PdH7u/f8ObNW4bdDudsrepncqkO0xVyJRcBdA0KXF1TtZOlHh0GHzz7/R5KJM4WyQkSFFMrGqUwzbOS643Bo/NYmsxnyVBbtiqTqvJRtsnGpsRu6NnvdnzxxRccD6pERomQLGLNui6az0eTr63clcad6IKvxoDCPE88Pz1hjELjnNEgOiWtRvuaTKyk+hVWJfU+a/ecsAZ1ShJ2tWtXPT9kdfRWMr3CoZqCTdepSZ1viiBUAjvadYlxxknGhY7gYOgCw9CTxDClBm80zLFQinbBUqzGQn1P3/fsdo6hH4hz4vl0RnsKIMOwQLNiDZ4xetylyKqUJE1qVUm2gtHEfp4x1nJ6DhUqZaktSMbziHMJH7Sj5AxUOScQR/EBa5S8n+qzZunaFBbolhStxpaiSS8U8mwpaSLHkfPzE13XczgctSjhPc5DsQKi60sQrC3gHGINmARYnAlYB9aAdyoWkcUrobsUYvZaCGj8rVxWPlrKqNvOfzxjC/u4PXR9OeMQY7H1ehpTvRSMWWUdpSj8hZdwlU8fg3qJCCxJyPbbt2BD2+r7EiBxeTzAZ1cRL858k3i1f4spy/m1/bXjePF9VnhNO/61OtwqqGvVc7uv7Xgt4GuwrxfzY17jlpjleAe3Q4IQ84TUf6cyM+eRh/kDUSJfDF9c8DY0WHRLAnpB1C8a6CvPwmBkQ+Rv54l2GbNkTIXlLElt7cCr2/uKXxdzuUbb/CRJeALXl7Z1beY8YoxlcDtVJEOJ06/BTF4LJi8M0lARGk0y7YvrcgndudEZXAJdczF/znpSicxl4pzOPMYHnqIq8VkMYz7jK6dlV0ne7djUsM9vko20KHgt3cQ2b7X7LJu1kquq1fYaNe+HW5V5uOIn3by3Wrq93hvbeV+6FJv1szxfKjRag3/DddLXOi23XMQvuFlX+2/7K5KX/b7GhfmhsXYKNWZaFd7si881GONcJrzxqhb2A53J/ygSi97OBANi1OwpunuSWOZiOJ9U/vT8PNWgv6oItaaQUZx5g3A45/WNabh4vOWs2tV9p7KdxhhSTjjnOByPdEFJsh8/fGSOsWLF6+TZCrlwgeB6Ou/Ydw5nR6wZUXWegLFHDAGxkOfCXDLPYyHFQims8Kr64FIPAqn/VBnVIkpIbtfL2lYlTpsgUrHoLZGyRhWuqNCOFhw7q5CTqfJQvLf0vccYdQMXmaB0OBFyeqLkkVyelPwqhlw6YhYeT88qe+oCnB8pBeaYSElJ2HGM1awLXNfRhcCbN2/YDx2HXYcdPy7JgPeBrhKWRYrK/+ayBGzzPDON40I6nedxuQ7O6UOlmbm1uWl/WoW363t2uz1v3r7l/Rdf8vbtO/q+r12RM6l2BeKs0KzUuj4i6hlhLQ1e1TpbfQh0nV6/rgvcv7nH2sI8esbTM43nYYyqJY3jWIO0yN44NchL6l8hOUKO6r/gA6HrsC4gxlCSdqK+fP+eu7sj3/yDf4C34ExGyqzBvTikqjrFWQn4cW7JWFNEswTn6Puevu9UXvk88vDxAW8drtN6yDjm2m2aMEZViLbz2rplrr5krDe1kl9nu2gnTTUODDU/Xjob6nbPklhIvX5KiLZ0Xbio1jYp6DifydnRGSE4w2HXc3e8w7iZhDprg+V81u5TyRFKwjtLF/YcdnuOxwPGqqDBd99+ICYqdGutypzHiZQyxoWF9D2nmVKS8g5q4tkeJjrnI6VEJCdCCOx2A8GpP8rpfMY5Q+imaibpAfWPwRnogpoGCjWJ26xfQQsmUihZO3YpjovxIQjjs+Xxg6frB7pu4N37Lzke7zke7widStKmmKqpXoWFifKnQK+N893iHwJajTSmowikLKrCVUo1pcxrt7QUYvz7SyyuX7rtZ+3va038NlowseUVtNE6FbkkNTfDEF5xLf7U2FadtxCUbZC9rfZtf7etymPscjzbCuCvM17AY4xZCjze+U/OWRsNsy6t01GDDFpwVI+9VT+XjsHV+S3GoVfDGPMCOvJaUNK6LW3s/ZHeDoz5THA9h3DHh+lbvpu+5b/8xX/Jf+f9P+OP7/9pTSzyEhCH2hFp52eNBdEuhsXRme4igYKXakS5BneNOzGXid4NBNNdBOthI5lqWJPIVvnWd/XlNVDZ2shzeuYYjhzD/fK7zr3ONxHkJgxHITxmkQstUpjKpPAk9/Lz20TsIiCuSWaWtBi2NQiTwzGViTGfiCXyYfpAsB3f7H8GxnJKT+zcAW+9SjtvzjVLZnCrqWAsM0nSRUdincMmrrsmsUmSeonVuW3eNNbtLro1DULWzrH9/Oa6BE1WNr/zNySls6i0tcNddL9S7QA0FSdnV6WnIrnO2eWx1RO6uebW/emzIaNr7zX560+NC5hZLcxqR+Sy27uFKQrCmE70bqcSvJt7u43X+Cy/yfF5BnnTz8EcwR8R25PyQEwz03lins+qyQ616mZBstYDKp7S1IRiqd7Xv41t+r3C0A8qIVulYkG4P7ytMqK+KktptbxVWl2FdfheCZw+9AzBq5eDeQIxSB6YYoeIoxi7kI/n2ZGzYQgZ06k7qfVqFKYytj3GqDGYBtWRcVIPAU1qVgLuQtRti8/UyG75WwO0EDr60OG9kmJDaBrXqkpkTCX5SkIk4yw4IiUVSkyUbIhjV4OrRL/3DL3HhkP1Uwicnx/Vbdg67O4eYyypmgrmmtQ4azB5Js2JUSZcmjA5VghPvWk0iiJWH4sGswAhVE8FU/ISTGhCpXNgTVPRMeRcarDvK8TK8+79FxwOB7744kt2ux6RxNPjw6p+I2mBdyhhmyWh6LxZ4GqucTLqzRfjxMeP32Grv8mw2ymsJwSmcWT0J8azhZgotWo/x4ibzoixSjqfzkznZ1IWrPUKVSkF42C3087Zftjx5ft37PqeLlgkq+pZSbHyS2biNC/dnZxT5aKk6niuHTFnDJ13eGeJsyYMx8MR7xQ+NsdxeTA9P5/IOXI6nQCd87Ea0pXaiXLOYVwlbfmA5EIR9BpYwToWdS5qomWtrV0rC9I4L+rOXdA1I62qb6hwJUvKev1BwHV45zns9xQcz1NhjmqaWFwlodkO79TzY5ojmGdSntgNKvV6PHYEv8f5ntNpqpygxN3dAcHydJ6QpAkZJVFKS3LqvVfPKTOTo754zo8f621oCMHjvWN/2Kv4QtdTcuseKN+m854QPEKgP+5IsfKIRvWamOepqtvNpKxyua3DVopCbUouiyfGNJ6Z5ol++I5ht+f+/i19P3A4HnFV3MZZQ8grZ8gaSym1W2rcJuxsz7ymqW+ZyRTrKN7inN5r3mek3A5ufldjGwxcBwZrZXr97NYDof2sjQUaZAOOH6dm8lq1rgXY2yrjre018zWt+L+EBy3HI+v1abCTzxlt/6kZz9YgIdwgq742trr17Xwbyf3agd1AE35VKPJmH68RZ9u47niIyEXF+vp4QBNFMcK/e/w3fDV8zeGoQbi3gd87/h7vuvf0tmfMZzBmIRS3YNTSuhd2Oa+lAoxhq37W1plFOwitsNc6Ll2taL9WFdd/Ozqz8Rmp3Y5WcW+BaoM6/WT30yWgC66/2fVRqHK8uY6289SugfogZFpHZatstu1sbEdbr42X1CB+7fynMvJ9/MjR3/Ome8//+Jv/WTULTAuRPZdEsfmFklrvBoINPKcHYolMeeRt/wVHd7/MU4M4XncZlLy8jYmoHSODWFnmdgv72sITt9yCa4jPjyEfa3Jw+5nhro533VdZuivtfmzdrFvjuuPYjs1UCeNPJeGpJLIknuIDO79n5w4Xz8Dtur8oeNS1rgl0gnqOmlSsCfkaG10eb+uo/DbG5yUW+QxFOQAYRym2Qkeaikt9edi1XqFVEIelSl05u7agTW2vWkNThvEh1Or+eiG6rq9YWw1qU1VsAe1+WKekLw0aQiXwOpyt7raicqUpOQpWnbE3wYilYF2pkpYW64xi7DuPcx2CZ54V1pUkLdj1vJz3JqEo9YVpNLukdj7URbnCdbyj77ySSS10wWOM8i+81UWdcqFkhT9QyoJrT3OqkAdDzoaSa9BO0aRJwCx8hAQUDIrfxlaSqAKMQQrzPOl+kmGwScnsUrkWKeFQyEeKkVKr2YuyESw34dqNoP4brG/te/W90MAuqKJX13HcH9jv9gxDjzXqrdCIyGWRzlwTN2stVI+YpVIlDZpT14vI4g6uMsDqceK8J/T9AqNJSdufuQaCIlQZXO06xagE95wF6wXjAtIpbG0Yeg67PXfHI8f9juA9kqdFAlbdnStMJ6flWpTFQXltsVpr1sRI1LvCiNCFQBd8PVmF3aWUsG6qvJ1SSfBC81QpFYqGMbj2grUNvld5KY0sfNHG3d6PRpOd5gujR1CTuPovU9vPxi7GiDknnNVKfPCe4HOVXs7VWLD6cFiLrxwKEIULSsSg8LXWKPTOVHfuQjTqoYNRYrURU+VUzULIvzgXbbPVzqJo16KIGur51fQPDN6re7xzDl9hf84IxaJBl/MVBqnVNxsbpKISGWNzcdcMQTtVlehdux1FBBnP2kmoiltzjGCqfLAzBK9KdMZkvNOCQxH1xKEtbwN245ysDV/BmeoFZARxjdRv6cLfn9zsdnwKslE/wFqNu6wOXge9v6nW/Y9KTOpxcOuYN8ejdxZr1fCV6uon99UCmlZhbO/GH7mda3nP9jMNxtYkYEu23nIjtsEbrM91/aB9eXzo+7r5R2yN+K7PqwW5U554io8aQLk9nRv4cviCQziuAaKs27e1K7Q8edozbQvJuoYAbZLJraLOAgX6EdC563XWviNQZc1XeIoStYclQEeE681fB6u3xvWaaRyKbdL2Q+uqPZd8e46zdqhastNge9Y4juGeuULSHLX7b192C5fksc7BnCe+nX7Fm+7dssZujW1HRWjrrSaD6HPNokl5oeBYu52vJV/Xz5Efuj+W2OGV++MW/ElqR8+sP1y4mbeKHrfO39Ckc18mQ8AlnA+NmaY8EmxHtmmRh17ezZttXHdRt/1Og/Jk2v302uy071x0Sn+D47MSC5Ez1n9JcR0igThnUlRzLus8wbjlxSciON8UYdYL2HDgRYpq5xtDKpnOVVJ0xQLklBj6gWEYtO2cM6fnZzVaQ+FKrY3rQ8B6R98POO+W7QhCnPbkrPhjKZO+iF3tDpiC9ycMCUdSgysfMH6ngYL1mkBJC3hURWfoe0oIpC5XF+WmzCCIZFLUqvQ0KV7cGM/heE8XOnZ9R+cN3kUoShLPpq8kLMt5XgnoFIsUy3gel07AeD6Rc6brNUDyQ8+Hj49MU+TpNFWoRqnwLTVtM9YrydEHrPf40FOqetPzw/d4B0Nn+eaLO3bBga2VizlDrcLGaaKBmHKFRE3zxDwrzCrluEBm5rni9aumiUDtQnkO+wPH45HDfs/xeFTZ4aJQqkbGhe0DQ3k21iou0vj154gGWFJhKqWoAlLKOv+mygL3w1ChTAPO93TDAWzHPE1Y90wWJcRKNSk7nc+czs88PT8xzxHnA7tdZr/bs+8CX79/x2G/426/o+RImkbm8USOMznOpDTVCnYip1mNECVjjeCdx7v6wrWq/hW6UKE76vGCseqe3rxZakJo67Wcpomnp2fGeUJSpt/1i+RsEsHkjE3q0h28x+3qQ2YJVFbTr7Comhnt3iA4o/vyXiWhlSAcSUnv16YrAqrEpQ/jCleQwtA5YnJ0ii5CvKmu1CpAoNAeYZonpmni9Dzx8DHVdWIZhqdFnctag/eo+pwYdjuHmdTNvQ+G4Dx50pChnllN0lY4SYyZQoKcSDEtsD7nA6Hrubu/Y7cb+OrLL2pyI+QckaSBgkOhYxJUts8Hh/eW2XsshjjPgMNVsQGFuLW7ZX2055TJ6cR0Hqv4w9/S9YN6r+wPdY2qMppzjv1eBR12w46hC3hv8a6AKAcoBE1kvJ2W4o6zytMozhDk0y/d3+bYJq8a8FTTxVa4bP8zpt7KV4EVWsS5xl//0NgGwJ82sPrhuWmqT9a8lF3d/ru93Nv7SG7Ahj41mgpU22ercP66MIU5j2QKe3eg+QIUyWSUD9D2sT2v9nu1RhXKJvBxsMBWQOducDtSg6YRlwD7+ryKrDyRn+y+4c+f/gP/xz/7v/C/+Wf/a971X/KHd3+8OE0fwh1Z8hJgeePpbLf8rLOdKhbdIHLfIqze9Ey44gO8NrZJzOD3F/sBqVK8K8/Pmu7Ca6VtY/XrWIPzW8d+DY9SUrkhmHARUF6f53XFua39tp8pjySJHPwdg9vRDz/llJ+J6Ymjv6eznRKB63jbffEiiG1qV9ZY3oR3iBT+8tu/4qvh60pK7mmSpttKepubUkUt/FW4aagk56pItZ3zW2Pr7dAK1dfz2D7XhiZSomaBdbR1fL1eYe1mbiWsRcqFh8Zyv199r52T/scq/3t9HxcpPKYHOtux90e8VZPind8vnQtQc8ctvK59t1ToVksc2zy2sV2HF0pim3lsiftvqlBzPT4rsYg5KtRJVOHJOnDBE0SxwCUXtMipgXGrkl+0V8vqXtp+7p2tQVCouFDtUijXwS5eCQ0f771eiLaNJheqkATFX5esztnkgpWMIVPKhDEVh16L6VksUgJRAvNkYTYUqlmXKcCEiNFt1up565g0CMa2SmGMxTklbhmpL1KjSgH1VlXX3qIYaGNQKInRg9pyRpzdtOKsSmUO+2HBwMdUOE8zT88z8xyZxmnpoLR5UWiY4L0Gi1IqTEMAMXivpFvvtauiAQH1SEvFxacFOtMw3aUqLi1VLS3vLQFzIyUv19g6gvfsdjt2w0Df96oOJkKctdovy9pY/g9NzPRaNQduJQSzdJ0WecZabRCApHh59Q6wS6Jjavdo2GkSaqx2A2JKnMcz5/PIt99+y9PjE3GeMMbSdx1v7u/44v073rx5y3HXExzkOJLTXA33ZkqOSM4YqdRpa+iCkq+zcy0P2nR2FMbV1pJes3rmUvk4pqqZdD3OOkLoiTHS9zueTyeFBIr6YIhIldfNeF9wS8C/Vths9b9oSl+rgR5VtcyA5OU72nUx2iFLCWsg28sXjzYpTYX1CF1wDL3nuO94JldTx1QhcokUm/jBrHLEWSi4em8J+ZyYZiHnM9Z6MH4xlwseLAGDcqJyLpjjnsYzUTSUkJMSy5tUdINELM+h1mkpBZHM6dkzjSNdp9yi3f6gXY3KkSlSJS1dlb02e/puoAu9Sg9PEynN1bzuqtsmW3L9FvOqXaaUC/MUq8lhwTlVQ5pjxHlPF54Z+k49W4Kr3R8YgsLHKHGppGIUpy3GIhspyr+PsX3ZNlzwLf7F9rPbsQ3EGu5+CVS4jW1u3hSwykoKcmEQ96lxDTO51TV4LeBfqoai5n3rE1+W87n5PSnEqvq0QFdu7KOtnx86B2c9dtuRNAaDxW6m/UWl0phqClkfUsbUarldtrGFW20TuCmfbyogjfnEnz/9e77Z/ZTe7fhy+Jre9RyDBlNzmXiKH9n540VQmsqsgepSwlBYGOYSEgQs6knXyd/1vG07HD9mHq8Tyfa/ZsSonJ9EFpagdVE7q8e5bKv9/w903LbrepFzva7Qsz53t//W7zXAz5p0NM7K9ryC7V4EvFNWhcJrr4hCYSojfU0ejDH0buCP3/xjJeWj6lu+Xv8Ge7rmBBlenvt2rRn5cdemdaLa+d1WfruG91x2ETVxf/mddu81CNMyj+sbZF1Hmy28tu60K3P7PHz1Nlklce0iwWyxykcxdvHFgEvuSFv3ba62z9f/GMZnJRYpZ1INSMU4rAMvShAxxlb8/ar8tBDBTFPH0Wpq+11uHAmnQaj3njir0lLfD1WFxxBTJbuy4sFbgLlIZFLhLFmrLbVOg5OEMRlrEkbOGFGogTLJraqsiCUlV52DhVjhGVrB1a2Xkmvl3K4KMVXVB9sWof5xVqVAvVkJr3qcujUN1lsV22CkKBbWZMY5VmKoBmjeGahqWr5WuAXL6TQTp4nn55nTKVU37425GNSKNIhxqnxUY4/Sjh9D1/UEZ+hCM/drV7t1nnLdZq4OwJk5xeUloA84Uz9rlsTCGLNU3EWE0HX0Xcdut6MflKhsTMXHp3SREF038ExNKKRee00UINeHUqF5Q2QafEGKdphMlaZ1uWCNr67xQbsYoZKb7ERhYvzwkcfHJ7779jvGaSSlxLDbM/Qd79++4cv3b7l/85b9EJCSSPNIjlV6NiWkQp1a1dwalWItdc3o5V+DDSVwb4LOTcJhatKk564mgISO3V4TjmHYEbqO83lkmuOSWEzTXGFYsiSgJddkq5J5jVFPl+Z83saqDtWgPqIqSmhil1LEIJrwmss/riqnGQudMeTOcdh1pDhVxbOZYoQYWe6dnDIK4nMYo27UU4wQtRAwR018+97T90py74LBe0MX9B5IKTN0zXgJ5gg5FcYxLopSmuY1uFJdrVKUs1Q5EAAfPnxkt9txOBz55pu+tpMrvK1kQjcs8qZ9GABL36cr6FxaJWqrb00zZZSSV0LtUs2nqtvN2OzIuWjX1ljK2NTktEvqvafv1aA0eMeuczijggHeVC0Mg14E55Qo/x/B+FwI0zUUoiUMtj6ztxCdi++h/gPQrnH7OUti/dqLfrsNDXZ+fDVvDdL1WSgArcCBYdW2vw1tEipBuMrmvp64bEEPV7/bJBLOaKdxG5S+CMBuwjcM61Ff8hq0KupZ3Og345xOGvjz9uLnYz7z//rFf8X/4GvDN/ufcgxv2PsjX/RfkVHox6/GX/KTnefgj7TOVpRIkLXq2gLta14OrP4T/SuGY8u5XXXDGuzrxwRiDcaUUTK1wbC3gSRa7Gz+QEkS4SIhaN33TULG5hn/AnK0QqUWj4+S9Pl6w918+7ntPMHaBWnKVdvRXXVWAOaiaAdf+TBrAqNdLm+8KmMBnR342f73wVQT1jKDG+hhSeztcu5rIH4LYrWUfcw2jltVmm6NZS184nMX88/lvXBN7t7O6VL9r5ssculL8TmB+2vPPYNZZJqXdYihs8rPcdYz5VGfZ5LWwoSsztuNH9E6Xfps/IHjuUqGflvdCvhcg7zd71PsV6SsZk0pVfMotDLeJn6rurNU9ds2/NZJtB5E0AWbcl4M0pxzF9811iwOnCLqhyC1zdVuxsWN2FgcGpyQT6Q8U8qMRWU0s+yYzsIUhfM0rVX4ymXQwJsFC8+ySC2YZoanrs/Kaaha9KCZrlc4g+97rFc4jrV6fIfdEWsKRgrn8TtyjsxVPQoMnc2ILYhEgu+ra3ivwdKcyFEhK1E6TOcZ3EB/vF9upPboWmVIW3CimO2cocRE4zx0ocd7Q+hsPa+WQdfXsbWIU1Koy1Ums3IscikVs78qP6WUaqdCcfpdp94ch/2BLgT2u5YwogncBZ/iGmeKzmjtOKgMbQ2Rm8Fc5YJoZXh9WJXa3XLOQYGSMhSD87FCwvQmDaGvlfTINM1MkwakytXp+Oabb3j39h0/++lPOR52dFaYT49Ll6J1WnIl60qVHDWg3hlowrZNRqWeXCl56bpZZ3He40PYcCcqjyIlqBXXrleC9Jv7Nxz2R1LO6t0wjTw9PxNCxzieKaWwul6bhQRvO012XL1e5/N56V60OSwUTqfnBdrWIFVGMv//9v491rYtKwtHv9YfY8w511r7cc6pqnOqTj2hgAIVtAiPQoPXIP6uRq65MZJovEg0kRgjatRg8IokJkaN3Cte0IQg/gNKRPHnTVAhuYoFGg1Q+FNKhR9VhZ6qOlXnvddac44x+qPdP1rrfYw511z7cfbZ+5RF/3b23mvNxxh99NHHGO3xta9N1mLcqYNHBpuTE5B3ILIQOpJFCBGXF1u88NkX8PIrr2G7GzCFgJyjOBNFMtgaWO9hXQfjRAEq5+KsGIwhouuiNNkzGYDDarVC7zzcaoXNao2UEnbDiGKvXyJg4ijGnKRoYFwn2cNs5SHLLNf2gjcrDpxHZoNhSnjxpTtYrVZ44vYtnJxs0PUel9ut1JSxUDWZgZDkf9JjgbUg62udELT3iiEgJwPSOWCwZBQ4gQwhs9Oi7R7O93DeYr050T4vcxYRIExTxG4Y8fI0AZmhvUbrvZQ0Q5rj+CC390eGwyjkXkR3YScW2khR/1l+zi0oIdcVbAohTpt5Ym6UVQyXKxHTA+OHS1aqZPCKIZtnA/GYgWSOGI5idM6F2ASSzrtHineLoWFUPvf1oFDHKl0JtCcXWtCZXiPnxUApjf40urowZJfR8WJwMWYDUNSKHN66fgYZjDENVSnohr+FE3eG3/nsN+DF4QX891f/G273t/BE/xRu90/JNkzGe86+UO5DcVudqjN/cy/indV4Lc+4ZFwtPr8MdxBzwK3+yb1miuW8Lmt1Cq2nuBaRw4IWdo95J5E8PnVnNfPQHaxDr8pTlaqyMJbL/4UeBQCGqfZZAGb52sBTnftlr5Y6lMUaPOxqnjkt6C9J1oBdZpdpFiUo1CMYbOyJHCMMxrTDmAec+puQbNHczDCpUtLaneg2M0ovEGDO3hxSBQ9RO1ST2Xu3UPeOOYJTnkBYUH2IMGVhFXRmVggr+zx0Qsv8lzVSzlP5nTF3XN9bDyWrsrhP1Ov6GkdjTzqY9uefiNBpdm9f5EAC6bUOBoVeVgLF5U7ij6rE7WXki9Oh62aZ6T2UNX4UeCDHIvEJQrKISTyppQRjSRkXiVioYwEqbGP5Vz4HFIMRhGrkZKiSUCniJKAsK70T1v0VA5PBqjwlMpKGGIQIYskIcJ7AOUhUGQQkYEoB45QxBcYwBm1uJ43cys2LGfWBsnz6sUbUjZEjmk03Kr6B/mUYJwWovpfaE2sI3iVdTBY2epmVos6DDEsZIJk378TYBDskLURPrL0WQGAj3TeJHEjnsSxc6X6d67YBKCWFVVpUij9XvYczpLz/pMbufM4LlWO/uG/5d04xl8+XTJL3HqvVCuv1Gpu1FDl7P6e8WbMrJVtRsh5EAC/44fV8MyORXBTFsSiZioKy9mreg9VAz6QNFMsZ5bo2S1bA+w5910vvC4izdOPGDZyenmqGRXpcpKBc+qy0F3UsWH8G55r5KRzysnYzH6wpjbSnnEFZ6Eu6oPQjDNEFkMxLShlWFZm6zsCzBxnJ9pEhhDDBOanD0IYLkC7WBrYz6LVw3juHVChzi3OnQxK1L3VIoTUDE4S6lazI8jnr5PirFKJuR5XDospBT2GqndmTGuIAYLKBZcBkhskatVLtemOU0qSNJmUeEvrOgL0aEHp9emsAJ8cRUwYRI6YehiQbGqPT8xWVBpgrFcro/ICKYp1Q1sYpACAM4yQOXyfZE8qMKeZ6vFYpmMwa5c2MRGVdq8Fg5GQmkvtPLjVBen4pyz0LYEQysEEf4inC8Ez9AzB3is6LDFihBgIIqSwcRpoev9zsIcd6vm/cPQp5L+wZKtdRD0goP+VhvryU7ocmcJT+wqU0GwDu3aeivG9Aqj4Ya+CLIRTUK0asOtLmLmNcUl+uo4KV4wSKyPvVsc3f2TcqllShuk/M0dTy3pJmM1NHpMh6zBN28RLbtMWpuwFHDmfdLWzjFlOecB7OceJO5zGQAbGZC591+0s5zVpMy3nhIM4wZI42kTuEZDbEqC9OyYMaVvWTxbBcZFLKWErHdNr73vI3eU8kf/cpOsWATkVdCXRgGqMatMfA0O7fXOrN5qzTUm1sjlHM+12qsWV1OMuzqdKLD/en23S0KBY+kpUoOKpAtMycLZ6Z5bNLR+E6zFfnNdm8xWfuhWOfnQ36B793Lc/X8udjjuzSEV3WQZSZKF3W6xgX1+ODZOCKo/Qo8UCOxeW0BnGoD8bi3Vmj6jtqUGbmWkxYC9NqXlo9QjtnNqxKy+aspAUjUThenOWi018UiaoHR0K5sdagtwB4RE475HChEUFGTkKR2o0JISZsh1dr5BEs6jDq66D4B7UJQH3R1D4ZIKE/cX3dzM3+tOcFKMGYEd53OFk5eJthTYY1Axg9Em/Q9zfhXEKkO+A0gjjAWFEeMq5DtzqBdSvsdgCIQTaLs6RpWQCqwiPyvL7rdS6sZHOYQZBoKQEIsRh8sVJ21krrSWFECKPoUi+UZ1IUykqIswoWdO6LUVWMZTkXs6TuzZs3cXJygpOTE/ROIo5SCDxJk7gU6zoq6Vq5uIpzARBYHJ7EiGqYM3NtElbHA9QMibMzhzJnOdHMUahTOWmx+CQUNq0D6fseTz31FM7OznDjxg2dW8KTTz6JvhPVqjCMGLWpGSCl6VnpLiEozz1zveHKNmTdiPMqTp2pDqDQAVOK4EEattWMX6H4MXTNq9E/Zs0IQbMq0ok+bdY4Od1gtVpht9vhlVdeUXrOCNau2icnJ6KY5p1wb5N00y7zWChZywzjMEQka5FTxAShd5W+G+h6pBhqQ8PyyEo8EybIQq91hiWtT7AWgBh+CZKpRBoBI/VJnTewRu4rzCzSupp5G4cd+r7DyWaDEKRG6dbNDl1v0PdClQqpx82bPaYpYAoRwzgiaRF3CFEonaE0g1Rnk6sfh8wZ4xQwxYQxZZztRpydnuLtz7wNzIxXXn2lNtPy3VocsZLlZIjstqrXdd4hs1xDUxjVwVKaQiKo1yjywzEhTBHDMICswcXlhTSR7FbqOMqa6L3DqpeCb2ssjHVCKWPgchilK3cMCPHRPjyOIesfYkLJGmTkWa2GDwzaReR1aagW3E115hj2KFRVA/6aDMddjPjEsTpxpdbjOudkGQksdBRHUi8YaR57ylENsCP8c5ozLcfGs4yuTpqVKIWkxfBx5OHdVZrLzOMWx6s8iw/17GXful5Z5M4JdG1Phv0xCrXpU9tP4jPbz+Dp9TvQ2xVOzCnecfIuvGX1VvzSK/+5jr1ADChf6UTAvjEp/RMkEt/b1ZXC7ZvdE1fGcuiEEgjbeAFmieAaIz0snLm/62M2rBlTHuv57u0Khro9g1H6IRSDenY+5gFJhcA2Xsrxs6mFyKzzHnNAZ4yo8y2yWMcM50O1o8gBljU4s6Cyledrrt8x1SGUdblv9AqdjpBzxEU8hzMdoPOWOGFKAybNIp1pZuMQxfarnbB5rsn0pqtOVHnNYllDELUHSYIjj8726PZ6jcj+OjOvzeroGL9wTNRWZOxdX0T7vWGKgtPhvaaszyXuh0Y0Z0H2t3k34/9K9uJgW9t0sZfVLeep7MObrmZEj903axbnIRyl+8UDORbjNMJpgxOoYWloNoJyzmpA7XPeQVzpFt7aWqsAjeYSlQh0hPe28rWReb7JkLxmiECWwaQXgMq3WkNwNIBTQMo7BIjhkBIwjAm7MWE3BKSYMYWozBIxeOR49MZujHLwZOJZj1UMIqeGe+nFIdQqY4z23wCMSaD0GsA7OIzwsOiTnHALj1V/CzArMK0QnFBpJoRa9AnTg2EQgkNIAFNETFSjm94ZaaBXp69QZRI4BWTKEgVKAYaAzpna58MaEpnVGKXJYU4YLi8xDTtst+egPMIZwltundbSpWXzLVZ6gnXKadema1lpUd57oT2dnKHve4309+LoQOgnRX5VOpSnSoUSaJfLYuQB9aYwX6BivpZ+GjHNdQNgIGBCNrEW+EtGSB8LhusahbFzh3V9OPfKY/dKzTNEWPU9jLE1e7WUw0xZ1lI5DsmcGbl7q4GeOAFpLvjnLNcCGXnAx5xq8Xgpdi+FysWBzjU6LfOTktwEuy4hZ5FXJkih+MlmA+8kKzTsBux2VjpQqyNS6pZymms4nLVga6uDUahn5RxnAzAfcL9rJigiZ3FkMycQSy0RGYLvO+k43a0wBTFSSo0UMzCokZ1qDYiof1kj0TrpHk2SXTMG1ogBb1NGSBHOy3U/jROIHJwhdJ1FBwumDil3SImlSWSSnhohJC2WjkLnTFOlqeWsHdeT1j4RwToDRwxOAdMwwHuL27fOpJaLodlC0l48JbsGdTK4UuR2ww5TkJ4mzvdSizEFMCf9u8xA0LxNmJqFESqnQYgJKe2w3e1QxSKKM2qMZklX6PzjdyxSjvXhWQxZCwNDvFdjcN1Dbfn6smiWlabKnPeoGcvPHG6j9LtdOgTLSOjSWUg57kmbSgZBs0WYs9PHsgXlgX2oskKQTsfFkK+G/eL4Zlrwvm7/YcYHi9+BOaqaWbrD3614eTmm2tvimuhuiZJel72hhaFaRlKMw86u8M7Td+Mtq7cCQO1N4IzQ87741geqIbiMoJc/+w5FRMi5KmQdjjdqL4ViJHnja41KwdJZ7Uyv+zP1+JbzXHqIlOLlfeek1EeK81ZqEGZJz9lII6gtcWTul5B54P3sjN7fO7sSBwilJmzeds1oHEgzZxU3sOQwpB0s2b0Gd2X9Ho6nnu/F655EVVPWisWpO0PmhG28RGd6cT9Nt3f8DKkTKopGxeGr4gdcqD5WA56q2lezM0ci+JDzdrfmcofnaXmNVievvnfvbOMxp+FeWYC53gOVzrfsBL+k5AG4kgU8hr2Cez1Hne3VDOC9+xnpcxOYnc9DpbH6uUWGbclWeKPxYMXbQQuha78HoxEmCS9n1i6+WqSYk1BCSn8I51x1LIiAUkiXNQrMWVRnbAmxY5FKo9IPg0E0F3E76+AdiZY7J+QcwBAaVOaMmAzGKWG7nTAMUzWeSv8MCVoYVYnSgnDr5psPkTysvUThvevgnZeIOiQSbMlgs1nDGYajETlEcNzBpEtYIrjsQaaH4RW89SDrACP0qBSFh50oIRIAsojJSTF51vRX0dc3gHPaNMtLMz8QMFxG5eQL1QNshF9NBLJeKWLC4+eUgTyBkxQbD9tzbLcXOH/tFRAS+s7hibMN2MhjORfDr0S51CGUB72eo1z4mqJedHJyIvSnzaY2WoPSnXIWeeLS0K1w0ecELavRWshz5R+98dbOmJij7OUBJV4EsvaFKBfOss8GZcmoGac32mzqzc97J5kfrQMiYM5+8ELXmowWtIsCWcqSFeJyoS6uh3ItxLCoA8Fc3FayQaXo3Sx7SFTa2cLgAGlPl5JZY72+xCBf9T2cdYgp1ShYMWyWKl3LYvFCSaxCCOU9Zr1p6nZKNqmcAKXacamRyRlsJDoNErnp1XoN3zFWCVX+WBwXht1uEaMIAhTnUgwveRDlXNYA6/VG0nVbI/LeSeZmCgHWAMlZ+N7LfcIZMCwYFjFlpMQYQ0IIjJgY4yi9aEKaRI42JYSwA3IEp6ha8FIH4gyDOCKGHZxd4caNU4SQkSIjs9yXnHfqWAAwVufJyPqIURyg6DFFD2O9ZDSmgJSDijmkOu/MZbXLjOTEyJaBLBnKqJnbmEoPDl97c6zWK+np03m410fXfyjk+aoFsO+I3w/NpzyE63tq0EaO9QFeugnX91EoSwqq7d+q4bncHqqxPtdGJE6YstSkEBl4+FrXF/O9i+CPZTNKrQKoXLv7TsWhc7M/xgOjaWl8HvyewVUp5+jYDiL41/gU9f1Dw6p26+ZUrs5iIsm50fnxKl165m+idPe2EGPLkkVXaitKlhqoz/nDCGvWc14lgw+cR6FeDTp3s4oSFhLDy/qRYxK15XNEc2bEsL1iaMsw5XdbKT/zZ45lfo4XZ8/jP1ZADAiFbpY5vdrHBQzNCKKuX0AV0Ijg4LDNF1pMf7DfA0Nyed0t11zJdpT6i86upHYmj/VcyhgXdTBZ1KdeGV8Gg3HD37qaIShrtAyBxfY7bFJXxkRkrj1vR+eOrtZOlDDC8j50DPcy9K9DpeppVrbUh9Vr+3ANHAmAHG5P/p9ZDyWzckzOeGKpMSn1xxL9XYwNR6S27+FgvRF4sAZ5OaN2uyVCCHKLk+yFSNOV5naWCKRN5/pVB+fXMNYDSVJvIQY4J5GMuAvgfAmPO/C8BmWPIQp1J0YpSHZEINcJv9wa9LaDpQxHE5DuAHnANN5B1E69uwEYJ+DV1y4xjgHTNM0XkmYb5LJZNLeyDsZ6WL/ShlkOvutgvcPJ2ak2LetElhUZxFsYJBiOiOE5cLwAwouwJovj458GzAmSvQnb9WBjsQsMnrZgfhnTeIkYIoZdQmSHhA4wDsyEHBOYhV5jDcNZg66TJm8S8XaijJQY6NcafQ3iUMWAMA0iexhMjZDnFDHutnj15RdweXGBcRgxDVvEacA0btF3FpvNCtsnbqLzHt5aoXwYKfiFGvtICawGgFV+fe881usNbty4iZs3b6Lvhcs/30NmRwTM4BwxjUM1qgqnkzDThKSxm6lKJQCktwDmSIgv2ROWrEBWR5cwR01LIbsxUhztrVDHRMpUG8xkRlZp0ZRKt0oCNIIvxrA4QkFrLEoRroFk7+Q4NcujFKm0+DlnoeCI06qX1IJ6VMZqalS/OGtdlYmVGxcDmTFpQXY5D1avJ2uA09MNus5hte5xeXlZu0erzV8j6iFManyhzmXJZEi3cwcCSzd2YwFrYLtO66DUwYwJeYpgiON6ceccl7sR4+5S+oZ0HuvVBs47+M5Ld/MMbLYnQjmaZloc1GHkPJtQMNJEiTljGAdcXl7ghRdGrLz0xjjZrDBtVkiZ0U0SzJhikCyjsXCdrP/eW/TeA7Ag7eSdYTFOAeM04qUXnxN56hyx6Ts4a9F1Tox/HsBhREKPuA1K1RJ5aIKBTR5IUmjtV2tZOwbwhsGecbLukZJHymsMAZhikqL2GGt3canfGVVpTCSdxYDQ+SAGswRojJ2LjEvGjQgIiRFSwHaQniqPG73prxgDMUfEPFVaxyEn/tCY3TN+VKFsSiOKrKJIWs5yrhKJc1e+W4Rni9EE7BsWxaiPOeAynuPF4bN4ev12eCM9Ccq29vjnR3ji92OMLKOWlQ6klAYG7xVUOuPrmIvTlLQoVwqoZyfCkquNxR4E92NcFIdiSNv6nZVd1/NXioWLIecXvQImHsVYT7uqgCNOWsSUB806laZrXOWEAZXXNj08OmzjBUKecCe8hresnq7GVWd6uM7XcV3NMkhBfMpRxBzU6FsaZzW6m5P0p4Hfy3gso8x1+2TqvBDR0caAzFoYzvNaz5yxjRd1W2t3cuV7kqGQY5jSiCmPeO7y1/BE/yTeun77fFxHukhLh2d5Jpbi+FJXAkDXzZzt2HdkgahrsjADGBkru5nPhUrUXsYLGDLo6+fm7fdmhWdP3wNmUc8qxyqUMa0byxEJGV4VM1OOWjy/b/CXdX2sP0lxHo4Z74cUp9J3RPK987k8xP1eP2VOGXM2bQkRjKB6XS8DBMvPHmZcy2tzkIRQMgzlc8t7UDlPEr7aV7I6hnuKE7zBeCDHImukmdSZYL3QChVKsg0qO0m62FUnX+aEEVOsKkA5B7l5ph0II4xJEAUUgxAZSdWWLOmCMaTStARrAwxHIG+R4w4pjRiHiDEkoT4NQn0YR5V/TFLAIWOfIw6kUqzWagM56+G800xIh67v4bxD55UHSlSL7CyR9MjggJwHME8ACGROhNJkb4JpDaYeyCSSrWkA5wDmEeMQRGoySsqRja3RenF8tJCbpQt3mCRKTjaAKGpxa8YUpAA9JOX5c0aaBjGmATgvBlYMA3bbC1y8+hK22y3CFBDDKHKaYUIkgzgRwjQKdYG8lJNAUsFZ0gQA5oVeKW7dCv1KGhpKB/TSPV2M9jlCLn0D8sLYLhkPQI57LuCGPHZ4luErjiwwR9hlbWZkKvGJGqSXcdeMCtdxF0OsHAty6dmRVVa1pEW15sUYzbJkhDDONw0dUlJKFjOrAlKuFLG9/1OScaoDtGfIM9djocUxpmTArAX/TpwSKlmRZfE6qSFenX2Dvu/lQReEu1/GmHKUaw0AcTHi53tTzcAsjDK5pufb4zLCXuaQIUXyKYmh3Pm+dpo3zsCYDLIGJhN6b2DgpJ4qORkLVHggJ6TMMgZjEaNkHcLi4VCikqW4OYSMlAaJEBNgMpCIASMN7gwRDGnvGArqEiY4G8A2YOUzYIX3LN2vGYDWNEWhTU2BkXEB65ykn1mpYzGK40wGFDSwIO2zpfO4CusayoAlWGRwN8IZIDpCZz1isgiWtKYlIcY0L2YDAFnOG4nMbIms6lUG6Pks5yWnI8WSjxgZeRHhp9r8qUYvH9QAptloLMYpgJpBu1uk8bjxzAe/caUdCF95ES1k1HvFcpvX0YjuF6ZsowQ11LgohqU0ADMgsiI3WYwPjUYuHap7GUTHjONivBQD7NB4S5wQ0ihdmGEq5UWeewdGNBY6+ouxWLKzqtbeXaOMxNx1LouzZTQ6fuJO67k/1hSs9L+6mjUyIM6Y8gRDtjoWzFwzVJYs7MJYP5yzJYVldvSiKGcd1O9UxaXFayFPWi+Q61wdA5EUsg9xW9dG7Wehzy1mrspfgESx9+8B2JunemdYZKrEMV+uo4OMEUEprWVcmoXBLNWadQ4YUEUoqk4Pk2RXSxZRIvpq3BLBKJ2emGCNv9I4cNmf4tr6KiIUX+Ru2dBy3A97zV6HZSbNaBD0oU14mmfj2gDAMkh+F4+iOF+PGw/WIC+GejMn4QnAWDGQnFJeOq/OBBWyhjzlRYqTsRtGABnWMuI0gjkC6Q6szfCGkalD5B5jzLUo2Ap1GM6KUpIzgMVryHmHabqDMCbEkHF+J2M3JFxsJ0xhkiLNODdeK+MuDUmMFj6WDryu67UhVQ/nPHrt/O2cg9S8MaYpgk2Srt0UQXkHpEsg7KRAyD4F+LcA9gYmrCHp4gCMF+A0YBrOJSORDcaJkdkAphP+O1mNxDFgGURyYwghYJoyYmCkdCnLmITHl5QWknJGyElmnBmIwhfPMWK16tF5h3E4x+78Dl757Kclil9vmBkGCTkAwQDby3OANzrvRs6zMdJlnLn2HwGRdDk3BpuTU6w3GykQdl4UqlB4+kn/FgpHREwBIUzqdc8XSOEKCsRorcXEi/4lAKnkqXrxtSagXHBGnRNRlBJjXTIRVr8ndngGlAeftRHjNI5qmxNynqNwUaVDU4q61vUhlXMtbi9Fu7UQuj6khCYYF8XmnSpklboGYHZQZhoXY5pE6YmZ0WlXeVei+Oq0MFCPkwGh5zhX+4ekLM3zgnaKDzFASqe1JgKk14mM1RDABihpplIQZrRZAi/nHELHID3XKUap+0kJ3hBW3mK1sshqsHR2DWstesforMEm9wAkKmysRUoTYpwwTJMI9xqHYRgRJiAagu8cTC+ZFGsNVqsVjLEIAdgOlwABJzdO5fBYjPxsJUXtbIIxEYydikskmJzhkXBjFfUu4aXGP2eMY8QUMqbIGGIAcwS9MsJ76eZ+su5hLWBNhnEZxgBTMvDWo7MehhnEGRk7ABEGET2ADoB3GdmukNEjr88Qo8EwrUR1L2dMMc09MsKAlBOmOIGSrdkYKeAzixoLOzuYj+ZZeleENGGXtpJ9JIMTOpNI+wMmxwuK0eHJS8aRXC0CtVQCWscf5ccM16XJV74VWYqqb/W3q6OxJ8N6ZLv3wjI7fvi9pTEac6gP/xLdHjTK35GVAlnl/vOV7dzbqRCKRkKJ6lty1SgsxmPpcF62G9KIzw7P48n+LejtGhuVFj2yB7knmf6KsVwa3onC0VwPIBHwZY2MRmcPjiXmgMABa42an/mb9b2SLSjUGtmPnMPDjuel+Pbl+AIceWzcSZ2X16aX4UicFmNnOk7mJD0pStZqYZgmpeSFPAGmu+JojXlE4ojerutrl/ECIY3wWoC87OS9V2dDBrs04WPnv4K3b57Fyq7xZP8WdLYXNSs2IgUeL+o4nujfonUhpr4mdQklar6oXdFn7JRGZE7wtpdnLtk9J1PP7FV6EhE27hQxR4x5wKS9Flb+dp2H8h1rrdLLtKM7l6JwrbOANBncHGQvC+WubGvPwePltSsZ22NOxdJRLpH88trDogamuWQkWK8fL00f04hM871lmVk4Fgg4dAzuO7NAJAGrI1mTeayCw0aCx+hwbzQeLGOREuAyyNiahmftZ4FKi3EwiapcZGnuJqkrzTiQEYJFHsE8gW1GJo8xr5AnBybAG9LvsjZvy/BmBEfhJU9R+NnjmLHdJUxB6ihiSMrZnrXyoc3hikLPnJ1w6FYbOOfR9SuQ1eJt11X6kBj1E2KMWjxuQB0hU8IYL4G0BfIIRo+cDabUI28jGHfAdA5wAjgAOUhTtTigRO5I6WME0qwBEKaxGjylydk0FYM1zDxuEp59iVpLofqssoSsPHcipBQwGML2zksIw067kkv0yVijcqmEmCbwMOKFF17AZrPGyckGZ6c3tJeG2XtIV36+9jjYnJxI8bMt3YCT9gSRGoTyvxhJUsQak9CanKoc1YiaRsBTjcQb6RNgrfRBAVVjOvFSQk/WDIDS9mG+LS2yAzEGyULYUlgmEeUSVc451ghYUQ1irRkq9CTZ8pyNGEfpHh7Vwahc+ZLSIK0ZKCl0Y2CdhckyhvK9IvMqNUkSBUzZIKYIq1Jpzjn0vqtF3lK/AjDNjgWY5QZHBOtFNc2aE0whIEwBwzCCs/Z1iSLHPNMxuJ4PawnWWXgrNLJSB8IsXP8QE9gEUJhgOIPJYBwGDLsB2+0lYDzGBIzZwzkL122QIXUW/aYDwwFwiFFkWKcYkbJFggNr5Z2BQ++Fl+ysyFE7JwXjnDOGcSfGeGIEXTPbcaaUXV4OsNbAO8K69/BeAiIaF4XRY/XdGeTSkdqYyBnn0w4xGaRMiJC1mRMwRqk32w5Bs4sM68TxXW3W8J7QdUaymsTwhmBMkoyNnh/OCUwJwBbgC3hr4FcezB4Mg8QEaTrpMIW1ZCjZgIwHGa/dUhiU5/WWyhiZMbwJqlDeePRmtZdpuBuWxdDXyagaMgsjSDsy62aPPVRrBqByrvOeIVvUVMr7nard1M7JB1tdFlJe1+TucN/FWahGRcmSYkFn0Ii8fnPxXpKmpiQ9BMCs2QM1/Flqazx1c1aAryoQzQaaxZCkCeSJOdXA2tw/YUmtkQLmrtKOZmM7V4eOQGrslqJhGcdlPEdv17UBW+HoHxa6L52Q4vzN9x75/JgHXIZzrFYrMKg6KACwixewxleHJyPjPLyG3q5x4k6rLOeSctebFZaSqMSEld3UhmTl+AtVZ4ll3YTQXxJCmZMctOaN1ajvAMyFzYkTNvYEbDd7GbeXxxeQckRnV1jZde1a3psV3nv2hfCmg6W58J05Y5u2mPKIj935PxG02Pw3PXmKNfYlerfpEpYsVurcHF4jGUUS9/po97KYelmc7IxcN71ZVerbct1NeQKY0dn+yrWyvA6LQ81A7T0zS6zOTt6e4MOxrOSBkXxdZmLpjC9V3OZsDO8d93XXeM3sLAgUfnFdL9ecXJsZpbHnMit0r3qzux1nPW80Z0yW95k6zsVxHaOUPUo8IBUq7x14TeOmOVVIZu5DIY7F7GQwAOd7uXmwFNYQGNkYZHhkrJHZAkxwhU5lGN5CqDlICGmHFEZM44gQM3Yj41Idi92Y5l4CkO8XaTWRV1ODzXs438F6j361hnUeXddryhC1AR6AGn2O0wRrDZwjiWZywjTsxDnKI8h0SNlhCFZpJkFqLZBAWRSqOMuNiHQ/RaIXJEZrThmj1h0IL1+NpZGl4DlPYkACgB6XGMZSn5DT3MFaDFggO4OchSK1vbxEjkEzK5LGdc6JGg4YKYn06OXlthZVd16oNEVpSOLZqOe7zGfXdfDeS0ZBIzxc+oNolF+odHNkX/qcAFJku7x4eBHth9J/jBbs68OhUnDK56FpfnEU6hgBuQnw7FjkFJHSYv50HYIl6g4de0olejJTuYqxXXbOSkUqToXI6C6uE1InkuYi8uWNsjQvKupa4sAanVuqN0JrM5gtotGHJhl43XaJqJXjK8ctNSFG5AeNgfGuTopzDimKgR+h6yuqIWI0BU8LqpuXjuW1wFvvBTEnIBIoTKAsieBx1OszTCL1CoeEgG5lsLYOJkHKqh1UWtfPFL6ckNhIJk+NK4LU20ggXtZY13mwSuZeXm4lmh8SYtJ1MSVx3KxFoKhZVUJcS/bOOVIOANRZMejcSp0ZpalQQmKpJ2MjkWYWW16obVrPUNaCUCgJsAZRHRGn1NBoJcJq6wNdCsKJB4AimLcgNaAlZuOQjdXHlUGMJGpT1AHGg0yHWArm41Trf6KKS6VskP3jr94u1JWCu9EUgKup+usMg0P5xbthSV2R32cz6nAbEvkWyk9WdRqJBSzGzIXQU/5ZvrV/fDNHWoIb1zo+6hAUA7Q6ImAsn7FGg1BLekvJQMz707tyFViYjaxihMgzadGAcIFjv68XUXXZb9rLrnRYSNASgTlhSqPI7NIsg7sn/1uMKiyj6KbOhbw3G0IhB33eSAAgq5N4Hu5g406qY8EsDfZKc7Zy1pe012KgL+GNV8fHVsdBaELXG3dl7NVRreaxrLNls71SN7is1ymvvzh8FiEHvG39NPqFZKozDqfmxvw75gxT5IAh7XAZLzHEAVEzArz8U4rpieVehuvpMHMgj4++XsZaDGTWuZ4L4t3eeQWgtsQ8X2Dsbauck8ixOsPSG2y/zmg55/eLpUN/DIfXaUaGZRWj0cwZV37V9fs+fH2ZJdtXt1K7gXSDD3AcV7Kti/Hs7Z8X9xwyVz/3CGlgd8ODNciLATF6aeZFhFQWYL2QGGlXLrRcHQ3nHPp+jc53cjEbmTbrboD5VKQ6STilK2tEVjENEpFEAgIh5oxhChimgDFGbLesEpKTUC9SrgaBjMnNNzbxFsQTthZ9v0K/2aBfreC9OBTFsM+ZRW2FhBbhVNHq7OwUloQjPQ1bTOOE114dkJQ/yXmo0TGJEFucbNZw1sB1PcK0Q+SEOI3VuJ4mkb+NISPmLJzycnEVypaYVTLH2p25qOtQKTyH1GGwRp0Ll18auAWMO62jSAyiDtRvsNqcwXkxssK0w7g7h+8mSP+LSeZ5mhATY9X1ODs9rf0XYoggSLrTqVPmvdCfoOnvYihmVQ3KWfoHTNNYsxUlqxBS1Noc1ohxRoyS4SJj4KyoFjELVUjqbVzNbNQsDQqPc6ZPiTNppfBVsxU5B5Hj1axBMTnkOxneADlK5iJGcX5oYVWQrG5EzDfLuY4INXMkDoJ8ORfHBfPYUs5VwSeEANZsROk8P3fOZjXundCANPKxV9+wcCpAADGBYxTFqRRhrIXvVrBE6DuP9VpoetudBSBSqcJ/KlevRDhiVn1xa8AGmgURKhrnjCFE8BQQLy4QMyPmjNdeu0CMCVNkREwwwaPPETYAF0NCjltwDiDKoh52coLObyB8Q61FMARje0i2ySBstwhBW0+RQWYL32/QWYvTm08ihQlhGvHiiy9rfwunHbsNdpfb6vhx0khxoW52Dq538N7h7OZN6RHhLawZYH3E6hZAdgOYNYbkkZnAMIhTRAwJ4zDUNb7erOG7Dq7r9J7CiGxAGZimomSnTj0AZgdDa7mXhgBChjWM3kuNh+QkhBJJJI0RfaeS1mZAjjttwDYghUnoLd4BZgXqbmHcnD7I7f0NQblvjWmoEUpH7tomZqVx3n6k/Wp07bBo+l7Rt8Lr5qrWYlEyHofSlkuqzhLFqLpbA7bDMS4N5rLtw23GHCT6D65Un3nc+7K1l/EcgMh3lu8tt18KWZfGa1QnYtmtvFCiQp7q9o8d1+F5KP+HHBDyCGB2cjrTwZNH4ICcIzrbI3JAilEj7rb2FCi9lwwOZFoPnI+CM38TZ/7mgkLV4fntc/jU9pP4Ty/+F3zZEx/AV731Q/UcbNxJNXSdcVp0voM3Hs54bNx8LZQC3JXdXFlHnuYajKwN55ZOLSBO7tqqUwOp1RD1pP1+H/Is2j+20qfi33/6P2DlenzJF/zGuh5DnkAwe4pRJftiyOLM38KZv4W3rJ7BkLbYxUts3AmIDIa0k0wXZ/R2BQLJ9mi2H4qzaVX1adlvpjIQDs5/5oQpT3KuNWBQqGCyjkw10K1xtT9FVRJDFoW1xXlmZgxxC2scTu2Nahjv0lacwJpNIzAyiqDLYU1NOZZ5rPnKui9Y/l7pWktKIkd1aou8NO85DIeZyGvpl4v9OLqqaHUvR2mPGsWF6SOQmp5rvl8Cl0RX6IB3u1c+qgzGA1OhYgzaDG7WTRe6hhiTGVkayRFVaUlnnRpeStXIGs3R4gm1R5EyY5qC0GimrUp1JolUJEacAkJMCCljiiWCQYCxKKoIxcgqMKA6RjJWIt4kcpdTiFqLrNGfYqhBT4ZWoZvK7Zf4iSxfiPNiuGolA/JzoUQQicJQnCKG3QXCNGLYDaoUJM26StO0XLcBcY6MVXVPPT4iUI3gkqrEJBDnGm3PVbFAjGhkBmWlbzkH351pA7I1+vUJvO/QOUKKa8STNaZpixgGXJy/gpSC9LkYBrA2dSva/ikmUfvqV1VGWJw59Z7VqeFFcXZIQepBpklqNWKhGGGO8KkjWiNbRXlIDfJaQ6ER5CUKvUguIqBSjkjWnfBwJU4RcwZPsi+btK8KSlSlRP6TZDbyXPNQ1oUBNEsk57ycN1nrFsmaSnsSMQJovZCcp5KR4MzIxNJ52czdygvdqCQkQPtSsdC5Lh5PiafSIjsyKwapI0NaQ2FsdVJinPtayPsaLcmS6tVSYESVxDVZ6RaGtO+MXgs5YZyEplcKmK236L0FWwemjBAuEZNBCAYGIivtvEVKGcMQkNMEQHo2xCS1LFxveoQwSQBBMlgWMTF8hHZMNxqtJWzWK8QuIWcS1S8jhc5CmxyFJqnXW2bpsB10/Eweq84jdl6aVVKG0wwcWSBMAUwG1nV7Ubk9iqVKHdcIN6I4/QhYSukW91ScqVJbZMGUkSBZW6k7V9EBIxG1yJ14dxlI0YMzAVHEHTg7WPIgdDBwb0qkqmCOMgOZ8rViqDR77fWBel10dY5qz/SZYw95Qgl2MYhNvWcSUe1kDuzzyVnvDQSD0sF42VG4HtcRKsNel+BFduO6yGnGXL+xjJSPaYfSS2GWmJR+B/ORHTpH+wZPGVs57mLUl1oVRpGnnY9lKc9ZjnG5dghQB1Gi/gTCELeIHBFzwNqdCJ2IDS7jOS7DBW71T8CbDg4LusxBFFjm66pxs3QipzSiUMI27hRPrp7CiV/DGVsVjsr2GdhzBKSnwBEHr9gpmBUByxyX4zNkgDwHWYqR7Yyv2dxlBqas4SUNr6A4MksqzJc9+QF4LVwW1bSAV8eX4E2Hs+6Wrj1Zq1mb2BVqmqgyrfScieDLlMd69Sz7QhBmJ1TGp4Y65sxsfcYeNTJrL/v6SswB23iBtTuBI1PFCGKOsyOj69DwnK0IeZL5Uyds6eAvpWXLcQPYKyJfYnZU96/vsu4fFIuOVrJ98N46LIXwGSyfvUfW9BBX+rbcxxhLtn5em3f/TnEUsbhnPS7q0yEeLGORE/I41kig99IjAUyIqXi84qlZ26HzvXbltjCWASTEUCYJcFYKUb2xSCEhhYjdMGAKI8bLOzWyH9X4TiGinmuvhqRxINPVvgQokdyFpS5202yYZ0AcmCBZiWIcl4i8XG8zdUr6CkhmgLM8fpgkE5GzwWzlSsTbeit0GWSEacTu4hyXd17DNA7Y7SZ1iHjvISU+miwKMrY+HMk4kPOLi41VijPWB9l8KagTloXKg8ywTCLzazusTk7Q9WucbG6j67paQCvSuREXF69ie3mO7eWrkkUJAbsdSbdipegQJGsg3/fzOjBiNOWcVS4zIlV1JCnYTiliHAbtfpzhFsXLObM4Lk6NLy1GJTLIiQEj6mCZS1H7fHEueYXGlKJtfW3Rm0GK3UWWdqoZDqGruFKvAFTKVoxhbsCHxeOdM9hYkWM18w3cGalnKOppISwc4zwbHc5poVzJMLA++KyTQuDS+6Psz5I+IMqe9BdNxjFDI/xWHxT71y3rvnJOmhki9H2HlBOclwyY5hj12ilF3BDHnQKYSHp61CJzldNloW/tdkNdu/3mDNZ1cN0KIWWExNgNr9aH7sl6Bdt16LoNEhO2Q8AYtNYoZQyjdKhmpNmprPd4XRd2hHOTrOHeofMGvSecnp4AYExjAFkv18/pGjFFbLdbjJPUYE2TBEmmcYc0SVZqGAmrrsO662BNgrXAauVhPGBsxOU2gIzFemP1viRZt9L4s9RlFRqinIcJoAiDEURWi+3UEVQqABHBuhINlGwMZwM2DkW6W/mFCImQGEgJSIlE+jl5QHvBeONh2cLmrkpIvlkQgznCXGMcAJipQIW2co0xvkzrl59jDvX7h8WJdTsHm1tG6Zf686XLb6n1GNIWJ+4GVnafM708tuXrxSmpRsA1xkMxWDrT18h0iWK/OHwWU57wvrMvqsezLJwWZ2Q/+7N0AMocLqUnJUMyqVOwOG6SzhcMRuAAD1+NJRljqlz3DKHkGGtq8fer04t4aXgRL48v4zc/+ZXwWiPw2d2n8YnzT+BL7ArkCGxmqdHDaHgd+wFdJhZVLAC7tIVVNacb3S1s3Ame2fwPbNwGKUehUUKNWWZ9bW4odgwlQp70frTs/lycOqOOitDHgClLp+kzunEwT8VJ1GfHEbpZab7nFx2hv/zJD1bDesojtvEC/8dL/wln3Rm+9PZvxNqdoCNxJCJHTGnYo1kVSWQACDzhMpyjt6uaKTrMstTjLg4omb0A7NH6heLEUhGEEIQ84TO7T+PZk3fDuw6lcDzkaU9aVmhAGozMEbu0xRob9HaFjTutDnVxDkqdycEg9teKInFC5KB9pjSQjbtLrt4Ne9k73VWRtJWf5zoTGCeiHPdptBdGhfRlcXsZyXthT63r2LZ1fMW+AQDL7r7H9qjwYBmLGGG0+IEIUvTLargb4UF3XZEbdRAbJCMmiZwTAE47UXjyBA4eMRDubCeEacI0TZimASlGTMOuNlGr+YAsD2TpdqAysc7AOLkBiuEj0Vo1xWTgzAvtflTuPhhzsz8i7apttW+AVdUoVcIxBpwtGB4ZUbjZKxZqRWZkbVZFRrpehylhe3mJGALCOCJGRoaDdSyF1XlOcRkyWohrYXwHshbW9TDGVcMDrPOdVDu8RtLnhxiTh7MSKbanJVtE6DspsO77XrI2TqKjRATnpO+BNcCUI2LO8N0awqG0UjAMYLfbodQIOOdVbrMY8iUCn4CcMI0DYggYh53UHWifipQzQgylJARkSvGUOnEkBUcl3gctXp2tej2vjEodWl50BIhSjjGwjjS6Lg/7cs5DyhinULcpDXoIjgi9lxRqzhnTKOsxlP4K6kQQEZCzdnzPNUuwpCUlrbOovRkgDrdk3hKCqkAJHcHCOlsleYm0c7KfqQ2JpWt3kRfmMhcpi/EN4Ykbq06eXawZ3adeQCAwrAFWvVAA1+u19LmIERcX57VGJyZNq5cMihbP16inOoOZRRY6hqhOvsWUCNb36FZCjUopY9zJ9RxTxHCu19nmAsZ5GNfBWymuJKUxEJH0aIFGEYnrc7DUK+12UoB+J0cYUgqVFmM7Z7A+uYH15hRd16FzBqsnbkndUpYGeSEmjMOIEEeknCT6z4xh2iKlCUCGPT9XxbgOTOq8DSP6rsfJRq43QgLRCN+JWpjvTpRSmTBNl0hph3F6VSKLnMXh5ix0MFMU6goHvDRsNLCeanADWYIOzm1AZgVjexBLTxAmAMZJwIMtKBvYDMS7PJAeFcrDrTM9eFHceR3KGl9ex4eUkCX1YlmA64zHlEeENOHEnd219qIYd8VYLtuSTDfgFhFcMNfux4cUimUwqNYxaKS0phdx3FArONxuiWLe7p4oLueVOQ2qDlXmc1ncyoQ6Pw7+ypi96TDkAWDG2q4QOSLlKEwCMnvdsIuEKHiu/yj7tJgLbG90T2DjTvHM5ln4hQE/5hF3pjuY8gSXPS7iHelJQLaqFZV9FWcscUTiWPsmLIvJ1+5EI/JTzSC9/+b7xQg9OM6S9Ykc9F4/otfCaKG6oPbPWB6bWziMS4pZqc8kUFW+Wq7lkCdEjljZdXUShrRDzBO89nPp1AEoDp4xrhY9l74QBMKpO8PXvu3r8NnhM/hHv/KjePb0Gdzub+FdZ++u2SZRmlJnNMc9Na+b3W3pxUHuCtVvnu/iVJSo+fHofvmsQaml8EfX5HOXv4bervCu0/eJwWz3O2hLXYiMMbM4EIkjxjTMylVsRByBea82a9mDY5kFmc+36MztSdneJ5LWgTjjjmYgjwc4VE5cne6J8xVxA76GNsniOcszWq+flGPNjpXM4lQbEOozELPDM2dVxXku50SUuQRlPDVTWc7hQTZtmdl8VHggx6IUiS0jp8WAF86yE6OzRP7V2+es0TkwmAcxeKxBnBJyBrbnW0whYJpGpBSEchUmJO3IWw6/phzJCNVBvBsdE82GbjGsoOFcBqCG2V6Un/TBrV61Ueeo9H0wS/UrjTrnNJ9gYxgliSrGskR7wyTKR7vdTjT9S9dljcRLj4B5Bo320TDWw/W9NOnrFjcydSpySnJTYAvKUR2ZUkdiQMbCOw9vHbrewlrAuYx159XZ62XuyCBl0f5nQ2AdT2YgMcAk9S5GNehZo9LF6LQaxbPLLI/ocyLHIFSnEDCOI4Ly/LPOoSg96dJmPQfaJ6KeM/277Gch64jrBVb6QpSC6nou9f4i45fi4+IYlMh9iEkzUNBeKaJgVdZtzrlKFUtXbFHZMlYerFGNdgLNWY6FYVSLM/Pch5iKM64Hk1ma28FKxHtZH4Hy+UqZ0htFFqUnQAqsi2OVWSRNuawHda72s3dc9w2U+hgp3gdJvcc4TapoJee7ZJOKNG+hZwGoVK9Ui+IZoAxjLLIZ4JIEHZJuI0yDFrdHRF2rIWdY38G5HslHGONgXS9OPGaKV50YWYzqLDGiZsZimMBZ5JXBQrPqe4+Sy8u5h/cdNs7Cdg6AgXVACBHWWExBemekIJSDFKWChrN2ETcZTAnWO0C7kFtj4b1F5wyAhMyT9NkxFtb4et1YE8SB4FEKG5N08M4pIKWxKsMZI+MSSpRmMSLVzAdnMXKcP4Vza1i3BrAGwyGzg/Sckb9G1e1KdulxQop8IwxdbYR3Hfjg2hEFoIPPLB6sxZgv2QXpChz2qC+HGYP5m7muiysGhEZHQYSOjo/90ABZ3n/udnz1D+/XUCy3VZSvjuGwxmTxRRgmKeTXa2TPIKPSfRizQXmwiVqzVeKf93BIiQgeQqP0Ju0Zfd54nPgNQg5Kz6H5GbU8HmR1lArNaI5KLz/r4JCRpXYDAMFg40713CdAz5MYYwkZsv4y1Ggnbcy36OK9pNXJ8Zgr62VZSFyDX7BXZ4/nQtuQJrnGudCS52wagzHmER5ChZWGdXqPUPWn3q6xTZd4/vIlhBRxvjnH2zZPo7f9XidtQG2OeocUx6c0UJQax4PC+XK8izV/V8OSWW65R4xs0mzQZbhAyEGvPYeFWbjYDNeC6EInZs4IpYEgWZQ6KOIFDa2uQT1CmqlnXMKPVEr97xLRX3yn/J841eu1rPrDugRgfx0ym3ptlUzVYRaFMWcND3G45spolnNbAh/lE3w4mTIQLK5UdZhnJ3GpfifHKcGTsgbnLV8t2n8j8WDi4kSwzsF3fVUVKs7EerMRjjEcYhoRwogpTQATDDtQHoEc4f1ODNvosb2cME0R2+1QuxPT3j1aeOx8sHyIuDoD1dhICTBWUm8sakrF0C+GVUramMzaKtVZ/lrnxKFwVozELGkwbyUCNIw7pCkgThNSGsFIIEqaHhMHKoSI8/NzjOMOMQSkqFkM0JwlMRZEEpMxSi1xrofzHZzv0a9Pa1+NGiGHGodZow4lS6QXvtUuvORs1VNem1dhcQnLn5GHNBlEewMZG0TcRo4WKQG7aYcUR8Rph1de+Ax2l+fY7gYgJdWeFmpYjR5Doumr1Rqnp6fouh7GGCSVW01hwjjuEELAbthhmCYM4wS4DkW1wED6JPheskyd9yh3JDFYUX9nJqTM2q09SlE3M5Y3E2u9OILewblO1Hmc1PVYzViklMC7HaJmLFzXicpX1yMMOwzDoFSquXfEMI4YplEeHiSdqQtFKSsVyNgDKgfNN20u53zxujFUh166bJeTWWg/xcgX5wrV2GdmoLNwBKA2Z7J6bqTg3TltrrjIZJFmSzglRENABFzfwxrAOSsZmmnCdrtVVas5WjRN48Jpt/Xn6tTQsm4gA4jYDiOYNA2m6788KOZzSxjHS9mmNfD9GsZ2cN0Juv4ErluhfDSyOjcQWWaR+I1I+iCfxkGVvopzwbi8BF577Y447c6iX63xxBNP4faTb8HJ6Q2cbNaIYYJFQOcNcjaiDA0CwyJFIHNAiiNAEUQZ1sn9brUm9N0lvNvBWhlTGLaYtHjOmFfUwPdwFvDOgroTpDQi0QjmHSIxcmQgagM+JL3j1YgDAkRtJ2eR2JYsEWCdF0lsL0EI32+wOXkS6/42Tk+ehbMdnFtjmF5f74iHwTZeIIwDbvrb8LY/SslYYm5ON38u5QgpMBGqhyGDlV0LF53DnmHO6li8Or0ESw6d7eHJwxq3F70vUeOkajTLZ/aypmBKA4jMcVrGNbhXtLREbkOeYMld6Qsh2ZMO9oDTzeC5j4dmtA4lPMUwM0KL1Ou9FG+XQuSStShGiSWn4h+0d98iLBqcYc6cGDJy/80TOi0MjhzmKK2dMwzvPHkvnlk/i4+++n9gSDs8e/JurOz6Sjf2ojIVOaI3K5z6GziGqt7FhCHtaqQ3csQYBpjOojNdVbFiZrw6vYRtvMQ2XiLkgK29wMqu4U2H3q4QOMh2MGd/SiVBWYeGDKYkjVB7u5qdBZrnrTN9XScX4Q5+5bX/hi+8+cW44W/v0fQAyZj96p1fxpk/w63uNm73b6kKUGUeiQin/ib+71/4f8Un7nwCQxrxzpP3VMrT8rw740R2uawDzApN23AOIrM3p8WwLef7OrECGcd+w8PDPggru8a7T9+H16ZXsI2XeHH4DJxx6EyPM3+zFi3XLIauH1nHQtX65OWvobc9nuzfWmmIIU71HB0LSkQOc1B3QT8r2AtQgFGojuU7pTeKhQQ9OtPJtZnjHoXrGKQXjwaYtQar0OmKXHHJFpQ5K9djCYAkjgBmEYkl5qyYwWHgYZ/aaeq5rudL537p4I95xDaeY21P1Gndv5/V+bkuYPGQeKAnT9+vsDk53Svedq5Tvr14mVMYEOKIkIKqJTMoT7AYYRBrE68YIoadFGOnGFEUDcBQtSAtvqs/AwDVSNyyHqLIlsYYQSlXzjiAvUhtuYFKlkLsuRKNZc5iRAXSfgnSAC0EWZTDbqiNvziLoeGkbgo5M4ZpQphEeUnKOySzIjAaSafqLEgPCS9ZBt+p/G0H73sY52BdV4tC1bfY9+LrDYLQ9Ro96jsQZxjOcFrgmUeLKWTEyNjmHWIOmNIWUxRnIUcpluccsLt4DePuEiGM2nTLwve99iqZAOWOO+fgVWK2RPhzjEhxQhhHzVQEjGGSYlmWC5PIaOF6FnUhrW3pVyuJxjMjTLHEJBdpvRKdVzoSz92qKwgLR2zx4mLdeOeFLkdG+z0wyBqhrISA7bCD1ZqamFJ1dgHJZmRmUFYjkPf3WbIRRbauSjNTyelRjbSyGuKkDm2/WtXi7CWFL8aEko1jXkRsshRUk9F+sURKk5LajuU1Yo1Rxz5JrQqkVsqWbM8yI8czZQx6TFiMp+YPyMwRZS7N8uTdmsEDJAVW12t5UX8ngFNG0kgVjIPJAEwH5yVL6ftC0WAppGSGsVaMwMx1Xq31qjZjhCKo81QyN9YKhULmZ0TKA5zz4DwBfAniEQYJ/UrqhqxTymOOCNNOpWXlYUI06fXSISfJFMi1aADSeiUEIEekPIBThLgLEcZkGA/NMBCQrc6LijGU1CdKJjRXB64kXqWfSkSCqP+QIcS4BacRYbiDPG3h3Rp9dwOMq6okjxrerLC2SuM8FnFTLI2Y8nu5RkqB7CFKUfUubWFhsHIbeNPh1N0QmVDFoWEEoBoChWZ3GFksxaBEV7MJ140fwLWfLY5BVknQXKkTcyBCoqdST7A0pBKXeyBmgwVXo+pL3CtrIgbzcSnOQxWuknXqtJcCIJHRXdrqubGVuhHyhBI9H9MOa7tBZ1d49uRdlf607OkQs0imFkfOksWUR4zjDqf+5p4iEiDF2xkSSLAayCwR7WwyQpIxdKar14cjhxN/hhN/pnMjRfDFWQCVjvB6BzkSlZcvUu3uvKRolXqBMhelt8c7T98lFEAw7oRX0BmpJSj0lneevAs/98LP4f/3P/4j/sSX/z9wu38SMQds3GntOeFNh2dP3oXMGdu43QtULbF0hg/XxXWF+KRBi+vWQPnulf1wRtAO8OLYy3nduFORyiVCzAG7uK3Ow4k/Q6Hj7k2pjuPM3xAal85rXszjlEZEDgCoKlwBQvvLpJL91IlYz2JN713Xkr4XYR2SDJkzHoYtlsXhBuZo5+/i1B8DgWrvjcPXlz8vM5T1PIGu3GPmLEjCIeYAilxfJehRurkbracxZDRoInVCznis7Yk6QXFvTDV7creM1UPigRyL9WaNk5PT2pyMjEHXdej7FWIUTvkwXdZiX3IkD8o8gOwEYxJy6jBNGdvLoI3fJB3KKP8D9R+NINcqVTUQS/QUmHsTsCr/lLSPhiOgJj4ANW5Lnw0AwOLBlhOiUpZE8aiHs0Z7SSTsdkNVOiKKsARAaTYpMYYhSLRXdDtReNJCl7FzqqrQh4yFsV6M966DdR2s8/K/LdQojRDX4l09EnWmCv96vVnBe4/1ZgVOA3LcIo+MHAghOVxuI4ZdwqvjDlOM2I1DpTYhShM9SwbD9lWEMCKGEeQ7wHr41VrVobZgLRB1zsM7dSwM1aZzMUwYpxHjNCHEIHK6qqxh1KCPqshD2pzNafajOBwxivFejEgy0sBPlKZoIcG6vOHOD4iSHZgfkhCJT0iXcKe9GGJKQJYMXIwJU5Bot7NWOlXXvhuzKlQ1cHMEWzGOrSqeyVrM9fO51kxQtc33iAg6RuscVqsV1mvpRs0Z2igvgXmojsKSnpCZpd7JzL0mWDNyKWdQmpvDFeeFsxa1g2tTP1bnrDoDZR+aCSsP3HmO1TShubYGmfUc5/LFvWhw/ZFRH9Kl4KkobTAzEAMyE8hqEy6SOhCAEHNCDEKRJCsPIKMOGkG6XLOxdf5LgMIYcSj6zsF5CyAj5wk57eDcCjmNYD5XBShgs+rQ9w79agNjM5gThsFJrc00YRglSos8VueCs9yH5H5UjNugaycgYgQhwzsxHo3xyNzBmEINlYdg1sxFTqneC1Pp80JQhayFE5gTYpTOt4EYYTyHsx5h9wI6v8HJ+kn0/ZPHb+SPEL3tsXabvULTYygRvI7EeVym973pjho/QoGMmLIUsvZ2jc726GwvGSxOQr8hc8UoSCyS1wCQSSTNlwZJkYEtqjVlf+X95RhKtO86jno5niLVWa7dzq5ngw+sxrnUDtSIM7hq/DMAp7TTvXvHAcr1eTeHaFnQvUQ5D5acrEOlUIxpV6O0gDgWd8JrSkMSus2URrw2vQrTSwbhf1x8Au87+0Ks3AZPrd62Px9KcRvSFp/ZfRobd4KVXaF3N3ARX8Nnds/j/Tc/sBeFZxa1o6S9hNbm5EpB9qvjSxjzgDN/C6VA1psOvWavSsM7T16d0kv0mr24FwjlutuXJE4sDfnW7qRu1xmPp1ZPy1zlgE9ePodb/W10pgNZKdR/y/oZ/NeX/0/8f37w/4vf+l1fgS+8+QV4eXgFH7j9pTWL1ZkOvnsS6SThIpxL0AZ5TwBB7tlFFQ0S5F2sZVGFKvdrxn4jxnluj63dw2JhubOL3HDiiF2U+VsddGS/CHfwSnoZu7TD2q6xcad7z2EsnDdDBif+BgyK0MA8tpAnjGnALl6CSDN1ej1akkBMytLp2pi5qeZybsr/4kgZFLoiHbknyb1i3zErCmDmSqByphGZAwd4SdVa/l77S5Q5WKyj/f3lmr2leSN7+y3ObG9XmPKEmCf0ZlUVxKY8gplrbU9nOtyZXp0di6UDzfPaeBR4IMfC+Q5jlA7Axhp414E54/LyAjuVUQ0pCBeRDBwiyCRYF8GZkKLFnctB5CtDROkiXZoAFaqMoFhj+no5KWqki+qP/C0yjyXCXS68ynkrnySpGo5TqFHwcvJyLs39DFarHtMo2vAlIxGCRo8BrFerWhQsKkMJXbeCcz1yJ9H9lCLiNNRoY4nYS12CFLmSFpszWSlyDSN4EK3wksmwzmO17sXZ8A7OWqH9WFsdC2OlTuJyu0WOE1IIuDgHppFwfm4x7QLiFBGmrXC7pxFxClLDkqLMrTEaLbVVzQsZ2F3c0fqOqDcx6SkSkkiQEhGylQhWBlBSQQxCiEVL3ohUJ4TLbo10le66Hp3v4JxQlxhiDIYYMY6TfDdJt25ZEQQqx01zvw8x7MSJLHUVclqzqjGROgGkTgYqHcIpLQ5EmIKokIEIY5A+HiEElC7YKSUwZWQ1nk022hfD1DoJMWw1ApoicpR1WLI7c9bMYLNeiwPrHJwVeoLtXHWWAcnCxZw0s6ZSpjlLQz39nDQmtFXZrMxLyYw5b9WQtyoTm2rRtVyDsxNUxrZ8IJRrpGQAyv9EBq5zELpaUTQCEukN2zrpcaKOqDUGzhgwi4zvMA2QkmsCjES5rV/Bea/1CiKosHZrbC+34rTudkJ30pt7oUWWm7OxUa5TQ1itVuj7DmdnG3jv0K8cfGfgOwNjIjYnPU5O34UUNLOQxZAY0whHcoyb01s4UV8ppUkoIdNOaktg4LoTzSBN2O1eRQwDWLscW4iYgLUO3ncaSOjQdSz6DbkoCRntmyLOSNLGkmMYEWNAiBNsFocr21QfmJ27KT/z7NRleEyRES5fBS7HB7m9vyEQOsn+A3xJXxADM9YMwkxrOG4ULwstnfE4IQuOYrRv4wW87dFpJoC0rmNJCSgOw5RHZM448WeVTnRolIikqkbolafPLApOxSguEcfVwkkox5g4VqemFtyaOUq5/LzMRcYr44s4cad7VAwyfc2g7M3FQrTDkNmjFx02EGTcTUJ0f24u4zmKCtJnd5+GI4/b/RN7wQxPHre6J+r3VnYt1JfuFiwMLuI5/ufFc3hm83bcwr5DWyhPpfv30+t3KH0EiHnCxp/h/d3tSlcb01D7T5TibUDuKZkzdvES1jis7Bpn/iZOcUMyBxCDYpe2mEoXdaLaRyHmgM/sPo2n12+XDIc6O0LxukrbK/SnizTUbW/8GTx5vGX1NHZpizEP8OSrIV/O0y+88J/wG5/8Urzz5L3YpS2YM079Dfyud/9fEP5kwG99+rfh09tP4vf+v/+f+H9967fiD77/D9WCZiLCre5JnLozPHfxCaUCCl2sqEEV2laliS/OdckiLNfCTM0tfIB9R7Rcm8trokitFyOe0WGtvT8A4LXpFcQccLt/Ct50eHL1FHqzUltnsT/d5tqd1O/6Iz0eAGjAYO6SbmnRFV0dzN5t6nV6LHgRc9CfqAolHKuhAOYAwJJiWDIAx6hg1wVLDusVZmdmptb5A2GFQqsqWROjdCXGftG1HAnhzN/a//7iGABUEYYyV5kTVm6ztzYBFR3IEbt0iZA/BxwLFNqHRvwlaqZFriotygBIFWScAUrJSoqMFLNmKSQ6LVg6DkqRwGwUyeulwFF45WT2sxeuaPyXk8ul+3TRq9boAxv1eMuCl+xC+VnkyqgantJkbu/+qmdTCp/DFDCFgBAiSuFcKcQGATl7jbZjzmCUY6pRMRkPqaEsXcwJSEqpAcNFXZzWANbWiDLUgSqdnmMMSCEgxgnbIWEcM3YjEKNyyMmDDInufzYA5KFN6ljITUi4+qWzA6tM6byMCUk7TI/jiNoYTjNEy94m5fiyhOFlvIsoICnVqywDiTJrMbfVTsM1hUX1uEvqXU41q5FQtq3vFsdRL9OS8SlxHDHq9Ds8fydrxqB0Bq/dwXXcasKhdIHN5fuFsqLbL9SipNkXqaeQgvLaAV5rNkyJOJLOJebeKZkNLHhhzItBmplrV+zl33L8y78EAgxJcZxSllKSAvVSTzFnK+b0/zJrUeaeyonSU+Kc0PlAHimLFGrIoovvnMN6fYKu67HqeqWZGanFyRE09mIAwQBG5C6N9dWXySkiAnAoUTR1rqw4mNL9W65gkMTWiBzIAN4Z9Kseq1WPzclKCq07B2MJWh9dhRqcFfGBHLV4O0cACYCM1xirWdAEJEaybl6bunaIAGsIbC0AXxM3zpIagU6Lq8XgtGbhWJABG1XaYqtrLwGFxmWsdD3OGQmqJkLSIFDkmBdGutbsJGbkNFy5hX+ugEBgmukCR7MC9Sqf6TrGODhySCAsuyQvqTXX7xNXHtizkbWfxSj3u0pp0ALT4jBc5wgtHQxA1GtK1i8qr7/StGhWuzk0XjIgkpa6HxlHrobIYfrhMLsyZxqvx9KxK3so3yPMAYUypqU6UIngl3PnjccT/RN7xk2J/MYc9mppKiWMGUwMp8XLQudIM4e9ZLsXCmE1GMilgFaOthp8BJg8G9xlvEPc1kZvy6wRrsykGGWlMV0RTykZJLA2/SUPmx0ypRo0LI7akLb47OVLeOX0FY0i5zqOt62fxm9/54dw4s/Q2Q7j5YBXhjuY0iBSt2oAOzXOnXH1SogcQXlWaTqMklfQ/vq81zpYfu6w2FnOY1JauzgEh2usRvEX57bU+ZTzdziC2T7gvZ+hn3fk5PpYGPKiuC3siuXxzXbe/l6OHfXScVpSlA7Hdrfs3zEcOxeH836381D2eex8lteWNEELI/U+NNea7Dk9en1Yuio9u39PObJ+3gA8mGPBhNVqDWYxSO7cuVAjLKtRbdD5bo5SWkYKIy4vJlxebjEOI6Y4p2WKkSX3WFX00KZoxdA1ZNWAsnBaACyyjxr17jspas4Zu8sLifBVbv/84Cm3TQDV8DWlVoQMyAitxRZZTbUMkhZmW2NVVlYM7xQDXn75BYn+5qRFzKLKRGTgrAcctIlYUfyRyC4xg0loVUwEVuNcIvGz8k7U6CWB4Lyrt8HMszMhtSGT9k0QClIIE6ZhQE4JYp842N6h87dhSY5vmnYIccRuey69RpyHQUaKE+68/CkQMwy0toAYKbCmyhOG3RaGgFfWL4NwC2azgdPtcnawzsm4DYFjQoxZHoWk8w01gkkM9JhipQ4VQ9dZi6QNCUtKUi7erBHi+TtgkX+1xlYBANY0sTEGsOUBrbfoLOePAUzDTlWFcj3nUbs0xxgr/Ukoe5jXDUgMTSOP+aU5U0z6DCg/P9Wib7NYu86LbK+ccK5rCTzfcF35njpczonRuuplvZEp/VZIHaDSODKidInO9WEBJdkAu92AcZqw2+6qdG9xvNRnUCOoOPeoDiTnLGuWCatVj67fYHP2JEICQmRc7C4AMKwh3Lx9G+v1BuvVRo0tyQbFnNDFpNk3Nyt+IWMYRkzjiPPzc7l8ycAoNbBfn0nRvbNiUOeEFCd4R+g8Yb0x6DqLzWkH30kPHVGsMpWOR3otZhASE4xbwRCh30hX8BR2iOEcYIbBBuAOKTvcuXNZxQNkbgkjjSASCd++89isOjU+M2q9BC9rJOZ5rNx5IpAv95xVDYpslBIXYsA4jYgpYhpHGONh3Qqb09swxmCaduAs3Y+hfP6cM8L4+DMWJUJZgkMy1fODmkiMstqNWZV8loXWJaORtLDXkBVuN6SPwsquKz2jfEckaulo92NnvAY19uuyCuVoqf0/87SNCGwYU6VqnfHoVX0HuGrQOOMxpgFD2mFl15VbX7Z5Ee/AwAhVDJJZeXL1VjCE8lOKN48pzhTeuNwb92tQCvddRNjvXiy/RNLGeDc1EwEAJ+6szn1pGgZoJqrIzS4iucwZBhYbd4rf+vRv35/fHHAnvIISOZZ6A7cnt9vZHlOeMGh9RonED2mHKQ0IOWDtNrjdP1Xn4cSd1nqNXboEM+Nm90Td5tpu5jnT4/xvr/0SVnaFL775G/YMY6sSzksMcYsXhs/gmc2z6O1K5GpzrJSS4gQKFeik7mPKI17YPY9Pbz+N5y9fw6+++mt4+8l/x/vOvqgWlz+1ehpP9m8DEeGJ/in8of/bb8e7b7wdnxmex7vsek9By5LFu07fV491Gy8w5J3I+5J0Yj5Gq0lclDT3M4clcr80Xg/rCer6Y64KU5fxAokjMmfc7p+q6/1Gd6uuvciiDsVWszzhtbJTnLkbIDLSII9crdspWebiqJesEAO1IHqJYwXdhco3pkEoQSrne8yIT1rvBKDW5B1SsYCrTvrhHC8zsEuULOj9OPXl84fdvcu9spyDpRO8PG+9XWN1l32U2gp5xuwfX63BcBu8uHvxnuN8PXggx8IYUaCZoiiwJE5gYhiLauRIhA8wJF20wxS0/kDoF2UuSB+sEpmVWgNjnTbfKxFbNxu9CxoUkQEbgDlhmsZqHI67nXZLXjTSg2YLjBj7UtvQSZJEDXqrTotz0gvA2cKXEWeDmYTiEYXmMlNeVFKURTpUuuPyrE1vvTTK83OGoRhXYmQDACEvFD1Kf4OS2QBRbbw175cXlBeJGjvr4K2XguOcEFdBo7CqTKXHWWBDjy5FrNanMCTqSdN4gTgS+n6Nzll0zmHYXSJMowbl5cKPMWKaRlxeXuB0s0HfdXCdqpZYq5FpKfBmEDLHarSXAuwSqS8R+LL9kiVISTpkS7F/LIHhKnWbc+l8DSnKdiKfCmBu8LbIPkH/t8ZgtVohaLR+UrpTjLEa/1KrIJ26RcpVMg9mL9JZExXiEOWkvSZyzVaUAvDyO+WMTIuxmVKHAxgr5yBGlTlNQj/LdX0BUY+7ZDUIQmPrvHRgNrpuDUvPlVJsX2pAUikoVRWoqDSvtSp8bbdbhCBjKFlBrtEmAqn6lnUene/RdT3W61O4rhfa02oFWIvpBXHUrCF0vkffrbBab8AsBekcI0TyVVTBXG0OlxHjAKvXvyFWOkrUbtkGndeeNc6h36xBBAy7O7AmwduM9ZrgHAM8IgZCTBpQ0PsHFnRJUmfYaMYh2gzkSdSh8goEIASPGEaEeAe77bk8cN0KDAuG1ldQKbBlKSkjkUuVhwKro8so3ddLpkPkiLPOs94DTIm2amS087DewXa9FOhvMox1sFavrZTAHCEqdRlE4sTDGBA/flUoQK6NyEEykHRcBaV+VjnIywdxLXAu1wnRntSnqCMRLEnGJ2vBLq550BYDEtgfg9Vi0FIUacnCQhwBs+jgW75fij6XtEHi/eimJSvOB811dYuDrXKokmF0ldJR9rP3/8LRKYWdS9pYMWJkvxLZLtFl+ezd6wiKMblvDNGcldkzSs1crAzGNl7WvgmBA2KacB5ew5m/Vbn3Ivl6iRN3okWmbs8xKfsOecI2nOu8OTjyGLDDNm2lRuHI2jEQwYeOV5qp3I/QJ07YhUsMaYdtvMTt/gmcKO+/7huzUbu3bbLYuM3BmhXa1J3pFWTkuXhZ6SshjXhh+AymPOHUn+Br3v6lSJzxSy9/FG/fPAsC8OndJ7GLWwxpwHvPvgDbeIn33X4KiROe3z4PMONW/wSeWr0N5+E1XIZzPL/7NJ5avQXPbN6JtTupxmXIEwZOWNv9cRoS5/Ju19whxQaY1dnmQCwwau8TUcW6KlZQDPVdvIAlh7U7qd3YX51ewc3uFjb2pJ6/kgVbFpRfoUHW4Jb8KSpgy33XLKMa4Zbcos9IcVCuZggMZrvubhnH615bBkquC/Qfc0IO1/uxzy23f2X/+scUdo3ufOl4HO5Tsnyd7lMycEWOuHxm5nK88XigJ09R9ZmmiJjmIsvCazdkhMdOAFFGmCaM44RxjNUQL9FCUxYGabrfOljnYbTBl/Dw1WB2vi6icrNOyAhTxjQO2F6eYxpHhHHQC6DQJmg2dqH6/tZLPwfDIAMYk+GsQ9+tYJ1VLqFcZMxSdAxIZ3HO4jClrFQuzRiAWbnAIllp4WFMKew11TEohkO9iZcU4KIgeVknsvTCapQoz0oxlefuVFGIiwyoLKZCY5JsAfSYGDEn2NhLAXiWpmkExiUSiDP61Qrrvsem75GCGKAA1WOVGpmAYbcTAzUl9Ohmuo2xMCbBOYeUGTZnvaGIIVG6RM/NiArBaHYukhrVRUUsq7EtUzUXMxNRrdEQp4yVHoXZqeD5QrLGoOs83CjFvlGdipiktwWrQk/tYM7l57lBXrmnVGdI50UkaLV3hTojRWkp6RyYRfqeFue6dMTG8vhLJkcLeWUuUjUASoahOIayQPVWoVTD0jBS0291vCGIrKw1IlSw2WzgfScOdGbtgaDfK06x8SDn0PVrrFYbrNZr9N1KBAmsxWqzhu96vPLqq8i1lkYUz7pupRRI1G06K0ED56Tvg2RshAYnjoU6nFBKGhPIyxqw1mCzWcNaAmEAYYI1CV0HWJuRcpCmlAzty2KkgV+lIuq9wVhYSjAQlZmS1zSQni8pGozjJYbhDsbxNZTsJqiD5OYJwKJxFkv/DlBZ4/O6nqPOuTrppdt5VtEHY9RxJOniXgxQy6WuTJ0ha7HdniNncSyIE4AMQ1pTZgi4S8frRwlWFR8G4MzsKFz93HEUzXXDs9FxpYaAS21GeW1fBWqJGhk8eFsUfbS5nHH1tcOII6mDuCyIXToBh06RM3TVYMJMLxHVJ5XkPBKFPUbFKM7CoWFQ5qNEORPSldqR61CchFpgyqhHdRgxLlSXQlea8ihRX9chJsk4fPLyObz3rK8KR5kTQpZnR3HMrhpepc7jEmfdLZ2/uc5lYzd7mZPlHFlYLcKeDa1ybkoNzkvDi3hlfAUfuP1lWNnNYr8zVRYHYzJkVI1oUauj8/TC8FmEHLBxG7xlrQFEGAx5wCcvn8Pt/jZWdo0PPPEleO7ik/ilF38Fd94m0fv/9sp/w4vDS3hluIMb77kJAHj3jbfDkcOd6Q6GOOBZjnhq9TZchnN8avtJ/MfnfwG/+a2/Ec+evAfWrlGodkGVqTrTgQ64+3ejAx4ausVxLXORMfP7YwogMlib1ZV1Dkj9U2BRgzpRZavLeCGOYrzEze5WdbyWVD9xgMUZXI51ud5KNiwjq7z+IqhXghEL58KbuaHsXjPAI2vmbnNySKFbrqnl5+4nI7H8bvl9uY/Dfe+N9fDewRJo2l+31zsiknGVXi8lA0m8P9/LwMQbjQdyLLYXr4FJincBiMoOkUTlMcIQoXMdOEeECbi8fE07GO/Ay06KDCny1QclkwWMAzlRIXLeoe86iXwbA++0UVtmjOOIcZjw2p1XMU0jht1WqCwpAZyqM0Fq1Puuh/fSObfr1loDAEB5qp3r4ZzFunPQgKbcoJXyNAyj1JEkuTDIGIRpQgyTOkV+L7IGcmCyYHKA7SqPWyR5pZi1NBMsBoQYorl2X5ZJkv4UReGKeZ+OU+VJ618UfwqyLL3Yb8XQxKI7tKYcARYaWQrIaYR3AWnyuLGRBnxQak5KQhmQiAMAiKE8jCMut5fSJ6DvUOxXYw0ci9oRSKhbu2HQugAH7y0265VG2CUbBBQlH+hBGHDIALFErrlE8C2MAXw1ugy8sSBicJykfwJBIr9Go8JZjjlm9dytrKnMWSkmSbqDjxnlkg6abQgxqbE331idZp0YjEkLywv9JGUtzFUHLKkDnjNLM7quQ9eL4VcMRLNwELw14BQRUqjZsBCT0sWkAZ3Q30LN6CHneq2sVj3ICh3ROTEOSjO7Wk/CDOuKlLEY1wwSp9sbwPZVkctAlaWMQYYEAdZnN7Fab7BabeZ+MJ1HstIDpl9vwJnhVPULRNjuhDYZQ8Cql34jq9VGunbHjO12BwLj9OQUBAPOwLALQIZmGsXZ6L2HJYDDhHG4gHOEriu9OzLG6UIyPEnEAjJIr3kCjAWp6EOpYfHOwnsSAxjlvuDAfgVjpVu99Q5dt8L0QhDJaZMBJ1S/XByFnNE56UuDnDXbledmocXZJYKzUqCfSDrVZ81eQJ2M0uAzxahOXQIgNydrOm0iGmCQ4A3D9F7eZ1FPE663CGQ8btQu0SiRfu0UfFAgWTTll12LCxefuTSWzEBGNTYPJWqpqgUeGh689/A2NNOZiAhForEa8ERwGvU8pPkwUCP41QgHqjFa6A8lW1B5+PqZ5YO7bH+1KIANecKh3OwhiAgOfk+TnxZ/lscpj3Rx6pYSvscMw2pELYw0S8fHsYzSWrI48zersXVnehUMxpfd/nJs4wU+vf2fIBDWboN3n75Pz7vR+dmX8bTG4czfxMad4L+8/IswZPCbnvigFGW7sxoAKAYYs9DGyjiKI5g54zKe4+XxRdzunoQzHrf6p3Cre7Lup8zVlKX/TXekd0GRBV52VQaktsA5h/eevR+RA4a4xT//+P+Of/1r/wVf8473I+aET1+8gN/+zq/Be87ejS+++WX44ptfht/+9t+Bn33+3+Kl4WV84PaX4Cue+grc7J5Ap9HkZ9/3rhromM8h8JbV03hi9VZ84NZv3De+STo4W+PgssMubmHJijOn21mOuziZJfof8oTervf4+sXhkzWvdUCQRoTLMR3iIt7BLm7x1vUzdd2s7QYru8apvzFnHtV2WPL9Yw6aQTjuBNWi8wOnslzZrMXJqOt2P/BwPzikLS2zFYfUo7s5EsvtLDMShwGCGgio9bVKpWS6cn2WtV66ks+h5/3PCe3toBZlsU+r1DNGJ2tAP19ox4cCEW8UHsixiHFSI0MOzpkMS/IoZo7gBIRRjPIQM6ZxhxCENjXHp9QI1htGmagS2XfOSiTTWql3UFlZ6X0xYZompa9MtTuwIQO2AKEoJVkY52GsRdevpE9E12mmYn4QEYmh4qyB79Q4BUuhuaoRSf2C3tDJwLDRKCErZ1siwqZmbJw2vpNorHW2ypxaK0pPVS63JCRMKSJGpTpp0FMWQIYap/naBc71mMp8zvO6d+HUcLsaMjmBbQZHC6w6RJPAwSGOAWGaJEIOUd5hqokCAJI9mbTDdlS1MEvYO6dGawAq9cOoyXHQP0FDubVouhjBpYaiOkIQA83ZIqdK9buZGaBCUwCQSTupqJmitThlG8U9KAbfXLfCNaIfU4JhzShYq4XN82VeqEoxxaqyRCSGOpNBZkJOjBCjfN6XbJqpRggv/wKLn5UGlZV6mMTJkWtBqCbktDt2kVEmrbmg5fxmLNWfWI+hOGtTDJimKAXJaohX5TK9QTKJYEGC1CUkJsQMWGPAUJ4qQ4rDSUUAUsZu2GGKk6wzle89Od3AUA/vDChphi2VTt+ifLbqe8S1GiJWitbJkBRgE0CWsV5L92sQa5YpSXf6rOegMOD0H+LZ9y60FjGOZIml+hDOIJvAxki2w0pNgzHdXLStmSTWeQQDkQh28RAQf3mOClUzU9enNbZ+1ujg1DefpXlrRBlamxXm60J7dpTif5CFNkBXR+vRRKPuhmL8FmrRUr5ybzxEVx6ouUQy9bNGaUnLo+DFvzWLvfhErU/QMZT3hHQmsp28+APmKyowe2NcjLsWDi/Ho1nrpSuzl20unwHXiP++EWCubPMYCu0KdDWaufe5aoztRyOvo4dch6NFwQtYsvW4Cu3LGa8G/gVud0/AGb8n63pM2rIYOo48zvxZnQsDsyjuzxpJF+NxSoNk8ZT+JduJ1YAthqZTQ/bwmDMnRI7o9l67qhBWjLrluXPGyXlwwNtPnsEHnnoJ7zgVmdkn1zfx9OZtuNHd3HNMnlo9BYLBze4WTt1ZpYoxM6DZLXF+pY7jItxR1a0OmRwSR1zGC/RK9ym1p6KiJffIyLHS+KY86RwubCwU2+B6iWRZOfv9GRhcGzteqSlAqVOQrudD2klzO3Xc53qPfadJvlzudPP1UeqkyvHt3TtwtdBYHGbI43/x3mGQ4fC1w20cuy7uN5K/l4UoMeEj310ex/2iXPO8+EpxeMpz5Lrv7WValvOm9zCaz/Z9j+dB8GCORRjQ9z16Z2EtwVotFkzSfEs6BgehP03S/G4OwC8WNc2RUqOqJ845dJ1H54tzIRQXa6xmPSacn59jmsZKXwGkvsD4rj5kRJXJwvlepVrXsg8nDkr56yzBGUK/AqwjOEeIAYghI4wTdsOIy+0OIWgx8YK/X3oVdN0KvuvgvEe/WskxOA/r5l4bRmVll9xuoETEVE1Go74EEhnelBFiQFT500mLa+V49yVFiwoMEYGsgzNWZT1nB8OUrAVnULkQuKQU1di3ElGbHGN3/hqGccDFnVeQcwARw3uvMpjFI5fFOwwDCISz0zN0nUfvtVeIcpRNyWjpHaD0wiAiLVRW7z0nlEL0sv2cpd5AnKBSW8AwBuh6oaiBgRRDjcTnalTPRlvG7KxlNXCrQ1EdWofdblcVzmKMVR2qFmurKhnr+gXEGUkpYTeOKI0RV+tO5IKtNCFMIWKcIpgJfSeGt7Fi+KbMoFgEELTZoBa1lZqaFEIdU4nepaS9HIxQ1Kzx6Pu+ZnIkgzU3zZP1I+PNzIgstVLb3YA75xe4c3GJQdXNjNUMosonZUAbxDGIgd0UkGjElIFuJSnXjo0E1ikjQXpPhGHAaxejNJobBzHojcHtJ27j7OwMTzxxu9aZlGJ5oozVao3NZoOTzVpEFRxV5SPnDciI4X/79gm6rtMAwA7DYBGDr/1HxNlLcmMu14reUju/qsZkjlG6ZmeJ4TASKDOcz+i6NQwcrFvD+1MAAzIHaTaYk0auRaEoxwhDhL4XuUfWOh1AxR/IaP2IRImtI6RMMIkgStjzw2c/y5jVWwAQJ13HrLGBOeos/ws11REhuUcTjbobRA2mQ2d8jWIeo/bYogSGBR2gzpWrWYVDMDJQ7i0HCk8lW1LQ0ZyB2GuOp+z6kmHozNXI9bGo5zH+dFUwgjpTuNqcr8jWHkrhAvtKL/fCMcOuBAv2jAkiEBZj4BLp3aeHLOV/S+S/bEPWXPk+z8bm4nlesjTSiE6fB2mHy3CJ9569/0qviJKVKbSYzNLgzhoHbzp84c0P1M8WuczSXDBzqjKkr0wv49Sf4cSdqpStSMYSEW51T2i34evntUTu917T4uRlD5WQRV46csTKrqXWAOJUrfxNfMOz/xu+4dn/7Z7n7Tc88RVVaWo5J1nrE0pfjSFtcRnP8Ynzj+MDt34DbnS3qqPxPy4+gfdqjxAHKVDufCfdyDlhSgN6FQy4CK8hs9SBrNymZkcMdXft33GYsQpZOpSPaYe1O7nSvbk4TwTCLl7iucv/gfeefSGsFqoXKpz0QzE1ywfMWUAA1TF6afgsvPHoFz0ylsbx8vPzXVJ+W/aAOMxy6JeOOg81xLBwEA7vK3ubWVCXjokslGv0sFv53n6XmQnsZxsOC8PLdbKE9J25Xp2ubKMEaSQOlmowbbnt62iqD4sHciw2mzW8tyAkgKXBXYwRYQqamZDC3tKpFpgdCmNKvYGHtQ7OenSdGP9938N4UXBZeaOqLwYhTBhDxG43acGwRFWJDLqurw6KNaaqSFl1LLq+h/WyjwLmBCJGZxMMAgwleLcCyCEnh3EYMI0Bl1uhPxFLIXotzi6Rc5YxOOfhuxW6VY+z0zN4b7HqHIiSRgyV1207pAThr5cGXpDUZE4JYRrF4EsJMRQu/V4MDKRKOMVAqgXuy54WzsAiw1KAyRMAaZZGGt1HNmLsJFF/4hxBCIB2m5imLHMcoQ3VLIikV4DEqkvUA5W3P00TmBkvv/IK1qseJ5s1rNYKiEIToes6rFcRIUbEqHUH6qRoEE6c05zFuASQCTV7MRvG+jDXGoTiqGZWadhU+j0QPJRqBlrQFxbfL3UbeTbgSyF3Udkqny1Zn/K/zx6OUJ0MUX8Sp0IKdyzIOIAJRBNAVl8WapDV+pIiz5xzho/SbbdIyYK0loOEWmaTQdbsDxmLVS/F8VaV0awX4QHJzUjhOLHUJaQoBhSRlTlOGbtxwuX2Ei+88BK2uwFjCHMxudXmk3IBg4yRrJv+zpwxBaGQTUlqafoc0PU9vBNFpJwCht05WLXHLYkK1mq1AmeD7XbEJz/1vDjnXup9rDXYrDdS51TOe8wYp1wzQ3aKIBtBdoCxAX23gu/WIEtYbU6Q81rX+NyBO+aIIg3M4v0hJ1b1rwCiACCpE12Kai2AiGG3gzNClTq7dQspThh2W4QUpdljiaEr/UmOdqxBBFOi18xIDETNSoiCnquGoeHiG8u1xkSwnZdsDvR6I6oPiqIsLHufM20wBGYDo+f9caMznfZ42O9mu1+AXPoczRkFrpkDe7Q+AZCH8NLwOWYoOOM1yryfaXDGw3FxdHT7NH/vQSKJ9ZhKxsPMTeyOjatE3++34uUwW3A3I6dI7laayd0TDVcgDprdHzujGoHLeVp+p4xRujCv9GeDJ/q34Ia/uXeetvESMYfa+4NAiOowiDIXwR4YYqX7t6EiPSqqiDGHPWNODCMCU65G0zGDbo8yUgNDi3ksNLtibBYnlyz8oseFu4YqdjdItF8yKGMacBHv4NTflH0v5nRl13DG4wO3TrByG70mpBHk29ZPa7dw1OcwIMa944xMQske0w4EqTlYLfo9vF4s5/rQWO5Mj7yoFbrR3bxiqJbs0eH1tbzuAQk03Oxug8jAq0jAMmNRHGbwbLyLs2Hqdag7RG1eec31eDiOwwzH3T4/ZwxK6Gf//4Iy9uIklGtm6ZQcfu9YbdRhHYRk99xdj+9wngjX08Nez33vfnBfq67eRIw89HIakZXDO4UgMrLjLHNY16IhVDlXIj33DGDmrFulP1OpMYgE5oSUE6Zhwm43YDeMiFELYMsJ0WgzEdd+FqZI1Bpp4CeF5LIQ5LtBjf4I8ABGAJuMzA4hZ+y2WwzDhN12K5SHUsTLGSmOKJQcQilQNkrxkIJSQwxLCURSSKlWIwACJ4kyhjDVeYraD2J3eYkQREErRl5cI0a5+CLhis4DyKr4I1KdsKIAxEaL7yiCOCLHS4ATgFB58GAnBlVICGGnjkUUu4cI00TiXIziyOWYkXXcxQBnVqnRDIATJpbjcNYhxgCA4a1kSMIk9Qf15qSOVVTjXTJM6uFHcbKmaZSbJ7FG1+cMUY0O56SRWXG0YhjVMZmdn5xVJWb5oCWlb8WIKUzVIS7ZgOJUlJ4sJTuTWW5h1oq8ZaHgsYXWZ2StfyHAQLuvy+8pz/SjzEVRTOZsnKZqfBpTpGVZm6IFUThLJfou10SGiMfVBBxQu21PMYIowSSjtoEYBfP8OYSUEXLGdrfFxcUlXnntVcSYkZSSRBBeUMoRxAYgoSDULIiOj2MQJzeOsM6rEtsG6DrEMCCMO4y7y3qtOusA72CIdJ6lAWz81KcAABAdSURBVOF6c4KTzQlCGOV6Yqlt4izCDCklxJyqo000wNgJxg1Ajhj7FU5Obkv/CyNZrBLjKjdcYculqhbHmTENssbHcQuoY8EIMCSKS10yiC6BI2sW1aBz4miDDVKUGpoMpfgtaHaBoPeghWiD3Ei1P41kFZL3e5F6ZtlWqW934OpsFOGAso4PSQElm7h8yMaY6nYfNco+tufbo9HiEhkX6oy78kBfPmgflsJ1qLyyVzi6eLjfiyZxP/spXY1fzzauM2KWNSJ3M45KZhPgvWZ5x46/bOtBqFBXajIODKPrx2ZwMVzU3+5Mr2JIO5z6myJ3rjQZ6Tw+wpkOfW1yKNua0jh3QtfIamm0dzFcAJ7g+n6PRmPJXZupKD1ErHHq6EyAn3txSANFxsqGmrGJKi97GKl/GJxPr+HF4bN4evMsDBHGNGC008E+DHa8ww47FGpTjBkX4xaWhqNZh5KtiznUeSP/cNHoKY2aDRox2bTXAwSA1kMxJhMwxB1CjDgP5/BGamAKteuwXqXgsBYqcYSBQTRXAyKH6/GQ6rPMsJXP3i3z8CBY7ntJ7bqX43K3+9DhNVnqKSrzZvG5Y/fK+60juRcuzi/qMb6RuC/H4vz8HADw0//7P3hDd97Q8L8SXnmzB9DQ8Dpwfn6OmzdvPvJ9AMD73/vFj3Q/DQ0NDQ1vLN7oZwTxfbgqOWd86lOfwtnZ2RviATY0NDQ0PFowM87Pz/H2t7+9ZgYfFdozoqGhoeF/LTyqZ8R9ORYNDQ0NDQ0NDQ0NDQ13w5vTQamhoaGhoaGhoaGh4fMKzbFoaGhoaGhoaGhoaHhoNMeioaGhoaGhoaGhoeGh0RyLhoaGhoaGhoaGhoaHRnMsGhoaGhoaGhoaGhoeGs2xaGhoaGhoaGhoaGh4aDxcv/eGhoaGhgYAwzBgmqY3exgNDQ0NDfeJruuwWr1x3eWB5lg0NDQ0NDwkhmHAe9/7Hjz//Gfe7KE0NDQ0NNwnnn76aXz84x9/Q52L5lg0NDQ0NDwUpmnC889/Br/8if+OGzfOAEhXV0D6r+79y3zw6tyjddmvtb7LV7eBI9/ha7d3sLcj2+O911nHOH9i773FcQAMXPMe39e2D/Zz+P0j2wbv7ycjX9l++Tlft19m5L3jyHv7Pfye/DzvJ1/Z3nLsed52Oaq97+WjY9jfZ0Yuh7sYz962OO+P9WB78z7zle2XqdQt6Pb2jynz4bjn1zPP5ybXOVy8p+dTtoGj7/HBuA+/dzgvh/vZP8ar78nP+npdOvN4lt+XOd8fExY/H35n/tzimj3y+nJ79Qxe2R4O9nV12+W8LN/L9/oO9seKg+3ledhXro1rx7A8h8tjX6wpHdzB74ufD19fjK8Oqvy+fP3Y5/jI96/bL468HjKe/5nnMU1TcywaGhoaGj73cOPGGW7cuAHguFFfXt9/dX7oPYgjsP+dhWH7Ord3V+P/iIFftn3de/ftWNzt+/faNt+vY5Hv6ljwQzsWy5/zwbZfr2Nx7DjeGMdizwh/nY7FdUb9Vcfi+veWx/56HIu7vSc/39tJWL5+aERf953X5Vg88H7v7ljclzPCx78DZlD9ub6JxUYO3ptfv/q9MseYP/ewjgUfef2+P3ef+8Xiu28wWvF2Q0NDQ0NDQ0NDQ8NDozkWDQ0NDQ0NDQ0NDQ0PjeZYNDQ0NDQ0NDQ0NDQ8NJpj0dDQ0NDQ0NDQ0NDw0GiORUNDQ0NDQ0NDQ0PDQ6M5Fg0NDQ0NDQ0NDQ0ND43mWDQ0NDQ0NDQ0NDQ0PDSaY9HQ0NDQ0NDQ0NDQ8NBojkVDQ0NDQ0NDQ0NDw0OjORYNDQ0NDQ0NDQ0NDQ+N5lg0NDQ0NDQ0NDQ0NDw0mmPR0NDQ0NDQ0NDQ0PDQaI5FQ0NDQ0NDQ0NDQ8NDozkWDQ0NDQ0NDQ0NDQ0PDfdmD6ChoaGh4fMDd+6c15+ZGQDLz8t/mQ9e5YPvYP9dvroNHPkOX7u9g70d2R7vvc46xvkTe+8tjgNg4Jr3+L62fbCfw+8f2TZ4fz8Z+cr2y8/5uv0yI+8dR97b7+H35Od5P/nK9pZjz/O2y1HtfS8fHcP+PjNyOdzFePa2xXl/rAfbm/eZr2y/TKVuQbe3f0yZD8c9v555Pje5zuHiPT2fsg0cfY8Pxn34vcN5OdzP/jFefU9+1tfr0pnHs/y+zPn+mLD4+fA78+cW1+yR15fbq2fwyvZwsK+r2y7nZflevtd3sD9WHG5vHvaVa+PaMVx37Is1pYM7+H3x8+Hri/HVRV9+X75+7HN85PvX7RdHXo+L199ANMeioaGhoeGhwMw4PT3FF73ni9/soTQ0NDQ03CdOT0/3AjpvBJpj0dDQ0NDwUCAiXFxc4H/+z/+JGzduvNnD+ZzEnTt38M53vrPN0V3Q5ujeaHN0f2jzdG+UOSKiN3S7zbFoaGhoaHhDcOPGjfYQvwfaHN0bbY7ujTZH94c2T48frXi7oaGhoaGhoaGhoeGh0RyLhoaGhoaGhoaGhoaHRnMsGhoaGhoeCn3f47u+67vQ9/2bPZTPWbQ5ujfaHN0bbY7uD22e7o1HNUfEb3Q5eENDQ0NDQ0NDQ0PDrzu0jEVDQ0NDQ0NDQ0NDw0OjORYNDQ0NDQ0NDQ0NDQ+N5lg0NDQ0NDQ0NDQ0NDw0mmPR0NDQ0NDQ0NDQ0PDQaI5FQ0NDQ8Nd8f3f//1473vfi9VqhQ9+8IP48Ic/fNfP//RP/zQ++MEPYrVa4X3vex/+3t/7e49ppG8uHmSe/uk//af4nb/zd+Itb3kLbty4ga/92q/Fv/pX/+oxjvbNwYOupYKf/dmfhXMOX/EVX/FoB/g5gAedo3Ec8Z3f+Z1497vfjb7v8QVf8AX4+3//7z+m0b45eNA5+uEf/mF8+Zd/OTabDZ555hl867d+K1566aXHNNrHj3/7b/8tfu/v/b14+9vfDiLCP/tn/+ye33nD7tvc0NDQ0NBwDf7RP/pH7L3nH/iBH+CPfvSj/O3f/u18cnLCv/Zrv3b08x/72Md4s9nwt3/7t/NHP/pR/oEf+AH23vOP/diPPeaRP1486Dx9+7d/O//1v/7X+T/+x//Iv/zLv8x/8S/+Rfbe8y/8wi885pE/PjzoHBW8+uqr/L73vY+/8Ru/kb/8y7/88Qz2TcLrmaNv+qZv4q/+6q/mn/qpn+KPf/zj/B/+w3/gn/3Zn32Mo368eNA5+vCHP8zGGP7bf/tv88c+9jH+8Ic/zF/2ZV/Gv+/3/b7HPPLHh5/4iZ/g7/zO7+R/8k/+CQPgH//xH7/r59/I+3ZzLBoaGhoarsVXfdVX8bd927ftvfYlX/Il/B3f8R1HP/8X/sJf4C/5ki/Ze+2P//E/zl/zNV/zyMb4uYAHnadj+NIv/VL+7u/+7jd6aJ8zeL1z9M3f/M38l/7SX+Lv+q7v+rx3LB50jv7Fv/gXfPPmTX7ppZcex/A+J/Cgc/Q3/+bf5Pe97317r33v934vP/vss49sjJ9LuB/H4o28bzcqVENDQ0PDUUzThJ//+Z/HN37jN+69/o3f+I34d//u3x39zr//9//+yud/1+/6Xfi5n/s5hBAe2VjfTLyeeTpEzhnn5+d44oknHsUQ33S83jn6oR/6Ifzqr/4qvuu7vutRD/FNx+uZo3/+z/85vvIrvxJ/42/8DbzjHe/AF33RF+HP/bk/h91u9ziG/NjxeuboQx/6EJ577jn8xE/8BJgZn/nMZ/BjP/Zj+D2/5/c8jiH/L4E38r7t3siBNTQ0NDR8/uDFF19ESglve9vb9l5/29vehueff/7od55//vmjn48x4sUXX8QzzzzzyMb7ZuH1zNMh/tbf+lu4vLzEH/gDf+BRDPFNx+uZo1/5lV/Bd3zHd+DDH/4wnPv8N1dezxx97GMfw8/8zM9gtVrhx3/8x/Hiiy/iT/yJP4GXX37587LO4vXM0Yc+9CH88A//ML75m78ZwzAgxohv+qZvwt/5O3/ncQz5fwm8kfftlrFoaGhoaLgriGjvd2a+8tq9Pn/s9c83POg8FfzDf/gP8Vf+yl/Bj/7oj+Ktb33roxre5wTud45SSviDf/AP4ru/+7vxRV/0RY9reJ8TeJB1lHMGEeGHf/iH8VVf9VX43b/7d+N7vud78A/+wT/4vM1aAA82Rx/96Efxp/7Un8Jf/st/GT//8z+Pf/kv/yU+/vGP49u+7dsex1D/l8Ebdd/+/A8BNDQ0NDS8Ljz11FOw1l6JBH72s5+9Et0qePrpp49+3jmHJ5988pGN9c3E65mngh/90R/FH/2jfxT/+B//Y3zDN3zDoxzmm4oHnaPz83P83M/9HD7ykY/gT/7JPwlAjGhmhnMOP/mTP4nf8Tt+x2MZ++PC61lHzzzzDN7xjnfg5s2b9bUPfOADYGY899xzeP/73/9Ix/y48Xrm6K/9tb+Gr/u6r8Of//N/HgDwm37Tb8LJyQl+22/7bfirf/Wvfl5mUR8Ub+R9u2UsGhoaGhqOous6fPCDH8RP/dRP7b3+Uz/1U/jQhz509Dtf+7Vfe+XzP/mTP4mv/MqvhPf+kY31zcTrmSdAMhV/5I/8EfzIj/zI5z3f+0Hn6MaNG/jP//k/4xd/8Rfr32/7tm/DF3/xF+MXf/EX8dVf/dWPa+iPDa9nHX3d130dPvWpT+Hi4qK+9su//MswxuDZZ599pON9M/B65mi73cKYfXPXWgtgjsr/escbet9+4HLvhoaGhoZfNyjSjj/4gz/IH/3oR/lP/+k/zScnJ/yJT3yCmZm/4zu+g//wH/7D9fNFtvDP/Jk/wx/96Ef5B3/wB39dyc3e7zz9yI/8CDvn+Pu+7/v405/+dP376quvvlmH8MjxoHN0iF8PqlAPOkfn5+f87LPP8u///b+ff+mXfol/+qd/mt///vfzH/tjf+zNOoRHjgedox/6oR9i5xx///d/P//qr/4q/8zP/Ax/5Vd+JX/VV33Vm3UIjxzn5+f8kY98hD/ykY8wAP6e7/ke/shHPlIleR/lfbs5Fg0NDQ0Nd8X3fd/38bvf/W7uuo5/y2/5LfzTP/3T9b1v+ZZv4a//+q/f+/y/+Tf/hn/zb/7N3HUdv+c97+G/+3f/7mMe8ZuDB5mnr//6r2cAV/5+y7d8y+Mf+GPEg66lJX49OBbMDz5H//W//lf+hm/4Bl6v1/zss8/yn/2zf5a32+1jHvXjxYPO0fd+7/fyl37pl/J6veZnnnmG/9Af+kP83HPPPeZRPz7863/9r+96f3mU921ibnmghoaGhoaGhoaGhoaHQ6uxaGhoaGhoaGhoaGh4aDTHoqGhoaGhoaGhoaHhodEci4aGhoaGhoaGhoaGh0ZzLBoaGhoaGhoaGhoaHhrNsWhoaGhoaGhoaGhoeGg0x6KhoaGhoaGhoaGh4aHRHIuGhoaGhoaGhoaGhodGcywaGhoaGhoaGhoaGh4azbFoaGhoaGhoaGhoaHhoNMeioaGhoaGhoaGhoeGh0RyLhoaGhoaGhoaGhoaHRnMsGhoaGhoaGhoaGhoeGv9/3GJ57CNeKRcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "_ = viz.visualize_image_attr_multiple(np.transpose(attributions_lrp.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " [\"original_image\", \"heat_map\"],\n", + " [\"all\", \"positive\"],\n", + " show_colorbar=True,\n", + " outlier_perc=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's play around with changing the propagation rules for the various layers. This is a crucial step to get expressive heatmaps. Captum currently has the following propagation rules implemented: LRP-Epsilon, LRP-0, LRP-Gamma, LRP-Alpha-Beta, and the Identity-Rule. \n", + "\n", + "In the next steps, we list all the layers of VGG16 and assign a rule to each one. \n", + "\n", + "Note: Reference for recommmendations on how to set the rules can be found in *[Towards best practice in explaining neural network decisions with LRP](https://arxiv.org/abs/1910.09840)*." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "layers = list(model._modules[\"features\"]) + list(model._modules[\"classifier\"])\n", + "num_layers = len(layers)\n", + "\n", + "for idx_layer in range(1, num_layers):\n", + " if idx_layer <= 16:\n", + " setattr(layers[idx_layer], \"rule\", GammaRule())\n", + " elif 17 <= idx_layer <= 30:\n", + " setattr(layers[idx_layer], \"rule\", EpsilonRule())\n", + " elif idx_layer >= 31:\n", + " setattr(layers[idx_layer], \"rule\", EpsilonRule(epsilon=0))\n", + "\n", + "lrp = LRP(model)\n", + "attributions_lrp = lrp.attribute(input, \n", + " target=pred_label_idx)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us visualize the new attribution. As we can see in the generated output image, the heatmap shows clearly positive attributions forthe beak of the swan." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAG2CAYAAADiPRBgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9a6xt25bfB/1a732MOdfaj/O899x77st1XX4mtitJhdiJXLEQYBQSY0UBlAfCEEACCRCCj0hICQgivvAhSCgJAUVIoAgEFnaEotg4nxIHET8Su2xXuVyuKt+67/PYe6815xi998aH1nofY84119pr7cc5+5y72r37rLXmHI8++uiP9m+PfxNVVe7lXu7lXu7lXu7lXu7lXu7lXl5CwufdgHu5l3u5l3u5l3u5l3u5l3v54ss9sLiXe7mXe7mXe7mXe7mXe7mXl5Z7YHEv93Iv93Iv93Iv93Iv93IvLy33wOJe7uVe7uVe7uVe7uVe7uVeXlrugcW93Mu93Mu93Mu93Mu93Mu9vLTcA4t7uZd7uZd7uZd7uZd7uZd7eWm5Bxb3ci/3ci/3ci/3ci/3ci/38tJyDyzu5V7u5V7u5V7u5V7u5V7u5aUl3eagWivf+973ePToESLyutt0L/dyL/dyLy8pqsqTJ0/48MMPCeH12pDu94h7uZd7uZcvlryuPeJWwOJ73/se3/rWt17ZTe/lXu7lXu7ls5Hf/M3f5Jvf/OZrvcf9HnEv93Iv9/LFlFe9R9wKWDx69AiAf+qf/c8R08DFxY48z5RSCUGIMaAY+imlIiKIBNIQERFCEIYUiTEwDFtUI7UIOUPJlf1+opRCrRkAEYgJQhRCsL9NdGnUyigWJBBEiGHAoruEUirqx0sQQohEgrVHAnGIxBQRSVRV8pwpBaoKEod+z1r9uWqlVkWrNVD9+1IVVUWAKJUhFqgFrQXVCVBEKlULqhUEUkwMcSAEb0+CGCJBxNpQsfZre4IKFJTJekEVVQhBSMPAdntOiomUBmqFWpV5FqoKpSZQ6xPxPtRaKDVTtYKMxLghpXPSsCXEgRQ3IIEaAsXvnktlunjGNF0y7T4C3RPZI5KRUIGJqpk5F1RnqlbqPHsHwtn5QEqBGKHWTKmlv8+lZaAIquJtjgiBECMxBGK0fwC1KKVkaq0MY4Ig/V03qRVqqQSJNmAUci7M80Spxd6biCF1EZTqYy8SYyJIQAh27xRJwcazqo0tCZWUoo2tMKIESg3s9pk5Zy4vn5LzRC0zOc8Hz4qClkKpNrbE/2ftVlStfSkm3nr4Nt/68Ft8+NWvsw1jP9Jn3WpMKCEEQggMaejPFqM9n83VuFgm9GhWabVn0+rj1uZeEEFEqOpjshZqztSS/UEUtKC19p/ar1ptjsYNIW2Q8Zy/+td/je/98Mf8tV/+FXtWBAVElaTKfr9nzhlS4OFb53z4c18nbQMhBVCoBUrxZxdhGAZEEioJEFRt/pQ8UcvEtL8gzxPz9AytGdXKdnvGsBnZnj1kGM8QSex2mZxn9vvJ2u3zrNZKrZWcZ2rJ5Hm29w9sthuCj7laZlQrMSWGNDCMCW3rR1FqbX3b+rGSUiKlxDDG9goQsXUhSkBCRGRAYiJIZBjOkJiQmJiKUGol58w075nnTC2BGDZsNm+BCn/h//Zv9PX7dUq7x6/++t/i0eNH7MuO4uMoSWIII4qiWsmabQyLEMXm2fOkqo0j63fp57+IqGq/VpOXud5112/3UJ8jre0x3GrbvdP9bF3S5X4sa811z3bcpwfnfA5eJ1310Yvcv51/m/F022sBr+R6t70X2Dvob1KVoplSM4jYfiSBrJlcJ6ay59P5U/7qT/4q33r4Lb6y/QoxJM7TOY+HtwkSr+3LXLPrTofPV2qmaGEIYz+31IyipDBce61cZ4Yw+H57OIbsOcqV+1Wtfczt656/++Rv82f+zr/Ln/juH2eumX/+//Qv80/9kV/gv/n7/6t848G3GeMGgP/Bn/+f8W//q/8OAH/fn/gF/vyf+jcP2lO1UrWefL61zHVirraP1ZrZ172dQ+DR+PZrf/evU24zn558+oSf/x2/+5XvEbda4daNSkPk/ME5tVTmeTYQ4QquiKC1KYZiynStlDKTC1RVYjSFeBgGYhBqUiTgykiyczBFPIgreiH6pLJNFwF736aSjGkgxcg4bFzpD2g1pUBVHPRAng0c1AqiILUikgEhpkBKpklJwH6K+DWgFOkbBK6YWb/Y9a05Fa0TZa6UDPPeOy1EpIIpt0pFmWt2AAaxBGpUQoxNkyOGhOKKSN8IU1f6VJWUBtIwMm5GU2ZicHVHGEtENVDriNaAqnSFvsxKzRmpmRAqKVaGpKQ4E2JiSFs0jKiM1LBFiSiRTdqQS2aaHqJlT83PqOUSLXtK3RNUGQZT7lWVWS5AZ0Qz2w2EqEBGRJFgm6EN+qYie/+7Qk//WwjWLYiYUla1IFqAQq6zvU8JBExxFsLhffy6MUWGcWuKZ63kXHw8CRICIcCQoo0zAqXYgliLgbsYAjFg1w1KjDZeghRT3qNQCYQYqJqIuVBKJRYbLwYgoz23CqUU5pwpOTs4MDAdHBSMaeS9t97nncdv8eDsARtJ9oYVRNpmpD5EtAOHlFJ/7gZgDZhFQjwCFj7IS8ko1caxA4IYDLRLCH3cqVa0FGoppglrRWs2UKGmhONgGx/2IW2QtCWMZ7z3/ntMRdkMv07O1e8kJIEHSZiiMM0zT8uMBCEOA+N2QxoTUaLN4VIcnGLPGgIi0Q0BDjwrlBKQqKScSGPom3WIEYmJQqRmBc1MOTPPE9O86yBBEbRWu948O8DIdhOf/wbYhFoMtOQ8M4cdYYoEH8fWrgVYtO4vFIpmJG5W497HyphADciWMlHb+PX1c3u2RQnUGqjaAGkihA1peESe65X1+3VJu8eDRw94/PgxVR8ufb3a3K9ToqoW+0uE6IrJWtYKSLvXWoF/lc+oqlQOwf7LXH8NZNabfFMaG9hofdMUfj+7/9bWymPF7Or9aj/ruv48blu/x5EyePzZ65T2LK9KmTvVN3AVaF03jq57b8fysuPwNvdvxiwww2j7u2qlaOE7X/kdzHWiaOGt8V2GMJBkuBYcVa3MderfJRn6vaeyZ64TKQy2ZxKobgxZg421lJrJmrsxrulqQYKBIuiAoz3nug0AD8ND9sMzvnvxLb75/rcotfDt3/UhH77/FbYPN2zOB8Y4solb/sd/9L/O7/3mN/iX/tX/C/Fs8DXH+iRKdCOYXb+ibOIW8b477ofWv0Vdl/B2D92Idzhn1waS1n/iRutudET6tZOkK/P2+P2vjQGv0sBx27XyVc/xO5lOSmlW1ICG0K0wYAqIKf3RlHnbNc3iXc0aqVXJoRCjQLTj7FzQYDbYosUszbm9cAMi0tCE4ApT14pMgRTF8IeY/h6DgZsqq023dgukVJ+koXlYFgVMgn0n7plQxZWtZiWt4Ap8AxcCqBZKrQaSajXFC5DaLBAAiih+DdNNGggK4BZKU1Dx2/RBISwGYl1Z3EQBUwYbsAjBAJ6gqKj1gb+UyozqjNYZpFmpFa0zKg5eavF+tcVFJRDTgIQEAjVHsmS/TgFXDIJEYjSrRi0RLXvQCSWjWqi1+PgISPSNMkRqG/dB3PsU+zMuGy6Iv0fzcBUbk8U3pCDmaXDlvfWTiL/jEPs7kygEAkr2YaQExRQ5XzhQpVR1DVBBo43TJARVRK3fpQoqCmL+neZxEGofm+40WBR1CYiulC23ijcPX4rmNRmHDWdn5wzDSBDzuoiP+7Xm3taFNpbXon6ssj6nf+mW+UqtpY8jH/Q24sNy33a6ynqxbf9Zhmkb3NIGuVvhBWEzjmw3W1uQxeaDefyEbTRPYtTKhc5+U++vEAkhEUQpIlCsheZxsvfcJwgG+UXUPAoporJZzSNrU1VB50JVyHmm5NkMIXmyedzWjqqUnKmlOgiE5v0MQagpOLDydx9ASiaG5MBZDoGFttXEjCgxB9947WcISkw2XlWFWuxZbP5UhEowdIkQXXkMICMhjKThjCmcVqw+C+lAAj0Yj20MNDlU3pZ17XgMn1Lwjy3zr0q6AelIyXvRzbeft9Lh1yDCFMW1t+HY42ES+j5zu7YoFeF6UHHQtpuu8xLPfhd5le9xba21vxvYUl97ryqZ7bz2rMfKJPp6QFbzNl0Z860dtLVqBby87UULUSNjGLksF+zKBZuw6UDVnvgQPB4DJlXTEVYxDQ4k3AAiZjy9cT743mQGAI8E6Nc7fM5+X//GzrHn3MQN75+9RxKL6Pj2e+/wlfN3GMLIp/MnnGtmE7d868F3+M9/55f4X773/2Qc0/KcvtcJgopQV3t5a/8acDaw0cwIhAUo9GddvfvlGZb7eRALQYWipV+3uJHc1ubDd/BllzsBi5wttGUYBkKIjCEyTRP7ac80z26ZHAgxmRIQbTO0cWxgY5pmRDIiMylGUwZTM9QLc4mUAi3KwjQitzYHs7aKCEqh1kqpmf1UyMEmXgyBEBMxJkxVt0W71jYwICQhJiUlZRhMkbPwg+KDr4EWobrSB8W9HRVV8wDkHh6laMWU91LBgUXR3PWtEIJZX0PsluN2HxUlpEiMkZi878LQFRGtCVP4ZleoKzWbMqQUVPfentlDLiCEEZFIwMLDgpjlVjQDeyRkglRiNK8FZJQIJGwZMZAS5NyBWkSivcMUCyVOzEzEOlMpZEmEMBLSOePmMSKRy/2O/f6C/e4pl9OnoDNKIEhBQmU7JGKKjMNAxSahSnFrvXSr+DxPHhpmf5uS5/2glVzmBeBGC01KcSSEaEDIl4FSSgcYcdhAFIi1Wxm0OgBD+tipbnEOWNgbCJRgwLBU6r4pk4BEkNgXn+rgIkqFqKbMMpv3S22MtxAmWw9XG5rAkAa2mzPefvwe2825W7/VAKJWqNLD/NoS3kKhOhZt7g2We/mhXQGvNVNKoZSJ5oHwmYdGDASq0A1ODVS1fzQlqYEUV/jcu7eEpymilbPtyPnZljRsqLqHUhBgDMI748hMZZbKs2FkPB9JY7LnUo94i+YRijHSPCi1mgdjt9915buByJCEIAODbA2ghQhq4VLzNLPfXaIlg86EoIxjBI0UhJJLb3sDudnBpqBM80yIgYSFnIkbWMScbaRxJMZIGgZrV63M82Sej1ooaoBFL3fWXrWxF0Kg6rl5JdNI8HEdh8FCOIOwnzzUa4aUtsQ4ktKIpICQzIv2GcuxlfiKcoaDQbfwNaARZFyUbar376L8vazH4Lbnt/ab9+jlrYdrC2cHQu5Fh2bFNc9FU7i6R9PXEViUwOP2nLSCOlDJXaG6+nxwe+voZ+WxeJWW2jU4FIRZs1v3M1HM85nC4MaNReFtnrG1l6cBv9cp1z170dLnwbGnSrXyNH+KAufpISkMnMsjxEGIRX80P8dieW/jsVnkj8eQWddjD3syvSod9MmVcUgghYFduTRDiSRSWMZY29uqFvcGDkQxnWeqE7VmA0XxjF/86i9ykZ+xK5f8yd/9R/gD7/0BvvPwu/zrf/1fZ5NG/tTv+W8x14mLfMHv/z3f4Q9860MAa9/KwBaJnKcHV+Z/a2OQQAojidTBWrxGJW5hwO09BAkENQ940WJGSNYhwK5v+jFyNA+P3/2rNo6cusdnKXcCFhICuRRqtU1QS2GeZ+Zp6lZRydkUnRibfaVv8qblVNdHKkUKVYXYFrggbmGElKIDAldcXIERlhCLtnmDLSYlZ6oEpFRCyICFR3QrfsS9GkqMSohqyoCZgJspePXETWkypdYsvrWjWcHcGbVaDLU68Ahi4V1pjG5AVQu1EVnlCqxQbMCV4OCW3UCMqS+OebY4/FKUktVzMKwNsygxZstJCdnaUi1MxyZAbY5JqoMSJBMiDtjMW1DmStRArGbhlWDKrVQgmCIrRFOO1RUgFdM8Uc81GInDxjwWksySEAZC3FLKObXOlLpHsBCmEiyOvwAimUCm6qUpiqV2RawWWySr56405bVqpVR7JvXxUKttnFUMmQahx8CrVrNQF/spXWlp1udlLLVxGmLLEwpE96bgYNneSQv/UZA25nzx9rbSF7b2L6DV8lYMrCqiiyJTPf/EQiQim2FDCqlbl7odK7QQLwPMwjIh1nOjL+7HbvYOLKyvW3+bt8qetXroWQvTEu9Hs+YvAKN5XVoolNA8jb6tufdCUM8pGAgpIFmQYteICG8PkUsiFyHx+OyM9OCMYUjuEZW+DqgueUjmucrkPDHPthYFc/+t+tye2cK3zABQSmaeZ2qdzcsglZQEEQut1G5IsD4rOVNKZZry8g5isDHm+T9muPOsEcHaHiPDMPR1LOfRjCLavKhqymbDal33k752IRElkIsSCoQUCMHC3QZs/bB/7hHrT/3ZikC32gHd6rl8a/+tuIfT5wv45ndH/W2tgL+KzXO9wb+S6/W2BdT7pal6cOTZWbXh2Gp+W8WjGTS6p/ea07oCdIMV/rNWRl61yEphtjBZHHAveQfNY9TG3vrztaHnpr54FWFy111H1Uxu2vLwxPKS5jqxK5fsy66HG3U7ulY3bgT3qrsFv40JFsC1ftZ2/+DASiT0PeI2IghJkpkNQiIeVTNo8yCcGnMiptQHgDPmOiMI33jwDR4PjxEJ/PbTH7FJlqs1hJF3Nu/wP/pj/wTffvSt/hyKXgn9a/eyPJBpFQIWbe8Sfe76cWr+tc+aR6KZANq3TadsRoqfJbkbsJBAzpmcLWmWWim52N/NQugKsiWNNqXMFTSkW1OqVrS0TaFZWcWt9cI4JnJeEh1FqiuybaJ3V4Ap78BcWkhOa68Q09CV9phs4w/Bcz1amAS+Aa5d1e2fug3NwxxA3QosBMUTvnFPgU9qzyNJMfWrqVtPQog9GbndMKSmAJmVXCQSegK5uvIjzLOSsyWv0l3cyhQKsSgh5iXBloyEyJC6akItE+rW1ugeDa2JUgr7qRCr9UtMhsYlBEJVhApS3OYRoQpUQWtE1RJmYxyJaSSljYdLJcZxIA7njFtlP0+myOXZE2gLRS79upmBHUEmKHtLLi9zV15rUYpWT3IuHax10OFxVBJCt2Bbspta+IAn9QLUUsilebAiISUnCWieqqZMqiuo5pK15O3g/WhJ1zlXA9q6hL0t64eDTI4Ve5sDqJBztuTtokS3mpgybuPRgEViO25JMS1AnQb8VgDQgcDB8iUr3Xol6gn1bVOrDpDMG1SpJdv4dGVIgoGd2JO+W2Kztu2K6gpN8ygZsDHQGlR6ArgAY0qMgwOLIG7BLgxBeHcMfBIimpS333uHsN2QUnJPpYOaBgycqMAAwsSU99RiSfLDGJHVhLZHreSSkWLJ5y3p2fJDDITGFC1nY9O8QMuGa2CkMs/54PPW/02PWYeSGWFB9ARzA4AtpLT4uzCjiHtEi3bAZOg/9H9KYM4W8hmrMA6jbdQBICESHfyar03uoBS8KhGP/67NKNIStVk2WAs9UKiKhOGKMr+Er9zc/rWltSlNpyz4d1H8XocyveSXuGe0eR/gZHtfRhTrcyMKkcUYcfxca9BxA7j4IsoaJLQxFLBYVJHULS5NAV+f16zQ1n8rA+IrllNhSsf3sVwfJdeZuU4EzJu1jYF92fGT3Y88F2BgE6YOJiqVoBhJgBxdT+sVC/kxyBQJZsUnWIivPt/z2a45hBE4HNelGWX9GcM15AVDGIlqhC3CE0QCH5x/wDaeU7XyvadPOB+Gfuy7m/f4r/38P0fy61W1vTisjFBrj2muE5flwsLHJB6uMyde8amwuFPP7A/2yuW6HKe7GFE+qzDGY7kTsAiu6IYo3eU/bBLgSdNqSq+FKNkm3pS1EMVDXGJ/B9mtryIDaDCAURvDRYtJNuttKUopkyfxmoVc3PrfozuqKzhVjcFF1ZmTEmkYSNpCFJSQbd1IcUAwdqje/eIWJWmTTruFHzxMB8wrkAJjDQiDsUvlyS3VS0iJqrgyW6mqDEkZUyQlAxgpjl3BDDHRlARbIBWtgVoiOUdUTdHdbs6QYMnnWndkzUSwGPQUCclDoWQg50LNhenSrPvZ2bwQscTPKuQSCUUJUqnTREqBYYiE9NRCh9wjYUq6syWlhygDtWbvd8jTHpWChIHx7BExjLbwjefmNqzZGbMqc95T8sS0e8blNFPmTJkuEc0I2T04QmHJlwieXFyLkosl1UsYvB8HH5viAFL6uEToYC1GfJOxXJZ2TmOcUk0rjdwSY+d5ZnIGsJILPV5e8LEi3UvQQEnzpKALs5IEd2kHI0LAvTGixigQPMwnxcBbjx/y1oNHbIbBLLs9hKJZQhbNQJvLprWjKbm6hEe1Bdc21iW+tnVus9C3vBUD5kqLqCkOenACAQGffwasinuZDEi1kCBpTVzAiAhRMM+RK+vvjomvbgY+fDhyxsgWZbcdmQPs9js3DhhTkuvsZAcWtYJ6bo+FaeJxt2Z1K52ZqVLmTC4z025HqYVc5r5GCUIolXkuHQRJbe/YczkIpEay0Det5gGiH2u5NW5xLM2T2calKdjJPbsKzFooFLTkzug1DBtCGNwDaJ7XOSu5gkyZzWhJ+pvRktapEMJs9yBaDsZnLC3kohlNkrM+ra12dsQ6aXJRgmEJPWlgYW05vk5eREE/Vu7WVtvXIeHIknqqPWvgcZdnaucWbcyKFpqy9ugAq748zRZ0UzL3F0mOc3GaUSesregnHm0BJTe/q1fVvpvAs4gQNSAestWOnXVmDCNfO/8GUSKqlctywSZsGYPnrp14uOMxtb6mGQN8fPiG2cbidddrcuDdOTGHmtfyuj5NYobI1rYxNtarmfe3X+Fvf/q3+I9+8B/z4cNHfOvx17nITwkSeGt852p+ku+zLewtaOjgMYWRBz7uhSW07KZ53/artZL/qpOtTwGI60DFbb9ff/d5zOm7AYsYTRHTtji1f+ayVzX62GJrm8c6u7u/Qg0eRNSUrKZ4U3tiLr4AqNKTc6GFWBSzxAnUaiEGSYbusdDakrSbEm95AlIhVDElVMwpWANINQu8AZ4W7mEeivaAPVHn4EWqKwimYmu0mOZaC7XYlllbfCvS/7U22lcr6zXO8tA3unY/oYUrGQPRCFhichpGjIIWag3eZ4LZ6J2iUiJgoK1q9P6srvA2is7RFNqgaJ1Nia4ZNBMkAxMhCIWASrbwi7DBFK1EiIpKtLyS1m5p1qHmuUoQzBIUNfaQGSEyk8ihUnVDqTvm2TbDSCAMqSskygx1ong/1QylGjAKnguhGtHqCdqxhZYoRZf+ae/VFL8GdhvA8HQzCf3YUs2qnHMhl2rKtzNJ0ZOymyLddM0KGpC++NDffwOnECw0TzECAW3AwwBRCMJmGNiMg9GOHsU0XLc0NG/adRaWfq40lrOjg1xp75atslirgopjkiUHwzgcFvpUreo5FQug6J4//9cAhnMjQ608TgPvjImHQ+LSRq2tFVXJpSDRFfvVtdsUq7rMkxAgBp8ztNBClvu6V6CtE9LnZ/PetGOdDnlFi2we2ECKPpaE7i3ThiCleTU9v4w2+x3Iep6V5YwsgZ21VGqulLm4h3dhGmmkGGbtWwHCTom7eJC0ViOf0M+PJtHCHcwi3p5hHfIE2HgWWscdWtCPpCnaz7O+tVAIWAOcN0c5fhXtuI0F0tZMrvT5i7Th87J4vm55EYXsNnJXJe653hARRC3cUtcx/GJ75BBGW6vrzkgfbmAfaqBJryz6rS3X/X6zwnvscbz5yqel5Sqs523VSq6ZX/v07/Cn/9Zf5r/083+Abz0yYLGJW1KjsKaxyrk+ds17W+dHXPcsd5W2Nt3LodwJWJydbRnG5MqTguZuoctO3zkLllBaAooxP5VCr0chQTs9I90SrR4rj23o2mo5lE7vaOEOFp8vKOOQGIaB8/NzVJplerF4IT6Q3ApdSsZLCfQcghAE0eIUuJFpnnudg5705EpajIvVN0VbvGMMPVHdSjYo034mz3uqJwqHMJjlH3NLhlid8cdYf0RkCamppuBXqie520KRhjPSIJydrUCKFmrdk8vsbEcGVmq1fq8aCZKIYQM1uFL4AGPOKZZoHROb7blrZ5nLpx853/+OppuIZFDvPw/JSJtHSBwgbgjBaNxqDa5/GTOThECKG2+bAw0HPURAlRg2DENhSFtijOx3D6nZksdTEMbNxpU5mOcLpv1TLi9/SMk7pzW2d1SLWSVyiR66FBnHwZR0D3tqKl4LzbN3bj9TgjhASM2KF91DpuRpYpoyl7s982ShSyKWKzMMS0x78HyRPniDGkMVFvbU2mpKvYetRAEpKHMj17VcGbdsb8aRzTDaeG7KeAO9CNIUY1mBBmlhXYdyuIgu6nTpm4x2nV1FzMtVKyWUbjxIKa6Ahfr5HtroNUXMq7wstaakW8ikKbvVE8WzeUVKJtXMzz98iw8fbnnnbODTqcJcCJOFdOxrsdoNIbHZJFs/JJgS3/vFQaF7LXNvo3Hj2HritNFViHEgMrSu9DXC2mVrRbak9jzRKJ5jjMQQGYZsXghVoytu76MxvQVnpxLt/W5hDJarM3h45pjGjq1yLuRc2O8nG1MpoQ+DhxfiJBORjRNehCjUec+cJ3JutNSVcRgMyA+X1PzZgwsD6zdzx8PKwyArS33Lx/DxtgColTKkpxWBqkb/uC+XNI/ZGEZjqTvBjHQQ5nAHxeBUCMtdPQuNyrZJA53rZ77Om7A2Bhwod35ukPHae5+yiB5/vn62L6rC1BPwWZiHWhhz6X0vy/+OrNBN7vr8x9e4zfnPU2oDgSpLmLZ5Ogf25ZLLfMGj8W2SJB6mRx1Y3JSg36z5uAGwh/P4GK49P0MWT8TKm3hMw3zdM6xBQgtVOg5NaufOdSJXI2CJkhjDaJSxVP7mx7/M//Gv/gX+P//Wv8+//K/9Kb7z6Of4Gx//Mh+cfZV3Nu9afoMqU53YpnOGMPTnb2FZp8QMji1M8+p69SJW/vb+r/NiXDevb/vZXdqyvuddz3kVcidgUYvxwwe3xkG1YllaeiLq4vayzc9qKLgZ1KUpKRZa4IXySrNo0jeZ6pbieTYFQ7rrrjIXi/ufprlbyHFLTZGFDaPUJWylKUgxeThDjGgvJBZRMqVWLnf7bl1NnjiKRqpUiwmvbpUrCVULA5rnSMmVPEVqSR7Db0pVpnjb3DIetCv4+KSOKRARhsFiQKs/Z9XmQrfN0rwNhVL3lDJRyuSP77Hhbg2VYB6LKJ6xHo2PuhTIRYnONJOGZKFJFepmYEhmPU2DEIcKwdi+pCmeQZBQzBsSgm1kEnvyMSzx9MG9Q/ac9jwiM+jsCnU15X9QOKuMKbEZ3iKIMHjBP8s5KMxzYJor28szShWok1vdwYocCvNsv4skiz/33InFgq5uIS2EWAhBScnbELyoTrXCgqr2M4TBa5woWiNSa0/kTin03IzSiiI6bawNebPcCuLJ4mLJvnVAnOVHqMgweN6DxbMEAjEkhnTGkDar+dNCBz3ivoUaSRv+0pXkK0rHgRejQxwsKd83nHYXXUKianM/inuHmseurwmmuuc80QrAqXsTgR4yiboXr1pOllG2FrYpcBYGPtgG3t9GNikwFEhFGXNhVrisdMpDC1OqDmZtzckl01ovrSCf0MPOJAzmTfWwqfZ+Owhz701QBY1GjR0cBKcB6R5KzzsK0RSIauChdmrpgnn/aluOaGBWpBEAhM5cJi1nBaWK2D1j9D4TryuCs85VBzUjqsbeVkNBFab93JmwtBRSSr4uX7+xftZyvKmetHyuLIlXYpuvMR63zbzlFSQZHLw3HvmVCrlSatYKettvuvHBzz/l9WhKaAs5Mnl+kb8GKPwPWPeFt+WmeO7++TXA6rp7Hpx7fK0b7nHTMW+6rN9ZA2onc29WY2L93P37Oz7/qZCz6+S2Cp9FdshCJ42BjUDweg2l0yC0RO/neesaWDhO2j4O8VkffwzCbxpb1z3/8Z7UJElCou0RLWxyEzYIwt/8+Ff5fe+/D/+NPwbAx/ufMpfJAciWJIlZZ57lJ8byReCZM2UJsAlbYki9pod2HWAJTXxeW09+d80cuem932XeflZz70W8creRO9axgJDNGhvEKEpbVcjsCYlGyhNBgrPKtA1jQdGtAnBKw+q76kwpLbG0JWa2cKjGV2/gwyp8V+ZsigZioSXHUrV6hWYPMQjCYCr8yrJrwALc6zDNPYEXBBKO4quXKvBQCwkW55+VecbDnKKF5KhiVLCg7hURV0gtTMKVz+4RMWVjGMzLM5dWyXixLPhbMDBT986yNHtFaGdl8krQdl0DKxYjGYkS3DrqNSmic/DXQsnKZpPQaoUN7R01S6jj+oAVuRPLB0CCJWp7DCjNK6Fr9q4WEpaxYoTPELHaFu2dxjAQRKlj4Pz8oSlQabQQIBHQPfNc2M97xs3Ww0/E0yACIiM5C5eXpStd47Dt4U3WJ17orFplcAkzIoUQWh4MPUQmF8EWcaM3jhoYEqhmpFR/V2IFFXvOR6Zk/1lsjC5QC+tDEQIRjRE0ESR5AT+lep0P1YyERAwDQ9yQwsYZQRxcOHYIIq48N3Dl/9qIPgEsjkXbg7d3tZp3TVleJ6VrbZXr2yZjzLuqlZLnToHYcjXAw4ciBNUFFHvitFI5i8J7Y+L9beSdURhjYIgQgzJSmNwLpk7cYB4CcS+a3S9nr3CP0hINjQ3MiRKiGTCqLtFX65C09oAWuqegvh54/xqoaJ6g0D2iiCLZLaGrqtoxWg5T8LVPkANCi+jtkrgKnytWzyN4YUNkCSWt4gUJYyQK5i0UQXM0o8ZkxAiqlYB2di9Jn1841Fqus7SvP1vHSrdzrlNEDiyf3Qhlin4MS65cruZj1V7z6ETb/PziBB1NKQseRgenlYV11epb5050S3ID51fBRXvW6xTPuygnd7We3/Ueb6qc6rNX4T24jbRxfNO1jhX451nH19695bPYC8EJQpLg63nluvyZ4+u10MHWhp7TtJpbVzwex2OW02Pr4LjngKgY0oFPUdUqfEeJ/NrHv8Xve+87/JPf/ccpWvnJ/idkzaSQGNwjCTMX+YKHw2OKRj6ZPu4ek3c27zKyNZZNn+eNGGV4Tj/dJHf1MtxWbvJKPu+8V9mOl5U7AYtnT2eGBBImRDM5X1IpVLVy8yEGxnFDq2C8GDvbJq4rWsRk/yQyDjhQKaDZwAXVFW2rvG1ejmBB6WLMPEEseTG4VTSmxQJYijMkZSW2aswCMZq3ZBhHxnEgDREJMJeZlBJnZ5FaPCyiFjajheMg0ilQc44I0eplhJG0SaQUqMU2+ZzVLN/mVLF8jgBJLGHXYq+duUhtURB/3hhd0QvrInD9sUyppzIMmRiVVLQrPcmJpoygyyzzVYrVdqtKngtWAC5amEQx57BZeQtpsPcR3Z1Ya2G/z6gKMQxYUvlASFsknEE6R2W0HIuua4lZ4VVR3WE1NnYgH1O5ROsnoDvAam8ESaR0xjhsiXEgDVtnR7J8Ca0wTxnlGaU8IzvnNZItD0MgJGGIAUKiFiMBGEcLXzO6TxCxxPo5z0zTzizm3YLRcoTcKlRbBXOTIIHBaXSrtsXXFXk1q3XQQEwWOhQiZhH32H+tQsm2WNQZtGYkFIJMXVEvjZo2BMa0YTM+YDNsGWOit0YAbSFXLXSiAYr2+9o70axWHq51ZQNYrDfN9V1yZp5mLi53zHmmzNMCZFzJ1loPr+LAIgQrcpfGgZgSuRTSMBJiJQaFkNCgfPr0Kc+ePmVbCt84i/yeRyPvD4GHwaLkzmLgwRh47PVCnohC3KAhQZ3d+wAiuYcf1mqhSznPtPyNmLzI4Lj1ubVUNy7Zq2ivkrfteCGFQBos+VupxrQUGh2xgQtVK6oU0kgplSFnY5eikoIZMYxWXboXqIGhFC0T6myzNSARIvvZjCT7/cS0nyg5s58nB5ABUkI1spdiIY4xMQ7nzvw2uIejgCRqDewmSIev6TORU9WOT1nam7J3KmzlVLjFlesdfsAYt/06TaIzqV1nUV3ntFmoWlqusPJYnFJUx7Dp7T0VRnHqWY+Vsm49XSm+z/Na3FZuq0zfy6uX23gh1iC3Hb+eC02OvQpNWg2Olgu3Loi3PvaYgnU9Nk972U6D0XVxvuOQn7tYvY/beJB4reZ5nMqO8/SQD8+/yS989ffy+9/5ffzco5/n//V3/zQ/ufyYbzz8gCSJTTRdYRO3fOfhd/t8/PD8Wx0ktboZT+aPPWdjNtYsAkPcMISRJGmpsn3cd0eezPASYOQ6Wfft8bxdGzCuW4/W/XlXeV0g5E7AQouQ3TpU68Q8783KSrHE7mQVY0NUT+r0hTcs+Q+CgAaLka9C9XCBZjEUL4QV00LVCqbYpBQ9xsHUYZHg1K2NIarVhvCB77HtTgNEWNXIMKuzMcxUVaverM17YMxHSqCxIKnvAS3ExbQ7t+C2gmRq7FHJQ1lKMaVTREnR8kpCaC9ziYU0qk5F1ECEiClrVXNPuO7JsVbL3D0eloyaoi1UVYbFU9KUJWkWPTUrsQLNGicNWKhbv/2xJFgydq+nYCKeaC4yIsFqVdAGptp1RLEifJpBnwI74BL4FHQPXFB1h9Y9tTbLsAGpwOhKcfPARFQCmmCem0LX6IkHt0h7zQ/1cLVgangajFlpGALBk2jNml48ydit8zQFvFmvzV7pHUFzWrWQGfH3QB9luH6+jIcYxS3ill9BFWrNVtjPAauBAD1UsFSRaMDCIvl8EdHFU4E08LDMywNAcaCgiAOgBWwsVkxt/18Wefc0zPNsRS+niTw3zm/PkwKfCO0q1h+lZFK0IpYjQmxEDNJ4WFLvsadPLnj26VO2qjwOwntDYnBih6CFVGGoStnPqAjjMJDd+9mTo0MDSgYCzBjgG5VWVBaPRav3Qeu3trk6KrP32Tw3oRfhtIe1sKYgLW+89aOHJ4ZAqUqqEWoCrQRZCCdKr8btXixtdUOcRhvPuxjMOGLJ5e61FVv3DNg0KuKFcSrE4J7WZJTXFSqRQLT5eQ2t42ch7bl7HLM40KZx5F+/od3Jur469njTvY3Cs5yz2p9uc98XUNyveF0QT3B/NWDiWNb5IK+a1vZeXk5uetedhOAgfA5Kzd3iHiUxhOFO1u21Nfw6xb7/zjIu196Mg+utPjvMZVnmxyHz1PXzsc0FVcuDmcqOWWfe277LGDcUKr/60W/w9558xL5M/PxbP8+726/w2xe/xXk654Ozb/Q1R5oRTaCoIFotT4VMDIngIVeRVjvqhrnRjCLt99cgt/KmtXfB7ZPF1++mrTeflTfjbjuPJqb9xOWziWm6ZD9dYJu8EofEMChmTa/EVChFDxT1ZqApxeLhVS1ZGWj5oEvl5DSQw8w8CznvCQJxCJ4MLBbOIqaYxmHoYQb4xp3EYg5TGntscws7CaFRR4qFMBRAy6ruxkD1+g21RANBVM8XWYEgPCFTlFJnBGUYIG3NglhLcsSbPRQKYlIaExQ1GKhAmUumaHHmKuvu7Amx85Q91GamFANztFAqFbabTEobNsPGKDRziwGuxFB6/HWuc79fN7njoC1EKsoQhx7TXUsxZhGPLUciKgOELcgWSBb2pBnYYYn3GfQSZQ/yMcgO5BKYsDgyK0iWc2HOikghFSHXQiqTtzkxpIEURkJIxM0ZJW/YhRl0AwSGFBmGZLk60RT44qEqSCANxg4Uo4Ar9HkuzFNhnhQL1+uQafXPx5F4/k9pRa3w8AggRs9BaEX82uJu48KS8i15Xhxc1Lozytp58nyEDB4qx8p6GoKFYZxvtiDVPXmuZa69EcLBBmDWlHBUNE96cvkSI9uUbw/NcC9XEEFzIU8z+92Op0+fcrG/ZL/fgwPPKEtNlLaZWX0X+ztFSxzezpVhTF4GURgUQtqgCKUo3//tH/DxD3/CW0X5aox8uBksjboqIe/YzJWzfeHJRxfshg0P3n2XC63stdg4cja2YYhAZBgfeuiWeSBMaS++lqSV4ij0An5BCDUSqrGloUoMluM0bgZSamxSxUFfy5toLGIGfrcOKpctU60a9jSxu7xk3k12fX9PUQJzNlfuNO1BzJM5jlvz6rj1osSIyNYT1YXGxGV5WAPDOLLdbnytGsgaqEWY60BKG862Dz4XZbLdcy575jrxZP60hy2IWFz4WTx3Otxw8tymyLTiZTdJU2AaV35L1G7WSjMTnAYy7bNTyd3tGjf9fXyd6/5en3+ztfjlZe0xagqFsRyezgN5kSTVe3k90jwQWc37WqleQduoU3+0+wHP5md8Mn3Ctx5+m6+ffxPV2kPx2rxZz6PjWi+t8ngzZhnNbD2wmjdp3ojaWDmxPSNglbmL5gOLus1ZowOJYoydQcLKmHUV/B/fs7i56Nef/hqXecfXz79OrjN/59Nf4c/+p/8JP/zhx/yVD/4e75+9wxg3/Hf+7L/CP/ztb/Kv/GP/klHvouzLJSEkJ2+wPLNN3Pa+dHPaQVL5de/DG32jnAp9W8/Dg3dw5O1p/XydHFdbPwYVNxE9rEkieiHIOxpDXlTuBCzSYMrSPAxULcx5MguiQIwDISZUB0oxa3/Js1kEtXSKxRa61Nh+FrjtXo5iw7AlGZcCObvVMLfQlgEZGxuPs6xE67RcihWZ8jj8EO24GAMx2T1iWpStWt3z0eP1QOuMamWelFKtjUvhOavWjRfmMgZM9Vh981DE4Jbo4PUsqEYtGoRhM5iyEwbm7ItGWTwM6/duymEgpcHYd0qgVEvqnKeWYN4qP0aGwZ4pDa02uIVkWN5Ehew5J1qXRFSJrdmUXNEyU8USRVMMbDcPEfH3Kgl1fnyRGahouUTrRKlPUJ1R3YNMCAUJfgx1YYfSSC1CyZE8WxhKzpk8KzHOzHtjzRqGgc1wRoqjeWSYSKlwtrV3tNkmq08SLSRNqzBni8Ev1UJ6tHnKGg1x9b7I7iJVvAijW5PbGB0Gi9UOgZbRLHUBvSJCyYW5Zib3fuTi9MbVq7oHq+Js4zwRxy2FiMwe8sTi4RAWdqkYhO32IWfbB0TPlaEuXoamKEuQxYXmIDGEQ0CxBhjd3uHnrEkWYogUVXKtXM4zP91f8KRO7CmUMXiY3VKdNk+1EzlYGlBBy54kEzFALls28+hVvA1vDqMxUE218NEnn/Ljjz7i7OKCT8/gchc5GxNBI5ICD0R4bwicMSMExiFQpJClMJXJPA6AUSYbaYFieSvRk8lFKjEmB3nLgtpAVcv9qVrJc/NiVc8tslwoxNYf3EumagkaRZSEEmNlHEZb45CetK9xtPylGAgpeo5Yj+JkTFbZe7vZmKdXBKqFDwYRktMehxAdHAcrPOjJ2dXfo3lkBohnDDqiqRLTGTENbDdnPc/l85AULA9kq2fdcjmEkShe+XhlgYPDkI+7eAN6aFu1cNwW8mFWy+X3U3JKmVrLTYDhwFKrt1PIPwulvSmnzVsG1sZ4za3vgcTz5bOMX/fdAEJCtGJhypmqwlvj25ynBzwaH/Pu5j3GMDLV/UHbDkP8ro5NceNKWYFOU04DrQDfQXvEiwaKeUsbravpTgZKBhncsq9meLSrUrUwdd3m0DJvhoarIKMZFDZxw8f7T/jX/5P/K//Ih38fv/D+H2K/n3ny7ILNR4nf+PS3+faj7/H97/2YX3v0gLlaQjdA1kyo1ahn/d7tu5ctoHlKrg21XK1t7d7rd/S89afJevwdeywW48Hy+bo+x7qNn2Vo5N2ARTQKsJQSpQ62qblbPkZTmCFhtKdC1YCosUlFZ1OJMa0SIXElC1oogmsM7t0QKoHiNQFygZgsJyEGj6/3OgkhRBotZPX6BqBuWTR60BgqIYoDJAcWhe4hEQ+1mZMpuyLiITPOe+//s1xQRTWvPBi1h2kY2BKEFhLRQl+MotYUnsHyKIw+yllcGr3bkkQVBGdMCGiIFHEKOqfiVcW9KkbdK6F5UqLrm2rGbsVqPKg9T2zJpJL8GtWSj7VSpbAZRyQNlgQdBnKxittmA8yI8/zX+gStl5T8CaoTVfcgs3mG1D0zXsUbbEyUHI1idzaKOSQ7rakwxwVY6EYYUoUxojoTQmEcbXKOY2RIiZgsV8eLSXemoFqyYzoPYyuKllbZWHvBwmnKXdmMHiKnCjpA1NR1d60gyfssRPOQ5OoLSPPEqVdVDk4UoM5KFQhpIKoQ0mzsQxKA4qA2kkLqwGIzbtmMW0teBwzdeJiWO5qCiFc3ttlj40uuLNYLqIBW76Cf5N8jpvjlquxL5sm841nNzFIRL9YXUvJ6JZBLcSACxcPxtFQCmUg1ytdSCB7OBoFcKlmV3QyfPrvgk2fPmPc7nu4jz/YDbzVGq5LYhMCjFHgQDKRtBuFClZ16KKC2ZHbvj2DgAQlIqfZ5DN2D0ogZLIfXQ56cBAIsh6eUYpS4rS+D9nffxCLAbGxZOFLwBHxbyLOabdhA3WBeIOgJ8ObdM2ARY7R8K0KbnA6YdPE0hYV8QESpBSN1UK+3QQBJSBhJI5CENJ57ocANJa+Ziz5bCRJJcMDSlMQSMg820tbBL7i5d0sptYe+3sYrsISFtLl4N1nHlt8FXHxWYqP8+tCTe7mdHCfBfxbvWSQQFVfmTUEVKWzjOduoPEgPPb+gVak+0W4Olc3V1e1pdBkh5ukLvp5dw8zW9xlf01bhWs3YRlfpFDQ7IULLG7HnaR6DxMDx8Fz3a5DIVCf+/b/+K3zl/DH/4Ff+QaKHqM658NPdU36y+4mVOXAlXbB8k6IZJXpoVPX9LXYDx03yMoxMp/psPXaOE+Pvcs/r5vISwmZ/sbp/D7GGE+Pg9codC+RBGgaKnhGHBDHQbK/DaJv4MG6cSjZiEezGgBQHIRrrabcUFrfCWS5Cs7QOnrQ9Mnjc9NPLneUaqLKfxSrPioW6pMFoGgORqgO5wN6VSwFEheSRECKmEIAudSyCTWQJXlgL4fzByDBExjGRZ1NE93uzrot4rLnT7bak85YLMc+WF2EK7myW8TqbJTRFHj9StmeVszP3mgQhpJYoqp6/YoVhzGopjONoC8ijQC0PKaVyeTE5a5aShsE8AsGq8yriRcNMES6l5ViYJ2YJE4DA5HHdpmBVVQKBx2+9xXaTKDpQcuJyl02pCxWRZ4hklD2lPqXqnrnu7J16PZKmLzT61VrEGZesVkDOmVr2Zl0GUwr9n9UKiZxtzxiGDQ/OHhkQivZ5WxtqVSRXiKZMRglEEaqI0x9XpmLhTzlXLi/3TNPMfj8xl9ypSlUtzyVGC6saNxvGcWNhdO42RgQpVrfFQsMsSZkIQ03MOZm3pBRUnVo0JfOkhcAQzROy2Yxm4e/KsT17cNYjofL40WPeevSYFKKBEJpTYgEW4ItF/7yt6vSfzSO43kjaAV2x7iAenuU9H08XfP/yieUzBPNSaoqEMbLdnpFCYlM3zBNMk/L02QV52rF7pmjeIXXP5X5PmgrbXeHBbma72XExCc92Ez958owf/vgn/PTTJ/xwtyNJJSv80gcD70vkUalsQmCMA//Qt7/GZUpcPNhQLq0y+2Vg8UJpRWsmRg9NDMKQmqEDRApBKsmNGTGE/sDGhmsLwzwlSglMe58rzkSntVDL1Ps8poBW2Bfl4uISrYXd8IyUIuMwuKIvqDPGEQLbzbYDQR9ovWaJhTNabhdIr2ex2+3JDgpSSmw2G8sjIpJVKCUyVUEvbf0bzkbiZsuYRtKwMU+GBFQv77K8v1JptSweDo/7Z6fCIOIt8kBu2nibohDClhbqYSx2dE/VsadhCdnwyVLzgVJ123uvrYAvStt4RXHl+RbM50nr+6iL9fllleFjq+jnAaJeR1/ddA8LYz74Fh/F3TP2qqWPqZWCPzCyjWerNlY3XArjiVoNayBwnAfR5sUBM5ToyWKKa5nqnlxntukc1cplfmaJz37/UyxkrfL7Up9GmMuerIW5Tqv2mrckycAYNgzjyG88/XV+dPkjHr/1kE0cmcqe//4f/S/wg2c/5YcXH/OV87f46e5j/u//7X+Jr559wBg2XDi5S1xV8W75E0UtrBtuHjMvM65F5FrvhK1NHlp+BHBaNMy6724yCqxDRKMxhHSdTvUw6uXzyq26E7CQMLjFX0ESG2J//JYMHeJgFkSjxgEqyOwAonrIQXEF1K3L2pQjo4w15d0mV4iBYYwWDaKuiIspYK1GgUryzXwgDMIYgoEVFJWZXDM6Z1JxJiVVY2bxGgQiikaxOhUSjM5UlJgAzPqcc/XiWQv9rQRPpCrRw7aUeVIvLuZFwDRT6kyMgRSVy7gzxbsq0akl+/OHtmi7IoINsoDlsdgzew5A3fR7tqxrSyhtCdYO7CSiBEv8qi3eVj2JWanzTM2FMpde7Gszjh7SHSnFlO5c7D3CTKwzSAb2FL2k6kypFm9phRKddljNg6CldirXUpciZDVbHoitgsHTCBwM+bvJOWPhMMbiFaJZHrSqVeGuSqh+vga37pjFQ7EQpTkr81yZpsI8t5orbqwUT6C0TNleQ8C08qaU2D/zXNU+eUMMJEnmmQuBlHyMqz3HMAzdmqPNuSCNCCCAx6MqeLiTujXe/vV6MW5pl9UmcWzuaYn8bQy1QxYrPX1sNQuHrL5RlP08scszUylIFMSrNxuDWWHOe2rIWOX6iAyRMCZEB0rcUquY50wqRawKvM6ZfYXd/DFPLi758UefcHF5yZyNnvenlzN/N13yvUfnILAdA0OMpKC8sxk5HwfOtwMf6cgU4cleKK6gqz+QOFNa6wfAmdHcSiaWQKzi9K4rBcEIGtqa4/1YnKCiZMDruATzytYAsQRy9jVhzsQgTGl28goLTwopkaTlYvha7/2+rjnRkvxTDF43xTxiGmymIpGqAdTydSQOBHFGvbjt/2IaicPYi24K4XAsfE7yMhvbsUcArt/4mzJ1JQaZQ2/CsmGvPHkAHiLaFJFFMTkEJTfe/yVkrSy+KnmRNl33jAdW68/JM/O6PTBXgMvK22tz97O2+676emX9Xod2Xpd43Dxq65DDbiBbPcVtgeLaA2LBzT5ejxnRjsBFa2OzrBuIiJ3NqgGP6td5lp/w/Yu/x0W+YBM3vPvwnF/+yff4eP+n+WPf+sP83OPfwV/7yd+gaGUqM8lDnHbFjChJrOhpq/OxbtPxE76Md+J5slb++7tYeRNuunfr51PjvfVj5Wo+jLSEyTdA7gQsYtwQU2JkJA6VMLYE4sUSaub8xqoElqAqlHkHFKh7Sik9gdG2eA9jEIipOkCphJggjmzPtpjLf0tn2iH72RVCQCVa+8KAhMH56jP73afs52eUy2cEdsRQ2W4qKaklUuOVwEOxEIY2GYIYnWxM1CrM2RJD97sd2S3tVmPPNvpaA6UIeRamqVUXnk2B10JKlRgLJT9lHPfsthdsNlakDrHck5gSw5g8CTfRlCXxWgkqSoojkiIpjOQC06yeqyGAMTUFR7EtNEt1T6kzRZ1FQpRcZkqeufx0R97vmHcXoBaGlN6ynAUY2E+GhK0g4R7RHaFcQMhApjBRtDBX4/LPeaW4V4/DzxWck19ZgIXOjrBVqTL3md+8SbnMpDhQinJ2dobEB6TqCitqNMcAzL7YWoJ58LwUK3JXmWfYT8rlvni4koerBAMgDdpED3VKw2DvI0ZacUKtBrColViL5wstRYvaWDbmLntroVlj1ULNGiBpITa1Yn3WOksVSqUWK34oGKWyLl5mt/5IB0VXrLFtwTqyXMjR4mquaW8bSlHl6e6SZ/sdU80MkkhitKhaKllnns3PEBFiHEnDmcXzbxLChnr5iKlsKSGTJRODUlJlN01weUl+9hGffvqEH/3wxzy93JHnQsmVHzzb88m+8LXtlstSeO9BJJZAlMB7D0d0uyE/2LBLQpxnPk6Jqagp9a6gw4xSnMWsGhizmpRU8XEYAlpbiJr4ZmeUsVXN0xdjNIYrzZS8c0KG3EFHTOJMIpF5CtQCz55eYOEAwmYzMgyJ7dkZg6qxz/lY1mrJj7Vmpmny2j8TojbGNmMwuuU4sBmN8KIovo6a51AkEZJ50oa0IW0fk4YNw+aBFfJMyS2SBoTD56QAruVUfPqhBfVws13/fhAu0K3IN9NcBk/gXJ9z3A47blF2FCW7FzGE5MmpJ7wXRyDlec99KrZ83Q/rZ61Uj2V/7qVfm6zZe64FF0fHK58N49SpMdM+fxXK4Zodqceqr9f2FunwmUOLlTUauscBDsHe+thToYDXtfvUNfrn17XH7xNWlvc+v/p7aua45TqVJYE4a0bUPJZFS7e2/8bTv8P/5v/7b/HP/J5f4r3tu3z3nXf4M3/xr/Brf+Fv8i/8n/8rfP38m+Q681vPvsdPLj7mB5c/YF/3zNuZ9zZfZZvO2JVLC8UMQ793ca/kQZ96+ORtx++pxOsr/eaA4Dh/4gol9WotOc43g8PP18/QEu0T6Qq4eJOY3+4WCjWcE4cBSRCrWgQKOAq2Lq8SUJwmNBe3/F1YfL9TjNZO/+XhL7GFmwRCHJecBwcJIT0gxJE4nNFUfy07tGbUKzCLBNI4ImGEuKGqKXlDCkz7DVPccPlEmcoFl0+fEONMiJXNaOBhSIKS3TJQWahsK2a5F9CBEM/NfS8wDC02PpKnSgpWT2E7WuLkbn/BPO3Z7y+os9XUYJqYZM8zsZh+iRZ/vznbstluePjooVf3rtScUS/sJy3eWopZx8MGCQPjYEXxVAOF5JShPvklQIik7RkywugW/Squ6JbMmD5if/mE3bOPEJ0YUuTtd99ls31IJbnSZYmqVfdofUate6NdxVh/qgaCVlQtXbI42LSCcWbFt6J5FaRilced6tWM9GalxT0carkvuSo1FMRrXlRgnibzNPn91UOYxPNumqcBCUZnmwbSNlBTYVRxwJfpKT7SWC3wqujioTMGdLsNQJovSFcFANvy6Ruemqu5lEJVZcrWbrCwLVQtQbi5SQXzUKglG4s0OtyZOk+9QKK0BqB0zcN2GB/7RwqbWv+qKrW0/J+2UbYNwC/jXpicZ55ePOVid2GkC7VQS3CmJGNXGlKzhieQpoxv2I4Jffw2pURKbblFmcCesntK2V/y7NkPuKiwqxYTqygaYNZKzpm//KOP+MGzEZHKd995zDceRR7OmRAjm5L5ShREIr/+LPNpzuymTK5qIWVhQp2DqlEkRyndE9ESoBkSMRjFdcnmJKpFmCYxo0DGvWs2RqAiybyHAXE6W2EuAzUEZNgSN2fuiasU8dytkFBC91yKj43mVVKvJaMMVBVKDZTdbAn/UZEQkZgY48YLUG4gnBPCyDA8YEgDwzAybrZu/Bj6eOrAUdog+XzlJqvcgSK3ssieVHSOPRFHgOVU/Yy1YrieI/1/Pc5cuxW4aqFoZl8urXCXs9vcFPZ0SuFeh0E8T/FtOXFN1kw7fkG/z2nA86rltsAJrldYX7U1eO2RWgO2Uwn1L3LfdUz6SSDY1ssblMrXJSJeWNUbcWypPj72JjlVF+M6wLju60Dzzlvo8hg3B9eD1jeLl+BKP7b541sZmFGrJVY/y0/4eP8xuVb+0g//Ol978D7/7O/9p/jbH/2UX/v3/gb/wz/3v+WPf/f38c/8/J9kiCPw6/zdT3+TjzYf93Cih8MjtvGcSmVfdj6v23PZftpCtNZ9srT/+vF8GxDdxsqpuiFrOfUOn0cJ23JqrLpAC+k8Xefk85Y7hkJFJI62eUasAHMLGWn0rQSq/1MphDLTKiF07ndtuRetsN3QXXQhDJZo3UOqEiltCHEkDVurPIuieTYFYK7m7QiVIYolOkdTeuoq3kOrcsmnlByZ94UgmRgyUoUUBR3istFoNQrdCDUVVwAtCTQNgUBCAgzJql9GCYjH6ntmd/fkBISas9d2cFYZrwCNZEvsHdX6RiLjxqzh9mwWjtFqX1jyUl4snIMxN8U4oFjRvlI850MFK3k8GnczllCqCDW4glOsZoBZVCcCiSEFzs8fEMeNKz/RgZZ6bYvsBerw0CNfIyqLKV6XPjc2Jv9A1vqwINH7KdiHa+dXrZYroWohJyFmZD9BrW6JXTb3GJNXNQ9doTLlzvrUwlICw1iIpVBqC9MzENnb5tbsGMMSc9oM/45XTDwufhWWZIuWf+tUtNM+LyFQXbE0r1BLzm21NWIyoFKlIhggx695cvN20oQlbKu1w2db19F0aa+0d+DbRX9PZv03Klxn8tIWupbdgNC8ip5E7h0SQ0LSwHZ7RtUR1eT0hDNad9DWgmGDDiMyJmSezJUQvBq2Vr5/cclcCl/9eMN23HA+jmzmzJgSqVQeRGGOgQei7NRyHwxAG91xAxaWKF1tbnnXaPNWiEIUS/Kt5lUrGfb7QC6QZ1c2PcHQNvSldoqW5GDbWJ/iKAwe4llyISQLWWzkC5av4WFtaxuee9dEjG1FgVwsz0ZRUrA6LXHYImFEwpYQHxDihnF8yJCSUc4Og9MLNwvm0RD5vEJW7qJUql6x0q8Vx+eFv1xRiq5ROtfHn/J02BxvAMcoPxtnQpTUrYt3zaW4bT+cDuE6fHrh9n37Ikr2XY59nuW2teFVjcGDxNcTz3adR+OuciND2C29Va9DrvMs3EXuOnYXL2FdgZtW6TvdCPKOQbiForb9VL3OhB3T+rxoJoWB77z1FhfzjmfzBR+ef4M/9NUP+bO/523+8l/5FXa7iT/5O/9JxjDy9viY7z37ITJZIneUyFxnvn5+jqqSdbZCgr6XL8XurvH2cHuP5E1yPE5vfd4Jw8UxAGzH1NWzvIlyxwpKCRhodP4pGDhAIiltEUlUGWgRz9pCeLRAzVAzuexMac5WUwEgpcHyJkQs/EIwC6MYsAhxYy7qAEFNSZ/LU3S+ZN49JcRkcc2b0cOIRowQUkiMFrpSZ+ZxJOpAnRO1TMylEqVQItQSSF5oT4id0ajVwAgpELYjMiTG4cysYYX+XBNPQcGqtxqAmsdEzQ+YHz4yV1816+ycvZ5BrahY8vaQRgKJ/SWompJXZwNPSEXUrOXVUe24mdicFbYPE9vzjSWAy+DW6eJKYETS1hI640iKZ7REKWnvYwP788DFWSVoJsbAw0fvUmVDZoPqGar2vnJNlJKYdhOWB+BWYipVvZJxbWFQCtkstZav70pvtBChIEDKXUGmWr2QWgrZWcWCU4VqSMbitN+RZ1PIh2ReihCiJbpLq9nQnBbZ+sAtujGal6d6ATKzHCvzPLvXwos8eo0C1BTKmqGtQC1DpVTF6htEr8ZemfOM1a6w5yhFuXw2O4h0yl0Md9YhGkh0F3DVmTEZ6YEFOlkla3WqYqGFth3im6Ua9gpY1EIV3HLUPBcWnrXQfIo/CeBenJxnqjNvnY1N+QWtF8zZtoJSRmIYGIcHlnNA8IrayjhY76gYSK5VKCWQByjnI2cPE299+hYP3z7nh7/1W1w8ecb+IlOysTFdlML+csef/62P+f5F4e9+vOMf//nIe6q8P4w8eLghpsjPbx4wFOUn9QmhegKumNdH1ZCCaiWH2nAUglKCojmYV0qsfk0tVnhxv6/MRTAm4ABEA+MhkEoiuOdU4rkp+umB0QHHDRKTAbM8kadPKeWSef8x5D1S9sSQCVKJUW0cpoEhnqGSmNXyn6oG5uweX4QcR6/l8piUtoybczabBx4qNXbPWiuweCx33M9ei9yk2B5s6r5ZXruZr57lpg1/8Zkv1tPr2tO/a0aI1mEizpJnXP0Fq/0j2OdJUgcXN7bljorJqbCH1r7uYTnhkYFFwVgn37aQCTfVvZJE4+PQrueBitZPPWFV5Oo1js6/jn6z0ee2O18Xptba9brkVYKKm8bQqfotLwrSjpXUu/TPMk+M3RNZLPtr0oWD2ilH837dZgv1M0tizyddjaXHwzv8Q1/5R/gH3v9F/n8/+ov8ePcTfnj5A/7U7/9n+e/9r/5F/uD/+p/jP/hzf4l/fv8/51/4xX+MX/rGP8oH51/jo/1P+Ws//lv85uZ7vHf2Dl8//yZFMz/d/5j3tx8wxJEo0cJPdWHKe55X4UUpsHv/Ped9HXtBRKSHhbV7257NFW/lmxT2dEru5rFoYRfNVSbaqzW3ysQBoceLNwtpz8g2cFBjocalBH3yitlmbbXcCYsfay/HFDkzbZmyZZWpnT1JIaiQ8kyUyWLrgrhVUElBqUk43yaGsCHoxsIUinTrcQyHoQRNiXMQ258xhUCkGN1qbf8qURYvhWrpYT4SIsOw8eIsiiQl1sJQjX5TwayO0aoEW26IezX8nBYSgy7x+1oDlIjkQKiJpAPROaQlqFW3DQlxb495gqJ5i+qEzhfUsiNPn1DKhVl8o1hYWhyQMBLDFnS0BPGaKcyeSwFoRnSm8WCrs1mVavUhLAynKeQGlvACa0vF9SUkwZw5Qp5N0YKESLL8GRq1qjpgciutmB24emiSVvWKy9LfmyEDsxa3PAf1EBp15i6cKlhIBipF+jZVpbFoVaTYeLbwIg91cDriUtUYwrxIn4gybvx9tqZ7b4hYrL2W4gAlU+uAVrNiVzVKV0uAl26JbuNwcVLYhY2hrM1R/9csnj4Prd8dcFqWsp+u5DKxn3dc7i/Y7S+YdOrhWqCEaMXXtECM1k9aoUZ1IBuRsENxdjMNNvZLJeqESCaNCg8S1IdMl28xjokn4Rl5yszTzDxZW3el8NsXlyiVr/z4jA+nQhy2bMZECokPzh5wUeHt3Y5P9hP7YnOi1aEoeXIGuZmWv6OqrtznXjdC1diblBENZ570PPgzB2JYim6GkAxoxI0TWGyIcXSiCqOKLqkySaLMif0cqNXIBGoJVJR5zu4NE4ZhiwTQGA3wp5HN2dbAoCTEKXLH8YwUreDd4GxPsdcq8UVqtTYvm/pdVvXXI7dRgjoIeAVK+rEFcm01XBeK6grtgSvgyNIqwSydntcWJR2047O0Wve2rhJ2m6yVxnVct2XzHFpAX9az8CIWcxHxauuH11Cu3m/9LKfC2uAqWFyfe5ux9CbJ80DybeV5nqnbAOHr2rAGg+5bMAPpig6/t6NvuFfbd+zJaKGH6/u0tkYsCuTnHn+X97fvIxI4S2ds4xn/5V/6RX75ez+g1srf/vh7PBr/Ct94+HU2ccPvfve7zNWSuT+ZfsoQRh6kh5YfWidiPOtzZM0I1/TIGNIV0Pq6Qox6qOSJOWVaa+Awj8YNC284mFjL3TwWrmzYQDOFJki1QlBNUdSWiLoUUglibCYopOgW1BVyDIJTtGay1w9rIR2m27hVvNauULVBUqpx20sV0jyhRCQMRGJPYk7RnjScj5ShsInnTBNWm8EXpRBasrmDoWZJR/tnQbAwhWohOXXe0whporq10UMgTKe26rxxGMHpb3thuhAoNEu+HV8r7HZTV84Lq3wItbh9bYNOB7QmNEdiHdE6IjK65V5c6YnEtEFiRIIVtkML5Gfk/U/J81Mudx/3ZOoYN0ZZGwckbYnxHNUBCpQaKRNMNTFNoHUPeuH0uGqW4mpoex0iJN3EXqxfq7Pz+LMb41RjCBNq3SCSkLixNgdf3BRUxb0U0ueYvZ26hFvF4InnXgjIw7dUrYPFK1nXapZtK+Jo4E7DaIpdW1CkJWK1mPsWKtOHBKiHBkmEYIq2iOVrbKInflOA4KFhlTwZNXGeZox6dqbmLerUx7XCPNdejb71oQjdI9MWnAVcNODf4rsb+1dtZnuqdY+xR62eZc57dvsLnl084WJ/waSzgVAPfbL5HakjxFjQCilmUpwI6dKOSf6sClKt5gnVGM0iShiEIUa2m0donnl6fgYK0+WeaRd4Vi2Ze66F7z275Ce7HeMY+e7lzNtnD/nqZsvDJHz44DGTJL63m7mcLthpZq4BLcY+VqZIKTP7ufqa0oplglC8UKXPh7ghbh5xdv4uaTxj2JxZuKdYKJLVnYnEYN7MwRm+bL1wy4MnHZYiJA1kCdS95U3M0jxayjS19VA5OyvElIijkIYt43DOg8fvmwEgbW0DkUBKZqUyUom1/ts2etrkOlQyP2ePxa1AxWvYsE96b2hWc+mgoR17nQJ3nVX885Lr2roOhTDPRT1QyiXEa5/xtnLMZrP+/DZy3I+nnuU4Ub9VTD9GyKcUvVOx7y+Ta3F8jXW7X9W1T93necD1VIjXTQQBa7nJM7IGENcdr86WFpBebTvIEjbUwMJxG9e5GgftYRkD63ut2/PB2Td4f/MBH00/7kxP/5N/6E/xa7/r1/jf/cd/lr/2ox/xN378Y/7UH/xjfPjg63z38e/kR5c/5NPpU37j6W/wlbOv8PXzb7IvO0opbMLWSUoyogZ4BUsir1oYadSt1+evvAo5ritxfI/ga/9aCuXOYVWft9wxFMokuLXMElkxJhtaleXMQSEur6fQWJ+CWAIvrDZAwZUYa063twRLEoWmXHk8rgghbYgKafRkYQlUsQrCzHvALJKmXM2A5SpoisRxyxADoW5Qp6UVbcEh4onSlkA+jOfGwjKe9yTOvHviMd7ZC9MFimxQryURYjLFLCZrhwrVqVwtlCESkjHQqC4KkKqSzrI9fQw070zNEy0+UKWxSJ0R4sZDJc5MAepvSFx5sp+KI+NaqSVT8sxu3jPPE/ss5GIhTnUeSToQdkIaA3FjXo+YhM15QobI5vwR++ktSp6Yp0vm+dJ+n59Ry2yMRnWParZieV4k0IrqVaiTJ91bhXRLXvWhKJGUrN0RRSUjVYnRLL1IYC6VUiEXU2Kbd6SNrRA8addGJ6ridTwK1Vm6ai3UVtPDLfIxBGqerahbHEAGkEjR2MFfsxTHFBclxXNLRAxQlwqtVorF+vv4Quj1CtTCfy4vLy3Ru86EENhsN5yfP0aDJd3rcgoNzbSCSD0Nu9VBEHGwb1BmAUGlhwQh0Ggtl31c2M8zT3cTTy9mLvaZXAshGEBKXjQwDaZgNM/ALJcIVnvB5mMwRSZYBWwIUGN/gDQ0li6Bzdtsw2PeG9+j7Cby5cTHP/g+u8tnPLn42MAO8Ms/fsaPLwrP9pU/dDnx7fff4avf2vLu9hF/6BvvMj7I/HhSPi5eObwo08XH5HlP2D/1trpXUKSTQsQYSWkkpi2b7SM220fEZHkT/R1L8jGlUCeoE2W+oJaZMk9kinvhnFo6T+Q8UUqx9x8CNSTLrggjMZ4ZYJYE6cwKbUQbY+rgIaVEGodOeRx6Pkt7p4fKJLRxcUrkhu9+dkSwePCXjb1/E2XthWkhJqcqbDevcDv2LgDhJkv4q5I12DDvou/56/clyz2PgQicTkp+UTl1/StA4xWNpe4VuMar0Bihihbzoh0pvi+jcK4ZndbPu04ibrkV7e8kyfeaQ09D80T1vzm1Vi3t7t61Wrp1vtW2iLIA4ofpMUEsNPVbD3+O97Zf4b/7C5kfXPyIH19+zJ/51f+Ibz9+i//iz/0x3tu+x3vb9/nNp7/Jp9MnbOOWt8Z3SGFkrhOWvzbYHo+FGUW1os9rL8HrkoVcZaG2vo0BI66Y7m669pvkrXshYGFKFa7kNOuwghRX5hyp+mCraE9eDEdhGwYA/O/gidGAen6DxXrbOT1+vivYFpagPUbEC8SphRPRvSjOG+/HEN2yXyNVtLlIlmU6iiv/A3E8I6YNcXhoT6qKhgmtggZQsYROla2DCuOwDw4s1KvBhmTUvDENznUfzbpfK1KtBH3VasXevGheC2vRMoM64PJKxiGOzmc/ENPooGdBaiGE/jsA1d6DKeNGYakyQGiJVFZdWWJCxXNUnAqzWcIHtu4JGchldg79c0qekXhOrTMl7wllZ8UBy86BZnFAMZMz1Dy5JRfvn9hrn/R7BrGcmihWXDEIIfp4UkWLtCi0rnLFoM44pYTghQwQ94ZYHZJWnyDPHiqDEKuiQbHCdpVQDVwiuLIJiFdND0JKw3Lt3Ird1e5la8nPRbN5UtpCjcXv12JJxnPOvRjb7AxIBh7p98ef7WSs+krZFJ8D4jFXLQyond/nrerhZiSBUq1OyVSEOQdK9VyVAHgCv+U7ee5EBnEYXnKxPKEYiYMDDPEwRCKoV4etI+rPnzaRMAhxo+g+U88m6j6ThoGpXDpdk7LLhZ9e7vm1T57wzk8fEEJk+847cJ54+8E57z8UZBJKjkwq5GobR573yPBgZeDwTbJX4zaAkdLIOJ4xjudGbd28lVhlepvvXuRSJ0q9gDJR845SbVyrWO5UKdloltVdTMG8tAb0HOiLUVPHNBJDNK9F3FquRrAaLdELKvY+7K/wSNE5Hg4H39+DiiY9FORLBirgyMp9ZCley01Kycsqp69aWnturJp+w/O8Sc/yKqSp/FcU/9ekRJ7yPhyCiKv1XQ7OPxH2tE6sb+23n7U/XfsbBx39OrKEHW/ilqKF98/eY5u2fOXsXT7aPSGEyG8/+z5nyQo3PxjOERGe5Wc8Gt46uPd6njTj4Ona5a9RerTBXU55sTa+ag/bbeWFgIVvlcQeo8F6ePhgMqWvfWM1Hxq88PPCyiLnelQcLGnawojsfLc9A826XyklUXA6VS9sNgwtRtrZZkrzCJgiWnSDykAJAwVnkunv2K3BIoSgpkQOiZDOIG7Q+NCeRJU6jGgsyAaPhzZ+eRGLx26xKwsbFs463KzZbpmpFjYUsNAw1UKoNrlCHDzu2+wFrSfEO6ux86wtz03bsEN8IKmiJZv1NmBKYnhIGBNDyoxnDuhamIcILWleHN3bPS0OURE2oykuxhxkVuFZW8VxT8wvlXmePMxqZn/xCdPuGR9ffo9pfkqeLhAv4GfWY6t6PWwCaRDGTeDswcgwBsZNQHWmlIn9fvakWyVPSs7G7AMGJmLMxFAZR7XaA7FVuoTa2HqqkovldCiCZCVQLDclRIYxkUZIQ6svYmxgm3HDkBLjMKIKJVcuL59QioEmcSBcSiCXwv4yM0+ZPBdE7bsUkhXpmwvz5IUCa2E/TUgQqqrX0jDmMcRgebcgHYwqFy39/VfXaxfPRSfdsvfoYWV9qVWsHkoOzOWcqQRKKaQgTmCwpdZEzon93hKqtMVoqZLz3sZcGtmeP2LcPGBz9tjH7+iJ+pGQxm55imlrnrCYjC2tZN5++ys8++THnP16QqdL6rxjd7ljnzP/6ccf8/E889Uf/pR/dKd8+LWv8p2f2/K7Hz/mWRiRZ4HLmrjUBA/fRquSu0lD+xplXgDzSDRmOiM5tpyTUib/vBJLRbRQ8iVl+pR5ekqenzqAmJnzbCGLvnJYITtLxkZGJAWGFDrxxDCce57TYLVvQmIIW2K08TWMg7O+WQ5Iw5XSMIJYG7VDumN1Yy3t09Ox6l8GOQ6zuC5mf91DN8XoHx97nbxJIVJNTjEmreV5+QdvkqUTru/jnsjOkqh97H3p313jlbltmJ4gdxoXt5XnjdurxzeGutN98qoKUB70WTMIn/AC3cSadSXkyT+rnsdQNNND3JoBBoiqvjcOHYjM1Qw6U92TZGAII5u4pWrhR5c/5u9/9+/na+ff4J/49p/gty7+Lv+L//B/z7cf/yrffPwB//R3/2mmsuO3nv0mZ/GMB8Mj3hreIevMVCeiBi+WGvo4ukuf3WYMrb1A6+Tsfq9TnsWXAIzXebtexbVfRO6YYyH9n/jfTZFvyrRZy03JWVvVglt+10430cNBa782sKFeXC5TNDtTlBd/i8OStxA9RMStvF0BC4ubT0JFY0WcnjJWZ6rqCeH+LN7+GApW5bpNaFP8RSzUI45nPjGghTJIAxRtUfKrabcetuCVxZpoyZqKYJZ6Q+ztWSJh5RFCGsJegFn/btWBLQWgdbL97eqogBAgQmJ0T4FX+41rQNRC1+Lq+l68qScTL5YEDfa5eTmqAa+qbIoldFetzJszpumSEBO7y0+Z9s8oeWdgMlo8eUzCuLGq6MNYGUcvZOgVzgMCQ6IISA1otJodNShoRcQoWmu1St9os5lYSJSBVcFYKZpHSIhiIMRYlgJpjAxjJI2BYSPECEMSq9YuRqVanUmp5Aty9vAu7Nq1RivEl6OzHoFWG1NZKiVbHk5TSC0B2Jikpt3MHAplwCKpjpa9BioWlpj2PtbfL0qpLZ7HCqZb1jF2KAkDcXjI+eMPkY2F84weMhTTmVd5NgBte0Lt/0qZbXSkke32nGHcMo7nNk9C8vmzANfg4LuBMFEzDpy//T5xHMjTM3af/pjp6SekEBjzTN3vuSiZ3754yl/63t/jt3eX/HSe+eAb32J48Ji3w0NElFlBJVh1bDdKII2Pyxd2NdW8GR2UYnNC1SptawHNZA/Zm+enzPMFeb60910LuRSveg8tHwJprGyJkLYkiRAGYtwQwsAwnBkrlIMLo0cee7E+awM9dKsG4TggRJvVsJtwlt9Bem2Zvm/z5ZbngYoXud6VOPEjYPKmhRzA4fO/aW17HSLLKmhT/CgkB15ekbpt/sJdpbXx1u9MxBkhr1eAX/RZ10DiSnv0Fm27g5hyvWKSkuZNxpPBy0F+UMByMYMXvAULlQoS+IPv/UEeDY/t+CC8u3mff/EP/Al+cPlDnk7P+Hd/8//N4/ER72/fd6BSe5jV4PkaTU+7K6hoP9eevpPRBKs+vK286rn7ea4Fd/RY+CbYTWkcKNL2u4U+cBSKs8TdubUTDjq+hQwsaMRyI2rZozqhIRDD1qzojMQhWtVETGmjU3PilLNxUZR1pZiC0wtaTHxD0OKJ3nbGDDpbHkW3zM+WxNqSsfvzSA/Fagr3WrEXX/wcifXnbiChiRMZ9XCmRUE8Ghxdc3BQsfZYrA46ABcIS9KiWg0SGYBk+QzRLPNWl8Lj5tt5tAkl/TmkX9tChqzdjUquNWFRflAlbx8yzxPDuOHi2SdcXj5l2j8BLYhUhgQpKeNYiCET40RKhRB0KXMVgJjMU1YT7bW3UDczoluRw+Ytk+YKc6XfwEWyEh9qrGYpesh7MHCaUiRtAsMgjIN9lyIGNLGaBaXM5HnHPD+jZEtgt+TzgOqAanBgEb1Q4OwPYWxk1a3QEgQ0WK5JVva7zDZW6iieZEbH7dI7Xnr/Gk5Ve7/r99NGj4P15vFb6Cvd4u30zCEFHjz+OnHO5FzZjltSTMTxrBdhSx7ao86sUWtBawaEmAbGccuQ2nEtnEfW0/yEMmg1Js7eepdxu4W650kUnqlChGnaU0V5stvxZL/n4gcT33/2jI+e7fjFtOW99+Hx21tmIk9RKu5VCYvSvSgiVlUDFTQ3Rq5iXgxwz56Fy5V8SS0T0/SUOe+NbrkUZ6KDUgKlCkGSrR0hWUiTDMR4ZsnfcWM1eMLAOJ6ZtyYMDtBk6aOVF7ON26Cg4XCNOO7D9fwK1qk+HFrO0dVzvwxyGwv0XazMB0rC0fhcW67X9/9ZUODfRGmGw1N5ENeeI1ff4fPkAFB+jgpf10+ec9yrtna/ymdeV59e9h8LTW+sTMCKItnWxqigkvo6mTUTCHzzwe9gqnuyezXO00P+8Ad/lF/55K/z1z/6Zf7Nv/Ln+Pu+8hX+ye/+Z8nVDNNT3TOEkSGMFoLO8wkabhoz1yWmr+VneY24W+XtXiALU95YFGTncDJg4QrQyjeB9oQcj2VWsyba17VvoK3kWq3VkiTzjv3+CSEE8iYzbC1sxiyEuLe/Bzx0DazTZYpbtVWhFanzmhKNwktaboQ3opQlubjp71XcCio9dcMSxf3eIQRT9o9xQOuC3sBrpC8eV+3Tq6sdXHN9yRsvHVoATTtDINrTxti8O8HC17AQ98Mgblne1ZW2Ne/V4qM5UCTdqyXjSBoGxu3Io7fetZCSeW8/8548P6PkPfPuY6ZyYbkakpFQGAY1Np8oREyRs5ClAYmJvJ+pOVP2BS2CVqVkNb7/EfDaBFpGICIkthshJmXcthoDagXdtKA6IczUEijzhjIHphrIs1Vfzlkt5KvM5DI5I1Vwr43F09tIdmt23NBni0SGjVm2RSwfYLp8xn7aMc3CuHlE5RHEB+Yh62Ex1b1FYdXH1t8GyI+SsmXxa9HB/EJNu3C7YeGEKfL+ux8wzZU5Z8vfkcAwOs1pIySQ5ok8nN8tL+AQ1tjjC1ctOH3RdoNAQdBhw4P3vkkcH3L29tf5+O/9Clw+5d2QeLTZkkvm092en15e8uPf+C1+ernn6+++yy/94n+Gs+1jHg2P+LQmLJjJrXwitER+cKKHKhQaY5fRGwuCykCVQpVMDgOVQh0eIKkQayW4R2CUxZMYQuxMb+LWtWHYuGfGCjRaKJ6NCekIce2mppHorVC79sKYi1FmPfOc7pvltbfE82ZQkRWdw5dJ1ht2q+OwLzsCwhi3L33Nu3z3JsjnFUf9WcuxVf2UUneQ4H3HEKi1nKql0a+FXHu9UyxVd5U1SFgr4weemZXc5dme1yevu5Jz2wdate3rDCdtb0l9YVzqTmTNFh4VB57kT0mSeDg85juPfp4PH3yb3/fO7+U/+O2/yP/03/nX+JO/8A/w97//u/nDH/wRgkQG6OQAzwNjz+uDV+nJet3yZodCrQfcQciNNB3nUAHV0q3lTZFZFNF2yfapK0/9Cy/w5iEGFShq1Wm7hwSz9jX60u716Ju3W3ZVFzpSjzH3rdvuQ6uJ0BRjoeKJ3f1aHj+t9JCE3gdrnf1KVuW699ov1xxz4vOFWPIqMjm47co627HMckP/dK30+SIVQu9PxUFLf6jnyfECxxKCcRCfY8qxJUdbPY1aKyVtKDUzz3tyTOR5B6WQxb0nOgHFY9kbAYCHaMkGwkiQgUG3hDgTEOoMWoQUsnklQgDMO0M4QzCFPg5KiEoIMyJmvdYaUKpVZlYsVl+bx0qZJ6UWyLkxUgWqpsVjQLDwMoztRyQSk3slBqduDZa8a+FFI/P+EiFBGBCE8ewdhs0D0nhOZ0RrlbNppAgrBdI9H+t3IHjIjyyjQftkXcM+BxtaO2Vy9Loa1GIXy2phY1qsxolEYyzzvKbOr79Sfjtm8Ll3NVRl+aUnmXuoWkxbxrPHSBjYPv2EOW3Y10qaLpB5zyZV9lqY5sJPnnyKCHzy8UeUx5H0+Aytwf2Wvi5o6EDI7ulgzOd7q4Bt33l4VmPr0Gpxv+r5Gn2tW1hSmgHDCj7ZZ1bwM/gGtob+x0aDqzZXPX5F6MmpuDCAsQKfDuT8iy9ZHutLy/MsjPfy5ZHnhaq88HVvMX5edoz9LADEtSfwOBcBDvuwedgXz3O9clzRQsS8718/+wa/+52f53d++J/wbLrg+89+eHCt41C61qZ7eXVytwJ5tD1OrmyIKGYN1YXvf0mcTHhsQr+S+FXE1XiLfaYraCEk4hAhbhlka8nYkig6Qm1Wdr9acOYZVyCMjcrbWKEUq7Zs30ZaZWyCOK1noGLUtKBoEKvGLIOxu4g/g7jl+yBkfZ3r8LzB2SwOq257BZv/oSXzNiKLJ8Ens4XysChP7Wq3uuihFeQqNd/6p4WPaDTqXdXKmM6o4yNqyezHt8llYp53zGV2z4AlR5cy9QQwCQkZNoRhw8PzLVAhX1B2H1GnpwR5hoRKSBXiFsJAkMcEGRE25DpRNZPLU6ZpR8kVLdYfQxqssroImUSpwlyEkq3ombR0+mD0to3PVWu0f2FrACpuGL2Y2mZzblZ/L3hmSbsjl5dP+eSTH7G7tHoQ73/tWzzcDpyfRTTuKFoYWuXZ5iUUMbYqbQq9KcpW3G/1yjrK83HdtFZVB3pYv007dDdRnuwpszF75VJRFUrc9orPcTizpOztGWEYkWEgOD0wDtJbSKSRYRmNMtQ+3qyjvG39Z0vGNLrmzfmWzTkMm0c8/fSn/OA3f4Xp4+9T8qc83kbykNkOM59cPuXiJ5f8p3/7V3nvm5l3zx9SciBrJIYKQb0QY3BGuNYxgZg2C7DpG401J6CkThNs3y9+HnFdXxbLiq76tgG7Rq5wMId0PVVOzJ72t73TcpQac2BtZDHS2KPpClhYWF8pfKml02IijGHzeTfnc5N7pei0PD8x+lCx7edx1WJ/Ww/E63gXLxKv3+RkMv/Kq/Oiz/kqZK0rdPBwoj3NK9kkEsiee/sgPaSi7MqlhzjBg+Exf+SDX+IP//E/yv/hl/8Nfu3j32IQi0jJdWYII80rUh2kxC+pd7fJZ71G3NFjUayS8UGYhXrSYKu2LThfJtITsaFbR7uvQQlif7fayrhF2nZKo6pEBoaNsRGpF67C8yFMlhAicS7vtXhTFjdi+697IloyLwffW1gQscNZLItgOaLfexX+0cPeZXHlXbHes+qm9Zw/9d7l8F7PW1yObdHXfdksBsGvabpdYwtagaSOCEy5koPLHS3Gqy/DKnH+4N4K1td0KmIRy/EIAhoDMTqLRMkUZ/SyWP5V4UXXoKyAXvRYzUKeNkwKWUZqGWlJyqKDKd3xARI2xLAhqCUux/wWJU2UvKeUS1rybm1jPAzGVpUCcdBetdsepli4SghGwysDIiMpPSAEozM16txASkMPVbEwmUCKibMzo1EtjzIigfOH77CJagQCurOQPVronlp+SRB6afqmWqlT7SL9XRxX5D7wJtnURVSZ847d5TOefvoxc3F6YK/jMQkEZmadiHWyfAvdkeqWgS1jfAialjGviuoSLtmK8CFHIXL9ZwMl6/li56ftQ84l8r4EPtpuefbxj/jpD34TzRVyQYG5Kr/6gx9wef4W4f0dOj5wNrWKSmOY46qz5njg6uGfvV8bqGjrQ7OV6HKSLh3un7W/D2fkMt+lf3bUmNXnz1GK6K9wea+o1aEUAyVz/vK7LA7WWa73Spz67GclhOh1y21Djt603BQ5mvtXPn+D5FXmT9xWPov50cBFU/TXv8Nau+snuAnKQnVznWnaiWC6w29f/Cbn6QGPhrf5pW/8o/zed3/EX/zhf8jvevt38c0Hv6Nf+8B78YaNzevki7Jm3QlYWBJ0ccUUaNuu1u6pQMQKxblXYDmu2f0WYNHARXBwImYu9NCFYMqdiNGcSksQX1kCuzRlyu+2QuRIgMAhV/E6VKor0OuWxkN4sg7dYDl8zfTcwEK/79K0VWLgcv9TnoqrYOB6a8PxiYvOcsIqeuxBkEa7uViP69o62p7jQP+5qux0T8mqTQcRUKz0OV1GQ1fi2lUlINGB4RD7SV57ztrmCmp3g/prE/GCczUzSTAQIpE6JdCKSvVE/oiEc0IcrRo5VosiRsuVKGlmzjtjdypTf5gQzVMVic5SVqnVChZaJWcDDjGdEeOGGLYM4wOnFU29P2KvqVI7KDcPRmIYtn67QBy2DMwE2Ru/gKgBixbSh4CGwyR/z1cSB2oHQ2TROhfA4f8Vsalbysw0XbK7/IRcDCyF4QEShSJm0wlqXq2gmeIEADEJqg+8De12zVt5OEhaKFZfyDu2aXOxLMqhT7AwbBnTwOPNhsu8Z69w8cPvQ52IpVLVNqDvf/Ipm6cXvLuf0Y0Qoue3dJB8OAX04EZrL8Dhb7I6X44PWlCa1w5pz9VV/INrLze/+tFzMMRymBw+iwFz+732ibYckI9dHl9SUT39nMdg4qa4+Dd9o/6s5VSf3NRPTUl7Hsh4nX39okrX/bs/Lc9jxXpVSu4aSLT7XjVcHoZJWdG4wMQEqr1qdtXKDy9/wOPxLTZxywdnX+csnvNv/8r/g3e37/Cdh7+T4mQvr6Ig3qscz9f15ymv05sOMO4GLKpRtErbmZ1KVNWqK5siNpgyLwYujjf4day/sbEErDozdPM5LIrS6tyuimqDJ6u2rY5YpAGNdTuORQ6ufvWhj6+nK3i0VpWO9PeuOJ245AlF/xZGyutldaPnXaYrns7mZJZw+64etPvQ2tp+ytEn698PFqBjb8XqOz36uXze7A52fFOeo78666bkz7G0p2pEdWAYRrZnD9FqRefcUL567hYX76Eq7l1Tf97mFWjsYo5crG/cc4Ja5eluOQnR64C0isktZr9tsj6ODzRta3eMy9xQQ16dGKBqoKiRGFRy799WUR1xVoum1R9s6CweMQdkB0nAqgTxmRgxmmZRcs4UDcTxnO2jD0jbR4TtY6OOldgroorizxys74vXCfHq8dZea4Q4W9XzbefBCkD6e2hDRoBN3PD1D77Du29/hVoDn/zot/jxb/1No2GUQDx7yDQ+4Fk4Y+usdAsZ7y3k9OLR39XVA5djtf1+Kx3+eKV5lR6FZVa13+qX32EBcFJB6KvILTbeN3Vz/jzkuRSaJ+S6ROrrzn9d4OL+PV6Va2tVcDPQvg3j1qvq71Pj53mKc/NsnMVzVCsFI9dIceD3v/MH+cnuh/z5v/fv8dd+/Le4zHt+8Wt/gHc37x1cO74CYPFK83dumF9NvigFIO8GLBwwtEJtKpVWV9u1F6oMCMkvbUwoPadhBRWCiA0GMKBSxa3aGKgIpZ8jYlbsQwPjsQq9thSuP5KjY6/f1Ft6+eqBufZPXRxpempAtFuubn3dkDg9ia8fsAcemROHd3Kqo8t25XI9UNu/gzaehEOHN5LDow5Joxr4c4Vdm1VifcT6enp0wQYt5Eo3rBeg/kalhcFZHQpVJabegEMvSrtkX8xWye5LVvHBOYqxirVKzlobG08DEuJ5PkvfqqMa6eDisB+lgxb/1zpQQbFcjlrFpkVd0eb6ee1vkVX9bb+XamMpW3sOVhb21VQQDKCEGK2aexjZnr3F9uwt0vYRjA8NRPj/WhuFBoit2n13KjXQL6t31YDzWtbhk+uX5Jq6Njo2/zimDSPCW+9+FS0T+6c/QbQQQuT88Vc5e/weMmzRFoZ3Zbyu2qDLe7hJDoe0Xv9db+fxNU/N4ZffiK7dy5apedIj+mWTdez5Kevqc1ld7hXRz0Xu+/3Nl9sAxc9T1iFUSCCs9CwBzoeHfPjg6xQ18pff+fi7PB7fomjp+/8XUb4oc+duydsyQNzS+HmIvqDrsqyrs+F0Rhszj7NwPzUDn7PbYKw0WhUtEGNFxElp3fIb/LroYlU3WSkPKyXqQOEV4ebN3Ebkwuu/auXRaVc3624HOH1lBZHn7PDHeOfaw1btuY3ScNgJy88VKGkhK63w3aHNU1a6Unu717V1VbtDT72FpacOnmf119qsrVe+v3pGNxXL8lgnrnilHetr6fqG61Xp8CarKxya3pvn7sCNu0K/7Z11fLu6QctJaGBk8YCBkihAroGMUIMaLbDIita1PcUasq2YizyXZXkf7b72u4VWSS88mdKGzdlbxOEBb73zNcYH7xHGM2oY/PjeOH/OVQ/pajy1wphOvbsGMb5UrPoyo5oRiq0tRBaDxNIflWp1IsbIBx/+Dh6cbdhGY5ALaeDxe9/k7OE7DA/eRiX4+2j+D+sLw53ubdHWEUZzvRgMmvViPQiOAEr/dHnn1qXaAVc/68R8XY+lw3HxciIHHd3mxBdjEzolt43bP5wL9/Ky8lmPmZehhL2Xpf+eZ+2+i6X7i/Ie1uCiUdECVC08Ht7mH3z/H+EX3vuHV5/Xnrz9WSapvyly16rvLyN3S94OGwgbU/KRq4ZmO2hRtlu4xYG9dqnILV6kjhrc8unKDtAK6dnvsSsI4C7+W/bJbdyuB5PuVtdea4s3bXrtmKOLnrRuHnx5+rOuEF13rB78gOX5Ba9D4p8b08IR/ji+ql7TSl0tWP0MPXrKNRCy0BuQvhjYta/e/fCJburfI+By8Kec8G4dXra3+3jBPbpO/0COPj+Bn/RqQ26Q5QKNZtn50TCluJC1kmtFw3LZJZRrrXo7tFMPIwpCLbnDohbDKhwvpoqosWBtNmc8eCRW1G2IiE6QFS+mgMH7ddHJBiQsDFKdkcPaNGLJUsm1eCswaYnxM0JGdSbPT43aVgspWVG5EM9Bkt2L5EUwpRsZxgCPHjxg/No3qBIgDJw9fp+Ytr0MoK04gUYLQV2N7IaQPC/Cg+m4+kJvXgQOhlf7ZJXfdPX7039/Mbbwu8mrDnW5TaXbe/liyv27fDm5bf/dVpG+bb2Oz0qeV1fj1OdhxfB0UAcEq5/xqowQX7T1aO3hfd1tvqPHIqGSoAGLIyvZWpoFdgnVuCqNEwptZkOrQNxTDlb5FotmZWdeMQkeK37Pf5ol+uI4zEHlUH/vz7JWBVbKPqeOXZ5ycYPIgbJ3m6Ye5pj45U6ddOQZWSu5Ah1c2Md66FwQO3+t2svBha6Z1MefX2eC9c+b9+gq1Oqj/eDPwzG2Psd/O7II98dZaXWqh++jWdhldaUDOVWHRFqOhBwe08316/ez9PnhL6vLybrhTcldjrc8hWo5Fifg18H5eghgW5NqrQf3Frna6+3PIIEYI2lIdjHNzpA12dAVq1cRQquobdTMqhWpM1bjYe7GBFPUk4WOiYJWarkEnYEJweiD8/wpVjW9ILIHHS0EUt1rIQNmqIisM66GBOnBGYUAITKO0ftthsZI5WtCz9TR5tnR/p29WlklXGtHBM9fQeTgHffxsRoacvTu/IbPvfLVOy1D7eSXb7C8KpBxHCt+L5+N3Ce2f7lk/T5vk4z/RZTjZ+qeDS8u+6rH8xdpjnxW7byjx6JZEteJ0EfA4ajdJ1Tx/nkPyhaxehG98JcN7E4L1sq/98+OlO2XlmOl67prn1DOrvx+pO2y/HlgQL/VI9zFXXfChtrCBEI4WCRat/fTjhu6+nABX6cPW572+EKH6rDKmqy3KXnhxLFrXHHcSceR83Lim1NOg6v9eHv1Thw7HC20a/Bz0xWfY5ZuIYKiFuLUKs8L1cOKAq2EIVqtmJ0eXzss4MJfbvcKSlOc7Z+BZjHgoZYyXeuMlj2XFz9iLuaBCEEgtGTxQAiRYTgzFqtx4wnfgtY9qpmaZ/CClipnqEZUI6XuqXVmv3sKZEQyAbtH1dmeOQQoM6qRqk+s7kz1rU0sAbyqsYM12mHRbD9F0PKAEDeEcIYG85YowauHJ1LcYLlhAyqHhBKCJcqrKIcZ2HcEAFen39WPryyAN1/u1N93hyWfr7wsTeax0ednMYThdctNDFDXMdR8URSpL7rcRWk99W5uYhRqBeLWxx/Pr2bkCoTP9J2/6hDH5rl4lXI/B66XO9axYFH2rlM419qmi+k/p8zLsihGtARcU4rMot7+9krIUlcx7I0R5+rLvf0Lb9bsU9rfqeuuPl/iufpnx+E412uVcoQyTh22sCPdSrQ1cLG6WptbWFrTOZ1PX4+OlaOLyeoZW1tWuTQHGtOBV2HNHLVm0Dq6iVwl81zCfTi8T7/4cp2rPXtTf9M9FwevbfUIyxWOEZcDCmW5xTXV1Zfq8seTYvnsJAVju49Wgk5onaDu0DhZDkIbny2BvC6vx+YNnjvQrPSnluOW3L3aOMSS0kvNVpQwXzCXTAgVlUjQgGLFLVUDpVTQRAiZmKJT7WZrU/R5JIXKhKpQiyA6IZqJccYK5bX5L4hG64+wJKMjdoyIh0nixNTaxlPFOkCtiCUgVQjM1ncloQQsIiwSQ0TTFitwOaIOOkS8ingYPL8jLCNX1l6n6+bf1bJa9lIOPVZtWh6MzPVYOiF9Uz05jFYA+g3d114HU8oXySp4L/fyquQuY34dLnj82cl5pK92rr7psg4FupfXK3djhYIlqqcpg2tV7GRo1KGS0xUvgTWblCkRS6xzWeGPnhBKYfGWKGs8oM9RA04+zzEqug6o9LZfe6XVkdcrt1c+XYGrq9jmBDo7+urIJ9B/Wz9GV9hYQMXBY1eOX9fq4q7E69rdcurZ9OBXPXHYYiU5rfheBWUn7iCr5zu+7+q89SKqx0f2hOv1OXWFGeTgmwUuHPZD/3t1tLWxPWGHC3RwssZJa61RzVouWpDyDOqeqjtUdqisqJgxT4N42FroBfKsErh0KyNLP3go4tLWyhpcVFFynZnKjik/o9RMEggyQohIaC5koZYCGpA8E8JISKOBAgTiwvxWdHaPSIWaEanIYPNcQqIUp/VVi4UNQSCuGbbcj6NGGWyFACtSDbg0w0Ormpq1ImVPrJFS7VlzqQQxxqtxPCeEBAy+5gRiGAlxRNMDJD5EGIHxiqGkzaWrc/8aZNBBwYo1juW9r8OtGrg+WR3X/3M8U1poaYewN1jhvkxKw5fpWd4Uuc4rAdf398u8h3tvx+uX573L29DNXjn/Bq3q80q+Xyci34+nN0/uCCxMcagdVKzkOS7qQ4/F4XZr/200kdW/WTj63ahp7PRqNLQqZplUjUtu5upqnProBdHqSfW16xXXWadvOdiPDeQvKIeBOkdWUye0PyiCd11brhrs/efas3JNY6/071Wvi1x/9gvL817rIYi4Wa474gSuO/peD/7q/1qNF81Gj6rZ/paKBqFD8zJBnSnzpxSdyLpnGoVRAiJndlWteAkNYmhVpVf1MlYWmRBjDyNqfqOiqznXFWBhu93w6PFDvvb1r1JqtTI0wb0JDcgrpvhjBStjtDoWfd6vXmzA2aFSQIeIVqVodbe6EkN1+l5dsHVYrtPDoxjseiEwJrkywrWBZnUjQ3s+9RwTF2PezZQ6UXKxe8cNwpYYCwnxEC1vYykEX+WCjGiIaIh93bN8DRy0rSbVLdaXYzNLexd3ddOvV5k3zQh371344srrfHdfljHxRWWyehFlvO0prwNovoy0SIw7r5vXeHVa0vp1fXMPiu8mdwyFOqTFtI9WHX2rTl+2wqZ0LldctJNmOTblyNO8exhFgx+rnAu9evtDZXBRQp7bvGvkhN68HK6wsMLccbvvhnA9QC23ji88UPbXAGB1i5VSudxW1n8cKv1rt8MNj7JQvh03af1WTzyHHvw48eVp9f02cvdYytWYPHGqKbF2XO/ldUjKqmX2vXvf6oxRqhakTkCGOluYD9Uq/0kDIHuoGeozVGeUCVOsh4P2qecVHPZFczudeAtybDU/PE6wCuDjOHB2dkbuxenciLDEJa6u5+9WbUU4nAh2qjXRw5gEqGJz1lmrpBEIsFjf1w7PvjaIsWCF4LkmXhSwVezWNqdVwRlEALS2pG0FCVZoUCshVKhKiOL/IERFQrWq62S0zijFNplQQQeojUa71fJpo2G1Hq5AztrmcP2y2M7VE++Uw3XhmrMP1rgTSYufl9xvxF8s+aIU3nqVcmPy8jXhQ1/Ufrpt0btT8ll7Iu56zxcFw1/kBPU3Xe4MLK777FpE2387UhZFbBPuRwUsBjv60a6duJJh4KJYVARAsykKLaBqUe5f82A5eYcjvf7lLn73Z5CjPw7soi2v4k5XWSmfcmpBffk+fu5T3uIWt+vumy90SiU/eaMVGJKDj/0KLQG4XkLdQ/4UyiXUHTVfuseiWHqQCGEYQYxtGQqIEgazlicCQ4wkiV6h3u+2bod7Kkoppnj34nBWBTsE7dwIgtWsWNeTaWAzhEgMIyIDIs1qb7TORSu1WrVxC2/SrujHEIgSLJG70dKGZgjwhLneR+rzXUjRaGul5U6pGj1uyyFZWog0j0CvLxGMNlmCuSL82iqKOlazRaGFgAmILXMJAYlIiGy2bxPilhDP7S6q7PeXlHJBrs9AMyIwyIaQE0EjKWwhjJAeU4m0lh7TVfcpfNNYuo2skMMXUZ25BxVvrvTQ1HUiLz9byfE3jc+XDR96nXJXj0lLwLY9wOlXb+m9+KyTt2/y3h6DjuO6DLcFJacSw9fj/tR1ntdHxwU634Rx8nnKnZO3m+H7sONu6Ew98Ue3TEr3IJjLrdGB2UE9adM32CrRrXuLgtS461+VXn9rOdDcDz+/bkidsnocnbr67egqJy56+NGhF6g7G3T9zRrYnWzh9TeUBt+O7noN4Dj8/PAYFTl4XyffXdfMZAFF8uJvWdcm5H65myf/dZXNj69kI7B4ovIeKZ+A7lF9ikhGQ6HGgpbMVCbMuyak5BetStWCUqEUqhjJbJFIDdEtMm3Res6zr2Kmm9K+POZC+XvowVqs7naOUN0J0BR6AysGOuZqrFFBArHdr4GKEJo9oNcuAShtM6vqIMR7zgFLKdlDvQrqYVMNoLRnFywsSsRAlIQlL6MN+RrWIWB2jxgjISRSHJGQQAZSeuC/G3WuiBUhHIYBOANvg6oyzXvqPANPiXHDeK5IPCeGDbm2Z2wTzda0U8veghKum4dXx+NzrYxHc+nkbT9j+VnfVN90WStOL2PJvpfPR+46v0SkF3Ndn78GlzdeU7WzIp7MB7tle25bU+w6T8JJj6yugMILhJSekhcLTT3Ugb8I4aCv0/t25+TtU3Ir1HzdF0ehVOsk5PazKoiY9TVIXX3visXR0njqXp2taHW7U/363Ce5cQI+7+QbDl037kqC8fqYE21cHxgOm9gVyK7kXYeI7Mona2R09X8FWE407OSZB8r5ogAevIeDC+qVv+2//r4PWtVR02IvuMNcXjZYfe4ku8kCbb02I/UCqU+R8hHohOoliKDBYvGLVmad6W4EtaRrtFJqoWql5my1KwKUOHZlfgEMNg9q7bXrDp5nTeprx7q3qiugV+vKHI8IXf3e3ntT1EutzHnuIUrROtDuHSMSWgE/u+rai6JVqSugU6taiFIp5GIhY8V/1noIKqwlQnDwYl6TZJ6aGN1jI6Q42O+izjYVGEIipA3D+AAJozNBbYGWL1YQIMaAMBJjolYDUvv9JVO+YNo9gVpIw4Y4RlKIBBkQX0L78HnOOFpWt5tB8l0X/YZpDuTN3tfu5XOQa1mD7gfLl06OldsrRBDdoHTz+2+7/5V6X0fu1GOa22O98BS97cvK6wr/fFmw9Dqe9VXJ2kv5usDF3TwWz7Vyv6gcWtjh0P7e4tsXRcCrCAv9rzbMTyvG62uuWnwLA/A1rb36gStvL2z8ueoMuLOsoUN1BVSPvnuVTVj3de+C5zXuFm049fvxZ1fh0ecxgdsELWi+RPKnSP6Ys80eCZWMUNWKPgaNaFRCSrSq8llz1+Sra4Yh2PcqhalkphAoqgRdg8NVC1Tdir+A0bCaL3aMwwlZ3lJnCEMpWqhOaxs8VztoaGkLGEWrEmOg1ILMAa0NtNh1CgqlWF6652EY+AAJQrtwVa9RoUrOhVrtX3EAVSuW14Hiue0LFBKQqojngQQpBiZSRDyZPGklhsiYNiQZicPIuH2blLak8YE9iwqlxj4/al9cExIsl0sECyWTgKRIPD8nT5eICjlnJFihP5N1XZ8jueZjeyfr97SGdF9suc+veLPligLIPbPOl11OhbidCgmCxWsQVsQf6+P7+c/Zc4/XgduMs3UO3xdBjsOyXmUo4etYR489lK/LW3n3HIsrCPHWZ/ZfDh6lK0SHqmlXIFtcBevz5OBnUyxPWu1OyOH9j767bZzeqQ+ueUfr0JTrL3Dqw/VzLqUBTynXdp/VZ272V7fiXzmno1ZW1uz+ybVyylPRPl/aplcOOeV9kaMv9MQVlnFwfBz9GQ/ad8UcL1c+vPpubz+5TiJ8V8BrUTRXYlRPCPZ7d4sOhGj1Eg4SAmlhQzYhg1TKKsRnUeClX6c96/r3DsodbKwbuEQ+tWtI/1zVvCml5VGsx+tqUwjRwHzS5N4Hq6mhKNSlrrWIexQk9gJ7EmK/ZnEAQSg99CnWamC4FlohzObrWJq98mh6roeIEJOHRcVgXgyJxDQShw0xbYhxS4gb7105GFvqi4bldHkoJgpBQYVEAtm4lwSoSqzRybBaZXE9GmZHsPfU4iftxwm3+132kZcID7yXe7mXe3merJXPxp4EC7C4E8PUz5C8bHL4a2NnY4nxeV0g7k7A4qUf9EWU/mPFfwUm2lfHLKqva/g+38HxCtwOV+7Yfj0EF6eO7HbPutQot1a9DivA1evdQT0/cf4hiHre9a5e4ZqeeY1xhC2HQRVyTeznkWk/8myaGKLycIQQChKqUQ2IIkNk8ay10C0lemjRJhh9chFlrJUgwUKGBOLRM7ZcpIM2Ve3J4U2aRb5Xtqd9L6CVUirzlNnvdsYKFQRhVVdCpCeHhxAdHDWQZRcstflhhBgMUKQwkOJoyn5MIIISqF5fvHlpcHCzXNPHecMQrN3NC7WshUVa2JhdG6JYQnmSZMnlMXqCdqIU6fOi/+xeEcHyLSrq7yqo0fom3VDTBh23hiBLQUkGDlt79UQGjNDnLUefXw2t+/IAhHXdl581ZeJNlzeJOexeTFF/XR6jdTjO2lJ9k1W9G1ZX+0rRQsCoxQ1YNMOPxeIGvZrY/bM2rg7ZEp2ERISiheiERG+C9PeiR3+/YrlzKFQMR6XRn6dL+756u+1yMblfed5TOiMnrrtqT9+qj83fTaGTU46gpnAdf+zo/OBzXU65SQ4smdbAtRHzOpHVza7vv/Uxrd3ri97si2hegyvNONnfzdq7EG2ebteqw695b8st2svSo346svseJJ8t13kV0cGty66+22M/zylPRxsDEQlbJDxiP2fmPKM1k6ISpVLL3lorWHhNCAzjaBb3IKDFE6NL7+cM5AAzlagBrbJQoFXtQ7UnMCN9dDVvhohAbYq6KeUGFpwUdwUaxBme+jVxelcsp0PUksqrLoq5eQ0i47AhxBGJg+cwRIKY96AlU+PvqxEudIaq1fVADrHgUQK9rD4T788VVZxR0tJ8X4VcCjVfIBrszjGCWF2KdqnqieM5T9RSqLmsPJeQcyWX6jlewjBYyJQEWRk1WpvWf3mz1wl93CTLwO4w5ZoTri5Pp/nZP0/5vO9/L/fypstNoOJlgfmaAaolOre4+rtc14wuK+9E3zAPlen7+W5iIKNlO76ZffKqEt2vkzsBCzcMdsXlNs1qRtVTG+Hh39ec/woGa1OeV39x5a/1hDlxHEdhKAuCWZ7s5kF01SJ/7ZEv8syrPtbVc3SjtizfHT/hgQJ/wy2uWGP7h2sFvCnazx8da79EN+72Nsqt26Pcos9OTKI+sWTVT/2wA+2W3p9rJXE1OUWiJQbHB8z7S+eQFYaixFAoOyuMF4JCSIQYiVEImFJfqahW5toqYwsxWK35VlzOTfrL48TWHvu3MD6dWOhbrJQ2tiUL7WnsTkHcG6HV+2N9zcU7A+oeMZdgxwxpJI0PSMMWZYPFCoWjObHQHi+0t+vQpNXf/bjlP1dsDdJA0lohV6CiminFmLjIe0SFSECGDSENIBtaCe+SM6XMzNOeMmfyNPf3jQjzXJjnjBKJMXF2nojJ6mAcxh+uTluNoJsW8GPTRqPgfe7qemK432/s9/KzLs9TcL8o4PtVKX2nFMi7Jhav13DBagfJ6vOfpXoQt2XF+iLQNr/OsX83VqhKt34+z/YGq4a/RmT0wnJkCV0Fob+4nDJXLjdcHXDjgS8hegAqrjbsetv7baRH5nUtHA49De3A2z3fbXpcVse9tlGkrEJiju98s1gehS0km7BlGEc22w2qGS0z+/0TLvbP+OSjPSXvqXlHlD0xwFffq2zPNzx4cNbnVNWKSCWEgNfsds+CHWGuc7Oca1VUKjSK1VXrWyJ0OAqLahYsyw+wz1IKbIaBzTgQ3YVrC+NSYA/aaxW0F74TkAGRREpb81iQvKp29a5tin9AtS22Si8M2N7uMY7jaI3RBiBX37sFruWLoKBaqSWz3z1jf/FTpsuPmHY/RSikGDh/8AGb7ducP/waKoG5Kk+eXrDbZ3b72RLLq5JSIoTIMGwgCGEjxDhYzkgaV5RczwO0x4esAeLVzedNXCrvKl+ETfVebidfBEv0uo13beub+nynqOlfpJ3H9SqeBwCuZzjSbnC6DRXsF1laHslNCe9fdGnj4s1ghaIVVllbpk939MELOMxsfOmX86pe7kl9uAOMY41gbZW/qXF+7NpDsrJitt+uz8Z/sWc7dTVZf6tH1+0emrsp7AfXXH94ZGVd4v+vATtXs6yvuaGcfBs3yanF+NSYObDmnOyEW9zZvStBAhrULegjVRM1DKQKVSPDdkeY95RwCXVCpTCXSCreBvcciLZnNst1rVCasyGsGrmmJD7Wz3VZMI6TusEoXltydwMpMVpIltaAhoXVyX7Sf/oZ5pEQoWr0sVSoZYJaqK22g1gytcoa+AitAKSKh2a1x1mDh6M+Xl6BrAwBqwNaR2hLSA8oEZVEVtBaKTUTp0skjAzTDkL0slFCDIk0JDu3QkwJCZGQht72GJKHiyVzyDx3HVp5lzg1Bq+btc8H5F8UuWeIupfXLXcK63nNISCvS055GW4Lil7Em3AA1vz8lg/yZZd1cvO9vJjcDVisFJbnb6q3lzdv07kliLhObmGwv0Lx9mJ3uuHm7c8TCvUdL3FF1vFUx7EfV86VY1x5eKnbtOcVyHX36KEnTd89kFNepqOv1zYcMQ+C5SGBJiGlLZuzt9iMDyl5Ju937PdPyfmSSS8NeABDDMRoirfF/QO1UlWYMpTQxsgCKBwndC+ErjTz48q6vclae6hNm3dJhDFGhhBRCoU1gaoSEDPQN+9DZ3uK5Gy1LUq+dFYp9fwOs/AznBPihhCjdbB7QvrCLUtXav9dWD/n4iZbg8DV9+3l+UWEYKxQ20fEGJFinqI5X7CbJqo+JYaPCGlE0pbNeMZmM/JQzqkseRPah/ZV+gNBjsD66QF+9dPVQDt5ii4/37Rl8Y5yUAj0DbUM38vN8mV8Z1+kZ1oDoZ4fsVo/X8QDcZOsk7zbfWNIPSG5JSKvFe9TbXjV8/2zXD+aIenLbhR5nTTTdwuFeolGXPcAL+Tee9697nzFa07W6h/ccMV1bMYaULTT1s6LlaIqByesaDRvlFscI3ewUBwYR3X96ypJa3X4SQfOCoQJq0WpnSP93BeyFOmaSfv4mqcXtOtkwUJNgz0K7eoHtJd2BP5OxVf2NymuM7qXpvVFFEKIxLMH1JLJ44Ywjsx5T52fkqk8uaikOCNSQSdErJbCOEQkwlwDWYUqYalRodLnoyVU115DYtViarWicq2/ep5EG9sKohXRyuXFM8vxiNEUck8KVxELq/LQHwlKrQWRQKnN2JDp5SoAkYDlR++hWgFAAySDeQK80F3rxdp+6nqxW+dbrJT7hiFolrwVL5wYS0mII2kInNUNZ5uRWmZynYhiIU4xtRyLBpZAor2/oCtw0YaLHg6P5cv2++FBN1u82sS70fJwxT6hq+/eZHnT4tjv5V6+yNL24vU8OklTfQt53txc7/tr8NKOK5oxD308WOOuFON7xXP+NtdbAzB4McX5ZUPPvghy3E+vQ+7ICiVH2qUPwrVyeUc5hQpvfKHP0fNfaV8dG/+PbJbthlfaK4e/rmk5r37vVurV56cH9+3CI1ytPWyvrjrtuO+ugJ/n3OTavlfW4VVwzaLVD78BAMjy9Yu+TmkXOiXr/qVZyK+n8r35Jmt42O65XD+IgAbiADUa7WqVQMgjkwhoZiqZXAOiM1omJEB01qEggbkESjWlO4T2VkOfC71yrtIT664UJzoAeE0hx5mi7N887ZmqEoYIjD0/Q8VzOvAxVf03EaeyNU9NwzxBgi8VBWVGVa2wniSgEmWEalW6WZ4GZQEmuCfJrrnqz9UzNti/5OC3NxiIARIBJTEMI9Wrm7crWRmKSs2lr2shtMR3+py4AtIPBuZ6vJ8eqTeOw7uuY89b+94QWSdzflk35zdVfhYUo59FuS6U97ZyHQg55Qm4KVysaDGij/8/e3/WHEmSpAmCH4uImhngHhGZWdXZPdtNS/u0RPuwRPuw//+fLNHszPbUVHVX5RXugJmqCO8DM8ulonYBcIdHgDPDAeght4rwxydKCNVv6bx90Tm/EePe3q5LmpjfGr0PH4sMLKoD9Z2N/b3NOb+IbmY5N2tZ/12zpS+f5NdqqdElWLPV6usjTly+z7htdO5fA+uat6JAFSry5NJOv24rAc4D5D0ep72olpefRYuxzDievmBZTljmX5HmGSnNeI4B+wC4fcTBEx52QFDfBuH2gV5DZVGStjbgOopSBhdgECcspxPmGMHRYX8AQggg+IrTlp+SHVvMnqDluWB5LgjeB2XsPYAZhBkpMgCPtExAeIRzASlOkDC9DvAh+3Dkdje2aWogVfW3XhtkU6HvJE3Yl5gQQigzxQWMMIC4YzB7ZKBmCpAlaVjd0Te7Ra/zDRu9nTzp7ajP7Pp7OJzfE32AiW9P79FkhpmRUHwiRo7II5+J7NRbMeUMRuSIxBFLmqUsB3gK2PJHeCvTpXNlXuOcfoleEnjiRzH3bKNZvk17b3TeBuxgzcxJOdEvul30jkd30eC1247zwooQV1L2mksZPt//Xj2RJaZ9g9osv1mq38hCq8q5e71600wn1sxvLXPf+qz6BvZUfZDUXG6bsPlu/Rzl34uzb9cOoEhxed2sfmncsvTrKEZ9vUMJdN2uRtrX1pyZdd1IiySam2K4d5LPfSjz7pRD5hA0b4QwtTHsEfyElBakuCAEgnOM6I5IFMF1Ksh+nnQZO2XM2/+qsaEyz8SMRAnOAcEBU3BYkLAAYHXCbrqoh05KSRLiaZZuIgmNKzbABsQSal8cjgQyrUZ6BrNHWo4CKFyAd48S3co5+zqrWQPM1MjlPYTUX4SRlhNilDEDS2bzxITEkhyQtFznA/Ja55IpXKJVkfSPSbKJZ63FYNX0QpVaa5HvrY0bqf9jC6N2b/xojoQfYOKDfk/0HplJIlKz3O3v8dL15r768QWSABbO8jTUPiAviM71LagXerx29Lp7o3a95P33Srdn3jaGyxZQ9e/NZW3QxVjBvUNq9/uw7J4zYAJgHrHnGW8y8FQxzkWSXT9Ym0mUiotTavm35UlaSJD/yiE5Vao8bFuW157DDX2j6hs1FlgRd49dWvwrBmwQjraNGFY9ftY8ipox23ry8laxpdNJ3R1arTMDB3njVROzXv3av1FzooophLyHcw7eB+z2osUAC8Mu/0UQL4j4gkRfkPBctAYO8OqonJ2MdSn0oIII1YZfsqTKewnOLQgBOOw9IiXEJQEathXZaduybQNLYsSYFFgA5Bw4Ai4JaOIUxUzKzSir0wMUBFzEBQzCsjDgJ1DYwe8mSLZvdYavzAfbbLAVOGKpa376itPxGafjk9QDwsKEmAiRgbA7wIUJ0/4A50IuR+ZOE/eZbwwSkAScnGfn6bI04+ynonvpIDraBr7Iff6R+PYfRYr3Qb9d+pHX4EvafolxPmde1YIK2xkTHvzjsNwtZ/J7298EfkAJl3sLJU5NW8UXMZZ2fuew2D3QEWHsj7lOe7pDY/FBL6VeV3Hp6W2VCnU/75dsvrZMdAX28G34obfju2jzr0b4TPUvPUe4UXIl5WFmeCKJosQBhIAdGORPSPwMTgA7gzO04kubTKvd9THglrp8DJiPhK9fGH/9OuPTo8O0c9jtBfgEH/R9xowZyYkpFHnNzM0JvEQkTph2Ad57BBfEP5oBjpK0buEFy5xy3VP4hN20wy54kPeI5EUjwgmn5ycs84LT8WgSAxwOD/BB/CaOT884Pj/j3/71X/D8/Izj8xG7/Sd4v0OYDpIB3E84uAM8ApzfS9ZzTd5XZoaan9uL6I1X8EiL8YPRa5gjfNAHvSb9yMzaa7W9Nn3pc1tcei/qvh3TgplOOMZn/Nvz/4n/y+N/w4P/dBbAbJU/yhVh15iTCMB0HzlX/rmzrn+PQPD0flnet16nI/Ond+FjYXbJtNGg8cDUdgM/mLjtDF2ekDUr3eoVuo9hs4wRqBiBi1uJhn+WflG+di2jMLTs4Nr3wGT+G+vAlAQDBms4PvUc1B/L2TfPrdG66EpFWddVScvrMgkAU+lXA/W4/FUPb99u2CZZaWcIgEMAkYckppOPsAj0+wLXbRcTrq4ufZUgjtmOPMATUkw4HqPkdCAP5wOIJgTeAU4OJTExSiIRShIdZFlmxNm0LA4hCAPP6oQdlwRWTQynBQDgvYfzCZxI0BI7gCUC1RIZz8cZ82nG8eszTFNBNCEkByLGaWYcZ8bTMeF4ZBxPALxHIA/iHRx28DQBtAMQwBxQQtm69TTW48g2n/ZnNSNUxk5ndfV692sus/k9q6+4KE4bDd/4G/2gD/qgD7qXbjGtFE2FRBFMkD1/Tif8+/P/xD8f/oyd24umGWtG/jXo2mhQ1zz3ngHmb00Ycxd8uw8ebEndf0tU94+aqy8HA28vzmxNjO6P9NDzT4BF8Lli7g1crC+vyr6Obhi3jUcrV4G7KBuzcf3XddoMGTWvPgPCdKvvHEyRGhPgHMEB6kBdkt8BkAzdikacE4ZerK6kXscegYDHh/+MX5cF/LTgy0L4mgghehz2OzzgAS4RUor4+9//hrgsiHFBcECKEc/PC45PR8zzCY+HHfb7PT5/3sEFcTY/PgHLwljmKJGYAIQd4dPPhJ9+Cfg5TfCTOHOfloh5TvjrXxRYHAHnHZzzmDlgmgL2c8CSPiPSIz7/8yM+qb/FtNvDuQDvd3AgeCLVUDTQK/9cTfk5TcVrfX6XQPNosf8gW+aH8/YHfSuqw2b2ASx+FHpNMy379i5ljL4EAFaSbRbn7SXN+BQ+iyaaGX8//RWJIzx5TG6Pg3/I85A4qoBsDDjOXhuZWp0JRnLNtdek64Xq5+l7aHdzrqs3prudt0dOJzL5r9KuFd3ixT4ct3N8nOKAu9h96gvuNRXXAooB91qHiR3dR3f/Zhp/lMPIRzyuZaWGzD8HWoCmyvZ+7sVGN67RO+TnVpqM1cAO3qTu8obeo3s1t3utDFj/pPJggRc997i1OMtPIvnOnPkjqOTbTKOYOeeuKKJwwGKpcqrgo6JJAuHTp8/4iRx+gQPr5u49EIKHn8QUilzC4SEgpoiUxBk7pQTanRAOJ8QYsZs8pjDB7/cgL20OboGLCSGK5gIA/OQxHR4A/wlznBAhYWpjcmAOmPaf4EJC2Ilq3DmHabeHdx4ML07wnnHY2bixalgciDwo/8+UNTV0rvevsZKA8qSuTc7KRqff/Ah9cv1MV3XzbKcCqZ6tNU0/ihP3S+LIf9AHfdB52mKyLZpTTWZedOu32EeFEiGNRDt0cPjD/g+Y3ARAokP1ifPoHThGvwVdslTZuv+9298LfEZr5TXpZmCRzSo2768tLvI9/fnqQ9xXeLaCMwjiqoad68XtgKI2t2ifavUcr7kEMl8zGDZG+Qh6DLDWN9RM8svbVP8sU7o1AqONdfxke7FmKHlwf112zY6u+MGN5+q/C385ipxWySx0Utabk/oEGEZSnGHgomkKs9SjLbDvtY7ckQYHkyPC58+fMe/2eNo9IrHXchfUI8vMePSfsi/HkoTpPoCRYkJihncWKcoBpLa0h24wCPBepFnkHJbkhZEnQML1OuwepjxC1IxUAQsOUP+PXkouDtiFQTfpZvk3B1ugXrLez/+5iHcdqBgt1xp1rhZ6//CPTaYZezMJ0wd90G+Mbg39WUudR/4FjCpMuu7ZjiRQzf2O4B4eyP4Pf9j9EcFNcHCY3E5BRwEjpn14Kxv+b0m39qFn2Anb4d+/B20Hm3k9+oamUO+Y7urMW47CuXJ7DuY62jS3uLvUbcZ+ePeWaFLX1kzK1KGPpGMS4LMQ+ELpa+2BAQVL5kbdzxZUrOu+NkFgcSw2NpgQWZhvZmP0qfRPw9UCEl4VKYo5VGZiCwPNicEcEYJETyLlzomAXUjYxQTvJBGd1BGyb5X1ihznMne5CkOfFRNOReov42NMZ2HEScclaxQM8ZJrInyVSFw9yrWWuQqKFxhSNs4RcOC6oMG9/r0RVfNI6zWzonrRXEM/2EZLui4/TKA+6K1pGMHoRnrNLPEvzQ2w5Yhc08gpub9fl5EZ/hdElprcDswJDEZwEzx5EDl48nBw8DnS3nou3gsz/RK6tQ/vcQzM7GqUnfwt6I1d5NfJU/purFm39snMozROs8Y43tMiLeYGSWEb7rJnOMZcQmshVctJqblvYS1HJa/anU3O7ty4VmWu2a6WOdtukPWlFfS383cTuGAtzbCCjgo1IXxLa8s81oF4sxinaUdzT3+n5lq71lbv5iJ6JtJKK+WsV9SGLJwGMz5EfyIHSnCIlqxOwZQx5XW/rHfMg3FjgjkHs0rZCyMITA4IjsXUSsvBoHybp7ZPjDbubVVnM05p3dEGVNilbuyterNbyuCkBmtkravW8/nvtO8FYNNsQGZ1u2tQa/6Ze0ZADejOVbm6bUCOfhTjp5Y+QMUHvVfqoyO9JuWIS+9IOg28DOhUhegWLUIfy2dRRDgfBLzNunpN+lbte0NgUbOq93RkixHoy32dRX37t3etRLN/3tpMq7tnS3rljWozMtMr04itP/dc+/z4rZ51XJfS/76uq+DK64Di5VIv0xi4DPpI7R8Mj4gJM++Q+ItuDIScehuolpVI/yV3XTuKBM6bSkwijXKOAOfhiPAQgMMsmSBiN5Qj6LUSGTTdWXPNhdc+9113z3fXyutUtcsKZrQrR/J8bNdDQJ10sCc+t25LXTdR/enn19/vQXQr1UzMB8PxQe+FembqtRxwX1rGxbxQjf/q5bJ7U6h7yKTbiRNYfTSSaiy4ChMbOQLM8L6wkW8tCf8R6D2ByhHl3Oo6p29BNwOL64asOlyoyIdvK3hLiqv3LLTniL+8op67pn6rjde8t+pHARibpVDN5m4hzSsWxgWJaR0SdvRwYzBCreC+dG7cjtHct+FQs7y7KfJCah95p/G6rUtcs6M1fJCN8xyA4KFWaOV70rVnu6XbVPwHVFtjI0Zl5BxLIreovgdATuu21rmwWrpSHdrWxrheiNU3qn4YwQGTB3Yu4pgCopXaDDPLuFsJrSLoDP61NWaGZN3dDoD0RXdNHl8oKKP8oPZm/QZvNviCpmGzPdXFM6HEcv+2Orr1XsVkvGf6PTMVH9TSe8ksfCuD/t5oS9Lc94UG166hkRlXnUQukJg7fY1f4Cng4B8Q04KElP0upBwFIvr+jzjWPf2oa2ZExZLhbc+QV9VYDAc/n93XTExhZORdWr9G1B3Mt2oObqfzi+pacDE+bumK9q+l9/ctii22+FqqguQUAXFnCtI8j3OMpj1Tb2gFTI54yOEIrJYId9+MlV9eyK4JynmuvzG6uGZfstr6w7ZJ1caazbqywSFyYHZI8MLU1xGJGvBQWsVZbW0/Rwi8XCcGgiMEx5hcwqxO3lqLHGwYA8Wq1tXS5GwWRZvAowat9bXxOu8cqble1f23dN8snfvem8O9q04+h858oG7FYF3WzzVtuK6p75J+K4fwB/326LewNt8inPNI01CHQ/UuAEz4cvo7JrfHY/gEhmkypIRapEcwIdmPP96/NXrbeFBC7yMN4Q+59l6j0feYI/WmG9e9f/6py3dXPNF3FJq+pOoCKqi51iQGbH4O+v9Cag633J4EIAG8wAPwavPDICxwSOyxICByQGRkW17R7lRgW+9ZuFnSDtbZvQHA+2JGZepzTxE7R3j0EafEWK7pdD841N+85qXRswzS8LPXjX2ri7jqDVr7gN1LI9D7Q25rr0i3SPp+S1LBD/qgt6TsKD36Xl74DUWOufzaSdxr+O6Df5RkqjDgUZ4xGFKJxO5qw3YqA1o9M9LivvY+8lvZl+ycl2SH+pPPmAK/gL4dsNjgzoogecyhnJcZn2cK7k1actX9M1VvlaG84lAiP3rjtZieix/4paGkNsJObRZT5okyo7umcyZc50J5brQVwCpxRNvc7oVuXVErnVkzNS246OHfPfLw9cbXGBdlFZDleChjDklIDRKNhUqFBFh0Ha5M2tgctbOqh0viPNVu1BFEJCRhgidWB+7SQTPWaqhSmmiF7cD3tm2mruD6paqozhnetCy91mudT8K6WfK6lz7b8Gx9j7cxvlLdquPVb2uAsfWd9/du+dKvdcD7ngfiezfX+qBvS78V5ux7Uv3dDxPDbZ5n91F/Zolpk8uAQ2BFHSMR+dx6bbqaL/ugTRrzk2+zT39/jcWQCaT2z3dJdyzkmiPtLSHe6CC++oO7UjR8rpnXTleTP2KjKRtWMOWXW9YG1UraLaC1Nsmqg/rUUuhb5PClCRuxrBVTJFYJwqLOcbptExHgE8g5OBK/BzNDYwMj9kb2pQA4JTGzcgSzeLV21P8pVw8C4IjhfcLeM8gx1Cqr6d+Kgc6fbAE3dp2y1kXrqCM5rcLG1uVRKa/HM9QdeLmu7uNSUHXumHvZ9lL2qtfQe9zalvccfaSRgtlyuNLx9INB+G3Rx3y+Lp2LPNU6XY8zcG9RnXfCyjWHbbBqjxVIZPMo1WIkThLsm5AT5V1LW/24RL+VdfUtfZDKSVWfWW9T513AYnsABkYAI1FvW1oNdtuHhudmkQ8qq9TJozfadlYin9mu8w/VP7faOhibXrhO2JI49EWNbEwGbcwvrtsmguu285vzp+91bFtpM0gS+nFdFen4cZZWrIea2mHLnaSuOzoLnfAbzJW7TZ1QrjDSG53RH52tZ/fC2p+CquvnJc91caPn2nraOkqmegJRAEPig+cnWM2VHAGUwDQhcUDkCMYik8CE5CQdXGJz/CbJyp2Zc2XUyckr1lrWNumB5MEIDthNCWFmOIeMSQya1dtRhmt5bsYjZfeyOZYCkazBq8q15gIA19KvClAMEzjaGqzvGEhcKdK4fq1pa7NM+k2frfFN7cgJ9Fi+2Rp0rb9aHfdqxPp+93Vv0eg7LpoVbH0Yb0r3Rtv5rTAKH/RB34LO+4GlIR9ya7nU7KOyRz/Hr5ppOwAgOPLiwI2ExICDv+lb/j1/999LMCQg0sHRbeDzFnqxxmLbzO/CgrkSpY4vd4xy9e8l2qjlirf0M2uYd5TIRDVPUjFEwjx1C2hTGl+9lbOSlcLXY8TNb7wxpnX0mZpR22rH+paNcHHQalhkwmqitrqYtRFNf7saqWK82ABLr+KxerZl0pxBTzWyVeNHWogaVI1g3Vm6QfqQJTUZRHmp0Vf1msRf74MSEnskJiQwnCajY9ZITXmsciOUgadVf5KCGq7AhZPqETwkSR5sTTWLu8xa1cX8bdjY9t9E/ZW2nxDOOfk10aJoMEvNQmtWpa61FizUC6CpsVsTbX22Dos4o4YleUnbeOb3V70BsO7DiEb2xFffK0qj706/Z8bhgz7otaiW7F88WwARJl749C5pCGsNiDyfEHkBAEReci4Lc+COSKDG4++D3iPVPjTvFlj89qlmO8/TJYl1W+a5etQsJolK07sgUd9Wm0DLtrU8FnXP1RwPrmaaW+bbNja9x60tvj1/nnWiwlA3z9HqX6ur5G24B+Ffw8g1nOfFpy/WeAsz1SE0MoBhjCwbaHRgBCyYELEAdNRNHMjS/64N+T/nujZxdvIGkeIPB5ckjO1hkmR5nqCmVwNGfND8tv7yBGeAfBvVGqNRndex6K9PA71sARcNatpo2b1L+QeiD+big+6l9xKi9j1RPw45X0U+k6l59prv79qxNcMZIoefpj8g8oJjfIYPn0AAUlqQVJ9tfny3MKwvzVj+HumaNfyt+2vr4luYnN4ELHoPfGH6eufbjUGsJaZv0Ke+yJVv79Zhfu2kDwtc/zpiS9dM/1ZbmkJgx3MTihX9ePc11sx/L13tnqX67ro/a/Cx3q5GEY7qP4WnXLOGtfB5XWZ5m9kgzUot1Ck+ailu1RwCwGfWXoOEBtCQrmCSRjHAz6qqu/E4Z1rYrC1CRNB8FrXvwg0fFK9+0d/toGJ4YvG3IEbM3zcNoz+3/RhUx+18lm7pWjwzvqqwqWdWqukm82z3O8xoYXPbsLBn3r9QcA8uyoXBB06VX0RB59Xt190Yvyd2+Qg1+UEf9HZUayZX9175u7O6JHKgV5AR830DFVL37fW/Z3+xl9JoH/yevmQlMhTnv9+CXqSx6APBlMHaAhf1H9sD25g83CWkpp7XPNesS4WBMnfTszhb5ddsfmFAGpOkM9oH4aYciMxW0iQQLpvLA7UkvyqhYsQy81Y9seVmuh6aEYhor17jJ1Js+ruHBpz+aExKf0spa9jW8mkrSTcBq5R72R/BSmgX8xArb23k14KIag2N1NrMVcK7PO/IyfASQ0LOIiAlB+84lynjVLQUCYAbheirxlJqUIhi8ciJESghUIJHqtrcRga71P9m7KtQvpYIcHi7KXR0qZrrMlC5DWc3yeZTKXPdax9GM9keBONvu372HF0tJayEODcfvOe34TcnO0w/wMUH3UOjEKIj+r07+2/tC7d8d9dqCwxcOPLwYER13Lb6ADsqbhR01eX/xujts0XcRgYqxLQt599+k7puz7w9YiI6gHG+gFtr/L5EN5/Sve5gu8TNOknCujG14UHHpbKquFomqdU2rJfP9QyOhZYb1X2BXOVr8mJkPOQ05ccWo7rV3K4tZz8uqn95jY/wXBlWB3VXS/jVOU04pYCYGB4AOflpb1O3sbNeK2grtSodKlox5gQJahsxIWJyEc/RfDRuoxV2PDfEQxRXvUqotBR3zsGgDXfJLDLDfEV9v2PKoal/58zfB91PHyFGL9O5sLP3vH/ue22ATBPaPBUwc4Vvx++BtszRir+KjNe3XMO1CXpSgPHu8lhsSxWuGKjRxzAc4GIyc2+0kVtpZM5Sg4tzDPLa0h3oJeFa8FmVB1mozEpaPH5udHX9e94AqF3qZx23mn/XsGI1/8q4FWayYxAHjaXMQ9djPm6J9aO9UzaxZp3YNVClJRrpOXib533ttdUOXv6Vm5u1VsbGvAYaxRQqpUoDVkmo+nlv+81m9VSu1FIB/eGQ4CnBUSv5yiDlXDcrTYCMbd3+miGv+7ytN6iXCNULbNWMOgP8QIqnBQ12kbaeC/tM3Z9R1ORzpoFte66TFA7b8CPYoN8kbfqgD/qg70m3CP5kx67PKoZFbvygy/TWmtxL4NCmjntm4BXpw3m7opvCpKFmnsrVXr57/bTVYKEuvQUW29LdbXuSLPWtnuol27mUMxvMWpbeNmO0sTSaEyrtqdCO3tustq2kLnWMRZtKe+BQQcTNZ16VClcsdGNFFRsLhkPkgIU9FgZ2TsatNvLKIWdRQAOlBHLm6j1ugGg1HBwDEzMmnzA5Fu65i4R2C+UaqZr3M73s321/l0LE7+YFkpaNz0aA01YbP+haMu3aB33QB317cuTAzIgcJe9EJ5TYcgQvF9a8UB0Zijlh4QUsBrdZiODIr777H1ljeS4a30voW5iHbgmuZD6chPSv8lu9Nr1auNlrHVd7KXimAfc3kpBvt2PAJHf3LkkJt+soEKKPrlM3UiDAOS1LBRJqJru5X3+bPWvFzf3W5KctbyQjXjvfbkIF60kzT0N+jK5wyu98F5q/1txjVXorua5btmrJyu5m3O7i8rwq4QwVSfm19r9NW22+qoqH7xPaEefuJgAxViJEFnXmsBmdgzCDMz7I68OWIdt4MaDQgxzgPSP4BDczoq6vAhBGq/ZM/+v5bADW+qNvtIOl1rZEOrduh0qHyu9mw/AtA58+OIK10sa6CkOxAou8eust6Fy42a3nvhXlyCN5r/oxmYoP+qAfnSQMeSsdH5pObVpQVM/YN02WoC9V/JUl11Mz2+qM+y35WV0CSdkhuhM1N7wxiu/Zt94be013Dzpfk24CFpquq6NyEF+Kidy8c66iK8/kzY/kiudvByrCzFDzF7Z546qMbNaSy6yeGonTO/Zb3u3bYo+0TLi82TJeJZ8DDyawe7+qyNm1JplAecveHHZh42+7WqxvCvM7Ku88bQHE8/ddnkTbCNZz1dAL1iPX5jubzRowz/pcNmk1Fp0UWMCBEa0GXQranwq0Nk7AHbAWm1iphJFAHACNCBV8whQSHBISnIILeSvnqOgZ/E5TNPqruIDXupj2u6higI2wVY3zhjN8LeMtn0PXBqo0PtU6YUVlJXNpBXqq7/Bai4JrAeqlvtwKdL8FbdkXf9Dvm34IE77fCKmbLlZBSzZoJNmur9s3HTkCzIi8CJAgcehmTkgchS8YMNg/Mp0LnjHqa3FmXwewuGZvfImW56owt1q/qxzwX5s+TKHuphsk1h30GMCLu+o1fkaEvwmICeATgBmgBUwOye0AtwdouqmWYdtqfHFZyNG9WgOf7TrYCrcneOvJLRowX9U9GtyoDdjG/b4WMF9P10X64dVfAho8gADJdir5ThxRbif1ba43KuYSacjaoaXL3BBAjMMEzMzwjhHZJFXtGImO44Y+r36r4cMNcc9vqHPdhgquSFcvW+3UzW2uVdoLtljv5YFrs2e/J1DwQR/0VvQBJr4tvYRpPDtXRPAUcIrPiLxg7x8QOWJJJzmToNJwfHup/GvSqO2J06pfI1Bhv987B/eCi6sF66Dcl7eg26NC4UaG8g4twT2SjXF0BKzs/l9SRyG+yIzUEvBB4NbCXNdMSxYFF3lsbcJR3u5K4gROEWl+BvgEhxPIRYAckmNQCCAKXYWXqIICFQOO3B4FFzyU8ZdSer+KmmpzmA5tFE0G9S9sUGuGYgxyX3z/RzXSZ8rWZzfWTPkmNkx7aGyyVFTQ/dxu95PJQJDmsmBTOfdt0b+Zs7lTvldJo8S3ojctYgQHTB6S08JKvoQmR2trY31sRjOp5oub58zVrNe6rQHhaJ7q7b7WwBXNGbrn2r8I3JqS5XcJpv5vHN03wsTeEoVl1JctEHK1luaDPuiDfvO0FmgWeklCOlLQEChg4QUxRhz8Y7ZuYNV+8+9Ia1lbXbxGn795pKg3oLs0FjV/8ZZj8OJO0+1A6DxdW1L5qPuoOkDLnIzr6CW627UAAKcFaX7G89/+OyaKmFyCDxMkU3OEf5jg9xPgi1T4oonFmRbK+wMDno0yh1scD3p343yNIEexya9MbQYFduzelTVuv9Ezpn3bqOvYqI/n10US5hYOibxEhmIHZiDFBCbAOQfndItnBpw61nE10pXqlojFLowIYFJZEwBi7F1CChE7vyAmwikFkGkVKFWt2pjfLRohvIGpneGHLUb/ciXrGe7X2/Wzbqrt2+m1NRI/gobjw+Tlgz7o7agWRpwDCY7citGtHbUzQ3xGuMFsOojyv8ntENyEf3v6P/B1+Yqfd39E4oSYFsAJ8JhAwKD+H5WKxn/jOq4TTv5e6ObM20R9Bt61s2NN9cK/9sC5KTrT2cqhgtbr67pUd5YNm2T17PMtq7jJgFWLdX2/YlU7brUYkhCYPLD7DCYgEUBhApODczvQtAP8+TFogYC0NEtkN/qWb3PPsvXjMpYH5ytUyitsLyvD2Q2O/unypT6gade+AdXjBmt+z4g2qs5Rn3oQkwuSuhXNmC9bzwtS9QsN57/tV9ZskESHYoSssRDnp8tSb64OI3IaUkol7bIGtJ0J8JAkeTsXMbOD54RErpnvooug1VSVDvXrYvDIusGri6uIY1x7R/R1WMZ2Rrsi1gX1zaYGAVarZASky0tV0+v9rry/1je2DMEtmoiXaHE/6IM+6Meml3zXI0ftS/yRaXgZDKeO2mBg7w/Nc4683GAeBIpp6SVak+9JP1p7e6p9QkqyvNen+zQWeLnE96p6LkjnXvyBvUI5WgKAmh0pEOISih3dHbPhwixlm3gCSKM+MAHsPGj3GdDEeuwD4Bx88KKpcO2G0kspzttUbutOhOmqANTooXPi+a2/84vUPlI9Zwx5ywq2z9tY8cYTW6vrkokKrdZlLdXu8j8MHq1NfHpzHHun/c6MQSVopglYOIU8SpdAMbeMdu4LEUp+bynNgTEhYecjjsnDIZUe5vVgDR90YGtk+zYywGqyVoOtTRBaP8MFVLQMuFVTa2rG7dqGvHVT6aLJX3mngNUsEaSRMWT5ZSsE5FbZ19KPfgh+0Ad90OvTJdPLa/YNItFcFPGOgycvkQqlpLvLfmuN53sPgftW7au1VQx+U833TcAiNyzbdgDbLOc7oG/SLOp+XnoOOGfScamURjqvnDZ5D+c8prAr0lVlZiwUnKgx+lrGsv5RnaMnVj167fGu1Y81oLipjC1pcIF/xm5fSvDTj1aBk5c/UKurlw9c7Is2UCRHDCYPidXkNFIRQZQP8vsIXJgPhrf7DoB3lQaj0jqStJQc4MB4mBinlPBlTmCOSJRjhYHPOlzXI3sFNSjqund687ILhQ7v1j9fc5stbt1bbbjQth/A5OmDfhyqJZU/ulPtt6IfQar+2m1LSFlDYdoJy4vR0+R2ObKQJw/nDzkMbd0uiyQlyvXbzKPeYg7ey3yu8od0997yO61Dgr8F3QYs0BoJ9L+NaG0+giHzUySMXekDU4GrBzvbvFQsYRayrgxZmppHdYymoTNY6UqpG1Ff7nIVDCS0G8utuZeNh0gYQ1+xyvU4y0bRA4tzgFCezzLaIaIYjdoFsvYMCl2FHz2DW/O0Nrd0bEyLoaY9w3ZSVU9fflNXLUk/18dqzIe3t7+WIbQbjbeCeWX7wRDNFLLGwjYhairJSfIgwMnMGeW/8r501QZPrhMBk2MEsqc4s8ttR25kzQePyXrl9f2q6KIhQZ7oEvK23h/quurVxs1NRmum1OPuWgdFI4BavdibGNjhagfEusP3SeWujTQlzXofB+gHfdAHfVu6VzCxtWf05VmiNQdNxEcOjhwiGNmmNgsG61Dy5x2cR8Eq3gsQ+Nb01jlA3nJU7ww3e1+TvsvyWGOVex5ZPWvUM7bjWAgMkLEx9tR15a/uNNoigwDr9ggbaNGR7MYWB22bwIhVL79Q9/ctWopr9VorOW6P0epfB/c42wzWaH/NcG/VvapKG+S6hrFwmlWLVy1v6NwWvw51O+K8DVLIvwmTggvTtlgfqxWwOlicHAZOfmYgApFUacfM9QKOGJ9CwlefdPhsVblSx9YEDaiPpHUNjSDwGuhtjT+1vw6ax6vFXb/SzsgaXNjBud2b7QP+Mhjbiir1njUZoyy+wG3g6YNenz7A5u30W1izt/Yh+1BslGXfN3PKZ9Fz/IrJ7bD3B8llofuTB1RIVZXRnMstjYTH32IO+v20d26/JNy+Vqsycrr/llQLvyR4y9s5198GLEwyd6Ex2wNciQKpf3Y90K9pazdiac6xhEOkbAtIGjQosVqMo8pHXT13baMHQO28bAyl9oQHb9Q89dmF3THi9fu8bhb3/dqiatrbX4xZlX7UAG/42XX1tNGeLCOofDSeKlMUs3EnuWcS/mwW0LGQZU2UjSW/36wBe4NQ5N+DNp/dQ84z5g1OsOKscudAzoOo0lBVUiL5wU1BDCAxwykoKu4RJa8F6esEYOdZ/0t4ToRk2i8wCAksx8e4Z7TW4/QjNF7qFfM8WHejQc04b9QIWIf6j61fUHZv0KqKQWYDlI2WoutnvVYam61uvi8csvceYN+LRm37LTBoH/TbolvDPPfX6uvvlV7L5Gg1FgwQeUiUwAXH+AxAnLljWsT0Sc8iDygDe7lN70Fospnoju/PIt44TPdrqOZHv0H/6+hWqfKIeW26KyqU/jW8/z1odPhe/S6ul6bb8/XPzLQOnlnRuab1JmNXjKVIltsWrUyzKoZSnqobMZKM1+BoAATrNzPPti1pGM0HGw5Cy26VVG11TXa/QkerCFb1hiCS+txkKtGtqMqGlnuYRf5tie0ojtBfd32LF+VLcvw1WXvbftk1aRnDAST/UeW5kUFSz2mbOro5UCsw2qzj8ltwag7lWOeMuidyT/tXR3+u6JZvD6i+iw0Gdr3euHmc64WLet3q3xsAxeakMCT2X099mb3MoO7xtp3r95RsvQaNnOo/6IN+VOo1cYTfj5nOlgRfxsBhTifs3A6AMKuJo5x7FMDMZ7UgPX3P8bwEKu4q84p3XzeQ0A30Xpy33yNdG8FgRQNm+Z5ytuWx9y+QrXoKE71devNuLVBd62TKQ1T/+r0+7A0p8oBGT1i/vbclLZs+OcB7D+cddpMHOYJzhJQATowlRg2xyohJJAopcQc2UHj6Kxv0Wp9sdrJqfANUX8AOkb36QPTtaTjptm3MHRg04FblOVGJ/I4SDiHi8zTjOe2xmOS+aUlh9gu842Jd9wp0S4jV85Hktu5c19BWnYwz6+LM9/ZGUqL3QrcwEh/0Qd+LLNTmyDxnFaXNhF76jshi3neehmv8Ga4xOTLnbQYjpSjmtPqNEzl8nn5GcBMAwFMAaS4lT/6HAF69L1wPpOrfb9HIFuuG8u65NfctqNaevCXdrLG4l3rnxhcU1Py5kiFvtDFLAM8WfR9IqdVLK1k3lcW6loTfMqaEbK6Sr1xhGkG11HMNSYoCaqAhqMoYJZnL/emYuRUCX73bqwP7e6Wvozrzv82LZSwcEULw8N4hTBOmycN7j90U4ByBHIETIzFjXiJSYgEZS0RMCfMSscwRMaYqROt4Yynz2o9fFeB2m8fX8SlMZ3bFzkuqlpJZpYQE0pR5JNm4afVUnrSsacybStV+O1yoziZvo8yA5rPYe4anBFeO2OrJMgYy3bU3UdcmcOuSsPFB3mNSc16dX1dWr891M8bVVA9StSK4vmWIo0FfGxNvP0ZtPa/FuOa576np+BGi6XzQj08vMZW+lR/JprOkO6DWnTh9NybxEl0Dem7RupCeNT15CnDkwcwCJmys+pP9O2t4zu1LvYa4N1G6tQ6gBSi9j9P3AhWtVubt6EaNBWEknj03SG8ygOeK3GLezr16AYxcfY+Gv0LMTFqzh0u2hsPrKGY6VdHNO6zG8YXpX7UmP9+YkG22BlkAPgQXV0g8mnK6yvpxqh/pmdKy+gbmJirUD54QvMOnTw/Y7/f4/OkR+92EEARYiBZDXkqJcVoWLFFAxOk0Y14WfH064uvXJzwfT1gWVguZHugUODHWIJVITJw56dEoc8Vk2nstAFitXhJtRYJDRIneZRoaeZKhYaCauba2dq4X+sdIwpUwuYRPIWGihBNiFerWodZYGKMtY1K0LC2OODcWL6PzDPV6zWRAUB04lxnyqk+V45HlubDvr2/XPXTJBvycpKz/vr8VNbHS+SO06Qe9DY2CBGz5BzSJ3Sq6ZV0SFU88ZkZEVO0FS2K4jfq/J53bH0ZS+WvKcuxW5U5uyuUIyGAxh6rP8xf4KLwGXSto6ed5JMy5KOA6c7Z9izVyDeCWsMBvkxwPeE+mUJnfuMCovq9vd0iZEc9Jx9p74/CT5zpGq794cD0T52G8zYzuFp7vxnnoeDnUvXgNCsHjsN/h0+MDDvsdHg87BO8whYApeDjnELxTsx+pmT3BUwBCABiYdxOWlPC4P+DpsMfz8YRfvzxhniNOp2VzLHtw0c83Nu7T4Dl0z7TP14DDKWqhIkVnA1i1p40ymdZn6OaYmWlVbzPg4AGSiFF1q4IDHifGPiScUsIxGsTrVnJmqovkfrTW65l/TXOpS8k0h/4+tYTpSlDxrehH9K+wjK4/qo/Fh7blx6FeWNczfSPpMzOL06oKAmqznqvrJYKHrwB0krxRTD+EGWDNPN9DNs5ZcKAnU+Ql57UwM7F6D/ueY3PP9/yae0A9Zq9d9hYNzfu4CP2I324+bowKdRvCX18883wjtr10KDUi3kLKTV1sZVXH9jPXSeDXR/9aSlsYT+tXvdkNxPfcX+jbQl3zeM2IGrionpN8FmNVWG8GM2KP+6iaUs8YwVP71LAX11GBULUtv1xTFtsRvHfY7SYc9js8HOQ/7wjeOXjn4Ijgqe0dQ/wtsrTFE2JKkuyHgOA9liWCMGNZojLuxrS3svd2vusxriXcW2O0NT4jCFJGg/N/CirAlRWOJbPkcRFWQxU9ipxqILKTuyY1IokMZU7cp2jvSMFFJrA11+31GvRconZf2Cbufo7asVqnL+Dbuf1nVcdbgoJLAOmD7qcPQPFjUG8Xb9eMagl5/U1aZB6R1sp+d2/9VnfkBDCrdvrHdui+JKW3cW+l4g7MCYmTAAsFWb9FesncvsUevbXevvca/K4ai7bzrzAQxjhyf7kwJ6/htGISYC2yY5s6br66M2pPKbNiTwnI6RgqMHKmQTA7JcuvwNVLuVUEiH3+qkHrxjbDZKz07TRsNvGZ/Xw8fufo4WGPKXjsAyEev+JpfsKOfoLb7cRxW0eco41L30Dpn0ui2t4HwLsd9rsAIsbT8wkExtNxxpwBRqURwIXjKeOhMh85g71V372wPdp23UvUDfJgnpEMYiTxlbAQtIRKa2Xfh5lHWYna7xQjnAPkn0KeEgIteAgLTonwZZZtw3WQqkgQW/gwHo7tL/ElO8FIW7T97K0rutc7vQ0z/719JF5Cjpxk1/2BmasP+jFoa41ZpueSq0d8ISz/giMPRy3rk7g1C9mSrtfPGWjxTqIfJY5IlH4YzUVNfb+MTMPTm0Aljlkr4cghcULkiABx4rb+v/d9rNcg9GZid2k6QKuz5RaB0yVTplGb678vmcAxJ43epRG83oBuc97GeSR0D3JaOfpeWXYNiFcqn81Czt4dc+9bk6Ql1c5MBIIkGDs/wU2xlS1Ivsb2Rwtf1sXVLG1lKNO0qSq40uhYFZeYOxuy3N8z30XrEFek5StBccNzjlDN6FYPOBKIROMgWgm5573HFBy8lzzkKSUkyMfjIP4VjSo4F6tjDIYjwDsCwYlJlXNiKuS+4vk44+m0aD9MD8VlLXCbz7n910LBauhWKluYPSVrqL9qA1Zyc7DZdMHUzpbgjuvHyzoiB7MDo9r+KM9FWXxmJlDWnfy985LXwpk2pF4lGaB1k0ftrBk1rgj1Ly/RIow+3672dmO/CAnXdZwBTOvyB+0ZSAOvKeMak633coh/gIoP+p5kEe1GUX3qyHfnvhdzyj5bT8e7EErZ79mpe0RbDtebz68S3433tmv9Sr8HbQa/qIDBrRqokVCoXyevsU/f4ttq1IMdBq+uvRZ9F40FDRj8awBG74Da8KAN8zyQiOeJON+25jV7uH6Jy1SMWIxrJ7xT4qL2jDbHS244pTETVHdbnrINom1P4fBaIywb0fyzqqLflrniEocfR/3uBQByHpVLPSsmMHdW2uudRH8KXiJBERjTFHDYTZhCABGwLDMsRKAjEg2Gs1B5UBxWrw3payASH4yHPeJuh4f9DkQCOk7LIqFpbU4qhxZGJbUfLQHqfqKAU1Mf51XOAira1IHyX1IowQ4gODgS2EGszzOJpp8c2PJdkGELVtX9+ptjVg0GOQFAOi6OgL0H9p7gKCFy5TRu7as+SjOLImyslSHa2Li+QZe2RJmd0VNV266vrnq326BvOCheE0jcU+4H3U8/upnLj0xbYz+yWR/59/R+BU2QAXDWshXNxobD9xmwUIdlvdU5+qX00rV5rd/FVrhUIgevyVJXvi43AJZvReeiWPYmdteUdSv4eAnd834TZrYyVXurE+LVgMW1mofxuzeWj7F0EvUTmXuu0qhfKLsI21Xqf4MGozB95/vPwIp5qtnJy5zV9v36zhYWP3fVDVgt0sIumUyW3l9TY0tbdp1tWxIAifgUQsCnxwc87HfY73fYBZ8Za+8EZMS4qC1oBCc5LLxzSMll4GbkqIA5IgfnvfwkAjHgPRCcx5//9DN++ekR03/8HV+fT/jydESMRcLfj7knSHs9YbebELzHpCFvASAliUY1x4hlSYgp6U9CSg4pGcuu0jNuQSMbwHAy+s42DSizn8FGBKWUNRWJIECDoW2pD9yEGBnOWR4Ql/HCISTMHDE5ApLLOS36Sd76zkZMwEYRF4k3fh+XU9fywWx/0H30ASreF4n5zQIGsKNdvm7Mod0X238x3EwcETQ8KqAMcsUkZxMerB3BM2Dgdi3U2glj0G2vqzUfb7l+zvIcFxjfS/ezBJ+3TcQIEgjFgEegkMcrn+UDbdG3+KZGUbAuWce8RCjzUuf4txiT2pqEIBYPAQSv38Fr0wsyb4/vj35vaWweM9JijMohqnI51FLfAQJtGHbqpnpVf8vsNOxWluZufwwFFpxZFMql12yoWdO3743GAZUGo3927Ug8kF9WT9mb5yXJjQNWJ03eMj8b9j5b3Zz/WIsvQMs2EtTkyXscdgHTFPDpYY/DfofDTpy0hWc2aQoQlxnghJSiXhfnupTWoTiZBFw48iLlh8/12rp0jnDYTfDe4/PjASBgXhYcU0Kk0nZruTl/73ceu+Bw2O8QgsM0TQJYCEhRQt0ukXCaI2IizJ6wRCAm+c+SEpmgPLFqlRShZgduKr/Xs8Ko1428yAzVZmzNnGpLumU2OcbOMQIlxDxHA2hAZUUWAz3OT1P35llg0Der+mOrBa1ObgRBKo3SxfNDHrpVg3At1c7z5+73v5+T3n5vuibc4Qd90EuoSGDbawxWrUPKvhYMFNOdal87p30Y8R3n9opeKl8zp68lsW+kzjjf/lvK63+/VYLfRt+6bg/6VlqMVVjiKyn3+ze0f9karn++1Rx8B1OoPqLRm1d3ca23QGQbsboLDT97t7lpGwStb50romJgL9E43kU6W1uq2NKOnyttGLVrs8R7JMQsjDBJiwAgBIeHww6fHx7wh19+wm4K2AWnDDYjxqXrBzDPM5gjwFFAokmkHME51zDbJt13k1NXhF7NKz8nDwTn8J//9DM+fd1h8h7//pe/43icEWFnFsMRYwoOv3w+4POnAx4Pe2kvxHFKQCsDmMDswRwRNdJGTFAzJ4clAktkHI8nLMuCJS54nhM4ETB7JJqQsEPUeRWQ6gxOgEnyXETIwvEcQUhi0pWlboqqqvFvfiVLikTYBzm0HyaHOEOjQ9m2rZK+7htJK+a+XYVn4EnfmhWN7tGlJ7KZ5DXr0gQKVYlvFNnjLeit7GfP1sn3xav/rR3iH3Q/DYWEvUYbXGkfZO9JHLHwgl/nv+MYn3FMR/xh90c8+MfynNvhWrrWKXaLwe+1F/eSOVBDv62oDrcEQtAcEtcIfLeYbIseWLgS10iyLzmipyofQs1D1PW/lIG9d3+ozd16U7hb/H9f47n3QPVaJn7nwOJaLUZ9mI8/xPzbqKCuhCvaU3ErmZE5I3Wva258E5r751ju89KP2u581RGutQ2Djz9f6pj1jkkyZjGX1WkaLo1gc7frDnHfX9ST1j3ctq+wl60mQP4tJj6cWw94HxCCxy8/fcJhN+Fhv8PkCQ4JcVmEQ9UM2gA0XKpQ8F5Ldrk5uaXqQ1Dm2tqqoQhNMkTKpnPdUsnrcNgH/PL5Acs84yl4/OPrEYkZiSVs7RSCmGqFgOCdmBwpEAInJGZwimqqJcmWWFQScCSRNibnwY7w4LxqMBxOaZL2ROBAewQ6YeciJF1e0Vm4avEzEsARvBzBaQbxDCDmNWJTMYS5XNaeg4SbfdgRTsx4SlytSy1t5ZVdLYRqzrdoBH2bpW8X+mVM619Ha3n9PQzqql68ddutD/H6Z33vXnotx79vQbeAix+lTx/0PihlnznJmRA54tf5b5jTjFM84tP0E3Z+j8/MmNwOwe0212Jm2pVGDt+9X0HPoF9ivF/juydLdnqhjfX1m7QulUUHc8LCs37DkufjXB87b9HV9RE/c4u2pQmJvvHOKFrXum2v60x/zkn7PdO32G9vBhbDJbQlbtx4e+y6sBFg0/jX6m6p7kKFFYdx71A2zNaqkP7DLb8z1U9UzEUDDIasXCmjZnDyQ10jNsaeqjbcw9yY9L1+Z618Nhhk/eBhc3j1buHuylYppkoZXBAwhYD9fsIffv4Je9VScFzAaUFKUcLHqhM1kfhW2KB570Hk4SgpM8/ia8Es5lCO2yXMyrQllpCBzjQAZW067VggwmEK8N5hWWYE7/B0XLCkCKSE4AN2k8fDYY/d5BHU78NsTVMSE60UF3ASrQrzopIji3blsJv24uMwBSQOSAAiPMQbJsDhEQ5LziTuqvF1mUNmKTstSKcn8PwEjs9AfAIhIlGs3qtmrGbE9RcHRiDG4wR8XVicuEHozZ7k9Q4ADwDL6HJ9a/VuD2Lq76rB2tVeUYHGfO3ixtoLE+7bP14z+oeVd61k8j3QrZqLD63FBwGXATRzgiW2YxYJ/v94+lcc0xGneML/ff8nPPjHq0K+lvCbem5Uvhf1fSLXrGcLCHKv+cWtPgZNX7p+Wajbwl+tmer86lCY2l5bNHRs0rNool32UznXNjGZElsJ+5YJtAI9W+3o+3QtZaBn75CTM4jGAOM16L1HvLpEXP3vLej9ZN6+QGtWYkyvfzBR93OLdabmr9GTdaqKLL3PZj+Dmqnhh85TJ4ndStb+ssObu99pcGVElYaiBjk5PJ/I2A2meEfYBYc//vJZkt0FAqUF8ZiQ0iKbhhfHYucIqUkzrlJ7BsAJCydl3oVZ5iRgpOR7cLkXKSU4ivCTaEu897DklERQ4CNAyHth/v/082d8etiDHLBEccD+/OkR+yngcTdh8pKgDwTEuOB0lChV8p+OGAU4F2SBmKMbM+ZFTJecB5zzCETwHEUDQQnOE8jt4MIk932Ac5KgKCU7cBjeef14GEgLKM3g+Vek5Rnz09+Qlq9APAL8BMdiPJWzYDCAxAAlgMRq6ud9xNfo8PclIS6h5t67lfAasdzb788iXq09hrZp9AmNrhWYX9XVde0WrcHvkUmuzR5+i6YEH/RtaMuHiME5CRsAPMcnnNIR3gX8l/0/4fP0Mya3q8yjUgYEJrHupdueAszwZ+07SFlwtWqP7tOpKvsl/buXiAi+YuVGZS9pzuMgeTy292bf3c9O8EgIFEDkhk6/RAQHlzUeDh6eSobyyLGZh0t96smsCUZmccWU6wr59guo93Np21D+/l572iXA2vrDvB0gujmPRf/7pSP2MjIfqS82yjrXtnMT+aKxY9T2U7XpR28uxSYlzupSuZcXfC6mm0628kaN3mbXx82twohuDNhZcGEMVPf89sN0fjH0mhTakmQbMwJMweOwn7CfPPbBwXECq5RfpEeAownikOdAyZhxddJWrQAqBl4OpHozTeJnwREWJBZMSJpUyZFNO0ErFCCU1dFyfwoOQMDnh50CCxYHc+/gyY6chJQSOC36XzF/oqb/JAy8ZUjXNSQO26xhY3Wk1Pk6KyYAgBycF1ticjrPieF8KAek+p3AB9ByRGIPnvfg+AyOHinNQHxu3C5IJVASfpYxaRbuyTFOpCw+6zrXELWlYd0h0KjhtJujJfMSf6bqKQOrTRs2ns6tpfqrHehPvsGhcavWoQY8byWlu6UtH/RBr0Ur6TBZ1KeYzZg+h8/Y+wP2/pCfM1AhQqU1MzoCwEPpOrYdeZOeO7J797kdXtf05hz1ms3+Ws1KmoN7c7V+X7U0JXIW5NwzgY75UW2aQZMI7xrBjM4gta2p23yvzwNB/ADpxj3zHqqd2d+jxuKS4KvWar/l+vxhNBbfiwprVNuT672Nj0E/qVUJ+c+ztdXlb5RxubHnef1XWUw3SGeGV6hSxBlTSnjYOTwe9vjjz484TIRAERxPaj6UQE5MnEIIAMwJ20LLJvFZ4IgYZwAqM3dO/iOoFtmAhJpSccyqbSIHpBMc7+GmSWz+nYOfdmBnOSXU9AoAiOE88E8/PSIyIzLjdHwGYlJXDqn7dDohxgUxLgIysuSj+IHUC4cM0BABCRIilgHnNQMqkfhpcEJKJ/gUxBTME5wTDQizeFJYAMVo400BYfoD/MQIh39CjEekeML89B/g+Vfw838gpK9wPKPIpVjzWxAmDxwC8HkCnhcBPmzq53qKL0odNhfImYdruqaS26kHFe/BtOgj0tIH/dZpGI5amdiFl8ZRO/KCY3wGkcPeH/B5+rlh7hInzOmkGmkgwGdtRQ430Unt7R0AWTPiQLAM0+036MAadWqBnjVcyjOtwDUM51jwdZm2+I/ICwTmuMw8BldYvVM6KXBwMB+Kup1zOuEUn/Fp+hmOXKPRWdKiwq4IB7+q37Jw11DQmHDJ4E1Ff/RKppvZEZlc/nuLbt1Hh3lS3lhw8xo5SV7jmZfQjRoLk9V2x/mgjf2E1IM1ECAUJvoMr3BBEH8Tbanazt2/h5hVOkKARTsi9KBB+tZKVg0l3NYOtkqlVP1XGdRGgmCPFLHxpZqo0k4M9wKz3eKu+KotNfIxoTYjwauT80+fDzhMHpNjUNLU83HJPPfkJk1y50VKriJmTkBERIozUlpEPk+CJPJcpgUpLgI6kibOY/HBsOcJBI4OHD2Wk5d7zsOruRGRhw87OB/gw06BAiPFBHIOwXmwDxJK9nTEonXEeFLgsyiYYdkItY2cx6YaP5L5J/IijfE6C44QJi9AggBiXa8pIs0zlpjgJynX++pQVO0MMyM53RaJQfAg2iF8+iMQP4EOn5COfwcvR8T5CwgLCBF2/HhKeAgRP+0IfzsSEntELu2FZjrXmTn7vfZrjqp/ufq3X2bQe5eUZNxcPa89pfaFb0IjSaNdvxSK9lxZH/RBPxqdW7+BQt7HTukIANnkiYyJ7t5feIFXc5xcB8x3rhL9cbE39xT0OYiUHsW0rycxyXLw2bZ/oNHofBOSatENrGQ/gDv2nZVJEBtg8rCoWaJhkOhRRoECEhIWBV5AyG1J2rawET3rWvCjdgPF/IkcUJugvfJedYv0/VaTte8hWPoW/mZv2a+bgAWv/m1uXByIGmysGesaNWww+Mq8XBrva1VB11LdpOsme112BlMr049qPLs23YOIe1xWm9ps9XgrqsPFirqnC1NYwNL6pQ6YqtdtCE78Eg477DzBk0Yy4oQYo5gikYNzThj8DJbE7j8RQOpPkWKEc075XD0YGMLYpwVpOSKlE8BR1dgi1ef8LIGjtVUkSclPIBJAk6YH+Ek23qgggROrdIfAziMmxhwT0nICp1nqkzBWCr4YMFth51ZIjLPemMCU1CWOkMirmZL4bki0KS2PkyQGTEmS/KnPhYXWFRV2ypt+nivnBKzQBHCE2x8wux3S6au0Ix0BPiKxaIAcEnaO8TiJOdQSE8ySGTAtDMOciorD43izPLfmtr9SW2NnvmNWYCadl7Hc+O7zyqzP+OrRSwDmVhoJXGqy6/XP+r1b6vigD/qRyZjGWnvhyWPSaE/j7yepVL0FHCNps5n+AMhA5SqpbyUk66k2qWqEqmBEJHiGCL3s1HwtQaadV5wQOWVTMcfFKT37nyDBMZAowUHOoMRJBEguDPmPa4GFgUBGgtNkeW+5G/0W97r+bHgLsPFW4OIuU6jvbxjwLSmLj2965cyeUz0mcvjNZzLTdNtisq3THHA3HXmUBezBXFtKefr6BlCGMWVDJZRQWWVwvHc47Cf84adPeDzsMLkISosw4zrufv8A5z288whhypJ+VoaaUwSSSMmddyAnZlIggQxLUq0EASAPH/YImORdxKxlgWboliHRsiG+HUua4Sz03jKDThPc8Yjd/gHeT/CTtctht9sjTRNccDg+/Yr5mBCfI3JeDdOQYEb2STCQ5LxORwFOouHYAWEHXhKYA5IDPCbRNjh7DojxhMhA5KSalSTaHZJjIufF41jL7ARcsUrQ/AN2Pz8IEHv+E+LpV8Tj35COX0FpwQ4LdgH4yQOPQaJspYUVNr3exmclXQIX2wWQ4omSpm9dg3mfnCnLNHE30GtLun6kg7N3js2//0B9+KDvSyMgfUzPWNKMB/8Iiwo1olM8gsHYuT0smtMoQpmt05TNgl7P5rxuW0wLmOWanSGmTXhNqgMnSLjyHeZ0wsIz/nL8nyASR/VP4TOCm7BzB0BFTUlzYyRO8OThKeSxqL/n0ZibVsLuOXLYuT1mnnFKJxy8OYOHfK727f5WdEtdjaM2b7/bJBpEeaeei9Hzm5rzG6+/R7pRY3H7p7BlN2l0jeSuehgDkf9FuuzYNG53eeYWYw50bdywJaRSboVDBmNjd+uncsl6y9QppT0rLDRoZgEVdcsLoCgbcd2GUlzLmPZAZCDvIC7ScxC8B3Yh4NNhj8POYxdIwqQ6B9awqiCCUzDhNIQsUWEDbU1Kf534FuT2CitN6tQtlkMe4IDsY1GxwuL8xdXciBZA/BgWQLUTSUFIWk5w3oOZESYnoWHJRksyhU+7HYCEGGekOKt/ecwaFFKnaJswTlkWj+LEHcGJEaNIk5gSUnRIBuCSStxiRFSAZUntGEXqLfyx9jvGvF7yMs8TZip6B+w+Sb8cISEA8YSIr2A4OHbYBcIuAc9LAuBXWirmUuzFb6777byW4JpvkxVUtN9U87mgX6nl27XMKjI1Z9p+5X52CWiM9onhmDWalPcl5un7OGLoPuiDztFqDZnztjqcYuMbyzkpVKDgOhOonswkqtEmpEUdsm2TEDMrO2nEx0CC01qEJGg7xCdjbZIl7em4JxVWJIspdQXTeitjab54xE61OyX3R77PXew+e6fSENXjNWpf1CS0iSkDEiISQVXHEby3/eot6fe8972e8/YroKmLTD8rw/gKc3WTWikz7zU7fY7RqJ7ceGxU0mhDbcFF9X5tOlY9U+GZUk4FYrYburpTMV5bfeHmiXMmVaMyDiHg4bDDn356RPBiYiObmpjxkPPq/KybVVetmDaZU70wv47qSsS527m8X8LYbQA5ioTzamJF5bnSRUZMEfN8wjwfxQF7Uf+MeEJ6TvBhwoMPWr/TpcLwPoAOj5h2ewCEZTliOX0FxxM4RQE8asJkoySbeTUpJNkrUpyB6OCnBE47gFmjZQXEeJQoU1F9G8jBs4TP9SlJO5wDOY9sNmU1Eso4qzqcwXAsifpo/wnYP4AffsI8/R1pfsby/B8KjiIe96Js//sxoehDXnZ4NG9TifZB9bDkC/V7awBRrrV9lqVv4NOg4BrSXNOT2mTpNZ67hd7jYV1CMhSG7fd6wH7Q7WTrpWb4zRE7WM4EaOSiyoHYMm97CrqfF0fioQlmJeE334en5QsiUpbgEwg7txfQwRF/Of475nRC4oSfd7/gwT8iQaT8e/+Aye3g0YZitZCrUUOFm2M4iLJZl+MBIKnGQ3+5ee9wIIA8DtMvq3czSKsd2lHMs7IZlSWZHQl+dW4sweuj/1T5qVAjrTcgwxiDwpEg5mphyyvQvXvzSDt9br97L5qH7N/zBvR6wIKrKAAbmodrO3FuEY2kfrdpH+4kZc6zNBlcJMpnXjlX64r5PtvGwuqvxiSzQ1wl5qsByaCNPZeum8yoBTWj28uJK6sm9OCibkfdEsksTfj0uMfDPiA4tvgVcAYinGgAlPMt9SaRFhHXUbrUiZup6o2MfgYkspshQfNaQM1/nANiBCcSr4MMLqxFsjnupwO8nxCZscyzrKlqTJZlyS+3CYOEcT88fkZcdjg5j/n0hBhnOFg7gKydcXWCJtOaSD4KBgPOAyT5NSISUpoxn56zOZhpGhiAiwtijNgfHuGVmxbtS8ztlr1eHfx8WWMcxQXb6zOOHKb9J/B0wLTbIy5HxPmIh+UJC0X4rxEpIfthCHyjBgxsUg2C68WV71NjFSjzyRU4AJhu/MZt3TZo175pe+QazYk18bq6r5FM3kqtZrH/7dtTvQfcGunmgz6opqhRiGrTHHNYNI1ElqwTISDkvTtxzjBxtg6Rui9InDC5HXZdlCQDBQTCnx/+i15DLtvMmuZ4FJNZ8tj7Qy7DWQjzSjdQaw0SR8y8ILipAVR2/1pQvhVm1jQQPVmCQSKP5/gERkKgKT97jWDAkcPBHfQsWjDzjCUu2g7Jd2Hgzqu2ZAQWRnWMfGPeis7ylVyeuWimxBvXf2d0mykU811OhPX7/bsvKe+ldff3rm/Hee3FTTZymesdoNwrmsIV81PxRHmjraWxm9TsQ7S6NOas1mVS82K7uZlc1cCWc6TZtD189Q6RAArnfbUhGlO8bghnqQtBTK1q1W2/1sysSSI1ieNv3S6dB9U8mB0vOYJ3Hj54bUkADFgwZ0dBC3lrY8gpAuoPEsIk2bdTEptVcnCa50K6IP31LijzXNYXJ2j54iRNavIlWoZutLNfyAILZUts0iMSKGMmX/K4huQlgEueDlOicFoU4Hm4MAE8gUIAzRNAAbuFsUszvD+Kb0fi3KcChC8xzh1jvPX9DP4yn5ie7Huoweeq6EoCyJVGsgHD1BRypj3307lDbThu1dazNSbf6zgbOcd+0AfdS1mSXjGlETH/niM6sWm7S0Zuo3Nnur1vGgvvAhyVSFLMjIVnbQth5w9VyNsouTTYIXLEoudA4oSd28Gcs40hHYFsAyYJSftwXYjac2NVttGWz9rS2gDAwrP4mjgnjt5Un9rny/AuiCTKQU3JxH8vIAAagcoxyRmic1NrNTMP88ra3Hto1IZaI3Gpja/FF//o9MPlsVBtWvX3jzwZtXS043hWz5zvp/HW7XvbDFqrfxi14Tq69EalZ8nXHDGCs4zSVMxxSCM+aXxtqtTeudXOFV8IRyIit6zdlgwvpQwITOLPnDDPR0hkJgb0WYuiJHay0ANAgISo0wnOi9O43x3gnId3ambDJH0ggvOW1RRIKSLFBafjk0TXcE78RFzA4fEzdvtHgFkyZ5MD+eJsXuyCCZY/XRL5JTASiJK00Zkki5GWWcLoLifMpyPisuA4z8JeMmPa7THtD/AhYJ5PWJYZy3xS9CDjIMmPZNxlPBV0LQuS83CBAbMp9gdMYYfp8BnYPwL7Z3x++it+/SKmYtJoqsBnG9no3FraemJznb3y51/aab4n17V9u5zb3hnRuUhW75E+QMUHvRbVYVIB0wLL+ooqzAHstDMNwjrJXU11yFfTRngSU9Y+ozQRYaJdqbv6Rn0FQBInsD+omVQs0ZVUIwFWBnyjj56D9qckrismXhrJr2ZAlTmvNesCkHRMiODZ4ZSeEdMC+IciLBv4gfzt9Bcc4xH/dPhPOGTND63Gus6NUZNX/xLnxDH9mJ6xMCORnmHkJGCKtr+fo3N+Jm9Nt0UI5UYg9VbtuAYMAy/TCL+bcLPX0lsjz9c+uO5hAmCS0mwOZYzIxrNtjd2zNXhgrFmG9u96gyl2qP2j+gtTU/q4RG3ToNWNFoK3dDTnqYVJDOcIzjl4pwxyr/I0gTdX0uj6ACGRxCckzbipUloyjQcUlBSpb7GzdZUUhoXxJwMW0havP4l0s05J1LtxETe+Sj1Emg0bsHck0hWRh19C5d9SGWllYAJJvqehbK19ZSZSNX5ShuXbyOF0AXDYaZjdBWF3Qlwi3OmYfU/8ZLk/HMI0ZcDFqSQSlPbYODHMoVz2f8nT4XwqC4JEAjVNexz2Dr/8tCBFIMaEZUnISpFqofTfWf1bNl3D+n5egyO8DQK6kLN5tFdq6VXFK2kRK8CsK9my0R7RPZv1XXvloC/rm9+ernH4/KAPOke3MJnlUy3fau/jM3zPGDIzV73C5KjeIxJH1JGpTBIvOSIcap/ALCCrtCuRxWx10nwRZiq15S/VauJ1/80nQ7nn4PKZU1szPMUv+RlPAZ4CHsJj856rNCxLEt+PRgNJKrwjavxIGg2E3suhgEE4pue8TwUK8FUoWwaPHd6/IY0saEbP1KD2FnoLfvg19tW39M27LUHehq3eiG5V71w9+FwxCPq3VtRdOE8jddeoTVv3youVNP3KySaqnx2DCKLRvXOFtvqP9iKpOUxFlTmMSWbR/TD++RwgacscAZwRsABCIATvEfx6U1G2N4MJK8QeywcBF0mNMfbOMajKgFpUmIDzIftGMEs0KHFpKKYjDqYNkBFIUaKEiPO0hweDWUELkZr7msM2NEmeAycH7BKWGBFVMyDbgYSTZWbExAgk73tvWWUpjwA0GonNUem/U2ChPii5u4yUFqQYMZ2OSDGBU8I07cSB2zuQd/AhwBGwLDOYo/itZKRTfEfkEAQ4MQhR/F5UUwOVfoXpgEe3w5/ZIy4J8zLjSzw15lbN3HYmPr32kUDrCCrNN9GTDDzbmunLRFk0VD2zevAd01DwcUXbvwdTb4xdZhxuNjP9oN8TbZmeGGU/CWNwK/OnwmCvy+zLqcnAwJIWmFBDtM3XJ3+beUbAtHJODiRS+ZjE567XPEReEDniGJ9zLo66XT0wz+OAVPwQ61C2ZoKLJFGpXNGgLLzk5/7n8//AkmYsvODBP+LT9An7yqxr56Ud4hMRcUpHHPxD/o7tuROfNHt2Obftm2dORfOjrCUz49fl75jTCbM74TF8hkcofWUTVl0Y829kJnWPmdNL23bru68xDrVp11vQD2cKdQ9lyPEGC3M1yZfm6YomvKiZWVRbwA7VvOqqMdy/PHimfWKTvzvTqML+JeymPR4fDphCsbm0Qou0Sdtet6GSqjOQTZjs2zBelsHgpKwmo4A/daIzkyeQSZMKiLGhMkbec4TBLO/EFGhZUq6DVObiQygAjTycd9gfPIICCy5xZEGs2gaWyFApRXivvhVq61dbyRfpjs4YQXO/SbtcHiUCqY2w8wEpJdE0OIcc8krXQ5j28D7AOy+ZzTllp/rgZU5SSjiennVoGBP28F7ygADQ8LqEyTv88ukA/PmP+PT5gP/9X/4dx+OM5+OytVpK30iHpQKNo/VzLcheLUMDpL1Awir7AcDFW6qsX5vOOWB+0Af1dMnfUqIzEQIVVsWAAFALE4qWwpjgLc1HMYVSH7TquciS10hOKnnOIlJ5uOxgHWgSk5+45PwUZurEzNmktdHGg7K2wKJOLWnW+l128pa9qrznyCEg4BSfkZAwYadSfqm3EeKZ5h1i1uXcHsHt8J8f/pfchuf4hDmd8H98/d/wGD7h4B/wOfyMFCTCkzhZS+ZylYLBuwBPvpkHcayXbOUEAhNJhChwk7zwp+kXnOIR//r0LzJvzNj7B9XS+KbdPyJdavd77Ndonb0m3QYsxkLImwTrwPqgPGtPNqhqaBGRN6WNgkw1+YoDWdrdl1mMOLIy4EK1xlydaf7lQlYl1qNFKPkS2qKG47kqp75Z95u7SerrLb8yAd4BIXjsJpXQk0jE275XZWTHEa2Hk2InRg4mYOtJB9skIeWwEU2AadzMlAgQ5rhCJLkYAxZFOiQZTeWZlOtmpsx4V29nAAMiUNLs4da2LCXTfiSzrVWQk827uiE0fIQuxGizeLR/5ECU4CjlJ5sWOokcFUJAJAFpxMjmaVyNKWtG87gQwF4PWQDqcO5A2AWHTw97kCP85fELiAjLEhFTNz3WkqxBUKBXzzFWK6jrwej6GcVuBSpW63u4H1jt5yWfF31GOu3M1jP3Aofr4da3pSIOeI+t+6AfgbYk98AYjABlvZ3TPNSCqeydUGlB7NwQfjqpliHCA0gEJBXk5CR3nMAgMHHT5q02UN6fJf9R5CjAhG0vHIOhHGnQ+kB2Tm2MhWn0yYMgyQKNB1pYcnF8PX3F5Cbs3B47fwBQgI4I/MwUl+FV+NdqS1LRUgxMyeycm9wuJyE0TcqElEPsXrP/vUfm/HvRa4CwtxZW/XAai94057rD9fUX5XUTWzHGWw3trg34/heQ6gnUbpzztYvNKNebAa+3jjMtbGzeCzBwAKbgcdgHPD7s4ChlZQElBjlVjdaSpsz0p2rzZ32vmOoAUN8FeW5eTiCi7FvgnGSopiy1r/rVSZUAzchA1X+qQ2B1orYIUzECzA7Ba+SkrB4uG79zqvY1k6MkvxNIEt8tCxydwCkhBHWQtqRMbOmYujXHVDZ+PTDMlrf1WalnvGhNlLcX9b0PgEsl8zYB5EnrTljmI06nBafjrwAzpt0Bu90n7PcOZE5+BDzuAvaTB/7bn/H3X7/gv//r/8SvX2ecTinXuVoq9R/dfbe+NKALT1D3TfHrfFlvRTcDjVF3vqOCI5uzfTACH3QD9cxS0lwSdfjTEZmQ5VyuhboOM7El9Exyicxkzzjy8C7g0YUszDLtsEjqq+hRAGae8568V0a9JkuGBwYmmpAoYUkLmiAlZ6TIk98jZJ+QNvN44wydhTNFAEVEErkqzQhuwuQmfA4/w0LCWlnBTdkPwsxZLRJhT0uadY4CSH00dn7ftEkc4z12bo//9un/hlM6IqY5a0Ym2jUCmPe4b2z5jV1aa5eeOffupffucTWo+2Br/FKgg3vpbmAxZAgqm7t76Kwmo5GwF7XnhZatr1/JuW9N2MWJrEXNPRPD1Q9al1XbnTuT5+aPbixc5arQMg1r6FXGdmtu1F+B6yv6T0mO0bxNMGl0rdVon8j+DxCn5seHA3bTJJGVOgl1U3lWIsgHkDUENbCoO21jkAFHGbvaka4en3Y47dlqPLLZlLh8Z22Ck/JUmy1Vc9cQALU5kzj86X8qE0tJQyRGIDqxh2VHMoZZAoY8htYm6X+R6XNm5pICiap/RJlBl/fMsToPlppp1dIu0/AAzolZlfcBy+lZIm7FWXw50gJo5CxSUOKJ8LiXBH7zP/0R3v+Kr08nPD2dpF299mLzc+rnqF6YgzXMAy1HBqfUPNN/h+0r3zfhXOPc3h0evPo4u/7mfnHz81vTe2QOPuh9U+8YLWfgZafeW006eINJJsiZm0iiDlpeHKqy8qCXyjffZWH4tzR1tfkWqZZCzKgol30JRFWHbumT7eG5WcXp2rYACdcrvnn1/sBgLLzAaftrkGG1+o3+WOK/5/SczcTqfCMMmUubRweHyU1ZcyEATzOW0/d14D7HzL9Eq/xe2mPfCaDrD297zn03jUW9kVxy4NqmtRpgc0KMac888nWIsG9TMREpjE8jSLYm5de7Nm5pLrp6uatvczGNGIx8qwJ6HaBaOVV2BeRx1PZm/FA/ozb+7UWsGT8SSY93Do8PD9hPEzyR+kgAhfWlPIDW5uwErEx5Nn+SRrZ9IDuYiqmScy4z2MRF+7AaKarK0bEzYOEIqolI4CzVJxQrKQEJ6/kpf9t960NiAxYAOKnDOJC8A5FEZmIum78x+8wFaGpDAW0TWMP3VkBfDi0Zg6SgzHxTpN0xtzNDz/wNEbwPomnxE54TEGOEj4uab6kpgOa/cBCQ87CbEJyE6E0JcPQFp9Ms2p1urTWfQv5jDdLQP8fd3ep7LNNAq8O4O5LXZb8TGgGMS8990Af96GSMrkQk8pdfwO1AdsTAEznZh0Fg1aQ7DQGeD/UKWNTCTUYdIvZ8HorGyZkkGIj5jFzyN+nrbsu1f9d8VG4PAUBAUhOvJZ1UM5TgSABAcLtWCAcFJRvmWY4dnuIX8RsBY+9djhiVz2IyAOHgaAefM5wDSMDkv18SzX6f3WTmlSd5qXnnJU1Do1k4A5gvmeeO7tdgc9vQ8HXo3ZhC9RLmG97EWU69e/IlNFp4m2XS+iHubnOlhhip2rbaAKzHyHgtqv6+3MiubEOyxoTl/prNaQVy0OIHk63X9QlDL398enzA48MOv/z0CZ4spGmZ7+z7kBc/I6VSpkmXxawIFVPOORJG3U+JfFSbVEnyoWuWSw0Wa62FvR+8BxMhOTt0tO7EYuZkfiANo9ypU6nE8pZuSDSOuMxyyGXUIsiGLPRs3NhQVCuTWECEcyKDq0GTJ0mQlziBlwXImxgVXp1QzA0JIPYI0x7BT5orY84OlZwSUlwASG4Pg4gEMf9yu4D/+s+/4E8/PcAB+PI04x9fT804n6dLC7cv4cYvnO5454Mu0ns1afig9022H3oKyoRez3DWJh2b/g2VZtXINCSkUe7kjvj+tQx5u2f3+S4Y4i+Rkuxve3dYfQOOJJFebZ7kESrmvo0w1ZTPxSkbXf+kHN/83fjyDdpBIDg112Jwdug+ajSovTuoQKt9tx5n1rJ+nv6Ir8uv+Jev/z/810//V7iu7+Ysz+CsnXgIn0p7dYAtAtio/29F19Yz8iEZUQ0MRs9fq4G7h64RMhUfozVP8pp0W+Ztk56iZ5KpeqJ7p5cqD66fr5QLl7NuUK71Eto/164RnUWEWYqB9ve+lcRYOYX07akR87qEzfY2GoW6boImkKMsmWeth/uJu6KetrFt3YVH53W5hLxWHBEO+wmH/U7CyyJJG1XLYIwoYMPJlYkVVFKkzDMVx2bzxygqI+23Rnoit95Uc3OzyVqlrbBNbSBByvdJNC9MBJdQQESOQpXyqJQB6maWbJxZ17euIdUmcAYyWiub+rqFjz3EZRCg5lXy2dj3auMi5ToA6kqOghCpKSnDDQIIHuQcpt0ezjksy1xl/VYgxVU9Oo/BifbCEeGnTw9gEJ5PC5bFEludAdDVv3nYMkisdU5l7suKrwsZZKHuRXLjyq+mrb3k2o3+JfQ91PTX0Ae4+KBbqfg2lLwPwHlmbGU+fYH5q++PbOdrqfTVTGeGI4TIjGzsau0fnCX5XQU7qJ+/47u5WWvTMcoODokISzwhVrk1zpYBAOQQNGKUJ4+YFsw0S4I9AESSb6rUoz83spBfI61/r3Qu4MB7oFYbUvyN3oLu0lhssQTfekiv11W8Xn3GpBcmp1pKVD6cVtpRmNh1eddpKobtGR3eXP1iGgFr4x0DVmtVth8qLG/N6AESZWgKHr/8/AmP+53acpYNNEuKqO29gRIQCROrXHF2hI4RKRVG20CVJy85JOpxzdhDI3hwNTw5c6k+WzHt66kTe1CaJgUCXhLTpSiRNjjCokQ1h4RqPVgBhK2jlGLW0hBYQs9GNXtyJVwhK7i2cMlkY1J/cXm/IAUWBHYM8oZd9PBzDhQCUoxqVlXU1HmwqiJJQQoIODx8BnPE8fiE4j8kZgMpRcCJVqQev513mPwO//W//DMe/voPLMuCf3x5xjy/7m4xshnNc/gGNGLmW2HLt6P3Ci5+z/QSJvF7lv09yfwERPSUiiaBLUqRMEM18LBv/lrtRiNJNxMmOwMuSKW3HF3tPUcOCy9IScK2ZkGUxJHKmgJC21anGuqc+4LXOTVq0/Fr5v0aCXtd1t4f4JLD309/xd4fVhoUe76+xlz8NQ7hEf/L43/Dl+UfeI5P+Gn6Bd4F7GiHr8sXAIxAk5pPb7fZzKdoYxxeSteYItXtuaVMoOXhLgHiW82cXkL1t2K/WUb3t6C7TaG4+f0627Mtv4X6/vCQ7LUCPfOD8YJYSfkrif1o8i75M2Rggdr3Qf4GFQZepPm9g0ypXJxYy50sjSZ7SiX0g2Ho2zs0zyJjtPrWlx8NA2mS3QsRc0zIT+Ul1Cuhf5sA7KcJnz49YD8FeE9Airn6AipKFlQrV8aykhwpuMgyIAMZUImQApaUGBK7z7QlUMWAoR8ZbTEVsjYXyVKeF7J65NeUkoIA5GzhBEJSs64YWY7DVJISMaNKZCdOgXnzjFH8FbJPhKwuM72Caj7yZiALq5iKmWajG/BqW5MSDUU1z5Em5EsZ3BBRpXUpgJJ0/BKrnwk5hLBTZGRrt/i+RNWYSJtTHqeHyePnTwfM//QLYkz4ihNOc7FNvki9cCXXUR64aovMn+FgXNqiLwpz+hJec4vu/atWdfeS2voZ2+O+KbxZ0+9Va9HbbdemEfeMR38u/shS3XNU536Qs6gwxyOmvjb5qWkEOLZNiNcM+Naz2em4q8euOXIINMF7X0xOWAJqOEYWYvWOysbg2dmacztV/Rz9/hpUa1U8Bfw8/QIAeI5P2LkdLGpUXXcxpxFa0gKCRJR6DJ/lfEOC0zPXqYjHu5Cjd9VUj5+NT3bgf2VgkdfMxt50i5CmXyd1mUP+ccvq5JXoXFlm3cJgzc7OACwC5evTbaZQ3LLJzb0s2tX7gwG+xMxvPs9NwdXf51HnyhSqEfBuL57LEqHMXmdLFnAlxOUtUNG1p2uHmYfkWEo9YOD+7fb3jtVQk6j2Zt1Ga8+5+ADGbJe/B9QwfHKBGCAH7KYJnx4lGZ4ntVEVVUHeYFcQpQIBOhBNBQzO+SesB8TGmLfMqoy8HQYjmXYFuEyawgyGh6M6gzBgMi4PJ/nmAAE8YAEwYHCqQkUR5TrqfzkxUpTkdVK+x3hOWbUKlrV7PdRc/UE6Vga0SYFa1njosBIgTtmUcqtsXA1k1iZUNSADHEKYwElM6yIvGcAkFnCVVwlnfIadd/h02IHxGX/7xxfMS8RxTjYi1eHerobxHk/1YsnPMLhbKzWVeW6KvPEQqUtrv4r+0BjN2JrOHWT3ayKMWXhNqHNL7YVZ+b3SaEe1M/IWZqL2dxuV+1sCbysmkoqmInHUve18X3ugsTU+zK3JU89sXiMsNeAQeVHNivleeMyY897L4CypH2kSrBz9Q7e39ux+izmugZkl+duHR8mSnY6iZ3Ehg696bGqAlTjCkUcgD+8fkDjhOT7p+YLMvPZ+KW3/OfMDBNLkfN9n/7qXtgDgW2iT79FaGrio1+AI6L0GvRvn7bPU8+f2+0vLvKuMMy81IUALb3xTETBwcQ21h03LmhqDXUxm0upgk7pq3Ul5B/pOL1VuwVHNljY2m47weAj4+XGPP35+RCAWbQVrqD3yDVrmRiKlUiprEddjoqwxEcg2aygDnezwqaTOSREOWFXeymizHR7mpyFRQaxnEvBKNQ0q0U8pglNC1MRwXjUXTrUnKS6qAXAg5+D8BHIe5Lww4ikhzQviPCMtM7wTfw1rZ+IE59U/op4jMvYbRbtBTjUM9bCpaKzfbFIH0Ajif+I8vOar4JRwjEs+XF2SsSIvzzOpwzxEC+M9gTzBRSoSN42/ay7cACGxaGScYxwmj2l6xPHPf8Knx6/4//73f8MSGbGaevMLsfm3dZbnpYfBK4nBOXDRM2Yv2/DrWgYeHt1TP9YheS810vormLPfOtXr9V6NBVCYwH79/+igYqhx52KeWTOwvXahlrbnZ6gIHUyubuX1wsuzTt49819pJ0RYotGfyGGiXWmf1hHUKRtY8n60BXIkv8RJQ8JKbiO3Cvt6H12rMYuqaZ9ognOStfvr8iviLNm1H8Nn7Nwek9tlx/rn+ITEETt3ACDmXzZfElZWgMTO7cHgJst43R4LW1vTpGZTUfN8vKbm4qLvyBXfVK+VvMa0Cni50OU1fPLy7y/Yjy7RjRoL++g7yekVqvr62qYEYbDBNHVkaSpgWzYwPrK3pH0FdY9pZA5VNCdSb1tgXxiLkzGXdjaaBtO4rIagR0+j9rcvZYF4Pw5cyiihm9oPAVAzl4ZtW/9WX8nVoZLYVnb6xuM5DWp02O+x300IzgFpacazngeRFslfpI65iUc1GrQwcJEbgQZNVMNSO2nnO1SY9ML8sOEPQA8j1shTTGIGZPkeOCWwIzBcLtvsaaEfK5HEDM8mXIJ9NOysODt77/Q/AVk2Jv1PUN1+E2lxBboKkV1rwGO15AgZ9ZYDkiUQSn3wcj1uZophdZS+mhRRTMWsyqay3A6CQ3CEx8MeS0w47AOejwtiKtnBTfNUg9a2i2Wtb26JDe7g6hqrxq7aV7bKqIvrDpFqFEpbauCW56Yr6Mo9/Ef2megPrt8j1cwt8HrjUIOLXM9vjDZNlgb2/ltM2qYp8xntxajOvkzwoF0bzFnJlG3hZ8f1Rg3ZLVke5KyQ7N7rvr6Eub64BqloJaQtXkLiOkLkBcf4jDmd8MvuT7msbLpW/WttNJAkRVPuq2UZ7+dzZBIPNuHStunSW9G3qu+eNfm9wck1dKPGgu3/54SC34YuSSZfuDCufr9BWMbEcMNk2EeXGUE6tygUVGS2qqZzkti67eWq9aPfDs9Rb/B2FfMFoJbYBu/xy8+f8XDYwztCTJzHhYgkS3biouKvpO+JxVbfOZ99IZq253kpjCvboqwO3sYppPq1abP+Y34awrNbzgmCxE8iwJOaOUn+CYJrGOnsL+IYPgSQJpZjdVdPHJESI8Yk4AKMaS/2uMFPqEGUaTz0jwpT2IZSfl+Db2PqDfpV15hhoRRrHwoZYw+/eMQYkVISsyYFF9Kelqm2/8g5VfRErEe4agfr+kiEnx5kTfzhpwf8lZ7xPB8zI15r30bM+a1bYoE19bdZ7r/KNrbC7tQ1/vU38vcOPn6voMLorWynfytgYsQ41bb29szIgTj/Dj6bRC9rwev7g09mS7PWt4doHda1b1t9TXwGJtFcDPiJhIRjfIJ3oZHwRy5+ehaqNXJE0ORyt9BI+3LpvvhbeHwOPyFBsoP/96//G/56/Av+X//0/85t2Gn0qDps+lb7mBPmdEJwU+ZHthhq8c+oow4CiVIz9q9NtwrCm+fsfBs8d80+PXIH2PKj6n2tbt1n67JNm/cWdIcpVMXIXUH32JNu3dsa4Gvfqa/dMpytlHL7zezTQNViqSa+aUnDpPU3R20AgNT1h5oHRi2jLFnW1meGh8/OYe+fstk8lUyTce5g7HcTHg4THh72mIKZIRHgvUhiSCTcKcZSSP6ocvNgZkatxMfqWa8X+bMw4sIXK6poOlAASZmflMcmaQK5rEUhArOGyZUrSAQ4NfMx8zXngppABWQtBQwoRfkvLgAY3hOmSYCFd5IVFSANNatMu82Bc4XpToXxNqDG6ljeatYSOGkcrFxeHUlKesIMJAjACCHAeQ8fI8xnwqWUs2v7Smthi4KI4BxVEboYNurFmAkA5/zf8GAcAvDPf/iMlBhfn444LmMpf+4nur2kfGoDqjbO1dVCgrUu7wTDZ7iF/v0j3AwU6mV5X333PHNlfa9Nv2WJ+rem3+IYbmoTOun/FqMGVEzRYHiMeXqpY+oWqNmak632Uo4fXugUj0hImq3aw5HPZlaewophZLD6HajgS36BcwGWfcNMUs1c6R6KXHwE9VTDzu3wz4c/4+AP+N+//K/4afoJf9j9UzbXKuZhdFYgy2Ac4zOOAD5PPw+ftfGy6w4yLrHK4P3a1PvlNO3Z2LVHZ9E11O+N1wiwV7zvKwhtbP1s9fuldLvz9uDjOmty1EtUcd1gbtU/quOad1btVYb4tvqq3y/WvP1sXWyj2Bi8wKsb3d+1lPRM7dxEfKqZwNHzfVn13xXIai4Xn4dp8tjvJuwmcdjOmgpogjvVVJjNvpkOAXWUD85TtJaBt07GbVOpMOH2N1pGj0pBWZJfS7S5MlfKkiZ2MCUCMwGJwPmC9YHAqrmwsLaJWfLmJYnAlFLKmbxD8KKVIa8aEIWtuYG6wZrWQkPImoQkA76sBaqkPAmASxAEZNnHW1BRYwxmgLyHZ4YjwrIs+XsnTgBbSMZ68domJ+CiBq0ZeOiDWaoDhkNCIOCnhz3+sXvC5B1Oi2ZL72Z6a98ztn7EX5d9pnq+anezJw2uDetb3ddBQ7e+hp/hdcKYkRnmpXZstnvr8/5G9FtkiD/obel7rZlrGLUMVnCeeR5RH+Upm0CBMbmpAkDKyveABiYUFOCQOOb2BDbvRtWKIyFwQMLtEZWyCSzZrg2ARHtx8A8gEP7Xf/x/kDjhU/gZuypjtjmgn9OQWBsjL9KXjWfrdsvY6XlMt0voh3209lwQTt9S1y3r4S00kCM+e/TMWwGJnn4M5+13RTVz9jJ6aQmXN7iX1DB6d9z3jNEUXPz06QGfPz0geJHoixTGV0+nvFmAoeY0kmOi1mIYE45A1buFqW65pwEYypxnZh+zFgHM1mRhnJGQzDTLQI9eF3shjxTFnZyTAzsPcIL34uxGzmX5/JwAcEJKAiyYGfPxWbJUpxNc8AjBI3iv6u8ScrdWTxZTKypdIrGB5TwUDHDZiA0WphShgVTgUHw41mZx5s9iYXTFNySmhLQsiPMJ3kvuC1TvNyCbHLwP6ryuYwRpZ9UJ3dTkviPg0y7gD58POJ4+Yf73X3Gck5qfrSF0Pb9ZFTwWWDZv8Or3CkCu6rheeMF5XW2Dn1votbQU8uALG/NCeo+g4lqzhh+Bfgt9GUmqR9SbIwGl/9c6X/fmHyPNiAlR7Lm6bMsIvVVfMQXadoYlkiAXwlhHARSQEKwxLYiICDStBKCWD8P3wU6MkQeVPVYU7fIOOTGdukHKTyQhZ8sFBUFpwc7tsXN7/D/+8P/EMT3jfz7/K/7T4T/Dh0cEF3CKRzzHJzyGz8Nx8i7gE/2Er8uvOCbGKR0RaMLO75vnRv4kjjwmcjDn+Rf5mmysO1sv9wi9Lz2/JVA/5zsz0vrWJlD1M/bcyBdwaF6l717ILvAiuj+PxYXN7Zxmw4TY9vuaruuxSbytnnMTvBpouXi2/LPl5WfOt3FUT6tGayXAKxao4bC44ZNNetIWXn0kMOarFfv3jGu73HJDcGkeuuaCHCGQwzQFTJNHjrLEAFzZ7LO5jzLxErpUM1HkKCDGtHFmAsEJUM1G1jJkCUs1v6SVqibBTJXyD4uSBDMFSiDblY3b5ATmCCJxOqacTEYPIBZfCe8ZH+qESAABAABJREFUlhZRNj7OACUuFi1JtBXgCAIQvMMUfG4r1XNu/h3JzN4IQAUKnGiKJDeGxginMh5OClEncS3HWdxq1n5Va7Bfi4oaDDxIlCuII7sjAY/OFQSjbSdI2xwEJOaBND5e1BUFDCiw208Tfvr0gP0/nhET47QYcCyApG7eVYx8Lb2xOeeyVKsVkX+2NdVF9fU3d6vfq3VXXSvvnI9xPqwzHyTj9nzQ9fQjM+E9/Zb6cq/1AulXfM27VGmxzzH/ddmjvw1gnDP1WZkw8dqMxUCCSPBL9MYR0xl50VCuU37fQAp14VudRiuU56BtjpUmWVpn5k41U19rZNbMd0kgaE7Zp3RCRMqMviOf/Se2iIgQnPRD2kAIPFXtdw3Is3fy/NkZfCWwuNbM6J73biUb35HJ34jOjuOV/PG4HSXP1EUV+gvoxaZQWwfdObMnYWyMkRoN0rrMka9E3x7nXPdO85eWnDmdChxcB44aCakyEVtzc9/kG1fbvZv5TrtXWCEunehAgT3elteYhwyqyhdyfW1fuCu+LsQRYZoc9ruA3SQSfmdMcIOuy5+JGRwj4Kiq0uZSQsEKgCTtY8WEZ2BpG3oLoIig2a7NMVv9EVR6zlq/owQk1Z5YGzKwsKorNIwEZlInbF1TDJXuJCwxgRMjLpKVmzmB4wkAwztgCgG7SR3xakmDbp4xmi+GzYds3M45uODFjwNiVuacheKzb0GBGDOWRTQITsGEgBYHIml/BjYs4yRj0S6DuCwyXt6Bo4aidUHfd7o6dG5y6FwDlLo2iKv2aeEslx/3E1zw+Le//oolMk6LOYF36zGX19Ho2+0Y8xpXorQ4b/Rn8UJ/jcqFIhyp0HW5W/W3ANnSxI19s29CDWxGzaoP4Oa5b6f2/qAPuoUaBroWAF2piemlzFtU8x4jE50V8yoNGkq1zYkaatZ0jdS8Ztatr5JwTt5NnLDwAk8evssnYNL5Oc2Y3Fo7M6q/v2blR46axVwEP8f0DAYwuV0laK3Ngdv5aDOdC5hY0oyUFiQnkZ6CCwjuMju59wdMboe/nf4DiZI6gOsI5YhSrtECAW17XovxtzpGgHC0Du4lWweWSd7Kz1q0HnzeCTpG12stR+2bM2D8XpXezBSqHqy3QIBGbbkbDEm+tw0grm9fxXhffOX6PlPz+6hw42JWHI7eViRfiWIJtobOlLe6WrukbmzdVCW1M2YWYme/nxwCAV41DXBOBeqSSZMZkjWaxdRIguupL0Duh0qIzAfDPnIikNc1FVNm5sW3QaQ+BrzqPVbAgTKT5ATEKNgQbwgv/YzS5pQWLPMRS5zx8LDPyfC8F6beugbTXDAhqnYgpoS4LEgxYpkXQPsJjvDeYdpP2O0nTNNOy2KAE6L6X8RFwq+W8K0iJRLfCg9OckCSr0BQ1mYgJ8WzLztvnszZTEnmSgpwaMddxhNwwYFcwIEeocOHFGUOEyEnKHQ5UyCy1C1RsgGSueXC5opWxWkbAvYBmIjwz3/4DO+f8PX5S14ndThpHYryGdi1hn3u9gJCrnNIFe6oEHpfSgGczTtVxg2TQul98eFqmQqbg0tU97uq7nIZ3P7B/aVvTG+553/Qb4dqs46hicfgBLp2bd3DoG0ybSCgktwDknE6abQmuz6WtFfagOG5va53SXMGHQzgefmq5Trs/eFi3wHNBO4mePY4pmd1gl4wpxMiR/wNwN4d8BAeV20bjTERgVicuf/88F+w8IIvy6/4afqlGZdLRCDs3B4gkmhXFCrnddOMOAUwS86bYVGzajB6tp7ufgGHIiSsOalibVyBwFdgvpk5ZxGveatai3YtXTO+Nm+ruQPlM0uc/JOa5q0z2r8GvamPRQ8ujOQDzE/la7fSWBNSyjVtCGVp5TlwMRZ+1m2n+sg35n3rnfzYNops+7BiIdo/afjr6pVaeFphjA6lmkkVdy1kZOP9SgJa3hpLfOrNNHgPT7KEMwduH7FtslwYz7rxBFU3S2xTWGQj85om7QcD6mBdHUXWveTUb0LbTu1Yy9oz3w9xJCYmSBhW0S6ktCDGGSnOYJ4gifIITvNNyGZRTJ6gQCDqfxwXcIpIcZbPWRlw751EggoB3nvpMeuHbsBCIzLZfCmekv/AJUFeHr4C7IrUmuAcg5xr1pdt3DJQTua6+w6B4pxIzmOaRMuDHC3E5o9K3Rr1RJh/ykxCUcHXGyjn5JESQUsSDX562OO0RHj/FSlqNKtqdVD1r7ayKrt7rvoGCrruDoqCjNFSNijLj1F/vxp+M6oqZmjtMwBv7hEraj6HbXAht3smrD2iGgnkd6IPcPFB19KWY+lQCnslY/maNNR4QHwmCLub29JqGluG3qTbSfM+QMVvAOBuZASdBhLJoWzlLwCSlG8yEytq27BFBDG52vkD5nis2ulX43O+XR4mRc+yrQ5YVnrl0he2LOzupvpy38DVhmp7dxZH3lbWkI9b3+9PqcZ/4sp1fMteuvWsrTXRXNwGam6l7+K8/aMeOFuy0Vev5exiK7La0bvjyx3isGcz49fLaGlwvS2PYZugtUpCqO73k5jTpJirzmZDJsVmlizUVSZnAxzGqMPAJ1l0KEk2xwsjgRGXknBPJPYu/+eck4zPZMBPwuEJMDAm2ANgkO1rDER+RopHnI7/UDOmhDTvkMjBE+C9AIIlJtGYIGKOEUDEElPOvJ1/LiexG3UOj48/Ybeb8PD4AO/FrCnGhMiiRUhLFI1AShKCVp8xPwuyPjoFSxxlnBwhRXUu1GR8BqC885jCBKCAlbKJtsy5yWlsNs2fw3mn2peYIz9ZWSL4YQU9xVHbOSeWZRy1Tp33zAMngLyq5mWb/dMvn+C8w7/+x694eo44nWI+WBpQkcsQbUjRg2iv8njJw44JDhGSYV03VCYkuPwJ1F/Gpa22FYi0b6nwsb2WR/RtyHpe8wKsFX5Pf4wfcX//oLenlbkTcyMtPsfcFe1rupuxfGsaSfkBFUpq380vgUBwmrUbkLGJHHFKwrADkrV6Kwv3lrN5P8ZEhIN/yPcWPyNyxByPohGp+LGRH0nPrzly2NEOgQKYE57jEwIFTLUjNovZ19AxmYqfyMwLiB0CxNfRweWIVkSUfUtqSkgr07EtshC8tYYCqARVymzfE0GrKXHAs9nfDuJ4TrzOu3ItqKgB0SXTfft922RKkhQm5Yvegm72seh/f007tJ7uKXvElHN9um+e9GcY6eaZdX1Gaxm/gpFhsVTu21/NGBSJdfMOj1pR1dZ8PWMpRF1mbnPdD2KNJb1Rfn2jkbwA3pEwjsbdQN0XKgazzAFVfWZFIeJPUfsYZRE3S+hWAR8V00oOghA8yLFmzK4ZUTahOkBOoh9BnovLCUgRxAvm4z+wLEfMx3+AyOumGyUxHhvrShCfDWH0LepTXNTmNC5aXoIDYzcF7HY7PDwcEMKE4ENm+mJcxJ9CQRIRYVJthg8BTkEQ9+uCIcCi0jowEVIqatDMlBOQNDkhZ4BJEP8VCeVn62yY3ZaKiQJ0GlJK2U64Xac25qoZgjID9SZM+n1SyrIoArALHg+7gM8PO6T4jGXmPNZ5hTAUfEYgRSyq5UkxZgC63wf1OwE4LeC0AHGGAQF2AUwe5A6A8/DwGSRbtvfVFpH3jRpIcHWLV99lc+xUAOYSlbwo9mn08q6qjn7P7MDF9wQWr30+fNBvg9bMl2mjaXi/eRa6F71wTdlZNMpTcc16NR8DkDgj32ya03+22p45nXLkqOqts32wvaIGBGfHkAgeQQRBHupIfmW7IfNlex7BIVECpQSqgB6b7wj8CqQYBQpwcIhwCjBO4rsH4QF44z0ZEdOIX56v3CYqAsRaJOSu2JVfKgjPPNaFuXkpjayDemr5QPfib2mL3lxjsXXA9J2/NOCX1E7XNQYo2bGBjFuz8GQ8IWM/jmqTqPcLbp9teHB9r2EV9Ee9xZkEklxlzlX920pNR21sb9cx/O39GlAYE9q8R+t6zktCxfE3eBLpsNWdJctY9Vt40SK5MpMVVjMjR4A6WChzSlVI2FSchClp/gg1SDHmmUqbiSylQwInSXaHFDEfv4J4AfGC09PfsCzPmI9fsNs/wk8HMblKpa48zsY8q/lSigtSnJGWGUTiIO4dYb8LeHh4wOPDQ9aYRM1psSwCLJZlyQeTJc0LoXya0cy+TOtAJKEFHYCkoMqYV+cLsGADcuoLYsDDuaKCbpywdT6MoSWqDrCUV4m1RR6tt2kdGlvjulYsY3n+ULyCIRYncgZhFxwO+4CfP+1wPJ7wJB7lWp7mBWQgRQELKc44zTp+JxlzTwl7t4cLDt4BvHxFWp7B8SStJA/2B7DbgXxQ53mXNW+bRgaN9KBbv6XTCqTW30YNR+jMpm/fff0WcwdScpPKlRUQKp/Sd6HvCWg+6Meim2zzdV+r/cbuEj4OvqjeWfgcJZaM2fvwiOCmLBW/VoOy4oUg+/MpPiOBRYtr/hzn+sCp2ls4a0EuUfZZ4Nu1Po1mRPucNFy6+UUwWICXw6aJlI2bY49jfELkiAP5zD6dH0/lB7q8Fr2zPLBeM3JopWb2z2kram3BOaBzCcxdGudL/PBdZl/d91E7qwOiSXkrrd/vL49FPX85FiWuEyeeKzMzZC8oor+Witag928Ykz3Tl9YBh+bOuXKvGxh7ggjq6KxOwmyJ0UrMZNMoNZIVM62qmVSufjoH1kRvrMmBZEQqmbfZoWikppINlEXCrYy+A+CIkeZnxHjC8evfEZcj0nJCXL5ANAEJkRgegPcHIDmk5YS07JCIJFyt9lccAlQqnmaAFxAxvHPYTRN2uwlBs49zEgvXZVmwLAvm+SRACRBA4Rz8NEm28Wwexppcr5iOSd2E5FLWapiplOyADuR83qzqMszB0DlR0JLzAkwMDDCpLStgR7C8W/nN2OrQULaAxRf3WVNha4u0fjFvk6vsvErmIxI7IBE8PPbO459++Yynr0d8/fIVy5J0lmXOQAykZ5zmL3j68hecnv+BtByzRmIhgI57hClgvzsgxQUxLWB2cGGH/cNPgHsE+QOYD2C4vJZsHTd+VNW6rtd6VvxUV69lps99UcWUqsxbZhwGQGIFKKonyvf07ak1Gf3QWHzQNt0CDOoIN/n9O9eXmSY1Jj+D70XMk5Zc0zEdwWwSeiFHTkyY4lFyR9yRZ4EB7NVcSUxE1a+vMp2pzW8sH4Yjp8/cziQWDUMZhzoC1MIzCCVE7Op9IjjWiIUomqesWbpABoTEpzLiGJ/gXRDH7q02E6mWWYVlVV+yptcY5yw00nOMIxInyUyed1pe5SHptUGZzoCLl9CldX1rnWZmVpdt5ZugV/5+O7oZWLwL/4gGHAxuXzNihOwIm/1Q+wI7TcbYwcmkw33jqPtbrm01rX6rtipvfx+9Ue7lGpsm1HfrEjpk37cnM08dK5QZTn2PtJX6LOV8CQRml8viplzK7xrznMez+sjUery5l6Xl2mhiw3WMnIsCDKSYr3OaAU5IBFg0hHj6irScsBz/IaAinsDpCAKDHAFpQUoLJLSs+D+kuCA5p1J2baWaSok/gWgqnAIs5ylL9Yt5FuUM3EkBinNOfCq8l2R0UG1LakFFPU6yqTOS+mEwEZyDOqKnPPayWfabk0q7GCDzNVCOmWx2dblwBhOjTa+Sl4k4frWSSNuaUC0C27SZIaFvHYhFLX3YTdhPHlMo2inD7YA8kwLDuwhPM8gtgGWiZWBeFiQGyImpF2gHdgHwe8A/yE83SXSw7nu0oBJFdQ0bhEax1ph9VRe3wMXw+uDaSGNRvz8CF/b7SHTwoTn4oA9qeZae0TrHLGZHanDDNjOJb5gJsC5pCq6xziBoElky1ryVgtfRe3LYUOj+TevnX0KFsQauYT9L0BD7vfhWXAIYRJLXg6mYgG29U599Z819sNZ21P47/X0e7LX6RyNBWmlDjDd74bhf6s+9dE7rw2jX0WvTXRqL7wsuunrPiQD75+oiGk78yjJeQIU1265sBEnOP9k+x8bg6dW88M9KELZqGV8fmWVkUkbMmDyR5IoZi0n5hWFGznlgYAFm5lNFjBIG1yMlr+FNU/MBOgCWeEGqjup7EcFxFobaATQ/geOMxOIDwXHGcvqKFGcgnQCO8EjCmKu2AByxLM/Y8wwwIS6E09EhLgvg5ABgAHE+Ss6JNMOB4YL4mZC2K8YFmAHn1BkbTnwrkjhDO+cRJvG9EIDhsoYhxtj8tOsEwDuHRJRNayz8KwCtJ1ZaoQAiOZhqgFKbVwk40Y3UROfdYUx6zVPtf1PWiZnt2ESztsuTmDBJ+wqQkHdUy8IMTw6f9jt8etjh88MOoEUBiwQGcwR42mM+RDxMM07PQceSMC+M44nx9chACoj4CYfDAw77PbyG9oX3pc+pbnsRDNTdrxY1zh2wtx4Mm19c8+2ef394/R0BiQ9NxQdt0b38Q5aqsyts70ZZI+dak06bKZAligOPzWEWngtwIAdPHg8uwJysIy84pmcc/IM4NPu1pD2HOAVAmj0aXBhdIsommVtkPh3ehXyWOzh4Fza1I33/a+BRg5T+O81gipOaypyfL9Na1P55jhz2/kHOK44Xs3/v/QE7t8cpHXMbRtuH6Sc8vFXe9M36EtNS7lXXHTkETFjSgohFBXhyP/KS58q50LR5tJfdo2nrz4mRSdxr7JsrIItKE0Pqp4qEyDGvzdemb2YKdfNmsvVsLfisJKvVi2emphY7rssdPdo8srkoCtPcX+PqxkiqOKq+SCOokiIj+0q0AMSk4vouFSmMSXpHXTPWvfev2NZh2FUa3JLtjpjVH0FLpHoUlOm15EB1EjX9oM1kScBJbQepYCM5IFk0qFR+qpNuWk4gcQfLdv2JGWDJJ2EO2+AEcrJBMU0Qk5iYk/k570WiTRCthZoWiYN2UvMhOxwSHDEiYjEFU8Zb6ouIUXwxGATnJXqT5Ux1TiNAqdQnxZQdkpMBCnNUN82BaiioMoMqi6d9Tg4uLw7rhA6kiMZA5sk0bwRGKmWqTaqUJzlJzK6Nmauwvm17xKe8ZA933ueQugYcydqbNJcJkYAH5xDCBO/FZ6HCOLDEfNN+B/InGSsGdgk4ROBhkVXtw4SgjvDkLCMtISfrU+2KI4s+hry3kC1x1n9UQyEmECOwneFJHpdztCU4KN/97eDh/UAKodc6JL8lvYof3wddpNeQ8BpQGGkdMiNXn2b6Ts1o9hLn3jKhN/GpSfwJ1it8SYtGNyoOxllAkyQvxbX5GFoTpeKrYO+Pvq9GO1N9g1bX6vkKoGUgkjXU183TyAxLojuV/A1FcNPOk0WCIhKTqyXNOKWjam/aSFdbWoi+TKrMufp7RQcF5Qnsf5q40Pw2OlBx7152j7Dnmrq2fJfzNV6vb7vuNJy/a06t16UXA4vX0l40A3WmvBWTPFj/PFzE9oL8Q/WHtn3Sr+pcN62W0W6Dofy+/Xn5UbRu3mszqho4UNcHhjnX1hVVkubK5KiPVrHtpARhaFftLwNnCJircJ7t+FHRUOR7wlgK42ZrgQuatghIYInyowlewFEBxTNSnLEcv8JTktwUJMzzEk1yX0ANARI6lSQJXGJhqAmkIVaDgA0iAS3k4RwjpgWUIuCcAAFltB0BUZnoAioUWHDKeS6cs+dJEgc6k4QV6UiKUTNva/hZlizeeSyMP1bNSuOrkqdDzcUq5tnCu7amZ+I8DQWwpoWp1wCZCJ8ro7xNzpcK8GyWnYUALpnSrUxZIAx2JTqVmYZ5l0Cm6YJowRI8iHbw0ye4IKrclD9lcYwvmrsW1ubDhAjk1sxH//kTbKe4cNDq2BGb2VZ/0FF5LhfegsGmuL74ca2bNDKd+qDztLJzPsPwfdDr0zlG6eK7GyB2bHJEw98bEyn9Zr1mIS35f8pzLu/ZbR1RM10b85bAWcIeWaTklsOhb0PTp+oblncK837JdMtA1+r+GbDfCvJu2ze2QspWksXhd8V6PrKCPU8eC2YsaQb7dRvqemxfHgGHtl9rPxrO/bXol3oGb4zNvWZmb7X/1v3cbPMZDZOBjtpP6LXp3TlvF/v5rS5z81OO+xuGp5JOrl+jC/cvFH2lxGuTL/uGVLeP8rV6LMvPtcquKwukFkmUeUbUkgFjNgHAHLtRjxVAxFD3AEXSksQHHJHmWZleUol3ArCA4xEpnsCLmDM5nuGModZ1NHllwJ0DUcj9yquIIyhJkh8xzicAIuV2Gj1JNCmqTVFGPkwBh/1BJPHMeHoiTYq35DFzzsOFHbyfsN/vsyTF+yBHTYUGU5TIU/M8q5Yi5VC2DM5gxhkY8T63JX8FZCCiMLLiqFXmz3KGxBhz5k3Ll0EowMP5CrRwzVqb+ZTMK6ekmC9lbYJTZBWBDCLJeTHbiov2lUuYQnI56VGRo5Bs+v18AWBnuKSxfIYOk7ZVwmYxSMZR22JR1lwFbLku3PqZ94GiMawlYfXPvI6dg8ugraUsueQC9VffEbWq8v73HwUoFDD249A5s4cPehvqwZztPzWdP0crh92KgTzHVK20GDfUkzgJ2FAKNMFTkL2rW+6JIzwFHNwOBELK+SkS5nTCITzmHBIjUNW3R8qoomGBmv3CZPHMJYyulW/l2VkyBCjkVvOx8KJ1u7uAdm8CNfJHsYS4NZjb+T0YYm7mNSM3c4KDb+e4G/N+fkf7tDctFI3B19b66OkW7eYt6+xaEHNun7ok7D9rzv5KdDewuORIc+kjv6KCt+u8cAnItnxaUZbIMlqH7lc5a8pSMMaF29sAetvqkhVyWOJgjNvxbn/vs1D31ddmLdXVfK1grkE5vSCblbkjajazlEOPVg8K+wdLOg8FBonVxCktyoCKetQ2EFGiimZBYtt5EJmjnc4tkYZg9XDOsl0jJ50mdqK5YAfW6EhFm6CHCDPAUYfCwXvJMB5CyMBimnaI80lNsGRAnHMS6cl75fUrHxiqjNDUHGjlpG1MqNPcGyr5t5+gfn7zCtZm1xwzNY/bIVR/x9nEwLQJWbJU5mlE8ryGjmUrS8MPoorJrtez4zgzyImzO+uEiD+ORNpyFLXdToLdMiQqlzavuO0UIIWG2ZAVRazaDl1XBjKs7SVxX1PMWfRvm/dKI3FuvzPNRp6R7p2qzNX4YrzX9mYc74U+GPQPOkcNY1Z9s1v8RE/XPvfaVDPfpkmI1UZh2nZzYC5acpdBSFLtvBninKtnZIcve4Yb9r8HyLWWur9+7l07AxiMBQsChbu/adNMRI4gBNQmTjmbNiXJe0EyTmImFbMp2oju5S37fvZg69b1t8XI39K+2lTvJVRrrYZmuwOtzlvQu9NYvJiuGLNmvLfAwzmO/iYqzPk1T44uWlNGvM54IVLz08xz+hIaQKIgq9ZY9AnTsr1ndxBU8KNrhzCQDPElAFiSmTUtVIaVExx0blQjkZYnxOWIL1/+hhB22O0esNt/hnMTvN+DySNRQKIgjD8iXN1kRUpFIt9GAioMqER0Kvb/yFqODKXSAjHTIex3E3a7HXa7nYrIZWN6BhCXOY9LCEF8BUIQcyaYX4OqIZ0XAJVi5ftQcoCIyQ6BQsnEjSyVoaoPlHFUGXrOkZ4YthGWg080IgZiXBkj1XiQIzhX1cNmjqXXyMCx+FlwjJpMT527nQOLkwQSW4QuB+cDTscnpCSZtb33oBDEL4fVKXJ5BscvCADYecDtZd5Uo5Eg0Ws1719HWdkNLtMpB1Ul8ePcp56Jr0EHINHNSlBDoDD/NbjIAEF/jhiDeksxs6kR1YClqaO690Ef9J7pnNS0Zm6yeUvFCF3LXNVS67c0W+s1A0CRvoNbyfys+8LOT+gdmh/DJxzjM47xGXOa4SkNHb7relpTTYb5JVBOiGf5LrazRxORMvU3SMT1HOAUMacTyB+aLOG3UOSIlBac0gnwBxAX0OXI4ZROYDUV9iRn3fPyNWvTTSB17Rw3mt5uHBsfFP29B0yXNBX1Ov0ee/GWMGnV7y2gwpWQ8I2+mzfzsThvzzdmbu8h2Vwuo/7CWEvrBiWhkcpmDoCaJ0rZXRv6NuU3Bgt3UDXlusaSCnuwNOv8JlzsP8t9Ybpp9XGYCqXVWGjb+/LJskdUoEWfZipmJwIWNOKPrQUGjNuTEH7VsxpaNMUT0jIjzk9YTuI7QekEJAInASeioCgqaTHDSqKtcDbXyRQWuS+OXG53llwjglkYfGdZopnV7AiFkSeo9sFhCpM6BZdoHs4znBMTKkKJ0Z1SBM8yXsyMmEqEqGna6bUIcg7BO/jgcyQo20xd8JnpL9G0UEx8Usm6Kl3jPK+JS+4KOSwEaO32O6SUNDmfAD6rwzkHszeyA0bWQl4CZW10CSEtozcRwfuAGKPkINH3nI1biohRwFpKhJQCQIIWluPf8fTrv+I0n0Dk4cMDnN+D3ATvHxDIA+SRdD5FR6VmTzY2kDUtACLptZIbpGZuWDUaggmKuRQYCgRtpXLz/fTgIkEAQ+rAQD7A7JtjFrviLEWsvq2qzBFdUnNLMd8XfDQazSuFKtf06y2pl+Sdk+x+0HXUg2Kj/tuwa++ZTLJOVCVbQ+lLzoVAEphjKzGcI4eg0Zy2JMqRu4SiVpfuub0U/xqwEDU6U3Aty2dmRhmgVOUEClgcwHHGnE6IHBFoajQx58jGxqlQyJj41bgMpOikPiqSwXsd/arWNIz4r2tN6kYCmx6MnDVfumPdnlvzt+yDm3znGc1HEbCynpjvAVhsHFargaL1Pbn8up24fzMyBr59X6Sq3WO4ZaLrVy8f/m09bXPOayKuBRZdoQDq/jTMjkmhm7p6QAbpJLW9M3CBCliYCUrBckUzwSYpr3UHYgOjieqOOJ2+Is3P4BQhcnDxt8iZuC2Cg/PyU/lfXwMLMpdvANwy5Sa5F8dtk8bLzRQXCQVL9ZomeEfwrmgPDFIxKVjQDZeq9zglcU1PEixPPgcG4GEOc4kZwVPWGsRFIl9RZfaUGfyCi/Rn2QztWtlgOAMoUMXgOgFZzrmcOdwAFZxGSTJVUwN6a7ytGq3GvJibOXcDaZBTXxExaYrKxIs5mXxuCXF+wnz8O+b5C4g8OD7Ah0c4t4ObIshNcDTBuSBaDPJSBjwSa5x5Kl2wkLbEhXFPXJICFrCha0O3B4Y6+VvW8Wp8e3CRx4ao8bMYHRSkc0PdmN7DXA81Ix2Q+Zb0o2pTioijPa9eUwj2e6QtZm3rmr1zL3N1T9tG3865urbO9lQx6JvaA7k7ZLAta3VkMf3VcCX5uXsS71mfWPM4DduNBD8wOXLk4DU7d+2Pl/txxdhT9z9s7UuDfcNpvZ4u+AyM9tgrhSv5e+fu78G916Cr2vRCIctFwZMBpjNmZi+l34gp1Bok3EQ1D575yJZxlwVRM/aXCtxi7Ouya2ll1lW0F6t31pqPFhRw9bGPgIVFCWLmvEHUjzhtRL0wh4tULyWUcVAWuwitVf3hycE5jyVGNfmZNddE0lCw4qgcU0RKjJQW9VMg+LCDMIRQAOFFU2Hq0TDBYYIj0TD4HK0JIAUWpEy9mWUBaICFZMPWtnqx/1/mE5yCFQNiRB673QPCtEfwO2lPnjR53znpKxHy+BoTG5cobfYe025SE6kJzICfRG0uGgAGAom/SGluGXRre/4pZk0AwFVuEJCrNsZW7WlaCWZGCAGE2tFaQt5GiiptqrYIUqY7Mbwm/yvIDQIqqvZA+6MQVdcwi+M5J6SlzJdEBiMASZLlMTA/H8EcccIXXeMOzu/hfIDzAT4c4PyEadrD+QnOTQhuByKJHGWmU1F9ayQQsZlSmVlU2ezNFM58QGSMKWub8poR1YZc0zFNrBo/BcxMrQ9Lc6CotiJ/WQMtRdFc6HTaQVlJpaSodR3fW2NR0+iQ/N7aibodRrIyx4xu/fx7aPePQP0atPE1E436GoDm3DlrxnEF9XkaRt9DDSQtSERvYrIp5YaZI0G1pJJn4jk+4cE/bmaqBiRz95f57/g8/YygpkVRs2if4jMAYeh3dFhpF3qt2ghobK3RqJL/UV9YhUGNZlvJu4BH+owlzWLSpP8tRJjcrnFm79sB6FmjUbE8haHPhOTxaAHH5HZgThJtcfA9NgKAs9L59d6T12H9bA94uYStret7Kwn/Fo3ms45SNuq7AVTrQw8CI0dYouC38re4K/N2TWP0aT+6RldMaM+Zv2jDprrSG8uxd2ssUNGqv91v62bT4PcWkPSaHap+r30X6vfJrnG+lAFFs8gq7QGhKriub1Pbocxf8wp1fTQQw8UnQosmQhYTcxItBAGiBq3qY2YxkoeGYo1z/mydn8Sunghk2axZNRMuSPIaJ4ylfTBe/Zi9K5GZHUn0KarWheX4AFXAohoXAxZiFiTRpWQsBTD4MMH5oEy/bTpWvtZnwEbHn1WKL5oChzBNWQPBCgAcJM+DAQsiB1DUpILV+uNy6Mo/21Jxe6E9iPq5FACUNJpRzi1i71aaHFFmlIM/a2wy+qnUqsYAV4ywjYesA3WOr5+3fjFAbgL5RzA9SZxzZ34MQEzCjjhmeF7gokTUIneSOXKT5gbZQ5z9A+DEYVA0HZKk0FEZQfENAQhOm0IKeg14yDMS5rhy+MsZ2KEO4mJGVQMQ5uLPUYa2NYXKIGW1twqwIVuvNqbQgVwJO34MCft7a1dmqJrd/XpG84PG1APl4TMoe8prMm3c7Zt1m2yu6zobUNO1bdxuVCBf9uzgJsl9UUWPY3ALAJizWZIx2bbPynOkuS4035Puv8UJvG13bRI0HAe9Lwnv1snQisBnu69OkwMifw9JNRjiL5n7UY1d4pjNwYyXcRvhTbNxTqPFFUESNhK45XG485u8da3V69RA77faF64x17LnCni3dTEui7u/X5tuAhaN2r/adC+pqWoSRrMckOWDHvL1Qzo7kTXIWDHV2TMA9VMNqKj61R7SmhysxQSD9lADblqThAJGyqVOktkBk5XmgeqmloKoen6osqXu5Y7s46e6jTBGkLrndGF3TXPEyMnsmDX0qqwPM4tJRCIdTwmERUO0njJo8NMjmDX/RJoLsIAy5l4k/eSnbH4kkVfVHIoFTBC8tkWcwnOSN6U8v6baJVIGNiH5CDOlApBBhQ87hLBThrXKK5JBioyJIyraH2VKvZf8GLudhZ016ZCUH7xHHc7URYdlWTTTNmfJEmdQQYXrzWC0zCdnaUT7Ldj64DymHt6ZrWobsYu5ONsDVMd3AjuGRO/V7KxRbYwbsKAgLzvPy3XRlpiGRq4Vx3AH5x/hpz+AvcgGKXgwy1qZlwQkAsGDEiv4PErWcwcxVXMOu7CHDzs4PwFhAtwE+D2830HCDosWI5GaZYFKGNskZcv3X5vt+QIUEnfzjxwe2ABgMbEqALDWdtR7TXNosGnLKM+3ARYDQTV46/di+9loJT+oof4cO2fm8gEoXk6NUAyFMcohV1G0dtea2WyRMVYJqWNuS1vy/ndHPWLqVMplBjwcJv+pBVMQH4Ew8BHwLmSNhOVw2rsDLJqeUVKna4uGaPXn+3reMpCl0/1YiJYhSVS8QV88FTZwazy8Czmpa+SIOR4R04JIETu3z/NnbVrSCZPbZYdvGas+kqHVaUZf3M7LGZ73Ehi6571GI1SNdS9gqLVudv1arWxfVvNOBxB7DdW5/tZailonU6+6Uh5XZ+47ABY1XasWvuXDvQVc3FZiDzRqZr4wyP3ms2UStAISDTIZPzvSEhjz0PD/LWLRGoyJ7drXPKOmTNX16mltYiXtbNpfgIWAk3LH5de79lcPWXHOZRkwmBkxCjPIcUYIASBCcATnHRgeaTmBecEyPyHsZFNOTGDWDcg5BRZRAUjEMp8AEHZ+p05ypIAGQKpUgM5EzSbxkFhWpe/FqVlMmGTjlkR2MXfReQ/nPfw0CVPq7ZMxibZs7NJXnSXnqnESeY5oOzTrqgJC54JGXxIznCYcsCN4L2FmE5cwtDWIENOxsUSnmWFyCngq297qU7C+i8ZGNpyoyfnMEdvGpv/us9AOjJgSYlzyenE5TK7P5bL1g8VpnXUMJzDgPBgOx0j4Mjv89RiQUkIITg5yksNJ5iSAtLy0PAMcgRiBRX1rTid4Ul8ZLxoSHwKmsIf3AZNqNMh7eNVoWBZ2OKdgA7IW9eC2RHyiwSgHuqx3qClYewA1GosV0EDznF3MwMGOAS51pEriRFVZRnX599pkv5Rqadq1+/+3Zt4/wMK3p2bMS6zozES238H9c0QQv7eUkp5GKZvj1DRyCJaM2uoHeMX6TZxwTM/wcDiEx+Y6IMCpN7NZ0tLWq//VoMIYxZETuJnCiJmRE7PLfC6sn02cENyEQGt2zxhtew4w4LS9dzg4TH6fhVfSHstGHnXDatvhyCEggDlh4TkDDfNLrDUvNa/kNVeR5bR4SyIiOHbN38zFMR8oextzggmCezCwRSNzV6sHWPNYvQZ66xqAvG5F2JQyzzjag+UsdXDs4Oi0PSAvoBf5WFwaqJouaxm0jPbPVwAvdYld6TUeGDD+6zq4+7sU0n/8K3BBNsn2TgUiqLRsVT2VpVsrttaStrb8EYDhuskb/TBg0Q1LV3Z5JYMbFvOjZj2kKA5jTEikjm2WKA0MpIgUZ0lyx3uAJ2E8UaItEeRDYchBERdxbOO0yHjkD40Bjhk7sYKKHDHJyoJKBqp21sACgJg72Vp2XjQpftJ8GFpGZvaEYa6Z7qxJolKzRJHSfBYZm5V1k3M72HsVsM3q6o1NZRMEczVH1b8rXFm9b+2o82lI+X2ttfQDcrhpHo66DVnTV41VkU4lRL3mvSb3c8CSGMeF8fWUECMjLAyv4W9DCHAQMEDq8B85KgBwAjBgsaIYjhKcj/JunJHiguAD4BeZWx9AOrdwCWY+ZWYJDBRTKTV9Mgu1wsSbmV0d0vdaYCHHae+Xwrrf2LtmEoX8btlrtw6f78k83yNN/KDfNp1jurb2tnuoWXvMF62jt+qtzV6a8olAXM6SlBaQaR+6svokcfb+VcSsYdpLO4ssujoXFBiMvzl5vjavWlejQp8z7av3GyKCh5fMU/Zez7wOeCJHDos5gVPlnGd1Dsfa8h7x6tx+C7qp/HptVW03gFTvwa02mrpi2oA6TXtQ+SFV14Zth5mHFTPtIS9euLs326e/r/P2isu5o4gbFoIx+KtG1Azy2TpGk2+q2/o+yk8q1wh1Me2kuppZ74BWyaY83qDIUTWUpY2lvm3QlJlgaYVeZDVdquoYSpC4aYP3Yg5FTsyXOC1FqrFwHidOCeCI+flvWOYTTscvAjamBdExnN/B7x4ymEtJ4mAnnnF8/gfmOYAQJYO1D6oJII3kRCBH4r4RF8ynE3bTDs77doQyM00lRwQAM1OKmv0aEP+KXdjl+TDzGLC0jVOS/BVs5lPG0YvK3FmSPKeag+xjIX4UKarjMFHuT71gOPGKkRzZ5I/mdqVpKlNXrlF9IKokrHI+N/Ke8n2AEZdZHfgpZ0hNqoWwA8jZOFdNlfmMSFgQFwk76/1nwBGcZxyXE/7+5Qv+/S9/x7JEePPRAcEHD+8Dwm6Cn4KOLcFREB8K9d1wkMhQHgzvEhIilnjE8zwD6RlIf4MnwuQcwiRjPu3EGdyHHXzYw7kgOTRIYQoFBRka3rZSLcscFbDBaA+T0e95KpiRNB9Kfa15R2opGcPrukZqdU7w/vtoLPKa+wAXH6TUM8UA1szojRq2EaC2nwTC3h9WPgq1tB9Qsx412zGJuDgTu6w1GJlN1X4UzhWn5MgLEhg7t875EDUb90/Tz40Tsycvml105VdtTpwQeQGD1WTq2rGTcj0VU9uacrmyaW8mwltYnLd3bp/rqsep1TQ4eIzLES3LWPOwxcsxLHLVyzUW9ZrpTY+2+KPhPkZFqyS+JmvtBYAV4DsndL+2/nPC7y3tScnhlPK6eku6GVhcYuSvQec1Q1Mu6g/unrmjDZvPUo0qrUrOjH5h+M+XM+xThQxycaR/NU0oIGGt+qrbqUgWFmHIAFDdDlQMMhogULejBzxtnTVosmtm61ruIEutK+l1JREXJhIgSsIsS5BVSGYBBseoKmYxjUpxxvz8D6RlRlqOiC5ItKjghfnGTiW8agdIBIucRGCkZRbpdFrgSKI0eQqQzNvqG8AJ3inYgZUl/TRnaYLL5co9huR1S4jKyGUpe6oZPTlwDFgU8xMdC0c5tKqsDc7agFpiXclsZJyZVWszZhyzHWtlArUlDamlgKLmH383qdE02MTW79ego/qGmDMgIo+ssTBQYZjVhta+t8SWKFD8Y5zzcH4npmHkMHmP3W4SbcSyYElJJGBEcNHDuRl+OQmgVNDmnIPzTkzONJSuJwHlPsr6cZggboIexDGH/11mhlsWzMsXjTYVME3SHhd2cG4C+QByexA8xEdDNYBEYCbAs6RoQfXT5qYCG6jnH9W8dZqILWDRrB2dG3m2nlGGJT381vQ9tSQf9OPQiMm9vYzLDrS9xLcHCIRtZvoSQ2gmU4FC7g+Rgx8A/cRJEs0B2KkvRVNPl9fCzpglzUVDQQ6+a/85Mv6ByMagPUeySRJclmP142Pk4Fb8R28iVDPWIwa3ML4tw7sV3ao276pNlF6DKiPW3N76nL1mjHMfN3xb+t/7OvK9odB2o90X2rilEcntyfyv8GjmgP/adBOwuBZUnENU5Y98sbpkzHN5/pL69Or2dmCG8jX96Ajdh7FVj0nycyG5eHnO5b/b66O2tdqO8hw3oHJk6pLHKMeVbhudy2+q7oEMNc/aExkYVZvA6h1UbdWOOqdRoFjtEi1SEhJiOiHFBTEeEednxPmE+emLAAOOWJjBywnusBMJNA6ZKRPNCEDew3Jhx+UEjgR2hMnLxmjAgsBYomziwTttV0RMYo4FcnAUVM1M1ViV3+dFtC1JmTSk4h9gm0EyYFEx38Wsyim4MCZcQEWswInNCZFoKmBq39RJVlYmNMW3on/OuWpmNr8dNd/RMmMU/xUDj6PPykIV12vR3hUgWMynLElhXZYBDehzFhOdfIAjjzDt4ZwHk8Nu2uFxvxcAGRfMsxyAppWygi3JVNZaeY/d/qDO9l5CHVPRvGUNFwESfFbXaTwBaQHxrE72DrspwHuPME0I0wEhHBB2Ip0U9Z34g0D9VwxosKrHbeSzb0wFIuuNfmue67mWGbusCanLAQD3nTUWH/TboFsZrhH1Z/kWA3tPuZfubwEEEbb0ztJF+n6pbIuMVAMLiZ60fpbBOMUjdm6Hg39oyh4x1sb0HeMTQOJgvXfT2fCuK4bSBHLsxJGdObeNwTilEwIFiWY1MNmqybsA19Vh1ggyXiUIyhb4KIJUOeeQtVi0Aok1M57LvWK9XGsC2gPO3txopKValdH1lZmzMz1EMmwPDvfEpv7V2A600F0bW+Vflbixul4LQQvPC0B5tPgegMXrEw1+O/M0jTeIthBqC9tk6vu/KTPso3rM/MOgSMPIkzCSxQeiZdAsXCajChuXgUVpd2bZqbQFDTCpJcbcdFeYGnOGhUp/c9CjaohINxurzSI1VEtfy5Rqk7YhN6a8mwyQMYAFxAuYZjjHknDHBzVh0lcdg6I8R2kG6eYCCKhYYgT4L2Ce4SeTDDt1SpcNW0LKMsALOC2Ic8TX+Qs8AcdASPGItJxwfP4HwBoW1XlhAOERdntM+094ePwFYdrDh4Pa17tsjsZgxOWIZV7gQ0DUCE0xRnGetXEx3wodR9FMUF4jnBgxLQCSRgyCmFjpIHvNwE3Oi50ukyQEJHEg5nzgWLQmNblJSaMwyWQnWF4SPdScg6Wgtg2LHMGTSdRNeyKhWpdllpCtvsS8zrCHLBb2+JtjPYi997oZlkR/cp9zOwFztpckdnABwQeEICZMUIb8j3/4CewD/uXf/h1/Cx7/+McTnp+fcVpmiUaVwZhoJ6JbspZiPh6lvd5ARfGf8d6rSZpo15zTpIcUQORB7DGBMDkCJUIE4xSf4I4nkPuCEH6FcwGTRptyFqGMvGZTl3XGmjdDvnffahpkUERixAxUtto2TEWzYWM4AhZFS8HlF73Gugd8X+dt4HVAxrXMwj3lAvczy78V2mJihsxQzfwxD5/behdQQIGyN3zPea2/S/s7aShYP3B07mlJJ8w841P46az/wswzUlpUELLNwNdmWyJI8TiER9nDNky5jPq/EycsvGgbEv4x/xV7d8BPuz/kOg7+Ic+HjcW5ftQ/xULBN996DSJqc6n6urVHC2kAzSVToGvmdYs5v3WdZcjD28B0VLdjEzShAXH1T7lV9cuu8wA8XNHO5l1mCWVeuEk5nxWQFosdQqDzTvovobuBxa0TtQ0KxuBitNiuAxZowMS2tmB18SKwIACZcydTYZUJk822fsf+M+fPSiVIdVM7UNE9UwMPwQC1G7cx9/K7SUcJaj5SmUuYhL6IVEnLKpL6PBYQ5qsBZrlf1nfJRSGM/gwggnUzI0JhIK0uUAYSGXgpUMnRlU5PIOexHJ/gpwdxrtVISqRMKSASe04RnGZNcpfAS0JcnpCWZ5yefgU4if8JBYA8yAWkeADSAu8IadnD7xZJauc8SlQmQjydEJcIR3skApbZqaRd2i4fdNTuEOAYlMSJN+WkPgIIGGoexozIhrJIWU+167WIDuSVeWZxCEbZMOQ/y1xegTKzBTaHuIrRhMKenLyN5Xkzf0qqrUgpwVGRHtk4SJFqqqNaiyyRKU8VMNx9t/kw4KpdeVGLpMtp/hFjqA/7HX5m4NPDDsfnCV/dcx7zpMkT5ZCO6jTN6jzOgJpiIbl8aJkGKcYE55NqVET74b0riRVZDff023PJALZE7EoJcCQO4JakL8SdZmMPcF5ABvld7hvbkqeMIXQqKQ+D7A3yLZgzJDNVgQiQr2WNSDUFXBXMClYStpmEH4nOaaxfq9wPgHGe+m/Zfr+VCaqlz7V09T2O+zVrIoFXTPNGYQAR/CDs7BbZWBnAydGqKkbyHEApz8k8PS1P8FPL7tXaj2u+s6EWAQVg1oDhcgdpCJDybaydll+DRpozo7VGgNeO/1zK2Sp/RXcAhhH1439O41Jf3xrnt9Qsv5rG4m4V6YWyLiHz1TU7qG8AFw14GNRHVB3cKUn2aFiYUsB5fYaKRmFVJ5sdvkVOEsk7oWSelPoqEEP1N6oMeb2AbHOvwhETC6PvmTX53EmyWTNjtz8AMPt8bauGPCXvhCkiD7EjLz8BIIrhOMR1NQGIYMwALwBHgBcwJIM2+6AfpEi7nQ9IvGQGyKJDTWEH5ogUIRGiUsTzl79gPj0jpQWf//BneP9JclwYqCDZwJZlBvEMwgJgQUozlvkJaX4CxyMwP8GiScHtcoK9mI54nr/g9PwPzZtxkHCyzgsDTSSZwhMjMTD99AvSEvB0Cjr+0n4xRwKgvhrOU8m+jCJZttlilBmU7NwOlHZIJOPuTMKuuTnIOSQDIFVkkGRhbauoTTEtYH2PE1X+Pra+5Pe4LIhx0Sznsia4Clmb4DMI1tUEc2a39VY+WFmjnnyur5aQFzMdYXQV16hK1ulBqZG+YkQwbQmAT4cJ+2nCLz8d8Pz8hP/4K6svRVCHehkXg11Rc50kUgkTacIlSdmOyAwiAWMxzs235rzTdS5HmXeA98BhP2HyHvvdI7xjOKfjzAvw/KRIgBGCrJ0pBOymA4LfYbf/pNGmAgiWWMqCB6jJFAiRqBlPMJCylqLWPsjxkLElytiaICFvfPoufUfnbaPXOLi+JdN5iwR9xIiNpKX1wX61JP2NJPlbdC3TsaWl6BmeUblbpjomFX4NELylQRk9B4xNkBwcGJLEjlTYMJJYS8I5uhgClYiw8/ur2l+3pzezqRo/jERUk/hyEIKbkCC+jcf4jIM/XFX3iCqjJW1Gqw2wvyNHaZejat2nsueCgM78bESj/t/NY27wkKvy+75Vz9kaT5pk8JY1uzmXXb1Suf0Y7C8bZdT7C9P6PdOG1+UaEHwL8Aa8gvN2L6G8Vk116Z2zDH6+BtjJXFQ8hRknfYhQXdyoYyRtXbUxAfAqxYUlfpNoPyJJJ8Bs3KlDw9oOe5fTom2iHC0oP2viSGX8kPvDeZFkIAMyfkWzVwJQu3HmiLg8Q432keYFAGkIcXk/mWM4CD6ovXvYAZpEjDQLtkORkjMETHA8gVmcqDktINnGMLudmPJU8bplrBySE82Bc4zkBRQRW84EBscTYkp4ZsbD40+aqXqyWVafhgSog7kDAVFtPTVJHgiqnVFfB78DNLQodL7IkZrHR41gFavDLwAsZaf5GUtKmE9HOMQM3GCw0In5EakmQNCGbUwC3OAFwMB5wE+A34FcwAKCOM5FuCRgwjkLyyv2+0ROI3Lp2kglI7fY7ydYRm1OERJyVaT0Bm5SFBAR46IRmdSJXhn9BqvmNWVlyla6MKvDu2XNljEwJ3gDDsgMFZBiNCgGRz2zbLkydNw4qFmYmq95wp//6Q9Yloj/83/8BY+fH5AS4Xh8EomcRWECiXlcdqCzw0FzPlDUhHz2Ecl3RdpXRmzA+kKAi0BMgHcRz6cI74HgCCFoPHbnJPIZMeLCSBSRYkJcIoJ7RlyesxO4c5OOWVCtmKx/MUG07Zfy9+gy82YhbKWdyUAqmXjBxs0Whn4fXNT3Hwnytum1GPdeAtpfv8WM40cgIirnDxfg1DyzAUq2nnktyWnTtg26JJm3Mi4yviAJec2y7yROWNKsTKTLye+AokGofTpGmo5r6qzDsG/107Qc1q7IEY/hE4KbENOScwL1xKxZwTcYfzOrATbmkyTekxwDEn1I2unWz16gcz4GtzD095Ctgfrvpj0KYGO19s/Nx811A039udrqYgPyrgDT9lytyQJe79vr6TZgsaEFOCfxHxezwbhvPLN1zaT7+lf5l9bv5OeuAEZDUAMIYwhNRJeLoszUGLNf3zMSrUQCOS4OnfbRkcmz63c4M5DmeEMkSdEA5LCaZsJEkDwSUK1IWo5IPCMtT8YCSyQlmM7BQI0XJiwxpjQV51aSmP5EytRzkqhNnMA8SyjZeEJKJyBFDS0r7V0CRAMS58IckxPm3gXAJSQnZikJDCQDRwzEGZEXLPOMOD8B8QEUzKSIVNKess+sA+mYFPMqIgJrzgnnPCgII08+6ByJD4PcZ4j2pTCqxNpeInCcsZyOePr1P+DTCY4XgBdlDMU3gwFwXMT3IZXs1eQANx3gwh7T4y9wYQeaDiIpcDsk1rVDHo4dKFWMdaqcwKu1KJmwlXnnqAnkDHgVZrPO4i2mThHzfELOuYGiTbA1zonz+BBJ+NMUtYyUJCGhY4TMsLJqX0qG6HrtmoZGxsIhq9YM6CYz6zLg4RAowKlj93/60y94Pp4QJgc/PQAk4CNG0bwsUcCR9yEfYCk7x5ukpthRs4r8icREjxTopBSrlstanBdhEjw5hOAQPOGwDwjBAZOHY/mKEi8gTlgQEWnGTIwUi6O4DztxJvcKkP0E7/cCrvO3S5DAuPL5J21D0fJo27ozh9nle+ViYWjblfNt6K1Ml74X1ZL2rb6dAxf1e9cyHi9hUL6FtqM5MztG/tr5Nynupfa+FSC7JABtTHxG4InMtEnaH1PEzHOWZHuuch6ZIIUjoGFYs3lrN3bXtOsSuYofSSza6cfwCd4F1cQMohgZs8wLMDDZqqX2W7wZKafBYM0YXtpTP3eL2VXbxtSM11vSCDi1jD2EF6oBxQVQ+5L6AVTnmAZuMZYWG/tPP8fgwXPvAVgojSRhl0DFCEycu3deY7EOq7n1/upeVY7w/h1IQAUO8j/IjJr8qX4VYm9RJpCqOqp3ARazBBYJqROWRBxJiZrjPweZAUQ7QlXyLJO0QmzyRXoOYdSQsCwiLY3zM1I6gogl94CXaDvzQjkpWPA7Tf62y8DCmHdhWCJYY/+LudLp/8/ev3dJchxZnuBP9GHuEZkJEGxWV1XPzp6zu9//C+3MzpyerukiWQQBZEaEu5upquwfIqpm7uHxSmQCYJHKk8yEu7k91czkily5l1a8Yboslvkui2WlO9joQVAr3EyJfXKN75hsvwUqYkFVMidn6aoEYtWf3ZQppbHUyny4I4TATcx+/g2ECZBSQFpbaf9uA2Cu3mn0TcSQ0ZQHqLF+Dc8aS3DPCMsKB88oR2/MDSGy3+1oZeHmw3c8/PRn5uNH6ukjwoIwQxmX3h6rHSSqVWPaaaHNd7TTHZIm0u49cf+BkPeQbrx6M6HJqilKdTrMBljUcHH7238FDGCl0OVtxbavhTIv1Fq96bw45amOJvIBfvDMdq9ceb+IARirWoiawpVWf9lGaw5XBQnq5058fuqoqtRm227aSNFeVjEESpkpy0Ips21bA0Ws8pBihFYJAn/49j2Hw4EPtxMPc2MpC999+zsLvrWyeEN9Kd1hV0bmPsbkL8tGK129pB/7+uJS1VHq2z5zm4PkppWyBEIJzEWJIRBjI8VAjIH9dEOKkDM0rM/ouCyEUggyE+PJjf3yaPBOcW/3RTbfDKtm+BzX7rRr/R7rJenByFpfUTZgwz8MDo5V9VenQr02k/ZbHZcv4bdU4x+t64Vz8aUAwdcAFc/t22sSgs+NLfi6/O3ngNRt4Pqa5ORL6+pZ/7PnBTzK6keJ3MRb5naiaaVqIWD01OgKcqOSIGYwt50Oqib/atWS+KJK0/Z3l8e19dgQCcSQuQnvzwBHH6UVljb7tt1cLXBGAVOUwMv0pXENdY2XnjqvrxmKye3auV59OIo3wn/pHrItle7JeTQy/cDmPCujNn+2zi9VyQC7rsZm2VCON//r2+uj93qOfdDNL/Q3Jjf7UoXhyZMo54/V1wKDa9t+8veyntinAMbVYxi/Ew+A131dqxKb/dmAkW3ZzBKQm2VHJWIr9WUNnV3FxvZnfcZsQZtsdkKdvlKqBfOm/+yKU62irVKXA2UxcKFtMbrPzgxtJAYICSRBSKhETEWogyTn3Kk5HzPKt33dJ3fJLtQye+NvodXO9S/0voOHwwlqId0EUjQ7MelBjpvXKV2uz28JD5hqbZRSWBbfTl2gLWiwHgcDIEJgc27t0vUL4gpPgkgixMmAhZwDi9CVoEL0Zt3gzbdhVfwJ1ogbJZERpuUIAY5tRlohUM4fNOhokqZnB3qWoRUoUOUAEmh1QVJBYkbjhOrOXcmzo8sAzWhoSgerTpvrMGYkvCzrX2uD2rfXqN6/0OdLN9pr/oCxU+bO2D1KFUFb3549xAb1q/twOMVJlZF112bAQmkGJmqllIVSF5tDwTL4krO/wGwf1kjf97tPflVyDOynzIf3tywfF2pr3n+C96NYhUJC6TiOzjCIYa0AaFznSj8Ha8Nh/zerT8mVbFnDpIJVG3aarY9JglBVaAgphG6dR5BGDFYFMi+UhRCqcbKjubsHILaKxkxI6nMTf3GMm38kKWRciS0s5Mre2lK/1d7tX7qH4C3ja2TIL6kVTy7zGx2/1L49VxH6tUav/m2fCdtIZtvE3gNg6ApJKw//pWMQkaG2iBpXfkule806ro0OJqL0yrL3iqHefF5H38Cj45bz/dlmxhU9AzDP/v6ZsV1fD+r7Pj91zl+8mT5jvNQzNfbh2kNVWN9jl+tFz3b3587l7bPkvOeleazwvCKbXrwxfhM9Fj0of6o68Sy4OAvWXwcqrn8H/aV7ttzACM8AiItjeLTuKxfkbNkewK47grdMrL8PfZs9mLHUrjFrhCD5fDv+z96cLGf7s6681ZlyWjgefmQ+HlhOD+QUmaZEXWZqLcyHg8m7NssSx5RBhcxEkkzcfzPoXFUFVPAYErDgSFXR2R2zmyHaVgvldKTVGa0LSzFKjcmt9mBVqdU453WeuZmE6Q+3tJTQVJh2eyRAjIFS1ak5xalDNrTB/cOJ49H+3P7uxK4VtJ1MmlY82BegqfcUFDvlQWjqUp/iUqQxIXHn2eA4/sa9JujysCEjIYMDD/EgOIRodKU4kfMNcdpRlwdUBcoRqUdkKD95kLymxAewGApOqrT5gTIfbLsxEdKOuLsl5BsDNtlpMjHTCKaq1U38goMf/DOXq1U1B+tlWSilbB7qHbStwXOtZk6HL5NSOgO2HUSb/KsQN/NfW6P6ui6rh02CUeK0MZ+O5qg+H6ltHg3X025PePceW3UgLjKwYK/0+e7SFBLK+/2O//W//QuVH2g/PlCWkxnh5ch+twcJpHlxxS0otQ46VAx2DXNOa+5NN2pYTsfqwgrq1CyjaPklQ/0a4PeNmjTwAlLgtNhcSjEx5UiOiZtpIokiVGqdQStCIQpEEVIo1oyeZ0LKxJhJ0w0SMjE1A/ujQmcASrwSsUk8DUDYMWEHUr2M8WuqQr1UqfilwcVlM/XVZc5e1F92/37LwOHaeOr4vyY1qar3uWHPh8+dv8/t21OVkWu/OXPt1vNgun+v2lh0IRCY4o4pTKgqR/efeMtIIdP7HKqrKw6ZUMTv+Ytg95ltiAhZVgfw7rtxqkeKLixtIYVMlkwO0wjme7pCziKQc/dmAyPJ+0XO6VWdUiWk64G4D4sb6gA5pc0kyUxxdwa0tnK7T4GYbaXhtWMLCl8az8WI/gVw4XCNp3hkw2r5AiDjcl+saXsDAsfL4fE7wPZllUD/WhXlNwGL7ibcd7CP83+Dp9fOgpX+ZS/ky0gzXw/8n9pG/9kZ/ahvb3MB19/K2KcuJ7rSlS62u+4Rm5VvsoUe5Dv1qJfmQs8miyBBjDZUF5bTHUKX8bRAcLf/ZjRy6nbb23l3MdcFqw6U5cGCbCnsd8mpI4EY9igw7d95lBZYmm8zTrSYKZKJmkY/Q2t2O9MKFnAxzN4s2LKbo9aC1kI9mYmYamNe6ghkl8W47qUUalNqaeyicjMFdlF5f5N5v0+DqlOrBZoiOmhIokKtR0pt3N0/kFLmD//8z7y7vSUF+PjDX8jTnmn3DpqpWCnNjO9cmrXTcAj2QDLDtIykycBciEjs1QBbh7/BEMn2p9NRglU1Oi2MZjKxQiTEHbvbb9GygzIh3c/CqxQ9Iu3nUdXoXt1cT1rzDLZ6JehoZn7hDgmR5D0ZIe0g7kC86dybuSkz3eAvxQQxMjdxoLYM1+443NoN7AYPUmNcZxU4mB3I4lyeVbySo2qBeO87WbMz/d/+KnIwWuaDVSvKkQ66rLk5sCwnprxzRbU47vfhUo6B8iBK0UaMyrfvJ37/YULcE8TKuMWliGG6nbA6gTAXA7sm6+vnbOxvAwLRBRYiq8mh/cbEDQysQQdm/fVz3pvSAZBXgmql1sBJhNMpkqKQE+QYiSEwJZMzFlEKNg/KaSaUioSZuMwDUPaG75gmawKPXmmUrVfO+ry4fDVuHn2/2niJ+vMc7eWtL9ztb7fbfbQNngYXlwHG1wYCnV5zqkdgy4sPTGF64ddffzx1/J9zbV77m0AYqjZfCxR/Lj3qWtWpZ7AzGeS8X8Su58vjct6L2LP6sj9qzM8LcHE597djew5rK1SswTyFTCITZSZKIoZkvlP92b6JZ+w4L3oyJBD9s9HwDaNhvdNvrNeijSD7/N2xWZ2YW3m5OGOjevEITD0Olq+BrufG1+oFG+DsjDq/2W6Pf3m5v+jV2xTzz9gCir6tayIB67VNo8L2pccXoUI9BhbrP87+/9FvnqkePLUdj5W2wML+eqyC8hi8NAcmfdvrKs7+CHTG3AZtjCy0OpcnDA8Iq1ys667QFsr8gNBIAQtQQ4Ld+54KPQM/a3Z5ffHZ5G8GLFoxI7NmikzJ3aZVdbgX5zQhKUPMhCrUBqUYmq1iXPa+keqZdFNDwkukvZl2DZBLKdZLMS+eka6c5kJZCqfTzPE0syyFpSyeCW4cAhxz4Nv3E6KVXZzIZUFjcB8CNak+V5wSFSrWczEvC3na8eGbb0jJ5EWP95/MO0CAms3sLQA5kKSfu7XkuA2OgwfmVomIBhpCWieqI/gugTsyxX7hFX8WqhIlIJKYpltajGgM1iOiHsj2udGb82vDKGLNqFCqSKtrE3wpRicrri8hAmUmpD0hF8jNwBDqgLBL0BrP33xEos2QVl0G2Y6rKSOLFBxsDuodQpcR7lSg/kLpyYMOKsRBaGt274jIWjjXfoZ83jpdr9WF1hZXPvOvtdk+loJMO7b+FSLbHpH1llA18Phun3i3TyxzoqrJ5ZbSXJkpkHLn3xr1rqpSms0yVaPX2TWQNTEhXYgBSsGuWwhm+oiO/Vgfzro+azbRfPM+p4ZCtQWWEIkxkGNkvwvk2CtkzZc0eVx8LogIoRZXBcvWfxESWRuxWWN+V47TDU1qGyaPZ55/vn1s/VrjKXDxtYL254DDa/cNvj6oGPugjaXNgMs2SyBqgDcCi98itexz+yO+Vgb1S4xr1YIOLrZZc+jB9QU4eOY6bX97Capar3hL77Na9+Vaxn3QYnx7Wz5900oOefR7RIluEHoeTwHDlfkSqF+ngl2iLhn7spVovewF6CAEcYXHi3gv6Dmo6ZWMy8D8s7P/vOyXcVmle6lqt13nU+vfxngvVdjGep9Zbgt8r/VbbPdtBT9vq/C8ZbwRWDztknhOVVo/2wII8Hnr/7dd1yU4OQcFl+vrC27R1wUIubJv287onvsL7iwdUNSzglxkG6xs1KAWKMWzvMFoOaxgxN/8CDtrkL5JltUUb8gKgspkfgEEtG23wDD7sj9tUEtaK5S6MLfIYYZlLkg9UeYTy+nA7mbPNN3w/rt/IXhVotRIU3N69uIkutRRhaileAZWRvZ1ZP4FcAnYWmZqWTg93HM8PnA6nXh4uLem2dqG+k/PfIsIrVow9z/+/Qfm//LOVHV2hUky07SjFVODmvaTu28vlOVIiMJ//a//hRgTtcz86X/+SG2V7779wPzxwN33f0SJpDzx3X/5AzFFYgoEV0VStaDPegMqMRWCLuDAAQ+wjaTv4KI5eGgNoVhlIzj6H+BTQIM3QwXS7hZ0At37OWN4MqircGirJqfq/S/iCk6teZWoNUIqSKuEtrgkrPlzxEF9ikCjUun0mOqKTwZI+r7GAbqN3WXZ/+7qnVL2oHUFDClmwKpUVm2qZ8kkAxwWwDc/FnOt9iZEX7gUe/moV7nAVK0SEUiUUkcFrNVmal+lEKNXQB1gbN26rXphzfkpwLv9RIyRCtyfvMmwwZQaMRRiOSKiEBo3cQckVPa0gEvKZlprLEu1/akN1WD0qaak5P0OKY37zwwYlWVZRkIB1WFa1x8pzY0PuxcIQKEgIpwk8PCghCBMSZhSYMqR/S4TAyYt7Cpfoc4OsBZStCyiAavMUgohVZP29arbmrU7Dwi+UiLus8ZbgsQeAG3HVpVnO15qbH0NJeJy356qclyOL0UF6sFjdvoLIuQwveiLcG18zr58DTDyJQK9y/X8muO1VZPLrLCIeUj07wZN1oPi0YTLebD+VBAZ+jvLx3a5S4rQyFqrUikjUdkdu6e4J4pRmKawu3qeTaK28H98/P+iKP9886/cpvfs4v6cHtb39SKNIWLN6QM0WJbIfxev3muq6udMvH/U1h/DeYjanwmlLTQau7C3mGPzm9eMvu2XDA63dKlL8LgN5J8DX2eUpc2z7DUJkC2YeY1qWF+2j3Axb8b/1KwB6m+ieZuL4H17EnuQv7m25w+ZbYXAkKnFbNu/Pd8mV35zDTw8AiTXgcX2A1GjIwRjsK/Cq4LxxEXodAtt1RuIC6XMnt1vpGlPjBOBiU0K1DdkDZ2qgZCm/skIvNXbjk0Ztk9YAzcrT7+BeqWgFRTLbFMLeIZUVagKc4M2K4VKPC2EmpAYqW7wZuDBnKlbUzf4MzUdC576bvftqmXZm/dWLCcDFscDyzyzFKuc1Nb7K+zkqnPy+0NQRZgbzFU4leBKRwblLIDyNiKvmvSkRwBqWbi/s4diFOF4OFjwpsruZk+e9oS4I+ZMmhIxToAFwlTz1RCJBgZqQ8SUlsZNJgYA0WCVJO3goJjSVIRAcqGk/hsd8z/mjBBBEz1j32pXXaq06pUZKWgLaIugBWlqtKhq29QQXbbX5o+2ilYHgq24b4ZVVHpWKGwBOjocsf1uGQDj8j6Qfo03mSRVHdKt1aVbu/lflzNW7apf1iBOAxXfR+25ca/WbKo2/TuRNVGwPvhsnzr46epoZw9G9Wqgigf4leOxcjw1O0etcQrNe5NmYmiEqORUCZIhKBoC6uBKGkirVt+RzSNdHBjjBYee+VHxXnYZ2aD1+bS+KNdEwKafxa9FkzYqmdqEWgNLaZQKMQo56gBY2Zu5VbsVSgOpJsCgQiQQNBERkE6r6nPT9vdy/JZAxktj+9LtQdYZoNhSPuQ8a9vHI3rTxYt4ZOreCCLG759YvnrVchsEbQPHR9nszXszSR70n04v+SXG1wjcv9Q6LwPOr7Gvl/Ntu+3nOPvbQPTy+8tg8mz9FwHntWP6HCrPNi7acuZVGEkQMDlv2fzv2vZ6z0OlUV2i1nx78qOgvV8XETnzxbic6+Pfm+N/6thFt3HU+bYeVYP68uMIP2+OXFYUHl3Ti4THU9t5NUi48kx+7Rz/3ATCdh83K/P33Nd5SbwNWAwjONaJIhcTdRNIjM/6769Mrktwwvj7PBi5uh55PEnX/+7ZxQ3VAzBX6koU/4OO6VolMPBbXdDlyPLpR5bTgYeHnyAKpMD7b/+ZsHtHCDdYdrRrFK3RsRDIsXfh96wCtn5LkW+CsWpB2wjSKrSZ5XRPrSckNAuWSyVTCSIswYKnKsK8GFCpd0dSEkIEJdqDolXzs9hkzOtSBgIenhpqmXStlVIOlGWmLCdOx6N5BpTCaKjzSxTDZi5IbyZ2EzoJVIFTm7hfIlVN8lbVlg3Rw7RWqFXsdDQz8Tsej9w9PPAv//Kv7HY7/vSnP5F2N+zffeB3//Tf2O3fgWSmmxt2+731GqjS6kKZD2iZQa13pFUFnRExIzSJFdOBVaeVuCxpU4qDJAmVPDmtbMRu6ipcgV3uDqarDDC1ubdCoYVgoDRE5+9Xgq7XQ5Of72rVqFZnwhJprVAxV/fWClkLsVfZBJN17X0DDuLEAd3jUnYPeLFjZQUgKspSrWJVinmG9IblLomac7Zeg9Z8DjXLtrH24qwvN99i6w3/y5jb1nhnc1Jk87pRSCm6x0N69HBtqkgTtEJZlPv7wsdPM/enZtW2ZaY4NU9YmJKyS8r7mz05GthUp76llMd1Cq7cpBjJMIjfK4ipOOlqINkEUgyUnuXZyD6vFDIcBLHeS3RzPhPpEmBZ1udTigsxCNMUudlP7Cbrl1HW/qYmULQgYpSv0JQQE1nF/jtEZFSqBBn0vX4/Xn2HffVxLWP33DjLtPoYDZCPXoQvH9Fl1u4ROHgisLm6b5tqifgJvfbbpc2oKjdbUzR/NkRPCjRt67tS13fXa12Z/5bHU8DqLb//UuDiUoXIPts4Q+vqwxAknlUYVlqkraFn36+ayW3ioq8xngJFZ5+9sPnL86oos0vPVq388+3/4lSptYrWz0XTSvDnT7o27yWOas2AMy9cw2sStdeeBcHf24F2NT58y3jNddpWhZ6kd77yWl+C5tdSot5yfFuwdDbHbUWjf+d1XUCfN94ELKJnGLcgwP7a/D2SwucT/jLu2WKIUS6T7QLr75/zzbhesfAXfqcWddF971cIUs2Ey3su7ELIxpDOVJMqmZJuKZpBd8Ro2dUQP6CyozQP+tQBBRs5r3EfKFA8xrOse/+uByKr6Zka53rQg4opKCmoRppGarUbttFocU++qYRmD8ZShVIXkErtxma1mPKC1kHvaK33VqgbzlW0VjPVq4VSjvY7p8A0T0xbw/PafwC9STpaw3Fwub2QIAgpCjUk7k8w18DUArnPhZ7lVQsU59OJ48OBpVRi3vG7//Ke+1l5KIXv/uX/w4ff/Z5v//DP3H74zptaM9EpNOrBO8uJRKTFGdoywJKjFrTaZ4EGQRFJEDDAE4Xo4E5xkNKqVy5snsVg0rlUe8F00KCtod3VulbrL9A2HK+1y+pqp8x40O2KRBC8D8TBlgO9ZTZ1JQknb+iekLQfN5Bh0+YeFHjA4qAj9kyognRJYKV6pUx1neu9aaBXsVKCWqE1MSpQv1xAk7YG2HRlFPXeGQdgQc5+g8hQaAox0dFaN04cWUJdOcG2gCLSCKGAHqnlnoeHo5/zOrBTq4XjwcD392E2ABit/8aAYCbmyG6/Y5oyKcXxQolY5U9VaE0s1des/yeCScMGobVAqQZ+a6mbZ0+jteAAxy9Dfx70osb6D7+XKwVhKYHTqZBS4GEy873dlLjZ78g5s9/fuNpaNcW1VqntOMBfDCZCIMGolR1w9gSPPVd+2XEJFK5VEdZyfH9InjcZWsDGGuxtAdMz2/L/OHsv/Jym8Mv9f+r31sBaeCj3IxA7o3ywSmh+7n78rY5OwXkLoOvjLYDizVnfM8y6oYuMeRvGfm+VfoKEMXd74NwD70s6Tldhar7OsUYJZ/fHW8/NNvP9XAXlNePymZtCItH7L9KTQa9IoLh31VZsoAetfb+2lQvVxxK11/b3OUrTedUivnmOXNIqL9f9YnB/LblwscrngPT2uL8W+Nyud91ePPt+ZRR8nWfRm5u3h1vsI+CwIoftSwGGqueYYiib6bEuKp6V5eL3fRvX/nsFOf3fHVT0BFcP+hvD+ffsj4GB5j4KnuBFVTzgNM52ZFoNvMIeleT0nvXlOPAFPTi0D8QfLW08jGy51po9fAwF2P614sCiUIoFFKXZ/liDMxg/vJkXRagEDxzLaBZWlxVtg7vflX3GA7FaA/GQp62FVo7eYHvaBMSeEXXfB+P9d3ARCSkRYyTmvQGL6OZzwczQCLA0pXgzeVNrerdzVD04bx48NSQk0jQx3X7D/aGgEvnw+3/l29//gd/907+QphvzAAhOQ1KlLiekO1+r0WOoRuMB7Jx22V9MpUmMG0OnwvSm2PWyGRjTZldQvMISwPsmerWhOm1s8c+2DdubzP4INtegvk8Wu6WCtwC1DQAs3oRdxnISkhnYNaPD0Odgn/ZOkdFgNKnOp7R5vsoD9wyGvVTVE8JrNq7WCgK1mlKSiAXedq/35mZZq2B18ecDVrVa71T73OV7zUukPxDC+bNje5+fvQQU1cUkl5eTZ3/92P0+KqVRi5XwwdTCsphc7i4n8pTd02Mi50SM9oKXEPzeN0ChLsMcAIKplYj2h7E1rhtzbX3JhGD35zaYXVMc2+tt06C6HC4lUEIlLIFaKjlFO8dBUYGJiLdd+tQxVZcQGjE0NNq1Dv43rmgmvn91AwB/7XGZKbaXb38WrmBDemLm7A1xnoXbvoyfCxRgfYl+zWC+r9nchm1exc078mtnr38r41EG/GeCup+7/efGNji/GvixBpqXAWlPRPoPeO7SNtZnbX/HSP+dbfxV+3tt/y+rcW8dl5Ql4GoVpoPDR7+/EqhfA/SXv3k2eH/iZHYAdrmdzxlnlMtHqOD59T9HYdtW8S+307//pcfz59oA9NcYb5Ob9Wxz/2PBgWy+u0Rom0gblwPdXMigXaWm0z1k/RtfP92EazOkAxLZLLW+gp582XimoG0ABZgrppGiPGgWTPEnRPZpsr2+4DArsGgZWMWEYyxw7KZvvbF55Z7rkB21jLdnkZ3frk1dPcj8GfoqS7VJ2qUx1X+L90yoG6At/p22HhR7gNgDWw+8a7GekVYLpZ58ndVVrvCqk4A7VyMBSZmUJ6sWiMl7CtbMKxJIKRFTYpoyedoRHXBQZ6gzDzOIVMv6S7WqQfHmZi3EFJlub7j98K+k3Xum2+/4f333L+z279nfvnfwEr1RWyzb76o6JUaqNJqalGwL1vIsno2PYvz1EHWoD4WU3P14QkkovS9FB/1HW4N6QJoTTRQPaBuhKwU10+GWYFUQCwCjgb8Y6L0Ma5PvCja0mTpQaxj61oAxrTtIENCGtpNRrdqJUg1stZAQd20OkhgBfPAXXQeGtVC7aZ5u74z+r5Wm15W0wJqWa7O5I2Iu062dN2eKhCEnuIIX8eqFPbaiO5hPU/cSicSUN4kI2f51BjRqw0E1lHmmnA4EbaQYybuJ+WQUrjgFUmq0GpiP1pzdSmN2sHU4FZAj4cc7qzoGISWje93c7Nnd7EkpkXIe20/Rqoit6vpoSmaGp7gzLkItxVSnmp13Ra0K1l8yTTfJhn7vO+BVoVZ75i2zzctP9w/knz4RU+L9+3fs93tu392a0zwwL/NYX4qRGEzMoAP/EPs9KSx1uf4c/MpjG7BsqQwjMHBQYQDRqyx0MpcMCcRrvO6+LngcbDw1PpsmwfOGU33s4g1bQtPfU0XiufFzANVbg7BzGuXjBuNr638qW66qZgg3YptNL9NmuWu/vfzvSZ5Q+HpibsN6rzw3j57Lil87/lE5uqz6YbHIc4IIj+5DlKLlau9F37cX9/9KkuCpc7qtcgLUVnmN8/YlsL3M5G/PX9UykhwigmhXLPx5Dt+/6YSCXKfxfYnxNmCBjuoDsnlwiOMe6Sjflld6prZTkXoGv78U1qwAgjsg+8YeY4nN2AQ4/v/j6z6ZtH/rpceOKlFv294ADBUPSod4JmPXPbFh4KBDI/9/XasU2nnsPTj1DKN9tC7fBg99mz1Wb6zu1CSjdXT6TG3r+rbAQjtPv1bPZja6U7ZVImx5nJMizpVv3rA7KCWs2esgQkzuyB0CEiaj2gTjrYeQSHHypttEdFqGBWXBaTBKK8X+1AUtM/WbW1SCZbtpvsk1+IjTjl3MfPOH/4Vp/4Hp5nfc3H5LnrxZO4j1ZQQPu/u1EQyItYaoBeorNhWjivimuglh6ipEAYSuWiQsx5OpXS3zqKTYnFei/xFHkf0h16VIrZrQ+wl6M3JYQXhwYIJR7lTGZQHpkoK2riABooVa6zW36x8FCEKLaTTM9/tDZL2vDGCaUEEP3Lb3Wr9vGRQNcYdq+7jU4jfRavRj90TP4gEYqBpl1fEy8b9DIOeJlDIxdbpOPy8y7o/t7X6WV/CbsDWopVKWheW0QIgDjAPu82DnOMaEEAjRekZMwMDAXPE+GAFSlGEoeJwXA7bTRIyJnDI3+2AN1iFQu0IbENTmQQcWTVZhhiBuONlkPWfi98OmUtS9RtaHjT1XWvN11EYwDVzm08wyz+xcGSumOFTprIe90ah0JWWjLVrAXpbCrzHOKgq9Qttv2MvKMxuAsJmnl2PtmWhjubGOrxTIP0l9uLbc3/D4UhWd38p5eC3YfIqO81I1wKhvdcQ/bwkeX5UJfwWmem5uXtufa4H+Fjg/AhybOdFVoppXTPv2Y/dWurJvnSL7FMDY7uNLQLAf6wpG7N9V66tU1J6sMmzOc/CYsPbqsDQCxnrolchH79EnttOP+7c6fonKyZtVoYLoABZsXqj9I1uuo0HTbDdKyhqkrL/pF8DUki6rIALjpbStHJ6DCjwDdm1vFbyxejuLViGknmFeQcTYYo9KbOsjeFKf4OrBQl9WuwP1xhcCXcFEX645j71uPuu/79Qok4RdzepGQKKdatN1+a03QjcUp1a7POgygtLeKG6eC20EzSMgxoLA6Hr7edo55SYhacLM4pIbmgWmnIkxMu0yU7R/p2k/moHn5bSa5hU32NP3EDIxGhhCK71fQ1HS7oYQJ37/L/9vdjcfmPbfePO9EFM2bBP6XGgWmHtvgAEkk26V0Udj1ziMB/D6MLQ/DmbbgtRKK5XTp5+Y55nj8WCSpP0c0RAt4zyePeSCz+cQPOudmHZ7YkrkaecAxh5bY2p3IaooQwGoufqSrdN7eRCfC0bzadpIQZAYIWWKmLYZWP0oDFM86zvo9KoQ3IhQwtifDnxwYDgyzK4aJjL7/aNYj4agWCVCrDHl7AHVjYykl/vFsue73Z5p2tm59vusS8vWsjpe9zt2PBOkz4xGrcpSql2bhwc72hiZdjsDEjFbllsCMarJuIb1vpzL4jSo6tTASlnsuj0cToT4gMTIbprY7fbc7m9IYUKmyDRFpJqyWmsNUe818+pedVAQRGhBrGjlTe/9uaT9ibhJLJw93Ae46h4hJle7nGZijNx9irx7/47dbuLb332LZDPNO56M9hhaIWXvEZLeiCqU5ZfvsTijlWBErp4djBLPXubrSzq8GCB0Sp/iohxy/eX+pcdvJVj+2uM5zvsvPZ4DOq8BQa/m3F/JmvfxbLUDpehCILqx3OOM/tn+bNf/SqC67Tl7brnXfv7UZ0+B+A44Oqg41SNLm/m0fCSHzG16Z/LIzx6JNXPHK0ud08+aP0OfP+frb8PoXXmu0vKWeRIlGXBSk+qwzYXh/xEleSN/POuXest2n6IJvnZ/f+743Irv54w3AQtCrzrgMXvvyu8718GDZ+g3Pgz9sxDcQWI06AXg8Um24es9KxOu3zxFedJH311AC10D+g5aVHXdXFu5ciPw13U59d90VA5sAMAKMtgAgw4u1oqFnv1mXW7rfr0BJmoma71PonaTNfXGBVYup4iQJyvOt8116HK11uxtJ7FTmczp18y5jMqUCTGTdntizKtbsogpHzXzBDgsjXYqtLuHdZp4AJ0CTJNp8n/z/ob3t4mcF6rfrKgiMZFlT5puybt3TDffEPN+BA6DIqHmXVDbsvaBVKuIfP/nf6OVmZwC+/0NU84W3Cl0Pw7UOfhL4+QAqLbK6XRiPh1ZTgfu7+5QVZIrIvWqjDjgXAPgzdyqKzKd++cdbERTJIoeYMcYydkbbqVH2s38GgSIvYcJv7Z+TZsT9kShPICal0pOewiRJmY0aA/m3sS7emFIiOM+tW2fP4xHBn3M9+ZgKVJKc78JEJcVDCHSmjo4XjM4wYHp5NUrCULK5h6tuj4XYL2/Ri6BNduD06o64JnnE58+fs8PP/yRh0P1ObpHqGjKpGhN4TkbHc/hJrUYmEjBtHl2Nziwr7TF5lGpjVId7Howfng4cPfpjpQiu91k9L6cSFMmSnAVsojJABSrzMRI9WpEK+4h607dK2AUkkSrNHHxjOn3+wZ0aBNaFUqJlLKQYuTh/oFpt2Pa7djfvCf4dpfDwRrvp2nM3WU+PXo2/hJj0DP6U9rvHzl7IZvL8qvpTPawGhWLf4wvN34pMPHanou37M/6PrYq3aVuf19XaVa921JoPpcG0j0g4HoloG+7j885vz152c3gngNaffnPOZ5rfRJ9DA8OYB9v2Mcb3qUP47NusvfUeO29vbJHnt7Hsb7NeRBtz56XswD6Fddge123+6Zqfg/Nq1RlVJ3t+ZXD9Kpr9JY5fxUEfIH79BJMf617/23AogcGfsO6V2IPCejA4owC1f8MZQWQASYuIIBnorome29r0PF/51WMp/aQ87Wu/+5AdAsUWCsLfWwrDH25s6pDBxN6DgzGbzpgaOt3lwDiHEysQeQ5QGmbv42O0WlPOrLnqwRmB2pBrIcA6dJ5fv5bptNtBiUmBHAUHtNkUqMOLGLK7tmR2OXd2oS/nKg1WCN2sxPbHYitKmCBqKvzkmNgN0UDGVHRWtCQQHvTuqkihZhNHSlE+7g3Cftyirqrc2+WNirX6XBPLSdaNJfjHMwTorlZ3TAarO4eXivzMlNL5Xg6cjo+MB8PHA4PiAg3coPEhJJW5YHNXDq7FXtlypW2TAmkeYVAjC4WI60UUorUnD0AXx8UCk7ZcvnTXoHrlSbsvhDUpFwbaLX+imH4N8ohG1rJyOr65/3fo+LidKTt8W0yZd28rrta94pECBbg9WxzBzUxRFNjStMAT9awHUafh809v5f7fPJv+tkYt6Jn7kopzPOJ+XSgLEqMde3pUqUm7ztIwYN2KwuJe6V0ieQY4gAWVYJVBcWqGb2iUFpDilWwQgyUslDKZABDjWqVkq/br69iSYlWlLZ9UDsw1m3ZvQPKzYxaZ1avTPrzSPw6+vyqIVBbY1lM2EFCIiWbT7W68pgbeIbw61GhYH1hSe8Y0kvAYeO1wdAZPaWfm3+Mv6vxVgpHzzyLmHCFjfBkJeAtlLCX5u2XDNh6APvichf7/8UobqyZ+r7e3if2uVWVl8ZLwXhPNHzpca2vS8WpXf15Pp7VnsLqog1d7fACBDx3/V767jXLvWX8EhRSeDOwqICpxOBmWQyeXS+fGZBQ1uqFbP7fZXYwazofHTT0F/CmALKWpdZF9fLFvP3eUch64dcLNCoTfR0XVYeeke69DWP5bYVD1TKTHvytRmP1rHphh3odUDz1Wd+vDjCaG4H1ikXAqhTWPmrBqOWyAfHegRiR4dBrJl89CEtp8uZl6IGitTp4A7a7TlvlwvwFrF+gH0vx6lMjRuHdzZ78jRAjCGUE2eY8XWj1QI6wy/D+XeJmPzGJNXyVEFFdqGVhWWbKcWGpJ1ozHruIHSfa6WMLrS3UYue5O6fTGm05shzvOS0HQlvQm3csZaFUo2WJ2Dk9HR4IKFGglDIyyWU5sZTZAv4YiSkRHBCEuPoDDIixCYbp3PlajQrTTHa0P3yXeWFR5eHTxwGOkkv07vc78jSx3+/JOUNc3dhFMA4rQgvJz32llQVtC60sxFYI6YYab53SZBK6nd5m5xB/qW5pSh24b260zV+AZeVjJuk05moYFYuE0RubVXS8spNS8iz/foCabn7Xq3Gt6aBNWYKCcW5HykDbYJ0ZvW6hLCfKcqTMjSqRsiyk5USMmWWZiWki5j2SrJHZgGogpETqpowS0eTXKxevHBYDmXVj1NiUqkotjaUcuD8evUI0kXPm3bt33L7/lv3Njm9u31GrAdR5nr3p3TN6MRpQbGIWlS7fXMsyqIh2rWWASJtS294sEDHPdxGhlMLpdOLu/o6Pd3fkPPHhm2+YdiZRezqdVnU0HU/YX3RsX1jXGl/Hcp/1olxBdz+6l9bzW6D3/GN8metwGWANOs+VgLBqIUh0L5Hrv99WPACGzOyvPGf6fdP7D2rn+XMe/K4A/vyY4BxYPTVe1Ud0QVMUEaIkd7/WRw3q/d3XFaauNY7XVkCE6J5XYZPQAvfDUBNe6de4x2qDdvvMfX/t+8vqzEtVhm12P7uk7tkxaO9tNRaGajN6mESS5PP1sfpVjOPj6WfXS8e33c/XztWzHpCvPL/fBiy0S3XaRDuvVPThko2AqktZhmAOwZ7ZQ4TWXUa7nCmMLPV5Ru96gm8LHOwDJ6gM8LCCixVY9JfSChq2FYsVGKzAomdQz+hNzglsg+qwUpd6UHBWcdiAiLEfmyrHFmCcHaRY8OcQZvRf9BNiGvYb7foQIZrztqkeBVJOpGgyuSknRn9LzzSHZE3aEkd2OoRt87Eg4tpBekRVmY93iFbT0HKFJ6VBjISQaS3SNFMLpCDkFIgxE0N2EzLPDi+FVhvHw5EQlVbF5pdWb5btklsGUoMokjzjXiutFOqymD9FK4QAtRyZZ6WqMcQk9CyLzUsVWa041IJYETEw0dQ8ORxgddO/Rze5rCCjicm6NhGCBrQF35ZaZQFr1g7djbqDRm3c3xfi4cjDw4PReEI0da0Y/E9as9budt1N3AxcNgTLrJsDXXS50U6F6vfW9kXcKwWbT3t1Y1PVkM3vx3yt/V6yTH0Iym5/Q4xOpYuRGAPZ1ZWQ7nuzPswEBtgYgTVwTpWyE6wKtTaOxxNLMW+Wda/No6Vnr2trpKYkhBAVgoE0mwN+TN5HZPuxo5e4w9LpdQX13prmVQwGKBM0RKoKx3mh3t1zOC1Mu/2YYzlnYkqmLlarGSZ6pmt7blrNa/KgSxQ7BRJVA/66JkxGmKCAutGjNpiPtFYId7Ase3KeTHHL9ph5+XVUoX7uuJat3NIyenVuW85/azb773U8R9G5PIe/dnB9ObZB4UtDRHDRX2D1V3hEpxnJzAsvi5eC7V94XKv2Pbls329d46RnvSFecZyPAJgEpwc1Htpi0ZwEcpis0r0591ULgjwKtjcrh4tr26vul58pSm2F7j3yWuWvl0DFpe/GmBdX1nm+jkgKJmzU6Xjb9dlv1s8HENTz63mt2jS288aK0GuAw9cGF29r3nZKjQUNvcS9phxlzemO4B784Mc80Y0izpbrLSNgvvb4uHzobWlK62escWgP+IeqzbXKgJ4t2z8/Bxa24lY3gMGXP2/A3khJjkrHCiC2wOJ8+77MZt/WLO65dK4lU1fgZfxLMwOzXolkHhLRMu4pRW72O6YpkVMgp7SuWyx4TtmUnsSdfDvwW3lolvVOQaxiQuHYjtAWMg3qCdVCDSBhR8zvUG5pLbFIJgQxjnuYRgUkaCOownKktcZ8Opl2fxPQAu5SrV6hsXPRQJToTbm1Flo5sZwOtGIUpxih1pl5rkjMphsevGHU56x9FJBSUA/2QwjklI3aFdysrjc5hxWM9XGWZZe+DrGKVwi0Jv4wAZWGBh29MapCc6rNsix2zQUHFJH9bseUTbbXqgFCSNHoZdF8GdTvleAs/w4sVJK5TUtXi9o+OFZqlKyTwP9yCd7Ri2FAs/eJ9DHPyzDR6705Nzc3Jis81mPBcz9B5ntiD5rWqrlZp7g+C/q8b0qnK3RaGDRqqxyPJ0pp1ug+bKYUbZXaGk0huveHxGzr1mTAAhOHtTaUtbISoquAtEaaqquBLaaYtpTV3JANVcwrfKelcloegAPT7jiqTtZMHp2utDDPRuMS8H4do5H150IpZfxp9GdGG0kPutLcABiuY9elbYs12rdaWeaZPO348P4bq1hKoMy/LWDx0svy2st//W5lYXfg9ChAvNjGU9v5exyX1Xv/jxd/81s5f58DHC8do7d/b8c2cXRVHvk3Mh5RbF64PtcA9+feHx1UFAcJgVUtam4ngkSSJJN2v+h16dWWRN6sD0s2P7H5p66Tqik3hReAX3+WjMB9Tc88avh+6rlz+Uy5BLb9emz3tXg/cRuJsr4Ri0SvzcNrc/vyPn0LUPgtAOM3AQv1rJ7k+HindRPMiMlc9nmzDWa2mUlTS7FAZlNu8OU2IEM3p/kRODi/MCu4cADA5fI6lnsELsYym5f7Zrn136s3wVhvP6bN977Cs9PU+rpZufpbvnjb7DdYMJRG8ysEteDfqEqRGDP7fSblxG63d2nPzC4nYoAcGst8T10e0GVmXhYOhwOqFmhPux0pT0zTDaWaphIIOU/kPFG9GkCZQY8IM/ubRIw3pLSjuMs0ZFQyRfY0JjQESlJSDJACMd+4t4U19cYUoc3UspgPgxa0HlgefkQmU/tpXrGoy0ItM8ty4uH+nmU5cTrcO+Wq0hZzWzYKjHk5hGhNudb0OpFSYve734NWtBbrE6iFZTmtwM59GmKKo9cj52mTHbVrvJrKKJFe0fIGe2+yR3WV/B0CBj5/q5dNiwEL266tflkWlnnm7lPvWYEYxStPiWmaHEgmpAnSlLibLSOSdrRgzcH9drJh1zSM6oeM3pHg1QGrGlR6tTHnTIh2/M0Vy/b75AHxSvvrYCKl5EDLAZafM2v6DsScUbUeh+7MXWuvwK2VP/wBGYKMJv9TKUjITLt3pnSkitEy/XHTkwi1UGajAklITLsb8m7PbneDiFjCAJPSndKOlBL7PNHv/nKaKQ4saimu3mayr4qOhj07dBlenCZbW4mHw1BVC0HYdaBRK6fTkdNsy3WDSNNox8Bbfxa1HjarSdd6iX08YcYLE1qxXp5WCmVZiIcDy+lEypn9/nY7AX7RcZkphPOX3PbFV5upsGwrEhYQygZM+Itaelff9W328VsJhr/WuHZOn1puvEc2Ge9tkPUUHeRrVoA+F7C8NtCvvXdvCzyf+e3WMfvS++Hys196XAa5Z9+94hxe7vujgPqJ++ba9RcJZJnWKlDcDy8ae9YHDuUORPiQvx2/m8LOKhvlzt444tWLy4rZ5rlwOXf7vgUxLa4RBz5xCgb99oIOekkZG5Rd4thmw0rdW0d26f/bgLX+ztru3zV1u+39dm1OXbuOb51zb6naDoDWyqPz86XG24DF5s+WL8Y44aMsMcLmPjX8RwYmFHR4Qsi69suM/ubfmy/OwYA+vkGMjWTrG6+mPlF9M/3fW3DgaxyZwrHuHkzo+ptttYH1l+th+PIdGPWgS1xWt++/nR3dgCf/sZjKjkkxesaePG6klKI7gQf2O0ipkaeZFBsxVnI0ScygC7XeUesBrQu6FOrpSFPvUqg7Ws7ocqA0uzYSIlomtEymrNMKuszAjEglTx8sOJRs1RGgNjMY1BbcYVxHdUXQQdsaVCsyKU3kvGfa7allBlXu735imXZMeRpGf2WeadX6MY7HA2VZmOfTOFcpTwaikiAY77GWxVzL54LGav4EN++MthISKo0We3O7Iq0/JDDPha6m5NlfNtdxzfiv15mga5DcrEEwqDXbhtZoGlfQHJ0DHxNGjeq/dVWw6gHjoNe5UliwrLxVVQwE5AZpf7LSc6zmFt82IaX2eeeSzn3W6br7K2TyeedgwRSxgpnuwVp+DnHM/RDWEu+2siOybrd/pw2rHPi2gsuy1gHcdVR9/Oaj1sZpnq3HIKbxUmHc2eJVpXilmX0z30Kw4pVfA2ugN3DegU6UQK6VkjbAolOi1JTYRqVS13PoU8Pmu1cne8UnuyqYCJSlEONaDUGB0KuO/jyhu3/355KBrDUDtkrz0p9neEWsKWE+rdvnlx/Pvdz6C21b/n+0zPbF7/+/Bhj+///JgcOXGpcZ1j5+C5n4t4KLl7Lvj74fz7zNMk8c92/hfDw1fg2Q/NR9qehV4BU3bt0L5kB/KA+ksFYwbB1hTSDJ5ryLuLT868ZKk3r+R5fX/9oxPjkPXwlKH//syrIjkfx1r+Vz4OLqcf5WqFBKAMk0jZ5Zw7PnI36xwPtS477PResUHgH7ipXOxcZG0D62q+sc2gTzj4P7dcI8oh6xIsy10oEDAX28bv9d9QpD/57tNps+cxOeL49YZaIbeIEMT4qm3YvCM7hOQdlNe1KauNkl4lDdsfO5z0KUQuREkp8IHJF2N0BKm2dvoD6h8wmWBW0JLQJV0JJoGpjnxAIcxOFiEFLesUjiIJHaLNNbSrNKQwxMuz2QyVMkpBsImXk2N+9lPpoCkHrzcTaKTQrfEmOAIEQyaET0AyEkWq0c735kPj7wP/+v/4Npmri9veV0OFDKwnI6kFJgypEQs1USdjtv0E3spsl6OYLycPcDp8MddX6g1oV5nmlNiSGR/+t/Y7c3p+VWA6020rRjKWae1oGDtVe4GlI3X8NJONLNIMUzqJu50aNNv461FVI7lw4eM3FkqCvd5bv/t6pVNWqxJvhaZpZSmOuJw8PR9zEw7ffk/Q5Je+KuEjRRHVyMe6/TosT7avpx1QtalC1sdJ0YydNEjJnutm09H9EBhwELmxdW+q21MuVsDdxOjWouazwCwhDpFZGm5jdRMCqPoSFTPRMwE7xm6l0/ffzEqTRanMj7nVf4wE5rr5IaoEipU+4mIFKrUCvkENnt9w7W5SzblXr1b78CJpMjVkqt/SHhppKNuSzDd8Zawtrolzp7LjVlt7PKyLSbxm8+ffzIvMwcj8eVAhmj9XGFNp4bvaeqOTi1DL6ZQG6fLW1s07w+pBTmpfwq8feotzqAuHyhPqZyrA63Y5kBm+w53b8ffUBXXtD/2asU2/HWY32qKrEdl1WQft2+FB3qGgj43HVv6Ur95dyfxMp1qstbeeqwZo2v/X6bUX/KIf65df8WxlP7dhmgjr6Ai/uutIWqxfsqIgHrsTi1E//np/+N/3rzz3yTvxsO3TfplrmeKLqcrSkQPOl8vs2n5t9r+yq2lY9rFbvtby4bwl+q5Fz2YFzu53a57Xr7d6+tOr51XG6rb6/R3IdjTQRe8xf5UuNtPRYhI9EN0wYK7S685yhQWU/2kJrUHlRtlrGVPLkOOAcW2+/PgvyxLOvnvdLAZp3K5nOPZ3S7f5ttsObLeoZRthNic/160Gjhubs6O7+8I9b1iCzjKdJLcZmYJwdplqFMMXCzS+xSYJdmgh6gPiCyIFJJWglaCLoQOFmmHoGQQDIhvQNVQixIOJFzAYlUjezqRG0GLNw/2II67apYQmtCbTb5rLF7co54JMYJVWFeCm0+0nTm/rR4JWGmdrYKwrubjN5aUBUchIpakCvTNJy6d3mizEfjpAchpUhIGW2VUm5X6VPvITDaU/cvyMQASRrt04+mzDObz4XUQmwVaQvzp/+AeU8ot6RpT46ZtHtPqrBUpRajMIlgDb/CaN4OsoY0a6DcIeLZ7BuzJo5qRA8E+wzxf4/AsQyTQ5PQtcx9LYvTD2d3Ma9QuzO7Ub3q4US4+8ReI+9uviUF0NCrh6x7JwxDQbCMtkdsYz7HmIgpM01767uRgHZObZCzh6Q5QAd0N6Fq/RNrwNCxzKoIFINVcWoDbQa+QN2pPFCXeYCs9WEbCCGz233gw7eVEr4h76xZPMXIUiutNuZlGQAjxUwMBoxGI74IVRun5UTGgE9M3jvTXdhF3EXe5XT9GVG7klP3v1Bl17rCVaPMi12r1h3SDVA0VZal0tqJGBfmeXE/kEDOyatO0X9noKVf956w6JUq9W0N124/d937QjYVlP4sas3c6H/psaUM2M48H8BcSyieBQEXqczXBMn/GDa2Aca2OfU1tJovfZ7PKCRPZFWvjcsAre/bWMdF0Httvz/nOC4D1EffP5OBFlmVkH4r41ogu2VpPEeZuhzNk6EigSTTmZ9FChMigf92+//gUB/4t/v/jojwLr3jD/t/IXbZ2g5gR5zWaDQC4Wx9L1273r+xDZjPjmOb1HgCXAjCNcrUtWv8GorVdrwEai/vha/xbBOR4Yfy6LuvNEffaJCXIGScEDJ2yWLqdZKOQJzzEzcCLLbAQhm0qW3F4AwsrDSjp5Y7oyR1UKIrgFizxCsy7gnkDnRkuw08EygbAETPjvjwzOlZ1YP1IdgDFugKUtaMautQD15NmUlc2jTlQBRhCnC7g11WJjki9Z42/xU4Irr4n4q0Zq7OCC3eorg6ULwBgiksyUyMxRpWJTHJLVUNWEQUtEJbnHNXWeZKqSAFCJa5nqZbC9QkuBSuMM+VUhqlwf1hoZTCshQPHkGxgHznzbzB/1iCwo47BKuS5Bhpyw1LWeg9KnmaUEyhx6Ng1EN58cAsugldECVQUDWTs7rM0KqZ6LSC0FgefiLUE4su5Bis52N/Q2h2rNZM3VZwIbL6MYi44yYuNdSrAFuw4XMk9Pm8AbE9C407B2MBqDk6m3O4BZYrsIjF1IpCyagDi1Y8AC8LpS60UjgeHghpz7tWEDKB4H0WPfsIPbFvTtrST6djD5djDYkYMjlNQypwBQnnx9oVrMQBw7Is5+Zu/rtxW0i/R3q/QH/RWSWvqg4vEJUug5wJksjTLe/eQQ2FaX9LTIkpJ+ZSKLXw8HAY24mSiN2kz++v4tSjWgspBZSuDrWCip4RTzGaqlVc1T2sh2Lx4N7mdXMgcQonqptFdrBRnZaktTdoGw0qJQM0OSZCBBxY1FqREvz421Cgkxb8XghIr252WWttNDE5aumZme07St235Rcel1Wwl16Ul8Gicv4i/hIvvi+VdX/r+r70dt86Lrnqb/3tL7E/L13fpwL4a5nZt4znrs1llvu58bcCcq8dz+fMiz6qu1FvG7VV1ehPGok5cqgP/PnwJ5ZW+P3+O77b/cGezxIeqSYp7oX1xvM5WABPVDG2lY+zz18x78bfzyRHXhpPgfhr9+XXBKLbSsxbns+fO94ELJpGmm52pAdI63+MasF2XIKEkcFXtr+8Un1Q364++v4a/enaZ9e+X78T0G0mZRsgGmLoi4YgiIvWtdrOXoIShN3UJTaxKE4ZgQg0kgcyEndIDIQkTDmQAuxCJUslSyHoJ1o7UObvCccD4XCk1Y9om2n1OIK8mDNIRsIE4T2EDGGHxHdoeEeR71AyjYlFZwteqpHcW5g88y+IzkhboJ1YTg+0WmhVzXwrZ6b9O5BIacLxWFhK8UxspepiVCl6rC3u1p0HSPpwm/nwfiJFsNbwcPUG0iCQAjne4KfMoJ3qePCgq0TvqkS0AsOq1fd/4XR4QFCmFIli4EvqiXKceZjvCKLsamF6/y1h2pH3O2ox/vw8L6NqEbegwjOsa1Asq5SpqgtprWBkncesANQzzdsgcf3ToAelas3I2ipaZ1pZTL50OZjjeJmt+btVtByZP33P98uJ229+T9rfkm+/tTmx8bUwiWcDZmFzHXqawGhEGVibv7M7j4uYutcIHNV4/cHPwzRl8xgZPQYAwVzaa2X2JnlQa0D3SpWMKlaXGTaFJFGlhEhVIATefXhPuhVudtkc1rM1PjdVHk63VmVTc5zvL7ra1LNrfl1kVdQyipON5JWN5BLNgL0gQ2SaIrUdqU04HY4Yu2siJDMoLLVQamNZKt3hvpSFWtsws2vu9I4aG3T2vq7qIAWnOGpwsKkOGJrtq7KRs07tbP40VcSb4MfzUU2O9m8j5FnHzw0Wn1vvr7G+X4sf/1TAuM3mb7PV4znwFff3LPH2UlB3GT94UvAaBaY3/W+NPqOs4jL9+2tNta/Z5xHwAoiM9Zjwgj4JUK7t67XY5peqwPX9fapR/Sm6FzyeF8FlZS/3fVvhSZL5rzf/jT/s/xkFljbzb/f/nd/v/sBNekeWPJbvFYqo9vd2H18a12hGr6nIPTrGZ+bktQrYNhFi9PXzuOY1CZVrtKuvSZH6Jcfbeix6xn+k+s8z+b7Qo8faWaViUy3Qs3X0VT4GF5cVkKeAy1PAYvzucv969OTnXC7+vwdNIzD0xUNYJ71lemW4+/qjYl1OLIEdoynkWDxfkVCYwkySStYjqc1EFmifoJ0I5SOiBdUKTVASyN7lRCONHSIGHEL4ALKjyZ7W9jTdMbdAU6EqlBJpFWhWgtTgBnTizNQm0AKnk1CLqc3YPsJxOaAElmpqQLU2V/OxQE6dFhdT9Kxvl2kVhGq9DckKi6a/vzaydxCqzTMVIdn5cxpPn2etmXZ/d3u2ikLnZnuBQBt1mYcjd+fhm8dAf0GoISCtlNOBECLleEfYCzFOSIqInzc267YHaBgBev9y+IhggXCvEFwCi820WoFSU2oo434a1L7opoiqBKezaEnUuBBqgSC0WqzBPiaoXp0RoxOdDneUuniwuiOkHb0xR0UhKOY+654em2pEpwEFv452jRqdCrWd8/2eGn0UMm6oTZZnfTq06l4ndBf7no1fvUpWj5YeTFeQRs6RqQlUyAlybESpNpcVbiYDSyrRzBqd8tUUVIPTNsXuG/e2qLVnzJQYwub4DGat1SYLvKIEcoqefBAk2rmLcWJqSk3qTu+NpVj/Tq2FkqJ/lkxdqz9DUcSpVQGoPYvl91a/NgNweqKDFkzCuPln/rc28XX3HoztQ+sf4+9pbGkc2wAWrge3Y9mvVGG5rOZf+/xs/+WNviSqZ8/lR+t7ouLx5OpG1NF/j8cg3WF5pYVu45FXVbGeAH3roZzHSV9SkeryvF6jmb16XS8Aok4F61UNAd6n94Cy1JPFC3r++3GsyqNz+iRg+JmJiGtz7fKeecVKXrXYU/fBtX36Wx9vBhZmHLUG6nq+wPineJDdf9elGvtijx4cm0zwenNd+ewKsNh+f/nvzert7x7QIuOJsaV5bA8qhLChtaxSsDEGV2RKm4m/aRbXbhgmboplf2LE+iGqAYdY/gMp91B+QOoRrUeqnnwXAirvQPYQv3VEEhDZA4nKRCOiISHxG5Adhb1Rk0rleJyp7UTTmdYDyQHwFobQb88+N+V0VMrSKPPJAUSlNMsKD4auGO9dvM8hTTtSzuS4s2NN0fpLMEfs0AL7uCNipncWhHqwr059acUePh64WcVnBR4W6FnAtYKJHhRDjtCWwvF4R10OUGemyR07Q6C1YME6lajW63G8/8Qynwhp4uZ3kKY9IWUikZisL6i7I3dAse0zCO6e3YHF5cNw+2i4ArVRVaJz8lvTs99DGxlqbVbFqNUqFrLsaWWhLSe0WEUjLkevZszcffwrIkIrC3n/nunmAzi40LAa6SnF525AcoCwkTBOqxKWOu6+9oBXVesDGS/B/rJp588G3TrcO2Bg0wfQ1AC0u3n7A4KmpkL27t1ECY1QlEglUKDOoFZ5uUk7d0sXWlvAZrxfn+SANaIkSjMqFCQP+Bf3wtARQDRlgNB5KQSxDNqUpjH3mjYayi7fuCN5dGnhymkO5odRQ8dM1AZzUealUnx7rboPRzOKZG/ubu4Voi1sKkDdLwX7jEZX7Oq/N+MOm1OiAcJalflbGl8ra/f3MLbUsu3flwHr5XhzMHX5+4v1X6uCfE7vw0uNur6iRw3bsAa3b5lHawWk06EgBnOZLq0YBXeTne79FMAAZ5fjrFdDz6/Bdt/OmtKvHEPfp58DNrbzoaklZ4I+PneX+7YdL1HFjD1Q6MRZwZyr/+nmX/k0/8in5SdSyKP606V7uoP3tXP6Gmra5wLj7fbGul5xP4z33pW5d23fXrPO/yzPvDcBi1orsbZVwpVNJWAzPMd/npXuGVn/5YjBr4IAD7RYL961qsS6vef/m02gp5vPeqDc1xs4p7HYc6C/5CyDa9SNriDQb3BB6IZiwQ3hhCkWAoXAA9LuoR6pp+/ReqCUBxqzHaEYjYn4HUpCNdBapmqmtUBdAlVxhRtrzC2lYlYxxbL7kmhuQKMKpVhQoR5ciwRKKQbwagF6A2g38DPqTWuVspzWz/r5k64KJOxvJm/y3dH8apcyU5bK3OrQEc+h8fubyC5+GP0VFpw7KHVVnRSn9dorox/AwCj+S7seDcvyarXKA23hePpIKyfa8Q7KiRh7edXmYEG8IR23WxGSWK/D8f4jkjLEyO79HwhpT5zeWXDZzItiADDfiTCqFV5y94i0B9Zjtm0Acl9uk9jnzKW9a/YraPcu6I3ftQ3+flxO9u8yr5QYV49qtVDL0WhqBMpceFg+8u6b70iTVZUQ670wJY5AcMpbzhMpGR0oZ5dtBdQpQ9cyjdtMV61l3B/9O+3nJCVub9+N4+zVp9aqU7/K2pwu49bkeCh8+nTgz3/+C8V7giRFqihHDSynBVXY7QP7fWR/E8e+NS2oLogsEKy5uzXx6kUkTXvrz4kGMhShqu2zYbre+4ID2GAmhUD3kYwwKH496BeF3ZQpRVEtozJi/jLCbh9YqoOJUqw5vFkVsPW/a6eUrdSybkzY78sQNjLErSEtGLiosgKzWC6fhF99vCnT/MT4z/Jy/bXHVUrRRYD2Jahn12hOr+FxPxcIvkTL2QabT4GHa5+/BDa2+98VGo2GFZmCeOLBnrsi5yBj/Z2Oc23VlHBW5dgGTNd8BC4rTWfn8gK8vLnScLm8Ko06YpmXKFzG4PDn95X968tEEkULtS0UB35T3HGT3jHF/ZCoFQmUeqRqpbSF6EZ7Itcp05f71a/Ra87F5f2wXf4RLWwD5rbX6Nq9s616PJWA68tfA/bX5vrXqhxebv+34WPRHaQ5r1ZsAUA3jfJSAD14HQHUxYGdXWxlqIAM4HEBLJ4aZ5fhCfTtcMcDPQcKKwzyB8U57WOgUqdLbOkvdMldZNApYgrkKESx3glpJ6Tdo+1HtN7T5v9A64zWmSoBlUiLN2jYgexQdiiJRqI0sSbpWqhVWRYotdFqYymdU10tjsApHx6Vjckc3A8jWFNzBxbq2WELaFazP1SHdr+qQldFil1yNJBSNHrKLpsyUTXOulbLpJdu/JYFrZUcnNHv2d4+e7R1s5i4AXzrrFKfPz2z7lNkrR6VGa0n5vuf0HKEcjQgIJZ9hw6fxBuCgz1CRYhiFZC6zCzzgXi6Z7r5lhAn8x1QO+ZaGf3OPeoNXjbZgk16JWP0XDCAtHBBn/PZGgZY3hqvwcqX92bhqO6F0SAkAxZpx+p94ZQilxdutXCaT5RqPhADGAZXcxPrtRAJ7tCeiTG74aI1xUufR5xnBvsc2d5XPZAd2QCxepgF5P28ZDvG1qjVAIEBo3qmejQevgqneeHhcOTTx08QMiIRyRNNAkUCx2M1RSVdUCISsl1x9Z4aKiINggG41hQz0rDqoYTs1Tfv11GhNjXBBtVxX/XzJ4gJD2gzWuN4euCPOz/mGFC16o96o39McVSLooOIEoMpTg3gYPdRq16pqGGAChEZwEPEPE2kddnc2tu61uvVdFWl+8f4uxvPVShek/393PHagOhzAehl0PUlArBH6+zPoB4Y+vkKIbmhY//s6X3ooGJNLV0HXS/GNRfH+trM90tjC3D6Pj5Hh9PzhR999ghcIA5anHvqz9gUMolsxqOyqjnZ+8+SWGaC93wV4HMD4tfM/UeB/pXfDFD7VmDHdbWpX2JcUvy+5ngTsCjVzb6eCfa3nzQPEATcdO76g267Lu2R2CuHXFyiJy+0uK+CLTQCB8GAQgybhq/efCqY8o0Eb9L149lQYmKwYDvHQKASZSbUO6QeaA9/obYDrd4xeNLpd0iKQKa0TG2BuQSWWShVWBalVfONsOylBfpNmzUnt/7A6pQRaPXBvi/LyIA2Xc+9dHUqSSPjbg8+Wc+grFSfPN2QcnYH3z0xCoLTVFBvhq3MbrSHClGVVpupFZ2sUXeXd8QU2e2dqtKlP2u15tlmFzsGRoZcIoh27n4Y10ddutWqHQVdDpwefmJ++Mjy8KP3ViwYELFmPaPqFDf5M7ARPGNdndw1xUgrC8vDR+rtt3at0w0h7919mzGpz5yr+1zdQmxZz6fNEcZk3qoP+VVxSpCt4yx29xdSc4Ugw+W2QOp+Jxsp0RUQh9HXI7gi0WIUKrWdYPTBxDQ8KXKaSCmzv7klxkTK04odYhpZm+4No6yOpeIyX0HSaEZfs3Mdb+iK6AGcAtfKbCC3FbpLOSJWoZHCH//8Z/79P/7Kn//0xyHHm2Ii5BvC/gNLDdQGf/6Pn8ax3N7ckHJiv9+55LMQQyEIZBHA5kiQe856giSQ8s7/bQBARJDYaVSBUgWK0I5dOlmYpmrytjmOdngFdmnHlHbjejcYMrTVz2Nt2elTdr+31ii12pytjVLmASxKbaNi0SVqmz8XQq32JzaCK2CZFO3fJhXq72FsA//PCVCeWt929Orpc8HrNsjpgP5nZ8FfGG+hKPVA9xpl6Jp/xJYqdG39l5npy7Glkp1VHgDUaFH9t41GaYUU0qN1RCKN1afqqcrKc2BD0XGutst0qdd+LCZQ0cb1fooq1WlenboTw+Pwr1fRH2Xh/R3U6NcuULSMpFiUSA4b5oF/hgi1FeRin2Sz71Pcs2M9tqKF+MLUaGrMiL7Nvo2nzudT9LOXRr+Wjz7v98wT99Y18Lvdjy3t7ZxC/fT1+xrjawGct6lCjYrFOUB46uTq5vutHPmT4KJ/M4Kspw96y1vcrvvyIXS2njXFMJqtZUOz6XFgSsED7TV7awETA6CIWFUihkaQQmgF0QLtiNYHtJ2oXmmoNVuvQhOqTlQN1GZKS7VhBm2tUapShopMpRVd5SsdWIxelZEh7kGEUZmqNu8FWR+Qoj2YtEx122TfY1g19XtVZjgSR+t5MMM7b5gWjLeOZaVbrdTingu1mCxqa4Qo3N7ecLPfsZsmBxau5OMVEk/0Q39I9iSKn+voc0FDM3oKXe61cjp+5HT4yHz45AZrYApIdsPW1m/kgNAI4hz6keGvNIG4gAZrdl5OBwso8431ZogQJLo7svBI7UkZVYNRm5AVqEnosLcH4eKVlHXu2gtqvT9CWHthgkSIEDcvOQl1fL/Ob5+PMRpA9uuoIxNefDt9n3XQuLpcrxnbJZcUlhUuOcAOulIGDeBt7hm/gQxIKKb+ZS/x2rN2vWw9KD5lqCgNc0Cft6VU5rLw5z//B99//wPL4cECfkyWtirQlEUzTYObG9qxlVJIMfJwyF5dlEFhSmKgU1Byjg6q0rjHSy32PBAZbt0xJffvST4jrVG6it3PrTVijJRSSTE4TY51DohCN58UXGUsjoCphTCCh9bs90WEGCpBDITYfbmCiuiKU1VkDShECM1MLK3a0dArgcM/xn++8eT798Uq//lz6EsAnNeMt2znKbBzLSC6pBm9Zbymr6fvy9k+yNO/7UHiln3Rl90Gjy/Rsi4rFE0bkfXhu3nLPHuM14Lut4xzALq+g3rddmnzAFChV4YVmicylzZvmrnFpO3bbLLzBFIw8+BIfHQsj+PN9Vys+8fZMtsYcXsvfMkerreCFDZzAdY5NP7N+X37pe/H7Xn9mhWMNwOL2h43GD2fEWEEiheX3kKxV564awhw5SxuLgQyaCfb5WBjEuT69V2y1ILdTpoxPnQIEYnRKxXQqvGVTRU1EkVIUoksiJ6o5ZPRm5YHaAtodefezFwnjrOwVOG4CKXAUjzoU6VUXFGmepayuuuyAznnV1enjXRQIR1c0J1F/L/E/R56gKRigfWIBl1yNARytqA/T5Mb0J17b5j5mKINy2bHxG63A/HsQjlyOp04PhwRVaIHUjEmfvfNez68f8f+5sa8AYRxzL03JxLsPI9sv30XxJip/cFdqqneBDHHz4e7v3C6/8RyeCCmnYGhnEBd8rMWGOfAy7E0tEGlOzwrrQUm/3p3vLMgetrZ74A8fXCVq7D2VLAG2OrboytbIb5ZGZnw8UAPVikY90LoksRtrYqk1f15BSRx9FNIueh5GCDcHbO9MpTcAK7vEii1VDMP7FKrgtOfVj+QDlL6jaEDKNk10bM5tzWB0g41LRBQCFYI9wqXWpXCpXJrLdbr42Z/9mxRWoDDvHB3OPF//Y//wY8/fmQ+ntjtrLletVLnheVwT5E9KgkJk2f4K4fDwzrPnQIYu4JYqwYygvDuds9uN3FzsyOlfl171VQNJIRAmiZy3hPTzgF1RNWoe83nqtHMEjklAyt5leUVv1bBaYQ9KaHgBnmV1jwAaUqLgVgDrRktrT9zzSejDbO+Wis1GNDqz7LWGrE/K0L1Xqp/jN/auNaT8FZe9XN88f79WZZ28+69mjn/BQDF527rkjryXEb3rYHeJWWsA6ztZ2ffb/alA4dto/Hl+u3Z6fLX3hPFpkp1bX/H73hM+elVg0C4WD5cva5Prfep8dS53b73UKV4c7Y4baloYW7z+O99uh3HXmoZPRS7uCfIhIiZlh7qA0mz+1vEM1+M7TH35J1IpxL1xFXZHHc4v6abe2rIA2+C6bMgWx9f669ROdhWxK6NR+0Cn1FBfHLbPFaL+1rjjT4WulF3eXmov6stU2w5bk9rjmxov/iXa3yKR3kJFnoQ4bHTGJeSsAAp5jEJO12gY98Ue3OyBZGWFG0mNo8SvU1ZVJH6gGphqQ8sdTFue+kOvIXjoswVDjOm0rRYxr01KE28YVpHw+biYKJ5A67qRhWoP+jEXwjBOkdDD1rsAP275KYA3Vk4EKKfG4GYMjFl9rsbUp78HK3c7dJM8WuUSlNColPY3BNgaYW7nzq1q/P3hf27W6OFBSEnuN1n/vmffs+337xnykbBWqsf4ko6nb6TPDMuLj2Ly9LaBFKttFKYjw/c//RXToeP3N/dIa0R8468e2/8dfAseEVrQDAgUkVQKcPduPsKtNYQbcQHk7+bW+D2/Ynf5z21CaE0JGRinIhh8qDQqjgNxSR5A+vs7ZQmm/Q2t4JTkPzfftVs2jr46NQvGFWhlQJgfRB9LoBJ1PbYGXBKlZ8rj+pDV1hdJwkpR1KO68vNv+zzwLbfK0ni18yb9ejKXHZ4tRaWsrgcL5Yp31RvWmvoUpGYSTHYXFeb47V2YLd9eQcU6x366093fP/jJ+bSsNbHNUOmEhzWmMhAZSFlRdXOaSmL+940Pw6l+j0SHGiqCPeHgym7pUjOBpj3NxM5Z6ZpghAIDcrxyOFwXH1aQiBl7/cQ66UwF/iJU7//QleNi0w5W+Bfe4W0+2YEQvLsXRSUOnxQEoHm1a7WjOpk13lNmHTaW1KlpWTPZp/XtVab32XmH+O3O35OwPDUb8+oQ3pl+S8YqPxS42vRNWAFF1swsQURI2l5EZRvvQteW4EJhLWHdFO9gBXsnTWly2NajEGIcLEvpsLkKyZtPCIuxzbY3ipg9SrCU3HXOAYX/8gSKG0xZSnf3xwm5nqkibDf/CaFDA0O5b7vIlkySRIf8rfM7UTTyrEeSCGdU6pGJW1ljnQqWCShlHFentvv/rlVSto4/v7ba2CjtrL57cvA7S3jSeqi7+MW8H7JauJzlaAvOd4uN7vJrj47zso+rIczymf+z+3zT9bDfm6Cb5H++Huzkcvvxm96loAALt84MophdeHFL2ZrSuiAguZ/KqpHtM1oeXA1m0ZdHCS0xmFRTgUeZjWa0FJdUtNpHKrmY1DXKoW2aiovG1pIP3N2GGE0UveqjBkLd968IDFbVj0YsAhiDci9SBGdS7+bbrwqE7waUJFS0CrrQ0bEpWjt/DVRo69oo+niy0FOk1cysjWvh8CU4XaXub3ZsZsy0ek/4+Yd18f57CHQ88XjhbjNyKtVjJb5yOl4z3x6oJZiDfMpIzGDZ46s8RZXuvDVhLSCI7EsujXGm7+ClEZYGtPdPY3A7YcHckvEXSQtVt4NKY+X8jrVwgjww5g3/tLBgtoOvEY1Y7zA1ox2V5y6LN/C+W9FIMZtKXfcVOOcjc+kgw8Zm+2vxp716QuelWCdjjQqLR7s6ua+FbsgTrGySk3Ubljo1ahmubXgoKpfSOsb6aoqHS94ckHheJq5fzjw6f7BgvsUV2lhFJy3a8+NtoJwem+EjApI6D1BfsxVogEkcHlZO/KcMylFSqvsdnUIGQwFM78nxasdJtUbHSiaUV5QaNIc+Nh9kD3gjyG607edv6ZqlY0QxkUc170bcTZFu5KxKkEj0IjxMa9c/E+vKPXrucR/NG//FscvFdg/lQ3/WxpfE1SMbWyy3G8d22f2SxSW/m67rIRcC/aeO+7goiGXVa6RkXcFne1+PXndVf0J+XJ2fgtapb9gdN3fvl9w3kfTgVDV4r16BWIe1Qnr1XAfIH26YnLZuB4kEIYXxtNAqv/+0XcvnGdb5vxf2+frU+v9EuNyTr5mX9+6zg6Kv8Z4Y8WiZyyfL8O+dojgyj+czYungMHj38v46RZsbE/etnLRhimWvaBTTKbW4r/pWeza1qbHFIyfH3Sx/ol2GJKPS2nMizIv8HBUlgKnBVN2ab3qYNrytS4GIuriykwut4kC9Qz02D5b5tMyytEzrdG533H0LMSYiN6IG7JXKcQVrMQ8HqbJJESn/Xtag3kuLEthmRs5JXLK7HbBAzUd+96q7Z82yyenAJqE9+8+kGJgN028u/3ANO3QekTVaBtBlClH9jkYJSfmlfLTaViC89c32XKU3i09elpUaWXhdPjE3cc/cf/pj5TlZOdg2hPzjibdVbQbkKl5fHtFIORMFBBvjNVlgXqkaWEp4o5pyp/+40emnx6YZ+V3/+WfePfNdzSFvLvlJgiiEKOikkbmXpvRbUJKrgwWRjWnNztfzt9e1Gis4GAFteuyW6WuHuhPXnHoFQ5VJcQw7p+Bx8ZL4OKeGeCmQ7ntXvn1r23dHz/W7ghtVYmKtgUtJ1pZbDt5QkK/nhY811oHRSzEaD4m3mho5yXQVcxjztR54X/83//OX36848e7B24/fEvKE9QuhxiQsDc+YhA3lGwoVvUKMbFPk1H45sOYU92rZdufFFh7xspimam7T/fu45HY7fdMU+bD+3fc7Cd2+4mcDJCZUaRRmGIWK1JosIqfQu3HHMJw8845k1PyfpZmvUynefQy5ezmkCHird5EEaTKenU6wJJVKUqtDGjnXIQUoy8n1Jz5x/j7Gn9rwOG1FLC3UsU+a182wZuIZ7ZFzpqve/NyDMmbpnu1mFGtBasa9LFtNt/SkSyB2Oix8dj2JhjaUqFGwo/IoES5B0WWybw2tFDaQnDZ1n4sfTw6h+I+FpzHT5eZ7C6HHlnpwEkSSnAKlK1nH29QGP0UJh3bqy/rfm/P9T7e0ELjVI88bvJe97foAkAO00i+ppAHKLE+1PaoKf2yT2fb9L49t2Ob42W6oU+peQfV3jjv71BRrjbBvzQuAeFT8e22enFJufuc+2FbofsSYOWp8cYzsikNXnwMrODg8u9emdAVBADomhCFkR19Alhcbkoe34ZnZWD/bwvAeuZ324BqGdd5WX/bRpXA8pqBZgEUlardK6Ayz6bScjxV5qWylMZpXii1sTjNQ9ua6UR1baDV4pvo6hVqzcFeeQjDCC8Ojr41l0YP3JxGEW3ZECMpTZYVndLIjuZsN3QUBS95ltqcRhNcYtRuuKaNVhq9g1g845p646tADkIQ9wWQBRGjAtEOzKcFHFSYbr/SanT1m9XwzO7uHkTbcW0i4XGdO3i15vfC4f4HTocfKac7k0MNO6NS+fmoHUyoVwwYYTJFG1G7ZG7G1H4SrQmy9OZ68+9ABUrj46c75qrsPn7i/e/uePfhO1MMkjjoKsi2BN55R96LgV1XMzVrAwRspviT45zC17Mk/ffBlc3CqDb1l9OY46EHnx2oOIC4Vj2kL+s759WWVhe0elNwmAzs6cZLpG1M7Kr5fDTpxumJWn2f1M3vsMboAVb7feEys02Vw/HE3cOBn376iePBAMu0uyWnxC7vORwPJmwQ9yQSkYTMs6so1XHvxGiPtLzbmZhBq2jx5v6oBAdHqo0Q1AC+6nh2WCXQKEjLvPDp7p7T6UQ+ZHY5mk9NTsQ4eeP3zo/PaFzN0aJgvTylmPljWQqz97LknF22OQ2J31rzWd9Xz26eJUZG9asiYr42HbzKttrl1zL+CnKzf2uB7T/Grztemi9vnU+fC0AuqwlnwZcELgOxkbwcwZ/3QF4J1vpvr+7bBdB41TFusvbbESSSgKWZaeklYHh0zH27cgV8XFRWpPepncVkApsgvdFG43Vv0t7u2216R2mFuZ4G6OhBeZBAduPdR8e7oYeBPFIV6wnZl2g9l+f/NUH1yqCwd3pvKxdZt9cpZdt1PqfMtV1uG68+tZ9P7e81xbC3jOfmxs8dbwMWV67bUGS63D954t+b1Vg8009M/1A2/3Feldj+2PHi+Xp1swBbmoXREGIM4xc9aC1DnhFv0BVSgCAVpaB6pFFQLZQKpQoPD4V5qdw/LCzF1lHKyasdi5m3jYyy7W0PDtUzHj37gAghObAI5mqNxNXZWSIhWkNuDNndhGUoDIUYmdLOmm93Xd0nst/vPFNbOR2PzPPMvLh2dEhkp1TMs1VQSi2mZiNCjmn0S0w5kJPwLkdSFGJQahNqa8xL4XCqWMI3m59F8Wx9TQYsetXGAYYFb/3Y+s3nt6XLz3YDtVIWlvnIw91fOD78RJ3vyF7liHFy6U6FUjpWGw21ne5Sa0ODNZTFmIkBU9ghIHFhnhdTGqpWDtaqfLy75+PdPSEIv3t44Ls/zHz49jvrdRBAwuYY7OZUjLtvdDWfr8ECb2SVlpUgV++jPnoguaUH9f+GhnTzIA9+7U9/QIVBudneP9rRVj/T6uf58qEmBkJanRGX7g2pmj+EP/T7PdXXqbWgKNWrTRaUOxhqazZvKb0MvgElvWG7qflV3N3z408/uUeLsMuJlHek72754Ye/8HB4QMKeIhORG0gnQjGKnGFWYdrd2LUJwrycWJaZ+Tg7kAdz+G4D6BPUwIef6BjdSFAbpTSO82wBf4jsdhO7aeLDN+9JKZOnPRLMy6XMM8tSqE1JIVlmblP57P1bIQSmybxSdrudA+VALpUYI9PO7uUwJtE6J0IISK3+iDTosla3mok5qA458PQPKtTf9PglsvR/D+O151FEzu5Z8WbibdPvcIu+yHZXBxYCJp5yJYjdZs5XaqkH96xARteH9VMHdBYjjaSIA6CjHmgEkprR6TZOekS3fWIbl+DiWhDalxHsvdv7LaKkRxK8USK36T2flp84loP1XQSImxA0hesVVqU7eQeeuoovU5rWc3qZuF6p59cD9PU4ZYj5jN/5cfer9pwL96VQwOP49frFuLa+Ry7t+vSy19b3udS/1443Vix6dnbNLj85tvst2783F6ZXHS6BxzMXeSRgm5fU2vYGdrghfaqrS5s2pyGV4Q2AB/wh2A0ZYyDoTGiNwAJYmfM0V+qiHA+FZZ45LSfmeaa2xlLcGdfNybTnygf4CZ5BDgjZM9qeJQ6YT4IEYtybMpLTMMQbyZMDip7hzDmbPGyM5GxqNnmyYFmQjeyuuJdFozYIMZN3EcneHyNOsxC4uUluGAeBBfOrOCEUAtWbcwXRwDI3Ttooy47aAkvLzLVR1GhSiHuAaSGFzG5nvgjN3YQR9wXZcMsNDairXTWgUEphOc7c3/2V+XTHp5/+iGpDYmZ3844Qk0metoq0BsJohO/zp7Zet8ACvlrR1EFmGFKi+3e3cAgYPlkoTanaSNGC6J9++smM2h6O/P6f/pn3H77ln/7lf4W8A/aD/iPBHuJKWF26VQlRCKpUKaz1gnOlD/GAvoOD/vPBK9X+u62Zo4wM+/qQ2AKGforPlTTG+gRUBamMl1n3lmhlppwe0Lqgck/Ke9LulpAsO1+LUcq6gpn9rlBVkVoJcVozf83Uzco8r3rrfhy1uIdDa/yf//2/8/1ff+Tu0ydynpimiZtwIiVl2kf4bs/Nu8zHj0emBHmfKXJLacL9/WIVgWUBqRCEkHfc3t4QCO7lUVlcYMH6imbbt1qI3S+kWcN3x14qIKEvr7TjzOm08HA4Me3uyHni5va97e9+T9hbWf50PJmfTK3jevbqqary8PAwAIb9yQ4yIvPs9KgQmabJr/G50l3UaAppwZ5ny7KsUuBqkrohCDX98sDia7+w/p7G3yuouOTSP3ceLmOFaxSTt5zH4MBBuR6A9+fXMHZT95qQwC7uR+Jm0cWMVTlXOdJNfGDbe9yc3bStXhxXoqznGolFhJt4ax4bWrzBWYeK1Ev0l0vgcQlKmlYQGQBLRJjifvhPVPeX2B7Ddkxhh2ShaIFmtKYeJG/ByPa6Fi0s9TSUpraN89vz2v/7mkrXFsBdgqnnaEnPPc/6+VkrUh5zOkUudBNaWZ/dHaA8db6v0Z6eq16M92yHNpv1f82KxEvj7VQoGC/f5xfblgpZf+efjUVlYIXxNzy+oOO/OurbZHL14rNeIeic/+aUi9KK0zBWZGkv/t6kXUErdTG1g1oL87FSinJ4KCyeATXlmdXTY0sPW1Gt0JtJJZiBmMgqYRsCBJe1TWGPJK9S5DSoTCmmobUfnYcdB9iwrGfK0VVzcB58b5xVaGIUFZfdDM2DWoGIuQdHaQQRUhDPMJtZGe7M3ZqMc1ubKdO0JjQ1RRyEVbVnM7GDWMZUJJxdy/GgF5BB5VGGaZou1LKwzCfm4yfm4ydqmQkxEvNEiNmAiXNbzx4t/di36/V9ak0c6PXMtd2SvV8lpTz8Qpp6XckViOZl4dPHH8k5obXw/sM35N0taQd5F1c5U/oLyB/IoUenzXixfX9YKzU2T87ujs1nm0/EQP04d71ScvkiGNlsHffU+dr7+V7vzzbOVRv7qB4YQ6WKEFOmuTb5loK1dQmnVkwpa73e/bvW6rhnQgh0AepSG6dl5tPdHXf3d9Ra3LHa+jhoQmBhyoKExHwyOlKeAi1ONKKB3iWQF1ddEaO9xWil9i7POi+nAUBjzbaNurhilfU90eeQPydk+Gz0l4ZYQoHFFM4kmo/GoPb5vUbXr7d7sdbmSQjPLnZ6HKvS3ui3SHlT4RBUw7je2wpuBxsxxj7j0Lj24Ei4Xo7/muMlOsI/xj/G1x4/B9yOQOxa8KkXAdzmGQwbSVOnH4/94ZzT/lTGemzrhez7S98bOPr5WeltcD+y8zREu9C4jEoJmI1oz94XLUQNj/oPoiSTWa9tMBa2cd/YNmuArd7rMt51zwTLL2Xjr527lR2g47/fMrZ0KdXG+vZlHMM1ytJb9/Nym5e/31a8Lql7v/R4E7AQCnKRbd1AgbHU+ueFqob/ruOQEaRflKi2TbC09WRub2zVrrJkPP95XlYqju9bSi7RGKNTfSCHSgiNEOowlnq4XzidCofjzOl0MKpTLdC23hE2gme/6U1NQVyZae2TIERiNBAR084qFTGTp8ldezMhCjEJyZs897uJKSWrSqTeW5GJKbjrrwU+rTXMDsAUjww1NQMOQf3mXVWKgiiRStQjQRekHe0h2IwjXppSSqBopGhmaRNKdLMtU8eaYiOgTCjJg7DiJn9aKxIaMQT2O6NP2Y3beyus93Z79UemvBXKcjT1p8M9h09/Zj59QiSS857du29QGJ4eTW3brRRzK/bMdP8z0L9fr1Ka96Akv4amhxFT5uY2WX9MKdRmvPgQM7t3t2itHO4/8v1y4O6HP6P1xP79d9x++we+/f2/stub98kKMLt/hgPcZupc+P4im4e2IbExn7fPirVHyDPV3QDv4sG6VTQb1BhXb+uxpfQz0eowVARG2d624QpVIVIszQ66oAXqHJCGy/q6wWCXK8SobrVWe0bEumbVgN630dwVXl29jBA4zA/88ONP/PjTR+7v70GhLFZNeMiw00KelH1+x22emOJ7Gokq0Rq7JXA7nWiaUd0j4R1NA6fFA2uvTFVtnOYTx+OJZSl9z0yEoWf8SxkAty7FeoZKr3JWlzJ2EAzMS+W0fCKEe1L6xM3tLdM08e79e3rJ6Hg4sJTCvKzSrymZSlmpheVQ4HAYdKtpmrjZ78nZgO7qMRLPrjNA7CINCTQq2hLRq7KlVlL69Q3yrr08/zNl4i8bXX/NLOF/lnGZKb82trz7M0rLxbv55+zD1c8cXPQAe+u7sKVHTb3B2DPZnpYYGe7O0b9ekXg5qHzp+6AmO98z5mfSqheB9Flmfxv49mz45h4e/QRtIcfdcKW28zANv4qP81+5Se+5kdvx2yBmgpdwkRm6ktT166TaOLUjURK7sKdqoapXPS7fgZuE16W7+nP35FvBxGWSdPvvbSWrL9tpXGDJ7LBpfr8EGa+t0l1u87Jqt13XNZf7S0rW1xhvevPU2pCyuOLQNphZQaQioJ6RvDJxm2dLzw5pY519vRKhjxbtQVc3jep0J1u90pkw0WVZYxBidDWiaEDC1FUay2wGVMtSKKVyPJ2opbCUQnW6k+AHKRvJtWA3RafW2GfRgUNwMGF69SlN1g+RDVjEmEi5KzuJ9S/EwG63I8XIbppcZtPVjSQ4C83AUlncE6AsZjqmDW1Gt1FVNx9TojAy0lWNC18G1x1qEWoVaoWlBlQFyz0E60NIRsOYYnIAInZu2kIrJ5ZSaVVRFaOd1cLNPoImrPnYgrLohm21Vlfd8qz8CNQ69x5aWTgefrIKU4jsb78lpp3tU2s0xX1AjJKzzPMKKEpxQzHvndngXQ0mm1urjoC7X1sJwrTbE1NFlpnoVSLcmXzihloWDocDP/71e26WatLBBHY373j37nekaUfOe6Zp7w7W0TPLYpUfwTxSdKUlMaoc2wd5V+eqm4eGvvjwu3zQjbkwKjcOnt2ozoCH9NPujeH4HM6E1GjzgtZKmY/2YAzJ/BeCOM3N3dlbBakowcGTv1RrQauZtVnlUInRuLSlNn788Sf+7d/+jbv7O07z7FUlU0iaT4XWBGVh/05I+wmZ9qQQ2MVkYgqtkfSEBLUeobCAZN7tbtGYIEyYFIPQbvecTkfKshgdElB37u5zpnnv1bIstGoGkc1loVtxueXxvDmnqS3LQm3ult1pjSKmCJXz2bNK1dS36M8Sv/5LKejhQJxPzMtMSnnQpaJTJKUDCr+HYthkSok0b0Av8ZcHFo94w9deXvq3Cy62AW0fTwVm/xhfbwxayTaR0r/7ilnaLS3qcjvbasR5ANp7Ax4H0NcCv+3YVqSvcfSf4t/3ZvI4Kpxy9tstqNhWJLbLXjuPpgSlQx3rcgSJBGnj3ffUUG20DSBTp5OdAUWUOihFa+XnKerSOXX488a1c7s979cqD0+NPlc6va6vo4Od7XqeAtNPAZnLfbrcn+cqFtvr/bWoq28EFsahNlUadYqPBSe99KdjAourLNkYB+jZvvXEsC1wrFWKuvLlxzr6Te2gohtBLcXUmlb1HG8QFmtATiF447Fn7YMFQbhqy7I0Dg+N48masZdy8OCuQrM9H4E9Ti0Sa4LuFYnhHxE98IpGVwqeMc2T+T3svEphUrfB+dPG6U8psJ92xGguvurHqs2z2sHck1tr1GWm1YWyHGltAS2ozuP86JC8jN7D0B2+8Wxpl8wNLAXmRanNGiWyqzWJWCN7Dh50urjOXKzZe54PLHOzeSHuGN0KN7sdZrTWvMJl8poApZQ+IbzZDGzFnb6l1LIwz/d2Y8TMbv8BFev+aJ2qojrclpeljGDPuO1tVCza6MERWsCkg4Ou/gpqfHREzDQwuklgjE4hCwSxCtexGJf/08efMBZMhBCZ5yMg7OotoK7so2iQAQ7HjS8y6Hisd8D6T1llUMd87mGnticfJJfjvLS7qpOZ+7UBMFC0id+zfZ77izDkURVTBySEBEld8cN5/yFagA0uWOBeLCKg1ZWfqvdidAd0O9alFD59+sQf//QnDocjxRuYuyfGMldTPtKCJphSZLd/R0zClIRyekDaQpSFGBoxKRIKIhMp7yAGNGRKAyQQU2aerOeiuTO7ElyMQJm98lXK4g7ljXSyPhIDrcs4d0NSuq4V21IbtJnidK6UMzc3N6SUyDkP87rTyYQe2vrYG6X+4sAGEUqt5GzUAkSJLZLUnbY1rBSoS0qGKk3kN6UKdQkwfq0S/c8Zlxlx+AeQ+BrjEcXjiXP81s+/1HgqCHyKnnK5P5cZ5d50/dS4BBQvUV164N+02rNULt4H2LugZ4PPANELoCVKeuQGvh0B678IrpR4bR8HddZH88RiUOi9E7qRJW/yfG79ElxcgsyfOx9eolf1fdguv/130MeKVT+XpvTcGblG57usaviHX61q8TYqVOgeC0JT80MwadVCmY9WhgqJmCZvTN6+9JoDgtWUjhDQnlHHKSsOLNaMot+APdvnXOXq2u26uUFiVzNKyWlPEKmkUEhBPaZTjqfK6VSY58JpmWm1uTqUB2BiwSSSPdBazV+s6beDiOyKTYmYs/dDGEUjpcRut7d+iZRGtcTqAJWgM9HBWdoZFSpEQfWE1iMPp4Y4p7029QDPAIXWAm3B/C8qQZoBJirVPw15R9PAQxGTxF0ax7m61wNYSOPUmijsshDEMttSZ7R5pnYW5hnK0c5vkMBSTG522r1jf5OBaO7itdLqzD/903f87psbetl3yOrSMzQeWGweGCoGRP/6w58oi1FD3n34r2Z+lzK1zCzLaQSorVoAOM+z01XqaNI2KkgPite5JB5sxZSo0tU/PFMiJrEbYuTm5naAiu4REmPkXd6jZeH+7iPLjz9yd3fHd8cHbm7fcTo9cHP7gdt33/Lu/Ylp2nNzczv48tsRJEDEwA/j1HjFy+dbWJtxTSHLKmxChOi8eg/u1+qMnt1z1t9SB0Clv1B6lUgb1e9ZCZa57/O9SURDNkUodzNv5YiqAZKmdAad/Vs78CnEVrxAUkzUQCvRUYs5lltfwv/89//Jv//x3/nzf/zJKzqCaGCeZ0oppGlCFE5l5qg/kQ6Fb+SWacq0KTGlW1JuhLwjiDUtL8vJK3R3xCm4fKyrjbRKFkgJlHmcA9ntQBKVjOqEamCpplg1L5Z8KLWyuLztsswuCqHUpfrzyCh02szBHrXqQ3t4MFrgfkeKiSlP3NzcAHjfx8KyFOb5ZIDWjfU6ZU9VOZ1OlGJgZZom98NIXnEKZxSpUQ1p6t4Yv+74OXSU38rYKrCsVJZ/AIqvNV6bPIHzIP1zr8s2MP25Y9vUDddBziUw2dKTri27Xe6ldYNRbhA37PSsf5TVXNdinIsMuL8b5JJG9OR5ETe0W2mvQYInnSItNqoW7paPTGFHDIlJVkdtq0RszodazNW393H5kaqFb6bfs9QTH5cfeJc+nAEbZW1K356X7ehZ+aeeQx00bIPxl67ZS1WRq/TPiwrFpev5U2NbNXkrYDr7LWtysVdQYkhf7fn8GW8eOQuGLGYRdASPm3KUWqZNRD3DXqhlxnwUoht7BZ/MnXdoVYkRVLXV9ExdvcXoK84ZDN152jL+wfnIKVp1QjxLa/4SphbU/SfKYn4U1sW/XqxuONYrMj3zLy4xGlMyPfuUB7jozdRTju7km5hSRESJoVjgg65/q50XCaY3TbPGUKMKGdXJuPq9CRQ/lsUVlAqjVcdPdatWlSitoVJNGcJpTlXNYA8/J9HpEikGv6KNEPzqBqEWqLZS20ZrEBQJ5lLcr36nwu13AVEI7LjdR3YpIE4bMSnbUZKiZzJGJh6j0pSyWC+LiKs/3UKIVF1BQndu7hUKOiht5z02Pbjqf+NFH426VsnspFrALgIkVwjzIFe2VDejr0meqKq+/cLx4d6oaA202DWxqpRSSrQj1ez+FtsHQQ+kOfNzEf+j7r2hqpSyPqj6w2j76OrXYCzTuU2j1Lm+eHW7D+OcVgRdG4s9edCrcSPD5NQsO1cB0X7PK2MriiEO7c8GrzAhrrIUKbVynGf++sNfuX948HVuZPr8eNQzWSLW/1DCicPDHWWZWOYdUw7E6Prt0QQIzL2+oDRYZpQDTRe/hhFpC6KF1u5AIUqvKjWWejJrOrV+lhYgiVKj2j007ahNWeqOWm1elcUqQKUsVpHwedx0VZkyR2y/R5sSPBcSooktWrVz89x0AFbcBG91l3XzvVpHRTGokkSGj8X6R4f55z/G28dTwcE/QMXXH2/N5L6FnnL19y/87ksCj8vRewPeMl4TUPb+D5CRmX6J2882eN4EeNe210Wt/U1wdg16sNwwkZVO9Xy0j/R3lUcDXm2oWsb2O1skuvRvr+5s34DXaEBnx/DCeEwhfnn5ywrFa67hVZD4GRWD7dl8CWT270TXWKubOir6bPXp54y3OW/3cF43cZlEJAlTSowIeCRHLaMOC+XhR+bTHceHn4gxcHuz92A8IXEHaSKmPZWJqmKBRLUgsdOiVmoTEHFAkk0pSAI5y+iliMGCTtOiXzgeZg7HMlRh1gvqAZ5r31t1IhtFKRnNyyo1O2LKrl/vBleTKbikmNm5/OuUI1POpBAQPdDKA8vpJ6TNCEpKk0uTZsbFLadxrIv3CFQPVm0Pjco1JTe8GxMk0DQyV6EU5f5o3hLzUimtoHh/xLQznvcujsbvXQqkEJhSppSZZX4wbqSdaRYJnBQEy1ZDJYVox5/fU2vjOK8Z7A+3mf0Uebfbs8/KFBcCC6Xo4KjH7rK9jaK9frHMJ07He6o2drsbvvnmW5ZiDdfL6c6467X31VijtlanUKlVvYxqYr4OBjZ61n/NqEsVYihnGZvgviCqSgwRJZJcLcwqKwYuJm+qff+73zMfD9zf/cTDpx+5++lHdtMPzL/7Pbo88O5mIojdvDVXUqp23T1ot+DEA32xG6ZXCqRTkXpmo1VKqWNuitjVr+5nAOa83e/HUe6uXgPUXplxadpmn4uKB7ombqDVXhRBApKyyyInasxefWhQCiYHPLvzezLDOdqoGoq9LQxIYCC3Ne+9CEAQDqcjP338xH//v/4vHg4Hct5ZcsL31HoJTBteqMQItIU2Nz5+/0c07CDdImEipsy3H95xs0/c7BO1LaZV0GZKfUDmk++XkGMghAVhoR7viCGR8zsyDVSYH34ECtDY39wSQkZDoqaMkoi7b9AwUZkoBUq1ikatxXxivKJhctR1AN3eLN9UUXftlhCIOTNNVtUE89Y5nU6jQjGzmHFUSgNxFm8m7z1FMUZ73KZE8qpbnzvT35Dz9lNNhl8ioHvLegb3mA0P+mcGrv8YL49LOstrxy91TV47h671Krw0vvQxdA5/DtZMvaXQPloWU3KynohzSmX/fvu7Lhk+AtJN8/o4Hswgz78mSz7rMxBZv69qCVCLHROlLRzqvdGPvTqRQmbXTXFlvScvr8mjgP9KEuApGdy3jkdgZlMdeA3tc3scL41tP0z/ba9gDFrcC5UPA3oAylJPZ0Dua4w3qkJdnoSOlrr0jKcpHY0G8axmbcQ8kXWPuF9BLVhvAAtNDyARYkLyB1SS6cY3GQyOEAJTULQ+0OqMSmWabnn/zXtTWgrJqESu3nI8nChl4Xg8ssxeoXA5SUPBFkx2L4lujhckeNBkTdgxWwN28gbMnDL7KZGCMCXn7EsjhiMhCDlFRBsUUzrStpB0cawlzFXQCirmdq2q0MpQOOpZX2eOeDa/URblcGrUpXpvhEnBVg0oic6TRwIpBvJkxxeDU8KkkLDyY0BNelaV0jzjXherjgiINEJo7CdBwg2q4o3KvepwR46wu9WRRTBPscL9/YmWAm3K6M0NBAejyfdR1vkBlpUuy+IBU+X21rwvarM+m9a6k3kvHXrFwqU7mzL6KlpjUFRGw3pdb5xOn6sbUBGjyeeahK3QQvfDWAN56yfoGfxAniZyTtzc3rB884G6zJzuP1FPD/zwp/9BnY/sbt/z/rt/5fb979jffsO0M/+NELO7mXeQaOejVxLEK3b9dHcWUwhW5YsxrhU9ekm71wp7NdHBhVeH+jPQglFrUO60staqZcxFQKK9aFojZqMB1jT5JKx+71ZoBZsQXo3Y9E1s8kw9LW//FWRUk/7tf/47//GX7/nhhx9svqYIzkNtzbxT7JxnvzexfpY4oWFP0chpbhALoSpFId0Hcgrss1US99Pe7k3L/RMQNGSqRtCMhoBGk6xd/BzdvP/DALvSFmsOX+5obTaaUzEwE+IH9ukdIe+pOdFaZLm5YS47SlUO8zL6f4rT80pZRg9Qn8utFqo2V4QycJhcglq1jT4O7aC5mMeL9WhF2tQMWPj30WlUnbr3tRrzPne8Jru2HZcg49rnb13Pc/sFawbxH9WJX3ZsA9ivWSH4nPFWoDPoRnzesbzlN7VZz+JW1nU7hwMBlXPfjcvM+RZU9GPYxsaXYMnMfTPH8kDRgsZ2ZoonIt5wnUe/3DVg09cVCCiNh3LnCYbAFCY3HqwkOadJjd9fOUdbcNGr+31b27+/1rikuZ09Wz5zXj9JkdP+zrdtXHP1vrYfOZjPVHVDw68x3u68PWKIay+Jno3e/tsndojENCFTGQ2QrXbzKfNPQGaimsuvtq51L5gDpik7mUrTjNIINHPnTRmJCWhUdcnUuTDPC6eDVT7KCDCd+hDFlJuSBS/BufQhBGI2l+uYJpJTnPJkL+2cEzcpkIKSpREoVpURyypHibRm0qlaF1BzxFVvZiqemVVWfjY6r94TnR+JcdebQql4oNJYTpaVX5b+vSBxw81OrjI1BVfuEQM6NNLYC4ZLrzI7paiNb0NQM7qL4go+gdIirRUP/GZz5U7RuJu482itlHlBCuDSvcEfFL2hV4MQHQDRqW5e0VBV8jQhEhwcdJ+ErV/C4z+trmCiOZLvNKjtDbVKtzLmbq8QBEyut/+m89vXmkq/AYzCEkMihj1tN1GXGcrCcnrgdDjwCeV0uEed22+AyuZ/dGhHCATVAR62D3P1rD/rX1bpcEGCAbCsLDgUrsY51f679R7tgKE5jawUV2uiGoUtuGyyrL0aIQTrcWnNwIeKg5pi11J8ouqaUxgsLL/3DazajC/VBBK+/+sP/OX77zkcjkzTjinbNVdVqqj3RaygnxAcWCSrGNTgVSoH3afZlidQb/dMUyDEiaTVZKS1ulFhhGaKZb3sX4nUZuX6/fTODA9JlNMnVI/eN3SitgMiMyHuCKrkaBU/gpX8i0amnCgNQk7UYvfrPC/UUjkt1gtDFQN3PZHQ6X3utp3cv8IuZwclZaX9NUWjXeBtT0WKkRajz4d4Nt9/S+OpzOn4/omX70u/+9LjtVnN1zYa/2M8PT4XAP/WAMivMZrnoZ8iPT7qDbi4jy4D4e3nfVyC+r58o1HawiLRXLR1Df5XTw9Z31WPNzKkcBVY2gxYDJVDRnAjPdUzx+tr47Lide1Yf43xqAL0Befsti/k2vm9ti0DkJ7Ee+q6fIHxWQZ5l8pOsn7DKpXp0Y02RBtRspnD3SSiNqQryShMvaFbwfzYBHKynoDeJC0GMOpk+tApiTUwxsSpzrT5wOH+I3UplKV49tWVflIjaUOYjNYUEyFZs3TMyUGP9UXEYCAixcyUduyyZZinPBOYCfoAy09omdHyYMFPSEi8QdRlVolEzUbJccM1k3EVcj/QoMyxUDHpT1PRguOyUKo3mBdlqbhak1cGwo4gwv7dRM7BDNq8Ud2C+ObBhfVzpGTBn2XvrZG3PxZAEUmkWImhIlLc8febcTuaA3cjyOzAI1HllqKBQwkcD41lMWdiWkJaZCcHbveV/9KUXVByVOY6E4ikMNGwHpOlLEYjOR1oQyoXBzzqajzFuevtLGg2eVsHXBvfip4V75WKce/ploNuVJuz7IbauoJXePpvWutUIltZbc0MClOCnIn5ljjd8t3uHcvpwHK6px7v0brw07//75w+/gf7mw98+1//n0w379m//z26v0VTHtlxFSW4elWKYTXmDnYF8rTzfbV9EBFiUub5RK3W19GFFXr1sLrTuYj12Kia+zV1QcvCcjp6b0hl2hnNL2yazA0gCGn/jph2kHaUh++tYlarUZca4NmuPltMbGDz0POs0/d/+Z4ffvyRP/7pz/zxj3/m/uGB7CIHIQT2uxtCCKYA5feKKXMlUtqjYYfKRM07bsLEh3DDw7ywVDedc5fTh1Pl/lT46e5A8mSEBBMe2O3MQyLGgKirrjUZwO72diImqwYo36LhA233LbQZ0ZmYzIMlYg8qXY4QFiREppjdnyKwj0LTSNVEqdkA1TyxLIWlVE7zQqmNpbrYQJdJBpZ5GSpllhjw6sQGKPfn7VIKoclo7I4xUjxBsizRAO8vPJ4LEp8KYuC86fXaC/GXaAJ/bv/+Mb7e6EmVlxpiX5Ox/pyxXfdbq2pPjbf8vgfBZw7NPrZZ6Oa01uCV5Wvrse8f3yu9sgH2XP85VZg+dvGGIJG/HP/E+/SB9/kbslcabDs6+PyXW5vCDkUprXBfPrK0mXfpG2JIQ9JWVZ1GFUYD+rVj7u/17WcdVFxm73+NKu7XBr+veW5d9qQIwhR3RDl8lX16W4+Fema7Z4o9PWkvOm/g7Jz2XoZSJWgbzAg0WgUiePOyGNoWrAmoWZiESvRmY/OD6AFhste6LSViSi3LQi2F+XhyukA1aczesBmM09ddq7scbEi9ATuQUx4O19NkjaA5NlI4EKQS9QHRGdETqrM58koAyZaZlgmViEiiuaxr0W7a0ihldi18+51KpFTrG1hKo6nQVJhLr1LYcYYohGT9HykIOUSvFlizes4GkMS9RVotTgcrRgJpPQzpbtKOWLU3i9qUFNmZuhRGLXJM6I3iaqZhaurVlqWN7kKslKYspUItSF0IoVCiZc9rLVArkIkKaeqwRof0qUnPeTlvGBr2Zuw65tHKDbL5OLLjA2zoyPBvlZj6OsUD7dVkbKUJ2ZCxXgMZddCnJARqLShQ0uwZYwvYg7jTeDbgyjShtVLnkzUrl5mHux8oZfE5AugN+LzGK2jgXjGy8S4BLBG9pTfZnjZvFI7BKi69x9eoMct44PZ7sdPIzqo/bmqoIVgSAGHIPTlFkBAgZULa2bWak9+B61B6Bc3gZ//u/uGB+4d7/v2Pf+Tu/p6HhwcAcu6Vwt6QZ8+HnDJKpFc7JCQk7VHs83mZaQIagkm9KrRq9EqA0mlzrj4WMHnoGAOnpTiYiSY9rTLuA4CKuhldGufe5klENFvjtShRlJwCSYXekh96woDmIgZe9fGm8hAyJUVKUXJMlNaYe8N3r+BuaWV9XuqmG2yTofIPLFEgHQQ3M8nEq5xlDSb+VsZrGyE/ZzyXLfzcl//fe8b8546naGi/5PgtXMPXHnNnO/Rxpoo0Xozrf4/19mz+C9u5VFx6rrE5YvHPu/QeEeFY7dmeJA1qVleMggsAhxnHnar5I+3CflTg16QUZijXj++V4PJRj8Nv4Pr+2uOp6/617rU3AYvObe/ZhV7K3wY9Z//t/28ZxS4zaoFxTpCTEoOSIwNdqmRMOFVGgDGkawOjJFbmQlkW0793ydF5Phk1olU0GHc8TzuSyzOmbMAhpomQTM1plydSDOxyMqfrGJiymja+nJD2CfRIKz8aBUsX4BaYkPAODXs0TBB2IBEkUXTxQCF6o1PldPrEshxZHk40TVTdUdnTWuBUoDYGqBIJpJxIOTKlwLRPxKBMUcnRqEQJhsRmcK5OS4lCo2ihVlOP0trN6AJhtzMud0zWrOs0ohASKQTz96AyzycDPQ3KYv4lx7kyF5PgjLESU2aaOqpU2nIy6tdyIoYTLSRCU1pdmEtBdU9G2eEJeXVXY7MNH4Fl9Ww4tKHp35wLuFKSGA/KDi46Dce/PHMdXpbFv5MBLGwVZ2tc16fWSKvaiMmBbAi0xXxcQggjmI3BlIVyToQ0kffvmCZz4S6nA6fDHcvxwKcf/4M03VNqJfQM3c79VkI0DW/MXC3GiDglZm3i7vdaD+mVUmbm+ch+t0M1uCeFLbfMJ3rvkG7OX9OtjK2hR62FJg7GIqCCmenZI0IQiJmwuzW61elhrA/B3ejFaIjqqkeYq/lff/yJ77//C//b//7/s0qj9yqllEY/TAeOot5jEHcQMksDJEG8palQmnJ3uKPqicZMSHbPle6c7T0MHXB5OxdpYkgHT9OelCZudtMAXlbdUu5PzSsEEzG430wStrLIQaxv6WaKTDkwAUEDUa3XymeRP6/MTRuJ7HaT9URVOC1Gz5yLGfGVUrzh2/oy7BisKV6bns3rPvct67R9aa4vb+s/svvnlx5f4iX+NQKBa9SIlzLk1/bp5/R6/L2Pa5WBa5n3p87rlz7316oTz633a1GvnptbL9F5tr0VcN6cvJWCfU3PUG8INmnSRg7WX/fUb2JIBI18yN9yrA/8OP/A76eAxh2RcylT1XO38qaNuZ746+kv/NP+X9jFPYdy77TZTdVFVgO918bAo8rzygrkz51XX6rK9TXHtTn2NamEb6tYtC73qeMFtmaK22anL7JuPXsXhF1yJ2ypaJlZWuFUmwflkbSzLGaaJje5i2OVrVXKXIcjbq0uFysBTdm03xEmQKM1Y+dpIsVsGvK7nUvCTqQYvdlxtp4BuSdLI6kSlwYsKAdKPbgcZ0LlW5rc0NihJAoTWhPaIlo9aAXKotSiHB+Ow2vhcIRSEsuiRh+JgRAFQiR4tSSlxH6/M8WpmABXdNDZHgoOPghCExmJZeMyghQhhh0h7EhpQrWiaWbkOZpS2mJ9EGKgTT0IqQ1Oi/HC793AS1vzPhCXJXO1IqOaCYeHwDRNxBjM96LMlPmBxpFA5NP9J374/q/86U9/5F//9V/53Xff8f6bb7cJVy7n9bIsgLjGsoC7DXfxgjhlWg1W7YjRlXHSmCPJhXCmnKm1cjwex3y0xlhbX2vbB5hXS3q2RnWoh51OJwM4rdo1CMF6ZqYdMQgaIlWMC5pVmBCqB34h78kIkneePRYeHu4I6QeWUnj/u0xMkCR65tlOiGX/LdDGA/4Qgt8DXUFjvb2WZfFKm6k+reZ6DZplrps2aqkspxPLfKKVEwGYkh+/qru1NyRUa6ILCUmTV+bMbE6TInmP1GJO76qjiiUhEM1kg7v7e/79j//O//y//42PP/1EzhMiuDKVXfwYE7XU0bjf1LxIkuue55vfUVrgYVaqGiCNU/LyiHhjuFHFulIStRA0We8U1r44eb+RuaFb/4YlOqwpcNonq/jBqupUH1CsgmKKcb26YtWJ07wQBbI31OdsJnidkiRiRnUhuH+NF34kCBIjrQWmEilTotbGaZns+izmmVGbyTQPwLTxZaGDQgeoiHOtVai9CifC/DdYsXhq/JyX/2UD51vX89rA8+9lbJt5XzsGL3+TEe+f94pqlxK9phB22ZT7XMD76n164+9/CUrL5dhWDQJxAI3OkT9rukaGX4WdZ7FnxWa1TwXa/ZoOczs5v2aX12NLQcphQhDSLtO0UtoC8WYsWzuFy4+laeMvxz+SQuafb/4bVSvHenBqVXh0HgQZscdT+92rHbb85vuLuXJtHV+SUvc11vslxxZgfK3+CvicikU9p0Lp4P42n2znWeWeVYtBxktWaGjzgKJWalUPTASaLZu6f0DP7qq53NZSxwvYMpQ6ItQYemUjgjdnG7BI5JDYTdmBhak6xaCkUAgsCEdTTfJoXVmoeqLUmaYCZDTc0OQDjewNm8kkeFUGTUxao5aFWkzi1syvCqcZSovUZj4ZUROEbKZ+084kalNif7NbedV1sYbpYnQkI154n4Gszd3VnyHBHwbG0fYSolhTO6q0Zk3iXapURFfPB5TjDEtpPBw7XaYOSVfBG7oRlw8FVAkopEgQteU941GbcDye+PHjT/zpT39mf7MnTbnzNtYpLRtKjQfOvZEX1uPxLY251edVBwr24Sq7mtOqUNEDzBii+56I9VHoWr1QdFU6GoEbw3yuP1hFAosshBDXnpUQ3AMiEMRUe6yPJ1qmX2yOqM+NZT4SYnbZUfeJwJ+LHVi0ZiplTqfrDt5tKIfZ2QgiNK+CNPd4MVBY3dOhjkb4ZamcTgfm45G2nEw9LOx9XQqt+pmw1xfj3rJeJ+33dEiOaGXtiQqBINZjsJTCw+HAX/7yF3748Uce7u+5vbnx+99kZyUYKF3Ezf1YK6Fg24jTLWhEtBLciyQnITY1r5aBUAOt2rxBxCmads2CYAIGou4Cbh4TluwwmiWT+dKEkGjFHLbnZUYVl/qNrhYXBxjuOl4mmBDJubHbWRV2mHOKEkKzXifW55nQrPcjGsipwbJxNUabQ6VQmy3bZWvV508Py7Y3zbh8KNKNBoPNhf+M45do2v0tBgW/hfFWmtq1jPtlQGOxRD0TpugOzNvxNWlyv9VxCa7OAdp5Fe5s2S0Q6EmIl7bV33EXVb2XKGrW+2m9EMd6GPs3qg79XR6EqpXaCqd28ibtiVoP5hJ+Rflpu2/XRp8v/cloy3oc4Mf9tZu4/9bm5WXV4muMNwELy7oGD6Jxyopnez0wEJVRqjf32MCUI9FfxvPDT5Rl5ng60ryHIu3fkfKOPO2J3k9QK7RaLIBUC6iWpbK4idpSF6fBuIV8CEzZGlBjTlbxSJGcd+SA/ymEsJDlgOhiZll1QaQh0ZSEajPvi0ag6Q0l/J7GxFyNjtFglT5TZSkzpRYeDg+UpXA6npyGYVKpiGUoU86kGNnn7HSQid3OvC9yTqNk2eku1ncBSiTnd5b1BFRPqC5omw1miLCbjKvfaLS6UJYFrScEtay6exaUYoGmUpmXxlLh7sEkL6taoLgCQTMbjJNdjxjUZH5bd1tvaG3IUtAaSTe3hGzZ3X26JSf4648f+cv3P/Aff/kLN+/eEad9r52cZTxgVbgKHmg3tWxrz2QZUIzUYv0NtVlgmP28ggf4HljPJ/MvCCGQ84Q2ddUjoD9Ag2XNe0De+4eKrk7WpVSXQ2XM6w6mAXKeBripxXwI2i3EVMmqQ16Ufl4TlHqCWSiL0ZVMVtUAVIpimepaiYv1BkzTbigl9Z4T/f+z9x/dkSRZni/4E6aqZgDcPUhGZvGqrn69mLeY886ZxdvN998NWcwj/bq7SGZGBnUHYGaqKuTO4l5RM8DhLHhmhcTxcLjBTE2JqOglf4IQYmSQkWU+KZclm0RvrazzkdPhjuP9S3b7G3yIlOa4v7/lcLjjePuSKQ2Mv/srxhBQUbW8dRPEF00mmsoQmyW4Hbenmod8Tzp8UH8WJ45//fd/54s//Yn/9t//u3YRRFjWrKaRQ9AkJASmqz1+WWg0fLGVxAeGYSKNe9LVM1yceBZ3m6u6eOUHVXHM82yu2Hm7XvOirt15zYgoLOp4f8c6H7n79kvqcrQ5pA8+H6Iqv8XE7voFw7hnmK4QH2gCx+PR7mXjnzjlbGhigq1xQYsXVhzYTbvtvhY06RuHkWgFgyHqNmIaTQ5aFbBqE2Lw1BLM9TsbPKpQwtm/YivsXBR1eg5RW1MivwTqn1Fe8VSy8Liq9i4ox5vGLzVJ+HOBVT3oMliwdontf9u+P8DsO38BZjhfyyqFLFmNYlEQZeBpB+sexF12Of6jjoYW/J7yZnDOafcYeFtM/RSM5xI22AnYHm+xz+sEc+x17zxXRrxWkztVjbyEa93nV7xaX/Lp+Bk4x6HcEV1i8OMbOxJPrQv9tdxWnT8tk3wiuLjlUA7MjPR1E8I3zdl3+Tq8a7792DyhHwq29WOPD0ssWt2qmhohWluFM6zF4zbZ1hgcmOt2NX+JnKtKpMaJGDQQjWnaTO6kKQzEaMI6OwyLXVpT0q8DH6JNfW9qTp5hVMO9kBJpGPBB1VqCq3hTN3KtmmekR4ErCquhZnJPLKrhoZtXmJUDF519xmuQ0yp5XclmeNVNsUrNALjgGZKSxGNKChmKwfZLYU8hKt8kWjJ1XngdoOZpghAE9RCoqiYjIrjuv0Ew6Iv6C7SSNxfg3gLsiUWumjw1U9IRHGmIDM6yllbtM2YOZxCOzWXBRzCwWYfCaWDsiWkChNQa15Mj+UZd77ckpJSyafmL9EBNrGNVttdV5rWZIpQlMK2paVoMtOJ4fG+cOxm9q+DM9yEyjiOtygZv6g+kmM4EXaw70V3Oz8F7l/GzgLpP+6hztLZGaO1csbBqj8KY9PcKIwOpssGTmiwaOK4nnPfENOi+NafXs2ZKLrTgqDWY9KpyMTrZvcMQdRXVZLSfrybqCl7rSl5PlLxuHYDbVy/5+puv+fJPf2IaRhyB3/32N7wIgehlu48b4EzRTaFQQbk5OHxMdGK1ChE4xEXuDyfujyd+//s/8Orly4tEtvNcDJKW1Im85IwgpJQomDu1jzg/gEt0kz1nkCJnD7eGeW04QTzmX2Ku1s6puV5wSNXEO/hIigPTdEUJgVbyRYcEJYI7R64Fckb8SjPllVyLzUE5T7Ris84ZxLPfA6bINJ9mgt3j3uu+D2kgeE9wjiE5gz3u1YwwRMQMGms9cyqc1/Cte1JsZHy5mM+iAgztogu48Sx+4R2LD3lI/tSE3p9i/FKTiTfBJDSx/kD40KPq9+Pv0Qq5JzoVhHDOqffVB27zl3ouv894W1Dtel2+V+Xfs4v35DafqOhrX7UbEweDX7YeCbz3+d6EMaQaudvxbHhh3hm9iBkJ+Cf37V18G5WKD0Qnmx+H7x2LR92Xd52HftyPYXrv9bl+DR7NzR96Xv4Q8L+fIrn4sMSiVvDVwt7zDd4vX690K0fAE7wGaeu6UNZZJRV9wAcjVafRAiZTx8FtGPImGrDh2OBX28NzU5JR+EVKkRgC4zSYbOxATMq5SC7gZAEpZ3O+KpitNjAgUigZ5tLIDVqbMLi2VlODsLsW08oPrPnIuq7cH+60u2HmbDhBXNvUpaZhR0qRYRgZR5XWTOOwSYNK16D2jhi9qseopfhWJRbncLUhZaWe1s31MgTloMSQWE4HDc6LVmvXXFmLBbRNg2URLHFq1NyIQc3h9le7zTG8lUUXDwkglc1rXaA1MyzznpgUFlNbOxsMKusX5yrPrhKRwt0XLy0QVnWoatC3Xnl1CK2pnKzYtYkxoMaIbZPixALLDlvC5prCh8548z4bQTsfLurfXW1nXfNGbI3WaSilGvRNLEi282bdOE0+enLWbBE/G/FtggX9PuhQJmEjBZ+DwGZqXQVfCut8VKfvcafkfYPJlJLJ66J4fa9u80Ei3ncoop4bb0Q3PQ9NoVwiZ1WwulLKzOlwQvDsn33Kt99+wx/++Ef+x3//V6ZxJISBcZrY7XYwODOmA1ftASbVuhLNiAIBH0dcEFwTqrRtft3eHvjiq6/4t3/9d+b5pJ4zBsNb7bo3q6g751jsGNOQtBvYHC4MiB8Ql7TiXhuOck5ym14vV9T8LjqhWtVOqkGMcJpY2H6FNBCc8Z+KVrhEtFBScjFJYeVxSKvUvCKi0LveiQU2B+3zWqTvsBlJp0mGYCIRIRksyilXA83fx+RJQ+L6uhLHiTAk3CY2cH4Y9gRZRDaeTSfet4uEVsRTW5e1vuxi/HITi6fI1Je/6+OpLsXbEpKfAib1lz42OJKNS2Uf/ffTwclT1+VNmO7La69V4HiG4Tj3oDLccfJ9e09V13sR7S9lPHV/PH6t/72d13ecg7edq8sEbbtmZhQbfaR2vuejivzl/fZaQiqykbFLW/l6+ZKPx0/Zhyv1pwAGpzzaTuh+n+t42bUKGGfOCrOOHhu6B/P0ch+fOubLbT+Y65y3ceZyPL2PT90XP0SH4c9xXn8Yx6KfYDvQYI69vaLaC99Io7VCXrU7IHj8dE2w6KBLo/peHrUeQoc8gQat0Av4RgwNipHX7zMzO58IyW+QK++DYty94qqbUzgVMigJQdqWHIEGiJVA8SMtnKuQKQjDqAGatMZyd0tuUKoafTWBEEZiVBx36opSYyT4TtasBO+J0RECONeoclKTLgLRx7NyTFX36NN8r0ErfqsGq4plQdYTy3o0KNg90tQ1uvMAJNj5dQMheqJzDAGidWxKnjURizfqcu484js3YiFN0eAhAKomNMYR7yLeJW1QOSG3ZjK5QrMAzJsakTQhOodrwsuX3zDPB7wXUgwG88imTFRVzadWWs0XcCGdYyFEnMvg2sYvEBFyKZR84S1xMTe3Kj6oYaIXfBVqy4btNH6C0/mH86qcYXLE3gfEfCosXDe1LHvQBZ3vyTpi0Yi9SiwzdacQLfE4z2nQSnSthXWdyaVoFyx8zrMXmWmatqTHBwdNtu6NekuIwtKCmhHqsZZNlW214FhaVTig84h4QhzYTdf86fMvuT+cOP3rl/zhT1/w+RdfAQnnI7//0zdcP3uOT4m/+e3HpOi2Y3dcyKg6uxcFCFGhawg5Zw7HA//2b7/niy+/5NuXLykmy7slYNb56IlFD5ABmhckwJRG8J7qPOIKtR5gMb6U9yCqyCZyh0fYO6FYQnczjjBGIOK9djpK68tb0oRfoMlzSvNU8ZTqrcvRzOdDk0lx2p8rRfdV3a9NLcWM6lpdLZBvW3er6Qnh3NZwKvdcK77p2Qzek7xnd7VnGNRXo7YT+XQiCzgzUcSS2fYGU8jLtbg/dEIIuItOxeV7f4nj8QP88e/e9dnH45d8rL+k8T6BinId3l45fhds7bJ6+1T3o7/+sBzkXksk+zx507x/2zz6cx2X57K0jHOeYB3U3nEHto77+0AE3xTgPnX+tgTGDFdrK9szcyv48rTTc79WwUUVimlz/yZ+t/ubrRMSnZqUdkhdV37qS6i/SGbfFMRrR6Enp+HJ979vB+RtY5tr7zHPfmkdirdu80dMxj/QIE9HD/SCd9vPPSAUg+VIa+RikBKnrrfOe6uAO5yDavCSfmiXh9jzYkGTiC6/GYJW+INVo4NxKrx1STyYH8NWQ7bqixI3aRUnpSMZKM3RxFOJGgy5XrHRaKNzJdZcKQaVEvS4Q1QOSfSelDRwnsaI85bD0Mnq0I3rWpPtXFVxUFUeVgPFQl7XjVvR3Y2liiY4eWHNK6UVcjYIRDu3EH3QRCuGSApeJWp908TCYVJv2h3xIVhHxDwrRBiSN26FLUTSVN7Wkkdx0o2WdcHZ/uWsO6UQtrKeaOuJ4+GWZTkh0jTR8047E4ZBaSYNWkuxrSi/RZMbt71PsASwVoNxtYuKSe9anJMSm1YbPEYN8+r58WZ8AX2vfrM312msm9TrE84WUk2enM5h34m4j1v2eqU1wbLqC5ZYmLJP6SpIwDyfGOcTy3IiZ00OfT3f9CIQpJGDdiyaSdEi3eNDSdrnbkhFxCCCzqmMcBqYl8zt7T1fvTrx9dcvubs7cHPzCeIC81q5O5x4eXfPX/32E50Tqi1kh6QPlF5MoHdkmibYh9OJ27t7vvn2G+7u7jidjnRJ6v5+7xy0i0rY1vHRa15ppGRrinNUGk4Krs448fjmEDJIBhacazjXlXEdwaB7ODWGxHkGkfN1dp2UDpWEiCObFG1rlmAIiHnTNxeo5uZeStsc3UuxbltZ1Huicx6acmk65E46B80eo7LNJr1/uju88sWameWh12twCj2w++1xQPU4QHjT7/XvP+9g+7Xq38Xx/KUFkz/2eFypfd/k7SdL2NzrScWvo3drzonG424F/PDB4QMokOtJov27Q0iRB+99/PmzbO0ZLhp9Oq9LF9f7XbyGt40PCfp/HT/d+KDEQgmknsHcawffg7/KYtXnks/k3k407ORgnaCV7r1QDb/cukswaAfA+42LoOTKhI+RlPaMYWCIiZgCPghxSIr59lF1g9qK1BOIqigFP1LbSi4zefkGqSu+zRqUi6O6PfgJ0g2CBtu5CjkX5nlmzTOtVdO0jwwpMcRKCDAlYRyVNA4F7yopZCAhEqjtLCFZW9YAw0fwATys60LOhfv7eyN8F8Vih0gcJoN4CMtRybmKSa8a8PqA92r6N4yJFAP7aWQaBsZhIEhGpFDzAZwmADXtWCu0JTNEIfrAlDDoWmKYgkG0etDVkHKiNAHxFnxZ8Fwrsiybkds0XNFco5D56o+/53D3DZ//8b+xrqrZ7wPE4Ki1bP4MToRWC8s8W7AOy1zwwZNStOBZtrlUiiNbINf5EPq6tlWdybaKaAJYq577vK601oghmJtzNwhUuFKMSZ2nnfkUhIAqaTWW08m4M5XonNn1aEUZemJzDpapskn99TRMEKqRj9ULRO+F4/GgHCODznkftAviuit4o1ZHbUXnRIikNFhS1sg5W8VcmQfKWSl0U8k0qOnQN/cz//anr/mv/9e/qfAVno8/GRnGCXGBL77+lmVd+S//+Z8gpA3dIw6cVz6Fdho12a2tMi8rp3nhf/zLv/Dq1Uv+8Mc/btwe7UoJeEcyVSy3nTG0u+k1eG6iPBuXM6EF0hCINMRVfM241r/X07wDf404R3EeL96q9Oq/AiuVWTunIWz8IKm3iCy4dmQXtAPXzHm70lS62Xt8vNY/6RnO7xAXqc2BS4iPrIUzmbq0bX6VWtWPwqB72TobpVRVleveP065HHenE37WAoNup2mHKSTGqZmEc8SKem8cG/nVnOfrG7obP+d4SqryXaNXTC/hOI2zGlrH5fv3rNj+ucIJvst4G/Sjj/c5F5fB3mXHYPuei+Czw2fe2IHiYYX7Eub0uOr9pvEf5frBuZNz7ugI1VSz3oes/jbeyVPn/qnXLl/fIED2e+esff3E9pu0s/GdJRNdjlZ9NfTevXx/37Z/iyrUh4yfk3fzQ601P9Yx/FTPhA9KLIYQSBEoR+paOdTVTNrY8L20itRMrSq5qpXvSvR6kkIw2VnvqN7IufGMoVd0lMP5CniontpAskeyZ/EqyShSSMPE1fXH3Lz4HcN0rUFdmWnrHTjV2C+CBQKFXFYlttZGtcRCXNbvjFr9b+JYVq1GlqqVzhACYxoZh8CYAq4tIJm6ZsRfI14/mwWOrVciM7X5La8HmyROELWx28iXYRgJKemD1Mjr87JYYoHyGvxgAYe5+ZrR2DiMpBQJTjs1iskXI1w52niDw8zclluVIJVKigPBnwmmzrct2As+UVkVy+4yzhWQQskncp4pZabWrKTg3iJNV6ZkU/jyi99zf3fH8XhQnLwYAflRIOANBqYynv1B6I0PsRr3omHUBkDMDK2a23q2ynG1Korp7sKmItRliXtrrLeScy66oF3A7BRDiu1HT1Caqa76B8mMSpWaNC6O2lQ9wzVRKJW7kNHtlWfniGlg8MrvGMY90zTpvPfaxZNuBoQDFNLXzBuo2D3mwPgdelytqZmfkwomPdvXo5gSVZS4v+SedGhXorXCkhv1dmVdFw6HI8EJYzx3ZhSO50E8OWdyFY7zwt3hyP3hwOH+lpxXdtNIzp4SA+M0nuFBdr5bUV6DVt80oSibbJGjraveh0szjg3WJVGjTJNeMIiTJnfOJJ5byyrval0u71TKNo0jaRgJ8WMrZjTVm3GekPQcRafwPX1Ojjg/qpSwJeY08FETY4VZJURGvd4236slE91bZ1lX604VSknWTeptNDGkk/4dHKoIbXNMXKO0TKOq66zr94qztVHPiBZitBojXs+HFml6C9g90VH76cd3Ue05By7nzwb1lj8fN+8ORp8KnP7Sx5ugH+/Lidj+zZm4+lRVurRsngOW4L8hAHoTX+YS7vMYwvJDBmcfmtD+EhKYy/m9+Xjx9Dx+E0/gtW0+9RpnPwxvyklPXWtnxaTG9iC2br6tWfJwnng8gx/PXIeefPK6hPCD431iH7/PNblMWn/K6/pDJAW/hHn4fcYHJRYxOKJr5Hyk5oV5vsd7iFGhSg5wrkFbkLoiJusIleAUZpNCNynzVFe3ix+CqvgYisBwzSZD2ipVGvkCc7zmE9O0R+pJNfKTp2Sh5SNlvsO5FZFKySulCLVAwVPFsTZRCBTgVI8G5xWaIeKYc9XKvHdWTfaMY2RKnil5ypxpbaGWEyVGQhiodSRXOK2e06JqUUUcLij0KHhvt5XW3nqm7pwjDUkdsYF1Wa3LsWgF0sGYBlIIjENkGCIxeoYxMU2jSlsGp/CYfNRA3DoaGrF4XDNYkxwQGuKEFL0qcfkENJrrTssOhyYlathccLJCO1HXb1lPt8zzS1pbaXWlK2WtaU+uwrJWvvn6T9zfHVlOBeeS+mqYlK3FBnSiv/TrbmV/cebgnIt1tCwgswC1VvMZWJYzHAjZEgE1/nPkXLdKLnaeBdTczqArgqqLOQvsRfMTNr5GJ2jTJUY10K214b3yTEJUYnftZiI0lW51jss1VI9ZFaDUsyQwjJPJ1RpcyGlyAhpYd1+X3s17gLFvmoyDOqyqR0OHlDnrgChHoTYh10au2vkIlsDUVmgNTqfMMgcOhyNDCnqPovCnqtkYgkrGLmvm1d09t3d33Br0qbbKNGnSW0ogRIUVttpM8auy9nvarmezRKw/qIrBuVrNer82gw2hnIhcHbU5ctHzjXiDRqn6VZd3RQTvPdOwZ7ryTPuBYXdNsK5UdPp4G0IjBBgimkCLQNOiBeJpdb2Q0FYjvRASuIAPo5LtBZKpwuVSGHJW34sQN8hbrUlhAVXJ5VKtu+TABS20BOcuPCcU09xE5RC6wp7lpRvnRQ3+3LYuCxDEmVCfJSM/U8XuXcHAU79//NqHYOef+k6RbiDGgwTlP/J4iuT7OLjv4wHM7tF7RBpVtHMeeLjOPfi+R4HqY0K2sS+373v82ct9+a7jfYO8S2LzD/G933e8D8TnqeTsQ7/jfJ9cJHX6ywfvbShvNvhIB3iGi+/s19NZQWPwr4eWP1aC/zbIZP/3Zdftp7quP2fn5E3jKYL5jzE+KLFYXv4bh/UAZJwTxsGrUDBiAZA3qBAgwap1+ntnlSavAH6FTVhgWMyvAszkzamuu/dqItcDOsAq8jDFiWGI7FymHv7IYfmGu7sT67qwLEeT1w+M0zPGYc94s4N1wdVCW4smEuLBJUQ8OWOwj8DzGyVlp+gY0krwhRReUctCWRbubzOlBiQ947YkmitK2HaeGAJpmkjOpDE7N6BVGlVVa7wj+QTm9rtVtx1MV+o++bFX+U/vBMdCcI3kGzGueA8pZYJXWNd6Ul4GYQduADfgnLoJB+8UG14qOX6GtIy0hdYiQRzJFaSdoN6yLEdqzszzkWU+sCwHSjlqcijC6XRknU/kfNrgN9mgHPNaKbmxrIVlrtQilOzwPhNj4f7uFYf7G1rJVAQvRsa3amxPEsioyRegPQgN2hRr1AnamoCoSeGFo7aP21wZdmYo1iq5LAq3QTZnam/qZMNOHULVfVy7AJtSlDSTQeYMEROorZPCFcqiFWjrEjin/ivOE2OwToQjRYX1pZQ2T4oQVJms1KJIHtv37j4q3ejxopOR80qvRgd/hiCcZQDBG9dgzSvzaeb221fcv7qnNRUZSHGkGKdDHLRScSJ88eXXtLrg255h3OF84pRPCldqwv39UeWV7bxO06gGbk1b3D0ZK7VSSiXLSil6PmuXOm5sfI2OwRWRrfukss1i722UXDmcFpZVOU4xjjozBPOvqIhz6hERI+u6ICKk4C0pFMJ0RRwmxqvnjOOOFAdaawwpcXW14+bmipQStUbwEecjPgWciwqBDEkTgFi1uxfLth5tVAZRaGFIugaoeWd3zxZT6tL5pWpojSWv2zZq7dwcMYUTRwxCCFq4STEofLTMrMuRdTmSkt5DwzjgEaoTUnDgAs4PzO+Q7fwxRu+w9PG+UKh3VbyfrKT2SuijhKK/tun4v2G7v6QH/o893pSoXQaU8HSisZ1TO9+CYwijTf7zuAxQH3+Hc2qOph1LXdkFaLrw4cSZB4G7CFDPAgaX2/mQY/6Q9/5ScPrvcy+cuwAf1pF5E0/pwf11sd3+GY8DHwnmU+HFOJatbsnGZXficn+f6pq9q/Dw1H4/dawbd00uitQubu88W4oG3jTXt3nsHvqzvM++fp/3/lzjp9jHD0osQvSo55sGOz66flnh4lKCU1i2KdpsE8JpfVurzG7zAuhOuYDiup3TxCAOpLRD8FrNLItWF2l4H/F+QNxArh4VR40QBC0sKjbbhSvET1SZTMkmIk4hIY5ACKNOutTlVCPTOBCDEH0j+Gqu0io/u2YoNVBEFWeaRLvtDHpgykBdg75r6yu8Q8wQy6uqVfAPoA5qkBbxzpE8llg0EG+BRtygZ86pIlRtQi5mLueM5O4iWOW+JyxqQTxq0OE8uBWRlXV+Sc331PUlx8M967owz0fWPCvsqZoEbXOs86KBn/kPgJBLo5TGvCjuvGRV2WkN0+RvOFfIJZOLOom7dgHr6EH7RdWxw6S8V1WKc7W+P2Q8IQzqReHVD0BVk86JhcIpFH9/mg/kvJKXmZIzOa8avJniU09WernqAfG1dx4uAphOZtbgsSnjwitUSonfbvusc9oN6apOMXa99nNnTgx7Cp3fcR59V6QXBrd96I2cS0y9qRTZea21kHNmWfS6Oc770TszSK+KB17d3uOoSDmRxh3eR47Z5GRxLLPyBXpHQjtjXTdcE+aG4AyO1SVSg/c04zw0U0jSq2hE5tZo3uNFTA1MaF5o4sA1YgsUNDAPadREXARfNTnCO3M79ypVK6IQo03edgSXVKShOdikpAW3VHyqDFXvJ7Q+Qqh63WKA7B3eCzHa8cZHrf3LhVqUp6MVEl3/xAutQnPNuEvVumx1myveigvNWfEkOBWj8NAln0UEqVXhVDp5EBplKQbFQ2W0nRZI3PcgRf6Y44PgKRcBTyey9sCnV5jftL0/h4f8L2E8gDxtz+FzcLmtpVQ6Pr6rFVkpZOtqAg9gNd1FWyvj9bxm2XvrBlexeOENxdSfKuj/pSecl9fqhzwnjxOO1zpYbH7WdAimtw7p5Xtf6zw96gJ91/FUwvJ4fy/he5e/u/z7qd+Je/TeN3zPr+P9xwclFs+evyCXRJNFK4WY6VlpCkFxjlx74KsPVjWPuiTlNJw9HJtVfy8ffxpwOPCJaf+cm2efEOMV0hrz8Y7l8IqynPBxhDCSuSa3Hc4PjM93jE4hBC5oYF1rJGfhfmmUOmlw6tuGIU+7kRAjMcUN9pQc0DJSFkqulOqYF1jmgXneUZ0Y2VNN/nyIBOc0mQgBHzWg2qZySw+qBcFbhTV1g7xIiskSB4AC7YSjqIIVakbm0mSkU8e8ipFGC6WqD0j0I0MYGWLCMBwbiVaJ3juQhmsjrnyOrN9w+/X/m/n+lsOrW7559S3zupINUqNdAQssK5S1UYsGZXrPmX5+E9YM0gJI2NRxuumdc1ppz3khlwWV9DWDOqeRnHPNoD26sIfgdVsCzXut/rZiztCBcbfn+Uef8Oz5xzx//snWtWBbHLosa+XVy685HO75+qs/cTwekMOtyf9astKq8QHOSS3toRGfACFGk6LVkatWy33wBBdJRsTuHgP0OeHV4TmE8+e1Sm8Ve6C7d6c4bHyjfg5rke27VS1L92iDRomANKRW5vWISGO/35PzyrIuHI5HTvO8JTZpUC8V0IBhGEaGYeTf/vgln38BY6zWYQmslrCGEA3CFbm+uSZczPHe4u5dhlYVgjIOGuR3s0KxLLd3fjQ2NrWsGu14+9E5qktUAlctcVqEXMENo+42jYQ31TVnr9lnxf7hegfI1p9u5geU7l3h4LAKcynWLa04Cj5b8mDrBL0Y4B2pd9qct86q37pQ/XVNPDRJEFHDRKRRpLHmRf1m1nkz1wth0H0TYRwTKQWcU4W9VlbWrolbBMST4g5YqHnl+Orllvj64QbnKy6iohg/43hcYX3bg/qpYK7DRXuiv1XTRVXbLiurb9vO+37f9x2/hKD0XVXhx/CZrdprScX5HLvNXyC4QJHM2haiSwjCfb4l+TNfTJySc4OLF9/VyG2lc32qeRfY3iEIa1U5UiX6DgT3sLDyFP7+fc7zZZX7Q65Jo9mxP+38/XMPRydBfzfu0uX90i6Suiq6VoQLaNqWHCKvEatFDG7Nu8/Ra0nLd+xePvX7fjzdB6N7TW2v2/d9F2jdL+Wa/zmOD1OF2n/MPn4CUkDU4VeaKqG4Bw9Ve7B6I+1aq0xLz0oe7qTbh+052QI8HxJp2BHSniKBJpUSE3V3RU0ZFxISIpImfFJYi/iB5hyWmmhl1AfcACkJoRV7lQ2iEkPUKmWFXBZWqWRWXF2hHllPByVh1qYBbUzE3UfgB4oLppajRn1K6A04zsmV957o1RlcIV5CcBqghGBkdZTj4V3Rm6BBacFkMNXETbstMyKqaKRxhjaUQ1BZ2yaFda3krIEg1laWWhXPXk5QTrTlluXuX8inrzjc/oG8qoztYVnIOauCFw7Bn7kuBWpWFaVcmh1r4mr/MdPumk8++S3jOLIbJ5b5xLquvLp9xTzPLPOJ1hyn08Ld3R37/Y5pHBXqhtNKK7YoiGz+DFtw2OdSEMbdjjTseP7RZ0y7K8Zpjw8DVYR1WdlM69CgLqbI7uoZ47Rnf3XF4f6O21ffcnf3rRHRFyXRGxcDsA5Ts6C4S3+6rbsAbuMJdaLpuWugZP9exT4H/w9/1t/1P1oJ1080rJaPJg8X19pXq+j3xVnBBJjxXi0rrSqRe11X7u8OfPX1Sw5HlbMNQZ3I9/u9Jik+aLKQBkKMfHt/xKOQu2HoUs6DNWwc0Su8K5dsiYFYMKxJxW63YxxH6xzpKUhDUj5VUT6FfyD1y1bpbNV6YHLu8oTpGnGetTnW2qgCLoxKKCcQzWPFeSXQi907uj9164ZIPbd9NOdwm0rdVqW1bKfDkbpyWYhRIYuercO4tcvl3HHqvhz9XJ3Xu3PlVkRhcyqY4JWbJnae4gBgXiuNvJossbmo9+7e4KO9llmOryh5Zp2PDOOONEzEuDdIZySEn7dj0e+Nc6fvwx7UTwaVF5XaXwp0pY9fQiDyPkHZZcJ35jpYq46LzqjIOVgDoksGN4WreK28I+uA9/ner8lST4rLl0ZygyUo4+WeAEJ0kSqF2gpzPRJcZAzTW4/nXTCay8Tpdd5N3X4ffXrt82+CwmyQoB+YJ/C+yehlYOzdDwvxc84jzZQVfXxwjI/hTT0ZEQQnb4di9fu/v//HGK91Lx5dn3Nh4sGL5/37dfwo44MSC5f2xN2El+7JsDlLXfhZWGBw0akIIV60w6olJfbQ0ycxGkSxKSVpcTMCgVqE6hoSAgw7XFQFI+cDLiYz0XbgA0IPMnTzgt/UV7z4B0G/BgmYnGkhZ1U7qu2EawuuHlmOd6pAJBDSSBp3jGPChZGleTC1K+c1sVAlBMVRdzhISlHduL034zw2CU5Q4zQRDYRAdfXXorjrKp41m6FcqVqNRaFP+r2ofK04JbmbSVyII4pRFVpZlGi9fIus95Tjlxxe/gvL8WtOp1slSwsspaj3iGIqEC5gTcXpdTCcfIiROOx59vwznj//mH/8x3/m6uqK66srTsd7lvnEV19/xd3dLbe3t9Y9gdPpSAxOseBBg7wmvX51Ds67wdx5iijvZpyumHbXPHv+MSGOmyFdbY1lUahOM1hQjMoziTHhByW6D8NICIE1LzRprOu8cTGwRVkuHI5jVI5PY0MJ0Cfz44dW3+8YLanrfg7nUrp2MwxA8ODecv1Z3oPQ83sEDJ8frCvTq2ldwlmgNU0qrEtUS+V0mvn25SuWZaXURho8KaqSWBPwPpCGCR81ETodM04q0TfWGojRM2HV4aau1mHrpCiMUe85rY5rsKxCBP08dRPN3tnwXnknF0euFTMT7hJ6hycwXl0hzpHFvF5EcD4iLiIMpPGGEAYI6XzfS+c1FYp5fDTz06HJ1rFo5qT+wATPjBpbbVtxJISICxh0ztn+nvkbDzpHdo31Qdxnbn+KnedMd1TvSk6IMEQNFqo4VZpqjZy1CNNoOKdkfQn6cM+1MM8nSlbJah8hSMD5ZOpVykX7ucf3eXg/rrCKPF2B/qGIvt9l/BK6FG8a7+xe9KSa3vW7gD/hjP+gxSuHI7igsEfncBb8X14PJ2eVoSJlqx7r+/xrAStYkNygukoVVeobmbb9/77z5/Hxdl7Xm7b/tqr7jxUcv894U7L0vbYp7ZwU2ngqcXqc2NuHt8Llu5KLpzgT73sM73rvU92Qx74Yj/fxh4aR/TpeHx+UWKx5piIW/KPGVAbbSAZFib16aBVEVSYJekObYzMWiBs6YNueNKHWoMEwVdsIrlkbzpOmicm26XrAchHESFO1FTXJ0od9zXkrjYoz/4Km3AXvGq6t1LyynO5Z7l9S1xNDsDDFyQZbOM0zLg2EYcfH+89I08gwXmn3wbmt4uw8BG9/O8W0xzhs2PnWyiZ/u64LpVaWZSG3bpTVg5y2VQv68WuihpGyzYVcAmXRhXyuFacscuR0D63h24Jr97Ryx9d/+H+RTy8px29Y1plSCnOuqHu2JxdHa8HM2pQrk1dTR6pa18J7Xnz0Gz777K/4n//n/zv/9I//mU8//Q3Pn7/QRanDciyInpeF43zi3/71Xzgd7/j221daHWmFabfDoXLC1rpRJ+52dmkWEao4vEG8rp99Shp2zEulHu+1UmwE+XWd6YVinQeB+Xi0rllgt9uT4sRvf/d3OBe4vf2Wfz8cKQbTSlG7AbV34Lxn2k2Ap9S2dShc72h0d23nwDtarVQgTBPOe7IF+SKoTK5XKd2+jRgjHbnaE02p2QjOnDsim544iChuvydPSDNrR/1Z1aWUZ/Ptt6/43/73/4PjaQG0W5BSYtrtmHZXCLAumXmZKTUzJpUaTsGbt5zbugoIFDOFa8cTWPGg2PGJCIfjgohKvXZ51GpSuGMatOMRIrmaDLXTRB+gmmmg88p1cAL1/iXCisg9tR0QWREa3g/4sGMK/0yKH5PSJwgRkUBz+sAsdbXkwUEw47um3UzpniyWkNaqyW2teRNaqEUs5qp4dL3Qh5hDQkA9b+zxZHOudz4c/bN9nE9il4rVawjz8UBeV7yoVHRKkbQbdB5e9S5OP/eVeT5xOq0cDwfqmnAkht2ITxFxgbIcSTGwGxMipw9Z3n+w8XoV8Q3B2lugUW/c9lMVyP49P3GwcKkk9EtMLt4IL7vwDtCEIW5Bma63haUtxN6Fx29Fs23bOIpkSivmU6AwoqXOlJZVytwPjGGiSNH3VuVlRNeVhRqnctiSlqt4s1XjeyDv5PVjeFNyuRU2e0HmonvRPSC8G7bXL6vwPckKj9SM+ns6b+SHljC9xPO/bXvv2yl50zYe+1OICEUKvv/X4awXYguvFc4sIHdovPPeZGzOHbJ3nbe3EbWfGg+UxqzA864k4tek4scfH5RY6Dwy3DFuq0b63j0wAuv2/qZ2brXDUza5WCwYbJuRWU8s2sakMXiI97igwXqKqvwTrKKJVVn6dqstV+fv6RKyHa6gHhYlL7i24sgkX5CWaeuMazMODex8CISUSD7gU4MwEYaJOO5Jw56YhgtohFV7nBE3jWzZ+Qe1aUACGkCVWqhFCc2KL696Hi72FzC4liYU3nXIlVV/Q09o2GRiTZ7I/hOkzeTTlwS5R8qB9XTLcrpnPh7N50FYsrlkihjZWpWOekDZAywB0jAyjDv+7u/+md/97q/5u7/7Jz7++BOu9ld4nHlOVPqtq+Z9Dhcin376GYfDxDdfLEiDvC4WwAYwl3GdM/36XSyEPhCTfrdg0LA8U03qs3Vjsrz2/AQftDLcqrZ4e9IzjCPeO6ZpR6uF/f6GVgt5PV50DbiMBXUuXrR1Q9BkoEqX5utnvbd/xSrX54Czy4mKN2dx5yyolouOBpjVqf7VcTL+/D0KJbQ51rsTaLeCnuyIUOrC4Xji9vZ+g/aAerrM80w2eF3O6tfgXCNNO1IIDAb/wek1pKnUYJ/DZ6kGt81Tb3NPxQTKJp/bIV05F1YRWj0xL4visUNgHBLDOKj6FUKVbOdDoK4ImSZlk4IGh6sVV2bc4RtizgzrghBpEkwWsZHLbN0L1IcDTbhCGNU8MO6AQEDXLhF1j5cYaBK1AGLrhifjqNQyAx4XAw3192g98u/DDrv3mvqaqdNAORPOBBi8gxhAgjrSNxq1aBcIp9A7XVcCHaLlUGWv3bSDYcI5R0qBGFTsYYyNEIQhNIqs/BLG98Gpv2+V+Ndg4d3jjJnvAZffuhSPcevBhAn8o/PaA9RmqINuAloR5nJEUH5ZV+bJbd222ROV7m8AjuSHba3fcP6mPPTUNf2QgP5Nc+dxJ2z7+R3b7YnXD9k1+KmH4wzr6jzESt3W78fjMbTswbbe8xx8l3uziBoKP0583vo9F0na5Xc/7mr8On788UGJBXirRFjFNdhC4XtAezFETGKybV4DvQosTbRib661CvEBcAot8o4YA9ErmTl4deQekzoTh5Bw8UwcavY9jmpqRO0sWVlVnajWRlkWSl5Y7l/S1lukHrnZK5naW4chREdt4FNiun6GBr0eCKTxmrR7BsMN4oIGWK5Hn3GDfIiohv/mwHtRfS/l0l8Bywc6+VOTJ7GqZgjmyOzCGYpRrSKPPy90zuupu4CZRJep+cDp/r8iMkOdKfM982nm1WGlFUerkFenZoCtaj7UqzKiS3vfSec9+6sbPvroN/wv/8v/yu9+99f8wz/8A7SC1Mrx/m5zwXbWYYkp4YImgb/9q7/mdHzOfH+Hk5nlNBNdI4RESFOv5W7E780kzjlCGBjHa3ZXz1jXSqmL+lwUS9DysnF9epSehqTSvzF1z16WZWa324HcsN/tGVLi/v6OWlZOh9uzV0WzayNQS9Xk1roU4JimcYOw9LV1c+12zrw3GuHSPMiUgGhqcBgc2/eIKESHBw887RCJc2bSpg7WrWZLViwBawqLkVaMZ6Hwn8My8+rVLS9fvkKAELUTeDqdaE2YzY0chP1+ZDclpnTNmCLjMEAvFGAQu9oTeIMtOa8CBjY3UhzwIWqCvPYuYVWZVO84riun08zt3T339/fUWpimyIsXz/j44xfsrvc4HMu6bNKBzakcZWkRrFMDDamFWjO38+cE/wVp0ISzijfuViHnA61UWtHz45wnxMT1/jm76Zrnzz7Dhx2Ea11PfMSlEecHxE2WrAtQUFWmmeX+la6BKVFdpEpgtbVrK7r0h5q7gAzY/NMEeCG4Ch7CEBgSBBdYTwslN/IqipUEchW8j0STx22ioolp2nNzdWPrsBB8IfqV4DJDyDhRb49F5ncv6T/h+D4qK28Mbnpy+zMEeg8w5N8jeUUkmZcAAQAASURBVPopxgM+0UXl+LWkwjk8gcGgTv0zHeLUk4naygNYUW2FL+bPeTF8xC5eMfiRIpn7fMsUdkSfGMPutfMz+IG1Lixt3jgW1+nZdl2/DxyqJyfvE5S+L1n7h0gq3nRMPyas7vI+2WRZ8RQKVcrGg3mtA4DyUnon6bvs3waV+4CgfqkzVSqjH4k+fRC35XGC8eecCP65jg9KLKZhYNqNGwzHWZbbA+lmXIXuFdCD6XbRQdCuhCUDIlvQ07kZPphak/ESYtRqnHfOMMOm4pPbVlDuLsRNuqmekTib0EqlrAt5XViO39DaguNEjBkf1YCrNXXOjmmnJlpph0sjJezAK8TAuUDzkTUHlb21YL4TsX1XTxI9Byqja1XqrYoN4C1u6K1Ee72aWZ51QkJUR+pgsrVb/TsYO9U7xNnS2YysLl3OsnH85r+y3H3ON3/4r6ylkHPl7tUda87MS6VV645sNAANksX16ro7B80hMO6u+Pu//0/8wz/+Z/7+H/6R/W7P6XBPyQstZ9Z51u6MNOuseNIwbovTME60Wvno+afc333B6XCPJxNiJJWMsyQVzjLEpWlwvdvvqSLM88rh/qjStetCKZmaNcjsxO8QNEmrNZ8neYybs7Y3rDq2iD97/hHH4x2Hwy24Snff7q3gUvLmeaHXy1FLObddt5axJhOtVtZlOS+mlpSop5sDqdAKNXjCtlgKYjLOG2fHOVrVlnOIUWV8i7ndIrh2vqfKqiptSGMthXle+W//+gf++PkfOZxOtO4y3wo5F+7vD9ry9p4hBVrxSA2aMSST//V+q5r34+4JbAyB2qBzorWyn6mlmKJVf61xOBRKqRzmlZwra1bisQ/CuA+EoVGZOc6qFtYQm9eAdQSjG+jp9EbOE3BGfGmuWsfL07KjFsgEijRqUyElWsWb0eZxvuf++JIYJobhhuub3zGMGqh7p+uNeIVzqohCQtqAk2BVg5MqfIWoME6gOYezRM253vq3rlMPzoImf2s+4RwM7LQAUkFdFatBNyvOw26nLuC9MwyNVr29pkt3a5l1OdDcikchLJ0zNs8/T2LxGELx1OtPjdew2I8qjQ+qzL+QQOGXsh9vGw/8JZzCDHs1OEvmbnnJLu4tGSiWSGjVuElTboXTyvG5uaodD7+1UnUknxj8wFyPgJK8NTAMbzxXPXBcm0pivwmO87ZxieXf4Eu82RH88Wcvf24m2/3UPv+Q8Kfvut3vyil6/F7vAgGx52LYiOs9gewqXo+Vuj50vE/S3UwMqG37YzFEGL9zl+HP4d78Sx0f6GMRVIZye9A5wypbNaMpafQyqThnvbJ1F6QHK84qJAaJ8d5vMpYpJVIMxBCUC2HVSsTk8ZwlNAab0H2w7XYoxVbhzNR1VmdqWUmhEqLiLRVm4BAJiJtofiDEK8QPFEYwTwhvKksYZEuo2h1wgHjENLoVhtEN8fQjnQfi+r/xFtye4T59IR1iwkeV5+zylr0KKqgrsENUGx9s4e+dEkejIHVlvvuSw8svuHv5LXMV1gLzYVWSepGN5O27QYKDSzirs2uD08B22l3x0Sef8ru/+huur28I3jOfDpRlVifs08nOP9ql8GGDpKmXhy7y47Tj/s6z5kLwQqoFJ4KPST04dKnT4Kg0xGSMa23UunCaTxsnouSs3IVmfgYipKSyrhs8rlbGcSSlRCyREjQpySkpFGccGceJNEyUcjRVIYMi2fUELjCl1rl4XA3pc90SS+x1L5rIVEQvtyh2LTQj44BeX9fnitt4S4rCMjDCZWtE2ILYc2KhlcR5Xrk/nvjq62+4vbtXvozrSmINkaLX3VStSGG7T7frZ0pnmsyafJ/zW/LpfNAukCk5YedZ01GxxNlM4JaVkiunNeta4dT/JiZHGh0+CkI21TW0E2k3ysbzCAElrPutG+Zc0MxGGtIW3Q/nNEEPosaaQc+3q946PJVsXIW1nIhhZMoLw7C3tUd9UQINsfNf8dA80gIiQeWfW8aFCqixYIdHiBmAWb1su+f7OuSMhN3nlBrn9QQ0aJPDVTqUMth10BSnO3Z37pUVVqRRisI6tVNhBPTWWJafV272Q8dlcPi4Q/FrkPDdxlPnU5yuOUUyuS58u35D9InoB+VE2X+lZStAnJOS3sHYPCycinwIqvDUPW2qVIILRP96Jfxy35xz2+/P8sLqfYF8v+v+fT773Xtrv8zxpmTGddMjoPOXmrRN0avHeW/qGP4Qo8/RnlSAJj2de/Pr+PMbH5RYjCkRCRZ8NbLxA9ZcyHmlO+/2qdcfoJvpnTOVldgfpsZLsIpwjNECw24kpg/mVrQirSZQWWEz3YRHzm7Mm8isg+AywTeGVKjzPa28xFNxITGMz0njRBxGfBj1sV1hKZW1NWbljBNaJUSHD5CcEk/V4fesi0/riZKV/lHCNtZp0PfxMBj11ulwZoY3DMTg7bj13KhxUO/EdJUaT0qjVuSdQitKLoSW8VRSqqz5G2T+kn//b/87t998w92rI8NuIgyRtQqlWqUZR8eZeVvca1FVIUc86+vHxO7qhr/9u3/mH/7hf+Lv//6fKUvmuMzcv/qaVgutFI73d3S4mzcI1ziO6uvhA4MF/DEm1iLc3q+sy8IQHdfTQogJHwIpDeeFrgqNQMkry3ridMocjydqKUAjr5pg9E5YLZVxHJSgPE0W8KrEcGuVaFLAiMrvpjRw8+wZ+90Vz559xJdfqiyrtIrvyRDdiLBsUsrruui16mZ2VuHbrrGzxdF7vVeco9Zs8xJqUp5Q9N1A0sR9HQYd8khXAMBRxFknRjsaiCBGMEeEvKzkkpnXhd//8Qu+fXXLv//+S17eHhARlnUxvo8u2N4HUgqMY+Lm5hqHUEpmXleDr0XlEPlgFXX1q+ndHLxVunqXrjVKXmkt01olZxUgKMXOQwj85rPnpDEyTJFSDwiFFCreF+WdmKmk6gOYhKyPKOQq0KFyG88CRxyU5BzaSK2aNAzWJRuGa7psbYdxlbKyLveUfGLN9+Q2czodEbewP17x8bO/IVx9hk8juWoin9yIa5FcBuqaEIEoavroQibnshU0ai3QKlG1n3GtmuIWBp3zOIkEf2NBWsAnvc7OOpwuDdSsXYd1Ubhbq8KyHk21qm4lkzSoXGbJdXOu9z5YJVnv9Z9jXEI6PrR7cYljf9d7f+zxFHTrzynBucTHb68ZPAjn+Jfb/5NX6yvu8z0fj58QXSSzUKWw1sVgz5F9vNoCvWM90GgkF4lOnZjv8iuaVD6ZfkOTyn25Yx+uCC68Roa+HI/PZfLDltCoeIp/q3v6u7b3Pufnqc+8KRG6/FyjvXdH5IceH9r5e/yZB3AndDXNVYsz3SOj+z94p5D00gqVSiJ98DG/iWjfOyO9cDb44YO2++v45Y4PSixKqTiydSdkSyyKkWd1kp6z/a1S7zqs5mwetVXjnTNN/TMhuzUle7q+PaukSjMqqAhNzMSty5JuHZGi3gRlBWnEmNSZmkR1JtXZIrUGQnaE1kGymqz44M351gzzuuZ8iIbXdNp1AUQKXV5mS6JgM5E3lAiAEdRFg1bnNina4D2+FBAN1ao1MbZKuZ0358CHRs6L/R60YlqRfEdtK3WeWecDy+lEkwHxEz5mvE94AsEntlK82QkEM2aLITC3poRkx3Y9fAgMw8jzFx+x2+0JPrKejizzkXk+0kqh1cq8zIAYFCZYx6ISfCDESN1NuoB40zAS+Orrl0zJM3z6EaEqwVjq2bzQScA7qOvKfFy4uz2yLJpIhBgeVGfVs0ADLOcdpZYHCW41QzJpFaQqOd8r4dx7R4oDHTMtrSEGy2nePA3EW4IntKKUsOYuLrDN82YdKucc0hzBO+2umYeK8gZEMwwXtoSiqwU1p1XsWjVB7WRHKYXqOPsvGNyw1sbLV3fMy8LhdOSbb285HGecM6fvlFhMGc112J53mnyNEzfX16zrQqvqoVKbsCwra1bfiRDido5r1XvOBSHnunGItEov5s2S8M7cxX0A19SjJSwIC7WBc0ZgNj4V7txfdNaFdO1cSWtVrKPWoVDdWFH/6FyDIE25S9Y18NbZCEkfhn5/wzoPrPnIq1fa6cKbPGZbWMuRmE/UrOR2Jed74/KsLMsrRAqtBqKAjyu+qR5zk6Y/i+DF471606jk8XmflWRuDvHhwrCvdtU8T7V5SfO67kUx1bFCd+1GIETrarmIr8U4Rg2cASfDz0PefiqQ+NDP/xI4C39OScSbRievPkVWvhme4V1gihPRKRwp+gQNssuaGBiRWtBCS2mZKuXCw8Ke6cDgR3Jbt99/qIlbv+6XydCxHPDOM4Xdg/e+Dx/hh3rPU/vZ1ap+TF7E+4ynkvW37c/j93unipDFOt7KsXHbc6fDo7T7/m63+8ffdXkte0Jzybl4TKS/3Me/hPvvP+r4MLnZtVDLrBKNTUwaVYO6B5jI3jn1Z3nOPhwKwQgxbHj4S2fu2vkSTR0wNcjtN/FZJ3vjb7R2lkozdZ/T8Zb5NCPAbv+cUhyVieIqipuO+NXhq+C9KthE7/HdeXsYiFGdhlOK53agya6WUkymsnKZPfRGgNv2V4+52Xt7gOtQwnhKiWbY/RADvp27MGKBdnctdl6BGSVnWlWYUIrCEBt1/ZJWjiyHe3JuLGtD/B4/CHFU3kEAhjBQuDAzcqpwFENkGBJrtta3U9WpEAI+RoZx4qOPPmUc94BjPh1ZTkfm08GCrso8H7dr1a9nrevWpdjvr3SOxA5h83z+p6/Zj4EXN9cEp87HLWXtXiX1CsFrRf50uOfVy5ea3DrHtJvMMftshNZapdQCDuNGaDemNfXpmOcTNWVEBlKK1OAt0fPmV2GLYWsG62lWLQe835LYIgZtcZgy0yUWvDt02+IZgpHuFWJQEU0Gq9/kmMWaR1tiYXMpmKtziHE71lLNnE4cy1pY1sznX3zJ4XDk1d09cy6UBjFFhmFgGBLHk+5LCAY39F7NDPc7nj9/xt3dLcusiUdrwjwvGugC0zTZ4t8VpAQfI8u6sqwrra56PcaREAZiHCA57XTtJsQVGiun5U/UlqlrIaXBgpJhO2m9ONBEpZ77/ATr3nmTtu7dQvwGmeqKX9IUjtREcE2JzU40aYxJjQHXaWJZ7jke76i14JyAUxO6NR9I+UBZjszzbMUAVc2SVjidvtbOaRwZJWtXRwpOlFDeIYkBTVpjgJgS3kd8HHE+KZQrTIgLmiiaH0jOZ1nnGqOKGDSTywXiMFn3wmB/NktEBEla9NH5cRYw4GdUhXoMwYGHMIp3BWQ/ZVDxcweHP+Z4HLhd/nyTXrAPVyxt3qrFY5hwzpPbqoZ4XZHM7sncVpY6k1yimcu2JhFqbNcV/d5V9X/bUCiUdkju8yuSH15LLPR97+Fx8B3hVO8j//o2adSfck5t99g7jvVxoN+J7Y5EQYtGl9LC0Z27ExozdNlzeYAV6+fgcXdyg7WBFlUenRPn3GsdqQf7+D2hcH8J4891bfqgxGKZZ0IcNhM77bTrwuU5Yy4VwXE+Gdqi1yp09BFFcGhldDP5sgREekfDuQeT12LhC/hTNfhBo6yrcjuq2MPVU1sCEe6PK1oP9vjO34hp65bo/nYY1mCkTP3ushbmuZMhZeuKOKdKOKrYpMF/KVpNLKZOpAT1cxfHd0JzPAd3PXFwhklH1AFaWkPqqjKiNKrTxbbWTF7vFRJRO+Qocrz/ippn+74RYeTmN//I9PzE/e0X0DK0Qiw3lFpY1kU5JgbXUu5MoqUbclHVoU7O310946NPPuN3f/UPDGnkdDjw8puvWZcD83xPXjO1VPI660IRrNrhPTlnhmEEhxrSIZBXTscDp+OReWmcTiv/n//tv3G9G5mGxLMbVWsap5HpOhBSJOeZb799ye9//+/kNZOGgb/9m795MMe8d4Qh2nU180Zkk+VViVhRPoO5GdeaLTnKBO8o68K6zNDKBg/LrZpvyFlaVBDjKITtkRKMF6FdF1Pxcg6xedbJ1dBo/jwPK0rEHscBF4MmNRZgV/O8qLUq7GtduT3cc5pXXt0eKE0D03lRaVXiyJT2Vhn31CYcTydi0GRyd2XJnfNcXV2x2+0IIfDs5hlyfc04TdpFi5HBK4Sn1WZdwGJdD1W0ut7vePbsmjElvZfnzJpXlmVhGiMhQhw8pR5wsrLbGVfJu7MHjYHAsOVC7OFT7NqdH1Zh42bVpmT6GNVI0jkhOEfNmTwfORxeGfcGfNoRhh27nScNACMx7pimkWc3K+t6Yjnd09rKWhu3JXM6fcvdbaW0E6UW5uOipnMuspRsRpqviCkQU2DcKYSv85BSGghpUh6KD7SQLCnS48cFGmp8V9vW8FSfDN9XU+VQ5dzQ+mEgJluqZaDnFZ3TIQIdH103B3NYl5/Xx+IxDOeX+oD8yQLAnzhIeMxZ6XME2DoMzSdSG3DOs9ZFidQ4UhgN6qQogp4k7OIVox/xXnlsS51Z6gnnPKkpSXsI05PB9rtG51gEr+gAkcY3y9fklvlm+Zrf7f+Gq3i9HduTn5fue/VuNagfIrF903H+VNf5qYr/2977VLB+7jo5Bn92R79MzN56LnsB9TFnFIe74EhcdqTepNT0pn38jzq+C6n/XcnlT3FuPxgKhTt3C7DuhOtOwKBPNHHw6KGywRw2yFCjtrrBLBQS5UxqUQPv8ybEuiC62NCE2qxbUhVrX3piIf1x5rslgCUCztRUvBLCTd61y2r2aq5zbOTyWrUC3sxteguDvFcXX3/2gCglm7Rs0SDIquidAO0tOB0GdSYOxi/R7oDgKHqYoiRPcWeHcN+9KqTRnMLRVKBHg9XgHIREiBO4Hc7vmHyglAWfPK0sSmDPGiCGdTaSvBLDvRnujS0QirqAY12aaf+M3dVzdvsbffgsM8t8ZFlOrMtCzlkldLNyCFS1xsi/oopM/VzildScc9buCJ5chXx3oJTCNCQEYRxHpiYUPxMHcH5nwXyfb9YVsPnXk8w+YXRemJSr73Ox81XU0Vwdls/cAe/d9jlpBTWAE4oDVw3O1GejVeSqrwpjsgQihKAeB1Ur5uJMLcixJRUignjFsYo09TwQMd6Owfysit1VOZxzLMvCsizc3t9zOi18e3tAxKvHu0G7Ygp4b67foucopURKCR+EIQ106KF2M7SjIaKa81pd95Zc6/5kMhAIvQrpvUr5JoUJRlNGWlwvMwghQUwNHwve5qhuryfy1gGUcxB87nQ+rHr1+//cGGwP+FX6jWz3WyuFmjPrqRCap0lgHJtxPuq2BkzjnoCDXGhFIYrzvLI44eQyjUVJ3nMz74tRr2dzlCqIUwUTFz0Rj49Oq6w+4XxSyJ8PNCIiKroAer+JVQdbc9txtXa5XnYTs+7A3sxV26vsoyUjSH/4n6mV3oSrBDYPl597/BiEz1/H+43L5AL0uevsntkKgj4+qBQ73JZUPIYzRRc3xTjQtbBf32r4/Kd4ER8S0JzjCSH5gSqVQ7lntU6J7ypVTxHC3+sbfpjx+Nz+UOPHDP7e1GHpicCl7O7jwsCbxpvOw1OQyPfZ5n/EpOKHvOa/hC7HByYW6lGw5aVisB9zue5SsgAYnKZXcVutFCnUbFKd9C5Gx9kZb6Bq0NHQSokGHG2Tbdy06XPe1Kdq6QRKwGlFNKRkAXPcghbvtKIdgyd2OdcQEZwFHnmDE4g2EDaFnsF8EaIPVOmV4pW8LtScqSVr5hTOgXUaB2IIDDExDQMpBaZpJAYhBkHaDFKQquT3krMu+yESd3uGcUeKI8MwahLRFsryCikzTg5bcBXSP+LDRJie45hARtYqrKVyfzqSlxN5Xbg/Hqg108pKD15qLrSq6kphuqXmmXU5WvUHnr34Lc9ffMbV1Q3r/StOh1tOh1vm+cTheG9wkQo9uBeVIw3BM047hkGD1dYEsnZ0TvPM6TQTh4kKnI6ZdT3gXeOrV/dMux3Pnr/AfX0ipoG/+7t/4Nnz51zfPON4POKc5+OPP9GECjieDuScWZZ5mxfSmnJkvKdUTZYcjVYdNRdSSoComID3pCFo0FdVnliCp3lvSbTO9a3DZFUi/bd1JIJWzxG3zfHtg3SDPeNt2LnyQZPcMUZqrZuAwZorS86clpVc7efTiXmeWZbVTN/MlNIFPRav1fCywcIEHyLPnj+n4ShVg+pxnBiHif3Vnv1+z4sXL3ROtGaO2Rp46+4LKYbN6X0cBuNtBEpplFL55pt7lnVhWY+Mk2O/i9y8CISgvIo0emBkk6amByT6kGmtUapoVd95rZA6NUxsFeOSdG+UczBTpShUEuW1iPeIkc6lVObTAZEIJMaUCMFTykLLFe+EF/uJliJrCBwPA/PpxNdff86yLMxrpjnwIbLff8Q0BUYfmcaJMYzsb65U3MsBTgjDwLTfk4YJHyMwIOKR6k0oQYUYuj9Htxj0PQDrlTybM10EY8mZWoVShGHYEXxijLuLbo8lJT1MdGydMvDU8oE2RT/Q2CqSb6hKvvPzF1X277qNN23zPyJnY5svth6Z7IKtiWdVps1d23nCG0KDXtE+k28rOyuS5LYy+PFCHlnH2yBDl9KywPZzv1f+6eZ/Yqkzfzj+G1+cPgc+59PpM6a45ypeP7iuver+c3SFLpOyn/L7e5fgfWBnm/rSo3MOKvl7OT6kE/LU+/t6dnl+pIvQ/MTn6M9h/BDn4/x8fHPy9vi+/LHGBzpvnyVdBQzL7J/cWeUIa6XabdVercb2Sdax0LqY2YPIdz+Fc7Uf53AWzJdc1b26VLo02qUC07k70U3nNPhy3hN8sMRC3yPekXt3wqrHONX273Ce7q7tLjN5Cw6Cb/ghQHI4xg0e44PHBUfw+p7BZ5KfCQ4GPK46rWhrzRPxgZgmfNwjBJyPxDQRU1KTvGRVyuoIaYSg+MeujhXCM/AD+AExF2vnlZi9cxNDCpQy0ijkFVZZtcrZBCgghSCZIUJziRj2W9Xz+mpit0s4VPUmr8tmTFdKoRpptBlZ2vUKvevckrZB55xzmxLTJ+vKnJVPMU078nqy5MyRq+fV7UkD25T45OMj19c3vHhxw9XVNSKQUjKn77Zdm1IqiD0ovV7DLh/bGlSDeXmHkb8rISaGcdwSDKTj1Rveq3t6r+dEp+Xg4PQaxy6H7B1OeweUsm4Jlp4POoYPEbWKEMOuxmEiDSPjbq/O4a1xf5iZl5nTfOJ4OinUz6B/rYHziRCcdSa6o7TKPudSty5is05UTIlxHAlFu0XjMLDbTUzjQPSeZZm3RGccVZ0spcGq4kK2zmCtwuk043CEpO7npTRKnXG+Mu08084zjJ4QBecbQrVOG+e5ftHmFqdwL+WdWBfD9XPmlJwsShrscrPNnR9i270eHKGpeeYxV07HhW++/gYf7gnpJcFH0jDhYtI5Jo3w0TNqrcyHmdO8sqyZIonmHVgi4ryngiZleSF6VbhyKRG8dmzGUWWLAU7zCcGRUsWHiA8JNuWYS+KidS/MF+S8forJ12pHxkW3JRa6XmaWDI5ga2bv5LJ1u86S0Y7azl4uP+XoAcb3fVj+kJ2OXwMZHZtMrPaAL3/x4H1vqno+eNbbXR1coJmy2WNOZX9f50Y+DiovA2IDAW4/exdUFMF5Ppt+S7OS5uCV97XUeQusd3H/1gTmxxiX0J/L/X7TuDynj+GCYucRPmyuvs+xXkLNe8PgNTjUD3TOHnbH5MG/f2lJRbXEGt4vMftzGe/dGfwRr8MHJRatVxktudCgq20PeOiLg45NCUnOUCZnwYMW8lRNRqxj4QAfAS9woRbTjXlad9CuanSFKEbZd1Jq0KDWe5Ww7br33keVTYvelGtMMxkoxQz7aERr427diaSQEJx+d6lFq9+tgWukIPgU8D6R4qhQp5i0eOwFxwnPSnIroR1xFIKggUNT/LW4SPNXxDSBnxBvVeM4KBHa6f5Ka9Tm1O+BQAw71GMj4sINECmlIa7RnNYwvfdMcaANkVYSeb3HU6irnnsN/DJIRsik4JAQcQzbNdzvJ6Yp4Vyj1UzO2dydqzltZ1rtUCjlMoRwdqpurdk8wToDIzc3z2gifPXNt4QQmXY77u9vWWYVBiilcLw/0WphSInj8cTN9Q3X19eAkqjnxRKcZnJ1onyADvUJPpwJdk2oTij5bKTnfaC1xrTbmdyvJSKo23a1BLfawzJ4T/c6C8YjCtEzJCVYY3Mj50InrAXz4KAbIuJoEnBBXaqH6YZxd8Xu2TNOxyNlWTisM8dT5XhYORxPeg95O6/e46NxddKg+HzYuiqtNXUPFyPKeU8KniGplnxrjSElpnHQ17w3EzX1nuhclGFIZ7iNHVPJ6v8hreGj13uwNiorPsA4hS2xcKFcVN51O1W6gaTOS5wWH6qtJ0483afGSVcmswBaxScRUQGF3uH0273uEIM45rVwOs58+81LnGinZRpGxt2OOEzM60xrjZ1XovTxMLNkYa0gfoIk+NjM00K7Iw3lN9UMNJXjDeic2E0TIORaOJ5OlNoYd42URoaBC/lXrHhiyQSdi9S5Xj0R7Q9jIbSgndQqzCc1IFyLJtKesBU9vPcPAhXtZKg78s8x3lUVexcG+H3e9+t4/3EZWD6oKvf/LgLk/v7LAP2N0Aorsnk/4KRReEuVu1f1Lbh8+/72yraSxZ3z3AwvHryntMxcT5SmxahJdhef/wmJ0w+SCy2WnLtDF+/rT1QrrPR/t155AeQt8rXvk+i96XOX1/JN779MeL7vuXswdx4kir+c4L1329wbzvkvAU705zw+KLE4LTN50/dna+EDeNEKnw/njHTjU/TyN4Iz7wbngKAutf7B9dMUozvaIqJk5Q5HCYExaXWyE6LZ4Cm9YOss2XDq6t03bRlN12jGOcJeydohQTRStWJOtbpcSqFKxbtCiJ6RAS9aoY6WhAwpEhIgmZq/ppy+oa0HfDtY8OMJwxU+jPjhBSKD/XHgDIZjwaYQERcRlwANTNWCSGEdVTRwbYZTdzjtgFA3NaNqh6okPFBceqXuIqMbSG1inu8pUvGDAzeAmxS24TwxTdZadrz4+DlX+72RiSu1ZOb5xDyfWGZ1fJZupoODKhtZvzUxA0PHMIwM40QaBm5unuF8ZEj/Tm0ruTpyCywtUspKzdqZKmum5srLb7/lar8nr6slBMIyz3ptSmVdM60JwzCy2yn8Spp2y3LJrEXlVmut5jtS1R29BOZ5ZhgnxlGT1Fwb96fZHhii59+rbGzICq1Kw0BKdTtf3jfWZeF0OnE8HllzptZGXlUa1DnPbz77HR9//Cn/6Z/+Cy8++ZSrqxvG3Z4QEyElSlbzwvl45HQ6cjzc88UXf+L+/o7P//RHSl42krk3BbM+r53rc4Et6Y+coYin05FcGuuqjuC1Fj76SLtrrWryOE4j+/2OGFUJrVb1vRjDRIrCNDZKOSFUQurtGMhyAiohCOrfoSIGOlcKm7VbPRtmtqrdmyKVJl2eeUFw4KMF357gzNMmTepMbR0aL+DEIbWqappP5HlmPhz54//4d26/fcXxfiXGgZg8X375LWk4MO73zLnS8Az7psWA6YbpemIXIh+PkxKxk/5xTqCtuOWAX47solejzHHPF9/+iZfffsG3364GzWo2HxzTcs04XrOfXjBNz3StSir/G0K0pMWOxV/CQEyC9yLQUL6NMKSVdS0c7hekWSdNrJDTejLR4Qc8WH9/ytEsoeldxMdB5LsCp18f5t9vPJWYPQWR6MGt2BrXA9AuB3953S6vySX0xnXlIPQ51h22QavBWMEuuHh2ipe2/W5DKfTuY/9e57fvSX54YyKydTjse36oTtn7ju5O3f19tDh55qb0Y2tmnvtUYB0ekZvfND7kmNaq63zyw2vX8vG4vO79ex6/9iHjwffJw/v/Q4sMb9vn7/pZ0LkpIltScZkIXh7/U+ftl5JwPHUuf0jo6PcdHwyF0hyhLwp2cXv58NzRf9DivzzQc2XuXKk749Y9DyBHvZXWkxfnCUnhSUMaFPttcALoD2TdrxDTRsreKgJd+axXRJ3Th35waoTnNRjXyrJ+t/cN1yriCx0h7mXBSSbITGyeUJ1KiLYM5Q5fbnH1hBeV4nQSoDYaK5I9kBCMNOsDyI7gFKpVuz8HRsJF8e76xert0DXx+7mkFc3Ay7ph1dWLAYNQqXmZaxlHNbiZU7fzZJ4RXl2vccESCz0/w3hFSuMGjdHAwQLHWrXr0cvSIjTXzx3bvnQoWYeKdQUunKfWxryemOdVA/KcaSVvMCuHZ11X5aCUTIxsJowXswrnnG03MaRBZTedLf7VFkofbHp29TCFczXrrK1rZp5XDoeTPQxEk+Du/RATIQYmUd+BUlETOAfzSZOt40lN9moTahHGcWLa7Xjx8W/5+De/5ZPP/oqb5y+Ypj3BpIx7EtdaJHj1DZmmPS4kru7vNNm5fcnxcE+XuXUXyX0IZ0zzZTJ/ufRogqsToquqBSOcxxBIMVrgqx0nEaeBtfOqVdCcSUFXqihRX3egaELhDO4k6oXSrJuoWG7rWDTzjKjNHsrtIrEwWJdv28/BFUJIyicRUU4J5sgr2u0QUwGrOdPMib3ksnVHREwmF4eLK61pm0PEg4/4YSJNe0IaGKeddoSCJ0QPqGcJbcFVz35I+BioyeEolLogsmxGTx3mVVdHQVgdeFdpdURkhxsmYpgs8JBNjruvpXpCz/AmpN/jpkJmamKliZG929b96Mtu/792DF9/+PzUoz+o+89ve9+v48cZD1QX5bJSfhH4Obbn7Du3hzwJA/IX0CotvXX4k62lnJ/t9sMbq8X6dwPnzLBvxeM3r41qJqdnd+jz9/5UQ+OYfszqX3PZ5cE6NP29T27jPeb9FgvZeX6XG/X2LJD2WnLwS+Aafch4HMg/gFp91yC/nwM+bL6c5+XPn1xc3svbaz/h3H/X+KDEogeHl4mBD+H8gATD7dtC43VSdwzytnDZX4GkVY+QNqhH8P2mkG1h0m05UogM40AckkloWj20NQtuzVvAeUIcNRDxyVq2VplB3buDa3gnDEED9QZIVRnSUs8qQ4mM8xXPim8F3wquvULagbr+kVpPlDpT1wWk4txKTCMhJFKarPMh5OO3CudAXYRxDsIeH/Y4+VsCL/DuRvHULkJoEAZw0QKvhg8Vr5x2gosqnVorNd9T68y63pLSSEojS15p0sg0StYgfV1MwallCAoRc2EyI7NADJPKYvpBA1EH427HMFpA3jrsRtuItel2VSXpPLFDKSYJmqw6GzbeSwiJGIWUVJL3NJ/46quvKWYyRlXjMqkZWsVJZFlOLPOJdZm3NnkazttUjxANBEdTOyJnUwCLLKt6EoQU7SAqpay0VpnGkVIytVVe3d7y1Tff8Mcvvtjkas8VGMc4jQzDwPPnzy0Z9mSTID0cjpTSoXKgpOqBF7/5W/7mb/6B/8f/+v/ko48+4sVHH9l5q8zzCWlK3pcNLhY1sdhf88lnf8W6Ljz/6FP+5b//X/zh9//GuhzoD6yekE/TxOWN1SvXy7JwmmfTFAhM40SMkRiD+iEEzzRdMY4jQ0yakHtPSknhgs0KCWaIeX88seR71nYLXqvr3rw2YowXiUz3KnEaBBufSqFzReemasVuXa0tAe2+IWihIUQ16PLW0fN2/3gBKQq/qzha7q7XKumcYtJ5TYfkKZwrdV5LSqRpJF3t2V/fMIwD0zRoN6tlYnC0VjmeTrgy48rMbh9wEWY54tyMc5mQjMXdHK2oa7vMd5R8zyl/zXoa8CExTi+4vv6I6D+GcIN3ieAGFOblL86ZbN5AIvXs17PxlCIiRT2Ecj0XXS6FBexP/RmctzvE67Jy9qHwjl/HDzMek4rBEs5HsqzbeMOleIybR4RC3QKzXtvt5GnoPg9NBVtEC0RDGC+6C08HQsp3rFakEEornMqB/3r7f/AsPWMX9/xm9zuaVJY2s9ZVJez5YaE2b5qblx2b4OOTvuAiwtrUyNbhiS6+tm8fsq+CupEXUc7U3iR33zSSH7ZuCpy/u193ZxDhp7pTP9T4UGLwm96v8+3iZxsPE7gPS5Q0GTxvq0Om37ofF1DTd0IEf6LxS147Pyix0IpmoMONLituffQORsf+nv/ujtv67xgi0TwGotOqhiODD4gLiEu05jadd6yO303PUnAEj97Y0kDUUbmnNVUqtECX0nSoM696GCx0pZbqJ3AKRaI1lf70vSqsZl1OnGLAvdOP1YDzA9E/o2Wh5UKTk+1Dw7sV5wpOKuAI4nACgqOKksnp5kI4fKuU9aQcEpdwfsD5ESeG+xdUMsskKAFadAo7KoV1Xqklk3NlPak7sHMK2xinidIgV89cI7UFchuoKPE7pUlN7FKiCIg4M4DrcreWA3kjK5sTeTDvD2gGm2kXVVV17O6wD4WtaYKhhm/KX1Hid8F7SF4fUKXpXFDpQgV21aqKT4fDHVPb6XaDKnz5FCk1Kc/DlJVCCAzOmf+IdS5UYohW8yaL2Mn5GuA2sokCwNlbRFvz5wpwLoX7w4Ezr8iBBe79KSMeYkw8f/Exf/f3f89/+uf/wtWzZ7gQub+/V7hXyZyOB93vZlLDzqnDu3WQ9lfXOO/5zW8+Y5lnAP7w+3+llpUYzWjSOkByEbiDmMSsyif31zUBUxhYa5VWGzdX1/qQDEpmX9aVJqIO2iZ2IHIZBqihknY9BNDqf1+OXf+fQGuB4BzBqVBBc43oKjGMdFWs3vron+/V/ybNKvYe1yreVTyq6NZNGDEzzXXN5KwKbS043BCJYzMBhBGfFFpVBcgFkZn5/pboHfuba66CEL3QlhMlr+T1xP08sywz3/zpc0bX2Hv43YsXOB84ng6EOHF1/RzfoUtmXqdVWE20feimhJE4OAILZX2FNIVpTdO1rQMBQdX26pZUnBPEM5RUkzxFUPpzOCD9IWPn0rrK9WeAQvXxtmTi1/Hjjks4x5O/x4F7Glt+2Yl4auh2uxyyBWnmP9FaI/mB6KIlB0J05xAjtxWHew0q9BqR2LlNbrt3JF4ML3g+vGAMk/IqgORHOpxFO/3hndX89x1vmr/vkxA45zaVpX6M33X0+yX6hBdFX1xeozftj5ZlPB2muUET3cOuyrv4Tu8bvL4JmtP35cG+PbHNN3I/Lj77GLL0pu9913i8zb691wj1F8f/1LH8kLyU7zveZx9+yrX3gxIL7y6rYp0gzQUACQ3CDDccLHHQQNOgMIY1TjGSvJptBVat9Em1pALwgSaeaskFIhqEOlW5Dh6CE5KrIAUnBZFiFQ+Lw3HgTZkFpy65VHxbNqhT8w3XcaL9Jg49mJbz6+KR5s3Ey+OIBD/h2hGqw0frnDQsIBZwVRMSp/aBIlitxqP8iQREpHlqqZS2Qgz4ntD0BqhlV64q4Vp3KWiQWIoSqnOmlkbOJ0q+Jw0aVKVxRxVPaY4sjiZOz7G3/YqqPpVSQmpRb5FaTUpzu6R2HS/8Ph5VSKsITs6VU+/8llz0ZKQvgrodbw8nIcYOZ3OQhdpQAj9mGVIL67pwON6DU0WoYZiIIZlEa6DaTaXJQjCOx1lYQD0qMkUazTkLTs8md81I45qIdFjeee47r1ejVpXL7XM8hrSZ6YnXG0r5HtrZ+M1vPuN3f/3XDKOSfE+nE3mZqXnleLzfIGX9PKqfhUmvBs8wTtxcP+ejjz8h58xXX37BCjgvG3Spe2KInDtKwzhcVLH1Lr3E3IsIMVhya5CoXh1XhaguFa33n+vXzXuaU7+RhnUuwZKAC0iPU2jhRqLHlI1CO8MwTHmJrYoqFkwUhTkYWahVvR80/D6TzBuNVqHUTK6ZtWVcVKPEODSGcWQYdhCNlF8tKW+VdT5QxoSvC67OuKwmhOsys5yO3N/ecjrc88Uf/p2bcaDtJlrTOX5aV/CBYZysXquJBTGhUDVVCAvubAwafENkpWSh1pVaR1OnS+CUW9UE6/BYHtGhTCKIGFfsgb+NdnfcltXZw7HDWn6GIP5tFdBfYtXvP8J46nq8FXePPBmEXIZYPeB3clZ8Km21wD5ua3uHbApc/N78M95x3bfOCp6b9Ix9vCb6xNoWHO6BROqm8PMDJRbfd3yfBOdxh6gnX/35ealm9JTSFvT70JvpYFNH7UfvO3Oy3jw/Pii5uLyvef0YnjrOD733nzrODx19jXqcRD+VXJyLNm8evavyc61jj7stv4T19IMSixgjaTASpdPFoQdnoZOlrYoavGcInuAF74s+bJ1oTN0yUo9or17wcaL5iMhIdQmx5MEhJGfKUx58cuAKzhUoldoWSjng2xHaoqpHvhEDSCmAJw3XEAZcGDFxekK6wrkBIdGqJgq5eYSIcxqoehpOGrWtiFQqKmHqSdAqLWfuD99S12+o+RUpaHdCZCD4G4K7wsVPwY00NyJ+oBFZaqQREAkIaqZV/J447AhpxMeEeE9zXuFBpZu2iUGtdKEOLRv2+8AYbmmsnFplSJUUA3EI+DhAuIEW9VzQ4T2o+3gISkbtpPYYaSIMYpXXplKX2TdkCibNqu7k4MhrMWNCw+tbZ8qHiI8D427PtNsxTZPKsl7gfEttxGHg+tkznn/8kfJESublN56aV0pZ6F2qeZn56qsvOBzu+fQ3n7Lf73n27Dn7/TW7ac80DhbLdvlXq+JY1VeTyKZdnRhYLFkJMbK7usGFyLKszKeZZV01sbiUQXSAU/WyLXhrgHdq1Lgt+gq3G8aBZ89e8J//y/+N3/z2b9ntn1mnolCWmfl4T15nJWRX802h42f92fV7ObLb7XFOuLnes5v+ka+//ZZXr77l9tXXlFxwWb1INJG3bqL35FJIaeDjj3fsd3vWdeXu7m47Ju890zQxjANpHEnjuAWlPWFsrZLLTEyeYQp8+tkzRPaaMPuAd2HroOH6Q6uft97JdHYZ25ZczOui/hxlZSlZ/5jB4jTCmAJD9JTsKNWxLp7gB5yPOCyYaJps4B3jmIzXLdw8f84wLBzkwNXVDfurZ0xXN4SUiOPAPM+s68Ldy2+4/+IV//r7/5PoTbXJjB7zurAuC6UU5c7cPGN5dsP/97/+/3BD4iiN4hqVpmaKIniRsyiF6w/7C7nqcNjWyZRU+e3l7VcEfwGbRKFj1YzzAiadTGC3f0FKI/5mZF4a89KU89LQokuHTIlsBp+l/Hwdix40PBWg/pLUYf7SxgP42RuCncev9QDr9YRCDIZTlNvgIh0K1TkTzjkCgUJhrieiH+w7tJNRpWzvG7362bwt6BZk6ygPYaIb8N0ML7bq/xTOClC9S6wdCyG3lfAE9OhDx/dNeC8D/sttbe7iT5yD2go49/B3T9QGLn9/LAcA9vHqtfe9yUTwTfsKbAUu+GEq3D2peFxMuOwK9PFkAvyOzuf3uUZPnZvLwki/VrV181fonJmnYIY/13h8vd6mIPZUV+bHGB+UWIxDZDQTLXpV2uAk0VAN0VW88ReCM8+ADth3zoIzj5BU+UhQLoHp1AfpE9yI0riNdL0Z8YlQGiCBVhPIAOIQ1/Q9XnBeA9MqzVSgAj5NOJcg7q0Doa7FOEFVOrWK38RrsdCw2UgGmaltptYTsr6i1SO1LOAmfEpIiAieKpEarvB+YpUXiEQqEWkJIVAlKmk0JIJBhIiJ5gcggUTlwrpefa6AwYKkGNNVDJs/I+VAqyqhKS5RnaNJQtqIqxO+OEqzONiCnA5j8r5XkjsHRVW6ghFkccpzqdYFct4rbyLEjUjaQTLnKqrfughDSqSoHYteNQdhXRdOpyMpRcY24IOnLOpk7L1DgiNKoIne0K011qwQneF2pNbGNO0YhmwKNIbHD+qWDWeitsOC/4Z1NWx+ee2mDONIqY1lWchmkPg6Nlx7claY2P444xN5B81167cz92gYJ7wP1klSYvG6zMzziXXVrkXrJHjRWz047TCosIBucXc6MpjZ4P7qimWdubv1Vhl323lXaJqc7xNbPDpUapqm7VrHGBkGlRXOpeCXxbpQbjs+RBR+tkuEtNPkvnfsehB9sS45euLFlmiInbpaVQ2m1spaNJla1kJuQm0eEU0OmzhKzSCFshblzpivA1XllLc1oCgEb8lK7l/yyroq5wWTA05DZNwNuBARrwVNHx1pN+IiiD9ztKoUimTFhVNovhIGB1Ex5UvLBPG44M8S2KIJZfflQaxja4+bZu0eJ5XahFC1sxS8p9aiXji+0PQGQ0T5TlpR00qw1ELwCyFCbo2idBIuTCtem7O9o/FzjQ+BO/w6fpzxvsTg7f2cb+iOQujQpc1AT1BJVekGeY3gAiKN6JM1y3oweVG97knOxrF4vcp+3o/zd4s778NjeNdlYKhwTDGzyJ9mXFa8nzqeD1bpeUO3722ff1fi0LaCjgmeXPCftqTnDYHxh8CgHsPuHicTj7f3XQPap4QIvss2Hu/PU2M7hjfO01/WevY+5+Tymr8JKvlDjA9KLK73e/b7qy0odSmZ/r3gyLhWCCUj9WSu0hVHxIcrhIlGQkuiCe8HYEDrjgob8hSCYeFBH77ee32QtrMakZJKR0QiIhOVK6AwTqrihGv4dEBaJueFyA7vrwnTp7ignQPJM01WpC34oGRPCR5xgXVxpupTcHLCy4mhfE1ZvibPX5KXrwEhxucM+78iTr+h+Gc0SeSWqBJp4ilVt7NulcNOQB8Z08S03xGDqc9UsYDBujO+ASuOgncVRwWXoVlUUWdamSn5SGkrjUjxL8gSKNUjNaoqU23mq9GIXrkJQ1IH5U7w3RYGKzJvgZF4GoUiKsOqxOKJNCh0KsZIK2oa16EyMUaGlBiGgWkcGMdBfRFAg69WOBzu+Pabb5hG9eporbEeM3lR6VLvwAWnhFirxpZSmed1M2p79uw5aViJyUjHIVhyqMcQYtoWUYp1LmozXoBWk0NI7HZXvHz1ilevXrEsK6XUi4XkYuGQ7TFhZGM9X4127rBZgK/E6kCMA7U2llkr4DmvLKcTx8OBZTlR82LE4jPL1hucyDlwNErJpHHkeYjsxx03z56zritfe+UvqEpKr4QnOrF+XVflb6DXM6XE1dXVlsSM40gIgVIrx9OReZkZzFl7GAZLBgqff/E5z19cMew+IQ163E2KumJbBtLXMm9eIJsYkT9Xd+b5RC6FeV0M8tO4Py24MODiiHqyeOUD5XtaLeR5JrjANAZNFlDuQm2aqM1zJefK4XQkF00u8nxSrw0PLjnC4ElTogH3pyOlZpprPPvk2QZ/a9k4L/f3kANtdcTsiK3hGIkhIQkkOvwQ2E0TRZTDILVu/B7dR1GIl+v1XgyWBLVVCsptCd4Ro6f4inOJnBvBJ6KfSHHAu0BphXUtLPNKKwkfMmv1un65iAtpm6M9ZQ7+zHcJ8edJLC4fxL8mEz/+eJAcfMD5frJavMEWK94q/w9cuE0K1qEJeGnZEgrHGCY1taNtXQonZ1nbLZgRlaB93FHZAj5Tf+qk2nO1v1I3DbmH0J7go8nY1m1b32fuPfXZx9tsolzA3iF5n0Dzbe+5VNV6235cju6E/qbRpGqhpBW8CwQflfciD7sTfXyX89Y2JMXD7b31WB8khW8O9B93fi7Hh+7n+8CcLo//KVjnd73XfqrxPvt0mVz8WMfwQYnFsxs1weqTSLxV8+sK5c7kTBsuDEi6RtI1+ETzI14cAawCr6OhbsAaxQi1wlyUFFqrQotwlxMPhUM8uOCNjtqkCVUcM4HWrs7teBKtJWoRXFmQdk+rJ6RmRBxVEgVBXEZoeB/xHHF8RTv9DyTfsuQjpQlFAm34R8SPlPCck1wjy57SLEmyCq3ur+Krd6MamgUz3XNmfNdKZinKHam1mb6/TVwnOKoqP5mngvim1IMGy7GwLpVlbqxFb26Jr/Ax4UNiGPdEnxh9YBgiKSqJFFEibc6aoJ0VaC6/mw1GFESQ4DgGYXKeOI6M0451XVXxKXhVvbzQ4w9d9nUYVKLVzOhyKaz3d3zxpy/44ssvWXJWsmorIM0w+V4lSl3QDoagROWYGIaRv/rrv+b58+f8/d/+nVbWDeLkEN0ONl9yr6B7ala/i5JXVUMSmKaR3W7Pbtrx+ed/4vPPPyfn9cEi56zDoS+1iwWnn6TLeWhyqajb97pmvvn6K8Zxz5BGRQAWdS6f55n5pImF68fcJXu93yL2kiMheNZlJi8LZcykEEg9YLRr1P0plmUhJSW1p5S2REeaVglrayaxqyIHKUWmeIYV9OQkxqjzAsc4jngfWHPRLmVAgwurgnWZVazDJ+jvnXM4U+pqTVjXdfNe8D4wxsRuf6NqT36gNk9rClG7Xxbmw5HDbaaWEzXf0s0ud9OVCQIECJEQAykJuIhzSnB0wG4aubp5xnh1ZZK0nv31NaUqfyNG7co10cROWmP//JmSt/PCMh91rtRiPKGB8eqKNIzEcSJKN/aT7X4X00dX0rQGU7WqJGarha7B60GT5gVK89SWTCFu0MQ9jQQfKNW8WMiUVdc9dR43grj5RWzcFndO8kCLFL+Ov/zxtuBArEPQvRR01TrzGzbYh5lTvgve0dfHFEZ8005Gr4o7nAaxtTKGyToN5rfzhmo8PJS+dTzkEjyQsHWeIPr3U8e9JTM/UsB0CTlRxSVHdPEcD10GpW/rAryhUPyu6/i293XvmNfVpwLJdb+Rhx2LJ3k03+G8vel6vP/nv19H5n0/s32PPPr3e+7L+/z+16Hjw6BQyTGmCwUXBKkNkQJ1UaiO12COMEK8QVxC7boqrrXNzEk/r/UHEa+KSKWx5kZpqnWPwUM6zCYEr7hjb6KTToNuzxmG0ppW7EoxlFWMiCgRvBVRv4miHRVpBZzq5CtYqOBcxceMq7e48jUtf01b76i5UdxEcTua/xhhR5UbSokKf6o96BSCqUrFGAmoApYGbIGQFJYirZlrtf5dq3ZkOpwCZ6Gqg86eFQ92yByPjWVpzCdhLebgETNpdKTRE+nVe3cm3eM22c9evRfzEhC6yg/bo0avlVad1gLj4AwPns5dqwsC9/bYMqhVjPo+rYw365CsLMvCalwG77Rl3snU6iLc9HsVOE8aAtNuz9XVNZ/95jOeP3/O8xcvWAwL33HuYmS/1kDKuZlfs1aVm0njOgcpqSytc555WXj16pUls+ek4swZEDp3oM9FtjPVgzprldgDppTC3d0dL45HVusGdOUmNecrlJLVIC0G+27RiyxKCO77XM3TQ7ksOp+8NzWWdsbX64MNnWdeO1LN7rnNKb2qf4crmrQn62B0Vah+Dao5a3c+TSkNF0QVzoIz6eGzIR9w9k1wYvPujOPsyYezbo4PkXHcKSTQJUrV75hzpSzCfGycjpW8ZJbTDOZxs+6UGL/b7Yi7AD5sTtgQcE0hWuOksrI+RYVTeKeylEHdz4P57vTkVOfPaOpqIz4FasnUsmqVLyR1vQ/dtFK/R0UNVO1ug2jZtRREE5nWqMUrlKs1nJ44am7kLOTaaJonIaKQ0BYiRZx1xCJlY9DrdxsAC1OLUIipHsy2vsovwMfi1/Hzjkuoa08bnMM8F+wZYSu+cK7mvjGxsN8HF+iqAaucpVWb1A2OtJmuPQpkL3/e+B3ScCZ/q8+pxiZEwGVx8c28gacqzD/G6JCr4PwDEvpTwf9THYDvEpxeXpcHxS/rAjUjaD8e27l64it/SI7ATwkLeo0ncNk2fzTPnhp/jsnB+3aS3vd93wdK9j7jw1ShaHiKgZc8uQaQCfETbrhGexCNSqDVgBwFkUyTQpVsjry6LcUna9W8lGLBtpIge4uq+z2oRC0EgVgboTWCz+AqLhRcl2yUwdyyK0vWtqmrjRASoSakLUitlHWlVWgSzRFXGMcTU6xEl/Gv/gctf0tdvqD4K6p7zjL8LUsZmHNivlXTtZJnmtPFOaSulNSD6sj1Vaegi3oxLNpukGaJRdagI+cusWmkOIOjpKRchvFq0upqaZyOB3XgXRu1OqofCKbgk4bR3IYHduNANO7LfMzcl4VcLhylL5YCEWcPA2c190YIqrzlfKRJYM0gQyQmhUON40SKkRLVJyQ4zA/DkYZB3aynHeN0xbS/olaFM+ETvyNw/ewFy7IapGXm1W3k6O5Z10prDpGG94kQAp988im//e1v+Zu//ls++ugjQgjkvOJEk5gUhi2p0ONpzIfTFtCq4phCofTcJp4/vyENI9+8/JYvvvgTf/jDH8hZZQw1qdBr91S7+PLfvkvO6m/AacK9rDN/+MO/bV2Rjz/+RLsrVRU9fAhIduScOZ2O6t0hQvBh83SZplFhUk0TjJIzu3Fkv9txtd9Ti7pxl5LJObMsC85BKX4z/8s5b2T2Vtu2GK+rmjfe3d1tyUQnF/f5qx22QM6Nw/2CnzEzybglku2im9hbXWKKMd5DDOpWfrUbkN4hEP1cOWoiX91MKY1lyXz19S3ffPuK29s7M7YTvB8sEW58+/JPDMPA1dU1u+c3xHGwOb9jvxsoZbHrnckiUDJjMCf2sm5mh5epoRj8o4kY3E+N+EotrOts65Xjfp5xy0pwsyUTnpiiwprCWfluN43bHOp6/NI0MWylkJeF5ZR5dXerELEVYrpVY8r9NaP/lBiuCMMOlaO96I45K+wINuctHHziIfFrWvGXPR4HEY8Dqst/R2dwVF7H1Pd/b5wozgl3RTZ+w2XnwxvPKrrUb34CnqUtNCnbtjucqfMxnHPbZ/vrWKDuOL9XIZ7n8OS7JA3fBdbzPp/xzjO44bXX+zEJZ9fqp873dxlvS6a0S1o0/vgA0vp3Ibg/lTz9GGIMTyUHlz/ntm7wLue0M9YTjFUWggvbnP9LGB/Cl/q+MMAfYnxQYlGaJ1d90Ik4cu0qJGxV09a6o26htRVwqPhiVy3hXD1pzbgTjR6cBaw7YdKW6nnRCa2C92Lhi0Oao6yQy0Kt0FgUjuQ6rlPz+VozzqA/oA6ZPjiihxhWgsvEcsLVikhhyQu1BNbyEavsKTKyVsdaK2uBNVflRJicKc7hXEA57Qr92SrGtZK3M9jJmE2NuC5Iu94rcTfEsBHig3cWKBakNkqurHkll6KSuk6NPDqRWjsJ2hnBTM1yaXputoq+2NnD9tuZHKaz7TiiQzs3ruHQ8x+CNzNEt8m5bgGpfT7GRBpH9vsrrq6fcfP8I/b7K3b7K4Vd1cZVzlxdP2NZZnIp5FyY5xMvbz/icLjn26+/5HQ8cH/7ipgC4zjw13/1N3z88cc8e/ZM/SJEqKZG1edQ776IdbpyznTCWnfW7vKpHablvOPrL77m7u7egljMH+DtbecHr7ntscz5Zb3OOa/qBF3KuQJ3cd5VAcXgLkVN8kKohKp+IDkXYqrb8YF6P4SuNOTO1yDGgEgybw0eJAt9n5x3G3xqwy23tv3dYTwKmdLuSGpp63acXak1AfIh0Lq9O2xzyw4R54Vq3TtvMB293zvcsW33t3bsYJz2fPTxxNXNb2g4KzzkjaMSB5UcJgQaidoC2rBSjxpvnUytm1awJPkyoNELZq7VridHBsGwHa0+6uI4jLZuyRbMNxHtypq8tK45mLiaQjq1sir2HSqc0HNQtcTzLFd7RPS669TwhDjh44iLA5sb5qPOmCZDguuk9u38n+efwGY2+uv4yxzvWwl/QKA9r1avvUeJqt6enDzE1T0xtud4L+i47pK9sI/XWzKyPXM6ZAi7lzg/y89acu4H6zx8N1jP+3+mH/8lEbafi/bofXBOMn7IoK9vO/inlbD6Pua2ArouBROH+C4JwWXyhJxf+6mH8nCCrYcXc9qpStljaNqf63jKPf1N40OP9cc8Nx+UWOQakZKoFpyUYpjiaiRIIzx3onWvj2rgrFVAcZpVttrVWDDPBA1c8Wqo5awamGJUvXcEaSsq+wnUQF7hcJ+5P86qGuQFHyNpnBiGSWE1RfHNrXTVocBuGBgGxzgIg7/F1Vs4fW4+DsLMDWu94lQ/ZZ4TuShmvjYLvBALIgy+Q6DV7sYZGOJATJFWDfdftJoAGJdCK9Adtx9iMLdgz243Ao5SFX4jwLqslFJY54W1ZIUyoQZ3Pnhi0EQmpWGDXCHmayHVtqOB7zkIdpbAmZmdqQTFEBgCiGSkZZCuUKTvc0FlTbsRXfAeCQotGcaR65sbnj17wfPnH/HJp5+xv7pmt78yqIl2ELpfRIcGneaZ27tb7g8H/vDv/8rLb7/hi/AH9vuJ/X7HP/3TP7Hf7djtdszziZIztdQtuTjPw2pQqMa69Pa8+hacCcueYVDZ3FIqn3/+R17dviIXU5dyvd18nvdvTC7665e/tjhQpG1JRYfDNGmXcaLC0loj18q6akevez9E4zXErJ0HaZow9STSd/iL6waUybwozJgqRDrHoh+/93KRhJ0PsP9cqsIVm5GjnXOkUtXQMCv/oqt+pTQQkwa+YutB2x60PbHoMpbN7l/9U6omS6WKzvtB/R/wgf3NCz769DlpvCGkPbkU7u4PHO5escxHjsc7dRQ/HYBAa55aGtU3SlnZTYJ3Cs8U1GwzROWx9O6hwv7scvmz6lwIAZpCiIJvOu9T2GCK/TqIKKSpFzcEUQRbE1WJkqbrmdOkG+8I0ZlvhzOeTEWaB1mgZeYl4v1A2j3Dj1eQdtu9alfp4RRzF12M85W066n/0jXm1/Fjjl968HIZ9PZ/w+tr2qU6UP+MPDost823Hii3C4dnHWtduC93PB8+RpxW0nuXo8vEysV/Zxfkc6AbnvSz/uUNsQLSZYeoc1UCbEHvg6TjPUneH7IPoG7bb97HyqkeFY3gAqOfDMr23ToND5IL/ZLt9Q8db+qyvWt0pbJmJsTwelL6VPLzS79fL8c5cf/z2ec+Piix+PbVkTg2I9xa1dgq4f3nSxOuHngZshMwTKVVK7YKedSgKMTIECPeVG68tWaXVQPRdZ1ZV60CrydVM0IgDgPDbkcY1DCqIeS8gDiVuw2OcfQMMRPdTOKPxLrgj4VCRMRT5Dcs2ZOL424W1gxLbtS6KFa5VqTXsh9U+pP6IYy7LTjHqdtxbwNXI4i21h2q9fh200hwgKy0emLNhbwEfEikcU9DcezH46ywllVVi9Sdl207SvhM7PYTPd6t2QLX0ghRk4/99U6rpiLm9xDUN0N6pVWrS2sRRDwqhaNKPDH2ytM5QKI7sIqaDMY0sNtf85vf/o6PPv6UYZyotXF/f688gW5CV+oGCerB783NM26ePec3n37G8XDg22++olUVA9hNSUm9d684HQ7a5VizcVMUItSTWWeLSbMkQ1rb4C8pRrxzDCmxnGbmeeF0PJJC4KOPXrDMs27PkuRefTrP5z6t3cPEov/yAl8TYuLZixfcPH/O9c3NRpQHNriRcwERRymVtRSkVYYU9WHd1HSwgXXgtEOx2+84zTMC3B/umY8HQAxmqOcWB9M0GRlbOUZgD77Oq9mq5OeQdUs2YzgHp4gGys0hliAHu/9LrnocpoTFY4yvXD4ovBooOvBpQvBEIw01J9wfXpJLZl6+ZZruGacbhukGHxMhjXz06e90zspCyTPzfI9X/3iaSwxpYBgHDnd/4ni65cuvf085LZALJ7HkfUjEpPeri3G7Vt1ZXGFzzRI8NdyMSQh+wPsd69o2bpJSyZx2FVGuEHadOrdJt2odtLWyzJnltPLqmyPr0jidHM6rYt3++ccM0544PgOn96S76DhsBMlt/bmsPj89Wvug5f3X8R3GL/GB/5r6Deeg601BymNIVYeVCKDacljGeiZYb89+M2wLTivnU5gsiPVmYvcQhuVwZMkg8iAgvlQA6tyLDVL0hv0uLSvfwThYP7VHSjf/hHPNqBd8+nnaOhvvOJbv+v3v+r3DcR2fnfexk+NN7KQ/x/q1eS+M/kXC9HjuPJW0bp97x9x7n+9+6Dx+TkJ7EN73713H8i4uxk89Hp8nZ92XP8fxQU+e07wQDfbUScDdjElJok0dmK0ltT0Y5YJQKEIvnQcLSDayLNub9AFuP2cjry7Lek4sFnXfDDEQvTOYRmAjNFatDkcnRA8pCFNYCax4OUFdFYJSHVU8mZFlDeTiOC6ZXBq5KNTGoX4aW6V/c60OxDQQkkrIhhg2z4CLNZ3OH9mQMAYnCiEQHEjVhKUZVKRRkaLdk1ob67po1dTIxd57hU1ZgJpSNMdm4MHNpZwPhWZ1R2w0WQhnqMx2LQ0+JXYtRbErhABT8gY3wR4wW5plzxv1uJj2e3b7K8Zp0kSzmiJTUVfvZVk0CW1tM4JLKTGGnSZH455hGEkpkZcTra7k9WRqSifm00l5GavOCU0Ess69VrfFHTvnTZpJ+prakv3Jy0JeF7xzTOPIs+tr7h3WORBU4ediYerz0527FQpnsl9bmNe7Qt57dX4eR4Zh3IJOTA++w5jOpHe27p528c4dnnMi4zfugwjUUo1D4VRW0DgVuruOlCKQtu9ReJQmjbXWi8chF7/XTmGfwtV8PVzwpmVvx23nCCN3+y5zKnKGfVkgoi3LHmw7nFcP7dqUnNxaYy3CuhQOhxOlONalEOeZmEaG/TV+f413I9GrU/s4DgSqnu+wYxwnpmnCy0zwjsPxFuc0AaA1WhHWlhEZiaKQQYW9GfyppwFOVZvE69WIAVJQVTJPM0ifdI9Q/SjOeKw6H86FhLPEcS6F+ZSZT5n7+0bJsJbEOO4Iac+wuyENEz4mVPLzDQmD65C7i0T2QZHv/Hv/C3lg/lzjlxY4/Jjjbcd6GWA99fu3BbpPvdpfa5ZUlJZ1HWewBCNuwepl4HupHtWLNs65rdAI5+Sj//zUMb52HCKKhHj0/h97bPCxc8UJRT8+2u+fYL/eFrw7516T5wVdp+zDj4pk7x79ur1pX973nvuuRPbH3bUP3fYljO0/6vjFkLdfvXxJsiBJK3znIFZMavJSJWZrP8GmHqTcgWASjtG0789KOnldTcWmbA/mdVH1pFqqejIEmK6uti5Hf862WvHBMabAtIPkKqO7w7cDrh3wrSASKFxzn2845YH7k5BLJa9Z4T8CtSdCHkJIG2SoSzuGoMHdMI2kYdBKaIybiVAz9ZdaTJIuRFzU7QxDMpiIQ1q17DsS0kAcHHjPmjPfvjwwLwsl66IdQiAOif00MQyJ6+u9EkidM9WgyvFwT+ds7Hc7xjEyTuMW5J1Opw0vH1O085c2LwXngCbqqJ31DyJMKbCPV7QsVO+pJdM2BSWr3KbE/uaG3/7V3zDt9giOl9++1A5LVyQqhcPhoFCw1jYOicNxdX3NuNtxfX1DiInnz55Tyo68LvzxD/cc7o/cvXrJ8e5WOxVNFXeq+Xp0KI7vXZDeYhdwPqpLPFCz+hWIqB/Cbz/9mPX5M9Y18/U333A4Hvjq669ZDcakjys5Lz+WWL62eHMOnAG8j4zDnmm6YtpfU6sgrLiwgl8Ru6bK9xi142I+CN0sslfSh2EkpKjE6e4svuGWMXlYfVh3xa1Xr16RUmKaRq6vrzV5G8dNzWtd1y3RHYaBGCPjOKkPyTgY4dtZd0y2bmTnDYnN8SEl6wZo5bG1xv3hXknnIpbUeMu2FJrURGFXh+O8mS8uK6wr6n5+uMdJYVmO6hESB8bpSuFXXpP5cdyTdjv1+HgGzQMh8NFn/8AnDn73u7+jrAfyeuTlq685HG754uvPSckTU+D65oZh3LHbP8OHqMIDXuFlzTnUI8eZIlvAVccYBiWBpXaGctjccL37I8LhODMfF+7vTxyOjSULx6MoH6QFrq/+iul6z8c3H6nr+TDoOtaNRD2bnO8DfLxzOOk47T4Fzm2nnthy+fv/AONND8j/CAnFZbAO6Dy4qEC/z3gqEA2E17IKhfno95W2staZpc28XF8y+IFxmjaH7sff3aRRWgbnNvWiy4q3wz2qRD+sxDvnFFaF8v40gQlEnxBRDoG/TLZ/wPGm/XoTF2TjnWwdit59CdvnPmR0iNX2bHl0bhQVcYajBeKD7xAR1rbgXXhAOg/+9fCvI0req2vxju7D21573/FUknIpQfw4qXifOf+4G3b5XW87zz/GuDy+n2q9uoSx/VjJxYeRt/OKc/61S9krlfA6aWmr7tKlGe1m6zhug1dsS6HBJxQOogGobPKtQaU2TTXJbxAXR/AQ3YKXBS8nQj7habiABQt7TlnN405r5JQ9S60Kb2hiQZySk6NTqI/zYYMMJQvIvHUJfFBoRe889OPF4B7iHHTibO/IuAspNHpy4Q3eZMlTUyLvsiw4hBQjV/s9MQ0M07hVrEMIFtSIyY8G9i4ayVQdrKsIp3mmE5lKVWx5bVCXgnMF73swexE8N3VO1/Pq2A2e/egJrtGKmg6Wsm6Bpnee62fPuXn+nKubG5qo8d7xeCTnTF6zdS+q8Q6yQZVMIanLdTblTaQ0MO122oUJgZhGfNAqukM2Az3vlDzsSShuXqvffYJ2k6WUkl5H57Z5169XDB7vEkNUc7ndpIZDswXoS85bUtQr8ds1fKAu5Lbvw0O88ITwvjuPw1gnWlHfjrxESsnWBXM4Sw6cPyevoUPWLGkVgz3lrIpapRTtYNC7FAo7KKXgHAYhVH+Ofu/1TlXviHSjOGQm+8C6rlvC3yxR1UTMkgXnt67QuiywwjyfNqO403y8KC5YggLgE8SJJkGr+POs8relMB8POi/KQqsLUjMYBKOWldJWiJEWEi1NSBNyLfjjkePLb5RXNe355LO/ZRjUN8exAz8wXg+49ILmr/C+6txOwc6BpzatvgWnruIinrMak94zRZT/gojeo+uqYgprVqnsKqAi2CxLoRbIeQ9OCwHDNIDXBGaabohxII0TwdazPkGkryOo0MVGAOldKx7FTo/xbFtbFEpe+EseD3hCW//tLz+ZeIBv53zMW6X/e0BtHsOozjh6/alzCMA8EvzIx+MnONTDwuMJ4aFp29pW9Y4x5Z5iQXBwD2Ee77p2zm1190eva5JxCTXqr/d/v6t6/bbfP7VfbyLVnjks52Pb9uuJCvn7kHO1oPB0ErP9Hn/x3a+fn+5j8f9n70+75EiuNE3wubKoqpm5OxALySSZWZXVVbOc/v8/ZM6Z+dDTp3tqJisXkhkLAHczU1XZ5sO9omZwOLYIABFkpfCACLib6Soqepd3ec0z5C3n/EsRs6/vw1MduOuE4HHH4fG1fVtn7n3j8bP0uccvUfz4Eh20j0osSs6IrBtMgj45+5/rcfVvb2o8WmHvJOZiXgNoV9+y/56NVpppYlcLIjUYGsJA8NHIqQ1HYRocg28MkpB8j6TvyeleX8rxhuqfUdwNx7RjTsL9cWXNhVwz1GrVD0G8R5x2QXrCsBGah0FlQC1gVMKz3yrandhZDYKluH5bXLbzFtK6glO1m+6Sm3JlXTUAX9bZoGZlc62+u70ljiPDbneZiOVCJPUGjQrRbYHvmgzqldZ+pwAzIatiEr8VYbUKP9vfvhdOA4zRsR89u9Hj60pJCiHKtv3WVG3o9tkzbu+esT8cSKmS08rxeGRdV9blyngOyHkl56SJKt0129FK4XyeGcaRUjI3d3ebjK73kWssOyI0p8lgsASu1EJOF2K4c44YwmZOKGhikU1qVTtRzkzllI8w73aIcxxPJ+Zl4Xg6kdaV8zyTjIS9TfEnXnDOaUfD+6DmgOY5If3FV9XQj1ZVAcyUtno3rJaGBNEE0mBszv70xLTWskECc87K66Ftzucioj4hsBGxL6pYbutadOGFnpDlVLZnt7toW/kKRMhGBp7isBHIl2VWfofNtZwT62rEeafqca3BkhuECWLW4L02JM9qSLcunB7ulWMyetI6U8rKOAaERs2J2mZqFpofqSVR8Miia9H54UfcMODHHXOL7PbP2A0HhiESw45xd0cYM3H8Cuqincmy0KToGtO9OL0aXNbmsIrEJgMsZLy7PFvn48wyLzzcL+RcWddKkxHEU5vHyYh3e/aHb4jjjt3tHWEI+OjNFd6a+LYE1tcgpcqt2UwTr9fUdvVa2OBm/d9Y18u2+Ssgb78PX/2zt/8TYBB/7aN3y8ACxKsgcUsMfmJycU00vt5PLx5eOnViBFqPk512S+vM4CaiG14LlnNdyTUT40AzJ+jBDa/h4+H99+xdAfh19f0xqfg6UH68nw+BxDzFGXgbqfapLkY/7qfM3D6UnPu+5ONxkvZ4BBesMFa32Oxd53yBrL0/KbseH/rZx/O177N3S54qFFw/64/5He9LBK4T5repZ8GX6VL8kuNzwp+ux8d1LPJKRzIKAgZzEAt6NDC9dCi6ElLHZOdaaFmDlz5hFVrkt6DMGxYbiYjThWsaA8E7YhS8rzjJkL8nr69YHv5EbBADiBRERog7ivtvpDpwXCPrrBjuJa9qniaNEIVB4ibT5oPHh8ECzAEfPEMMDIO6H0evJFXxnbSGOQnrFVHDLQ8uUL1Bocw9/PocvR9V4WlNnJazVZTTliTc3B6IMbA/HKxb4jZ+xf39vak4OXbDAPbgp6SQHXG9c6L3R/c56YJSG62icr1ibdkqSM1AQagEw5c7Kl4aQWDnHZPzuFRJ60xaZubzA8t8Yl3PAMQw8pvffMv+sGc+z7x88YrzPHN8sMRiXRlitIq+bNyI1XwXtAvjtpZxLQknCtEZxpG7Z1+RlplXL35kPr7arruz+9HN9QY/sLp1U53SxHC0xMFt1wu6szum/V1s/nl248jvfvvbDcL1cFRI2sPDAw+ny/l0s7m+xF1XCx0NWiVn7eyUkghRFYIkDuQYqTldisv23DTnkOjNG6OaZ4RCf4JJCZeSWdaV8+mMiGOapq1LUVveEoZhGDYieude9P/OOTOO47YodyK3muFhLx6xILtu6jC9I3deFlM2KyzLrJA+c09vNHJJ5s9xtoK74OMtYRcYwsAyn6l5RdaXSM24mhlcAtcYgiMvibwsxJZx3m2CDphxXypH6rIiYUJcwMcJ5wdEBl5+9x334SUuDDgJtjZpkuQMfunDyBhvjFyqHAsRqJsa2sL59CPn0wN/+df/YdDGxjQeEAnU5hAiyC3T9AcO+4lv9gfG3YEQR8ZRifPBe1wY9Ln0DsSCtSZmbNjlkhXy2Rqb4WFtjWJO3q2pelhPPOhdM+kt+0tg6fwF6rDO5WOW908yerf5ejyujr6P+/A28nH/zuOK/ePfP7W9v+ZE443g7Ymq/fa7T3Se0ruSXN2Ht2z6Guce3LAFubVVcssbXKs07Xj2hOR9wfC7xnVC8AZUZvPOKLyP0P0ursC7vnNNqt0SDdprhnmPx1PH8XOuwfV43xwvNWvByHwf4OnuxfUxflCF/x3P8OPk4PFn+/zQt83r96mLB9Sr43ucZFyLq7wrWZCr9fG1bTxKanoi9a7z+msf/Tp+7vP8qMSiNjOwE7k4dloQ0m+7WFLxRgfDRv9dD+Scu+DG9b81yHI+mreCMMakga4reBakrdBe4NoDlQe8TDgJwEhhotYDS9uT6sBSPalkcr24LvuglWonQgyDynvGoARNHxiiJRNBNfadEyUAi3pkYBVFUaQEtGYQrtfPsXckGlpN7w/DdYBXi6ou+UHVoHa7HSEGpmmkoRVKJTubgZcoZGbzwOjSoe3axfRCoK2bAlCjlf7ZCrUgreJRvwovjcE1nFNxWvX4aExeJ0nLC3mdSatWmbPJCnsfiYP5QgDn84nj8YF5npnneTtP71QeV5WuisFmtKIqgrpQeyXTeu/V5KwqoTxslf9g0J2GmKWStD6fdGHSOdVdxHuFX5v4279bveKIGCHZicoaO0e0oLBa9aRzEHzwzMvC+XQm5cSaVJVKH9IL3E1vm5LuO2zMu7AtkM72ZzdrS3agT6K2zVUxIzZ1ORfSvJhjd/euAO+Vw+CJm99Fa42S/ZZoXLtzd+f1606JiMmtyuWZ1vfC1VIsb1b/tFuR1XxOT/3Kn6ZoBQpnFXk9xZKzdo2WGaHgWkGkWkG+XO1LwAoXKu1qSRBCk57Ui3k+KCeilKwQomo29RSaKcZ4rwWFELRzF7w6XDvvEAeK0ND95LqjtEJtBz1nB7gbTWRcwLsR5wZ2ByVdT4c907QnDIPKGrvuN+LN40LvqQokiPpQCCoZ7SpFtIvTpGmyWxvSOo9NJS113rPdR22z8AZJ+/E9+qXGx8AJroOcp7oQj1/8T+3np8Iffs3jyfN9ooL+qff1uCPyrtF/34t0l2q08ioEURiUqT4581H4Jcbbugw/d1xDcnrV/UuOt3VdrpMeabymNPe+7/7cc3j8LF+rfl0d4FUgdXUsW2f29e7T+479Yzooj4/1f6bxuefnx+kRClrd2zoU0ToWYvGI/X39kNGsgu7x4nAbafji7ntxwm0KF/COKTiiW4hugfRnyEfq/CO+HJE6A5kgkbg7EKbfIuE5a/2aZXWclsYpJXJtqEhsIPjAGLDKpd+C1cGI1+MwKu46CEMQFBWuvAdaRaQZ6bTHfgrbqvBapTEXUztyQhyCKt6kzOncg9FVvbmqoiK9E3aHyOHmwG6/JwwTtSnGfz6v6p+R65aABdNvns2nwW0BIa+RpNeUtqCvw3eEnlRUXM2arA3CEIV99OwGCF4IZnjnRAgeWsvkeWE5qyrTMs+kZaWWxuEwcXNzSwyBdVm4f/U9L1++2gznAAtuy1XnpAdYF/OkeZ4ptTAOo8lkNmjFoGpm+BYipQmly31uyZz6dNR2gQMVU+NZlpXFoE/atbgE11shzjoeMRa8CyZJGhm8Z7y7s8Swavdinnn1Sjsyp/OJ83y2DkndEmuo5JJ49epH7l+94Hj/ArkxyFd3CjUCeOdMbH9KZuORCAbVihakNl7dv2CZT9zeHlhXJdKL067PMJisoyWj3X1bBQXKdq5dKEEVoNwm9zyMIxhkr8saX5uwdZdtJ4JErYznslIXNW4Mwboypiy1Y2dBr1Cq16I9hbScWOcj+fQKJxXnYJoGnAipJJoIIY7IMIF3tOAoaVVfFcAFR4w7ZDggYSRMt+SSSTkRRJSP43c0I8D37lQqCZcKThbSmPQejyMhRIWaJe06OrejyUCcvuHbP/6decwEJaf6gItxu39bh3VLAAURTX7Uq9HUt6Q73jdo6unjcKY+pddgKxRsXhkXaGOz+6qqcZfEov/80tnIl65HfRN68bnHh1Run4KiaNBh3fAPwZy/IxB43NH4a4E3PNWpgfd3fH5ukHC939edsLUo4K+q3Nff6cfZCa+PvRQKlaWcOYRbohtYyhkRz+CGrcDzrnvzrip8nwO9gPYU2fuad/DU+X7odXsXqfx6Oz3xfR+06lOMpzgGT12v0rLKAYuCzF/rUlwF/h/S1fuYzt/jDkFtlVRXggRVDbPf+SuTuzeSBOqGvtBn4PH9fHMduU6IP4S7cv193eeHQcB+ifFrPKa3jY9KLEIYiMO0PdQqu2rVTdC/rWwpomRIMaKojxq8jDGqqVsnQ0tDJEFLSFuRdkLqSlzO+HYGztRyQlD/BxfvEPctzR+gDdS259wOlDSQSqBUqK5pcNjQQKGbVXm37dtHr12JqIF09BC8BequO2Nng6xUul9uwyOmelGqmJrP5aGOwUixVE6zJibdwE1J4ANeIDrHbvQG8fK4EGi1cTqdybWxrMmC38oQeyLnlGSLmb5xwcf3YPk6uWitIa8tirJBnAYPgxe+vglM0RlPRTkWiim/LDi9FROcYxgGDvsbxmFif3PLV19/zf5wo7jz88zDw0se7u+VA1Aq0zSx2++gaQIaohKWS+7FcbnAG2rdJHR96LAuNVe7BNiB4gPBm5OrGFQsW7Ji29HrZIuvVdHUp6MHXJ2sro7Mev+yBXo9iPP4FjaOzG6c1LAxBOZlYXfe8fDwwJpWcsrbvSjVAtmUefniR4Y44H7vGIeJcRihFUse9NWHVaWbdXLo3TRzCI9DYFlnzsuZ//7/+T948eJHXrz4gXWdt8TCh6Cfj4NW4JsmCM5FpmkPrRFj3Iz6aundrcsfMS6H95HgNbFY5vO2VHfHb+/DpmJ1/+rIui4WDAYQkzb24H3dupHiJsQPSGgM3zyj1Rtq+cruWWUY1dBy65iIYxz220K6rrMqleUEOJwLJHsNOFOG68+YclowpSd1JNdTcBbbCzTl25RkJpCumNqXUsb7i0pNOz1NHLmq+Z7PGbwWSvqy50Q7HkXQhJjewQ16bbrrOZp4glBfe0naVXbNngd/Jf7Q7LuXBOK6W9l9haqtU0502yV8eQ30xxXup16G14Fahzxsneyr7z4Ozt7VkbiGxTxu9/81jNfw59fX4Ilz/knciSeSlu2/t98ZOdt+JuJfW5+vv3MdmF6r9Fzvz4tnH25A1JE7OC1EXvh27+mEfMB5fmgA/3OgH0/Brd762Q9Ien/qcTzez3X++bZE3l2R2h9DiV4vAPNkgvbGPt8znjq/U36gAUFeDzd78nd9bJfuo9vUw7bPX90HZ2bLr3Ur26VL8rGJ3Xa8v0C36UPHr/W4nhofmVhoJVfbnVwnjNTWf6CwAudU/905laIMQyBEz2TVPg1SqlXRE9QZ6gny90g9E/ILpJ71501ofsCH50i4Q/xzWviG1kZKHlky5NJIhnnHNYLzltyELdgIhrWPQ1A3Xq/Gb04ginYaNNQrFAqtFFpRjGhtAqbPrfFJN9TitUDVOUduFpQtizlta4DiRJAgDF4Yg3B7iBtcIhch5cJ5SerEnIsFnop97w9Kskpydz2tpRgkp5iMa7Ggr+NZe4CD8TOE6IQpCFMU7naBMTrGaL4iHSpTMbdnvb/S9Bxia+ymnYZG3vHV198w7Xec5pllPnM+HTkd79VzJGlwP04jmC+AD45aRQEq1pbVv5sFhm6r/PZgW1o12JqS5hU2Zw+aiB2vyaBa0NXvSbNqMFySl1LrpdLMZaHS7pR9FnDmlO1QXkuMUZWeojp3BwvcXuNdZOVAdG+Q48M9wQe+evY1DmEIXifNVVcCxXfpz3tXwDovwTxKTudZncn/9V+4f/WK8+medVnIJSGCuWFH9vs9IQwKS7CkPgYlW0/TuEHTlmqKQVrytt32QoA9M6WQZNkCWu/89vvWspo3nmdySip/7OPWDeyL4EVBbaQ1oTYYDjfaIfBCLtrlC8NOf+YcPgbrwBxQGFVlXhaS+df0gHpeT+RaEAn0rtUGqxRdg8R3uVvtpNRiJoHWQKhFn7ParIPQL4mtaz3ZUeXZqjkDPRMTPD1fMfghlVqS3l+acj+cRyTammGBmmh3RDFWYtOwIYpXsLlt6+x2NJdAsHcl2taN1O4STQsbDqGEL2+Q91Q34vplffnZa0CH1wKyd0GbrsfjzsTjgOJdkKFf00v6MR79cx3bBVyi1//yr6sI9bUE581gdPvdBwRiDsfoJ1JdKa0wuPHN46ha+PmpXaV3XastcH5Pgvm+SvCnuB/X+/hUHQ2RN40EH+/zMWfiKZjh5xytNdai75BgSeb1uJ7v19fkg5Sy3lJ4+DnX9te0LvzU8WvobHzUm2d3uCGMe7pouxqpYYuRTpAQPDF64uDZTwPRO0bvEB6gHWntDDVBXqjpFTWfSctLSl7IeeYwqkrPsH+GhG+QcKCFvwO5QfxvWJonNc8yK/wk56qlQhqDvyJpeg2iw+DwDpxvDK7iWYntJa2caOuKqxF8BH+gNhNwrUKtjoqjyZ6Go3TCZcMCe63VaPAL83wy47aZnLWFF+Oo6kBxRFBTrWl0eFcJrvBwmsm58PCQWHMm5ULucqNhIPpAcIHlbJKkwkYCB8NMIkTv8SJUcbSmhnfSX96tEZwQnHAzBsboudl5drExhMYu9qCkmoqMZkv9sTYUDKWBRxAfGHcTiOCGgeM8c386UUridDrx8HDPP//z/+DVy3vmZeG3v/sdrVZubm+sYm64eyebmpF2WRK1ZVLe4WZdGkrO6uFgcLndbgLYoFDaGWuWWFVTLbPAzSrzpRRiBOcdWGB7uTQX/HqvxPfqXM4ZqU4dzqWoTKl3xsFwuGEkOM84DCqXuiysKZmHxL0GwTlxPJ3JpfH735+IMSCyp1XlJKzLQlpXas0GW9NEUcSklYOed86Jf/mXf+Kf/sf/4F/++Z8oJTONI6CJ0nmZLREZQAIxQmt5Uy6Tpkll2ypGnhCGywIkGpQvS0LWzCyrSRg7xmm/JRbn85mcF9Y1sawry7IibuTm9pY//v0fGcdxk4EGdI44txUiOt+ldz5oeZvXLkyaAPhumulpbmcStXtu3ahyrT6o3G5OHB9esK4LNRf1cskJkUIrifPpgZJPlFQZpxu8HwjDnlp1DogF8QqDq4jxi/q51jeCKF0TaJDmSqsrkNkPK+ISTc6kvKih43LSrkWrhDDhXMD50TqccLh5zjAc2B/+DtgBo0pBm+FYqRYA1M4j0g6LPZHb3wq7ks1Z3otjDFGLH2JJ7Bcejyvbqi50ddhgx/cmTOV9RNCtu2FBh3tiGz+HcPqlxuMA7wL1+PCKMHzceVx3cWRLZC8Jcb9BzvnXuhHwdt3/9+2vS8YrUfvKW6HBj+t3vFh+5H88/BP/7dn/hT8e/vM7z7fx7mr6k999dI03uNCja/0loEvXsLXPvS+A0gqpLEQ3bIpZTwbjbzmWn9pZuS4g1FYorZhymGNw4xvb+1TP4lNJ0+dM0n/N40MKMk/996ccH9exMF1+sIfR2QuappAmB8FXgs8EVxlphNoIrVLrkVpnSj7RaqbmlZpPtJpoNWuAHHeE8UAYJmT6BvyB5g80/xWwo7JXd+qGOm2KaFWSANK2IMY7CCHjpZrTdsaVTKhFWRF1QeEIDfBGNl1pEmmotn1tjlId2QKRrsrSGuTSTcOgWZdgnmcjsaobua7cFryI+SU4rfwXk7pd10xKhXlJpFK3hEWa4KVoKVSqdYksgLCgofbgwxZLtkDZ+kb2eQ+MwTMEx83kGKPjMHlGXwmuqYRmlUvR/AobIxt0Q6+UmtIVXj0cKbWSW6NUnZiHw4Qg7HY7nt3d4Z3ChW5vbpTMemWEqB0UXdIuGPKGswqyqhitSn5vsMtpM/BTz4ViAbh1LHLZzl2vX9v+DbLBo6iX/dEuS2qHmfXRMe3d9KNJh50481yxqrDAEALhSsbVO8+yJPWhyJFpt2e32zOOozlhqxlhyVk7LLVcHasdjy2Iqnalwdkyn7l/9ZJ1nfX+jAp5Ci3gVqcvb2+wG3orRE+hQ62WlPR5bUAnh/dq/qYNrs90NW6L+AscQjsRvfrvNYGPwcz3JlXf8t4U0mTbvt7rfo76PCgEUkyVy+GHUUnazl8SfNShW3A0UQiic8qHGLyQ1oCTAoOn1kCrkVYXSgbEU4vuc9ypMEMYhu25Feql69rb63JB6XZX7g1WJeDQ4kLJkNZKyasWS+pK5QxtpbUM9Ww8iUJqSZ9jAqXDJuuRGHfkNOP9Ld7vEaeFje5GfnlJdm8NS24sCGyNK8jXZV3wmxiBs3Xoy45rnPM2nqpSPg7u+nP5xPauv9euNvVTKnO/lkDj5waXP+c83gzArv9f3vKZD096elKRW2YtM8FFU4Iatt8HiRzigW933zL53Xu3/VOv19Ydu/KSsP/Y3kd/beOaBP2266K/1w7sh3hlfJYhyiQLrqNcPnPydpUM/7WOx9yZz3HNrpO/z3VPPiqxGKYdPgxbEBRwhNCIoRJCwksmsEJ+heR74voD1IWaZ9aksI20JEpp5NRoEhA3sLv9hmG6YTo8Yzj8ARduaeFrikQKqiZRa6PmalVdzBNDiRHOKtfeKT/Cu0zkiG8z5D9DOSHlqOpGCCseGZ8jwy2VSM1OVWpiBB9AJnKFNVdSsUCwZY2uaydJV1JOZpSllWrBsO4hGP+kIVLwvjBNAe+E+Tgzzyvn80Iykzl1+nbWEtYAxtWKR4P/w36yIEKMT1FJqdJK08DXkpLcCboIzisnYhcdN7uB/ei5m1C/j6AGwoo1h1aFksXcm6HjRERbC6gGk3DOlfN54f/3z//Kw+nEq/t7QoxM48j//f/2X5mmidvbW+5un5FTZlkTISh0SBE3lghdBTzVHLQ1ePUbhwSglsqQM9O0UxUs2mYeWPJi8fOl06DBcb16wWmAWBu0rPcRMF7DJXgXcZt5XA/ya8/QKOb1WiBbUhe6gaIjBo9zkZ3sWFNmHldqUy5MafD111/z/Plzvv32G7xzWm1ftVvRHcxbrXQHZ2dCCKDQNO8crRbO5xP39y/JadFjbep63UKg5IIPgWm335TNxKpU1ZK/QiGfzubcrImuyvF6k1H2lpSaZHTTe1PJG+9lfzhs1ftrIEvn96jiWYJwUZrqf/fuSjNn1yZC9AGaUxfy8YCEgSKeWiDnZkIJDlJRrhOVGDIhQAyNMWSiZOIQcG5AnGNdhVKE/TppcgxMuzucH3BhovTkU3q1tmyQoi5fKA7GYSD4YKpxSpHQRFj5KfevFs6nxnI+UtuKYwVXFf4UVAWrFNXwL7WymMdHzolXL5VMGfzA4fA1u+kZh8N/Q2RPrTtwTbkWzltxIaBdU0gG+1OUnlyqz0ZPUQ8anTclrx+zvH+y0YsHwGvdhXd+Z5tR7fUAYXuWnc3NRwWARy/H65fm45/90uNjj+mpz//cc6l0Lpp1aumJ/3WSZwWuJ6754/G4Qt2/k1tmKWf+fP43ng/PGd2Ej2Hb1t3wnDue87vdH995vB9afX2aX+DINVNaNnnYS9dPCyhvcg/et69fw1xqrdJEO5lvuzdOHNENBuMub4VKve18PgUHRN3b1R39c49rGNRfY7LYxxuFmXdADX/u+Jxz+aMSi/0gxAGEjLSCbw9IPcJ6j5vvkZZwfqWVRCuZU9Iqfk7JYAAOCQf8uGP37Blx/y0uHvDD1zg3gB9JcYdIRNpEKxb4gl5gRM3QvCYSQsGR8JxwLLR8T8tnWj5Syz21JUNWjDR/Q/Jf0RhY60DJgZICa9EqYSlC40zjTEqN0lDog+sLZ6bmahX1ssElvFMjvcN+b4FU3RKKMKgvhnfC8eFIToXlPG+dhhhVYx+a8VcCYww4B16aGvU5h4uiiUNW3kZOmXmetxerN9neMaouf/Ce3eAYg+NmF5iCMAQYvUKcZOMjKGSrGBG3B+X9561BbtqlOJ1Xvvv+e168fMl3339PLgUBdQyvjRcvXvLVc8ezu2d4H6mlsSvdjEfIxn+AZh4IKseqXAiV/Q1BHZlr7RwJLp0YmqmPWZdiU7yxl4SoEABcCqSCqLmieVhANM6BEowBWq2bcVwn4dfatkp2rfoC7upGIpBr25KSOESdAzHinDDEyN3dLeI8+8MtNzc37Hc7nHPm+7Awz2eW5UxO62ZitlWfm2OIkcG6HwB5TcQQuDkcNvjLNE4qYSvCELXF7LySp0UcLqhzdEON0upWEe6dKL2vZVkYaNqJtPNszRxuRXDNCP1VuUWqM32pkOecNiJ3v/Z57UkpW0J8IX777WfiPC5MuLADv6dKoDSgZZw0xmFAXET8RG6aIOqEKJSUqOsJYeZuf4vzAs5RdxO1RtJqrAuBEI3n4PW5bpWLl0peKdX4MetMLklhfXTFNbbz6hwsJ36TPA4RavO0NlCaUF2jlaByzr5AK0itNB/xORFzpuV16wyu80tyOnE+JWI8sN89J9UztSUE7YLFIeLDnuAG9sMecSNORkrzlCqsRVQBryossBlXJy3zxyzvn2Q8DkSvOxPvwnhf8y6QraehnemnPv+onf+5IBafcnzoMX2IO/KHjqevuWzV5H6tr2Fm3cPiY+BZTSMgHtIrjvleDfFc5DfTb7XwYJzAPr5UBV0r5fG15OFxV+apc/xUJOvPMT40Wf8QnsKHnOevJaF623jMUfoS0LbPNbZiEVdJxrYs/vWc00clFtGtGpy2FWHFlR9o7RW1/Iisr6Ct4BMUrXamtRqputKxxD48x023DLffMtz8Hj/cgn8GzUNTzfeK4JqRXKsGB0KPadpVUpFxzIT2gGtncv2emk+U9YGcHxQCEvYQRmCkuhsqE7mMpNzIuXFaV00imtCqQm6WJWmV2zwVFA9u5OhcyEYMVuWa0Zy5owW0CZWYVJiRoNXQeV5YFyWfei+EqBKW2nlpxKjqUD2xEKp1bxu5rJTSWJfMssykNbPM8/YeHseBIJ7BK+RpiJ6bKTAGx+3OE13TRAX0mhSF4nQic+ciQIdWYVV74ZwKSyrcP8x8//KBH354ycNpRoBxCLSqJPHj8czhcGPdA2+wI4VPafX/AoPKiCZq5m3gnZJ1Qwh0TsfW6r2qRPSkwk6jf3D7763K1r9jMrLeuDedAzQMceOQlFyuHtj8BiTjwkOwP72jo3GsBvoBfNNqXAiOQxgJceDZV18zDgMxRkpWgn1al82hutl2vFNuQbMgvssw9/2VUgg+sN/vlechwhAGJVmLI4aoiQNY8C24EK1AJ5SsVa5sSlDSLoZrpWR88VckZXvZiFhw4VWBrDmoHeKkJXJ9MVUzeuvXUehGeYgt95tRptsI4Krw4MENiB83GKIGH7pvla71uBC1O9caJSdyTbQ8U5YjXhaCjIgLiGs059QIsjk6RNP5unUBnKLgoGYaCddmal2RmpV3ldVdvnuoiHSTuaZYYecJfsAHdXN3XhA8rSqHRxoQRJOJVoGiIgDOq/utT3aMKi2sZO+FtbwAVtoEJd+Ty6ovyepxEnFygzAS/HOC2+O9PkelelongLdeENHrtKYv37Ho1e8ng7UnkorHnYltO/355yLhef2S/Vsdn6raeh1sPU7a4FK7v/qCVfF/XkKT6sp9egWAkxsmv2cuZ8PbZ0DN8b7UeJ+c7dt+vnXOroLqX1Ng96GB86cIsH8tgfoHJUGPOp9/beO1c2uX5OKv7Vw+KrGY5v+NuM60fA91oclZMcUtQ9MX65LNAK4UxAXCMLDbPWM8/ANx+g1+91+oMlBaoCLkIoQW8KJ62dWpjGprFfGGtDb1KGmVvB4p6xnyK2AFZtZ0pNbEmqtV8b6h1D9Qmud8jKQCuUKq97T2oATOXhkvtj+qkiTR4KrLN/bKefDamYjeoE4iZpLX1HWYavK1F+Wdly9eKuwrs2GkxWv1Njph9BXvGzFWHAWpK+ejqkLN68r5nDSZWJW3UWlWKXao3r6SXD0ZHwO7MXIzwmEXuNs5ghMGr6pK1Kok51xIaWU+z6S0sqRZq7H+EhD4MCicpzn+5d9fcl5WTvPM+bSQm2OY9rrNVmlF/RJ++OEHpnFkXRPBRzXiqbpdGoxh2GAxyzwDC5NV8ne7afMFSClbojZsrtLDEMnGZdHugsmiui4fPGxdh95VUIUphUlNU+d4tE0xazU5XrdV59i+e+mMsMHLWg+0bdu1qsQtrScngTju2E87DnfP1BvBe0rOLPOZ+XRiXRfOpwfSulBy5nDY0Zo6o5/PJ4rBwMZxJA4DtZpscCk8u71DnKowAQwhWpCuiW+pxbxLLh2c3n1a10WVoJaVzqNIadUEUmTzsahNg901JfUxcaIKU9XTWt2u/TAM0ColK6xNxG3KUz2Z044O4DSp82Ggy8WVYiZ3jDhGpI2wLmycC1Qmdzlnlb/0lWz37fTqR87HF9y//AuhPDDESs0viIPHj/4CyaqJniF3pTEfA848JDofp6qpDN7BYa/H1FoEU55K6coh3YIi74dtwdemUufo6HbrWEzgy1mhpFFr0k5uTZAvXSpn1wcZaM0gZueCyxE8NDJznXl49ULlmMUR/Y4h7rm5/Ud8fMYufstuGEECa57IRX1FTk+YYX2J0Suhb8PpX7/8e7HhsSPw40rd9t2/YpjD28bja/VTq/l9O5s6WTdMvbrOwQ22jnl1Y26YHPuVfPIT24W3B3S6/UpqiZt4x+3wHE/vfAhzObGUGRHH4AYmv3/nfvr4oG5Jn0vtTVL2+8ZTLtO9mPVrDuTed2yPz+Wd2/qA6/VL+8A8nhedY/K28VrF3777S5/DTxm/9nn4rvFRicV6+jOEhLQZKIjLmDSRFkJskfISER/x8RYXD8T9b3HT7yF+TZMDWDDnWjZcwqoFN43atnaQ692JlhT+UBJ5mclpoeSzEb8TaYWcHUuGUkWDkKa+AqkYxrw1M6yyP8ij6lfXgRHDNovJs+qE9E79LrrsqCruRCOMayKyrpk1FXPKLpSs3BCqKjM5p27e3kFwikfPqXI+WZDXVHK21kpKhTUpuTvnZhVzhw+e4DwxDpty0M2kak/P9pFp9OwCeMm4BiVpUlG3xCKbPKpWzpdl2arvG0k3VpZUOS+ZFy9eMq+JdU2kpLyAVu2+1UwrWeV6YzA53wtvoZl2f7cpF2QL9kNs1k1wTOO0vRQDbPAyZ8mccw6pdavAi3NM047dfs9uNzGMO/VK8WFTUlrmhWxEcI2vGjkl/VlayVk7NF7cJmHbripTPbF4vbb2OvZRcfRVX6Am9zqOE14crVbWpNc5p5XFyP21ZvUu8QPjqNjT2hoh+M17pPtXqDpV4nw6U2sl+ogKY6kSmLOkAqeSrN6HK5EBS36qwQfBsPnVjO4ieuMv3YqyqhN8yVnVmXD2PLbtpLt7tFhi62zbmhTIlhzoeaHPQKuUtSIu4IJ2FxAPEnFVEPOLKSUrOd2Ud8VNW2fjPJ9J60KdZ9blTFkW0jqz+sqLHxfiGAijY7ePII5URJXGyqrdFKcJ/RBG8+kwM0Hh4vli0rRiEtXSwPtIqeVCgBQxarVC+6TVnm3aM+RAoEqjmepVl6RFHNRgfhli8roKh2wmCFBqYxxHQvS2r0KtAYdoESSrv85cjjT+jA9H/LDiw4j3I0PcE70ab1I/P7b58ajtdcjLU+MarvBUNfg12MpfAcTp54zXeBQfGUS81lnt/2tK/e+wJt2ufqJ3Ie3LW+fgXQGMQn7raxCNPqqtBff5Fa1VvAQGP+JxpKbd/1wzp3wk1cSN3G3maJ8KXvMpAq8nHaF5vXPxa5t37zqeX9uxfsh4DGd64/ePqvZbYaf7d7S//m7F39L4qMTi/OqfaZPggkJAvIsWLJrsnwhBPAEPBMLu90j8Ctn/F5p7TmFPqeog7FzGtQQkWjleFkTDiHsJGym7lhOlrKzrWZWUcrWAu7IslXkNpBQ4r9opSWWhtgVdUrsmvMGpDCoiBrNQ6I7+rlZNLhyi2OZxZPPsQhdC7zzDOBDjwH5/oxemwb0ZpZ3nk0EgGgE91+gaITSCbxymi6v0q/sT87rycDyanr/hNJoSn2pXrhKPuID3kTEODCFy2O8YB880BW53MEXHzTQQnJrgSUu0Wklr3jgL3WthXRcW8wU4n8+AoVUEdU1OmVcPJ17eP/D9iwfWpAGnytI2hXrVQi2qMhRD4LDfsZtG7SKY+zLikWqQmO26e0K06jYj3jvGIZKySq72RCKEaEZ53UhxyytwIbCfbvj6m2/46uuvOdzcEEMkDoMGZcHz4scXnE4nXr58xfl8JK0L80mDU/VC0ODHO9EkLYYtKN5gGGb0pqphBhUzmBANVQgqxZLMwDCOTLsdNMhp5eHhnnk+b8mFCAbFGhhi5OagBnC1NXa7iZzzxunwXgPNdVlZlwxO595u0uN09txh8KPWVJGtmyWmnMmKgaJ2ZSe650dVToU9w8WSkLXO5sWREIJ1xy7zv0POSimEeAXXwro8rqs5WdJVqyaluXBcCj6MhNEx7aYLybwWqCt5vWdZTvz4w19Y10zNjWfPfqO8EQcvfviO+fTAzky2BMf5vKpaWEjEqTJMgd9PN4ToyBWWtGgCvZ6gqV/NYX9Qc8fdrSonNceyZFIpNPH4MFpiZ4IJMUMy3pjrr7OkUKlqnCW7Bk4wnk+lUSh1NWdZ5Wc4e74cxoNxYePF9A6q1EII0/a8tNbINZPCRCmZNC+kZWZdTpxO/4S4yLD7jmnaMY47DtN/QtxE9BPRfAO+5Ohk0V6tftylgLcHsr9mXPunHE91XT5aSvUR1En/rXLF/br7Kw7F1g0yjGqjvS4B+47t11aMj+Feu0e1VXJd+e+v/g9KK/z94R/w4gk+cMoPHNMDL9YfceIY3cjkd6/BoD6FAs4n4aBYoeTxz/u16saav5Z5+Ws5juvxc57d607bhyRMKhSgXbn+3Gxd0qaFvg3KxuvdwF87X+RvZXwcx2I3EEevgSsgzdyoi6O4CDLgh6/w8StceAbxtzQ30dytylY6CBakdHxBq0Il0ChQM6WeNphJV1aZzwrlOM9Jq/ilkNZELU2hRpsDrTreKhREIQ8bfqW/1N3FfAqrsjpLMKJTsrazToVCn1Qm1m8+VurQnFPm++8fzHBLyc7anah41/C+sZ9Max5Hzlrd/u6HF5s6zLIk8+Jo2/GEQd2lh2EixJEQArv9SPTCEARPwrWKJxN8ZfCVmxCIHnxJlFRItVBrVvhU6ZyJtjlDQ9skXdd1VWKtM/fiWljOiXU+UpYjO1eYBsH7LhWowbhur1hgHvntt99wu99RsyYbrnkkWPfCWfW7BxNeJVuFdgVfEoPUBIU3+WDHpfeu1MqyJu6ef8Xd86/449//Pc+/es7d3TNi1AS3VQ3yxQm7ww1rSvzmdOaHH37g/v6eJVUqDlcsAGyNVrSLURoMw6CyiJszvMKnSsmsS1/0tOrfrQVKbUipIE7hSOvMOivM7HQ8Gj+hEGOwa6UcD4VK6bl7UPM/56yTssXruiS2BqXpPnWKK7n6KglSakqHawljjAwhUodKMR7EbF0chQtx+U5TbsJumgje2RzX/ae8Uqonl7zBu6Rp6UC8mk6CmUTac3a8P7IsMw/He5blSMkrPo6I97hz4PSyWQfh8qJY1xM5L5xO93in1feWHY0RkYnn3zyjffOM9f4ly/nI6f4Fh5sbhvGO57/9B3yccHFi3O0IsRF3R87nF5zne87Hl5S0kvPC8WHlKCsv7x/sOY/GAxJNfKom9Llm5cx4hSkRPKf5npRXluUENavPRPd+ASP4oyaVvXK/Ydplc1oPpkLmfFCejNeiAb1jGPxFLABdMwme4B1jHKj7Ha3cmJO8olClHcnzPf/8//03alNPm93uNx+zvH+S4eQCgYFLMNDx6o/H2372t/jy/5jg6zE86nG19jppE6uaNRMWeO3n8OZ2bB6+N4izKnAxzqC0y3qj261UKn88/D2CsA83RD/iJXAbn3EIt3wz/Xb7TvczeG0/XNaAj7k+PYHt1yK4aD4w2YqSH5aoaZHGv7FPFa5w2yvrl5iPf03PwU9NKGorFEvgut9GTw5e+2yH+LVKoWJ6ZW90OnuC2GGu+qkrMQn5MML6pxjvg23+tdzbnzI+LrGIe0L0OKo9b56Kp7ZAIYKMuPANLX4D8Sv1n5CIwi6qeeNmjY5aphSF1aSU1duiZnJaKTWzromSGzlXzudEypVlyay5GJwlm+t1M+UQC5PEJlyPY7cXtE46J6LwDYOQuA1CEzdok2r3a6DgnfoVKFXAQBBFK/jrnJT8XM2VWERhTh68Fzb+bRPzX6jMS7agvpgKkXEGDPoz7gZC9IzWFQkhst+PBCdE35CiKjOuVoKDITiihyCNVpMZhWVyUWx496gAW7x7crG5PPcW+oVEmXOGWnA0JqvkhxDouGfvtCKg8Bs1NIzeQ2us60KoVT0OcKbG0wMNrSA4YVPb6kFxv0vaCVPn7d5l6sdeW+Pm5pY4DHzzm99yuDmw3+8VemTEXt0oxGFU74IQSUVhOC9f3SNOq8OKdy/UYgtNKdRmNFjDvocQkK405dRNGYPRtdahAKIwrdaMnL2yzGdVQjO5TxHw3pnjvN8M43p3ouP9ewK4BRVWtXZXlUJlJ6jAQSeV92ChB6Zic1wEHAEvjVL1vF0uFFdUnMCu6Za8VOXB1KsOTa8OUTA5VYc4E2TIhRD1Jl1Zt6jKWDXTw7rS2moKVxnyTGkLtEoL0AsBJa/mTZIUqhQaSAEpNKkM44Rznrq8IqeKyEIcbhh3gWFSKVkJO8RPeK/PRbNqY8uV7Bbr2KgRY8lQXMO1i9wzVZAKruo5OGdhi7XKUkH/ZPSzDerG7bZOXqsqI2wV5GvpY2fJRRD17nBB1x5dfwbtYnhHqxFvho79nvZE0DuHk0DzDukCDK1Sy0otiYf7VwrdEjqT/4uONwLej/3+3/DL9kPHNVn9cXLw+Jq+DUJ2va3XoGXvSSjeeVw8sS0c+6Cd++i0MCMiRPOs+NBxHfB9zPH0ng1oQFpbxT9xeqV1qfFLMHqtvvW2Y9Lt/u3xen4N4ykO1tvgTNe/237yDpjktu7+jPn+c8ZjmOJThYGeOF4nOo+Tnl+jbPaHjI9z3r77r8TB1E7EIf4rUh7IOXIuAfwA09cUF3AuIAQLGDM+JVrL5HqmVg26lmUmGYY85cKaCvMiCnFaZ1NDyiot2uMsC4ZpWgWX/sfJRkDWSadmYT5Egz11wrMQQ9AEySvG2blAHCamcTIiqzPibGKZT+SUSFlx+YrHrgZriUQvSFD4UQiN/aSVyCbC8VRZ18p5TpTa5VYHCBMxeHZBOQbDODFNE+MwcnNwBJ+Jck/JJ2o5UkugJDifGlISrjX20ROnkf0YCR6ohfV8JqVkMBgzXuMCSdhw9yWrNOoYEdlbclQvcqulMYSReBu1G2DVg2QchZRUYlRRTkIrje+/+45hGNjv94x2HafDgWEcGacd3htJ0LgMtYr5WfQEpxqnxtSKaoWilXMN0rST9I//9b+x2+85HA6klLi/f6D14ykXVSfn1RRtHCa+/ea3fPvNb3n+1Td89/13/Nu//is//PufWM5nGmKmaRVJGhB2I8gYdS54r/j/XLKddyMVdduurRFtrpScmTmyns+0pg7TIXhcsCTFeDaaWCbWZQVLCjpMrRgvZE1pS4KnaVJFsm7yRzPSdM+8ZCMC+6BQMm8dlxCCkpaDJ/po59pJyZoNVJMZrtOkULn9gXmeSTmzFr22qTXWFZCCyyv1tNAa7PYTIQSGYdw6HeMUGSfH7bMBkecgleA8aZ2ZT/ekWflRIbDByKq7pcpA5o6KKkRlp1VYJKj8al6ZhpXBVQ7jQHMF58+s5XuEB4SRXL4hhB1TeE68vePutpBu/kLJJ9LyklJQrpUMpFI4p4XzvJBLRcKOKoFUAklNNPA+WULecG7EycT+5jnBObwTpPumtMJ8PpPSyvH4QG0rpS5KkKUiUhEKQtsKMy6LJZkXZ2JBTIzAk7KYCWHEuWZdV+22OYGc0saZaVkV69ZFPUBSXpnv//QJXhEfN7Qy/XS1+AJXaG/8/OeMv5bK7vuO8TE35brSev399yVspencvXAsLkHZU/fmbTKwfT5Ofnch1F+N4OI7PQo6nMg9qiy/7X49GRg++lz/rhLOPyx5aa3xkF4Cwi4cCAQEUUK5nYfjzW5KH3UTdrlc+y8x3/4a5vT1+Ngg2JnZ6hsaYfL6nHwtOZDHvMe3b/t98+xzrhvvSvh7LPZaQffqc9c/fy0heSLp+Njj/1Jr5UclFm76IzJ4uyhClT3FOapzuCI0caQE4gouV5xbNdhohVQSrRTW9UzOyXD+Z1WrsRd7yZVc1C24B/CbnwFW/ddXMpujr5jBl7iNfOnE4bxhsQ3WJM5pdbATqL3gfMc5a0DWSiaVzIqqRZWSSWlWuIMRzb2YgpQYUb0Tf5vCsu6PK7Ut1ArzUs2tmu04vcmE+hCYBiUbT1NgCBD9wsCKKwnaTMtZDQHFU8TTnEOqQ1xhHKNBajyudthY2f70ajdoJadXw0tRVagOQQrRE5qnASll+z5bBbz3NGimboNCzrQibVVtPDlrtfl8nsm5Erx5EiAMwwiSNaFoolARO+YO4On3WVzdKvHOnLc1UfAM44gPAVrj+PBASislJUpaN2hW5xiEMOBDIKes1W7vGaaR29s71m8T59MDtVbOabHAsCesBn2ybY5DtIfRbddvTUn/rMnmVSWtKg/aOz4d0mIYBWrRpKDQyf21/0qhQEnlaGuplsSUrfugBHTDTUvnVVxXQi5wvGZdu1wKzikhPBTrxNmLswmbR4az7pPyItSnxceo3byUSGe9rqupRdXayHXWQKPCcJpxXqWTgxeCF25vIzEIcehtDIVohDAyTQorLHkh5SObq7SM4Cac320/UydsAWlIXYGV4I60kPAiVJsntSVaabRauH9wzOuJpWQGEziIYUfwgSEqn6HhqDKSSmFYVsZl1kQcQbUWGqUuWlwo3U9Fq7MV7SSUqsco1n1yEom7iB8KfjhoB7ZlKyioC7dCKuXit7KVQYyZ0pQM3uGagyluOed7/mku27oKelG5XyhI1edinKIVZjLHU/qY5f2zj0+dUHzq7Xzp8ZRyVh+PK60fX82/dHuvOS9v29fj8dit+V0B9VPHpvzAfiy90/t01+XxdjbxjKeO9YmfdwgUGBSvF9EMKlVpDG7qK9G2neCCXWddA0sryol6vM93dIneNv5n4Qtdjw891w8Jbt/sUHz643nf7z/3PXxfgeB98+6X4CR96PioxILd3yNBHW0bkJujuEZzFSnVyMIriDnQuoxQcGUmpUxOhfvTzLImZlN3yVkN9DQw5OpSyqUbIdcXRMt2YoGnugybT4ELlwQi9Eq7JRDBM8SoOHfvcFJxDoO7KFxnmRd10bYKeGuFWhNK/Gx4GsE169gIIkXhLUGsSlg5nWaWNZNz3XDn4j1x2CmxbRgYhsg4RA67kRgduxECM56Zll6qoVmq5OrJ1VOHqA7hLqr0v2SmaWCMgeC9Vv6ryp7mrMGQ916vZUO5Fle+Beu6WjW+e2m4bTFPWVT/3ik0p5hTMrBV9ks1OFrNCkOTpqZkKZt/ibo1N4QhDnCo9jkL2kw6tl5BNbobt0gxmJQQo5JPtfrvGSdN4kqtPLx6pR2KovC5ayUkVVZK1rVYmYqaFe72Bw63N+AcP/74nVaXH14aXEDnXmuVnFSqtJZC8JfKR62aNKiqVmJZk3pUlMq6rHa922a6d0ns2JK9WiprTsa90Jdi7wKVqonFJnNs92RdVyWn+wDmXivSQ9ILBqlUhcn10bsYsRRT4Aobz8gHfWaCtpI0QLfqd6zakXR+5bgmalbH55NxnM5LT+SaEfXV5X2MjnH0DOMdzgUmU4xSqeWeVI+44MlpZrlfqQ1cdTiZELfDxWnjKklTcjRSEM7Qznh3RKTRnFDEUUXUpLEVdbnOCz4MnHNmv7thNx4Y9iPBj0S3w4dBeRVuJOXCsCZ2y0IuiWVdyDmRzHMkZ1hToWN5m7n31qoJdydje+eQEIiDKsRtYpqtmkqXPjPe6/X2BgPUW6UmetTFVNYSzkQbBJsz1ZY9uSQyAhQvQMG5bHLdgvhALnCaK/XPP3zU8v45xtsC4o8JQuAJaMQXekF+ruDiUrG057VDGnkavvFR1+uq2qn+EYUg7q3beKoroO7bl+OQq+N7Y59PBIC1Q4+uMe+W4LytM/C+xOPJ79h1THXFSyC4SCeWFzv3SmXn91uw2rcf3aXjkWvSEtkTiUWvfveizQcd1084l/8Yl9Hn21PS019qbPO6/bz9PlVQedez+LcwZz4qsfjxWIhxteCtklK1Kqs5zFJxTlv+tVXT7FflobRqYpHTYjKYRV+6tK1YDOgLtAdkYjBj18lfzlymnanFGIwgDDgXjCPRybdKNI0xbh4HMXTPAsVBl5o5z3Y8JrOpOO+6fV4lN6G1QvBCDA7n9tTmWJbG6ZxJ+aQV7tpdmz3eeAfeR+Iwsj8cGIbAYS8MPjGFI1FeIK0hBUrN5FqodaBWz1oSfhiJfmBJO3IqnOcHDiEzhEs7rZZMrSu5Jta8kspVRZwewDRTMNKORK/KSsOw+Po571UlR4RNSaoToLQzIwQ8JXhLJrRq6hSvZFWfys3zGw6HG/7wxz8wjgPDGHn5QgP5YjCtWi6yqM0eXOeEkAaTjo3IXuFPpbRNevZ4/0DOiYdXloAZdEhEJW+LQcBCTASTf6214JegPhheFaxub29J68J3f/43as6bYVmfKyFoF6u2bC9CDd57B2GeZx6OR8ZhoJTCvMwMISjpPFqy5oUuZ9XKpb3pnc7D3qFY13TlNXGZjyH2TgOmJDUwlLDJ53a52S6PrAR5EzLI9hJ3jjGPKk4Qi3XpHK0qtl/MmyUET8VI8ilrt1GEaVLJ1w5HG0pl2u3oj2wpOudTLrih4QZIZYF1pTaHM+fzYXDmaeHx4RY3HrgZDtoBEE9zE+BBPHDGtZXl+B2lJigJkQxklnzWuVaFODnEF3LVjkPKmTjsacOOGB338yvuW+NFDEzjyPPnXxGGhgsVF6A1BwScr3gcw2BSyPanlG7+165ecO0yb9F520Q9bVrpnczOkTFVN5RbVksl5UJqaozXatVOaC3QZk0wSHhnubXB30qpW8eiJyZqzqj786LJW66CMJENLre7+fJys+8aH1IhfBuv4JfASvfj+dQa+K91KmQ7O/vnTzvHTmZONeFd2CrzzlQWH5/DY9jKtTJPfxk/Tubedi7X2754ZyhQuQfqvev7ru39FGWsTrIe3fTaeQoWLzw6/2sISn+e6xUX6m3V9M55yTVr50PeJHxfjy8xX/9auiKPiwMfc7xvm7dvg8jB26F9jz/3vvE5YG+/1L360lyNj0osljWRa7u4NmdbhFpDWgYKpSVqTdSSOR2PrGtSNZpVYT2tpMsiBjzO64Wu76rVOcS9pvu+maMF61Q4j7PEIpqMqfN+cy8ehm7MZhCEVtUkzkjgpei5bJKirUCriFO8uKo6Ca1qZVahPKoGtJrsbcpqFkY/RpPSjMNgbtqR3STEWNiFlcHpH2+vl5KN3F0gV9t+U+UkL57WxBSekkr9dihMreTWKCkZD8SgU63hqnYImnUsegAPFzKoEsrzBj2qFjBtE691jW+H95fv+qBH3pMNMTCHE/XXONzccnd3x93dnao62Z3u0LZ+rXtyUWu9KHaZ0pE3Xw2tFul5CJjz+MIyn5Wo3o3z5OIC3TsraurmN4hPiJE4sPEnQghbYtxqwbkrDLgFh8uybMlGT9hKsY5NLoSg+ywlU8wrAZMY3c5NsCDy8iy99nC3K+O+tOo9LNUMEZ15g2hSXZxeTTULNMGAEOiwP61Y9oWkUmsnidfLsYj+zIl6nOjdwyrpYrwSfcZCLgSvzt8xgvcNb27qtbXL89LUx8F5KC0jRXfkLZFBMs5j/iRBuxx4fZ6aUCXQJ6y0gtQEdVaPm5KUUY3O11YrrYCLq0niDih/oRA8BK/Jbmm6Di1lpbXCME/4XHEh4oN2ZZBg3SOT+XUOMV5WqxZ42Lyt1aAV1hWr27PSrNtVLFDRa9KM2S3aqqK1rAZ5LW3PRL9+1IQYF8NZl7ZJV7XbAImo8Rlm/m5E/qKJRWvq91IaBuH6eVCCnzM+FeH1S2La37X/TzUew58+5fmZLZ721T6g0/D2/b4ZtL3r869BmKwr0Jl919/rPIVPMa4FLkTepuzktgRj+xlvQmwEeXzKb4zHye77xueer73QofDbX0dy8WvE/P+18K/+1sZHJRbHhyMNtKpatL06DpHdNIBUSl55+fJ7zuez+iQseXsJQ1dguDzDgj0Q0h8MDZ7oCYUFSz4Ec7ztEqDOdPA9PkYlijvHYBVeb4mFc2pmBzrBlvlMyiun02kjIougDtUxMARdiHKa1VSuVOIQzWDMMy+Nh1PjPB8Vk13rVhUZw06VnYaBuN8Tx5G72xvGUDiEFZf+gtR7SP9uWbuH+FsqI6fVk0ogV8+8HBGqHsvqVHKzZKQkfMsMPjBGp7yVVKg5s84nJcHP81YRcNadabAlDEpW1+BdIVGJ8/mkn+8BIFwCaet+gOG+0QV2HEZiiHhnHYLaqM2xnw589c03/Kd//C/cPXvGzWHHPJ84nR6sYm6Y8VJwObPWdQuopRSqqJmb+GCVWW9StWJdrsb9q1esy5llPpHSqolR0wRwyIHuRaJQqkHnaeiyniqlGmMgBk8MnpwytSgJVonqBiuyavG6rnTYHWhAvqa0eU70LlXORrZ2F8hByuvGI6FpQtjN6rTj0A0DdZ+1aecjZ+WvuKTu4uMwELyjBm8dAj0u7PkZhklhbXGgJ3+dU3ENyboePQnLJeNWoFbCEHHA4D37aUfwkTVVim8MvhG88k2yuXxrpyVTc4G84vEMwZHqotXz5jEfbfwpM04D+wMM9hzH4KhF1dJaU3gVtdLSkZpPSFvwZMTrHa0Naq7WpUvIIoS24/Ds9+Q6ETLcPfuGMOwh3FDLQs0r8zKzpIXvfvgOJFy6nD7g47DBAeNVMcJZMaJzURptu+e1KLxCK58qJ1zzSl4XSlkpZdbPlGwNC02WNKnIiGSca5tSmMOBiyj0UwsT4hw1OgrNDPo0+aFlciu0Uqi5UUtlOSeT8vT4wZu4QOV8zh+zvH+W8baX+lMB9uMg+JeGBHyqgOS6Yguvn9e7rs/HHoM+aQ6PexLScz2ehFo1CO7NkCC3hDOe1FOj8yk8F7+cp7oPn7rz05OEt3VNnuRLPE60PvDyvjE3f8FgtUtZq7SuxUPvoDR/yc7GYwGC6w7Flpx9YLD/Ud0FeX3d6M/adfL5+HMfs80POdaP/c6XHF/6uD4qsTg9vFLYBdqq9w5yWrhfz6T1SE4r5/moQXvO6qGwLaaXREJzCVUHEmEjX2OmUWJuu92ZticUwUdzSfaEEBGrrDqT8FSvAG/mYho4HR/mLUDO5SqQBaL3WiWkUfMKiq5ivxtoojjqdW3MVR2yVWrSsOXicFHhV95HxnFPCIFpigxjI4TC4P6EryttVSIo1ZPLb7SK3IR8dpSamddEx9uKEVbPKZDKvXYf4qQOvyXpQ1JVhjenxDIvnM9H7VikpN0cpwEKQMq5Q25RnkC9BMXGd4AG+c3JF2O8cB/gAgHZiNeqYON94PlX3/Lsq6/43d/9Hc+//ppxHKnNSNqG19WqqhjRvCkkqlfy+66rQq+CD5d50ZOckq1bMXP/6qU5aSdabXgnTNO4JalOne1YvKfVSAsGfytREzWTJZzGyLo2u36aRITgN/hdMRK1c5dOj99ctoetMwZC57D06rdzBkNr1VScOgxKnwaFJFUj9Fri4QIuempoW4I3GLRKkxrD7JdiZmsY8RjElYvho3MXLsbVba210SgKlGiNtDRazmTvGWo2eWCVqFXTeaGUyrysyj1qWo9Uro2S/5WU7IhO8A1cd5EuRUmVDe1ysFDawrCe1KsljHQDyyFEe3k7SoRSBmZpJguctSPaKvHgdV61jPgJCRNhuMERCC3gwh5cANEumISBQbpXikInMe6JOLcld871l552ebpTQJMrEmq7eknZfa15pZSVvJzI6UStCzUv9C5GL3A48UgThAAUa8o6/VmDlIs9p/p8SYMsmkTmVqyr0mjNkpsO30yF81ndygUYx0lFLByoRvCXH2/rVjxFVv6lOxI/dfyUQOJjzvUpqMfj33XVpR5YC0ZIfpu6kQWk/bMdAvXYWfsakqbdACuqNOUbXZ/P407EG8pWnyiZeBxkdh7FhaPiXptfb0tK3+ay/aHj5yS77+r8fEyw3cwcrh/P+47pSz1bPTl9PB7L+j6+j308vn8/+R71ztkXDPbfCYv7hde2x4WNT53gPzU+Dgp1PuGCSpA6r67SHZZyPr5U4zcLrK4l1FXRBgt4Ol7WcI/SNfcNBtOddc04aksonMP7qN0LH4hXTsnqDWDGUk4IzrMmDUTPJ4Vj5Zy2RWjD0HuHoqMUCtOrysM4GmYZzvOiMrhzoePKnfE84hAIw0iII7vdgSEG9rvAGGaCzJC/p1nVFA60NrCUO3LRQGJeFoXQ5II4xZEPQ6RVz7IKp/nIWlam/YHghFGgVU9rUFJhXRbO85nj6WyJnEJWQgiEoCpBKeXXJnatlWVZtp+VLWC5vBC88RlCCBtc6RqH203cwBHjwDBOfPXNt3z97Tf89u9+z2434pwwnx+UPLcpFpm0a2lbYNTMA+L60VMI2iXZRBy1Kg9hTQvLMnM6PqhXhPEsVP8/WeLpCDGCgE/dwd3UqIp2KLpPxxCjVZcLKWWcIfFcUwnjrlZVKxfokXMmsToQti5aTyyKJSMKLbpI+Woy60S2gH+IZoqGclW8KDcIEYOQacAbu/IY6Plal8RLU+FSlfFSzL2rSIcF2PNxHTBAoxW7HkDKleqKBdZV4U92TN3tvFiX5nRezN8h2sMsdr0Vc+wFpLG5xuem3JWuiqQSrDMpzwQfkd2tPeOBuBUNIiU4Shk0Ac0rLS+4mpCW8VHNNCuZwghuwIcd3qmqlDjlPECx8w8WbF1BQ6wTqn/L5oqtcD2FrXV0eW2XrPcCETSuRS2arKaFtJyo+UitK5TVnMg9wXlCUG6E4HU/raCEdhVeaJ1rZrBSZbSbUEKrBm80WVm797U2cmnkUnWtSwZPrY0QPXEIm7v8LzHehlN/7TM/I3j4tYyfWlX96P08AZ/qhOhNfEK0W/FU4NDXblVP8puRXt/GtQt3/1n/jCridbnZi6Px9bH0fejf2jXua+K7zvtjrt9TgWJ/bnz/71bfyn/4kMTjfeM6qXvfeb3xnW1V+XlDu6UdwvVxXYDPPZ5KmJ6au4/H9ec2O4MPuFbvOu9fw/V4anxJvsPjpKL/7HPv9+PkZh0M0ZHTzDoXXsxnfbHm9Yo7weXxkWtYhlxe6mYE5ZwRq0OXhnVqFOX9ZlZ3nViEDmfpiYEp3UA1sviJtKg/Rs5lC5Z7QKUk80YTCH4iOM/tza1l2mq6l3PhxxdnJYPWQm2OJp4wjoozD5FhNxFiYJwi+9iYfCXyCmFBOMKqVoCl3JDLHUv2zKmSSlPlpJIoZaGVE8HBs7sbXLhD3MB3P7xkWRLn04lSVjUQnDNjDMTDRF4TKyrfOy8Lp5MSxxWi0ahVMevTiFXfwxUcjTf+DiFieA0LojQICiEQfcB34m4PmmtRMimC85Gvvv6WZ8+e81/+l//C4XBgfzNZwGUGaTlTc2ZZVnX6nnsylUnzvL0U1XHbdzi5QZrU2b3kzOn4wMsX3/Pyh+9Z5vNFUSxn9eUQTBFIOwi73V4bMS4wjRPenItbyZyO9/z4w3e8evlKg3rrDMzzmdZgt6sbNEyfPw3we5LRPUK89wzjYMmAqlXlXLYkugApa/duzdpZEfue916Py3tiiEzTgXESxv0zxmnHbr/bkpTT8WjbUUPGHviWiib3OQEJWRZNCH3gcLgxN2+DEhqUq1SF8G2LWzPAPo2UI3GIjLUoDwFht4ssKRCjo560Y5JrQnkkHXKowXtuGcmFmxCJg2OYHHlLIrt8tD2XtTLPrzYfi9aSJSwRH/Z4d8u0u6HklXm5Z3AZLwXXZmpdKXXF4a070c8Fc+tuFCmoxLOABRytS7k6h0e7pbS8/VyTROtqbAtxJ93L1TmoyV6rFU/GuUoYHMQJIeLcQb95tfaZCKZ2PJQ5rh6VrlFFiOO47dFZt0lhWJoodXWp/pzW1rkWlfw883B/z/l45HQ6Mp/1/ub0y0ChHr+0rvHgv3Qy8XNeqtff/VyQir4feD0YeIqEeg33WOuqXXs3vHac16TsisJnNPiuRDdY9yI+ec9656P7Dbzt2l0beOr5uvc6e39sNflt+70OPvtxvmsb74IMfcx433G/jaj8NjGA912r67ngxcI2eZRkGgcM2+/74HBfYlxf8/clAVuX4Uoy+G2f/VQcrl9ifMn17xqGdr2u9P9+3GH8VOOjEotaMiU50rpssBStAiucRuTSmmtWde2wFNcrnObnoNXJYGTnC+lasc+qquQNDhW8SmwG3z0ppCfq5GwmeiWzzrPCsMwTYKtOWIV4HEed6CEonjoE06WvptgCpZhGPVZx9MHUpQaGEBhjYBgF7xtDODO6RHQZX89bkJKKIxfHuv0tzKkpdKFYhdJUqJpUlnlGXKNJ4WxyvOu6WMWx4WqhmsxqLkXhMGllWVYWM8lqje0admdxxdjbBOpYfxuXidU9L/qSpGpFToTaZX3lElT37znv2e123N7e8ez5c24Oe4Yx4KjkWmg1G/TIgn+TFU5p3ToEvVOxdUi83xSTartwJdRPJLHOZ9ZlJqVlSyiKubCLKKE51GrdhOt5eQnwcinkZeF4OnE+nzWlsgp0NZJ7qWX7eYfI9I4FIqoe1q+Dda86ubeWrLKfNEprZlioEsatvZ5YOOcYZcT5wP72jhhHJKqh4LTbbWZ5Dw/3LMvMuiwcjw/kdWWez0o6b+UCi2p6vYRi/CG3HZs+B1dwtuvgwxaaXLLyip0jNhDviN7ZvI8MIVCrulZ33lSp6v2gmCyF+M3m+xdHj/fgvSarG68jnQxWoWZxHpCqCUPO4PyC8zvieIcPgYE9UmdaSyCDduxqoblAQ4P0DiXbel8Nepa6reOXXOHNxb13ICwBaVefpb/01MVF/9Ssf5ryJhTeZM/Idl0v6mu9sOKuD6a1TR2vc4maJbI6JZs+kPZ89leEduAsCReHHz0lZyvmmB9JbeT1l/WxeC3Y/BUkFfDzXupf+tivOwPX4ykc+3WS0YPNDhXaPCVaQ648oLbvP3FeWmxrFMprwfvbqsjXHW1awz3B1fgc40M7CD93vC8Rems35VEA/LEdi8ff166TvjuhJ5xP3J9riNuvpHL/wRDA9+QMn6Lz9D/j+JIJ2Uc9/fN8Yl0XUlLydu0TXABTc3JyWbg24zq5YJo7IVeN66L9rWZmIUR8sCAzhg2/7uyF3PX3nRPyurAuCw/3D5zOR3LW6lzvlDQuikPe67afPf+KYRiZdgetdpfCw8O9VdJn6Hr7fsQHzzhExnEkxMB+PzJFmCIMvETqkZb+Qi1nalqp7GltpLY7HpbIOTseFn3JU1dKUW8E76JhrT3Lmil55fRwJldHqcK8mscBWaufEhgGbUXnnJkXp74C5yPrurKsCzF26NKokqRRidWXDlHFuUateQuwO/wprZeqZq9q55zJIVCHyhCHLSmstfstVMYp8vU33/D7P/yBb77+htubCWiUslB7lX6ZWeeZdV5Yl7Me73xSs7jW1L3Yez3mIdo5+Ne6A00wl+ozy/nIuvQ52J2qVa5Vq7lVZVmHyBBVthZBuw/evEpOJ16+eMkP3//A+XQCuiHaJXFKKROCRsuK1DKCoEGeUp9r1ulQl2T108gpMcSgr/pSWNaFNa0kqx47rIpjJG4fBobdjt//w3/i7vnXfPXN7wxeF6EpYfj48MDpdOR8OvKnf/0X7l+95C9/+hOn9MC6rOSa8T4wTWp0qBCnbOelsLV+bWk92JYNLqVBrvprSMmknBimTAgDw7jnMA2Um71dlxVZksFwNIEBIaPdE+dUE34/eZoEpp0nRkccRpTPlDkej+S84lwl+kh0QF1IKXG8f0WpEWTgt3//vxLHA9PhGaeHxroWoozkBmvKECKteZDKMEAIntacnfeFP9HPsQftYuuU/vwS7Jdy4S/0IeKM4+VwG2+h0OpKzSu1LkjN0JIlHUDxlguYnacIdGin99YgtCRrUePBYZo27Fk1xahSegeY16ClPVG2fxFC4PbujpvbW8pV53idlw9d2j/p6C/+6yD3S+B6/xrHdRXxKXLwU4FANjM4v/k8tauqcNXEtunnaiuUmtXfASG6aET/t9+P7mqt4hrlNdJ2QIt8T3EVOoSqtopr75ZjvcBeLuf9cwLg7o79OebZU/fo+r5cQ3jkCorWzEujc8eeIsa/a5+Pk0onjtIK53zc/ElGN26SwoMb8C5u3y0tb9yuX9vz15Pj93VvHs+zzgnaPnt1P34tCdSvefTOUB+fa158VGKR10X9I2o1DzNdcAR5DX8uplfvzKwG3/kTjmAVXnEBF7zBmlTZyRs/wHnZKrreYE80yCkZZ0LhTr3y3YxMre1eoME47AghsNvvTBFI5Sxzbbx89cqkZlUmtjXPOE5KxA6BaRqJURiiMMgZx4nAAz4nXFlVuYZKI5Pbnswz5rRnScLxwfwolIyBd54wDjh/0P3nopX3eeF4zuR1IS1nVX6phdos8PEq0VnF01qAFom+USZPc8GgExp4dsL6ECMhaEDV1RC2SnqX00UJpakkjFbyWiW1VjU5bMow56K4ofd4HCcOgzpY/+53v+fZ8zt2h4HWNCHKObEa0fd8PHI6Hnl4eOD+/pVCebKZCjq/Sb5O42RJZG+3d36FSsimZSGtaYOq9S5FDwI7sdWKbJscMMjGFYkhQBNiUDncab+n1EpJyYjZWHfiAp2pW6GvWZU801rjdD4bPEwx7TEGSxp1/jeDquRNxOAyTytN1Ze856tvf8fX3/yWP/z9f+Y3v/89+8MNw+7QQTN0udz9/sA4jdzdPeNwc8Px4ciz59/ylz//iZcvf+Th4cXmhzFEI0DnC/RIH0FPKNoV6rwQ59XQrTbrJqDQmjVnxIja1WAOwzhwd3tgmkb268qSMsuaOS+aaNIc1cj586p+DaflxOEQmEbPs7tBZWvdapV+5QhJLYShKg8iRg53vyW3QG2BeV1JtRHSyrw8UNKCH0Yqjuo8Pow476m25iAenEpdDkRqTtS0qNiCw5zQQZpQ5myqUOPmZl7KJWjvc0EscXTicc74QLUZzG+mS8eKwaUalsxZMtr7bksy1TCE0QdqKZwejhxPJ9Z15Xd/+APR1Nb6WpCrOnfnmjc4Yif/6wvCjtdfQR5q3QKSblL2JcdrxN9PEDD+LY83OjpPXKfObUh13boBfc324q6/fSkk2X8HAgVo0l77/YeOIIGGo1A1hbGEpK9v1y7XF4hPwMmHOSvDz6uiXgeTjrcbAP7csXFFnkj84ApmIp3k3jvEjmBxyduO+23jcVLRaMz5RKUy+d1r++6JS23FPqP3IsrFx+bnktY/13js8P7U6LHM1vVtbvv5T4Em/sf4/OPjoFC1oq7aHdbUK+KK53sd4hQ2kqd4AZM6jZsiS8AHh3hNHJwEvIubIo/6I1wmU6vFEosz83xmWWagbXhkfbi8wbEcwzAyDCOHmxsjh3vO54VSEudl3giQTjShiSEQx0iIgcN+ZPCNMWRCmXH1CPl7qAutLbQ60AhUN5AZWdueY94zL4VXpweEjJPGMCqcKw4R7ydAyGWmNlhzZk2FtBaWeaGWVX0qDP5FHBTKIYVGxUsjR29BtPl05LAlYBdCuregqG3Br/osdJJ27zC9vnhduhjNiMZCpgdZZjLk1TTwcLjl9vYZz559xW43MQyeVmaDyq2kpInAOuu9ms8nlnmmlIwgm6leTxy9mdE5cQpfErlgZRvqV3HlWaE+D+Uqseia/XYO9dKCVmM9M4MTwYfItHfs9gdVO2pHC0rZhAUucKELJEYTCyVhL+tKNhhWCJGSNYFWWVi/HcP18XUSPDQG5whD5PbZVzz/5jd889u/4+bZVwzjhDivHhal0MyLIIRAlAATjOPI/nCL85FcGzhHyivroh28fs16tw6adi+87tuJQ8Ll2junykTqgWA+DdmUw1qzwEKhgTEGJZMHR1iTuZJnSoFSIRflfXT1tNOcyaWxTJVhcMRQGEKmVGhVA/nqm+G5FTs87m5x1anrfMnGKcmUvFBrojHo/PAeMWliZ52H2ipYUOPFXIfzotwW5xBvgVqt1ALSRvWsuMJI6abcBuPscDInoj4fTTszQlGnbExVjcs8qf1ZA4NWGfSsgbRGiwM1F46nE8fTUeWLS8GrOYVuo6kXRa6FVLIVBRpFnDU2NP0UEVxVLkZPNvqzrVDAX278x8v+6fFUIP1WiA3qT6HcCEvaxOGa4yLG1Da43uNqZGsXkZTO9PnQKqUT4wpaUHr9PU2ZL1DK6++8bzwVWD9FbH5XAP4GxOgzz7UPTYB68ned4HUy+8cOXX3dBqnKLdNojH63JVLXlf+1lO0zDb8lFp+KNP5Bx/weyNjbvvNTOEv/AYP69Y6PSiyGYSTEAYU9XboQIkp81OAzbj93oQekAQnd/Vr5FMF5VbuxxKJXab2/EL3TmljXlR9++J6UVpZlMWlOYdyNWjHeZBqF29s7drsdh/2Nwmla5TyfWc8nVU7RxBfnAtOgztjTpMTeODoGd8bLylD/FcmvaOfvoJ219SaRKiNVntH8c0qbOKcDx6VwXgvneUEEDocdQkKksttNhBCJccfDw5l5Xnn58oXCgpazVrlDYJx2pNWR8eqfUQVSQ8TkZ1sj1cqJyuAbNQ988+yOYRwBDZaCd+x3u0tykNKmRpRT3gLhrcJvz2StdYNHAZowGkej2e+7Udi43zOOE9/+7vc8e/YVX3/zDWOsSFVIV15XlvPMfDoxzwuvfvxRg6fjUXHk/f6iwddqfijeq4KNcw6a4JwGYdX+lNL5KQrFSquqYXUsed3kXR2lqPu7YaBwLjAMo8pwusA0DMRxYre74eH+gf/+f/6f1PbvnOfzVbuVK+UrQ64YXKqUwrIovEnno2OaJva7Pd1R3hv05gI7u3r5iuP2+dd8/e23/Jf/6//K7d1X7G6fk3NjTSfWdd44OPTK9+YMK0y7HUMc+M//+I88e/4Vr16+4v/1//x/8HD/kvtXLxii8lS6DwNot8I7zzhMDNFU3Xqy6BzBqYIWTjko4gLz6UTOiYpwXgvHJYEoP+nZ3TMOhwN3zyN365mUVu4fzsxrYV0L9WyKRSvc58TpmMhrYxyE3RTwckfwcHM74lyiykpBlUCad9TmtONXmqqltTO7QaFpwroZ7WX1CmcIO9Z04nj6jmG8MW33xjq/Ii1HDtM3SHHMD0fO55fktHA4PCdON4QpqpmcOEq1AEzEulUN76wD4B0hoCmWa0hVF/plvXQTOkdnTWmDQVULSEprtKZFgnWetRsYG7tneyYR5jIzn1bayW3bMaYOtWVqy9AKtSS7VW3DWatymvr/bLAVaaT1Y1b3Tzv+I6l4+3jftbm4Vze8eIIEokRKKxv5ugG5rlsAW1uhAiKF6IYt6PIu4Jrf1p/XkoOrIPC6qn5d2RYRfHNvdDquk5gPTVTeBn95DM/4kOr655hf1/Cjt0F0rq/ZNU+xE+RzSzRg7w9X19C9FgK/kVS91vGxz1x1dEotLHVmMNjTNSn7+jvRDbqW2zGdy4nBjRsM7kuMD70vvfPV4XOaG7s37vuXgHA9TmzeBdP6EuPJxPsnJGwfsp/Pxbn4qMQixpEwTIi9xFQv3eQ9zaTOm4KTONGORP+Zd4g3SVhxeAlWuUYDSatSl6oBXE8q1lXx6RowXvwFWquI88TBM0SFEOz2B4IPIEKyameqVeFFzjPYcQ0+EIMjemGMK04yrp2R9IC0hVZP2p0oiYoq/jTZUZmo7FjWPakGTmtjWStLMvK0VTU7LKyUTE6Zh/szp9OsLuSnB3JeyWk1mVujWPlIELNVFhRKJtYZcsoTAFUZWpbGsi5WGRHjqei5WYnrqrrF1qHIOW3Beb+OPbGoIRj5tY+2BcrOFn5nql3juGMYR1zQinUtiZIyeU2kZWE+n5nnhXXVxMGJEMwB3Ym7wESqJgwpKYzKWQDcfEW6vwUYFl5hOqXUzfV66yzY60CaVe7EWTKgfzrfJ8RICPpnGHcMa7YE2fxIurqTVYi7mlb/k41MnYxL0VWbtoTNHJr1Plzw8dtNcIL3gcPNHXfPvmHc3eB8VKUw6ywt84lW1AAN63C0jWCv876MBR8HxnHk5u6Or775DeIcy3LGXRE1dddK3ha7/73GqEmedgpxV8Z+whYcr+sK4liTmimWK57JOO0YpolxVDgb4vCnBe8SrQrJVZR3oOewzJmShLQ6vFS8g2UFcQknK7cHVZLy3uOtq1JZoWm3wrv+whGt/NOgehqe0io1n6nphAsB5wYtdriIDAem3a3ew6UR4w7nPDEeCH5EXeWV6xW6+7con2ibQE2J3WlZoSZqfqDmRGsKM3OodK9zphTr/eX693nQrLPRTLyhk8TtbizrYt45CicDlSDWpNJcu5smnLJxRXoRJiIu6DpgsqHi3XUj5YuP/8A8f/x4l0KLSPeTCDS5VMC3kHWr4rIFuT0wehsh9rqS3QngColUOF9wEYejUlUY4rEyFZfA5EPv9fsC3C+p9vO2Y//oINzikdySriePrlNPPIRLB+GN5OrRPvs968fozQCzB+RvJ9xb0kPT9cySxvcpRH2OwPV9Y5uX4raE7inCex+fK9B/6v4/JZrwS47PcV82nuVnGB/XsZjuGMZpq3aKwRE2lRt7mXsvOC+E0IPRaPKdAqGoiycRcoVWgBnx+mI8ngvrmnjx4oUlFcmgUY5hmLbJuKZeLR746vlX7HY7vB9Y15XT+cx5ORuxVLkecfDshkAIjt0Y1UnYFXz9d1r+kbL8M2W9p5aFjENkRNyBIrdUJpq7oTJR2sTLs7CkynGZN3x/FG/EXJVOFWmcz0eODyd++OElORclLdfeqqwXczoEFwdCx08rLofOO22qXYXQWNeVWhbGoE7BQxhUPcu6DPo86Pa1aq7JThXISa/nvCxbIFlbs3sU7Lh1iWutHyM0Me8GHxjGiXHaMwyj7q5kNQhbF9Zl5nw6cbx/YJ5nlvNMazCEyLTb4Yx/kFY18+uwq/P5bKRthbAF53HlovuweTi0ZoG9dmB68NY6BKRDV7xXKc9qcDBr4w/jZB21oOpjYSRXNEGNI+NkHJFVKGs1+di8wYpWUxw7n88XfwqDOWmCoe7YUq4Wyf7wiPmnDCPPvvoN3/z2Dwy7AxXHw+msEqYls56PJtGbeqyw+RGICOu6MEw7xHnGac/t7S2//+PfE0Lg4eEFaTnRStYAF69V81yoaBKbQyYlTxvVkdzJqAWAC4ZG3ZyXlXmecTGQUiXlzGJdsOPpyG5/YH848Mc//oE4RHa7HTE+EE9nglNH7uAaa1aewHxOlicJWOUeKYhknBT++HfPOdx4no0Kh3QeVh4oeWFdjgzB473YcVY1jMyeWh21eXJZoc6EOBJCQ2Qkxj2MA7d3v1Heggg+jtAaQ7zT9UscQ5wIcUDiAGiAl/KqkLSUoSoUb1leUfKZNL/cXLovFTZVdBIa8QqH3mpRnxFTZXM6MTVJbqoIVRu03l7YxC8c2en2hGY+Oz1pFJp0ue5ACKPxTaL+zCv/ZA2/TGD/H4TKnzZ6orklBFuwb4as8naPinB1nXPN+s64roC/5z70rsHaMrmuLGVmH26IblBxCPFIu+y/Q36qaHehB7TvGu/F0l/zc77AvLm8YS7dgQ+FO124h+p5VCikurILNwxueO3zq/FjvA9b8naBSb19fyKykb+jDK/Bn3pH8zXy/NX18+LxYU+uyTxJnp47P3V8qmf7Oum9cIg0JtIk+eqzX2hePO6g9fEaJ+ozHsffwpr5UYnFb3/7DeM00V2IcRcDM2+a/06qErFd0I6GgHPVCJCOmgutrdRypFat1JYSyOdMygvHedkq0tdGbYA9kCoteXf7jGEcORwOgKM14eF00gCPShhHogjRjwzBMQRhDAnHjOR/oZ1/oORXtPSgEIOaUBfgAy7e4uIeiXc494zGyJp2lCKsWcAvuJoN1qMvfbWDqBxPKydRKcqXL38krZllTXgXCDES/Xjl6py3DgJcSVWKOZB3KI3J6dacWOusdLp14bA7cHd7x+00GrzF0UQfS++D8hGyEmWF2kVn7Fq2LWBuGw+gbItd8B4JWvFoIjQnuBiJw8h+v2MYgiZhy0xJM+cHTSYeHo6sy0otjWmcDKKkiky1NYU/0TT4bxflrpR1QVzXhI+JkCv7Z1+hqjza6QohbApOxfDjIrLNk3EcGaeRcZjY7faM444YB6vgYBwgZ+aOQvCOZ3d37MZIurvl4f4V8zzz4uWPShKvK8tqnYmclFuRsyZ3tsgsy6LXUqAxEYI6hYte5Ne6Kghm8BhBAvOy0mojratyCHJiOT9ostrx8cb18MY7aiZpK0A+JOI4cbg5cDpqsne6f8m6zIwx4KTYwq3HWoqQsxK4pRXjTDRwjVADpZjhYKt89dVzaoOHeUHWTAuFHR0x1WjiaKXy53/7CzFGDjcH9tOeZ7d3mvjlbJCxbEaITt3Ws4kU1EIuK+s6sy5nXryYeXU/8/0PL7l7tuNwMzKESl4aDy8y094z7ga+/vYbcJ7ShHZecLUa16P7sDjlITgQX3E+k+sZcZ6bmxslXdcMLSNS8S7Q8kyqmZaSdmyE17xflOQe2Q1fUfOekyU3St7v1eNLmKIaNZ3bpJ1J1xKtNCgNLwEHVKlKNm9scrNi3hWIIL5ZQm9mnojyh3R3el1bYy0NagIp0Fb9rjvz8OrL+1h8zirY3+K4Dlau1ZcusMx3B7rFDPJ6YN87DOoVI+8MKJ/6eZAAzoQqUFz/pebQ3giuPiVpugd0Gyfp6hq81l35RPt76vzfF3y/LegMEjiE29fuYR+jny5rcM2klpi8e42EDE93Srrred93/9zbOhaPt9FNDuHtycBP6RI9BR1617G9b1sXAvwVbBhem3sVRTFsbKIvvM58kWT3F+gcfY7xUYnFYQfjWPWlDTTnrTKuEAa9FtmCIIU+KZmyS65VhGKSdGoyVSqk7FhTY1kUgtHhJKp2pNumNSU3i6rv7PeKm9/tdixLJmWDx6B4+xhU+WaKI4OvDKEycIZ6pJbvKPk72vqCmlaDHgTwk1b8wh4JByTegtxQ20haAqlU1lwVLy1WsRANKkXUKyLlQi0qL3s+zfbyR8/HkiQx1Rk1BSxmfqXtVKxbIVfGZkUcFVFydG2UmjjlBe88+93Ogmu3BZH9eECTsTckNGkbPPtCLG1k614AVOdwVwt8E0G8NziRxzuoRX0p8rowz7N2KRZNDGttNicUx1/axYH6UqEw5FYtUPWAa6242vAI67IQB01kvSUEfeHRmoYtlk5VtLqssPJaBmKMG2n79coHYEnqMAS8mxii13knjuPpaNAz2bwkuh9FznmTpgWV5hURYoyXYLRdjm87T4NpdYM2EaceBrmwritlnSk5sS5Kgq8m2dXsWIM3srVVw9X4LiJO9FwHPdcuv+toxrOATqhxziCEVErR4FvNCpWT0CFgrRbG3R5xjofzYmdyRd52QmlNCds5a1dqzeymSd3IQ6CUTAxCLsbRwVNKI+Wq3I1SWJNn9iAUlvOiz3CqDFHNDGVwrAucjh2LW0kp4EKkuWAdqrLdK9+EUjU50LWn0loi5xPOB2IY6B2wmhd9/qja3WrdPLPL0Bo1VdA5LBCDVzO7uKeYSR4tbQly2+73hf/QhcaaNP1HE4IbUPPHC9qqq6CJEWY1g6t459So0isETfkXmEme8ahasmbG9XOeOZ9/QZLFf4yPHh8STLxRNbXOcu8aNNFCRGlK5I0SGfz4wcfgxOGbw7tLMa+/TK6FPzoR/EMDoI+pcF8nEdfn+yVJyB873pXAeVFxkG4U2XTB4fpU3ga9eSvk6SPGu5TAPiX07Ofen7eRsvsx/trgSZ96fEkY4Ofe50clFs/53xkNFtBao+B1E+IZB4VnZAQf9jg30UpXhYKSFVNP9cCAkx257FkzHOezYudrxcdIdJ5piFv1q+WMoxBcIQ6OGIRhF6kNlZ9NqkrjXdREJDqGIRK9sAsNKUek/Ei+/99o+RVt+VGDBRwrg3YJnCdGTwiOGAea21G44bgE5lz58f6V4upzhi4JK9G4A415PlFKozbhdFbfhZSVODsM0UjrWo2srW0JR2uCiLc4pLcAHTGMTLs9w6Bt1ZIW1vmB40t1rz7ORyWxx4Fnz55psHHdfbDKdkmJdVGPgGwSpIDyO9jin0sCYX+Xonrkg6nwOKcwqN3+gKNR88qynDgfH1jnM69evGJZFs7nmW6IKKJk6mVNHM9Hc+6umz9JNm5CzumS/JQKztP8kZvnX9EEbg+35gbeORIqS6ztYExhyhPiYMnmnsPtLbv9nt1urx0CxPTVC+BI65l1PeNpiHd4N3A47HEOjqedemXkzKv7V6zryvl8urTAnduu2eZP0ZObEC7RIuhL2TgfCBvkLIQAVUn28+nIej6Sk8J+1FAwbXUs74XoNdguORNCVN8WgVITN8+/xjtNbtaUOB1PrHPbzCujeXqMMTJNI94Nxu9xtFbIeSFX5VKUqlKxu71GxH/5y78zr4klN+6e3TFNI4ebPdM0bYT4lAsvX91z/+rI+bwyTkGDm5wY40gYA8FH85VwHE9nE2NwLGNgvxv0+tZq3iYDeQ58f6yc58qPL6H+cEI48i//es/+sOfZs+cM416v49AQMbEDr/dhGkfm0z3L/MBD+Vd8iBx2z4nRZI3zK+3GuQBuh/iBIXwFEkCiJvKoWaRYHLAmEALT/mtynil1pcmRllfS5j+jijDeOYYYGeIIVNJ8xLsB7wacu0X8gBt3mzpdrVySBoPw5azu3rUVTdBaU5iL/b4WZ/CZqDjuWk0SWSGmaTl//BvhE46/lerb5xzvIlW/XrkVc1uvWyLh6HLv1iE1bH1phbXM/O8v/9/88fBH/nj4z+89jm6m5w1tsHc3pLoaV8MbLKXSzKchyCV0+DmwmPd9d/vdB0Ct3ref17b3CT53TXD/kNGh4s5EFq4D6bcFeD9XJrbPq57UPMnl+Ijx1PX53CTn607MU/v/JdaZ983bn/JM/C2tkx9nj+k8SMOHSDMimbgBcQPOjwrhaeD8iHMjpVqlsUJtgYqn4KnNU2qgNFuqjLMRAlZ59eY7ALSG8yvSVhz3DMMNYZhABsUaA86L8TC0kh5CI3DCl5WWX9LKS6S8oKUfVRYVR6l6PKmqxGN0IH5A/I7CgdwmUgqsWchZIQmEgIhBnS0RKEVf/iVbtbfBMEwEH5RIjjmS2zlihkYiHmcY6GHYYT0+lcYUwfnIMIzEQavvJUUcmeUYSKLEzJwSp5P6RNRa2O0mqy1bRdOI8D1o37oTV7dUhDcWSA1WBKmiak61bfdCA2ZLCFaVOV3mxeA8GegVMyEvi0K9ctmcp0GrrlopVknMnK8Uq4r6gzSXeLh/wPuBw+6AONFORNAkLbnZKr1Yd0I7FMM4Mo79ugWDPem9kt4jaZVlPrOY8lG/9t47xmHk7u5uO56X4SXZZ7t3hpN3zS6FBQDt4nZcNELUhId2kb4VrVb3RCqnleHqnqzrQlrVXbtcuYojQgiOFgLV/AqK2oATl1khZVdEb6c5slXKNamhY1drvQgGGPRNzx+c166Vs+6L80rI3u32IAtN8sYBWlNGZKUaP6VYQtu24MRrB86cylszp2ztlaFGetoBYYOyqSGg354TwddGiBEnMJ91Lo3jHvAcz8LxNCMC3ptSkzSaZLwXDvuJVpOqazlopXAsR/NmqeT0gA+OcRrxccGFSC0VHyZ82CE+mgGZdgC1Y6r8CJrC5FpNBNcUKnWlloeL1uXQNU2oeNlbUjEQwh5cQGLYTB5badYjUUWs1ti8SFRVSq9tysbLsKRRixQZSqZKsY6WzsFx/GVfVH9LL8rPNd5V4X2KRCoiyBWEpqcgmKIOQHSRRmMfduSWuV9fsA83Wxeij8fqNyKvG9+p+Z55RLzjeD/kPr/tM0+p3zwVSDcucK+PHddqT2+73h+Ln3/bZ55SeHrjM7zZlXlXtf/X1Kn5pZ/pt3VwPkfl/V0Jy4dwlv5nHh+ZWAxUFwhxh0igtREXRpy3f2sJFTHDu1Rnq7JAY0eVkUwgN4UMpZqorW5KUcEHpp26XiOiL9tSifUVUheoLxiGA2Hcc86906DQKIcQwoB3heASLr+E/JK6/JNWJ8srWp5pzVHantwiuXrWcsaHxug1IcLfkLlhrTvmGhX6VNXUqjhH8V59FKpWZFXhKW1BNcBu2uO9Y55HSs7kvFrAr90JcQJOA2LFUMfNlKv7M5RaiTEQoudwc0teI66uHEPYTLJSyjw8HHn56gW5JIONabV0q2peeylc4cY7SRtLLHowB2xwHpyzxOJaHcnkaims62LO2udNJanDuVprzMtCzoWUM6WpQ3Pw2mko5aKiVMwFvVSFwijsBe5fvcQ5z7ff/FYTT6sA57CyuC6rKZqAxcFkZUfG3cQwDgSrTvdXsOYXGmDPpxOn4wN5XTQW7Fj2yeHc8y2xGMeRlJMasdVqSSG6za0x0RWuFI7XYVYOLOju0qGQS2ZNC+s6MxULyM2UcJ5n0rJYUpHM4bsxhECLkRrjdu3YEgBPK1kThmZkfd89ZsRMrBT+pnygSjPDviKQV5OmJeKaQbWCwqqaOA43t0Z4PxvZW1jXTMkV7xMX4rJB+Vo1V3FnpHOx6npGqr0EuCQW3gfqMKLKyZpkdAnhCQ3mbw87Xr48sSyZcfeclDOn82wKawmFW2pyUcqM9/DsZsc0BIbBE0dPoTIfH5hPs7qVr0fGKXLzbM+wU/+alBeG4YZpuiUMh63g0S3nckl6nUum1RUwh/bgGPyEcxO4CH5C9f8F7xT05CJGto6EYQQRqlRcSjiXad60750WbVqDat3RBgY9a3hLOrP93WoxOJ7yY8ysA3GVcXcxyPqP8esfj4Oj14itPeA2mNwGqbE+Qui/FcHJgOB4Njwn1cSf5z/xD4d/xD963ffuNVcwnlKzinWgFXV3Rdj+3Lj2t1Xnf07QeJ1U9H8/yTN4onP0odt/rXrOBbb5JCfE3qHIx0F83iVB+sY+PnL8LYgsfMzxf0iH40OS0f65z3HtvlQX5nNt/6MSi6VMuOkrEne0NpCrUNceVKBVX+eRrMXSlExONBdySZS6kq2qX1uzSmXgsN8TfSB4T84ra5opLRNkJrgF2lGJ4vEfWNod8zJQ7KLE6BhcwEvD1b9Q0w/k5c/k5d+QesKVBwuoK6kN1BYoZdCgkEacbgnjLfHw91S5IctIaQHxA7dhz74o6XQ+nZjXRfH2q1aV07puAbuASpp6Z1AZxzDsCYfAbtoRB+VWFMOc19oYR8Wj76cJJW8rPr6WYkGDSlpG3whR8IeR5fYGL4maTlTD53//3fccjwqN2u92TNO4Bco1BCOH2xDBx4Czinup2aBObgt+VenVdPmt0xCHcbuOiv/XIHrNiTVnC76UcZPWZcP6N6AJBB+1gK4r6hboe+cYhoGIJkIqU7uyLjMvX3xPLYW//+M/IDSmaWScBkoeWdfJ4EWq9hRNfnW327Hf702lSKFxfRGvVZOhZV548eIHzqczrRQ1m2oq7ykijOPI3e0tToT7+3tCCKYWtVBqVnWzXlW2BOR8ni1BM2iWVeK7MV6tjZYTp/OJv/zlz6RU8XFSeEtO5jOSWNNCWlWqFxRi5YHVoDE5Z2JUXscyDPgQqFm7CTc3N6qq5SOOYiFHYxrHja8UvMe7Tob3dt81uYjjQGmw5MK//Ou/sqRCiwf8/pa7wzOVWK2VWrMGu7VSckWcY5gmSoW6Zv79379Xz5roLXkw08atY3Z5ITqvBNDYV6JWKWLBc1FlrBgcX3016T3yUKpjTSPzrMlcM0lkJ57W9NnzXnX/51R4mBdSWjneazK5zCfyelS3+uGBm7sbxt3Es68iYWiEuOD9C70mwW+vl2kcCcEzjREXBk24RBe+1lT6tjVHWbMlAoXFOlnqi2IEbYNBbAaRosR8Jw7n1c29tEpaF0v81QvIsG+WsFV8VNjW4Eymul26qYIwn39ZKNSvabztRf1LB1XX+35XZfRxEClWKgDwT3zXi+d3+z+y5BP36RU/Lt8x+onnwzfbZzvR+LUuxVVg7cVbh/HzB63XKkuPv9sr0h2K2iv4H5IEvI1s/Xh8KjiPs65Pqqu+K6mMbrp0i0TXu9aqJnDirzrflzm6uXc/lZygpP3aipHn3XvPsbW63dvrrsr7uiV/i+N987FDDlU+WJ+JIOHJpPdzrR1/7YneRyUWc4mQRyqRRtBAojXTM6oGa8DKuJWclKy7roVcL1r/gEKXxKERLkZCbGZ4V0AKuEJriVwA8bQ20cTTpII3pRyxQEmqdibyD7D+BdKPtDrTWqI1oVZPxduxR5pJOvq4x/lnVLkjt5HaPE2aKUqpP0fxkJMjNEeojlpscahCq93UTSyYGlAyuEJ+YhwYpz3jNOBNGUnlSSvR1F5C6A88hODIVFXWWWetXM+NVjI5ncl5NYKmJQGtMa8LtVUejg9aKXdCcH3R2ABAdJy/0Kv4+jPpt6wHfCKbc3T/dw+gu4oTtWwwDr2vlw5JKYoJL1WhPGKKYSKiUBTbVYfreG8vsNZMXUyr3+s8MweFKynkxWSN7W8luXZSfP8TXvujpnl67DRNdub5zDLP5Jzwxn/o3QwQI0RHM1s8kFJiGEZKzdRkiisbOkyvWSlK8F6WS8AOl0W8WYej5sx8PnOajgZDkg1C1KybUgyipNdByEa67h4SyoHJmoBap8J7z36/3/gUVBUxaNYJc162AL8nQD247dvsXZnaKsfjkeN5YXwWiXE0d/UCotBFVTzKlFTU5LHDnoCSC841eyZMkAC3dbw0wbx0zfqcvUTG2vHBuiEioU9QGipgoE0/Tymiz2NXopNB1woCuVVCq6SSkWVlngVxmnAp+VqoeGKK4CPHk+DXigsJR8aJPo89pttNhRA8627URN8LPogF/mwy/70b14yAr0movSiETT641YZ4jNTtaK6BtE1OEne5Rz3xB4dzjdoC4hXz5gxmB2IcNrTT0d6tXf8/+/glyJKfevS1ZVtXbQiqVFTcwBR2vFxfsNSFXTgQJdqz8kTSwrsDp8cJ2lPk6o/hJ7ztHrzRvbmGhXVo6QeOz5k8PpkMviNIV4DZ1TuHNyFvW7W8KWT6ydE6xPaDD/Ty1Sc6JB97jT6KjP+Fqu+fbTQV63l/8vZmB+qXUK/6NYyPSiy+e3gGp4bjJcBr1Q3nNCCTHpwYMbV2MzOroIZhNP7BwGCB3+mohNWcMvv9gTgEbnYDpQgpe+alaQCRwfkZF1bG3Q7ioOpPUqEtrKf/Aet3yPJnpBVoQmme1jy1RWDCyYCLByTcIeGAG59Tm+fh2CjlFVDZ7QJO9gQCElWRaW2VMHoO+4laIrUU0jr26JIQIz4MDOMNKWlg3VVZxDniMBKHwDgOFpAl1vlIyWdevnxAAyioxXE+n/jTn/7EfHrJupyoy0Jr6oNRy0xrBWcBZUPMSHAh/+vKs7s7nt3dcXNzo9WTHuRfJRlwcbVWaBhUOk5fDb66GlIDfK2EqBCd1pO/mlnTSspp8zjoAXHHgedatHNisJjGJajSYNZbEhRVNapUc4lWkb3z6YFaKufTiWEc1cTOX5G30aSl/3scVXY3hMg0TRtJ/Mcff+R0OnF/f0/JKsHrLVgLw7ipJ7XaaK7imjCZhO8333yL857jfCZXvZbzvFhVmO1ccs7M80zOmWnSynYbhi2IbmL8iqSfm+Z563TVWrZAvxvlbR4nolyaGJVf0key7kUtCjHbTXv+7nd/4F/+6Z84PdyT5rQldNWSDD9cquMdBjEYnGpzCUd5Ij/++CMvXr3iJmUO+wP+9pm+FJ3Dh5FXD/e8vL+HUpimHc++/ppOUndBuUWlQV3rljhoNwewrk4IQu/UBfR33sMQUa8Rv7OCQqTklVJWzueXKGdBGIaBWiNz9vg4EIaJYXdQTxwfiXEixolxuCOtiR9/+JF//8ufePXyR169/E6THC/s9gr3Oi6FNlvyXAqtNkpdjc9Qae0FYsnGOESGGLi93TNOkcPtyM2tdibXdVUGmojKc3stangfcD6QU9a5YM+wdgjVm0JQWefgHDfDjXU1gilXdflQNZLshN41LerXUsH5SMWRqpDr63r6X3J8LonQn3osv+T4VIHVY8JqaeqdkFtSqOlVYCPimPwOL57b+Ix/O/0L9+s9p3Tk94e/5/nw9batXrm+NtV72yhm9BgkqlR8y9s9rp38zZuyuf2YH8NLaieiX+33sXxp387GSfiI6nqvPnfZ1ndyH35iAvL4eyKiErNPDGfy/KWaD5M8OrfWNrlgfX4uMLTXhhVdesLwPpL3UwZ5/Ttb5+IjuktPdTneNs//GgLr62PfPGPa607o11yOJ5Mz2vYcNpp6v9h2/hquwaccH5VYpFWN7Hq2vBGNLUhD7EHuGO5SthvR/QOcQWFqLsz5rA+VczjnGXcTfgwgcDytJAtc16KLiRd1kxQnNA/NNxBTyZB1M4KrzciQrZGrqlY1c912PhDGO9zwNRLucOONklDnxLIqjnpJmNb+jA8CztGy0FrvUjSr6DvjRBRSquAy7pxxTqvpy3LaqvxCoqSBlgeoRU23FnPhXmeTU/Xa2myFVpTgm5aFsi5YZKHXs0FV4wSgPxSVNa2czqctQA0dI17yBj+rtW5qTP2/O6dCwGBRspG+RWzxuoJutFoVBrWu5JS3bdRSyamYk3Y14jL68tkqVHWrVjdxSG+SWBEqeM9g3YLTaaUh5FwUorI5jHdICRv0yFuC0YNkbypS46gGgq02jvcP25yVEBFvRHJp1lJmq6CLOCQ4bm9vqa3xcD4rfM88Vfr83srZYMTszLJAzsoV0OTG2tXeEZ3j7vnXfP3t7xjGHbUWXC4WlMt2zUC27detmF/teZPN8Vv9NgohDkzxoEpi4460nPRLTu97K4V5WYghEIMqcolk1pwZrHPWp1Tv7tRSeHjxI3VdaFmx15oVeNakhYAhqmO5iN9+34nn67Iorg5NYLx3JlnraE6giCV4QaGCompjpep8wLhCOZ/JaaXWtC3w4iu1qbRsKBlpCcmZsggSJuK0o1bHmhu5zroWBcfu7g43ROJ0gFYR13B+0Fd4uKiT9c5gLis1F4rT59wmr8KxsuM0C6k5igSaDAyjdniQSpPCmiqSK85ValHif60WMogS5DXRC7QGa67aFaPgTsXut72gRIyP1Yywrt2UXNwmEqDmjJWKU9GFX2BsL+kPCAC/JBTpKSWZL7Xfn7u/pyvjJg+LV1Uw+0yUiJdAkEhDA+uvx2/Y+T25JXJNzOXM4Ma3unNfJxmlZvVlsZ9dB7v+Sh1q44C86zwe/f7apwHe3T15PD4kEboEzq/L5j4mWP+c+/MxlfuLUMrTx925Mx2Ccw1huj5OvfZXHhW8+5l7zDV5nPB/CJ/gXeezbfevNIB+X+fpct+efpY3jg5i6u5Xc006BPh/nu7FRyYWCy50Em8zyINT52entuw5LVti0QNTCY4og1ZQFb+jZlxaqiOOA8PoGaYRFzRwPZ8W1jVpAOMUiz0MCnnAOS1vugZSgBXaghiJU6EOWgkszZualccHj4+RYXeLG58j8TkuTtRcaXVWsmyprKmRs7rvhqgv9mZwA8WWC7UKpbDBvUrpqjczwzDivWddTkZMznhXqHmAPCIUpGXW8wOlqJuzxIhrgYaScWvJVFNLKrlY4N+JwwqJsDAQ0IC95Mq8LNv9ikFN+XrwXoxgvF5xQ1J3lr5apPs+mgXtYhAcZ54UCnfKpDUp6brUTTYz57JBjwTNh2prlgxAMydR14TmKq05pHU9HA00Y4i0sbGs1TwwLBCziq8zbwqs0tOPy5nPQ092Q/B6L8xR/Hw6I6AdM+m+ALqPZtCsS2Lx/2fvT7vjSLI0TfCRVdXMAJB094iMjKxT2XV6umvm//+RPvNlznRN1cmqyj3C3UkCMFOV7c6HK6JmBAGS4OLukVmSySAdMNNFVFT1Lu+i293vD1QRbk4n1qRmeDnpNYPU1ZD6uuuJW0oZ5wYESI9TXehV/ejmxSteffcDIU4KebLDK2LE4aYnhKLz1dviIirV21qHIrVhNqcvnzjviNOOMM16j3TAvXSYWu1mftotUudrlzMhRg3ioRsQ9m5Yq5zu3iIla6KhM0OV7sVhHXbeYZ3va1+To9og58rppJ4ciNB2MyGo74b2M/rL3iuB2/kJg1DyWeEKqwn+mhZqXmmtEjZiOiAFTCeRU6BWVU8Th5nUN0N6UCQIeJiv9sTdTJxuNLHoz4paG9alDcqXs6pQueqppUs317a9oAWoYliLpeIQ4zHOM7fAtQsYVzAkcl4wNILTe9daPXeM6evSgfEK3SpCqZmUU7+Hqr6MhqePdfoMdIJ1rSt3KVxOqnQvC/0ORrak7tcYH4O6XP7ul0guntr+r5HUPDY+aw7MANa4DV4DEGzEG4UGllaokrkOL9i5PT+uf6ZKIdWV0B2iL7kM47+VH6DBVREV36hSmOysXUferbTrDz5uLvfUzx6DPn2QXMunrZ1xjEUapncIniJLfw2uwYe6UwpvOlfFnxoNwXU5/ErR53jvKozxsMPzFLn7MnEYHJXxjnzq+D/3nvjc7/1WoVIfXFe8O6/bz4zGM6OvAYOs37e1oc1/W+f6tcezEgsthple0ZRNJcZaQ+4VvlpKr6x57NTx29bQGpRcON6fCYW73Z44KelWEFXpWRVSs9a8BRjeBByOYC3RBaKfuPIz3iSm+hPt7u9Y859px3+glqxGXBKoYmnicMw42THt/yM+3mDn3yPsqC2w3qvCTcmGJUdSNhyXzs0gYf1RPRLcvFW0R+KUctb9DVhKx52PqvJuF5CaqXnh+PbI6gx3VI53t9y+fc26rjTp/hsd5iNYWhNSLvgwcxN3SFXokQZXSugeyj6tZk18eiAovWp+PJ36AwSc1SpxyZoI5Jw7J6J1NSsdxqj/hPNqdmgxrFlNDJd14bSeWNYTzgq1JJWQBYy1rGvqkruN3W6HwXA83jMC257/9CC3UlHis86t37D/MUSVCw4TYb4hTDt++P1fczgc2B/2eGu5v7slhkhO2tXagqs2Ok2dzNs7LD989wO7aeaf/uGfWE8Lx+ORVtvm5L1Bqbo8rbN+66rM844qcHW18OOPP9IaTNNMjBoIn06nbQ2Md9KoMIt0yFJrRDHEKXB1eMGLlz/w6rvf4f1ErQKiAYLpRpOtqjt2sYZaDLnmfn3YnNpTSr370qExLhDiTJhmfJh6TNmVqap2H9aUtGvhPDc3N0zWEkFfurWSU+LN27f8/T/8Iz///BPLae1+Dppc7vd7VYsSQ065/ym0upDLj8Rph4+qdNaaAxOY50DwhsN+j3Ue5xUqVHMhrXksPPbHGe8Mzg5+hWBOBnW4Lr0zpdyJKvWcaFrL1S5skERjHZiEaf+kQZdzWD/1NSJUp1YpLfit+1CqFiFKdSAWEYdhB1isC9QimxhBLU0d2DsnDOu65GtlzSdKWzktBmvVV8Nb8M5wtQvs5j0x7jktKoigelPKJ7O24YDowIqnWacJdec6SUMhjSVhncN4xzQplyo4oclCawtpfdt5MgZnH4djfOvxsKr3Wwrqf6tBzMOhEJ7a1/qlItRwrdDj98ZD706MqMUa904nwhtPQ/1dfjf/Fc56vFGvmdQKaz0x+T2xJxpNKqmlbuxmSG3FGke0/T76Suenx3rRMRlDnr4+WxL0zATAW78V0EbSUqVuhanHtvnwGD9ljONWyNhFZ4Cnk4naClV7jAxuhdCoo3P+oLsAj8ORBHmH9H35+UEqbwwRiQfH3fd9mfw8NjYEylMdl8+4v37r9+LD8Q7sDfN+MjZyiM981vzaghJfYzxPbnaMXt0YbrBa1e7a/c5zFi4F6K1/0b9HADlcqK2xm1Rprpm6qklXNQNmZc5QF6cwjugMnhOu3tPav1DTn2jp5x54Q2mOZrSKaN0O664w/oosV5S6wyT14xDUlK9VlTdV112HSud2h/DaukFWx+V3uIexTuEImM34rtZRVdAFVXLSqqpUPV+n3ZiGoTSUKA4YF8EGxGjQhhGsE6YYCN7hrVFVosWSs0KbmilUtEqpi9AyWhNtdJRoUEFcwwqU1nHvGGrnV9ChZc6e29u2S7luhONNSlWVkYLr5OGmJPRB4BZU5clZt83BwBuOMZSlREQhbTSa0dqYtXbjqvhphw0Tcd5z8+Ilu92OeZ6prwrTrGaMqftnLOsJsx0rZ5GAfoNO04SIcDhc0WpjXRQaY0yX9zVGpVcNiqs0Wpm3GLRBpoaLw0lcNeO1Ru+c27ogzntC8Mw7NW4bbtyt+4LEOLPbXzFNMz6c+RLqTt6J6Rt5Xc9HXxayXVNNnNw2f8653jF02/c20r2Ma6j3nvIyIJtCiFGvV/A0Ay5n1pS5vb3jtMG+LLtpp14PTg3ffAgEP7EuK6tLNBvBepoYShOobePvGOs7qVm7GA2htEbOravF9U6XQJVVjQC9wdsuAudcTxA9dNyxUk8cTQDxulZNhOGh0bsZRnTNKxe8AEa7P6L1XWeFDTTU4zTvtACywYounneYDsGzbQuuhoxua60bUOb+POxf6dv0zkFzqChFQ3Aqceyg1qwdytZVwET9T0zvFooBMTqneixWb3U60V/071YKtVRK6R1lUPL4rzz+0l+Qv+44B7sbBPAiqRjjYZD3DoQDFTjBGIw0xF7Cj0xfr2d1KOUAXASlIlq4wL6H0/8aSdpTQdRjcKWvPS55DU9BYZ7qbjxn+x9NgozByEUnxXS/H2A4nH98aELAB66FDL6JefycPna+HyPa/3u91z9WOHkocLD9/gu7Y7/l8azEYqBwBvQpdFdoRIi9aj6MtwZOWaTSWumV8y6JOU3sdgdKUTLrm59/6nyKRE+XexU5YnzEOd9dlXfsJ88UGlH+kZb+lfX+v9DyPVILOXtVfTKxQxMmdvs/gv8O3Ct+OkJpgDnhfcY7R7gM8JzDGcPe2W7spko/0oRGwRmvnYVOOt/mRCB1laFlOQHaPXj75l9xpjFHw/XVgTjNyhexBxoHalWI0LzbgfGok5dQy8pyfMPVPrCbPVdXMykl3r55w/H+npwyNSfSop+1VtWplGvUVWy6L0Wjc2EEVcUyAxqmx+6M4t/nKXSJ256cdPI2KD8jd9Lx/fGOVvMWyK8pqTlerQpjmiaM0WREH1PDA0OdxmsnxSJgg3ZGVEFHnY6v5wMvv/8df/0f/jeuX35PnHdM025LMG9evERENrJ/WhP/9Pf/nfv7W968/kkd3HOl5EoNGmDPu5kQI3/467/GWsvd3R21VUxFoTJVgMqpJF3XRXHyzjV87/pMUyRE9Ts4LSjfQUQx72Finmeur6+5uXnBH//mP7Df79kfDtzd33F/f8+bN7dgLNO8Z96pR0IprScljmlS7s3qY+cTNKqomlptDdsaTiylVpxrPWj13RQwKllcmsrprisN2damiErDppTJI4lvlWmeWLrDt4hwWlZyLqwp44Nn2s384a/+oPNdG7spMs07Xn33A8uycjqtnJrVzmA3vExVkJK0eOAnxGnSdnufqC1T27kqB2o+mUul3mYwhhgc+8kzR8+Lm4APjnny5KT315oKrVlEPLl5BIsPbmtMT7NCHn3w2Gox1eKavlRLzpoAOvWXqJ1MX3E0dZtQIYI1U3LTJFXG+UFpSb1WaianLrechgRvVwujJxUjaOtqVW/nzOFQuboq/PDDK6YYCVOgnt6S8kpNt1gjBG9wXfXN+6lDVNQ0D2OxcaKKpTRdC2tVvxi9rwAOvWNsyGl5zuP9q42vVXH72gHLb7kS+PC4BoG0iX2v+rzB8S5Izk8F4GM7oFX0WsuD33mCjcqjEDVYdMZh7bwRtXd2vx3DcHCGc4V8eF5cHtvHEoKNME7DyLvV/HFuCsZ6V+bz4Tx86vW87D5cQn+VgK6yre8laJ/RGRnjMbL0U108ZxzOOEpT3yIN8M9O2U9ByIZ4w3YdOudidB4uj32cZ6pL70S597YHTwe7H7oXm3T1R/n8+Xq4r8dgXZeQo+fwWuDbJD0f4lq8+7kOV3/w83FEMv5tRl/SfNPj/iXGMzsW6szrh5KMUzMmZMhF0gOZEUhGBs6MXkm0xlKq8PbtnUqqFnVmFizOx161dcRpIsaZGCauDxPBG+Z4wrZbzHJPTv8TKbe05UiuhtoihQm6rrP3My5eM13/R8Te0MwVU72HNXF/PDKYCLFr04cQtc3cOQSmY/ZDNyXrp0Yp6nY7qusb7Gm/wzDz4mZPzYlaEofpRt19p4kYX4AJLKcVGz3z9cRyOlFrY8kwzVoVp2V8cAS/Yzc5puiIwWHw7Obp7MyMJkIhTrSqQaW0urUylShq8T5osF3bpj4DjtHQdp0IXatQUma4h9Ornq7DlESENWVOp4UpRqzpVWmj8J35+npbC6eTqny57udheqW61krJacOqO6cJjlbOIyHOfPeH/8DNy+/Y3byiimFZ1Heio1ZUeaxL+1rjiFPgD3/zH0jrys2r7yhJ1aty6ZK9ufQkwfHd99+TUuLN6ze0nsRqxblC915x1il9p8OZlG+g3Q3vPXGaOIjKy7ZS2M07DocD/8f/8X/y8uVLXrx8yc3NDd5rEpLWpDK0qfRY2jHvtaNxOi2AUHsiI60Rp0itM6UWSq84q2pUf9j0qpRuPxBixAVV1bq/e8NPP/2ZH3/8E+vpHotW/tO6knPm/njcXM5LrYTgOR5PW6JsrENEoRQNQcRwOq2ApQL57RF3LNyv2iETLJmzwti5qzKSSfXmaFKh1l4gmLshJhgKxoN3FqrO/dVhj++Ywzf3ial43DRhp4lp8oSpkFJhOSVaFWpTVTN9xliWCsYKPmi3wDnDfvYY08BmUr6HlJmnCXAKC7H6XetnqgTqfk/D0sRQq6M2hU8taaXUyrImfMyUXAnTECpoF904Nhinuhdrh/C0JGrnNcXomXcRYxqWhrczWCX6qUJbg1y72p5QG2AE77upZAUjHiuCM3qhG5ZSKkWEVBpp/XU6Fl/rZfi1X6p/qS/pEThuYccIKvk0mM4I1CyWaOet2PPOMEaLWhfwoIfE6u2jA/7BGUZ0eayjS/qwYvsY0dfI+10DayylV9ed+XhF+LFzVR+CsgXtlwFvlkxrBWv9llB8TC3qqf19yrhMti55RfBuEvVO8GxU6OZj+xzJ0eAcwuOBd5WCIDir/j7SZOPYfMr4MDTtcbjW544nuTifwU/42Br83PHJSUWPfYEL/3reSfweHtG/ha7G8zoWwmb8Zd1FlQLZdNbP2ZZsM2Z6oABsfIR10YCr1dbVmizWRjU1855pnpjixBQih9kQXCbYO9r6ZyT/RF3+kVYzNTdKDVQ81Q3pUINx6ghu4wuaOWDYYe2KMVkr7G04XFcllRqDc/4dz4V3YSlnWFCjYhF1MjVG5WS9w1vFSOcVahbmuFN4zLSnyUEhWlIxzhAmT8raCamtgLU4P4yuLMZHgrdK+nUW1+yF2dhQRbJY77s6TIMevI/kQESDtVKG07VeB2MNXbpAoT2CKjp1b4RNOcmM69I5MkWr2a0Jxp4f4s559ru5806SJos5q5RpT7zIvbLbg9rhLo5RNbHoI2Hec/3iO/bXL3BhVkO6Wmg5M1Ii2w0IQwyb4/b1ixfUUvExcnf7lmU5dr5P25TJrHNcXV1zdXXH/uqK5f5W108tPfXVcxGn3AvX6pasjaqQSq16ptlocucK1zcvefXqO/73/8d/5uXLl9y80KRiJNqD2C6YrXNQSu2kd71INSd8CLRa8D7iQyaUiHe+k8vzOw9EXZtuSy6Ms+RceHv7lrdv3/D29g2Slw5xM6zLop2IXtkeamAuaYU+xNjlenf6ktigXloEMEYQ49QwLydSPeLDhPeRYvXKdGsPvUdqJ4vXxpISpWasCDEacIIVLTKInkxH9+haCzEorKk1TkumAvsixKBwPeMtpqo8soi6etMa0gGYpfREtQjBa4LhgsUZwYhRtadywruKtQFjd3hrsBacBzGOZgO4iIilVk+pQqmCDYFcKsYmnM9UX8hF+RKy3XsXCUYXpwBNulLOlKIyzd5b5iUyRa9JRjSa7vdtKQaq0ZrBOH3uYAXboZtSFApn0a6jsZZmlIehnUEhlc+Hcfwa41N4Gf9eh4j0LvN5Xj6WVFwGryPY9GZwlNr2mfc4KOO9zfn9PsYlXOY5Ff2niNFPf/9dCO0n7eNBsNe6mam8pzzVk44GPJDHfepIHsXSf+IxPRlwXvz7UmJ3qELRE6SPVeiVofd0cD86NIJKoLYOG31OYvGh8TXgar8UJ+tbdQLeIXDz/j3z1L8vj+NyDfylj+d1LPpc1V61d06ViQxdK1/GImYLxDXYUIywIJ0xb7A+sp9mlZmNmlCEGJinieAdcxSor6H8Czb/Paz31PKamhdqyaiSpaPJDjEzmEiMV1gfcX6mNMdp8bz+p38FM4GZkFopOdNK6m7HlZJXrHOcjneEacL7QJgm7ZrEuFVfSymjCKmPvCaklLakRDpMpaYF094ismDw5GQ5niDJHbVJD8y7QV50xMkR/L6b/UEVhXcIjmNOHHPlYDxGHCbusGHBZuUlNGto1oJDA8FWoBQoGZHWSddKHm6ilX5tt9H5W6rOpRTS1mVpu4d2P1frI0PtI+XC6bRwPN53B2fUNds5Dvsd67qQcmLgQ733xBiYYkRESa9rWknHwrIm4lSIzjPNO37/H/6WV9//nunqhtwM//rjz5T1RCuFVlTxSzsJdktEnQ9455n3V4QQ2c074jwjtfL6x38FA+uyEmJkMnB9c7OZ+v33v/uv3N4mTnd328LWTpHyeCR4wCuUr1ZyWskld5I+TPOe/f7Af/4//zM//PA7fv+Hv0EQ7k+J4/1PSGs4LSVjMFvwHqeZaYrMxrDb7UjrynGO/dwMKS0IQq2Fed6pqWItG88oxpkp7pinHbvdgd3+ABZ+/PnP/F//1/+b//E//o4f//TPSFXzvVGJlJ5MgD5UnXVKpnYBg0XEsKxZ5ZhDJE474jTx8vvvCCHi48QpKZHfdC6QSD+73onUxNwgLWzSxjD37piliiE3SyoqwyqNXtHvbrVZOB5/xhqFiNEsd7eJn368o7UTIppghjAxzXtevNyz7/yZWpr6qyTtQLWUWYsjJcft2xODr2JlwprAMVtCsMwB9tHiHZT8Yyd7e2y8ARuxYcKYvp736odTD3slUldVjlPYZD3DzLq/SM25F0/q5hDeWkXWDnN4ox1gZ5SH4b0lRMc0B7x37OeIM+BsNw00jdruGMVJ17TwEULnSuFp80wVSA1Op2+HT//Q+FzI0f9KJnQ8rN5f/v3wc+P/HvUp2KrgCika21BHbftwYx0+KSB2C4yeguM0Uf+ch4nO2Mdm8tg/9VDa9TFo0/hdo23O0s8ZD8nKk9ttXh+DgL73B6KdCDZyqkekJcRokP0hONk4tk8NTEfwLv37BkNtRYuBxr43b040FLuEuAmw1gVrLN6GLol+rsBfBq/O+o3wbx+BpqW24oxjsjN39ZYmlcnttrl+yln6Y2PrpPP0WvnU7XzqeOoaPJyTy+v5oe0/hFl9ynfe6749TJDl/d89JH2/t82LuRvHdNlB/EsazyZvGwY5UqilB6IyHkiXyQRbC2j7tzEYZ3sV2xF8wHnHPKkUZYyBefJ42wjyltZ+QvK/Qv4RqSdaOSkmujZqDZ0z4LF+xtoZ3DVFPGtypCSUJiztFmNXrAkXzsL9BV97NboNKTr1NcCoC7E4DxeLwl7iGo1G3q0WsjRayRipWFkp6UjNJ3IyNPFUVsR6xCiJdcBFTN+6SENNerWt2KqwLCsiBaisywKtICVxuj+qPC0GZz149UcAwUql2oQx6vAMYK3HWzpGu8OkOlSN7cGvFU+aPf+sQ8GcCxrMO0sphdPpyO2dYwqBXQ+IDbCsKzknSisa+Hs1v3OdxzJegErOLnjfsN7jY2TeH4jzHj/N5FKoVVhTIZ2OtJKRljshVvDOnRMLV6hOl3DtRnchKpxumme9NqWQc9Jj8Zq8Xt1cM+/2pHVl4Q71QUHdaztRfRDSHcLwdGi9Au2c53C44ne/+z2vvvueq+ub3oHQfZ2O2jHx7kyIz2nFB0+tuRulOYxV74Z5nkn7HSCcjnekdPbjUFK318TDWE18gnZrpmki+sjd7S0///gT//LP/8hyvO/3pb74lWg+EFR9xRmgd+M6vgxQ9SdrLNZP+LjDhYlGoDSPFEMuen/HqDA0Y60GLaLJi5JW9Do5azFBuw+awAo0QxWjsKk+z/o8GUZxQmu9OyXSE56G1EKtK61jkH0QUjHgInFVyWv1lmkbcT1439duYDVdCrlVqijW/JQMqRpShpQb3ipxPERLtAEvmsznVLXj1EQFKgSkChaPceprY7YgTXp3r3crepdKz/cMlxpGkyJtE7pQ3pohJKtyxd6R1oKzBu8szmnnL4aGc1aFIFx3N2d40CisCmMIxlDcX1bH4n+Np8fDiu4IwMdoW0Ho7Edk+r1u5H0C8IALwXinW7blYp4m8V4SjJ+qxH7JGJAXhQJ9mXP8gH+BdPUsQ24J14Po0b0ZP/vU4O1TguCNb9X/PbqzH9vmgLj1rbzjJYJx2pv4AFl/u3bS1wmDf6Ei32tbt4RtJAL2kWv3OcWBz00qnhofO4b3um0PkuHnnMNj6/dLpXcHXHD894fGQ4jcU79/Lrfk8nh+yfG8xGI4EvaDTBu0Ql/4l80fOBs7mQ4hUV6Cwnl8CFrtHi7JoVe3nWDlBMd/geW/U45/D3LsLrhOVW2K1cq+CYiL2OkKGw4gv2NZK2/uEsvauxL5uBmmzYeDQgaauhtLK11VyVJapSHYWiit4Jwn+NhhLXar8jpj1YxIhCqNUrRK2XJCHYEL92/fshyP3N0tYBwuRqbdlcJHQtcO77Ok3Q8wPSDa7/eUWnj981uUH954+/pHal4o6R7XoWg31y8JLhKsA2cxFhxCTifyasnLCTCK3WeYr6nilpRCzXoO3qCkdWe7epcB0zQID3r+xurtsa6JtK6UvLLf7TCvXtJaxVnDabnvhO+8waeMNdoFmHvL1Rit2FdBUDfyabfn6uUr4v6A8ZH7e/X+yGvidLzX7QHGqJrFcGt3vWNRnKfkhI/qznx9/RI779gfrliXE3dvjzhvaFKUkxA8r1694sWLl9RSuX37FkN3uRY19csp433WpGiaO1wpI7WbvcWJV6++4z/9p/+d3/3uD8QYOR6PpHUlrQvL6Yi0RnCuv2D0e9474jzrmnKeed4R4sxut9PWtA/c3b5lXRfF/w6RhBA0FzCGGCfmaWa327Pf7Zmmif/5T//IP/z9/+Dv/tt/Zbm/hXcqfT24MBo8jB9p5+cMqcM6oEPw5j1+vsKFiSUHyNAkk/KKMYYYJuLkmWIEtEOQU6/Ut9ZdswPTPHVyfGWpZXt0673cujhAr2yObmc3VhwtM3W9HlLG2ik1puCOibtjIYRIjLMSsp3FO0MM6sI+xwMxzJxyIbfKKWclZpdCSR3WWBvB6hq+vvLs9ztuwgErB6iG0/1R154VjFPo5LoshHDAuYk6ptgZDI5iIKV+b29qeOoqP547tQyYnXpo6Ojmf3bket3M0ztCULiU9455CkxTYJ4iMQpOwJmKsxnXE0eDxYljsr9Oa/0vofPwWydHjqDmsisxhsNpNbOVczWcynDCtr0LuLk/P3GKo+uwdRouKvMjaXkqWHyKf7H9/oKcPbYzxscI2AY1f3PYJz/zqWOcm7eB0gqnes/kdkQbmdzMWhfu81v1/vhIOPScY1DtRyXC56Zd/OkT5Z/fqbRb9RFJdSHYiMO9I4/7sLt1uV60CKqSxeNc36Sf9FxtOCcWF/LEcFHBl6fP+UNdp68xHgu0n+LUvPvfbUsvHnp/PLWW34MCjn9z0aH6zG7Ox8ZTULmLDwzU+vb5jx3LUx2Yy98/9u+vOZ7HsejPHsWtn/HrMAhlAxilw9ouF+vcho13ricWzvfqtcdGlWL1RjDrP9PyT6S7/xvJrxE50QpIM0pAlqgQjnAAt8PEF9jp9+D23B4dx3LilDOnddHKbU6o0GXjuNxqBdgHBuGolLJBdyYOeJTMTVMoQ02qmoNIV3MVahs+ED3zFyGtC7SG3arb2u1orVKXhRAnTAhcHQ6EGAjR0+qCNXCYdnQTBkpNLLGQ0kxJmbxWZNEOSC33erNYy32r3bjOYYJWj22HzbRawHYTOVQK14jB+hkjDUwBMZ1fMKrF4N0ETm8o571i+HvVvdaMGgQK98eVZU3c398zTyqxenW127o6vnMrWq2c+zIqRbzfa8C6OzSm+cC027PbXSFVWE4L60mvW06J0+leeQfOot4dhcWc11qMUWFO84zPWh23QM2J/f6AQYPH0/GenE4Ep0pj0U+8+u47DIaffvwzJS2UknBWHwbOaaVsBL/DRM87xxQif/M3f8MPP/yew+HAshw5Hu85HY/qop4TuTulZ2t6V6xu3B939Ns9sN9fMc07ar0mhMj+cOBw/YKUEtbfYp3B1e5qvwVCSsjf7fe9A1L4//2X/8L//Pv/ydLna3xu3LCD+3RWAR6kS1UHmeY9cZpVGckYUs74WHDes99pASBOkZxXEGEKWl03ZBQMpYpmCg2qhEiH/RXW9UQpmdMpIcaDU0EHfS6cFdnswJAbtvut9rmrNRB6wtHaJZxLq5EKa+ycIGtZUqPKwtXBcTCO3WFiB+xK4P64sK6GnAd8qW7Xa1kghIWffrrn+uaaOEV2u6gu9DlTlqRr2USMnbBuwkvrCmUrJSXlrujDD2LU5NoHqg+9u6sdiyYN6c7qgx/FeJFdVC+lGXJuqqxnG8tasS7j3UIMHmcNU1SOV/CWKYYOq6ukdDbL/LXGp2DEf43xWzuey/GQTzW65JdjBMtjrOW4dS00AFUYjTMeb999zY/AY+D4H9u/leeb3cHw32j4/v6xHVY1IB3b9z+wJsbzahREPnV8TJHKGqteHCLklgg2EmzkJr7qxcX8zpw+Z9tjDJdy131CimQlj38mlMUai8dj3Z7ckipYXcDeHlOyGvccQG6ZIlmREFL7tQkK/bqAVj0cT12fxxLyr6kC96Fk5aPFAAFj3CcH1R9KMkQekO37s3mDe32FZ9qnBPVj3Xxq52N85qkO4sNE5rk8pk8dz1aFklFFvJRW7JKc+onzBDinAa9zKgE5OgfeeQ3yOq7YWbCm4qQg+Wck/ZmSfoJ66hVPj7poA8ZjzIQLe4zbQ7hG7J4qM2vJpNK6Xn+hlgylIFIQFEqkRGutGjvXcYlN8c8ud4x4jQphMKa7H4sqLskgaaYNzzhat2ldFP7QZOtw6ANAScrSNLnZeAdzoOSCM7DfTwMvwf0pde6CR0qhgCYdHbokNKQKWRaGApapOs/G9wBUVHvc0INLAelBlxWDyuoPxSHNiIWuhITK1lo3KtoKR9kKqz0hyUX9INbVEaPHWOnX1mHMBM7SandAp+NMrapwWR+JIsR4IM4zIeh8l5y3Pymt1KL4dIMmTLWozC2wvWyHIoa0tnmdGAO7ecdYoGrIJuT9oi1wH9nNM+lwYJoUMiV51cRp8GhkVJs7BKoHw957Xty84LDf45xjXZUYfeoQpFaz+pfQ5Xa76pTra0ITA7918ASwHd40IFwhRk3GTeeTXOBYB7xsmlTFrNTCj3/+E2/fvFaTvvFw7hAnTR56HftCuc12OJbKJ0ecV4xx6RKspWScV44JpmG70ds2J724gImIqIfLaDQ0EaT2JHlTxcpKPpbRJemKZMZA9w1WCEf/o28JTNM1iO1E6AtvBtufL+NLIme/jFMq+FjwJbO389bNaDVjxHXvCiEXsxkIlgqpCClXxDrmUnChr71aVKLYOlVvMx4xKpdsQBPIVvQ5YkN/8SjWubpG690rFS3wmyy3NFWAktoJtQNO2v/e7lFpery5YqxitYOrOGdJ0RFDIwRLraqE5R2knJ73eP/K4/Kl/KHq51/i+FrB1Kdu97FA4ZLP0DZ51vMYwXy7SBIMF0ZoDwKQr1GFHgpHQ851w+BfJMxbUvPE+FbrRDsh/sw96cHj5GZyS1+FPDvO3Y1Hraik/Jdg5EfXZXQ+NO6w73UsHo7Brxmxyhn6ZLdu0GPfgedfgy+9Hx52KL6Ep/FwTb+3r0+ASl3eB+8+xy46CJ/wTPsaz4nfYmHmY+NZiUUuFXoVzBhDiENudWS+ZjPAU1y+35KJISPrgyYW0QeiVwKwlyMm32Lqz5T7/0pLryG97ao+UJtDjENswMcbfDjgp+9pTKQ28/PrI8fTLW/vj/qyrpWWVlrJtJo6Ht9pBT1X7k8r826vhmW7HbkU7u5W8tu3WHvP1U0hxJlpUvddDWj6y781Wk20VihZCbIGg+1JRyuFarWFubs6gOk4a6PO46fTQsmZ9WSUOG5B8nmlvn17Iq2J9QgpGUq1xOtrXJ6oeUfLBSmVmpWDIVKRpWLogZp1YD02zlhnkC5Zrd2kkQxaQpxBLuEohdoJEwLk1iVCR0Yr3dzQWqxTiEupK+n+BHeV129eK3TIB/b7vfIAgkesZ9pfMQWPD5brmwmMOiLPu2s1OLOeXCslafKQ8srxeD8AXJS8djUxdbg2RrsVsp6haN57SlmRlql5ZRf3YNTd/c1PbzmlE85advs9rVV2c8CYa373V3/gxz/9M+t63KA8fhB4a90UrpZlUW7FPvLq1Uucc7z++SeOx/veXTn25LNpMtw7Xq27occYe9fCstvtmabYA12VZHVWYWIvX9ywLve8fTOz3vuuFOV7IC/EGNjtJq6vryklc7xb+Nc//St3t2+JXuFMupJ0X8YOFbFBptaEY95fE+LE/nBFWhP3SybEmVyqnlNtuPt7Xr953eN82ZI6NUPUF3Oc9D46XL3CR4+LgZRXUioc7xeGMJKxHkzFlEUTrO6DY13AuoARTQ7zgBZK3eQWlbOlSVgME667tROU5+C873MLy7Kov0MuyP3CmjXh3c2B60PE7AP7SWFGa27cLYm7Y2bNjXXNCiOTyu3xxO1x4c8/3xK8JQTH1ZUmonF6gWC6TkLtyW/Dm4azgg8OurKUdlllk/mttbCmpIIAndjdasOQe+JRGdA56dC8S9Lo6GgYQNOGznkzZkt8nbPE6AlfBlH/7HFZ2ftLIx1+6vhWScVIwh7u4/Lfm5fEFvDA7PfaDesSqwMGk3vVfEBvFWt/hhuNYP+Sb/Gh8SHH5XPwSocLN5z178GsLsfXmscRwH0sYfHm8ZDHGc+HTn0UED82RjV7FLy8CR8NYj91RDch0ljbiu/+I+M5PGRnz0Fzo0hV7ojVboyIMPsdznrtYHQPkZFswuPX92Ndx691Dd8J4p9IMM48oneP5yH854MJslxU6j8hObhcV5ewxIa+3B7rYHxaN+L9ROhbj4f3yLfa97MSizFXtvMmBgbcbtVYc/YYsCqFqrKYA/6hLfsRgAZO2LbA+g+0cgf1DXV9QysnatKEojaD+B3YCRuuwB+odibnQK6GU8ocj+oTUDu0wBh9wRoDpRNzBTqZUzQgb6oIJfOM77CU1I3Jcs4Yq94WIXit/se4dQNqnWjdKEvGe6D/zvTKojEGF0KvaAreCc479lcOazzGOOogIodJNyKGeW+JU+NwqOR8opSFwzFSSiGn3FWtCnk9UUumFk1yzh0NQzOWMM3d3TxsnBAfYq8i2Q2zbs2o/GuAZuyAz+g5lZS2gLl1UTsXPNI6aXrI9o7OjlTskqhVsNZpZyMXpi69G53vxG6n7s8Cay4sSyLlohV2OTsP63wrtr22tkFhhgKP6xA7hZG4ruLV1b58IPignSMxrMupV94tPu4xRtgf9tzf7YhxIi0q1dm6dKitFXJmTYmld6SsM9SSelcls5wU6pPWExshXgZUsGyk3ZLzRcdCVa68t9sLJ6dV749p1w0LZ+6dp/YgWvpDaJ5n4hSxzrCuiXVZiN6zm2eCu3gp9I7FuQWgJneaHhjmvRLYb16+4vbNW46nk/p+1IYxDu+nzgkKHYaWe3UdfPCaawM+TBjnqdJouUCpPYhuWtH3HR7nYz9/NV/ENAxleyhbFxBrO3SiQbN4r0m9614sIt2Q0DqMddDvH6xCLbUTFCi1cFpOnUhdub87UpJDatRr77RrF4EDFmsnUoFlmlRGuMvCtnrOeLjLAAC1JElEQVSGe+rflmUtpELveGrno1Y1ylPlOFH0oTSQypqz+siUvEnR1lK3TthIHM5x4tayuXjujsSidzHkTFO8HMYYalPvi1LdL/i6Oo9LTPL/Gs8fz65OmuHNrLKqAzMPbHKi73Qp3vnqu6TuT4FFPBXwacByVom8DBDfS5C+cvfqKeLrc4i/cBG0fkEAfek/8bXvAYvdjE8vA913xugM9SB9JHWtNZSg7wgmdETDOSD+WCD8LfkUD7f/wWvA08fxqXChh0nix+BRj333Ydftko/x8HgejvdI55cdkaf2y4N76BPGU8nWO9v9Rtfz2c7bhnMV1PWOhHpasCUWozvhQtjIp6G/iGPQhMQ7h88/Y+pPpPv/m5rvqeWeVvUFXJLtbhEe468w/oCbf48QKOI4HmFZK3f3C6lXOVW+cnRTJlxTJYShK+/8qNZYSlVC1L5d4ePEzXzF2zslzpaUsNbRpqYk7hjxPuKs3bgDIkJuWQMqUYldayA4g+3MgtKkm19VDhOEYPFToEmktaifMhbrVL4TMVzPL3BWJSRruaOWE8v9K3KprKUprKcUluM9OS2sy6nPWaWmVY3oWmPe7XDW4owhpZXWKiHO6mjuHDn1LoAxmzSoixFjPb5XgBHhvr3thnxFH1DG4IJyNZw1rFW9SFQ5SavOK5nahGnekauwrgVzpcHqvFOivuvV9ZwL+XTi/v6W05K4vr4BdNvjNTWqusMngI5LH1Va7ZIJrYUtqE95JVrLNM0qqSqW5XQCaRiEvVGJzsPhwN1uT5x2lO61UZsmM6ZWSkqs68rpdOrXyrIuJ0ptHI8nckq0Uigl9chww4yhrvOdEJ6LJpvOdKlkJQxLh1nl9YR3lt28YwqB/W7PGx8oJWuyKnqP7fc75lndzXNaWZYT8zwp0f8CcmCd60nSGVqTSqWKoWLZX79if7jiu9/9FaVZUhHuTq8RaVin3itxPhCnSddXXqh50SQ5TmoghyX6oIIISPeH6XNnLNbHjVs1T1PveLSutKSdAdODams9gsGJvghtE+UldYf7cW1GtQ3r9BVruuOGU7PAGL0WGJBtvdze3nFyhrQEXtzscfu5CwGAt4ZpmijiWBKktbAuK8vpRDbdTDBXUvfVsNYS708c9nvmeWY3z5SivytVRSxcaIgxtJI4LYv6lgy/C7kwEOyk7tHWkQd/3h3vdi3efYldBI0VDSzSWFu/zvi1W/ffCqr0Lcenkj2hJwuGd3HyBkTOUqOXZOTai0ubhKt5BCcu8sGq/SV2/7FxWe1u3Tn6MRjcN+n2PBKUfQxn/l5SJaJqjw+O9zlryWK3OTyn/w/29Uhg+Sn8jZG8KcT5Xe7NZeK4meb1JNNiaUb/2zn/QW7Fo/v9wDyO43pqfM59+DmJ3Zfs42Nk58e+e/m5y2uwJXZ9PEqKf7Cf833ydGIhl/v8SP4/krP3igm/IBz1WYlFiBEfhzt2r3AbrUiOydQ4oGfTTW/UoYZijYBEjBSsrLT8E5L+RF7fUMuJUtYOHTCInbFhjw17qvsdzV3R+B1rSqSUefPmSClqNrapGUkBDE26HKm1zM5r0L3BehTz2IrCUG6P94RcmHcqVRpixFiLD91bY4rEaWZ/uFKpT+fxxoIUWr6ltSMiWoFWHLsFsUCj1jtEMlIzMRxwdsL6poZdYYfYA4KjmkYrKnGqLhYFy1uK/EzlyP5mojTLWgKnRcjZsZ9Cl+dU08HaKimvrHkl5cRhv8dbi2nC8e4t6+mEbYLkTCpZDfmmCbvbI6Jk27HwYlQfD2ctuKiE4J61GTSBAsG0iav9HktjjsodmedZeQLeE6fIPM/M88zVbq/eF0EZxCKN++MdKWfWdeXn1z9xd38kxtAlVh2GhohWoge2X6reyOuae1JhFU7WCtZIVyxTrwM9l3mDBOW1kFbBmqYV5zCx20VuXtxQiqoW5bRqZb7zH+7v7zmeTtze3gKGEDxvfv4zpVSOp3V7GIwkQXqiObouWxBoewcGp92uLCyL6WTryt3ta3JOKjuK8PLFNW9fX+G8xTR1MXfecn11RQiB4/FIyQlr4H/727/Vboq9CBaMPTuud2z/aU2k3Eilgd9tXa2r6xtNoINXPkRe8UETstaUjxH8AabYz89irQej5H5jjJo+RtsrZbZ3/orKuzY4LkV7JUaoaSg/NYxNWFdJRgmGGBVycDYQw9Qd1qGazleRrHA/DxgPgkr95oVTXVmPujYdlXkXCN7Rau/TiOH+PnE6JW5u9oRgiB72XuexukabDfXGcsoHaoVcDCV1SFzp5nOiUrgpF6xteD/x3e//qImkNHUFb2oSOHeuT+m8rwGJUo6FJpvSjFJHxEC7qKANGV+00zXum6fHGbaIgJRf3nn71wrmHwY53/o4vgQL/jXGUzCzp45nBLwf0/b/WLX4UyEkvyQE7rIC/VTV95I/cQlXgrPPBA8Cxne238eTEJ0HgZwzridyZ67JY9sb/z3gUo/9/nIoAT0i0Inh5xBuXOOxHb9xvczWvXrqunwsoH6yw4NsRP/L89+6B8/s2jycg6c6KV/zvvvS7tIgeZsRIHFOJse8PezkPuxSjPWnv2sP1rH5aNJ/Od7pwDzypV/i2fW8xCKo0+8GdbqEQI3EwqDypFuyYTY4kKFhJEHNSDv1xOI1tS7UlhXqgkOMx/gDhCtMOFDantYmJNteVWysacAJzpmexbz7WDE90O/wn1FR9t4j1mKqp7Wuq4/gewcGY3plVF/o1tqNdB1DZLIWI47m7jsPJGFtg67+YAARg9iiSgyudfMwxZQ7HzoO2yE4JW5b9cSgJSBh5A2mvcW2BWdBjFepWaPmeDgll4sBeqdGggM74bxntztooLn5BWgjtaEKHdZ5sAZjHa3ptRlyqvQEyfnAvNt3Unrtl9Ns19LSmKzgneGwi8zTxH6/Y5qmDkvphnMhEkYXxAi5ZHJOvH17S21VK84XiaquHe0sQTs7oMNW8dXgTGVTczYgrXfEAs5aplk5EcoH0ONuTailKjk5Z62Mx0iMkd1+T+iGiDl1Z2xpnE5HjqcTx+NR4XUIOa2sKXF3e7dBYlwM/djeD/6MMRu/ofX5Qxol64p1DlJaMMb2vw0xeqY5glSsKIxwiCBoh2PdyNpXhwMgW0dN7zlHbY1ctRpepTGtK2tWc7qKx3qdK+0maFJl3EpFYWxgOv7f0HWJoTNfjPHdh0MJ5iqT2u8zOp+pCfQAe6wrvRa9qjc6PK1hzOjogLfqOB+cdqLYeCvqFaN+Dbo9jEKnhr5B7R0pYwWLw9kOCRKDNKGUCkUTU2kWiyVYQVWbG2IszTiMU9JrrY4SXe86aAJeKrR+LQcBPk4zdKJkqQbbO2zO6Uvn8pk5lMaqMRfiAH1tG2XJbLA6Y7Cb2dg5WW3t3B17GsbwcWjLtxh/aZ2C3/p4D070mcHaZeX80Wv0CTCQT8GOf4vxqZXvd5KfD33uwbl8DtRkjMFtaKLv2fH9KoVU103296NO6Z9YNbfGdT7L+G/7zvxcBrHnuOzzVL4+9ruvOR5bW5+z5n6NbuV7+5P3f//wPN6DJo61e5Eon393/sxnHd8XJE6fM56VWFzd3ODDtLXyL5OKgZ82oApFHSJlrSF422EHFV/+hOSfyae/p6z/TCu3pHyiNYs0j59+wPor7O73FPYUZu7eVlIWUnrTibwamMKQ/tJrYYxKxQkKZxGkS93qyx9M70YEdv3irUm3MwzUjOlmW1hFKPTqn3OK+Z4nw85ZjEA1iVN9TSk/Uo0BM4F9hbEzxjhch24wH6j+D4i7QkygGA1QjKyINEpaSes9Jd1T15+xshDNLYaCMY3UFnINHPNEKWo21kolrQvr6Z51uUdECPOeaX/DzfUNLu5QbKXhxXTQ/dRErUWhUSWpgdx6ohaVSBU0OKRm7LzHecfVixf64CqlX1fDNEclG3vD7A2Td7y82W8u2wNKpbGjVuxrTwZOy5GfXv/Mmzev+Yd/+AdinPibv/kb/vqv/4gLkVKqys3mrgAlBkNU47xSSCV36FHuN6aQ8tLhXboujqcjYuiQsOtuaGj6nAtWCos7EUpjsiqlev3yJa/fvCa3SlmPLHdH1rTy+u1bjqeF12/e8sN3r5iip7XC7dvX/I///j/5/vsf2O8OBHcFD17aquyk/16WEyU3EtJ5RspzKdlRy4oxjlab+lTMM9M8cXN9TZ4itp0NjWrnMDRZdI03YYqxVzA5K5JZNYQS9D4E5cOU0shVKNVQmsKj5sOett9TasUuJxoGZw20yrIuHd44PDC0W2HF4MQg1vez7nyBTSAA5tgrWQZNovs6kKg8GmpB7aAq0bYOAazY4LBO8EE5Rfdv35KWhZqzeq4Ej5UZH6LeZ9apoHQDEU3mS8qYmmg5nl/A1jKUv968uSMEx34XKHtPDJbd3NnOUoj6UUx0mJ3p1zYCqkpXxFHFUroaVmvSOWWG3e6gRO1SWdf1zKfo98Lm0N3/rq0Tufs9Qu0qclUNSFuryICydHU65YqNPx1DLwo1Ywss/m2PS1Lprx5IfOH45MD5I5+53M6lad5QjLKYDV9/OT7ZHO5DicmvON6FdPW/LubisfP7VGfmJ/fTx5CBLS0zux2+xyH3+Zb/75v/D//5xf+LnT+cfUUuxlO4/A/Bo4xRdSv7BDfguRX4zw3EP2jU9xnjS7gtcF7vo1PwawpHPJZIXP7sMqm4TAC3OfyGt9cvce8+K7GYYsQ4T6taBXYDBmFHUmE6NEr9FZwXrK14s2LLHbQjOf0T5Fta+olW1KHYumuVjuUKM/+Bambu10iullQqt3cdp5xKJx0PZ2ENFlyvpG7XxNgNnmUGbMva7vswOCH6+9mpe7RzBh9ih+BYpFVay0hdyKkidU8tsK5QTFIoVDEUbmg+YgmgjAqsFCyr4sOtx9gJhQ4lrEnalZB1CwqcOAKC9ZFiXqmHBi971RLEz4Bn3oWz6VZJlLSyLkeWu9vuttzVLWojL/e0BqWeq+e16+i3WhEsxgbi5HC+4nzpShaW/e7AFCemOBOsQlPm3UScIiEqZMZZg7NCdFZx6tF1OJBi0gGMyEBlcFwSS8r8dHvH7e0993cn7k8rVZS8vbuZ2O+vWJaVbBKltB50jrZgrwpVDazXZdnWnTUG44XmqkLKug9GydoF03tZg8MmQmkqSYyx2LRQmunQFVU+e3t35LQcWdeFZV0oNeOcZZom9vs987Rjvztwc/OCw+GKaZrxIWzk3NG13CpIff6bKIkb8bRmO7ZexQVKyfgSNo8D04nXIvRjHWtbtzfIzK1j9ceOlG9iCYHeqdOZG91Uaw3RqJtzEyF4u8GVvn9xw2mOBOdwbgIM7ug6fEe9WwzgjMH7LsTgXe9kqc+LMRBD6CIOesAicOrXaw6xJ4xq6OgsOId2M9H7sEnviZWM1KL3b1DfiOlwjXEB3JhvIffgvNa6qcKVUjBLxZjT1kZWidlOaBdwznF375lnNU487KP6QUQ1pVMTwQ6jMgZjMlCxVnBW5aq9j7RmyMpr13u6O2tjRJXZ0G6p9PvBmLPAhSCIAdfa9kwSaifrC030+dqaKr3I6PSIdno2HWg5dxvp3/1YBfovfTxFSPxLGM+Bbj2XrPmwEn8ZaA4Y0OW45E780vP5NXxOHpJvf6lzGJ4V2771ALa5jG7ij/u/Ibipxyjn8VCFa8C5HnamPkYs/hrn+pd6D12Od7o0n9HR+5SEHZ43V4/B5bafydOf+5zxHAL6LzGelVh4H84vZtDKtDNY927LzaJKSt5nDAUrJ2T9E5J+ppz+B1IXKEt/EFpsvAH7EtwP1PhXlBa4vT+ypkJKmeNx1cAmp00/35juF4Eaxuk4d1GcdRpYubNylSrTqAnYwKGHyeOsVUnJGHHeE2yg5IVluSWXU/dTyJRsoBmqlF4ZNVhzg/UvQWaQitQTwltEkj5krAcmhXNIAjLUI5Q7VcfB4fwN3k7YMGH8FU0MpUGpCtMy3fNj9r4HYI1WVmpemdeF4PfktJJOp63jkvOiajVZlXcwhtblZMFuyjo+eA0wW9OKtbEcrq6J3qvLtWSid7y43nM4KHFYcfVgTcONTlXrcpndoE968KPBFry5PXK3JP7pp1uW0z3rsnBaElhLqhXnI/PuoNC0KsB6cYOMF6aqQ5Wa1USuV9LFGKxACxeBZUob5GQ8cgQltdWm8p8Yg00rFdchcaqcdHt/4nQ6sqaF1jKtiZrjTRPzbscUJw77K16+eMXV4QofVT2s5IJIfvL+kb5fYwQRq6RsVA61dtnZS9NJ0AdGynmDF46qx/jcZRW7NeWY2O7toB3Dy4ei24Jab5ULERzkJtQm+BdX7JaIweL9hGAQ01iWheOpYEQ7Pt4ZorfEqN1AvTYGqyE0u9lvppjGqH9DWo54q87RQ5I69PsuektpRa+TqOJXLpWSVqRWPd6g3hH7F79DTKDiVJFLMms9db6VdnSkVmquXZWrKnwKsFbYrK0ZMEenCXPwHPZ7dnPksJ/Y7zzeKWfMWunPmx78S8VZUbEGH1S5DhVrkA79EugQMfUoLrWygZd67L8lFvBOsaMJW2KhHZYBeeyvzH4dmgBWEDX46XmEblP//9d/wXztcfly/i28QJ8zHoN0fEvYxqcE7JeEUv3Bxfe/USB7uW/d5Yd9LT6034fH/0tBPkSESjeuvOBo2Is5j3biu/l3RBv5kEHeY+t5POefQyr+Sxlfe81fkvE/N0H4GAzra1+H557/U3P22PF97LO/uY7F3f1bsK47MuvfwXuC96q8Y3qVst1CvaWd/kQrb0nLP9LSW6ScaC2jxgp74uGvsP6aYn5HroG1eO5vKykn7u7u1SytFEpOG25dpKoLNPqSb9XRvOCsx4XYq7SaNKg5n7p7O+fPJn3BbQZ53sbeZQExDUyjcY/3iRdXGTEa0LRWWVPmhBqxGSyOPc42vG1I/WeMHLG8oRWtOtdwDTikOe5yVZUoH/FuIvhXuAjGOtyknzNicU0wTZVi7Kboo6ZjS64auLcKVFo1NAmwe4WfBHstW/DScsYDh46jt8aoKhKa/E3ThHOWvC7kvJLWE7VmrRrbxhwNh53nerdnCp6rnSruqHSwEpVr6b4dtXbZW702rcusDufqnAr/7e//kdvjyptVkJrUbyItzHPEx1lVt1zAuYgPjRALwRuQpo7PveReS6GWyuhAIOqn4p1S8xVCBfV6Q4Rs0Zz3ylmgVVKu5NooIjgfMa6b5u2v2B9uVMLUq8rUID+vKfH2zVt+98PvePHyBT/8/q82FaQlrRi70ERY1wXkbBjorMVZhzjli9RujOadQsu864TukhXql2daFVIurCmz5qTb6ZCm1uc1pdQTjHO1epDInF+7e7pXYr5e+Ysku3NDnNcA3xqKgI2Wto/korClm/2BXYgc5hkfzqIN1nus89SiBMVWrXZfRLaOYq2dQyAN7yoxWOaIXvMOUbQdXlePK62qEeOSEsspkVPGOse0v8aEK3ATxZy9c/zkwFVy6UTJKjTTEKePNhcsTpSjgUhP5IENOoSaPR4LCLx5/babyzn2+5kYAzc31+x3qv7kPEBFZMVaVY5zfsEYD1bva4JHxKHgE028WxO8scohq1ULBq1hresSyvpMqa1ha6VZ28/HKb+iNczoZPW1I61tXIxmxnNCOzhGepdKynMe738R4y8tmXhsfKvg/EO//xAZ9kv4BZ8ynqqmjir9+Mzn7Ht0Yz72fTWXU4LzMJx7zrE+tl+Ppz8UAIiiBOkqFWcc1jhmO29JxcegWU+d21/i+Fhw+7XGZefnU6GEoyD3nG7hOO73RAA+s4PxaJHhIjl4uN2PwcQ+ZZ38ks/OZyUWKWVcUAiMWDk7foqgVM+hfFMV6pN/xuQ3SHqN1AWRinEz2BnsNc1+TzNXLHUmFcOa4LQk1dPPZQvAFGZlwQpqVSEMuVEAU9Ugzko3/BnwrF6VHypDGhQ7whRUD995ggtop+NMhnJYjHgsM1VAsJRat1hWzxOsVAwVWoGmhnXNQO1Ql1omxKg+/5oUguME5ZOIU5iFtVQr47A7sLv7W6AV0CpVq921dnhPRaT0jAMNbHqn1VycA8YQehJorKGUXiHvEsDWGkrSWr70gFsQpDmsCQRnmKfAFFQm2FmFrEjVYGjwXVqtlDwSi7L5N9QBW1oT93d33B9PLKkTwSkwZHK3Kj2bjLFKFCskzblLv5SRMF5IHPcK9FbBl/Mtqj4dGiRvM2SM6oF3Mrc6SyvB3oeg/g2lUGUQ6gu1raTOx1nWhRAn5nmnlfXa/3Q366HgM9ab+jh4BFHJY5UA0mCwJyatuz/X3mUZQ5DNn+WS5HupMFRr4d3nlMHVgiue4v15VZjzHEprVOcIXknvwx3WW2EOHmsatSlcKDrtKhg75g5N8mrV+6N1MnHPaqX0e9P2qnufC2OtBvJZVaNca5tvSskaLBtjlWsRPdapatW0m8EFsJa1tc6ZclgXqcVCE4rzZFcoVYP10jtom6t1948QaX3eB/5cpYylJx62GJJV2FfovipKezBMs0IAzVAAa4AksA3juouABL2RpcP4ZEBT5AIO9fgfts+OK38BdxN9Fkj3RVHjxe4v0xONJq3/TJ+PrfzbSyz+13h8fIy0/CkB3bcIYj+2X2PMe7CgbzE64+8bbPOist1lXlVBsfNYHniF/HsfXzu4/aUgfE/dX1+rC3C57U/p4H3KMTxG6L/c9kPY5Nccz0os1nVh76cuj6gGXbWqSkptWqGdcPhSsDnRjv+IyW9x5aTO2W5HvP6PYF/SzO855siaDG/u3vbORCadTqrtbkxXi1GXZdCKXC3qNyut440RCokmDrEWHwzORpwPXflokLe9Kv+EwDSpnKo1apYFBcibXKkxB2q1pGzIa6LUTG5HphDZTYbgG9ZUDHfYtiI1QYGKp9jfk9tEbY7Tor4PWKhZJVtjqSQL1gm5JkQE746EoOpE8zxvQfRIZJSwqyZcy3rSanVOmiSFuEl+MpItgypcGSXheqdeD9kr1ls3nZHaKOs9aVnIy1FVgYwQKdi9Ywo79rMjBoWFSCuUVNWvoGbyunbjr3phAFY3CFJrjZQzKa0sx1vWuyOn+/s+z4ILgbwuHO9ulTxe66bshOzwziJSiaeZHBI+BEIIGNAORSe3ImeYlMOrWhY6d9YqSTqlpIErvVokCpHKpdJMxZmKizNxFuL+ioKl2UhOq5K5lztqWXDW8ONPP2Ks5+bme4z1WHHaZamN6iveF6wxXF8dtiDPOYfPua9dDQpByKUismxwwuFTgkiHEllNaB48AIwxW3JxOp22+XburGM/ugsqH9yTMqMQoLQq38J3s0rvPXGeCcYR9qHD9w1VlKdTalS52lI5nVZyVRK49RFQY7Y+5YDyr0Loa8ern0rOmdv7E/XtvT58fMD0yl5EIVbzHLg5RGzYYcLUoUSGmldaXUiAizvC4UCtO1qFvF/Oal+ikKRTrlvSNbxGcl416a1DUa5SSqJ1w0wNDAQqHE8rds2clsQ0ndjNO77//jvmObA/TD1BUUEEMQmswdoVYwPW7js7SAUE1HlbEzFNQktPKOsmPVu7wt24h9RITw07pWoncBC6RzLeNqf3i/9uI0kXankalvdvbTx8cT72kn2KDPtLj2/Babis3I8g5R14xEeC6m/BV/nUoGvAXD/1GB7b7se+52346Da/ZH0MVahBIHbi3+nIPLa/p477c4n8nzzfzzzXz+kmPefzXxKc/5LfuQz2H0LwtsLop4ogPOhePLxHHyN+X3ZLxn4uBRrssMq8gNFdbkc/27phcO+pD1+brzyelVggWt2uZaVWMNXifMUH6RhwwUgm5z/Tlr8HWWjW0OI1NnyHdTcU9wdKi6QSuF8yKRVOp1Ur8TkrCflSdeoCWw6WECYAcuo3rYGhf4+xSP8b57DeM837M1xrk54sGkg6s2n1l+xZa1Gyry29UgjIijOFaBOOgi0LPfbQynH11OJISSu8uTWqJOVJVAAN6pXwrB0V4wTjVWYUAdM0SKxFK7bBe0IMGzE3Z+UUnJYTOSdqa3ouRqEmqSpzdJgTeu83qFMMVgOUspJPP1GyKifF7oqucqKiwaXVavHN1cxhNzNHh5FCK41c2kaOXZbjRpAeAVbrQVKpA9suWwdDpPHdyxdcXx34Lr04B3VViNNMXRMtJVpJapRm6fKq6ry8mydanSllT82Z5Jy6jldLq0X9LHonY3QB+qtSE6qcWE8nalnx3hK7ZLJW1QcPwPQasaFiSLWxJF2TudSuaqXKR3d3dxwON9RWEFG+iXNDkjiqf4gx3VxOicVDfhdkg7OVnLZORO7O3DVnhru4d6E7yHcTw94BGuNMFpfu/pzeSyxs0UB6yCirP4l28MSYLcmpVeE7Cu8JgG7HW4u3IMES/KzXLETW3FS6tqlXRu7HMmBaowLvLN3tvPuXtO6qbg3GeObJMk2BaPTR2poaD9bWaD0Zcn50AISGYNcTab3DhZ1yuVwjOAOTQYg0seyrU/PFUjgdNRl33m28i9H5Uw5W0sD+4ri3DqJRZ+1lXfn55zeE6NkfI7s5MkXPbg5YI33uGsZWvCtgHOIcpaoamUgXTOgPjybtncSi9HtG77GyJRbSOm+olYvE4px8qK9I3TxUZEjT9oT239P4WPAMX6/C+DnjObCF524T3g92PravpyBQXxxkj3f3J86x6RW0JrU34fs6RvAmvAddes61u1QKGvt6ijvyOdfl3ery2eG80TBiNinYx/b31PjctfkY3O1LzvVbVbMfjr9EeOPDpHFL5r8kCRuwQN6/jx9ei8uEgu3zZ8hdk6prsN9buo++1X5/V6lUvs074nmJBXpjtpZ7293ixQCeNimZmZao5TUl/RlrGuIC4q4w4ffgvyPLd6QmnHLiuCZS0j81F2pS7gQd/mHtuw+UUYEVul9Ak55YmA6p6DCUC7nbGNVDwXuPkUF+1OBMF4dFmqEUw5JRjXqjMq+YSmTFmcpE1e9V3XfDUlokF0cqhtOqBne5VMR0wnDTReasJTiPcVa7LEYwtmGRgZDYyKbee62sW3MBlekQo94dQATngoJMeiCHgPWuOxUr9CZ4R4yOVJP6hGTtTiynEzVMXdVmRsm6UX3OveWwn9lNgegdipUvlJ5UtFpZl2XrMI2m2qi6llx69bUHmt0J+3DY9aK7GqflWjgtCWM9NavCVUkrYbZb4KkqPka7THEizzNpWTAGEhr8td61OsOhRnF/RIb0jsVKyQvSQlcIG7KsmuyJqMjO4EwMfkMrmdKd3WutNITj8aQO7SUrDK1DrrxziPcY7zfvk2Iy1O4Obm2fQ7tVmFuHlQ3YWK0aQGpn6cxDGDCoS9iYyNnFeQT0rasLmd6tUZjgeNErhEyc14dLJ3BLv3YYhT4hDWvVUdtZt8lHB++ozeBcJKSCdxVZl368gz/QeidTYV2gqkq+J9bKFVHpZunJcIgOJwZaZV0zy5pYU1ETaWvwwXYIEhjTHddXw7TLamQZ3ZYw6fPeMklkzY6UPbRGLg7j7JnQ3ZMuuu+MbZXS55QOkxrP+9oqkuG23uGcI60T7foAaIdlvKitVfNFa6p2m7zFWLCdHK9VTZWoNV1UQPo+B8xp3GO6JrSTIhe8Cqn1DHnq3ZCRULybTGw3wr+r8TEYwXNhBvB1kpFvSdJ+anwsqXgsEH3478+pPD/nc1uQa+xW8a89KBJpXYji8wz3zlXbtkGSPuf6P7n99xLZjTCy7RMuoFK/wvg11t2/l/HOvMpFQiCf3xV5uE4eW6/Sn+36/hiu3+/+Xt81WqjePJ9Av2fOMKhvVXx6pkHepKdhPNZCnAKT9+yCJZqfcGWB/CMm/4SlEK//n4i9IfEDx1VYT427+1tyLqRlJZd1w7A7Ywnz3OUZoeQztGZdFf5kO8bbuMC8i9vD0XSMuA8RrEGMJcZZYTNW8fSlVXZzxFqt9B4XodVGLnddsbErTRlhZw2GjGHBGdVWSc2SMuRCx3Grm25tWbmh/THTEHVPtqo4tZmGGSWKIoaagaPQZARergeujXU5bomSD1qx3u12HK6uePnqFaUH+Xf396SUWNe1w3vUUGzyjikGvAVLRXImL/esp3smvyNezdxcv1RoGpZqAmoeBrMVJm+4vp6ZO6ciLydaVXWu1kYHJV1ADwBMV+vqLSQxbIZkuZLyot8FMEKp+qfVhuSVsi788z8GTsdb/vgf/7aLAjjlfEjDOUOMgf1+TyuZdVWYV86JWgzLql0kgz7MPXSlH21/l5LI6cS6nKjZ00omTmokOE0zXUCM9Xjk9vUb/vHv/477+3vW9UTJK9KTOiMKlXv75pbD/jVv3vyZGGftANigErzzhLNqIlc7h8B0iJr3Hrffd1GCrMkihdI6x8Jq0mg4d2y880xxwncHee89pRSWReE/WuHWh0/okrcwiMkVY9TYzVpNMsfDK5e0vdCdU6ngUlTaVaFR6oCunRZP8AEXVMVpip6ULWsu2NvCkUZazkmEi3F7uTYzgufBn3FMUydvR0cWx9tT5Xh/x7qsvL19q3LVVruN1jpMMQSvkL7gnFb9W6NKwwdhaqEnNSfgLd5brq537KeJq11gN3tKdSxlUthmFe7uTuoyvqwU76hFDfoGz0V6cK+dAD03afoMWo+Bu7tbfAi8fHnDYT/x8uaKwz4QfOgyuwp9nL3KUM9hQsRQmyGVnoClrO7kpbCuaxc66GpmtZKL74lGUWnLVqkl4/p9YevgWFy4vvfK1LgW/xbHYxX1EaC2C+7d5fjsivQltEg+TXnmsfFLBHePQW8+pYPxGKToc+bqkzsUD2EgIzHv1f1wcdyl33vPHZdKQSOp+Jpwr8EvFRpNlFNXRTmKGI05nL6UgG9z/Yer98Mx9jUgd89JLp6juvZrdP+eowD1S46HUMR2aXB6YZr4VfbVi6Ydl/DO7y5hhd70+HOUf7f7zAEO7wKLXb/acV2OZyUWzju8812j3jBNnmgLwd5B/jMiR6rc6Xy6a8S9pJoDuUZSW1lLJeVM6UZmQ9FGQU5ohdmoG7F1Xqv6zZ6lNUE5E9birWKzrXXqBt5VZjAqzRiDqt5cEnpLrZgmHVogtKZVbmtUTtLZgjMNb+mAGN1nbYbTCrmIuhYLCp2RrlFvUUOxjp9wTh+SA5ZibDcEE7bgXBMJJQMHHzWYtIbc4RiXVJ5WI82YTbe/dS8La0yHePXrER0xGoIXvEkYabSaVN5XNJgWOqwGS+vSwNpEMUweZm8IzmJQ1afLav3oBmiyJNAfqNJvIESvYRPZOhYDQlTqmVRampqZtV6ZNwjL6R5jDTe3r9jt9sy7vULr0KRJMftK6pbWSM7RmnZUrLXdY8F0d+qgAb/zSobu5F36TTc6QMagia1RmUBEpUmtNJDOgxB6kjfpujQGjCPlyu3tPbtdI4TAPNmuMma2KptgVApZxoNFUEuDjnW0KpVsxrofUs79IVR6t6R1rtHogoB0gz2gQ6RGl+iyozE6P6OLoZVtfSCfCd8GEY84py9CB9XU/vAxWzW9tdYdoC3OCNFbrA2k0lQEoGZy7eaNMsjGTSGDaJIzjglRPkFKDcgIcDxqoJ+KJvjGNKqYrbMU/OAL0derMInDB0H6Y0wdwR2lwumUcV5wrmCMXpfJKwq1wGYqqIG7o9mGyvH2gNXoubZR/+k5M6hCW60NTGFZkx5fSPighYvJa2jUWusCDfp8AdvVsCy1akcquLIldKUUvHPbPeeypVbtXGg3qmKt2+BrCtls1Gr12raminKjotX+bSYWHxrfgij7KRyF38q4rHqOROMv5djh/cTGSscjfsk2OSeVX6uCP7Z4ObOmdz97VMGHJGa/xvjYWv+cztwlLv9L3Lq/xfi1uj6fMwxdIpzRYXjefH3qPfsO7+PyO08VUkaXcuuufJs5fZ5B3hSYJiVGO+/YT+DqT9j8L6Tjf6PUE8U6/PRX2PgDxf5AFs99KZzSSlrV4Xng/BkuvdZ03XZ9aRvTNfiNHp52BrRCaZzDOIefZrzzxKDqPM6PU+n4aGyvzKq6jxXhtOT+wu0PAWvZxYizDWcawWQsHY4lhoZjzZa1wJu7qgpARb0eVLa2S9l69YOwAzrCu9m8EojP8KDSiaTanQB3BTFEvA/Uu6wEz9a6TweknCi1sKaVUnpyUVSict7PxKB+BdZD9JZgG46FVhN5vYNSsCLsr76jimFJHbaGZtMK1bLcTIbZCdGqb8eSlZy9cV5QOI2Sbk2fy35OpoDpOPjWKJ1QWoq6PaeUtsC3dhiIdXYzLzwe7zgtJ+Zp4sXLV0wx4jqURJpBxAGReZowqJCASmIJtncTwBA6Af7qcEXwQR2vS6ZJ1eRPOsehWBpQnMry4kTtDZ1hNwXWxZKNxYaoMKAY+wvD4ICUG3/+8TVXV5l5nnAudtJ92Ny2vbMYsTTjLm5xe8YPew/SEDfUmrRSPzpcp+XI8XhPKXmr9jtnsZYNGleyUErqBOuixOB+rfQ7Vjt9CKVYvNfEIudODG7Qgrqlm06Mb8b2QHsobfUksVRw4LwmeZN1uBBJpRCnoPK9tVFK3ZLKIurhllb1VVEuVSGLdD+Rqh3MUvqjrsPFWqLe329v7nHehjMkcloKMU7kCjFO2n2yM1WEn34+Yu2Kc42XL67xzjN3eJcRy363U8fuTu42qKeMJmNg5NxmpnckTefyDH6OCJzWrJ4zzWLsTGNid9hrlyEvKlSAYF3bYG0RTxOYKuROMk8pUWoll7QVXVJSo8icz4lF7ipsrRYVL3iPuN05Fk0wD0y5/i2NxyqxlxDBzwl6PoSF/7WVfS7J6c8J+D63U/NbGY9JtT42Hv5+JFUP10ejYeXLK8g6r1ZNQfUn+H6//VLV9I/t47HfP9Xl2JKKC5jNb60rMALnj0kF/5rHfHm/PRRSuOx4PrWex/er1O06YN5//mycoUeef6NLMQjfDzkbo6NSpfw2OBbeO3Ve9g5vIeQ7pNxRyj0SXkH4HS5+T+VAajvubzMpLxzXI3ktlNKDE8AHf9EmHIt4EJ10EtqYKKuVvmAtpkt6xjgRQ2A37/FBg7Gcs3ISmpBz7u1K5S1YY4hh1qDBFIxUjBSiEYwUkBOVShUNwEqFVITc/Sdy0SordFKsV/6GD777ZKik6yBVw7lKy9YSFXJO5JRY16UrUBmW08LpeAJR00HvAvv9oXdtrBIJjMF5zzw7nAVvMg5VM6ItSEuk5WdcNuAMWVTSVpixcY8PjqVZSm0suer8tIbFEL3HTwHxnoawpiM5LaS09PnXzojp3SKD2RKKfKFMNDobSjBX2IaeayJndRo3Q6P/4qYzPuhLAMuyZuY1U3LGGo91lgHtoAe4qu7UvQy8I/rQb1THFGemSf+A4e2bt6R1pdWKMxrUa6BuwAhBAgOjHmLg6nDgj3/8I9Nuz+39PSkXsBbr4+ZfMuRi75bK/fqa4DwpCS9urnl545gmTS5M5x5Ia71TIZs0KBf8CKBL7EbmeYexhjWdeP3zTxzv76gl4Xu3cJpUIc1ZTRisZSP0D2dsjHZ5RBo5FUpJ3Tm8EULFOa/3iuhDeiS/oB01NfHT6zS6bnoZeheiFLTTZ5mC7+pdcHdcqHVVPo5ow1qTmnEbqJt9yolW1ahQOdnnJLV0DsQgJm/XfbQ+jGwPjeP9EWctb37+Se8bH9jtD4QwsdsfEAmIOF6/gRBgnl1XFnPc358QKzDviF4dz+/v7zVZK6mLSEh3bu/tZTuMIUeHyeBCxDpPw3JKCY6W/f6gXUQ/9YKI4HonzNrUux+O4GecVflp76Mq7JVAKbMmFpMmGLmcyea5DP6Kusy3fj1kzNmmFNWo+cNKOL/V8bEg8qnfXVbrPyW5eEh2forM/FsYv5UE57HxOVyMx+A2Q/VmQKI2yMsnBLifvH8RxHwdnoXBvOeo/Wuvm6eS7a1INALcHnRucPILKOGA2fza5wLvns9vrYPysXEJj7ocl8+o8bmHw2L7Ov3weIev9LHOqpzfncaYM+f4G4znQaGMxXmLd+Bp2LpQW1Jojr0GO9Pc78jVk6rl/nhHyivLeqQW6T5VPTh3CvsYc2o6jIimcI3LFo21VuUcnQbx1jn1OQgRH8J2YaRXSVsTcldPse4Mp/HO4xyq3tIKplWcNIRCk0ytSuDNGVKBNTX9WQ+SjO0qOcMPIwZ8h1yNKqaBTqDmAqN9AQ26UIJxXj+nFV4NODVRsSqxewGNMcZinbodR2cIVgMVh1BToraFXO87CdTQmBEzIy6AiSCONWuQsiYN+FureMBJQLzyLMRoBTznRM5qUOa4lCo9t9e1wlo21apLAnITxaprl6d7koAahvX5sCgfBjqEyalp4ejU6EW9JMSd/+iDT6v8SjgGa4f/RST4QB5chFHFt3rsTS6hUHUjJzvriDFwdXXFmgsVg01Jr70LOKsKTbUUSsmktNDyinOZ/W5lv9uzKfLoAoDhpSDmnXUwSNsDRma72EDo0sprWjmdjhxPR4xUpHnEN7zv7fYe4BpDx983xmPoTMrs0KjaqNXgupnTUJECc5G4jUCrIVUwtiqsrUk3ajz/abVhbUWaVVlnY5mnqLAgNDGp457Z4IAXHZSi68waUagYBlt717JDBhGFp40XYdugPecaUBFV0lrXZfOqKaUwTTtCmLB+woqjiXpv+KB+VgbBUBTy2BOj2tSkMGeLTYZina7R7qSNdDJ3LxCYi/ty3OvLqknD/elIDIEp+L5WtbAgtF6cUPUti99U7wS6kaIWUWpruKJQKF8rxXtVFytu6wTWfE4sRlKhzxGBVsm/AWnVzx2/BOn0qZfwc/f7W6iUfu3x3HN6TkfhUULqgyTvY9XpTxnf+nr81q/3ZZfrPcjMBUTunYSa8zX6rYwPra2/hHvvoUjCp/KetkTv4e+e+PzoiIwOxWOfG4jeLaH8RqnF88jb00T0AdfuMG1BuKXZQAt/JLOnNMPxzYm0Ktl3OZ46PjghxiJYvIu9imm2hOESi+hDd6/MZavo2+6qXFvZJD33uwMisC6LEh8vVGgwqOtucExxxz5G9lMkhIY6Vq8YMlApNVNFyNVwPMGahOPxuFXUQ5xxPnC1O2jHpuP8rdV/j4TojHFX6VCt3OdNHSd16IlBsNaw2+9I64o0wVrL/mrHNEWmaQIUs25QlavdNPfzDngDplaW45FWFlo50pqSqbO8BKPOu/Ph9xg305g53t9xOh15+/rNlgSM9trkHcjEPLleRW6UlHq1WmFeI3EC7cKs60rOmWVZ+jkW1mXZJGdrPfMCalMlJax6aJRaN46IoKZrguXm5juur1/wt//pb5nmiRgDubt5j+r+4EsoQbkTkbBMYUbJ0YHD/sD+cEUIsXM7VAFMPSE0oEVgXU4kY6gls9sf2O0P2KAkZu/VgM17p8FdE5WB7Wpf65oU6lILDkuwkcPhhv3hit1+T00rrRVq961QfFGHjZXCcjqpv8eqHSFrlIfjvOdwfcWaVt786V95+/Y163LCO0tK+rm0LnivBGhjFZY0KvzQk/AOA6zdM2FwLLwvqniV8uaVUqjQYTgbN6TBPLeuqBY0qbUVNxJmRGWVS2FnDNZ79tFxCpaThTdvXnO/rNydMoerK6Z54tWLa66vr5mnwLrcq5AB2hFcU+P27ULOjRIKxl10Yqr6t4wE/bKG04YZXM+0BMPxtKoMbhF2hyvm/YFX373CeUehsrx9i9TEbvIEF9lNnrujQuWu9jOlRk2+16TrJ5ezrOsm9Vq6SaUgsjI6am+lgYE//cvfc3V9xauXL7m6utYkg9g7MLXPpRYGWk9cjFXVrHmKqN2op8nUuxgKJ6xNVPa5qaxzrqlDK89Ec00ylHeTluNzHu//JsaHoEIferE/NzD5Egfezx3fKoh6RwnqYUD5EWz4czpDG3zjQTBTpVKl4o3frt1zPBbg0+bEGIMzzxbC/ORj+NTj+BZjI8Eb8+T1NMbgupNuG0pyD+Z5XKeH8/9rnePDfT0KefsLGcYoxOlyzTrjPty5eOI++BTH8ZFoXBzAO3ee/YY8oOclFrYQTMag0pTN7qjNUsSzJkPOjeWYySnrC7m0XmUcsmtDH95sMpYdB8VoXQw4h+vwJduredYaQtyroowP1NKDpJw7TEBvlHFzORvw1jEHR3AVa07bpDrjwRkwKvdZirAkJWaXKgr5AQ2+7XB97jjvQRAXhVuNizVkH1Wpp/SqokKzLm96rRQoPlt5HppoSINahGzqdq/rXDWQFUPVR0LNKvdb71RCtmVaM9QGp5x7EGipRjksuS2cliPrciIvp6174H3Ae8duv2e3m9SYz6hbsZJETVe46QH5kLZsjdzJ9yPBqEX5H4PkO3DeUs8B73Cjlm7IIuj24zSx319xc/OCFy9eMu92OGd7Vb9SW3eY7pAreSeA7lAe19dU72SpR4fBB89+v4eWyckitUCBZvQYWmusKSm53hg8Oo9tyHy2Cl1cQGVSVT7KDtnYUtjNE/vdju+//56rgyqR0TIUi1hzXhfD52PI13buyuBOxOC7MaCQ0sr93R3GKDTOGQ2iS9FqtO/JxJlUf4ZVSb/PNk1rzi8FJQm73rXrnh9ydvRWMr3CoazVB16MalLnxW2VEOWQaNcl54STiguR4GCOgXmeKGJYy4A3GlJutKZdsJJXEGGeJqZpYrdzzNNMToX74wntKYDM8wbNyj14xuhxtyZnpaRNalV0fxhN7FPCWMvxPnSolKW3IFlOC84VfNCOkjPQ5ZxAHM0HrFHyfunPmq1r09igW9KKQi6bJr3QqMnSykrNC6f7O2KcOByutCjhPc5DswKi60sQrG3gHGINmAJYnAlYpwbm3qlYRBWvhO7WyNVrIWDwt2o789FKRd12flvjU1RdvoQf8WiV7gEU4Uv39xB+8EuNh0Hj1xgPOwXbz5+oeD52TJ8yHsLMHiZ5jgv1mmd0q77FnDx3vDN/H0nEfonxLuypJ8APAkhzrlu/9/PHgvnLbT/8+Zec71PX+qlt/9pz+6VDO930GAkqdfv5c54lj3EsLq/75ececiyAM6riG907zyNv20QwIEbNnrK7oYglNcPpqPKnp/u1B/1dRYgB3VCc+YBwOOf1jWl455RrrRhgiirbaYyh1IJzjsPVFTEoSfbN6zeknDtWfHAxOuTCBYKbiN6xjw5nF6xZUHWegLFXGAJioaZGapX7pVFyozXO8CozTMVMV3fpF68p+SWltEG5rB1V4nIRRCoWfSRS1qjCFR3aMYJjZxVysnYeiveWafIYo27gIiu0iBOhljtaXajtTsmvYqgtkqtwe7xX2VMX4HRLa5ByoRQlYecld7MucDESQ+DFixfs58hhF7HLmy0Z8D4QO2FZpKn8b21bwJZSYl2WjXSa0rJdB+cU0jLM3MbcjD+jwhunid1uz4uXL/nu+x94+fIV0zT1rsiJ0rsCOSk0q4yuj4h6Rli7watGZ2sKgRj1+sUYuHlxg7WNtHiW4z2D52GMqiUty9KDtMzeODXIK+pfITVDzeq/4AMhRqwLiDG0op2oH777juvrK/7w13+Nt+BMRVrS4F4c0lWdclICfk4jGRuKaJbgHNM0MU1R5ZVPC2/fvMVbh4sGi7AstXebVoxRFaLLeR3dMtdfbNZ3VYp+fw2jRdU4MPT8eOtsqNs9W2Ih/fopIdoSYzi3WM1QKKvkdKJWRzRCcIbDbuL66hrjEgV11gbL6aTdp1YztIJ3lhj2HHZ7rq4OGKuCBj/9+Jpc6NCtuL0QT8tKKRXjwkb6TiXRWlHeQU88x8NE53yhtYzUQgiB3W4mOPVHOZ5OOGcIce1mkh5Q/xicgRjUNFDoSdzF+hW0YCKNVrVjV/KyGR+CsNxbbl974jQT48yr737g6uqGq6trQlRJ2pJLN9XrsDBR/hTotXE+bv4h4FCfnkgTKFVUhau1bkpZz93S1sj5t5dYjJfeRiD9jCDsySDnCejMYy/ax17Kzzn+sZ3P2caXjq+xv8cq2q3zmbbg5ivv571g9WK/KohwVnAcUJ2H/Iunqrefy+/4FuOxY/+i7X3i8T4enDcl54pgxb33mafIw5f7hnOS+dQ1/Jzk+rFk8LGO4tdK3H8JaOWnjMEfymhRaawVg30W7O+jXUTYVKn6D3n3rv+2YLfn9QXXfwZzBf4KsROlzuSSWE8rKZ1Ukx161c2CVK1D2LiRRJ3z5+p9/9tY24nWwjzNKiHr3BaE3hxedhlR35WltFo+Kq2uwzr8pAROHybm4NXLwdyBGKTOrDki4mjGbuTjlBy1GuZQMdEpVMmrUZjK2E4Yo8ZgGlRnllU9BDSpORNwN6LuuGSmR3bb3xqghRCZQsR7JcWGoGhy01WJjOkkXymIVJwFR6aVRsuFVg15iT24Kkx7zzx5bDh0P4XA6f5W3Yatw+5uMMZSuqlg7UmNswZTEyUVFllxZcXU3CE8/UWtURS5+1gMmAUIoXsqmFa3bFkTKp0D7TgpybjW1oN93yFWnlfffc/hcOD7739gt5sQKdzdvj2r30jZ4B1K2GZLKKI3G1zNDU5G74rkvPLmzU/Y7m8y73YK6wmBdVlY/JHlZCEXWq/ap5xx6wkxVknn64n1dE+pgrVeoSqtYRzsdto52887fvjuFbtpIgaLVFU9ayV3fkkir2nr7tRaOheldMdz7Yg5Y4je4Z0lJ00Yrg5XeKfwsZSXrWV5f3+k1szxeAR0zpduSNd6J8o5h3H6EPM+ILXRBL0GVrCOTZ2LnmhZa3vXyoIMzou6czd0zcio6hs6XMlSql5/EHAR7zyH/Z6G435tpKymic05fTnZiHfq+bGmDOaeUld2s0q9Xl1Fgt/j/MTxuHZOUOH6+oBguTutSNGEjFZobSQ5/d7r51RJ1Ky50un2Tb8NDSF4vHfsD3sVX4gTrY7ugfJtoveE4BEC09WOkjuPaFGviZTWrm6XKFXlckeHrTXVsm+1bZ4Y63JiTSvT/BPzbs/NzUumaeZwdYWzumydNYR65gxZY2mtd0uNu3gJjGeeQn6aWBKVZh3NW5zTe837irTpWY/3bzW26imDq9Ir058RhD1V3XzspVzlXA0cf39JN+RLtvFbGu9UOZ+AJ11+7nODsoffuSQLjwBrfOJyji+v5SWh+7Ht/FrjIan4W8DULkm+z92uMQaL0+ekeeK4+n2pZeL3lbLGfz+2Nh7D/n/KeI/IzDmZ/Jbdv9/SPWuMwXMWLypSaFJIZcEZjzMOZ/xHk4fLxG67Vh3u9jB1MCqvycWTuMdM32ZenpdY1BM05QBgHK3ZDh0ZKi79BrDD7U9PWomKrsNW7DahmmDYTqrVKrcPoVf3zycc46TVWTSoLV2xBbT7YZ1TydSgiYUSeB3OdndbUbnSUhwNq87YF8GIpWFd65KWFuuMYuyjx7mI4ElJYV1FyoZdr/WsXrMlFE0vHkb6TW06fMbpdp0jeMcUvZJJLcTgMUb5F95q+7LURqsKf6C1DddeUumQB0OthlZ70E7TpEnAbHyEAjQMit/GdpKo9sBAGimtup9imG1RMrt0rkUpukRb71j0avambMR4MJxhInBu81nfzx/1vdDALqiiV4xc7Q/sd3vmecIa9VYYROS2SWeeEzdrLTg99K3FJwOa09eLyOYOrjLA6nHivCdM0wajKUXJzrUHgiJ0GVztOuWsBPdaBesF4wISFbY2zxOH3Z7rqyuu9juC90hdNwlYdXfuMJ1atmvRNgdlTZhNT7q2xEjUu8KIEEMgBt9PVmF3pRSsWztvp3USvDA8VVqHomEMrt+LgxSuUsDmTBZ+J1i6vB8732P4wugR9CSu/5cZqiF2M0asteCsVuKD9wRfu/Ry7caC3YfDWnznUIAoXFAyBoWvjUahd6a7czeyUQ8djBKrjZjN1X4Q8t85F22z9c6iaNeiiRrq+bPpHxi8V/d45xy+w/6cEZpF+V/OdxiktnNstlvVvUnD5OHirhmCdqo60bt3O5oIspy0k9AVt1LOYLp8sDMEr0p0xlS804JDE/XEYSxvA9b0jl+fU4PgTPcCMoK4Qeq3xPDbkJvdXnAfgCt99rZ/QRjMbyk4+ZLxWBD8IZz2eM5+jWD+Mpk0l8/tX2h8rY7Pw6T4twDJejg+RM49w7LRZ6WR7Tn6KZyZbTvPvH6PzdMoOHyrIPe3Mp4qUFhRsXMRlUPWq1Y1fnzw2W1bD/oPH4Iaji6t9Gv+S9x1z0osRE5Y/wPNRUQCOVVKVnMu6zzBuO3FJyI4PxRh7LbIBw68SVPtfGMorRJdJ0V3LEAthXmamecZOoToeH+vRmsoXGlk3D4ErHdM04zzbtuOIOR1T62KP5a26ovY9e6AaXh/xFBwFDW48gHjdxooWK8JlIyAR1V05mmihUCJtbsolzFDiFRK1qr0uipe3BjP4eqGGCK7KRK9wbsMTUni1UzqNmwsp3QmoNMs0izLadk6AcvpSK2VOGmA5OeJ129uWdfM3XHtUI3W4Vtq2masx1qvCj7e48NE6+pN929/xjuYo+UP31+zCw5sVxpKFXoVNq8rA8RUOyRqTSspKcyq1LxBZlLqeH0U7y7Qu1Cew/7A1dUVh/2eq6srlR1uCqUaZFy4fLgpz8ZahxiL8eefK9ZOkDrgQKqAVKrOv+mywNM8dyjTjPMTcT6AjaR1xbp7qighVrpJ2fF04ni65+7+jpQyzgd2u8p+t2cfA7//7hWH/Y7r/Y5WM2VdSMuRmhM1J0pZewW7UEtSI0SpWCN45/GuV1mtqn+FGDp0Rz1eMFbd04c3S08Ibb+W67pyd3fPklakVKbdtEnOFhFMrdiiLt3Be9yu66sbu73MBx8hbKpmRrs3CM7ovrzXqooShDOl+F5t6fOPKnFpUtnhCtKYoyMXR1R0EeJNd6VWAQKF9ghrWlnXleP9yts3pa8Tyzzfbepc1hq8R9XnxLDbOcyqbu5TMATnqavB4PoDs1dBReV2Vemp0ihQCyWXDdbnfCDEieuba3a7md/98H1PboRaM1IKiOA6dEyCxduADw7vLcl7LIacEuBwXWxAIW7jbjk/wmup1HJkPS1d/OFfiNOs3iv7Q1+jqozmnGO/V0GH3bxjjgHvLd41EOUAhaCJjLfrVtxxVnkazRmC/Pov6lHZlJ5If81K84fw2dKrsJfjc/f7pcf7WHX3YwTzr7n/yzH08QGtaF90Jca+HkJSqpTt+w7/3rF/arX+ch5sh348lGt9uN1NevZBh+DXGu+s5wfh2acE5B8k2j7oEH0uTPDT+SlauGkdLjXShE+B5Yz760vuqXd4UeZ9wvh7+/wAtO4vZTwGH/M24AlEO3Uhg8KpqvCGNx5nPe6RUP1yDT62LkfxFc6djHP9VWhSv1mX6FmJRa65Z1aq8GQduOAJoljgVhta5NTAeFTJ38FKtkEmOv/cO9uDoNCt0LVLoVwHu3klDHy8935r42yJS8fbt46/blWds6kNKxVDpbUVYzoOvRfTq1ikBbIE0mohGRrdrMs0YEXE6DZ79Xx0TAYEQ7PtcVoW54ImCuJ6bGG1iojOTdU2D1A1YWkVddqx73BGnDXb4lAFIJj384aBz6VxWhN394mUMuuybh2UMS8KDRO812BRWodpCCAG75V06712VfSGpx9p67j4skFnBqa7dcWljRymraEtYB6k5O0aW0fwnt1ux26emaZJ1cFEyEmr/bKtje1/0MRMr9Vw4DadwDu6TkPhYhClBaAoXl69A+yW6JjePZp3moQaq92AXAqn5cTptPDjjz9yd3tHTivGWKYYeXFzzfffveLFi5dc7SaCg5oXakndcC/RakZqxUinTltDDEq+rs6NPOidFrezdltLes36mUvn4xh9kcY44awjhImcM9O04/54VEigqA+GiHR53Yr3DbcF/KPV3D1YrNmUvs4GenTVMgNSt+9o18Voh6wUrIF6cU9Lr85r5wWMFWJwzJPnah+5p3ZTx9IhcoWSh/hBUjniKjRcv7eEeiqsSaj1hLUejN/M5YIHS8CgnKhaG+Zqz+CZKBpKqEWJ5UMqmgcB7dZpaQ2RyvHesy4LMSq3aLc/aFejc2Sa9Bep67LXZs8UZ2KYVHp4XSkldfO6B902uSTXX75YtMtUaiOtuZscNpxTJ+6UM857YrhnnqJ6tgTXuz8wB4WP0YZBpIBRGWExFmnngPCXGpfB43sVOsz7P/+CAOFDpM8v3fbXHJcv70tuwWNJ1jfF/1/MzQaJeHCNHlY6RwC5dSufsa+Nk9X/72Hg+CHeBLzbDfitjC8JxD50Hp/SPfqU7T+na7Jdk9FBughIL8fDhOhL0fmPQfGe+71fY3zps2V0iZ76vsLXLHQZcujiNI/M0bh3K3W83Xj4jvsQzFH39+0S9GclFqVWSg9IxTisAy9hq0Yp/v6s/DS8HTBDHUerqeN3dXAknAah3ntyUqWlaZq7Co8hl0525YwHHwHmJpE54CxVaK30WnnDScGYijUFIyeMKNRAmeRWVVbEUorrzsFC7vCMtnUHNcCy47iHQkxX9cHa7cKCwVmVAvXmTHjV4+wvlVZpWxXbYKQhRhBTWVLuxFAN0Lwz0NW0fK9wC5bjMZHXlfv7xPFYupv3hbkY9Io0iHGqfNRjjzaOH0OME8EZYhjmfuNqj85T7dus3QG4kkreqkgioyo7IDmyXfdRcRcRQoxMMbLb7ZhmJSob0/HxpbyTED1s1JmeUEi/9pooQO3t08bwhqg9vxF1V7dGTeowuNqwxnfX+KBdjKDXB7vSWFlev+H29o6ffvyJZV0opTDv9sxT5LuXL/jhu5fcvHjJfg5IK5S0UHOXni0F6VCnUTW3RqVYW18zevlHeimdwH0RdF4kHKYnTXruagJIiOz2mnDM844QI6fTwpryllisa+owLNkS0FbbqD1u8+md35zPxzirQw2oj6iKEprYlZK149cTi8s/riunGQvRGGp0HHaRkteueJZoRsiZ7d6ppaIgPocx6ka95gxZCwEpa+I7TZ5pUpJ7DAbvDTHoPVBKZY5+64SmDLU0liVvilKa5g24Ul+t0pSz1DkQAK9fv2G323E4XPGHP2gXETq8rVVCnLXzZxxTmAHLNJUH0LlylqjtvjXDlFFa7YUT2arGowOYcsJWR61Nu7bG0pZRudQuqfeeaVKD0uAdu+hwRgUDvOlaGAa9CM4pUf4XHlvl7CKJGuNhdfxzx4cqs5eB7G9lPHzZf6jq/a3Gu0mFjtYV74SnuwBaTR6Kfh/fxyV/ZsBkhwDD5T62zskj+/2tEG0fGx/iHfwWxjsJwEfmcQS61jzeoXincyWPdBm+4rF+zvgl18l7xHL5vOP/2HfO1+Icmj/2LFW0TqO2shXZvfG9kG22osWjSckXQNk+dTzPIG/3H2n2d5SqZk2ldPMotDI+MqZL1Z2tqj+24c+klLGUfVCH2FLrZpDmnHvnu8aeNX9F1A9BpUvP2LzNjdhYHBqcUI+UmmgtYVEZzSo71pOwZuG0rucqfOcyaODNhoWHEQhYMMMMT12fldMgm0yuwWK8whn8NGG9wnGs1eM77K6wpmGkcVp+otZM6upRYIi2IrYhkgl+6q7hkwZLqVCzQlayREz0zG5murph4BRH8+ssQzqCE8Vs1wotFwbnIYYJ7w0h2n5erRPte2JhLeKUFOpql8nsHIvaWsfsn5WfSim9U6E4/RjVm+OwPxBDYL8bCSOawL3Dp3joGorOaO84qAxtD5GHwVzngmhl+HwTtt7dcs5Bg1YqNIPzuUPCtAUfwtQr6Zl1TayrBqTK1Yn84Q9/4NXLV/zNH//I1WFHtEI63m5ditFpqZ2sK11y1NC9M9CE7TIZlX5yrdWt62adxXmPD+GCO9F5FKUwJB7ipATpFzcvOOyvKLWqd8O6cHd/TwiRZTnRWrtwvTYbCd5GTXZcv16n02nrXow5bDSOx/sN2jYgVUYqyTnWU0/wjGV/OGCCxxiHwpEcORfu74786V//xE8/v+F4Wkg501rRZGJIBjuLCwHnI9arAlRrI1mxrLkQY1GTPdsAzzzPTD7g55n9vKPWymlZGfH6PZkkBaFtZHPro3YPm9NAR5R/gTm/MDWBCzSxLKny5x/fMs8z3716yeGwJ06B++NROWWiUE0RyFX/Nv1ccA7jwsYTonuvWAOtWkyfA0G0oyAVYw1NfCdtT/gw4YNjtz90n5dzFxEMKRVOy8pPKUETutfo9iw1vUPayvqcx/tXGdsz+gNVzS8NBj70/Q8FSJ97DJ+iGf+c8WtAecZxP0rs7H9viQDngto5+TFPVk/fw3+/A3E5F/5qK31tdgjUE1P5nDn+FqTpD+3rU/fzW0iOPmX/jaYeIhcQt4f37+V6/RBv4znjzN1p5JZoNIKNFwXajtow/r1nyeXx/FLzfJlQXnJsLn93Ob7kuB7rEF1CO43Rd4LFbaa349geHm9thYbO8ThubzwDltr4PBL+x8azEosqB3J1lCpUKe9IMA789pCIpScWmIE21v/Vz8EIGDFsQU6jKwkNEqdiQvS7fa2N/Y0AUydcSZzWKIHRUDCiHQFpCWlZq8oYqJBqZk2NlIVlzd3cTo3cRoAugkYQfS9jSK+oW6tndA7dDNs9YQAjWK8E1DAp98RZQ/C13xgOV4LOylDnoeFMA6PzFrwGm4indiJ6le61gEGswRmLMR7T53EESep+3bZtAx2SIl1aVMmf8xTw1nTcf+3B7vmaDyjHJYlvS7YuZuBdaIwGniEE5nlmt9ux3ynJOYRw7nb07sroVoyuhzEgF/jw7XqLUI3eCCOxGJ2KMcba2/oeHR7VmukGiuOKyrY2R1cghMgUJ/W+QJOlm5sbrq6ueodFPS5q7lj61mEvPbGQ/m+kbZ0fPZ7z2m3yYE31SnttDdMUvtQXVP+IoLoA2nmpteG6IlOMliABY7XbZ6wh54T3ysPohguoi7XFRcvUifPBe+qF78t2rfWQVO2rJ6R0zkBCoVvVqUu5d17P3w2cdN9OVw4rXQ465bQ5s9ceiAPYZnECtgm29dascVijiXhrshlNjq7hFC0S9CU4BByCs+D1PEptGCOUOmGNdkNL8f16lQ4DbBsUyvb5wQzFOoWsrSkDhmVNmvBF7Z6YJqTStvN1HYIpos8A24RqxrruhoJWL2Y1+vxpgxPUr69p+swCoRiLy8OMsmDlDP0DNScUGepXfc4HNBDIdSwcoaZfR272YeAKv16F90uTit8aIfdrjEtIxuV4Ohk8PyM+hUdwCaM6A4DH1j9vPp8K1J4L//lf490x0oTH4Hof66g9TEAe28bDZPzhtdK6+zmOFAPmMt76hgWKLx0f6l58SVLxsf09/MyY40eT7I/c6xuU/SuPZyUW92mHkby9GBW60oOMELq0qNUq6+gADIfHMRn9O9adOxuuS8u21kELVqtwG8oGhWloMFm3qu8Iirz3OGeZHCArrZ5o+a5XBIVWFSJ1Wiu5VI7L663yiKg6TM91NqjEZgKw/dBuPhkYhT/J9nN7NvvrnheYirUrIUQOsye4hrMNZxeEiSp7pukF3leKeYvUFSMZ61R5yPpInA84P3M6AUYwrmmyNPSpoavwqDxviFOfC6fdHBEMddiFkMsI+MoG2dl1WE/NKzmvFClMF8oztShkJZezChZ97kdQ1S4WtPdnSd0XL15wOBw4HA5MPmxdrFKSmsTVsq2jscAV9zeSC33IiFRaFUoPzEVkMwnbjge2Dol3fnvEtaYXWqQodKrVThZPCmHrPJBpmvjhhx+4vr7m5uamz63h+++/Z4qqWpWXlbWbmoFS01uHu+Tcce690zBuXGt13Wjyqkmd3RJAhQPWWpBFDdsuOUOgc9A2JSmQtfWOEL2rok70db/jcLVnnmdOpxM///xzh+esSHfVPhwOqpgWPE3U+8B1SOI5wTsb5gEsS6E6R6uFhMK7hu8GcaKWvBkajhdCFdnqIMbR73XBmc5PcA56Fb6inUrqClb5STFYnNXnioiotG7vvK3LiWmKHPZ7claO0ssXkThZpkmhUrlOvHgxkVIm5cKyrtRO4s65KKQzDzPInmyOApRohXpNmVQqa21cn1aur67441//FSLCz69/7rmIIcSdJmKjyymo7HZXr4vB07pxZsprT7B0fbRq6Fmjyg+XSk6FZVkwznJ3f6cmknHuiaOuiSl45kkJ3846rPMKKRO4X1Z15S6ZXH75F692C8+E0A03/IEX7bfiRXzJdh/jCHzLQGZwLuDTgvdP+dzHxnvfFzhDk7Qm+pzzfgjxetiZKfJ5nJ+PJQ6/VIBpjHmUG/PU9fgYWfux7/wS43LfCr2J7/xuFBA/dGwioi7SjHV7ht7oM0BVjYw5u33D+9V36EgUY7ei7oe6Yw+P/9cY4zzbhXyrFoCeCO4/MB57Rm3z/+D8x8+rlHd+Z43FXszx5e9Uulbla0dcMq5RbnmT5P7a41mJxZpWvJitKuw6HGK88FprPYB6F/OOkQ1uEZzbuAr0aq4xowJdCMFteG3aOSPWKniXUnSa2VpjN/lWZw3eLEjN1HYio4FDrbCsldNaOS2ZWhopl44s0YBHz0crg8ZavB3JRpfo2gIi3wP34cWh0CprbfffAGsrpr4BOeFZCTimGrViTGCeXoKdETOTvUJpEnkjfWInBEvOnlxBTKFUs1U3g7dqoLdN34DKVKRmmmkYsdSasQait5vPh7NGZVZLUZPDVlnu70nLiePxFtNWvDX87uXV5oN6ab4lPTN33m+wnpxzv+6NEILCng7XTNPUK/2TJjoo/GTIr6pDed2gUDq027EFefR3nZxvqlHPGH4apZ55AwhkEs2WjeCvHaEelFvZ1ijWnR3W+0Nx6jj20KF51hjmacJat3WvLtvFtelaGuehnTOrVgM9QK9SoZ4J/9L0XjBWM+fS6kYeH2T3QVQeCXTbqtM6P7XqQzjGSmsqr2xQovhhvyd47Qotp4XTyakDdU9EBm+p1TOHwzuHOLclGAN6Nq5xsyAPDZa2TlChNU1km1SMKB7bWEOYojpOx5mU9WE4OFIisPQgu24cEFX/clZ9eNU92mh3zVqc1QDe1UauBR/0vk9rwhiPt4YYHRGHmEhtkVpFTSKremrkXDtZuiics6YNptZad1yvnftkDM5bvBGkZtKyEILj1ctr5XIJvVtouhfP6K7RkwzZIHKn5UTK6mniw6RcjJQRqf3PZQfiDClt2K0Lo1BOSy6VWk8cTyc2sYiRjFrbu6QzMfxaFb2hGDMKBQ+qmU8Eip/yMv4UiMGXVLBHsNAfdt+k0/KOOtIj/INfYjw1hw8Jn+NzQ165P5H7O/Ldcenn8Nj4ULD42BjX+rfUlfgUKNhTP3vO77/l+FCy00ThuZ9yrfSde4bnWOyFwpQW+95TZrvY5kg+DX5732tYdl6Dv1UuC5yP77KT8DkJxVM/u+wYbfsygsGfCzUDZXDRIRrb2jrHWxKon/FW44Vgg/IyvsF4Hnk7dyL05vdge9ar5eUm3cW3kxRbVUjI8Ifw3m+JhSKKekLSq8DSVHXGjRI7F5Nthh+GYMyZxO2dJ3ijWu5SaS0jKAyqSaNUy5oqx2NiWdIWPA3/DIWh264S1Qnhzm+GfmKMvqyDVuGDjwQfeodJK8HOWPb7Hd4K3qy0XJBywtZ7nDH4FjB2wspMcAHjPFiFR9WiOOxqKsUAxlGqVzJ5U1wqQ1/fgvfdNCuomR8GlvvSMfkK9UCs4quNwbjQIWKK45fa+P+3924xtmzXWfA35qVqrdV77+Njx/EVkpg/TjASAWw5xBGKhIKRQEQ8ICKBUEAgYSGEAQEyCsJEQkKAiERQAlIUkhcHIgLh5yFA/ADGDigowZEQB/1BthPhOHZ8Oefs3r1WVc3L+B/GmLNqrV7du3v3ZZ848zvqs7vXpWrWrFlV4/p9yBM4SbPxsD3FdvsEp6++DEJC3zm8/uEGbCRelYvhx3MEHiQ1++XxyFXDRNiLTk5OpPxps6lCa9Byp5yFnrgIupVa9Dn9yZhLr+YosvzD0oSOEsnXKHuJKooXgWyK2nt5KM3N0ZQlo2ZUn4ayOpSk4mlW2KtIy6lq9kMbHWUtGm1oFwaylCUrxKWsaHE9lGshhkUfCACj81myQaXp3Sw1JGrZ2XyzIJBqupTMGuv1JQb5qu/hrENMSR/0841+ydK1bBYvJYmVCKG8x6wZR91OySaVE6Cldlx6ZHIGGzVASOimV+s1fMdYJVT6Y3FcGHa7RYxCCFCcS+HuFicx57IGWK83EtVtjch7J5mbKQRYAyRn4Xsv9wlnwLBgWMSUkRJjDAkhMGJijKNo0YQ0CR1tSghhB+QIThFO71HGGjjDII6IYQdnV3j06AFCyEiRkVnuS847dSwAGKvzZGR9xCgOUPSYooexXjIaU0DKQckc0lwOwGW1y4zkxMiWgSwZyqiZ25iKBoev2hyr9Uo0fToP9xxYOWsETw2Tw3ro/SO7npH5rJ+7zsN+aTyXb92mcVMztPr3VR2Ku47SXpTdKa9nzogsZAAEFfg6gmWZ1aGh9TxpYm8LV8lUPA/cVq9BySZchVK4ln/r7+Xcc/37AtG9RenQXh/OYh+1pO5IFuhwHM8LdQzX9HmfmoFbOCvl77K/5XwBqD0S8nxerE3MlRMicFuer8vtWSUouX1cz13JeVa7JUIIMkzJXogOQxG3s0QgFZ3rVx2cX8NYD6SElCNCDHBOGg3jLoDzGTwew/MalD2GKKU7MUpDsiMCuU7qy61BbztYynA0AekxkAdM42NEVerdDcA4Aa+8eoZxDJimaW9RkgrYmcoWY0QMy3pYv1LBLAffdbDe4eThAxUt64SWFRnEWxgkGI6I4bPg+AQIX4I1WRwf/2bAnCDZF2C7HmwsdoHB0xbMX8E0niGGiGGXENkhoQOMAzMhxwRmKa+xhuGsQdeJyJtEvJ0wIyUG+rVGX4M4VDEgTAOIGSmYGiHPKWLcbfHKV76IsydPMA4jpmGLOA2Yxi36zmKzWWH7+hfQeQ9vrZR8GGn4hRr7SAmsF7/V+vreeazXGzx69AJeeOEF9L3U8pelzss2IWZwjpjGoRpVhS2npE/FwRNRtLy4yFj7JKozULInLFmBrI4uYY52lUZ2Y6Q52lspHRMqU6rZlKzUoklVsUEEaARfjGFxhIL2WJQmXAPJ3slxapZHS6TS4vecpQTH1D4jqPMxl5clLVsqzdTirHWVJlboAaXkatKG7HIerF5P1gAPHmzQdQ6rdY+zs7OqHq02f42ohzBpZBZ1LksmQ9TOHQgsauzGAtbAdp32QamDGRPyFMEQx/XJ41Oc7UaMuzPRDek81qsNnHfwnRd18wxstidScjTNZXFQh5GzuIvi8YjyNHPGMA44O3uCL35xxMqLNsbJZoVps0LKjG6SYMYUg2QZjYXrZP333qL3HoAFqZJ3hsU4BYzTiC9/6bNCT50jNn0HZy26zonxzwM4jEjoEbdBS7WEHppgYJMHkjTV+dVa1o4BvGGwZ5yse6TkkfIaQwCmmKSpPcaqLi79O6MyjQmlMzEA0vkgBrMEaIw1lZKwliEQEBIjpIDtIJoq9w0DA7uIgtVygRqln6Ohd2EcHEa3r7IPicYnJE46Nmkuvu3xlUyFNTNb3rHsxTHsGXS3PK6LjLWQJ6QcETki5AnbeIaVXcObDr1dXfj9p2UYrmoE39YxL3sBDp3Ei+r/rzu+u8JFpVe3VdO/3J6ULR1XfD62v8MsZLmOGIDF8bW87MHJnBFz0Gtt35k53P5F43gt4LpjukrG9TBjuAwEAnNwpjgUhxpBRm3a8l1nXf38swR2rotrORZZI82kzoSUCc2lUJJtUNpJkuhj4cmX42XEFCsLUM5BPNy0A2GEMQnCgGIQIiMp25IlmWBrSKlpCdYGGI4iMhd3SGnEOESMIUnp0yClD+Oo9I9JGjiKlz2fCKtKwyogZz2cd5oJ6dD1PZx36LwwPYG08lSdJ8NJ+k7yAOYJAIHMiZQ02RfAtAZTD2QSytY0gHMA84hxCEI1GQ2YLNjYGq0Xx0cbuVlUuMMkUXKyAURRm1szpiAN6CFpnT9npGkQYxqA82JgxTBgt32CJ698GdvtFmEKiGEUOs0wIZJBnAhhGmGIYchLOwmkvCVLmgDAfDOqJW7dCv1KBA1FAb2op4vRPl8YohuQF8Z2yXhAs1FzAzfEd9/zxqn+fkiVmmlmNJmvwZnOVbY930TnbKIclzg5WWlVS82o9rwYo1mWjBBGTTGW1K2wcJVtTVoeVkrE9v5NScapDtCeIV+igznPNwijpU+sDf+ulJhoVmTZvE5qiFdn36Dve3G6gtTulzGmHFHEC4mLEV8DUHMGZlGXJtf0fDtaRtjLHDKkST4lMZQ731eleeMMjMkga2AyofcGBk76qZKrka6k94iUWcZgLGKUrENY3BTLw6w0N4eQkdIgCQ8CTAYSMWBE4M4QwZBqx1BQlzDB2QC2ASufAQsYNqp+zQC0pylK2dQUGBlPYJ2TErmikxKjOM5kQEEDCyKfLcrjSqxrKAOWYJHB3QhngOgInfWIySJY0p6WhBjTvJgNAKUXZBKa2WqgozxolChDz0tOd9OY9zQcf3Dtr6+7xHUyFMv/gHl937UB81op7QH2Sy6Akp2IUuZY5oUMOtPp588z+D1vXBbJLvfWck+/rBTvtXReLsJd9uDcuG8HRoN6Vyx70wz/a7nk6bq46bVx2Ro+8sZRJwTAwT1NsyB7DursZNw2rieQF0UVuHpGxsJYMZCclrx0Xp0JKsUa8pQXKk7GbhgBZFjLiNMI5gikx7A2wxtGpg6Re4wx16ZgK6XDcFaYkpwBLF5FzjtM02OEMSGGjNPHGbsh4cl2whQmadKMs/BaGbcpJU/a+FgUeF3XqyBVD+c8elX+ds4BRo3GKYJNEtVuiqC8A9IZEHaicWe/BvBvBOwjTFgDYDAHYHwCTgOm4VQyEtlgnBiZDWA6qX8nC7CWBVkGkaTlQwiYpowYGCmdyVIg8fiTloWknBGyiqUwA1HqxXOMWK16dN5hHE6xO32Ml3/91ySKv/B6DRJyAIIBtmenAG903o2cZ2NEZZy56o+ASFTOjcHm5AHWm400CDsvDFUodfpJf0oJR0RMASFMesOfIxTGLFNzYrTWZuKFfglASnkqF8rcEzA/CMX2FkYpMdYlE2H1e2KHZ0Dr4LMKMU7jqLY5IWdfRxOVOjSlqGtdH7Q51+b20rRbG6FrtEzKBOOi2bxThqzS1wDMDsqytniahOmJmdGpqrwrUXx1Whiox8lQpXPnqn5IyiKeF1QpPsQAaZ3WngiQXicyVkOQ8tky9RpRMiqWwMs513Qr6blOMUrfT0rwhrDyFquVReaEkEZ0dg1rLXrH6KzBJveARsqMtUhpQowThmkS4l7jMAwjwgREQ/Cdg+klk2KtwWq1gjEWIQDb4Qwg4OTRAzk8FiM/W+ndcTbBmAjGTsklEkzO8Eh4tIp6l/DS458zxjFiChlTZAwxgDmCXh7hvai5n6x7WAtYk2FchjHAlAy89eish2EGcUbGDkCEQUQPoAPgXUa2K2T0yOuHiNFgmFbCupczpphmjYwwIOWEKU6gZGs2Rqg7zaLHws4O5nOwkRiFVlSvZ7JYlkQ9ax/Fse/d9AFe6sFLLrVETg+NnOtGsi9CmYOrZiluG8toMTAbK4eOYOSIs/AYzsgzyZuuKgOHPIKuoGi+NHLuJbJfmoj5+HgOo+E3xUXG+22U6izn7LoG92XZmYvG+KxjPVxPwNN7hsp9oYzB1qqRrw7HYqnjc9tZ2XNlaNi/N9XApN7XSrCpBgL1/6RVD/uZ5NvF9TIWKQEug4ytaXhWPQvUshgHk6jSRRZxN0mRacaBjBRY5BHME9hmZPIY8wp5cmACvCH9Lqt4W4Y3IzhKXfIUpT57HDO2u4QpSB9FDElrtmeufKg4XGHombMTDt1qA+c8un4Fstq87bpaPiRG/YQYozaPG1BHyJQwxjMgbYE8gtEjZ4Mp9cjbCMZjMJ0CnAAOQA4iqhaHmvEhMz/IJGsAhGmsBk8ROZumYrCGuY6bVA2VS0Q+77EsIWudOxFSChgMYfv4ywjDTlXJS7mRUbpUQkwTeBjxxS9+EZvNGicnGzx88Ei1NMyed1vr81XjYHNyIs3PtqgBJ9UEkR6E8q8YSdLEGpOUNTllOZojShpVr5F4IzoB1ooOCqga04kLywEg3oBePiUboa+Xh6iwUgXJQmiPEDSiXKLKOceqAF9Yg1h7hkp5kmx5zkaMo6iHR3Uwaq18SWmQ9gwsVNGtszBZxlC+V2hepSdJyjFSNogpwipVmnMOve9qk7f0rwBMs2MBZmRStXIvrGnWnGAKAWEKGIYRnFXXJQod88zXz/V8WEuwzsJbKSMrfSDMUusfYgKbAAoTDGcwGYzDgGE3YLs9A4zHmIAxezhn4boNMqTPot90YDgADjEKDesUI1K2SHBgI9kSA4feA844OCt01M5JwzjnjGHciTGeGEHXzHacS8rOzgZYa+AdYd17eC8BEahLZPRYffcQnIuDlhA543TaISaDlAkRsjZzAsYo/WbbIWh2kWGdOL6rzRreE7rOSFaTGN4QjEmSsdHzwzmBKQHYAvwE3hr4lQezB8MgMUFEJx2msJYMJRuQ8SDjUeTNKM/rLZUxMmN4DqxQwGygy1rS50S5d1xg+AHHDZXLcCsGkWagl2MF9rUrbrq/i3CV4zyMUi4jl5fNI4A5E8NcI5vltRLFJKI9Rpsx7ZCQYcmhMz2skhOApRQva+/iLm3hjYc33dExLMd7ldeeFfkg6nrM0D90pp6GKzm/F6zTq2QTloZ/6Ue6aBsXHU/B0e8eBBQOnbvbyswclitd1wnKnDCmAd72ezoax/Bay5BdhOX9Tgz3RfZgcR1eZz1eur9jTjQbbfLeH9eew0m6hu8osHHNUqi8tyDLxHEqkW9hgymlT+JYzE4GA3C+B8HAsIEw8zOyMcjwyFgjswWY4Eo5lWF4K/oUBgkh7ZDCiGkcEWLGbmScqWOxG9OsJQD5vixW+SlsVM57ON/Beo9+tYZ1Hl3Xi39HqAJ4AGr0OU4TrDVwjiSayQnTsBPnKI8g0yFlhyFYLTMJ0muBBMrCUMVZagpJ91MoekFitOaUMWrfgdTlq7E0sjQ850kMSADQ45IbiUbe0qxgzaqlkJ1BzlIitT07Q45BMysiYuecEzYcMFIS6tGzs21tqu68lNIUpiGJZ6Oe7zKfXdfBey8ZBda1UfRBNMovpXRzZF90TgBpsl1eJLyI9kPLf4w27EtGg2oJTvm83jChD8G6JYhxz7NjkVNESov503UIlqg7dOwpiYNXxlOiENbKPsQ4zPX4pBE57DW711QvzU3ky0gRWfm9sGuJA2t0buV7mTOszWC2iEYcHUsGXrcNnq/F4lBLRiEhZwPLpeHf1UlxziFFMfAjdH1FMcqN4UpeUEvdvCiW1wZvvRfEnIBIoDCBcgbDYBz1+gyTUL3CISGgWxmsrYNJkLZqB6XW9XMJX05IbCSTp3XuBOm3kUC8rLGu82ClzD0720o0PyTEpOtiSuK4WYtAUbOqhLiW7J1zcnOFZkKNMejcSp0ZuW8xJSSWfjI2AJH0HIFFdyRrP0NZC1JCSYA1iOqIOC0NjVZoF2016qQhnHgAKIJ5CyIDb3sllHDIxurDwSBGErYp6gDjQaZDLA3zcar9P1HJpVI2yP75NMse1ksfPjOOGSCHBtNd4dh+lg/6Msbl73dRpnHVaOae0XyNcSyjkQy9X9L++3W7i8xFZHkWFIrKwv5UDKXS7Jk4wrK9d4PvcH/lvvdUg/6K5/HOS+Bwfv1ddQ6veo1c1Ddy0WeeB4owX+AAyw7CeXf+mlga5q/1cqljc10divq7/FYqf24jw3WIC/tTDl47vO/dJq4nkBcDYvQi5kWEVBZCTfEy0q4s/lwdDecc+n6NznfwxovBBIZ1j8D8QKg6yYDIYmWN0CqmQSKSSEAgxJwxTAHDFDDGiO2WlUJyktKLlGePkAjQSIsY7iQKvCSGRt+v0G826FcreC8ORTHsc2ZhWyEpi3DKaPXw4QNYkhrpadhiGie8+sqAlCeh8soDSs23RIgtTjZrOGvguh5h2iFyQpzGalxPk9DfxpARc5aa8qrnMDc5Cg+8kcZZ5bO31oFK4zmkD4M16lxq+UXALWDcaR9FYhB1oH6D1eYhnBcjK0w7jLtT+G6C6F9MMs/ThJgYq67HwwcPqv5CDCIjb62VbE/Xi+GpFKqJUzUUs7IG5Sz6AdM01mxFedCFFLU3hzVinBGjZLjIGDgrrEXMUiok/TauZjZqlgalaWkunxJn0krjq2Yrcg5Cx6tZg3J5yXcyvAFylMxFjFnLogDUyKYIlUVoxKw6AXqdpJnliVV8LRfHBfPYUs6VwSeEANZsRFGen5WzWY17J2VASuu419+wcCokcUPgGIVxKkUYa+G7FSwR+s5jvZYyve3OAhCqVKl/KlevlBbEDFg4wBqwgWZBpBSNc8YQIngKiE+eIGZGzBmvvvoEMSZMkRExwQSPPkfYADwZEnLcgnMAURb2sJMTdH4DqTfUXgRDMLaHZJsMwnaLEKSHA2SQ2cL3G3TW4sELb0AKE8I04ktf+orqWzhV7DbYnW2r48dJnG5TSjc7B9c7eO/w8IUXRCPCW1gzwPqI1esAshvArDEkj8wEhkGcImJIGIehrvH1Zg3fdXBdp/cURmQDysA0FSY7deoBMDsYWsu9NAQQMqxh9F56PCQnISWRRCKM6DultDYDctyJVg8NSGESfnPvALMCda/DuHlwndv7rWBZ9gTsl/0sjenS6Fmzt4uswV0ZPYeG2UX7upYB/wyG9UXq4MsMw6Fz9rRSnsNyLcL8XL4KAgdEDYBZ47Cym73SLYZkK3rTy/4AsCr6OuOvVNJ1UyeklnocNKDW5/wRHDOybqO0bUk7ft1tMItRTSA446+8ncNsxEVOxrLh+y4diGU26Dr7yZzx6vQVKUMlCcSSIXh9rhFIK1zUmYW5M/aiY3jW9XGsVAlYOpP7+i57ui98PLhxmNm4bUfkrtbHtUuhYgwqBjfzpku5hhiTGVmE5IgqtaSzTg0vLdXIELYhbZ5QexQpM6YpSBnNtFWqzqSCe4w4BYSYEFLGpD0YmUk0CSAlVsXIKjCgOkYyViLeJHSXU4jaizyftJIRIDVqoVkOqe0vt1MVACMHMgxTHFHI76UkgkgYhuIUMeyeIEwjht2gTEEi1lVE0zIv7hmlTMpAnSKN3NYILilLTAKpKjJYbvz1AZVFGI6ylm85B989VAGyNfr1Cbzv0DlCimvEkzWmaYsYBjw5fRkpBdG5GAawiroVbv8Uk7B99atKIyzOnF5E6tTwojk7pCD9INMkvRqxlBhhjqypI1ovnsI8pAZ57aHQCPISpbxIbnJALTkiWXfMjMRS+hJzBk+yL5tUVwXF4CmR/ySZjTz3PJR1YQDNEsk5L+dN1rpFsqaWPQkZQRERlPNUMhKcGZlYlJfNrFZeyo1KQgK0TxULnevi8XAZ2SI7MjMGqSND2kNhbHVSYpx1LeR9vclllk3rzTAqJa7JavAYUt0ZvRZywjhJmV5pYLbeovcWbB2YMkI4Q0wGIRgYCK208xYpZQxDQE4ToJoNMUkvC9ebHiFMEkCQDJZFTAwfoYrp4pCACJv1CrFLyJmE9ctIo7OUTY5SJqnXW2ZR2A46fiaPVecROy9ilZThNANHFghTAJOBdV0956VsrZZYKtUx17tKFKcfAUsq3eKeijNVeossmDISJGsrfedKOmAkvxu5E+8uAyl6cCYgCrkDZwdLHoQOBu5eMgCHYLAYqPUheiCOxTOla0nF34dTUXBoZB46PsD5h+1dNPReGEmeoxh7Y7oqnlYKVNbEMpJaaq4NCMZ0MOZ4WUplUISs3pgTQhZWOcumsl2V/V6lT+a6x1adw0VG+Fnm6DYyLc+6LoiKnNnBOVnaLZc4SvMA9sfyrH0ZzwLmuTfpqiV9y7XXmb46DaWXZ4lSbkzqZN9nhmVZKnYbGZ9jGar595mY5rIStcPXn2Xt3cd9reB6GYuckMexRgK9F40EMCFqOZQhwJGHtR0636sqt4WxDCAhhnIzA5yVRlRvLFJISCFiNwyYwojx7HGN7Ec1vlOIqM8Br4akcSDTVV0ClEjuwlIXu2k2zDMgDkyQrEQxjktEXhIfc+mU6ApIZoCzaE0ySSYiZ4PZypWIt/VWymWQEaYRuyenOHv8KqZxwG43qUM019+JcQJtjBWWqhJxIuNAzteGc4CVijPO0S1AXoc6YVlKeZAZlklofm2H1ckJun6Nk82L6LquNtAKdW7EkyevYHt2iu3ZK5JFCQG7HYlasZboECRrIN/38zowYjTlnJUuMyJVdiRp2E4pYhwGVT/OcIvm5ZxZHBenxpc2oxIZ5MSAEXawzKWpfTZCyr9F+V0cC31toc0gze5CSzvxnNFw6hCUz5aSrRjDLMCH+T5OnMHGCh2rmR+0zkg/Q2FPC2HhGGtzDEPKkGQ/uphZHyTWSSNw0f4o+7Ny615mTcThhB4rNMJv1bHYv24ZqOfBKm1t33dIOcF5yYBpjlGvndLEDXHcKYCJRNOjNpkrnS5L+dZuN9S1228ewroOrlshpIyQGLvhlfpwOVmvYLsOXbdBYsJ2CBiD9hqljGEUhWpGmp3Kav/purAjnJtkDfcOnTfoPeHBgxMAjGkMIOvl+nmwRkwR2+0W4yQ9WNMkQZJp3CFNkpUaRsKq67DuOliTYC2wWnkYDxgbcbYNIGOx3li9L0nWrQh/lr6sUoYo52ECKMJghPCGO1QXdfHQtM7rfEs2hrMBG1epu7W+ECEREgMpASmRUD8nD6gWjDceli1s7hDz/dPNlrrp4jRs7Em9PmOOyNinmDzMcNwlDh+se2J4gLKgzQxCBZc5aM9qxNVSJd3nRYJkl2UnLqvFL58r+6lOuhqExTCkEiohgiEHT35vW3VfOCTW0HLgPMrnjJfM5uL4wDd3Jg7pVolICTpKmGffILvq/o4e4wWG12XbvG6JTl3rC0P6cB3Kdp/uZB8tCbsH53y5rgBUbamnfT4tlNdP3MOj12PNtNTn3OXbvKt7x55zcez6v2BtH67XY+VrsyOpGlyMPeeibP+y+84zBY34cuflNnG9jEWMMNr8QARp+mU13I3UQXddoRt1MEqRGJNEzgkAp50wPHkCB48YCI+3E8I0YZomTNOAFCOmYVdF1Go+IMvNRNQOlCbWGRgn7Chi+Ei0Vm85MnDmBXc/au0+GLPYH5GqalvVDbDKGqVMOMaAswXDIyNKbfaKpbQiM7KKVZER1eswJWzPzhBDQBhHxMjIcLCOVQ8kzZFu1WwwxsL4DmQtrOthjJu9ddb5TlEbu0skfY70MXk4K5Fi+6Bkiwh9Jw3Wfd9L1sZJdJSI4JzoHlgDTDki5gzfrSFpWisNwwB2ux1Kj4BzXuk2iyFfIvAJyAnTOCCGgHHYSd+B6lSknBFiKC0hIKNZhdL/QlJnifKjzauzVa/nlVFLh/bSloAw5RgD60ij6zNVLgMIKWOcQt1m5iQihkTovTxUc86YRlmPoegrqBNBREDOqviea5ZgWZaUtM+iajNAHG7JvCUEZYEiiP6LdbZS8hKpcrLv6k0msah2F3phLnORshjfEP5xY9XJs4s1o/vUCwgEhjXAqpcSwPV6LToXMeLJk9PaoxOT0Kz2JYOizfNSxDg7g5mFFjqGqE6+xZQI1vfoVlIalVLGuJPrOaaI4VSvs80TGOdhXAdvV8IgZJxSyJJotAB6DXB97pZ+pd1OGtAf5whDWkKlzdjOGaxPHmG9eYCu69A5g9XrXyd9S1kE8kJMGIcRIY5IOUn0nxnDtEVKE4AMe3qqjHEdmNR5G0b0XY+TjVxvhASiEb4TtjDfnWhJZcI0nSGlHcbpFYAZE2dxuDlLOZgpDHVeAwdFsNHAeqrBDWQJOji3AZkVjO1BLJogTACMk4AHW1A2sBmI9/AAOcSYBpyNj/Goex082WrwSPmHGBad6avxcF2BOOByo/CimuyjTY4lw71460r16bdgvMk27IVjO8Qys7LcRsH53scsDkT5LM/fmZ87onC/zCotx3Ism7N8z5kOGzJVvXdKYzV4StN3aQx/VizLPpcBpMNSkcOxX4RjjFwXfW+5pq56DFd1cIrBmVnKwKXcGdUAl8qLq2u+3IdDUccOqY4Y8wjmjBOatS+OrZkpj/V6LOfNkT+/YcwO6aHhfKxJ/a4zM4cZoOW9pdzX9j6/zEBxCWbLNbDcZs32kGSlSxZwOXelFIzKfweBh2Up3mFZ4OFYl2MWmyCXv0SA+Q5wLceCtZxjGTktBrzULDsxOkvkH8pWkzU6BwbzIAdnDeKUkDOwPd1iCgHTNCKlICVXYUJSRd4ynTVNTEZKHcS70THRbOgWwwoazmUAapjtRflJH9xlAahzVHQfzJL9SqPOOfHsLZtSOQc1liXaGyZhPtrtdsLpX1SXNRIvGgHzDBrV0TDWw/W9iPR1vRhaZKpTkVPSxWhBOaojU/pIDMhYeOfhrUPXW1gLOJex7rw6e73MHRmkLNz/bAis48kMJAZY+12MEdVp1qh0MTqtiq3YZZZH+DmRY5BSpxAwjiOC1vlnnUNhetJLRD31ohNRz5n+LPUsZB3NF3TRhajRxXIuS0CIpEfBWlsdgxK5DzFpBgqqlSIMVmXd5pwrVbGoYgvLlrFS9xzVaJco3txftLxOqhJ1PcxyLHIwmUXcDlYi3sv+CJTP15IpUkNUmJ4AabAuD9zMQmnKZT2oc7WfveO6b6D0x0jzPkj6PcZpUkYrOd8lm1SoeUt5FjAzXKXaFM8AZRhjkc0AlyTokHQbYRq0uT0i6loNOcP6Ds71SD7CGAfrenHi60Novvp1MaqzxIiaGYthAmehVwZLmVXfe5RcXs49vO+wcRa2cwAMrANCiLDGYgqinZGCiHemKB00nFVF3GQwJVjvAFUht8bCe4vOGQAJmSfR2TEW1vh63VgTxIHgUUgSkih45xSQ0liZ4YyRcUlUWLMYkWrmg7M4Hc4/gHNrWLcGsAbDIbNTzRn5McpuV7JL94nIEWMSvZT54bfP3FOoi+W94w7DVcAH1xywb5BcJZp8lX3ehQFzV0ZgNSCAxUzg8EoSJ1nX2dOcu0MHpjguBNQyFumZ0WAPtGdS2WmORXevm2E4zIAcnpOLHKJLt3mBw3AsGn7ZeI+tvWNr5vj+LnaM5T1za+v4NpExM4QlTqp1Nc/B0okoGRmh09fXkEF8/FzORvAcWLoIt91zcBmelk246N5ztCSwevx09Dv7V7FEQY85Lof7P1cydXg+mLUyQZlEcbVr5bq4nvI2Eaxz8F1fWYWKM7HebKTGGA4xjQhhxJQm8brZgfII5Ajvd2LYRo/t2YRpithuh6pOXB6kgrx3EudzwdUZqMZGSqLQS+LEpOIA5FwNq5RUmMzaStVZfqxz4lA4q0Jw4jF6K1HsYdwhTQFxmpDSCEYCUdKHpjhQIUScnp5iHHeIISBFzWKA5iyJsSBycCAYLS1xrofzHZzv0a8fVF2NGiGHGod5Tp2VeZJeFqnxJmfhyMMZh7V5BRZnsPwFKVcjg2gfIWODiBeRo0VKwG7aIcURcdrh5S9+AbuzU2x3A5ASDENF3DBHjyHR9NVqjQcPHqDrehhjkJRuNYUJ47hDCAG7YYdhmjCME+A6QJ0kA9FJ8L1kmTrvUR57YrCi/s1MSJlVrT1KUzfzYjUA1npxBL2Dc52w8zjp67GasUgpgXc7RM1YuK4Tlq+uRxh2GIah6jQwi3bEMI4YplEcURJl6lKilLUUyOjf5aGxl7Iv53zxujHzTaWobJeTWcp+ipEvzhWqsc/MQGfhCJCMk2Se5NxIw7tzUpO/zGQRaZYuJURDQARc38MawDkrGZppwna7VVarVG9Q0zQunHZbf69ODS37BjKAiO0wgpVsALr+y0NiPreEcTyTbVoD369hbAfXnaDrT+C6FcpHI6tzA6FlForfiJQm5KLgrqV24lwwzs6AV199LE67s+hXa7z+9V+DF9/wRpw8eISTzRoxTLAI6LxBzkaYoSWngxSBzAEpjgBFEGVYJ/e71ZrQd2fwbgdrZUxh2GLSkhNjXlYD38NZwDsL6k6Q0ohEI5h3iMTIkYGoAnxIeserEQcEEERMUii2JUsEWOeFEttLEML3G2xO3oB1/yIenLwdznZwbo1hut7t/TaQcoS3HbyRn2IkZDC86c4ZsSWLQWRAfLGRe8xoO8wuLKNzF31ub5sHZQpLY+gq378LlPvIYSSy/Pu0Uoa51AbYUwQ6Yvw+zaE49n7kUAX0HDl4mulmqTr/ZmEWH4+kHx7HZVmB5XzsZ6jPZxSYGWMahM2vZMU04mvI1Ej5RfsqpAKRIzrTV3a8okC+XMNzZghgSBDi2BovY48cay9Kibifc5B0xIevHW7vvh2Jc+A5A3EWH8OQrUxiUuZoF1mzLHaD6er8jmkHQOwJZ1x1TMo5q88LFBOv5gnqvB06k4fXx0VO4I2zjQfZkouyBsf2Lce0cDouuj7g6/oqmS3QfI8qzkWZN1ExnyC8jKU7Upw5Q2amhSYgpgGJI0KeEHO40VxchGs9efp+hc3Jg73mbec6rbeXCOkUBoQ4IqSgi4pBeYLFCINYRbxiiBh20oydYtTGY3UkCKjCXfV3AKAaiVv2QxTa0hgjKOVaMw5gL1JbU1NEUJ2vGo1lzmJEBVK9BBFAC0FO4rAbqvAXZzE0nDrgOTOGaUKYhHlJ2jsIMyuH0Ug6VWdBNCS8ZBl8p/S3HbzvYZyDdV1tClXfol5swHw8hghdL024vu9AnGE4w2mDZx4tppARI2Obd4g5YEpbTFGchRylWZ5zwO7Jqxh3ZwhhVNEtC9/3qlUyAVo77pyDV4rZEuHPMSLFCWEcNVMRMIZJmmUZejM12riehV1Ie1v61Uqi8cwIU6y3j3JTL/0ozFqOxLNadQVh4YgtXlysG++8lMuRUb0HBlkjJSshYDvsYLWnJqZUnV1AshmZGZTVCOT9fZZshNSd0kzNTCWnJzcEyeRpxkMd2n61qs3ZyxK+GJNeA0XPQG9MWRqqyVg4vTFJmZT0diyvEWuMOvZJelUgvVK2ZHuWGTmeS8agx4TFeGrUkwxmwqoilifv1gweICmwul7Li/o3AZwyEmcQG8A4mAwRi/SSpfS9MNCIoy9rwFgpr0HmOq/Wei3pMFIiqPNUMjfWOmEfSUmM+zzAOQ/OE8BnIB5hkNCvpG/IOi15zBFh2im1rDK50KTXS4ecJFMg16IBSPuVEIAckfIAThHiLkQYk2E8NMNAQLY6L0rGwEDJwMp05erAlcSr6KlEJEjPAhlCjFtwGhGGx8jTFt6t0XePwDhebnCXWLkNTro1vPHzmgehcK/VMoAjD1ng4gf/0uh/2meWD+3ldo9FGcsYjm0LuDjSXj93DSPlUBvjaQbI3mcXBshFhvpVsDTMLhtn5KiEFudZvrJGO8WYTnvbKs6FrSV9F2cEyufL3xdF+et2MUezl+d6WYaTOVdj6qLzfdlczXdrqjaJNQ6Jk/YGicm0nJMpj7LGD/omluOWa0CCSMc0UvbH8HRctg7vI4pvSJuu2dXzUMq2quFLUrJeRDKX37VKLpE5CaumPuewuM8VZKZ6PuvzcVEiVqoWiuN5mXF/F3OyzEBcpXxu7750xFmuAUqGHif21vzhZ8E6p8aJICvR3hwmTgjxrH6vcI1602Oi10Ap1HqzxsnJgypORsag6zr0/QoxSk35MJ3VZl9yJA/KPIDsBGMScuowTRnbs6DCb9LwzCj/AvV/GkGuXapqIJboKcqDKmehE2XpviiUo8UiL6fRGjfrbAAAck2z5ZwQtWRJGI96OGtUSyJhtxsq0xFRhCUAWmaTEmMYgkR7s8ZptE6aQBrp1bRzKR8yFsZ6Md67DtZ1sM7Lv7aURmmEuDbv6pGoM1Xqr9ebFbz3WG9W4DQgxy3yyMiBEJLD2TZi2CW8Mu4wxYjdONTSJkQR0bNkMGxfQQgjYhhBvgOsh1+tlR1qC9YGUec8vFPHwlAVnYthwjiNGKcJIQah01X9EqMGfVRGHlJxNqfZj+JwxCjGezEiyYiAnzBN0YKCdfmQ1bWhkf9l5iAzhOITohLuVIshpgRkycDFmDAFiXY7a0WpuupuzKxQ1cDNEWzFOLbKeCZrMdfP59ozQdU233ug6xitc1itVlivRY2aM1QoL4F5qI4CFjefzCz9TmbWmmDNyKWcQWkWhyvOC2dtagdXUT9W56w6A2UfhDqH8026PNjVKdbeAGTWc5zLF/eejPVXRq3zLg1PlR2IGYgBmQlkpfSMSPpAAELMCTFIiSRZiYQZddAIonLNxtb5LwEKYbex6DsH5y2AjJwn5LSDcyvkNIL5VBmggM2qQ9879KsNjM1gThgGJ70204RhlGgt8lidC85yH5L7UXkYBl07AREjCBne6Y3feGTuYEwpDZUHQ9bMRU6p3gtT0XkhaPPtwgnMCTFKk3QgRhhP4axH2H0Rnd/gZP0G9P0bjt/I7xAbd4KH3aP6tzhjc+mT9FrF2bAks1wuFxqYs9ExR+uWD+6lgVE/X7a5iHYuXtTnA2YnZ3GNXmj0HxirFxmHx4y7c9mRp0RPLxvHVXC0LGJ53EeQtRcmpFHOG4Tauxh0cxSaqxZB6dFYGvuG7NGxHzp4Fzl8F0WBCVTXz6HjUvp4nDq1pVSnfhaXZ2iAORpNMEgs93ILh8ypUutCxdwIBCZCyKOwG7lNHXviCCqlZqW0kVx1fvbW7rE1pO8fyxodZrQu3MYt4XCdkj4DOirUw7KuSjBEv1Sv+0y2GrrlLHrTIXFEYiU4QYarzkbRj5qf78tspiW7d7RLY55xdw3dl+Fo9vTgHnXsc8DCCV2s8fL38ryWrMzhPXJes74+cBkMJmHoy5ywVceCQFi7jWjUkMNAw21NwR6u5Vg432GMogBsrIF3HZgzzs6eYKc0qiEFaawmA4cIMgnWRXAmpGjx+GwQ+soQUVSkTTVIzCKqWawxfb1E+dVIF9Yf+Sk0jyXCLcYSV2OpfpIkUhanMLMyFQM0szodBqtVj2kUbviSkQhBo8cA1qtVbQoWlqGErlvBuR65k+h+ShFxGmq0sUTspS9BmlxJm82ZrDS5hhE8jBAHSjIZ1nms1r04G97BWStlP9ZWx8JY6ZM4226R44QUAp6cAtNIOD21mHYBcYoI01Zqu6cRcQrSw5KizK1Ryk7YyuaFDOyePNb+DunpAImmSEhCQUpEyFZrbAGUVBCDEGJJExuh6oTUslsjqtJd16PzHZyT0iWGGIMhRozjJN9NotYtK4JA5bhpeTEWh4NrX4Wc1qxsTBpFs6ROBvQBK6rfhU1pCsJCBiKMQXQ8QggoKtgpJTBlZDWeTTaqi2Fqn4QYtvqQSxE5yjos2Z05a2awWa/FgXUOzjpZx52rzjIgWbiYk2bWNHqRswjq6edEmNBWZrMyLyUz5rxVQ94qTWyqTddyDc5OUBlbvQGqswbMGYDyL5GB6xykXK0wGgGJxGC01onGiTqi1hg4Y8AsNL7DNKjWOQFGyAqsX8F5r/0KQqiwdmtsz7bitO52Uu4EUnIDKYssD2xjo1ynhrBardD3HR4+3MB7h37l4DsD3xkYE7E56XHy4LciBc0sZDHgxzTCkRzj5sHrcKK+UkqTlORNO+ktgYHrTjSDNGG3ewUxDGBN81sImYC1Dt53Gkjo0HUs/A05q7FjVDdFnJGkwpJjGBFjQIgTbBaHK9ui/WDQuRfkd56dugyPKTLC2SvA2Xid2/utgHluSAWwF8XdxidqFGqEjRy8Nn4ei/Yei67vRUSPB6TrOOp/+kDGwsirEVLMBv9FRnxSGu/EUQ1Ko+Ue542Esp1jmY6y78vwtPf3j4urUXGRAbocW1k3y0hvhjh6WbMPU55q+UXZvslWtQQkSu0hAo3lmlvsEA5zEO3S41BjNC8ckTLWZUbrWH29WTS9L3s+GMXoXGhA0SIzcoFTemg4Sw9f3DNSnfHoIdkJSxHOPEDipKV8ci9y5KvDlTU4YrHPmFTGtZzvwpBWGLmMEqvImkvz9C6c3kOjczn2i5zzZ8VTnV8sg0nniQDKvJQMBbMEMw1ZrMxK7I9jx6LHUZzZJd0xgL37DPD00r67xvIecFl/jtwjC3nPTLl9ndLEeo9cZH6XKJkgZzwcPLzpEHKo6zVxxJRHxNdC8zZK2YdG/CVqpk2uSi3KAEgZZJwBSvImRUaKWbMUEp0WLB0HLZGoF095vTQ4Su0eaYS4ZC9c4fgvJ7akarlQ6sm6ZxbHJS2agEtzFDPLTYCoGp4iMrcXLNaHmTQ+hylgCgEhRHE5CLURGwTk7DXarpE5/ZF9lOZFGQ+poSwq5gQkLakBw0W5WI01gLU1ogx9QBal5xgDUgiIccJ2SBjHjN0IxKg15ORFiMYbIBsA8pAndSwk3Si1+kXZgZWmdH6KE5IqTI/jiCoMJ57bnrZJOb4sYXgZ7+IiIy31KssArLSpRrI0uc69zoket0RG9ILK8lDItVRI3y2OozwedHjl9qWlVNDv8PydrBmDogxe1cFLdEGHmrlEVvT7pWRFt19Ki5JmX6SfQhrKqwK89myYEpUhnUvM2imZDSx4YcwrdSxzVcVe/pTjX/4QCDAEYiMaFRBa16jHOc+VnsNFWrc+wGgZQeF6SpyTcj6QR8pChRqyRKmdc1ivT9B1PVZdr2VmRnpxcgSNPSRubwDjgVIeqL5MThERgIOy90CdKysOpqh/yxUMkkc6kQMZwDuDftVjteqxOVlJo3XnYCxB+6MrUYOzQj6QozZv5wggAZDxGmM1C5qAxEjWzWtT1w4RYA2BrQWgxwBV9SapI5bmajF8rFk4FmTARpm22OraS0Ap4zJWtCFyRkLU+4gIBAodc+n14tqzk5iR091Eoy7Dsehz0odcLgQDC+f10EC6rGQJ+l0sMhcXZgz2tkHVeDlWTrT8/SgTUr2v1K1d6FSUv5flOQU3NXz25qaMSeMmhzSXl26n3h/FYCuGsF7Sch0CqjJfDHN5hhUmqbQXUV5Az+1l5TjzXbgcjxjalT2H57N3ONeH2ywGePlscZyWyHqcBNRSpqfPULEf5lf2SnGAOm+u9hUsx1I+eeT4SSLwlSi+rBGa36//XuI8X4S7yl4s1/VljgAgc1NKYY2WptWIOy0CvgtH9yJkAIbnz5Z9lexGcRqft2NRcL0sY3UXb23/cl3P67CwjrEBKJfrM1cdkrvA9RwLJqxWazCLQfL48RM1wrIa1Qad7+YopWWkMOLsyYSzsy3GYcQUS7MeVSNLDAllQFJRtGLoGrJqQFk4bQAW2keNevedNDXnjN3ZE4nw1dr+ReQD84VcDF9TekXIgIyUtdhCq6mWQdLGbGus0sqK4Z1iwFe+8kWJ/uakTczCykRk4KwHHFRErNw4JLJLzGCSsiomAqtxbqikkOXjUaOXBILzri6VzLMzIb0hk+omSAlSCBOmYUBOCWKfONjeofMvwpIc3zTtEOKI3fZUtEach0FGihMef+VzIGYYaG8BMVKQh1jmhGG3hSHg5fVXQHgdzGYDp9vl7GCdk3EbAseEGLNIg5HON9QIJjHQY4q1dKgYus5aJBUkLCU/cuPOGiGevwMW+ldrbCUAKGlXYwxgyw1Pb0dZzh8DmIadsgrles6jqjTHGGv5k5TsYV43IDE0jTyE9xol9ScDWp+fatO3Waxd54W2V04417UEnm/irnxPHS7nxGhd9b2ylhW9FVIHqAhHRhSV6MJYVcaUAex2A8Zpwm67q9S9xfEqBgZBjaF6jcqLnLOsWSasVj26foPNwzcgJCBExpPdEwAMawgvvPgi1usN1quNRpskGxRzQheTZt/czPiFjGEYMY0jTk9P5fIlA6Olgf36oTTdOysGdU5IcYJ3hM4T1huDrrPYPOjgO9HQEcYqU8vxSK/FDEJignErGCL0G1EFT2GHGE4BZhhsAO6QssPjx2eVPCCrYTDSCCKh8O07j82q06hpRu2X0Kxl8UPKPJboNxGBfLnnrGpQZKMlcSEGjNOImCKmcYQxHtatsHnwIowxmKYdOAfkHAE14HPOCOP9ZyyA8wb0mHY4Da/ioX8dOruq9feHn5tr98+X0xQDouCwFGCJYtwtG5mPoRj9S4aqoBF7EMGRlNIVZ9vSXAJzEcoqtrC1V2FpYF5m/ByLbB6WedRjJwkicMnUaUbhIkO2boMLU11GyAGAZFJK1HxlVnvnhpk1Sm+rSnTKEWfxFL1dY60K3fVZq7uXEjg6F7HfM0zJgLR8KaYIb3t9Ts8zSQffP1Y+VlgRDz+XOGHKA6Y84SycYmXXeMPqay+cn0NEDtL/BelnmtKAh/6FKgRYSq827kGdr+JUGW2WvWjb5Vx1pld62XndL2EXmZyLMi5XOZabYKl0bhfZlHLMJaMnbGBSljvmAYV5aOMfwsLuscEVamKC0BVfdk0dnt+lI18VupmvrAB/V7jqOSllcTfBOfpdUL1/Tnnam+uyz446wMxkC8yMybwGmreNEQaaKQoDS+IEJoaxqEaORPhEMXaaAsIUtP9Ayi/KHBPNgmZWew2MdSq+VyK2bjZ6F2VQROJ9MSdM01iNw3G3U7XkhZAe1NM1YuxLb0MnSRI16K06Lc6JFoCzpt4grZVSj8xAilLmMpe8KKUoC3WoqOPyzE1vvQjledQMQzGuxMgGAELWHoBitFJ9X75ThLfm/fKi5EWixs46eOul4TgnxFXQKKwyU+lxFtjQo0sRq/UDGBL2pGl8gjgS+n6Nzll0zmHYnSFMowblJTIfY8Q0jTg7e4IHmw36roPrvB6z1ci0NHgzCJljNdpLA3aJ1JcIfNl+yRKkJArZ0uwfa4CuUN3mXJSvIU3ZTuhTAcwCb4vsE/RfawxWqxWCRusnLXeKMVbjX3oVRKlbqFwl82CWUUrURIWmzpNqTeSarSgN4OVvyhmZFmMzpQ8HMFbOQYxKc5qk/CzX9QVEPe6S1SBIGVvnRYHZ6Lo1LJorpdm+9ICkwjChLFBRy7zWyvC13W4RgoyhZAVLtgcgkLJvWefR+R5d12O9fgDX9VL2tFoB1mL6ojhq1hA636PvVlitN2CWhnSOEUL5KqxgrorDZcQ4wOr1b6iIeUVVyzbovGrWOId+swYRMOwew5oEbzPWa4JzDPCIGAgxaUBB7x9YRsrVGTaacYg2A3kSdqi8AgEIwSOGESE+xm57KplNtwLDgqH9FSUCD5aWMkowVG7+rI4uo6ivl0yH0BFnnWe9BxhtToeUc7nOw3oH2/XSoL/JMNbBWr22UgJzhLDUZRCJEw9jQHz/rFCAHOuQdohKP2rI4IF/QR78R+rcS11/KXVYqtEeZgOA44b34fuHhkoxzObG2RIAyIiLXRjNBmERRRUjeI5AXxRBP2w01hdVeA8H+z++ncOSqr3fF+Os+yADuyiHuCxDIvNSmkEJvvpds7NdI8KLbdoDnYKk/Qad6feONXIpJxRnxIDAypJ0oZI0dEx70eiFcN/h5y/ILsmY53KojIwhbRFzQMgTHvhHMzPOU2DILj67vOfvr0VLds9QOzbGQ+xRr+pW9Ut7c39sbZQM+15m5IhTfdvORYmoL4+/jIXBe8xC5RPiqLr5uzxnfJYliJwj2Jx3DBOnGoUpUfe6773jNxqona/v5+VcXHTt3heKs+6N3ztX5f5a7mBLbZSlhs1t4lpPnsLqM00SYeCF4SKGopE6dgKIMsI0YRwnjGOshni5gRUaulKLbayDdR5GBb6kDl8NZufrhVXqNxMywpQxjQO2Z6eYxhFhHDStWMomaDZ2ofz+1oueg2GQAYzJcNah71awTkpLWKkfmaXpGBBlcc7iMKWspVwaAQKXmkyhrLTwMKY09prqGBTDoV5c5QJbNCQvSwSWXli9seeZKabWuTtlFOJCA6qevJYxSbYAekyMmBNs7KUBPItoGoFxhgTijH61wrrvsel7pCAGKED1WKVHJmDY7cRATQk9urncxlgYk+CcQ8oMm8VQECM8o6hEl3rJwqRUxpeLEGB1LMTZyEnEz4C5mZmIao+GOGWs5VGYnQqeDQtrDLrOw43S7BvVqYhJtC1YGXqqgjmX32eBvHLJVmdI50UoaDUiqM5IYVpKOgeGF0nKxbkuithYHn/J5Ggjr8xF0rWg6xuojqEsUDUSclFFpeokIM3jDUFoZa0RooLNZgPvO3GgM6sGgn6vOMXGg5xD16+xWm2wWq/RdyshJLAWq80avuvx8iuvINdeGmE867qVlkCibtNZCRo4J7oPkrGRMjhxLNThhJakMYG8rAFrDTabNawlEAYQJliT0HWAtRkpBxGlZKguixEBv1qKqPcGY2EpwYCRTbkWAAPRfEnRYBzPMAyPMY6vomQ3QR2kCZ0AzGsZLPodoLLGD4wFvQaKk17UzrOSPhijjiOJiruUuDlYLn1l6gxZi+32FDmLY0GcAGQY0hIDQwA/nwds5oQhbWvD4CP/AjbuQX1/+dArUfSYozJJLYyoIxHcZ0WJ9i7pbcHL12SfnelqxP7QqbmKsXBpNqMYV8s1ceBgXFrPfmhsFoONFjH+WlZzvDl8ryYdcz/WcnxlW8vvzEbvXDpVvlvuKZkTkp63mAOKlgVdIIZWvn/oRCwzphfNx9wgy/XzCRk5Rxi7qtmnmAMSJ6zsumZclts4tn1xhDqZgSOO7fw5JZC5hkErnxXdBy24KoOp63257g/HuFeCd3B9HOuvuKwk7aljPfjuYZawRMiTMoPJ/a1kAQv97H7G5dDpTshHjdBSxm6YQBcYv7NzPe+3fPd5GPbA+XNyK9u8JJN57jMoJAGpVsqwEmbMTtrsDN+VE3Ytx2L75FUwSfMuAGHZIZKoPEYYInSuA+eIMAFnZ6+qgvEOzDM3PjGkyVcflEwWMA7khIXIeYe+6yTybQy8U6G2zBjHEeMw4dXHr2CaRgy7rZSypARo+lXqsOWh7Lse3otybtettQcAkP8ROtfDOYt156ABTfHwtORpGEbpI0kq+mMMwjQhhkmdIvUOqzPgwGTB5ADb1TpuoeSVZtYiJlgMCDFEc1VflkkSfYrCcCVlQvPNvNKT1h/Md2QQCkMAmTniPJdkaKgdLGVkKSCnEd4FpMnj0UYE+KClOSlFQB+Caq0j5YxhHHG2PROdgL5DsV+NNXAsbEcgKd3aDYP2BTh4b7FZrzTCTlqKWZh8oAdhwCEDxBK55hLBtzAG8NXoMvDGgojBcRL9BIJEfo1GhTP0YSc19NbKmsqctcQkiTr4mFFuV0GzDSEmNfZmA8Bp1onBmLSxvJSfpKyNueqAJXXAc2YRo+s6dL0YfsVANAsHwVsDThEhhZoNCzFpuZgI0En5W6gZPeRcr5XVqgdZKUd0TiJGRcyu9pMww7pCZSzGNYPE6fYGsH1l5DJQZiljkCFBgPXDF7Bab7BabWY9mM4jWdGA6dcbcGY4Zf0CEbY7KZuMIWDVi97IarUR1e6Ysd3uQGA8OHkAggFnYNgFIEMzjeJs9N7DEsBhwjg8gXOErmOIdkfGOD2RG2kSsoAM0mueRENGSR9KD4t3Ft4TXLktwABwYL+CsaJWb71D160wfTEI5bTJgJNSv1wchZzROdGlQc6a7cqzWGhxdongrDToJxKl+qzZC6iTUQQ+U4zq1CUAcnOyplMR0QCDBG8YpvfyPgt7mnCaC0HGfeMsnOJzr/4KQg7oTIdvePSNcHS8RIGZsY1PUOqjl/0DTLPhWz9f5ufAGL8IJTpcmiVLU/CyAbQ8iIWi1NZxHjaQ6x9H91tLRXhmwpl3UPMBc0lsucVDjlHDbM9kDO1FskHVySjvFRw1OosTschOzM5ULbwBoBSVKmjmyeNrV2+p83gaXgUArN1G9B5yqN8uwajLbC1L0hxe1oIos5tacnTRcVvYOkIiwhCf4NXxK3ix/xp40+FR92J1DA7L6uS1y40qTzPLjmhglLJVHYPO5he2v4qVW+P1/Rvrexca9DzPKYMxqaZAUTI/Fp0/hmPZr6UzmDhhSiO88VjSvV7H6H5a5oUgTeurvTKl2bE4dIiWZXHiYBusTL93ndcAINl6fsv6DizVF17nqcwfkdnLRj0to3mbOMzEHHWgFp+9SYbpWPa24Hy20wi9sf7e2ZX8ruOUZ0TAlO6mXPZajkWMkxoZMjhnMiyp4gRHcALCKEZ5iBnTuEMIUjY1J8nUCNaIYU3JaGTfOSuRTGul30FpZUX7YsI0TVq+MlV1YEMGbAFCYUqyMM7DWIuuX4lORNdppkLNbHVAeu/hrIHv1DgFS6O5shFJ/4JmCcjAsNEoIWvNtkSETc3YOBW+k2isdbbSnForTE+VLrc43KY0EaOWOmnQU27OWSNFh9oNC3A9pjKf87zuperrXU0NmZzANoOjBVYdokng4BDHgDBNEiGHMO9I09W8z5wzJlXYjsoWZgl759RoDwBK6YfRbNKBfoKGcmvTdDGCSw9FdYQgBpqzhU6V6nczM0CF3QhAJszi9VqmpAYcUXEtZ4Nv7lvhGtGPKcGwZhSs1cbmcg6KXkVGTLGyLBGJoc5kkJmQEyNEiYpmX7JppkbEePkDLH7PNdqQUtQG8KzXQhBDx6k6dqFRJu25oOX85j32J9ZjKM7aFAOmKUpDshrilblMsypMQliQIH0JiQkxA9YYMCxAoslA2s/AyIgpYzfsMMVJ1pnS95482MBQD+8MKGmGLRWlb2E+W/U94lrqZ62VpnUyJA3YBJBlrNeifg1izTIlUafPeg6Knar/UxFgdeLm8ouyxFI1JjPIJrAxku2w0tNgTDc3becSb1ReegYiESzP9NbiL8+9ATXuq+vTmpk20RSFYh3fbB+qcUbQlH+YrwvV7CjN/yALFUBXR+v+o3YhTxgx4oF/gI072XMqlhHxYkxFzSDs9QcQYflgXhpMSxw7vnMP33IdlYd9jZCjBnXM/MqFUftjWDouwL7tXPs8qluBaj7tGR4Hxv9Vztkxo3U55kOj5irHtBdsQnErDrCIXJe+ipCnWmZhyGqpZ5ZafMxEG0+L6BNJQ7hEqe2Fn10eS8nuz/c1WU8yB1qqpFORS2Dlkjk4Nqay7WJEF22LojydcsTntr+Kh/4hNu4BvOn2GM4KMmdMeaxR/hL0seQQ8oQh7bCyG8D4KuJ3eMyXzV8pdxEHxcsYWfIBtx2TPrzGltd31Kb+0mtxWdlWuRLL+hjTgLL+OrOat1sd4JrfQcn+LkvobjtTcBMcXst17T2Ds3PoNDzL5+oc3dMz4XqORRjQ9z16Z2EtwVptFkwiviWKwUHKnyYRv5sD8HPpB2iOlBplPXHOoes8Ol+cCylxscZq1mPC6ekppmms5SuA9BcY39XIjbAyWTjfK1XrWvbhxEEpP84SnCH0K8A6gnOEGIAYMsI4YTeMONvuEII2Ey/q94tWQdet4LsOznv0q5Ucg/OwbtbaMEoru6ztBuYbHREquw+BhIY3ZYQYEJX+dNLmWjnefUrRwgJDRCDr4IxVWs/ZwTAla8EZVBe4RhdIjX0LdKbH5Bi701cxjAOePH4ZOQcQMbz3SoNZIhKyiIdhAIHw8MFDdJ1H71UrhLVBvmS0NNNRtDCISBuV9eaRE0ojetl+ztJvIE5Q6S1gGAN0vZSogYEUQ43E52pUz0ZbxuysZTVwq0NRHVqH3W5XGc5ijJUdqjZrKysZ6/oFxBlJKWE3jijCiKt1J3TBVkQIU4gYpwhmQt+J4W2sGL4pMygWAgQVG9SGzNJTk0KoYyIt0UhJtRyMlKhZ49H3fc3kSAZrFs2T9SPjzcyILL1S292Ax6dP8PjJGQZlNzNWM4hKn5QBFYhjEAO7KSDRiCkD3crAwaBjI4F1ykgQ7YkwDHj1yShCc+MgBr0xePH1L+Lhw4d4/etfrH0mpVmeKGO1WmOz2eBksxZSBUeV+ch5AzJi+L/44gm6rtMAwA7DYBGDr/oj4uwlSYyWa0UfZp1fVcMkxyiq2ZllrSCBMsP5jK5bw8DBujW8fwBgQOYgYoM5QeuipDwkRmkC73sxWrVPB1DyBzLaP6IRJUdImWASQZiw53T2fpYxq7cAIE66jlljA+WhPfdcGUNwREju7lg/LsKUJ3jn8baT37pX/gSgGo5SKrXDLp6hM70wZmE+Nyi/0SwmdpUSg0MDmheG8kx/OzfeLp3M+Ttlf5idwOJ0LMZQrtFaWgWqpTbLcRwzMut4jxi4Fxkke8Ghg/fKuDV8ci5CvTwu3Vgd82Jjc8wJ+45SJRjAfjS9GMSiHSEGNRcacCO9MpURDCzNo5cgQ9WDOcEs5nPvODCXWRnq9l4v56cQTixRjG4x0G0tRVoeL3Ce0rM4XIYsejJ6vEIzO8QdzuITfOJXfw5fe/IGrN0GX7t6M6zbnDuHkSO+NHyhnt/O9vCmw9ptsEtneDy9Cm88ervGQ/PCuXlJOZ5rTqbF2hQ16wFjGvDAP5qP6yBb9CyG5SFxwkXrNiNjTDtknWMpz54zKUstirK9cv2kHPErp58CAHjb4c3rt6K3Kyw1UkrJYplDIqqZimMZv8ucmtvA8n5d7jd7Gc+F7QssHaR9J/GyMS6PdfnZi3CRc5G1bwk8j8NolvYucC3HYrNZw3sLQgJYBO5ijAhT0MyENPYWpVpgdiiMKf0GHtY6OOvRdWL8930P44XBZeWNsr4YhDBhDBG73aQNwxJVJTLour46KNaYyiJl1bHo+h7Wyz4KmBOIGJ1NMAgwlODdCiCHnBzGYcA0BpxtpfyJWBrRa3N2iZyrp+ych+9W6FY9Hj54CO8tVp0DUdKIodZ12w4pCftaFfCC9GXklBCmUQy+lBBDqaVfxowIpEw4xUCqDe5LTQtnYJFhKcDkCYCIpZFG95GNGDtJ2J84RxACoGoT05RljiNUUE0bsIghseq57KrU7U/TBGbGV15+GetVj5PNGlZ7BYShidB1HdariBAjYtS+A3VSVGJCnNOcxbgEkAk1ezEbxnoD0x6E4qhmVmrYVPQeCB6uZsaWdH71+6VvI88GfGnkLixb5bMl61P+9dnDEaqTIexP4lRI444FGQcwgWgCyOrLUhpktb+k0DPnnOGjRNoKlWyJpoo/Y2CTQdbsDxmLVS/N8VaZ0awX4oESIYxJ+mXAJKQDkPHmrJmEccLZ9gxf/OKXsd0NGEOYm8ltqR2GXGPGSNZN/2bOmIKUkE1Jemn6HND1PbwTRqScAobdKZhVuZyEBWu1WoGzwXY74lc/93lxzr30+1hrsFlvpM+pnPeYMU65ZobsFEE2guwAYwP6bgXfrUGWsNqcIOe1rvFZgTvmiEINzOL9ISdW9q8AogAgqRNtlJPeAogYdjs4I6VSD1/3OqQ4YdhtEVIUscfysNDyJznasT4MjAZSwIzEQNTnvDDouRoRNVx8Y7nWmAi285LNgV5vJI9jhpYMcnl2zZk2GAKzgdHzft94Xfd6bB6u0ZlVfS1pZDergcksLEZru1FjyYp4IM0GbEHpdVi+dhUjwcDslQXV79ZMwZxJWDoz5Tu0fP2YIa6vW7hz7s7S8Lq0Z+IKEdajxsYRw24WGjTn5opAe8SSx/YrWdbLjZZDo5u0UXQ/Sj+PAirCFTki54hJDXR7UJZUnisbe4JsVqL6fVAGVSLU8xzsl6sxZ3jT4cX+DVXL4qI5ms28K0SBMV93AKrI3S5uhfGLDL7lje/Cw+4hVnYFhqz3pUNJJIG2lV0rA9T+eu7tGm9cvwm9WR3tA9GNnB8X5vVhYGuJUBU2tOu98r5nwWGWZ5Hv2zuHMgaDldtUhz6pvVQYx5ZwxosQYw4wkMqCN2/eKiVnpoM33dwDVIJBpt/bLzDfH5Zjvagn5baxt5+D9XadOT9WHrXMyl322Yu2RzgojVqeM55fe649FjWta+Shl9OIrDW8UwhCIzvONIf1ejWESudKpM95hkSf5WZitfyZSo9BJDAnpJwwDRN2uwG7YUSM2gBbm8aghhBXPQtTKGqNCPhJI7k8cOW7QY3+CPAARgCbjMwOIWfstlsMw4TddislD6WJlzNSHFFKcgilQdloiUdWFhiGpQQiaaRUqxEAgVMR2pvqPEXVg9idnSEEYdCKsZSq6I3QqACgc0DnAWRl/BGqTlhhAGJj1OGJII7I8QzgBCDUOniwE4MqJISwU8ciit1DhGkicS5GceRyzMg67mKAMyvVaAbACRPLcTjrEKPQF3orN/AwSf9BvYGrYxXVeJcMk3r4UZysaRrl5k+s0fU5Q1SjwzlpZFYcrRhGdUxm5ydnrYddPjtIy7dixBSm6hCXbEBxKoomS8nOZJZYmLUBRFRL8NhC+zOy9r8QYKDq6/J3ynP5UebCKCZzNk5TNT6NKdSyrKJoQRjOUom+yzWRIQSMNQEHVLXtKUYQJZgkDgYpBe08fw4hZYScsd1t8eTJGV5+9RXEmJG0JInAgJZfERuAGAazhkYZH8cgTm4cYZ1XJrYN0HWIYUAYdxh3Z/VaddYB3sEQ6TyLAOF6c4KTzQlCGOV6Yult4izEDCklxJyqo000wNgJxg1Ajhj7FU5OXhT9CyNZrNICWR+6JGu1sMVxZkyDrPFx3ALqWDACDAnjUpcMokvgyJpFNeicONpggxSlhyZDS/wWZXaBoPegBWmD3EhVn0ayCsl7vdHPD0bOWolPEB1adTYKcUBZx/smEdds4lzSIgxcy/v3XaLsI2wjsgO22Nb3Yg6YcgBq6dDcYOxMkoAQVOn5Fowg2fTdpvyP6l1g3wC77XEcGnnHjL272OdFfSVFhKvQ8I40qROfqkFryGBMgzb4Glgye5H3Q/2NzBlTGjGZCHekx4JZGKdKhqhkapac/IHSOaOp9H2U6DJwXNPiaZHkIQ0IacTL48so+hibfAI3emx5h+wMOuPPOQiJE3bTTpwsTuimx/UzUxrldRpgKGA0094YSpavzPPyHBweo5wP7f+8hWh0Kd2qGdEj6/oYbXPkUKsyvPH1+/vjjRjTbuF0EBxZkM0IvN1b35XSGMeN9vu89p8VS4fhsvvDZY7FbePs9Kzu8zZxJcfi9PQUAPCx//fHbnXnDQ2/kfDy8x5AQ8Mz4PT0FC+88MLTP3jDfQDA//P177zT/TQ0NDQ03C5u+xlBfAVXJeeMz33uc3j48OFr1htsaGhoaJjBzDg9PcVb3/rWmhm8K7RnRENDQ8NvLNzVM+JKjkVDQ0NDQ0NDQ0NDQ8NleD4KSg0NDQ0NDQ0NDQ0NX1VojkVDQ0NDQ0NDQ0NDw43RHIuGhoaGhoaGhoaGhhujORYNDQ0NDQ0NDQ0NDTdGcywaGhoaGhoaGhoaGm6M5lg0NDQ0NDQ0NDQ0NNwYVxLIa2hoaGhouAzDMGCapqd/sKGhoaHhNYGu67BarW51m82xaGhoaGi4EYZhwDd8w9fj85//wvMeSkNDQ0PDFfHmN78Zn/nMZ27VuWiORUNDQ0PDjTBNEz7/+S/gl375/8OjRw8BiKorIPqre/9nPnh11mhd6rXWd/n8NnDkO3zh9g72dmR7vPc66xjnT+y9tzgOgIEL3uMrbftgP4ffP7Jt8P5+MvK57Zff80X7ZUbeO468t9/D78nv837yue0tx57nbZej2vtePjqG/X1m5HK4i/HsbYvz/lgPtjfvM5/bfplK3YJub/+YMh+Oe34983xucp3DxXt6PmUbOPoeH4z78HuH83K4n/1jPP+e/K6v16Uzj2f5fZnz/TFh8fvhd+bPLa7ZI68vt1fP4Lnt4WBf57ddzsvyvfy072B/rDjYXp6Hfe7auHAMy3O4PPbFmtLBHfy9+P3w9cX46qDK38vXj32Oj3z/ov3iyOsh4/Of+DymaWqORUNDQ0PDaw+PHj3Eo0ePABw36svr+6/OD73rOAL731kYts+4vUuN/yMGftn2Re9d2bG47PtP2zZf1bHIlzoWfGPHYvl7Ptj2szoWx47jdhyLPSP8GR2Li4z6847Fxe8tj/1ZHIvL3pPfn+4kLF8/NKIv+s4zORbX3u/ljsWVnBE+/h0wg+rv9U0sNnLw3vz6+e+VOcb8uZs6Fnzk9St/7or7xeK7t4zWvN3Q0NDQ0NDQ0NDQcGM0x6KhoaGhoaGhoaGh4cZojkVDQ0NDQ0NDQ0NDw43RHIuGhoaGhoaGhoaGhhujORYNDQ0NDQ0NDQ0NDTdGcywaGhoaGhoaGhoaGm6M5lg0NDQ0NDQ0NDQ0NNwYzbFoaGhoaGhoaGhoaLgxmmPR0NDQ0NDQ0NDQ0HBjNMeioaGhoaGhoaGhoeHGaI5FQ0NDQ0NDQ0NDQ8ON0RyLhoaGhoaGhoaGhoYbozkWDQ0NDQ0NDQ0NDQ03RnMsGhoaGhoaGhoaGhpuDPe8B9DQ0NDQ8NWBx49P6+/MDIDl9+X/mQ9e5YPvYP9dPr8NHPkOX7i9g70d2R7vvc46xvkTe+8tjgNg4IL3+ErbPtjP4fePbBu8v5+MfG775fd80X6ZkfeOI+/t9/B78vu8n3xue8ux53nb5aj2vpePjmF/nxm5HO5iPHvb4rw/1oPtzfvM57ZfplK3oNvbP6bMh+OeX888n5tc53Dxnp5P2QaOvscH4z783uG8HO5n/xjPvye/6+t16czjWX5f5nx/TFj8fvid+XOLa/bI68vt1TN4bns42Nf5bZfzsnwvP+072B8rDrc3D/vctXHhGC469sWa0sEd/L34/fD1xfjqoi9/L18/9jk+8v2L9osjr8fF67eI5lg0NDQ0NNwIzIwHDx7gnV//Tc97KA0NDQ0NV8SDBw/2Ajq3geZYNDQ0NDTcCESEJ0+e4P/+3/+LR48ePe/hvCbx+PFj/Jbf8lvaHF2CNkdPR5ujq6HN09NR5oiIbnW7zbFoaGhoaLgVPHr0qD3En4I2R09Hm6Ono83R1dDm6f7RmrcbGhoaGhoaGhoaGm6M5lg0NDQ0NDQ0NDQ0NNwYzbFoaGhoaLgR+r7Hhz/8YfR9/7yH8ppFm6Ono83R09Hm6Gpo8/R03NUcEd92O3hDQ0NDQ0NDQ0NDw286tIxFQ0NDQ0NDQ0NDQ8ON0RyLhoaGhoaGhoaGhoYbozkWDQ0NDQ0NDQ0NDQ03RnMsGhoaGhoaGhoaGhpujOZYNDQ0NDRcih/6oR/CN3zDN2C1WuHd7343Pv7xj1/6+Y997GN497vfjdVqhXe84x34Z//sn93TSJ8vrjNP/+bf/Bv8gT/wB/DGN74Rjx49wrd927fhP/7H/3iPo30+uO5aKvjZn/1ZOOfwu37X77rbAb4GcN05GscR3/u934uv+7qvQ9/3+G2/7bfhn//zf35Po30+uO4cfeQjH8G3fMu3YLPZ4C1veQv+zJ/5M/jyl798T6O9f/yX//Jf8Ef+yB/BW9/6VhAR/u2//bdP/c6t3be5oaGhoaHhAvzLf/kv2XvPP/zDP8wvvfQSf/CDH+STkxP+lV/5laOf//SnP82bzYY/+MEP8ksvvcQ//MM/zN57/smf/Ml7Hvn94rrz9MEPfpD//t//+/zf//t/51/6pV/iv/k3/yZ77/l//I//cc8jvz9cd44KXnnlFX7HO97B73//+/lbvuVb7mewzwnPMkff9V3fxd/6rd/KH/3oR/kzn/kM/9zP/Rz/7M/+7D2O+n5x3Tn6+Mc/zsYY/sf/+B/zpz/9af74xz/Ov+N3/A7+o3/0j97zyO8PP/3TP83f+73fy//6X/9rBsA/9VM/dennb/O+3RyLhoaGhoYL8d73vpc/8IEP7L32zd/8zfyhD33o6Of/xt/4G/zN3/zNe6/9+T//5/n3/t7fe2djfC3guvN0DO9617v4+77v+257aK8ZPOscffd3fzf/rb/1t/jDH/7wV71jcd05+vf//t/zCy+8wF/+8pfvY3ivCVx3jv7hP/yH/I53vGPvtR/4gR/gt7/97Xc2xtcSruJY3OZ9u5VCNTQ0NDQcxTRN+IVf+AW8//3v33v9/e9/P/7rf/2vR7/z3/7bfzv3+T/4B/8gfv7nfx4hhDsb6/PEs8zTIXLOOD09xetf//q7GOJzx7PO0Y/+6I/iU5/6FD784Q/f9RCfO55ljv7dv/t3eM973oN/8A/+Ad72trfhne98J/7aX/tr2O129zHke8ezzNH73vc+fPazn8VP//RPg5nxhS98AT/5kz+JP/yH//B9DPk3BG7zvu1uc2ANDQ0NDV89+NKXvoSUEt70pjftvf6mN70Jn//8549+5/Of//zRz8cY8aUvfQlvectb7my8zwvPMk+H+Ef/6B/h7OwMf/yP//G7GOJzx7PM0f/5P/8HH/rQh/Dxj38czn31myvPMkef/vSn8YlPfAKr1Qo/9VM/hS996Uv4C3/hL+ArX/nKV2WfxbPM0fve9z585CMfwXd/93djGAbEGPFd3/Vd+Cf/5J/cx5B/Q+A279stY9HQ0NDQcCmIaO9vZj732tM+f+z1rzZcd54K/sW/+Bf4O3/n7+AnfuIn8LVf+7V3NbzXBK46Rykl/Ik/8Sfwfd/3fXjnO995X8N7TeA66yjnDCLCRz7yEbz3ve/FH/pDfwjf//3fjx/7sR/7qs1aANebo5deegl/6S/9Jfztv/238Qu/8Av4D//hP+Azn/kMPvCBD9zHUH/D4Lbu21/9IYCGhoaGhmfC13zN18Baey4S+Ou//uvnolsFb37zm49+3jmHN7zhDXc21ueJZ5mngp/4iZ/An/2zfxb/6l/9K3znd37nXQ7zueK6c3R6eoqf//mfxyc/+Un8xb/4FwGIEc3McM7hZ37mZ/D7f//vv5ex3xeeZR295S1vwdve9ja88MIL9bXf/tt/O5gZn/3sZ/GN3/iNdzrm+8azzNHf+3t/D9/+7d+Ov/7X/zoA4Hf+zt+Jk5MT/L7f9/vwd//u3/2qzKJeF7d5324Zi4aGhoaGo+i6Du9+97vx0Y9+dO/1j370o3jf+9539Dvf9m3fdu7zP/MzP4P3vOc98N7f2VifJ55lngDJVPzpP/2n8eM//uNf9fXe152jR48e4X/+z/+JX/zFX6w/H/jAB/BN3/RN+MVf/EV867d+630N/d7wLOvo27/92/G5z30OT548qa/90i/9EowxePvb336n430eeJY52m63MGbf3LXWApij8r/Zcav37Wu3ezc0NDQ0/KZBoXb8kR/5EX7ppZf4L//lv8wnJyf8y7/8y8zM/KEPfYj/1J/6U/Xzhbbwr/yVv8IvvfQS/8iP/MhvKrrZq87Tj//4j7Nzjn/wB3+Qf+3Xfq3+vPLKK8/rEO4c152jQ/xmYIW67hydnp7y29/+dv5jf+yP8f/6X/+LP/axj/E3fuM38p/7c3/ueR3CneO6c/SjP/qj7JzjH/qhH+JPfepT/IlPfILf85738Hvf+97ndQh3jtPTU/7kJz/Jn/zkJxkAf//3fz9/8pOfrJS8d3nfbo5FQ0NDQ8Ol+MEf/EH+uq/7Ou66jn/P7/k9/LGPfay+9z3f8z38Hd/xHXuf/8//+T/z7/7dv5u7ruOv//qv53/6T//pPY/4+eA68/Qd3/EdDODcz/d8z/fc/8DvEdddS0v8ZnAsmK8/R//7f/9v/s7v/E5er9f89re/nf/qX/2rvN1u73nU94vrztEP/MAP8Lve9S5er9f8lre8hf/kn/yT/NnPfvaeR31/+E//6T9den+5y/s2Mbc8UENDQ0NDQ0NDQ0PDzdB6LBoaGhoaGhoaGhoabozmWDQ0NDQ0NDQ0NDQ03BjNsWhoaGhoaGhoaGhouDGaY9HQ0NDQ0NDQ0NDQcGM0x6KhoaGhoaGhoaGh4cZojkVDQ0NDQ0NDQ0NDw43RHIuGhoaGhoaGhoaGhhujORYNDQ0NDQ0NDQ0NDTdGcywaGhoaGhoaGhoaGm6M5lg0NDQ0NDQ0NDQ0NNwYzbFoaGhoaGhoaGhoaLgxmmPR0NDQ0NDQ0NDQ0HBj/P9qRKfVQYf28gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "_ = viz.visualize_image_attr_multiple(np.transpose(attributions_lrp.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),\n", + " [\"original_image\", \"heat_map\"],\n", + " [\"all\", \"positive\"],\n", + " show_colorbar=True,\n", + " outlier_perc=2)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorials/TracInCP_Tutorial.ipynb b/tutorials/TracInCP_Tutorial.ipynb index bcfbe60a77..733c92df2a 100644 --- a/tutorials/TracInCP_Tutorial.ipynb +++ b/tutorials/TracInCP_Tutorial.ipynb @@ -46,8 +46,7 @@ }, "source": [ "## Overview of different implementations of the TracInCP method\n", - "Currently, Captum offers 3 implementations, all of which implement the same API. More specifically, they define an `influence` method, which can be used in 3 different modes:\n", - "- self influence mode: calculates the self influence scores for all examples in the training dataset.\n", + "Currently, Captum offers 3 implementations, all of which implement the same API. More specifically, they define an `influence` method, which can be used in 2 different modes:\n", "- influence score mode: given a batch of test examples, calculates the influence score of every example in the training dataset on every test example.\n", "- top-k most influential mode: given a batch of test examples, calculates either the proponents or opponents of every test example, as well as their corresponding influence scores.\n", "\n", @@ -59,7 +58,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": { "code_folding": [], "executionStartTime": 1646008672515, @@ -87,7 +86,6 @@ "import torchvision\n", "import torchvision.transforms as transforms\n", "from captum.influence import TracInCP, TracInCPFast, TracInCPFastRandProj\n", - "from captum.influence._utils.common import _load_flexible_state_dict\n", "from sklearn.metrics import auc, roc_curve\n", "from torch.utils.data import DataLoader, Dataset, Subset\n", "\n", @@ -140,7 +138,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": { "code_folding": [], "executionStartTime": 1646008674145, @@ -191,7 +189,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": { "code_folding": [], "customInput": null, @@ -218,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": { "code_folding": [], "executionStartTime": 1646008674491, @@ -250,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "code_folding": [], "executionStartTime": 1646008674539, @@ -260,7 +258,15 @@ "requestMsgId": "9f556c2e-75df-49f3-add7-a3d41771f5b5", "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Files already downloaded and verified\n" + ] + } + ], "source": [ "correct_dataset_path = \"data/cifar_10\"\n", "correct_dataset = torchvision.datasets.CIFAR10(root=correct_dataset_path, train=True, download=True, transform=normalize)" @@ -279,7 +285,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": { "executionStartTime": 1646008676655, "executionStopTime": 1646008677580, @@ -328,7 +334,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": { "code_folding": [], "customInput": null, @@ -421,7 +427,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": { "code_folding": [], "executionStartTime": 1646008678228, @@ -452,7 +458,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "code_folding": [], "customInput": null, @@ -494,7 +500,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": { "code_folding": [], "executionStartTime": 1646028105065, @@ -523,7 +529,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": { "code_folding": [], "customInput": null, @@ -537,7 +543,8 @@ "outputs": [], "source": [ "def checkpoints_load_func(net, path):\n", - " _load_flexible_state_dict(net, path, keyname=\"model_state_dict\")\n", + " weights = torch.load(path)\n", + " net.load_state_dict(weights[\"model_state_dict\"])\n", " return 1." ] }, @@ -556,7 +563,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": { "code_folding": [], "customInput": null, @@ -574,7 +581,7 @@ "1.0" ] }, - "execution_count": 13, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -594,12 +601,12 @@ "showInput": false }, "source": [ - "Now, we define `test_examples_batch`, the batch of test examples to identify influential examples for, and also store the correct as well as predicted labels." + "Now, we define `test_examples_features`, the features for a batch of test examples to identify influential examples for, and also store the correct as well as predicted labels." ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": { "code_folding": [], "executionStartTime": 1646027806313, @@ -611,8 +618,8 @@ "outputs": [], "source": [ "test_examples_indices = [0,1,2,3]\n", - "test_examples_batch = torch.stack([test_dataset[i][0] for i in test_examples_indices])\n", - "test_examples_predicted_probs, test_examples_predicted_labels = torch.max(F.softmax(net(test_examples_batch), dim=1), dim=1)\n", + "test_examples_features = torch.stack([test_dataset[i][0] for i in test_examples_indices])\n", + "test_examples_predicted_probs, test_examples_predicted_labels = torch.max(F.softmax(net(test_examples_features), dim=1), dim=1)\n", "test_examples_true_labels = torch.Tensor([test_dataset[i][1] for i in test_examples_indices]).long()" ] }, @@ -675,7 +682,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": { "code_folding": [], "customInput": null, @@ -691,7 +698,7 @@ "tracin_cp_fast = TracInCPFast(\n", " model=net,\n", " final_fc_layer=list(net.children())[-1],\n", - " influence_src_dataset=correct_dataset,\n", + " train_dataset=correct_dataset,\n", " checkpoints=correct_dataset_checkpoint_paths,\n", " checkpoints_load_func=checkpoints_load_func,\n", " loss_fn=nn.CrossEntropyLoss(reduction=\"sum\"),\n", @@ -711,7 +718,9 @@ }, "source": [ "#### Compute the proponents / opponents using `TracInCPFast`\n", - "Now, we call the `influence` method of `tracin_cp_fast` to compute the influential examples of the test examples in `test_examples_batch`. We need to specify whether we want proponents or opponents via the `proponents` boolean argument, and how many influential examples to return per test example via the `k` argument. Note that `k` must be specified. Otherwise, the \"influence score\" mode will be run. This call should take < 2 minutes.\n", + "Now, we call the `influence` method of `tracin_cp_fast` to compute the influential examples of the test examples represented by `test_examples_features` and `test_examples_true_labels`. We need to specify whether we want proponents or opponents via the `proponents` boolean argument, and how many influential examples to return per test example via the `k` argument. Note that `k` must be specified. Otherwise, the \"influence score\" mode will be run. This call should take < 2 minutes.\n", + "\n", + "Note that we pass the test examples as a *single* tuple. This is because for all implementations, when we pass a single batch, `batch` to the `influence` method, we assume that `batch[-1]` has the labels for the batch, and `model(*(batch[0:-1]))` produces the predictions for the batch, so that `batch[0:-1]` contains the features for the batch. This convention is was introduced in a recent API change.\n", "\n", "This call returns a `namedtuple` with ordered elements `(indices, influence_scores)`. `indices` is a 2D tensor of shape `(test_batch_size, k)`, where `test_batch_size` is the number of test examples in `test_examples_batch`. `influence_scores` is of the same shape, but stores the influence scores of the proponents / opponents for each test example in sorted order. For example, if `proponents` is `True`, `influence_scores[i][j]` is the influence score of the training example with the `j`-th most positive influence score on test example `i`." ] @@ -734,7 +743,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Computed proponents / opponents over a dataset of 50000 examples in 1.22 minutes\n" + "Computed proponents / opponents over a dataset of 50000 examples in 1.11 minutes\n" ] } ], @@ -742,10 +751,10 @@ "k = 10\n", "start_time = datetime.datetime.now()\n", "proponents_indices, proponents_influence_scores = tracin_cp_fast.influence(\n", - " test_examples_batch, test_examples_true_labels, k=k, proponents=True\n", + " (test_examples_features, test_examples_true_labels), k=k, proponents=True\n", ")\n", "opponents_indices, opponents_influence_scores = tracin_cp_fast.influence(\n", - " test_examples_batch, test_examples_true_labels, k=k, proponents=False\n", + " (test_examples_features, test_examples_true_labels), k=k, proponents=False\n", ")\n", "total_minutes = (datetime.datetime.now() - start_time).total_seconds() / 60.0\n", "print(\n", @@ -769,7 +778,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "metadata": { "code_folding": [], "customInput": null, @@ -863,7 +872,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "metadata": { "code_folding": [], "executionStartTime": 1646028189612, @@ -882,19 +891,17 @@ "test example:\n", "true_class: cat\n", "predicted_class: cat\n", - "predicted_prob tensor(0.4126, grad_fn=)\n" + "predicted_prob tensor(0.4126, grad_fn=)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAev0lEQVR4nO2da4yd13We33W+c87crxxyZngnJUqKrMSUQit27Kp2nASKmsI2ULt2gUAojCg/IqAG0h+CC9TuP7eoHfhHYYCuVSuGY1uILUhIhNS23NhwrciiZOpKXShepOEMOSSHc59zX/0xRykl73fPaC5nGO33AQYzs9fs71tnn2+d78x+z1rL3B1CiHc/ua12QAjRGhTsQiSCgl2IRFCwC5EICnYhEkHBLkQi5Ncz2czuBPBVABmA/+nuX4r9fU9H3rf1FsPHip/nHfsWkxQd3BY9FzlmTLyMeh4zeux1OOZ/2LZWP6LruCbVlp8sdri1KsRsWmw9GrGT+Tu/FuOecEsj4gbzcWahhqVyPejkmoPdzDIA/wPAHwAYA/CkmT3i7i+yOdt6i/jCv7sxfDxv0HMVC2E3LccDolIpU1utXuXnKoZfjACg3gj76JFnxXJ1astl1ASvdvFjgh+zUCwFx7PIU2057n+9UaO2ao0/Z40GCQrjftTC1ygAoMyOh5UCN+xj7EW9UuHXR70eWcfINZyLPGcVcl0t8KXHYiV8vG/9eDziw9q5HcBJdz/l7hUA3wXwsXUcTwixiawn2HcBeOOq38eaY0KIa5D1BHvofdCvvR80s3vM7JiZHZtfirwvEUJsKusJ9jEAe676fTeAX/uHwd2PuvsRdz/S3bGu/UAhxDpYT7A/CeCQmR0wsyKATwN4ZGPcEkJsNGu+1bp7zczuBfC/sSy93e/uL0TnwFAhry/uS3wi2a1sA9+xzoFvdefzkR3yNSheVuCTypUKtdUaER8j0lsW2cXPk2nW4DvMqHHlIraL3Ij4X7H24Hg9a+NzYser8/WwBvfRiJrQHnnO8sZtuXxEuahG1tj4v7BO1tgjOkOWhX2MKRPrel/t7o8CeHQ9xxBCtAZ9gk6IRFCwC5EICnYhEkHBLkQiKNiFSIQWf8rF4Syxwrn84/XwHKtzqaZR5ZJX1hGRccCTGZjk1YhIP8VCgdpqzm2NauSxRc5Xq4VtFsnkykVkPst4YpBnYXkNAJbqYYnt/GUuTy1UuI/z83xe5nw9etrD61g0/jz3dnZQW0cbl9AaOX7N5aIyWthHfnUAVZZ8FdHedGcXIhEU7EIkgoJdiERQsAuRCAp2IRKhpbvx5g3k62TXPYvsFpMkjrYskh+fj21LRhIdSIIBAJoIU4sVC8txPwpFvus7sj9cvgsAZqcvUduly4vhc+X5rnoOkeSUGr9ElryT2k6cvRgc97ZtdE4144lNlW6+8z8/M0Vt5y5cCY53t/PHVZ+Ypra9I3wdt/XwdWzPx8pZha/jYuQSrhMFIlZuS3d2IRJBwS5EIijYhUgEBbsQiaBgFyIRFOxCJEKLE2EM7JP6lu/ns4icUIt14MhxWa5S4wkLxUiNtHqd1AqLJKYgIoUUI3XQfuf3/4DanvrF49Q2TmS5hYiEVqt3U9vZsUlqOz12jtraBkaD47uHD9A53tZDbZU8f14K3duprVaaD45fnuSdUzoHuDw4Nn+e2kqkViIADPfwtJbOQjgRpl4Ny6gAwJr4kO5fy3O4SQjxbkLBLkQiKNiFSAQFuxCJoGAXIhEU7EIkwrqkNzM7A2AOQB1Azd2PxP6+YTmUc2F5ZWaRZzzVa6Xg+EA3l9d6My6H5SP12BoRWY7JGrSuHuJZdIuL4YwsAPjJ3z5MbRemeb2+C/Ph8509x891dvwNasvauSxXz3qpras3LIcVOvnx8u08C7At0pKpPcevnUuVcFux0d176ZzS0gK1nTrFpbep6fB1CgDZLv64928P2wp1LuUZq8sYyZTbCJ39I+7Ocy6FENcEehsvRCKsN9gdwA/N7Ckzu2cjHBJCbA7rfRv/QXcfN7MdAH5kZi+5+8+u/oPmi8A9ADDQw6t8CCE2l3Xd2d19vPl9EsBDAG4P/M1Rdz/i7ke6O1r8UXwhxD+x5mA3sy4z63nzZwB/COD5jXJMCLGxrOdWOwzgoWZGWh7AX7v738cm1BqGi0vhDJ+paj+d99P/+w/B8Ztv4JLLR94zRG0DkeKWDZLZBgA50qYnl+MZTXXnbYsiahJOnz1FbVNLPAPMOweD41k3zyjLDc5SW0d/P7VVSlxqqpD2Sr0D/Dnr7ea2yfNc8pq9wgtO9hTDl3h7B5f5Xr/CxaVC7zC1TU6cpbbu83PUNtIb9qXDIpmKpAgrK4oKrCPY3f0UgPeudb4QorVIehMiERTsQiSCgl2IRFCwC5EICnYhEqG1vd6yNuT7DgZti5f56061GM6gmloMS2EAsFjhvcF6izyzrUH6bjWNweEs4z3PShUu8VzkyWu4NMclwM5+XhBxYHs4m2uhweW1IXAfs0gmWqXA17G0EJaaSvPcj33D/HEtEgkNACZJZhsAWCEsU85M8WKOiBQQXZoPF7AEgKzIr4MLszzrcGImLGHuG+LXd44lxMVaHHKTEOLdhIJdiERQsAuRCAp2IRJBwS5EIrR0N769ows3/tavZcECAMb+8WU6r7svvBt/+wd+h87pzHhSQoXsFANALs+TWqwQ3pmu+wCd07NjD7Udf/ZVauvu54k8u/a9h9o8F959LkR2zhvly9RWqURabEXWKiNJHC888wyd09sWaZHUxZNkuiJ17cbPXwiO14iyAgAZ2cEHgMFevuM+fYUnPV2Z4rbTEzPB8Z3DI3ROnilKkSJ0urMLkQgKdiESQcEuRCIo2IVIBAW7EImgYBciEVoqveWyPDr7wskO+w7eQOctEdVi74Hr6ZyhKpdWpk+fobZqJBGmXgvLLrff8XE6Z+9B3hHrwG9yP576FZeoBrq5JDM+Ga6flndexrutwCWvWE2z+QXeJml6KiznDXbzc0VOhXpEKhvaHpZmAaBcDT+fl66E5S4AsEjLrp5Inbx8xsOpUuKJN6+9MRYc3z7Ak5AO7Q7XFHREkmeoRQjxrkLBLkQiKNiFSAQFuxCJoGAXIhEU7EIkworSm5ndD+CPAUy6+y3NsUEA3wOwH8AZAJ9yd15k681j5XLI2sIZSuMXTtB5h3/7fcHxrj6egZTNnaO2eo3LOPlIrbNTb4Sz5T40cIDOQeduaurp4nJMe55ncnVEap21F0nGVqSu2q6do9T24muvUVuxyOv8zc6F1+rAHi6x3nDTzdQ2NcUvr+7efmobPz8ZHLccl6j6B8IttABgJlJLLotIdh2d/dS2NBe+Dl59nWdndhTD56rWIlmK1PL/+SaAO982dh+Ax9z9EIDHmr8LIa5hVgz2Zr/1t3fO+xiAB5o/PwDg4xvrlhBio1nr/+zD7j4BAM3vOzbOJSHEZrDpG3Rmdo+ZHTOzYzMzvGa4EGJzWWuwXzCzUQBofg/vggBw96PufsTdj/T19a7xdEKI9bLWYH8EwN3Nn+8G8PDGuCOE2CxWI719B8CHAQyZ2RiALwD4EoAHzeyzAF4H8MnVnMwsQ6E9fHcvlXhBxHI5nPZWiEhQnV38XURXpKVRW8az3rrz4X5N3zz6DTrnX//be6mtsHCe2opt/HU4l+M+Hji4Kzg+OTVO55TmefbayA5e+HJqlkuH5Ur4+Tx4Pc9UvO56LsvN/OppaluY4y2ZZhfCPtbqXKJaWgq3YwKA/v4+aqs7l8r6Bni2X60Sfj6zHO8PNjYefjNdIVl+wCqC3d0/Q0wfXWmuEOLaQZ+gEyIRFOxCJIKCXYhEULALkQgKdiESoaUFJ2EGy8ISxGJE/iktLgXHC5GeXHOXeZYXMi7ZFTBNbaP94UypV0/wnm3jYye5H4tcDjs7dobabh0J98sDgF37wsUod04O0zkLJ3lfvMG2fmrrifSje+2108Hx0Z1haRAApmf5JyyrEanswkXeq67h4d5nFikOuRiR3izHryveZQ3oihSqRCNchLVo4eseACqXwrKtO8/o1J1diERQsAuRCAp2IRJBwS5EIijYhUgEBbsQidBa6c0BkJ5dmXNpZXQoLE10tnPp7SfP8kKJA5GifIcGeXZSe1tYdinmuVRzcfIMtTXKvHjh3ut4Ecss8rg7eweC40PDvPDl5SmeNTYTyWyrR9TNHTvCxYvyEbm0RLK/gHg211KJZ4fViJNsHABKZZ6BWavx++O2IV6wyYxfV0ULXz9tFuk76GH5uJDn15Tu7EIkgoJdiERQsAuRCAp2IRJBwS5EIrR0N94MKOTDySR93bwuXH9P2GYNvls56zzx4NIVnrIw1MOXpKsY3lGt58I18gDgzPgZahse4PXM9l3PWyGV+Onwy6fCbbTOTfBd2p7u8A4+ABQKvMXTCydf546Q+0gjcn8pR3bj5xd4Ukj/IG/XVCOJMBMXaEFkdPXw5yWf8USTzk6eYFVkbbkAoBpO5Kkv8OdseEdPcDxf4G2tdGcXIhEU7EIkgoJdiERQsAuRCAp2IRJBwS5EIqym/dP9AP4YwKS739Ic+yKAPwVwsflnn3f3R1dzwszCUsjIjnDttGUniYwTSYAY3c0TSY5F5LBp205tnoXr5PUN8aSKvl6eAFFoD8snALA/Ir1194UTgwDgf93/reD4YmStZpemqG1xidcGLESunhHS7qg0xevdLZBEIwDo6+VS6ksv8xqAFy5cDI7PRlpG9ffzB9bb1U1tmXNNtFDh65gtnguOb+/ix+trD8dRPnL7Xs2d/ZsA7gyM/6W7H25+rSrQhRBbx4rB7u4/A8Bf+oUQ/yxYz//s95rZs2Z2v5nxj2AJIa4J1hrsXwNwHYDDACYAfJn9oZndY2bHzOzY9PT0Gk8nhFgvawp2d7/g7nV3bwD4OgDatcDdj7r7EXc/0t/fv0Y3hRDrZU3BbmajV/36CQDPb4w7QojNYjXS23cAfBjAkJmNAfgCgA+b2WEsV5U7A+DPVnOyXC5Hs396B7j0VquH3WzL80yiGw7spbZjT3HJa7ZwPbU1bC44PryLy2svnnic2n73X/57anv8F/9IbQsLkTZJlUvB8cnzb9A5sdf8+Sq35cGloYFceE93Vwf3feYil9BqGd8WGt7BbfV6OJNuKdLiqbTE6+4tRGro1RpczquWxqhtRyGc0bezm2fRlWvhObG794rB7u6fCQx/Y6V5QohrC32CTohEULALkQgKdiESQcEuRCIo2IVIhJYWnMzlcujqDmcvDQwN0Xk1C7tZyhXpnPbuXmrr7+cFBV9/4zy1feh97wn7Mc/bSXX28MKGE+e4HHPylVeorVbn7YlypN7gwuwMndOzbZTaZma4DNXXzYtR3njDbwbHn3zmJTrn6ROnqe1DH7mL2gpFLlGdOhmW86Yjba1iRTFLS1xe2zfMJd2OLu7j4GD4WvU8L8BZq4QLXzrJKgV0ZxciGRTsQiSCgl2IRFCwC5EICnYhEkHBLkQitFR6c2+gUQtLHn2DvJDfwlK4EOFinffdyjL+OrZ3z25qe+UFnnk1sxiW2Lq7eIbdnuuoCWdf4cUXz42PU9sHPkDLB2BxMSwN9ezcRecM7uTFOV+f4lLZUplLjsWucP+13u176Jxbe/jzcvFiuB8aAJw5e5zaFhbDMuX0DJfQdmznRUf7nD8v+7p5IdAdvbwHW8HCxSgrVd7frotIbDnwmNCdXYhEULALkQgKdiESQcEuRCIo2IVIhJbuxjdqVcxdngjaOiK1vcql8I6qNbj7ZnxXcmiQ75q+kjtFbZNT4V3Tyxnfle7r5rX1brqFJ+ScOvM6tVV5lySa4HHo0CE659ABLhmcneAJNC+88By1Xb4UTvwotnHVZaCbJ5KMvcBVgYlLvK6dkWSpLNJ6a3TPQWrbx/NMsLeng9raczyppVwKXz+NBq9tWK2R4/HLXnd2IVJBwS5EIijYhUgEBbsQiaBgFyIRFOxCJMJq2j/tAfBXAEYANAAcdfevmtkggO8B2I/lFlCfcvcrsWOVy2WcOhmWtvYe+g06rz0Xlt4aFZ4okG/n9dHaI7aeHi4NdfeGa4XddNONdM6Pf/gotS3O8Hp3nduGqe3kGK9rt2d3OCnnwI230TltRX4ZHNzLk3ymp/jT/eKJcEJRw7kENXaF19abJclQAFCqc9l2djosRe4Y4Qk5Zy/z+nSDe/qp7XIb9wMN/timiYzmeS7llRvl4HgFPOFmNXf2GoC/cPffAPB+AH9uZjcDuA/AY+5+CMBjzd+FENcoKwa7u0+4+9PNn+cAnACwC8DHADzQ/LMHAHx8k3wUQmwA7+h/djPbD+BWAE8AGHb3CWD5BQHAjg33TgixYaw62M2sG8D3AXzO3fnnE3993j1mdszMjs3N8YIBQojNZVXBbmYFLAf6t939B83hC2Y22rSPAgjuGrn7UXc/4u5HYptfQojNZcVgNzPDcj/2E+7+latMjwC4u/nz3QAe3nj3hBAbxWqy3j4I4E8APGdmx5tjnwfwJQAPmtlnAbwO4JMrHWixXMPxk2HZaO8tvK5aA+FsM2OZPwDQ4Ok/s3Nz1DY9fYnatg0eDo7fdedH6JzD772J2h78wUPUZsYllL6+AWrbtTNcx627t5/OyWrh9QWAwRF+iYweqFLbTEdY3nz6+HE6Z2Kep5R5gWcI9o3yLMah68PzsjyXX+vO/XjZw+3LAODkeS4PFjN+zKVSKTi+ELm8a43w9TFbf5nOWTHY3f3nAJinH11pvhDi2kCfoBMiERTsQiSCgl2IRFCwC5EICnYhEqGlBSdLdcMrM+FMnkt1XgDQC2FpIlfhxRCdSBMAkMtx285R/qnff/G74cyx9gKXXA7s422X/tW/+TS1/c1Df0dtl87zxz0xEy5eWCqdpHOK4BrP1BK3nTzLs/ZQCctyvp1LkQPD4SKVANCIVFJc/swXmdcePmbDwoUoAaAaaSs2U+fnai/wY7bnufS2YOEsu2qBn8sb4fVtRCRb3dmFSAQFuxCJoGAXIhEU7EIkgoJdiERQsAuRCC2V3sp1w8vT4deXh3/O+4Yd3jcUHB8p8gykzkIkW2uE918bHQoXlQSA6w6GM8rgvJjgxMXL1Hb/d7m89tTxF6mN9b4DAJoI6Px13ev8ePU2vh71HJeG8ghLrLWINFTLRXqlxa7USJZaqRJ+3J7jc/KRjLiswfv6eYnLlDXweYVG2MfM+HNWqRL/1etNCKFgFyIRFOxCJIKCXYhEULALkQgt3Y2vwzCfCycL/PjpV+i8V14Lt4z6o9++mc65bievWXb6VLg1EQDc8b5bqK2dJCbMVfgO84N//yS1Pf3iOLUt1iKthCK7xblC+PW7EanJlzO+ixzbta43eAJQmewwV+t8jhmvaVdGJCnE+WPL58lOd8bvc52dPKGlCO5/nW+4o2481OpkYq3Kn5diT39wPJfj59GdXYhEULALkQgKdiESQcEuRCIo2IVIBAW7EImwovRmZnsA/BWAEQANAEfd/atm9kUAfwrgYvNPP+/uj0ZPls9j29D2oG3qCpdPJq5MB8d/8cxLdE69ui/iCZdWto+QZBcAloXlsF8ee57O+bufPE5t5QavuYY8l95yuXf+Gl0v82QXj8hyjYi8FpO8WAulQp5fcpZxCRMZf87ykXlZFj5frMloFlnfzLk8WI8kGzUi0iHT7EZHuHzc0xu2nWqLrBP34J+oAfgLd3/azHoAPGVmP2ra/tLd//sqjiGE2GJW0+ttAsBE8+c5MzsBgJdMFUJck7yj94Nmth/ArQCeaA7da2bPmtn9ZsZbiwohtpxVB7uZdQP4PoDPufssgK8BuA7AYSzf+b9M5t1jZsfM7FhtibdKFkJsLqsKdluuwv99AN929x8AgLtfcPe6uzcAfB1AsMG6ux919yPufiTfwRtBCCE2lxWD3cwMwDcAnHD3r1w1PnrVn30CAN+SFkJsOavZjf8ggD8B8JyZHW+OfR7AZ8zsMJarXp0B8GcrHcjMqExSKHCpqVYKywmnL8zSOeWFE9R2x203UFtH/yi1zZTCEslPnzhG5yw5z1yq1riM09bGM9sakTpoi4vhVkIxskhGlvGkt2i9szYieVkkKwsRm7VxmbKjg9euyxOprxrJKJtbWKC2ekSmLNf489I3EK6jCAAjo2Fbd6Tw3tJc+F9ij1wbq9mN/zmA0FMe1dSFENcW+gSdEImgYBciERTsQiSCgl2IRFCwC5EILS046e5o1EgWVSxjKAvLUBXwbKcL82Vqe/plXujxrkUurcx5WO44d4V/MrC9m2dX1Ra5/6Uy97+zMyI1kbZXseNZjvuRi7RrimWwOZHRPHJ/KUTkxvkqz76r1LhUxmS5WMZeTEJbiLTe6u7n8trAdt5yrFILH/Oll3hWZ4FkI1Yr3D/d2YVIBAW7EImgYBciERTsQiSCgl2IRFCwC5EILZXe4ABY1pBzuSPLwsX6Gs5loXqOF/g7Pcmlsvsf5Pk9v/fhI+HjjV8MjgPAQj1WhDAiQ7XzwoFZkds6SQ+zYgeXtZbmuHQVyw7ziERVIBlbWZ4/Z7FzZZGikrE+dkuL8+94Tuxc/QOD1LZtmGdMXrw8RW3Tl86Hx8/ynoTXHzwQNkQkRd3ZhUgEBbsQiaBgFyIRFOxCJIKCXYhEULALkQgtld7y+Qzb+vuDtlKJy2ELS+FMnmLGs79qEVkoFylu+dNfPkttp8fD2XLTC7xw5NT8ErWRZCcAQFdXJFsuUlSwrS382PIRua69g2eUZZGMuHyBH7NO7iO1iORlEZs797Fe5etfqYYXuaOdS5FD27ZR2+AQl9cqkczNcjFSPJL0Z2sUuHy8UApfV/WIhK07uxCJoGAXIhEU7EIkgoJdiERQsAuRCCvuxptZO4CfAWhr/v3fuPsXzGwQwPcA7Mdy+6dPufuV2LG84SiRXcS2yMtOuR7ebS1kfDe4xjeR4Tl+slwH3wU/QxJecpHkjlqV7zDHFINSqURtC5H2RDny2NguPQB0Ffmub0ckgSaXi6gC7eHzdXTy9a1UeCLMxSmeSNIAn5cvhNdjoLeLzhkZ7Oe2EZ4IM73A6/zNTvPQmJ+ZDo73D/JzXbp4KTheiyQTrebOXgbwe+7+Xiy3Z77TzN4P4D4Aj7n7IQCPNX8XQlyjrBjsvsybeYKF5pcD+BiAB5rjDwD4+GY4KITYGFbbnz1rdnCdBPAjd38CwLC7TwBA8/uOTfNSCLFuVhXs7l5398MAdgO43cxuWe0JzOweMztmZseqi7zFshBic3lHu/HuPg3gHwDcCeCCmY0CQPP7JJlz1N2PuPuRQmfv+rwVQqyZFYPdzLabWX/z5w4Avw/gJQCPALi7+Wd3A3h4k3wUQmwAq0mEGQXwgJllWH5xeNDd/9bMHgfwoJl9FsDrAD650oEajQbKS2FJqS0zOq+TeNmo8iSTSNciNMAlo0YkkaBB2k3VKpEEjjp/XLEWRDFbI5IIw6S3K1Nc+pmKrGNvD5eo+iL12HpJLbx2cCmv3uDSVd4iyTpt/Mkul8LHbM/z5yV2rtriTMTG/Z+fvkxtDZKs097GJdESqZNnFnlc1NLE3Z8FcGtg/DKAj640XwhxbaBP0AmRCAp2IRJBwS5EIijYhUgEBbsQiWAxiWfDT2Z2EcDZ5q9DAMKpO61FfrwV+fFW/rn5sc/dt4cMLQ32t5zY7Ji7h5unyQ/5IT823A+9jRciERTsQiTCVgb70S0899XIj7ciP97Ku8aPLfufXQjRWvQ2XohE2JJgN7M7zexlMztpZltWu87MzpjZc2Z23MyOtfC895vZpJk9f9XYoJn9yMxebX4f2CI/vmhm55prctzM7mqBH3vM7P+Y2Qkze8HM/kNzvKVrEvGjpWtiZu1m9ksze6bpx39pjq9vPdy9pV8AMgCvATgIoAjgGQA3t9qPpi9nAAxtwXnvAHAbgOevGvtvAO5r/nwfgP+6RX58EcB/bPF6jAK4rflzD4BXANzc6jWJ+NHSNQFgALqbPxcAPAHg/etdj624s98O4KS7n3L3CoDvYrl4ZTK4+88AvL02cssLeBI/Wo67T7j7082f5wCcALALLV6TiB8txZfZ8CKvWxHsuwC8cdXvY9iCBW3iAH5oZk+Z2T1b5MObXEsFPO81s2ebb/M3/d+JqzGz/Viun7ClRU3f5gfQ4jXZjCKvWxHsoVIaWyUJfNDdbwPwRwD+3Mzu2CI/riW+BuA6LPcImADw5Vad2My6AXwfwOfcfcuqkwb8aPma+DqKvDK2ItjHAOy56vfdAMKNzzcZdx9vfp8E8BCW/8XYKlZVwHOzcfcLzQutAeDraNGamFkBywH2bXf/QXO45WsS8mOr1qR57mm8wyKvjK0I9icBHDKzA2ZWBPBpLBevbClm1mVmPW/+DOAPATwfn7WpXBMFPN+8mJp8Ai1YE1sunPYNACfc/StXmVq6JsyPVq/JphV5bdUO49t2G+/C8k7nawD+0xb5cBDLSsAzAF5opR8AvoPlt4NVLL/T+SyAbVhuo/Vq8/vgFvnxLQDPAXi2eXGNtsCPD2H5X7lnARxvft3V6jWJ+NHSNQHwWwB+1Tzf8wD+c3N8XeuhT9AJkQj6BJ0QiaBgFyIRFOxCJIKCXYhEULALkQgKdiESQcEuRCIo2IVIhP8HWBc41yo3FHQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGdCAYAAAC7EMwUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvRUlEQVR4nO3dbXDc5Xnv8d/uanf1tJItZGklLKtKsEnAQE8wMXYJGFo0KKcMxOkMCTMZc9oyITzMeJwMreEFms7UYujBQ2Zc3DRNKZxCoXMKhDkQwBljuzmOU9vBwccQYmLZyFhCWLaepV3t7n1eUKsRtvF92RK3JH8/MzuDVxeX7v/D7qW/tPvbiHPOCQCAAKKhFwAAOH8xhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwRSFXsAnFQoFHTlyRKlUSpFIJPRyAABGzjkNDAyovr5e0einX+tMuyF05MgRNTQ0hF4GAOAcdXR0aP78+Z9aM2VD6PHHH9ff/M3fqLOzU5deeqkee+wxfeUrXznj/5dKpSRJ//PPLlFJIub1vSKu4L2ueNy2yZEzTPHfNZbNmHrnCmPetYl4wtQ7X/DfJ65gS26KRPOm+qjfYfx4LWNltrXIfy1FiVFT75jh4RGJ2vZhvpAz1edy/sezUDD+BiHiv505Y++Mod76e4+C4XFv/a3KWNb/sSlJ+bzhXDGsW5KihnM8a3wsDxseysNZwzrGCvrBy4fHn88/zZQMoeeee06rV6/W448/rj/4gz/QD37wA7W0tOjtt9/WggULPvX/PXGylCRiKkn6DiH/EywRNzwjyjaEshFb71ze/2RMeA7kE/KGB799CJnKbUPIUizbE1fcuA9j8q+3DyFb/VjMf0vtQ8h/O3N5W+/olA4hQ2/jEIrJNijyecO5Yli3ZPvDfdTww6ck5Q0/C+XPImbUZ79PyQsT1q9frz/7sz/Tn//5n+uLX/yiHnvsMTU0NGjjxo1T8e0AADPUpA+hbDar3bt3q7m5ecL9zc3N2r59+0n1mUxG/f39E24AgPPDpA+ho0ePKp/Pq7a2dsL9tbW16urqOqm+ra1NlZWV4zdelAAA548pe5/QJ38X6Jw75e8H165dq76+vvFbR0fHVC0JADDNTPoLE6qrqxWLxU666unu7j7p6kiSksmkksnkZC8DADADTPqVUCKR0JVXXqlNmzZNuH/Tpk1avnz5ZH87AMAMNiUv0V6zZo2+9a1vacmSJVq2bJn+/u//Xu+//77uuuuuqfh2AIAZakqG0G233aaenh791V/9lTo7O7V48WK98soramxsnIpvBwCYoaYsMeHuu+/W3Xfffdb/f1ZRxTx/W+jciH9j45u5kvJ/B3/U8OZGSSoq8n8HsuE9sx8zvK8sErc1z2SzpvpcwX+/FDnbWmKGXV5k3IcRQ6KFcra0DMu74CWpYNiH2UixqXc+5v832axhHZKUzfvv9EjBtk8ihtSJYuM5XmR8R3a0yP8Blx+zpTEo4r+dznheOcNbhGMx/30SM7xJmRRtAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwUxbbc65cISdX8IzCcP6RKc7yoeqSIobPji+M2eJsYiWGSBPjZ95b4mwKxriURDxuqs85//rCmC0WxrL2XM4YC+P8o1iixrihSCxhqncx/yiekbzto1G6evxjZIayhjwoSYOD/r1jznZ8UsX+50oiYnv8VJSWmOpLkv7PK4Wo7XkiaorWsT1+LI/kMd/nY0mRiOGxY1gDAACTiiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAhm2mbHFRUyKvLNbYsZcooK/llWkpSMGbLmivwznj5ejP/PANGY8ecFQ8RXzpAJ9fFibNsZT/jncKV/72JT7/7eo961R3uGTb3jRf75blHZ8tqyOdtDb8SVete+c+gjU2+XvMC7dixWZuqdLffPvBvsO2bq/cGHx71ry4tt+zvf2WuqX5D2P1cuSNnOleIi/7VHnC0bM2F4KOct2X7OvzFXQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYKZtbI8U+c+bR2XRHP+uEVvkTM4VvGujUVtkRjaX9a5NxGxRH/m8f8SGKxjiOCTJuA8Tcf+fdZb+0Y2m3ru3/9y79ogh4keShgzROrl8uan3ocPdpvr2wx941ybn1pl6z69t8q51yZSpd7bI/7yNl88z9c6NDnrX9nQfMfUunesfZSRJhwe7vGtHC/7PKZJUm4p715bGPaPO/lN+zD/KKmpI94oYarkSAgAEwxACAATDEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAAQzbbPjMtGUolG/HKS+4TLvvvncqGkdc8v98+AqYrYMtiLnH7BUMOTMSbbsJlewZd5FY7afXYaHj3vXbv4/Pzb1/rA34187aFv3oQ/8133oSIepd6zYljWXj1V415ZV2DLY4qX+aykqLjH1Tkb893lx1P9xLElHsyPetXXzF5h6j44MmeoPHPDPjjvWa3sOil3of3x+b57tvIrn/XPsInn/54l81P+5kCshAEAwkz6EWltbFYlEJtzS6fRkfxsAwCwwJb+Ou/TSS/XTn/50/N+xmC1eHABwfpiSIVRUVMTVDwDgjKbkb0L79+9XfX29mpqa9I1vfEMHDhw4bW0mk1F/f/+EGwDg/DDpQ2jp0qV66qmn9Nprr+mHP/yhurq6tHz5cvX09Jyyvq2tTZWVleO3hoaGyV4SAGCamvQh1NLSoq9//eu67LLL9Ed/9Ed6+eWXJUlPPvnkKevXrl2rvr6+8VtHh+2lrgCAmWvK3ydUVlamyy67TPv37z/l15PJpJJJ/8+hBwDMHlP+PqFMJqN33nlHdXV1U/2tAAAzzKQPoe9973vaunWr2tvb9Ytf/EJ/8id/ov7+fq1atWqyvxUAYIab9F/HHT58WN/85jd19OhRzZs3T1dffbV27NihxsZGU5+ekaiSeb/3Fx0bm+Pdd+v/3WJaxyWL/KNErr+02tR7bswQ25O3RQJFDe/Nikbjpt55N2aqNyS3qP3Q6V9JeSrHRvx/letKq0y9Y+Up79pole1VnSVz5pjqs6P+US/ZiH8UiyRVzPU/xyvKbdE63V3+cTb9x4+ZeqcS/k9fxSW2uKH3jx811ccrar1ruzsPmXqXdw1416YrbNtZEvHfh7mC4XFf8H9um/Qh9Oyzz052SwDALEV2HAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgmCn/KIezFatoUlHSL9NsuMd/lo4l5pnWcWzYP4NtOFts6l2RyHrXFlzO1NuS3RSLlZpaj2Zt+VQfZfxrjw7YMvJK51zgXTt33gJT76GCfx5ctWz7JFZsq8/G/c+V0SH/rDFJGh30387GWv/9LUnDhny37uyIqXck7p8b2Hds2NRbBdt5ODI46F0bS9gebx/2H/eu7ezzzxiUpMZqQ8akIZLQVOtfCgDA5GIIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgpm2sT0LF1+p0hK/GJzDO9717lteaYvt+fKypd61pbFDpt5ZQ7xKtMgvwuiESNw/Fibv5pp6p2oaTPV73trvXVs+p9rU+8LGS71rXdQ/5kWS4oaonEKmx9Q7mzXkmsh2/GMR28N6369+5V1b4RmldUJpWZl3bVlpuan3ka4PvWtzhhgrSYoZIoEkqarCP4qn9/iYqffxY/717Z19pt71tWnv2iJDzFhE/rFHXAkBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgpm22XGlFVUqLfXLP2v83CLvviO22CYtaLrIu7Z6zJZP1dt+0Lt2zOVMvfM5/yyrL197q6n3gs8tMdU3XXbQu3b3m/45ZpI0t9w/++pI91FT7yKX8K5Nxm2ZarKdKhocGvKu7T1my7GrKvdfu3HZyhsy26rn2XIdM2P+j4mjx22ZapGY7efzVLl/Rl5RzPa0mx0d9q79bcdhU+95c/0zJhfOT3nXjsn/2HAlBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAhm2mbHRRNliiX98s+OfPiOd9/fv/Iq0zrKKv0z2GIDH5h653P+uVpFCduhOtAx4F17zdwmU2+VzjeVp8r8s6+Ki8pNvUsS/senOJE09VYh7116YX2dqfXbv/2tqT6RKPau7R/wP/aS1NTgn7246AuXmHofO3bcu7a8Yo6p95Gubu/aSDRm6j1nbpWpvq/ffztjxly6ktI53rUjA/6PNUna/77/uVKS8F93dsz/scOVEAAgGPMQ2rZtm26++WbV19crEonoxRdfnPB155xaW1tVX1+vkpISrVixQvv27Zus9QIAZhHzEBoaGtIVV1yhDRs2nPLrjzzyiNavX68NGzZo586dSqfTuvHGGzVg/BUBAGD2M/9NqKWlRS0tLaf8mnNOjz32mB588EGtXLlSkvTkk0+qtrZWzzzzjL797W+f22oBALPKpP5NqL29XV1dXWpubh6/L5lM6rrrrtP27dtP+f9kMhn19/dPuAEAzg+TOoS6urokSbW1tRPur62tHf/aJ7W1tamysnL81tDQMJlLAgBMY1Py6rhIJDLh3865k+47Ye3aterr6xu/dXR0TMWSAADT0KS+TyidTkv6+Iqoru6/3jfR3d190tXRCclkUsmk8f0bAIBZYVKvhJqampROp7Vp06bx+7LZrLZu3arly5dP5rcCAMwC5iuhwcFBvffee+P/bm9v1549e1RVVaUFCxZo9erVWrdunRYuXKiFCxdq3bp1Ki0t1e233z6pCwcAzHzmIbRr1y5df/314/9es2aNJGnVqlX6p3/6J91///0aGRnR3XffrePHj2vp0qV6/fXXlUqlTN8nXpxSvLjMq3Z0NOvdN5MZs63DEAtTWlZh6l1WXOJdm4zlTL3LizLetf/09z8y9b75tntN9fGhU78o5VQSSdvFeTTqv1+aPnehqXf3sSPetaODQ6be6ZpqU/2xfv84lkzW//EgSZ+76CLv2s9f5B/xI0l9b/7Su3ZoYNDUu3/If5/k8gVT75GRUVP9nDmV3rV5Z3vPZOXcuHdtLmt7nohF/Z8nDh/xj0kay/nvb/MQWrFihZw7feZZJBJRa2urWltbra0BAOcZsuMAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMFM6kc5TKZILK5IzC8zadiQ2zU6PGJaRzzu/zETAz15U2/F/HPp4uo1ta6bE/Ou3f/OflPvI4ffO3PR7xr2z2A7dPigqfV/S3/Zu/bCxrSpd333qT9+5FSG3jtk6l2VnGOqT83xz5r77W/bTb3r6v0z9XqNn3w8Zshs+/CjHlPvgjv1Z5SdSiRme6obNmbHRaL+j33/VX+srNwvQ1OSVLjA1DsR8X8+zB71z4DMy/+4cyUEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAhm2sb2qOA+vnmIOf+IiLpqW6xFabF/bM/mt35r6j0357/uhVV+EUYnFCf9Y0QSRbaIko+6D5rqC5nj3rULPt9k6h0zHJ/Sirmm3tW1871re44Nmnr39Q+b6vOGRKiamhpT7yJDNNVoNmfqnR3zrx8ZzZh65ww7xVIrSaOZrG0tOf+f5y+oth2fSMT/sZ+I2B7LyYj/8ck7/5ix7BixPQCAGYAhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIZtpmx8WLYooXxbxqK8tLvPvOSfnXSlKk4J+t1O/KTL2PHo9411anbIeqLOGfN5WPjpl6Hzxy0FRfO7fSu7bxoktMvUcNS/+P3e+Yen/Q6Z95lyq35dLF48Wm+n3vvW+otv1sWTDUZ4zZcYNDI961c6qqTL1zzv/x0/lht6l3Wcr/nJWkophfzqUklZb6Z7BJUiLhn+2nsR5T7/yQ/zleW5Pyrs1k/bP6uBICAATDEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAAQzbWN7YpGIYhG/WI50Tdq7b5E10mQ0411bN7/J1HuXIf6mNzLP1NvFhrxrK6v9IzYkqbLCPxJIkuLF/nEfv2eM7SmvvMC79ol//F+m3sOGY98/cszWe8T/+EhS3PBITc+1HZ/RY4e8a4eS1nPFP8rq1+/uN/X+8MOPvGv7BwZNvefMsT01VpSVe9fGnC0mK571P1diwx+Yes8r819LZbF/TNJozL+WKyEAQDAMIQBAMOYhtG3bNt18882qr69XJBLRiy++OOHrd9xxhyKRyITb1VdfPVnrBQDMIuYhNDQ0pCuuuEIbNmw4bc1NN92kzs7O8dsrr7xyTosEAMxO5hcmtLS0qKWl5VNrksmk0mn/FwsAAM5PU/I3oS1btqimpkaLFi3SnXfeqe7u03+gVCaTUX9//4QbAOD8MOlDqKWlRU8//bQ2b96sRx99VDt37tQNN9ygTObUL3dta2tTZWXl+K2hoWGylwQAmKYm/X1Ct9122/h/L168WEuWLFFjY6NefvllrVy58qT6tWvXas2aNeP/7u/vZxABwHliyt+sWldXp8bGRu3ff+o3oiWTSSWThs9QBwDMGlP+PqGenh51dHSorq5uqr8VAGCGMV8JDQ4O6r333hv/d3t7u/bs2aOqqipVVVWptbVVX//611VXV6eDBw/qgQceUHV1tb72ta9N6sIBADOfeQjt2rVL119//fi/T/w9Z9WqVdq4caP27t2rp556Sr29vaqrq9P111+v5557TqmUf36YJMXjCSUSfr+mq5jr/3LwXN62ycki/18VLmpaYOq9a7f/PumPX2TqXYgMeNfWXmjLGnv7nZ+b6pdf9z+8a3++fYep99CQ/6spx7JHTb27uzoM1bZfKgyO2eqL5J/xNTdqy7G7sMR/H/Z9ZMt3y8XmetfW1vjXSlI+n/OuHRkZNfUeHRk21Q/F/Z8ncgVbjt3Y6GHv2pr4iKl3fXmpd20mZ+ld8K40D6EVK1bIOXfar7/22mvWlgCA8xTZcQCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYKb8oxzOVll5mcrKy7xq51ZXe/fNRWybPBpNeNcWl1eYes+ZU+ld+35Hl6n3NVdd6l07Ouif8yRJpanTf1LuqXR+4J999d5vfmPqnctnvWujMVNrDfX3edemLrClxPf12bLJKsuLvWsvXnSZqffOX/3au/aX77Sbel9z/Ve9a+MJ/xwzSTrwnn+OXW+/bX8XjD+fj47458E11tpyNEvK/PdLVZXtOcgV+efv5bKnj2s7qdblvWu5EgIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAATDEAIABDNtY3sKuWEVcn4zsrKq3Lvv0Ih/nIQkDef9oypiMdtMX9Aw37v2N/v8I0okqW/YP4qnvGyBqXfD503lOvSbQ961Hxw5Yuq9bNmXvWuHh/2jVSQpVX+hd21VfZOp9/vH/KNyJGkk4388E2VVpt4V8xq8a/9byv+claSPPurxrj14aI+p99Cwf2RTb5/t2NfMm2eqr3T+521j+QW2tVT4503FI0Om3tmxEe/askjEuzYaIbYHADADMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMFM2+y4wWMfymUGvGpL4knvvplR/7wpSYoU/HdRJOKfMydJ1VX+GVK/iR4w9e4+5p8h1RPzzyWTpMrytKn+C4srvWsPHHzf1HvMEAXY2z9s6r1w4UL/2iZboN6hzj5T/b59e71re46Wmnonkv7Zi3PLU6beh/f5Z+R1Hu039Y5EE961sWLbuusaPmeqb/SPVdOCVImpd3E0512bGbU9lguFuHftWM5/HQXD45IrIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMNM2tqf9QLtKS/ziLRYs/KJ33+KoLbankB3xri0qLjb1LjbUp1L+0SqSVF5R4V37hS9cbOr909dfMdUP93V515ZeUGvq/d7hbu/ahvkLTL2bLv6Sd20yYXsofW6BbS29x4571779zn5T74Lzj2M5fNz2+Okf8c9vGc37x29JUn+vfwxTTbrB1PtQjy3iqaphjndtT9K2nSr47/NeQ7SOJLki/wihTCFjqPVfB1dCAIBgTEOora1NV111lVKplGpqanTrrbfq3XffnVDjnFNra6vq6+tVUlKiFStWaN++fZO6aADA7GAaQlu3btU999yjHTt2aNOmTcrlcmpubtbQ0H8lNj/yyCNav369NmzYoJ07dyqdTuvGG2/UwIBfIjYA4Pxh+kX2q6++OuHfTzzxhGpqarR7925de+21cs7pscce04MPPqiVK1dKkp588knV1tbqmWee0be//e3JWzkAYMY7p78J9fV9/JkoVVVVkqT29nZ1dXWpubl5vCaZTOq6667T9u3bT9kjk8mov79/wg0AcH446yHknNOaNWt0zTXXaPHixZKkrq6PXwVVWzvxFU61tbXjX/uktrY2VVZWjt8aGmyvYgEAzFxnPYTuvfdevfXWW/qXf/mXk74WiUz8mEHn3En3nbB27Vr19fWN3zo6Os52SQCAGeas3id033336aWXXtK2bds0f/788fvT6Y8/9rmrq0t1dXXj93d3d590dXRCMplU0vq6eQDArGC6EnLO6d5779Xzzz+vzZs3q6mpacLXm5qalE6ntWnTpvH7stmstm7dquXLl0/OigEAs4bpSuiee+7RM888ox//+MdKpVLjf+eprKxUSUmJIpGIVq9erXXr1mnhwoVauHCh1q1bp9LSUt1+++1TsgEAgJnLNIQ2btwoSVqxYsWE+5944gndcccdkqT7779fIyMjuvvuu3X8+HEtXbpUr7/+ulKp1KQsGAAwe5iGkHPujDWRSEStra1qbW092zVJkvYeOOr9t6IFi7/s3begoTMX/Y6IJYupcOb987v6DW/g7e09aup9QdXve9d+9abrTb1//4ovmOr/9fkXvGsjkZipd2XlXO/aC+vnn7nod5RXzPGujeVs51VV2vbn2LqmMe/avhJbhuEv9+zxru0cPPULjE7HxSu9ayvrLjD1rr7Iv3esyLZP8s62ne+6Mu/a97r88/QkKRHzX8vI6Kip95Dh6S1X8H9s5scykk79tpxPIjsOABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABDMWX2Uw2fhvf5ixRN+URtH8/65dC5ui7WIZvv8extiLSQpGvWvr6+rMfX+yvIvedcWx20xIk2NF5rq//uffMO79n+/8LKp99Eu/+PT2Vcw9R4dfc+7NiFD/omkYyO2+vcOnfpDIU8p6x/xI0lunn8M09zaUlPvgvyjrCKRuK13sf9aCpGEqfdY3hbB1Zf3X3tx3LaW4iL/2J6hyLCp91jcf92u4H9e5Z3/8yxXQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgpm123P6+qGJxvxn545/t9e77+43VpnWkE2XetaVx2+6sS6f9a6srTL0//7n5/sUua+rd+VGPqf4fn/XPg9u9521T78yo/9pztrg2yfn/jObytn2YT9qOZz7qn/FVpBJT71zEP8MwF7X1LrY8JJx/RpokjWYNxydq611U5JdbeUKs4J9L6EZtJ2JO/r3jBdt1RSziX58dM+zDnH8tV0IAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGCmbWzPUDShaDThVfvTX/7Gu+9vfnvAtI6WKy/xrv18faWpd/uB/d6111612NS7OO4f8zKQ9Y9tkaR/fXWnqf6Xbx/xrh3OJU29ZYhXiXrGQJ1QKDj/3hFbFIs1RiZfyHvXZozRLWN5/96RyJipd0b+56Fz/vtbkoqK/LczFrPtk9JSv+eeExLy34d5/xSej+sj/k/TeWPz3Jj/eZtIzfFfR3bEu5YrIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAw0zY7rqqqWrFkiVftseP+mVOdx3tN69j+q1971+bHGk29Jf98qnnp+abOkZh/Btt/7Pp/pt4vb/65qT5TKPUvLrJlx0WjU/dzVD6T9a51hpw5SSoYsuAkW65a3tly6eJF/k8DkZgtZ1Ax/3O8yNg7FvNfdypVbuttPK9izj9TL++MGYaG/D1rMF1d2j/vMlXhXzs2OqxfedZyJQQACMY0hNra2nTVVVcplUqppqZGt956q959990JNXfccYcikciE29VXXz2piwYAzA6mIbR161bdc8892rFjhzZt2qRcLqfm5mYNDQ1NqLvpppvU2dk5fnvllVcmddEAgNnB9DehV199dcK/n3jiCdXU1Gj37t269tprx+9PJpNKp9OTs0IAwKx1Tn8T6uvrkyRVVVVNuH/Lli2qqanRokWLdOedd6q7u/u0PTKZjPr7+yfcAADnh7MeQs45rVmzRtdcc40WL/6vT/1saWnR008/rc2bN+vRRx/Vzp07dcMNNyiTyZyyT1tbmyorK8dvDQ0NZ7skAMAMc9Yv0b733nv11ltv6Wc/+9mE+2+77bbx/168eLGWLFmixsZGvfzyy1q5cuVJfdauXas1a9aM/7u/v59BBADnibMaQvfdd59eeuklbdu2TfPnf/r7V+rq6tTY2Kj9+/ef8uvJZFLJpO29IQCA2cE0hJxzuu+++/TCCy9oy5YtampqOuP/09PTo46ODtXV1Z31IgEAs5Ppb0L33HOP/vmf/1nPPPOMUqmUurq61NXVpZGREUnS4OCgvve97+nnP/+5Dh48qC1btujmm29WdXW1vva1r03JBgAAZi7TldDGjRslSStWrJhw/xNPPKE77rhDsVhMe/fu1VNPPaXe3l7V1dXp+uuv13PPPadUKjVpiwYAzA7mX8d9mpKSEr322mvntKATimJRxTyzpOJx/78p5Ub9s6wkqf1D/5eMZ4beMfW+9kuLvGtL5th+ndk36p8htfUXu0y9R1zOVD+W88/VSiaLTb0LBf/tHB4eNvW2iEVsf16N2OLdJEM0XdKQqSZJkaih3lIrKZL0zw0sKfHLijyhyJB5NzZmO2cHPvEG/DPJG7IDMzlbvlvl3Grv2nSdf60klRf778ORgQHv2rGM/2ON7DgAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDBn/XlCU62QKygSy/sVO/9ZWojZYmGy8osOkqQPB0/9wX2n88t3j3jXfnXYkNsiacD5R2x8cNy/VpKKy8tN9blh/304epoPPzyd0lL/qJeiuO10t6wlEvXfRkmKRmz1cUNEjTNG6zjDz6JxY6zS4JjnY1hSNmeLyrHE/JwpcuyTrNE6Q6NZ79ryObZonbnz0t612Zz/OiTp17/+tXdtvOB/LPPZUe9aroQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwUzb7Dg5JxU8856cf85TLBY3LaPg/DO+8lFb7/Zu/8y2f/zXV0y9b1ixxH8dRz4y9R7K2352KViyyYoTpt6xhH99acy27kSJf07ayIAt92xsLGeqd4Yss3ix7WEdK/I/x63rjsX8exd8H+//aWR4cMp6W9YtSXPmVnnXXlBbZ+r9Uc8x79reo12m3r2H9nvXXvS5Jv/Gef+cOa6EAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBTNvYnqrKShUlS71qR0f942+GRrKmdSRiJd61OUO0iiRF40nv2q3/8Zapd/uRI961vUNjpt7HBkdM9TnDLi8rK7f1Lvjv82TSf39LUpEhEqi4xD+mRJJiUVssTFHcfy1548+WOUOkTcQYf+Oc/37Jj9nOw+yY/4lVUuwfwSRJ1RdcYKqvqvaP4sk62/HJJPyfpkeSttirQtw/amxo1P9xnx/LeNdyJQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIZtpmx42OjqjIRbxqk4ZRmsnb8qniMf8sppwtDkwu6r/waIktU+3gkY/8exfZFp4bs+WHWTL1RkdHTb2Hhoa8a6OG/S3ZsubKEv4ZXJJUUmLLMotGDRl5xbaMvJJS/3Mrm82Zen907Jh3bUG23kVx/+M5t6LM1DtdNcdWn67yru0d8s9Vk6T+3uPetYN9vabec6r81330o6PetQVDYCRXQgCAYExDaOPGjbr88stVUVGhiooKLVu2TD/5yU/Gv+6cU2trq+rr61VSUqIVK1Zo3759k75oAMDsYBpC8+fP18MPP6xdu3Zp165duuGGG3TLLbeMD5pHHnlE69ev14YNG7Rz506l02ndeOONGhjw/6gFAMD5wzSEbr75Zn31q1/VokWLtGjRIv31X/+1ysvLtWPHDjnn9Nhjj+nBBx/UypUrtXjxYj355JMaHh7WM888M1XrBwDMYGf9N6F8Pq9nn31WQ0NDWrZsmdrb29XV1aXm5ubxmmQyqeuuu07bt28/bZ9MJqP+/v4JNwDA+cE8hPbu3avy8nIlk0ndddddeuGFF3TJJZeoq6tLklRbWzuhvra2dvxrp9LW1qbKysrxW0NDg3VJAIAZyjyELr74Yu3Zs0c7duzQd77zHa1atUpvv/32+NcjkYkvq3bOnXTf71q7dq36+vrGbx0dHdYlAQBmKPP7hBKJhC666CJJ0pIlS7Rz5059//vf11/8xV9Ikrq6ulRX91+ft97d3X3S1dHvSiaTpvdjAABmj3N+n5BzTplMRk1NTUqn09q0adP417LZrLZu3arly5ef67cBAMxCpiuhBx54QC0tLWpoaNDAwICeffZZbdmyRa+++qoikYhWr16tdevWaeHChVq4cKHWrVun0tJS3X777VO1fgDADGYaQh9++KG+9a1vqbOzU5WVlbr88sv16quv6sYbb5Qk3X///RoZGdHdd9+t48ePa+nSpXr99deVSqXMC8uOZpQv+F2oJWN+8T6SVGr8BWRhbMS7NmKM7SnIP4ql4PxrP+7tv5hc1hbD4/L++1v6+Gp5KmolqVDw3y/W2J7jx/zjUo4ZzhNJqkjZYmQq5/rHq1TEbNtZLP8IoXzBFjlTFMl718aStgdQZtR/LcVFtnPWsm5Jyg33GWpt+3Cwt8e7tjDmH5cjScVJ/7ip0Zj/8Yk4/3PQ9JT8ox/96NO/cSSi1tZWtba2WtoCAM5TZMcBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCMadoT7UTsS35rH8MSqHgX5sfGzWtp5D3n9N5W7KO7X/I2aI+CmP+9a5gjMrJ2aJBCvmcf23UFq9i6m2MPnKG7XS5MVNv6z7MG45nLms7x8cyCf/eGeO6DWuxRjblDRE15n0yOmyqzyb842/GDHFDkm0fWh73klSI+scTFQzPQSceOz7HNOKsR36KHT58mA+2A4BZoKOjQ/Pnz//Ummk3hAqFgo4cOaJUKjXhw/D6+/vV0NCgjo4OVVRUBFzh1GI7Z4/zYRsltnO2mYztdM5pYGBA9fX1ZwwOnna/jotGo586OSsqKmb1CXAC2zl7nA/bKLGds825bmdlZaVXHS9MAAAEwxACAAQzY4ZQMpnUQw89pGQyGXopU4rtnD3Oh22U2M7Z5rPezmn3wgQAwPljxlwJAQBmH4YQACAYhhAAIBiGEAAgmBkzhB5//HE1NTWpuLhYV155pf793/899JImVWtrqyKRyIRbOp0Ovaxzsm3bNt18882qr69XJBLRiy++OOHrzjm1traqvr5eJSUlWrFihfbt2xdmsefgTNt5xx13nHRsr7766jCLPUttbW266qqrlEqlVFNTo1tvvVXvvvvuhJrZcDx9tnM2HM+NGzfq8ssvH39D6rJly/STn/xk/Ouf5bGcEUPoueee0+rVq/Xggw/qzTff1Fe+8hW1tLTo/fffD720SXXppZeqs7Nz/LZ3797QSzonQ0NDuuKKK7Rhw4ZTfv2RRx7R+vXrtWHDBu3cuVPpdFo33nijBgYGPuOVnpszback3XTTTROO7SuvvPIZrvDcbd26Vffcc4927NihTZs2KZfLqbm5WUNDQ+M1s+F4+mynNPOP5/z58/Xwww9r165d2rVrl2644Qbdcsst44PmMz2Wbgb48pe/7O66664J933hC19wf/mXfxloRZPvoYcecldccUXoZUwZSe6FF14Y/3ehUHDpdNo9/PDD4/eNjo66yspK93d/93cBVjg5Prmdzjm3atUqd8sttwRZz1Tp7u52ktzWrVudc7P3eH5yO52bncfTOefmzp3r/uEf/uEzP5bT/koom81q9+7dam5unnB/c3Oztm/fHmhVU2P//v2qr69XU1OTvvGNb+jAgQOhlzRl2tvb1dXVNeG4JpNJXXfddbPuuErSli1bVFNTo0WLFunOO+9Ud3d36CWdk76+PklSVVWVpNl7PD+5nSfMpuOZz+f17LPPamhoSMuWLfvMj+W0H0JHjx5VPp9XbW3thPtra2vV1dUVaFWTb+nSpXrqqaf02muv6Yc//KG6urq0fPly9fT0hF7alDhx7Gb7cZWklpYWPf3009q8ebMeffRR7dy5UzfccIMyGdtnv0wXzjmtWbNG11xzjRYvXixpdh7PU22nNHuO5969e1VeXq5kMqm77rpLL7zwgi655JLP/FhOuxTt0/ndj3WQPj5BPnnfTNbS0jL+35dddpmWLVumz3/+83ryySe1Zs2agCubWrP9uErSbbfdNv7fixcv1pIlS9TY2KiXX35ZK1euDLiys3Pvvffqrbfe0s9+9rOTvjabjufptnO2HM+LL75Ye/bsUW9vr/7t3/5Nq1at0tatW8e//lkdy2l/JVRdXa1YLHbSBO7u7j5pUs8mZWVluuyyy7R///7QS5kSJ175d74dV0mqq6tTY2PjjDy29913n1566SW98cYbEz5yZbYdz9Nt56nM1OOZSCR00UUXacmSJWpra9MVV1yh73//+5/5sZz2QyiRSOjKK6/Upk2bJty/adMmLV++PNCqpl4mk9E777yjurq60EuZEk1NTUqn0xOOazab1datW2f1cZWknp4edXR0zKhj65zTvffeq+eff16bN29WU1PThK/PluN5pu08lZl4PE/FOadMJvPZH8tJf6nDFHj22WddPB53P/rRj9zbb7/tVq9e7crKytzBgwdDL23SfPe733VbtmxxBw4ccDt27HB//Md/7FKp1IzexoGBAffmm2+6N99800ly69evd2+++aY7dOiQc865hx9+2FVWVrrnn3/e7d27133zm990dXV1rr+/P/DKbT5tOwcGBtx3v/tdt337dtfe3u7eeOMNt2zZMnfhhRfOqO38zne+4yorK92WLVtcZ2fn+G14eHi8ZjYczzNt52w5nmvXrnXbtm1z7e3t7q233nIPPPCAi0aj7vXXX3fOfbbHckYMIeec+9u//VvX2NjoEomE+9KXvjThJZOzwW233ebq6upcPB539fX1buXKlW7fvn2hl3VO3njjDSfppNuqVauccx+/rPehhx5y6XTaJZNJd+2117q9e/eGXfRZ+LTtHB4eds3NzW7evHkuHo+7BQsWuFWrVrn3338/9LJNTrV9ktwTTzwxXjMbjueZtnO2HM8//dM/HX8+nTdvnvvDP/zD8QHk3Gd7LPkoBwBAMNP+b0IAgNmLIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAI5v8D42Je2+I6LqQAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -906,14 +913,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9Saxt2dbnB/1msdbaxTnnlhHvffHyvfel02k5P2wSkDENhEQDBA2QJZAoLCQ6YDo0aGBIIUuGVrrlBrjlhgVGFhjJ7iAsIbCxUgaJTEhBSpmk0/l93yuivMWp996rmHMOGmPOtdbe99wb90acGxH3vj0i9t377L2KuWYx5hj/URkR4UhHOtKRjnSkIx3pSEc60pGOdKQjHelIHx/ZH7sBRzrSkY50pCMd6UhHOtKRjnSkIx3pSEd6P3QEfo50pCMd6UhHOtKRjnSkIx3pSEc60pE+UjoCP0c60pGOdKQjHelIRzrSkY50pCMd6UgfKR2BnyMd6UhHOtKRjnSkIx3pSEc60pGOdKSPlI7Az5GOdKQjHelIRzrSkY50pCMd6UhHOtJHSkfg50hHOtKRjnSkIx3pSEc60pGOdKQjHekjpSPwc6QjHelIRzrSkY50pCMd6UhHOtKRjvSR0hH4+R5kjPmNMea/8GO340jfj47j+OHTcQw/DjqO44dPxzH8OOg4jh8+Hcfw46DjOH74dBzDj4M+hnE8Aj9HOtKRjnSkIx3pSEc60pGOdKQjHelIHykdgZ9MxphfGmP+bWPMc2PMS2PMv2KM+UvGmH8v//3CGPNvGGMe5uP/t8CvgP+jMebWGPM/+VEf4EjAcRw/BjqO4cdBx3H88Ok4hh8HHcfxw6fjGH4cdBzHD5+OY/hx0B/qOBoR+bHb8KOTMcYBfxv494B/AYjAPwV8DfxF4G8AZ8C/BfxtEfkf5fN+A/z3ROT/+sO3+kiHdBzHD5+OY/hx0HEcP3w6juHHQcdx/PDpOIYfBx3H8cOn4xh+HPSHPI7+x27AT4T+aeAz4J8XkZC/+w/y+z/M78+NMf8y8C/+0I070lvTcRw/fDqO4cdBx3H88Ok4hh8HHcfxw6fjGH4cdBzHD5+OY/hx0B/sOB6BH6VfAr+dDT4AxphPgf8l8J8DTtHQuIsfvnlHeks6juOHT8cx/DjoOI4fPh3H8OOg4zh++HQcw4+DjuP44dNxDD8O+oMdx2OOH6XfA78yxhwCYX8dEOA/LiJnwH8HMLPfj3FyPy06juOHT8cx/DjoOI4fPh3H8OOg4zh++HQcw4+DjuP44dNxDD8O+oMdxyPwo/Q3ga+Af8kYszbGLIwx/1kU7bsFLo0xvwD++YPzvgH+kR+2qUd6Ax3H8cOn4xh+HHQcxw+fjmP4cdBxHD98Oo7hx0HHcfzw6TiGHwf9wY7jEfgBRCQC/1XgHwV+B3wO/DeB/wXwnwKugP8T8G8fnPrXgX/BGHNpjPkf/3AtPtJddBzHD5+OY/hx0HEcP3w6juHHQcdx/PDpOIYfBx3H8cOn4xh+HPSHPI7Hql5HOtKRjnSkIx3pSEc60pGOdKQjHelIHykdPX6OdKQjHelIRzrSkY50pCMd6UhHOtKRPlI6Aj9HOtKRjnSkIx3pSEc60pGOdKQjHelIHykdgZ8jHelIRzrSkY50pCMd6UhHOtKRjnSkj5S+F/BjjPkvG2P+Q2PMPzTG/LX7atSRflg6juOHT8cx/DjoOI4fPh3H8OOg4zh++HQcw4+DjuP44dNxDD8OOo7jh0/fObmzMcYB/wD4L6LZsP8W8N8Wkb/3unOePnkof/yrzyAGZGghBRABCRikXDh/MuPf+pcZryNSPpvZcbNz9KjxzYzPKHq/2e/yynl6fxHo+kDXD6QkJIEkYIxhtaxZLhqMMRhjxjZirL4QTBogRZCk7/lzigMSAykJ7S4y9JEkEJJef2oTOGtoGkvlDdZ76uUaX9dgHfgFWF86RJ8nRYgtSACJSBowEgH4f//p7QsR+eRwTN51HI0xYo2566e3ovls27+K0f/NK9/Oxmz/InfOXAPWWpxTTDOmRIhxvJZB7+GtwVkzu5AgAiEJMaX8tXnlHmW6GAzGGrx3OGcxxmCtzgdJwjAEQkx5ysl4nfl6e9e1JyL3MoYAy8rKSeMREVISBNFnMlbXYJ7vIkIS7RMR8N5R1xXWWbyzVL7CWF2d1pgyjIeDO/ZDEr3Xfp8arLEH370j5TEpa1FExv4tnwUhxkjK42tM4SrT2Onx2mDtg/TKOAkgSX8XhJT0pCR6/fF+IrOpOz3Rdgj3Mo5nD5/Ip5/9EmNy3x/0mt4/5TakzAuErt2xub0hhIEYIsMwkCTpHDZ2NskNBoOvPFXdYK3BGfBGMEBKkZTXVkqJpB2Ctbk/0c/O2rFpr0yLWV9D7u8kmQdP30t5CfRDJEQdlxgTKSWsNSxqT+2d9ofVtuuY69hoA2zp7PyY0zuGV5jKOKczrzd5gn/97OLe1mJTeVkvqle+n7PCvR3qgEdK+fcd2Ema8aWYtB9LHxeyZrZGzN1rsuyNpV2lf6wxeU7qnqv8pXz/ba2T2b97X73h6Pz5Tp56V3/Brg/0Id3Zmu+yL76+hUd6z3Rva/Hk9FSePH2a98U07duzY/bXycTYzGwPKXPcWoO3liIm6h67f0/hYK/K97VGZYxX5m9KpDRrUZGRy/o7PGPGGpLMeOHsGUzeP4p8xPgXd/x7cPad8qCZd8230tdff8XV5eW9rMVHjx7JLz77bL8th5/3eOtrmNsr7fj2Y/Zv845SzN6wvM25h7PyzYe8FYPKMs13Pebv/b2/e29r8cfkqftj/XbjaMb1un9u0RH35I2DmznnsNYBur4ly50hBGKMr+hA5rXzS4o6850py64/yr44lxutfbNnShKVXWTULd7lTn8QdOdaBPDf46L/NPAPReTPAIwx/3vgnwFeu5D/+Fef8Tf//X8duXlJ/OofILfnmNhi+wtM6nU2O4dYC1jEOjAWg8Uap9+JIUWLTnoHps6Ai5mBRlAEThMTNkwAE2kAkv5OUpDFOMQ6BEPCEsUxDJE//d1z/vS339D1gU0P2x7quuKv/smv+Sf/8V9T1xWuqrF1rQpztVBAJgXM5hlm+xITe9iew+6KNLR0F1/R37xgc9vzH/39Sz7/3Q3dAOdbw02noI84EAsna88/+sdLfv5JxfrxU371V//TPP7VX8QsHsDTvwwnn2IkQVCQSdpz0uU/gPY5DDew/RKGGwSo/ut/47f3MY7WGE7qBcAdAsSMCqYiE5CVR2U6ZMZdFTixeO9HdqaiiGAkYVMaJS6RDEyQFRgkHyxYa1ifrjk5W4MxXF7fcHFzS0qJxhpqA85aHq9qHq0arIEUE5ISISbObzuuth1JYDCWOAISExzpvcNaQ91UfPLJAx4+OsE5x3JVU9cVXTvw9VfnXJzfkpLQD4mYVKmdAwMFgHgTADTvo91udy9jCHC68PzX/upThiGy2fYMIeFcRV0vsdYxRNj2whCFXT9wudkyxMiTJw/55a//iPV6yaMHp/zRp09ZLhq8MzSVw2Wl3zkz9lp53n4YaLtuX2gFKltRu3oEf0ZAdTYP9vqkfHcgzznnsE43zyEEQgyklOjDMP59e3PDZrtR7uE8zlictTRNQ11VqgjHSBIhxMiubemHQe9hlb+kJLTtwBASMSbaNhJCou97rq9vaLuOGCN9PxBj0saJGxv8Nz9/di/j+Olnv+Rf/jf+XZw1LCqnAEvuCxEIIdJ1HTFEjLTYdAXS86f/4d/lb/0H/zdePPuay4sLvv7qa7q2paoqFotG+9B4cDXGOp7+7FM++9WvWCwbHlSJT5qEN0K3uWF3c02Mgbbr2bUdIsKyqVgtKpwznCwbTtcLnFUYxpoy5yeQLcRETArgdF1H1/UkEboh0QcFroIYIoZuiHz5/JZnFxuGIXB1fcvtZst6UfFXfv2EX//sDO8si6ai8p4QE5ebjm0XwBisV+DcWItz+m6txXmPsVbx88xrrLXUlcc5mwHPWs8xhr/+v/o3720trhcV/6V/6i9xKK1ZOwEvlumzsxPACZPimFKa5EMzN5AcKoJCHxLtEIlJuN72nN+0DAVwQ8Doel5UDmvBWfBuv92SYNdFdp0qqpX3eOex1rCsKpa116vFHkkD1sCqsix93r9lbA4zaG/sh9cBOvq58BcFXgufSZLGc1P5sNdXZuQ///d/8OKu4Sj0zuP4OkTrUAn/rvShV2C9GyDYp+/4jPe2Fp88fcr/7F/8nzOEwKZtGWJEjCFZq3uDwJASUS9YFinWO/wiG0Qs1F73wfWi4uFJQ+UdlYPGq8HJmAmDDjESQiBJYhh6uq5FRKjrmqbJsiUUkZau7WgzrzXGYozyJO8rvPNqSBGDzUspJV0jSYR2GGhDyPKTycvD4n2DdxXWGJzRfdFicDicwlXY/H4otxXDVwGPyvejPZQ5IDU/d+r3/8F//7/7pvF9p3H8xWef8W/97/4Po4w4SgzWZsMWGGsnkG7v8/z55uiQYMwkZ+799IqsUvjzviR7eCwc6PPCKCybPb3bzPjGwQkmAQmZ8U6R2XVn15l//zoD5F0Gs287psixAH/1P/En97YWQcdmTq/jIW/DW96FzMH4KqgzyVdwiMUYqqqiqqtX2uKqGldVea24bJQ24/7snOfswQPWJ6cgQtdu6buWoe85f/mC68vL3OcKAJki61rL3kSEUQbY46OvsaDc1WUiQtcNb+qa7zSOhzSHkSWvD+8Ny8bhnGFZW85Wjtqr3OiYrznV/zZt4nITGEKiD0I7RDXCfp9N9uOi163F7wX8/AL4/ezvz4H/zOFBxph/DvjnAH71y5/PGKdk0CULcQJRjHq+IIrleIcxNjNm3dyQbMnNAl2ZC8oz7fQZo0CAJMSpJqQ6RwIsSBxRazEWwSIYdm1k2/W0XeCrZ1f85ouXtF2gjYYuGhaLhl9f7+i6oFuhTbiUMFY9PUiCEZm8jFQiHVtVhHQp38n8AbLAKoyLd7R6zxbzJPYynSwTMHE47b+FJX7rOM7H0LDvBTPTM1654Wwf2zt2/Lu02Zg9L4nDcdV7Fvu9mbY4mYFPRhmiGHDe0ywWYMC3bWaQel0Z22bGeTJ/je3eexbRaYrgrGWxUIGsaSrOzk54cHaCdZZmUVFVHmddPqYixkRICjrwmk30LlKh7q03s3deiyeNw1iHkIhJCDFhslKuCrCuQQtUlWO1bAhJWK+WrJYLVssFdaVeCjEmnLV5/PJYJqZJUTxBMHjrKHbUYgGpXUVdVZgDfH8uYMx7YtJ7s3BpiiBtsdbkdZ1IZY3nBWQxVN6zaBYgqkBbo0Kfs0WslcxHBG/B+2r07AnZEpMySKHeQ/vKam556fH97759P3qntfjJz/8CMSWssTPBj8wj906a3mXy6pq8WOZtntorknRBiULiRgRSIoYBQyKGQEyRFBOIUIzTtbcsao93lto7nNF5VDxIQNdtFEGS0PfD6FnZdT19P5BE6KMQoq75lHk0CSpvWS0qemfY7lQAEmDbDVzetlReDQbOeZKo8OhdfmZrYPTQs3sKQN5U8E5BOrU6WbW876kv328MD8dxvahym/eHzBQFkWL50r9t/i6N/M+oFwAZtCmKxmwz2J+ROu7eqfeNcwrUJoQokDKwHgWCgE0ZZM/nS2a+IjBEHcfSSpsFUus9xlUYhJCCjjUQRUh7c+2wRydAZyTR72VcQ/M9SPf5AvCMssGdl5/EzbcQDd9pLR7pJ0nvvBYfP3my77GZkoI7WS4pMydDJvvrqnjrGAUXjUCKlhAiRgQrysdICpaMhg4EsCpjJIMkPb/vBsKgHpV9P9B3AyklwhDoe1XOmmZB0yyx1pICJK/ykhODTXk/TZM8aaLBJzsa5LKfLy4JHvX6dCZijcz2hqJgKmgyySbaH5KKUlb6KPdT3pth9CdGjIxcdOzSexjH+Rh+9kd/NF5Y765tmnsymem8PUPTPuhT9s39553jOXfuCDPQRzATmLP3/cG/RYyFmdA8E6TvJDO+GR2YGc5ddCRm98+nzTq+jOVcFn/d93cdc/jbG+id1+Idv9154fsGfQ6uPn2cKV4TsDmNqSmCqTF473HOa1RAVePregb8ZCOg0XVlrcVXFRgF0Yahp2t3DMNAGIYM5oxKIRhIZq4JTc1LaZKZD+eNZNBo+vvV9Xcf4/iu+2IZP2dVJvFOIzJsXjvqNX6gJ5K7Gsldfrjpv8UO/wdM3wf4uWu1vdLbIvKvAv8qwD/1n/yT8Xcxk0SZUHvCEGDTqzDpK0O18FjnqZzdV8xGFX02cY1FjBuVhJRFZTEJsbrxmmQxEQwJSbaYA8A4MBUpCZc3O756fs3ttuP/8/e/4P/5//1Tdt1Asp5kPSerJZ/97Cl/5S+1pAjWOGrvsaL3wiQ0vOugN/KilZQmV77RTa0oudmTxeipsUSIxbKg8+LdU/IOFMochoFh1kvfbxznY+islRHfn505OnEcMpK3aMA89GZkPNOeNm6Mkjez8siJKXSouFA7a6kWDSdnp2AN267H39wS40w4MwryJClgj0GwKghlr7EJlExZftF+997x4MGahw8fsGgqfvbzRzx6fKbMyRusM+y2HdtNSxgifR8Yhi39nHEzgRqHm2n5rby/pRvyO6/FT08bMdYjREIU+iFgjEeyZcOK4HxCknqTNKsFYgyPHz/kyaOHrFZLqkpDxUIMWOupvNO5KWCKMDhrhTWG2nnEZjf2DLrUVU3TLDDGjqBKCeOJUcOTSj+Y3FejS6iz2GxBKXtwSgkxQkwhh2qpbdNaWDYLGl/v9XMWCzPHsAriGlWqxVi8rxTgaHeEISqYFwIhxHENl82nbEAGVdDFlLC5xLRwvvs4zsfwL/2VvyohJvVakwL+zJR7ZBRQpjC+DKY7h8keL9NdZX4fJGYPkhSxKSmIHnpCaElEhq4j9AMph7J6o2OzaioenizxzuKdobKlbwzqKSwMaSAl9YjabLZcX2+JMamXzxCztdYQ83g7V6knkihQYp2l6wd27Y7bnSUB59ctfR9YNhXGakiiCOoBVHswRr1IbQ7JtU5fTOvRWUtd1eoBNFPyNAzurZLivfNa/OThWpbLZi4LTuOWla89VSDP25ASQ9C1kkQIisvtnScHa3B8JmdonENEWARLXVmMhS4KQ1C36SEJEmbPnpU7STJ6RYWYCEGFr6Zxat20Dl+rsCuSkNgzJD2mFiGINvL1MNrsiUejyV29WHCguZI3eWgqHnT3xvQWO+M7rcVjqNdPkt55Lf76j/9YUkrK71MJC84SZwE3xktMYDfkxUfh97r/hV4YHEh2mfPJq8dPZdSrxhhsApvPkRhIgyFG2PWtemzGyOXlFRcXl8QQxyVhrePR48c8fvwE5zyVr/A+ZiDH4URlZifqvQNqfKlRnmcKqgzYJFijXpHOpjF02OBHpiTGIcbpKSWsHTOCXWNnl8vOAZU5SDH7fjYG32sc52P4T/7H/gmx1uY9pJw+C7kx+5/nHj93ggjj8TB6+8zk09c2in3xvHhNHR4ne9/swVL7R8nBd+bg+D2D6QE4Pt5XhRVhDuBN+99+2+8Ghb4jvfNa/PF56lwmhzIG1tnR22bu6eacV0OitTTLFcvVGuscddNQNw3G2DGkyxiDdT7LNEKMAymqTNTuNtxcXxKGQNfuiGHIukBulTFAVFD6gNJ8ws2eYT62h8M42b0mvvZWnTLRO++L42w3ZvRsrrxlWTsqb6kco8HQWUtVV1hrlCcH9eR3RkU5myaZ9wj4vB19H+Dnc+CXs7//AvDlG8+Y87MiRGbVWwRiMvSD0AejYFBlcahlRMSN55gJsdl7E0y21isINH5nTV65CSMBEZMZeFGW8jmS6PrI9W3H9WbH8/NbPn92xa7tMb4GX7HrAjeblr6P1JUKBiZv+GYEd2bohDAK6qWVc9QyfzUy4vHvNMm8criYZ9c9nOajsD/287cuhncaxwK4TNaD6V6vi/s93NMPLQbTcTJtRsK+7K83yI9e8q8wsx7rCerx46iajLBXXq1hKXssmAL0wF6uqLyJjnvriD/JTOBTV+BFU7NeLVgsak5OVpyernQDyBGHJGiaelQ81bAn439399Ebxujbedm7r0WgNFhdwWUUVlUBNRNTdk5dVa1juWhYLhYsF4txDhQrwzgSReGSsVt1wyQr/ln4K942lfdU2RW2gD1TOFy5wCQw2plSbEfX2Wn+Se7vJPk6I7ynmy2KPVDiqPfQRIpArPdQ5xELoTzbDLydhdbMd8O9z0VwukOwuoPeeRwVKDP5+vNNXZizx9FfZSb4vlaQG9mQjDyN8XMi5hxiZQOee/wYY6icpak8lbcopJomMGJu9ZRESppjqG07Qkz0Q6Ifsv+SsSMQCYkS8uCdZeksGBnDLgHaPpCihi/1QxzBaGsM3tm8F+QcVsaMYRoCyrPLGnc2e/3IKFyVrjIzXvAaeucxNMZQVZl5FB5SwM1xDHV/EYC83qwx2dNfgZS5V07ONFdOHpmwYDBGvd9cZrPOGpzLOeymiFqNoRflgWmaTgr8xLI+9bfiu2CthluqUOuRFBFjiQIW5TEJRieded++0i9jN5s797r9Ppz2ibLlTd5P+we9pXj43XjqkX5K9M5jKDAaHsrecZesdcjjJ0wo7/JJPdpTNDnUVkhGPYAMFknkcB5draYY9MSo7Jdg6AO7bcswDFxdXvPy+Uv1HsJmJdJT10tO1gHvGb2FDGaUHycoQPMMKVCVcw7lNpvCR1DDhS0ymLFAzHu4VWOtychyZjRFVLtDyBtlQgWIZuCB/RZ551V6t3HMe80cSiltMmb/81174Sv7YpGJslzAW+IR+4/4KuCjnHVPgJ4dcNCG19yymAXMjNft8VUxI4MVmT3bTFj4Nq+e14F0bzrmDrp/fvq9cKjZZb617a8+51yWKQbMUW60aiysFwucc9TNgmaxUH3E+RH4cVWFcw6RRLvb0McekUQIA33XZeNi2AulK6Rb/quTYlQh58rlncdMOtzhUvyWpXnv41gMuerxY9XRw4zLjmKoVDlP+eroXMWotR3pHej7AD9/C/jLxpi/CHwB/LeAf/btT8+hXqJhJhIS1zc9v/t6x+0uUDUNy/Ua5z1nJws+fXLKovZYUZueEZ34JgM6anHQfDDJGGxW95RPCyUUaFzjNovH2VIaouaTOL/e8vnX51zdtpzf7OgjBFE3XCuiYTEh0Pc9Q2WJoYJU5R2wJIK9ayLKCAqllL19isKsWk45asKMZPp9VFDvuvZMeZWsnOXd+G0G4t3H0bC3ubwLZnG4wd4lAByGe43IQb5XYYN7kM+4gSuqXlUVxloNvfJOZ0NMSIxZqdEQBQvjOESRKcxuLjYYQ1Np4timqVmvF5ycLGmairr2OFdCjWahEznPTVFKU0myW8byfuk7jGHpq4rFcol1HpfDmkKMRJnC4qrKszpZ46uKk/WKyrsZ+JLFDlEAKBiDkUTMo+RssXLopClpMJzVnDTK9N2d1gbN+eTG+T++zDSPpvBA/ZyYQKxxyegD59A1l4HkWaJnIzOXNRQUYDaxRYX0MiPnYT8iQopJEwgX7yQzJTiWDIh8u7PPu49j6fM0zlsV/iawIIssc9RCytirgGLmiUdnoJGQY8WThnxlHzkkJWIMSIp0GbBJKVF5O+Z40nwWGl41BVCW9mr+pK4f2O56Qoz0fSRjR1hr0QhCg/Ee630eOzUAJBFsjJCBXGsMLs+fkHmq85Fu0JfJNxYk5/WxWF8hmJw3iBlfzfHzed7pYrVZ+JjW8n2OYenvKfC0zLFZeFcZR1vGL7/SBCVLGV8zb+ueesqeKiSaF6Iot3tK7tSscU6lGThavFWVbM7rlefSKCSX/GslJE2PjgVMMoJjFtxp9t4Oemf2y6GxoPw+a3rpyRHwMvn8wjNGQ9Ab6XvKN0f6CdB3HMMDuWs2Kw8V973fsnAiJueaMkKyEIOBZLGS6FGeFUMkhYgxlhCT5hIqoa7tQIyR7c2Oq8tr+r7n/Nk5z756ThiCKkLG4nyFNxWLakld16yWa1YrDbUsQK0hYzRZhFITZ2EjB96EZX+QDPrkvUKPFcZdbAQTiiA4qV97yqSYcRstSqrAwWY48ZQ30HcaR5X9izHPzB902uveEjx4nXfiuLfN/h73XLN/1CQvMfHaPC5SPIVzv03eppNeMIH3TOeOcP/Uij25eWR1Jsvq85ZOs7nI4t8ljOstQ73ul5++5bh962XeBPrMdJC7PMJERMOa897nq5oq5wFcrU84PT3TtBPNgmaRPX6szUmcNYdkipEYA/0uF9wYBrpWwd4U7/bq2Z9ts2/zxJjLvHeTzI6fy31vRfc6jtagIed2CvFyNr979Yh0XnWT4tmfQswsKI1rTdeVfLtCeiTgewA/IhKMMf9D4P+M2tD/NRH5u291rmpSYIQoib4LxH7gi6+v+Jt/+wu+eb6hXjasH6yp6opffvaUf/Kv/JqHD9Y0FpZerZU6fzUG2goYidnjx4wvQ6KE6RgjU5WEZDHGq6Lbw6YTdl3gN19e8P/6u7/l6mbH5y9u2AwK/LgELgpDTLRty/b2Bi+Bk4VFVpVubKlW0OUuj58cchKTLvQQYk5oWhLv5dwK5EuYcqm5h1DRZO94SckEnxQOfou4ku86jmm2KZV9f9yMDujbeMrhprGf02V/sy6AzKhQAKlYYKzBOIv1lqqpWa417r1ZLqibGmsNsRvUSwEF8IaUMmihikxMacxBMYI/BpyxnJwsOTtZslg0fPL0IU8/eUTlHSfrWsMkMvBjjObEqSpL5S3BqeiVUpwBEW+1Ub41fbe1aMB6qoXjzDcK2sRI2w2aP8BYsJqodbVa8vNPn7JcLqnqimVdT5WaslIlGIao4Ki6ymtOo6auWXkP1uIAZ1TcrLzTimCmJOlOOm1lpoC7SQEPITAMAR35WRJjdMyQUrEk599JMX+vyrR6T2gVMu80RG0YesKQXXnMODhjIszMosYlNnp5ZwFOAR0hDAP9EDSRs0gOS02IVcA4kjB8+5p813EUhBASzhhSVIuytRkYG4XNOUxlKICfzbHmNie8PLR6Ss5hhDFIHLAScSQkDnRdh4lBQ7RuNqSUeHS65OFJQ115VgtPUzvNq4NQYPhh0DGMMXJ7s+PyakOIia4PYy4f5x1VTr68WC6oFw0I9CEyZJ4ZuogNASsJbzWpYoyaXHsYAhG42fWcbDusNVS5QoQ3hrquqJslMQnbXhMDTmpL9g7yjrry4xy0mUelrJzd5xhCAXlibscE92iARpbwi4lLdG8wYjAmh3nlKkDGWiySqxpOo74HqhQFLO87koSUFdUkaYYrFQ2OsVpdyGFl42wyhso5Kq9elc66CVyRksMJYlJv3mRgEKEX9TiyORn/iMsczO2y3RX8RiR7ajFTYGT6LGX/nD9z4U+lWl3ZmkdA6P7G8Ug/LfpOYyiTYU73EsGULMmTMHLwXkCfXCyEiHJ9YZBET8JZQxoMqZvCi5zVXB8aOqxVEcMwMPSakP/imwu++vIr2t2Ozz//gt/97vf0/ZDzjqlxq7vpoTcslgs+efoJjW3AGW2zzd5tVmUaA3gx2Wiq7Z5XLZxQCUN2m82PWGTMInWZzIQKwDoLMTpYUyNUYRQI0//UQKKybq4mmKvP3ts4FpB8zghG5R1G48dbaL3z4Ks9nVvmx8xubXPC6/y9nYV/T95Csnf++FHU6FLue8cRMw9r9UgtCe3ngM8c0pO8b5RWTKky8ucD0Od1tB8u9HbnzM79IPjpPPxRwbJRE9kDf0bjtDVjYYjlasVydYKvKp48/YTHT5/ivRbMWGSPH2t0fsQYubq84Ob6mtR13F5dcP7iOSEEtrcb2t2O4l3+Sg9n3eRuo/nbPOX+QRMA9O1jed/jaK2h9mqQaypH7W3+2+GrWg2BdUW9aLDOMpiWGEJmxyVkfAIpjRSHkoMFeqQ9+j4eP4jIvwP8O9/pXIoSX7xoEpttzzfPrvni62uaZcN6N1A1Fcvlgm0bWK0SzhuSM7nKyZxzTlZTyxRSMypqZbPLn/UPVUySaPWibkhcbzqevbzh6nbHzbbX8t5iVNAW9SaIMRKGgTA4tfJn39w9r5xJLp09c3aPF2Evx894oLLk8ncJ8Zq8gua9N+/I/c1ERZSyGEovvGEs3nEciwhU4oXHZy1yA9P+Nnb1G+guhnP4qDLdcUxiKjMGPWrixmiohvdjyIZzjhQTyQxjdxUvCcPkeTWWOpX9+yuY4zMDb1guG5aLGu8dVa56Y/ImMPf2sNaMlTtGC+JrLC3v2j+v9Nd3WIuqKBpqp9Xy6HukGwgxYtxUSch7x2q5ZH2yzkKNy0mUxwZCSQibpvUMgk9ZzMhhZaXMs3Me79XlNcSYy8Xv90NJrguMuX5e8+z5fXLRnzxgSv/NBO6c2yRGh7XF1YT8DBl4GtfhTIFmBqiU64qMZc2LS656N01zId1dMfp1z/L24yg51Evs+NwiZn8BMgNRy/tM6DWj59ZMKC7ceUzuXDx+sqAZIxIjwxDo+iGHvC3UTdeXNWdzZbe8bscxijmBYaBtNcfPkJJ6hBidk87r+XVdsVw0+lzdMCYI1iYWMN+MicVTIld4yK+YNMlpHkGRmTdPFIyJpc/3vKSsmRI7e69WuhQjISXSW7j5v/tazMmzy6wTcj6hzIhKNmcYQb3Ce2U+zzNANI4rky43Aiv5QRNmdAwdvYbmikyeB+XaKSeA10sV4AaMV48rWxKlU9pX+Oxk1NBQr+L9I+N+se9tVvrj9WLbvJ2HAWDzv8rzjvqfsdMRRRh4A30f+eZIr9J78HR9m3u+8xhOXnCHbZ5UZhnBEzMDJyUr7pMfXoqRFFVHidYw5PVrjSHkdAQxygj8pBA0j1wItNuOzfWG7XbL9eU1ly8v6fseazRPSFVVPHpwzebJhhQS/cmAhGlFp4LlSAnPN6W0CaPXjpQ9rewSZnqmItuVAizI7MHnxxyGyE99JuP5UfcThEQcwY15WN39jWMR9Od/l4/7+9+3Xml2zD6LOmhvkbuzocVm/mvNlHXs1dAceeWTzOTBV5s3yfmSPchTiXoYB2C/naMP6R5DNZOHEa/39Cl/v05GvSs07E30nWTUt7nu/Pjvcb3Xhfvd9XnkBFnuL5VB66amqmoWyyWr9XoEfpYj8KPnxRDYOgcpIikwdB277ZYYIkPfK7gxu+cr/V/+LHLBwe/yjsCHirJvd/z33xfn/Un29lHP4fKytoR3TWHj1llMrvQ97d+vzvlRPjrSa+l7AT/fiUbGO022GLWU9pCrFbTtwJCENoGtPMvFgj//3TOurrc8Pl3w2ZMTlo2G2FQ+20iNbilFb7Ezbjd6+4wCfs4lEgIxCRfXLd9ctGx2Pc8vbrjedty0PV2I4/5hTFJhlwgSkDQg4kACauExQFJvmBGEYrz/nGnftWnouzngXBMIRAGV8iY5v76+ycFxe7rfvdOogMHepiJ3fPe2dCdTNkXgYLbOD559f9Wr0INqNc5bmuzxY3JisJLrJ4oy4XmFppR9pK0x+LrC1xVV7XlwdsLDh6c0Tc1y2eC9G5XCUl5ZgZ5crhUOwvnmUORb9sc7HPvOlBUhk0EZkwGBmBIhRirnqJsK7z3LRUPTVDR1lZ/PThbCnOQuxMC260kp0XYd292WlBIPTk8AS11V1DnBpbMGKxq2o/lDJo+osXFzbTULmDYr+Go5zBtVlL3ZUJaAs56qWuS1aDJP0LAyY62GChkzVjCbrx2T0uhpV+ZGjMU7L43hmqMr7ggWlRwKqoA75zAkxOnmJu8AAL0NCdmbIgoxgcvP4O4QdOdnaRMnEI45NylC4EwYlxRJQ0d0BhkGJASI6n3lnebNqbylqb3m9qlsDnO0yOiJKPRdz81tSwiRvhtGwKWpPUvnMFY9cqqq0lLqi4aqVq/MKIkoUT13BosLDhslCwkGk3SzLwDFrhu43XbU3lGt6rxeHd7p+7RXHABkhd/kv51Vz6WIIZVk1/dMMQk3235PIRmB5ALUzfMR5UYMIdJ2QT1HJ7aPMwaRGfAzB4FyuFqM2k8xaXLmIcKQNAyr8CgpAA0ll5SuUU1gWUI7bM5bUABhlwVVDRkVyWsJBX9iUiOLMxARYhaEvclevCNJLiina7ek5SsA4biNmvmWl+dr3kfn+TxKvijJVeqOYuGR3kgilEQ5khISAxgNoYrlZ2sgBXSyFYFLQVyL5vURZzHB4qyuSz/Kk9nTEqPXTHrR0PcMbU8IA9vbLTdXN+x2O/pdj0TRUDLU2BAx7DZbrs4v6ZcdD07O6B92SJ2oGq0spOxdCtqDpjdgUhjNqx4gs82AeelyBZFnir6ZBT8fbG1z/EdIiFH0SySNwM8kd2kFzh+C7oAv3nz8TGeYQLC5h80EBJArK4YhstsGlR9CTxz6PaPU/K4qhk3JpdX7eX7/ImaV6sZm5qmbc6qNRjUt3PDqE+seb5h45Nsqx3eBDoffvWWo10+C3tZLaa7fSIHPZtahskcXzxTvPev1CQ8fPqKuGx4+fMjDMw31qitNvC4IQ9/R9x3DMLDZ3HJzc03fdXRtSwwaDXJ32OMdCtWemPehjMF+35f8i95lI1s2Ko95Akfgx2Fd/t1pzl/r4piLVNnR60HKI+3TDw/8MOl0ZOCnDxnw6QY2m5bb2x2DwC7dEjFc37S03cCD0yX/yC8/ofmTX/HobMWihBPYAvBESo0wIwWMKQLgPhIypBzWMgS++Oac//C3L7jedPzp58/46mLDtuuJaJ4Tm2/hSFgCJvVI3JGCINKB0dKaQkAkInomI68YN8wM3DDPrUA+l+nDvp42CbY5oaxJxeVeDg7IG8uYGfpdYIa3p7GJcwZ6F9DzHcCf/fNn26OZx67Onm0EfmV8CVFDjazDV56TkxVhGNikRBqGMfFiyEr7MARi0HLSIem8sdZycrLi5HRN09T8/OeP+eTpA7z3rFZLmkarc/hKGVYBJkxGrymeIHnMUkrjc3zbqEzupW9nlfoupOFPPiuVGqJhuoEhaO6WqqlZr5csFgvOzk44PVmxWi2yEul0aKxWhsIYrm42XN3e0PY9l1c3PH/xkiEE/uiTJyTRpNCrRcXpssbnEkHOq2I7RA0BEmYx09oRFNdb3Qzm4X4RJIfnRRUajfXjs3jf4PwCmNYNszHC5KoKc9AHcsif5rBJWXkdBvWCijHMgKBACOqxUiyZxigQUXKsGCzJCtZGUkj3DsSKwBCUP4WUsMngMYidJyFEvUDSPojmjMXPhMbpokxKdc4hk4aBsNsSUsSEHWbo1VIlidrrXFguKtbLmqb2LJpKPeFMSdadEIncbnc8f3FJCBraIClhrOFk1bA+WeKcHb3qMkoB1hKjkLMYq4EgeIaQ8InsHWQo+JsmiI5cb1qMgdWi0nLpGVBq6oqmqjBEBb0KAGgmK21GOjRHmPfUdUUICgwLgfumEBPfXGx1vGxZ8wWUy/xgBIGm82JSzyYFQCbvOGfB2wnsGSvg5RxHGFVO+kHHph2ENoB6UE9ZmTSUQOdAiJEhBETAO6e8KYM9dQ79LPnUjFGPyhBy+ekoJLFgEkNUWN5ZgyVhjahCXABl5kYNRsB8AndmwI0U8HPKyZLEqBXcGEoIoxijxR4ycBbz3vueWOuRPnQqclTSsHk1TOQsN6LhiiIl1DzvG5QQnQL8aA4yZw29VePkHPghAz8KmlhM9v7pdy3dZksYNK/P86+e0+52bK5uIQg2GpIoYJuGyNXLC5w4lsslJ4s1Tx48pmkWCpwv1eA1gVJkEFX5SwlyVTl1Agx0zZOxDpWpdX8rzzeeRv6ojGaGGeVunPrGhGyOi8Q0IOg+2vf9uJ++FyoyaGGGb0Gv6o0yyvOIFisoly7XTCmOINZ2s+Hm5jqDdzfc3lypkTkWxT7LMxk8897jvapiURIhFxooeQqNySHKdYW1jvV6zXK5xDnHcnnCcrHEGIf3TCH4Mj3+Xndko868a17pMjN5Ad3lAXTXMe9LTv0xaU9SN7M/zIje4ivNkVlXNU+ePuWzX/ySpml4/PgRjx8/1v02GwZjiFy0W7a3N3Rty8XLFzz/5mv6vufm+oa+67JB8Q4lcGzEawb2A6MyXZxTg2FdORrvqCqPdxbra3y1wFiHrxzOVyrnVR5fVRgLro+jsd3kqAtrMhc+gj9vpB8F+JlPWpWxc+nmEAk5l0MbEjddYkhQV55nz6/Y7joeni5pO83N4L2di4iMGouxmIKamvmKlb17Dvlet7uO88tbrjct17ct226g7SPGWUwWlEueIHW/j4gEJFe3KQnW5pv/XWj6/rcHn/Z2TA4WtlCw+hL+9YoX0bwPKCg1lP3qvunb4YtMbwn+vG7juKsXX/3F7DHmvG2CqOdBVXkMqiSakn8FM4Z1JVGFcrTIZGVpCu+qWa2WrNfLrOhUmqQtJ3GenF/2XYglxzVMTOgdmdH7Zu6jcjRVOipeLmDwlbqu1rWnqvSVIaOs+DmM95QO6Iag4O225fJ6Qz8MrFcrdl2PdY7KG2LymJykN0lOri2Sk1/PrGuHDz/vV5nWWBG4ACya+8CAhrFZZW/JRMRkYW0WNlOeP6Mh+ctSF2kaw5Sy1XdUMEtFrxnoM15SQ2BSKkWjcoJna7H2/jejWCqypZzo2RQvwUlYOKx6YHI75yFBYKZTCoicV7mkhISAOKuW7xgz3yuWSCarjSvePvnauVqMiOZpats+hwHmdYOl8o7losqCrIZSgiEbuAlWsreO8vuSTFHvPZUDLYpZqerV9oMKC+Qk41Y9UjTB4jx2fp5UeRJw55ZWa2V8pvumlIRtO4xePpTxmRkupu9n5wmEnNxbQZ1p+Arft8XLxRgcOSbe5JDMmMMyY/Yck1fvMRopSg4gAZFJSdSElW7WT7nCXio57CaPH2Tm3cCUlLyseZvBmPm45EPH8Z3n5hkDaoxMoYLk3FyYsdS2MQaxE6BVcju/V4/KnwS97vnelQ+9TT99RIL2zIgmOR5SmNLojsUDUK+1Eh6ccu4alRNTzjeRDRdGwZ+YP+vEnHltWJ3AQz/Qdz1D39PtOtrNjt1ux9APBX/JVfUSkqBve7a3G1KItNuW0A8467WKKVA8dkZePo/Bp8hxM+8PmaRIEcn7Zn4uKcUL9hGe/dmhzzbXuxTwCYhRz56YBhJRi6QM3VjF8/6oBNsVKXmSVguoPmUqy2fsgRd3KNp6UH72wmD3rqAVDFNi6Dt22w3D0HNzfcXlxUtiCGpACmGUB5zT8fe5qinGEDLfVB1FeacxhsViQdOoZ4lknUMBo4q6qrEWJPlSr2Zs0yGPK2DV26QXOAR5Xvf5fYI+hgJU7tNck3rd3d82f1O53oFGMX6/14ezaxb5wDsFI5rFgvXJmqZZsF6vWa80z6h6hkdG94ChZ+g7unbHbrtlGAYN75pVs933XDFMYYKHz3RXq78L3QU0vQ/aX4vFSDrJjZMcYbK3T5H1VLa22ZPcjjJSkdY/9t38PulHAH6mYZoGviRzcur233hwiU4SNqlifnGzZdcPPDxd8ZsvXnCz2XG6rnn6aKXVZJyihcaW8tRqAs4etJmRxtEL4+p6y/nFhrYP/OnvXvCbL19yu+u5uNmpv06ebC5XavJG9GUFa0tOhiIKlO1lUgYNKW+UxVrCOMkVNLBjDpjyW6FiTZK8yRcnniKQmAJwlYOZHtIwgT6HCt99j+J9HjflAJlZI6SAV9PzFiELyaEA+i3WeCqvc2gMwfKGxaJBzoQYAiYliJEUk5YszXPEUY0J8HItH7z3nJ6uOT1d09SVJnvN7XLZE0AdEibFc2RauSLGmHjvJ4g+xyRstjuKEISBfgiaCNs5Tk9PePDgjPVqxXq9Gis0KePVcA7rPLaqKGu56wPbtuNm23Jxs6XrexaLG85OL1lvd8SHpywXGi5WrO6Cls+u6gokK9olMeJ888ubbMmjkIo/tNGy3gLqWRA18VuIPSHqBlpVjirnE3IqhWd8WOOySxI9GfMR5VlrsiuvqNIfpcmhbm70ALFWMMYRq2wFzgmqUxKGIeZ2GqwLmPiWtb3ekvR+kvMqqVU6mYQkg8y8o+6isoFOsu6+JK9eQQUM0VCHFI0CQEEBb2ugnlXyKs6XNis3Bk3K3O56hhAY+jAmR67rDKA6xzJ7Clmn1yqVLGLUSl0xCRI1+fFoOXeG6LVs/KKpsSbkNqhAEFKiGyKVj4QoWk48g40lOSZmqn41h2Z1bmdvkQx4xBRzcurhXscQNLzqtlNPQ5Pjlvf4ZlEwzD4/TUxVCEtOogI8eqtXUWchBWPUa07XVkmALkkLFowRi3PQZ1R+i+pk8twoe1cGeYqqOFs6Imn0kBtCoBtC3rcSxguIYbDq7WOThmHHWEBJ2X9Qyf/I4Xd5102zPV5yWXojiClCe+6ksXHfaZg+MDqKwd+HFEDUl3q+JUooaVHIy0tA96Ax1IuZcQG1AGTwUj1jDJPRYcZ/RNT6f6PW/812Q9t39ENPTCljRWY2f4UhDLTdDkG4ub3m/OKcxXKBbaBZ17hkMc6MRbriWEJ+yn02B4HGRZzbb21uvhQP5rymew1HKycaBOc9q9UJTd2MgJaxNkvGETH5k6j3T4yRqlbgxxbU+l6p8Iy71sKkSBe2dzeIoftRFA1tTnEgDh0yguA65rvdjtvNhhACL1++5Nk339B1HTc311xfXhBiUMN2lk9KyPwrHj8pEWdhYaVNddNQ11qY4vTslJO1Vll9cPaI05MzfFXx8MFjTk5OcVYrSVVVnfeMaTynlAOzJ7wDzLmD1b7x+PdGZuTg93/pw3kx2yNel/dof44YKl+zXK1ZLBacnpzy4PSMZtFwslqxqGuMgUGyp2tKuq43G9p2R9u29MNAGIaDku1yR5++uRd+girGG6mwGJVVZh6/hUcy9b0uMZn9PTfCFk/fCbA+0rfTjwb8GGMRLGPJ5srT1BXrdc3pSY0fhOASfc5F8NU3V6rcBXXveni25JPHa3792UNWi4rlouZkpeECpTKCCreJIXtzhBDpB/UQ+PLZNb/76oJtO/BnX17yH31+SdsHbnuhxyDOYz1UTidnbaBGqJ3gbcQYfc3sQIhEEkFRGglaZUxmYV9Wq9a4yuF90ooxI3CQu0eKVUkVnzTLE4OknMitvE8gyMxOM13oPdFhFPH3oVeTkhUoR5UHgdmzAkxeFkXYN2gJ9aapqCp1G/RVVvjPVpydrokxav4Rb4kh0rc9Q9cpI/cOlyoM6uXivKfynidPH/Lo0RneWwUs0HGqvFOAxIDzRfk3eOvHaklILhceS9Lv3PxvkccPBY9XLA73RDFGzi+uc3J1LbHd1A3rk7UmjXz0kJ//7BNOTtZ4p1WOLOCsoc45WKyvcHWThVjHdtdxfbPlxeUtXzy/Ytd29EGF49WyoQ+f8uDBGuMVTIl5XTiv4SJzLxQRsmt0nLwvnMJyJgmaL8Do5yyYdn2i6zX86uZ2x2bb4qzj0aNTzs5O1ItL/Qow5DhiXylvGAYV7iYkVisKVDXOeVKKWGcJqcqVqdIkVC5UgBdRbwatgpSyd0vE2oG+D9mF9/6ohOC4CCFqknGwRJf566E0UPTzGUj5ak4AJWOYKkNJIoWeYJLm+uk7kMRqUbNa1lTOaditBWc1f4uCRsLQD9xcb3Iy516r5ACrZcODszXeK/CzWNWTl0tWrIY+0GXwrITKWdS7qPaqKKyWDWdJaLvAzaZj4zsVtkJi2/Y4a+iCeo6aBENM+BiJScZQJeU1kxJXYsmNtdkbUAGftmvpuv5exxAUsHxxWwAlU7SQzPKmMTzM6yZloMp4ZRDLGnLYVAZ/xj2XMdm8syYn34ZdH2fJ7vOVTVH20oi7lPEpiRedtapQjtXAJBfTUSVRQyEjbdex23UYBGk0U56zQocaaYyBziQVRooRZFY00Oa5ZGTqg5Enzqa4yFTxsSTHtnYCpMqzmWJQ+Gjp436690vq1a2gT8zJVyMpBs0zFhMhhOyVUYpBiIZiFo9AdQVAgdziNZ6/E5uV2TnvVfAlSWKz3fL8xQva3Y7ziwtuNxv6XnPnFRnSJJNBFKHrW6JEqq7l2YtvWKwalqslphZWZ42WQq4szmfAV2DGaTLwU8KKipEie1QaQ1NV2MrnUvMDw9AxDD3XV5dsN5vREIMIq9WKX/ziL9AsVljnqesF3lWI0ZA4AW13BshijApqxYD31T2OIKNRKUmRoWz2migK9EzgPsCUFbib8halGAlDT0qRbrdht7kmZt6mBqDExcU53zx7Tte1fPHlV/z2N79l1+64vd1wfXOjpbvTVACi9O/c8A3Fy0ePmQM/VaX5Fp13nJ4q8FNVFU8eP+Xhw0cslyt+/es/5rM/+kUONXrK2Zl6V1uTUH9KJgWaA1nT3CGLH3asMeP5Pyj4wx12gO99vdfwyGL9MK8CgeMz6kQGDM1iwcOHj1itVnz69BN+/rNPaeqGZVOxaGoEYRsjfdcRY2Cz2XB+cU7btlzfaP6uGGOuVCWzff+ONptXe2FPNfpAyBjRiqVZZqm9pa6yB9yYvFnzqZk0gT2l0EhJnTEZPRnzs5b+eNscVn+o9OMkd97/ghKL73JVmLpyDJKovFo1uyGwbXtCTFxe73h5ecMQAs7Co7NmTMzrnSbvHPqOrtvl/AKJIVvnhxC1dHCIvLy84ZsXV2zbgefnN7y8vFUFAU8ynvn+bY3kUtSq2CgLnTx9plcBJdJoKVLQR0bJs7irlYRuI8A5p4Jejntq+TD7Efa/Y3o37P157zQGj4z/mPH7u2lqyFtnjs/Azt42PQO75q7JmKmEpssVhUpVLWc9zjpNOrxoaJqG4AIpC3CkpNWr8niUXCAa5lWzWNT5uqU0tY6hy94StoQAGjMb0xLuIKPH1hv78w6X1MNN+b4pJaHres3FEQNJRL1bvGexWLBcLlgtl6xWSwXWKN4DZkrkWkCuPLeHDKx2/cC27dm2HbfblpvbLTEEdm2nlZEkB0ZKhrUyIDrlNDK5jaXSVxEwcmcUcAgZBW0FXRJDSIQQ2bU9t7c7rUi2XmSLqdUNoqQFszkZYrH0GMOYCyH3vx3H1OBJ5DQHY7U40FxJChIIpUhYCFE9fgSsjZQ8LfdKwggMjxufnUJC5+ziFa6bedEd7DgLhZPXjoHsxm5yaF3KobQyJeXL66Eo/xpOowmRhyFM5e5za7yzNE2lpdNr9daDyWOKDDrEkN2fk4xtsWaqnOe9et/FKDmEy4z9EoLy/yQy+WYeKDmHVr2pf8zYF0UYV0H//nNRiAhdOAB1xjYyA/bL77O2jmBpKWposrdWmgCf/CBlaRkD3ikwbkwOF8yTZbzyXBkqAn7h82VuFE+k+R5YGDZpVHRi3oOt0bLuCigZohWtyJqFtFiexwoalWZGAEebXkCb/fDFqQ2M1fxEHQFzAnlz0IeHffqh0+v4yvT9qxWFlN5dabhvFeynSpOsgcgU2ptBIBmrUWVFPhlGl8ectNmUtSCZn4gh18ocX5MTmt4nxEDbtux2O7quYwhh4jnl4NkQxBSRjOS07Y7N9pZEpOtaQhgwRnLIhJv2g3E9TzTttWjVMCw4ixiXwV3JYVqBEIfxXhQ+JQqkJ4lYl/ly5amqWnlofnxBxi6IMWKsU6OKvU9zIkw5IQt3mHmPz706mCW3LsDG/D0fp0a8wDD0tLsdYdDQnGFQAOjq6orzly/Y7VqeffMNX375pXoBbbdc396OBqwR+DFmT7YYQ2TnSaBH0EoNkt57nHPcnt6yXq+pq5q+j7Rtz3q95uGDRzw4e5irZg6j7CQzwOaNXfYGb59RhngN4POD5PgZF9SbdI27v39t++7slkliuivX0XzrcM7T1A1NrSXbV4slTV1TZy/zlNcFKK8IQUM5u67TytAh7IF9b3j4b2v0vQBAP8Qw6o1m+7tRQ2GRKTDZC6/8M5eDZvymePvsPffsD3NwvzsO+YOlHyfHz0wgLSVzyZ4ai8ayaAwBg+uy9WWmTOy6ga9e3HJx23Gz67htO5aNZ72seXC6pHKWEAZC347AT58VsD6o+3+IiWfnG754fkvbR15uBtooDJoWZlSKchEinNH8CNbkBLOUSmQzFN9oSXcrCSRiJWCy148ZyyHnyT6GeRWhXV7tnnHfmYCOSRmQabO6o2ezSvNeAIPD+7zpJmPz3+Z6xrxh85hXRptC3UyeFNZZTk/XfPqzp9SLmk8/fcKTx49yVQu1rsUYabc7NreVegT4kuQ3V6gRGSt51bUqpEkSXdfinMXbGnyVdZs8d43R3B8uP2sJ8wmJGFRpTTHOOI2Z7ymvPHt5/r08QXMF8L4pz3PvagAWyyVnp6esVitOVivqyuOz50DBLNQ7TSgebjEGBDM+pwG88yyXi9y3ju2uJ8bE9e2Oq+utJvtdN1QWKm9JUZA4JWS12T28JEssm+9ogRPJympi1we2nYK55xcbLq42hBDZbFp2u5a6rjh9eIpxHuvV8ul8Bu3IrqVZQCyCovUOP0nkCiRIwgajnjXG0iyWKpKZDPxkC8UQEzEJMGDdACHl5LKG+w30yn0xC/WKyUw5fw6EuP1pV5QOw+FkFClCqcF5tUp6b6cfR/4zXbjMD82jozEFMXu6DUPIlmIFv5aLGmst69WC9WqhwE9TUTdq8Y1RxgpqVTLjMw0pEFMYk3nHoOCtSQlnBG807GxRVxnYiRnUTLT9wG7XE6PQNIGqyrnkhp6uH/aFcDsDw2YAkZSqVun+q88Ya1ks6v0vC4AxIjCTtLnHD2a64Mg/ctvLW8puMCWESofdQlAvgiEn4E5CyacNKODinGps1piRF1TeUfniFSBICiQMw5DQ3HdC1/fqGRETQ8z5fjLwE1IW+NKUwDooGjzmIMnphnClvaD76GxCjzM3A47leYXC12TcY61NWSEvfVlyDX049DqQ8o4jX/Pdd9lHzMH7fVzzA6Fx4hWQcw52kufdtGfbckyBXMd1m8OCsv6dyMY/ChiUwxViIvQDXdvSti3DMGh+kDuU61FJFwULYgxstlvOz89ptg31skac4OuK5cmS5UoTPvvsOVIMrc6qF62GjWZQIuRcYAN0XY81ljgM6uVze0vXd7x88Zybm2ustTS1XjMlQwgpV+PxeKehSQLE4vGDaDgyJf3B+xo8yet+juEUBRJIMYtjJYx20kdMlj36TpXym+srXr54Rt933Fxdcv5SP4cQ1VM4JS4vL3n+/Dld3/P8xQvOL6/oelXw+yGMcszYx0a9lQvfHg0NM022gD/GaEL6EFKWjTSs3nuvhQxublkulogYbm5vWa/W7HYtfd9RVTWnJycsl6sycSizVg6qCB8CPpKPL2HRzObhD+ntM7Wbqe28JrfQfTdlxgPuosp7FssFy9VyLExR1xU+R3KQZnqa7L2BmSrVGlSuvaMBr739D9Lv74nmfTKFb6mcZRA1GkoPRiuqBmtJFoahz9XPIoim5Ei54qvLlQtFJFfXNtNNZncdRfsPuP++L/3AwI8ZX7p8VVGoqwovieXSc7L2nJ04khH8RrBEnNHwgWQN15uWq9++AGtoastqoTldTpYVD08aKmeRFJAwIKJhXv2gQm0XhDaoa9htG7neRUISuqCVTYQp3lATThkaX3L8JCqTcF63SU3Ipbk+NLmsxdiAtQMmRYwMWOkhDRjSKHBbZ7JXihsrDI0boMx6adwU57GM6uJmkmAPlAHITLjwcjPv7/dAMgeZ3oT4v97hbg50lPd95UU/GFHhabxxBtKsddjK4L3j008e85f/sX+E5WrBw0dnPH7yAOfcGJMfhkjftmxubnHOMAwDtuvGUAPd9A2LnFxWE/QO3G56LW1uT1l4TZ5nxOCMy8qQhkyICClGYorEITL0gb4bxrwmxfoudzx/cfWdSnTacUONIbxmQ/j+JGj4lK9rrHecnZ3xydOnnJ6csFo2rBeLHFIzgW7OiSbGNSAJwqDeAmEIIyjW1DUPTk5p6gFS5PJmizOG0/Wabx5fcLtZEB6uqRzU3uFtYHAqCJe1YTDal6EkEZ6sYjEmQgZ1NS+XVv377eff8PsvX+iazK/1asGTT59iqwpX+ewhkkdjVDZTHhtddFVlMXXmUKXkbkr0Q0UIgaEKiBgqn3MZOI+1lpiEtg+EmLC2Y9MOiIkkY4l5A7vX8ZMc6hVgGNy42oNP49ocp86E2QD7YON86ZZDvPesGk1i3tRV3oz3wxZL6I0poGkulQ5kS5bQtj23GxWS66bi7GyF946HD0949PBUc7PVFb5W4KfPCfdjFKLpSdYRQqILaQTbwxAIvea9MBKpTCI5YdV4+lVDSIld29INiT5ENtuOy3rLoqlpFg1V5emHwG7XajiYcyyXC7z3M8tz8ZiSUWBPUav/3Tc5azk9WWufzu4+t/rKbCAndpA9dQ74g3ozFk+pmMuqz/YUo0DLEFXBG0IJh9YxtaIePc6pG7YaLE1WQsoazTnPTCKlnpS0Klhp3ziOKdH3A30IGGOoggKJVot8ZWUHhiHnQRDNxxRHQwklSGFMls/BI2sZ1/0+tcbk/Hx5js/yB4zrJH1gyE+mV8KB79wepnn8/bUhM3vd1zV/uqRPZ3Ji5mn+WMmhidZmmWQS2qxRmWCUbGeyyxSankjiKB54luLlIUhMpBjp2o7b21u2my273S6Dp3HPO2Q//CQRo8oKlxcXtO0O7z2Xmyu+fPE1VVPx6JMnPHz6kKqqODk5YX2yxllH0zTUtQLOSRKJlGUONVhJTIRtT+wGurbj+ZdfcXl+Qdu1vHjxnKuba+q64vHjh6xP1nR94i/3Ae9qfFVRVQ113eg19eqa5lkCSdIEtN/7VBIwaTLsZLlL0j54XrxpipeodU6rIRpD3/Xc3lwz9D2ff/45f//v//+4ubnh5YvnfPHF79m1O2JQj5+UErvdjpvbW2KI7PqeXdtqOGAB3t+4XmYAjMwNupPCahhGjfV6s9V+w+D91zjnqauKzz//nCePn3B2dspfvTjn9uYvs1qt+NUvf0lT+1zYRL2cpfRBVo7FjHCKhuMJUw7NcZr/SODPXCfIANkccB1BKZGpid+1PW8losmo/9RNzenpCScnJ1r99nRNXfmc0DmMzd9LYVFmXjZyIkLi1T4sc3da7yUEcHq8++z29wfCHtxn/i4CUfmfiEFs0AqgJDCa93CIQMzVa3Mi7OI5532V85cFhthjYq6gnAxTXMgMNCygz2Gj/sBAoB8n1GuGOhtUQCNn9q68Kl7emTGMZkLF1WtnFzqigHNQeZ0QJ8uKzbamchZS0JckhiD0QZNXdhF2QZNptgG2g36ewwout3H06MhWA5vvX7xDYs4fFGOu8GPV40cTBudQCIkK+swEpUOF69W1dhfCW9hFwULu8viZpvj7yQrzyq3G+42fXxFIc5tmMtK3gUCvXGffj69s4fm4SUFZLBpOT09YrZacnqxZjRn1s8JogwKM3hKjG0t6m5JLwpTcFTm/R7ZkxxAwMuW6KO7B43+mhHaV33P4TUy58kYJWZuBPpMJau+Z93OvZDDJmCxk3jONhoycd8p7qrqmaRqWi0VOvKvJzactawYSGEaUXsMrUikgomBuXasXQNcxDImAqOdF2+OspetrQog4Y3K1WdkvX82++7nIbPOUKbHmECPtENj1AzeblovrW0KIJeYDYw0hamnu8irlrYuma+RgLGbx987o55QMKbmxJ7yvqHJJIufU48ckwScQNFmlhqMxnnPfaqYwqzAj+/nA5mBhlofupvl4zr62WcH3eQ7odWYzQQ5PN6PVG8jhZyUnRg4Pg5xo21NX+nLeqRt7lS3DGKIYxCTNwWRL7iJmz6mbu+SsvgrQaby49w5iEUYZvX6GEHDOZm+iNLYtxjiN08wELaLzYoaxvDfvO83hMG3Fhv17jZ4/szEon1M6+L7IvyaHDGDGtVPYcAlvkHl1rVzC2ebzc921HL2yx/GmkLp5O8uazHwyZM+3UtkrJvXaLeuWkpBZSnUyGKL+FjP4A5LD1/LzRclAHJNnDzLmLZqz1BH4ofB2mZT4sf/uaQB/UnRo7JmDNRNQ8crPvPrTm7WgO671UdBU/W321aRczuUUmJTSvTUy+x1gtoPu+2DmMJJZotKUFNgehkEBGJG34Du6fvuhV89U5zCNJTmhampsU+GXFVVd46oK39Q4l7CVVw91GKtqSsoeeiGQQqTftQzbjna34+rymovzS9qu5fz8kuuba5qmpqorrHN0xZCWC1yUQheSSyxbcl4+2Tc2vJ8woby3z/4soLTS3JBYlOv5mMScMqJjs7nh/PwlV1dXPHv2DV9+9dUIypVQna7r2O1aDQdOQii50UYZ8TWtfJ0s/Zq1pXzvVWNqlY0WwzCw2+04Pz/n+vpK8xL1nYbTAbjRH23++FMXzftvbNRMeC/rgFfBn/dNhYMVMrP9ev/+355eYTzybVDH1z6b7oWaGiK/vKZLiAhxnOdmbH85b/q0z69Luydj+P793pbnzvnFDxKG9440f+qS1oORzxWLkP6ejDroSZKxYITqBiU6IBeFMVqUqXhQ6Vydw6f5fc7Li4xlDgTgj3Jvm+hHCfWahM+sXGWFu/KWpvEsGk/dxpxPJ+EMGm6Q1GW0TJBgIIhAhNgLYRtxVq3ANingEpIQogq/fQZ/EoZeoDcmu9/q9UwWTCVGkjWEaBiCevyIVVd11wuX1zu+/uaS1bImJUPf9vjKUy3WVM0Sa2BtdyxMh5WIiQNWBMYKT3Nl9uBlSl7ALLjm0Bq1uGtoWalGNQJK5brFIs+UH+eHGs8xPnNGwsx98Q3r6C6Pn7vuMYEVgAjW6rzwOa+Pdwoe2uxFZS1UvsY7TwiB9cmK5XKBMYbbW0NMGi5SrMDJWkKsiClM3jzGZyAIRaWtTLl7jIaROWvJeF/2NMmhExl0mu+h4+jLftWAotBOc7GEl6SDjP/3Q84aTtZLqrphdXKCrysenJ6ybGpq76icnXK8GIMxGs+mirjJyrIyTiOa82a5XBCSYOsVy9Mn6pFze8vVxQUhBKz1nF9cs9ls8Q7OThaERmicZeG9Mu7ct8YYShl1QEuJZwV21w/s+o5+iDx7ecUXzy5pu4GL6w3doGFC3ubykN6D0VwIPuWEzd7lHFxZ6MUQnSFFRWKLslm8XJKUkKqUFdliGdNkBTEBRghRGPKrGyKbnOOoGwa23UA3vJ/8MClpaW5rcxWsKFizL5ApkCF7QltRVjhYfwX0aeqKymm1rlhAzOwZAiP8ShFT50BEMrPwIaNW1bquWC0bKq+J/J1zuFz5RT0UZMbShL7v2G5UwN5ud6NgvWs72q5HRD2yFo1ea9FE+iD0wbDr3GgxK+BPzDmD1KJdqi1OQJXEhIyhmSo8uLI/5UTY70WIMjMeWL46sKKOsP9MkEGEZKcv9o5PGUgVIRY5Z7pYuck4bgoQlQpZOn/EqZJWqrS5HNOqvF4y8KiedyLqQVQ+l2psKSmQYzPIDoxJpNXhLidhtGYEk0gz5XkG/Ag6B8v8GNtdLijz/st7oMmShhSvoNwvxjDrrp8MvasiNY35HOA5/Lv0hez/VD6WKfROWM5PsPPugcrKTxhSmkJpQ/Ze04ID+t3cE0GKojJHfQwYZ3C18iJjtaAARsOhK1dhjCH0YSwCEWOiHwaGPuf/iLOEwHNePvtcqORESyK02xYx4CuPyQYYX3luTq9Yr9c4Z2maRS6qwNjwJImhGwhh0BLx1zuGTUvf91y8eMnt9U2uJKYel2INzXLJ+uyE5ekaV1daUdIaVdiQMZnzSLOS6GV93zdXVaNbJMZOeaF1OFvlUC6K7Xk0AIkk+qHnNofXvXj5kt//7vdsths+//3n/Pmf/zk3NzdcXl1yeX1D33fqWZlD8cIwjPnkdC3t8/NJoZ/aeMh/Cjz4xmWYx8qwf5CIaMJga4kp8bvf/w4DnJ6eAMLQd9R1zcnpA1arFViHtTXG+vHeo3Hhp7a2Z4BrMbxiymf2wZ9sSJwcHqdw6en9be7JK4NX9sq5953m+Klo6prKu2y41flfQAiX812FoDloS0i8LcbnAgyaGQt+pZGFj+//MMMu9j6//mFe/8Airwco75emKJdioCvGSjs+wCSrJoSQ9+9hiPS5GEVI07h777SCsyivDiFQPLXj6HFX9BaVH9JM7vlJCgPvkX7Ucu6gFnXnLeBYNp6TVc12XbPrIt4Kjoi3jqbyeLHEkCtoJaFPQhfVhdS2Cdf1KqwjuJGBGlKezYMYghhKxh1xRRKN2UNHcJKIUa2hAUOfdJJGKzgLkhLfvLjhH5rIovacv7ji6wcnVN5xcnrC+mRJ7S0/O3M8PXFYM1UBKxPMZHQTGR0TxjK0Qim7a3A+55ApOVVSJMUBkwIikQytIJIUEk0zM+p7nMx7Hihm5hlVuEZ+TynnN3lDO/bCu97AdeYCfUmYrWi7p6r9mEzNV1nhNzpeJ+sFJ+sTQkxcXV5xcbbGecvFZc4FlRU9keKp4mhqZc51UVCz5SrFRLIK6GiImGan98YTTUSilvDWUJRI6BUEkjGB6T7NE8cVzwMFPKaqDvMY//sk5xyPHj5gsVzy4PFjmsWCVdNwul6yqCrtR1vi3tWrasyJlF2op3x0QlVVnJ6c4HzNp8tT6pPHGOt59uwZn3/+uZau3N3w5dcvKKF6Z6dr1svEqvaYWjLQaXEuTnbT/Og2CdapInm7bbncbNm1PX/++Tf8w998raE7faLttR+dd/i6wlc1GEMMgWgNzlQ0lYZFSYiISbkqgEVScR0YByi7jeY8OrnKWEyJpFI9gnorJBRc6IImmN52gavbHVdXNwwxstl19PedGFgU5Im2hO0oaBWiVjAZ804UiSDvfzqmdvIuK/+Z7OFkLXXlWeVQvxS0SqKOWxqT7cIUHieiSYJNLDyJ0dvDGJ1Li6bmwemayjuWSw25Ui8sreSg03xKgrnbtlxdXjKEyO2mY7PriDGx7XraPmCtZblaslo2DDkcLGHoesu27dl1Wh0i5kTPw6CeP0MW0hVvUK8QiZFoDKmUkxflM87aXDQgJ7C+7ySkTMA5vAn8PlCeKLpTCUmbjrI2KLCSCogceDW5r5mmhMw+ZwQ7GRCnwSgWS+UcvqwbGAHqPmnBhCQa5lg+J8k5rQQwkg0YGSRM2Yo37nkZcMzWaOvMHjhVgJ9oRHmvFEA2zzPIYRxTfxoDARlzkxkzS6rqNMdXeoUj/7h06M31beDP/rZwKNzPBOiD5zSHHw40zTdvNz+tPnsfJKgXa0wK5oeoczwm5f0hFxMxhhxCqDw1ifISdJtUflwZ3MJNlbKcuhhXrqL29RjuNeR1E4ZA17bs2h1934957uBu4Kf8DQp2pJgg6H63udlgreXm4pp6UWOdZblc0iyazOMrfFWN+6Wzmtewb3v1OBoCu+st3WY3erWEYUAQok0K6FjL6sEJDz99yunjh1SrBeItyRqS0RAvyfJakVfLy2S+QO6zexs/0RD5MAzsti1hCNR1w2q1pvJVruZox32xhDBvNze8ePGCtu347W9/y9/5O3+Hy8tLvnn+nN/85rdsdzv6YaDt+5G3jmCCFM8sRgZUQKX5mnkbUe5tVljJCVROEBFuNxu2ux1X1zlE7fe/5/TslJubKy7On7Ner/nlr/6YTz/9Gc57msUJdb1Q/m8K4LOPwhXW8IPgAW+iPSPIPhXwp3hZG/K6pAC3WYZO054xwzq/5b7kNFwFdCmRGhaLrqHlYslqqSBqKSyjhkqd3JWvqOuaGONYnc37whPyA5kCStyVu3UO+syfvsgM+3vHax/krcCft+iT70nGTEViTN7qY5ZlUkrTnp0bE5MQReW1PkTaPuZCJlp9m6y31U0DaNqJfuizV3dkCGGa21kPi7lauE6LYsz8+Pe2Qj9SVa8i2OkIFwuctXaqEpOVd2ZVk0Q01hqrEzQZCJQkjRlUQcO13OxWejtDxDCMphgzMeeMEhszlX8UMtMwavEsKT1DhLYN3Gxa+s7iDZiUNIN7SkgKNJWlqxti02ipaZ9y0Pcdm8Acpxn7qCyO0kPF42fK9TNe6wDoKdccl7jc/3S+i4WM/Th+MXern0CP1zLcmSAzud3Ozsk3Lv1RTtHKXVOy7JIEvPzmc6lwFyN1rQzXe2W4KVfpmGNkxcNmDPXJyjEcbO6zfi6eEyKMoNBUXlAPHJ9JDh7qwJpx+D5/3ScZox4YTVOzXCxYLDPg43xee8UylkPbxvCO+Wsia00O4YHVasXpw4c4X9N3PRcXlxhjGbotu11HSlrhq+sDlfdU1hJdKdeY+zVPlDKv1E1AcuWuSNsH2n5gs225vt3Qh0gSRxKX+UkGNcrYUcZB22oEBSWtghdlI9qzDuXxKWuujH0ZilGUFU2+WEpil1fIiW2HGPPv9zqEewr4VNmL8d1axooedy85M2nJZvL+0TBX5cXOOSRm60nURMrz4Z+W7SykqPRFDh8y+R4ayuuoKo/PQpo1mkujwPRjF4m69Q6DJobWd03urBadiBaU09xCImYEaKJzM2saGVjPeXpGN+HZuiwPMeOjE9A8rfHC094XvS0IPh0PZNAmaxmI5LxUxmJMmqyJhbIge6eHe5nbs81oDAwwU7hzkklAVIua8rwQNa9PMWBkLj0KeHvdbO7Y83KuDTOfXAaK958xOWQzFUUyh6yJeg5Nd5w/X+6crCwbRNMH3D9+973oLv7+JvDn7u2gTIS7Gc1sq5n0OzP7vsyNgyuy15d3vX9kVABKmfj7yM9y6Pb+Nj4pYGPHlpc1WG+zkmcwLstFLhf5MFoJrIRZFWUl5jLh81CvN8kAe7+JhhoxABZiCvR9p6FAba9ePtaM4SlqMdew25QU+On7nhQi2+sN3aYdjVNJEliwtcV4rYTiK0+9qKmaGuOsrm1DzukzF5buFkbfC09N6j019APDMCgw1zSk7LlZ4ptKvxevnd12y3a75eryghcvnnN+fs7Lly+5uLxkt9uNe/3rR2I+Iyha+b3Jb3caBvIaDiECmhPq6vqKEAa6vuP8/CWPHz0ghIGn2w193+FToqpi1iVmIelz9mH23vIBc/1l/kzvhxfs3WN8bsky4jSGe6kiZjK7IY2h/CpnTK0dR+p1LFOY5uy4oZU5rAt8LidN+9wsDUT2ZJ0MbWU/nAeF3kFmdr+7fp7tpfr3voH97iX1ai68vV/fEzsfZfjy94EsNY1J1mEZg9GzTJLTqQg5PD8Rpegmej1rLc76cY8XcaSkn9No2Jrx9SzPZCmQb9s7Pzb6EZI7q3V3nAgGcrAF1iS0wJcmVrbOYpwFscSkCR/TvNxySR5jDEix3+V44rIwxpeUyME95eKQEtlSKGDFYLOe4xI40c3scheorqBylpsWXlwFvLOcnHesVzcsa0ffnpKGNXVlebS2nC4txDiFCSVFOfuEhp0l6DTqCJ/UWyUlYYjQB0MVNOZ46HaIX+D7La6/1azxMWi1mRSylGLm9TPfC40K3ezvQvM8RuN3HDZlEu5HJmyy0G/QOHCKcA9SQkGMjFa2pqk4PdF8NJWHOOwInWBOGhpfUXmfqwzp5h6Glr67oe+2kFoqH7AkYrSkYDR5YxR1JXRC7S3BG5w48CW3D5SqVnOrS0qJvuvZblp225ZhCDPw545emHYe/TOVDVj2mPr78PYBjYldLRqaWWiXtxls3dvpzEyWNePfZfwLU3fWUVc1guV0fcInT57g6wUxRG43W7bbDX23pR0ifd9xfrXh6+cXrJYLHq4WxJMl3pXk1jmXSEn0bKa5ElLi+fkt31xcKvDTRWy1oKkMp6cPWZ8+wGJIoUPiwHJRU9fVlKPLTIqslpTPZXrLRgOzT+UhM4Bg3eitMCToYs6tkENcnPMsTs5Y+4rmpIVqwZPtliFqefkhJ6r+s+d/8x5HsoQJlpcq4jYVD5rs9bCnYc8EkRlY61yu0OI8lc8u4BksCUHDTLGFfRcvjWmMFDMQhqBWFq12aFiuNLxyuV6xXK8z+FPlsIeSGD2DSyGQ4kCKAYuWi1dX/eJebTUJZ8Vesu8kksFHR4xpzOMkwggUlnxPMbv5akVJFd6Kpc46O1rnjbVT3hrJceTuPW6ZQl7/5kCYnWCUO06ZPo+s5e7/lDIIMqsq6YzkxK5m0tEMOO+xlcdYQzRkb9scNpe9Hroh5qqZ6h0xmST2ef8k6GbhC7MHDu4ptkUyK+dlIS0ZDTEbQSQzA6ZG9Eumu8zwI5itf1v2pvegcP6g9DZ7w74yUPpCnTen+TUC2kWpHf+5QxN863t/iKQ8Zp4TzvmKhbVqKGKcmiM/KgaiuvBBkxAbwQi2Vo8fFXsV8CHP/S72SILrzTUXLy7o2o6Lywt2ux191+WCCXlPkqkU+Cv5v94kIwhIFOIQSUaV4Bgi1lgGN+By6FkpLqEAiOY2lKSJnkcw2qpcaZ2lXtb4pWdxuqQ+WVCd1NBYNmHL+e0FlatYL1Y0vh49SPVekpMpqwwn2H1A8j5IALH03cD5+QWbzSaHLtdY57KXRoP3niEM9F1HjJGXL8/5/PPfs9ls+OKLL/nq66+5ub4Zy7Hn6THd441t+AGAEIpMlj8XIRoYhoF2t8MAX3z5FSKJ9fqEfohcXF6yXK742c/+iAePHmu40mKBr+sMmOc0HFnI2+cHd7Xjx+MFcrA+9nSOLNs4p7kZU0oKKWSjTyoI7uua/5o5qbeY9qEC6Bx6qc/b4azNOTOnl0hST/RZ9dq7zp9DI4cNVFxRZu16fwDOd6aZzA2aZqLy2ie+FI/QA0e5oXgh62ebDTuqnxcPLE3HofJos6hYrZY4a4lxobmARNhuW2432wxaa2EnESF5SMkhkgtRDFPVPdUHzE+wI++PfgTgxyN4xNgxk7z60wSsiVQeGm+pKoutHbZ2SDSEIIQEwYi645OFw+wrp4Xf02j9LFVBhCnPTAFqx3k2FzTHlmT3+PK1KAhhUTDJRuHZTeC2DVjAs8NjcQYWlWVRGdaLis3mKX33mPXSYT5dsK5qDdGKooktIwxRwZ42wi7BNoI1wiKCMYkQDX0QdoPBdgNdu6Pbbki2ot5dwWIxdp8RIPZ6/ZjDVpJ5JXHtfQ7lKBaaSRjClJAg/fJ1qLYcmB4z6xrzPIxTI38v02Bo0lcDq1XN44dr6qZiUUFob+kZMOmUZV1T1TWVdRhRT6yh37DbvqTd7ZB0S+MD0QhBDAGHEUvshY5AcIbaG6rKUDmdExoWknNGmD1WREqJ7bbl6vKGm9stbdsTgirhMj4Qe8xkPg81DDUd/PD+SCsJLambBcu6Gks0W8vs+Yof6qToz5nzHBTyXkODvE88efSIv/DZL2iWK6qqJiTh9nbD5dUlmy5we7ujfnGJ9Z5lU/P0wSnd4wdaQWzcJLQ6WNM0YMyogA8h8rtvLvj9N8/pQ2Q3CK5eUdU1v/6Lf4lf//ovAsL5s6+5ePmcprI0i8UIcuT0WVm5TCTJ1Y9IUKpZMAPrjFVh3RiIkKx6GHZJ2A2ayHHXDQwxsVpVPHr0lNMHD0kx8elf0FDCECLbthuBn//L/+MegZ+cYDumhIlo3rOgc3N0pTUGK6USYIlNz5uuzTEJaLz6crGgrirqSsvaStJSwX3IpYVziXcjasH22YPHOps3Tuj7gc2uVcDGWU5P1zjnOHtwxunZmXroZL27hDOGoG7YYeiIg1qbDULlHYjOV1XIBO89FEDQGA29EPV0qStPTILL1dgkCf0Q2GaDQT/EXM1JQavK5VLl3o2CiPM5r1dWhGIOt7TO46v3h6TPbV2v/HhA5kAuGeVXmZTByftqT2TPF1CgbzSgjNfLY2sMvq6wixprDH0f6PuQq9vpZ5ESCjPz8trbbyawZayulVtgpCR1zjxv9GKF0R0Ig0U9+JLV8u9izB7wiNEw0FEfmx5vFDanVwYOy1x6txH64GneD1pdtAjZkydr8Rgc58Odwu/HKxAbA8Y5jPUY57M3t6XJRgnjtCS6yd6vY3Ul52hqTbAbZKBPHYmI+ESqIpLZrFEdlKENDH1LHCLPL1/yxeefs9vsePbsG25vbunabvREgckT+dCy/60kzHKaQejCBOTMjXNmBiJkFNCAhv6iXjypAMWVY3G2ZHG25OTBKYtHK+qHS0xjueyvCReJpqp5EE5Z1UuqquLMndC4Wter03VdcookSa+VE78bGRBHu+358suvOX/5IhtEFMxaLhc8ePCAuq40L871DUPf8+z5M/7sz/6c25sbrq6vefbsGW2roNBQgB9yP93RXBkZ8PtdIfu535jGM+/tCHRdz1Cqi4WBL774gtVqyTdff8Onn37C2dkD/uRP/oS/8Mtf0iwWPH78lLrSSSplsuarls8lEfL4nPM2cWeXvB/KNzvMbzWmTkhplA+0QIXu5SlG4nxPf5c0CmbvbTI8ZA8eV6pGyqvgnLVWUw/kqqfea05SSVodOsU45vg6uN1r23fo9TV5/rzd4/yQVGZQMb5WztBUGnlRl5ys+Zgig4gw89QpuQAhGJt9GtRw13hwVjhbVzx5epo9GBkBvvOLa56/MPT9oN73Q66SbCwlVcOuDWxNyPkKIyHKa/a9j4d+hFCvSdGY3IpnMb8mAyzFKmcmYEATxc2vlV9y8F3+IJQ4XF5dEYcI9uxSxTNI3TrHtKM6GY2WhNe8LYKNYNX7lYWH2kG3HLi66bjZ9oCnHyoNHyoJfcpkztfXd5MrjE1CmIgQk8lVAnKCwTBgh4EUeiT0ugkV7540JRIupqn3wZCLgrLf38ys1Gb8qWySIjNmVo6Yje2dBlhjxjhPoYQsZDdKq0h+ycljrUEkkmIAZETVS84cSbkccxw0TxKaPBwRUlEKKPl2tAZFzB4U6RVhqzCGaYcvScWGIRCGKVljQRvnyPydJq5DLW7sg4NOvicyRhMy++J+OoJacBgHMo7jG6+XEXynLuQlfGy5WLBcLHNojlf36xBpOw3TiiGyqmvabsj9XhS2nE0mu2+WCnpDCGzbnttdq8CaqbDe46uG1fqER48egSTazTW3N1rFzVk7zcj5fB1f+2Ora31aOcoXzBTGlUo5bHWpH/IzRQFX1TSLJSJQZ94TQqTpeob7zvEza3Hx+imW+5SK50g+QsqT6PvcK69MxZLUubgtj1fPoFsSyTlgHHuA4GSyyTxrSjJau1y1y+UQr0qrxRXrip5Twi7T+C4pjcJCAbAKGaveeeO+IBrahmHMNTaFmZZcHYlQknNnpYaS36jMfzvrDzMpxSm/M1eU7pHKmKncqDzjbgVPRh74OnYxeq3JbO9jPsdnKzlvr2rINyPYPnrZjJ5Pmqg1JM1/N4REn8vFa36s6X4Tvao4zFlZ4erzfaH8UPjmfE/YA3FGIdeMCur0dNNYzS88lyV+QBXlPdK3CaZlfd796925pGQc+/0Qi/Lzq/Px46PJi8fkkElV3PykwNXqxTLnB5V3Yz7AIdmcPDQSXUA8YFRIFJuBHBJDUmt/13dstlt22x1t22X54e694jt5AM+U0TcFKU09kBU1DNYbxsRFZd+wBld5qqbCNx5Xe2zlwFuGFOhChyAsQ5OVbi2uoBnYzLgMC2jxOiDlu1KRV1JMdG3LdrvLYU9aHGDVrcBAU9fsdjsuL6/ouo6XL8958eIFt7e33G42bDZbhmGYQHVThNW7kZ1DMP6HolHunq3nlDT3qaTE7WZD3/d0XcfJeo21hhgjN7fXtO0W0LDqqfHF8F34towhYPP5U/aq6e/7p+JJ/G10CIbNPWaLtzAZ9Jl7z73LvJvvm2XvnAwK+xLyYdhVkWkPjy3hnXu6AW/uy7tkkPncKzLCXW35Majs3XbWVwqWFeAcVBaYvMvGaqTkzxkvwGjOSGwa9RZnDbW3WhSqrvK1HSKa8LypvF50QKvbCSr7WfU2HLzDu6Q5HiVhUmkRHy0A9OMkdzZ5EClSnLrAWATvLVXlsE6FzQgMAl1MDAn6QK4YogJnEfxghuWY8W2iLGFOQ2pmryJ9zqRM0MoEedIZMiAkuoer8mDwAi5fNyVhEEid8MX5jnpxzdnSs64iqyrgTaLph7HTRyVNMvRl9J5D5hRG4KqFeAsbAvabW27SBYuTyGP3nHWricPWyxV1VSGxx0hASBiTwJQE0PdPwpSbqTyLekyUbdLsCUbzf0WlipmXEOPYlJGZ9tcJDQaDc2iJYWdYLWtOTlYsmprTkxUn6xV1XbOoa6xVT4Gryys2mw3D0LPZ3LBYeJxtQNZUzhKCsL2xbDeanFHQcC9I9P3AzkWCcyxcRW09klLeRB0hZq8AI+zaLnu13LDdtnRDoBSfH4Xw2bMhbyOCTX123yQwyycQtPwqQhKLzUnpNBxEBdyEeoyUoBEFNBJdn8s2h6QutTmeOUbNy7LZbHjx8gVXNzdc394wpEQUrcx1ebOl8p4Yhb4P+OySWxSQpm5oFo0CPzERkpYFf3F1ze12AGN48PiMBw+fsFiu+PnP/4inT58SQ+D8xbNc7SrlcbXkGoEkcSBCTIEQISVDEEvEIQghRVKCGDUsbRg0d8n17ZZt29MPkcuNfk4i9EErF7VBOH18g6kafFWxzOty4TyPmwbn3xO7lTkv0UTUJmvINuf6QcCKTInZjfrIWlvKq2ty/dNFRV1XpBBo23ac7yG7I/tc2als3t5p9TvQEC8LhJwAW0RyZT2Lr9z4KmXVJU7KaYnpTjEwDF1Oih5naybnNhNRZcxYogibdmAI6lUXk/JRBdgkezQoaNgNgrWBza6jrj3GTMqc9566qhSY8h4wueR4IkXt4GEI9F3HMAzvZwzZx4MP8xZMOader8xPx07vMluz830yoQBdAeqdKzkRstJnyOFvOSQjwTAocDbkcDkRpkKV49lzgXdy8Z4Uk/3Gm73PM35ZxIIkiNn3YNoLc5mpIsVDZQKVJoXyUB4YlbmPht48KUYFZax4qbkpMDlUMkXATMl2MVOxUPI4vOcn+KmQyUBPlXPhOO+pFwsFxJ3DV9VYRrh0u3OOqvZavjx5fESBn7Sj73eaZ2foaPudgj23HdurHaEPvPzyBRcvzml3LbvtNnuo70m1r2/rTJlsmoamaabvcu6grusZhj6HAscpbInZAxwo8UWGjpL5LkAGgl1T06yWLE5OWKxPqBZLfN3g65qqaahqraQqCCEGNJw64rfqheFLxVBjsFa/S3KPs8sYvPVUvmbRqOHp8qrlq6++5vb2lqapWa/XVJWn61RuG4aBq6trLi4u2bUtw9CP80CYRQ0U689PimbhWAdsIFFy/+hxL1+eM/QDt5tbTk9PGIaes7MzqqqiqSusdXi/wFk/AijjtWd50X5IbrC3qxjYg1gOwf1MY+gXhmjiaJyyE4Mbn08Nw3s7yd7FJ8BH9zDlDY2+qnpM2GydY77DzUGmEjJf5O048/IZ97TvuAZMtthMhr7p/uX3bwd/zJ7scV9kyPqxUTmxvJcUA+qRnfKeJLhcTMl5S93kROyjR1W5pu7etrwMrBtH44TaJparJev1KcbazBOX9MPAxdUNL8+vCDFSVz7LgYYHyRKSJSXh8mbD1fVGPX+G4b3Kez8m/bDAjzFgrJZBnlvkJIIEjElUlaGuHc47ojEMCH2CXUj0Ueijgj8xCUUtKA7kIxAvE6iwDyRMqvgI2Y7tKh/t+DkBcc5m8k4/ZGu0QaitocqoZRcTJgmbmLBfb7jY9DxYexa+Z+F6lh6eVIGHGYBEpmSBEQ3TMMbQW60uE5KQtsLlAPUucGUuWV8MrE43fNY3PHiyZb1a8kc//5Tq7ARiBwwYE8AERajMfJO/Hxr3lxmwMybiKuBPAXyKS/2MYYumbcrChRxsIrI/ZjN43Rij7oG1pfKWk5MVjx+eslg0PHhwxsMHD6iqitViSWUdKcGLZ8/589/8hiH0WNexXtWw9KyWNcPZmjAI5z5iJBDjrDJNFFobiEnDTRpbURlP8JFq50ePo4RawjebHecXVzx/fk7Xa7nTXDB69jQHT1mqYhkNU9n7/S6voHsk9VAKGGMJQ58B1ErjXjOSaZ1aOPV4TagGZhQG+iGw3Xaa8wOtoOVMdncPAfqey+srPv/yCy6uLnlxcU4fAxG4bTv6oKj9xdUtXz2/nKrC5Wev64q6bjCQQR9NxD2kRBChrmt++eAJf/kf+8dZrdb8+pe/4he/+AVd1/LlF79XxRaTAQGt9ZfEEfGIJPpkGUKu4CKWiCrEXdLKXMMQuby8ZbvZ0XY937y44PpmoyDQdseu6zVkNVelerDtWT54QrQV6/Wa5ckDFutTTk5P+eyzzzg9PXs/Y5nHs4A+xVVVDRvqn4fIzElN+bAxmtCzqTyxrlgvKh6eNCyqiqvbgevrDX0/qPUwKreNzowKj7PqtusdIIm+V8BlGIJaEFEAoWm8CpaNp240LMz0Wk0vjSAVCIkYBvquzYLRVOlOj1Uw1ViHtZ4QIlebHZc3LcZAXSlfGIIKWt6pRSeERC+QZODydkdCPQIXTYOvPItaOF2vqOsG51WhK+FdKYTRJbvd7d6bIDCu9wPwZz7Gc7qLNcwFyMnbdcq7oydmI4UIEoIqSd5TORWCxuT4OVm7zYBQTELXB/WciokQZML391uW2zffWyfltDyLefWMESSKY1J81PvLFGBzqlo55uUaBWfG9/K0k3FJPxsDYszo0Xvv9Cqbf2/0bZ5n09yZhU/PEou67ImnNFAKRpREmSJ5n85ySiSNHpkfMxmjFa4EYbFcEKOGjK9OTjSMwDqc92MYaMrz0DqHq3Jy0dSTgiOmQLcN7HYd/dBxc33Jy5fP6fue3c2O2/MNoQ9cP7/i/MtzQjcQuj6HZU0S0OsmVRkrrYTpODs74+HDhxmgUlA/Jk30e3N9MxoyyrrZWwUyU+ZNUa3ymotpzHVkK49bLlicnnH66CGr0zWL9Ql1NnI0yxXNcoFF0yZ0sUOGxNVtR4pxrCamocYVq2aJd9XkgXEPZDHUvmFRLVgv17TrlucvnvNnf/bnfPX1lxnccKOc0nU9KUXCoN5XKaXRIFA5lytDlTyA6jn6Y3tR3EWj7jOTOhOaw0Qr0w10XcuzZ9+wXq8JQ88333zF06dPOV2fcLpeU1U165XD1QrclaiX0aPEjNz1h3uwuTfNm4Cf2SkjkDNOaV3XJZl58dgrYV9hCHd62I6mkNkeVlU1i1wdr1ksqJuGuq7HghUFiJm8eRRYL6BryFEBY26fEgnyymN/+y5l5h1zcM6hF+6b5uxonCGH+t4TGcBbNT56NxkLndEIg5SE3RAQIYPqOjYrX7FYLqgqT+MNq0ZzkKpnpccaw9D3OW1HYrVyrH3C+8Tj0yU/+6NP8FXNJ7uen/28pe8Dv/39V3RDout7Tpc1p+tKAftmSb1YE6Pw+69e8Dvzgq4PbLebsSz8x0Y/QqjX/p+6OLWEbMkeMk5AmSrmxKzUlNCo7OwzXbMs8PJHUXCmH8oN82cZk5dNbTtcaNMGOGo7Inv3cuS8Ibm9JH2mTRdwVjAkbrc9266GaAg2IX7GOmWyPpa8FwWqSWIwQZNNByv47UCwHYGKs9stVbPEAkPfE0PApIBJUftSStnM94vNz9HkvfAC2R/L8fgRYeMO6TuDPjIbptmZ5X6l0pb3eXOuvIaT+LKh54SxSejajtubG4YwsFrDcmVHS7QzhuCEuh7wTnKb46g8xJSwMU1eDFEtB6WsN2j8fPSREALDEOj6nr4PWUjO+ToyU5W9p5nl8igK1Kwv39bF9fvQZJGYrBJzhXE+AnsKVf67WDBCiIh1Y8USUNduE2OOM9+x3W21Uki2HCs4ofkGUhRCRv1Lu4wxVH2griOYqc9FJLt8WZwXnK9Yrtas1muWyyWLxQKyYl/ymxxW28rVuok5ZEtECIXXJG3bEFMuHTmwbTt2bc/tdsfNZksfIjfbHW0/oAigx1hHvejYdR1t1+GraszvZJ1jsVyxPjl5j2M5vRfPH1tipCeWNZJBBZ+S2Ng7Ldldldw/qKVwCCEr2rPaB1n4GkOCTOlPDTWdyogzeheUqnv7YYQZsNeW579EK+1lQXtq+fRe3LaN0XL23RAyr/EKHMTiGWSmOZC0KlkJx0zO4b2u56Rxu9l1eGYRHK2BpXJVulcF5RUSGbeY1x5SLGUHx7winNxxjXFFzwAYZvymhNQVl+w9vTDvv/PKRjDj1cbctX2+/jn2jpt8fTK7zCM/21dmJ8nh+XvPL3vH7LVp/sf7YK4/gnx4l3JwGGZQjjvsiimf3swzdwzFV7Gs8Os/JFJvGQVOIAOjvqKqav3e+5G3xFzt0Tqnid+NwaIAR2ICkcMw0HU9u82WruvY3uzY3NwS+sBuu6VrW0IfkJCYevzbkcQpdMJSVRWL7JnkvHonxRjZtTs14BiwoXj2zfb22bVmF9bf9ti1GUMknHe4qlKvSecw1mGcw9r8QsZKkzEGuqEnDL1WiSTiJXsE+eydfZ+U97URvKk8COx2O25ubkdvKIPuFcMwjAn8C3/XktvksuC5MtRPeSHIxNNHOSpvJkkmaa4NYRz56+trmkVNXdfs2p16OZmcI2dGWiWJ2QZSri/zP+6dXglHnX3e//7Vjwp+mX3wI+tw8zVTqkWOgNL82IPrjnzBKfjrXTV6DZeqffM2FvllvjeVvF0yF8y+BVh4ncfOftfsm1LuPv7bPX/u3Me/DxnGNBJjGP5o5DFafS/zCWcMNk2uAMUrtfJWjXrWUNeaF9RZQ2cSEhwxkr2IwCKak62pqOualL38uz6wzEBSTEkBpbrCO8ditWC5WhGTsLpa6HkC7r750k+IfoRQL7LwnxdF0rw19D1d23K72XF9u+P6tuVmG7jZJrZB6HphSBDGxZuVj+x/qF5ERVzM1ZGkYN93LwLGWG4zlgGTkVEW8CgfP3IBQ8n6Y1BvpJwLEav5YUkCt4NWSokEvrjoePDMclJbqkeWpbW0UUu8+xq8AVsB0RCBXgwxGkwUjOq9uDbxIrRUV5HlKnIVv+Hs5Y7TkxW3beDxo1Mq07Gy19S2xdOxMC3e3L+Fes44y+fXKUR3hXqVaprFE39PkM/KT6kanb+cFBTypp6TtypuqKFGpZLWixcvOT+/IcTIF198wcvzc1KK+GrF2dlKwwit4F0iuERdG6pKwCRsP6qfxJgwQ0QS7NoOj+YpqRc19aJRa0g3EJKw2XXcbnfcbnaEkGZljdWd2ZkcamM09EQf9bsx53shKWFBqtSaVCz52UssWOzQ45Kb8p+wv2ZKGFA/BAV9ahWMt7sdL8/PMdbzzfNnfPPsGy4uL7i+uSbK5IFWcq2EqL51hxQEhmx9mCvdJls0nQv0XUu73eKtJcYwbi4pCUMIDCJcXN1o5TLv2JysOVktEBHaXcvQd1phJQyEpCDW7XZL2/X0/cDF5TW3m51+vr5lu20JKdH2g4IixkD2+AlJ+PM//w0vXr5kuVzx9dffsF6f8PTpU3Zty6effnqvQ2hmr7mQklLO26LG2nE9JdBqhdZpSORiydnpCT9/+phu3bCsPUYScdB8RN0Q6YYMyEvJv5aTbuf+tGUupUQMupKTgPO5THCtgqXzjs1tS7t7jrGGRV3TNPU4Gb11RKByGnYVbGKX812EqICSd9rP1aKhaha0feDqZkvjbU46PND1Oqfbch45Z5zLngyY3CeaN81GyR4mOreFImya8T9Bn7vy7k1Yxo9KhwBA2QnnruR7OQbMvgAsSAZEE4OoR2sfArt2AITNts+V3SRbBGc74xsE8rm9hVlb9M99QXkEFm1JKzIDCjPyM4USF+D6VdCnXGuu3L6N9fRDoQmkmfq+VGWanlOF5zQaKfbBs/n5JUTIWsNyuWK5XCEibG63bLc7Ykzsdi0xdj/gU/5IlBnqaAGfv0ZATCBXXU1FUTGieR8NDENkt2sZwsD1xTXnX79kt9tydXHOi6+f07ct3bZjd6057tqbDukjo/VhEoZ4nUY9nwMlL9tqteLRo0cKAC2XLJcLQojUVY3F0A8DV6LJ90sZ7/LIqvPKeL0JjDFjPxjvR3AHHCIWEeWnIQjOqRxunNMqqjIgUfMuDnEgyqBysq/xVTHcqeHhPpenQcNLFk3NgwcPMBYevXjByckJq9Uqe790Gm5ccteVnt5bW3Z/DvwkaZqXhYrO8ybYcAiRy+vrvEfA119/w6OHj1mt1tTViuVynUH4Gbwz3uaA3/4QgNhrgJ49cGbUNcze+gBtosq7cSxAoAYpPXfMkZg9c8rFTY5OaRrNWemc4+T0lLMHD2iahkcPH7FarVgsNIn5lCfwwMtVCgga6fueYcg5Lb+l7w6fY6JieSnPW741E2j1EwEqDYwl7V2WwxQkK7iXZM8rQUzCWiEMkRQGxApiHBIcYi3JRIKNJGO0XLurcMYjYum7SAzC5mbL1fkVVQZ+LIbKCmfrBT//5BH9EFjUnmWjzgJnDx/x8PETEoaBmj5V7NqOr7/6mt1up9EL3K2vfaj0AwM/yl5VlE4ICVIk9B10LbvtjsurW15ebDm/6ri47rm4CXTJsM3lz2U0SaKMOfvbjNcUmEq7Q2GAhzR39yuILaCuXTn2MiGzRJKTp8jIbAWiJAbRZ3IqD2AShC5x2yduB8ufPtshRB4uLSe24cGi0uSYNlE3QrAo4BAhJsN1gl3IuUeC5jOCiJxvEANNs+Hxy471ScPD0yUvLq745PEpqzry6dnA6SKw8JFHy56lv/+EsnMXY0XNJ9BnrmSUY0eQrjBBw36o11gtQEZ3/nE7k4LnZaVfnHopWPW1EtGfYgh0rVosrq5fcnl1Sz8MvDx/ycvzlxgHp2c/o6ofaB4Pz5i3YrEw1I0CHjbnPVBGpFWfXEhsZEfsI3Wt8e3NMmKt0McO0w3c3m65ut5web3JAqHVDcaUOHb1QDHJYnN/zZO67SV4+wFI4+81F1SImt/BWEsfAslMZRNLCcrKuRwq4FVQQ71wural7XpcbfB2ibGW29tbrltNdvz7z3/P737/Wy6uLun6QZWQPO5Ff0wkQrpjtxoimL40mLKjFc8uYyy77Y7NzY1a74ZhTOqdUqLrtSz4sxcXbDc7vHc8ODnhdLVEROjaln7QNu36jm5QEOvi6oqbzYZhCFxmsCemRNcHhhxuljJAPGoJwOX1Lc9fXqj7aFWxPllT1w2/+OwzNrstv/zlL+99HEcBoyglI6CnSrNaUHKOsqxHO+tYLJZI7KnSQ9bSEvsdQ9fRtVtCH+m6nraP7LqIM4LPZXitsawXDU3tWVReWbEIQ9Sy3gA+u/FrefgFzWKJMXBxcc35+TUG+PRnj/n0k0daPQsFdZyBWFWkpsEOAWjph34EcEoc/enJitV6TdsNXF7fcnVj6ANcbzs23ZBd8yHG7DnmLD5bj0R0Wgml+lmiijKCtCX3kTFuD1HTimHVWBr2vdGBpfHV37P19jWKSFFUikA/B38Kvy7825XKaDB6+YUhMGT35hSnhOExh3jtgSvm1XtPIV57b2O7X00CfXiN4tE1dccc6MmX2gN99sGf8Uqz8ZsDQG/u3p86jXLL7LOGH1Q5saXNLMmMPG7X7sZ8iBMAmKvNOEtdVzlXhefp00948uQpKQnffPOMZ8+ej0pK1/UflfD7WjIo0GENRmYKnMlJRkW0wmNWVpJorgmxgrHQdQO311u6vuXi2QXf/PZrtpsbLl++5NmXX9G3LbEPDK1WeU1BiP1k/X9bnW2+jquq4vT0lE8++YTFYsGjR494+PAhQxio6xooho6Bze3tfgqD8tB5TlRVTeUr7QNjAJ1TyRvEGYz1YFS+SckSIgxBcJWQsgdsQvfKOPSkFAixJ8Ue68H6JdXCUdmc9825ewdWnDMsFw2fPHnC+mTF+cU5Dx8+5Pzygu12y2a3o+v6PNR76IG+2xyfYgoopTqF3HM7vx8dtmXU/vf4ZiFBxtLZfRh48fKcq6trdm3Hb3/3O5bLFY8ePuLRwyc8fvR478zCN3V7EtI+Z77fxzqktwR9RoNNWbsTGgJoAYkhhBHc9Dm82WQvXxEhBkZvY0O5jmW1XvHo8ROqquLho8c8efKEplnwyaefcnJyymKxoKmbsaBM8Tib5PtclXYIdF1H13XEGDj0rL/78Q83U8b2TgBT+TKPkUyQ3dvy7PdhHDFMBTdKeKUuLTNi6SVFgaZ80bMWfiD1vc40cYitSE7zOg5o0n3B4FyDOE3a3O5Cvt8tBvX0W6yWLE/WNM7y+GyJNZ9mvUd1f+ccP//sj/ijX/wCjMUvTnHNCZvtlmHoefHi5ej5/S59+VOnbwV+jDH/GvBfAZ6JyD+Rv3sM/JvAHwO/Af4bInLxdreU6ZUVfa3iopapIbviDyExBGGIGuqVkpZ0m8zcZZIWTwTG9zGnBXNmNbdR5n/vQGaz1j82dW+YheylYva+iDIDl0SvP6hsgAvCtk/c7ALOWHahytWAZLRuGgslXiwZGNAy7ylBHyGGnG8o5Uo5UbD1jj6qBfbiaoN3hqFJrFzEpkSqE2sX8JMnxR8bY57dxzgeotBvYhdmr7/Gbtdunv1WfLPGk0YPn9kIjFUGzAgKSam8FafF2XUdm9sN/TDQtmp5c2KyW+eshLVRcK2U97V2CjfKlwfRHBkxJoKJWKcJhqOo26YmjEh5zsasNGlbJcfujaCXUYZcNoTRc2YGlO256Y/tGL+7tzGcnlEmL7f8rt41Jls+dFyStVpJSWYblczKzI55YDRnUAiao2q327FrW9q2ncXGz0Y1e3jJoTl6ry/m3xtMMtikXmYaYjcQclnMrAVOFpaU6LoBIyhgZJ2Gp4jQdd0I/Gy7NgM/A1e3W25uFfi5vt2y23XqQVTG/c6eNECg7xWocs7R5ZCvRdNwcXnJ2dmY4+fe1+LUhqnHRm9iyeBq8WQ0Gi7pnKP2HlPXJJPYpUi3K+M/ueAWDz09tVRvs6MCCpNbv+a7MBijwJyx03EhJNpdDwh9N4xJJ0t1Bk02rddPe94L7AlTzlkq7wgxZaAve3mJVtYrIX1lphbrvTGThWkK/5vKnZdXER6l7DcyCZZ2atO9rkWR2Za2JwvKwTETnzgU1F71Fnx1ph56+hQqvDNlwFuFYCGE7JrOtB7vkg/ne+i+oDqBNfP+L5/vpALYlG1Y9njg7NEm/lCuqWM3XWMuFJvxhzl4dX/yzVuJzfODZo802/LuPm3PkDIbQ+cwhlH5LxXqSg6aGANucBgTGav0ZGOE805B/apmsdCE9KvVitPTU2JMXF1dUVUeSTKr8jc1+JXn3XuAsq+/5tnnfx6et6+vvXLMK95tIve6Fu+eM4UnkOXCfW+6EdDMRQGGfmDoerpdR7vdsdvsaDct3aal71rSkAhdyMmCba7s8cpTvzWNyqzXBPXq0bnADY6mViAn+DDKPq+MXZbFRv7ufZaP1cgjBoJV+GPkjWi+rLLPxpT5KpmPiEwhspKrTKH7ibL7bBQsYv29rUUZq0I676hTReU9znsFu3MOq+JxXLjgXd4VEy/7lgX6o9Or3Ge+jRzqQJJEAd2gOah22x3b7ZbFYnmQ16TET9xB8/6YPt+7jHrnrUdz1pymfWc+hiq7ZOVtptsd7oUiClyOmmBeE6WqX8nls1wuWS5XLJqGpm7wXkOGrLOza2pDJv5RumnOLzjYA/b3pr0nm+2p09h8+45zp0HkLehe98VZn+yt+byHzHfllMNnSoi9vuyY6y8lLQyibMzmyqwgqMxKlgGHvkdSoqorig5Tecdy0eTCI1q4yTpHs1iwWq/AWE5O1pycrsGoJ6zL4bLfZrD60OhtPH7+18C/Avzrs+/+GvDvisi/ZIz5a/nv/+nb3XI/2VWKQa0CfccQBt04TN5Q8vvo5QP7C8modT9r1ICu61JeFuYM76D6F9NldBNPGbSRkQkUxX+iGSstSaDTlMtFE/1paESJlLciXLeJ57eRkIQXm8TLnRB64TYaOiwtsI0aHtaJcBssN0nBrqGEIjApM30UZDtwG9SrSDB8/eKWVS188yBxuhCWNTxZJ1b12P4XwD/7fcdRBYPJUnwIjr3iZil7XX0HzbifmR03DWlmDPqHNTnkBOjalouXF9S1JzwIufSwbup13WC957G3rE9XWGs4OzvTHB57E0BRfesMNhbhySFiMiiXLT7GEUXzv+y6Hn+7BQwhKBC03bXcbttcYciM7S2CxaQD6Wycbzalr14HAM3oXsaw3M97zU2jnk0BYw11TLkql1pHbC4J5X0u4W0Nzms/+1rD3pKBdghcvHxJSNCLpY2OkITnL1/SD/3IyKcx3xekpnGfwarmrn7QtRqiYAbD9fUV33zzNdvNhp9/+ikXn54zDD0hBuqmpu+Fm+2O84sLrDG8bBqaqkJEk1uHEEiS6IaBPurft9sdu64jxkjbB4ao9q2U23dHb77aRlB+llSB+s2f/zmb29t7H8cylnMBdQ5ilFeMiSG22NRjYs/KC1UFvRd2JhIJtHGg7we6XqvAxBBIKbKoPCeLhspZTlYNy8bTVD6XhU1IMvQh0g+BEp+N0YqHXdCE/MYaTN3QnJ4qWL3puP7NV3hn+fTJAz55fIqzGpttjYYoPAyCsZ4hJNzNDtl0YCwpaChFPwS8s5ysFlRDYDcEuiHlMD9NAE5Bmm2u2JdLu5fPRdgYQqQbApVAU6MKj8lWHtT4EPZz/NzbGAq5whaMUtBkzBihk3HZFLzGjNtRWUtZoCxJrLJi461FMr9xxRXdlitr6GkRbgo/k2yFSyIH/HJq9d4zzPjY/tFmb8mM6+hA6C39sHeXPU1l8mKa4T0FFcptmJbntA8Vpd3y6joF7l2++e401y3nlmgdt1wRqVKl3lqLr3wOL7AsFg3L1QJnHXWlpcVBuN1suL29zRXcVFC21rJer1mfrPHesV6tWK9XeO95ePaAhw/O6PuBze0NL16+0BK4TvfDYtR4O/Vh7+ny+2sUm9nn7yBe3ys/LS0qiljx9infj+2TPO9FiENQZUOEq5cv+fr3v2e7ueXFs6949vlX7DYbdre39FsNX5UojJlzU4JSSTOD869XAfepGD8Azs/PqXNo7dXVFS9fviTGyFdffcXFxQVdTqcgafKIL09lrYbPV1XFo0ePODs901w+OWfPEAMXt1fc7LZa7TAMmhOmM9xsbpAamq4i2cD17jrLPTEXVFGvUWO1Uu+QEj4ERAzODDlvZ4J7Wot93/P557+l7Tuub2/ohp6X5y/p2nZKqDtxVR3DPL7W2lHZL57axqRJVPlJ6n7mjs/TCE/zaTKzlnykyQht3/Pi/IKTL7+iHyJ/8Y9vaNs2y77FMs1en72hQ+5/LWbj4HS7mYw8+15MiQrIsjTsyZMgoydM8eIoxqmq1rBzm3M/iSQtIpFzZZ2dPeDTTz9Vb7qHj3j8+DFNXfPg7IzVshm95HTOaF5Hl6tmVlWlFcBCoKoqnPNY50dvzVHuH3WqfZD70OPHGKOA8Xio7A1HwY/fFajYMz7d276ozyUjWExO8GxxVnPzVDYb7SJ0UbJ3qnrYk/UGZwRvDc4nXNBxs96NKQX0oT3GaNh+zIVBQtCk7c6pJ/rpusnynCUmg3We5XJFVS8x1vPo8VN+JTWbbcvl5TUvX16y2+24vbnh5uaWnMT3dVDoB0PfCvyIyN8wxvzxwdf/DPCfz5//N8C/z1stZAFR7x6NPR+Iw0DfdcQSdpEBl2TM9MLAWB3KzJi0wWQ3UZN01ooAIW8kE7i7L0AXodpM7ZpnMi9lyiXJJKTOnyEzC2WqhhKzEmU6uExzSXC+iwiJ3eD4+jrx9ExIAa6CYWssW4TblLgehE7gIgg3UasNhVhCvZgW/iDcxk6Ziml59uKW2lpWNXx6YjhpYFEZHp8alvX4kLfA+fcdxwIYjKg1sid8j5aj8p8x+/lcD7tz/9HyoBSGPnGzAv5YXFZeYLfZ8nzY4bwlxIivK5yvkATNYkEDPKjPqBqHtdAsZFauVu+lAIzBWUg5sW3lNfGgcR7rMiCYPSCIidttR0Q9Tnbblq7r6fqe65sN3VDK4ropV4VMWaEO+7Iw/jeBPobR5nIvY1ju7atalb0YkRAwRq2V1mnODzFJ93xTUUul0bIZ+LHOUTUVzbIBa7ne3fDlN+ds24HdIGz6xBCF5y9f0HXt6K0mszEd9VamtVgqCmk/ZFx1j3JJ2qRA6/nFOdYYTtYnfPrpUz799Km61IZAs1iQRHj+/AXPnz3L5T3RpMdkoDb3fZBSolrLuYdsPSihLjoB7xKw9sfp/8/dfyxJlmVrmti3yWHKzMxZkMyMJPdW1723Sqq7Uf0AEMEzYIBRDyDSr4EpnqFfACI9A14CIuhZA1JdUpW3qjKSRIS7mxtRctgmGKy9zzlqbh7UPUhtF3VTU1PVQzZb61//+te0ysTAMIzAyJs31/z7f//v+fxPf8pvfa/9+JC1mJNpJycbhDbYtyjfol3HxgRiqehsRCnHyMjej3Rdz6kf6PoB70SjoTAlF5uGqrDs1g2ruqQsNAZhQRGhHx3dMAiIEYWdaQ30LtD5iI4aVTY0lyWjc3z5xVd8+eVLrNH8t//wGR893UrZd11RlUYqqxQlzWYjgJK+ZXRBdIvcyOCkCl9hNbvtin50nHpPN0j1IR9GWOTqZ+PD+QhJwF3GkPwcRk/XizMSo5oMXpHnl+iwWzhZ77MPiaJzNQE/0rEp1vFg51LJjFeyKqipfGVm082C1MQo2kTGEJnz7NViLEcyBd0nJ1KE6mPSPcrzbwlEfBvvR7C2DP3kF5HvXOzLeRF4+I35k0vw8jy9K+87yzXlzD9/MC8SAPTw1r9X++aHtHTFKhvgmpxensWFtdbUTTMBNmVV0awajDWsVg2bzQprDJtVxW5doxXc7Q/c3d+LIWwLtCnQxrDZ7tjsLigKy8Vux8Vui9GGprDURUHbnnjz5jV/+evnhDBiCg0GSDqGU9lUOHNUHr+uh+vmudOoFo/v6V+/v7nIDBqePRbXsdzB8lgcx4GhFWDhzd++5PP/8Efu7+64uX7JF3/5E13XEpzHjzMrVUVm2yjOILN68PPrWgYynHO8fPmSw+EgOiSbDZvNhhgj+/2ew+GAc462bee5k4+TgnnWWuq65vmzZ3z00cfCIrMF1hac2hP+z55je4QYcKn6YlCe2/0tHT2mMNwN95RVQWENm3UtAqpa0RhFYRVeweg92rlk1/bYbBu8p7nY9x1//OO/Z0hBnMGNfPXll5zaE865BGzP789ARl7jMiMup9Et0zx+fg7fu2ySt1Y6+V86XGwDL1dzage+fPmKEBVdP/Iv/5sbjqdTYo5VGJvX4cz8nL/vzPaX9t7mYl73ZzTjHW9K57bcOxMGdKZDSpqvKgV9srCztZaiFABhTMBfjEmwPTHorp484Ve/+jWr1YrL3Y6rywvKouDy6or1ajWJiOdUcGNmcKkoS6oUXClKYVbacRStrHxuZ/tUmBisZ5jz2WXnKEF8xEae16Zv3zJbOBcEeU/7omJKm4xp3CmtqApNYZJXVBmI0I2e+5NjRIJXXT/gRoV3ksVSGIXSDmMsSitsUVDWagKtdUrPj1E+o2JKXR9Ggo1Udcm2KVFK46KUcFfGsF5vqOoN2lpeFGsunrygbXvu94ek8Xnki7/+jePpJDqWKp5LD/4C2/fV+PkoxvgFQIzxC6XUO1VLlVL/E/A/AXz2m0/z0rFAj+O5IScfmg3TBbNkNgdJhu9M61Zq4SBng/mRCjIZ9Z7/EidAecIukvUV81dkwzT/srDQMw32XWtTAMYgke9+jLQu0o6R6EUY2kXFGJmEq8cALlUbCjGnjCXgYzpARIpKSTWiOHgsMBZQRsXYK+pSQdRL4Oex9q36cdmHWs0pGGeURXnhLZDn/OgPts2F5x+J0wKnHrxpCQ7kdAth7oQUvZeKPTkarI2hSAr7VV1QNVLtx1hxxMmGax5uZKco5fRq+Vt+jZgYYWmseO9TyWopDdj1PUMqdZx1XzJulQ9ztlm+o72dqrG4a+/+6PeaixfrOh1PQIoZyJuP+ZCKOlvoC8DMGLSV6+6Hga7raYfAsfOMPkgucwhn3/12i9P1q5TqA6mizGIwLOnHmdkwjiN912GNoe86+r5PqUp+GqfOedp+kFSwECfm0bT2MFPTScDFW+eaHZ0z7/zrWz7OODpOxyPefa3e1neeixfPPjlnWCyjQ2mtk+iupO0pN6L8CN5hkgenEZ0bFUVvzQdhfITMGkHAA2sMhbUSqTHSRyouGFwLOzDPE7mvs/i9MgZbCpiSBdELoxlTOc98DSZRpovESopRNIBEhDgQXZzSLSHpUHk9pYwFlfaFGM81GeIinTGmFK8455jnFLdl38+Aw/y5H9qHD/uxyED68u8IeJb5BfNfVbqfi8Uz3f8M/CzXEFnbhFmYc+1RD/12AUFzuufkFMa4+JZ83ue/f7e22DszKLQYr4+2OPnJ0/P57Y9bX7Ojztn8OLtfX78Wf+e5+Nh5v3XYh384u/TzeQzqjH1gU/WYoihES6KwwvJpBPjJ6QfWGtbris26RmsJgPkge5UuSrQV+vpmd5GAn4KL3Y7Li52kfaUILERhExk96TFMZlkeel+z1y9Hzlt3ekltSu9awkPx3Z/8Lu17zcUnz55NR09/y6d4tj/Pdk/aQ7yAIW509H1HezzRHg5SxavtGLouLYhyWdO9emAXfJurPh/T8/q0TDNe2mht2zIMw1llzLM1YjEX81jL5amFyWBx3sm+HCMCMqf0reTQjt4RUnEMj8dHS+UtJsgYDsbIPkScGIagMEF+fo2T+p3n4pPLSw6HPYNzHNsuidR3UwpT1pFcdsFjq4R6a+/gZ+zpPbYmz6NpyUKPi2UzQkqHHzi1rTBp+4HRSVEYWxSYpbcUH3/+Dffle83Fd7eHPfbg5ZiDijObRn4u97XFHFDJr9EqVecTcXKdRNNzGfi6riS9K/0simICe3Kl4YdzKZJFpE2qfpcBfT35sElN6MGNeOvOLC6SxXW8/fzr2mMg0tktfA/2zbIPl0EmOPexlUKqfWm5C84LIzkE8fl8+pkDWUFptBJbRQW1CP5w5peQ7+ciCqQQm7WwVva0oFFBo7SZ0j+1NpRFymhQmtVqRbNq8MHLXqg0UQeyLv4vOfXrg4s7xxj/Z+B/Bvgf/u2/zh7e5ORpY7BlifY1VRNptiPrWFIdW5TpiRPscfataQQlpwWVDPKHDzifMIttNWaqXzI7VPZrZwtHh5AYuHHxjWn3jg+qEKm4GN9qAmoU4Dx0AxxU5MvbkZWVnMXDvac9BdoRrju4GwTo6QIMaW/yyUHJx5iPIC2RGyUYF8B2itZBMUSOLlDY72ukz23Zh9bajHNNzve8mc6vkRa9vABPdzF1XQzz9SydkAzqLZEurRRWabRSrNcNV1c7isJQWCjSRP3440/49NNPKcoSbUq0LRNg5wg4IgE3HhjdQRaRVN7Zu4i1ltW6kWocg0N3AzGKQKA2YqSGKNUAItB2gwgVB6l20vcDziXx0yTYNOXAR1Bnws3fbbF4nxGmZT9++nQbx2GQca4VoCfRZBFhA2OF3m9t0oMwBq1F2i9EUEZRNiVYgy2lTGI/jhzbnjd3bTK8TngX5sDQg8uZNmhkM1itVmy2G7TStF1H27ZiKDonZeMXdyQC4zhybE9EBS+vX/P5X/4MwPXNDae2o+0HYYek6h25bH0+mfxdok3wdfd66WQ+bnjMJtZ5v4Xg6bp+0rT5IW3Zh7/6w78Sl/EsWrRYG4YT/bAHP6DHe0z7Fcq1MOzhdA2u53h/w/39PUPfsT+1tP1INzp8iBgjxkldFWxWFXVV0FTlBMIUxlJYYWKWtaN2FcBUZUZr0eKJ3hOBVVVR1rWk091tuX+znkqHH9ue0RkKqyiMbP5tN3K/l5SuNlXP8z4yBhEkdyHSdiLo3I8C7g2pmtfovLBoFsaD0pLWpLXGetnsRYMC+vVIWRZJGFy0rUhrWa5+Nybh4/fRlv1YV2Xs+lQxaWk4Lp3O9DnJ1smCo5lXyXS+IOesVKZU28X75+8ffWAYfdJFyoyfVL1N5xQjJkp5hprmr9DLrzt7ntc6n0HwdK4aqKylLC1Ga5rSUBcCeo0uVcmb9ggxzH2qmil7IQmcmh3vpe01g1JqMqrz8b9PctI3tWUfKvUw5PHoJ77xHZlVlQEebQyrZsV2t6MoLJvNhourS9EOaypW65XomJQFdSVVZWoLjZUespcXbLdbUIpqtaFabTDGstruWG12GGvZrtds1muxVboTvmsJPlBVJWVZMLoylQfXJJWXpG0HxLkQg1Vih0DGN2TM+JhqNkZyRtM5wvEW2qHe9YcP0pb9+Ns//F1a4fNVxQlIFN9CpXQspHKVcwQfOB2P3Fy/Zug6rl++5Ob1a+7vbjkd9gQX3jZL+TaXdv6GhyD/w5YrBmWgNwNBuYpQZgY9GlyKMQW0Rg6HAzc3b2SdNBarDW3fcTzsGfteKph5j4oBpSJFYajqctLvCNETgkosX88YoHWO0UeM1gxuEG02ZShtjdGW0f+wdXXZhy+ePo3/2//2/2UMnnYYcd5zffOGm9tbjqcTwzg+CuDndUX0NGWP0THObOWYGe4/6FTfc3vg15w9j2+9c/mO/HDec384AIqiKPnrl19wcXnJarXixUcfsSuLaT2evust0Of9rK/LftRax7wXndnBZ0+/vjPEHxFHTIJZ6VzTxSut0E7hjUFFqQBVprQvWxQUZYktCtarhrpKwE8p62JhC8pi1o+yCTRSCtAKbTR2oXvlvRSHKcqCYrQTMCTb5GOaRRCjemuu53Gar2/58+fQzvxFo6fYmwQUFUaJ3qOOCrTYe1orykKxqi0u2WyinwvKaMq6oLQpjbmSwiHa2CRXIT6X6EoqVuuazXaNLQzr7Zbt5QW2sFR1SZMYPyGIzq5SmqYA7U6oaLG6wJoSVUSeXzT89pOnHI417rTntL9jGAa6ToL9v+T2fYGfr5RSnyTU7xPg5bf+ZLbLErPCWIOuKmIcqdeazQ4G7ajvNcrs34JyJvNKiZGqoifjptOKcF4LfLEwnS9cMYQZKVxs7FqpGYAI+SvmKHZMQnUTVJTDYBoR6SOSio2jkVKXbRAj+i/XUnI4hkjXeYYh0jt43cL9oHDAKcKQjN+wXNoe8TcVCheVlOt0UrGmUJLSZI8B/fX26Pfqx8n4SZoXywjS9DwxDWKqihAf3nvmFJpc2i9/tzxJm2xyYIqEqm83a54/e5qMUk1ZSmWIT3/1a37z288oy4qqWVGt1gAc23uO7T3ejdzfw/19j8fh/cg4OGIAWxg2m4Jx9BzaHnNUCfiRhVwsVkWMQqvu2140UBLjZ0hl5EcXQRmY4EhQyWNZUjbPnaV3b5jTPfv6Nf179WEIkb7vsNZiqmoCfAprEioO1krflMUMCCmtCHhiDCijqFc11gdsWTB6Tz+O7I9HXr+5kXShKAbUQ5t3OZCn15Vivd3w8SefYLTh5vaGeCOV9roOwkOjNUaGceB4gtE7vvjqS2xZoFDc7+/Zn04MQ08/jpM+iw/+rArdu82kR9rZ5vrudz/8i/eBtmt5a/Ket+/cj2+lI6hFZJ6IG44M15/j+wN6uMe2X6FdC66DYU/0I4f7Pbd3t3T9wN1x4NgNdKPH+ZgAHGjqku2mYVWVNGUCCLWiqmQjNUoTknabnFiCJJRUcgjOoWNkc7nl6fNLgg8c7+64f7ORyJpS7E8dhTWsmxJTF/igOJ4Gbm6OjM5xakfGVGVqdBJhHp3n2LbcH3sG52nbnr4fJ5DGOdkbRBNK1iFtBEA2xhAiDAnk2vZ9SkvIwE9IAGecdIGG0dEP43vtQxAwo227KeCQ9555H5rXDJ0MSqUmWIMMnc5Z9LMYb1lYqrIUwDbO+9ipG+h6YYK40TMOAvxYqwTMEw+OqGMCvhPoQh5nbwM/UySVVBo+n09O0zbCWFmtaqzRrCtLUwhgfGyFnRJTCmcMWWgactXbCfQJceGInc2IeR6Q0jbmnf3bdMUP6scf3mYAV+7TBltYri6veP7iBXVdsbu44Mmzp5SVlOxebVcSpVYRrURfUI0dejyhiFTNinq1wVjL5vIp26tnGFtSrzdUqy3GmOTQ1MTguXv1FXevXxK8p6pryrpi9B5bWrRN1Z1cxhgjOsoep4FKKyqVwB4S2w8YmJfOXC1yatlkYwlbP/KG795+cB8uo8fTuFqgjSEE3Ci6cMfDnldffcnpcODl3/7G6y+/ZH9/hxtH/Ogmps+7L+vx68z70zmb8/GWNesA0WhZsH4e2mjz9SWwY2Knjtzd3yeGhMYoSTkdxpF9ChBEHQlS/gitoCwLmqYiEvHKEYKT4hDR46NPNoADQrLZ5R5qZSl0hVHm6wD179yPx9OJ/8//+r9KICoEfAy0fc/t/T39MEwFKR5rIemyZJBMKZXS6Wam1M8v3eux8/l68EdWahldznlu7+5pTy0R+NPnn1NVlaQxbTdsd5vk9yyu/S2g9hHnZG7fby4q8Q8fMtQegk6zf/QIKBdJe1jemdIc0Fps2LRXSKBKKsxVZY3WmrKqqOsaWxRs1htWdU1TVzQJ/JFKiqKpZZK4c96bBdIpJGU67ZchROq6oqpKxnEQSYX48M4tA5t5fqr5Yjifzw/vzeO3celwPPr027bv6S8CSNAOwBBxRgnQZqWPrQZVyP3zUaoEdkPAB1DGUNUFTWlpmoLduqSwmoie/K0YNRGDCDSvuLi6pChLNhc7Lp5eiTZeYakqqeQWvScmsFnbiBmPKG8wVYM1mqIIfPxkhfvsIw7HE8Nxz/3tLV3Xc317T9cPP8N14Ns3/c1vebT9v4D/MT3/H4H/57f94JlzMjF/RDNEdFHyT4k2L/UqpKUlKy5+Tpvx/Mjmw2wcL9ti+cuQa94MHzwyJrF85OOKcN1scCcMaYowThsrwsbxAboxcuyDPIbIaZTS7YNXjFHhgpoinMtLmp7GOX0ixKQ/gcIjoNEYYQiK3kPnIq2T73/f/fiu9thiFON8AbPxsXj+0HxfRLrz72c05Kqiqiqqup4o7k3T0NTyfLVasV6tWa3X1E0zoexmKt+4MC4VSShTgA2jxTHMzk2u+LU0vLIWhvfCKhAkOwNZ2Ut7TJ8iOUYP7s03ovVf77d8zz6cj5u1P+ShppQZlX7PpTHV/NFkGGZHVJD2KUrvJQVrGMfE0nnHxUxP59esLajrmmbVUFWVAFOJaZSPnT+bnUHnRZek73tObcupW1LbUwoLPPoIi+cfquV7kqn272jfqx/nsZyZFRCjJwZPdCNuaHHdEd+f8H2LH1r80OFH0fBxbpyq0bl8v1J1rgyC5ypekuaVSnImI8dmKrQ1FIXkuRfWYK1U39JqnglagdEKYxSFNVSFRMy0VsK+8yFpy6R75gRsGUaPc4mlF7KjMldtc3ke5uoxKcoXE1iRS6nmnz4/0vXOP8OclvjII6Q0wfgOp+H79iHTeYaJYZRB9bC41uV1z9cTJ0cmVzjM62les6TyWeqPPM/f4UgqUvU0lbXPVPqcmoMi0x7+joUpTv/N0zWfizWUpRhhhbUzwzCLLz+MbsIM8sTsfLx1mLOzeKeTHM/n/te0792PP2QxmVhcSjRGsrbPspJMs2pYrebnddPQNLJWlskZsVbmnVbC1qyqkiqlha1Wa9brFavVmtV6lejssn/WdUNRlpP4aHaGsobClMaQzzc9NCL/Y5WiWDxseswc2Edu0Fk3PRIM+P7te9s25z7t+TXPbxKWc17Tc8px17b0XUqXGaRqktg/8zcsY3Hvus7p3Y+C+48/5LTyHuwnIGgSNP4aW2Ne40LaSweGVHa673uGoZdrSWtUtukUTCnfJoHqmUE/GbExpZKmVOLRO0bvcNPDf50N9J37MYTA6XRKqUsn2tQny3vx2J1/GLwMZ3sBX3eOP3GLD57PK+Q84+Kj7xanOeKdYxjHyYY6HI+cTieGcRC7IEiwb2nHZtRi7ub314dnZ/hgjE/Pc6BkaZumRWl65R1gabZVp8dCAiDvkcYYYf0UxWSHzvaPmd732FzM62UOaste9Ygl/E4gJq873z5oceYKf+f2tm/ySPtB/Rgjk5+UAzgxin042ZrZzsw6n5DMgkQU0QprsxarxholD6uSBIEIR9tsW2SbtLDYwmLSvmaTjVpYjVGgoofo0TGgETHpwurEci+oSnmUpZ0C4F9TMOJn375NOff/B/B/BJ4ppf4C/N+A/zvwvyil/q/A58D/+bscVJFK/Eo+CZQVREnJObYjt/c9x9MgEV4ExlHMG3AGffBpoKoMkiwE885B0umzAtrIzxjEWRWxYHldq4hZfjaBO5P+ATCXBcwOVz43ob6CGEK5cKZGFkXn4a4NUpUrQu/AeYWLcPSKPqYc6Jg3pgVsFdPivRhnMZ1LmMyvyEjEJ6NPojXTDfg98P9+H/340Pl5FwU5RwhUXviWiDUxlXOX/FomR0NP78/GhbVSpcRay3qz5urqiqap2W1XXFxsKMqCJ8+ecfX0mQinlRW2rIlEBtcxjHUCd0qMLiBq6spSFrUMo9rgvWEYHPtTy+HUprKCSeA1RqIPBJXyhCcnRfJCjZFUQ5VSJWKcwR/OrjvfowycfOdF4731Ya4EU5Ql6/Uq5SsXqeqAEcaPUTJFc8Q+IkyufHlRy1wmTgDBVKmAs6kn1/3Ia3I/pO+tLXjy5Am///3fSRRxtUYpQ9f3vHlzTdf2eEkamNaD4D1OvoT9fs/r16/RWk/OcDbefmbtvfUjZPsniRYOJ4b2huh6hsNr2ld/wXd7bGip/R4TR/ADuB6CZxgkxUZYNAEXolRM05qylMpdZVWIo14YmqZit60p0gZdJidTABm/wNFl3ZS8agEOjoejCDVHWUM++ugJxMC6NtQ2YnQg+pG+l9Sj+8OBN7ci6twOnm4UnmVOfx09uKBShQY57yEBV5kdotTZKpoicDIehmEkeIn6ndqewlpQka7rqQop4ym6UIt8o3kovbc+VEoYHlNnsjD7Ji97ZvOIAc5k408GZHqvUZKimo3QtAqjlPQZQBM1KIsPkaofKYuBEAMmGVJKgUkPkHs9pn3L+ZDKvDOfy4Pryc6BUoqmLqkTPf5Xnzzlo+eXaMCPA9GNksrXthN4tfy+SXcpLtKe46zP9PC4D52EuaX9NJ7voR/CvvnuLTs0ZqrStV6vefbsGVVd8/TpEz76+CPqVHZ2s90KKFRJmoGwEhxuHAUw7AZC20MMKFNibId1gaHpGPseQqQoRpQXRpxBNLyiUtRVQ7Pe4EOgWW1oVmtciFhbiH2ESumZkoJdaSijgD47a9gYQyQyRqmq50Lk3gVaH/FARyRz5ib3VAkAnwLz3wf0ea/raW5x8XN6ngCBECNd13Fz84a+63n91Vd8+be/cdjfc/PmWoSPvUsi60uj7VvEiR86uLw9th+zHZZAxTcBPfla8lxd7pOnk4ggq9zXSOpT1/cEH0RP0XmCc6gQqKxlU9dEFfEUhOgxRlNqjQmyXgXvidFNYvNaaUpbsa52FKbCSlDuvczFoij4+NNfMXpPO/SM3guQMQwwjmeA8dv3RHIYvfdT8EMA9Z9rSefsJ3zdeX39OUck3SvEyP544L98/jld3/P06VPKqqTtusQAuqBpmhnwV+rhnggfaC4u5wFnQI+aLmIKeDwI9yu9fE96bXn9MSZ2l9jzMX1vXddcXl5SlRW77ZZV00hQsqlp6lqC0JO9nAIrSdw5zyfvPYf7e968ueF4PHJ9fc393T1te8J7l4LNSZs2ZiWmJBGh1Jx1ECXlMCZNLDlvFlfzzfM834N3YRXLof2+98UpaBOZgm9aJZID4l9YoyiMBa1olWMYglQQ9IG2l6wKrRWr2qDQFEUpVWC1ERMtyNgoC7DaYRToOBL9SFBSwCWmal9GCUsVBZqAVil1NfQop1AhoMKIjh6rIrum4uOrC7quFuHwKNqhp67/RaZ9fZuqXv+Xd/zp//TdD5ejAUm4UBuUtaiiAgJB9dwfB97cndgfB6nikiZrHrcqglog9jH4xbfPYMgcj3p4BqmFcxRcNlNxVrJCSyKtTwDQXI5k8bn8LxtD6RhGMeW7qyBIxujhzSkQWyn67qKoi0cUPipCAm+WpsZyEQsLRDZO55dBHy3JCSpOJc+tUjOIRfzPMcb/4ZFO+W79mKLRMWbG03z/pp+Lc8yaAHFxTREkTzwmUC9Fk01iECilCDhC1KgIRcrPLIuC3W7Ls+dPk2H8hI8/fkFZlqzWa9bbLcpoojJEbQgxMPiewXUi+FzUGFMCHltKqVKJeBhC1AyD4/54Yn9sU/Q/+XwhEpxHqTA52AL+RLS2GBtRgYk5kCO30y1b3L6HG87Xgz9v/e399CECtjVNQ1lVbDdbyqpM4EuOZDDl3mot/ZBVeiMpRTKBmpBYAolZoNJGltQgFtGX83OYgbAc4S549uwF//Jf/kvquqaqVwQPp9ORoR+4eXPz1nVk7R4fArd3dzjvJX2hrinL8ucK/Ly3flwmsigV8cOR0/WfGds7hsMbTq8/x3V7Kh2IxmF1lFwNL45hPwz0o6N3jsH5pI0TKUxBVYm2R12VlKUwNdbrmqtL0dgieFTwEFO1rVQGXFJxxEApDFSFEJ/393v2p2sAri43fPrpM2EmuA7tOoie4AK9g35w3N3d8er6BucCfdCMaWPP7NDRK5zX+KDxMTAmbZ/MklneJQAikxZcDJHeRwYl53Y8tWgjaWGntqO0GfCdo9xT7sr77sMl8CMvPLDjYopmZHaPn0Bxkhi1UUACzacqF1qA20xxN1pjbYlSCmsjVd2IA9uPVJWkQGgd0VrmbWEVVQKKBhfpnVS+a7uRUzsQU6XD6B+ZXwqIyVBrSi62G1ZNxe8/+5g/fPYxMQZur2+4v7un63ru7nVyDhdaB1HW3swazAUP5G9vH1PxbvBHQMDlZzIY/z7tm29qjxjoEygg+18u97vd7njx0Ues12uePn3KJ7/6NKUd2LRWa5RRqLTB+xFhmHiPb3vcsRXgR0slL1t4qqZj1bVEH6iqGuVd0s9TlLYgxpiqhu0IEVabHc16iwtQ2FI0GSIUSBlei2KrFCulKLXmWVlwaS0R6INjDJ4+BEpG7qIAPjGDdkg6WLZycvW8szSwbw8Bvbe5+K6Wk0Ri2mtCCLRty/Xr1xwOB15+8Tf+8ufP2d/f0R2PUjr8LH3pbOdf/P/AF1swGFQKpMjLaqG9df56bktmz5Jd+k3gz/LnMsXpoQXtU+qr8YHgHMGN4ANNUbBbrUBFgpIKtrlHVWYhjo4YRoyx1EVFaQvqcsWT7RVNtc4C9+9lLpZlxa8/+x39OLA/HujHAW0tb+5u80XzcGzlHokJFQpeBGTzH3/eaR0/7NwkKO3Aw/39nv/4z//MX7/4gufPn1FUBYfTiYuLHX9vf09dFkhVYyMgRfKLFkPsvc7FhwBPzhBZzpEH72TOtlgwU9VcPXdm+YTJrRtHmasmFVpAKeqm4emTpxMAtFmtqKqK1UqYksYayqqcGOlaS8aArBOB6EWb8u72lr/95c8cj0def/WS25ubiUFXFhZhDsq+TsxFHRKTLjFXYozEUdYeGafJQz0Df6Yefes+fhP483CJ+BD74hTACeCmlMr5RAqjqWoRX1YRTidHUBBc4NQ6xiFgNQyNRmMoy5K6LqXKdIiEZIfUJVg9YlRExYHgBlQMBKcZU/p3WWjKwqSxEtBR7rr2oFxA+YD2PTp6jILLVc2vn17R9cOEYfTDCLeSPnpmt/BzXy9+BHHnt5uanMbpkcdjEKHJYRTqvgzGtyN3KtlPczSUiT6b5X0SJvrI598JeE5O6nLDm7boie3ztVf24LvO/xqJUrErfY0DXHqXbJVnd+XBN+UzyZDUY1eiiCpOvklk6ae8vxYXfMJ3AheZiYU6W1UyaymedU02dh6hMBOTCLhGm5QPaoWZUqUc3LIsKasKY62gv0rhlSwek6L+4hHj0niS/FCFIPaZzpnvX05pOudkpk0IkDSwXDEgR9inv/L4IrwIVPxUoERyEE1K2ZFKSvmxcKBIwE0yfpRabDgPxMaXM+fhVWVf9tE7sjheWZasVmtJS2hW1HUtZTBTZJvpONm3jNOmlin3+Z5aK8vbQzruf00ts6UygZLoCWOHS6ldbuhwQ481EU9AR6TMuQ/E6M/To3JEJs/tRYrQRMFdPCAxNIC8MsmztD6oGcRWiGPS90N6HhJQCMqrGfKOAvZLqoKkK4wu4ILBRZmvOrHMfGb2MGMyZ8zMsxslB5jGX5xX1Cn9K6eLZQ2I/F3T40P0INP4f/jadBkpKJHXFzntRfpBjMQEti6Nj+WatQRZlVboOO831gQKa6VahopoHRLwoyfx7qgjQUdMiIwuiHZTiESX0+rOQWyNIia6fFlYmqqkqSvWTc1m3RC851TaxCpclImPTEzQ6TU4G5sP99ls4M+X/bbNMP14sIb8GO2hHZDbQ6Ndqbz/2LP9raqrKZUri+yfpffkEFVYpAim8RtSxDRoYV1479HaEZcVDs8COHpOZTAGY4Uer5VK6e3St1YpLFBqRaU0lVY0StNoTSSio9DuNYkVlPrUMDN7lgk3S1PvMaP5x123l/bWctrP4I84a0405Pqevu+kqmTXMY7Ddw44nI950jhdOLvvYP7k14gyR+djfpf7lYJvyxU8M5Pyuqfioo/ScdLYyWxfpSJRI5UUs0edDD2jZM4ZpSm0oTCW0hZURUldlLOQ/XtoWgtbQ2lFPw5EJZUTddIlW9pvyyePOL/v7Zw+TPtu5/d1786X6ryn64R92TQN9/s99/t7jNH0Xc+YypBbq0jVuKft8f23t/cVeBskffBqslv1ZLdPzNcUlIoqBadUsksfXIBSEjgxxkw6PoUt0looOkDLtK+lvXzGRooCpI7jSNd1dF3HMPQpBVOCHMYI+BGjgrj0AeVfDrxmPaJvN6/Pq+QtfY0l+PNYl32IfpwZwMvjLNMnY7KBZimA6aeXvT2GiFfC/s0nnhlRxhqiz6EDydoRuQMIPgHUMQJaNGdRGGUJKR9aA2dpPjHnGc02cGEsVSEAU1XIc6IUQHncy/t5t58A+EF2uRTacS7gTh2+O7E/nLjft9zvW07tKIyBVFo7DxxDYiIgETIpvYakAYxuqvyRO+PcSJy1eMRRUsnwFUHLXCZcSoULKhm8bHg+zoSfs0QsxaQ/Mn1/8iwiaiFGLf95JSXcIwqHxifORBbwkuHJ8ggozGTczabIEtKJZPMvG+9Eoca/7wEZk1O2bO9ciiLEufzH9OYYI+kWT0yp7JCorD9hTBJIY9KBMIuHNiLk5WOqGhJTGe4olPKQDGGlLWVZo7Vh1WwYNhc45zidjpyOR2KM2KLEmpIQPEWh2WxqofG1ooESo8ByWolRk8dJmF4TJ1cpuVYZX6lk42IhWZqRjxkVP6Zxq5SiqquUWrBY9M7gmTQmo1CdFQoVxfFGq+T0i6MefNYZOS+VCu8YH5NBObN9yrJivd7w9MlTVusVx8OB0+EgVUbeXGO1wfO4uO5EwU+RhOfPn/PrX/+acRwpimIChU6n09fp7PyimlaKurJYC02lsQbuTo6b7ob2/iW+OxLcMEWAxzgKMOxHohuI0dP1w6ShM7qQ8vml/worUZFVXXG527CqS5rKQnCE0eGGAT90UkUKyJBn8B7nBdIeY0RFSdFyYw9hxEd48+aO+/0JYzQXjWHXCDg3DFI5q+tHRheIick4jI7TmNmDwsv0IXIaHMMoqWoxV4NAiaMS05xKTocM21mrZLb3FN5L0MG5WbNrsmpTUxlce+9N1vPsS53tXCpppCQWnieSAoPTmJfr1hiTdzcxJGMAr0AlFqI2AZsYiyK4mpibWlE3JRGwRvZXpaBcPF9hCYggdtuNdJ3oZRwORw6H4wyUpXFZ1YWkCJYFv/n0Iz796ClNXfG7Xz/jo+cXjMPI4e6WmxBEj2qh3yQ9oqY9Nz8mY3Gxj0c1CxXOkd6320Ow6OcA/2ZmaBahlsjyE6qy4tmz57x48RHrzZrNdktV1xRFcWbEBx8ITkTIx2GUyk3eQQRtS0mJV0bms/f0Xc/pcJAS3QlYskXBWJa4WiryhSTEj5IKP02zxo2ewlhUELbHSlvWSlMqxTNjuNTy/IlSXKQpMygJag2JRbpSij5GlAtoH/DAKUak7tRir/mR++CxJrVik2B9RotTi8HjxgHnHO3xyO2bN9zd3XF/84bT4Z7ueMC7MTHRv93VTA4qTMEXmJl7ef1acDsBMaC0kcAWIJMdlVIiAnmbWzpeEq2WZzmNJKcW1k0j15908YL39H3P2A9EcmEEj1KaMDrGtsc3PTp4KShiFKYs0FYJm2LUklqBxZQVGiiLkt1mR13WVEXNxeYJVdFg9ftzRYyxXD55Qtd3RKPpB0nHqMqKwiZbIKWgPeyHnz3W84FbjDHpIwZubt7wx//4R27evOHZ0yeo6Nnf3VDXwoRZrdZwNi4/wPmkc1p++xL8z/ZeXkOmpzr9TvbzlDBis4Ovpv+mfUsBTWLzFEXBerVms9mwaho2mw2b9YaqKlk1K6q6TsCQTeL65wDTpHPZD+z3e66vrzkej9zv93Rdh/NO2NArYVq60TEmfGL0MAaprlmXmqrS+KCIweHdPJe/Hph8HI6YA0CPv/6+m0r+ElpAnRxUdCltvDCz36aU/G4NbBoDaiXvC5HoxL6wRqWCFZa6bmg2O4qinAKFMQTc2HP3+jUQqeo7jqsbtDFEVRB1gVKaelWzWq3QRrOqK5q6WgTBC5SBZnPBLtQM/cjpMHC42aMiXK4qwljTDZrj0XJrdALBZ1BNfvx8F5OfCPhhAn+885yOHePxyP39kdu7Izd3J46tGMLaiF4HLiaETVEn8aeiMFSV6FDs25EhlXvWMKUhqQW1RDHn9WUtA62EYlZaKcOnEvsjxohD4bJIKJwxaUiXcCaSGee/ZgOVdGRUNu81Tgme6DH4uPAkFp+fXxXpxLiIkZ0DQEsgKCXY5IUsodrvt4kTmanHYqycH2TWQpqps8C8N8w+zQItT+hqUsWf95KILayILxcWUxi0tRhrQEuOqI+iJSAaELKQhOT4aWOpqgZrC9brHcFJlO54PHF3tyfGKCKZtdy3otRstlLafXSBth3IEVGJlDNdu1S9YWK/6GQyonTSu5GKYILmS/9kYcG8oeV7pT+MR/nOljV+ZuHkaVSnn8kKUkp0fRJOo42APnIBUn1HHFZPzIv0WZpN+s4o7K3Ig8PEiFY6OSMV2+2OZ8+fs91sGfuBcRjY3+/521//gtWacYIXll8x03dDCBhj+Pjjj/lX/+pfMQwDwzBwf39P3/eTCPTPP5r3zU1pRV1bqgJ2K0VpYbwZce0bTrdfSJqSGyQ6HRyDG6TKih/xQ08IM/AzuMDok86PlzFaWk1VGDariqvLLZumREUHQQzDsWvpTydi8FgjAs8A3rk5zSE4YpDnbnTE6Ag+8ur+xP4wYozms08vKT69RCvoBi+R88ExuCAzKmq6ceR4GvAxMnp5RMCjCFHhkrMyM9IyS2YGf7TSUyqjANg5gqTwickiYu0JNGZRRCClz36QaRoRplOQKlY5MpcjiJmRZ7TMySmBJDv/QaLuRJXSLNUUcMdHHFLd0QQru4eSeTJ6EZ61tqAuJX2oKgx1oZPeWsTqJLxoK3TRAIp+CPS9GFqvXr7Cj5JilPcdozWXl1t2uw1NU/Ev//63/OG3n1JXBc+erHhy0dCeWl5+YSF6YnBnWj6ZthtinJhckQT+pLVFLfshO8ZqZi18HQD0dnLAj93mI0t0WcQim3rF0ydPaZoVH330ER9//DHrzYaiKqmaeor8Bi+ggvMO7+XeDWmtjMFjIhhbJt9G471EQPuu47jfJ8FSS12KxltdVbihAaWkIlOymYoExHvnKUyB9hHlI2uleGIMldJ8bAzPjKFUiktgm4wkpxROwaA0VWHZ2cgxBBxegCFgDIFxshHeBZM87sB8qJZttMASZJ7tkRAD49gzDCPH456b69fcvHnD3fVrjvd3tKej2D0PBeC/brCdsXdmJrJegEAz2xUSrUbWBmWxJpvxaQ1QEf+gPLrKx0FNx7NFkcZCydNnL7i6egJK0l6c97hx5O72juPhQAie0fV4N6JRhHFkbFt8X6G8o1AS/a7rkqKyRO/xnSKMjkIbVkVNaQqqsuZye0VTryhsybreUNhqcQ0/vBlruXr2lK5twWi6rqNtO+pKgB+Fwrkc/DnvmAz+PNZd8Wt++yW385TYQN/3wMA49HRdS1WWvHj+DEPk/uYNl5eXSVwi2ezaTuP0vbb4Nrghfk14N/ONHOiZry37aFqncuuoCfBcIOmgFKumYbVeUxYF281WtH1WK3ZbeV6WJc1KBPWnQgkmA7Uz2yc4z9AP9F3P/d09r1694ng6cX9/z6mTtPZdY9jUJcRI3yuGXnyZbozgZD41tWbVGJwPjIOmP2M5fVN799r5Y5q/Rmuxo3S2pwT48R4qO7O2lYoUJlLaSFlYVpuSiKY79RzuTrIPaQT0KUsp5LO9pKgq3Oimgi7HNyfuXr3Cj70wtqoSpTXR1ETTgDasdzvWOynz7nbbKfhcVAptC7QyNNsVF5Vi6AX0uS9fY2LkyaqipubUa17fSmn55A79YvyKHx/4mfR3gGSgzrR+nyq0+KmEa35fjr4K/U1SBKyZhUNFCVzjg0/Az1s4w9nPXGFGaKp5cZC/qrN3z9AKD34+Ov3i27/O8/RhpScWczOefWp2v88d3bOvzyrWy8/H+W/Zhv5g7cFNOFtmFih6vs6H9/XsgwuK5MRo1DkKtjhgdpKys89MSw4xiSsjjJ85CjBTN60tRMtC6YlqGFIkK0cSjJHSi5kGmo+zvCY5TzWf71mPLa9TLe6L+lZRpRw1yN/woZDjXKlnbnLP4nKgRQEp5f+Fw/LgU+88U7UwLLJINEyVl+ZUJZP6x1IWIgRbliVVWTKUxaT9lOdonAZWBloXq4VSVFXFZrNhGIap6o1Qaw3/tTSlcjoOlFZE7QqThetCcl4SMpeckRAl9cMndpafHO7lI00/Pac/FkZAk5g0dMgVqIJEWaJSxJBGSP47JH0cL2Mo5vQpcV6dc8SoZwBGKanSlVk38XyByVRt54WdBIqgFFHpScx5eW8ybvnWfZtm5BJgzgeR/+JibGVjRS3H8ntsSxB4ZrXMpzYxXDIrYHHKb0Gs6bRj+kXSLt4+Rq6yEwIYcz53Mhgs7B+Zo6YoMWUJaJQOaC1aILk87QT8xIg1hqauWa8amqZivWrYrFdUlaR8FYVhtHKMKaXk4fXEObwxrUkP22JffSfQo+Y7tXzLzwH0SXDV5EBk1qOkLwsoU5SiYZCZanExPpcsR2Fa5r027XkIkJAjLCFI9R6USmXIB5QSoDZ4L+/xuZqcABdKzYykbFMZBUVi/JRKSriXQAkUMcJUKEOsl0opKgU+akoVKJREfrVcynxHYnbaHnb21zkwH2BvVA/sNOa0hKyB49yIG0fGQSpejRn8PGOTxkefnh9quadmI+nhonT2idnBJffPwvFV2WJUZHvjbCFcOMuiSWKx1lLVNav1Oo2NEZcYsl3XTw5VCI6gJehHzGt7QATeAzEqIjO7OdvZWmsKU1DaUh5FRWlLrCmwxmKTXsz7akqRUkBsqu4jullamxlMU2ph0XwLu2yyX2c7L7dfirP3bVve+5yHru1w48ixaTjs9xwOB6y1tKeWbtUlG6H4YIHLHASZGWtI3y1+lyVPLc49/V2lucvcd0t/ImuLEkkl1/OckHRbkZWw0yOneuVxlCUE3nHmk2+SW97DtU5sPS3BnBhzZV1h6U4Bcc6fP35/vukOqm/xng/fpms584fmbNDJfotibymtMFbKtftUITaGMLEglZJ0ZKnSVRACaBMnoN45nwKNyX5SmmghGoXSFtv3FMNAiJExMcZBLWzRZPcYizFxqlwsQCIz8PnIdZ777j+Dm/9I+2k0flDkykjeR7re0bW9UMh7R987xnEh/JQt4Shgz6oqJBpdWzarCm0U2g44YBg9vQuoRflfIVnk2mAy+UtrWK8kzUUzG9QxKKLPksTLzR9xMtJVTN0ZZsNcZ2bI4kqzGZPBiFm8MAM1YTFaJjOD+V1zqlRcMn7UfCbzRr/I1Y9KRKo/lIUbJXKskB3zsQXwDA958Ae1WNXU2euJ1JyFgtPrgxsI0XM4Hbm9u2N0jqqpuQoBg1SaGZIyf1A65buTwt4y3qqqQW0i49hz3B04nY445xjGjru7G7mTylKWRdo0JLrnfcCPjuD8lAJitCZEMJMhnjce6a9sCJ3DdYt++pqOOdNv+NCrdnZm0ybpnChQBS3aRwKMGgpbCHiWSiQqrYkBnAMdZqMzX2VuRovGh9aKsiipahGXbduO4+kkObOpsth6vWG73bLbbdlsNqxXDXVV0pdzieKz27ZwhPKGaq2lLEuePHnCr371K5xzXF9f07Yt+/2eYRi4u7v7r8JYK63m0+dragvbRlJzzGHL/UdPWdHRHvfcve4Yxh4VpHQuMRBS+fYYhOEylwWP5JKtRWHZbVasmorNuqIsNIUhbah9yp0eULnqVUx51ShUlJQiIB3PyZjwAR0ClshuZVmlqmGrUuH7Hk+kaweO7ZhEmqUSX1SeYoyUXkCfzo+44AlRBNh9TKXdvU/Gw5IOnQEPCAScA68ynJCaSsLyVmOsQtLEkgMTs5hiBsLe/7iJyfgISeMuV/SYS6hblLISrEgAnPJycUFLqqssw2EC0mJa+ws7C7aHEOn7ERR0/cip7QkhiGFbFBhtuLzYsKorjLGs1xW7TSMUaFthbCVGuOx2eB94ernhk4+fEPx8n4zRPLm64PJyR10V/PrT53z60ROM0VQ2YLSIPqOWE3pCpyABuzNINUPKkyGc8QzmykOyp8xrrFTrXN5omMT5f/Im+1xOby2KgufPnvHJJ5+w2Wx58vQJq9WKqqzAzPcjBCkhHqKAOG4cJz0ZowVMK7Si0DKGMoCeQaNTe0J1cn+c6ymKUkCYxLQ9nTqObUvbtpxOR7q2ZehalHeUSgpGXBjLM1tQKbhQinWMFBEqohiUUXQWQgSD4kJpCqDRkaMBFTWnGOhHx4BPrL7EqD7Hen+CNkOrefx55xn6Du80h/2e1y+/omtbXn31BTfXr7i7uaE9HCTNbmrfYZ3IQC0RghToUESC0mg935AlwJOZ0VnDEMT+1DoQQn5dzUAgzIBgAhrrpqZuVqxWaz777W/53e9+n6oSyXHaruPPf/4zL1++Yhg63ly/Yn9/i9TEECBxHEcOhwNvbt5grKHoC0xlsUrRmIJSabQ1NOs1m3qFtVmPsUBrS4jgon/vDlIElNYUZQVo6rqhqhqquoG+pxsGRF58wRRUM1v5bXiHxSu/fNvh69qsU5kEw2Ngfzjw+Z//zOl4ZLfbcjqcuLq6RGuxt6Z0ww/QlrZaBLE50pgOy7E9XwBZq3IJ0AjQIg581i+bNO+UTqLRUFYlVVlNKV6rppG1uBJpBGPNBOrEOE1eYsx6PAI0WGOpqopnz5/zhz/8Hae2pahqirrBjwO+3+P6w2R7ZWAoI/ghwDB4VBT/ZhxTgDqnof9CWkjsR2uSBx7jlCkQQ6TrPdEHdIx0hSJ6TVkbVk0C3KL4GN4FNqsaq00q/V5Q1CvKpoHB4/VI9J5Q7On0mgENY0CNkq+jjAIbUdrQBWgHj7FWsIdThy0s22PH9jSgtcUXK4JdCcgfAk4pBuDu1HHz5p6uHzi1ffJBso8Oi3DVT3G7v1X7SYCfHEGC2Rg9tQNtO9D2I93gGEZNiGkTSg68ihGrNau6pC4Nq6Zkt6uwRjaXMUT60XMaHKEdJ9p+yhKbIklaQVVKCoMxiuAjwWXnIM4CUkqCUDl+EdLGu9CXmnwDRURHpopgasGmyPZsUJKCtAQCVP6uHJnJ75+ePZRqjmk3Otf4mc2VGVVVi2v+IC3OPyYU/fxP53bc8j1KzWXBl+eeXjPaYJPwVoyeYRxx3nE4Hrm5vaUfBra7LS4EbIy44GF0AkgoTUwbkcqAnzKUZUNlC9w4cjoe6doTfd/x6vokwI9SrDeX1Kt6usfD2OOdVBsKLkwLvVYzKJVDoWrRh3Po/e37/21AH51EMmOIqPjhkGOVHESlSM6zOBJmAn40FFCqKiHswprSRhNdZIyRQJiMhfjg0owxVKVUPthsVlxe7NBac3N7K1oJ3lPXJdvNhvVmw263ZXexk9/XKwF+qoLCGtHlgrP0RbWYixn4qaqKJ0+e8Jvf/AbvPXd3dwzDwO3tLa9evfogrI2fopXW8JsXG0oD2wpKEym6Cw6fPGNjR25fKcabl0Tf44MwbETs1U1GxOg83ieh5An8iRSFYbddsV03bFc1daEpjSJEj08VKcIoJaHTDk4QewytSSVUVRJOTqPXRXQq47laSdUwpWSOu64jhEh76jme0todFNaWoAJlFakiaOehc4wJsBpTJbIYperTNOWmBSi9EFVKHfKAnOicmy+pv0UhOjkqw/TJsMvQvdb6g2yYMUbGYUzXM6esiTMuujuKMqV6CbtVp7XGezWdYwYGAHwSRdTaTM5eCBHX94QQOXU9+2M3i2yndLKqsHB5hbEFm80Fz54/SToGVij9WlMUAo7HGGlbSamIcaboGmN4cnXB1eWWorBcXazYbRsUkaE/4sZ2Am7edT9iAgPOWGh5r1AiZj5FENXMDM07rly7gELTMGDeZ37M9vYWoCYGT1lWXFxcUFU1z5+/4Fef/ortdsd6s2a1WmOLQgDLxKqYtZkS82QYEjsnsxkNtjAUhYBAVVlSlyUA7enIKaUiDWPP6XiPTRpvVSlr+rHtObW9AD/HA217ou9acI4KRaE0F8bwvCiogMvg2aTgSxUjlkXATEGhFFoZVkrTEumNwqjAwXvuXOCQNOJGmEJcD8GfH998noMuMQS8G+m7IJIC93e8+upLDvs9L7/4gjevXnJ3d4dPrJjv3dKYl4EuYUet48Q8hmw3ZPBmriQkKSugYwaB5lSY/LkMbmRNIGMMTbNivdmyu7jgd7/7Pf/63/wbiqIQhoy1HI8n1tsdzeZzjscDLjj6oSOqAFpYYaNz3O/3FG9KtNXo1qBLTV2WPNtdYOsGVRhWmzW7zQVaGQpdy1qCkmBo8I/aSd/7VpIKFChNWVYYU1DVAvpUVUMIoFQLOFB6ujckW2Y54t4CgCajL56/4b+mpmZWhvMeXGS/P/CnP/2JV199xXq14vr1NbvtFjNJKXwYV/KtAF38FpbwAzBIpQDyDAKR2GAp8J+YI7JXImtmIxow282GddL9qVIJ95zalUXep3M0Sbg0BSJtApZePH+BtZau6wT4qRr6ruXVF5/z5rQneJFMQKlJQD8mp3HoPX70CWR1c+XUX8i4y3pHRqskCK6mIk4xCPDT9w43yrWvrCIUUn20LgxVVVAaQ2ksIQTqzP5HY2xJ2awpmxXBBoyW4Lwv7mnVmh6NGztcL/aJtgFjR5RSFP1IeegwRnM8nDgcjlhr2R16dscRUxTUG0+1NXjnBfhBMUS4P3a8fH1HN0rwbHbY5cn8/8+3/SQaPzNKGqdBIGWEw8TQmYGVtHmxjNAik0TPAs82CZFGYPABoyEkgUuVwZKzvlBifGqFCtmojNP5xSkMs0TyMsSyuBYWff6gsyfk/B2zVKXNfgnOPP7OuNh5HgESFq/PuHfWOHoIxfzwNgVV89dO4M0MUJwHWhdR1oXl/U4HPDlj2SmLPqHGUeG9E2reOC4qv2X/Li3EKLJwn07gGiTBZQzGBIwRNNl5WZxDchDz585SLyZ0f640l3VClobZfL1Mn5le+Y4rdaagKtTMrPoQLXlLcxrVAnaMiHA1TO85452qpKOSmVv5T+rB10+pDFZKhBtDWaTc2BgprJQozhEVa+eqCSalcIqGjKUo7CTmLXvjLCa9zPnOzJ8QAnUtm3jf90kg9b8O4EcpRVkYKhMpLSIWWFqapmFYrembA1VZMhYW55Jw62IdWYrlMnczCsnLLqzo9pgsiBhTepf3i4c4ofmD8kOfC4YvQZg0H40SO0kp2fx9BukXJeV9Thd77OIXoMD0AvOakq8pf/7h7yoZVvGhc7RwmM7u0+IYH6rJKQlTQi/Wj3yJD89RPUiFne+FzEvRFlvsLTEmvZeU7pce5ylgM3vOJBC1KKSykwA/iqIU0WaIaCVijLOumwBTm03DetVgC0NVlRTWAgE/atwcmuDsAh65Iw/vu3pk/zj7CgVTBTQylT+eBSeAD7WavqOpt37LfSgCobL2lVVFWVaT6HIuW5wZbHl8ZGcj5qp2QTSopmvMWGfaq3LJ4/x9GdAYRxHKd27E+5EYjczpXBnMu6TX5SEGURtUYFEUSmGJE9190sI6u06pHmdSXzsECKqUolcam0BfMbHOdzi12HveMt0+aEul0J3DDRJsMlrhnYCIbXuiO8lDKniNco9SquP3b999RJ4d7mw9XMwXvnnQ5/GoE1MiB3eECWgxhTw3xqBMTtfOpbDTmj2OqKjRNggwpRSjc4xJ6N8Hj08saJ10npTSk23zIfp3CqBFFvaEndhtC0PmkTsS3/qe/JG8jkzFJBZA4bc9r3e1b/qOb2O7fNdx+DBN/rG/+ZAqcqb94Xg4ip1lLM55jC2+0zG/1Xnx7mv52vvwEBwSpE8ClGlNnFMU9fm8UWoqMKN11urUsx5QssuXAstZliE+8AHzGl8UBU1do5RK1WolCGKNJUY1+y45+Lawa5Ik6LTOP7gL/Jgr4/dtc1qeOp9xyd8IUaEfXntyebMUi5S0z9Vk1UPHO32prF8oA9qCtkQlOroTy8hLYSHlAko5QjCMo6MfRnyIdP1I0Q9YDxQjqhxTmmvIFaEIKFzMVWUfc+1+/n3yEwA/QdTJx57Y97Rtx/Vdy+2bljf7gdbBiMYnkWWdrLqYCv56Hzn1ntFHTJlKshWGelXyRCtGH7D3LePg0NEzqiiVUJadkRz2wQVMRAaEErNlDJIbGEJk9FnUNgtmzk5vNjanXD+VOUy8FW30ybmS4k9ipMnATaXgMq3orGVEZbmRP5SXzr89Bgy8f8Dn/NvPJ3EGg9RbEyGb7g/PMWsGLMCE6UecJrxCNlg3DBDheDhxe3tP3488/6iTNI9kOvjoUUHAp+jVdELJdkaj0MYSgaKqqZs1yhjqZkVdr4Q+7yPt8SSpJt6L0xs1Hi+MAqUoqgprClmo2gE3jGdehSINqsRdD+cUhK+9r8uc5skJ/QBdqLVKFN1MG5fXrLXk0pE51USqrSlyrlUkXZoGZYxoyliDMumxEPrLtHRrDdvtho8//mgCfUQbwfHRRy/41W8+Y7vd8eLFs6QNUtI0FatVhXMNH714yh9+/xmn04n9qWV/6vDe07Y9XddNx8qbdNYLAnj69Cld17Farbi6uqKqKrTWYuD/git8GQ0XlWiVlQaMiuy2O377+7+je/GCN8+e0VjF4e4Nh/2e61df0XcdXRc5jAKaqThrg4j4sUVFaKqS7bpht2morMYPHYOD9njicH/EjyNjPzJ2PTEGrElMFK1YNRUrU6G1pAOQ04BSeaYIjMMocwQYXGBIwsrXdy23+w4fIkMAF8CHwLEbaXvRnnBZZ0hBUVoKklZciPgg60U/SrrY2aq4sJMi8r0qQPCy3lijKYzBpvEaQsCNUvI+gyUfIkVQWD1ypi4DFXGmSEsaj56YPjqlJChg1ONUDSuPZW2M0KHTBpTBHaGLy942jF4qVmZR/InGqrFlSVHVbHcitF6WRQJdC9njkh4BRLxrkpB3nNYKozSr1VwpoyokTU2C8JmlYCYgQsBhYfEIMyvvfvlexPlGIfaXMWq6vmQ/pu/JwGUuCytGnw5ZM4oPtSV+66a1gD1aazabLc+fP2ez2fDs2XMuLi5Yr4XpkwMSPvgp5cI7SdmUlC8BZqaoc5pP/SCpflorLnZbiroU3aXNmtW6hhDp+5ah6/AuStrB0IMx6BgotWJUMHQt9zc3tMcDfhiojKIMilJFihgokPQiCEQFQStcZgtkm0YpDBqTKpnulCFqjcGz0YaViZMR7XM3M/fpQwbph27jMPLV3/5K33fc390x9D0xeKmEGAL7/T2vvvyKtj2xv7+jPRxxwyDaPt9lbVAL+2kCmzMzR09OzLIKYW5ZZ0gpNVWrjGmchLRW+VQuelrvJkcyorRU6Dodj3gfcG7kP/2nfybEKJXcVivKqqYfer569ZLD6UA3dAQFRVURUmpWJOJd5HjsUDcHVKEwo0VVmpOxDMNAXRRs6hXj4LnY3GC1pbI1RhcYrSmLEqMNo3+8Wuf3abJGZUhSY2ykalastzv60RGUQt/vAUnTyBp1TLaXgFK5GlRZlayaOlVBk70BBe1J0sezY/hd9oZso5wxvOOcyrnU8PrRW0yLaQY0QJgZgzjBPoAtbjh1HcZIdSX7AYCfH9Qy2+dhQCc9osrC7QkkRzI5ZO8QwMcggIQJqWJ0P4DzYg+bPF+nw4ESoCK7NLI/aZqmFvH+YaDtZMwdj0fub94QzUu8H6SYRZc0Z3xk9PP3SlfEqQrnecDr591ihFEcYAotWTHEOFVPN4pJl5UMyimR0fAu4saAMob1uhF7wXsIwnwa+47usBcygFc4L5VebWFZX1xQNA3Hw4EhKoIX4FlKnYJXGq+SzdEHgvFoDV04ct8lG+rmhKneAAo3OKrdFVQriot79M0e1ffQ3xFiN9sWcBZs+rm2Hxn4ER2IEBx+HAh9z+nU8fq25fX1iesE/AwYPKlkOwCKkLZJ5+HYOYzVVGtPMAoKTV2U1Kk0HjFyuO9QPoBWjAloERZGMvp9An4CZw7tGAL9kPQWopT2zHhlTEjjAqeYgAqVgYUsCpWAizgdN0XkmBkoKoFKb4Mly/awbPtbt/Ts6Tm88qFAH2bx7AT2zJH2Je9nPoMMvmRTfflTpf/k++IEohkl3zuGwNiL4XU8nHhzc0fTDRxPnTh6CE2QGCagKEc7SSXilVJgNMrmPN6KerWS/PNmTd2sk96Pp+9PKQXGieNgJL1ojAGtDHVZUtdrvA8MLsLoiSrTq/OFZ80LEVKdUO8lQJQ2o8cW8SVN+0M0pTRVVeZblDpGTw6dvCf9lNwdmSNa7oUiElP+foyyUCqTnLlFtQS9AH522w2ffvwxdV0RY+B42DOOjo8/fsHvf/87trsdLz56zmrdUFcC+qxWNdE7PvroOX/3h99yOrV89foN5vUNwyjpMV3fnxlQS+DHWsuzZ88wxkzAT11LhZyu637ZwI+CXTUD0ArFbrtl0/wLYvDcPH/Guogc7q65/upLlDtxuA+Y6OgOwprKjrX4aIrCFhgUTV2x29Rcbhsq5fB9RyTQHY4c746Mw0jf9ZLmEwJFYShLYWhppVjVtYDDITDVH/eBmLw7FwPBiWN7HDzHwTOOgZc3R65vjxLpSmCiDzGlAAvlVlK7QoqmSVQ6xrlShPfz+97VcoSNxH7QSp2BPtYanAc/RsbgBbBKP993UygKq4lkvTdRcxPATAA6Y4SBFaMi6pm10WqNUuHMMCwU6JTqg8rroWIcUmTLR0n18zFdTpTQSHLUbVFSZuDnxXOauqIqCqrCopQwx3xKz1AElBLoPaeLocBq2QPFcF2mq+hEqZ9L4GYgKYs9q8B5UYK8dqaoitIxzfH0pXH2VbJ0kE7FH6zRAm4RUSGeGfs/TZM1qihEtHm73fLixUdcXFzw5MlTLi4uqJtGHBElfR9CELAnAT9Zn8s7AUKzgHoI4jAOfqR3siaasmDLDqMV62bNpqkhBt68fkV3PIgdPPb4oUMZi0KLkLuGsWu5v31DdzwRho5KayoFlYIyJOAnlTyPShGMxud0h6DIw9kiTpQCdlphUmBnazzrEOljpI+eYcEayo/zxJsP38Zx4Mu//ZXj4cDrl19xOp1ww0DXih5g17bs724Zh0HKNXfdXEHr2wyqvK9Pv877lvyuUSpp9iyqei1bZprIIRfsgLh0DP2sV3N2XoHo5bh572zbE//8xz9ye3dPURRstjua1QofAofuxKnvGceBqMFWJSEk8D14Rhc5HFpGE1GFxrgCXWu0hruDwipY1Q1t17Nbb7HGsqpWFEbA5KaWNKHRvT/gB1Riaii0ERu8blastxcMPjJ4jzF26oXM9p6AN5WFdwWYaeqGy8srAcALYS0rrXjz5g19L+LXuV++bROmX0Fm/UnATTSTxqTb9S7b5G1WzvTsO96nr2lLRxa5R10/oIBhdPgQKUtJj/m5AT8Pg+Bq3nxmhIbZX5FdbHrzDPwoMDGiQwTn8H1PNCZXBlrsXXoCfaKe01W0UiijWa0a6qbGOblvxhYcDgf+8pe/gKlwKnIaI6fjMFW4itP5pTYjI78Y0AfkXEcn+jregTYyv2zG4ORNs5+cULMQFc4FtPbURcl6s8ZYi+s6+sNBAO++ozvc4V2HVwVeVQQUpjCsLy8pR4dTlsMQCZmZmUFytCh8qYhXkREv/k53QukBSIVDUBhrePL0OU+ePkOPjnJ3i9ncoW1L3LciIRDO02vTxf80N/1btB8X+Jng1ThVhPHOi7M9SPlsH841dKYpmpgPObKLD7gk9ul8IBMSpqkcswExwzbLSRRylDP/PZXlnife9Jfz85+AjnR+ShaaWStloTfwYL3J1cbO1uc4H2O+5gwRvfXGt+/n9DRDPvH8nD9AWy6sGVWfX88AVzr/h6eiHj6dF+HzKNjZXyYHVSJcDmNkgxydk9KcmpTWlp0BOZdJA2KB9mdFeGsLfBCaqmy8oMZU5SgNQq1mCjQJ1NBGSspH/ESjf/yeP+y/RTWCDJQtFofM8nnrficE+UO1s1SfjOYxj+Xltcn0DUSEpj3NkQm4e2CUTJ9ZLu5J9Lks0cbQNA3rzZrNek1dVWK0ZYNYaZRW2JQe5konedb63VUVHkZ5su7PnEpm8d5/sEoUP1pTYKa5Jz2htcEUUiK0qhua9YbgB9rjkWa9To5jkDKW3mN8nOaaThEQhYDWRiXWYhTHUwWf0izl4ZyfqgAZI2L8KgENIQZh32WkfTnOZQHGJ92dnOblQ5BqMgudm+yg+LO0FjHOJNVXKPx5bGWwdTb2SMNzAbAmI5/FuJzOTy3Gz3TCyRRbArvvsxvVcp0hzaV5Hc9pGDoJqmfh+uU5ztc/fevZGhPTz5lOPQckINuV59oBOqVYWmOx1lAk4McrUCmKN81RRUrLNBOYrNU8LicXPt9zFvvsIjowaYI/3O+ykZj3W7VYQzNYMC3xeb2fP5v7dVrqPuwW+aAt+hLILMipimFZUpYlRVFMFWMCEsiYqlfGRQWlKU3hHLjNfRpStT6lmFiN3himlMzptFJ/eE9wTgSWoyKg8cOIG0bGQapXRR/O9+N3XKXc29QvSkmENzUFGEQg2pLXF5VYQ4t+5G3rZxrn368DvnULIdAej7THI6fTifZ4ZBwHulwIouvo+x43DqL99x31aZZ75NcPwXfYAYufcA78LBkiU3rq4t4uW0zXSqqu2HUdp8MhMc20rOFEunFgdGOqwLhgIat5NHgvzEilItFrtAedbCivBKRt+y6tJQUEKJLNFZBU71xF7r20aa7PRnhOYZPKTDbZDnn/z7b7zMKRtU/eV9c1TVOnOWqnAhXZnph11b453S/3XU59z6lARVGc7VuPAXvv/s73Zx6epX2d/2Ga32dVQJH7pn5CW+oxVrxKG8Zyzqj5j2cLykQIyPc6yweESNYeySnu8nEBeiRNXJMLBizTvohxnnOL/dtakwBEGf9KG5SopScNwuxkLvfGx/vklwIAzZpE2VtYsLGY7c+lr7ZYXpjTTy3RJE2zdO3ejahRS5xBawIaYtYtNBgrc34y/dLY1San9Gm5/ym4nVPFIsII98FPwQdtDCaCsQWmsGhXJC3LX177SVK9ghsZTifc4cDh/sir6yNfvj5xvXecWs8wSClBqQIjA8coRdAqbUYO5RT20FK8hrI0WC0aFwo47Dv86MBLhHbhywqopCS9IJ7GRGSYaeNhDJPxItOaxaoqhpZeDFTDzEwxao44Ws1U2abQYvKECDGJBOdKFgIGLE5wajOQ82Duv9WWm3qqKfUQL36vbUprWzjeS0dLL44+CfEqNUdsk7OQn88WO9PPbPzpKA+TvnDsBu5u72nLnpevrvnr375ks1mzu9xy+WSbhL8MJlGkrckbfaL+WxE4bFZrIoFhkFShcRxS2dJbTseekERPi7JAh4BTBooSrS3NZsOq2TCOjuOxm1lh0zg6v/+TEbt0sh5p71rIP8wCHyd6sg8usQoEXNE5pWSR6xyjOOdEhQvSX9EUYMx8/ckZnylESqow9b1U13pzw58+/4swjYCPPv4EYwx///d/zz/90z+y3e746KOPJV88jYk4jQkN2oDSMq5SJPzhvXloFCulWK1WYmSGwOXlJRcXF7Rti/eevu8/wL398ds5xKhBRcrVBc9+/fdcdC3rq08o11ecjgdeffUl6o//gcP+nv3+wHj9hn4YUEYTrPRnZRUmjOhR07VH7g93eOc4HE7c3hwkr58oDlwux5sqHI6D43Ts0uYqD8n8mI3FMaV2BSIulYFXaU0co2i94QMKKdXuvFSQQ2mauma1kvltUpWNEKIUBRg8WjtMZoGl781ASNbwmqNMTKwK730ClgTACCqgUpDBaE1dFVjz/g1cpaAupc+6QeF1rgoi19jUNau6ZlVXKVgyEoJnGGadsRmATV+oIyhhG7rEshqdZ0xpCX4hxiz9ItWAnHP0fU9ZWLxzs66LXpR2R+GVpF7LbxGUUOSz8OWMuwhTStaZwDA6+n6k70a6fqQfRvrR4fzMxpmAqZhz/FNfm6S1ocHYVAp30ZdLsFcrWYezQ6kFXZvAwx/faBaDPgLWWppUsWu73bG72HFxcUmzWklxAlKAIwntOz/inIg4B+8I3k0sH2FdJcDEiCC/0VLRkxgZ+hN3tzeiZ9fV+PaEAobDET1K//r9kc5co5WaqqoeTidu//Yl++s3DH2P6XpJi0eYgmNKni8gpU2IbeXThi8AkoyDoCTCGxDboAJqpagVNGmdF93yDGC8GxRRfFjwp29b/sO/+3f0fcfh7o5h6PHe4caBkECSYehFLy3M4NvcvubsFvZOdnymTy1tzOQMSVXhNH4XgY4MFgIMg9gtosmUQME0n9OCPB9jcVNVzExABzFyd3vD0HdoY6nqNxSVFLgIJjEMQ8CPQ5IrUBgMigIVFK4PBD2gR40pIlqZ5NA5UFKYQ8XI/bFGKyntrpWwK3Phh7bvfki3nd9mFFYbfIzCAo2A1ti6phxHqnZNvd7gQg4Yi6PZ1DWb7TYBMaUEoYxhvV5xcXExsUvLUtym1WpFjJHT6cThcOD29jZVRX3Yp+m88tqkNavVisvLS6y1bDYbNpsNAKfTidPphPee+/t7Dond4JybNLl+ira8ElMUrLeSklrXDVdXT2iaBoD/37//dz/qeS39jhwQyHv9FASYUorPn0+gj/dJq1Ph+p6x6ygA155wpyMueMYQGGIUtmpVohPrC2Om4wguJHcqRJmHGTADARK0kkqLVVWyWq3Y7XYURUF3OoI2ab7PwPACPspXLK//QkAf4GzwiIwHUkFVyz5t037d1IaqspSloSwMhdUUhaaqC1bbNUVZMlYltigJ3qM0nO7vxK4zBcFUoDQuKkwQQG7bFOhnu5TSmku8SwXMbFeUZUVZShaAKRts2RAj3B+P7A8nKWhRNRRliTae1WbF7mKHLSyvr6uf7r7+gPajp3oJ1dQxti19An5evznx5esTN23k1EX6MeUiB8kJlAoHMlF9jIyD5BiHfcDhsFY0LppCfM7+5AmjE3GdWXd0AiIi0DvPEJImghJNAJDyozohuhPwQ4bUQ3pPsqtVlOhVKhsrRqpcqdUxAUIpZ1QpXIiMITJOcG6uF7OEoJleyXfs29/dTJb7cNyffKb60fzzhHyrFF1XQsuPpEhGujfLqJFSi4U43/T0XVpcWAwJ+AHGfqAdAtq2vHr5WoCf7ZqgApttjVJQaI3R0h9WC7NHJeBHW0Uk0KzX2MJINC8BP13Xc9i3wmLwKf2jkHKCwYAqFcZYms2Wptlg+gFT3ItTmzeaNE5F50fGyJnxlX8umD8PWT8/SksRDu8d/TAQgqcsCgF+lKRsFAldz2klEcnaCaRgmlXoqpz0sc6YNlM00NP1A1orrm9uBJAoSz7+6CN+/etfs16v+bu/+3v+6R//kc12y8XFhWjz5MhHfizBH9QkhPdQmHBJt1wCP5vN5gz4McZwPB7fuv+/9CYrlNyzcn3Bs9UOYuTieM/u2af03Yntf/kjp76nevMKbV9zPNxDGGTuYolKKnjZMKIcdIcDb15eM/QDx3Zgf+zxPrCuLLvKTloIWdZqGBzHUyuVssqCorIC4qV/IUYG5+h6J91sJOolzo6skT5ESNGbGGH04LzM4aZuaJpKdGGMlXQwH1CnDqXGiSGmF9Hes6hg5Ox5jpSL4xQlxVgbvPKoAPiINYp1XVKV73/LlCqTQm82RqG8pCmVZSHVd6oygT+V5LOriA8qCR0yAVg5up0jE0J6DDiXwLYktDpVb8snkMEQAn50DH1Pby3BOTRxAfykMt0KQgJ+zq4jA79TS0YwAvr4pDHUdQN9PwjoM0h6rQ+RmPfDGJNuUQqoJAOtSKlkSgllPAdrcrQW1ELwehE0YXbuiGKAnw+CH7cZa1mtVtR1w2a7Zbe74OLigrIqU2pKlDSatC5n4CeGLLwsgE/0SbOAhPUpAY20TzpQMdB3LbcIcOnaGr9qMEDs+gXwc6AbBSQ47I8c9u0M/Ly5ZRxHmhCokfntiAxRdH18vpNKxq8Kshc4pmLZ8r6092fbqdJKwB/EJtMqzoUEAKKawMMfs5e6ruM//u//TuZZ3xOcSw6cXOnErJtpavmEv/G7l2DPMr3rXMtlMS5j5kDNQTatNVVVsVqtpu+ZUoL8nO71aJJcTGeRzc80D7z3uHFkf3crUW9boLRFG0O1rinqUmwha2VdRQEmaY2B6zwxeJTT2Aq0DqACgZ6Io9Md/dBKUC7ZvdmGlGqdiu69Aj9gtRGWBl4KQWiNrSoq56lWrbBfQ8AoRWHE8by4uODFRy9o6oa6rtlsNlhb0DQ1m+1mSgG21gBix/R9z/F4RGs9gTS5T8/PSU2MBq016/Wap0+fThVInz59ilKK/X7P/f094zhOLKBxHOm67gxUert9+FkyraW2YL3dcnFxxWaz4dNPf8V2u/3gx/+6NoP9+fksaJ/FvDPwkz7BNJ+DVPtUSjEOPa5rcUQBfo5HnPdoH9AhCusjNKI/mtlhUb5TtJ6kj2bwlfR71teCqixwVcl6vWa322GM4e62EtZJOAeEpbLNdJXzPv9Ls1ljDusIyF9YqVZqlKZM2pB1aalKQ1UailKqU1orxSGa9YqqbhhrR1E2ErQ93nO8v8aPI8oWUAjwo4oaU62wWmNXltW6IgLOBYa0zwnbR/qvKGuqskJrQ7XaUq120levrun8tfiUVU1ZlXgfWK1XbC+2GGsoU2XaX1r70Rk/KtHhsqGdK4tI+d60YOZ9VYKWC/Ai71jJgZj0HsTgsIjN+3jJu9kQnF1K2QT1jElMAVM51/nYKoMPisTsUQnUEcoyyXiZaOhMpAVRJZcyYxgTkpYB4lTEt42bJVCVTCfg2y/ti/jvh9kO1IPHfOD5LSpXo2IZ/l1MkhkcmHpjgd6/67BZxDCi6IeBtm3RRtN3PaOTcu7Gmpl1sgQipmibUPqyyGiu9mCMm1X8Y0xRNhmPhlSFJNOEF5c8Ox7LUz/3Lt/VFw8NhB8LhJCNKEwP7z3Bmvn4kTlCmc4rRhbMDdl8snD1kvo7OaI55j/ZySnNTmvKqmKdIl2r9Zq6qanrmiLRn+f7IPFsH+KE2Euu9NuMn4cpXvmR04FsEqjN2j+/+FSvpf+xbNkAQjQOFAptCzDyiNpKjnOUCgUqRV60Ei2OqGTNkZxoxThmB13KwI8uvA0e5EPHPFYCIWgxriV0LelcPqZKMIHRhWwKJEf1obF8fkkimC/OvzU6VVn4+k33zIYi7y15PX37s2k0z+eiZqNSjmve+swPbRnUcBbKQvR4jDVUhU1aEHYWWk/vn/avr7vgxX63FIV8e2/M705MOi/gQszoSxpo2XBTZ4dZHG+xxs/pJykVJFU+GoaRvh/ohlFSBn2q5hk5WzuW5yj3fzm/mZyoh6mzD7ek6bW8Bc1o1zv740M3CUKcr0XGmsT2EaAspPLtIaUZCGsqVdCLeXyK8ZA19vI15rTBSGZqjESlGZSiIzGU+xE1DGgUTvWMSYx5PLWMpxPjqSX0A9F5kmGWsHg1naPsBw8NgVlDSRg/UnxBL6yZs08sN8azTTLydk+e99qH2Cuzo50rmgXvmPfyR3fwb/3dZ4y0tCcpSGtp1nOZU5CmLlYzy8fk1Oj1ejrfzAgRVq5PDqcie4xvpQtNt3ZhrUz9G1A+oFLE1HuP9l6q2fgwWzIxThVjVTrX+Xc1x21Ilb98Xk+Y0+i1wgcB6JdO8g9ual4PZlAtTvqDxlqKUirpGa0okh5QVdcC+jQNTV3TNCuKoqCuK+q6SpXNxJ7IwE9VVTjnUpqm2Dbv0vrJoE9O88opnlVVUaeqT1njxxhDXdepAIdmHMcpCJeva9l3b92Ab2zfPG7P3aeFF6ZUspvtVBbdFuW3OOb3a9/kWH9bxztC2sfOf4+kwIdSySf1qZrh4uFF81OmiEfnSmGTDfq2Hb9M9ZrOdeHrZH0gkwKsWusJ48m+zrTAf0N3/SICmGljWKZ6SaGsWRM3Szyo+QNAuoXZBrRmkt2QIL2TP6ZULaUtJjgiBmWEjCFkBE2RqqiplFKtEvhsrQTZylLmYgiRqq4pK2H0GGtTADFM/ab00of9ZbUfP9UrQvTJ8B9F0DOLckap05zygwUYmceySnaOADAawEXGNuC0wilwRgZI8JHgU6WXKJGngCKoSEi6JE1pWZUFWiuKGCgTLXb0gcFLbn1QqZweQjQwaVCWRdI7IDEhwly1JqaSgVYrrBa2z2pVUtclLkS8GQh6xIVIHAPeJVcjlyOBpE8UF6DQuZn/U4EFsDSBHpxDPlkgn6tWiqAX5c4nQExNLAGVNl20emsBl/spV28yiuaTQ+oC16+u+eN//GfqVY3zPUVtWDUNF9sLLnflpLyfhYmzAxE5N8KyER6CoLkXFztG59DHDrqegKbQFdEUEpUOiq7rGPohVYAL6VzPb5R0yzcv2o/e5w/cpyEETindaRyHZKwoytLJ/bKKIma+VVwuwVM+o48a1ztC9LTdQJ9o5865aeIqbbCpRPvVk6f87g+/F5bPH/7AP/3TP7LZbPn000+5vLiUksalIOjyaZ0U/hV39wf+/NcvOB6PvLm55e5+j3fCVsr3Kmv5ZIMpAz3ZwFqtVmwTq0gpxfX19Qe9xz9GOzMxk5OQKwvmFyORQ9vy5y9fcb/f8/lfXvMfvthz8+ZIaB2BAlM2lCS2I4o4dNy8vuZoFHf3R17fnhiSrs8wiFhzZQW014gQojZqSoPNlabC4Bm8jJ9T7zkNDh+g7T3t4IlAXZVUVSHro5e0XqUVxubUIQFGfCmR77qylIUlEulHx5iCB0PfMfRjEr/101yXilznaUSQfZ/EOtQGlQQ/+9Fx6noIXqLcSlFXBetVRVO/fxFLYzRPLza4AJcXCh+SBkRhJ5FRYyQNKzsVOlXByk7+Mr6ftXzm5zIOklzBVIJ0AnMTgKuiVIoahp6hNwxDjxt73KgJNqVTpUVc6YUjn62yxfqdQQrnPHf3d+z39wzDyPX1LTc3dxxPHX/54prrN0eG0dF2Dh9U0pmZHVVJOZXrLWwC3paHUiQ9nEWfInaCVnNlzaXmn87aZD+qzaYSq01RVhXb3VaA792WalVT1pWwN4IIZw/jSD/0AkB4h/fDArQLqS/EvoBkPOvEwooeFaQYwjAOHI9HYowcnOPl6FAxUvpAGSIGRWtL2qJEBehPHf2xpx0G1M2ejY+MQap3hRhwSjEERa8FWForSb8lgfqJ+4ePARdDYiIp1JTOKWmhIUYcyEOllPAHW16MkbngqXrrbx+kl5SitAZHxD8AN9UUaX/72N/mbIwxVHU9gTfbzRZjzAK4yaXR59TI4EU09MnVFU+fPqUsS549e8bz5y9QSvHq1UtevnzJMAzc3N5ye3tDSELfucLXUqMna7KBsBe0tnNwRBtZd4sqpVsD05AKjGPHGFKqhjHJUdNYU6BLgyo12lpxzFQgWgMqiUD3Pb13BB/EZvIBbcSW1lrj3mORBUViA/qIc6PsW96hjaaoSnYXO4z6jHEYEvAja+h6vebJkyvKqqKpG7bbTbIhLFUCYDJHP8bAdrPh2bNnrFdrhn7g+vp6Am+y4PPipCRNrKooCst2t+PJ06fUVcWTqysuLy7QWtKYd9sto3OpwMWKvu95+fLlBPKN4/gN7J8P1dLCqw3aFpiyxNgStCHyYYJo7wJ13pKYYIkZR0K2jMKc7vv49yUmcrKd+r7jcNjjhoG7zZ67w57BjTTB44kCGhqoCoM2BigELM3A++K8VAJXtRGgVwr/zOMi7/G2ECCyLMtEiPALjaf5wuJin3vXvfg5gj+58Eh2IlQUnbcC8ZNLm4J5Nml7Ir6fGxxEGPqeIVfu1ZairgFF3x5xHsYxgB+l8pNSaOfQfhRwp6gwVS2pnqSKfLlPUmXRqi6p6hprC7ZXl+yunhNR2HpFs9kRYqQ0CJvZM/fRBLL/8tpPA/yEONGunBPtkBDkdZVK7KopBHj+8aVYYPSRsZMoxAj0adDoLAeiwJNU25U4ST4ZrkVZsF03WK2og6cK4qwehpF98EJPJ5K3o0pL+oPWiqYpqGtBuHN1hxjAIQ6IUmCVptAKaxWrVcl2u2L0gT4qxgww4dAxociTYvR83VOE8oGVuoxmLH/+mC2fluLtbpoolyko/xAiWqYDnaXnKCY0WG7DjJoLS0pB9PjREyK8ub7mOHSUdUlRGi4ut6L+rgt2myuiSSjwg+OoGM8WS2M0RSFlzFerFcNW2EM+SnpeVBpTrdHlCu8Dh7sTp7ZjSMKXIZcKTo7RfD++Xksi5i5/6/UP358hBtpU1cq5cVKld86jtUervJkbIEwRjJgQdZTC++x4x0mvY0glPyfHTWuslWoYl0+e8Nlvf8/lxQX/+E//yH//3/93bLZbVs2K9Xo9RT+m8S2uDSHC/f7I3774isPhwCHlwWehWmCKii5FnPMjg0E55Wu32xFjnHQSfsktTv9liHgGXxIvkhgjx7bjLy/f8Pr6DX/62zV//HLPm5sTG+W4UgVlIXplZWZwDQO3r48oAnengdf7XsqjR0CKJYoYv49oAlbrVNUQMbxSbVTvPT4K3X7fjty3Iz5EjkOgHWUCbD1syCkuAvxooDAKa1M1uUIRkShLUVpsYYQp4nv6bkjATy9itMlwmpbTkJloMysN5rknKWNiyEWlUjpSh9GKympMYWlqm0qUv/8xY7XmardCKYMyJShxwJSVuTAMnuNpEBH75ExLPycAXZ3tDgJwPQB+hCE7s31mHZ38MxCiFvHvsWcYTAJ9BtxoCJUiBk2uwzqxjjQLhkLel1gwEUbu7/e8evWKru/52xev+erVLW3b88VXb3hzKyWleydaHDGStDVlHGbJMK0F/JPqZ2lsT7SCGchZ0slzVbGpRdlnVQqi/pi4T472i6ZAyXq3Ybe7YLPdUDcSWfRBGI0hRkY3TPoyUznxB0amBE2EgWZTRToAHTzGlwTvGE8n2vs9bhzp7u853d1DCKzQrJXBoui1ZdAWHcF3Dt+N9N6j9nvWLoq9EgNj9HilGIOmDwGUxqNQyk6hqXxPA4ExOnQUOr9ODFydwOUQJW3fqSipOEsrYfk0d/E8az/o/qgUFNZADIxKpcovMI2WCaA6P4dHcKu3mrGWuq6x1nJ5ecXz588pyzKJ5cse3HU9p1ObWAd+Yno8e/6c3/72t6yahl//+jd89tlnKKX4/PPP+dOf/kTXddRffpH2cIf3Y0rrDHRdS993ohcVx7Q2iONjC4lkl2VFUZQTG9cWJTFG+rHD+ZHgBbzxwzgBFKYo0EZR6RJblqhCowqDthp0gNKC8QzDQHs6SRVN5+i6Hjc6jNGUlZRI9+H9AT8gdidEnMvajU7Yk2VBVRZc7HZTQLEw4pxWdc12s8EWkt613WyFbalm4f3gPd4LqLrZbHj29Cndumd/2NM0zcQAGVP1oOUAMYWVuV6WbHdbrq6uaOpa0s93O7TWbFIKmnOOqqpoVqspzet4PE7jZKn386OlmkwAbwJ+ihJlC6LSPMae/SCn8IB59FjLez0gwszTH9Iqs7D/0xdNgeG+7zgcj7hhYH/Yc3/YM7pRKqAmplYsNLoqpKKtCkQdyazgvAJKNoHo0Qk4aggqTiloANrMwE+Z7FTvHOPy/HO44h0Mr4f34OcG/qjFQ4wx8ZAMAj4USlEWwuAukrYoiJTDmMBqAX5aIFLUa+pVJamotsQHGMYIaiTrumg3oP2AUhrbrCaQxxjRg1RKoa1OLFtD3ZQ0qxpblFxd7Xj64hloQ7nasrp4gvOO7nhPf9pPY2sG1h94tz+hT/5d2k8C/DCxMCRCUFU1ddMwqsDKBdQQGH2E0YsgVvpoFmYOKhuvIiIobRnrSzyRB9iRLE7CbBD9F01hFJWGFRLNGUOgdSM+ZONafjalpSktxmiaVcWqqYlEht7Q92ZajMdRkPisMTPT1JkMdaPF8NELWwK1NH2WsMr3bA8/+h7HYVwsnPEdr8/Hz8b3vJAt851z1J3FoimXnmHu+V6c2/BxYqugYOiFcVIMBd5n3YN8LufLz3xec871nPKV1ONBov1WNE90KlUeUgTBJQpoZvtk+v3EjXlozOZ78gDE+1YtvvVNP7zFeXFSifWAmisT5Kp3Qae5pIWWrowBY4hao2KGR/PmOs82pXPZ4mKqiLFZC+iy3e1EGLBZSXpXpkmruY8jTIBcUZQSEakqinHE9lJucTn6ctQygz3Lyl9LfYT8nvz3n9tG+V2abELyPLnjZ0aPD57BDfgQOLYtx7bj2PacuoFudAzOMSqP08KCMCqX2ZRKOyH4xAJJ6YBJ/2YZ21uyRvL5hJD0R5TCR3DptdFJaq4LkdFFBidg45hSfXMvmJTyYrSenFlPTh/IAFF45+NtwdXFhsxinUpLbAZCcvqafM/MVNSaaa34EOat5LcXKGMwpkRpAaDQWva7SY86CfmqxfmonNbDA0Z47pdzI2Q5Zhbw9PT3ECPeCdXdOdEE8jm6xZzuA8y+8MIxzt89MYnSvtj2vTi1bc/p1InOz+Ak1TvEBQvpfPdT5GudCycoZO8nMTCUmteCvNfk3UTSSNK1ZsBHPQ64f9CmSELnZmKYFmUp1UES00I0/2R/yeL1YSrVLuyNx5ydh9HmdDgA0TlJe9U4OsZhAO8ZMQzJYRuVZ9Re9BR7Txw9pIp/hZLzkqDZDLP5mFb+mC2qM/x50XeyKgnQtgD0sy3HgrX4APuZ7Lazqfxh12qtNHVVoRQMvUmaLXk/l6YW/89n9c3nlcfyvC+uqJJuRE6FKsoeY+yUHukS8LPdbtlstjQrqYC5SkLg682GzXaLtZbtdsvxdDoHfnzAWAFXgg8MpkcPIyhFWdUUZSXipUUpWohKYQtJewgxoJ2aJmZM41GmWCQHuqy1lEWJskrKXOskCK0CuUSJAPDp4SPRC/s++Djbeu+9zd+rlRT1MNEksMdMjECbJAmKokgsKJ1shRyImqtnEgMxSKlnrTIbcxaKnYKYjzST+n35sEUh7Kl0XKWUBL+VEs3FxAL5pkqmc1PnQ/Odc+edb3rHt86LvVKZqZ/ORakPPCvzob9+0f76IOvSn0i/5/38gW3gvcdpkyqMOqxzUzDJx1T1N68JUTI9ECWPyV+c7ul0SmpeEOVipnt6FpR+0L/5mx6mNZ/5Wu/4+8+m5amT7cSoztZ02SsWd21xHXls5fQ77VximQszVuyHnJqadhIl1QqVjkTviV6CKVINLDAHiHJmTaYYzKnwKiYWrZGMh8dkIX5sE+J9tp+gnLtCaYut1hTrC65eGP7Fv7Y8++zEsfW8vh/pBs/heOL6+oa+HxhjpA/CvnGDZ+hlQxsdDEOcjEAR7sobjrB2zmUcpZMVwuDZlZbaGp7UBc/rEkXky/s7zK0XxX8t9FdrDB89veTF1WWiaW7Z7jbECIfjkeNRNtubmzvu7u8nQdt+GARtJDtGMUU5LMoF7OgwKSsmTDfo3Hg///3hLz8NshjEu0uO0FwSM549ezgtzh316dUpmpIdB9F7CAo888KaRbYnphAi1uXbntF77u7303i5unwmND9TJCpzFndNi3QyRySNwlKWElkpxoK+H1Kk2qN0QVE1+BDpnab3keA87fHE/d0dbnR0bTsBQEunM55f5GQI56Mv/vQogn8eLVJvObI/tGWGjBxMWAzGCrtmHD0+OjwDWgfKuqLZ7MQwNAZdFOINtz3d/gSDA12CsqAktWvV1BSF5+OPP+a3v/st6/Waf/iHf+Df/h/+LRe7HS8+esHF7kIo1EZP9yymMrLEwHq95uOPP2G32/EP//gP7A979vs9//k//xf+y3/5E8M4MAxCq87G8ccff8yTJ0+4uLigaRqqqpqMJqnQsebq6gqAqvplKvIv21z2PG34wTOkqj+393f8+W9fcjid+OsXr/nf//lv3Nztef3yDfd3e9rjkRB7HCcsnsvG8tGupLKa6DRhUBOLIySjXWsojUrEj0jvPT4qogblZH66USLLMSJ580gKz74duG9HnI+cBs9pkDUks08yWHixWYmxbQzGCAjUjp5+9MTgaDuPjx0+RLpOmGYhREln8AttmoRypOUKmNfhZPdBlM+1bS9lhZ2lrw2lVlBoVJFzz4M4zx+A0V4Ult/86okAAqWkggwuchhE/0aplrt9y+g9hYWyFPH6ehAhRB8sKkSpGJmuO/iIUglQScV9Qo6ckO/JzEjMRujQj9zfHxlHx83tHW/e3KaUiAtWqwqsmQCYSC7lLvvubOwKFXocRvqu5/rNHX/5y0tOXcdf/nbNly9vGUfH/f5El9ibPpAYPwvjS/xIbGKO2vQQkGvWEcky08v4ggR2UkVC4gQuKa0SA+VB1PcDN2MsVd1grWW923L55CmXV5dsL3YUdYkpDC56XPQTYNuNwpCIwROdaM1kgHupF3LmDCbA1o0j3jkJiHS9pJ90HUPXi25PSqu0EYwyGAwWKKOmCpoiBrZEnlnLGAN77zl4j0ZSkI54RhVZ46mSNlijhV0blRDDKi19U0coo9gFoxIAyUcYgUFJqldEoePD/vgAAY9vaHVV8t/8/R+4u7/nb3/9K/sk2Cus7gxx5YS2xb6dznfZHrF2ACkXvL245LPf/Y7NZktZltR1g9KKru04ndpUQUycHaVUSu8ShtDV1RVPnjxJX6lYbzaMw8ivP/uMu7u7JKTuJtD25vaGu7tb3Oi4u7/nsN+jtWa3u2C93aJQE2vZe2EC932fxk9LdF5SDscRNw5SyTOURALWap5cXnLx/IpoIq72+CLgwsDB7enHkTCC8gYTC2JQKDfCGFAxTewEBL6vJvNdADub0smUVgSlcT5ii8S8MoaQKrbF4DFG46MnuEgZChEbTwFcY2RsByUpr0dtjQAA2pBJREFUsQHR7ZwCVgu77S2bPO3NzWrF1ZMn1HXN5dUV292WqqxommYqqpF9Fe89q9WaIen9iBi8VB7qU8XKmfGozg/2jtH3Lhv82zc12c1FUVJUwpJA6Yl5/WO2H+T7LIPOi+Z8oBsdAdi3LW/u9zT9QDSWar2m1Fr8ElJ6aghSblSBSWXBs4RFBnqyriUxSqGf9FB6AfgYLQwiUtnwEOZ9cNoP5zH2GNNneV9+LuBPJGvWgUvOuNWy9zhkf0fIoxIo8hJUoDKUdUNRWlCaw/6IPraU9UA3eJQ23N/ecTh1DN2A7I0epcBajw1BAOgQU1qpIZQ1sRa/PoaAiZEwZTAYjB25r+5QtkZpQztGxgHRO/SSO6SJotlrTaosuixO9MtpP0E5d0R8qV5TNDsunq35Q/2Ebggc25Gbu45ucLy5fsPnn2uOhyNDiLRejLe+GzntO7zzdH1E+VRmWgsTAaVw0THmyBli605R4AT8lFqxLQpWheXj3ZrfXm2FHm483XhgdJ6qKqnKkqos+MNvXvCH3/yKqqq4enLF5ZMrYoSb2zvu7vb0Q89f//oFX31l6IeRN7f33PoxCafm0tnCYihLi9Ie0wsFOuTJTXZMUns07PUTD7BknAdIKVPnxo/k5S8i4w9Od9qm0mZ4/m/eNEOY83RjijIpJeVgc+TdeY/rHcY79vsDb97cMoyOru1B6VTGPYt4ycnPwI/QMTFQliVN0+CsZej7yegytqSsR5wL3O47htNAcJ6ubbm/v8M7T98NuETrDals8cxSYhGAUfMNeGgXPAb2fOCmlJS6z2ynXI0shsgYPARFHwbQnk1Zs2m2lM0Kba3QupXG6SOqA/wARnK9SZo+dVNRhsjHH7/gn/7hH7i8vOQf/vEf+e/+zX/LdrulrmuaVUMuFZ9LE0ciMQjQtV6tMB+9oO97/kWqdHF/f4/zntevX9N2Ikad6fCbzYYXL15MwM9SHDE7TBn4CSFQVdUvbsF+2CSjKkUklBi9gxNx0tdvbvj3f/xPvL6+4avre/7Dn77ift9yuL1hvz/QtyeG0NO6ExpPqWsqW7GpNKNS9KNU50l4OSmwNQE/Chh8kA09C96pSDt6ToOfHG2VDMOc6uVC5NQ7ToPPlABQspnu1g2bVZ2YkQIs+BjwoWcYJU2s6yU4EEJkGD3OhSlSJxTcZCiRltCQ2C/ERSBuThVy3tN1QxLgL+n7ktqmqg+kaC4hOQnvf46WheFXn1xhraWuG6wxHDvPq7uOdhBNpYisd1Li1FBYRVkaisJQ+gAulW1P609mLImuT1pflunT8WElIZn/wzCyP0hKwd3dntvbe7xzrJoS77cyzrSk7ChZxFFqiYZFUJIS4QZH3w3c3Oz52xevJd3wb9d88fJ2qvKVU9KEOaLO104S4CP2NMZETGIgqlypWqnzMtWTcKzoBxiddIMSK0inPWQRw/5Rmjaaqq4oShG1v7i65OrpU7abDUVVoAuD8gqPxwXH6Ef6sceNo6QrJN20DNZn4H4Cf6YjCdvOJ7bIOAxTCuTQ9QL8eE8YHOPgMDFSoLFRUyjFzpQ0pqQANoC3ljF6iHoy3H0InAI4FTkqT+WNpLWjhCGEAHQmSlio9gL8BMAnoCcga8uYfs+Vnh64M7xXROBbtKqq+Ls//JZXr15xuL/DjYOsO26ceK1qUq3IcE9+/RugKjXPl+12x69/81sur664uLjgydNnWGvp2pY2pXqFlO6lFGw2G7ZbqQCU05lR0KzXPH32nBACfd/RdT0xxgn0GZ3jq5df8er1a4a+5+XLV1xfX2OM4fmL5xOA1LbdpNH36uVLbm9vGfM1eS/gj3OppLsVWwdhE11e7Pj4xQuCCrS6Y2SkdR3teCIMkehABYOOBTqAckbKNGaEEAVvgX4/pEmVpkiQypIkxrYtCQEpLJH0e8ah53Q6CsAavaSpBwFgYzo1ZQT4ES01A150PM+c+G+wI5RS1E0j6V0rKQ+/2WyoypK6qilsIRIJ6bt8CKxWDaNLqXWNVBoD5oAd2XZ87Njvmjvff05NZBVtsLakLDPwo861Bn+k9pi9/J3suYfvTWtb71xKTe+42R/ohpGiWbFzTiqIRtF/nYJWWW/JgDIpmJ1si2VWASGmYHMG6/W0JuTAJEDwZmLXaaWSgP58ze8CgB6CPT8n8MfHiBe1f5wH50RfLmSbBCCkgFWMKKUp65qqLnHOcToeCT5Q1D3VMKKMYX9/z/HUM/YjSgW0CigVKQpDJIhv4YXxqrQmNj5VeTPkgyqtoTeEmCrE2nuCsihtCarEUyTygZeCP8zFmqwx5KIbv7T2IwM/yeBK4mC6rChUpKHG+IgqR8ZoKQZH17WUZUFfGNHyIQp1q4iEusA7A3jG0aGUgA0h5fXmyJ8ABMnJT89Mcl4KralS5ZRVVbJeVRgF61XNpqkYvaeuSuqqpCwLduuG3WZFXZVs1ys2q0aM8VHyn8vesFk3HFY11miOJ4s1QqUOSdMoRCZWSHjAa8+gz/R7TBcx/Zgjej9liw+eq8X5RDWb05lKmX0Kdfahhdk9+X1pQ8oO2tnz8yPPQEpc3Kv0jnSvzuiTC0bEdCJKLWj/yXg2BmNtWoAVxgasj9MiMl1CCLKgZFHnKUqdN6N8QnGOLCzauwg871qoP6SQ5ZxyJ5Hx2SEmMaWEOWWrmqKupZJDAn7KMVDVPWCo6xVNs6IfPT5CPzp8EPBmvV6zXq9p6oayFIqzSVRrpWR+SCoJcz+lvrHWEEJB0zTsdlIyNFcCQ+mpRLRU36hpmoamkcj6Q+q1UipR7JszAWiY5+U39cXPswnogYqMw0B7anFu5HCaU7vabkh6ZAPOjXgv4JAKkk6btYC0iuRg1QSUxBmwTXbKwvhI7LwYcQlsGH1kTNW7NBqjY9L0yBVsEicw90+ubpHSYG0q7znpyGTtGJjmWchr6CPtMVP4rb5coutR5nRI1YuMyht7pvvnChyKxyi/P7iliLIxcg+0USktaHF/VE51mteyd65x6eLONHAW283D+zIZ9KQKPM7jjOjNjEnQ26fAxXTv1IQfTfdWDKSQgHMRXu97eXTp5zB930JvaTo3eaIWe5+sT+fjjyj3IqZfRABY1vO8+U/vTRc2L/3vDkp8yKZV1jorztNRzzTNYvo/zvcyBFhUWMvr1LnBf36sSNJwmv5x9jOk7/HpOx3gkrHtVSDoOXXXKAnyGKWwaplSKAm+Pkb5bJQ1QJJ7ss01P3ItPDUNnHyuixSqxEZ78Jb5on6Elp3spm5oUqVJpZToxITABE8tzkfO+psd6hx8sNZiU6pfmVKYs/ZP/n4RD5W5BFDXzVTVS8aNrEPWWmKZQFwlWhbC3JHKl+M4sl6vObWtsM02J/q+Tzo9DVVVEkKk74ezMeenFM9UVS6GB2voEpzVWGPxymMweOUFXPVJTNoH4kS9TwwIpadKkvrhAP6BLUZECN+Hee9SSXsyreGSpqXxyQmPRp+l7GdNn2W8bu7H2UaZbL8Q032Kb9kReX+zVsSdswahpHeZmTWkZyAAxCZxzk0VEcMj33/Wsp2Tb0IyruetbpppvGusfn1XPJRH+DapZ++vfRt77F3vOZd9OH99+ZFzqYOAS4+Q/Rmtp0qG8zY1pxtPW9D0ffM+uTiorAVaz2l+SUoip/nl90zP+fagz9cxg34ym/aRIRIXvtoEoGR7Is5zMYY4yQ1oJ2xWlUTivZf+0QSC8imgr6ZCS0EFlPdCrAgC6kYlDEedopkhyHsioo82jiNKx1QUSs7BjyPeO0JwC0Z5vt/ngOMvwW/4cYEfBUFZqBrKy+eYsqDSJSvbEHRBe2y5urlj6AaqpuL6+iXBD/QuEgehg29qTfHEolHc74+8vr6jHxy9k4oxLghiqKOkKVgimUCZSAUYBU/rkl9dbdg0Fb//5Cn/4lfPsUaxvqzYXRY472lq0fIpi4LPfv0rPvv0U4qypN5uqdYbInC1W9GdLuj7gW1luVpXnNoODUKx9oFT70TUNEIfFGMUXYthyNHqt3Pdl37JYoX50Qygb9PetdwL6MOcuh3P37/ciCfgIV1jiIGs0hTVvImFvMnCArRR6XukHF9dVVR1RVnmMrmGwlpKW6T13k/n50kRJy1K70VRTFGZTHnWdsDagX50HE4OzTAtwCE5ilLm0c+MnyDnP+0zkfk6vkf72o3+BzaTqszMkcs5/cOWlnK1xZQV26fPefarz1hvdymFTkCVTTuwvWoFeFld4DDc7w/s93uub97gvOfvfv97fvfZr9ltdzy9upTc+nS0ECMqeIa+ozudiCEkAE5i8jr1izGaTz75GFtYjsfjREU/Hk+8evWKV69eU9c1v/nNb/jDH/7AxcUFl5eXZ0LRIEby8+fP+bu/+zt2ux3//M//zOeff84wDJyS+OSy/RLAH2sUwzhyPB0ZxpG7+3v++sWXHA5Hru8O/PmrO/bHntv7E6fDHcPxyHC4YTjcMnQHLBG0F1p79FgdKHXEIeCmT5tmoZBib1pNDLqImlkAMdJ5EZzsxkA/ivNYFoqylHnrYmQIEvmxhWVTivF9sW242K6wVrNdVawbScFzLpWORz4jlaVz+lk2jCK5zK0OgahT4o+aXcelc/lYy2yhcRxRsWC3rnl+uaUsNOtVQVkYrDXUVSXCr++55fUwxsDgHToGRj87WkYrmtoSQoE1AtIKWUcnR1CCCkbPYPi8UZybostUqnlzUVN/jqPjEDqG0XN3OHG3PxKBp93lBCTFqJiyXqKfqi+GlIc/Osfr19e8vr7meGz52xcv+erlDV03cjh0DM6/ZZSGKFo/CjAEASCVmhg6U5lXle1v+T0ypwpGQTwm0FiuPi5YmHLKWUvsx8J9FIqqqri8vGS1XvPkyZOk2bKhqiTNdirbHkVNJ0TH6ASojd4TRkcMUUpQp8jwQ+2m/CQQcQgg4xUErYhG4bUwbqTQRUR7iWKeCFilsVFK1arEwnIqYlKy/ForsJYQI70XLUQIHINDx0ihNDZabDQYIpUKFAjgUytNhcahGBCmj45RjuMXZeZ+Bq0oCj799BOqqqLve66urri/u+evX/yN4+EoWmWjP6sUBF/nSpMcNxkDu90Fzarh4uJi0rvbrDc0zWrSylk1zQwmxDQnkt7g0unO52u0pIhUCXSNMFWH896jtKKqK8Zx5GK3Y//iBTHG5HBqEV9uT1y/fiWpma9fcXtzg/eO/nRkHLppfE5aHHG2FaSqo1TbM+mfCoqhHTntT+JAJ1FiIhS2kPRCqygqjbGKk+7edfe+c/POc/fmTnSGjJGKsXG2N42CLEdstKYsCkJKN895sXVVYbVJhQamxSSt1RohcAjbuO97hsSWEiHpubiFMSKgXRQFlxcXfPzxxzSrFZcXFyKobWe9L4WwT11aQ2/v7vjiyy9p25Y3b96w3++ncu+5LZ19CUyYM4D429kvb6+ED4OT87gzE4CVwUqdAatfSFsGAuF87oYYRW8L6L2jdY5oDYNSxKqCqgKbpA6UJgfHBFBP1Q9ZLGlKAl3ez4B9rja7Ssyvoii4v7ujLEu8FgAyxEAM6ftTZ3xdnz4G8PwUmQRvNZXLtZMeimXsTOtUVauyQiJIAKofR8buhIojoxNfOYSI85F+FLW5/f7Ise0YBgfRo7ykQ69WRWIKa6kQHsWvGIcCVfRo7bFoMAVKR9Q4MkaFUg6vD3RRwhbDGOlFaRvDiI1STa9rJRU+VyIU8DZ+h/n207cfFfiR6loGVTSUF1fEpkTXa+zuGbqs6Y9HDq+vGVupJPCf/rimPR1Qoxgrzgsj52q3pbCG65tbIgNt27Nve4bgCS6go0JHEVC2arEmJQ+80IondcFHF2su1g2/+egJv//sIwprWG0t252I+q2aWoCfsuDTTz7l008+wRYFqmqgEtql79eEXkQTa6tY15bD4cTdnWjOtP3I3anl7thLaXlt8ErjQ2QcPN5N/JYzSl+6YY8//zm0d6zzM+1ZTYuiypHC6aGmlK1cgSh9WIzfBPosXp4i/dPBVZxBI2WwpqAsK6pSoikZSS+soSzstJGFhASDJkaFCiqVEhSjqk6lAqU6m0XpAj2MFPY0gyQBiWL5QAgz8DMb7qmynJL7sQRW8vmfKwQ8uIfLCPoHWkhyxIEpPpvuT9qwlLaUqzVF3bC5fMqTj37F9vIqRSCEEeVGz2UvqLutVrgAh8OBu7tbXl2/xDnHZ7/+jF9/+jGb9Yarix3WJJHo1NcAYz9wOh4I3k8C20prmlVDVVcoZXnx4jmXV5e0bcv9/T37/YHD4UBdN2gt9PdPP/3/k/cnPbZlW74n9JvFqnZhZuccr271bkSQ7718oGwkokcHwQegRROBhJRdkGiQ4hNkiw+QEg0adJBAgm4KQQo6CL0UJBkKERHvRdzCq1Oa2S5WMSsaY8611rZjx93vdTse/sR0mZsd29vWXmuWY/zHf/zHL/nNb37Dfr/nKlfJWB+IxhhevHhBjJGu6/j000+5uZFreu9n4OffFeqmUgL8DGPgcDxy6s988/I1/9Xf/j1v3t3Rj5G7Y2B0ieOhZzjd485HXH+HO9/hhhPJaHRlMuU+YnXCmiiR/hiJXqIbVoHSEvUvzLlIjpYloUiHDPZMXsSbAZJWmCQnvY9SGjqmRGuluoq1hv2242rXYa1m29Z0rSUlOA9SOUzmpYA/xU8syi7CSitrTgCgVCIwqoQ7v9MtyxGlrKdBYtc1vLjeYo2maSWX2xpD27QXNPunHUzZK3zwELVULMuOldGKpjakuHy2LB2VxUUjJiaJdJX4QDE80wJ8FUbNJfizugFE32uaApMLHI8Dh+MZrRTj5OYIXaJcOwM+2SD1mU02TRNv373lq6+/4XTq+fbbN7x6fc/kPKd+wjtJoyg6B/I8uXQ1YHTKgP4K/FFLaXatobIKYySNKwRFiMUAV4va8HKyXjzlIiL/8dd5OaPqqub66or91TXX19dstzs2m41oh6isI5BK+CeSosf7Ce8ngguEyUGSOV7X9aOgdPlXIOFTlCqjyBqMWhO1gD8xg4xk4KdXCqNkjZsIWsX5XBbHN7HRCqOMgEkpMGSAqY+eRKRRik4lGhIVou9TaTAJagT4MSh6FhZQoQGqHBZ/fJV+99p96mYry+eff0bT1Lhp4vr6ilevXnM4HIheGObBhz8htSVbPUpR1TX7/Y5triy52+3Zbnd02y1tYammywBZaUVDsLQy9tYaVLU4suXsClHAqZDP1K5rCSHwbHXenU4n+l70hMa+593bt4zDwO3bN9ze3mZh8IkYfLmJbEsvAvsS4xORY8jATzIQwA2O4Thkp3gR769shbLCbKwz8POUrJ8QAvd3B0xV0WxbdFXJuifH+ub1L0y8ylakZPLeIP3eVFWuVJmLsMxgugQ+ZA2lGYiZckqgc+494KfOzK791RWffPopm82GTWYcGy2fb63co88MXOcch/sDL1++pO973t3ecjqd5gDFZUvzsxhj5s+e50v6sK35flNL0FJdggYz8GNs1qVqZ6b8x2qPsVZ+THsI+sg/liB1CQIlYAqBIXhSsHitoKpRtQA/ada1K+cqM1NIsQo2JTKDLswfVlh7Xdex3+0x2tC1nYB/WuNDwGRBf8N8YxCECagyY+Ux1s/DPvun1vspQS2tFCYXBV2vdW00dVPRdjXBefzoBPjyHj8OqOhwUWREYwKcJyVJZz2dRk7DiHMBgic5n4PuibY2YDWmBFK0RrkKNU1oE8FU6BCyH+KFkag0EyeUT6SkOPcT57PoB3UVtFZS2Kehl9RfH7KvJGsgrtb9z719L29dKfUbpdT/RSn1N0qpv1ZK/U/z758rpf4zpdTf5e/PfsgHpnwIKmNRpkKZCm2tlAe0FbaWCj62KN5nRHlGTXM6gdZKhNtqTd1orC0bVrF2C+VYvjTQWMO+bdh3LftNy9WmY79p2bQ1TW2pa0PbVGyamk1b07U1XVPT1jVVdliXqECUgzB/DrAYqFotJSCzEmZK+U5WG8SlQfPY5vY0G16ei//iScZQ8Wg69jpFSD6zRFp5n7q33swedkP+/fsm7WUaUvbuZiqtMVqiJzlVax0dvuzGdLEZFyHnQqctlMKYRaYvQKdUaKDx4nt5vjk15sLBWh5zfpIPHMTftWnk16qnXItz6psqcNzC/lFaNJKszWvRltSECm0s2lzS1duuyzoEe7Y7cWpEtNDOgF7ItGUpH58Pwuz0FD0K59wsTFoqiKyjnMYY2rZlv5fPKuyem5sb9vv9LIL40EFfR1tKSli5391uN9PofyLq8pOsxZQS4zQyDAPH85nj6czpPDCMTliQ48Q4DKLlM/T4ccBNPd5NSzU60lL6GsmxjqGU/pbP0QoppZ1TsMh4ioAxkuJVxHkLMFOq/aSV4zPTxJXOFdsEmK2sMGpsrqCyBiYK1fZiZaTL93y4f+a3Lz882G9Skulf8raN1lgtFR9LVZcCIj+YF0+2FhNpTq0IQSowLbTiQEpSxj2lnO6Tcon2RO5XvdrvVpGO0vUsDuF7W+0j/y79GqJUYXM+C82GuFThikU/KOXfBybn6VeVu06nnuO5Zxhd3mNDTkEC1nvian8VME/AH6OXUu7rLAg5/7Pujyrn7uK0rff7MgeUYnbiypaXhdGfzrZ5BFSb57yRij51XQvjYbXPpByVXL5WZ0qKq/SbcFFEYAkQXAJxrNeEWvfbchguQZPSodlOUVI1tWTmlAWjkT2ifOk1E2I1b2JZs6R5rC+ARzKDC5VL+ha9qOX199v37sdPthbLGSG6fy3brVTQ2my6XCygntOU53SguQcu71Stv8o8KOkxGfScmWyrz5+/Vuk0c8WnleP6WJQ/rarBLfaNnKnOTUzTyDjKV9/3nI5HzqcTfX+Ws2Ic5XwOIYNHi901B/WUsIWttfPeaHIhlOV51GKKz+ZyqYBa7Jl1mtTTrsUldbv08YPUJKWylkjZXxa9HlNKcZfxLHvTA5u9FBRwzhF8eC/VSyk1Az9N0wgAVFXUOc3rcgzl70oAav01DsNcxn0N/sn1dWa3W6q6mkGmGYwp13/vnFwDBuv94ZGWlmcpKarWLilKejVneWIbVW49Pbq3frhdrpGHz/XYc86mQd7DUtag88HPDCwfAr6si7hUvl3u69LWeMwfWt+/0dKfdVVRNwKkzWmAeUwv9ov13vDguS5wrNW+9NizP9Yn7/XgR/Iz5p8pfmF+D0vlPW3ksI/Z3ohhWVel2mXIX8vvV5WIV5VZix2b0iOVW8u/V7/3PjBNTtLUh4Fx6BmHninviz7Pg7Baiz+kP39u7YeELz3wP08p/RdKqT3wr5VS/xnwPwb+zyml/0Qp9R8D/zHwv/iuCyXIlCoDVZuVQhuSskQ0ylTU7QajLd1uz25/TX/qcW9PnA7vOPeS77Xtakg1xkZuntfsgiJqz9tDEtG4qERCPInerDVi2P/i5orfvHjOtm34l7/9gv/gn/+a3abhk+dbrm5EUDSwRStHTJG6EgaJNgZN4ng8yGFcj+hK2AHBBYITFP58lgkyTROJJJHiaLLzDComXBAav+hw6swKWcTR3gc8Hvv5B7S0ADT5L/+YUvqv/9gxXN9NJC1I+drwWSPRKS0HaDHw8sLTBRBLcp21wSuXy07memGnNAMySpVDT2iTz57dSERt01HZEjlOqBTydcSRiikwDj3n4UQIJfJ1Fkdncjgn5f+mKeQIuM+6KCJw6J1jGseZJZBiURpdPE3pGzE8lEqg9KoHvqNfvx8xfpK1WMZKKS3RC6VBiWihSpqqbtjvr2h3V+x2VzTthqru8lyVZzEWqkrG+NMk0cBxHHn16iVNbRmGga5tOd7fMZ7OpJCojNCE99dXNG2FUppxkGijn5wYL9m4tpUh7XYCSGRwKMbI8+fP+ef//F8wjhO/+MUveffuHXVd8y//5b/kV7/6FW3bstvt3ot0KKXY7XazofSv/tW/Ypom7u/v+eu//us5n37KANRHRO+fZC2O48g//O53vLs78A9ffsPt4cTxNPDmduLca473Z15/8yX9+Uh/uOXdy6+YhjPTODBOjhAVjdJsa0tTaSzQ9x7lI+PoCV4c/LqyNK2kpIzO008ifjiFyOgyxTlr0oCUcI/F+FAGlUHzqq7oAoBit23ZbloRdN4JAK8UxOA5nwdZfy7ifcRnGppWpUKEgIhFM60YX4tjnLKuRK74+IFxLNuM1prdpuVm33Gz72hbS1UpbGXo2oaqruT9QLhM8XiStRhC4HB/DzlogFJMLjENItjshgE3nnGTIyVNSgbJR08Ybait6GRZEwAxSkPRSyEv7cQSiZwB+NIPawN1AfWGaeLucCICd4cz98eBySeqvH4ga5FEAc7fvnvH23fv6IeRf/jHP/D7339FP4x88+qW43nEh0hISxpsmgGsNJeN0wo6q+hqqfhRW0VlRHRKhDNlX29spLKScuaQJN6YFC6Cn41J+SCJNpYAzcpYfsIxfKwppbCVGO+bbsOzm2c8e/6cq/0VtbUYFClGXHBAwk0DwU25/Lojep9ZJhNjPwoQrkSnrJR4Lr8rAFHKLI+UkTmNsA5SjFLNLJ/GOldn1ClRK02tjQi2K0nx0oBJwmoFsEpjkIo2Tue09CSizTZJSldKERc9SSlGyPZUfo1EQgTTGzSdSuy15UYnzjFywq0CQhfD9EPbk4yj1oqua1BqT0q/ZBxH9vsdKQVub+949+6OP/7xS2FfZA2WAmLM477+1wOHTGddF5Or/6DU/P6Zrbh4RhdWX0nvWjuPBeAp+58AxiL0PE1Sze3N2ze8e/sW5xxv373l7u4O5xy372453N8zZkHnd+/eEnyg73ucG/NmsECA5ZvWUmVqf3UlKWs7SVdz0ePHQPARi6VSFVZVhBSywyTVj4pWWZFe0EYVJ+pp1mJKwlS1YI0VRo/SRG1JmRWjswNqlMZqOdt0DgBoFjFnceBl35r7IKW5j+/u7jgej5xOOf0jC/0WkG+33/H555/TdR2fffYZ1zc3wpRRK8AzJYIXkO7N69d88+239MPA737/O7788kumaeJ4PDKO4zz2cn3Ddruhbbss+t1S1bVUcnv3juPhMNvM77M7H1tkqnRf6UhKFUhrLfv9FV234ebZDbvdns12s3r/xRn70fbUH9YeP+9noP0Re6D8JoaAS5GgFP35yN2dpWkGWfu3twyTjIEEmG0OPhQwJaKjMCtL+nEJjJTPKEBSCpG2bXh+c8PQdQzjhDFW2LJv3+biMZ7+dGIchgVkQPbStW0rwQLEz3hkbJWa19efYtM+0RiqOVW7aBiWaqMSMMw07hCxRlPXXQaOE+MkKV5JaZIxJCWZGD6n2vpcpj2pxTckJSYf6UePDZEqWZI26ATJR2EFxUQ0njTlku+aXH02MvVHpnAixMTpcOB0OAGJq12H27WklDidB/phZJwmYkrYnP5f9A3/XWjfC/yklL4Gvs4/H5RSfwP8CvjvA/+d/Lb/DfB/5QcAPwFEJ6SqJWPENqScOoKx2EYEZNvNls12x3a75+5uoj+NHO7P1EYz3WyFNmYTVzcVCcWxtxidD6qYPyhJdEkqThg+u97x3/jtL7nebvj3fvsF//5f/pJNV9N0mnZTisJ2VEoiHdbUWFuLkZ0Sp/MJUNhqwtiiQyFVxZz3jMMw0z1TSugcMRb0FlJIpDAJjT/bCksJR/XgfC2LN65+/uGOaNmLC5qfEuenGMP19ePKiJ9/X6IdqzcukS95jtlIVYugXv7jy5/zI89obYkg5t8pJRS7Qpu8utpzdbVn0zVYI9RCXSZDAomaS7WMcRo5nY547zkejxxPxyymF+d8XB+QsXVeNpscQQtOwB8BfhbmxGXfL3FO0iodRf0oRolLKf0XuZ+fZBxLZFHylVXGfyK2qmX97a/ZbPfUTYutGhJKyndTIsDiShhr2HQtwTu6tsG7ifPphB8d58NRHHetpFJe21I3FtINGsU0jhzu7pjGSXLHuyYLUe7IKyOPjQA/19fXWCsGTt/39P2AtZZf/OIXfP7553PE9uFBr5SamUhVVfFXf/VXxBh58+YNr1+/5uXLl3OO/jRNf+4Y/ZD2JGvROceXX33Fq3f3/O0/fMXb+yPeKyanCUFxPPS8e/kl58Mb+uOB+zcvceNASOCDMBC10nS1oas0VimG3pMmLQyNIMZLWxk2mxqtFXfnkbMXBscYIicXM+ggbDulIGQgW2VqhtIGhaKy0NR5HLqG/a6jMobdpmXb1iQSx5NjGEbJtY/gk6TxiLGT97LCfkiLzkRKJcoTlyhOAZM/0H9l1Wqj2bQ117uO/bahrQ3WQlVJJaamaTKjxYmhkrv/qdZijJHj6TQzWRQI4DNFQgA/TnjX450nJkOINSlpfMj6ZkZjTURrl6uJLIBKCbClchjM++j7+1X5lvL7x8lzPA+gFIfzwPE8CljYQJvBX2ESSNT71ZtbvvzqW859zz/87hv+8fffME2Ou8OZcy9VkUS0mvmzilNSAH8F1Ba2jQA2lRVmL0h1E0kRg9omait4kYoQkhKh4SXUOZ+aSuW0o3zEZg3vHHh42v103UqUXFiKDVf7K26ub9hvt1RWdApDTALyxIB30yIi6T0xyFfwjnEaiUHAnpLqMacYzxFqSRdb9IIkzdhqA3oF/KjCaLOSimUMlTaIFRYIBKlg5UVYWq6hMUoRUUwKQh5DExKGhCFrC2WNFKcUJhXgZ4lAa6BWikZrtsqyVwmlA1b5i3X6p1k7T7cWtdI0jYj+N00zpwU7N3Fzc0/TfMPt7bsski/MvBlg/Y57niPambU6s/Ty64sTl3JQS83XKu+5jPCreezLPBAmz0CMgfPpxPl8wrmJl99+w8uXLxmniZfffsubN6+Zpok3b95yd3s7V80Zhn5mLqxBY/3gyZRWYm/tr9jv9sKK6rZMfqL3A6OfMMpisFgljN/oRYxVKYiFvZd1cvS8HzzNGCbE1iYVZlJF0pqUgZ+F1SsOqc0gj85MT0lFyUDxan2tRzOlxDSOHI9H7u/vOffn2T4p46OUYrvd8umnn87aXlf7PXXTCKvT+Xy/wvh03vPu9pY/fvkl5/OZr7/6mpfffjsHpAqotFQp1VknRvQMu82GpmmZMlvhfD6TQrikgyyzadVbH7BHV5PZaMt2u2W/v+Lq6ortVuyoIkAdP8K5+FO1BedKEtjxAqb3fY/OYMzhcM/94YD3nspKgZDKRnH6jc5AnNgcKgecStoXcRHLD14q9cWYaGo5E9pWzlBjLeM45FtJODdln8NnBltc5iNr8Def2MsRD6s9F5b94mEw9IN98oRjOO99pWgHadb7iiGRglTnNqai7VqMtUzjxHA6E3xAVwZTC2IcQ8B5l/V+pHJfsWZC7hsfQi4uo2S9VznNMySiD2hB4FDeo7QRoE5rUoJT7zidHT4Ejre3HO9vZfdzV6h0RVKSAjZOjjETBLQ2GAOhVHf7eAHjJ2t/kmCBUuovgP8Q+H8An2dQiJTS10qpzz7wN/8R8B8B/OY3vxQgoHzxECDITqgRAdkigqW1nvOVnZcUBqXB1p6qEgCgqjRtY6XKz5TLo0fRAqiNorKarrZsu4btpqGpjaCPCJvAOTnAS34nScrnuiDaBmMITFFeM9ZjrAyyy+WEvffcH88czwP9MDH5kNMfcqKZMigd84EvNcbmDigYhyrgT96MVfqTrJ/H2sM5+GPHcHV3+frvfcCCSs9/oOa/KxsUibx5rR75u54jXzPNP0upXpkj5auiqizaqMUYTklKhQPOjTg3ZZaPaMR47zmejpzP5xXwUwwqcRKcW+i3QoUuG/HjN/2oAZh35SUd7E9rj1A2/4IfMY4vrkq0Js2RRyjpNbIhOyfsFwG5skNBttgeGAtaSzlupUREuVC/XRRaeYoxU8nlYJNo5ERKFog579lg7VLuEnKeusrloTPwptRSyljKVuuZUm1zqt9j1ZdKFC6llHUPOq6urnDOzSlfZYyHYfhToiN/VvuxY/jJp59xPA+c+4kpl2d2PjEMoh029ifc2OPGMad3hWUMkQNYK2FU1FbPRm/pJ2OzXoCWcpcpZTYPOW21IDEqY+0pUXTUZrqxygmE6r3nuBDsRR5cDu5Mu5XPYuWMLK3sB2XOFofpEoJ92HnrF5cb0kph7ZJ6VkRP9ao/VHnWjzCO17s6G+h5v1ZkQLxUpYkSWczMnWL4lQg1MKcXz/vE6llX3J4H33nESFmeMcRMe66szC0XqGwQMekoh5bzQap1TRPn88DhdKbvS0TMMU0uV7RMqzNhcToeRosV8pwFuJ+Bn3w0FuDHGrA6pySZnLaRFJV4zavHEP2aSmegh2IcXwYtnuJcfOT1y7mjFoc+ZhHLUrI75lLSpZpTAW7I4GYpJFBSSxKJJggwUfY60XjSGCVf5O+lelJJhxYhcGFO6SSOfQkWJ2TN6bRIJaniZKymlsm2ilEpV0pdGAzzfpAthYCITSsEJFKIfWYAmwGihyvrfRBIfeDV9/r8R43jp59+Iqw7NClZUoo57avDOc9m081pOwBqmlBq4Tt/SL2v7GGF7Twzmz/wOJcsvAXYXpg9ITuHoqm1lHMfCCFwPh05n49M08Td7d3M7CmpXZNzSwrDyrl8r+cTIvwPM1A1C/zWNVUlqYvWWEISkJD8nClrxIkeYk7pUllfQsmDS5z2sgN+7Bjud7tFADsDbKW6blT504JU9VGrlCutlj0fCmM7nzGaCxAoxij+QdH18WF+igLuFZukVBotKVhaC8s6FiA+RtHkykLREszq5yBUGetyn8XGsRmA2G63GCPBzyanudcrEfhlXNfA4WqMKWCSzr9fpQrldzVNQ9u0tF2bBeYvq6Y+Fsz8GHvqn9s+FGy9WGcPfj/LE2gt62Uc0FqLmHcO7ktAyqKVmoNQUNZ5ymzbmIPVaRXoWFecW9LoYow0ufKb1pqx7nFT9V6aZGG5zHMyhQtwJz91fq7HhZ4f65Kn9hff+wglu6Q2BqOEHFHWp9JaqipXFhsjtq7ROqCMRllZpyFX6isg2Pq65cPKWg8qB1ZC9hyzBkFSEZNTxVRSWdYj5oqmcr6Wte2dQylw3uOCiErHuOxYxVYuzNu5Y3/m4M8PBn6UUjvgfw/8z1JK9z+UtZBS+k+B/xTgv/kf/gfJklApoqOocCtl0SGilDgkumpINtF0G/b7K/ww8PLVPd4H+mGAu0RUgaq2XD+zfNY21LXh+nrDX/wGpjFwPjoOtyPBRxqraGqoreE3n+75i1+94Gq74Xrf4P1Az4jvB3wakM1eo5I4lLeHA3eHAR8ih2HkOIwSKTSidRJTou8n+kEiwcM0MjqHc4HXt0fuR3BB4alQVYWOERs1FbnUZpJyylDmbQZ7CnTyxHPnKcZQa51t9fThWME6MpVYAKzZOVNS8lNpoaPHKGDCxQMv18j49lz5LJJISlE3Dbvra9qu5dmzG54/u2a/29LWlhhGXJK8dj8JO+fu7pa7+zucE/HRd7dSeWqapMywLPyiwJ81LIJUunnz5h23twemyXF/d5dTvBIprTfZeTuYqcS5q1aduXbEvr994ED90eP4F794kWKMEoHP95wSko4RIqfTiZfffEt9d8BHxfWnv0BrK3pcVS1IeUqUSmmQsHWFiTkP3Fi0NvTnnm+++go3jvT9mRgDbdeSVKBqRSMopciL58+IIWKswViT9Q0UfX8GBafTmWMG55QyVJWkmnRdN5dEvbq6EuNqBRx9qA+bpuFXv/oVm82Gd+/ecXt7C8D9/T1/+7d/K6KXKz2Np25PMYa//u1fpr/73SuO54G7+56h95wOd7z65kuG85H+eMfd66+Y+pOkKnopWSnGu/zU1ZoXm5p9a+kqQ1cbbBaCrZWAO5MP3E2BkBK904xYgtIkkzCVpAf6kBi9HIhNpWmtzro5ai49nMgivCvHW2URae89MUWG0XEeXAYKNFEJUBdWwE7RFkoprfK/ySCyugCAvmvktBaDo7KG/abh2b7let+x3YoGlDH2QitBKz07QU85jr/8dJuiH8ReyAZMjAkVEjolGpO46hRdZXFBM3pEWymANSYzoiyjkzVBCvgQZ5A55b13/vnR+ykPtKyX87nn5Zu3bM4tX3z2KXf3J5xPRBTGViQS7+4OvHt7Sz8M/Jt//JJ/+49/YBhHXr5+x9v7IyFEASXzOSegBPN8WDoS0GCsous01zsRn+9qRV1Jp8QMNmqVqHTC6ESMCl8lQhCWmU8qp7ktzyRUcxGLjhGcl+pweVo+yRgqpR7t2dkpShB9IDiHHyfGvieFQAiOaRKWhvMj49gTorCHwyqNbpwGYZ3GwOQnrLHEmGgbcSibqqJrOgFlggc34L0mVBPeVgQ0uttSX0WSD3AeSAyoGKlCRHlZLV4lgsq6iCl/kc/cIOvbKkWX9xGrFFZnJo9WWSss4bRUFDMIcOBzgnCTvIBzKdEo2GqNVwkbldDx+fAcvZws77/pKcbxX/zz/1qyViRVq0pE5m9uEv7Xv+JFP1BVlrdv31HXFff3B6YcSJrvSEFJj3kIanrvGccRYy0ul4e/YN+lArxlgdjyeowMw5BFmcNF0Op0OnE8HgXsOZ84n8+E4DkeD5yPB5z33N/dcn9/J+8/HjmfJU1t6Ic5fUjYJA/7dLFBZ/aa1rRtw/XVNS9evGC/v+L66pr9do8dLe8OtySXCFNgPI30h54QJUofojB+Uib4Ky3Aj9KLw/wk++kXv0i7/Q7b1JjKgjb4EDm7ER9SLj8vuildU9NUFmPl3KtyQKlog+aLU9g/4zgxjL1IO5xO3N3dcXd3NwcOQWyLzWZDXdd8/vnn/LN/9lu22y3PX7yYq/KpPNGLsPZ47hmHkW+//ZY//vGPDEPP3f39HGQsgsDGmFl3qmkafv3r3/DFF7+YwZ66rjmfRa+pP59xznE8HQnercZ35SXDrJtYgux1Vc/FTiSIpthst/zil7/i6uqaNmteLYCzfgww+PF7qtZPZnj9YBtudUY65yEDcO/evuGrrqNt2yzlAXVVsd1s2G47jDaSxZGBAHLqqlIKn23ZlMC5SaQkMnPFe/m5riuu9ntc25JSpGlanJtom4ZD1xGCpz/3mdGX5r+LMeKmCe+z3bOyV+c+T4lIFHasKizpxx9/jVk8xRgareeSBQUcN5Vh21XU1tA1FlXVJGMwdctmt6dua2KI+KsMdEc5J2OKoM4MmdWYUoCY5grP2hjx25RiDKCjnDseh9aaKmpqshAzIz4JGz1oS1QVMcHh0HM4yD57Phw4Hc9oBbaq0VWDUpopIH6fMhiTySlKSXGQVQf+nKGfHwT8KKUqZAL8b1NK/4f862+VUr/IyN8vgJffex2QiE/Kzn6MqBDyzxmVtBUoRd12bHdbXC/Cqz4EhmnCp8DgJ4xVYHd88kWNtprdrqHRFTEk7t/2vIsaPwXqCroa6srwxfMtv/jsmqvtBq0jPojuwHk8cBzuSSnS1lvaZkuMiTe3B/7w9VtG57k9nrk9nnN6k0FpS4iR+2PP8TTIWBtBLWMqJY2F8ePJOhcqoq3CJi0RB79W9ylbcTYayNHBefb86GmknmIML+4ms1guX0gzqrt+Wc65xaBJShHlH0KXywhuOZIebjGycSzgTyJh65rdfsdmI2le11c7dtsNdW1ySh30p5PkX08T3778lm9ffss0Tbx+85o3b9/ksqelmlVJ75LHiKKpinOBd29vubs7EEJkGCaCL4DHmv2SI0XFeSq/TuvR+yBc9qAbH69m8FRrkSQRONQC4KVUHMpI3w+4N2/R1ZGq2dAfTzRNh60bKmMxWpNSRs1ZGD8g5UuNMRilGYaB169eMZzPxBSoamHa2Mayvd5K2peuuLm+kjkjIZDctUoOupTo+zPn84mUoGkWkc227XJlLz0L433XAVVeq6qKTz/9lGfPnnF7eytU+HHkzZs3fPvtt3z99dfzOHwE4OdJ1uLoAr/7+h3OOfqTVEs63t3z6st/y/3dK/w4MhwP2eiDOcREnrUq0VrFdVdx3VXURtNUWf+gsqS6EuDnOHI490w+4oPCJSNpmjqhK5ncIXp6H0iItpkxKn+Vyk1imIQon1sIBGU/CMETYmJynmHywigxFjIeHBJzqo+QYZa8biknvl5j85Xnf8H7O+gSQTVsWinjvts0dO0ScSvG7SKGewEoPtFajCQ/5bmfFkZKFKe70optowm1ZvIKNUoWjgnkaJNUg7GDQVLmsyuZ97QlKrg4mGUqfHhmJ4Zh5N27O/p+4Pb+wOE4kJKmqivaToyy+8OZl6/ecDr3/PHLl/zj779mmCaOWdh5Hp+yt2tQqeyZ2UCat0RJA2trxXajqYw8d1spUAL8lILSmiCAREoEL1o/iVy6PAMtElS9PFNCQM7lMGuNPM0YfqCp2RFgZvd455iGEXL66jj1GfiZGMf88zTNhn3wPgvfe5x39DnyXFU1N9c3KKVoqoqmaoQB5kaCrbEovK2YbEVEYduWNiKAU9L4KUEIqOgg5gi2TkTxSoURgbCCSKXnJSWmzeyPSmkqZMu2uWwvgFeSLmbynA6ARSKtJknqdaWg1ZoxJWyWmcvL4cGZ+WjPcrHin2oclcLYwn7Q+XmFwSGRYM+nX35FWURv375d/+l74E9+ItnDcpDJVhUuawOmi8DCsh4Kw6fMgfO55+7ubtYAef36lej03N7y7t27nLJ+WFjMhztOR0lN6fsTQ3+eAXYffN4TfphDXPbqklZf1w273Y6b6xt2+z377Z5ttyUhVb2ST8QpMvWO4TSIHgeeSJT9Lcf5ULI3SMwvPdkYaq3pNht0ZTHWgtZEH6TogfMi4J+ZBibbaTqzDewM/AhQXIazgEBFx2eaJvph4HA4cDgcGLIOi1KiwbXb7WjblhfPX/DFF1+w2+3oNpsZXCEmYXmmhJukglff97x584aX337LMA4iKJydSaXUzGje7/fc3NzQdR2/+tWv+Gf/7LfCGMmvH49HXn77La9fv87pfz3DBejDxc9aG+q6EbvMGDab7RxAq2sRot5st3zxxRdcXV9jqmqu6CXzXrPGvT/2nvrR2szwklYKjGitub+7o6rFLlBKUzcNTV1nUE7neWOy7o8caMWHU1qhjASwfE6LLmsxBNkHaluhN2ZmtLdtxzSN4jMbjfceYytML7puwsTP4E9a2D8BsadmJhZ5baVE0QAqzKDvak85htKrBU0CYzXttqVrKhpj0JUlaY2patrthq5rAT1LwLhpYOiPeO9wGcCMMevYzUidQhmTQS6R+oWEJ+CTRutIo4xkE4VEYMIje3zQFVFHQpRgl+yhgf50pj/3YiM2I6YZUdqQlAVlQSV0Bn6UUuhxXJhV83z6ebbvBX6UPMn/GviblNL/avXS/wn4HwH/Sf7+f/zeT0uJ5B04RxhHCEPOI7dgXE7zyqKRbhJgCFlCM+sjiSBUCopxCiJGqqR8e13VYCBtFOpaE1ygMpHaZuGoShOjGE8pOVKagMgwDYyjCDJr5TEmEAIc+4nbY88wee5OA3cn0Z5Q2qC0OCfHfuI4OFnkWqNyidnJgwsisumjJuQJKQtP56okwgyJqogbw2yVwyPf/7yW//q3wP/tR4/hn9DWdFI1GzVC951t/Rz5SBd070vH/bFeKA5bkysmVNbOVTaC9wyDiIWez0dOx2MW35Y89mmS6hbeuxx1I6eygHdx1jYJPhED82Y9p3jFy/FYo7yXBmn+WcHj8eD322Mb8gMg40nWojjhYsxj5HuIYa68FZUBO6ETuGlk6M8M/RkbAkkrtLVzVBhyWVkyOyIu1bhIpZqXm0VHizMzjqNESCpFre1saM8pfTGSfGZ2pHKYMUe/ykG7rsb1Idrxum/L64UKXVUiDn51dcU0TTMtuwh3ritpPFF7krWYUmScRtw4MZwPuMkx9MdZJDZ4R6kStG4idit9WRlDbQ11ZbN4cgZaQiRMUra4n0TQefJZPHk+a3Mp3gTaC5ibUgYBK4PVaqHyZkcuJNnrSlUGpXJKrc9CiDkaFROkEGeHXkSelzTMx5bTku6VZ9Aq8vLY+2eKv1ZYY6gqSTdcV3YTzZSiRQMP9qanORfLXaZ87/OemOab13mL0UrKu8tbFCEDpSXNZg1B/5D2ISNw9dEybiHivGfynmnyTJMABcMoVbz6YWTIzEnnQtaxW6Xh5ShAYWYtQpTreymGcqnAI+ChtRk4mYGfdJEujl4FGDRzUYO4lGW86GZh+syz4gnH8P1W9o8QxFmUdAHFODakJMCPc5M4x5mVF2OYmWyr26YYvD54lFaM08g4jWil8XWT3y+gWnE4SkpOzMywEBLJe0Yz5LlWyqnLV0xJAjIw97FGDMUgQ5i1gDKolX9XoDy1vmG1zKOoEjEpEWdnVTVMPX7mXeAmrIIoF9GUC0j3ScaxPJc8i+yRS1CDuTKbBBnqOTVovceUW7+EplIOlEjKsvd+1oN0uaLo/LnZDvTOMU0jwQcOh3vevXsr7IN3b3n3TnSG7u7uuc/MkPPpyOl8mgWah2EQZkG2XWQuFofp+/2SeT3mNME2p6BsNsJ8aNtGgAEtKULznCjrV0mFrMJkj2UcVZwnl8rf87080RjKvMeYOeAYspBsyGkacp/rfX3RkVQZ6Zp3KCXgRkHAljW96D6mleh/VUkKVpsZIk1T50pNZi4lv/TtIzt1/jxr7VzNSfpb0ri2261cv+3maqRFFmM9P5tG9gSty4p9aLfm3lKrioPZFirATpWDeN1mQ12XilMVetapSo89x0fdU7+/fffp90MDecV5L+mVzk0oJcHIPjPr6rqibRuqEFZ2aS5GkDdEySLJuqHFvo4xV9mTNE3nS8UwOQdKwRhjNHUGC9u2Qc6AKDIK1s9iwkXA32UmULl3QOxxdQn4lLFfg80P2tOsRQWVlUqpek5LlwqxlRWbq2kqsUMbkeqw1uYblHmbgrDHkxa7VeeKqzqIPZS0ysUM5CFKEB+QQwvJbNAuYF1Am0TShqSdgMJKNOtihFCK+ITcj1EOQAHqghSY0BouWYrv+R7qAzbqz6X9EMbPfxv4HwL/H6XU/yv/7n+JDP7/Tin1PwF+D/wPvu9CKXjC3VvieMTff0McT3gsEy0Rg7YVtmpQxnB49ZIwnFHBQQpyOGTKcPAKguLtuwH+4ZamNnzx4jl/+cvnbJuG5lPD5t+zaCC4Hj8dSSmy3TW8Pbzh9qyFQXA6EmPA6oQxIuzXbhXdtsL5yN9++Zb/4m++pB8mzt7Tu5AdGznYEjC5wJRTHGIx3Mk5xbnkeNIVSUllGLTC1pVQrJMnKdFLmPKClaWYVnv0k02fF8B/98eO4bp98NDK/8l7PvDH5bGKUxBzBS4UD1nzsnSzsagUaIXSEoX49LNP2e22XO13ogWRAoe7W16d7wneCxX39k4oz/f33B0OovHT90xuEuYAiphEaHoYPOMooN44OqbRE0LkfDoz9EM+9FfpUReu1qWh/vij/1CXTPpG6XXRXHY80VqMMdEPE8oYTBAwcxhH7g+S/2/rgcZHjK24fd3xze//gePdO+q2pdvvMLbCGjEMtNK5pLsYC2HqqXSiNkAMTGNP35+ZpnEWqTufT7x+9YqqrrjZX2Gvn2GNlO1JedK4EJnyIZaUmqMtQnXeoXM5zKqqZ4Pz+9g+60O/AEbb7Zbf/OY3WGv59ttv+f3vfz8zgEo09UPX+DPbk6zF4D23795wPtzx9us/0B/vGc4HDm9fMY3nbOTL3jlvKQms0WwbS6U1N9uG59dbbrY158lz6CdcCJxPE3eDx4XEoZ94d+zxIUqFr9pitKJta7YbqcIQ9IlzrrbQdg3XVxuJqubPTDHhQqKfpC/b0dH0I8ZohlFRGQEFzqPD50IPo/eSPpYSLiZ8EMN8dGEBn4ozkQpAmEt4ljKeH6AOKKWEoWA0bWXZbRqudhs2XUNVGZTOAp7TlO0JNe/reQ0/2VoEZsMwZCaT9Fu+8QyKG+SeG2uwSQR0SSLkbfUl+KPSkqrwGGz5cJ2su6ik4ekMrlujcc5xdzhIykYQpzXGyFdfv+QPX35N3w+8fvOO4+kslRCdy8DLJfijMptEqRIpLk6jQmGybpsYgJVVtJ1i0xTgp+ATSSp0RDlrK2uAfB2jZtHY6EvFNzHqSBAl6DcLgz/lGD5siyB94HQ88vLlt5zPZ7qu43g6UddVBhYDkHUGoichuigxpJn9UkZrGAaO51MWx1RUtqZrW1JM7Dc7gcWUQlsDGraVobvaQkz4c48/9oTJ8aZ3HMJbgnNENxF9ZvwY5uhsSpCigDpOwQYwKdEBVoFGGD1Vvj8TVxW8iuOsBEgKeZaNGfgZlVRj8yDgZboMjpSlvYA75RcrWGU+ctMTrkWFVuYCa5KKSQ1Vldjvdzx/8RxQTJOnbTsRo48C6szOwOqK5bF8CNmGkJTi12/e4ELAhYitJU3HKBEYTilx+/YNr1+9YhxH/vCHP/CP//g7hmHg7m5h+YxZe1AcSZd181LWM3QzmzIGn4Hxx5nEj51pWukZ3Gnqhs8++5Sbmxu22y2//vUv+eyzT4Wx29Yzm6cwgpqmZbvZsdteCcBjI5hETAEfJmLyMvcRWvWUPPGJxlAbzfZqi0uJPgNfvXOcBmH8WGMIVcIYTRMCLgRsKV2fUq5AJHufVkoq2lk723xFV2nKWoDDMGSNUPENrq+v+e1vf8tut+OXv/oVz549p21bVNaOk3s0GCs7s2gbmjmQ2bWSZlw39czief78OTc3N3NaVgEeb25uqOtqBoQ2mVX0ySefcnd3n9P/Ttzf35PSfHbJk+T9t67lOs9untF2HZ99+ilXV1crEE9hq4rtbk/dSJq/snXOelDrggfwxOfin9fWEOyf2tRsL0E5O0Q/63B/j7Wi+zWOI1VV8eL5c/rTiaquub6+5vr6RoJI1mIruzB+st3o3ITL0hP3d3ecjkd88JzPPUMv+pcCLMgeUNuK66trEonrq+u5nPk4yvoOeU8RsfnA6XRiHEfR5xtHvJPgn1KgYtYACszncYyPGEfSnmQMrdF89mwjn5eZv01t2G8bdpuabdfy4tmOtq7oNh3X11dUdbXEa1JiMA68ximFqw2bthFBdu1JyeODMMW989l+ygxxFGI1eBSKdhLSh9YaU4+Yqs7Aj5V0rwin88h4HkVTNNs4RMUwTCQjTFvbJGylZoafVDgFW8mYxyjBFX7GFb5+SFWv/zsfXkH/vT/lw1KMhNM9/nzH8OYVYTgwBc3JGXwQqlfTbdGmor+/JY4jKnqIWb07o+0hSBZ0PEwMg8cazb6+Yd9e8fxqxyf7Db96tqe2hv50x+H+Dd47jtPE/fkOFwJ3d3e8e/uOEAK7rmXftYJsh5qJjtEl/vDynr/+x5echwmXxFABhTaFvl2cAT1HRX1mUYg4qAhS2QqslQUtiKYR4CdaUgoSBYqibL6wfpZvP7Zl++hfp5T+W4+8/CeN4XzNDzjYJSWifO66Fbr/e/ByXKy+OXK0/juKtk/uEi1R4a7rlhLu204iuSlwPt3z+uVXuGnk7dt3vH0rRlI/jgzjmBH2mFXhISVNQpyuaXL0/SRgz3lkyGV0p2HETU6eUBmUMvMzftcw/RiM4BHw6JhSepq1mBKjc6gQMvAjaVnn85FxnKgaR0JjbMXx7h2vv/2K8/FAs2nZnq6wVSXludt2NkZU2mOMJvpRBFWNQqXANI1M4yCRjHzgDMNAun0nkSqluNp0KCokF0Rc1nFyDGPOp247mq6ZP2uz2c4UfIlofXhOPtbWCH3btnPJ1a7r+Pzzz3n27BmnnCZ4Op0urv8E4M+TrEUpA37H4e1LXv7x33C8fU0IHj/JwTUvJpBIZT7kjYausrTWsO9qrnYtV9sGfxoYzyO9D7w7j3zzrmecAqdx4v48EmJiu2m43ndU1tKaina7wWhN7wLq1KOCom5qtruOymjcJML5KUZcTDOQ00+OfhQAaVJLxSVhSQozaJg8p9HJQR6kyhekOWo7t5mdk4Vw8+FfjIfHMHSFCCNXWkmueVuz3bS0TTWLlMeYMt0+CEvT1jltDXjCtSj7XWazBgEr1hCTVF+T31ilhSCbSmECAXysXtgCswO9OksS7+9TZR4v7KYVcJ3kdaNlffkQOJ3OWXcmZS2wwKs37/j21Wv6YeT2/sC5H4UtlpmRS4pZBqEiFCjKmALyZ+YVYIowqq2wFdSNpunIz5qvF8WUC34RZVVKo3KlT23kvd4JeBITBC99lRDgJ6Foak06+ScZw8eaRHgDWkf6/szbt2/p+55us8F5lysPMgc6lAL1UNZi7cMoGN0oDI/gRdy13dC1Hdt2i3cBo4XloKxGJ6jqVpw1wB17XH3GDxP3L9/gMovLh5xykEQ7L+U5XtZRYfNoElYppM5pHi9k7aokoJDOYKtSIj5eiDkxI8CifBEZlcKRKwCu040/2Jtrq6B8n9/9ZGtxZnesmtaKupYzZrPZiAMWEvf3h8y4sIAwP8otPfYsIQTR1AGOpxN3d/eypqua3dU1ISYqo0lWovd393d88/VXnE4n/u5v/5a/+Zu/4Xw+czgcuL+/n4V/YwirtVvWe0btSs/NXbf0o1LfzX5QStPUNZuuZbPZ8MVnn/H555/RdRs+++xTnj9/hsnFNWIS+9xYCcY0dUPbdmzaDcqAbUBbhQ+OcTpn8CeKdkcMaKMJKTzJGGqt6bYdOMfxJCzF0XkG5xmmQGWTBGCR4JKk+0eZh5lZbDFoo0BpAVKNmdk/PggDfMoAkJumXN1NPnu32/HFL77g6uqKTz/9hH2p5BUjIQP8WmupNGaSgED5q6oq6qZBG8Nuv2O7E6mLdcXSNatqs9lic4pa17bssrD1zc0Nz58/l7FoWlTWyluNrpxpWtg++92e58+fs91u+dWvfs3z589X9o6cBdqI9qJodJpc5EFSxVYs+Kdbi/9kbb165cxx08T5fJLAZgZbqqrKwEqirmtSSphclKjOhWYW4Ic5kOQmYeDd399zuL/DOcfh/p7j4Sh+zWZD07boPB/aVgKexormYAGipgwgDcMg13UOe3vL+XzGOwepCMIv+qkl9Xtdfe5xxu/TjKE1imdXDd5H+sHhfKSqDJuuYr+pudq3fPLJFV0nwPdms5nBtaKvqaLBVQqdFFNmCJVCBt6D1lH0K3MRBB9hipI5EEMUXUnAR0+KXqptTw5TTaA0QRuikqIHw+Bwo5+zEqSfBOSPakQZQ4sBbed+K5kDsyakiuioP5o+6FO0P6mq149tIXju3r7Bne8Z377F90emoDg7g48Z+GlHtLGcT/f0x6OIHfoJa8RQC0haV0QEG0tVgGn0nE4DlTZsjGHctBCjUM99xIVIP3ruTiOT99yfRu77iRhELNZqKbke+olJD4wuchocU4hMIeERY1MkR9Wc4iJOapoZP3ElLClAh0JJeBFNQgfZBGJJwZhP5XV1G5YIffn3z6itHewPbRwX7wF4aNplA3FO20hpFdy7hH1mWqKScsA6p5DYylDXlaSpaKT0rVJ473KZ4UzbyyKJs1MYC1U3LlT07DSGHGmVaGuckWq5g8XxX5yl/Pu5ssfaeXpk4NRynXV7+N5EevR9T9ekD2REAirrCZAdviKAaK0RQC0GUnBEp/HTACmgCHitSNbgtMKNlmA03o2k6CEFtCJTOm3erGNGygUhr2wluliZOo0W9pFEi1XeSIUFIOKGJbVrAV/h/Tn56BOnx8tZFtS+rmvats1lS/eUfP1SCezn1mKMDKd7qd7lxlyZJVysqdnQL6ArAng0VtNmPR/nAsPk6UfHefD0zjOMPrMZ30/bKevHh8DkAkYLVTlm0ELmkIhnKi0H55x+k0oULeFjqRInAFWi0O0X2n1xPkNet+U9sibzuiz3RpqvPzMJgbKZXpi9iswu0VJBylxWk1uP9wISwp8XRfy+loSyrCSEsJCE07xtLultBRTKZwvLEKsLxOcxqIf3fndJ/179PL87zQbr6Xyeaeoh7xd9P+SUFb/spyugp3TZw+Uzp9nlsZfKU+RUiFXa5noXVGkmgahl2iyOiSKnUEunmZwfp5JC2QX40bkX/wSc+Ee0ou8SRbNBy7ro+z6n9wiwMD+PXj9PAWBKRF0WiWi/SHnscRhRKPqh59SfsxDmOIu5Vpk1oJXCBLARnM5Vf6wVQcrMXn4fTykagypr8i06SymPwwx0ZPBnDc2osv1QZqMi5DENCAsopCLcnh6Zro+BPd8XanmKdun4rde81npOq7G2yoUFcvVDdTnRH3ZnihEfPNobxmHkeDqhjWGz3TFOk9iSRkMU4Gfoe6k4ehLR5pK+VdLUY660GeM6spwefGfpW6VyGtP7Z+X6u9HCTKmsaNXstiLmu91t5zSvqqrm8syyRyzlpst1Kmtp6gZtoGo0ulKEYDEm4b1BUt+E9Xan+x81YpctJ/teTKnVXFoFfZb5KQ5xyPNdgP98FujCVlSUtJ+5Al9OXYelmleVNXDWgski6bAMi2JZ49aaOS1rt9vx7OYGHwLb3ZbtdktV1+z3e7ZbCXbFnBKklBIwcZpy0CDkghsCwDVNzThKKpg8a3H+mfedC8CprqmrWtgq2e6Se02gdU7bFuBnVvxSan6Wj9P+/PX+Q2y295ivaTVAq/ckln1YKj9NM/OnMO76vud8PmOtxdcVtc96k2oBWd3kMlAYmMZhrpo7jRIcVSoL5KcoYsWhJoV61p0qshJGG6pKUsFIaU4zm3I6WvF9ULkEOhCUmn0a9RPZs1prtm2NCyJQ7kNi0zXUOaVLGw0pCjM9ldOlrCepJFuejRhl77Uium9MSVmdk/sBFnuRnL4V5GAKQVjjJkWSCjn1NBJyQYOUkFTrDKRLup1cNZa9O0m5eBP84uPPYyxgqrrYapaJ9HPyIX5S4Od8OPD//M//c/z5wPntN/j+hE+aMRpCUhhbU9ct2lhCGBmnMyF6jm/vueoU6nmHi4opaIkKu4ibAsnD2zdH/uZvfsemqfn1Z9dMv/6ETVMxupF+7PEh8NW7O373+h3D5BjOPefTmZQiL/aRT65F58Hhmbhn9JF/eHnLnYuMMUemssGjEqgcfUaVctggYgMAovNDAKUiPjmUl4oG1ki+4uzvmFxq1WpCEgczhtUk+fnMlbk93Cw/CP6wBjlWCwABvhQKkp5L8apEVtxk5chIRymtUFFKTDfGYmzFbtfy7NmO3W6LtYq+P6JV4nS853Q+4KZJ0rnyZ4rDKWkk0+Tpc5W2GKUSTIxSCnscJaodfFyo9kly1uVJFkWDGQDK3o18VsobRrp4drX6yh0nf7syKpSS8oJLZ10aak/VUpJSzCl5Yir9ENFahEK7tuHmSsSX267GMoGHMAz0oUcbTdPUsNlIlRJrGU8SmRj6gTD0JOdobOLmZktda9q2ljxprbl6ds0nLz6hbhoqoxndyOSdoOa2miMcu3aD0pqm62jbTRYibC/Kif7Q9iGKu1JSHcxai/eev/zLv+RwOPD27VuOxyN3d3czMPVz2rzdeObLv/svJZXueIf303wILhbt4nmVWbupLZ9dd+zaitoovn175M2t5s2x58u3J3onmj7H0eNjxBfgUwlgM7kgWjxHEXxWSnE+9ZzPEwrwAZQWDSZ0IulAjALaF1Bn8pF+dFloU9IbAPm8kNl3GXiKEVyMIro+R7KzgavKuKbMRClgUfrOsdJa0bWWTVux2zZ0bU3TVlS5hL3P5Xmlko3Je5D+KGtRKahM1vGJEa0ygJL1jVJUWR8l+286SBBBJbSWvUcrOZ1U/n7h/6374aJL1s9SxjgbmFlHKITI5ByvXr9lGkdhxbYNbduSUuL29o7b20MWPBWwQSkl+3mZh2Ubz2CMydR3k3P1lcrCwFpRW50dFSt/qkrq57Knrp0mMZR1jl4n6UcDSUsZ8ajV7OjNKFE+Y4x5+rF82GKUwMUwDrx99w5rDjRty/l0wlaV9IctQLakmCitsMZmRpCk2amkMcpI+VkfRcj9cEKlV1RVTQxyjjVNjbWJqopYq2n3O66fP6euKpgCagq4YeT47o6XX32DPtdwf0+YckpAYskNjMj5rBQRzaQMEZiUsPQsUKvVuaZBl8AXFGtJAA2lCCiCNozK0KfE2XtOMTKERVevwIUlaTFdnpir9pH24bReLisAM9t11lg2my0hiJPedRvatmeccolncSfyU1x+d85xPB4xZuCbb7+l+zf/lu12Rz9O1G0n4r9aURtx1r788o/8w7/5e06nI199+Qfevnklmm7OZf02AVx+SF8kmO2TFewzn6HWLqyT/X7PdrOlaRp++YvPePH8OU3T8OknL7i+3mNsxWa7o6otaEVMObjqR3xwxODRWnGzv5L9vdK025qqNsTomVxPCLJXFLWnN//V8UcM2vvP6nzAx6wirQxKp6wJuGgEWiMVfpKWwIT3khaWUqSpK5QWe11KdcsG7dxEfz5zOp1yyfWRyU1oY2ibBltVXF1f8+knn3J9c81+v8cak0HqS2tYg9hCuz27tsN7j60sLz55QYyRti3l2Q27nbB/Yozc3d3Nuk7DMBJizPo8NU0n1+m6jmfPn6ONoduIbRNm7TAJvNWZmbXdbLi+vub5c0lJ67oOW1UsK1nOA5P1a0Q2JREkppMB9o+0l6r0REv9BwJI89tkH9YFkQei98QMnrhpykFJiClgq4pTf+b2cI81lqapaet6BmrIAZTgfGaSBIbzmWEYCN5xf/uO0/09kDjbzDrWRsa/lnm1u76hy4yuqqnp2mY+V0E0Ol/0z5kmxziNvH3zhuPxyDRNHO6kSEMIHjUMeFwGLRMpfbyUpLoy/MUvXwicoyTA0FaGq7bO2pIaP46MwaFjINUaqKRydq6iRWqJcU9wHmUqYkSqMMcDt3dnSfEKiYghoHEx0mcbVYJUK1865UDLEEB7khLfPqDnIH+aqzrnwD9KWPQ+orQmICzBAryWQHnZV2ZRfl0qzv58fIbSflLgZ+jP/H//y/837nzi/OYlfugJKFweMGssVdVkSmFCW0kwH1xg2yisbZi8oneKEGHAE0YRLDzcnfl9P1EZTRh6Njax6QRpnHJ0+o+vj/z9l+84j0K3c6Oopk/BgLIYbTiMZ+6HyBQi39yeOfmITyXVaBW+yk2tAIoiPCXvWQmMRj+bME6TI5NKcnONEYMp603EmOYS7z92w7s85D9um4GLD37m6pXEjM+mEqFfvW9GTFV+c0FSdcIoibDZytB1Nftdx27XYU1iGntIgWE4MwznLJzols+iMHukUtc4uiwoCyFIdHOaIs5lZkPIA5/kyC7AzyrEPj+TIusYPGI0PjC1Vte47LuHrehFfYwxTBm5DiHOUXylBF1XVtM2FbttMQIsBgdBnO8wnQBFaht0clhrcNownEWMLfhAmARhqyzsdx3WaJraSkURN2GsldKgXYubRqZhIKWIrRoqpWSMbSvVOYyhaTe0XSeAkLbLOvszeudhaotSoh9U1zXOOb744gvu7+/puo6///u/F6MpR/d+Thu5n0Ze//HfZpAjrmIeK/NyDmApdN6DWqu52dVcbWrcFHh3PxBC5M1x4Ou3R4bJ40m4GInlatlBiCnhgpR293FkyJo9U9bDEiM5Vz40FqWCVABTwuiLSJTfhcjoA0ZFYjLErAvuMzU3RHmP98I28kF0fkCqQpb9VBs1P2cRhy6sPmmPj5XSiroS4KdrRLeorkq1ujQf6CaLWMp61R/F3VQgVY1IRC1snhhlP0n5EYS1KBEqcqS6MGSSUqgimLrA3NmRLkZPmh2/9z7/PTCraBIgzBLg7v6e4+Fe1koWDwUYx4lplNLU3vkZWykRsHUqWdlD9Qz85DNTqQz+qRwYMeSyPxk0yJ1Q7rMETYquUQaBjFIYHcnFPVBJE1WSs7WSggooNesA5QzRj9rKXjFNDucOgOw10zhmBqOkf6t8/leVmfejtu2yaGfKYyLK1TFEqVLUD3gv0V6lNTo7HF1n2e4sdV3xhVJs93vapsUmqKJiGka+fvacdrsjJfDDICmMGfAppaYL218lAX58Dmx5hAFdtpdyCuocEgGFWe2RZbVGpQlaE5VmiJEhwRAiY4yiyTD/yfpsXVfNLHP7Bzpxf26bfc1lDyngsjGatm0JIWZx3Zaqaubo+uoJLn5OSs5FH3uU0rx7+5a6+4qu21C3LZ9+9gXOeayG2oiT+frVS77++kuOhyOvX73k/v4W5xzr9vhZ9N1n4vrcK9/X4sA3NzdcX1+z2Wz4zW9+wy+++JyqslzlCqpSpciIDgkQiZkFI6BPjAGtFNtuk7VODLurjrqxovHjBkJweQ3L3f5r+9c/eHi+r6WU8FH05oRRWoBhg1KSZqXN8oWSrAGfAoMbJcBDoq4sYLFGrkVUoqs0jozjICBcFuutraWqa+q6Zrvdcn1zw831NV3XZbZGZvXle5wBBaWou5raSupI27a8ePGCkj5U1bVIRFgr1eCcYxwl3TOGwPl85tz3NE3Dzc0zAQUzEHR1tSfGIBUqjXBJYxY7U0BVWZqmoVuxnJu6oW5qYfxIb0JK2bEVhoZKop+WUpRCH1rx9PUvlo//KS+k5v9lFqpZDonC+AnekyjsTYG3rbUM48ixP0twpGlom1bYpTninFIiek/KAUTvJhH0d47T3R2nu1sglWqTUlWt3VA1LVWuMlpSKbuuZZM1NaucbppSTk3P6V/WWtquY+h7yWRI5AICWUz+qbr2O1plDZ9/ci1rrhZ2v0pIxcgEOgWim5hcpNKQfI0yCW1E91EqddWkEAl1JKKYnKeaHKfTAFHSvIThI3amT5HRFzF3SfcCOUlMsZnSEt/wKeHznm8Uc2XKslIS4H3CpQB5zIs9LGnm6gL8KT//XNk+8BMDPzEkhnNPGLIOQDlglZqJHhDn8z0VrYMkYoJJy6jEKLQ1KkWoNSFEKl2ojJHBOanG5TxTiSjFyO1p4jhKnq93Ee9lAzxPkfshYEziOAZOowA/RbR57cIvbWVQwwJSXKQXrIzwYoKXl6NUttFRi2DXQ8OHUtb3x/X5U0+3x4Cd9+ENmJkqK/SpBG7LRZbeWd6wUHAThU21SCln7aSqwlYVtjJIEF4QVj9JRZRpri4jIqTjJGkIzgW8T1mDAlJaqswsQyeR6vUwzv+YX2exPTPol/I8Xb4vnbLcfXnMyx78vjH6GJtGIs1gRrkDk/O9SyWBytqc6qXFyVyBdTK2UWreR7JhFEBJNbQUhSppFDR1JT8bKQE/i6JVuRQiS2UZU9VYK8aOtXXOa7arKhIr1oVaZkZpPyTla36GVSvvlRKmS1WMdarXE2j7PHmLMc47zNwuwMec3qJkfIuOCjm6IYwOj/cxM8BKVFjN9OL5SiXylRHUlOJMLS808zIeWguzseS3q/z3ShWjVy4q5dnTHJV5bK+d94nisDx8cb2XrJbq4uAw/92yV6lchtXMrJMC6pUvlQ1zGX9xDhIfnlM/tikl+jMqG9JliQWtiUGjksq5TLmsPcIQQZWgAzOosvRCufYqtSGtOoXLOa0zs6mkTqUkWj1SlbLA0Msp4JwYmgJMRR5CS0tAYJXOpNY/y6VKMERrtbo62Q5gtc7zHNKanPAt1PjSNTrfN2IvKAQcrKyanTwKAPTEY3lxPbX6oczRbADEDLanlIjJyDmnFDHK/ijVTxRKmbxnktdbWnRkErlCogSJpmmi73sB1lWNrWpAWAwFA9VG9vMUoWpqbF1j6hqMWdhkPNxTM/MLIAk/Y0wJmxI2CePHZMCnQmHzeAthX64o0tWyzl2MBKXoowA+LkZcWqp8pYv5lb/KpL3Y1/LXR8GA5KJlvNb7/np/WH9w2RfSg6ssbxB7pgQEQwi4acIYyzAM9P1Z1lyOW0fvOR6P9OeeYegzE+XyQT98Fi1Gl6yxxTkRVo+AaUUfTyoGSfUpEfoVkdoCCDRtIyBlZWfWYynAkFISJknKDpiXyqDRe4mwCcWT6ANRy/wmktetAJ3rFNunaImiB5ZT1tFYk6isIUakopDJlYFWDPMP2frrYE+MIaf6uJkBLOfrCjzLmjsmpwLOKypPgXLNGQTSwn5MCAunbRpSymKxVqqdGmNyOux37FrzclGr53mwH5dVpnMqXh7zoklTKo+VXlif2+VL52VX9lmVn//flfZnpaWlZT8gp+6p2blf9mY3TURjJAiBWhg/Uc7G5IMI/5JIIaCTBMQqo2griVjMU1JrrJbzTZd7CIGU9aZmsEGbWRcnIWdjjIGubfHeoZVis9kQg1QSC95DWtn/Po/2ao4/Xcv3mIFRY00GfPIOFR0qCNlBCialTH4Qe0I90MmRVNuKlKCqa6qmoY6KZCRo5mPCJYV1CYIikRk/+YwJ2Ucr7NJ8tF6A4eXkkTNpkR4IWRoj5FRrJU4RmkIIWM0ttZYD+Xn5DPATAz/eOV599S1aJSygbS2pG1U1HyizUw0yEQPUwJXRMrAGJiuD4hrDuMlAUIjicKbIm+M9t39/BqU4h8TBJXxKHIaRu7NUp0lZfFIBpzjxepRBm5xEokNMnKcws32kzfHvlXEaljSlIj5AXpTkiUUiZxSKb5wnSJxEXA6WgyrmxPkScf0IVs2TN8Xl5C6HWnHElr4qlPv1lyYpjaTJaZSRyKxRAhoocoRGyWbXbVo211fUTc1+X2ONRzMxDWf68SyVjm7fcXt3L9Tq08TxJGLN3iV8rgbjXCL6nJs/p3OBIn+uyvneeYdQSbSllidemriDJfP5oXO61qi4dGoWO3aldTQfpQ+/P22LMdKfzzNKbYymaRuur66pGxF0vNptqZsqRz4EjBPdFaFCmqhRYQTMrPkSk3jzBVRra/j0+RXOB3oXOI6T0CQ1bLZCXy4RZgClDVpLOUdbN9i6yQZrJQyS2RFYHJOle1fr73uef70pr1PGqqrKooyf4r1nt9vRtu1cEvfn1ApouaR2lRm1Wou5r6zV7Fo7M6+Ci4x4jv3I2/ueyQV6LxwTa8SLrq0lIVU7fDFyk8L5gELNFSaARcjXaJRV1K2dGV7TpIhGhP6qyhBinNNdE7IHln2wOCmp3HsGj2fAEDJQoPJLJX1s8TNmMHfV5gM5rzNjFF1bs99t2HQtIM+VdMrRGtm46mxUhZgkUvYRQpsJyUnXGrpW2K4pChAgaaiaKRhiyoCPLv2m0ZMW9uukqWsjaaxBUKMZhsuPPjsYs/exzJECepcSq8LISUQ/SVUmL+yrlMBYizFD2fjn/ctl5uB7gFsBf5SAU1ZDYfwUXR5jMuvHyHvK+o0+EZxcy8xgYsLYNEfmdMrJtxqsVVkbAGKuzGYrTbexVLWWqGcURtUT+pq5Pdx1VmDA6iz33tP3w6xXJyLXagG+FFhbUddNBl/F0SBBfzpDiJgEKUR8Ek2Hu9tbxgwk3NxsGdyerm24P50ZXaCqE5u2Yb/d451n9+IFu0+eo5qK0/nIpMUGsSiqsscqJXs5iXMClwIaOIVIoyIWOGjNTgnbqlGKamZqyTkQgSlJVDWQ6INjwjHGxBvnOYbISGJMENVSMOMS9Cl7eom/XsKvT52oULbSwqRcj6XzxfEX0fcixl7O7/d34MtzvlSoncaew90t49Dz+uWWP/7hirbtcMOZqT/hnePLL//AH7/8YwaG+pXW0w9p5VNVDmSI1svV1RW73RatzVwZylrLfr9js91SVxXPnj/jan+FrfLvC8tHi/B3sUuFFR0YxhHvPMM4MByODIej6NA4ByEQJxFWnoxEy4V9p6m6luf7a7quxdrqzxmqx588weQSaENT1TTaYIwjJYNrPNaKXqgxirq2GTwHNCSdzxC9WgOQiyUg1Z1OB+4Pd/RDj4+SEmzrmv1uR9t1WY9nx3azWfR1EqiU0EXbcxVcqLSmqSpQYNWOTdNKH6/MnJK6LNcQx1mTWSlaUta0MWhrSfgMfhVAPpebzxpMCqiM4fpqz/PnL9jv99w8u2K/34nWnRWArgRpCqvS6qVLTEGxVKLKzMuP0tZmzU/R1JK1oYqBQgbZs41SN5a6bShVZZXWJEWutJVLvtcNY642KyBN7i7v0UGqTNlagMJaWTa7DtUgwE+MoluoNF63BF2jrcWEgB8HYW6nhM2pmQW8SySafP62rWg1PRtvGIaR7XbH8XhiGHpev3rF6XTETY7T8cA4jnk+lsqiT2fjKKVQtqFpG26e7WmaGq0ltV8pRXAjrj8QvZOMlwST92gUQY8o7Zf0RBJVVbHb7yVgGQ0vnGIYHc4HRifVmN8dBqhOTC5IYabzKDIAKMa4MpULmA85qCXzvcqV90JOQY4JphCYcsBaawFjCxPPmOxHpqJLlFnNWmrE/xwDxj+xuHPg7u0tdV2x3bbUVYWupGyhRLZSFieNlEhfAipyHilSHSLjpYRG45ImAsMYOPZS2u3u1PPmfmTykaOHdxn4Wfn4Fw740XvsKKBOyOkv5RBfH+bS3o9Jzb9LK6BDLVSvNP83XwIykqhn/YzLDGCpLPHzSSv5zrYCemaPqyDd5N5Rq6jACvhJBfhRoqOhjWE5c+NyuKFySe+aq+sNTduw6SqslmRBP/WcD/f4nEd/Op+ZnOf+OHJ/Lws/BUWKeR7FlCOsGcnPXxrB71BFg0gGVXylFfCTgCwIJo+aiu1wEWVZH4eqPPt3deWfNQB/eksxMU0l3UCiPHVVsdtt6bqOtqlzaWtL2RrJUf+QuQ86eVRwkCLRSynZGCPMVc+Ernm934gmzOHMfT8Sc35s20oql9UWo212+AUMBIlQK2th/l0Bzop6xJ8H+jzWylq11rLZbLi6uuJ4PNJ1HXUt0fOnjEo+VXt8vixGf/lmjKTv1dZQWUMICZc8w+A5niYG52cHSmspB21qqbI2eZ+BFdkXYxAjIYSAz9WAJAImKTRKKynHXVvsKM56yI6+yZVSCrODJGySwvgpQsspIzxzJH0VdV0A1PLajM8+Cvo8nBHlgK/rSqpJNBVKibCfskV4Pxt/OUVAjCL+ROfrh7eYI311pbBWjIcYDSkJ8GODFR0yshAhCe1zhZUIVSXgnrEpM0ZWz1sAkjwGF1rB896dAUKjaWqTjZVIisI0mKbIOOaqk9qJUQM5XaucVXGOOpbRmWeiWsSb1z7VHEXWCpP1eebfZzAvOAFpbF1SxKC2YE0+a7M2jYBDy/MW4KeuDZvOUrcmV24Ug+7pBUlX13uI16/m5BxpfaQfZsfKWKwdJNqvDTZrHk3jBCFmWyPORroPgWPfZw2OCVOB86JjJ3onoKuadrcj+kC339NeXeEB1dRSVh1hGdvZsin6PjDGwDk7jj2RCgF+vBHNH6M0rYGmzDVKaij0KTIh4M8pBIYkaZt3IdBHSRvL6lDz58ICWl8CP+U3S4d+LIWKhd0DZQBjFvad7cQVA2hmBX34ivlbwLuJ/nzCOcfd7S1vXr2ibhrOh3sOd29x08TrVy95/fqNCMn+mRVilJK9uAgNP3v2jBcvnksVqK6jbUX/5dmzZ+yv9pLqdX09V4fSlaRDxZRw3s0l61OQ5/Ux4iYRpx2HgakfcOde7KsQIKcLT5OXc8gamk2DriyWin13xdXVHmue0BVJUklZK01l66wZaEgh4rzo/NR1BpyrhfUj1edU1hWDOWqfhL0cSVIavj9z7s+Mk1S6lECCoe06NptNtp9aqaZVxizbkCpHJnRatgijNZWVPbc2lfg+IEyqXJikpJQVAXUJlaqFeaI1Kqd8qgzuSyZBmTfpwka1WrPddNxcX7Hb77OAd4uiBMEiJLWI7meJirIkTSlmoiQQ8dE0fn5i92cdBJyfKKVcMSrMr1dVPWu6lPc7N80pVHFyBFvNrBytFSoljPcY7wX4NBsR3tearmtoWnmPigEdIgFNn2rGVJGMRqdInEailnQ70UeU0vF1XYBTGecmChgUQmQYR4yt2O5Em8o5EfQfxxHn3QwqxiDVV5+UCasUSluquhGdqk0rwvGVMA2n4UxvkhSESVkbJ0S0CiQ/ie210EGxxqDbipgUWw/7MVJPsja8k5TzqDUnHzCTx8WIGkS3KwAu45VQvl/6agqxQQHGIILQISV8EO1KlJLxc2aVwll83RLcyintSpG0/mg2449pPynwUw6hmV5fUgnmg3MtVFfMx5x6kB0BctRnBSlkQ76INWrqytDWFm0iXic6hE4ccnrVQwdBAKd8sKd5jj0SW7psa/fq4c+PRn5WB3dBAUvaS/7le4f7zxEtfMSzAh7Yueu3qFQCgPN7yppT8z9WjtvDLlfMZZQlPUPmkOQWC9095Eic9yKeJtG4RcxOAncFUAOlshCqUnMlolkjYzU5lCogzwNARz04kx5OgosfFHxgHqWLZ1+uOPsN6fJzn6qJs1VoombWm4Bs5KRSMSTmg0/y3lOu6JNIaKWljKIWQTRiiShFirq90YhQXUxU1grdOhsUa2NZaLOykc4Gv87mTVn7K0ftPdBn/j0P3re071tHD9PE1hoIP9eWHuw06xmXVr8oUZbKaImmhIiP8n3edVVhHCi0tRKFLWKOamE7PdqP8/4skZJxEr0XHxaHRWtFZTU6FFZNBm5iiTKJwZnIe+MM9DCDPat/rvrgAfhT3jeP39Ij836qyrOQz5/lejqXuVVq0ZpJq8/5GG3BtNSKKZO/Z1BDdJpkfxRBZ1lfYhBJ39YV0sdarfoon5YPnnO995Q2AzF5z1UlwTPrnEkfL2tUzXu6Yj1c8iczNHdx7SXlr7CQFE2laGtDU0k0vrIC8Fgj6W96fn/Zu/L2kErm1hoUkE8VbGqV+pUoQe/LifJk7cE+8R3XT8W7e+y1BEpJ1UmlkqTG5GdJMVyq3hSmSXZOE6JBMU0ObQznc8/xeEKh6KqGXbuZWRrDNDE4J9HMnLYpAuHSl0UjRQzmiEtLFRUBIBV9ZqoZZA270vd5FGJKDEQcEnw7p8gY5WeXwCcBbqIqQM/lHla6UZOQUMIi7l060D3xOEoKT3ZCVs+ckrwWLlhta2HPKh9T2c64MHZWZ4qCqm5yqpUmBMf5fMK5ifPpyPl0xruJaZpWAqM/vAlDtjB5RRj4+vqKqqp59uyGm5sbrDUiHpyru222m8y8sTnd2+Q03cs5vWarxCjM+eA93i3aIWlO8ZLvSSaCjKPWs24iMTMJ3RMXTci2jS6AiJKKjdZmJrFBKiJpcqBx2TUWS63sXPm/DGiHEHCrVK+y6ZVqbyWQNqevxbzprMZmdfkLy1A9ONTU6p50fl3Aez2zDOq6JiglRTLyZ8cg9vAwDIzjOGs4gpy7KJUrj3Vst1s2XTentKv1DazbPIdXNzx7SO/Pk59b+3PuT869PN/lIvO15tTJLI+gVKl8KH1YaY1VMoKiG5NZU8ZgEbCvtRVtZdEKWqVosZnRJf5STApFjUHsMNVWUFfUrTBo6lrYelUt2lwF9BF2dElBDMQoxVpS3t/3+x0QGYYK76asyxjmamNKDU/U67JfhLCkRzpn0EFBkr3PTT6zKEsWTvYtYkBHDzqQQiL64pNJdCghItulGIdWCZUMOgpruakMkKgrgzWljidz2rMAsYtdUmyE2UiRV1bfF+C07H1ymRXrvZzF+U8e+g8/p9SvnxT4MUbz7GYvTkh23JWCFH1Oq4FUEqtWfVMMffHNVwBR2YySbObb1hKTyuJXDSHCafJcDx4XE8PoOQ1Oon4hMbmcW57SiuUjQoZLe3+QHkAzs5O+VoAovkUC4mPXSCsdCXhPDOrnNEmeoj10msQXW6U4zXhLyb9MMxCjFdjMM227mv1+k/PONZMbiNHQ9yfOJ4mgnU5n+nOP855p8gJOJEGLjRZkfDZcErmEe84pJZFSmDcTo/OGnpLwa/PNy5in+dkUXJS3ffCkj/y8vHd2ROZfr535j3OgKq3pWqF6b7dbbBZ2jKXssILJWlLI+klumqNHZU76yhNdlIi/AgpDy8iBo5RC5+umpPARBi8itU1lCd7hpwnTVhhbo7La6uzCKTU73isPkzXs8x29+73tsbW1FmpbH/BrIOjn18peKAjBXJlJKRLZ0DOGTV3T1QYdAv3gGGLkPAVCUiRt0dZgKwtaS+70ZiNjcjxyHicihfVSgISVuDBkYEBxOk+8enOgqQwqLcZxXRn2mzoDrbKIYkoEFxhHoacrFWTME0s1BgqtfTkLynlQMNuiI5LyqbtmZy16HAsgoHOUZqlskY0CpbFZ4FIrjdJmKWGdLvewJxu9hDARo5oFCOVz8pmkCshRGHH5D42AAlEltq3m5qqmdQlU5NBropJ9LWTtphhTTsn7AOagZM+rtDhFTW1oGnGWQo54pQQuKFzImi0uzNpQqgC68B5Ql6fmzAwre3plDZVVPL+uuNlZ6krzbG+46ozcg45URpgoRfNZZ0DImtINOQVohfyJoHOOyhkl6b1TyAyi+BHESC88og+091G38v8F+JMfYpS0ZJTCZD0UBegYqfIcD6Q874V5EVUkJEXfn3n3DupzzZd//Iqr/TXb7Yb7zz6nP/WkGPnD19/w1Zs3nE8nXp3O3HoJktQK6qxbN6dQIoDNUMrsIkCMTokD0ESFIlKpiFUS8RaWLjnVK+CRyOmUAZ+IADYe0aoK8/6u5q4S7bcASWFI1CpiSDN4WAz04Qk1KWKMnPteHP20rJsCwPSDlGB2zmXHQyojqYxMhhgwOQKvtM52jYypMUaqJanLpLWhP/P73/0DANPQM5zPxBAYx37ltH+3Lbh2LrTW7PdS7bSua37zm1/zy1/+gqZpeP78BTfPblaVrURYXKpCyb1V1mJsYV0Vm+yS3RQyuOCmifPpLMDVOOGGkeA8cy3lvPeGlGb7OEWx2YOLnI8DKQcgnqoppYVtUyqEZh0jkwWUrYG6Shid107eZ0NeZ+TzoZwaEvGXza8fBu7v77m9v+e8Sr+rrGXTCZDStR11VVPbihg8wed1k+es7OmapNMM5pTU5fUWIVJfWmzSrDOYjKGpa7ZdR0iJFjn7qqrm6uqKpmmIIXA8Hnn58iWH+wPn02lmojR1Q20t19dX/OIXX/AXv/0tTdNwfX1N09Qytj4sadUpIqv9km03B+pTygG+n6tt9N3tu4J7KUoGyuy8LJELOd+0pmtbbvZ7AVpDRHtJUyngmwIao6mtZDI01DSA0YZ2v6PZbjBa01WGpug4adHeSkox6RpvrKzDypCswtYVV8+es93vJdWrbanqOoPVPqf4JQmCx0jXNnRtI+lQ48jVfsv53HM6n/j225ccDwemaeL+/p5xHDkdz0/WvzFGzqcTRE9dwdjXcwBQKYWfPP15EBuFNOsEiq11JiXwzjOOEzFESY2rRaxcac1uU4OqmcaJfhDma4gNIXom5zGkrPXqGV1gmMIsS1AO3cqoXFVV9nBVCobomNPgy/2kObDi5iBpnisrIJzs1xtjiCnr+P6APfynbD8t8KM1u22X/yXb6pzetWBlq0jlpTE1/6uISM7gikSzjREksK40m5wC1o2Oup7wIXIwoGPAhYhOYjCHlKNOa0NMzTK2LPDNZZNX1INXLvFyydN83MheiwXKM7+/Af18Hc0/s82+V5r77/23lJmwAEBi9BeKpaXtGtpWFr/3UklinEaGccDnqgfjOOKDiHiL0aZQVgBHEKZQEe2VD04SdoQZWFQIIJdinmg5dWA2YPI9X8yQx6fLB7vj4b/Wsb1Ld/Vpm8pRn6apaTMAVNI7vBcaqXcSv/VOqNwPRd+ST6goh5g2ClNlmiNJcsC1GATKVCQ0nY9sRhEbtUbnw1FShZTJ5b+Lgy13Kf9Wj+wBD/rlT10r32dEPwR7frZrcbWmyr8LO06MRjlgrTa0laGrLD4KIyf6wBRyAeJscNi6RhtD3Xa0my1Ka4bJgdKzCF5Ky+e9R4sGxslzf+ipK0NjFU0t16+sYVPbXKULKeGc9VYmXyLbKx21Wci7MEQycFMejwKsr7R9ZnBnSZ0tAC8rp1GcrzRT6eP8XErSbPJ6KPCuHPwfbw7ItdUc3U0KkhLRf6X0rBe3vierE5hAVNBWiu3GYj0Mo6OqNC4UoyXM4Nb8VXpw9UgFXLNKgJ+21mw3VpiVqYgPw+Cgd+IQ90qqyIgY9eKMvxfRzh9VGDsqp4hZI+f1fmN5fl1RWcVVp9m2IihfZT1A8n6CWtg+gjcnAQNKZDaUSKdc21i5p5gSIUiaYgwpM39+aiPskcOhAOnlXJyXcUBcOimDLhKxSpwGVcAXeadOwsAp4zqNE5AYx5E3b97w9ddfs+k6iEhKTUq8vn3Hu8OB8/nMYRw5Z3anUzDlsYuRWdR7IDGq5d7LbLUpUuRrDQmjYp7DC6vTIcBPSimnlOXrs2LTqcu5WHpBpWWMK2QuKMpc+7Hj8X6LKTFNEyVtkbxH+AxuTtM0M4tTSjMDmRn4idRNTdu1Mysj5eh7VVXUuTqPc44xM3rO5zOHw0Ei427CTdPsQMAPT/GaWQhG03Ut19dXdF3HL3/5C/7qr/6Ktm149vw519fXc2Dj/fTl4sCInVMAm4tUtpz2Us7vaRwZzj3eOfzkSD7f+1xGWRjDkUTSZkbrY4hMwySAdni6taiUwtqsCail+phSilpnHR0DjRXgx8XA4ER3UCoD6izVKfMrkYMTgs4zuYlz33M+n2X8VqBe0zS0TUNdib6KNQafoqSPpTVTjZkhstgZ709nxcJWFBaq2GV1VQnAkxKqqsBWkqLedVTWMmrNOA7c3t1xOhwYhlHSZzIrqW1bNpsNz5894/PPPsNYS5tLvqcYpZx1ngslv0K9F51cHGe1Bmz/HWyPBfXKfI8rQLKcb0WWQ6ksj7DpqIyhCokqo+XDMDLGAZWgM4bWiuBzpw2dFj2mtutosg5U13Q0dYNWGlPVGFuJxk9VEYwhaUU0iWhEY2+739NuNmitqZsGW4m4s8/izSklvDXCSkOx2XQkFNPkaJtGKpAdj5CgbVv6viekhMosxKdqKSbGcUCpyOmkCX4SG8PI+e5cZBwCIcg+E1UBVwLeSdXlaZw4n3tiCDRtzXYj1S432w1X1y3WGnoDKXl8UARf4V3N5DXT5Lg/CavKh0SIPqforn1vss4eYqeU51+Bv4skSBZ5Dp6UtKRfrkgas8+mcjGJuLI3fyagD/zEwI+0bKCtgJ8STSjG4WPObumydc4qabUVpSSilTmkoBCChlWJxghN2FcKV2t8kAhVTKLyPeXFOjsRrEy0i8Fau/plW1wM8SUF7cGfKB575fHeWX3ez2milPbD72gZxbTug+xcSf+uwK8ZVV05WHMyZnEW8lf+d9EZSWpx7hKZdltVoAy2CtggUUOtivvExeeXA7mIa2qtxDHQInKXUCQdJT97/ZezkX7ZKw8pu+/3yPxYq5cLhHk5yz7WcaoQILakspW5JqmHC6UZRIzUh6Xke6EES+pXIsruhor5jiPopJfhyw9Ryv0mEIq4c7jJ0bQSJZHNsTz0Jdjz2P2jPtA76zX0p/ZLRupLaduqquZy7j9L8Ec9eEK1zDOZ1+XXi/FeotiSsrcyPPWyuGKKeC/iKjEGFKLjU/LB5yMuO2asNM28F1E97w20RqLKSuZb09RiLE+BUIDE+WAs/oLswFqniwoj0hZeZfntbJPOBnTOq5+jNWme1xfXSQsLZp7Xq6+yXS37Ulqz9p+wCbBSgKt8MuaX0uoB5Xel6hMUPR9xYiqdSAbqCtpanE5vcqWlmFOd/eKThdU6UbmyVNtY2kbo0W1jJWValzNOgB9bQeWyIDURogh2uyky5QpcC4BRnjDNhhT57o2Byipqq2gqaCuwNuscGSWMS+Zks/n/64zc0lMFfpzTv1ZVzmYnZu2ofBzcYNUet2Aud/gHjtSH/nR+whxJVJI+ICmAOgOfUUSr87VilLNx6Efu7+5xkxPdkUqi+re3d5z7Xhgs3meAZ8bWAGFDyFexhZYXyxqM6nILKjaRMILk33NVL7Uw9N5/2NUoFic5gc2fVCmotaJSswlxERB4qhZC4P7+kNeD3FeMaa7gNOXIMxSWxTVaW0l9ywHJqq5pNxn4iTllNSVsVVHXAigPw8C57wnZcXCZRSR6eV76PC4V2eb+vVizC4hQAjkl/ePq6opnz57RdS37/Y6uk6pdVWVzFcO1s7uA+Utke3GO0rIBzl8x5ipeIRCCX6XVr9Zq2QgUKCM6jdromW1krJl1aT4KiBcjyXtS3tu1zWeCApVTyEvqlAK8EnBEp2zXF7uozLnVWTKntLEECK21Od1KL+cvJb1P5TNSNFRSzt99L8j04Pxej/WajWytlffVNbqSYE3M83PMYuD9+Uw/DFLpD3nWpq7ZbDZsug1d29G2LTqnBL4HRuVz1KisI8QSTCkBFOZnfPrx+9PaQzvhB/zFg5suzvmyxpa5XES0VT7DQgyooCS90Xl0StTKUBkjhGXrUVbU0lprM/CjaY2lsTYLQ9dYU2Vhbosyudy5lYNQKY22hmQtKNBWkQwi9GxNFvXWWVNGWIRGa5Q1OdVr6Y+YF6Q1mrquxDZoGzabDh88SkF7ap/czk0kAVxCkVohR2xMZtdEtJH1kBTz+tQmorQw9EJS6MkT0YSo6EcnGkBKS18YwzhOnHsheIzOCwM2FiFzRbI5EKSLfmIOqpHtoWy3+JjmQiNSBCLNQbPFmc82cGaBrjV81kyieR6t9tqfi0//kwI/KSVSFgOdhSAT2blO88ZXFlcBVNaRB4nOyvvFyCnvK2aKbJmlxFqnIlUVSVViazT7uiGkxHGQEu4+Jk5T5DhK2bcpwjRHiNdbyaXzsYA/698uG+Hy2hLF+1B7iAau2UA/l4ny57VV0lJaRof5CFFS5jBHU1IS8eWIIuo4zwtxcIT1Y4rmg4EYHcMgo+8mJ8wcFE3dcrXTEn0bPFXlc5RKokzlpmZNOiOgUEyKGDQp5rxRnTBBjDdHwM/Ub/Xe4VCe6hJSWm29jxhsi/Ox5o59CMz4c/r/w00poXcXOmLw/sJxllzbiNGGEAV9TzFmllCDyXm2PgggppNQ9pUCi0VbWYNKJ1mJKmuS5PM5TBOn+wPBR6qqY3d1+ewPAbKfqonQXsfV1RWHw0EE6bZbtNYSIVnf189kMxcjrJQkJ98TGWxZBBpTCAQvoq9TFieNWowLpRTKGpSxJK2ZfGA8HklI9Eorocj7lAjJXx5qyBgVEfbjecT7gDWaF9cb1LONsH3ahmetGB1v73sm36NiECq+saCEluucHKTWqnm+lGjLZROB/JADzCLmmXPpc8Q1hMgwDNlxW4CwmBLeB6nWFrxUc5gNd/lKaakCGKKkA0sE7WlbQgIQISl8VOiokFBR/oqi7UJKwsrK5edDTg2by42GiAuJuNW4Zx2jizlF631QfXSeYVxKRAtIqNh3lqtNhTWKrrNsuwptpKKLyalVIaqsD5V4d2d4e6txPnB7hNvgV6lzGagiszbniQlKK7pacdUpukbxYq/49Fo+o61FvFnBHImRI6KAdJLzn0LRIpJrSknlTJc3WbjVyH3EXH0JpcThRD2pgfv97U93TC42viQOo9WKVhtsoQhkR/EUPMl7KWIRAm5KeOd59fIVYy8i/n/8/R+52l8Bibev3/L6zWupxjQMjFHmRkiglay/mJZz7EOzPqAKUVaEojNYUthIsBTUeAj4qDWDLhXQCHQSFpMBWiXBu0op9pWh0aI5NMUP39OPaeMw8nd/93dYKw5SKTFc0gO8lz0qpcTV9RX//r/6V1INra6oM8unqiuarp1F4WOQyk+zzgxwd3fHmzevGceRly9f8kcrZd3P5yNHldMJnMvsow/Pm6JlY4zh+fPnPH/+nLZt+M1vfsWvf/0rmqbhk09fzILOAgzllOqYiElSWUJOD1kDpPKexUZX+azHB/wwMY6jiDr3A2NOe4opzoZVKqiVKgwc0aJpt60wTCqpjlTV1ROvRfERfAgMbsDHhLGGuhHtolQbulpSeStt0NVSddD5iEbKaEOxW7MGFXLNcZoYR2F+iStQmB8b9tsdXd0IWEIBlkxO7Qqoshii2Lol0LRIPah5oahVkKUkXElqT8PGb+RzNxuqtiMmSUN7c3zN3d0d33z9DV/98UvGceB8OpNSwlrL8+fP+fzTT3n+7BlffPE5n376KQmYvMNHYYcYu6SgVXq5t8Ik1rnggclWq07q/aP5J29//g2sQbV1cCylNMs36MzsU0qyBYZhwGhNX1vOtaXOLJz9tsMoTagMvq5QCTa2orV1Dnw1OTVUo5oaVddStr1p0OX3dSVMLi1nlc5pUaqWdHyd50BVW/nbDGqAke8ZjPDBzHZPKJV4tQBYYRPYdA0KxfX1NYfjkZSgaRp+Z58OFogRzlMkaWidAiOMtdp2mMqCjSTjMTEJAFnJMwkYI3aEPRyZeEcaJ4Zh4M3rAyF4yVZ4c8AYzeQjkw9ZUitCkpQujeKqq3CV+HSjk+qko897XgIfQXkIKkEKBC9zaXCRyYVsY6Y58yPGiAo58ODcRUBcvzeHsoxLTjMthQHgn9Zv+OkZP0ny4GKpDjBHM8UJLzSr2XHO0eeQyybGDCBc+gFJDpq0YOUi3Cv048bKGxuj6RqpalKZgNIKHxIQcD7hVdYtSOkHbCML+CNNXbzyZ3XNA6Twn9qh/LEtrf5fDLv33yQgIGnRFFAFTVXC4pLIjBj4urB+NMQUZiexVBciSWWm1hjRcVAT4KSK0eiYgssfrOb/ayWIhIoxiyJKCpgCqY4Qs+MQ1OLQPHiUNWyzRHWL17o8K2oxMkorNvzsS/P+7HrqVoTmigBhJK5eE0MvImKAMQs4SvRLUzclVUYOFKXUrNeoFKigiNGgcmi+2DM6O38JiN4z9QMKhb9ajcm6Ix7pg4/tqhVArOu6XPWkpWkaQggXFNiHKZn/lGtVqcICkbbWLzEF/IFcklTATx9yRSAlGihKG5RZSneE4JncJLniwSOMHwFZZ4ZmgbjVZSrWMDr6YcJoRV0ZrnYtSonhtN9tICVOYxYRzGUxtTY5yqyytkle74/thbLdL+dBKva3noWZqyy0qXVgmi6pyylfr4gOloO7CKJqY1DazOkOMa31cT7OOAv4o4g5RVm6NZ+NKlISZBRSZn3Wx0PGu7aJtopUOuFbxbCtmXwiJk3IKVplnBLQDxOn85AFhNUF8HO9rbBG07WWTWdlHK3oYshcF4ZSCAmTIskHxkkzjC6vi4VNlW86+4LLCaCVgDtdrdg0il0LV10Wg6+yfk9SwlBSwsCMcQmGiFGeo4SoLAWWo+FGnBRj8u8jLPCDzulm6uNvJu+1B+fCn/qneQ3WWahdotB5H06JXgk46FMierGX7u/uOR/PkhJQ1zS5QuEwjgzDMAurl6EKMFc7+bAVVAJbq1T3R/pyCYGs9nPFXJnovV5Jsr/oJElgFqiRqq6Nho1RtEbjEygi7iEd5gma845vvvmGqrJsNu3MrFgAUo1WFUppNpsNn356hbU17aZjd31NVdfYqqLpmpwmXsDizNbK6eVv3rxmu+no+x5S4nB3R2UNpMA0DHilcmr1dz9jcTiKiPMnn7xgs+n45S9/xW9/+1vquma337LbbWR/XAk2hxSE6Z4kdWtdxllsgOzsFGM7JgF+QhZ0niQtrbCV5uh32QPywCqN6G0ZTVVX1G1N1VTYqsLWFp1Fl5+yJUTvox+lqp2tJLBgraXSBX/OemPZKgkxUhlDIuVKhflaaaUFGuNSRCQznBS5qlctqV5VruakEnNln+IEqnydAtoqFn1PlfWFypKZdYZyEFInuU5lK+pGAINus6HdbHHeczydOBwO3N/fcffulnfv3gp4OI6Q73G33fLi+XOePXvG9fUNV1dXhBg5nE6EaUSrSNLSQSIibUX3SJXbkvkogCiAmtOsf57tu/fax1L55/NldQmltdgFSmVtu4mglMhK9D1UFWq3pWsqrDZzhTgNdKahszVaG5p2Q912wqS2hmglZ9lUDaqSMaWuoBaQSVVafBOtsU2NySLcwtzL2lV6KeagMPMzKJ8Zrymhg+holWIuKUFVWUJMtJ1U/DscjsSYnjbVC5g8mJBwQWGDgFmYBmUrtI5YLZpStqqomgZtioy/3IdPBnuc8MkynSdujwPTOFLZIYPzCp8ULsqZVBlobLFpoK0MldEMU6C24mv4UuQJAZhCkvEi24UgOsAuVy9ci0IvDHIFmQlago0zfpGW1DCVGXPrv/un9u1/YuAnO/klhJtBn3XUURz+S6Mi5LKEJQK1SjRYRbgVUHZ02VVTNmBmmD0pVE5BMVnEUiGTpKt1LtcWhHEi55tE0Oa7/+5nm3fy73/z+3/9AAz4p54YH2o/5HheALj1X33H8yRm0Gb26NT8wsWlhGbr8T47jLn03lz9IjGLMYYC2OSc9VKlSj5Lzfc4b/Rx5azkGyu4ZDESlpxNuUmZYoUWnmnE+W8Ki61Mw7k3Hhg5ZfaXX5fHV/OL6Yd1/J/a1gdcWmZ5mp8HSnTeZPV8Y8VxmoVW8mpMKRFdlIfXCeM1MWpQIUeQ0mzMRJXwznE6HXE+sL3ucc4hVZQWyvNqhC47ZgbtLsGAR368aD8kqlg28LquJWc/58PHGDGF8vBzaYpl3uVtbzbO8rxZC0cWAKPodsxVfMrkyu9FC+tEaY0mUilDlXNoQhPZhCYDJ5nyTpk+cgNybWZgcHRCH/aFdYH8wfpe5eflPuQtZT2m9a8v5kC+GAopQa+1qICUyNwF5bkY22qhy9dVRWUrEX7PhlT5KgBXuU6I8UlFSNet7CnC3BHAQqu1ClrpIRFg1kry4detMBibynK9q/BRo3SmkOc5UObIMC7AT1oGkNrk1Ggt52JlBFwwJmF0WccyazRIilYtjMmutWzaCh8SPkScz5yMvIkWcFDAdqFgN7WmqTV1lasJadGCMlbliJ04pUkJuySF1RwpQYEFr5xBZpBSrGo+D5ip3R+vrcHgy9+vbZwyn7//hH//blNidkLJOkkoMEFnFpCa073KsRvlUBQx3lydr6QuXRaeWN9d+Xn513weqbIRL2mXPPJE7z+fugB91n9p8xlngBaFRQCfrYZaKSqtaJWmUnreMz4C7pOFcU9UOR3CVnY23CX1Je8TClCaqm6ExdJ1dBspz2ytFXF4I2myMZSqVWk+cytradoGgOvraz777HOGoadtGhQwuYnjwWSA4ZEgaX72OcWoqmibhu1mS9dJta5SYUr2woRWMbNyxU4OMSzzoFTwXI1Nks18to1SDDkAFnKa9iTVvEK4COSWClhKIWxqI8LKprKYqsJUFbaqMdaKtp+xP+hs/qFNpvv72kjiwMVlTs97ohgbxhisMSQkWFJS4Y1KIrif31NlTZ0q71kxRpq6oes6Nl1HU1eYUs75gS7ce1N2dQ/lLF/snMUPKDj1Ot0rl/rLzquwUI6HA8fjiXEcJKgRQhbTFcHxruvY7nZsNpuF0bb2PVbXX3/W+gxVa90SQH3MXfV7XIfvb2W9LBf5ENjzMJgHzCDIpXxDmsHAmBkcQWuiX9a6IlFlnUFj9CzYjNYCMChF0ktqXZrLViIpUPnfSmuU0QJQzraJerTi3uyCquIGq3l8BdARO7Fgi7J3GKrKUleWtmnYdO2TAj+gMLamqhqqppWiIU1DVTfYWsTPxXRcPU9Kec8Qu2Wz3XB9fUXbjigi09AzjgPGSJVapUSn18fMQEPWaxn7oiFsraGtK4wp/DmdC42Uw2RJlS7nS/GPZhupdC6XzB5A9sj8uSmt5twjvvw/Nfjz0wI/iZn2WgzZvG3NHVU6Q/LWpdNjSvhSVeC9PSaDPChISzLRYppEVK40kRB6sUJRA9tKIpdWG9raSBWwMXAaPD4mehdFxDItVWPKtdc/Xd6TuvjG/MkPumLtqJaJ8zMFe35c+8ChoJZxWmyiwiZYzQWVHTclS9r7kb4/44Ojymr5CkWa/Jxj7pxncKJbMI6OaZKo/uQczk2rz5NbiSELGrIegwdGTK5EV6I1JX1CsTJAy4aeDY/HDqyL3lhHFcqramFOyM3F7Gg97dwojAdNmo2IEp1MKUJdU+mENvnAyc6jNQZbmTmSUPJcvXeM0yBG0FTjvMdYQxs0WrdoIx1uM4BwPhw4nEa0rcDU7J9/RtcFqroWAcz5xC8O78N5VMCBh07W/ITvvfdhW2++Zb4pFJtug83U+88//4Jf/erX3N6+49Wr18Cb+f0/h6ay8bdU2srsFKAyQgOusqPifCCFwOQ8LkRCkhQ9M4MhYqSIk1MYOJqmlnKgIixpaBsx1I/HE3f3B5wPDIPjPIyZGSP9GoDz6Hl339PUlrapud6Jsy6AQ5CvlQOZMp0vkZkITvTarCKX5Szwx+UIa2Pouo667kgxMowDbnIz6Fss5xL1tqZi23Vc7Xfsd1s2G2F32arC2gpjLDFKVQyXI7yTc3jneeqmEIaLAlwQYM6YRG2zYz+vhZBLuGusyfM1yT6jidjsoGyvtvxq9ynG1nTbDfvrvbCfDBgjPSc58QMxAzTOiUN3vLvl/t1bgvczhVwrMCZiTKnYJOVpY0rEHehUMfmEsgbbtPiQ6EfHMEr/T5PHTT6PY3bqNew3hk+eVWwaw7OrLdf7Lo+NiC2mGPBuIDoRUQ1eEbKOmCol3lKSdMGUZuFoWQ8R5yWSB4kiPyYl4R/qPX3MVpyMh3tGevD9w00spDIDYEqRhKbLLB6tFS7BFKTaCDHiUhZmzvtzQBFCYJomgMyilrlQhMUf2jUPn+ISZ0zZuf9hJ5P8rZovLVZYmudTk8GeWimeac0GRa0UV0bRaUVUSiLkWnMOgUOKTB8BhB0nxz/+7o/Udc1+v6OuhJkiYs1W2DyNCMB3e8vu2TXb7Y7tbsezZ8+zeLPso2ILRFIUtqybpjntdLPd8OLFC7z3PHv2jL/4i78k+MDXX3/F7//wj5zPZ7766iv+8PvIOI5SCnly7507VVWx6baS0vXiU371y1/TdR3Pnz2na7uc1ghucrIFzukIot1XmLwxRkIWMFvGuehpCfAjwrEyh/rDPcfjUQo/9GeCmy6AFWF4ZkZCVdHuttjs9G321zTdJqepiMZJATGeoiVSru6T50dhxcUIYdExLAysytrsSEu6vw8hnxUL29waSX/vuo7tfsvkhEUTnKS2fvL8Gb/84guur695dvOMuqpnEEnlbIVs2M6nXXHei6acVkoWuhbnUn7MDPGY3wNZk2dhSYUg1ZpevXzJv/03/5bD4cCbN2/p+wFSEl2ftuPZ9TW/+MUX/Paf/TN2ux1XV1dSyU0v6WaklIvSSBBIKuFKaewivIsSJm7RfIt8yAZ7ksH8KO0h+PPQiQcWzT+4YHLEzPrSwDQ5+n4k+sjY97jzCW0sXS6moZXG2hpjhfUcbYXLYCxak6yReVBpYqVQRqMrDZX83lTCiFNaUdUZLFUFTCpgidjhxb5RCNPHIvtlsQ1DkP236KHWVrNpGwm0AOMnz9l2DVX1dLCAMYbt1Q273ZbrF8JGrOuKzUY+17sJdT5lrTOQQhSRpqm5ut5hq5qrqz2ffPKCEAK3t+94/sk14zCQYiD5KYPYCZ/Zi1OuAhZiFE02QJnADhmLEBP9FDhNskf0w0TfTzk9LhB9rl6blgDm7KulQi6Q1OtIWDQiUYXsOPtFrObUAuIuWR//VH7EPwHjZw34rH8HKS1Rh5AHM5Wf0yo2pcpGk43A2YTIsHyOCKXZZAoZnMnvTwqLpjFCeRPqnCbEHDmMca4447zoL6zvWs13nu9l5bg81tTlX/z/T/s+tH4F/mQbnsLaKfMkXfR8JESPc6Ngs9agkhVCYBCIdta6yCUpvRfxQRFoLNU48uenAoBEYiiLcuU9zIeBHNJGySaqdMx5zbIxrEsYkxd/ifQsKWN5HqyjDA++S5ddIvlpRpifvolRmu9x7gsBfkwS40fniN1sIGSWlcqIV8zgmA+OYRSjNqaI0hrjDcY0mSUhQh1SOQMpi9ofQBuef/ZLhn5AZ6G7y5X0UMp3vZY+JCr4w/tr3nzT8u+6rjHWsN1uub4WkcwYI3Vd/fDO/cnaMs9g0XspzWgRylWUPG9hY/jMoISUD6ysN1CiTUmMvpQSbdNwtd9SWctu03C16zBa8ebtLSpFxkmqv02Tw6cwsy4SiSlkoecQGSep3iBpmmk5GPNYpvI8ajFQyvgbm9lI5NLqwDxs2eCpqpqua/FeqvxJJFpSFlGF+qtzFM5ISl/bSiWWWoRPbVWi5FnIcWb6BLwP4hR8hCEses0hJGLZO6yaZ/98wimpmFdYP+X8VEk0UZKCXdfw4pMbmnbD9c2eTz57kfUtEraS83WaRvpeGD/T5BkGj/eBb75KfOnumcaYRSMLnp1mwMQqAW5iSmwbCMHgPEzJEjQ4n7D9iNG5THOCuCppLCXrFW2t2XWGTWvZdA1d06G1CDxrLQwDrxxBSXq211qMV7HE5+hb8mL4LnuB7MvOi7AkCpQtvuVjNsjHauriZ6Uepgr+8M8v7xRbKK8WJeworTW19dRao1JiKtYny5lKkjTP5XbU5ff37jtd/vzIbRf22Pe1WeQ/PQ7Ba5Ay8kAH3CjNXikarXhmNJ1WeK05ac2kFA45k5+wENTcvPe8fvOOpmlwLtA0EogIEaq6poqgTI1FUjTazYbt1V4c6Ztr0e9QsPTMUha+7xXeT4A4Nrvdjhgjla2pa2FRdtuOiJTjHoaBV6++FSsoRdHZe/DMxgg7tW1adrsdz26eCTix3VJXdd7LS/qCrKuYx/wC+Fntx3PLgQFFdmScJ3pPmCamYWA8n/HB492UI/cLg0wpMptHYypL1TRUbUvdtFTthqrp5hTfhar3RG122lK2u+SXF89JCXboOeU9JWiqhNElxU4YzDqnjZISdS3MqrZtcZOja1tijOy2W26urrm5vmHbbbLWmIg5lzWUVv+XtqTYrsWd16/N/1q9pwgNlz4rQMT9/T2vXr3idDpyPB5x05SfT9O1DZuu4+b6mhcvXtB1G9q2zRqPKYvh6/ksIcYLhkl5hkhO+c57TLnlj+q/fp8f8cPfdPkXDxg/63kBWT8rs7zXYxFj1u1SCu89znl0Aj9NhHEiVhFdNzSmwigjQs1WDqBktNj0K1YPWpOMItn8O6ty6UYRatYFQF2JcM+pXWq5fxmlbBeTQd6U8rmT072TvB6jpPI1laRyE8XGsznd/ama0oa63dB0W7rdFZvthqoytG01Bxm9kyqUpFzhO0WMVlmQvs37g6QWdtsGpRFfYxrxw5kUw6zBGFPi3I/cKy0gTkwY5yBA2xgqKzZyNUXMFGbG8zBJQC9mncQyn9Pq/8tcYaEPR0iEWRJDxwUgXPzH94Gf9b//KdpPK+7MGlmNlBSRNY11zo1bdXbZHMs/lh/LhnTx9hVwcPnSLDJYnI1cPaZUikVBrROtVXgNPkk+uYg+S85fGfMFrBB0/LvAH3lldT//hAP+kzW1/i6Hpsqb82rUHm1l/B8CNMXLK+BISrJQE+JYJBeyiHOcnTyd85SVWg6yFBcD4BJoQg76MlqrmyzHStlsC/BYbOzyZO+PrJyMUsRhMbZnQKhcW6mLeb4AEqtUlSdva4NrAdkK88UYiy3GmzHZEdSZBiyQQUbFpDKB1gImKJW1msgpFhlYQrRkxDFzIpKpYha1PIESIyV1Evl//7EvHanHu2VdNyc9eH/p7XKtFXKwcm4W3QTLZrPl+vqayTk23YamaS4M5HnMlEQELyKNP1H70MGyGIuLcEDKEUZt5QTUNgsGFhpyHrcQBSBKKeG8ZxylbPema2ialsoa9nsvQtHOoYzBeQFctfMk5+cdMeR+mZynHydhKIQ8FkpLlGcFRBXNmeLYz0bxavxLNbKqkhQXraU6TIzpUnMgRy11Fr8u+fDWmlXULFexc16AXDsRk5IoezbsvPPClHKOp26KpZyoKt+LLgQ5112Z1Viq+e+0zqW+E2AhJZUF2Cvapny31I0VsXqbo/rz2CSscWjl8C7QNTVNbVBpAb8UIpYsfZVy2W5xCutG0yVFHRWpqWmvKkKE8zDRDxMhRE6ngXMvJapjTj9oa82ma2ibmqaWlDvRZBLnVCmZiEpp0Z8Sb46ky7wp8yGSZl0DSc+O8/wVZqbWCpNZLfOaePJRfGxU1+3PA3zKu8ueFgGfhKruYsSFiEkp7znL2Zqf9tHggvwizevr8n4fu7fl3H7svt7/Bxf3Uao5KkWu0ib9XymZu5VS7LSmVYpOKV5ozU5prIZOK+q81Yv+IriY8AncAzvxKVpKIn6vlGYYx7x3iRZaNU1UdUNMYKuK4/HA3f3tXAHRaEPTtMISyWeksNAF+BmGntPpNOvDCMs4CZu4kqCCnDfPqKqazz47cDgeGPqe4+HI4XBP8MLuGAbRx7PGUNcVdV1l4NpgS/UqlqDJbG/EOAeT0jq96xHQBzL4njU5p2nKX8JAKpW8gHmfKMuyAOtVVWHrhm6zoWk7qqZl026ouy6zXcwMZjx1m9d6YW4UhoRaisakB+9ftH2WCa1zdUBSpGka9vs9MQQqY6myFtz19bXoAWbx7LLDiH3A0jfltyotZxzlzF5sxVTQlNWYzJaLKvavVPEK48TpeOR0PHE6nehz6euidbfdbrm5uuLm5obddifpaG1z6eCrlS2rlvu62D9UqR4VV/ewftfHaSr3y3e39S75yDW+Y349ZPpc2E/yw+zEr23EeU9OAoiFHCTyIWYfUUvxjAzgoLRQe61UtNLWoqr886wtqClCpu/bPJfPOt/n6l1rv4IHfzkD9arMISSFLAmDqK4qYhOffC0WIFzkNyK4SEoerWAceo53B7wbM9tX9q5pEvF4UBcMN60NdduCVngFKjhiUJiUSGbR3FLq/9feu8RYlnX5Xb+19z7n3EdEZERmVn5d36Pph7tbSAwwQowYIASSxcQIyQhGjWTJU5i5xYQRUjNBTJi0BFIPkKDFQ24hMUDIFiAhY2wZELTabWzs7v7q+76uR8br3nseey8Ga+9zzo2MrKqvKiozIzhLFRU3bt7H2Wftx1r/tdZ/WXOffWXNMMy+i7StgUGJSMIxxMS+6i2bXCHOkMw3Z9KxP3E3g6dkgxU9zOfU255/X/LOS73KgTfkLIxyKJUXyLwHdI7qZYA0P21GaPm8oiBNRgA5LsTSjYA0dp3IUNP4mtKbN+Byq2+oKth6KwHb9o7tyli/bw4D14chs4BrJpIa3ak8JaZSs7sD/xCU/RBSgDP48s10kvkmOm1Y03tnBmcGCsTlchWXo/XFG9XihPjcKtXKt1Cl33f0O0s3llAhoR7JZZ3L3CLJAKIk1uYzFu6faGARAn7Wlno6aI/tWu/MnFWwblZZtTHdAZHGcU/jHfMb5BgkGutqZXbQaSEV/Bq3+eeUch8lG4jF8S4E28551vWaZrXK3dRyXTGFrFkNLQ123VEToavBDYgLxFxv2yfokr0sibfOBFHp056b3Y6YlE8/+4xPfvxjNtstqt/n5PTUUuXvXPExaHOflBVZXnHXqbn78vsNBWtXb929vv/9H9B1PWdnZ/yjf/gP+OzTTw20Ll2WpKRJe7q+5+rmhkMmUxwBmS9XxTcXndJ2Cx+N5MiQiOCD8SdYFlVpX6ngzNFWAR8qQmPdJJJayYgO1s3g0HaomnPZ9gMheM7Ozjh//pzNesX58ws+/v73GIaBH3/yZ9T1TzJ3zJ6b2924vrquZxgir693RkrohG4YrDWfCkkH+iHm9aN5fWEuYjZE3bh+DAhRzAhYb7ZmCAAxQpdbDCed0tWte52lQHtnEcvtujZApLIyuP3hwOW1GRiHLuGrA3GI7A8H+n6g6zpubm7p2u7B9Sli+5Q4y66zoabMISAgHh8qwJNxUzTzLFQBgoIGj9YBcJydnfD84pT1esPZsxOeP9tS10ZuKs4AAmU9AmRd23HYtwxDT7+/4vqLNYf2uH2vDxBykwR0QHUwkGlTc6I14gLr0xesT1+ACN0QrUQuJi6vbrm+3tP3A599+povPr+mCvDxy5oXF4Gm9pyenrDZrg3KSb2lcYuDylLAU1IGBI1l3ufAQG4MIDg0QezTyGPVR5tTPgjr4PGZxtUIzxnH9oCa5MtW+7Ep+VWz6PjaSt5Ar8ouRrwkGATfWbvlPmeyymjUi0Xuv8Y3zffNu1cwdzanl8z22OIowpjRIxhXj8dAn0rsxwErcdQIQYRT8azE0YjjeQicOE8twrkzAChh3TQjhuZ1Q+Q6KtcpcZOU3XewsaaUuN4d8K5n13b43M1n1VgHzLppODndUlUVu/0tQ+zZbDacnJzy/PlLmnplvBl1nfcsBayctetadvvdyAmzWm8tih8C6/UG5z3f+97HNM2Kvu/5hV/4Pr/8y79K27b85Cef8OM//VMOhwM//clP+OSTH5NSYrVueHZ2wnq95uRkk4H5ihDEAPUk41lY7N7ifMw7zBRAxF6ardpkWUZxsBLX66sr9re3RiScM5JKsMjnzpAuR/GrquLk7IzVakW9WvPsxUesNyeEumF7+oy6WYNYhyhEqMIDZtPm63AZaEQzZ8/Y8c++s+yEharBO8eqqimrJjN+YNmOds9eXFzwy7/0S+x2t9Ys5NCCwo9+8ENeffQRm9Wa1WptYHyaSrqcGigvGURwBVAXC6aNNmIGUuYwrJWFMJV6OWtA0g8Dr19fcnl9zdX1NX/yJ3/Mj//0TwycO7Q0VcVmveFHP/ghP/zhD3h2dsaPfvQjXr16lXkM7dwUMveac3ZGzHiQRmd2pluQnPXOyJHyXfk3Px/301dfw338PjDZaiU4PAcNIXOLDpkPK/uNBUAcVHEp0Q6RXTsQo/HeDd5KxqVpYLUyEucQkCqAc7i6wtXlsT1vaygg3udsoAxU5o21ZEeP47kz/lKFYH9Ns8hclgzUqYwBlOAzuXldc3Z2wma9Ijwkl6UYjqUkuqHHtS1x6GgPe2Lsub255fNPP6U9HDjZrHh+cUrT1JY94z1NbZmC6+12LLW9eP6CmBKHmytuRYlDT5BEkISIouJRF1CF233H1e2BYUhcXd7w+vUNwxBZD4ntkEG6lNgdWnpX9sP7zvEZ7DYDO0vJVpGR9Hl8rY6Z53fl/zcZPzBtJMNQog3HxtC8Tr+EicrGREYo/ay+v3RaUZk4eABz6CmlYoybe8aKxqi9oYOWNi9iZJbkFHvnBRccQyJzxEiuI7Rae4Wppfyo67uZP/rdeO6PSOa49DyaQEFXs4wH7p0ssHEdaqm5dlg9drKMn5jout7qPhXqlZXuiQgEEOdJyWrsfa7Zjcg0d0qXooLkMF1WCYoa8j8h54UoraQSjxy0b0RQJ/CnjNGmrlnMUn6P92R+4x7aMZl/9uQg2D52nJZoNfoVdWUcEs6XazND9gigAjOqvNUKm27MJ4spp+SnzJrvAyJWrnDorATo5vaGy8sv6Iee84uLWfaV8OZZ/tWgz9s37Tcmmz03j+TYjUGAuqp5dn7Oq+99j5giZ2fP2Gw3BvrEiKYcVasqvPMc2pb9fk9XIgBfqYRvL2Uvu1ubPhowYx34jKCxZMHlzB9fVZZhEpXYW0Skj7k9ZiZJH2IkBE9S2Gy3nJ5ssaKrmMugEpfXt9T7A5D5IGKkba11vMTEvu24vj3kFF8D9kUykf6M+FkciJYsAcu/mx/FpmkBZ47YNpdM7HYt3dAbqXvRpyvEwcEyDsQKxZo6UAU3Ztr0/cB+f8CHQFQhDFba1bZlHNaprG27B9ehiGX8WGp54QaRsfOEE4+4yrLtxBZT2ZO8K3fHeiAJntWqYbtZsd6s2G4atps61+3P1q7zZlwi5iQET9/3nGwb1usakZIJYGsiVPYDkJLD/EUB14BfE0LNq194yUff+z7Oe4bciTPGxOevb7i8uuVw6PjjJhCcteh+dhbYbjxN7Vk1K+q6AVXiYPxQmkCdpcrr1FPZOnyNp7vND8W6f3ZDKZeL9Dn7x5a4gUPm396fm/ntZW4czg3C+V7wdb53ZqzMtyw1CKEDnCohRg7DgBfLNpwDMnPQ5puM9C7MLuWBzq6vWDoFcMr/4jBi5gL+rPLfQYStCI0ItTiei2crnpXzvAo1Z85b23YnrAQ6ElcJ9goHsfL7Q0y0KdEmuw8PLUmVthsQGWj7PrfjduwqyxBsVo3xC9YVSSMhuFxadUp76CwbsqrGMhorFzKHse87Dq3x4J2enlHVq5H01UihK+SZo2lWxGjnzcuXL+m6js1miyA5o2PHz372UwDqzD+0Xq9YNRV17akyB1/JaJ/rf97gYu6QuGwXFb1CcVoGhkzkvN/tuLm5yfvhgX7obQvwpcNcdmwz99Q6E16v1pt8dp5SVQ3rExv7PADo3AM6m2BnuAOHZeQ4Pz8T3eRI5wmsFCDdzxw7NSAkZx+Cst1sePnyBYfDFo2J1EcE4eWLl5yenNDUjenRbuDouySKHci4fOZr7O61v+kzzLIV3QQg7fc7vvj8c66ur3n9xRe8fv3a+FJQvA80dc3FxQXf//hjTk9OeX5xwdnpKfPM0WwMjuUq5btsCBPX0Pz7nYh1ALzPR37v8uUXdbfU5q4DXoCf8knlNSmlEfQZqw6wcH9UpU8WMBOsUiRJ7g7qA+Q25VIFXH7smgpX58YLVTDqCslZ8cURziVOpabkjbqSOxPojVLi2VyS/ClIDu4KYzOPKnhYNcTcNeyhZJzjZS+JA4dDy9XVFX3Xcn11zc9++imH/Z7zZyfUtUfVqjOa21uGvmelSqgbrLIgsN4aKb5LkWF3zeBKpU60oE7VEFZrEMf1rqNZd/SD6aVtrdKgikqdm1Bc3R6ocrv1eXfco/t4529z247nUdlXj0o3edM+/xDk3ZZ6qTIMccZBMdW1FsdapHCi5I1JJ5dOFSMem99ELSlUjBHM4pAbKe4d0GeEF/L/bcef3piddFVDQq3zl9IEx7r2xGjdESDzyWgGlpTcZUXmn/70RN9EOe/KUTZPPune6MCUgbsS4dCcfVEcZs2gXpKpw1Qp7Sttm3UGDLjcLtoi4W5kWE+a+ZFT7vyTEQwncSz7KmR6hkm58RqtVCz/mbuN2TwzQlG4cz6XuXmk+Dfv0wiuwMjqb7fpGPyx1323J6vmNTBiVnktjEbfMFiqsxaDI59Jd9wL5wNV3eBiMqfSVbkF5YpQN3hf4V1F7WuSCs8ycfoQE+cXz9lsT1ivN1RVdef6ikyL+P6ZN3Nz7rFGCrg1f20Z+7gz5NtdjnznhPWq4ez0hP3ujFevXvKDj3+BFCND12YDawLQvHNchisrG80lOEWnMjtQ2u7hCIILODoZ0HJk4CY1XhA04TTzLCHgR1sWkjnCw9je3Gqtx+yu8Q4qh7bl9eU1wzDQ1IFNY4CC946mDmiqGPqaoWsYhnhsROXMhJgyT1QpzUqlY2Neo5LnGdltGfmybE1WVYOvapzPkXXnQMu+IIg30sJUe7wTmrqitv7gSIbsmzo7R1gEL0bj71EEFyLIMN6PUs7WdQNt9/ClXqa3KePHiYwZS6qSdVo6YuW9QxVxHudDjuQFVIOBG05y98MMyvUDhZNhBK+dWrNLlK4zgGvojYzZByuhKx19DGDSsRwabN8CQXxAQk3InTvq2tqxViQS1gUtDgkvwmHVsb/ZE7sekcTpOtJUicoL3iVQy6JLubQkZeAoltT5NHpqx05qWe7FKUogOYu3zClNYtkPovn328+vh5L7+HyOLYOvsa/f85JSXh6TORtRxMpxyr49+9439s/5syVFaCbzI2gMV8z2XJm/n/l8LBk+E1mzlXLBxjsayVk+zrEWR43jQgJb8dT5uco5PEqXHamWxGVK7DRxGRO3mtilxEGVyN2OZA8kkuc0NhgF1IlljavtkYe2ZYiDOSfNJYfDgfbQkSJUVT2CHlb+DD7T2MQ40A9G0FyFmn2zJw6RplnRdcbfo0lzabqjqRvieksVas5Ozzg/txKw07MzNtstcehZrVdWLtnkEiMxZajGnC2YtZjXyAj8YBk9moGfVM4QZezQlTJpcN8erC143zHE3Ma83CuxPVlyuUqdga96teLk5JTNdkuzWrPdbNlstvhQsaqbXNo22f8PWV5iNkrmY6Q4YsfZHNm1yA69ZUJOwPBsjxErbSq2qZXzNfYaO1wREdarFT6XrU1lXeWxAfaaJPMr5czp8R7K+NsaKpgtMpbGMPktQOartIzK29tbXr9+zfXNDfvDnpi7JK1z2dnZ2SkX5+dcnF+w3W5YNU127O06lFJRYd9vXVdlBMLmGUl3t60CfJQ998ORvCf9HHPqqzKBjoKi9sLx2LEmGbYXH/Ka6hB678FbNzupzR52VYWvwlTqNRI9F33Y9asaebDd18IbM3VxmyhRRhdrClDnDVvLk+XnaLzm00wghflQOscDH0BSbrShAtW+tkydw57b3Z6ubTm03UgPcRcoSbnrYMo/cRgQH6zsC3NE1AVUIonBGmOI4iWSut5As2S2qQJ1U7Far/Fh4HDoaPtupGYYO8AWfY8jePsZc7eyo/jFHxrIc5+8U+AnqbI/9MebsCv8BtnxN7akjKTmxaA5ikeZFKVzQHFCs0M+L1fG0uNUZuBPBi1Keuq4GO6mYYnFEWsJuCBEFTyOJlTEqNy0kZuDRcYPUekGu7aojHFIzZ8DXzZ1HqPMs0Le3CGOnhsPUcl70QwUK5gGOnaHnWcvJBIDES9qRrzzKA4RK8dwLuRiiAEQQqgI65ANX8ltpo0UNI0OjKMKlkaoMT/vzNgKOeCUVEugjOAdklOQk87KuHoYhgmc0tnmqqkk5c9ApJm5fIT+5oO1RFuK1Z3yGkAKYPCQ7RXJ9z934JjjcZpBDGfZVIf9wWrFc3co62wWqJsqX1cpuwFfrdmcrik8PhJqM17XW1Ynz/C+olptWG3OEOc5e9Xx6kcHksLJ2Tln5y+oqprtyalF5Mo1zU6hGbTz84/36PHM8WH+w+hAglBVno9ePme7WXF2suH6iz/Py/Mz+q7j9uqSdr8nxsjhcGDoe15fXnF9dcn+9jZ3M/EjAOPHNGn46aevv8EI7huTOckT2GNlZ1Vdjy2Hh1T0nKwWCiWoUHsj7iYqohHEsub2bUsq6f9Yl6iCWaWU+PyLS/7wj/4hq1XDL3x0zi9+/JIQLGvj4tmGbl2xrh2b2hFjYnfo2O37XPs+cLM/AFir4Rxl6fphLDkIuaWuzfqIy4Bryd7w3nP67BmnZ+cZiDTDKUqiCj2xt1K3k/Mt68Y4Y2pnpYaqiTj0pGTZS3VwoxG97yx67X0kKoRgZMf7/YGuN2Dk8mbH/jvJ+BEDRj1UlcN525tCSmiSTIKa089VcMkIOIP31JstLgRSEmKyFqXee/phgLaj2gdudwfqfsjASEnVF0TMgbu9PnBzeUXfd/Rtx6qprGtYtC5w5jwpJQsoOkXUeIdCtSY0zwh1w8nJOWdnF7mbT3m98vL81LIG+p5XZ1s+e3VBjD3x8BmxvbTW7i5C6rI+OuNbSpG+GxiGPu/lDldIKke3P6G57FREcMmbbaAOouKSAWkx5hr+bAR6lZFE++Hlvh1K3/L8z/eRpZhcVWlTRDudToe8mXc68Rl+lcgbv6fs1Ls+wJuvzUBP/qlRAmZUbp2wdo5KhLPg2XiXO3Z5TpwBP+fUbMWyI5zL3A6auNKBvUZ2KfKToeMqRW5T4pMhcp0zfQ4o8TtQn4ijatYGjGRrLhY7BWXoWg6dZTVeXl3yxeefjWUz280pPlQ0jXHahBBomsB602Q+MTf+tshzpKpqUoKmWlPXBpw29QpxjqZecXJyZt03xThzdrtbhr7j6vI1fd/x8sUFF8/PjXB4XedSTuPe6XWAUZvZtkhptEGKLV3sbSBnJvWZh2jg9vqGw37HMER2ux3tIZcxw1gq7kIwgvGm4fziIgdx1nz06hUnp6fU9YqzZxesVpt8FtaZ1Hm67w/eQtp7VBKiCUnWubS0t/fBkLiE2XVDBrq8g8r5kfbBZZDc8J2IKjR5jHGIBOeonJXnNFVDXdV458ZOjMWZDjJlVaccfLG1M88OIH+Xjt1ph2gl0MBI8CsixDjQti23t7d88skn/L0/+iN2ux2fffopbXugrmpevHjB91694tmzZ/z6r/86v/Hrv0ZVVZyenIzcPiVLXbL9GZy3xgluChA55/FzoKx0KyIDbAjqPCNFxwcsdzM05s/fBX7mWRzld7EbR96o7OT3ubT8ehio+p5GLKtxU1vTCL/ZICdbnPeEuiLUVbbtjcsHmfxGIPsuNjeSTplqzmcOKrEyWANuMBCJCQCyAUDJDIbs06CjyWv5r5aFb2tP8QHkgYMiwzDw2WefUzc1h76lrmv2+wOfv76kbVs0Gh2As44OlHMypYE+kz67zlPlxjFVsybUPnMiNRBWaBK6eLBOe5pwXYs/WLBLvAHNilgDHwn0/cCfffqaL673tO1A2xmPY5+z3b/JOX13vtzN+Jn//hDkK4EfEVkB/yPQ5Nf/l6r674nIc+C/AH4J+H+Bf11Vv/iyzzKi0Fwe4UokM7cQzodrKs61rYYRrCwksSU6qzBGU6bPnxxFA35k9tuendQ6d/5mf88eBm8ZHzkZFucyeWRShiERYyaRZAo6HqlWv8kU+s7knxSR/51vqcMvk/mGMRGTzdJb52hYQTbGRxk4UUWlIL7mcNh+IDCm61t6tEgJyWWelRyxajPJbAFrCvBjBkEmevYJJ7nNZp5DqkDMnALKyJcC5PaVOQoTbd4a9dCk5GnrnsY2L/E6fnAcZZjX2IuW4oUcBZoOVRGR/5UHWIvlUuaRg/FaciaUEdlamrTqZHgoFdlswYhns4FQW+cCcZYFIM5RrzaE1cba356ccnJ2YemaUTkb7I7VzZpmbTW8JZr2Ntfpq4+kCVzkzqOjgiEd78C0yRx9kUUKTrYb1qua4OEXf/QDPIm2PXD52efsbm+M++X6msPBQLKmCoS8r1WhHFAuE9e6ku34gGvRrnsCfww4caNxV1L7rSQSFHWKz2vR5ry5OX1u1ZuSdVUImROh7M2qsNvv+dmnn1NXFZsmMHx0QfClc0hN5R1OE56c6eE9TjxDjFzvEl1/IKlSKVTktu/5+swjt0wcwZzzqZ1tBn7Es2rWnJ6dATISparGTDxu132yXVt7cFEqsetRjXSdI8bBzh1n7ZZTclbWJUIIOq75vrcMn74fOHQdh7bj0I4ZPw+4FjO44wUfBO9AneKiI2Xwd6QAK/QCgHc+d6CriEkYIhl4NeBbMjF13xkPmohHfAGklcy4TnsY2O0ODL1lMhjIG2BQVOKdzUvztm7rPviKqlpRVQ1Ns2a1so42wSvBl5KqBtSypyoRtk1F37Vcfb7j9urKOpI5HdteT9k+loXVD8eBGcn77njmCrZ3GgcvDuta4pI3QAjL+CndOSUZH1CyCN2D7afTPfqy576GRTDf6O4aFMz4fpKiybroldMWEQa+PvDD7KuECfa5+zN/7QQlKCE7EA6lxjpzBWArVtZVOce5d5wE4/J54T1n4qjxnFOxJZAEOqx8PiIcUuJKIzcp8mkceJ0i+6Q5+8fsrZ4SGLRLeSg9GpBRGeCjA+QgY8TA1hQHUt+iKbEX4TYDViHUNM2lnWGrFZvtlhAM9Dk73RCqkEnXDQRCBe+CdSJcbY0vR4XgreTLe49UtUXmU7KOQUPPfr/jJ89/zNnZGV3Xsj3ZstmsaZqKqsoEYKSc5Rxndhj5qLtbSs/R45QSfSZvHoaB/X7H7vY2l3d1Vt6VgZWxDXkm1vehYr3ZcnJ6xmaz4dn589wyvOb09Bl1Lu96E1Ik708PpUMyH6F11SpZPM47K0l30/ebfWggtcMhPmecUrKQbDHGTLYYfGCzXpNUqX1FU9X4AshryfCZVpEFp0tmjMt7bxrX0ZhhVJxESqBGc7ZjDsI4u7aio2Ew3rnLy0v+7Gc/Y384jMThVVWx3W558eIFF+fnvHr1ilevvof3xgd21yYtGT+WOcuYoVTuwTxDqlwj+foR88NmIPrD2qj65dUF45dyvN/dfcdXfcbcUZ9/9921kl883hcld0sF2pi4TdEIg0XoczevVFfIqrFs3rrG129mtYseA7IjjxAz4CDN1ynmG0lOcMjXJbNPPQIcZq7J3BUbM1Wcke5DzpR7IB2mlLjd7SwQ5Y1v8Xa35+rqhkPbEZzQVG7MlmO0Na1U3EUhDlZuCoKvks3PUqrugnHBxo5hUNCEGG0zgrBae+pg+9N6vWJQR98PfH55y5C7P1vn5ynr51gzX1+K7j5kwKfI18n4aYF/UVVvRKQC/mcR+e+Afw34H1T1t0Xkt4DfAv7ql39U2QxLxDGjnTpFsaaJb105VC2Vzh7nKkdl/F26qpXHI4xguWwTf6vIbAEfO7vktxV7q+BOOmZwgFNHMBOS2sOqEqIvBHGZODUfDnb0TqS/5ares/yhqv4z316Hx/KVWT/M7NiiH8kAXXa4BUOvtTzFBNEp03xAscXaGdRmrccLgCEzkDCNratjhBQnNggrJbGNpgrV2P7duoPp+BnTwSxHI5kOiOPr0zsatkNxMrhm/5APV7n/sCkvlulezqJhyoOtxelAuG9jiinR9x0pDRYhI4ycMSklxAmKz+vMupLUKyOrdFWNry3VvWrWNOsTM4g3JzSbE+MCihCigTFV3RjfQSa6nFsZo3FydH++7BCfHXLjXJvd+PJYCtij0+OsR9v8bU50rWXz9Ic9aeggRYgDQ9/StXv6rqc77OkPB2Lf4QTq4DIxXZUJlo0HyLLWFB5oLQpT5qTPXdVcSYEc9auz39ktSDqSKWcrGbAUf+8yKaZ3BlyVeToSHrqx41fbDewOXSbTxzqaeG9puX1PdJEhaX69gT8Tqb/krjKaM81cNiJLyjmIOiRHtarK4ypHXTecnJ7y7NkzVJX9vqVtO5wbiH0FGqmDZ1UHVpWNpXZCcI6UHN5BHNzoCGTI+XgfgXxfCjBle0Q3xHmZ3oOtRRHrxGVtV41TqUxVo7PLbsSo13K9pZTBotWSy1hDAIio9gxDy37v6LtC9F1h3bo8zlWoKt1hR7ffMQxW1jF0PSkNaBzQTGg5GZJqwY+Y143vUdeiCt2hpT20xBCIAZInr60BUcugKmSxKfagA47BPjtFktr9TnGgtHWd9ia5c8/yPl2WMnnuVJkwPCUGUVIsqjR9GlF9zqCyz3y4/XRuXX9b+YqPyDuXAYP5OQegOgdEvvpKZnbP+Op5AIf54/K/SSd6J9Jv83RyaDM36XjORbVSrkTimmiAj8JOLZNnr5Gfxp4rHdglK/W6SYlODeyJzLkc5xv9A+lRBB+M+N45A4DG4KQjtzLfk3KZb7H3VILZezE3FslOWorW0bAYloW/ghzACpWVSK7XW+p6ZyWXQ8wE/bb+kyaurq/Y7W45HPaoKuv1KpfXNtZ5s/AY5m5bgnKkmiM16WiKlfUVU+6Ims/9fhiIQ7TSofyaEVDJXD6lqUHdrAhVzWq95uT0jNOzZ6xWa9brDU2zzkGPMANc3szuyfPjwdZiaRBQeYdzSgh2nvlgXc+8y0TPImPHx/tssWOIZPI7RptPdezIWl452a/ZzpUJTC2vGdfS3Sfzvl6C3FM3oDuZWvnzLdusQRW22y2qsNlsOL+44PmLF5ydneUGHQV0euPrjgFfySdi2Vzzc3OrqwBCZe3L0S7xsDaqjb3Mv/vsPpnd7eOL+Gq4iHs/9z5A1F43O3PGgNj0uiEOY8nm7nDgerejHgZCYwTF3nsroxsBDiZ9Z/4gs0EsEDbto36mf3uT5Ak0+cOzUTuzyUXKWOb2bh5LWfvZ/0IN2HaiJcP7Af0My/be7Q60bc+h7XLDjwEXfLZFbJ3EIdH31lXRu5YhDCR1iKvx1YCKp1n3o85CMBtm0IrkjepDy54L6L6ljwCOQx85tBnoyZl0xT+YGkLdgw38nHLffP3QwJ+vBH7Urvgm/1nlHwX+IvAv5Od/F/gbfJ2FnKMDJRKuTE66apqh3UrfW+QiJkbCTucEZ4kFlh2UDVBVMiqPpb5lQgJVbIPK1v3oBDFt55NjiKXEFcVpwqU+3yhnkUQEV0ETAjEpq8qx65IZL31i3xsI1Ku1HDUX8kFMwW8rxV76ljq8H7AY//WN57OTp/lO5I1oMtnKIXN8qJVE64z8WRZQSrSHnpubHaGucKjxqGARXqKiyXikuq438LBPDIMR8NVVQ1PVgNDUnpDLvg77A4e+zWm29hnkSJmTnA4kdg0lgjQCUzqVTM221beeOsZNpEfOdLlLmtKIwkvZ1N3xhq2qD7cWiwFzD1JtUb8DghKqwGplkcqoEV9XBDJg4OxnvTrl4tXH1PWKZrNhfXpmxmHVEOq1ZaJUK6rG0r11LLWQDChNXUEQeaM/3pevnzcdneP3zle7/atkwEey56PZpdAU6buWYeiIw8D+5oYuR9P63RUMe2K3Y3/zmusvvqDre26urjjsWw77HY1TztYNoQqstxuqqsYHT1U3GdSCP/h//vhB1qLx3VjHqvJ7HF3eU1M0B9qca7sHXVdSyCcQHsgtPaesoboO2SgWCru3c846ZyXl8vbAzz67ZtVUrFeeZ2dniChNCHiBOETqpme9aogpsWoCzaoiDonb3YHb24NxGKRkpOsiY/aQiBFzOgVxjlW9JlQrVus1P/zBD/nhj35IjIlPP/2cy8sr4jDQeAM46srx4rThdFsTHDRBqL3x5nT9MNZ1H7oplT6qdW8URz6jrFRgUOhj4tBHrnct17eHaV490Fp0zrFZr4lxoBsOubQjEdzY1AOff0cYidPNaBtwCL4KhNrWkXOK6AEdHIfbA93tFYgQQkNVry0zqrRIRbl+/SlXn//UwMy+pe33BsrlUq9ytsaSgYud0yKO0N0Q9sa79Hp9xqo5xVdhJJkFhWQgT4wDu+tbuv0taWgh7vByMKN2MJAwzdqwFwerAJOjtyoFYCiKkAz8eOqqsQyoIdIe9gzDkPdUzcCix1eVRV+9e8D9tJz0X/Wa+e9vJuXdSe7uauXfj8Gfr/dp+aSefeBd0Ofor/zdms/CyQU0p8Q7y1zzmZuqJPEftHARJT7VhOLoVPk8RW5UOWjiz1LPdUoMquyGRJeUiOSsILlzp0cn7WHWojjq9RaCka9K8FRVxXq7xodAu9tz9fo1fdtZZ9C2Q1MiaqKLVlrkQ147TohDT3dwRO84qObydKiqK5rmNd4FLl9fcvn6iqpqOD055ezZOSGEnC1ia2B3e8PtzbXxcGni+fMXpBRHfh/vLWvx+urGovgpWpBCQTWOe38JEMzjIKpTeVfKZ0bJwuy6nqjGGyPBEVzIQY01oaqoqpqzZxesNxvWmy2/8PEPRi6ik7MzVo2VrQV/hzT2zhJw7uHWohOhCY6EAT4JA0iatZ3BlXOsKithciLkUFPOOrCL08I1Sin4m4UiixOeJmBGsDJbwdZEzAum2Hn2ImE0FO8gJaYHc0BjKg1wIl3f29rLAZHC0VR4UVarFc/OzuiHge32hH4YODk54dd/7Tf41T/3q6zXay5evMAHIxEmFjBd872yfcTJyCSTs9gz51GBhmQ0icEZhcLYJYo743lIG3U2T++Xb76XzoOvc9v37cBPyeCy7NyyQ2rWx/7QEpNlhYX6M6IITd1wSIkh0ySs+zXr9WoCZfIZl5I1C7EvyrpxjtWqwfIoddR9udZSGRXVWh04J0gImVvSbp4U3zfF7HrpLCPBmnMUD9UxUag8lA4N1Bro9j1fXN1YFlue2ykpsm7wm4a6Ml61Q9sRh8jh0LPftYg46nrPar3Hh4qL5wNNs6FZWUXEerOhiQ3tHoiWFdkNh9w1LNINt7Rd9s/EgxhAfji0FgiyfYdhiDkY+nDe+mPP+EFEPPC3gT8H/Meq+jdF5Huq+gmAqn4iIq/e8t6/AvwVgG0oaYMup4kaMhlnaJtFgBMxak7Bsnlasn98ECS35qWABGqgUCxp8CUXOm/iBT8YEfoZ8DNXyTzqC2QuhTimoHnEUiWDw2PcPyUDYYps5/FEM9I/JBGRv8u31OGdf7j7uvlf08My8Qs4Uv6egR5ypBE9OlDGbCpgGBJdN5A0c/B4a3GpWkq6Mvld3iSHIdJ3psPK13aYic0h762etnMTseIx4ptjGeUQh7EbRBnGFNk5HtNbRfKnysTvA4yZZXOjQGTOijQ+9yBr8dl2Nd3tezYoK7XoUU1UMSAOQvD4viKmhEvKyPaqDlc1rLdnrNYbK+m6OCdUNc5X+LDKqco1PjRMHSWOI3/lWpIWE2u8ZXfk7r9MWpj+/rLN1j5/hB+luBJWDhSHjqGzTJ92f0u739Hud8S+hTSgQ0/fHmgPO7qu47A37oOha/ECq9raTm6a2vh2QqBerbKjPeri7/ItdViywbwPYylZMRAKkK6zqOEI9AFpKG18J6NSJBB8GLN9mtx9wsp6cunYCMIn2rbnZtcyxERTbwwcdMLQ9bRtRfSZd8i5aX9Xxm5ZKUXLHNGcrYFlFJXHrqwT7w1QXG+thODZM54/f55LEToO+47oexwDtU9UQdg0gU3t8E5Y1546GPBTBceQlL6P9FHph5QNbjs//LjY7WfKPk20feQwI+Z+qLX48nyd2xkrqbNsO2u9rmOpXYnEClNWoqoiJJwkvFfq2o2GTNIeTWKEh729p6p66kYN/Mjlh6A2x3fXDH1HH/vRudSSCZlBsT6WFZPQvF5i6ojxQBwSh/2e/e5AqAIxVsSYO4mlHlJv5LZdR+w7UmwhdTh6FIsIphiNjD9K3ssL+aiMZ7LMN8gCN+Q91Tuhqq2kJgZHSr1lUaG5W6OO2XElO+qhdPjlom95/GWvv/8cGf+lAC8/92fc/46jV8+i/fmrjj9Jjn8f78Z5vlJAy5z1k1/Ta549quxTogf2qvwsRq40cdDEpzFyqznol+0/C4K8nQfmofToqxoXrNtO2KxwVaBuGjZnZ1R1hatvOQyK+gOx64lpD8NAigOkDskZe4VoO8WUCfOFmKLxVanifcd+3+Gcsw63mRh6v9/T9f0R8APQHvYc9rsM5CubzQbN+1nI3YBS1LHroMacsaeWTVecylDlMrJ5NDopbS7vOsoq0Yn/RskAtHeZq8TK1JpmxfbkhO3JKZvNlmfnFzw7f04IgdXaAh9yzzw8Op+nCPmD6PDFixcGOGZ6BhWxM7gyXrkgQsjcNcUKmZc0Fcd77iWM/5/tvSMwkP2QgkaXdxVwutzrrwPFKoXSQomZ1qIAPuUsKvpALOOhaVaEEFk1axQ4OTnl5cuP+OjVK5qmZr3ZWOm3koPgx3vADM+Zrnu8mmIrTYtYmMi4S4DuCDB+yD31G/vMx3d7HtjM3/PWAPZdwGe+w41nsUx3iewzFODU+4Gb/Y5wc0NddzTbDZvDCVUIkH0WGUFAfQP4Kd/hvSPGQAjJzsI716VFWWX+jYGZ+egln4HltdN47HQtQMexR/xQOlw1IQMrPTc3e7q+jLEAmcaRVcrrh942/KGH3hlPT9dH+sFK8JvVmqHsj0BVVWgIpKGl9VUef2sgzjCw21kn2ZgUH2qqqkYxioBys5UZ6X1ZW98S/PkQwZ65fC3gR1Uj8E+LyDnw34jIP/V1v0BVfwf4HYCP1kGNeNQOK+edlRcguBE9t5RvUeMWEaeoGvcBiCUZBEUyWWca62WhtGI7QnDtIqYJP0vNGKf/7G8FdL4X5EVlbbenDUTESBWDQOUtw6hJRo4WVZEhwTCVKOnRd74fUdVvrUPnnI6b5uw1BYhjfD4nyh6BPXrnDeXhHSNVyWXgtgNWVUXVWOnQer2maVb4ypOG3sgGVXEq+LzxxZT5Qpgh+sznw7S5l65CE+AzpanL/HrQ49OtXF7eTadUWZuvRwdDdtYkWwLjYTM/dMpBUD7zLVbCQ63FH7w8U01v9kUZQaAjXRWjyI6KmBSJyQCCeoX3Fc1qQ7O2n6pZ4UJt3VFcGDsAASOoM94CZrNiZtjAm2nW48veeGb6lGNINx+G4yTM7y6bezlsNVlpUuwty+f22sq3+p6by9fsd7cc9nuuXn/G9eVr9rsd7f7WymL6ntibM6sxGkFkrqUnRZKxgNMjRD+BBg+xFkMIWoz4uwb7kWE6jlzHRxZJNuMiVJb2XtcVdV3Zc94TqhwlFG/gD8Zr5cr8doE+gQzQRWFIBhL5ULNeb6xUruvw3rondEOk6iwLxLsCUmSUfrYFxJjzFVzAZ66GEDx1XRGCp+taLi8vjZR5d0PX7g2o7FvS0Fs6dXKgDsHljKhga10FokWbCpeDKnRdTz8YUIwqVRvo2p7L6x2HQ8fNvuVw6I86sj3UWvzVHz7TpNanyGWHRbJzTLL28ylZlw9VcqYgmYRdiSki0TF0Xc6m86hGVC11eugzuJX3OZe5Jox7Qu0edi1xMBLuVMBBjLthNP3leA+1RayoDgYytbfsbr+w6Hpfk5oaRNHYo9FItQ/7HV13yDX5iSHmjlvK0c8YfKGcyfPzpOwTBQQpaffzcl/NxrLtWy7v3y4DaI6xvPxBdChjaPVL3/F1P/pLX/u1P+UbGJ+azzIt5zczZ3Duq4v9nWbnlLEw2H3fq+KSEjThEPqcZOIwDC4CBzUgqFU1AmdVOrUAWjEXZq7IsUejU0ao8nB6rNcnWuZ54Zsc8nWiEMUj1QqXHLge8OgQkdgj3QFJkWazZnt6Sl1XNHU1kjv3fZfnfsrlo5qj2weurq4IPoykygbm274lAkNvgGzJNvHBg2ouW/TZZsklZGD7debySjqR5wNj1kAh1C42bQGNNYNuImKZhjAC8M5ZOfbJ6Rmr1Ya6brh4/pztySlNs2a9WufsU58JnMeckfn9nmyf2eOH0uGv/MqvaGmhnicHRuxvjjneU+VMnDnnTbFhNTvL935PeeHMvrQ3T1av/cvMEhltqq+WogcA7+wctv2tlFrLaI85Z/bw+fkzUlJ8qPA+sNlsOHv2jNXKOqx5NxGhTpbSVKo02bl69LpR705m/6wc7ytS/pvu0QPp0Tn3Lej37/gUTL7bfc+9LTuj/D29bWbXC1MRAzkDLL+q7zoOB7NLdrtbrq+vsw0SSdFKmcZ26uRKlgw8zpt1APlzDaxwUjK0LXhjZ6AFhJIY8fdIWkrRdwZ/p4jR6NfaxacRpCzH+kPp8PRkpTHGDG4bkOmcI/icPYWBXsMw2GES4yzYZWuzWZWyW3KnVeP/y0aQvc5ZBrOB6rnzl0KolKpOuKgojm6w/bMbcun5EKfA6FcF7Z+Q/FxdvVT1tYj8DeAvAD8VkY8z8vcx8LOver/3jpOz04zwmXJHPpaUSZv73lJUHYg3Q85n4jgnQtRI1I5C/jRkQkiP1eqWnW1cvqVl5QjAlE1YMsBTlk1usChkR5VcLmHpsjJLnhan+NzisMkHbwKLNOeI+E07sOsGYlL2g1rtd76u99n58Nvq0AA299bohcwO8hKdvvv+8X9zbCQfk6pqRiV5MTthvTnh2cVzQlWxPt2wPT9BnHD5+VTmUblAnTsspHIYSckgmL4h5a5bhV/EyJqnyHY5UMvGMx4EdzCa6QCxQQhmZ7nibDCdjzLWkDNmV8A0D8Z7JLODtnx+0jd4FOw9306Pmh3Gu4MrwIuVQk2kf86ZIZdE6GIiSmSzrticnlM3a86ef8SzF69YbTb4qibkFG8Vh4rPTkQuyRMrE0GKM6uzG6ETr5bMy70mF2DyPOfG1ARqGICUsxJUZ5lc+bM1ZcJMK+lKMR4BOVevjbi571pef/4Zu5tr2rbls08/5/r6hq7tuPz8C3a3O4Y+0u72dG2HqtI4oWpqm2u5kxEiHMTuxUPqUASqqmzhOWqk0+9ixJcNcZqPhUsH6jqwWTfWDayqWK1XBspkviWbq5Yia99i+hQRCA03nXE1rTrhbAhUeKr1KZvtGlQ57HYc9rdjhMXS1x1NXVGFgBMzWLyh6sRhoOuNmK+pc2mB86xWK05Ptvjgubq6ZN/urGvY9S373R40IqlFUodLnjSARhAXaKrAdrMmJsW11jHKycDOd7TOuo/dHDq6waKrPmejdt3Aze2eths4tAOvr3fs2+ENPTzEWuxji2rCV4LTgCarQx8ieb6aDn3wY1mfBEfUlHlFjD/HwAxB1Yg6LUMyd60JVeYSsjEPOe2/O+zpDrdGBusc4j0qkJIwZOZIFbFoZdbTtP4SKe0Zhpaby5+gwzXee1abDav1GoA0GK+PaqLrW4a+Q3UwkG7IHfzUyr5VIaqM3H1mHNu3DdmwVsVAumjp7VXlCTkzLSXGxgtJHYlgRRhOx7I521cGjnaPb6nDsgYfs5Srn5dRzdu1T5jL2Iy6WE3ZB1I6Aa9KHxO3yYJjXwyJkM8z63xqP63qyNtzSIk+20dD+ea7tzM7LEdmA8eZ1d9aj3nSJZGxpDIlYDAercHVsH1GWFnto/QRSQm6FmlvIA6cPzvh1fees1o1bDYrnp1tCcFz2O24yeVa11fXfP7ZF/Rdz2Hf8sVnXwBCs6ptD/ZGRrrdrDMQH6zbYY6ON41l0lhGVbE/Rt6qkSutkDW3XTeCviW7paoqQj4/RCyjFwx4d85mgXcV5G6R682WulnRNA0vPnrF2dk5dd1wfv6C7fYU7wN1syZUdT7fDYgCjoOphrBM+8osJPEgOszjpwSSgBQH2tZsU60qKlY5MCVW2juCnPODcgJKpozu8msKKlq7c0bQ1HbFYqskZLQHv3p/ECc54C1UqRq/0HSfwYIcNKmqipcvXxJCjXOOk9MzttsT6rrm5auXnF88y0721CW1zJe711OalIgWihgZu0mOgGCaGqbo0T26g/xkeZg99buX0fHn+J4c62teFlbmdtZ0nmMaE0SQQbi9sSYSoarQFOm6lhAC2+2GzWaDc9kGyhl4m/WadbPKRPEhZ/zZbIrDQHJmtw59h3eOZlVDVeUrsxlq6z2O7ys+h12oBZBG4GeE/5KBnCJ5SMcB/W9t2yQdA2Zd7p5VV46qqQhB8C4x9C2kaKWww4zXL6+b05MtYHve4dBxaFvEO0KoqOqQOcdqQrVGXEXqE0PTMfiBJBVJamJM3O47bncHhhi52bXc7g/0faTrIyV0L7M1/5Tl63T1+gjo8wRYA/8S8B8Avw/8JvDb+fdf+xqfRd3Ux4kOTpGSZiUOiQlUcJ6xZbTxTdjmNsSeboh2GIu17s4fPtbS6ojyT5vvBL/PXcaJEd3IhUec214hiqaysPLXQO4okmyRSia8xZDYgGVEDMmimVGgi6V9oxkp72lieYBvq8P8GfZg5oDD3cjBuOO88boJ9JleU47d8T0lyuGEqq7ZbLZUdc1qs2a1Wo/g0eHQ0ncdTaihUgP/vIPcEvo4nbMYk1Omz5yI0YCfWWSFEg178/oNFJpgn3HE5daM+Ne0kRYjYTQe5nNxPEAF5td8PFmCiJw/xFq0a9TxusrfOmtbWVL1JRvDZX3FpJkHyZkhuN5Y2/aN/eA8EjIR1xxUnYM80zPTDRsPpAIClnt6DOoUw+yOuTjeKNPlRA6rcx3HOPKXdO2OoWvHLJ92v6PvOq6++Izb60u6tuWLz/6Mm+sruq7j9ReX7G4tE+iwu6VvW4s+dK1l9gBeHL7wyQxDrscn830Jg9WjPtBanKKD8za9pVy23Jf77M0C/gTvqOtAFXLXmboaO7Y4X3TooBB5iwfJgJDzdLm0tYvQJ4dTzyp4NquGklmBDgy9p6lbquBJmkaC3WIsOySntxs3kBkxtqokG0NNU4NA2x643d9aRtHByIjRhKfDYUaSxgFSQDC+oqqq8BnkRW0OFydoUDXSwc5KHXLnNbp+4HbX0mXjYH+wsyfLg61Fy2CJgI5RPsscLWuNsSQO56m9M1JEl9+brPBKhnh8zulUGqsKfuiIgzmPfSaqTkkNmOk7UMVXIROjulmDgnx6ZWNXSmiwrNNkHCBde4NoayTmqUVji4gw9MaXpaoMsTciWU25BCWft+PZe3yiGPfEVGoCZkzaGZuzbsf628w9gY6lYiVnSCjAT5mTEKPykPvpzycfhmk5P6mn59Q6S+YSgdFxnb2nbM5zMBlsvjhDHxnU1vaemMuxZQR6IkbmPMC47svnuxlXytt85TvX/LDnYs5SGRtKJOsq6GIGwStvPJMJfJXLnqs9uITEgWZ7wvbsGZt1w8l2zfnFGVUI7FY3iBP6rqM9dLPuTD3twYCZqgpUTcgdJbcMvbXfXjUr1qtVdsQbvK/GtuPFBnF5DYlkG1V8id7nRhjG3wOMjRqcn+ydIztA82cHD84RqorVes16s2W1WnNx8Zzzi+cj8LPZnOT9wY/amXHU36vBMaClls3wkDos92Ts56tGGq+AFyFVKfMnZgBzZq7OJ9eUt3PH3pD5d8j4xH3jvbfs/K3zesq8ct4TMh9L6ajKTFfeezabDWBlu8+fvzB+qCqwPdmyWq8yxlby92aLVaeg2vz3OKYRPLhTDqXH9oTM3p+fftC1eHzP7mw2b5U5sCVvvHw+z6ePPlbIfSDdlHF157KY/IeyL3ZdCwK+7yyLOnhC8MQ4MAw93nuG1YrVqiF4T1NV6MrGZqXYfjwNkyoSY6YQiSTvCZUfu2GXKxVVitln9t3scYYi5Qj00dEJsQ5h2b638sKHsW0U+n7K0jE7VazbqgcnZosPmhtodJEY83rLY/Gh4rQfcN5nLp6BaoiIC1RSspc93htQ6kIY+TQrddTJmd3dDnRDzGBP7nh6lPEz/u/Jy9fJ+PkY+F2xmj8H/J6q/rci8r8Avycifxn4x8Bf+jpf+MFlU30d++sOZvFI5TdE5P/gIXTI7JY8jXvzQcss86gC/vpDrcWHvch3/o3fkXyXDpkW4ODB1uLX/d5Jnoyi3pt8N2vx5513j0WPHwbAcZ8YkeP71OGHIaPj8LZ/eMv+8dZd5a23Qb/Ga77Oy99484d7Lr4v+U62hy//0Pm/6tteK/coVWCIAzyQDt/5zvjBbMXv90IyoPLdr0U9htLkDafyOCBYMvm/+mMf5/790JKDk+9xP13s1e9a5F1OdhH5M+AW+PSdfen7l5d8GOP9J1T1o2/7IVmH/4gPZ1zvQj6UsT6IDmFZi+9ZlrX4zeVDGeuyFr+dfAh6fGgdLmvx/ciyFr+5PFUdLmvx/ciyFr+5PFUdLmvx/chb9fhOgR8AEfnfVPWffadf+h7lqY73qY7rPnmqY32q43qbPNXxPtVx3SdPdaxPdVxvk6c63qc6rvvkqY71qY7rPnnKY33KY7srT3WsT3Vc98lTHutTHttdeQxjfXt/zEUWWWSRRRZZZJFFFllkkUUWWWSRRR61LMDPIossssgiiyyyyCKLLLLIIossssgTlfcB/PzOe/jO9ylPdbxPdVz3yVMd61Md19vkqY73qY7rPnmqY32q43qbPNXxPtVx3SdPdaxPdVz3yVMe61Me2115qmN9quO6T57yWJ/y2O7KBz/Wd87xs8giiyyyyCKLLLLIIossssgiiyyyyLuRpdRrkUUWWWSRRRZZZJFFFllkkUUWWeSJygL8LLLIIossssgiiyyyyCKLLLLIIos8UXmnwI+I/AUR+UMR+fsi8lvv8ru/axGRH4nIXxeRPxCR/0tE/u38/HMR+e9F5I/y74v3fa3fRhYdPn4dwqLHp6DHRYePX4ew6PEp6HHR4ePXISx6fAp6XHT4+HUIix6fgh4XHX6YOnxnHD8i4oG/B/zLwJ8Afwv4N1X1/34nF/Adi4h8DHysqn9HRE6Bvw38q8C/BXyuqr+dJ/6Fqv7V93el31wWHT5+HcKix6egx0WHj1+HsOjxKehx0eHj1yEsenwKelx0+Ph1CIsen4IeFx1+uDp8lxk//xzw91X1H6hqB/znwF98h9//nYqqfqKqfyc/vgb+APgBNsbfzS/7XWxiPFZZdPj4dQiLHuHx63HR4ePXISx6hMevx0WHj1+HsOgRHr8eFx0+fh3Cokd4/HpcdPiB6vBdAj8/AP549vef5OeenIjILwF/HvibwPdU9ROwiQK8eo+X9m1l0eHj1yEsenwKelx0+Ph1CIsen4IeFx0+fh3CosenoMdFh49fh7Do8SnocdHhB6rDdwn8yD3PPble8iJyAvxXwL+jqlfv+3oeWBYdPg1Z9Pj4ZdHh05BFj49fFh0+DVn0+Phl0eHTkEWPj18WHX6g8i6Bnz8BfjT7+4fAj9/h93/nIiIVNgH+M1X9r/PTP821gKUm8Gfv6/oeQBYdPn4dwqLHp6DHRYePX4ew6PEp6HHR4ePXISx6fAp6XHT4+HUIix6fgh4XHX6gOnyXwM/fAn5NRH5ZRGrg3wB+/x1+/3cqIiLAfwL8gar+h7N/+n3gN/Pj3wT+2ru+tgeURYePX4ew6BEevx4XHT5+HcKiR3j8elx0+Ph1CIse4fHrcdHh49chLHqEx6/HRYcfqA7fWVcvABH5V4D/CPDAf6qq//47+/LvWETknwf+J+D/BFJ++t/Fav5+D/hF4B8Df0lVP38vF/kAsujw8esQFj3yBPS46PDx6xAWPfIE9Ljo8PHrEBY98gT0uOjw8esQFj3yBPS46PDD1OE7BX4WWWSRRRZZZJFFFllkkUUWWWSRRRZ5d/IuS70WWWSRRRZZZJFFFllkkUUWWWSRRRZ5h7IAP4ssssgiiyyyyCKLLLLIIossssgiT1QW4GeRRRZZZJFFFllkkUUWWWSRRRZZ5InKAvwsssgiiyyyyCKLLLLIIossssgiizxRWYCfRRZZZJFFFllkkUUWWWSRRRZZZJEnKgvws8giiyyyyCKLLLLIIossssgiiyzyRGUBfhZZZJFFFllkkUUWWWSRRRZZZJFFnqj8f11wNPHv9VliAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsB0lEQVR4nO39d5Rc13nlDT+3cnV1dQY6IINEIMGcSZEiRJm0opVsayx/tuRxkmX5G31aHlsaL7+iPX4lWZ5X4zAj2Z6ZV5JnLMuylWiJokSJJEQxJzAARCBiIzQ6p8rhfn90o9F7n0IXGuiuajT3by0s8qlw77nnPvc559zbtbfn+75vQgghhBBCCCGEEEIIIYQQFzmBejdACCGEEEIIIYQQQgghhBBiIdBDDyGEEEIIIYQQQgghhBBCLAv00EMIIYQQQgghhBBCCCGEEMsCPfQQQgghhBBCCCGEEEIIIcSyQA89hBBCCCGEEEIIIYQQQgixLNBDDyGEEEIIIYQQQgghhBBCLAv00EMIIYQQQgghhBBCCCGEEMsCPfQQQgghhBBCCCGEEEIIIcSyQA89hBBCCCGEEEIIIYQQQgixLNBDj4uUdDpt9957rz3yyCP1bop4HaG8E7VGOSfqgfJO1APlnag1yjlRD5R3otYo50Q9UN6JeqC8Q/TQ4yIlnU7bn/zJnyiRRU1R3olao5wT9UB5J+qB8k7UGuWcqAfKO1FrlHOiHijvRD1Q3iF66CGEEEIIIYQQQgghhBBCiGWBHnrUgT179tgv/dIvWWdnp0WjUVu7dq396q/+quVyORsYGLCPfOQjdvnll1tjY6OtXLnS7rrrLnv00Udnvn/48GFbsWKFmZn9yZ/8iXmeZ57n2Yc+9KE6HZG4GFDeiVqjnBP1QHkn6oHyTtQa5ZyoB8o7UWuUc6IeKO9EPVDeLTyhejfg9caLL75ot99+u3V0dNif/umf2qZNm+zkyZN23333WT6ft+HhYTMz+9SnPmVdXV02OTlp3/rWt2z79u324x//2LZv327d3d32wAMP2Fve8hb79V//dfuN3/gNM7OZ5BaCUd6JWqOcE/VAeSfqgfJO1BrlnKgHyjtRa5Rzoh4o70Q9UN4tEr6oKXfddZff0tLi9/f3n9Pni8WiXygU/De/+c3+e97znpnXBwYGfDPzP/WpTy1SS8VyQnknao1yTtQD5Z2oB8o7UWuUc6IeKO9ErVHOiXqgvBP1QHm3OEjeqoak02nbsWOH/eIv/uKcT9r+9m//1q677jqLxWIWCoUsHA7bj3/8Y3v11Vdr2FqxXFDeiVqjnBP1QHkn6oHyTtQa5ZyoB8o7UWuUc6IeKO9EPVDeLR566FFDRkZGrFQq2erVq8/6mc9//vP2O7/zO3bzzTfbN77xDXvyySftmWeesbe85S2WyWRq2FqxXFDeiVqjnBP1QHkn6oHyTtQa5ZyoB8o7UWuUc6IeKO9EPVDeLR7y9KghbW1tFgwG7dixY2f9zP/5P//Htm/fbl/84hfh9YmJicVunlimKO9ErVHOiXqgvBP1QHknao1yTtQD5Z2oNco5UQ+Ud6IeKO8WD/3So4bE43G788477V/+5V9scHCw4mc8z7NoNAqvvfTSS/bEE0/Aa6c/oyd6ohrKO1FrlHOiHijvRD1Q3olao5wT9UB5J2qNck7UA+WdqAfKu8XD833fr3cjXk+8+OKLdvvtt9vKlSvtE5/4hF166aV26tQpu+++++zv/u7v7L/8l/9i//k//2f74z/+Y7vzzjtt79699qd/+qeWSCSsWCza4cOHZ7a1fv16i8Vi9td//dfW1tZmHR0dtn79+rodm1i6KO9ErVHOiXqgvBP1QHknao1yTtQD5Z2oNco5UQ+Ud6IeKO8WiXo7qb8e2b17t/8Lv/ALfnt7ux+JRPy1a9f6H/rQh/xsNuvncjn/93//9/1Vq1b5sVjMv+666/xvf/vb/gc/+EF/3bp1sJ0f/ehH/rXXXutHo1HfzPwPfvCDdTkecXGgvBO1Rjkn6oHyTtQD5Z2oNco5UQ+Ud6LWKOdEPVDeiXqgvFt49EsPIYQQQgghhBBCCCGEEEIsC+TpIYQQQgghhBBCCCGEEEKIZYEeegghhBBCCCGEEEIIIYQQYlmghx5CCCGEEEIIIYQQQgghhFgW6KGHEEIIIYQQQgghhBBCCCGWBXroIYQQQgghhBBCCCGEEEKIZcGiPfT4whe+YBs2bLBYLGbXX3+9Pfroo4u1KyHMTDkn6oPyTtQD5Z2oNco5UQ+Ud6IeKO9ErVHOiXqgvBO1Rjknak1oMTb6z//8z/axj33MvvCFL9gb3vAG+7u/+zt761vfart377a1a9fO+d1yuWwnTpywZDJpnuctRvPERYTv+zYxMWE9PT0WCJz9Gd2F5JyZ8k6c4Vxzzkx5JxaOWuWdck7MRmOsqDUaY0U90Bgr6oHGWFFrVOtEPVCtE7VmPrXO/EXgpptu8j/84Q/Da1u3bvU/8YlPVP1ub2+vb2b6p3/wr7e3d9FyTnmnf5X+Vcs55Z3+Lca/xc475Zz+VfqnMVb/av1PY6z+1eOfxlj9q8c/jbH6V+t/qnX6V49/qnX6V+t/51LrFvyXHvl83p577jn7xCc+Aa/fc8899vjjjzufz+VylsvlZmLf983M7Oju71lTMjG1zRd/AN8Jp45C7IcjEJeDGJuZhQJRiIsFPHQv0IDbDAYx9su4vVwed1BM4ee9otOGcgjbkC9jO7/74xcg7p/A7//6v3szxJHGJH6goRXC4KmXnTZ4A69BPHroOYgf+M4hiA8M4lOzEh6C3X0H7vOWD/wm7m/zPU4bLJvGbR79Pr4/9PzM/45nirb+t56xZJKOdRbzzTmzs+ddYzg689S4VMZz7hk9TaawbL6zH7/KE2h+Qh2NYgd7tM1QsYD7LOH5KZbdNlgQj6N7TTfEr/UegzgZwm1uXtmE+8hjbh84OQpxJhh2muDR9RON4me2Xo5P9tva8Xy/+PxBiNNZ3F6+gNdjqVRy2sCcPuenOf2E2Pd9y+Vyc+ac2cLm3f/n+hUWme73gSGsJYlGvMaGJvHYjw4NO/u59barIb5m2xaIk3Hs/0gE6x3n/tjEOMTUddYYdvuKn7g7f41BGwny2xRHolgv09ksxJMZ7Dczs5MnT0AcpbGiOYm5nS/g9TU8NoYbDOIxjY2nKaZxwcxOHD+J7UxlIPZs6lyUymXb2Te84Hl3tpz7X99/yRoSU/tqasB88Km4jY9NQhwqYc0wM/v7/+fPIH7xhZ0QNzdjX/vhBMQ33PEGiLcm6Vyc6MV4dNRpQ0dLI8SrVrZAHApg7SqX8Xzm8rjPMTr/Yxl8P1fG68bM7OldeL576fy/545NEDcnce7RO4ADfzCK/RSi6yASizttKBWw/jU2xDBOnumnXL5g//1L/1azMfbnbrnUwqHT/UY1gIpAkGpGOOj+FQ/XiWIRzzHnMg/TPEKPTeI53t83CnGpwpDemsBxO8pTUNrn4BjWiYYonsOOJMalPF5/KxrcMdYvc8MwB3wrU0zfp3rM7xdL+Eqp7I6xJWeOhPHpYblYKtsjewZqOsZOtWfO3Z2hwjRKLB9qNcZ+9vP/1WLxqWt5kMaSIq0x0zRn9YPu8jzWjGNFIor1cG0njrFNMXw/GMILIJPDucjEOLaxqcntJ58K7ugIficYwOIXo/EpTGuWQgHr0kgG21SsoMLdEMN2RXmfhvUxZNjXPBcNhel+gIf7DATcwhGgYsLrw9m7SKdS9gvve2fNxthHfvhja0xMzRtKdL48Wp8FaL0XCLpzmqDz17M0tw/gOeQ1J/c396YX4Pst7jnn9YQzXvG4TnM7Z6LA8AYChQofwWu0zGMu7aNc5jbyGEsxrbvKFFfaBu/j9No3lZq0e372rprVOrMKa7yzUI+/zOddchuCIbfeOueHzm8igfWYiSRwPRKN4LVXpjxfvW69s43x4UGID+zdg9soYZ5GnckntrlYpHkbpT3nl1mlvjv7d3zft3y+WLNaNz+w4U2N7jx6VTvO5cMez6PxnB3tx/sQY2n33q+oDdVqndkiyFsNDg5aqVSyzs5OeL2zs9P6+vqcz3/mM5+xP/mTP3Feb0omrKlpqmDkE7hgD/t4UfsRfuhBd+btXB564D6qPvTgO3S80PbciUO1hx4NVBBjEbyom6gfIo10s6MBC3BwEj9vZualqOjSpDhOxxWlyR7NVy0RwRe4jV4Si76ZmYVpm3TDwDJuWs41SM4358zOnnee583sy52ozf3Qo2IL5/nQg2Nnqlll9Km4Ox7cg3PfjOZ9hHjCG5i7zZXOlbsgoH2E8HoJ0yLEvYHuU1y9DdWY7zYWMu8iocDMQ48wXYMROl9hKi18Y9DMLEL9F6eJUENsfg898nmquTTfaIi4D5oX/qEH13VsY6nsLlKiEeyHWBiPO04P3zjV+fv80IP7ORJybwSG6DtBvn54AbnAeXe2nGtIJK1h+sF5ooHOL0+U6U5vqOjWdb5xwDcKuO7wGBuhHIpFaSyic8F9X+kzfH5D1CZ+6MFdn6XtRYu8SK1wg6BKfY3QBRyl4whTLQyG566NlfqBbz5HaG7Bi69K7ZzNQta6cCh4zg89Qufx0CPAC9V5PvQI0zXs3PCp0E18zkOcFrRP3qb7fbpJx2NAqEI/OA895n6IwTW82kMP/gOMgOcuOvlGIF9Q3OpajrHmue05G4txS+b8FunLn2o5sBj9VqsxNhaPW3z6oUds1g0bM7Mi3WQr0c0ov8JNuGgc13wxWr810E24RHzuhx5eiMd5ehjb6N7U4zqToz8ADNIfHcZjuI1qDz2yvLSu8NCDtxmjNf98H3rwmHpuDz1onJ/jocfZ9jubhax1jYmENTZOzdGqP/Sg+Ualhx7OuKuHHmYL8NDDeYBxPg89aB1ED09rVetm3zupxlJ86HFubaLvVJHS4Zx1HihSjoZC7rycr8dq7XaPYyHujcwdV/5ObWrdnG2gmNcCldrI63O+v3Iu2xD14VzOxaJ4elTaue/7FRv0yU9+0j7+8Y/PxOPj47ZmzZrpBcr0d4NYxEs+FoFjJ7HoN7W7N2Ta6IlewMeHFNy0Aj0kKdBfkvg0IIbydLwF96+OfQ8nrA89gU9s//Rv8RcPgTgex/vegn8Ju57+OtAP0RNGd7w0o4c3JX5YQ98p01/30R9CW6kw9yDuVVqw8F/YU9+XZ5+MeRSUc805s7PnXWFWSfP4Bpkzq8Kw4tqsyoKt2iSH21CiySCdHstX+OvLYBi/s2o9/qricN8piPmvTQo0MPselg2e93lehTZ4uM3rrrkS4mtv2Iyfp8p06sQoxHv3Hcc2VZkITrXLzQ98gf57jixE3gXCsZm/uJpMD8F3mlrpJmcM+3fblg3OfjZtwNcyWVxwJ+iXHkW6sHkB18R/bU4nqKW1zWkDL4Yz9Bd8PCHkhwPRGD3MpoI2Mom/sghUKHhru1ZDXCpRjSzhdxqitMhvw+Ps68e/2s86x1TpgR/d2KXjLuTz002ZX+Jd6BibLRQsMP3LhmScHlhUWfQHAhUm52F+be7jKdGvs8JlPDcp+gunbBrPdzzkHuvG7naIQ/SLyyDdHBlLj0G8by/+mmR8Er9fohtRiQa8LszMtm7sgPjkwADEO17AX6r+7K34K6yWRvzDgTIthPwwvl/iQdnM2uh65L8GC57l/6uxELWurbVx5kEN33QL8l+d0jb9knuNT2Qwj9I5mpvRTR3nZj6NAy1N2N+No/j9gZQ7vo3m6BrnHwLTL4j4Rh//sjHa1AxxP/3apKnCDRzPOZN8o4ne58meM7/hBT5vr8J5d8ZdfuhRnv7v4tQ6sznWFELMkwsdYwuFgoWmx4wi/Urb9/imOf/y2N2PX8DxqEA3YSdG6A8FSjifaaK/hKR701ag8fCVg/ucNux84SXcBs0Frr/hJogb4njcsSI9oPDw+000Rld84FDEv64NhWgM9GiMpG3yjUT+FZt7U969uen8sViFB/KnyefdMfpsLMh6IhSa+ct1/ut0PhZnHl7hYVu1m0keL9hoqHFvPtJ6jYaDcsUHFLQOdf4Kn8Zgn68v6lceq3jO61U4n/zHds5NAN4GH2f1dSpsruJf3Z/bQ+Kq2vZVtjvve3bz2PZ8318c6P5OhbllhNaggQCtkyjve+iXGs1tuB6JRrAu8UPskSH3hv/xo6i+ksvSmpP6LufjWp/hB3Hn9ice/Eemc3xyHn+ksNjzOm5JmO6FdSTdP5APsopFM87F82lSPQhU60/9sctSYsEfenR0dFgwGHSe1vX39ztP9cym5HxY0keI+TDfnDNT3okLR3kn6oHGWFFrVOtEPVDeiXqgMVbUGtU6UQ9U60StUa0T9WJ+j4LPgUgkYtdff709+OCD8PqDDz5ot91220LvTgjlnKgLyjtRD5R3otYo50Q9UN6JeqC8E7VGOSfqgfJO1BrlnKgXiyJv9fGPf9x+5Vd+xW644Qa79dZb7e///u/t6NGj9uEPf3gxdieEck7UBeWdqAfKO1FrlHOiHijvRD1Q3olao5wT9UB5J2qNck7Ug0V56PH+97/fhoaG7E//9E/t5MmTdsUVV9j9999v69atO6/t+WSSNTSKmnaf+vQPIO7c0OVs4z/85s9B3JVA0clAGXXwwj7rk5PZF7UpwAZx5N9hZnZ0CHU9/+Z//wjisRIZmRdQr3WwD/Xk13einrhfasE2VLTTwG3m2FyvOLfWpiOJzzqIrBNdQc/OJ9+Jcuns/irnKvW4UDlXsvKMTqejN1jlu6zJO/Xa/EyPWOMz6JEeOemM5tlYrYL+bZjMeNtXos5kYxLzKDM8CnGa8pB9YEqON4arjXnZZXgeLr8cPScSDXR9kbZ7gjwHCkUUTWfju0r9vBiGmAuVd144at609vylW1Hj/8RJ9AQIku/ELTdd62yPzZF96o9Ujswjc+iX0N2BvgSNUTw/STLMTOcq6Yhifzc1oUfRxMQEfpzaWCAfggLViQLVnlDQ9ZlINqGG9STvk7bBWvseGdaweSUbYw+PjjptYOPqEsX57NRx+vPw9FiIvMtlCxYITu27mECt2UiYfZfYzNn9kWiYjMhd80vcZj6Lvldhw/M9Nor64od68afQN1/petk0JbANHk1xRkbHId63B8fUHI1vre1NEK/oXAnx0Bjlk5mlh0YgTjTgtXJ8cBTik8OoEZuMYr91dvbg50ew34IVvGwa6XzGongdZNNn5lDn6q+wULUu5BUs7J32dsBrgQ1njfxMShXGt+IkGY+Tt0yUrjfeBKdyLofzyyJ5zbCGspmrBz2exnoYop20NOL54HlCnuZhuSJ+P1VyfUVa+TjZx5XGZTZhLZRprkFzER4+yxV+KB5wfDrJrHla/7jMxrdzsNDrCbG0WKoG7wuRd+VSccZHrEg1wgvzcfP15NYZ9m/K5bHOTJKHVWkSx6fBwDDEmSx+PpfCseXJh55y2vDA93G9HQ6h5IiXxmv+1lvxL3dzUfJiIGOReBGLSLiSnwbNLXwqPB6blZTRA8RnfwjHt5DaSPOCqX3iGoQ9ymYbSqfJj+xsLNh6IhiY6SOew/IAOJcXyVm3z34mjrcF3xeg79P2olEcs8OeOz54/BqbgtPnyz4bes89Hy3SurZQwSvNs7l9P9jkmD03eepQzXejUm10fD/5XExvcz6eHjUfYzldqn9k/ruo5knmeLhUmNdRHsdiOK/uWbMe4quvuxHi9rZWiOm2hu16aSfEe3a+4LRhbBjXE047KUfYyJ5xU2r+nh7OFma16VzH83rM65ppfZiMubfAYwlc8zW2oqfHMHmVel6G4iresaKuLJqR+Uc+8hH7yEc+slibF8JBOSfqgfJO1APlnag1yjlRD5R3oh4o70StUc6JeqC8E7VGOSdqzYJ7egghhBBCCCGEEEIIIYQQQtQDPfQQQgghhBBCCCGEEEIIIcSyYNHkrS4Yz5sRQGQpxvFJ1FDr60PNu2f2Dzqby2RQr/E//c47Ie5ZgbrbnqFWapR0nR3B5CDquJ0adLW+//e3UR/1paNDuAnStYxQG4o5/Lx5q/B9n7XmnCY4+t+s8+zIz/lz6/2xDn2ZdDEDFfTGjbWiyeMjOOtZHGvoLzZlO6NwGHQ6sLqrh0OVr1Tz+OCTyFqzRv1bQWrfLEBa+iXUt+3pQZ36Yxm8vtJ0TlMTqEHPWpmXb73EacLNN18OcbKRNedJx5d02Qt51Fdl3UpvHvqlp2HN06rnYhEJhGIWnNZkD4RQd3KcdJav3nIpxF0rUTfUzCxApT0YQ4+hx198BeKnn38J4nfe/UaI13WirmWEtDDTGVezOBolf4UA6faS10yxhPUrM4Z5Go6i90xbK3odFElT2cwsQCKqoQjpT1PByxUo91MYF2gfuSwet1eh3kXpOLmm5XNTuVych6fHQpDK+lYOTu0zS749EfaoYt3notvWKPkvsL4xG0SV6RrODp6COJfBMbQ5iTWjsx09YszMYnFsQzaDterlXYcgZl3fK7eugbijA6+tPOljl80V+55IY95GI7iPbB6Pe9chPO6fuQGv7ybyzzk5iF4n7GFhZuZT3zYl2yAuFc/kaanKGL/Q7Do4aKHpfGI9cdbI5vcrlehsEa85HjtYtjdENYH1xCfGcawZzVTWzJ5NoYjfSWexbiTIhynZiLrBsRjWpbE01vyij+PjSNr1UIomsA0dDVR3PNZ+puuxzFrEuP18EXOqwFrxZhakGlAO4hhQmJ5vForn7ukhxMWKXy7PeOP4VCNykxhn2F+sgjdeiXyvQmQ2kaK5eIx17MljJxzGeeHICfTNeuWZl502BAtY/zJUq5565HGIt6zdBPGqLWsh9gN4TKyBXmSfJ3NXWiXyYisXcAwOeLgPHkeclZ4/dy00Myt6uI9cCfthfPyMf1g2U8nzbvHw7czS0xnenUF0/uN/meZyAfLbCLIPFo2ZGVpj7nl5H8SH9r/q7JN9UcLkW5hIkDclXW9FmhO1trZAvGYNzv1W9ax32tAQx3UQJ4bj8eFMgc/dG6FSfLbXoA0znh61ndd5njfTNuc2UrXvLtD+56KCuyyGlbyDqA9b29Hr8g134Dr5si1Y64rkufTC889C/PLO5yHmeytm7hrF8YjgWuZYfszd+87mKnZj/e6NXAicEy20hozFXe/lWKIF4ij5uMQT+J1gENep7PdcnNtiRdQY/dJDCCGEEEIIIYQQQgghhBDLAj30EEIIIYQQQgghhBBCCCHEskAPPYQQQgghhBBCCCGEEEIIsSxYup4eFrDTz2Q8DzU943HUWFvVlYQ4F3V1th98bA/EyUbUUP7Z27dAvK4HtfvGR4chTmVR2318EvU979+x22nDfU8chrgUweNoiqG4XhPpkAY81gXF4yyWsQ2hsqsj6pH3SCyO/RBy5cGBQoF0oUmb2SN/DvbvMDMz0qr1WFtx9vsVdG0Xk+BsXcoqWojMuage8jY5LlN/lUqkjcp+KKTpy1qrZmYtzahDGovh9XTttei3EQ/h+8P95D1D+uOrkqitv20batKbmXl0HpvoO+EQ5k00itdGIUd+Dedhf1Bd89OH/9aSg4eOWXhavz5DOqBbtm6G+PrrroI45Pi8mCUbsX+jScyB3pMDED/+ymGIA0EcGj74iz8LcbPh+epY0e60gbVIU+RNEiHPDyNfCSvg+yf6xyE+eAhr+pVXop6qmVmCdO0bkqiln54kDVXSdW1uwn4Lk/dMIY/XX2sLjhtmZnnyvxgewuNIpabON1/bi00uXzAvNDXGZHI41jREqvw9RIVLhL0UWCyW9Y3jEezLfGoU4uwYaqVuWI05FglW8E8hD4j9R1Cj3Kc+vuwy1BdvbcPrhn1iRkdRVzpUoR8ayVdkTRe2+9jJUYgHRjAHM3QZZMnPKBLF+lssuvMdvrayeZwbDA2fmc/kaPuLzd5TmbPqTfP4547/7jlnP6cQzXHCQcyzAPljeOR5lWjA81fiJnkVtPZJLzwYwH1EIuR1QeN2KIjnNENeNP3DWDM6W6l2mtkA9c14inTsyacnTOcg6OMxBGhG4+joV6hXEWpDkMam4HRNqDRPEdU4pxnmMtjn8iFg5RkfRa+IY0mB/MAy5FlQ4rWUmQXJH8wj/zcvShrlYXw/QJ4eZaqvO19Cb7f+IdcfMxDG2ubTmrD3xFGIH3/6UYjf0nUPxLFGbGOeakOlDOQxLxzBbbS14rxtZAh9P/fvRc8I9sB685vvhri5eYXbBpoi+UFsdyp1poanU67n3WLiW9nK03nH4xePTXz9OmOwmQVo7RSgMXVyDPv35NHXIGY/jqeefhri737v+xAfPXHCaQOf81AoNGfMa2f2H4034LWyejV6pF6xDddZZmbvftd7Ib766usgDtKYyut79jYp03jJnh+VKuu5ek/W2qPSszPXKu+7vABjRLXj8ahScG2r1oRKeW9lzPNLL8X7hNddeSXETQmcx/UePw7xvv3oXTM8gtdNJfMg9z4Ue8xxzlXx6XUdjKq8fy7M1/+2NoSob5JxGj+D7g3PInndGfkTFQsYF2h9X9LcdkmjX3oIIYQQQgghhBBCCCGEEGJZoIceQgghhBBCCCGEEEIIIYRYFuihhxBCCCGEEEIIIYQQQgghlgV66CGEEEIIIYQQQgghhBBCiGXB0jUy9wJT/8wsYGgm1NzUAPGqLjQxOzaScTYXIRPHr9z/IsT/8hDGl3SjOboV0IhrPI3GZ8PoE2r9FXzL2G402YDPnJJxPM5YEI0oJ1N4XIU8GuNFwvh+sEQmvWbmkbEkG54Gg+zOhqFrmoT9UGRDzwqGRuxHxSZpNtu4voJJ82Li+d4ZQ6wqJmQMG0idC0EyhHPMunw29cP+9cgQNUFGWmZm733v2yHeuGkNxHkyMe4nE7nRsTGIw3HMmRVdrRD39fU6bWhavx634aGBVJyMy7NpvKBS43hBBeh5LRvAVTpXsRjug42Xc9mpffq+b9ksXdCLjG/+jNlbe+dKeO+aK8gsjYzkfaeymAUCVDsm8BwGyFV6wxrMiT2vYQ7sfOUgxNGr1kGcCbk1l/u7QIbJ4TAOPxkyCHv1KJpofvv7j0HsF/FauP5WNBU0M2sgI3PL43fK1A/NZIAZIUP3iUkce8plzLNwBI/ZzGx0EvtmkMyws9PjXLG2voOWzRXNpseYdAbPTWMMj9sxw6tQlp1rjo6H/d26VmDdKLPxJI89VF/jUbfWZahu9J0ahXj9uk6IN67rwW0mExCPTZvMnyZnaCg9fOyU24ZJHHfjAcy57hWYYycHhyE+chzzvrm5BeLBQXx/xUqsF2buWMQmjflZJrqFgls/FpPurvaZcY9TntvJZpSuqaNZqTT3Zzgn0hQHyPg8R9tL5cg0N+xeqB0JHEvaGjA3IxGMCznMoxMn0dCS9zmZxTxszLMZrVmQalXfJM4Ps3RcQTJw9wtUG2k6EyCj3krGolGaPwbJXPb0XK+SCfrFDucd9081I9ZqhqVm7jk3MsLl+X2Fy6UK1fZZ6bzJuPNs+OZZ+XSfBvjawJrhjp8Vri+aNwfYc7VMZuk06IZo3lzMYp05cQyNd/O0xjQzi5BpOOd1oYDfefRRNDI/NIBG51fdci3EGzZugLitrc1pQ5HWPZlhnN/uemkPxM/+9Al8f88uiLdduRXit739PRAnEzhmm5nlfJwzZUo4z5s9rvAYs9h4gaJ5gak+igfxfJXIELxUwrElzPcAzCzWgPPeA6+hIfNXvvJliHfseBhiNjIfGsI5T4bm8p7ntsFdGuecz8DnjdfOyMh4CuJjfQMQP/nsTmebTzz5FMT/4aO/B/Fb3/IWiAMhGvdLeFw+3U8p8zFWyBuaTp6VWhuZm+edOUm07yDVNo9rXYX5QLk09xyBj6/a+FthA3O/P7VRCNesQbP7nu4VEOcymFPcJl4DhWkMyGfc+w58HIEAjsl8D67SHHk+758PVW5b1Q2uIuU81b6gW0OK+SGIR4u8nsA6n0w2QZzOT0CcozGUc4DvqU59hj60VDp0GaBfegghhBBCCCGEEEIIIYQQYlmghx5CCCGEEEIIIYQQQgghhFgW6KGHEEIIIYQQQgghhBBCCCGWBReFp4fns/cFalT2dKH/RvjVfmdzzclGiAc81OM8TL4GRw6hLhsrtfuke5nxyZsh4nZtoID6cbEcasONj+M2c6Qd/d0fPA3xgb1HIF6/HvXJb9vi6pA2RNgTArXiyJLDiiSrGE/gcQZJYLKQx2OKmitAWS4W6AXSJZ7dplpr2ZXLMwKF7DUSqeK/wdp9ZtXVjlnH19WhJK8Kxw8F329MuJ4CDXHUjQwFsb83XbYJ4r2voh7uy7tehbhcwn22NMch7m4nPxwzK9D1VSpgG2Ih1NIfSaFGbzaFfRsgzdfSOeQJ6xMXCtim4nS8GJqX1diwfrVFwlP5tXEz6gu3JVFPl2Veo3HsfzMzz8NczeWwv9evWQvxG+56F8Q/+vFDED/4MGrZdq1ogXhNC54/M7N8FvvXI1XdYgTb9OrRPoi/+m3UBc6VMI+727G+5XKur0jzig6ISwHMgWKevCvoeuNt5siXxCe95PGcW+/GMqgjuu8I+qUMTWsLl1nsc5EpFEoWnNbxT5O2d5au13AI8ylQoa0h0u9nXeYweQ50dbRDPD6MXhUR/pMMyul8wdX8zeRQE5fbtH41+l/E2B+HNNP9Mm7v8MFDEJ/oxzplZjY4irq+q9Z2QzyawRzpH0V/hxRdN+kUbi9E41Ah4+a9lXEfcdJhn+21EKyxvUIwGJw5hurjX/XG+ZSLXL498u3JsV+To4tPOts0/8xm3HE+TF5ajY0Ys9fZAHlUDY5hXKI2h0OkxV/BhqXA34linoR8zG2PJhO5AG40TceZo+uNNdPNzLIee0xgLoemfZxqXesWg/lqZ7sa5FX3QHGla2Hu64Pkv519VrehOwczJ3FWSha00rQvSpb8xMYmyNuLPHV47DJza1MAy7rFO3AuGKR1aFMM9ccHyDdtZBi9hXiObFZJY57m4lTrWAN9//O4vuh97TDEzS04r0sk3LllLI7rnHEaQwePotdWntacQVrHXnIVzrnL5GmWq+Cb5wyc5EkWmuUjGgzV1l8hn8lafnq+1U8eiz3d6EsQj7Hnhzu+PbbjSYi/+MUvQvzoE7g+yM+zvrPHg1/B42G+y7L5VirHU6fCBnbt3Qvx//2Z/xvi/lPHIH7LW98BcfuK1RA7thWOD9RZGrsE8ee4b+PT2o+n9uwTZObWv1wO75+xR6TjN+s0EEO+91Usumu3WBDX3iva0V8oHMY6UqY1apLuO8apbnm0mOc52VQ7+RX2sOM5F/cuz4+rXRnzH+Nnz+eWkv1EiObNjscV34s0M4+8gsZGsK6PkFeeF8fxau0q9I2cmKD1XQbHfb+CV1uG1uMFZ8K/hDr5IkO/9BBCCCGEEEIIIYQQQgghxLJADz2EEEIIIYQQQgghhBBCCLEs0EMPIYQQQgghhBBCCCGEEEIsC5awp0fMzJvSJy2T1mLIUCO0KU4+EwlXHzCdRr0+39HSw22UyLegQMJ6RdKcdPQE2RzDXBW2CdKX82ifIdrEA6+g3uqPnse4NYZaqb/3765x2vDuW1Zgm0jSbpTiQZL3bI/gB4ZT2A/jg6jL3ziCGuhmZoEiacCyrn4pUPH/a4Hvmc3IT5K8Ip9RR+c+77bV0VCmvCOJXguTV4zjuVImfw7yaLlsc5fThvFB1HRdcdUWbBPpGg72o4dHSwI10FNjqFM5MoQahU0JV6NwRWMLxAGPtRTxOI8cQt+DXA41DVkDls1oKmmhFvOufiNus34Cqj2dHRab1l9ujqMefMDjzMNrLsjC3WZWtrm1Qle2oZ/C9ttvhzhH+tM/+PEPIP7eQ89AfOsVm502cG+2taEeao70or//+AsQJ9rQC+G3P/ArED/7+CMQh4Lu9cenNF8mTw7SoOe6HwiT3nEI3x9Mo17nEGn1m5ndfuebIb7spjvwO9N61Nlszv70s3/ufH+x8P2i+eWp64qvL9YUZVOrcIW/l4hGw/QKdn4neXiUSzi4jKex71obcHvxBtQrL1XQfT7RNwDx2vWoX91DXjbFMh7nZHoS4jyd30byE+N5g5lZYzPWx2wOj7OpEY8jQP3UP4J+YtkCtjGRQJ3hWNSd74SjWEPYbyrWcKaNXmjuurjglH3zp+dTZWM94rk9rSrVddaLLpPGcYn8TVz/J4zj1Hc+FRHPd895uAV9rE4M4TkcG0dflnwB91n2Wcsbr68ga5471dUsR3liPo0bdL2Ew+Q7QvUzQHGYtaEr6LbzsBykbYRC4emm1NhIZkkyX13m6p/ndUiUvAnYb6FAPi3s1+Z6hkhLej4Ew1ELTl9nwQgOoj2rWyCON6J3hTPHNbPmRqz9YwVcA+bi5O9EQ/KJYzg+PvwIercNDeD7lWBvvAslO56dMz4XuKcaqK+LtJju2YreCskNODd95uDzEG/swnmDmdm6TtxGjLwxZk8NyhXuBywmXiliXmmqPT96EM/xZArnNJds3ADx4cPoFWpm9sADD0B8kLzNfMeLYu61FPsKVPLwqDXumOQeA6+1Tpw8CfFf/7cvQLxz54sQf+jXPgTxtiuuwTb47DHo1oAy3Ys6u0dD/Wq166fB3rF4PbBfR6XvJBtxXs3fSZO3HXtIVjDHwLcrpKwXwO9EwnR+qnjX8Nw8TnF6EtcbleZFzoy4ilcYx+yfVmFYoe27r1Xzlqnn5Tv7lh1737UkqSbzPb2y2xkFuudYNNwGf6Ujih121TXrIQ6HcBB+5rndEI+TZ6OZmdeGud43iGtj9gVZUkYqSxz90kMIIYQQQgghhBBCCCGEEMsCPfQQQgghhBBCCCGEEEIIIcSyQA89hBBCCCGEEEIIIYQQQgixLFiynh5+IGR+IDT9/yzEhtp9ySRqE6cryJsNpkn/L0c6d4ZajSxRx9J9LHEXIN1o8yqI3JHenAWw+3O01RxtIpXBRjRFcHujE9iGv70PtePMzFY2rIP42lZ8v1TEfeRIk3k0iPp2TxzAffbeh1qot4yj1rWZ2a23XAtxIEAaroFZmrEB0qleZMq+P0sfkPSQ6RwHSds7FGRNe1dXkiw5HE1zjgOk9R0I4AZam7ENmy5xtWc3rlsDcYS28X/+4X9DvHYNau+vbEV9wZeeRw3CgRHUpTzR1++0oTmEWsSJQdTcLZEK6Mu79tH75HXC1xdrhhbd6y8YxL5ytVDr5+mRy2fNm9ZzTU+iHnySvA3CpAtaKLqa/GXScz91ahTipiY8x5OkLbrjsZ/gPmj7z796GOL9h/qM4f5NJrEWZFnHlfRSP/yRX4P4pptugfjRh38Icclcb4O8j3k2nkUtzJyH749lMbf3798P8fMv74X4+CBqansR9GswM2tZfQnEt9yMx/GuX/yAmZlNTEzU1NNjNsUSXi8ZGnyCNFMIVdCy9YI4DrcmsS829bRA/Nwr6EHFPlhtjXg+E1Eaiyr4p+TzmFMtzdiGRDOe7xTph3NdmRgbgpg1nUtFV4s4HGuC+KldxyBua8J+ikexc4fGsE17D6NudFsrbn/bZswvM7M8+eVMjqOO9+jw4KzP1niMLZ/RCA5U0afmLGNvi0rwNso8NhhrHOM201ns/2Qj1q2wa+lhIapdo6xTT9dTwNFh5vGNx3329HBx5qQeNrRQwvNcKmLs0/yGvVFYG7qi/jT7gtDc/bRlRBUp7GXJ2bXXp5ivDr6Z65kSpDVGA/kgpUg/mn2YeBmTy9XY72eZEYqGZ+Zr7R3op7iyuwficAzHJr5ezcxCcZo3Z3EsOfoaeq29/BKux07sRa+8Q88fpD1wfZ2/WHskguP2tm3bIOb56779ONcfGx2lLbrXBXtAlOnamSzguBxrwxrefemlECdaOyBubsf58UQW5+RmZo+/9FOIk+TJsrK1c+b/0ynyWllkEtFGa4xOHXN3J3rj/af/628gDpE3ZTrttpXnh01JXBPyHKKQnb8vy9LDzbsSDVzsZTIyhnny3e99H+JMBudh/9cf/wnEPV3or5IvVvCGpbm4z7OB6dD3a2u04HnezBhWzWfCsduosL0i5VSG8rKRcpA9kNLpKr4HdG8lGHLv37S0Y11opDUsz+NKVLOLRfQ/ylCbSnx+z8FQw5kLVvGo4zkC9zbP487Hby00a97h+77jjbmYxINn8isWpXtyNK8+NYw5FE+4mbd5A9bLrhbMi/ZmrPMDp/B+V1sEz/lNb8D1/pat6Kn7T99Av1Qzs0tW4RqvrRPv4d33o2chPnEcx3VxdvRLDyGEEEIIIYQQQgghhBBCLAv00EMIIYQQQgghhBBCCCGEEMsCPfQQQgghhBBCCCGEEEIIIcSyYMl6enhe+Yy+to86eekx1FHfe+A4xK8dR001M7MRttyI4KEHjPT8fHweVChjGzzSOmUFu0jY1QcMR/C1VAr1/chOw4IB3gbG+Qy2CdVdzV7sc/vhH3+CfdX1ZjT1SDZTI1KoefdyBuPUIPmQHDgM8Y/2uFqo79hzCOLrN6L+6taVZ3T3xjOupuViEgwGZ/QBw3QOc+RBwFqK4ZAr9h0gTcEyXXFl0pAvkyZkgBOL3o8EUeO3zElkZmOjeA6+/KWvQLz3AGrq/vwvvhHipgY8hmQT6gf2j6BO6eSkq3N/8Ch+p3kFeUqcGIT4UC96RPhl0sFvQF3FYAFzvVRy86bIGuZn1cKsveB4vlCcUdrM5PBYJjKoj+uT5nGCtKDNzKIx7J+hQezfhnbUJn3syScgfuTRh3GDJH1ZII3f4VR1Dd/h9NyfaYjhOe47hl4IMboeR8cxr3/wCOpZm5mt70F9zrGxMYgHxoYh3nMAa9PRY6cgThfmX48+/5d/DXFLK3rofOIP/8DMzLI11kEOeoFZHgl4ggvs7VTAOFpBhHdFx0qI33bHTRCfPH4U4sFxzPN4EHOqewWOTQHSKB4cdfurqbEZ4pbWNojv+xbm9e23XwNxQwRzsKUJtVUP9x7Gz8fRq8jMbN2G1RC/Rp4c+3oxp4ol7MxkDDXPM3ns+zSN+2WvwrhDcwfPsK9mH1cuX0fdfsdWqbI+9UxYQfO4mv+F602BMWvQR6OYA0Uac0fHXC+Z3uNYR0q0D7YiYQ8PbjPXW25zpfHNPJxc8Bw1EuV+wW04XihVPDwqeVBU8ybxpk+oV4cxtt5wX7DHWIg85JqbsfYEHG1us/5+qiU0xwmT18yGDejpd+ONN0P805/iPODAa4edfYpzxwt45gWnznuAzrdH/lAFmlvkKsw1yiG8bo4dwnn1Mz/E8/fKUzgnyo3TGiZfwaBonnBec/289lr0cLz88ssh/s53vgPxY48/jtuvsE+f6mVzUwt+h/wyCxHS3qeFWIrWmV4UvXCGB/E6MzPLFXD+2dWM85V4/My4wuu6xSYWDlgsPNVHN95wPby3ajXOT/bsfw3iYKW6Tv3tkcmbX8F74uKnUuaRH4LPxz23+euOR/H6fOjhRyD+1V9GTw8ew80ciwdnfnN6HHfbtrjM9vRwGsmhM2dz61AwNLcHZyqD/gwJuifAO82QV2aAxsbLrrjSacMVV1wFcWdnF8Tsh8NjeonWyWOjuP500sWr9Hfoc3vQcd+ylwt7erBlh38O/hs87XZOr1Mzaje/CwUCZzw96B5CIMjrWhpjJ1z/ojLlSYn8aCfI/zmWwDXm4Cn0R33luZchXrUB/Tne+qYbnDYUy3jO3vjm7fiBBlxr/8//8WX8frG2483FhH7pIYQQQgghhBBCCCGEEEKIZYEeegghhBBCCCGEEEIIIYQQYlkw74ceP/nJT+yd73yn9fT0mOd59u1vfxve933f7r33Xuvp6bF4PG7bt2+3Xbt2LVR7xeuU97///co5UVMee+wx1TpRc1TrRD1Q3olaozFW1APVOlEPlHei1miMFfVAtU4sRebt6ZFKpezqq6+2X/u1X7P3ve99zvuf+9zn7POf/7x9+ctfts2bN9uf/dmf2d1332179+61ZDJZYYuV8ctF88tTWtP5POquTYyifnKR9OQKAVeL0dEMJO28OOloWwC137IZ9vAgvWOKK0nzFYuonR0hDd8S6c35pOcYDJF/A2nLpUuo2x2ooKv35CHsy+dOogb6EGmBH0lhm1/LYpsypPXOXd+3f8hpwyv7fwLxtk780iXdZ9qQn9YbvOKKK+w3f/M3FzXnzMxi0diMPiDrZnNWsV9HoIIGKOeJC74fJA1CozYE6fMR0mt87qnnnT3ccOuNELe3ox7g27duxBaVUbOcdSYjEYwbGlD/NhRldxmzXA7z6MAR1CI+dQo9J8bTqPcfDuM2o47GJPYb62ObuZrkrBE6E0//J51O16TWmZnFG5IWm/YZmphETchkcyPEE2l8Px53+zuWwNdayR/h/od3QHx8DM9PvuD6Ac2Ga1PIMZ8xC5G+abGKdmg6i3m345GHIL7xetSGbuvogPgHD5EPiblaw6x/my/j+xUscRDWU62o+8ufwH2OjqAn1d/89ZTnx+n8rFWtCwQCM/qwrBPLasDcLxPDJ425pAn74pjh+XxxcBS3mcOxaNMW1Jtf0YIavRNUE0Yn8DowMyvR33GMkr3Qyk1bIf6br3wf4k/89s9BvKpnBcThBuzjp57b67Sh7yT6EW1Yi/V2cAIbNTCWwg3QdZPK4HE3NmK/jIy7HhNtLXi9F6nWTc7yp8rnp/Rfa5V32XzRgqf9W+jyCVIe8vgZDLkXaIDOuU/+az6NoY3kgRQKk3Y07XMihXmazbieVSXyZQkGefyZe+xhQk6dQQqu1Lcjo1zivqPJWbnMMV31VcZLR1va3Hm25/jNoG9WLcdYs1npVq3OV/GWMXN1rX2f5yA4l25M4DjevaoH4o4urDWrV6F++MZV6INmZvbaocO4zzj2yZoNl0C8aSNqxjeRt+HOF5/DHVAae2X3nHNeeDyvcmfOtFH+Pq176Nu83ptuhPva7G1Of+d0W2s2xnqBmXUCXy88ry6xp04F355TB9Fz7IGv/gvEO59+FL9A0t48TeM1IpeV81Fmn6T56ze/+U2In3zySYhPnUK/DJ/rToV9NDbitfTmu96E79M4/e0ffhfiiQmcg7382m6Ie8d7IV5D8wAzsxUNeH2Pp3kcHp35v3R6agypVd794Af3WXx6nDs1MgrvVfOO4zw0M4uG8f5ImOJ0prZ+dLWhuqcH1zJeF5Etlk3m8f0fPIhrnLfc8w6Im1tanBaU+fycLZ6uo7UaY8v+rErvcyWZe51U8ip5cM69puf6WShgsWttQ68FXo+G4zgPvPPO7U4bNtN4uaIdt8nXQSyG90KaaB4ei+Pc3fF2q+DbxfPZQIX7m7Nhe51CJf+32duvMnaaVfZvm81s/7daj7EWCs1MxsrUztZGvA+yohHP19EBd+10chB9V4J03zY0jrWuqQ3PcSSE5zhH3jMp8hHZsgHneWZmqSLNHVvwM+9977sh3kfeaw//COsKX4+vP0e9M8z7ocdb3/pWe+tb31rxPd/37S//8i/tj/7oj+y9732vmZl95Stfsc7OTvvqV79qv/3bv31hrRWvW/74j//YmshU1kw5JxaPu+++u+KAbaa8E4uHap2oB8o7UWs0xop6oFon6oHyTtQajbGiHqjWiaXIgnp6HDp0yPr6+uyee+6ZeS0ajdqdd95pjz/+eMXv5HI5Gx8fh39CnCvnk3NmyjtxYSjvRK1Rzol6oLwT9UB5J2qNck7UA+WdqAe6ZydqjWqdqCcL+tCjr29K1qGzsxNe7+zsnHmP+cxnPmPNzc0z/9asWbOQTRLLnPPJOTPlnbgwlHei1ijnRD1Q3ol6oLwTtUY5J+qB8k7UA92zE7VGtU7Uk3nLW50LrP/m+/5ZNeE++clP2sc//vGZeHx8fCqZAzbzSCZImstNbajlvmojKpSVPNTrNHPkiS3IurFl1rCnL/DjIUfbFnXzSqQDZ+bqNEdI89cjbdsStbHInh3sU0KawkHf7fPBcdzm1x7DvhoZw+M4MIFtniD9P9aNPhetuJyP7c724bdeGjhzLlgT82zMJ+fMzp53gUDAAtPfy5H2KXtClIqotRgKuJcT64MXi7gNL8Ra4NjfZQ/30ZhAHcprr7ka4uZm199h+5t/BuL2rlUQHz2xD+LX9qMvCHtMrF6D+oInBkYhjsZQ09DMLFdGHcN9+49APDbBuvaovVjkXM6hrjrLi1fToDSr4Okxfa6q+7CcfT/nm3cT46OWn65zLa2oEZlowHMejeP2YxU8PfJUK1asQk3isRT29wsv74GYr2sX0oOv8Ilb3nArxC+/gkZlQ4PozcQcP4W+Ef/2wP0QnxxAH5hsBe3SQoU6fEHwQHIOVOvJ4ydcf4y5WNBaN+PpgTU5QGPRqefvgzg29LK7oxRqc+8jvfn+MdRPbaS8Xr8aczQSwfGxswPf7zH0yqhEnvL8thuvhLh3L3pyHD6BObV6ZQvE+/bjuWJPKzOzSfKmOdzbD/HYBL6fIY8I9pKaJE3YIg2K3Z04HzIz830cNwok9Ds6fqamsxby2ViovBsaGZnJO48KN3t6cF0PR9wxlj09glSNIhHM7a4VLRAX6ZruPYlzoskJrKXJBPm/mesbkicTnECQ53r4ffbTyBawbgU8PO71Pe45725ugPh4P+ZyMY/bzJC+eInyiuc7fK6d+aeZBdjDg8Zt35vaZj3G2AsSMq5kI8FrCvJx6eleDfF1118P8dYrLoN4RQ/Ws4DRmmQUfdDMzLa94y0Qr78Mfa9aOrENrU3o4bfnGfzLyqZWlKMIx8iXK+N2Ypjypp3msDn6yjh9vuSsrTAMOOuYSn+rN7du+XxZqJzz7UzasX4717oirSdSk65n1bOP/xTi3c+/gB/gUl415+d/UVTy8pmL0dHROeNqVOr3HM3/X3zxJYjDpHs/OYo13SOd/I6OFogzRZw35Euuj9OxMdxm7+BxiOPBM9dSPjO3R95MuxYo7/7qr/9mJr9SJTzWviHXZ7ManJtpmpOUSuc2h7i4qDTX53Mx9/2PaquF5yhvv/fDByB+//t/0W0Vr3OcSzhwltfPzkLcs4tEIzPfqeafyb4k7OMz9SEM2fO2TPdSuF8iYZxztbXjnKm1HT2yOlpbnCY0N6G/RGMC722Eo7iPCK3Fy1Tzm5pxe3x/q5IPL3tilavce+S+L1e5icanueJ5589wG+F8nlviLVStCwa9me+lyfcxQ/6z3c14vtZ2oTeUmdkg+Zt2dOKcaF0PxmUf533FMubAhs1bML5sE8TJJPrAmJn5OfLVHT+GbWojj4+fuQHi/qMHIH5lL3qBvZ5Z0IceXV1TJ6Kvr8+6u7tnXu/v73ee6p0mGo1atILxsRDnwvnknJnyTlwYyjtRa5Rzoh4o70Q9UN6JWqOcE/VAeSfqge7ZiVqjWifqyYLKW23YsMG6urrswQcfnHktn8/bjh077LbbblvIXQlhZso5UR+Ud6LWKOdEPVDeiXqgvBO1Rjkn6oHyTtQD5Z2oNco5UU/m/UuPyclJe+2112biQ4cO2c6dO62trc3Wrl1rH/vYx+zTn/60bdq0yTZt2mSf/vSnraGhwT7wgQ8saMPF64uXXnrJGhunfoqmnBO1YHJy0g4ePDgTK+9ELVCtE/VAeSdqjcZYUQ9U60Q9UN6JWqMxVtQD1TqxFJn3Q49nn33W3vSmN83EpzXWPvjBD9qXv/xl+4M/+APLZDL2kY98xEZGRuzmm2+2H/7wh5ZMJs+2yYoEPM8C03p4kTBqKAeb2yDee/BViAtlVxcuSBqfAdJ6Z01K3gLrsfInAiRjV6qg9R2JkNa0xzqH7AtC22AfkiB+PkRyyrEKP+QpF/C1HYdQrzpjqHlXohQJWpZi0rOjNpYr6PvlaR+jATyOePDMd3zfNyub3XHHHTOvLVbOmZmVCwXzp/UBA6xhHcQOZh3KcgVdYZ+EKUt0zmMh/LleLMpeFvj91nbUE7zy6qsgvvlm1I02M2unnwwWyHtkPIPeCpEw6hyuWY1amKUytvHoSdSsz1WQry1kyVuBtL+jMdxnvoAbcXQtqV+8+UsTO5y5xqc29sILL9g73vGOmfcXM+/a2tosNq1Xv2o1eq5ESMc+HqXruujqoZYN+zvsoX8C652yhwfnPstq+6QTGg7j9s3MPvCBX4X4G9/4JsQ/+MH3IWY9z0nyY3jm2WchXrECPR6WC7WqdQEvMDPGBgPka/DMv0E8sAe1xLsbKmioF1CDfDyNY0U6h2NsWzt61yQbsRZu3rIeYtY5zedQV9rMrEB1o7kRNXi/f/9PIH7Tm1AL1UbRSG9kCH0RXtqF3jeTJdffIRJHjdZcCa/fiSzqg5O8sXlU6wrkxTA4NArxsT5so5nZ2i6cI5XJI8Jmzy2m/79WedfY2HhWXXjuC/PIKyPvaqv7VP+i5AGXjGFesVdaMoFj6uaNGLe0TEAcDLr65S1xrKcjadJR7x+DOE+DpKtljG3cckkPxL/8vjc7bXj15d0QHz6GHhABmsOyLn62hJ3vUdHnJgaDrqcH4/M4Tduo5Rg7L85pPoEHk0xi3txyK3pa3XjzTRDHE1gnvDBub6gftffTFa7zUBT7oaMT53LtrThGNsbR96Vz1TqIV3ShOWiwhJ4RzbzIMLO1JDlxZRLncmMFrNMvjeE40UvTlwLliOPndkHmLFPUqtbNxtH7p2KXz2NNeO7ZZ5xtPPLjByHOZ3kM5PNDeu9V2sh1ORxybxHwdR8Os18Rni8+rix5JbLeP1Ppfd7m/tf2Yxt4G5xTKZxLrKW5ZCmA3jdWcMedbBrnp13tuI3Nq8/4h2VSGftfVru8e8Mb32SRyNTcpPcUjgMnH/rxvLdXIs+picmJs3xyOTF//z6mWqWaSGEt/KsvfAG/H3TvZb37HW+DOEz3EE77r5TzU/+t2Rg76zrlGhGkOuLOHdzjZH+wAHlFsfddkbzpJiawbxNNOD5fdSXeO+nscH3SVqyc22cwHMH5fyaDdeWxHY9AfPA19FpoIj8HnheamRWppicacQxPTWIdcstlFR8a5/Nu1vKahD8xexun/78eYyx75rI3nueRp8cK19NjYhznUMf6MI9WNGMur9uAc6hiHvMyFsTvFzNYO4cz7jq2JUk+rgHMq0Aa/TNDZTzO7VeiXxzP5V/edxDfr3D9zcd372Ji3g89tm/fPuckxfM8u/fee+3ee++9kHYJAYyNjVkTDVqnUc6JxeCOO+5QrRM1R7VO1APlnag1GmNFPVCtE/VAeSdqjcZYUQ9U68RSZEE9PYQQQgghhBBCCCGEEEIIIeqFHnoIIYQQQgghhBBCCCGEEGJZoIceQgghhBBCCCGEEEIIIYRYFszb06Nm+N6M+5hfxmczx46ehPi1Q2TqEnEPK5dFg6D2BjS0aWlBQ6F9J8YhzpNpNdu+sN9UQ8x9npSMkeGbj+0cSqFZGttlshlbhMygPDbWLrtGXB6ZQaUpBQo+ttHKjmURbs+i9C63uoKrNX2mWMY4Oyus4nG34ORyuRkjvhCZb7FBH/dvqeganPJjRY9Sk825wmyURQ7d8QT2dySOhke5knvOs/RankzpWlrQrGv9ui0QP/E4mv+u7MTPr1mLRun79h132hCiCyQUxI4g71nzKEdiZJbpk3FTqYRxscK5YPM05zOnk63WSWdmLa3NFo+ePvd8Dtm0nYyOs67JYqQBDdaKJbwOS4UKRtSz98FmZ1U8/RIJV7vz2muug3hkEI1Yf/yDByB2jprOQ4FMyX7jN34D4r/+67922rB//37nNTFFa0tsxkx3TQfm1IvfeBricgmvlbGREWd72RSaNU9m8HxlyKSvhWrZ5ZvREC6fwn2MnkKT8UaqfWauuehoia6NMpqo/tO/7oD4rXddAfHQKZxblANYn4+fRNM7M7PxLF5bpQDWugCNIz6PEQF8vzGKZnu5PJ6LNPWzmVmBru8gXcDhWabJfgUTu8WkXC7Y6YExn8d2BahGN5G5fSGH58/MLJvD449FuPbR57P4+UQS68wEmdx2daMpfFvSzbtYCM/J5uRKiMfGcZ/PPP0cxDyX2LJ1PcS/9J57IN66sdVpwyvP4zaLRRrHArgPfrtEJpDsNRokY1HXfN3FmSdPv1LJOHEpwcfmO2baZpEw5tk1V+F4d+NNN0OcaEKTzkIeczlDeZciI9Z4osVpA+fyiaNHIG4mY9C2VsybEo2xXd2rIQ5SLdvSgOskM7NbqA5voMTK0hy3vSUB8cPj2A8Hi/Mz3zYzMzpfjnVrHeZ0ZmYFC1loeo1V8rBGeFT3x8dwLHnlhWed7Q2d6KVXLuy4eP0RCmJOBwPuWtq5dn2sC/E4Gu2aoVErG5nzufICZNybdOeW11x3A8SpFI77bBicTo3i5weGcB9BzLLWrnaI88M4tzEz61yJ85UNqy+FuKP5zLpoksyGF5tLL9tqsdjUdRlO4DXb+MRTEI9M4LFVqut8+cxtjVz5FeHCfT0w0A/xn//5nzvfyVCdeMfb3gFxJDJ13nkuvNiUyuWZ4/EoYVzja3wlEHDvlwVCdG8kRHWhAceRMN8j4LGtqwfidWvXQrxm9RqnDW1tWAeC1Aaey0+MoUn1zp07IR6iddMlq7G2jY7gmG9mNpTC8bBnJdboA2msr+5Y51RYiqsZm8/vlkith9pwKDRzHnyaR4+naS1GjWuOu7OLW6/HvOg9gGvAVprHda7bDPEEzdt2PfkjiBt37cQ2xfB+mplZz0YcSzZfuhHiVW3YhkuuuQXi43uOQvyGjZjHrx7EeWKZFwO2fI3M9UsPIYQQQgghhBBCCCGEEEIsC/TQQwghhBBCCCGEEEIIIYQQywI99BBCCCGEEEIIIYQQQgghxLJg6Xp6WHD6n1mAjBBODYxCPDzGmnao7Wdm5pVQn2z1yhaI167BuECCq71DqNOWSbPHB8Zre3B7Zmb5TGnOuExSe0XSOWS7Br9AOt2k2x0g/UEzsxLLtAXI16DEWv/4BdcJgD07aHueqwsXoHYG6dlbcJYun+9ucVHx7IzioU9+JoHg/HWDWfORNXR5GwHSc29oRN3KkfFRiPfs2wfx5su3Om0YI63ocgg1IUOGebJ+7SaI+/vQQ+e5nY9B3LMWPUDGxl29/2IatacjIdTG5772yXekTDELR1bSBK0Ge7YUS7XMNMa309ca59lkCv2FSkXsu/aWDmdrDQnMmyxpW1aQKAdaW1ogvmQj6ly++NIrEK9Zg1rgZmYbNqDmcWszehOEAngOi1Rzy1SsGhpQK/rNb34zxEePoo6lmdlf/MVfOK+JKW6/uscap/Wyu8nXYPgN10P80/vvg3gi63orZFL4WoHGpxJdX5svQQ3dZAyTsu8UahcHCzjWFIuul00igrUsR7UvTD4+b7x2FcSTA+g7c6Ifx/2GRtTgbW1zNWFPHkJd5sk0bsMvs18AeXHRQM8eE2HyrGggfzKz074Zs/eJ138semYb51M7L4TUZGZmnEtn8XyE6fx1kNdaQwyP3cyskOe8wG1OTuCxr+xsgXhgAMerY32o9x4+gefzrjtuddpw3XXbII5EsN1NVPvuuAU/z/K5WzdvgHj9avQVGR0+4bTBZy12GiN5/lgqs4cH+W6FMQ46Wu9u7kfDOKayV0lgiXt5nIbt8IIBdy69ZctlEN9553aIm1vQPyND/kLZHMbpCdQDj8dwvEs2ul4yrc1Yj44fwzFwYgJzO0J+h32DoxAPk6Z8C81Hr01gHpuZdefxOOJUz2KUN1eG8bgmG7Bv+8dwvpOinPEqGIxVm8/UC88LmjfthcOef0MDqBX+9E/RO2//rpcWt3HmzrGKPM8OuWMDz5sjEVxvh8nrpkDHzd56PP7w91evwbmnmdlvffjDEDckUOP8n77+dYh//MPvUpswZ3fveRXiUD+24cr1qKluZrb+kksgjgbx2sjM2ke2wlxlMSmWy1acLmJt7egv1dKK64URqjuVfFx4bcR6744PCA9FjjeoMHPvGXh0LUzS3M/M7B/+4X9D/PKLWCeam6fmCvmC6/W2mJRneXowJbqvdE4to20FuU5QHYrT+jAawzlYWxuOx2tX45q1ifyuzNz5S5E8tCLkwcpr1Pf9/C9A3NiC3grP/gR9Lfl+kZl77fSfwvUEe126d5WqsUQHz3OkkC/M5F0zrYVytL7oG8R7xS3ucsKuuAq9XxKbcZtBum3etBLXkLkI1vp+rxviQ0dxjhVpcOfyfSPox3OqbwDi9ZegD9OK9XgPLk3z1adffA13QBMmv8Kd3eWKfukhhBBCCCGEEEIIIYQQQohlgR56CCGEEEIIIYQQQgghhBBiWaCHHkIIIYQQQgghhBBCCCGEWBYsWU+Pcrlg5fKUVnN2DHVpn96NmmgTPgqzRTz3WU6JfAuODKJm2tqtKyC+7mrUdZt89ADEBQ+14lgveSztqhZ65LExOk5eC/QMqlzGmOVVg6SrGSa/iEgFPdZsDtsVoHYHfGqDswXW5qTjdIwunA04eqBG58aD92urBRrwPfOmD4IsByzAOnj0frmCfwlrXPI2jDSTA7SNGJ3DvlOo5bd7N2r1ve3drvZ0gLSkSznUQPdIl5K1MDs6UZOwrR3jvhN92OaoqzF/agK1FLtXod/D8SPoG+LIk5MmboE0Zp1+rqBTz/qp/JmgH6z4uVqQTDbO6NWzfHgigTqhHuUI1xUzswJdueEG1AMPRiqIWc4iRtr5b7rzDohTk6i7/XPveoezjfb2Zoi7OlGX/uff83aIn3gefUIOHDoCMWtJs37qPffc47Th7//+7yEeGxtzPvN6ZV2LZ01N07WOCvcv/dpH8LMrUTP7x/d9w9nenlfRC6FEWrRJ0oO/ZA2OueOkcX7swHGIh/tx+03NrnfXZZvQC8HIe8QvoHbpcD9qpR4fwzqz81XUWw3G8ToaID8xM9d/aOVK1ArO5vDaPDmA3iWOHjbVo1wG63ci6l7L8Tj2zdAozqH8/Jlxu1CorZdRQyw4U3tTpLmbo7GJPTxiIVd/eHIS51HpDOn2NmPuZrO4j9Ex/H6xgP1dKGBONDa3OG247oYbIG5NYm3KZbFNoQD62URpzAzT8OV5mFOhkJv7QZr/hWgjji0WvRCgz0ejWG9ZW7rCsGMNMTyOPJ3P0/Pks0h/Lxk8ugibm12979tuewPEa8h7IE865hnKgUwG8y5LtapIeXfkZK/Thltvxry7nuKXn3sG4tw41pok1Y7XXt0FcRvlZbKC71mZ9KCzDZSbBerLMibOZRHMu2cjmDOHyLOnQtrV1PdvPjz35GMznhevvPgivDc8gPPmvuPHIM6mULv9vKALjS87nlMFAqRfXsHfgUmnMY8nyCOixP58Jfb6Iq9L0qg/8Np+Z59/9V//K8Sr1uJ64tTEKMSJVpyLpjM4l9izF+eakVW4Bjp6wvWLO9mP/l8dTeiV0d56Zr6bTbseaItJJBy2SHjqXAaacc6y5pLNEB86isdeydvwtC/Nme1j3di0Cf1NmltwzH322WchzuUu3OOksRHnk7EYHifnYbV98nqw0jKQ/dcWGp88JCoNkzxfLDyPdaWlZSrv2LNrsZk9Tz2bt8dZ36/Q11XX9AG+V4WfL9I2Y2GsbZEijc8jo24jyAMrTJ5lIZ5z0f2azZvRHzVH648nHn8C4t4jbq3z6X7mOB2XV+N7ZEuNVLY4kytkD2YNtF4o0zn3K4xv6RTON9ZtWA/xKI3Tg0fxnOVDONasuQz9+3btwn0OT7jjfI4uj/wpHD8ODu6BuPAkelJde8PNEIdfwfvXxZM4L6x4v6zG9aNW6JceQgghhBBCCCGEEEIIIYRYFuihhxBCCCGEEEIIIYQQQgghlgV66CGEEEIIIYQQQgghhBBCiGXBkvX08PyCef6UtufIcdT2fupF1P4emyRvi6KrRVYkLb5+0nH+yTPojdCOksxmpE1MVgzGip3HT00YEya9uWiQ9AL5C6StGSbpvgbaYJhElqNBtx9aSW/3yDDqXObYc4KeiwVIv9fZwznIC7KnR4EUecvw2doSDARm9AHDIT4j5KVA5gvFoKtj6dFrrJHL2+DHkCEf+ztKupV79qBW3yOPPu60YftdqO+XCCcgboijNmo4jo3YuGkLxKNjoxA/9uhPIW5qwu2bmRVjqPHa2Y3610eOoL4xa2N61A+sY1kuV8+Uenh1nCulYtGKxaljnhhFv4zOleh90BDDazifc/WCJ3OoHx5uXglxwBFkx7zqH0IPgPvufwDie+55C8S//uu/5rTBSIuUtUm9EOoCF4tzK3Oz7mSZNCcvv/xy5zsbN26E+IUXXphzH68rfG/qn5mVqZKXPKx9t73rtyBeve1WZ3P/+MW/gDj9k4dwdw1UZzLor/L0CzshPtaH18H6DqwrZdc2y06cxLlBspW+Q5rM/QM4DwhFSReaNGAtQ/r1LL5qrq9IIIrXa1//KLZhCOMAjQmlIh4o1zr2wTAzi4ZJVz+H19aGnjM1JZuv0JGLSGtjaMZ/YmQS+6+pkXyAOtohTpFWu5lZked7QaptQeyvFHkppCvUz9mUKAdGh0ecz0Rp3G6MkjeXox2McdCpx3yOcZ42MuLOL0cm2COO5idUX6OkcR0nP45wlOvt3J5YZmbFMu4jQvPu9HSuur5u9cWdG2Berlq92vnOxktQx75EtWVyfBTibAbrWbFA3mr0/Sh5rYWo9piZ7d2DHhzZQbxeYuT/M/D8SxD3HkYvtaOvoj71CuqHCd+tFc2UB3ny8MjQNgoR7OtW8hFsp+0dIOPBUAWpafZgWSrZ9c1//MeZ9UQuxdesez4XmiD71gXnrgnsmFIuueebvdQ6OzshPnkSc2pikn3UqmmF47nMZ936/OyTuOZ49rnnIW7pwuugqQHnAXEPj2H4OF6bsQY8N0XD983MxnksotMZn+WHU8ov/rmeTSwcsfj0HGAwg2NH80o8Xx1dqyDm+wpmZtdddx3E3d3oedrdg9uMx3Fuz/4Mjz+O61Sey1eCc/eaa66B+KqrroL48OHDELOvyMAA+rm51L+KVGoBZ9KlW6+A+KabbjGzqTnDa1/8q8VpWAU8z6vq5TH7s7NhPzIzsyDNg0M0HgYoH3zyCkqRp0t6CM935iT69Y3yXN/MYt2Y14FGrBupSdxHme5T8Pljf7kNG3Ct0HvksNOGIPsyUU322Qu4OLff6fncBznX81oP/LI/M2QEaGxJJjBnGimHmsnvyMysoQE/070O536N5O925BW8p+A14Bom0YI5dMN16KmUSrv3PYJBrJ9NSdxnW9d6iJ94Dn19kpRnG2lN+tQz6OnxekK/9BBCCCGEEEIIIYQQQgghxLJADz2EEEIIIYQQQgghhBBCCLEs0EMPIYQQQgghhBBCCCGEEEIsC5aup0fJN680pT03MYm6tPk8atKFCqRhV1EaHl+M07uj/aiTN0m6ohHSNy7S86ICCc1u7UZNUTOztgJqkx4ZQz1Akt22zgRqFnZ0oFbcxDh+P5vFY0jEXG3OjZegvlwmOIzbGE7hF3gTpL3plfm5WXX9wHPR76wXZfNnjoDtTcp0LKwxyj4U01vBz9B3WMubtYnLJdSIjNDnB+l8fe2fvu60INmCuoW333wH7pP0xlkH2CMvhsZG1MfdsGE9xAeOoFammdmKVtSN7T2EHh5Fvoa5H6rmzPx1K8+2zXp4fwwMD1lsWm8ym0U/jmSyCeJEHOOS72r6s49A/xDWirEJVxN+Ng2NqAn5np//dxB/9KMfgbi9za13jO+hTuWDD6Mu86n+uTV2W1tR15K1pdvb3TbI0+PsFP2pf2bmFLsY1bISabl/++Gnne197SnU8r4siedjFendvvAkaizvPoG62WxJ1ZPEGtEYdVywrFDALx0/iXl+uB/jU5PYprXdLRDHqF43JrBWtjW6mrDxBF57vX1DEE+M0XHSsFHI43GW2EuB2hSOum0YIN+JFe147XR3n4kzWbd+LCZb13dZZFo3/OrLsM4EolgjTvahHnylMTZEHUjTQysU8ByXSviBIsXsXVEq4/fHx3DOZGaWSWE7/RbSrA6xhjXmSLmM7+dy6M/BGryPP4VeDmZmu/fhmJov0TVMc4l4GPeZJB129qgoeXP7apmZRTiZaYwNBvyzfncpEYpgX2zcfKnzmaa2Fogn0zgXGxvHa7CYx3PKRGifcboWQkW8VszM9u/dB/Hz3/0+xN0BzLPhEK58CiM411hNfhwTZVyzjITdJePaCLYrSHOxdAH7JeTRvNmwjWlv7rlepczhuflSIRGLzHjfsKeHR/1gfnXfh/ke5YqV6OV29dXXQDwxMQlxf/8gxOmUm7NveQv6ud1z9z0Qf//7mIOPPf4YxFmqbUOstZ/G92MJN++TSVwLJ5tbIB6bxGtvoPcYxO0tOB52JtE3L8ieFI18x8DsyOGDuM9hHAMSTWfy2i/WNj/DoYCFw1N5N34K+yLRhN5q73zPeyCOh1z9fvZtWdXTDXGITE7zWTyH1193PcR79uyBeHAQ864SKzoxl7ddgV4Wl5A/whryYeL1wf333w/x0BDO0yozX2+DRTjvAZz3xuhaKHmh6f/W1kdmNuwBUS2uVL/L5GmbT5OXBd+LYt8Juo9x5OgRiA8eOwrxqgrnqqMR64AfwDYF6d5IOIyfb6B7Jb4/CnE8gXWluRnPpZlZahJrdKnI9zrm7odqfhx8v2Mp+3dUIjTLS8anuXwDHUsLnc9Ahet5Yhz7e5zGp5YevKew70X0k7I0+dNmcNxPrqS61ID3c8zMInGcE7V3dUB8xQ1YT1t61kHcfwy9fgt59HVilrLf7UKjX3oIIYQQQgghhBBCCCGEEGJZoIceQgghhBBCCCGEEEIIIYRYFuihhxBCCCGEEEIIIYQQQgghlgVL1tPDyoGpf2aW6EStxt/6j78H8YGjqFn5k4d3OJsbzqG+Yf8J/E7/ABlqRFBTLVVGXdqyRxpoJdTVu4R0M83M7r7sMoi/88xTELe1oLbbe+65C+LNl+P39712COKfPvY4xLv2oYahmVmxiMfZ3Iy6+OEJ1OLMk561o73oxAugBzh7EzWWmiuWSjP6gF6QNayNYmpcBS1Er4peYiiAur4lOj950vkN0feD9P3BQVdv/OVXUD/1rjf+LG0Dy0C5iNqZEdKpXLES9V1Tk3htRBMtThteO4rtOvjaaxBnSceXddQ5EdhPhS/HSlTTrqynrmEsGrf4tEdBc1MLvJdKox7jZAm1gy+79gZ3e+TJMfQq6g9bEM9p50rUu/3dj/wuxr+LNbelFdtYLLiakUXSGr399jdA/Ief+EOIP/vnn4P41Kl+iG+55RaI29raIOacMDPbunWr85qYolAqW2F63IpGsO9GJnB8/Lt/+GeIv/cT11Ng8BR6ejyVRS3UX7ypB+LRAbz+iqR73dGAdWk4gzkWCLt/s9F3CnWZgyHcxuEB1GvtG0PNelaT37QWa12YPJUO92M/mZkdPIr64WnSIi6SvirXrmIRax/XJfakOH7S1cPuacH5S2cTagWnZ9XsbA7bt9jcccsWi8emal0raavvOoK17cBhrAFru13/kiT5qoxMYv8W8tT/pInMc5YijX8B0m0+cKDXacPevaih27XyWojDIdThDkYwLz3Dc54axzH14Z88B/EjT+KYbmZWojlokedilEcNmCIWC7PXCR63TxY6Xsn1XoiT50OK+jIRD1ds61KjgzTst155hfOZCHn3DI5j7RkexzmPn8O8jMdRz7uxkdYMdL4yNM8yMxsbwn2MDY9CnB/HeVXcx/OzIYZ14ZoErgd2pbA+nsxgbGa20sPrbzV5kbSQd0xbAY9rkPwAJmgYD5LfTeVZ2tLUpH7PO98y49Xyr//6TXhvcATHjiAtx/2Kx0RjQ7UGeLjNd7z7fRBfdvk2bBP5quWz7rxu1Sr050s24VzzV7vQ7+Fd78V9Zmn8e/Z5rG07X9gJ8dXXXO20YZDy/sWd+J2RAZyLZNM47pdbsM133Ixzy2EPz83LJ15x2hAp4fXqTZL/yey5Qo09PfKlvAWLU/W7MYHX4/oInp+V3V0QDw6gJr2Z2WSWag/dOWL/oQD5MURoHlZ1rVXhNsIVV10F8eo1qI3fGMfa5SVxn5y37BHInh6O545VuN7mvWa88Dzg+UiyGddBhWmvi+IS8k7l881+muflI8HeFeThwadmkMbP3Yfw/lhLJ14HZmatNDaxx1Gc/PTCdN8wRPO+SBhjbnMkRpMyMyvk0XOP7xFx31a7z7GUPXXPh6KVZzxg03k81mwWjzVAh57PuL43bVuwPh7ch/eqmkZoDTmAnh2hAM55mwq0/sjh+WzpWuO0waf7X4OnsCbv3v0ybjOA945DtJKNx8ij6iLzbVlI9EsPIYQQQgghhBBCCCGEEEIsC/TQQwghhBBCCCGEEEIIIYQQywI99BBCCCGEEEIIIYQQQgghxLJgyXp6FIJRKwSn9PI6rroZ3lu7Dr0tLt+zF+I9r+50NziK4U2kD/nUM89CvPcY6juGSthVrVHUXGtDmTd74+XrnCb8/DtQ0371RtQE7VqBuvpvuPU23EALajdeu3ktbq8VNYL/9sv/6rThmX0nIM6HUOstl0EtuHI16TdX5LLKF5Y4ns3oifKhs8ZumTwLvAqdxU8VQ6ThGKC9FEn/z4L4fsnRwsTtsT+HmaubHiPdyKbGBO6jhLqVGR91nBMJ/Hz3KtRWDUXHnTYc6h2FuEg66znSuy6RFjhJ6VtgASQJz6YzWg9vj2g4YtFpvc8yabEXinjOuy7dCPF1b3qru8EAaoduuJxqSRS1vHe9ihqRd92Bn2d1W9YVPX7ksNOEaBTzbGUPaqZ+6Nc+CHEfeXj8+McPQfy2t70N4oCj4eqet3e9610Qf/3rX4d4//79EC8ln5fFJh4NWjw6dWZffHU3vPfVb30P4mMDmIMTJ/c525s4idqnSdK8b4yQr1YWr/HmEPZ9gDxa0gV8f9+gq3E/QeNXVztuYyKP76/twTH3kvWYo51tWOtODeFAn0F51mlwn6EQ5lC4RDqyHvtmsZcUezNgmEm5/XD1pagTm2zCcb55lsdHOlvxIBaNQHDqn5nZWBrbztdb1wrU6aayY2bueBah4ymTfwRf0axx7NO4HiDfrN4TODc0Mzt0FDXk77TrIS5Qu0ukDZ1OoS7wQzt+AvFzL6BnSLpC4oXJJySfw3G7gfOQ5gpUTq01gcedyVO9rWAF4+YuEpm+pkuVRNtrwNnqOeukX3nFlRB3d6POs5nr/WKGcSqF/jS5iQzEp70ezgYrb6d9N/lLUTxHORqoszSvOhbEbYTIayBO881LyXfkYAVPj4MZnO81+njNrqIpaVsAj3uMT0kO2+hkSqXUWaLD9E033TDj3cJz++98598gHh7BfHHqvp2Lhwfm8aWbN0G8eg2uGds7VkC8smMlxIEK2t950pjna6qtHcfUFStxm4US+fw0Yr5cfhn6sB0/ftxpwyMP/RjivbvRY6yUw/oa5HUW+WZFgziGRH2MB46g14mZWYmu0LZWPO5Ey5nELxfKljK8/heTw68dtui0v0AT+fVFgrQGpfPXnER9eDOzUBO+FuHBoozbYC+D8XGsERMTON4xLS0tzms33Yz3gRINODdLJPB+yvDYKMSPP/kkxCdO4L0Qxvddvf9YHPeZp/o6f78EmvMGqvsvRMg3gr0NT/tEsF9ELanFuonXf45PAXti0bk6lcHr0aP7JGZmPs2R2GuUfVPoMrAc+TfEYugBsnE9+hXv3eN6tRVo3OD7UAXaR4nWF9X8G6r5rSx1QqHAzDFGQ7x+x8+2rWyBODNKN27NbJL8oMbJ1mp0HP1R+4axtpXJn/aSjXh9lss4v5kYH3XaYBGsM2mqZWMHcK196hTOHVY0krdJGnM9THNP9o1ZzuiXHkIIIYQQQgghhBBCCCGEWBbooYcQQgghhBBCCCGEEEIIIZYF83ro8ZnPfMZuvPFGSyaTtnLlSnv3u99te/eitJTv+3bvvfdaT0+PxeNx2759u+3atessWxTi3Ni+fbvyTtQU5ZyoB8o7UQ+Ud6LWKOdEPVDeiVoyfmBKzmnVqlXKOVFTVOtEPVDeiaXIvDw9duzYYb/7u79rN954oxWLRfujP/oju+eee2z37t0zOv+f+9zn7POf/7x9+ctfts2bN9uf/dmf2d1332179+61ZDJ5zvvKlAMWLk89kwm3oO5o0cdmN3f2QLx6DWrem5k98SRqJHe2of7jFdehnt/e3j5qEOrqNcbxedH/9wNvh/iX3kka+mbW3IHfudW7FOJYDHUzjxw9jO8PjkCczaI2HOtmRmOuZnC8oQXi0XHUtAsFsW8LPmvksVYj615euJbjbF3E0//7m7/5m/bGN75x0fPO9zyzaX3AQtnV9JyNR31RWTqRPDlI3DvIeuKsp0i6ldwmkiuf0Q+ezZbNmGfRMJ0jn/00SAf62FGMjx+DOEva/Lm8mwMF0tOcpFzlfnG+T2Lunof7CAbYdeLCqVXOmU15lJzWTw6GUbM1T14x6zegTnMiiZqRZmYFH/MmmcTr+hd+8echbn4ANST3vfIKxLEw1pLrb7sF4r270BPCzKy1HWtq1yrURU+lsPa8//3vh/hnfuZuiG+88UZnH7NhLVMzs6vIu+n3f//3Ib733nshPnkS9TzrQa3y7qEdj1jD9Da//TB6WqUzeL53PvQPEB/b705Oc+R7tY08po714vkukJ78FZtQ+3t3L+ponxxF3dFEzK11RaqXwTBq6Ha04j43ruuEeNUKzNljlA/ZEl6L4QplJ5tF3fsiefKwRi+/Xw3WDd66vtP5TKIB+2El6apPzPIBKZSmamut8u7YsaMWm/afCNEMND2J13BqAv0z8gWsU2ZmiRi+NhHBsSZLHgEhmqOUyvh5x/OD6kq5gtb+AZov9p7AuVprC87tUpPoZfLwo49BfN/3dkDMXjLBiPv3SoUC1b8SHvfqFfidRAw7vxwgbf4Efj9Fc8GhotsGj/xs2mP4nfx0E09f+rUcY+ciQb5ml29F38CI517oEyPDEOfTeI6K5KkyNIS5zN5o7eSFUMjj9/2iO77FSd89RH/HFifd+yTNLTKGuR+j2tURwhqbjmI9NTOLUt6laP44Sj4TYbp8WoJ4bVwSwjYfLZDXxQLIxdcq71pbm6yhYcqz4mff8jPwXpC8Ff7lX74J8RjNkc0q+QzO/X6U8oM9Oli/nb1tyhW0+UNUtHkbGdLKHx3FWniqDz06nn32GYiff/45iPe86urcDw+5HhuzYW8E7qlLNlwCcU/nKohTfXgMDUF33Dk1fApiWjpbcdb8JnVqans/+tGPLBaLLXqtK2ZLFpzWjk804L2OEs2JuKdaK3h6xMJ4cB6Nibk8+SPQVl97DTXo2ReGfQfecPvtThvWrUOf1Cz5YmWz2Ib7778f4icff3zONgTJQ27LFvSWMTNrJ8+bp55CnxD20XL/rpjvGfD1WO2KNtuyZQvEKzuxTafnn6e9yZbKGDubaj4T5/Mdx5uN3p8kX4RDh9An7bWD6NVg5t5PaaB7aiHyxC3SDRn21MqSJ9aWS3Etn7vLNUrj+njsyCGI01SjgyXMY/Yec2tj9b99Px+fj1rlXcgCM/UmQucnS/eVPLpX1bMe7x2bmfWfHIQ40oyeU+PjWHfKHo1/1FdDIzjXbw3hGrOUcr2e/DitIUN4jk4cxvstva+hx+aWrXgPfGgMPZTYW4bvzy1n5vVLjwceeMA+9KEP2bZt2+zqq6+2L33pS3b06FF77rmpSYrv+/aXf/mX9kd/9Ef23ve+16644gr7yle+Yul02r761a8uygGI1we//Mu/rLwTNUU5J+qB8k7UA+WdqDXKOVEPlHeiliS2TN1kuuyyy5Rzoqao1ol6oLwTS5EL8vQYG5v6C5y2tqm/ND506JD19fXZPffcM/OZaDRqd955pz1OT9lPk8vlbHx8HP4JMRfKO1FrFiLnzJR3Yn6o1ol6oLwTtUZjrKgHqnWi1qjWiXqgWifqgfJOLBXO+6GH7/v28Y9/3G6//Xa74oorzMysr2/qJ/6dnSi30NnZOfMe85nPfMaam5tn/q1Zs+Z8myReByjvRK1ZqJwzU96Jc0e1TtQD5Z2oNRpjRT1QrRO1RrVO1APVOlEPlHdiKXHeDz0++tGP2ksvvWT/9E//5LzH2nu+759Vj++Tn/ykjY2Nzfzr7e093yaJ1wHKO1FrFirnzJR34txRrRP1QHknao3GWFEPVOtErVGtE/VAtU7UA+WdWErMy8j8NL/3e79n9913n/3kJz+x1atXz7ze1dVlZlNP8bq7z5jW9vf3O0/0ThONRi0ajTqvx/ySxfwps6wgmawEyZwm1IxGvuvXo+GVmdnQ6CjEP37sBYjf9nNo9vyue7ZBvP95fPrYRj47P/OGyyEeGXOfVu46eBjijhY00fnWjx6BeN8xNEoLhLCfjhxDw51gNAzxaNotHsEG7KuGIn4nNYamgY7xHZn2+KUFcBU8R2qRd2Xfn7EOc0zFiQAZEQZ9t7/LZCZa8NBIKUiGcIEKxmWzKZI9V4HiLZeiQZ+Z2eZL10OcTaGh5qF9JyB++tmnIX5590u4T/LTzOaoTTn3GPbvQ/OtfBavac+buxSxyRx7zJ+P0dbZ9uH7vtm0+ddC5pzZ2fOuWChZMTCVK2EyqU1n0HDvyZ+i6e36y69zttfYsQLiXAH7O9mMBSxK5oY/feQRbF8Jv59oQ3Ova6++0mkD+a/bqVNoCn2CTKJbW9GQb8MGNONqbERDRiYQcJ/h8wTqAx/4AMQ8cfrc5z4HMZsd1opa1LrvPrrbItPGtKODaKa24/4vQDzeT+OZ5/Z1JITX4NWrWiBuiqPJXNMabO+uAziepQKYY7Ek5ujxUTSIMzPbsAKNB0NkwJktYBuphFsmgyZ1/cMYGxkBlytM0AtkTF6k+UqZ+s6xrqRN+lTa+JguXYsGyGZmbe04zvN1EAqeGfeDwTMtqEXeldJjVixO1dpSEI8+TEaQl3TjOe+fcOt8LIb7GEvhd9JZNJh2xnU6AXxG2VyUx30zs+de3AXx4d43QhyJoxHuT594HuKvf/shiI/347VQpn6JhXDeZmbm0/zDC2G8fhV+p7OZDC/JhDxkOFfJNeJxrwm65t5lmg/yfGZicur92ZdErcbYueD5RS6N9XBkwDVOnphEg+bxCZxXFQvYfyNkfD4+ifIMLS1ocLlh1WqIbXLUaUMmjmNiggyas4dwbmcjeC2MU81OUbFpzWPtWhFy52kJysUo5d0AzXlPz3NO01nAvu4M4/aC5O1KU+YpnGVINcvvGq1j4xGLN0yNe42NWAPuvufNEB88iMa6Dz/8qLsjNqGl2uTT+RsexpwrVey8s79fqDD/OXAADX9ffhnXB/v2oakqz7GO9+JaYGgQ17mnjZgvBK7ZSZo7brsc1/erO/Fa23NwL8SDR7Eem5nlDefEgTDuszhrrnF6nfwf/+N/tPvvv3/Ra11nd6fFpud2XhjnXcdO4bHEIni9XbZpg7O9RAPOxYIe13mMjx4+AjEbmTMbN+Jc/813vdn5DJtKWxFzdd+reM4effQnEPNcns2S2SD8He/4OacNDQm8ho8fw9w+eHDu4/Q8HGd6evAe0ApatyUS2O9mZtffdBPEYaqXhenBNRg8U2drUetqzXzX/OT3bQOnsO489thP3e9QvGkjXhteAMdDn8adQBjPd3oS1yxZWm+sXU1jvrnnd3cT5u2JE8chnpzAMX5sBOcpBZqXBHndnHfHSh5XuGe4b09Ti7wrzup1vgW39lK8vkoRrCGr1q13trdqA9aBkSG8TzE8jCbiHo01IVqPDKfJ6Lwfz3mbh/XZzCxn/RDnQ3jODx/Ecz54Ej8fb26B2A9i3eJ7KakJNDo3MystwD21pci8funh+7599KMftW9+85v20EMP2YYNWAA2bNhgXV1d9uCDD868ls/nbceOHXbbbbctTIvF65Lf//3fV96JmqKcE/VAeSfqgfJO1BrlnKgHyjtRS/zpu4L/9m//ppwTNUW1TtQD5Z1Yiszrlx6/+7u/a1/96lftO9/5jiWTyRnttebmZovH4+Z5nn3sYx+zT3/607Zp0ybbtGmTffrTn7aGhgbnL2yFmA9f//rXlXeipijnRD1Q3ol6oLwTtUY5J+qB8k7UkvL0D2X/5//8n8o5UVNU60Q9UN6Jpci8Hnp88YtfNDOz7du3w+tf+tKX7EMf+pCZmf3BH/yBZTIZ+8hHPmIjIyN288032w9/+EPnp4RCzIexsTHlnagpyjlRD5R3oh4o70StUc6JeqC8E7WkPK0w8/a3vx1eV86JxUa1TtQD5Z1YiszroYd/NuG2WXieZ/fee6/de++959smMzPLHjtgkWkN1LF9T8B7/SnUQEu2ogZcIE863GZWDpLWaQp17b7zLdQh/eRv/gLEv/f2NRAfP/oqxE/veRbivXtRX9LMbO0K1N7uWIs6a5/5R9QU5KMIk5Z3mXwQsqS/G464WnENCSwoiSS2IVlGPdWRcdR6O4cUWBTGxsasqanprO8vVN55njejf17JZGk2AdJmr+S/5FwzFJZJlzQUnNvTgz08PNJYvv76a53vhDzMi0d+/F2IX311D8Tsf5PJ4bVS8lFj8uRJ1KYe6EcNSTOzyTHUmQwGUfeQ9cj9apqRHodz99vUNnibGJ/Wtjz9aq1yzsxseHxiRls3nMXzdfToUYhbyePjsR/c52xv5RrUBm1tbYG4a5aOpplZMoq5PEw6y6zpufOF5yC+5Ro37yyIuTnYj7WktQM9PFavxhobJi3iuQwdzwaf4wRp8v7Kr/wKxPfffz/Ezz+P2vvVasJCUKu8O3xwn4Wm+/i5H/4zvJdN4fXK5heVtMEv7WiGeMtGzLGnD6A26nMvot587yD6Sa1f1QHxti3rIe5/Zb/Tho0bUcN1chz14gcmcHw7SfscHsY4T8Y0x06gRnq24J5/trnySDO3kMPrl/XHq6VUMorX1dqelc5ngiHc5xBpu4eiZ66D0xYktcq7gBUtOF1lJyex1gWp7kcCGLcm0K/DzMwrY3+QTYgFqHbhHiu0j85XmdpUSUs6HsN2HTyCNTtDvnQ7nkDfrL5+0t4nX5gymVjlcm6SRGi+FwniOB1P4LldsZKvadxnls5NUwOO2ZG42w/ZNOZ2jvy9GmJTcW76uqnlGDsXKap3TzyBvlkn+1yde7Y0CVDi8WjFNkiv7H4F4kQc5+Y9HVg/Qw2unvVVN6KfV+oYajs/RDWS/W3KcTwIsh+ytXT9rakwBMcN8yBCNhAlOu5cgNZiHuZ2lnwr6ONWrDQNYDFv7uyZouqbmV+zvAsFIxYKnr4usS87OnA9uG0b+qI9+STOsczM0qQBz/rUfEUOkBfNy7tQjzyWxDE7GcMa8tAPf+C04R/+4R8gPnIE/RuKBfYB4VqFreTTyfW30hyr2rxrTU8XxG++600QX331FRAXfVzjNDVhv/R0ulr70WZs+dgE9nVu1n2I8nW+DT0/OWfeLWSt61zVOeOBcWAAvYZOjWIOtTahzn3WOX9mpUm8RpON+J2WBGrET5BG/Cj5CvA8+m1vfxvE69evd9qQLeI5ikQxV9nbq60Nr68raU3EMjrs6xSPu3MNlum57rrrIT54EP1uGF7TXEvrpttuewPElZY8QfJ4yHuVPT1OzxmWyhh7oVzwWov9aWlOdfQIeg2ZmaVT6MExfB2Ot1dcgTU7Sb5NAbqfM0H30w6+huMze+GYmXWQx8VG8qHYuvUyiMfIl3eErr2Dh/A4T53EdVilnOPX2BcEq3ht53bbNrZbaHp9OjSK672Nq1sgvvoq9G5ub3fXTkWqM5bB8WhFB3qvlco4pzpxCvt7hCYs+SFcg05msM1mZtFGPIe5INaiCfKaLJLR7rFjWPNbVuAxsD9StEKtS6fc++jLgXl5egghhBBCCCGEEEIIIYQQQixV9NBDCCGEEEIIIYQQQgghhBDLAj30EEIIIYQQQgghhBBCCCHEsmBenh615O8//WcWC09pLA7uQx3StKEuYoK0ikMNrtbwtZtR33Eohc97+k6idt//+/+i78HkW1DLb4J0L7/+2AsQp8ZQu8/M7ObNuM/DTz6EbSCZ9JKRaDCJhXse6V+HUZctV3B111OjqDc3OoFxsqkBt0n64cVMNUXsC6dOtiFmNqUne67eAY5mc8VniPipYgn7L0B67tEwC0VjLgfIJ6G5Fc/Xpk2rnBb0n0R98VP9qOHo0/EWSIOwv38U4lyedCpJ79WvkCLhALbb8/g4qQ0l1lHHfXh0bQQCrOnsnkPWYi+T1vtpzdDF8GmoRjqTm/FJyAzTNUk+FFvIt8DLoI63mVn/fnzN70Jd0NGTqCVaTqOO5dat6yEeobpxx9134f6GB502NDSiLvKqtesgbiU9zXAItWmrcS7XKev0cg6wdvAHPvABiF99Fb2bMhX0Ny9Wnr7/H2f6sOTT9cW62iXsa9ctyuymLSsgfuhp1Dd+4rU+iNN0TQdpn2Mp1D595uUDEE+MuJqjoQjWw1IQx+k81duBcdxGI2maZ8gna5L8dFJ5d4wNUAGMU03P0HcqeUTMhqvRqk7U/m9uThiTyWDfNSawX/xZmvclFt1fZBIRs9Pd7Jew7pD1heXwMCwUcdsaDmFueuQR4Ppqze3t5DleXXh+QgEau8wsSz4t3/zO9yBuacZaOE7zQx6/AlTbPNpnNOxO3WMRfK0hwmMkap6X6XqzMl4LIfLxidDcIxFzcz/s4fXT0UFtmD5/2dzcOV9riuSt9vIr6LfR14e1y8ysgfxl4nE8dtaUD5OPWZ78T559DtcQvDzr6m4w5gNv+HfYpi2oMb7zJ09BnN2D/m0h9iQif5zJEB7TpOeet1ZKozBdP3Gqb8UAjvMDYeyXUxPkO0K75LmfmZnv8fXA7Txdk2s7tyuXPCtPj52+0XhHeu+rVqHnQHMz5o+Z2SR5enBP8NEd6+2F+Fvf/jeIG1twH400Bfv+977jtOHAa3uc1+ZHFf8+OuGBCvW2uRnHwG3btkH8M2+6E+LVq9Djw4vggaYyqKFeyOPAc+3leF2ZmXWuQm33TGYU4tlTz3yuYF9+/l+dbSwWqVzWytNjihfEazhM11uM9NxLAfcaGRjC9cTqIM71GslPo78fPQEnyTOpvQP92q666mqIeS5o5v6Fbpg+c8P1eI+muwc9kRrJIDnegPX0iSefhHjniy86behYieuozVs2QRylfshlcb3Q0dYG8aZN+P0G0to336230Qb8zEQW51DhaT+3cvH1/TfNvD7k5WI4Queqwtqu9+hhiH2653asH+cFK1qwJvhFXAsUs1hXsimcB/bud2vr8Vex4ck2vPY2XX0NxKvWroV486WXQHzllehn9NLLL0O8+5VdThuG6HoukPkX920tb6Fsv2GLRafnvmFa5wTJG2+0D30lOxrdeXQTeUSX12B/FmgtfPgwztuKNM8emMAxO099V+kqLQ1inmT4PiFP3ekE9A/g+SrSfChEXsCxGNUdM8tlcTFWycfzYuT1XRWFEEIIIYQQQgghhBBCCLFs0EMPIYQQQgghhBBCCCGEEEIsC/TQQwghhBBCCCGEEEIIIYQQy4Il6+mx5/lXLDytSdnZiTqIXS2NEBeLqI1bzruCchvieKg9DfiZSztQ7/HkEOr7/cXXfwzxwTR5DtD+KqnNH3wB9f9ypBfuqjeihho/oQqQDrufRw029lEwM8vQd9j2Iz+K3iaspxogj4lqeuQXG57vVzx3ZuZqgdOxlyp0RZh0sH3SIS2RBnY4ilqz4QBq+4U8fP/yqzdAHAmgdqqZ2cFXUVv/UO8xjA+PQlwu4DkvFlGjkNLSIgHUFM1U6IggaUVzH5dJhz1Y5Ypy9ToxLlcQlXReo+/U09NjZHjQItPa/83NLfDe5Zdthbh7BeqGVjJRyZHnkEeaxaMDpClPeuPXXYlasy8eOI5tWL0G4g0bNjtt8Mm3JRgl3Uh6n688V9eetPadPc6fcJiup8svh7ilpQXi5eTpUSr7Zy4B9sQhvw2fxpI1NCabmY0PY9/sPow60NEwnr9G8nwZm0Tt00nSvM9kMYdDoQpa3604N5iYwO80NMztGzM0iccQi6LetZFefbFIJhRm1hCiz1ApI/sAp94EyUuBx9hV3aiHncm4bYiQ50NTE157o7N08/N57OfFJl8s2+lLuXsl1p1ikTwECuSD4Lm6sqFJzIOGBG6jPIyf5/5lfww+H2WqU60trrdCPo151j+GY+LJfnyfvbtK5G0SqKBpDt8PudWPL4d4DLfBl3huEvMqQR4VbSsxDlJNCIfc+WWJjqtrNfrNTKSmxqpMth76wAHzzjZqsLUFaan3Dww4Xwk6eYXx8eM434+FsD/D1AXpiXGId/z0JxBfdY07xk5mcezffBnqdXddtgXiV/egXnczzT89Oqf7aE1xPId5amZ2isbQ1gjWmiDtY4R0zk+SF8Ix2keR/d8qeHrwXCJYJt1s7/Tc7oy7Ry0IBM749fB6j3XR2YepVGEezTPTqsdSxr48chC93B77ySMQ9x7YC/ELzz3nbJLn2vOfL+Pnu8hv7uqrr4K4owM17M3MLiGd+g3kzRaKYR6nsji3KFHfD/Xj9T16DLXf/Zw7RvaRH1hTO85nrrvl2pn/nzq3tfP0SGf8mRq2so38THy8XhNsCVbh8ioG556LF8h8q/c4+khytV+zBtcPK1dgDngV7iuEaOLkUd41k55/88ZLIeY1UYrm8iFK41DYnSuGyLMjz/eeuO7Q96++EtcXq1aRf0AZtxev4HNIVl0WpXsyp8fgQKnCiVzGVKtLzvkkn4Q8+W2Yma3sIf9Mmjv2HsJ7K5MJvI/Ia5QY5dyKHjz/d1yG14WZWZDGw8Ey7iM7ihOR2KWY922tWJdaffx+S/MbIO7qwmM2M3vu2WcgPnr4EMTFWfME3/ctNen6LS4WwVijBac9mq68HI893oDX69DxwxBPVlg7FYLoX0o2LrZq7XqIt16Hebcujffg/FfRV2v/ERprKgziXP88GjMT5B93cgLrxkQONxqK4P2exkYs+pXW0uz7IU8PIYQQQgghhBBCCCGEEEKIJYQeegghhBBCCCGEEEIIIYQQYlmghx5CCCGEEEIIIYQQQgghhFgWLFlPjw3reiw6o42N+ma5NPpOeCS65lV4lhMkQWOftLg9H9/vakfNM9bFWzeMGmkHT6Bm86kJV/8sQ5qurHlvPutYsm8IHQPFZfp8qVxBa5UkjVn3sFBA/UDWdWOt6eXm6TG7P1gjsup3K7xWpnPAucpyuCXqT9/DON6A52PVatRrHR0dctrQ34/a0kMDqAFZyOM5b2pEDd0iaTBnSQcxQ9cj68mbmRVI2L5srFlYDf7E3N+oJDPMue7zGZvn+V5IWlqaZrTlu7q64b1J0vqeiKNO5eQ41p5KlFJ4DqMNWHsiEbyuG1a0QzySxu+nJ7D+Na1GbVIzs7LP9YrqMtVkrtrzO+OVqaY3zdd4MMgeRsv37wIg/6nuBMmLKOBR3WlG7wwzs94+rD3lIOqONrc2QdxKeT70ym6IS1QzQnRuKo3zL76CWtKtSfzOupWoZ5vOYX70DeMx+Ia1LkD9EmajBDPjlMnREFmi6yIaZV8LvNbC5JPAWvCVvKSSLei5UvR53PYq/n8tKBUDVpr2Cotw/3moTRsOoT8A56GZWUsMx69NG3CudnIY62NqAserEmnq+uTbwmN2IuzWlJ41mNvFErZzcBK/MzCE9dMvV6mN7PsScnM/SX41N1+JbVrTQVru5MVlIUykWBTbECY/uHLeTbymZtRVT6fInyEz9Z1irj6eHuc+ivA8zT3WItUnumwtl8O8SxtqPbdRociQHvx4AWvP/n0HnDZ859v/BvHY4CjEz+7bB/ERWoM00hIkX0Rd8xGaf1aaIh3N4DUbJZ+RMF1PaR9zIst+KmwqQPWPtfzNzEKkrd9COveB6XVM2fdtgI0MF5Gh4WHLTGvFl8lfI0c+Eek06qAnG3GsMjOzEGq+t7ajvxv7gCSbsAaM07ztB9/7DraB5prmu301Xw8PnlNt24YedT//8++FeNNm9K7h71eiWMS+zZP/EK9Ts2nU1j95DD3rCim8DrwKg2yWfZha8FwcO3xq5v9zWVc7fjFJJpstHp8aOwMRnF+sXbMa4qY4ns/RjOsLGQni2FGi+pghT49DR47M2b6uTlwvNMZx3Mik3Dbw/C9QJh8fvsdDpyxM/qRR8nhY2YFeaZ1r1zltaEriNfniiy9CzGvpnpUrIb5r+3aIk0mcR6cncW7il93rz7Xfo3o7rc9fqqDTv5yodn+G711x3crleG7v9pdHObN13VqIG2kONDKI91Y6EnjtrWjFeXnrmlUQtzfjutvMLNpAHh4NeK0UonhcK1fhNhub6PvkOZGlfuhcideBmdmGdVgznn7mWYj37D3jBVUulezgXpx3LCaDA/0zfqiv7ce+iJGP5NgojrlFz63rmRR6bgzROV25As/hpvXYN6fQytKu2ojnNJXCcf7IKRyTzczKNN600P2aQBRzuzyBdadM/hvpNHs147XD9x3NzCJRXL/zveGL9d7v8r2jI4QQQgghhBBCCCGEEEKI1xV66CGEEEIIIYQQQgghhBBCiGWBHnoIIYQQQgghhBBCCCGEEGJZsGQ9PcqFrJWndagLBdRhY33dIGkXlito/WVJa7HIgo/srUCaw6wHuakJ3+9OoI70gUFXw/NAP+peDmZJd9T5BsOeBIE544ouE/PUY2XdtotVx20hYA1J1yOigu4zaXIGSK/YIz3OYpF8XDzS60SZPSceGkY9QjNHrt/WrFkPcSyOGo/jI6j/FyRN5ngMtVALeWwE67+amU2UUEM3R1qY3JcB8rsp+3PnYYDODWsWmpkFqnjiVDRlqRGNDQmLRab6LZfFOpGnZh7rw5zI59xa07kCtWTTpClcoGNtjuI5jsbJd4Da0HcEvRO612xx2sCiukE+JXTOq2m0zldL+nxYswY1s1eSJu/x46j9XK0mLGU8z5/RaGf9W65DyRjmB+eomdkEaZTHEuT7QcXqaC/qPsfC2JfjtI8AjcHhCprFj+1E3fvbr9kA8VWXbYT4yZcO4zaj6CExSN5djSyCX+F8c13JF3EMiMdiuM0E+of192MN5z1MkiZsQzxmDB9HmjTKZ2tPsw71YlMoexaY9hHJkvdFIITt9CkHmhqxr8zMQlTr1zRjrbt+C17D+SLu06Pvn+wfxTbRNb6hy23DynbUWW5KsL8a5s0Lr+D19PReFALOkfdCmFO9Qqlc10Ha+VjKrIFqeiGLcZHmo9kUzV1ojGhKYo6ZmYVjuM1J8v+KJ6a+4zuDQb1ZhPbQdNwjf4T2KOZMiPxrDkxi7UmN43VvZvbtf0VPhod/+DDEwyMjEBfITyhNtYl9ztxecV/J0PWTIQ8cxxeC7Wvo4wHyGGK96WgFnXtKfVvTiDVxOD/1nVKNPT1+8IMHLTI9r2tvb4H3yjR2hAJ4/n/rt3/b2V43aco3kddkIY/XW5jG9Weefgri7333uxAfPPAaxCMjqGd+LrBH1RvfeAfE73jHWyFmX0L28Kjkh8E69Dx1LJPfTiCP53x8CI9rjK4TnqyWKozzyWbUym/rQq33+Kz3vai7JlpMiuXSzNrzZG8vvNfahjnTlsB2dzSiD4yZWTo7t557gS7i8XFXp342qzrpnFP3RsiHxKyCZ0cQCwnPYTkpAjzHpfXJipXoZdneg1r9ZmYvvvIKxE8/+aTzmdm84dZbId62bRvEJwZw3I/R3DARced27N3K11tpun6yn+hyw7lnQB5ZHOfzdB+RakY8geOxmdnw8CDE/XQtXX71lRCviuEaZ0UMr7WmdpyLFuL4+WATft7MzGvG+WZDHPM4Rp4dDQkcR2IRrKcNUdxHJkv3ZnLuemDTRvS3CZNv6+xcKxQKNfX0GJos2enmtGawXcl29I1MRnHcSDS7/e3TPbrJF3ZB/NjzOyFu2ncC4nSJ5sm0dt6wAtfFY5OYl2ZmA2N4TlIZzPVj/XiPbpLuV/t07Rco9ycn8Z5fLOrWW/YH49qUyWAbL5Z7H/qlhxBCCCGEEEIIIYQQQgghlgV66CGEEEIIIYQQQgghhBBCiGWBHnoIIYQQQgghhBBCCCGEEGJZsGQ9PYrFggWnRfc88koolVHvuJBB3edcyfVWyJEOrMd6u8aiyRiXSCPN91Ajjb0aehJktmBmjWtRe693ADV6j47gNlk1nRXTfI+Ps7rws8e+BlV02F5vHh6e51X1Fpjj2+eyAwhZd7NcIm2+EPW/h+8PDvZB3FRB391Iw3h0HPX8JicxD1Np1GNl+5t8Dq+/QBDLSKnkakLG4qgZWKZr2kll0u8vFHCfnLV8zlgHeuozeNEHSRO2XMR91JJCPm/B6T5hbdp0Gs9PogW1R5NtqMlrZhaO4LEVyW/h5IlTEHfkOyBeHWqFuCGC9ezhH/4QP7/paqcNK8gPg7W9HT8M5xk8e66whw57glR/hu/kCWmar1+/HuKbb74F4hdeeIGadHHoWFYiEAjN9EeBakSR6lCyAceusUnU8zQzS9N34qSp2xjFvPZ9rFVXbF4P8boezMkXXtoN8aFe1EM2M5ug07GvdwjiDWswJ8tl0qqmHPSotk2m8LibYq6vSNF3JhfA6lWrID5+DH1ijPotRB5Ja1ehTm1Li6tLGyEt6MGhUYjHZ9X8bAUN38UkGjE7LX08Rr4RLUny2zBsWzzs6t+mMriNBur+D7zjTogvv2ozxLE4fn94GPXdR0bwnD/2MPommJmFSAM+RN4kDTTTLmwk/eg4es8cPzUK8eDAOMSuAq/ZVtrmmm7U/49G8eLIjOPcIZPDY+DcL5P2s7F3g5kNkJddgMyggqGpMdZnn4ea4NnZ5mjOnI8mPTzWnPv+zlCkbUxSvdzY1gLxWA5zKF3BeydLfgfZLHm68XHRGOkeF+mkO2+7/VByPkRwE3hKS+LqQfpAF7X5yqg7x91AY8tAGGvm0cmp64d9NBabRx97ekZbfvWqHnivqwfjtg4cm27ZttXZ3pbN+JpH12C5zPM8HFsu33Y57uOW2yC+79++BfHX//mfnDaMkB8Gd+nKFZ0Q33oT7qOluQXiyQnUJ+f5bybtetnw/IQbEaJ1VXYC1zR9Rw5DnKM1T4nWJ4kk+ZOZWftq9Hxo60bd++AsD7Ny0J0vLSa5Qt68aW8Uj9Y5OfJIZe+DpoTrWVUo81wd10pRWm9096BnR5Z8yG667nqIY+T3li+6tY59HXn9Fgzx3IGgHGHvmCjVFfaAMDN78Ae47hkbHYN4VRfm/hvf+EaI43H0W+Bc96iN0ah7H6lIuRnk+13TB879s9zhPC7Sep7H+AbK80prOfYuHB7G850ZxPF2XTOumwMNODdP0/kOkNdPKeGuJyIN+JkY+do1NLA3GN3XIN/YEPlxsFdDJYq0PuxZ2Q7xdVedGVdyuZw9eP/9Vbe5UHR0r5/xzVp/+RXwXivdKxnuOwZxMe/W5cu2oU/L5i2XQnzpFjTLy46i7wv78fX24Rp08BTmzDWbcD1oZtY3jrXnAK11R+ieXSVnydnwfQ6/jPPGUMDNO74X6fjo0vVW4jF5ifL6qopCCCGEEEIIIYQQQgghhFi26KGHEEIIIYQQQgghhBBCCCGWBXroIYQQQgghhBBCCCGEEEKIZcGS9fQoFIoWmNaRTKVZd421GUnbPezqIEZCqIvHmvdl0jwrkpxjpoAakwUSjCwb6ZmVXK245hBuo6UTddTamlA3ff9J9F4Yz+NxFkmDsORV11S7mDXoa0G5XJ7RfmTNOu471ois5AUSID3iQBW/ENbFc3TyAqirF4mguvcE6eOamY0eR03BJGnutrWipmMhg8nP2yySv0aMNOcrHWKAdJ8jEcz9oI+lKJvnXMaNhkkbs0R6r17AfZ7LGq4s+lqc1gGuxzUSCkdmtDaL5D/EfkIrWvH8hSKVcgprTSyG52g8hbqgdMotVSSN5MYmiI+9cgDiZ55+wmnB29/5Loh9n3WByT/B5+Pg80DnmN7n7U9BeVBFozxKXghvf8c7If7hA9/HrxdQG7MhTlr9ZrbnwEGIS0ukBheLpZmaVaacY53XII2phbKrd9zUuQLiaCOOZxNpzMmhURzfUrmjEL/1Z++C+IorUc/8O999yGnDwcO4jZEx3MfOvahxHgijxnIqg94JkTDWDJ4wVTqVJfrUpZs3QTwwiLrAPhXMVd2o7R4O4LlJkMZv73H0ZjAzG5nE8zNOPk7Hjp/x9MkXautllGiIWDw61a+hCB5LuoBatbEGrDuVfJeSCezvJH1n86WonX/pWvSK8alWriXt/VHSsO/dv9Npg5HmeTzRAnE+j5rxV/fgOf7Qb98BcY58sfYdOAHxjoefd5qwaQPmcgd5BGQz5NWVwH5KkRdNgcbgANXSviFXdz1DE+fOGI4zkeBUDS8Gl0YNPA2P+dW8Ls5toxiWacLRn8exIzqOtSdAw1mwwsSK1wBuG+j9KmuEALXR3aO7vxC9xKeWR8QWmoetJO+YS4OYx1fE0U+hJ+TO7XpLWDdemMB4YHrqUOuht29obGaMHRzF6y9x6DDE3avIByHvzuUvveQyiFtaWvADHl6To2PoT7RxI/oZdazEfb7vfb8E8c03ox+Hmdn93/03iL/1zX+FeN1arJ/t7Xj+SkXMe143pUlHv5K3Ansh+DT/Hx3F4z64/zV8f2wU4mgM5zcRmv+s27jRacMll6GPXXsnar3PXj+mUu65XEyCoZAFp9cTUfL6jLCPgFet9pm1J9k3jPz5ghi/4+1vg7hIC4xL1qOHlUe+FKGQqzFfKrL3D36G19rsOeWX2RMEvx8mr4PHHn3UacPTTz0JcbIBx7df/Pmfh/jKbduwDdS17K/A85ti0a3XkQZc8wfJQ6Aw7YdSTz/W8/dFPXeq3Z/h449Gsd/4++mU6x3En8nQOmlwFL/TtQJ9fhra8bqJJXBsCzfjGinQ4Ppr8P1MXi84/qh0XfA6uUiePnzDJlTJC4aOO04eWpduPONnlMnU1r8oGPQtND3pGJ3AOdSu3S9hvPNliG+6HsdTM7Mw9Xf3OqxVW6/Aut/76k6IW6M4Bt9wNa7/Dp3ENr6481WnDe0dnGc4d2Af3mrzU74WOGbfWDO3PvI4XItrfDHQLz2EEEIIIYQQQgghhBBCCLEs0EMPIYQQQgghhBBCCCGEEEIsC/TQQwghhBBCCCGEEEIIIYQQywI99BBCCCGEEEIIIYQQQgghxLJgyRqZj4ylLDLt5NdA5j6xGBqslMpo5JQvuQYruSwat4xPoFlahLzPy2RMWSZDo1IAzcDKbDjtuyaPxkYw9HZXHE2xYqvQAO5QP5nzpXCfWTY2d1twPnaMryvmMjKvZlxeyTzbYwMhNkPnc0Z5lMthzkRCeC1EwmgTmS+7JlIdK9DQdDSDRoLsDdtIRrCFHJk9h/G4uY1JMjA2MytRP/iTdNxkxsbXUyCA17xjcV3FpM5sytxvNkWqG4Fp8zzf99kHfNEplktWnK45bGbH7R7oPwVxnIztzMxaO1ogZnPl7nVbIA7EsNY0r0RDtq1r0Yzrkutux8+3obm6mZvrPhkNOrblTnGiTzjGWdUNGNng0nyu02yOjm3cfsctEP9fn/yPEB/evw/ik8fRKNvMrPfIYYgbklTn41PXdLlctqMnB53vLxalUnGmhsVimEPJJF7D41m8IMpk4G5m1hzBWpSZxM8MDQ9BHCdDTT5XX/vG/RC//513QrxpI5qwmpm1NuD5O96PpnFH+/ohTiQw7wsFPM5kAo8pUsYcG8dphJmZXXvTDRCn0/ihWBhNTe+6/VqIGwJYT1MpNLErlbA+9A/jMZqZFSjt2Tz9yKw8K1Qwy1xMItG4RaaNEJONeL7yea59VDNyrjlnz6q1EGfyWCfGxrH/BvrRmDwYxjHVo7nd4f2HIe5Y4Y5v5QyeU8/wHAaDuM1EG7Z5zWo0yo1H8ZxctQnr8bY1OKabmfXuewzbVMDjzlAbx8dxrhA0mgSTQWYphP0ajrnjjtFcITXJ8+ipfWRytc25KWaPENVmwgswU3Y2gS+wPfOxiUmIgzTcsRH6FHOPiUzAJzNgmrOyCTlvPVBh+1F6rYXitRHM/Y0JzJutYYw3GM4/KYXs2bxb755IY67vLdCa8LQrvO9zWi8q8aa2mXVBvozjYcrHNr66dw/Ehw6g+baZWVMTmiuv6MR512qqC83N2JfZDO4zmWiDeFXPOog72tw6E6Q50sEDOAe65FLchnmY6elJNBnnORevgSoZMucztJ4fx5w43tsL8dgYvh+OYM6FY2gwvO0qNKu9+hoco83MurrQuNzzzn47ZTIaP+t7i0E4GrFIdKrWBkqYdw00p+FKnM25c7umOOZRiNZj6QKOLZu34PqipQHHzFCJ1wJ4kceirqFzqYRzsxDVGS+A28jSHDWVxvEuTv0wNoZzpPvuu89pA8/FfuG974P43e96F8Rh6qdCidfSOOaWaf4TCWHtNHOvjwAdd2TasJvX3LWETcUXwvS42ja4ToTDbt/Nho2ZK60fI7SNSbo2XiUD6O4mNC5v6sH6nGjC9QbvsUBzezOzXBb3USxjm6K0jsrnOcfwWqMptZNPfsnthwDVaL6/Mnv9WKleLyavvXbAQtP3bkbp+tx34CjEzXQv2ef7AWaWSuFYMT46CvGKVeshLsdaIT4xhmNPaPwkfn9lN8SXXXG504YfPfQUxOm0W5MXkiLfBLTq55Gv8YsF/dJDCCGEEEIIIYQQQgghhBDLgnk99PjiF79oV111lTU1NVlTU5Pdeuut9v3vf3/mfd/37d5777Wenh6Lx+O2fft227Vr14I3Wrz+uO2225R3oqYo50Q9UN6JeqC8E7VGOSfqgfJO1JJvfuNfzcxs9erVyjlRU1TrRD1Q3omlyLweeqxevdo++9nP2rPPPmvPPvus3XXXXfaud71rJlk/97nP2ec//3n7b//tv9kzzzxjXV1ddvfdd9vExESVLQsxN/fee6/yTtQU5ZyoB8o7UQ+Ud6LWKOdEPVDeiVqyYuWUTNgjjzyinBM1RbVO1APlnViKeP4FCnO1tbXZX/zFX9i///f/3np6euxjH/uY/eEf/qGZmeVyOevs7LQ///M/t9/+7d8+p+2Nj49bc3Oz/fL62IynR1Mz6rDlcqiRXSyi1uPkpKtPliUB3XiSNP8DqO1G0ooWCqNeJ+vrlsr4/VKFbmV5+VIRPxNhEd8A7jNDWtMnxnGfx8fwIMcLbhtqbFWwYIyNjVlT0xld0cXKu2gwdMbTg3QLWVGSNSb9Ss8QS6QbyT4hDajxmAhh4jUHUM8xEMFrYcMVl+L3o66OZSCLedJH+rapCdQL7CQd3zLp2B8/0QdxgfSTm5Ku5rlP19fQ8CjEafIMyOVZE5Q8Pcpz67myD4aZWZG0K70gngt/WsPQ930bGx9f9JwzO5N3f/SB7RaLhCq2k71l8jnU/m5tb3G2u3oD5oVFUGv0ulu3Q9y98RL8eBw/H6bYI4+QSoOI099VddKdK4z2Qf4bHvnEnMMWA7QN9qYYG0bPh/5jqM/59BNPQvz4oz+F+ESv6+lx8Ajqiq7sQp3XxpYWMzMrFIv2g58+V7Nal0gmZmpYYyPWIfaNKOSxn/j6M3PPN/sxtLdhXWhqRE1lC6K+cZ6MKW65ZhvEV21xPT0OHTgI8WQK6+exPvRz2LMfzy9bRiQTWG9DhnWodcUqpw3v/fn3QvzM0zshTpPG6+bV2PdtjVjDJzI4hhzvR030puYWpw2rujsgPnQE9/nEzv0z/18qlW3P/uM1y7t/uPdnrSE2dYwDIziWJKOYd2HysEpPuNq2q9ZjHjS1ocZusUTzxzTmabIJx7t4HPXeD+5+GuLJjLswK+Zw/ErnMffLNPOKJ9Cj44bb34xtasZrwy9gzR84gXluZpYawnbmyEtmnNpUKNIcmHzsWEK7RPrHrW0rnDaMDJEnURAvqEhsqgaks0X79596oqZj7NRocK7a4lzfaqBfXK1pC9AE3kWIXgnRPCtA+/QrTHEjHuZFBzV0Ywzr+nrygonTPkbIk/ElGqP3VvCTosvPyrR2mjEM830zK9es1nVvvdECwam2RFdiXepcjWPHwd17IU4P4lhlZhYk75J1q8nDoxX9wtjHJ0Z+fZes3wzxhg04DwyF3KQcGRqAeHAAa3gijue7IY7jWSmH3golOp+xOPpfsN+Dmdn4BK5hHC9EuifA6uQtrVi7Lt2MuurX33gbxK1tOJ5WapdzK2VWPDk5YTfdeB3k3WLWur//+/9h8fjUGFKgdiZb0celiQxN2dnJzCxC9z8CNPdOF/Ccjo6jP0ZLHOc4kQDWAC+Eew3H3FaMjeL1EKbhq4m8JCcmMPdHR0YhZr+b13qPQPz1r3/LaQNbt/773/o1iDeuQ5+Xco6dm5BB8rmbIP+xeNT1zfLoPlEmj7menz41mUzGfvd3f6dmtS4YDp3Vd6MWnh7sM8HrZvYtcG99VvCrimIe+jRHCtP52bz1MohvvPFGiLs6sV77lFDFCmMb25O2t7dD3EbXc5gujAC59jQ0zO0vVCy4Oeu0s4jtLM9aL6bTGfuVX///1Szvtt+8acbT48hJXBtxDmzbjNdnW8KtM6Eg1rqmZuzfN2zfDnGRvC9O9e6nGOvKsT5sYzyB91bMzA724n2Ihx5/CeJslbryeoVzrhLn7elRKpXsa1/7mqVSKbv11lvt0KFD1tfXZ/fcc8/MZ6LRqN155532+OOPn3U7uVzOxsfH4Z8QZ0N5J2rNQuWcmfJOnDuqdaIeKO9ErdEYK+qBap2oNap1oh6o1ol6oLwTS4l5P/R4+eWXrbGx0aLRqH34wx+2b33rW3b55ZdbX9/UX3t0duJfsXZ2ds68V4nPfOYz1tzcPPNvzZo1Z/2seP2ya9cu5Z2oKQudc2bKO1Ed1TpRD5R3otZojBX1QLVO1IOenh7VOlFTVOtEPVDeiaXIvB96bNmyxXbu3GlPPvmk/c7v/I598IMftN27d8+870j++P6cP0v75Cc/aWNjYzP/ent7z/pZ8fpl06ZNyjtRUxY658yUd6I6qnWiHijvRK3RGCvqgWqdqAePPvqoap2oKap1oh4o78RSxBW+r0IkErFLL53Si7/hhhvsmWeesb/6q7+a0Wbr6+uz7u7umc/39/c7T/RmE41GLVpBt7Czp8ui05rgHj2aiZCG4TiZ3yTD7rOcHtIsn8ygrloqi9rfcfJGKJVIC5401Uju2MoB9+ItsQ4+ae+V86jBHCId6HAI29CVRG2+RtIf7x1CHWgzs75JbOjF4vFRq7wLhWbpUjq69eQjwe+yaUsFAk5ekC8B6UwGw9jGy6+8GuKOtXiMT+x4xNlnK+n4BkmnMhTCXC8Uyd+GrrdiAd+PUBvLZbcfPBKHZq1Fj56/spYwb5L9AoIhvJaKFTwH2PcjRL4f/vQ1Xp4+jwudc2Znz7tCMWeBaW3sAOlR58hPIUReJMFwBf1b8gG4fOtWiNduuQLiQAxrSdGn/iTflgC1wTlBZmZl/E7I4+uHaiptw3c0VvH9AvnllAqul1Mpj5+ZHEXN+aE+9OA4vP9ViA/s3Q3xoYOozzl47BTEqWHUMjYz62pCne2JYWzD8OCUrm+pvDh5d7aci8djM9dhgXRc2SfLpwGukhNYLIY50d2J2rPN094lpwlHcbwqe5THQczJ3lFsw5qcq0277corIe4/gRPjdBavpXgM2xAhTfsJ8j9qa0F919WrXF+Rhx/5MW6D/IuiPo7L/kqsSys6SFd9FOc3/UPYpn2voWeMmdmr+w5D3DeI3+mbNTc4PebUKu8y+fEZv7LGJL6fmqCxZhznZW0d2P9T20M98dwJjH3yCJiYxHnWaBxzZHwSv59PYf9HG/F6NjPLlkjzPELeWmXM7WIBa8Crz90P8YrOboizadQnz9Ixm5mVCrhPL0D1kfSoG0J4EaeLWF9HyBuvheabWfIKMzMr+Xg+EzRnDfpT1194up7Ucoydmr/VwJtjCcNHX6JXuM7zSqpcdtdWeZrSFilO01xkX4b8b6hRE9QmsnezUIW/1ePj8shjMTjzOd9KVrtaZ8HA1D8zS5HHYh+WIYuuxTlastO9vryhYxBfeyN6UWzcgF5Bxw6j98/Tj6Pvz45HHob4ueefgnjdWtezqp005FtbWyAO+OQNRD5Y0Si+30fzoclJHB+bml2N7ngcx+1CgTyTmnC93716LcTXXIda++vJ28RoLlKsML31nSU+r+VmvTPtw3DJJZdYU1PTote6UCBg4em8K9J6boT6O07eTLEK2yvT9UTTJGeuzjcvgwHyZKTPl6nvAmU39x2qlPIIrXPZazJI2v28HrzrrrucbW7egp4NK3vY/5LqDq1zfVrjeLRODdHnw2H3Fh172jKn12an/1urWuf5s+6J0LVRzTr4XDw/eBt8D4Hf55pQbXt8/qcahvsolWl+Oolj28HX0JfJ93EO1d2N64V28p9bu9r99QL7LeazeP6HBtD/oY08PtlLk/0Zg+QRE7QK4w7d2woGyKstcqbvysXa5t3oWMaC07meTuG8eHUXztXHR0chPn7M9VDh0nPNlVhHRmlN2EJ+Tw2NuO5NNuHnVxr69e05iGO6mdnAEN5H8ALunEecHxfck77vWy6Xsw0bNlhXV5c9+OCDM+/l83nbsWOH3XbbbXNsQYj5o7wTtUY5J+qB8k7UA+WdqDXKOVEPlHei1ijnRD1Q3ol6oLwTS4F5/dLjP/2n/2Rvfetbbc2aNTYxMWFf+9rX7JFHHrEHHnjAPM+zj33sY/bpT3/aNm3aZJs2bbJPf/rT1tDQYB/4wAcWq/3idcLjjz9uW7duVd6JmqGcE/VAeSfqgfJO1BrlnKgHyjtRS774N39jZmZHjkz9Ulg5J2qFap2oB8o7sRSZ10OPU6dO2a/8yq/YyZMnrbm52a666ip74IEH7O677zYzsz/4gz+wTCZjH/nIR2xkZMRuvvlm++EPf2hJ+lnhXJz+yVlu1u9JWd6qQL81zZfop5IVpG1yVb5ToNhIiqVM7/PPXZ24wm8vnZ+Ss9wLbYO3UKDjKnrcJmpzhZ8UXqw/7v+t3/otO3Xq1KLnHfzk0em/uXuv4i84+cUqMeduqcw/2cSfS7L0FMuwmZkV6bUA/dyZv8M/hy6W6PNl/ikyxpXa4HlzSxlxrvIlzN3Ge/Cc7TlNcH7O6sgpTf+E8/TnFjvnZu8rN+u8sgJaoYTnvBTA85HNuT/j9bL4s9tUGn/2OT6Oki0BljAjeSvfQ+mUQJCkiOogb1UsUe5Xkrci2aYUSSdMplA+J53Bnw5nScYwT/tgKTi+1szcn27z9XNadub0tV6rWje7v7nu8LXixu52OQWq1RUviHHZo/NHPw0PeHi+czn3p8mZLE4W+NooFOauZWU6V1yX+POVfkLPNZqPO0gSMrk8fj5D1y4fA+cgb79SOzmefT5rVe9O7yeTO9N+j34mn8nR9ZQjCaase42TeooFeB5F8lbpHG6D8y5D7+epTeWw24ZsjiRdgizPSLKVVMPDdFwpkgTKkSRQtkLecf3zaB950iFiCdZ0EdvI5yISpmvHd/uB+45rfHD6XGWmpbFqOcYueerQTHeG68/r/akX5/4Oj4hllrbhud4821jpM/yKT/+t2Rg7a+5WJsnIMs1NyqQLVi5UkPgp8vwfx8AsSZ/kSd6zRHN5luPh9yuNb7xNHodZ3qpE0kZB4zkV7iNAY3CO9mfmStvwmMtz6CzJWqZo3jc5QVLQNN8tntO1efb566lTUzKoN9xwQ01qXSZzZr6f5XNK30mTdGKg6Nb1AMkTB2nMTRcw79Jp7N8orScCNGj7JLEcJqlGM7MUbZNVzDkneG2cTZN8OMkZze4zM/daMnOPK5XCvnNk9agvWd6Kt5fOsGxlhXtZdM2z/F9p+obZ6eOpy72Tqkdx4VQb1+f7fqXPV18HzX1PoUTnn+sp11KuU2ZmEZI4Y6mpIsm0pWmtz/JWXBvPR94qEOB53Zk2nF5D1yrvZq8zeZ7N63H33pa7XmerAl5vZegeQYT6O5OhMZnuIeTyvCatcN+CavZFM4etM+fST56/xHrz2LFjtmaNq2snXt/09vba6tWrq3/wPFHeCWaxc85MeSdcVOtEPVDeiVqjMVbUA9U6UQ+Ud6LWKOdEPVDeiVpzLjm35B56lMtlO3HihCWTSZuYmLA1a9ZYb2+vNTW5Zmbi3BgfH79o+9H3fZuYmLCenh7nLzkWktN55/u+rV279qLsq6WEcu7cUN4tLMq76ijnFh7lXXWUdwuLcu7cUN4tLMq76ijnFpaLOefMlHcXKxdz3tU653TPbuFQ3lVHtW5heb3k3LzkrWpBIBCYeVJzWhakqanpojsJS5GLtR+bm5sXfR+n8258fNzMLt6+WmpcrP1Yi5wzU94tFhdrP6rWXdxcrH2pvLt4uVj7UWPsxc3F2o+qdRcvF3M/Ku8uXi7Wfqxlzpnpnt1Cc7H2o2rdxcvF2o/nmnOL+ydWQgghhBBCCCGEEEIIIYQQNUIPPYQQQgghhBBCCCGEEEIIsSxY0g89otGofepTn7JoNFrvplzUqB/PHfXVwqB+nB/qr4VB/XjuqK8WDvXluaO+WhjUj/ND/bUwqB/PHfXVwqB+nB/qr4VB/Tg/1F8Lg/rx3FFfLQyvl35cckbmQgghhBBCCCGEEEIIIYQQ58OS/qWHEEIIIYQQQgghhBBCCCHEuaKHHkIIIYQQQgghhBBCCCGEWBbooYcQQgghhBBCCCGEEEIIIZYFeughhBBCCCGEEEIIIYQQQohlwZJ96PGFL3zBNmzYYLFYzK6//np79NFH692kJc1nPvMZu/HGGy2ZTNrKlSvt3e9+t+3duxc+4/u+3XvvvdbT02PxeNy2b99uu3btqlOLlybKu3NHObcwKOfmh/JuYVDezQ/l3YWjnJsfyrmFQXk3P5R3C4Pybn4o7y4c5dz8UM4tDMq7+aG8WxiUd+eOcs7M/CXI1772NT8cDvv/43/8D3/37t3+f/gP/8FPJBL+kSNH6t20JcvP/uzP+l/60pf8V155xd+5c6f/9re/3V+7dq0/OTk585nPfvazfjKZ9L/xjW/4L7/8sv/+97/f7+7u9sfHx+vY8qWD8m5+KOcuHOXc/FHeXTjKu/mjvLswlHPzRzl34Sjv5o/y7sJR3s0f5d2FoZybP8q5C0d5N3+UdxeO8m5+KOd8f0k+9Ljpppv8D3/4w/Da1q1b/U984hN1atHFR39/v29m/o4dO3zf9/1yuex3dXX5n/3sZ2c+k81m/ebmZv9v//Zv69XMJYXy7sJQzs0f5dyFo7ybP8q7C0d5Nz+UcxeOcm7+KO8uHOXd/FHeXTjKu/mhnLtwlHPzR3l34Sjv5o/y7sJ4PebckpO3yufz9txzz9k999wDr99zzz32+OOP16lVFx9jY2NmZtbW1mZmZocOHbK+vj7o12g0anfeeaf61ZR3C4Fybn4o5xYG5d38UN4tDMq7c0c5tzAo5+aH8m5hUN7ND+XdwqC8O3eUcwuDcm5+KO8WBuXd/FDeXTivx5xbcg89BgcHrVQqWWdnJ7ze2dlpfX19dWrVxYXv+/bxj3/cbr/9drviiivMzGb6Tv1aGeXdhaGcmz/KuQtHeTd/lHcXjvJufijnLhzl3PxR3l04yrv5o7y7cJR380M5d+Eo5+aP8u7CUd7NH+XdhfF6zblQvRtwNjzPg9j3fec1UZmPfvSj9tJLL9lPf/pT5z3169yof84P5dz5o/45f5R354/65/xR3p0f6pvzRzl3/qh/zh/l3fmj/jl/lHfnh/rm/FHOnT/qn/NHeXf+qH/Oj9drzi25X3p0dHRYMBh0nir19/c7T5+Ey+/93u/ZfffdZw8//LCtXr165vWuri4zM/XrWVDenT/KufNDOXdhKO/OD+XdhaG8mz/KuQtDOXd+KO8uDOXd+aG8uzCUd/NHOXdhKOfOD+XdhaG8Oz+Ud+fP6znnltxDj0gkYtdff709+OCD8PqDDz5ot912W51atfTxfd8++tGP2je/+U176KGHbMOGDfD+hg0brKurC/o1n8/bjh071K+mvDsflHMXhnLu/FDeXRjKu/NDeXf+KOfOD+XchaG8Oz+UdxeG8u78UN6dP8q580M5d2Eo784P5d2FobybP8o5M1s8j/Tz52tf+5ofDof9//W//pe/e/du/2Mf+5ifSCT8w4cP17tpS5bf+Z3f8Zubm/1HHnnEP3ny5My/dDo985nPfvazfnNzs//Nb37Tf/nll/1f+qVf8ru7u/3x8fE6tnzpoLybH8q5C0c5N3+UdxeO8m7+KO8uDOXc/FHOXTjKu/mjvLtwlHfzR3l3YSjn5o9y7sJR3s0f5d2Fo7ybH8o531+SDz183/f/+3//7/66dev8SCTiX3fddf6OHTvq3aQljZlV/PelL31p5jPlctn/1Kc+5Xd1dfnRaNR/4xvf6L/88sv1a/QSRHl37ijnFgbl3PxQ3i0Myrv5oby7cJRz80M5tzAo7+aH8m5hUN7ND+XdhaOcmx/KuYVBeTc/lHcLg/Lu3FHO+b7n+76/ML8ZEUIIIYQQQgghhBBCCCGEqB9LztNDCCGEEEIIIYQQQgghhBDifNBDDyGEEEIIIYQQQgghhBBCLAv00EMIIYQQQgghhBBCCCGEEMsCPfQQQgghhBBCCCGEEEIIIcSyQA89hBBCCCGEEEIIIYQQQgixLNBDDyGEEEIIIYQQQgghhBBCLAv00EMIIYQQQgghhBBCCCGEEMsCPfQQQgghhBBCCCGEEEIIIcSyQA89hBBCCCGEEEIIIYQQQgixLNBDDyGEEEIIIYQQQgghhBBCLAv00EMIIYQQQgghhBBCCCGEEMsCPfQQQgghhBBCCCGEEEIIIcSy4P8PvxJYg5tqMaAAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -925,14 +930,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9W6wl6bbnB/3G930RMS9rrVx5q9pVe+/a2263+9jIYHcfGSxeMBJXCWM1IGwsGSwav2AZ8WKBJQQPFgIkJATISH6wjJCMkcDIYCzxgDGWLdw+3U0f2We7j8/pc2rvuldmruu8RcR34WF8X0TMlWtlZVZlVlXmniM1c841Z8yYEd91jP/4jzEkpcRBDnKQgxzkIAc5yEEOcpCDHOQgBznIQd49MT/0BRzkIAc5yEEOcpCDHOQgBznIQQ5ykIMc5M3IAfg5yEEOcpCDHOQgBznIQQ5ykIMc5CAHeUflAPwc5CAHOchBDnKQgxzkIAc5yEEOcpCDvKNyAH4OcpCDHOQgBznIQQ5ykIMc5CAHOchB3lE5AD8HOchBDnKQgxzkIAc5yEEOcpCDHOQg76gcgJ+DHOQgBznIQQ5ykIMc5CAHOchBDnKQd1R+64EfEflzIvL/E5FrEfknf+jrOciry6EP310RkX9BRP6ZH/o6DvJycpiLb78c+vDdkEM/vv1y6MN3Qw79+PbLoQ/fDTn0I7gf+gJ+BPJPAf9GSunv+aEv5CDfWg59eJCD/DjkMBfffjn04bshh358++XQh++GHPrx7ZdDH74b8lvfj7/1jB/gF8Af3PaBiNjv+VoO8u3k0IcHOciPQw5z8e2XQx++G3Lox7dfDn34bsihH99+OfThuyG/9f34Ww38iMi/Dvz9wP9WRFYi8i+KyP9ORP41EVkDf7+I/B0i8m+IyIWI/IGI/AOT7z8Ukf+7iFyJyO+JyD8jIv/WD3ZDv4Vy6MN3S0Tk7xGRv5ZpmP8nYDb57L8jIn8sImci8n8TkQ8nn/1nReQPReRSRP5ZEfn/iMhf+kFu4rdUDnPx7ZdDH74bcujHt18OffhuyKEf33459OG7IYd+zJJS+q1+AP8G8Jfy638BuAT+kygodgz8MfBPAzXwnwaugT+Xj/+X8mMB/J3AJ8C/9UPf02/b49CH78Yj98+vgf8+UAH/VaAH/pncb0+BPw80wP8G+Dfz9x4BV8BfRMNX/3v5e3/ph76n37bHYS6+/Y9DH74bj0M/vv2PQx++G49DP779j0MfvhuPQz+m327Gzx3yr6SU/u2UUgT+buAI+J+llLqU0r8O/KvAPyxKCfuvAP/jlNImpfQr4H//g131QaZy6MO3U/4TKODzv0op9Sml/zPwe/mzfwT451NKfy2l1AL/Q+DvE5FfAv9F4A9SSv9ySskD/2vgy+//8g9yixzm4tsvhz58N+TQj2+/HPrw3ZBDP779cujDd0N+6/rxAPw8L59MXn8IfJIHRJFfAz8FHqPsgk/u+O5Bfjg59OHbKR8Cn6UMrWf59eSz8pqU0gp4hvbjh0z6LX//0zd+tQd5GTnMxbdfDn34bsihH99+OfThuyGHfnz75dCH74b81vXjAfh5XqZG5+fAz0Vk2k4fAZ8BTwAP/Gzy2c/f/OUd5CXk0Idvp3wB/FREZPLeR/n5czQpGwAisgQeov34BZM+zN+f9ulBfjg5zMW3Xw59+G7IoR/ffjn04bshh358++XQh++G/Nb14wH4ebH8ZWAN/FMiUonIfwr4LwH/UkopAP8y8D8RkYWI/A7wj/5gV3qQu+TQh2+P/H/RhfWfFBEnIn8R+HvzZ/8i8I+JyN8tIg3wPwX+ckrpY+D/AfxdIvIPiogD/rvAT77/yz/IN8hhLr79cujDd0MO/fj2y6EP3w059OPbL4c+fDfkt6IfD8DPCySl1AH/APBfQBPL/rPAP5pS+hv5kH8CuIfmE/k/AP9HoP0BLvUgd8ihD98eyX31F4H/FnAO/NfRhZaU0v8L+B8B/xeU4fNngH8of/YU+K8B/ws0/OvvBP4Kh378UclhLr79cujDd0MO/fj2y6EP3w059OPbL4c+fDfkt6UfZT+dxkG+i4jI/xz4SUrpv/lDX8tBvp0c+vDtl0zT/BT4R1JK/+8f+noO8u3kMBfffjn04bshh358++XQh++GHPrx7ZdDH74b8rb244Hx8x1ERH5HRP6jovL3Av9t4P/6Q1/XQV5eDn34boiI/OdE5DSHgf3TgAD/zg98WQd5BTnMxbdfDn34bsihH99+OfThuyGHfnz75dCH74a8K/3ofugLeMvlGKV6fQh8DfwvgX/lB72ig7yqHPrw3ZC/D80DVAO/Av7BlNL2h72kg7yiHObi2y+HPnw35NCPb78c+vDdkEM/vv1y6MN3Q96JfjyEeh3kIAc5yEEOcpCDHOQgBznIQQ5ykIO8o/KdQr1E5D8vIn8oIn8sIv+D13VRB/l+5dCPb78c+vDdkEM/vv1y6MN3Qw79+PbLoQ/fDTn049svhz58N+TQj2+/fGvGj4hY4D8E/jNoItXfA/7hlNKv7vrOo0eP0i9/+ctv9XsH+W7yV//qX32aUnp88/1X7cdHjx6lX370ESkmUgz6nBIxPxtjMNYiRkgxEkIgpUjXdWw3a3zwkCDpf9R1TdPMMNbk80RIia7r2O12xBjpe0/Xd6SUEBEwgqZwSaR8rpQSKT4/lsWIfkdAJL8GYox6zeTv3DINUho+RaT8B0zfH38JY0QPSQztke44NwKi/42/dedxKjGk19KHAFVVpaZpMMbgnNN+E4OzFjEGI4K1Lt+TYMSM15L/EwHNozw0GMPtTtpoaIA0aW/GvqD0X/l+aQiR4d6nfTc9f0pp7/Xd65lMrn34a9qBk/vI4xPR8UP53f3rG8Zjvr69z8YT3bgM4dcf//q1zcWPfvGLfF+TG3muCW4d3MM1Dm2YbvbDcF1InnMigjH7/oLxp6ez4baG/Rbymk7zXeXmuPprf+2vvba5+Mr7Ypq+kGEtHZ5TJObr1f6S5/pDj9U1R9fCQEqJvu/pOl1rrTUYY4c+N8bsjzOm87L8gjw3x4Zj5Mbr4fP8ve9ZPv74Y54+fXrrD79qPxojyU7mxUtpVdMxJd98/3csVS9450cyed6whBBf21w01iVXNeN6OG3PvbX9ud/CGDPs6dP9YFxfYVRRhDSMfwM8P7dUuYnoGh0ghXwN08ddUhSL6Vs3j79b9/m+ZNDHtJ1ey1wU2b9Rma5H023/zumxv6fremXGdWqvn6Y6yR3zcW9tTvufDS/T89+5VZ95mfmd9eNBx9T1f1jzh36Pt5zz7lO+zGqSEq9tLt7sx9chMuk7eYk194eWaf9/l+icV7nX9BrnorM2NZV7frXaG+43LYXp/89rknLbH8NS9vwaffN375w1N5ffW44ZL/Xb9oU8/+qmTcKL59rL7vlt3986F+G75fj5e4E/Tin9CYCI/EvAfxnNr3Gr/PKXv+Sv/JW/8twAfhsm4KvKdw2h+6Y2edU2FJFf3/HRK/XjLz/6iN/7N/9NfNezu17j2w7fe7brluADzXzG0ek9XF3T7jasrs/pu5bf/PpP+P3f/z3Oz56SYiL4AAk+/PBn/G1/+++wXB7R9R27dof3nk9+/Wv+6A//kNVqxddPnvDJ55/RdR2mrnCzBkTwMdIHNVi6rqNru4nhrUZ51TiqpkKsUDU1VVOTUmK92bHZ7kYASJGDcWanRIiRkDdH4wxiVbEvoA6oLiWAtYZZU1FVlhgi221H13lShBAKqDPunsYI1lmMkWxwxeG8ZTsWyb+bv7M5272WPgRomob/2N/9d7GYL3j44CGL+YL5bM6De/eZNTPmszmn905p6oaqcsxnM5yzek0ZDLLWUdc1IpKBt6jXn1IG/BIQSSlkUC8o8EfCWktVVQB439P3fe4LBQsBxBh9iOCqiqrW40MIxPxbfd/jvc8AoRqtufVyGwoiZjA4zfR1Pnc5XND7CDEQM6jj6hrjrP5uLPcRh/sr7WCMIaFGdCIRUxyusfxA+a2/9I/946+lHz/6xS/4t/+dv4xANjqyPIc2jgp+MUJiKPfiCb4lxYD3nrZtc/smvNd+cFVF3cwwxlDVNc1shjEDJDcoxIIZ2ru0823y0ktj0V+/x+3hrnV7AKWzNE3z2ubiXfviTaWmvNZ5Nn6Qks6JMg+87+nalpQiVV0xm82wxu6dOsZA8J6UEpvNmtX1NX3f8eWXX/Dpp5/ifc9yueD4+AjnHPPFkuVyiRhLWSpBqKuaqqrzfLKI2MmcM4jRY1zl8vhxuNrpvMlg0nSO3mzzveZ4jQNBRPjd3/3dFx3ySv1ojeH0ZDH8/TIKe0p580h339tobN4N/Nw8/22m4stMudsA3Oeu9+5vv8Qv3Dz+psL64qt8vo30+Ivz9Wubi65qeP9nv5PnUadrPikDozr/98DxvCTUdc18Ps9OFItzOsbLmhpjoPeJtgvECEkqIg1gMHaGdQvE2NwOqmckvyP2W3Ww9ZfE/pIUPdBC6oCoj8GANwyLZsrPk3aChIg+FEyKek95gCRA0sT8SLctQC8nKaVbe3Tah8YIxur+sen8i073yv1IBruNASOCEcFZMzjnjNH3oIBAGYAars1irVMnmKuwdaPrm7EYV0F2eKUM4MUEPg5ny20AMQRi0HU2BE/wfrIBphHciwFRFH4AHfu+o+/7iUMGnp8z5VXp77yWmkrXYmOwrsFYR0o6pmPoFUiMHSS/D26y74As7aVtRn49rig3l4R2F1/bXPyuMgXuysNaO7w2+bUeNH7vRQ7Em46+2+TO9X74j/2Ge8G6OnXGFb33Rb8/1VGKg+42Z91t11n24rZ9YXXyV+rHpnL8Hb/8gJiEPs8TVZSTPlKCEJVAAIQU8xzMozKDlqY4mgeHc772MhbLVCIRAF/ajjyn9UMkJf2KDLNlfJ62qUzh9dGJP+2PF+3x+wDj9L1x/Jjy22V85muwWZe/6ZyeOp6nr5UsocdMbZr/8NPP75qL3wn4+SnwyeTvT4H/+M2DROQfB/5xgI8++ujWSTH1nL8L8jryJr2oTV5zG35jP+714c9/DtkgN85ioyPECKJeqRgDoe91sKeIqyrEwPL4iAcPH+Gcw3c97bYlxcTR0QlHRycsl0f0wdP4nhA8u13Hdr1jvV5jXc22bdnudgQSulWpcS1MPBiGYbaOzhkZGCxq2OcNOcUJOHHDuMwTq0x4kdzmMT5vUzPxmodINDIY/GXRGL+SkCSjjpsXoxTHJQbRxWlcH+PLqNSvPBdns4b5fM5iseD46Jj5YsFyseT0/n3msxlN3bBYHlG5CucsVVNjbV6Q8vplncNmgy5OgB+JETKDS0Ef7RiJBqK+ttZiXaXnsgbyOWIISAgj8JbbvPM9cZ37PRZQRY3gmOJg/MYMGpk8RtW2KiBdIjBunNZa3fzJSmBmtVhrVIU2ovdnrd5LyP0h2X8WY9aExiEhRv8wokr8wByaLPrfpR+nffjzjz4qbw4byBTk0Z/LCngeuCJlTKvKGlMkBZ23fdey3WwI3rPZbrm+XuF9oG4amtkcay0n9+5x/8FDqtzvxtrBcB2YH2WQ3GHLidz69i0Hfr+gDzCAmLe9f9dnN+S17Yt3ushyX6YQ8UFZl+v1ivPzc/quY7fbslqvCMEznyt4Y52jso66qhAxxOAJoSfFyHa7Yb2+pu97Ls+esrp8Ru97+t01u/UFxhqa2ZxmNkdE6H3Ee52XzjqsqbJy6TDGTV7bASys6kpfNwr8GGNo6oa6qjDWMstrjh5fUblqAGMHxef71RNeaS4WMPz28fECUOMbhlOaKKnDGrN35rI/3X6qV9FE0gsAKLh7bnw7uQ2eulvelG6Tzz30o3X19AMF9FPUvSQ7BtS4Km2RJv6iotRPjc3J2liMlInhPPmxYV6LFGZPjzE94EnWY0IgiRpJsTCByvkGkGZiLGTwRbJ3SgSs1f0tkQgeQtSBEwuGNJxlf5R9K/DnZT4vA/zF8kpzsZxcJGXjSp9N3uKNCFamhuRgmelumUFsY8taZrFi1aFhrILoUlAQfY4IVSrAmz4V4Cd4BW+Ct3hT9KKo+kMCokcdZPrFFLRvBb3eQTtM6UabZr1m6J8pEMTEmNT1Kcastzw3h2/v32H8FvBnIKUNCuy4P3/z8HjlufjGRBe6sR1kHO8vZo2/ul02fDZ9NT3sG9bT20CGF13HdI2eHnPz+Okx5XvfdA9ZXmku1s5ii0E2ufX9Ky8bXLrxnq5v09FpBKriDLaGylmMgSlBqQuBNqjzto+RzofR/pr83AtXnTyd9uIWXnLve75fhNuGTBrmbF6/Zb/fCnmBvfn9fL8bMcOxox7+YvkuwM9tZ3+uZVJK/xzwzwH87u/+7uvSGt4qeRW63st23PQ831EZ/sZ+3OvDv/AXEs4hCVxTI9YoK0YiEU8ILd3OEHqLcYb5YgZmzqPwPn9r17JZr9mu1lydXRJ6z/uPf8p7jz9keXREFIjZMD09fcR7D99nt93xN//kjzHWsVqvuFpfc351Qe97YgoUj5eYhLEZ2IlpcIKJGKyxefMyOscyet77jpSUraObOZlZPVHOMqgQi3c2K4PFwFemi05K772CQ0lZQUWyTlW2FiRluCpEYsoLdRo3+zSA80kVs9fQhzf78cGD++nBgwccHx3z3vvvc7Rccnx8wvvvvc9iscQag7OVgmYmgyGZnVTGXlUp40eBn0gIGfCKEVPArzQyfmAMQXHWYrNX1IVAyF4x7z3Bq2dju93SbTb4EFhdX3N9dT2wblLU/nDWDV4ck/uxMISsmKwUjyGBIQRCiBgjVFVNhUPEULsqewSNAlrOZk1Z+zrGRPI9BB1vyaOvc68lSVnJMoMnsShs5f2XQDFeaS7+hb/wu8lMFnszVcomZ9J3tP1JKV+rMpMkenzfEYJns15zeXZO23V89dVX/PrXv2G72zKbzRUErGs++ugXVFXFYrGkqioq0bnF5DoKS2vcsZ/f7l/GlBhAxh9Q7lKcXvSVW957hX3xeaNwNJDQhSQf4vtAu93ig+eLTz/lD//wP+Dq6pLLy0uePPmaruu4d++Ux4/fo2kajpZLTk9OcM4SfY/3HSkG2nbLdqthuOfnz3j27Ct630MKqP8MxDqMrUgJ1puW9abVuZw0TEUQrK0zCGRwrsZZXRvq2Yy6aRBjqGYVrnE467h3TwH/pq559Pgx909Pqeqa+/fvc3x8hBGDccoeK31wl8fzVffAl1DiXmkuVs6mch3Pn/uO33pZezpBzNrqsIeQQZ9yiGQHaj7x86d9G1SvVwUYvvH4V56LdbMcus+IkCQb82IhOx28H5mfMd0M0Z6sx6aw3kzuq6jAzeCxna6LAhgkeUg9ELGyRdwa3Wx2+n6KeO/xeU+d+H6Hvh9vU/cBa8HapOy72lHXlpSg7Xr6TnUb3091je9p0U2JmFCmy4vn4yvNRRFJkkEvkwrQA5URbGb66DNADmGlMGWc7mXGDMCPWIe1FRiDtQ7r6qwXWSQfg7Fgq3HDyutA8B7vFWD3vTKbNQWCHxiXKQjRaxtE4sgaljQQt2Ic9cJ9IKAEcZVdXv+eDCllN2UGlJfcdC9o7wIkI2TWdR7TlqzbpMnjpoRv3Ye39eOdF/ltZQL6FAfrjd+/42vffCkvBQxMj/mGw7/pfDdtwLtswheBPtPvTNlCL5BXmotH8zpVJuoGlfcxAXWAD6cbAbjp3/srmx5vjWVWGawRlk3DyWKOs3aYswDrtuN6u8XHyLptiT4Ma9urDKiBkfuK35vK2OzPN5vOIGUgicQcPVJSUhQ+EMP/UtqhAJUDZjTOZ9W73yzw8ynw88nfPwM+/w7n+8HlVb1Zt02mF53zVRaPb+Ndu4nevqS8ej8aDXsSZzEkDYHKG0qKgeh7JEXEVtiqwTjLfLHk3ul9mmZGbRtim+jbjsXiiMXiiPniSOFcp+dyxlHh6NqWq+tr7p9+irUWHz3X62tiDMgwGTJQM2H8wGg4qlGsm3uCARwqzBxbcvOAosw3DNZU2jZvGkOOoYwIKwslEYMMyvewuO71z6i4Q+7fOC5vUyaEFEU+jard6+xDYwzz2Yz5fM5yuWB5dMTR0REn2RjTSxoNeDMBo8oGYZzDZOYHMZIkK6PJkEJ5XVhWCdDxosqoxTkN3RJrkKCeMOUTe2UNtS0hJXwIbLY7Lq+u9lhaoBT7Em5WVRVVpcqKSUkJ86n0kbJ1fAj4EJAoiLVINOoxgOIOxFQO69zY11mDlMy+kpgVotKpk+5RhV+yAjYuwjJZyF9nP8ItAMnoPBj6TAoApjAVw0RJec6GgO972t2O3W7H1eUlX331Jev1WtlgRyfUdc29e/fou45QN1hr83kMxXP6HHW6bOa3DOEXmW0FN/ohpKy9+3Tdl2b8fMd9cV+h3ntV/shKVIrZCOx7VtfXfP3ll5yfn3F2dsbnn39G27Y8ePCQdtcym804PTkhti1VVRF9h/ctKUbabstutyEEz/XVGevrS7zv8b6l73fE3MeIJabE1fWWq9WWEJIaJBHA4GyNtQ0ihso1VE4ZPM18Tj2b7QE/VVXx4P4DTk5OmM1mOFfhrGM2U4AqxUQ0ETOi4PutdIen8jUygl6bfnOXnjBlM01lz1O79wGT458380fFee+Q70mmes747qv1x6te8Buei1L0C5Mje8oYKyG8z4OPI+tRxvf01agj3VRSyAr/oHMEhICIx9ArA8gEMDrZosTJGl7OeUs759+TvH8bA64SqloZrCEaQhCIz9sKz9/dG5LJ/vwCeeV+lMlDoemEBWx2kFhhcNCo88SA5PyUQ5hqeW1z6LKCRC4zGcWO4WBYh7hqMD7zrRGsoc/5Lk0eCylGvCjglVIippDZyZEUBi0VI0kZP2nC/En6mdxYB/RV2dsn+xZFB9Zt4/k+LWN8/2z7Butkbx/WmDh8+pLyo7MXh5ZKPDcCv4n188LzviIAVFIMfPNX0t4zPL//Td8r7992zIvs0m+4llfqR0Hnmi/nTIn9MFQmiuBziitjL5W1N+GM4IyhcY5l01A7N6SF0LOoE74Lga73GMYQzpsr2/66d4veVcbGHWDZeJ67ZsL+XnBTxt+Z7Ocygk774V4TC6LgPsOU3NdVv0m+C/Dze8CfFZG/BfgM+IeA/8Z3ON87KVNj4WXpdGEwmjWHSQhBmQjWjuyGkmzzFnlFSvy368esTYjVzdJWFhccRmRI0CyVHe7bVRXzxRJrHclDu9jRm4rKOkLv8bsWUzuMqxEEW1U0ywWmqjh9+JAPfvYzjtfXmNqx7XZsd1siiW27VfZHYtyYMrCjdrcZQg4ke+AwyvJxOYTHZDYLQCzoUUpILAYzQPZOoYbO3sYog58l9xujXlc8JBMPzV1SdElrlR1ipQAh+vnmun9tfShihlCv5dERy6MjZvO5hjWV6yntUAz3civ5OZLwMWAGBaY8x2wsqjcxZtCsfKbnFsQoDyqESO99DjvZsllv8d5zeXnB+dk5fd9zfnbG+dm55v8ZwDChcgrSGCM4V1HlTaCZNcoyENExaoYVUlV5I4QYqHyNzfTrEKOCGZnlo52cGT83NlZr7aA4MgB6Mih35XdKn7/kbPyWa2oeo8NYiwVaZAASYgm703C6mHMq9V1L37V47+nblna3pd3t2KxXXF1esFqt2G42rNdrnKs4OT7mq/d/wvp4lfO+HGOd5rRwVTWEf9nKjQwgGTfkSZPdKiPlmtFW+p7lLqr0SwLxr3FfTJPnyW8bQZLQ+5bV9TntbsfV1RnX1+dcX5+z3Vzj+5bgO1ara7764ktcVbE+uabb7qjritoZmlpzdsUQKCFDTV1zfHxECJ7e1/R9RUyR3uuDEIcktkJSVkRGTjXctUNQD7Y3AWMsSTIQaoQ+dEirzLy+67m6vKKuazbrDU++fsJsNuP87IIHDx5Q1Y6TkxPmiwXWaghYyZ1y1973GuU79eNde/3LgId7gCP7c8WgirSIhqu43AwhJXrddolJ/e7fK+7z45TXMBdl/F/GPAxa7CASjcnAySTMh3G7n/oFigNEdZM08dSmrFQABGX9ELA2UNmIkYixgqkqZeiZiKCs2BBTIZ7qb0yuWlCWT1UJTW00D+GsppnXg86k7Oek4b4hjrpLunnGNyO6xn7jYa/UjwIDs8dlZo/N4f45jTbFDSgZ3JPMRZCBKk5mJWSPfFLnlkRBokedYtq+ElVHMBhIkWm+MpMZN0kEmwSXDDFCEItHcywFsUSxpCQEcYQMLFoBJ8rnKbkoYZpjpLShPkcMKaneojhWfmbIRMSYEyqWATk2GtOw8DKa0/Abg+Py22HLP1J78XmI81Ud7t/5Cl4BSHrZkK9v+o2bINIr3PMr9aMRYe4MEhJdSnuRD+PulhCjtoIllQxnOXpV56/La++yqbg3n1FZy+lyyePTE5qqRCborJ7Xa4xAl/NpbdsW45M6kTOQY6aADDdHwPTK7m77F8nLMpJvvlt+cx+Off7YcT968e/eJd8a+EkpeRH5J4D/J2CBfz6l9Aff9nzvsrwKLb0kqS2P1WrFbrfDWstyuaSua022OZ+/FuX3lftRBMRouIi1JAFTVzSzGVZEY5q7nhAiUhmdvNZQz2ecPnxICIGmmkGX6Hcts3pGv23BR6rlnFlTI9ZSz+eYqiHGwM+cUB/N2O22HP/RH9L7luvVNTFFLq8uNSbaoMwRdIJj0uDBca7KHhpBrBCTAgZ15XQRkCndN5FMASlGZS2ECCErayWjc1EcxGhEUUyEqd9FblCQ7u6EQeESo9dmnMFYwTaaABGBzdeXr6cPAecs9+/f597pKY8eP+Lk+ARXVbi6UkJBBnZSBn5Mub6ySgqqtPT9sPgUr6PGr+sXwiQETJUXT0pQJUhZQeq6nrbT5OBnZ2c8efKUruv4+quv+OrLL+najouLCy7Oz1U5nUIqE2Xc5RAtayyL5VyBLGNo5g11U09yiejrptEcI9ZaFosFTTPDVY4oUKij4gyCyQr8CCa6nBtI0KE2bBVl0JDBx73N4hs3+Ffsxwyo3fgbRnCsgD9paPuI73q63ZYQAt2uG/P6rK5YXV+y2205f/Y1X37+CZeXVyCaJcFaS9+1VM5xfHzCvdP7PHjwGJcTCM8WC6y11LOGeq7JoJ11uMyeUoPplrVvz/lTALfSrt8sr5HlcSfA87Kb/nfbF/fHypjmfRLfVTyvCXbtFV99/Qmrqys+//xP+fLLj7m8uGC7bTV0yweur675ze4TUoTTeyc8evSQpq55/Og+H374mLqugQCSsFY4Ol5ydDInpUjf7+i6LTFGrlcbrq7X9L1XIwo1ZrTIh86PdudzUmmALSSLtYZF3zNfehDwMRCSrgc+eGKIGGtYLBY6hmYzfvbTn/H48SMWyyW//OUveO8n79M0DQ8fP+Tk5HhiVH37/e+bxszr0m9uY/u8KptXV5aUvadC4wxGoLb6WgRaH9n1gZigjzlnC+8O+PO8gfPNd/at+lBKnykDZ8DT81pfQJ9k1HCxSXUhYywDrJBEbWthArAw2QOjsneIqkvlcGhdqztIO0Q8tetYzgLWRJxYKrTa2HoF16Ihy12n+dlGkyFltmTKgAfMZxXHywrrDIujOfNFQ4wRm8dOCAmi1/0hkgGgNz9yRqPzG497pX4UEWrncj6QAvzIEOolksFTPfuwRyrwo+kDJBlNBIvoc8hrL5rWQEMxnLJyjMHEiIlJHY3WYCWnDiAp8J0M0TqC1f3Fe/AuZd0SopesTxl8ZfIxHp/DwRRU11wlJcSQ7FQbUgUlISR1GhorQ6E4YxIGrQon+TGAjWUeTSrc5u0lv5/zWYk+4mAlp3Hffomh8qOxF59bQ2Ty/P2DPt8kLwPMfBP4c5tO8211nFftRyvC6axi0wf66JEQUdjaKAgkaquphjmizoWlJqDsHmuxItxbznjvnoI9j+/d46ePHzNraqyxmYEOTy+vOHnWsGs7KiNst1t2QBuCkiqAiZo5DOdb7nb4/9uMihcxfW7/JZXBNZ409Ukp2zK93pFZ/2JG0V3yXRg/pJT+NeBf+y7n+CHkxza5p6IbQRiAn+12y3q9psoGauncaTzmbRP/Vajv36ofRTL/VHJeFAvR4VPED+WBx2u01iEzIcVEP+uYzWaYpMyJ6AM+gW3qQdMy1lE59XYchRNC0jCUp0+/ZrFc4r3XBKA37jVl8KasGmJGdpRk1odBhrw12najh2YwPGNCJA5G1t7sT6XNJ/5ASYO3dTDQGMGQ8j3KpjrBBBLjuSV7xrVNDXVtsNU3Gziv2ociRg2tRsO9FCSxY9UeconVvACVa5ckw30/t6EMdI4cAJdKm4xsH5/dkyYrLwKEnDfBe89213Kdwc7ziwuePn1G27ZcXlxyeXHx3LifinNuYMUtNwvmiznWWeaLBbPFDGvtwKYzmeUTM8vHZqZQJDELgRA1rMvEPJ5KF+V+Ndn4FcnZ+VO577Eqx2A55DZ5GflWczGR8/boHympUqfjryQBzbmWMgDkfZ/zD3Sa48cHfN/Rd92QIHi9XrFaXWmFr6Btdv7sEefPnuH7HhCqakZd19mYUXAoGcE4TZwNMvHGTCm3KoWkpK+zlyPdXhHmprwMg1LGg+9uvpdUql4B/PkO++JowO0vPHHwBKlGD8F3bDcr1utL1usrNptrNptrui73bwhstzvOz1b4PtB3HaRI0zQ0jeVRdy/nf0i5YosyM12lBmHXGapK8CHQdj3WGILZXytL/qoy373vc/hX2Rssrm5wlSZr7vqeLnhCDGy3W9q2VUMtOzRmsxkxRHa7HcfHxxwfa+J5v/Cc3DsmxrgH+LzKPvct8gC9Uj++DJPnlcGfiVcSGMJUrNHklrXVvoox4Y2mHQtlfS7PcPdkuqk3jDfzzde2f6K7TvnG5CUNlVeei9o342+oc2f4dOi78v40DEYm/uOUQfmRRZP3xLz5y2Bx5EfSeQ4eSQFjApVLWAu1CLWxkBJ9Z3E252wxsrdWlssse7QIOk5qh3OGpnHMmooQI3XVUVUWEQVfpeTEG4yKSfve0dSvqkt/W937VftRGT7KuCnhXaW6lxqZ7LW/sppj3t8L6JNzaSXNUaLHhMzw0VyNCqQkJBlMiqoWJzS/IGgnGMmONNFg95QwGEzKOohYApGUBJ8ihpiP0ccADkkGD2WiU8WcCyiBT0W5nIzHDAIOOSTzfU3nd0qlDca1QvflorAm9gZZua+9c7z+PnxjMiruo+w50O4ep6+qC7zgIqa/tnf+u859Gwj0ba/nu1z/q/SjEZg5g48Jh+5dJGWklvQDIqOVVJjHedogApWBxmq1q3nlWDY187rmZDHn/vGSedNgc25OkubVWm82VMawqCpqawhG6JM8l4JqGkq11yPT9knjfLmt7W+T28CYPSfQLd95bvwVc2rQ+4YTTa5/sv+8xHUV+U7Az0G+WVJK7Ha7XNIz0rbtUHJ6Wu65lGHr+56Liws2mw273Y4nT55wdXVF0zQ8fvyYo6Mjjo+P+cUvNMnqzU7/Xu8tewIwBlPppEsxIbYbKmANHq6EhoaJJoWeHS3V2AZ86AnRY/qK4PvMxTUk54Ac9jVfYKzl3ul93n//A5aLJdu25cmzp4gYuhTocmnKlAGfIbHiUOEpkkION4o5eSNFJxtBipJbJ8ac8DCmIUNzAYIGnajoeTlh8/Ob4x2Icv6ekoJuWbxFK3A085q6sbxusdZwdHTEfD5DJFciQ7SsqOTS5JQ9Pw5MdJMpzZIh+ef2z/I8MZhLm/W9Z7vZDMabdVoRar1Zs7pe0fc9X331FZ9/8QVd23J+fs7V9fVQprqu6wFsKh5U772WiM/eL+N97utE1/cYa9juttTrGmsd3a6l27U451geHUFMOWzLEEPQUBKE3vtchajWsCUjOOMGyrgVMyh3kqabxtiX0QdSCDc+ef2yr8cUJS+vLdm71/cdu+1amT3rNZfnZ/RtR7trWa+U8XO9uubsTIG21fVlDttRsCh4TxTh6vKczz/7hMX5MoNxV1RVzXy5ZJmrRy2OlixPNARsPl+wWCywxo75mIxkD43JrJGJMcXLbVywP8Ze4uBvZZHe3FC/F0/48L8+YszJz2Mk+J6uawkh8OzsS56df8HV5QW79op6ZlgeN7hWgRjvLW3bD4Ba7z2rzZbOe56dXzBb1DRNrZV+nBpFVW2pm1xtjwg5pGTXJ3Z9ou8TXRfpOg0zcdZgrZCSZG+3QyThUw4hIWaA0StIaixNBmB97/G9lnEOXkNNSHB+psy+q8srrLVcXl6yPFqy3qx5/N4jmqbh/v37uby80fKngwJ8dze/0nj5EUiZF9YYnNMk6o2BmSUzflQh1jtShkGIgI/0mW34Uuk630J5U9NwUKSNDCi16jCocycWvU0/s8YOz2YS7hVjrswyiajRyjNm+ksMSkLyyoBNXkO9JOAkUVcGZ6FxhsbqPur7QNd6vA+E0NF1heE5qBIKGkjKiYzVa+6spXaOpqkIIWplRmsw09D1KVj4lkph/ypIqiCPLYmdjRp7RiaOuylol3M5iUnDMYjm56E4efA59Ctlcq0hp2WmhJaHkJ202Qmj23KAzM4SHzBR2TxETwnDtuQKuVmPJVcsMghRdJ2Npjh+hRDTUArbRiHkUC/KUBQQUeXNSCSYNOTCHADJDHSmGztPAcYG1hO5jQpIMkWK3uYB8yOS75Np932IEWFeWWKCuctMtrzYhKT2hBU7VNyzOa+VvlZgvTaWmbNYMSwrS2PAibLYYugJXsBaBUwBUshhktA4y6LRHKCx62mjRiFM0w7cOnZfwyI4DSW7qZTchqNOv1NkAIBSmZNZB73F9rrtd+6S32rg52XRu+8i3nvOz885Ozuj6zqePXvG1dVVrg4xKsSF0bPb7fj88885OztjvV7zm9/8hmfPnrFcLvnFL37Bo0eP+PDDD2mahnv37lHyjdx1/W9S2VXzUidd1czAKRDVtbtMP9Z8RfQesRaT8zPUywXHjxLRe7arNauzCwV8KqFpG1IKSF1rjiBjqOYNR+6UEDwf7n5O8p71aoUPkSdfP+HarbhuN7S7PueQ0RAdrQrjsFWFEaHvu+yRVm3MiVUDKSpLKSXNlRBi8V5HgtdNW2JShq9QmL7avqBOESZ/w8iSSeObe72QwSmMkEtbjPtn3rBdbTm+N2dxVPO6xTnHe48f42qtUNEHj6SoSHxOXp2Gm1TwS1LCOTXYjSiTo9ArC3umeDmL0lNCsRKJ3XbH2bMzzVsVo1bYioHz83OePX1K23Z8+eWXfP75Z3RdPxqMQNM0zBfLAaQqj81mTWg9MWk4nipEiesBUEDDv6zmALp/esrx8TFNU/Pw4SPS6T2MsQMYZK1ls9lQNw3WOeZHC+rZTMOblkfUsxlGcgiTGG2bMLIxVEXL1V+6ntB3uTtvTb/5nWXQ76R47KKCPaWaWg7v2q2vOXv2hLbdcvbsjM9+8xs26w277Y7V9Qrfe9quZbvR6k5Pnz4ldFsk9UTf07ctKSW++vwTdpsNzlUsFscsj+7p66MjFicaLnhy/5TTB/ep6or79x/w8MEDqqrm5OSYk5MTrLU0sxlN06gX1uo8f659ZPhvT17I8HmNa933CvpMlejC+kkaOOpDT9dqaN5mfcX52de07ZYvPv+UX//mP+Dq6gLvexYnhtlywXbT4ypH3wfazoM1RBE2bUt3oRXt1u2G8/UFlbO5Ol+Vy7bXzOYN1hrm85kCw8D1NrDaRvo+sNoE1hsFY5va0jQZABVlCylDrMVHXVO6vsO0TkMt51oWPoRA8BHfKbDUda0yXGXLdrXlC/cFrnJ8/PGvWS4XHJ+c8Dv/kT/HT3/+U+7dO+HP/c7v8OGHH+JyyOb+OlT67M3t629aREZAtGlqjhZzZW5IpDEBQ8JJpMroRJ2EJjpCBNn1tH2Pz8N1z8lZxvDrbhfZf3Hb2cf589206pQmm+rrFtHqkMSEz78VUyQGT0ylJo2Od2M0jLyE/hrjcq7AzPCIaf+RNOSHco7SBylA6rJDaYewwxCorWU5r6icMK8t89pBKkmJDX3viRHaXUfIhnsx3gtbxEmiMoa60nm+mDUsl3NCiGw2LVWlrEy97ptpll9kGY1HvEpPfB+gkhHRvSW3QQl7c4YhYbItLIPJGqEgj16dmITJiNjA+BJBq++E7OyxJHp1fnoDXh2ZKYPRgOpAFN1uBIEkRWzWVWKMSCw6REQkp9O3ql8nIEVDzDH4Oo4kO1ZH4CdETWMAGpJVWKNJ1I0XJSFW85wUlDDFDFQWZxpjYHG+gVG3SVAyj0wdfOnlKs/+qKSwVX9b5IeKcrFGOJ3VOPHsuoADumxH9RGcFWbWKoPVCDOrQLUVoc52RiWGWc6pOasrllZwJmGTJ/RbvARSMEgmEkjsqCWRLCybivvLBfPaI9stbQz4KBMHP89vVun2/eubZNwCp7xP7txrp+NvIFnuX4ZGRQzerBGAzcoNkKMPhhMcgJ9XGuzfBiB5mfMXls96vWa323F2plVXSjiXL8yCShNXbjYbPv30U54+fcpqteJP//RP+frrrzk+PgYY8v1sJsyJ13Gd306Ke0kBFrIRN6U+D+FAZfAag60c9bwheqcgUQo5NKHXxLMhDLRZBIy1Gp8dHYvlEaen96mrmuOjY5qmoe06bN/mm6VYwpoEdVKOEibx61mBKh7RwiBRBS1vpqnk3knK9snuNBkotTfa+cYLufn6rvaTDAvsnTMnZqwtzax6+S55STFGkztLLn8+9pPGtw83UrxWmcGlrIwxX0vxhN0sBVkUvOl9hxDY7ZTx1vuerusIIXBxPoZ0PXnyhCdPntL3vZ4/hwlVVT0w3GIGjWJmJ8UMOoXgh1K7KU3ZdHobVVVR5Q3E9w1HyyP6boG1CgQG7zW5tYAPAVc5TJXd65lRVKAdw5ivJomCd6qOj8u5xIDkZNQF/HndUryW+UoyxKb3T4qkHHLpfc9ut2G33bC6vuT87Bmr62sFfq5Ww1rUdS0hBtrthpQNd1JQwydGNpsVIWhOi9lszfxqjc3Az3K9xlUVu25HH3rqpgHQfFp1jXNqpDuneX9SVZGMIcU4MMj0NqZVjW602c0/cx9PKc97m+cUvHnpNv2hFcKssOd+jDHgc/nftt2xWl+x265ZrS64Xp2zWl9oLrPKIrUjxkTbBhDJeTz0fnwI+NLWJhLF53DSSg0lY5h1DXPvteQ7gq002X7nE71P9B597nV+OatpILT/TK7+p5pdMZQLyAtgxFBZhxEzsCQSiRgivlcPeLdTRqwxhs1mQ9XU3Ds94d6DE6qm0pDQzXYAhaf7W1nHX+QIgTfTxy8yJJ4bx/qF6QHPf1wYPzlUp3KWmkAjYIjYBC5/UZLurSGB68JQjPDuC0q8rJI4PdNd30iTT/fw2ps4Qrr55s2felEbMgJX5b03oNqUHD/lV1PSxP9lv9EQBF3pTS4eIQPrzOTvMOgPk0iByXll8lsZEACUQuIB1e0qK1TODOAsJE3OXvUIGu5nRNSoZxxnpf+FUqxSGS/WGSpnB4eh7q9p0NcGfeUlge5Xbf7vxfzMjB9SxOQQJ83FM6qG+ii6DIOxVhpNyvFDd42heVLWl8JwF3WSpVL1Iyo7ZzKC1Hgrf2UwqFT1kjSGdBWmj+YTVB0wpaTh03kcmYRCWpnRlzJjx0ipKisZMCpZ/sbQcwXAcihjJIehlbEzaihlBypNQspJrmVSNyyl4f6+n449yE15GfLCD5naRIA6hyTXVvBW93trdOw6o+ubM4bKaFiYM4IToc6AUCVCYzTHT2UtTtAk0Nm5GaPHYBQ/F9F5Lykfb2iqiiRC1Wu4eiyMtTQmlt9rom+BTmuKkPHrt+bduXNve37fTJC5AGmYb+MWIoPeIwPI9E0b/r6808DPq0hhLBQWjnohO9rs6Z4mWlOjMw7fuxmuVY5RQ3fHJ598wpdffknbtjx9+pTLy8vht0IIA+PHOUfbtnz99ddcXl5qWeWrK9q2xRijXvh8/B/90R/hnGOxWPD48WOOj49HiuubrHiSNFHs6HUrG2YGWazFuEoT3WWjLniPlcnQNQKZum6bmmreIFqqhN1mg+06qhRpaodxbty4SFR1zfL4GOscj997j49+/hHXqxX106/onng63yv7g5K7R3825j4pfRuTHxgqhT0yAD9xVNyKZyTf/PA8ZF2fKnVpssiWp0Hr07YaN029JpNkLwlwihr2kEj0bc923VJyzLxO0XLu81yZzeUKEJmVlRNdU55TzDEECWdKm+o9DfZ6BvWGsR8jKUZ2u5bNdkPvPWdnZzx7pgDPdrdjs9kQfODq+orLiysFH3pPZSsMGt5QWDgnJyecnp4iYnRedpqXpu08rus0TEQsYnLlqhiUWj10ho6hruvZbLZ4H7i6vsbkpHBN0wysu+JJCz5gXa306jqxq3bYpGFKUlWIzeGNvYbhGBjCvsR7bIyYsjbwZhg/w/2llLtKvdMpemLw+E7Zd7vNiu3qis1mzeb6ks36is16Rdd2+H6nlZ0kUdeWlAx+2dD3S7q+Zr3eAikb74YUPSFGunYHSROo+xhofY+xjm275Wp1jasqLs7POX92Rl3XPHr0kEePHlPXFffunXJ6eg9rNVF9M5vlvFsOZ+zgZXzZ3WwvF8/0WxMD9zZA4IdUivYkQUo5pC4Gum7Hen1J71va4XXH6vqSZ08/Z9duOH/2hG17Tee32GhJScH3Xdex2ezoukDbddmIKNaOKkc+RrZ9hwlCHzyd94gRdn3Htu2Ufdp5ul73m816x3qr1d92bc+uy6FnUbTal6Al2OM4z0IOR+j6ngTKTLWGmBO+b3cbuq7VULaY0+ILmhNKSjW9iO97NpsNX335JTH2XJyfcXy0oGt3zOYz3nv8mOPjE6wxVHWd57CGnv1YZADCM77/3Lgr9n9eV52rMpPJcHy04P69E+rK4pKnih1CxAFVNvi3nYfO40OkspbKWoSIT0WBJIPh+nNp8ntqaOrYkBuX9NJSNNXpHje9r1c514ukOCK+B5GJJj7qeTkEJ6+3xTFhc+lvY5SNQalfIwXAK+XAnYIFxg4KvJrmHm0oj1aGitlwqaidxVmLdWZYzkrONhEN29ZmLvWq9JySjZ8YIl3bk2Kk3bW0u0pZzSiDNyVyjh8FQdJAV36DbfsGf0HDrSxE1a0kG3qxGHpJgaAyZgsnmcLsyecwAwi0b8hNH8aMjKBSGXYoCIr+ljCZhMPrbNIJmUmeRjUzpnGtyO+P4GFx0qF6CSPAqA5LNRYjBQQaGTwGzVsZJdsuWRFNAjEWoGiIBNPfGkCoSWhMWcPyyGV4PsiPQW7m/fm+QtRfJNYIs0rDkV3QPFV9TFTWMq+rDPwIMzvm5NJEH2VFK/y1OKTqaLue9XrDzmoKhsKy2+x6drtW84nGkMOhLcdNTR/m+BjZec+290M6j1DmI3kbm2xco61X7L5xQ9tjhQ/PJfdhfvfOjfT5D2SyeY5zSheAOLRF0SW+/V74WwX83Bz8AwtkL3Rkw3XOK3J+fs7FxQV9Vjw3m83A1Om6bg80AIbEsiklzSS+27HdbvmTP/kTPvvsM7qu4+rqis1mMygSxRgpgE3MJa0LG6JtVdluW6XCf/HFFzx9+pT5fM7nn3/Oo0eP+PN//s/zs5/9jKqqWCwWbxT4SWj53wEU0YZUJdsIYh2uaRQ8kBzqpS5hbKoQDFhBZhWkhPMzZidHhK4jdJ7V5RUpJY6Cp5rXmum9AAskTUL86DG+08lNTKzWK+Z/8w/ZdFs2uy2t79mFfri2lOm1vtcE0THFDKboZI8l23vKyTFDnnIRxsmZ9hshX1Zph2HjLYtt9pCUXxm+mMgeGg0dS0kNpqHCJhHfRfCARNwZbLevf5paYzk5OSWRMk0cxBqsq7Q6mpRkjyjbJ4bMail+IfXmD+VRRbS0bUqkEAjeE3zg+vqaJ0+eZEDzCZ98+mkGNK85Pz/PgGog9L3OpxCY18oUqZtmYIg8evyYh48fI2K4Xq1YrdaaAD0k2l7noMtAakpR2WO5nGOYVCzZbLe0XYerKkJKbDZbzfezWDKfzXBOQ2Rm8x5XVcRo6LpAXXXYaAg7T+UsZjZDqlrbpu9JIWBhUAIlRurMcijJJN+sZGUyBnzfEkOP71ra7Yrge64vnnHx7CvW6xXnz55wcfY1q9WaFKICjSlRVRXNosEYoa5hPjP44Lm8XOEsdL2n3QU2207Defqe3XanI8Begs2sv8ohla5nJSdZXdX85IOf8MEHHzCbzfjwww/58IMPaZqa+w8ecP/+fZx1Wn2tbgYGUDHeX3Z7m4I/Y9Pcvu7/0MrQTYk+0m1bfN9zdXXGZ59/zGp1xWZ3zcXVE9p+y2ZzzcXl13Tdjm63Yb3WMFljLC7UIMJqvePsYk2786w3QU3QDGjmSADa4Gm3LeQ8ICUk01iLNVoFcblccHR0hDGG4COhj8QQuV5tWW1aYoiIdAPzrZwDRmMEwMeIbXeIMbR9y3qzIiUN/Ww7rQJWShUjgqsyIywlLSvfd/R9yx/94ZqPP3bcu3fC+vqS3/z0T7l3esrf8Tu/wwcl/Pn0lPl8kRP5Ty2wfXkTff+iOb7Px1DjrxhNhUk6MPWAqrKcnCyoqoqHpyd88PghTV0hvsX0WyRF9WZaDf+5vF7BxZXOUZdYuEBvNCl7F7TfQ4hESmWgVDIikCQR8mZVPIiQt900vr5tK3xOhkT4E8bDHvgzVWe/S7DFm4QOGLyopT2UeRfVF5IrJ4loQlFrda0rIfdjuKFWDFWWUMKIw9qSQNlOHCte87wQSXRI6jFJnSyzekZTO6pay7KnFBGLOq6Sx1hoKku05Vx5Lub9QESIfWC72tFVBldb8pAhxahjSgzOdRriRlT9pCg537KNx965vZ/e6MorgqkqUggkH4bQz5DZNUly0VfJczZbW6pmFhBHgRzJZeEHz3pxcFJAvwL8mAH4mairMJnTQ2JlRoCXBEHSkLi5MIGQks6/HD+2WUpj8vEYNGSFAgZJCftKlPqnsTCDyImg7Qh6lcvQhNFFsxuLMEQY1tCyd0zBpJQ0lPTHtZN+s0xM6ndKfoichN8kKSmz52TuWERD66Gy0IdE5RzzusFZgxOoMyut2BwpMYRrgoY5huCJybDZbun6npJDtLhWQ0j4kJ0cMXJUWYKz1NawaGp8TFxsd5xvdvgQ2fWeEHvNuLF35QPMs7eKSZoclUaHybCfCcOaoV+Q21fBxG3v6nVL+bjw9hj2UF2DbP4tDcE0Mp7yZXr8nQN+7hroL5oAUwCn73t2u91QSv38/Jy+77m+vub6+noAY7quG75TWDiFnRBjZL1es91u2Ww2/PrXv+bTTz+l67rh/en1FKWhVBoqrJQpm6hUI7LWUlUVX331FbPZjJQS67UawbBf7euNSGH85D+HrS6jj6WCT7JWN56Yk9Vlb+PgfbYKEoiz2NoBidCrkq+0fzWmiUGZJHkiWGe17LZ1HB8f8+DhQ5pZw/FXJzR1oywqoiZIZLisoW0KMCCmeM5GAG4AYYqFdGMhuNWYHGbaZMqNe/odiKzO7H1WEePmnZNhBx/oup4kr79PC8ssqtWlVzQZh5Sk2EAyktPwZ6ZXLIDGBOWW4imSYYzEGOk7LRe+3e1YrVescsWuq6tLzs8vhuSu5Twa66vXUFcVTV3jKi0XvlgsETH0memDGFxVY10FQ5nGstmNVGrNlaK/4H3AZ0bSdrvFWouzbgg7CSFS1102PDXZuliHJKFve3pjkegI1hHFaNt5T8q5utKwAidMGgEfZQO93k1Y278MtgwxlrYPGp4Veq3a1bc7ut2Obrela3d07Y6+2+lXYzH6HJXVpNuaa6AhBEfXdTSNhhn4XkO/UgmJTLotRToCJpd9VUVSjGG72bBerajrGmOEKlduWsznnBwf0/cNi8VCq4SlhKtcVpRLLowbbXYnXbY0+91tfCvgMz38B9YCU1KWWeg97XbH9eUlV9cXrLdXnF0+Yddt2O5WXF09o+93BN/j+zaPb2UYlAIBXdfSdoHeF+9xNjkGD7KGNk4r9+h4soho+LGyQHJFtlyiOoVE50NOLFtqhus5jBTWwKj0iKDgYiiMWChhmF3f4b3O/xLqOnrSNXTC+wLMe9p+AxLpu5avv/qKylr6vuPqww85PT0lxcjy6CgD/WZQ2CYt/Nw7r1NeHD627xPXfUfnbyo0oOEayeGtLofh1cznM2Z1hXjABiRFautoXAVJ2LU9zliCiTmRbS5mIIKV7JQQGdZnuXFd6UbT7Cmae5c2VXond1TGkQ62yZ1MTpiem83P/f2NvZP2J+w3LAffTgblRp57rzAv9pkhZjLmb/HiZvNhYP4YGNc3PXlC+xTCsKZreJbLj5QLQWQgPJWcMIWtk9DKU+WUo+KTYsrzzOK9V11R6SRaejxmkENeNIbv0oRuHp9uHPFm59xdIrkCWsrgbwmLKmyWqTE3DNkBK54weihh7dP3Gd6zJnv3J2Fhw+if/p3BnPK6HJvIOkJeAtJkfTakQe8t7IGSQ3HQcwzqQMzn0mTQCWUyjSy18lvT3x1BWh2jOaKdMGknyfcxnfpjeoRJm75ZHPZHKXszQm6+Uz6484+9E902Q+5SZV4lTPnHAP6kvK9XuRAEJPqgYEVlLY2zOGOwogxWk/ekUCrRlc0o20wx69Y+jDqIvj9tszGrpjMGmxLJOZKxhJTY+UBl1WY2YX/d3rfb8qRIGRq+05ybAG4Ty+gmELfXKOU6h9fjmrFnXqZxniY0ncSwDtyly36DvHPAz10yVfpT0kpbm80G7z2r1YqrKw01KTl4SiLmZ8+e4b0fGD8FHOoLQ2FSmWsK3ux2O7quo+s6zs7OBrZQCRebSjnP9PrKNU8V4boe85xcXFxgraXrOt577z12ux0nJyd89NFH3L9/n2kM9+sWTdxcVqts6Kdx1om1mfESNPFtzACQBmHujU+TE0Nb4wi95qVIJPquZXN9hd1V2FmDm8+VESWCcQbEsTg+4uHjxyyOjvjg/Bk/O/ua9WbN2dUl6eqcEKMqwFMQLc8eQb06KSuPe/tW0YTTjcWA/QlIOSyOB6U0NoueU/Yn511r9t4Jczv7RLcLxPBmFu6Ud3ObS7hLLg1LIrN7cnLDNGm0omKksTSoIPS91/CrELi8vOLJ06c5tPEZn3/xObvdjovLK56dndF3HZvNVsPBAFdCE0QTutVOs/xb58Z43nzNImgYxGyOdRXNbEcz2+VksZ4YdF4ma4jO5rnlNPQrRfqgwE8CDYNZrbWSlxhSVDCsqmdY53FJ8H3CukSfArttCyHRGQO7jtZZDFChpSqVn+qUOQWal6os7BOw9LX13y3vxahlu33f0u62bFbX9H1L1+20SlxdcXy05P33HrNrj5VWnsHOqnI0M2V7hOgJYakJfJsGI4a27Tg7v6bdBXo8MRot3Z1KYJaOiSHRaIz0bcsO8F3H2dOnSEo0TUMMgW63o5nNWF9fs12vqeqak5MTjo+PsdZSNzOqzP4xEyBSx8H+ej59PSTjZHwe2iyV/Ax3NOgPAP6klAidZ311zdeffcZ6teLZ2Vd8/Kd/zOXVGT617OI1IXV432FM0jLMBFJQry8h4LsdJK1e4TDUAslCqBLBQB8DfQbsMKUi0SRcEwV+SJqEP8VE3/VaraisSTERUwCbk8ymREoTbzhjv+hzrgRoUeNUIgmtvigmIKawK7N3GmXoSchKW2VxVYaUxYJEaitsr694+rWh3W5YNA2XZ2cslgt+8uGH3Lt3St003Lv/gPlijjFWk1cbq9fwAyF8Mvm/7A4J2fMgFobbwMDKHVMo6ZKUti4ItlYw3Iiw7XpcdaXsKhEkRogxewPH/rFG1WplP8RhyBcnyHQTzHo3KbPCTLm2yR0NzJCJnnyXxfIyrT7k6Lpp3HxfxksakzKXpLW3/XTRd1JMRBMx0WienQJsUnZKyWB4dl4NtzVpxaSOKiFgjYY/OKv74hAMlhIpaJhDCp7ke5IPWIk0LoM4YobKYjJxOmjZrqRzMAZ814EYEg6DHRi7JitCIuP8vaEZvbK8zLdf92wUEc05aSSHdGUHYuhz1dL8o1JyG03mZNZPi1MuAiYkotGiDVNQOxkzGH0SBTHjnY5nHN+7yV6frgjDZSSj/YUMAFCZl6mccdjzipNFy80PYzJp8mo1hIWQChtdNIwvv48w7P3FaC5sqMLomSZ6noaMlespzqwfG+bzpvP0feezDxPjRS2X9p/fQnAtpsSm81kHUHDHmoQzOoadkSENgpDXIYRoZAA4xlBaPYfLOcrUrhsLyuxvQvq/FYY8pLlgHjEmusbR+5o+6B4Z+kDI5ITCcotDyGUJ70p7/bafV6eAw/p6ChDflDKP9ztz3GuyWZZfj3cWy7eG+33+DC87PH5rgJ8iBQG9vLzks88+Y7vd8umnn/Kb3/yG7XbLV199xRdffEHXdVxcXHBxcUEIYQBxyqI7BWqm5y4yzRvTdd2tQFGRu845BW9KPp+mUUPos88+48svvxyu9W/+zb+pVU6GRKqaO+N1Az8pJULf66ZqbK4ANZmAoqEeGANeDdAYPSkYUvDDLpdEk+haVzFbLCFEQp9LcaOhct0TpR8v759yr6k1lt0aohjEJU4fPmSxPFJDNwViCqzWKz7+7BP6T7TPgi/sh6gMogFFFqSwjgpdN2l41hAcrb1ANmOLmp4zrU/cH2WSTnRgydkVS84XVSJveCjL5l2+XJTefM7YJ3bX/cjje539SC45a0pVODOiyzHmfs3KTlmqJCsQWQUQTFYw1cC/uryk7Xo+++wz/sM/+iOuV2uePHnCp59/pqGK3mslkuG+1bipqorlbIY1hnllWdSagDnESIhRQSBKWxrqZs6RrfE+0PaBttfEztF3xL7Ttow9Kfpyp6QUCTFwvd6w3m6JCa7XG9Jqg3MO30e61lPXDc41WKlxteAqNU6DCdCv2ZktlsRGEhWJ2lruzRtmtaO2FuYNttI8NU2tyaRjDPguxya/RrltVGhesS3dbsN2c83F+TO63ZYYOpwV7Lyhrk45OZ7rWhSjAgfFC5lzhpRIhETi7OySk+Mlu11L88nXrK+2bEn4AN6zTzVPQBrXvp33dNstIsJmteLrL7/EOceXn33Gbx4+pGlmfPTRz/nZz3/ObDbjJz/5CY/fe4+6rjm5d5+jkxOM1VLwzoxG8XPjOY2510pCXAXhJSccHgHYPaNGiofmh5MUE912x/mTZ/zhv/8rnn71FU+ffcnf/JN/n4urM+qFYfHA4RrBVZZ65qhNRS8eeg1P7buebtPrerezNMnijMNVYOeJEGHbdaxazSGCaFguMoY16MVYUlS1IHnYrdtxXEgxEgLGlb7OhiZAns8kDVuL2RtXqk6oTeqJosAPtiRoBE8eh1Eg6BprrWGxmDFrakQSRjyGgACXz77m6tkT6rrmq08/ZbFYcnxywi//zN/Gw8ePObl3j7/1z/5ZHj5+TF3X3Lt3j6axb6wPNez17nFUFLcC9jB5lHWwKJMiYMQOhnxKGi5nQsREwaClquv5EfcfPcRZS9t7zs4uiDFhpUWiR0LAYHHoXqt7koJ9fYzYqNfiJeFFf12TGE/Zr4VVYvWr3Fh3JvrwHoml6DIwGNbTu54qqTeV1akT6c72fkOGnTKuAymFodKR/uD0ady3Y4xIiBNLf8yVon0uRKyG8ohksEAgBXWMERECJrUIQSt4NQ7nDFXtcvEFQ4phyP8VupbY7Ug+UGGoak007VxFZRW0tYDNLd3Hnj72OodDT7dVFrV1c6x1RDSZqjOGkGLJNjS533Jzr2513vzGkC9j75jXa82KGK0ymyISK4RI7Ht8u1aycl7LCtoyOgeyGysx5MopoVMmx4GU/B0A0URl/RbkpqyhMu4opoSKgSZoLi0qk7xCKaFECNGk7UbnfJpWWkvjvjWkF8jgbBqSAMWB/ROj5lJLGfQJRTeNMuipMaC5xNGKYMXoDankPJkAQhksHlKQp3GMqwXw45E7WRbTY3j9gON45ukz3GmSD3mfbj+m7LsZYfvmX37DYNe3kRATl9uOurIczxsqq4xub2Me64JNYLOTXve8PMus3o+xDucq/cwKzqreFnxP3++GMPG9dSTPOWON2o0CDZr3KpKwMqMSSx8CLkHse/og9Al6cqFlEhJHZu4A2UydR2WuZ4CppBWcAsTPSd4wp7hfyn+UXyn7zvSuhogBEVI0JDNGjZQ5+rLgz1sL/HwX+lpKibZtub6+ZrPZ8OzZMz7//HO22y1ffPEFn3/+OW3bcnV1xeXl5V4FrtdBm7vLcJkCPtNjSwJB55yG58TIbrcbQsyePn2KiJaw3G63Q4n42873nSWpJ18wpbzAoPylycAswEf5cPRGRBImex5ybLRzYFIu66yniMETWk04Ouv7fcAmc0urWhcS3zSa/PfePZy1LM+fUVd1Nmw9oQ977Zth3D10Vl9xy/p7u5oyKK3T+35uaMiwYO/36VSvLYt/aUjJ7aKKd3jJRf/bS6afFy9WUfbTdKEZY2yL0j4qwPpXDIGu1WToq9WK87Nzrq6vB9bcbrcrOxmIYIzLpXD1953VBJZ1ZZnVWpax915BKArSrb+mc8GAaE4iV6myG1P2iKaIxALOZZNLlBpqd60mjQ1RqxzlkJW26ahdjWDoe2UFiY+5RHzS8r4REl6pqDEo2Fg5FlaoJTMpooOoiWnVu6Ee/TAMrtcnU8VreCeNScz7vqdrW9p2hxDV82EN1tY0tcu6Yhwq3aVcJQESxklmWkDfedZHG43Hnjc4Z7HWDMkyDYyeenJHZcOvhJyBELxnl8PrTGaUNE3DcrlguVwyn89ZLhYcLY8I3jObL/DeY1MiOjcou7A/n6b50grwY0S9mzrX8nyaXN/w/UROZgrjbpz/umXZfBOV2Uga4tXuWq4uLjl/+ozzZ085e/qUi6tnLE5qZLagxoFUNOIwVgZAJaHsjeg9sY8QBIvm7ogmoYXpEn1mTBVFpaylxkzAsWhyhRp0POSSwwjZo53X0QKYFf0nCdNGTpPjoBhZCaSEKuT1xJBB8VHFKSCtGL1Hnd8JJwpFx6Bt5bue1jq6tqeqatarNcujYzVkQmC9XrPM1TA1Mfn+bHndcnNM3vh08vvT68g9UlhT08fUkZTy+pIYvmuso6prKutwVYXJYOeQ9DGpgVvs0gIqkSCKMlFyYZ9Si2rw/g8obtpTp78B2rphy5Tjp3rB3nkmwMreWSbfuUXetIETc2ntYV3RX2Xv7ic6T4qJZMawmkF5Hx559xSD8lfLOhIm+6xmVjGia2sBrodRkRiZ00POvYBBsDY7UHLFLiOCy2BOSlErS/rMDskAq6QEJinAT2GXfbMBf5uKc/eHzx+cJq/HL7zm/hRyDgzJlbwSpIh0o56T1RBu+WO4Ht3ThpFKCdkrr4mZbVPWtnx/00TQRDLgnY002b/z4dfyxBx10ZTDp4asQDkkNAPHZYobGQdaHCaylqPPLKCQpOSTHlTNFDWXSjEeNURMhkTYMNoPSYohPO71JRSsGMg/ljT6LwP67MkdY/alRqTc+pKXK+NR1kQYkDj2Z0jp9+emyiuoID90mFdM0PmQEy+XsEmtJGiTyRVyp6trsRHyJ9lWsLbKaUQEY3UfizGUje12gD5Pa2vlxl4qNM4wczaXjddQs7L3+ZSGsEc9TZqsDzrPn18tJrrQi0Cfb5LJfjvuH2mv29Pk9U3be9yBXixvLfDzsjKt0rXZbFitVrRtyx//8R/zq1/9ivV6zRdffMGnn35K27YDy6fv+wFEmbJ07urQ2ybYbfGVtw2KuyZnyRvknNPElffucXx8POQZ6vuepmmG3EN1XfP1119zenrKYqGJIavq9ZcCpyg7oSjuWVFS/ZXRk5LDM5JS82KM6mEwIENQdCp6L7aumB0tcXVF1+7YbjUJdrvd0W62RB8R5zCu0jKXw5ZjWRwf8/j991keH3G+vuLBs6dsdluuL6/pty0xl/4tVHdTQIgBeEH/HozFG30Be6Why1o9coHypEvTzVs3Ablh9Je/yyYspd3KJeRrEwPOZhAN6GhfS/fpz0jODQApBVIaPZiqzCrdUi9VATTygmgzQyqGwK5Xz+jTZ0/5+Ne/Yb3e8Olnn/HFl1+yWq24vLqi3bX0mc2lHky0hCwlzheaSnBOmDfCcqa/u2uTVqgi0G6vuTiziLEEjD5CYHN9xW6zVoDBdySvpaBrCy4btXXdUFeWPniC13CZEEL2ouooKlX2REzO/eNwVUcyhs57nDHMK0ftNF5Y/QZaNLXtWhyqjLdOWVAxar4cJOcPe81sn1s6lFFt0I0zxkTb9ex2WgXI5PwRMunD3ke6ttNKUu2O7Xad1xLHbK5hX77vOVoumDUND+6vefzoPpvNju22Y71uCTnBZMhJJ7uguWVimlTJK+ZPSkhI9Lst62tLt6t48mUDMTJrZrS7HevVmqZpeHy14uEjLRF/fHzMcrnU0NC6pqp064oZsCpgeNd1IDrPC2BeKraBVn6QHI47eHoHO3wfGEjT/X7PlHu9EqJnvTnn+vopZ+df8OTsMy6vz2lDSyTSx8iuj4Q2qtKDw5kKjCea7NGyFpxVD61UJDMjRUvvE20VCTFhiexaoUsFSCCTf/J6I7kMcBrj48d7Hys5FnA1AXYILyHvC3q8GK1MJEIGcMh5MGTwmJnsuVMlbsxPp2GZOlZ27Q6yZ3BWC7UDMUYr8IkdQA7fe9brNZ999jmX19fcu/8AqSrOLy85PT3NTpN6qBz3Q3hHp6yeQe9PxZwqR+g8CT6x27U6F6ua7c7jg4DviX2rTEvJeRGs4fzikq7Xql6JhLVCTMXQ1YFs0f4iQZWEkHQv7GKki4GYoM/zQGGIDDbBHgg0tl0Bi/Oqk1EkwzimGAAUPX5qbN9ty/xwxkph/EzHeZywoCKoMU/KuQgDyYiO95iNEHJ4F7om+qivfdJVWN1mWvFRiFiJWKOfOCMYE7Ph4fG+RdetHmc6UgxUJnE8c8RgFCgShyC5Mo72eWMtjbEkSXhx9NJo6ugUaYmkJDrnemUJEkMeU2PoZwECb7TQa2jlibLzkmbyq/+EzivJoSQpBl0nk8FKwkocDE470cnLqBUpa1X+20yMvTKWh7+1TWLMIFFh+EDea7RBowDRZBtxupdkpjlpv8LrFHSdOC6n9sIEM8jwXQaIRitUnWAyKTaS97WY52NCB3bGAjUcJh9bSsjrWB7fD0NoLkNxkB+r3OVo/1Z7wJ5OcMuH5XmaAPhWveF51OiuHJBT82RQUX7MDT6RmBKrPhDF0PS6q4QEIhrOWkKIC37ZZx1ArCC5wvBsccTp6X3V4XLIZkqBdueQpPn/UiwRHWkCGqke6PL8LvPGkJhZQ6wdPiT8YkZMCR8T3jqCc4SUWK+3rNc7jTwoBYAYYZ994Hgwe18oeySBAtgUh8Ee6DMhGJR9d/g5GXzo5VFgH43IOAA/Q0WuUhHrN7/5DavVit///d/nL//lv8z19fUes2datv1lQrpuvncTIJq+fzPx5fTYPUZKfs9kBbeua5bLJe+99x4PHz7Ee1VySwjZ06dP6TpNlPnxxx/TNA33798fjKXXKmUHMNmQjSUmugzUNGT/x2isdYmjHkIxrE78EhOdMm2gmjccPzgleM/FszPay3P6rsfVNfP5El93VMsFzZGiv0lQpcsKp48eUDlDu9uybXdcXJyzWq9IXc/V2Tmx75GUcE4TSScz3VgL8lKo9pPJSZ6XE2+lGkxlqo2e7b3pptz6bI+PRv+oD6ec1yJNweJ8kNbKslZwjcM6NQzW568P+EE0f0bKi1pMMZdjfh7kjMETupYUI3VdsZjPcdawa1tW6y2993zyySf89d//fS4uLnj69BmffvYZ2+1uyP2joRsOW2kJVEzKlU4StYPFzFA54WRuOF1YhMQVEd91+BBZX3nOLq+ICBgHRhNTr1Zr1ut1Xvh7UugxItSLmmZe45zh9HjO8fGcrvek0BF9S9d7pYp2qnxH7+n6nhgTV9fXWibeObZtRzObUzvLyXLBYlZj0UocXiB4TyOJ5HuaSnMSxeCpKoe1iZCqQcl7E7bmMOvK+BwAVYMPie22Zb3aIhKH6giVszRNjTGGrousVlt633N5ec7Tr7+i61qWixknJ0uqynF0dMSDe6dYY4h9oNu2bDY7Li6uefr0QllTsdDCE50Xul43ob4PdH1eSxPEqOyf3SrS77YYY9muVnz1xRfUVc0Xn33Oo8ePmM3m/OxnH/GTDz6kmc14/PgxDx4+xFWO45NjFsslCMryIuF9z9XVFev1Ore1tkdVVZyc3GOxWGhOm7rBSZXbbsIE2sd88svpjC5q7hsAfkLP+cXnPDn7hM++/GM++exjdt2ObbfC4yEYZBuxIWKdYFJDZWqMDRjriClQu0RTWZIxWBoqjhA0hLHtlLnmUmS9WSMx0QNt0LW6MMHyok0iGyupmDdFOVFQIaRATNqPWId1GgOUQiJqaUIFfUzIIK/B2JGtKblOshVdC3TdYcgXpSw8j/dCTIHdbkddWczxDOfqDOZVmJkoW2+nSa63u5an5+fEBPfun3J2ecmj99/jpz/9KScnJxwdae6optEk9t+njLq6tqukApaVHD8j6EMC3wc2q20G5x31bElV65zpNmtSDKxXa1ZXFzgjtLvdABQlkvaJkUkJ2ERtDFWpBoJT4y8ldl3HttfqRzutDz14PgcmX4zjGjNUTNP9K8ZAyUek1ZIEa0qCbvDRD3rUyBIr+VVyM9zdYLe//4ZwOw3N12CnkjQ9pqiVPgejL+XriBA9RiJjPDJDSFeGdYjJkRBCsgQcCYPkZM6GiJNALQEjkdoIzkScgRQ7um5DCIbK9GB6hEhjI25ZQ0xYYzX/BYJLFhsViF02NYu6VnZrY0iN4FPisu24bntCiKxWPZt1q8CP9+RyHAr+ZEpH0e2+Sb65O+TG86TNX7p3XlaERHYwWV3aJEVwjqQ9gqNUCypVu25cZRniMNHbCyYzNfBzPqc0hXImIJKJFEa1wFCoI8+cydGjsjk296iHpmENhml3TIkI6h8sZzMT7CeNeXmyha32cRqMTxNHhpstTLck2ZAkM4fyHp4SgThUC/PpxxXqdZfc5nC/G/z5tujKdGzc+P7QP/sKvwJ2YSzVPfT35KyTvt2/vLuv8Tag8PsWHxPn244uQu08IWhqicpVmdE4bidjha2IaxyVq7CuYn7/IR989EsWiyV+t6FbXxF9z+b6AhM6fNeRgifozQIyEAuMzWXeRcjVKUiAdYaZUUdZ4xyL+Vxti/kc5gtCTHz59VO+TJrjd9e2dMGTTcGJbTe5Wbnx9w15LlRzcKaMzpER8Bnn3Xj+EVBGJKcoKcfmFSW9nJP5nQF+7hrc0/w8q9WKs7Mzrq+v+eqrr/j888+5uroaqm9NK2LdBG5uvr5L7owpfQmwaPr+NKlzCfPSykYa/lDCvGKMQ7Ww1WrFer1ms9mwWCzebIWvhAIXk8G+V+VOb0TvMU+8lI83pmxE+b6z8WWsxdV1NhQMIaactDfgc9k+m0tk54YqOzNVXbM8WuIqyyKHjXjvcTmmNMWYPVoyTKzyw88PnckEm77aY/xMgZ/hjof7ee6ME3bTcJrJpn0D+cntaoaKb69bBq+eMLSPLj5asQlR9oag4TrBZ1Td2mF9SzHR9z1t17HebLi4uODs7IyLy4tcvatVJSGU9tNs/GkA2dQTZbLd6XL8buXUa+xMyv7RSOg7dl2vi7OtwFakBH23I/RdTnrZQ/BgBEmaB8OJ5PCxCmuEprI4a4jRDIlTgQHkDRKUnSSdJgdvWxAhBse8dningKMz6imMAj54vNdEcj54fFBPow/Zywh7yuXrlEIDHTs2/5f7L+SQNlWFNReFMZqUWUQ9d733dF3PbteyWq1p2516lp0QMtBX5xLb81nDcjHHiNDuWpra6bnTmA8ga5iqNMZA8EVHGcMhYvBaDtyYnES4w7lKY7mNMJvNOVoes5gvaeYti/mC+XxOXdc0s4a6qTNDpQA/XitZtbuBzVPGrp/PiaGGBC6P8zIfC6ibL4+BWD8Bepmo9G8i7DKlRN/v6LoN23bNZreiDz0hBQ0hQfP4EDW2W8RixIEYkhnDeyQnsnfG0ORjeiImBYIRZatJTkI4/HZefvYcEuWu91ugKClT9UTG5htD6/K8FinOjpFFIHl86tPIMlJ20BizXkL21AmjzLoQx7YvCR9TCpC0wmbvPetdS+t7QoycPnsG1rBcLgdQ5DYW7vcnE4MQmNI8NX9Z0TmUOeV9wMSI94HeRzCRrg/s2p4YA45IJQFnhJh1grLnG5PbFTAZsTAmAzJofxtRYCgEQ++FIMqfLUDRc3rsiHwwNVT1r7Jbjvei+YliTtI5nISS56VUopqGvwj7p39O3iDoU04fYyl+PRrDUz1hWOIk5dVHxg9FjesxODrlctdSgrkYx8GEsywMjhA1hBRUiDEgOSE6OfuOFXCZWWrtCPzYYLBB+3VmNV+eMUKaOdJcvdidQJeg9wEjfggdI00yT007vnijn99k9NWkTfb2t4KNvVRnvd75qAYTqgdkq7KEiSQDkmQY51PDs0genUNb7K9d46/sLyMjg7vcT0KUATlJ+jw4CSee+ekeftPgH74zzLPJTU7iKp+DKabrXPFuTAzHsg5rWL9AAewTWU/XMS2lxLsOR22HyIT9nstvv+F5+V3lVSI1nvvuzT++4V6zZnHj9/VLae+o8n8JKSyf3qLTlY9G9PGWTv/xSQK6mKhDpA+RykQQSyU5Rywj+58Yh/xSmvfKYIzFVDWz5ZHmc7UGCT2xt/i2xlkHVh3Xkm27we7MoG4prT6s3wJilP0aE8wqgxerhYPmc2SpwM9F01BZC6VgwmDClX0ahh6Um3d9ox0moM845tI434dNZTp2xjk/nF4mvz1ZqKd71cuM6XcG+AEGtkIJ6er7XpPLfvop2+2Wzz//nI8//ngosV7CvkpJ2RcBO68rt89Uwb4J8BSltCSGttZquekc7lX+Lp9N8/6Uh83Vkd4klV0oynkeogaSzYNw4jpRY8RSZkxMeXOJZkggnMoJRa1/U1fgDNV8xmK5pHM6RFeXV1hrORKhXi6xIkNoWRJlFlVNAyKcnNzjvUfvMW/mXDw7x4kliCckoZTg0s0sPp83QQTMdBMvxlAajJJp7H95b09ivq6bC0Axuob71a0g5e+Axp+WdBQiikzb6g1EUCcoIVzB98QJoGby5wUYKSMppmxEBPX+7rZbzs/P2e52nJ+fc319zWq9pm07UlLjTL+UzyuSWU5xoDQPyq8oyGMkP0g4K9S1RbzQhhx3G5MaOV77zndtLmmdkKgJMyWHQNRWWUSVUaBGARuhMrlqgMlKH4kQQw7rTIi0xJhydavAdrelrioqUUp84yyzxUzzamTwpO17Yk5E3bUddV0hJuFjoHKWedNg7JtZbkf7UeOhq3pGStDMlswWJ4QoWvq7bUkh0CYhRs0Dtl53XF23dH3L9fWO61VL27YKDAF15TA4ZvWMuqqI3nO8mDOrXAbntKKbVh3SZJK99/RePTebzY5Vpst2naftPXkI5TCSCMkTeh2P69W1MraaBmcq+p2Gs26vV1yen1M3NfcfPuDk9EQrPNTKOPHBc311xWaz1vmYw0/rqsYZIHicq0gx0kT1wtpKKz0N02EK8qeUDdKpMvZyNNpXFWMM88WC5fERpw/vsdqc4qNn1+8IMVDPFyxOT3F1zdFizvG9Y2Z1RW8S0m8IAtFDpCOkSOg6un6FJmoWYsxhHcHnhIpQWUEqQxLBOYOrdP/pOhT8TdPcPwkflBk45oICkAHYVZANUkjDZ1JCsQqDiPJ+CUoQSGYCEI1518qSqiE2EfCsN1tC8FhjaFyFM1q1L0QUDLNgXcABIoau69hsNpl52BNCeCNVLl9FRrtBJu+Uv7ORnUoIrMNaTQjr+x5I+K4b1usWzzp1Wq49RM2llRI+RlzlMElBXQ3liZlxB4hQVY6qMLVSBaLAWhKvYZtR52ZKIytBHwUsZdijJCetdUZzJSjjx2KMJZnMDJg61aavvqWa8sbAu7Sf0Lbo5THJOObz+A1JK0GOSjkUDGjQD6SsLYU9pZUbJCkga/A4E6mdOhJqJ9Q2YS04EzB0mCRYCTirsFHtHNXcYURoqoZZ3SBJiGtP2ngkwdw55sZinMEdHeFOF1qme7PDbVv6PkBckcKa3ge6AH3QBOJdEMQXwOfFhkQS2Qd/boLFtzXwC/9+PVKwkhJmNb0yM3kMwE/5Ysk9hhqHJS/W4Cib7AHFBs+wiYZFjdN4PA8MTsey/ihoODXwRj3wedBgmHkZ6xn103Eqlhsey1sPwNKkf6Y/mTE9xqCSkYE+glLDVWhah5TGWu95gEt6Q+F6P1bZM7q1zQQNn3c5JLAk9U5J906fmZhF452eShtcporc3rRIibGzhh5/3ql/F4Pph3R2JKBHaJOw9pFAYGEcC1dT1Q3WCJVVp4RpW7Zxg+89fYy06w1iWk7ubYey7VVVUR2fkEJmKHY7+ladv77dqoM/6xwD4Jsd5yF4Qq76G4KGdqWkdkVtNEWWJI/4DomJmUSWtaEXC8EQ+wkDDsZ98A4Ebj8k8xbgJ6UbkSMvbssRK5AM4so4VxPDPvtbxfgpOTpijJydnfHJJ5+wXq/5oz/6I/76X//rXF9f8+TJE7744oshAW3JjVPkLgZOke8yeW4mWxYZK3ZN81BoVR7NVVFAn1LGvQBAKaXhdQiBpmmG5wIQDUkeX7PolFKmkS+hW84gphp3z6IU5lAvUq6447us/BiS1TJ6uaQMCJjKIc5gYmR2fMTR6T1827Fbbzh/+lQnjTUsH5xqdS8jRKPGi60rKmuo6ppHjx7zi59/xPX1NU+/+hpnHT09ORBBJ1yKQ/k+3bwzQpxzUUxBn/yVQaHzma0wBYLKepyjrDMIaUZPkeR41px3poA65kZm9hASqdOKSVjBVhZXv4lpmiAGku/x7Q7ve6zRsupl7Nic9jFkhSMmLW2afCDExPp6xVdffcnVasWXX33J07Mzrq6u6NouL6hmSB6r7aMlGDVboDJ5JEkGenL1LolY0RCRuioVThKt99jsO/V9T+c1b0m329LtWkgJZ8AJSE5oO6sMVWWprVBnTa/KjKIYJedT0LaPIdDFHpFA8JHWaK4YWWsHzpoam7Ry2GI2495yRjNrkBjpfYfvA61A2+6wIsxmNVECC98wn82YLRa4WfMG+jH3ZvbmGeto5kucq+m6wNHJI8TO2G02dO0FfehIfWSzVSbFerXl7HxN1+64vFhzfrGmbVt2m452vaNyBt9qEtGmrnDW8eDeESLCvaMFD0+PhvjnAgz4HDIbYuTi4pqziyv63rPatKw2u8xSTHS9+stj7OmDx/eGGAKb1QpnHauLK7769HPquubh48fcf3Cfpml49JPH3H/0gKpyLE+OWCzmxBjYbApbKWZGka6JJvSE3ZaqbkghkhYB4xwNgtQme2FHqv5+jq4C/mSQ6g2Q2o0xHB2fcPrglPd++ohotoTk6UJHJDBfHnPv4fvUsznOWGZGjb7WGVZ+g28NoU+EtMbHSL/dsbveEb1gTUVlFRD3fYeRiDMJ11hYVIjNJVIzuCyboOtbBFcZXJXZhm3ERw2BHphdKYfcp1x+OEZSTvgg2KE8tH5GXgjHnEBjIdeUWUyAKCinoAN4r+3tfcCHHpvL0M/rhto5rDFUrsbZCiMW5xJJNJfYdrtDLq/2HDxDrrkfQKagj+y9X/5KJbMyRlxm2Wm7+K4leI9vd/RdSwqebRfxm5DBmNIp4KqKqq5BIG4TtBpqG0MiiIL2TWWZ5aT41hnq2hFiBOmIEULUalNDfh7J10dRUvM1Gy0ub0SobUWd8ycZYzOzMCePn4S4FMAo3ZhZ5fw3zaIio806AjKvWxIQQgF7GH6n3K9WsrSD4h1yXpdyI4UBPeY7TJnxkXlOojwskzwmeSyeSiJzp2ysuoKmUpWoMR6XPCZBJdBYNS6PZjOO53OctRwvjjhaHCMR2q+vaZ+sIEacdVTGYp1jeXrK4qePCCLM11uOti1t5zHyDEmWru/pozopOh/YeY/p41itcc/8Lzc7jlkFf/aBzP0WnT7ffP0GZNDVyhjLwE/ZI0W7xKLjcAR+0gj8TMCe8SFMptlo/N24palOaIzmBBTJoa2FfSCJyYwYgMJIqYh5456ybokwJtxPZZzqNcdpeetUzn1DKU83+6eADGnv/qdfgfJ21pKzvixJMz7sMd5+hPL67aAMLDAGfwtklp32c+UszqljYr3r2OxCriglxLKWTJpMxgVj/I0J1pOKk2wP/Hlxm/+w7FaVBHRYiGA6T+0jyTU8rOfMFgtqZ5g3leZk3Ky57gNdEnZ9YLW6xsfEvdOH9CGQEGbNjOXREgMsKkedAn27yyHQK016jzCU1zIWjCbU77qWtmtzDsGeFDog4kSY5QpiKfakTrAxsZTIvZmjdyDBEjshRPAxh0Gzv74UpUin04TRdwMAGkCguM/+Gf+/RfL6o7Zjtu0LXhHHMC+f03Z8k7wzwE/K4EIBTq6uVOF7+vQpX3zxBVdXVzx79oyvv/56yIdTSqzfZMhMJ8ybjJMsTJ8C8FRVlfNudM8xgW4yhcrz9BwFRHqjjB/ZB8hi1BKzMmqHw7WlXLUrSRySx42b4sR6KN4UEbRamGCczcm8tN01AW2kz8yKFKPG0eefFGNyye9EU9cs5ktiiNRVncsECkFGJH0K5BRPnl73YIrs3c/tMtkk85+61cqw8eYd+3mMP09iaw0lnnrw0pg4lFGQnMPojYjWAiXFkBN0Q0ZCslMjV29I41YnpKx4gO892+2OzWajYGXf0fU9PoOpowGtHRz35lLR3MdxUJQvTZqsv6UhCSV0R49NKWoy5xgnVaPy6XIVLWH0uhRWT7mf4b3RLqUwGUTQ+PXoRzQdZSSVnFo+V5gyOUlwjIkUNEY7Sc6SkpkwfWWpgratvG62wY0hqjlrjDKLkhqArmqoqp7eeRBLSpr02XudQ10fcx6ekF/n0BKBzkIMhnbX0W53ECNmJlSzJt97DVlRLfnRtCLTmAyv7zq2uxpnBR88XW8IQUPQTGa2pRi1zCwR3wsxJLyxGCyxjwPoLUAza6hmFdYZqrrK2pMqvO1uS5dzUQXvMwMi0rU7+rbJY7ZTkJNJEmEYqO3DZjo08Zs3WERkMNZn8xnz5QwfPTYKIQXmyxnL4wXNbKHMimS0UlxVY11F9Fr2uVRf8VH7MvbgLAhO1+E0rrXGgHGiVd7cCPw4FzG5epexgpLUEuJ1/iSKV7HsAQxrXV5OKIb94JVKUCqrTe9Zm3t8HvetPPsnipSkRN8nvCScjTgxCkZbq+mJbDHuTAaOZBiXMYQhlPVHIVlnl6lhxf7oUoM0JyNPyujRZ01KXyqfkTySwzTKGYxzo1dwsM9LW+oYMCI4q6FARA2JCTHhXKnAQgbkZWCt7BmSea4MZorIUIWt7G0mK6cj1T6Nxmu+6cJ0KjvF9P5vgjtSriCVnffN9GfMSnzx50wNsqmXN+156NPe9e5dWSpAF5MErsr+0WqLKQOakh8a+mxybhb1WZRQPagqS9NUucrijKPFXI3wpgVnSd7gjIZ1WmOoq4rZbEY0hnmEDoMxPbOmoa4rElDlSo0upRKZPwFD9m5lSEQ8/SDJviF7u0zPdaNzX7Oojvm83iSTh/49Vu4q4OZgyokMOoiUz4bhn8fssH7l8ZmG0zz3ewJ7YHjxhw1tmcZ5sFcy+uZ9ldd772d9vOizKe2fe+9bN/+eNM6AKYy6615Tpgz6TOlORYl67qp+eLlpK71O0Tsdz2lEE6xboxX26soSU6LtzTiWnlv3pWygwzi8vQVfxh758UlC7a6QoM/xgl6VYXUO5FLtlbO4rtPiL8aQCMocD0roKCCJMZaqqnFG8E1DXTfqPooB+ooYMo8v6xFJRuAn2Ig1JbpHw2bRo7EyAWBjIEVwJGorkAwur82QTbNiR9683+n7xZ5jnLdD2HDZiyef6cWMs3b//DLY3oNuledgyj88rAEv4dh6q4GfAiLEGLm4uOCrr75it9vxp3/6p/zBH/wBV1dXfPLJJ3zxxRd74V8vqtJ1l3L4XdDTm4uODmBl+cxmM5xznJycsFgs6Pse5xyr1WpQokqeouvra6y1eO/ZbDZ0XTeEfS0WC46Ojrh3796Q2PmNVPQCdZEk2Ru4qcSGpEm1HDPS+ZFSQUqPSSGMFUNszoo4mNlgq4pmucRVFbvNNqOZnr7raLdbbcNZg7FW47hTVh/F0Mzm3Ds9xVUV9x885MGDB9RNw/XqiquV5oOJMVft0BsYdJLhb72zYcebAkXjbLxjsxs2XrnjHGR1o4B0Jseig/Ga9R4TcRWICbwRUXc6JgZqo+XUBZCc2BxjMEa9ty5qmVmMljpf7a7wMfL0yRO+/PJLLq4uOTs/p+s6QjamyxCQwRuoC1aMxWDIG1kSfIC2j8QkSAz4TpWv3a5ju+3wIbHaRba7SIjQh6LgjGGRMJYtRaDre3atVu/a7BzG6bzpQtTKRVI2CPOclp5yvPCo5abMUmnZbjXx9Hq7YVZXGlLUdxCCUkatKtx9iFrGso9Y69nsejDdm+nLiSiTUKu81M2c45N7uZqRY7vZkTD0XUfsvbLLEGxVUZGYLxbcOz2l7zsqA41VgyTEyPn5Jc4a5vM57a7F2rESUXk2Rs0UY6GusydSHM1sgQ+Bq+sNR9drvA9cr7Zcr7YaJtd5uj5kXTMBnkSk81vSLmJ7BxfCrm9xdcWm33J+dUZV19y/f4/jk2PtI+81hA0Nm7AiiA/s5mtqY+l2LaEPVFdXVHXDyf2HzEulsGaGdRXjYLhpijNab6+7z4ylmZ1wdHSfR49+AkSuN5c8efY5290KYw3t9hJJPfPZgqOjB1RVTdskKtviuyMunWWzusJHDx1EpyFQ5KqLoNXWQgzEFGiqmuXRDFtZZvOa2UJzJl1cbnB2jS+JpF1ej62yOGJM9K3grbJ4tMS0rlEF9KGsbWjukYk5P5SrZvhES86TDEaUwdr3CRH13I3gT1FyEj4KbR817EsCvo+auBsGpoVzjocPHnD68AHvvfceR0fHAyP2hw73YtwZhtdITjZrc+tJymG4EZKyb0QEEz2zXB5ajGjdgJTzx+SxGWOk7XpAQVSbAaR5VTGrayrneP/993j//few1tIGTxs8fe9pvj4Dc07vPWbbIqbLFU8CPhWmwZiWtoTCFJq5z5XcTEqIqJ4VYVRUb0yg0eTZU3HHz4vCPBw/+fuN2UE5846AJjaZ/pignVSChTRNcKZBjEr5gJ7kY6WExOT1CY8zAUegsom6MjibaGrLrHFYA7NamNcK9ixmlsVM89MdL484OTrCOcfx8T2Oj+8pGWAF8SqSfMzzMoHUuGrJbH5CMoalNETXUTc961Wg3SbatqftEn0Q3Td9oo8KzqfkFSC/pY322uTWzkgvfn3LEvs65blTZ9Xt5pUMeP9NY67ogTEN+tkE6R5k0Gun52TfwJPJJ+U7++pjzo+W14EBnhkwqfJC8wpODcjyHNPIZiz6EWn/km9e5/41j8cMxuSk3WL5HdBEz/k+w21t/SOR2/KnfneZhmuNobmzpuL+caN6Ul0xaxwxJqwIwQdCjPQBeq/XpOC4nk83an3f52IHaVqGLf+WGirppRr8x+ToiAJ9HjNb77ne7UCE48Wc4+WCqq6ZzxOn9zyzrqfZtWAqeh+YVQ6/29Kur2nSAjNvcNZS1w3z5RF9JkwQY67wNTJpxDqMrQDJVYV1XZMcZRJTdnRmtnqMnhADkqCWxLJ2NNZAmGEBHyPbLmgxhKRgVh9zRESu9AvjvM9/DPO0ADTD+zf66GaPTVfY4kARMXtaVSFSlMTO8SX6/a0Hfkqi46+//pp/79/797i4uOBXv/oV/+6/++9yeXmpJaUvL/cqdZXHlLnypibJTbZO+T0RYbFYcHJyouELjx5x79492rYd2DvFY9nnxMbn5+e0bTuwmrz3VFXF0dERTdNwenrKo0ePeP/994dEqG/ghhBrB8+VDuichDAbzGIkxwGbYXOXXPlDdSn1yEtmXhgcxZUS845XNTXm9ITgPavra3yK9L6nbXdsr1eE3tMAs6bBaPAZxZBfLI+1ssVmy/s/+YCffPABq+trQgxcXF5qAt6km9egeA7reJ6wxeORj0mTqkV3jpRRYyBpwGjeyNEKKzENoV26s2seDGMEV2tCax8C0YDxWrxKbGBaFey1SUpI32ITzK2G2wXv6dsd0QcwFnHVUK7ZGAXYLlc7zs+esdm1fPbJp/zpn/wJZ5eXXK/XbHdbjWWeeIMNY1x7jBBMbu8M+qRk6D1sdhFnYRtazmMLKdLuOnat5ttpg9AF3XCjWFI2Qgu7ZIhNj5BSZLvrWFc7nFMPQkRzX7R9yCV1DQmbr1CvadBwcmJNfTuP8+jZ7baQNNH11XKh1O2k3gaTkla9qhzOWMTqBoHxJDzVpqWPr0PpuKs/s2JqDNZVGOtYLFWB8F2Hcw3r9Q7EEdOasN7S+UQUS1XPlCUgSlGOoUeiR0IHKdBuN3x1+TUxRJbLOSfHanQs5nMWy6Ua3aL5hZCcP6SuEBHunSroG2Pk8mrFxeU1Xe95+vSMJ0/P8T6w3uxYb3fanyEQoiclYdd6NrstIsLV9hpb1VhrmH89Zz6fUdUVjx495N69Ew35sVrO2FrL8WzOrKmJdcPGVlgfQIRzOSOK5tR5r+s4uX+fum44PjVULlf7Kp7MQftW8/xNZTKwxrFcPuD0fseHP/tbWB4f8eVXv+HLr37N6uoCkmc+MyQ/Z9G8z/37RyyPTuh2Mzb3KnzfYpxwdvY1bWxJvRCrhE8JH1FwMiV2QcOlYoo0leHhvTnNvObk3pLTh8cYY/jqyTl1Fen6niQaopMS7BpD3VhChG4rtFshBmhbT7fr1XhKZT6Vme8m66q+MEbDlySv1YJWfrImERwEH+jaiBGvhsVknynx9RIS0QdMyt67FIdEt818hqu0IsgHP/mQn330cz744APu3z9lPp8PrNgfRspuM1XeR4uzeIyV7ZMyYw2Sh9SpLjFzwrxWcDlFIQbdT3yCPp/Sx0C3zUmeE1Si+sTRfMG9Y9UV/syf+TP87b/zt+Oqik3fsula2raj+eOPCRHatqNyG6xsNFdXr6CpLpGq4pIy+KToIj5GBJ/X/jBYxIFUSg4hA6CShr1W9tpBRvZE3odTHB1CwH46jNcumgY/5cTTQ8jAYLAbBXPy+E0D8DM+KUu3hNqXc2ibSFRPs6OnNh5HYFYl5o3R8OSZYzGvsNawaAxHjcVZYTGvOZrXOGc5Ojri+OQY5ypOTu5zcu++lpjfWOI1hC7Qtx39rieZmqo5YbF8CNaSmp5qqcn8/c6Cr2jbjhD1Xtq+pwuCT0LvAyFsNdxyTz+WyYMbr9ON5/L6DhBIeCOdWRyMt3+4p6oxeIsGxSzreEXtMmlgq6Ubt1LWt4l2r98fwi0knyijglIyJLM3zifa9KgzFxAx/9Bor8iNGyjAjOa1KyzkmFMZxDDm49wzihl7pgQx6+s05L6c+jn3KnyRcg2453v3xyiv077T+x1tR5LO+aP5jPcfnFBXlqN5zdGsIkTVNLuuo/eRbesVmAUqa3ADm98MQ1D6SEfUComlddM3Q6vlem6SFH5QAEggGcGDAqgkqq7nfLWm7T1iLO+7mtlsgbgKU9X0IbDabqnrazrvWTYV3WbFOgXmBqzco64caT4nhnsE37PLJIfge6JX9jkJXFXj6kYd2F2Fax0xRlzrsNYQY6Btd7ALGQRSZ4sAcxHsrCamxMxajpoGHyOXmx1XGy3+sunU2aig6BhmNcxjJu1f1qQBA5r00aTJbq60UKIUTLbHMouW8Twxz/kQlXH/TfKjBH5edqAWj38Ige12O1QVevbsGU+ePOHy8pK2bdlutxqSdEPpG+jHL8nmeVl20F3H3/zbWjskZZ7NZsznc0SEuq6p63rImVEYSn3f58SrGvLkvR/uqZynaRqapqGu69dObZzcyN6funeOm5Y8pxCk4bWMs+F2wK0sfsZgcyl4sSUJZSKGqOi5n5aIHa8D0TCxum4IIWq7zub4zKTKPz0qlC9qowk6u6dHFFBoUAZHl09KRY8pi3X2ZU7GWQnrmrhzhqoTJhmMFU3oaEVLbr6Rbkw5z4765iUr5n7MAIrkBNy5OKpef0x0bcdut2W70Wp4m82GXdsScmKxae8/Fw6QymejspjyT3qSBtD2Gs7Qtj1tqyXWfTL4lHOC2JGlMygeSRUWSRAlDTmoEPBBq+KEFPMCnY34oV1l8v9+GxWHTCIngA4+l5rWh5CwcVTdYkxEUVAxhIQPObmfD/T+DbG3ytWm7IHP4XrGOmX7iOa+cq7C2gpjrZYcJveJsUp1rSrquiZFCzkXEFFoga7tCcHjrKGtKoILOFsxm0U15sxk3ksJ+dAEys5Vun75SO8DVdezms1ySfmerre4zhAzyBCHmGUt8Qlaili8R6whpEDvO13vak2w7aylcY7aWSrraMRQiRZJ9V0u+YnQJ62NA2gIWNcpU6nkTSB3+OT1qFrLmzE4RTBWw/Lm8yV9v6WpZ2g+Gg1lDL4j9IYUvYZkOEeqK+qmwdgMlDuDWKOGSgbfy7xISUMYi2FgjFA7S+00bGQxrzHWMJ85mtoiEomicyklCEkI0ehY94bghWgSvp9sB5JuhHvcbCwZ/hVDpowZDQ9C2T9S9or8+sZcJ5HXGq3+QQw5mTc0MBQ9mM/nHB0dsVgsqKr6zRY+kAHnGO98AA2nh6XJMRMnQjYexBTPHmgIowx9JoBYmxk8ZZ8c846EbJjGwOD1M0mGkLESTl7XNYvFguOTE6q6xnY7TLfD7VoFVKuKGBPOaTGJBKOiuedtHja7oZhBTBM2002awSTsorRLSVYLKDNUboya21Sssv2+AZkadSMtQ39w3CUKmKOPhJnMAfLYngA/exerFepE4ljFq4R5Wclz22KtgvCVU5ZP7RxNHsN1VVNVTQbYNUkqEVzVYFxNih66iJrnBrCIaDioteCSIVpRndFpX1eV5pEMKQ15IoujCqZ6zHgnqubcvL8bB935eiJy90ffRooxpCzBG5+l6et95+/w7TSB+Pd0u5e9yG+6/+fPI3mdHdwLMgGVhvVg/HsfOC4vzbBWaG6FnEYgY00Uh8ZE7yrA0/QKbz7KvRdzUkGiKegznbRvFmT4Nmv3tJ9fx/mG8+oZKOuDtZorbVZZZrVj3lT4EGkqR5VTOtiB5TMmgx7WGVE9WExEAjd6RZ/LOPmm+/0xitY/FHyMdCHgej/od7o2Jeq6xkZ1Iswa1c2ctRADMVcWFsn6glUbEdEIEetKhItgSmhYLohUmPDOaR5dZ9UBFQIaTp33N0kJycUtrHVaCAahcVr63caoyfWtR0T7UAHcm7rPCPCUv/c/HrXKyTcYs8MzzNUpuDzN7SOM5UZSSpPXN8/8vPwogZ/b5LbQrM1mw9nZGW3b8vHHH/M3/sbf4OnTp0Ni52lCxyGb/muaFEWBvIstNFUwp4mWp++V6ymJnutcyvyDDz7g9PQU7/2QmLJ8p3xvmhT60aNHnJ6e8v7773N8fMx8Ph8qfL1+EUr9bXG26DljJkREE2rlQyWHhUn2xOvAVMYPoJW8hkzso9qV1JoD0Zwi8+MltlL2xm6zxvc9tq6R46CG5wAkgTEWW1fUKXL/0UM++uUvuL6+Yr3d8OTpE0ynpcGT73Wq5IRZ2h/lPrOXJBXDJ+Mh5Va1M5HJwr+fu6acJWWHjxDKZI9k0KrH58Sq1mn7WGc4qmd6RgvW6bPK5WvrRRJICBgxOGOHPAJJhIDgRGiMIsyIyRVJE/2u5eLsnMvVNRfn56xWaw079P0AxI0U44TN4XSqq+RNL89HYytlj9kG7BxE8EkTucZoaHtP22amlShdtDR3UUTFWEyu1kTSUBZiZNv1mI0q0eIqklPkvg3gkyFofSMdq4liuWQWWo7nFSnO2lxRTw0oRCtX7boWJ0bZMnlzScaQ0HK51+stu13LbDbH2Ir+jeWUlRuvdVRaa6mbhugcy6NjHjx8yHy+oJnVxKiswbbdkPB4n7BOmTopGgUgG0dh8+22W3zfIcbR+5Tp/1u6PmJE8Gn0NNRNRT1rNLxksWCxXOi6JcLR0XFOIqtrl/eei8srrq6u8CGwWm/YbLZaqSkI+Dwvh9DtnAy604p019eXWq1KFMiojKFyjn5zzG6+YDZrqCtNHphQunFIGkZzdbEkpch8uVSGZC4RL9YN68G0Xcf8Jm+mF6uq5uT4AZWtaLc7fvLoI1yqSAS66472agedwaWK+WKJMQFnNSF59CsWC0Giw0ToN4HOJPou4kOv4aMkrOgaSgC/9ZgotNWOTeMwVkh9YFaromprcI2CXV3Xses7YkjstrDbJkKA7bpnt+2JIdHtEv0uV+yLAUJXOk3bL4EPCSkTIcngvQ4RYtSw5uDHpMLDI5+nBEFoTyhlu6oqnBgWywUf/kz3zsfvv8ff9mf/LB/94iPund5juVy+OdBnImonpv0pqTc7QIgMKpq+HipLiiaet1bZH7XLW61YKqPXXlmDter1E1cpWCRC1TRUM3UcbXcdm60yJfGR5FXHaJYnNEcn1LOGYCvWXcAlz7rt2bQdu7anDYloLclasBbJyaVtsDhrM4sgTcAcM4Ac5Zb3E8wy6rEpKd2+tBUjpDKEUKc0kBdJDGwgBag1JDqmRCDcVKVfu+wnxi0vR8ZPwkxChku1FXIuHjPoNEXFlxAQeiRFmipy1GgC5uOl4fjYUlmhmTlm8xprhHljWcwczhhmTU1dNTkf5AJr58qwtHOinZEk0bmaXVXRB1j5Lav1DtN50tMLuuOnYA2b3rMNPb4PXDy95PpyrZXf+ogVR2USTdUwbzzO6Ny2ps8Awn6LD/09IHE34QImr+/qK3l+qrwuueMnR0Z3nonDdJ2YaTd0+gE8mOr7k7WkAC6DESbF8EsM/2cGzpjLZaooavuVKqcwhQxVARKZXt8dN5zG9pd8jaOvO4fnFqM0z1G9LUNKMRfsUga9MC1lIINzV69LQaY9bPQNy7ddu2/m+blpi33r62EcAk60cqxWkBWsJAwBS6RxwtGsxodAbR2zWu2d+aymmWlURojFWRi5Wu+QbUuIidj1+MGZOukv/fMtkbS3+/kYWO12dL2nrmueXl3Rh0BVOWbzRve/qqKuK3wI3Fse8fD0lFlds5w3SIpE35NKLlHAOkczX2iuya5D2JEyiF254vCpsVaLUDin1cRCDFgEgrLNO8kh0uTcXuSQRitIMoQopJmuzz5E1TkrQ4iJbd+x63Vv9zEN9h6Te7+9dfafi5TxpaHfhfEjg40yfD+NLL+yjX6TvBXAz01wpUzY1WrFJ598wvX1Nb/61a/4vd/7Pb7++uu98K5y/ItAmuk5X5b5cxv7Z/redJGZAk/l74JCFilsnfl8zsOHD3HO0XUdZ2dnXF9fPwcCFfbKYrHggw8+GB4PHjxguVwOpd9fuwgK+iSrFbtEJ1L0mkgVcmbCYjhJVoasRawjkUtL+xw7bgUbwrCYycBE0FVUbKJazlneu0c9U8/W+uo6g14z5H7Aip1EV4JkL5k4y/sf/IQQelaray6uLvnks0+xmw0+JLaxzdXGcxmvaZcmMpssjsDPsN/nmH3IjJjsEYlhnHgTXWiaVDXFcbP0yoqnbhzVzOGwuMqxOG6oGwcSwURVIl63pIQJAWeS5vhB8BnICiJUYmiMxRqrXuTsOWo3G5589RVPz8/5+snXXF5ecL1ZE9IkdC6mEhA+6RUU/MvAibUWY2usdRg3R+wRiNAnYdsHQvDs2p7dTuetdWBcXowzuyRlI91WScMH+05plxE2O6XWOmeJrsY7Te6789Alg0+WmBO/UdI45E3VWi1NLAJY7ePRE6vztvc9292O2jnqusJWFYXJEIHQB3bba2KILBYt2IqFfxM7tUweULzNiYR1FTOxFJq6IHRdx8XFkpQS2+2G1crR+y0MHugGYqQyUFsyoyKy22zpbIUAXR+BwHrbEfyVAmpdz7ZrSQnqrNA457j/4JSHD+9TVRUnxyf8/6n7k15JsizPE/vdSQZVfZOZuXt4TBlZXdVVbJLNAio/QAPcEuCKBMgNFwT6K7B33PYH4KoXRJEbgtyRewIEN6xNFVBAoSorp4iMyAifzOxNOojInbg494qIPjPzcPd4Fpl5Hc9Nn6o+VZE7nvM///M/1zcXKKW4vLjg009eEULg9ZvXvH37hmmaeP3mLW/xhJhQXoGR/UAqYohRK+AAeK+JYWL/8IAqYKVVCmcdp8srdv2WzaantW4+KH2OJBJ+PGGMZjgd2F1ecnl5Qb/pRGywpq+s9gNxAov6wkfxVDJt0/Hi5nPi7iUqae6/ectFc83d7Tf89jd/xXF/z+HNI/evX+May+6y4eWrnrYzxLBnt4OuaTAKxqNHNL4jxyGWKhQZq60ww4Ji2nvymIrRmmajaNu0oGBz6dheNigDU5wYw0DKmdMpcjomYsycDp7jQejRD7cj+7uRGDN+DIQxFIemMCMqqJvlbIg1BSGrAoZLOqz3soYLDjCHA4STJXoqSQmbRRlD33d0jePFyxf8V//V/5if/uwnvHz1Cf/yf/Yv+fFPf0LTNlxcXszn4ccCf9bOY149uXYP6+FQISw5N6r9oGlaLUwsnemsaGw5Y3BlDq+riLimoe1ajDVcXd/w8pNXGGN5uH/k9vYeHyQNbzh5FIrN1RX99ZWwiW3L/RjQIXMcRo7DKOBeBX6sBWdRTgBBkwwuaalIEzO6FgMoGjYyyvOBN4vvSxcIq5SV0ZqVOiMgqLQCilaPa2hFaY11wlaMKTIlBOT/CO2p2z1f5AxiLqlecv9KgkclTc9oJfaHAnIi56KCogIqj6gc6Zzi6sLRWcXF1nF92WCtpnGWpm3QRrFtLLsK/LiG3jVobWjcBmu2GONQZkOyPSnB6DoOrmOMijc+8ebhCFpz+N0bbpMCrTmGiaHII4z7E9NRUmx9jDhlwSj6psf3MFnP8TBy0kUwn0U/4mmo4Tzp5/eBPeu//Bj+awVhKsCq5rVWv7C+XjCVxQB4X9XGD7F+1lH7+n25wrpiVOTZdSxr9z2R/vIlswmqyzL6YGGBd01VmZ3V/soLIFHXziwkPUvJLIHNlHOpzgVZ5VJiWgB/XbEklcsazWUdr1lR6+v8uKzmP6Q99cnW7fsQApZZq+ZiIQL6CJjgDDiV0EV4f9Norrdt0fhRhFQqeV5u2W17shKNyykkphBQb+5JWXRnfAIVF42ts4yJP7xL/ghtAVlrz00hcheO85mw3Ww4nAZuri+5vrlks+mRgOMlANuu5+riCmcdjTGoLJV3Rc9RfALnWvRONJWm4YRC9K6cNTRWUs6ds0BDztBNDb6RatgWjUqZGCJaj6Aoa0KYRzkLmNc6SyLTWsOubwkp83Aa6EdLCJG7Y4YUxQ/KuZxPNbtAn22N37Zbrmempp6ZRbBfF7JFPReLbxbTku71Xaby7wV+lFL/Z+B/AXydc/6flOdeAP934BfAr4D/dc759vd/3Yfb90nvqiBOFTne7/c8PDxwf3/P/f39rH+TCpPk+xh635b29RQ5fh8Y9fQ9H3r8oecqRb3rOqZpmlO76mPvPbAwfqy1dF3HtkSt5wo4TxBB4BdKqa95jnFUixGnSmUjENynzm9VjyNVDYNyv7rmstao4Crlqx6wBSwSg0pAI9tYcnLEyRN8ICklYFOsFbBmS1EWjhaEtmlbtjuJ7Hddh7OWydiV1s464nPecjUQMvOPfEetTrIC+mZDMa/+fnUC53z2uUpVPaNl0eZyy7aU180kso7rg/XZxrAaCipndC4lTqnFcQrCjDyXykXnlIkhSPrkMMyMuhBCSR16txfPzZyV0Vjnv1LFeBYDOqOJWX5SFkejpjCJw8DydxlqdYBU5le9hpgyKgrH2cdMKFUeY0YczXVPVENL1esr9E2lZpBuXq/lFmuKadQrgJNlI085i0ZCEErrFBIuzkbl863FdZ+vDNR5bynr07qSFlRYgk3bElPEjcIMjMZAjuQo61NrJeK+gLEOYy22VNNLxSv3ITJNwvY4TeI85pzxKRKSgG5d3zOOUwEP06xfpgBjNCEEtqeeYegwRtG2FufkGmxWs+GZq3B3WYiS9pnxlIpHKKKCgCLayOBanDKYUiXRT5OMf9EnCcbjp5FpdPipJQRPiueCwk93Bfn6+blnHEP5dKU0jW1J2tC1W7b9BdPmxLDfo5IihoQfJo42Y0aNMS3Thejm5CSlzpVV2PITrRLypVoYJqpUwyJBComkFGEK+NETrSrrSOaP1QZXHH9MBGOLMD7kpEQcPAkgHHxibD2DK3tbgFgGT6l1tDrP/ZuSjGGGWaumgiALSPLUxawni0AnNYhiraNtOy4uLri+vuH6+pqLy0suLi4w1syBkqe2wHPZN/XKFuNtZZifHwvv/D7PNlWrOimMAWdKFSeraZ2IUsdMKSGuMNYWirul7Tq2W9HeCiFyGiasD6hsSUlYjcY1aOtQ1hGzYvQRHRPjFBgnEXcOMRWQtZzZlbFbQRuK/lAJfFRb4OmtrYNs6hz9mh/OJ+Y8NZ5YxfOfFdh6ZXOoVPZj+ZNnXYvn6ZxLileuh0E9+1d2ytn1rfpqSfvOpUcjSkWMtjircU7hnKwzawXcMtbOqXnWyGOtLUpb0drDQtGnyxgSJfClDFFrotJMOTME0Qc8DCPmcAKlOAXPWNi5fpiIU5iZKnIPJS3QGGKMYmfCPN7rsatgydp+mmf97w1WvQsdPZuvUey2tZM1vzQDQosvUe9hsU/y2Zx+H+hzZq+uv6OIfM8L4awfnvTJfMTM/OWlOloFbtZ/n598wvu6eO2TADUNq05Dik2zNk2rqa0q+LR+//JBlDGqSFABNs8WKjz7ufg87WlQ/vu8/8ymr6+X34qLIlqWivlHlYp8SQlo0Fhhi2ijseXfTevo+wZQKBPAizSBtYvcgyoDUfcgviXV6zlTvJ57Laoyz2sKv08RjWL0gWGacNayK5FwqcJc9jyg71raRtJSjSpr5cwhEztXJCuyBJNLgFYXCY3qM8j0zZBsKciisNZhSyVcY0pWTc6i2wkzA1X+VpGMAgMmZdpgmKKwYp2Rim5kha61juoin/eJsx101U3nY6dWD87OFKXe/euVn1p+ff/esGrfhfHzr4H/E/B/XT333wH/75zzf6+U+u/K7/+H7/BZP6g9BTEqqHN/f8+vf/1r3rx5wxdffMF+v59BnzXL5jm+++mhXp9fqgpx9r51afX3sW9qHvU6DaweRG3bzkBO13V47xmGga+//lpSIkLgcDgwTRMvXrzgs88+48c//jE3NzezTtD6c0t7DfxveY5xVLK7KaOR3Mbz8ckhlh2wsn8QLYIqeBh12QAiOQaSnyBbstZgRYFdnGdZL8Y6+u0WZx2Hu3vG04GcEsPhiul0EsTJSnQSFClLCd8YBXF3BUjZ7bbc3NzQNA1T8Dzu98QkOfY1l10ERVdj/x7gZllZ9dBblvjKvVm9F7mnvGwi1SBUKovTNHiKP8Y2yvu11mgnm9lzj6ECWiWVj2zOmFS0B8wCoqRSNvg0Ttzvj4w+8LtvvuKrN6/55vYtD/tHQlhV9DmzWErXzAaxbHqVvTQLhFYHMNeyqlLdB61ouw3OylzRJeVNwENLVrJ1mVI2PKdEsJbgRE+mHsAYI+9HmC8xQgjCViBrjDJltIqT+gSLF8BBzVVSJEJWypeXFKPJT3P5YqPEUI4pz1UMnNZk56Btn30czzq7Pn6PQaaNOIfWWi7iJZMfGYeBtrNkPMN4YjwdOT5kUvByP0Xfqe16rq5uCKFU1RsHUkz4MODDRAyRcYqMYxCBvAw+JqnepBTee5yznE4Dp9MwlyHuuxZrDddXF3SdwXtP4wyts3gfePs4YveTaDxFkX9ijmqkAsJkqSqVmfV7YkrcHw9MMXIME+3bnkDCOst229N2woohBZIf8acjD7dvUYBrO65uXtJuJDUII4yGGXNaOv0Zx7A4hUqhjUVpzXZ3zec/+SdcXb3k8uoFzjn2+zsmf+I43BOTJ4XE3Zs9xmR0jqgs1ShUtvRdj9UZUiBMHu8To5Z0kxQhRxiOnklLyuLjYS+gvVIkLQ7/bt9xeerRRhHyRMhjmf9K0l6zotEGt+2lelTSNNoSQ2I4RaaTiHRrZagl1ue7zRnvEyEI0DBNmRBk/QUVWSmrns/t4pxU0B6lcG1Dv+25uNzx2eef8fNf/JzLq0suLnc0rStMjNU+fn4u/muexb5Zk9lnH2sBEWbnSfqtppYao7GNBGo2nWW3aWmsZtvAdScR5H5zwfbyBmMdIWumAojHomOmlKLfXbDZ7XBWwIG2aYvQoyUm0Sc4ngb2p4HsBx78N/zu7R0A0zTip5EQA2/evuXN7a3YNaEIbBfGY2MX9qCeWQw19Ym5DHjVzstINNwZSRM7A1GyVAM6W1jVuVwO0Xms1Oq9KicMZ2GGZ91Pz5278vsa6KovFrtmjQPJr+L0yTVHcvKQE5oJYwKGSN9aLnaOvjFsNi1d35V0b2GPaq3BGFKprBkwTMmgsyL7TB6CVNxrJ/JJgPWAQnUdKiuic0xak2LE395xezqSlejoxXJtNitsudmaRq3yeXl5p8WhSTlhEEbe3A1r06gMYY3DfbvzsT6vztq/5hl9jfNUqif2W67ne51m717PApasQKKnjJ/V/BT2tyABVhJISnVJeb0CAqiimaWffNuqHz94L7Vjn5iX8zJ6+sdlvc5LafV6/b2mkeScBNzMqaT959keFlaULgHKxd6l3O+qPbNt84e3D4E+a7/r93xC+Xe958jEsDOwIyw/YzTWaNrGseltYX4IoCqBXkvWAuL3u55u04kW5MOB42kkFjZeimm2N2d/QTai895X302f9ge0f80zrcWF5SZ9lsscSsAYPLePj5zGEaUVN1eXhBDZdC03uy2Ns3RNS9c4AXRYykckFUWHNCUBrIuPrdsWnSULYEm7Zd6n5XqEgaxjpGk9bTthbBSpBiVsIR8CIfriN0j6VgZcWX9aZbbOoGkISdIkG2cJMfE4SMGElGEKCb9Kkz33E6XV4V3vjAIm6pWo8wJKrbeBMwLFdxzc3wv85Jz/v0qpXzx5+n8J/Dfl8f8F+P/wkRfyGmipLIPXr1/zF3/xF3z55Zf87d/+Lff39xyPxzPg40NpYvD7F/wa4FkDOWtQJcb4zvsrc6eWjq2P6/XPuYdFh6dO2Hq49H3P5eUl1lratsU5x/F4ZLfbzZpG9/f3nE4nPv30U372s5/xJ3/yJ2y3WzabzftAH4A98PbJc99/HCvogypRN43KC/BFKsCPQjR6TFltRqEwYhVEob/mXIRLp4kUI8o1olugFkHLnDO2cWwvLontxOnhkdPjA9EHTpeXTIcDxIjd9JJuoxQpJEIYZ+CncYbYOq4uL/j0k0/YbzYcjkfevHkNeRFYlEFQRX4xC8815dkgUvOBm6AINCstjknd2uT/6wUoAMPZr6tf5L/I8eiZQizGk2wBWmsapzBu/oPnGUNK+cmCkpucxKAEjDVko4WWWgDWh/0jv/nqG/anE7/63d/xmy+/4M3dLYdxxAe/svJWloVepcLNhVyWzWmpHCG5sDHVwi8arR0KQ9s4rN2KTWSypL0hDKCUxRmfQYCUmKaW4AdyAWZSjGhjQDckrDwfFH4S8ICssKowq1SstTckvWkFn9e8+Ar+pJgIMeC93O/o3WzMGW3KIZ/xWaQ8nTHEtoWuf/ZxnNvKIXmi+wiAcZZe9+SUpepRYwnes73r0QaG4cjD3S1xGplGMVarodpvdjTWkWPicDzw+PCA94HTIGXY/SRpecdBKkZpH9Gj7EH744k3b28xRnNXGJlt0/D5jz6l/9GnEul5eU3bvCTEyG7TcrntGMaJ9ss7TL4nxMTkE77kT8eYpApNzkylFGcqDKCUREdkDBFzPNKdWrJV7McT277jp+4zdttOxHHjRJwUo4K333zF8Xhgu9vRtI1UJdNGIiymaoidJQI86xgqsSQwtoEMl1evaJuOFDz392949epTjocH3rz5il//7Z+zP9wzjXve3L8mhpGuNew2DdZodHZs+5bUKozy5DjhfeKoAnnyBBIpZo6PonEW0siUBlkHWoAfbRQX1xsu7zYYq0nKk5UHlWlbR9M6jDZs+h19twNg07RcbkdiSJwOI6ejpP4ZbUWPJAszSGjamXGKAv7EzBHPkEW5RUq5F4regiCXx8JBrHuJUoq2a9lebLl5ec3PfvEz/tk//6d0fcf1zRVt1y6dnM86XJ56RvumlmFOs6XO7M+JhVZM9sJizBmsaeg2PcYaLjrD1c7ROsV1b/jRhaF1mosXn/LiRz/Htj1jtpySI2Z4eHjk9vaWmBKbS2E4NY3j4mJHevlCHM/uCttdEWLmz//qb/jtf/5LTsPA4fANh+NBWG7RSwAmJQ7jieMoVPm+k/LvSimM1dhsyClL4YGSH5OVKeCPqlXLSTpJqleMGKVonaNxTtZPkBSwhEKltHirNT14NerM3Vgc6pTK/pYx+czffNa1uKRWqxl8qoELubgCApWzbdn7VXH2QVeNlBwgjpAljaAxE0Yntn3L9VXLppMU/67v0UajdIPSDSgJmkVtKkZYHEjwU8InjzaJaCeiHRDheo3qe5QyxMYxasXkE/vXbzgcj2QyprHoRtLHrvoNu64TEKJu+ElqXloFqYA+rRWnNelU6z6gK7OFOoSivTSVjH9F0UR8x8RerWlWMQo+kq9xhtOs7LM8835W7nwBb9cASTlPz8Pp736B0sLiQDEzphSgc0aLASGubumcGmxcsdbk09KydSzuSV7Ks88vPHH+kDE4ty9XIEd9XO6tfm+dW6IdUmwqtfAVRUKhBMBIq8pfKxvj3Nd4ftvmmdr3Zf285xNW/5cz22pFawX4aayAPtYauq5ht+tQgDOOjWvIKGzTYlyLMhrbNpi2YfKBw2kQCQwfCvgjeygz4EhBLSgAxkcDfIDnXYuVfZfK9pmWrYPTOPH13R1Ga2JOXO62DNPIp9fXfHZ9za7vaZuGrm0keJApqcCZFOQMUTGircYaAcmdNjSuZWEOl35SuXRhRikjvl6KtCGVYHCQQkKlorb1IyEUEMgH8GH28OoWYRvLxllihr5puPQiXN3u99wfRMj6MUthlFo5L56ty/PVus6bkLOkMKC0njVGcw1+rnzks8yZ79B+qMbPZznnLwByzl8opT790BuVUv8t8N8C/PznPz97baFafrjNm3X5N4QwV7Qax5HD4cDj4yOn02lmAv2hTJ+nLJ/6eK3To8sAPH3P+nU9D1ipjlHeX6/xKXuotjVY1HUdXdeRc6brOqm6k/Nc9attW7quY7PZ0HXdO9pBv6ePv9M4no/hz0oEQRWDSC3hLmSNqUo7ezoJ1dqAX64vV8aUTXOe8joIqFRRb6/9FyMxeKIPIvJsDCo0RXdASvTJ5hlm1gpZKlQ452icFQdJKaEwK3W22Jb/qQoRnxsDuW4eK6v+6Xp7x06owMi7TRZymjUu1qLSZ6G197cftBZ/8ukncyrX+huq/kIqFbpiikzBcxpOHE4njsPAMA2M0yTAUN1sSj/JXSrOOnS+fHVmtCxA0EK/npF7rbEOnJM0kaSTVH2CwsIpiL1KAgLphE0WKELP89oSb6Qap/JvnZ/V8FLno7NMZ1ZPnW20tX9SKZ+YkkTLlBJhxJRVqYokcyxrTTZr9sIPG8d39tOszi+8zrhVdHLel7Qha7DJ0TQiFNp2HW3XkUlSUcHYElmRyjMKYSxq25BMwk4TWlu0zqB08dkWnZKcCxgXi8ZBjsToMVpzPA703UlE9KZJolomYbSjbRtsjPRdx2YjZbdF0NSiVSKnWH6YRRDSrM0kh3vKiZgzKgrjIOaM8ophmjiNA8aows5cGQRZcsX9NKJKlcUYgrCIKmuh7kn1uz7c/vBzscxXYx1dvyUn6b/j5Q3WWsbxRNtuJM3SD0Sf8T5itSZGYbrlUsmJAkRao8lpoTFrjRiWZQ77EBm9FwamViJkqDWu9TSdx1hNnoEf0UQzuoD6SYwTkIinswKWBacJrpZqXwwWlUXvJSWIUZEEJcEYVdJvM7XQyft7+t39sLLTdBm/pm2wTnLOanlVVUEXVejS324ffe+1aKowR3UOzr5iWZe5ACZVPNwYS9O0WGdpW03TGBqr6BpN11p6p9n2HbuLHa7b4JJFJ0dIopVg9gcIAW0Muo6vUlJ4QWmazZZme4WPGde2hAKWHoeRh8e9OBcpoKLs5WOYmIIwGdtsxaFFlaqTWlgAxX+VNbGYqvXYVPlJWlBlFJT+f89hOp8L1UVVtROrncFqrddZ8Axj+HQc0W6+PDmP5JrmVPXZgV4c6bOn6z3N95bmH0VCq4RRoqclqV0aYw3GGrQWdqrSDpQWIMiU+LbKCyCgitZS2WtTLK8pYQxqm4Q5aAzKGGJKjNMEZGwhYVOEuhd7pypHCQu5MmaNLkyuvLo/tWJ31W0UIC3vnU2CdXdUIG01O76Dm/L912KpIrnYZmfozzw29Rrn5+tN5iU1Ra3ftA4gF9BEwJNlzaPO2f46JXT1dFeXodTCMqfYIMAqt37dO2oRVn7Sp9URFQSnPln7dm3VvGt/rl9Z/14UL+e/qJe0XnPqad98e/tha/EZ2lPf7Id9xtlv5f+F+ahKRT6tS4qunvUgrZVUJecSqZEetI3DNsJC1c6hrOjSKAopoBADoI7Lam6VCTCn0H5k8Oc97XuvRWtN8WMoc1idLYWUM5MPaK0YvWecJsbR4Ys+r7Be1Mx2ySLKWs6YZWBk6dVsG0mDleus/ZnLXi32u9ZGgsJQKn+VDAJrMcGidCQnQ05iz8SYisZeLsHyPAcltFIYIGRLQlhGjTG4wnI1Wli5Op+DPnKBq37jyWNV1tnso67v+RzkeToPft+s+Ojizjnn/wH4HwD+7M/+LK+eP/u3trpAK7CTUmIYBvb7PSEEhmGQKkLTxF/+5V/y29/+lm+++YaHh4cz9s3vax9KBatOXX1P/REdAemuNZvofffw9G8ru2f9N8aYuex6Zf7U91dWE0g1FaUUwzBwOBzY7/fknOc0sJubG25uRNOgaZoPahn8IW09hv/qX/2rd2629mXSxZGKiZyl7J52kiohTYOWMtPGtoK6oohesFCF0NkwNYIoWiBWK1TTEJXCOltKj2ceH+/57d/9GuMaustL+utrlNZMw5FpOBBj4P72Dfd3b5jGkdvX35D8AMnTWMVu2xIKWyBWp7WWWi+/L3bC6mBd+mWOjJyxyvguBs1iaFTDWKNJIXF4PEm01Cm60eDc84zlehz/63/2T4vnrFCqgIVKbFSAKUYeDnvGaeKbt2/4zRdfcLff88U3X/NwOHAcB3xaBDzP+maxJsvvKxOjPE4p4v2ETpGuaTEqYa3m+uUF2+4TcR7jSAgjKSdO44njdEIYYC3OSuWzcRgZxgGUpttuMGYzf34F0ELMoguVV1GUXEtBF9p7sWS1UqKrYEyJ4plifMsmHKOAiMMIIXga53DGoMjiDJe9IiuFtnIAaeeESfHMY7isRbVYabNhfW6UKSDXiLS1NF1HjJHdxSU+TPhppG1ajNJM40AYTkzHPSmGkubjSUX/Q2mDNiIebV1LRtMpvWjAlJ9MJkXRjwlasd8fUGSaxmG1JsVA4xw3NxdcX12glOyLr16+xPuAyo7O9XgfuLt75PHxSIiR0zgxBskpUEnovpKClIm5pKCU9K/gPXeHPSEnpuh5dXhk27c0bUPfd3P6yuHxnv3+ET+NXN28wDUO6xq6rUY3+jt5KD90HP/sz/5Vrm7X2rGU6JOi2Wy5evkZm4trbNuCyhwPD9zdfs2Xf9dwOu4hB8LoCWNiGiPjaSLGTAwiIp+zxlrHZmNEG8kHxnESHTzdogwlTS8x1b6bYDgmlBZB7ZBEpPZoM86Jsfa4yWx6j1KKUDSthH3nZz06ayLWiNBzpbCThSFjNWil2fQtTaMJIaH0iNJSiWzyIn0gXVINn4VhmVPgdNxjdOTtmw2/+fWv2G47XOPY7i5oCmN2229pXEPTNGwvL2ia5lnHsHWmrLwltWLZB2eXGoCmaWnbLdY4Xr56wc/+5KdstxtsGnFpj8mByxZebaC1iutPPuPTz39C028Zs+GYLCGJg35/94YpJ7w/cHcnYpZ927HtNmht6TrH5eUlPmZa15BDJEye4TSwf9wTY0SR0UpAAGUUm7bHWs3Lqyturi6ECDKcyNMg0c/JFwHuxHHwDJMwVVNW5FRY1kqhdKkgp/Qs5iyw64ptUYzy6thoDc5YbAlA1JQxim+coTAyebY1uR5H5TbLUlys1fNaFTPYI2NQ9Tzm6G1OpeJMIscJ0kjOEWMjXSOV2bpW07aGtrW0XUO32Yhd5La45gKlLZ1z9I2IemtdgfiMzWByljS6rsW5FlDobUPXyVmnp8hFKzqRt7d33D/ckcnY1mFbh1bQKk1TnJkYPTEFQkoEFckqorWi7xTB6wLu6BkskdhMOcvL3A4xcxgyk5fUCKkoWEGPGQZkgRNWANkzjmHbbfJ6lr3zDRXUq8+f/fLkhRndqi88/ZzqVBbZhhJc7GqFyBRlAyaToyJJeUWsKxVHa3Cq9IsETcrVz4Ex0bFLKS3PF7tL0uSXm8rl8ZrFtKhXlxvNNaG99FCxd9egmNztmn1QX89FxuhpWsnz26hK/R5o97t93ux3rRkRT4P263bODHr3M+cZrDNd03C1aWkay/XVFTc3L2hby/VFz81FjwKGdmBspMqUWjQLiEgRkOQj0zBxOkilqxQFmDBZYU0NqkkKe87nk/XvAfz5vW09hl3XLEQ1VUGfxc6RdF8RDt+fBr5884bHw4GcMjfbHX70XF5e0G22KO3QphQREFeTGCIpSJAulcrSWhuME/aPTO16WGQp1Y58n8oUO7EAbzFiR7H9U06ktiVGL7Ii48Q4SaW1yXt8EL8xpDRrtLZK5E+CgtB3WK3xMWHNQGOkOtvRR8ZQz8tzaBbW1kIBvUrQbA7ozGB73QfO5/R3bT8U+PlKKfV5Qf0+B77+gZ9z7jCvVlmtYuW95+7uji+++ILT6cThcODu7o5xHPnP//k/8+tf/5q3b99yOBxmsGTdnuZx1n8rE+fpwo/rahRqqb5VwZv6/PuAn5rGtSCPegaM2rZ9B0iq4E0FbCqgJNQyPzODUkqcTqe5Wlnbttzc3LDZbPjkk0949eoVr169+iCY9S3tB4/j3AeqPDZFBDCIAHBKSQLzRfhK4MuSoWkcznUkHYk+4MdJgKJUDCijBYUti9cojW1akrEiNqohk7i/v+XtwwNKa3Y3L7l4+QptNOPxwHDYE8LE22++4vU3XxC8Z3/cE6YjRE/bKK4uOnyIDJNnnLxkoWWEkzhPSzUfpnJonlucc8WG+T31r95nzqxfX3x2ia7JfaaQebg7ctifcI2m31pc861j+gPHUJymrA1K2VnEs6rpTiFw9/DI4XTkd19/zV//5te8vb/n7cMDd/tHEfJlqdm17pUMRZdInfmyINT4XCiWyQ+oYEh9j9GRxho+/fSKP/nxj3HW8PD4wMPjHd5PvLnLjP5EBrZdy257Sc5wzwNhGlEKLnYbdhebgsxLk5TQW96eHkgxEUOU6hQpQ8kPRlEU88UIq2tRa41tGnQBB7yfCCEQFcTgUSCic0Z0gqytUVYtUQkrecnKOZLWvLs7Pcc41g5fGdZPjVjk9WpGGetoC7vCWINrG2IIXFxcsu16pnHk8e4tb7/+kmkQPZ+YiuGBEpFRA9Y1IhhtLKZpaXopwz16zzRNEmkOov2TC+g2nE5YqxmHgceHe5rG8aNPXzF9+pKmcdzcXPPJi5eklNk2W17s9ozDxO/Ml3wdElPwEIIAPDmhc0KJpVyAi0xCESNElbAk8v6Rw3hi8COfvrjiom/ZpB51fUXrLKMPPN49cBxGxuHEzYuXuMbRdj227bBNM0c73ydg/oePYXWEWMZOazESc6bdXtL0G3JOXN284PrqGj8e+fK3v0F7w8P9HYfDA3d3r/HTyPHoeXzYE0LEmgZnO7TWOKdxO03OitNJqkPGGDHZYLMj5cwwTYRxIKdMmOD4KOtjGiNT0XBSeSoRNmjbka7dS+U7jQhBl51BwH+Fc6GUVIVVhggag9UKlKFpOpRp8SGBPqL0KPTrHPBz2dbqJOU5yp5i4LB/JExHnNX89V/9BSlOMsc3PbaAPj/69Edc7C7Y7na4tvl9wM8PG0f19NelAhdZyw+aptnx4uZT2rbnT//Jn/Bnf/YvefHyhvHxDce3vyFOJzYmcOU8zsDLz3/Mj3/+J7SbC8asOWWDj4ngT3z1hRa9rXHPW3+H0YoX1y/YtFYERLuWlzfXhAh905J8JIwTp8OR+/tHQgxYU4TcteZiu2Hbb2gbx6cvXvL5p6/QCqbTHj9Iatg0jkx+FPDn9oHRD2KEZ0OiMnu0pHdrKXku+m7zzCDNp8daH1Gi562zuJoaX45iMbJjWfd55Yw/8xiejeNyhi3kIzUb4EqB0nL9ejXapEDKUrY9p5EcBiBiFfQttE6z6Qx9b+k6S9t3dNudzNn+hn73CcY09F3HtuukEqaJaCPAq548xnsBwGYoVLHZOJRritN0wc8+/5zgPW/fvuXu/pacM653mNZCSvjjkXA6EmPkeDoyjid8jEQVyFrSVqaNJiddMJACVGiwVmGKeE0uKUKTB72PHE9ZtLuSAEDrlue9bs0rOev0ZxnHNWiyjOXKQjkzVio4Uh/DO5OrUl5qKx5YBU40qjDuDE3r6Le9sBy9J4dJUsSDVDUkQ9NINVBJ91o00GIU/cFczrNUhC5jjMQUZ9Cn6l/mmFCljwUUWt9vsYNmsIAZBKrOI/X1ii6ULqjP18c6F+ZrWXdq/bdlbX9LezZ/8Ye0Nfjz+wr+/D7QBxZBZ6MUm67h+nJH3za8fHHDq08+oW0dLy56bi4k1WvcHxjbw7weQhSg4BSyBEvGwHgaOe6P+JBIIWO0RZFwBsgiHUAIhHoWqmX8/ojgz/cfxxWeuJ4j1Y7KmRKsg/vjEb5KtMaQQuTFdieFQbTh5uUnaNvM7GH5a0UOmWQDPkS89wJMG4tr2iLDwaKPlIXdSs4YNFYbck4YbXDWEmOkaRoa15QCJpGcAzlljsOJ0zAQU+Q0DAzjKgiSJI1LClFLURqrJY12iglnHa0b8TGiDqfCtBa90Rn4Kv0iNk6xCEslL2vszHqqoa+a7iVB1u+X5gU/HPj5fwH/O+C/L//+P3/Ih7xDT1pN5Bgj4zjO6VwPDw8cDgcOhwO3t7dM08Tj4yPDMDBN4pC9jz30bYvj+9AAP5TStQaBvm0zWYNB63/Xn7uk/KSZvVQrK1RAqt6Dc46u62YNoKeVvJ7e4wfaDxrHd0CNYhChlsWcV/n7M0p9BgBodIKo4rIhx0j2HpLCZAF45jJhsIquyL8heMYwgtKYrscNJ7TWjKcTw+lE8BOn45HheMQHT/AT5IRSGas1zkmZvxAjXq1jGPnsnw/e91mr82wVOHnPZ8xPzoZk7ZplHsUYSxRHY923fyt/wFpcNotqOCw/KYmTPU6TpMoMJ46nE+M4EWIkznk2cGYRvQ++htIx512QcypaQFlKBltN3zVcXGxxzhLTxDg5GS8rJUkTpeKUkXlhtCr56YrGOfquLZFI6dxp8nOa4Ppe15eqWNT/hVJa1qdeHueUlhhalkpsikyMZl6zKS95t/WW5138rJff237AOBawbr6w9Ut13qy+fPa4i95WFrCqcQ3JGMLU0fUbtDaMpyPWOpKL+KnuLfNklV5TwogyBajQmGKwshgoiPZDLuUyg87kpBnHkePREkLgdBoYSkWwFJPQcFWmcQ1926KRMuWNs4CsXalCtyb75tmen53LrIg54WMU5zX4WR8uxriA9AgzKfiJ4D0heIL3WOvmfSzPM+bjrEXO72R+TpzLAiaSybGn77dYo+m7DY3raGzLoB05aUmfigjLLUjKRvmQwqYsFZ5KqmvWipx10UzJc0WNhDhDhUBFihBD0e0owKk4uRGSL8ERARDk0mWf1ioXKrTMG03dChRCwxbQVKu6Bhc9PSHhrQzxp70lFlBJh8vzfr9/fERbyzBNGGcJPnCx2WGUVP/6DszgHziOyyJbtjsx1SoDhqyxxtG2PX2/YbfdcXV1zc31DScVUMMtwSh67WlMKRPcNDRNS9O0iCilwSRJ93bW4KwWsCGFsq9KJcgKpBhtyDAbzBLplLWWYiIVrTcArSVdzjk3G8FaQfYOrCVpRUqBnAUM11rN6yOT53LfmXMs+nzn5Z3f5L0FFiipE4s7ew4P5Pnfj7MW58Tf+ZrU/GtNhSqjOl9zHWcBNlPRPYzUFK8qmGuUKnOc+WzRpsoBWKkw41qMaXCuxbWS9qpm4Ef2R6Nk/1YpUxepdg26aeX5mLFogvd4PxLjRM4Z21lM68gpMqTIFIOAf8EQoiapchYbWevGKKyR+xNBYklvsa6u9YWZhcpSqcyKUE1N2Vxwlncj/ucH0/OM4/oMXmM89bX5cbXZM2RVGFu5/NGTgPE7Nv57nKzKmlarKD1Gk1LJf0slzVTVwPPaF6jFXxSiYQYqgVJSxGBOh88l1FhAmbQCpJ6a+gs75Pzx+trP0kWedtbqleWFp8bt+4yPd9oPX4vfwTf7vm09jufEA977+H3TU6maCqlpnC0/Duca+bdpcE4CRslNJOfEx0HS1uteMoPYq+IhShW9MKUwRmxNYabXdfMhn3Z9oXmZF2f3/r27a91+0DjmZTnV3fSdWQQQoqSkJq05jSOncaQfWmFBlTLlknJb142kN5MNS0qufJkqe1W1U6EYpoXtpssmnHNNzxNNrlBkWXQNhGcRtndRQDcdNcEGQjAi46AjsdycYVkRrohEoxSNtTRWNAutMaUyGSS1KmTA2h8pmAHFN5lxApZ7ydV/Y+XbrD7r96yb71LO/f8G/DfAK6XU3wH/R2Tg/x9Kqf898Gvgf/X7PucDn332e4xxBnC++uor/vzP/5z7+3u++uor/uZv/ob9fs80TZxOohPx+vVrjsfjbMit06XW7Bl4F2Sqzz1dPJWNA+eCzuvPWP+7ruj19LPra9M0FSNJz5W8jDGzTo/3nv1+T0qJtm2xBX2srCDnHNM0sd1u+eyzz9jtdvz85z/n5cuXUrb24uK9TJ8n/funwP+PZxrHp9OqLrK5VEeJTOS4yiNfVj+KwooAyIEcA6fhgcPrBykz3bW0myJ4mIuAckw87t/g45HAwOBHDidRTg/aMzGitcYfB/xpIIXAeNqTU0DniLMKpR0pGzKXNJ0jhMDt/SPqYS9pX4OgxzNIkJlz1uU2zoWc1319ZiTIJHhPTy2ggDFCDTalDGCNgaVQzOgofShR9Ocdw5QSx+LcozTWFOGxJNHV4zDy5u6e+4cHXr+55fbugbv7B47jVKJ45/elWGJ41eBT1KoWdV2WQ6w4CCmLQ77ZtHz26Qu22w2/+MVP+Of/4hc4a/nt3xlyOnIaFMej48EK+83kSA4jUlUIdl2DsYbPP3nJjz7/pKRpycY+nEbGYeLu9h5FIJRUBA1lExYDvHGOxprFo1Sg1Gr9q5XORa5lzc/B2LrmY4xyaBAgZYJvCEEE3p57HGExy941wVZH7Nlpq5bD0VhJ10qJfiOHYwxeBFmNwY8D97dv0WTGcZT0objHh4C2ht1uR8pZDJ2mBTL3Dw/c3t6KBlTwjCdxKBRVmBvG0bPniLVSct1PHtc4jseBx8cDRhsMsi5cY7l5cYm1hnGasI1DG80UAnF/ZAorYW6qe1H3bNGz8TkzTZ7j6VRSzlRhVQrV1xopmW0UTMOJ4+M9OSV2V9ekrmeOVC+lWJ51DL99gIsXkKXiWhiO+NOROA7oFLE5SWU+FAZN23RcXRpSyhjTYF2HUoYweqbTSIrimFpd1oHWoEwxiEDb4uRYi3ZiIlhtsdqRUsaPgWkUkCF6zZh0cWZUAetljtXzx1owpp6TwgQCRUS0SpQ2GKfRVqJY4yiAkPR5XTMZEdUPRWg/okg4beispWssJmXuvnmNjuIkxSx72cXFBfc/veXq6ppPP/uM3eUFXdsJmPsR7JvqAIJCZUlndq6jay8wxvHyxSf84k/+CbvdJX/y85/y+Wefc/PimqEzbF0gTkfy+Eg6viElj49wOA74bNBtT7vpaVB88vKaX/zJTzgdj/jpwDQ8AonL3Y6ua3HOknNkOO4JEUxOXG03ECPHw47DbkuIkaZzuFY0BT+5uebl9TXOGnabjhwTMSdiCBKNrpoJquJuZR/Mea3PLP1Q/reAJYksWQ6krKX0btmPU0jkVEEf0YvKZHxlUc+fAVkLM3f1Vc+6FgvEKmsOAXJMEWvWc6leOc+q0JgGbN1TiWgVyv16UB5ForUaZzSNFkBPmB4Goxuc6zG2RdsOlCUrqegVlRO9O9tiGjH+XZNxG3EaZgBcIcCPE7B6co+M+lGYqWGkiZPoXVlNtpqYDHS9aA3HgMuZoBSEQBMjPieUhr4z5KhRKuOM7BXagGs01hYDzmiyVkxTxpjIoU2MYySHhCrpwSGKrld+GgA6XzfPthbfCWqt5sv5ebnojpz9ffmjte1/7iuoVYXWut7Pbkb8EGtpCgsyGNEkhEzjKntdFc28InuQio2Uq3aeiGnFFOdghegKRnIGE8Islu+nSCaWwOu5rzJ3QoUc8tqPWeDVM3hHVRCNUuErze9Y9I3y03v/452L36O9Lzvj/UVw1gH883ubR14z6/n0m5br6wv6ruXicsdmu6UtbGHX9WgyJKlUm2JiOA7ENJBjRuNRKWPIbPqGm+sdIWWmpJiypAUeTyPj4Akx8phF23SlUihj9D3AnHcC02evnc31Zz0XK75Vl/8T7wmAmDMnH5iU4u3Dnl9/+TW3D3s8iourFww+sek6Lkr1SmUabJPINpH1JP2SEtqYhcCnlyyYTFqpklegN5UYVbXwJPNCmO1mAXy1w7UbUk40w4l2HEgpcjwcGU7C/hmmieyD7JXl+41RXHWSFTDFKPu31TKep4lh8nIleUn7qmldtlTDtKawpZWe3WjZ3xKLhtH3a9+lqtf/5gMv/c+/97d9oNUJl1JiHEe89/zud7/j3/7bf8sXX3zBb3/7W/7Tf/pP3N/fny3Uyo6om7y19sz5rm0Nzqw3gA/lxj0Ffr7r3z5lBNVNut7TWrTZWivli4tY8+PjI8fjcU4J895jraXve5qmERr2xQXX19dcX1/zL/7Fv+BHP/oRbdtyeXn5XZDxX+ac/+w9z3+vcZwx59XqVRX+VgJkyGEhoE+uIIqiiLJqSGUS65qzGMhpYn//DV98+SvG6US327C9ukRbU6IhtvTTa3w6EPPIMB142D8QY+IU9jyO9yilSUMgnbzQmf0AUQyvximaUiKr61tu8jXeB7S1xJSYfMCHIwNSwk+tQB9V0eR6/+W+z5lgLJ1Sd+WztnSaUqqUb9UYI8auVqXoWUglcpoZTkUc8hnHECRt53A80jQt2jgy4pCHcr/708A3b255/fYtX37zmtdvb7l9eJQKXFFEf9dog0IqQFQAyBTHzyiNLTnNkIiIISPAiRjz223Lj3/8CVdXl/yz//Ln/E//6/8SZw2NCxz3bzjs4fDouHOaELIAP9OAQtFqaDai2fKzH33Kf/Ff/AJrRTRPGcN+f+D161v+7u++KI5zoWUq0brRJTe/71raxkHOpQxyKmGdgtwXNlDWIpQbshf6dd1/KOs9lghAQiJ10RCaieg9sWiePOc4Pm3vHgFqeX6ZuPOrxthSyjVjbUPf9uScuNhecLndEfzI131PmEaOxyPDacSHyOSFSbXrurI3XXJ5dYVSii+/+LLkRQ/4YeCgTdkwNJVFMg4TfpzQWjGcRm7f3mOt5e72kdc3d5IC9vIlr26uMcbx6tULXr64ZhgnSR8hcxonTpNnfxxmkXJNVVlZDNwQIlkJ2HQ4nHhs9yilmMaRFEX83RlDbhxWK8bTgcd7Afj8+IoUvFh72lKj/x9zDN/bSopL8hPT4cB03BNPJ0z0AvxQgB+lMG1Hv7ks+7FDadFhOj08Mh5FVJuccDqTVUZbg3aWjKJpDW1wspZL2mJG0dhEY4SqfkwTYRRHMkwZnxeHYb0fzP8v+iSQiTmQsgRqChcCpTS2SRjnUUojifxm3m1n8loO8nsWR1yrjNPQO8u2bTEp8/aLr3l8c4v3gcf9gWGauLi85JtffMP1ixv+5E//lJ/+7KdcX19V0PYZ7ZsF1Jf/VRacpm02XF+9om03fP75T/hn//R/xPX1DT/5yaf89Cc/5/Jyx3TZc9xZoh/Y337F7ZcDfjwxBnjcn3AedjeOXdtgrOWzT15h8i+YxoHD/paH+zekGGjbDW3bYbQlp8jx8EgMGUPiZrfBkRmOFxyPB0KMdNuOdiPM4Z98+gmff/IKoxRhHAnFwPUhMoWwMjRVcTqkGoroaylCMe51icqqAqAolUBlDICWdWmylJnPSVI0Y5Yy4s5KWmKa9RNKhLywmFRxiuNi1j3bWqznFySykqS0ep5pJN3FZEr4R9IBIBWwSpW/zyLoSRaA0ngUmd5qWm1otC7aVgatLMa0OLfFuBZjKvBjScoRdQPaYJ1UADJa01pLZ0X7x2qFrSxyYyQtOUZG+5ZRGVKY6NLEBSIdMJGZspQmThGCsugYmYCgNSp4mhQIOWIMRG9kFqtM7zStleXZtEZS0JUCp8AI8ONs4NAljkeNPwWyF9CHDL7UjK96T0uPz7b086zFvHaM8tnz878r0AP1nrBJ8VLf71Stoii6gn3v1udBK6y2tNahAK9BKwk01FQvCfxZtLWAgGNVZ3INXs0lvsvjGMVGDD6U6quZzDRr/sQcV+DPum/kXqsjLk9Vjuw5/FMfy0zPq/9W9sS7bscf91z8Du19qV71+dpURanllfLk8vpaL0prjbEKZxW7XceLl1ds+o6r6yupCto4+k1P2/cFF21wrpOCM+mBaYrkHFH4cpbBru949eKSmGBCE7IixMT+4cjJDYyTx08jY0mNTXX//QH9UcGf87S2c7/6uf3+p2BPWsGt1VoLSarlkjPq/gGyVMryaK5ffMowJW6urun6S4y1KKNwnZabMUZY3inOUgu5VGvWVgCTlEtKopLRrNV7FXmuEGmKz5IVAsgaCwoBb4s8Qj8NjH4ghohr7rH2UQgrSNA0ZdGEM6VCtO1bdr3Gh4jViq4xjD5IdeBCdIlJmPFaKazSMwvJ2SXt+QyYLYVlauC5+iDv0P4+0D66uPPva2sQpYo3T9PE4XDg/v6eu7u7+ef+/v5Mm6c+ftq+Dz3wfRSp96V0rd/7vsPgfele72MGVUZArQpWn1+ndtVUhHWEQWs9i0FvNhu22y3b7XYWhv6+9/1sbYbB1XuezEJhrAgK4uhTxzwL7TFFoakHPzIOe8bxiDIJ22q0tQL8KAF+QhhIOZTIRiAlKSEd40TwgwA/IZKj5GamSnsvl6gKHaWxmqwMxgbpVyfgh6noKmcus9wiai71uo4RLWMvr6ynh1Lv4tvlA8oc/kC+cTn40w9EdH9vyzWtcAViUsUCMyFGSfMaR8YiZhZjJM53s3LtSmRoYfysNBBYwLGkVlu9qoa8wjlL17X0fUu/6dhsOpw1tK3DWYksGiNObVaqiDKnpUKP0jgj5d/7rhMhdevQVqIsbePmUoh61ddaMYunWSMlWDOZHHKNB6w22ne6r2y2CwVbxiuXKlCF2ZBKhbQUhV3yEVte7z1nL6zfkxfwZ3bgClyiM8o6yInUNLSdCNQ1TStCztaWvOmFkmyNVEdwjaSeKqVoWxGsjzGWaMVCz60U1tpXOQvITQZrI8fTQNM0hBAZLyZCDCWv26CtI2Vo2oambUgZrLUYI9UeVElDWrpB7jGzRE9jjPgQCLWs9IqxNYuVhkCYJO2rVgYUdmLZvz5KWzkT74xdNVRSqVjoCdNECr6kolXBZBlbrQ2uaVDaSnlo0wGaOE5iROQMKYjsTGLe71AV6xRTTBuNssK8SVGTnKRuGRNL9EmRSQur9uz652z0M30MYeGU8a+3pzNZi5Mt4v8yH3NitfBmVYB5P5f1u1QN04iYd4pR2F2HA6dhRCvNfv+IcY7j4SD6UyF+r0jpd25q6ccigAelCppzLU3T0bU9/WbLZrOl63qck/VCbEl9T7CK6dhhrGhvoYS9FdOi+aFAWGpNg1aJ4FvapiFGPa8JpaTCpZ9GQhD2qDOGxjmJSjcNNkW6tqFtOxpnpapecVhOwQuol1JJQ1iGY2E11XuFef4W8EfVvpjHb3VGlu1HZ0nJVOszQ1GqS5YPm4N5lY1T3/gxBlAcgvrdi0rTImqr57kYEUZaXtK4VAV+quRx+VclrBaRZl3tkTJhqi2rq9aLmr+xON31W41oJykL2lIrf5kiEqzLXoyOROuI1oltZAxRa2H05owpjo+830r6tLElpTRJUY2a5mxEu8soSflyVnS8mipOrEE1oucEmdZlvFMEl0U7SimyrnbAaoqcAcS8d+v7g0ax7IXll9Xza/ucmYFQI5n1EmtUfR4ltf6YOh9XdluZ17OvQEnDKGOrQMaq2P01xU8rNT8/b8Sl0qFUIV2DE6vfix2UcsZkmV81PV3NaUHrg78APu/0x3JLebWG6//PrNfZZFi/5wPn1j+w9jS9632Pz2z91dDm99xiTU02RiQjnLNYK+tPa1OE7SV9SBkzA3v19aRz0WyR77JW0zhHzBmyQmeNVhFnDd4Ykk3FV5Duf/eSz6HH5UbWD9Vq/149/wEA6GO0uqbKDF+tF2afh5zxMXKaJnJKnIaRYRg5dRNb70tFUqRCqDaQZc/SZlHgX1bufGOo1fPnQ7r2aEof5KrVW+xWraEwoW12Ur1LBZx1kjUBS4pYVTkpyzkrLWEDA401NNaSsrDMjVJF6a6GKxd/ac5eUjXV88lVf8CAeZe/+G77ewN+6iZW05y897x+/Zpf/vKXPDw88Ktf/Yq/+qu/4vXr17OmT/27pylYTyfrWd7qClhav/fpZK/Mnqf0vxlNy4uzs35/vY/1z9NrWdMLayn6KiRVS72vU8Bqjn3f93z++edcX1/jnOPi4mIu3f7ixQv6vp//9u+zZZaDvC4wQFgdddyMRVtAacJ0Yjw9EqNnON6zf/iG4Afu7n7Hw/1vGccTQ+gY0kZoe0XXgAxhHAjpSNIR1Qx0W4l8aDuhHYCCmEguiSNoo+gVF9AmqYTShs3mgs3mUkogm4au2zAMI0p9yTSWdK+x0Ghn52u9vS6Hv1LrraQ+n5dDdWUgy/yqOjVqcTZL1YZZb8ZAzhqVRAtD2nPUhSrXojVNcdCNdWhj8T5wGqWc7/3+wOu7B765vePhcCShBEzJUlFkwfsWo1zpBcyq+evGWJxtUKgSMZb14kp00rmGly9e8PmPPuP6+pKrywvR89FV9Fp+rJZqKBTAMPgJpXTJq3a0ztE6S2vlEG76HleEMW+ur3lxc8MwDNy9jUzDCcizcWuMpm0bNn0/C6lXJs8UA6Gkp9VSm+uSmykmpnEq4JGZ531WmmwyaMM0DZxOx3msn7t9109d70xztC9RqvDlkmdeNG2yxhgHTkScXdPgvZf54hw2RSlBbM2ctir6SpqLix0vrq8Yhg4/DiK+G/xc6hSEGZVKlaiUdRE8TNw/HJimiLUGP3nuHh5orOXq6pLLC0kr217t+EnTcBpGgjJkLQLN+eGAPw6Qix9SjHFdy6X6xOk48FgcpYeHR7abfna0lIIUPPvHB07DQEiJqxd3WOcwrqHdXEjlto/S8tm4rFuKkehP5Bg43N9z+/XXHB/uuL99w+PdPafTgcP+wOFwYvKei5st1y8+pel6thfXXN18hrUNd6+/4fXvfss0nLh/+w1vvvot0zgxBc9hfxKWoVZkLWzMtnNsdqIxMk6KqYMQMmSDn0qQwkdQkvalijg6mQVUhjoQ5bFmLQmfyZAUwUtlIdlIwhxdiyGgiLPTX/eDzhisFiNq0zb0TQNZ2IgpRJIP5JAhQpgCjw+PxAw3L17w8PDA4+Pj8wOx6tyuEMe5RSnHdnfJq5efsN1e8erVJ1xdXnKx29G1HVC0/Kxjc3kD2aONIhLx0wltG3ANCcUwnLh9/Y0UMTg94ocTMXh0VnRNT8oJbRqsbcko7u/vuL//muAjx8c9l5uW3hkMmV3XkVLG9Q2ub7HO8OrFDS9vrsgp8dV4YphGYgz4lElFbFzCoRGVFbbpaFr5HB0VJpXzrZxxWoEholKUaKYV/Z6UM1PIhFgIXs6QjMYZiXBKqpeAmil6VAH2lTWEmMheIuLShucbQ0GJEYaa/AjkEqUKncq0WtIztM5YExHNQIVzpbSvzlhTqpoS0QUEci7RNWBMxulIThKgIoPRhdJfADulFDElhimgtYjrT140lUYbGFwQpmrb0neSEtsYi7ENpIRueky7EXsrG4ZJgO6gNamw6ZRVGBpyDKjJizpzVijTYGxT7F1JQRLn1OCcBEm6ztG0VoChzqCdYRojKXqcDVjjuesnhlNAB5gChAhnefNzhz93y/PYLTbZeRrT+jHvez4XB6oAQwISVU0NeU6q7hSAWwm4q7QmZZimgNEJgyNZ0au0rkF800zbWJq2VlNVKEkKQgUB5zKFEV/tw2RnEddUgyYpF826WFjYA5pR2OvDBDksAZZ6h9VQr8OQ1z1z3icCPOZ3evNpv/1jamv2z1PGTwUCn6AlxbJfwABrpRJf44TZs9lu6PsO41xhIoqu4OhDCYIaTNOiTKLd7gqrPxK1IqiEDoZtjASEiT+ExBQzQUPqHDonxhG6xmCNzC9hhgHMFz3fxJw0NAepV/8/AzDX/stHBn3yqn/zyi6QhTaDFbV4Q0iJ/TAwGsM3t7f87W9/x93DI8Mw0nU9u82Wxhn61gnQZhtMk1E5Fu26ODP79Rx4EmkDdJJqsAtOxMxI1ZKeRZa1Vy2XWklSIVUntVJEm8gxY7QjBD/3X4xSMCh7T0b8JVQiq0xvDbQNrdGMfRDbJyWO4yTzpUp/lOCNNnoJtqaV3TTjDemd9ftd2h8d+HmqhTJN01yV65e//CX/5t/8G7766iu++eYb/vqv/5rHx8dZ5Ln+XQVJPtSepmKtF/hTwGbNHFqDSrCwb+rn1L9bV+BaAz41gvyhvOAaXU4piahqAX6qUHMFcZxztG3LbrfjJz/5CT/5yU9omobr62s2m82Z9k+9pr/XpuZ6FiXlqyzwmIiTh5zR1qEbBdoQTgcOD6/x08Dh+Jb7u9/ipxO3t19yf/cbpvGIGR1ubFFGk5IilsoS1ui5QoxuI71OxRadSMovZ36WiLEpUbQM+JRFc8gYdleXvHr5U8jQb7ZcXV1zOp4YBs/93SPT5Ak+MeWARmJ77wL/a2SWOSIqPvQCiMxdo8HYItxWFriuDk4pK2+0xhk3lxQUZnCd657nakopmrYVY8Q5YVP4wGEYOQ0jtw97vnl7y1evbzkMIxEtDkgFCAA5DmUzMkZhbQW1hKEjjBCHc60Ys+NEjFKtouk6ur6n7Vo+/eQVP/nJ59xcX3JzfSkADwmjMkbLZmy1ojEGlTLeJ4IPKCWl0jsnGh8V/Gmahu12Q7+7wFnHyxc3fPLyJYeDVHt7ECoBSonBbK2ha1t22w0hBLyfGCdZp9M0MXpxSCtjSIAfWcsxiQg9WdY0dU9QGmwCbRgHxfGwJ+ePy/gpQ1IG+P1P18d1S4wpzxoBggKVf9EY26CUFpHRpqMJAdu0WOeIKWJKyqopTtlmI0D01eUlYZxk3z4deby/m1NdTdlbpSrQNK+VFDKZyDAeuLvbo7Xm7v6BzaahbRt+/vMfg1NY67i4vuTVZ72knSVFQnMcRk5j4HF/QuUsRnjdF7MY7MlHjocTJsuecXf/QN93Mv6FKRajZ3i4IyYIMXD98hXWOQESmw7n/vAy4N/W1lGoCjGnGJhOJ6If2d/d8frLL9jfvmX/eM/93S3TMLA/HjkcjkwhcPXS8uKTz9hdXvHpj37Gz/70n9N1G15/8Vt+96u/Zjjs+c0v/4rT/g7InMaBx4cHQozY1uHaBmMsjdVcX2wx1uC9ZvKKECRFZDjJ2TgqTy5ipMYYSS/KlAobonU18xtWPl9NB65GTEyxMDmFpZkp2ikFnFUKnK4gsGbTWlpraJxl2zX0bUMMiZMfCVMghUAOEWLGj577UrXt5uaG+7t7Hh4evovI8/dqMwtGLXaKazqMabm4uOKTTz/n6vKGV69ecX11LcBPJ7pYMUapBtS/kIp5fYfqGrwfmcaJ4TSU6ksnjofHUjHKk6PsPTorunYrF6IlHyfGxO3dl/z1X/0tfgxsuwuuN1dopbnebPjxy1eC4bQO0zi01VzstuwuNkx+4u2b15zGAR8CUpLdFiNdi6GcDbbpaFsBzHXImFgFmnMxBTKagEoJbTSdbWgaXXRMClNNKawTgMEag3MGa3VJeYnE6LFG0TQO1zVSSlcrVPhI+2mS1DSVE6iEJmLUhCbhVKbTGacyzkLX5AL0KJpGF8cBnM2lD5IAP6qyBQVUcjqIIHeUlDABfmTccmElx5QIkzgU45QwWs48Zz2NcxitCTsFuhFArbWiEZQzptlg2xHQxKw5DgK0q6YBJ8KkyjYYq0ghoIYR7AgotG3RxmPSAvygFNZYWmexzrDpOtreYaym2Tpsa0sKy0DjPEYPvNmcOB4ntIdhSnhVQldrmsnHamXvEcZV5SIv4E4qUEvx52bjbl28a830mJ9LlLNfWFCSJSaAtzHCiM0JxlGcOGERCzBkG0n9Ugra1tC2pgQbEjEWQedyQZV9rkuax3IaFJ+mdGOIkRiEyaqyMAtiCOQoILisrzhXAasfkssH5Fz34qV/5n7KxRzgHEJ7b3vXOP4H197nj6lCQ8tZce5GqbN/BQKTx8ZY2rajax39dsP2YkvftdjGEnNGpcQUI9YLONtYK9VhU6YFtDHEEAgkSamMgR0ZZTUxJg6DpLBHoyA6rAJnFF1jaZwhJKmaJxJkxfdYX/aZDZiXe3nP+HxbhsvzNnU+91YXc0bcLECoT4nHYRCg5e1buubX7PoNkw9cXV4zTYHdboNrG5y2UAIKOiXCNOGDVCZNSgh0og+n0VYKLBADmCr0XALYKpU1u8YWav/l8kEC/DgnwLhVlq7dEIKn2jKSvnUg+lDWTSp7EWydpbGGMVi8zxhlmHwgp1JxWCuMlYrWRuvCytQLyFOAPanmlWY/s3Yd7+d9vdP+XlO9aicdj0f2+z2Pj4/c3d1xe3vLw8MDp9OJcRzfW7HrQ5/3FPSBc5DnQ4yfpz/r156mcH2XxfKhzzrLyfsAU2guJV3KwFedn77v6ft+fu3vHfDh/HDMM5WuRM9zJsdYRDQ1uUTolgo6I2Ea8NOJyZ/wfiDGiZg8KkKMYmTGqCRPHFBYjHEFSU9oLeMsB3Za2PVKItDoJfVDKNwZVC7Aixg1wlboyCnTlkopUl1oAXTUk3t9ejC82xTrtJD5msp1vctSQ+j0Z8bG+n3Pe6rO1HC1MNxSlnTLKQQm7/HlcUhJxrWmBK3S16pRVSmJIqa2KNFXZ19AlsLUy2JENo1Ujmnbhq5taZtWjN/iIc4BjVyr/lTR9lzPh/Kjy30sfa21wZb82Mqgq2mRWokhNftpallz7zD+kIiZqoM0g7rLfnOWvlnAXzQlx36p0hfD7yno/kPG8ezxMn/mqrQfaLmELXOJUOWUySlKlaacZfGlVEAu6sSdQXJT0grmPW7VZ0YL/TmliHUCDKWU5vEXqnstYZuLwV3Amcp8UwkzKlByuA2jAHAZRa8kxcs2iaZt6LqWmDPOGgFV82K4LnOo3lYkBEn38sEzedHzapoCQtTqYylJqleQKl8muBmo+NhN0rpWvyXRUYkhzBXHvJ/EwF+xakSMXNI3hKXV0nY92+2Ort9y2l2w211glKLfbmnaDu89xp5m0GIJfiwiu6aA7zrWVBVVjKUlPQfOf1cFAFnMZuao25mnNR8erDyTBSFSpSqYUqWKikKAYKMFIDBmBmQlQ2Kd+14/VoAVVSq61Z/nTKFVPLEBSl/Wak3OOhrX0DQdjWtmwHQWnswZEEPPWIVxDa7rpCpQVhgve0cKcRaWl1JrNRYPtSR0LodNRvbzcRjwk2fTbGisnsVknc2SLttYVCPl39vGYY0mRr2c4XJpUpWMkspLQhtZx7ooehtdhJjLGJnqeBQWoSbP45jX86R+ZtFbq+nPanZcKmBSUizq2aK+m5H7vdtqHqr1jxJdKauyVFsz0Fh5bC00jnPgRxWx9JLFU51sUGi1muss51mu+6mugGlJhSNLeoMSAfRQgIIqBqyKtktN8hENxaKPqAprmsIkKXckFF0tIfH6uPyoctELm3me1NTUh1pVpwYAUlKlylzCWbOkaMdqe0vkXD05nJ7+/jxDWJgP+Xw/mXecXJO0V2fEevhnO0yd2X65jEN18iqAUqy11bxdN+lD2Z/rnFgqCZUCm7J25oyvYkuViVFn4/oecha9qbLQCvAuE7DaYFlDLhc/AwSrvj7bA8v9LuBP9aPqvS/P1X5ZfdDvG5I/entfpkfOZYXMF3822NQXVqYeq5kBrFIzdTl71swMtRxlqc67YjtJGrM49VkhDr4VPuEs4ouaK9VmVc7gchbXfVGr6o9KhkBW8ywtX7d2ItTZrb1vmD52qtdZX5a1khG7fu5vljTgeh+pRNF9CAzjiFFSDXaaJqaSObOWqlBKo4z0tVKLLEe9ednKJKh85pDVb612RgnGn9WfL1e5OHHS48aYOQ3aWocraV9z9e68gMkKOb+MkuCVMyJRkVKppjqfe4tNPQeTVrZMXcRna/fM9Pj95+IfHfipRpj3Io765Zdf8u///b/nq6++4ne/+x2/+tWvePv2LcfjsUQNz1Os6mesGTZr5+tpWztzTz+jahOsGT/nVO0F+ftQSlU13tafv76+2tapbdVJXF9L7ZOq47Pb7djtdlxdXc2pXl3XzYDPPyTQJxdHekZIyqVFP3G6fyB6LyVpS6no4/4N+zdfMU5HYfw8vsb7gXE8Fr2QBtOIeKBQXRMxyoEbM4RU7r+CZsAck8gZZRSmkQpCQpfVEh1REbInq8wwHHi4vxMD2FhevnjJbjPw+pM3PNw/cDqNxPSW0zCh0pK2pVaLsBqm799My0Y2O0kC+Fi75KLKuBdnMy7Oii4VTajO04fJbT+4aa3ou67w7CX/fxgnXt/ecf+4583tPYfTyOgjIWWUtiK0nTM6Cb1QNrJCaddi9C6PZYycFmNQKw20KC0ispfXV9y8fEHX93z6yWfcXL/g8mKHsw1+lIj9NHj8FAg+obWl77c0TcS5hJ9k826brggUG2LMjONE1R+pWjHbzYarix1GK3bbDY+bXtT/yx5u1OLkkvWsGZIzJQK9bNriDC1CgTHAOI2kGIgpydydReYVOWlC8Izj8B6D8Hma4mzZnZkw5+aMNLnuUCoojZwOJ4kceo8fh1KNbyKHkRwDD/f3jF5S3mzbcfniRdG/ETBLKfAhsj9INa6UM/1mg3OO3W7HxeVOUnVXILc2whIT8D8SguzjPi2H21TSE7xPfP31W0KItE3DJ58GXtwIILS73PDT9sccjyfGKFE0HyIPB89xCGcdklJmnCJKTWgz8PbuQaJ3XSN5RKroWxVRWe9HDodHbNuySZHt5TVNSc35aK04QaKd4yEnpvHA4f4t0+nI8fEeXwQETdOyu3lBTJF28nQ3IyElXnz6I7rtFtO02LbFth1N13H54qVU/BkHMIaYIsf9I19//RVuu2WaJqwTQEVrzW7X0VhQKnGcJg6PI95LKqQPQxFAD6XMtLA8VHH+tQ0YQnFoikZJeUzSUj65RK1QojtSjR1jzVzJsO6xsk7FmW6s5eZyy7brxPhCkbKUpR6mkVOpPOhTEl0TJDJODHjvGcaBYRiE5fZs40ZJ41DC9gMa13Cxu6Rpdlxe3nB5cc3F7ortZlfOedEeS1mq9IQEPhlx8F1Dd3FDkyLtZqLfniTlbxoIw54UI8PxgcPDQIzCBBF9mCwS+jlKlcroMSqCyWx7x8ubLdY2KEQ3D6XIVoMVfbMpeKbxJMLnKWGssFCMawsDEKyRe/XTxHAYGY6yZ7SFDGe0pu9ERyjFwPGwZxoFXDSlelHpsllnrW1anHVopSVlSYuBXtNjcy7C+SEQhY4H4flSn+eWs+hfkdFKKscZHXAmYFVk6xQ3O03roG80FxuDs0X/xtUU5SLurAAVUUpSWmMUoeOMonVgVEQpSWWECCpK37ZOqo8qS1KWrDRGWYwqtl+5zlykA8ZhIBb2m29c2fcVyrVS+Wtzibl8KfM/i5B2yjApTUATVQJj0dZhYAZycioMJCX2QciKKUDWih4LpkEZQ9P2tBuHsZFp1Gg1kaJm0+/pO4dSmbYJhCgpazGIU/exzkNJx/bkmEnRklQmxyD2FRWAOz8ToYAaC+oxO3eJ+j8B2oKXNHATZRoqrdCuCHxb0VxyzqG1ouuaov2iBTQ3AqgaY7FGxtOaDE7OxUlHJhXl+0vKrQA/FdBdg1fMYJPWoq1HEn3GnERHKKWEn0QAOmcKO6hAOHm51fcK2eSl2lB1Ot9nT/xjbBWgFqZPBQXV3Kc1SKFm2V9xpzUKo5cCPcY5bPkRwWFbxIULF16B8FfFnlfOYnWHjpEuTkQlAr8RJZXZQmQcJ6ai3efK/hyjpm2E2e5jwqeALxWUlaqqY3Iviw6UvD4DPisApgJEHxv0WXX4cgFPAJ8Km+bqP1JxGdFA8jmyPx0JMXD7cMebN6/x40AKN/RNQ2objLO4pqynRmzznNJcfQ2lSvXDCGhyKIUrVEZZg3IGnbKItUcpQJMiwvCroFT19wp9LlOK2BiLRrHttwWo8qX6rTCZCREfo5wLZYtxSrFpHCjF6A1j8GJP6XLA6iUzpIJYYieIrRDn8vbrdPq1F/Dt7e+F8ZNSmkWcv/jiC/7dv/t3/M3f/A339/f87ne/43A4SD7yByLka0FkQf3S2fNrFo7WmqZp5sfrPLyq41Gjb2saoESlF0CnaRqaRiybqtMDzClbNQWsVhZbv6d+3hqhW39fBX7qvUiqynau4vXixYsZnPq2FLc/ZlvnFZZAQflXzfMv+Inj3R3T6UTTdvS7EWMtx/s3PL75kmHccxjuuD98jQ8jKQe0lZQi2ypso1CakoYiau8pZUIum5z4DMXQKcYTzOKEKCWCtYUVpHKE4ElEhmHPfbzF2YZXL1/y8uZG0g4/veXwuGd/OLI/nLi9uyfkXDGY+V7n6Mi8l60PzTyD/BVBlihPzd/UJT87kWKlB0bRSTCgQiBlLfnzVvExZEWU1nSbnpQljS5lOI0j37x9y+s3t3zz9pb9MDJ4OZSUsRiDpHnJboguqvlK1WhukaGcQSDR5WmsCNoZo3CNRL5evXjJj378YzabLT/69Ee8uHnJbrtBZ880iLjudJrwYyD4iNGWzWZHSkmAHydr3RYDSmtLDJlx9BKZVoqmaYkps91uuby6wBhJZXjc9KVKRihMFKmMYks4bgZ+AGdtceTWSLukesXCZiMnghZV/r6Xz0aVyhlKESbFNAysqrM940CyBCFWT69MmXMjN0uqWtUZG4aB+8dHvPdMw4nTYS+gUPTEaSDniB9OjFMgJbBtx/WLV6QYOR0PHA7ihPoQeNzvMUV3abPZkFLi4nLHxcWOyU/ynUHAfBtEHDTnzDgGwIuAbciQpXDsNEXGMWGMJ6Y33N8/0vVtmY8K6xp21xd8stlyPJ44jANTnBiGiSk8cDyNrA/EnDPDJABdRvHm9l40gzYdbevkesjEQqGdJtEnUkY0Mfw0kOLm+cewjOPMCFCQszjtOQXG4cDj3RuGwyOHx3sJHmSwbUuz7VFaE3LmOgkc2+0uabc7bNthOwF9XN9zaS3b3SUxBpquwzrD6XBg93d/i3KOcTyVtJXK2kgYLeySMB3ZP9wz+cjpVCvJCEClS6l2pQUIUhmUCWhEvyRlLeBPFiA0Zz3v2QoBjo0tjD6jRT+hsfK3SSpJrZkXbet4cbXlcndBDIHTUYCKED3DNHIYBjIKnzWpIPVigCmm4iifjsdVzvyzDB9WLw5aRvafi90VfX/F9eULLi8E/NlutwL8tAvwE2JAJ6G4p2TQVpi+Sily9OTgIUWm04Hp0BG9J6XA3e1b/BQK86bYNikRUxDgJwjwo3XiYmN5dbOjaVoaJ6mLKEVUiqgEHPvm9g2Ht/eSWp8itui6uX6DazdopWiswVmNH0cOD3sOD49AxhmNNWIHXV9u2W26ot2oeHwofJOqc1YdD8AaxaZv6dpe5kJhpaQcy/vLnpBi2ZukWuhHAX4QkEBGsKRh2UhjPU5Fto3hxYVm02m2neXFpaN1Eq21Vs55icQL2JOzLg52ZgowTMLgaRoBh7SSH6Uiioi1iqZ1aNMQlSUiIs5GWYx2KJSAXyGQsiJME6OCMIt2NxilIGuU61AY9OYKezlA8AzDiWEcZH+VJDyiymCc6AMpJJXXO1IKKG1IhU3rE4wxk6MiKkvWLcpaXLuh37RYG4neYPVEjJpN39J3I0pFmmPGF02nUNhJS48/t8OZSHEi6UwKRsqQx6Ui3fJfcZyqQ1wIGtIWps8cZEdstqkAPypmdJA53fYJa8TeaVtL14venXMW62wBPTPKFOaicVjjZmalKSwDqya08oXJWSP3iqwXQLk+X533CvCkrpV1E1NhI0jq0KAn1KSLMxze1TabkST1zvMC2i86Qe8DzJ4Yxf9o2gL+FKC03F0GVK52w+JvqfIuSct0M8PDFt1D7SzaFWkJUxioSLpRVDJWEqS05JToCGAheNESjT5gVOCklOjCZKlaidXEZGidoW0tOiSGENE+z2DgGUt9Ho9lf0x5GZ361qeZKx8T+JE+feeZ8ujJvCmgmy4aOyFFHk8Hhmnk4v6Ob15/w3g8onPmarMhh55u09N0rTBwcrHRSyrfrPnMijBgDckaVARlDTrK36mkMbYE5X0i+VjW2bJL1UIhCqkAZowV32GzwzmH9xKwniaxsRMSJEtZgldk8Q23rcM5y+ADgxfgJymIWhNnvGLupiVzoOgnLmuy9uM/cOAnxjjr9hyPRx4fH3l4eOBQK24UQObb2vvSup7qB9V/n7J+6vtrjuf72EBPkdC19s/6s2ZK1ypVJOc8s4PW15dS+nBKyYrBtC77XplG/1BYPnAOclTXco4KlOeXvkwzNT0GAW9i8ERfSlyHUIRei0hVLogJioXiL4YVufZ9VVqn5LkW+mZWy+6yQo6VqgGcDCqhshJnJnjZ7lNlrSzpdT5EXMmzlHSYTJyd/3M671l/rNB2RQV+mJHbszHM63lcQfEFYADOBP6evZWOSRVQi5GpVPKaqnr+vLnMuyfn6V2FjScFJs9b7avyn9ZajHqlcc7RNO3McLPGYoyFGCVSl0ocoESyjbFYK+BYSnEGn4yxSyUFpcq9FKOobPTGaBEMXa0n6XwRi36XXllvdaFnSzQirxyW87Wb86Lhtaz5REYcu49S1WsF+Kjlqdl8OYvOzVO0RCvSkhIj11Ye55V4ZDGKUZIWCBnrGsSwlkNomiairmlumaTli+qeZYzBOluq0yVSTdksqZYp5aKBIboh8zjkVfWnJMbRaGQtjOPEME40pe+tNVhraNuGvu8AqRRnTGGZJDUvqZmplRLeB6ZpwjkjrKMyPgvFXQADAQnjGa34Y7aquZBSLFUPC9MheJlDqqRaWItrG0m3yBJ9ykDTdpKGV/bKWnLYGINqGnQ0tL1oYCmt2ewu2Gy3RZA9ogiIcpJEqchKKsiUa8nrFMCVM6/nvSqXdVSA8VSyfUqfZlWifPWtNaXMCuBaK19kqv5UKmtRBFVr+pk1WvLu69mZUwHtUpHkZU4/TlkqSNUyqDHGdw3OP7DpAvikYq1JsMZhbYOxrgg22pJqVRfv0+IQda8pqTp6TswhJ4N1E8k24thZhzGOaJKkupaUq0qhV5S0S2vJOpV1oucfZ0taj6rOgABsOZf9lWL7qCo+bGd2gVoBqrUpxfy60QLsphRl3y3V5OrYy8Gtyt/U0rWmLoDzyjV1XTztp/k8fsZWz+DZpJb0JE0umnNS2aqxisYp2kbTOglqGCt9lXONglU2erEJi+7Rct/lHteVP1V1wuq/xRaa06RlTtfTVlKPZN9MZZ9CyRxQufCglSZrI5XzlIChUtp4SQsshhYqVbu22h7VVq0DUiMM9Qb0vM9onWVdWil0UOebCXkuZKGrE7Xgf6v+fsZhfHLG5fXZPO/h77HbmIeBygCp/VwvVc76Cr+UM37OPqhZBMs6qOmLujAW9Ty2NXVHCSNa5VLhS8ZlLtRYDcna7+vrnG0ANVcIk++vFY/VLBILFAZR+ZxZaPvbU0MqA3fZm56kedWO+Xtqf7Bf9PTPZ0xisarO60FRlsGyiM/8yCrlUPf384uVQDSlmltJFdLGCFvaJIzSsypV3QtmsXxdmGNPLj2ffcUahCtSJeXNs3vyxL993+Pnb3m2y8tvZ4/Xfa7mOUo5v8UWC0Fstsk6pmmSgiPWklLz7hxUxQ6ePzqv1vOy79XUVVJG6fL+nEmFVTAvv7odrGzpdW/p2aZNxV+x5fmCEZT7UMWbkrT1EnQu2rWyX6vV2K/6h8XXOLuMpcPeff4D7Y8K/FQmzO3tLX/xF38x//vrX/+aL7/8skTzpWxwHeDqTNUOqEabUuqM4bMGU9bOV62OtQZoQFg7NZVs/fz7Jv6azQMUJH/J5XuatqWUmiturQGdlNKco1g/owJENQWsijxvNpt/cKldZ+2JzbXeUIx15KxwTUvXbzBKDJ9pOJFz5nTYM55OTONAjAmjGrLRQlueBlLObKzD0GK1RjcJq2QemKbBtC0oTfaRNAlImHIgVlZQrvndxeihlCHWmcbm4kwdGUZNMI6HxshGmzPOWj795BXb7Ynb+0fuH/dMPvB4HAjDuL79edfNZ09Ks8aALjmdJdcdqkEiwEYs/76zmLX8KKOwjRhSz91yEnZMSDB6oWDf7/d8/eYNX37zmrf3DxyHQSpxoUiYuXy61bXkvYhX1skw30O5L1TVtJL70tpgbIM2ls1my+XlFdvtls1mR9P0ONeKtkryxKxx7YaL65c0/Yg9DphmkBScKeK9yG0bIw6JtRbX92QlwpUxS0nImDLONey2OxSKzaanbVtitEQj5bqFMaRn+1OMKA0m02gtVeEys6izVppgJxHLpLCbytzPOQpLAUVKquQNS9rQxysFft4q6POOUVDWRYyBaRqL1omfmWj9pqfvRLSOFIUunzN+PDEeD+V+q6B35rDfs3+8l736eGQ4Hsgpz/RncmKz2XBxccE0TRz2j/hpJOc0V0Gr0SlVjGeSKjJDWUqII6LuMcB4CsSQ+fqr1wzjQNd1UtlHQYyZFy+u6fqew2Eg4wCFD5HjcWIcRRhdggoaNXruH/clPWhit9uirRhiXd9hnZOKgkkqcIQQCd4TpucTWD9rs0UhfRvCyOn4QPAjx8M903ggTCcg0W23WNfQbTfsrq+xTVPmu4DnWVmycaAMyhpiTjOoJZRCzebqhs9++gumacS0HbZtGIYTx8e37O9ek6JHq4BFzqXWWaxSBCjl0idShr7v6LoWXTV3ivC+MHVEsH4cJQKWUmaaEn6KoESnx2iLsYbttqfvuxmoVVqTYuR4TIyjlxQg1xQNEbmWFEV/6TSeOB6PjCEyxUCRWRRhx9K9IUVyhCkExiI8np8x1UsrResUUv/JktG0rmPTb9lsLui7HY3b4FyPsS0ZS86amBQ+CMNNBU0T0srSLCnhKLSyKJNxzQa1U+QYuVEG27SL7tM0SirfNDANAykGPnn5ilaJ9tjN5RXWZZQORE6MyQOKkDMhF6HYeIIcUDlglOx/GUXvGrq2h5wZTkdO4wk/jpwOB6ZxlB6PmmAUMRpOjcFoOYvbrufGOkJMnCbPFCI5RlQc0Ghc07LbbrnYbQkhcjwemUaPj7GcswWkKA63VIt7btiutgzJF+NcgE9LpDOJ1mW2beZyq9ltNRdby8sXnUTh1eJop5gIQdJtvPeMY7VjA7X8u9GGpjFYZ7BGlT21VPpKgaQ0aCMMogKmWVPngmhE5OJAhCDsr9NpBZ5nQX1iDDyOnkOQVLNJGZJxojtRgAmla5lpiVIZK+wlsqLrHTF2aDKNFUaXaSzaWZQxKKPm4JQxmqax6AzTJnF5sWEYAk0TOA6SFuVjJqQKbpcKVs88kBKtn/ApMBIJxqBSxEQvouhVFmCOiKyNL7U8XH1eKqkVMSRhaqcK+gjT+eBGXHvAOcO1Umx3G6yzdF3HdrMR/yJFSAGFsAMr7Ulp6VdQtIUFWGUAYtnTU1bzldbqXhkIpfIdhX1tjSYpaDoJCMSY0MZgG2EfKD2UvTWRs9h/RaH6vR7jGoye9UWqJ1094b9H0OcPaVU/ZQFtKijx1LCHCv4IoS+TQiCWCqVVjNc6h2uaEkA2ArgphbKGXOz/qIr2j8pgDbppsFrTbTqSj/jJczpKKnKMCZ8mfAELrBGQWSH+hdWSvlfUCd8zfisAaInHUFlMfyzGz3l4YAExFEvVOFWfqXhM1U4qQceshfU2+Im397eMwwljFLtNx7bvCXHENWou0JHDRM6Stk+xfWpQAiDHUk5SKbQDV3zUubhJypCnOdWraoxmQKWEqn5NCZLkMkZGa7KxwnjPok9ECcLFlGAayYWpajS4DDjN1U40F0NOHHxgjGkezjkrKC0/pTzNOz39XVfiHx34qVW8/vzP/5zf/OY3/PrXv+Zv//Zv+fLLL9lsNlxfX9O27Vy+PRY2SP3790VcazTTOTcDQlXvp4oir6t21fSuSpGsnw3vAjm1VUDq6fMfquRVy64Ds5hkreZVP6embtV+SSmx3W5n4Kfv+/k6/8G0dXDmDHmskTyNNg6Fpmk60fowhnE4sX88EPzEab9nOJyYpoGoI0a3oB3TBOM4EVOm7RxW7Wi0wTWKTljImLbFdh1Kafzo8cMkGjnJE9I0R8pjrBViUmEbZKzOZJvJMTGNR/zRo5TFKEX0ktrnrOWzTz/leBp4c3vH3f09p3HCh8RxGOe8Xblj9aRf6kG+pHQpo3BORNxqvnWtoiSsiXUEU9BegYNBW4VrpYTqc7eUM8Pk8SFz8oEQM3ePj3z9+g2/++or9qeB4zAyeqnoUtH4Wr7baA25GOZZUmdyKXsuhrk4MCkKrVvlUtq9Ead6s91xeXnFbrdlu72gbQX4iT4QkyYmjWu3XF6/wk8Ttj1h2hMpJrwvwE8uegRGmDxN3xc9AiV6GVG0Wpqm4eLiAqUU235D33WyJrUmxiJUvMqnU2ph9zltMJIrSExizAel8c6ViixIBJO82nsCGUqigGzHYbIlEv/Hb9WUTVkOkxgD08zqiuJIWHGsu6alippXU3M8HTmVlC7nLG0rOhKHwyP7e0k9evv1V3zzxe8IwWOto2kcOWf6Tc/l5aUATX5kvxfwzFqhSosNqdGYUooboi/AaNaQSt/7QPBCn/XhNa/fvmWz7bGNo2kdzjW8fHnDTzc7Hh8PnE5TYa95UrzHT5OAXklJqgGZu4c9p2Fg9J7Lyx3GatqupanAT9ErEtBHvt9/LOCnjFEujokPE4fDA+NwYDo8MI0H/HRCqUy33ZA3cHF9w8vPf0Lb98QUmUKYgZb9STRadKkOGFJAKYM2Aohtrm7otztSimwuLthe7BiHI1//9lf8Lo34ccDiscoI8NPIPqmREuvjOJGzYrvdsN1uS2W0hq4vgljFkU0psd8fOJ1OxBA5nUZ0Kc/et4amsTTO8eLFJZeXlwXEkzN18h6VBnIQpsWub+jarjjBFOBn4jSc2B8P+JgZY8KXVZcqYKDEWEsh431gnIRtnJ4x9VIp6JwmYYjZkTF0TUffX7DdXNL3F7hmg3U9xrSgrIBESQC7lEFbLVpE1UhHcvuN1Shb2TYC9pAT7XbL5YsXpBQ5HR7ZP9zJ2Bz2DMaQQmBjLK92l5CTaDCZDHginlCkRHzM+KIz58OJnDwgwI8T6gcb17JtN4QYOd498Hh7zzSNnPYH0YxCgFpTgJ/jSZdUYEPbbbhoWqYQiY8nxuMIKqAj6KxxrmO723JzfclpGDkNJ6Yw4aNURakieakY5mua+/O3BfgxKqJzxpHobKJziV0LVzvFxYXm8sLx8lVP1zmUMijE/vRTZhgiKWZOp4mxpMySJ8gnyNIvM/BjFVIlLZJzIMWAVE6zwg7Rkg5nTbFLzeJw+2kieLGVFYkYxuKQC2CXYuJxmDgEAQ8ihmhkjarCLlG6CM1qsVesUeDkHOw2jkyHIuOU6OHZpqS0OI0qNo7gVIq2cThlCCFzddHjp4RzEw/7wOQTJiSmUPUqMjEAzx0QyZnoR3JUEKdZULVRGVOCgEqnIhOwNmhrU/PngGiv1KpbISaCr3NQAmbSl5BNxjlD27cC5lgJIlxcXGCMEZb7NEFOGKJID6QS/S8+hzGG3Io9KMHpos2zAjxTzMQCOuW50Lo4ktlqdFFON1bYJNY5mhK8qHZmDJEQA8Q18Hbu21TmqQRWz/2vmavxjxb0YcXmWACBBQArb8gLu6mCrjVVPpglu8NYg2sKA7cwOOp6VVpLpT4grUDHbIzoeRlN2/eoCH6cOO6PDO6EV4HRe1RhYjqtaa1FZUkptFrPDPcFyFzfRwVY1vetlpuvv6/+/Ritei9Pd+z85PEM/sCZf6xEOI2sFMM08vbuloN1aAW7ruHU96AC211DbhvRaEs1uyTMmSa18AUV5FMifq+dQVlXUNWlqEkq611l8Q2N0DmpvHDySpu1XL9WGmsVm80WYxvRYwSyomAAgRQnAe+UQmVh02rXsFMGHyPmeOIw+WIDleI6SQgkIWVirkCwXvXf91uHf1Tgp5ZHHoaBx8dH7u/v2e/3c3rXmsHzbQjkmgH0FLF8+rfrlKza6nNr4GUN/Dz93nVK17dd1/q7bKkm9PT+n4pEvy9N6Kxyzrcwkb7t+Y/V5sD0DPqswY+8XJPSKCPpCDpGiQ7VTUctKTxaGZQutSZK6VChSlenrwJ2ZTPQVgQilRb9CW0lh7sIhK7nxsxcIANl/OQCkaUSUShiqTKmzSLaVvPlu7YjQ4lkSyTtHeyrVk1Y9ZN0gVpVo1JUlfh3aP3LX82bXo2i1c/5GC0l0YOQKkeS+jJ6z+QnfChaKJUGw2rNUYM9y+Eyv5Brd6h3qivV6G09VJdPW0+pZX4Y62jaDqU1bRJJh5gSxkaMXTR+jJV14ppW5lvZ3OeKNGtGYPlZqNBycEsfn8cm5iQ1tVSrk1tQJf2wpLyt+mRx3pdoRk0vyc/oaM7j8C2vrds8Sqvxmo0eIykExogegdE1/UMOtxQaAbq0xjopZakUtKHD9x5jJ9GRWWmdKa1ROWON7IO50F+1FpbPnDqbJad5oaXX1NZVWgcZ0YhBxCtDJJHwk2caJ8ZhnF+v7K+mkUpxZERcXBfGQN238lIQIIRQqnwFTLArFt7CzqvpkH+MVC+ZNEmiSSVFUOZULga9BRS2aWnaViJFKYKR4ELMCuOl4pM6CxrU+cu8H+cUadqOrt+gFLimRRVxsjnVkTRXU5qrKpWPqyk99UfGbgkGKFiARF0p6xJBc1bROo1zmrYxtE3RUiLjqSkR1aBSJY2kiAPnJeiSihh3nCsbrbpx/ZPXjszzjqNSco1AYaeUPUabVXpXSb0rK3feF9OcsVaq6wnNXAJKGh0lhbIOpaQYSHUu5RoJKLkRaxtAKoIZK8EXkxUOAU+zSJ9TXDrmKPGqwpTREqgAaBtH1zZkhJ1Xz8+UYtGlCKzTCOoYV5MkF2aAVH4yGJj3X5WlKqBJxc6p6dtqGS9Y6PM1negslaIEF561ZUrlqaJXV4ACrZeKXcYKCGOtnsXQwaCUrMuUJOUJpKS7UqHYPqk4G3lJ+TeLlkWd6/OFPAElZvOpvktRGEHM66Gy4XNOpKzntVHnF1rYlfUL82yPLZ+vqx6hrsUNJE1PK3E1qn5iXl/qfI2ZmspV9Wvq+td6WSdLOls++/vnHcuS7qWKw65yMcGqpfHU9q79Wp9X83tn1kt6ar/JW2JESmwrRSisoFDKtMeUy3lW7fUlxWv2w9/pyHVBm7xUwkP+1XXp1nHLy+NM7W8tiWi6SkyUVLICWNS0L1Xvb+V+59XUy/l8Hp732dLX/2jaU0N9fqg+OBdluRQrUK1Tr0rK1squXNuZMiZrn7EaycWuT1r8n3k/qD8GXcZoTgecUwfTMnfK9Sz+mHzFPIVnEKve6jL/zu77PY+fqy3+2Pnza+bP8mZWPuLK3y6bY8oJH4U1N4WJYRoxRjOVKqfJagF+oi+2ayB5CQVh8vK5NY1aiZ+iqphXAXTW3w8rt4XVmil3QSnXPvczNbshF9+xZgvlmcErFQ7Lfojss1qL3+KMxZokAJNS8/pbmHerYc1Lt32fFfhHBX6maeJXv/oVf/VXf8V/+A//gV/+8pc8PDwwjuPMgkmlUkFlyVRA6Kl2T23vQyzXejyVMaOUmo38nIUFsNlseJoati71Wn8qSLROu6qfX69PKRGArsygq6sriWDC2f1Ux6bqY0zTNH+e6J40c3rEZrP5B1O2fWl5LiG8QB25gDUCsGRtUSR029NcXWG8R7UtSSnCNILOhDAwTQM+T5g0ShUSr2l0QKeIig1xMPigsY3BdaYAKabUxxME1zWLEaR0LtEMic7nnPBhLMLRQqGOwZNUEipzC+REjCcOBynH15by0MZYfvTZj8hZsz+eGD08HAYZt1SpvuWL5wsAchF2NkqMOqPQVn5mEa5Uf3K5lwIMaSWGZOtwrZT1tYUt9NwtZcWYFMcp8Ob+kdMw8vXtLbcPD9w97hlLueuYohhsmHKXZUMswIaszZICpNciyPLupAw+KWJRyFdJjLFhmng8HEjA/njkNA5zJQTTdijXcAW4IpY8ToUyX1D2WEJtchBWDaylVKptW6Z6D3Ujr6VnS4ql6roCOCpxbLTk2Ysuj5iFseje1POA4gzbGiHICXIAEkpDTAEfSqnd2hU5Ep0l/JFSvT7U6j5ijaHvWpyzzDR2RMi6bdwKJK8HTprLh1vn0NahlWKzlWh+ihGrLVZpiT5HD2EiJ6moluI10yR6Xn6apAqR1IeGDMYkGidC50Y3WNMSU2KaJC0250SIipjUck0x48fI669vCVOi6zuSVxAkZfRmt0X/7HNJ+4oJYiypJhHvJdobQ2IqDJnHxyPGGPo+4NqelDVt1Lh+JGtHM3omH5j8M+s0PR2j2ZlQsjfUfaY4vNa1uPYCbRy7qxs2ly9p+42k23mJEik3kXVHipmu3wlAgJ7Xbp3DNU2j7TdcXt8wjT1vvvmShCFEcRA1mhQNGkfrWnLSbNrERR/JSnGx6bjc9iXqWfQpsrB2QpIKTJUplVPCqETnMs4qXlwarnYO5xwXV5rNTiJst/cj4zAK+FxK1mNFLLnvN8SUOB1HpskzTp7TmBg8xKSIFVxXNZYvYFDMuSbTzM7us44bAgZkrKQuK0vXdmw3W3bbHX3XiTivMoCeq34IMFLSNnxiHCLBiqNmJtFrMUZhnexvRhcHmiKuX0p1a9PT9BkbA0Z3GLORyoUponOELGeuDyekYlwQBmPO6MmjJk/K0LZbXr5UxJC5uT7y2acnQog8HiYOpxE/jZyGPfvjvaxjndnsRJS5aWxhjij6TqqWaSOMVeMUVinaVuOTkcBAt0XlDleM4uNxYJxE5L0C/5vtFlfAf2MtSpvCVDyQ4vuLf/xhLaHyhFbgtJRqb12mbxWb1tD3lq4XZlvbt7SbnqZvUFigAzTKSlpCjIrIhJtOYCIpnIjakXOk6XZ03QbXNLRtO1cFMlpLoYT1T04FfCopB5Qy32QUBo3oYamcycmTKCLKsYKcQWyIXAKYWtiYY5iYQoBU2F1GBIS1M9hsSNZh9Ia+k00pF30vXarkhBDQGkIMxKDJMRdWSyT6kRQncvaQvJyRORR2S8YZmcNBUURwn68poDFqBn5yLsCXTDtyMVPm1OsnAZla/rwaMlJoJhXmTybmWtlz2Wd8UpxGzRQVr+882T7QtI7rx8TjSSQENq1h28k+6Zymb23R/QiENELKxMRsb8ysthUYl5EgaE7it2itpLBEysQcxeggV/9egFgtdqhBS1quNuJbFdtGUhJFW3EBwKqzvkYUznppfs8/KtBn1dYA6nweKDkbhemj5uIxUsBEAJe2Mey2PX3fsttu2Gw2bPqetmtKNTcB14zRq8BH6U8itVpatZU1CuUcuoloFE3f0+08xnvGnPA5gza0rafzEsxp3ISzZtYejbM/IuOSeRqIXgETT86/j+lfKqVEYy7ndytRraYQqFXqqfSd1qYAx3q+5ilFHqYBqzVmb3FvHZuuQzm4vt4SQwd+hGmAoisbp0ns226D22zRxtD0G1zJHMkpFmmDBAH5vQB7zokExGpFSNpZ1XGraavU4KTsB845jGuEVJAi2hi8nwoQNQnbOBZHUCuaxqJcK76lUjjfME4eHx4YYiCGSExxzl45X5CLN/5dR/LvDfj5j//xP/KXf/mXADOwUsEZVQ6VWnlrXRZ93d7HvlkDM2d0sfLZ4ziSs1Tfuby8nKtw1Z/T6cTpdDqLJtbPWQuWVueoijlpren7ftblub6+5urqClj0hNZVviT3e9H76boO5xxt27LZbNjtdmy323dYQ/8g2uzb18NBrc5JVXInDbpVOKOwKaFLRbQ4TSitCGGSsrFhRE17cZhHaPSE0gEdG+LJgC06ELrkPitm4MdojS0l8YQyLYipaHFI9HucjoyTJsYg5aqVUKGNlW0/p0wYT4zjhHUN19cv6NqOtsl89uln9N2Oh8c9r9/e8+XXr4V6F7xsDqUtiPUCv2pdAB8t32XsslnMOgU1PbuAFcpojDO41tF0FmPBOvnbjzCETElxHCNv7h943B/45vaO24cH7vePohlSmA4khTHLQTKfGzkLoJbjKopXtp+CgEcMUxJUO8csubEF+NkfDqScOZyOnIYRZSQv2rYdFmg2G654JYdGAXtyGbNzhp4m56qfNQo7I0YmH/A+zGUSqyCudSIE1zYNzjqEshlL3m+aq/KIyHFB3oFa2lOAnwZdvlf8KilrnlLABzngUmEgKBLBOxHKfc4x/IDBVcHsDz1njKHrurKv1ghGZVRUoLlSwKUvx3FCaSPOSQF+2n5D4xyQaayjsYYwTZwe7zg9vCWGUFJXdVmTws6Zjc5iaDqnCsM2Y0yDtZL2ejzpUtUvoQOlX8ucSwk/Jt58fcf920c2mw2N6WlMh9aa692OFxcXPO4PokMynEp5+IEgIhOFpgvD4HncH4DMOAW6fgvKEpKm20wo4xnHULSlPkYloTqgZaxAKhYW+orKueh+KWzbsru+wTU9m4trNpcvabpeggpTKcE956YXjQAA/a1JREFUTijdkVKm7zYYXenNFfSRuSw4rabtNyhe4KeBttuSsiEmhc6qsAYyRjla16GyYdslho1obF1sey62veTh17RaCiXZy/kdyjokJ6yKNE2mdfDiUvPpTSNaGFtD0yvGKXN3PzGMR0mxK2WIFYrGSVBknAIPjwP748TkBfgZp6qSUt3l1ZGUhR6tUOK0UTewZ9xXlbCf0Aa0A+3o2pZNv2G72dJ1PcYIAEeW+R5KmosWXAavE2YMmKCWYADykcZKAYIqzCzpbiUYhcLYnrYTW8baCddI2nOp1A45M46PjONjSYWeiFHWGaeBrEYUiu1mx7bfQYb9fuJw9JyGib/+5W942H+B9ycBfg4PkBNNo9i2suaaUqVEa6n8Zet+3hisE1ChaTVdltTOxra4UrQhx8zpNJZqcRlUuU9r6ZGgiNYCzg/DwHg68TFgH7kYj0HhjAAIrVP0rabvFH1n6btGwJ9NS7PpaPsGaIAehaRBYSwxakKasMNA1pFsDiSlyTkI8NP3uKbBNS2uMFWN1sJ0W4E+CjAkTAF/qiAoCPBnlCXnRPSS+phTxofE6GtqT0kXVOCKqHfMiXgITF4AGaOyAFZRYUrKIhm6ZkPKdi4dH3wQdFolfJCgUAxF/D5Egp+IUyBU4CcJ+COC8UUTT4HVc2D92ZtS4IwixVy0lpI4azD/qwwwh6+W6pfnLZGzIsZSgTUJmBZL8QhRuxMU1kdNnBTKK4KaOPpHrDU8XEcOY6JtLJ+83NL2O7TR2F6z2Uo65HAKDEfZu0OEEBbbpjLh6mOooI8ElyoTLaYs2lmqnE+FdZUR4EdlhVGShuaaRqp4+klAuyjAVi6p4HOAcmY1PWW6rgbtHwHo8z57aLZ7VOV1I2ckCyNOlTQv+RE9S611AX46Npue3Vb2977vcM7SNK74iMICqkdNLXqQk1QrrJkDqRSz0Tagm4hRCrfp6ULEeM8QAlMIKKXpmoapFf+4dRZnDFolfI6o9GT+nrFBlvPuaarXx26yFk0BMSO1aEtlgy4XK3Z1rU4pTNmikVRSvQCmnCTlHUhCtKRrHG1n+fzxWoKOwxF12kOMsidW2ZgLSSU3rqHpe1zboowlBU8KodgvUWTYlKSuWmsEQC5svzovFpmYgv7ADPygpLiItk2pIAvONUzjIFU5T4cZxEkxoZWhaS2ua/Epg7E0IXE8ncQXC6XQzlyEJa/W3QICfZ8R/aOneh2PR06nkxze4zgzaZ6WN3/686EUrvXj9e9rMef1a2uHcZ2OVb+7lpGfS6cVraB16tWSJsL8en2ufmZl7zy9vnXKWf2+p6lnT/vkH1TLUFNW3hsEAFBFXlarubS2thZtLeRUxF8boeGSsFF0J4ypuh9KaG9I6V8J05QIS0FYZS/L5FJmb72v1xQF2eNWKWVKr56vFywfmsp9qQLa5Kxpm5a+FyOqLcZZzpkxltLx6+DIfO/lyXl/PR+/TJmD5YJzXpTtqR8nntnqwz9OyyhCSgzjxHEYGMaxCCLXTOTFEz1PzHpPlKAecKqi3vW4LFvjzNhbUfZX61LSshJQKLPqPM1Np4yJK62v+VrUsnZLVR9V1m0oZcbjXHEjz1Xbcs5FLNbKBp5FCG6d3qXqd81RsFo9brlphUT96gXVsc2Zgs4zi0I/d5rQt+0N69fW3/vuXlSowqhVusVTML2Ut59B9CIIWtJYoOgItC1aKfxQUrr0IuJMlvdImphGhUgknkVTlMrCyLKJuKoGpFIkZYPJIpZPlFQYhSraC1nKZw4Tw2nAGkPXNujGipNktFSJSsWYLutzHsfZwKWMWwXtqrbB+nj9eG0xQZfVJo+q2nvpcyv7p7EObSxKGWEDaAulvLq1rmj82NmgXX/TGsWtZ04sFfLmamBZSZSu6ECoMkesFTYLStG2Dc6JkGhKkZgjOUm6X8olOtm0dFHQDas8VkVap2mdwxXhe62raHiaAaSne4YYjPXcrKl6pYofnO05Z/vm2XSuVG/95PnnadWBmPu19O3Z2jpbm6zmIXPal1J5rtyklNyvVjW9Tb4pKU1Kcsc15z/nTFaGrGQuoBWqsB+0bTCpRaVILS+kU8R4SZ9VFINb6+JUGrSO5TwUUfgQpRx0lZfUWqOtKakINZ1aFSNezSnLc1pEuX2tKDoYpmhmnAf5KrvBrPtLLatiTp/+CK2eXnJPeZXSoeYAzTplWOnigSBsLqUMSht01gLmWCcAqnLY3JCzMEalKps9syuVquGFFfizzJZlwqinKcbL67lOpLoS/v/c/cuPNVm65gn91s0u++K37xZf5OVknqxzqk5RE6QaNRMEfwAjmCGQkHqMxIBW/wU9QmJaEgOQGIAEEoyQUItGIEo9qBYSg56c6qo+mScvEd/N3ffFzNaNwbuWmW2PLzIiT3pkHrCQh/u3ffvetm3ZWut9n/d5n6cmuGppu9S5wKPSuzR/3rn1a65qa1TWJbVR8ylkMlklYTXFKOtwkkSmJijznpfX5wHrFqd6Xs89F+dWsvkqCLxz0dK1WtWXRPRbrRF4MlWLcYPws5S2KO1Ez0VZ0afLGh9h8gmU2MD7EAszWM3C82n1daGjsz4NVvtyAezJeXZhW1/LC9LOk01LqTp3Vi7EabE1r59u/WdP44fPPb5QOP6xHt9xg10uyxegD9S2RV0cYg1NIzqGtaOkFj4/95qyTsgFTrq6S0qgobXEGJRiYy57kzIaFUvblzYovThCm/J6Wos7nwA7T679GvSp3+fzU98Yxx+q3WsdS89zfXnjeb+o73vRBlr/5uJPCh6AmBGMfgIyox8Zp5HGaLT36BBQMZJikIIuFGvRKrkgqPMcCxRwVCk1rxdy/kuax8UcuYyla05av80xtlKLI3EUPdLqjuljrPU8asdu1fuypuABT/Kk+aQokc7qPVHfvF7fdvxJgZ9xHPl3/+7f8etf/5rj8UgI0vtcwZKqt7Nu81oDK0/ZPOuFpwav69dTStG2YhldEbraxtV1HbvdjrZtL4SYD4cDj4+PhBA4n8UtBLh4nfpeOeeZtaOUOHltt1uapuHFixe8evVq/tzee87nMw8PD4K2lzavcRxnoGi73c5Mn+12O7OH/jEdkmRNEiCYiowzI9jlWUAutFpZPnXT0O735BBkUcuJMI2chyP64AhhwqgGrR0xxFKHWZDUcQRl5LGkirxWTQ4UOGdxbdUh0Kiia6DQGN2iiDi7obUQU2T0I1MY57Y1Y6TlxBgBoLS23N1ecXvreHh85Fe/+ZqvP3zkPJxJ7z8wjKN83qrZUDVJWE3IuhErOe9MDYYq0LQEHVnQERHuCwntFSRFKEH4s48jEJTicRj45W9/y+++/pp3799zOJ+ZUkQ0moqgqJJEXlN6j6vFrJIe/pSFPaCqCHQu1uYockxkFVE601VmW9Ow2+25vrlhU1hyIFRQp3WpmuiLgNDM1+tyIcyFrlztnDMQvOf+4YFPHz8yTROf7u85HI/EGLi9u2O724qORqlUhhB4+HTP8XgobgJFhyslchAAqSa9CrXovhTEv447WYTFVdmcYtHriFoL5XQlIP1nOWritFq/5l+VX+e8lI7qb421dP1mZjbOVUhjyFpMxNtuw9X1LTFMqOiJ5yPB6zl4CiZytb8uriiRYRwZh9K6F7K0JaSMNg5jW1KKaGuwjSUlYWr6wuaKPhR3LmEjZR8Zmfjdr7/ifDjRNI6Xd9dcXW2ZpomNM7y82XMaPcMYGcfIOrjV2tI0PW2/o2k7KIF7ygaUBPRai3W2sT8gA1OBynWfs2jdoJVH6xZtOpQB1+7ZXd3R9ltcu8EYh+iLgLVSCdbaYW1LShnnJNDQK9C7jnc9tNbiwkam63u22x3kzPT4iePhTAyeafTU9puXr6949SNh+fSbnn7Tg1KEGAjVJr3EmZlL5ptOAzqJwHOnTjTqDEoJGzNEhikxDhNhiqSkcLbFKtE18iFxOJ6ZpsB5kLH0IRGTJmO+AdCtA7Oq42WdLbpI7bMGuGTIUQoHIpIr7mNN09CWL1dE8Wt7qtamsADrPiBOgHWN01mX/UM0BDKiJZKzaNv4sgWDiPjGkErbRmbycjGa1tAoK8yAzrLZ7oFEjhMpjqLx1J1ojkdJ2qfA/f2RGCL3DyceH8+ch5Gv3/2Od++/YpwmvB9xzqAVtF1D10qMkkJkHEaxfremgB5maZ+ePMdTQiUp+HVNQ9c0BB94OE8Mw0guYJIUzQQhyihiEne32q7fOIeZh+/wbMOoAKOlFbxpNI2FtgXXSHuOdRbrWqzrMLZDmw6tGzIOsgWMMFedRRlNt9VcqUZahFJLiC05R7a7LftrYZxru0e7TtaZauahZO2UGCahUiAnTVKy/maVSkHFk7Mv+60nF9cwbaAp93cF5SCL6GkI0tYQJ1Ty6BxQKolAsVLkZEg4ctb4EAg5kWNgOAfOp6Hst56UI21rcDqL7WKKpGmEEJhGTwxTEQqPOAuNM6U1rAInGROEQfP90pXvOYZKxG8jmVQBLJA5ygrkr3+QVxteLdyV581/UwChrBSxGEgY22CaDqUtzWZLt7uW+MgV1zMFwcKnMWN8IpqRIUcap3k9tUTVYrUiB7GEzwqxkF4J+NRSlLQO2bpJl9Ouul0BpTLaJLSRv0+h0JKUmFJ4oRcKKGk0KhkpwDYNqABDkHsnP9VuuowRnmBRf5qKyB95XIJ95VDL/vC0RlBjIQFD5d7se8e2tzhnefXqji/fvqLve66vdoV5o4RlnmQPcI1DKwta44zBNWKIkWLV7MskFUk6EnVkMBNeK6JSJGtQRS/RtC3OB9CGpploRmmFdUYYP6DQYYZlWYJmRTUdQdVCuFp/+Dn++2FbvURCIBV6X9Xd1LnOqnJuFG3c2lWjdMniVoysclTA9DyNfLyPWKPZN5ZfdQ27rmNn4MoorFxwjBaqjiKSoociyRByQpNQRmFK+2vyAxnpYhD+cI0VnwBjdW01BlOB9JRRMZebJ8/7dNNIkc45xzTcosn44DHHB05DBqXJweOHE0lpnG7QxpFTpGtburbDhyDmCCmhqqRQrjI0pbtJ68K4LaWDr759XP7kwM+///f/nt/+9recTidCCIuYbmHH1IpPBX3WwE/9vtYDqgnAU+CnKbZ6a8Cm6urknGnblt1uR9d13NzccHd3h9aa+/t77otTzf39/dzK1ff9bAu/FoU+Ho/zArLZbGbA5vb2ltevXwMwDAPTNHE4HPjVr341gz71q36mzWYzv0YFkNZC0P8YjpwTfhqLOKgVxOSyPrD8W1EcKDSmcUJPzsX+EEX0E+7YQQLvJ5ztca4TYGaaOI/nmRI3+Qg+k4ikLI5dMXpiErFK1xiaSWjm1jY0roW6aeoGTcKZTHJSoZoQ69qcSrXLgLEiyigU+pbN9gV9d8vV/pG3b37Jb7/6LYfjgYfDCfI9lIWrou15BgFk11BFxqRED0sluwACa7aeVF0KqBAyycjfBC300GcfR6S//jAO/Op3v+WXv/wVh9OJw3DGpzRfB6UNRsmXtIesRTalGqgrcj87F6xs6okSmGhhXLWd2Klvd+LqJfbqXUkQk4yfa2YBwuVYmCmVfbcGidfsQHJmGAbef/jANE08PjxwPB0xWnNze8NutxP24eHIeB4Yh4FpHDmdTlS6qTGWrALZy1qkEHcgXayRK4PoKXtLWGMFjIpFFyDI2vPDaFJ8/6OC5RU8n4VZ1/N3pntDjYjE4nxzWYmEOUEBaLqOxkCKgTicGB5bcYwpL29NZLe7AmWIIXI4njia00wz94Vqrq3DNsK41E7jWiPsn7NlHISdFUyY2wvGOOBDxMfA17/7mg9ffU3ft6jwBSbdksh0znJ3s6c9jXy6P/NoxsLsEThWaXGba7strmlAO2IWGn+t5GpjBZQyPwzwIzG0BEFkBGxVDVoFtPYo06GNwrVbNrsbNrt9qTA3QGFXSP8C1maaZgnqLpixcwVwObQRRyJUpm07+u2WnCLT4wOH41la9KYASPvNzctX3L5+WzRXSnKeM5P3hZYOTdvO1rZt1wnQkjPZHyCcSWFg+PRLxsffyno8eM5TYPSJafQEL+w/ZxqMlSDY+0SIA5MX4GecRLcpZrFRr+vvcveW4KxWuE1l+Ta0bTe3TjzPIWs6q1jEGktbnPIa62Y3xAr6CHOOJUDPihQFLVMrEd6sZH9AS2EgxDS/pypJTYwQSyvk5BPTJIF1qzSdsxil2XWOzdahNeQ4QRxFn8s9Ym1P8J6H9x94fHjAT54PHx/4dP/IeRh4//5rPnx4V8C9CdcIJb/rGvquIcXEyZ8YhwlrDf2mKwB6EVrvGpTKGJ3QeUIrR+s0275hUJR20rGAc9IyllFF0EgzTROneGYYRrSCxlmU+wFiI5UxKhWRa2gbjWsooE8BfmyLqcCPblG6QWHI2ZILy0dng8qaVjtsYwXUoyPlnkyi63o2263sM/Rk1SKgUQV+akKaEd2hKCCKEt28pEtxLXtS8qWgFKAkKpUVoBDGoyutmNMYmeIoVfA4oqJH5Sif2UihLicDOAFUoy+ttZHxHDg81pakiZgCXWvobEbnADmi4wSpAj+enAIqJ6xRtI1GBbC+sCoR4WH1zC3QCmGTkTNaicBxjUxgVWhbJ79PXiPPzyus5TIPE+IWmCgi6v0OYxz99R37F68xrilOgppMxk8n7sdHIDLkgcOUaKwiscW20FhNoxKupLi5tNHJOagZAFLaoKvGKCz5T4JQwUEjgrKqaAVR2kxiSvjSLmSdERZJXvQOc1YoNZZ9fQFJKkhWH/3/n2PmdUuc/mT0Z95tYWJoDX3nuL7e0raOVy9v+OLNS/q+43q/wxYWcYxRTBZUYSxag8piHtI2LUoxFxtzzkQloI9SYvntlSJqAX5orLjtNQ2uEWddZx3OOlIUzShnLZmI1mEFyhXWUF0+EhdMmlKWLrfV51rgnv9KO2ueAD+5AD9cAj8FvFAI8GMK+F3ZMFBXQ5mb52liPJ8wwNYobqxm27W82nZ0VzswGqOQNlYFCllDxa29MM7Rc1tZzhk16FKkj5AjFEe1BRKsH6wQGqwIhwkTPc1zNykQ4oIWHTdtCb4h7kcsMPmRFD0peCKZKXqZo9bi+pamaUgp0rctXVtcAqcJHUKth5CR787qYrJh6doWZ797X/yT27lX9ss6AVknck/7SZ+ikmuAZ92+tXa/+hyCuRZprs9biz3X1606O7Xq1DQNVQy6spLWjKM1W6m2d9XvFcyqFOb63mmVONZjDSg9bU/7tmuxfuzbjudGcyvlWyEWoPqCNbA6l9mtYYHOVQF+tJFqA4C1jWyWSMhiY0ClSEgJHYpLhpIKVdWPnr+S2IWjSpIdIzkrdF1QUbMN5gy2JFXYzWUn/8b1gmrnbbQpLkaWtm3Y9B0hBqyzgvBfXpnVi1xWm1UFgVaJ11IuWf5+vv9TkgQA0YJ4zmrY+pBWqMjkPaOXhWdO7tVSeS4XhZkuWj5fKeyzhg8EiK6fhfk5wMV8X7dEmpVo+lJt+9x9fTkn1vO/zqd6vmtmni3zUQCMns1mQ4qJMHn8OBVR6tJmugYtf+91X5JModbLz9WNar5J6za7Aoj+FMfvWxfmIEGVn/I378X1/alYqOSfe926gVPvd72qMM0UE1USb2Fzuaah8aWCoSOoWIICqfCrFLHREpNFJUW0luhEgJIqjJ6Z2UfkTI5JYMZgCN7jvYj65SQJ8qoWhoyVQmXKWt/S9b0kqX1P23V0XU/TdjRNi3PNhbbbD3FUSEbGRs8gpNYWYxqyFUaULi5RVIadAvIljfqb7XpL4PK5LUGVqqAulWXRo1Grvar8oZax22y3whLS0vaXyTQ+XAA/Tdsgdt6duPPlRJo0adJErwkHx0hpDS3reRW9TwWQp4A2NdCaq/B53YpXE5Rl7Zjv7ZI8ranXs/nDcy6r6/P4lrm3pr3XcViNCssJqXnJ4OJ3CkowKUATRfdM9EyEDSR6JFOxblZTRNmIsZm2sYQkMv0KaX/WWhhv2lh00dapc3BJfitrSwoXSqniQlLY13wzVpkD+lmXRD5MdYlyVch4tUfOK0l1W0EJQFCKJbPmYoklzA8wF+eEr3zNCZRaPWPlzDaPVb03qfuAPFvXF8ki/J1IoHIxAXFobcgYUtZk9HzfqnVVCCiLXnkfVSrSzHvQfHZP7mlV9qQCWVCdAnOSxKa2V6rSulfTwlRuwJSSCIsWlyrv4yKDkCJBM+vvKUHTxcChXIsa+8ztclWcXCGA57fE689zXK5366m5/lnVn1dsnyU2XJ6kyo0xt1eVNj5tG0wRc63ATyrAj0oeFRu57ioQkyckxRQrKy+hdC7OtpQOvfre9X6oe6u+uCFV7ROp8dkcaCZWN+wlaLOOzS4vU/318her+/m7jvWf/TmP9TT9ztNRNW65+EvmdUip4t4lbpK1vatpBJiWNq8lBpW4XQT51/qwUIfoSdvO6mRlnctUv5eyisxju5zPan2s9+TqnJ9+km++1+eO/F1P+Icf9XOzfEep0u5WH9PL79Ulw6f+dHGGq6WxrpNSjJXiqrAfa67M6nqtr+cKa1C5tHpR2r6kTXPWFsqqFN/rtayjkwtoWse4CK+XWKyGTDUmrgQP6xwpJ/m5yCCoGqPmWc5xBnMa58ggwJ+r7dAFz9BK2K/lHm1L++F3HX9S4CeEwLt37zgchJrbti1937Pf7+mLe48vziS5VO3X+j4gtKntdou1Vmx4y/NhSXbqxlQdwsZxnJPA6rQVY+R3v/vd3KN5dXU1gzW3t7eklOi6ju12OwNDNeiviSZA13XkgurWNq2u63j9+jUvX74kpcTHjx/ntrYqMO29Ryk1v+f6ay1IXdvT6ueq16Oe93cdT/s3/9gjxsj9p480XcvWXGO1kopKrlMtzxOjJiRyaLKVBE21LTZnTIhka8nGEIJnHM6Y4yMxBqw7o7UlxsAUJsYwCPiTxKEl50SsIA4QVcariFIQpsSgPCBCeTEI6BNiELG/nIhBoZW0N8xJQxYWkyDAIkjpXKbrDG9ev+Dnx59x/3DPh0+feP/+PSFFfBJdGeoCg8JYg2sELFJaSFHCtI5YGzAmil1vrLBBSXSKZfNwyuhRlQq/wZjnX5R9CHz96SMfHj5xfzjweDwy+SBU8qodUk5cNF4smmJbWXWSWPphc4YUZUGqVqYpgVVm1rlwTgRPa5vl3d0tm82GqyuZ/7U90/uwSgbK3aOXpHvN9BvHcRZsr19aa/b7PV988cUM7sYYMdqw223Z9hvGYSTGyOFwIJHxMTD6SfS9qsvHCqiqgEH9zOLwIRUBisC1Qnq2a9vfOpBWJXD/UxzfCvqsQdoZ9IHL4O4zf6soWzMFEFy/ZKlwJHEryGXj1aXdJYOIhMeMsQ2bnVBq282eqxsJjoZRHNtiSpxOZ4bhLEyExuAmYVx2bUeYPClGTsczw0kc9kipOF9lVJZkxgCnw4H3WSrkWVmy0gxjIAXpq85VpwjFdrfjxz/9KT/56U9p+467uxf02y1N07K/uqHtevrNhqvrG7q+/wePyx9yaG1omh6FLi1mDSkGtvsrnNsI06cEMSvMQ4brCUA3Bybz/8oxP0WDlgqja6TVS+XEg7XixOa9rLXKYGzDzYvX/OQXf03b9XSbnm7ToVCEVIA8kESo7FFVyySnwPnha8bDB8bTI9PhPZ++/g0hZEIwwlrxCT96/FnmUqN1qXSLiqkyWthYWZU2rzzrMVWgAuoenQvoI+0u1kjQ1XYC8j07iJcSOcZic+6lJbE6kzlhYhTsrLQWK4wVe3CtRUzSGIl1ZI0pejdGS9ufru0msr4Mk+d0HImp2NkX4GcYPKfzJLpARqOK09bdbc/5doN1mk2r2fai45SVQ5kWnTTWbXDdBMbT9JHWJ5I22EaqjgZL10rbGkp4VpXibpSamU7ONTRNh9IUYXRpR7na7rne7VCAxsyBrjFCU1eFrm6MFQ2HYSwi/X6Om3CWtmuLsPzzHgppE7JGYbXC6UJaLsBaSpCjhmTJ0RCnTFTCbF20YZLo9CiNtoibGwplGpTrJH5zLa7doLQmRIsPwrwACqhT7X5ViQNjiQMVKRlSFPguF42enPOsBwIlEcqx6DBPpcUkEcYjfjyTUoQ4obMXACiPkKX1L/iBOA34EHh8PHI8nRgnz8cPR+4fziXJEtfG0Fuutw29s2iVRYBazh7nDF1nQSe6TtywtIfRS3E8ZiWMH60u16VnO/I3QI0MBSwWqEs9efrl/rcgf6LrBAaLbRxZGbrtNZvrlxjX0u2vcFd7tHWFPm7kGsQtfbiBnNDpjEpHkkqcRsXXHwLWwMZmNk40vBqjhUGipC1Vm8KqNI5UWu/VDCYm0V+LRRbBgo5KgB8t7PhcgUotWkQhiQtpLC3stU3+Uqghl9DgMhb4NiAl/97f/umO73cL1eRdVqAKLagLpEjWXecsfetw1nB3t+ft25d0bcPt7Z6+a2gaaaGNxezFBxHMllsmoXLCWEvbOpRI1M/vJfFyLmznWoCVOT76yOhlH/ExFac3ASVsXV+tKaLJ5Vao+dcam1gDQXn9w/pY9sv5kWcsUArjsDJ+9Kzbt5giz/yq2a2wXqPa5iUAtJyrmKnI+thq2NgGpxX71tEZRVsE+a010lmycuPWXYduGpS1ZI10i6QMusM0hZSx6XBpL+D4OJLGUXLWsvZLspnEpCYLSlcdnsWJrLRkV23aFZiljXQ8aBTej3g/AlmkJMYR5b0Y/BiFMtC3lpd313S7nnHydJue43kgJelciqVjqu/b0tJvLuVh/s23j8ufHPj58OFDaalQhQIsSeBms8F7zzAMc7IGl8BFZeHsdjuaokw/juP8/Mokqi0glWFQv6oGj9aaw+HAp0+fUEqx2+344osv5tYw0RyBvu/ntpDadpZznl26lBJdn7ZtMcaw3W7ZbDa0bcuLFy+4u7sjhMAwDJxOp7ndrJ4zcMEOqmyhtajzOsldM4fWQNSf8kgx8vjwkU2UMVONK6jrarEo1N2aaOSswBQaK6BUK4FjyuhGqiUpRM6nI0oLCGSMQ2VFDAE1nPGTILo5CbtHKl+6aCJkkkpCeVVCbY1FkDT4jJ9qX/eyyOWMAD8qz5aWzFVQW3QKFNZl2mx4+fKWEH/Ch487/t3f/ZK+a8U+OUyE0rQuImzFHakq/GswJhfgR5XFoYRGanEGE0aTggQxBrKSxCB6g/4BXL1ijHy4Fxevx+ORw/ksrCgUyrgL0EfNehRFVO4zVQSpysrKKO07kZREQV+rheXTFL2H3W7Lzc0N2+2W/W4/L1h1fsl9sgh41o7HCp7WeT4MwwwQrwXY9/v9zLgzxkjvvdb0bUfbNBwPR96/fy/VmSyg4OSnUslM84JdRf3kRlbzBprr5y2gDznOlVWtM2uGj6L+/OcLjp5u5oUkU3/75Hs551XFtLLtnrIN61eMgRiEupqy9E3rVILNKNdKWjDdfE8pJb3fp/PA+TwQYsQ+PqIPVoA6p3Bjaa3rxHUthIhGyzwJkeSjAI65VFeziKOejkem4SCgZdOibcPopSKkVZFM1YasNZvNlrc/+jG/+Ou/ZrPZ8OrNF+z3e7QRPQ9jxAlusy2tYD/IsUJuEBaGa3qUsjjX03Y7INN0Hdb1KO2+WdX8DPhzAfp/6zKiEC0jcE3LZrOV3nhrJUHwgaRFr0Bbx9XdS37881/Qb3dc395wfXON0tJKUpNfbaroLVSGRPQTD+9+xeOH33J8+MTXv/y3hGjwIRGCJQYl7zcp/CDtpjQagwDCWIOyBh1FzNjXVsoLm9jVGh8FJEkr9p+zjraRPb6yUZ7tKFXf6CMpBUIBfoTeL5TxWnCshUWtwVhdfq7VXGbWU85gsxQptNbzElRjnMOx2N4Xd9iUM6fTxOE4zJbxMYpA8fm0JfhA0xjubjY0biMVSqRlUFwle1w7gQ40XRBWHgrbNNISqBSbrmPTtZAzfhwI4yjC6WisloDbOnGryjkxDWe8n2gby+sX11zvt8QYOB6kNUxThJ6d7DOuiLqnnJimkdN5IIRSMAtBWGnW0XQ/AAirwBpxI3VadCIqEyPFTIqKlA05G/nZiy5LJs7ag1pntBGGhjOGxhXWQNNgu07AGdOgbAdK472kOhXDjqnosQCmJKcpl1Y+FCoaohY29JoxpYvgPgj7MaUEKZH8SAwC/oTpQBhPooeXIprazjBCljatGEamacBPnsPjifuHA+MUuP90EuAnJ0jiBpaCY7ju8b1YzmMLkpcV1mlaDFkp2i6J07gGO2ZMFN0+EZL/4ffFvP7KJd9TAlBdCGh/plBa2y5VFtkAbA/K0O6v2Ny+EBBvu8XudgJSG4uyTUlq5XKQE+H8gD99IqfAaRqI0xmrErsWfCdOZ5tW03caoxVGCZtIaWEXZW1KfVIA8JwS2SSSEf1IZUBbyFGBCszS4EoYcjkzG13UOGe2dM+XF2uWLfhWhu//Dx+VRcWaZV65JakU8cBax6Z3NI3l9mbHm9d3dF3L9dWWvmtEx0xliXuUYppGxqkCPxJDWWtJ2818Xy3/yfoeQiR4AX0mH4tgcWQs+4aPsr8JwFPa81IqchSmtPmtCj25IEGsxmgds7GK9p4O+g9yrcFog86sCqLqooBYr7yCWVR7ebSCtSW2SAmKjmZjLFdtQ2M0u8bSGkWjxfnSWLlWlYmntEa3neSrxoCGVICfrBp0U8ylkuiN5phIWowzSAkVM6q0UqMj1BwkxBmwn9lfqNJZUueefDhpe+9prMP7hmk6Q45MwRNKXquMEmNQDbqxvGiv2KMYJo9tGg6ngRQD4zgUrTvLbictiMZIq9c/OsbP0+Np68eauXOZpC+LcW3Xqq1hFQipCeHT11gDNsCiwl40LuprfE5I2jk3U/bWwFI9D6XUDBQJ8iY6QBXEqYlsZe6sW1KeLqjr85imiWEY5nNdM5nq39bXrueyfp319X362B971GDMlR7EdYI7rx3rGYsqifJqQaqRLxmMkSqJUrPbF0phQ5gZIDZ4AR6yiDXXt0y1qkuG0vIl14k5aK7fK9hT23Bqr2nOuQR0NUiOksRGAaBCkF52s9KLatvSxqdgSmH+zE/pnDWIn4N9xexwUpPoGvQsXWdLi1RW8hmrQ+dzHgJcP2mXKB+ksnnm9h3UPFcv2tdWNYwaUX0uYLigWebP/355beaFFNbA7zcrE+vXXoO85Dw7sM3rRUH9nRPnIm0W9tC69TKtP0OhC9S2tjVOsgYS58F/co5q+S1L88Sf/livpfX73CKwnr+wOsfV56k/PTn9ResoFWbIRAqBGMMyv2C5hkXfRCkttHjbyBxFNBFCCEwFVI8xQhb9iZQiyXtiOQdxSZBWpKZtqM40JAWpJjJBqjYKiIlMEDC4soOU9GcrY3GlANH1ffnqaKuem23RxcZem7VA4g94lCmlyvVC6wKi5UXgc43nzEO1WmtZ1v+n53wxjHlpS4HLeSTMk1JlS+JIkjNCiy5zylqHdS161uQqaYEuVOn1B8oZlJlnQsrVQU3N7mkp1/Mo7khqRbmuldIs+iD155rM1XttuW9L7ICA8uISZ2aK9XMP5WV4TQGCcnH1q2vCOgVNMLtMLntFPVLdq1IuLV3MS60ABKU1INVrubCf6h4YYyb4iNIKP0WmMQhg4wPeB4wWYLYyp0JK+JgI5f1qq+EcM61YPTkLGygXgE8qu4XCbmtMV1sflnNKKZFinqetAIVLZXa+X7+xXK727JwFoH/mQ3E5FkubQv19/U/P1ehq1lBZZ0kpdCz3sNUY5YSBUZN1pecWhTnN+cZ7lRYtlcq+uZzDajqwiO0XwEnX+KbsWUVDShrppbWrakppUrH/FuBAihhpBoVEQyaWVq76vbqA5Xn/X9I2aX1Isz9AbVelaA5ltMoXLXTrz/2cx0WccLEmrJ7DmrO8ClvX+7rMAmZdw7Luoe3iqmgXdvQFqlvHpbyOLk5usk95sfZGCk9RpGEKeVVGp0YNoFfRw+L1Vl2gluCzFupYzre0RS4gd6Et5M9Mr/m6LK168/X43ACtXuAZU4w//Hj63k/PVX0erFq3Py9Pre6Dok3Tdg1tY0t7l4AtlYGXoppd7KTQUl2jKN0Jxcil5m2r/C2XvWFZrwsIVwDbFBedzPnM1GrGzevRZy5AXj7NxcN/lkFa1nNN5VJdbnQXwM8K8FGVAVlu1jpapqzPrTX0jZu/d40Tm3trpWuhgrDGlhjCzFqjde0mX8g2F0c1ByqKC7WxZCUaa+g0d1E+ve7zeZd7SitFkoRPtASLKI/Wimw0OhaJG2uwORcmly7F9gIYK7Bak7UmxiQsL2uICnJyGKVoGkfftbRdizWmkFD+kQE/FUypgEZtWapMnArUTNM0B/9P7c6rcHPbtmw2m1k353A48LG4+KxbwCqgY4xhv9+z2+1wzhFj5Hw+z+9ZXcastWy327l1a7/fk3OeLejXfZv1Obvdbv672oZ2cyMisrUNZRgGzufzfH4xxvl16rkcDgecc/zd3/3dDB5dXV3NotKVDVTbwSqylz4TAP1QCUrwnt/+9tfc3b7g5vqGvu0kubqonpYNc30Kq+S5hh3oLDRzDSYl2uKGkEKgO5/ompYYAu7xkZQU3nuO5wNDGIgxMUXRp8lEjFUYtw4giuZTlgpezlkqo0HEomMBdXLORC/tYJPL3D/cs9m+wzWOsz/weO4EgdGa29sbtNF88eYNP37/ntMw8Jt3XzGESd7RFPcFq4sLgyxQtlD5UxQrSG8NWiVyyKtrIkdmxq9EJiky0yOf+0hU+0hxYCHledPXqrpYidaRc05a4JTCmjq0EZ0U9fb7BqhZgK6aBCikxcxM4uBSmX+73XZuBatXQ4DQBbSVNeByLcg5z2w7YBZPRSk2RdgQSgKtCgWzzL0QI+M0chrOnMdBNI5WgvIiKl6TRgEbU1jsaivFXimKY5CWwULYSjlXQblVgPtnAn7q+SxMqRLA17CyJhTyYSUATXEJVFgFDavELISAn6SSfDp84vjpvQiuDyfCOEpwREY7S84UDQQRfd3tr9nur1BKMxVtmBgC9/efeLh/IAbP+XDPcHoghsDp8ZHz8UC0kd0uYotFteJKAoqUCNOZOE3E6DkdHhiGIznDOHhi9viYi4i0uF1d3VzTb3e8+eINr9+85vXr17R9z83tHZvtVgIEY2fwwRi3AjOefYQu/qWNpulaUm1nKUGKtrYwaZaEUX749lf+BvCTn/6wvIY4fNk5Ca9zJaAIKLK2YkscMz5lIjXRMfPrVQBmHVJlMiFFjuczHz/dc3p45HSamKbiQjVlxhFCUBjT0nXS7tN2G5q2J5EZkmcKnmEKTCET8go8mi9CTUgXYFP26S3b3Y6bmxuur6+4ur5+VuMEaRFy5Kq9BOScCEEcPJt2EkelLBXlmCZU0uhsUcoJQ2S5eqQY8ZO0TYYYmSZftJQgKymanIdAjEXYOucZEANb1spM9BPDSUCmBzNgVKRxhhQmYhhFgD0LeyOGwIf7Ix/ff5rbP2zb47Ki68V4gpQL46eDnAjKEI0w93z2+CwFm5uba3ZX16K1NQWGPOF94v7jgeFwvgwN0Gz7Dc614t41eWGZpYSzlr5rGScvTpo5E3zgeDwzTZFnP5SIIdvS4mWgCI1arC5tFkZiWKM0pEgu2jfnMRCjtDiHUhNrXce224jI9WZDv7+SAle7pdkYEY/PWoA0LXu9KQL7SntQApzZAsCh6n7aopScj61Og6qIO+eEnyLBF3ZHCpACWkWaphZGmQtdKUV8GAlpELebeGaKZ6YYmPzI6CdGH+QrCLOnc4bGWNpGGOutc3OSG4qGolYWZzTJJlqn5n3T2oguujZrxsVzHxUoWV67aGOpp2UYdfHsChPUwo/seeKMaLsNZnuLsg3N9hqz3aJtQ25aUmkpFhfUum9IkUkBVmWUM6gcUKNFjQmdIxlPiIGcIDTiqAaakC0qi8ZdSpIsqsJA1rmwaZWwv7LKaGdwymFiLG2f4oaX0SKbkBKMgZRjyb2LOYOqINNS4KmF0gVRX12q8rCqv/5zgj7fcuTP/lzAWJiT/7nRqCBDzhq6xmGs5tWrW3789hVd13BzvWO76bHWkGLg8eFROjhCkGxGa7nWFeiOgRDkfvPjyHg+l6KknJCwfTx+mkRjcxg4n87EEBhOZ8kbYyryCfUerDqwscLOq6/8jeLcjNd9DvV6ciwz4HkPBYuDbGYWda6i6ZeQD7NBjMrljix/IySDRG81V12DM4qX+x0/eXFD3zZcbTe8uN7TWEvfb9ntrkpcLiAtSqFt0S7UGo1DR9FwIgo7R2mNdh3OinxLtmeybSAm/PkM6UxG3IBzFEF9UprzNa2dvF/JnRxmZuiCzKmkFEmDVZpu24La4n0gqYSxmqQgaEXMQQpf1okxRIZz0wjDCEfuWzLQ9x2vXopTsWAEzdzu+/uOPznwY629EMk0pS+t73umaSKldAGOPG1tWgM/VYOnPn46neYEpwJHtQ2sBnnVLWsYBpqmmd+jAj/b7XZOLPvZahoeHx9n9k0Fr4wx3NzccHUltpxV46d+pnZlGTsMw9yjHsJKB0Mtuj/H4xFjDH//939PZRO9ePGC/X4/u35VXaSqJQRLwl2vcaX519d/zsMHz7uvv0IrzTQO5BgkEDUVxV0tIU/eumrIJi3id+SMMhrtLORcwK4WYsS3Ha1xxCBuMuMwMWlxQcsRos8l2PLkHDHOYIMu4p3ypVBz61UuVc463tMU8JNYIwafCFPCuczj4yPb7QeMM5ynBne2WNOw37/mevcCbQyvXr3kiy/e8Hg8cH965OPjJ7mXdbXdFNBHG1lYajGoUhCt1USl0CaLoCaLUn3tNc5kVFbk0tbw3EeevySpVdqgqdXLLJU6FptAa6ottFCSlYKUAyosgZVUKIprWXmf2uZV51/wHm8M0zRyPg8YY2b9nQpkVoFkXxy11sy89RoCS/unXP+FqWBW4HI9YowcjkeZgykyekkmhnHEB0+o60XRbcoZWcS1Fo2ovAiMVrFSUMW9RjazFMOy4Zb7XauldvfnOtbAT9WLkDVCtCwqI8sUgCwnAUfXFXbIBUSTtTtMI9N5IMbA4eETHz98TfQTmoTJsbB5kIoo4oKimwZrHdura+5evkaX/u+YMzFENh+v2Ow/EfzE8b7n/NjhpwmVJYmNMcI24ZzM9U3f0TUNKUaG05FpODMOAzl6pnGUcZ4kcYlZEaKitlxeXe25vrvj1csXvHj5kruXL2nblqubquWjLoJiuY4/8EDVe8ZonCptZU8Lrt+BPf2ha/4SgJX7YcW+qMWTkBVTBoxjihGfMj4JeDwnD0/Xe5Y6ewZCSpzPA/cPB86PB07nCe8F+PGTfIWk0LqhaRXGWFzb45oWnyJhENBnLMBTkLiLeJGbqOUTlUjYGM1ms+H6+prrqyv2+yv2u933CpC+76EUkryrUpFjmUPBT0X3R9gVEvhDTAqbQWkrTI35wmVSjoTgiTHhfViq/UrN11r0HzQpi87e8p9BKYdSiRQC01nWq4MaUXnCOSUOUdljjAD5xmQBXh+PvP/0SM6Z7XZDvxHgp+16+q4np0Tf9WwaafWKSpOMFR8UHYgqYp0UrLZXe8Zh4uHhIKyumHgYjqgUsCW+alqHUoa+d3RKM00e7+9lfUrCHqptKloJ2Bti5HQe0NPzuyQqpFBkdBHZpGgXaVO+7MVeSIrkCGH0nA4D3kemKTKMnhQzfdsybjY4Y+j2V2Jg4RrapNCuExcm5bCmxAF5YQ5lFct3hTWNtDpqcM7QNMJEdK7B2eIYlD05T6QU0WpE2kkEhco6kEg4m+eEPYREUAL8BOWJSdbyEAd8GIqF8MgUJmlFCRHvBXTXraVpDI1zNLbB2YaUAkPwSKe2QmmLMWBTomkgZU1IqcRDseQACw/ghz0uE83aarLs4staJT/necfOWklhTBtc39NcXUsBo9th+g0YB9YRC5sAVRxvtRQOtHXivuM0TW5QORKPiZQHaZlLUpRMGpnPOMiamC0qCTMxpSKEjiIm0VrMORMx0oabc9GTEq3FEIRFpIuEgVIRHRMxUCynM1DOF70wh1gxziv4Q9n36vr+jxDouThWg3pxqooVq27RXhFwREbbWU3fNzhnuLu74kc/ekPft3SNo2sdSsE0jpyHsxRKELCotsFWtmBKgRhUAWFHpmGg6lQqpQUgLexm7z3jMDKepX1nHEamUYrSutqDUyVLFv3Xz8OltXB6yaLLea69f+sF+0HAnxo/l5OoQGHtMlg1Q84xqJxLRldKaASdIyontkbzom/orOFHt3t+8cVLtp2QQGqebJoNtt2BNiQ0sbDntF409DQGnRQqICye0palXYNyTu5/XRg/QcTw0zRIPJsTRC/3TMoFNBSgW5sGlGgxUTQuY47ijFiKwVW9ue0btBaJm5gDWkNImXMB43UpQihn0TmzaSwpuAJQSefCdrfl7dsvuL6+KsCg/V7Fye8EfpRSPwH+N8AXyAr9r3LO/0ul1B3wvwN+Bvx74H+Qc/74+15Laz1r+ayFktcATf15zfRZ6/TA0p4BzElgdQiqoM9sVzxPxsuWEGstbdsSo2xAa4ev9XvWBLO6EAGLG1Fh39S2rvr4UyHoEMJs3V4/21qoWWs9s5SmaeJ0OnE4HPDe03XdnNxWDaDKihrHcX6Pz13ryqz65S9/CfDXSqn/8o8dw5yqM9skLR0xkjVCo1tTai+ofMumerF5qNUzVEF7SwuOshbtlhYw58RdzRrR30k6iuaM0uJzoqpFbhm7sgArraowu4BBFQIvSXye6ZQikJeS2NVmZVA+k1UkOahW46bQ6TabDTFFmkYU1WXuL/j1xYdnXs9Wm07Ve1AF5GFZmVWeaY6gWA2vU0r933iGuVhPaj0vUALUKJ3LtRVK+yzsW3eP5c+pbWCXL1tb2NSsZq91BZgWMGZus5q1QZiviSoA3rpd5ekXMM/z+vO6He2pBtZMKa+vuTq39eea6bksiX5epbHrwKH+6erWp7aX1L+swaRSMEiy8ixz8fcdn2slreCZJPOpsJYUMctYY3Rpp1yeL6BP1TPKImpXKlcxiGVvjIEUwiwgWqvO9dNX1zRtRSvH1t5rK5uXKsuC0hHXtrRdhzGGMHbEqZvBPqU1OqXZ2WIN8oK4GmTnSEWfpr42FKeiXIFIhbMivt73HW3XFXe5EsCtgLDqBVaTJRY9iuedi8tIzQvmwub51oit/Pq7gZ7L2+Hz9VB53kI9n9fHygSkzIMZaFla+Z6+Wn76czmBmKQtUDTAltcXrZ5ESlWXYrVeWIMKwmgJF7oUS5VTnDRKIDmvtTLm0qbbzMWY6shSdPqeaQwLvVtRDC2F9p9q63AKpBSEBZcEzFepaDOsqurr4LuuK0tVvVZLq8Zd+ZSSaZTXXVqda/tyCKmAUIoQVCk2VdbfsrbHEIVZM4zkLPsdCmnhTKW9PCUR+C8ttaJXk4EKlhc9wrLGpNL3I8UoaU8jiDOZnH51/9OltXHZv7PWqJTmtXPdglVFQMvxbHNRreIEXe4npRY3OMGBV5BmLoYTSQSsJx+ZpsBw9sXpSokIq7WoccSNg2iguRY7jZgkmnCmaAJllr1YQWFTU1Gocl6gVJL7O0YiwjhOeSJnKYTlFJB9J5e4RZfuenERy4VFooqbzeo2nmOxeX80RopURs9f1pqZGahNZdQWZ8xU1rBUtfGQOKKeO2UcV+NaYuFnGcN5nVp9nssPWJ6nVGm5u0Q08sW/KPemCOjMQE5p78or98o1e0kVtvRF2yDl8yfIGtlHWVoH5VJpyh1PyiJkL+tYuTeKG63Kte11cTqs+2HOpUCjxZq6On0tifVyUfLqw9a1vcJe33px64+f//kH2hd/3/FtcMYSQ9ebTbaqp/cfc75graXrWprG0ncdbdeWAr644JKXNlml1JyzQtVoK4WitIqfUnH7KmCH1iX2zaWNehZoTxcDsjr7eYt9+knX47TsHeXz5Rq5PP3LJ6O7+keN/X6YMVRL/FT2hIv7iSdTFeYczhjR2GqtlbauwswSQK6hbST3tqvWS6VNaXmVvSalzJSKfhNZNM+NkRy2aqzmS1mZXObOvO+m6h5W9zn5kudGjIqSv5X1QKZmWj7hExxCG4Mp5BZjRU9I54Su/jIl5lYprZxpZ0j6chKucqfvOr4P4ycA/7Oc83+hlNoD/0Yp9X8F/sfAf5pz/k+UUv8R8B8B//Pf90Jd1/HP/tk/49e//jXv3r3j/v6ecRz59OkT0zTx+PjI4+Pj3IJVQZ0qAl21fE6nE9M0iUtQ19F1HSEEzmehyFVwJIRwAeCsAZqbmxvatp0rmsfjkWEYePny5cwoqs+XdpTdzLBZu29VYWpjDJvNZn5OZfJM08T9/T2/+93veHh44OHhgXEcL7SIKoOoPt85x8PDA23b8vr1a66urtjv9/z85z9ns9kwTRNfffUVX3/99Qx6VTpdreo3TcN+v5/BLeBXOed//seOYQiBD+++pmsbjo+P7Dc7tGswpX9SPnzR75FP+I3XUOun1NUqI6J1jbQcaS3oe46RrZLWEz9NZJWYphPT5NBWkbVUpV3b0LQtSukSsBUyrwqACM6Kbo9MjHFIBC9tXwop2hibCOnEafgoYMAg1L2m6em7l1xdSavi6zeviWQ+PXzi/cNH3n96X4LcCiap5f3lZiiTsggwGl0Q+BrgyfMreKRyZRkstqqrq/gsc1EphdVWXLcwGPTcD14BIKErC/STfBQ9AKPQjZkFnrWRClcFxlKSTccY+QxNmaOuaem7jr7raNq2gJ0CdAa/AL62KPHLyy+uLVqb+TXXwOp6kasBet3Na4tcvXaJXFrbhBHU9T27/Q6lRWheSbmstIFNy71cs686PqUdJmtJNo2Wtoq6O1/oeeQF9Fnhms8yF7/t+BwQvAbYpcJ0Li2wWnqilbQQ5MYJmJriTM2PIeCn4pw2g+6ZaRyZxoEUI9NwJOdARtwtYvBAxtgO27RobdnsrtjurkU0cX+N6zdorQvbTfTDrrWm326IIXDoG06bjvF8ZjgeePj0AbIW8bso2hchjYwhoFC41tK0FjtaNoc94xjR3nP2gJeEtW9aMJb99RVvvnjN67dvefn6NburHU3bYJ0FhTj1PQE1PxNePstcXI3S8lUC1OXxmpGVh757b//exxJEJHzwnM9nTmUvnfwk46mVtHOBBDYzoPltoejqBAtykVLEjyPn44nhdMKPfgYgxilwGjwpa3xyoh1jFKZraDY9eZrwhwdOw8g0SduJj2mpHpb31BXoJ6HEc4rNpufN6zd88eWXvH37luvrKzabrqwnzzOGWkGrtbSflZau6AfG4QHrHK4xjNMBY8VlzowtKWmMhuhtSQoVqrR8GS0aE0ZrYcPV4mfR+0kZUBqtxQ0qJc80iqnB+Rg5HjwhJA6HgeNBnJikIqgJjWa7dZR8pTBfpe3g3Vcf+Pu//w0xBnG2MopMIviR3W4rrdNze4iAaqaRteV8euA4eHGt5JFhktbqyXtJknNmipkwJRoyW+2wrl/d05lsLF3TQCmY5RQhZqxStAXYVdpgiuPR6ni2fdE1DmcyxiWsyVhrcI0pzikaiOTsC3NS9sXzyXP/8cx5iJzOEw8PAz4kthvHzXWHc4b+fOYQBqxzdJtHNucTxjraZkPXCwOtaUVrrIKesr+WjUPXeMFDOBMznMbANPqSQHoyHhQ4C1aWMprGoVsn89uPwpxMkfNJmGVA2feLg6d1uCaBsmx2EHG0U2QKmqwszmpu9h3b3tE1hq5r0Eac9lIUJrbEMBqFJaQkwt82YXXAqDBbFhd45FnHcDku16ZlNV2BH98CqovBvRGQxbSY7gplHba/xvVXaNeSTEtSBrLGYFA4tDIY7bBK2r+NAqOiOJ7lgGJCqYi1GdtpSAadGkySeR9tw5AdKil0tGgkBrOl1VAphUlgomjK+DARgigCdVbExE3UeB8EqIgJ5VMBlARYyoVllYqgbJqLQAvkcwGefe7KrgGj/I1L+Mzj+IcdM3AOkmgXQSytNaYAdVrVQkHGGY1zEl++fHnDj3/0hq5r+eLNS169foNzlvsPH/nq63cEH6TLoZhEOGXYlDyxMturW2hSClJmGkZORgBSa+R5ItbuyVFMK8gRnUVryyrJhSjA0TIul/pmVZtNPmuNe2W9KPDjAvzUb5e5xPz6n4knnm0MF5h8daj1PVRB9HIiSsoCWsv4dM6w77c4BS92G358u2fTOF7eXnN3eyfAT9vRbbZoY8imJdtWQJskMh4pZ86nI6fHB3JObDcd202PcVaMdJyVLw2qKY6JKkurlsqE6JnGMykExvOR6Sgi91OQlndQaDeKMY7W8/6ktFppipax0pI/uaadCRoxRYzV+BCJ57MAVSBs4WISQfDoFMhJ4VMkKenGOJ1OxcHM0rRCjviu4zufkXP+DfCb8vNjqVT/CPjvAf/t8rT/NfCf8R03Qdu2/OVf/iUpJdq2lUCgAD7TNHE8HjmdTrOwcdM0s7bNWsvjfD6jlOL6+npmX1RHsKqpU/V05taPQl+vk3O323F9fU1Kiffv3/P111/PCG59bxEprKKwbkbTqsjvuk2tOoLVtpPa0uW95/Hxkffv3/P4+MjxeJxb2irrp7aixRhnV7OPHz/SdR2n04nr62vu7u744osv5tf+9OkT4zjO2kJN08xtcjHGueVMKcXd3R3A6TnGMMbAp08f2O92DKcT43AWI4e2L2vH5QoiuE5ebbrM+cs3FgOjRYwwC6CgnIBAXc4QA3Ga8H7kdLjHGumfjFmStKbtaTpJJFWhBUIiMZS8IxKCJtiF9VMZXsYq0eExiRjPDKMsoDE6YrR0feDVywlQWOd48eIO1zXsPm75r/7r/4pN3+JDYBw8yafKY0RCDEUlGVf0WmvZFGYGCpTFWp6vS/9xogjCLVfK55z/i+cYRwUYZSRQKW1durR06XlzNHIeSarBOUuPunW6sB8qqyZfsHOEhVM0vJyjaVuapp3nTdM2Fyw3qZpUQEE24AvUvVSW6/z/HAto/TgUodM18KOKVpKi6LXIfN1st6SUcY2bmT8V+FGqLNor/RLBlDSa0r9XhISh0PJXm9icFOcl1OychWeai9/3qFWnGfiZJnHRCh5rDdE5tBKhOK1Ka+QK+Alhwo9iIylsDU9OieAnplEsgP14liQtJ0IMjNNIBnojtsvGNvTbLfvrW6xz9Nsdru2kjYNK9s+4oh2SQqC1it5ZzqcD77/6TWnZLK4HptRSkoAVRhvabkPbtALqbba0Z08eJ8xxAuXRxtB0LaZpubra8/LVC754+4abuxdsdxu5B4p4cirVz1r1/0wI/GxzEVgtiNUzFJbqLEuC8oyAz/JaS6gfiwtl3UtD8OJMZQ3ovFTsZnBqOdZJw/r/M1eo3DPj+Sy0di/tMDFkJh8YJi/UbGVJJfg1jcP1LUFJq+V5Es0YHwIhlrLYih1Zq96swPSu7Xjx4o63b7/g1etX7Pc7EfCWGOTZ1lOnNGTFJJQboh8ZxyPGNbRdyzQdsU6DbrAecrZEo4khLow7beYCgbWFtZyAwniqYrspZwkgrWgK5ZTwkySBwxA5HYVVdTpOnI4Doq1iaBpDSgbv0wz8TGMsIO7Ihw8PfPW7r/F+Iif5MsZwd3fN9fUepRQpVEtdJYK1WoP3hOMj50G0iEI+0kwTOUMIsYhranyEwScRz1Himge5MIWk8tk6hyIzaYWfRmmPQqyusxU9Ots49KLR9Hz7ohIbcgF8RDBZ2rNtSQ4VqhaTUiCEiaQSwyBgz/EUOBxGPnw4MfnIbu8IcaRpNJ0fGPKAdZb2fGIzTQKCb/bsYsBaJ8wa3RadQIVxZS8UlIRM1amThP30eODh/lGKeyqQCWit2O027Ha9APuNGFIIW8ESvC0tXROTHwtDxNTKFKYwu9CWfqNJqsFNgfOUCFnROMP+esN+2+IMNJ1gwioyu9rJom4gi/6MUharM9aM0pJNJTGV9FQpckrPt57Oxzdg6PKomr+rVWFnWefVDJIY3WLaLcq22G6P6XZo1xYwRcBljRHnvaIHZbSROaySAD9ktApoPIqEsgmdNWSDjqCSXIekHWM2cmWikd8rRWMczpT9Ocm75tK6HELGFCFZ6yxJJ6yzmBDJRNCmlBBLJF6YZYtT3WJmsXA7vxv8WZ5zcTzvvvgHHN+2PVZha63UrLdU2zilSKloWxFuvrnZ86MfvWWz6Xlxd8vd3Qu01nz6+MCHD4+Mw4AhY1TGaM2mafGbkewi2VpwtgB+mqQFePDTxFDcfF1hPIMAPykFxBVWoEZFxugC/KRMUvK1MH7kv4WVm0sRWV98/jqn1rzIqlm1jlHnImEtRCPf0w8wF6vUx9Pkb82qr3GX0hUkgdYZbvqWzhheXe344u6OTdtwe7Xnen9F2zaYpqXpepQ2BGUJpgEUOZRW1pg4ns+8f/9OCpX7HUTRo7ONo9105ORQjUXnVq4TWVxBkbzX+5HkfZETOJFiYgiJMZRzdW4WkrbOCfijNU3bYl0jWrZaAGGVxeXRGE20RljqRs16lyFEYhZpjLrWEzwqSR4WIoQsRYnT+YyuHUnKkB3fefxBGj9KqZ8B/03gPwfeFFCInPNvlFKvv+Vv/kPgPwR48eLFLIZcaddrpsu61apSodYWzev2qfp97cZVna7Wzl0zperJVwV3KuNmnUCuW8nq4+vzWLd0PX2vmqjWyvqipaFn3aCrqyvp5SyaP1qXns+w0AfXX7UPtApEV4v4CvLUz13fM6WEc+6zlf8/dgz32w0++PkrBI+y8l4qK6nayV9xWblebakzyLx6XJWfsyr0ZjUn1jOTYnkFAUh06WnMGWdFH0gphUpReqdzIiZFKNozudAr0wzMCAJlipWsMcJ6qdWPVC11q825Egqvc83MNGvblrZpZNymiCfwje1wLjCpJZlTXAh/LQDQekWUf39mGP/ocby7vaW2JM3zTEtvqtaLdJzKBfmmCjdfWkcuVHi90szQSP/4at4YPSPf63k4gzfzOV4COsta8P0ojJ8FFOu1nM9VzeCPnF9hWK03wvI3AhrmeUg/dwZzq+BqE53Pp7xvbRV4Mh4/448Yw5/+9Ke/91o8+bvla9VSoernBqqLy5yIVVeKmOa2zhACwU9zj7oELwsLCAqwVoIb2zhc22Jtg2uEUSP6S6b2LMjf1POUFxAavFKlkr24Xszi21HOMyFOMcnY4iZW1r0yV3W1ly6tX845XFMNBhY4ugZSSq+A1lWwNR8/wFys47h29lvefPWzWn6+aHT5ttj8+4BEWRgdOUlVadYdKHvLRTV3vofKPJ3fY73iV42M5c0Vqz27ulyloqF1MfIL0FXXxlrdnL+itBTNLJ+8XBEJ1pZztUYs6tu2pd9s2O629F0335sXl+qPHMONM1SGX5ZCe7lPPSF6YvIzkCrMORna2pKVdJpjB4W6CMRnN8gMSi3ivOSStBFL5b78e9VmABI8q8yq5afOe6RNKSZCiMISCAVUC4EUPTkVEUuKI6rSZAOkpUihSyuMcy3ONfXaIN2h67YRVYap3DyFYSKtzXLPmExxOhGXV6M1RimSETZDdhbRUFE/yFx0tu5NqayTmerOKUeemb2JfPH56hpvigugzcVeXa1cmFZ7irSApNk1Syk9u/rolMhaWnyAavdU5qoqY720EqaYBHlRwu4okAZq1gaxQEbHiNYyr6sIcdIgzm0OhSabDE6hdKbtLImIsZHtADEJALbZ9vR9gzWZpklYJ/PZGFsA+qJzkx2JjFEJpZLodllD0wgdabtrsC08DsOzjaExqxZKWBVgLm+ZPP/um+u7CEBraeXSBmWKtbqR5Aq1COwvq3EFsZb1UTC7FQO9xHR1H744ISXi+UlJsTkri1KWpHQRjhZAXCMxmfyNQdwPuYiTFyakoto4VCCrnk1i0VpZhTifA3MutpLPbTc/RIz6xx0LiCH71BJn1u+1qOOsoWsbnJP2rq5r5w6TWpD0U2CaPNPkcUbPJiLzhS5gfy6trfMep1SZo7HkgeEiz6z3qSoglFZFbqaMwnwfra/1N+7aVUww5xhc/tWT8flcbjhfL3Xx75/xR4xh1zYL4MM3760ZXMyXRSNp3VYlDVzhAMVIpbp0JW1IZQ+KZR4mchE1p5hTCJASYihxhHR6yNpd2pNTJEdV2r5CAaJD6eCoruBLG7r0iS1AHMiYo4R0oLTkwqmwNmd8wSKAbwW4yrnr8vlMysU100jni0rz+GuYNThFSqGwqL1nnKQd25jP5/1Pj+8N/CildsD/Afif5pwfvk8SBpBz/lfAvwL4m7/5m/w3f/M3aK3527/9W0BEjx8eHnh8FEHBqqGyZvnUlq7KiqlgyjRNPDw8MJXqfHXg8t5zf39fz/sC7KnMn/1+z9XVFcD8OnUink6nWXy57/u5jasye2q7WGX/1J+r3kgIgcPhwMPDA8fjkcpOqgJU/+Sf/BPO5zO/+tWv+Oqrr2bAprp6VbaR1ppxHBnHkcfHR375y19yPp/rdZ1Brvp3tapfv79582ZGl59rDF/eXeeHx3seHj9xf/+Rbd+z2SXa7TW6WTadJWm6/F5O5BLfWD13Kd5WroyenT78ODFNQah7CYxp2PRSod/sr9heXUtgOp7Jw4kUA8fTGX+eSDHgx4lxGGeNCGMlAd5ddez2XQF9RIciZ0ghF8tGhaIEc9pw7Ry7fI1rWr54/QW/e/VbzsPAV/Ed0zTKhrLCeC6sNwUTEY3PFStFr9fo4hm4Jt1eXr4/fhx/+pOfZB9GMpGudVId1EYU5HWdZ5L84zNTDsQUUclig0Ka1FNxPJHKpNEi1KtNpTlqtvu9CIQ2Temdbkor5QKeOedmXRW1sk41WpL3mgRVxf/1wjYnN3UTXm3uT6MRVZJBmkzrA13bsel7wjShlRJmQ4yy4BbBuZwW2+CZki4Zm1RqUpIEKVfHnqrPpObFWaxBHW1hAz7XGP7Lf/kvP7vC1wRyfVSdsNqSp8hFZD6KAG3M888yDgtjaRxODMcTMQamcWA8n0rSEhbR2gr4Kk3bb9jsr1Bas9/fsr++xVhH3+/nlgZjm7kfvnwyKjCnlLR2TtPE4XjkdDhwOBw4Hh8JfmIYDvjxJKBUknYQayzxWjb2MEViEgcsh2K722OcMIH6qy1t39FtNgCcT0eavuN8PnMeBgGnuv7JuV2MwNNr/SzjuLqjuVw11ZOf14/94cflbSGvJ+vigTBNPHz8yKd37zg+PnA6noixBmEGZYRtoa0p1GI9t3yuX7Ge73zGxeZWhHCjOCsWzQNJXDJaR2FxZU1UhqwUIWdO40g+HTgPI6fzwDBO4jJW2p0EP1i0NDIiFN44x9XNjq5vefujL/nLv/w5/+Sv/oqb2xs2fX95zs8whi96l1UYST4zDpEhJLRtOTx+ImRwbYsPAyH1mGhIUUwOgs+Mgyf4hGsyZFVo4dJim5UYIChT9yaAAFlatEIMpAzDEBiHSZyafK0gZ5xTbLYWRWa3b9jtWpyT4lVORXD7NHJ4PDAOA4fDkfPpJI6XaSSnSdrarWW330ubUrulaztAkYKAWNM0okyDa3piioz+jA/THA/U6qk2GuOkVcs0Dt3U2Ela9GKMaGuETThNRO/ROROdpS1FQh8SxzEwhUtR4OcYx23f5KaxNCbjXMQaiRMoxY8YxclwNJlkRcReWhI0m22HsdA0PbbbEULGuoxrhRFjXYuxPcZalGqKnTcEHxnPE8EkrJ1oW0+wGWsTJuSyFmWJC7IiBAhBEsdpGAiTMDC1Ea0gjcJgMbrBGIs1Gxq3KZ+2QdGidaBpIHiN0YHQanKSQiid3D8ZxU22pGwIIXM4TpwHj9GKTWtorUapgOOIUSPjMBBDTVQaFDcoelKOTGkgZI82DT4pNrsJZXp0+wJte/4v/+l/9mxj2DZmVihWKwZlIfzOwJv8u6ae+WLZzUpaRlAW1eyx2xfoZoPutmS7JWlL1WYUEMFgSjHFaoXTov9nTcYZaQU3OWMBlRVKObTeyHUu1oQZyLohaScJoWnQVtgHyVmiFUHxpANaB8gR41JhE8mJhCRrxJgyYxSB5ykZJoT/HklEIAI+KqYiAh2yKtpCSzK+TtjnX7DsQvWhuY66Op5jHJVS+TuevpzQ8q0Ay3IX1oKkgCqlAKdKK62RMbu7veLtFy/p+pYvv3zLF1+8oWs7vPe8f/+JEDxfffWed1/f46eRm+2WzX5Hoy02G5SPqCzsqRxiafWSmCsVUkJIAuy6om2oUAI+pEyKwghrjCapLBKJStbLiuVkXeK6kvinLN0Os8fIqnByURRajZN8f4J+rq7ZmvxQHvujx/B6vxOcQtV9QL7Hkr/m0m5I3SPKuTlncKbBWWHmt10vrs9thzcNg3acteOkG4JymKwxIYESMeWQJ1LODJPnPI6EGDkMR4Y0kXMiqES2mWwgJs80HDHRIkR+Afvj6IlTIFftSuNQWaObhIlK9HgYIRd36BRISSQiJr8QBaxtsEZalF3bYV2D1orGicyC4Aid6Kb5QIjCwPQhEtNASp4MtM6CVvgk4u0pCoP644cP3D8+0riG3W4nBknfcXwv4Ecp5coN8L/NOf8fy8O/U0q9LcjfW+Cr73qdpmn4+c9/zjAM/PjHP2YYBt6/f8+7d+94fHycWThVxHgN/FRNncpoqQyZKoK83W65Lhatx+Nxduxas4dq61a1kL+9vUUpxcPDA33fE4K4RAzDQM6ZvgSIFYza7XbfYCCtRZ8rcBRj5HQ68enTp7ktbbfboZSaWSKPj4+klGa9onEUe+umaRjHcf7sVRT6eDzyu9/9juPxOLeVVSDrdDrNrJ/6VZO8lWWteo4xTClyOD1yOD5yeHzgcbNDGcdNjKX4WyDqzyYt9edaI1ker2lCrjuzqsiq9LFOky9U9lBYOGBsWUSNZre75vrmThbbw2NxCfL4oxYLyzARRy+6EkVUtCYvm13H1d0OBZxOI+MwLWyfCDkW9oCxGCvq/pXG9/LuBS/uXnA8CtD3sEqYl0MW5FxWcVVUDitlsz5Fs9ALK/DzNIF/rrkoAKVUc5vWsek7rDG0Ra9JGGYjMYhAaMoiUKpjnoEw2UAFDsnWYIqtrHYO20hiv9lu6fqutHw1NEWEzbnmQhi9trfVxVKAnpXItfrm+T/9+WLTkgeorKYMRSXfoICmrC9d2zI0jQRUcUlIdfnbWrWGcjsWQOlC6C14UhSmly6Vt7oFg4BI1licdevT+6PH8A85KlMx51zccWQuj+MgfcQpEqM4K0ERBC0A0DiMDOczMXqG84nT4UCMAnSlVDWyDNZJf3PT9vTbLcZarm9ecH37AmsdxrZYK2LNmapjBSXSnoOcGrh5HzidTpzOJ07nI+fzEe8nhvOBaTwW1tFIDL642ziMtlINz1mqKErTbzSu7bHOsr3e0W06uT/JDONAV9qaxmkkK8VmBhBXtbYZ0V6O55qLy/EU9Fl++odDPd99BD8xHMUR7XB/z8OnTxwfHxlOZ1kDqeufQRcBbF0rWSvWlCRay5nLz5IVqFIZzSmJS0ZMAighGmGzs1WWdV9StszgJ+IZhmFkGCemyc/sHwEa65pakuPCTNRGs9vvuLre8+r1K3704x/x07/4Kf1mceqUP3+mMcwZoieHyDR4Rh8x7sjp9EhUms1uL21BKRQRa9lXos9Mo4AHORdgumx/YvGuoDi5ZBTeS4uVaG8lhkHEoocx4kdpA4shSjKZM9YqVCfXtt80bLcdtrQupShr2zh4jo9nhuHM6XiWNSGUVq88CUXdGvrtlrbtuL5+wdX+BlD4KRCmxDiNhJRBGbyf+PTwnslXV8DlzlZGo60WIXVbhHK1KtoXmpQCRitS47DGMJ1PECUuy21LznAaJs7TkRQWO/fnGkellIgWm4xtFFanGfgRXZRYnCmBlLFkrJHKbddZcW7qFE2viQlxZ8sTqIy2DcZ0pZXZroCfxKg8xmSaZmIcPNZmksvYrFAqLZVpFDFkcW1KmTBNohWScmFeKXRWs9aMUQ5rO2wBfnKW9iulIs5FnAOtA6FV5CTpgC5yQlobXLPB2I6cYRwTPkh8Iy1MiZwmkv9IDgeGVrS7UvAoOrS6QqsdIXm0N4Q0Ykwgac3Ge7rNDTev/pJuc8v//f/1nz/zelrRiPI1L601A5W1Zi6uqQUckjjUkHUDukE1W0x/I+1eriWb0tuWI4o43zfC9tIYXZzyCvBjjaxmhowpRSGt7bx2ylpQTlE5snKgNMb14DqJRawh2SIArSaymlAkdA6ookgEQZLelPERpsI89FkTkKZ0aaPNxJwISeFDYRxmWJgka/bF77/E9dv6uc+/L/5hh6qsDMq4lD2igj5aKazWNE4Y7tf7LW+/eMV22/P6zStevnhB0zS8+/o99/cPnM8DH97fc//xEe89vWkxe4tVrjhDFeAiRlIpYEZjiFbGOOWMisIi8UVKRDoWZF9NMYrrm1FENFFBmoGfLK8pNCAW7lgV96bsowvwUyPPZZhWI5Trvz9z3VZsn+cew8vIJhfGDQX8Wpx75ydZGRtninNh29E4i3YtQVu0sozKMihL1E7WvJhBFTmDQg45jwOns8innKYTYwqQM1ElYa7qXIT5B1I0aLM4f0UfCF5ilVRaX7Ea5RI6if6sillcE1MihokQplV+UM2bmuL4ZWn7hMhMaqxphU2Ixilw2WKsMG4BJh8Yx4APIiPRyEaDSpEhBhTSLnh6mIiZgh1MtO0zAD9Ksqn/FfBf5pz/F6tf/Z+B/xHwn5Tv/6fv8Voze2e/33NzczOLMa+Ttm+0XLAgkuv2rcruUUrEWSsTqDqCrVsr6uuvwZF1wrhYSasLzZ3KnoHFNehpG1mtsFfQZ62nkXMWi+CrK6qrWWU5vHjxgk+fPs26PpXBU4WaK7hVGU3DMMxgU855FnVOKc1aRPWrtqrVzwz8BfD/+GPHMGdm1pX30iMeChhXM5SK+8xMHrWkA6puvOVfFzTwmjiU5LqqrQcvNMsqBgqKakFe1duttdJGojTB6BkZrye9VHkKxKQVBrFXr4lMPT+RB5JqAdW6tWi96Lk9yGKt3MvbzYaUkmiZmOpctb55y2dar80suWS9PBUzm8cx1wrVxVx4lrlYGXMxxaInYUpful7aqlbzpOAZZfMp56QqtblSMssGW0XuCjWTi7ldP88y/z4738t9oJ48+Dka4zcqESu2j1JVYenJ3C+tStM0SeU8LG57F6nrXBlE7guVqcyexY2hXKMSPKpaKlM1CFnG9Dnn4u871qyfpz9XnalqESpAW5qT9LkSU25McQsSEGxusVH17+XaG+OkklE0JZq2w1h5zBjRzqmuezwdr/W6sXos51gcFGSzXq9vc10rM1eNgpe22BQzKYXZgt5YPQtyW7tqG/4GmqIuqoXrx5fA6fnn4uX7XALi8z1Ur9PnjtXjeX3aT+bKHHzl5d0qQ3UaBsZhwI8TYQpEL+0jpRhd9BFsaeVYCVlegK3Lev4NACiv9gXqelxXfEmctRbQQxfJV1DCtvMS/CwC+vnyWszBanElVOAaN+v47fd7ur5f2LmXLePPFNtQGIpQ2W+p6F2Z2hYdQ4kthFkYVUQp8F6AH2M0MUqSqKqQr1IziJPrXCzaDrVFKMZlr1yvRcKkQgT5tYD0dW3PJbbIxTRhmsbSbl9c+lIsf18TlNVnLYKVksCCNglj4spZUy/zMtd2/FCC/XQRi6UsxZWUPMoLGB2mkRS8iE5XHSfUrP1mqybS5fx9trko7l2pjOWTtaAUpMS1iWXNL8LZoDBZNANVUlLZTsIOMcaV6q/B2hbnOgFXXItzIoBvjKyXxtil/aqstbm4E1Ks33WSNqs+yLWsWoVSLO0wpi3M8QYRAUc+ly7MK9NiXUArS9NEcpJZq7XY2StlcE0/Az9KZ+wK+NFkcpqIZhJ2dMq4UrRVqsHZHqM3xORRPuKjRnvPlAW0bdqGTd/TbzcVBHmeMayB1cUDyz1Hri13ZfVZL+8lwMlIKwkrNy9VLN1R1VdHrfb3tbvX8vN8ryhQGISJJxofSklRVitRdlMokrKghPGjtF20l0p7iawCK18fVR32IGXR+opZLKwjmpgljsrKgBZtLWUUyoK2Ddo25bNOK+Bnvbyu4/X1ir7aS+aYbj6ebS5+X5aJPHc5vfp3y5ioixjDGMlFnTW0nbh79n0vRfwMKSa895zPA8N5IARxEbZaCnita2idwxnJOQwC8OSUCxm+xod6bgXLSqFiKut+iZ9WMW3NafX6c7Ccc4276/d1pHpxHVY39OdAnot9er5Oy++fc1+s573+ud43da9KpYhaz1xAsULUcE6Khs6JW5ctFuvGkI20emWlRROwvG6kqiVlEXgujiraWoxrgCyvU+f3ej+KkVjy7RgiOaxkX4yR+MImVCwOsa7BRSkIKF20mIqbZ1Jx/kxlQyxyCR7QhKDxQcZ3dpBE2oONMehUipdanP60TugMOhfXZb0ItIfSoRRjIATDdx3fh/Hz3wL+h8D/Ryn1/y6P/cfI4P/vlVL/E+DvgP/+d71QbZl6/fo1/+Jf/AtevXrFv/23/5avvvpqZtlUUAEEwao35tpavYIiMUbu7+/nlqgK2JxOp/n96nPXQEoFU06n0xzAXl9fz9bulYXTti19CRivrq7mNrHP6QellGYdnmmaZnFMgB/96Ef87Gc/u3ABO51O3N3d8Ytf/ILD4cDf/u3f8pvf/OZC76i2oFVwbBgG+r6/EHReJ0Nt23J9fU3XdTMABfCv//W/BngB/Hf+2DFMKXEaTjweH/nw8YPoKBjHm2mS8kLtkKi5ymfX7W+kBfKTUvOiFELAn85EH3j4eM+7r75mGsRBqAZGyjlU49BGmCX7/Q6tNcM0MGjZxHTOwmuN1d5WevOds3TOYAqV0OrSGxk1aZTz6rqOpt2z2ezYbLa0vdC0XSvBTdgF3n7xJafTkU+fPvHp/iOfHj5AFXDOQgXW1PixbEJrvZr5MpQFWCuhwhtNShlVhDwBRtKOZ5qLIXjevf+a4XzGOsNuv0VRWR6KGD0piz5FzhFjkcqzgpwiMadZI8BoLVbdTWnZshblhInlymOokggFX5IdX/RivICeVUspLxud+sz983sDgc+BCqw2zrKw+2liOJ/59PEjv/3Nb3l8fODw8Mg0jrLYxzxvnrkkWApKf33p6o1eWleqHWcBTeobzmFhTUa1UI7f3R/gmebidx1PAZ966AKUSgLpaBpHjLq0fBXWYkqEkp1PweNjsdFGo2wjm0+pcGqlaftO3A2tZbPbsd1fYaylbbtZdH3ujZ6PCiiuN8cMKUL0RD8yjUf8dEaphGtENyIFR44NKUQiQZgTOXF4POLHIOB0kOXIGMtms6UpQtKmESveGewtbBFdLOZF3Lm4OvAEdLmMiJ9tLl4e6xaz9fenj82X8HsfM/hd/1H6148PD3z193/PcDry8Xdfcbx/4Hw8MpxGpikRE1jT0vR72u2OfrNns5U10bm23FurdTxfru51EqsCBsSYCSkTEvgEIUsS2jUQs+ia5KyFqj1M+HRmGiUIFwcjqMw1VdCkTEQbQ9u1uMby8tVL/uk//+f85Cc/4s0Xb/jRj77k9vYGY8WdCeB4PMIzjaFW0v7isyTOWYGPnsPpwDkmms2Wh8dPQuH2Ea07GidOW+osscRm00my7UR/yliF0pBLG0bOMJxGaQsKkWEInE5FbysqQqxLUMToJMGkVYBBa0TA1AgjwU8j55Ow5d6/e8f7d18xjQMPD584jydyjvS9K/FPgzIKH0QgXUAAqVRaZ0vyojC6gWzIWRNCnlvRhuHINImGS9WQy4CPkfMo7aKH41GMOWIgToO0nJIwScJ4Zx191+EaB9rgDmeMn+rlf7a5qEsR0SoJ5EU3Z9lXtLI429O4FqslYNcKrM20rQTiNilsUGI8kSw+OBKK7XbHfn8jbPaup+u3AqLaBmt7tDZstlt22ythI5diVk0SF10ZTbUojiEWkfMK9kkM0XYb2q4ve3CHtV1J9joUnmwSarehbSZSTuwK6AfMbXfC8nOia5MhJTWDQ6buhWkiTDfEcOB8fCBME0plGrfj6urH9N0dPnqOwwOTHzkPZ959eMfxdGR/fcOXX77m6vZN2UOfdz1dt47kWlnLq3UwL0u6fCqxUM9ZgXaoZgO2RfdbdL/DdNsiPi+CzqLPUfZ4Y6U1y2iUtWgn4s7KGAGNVEapJJodalZBBKTQmJOS91WGXPQRBWwq+j06k7WMc6zrKRSnL2nRm7wmBU2IiVPMnJI4eUWjSaqACiahuwzTRBMN0WwI08gUKW2biZQn0Tm5iNOfXNcV+FOvZTl+oH3x2w9VgJ55P1AFVKtkgdK2XznGmkzftry8u6ZrG96+ec2PvnzLdrvBWsc0TgznkffvPvL3f/drzucBPwR2/R6N4tX1C7548ZrWWTY2sTECkvsUmWIQYHAKROulCOzyfD4pZ0Is+pclp61gT9NYUlREbwheNNKSqldZ9OBCyoSYCBX4r45Sysh9PMdXa/Bn9U9Vf3sZR3wmrv4BxrBOxiIrkAQI8X4ixYQ1hsbI3te1DddX13Rtx7ZraXcbnLOYtoVtT7aW3PekpiU6NxcVcpYWxWQKuKUMzrbYnNBdj93sgUy36dB9TzaabCwZTUqK6XDGP57m+6oiw0o32G4roLENqEZif7vxbKK02sZpIPpJZAqGszjhplyKVtI+O41HxumM1prJN6I3aTSbvhMBfqWxrqFFo0yg85moDCZGwqjJIYBWNCkKK8yLePhpnIgh4mwjhbHvOL6Pq9f/E55Gm/Px3/0+w12PCk7c3Nzwi1/8gpcvXxJj5Pr6mnfv3s0ixmIzbGYgJpckYy3uXEGi4/E4/1wZM8MwyMQqbJg18LOwVTzjOM5tW9vtdn6N8/mMMYbz+cxQROeq5s+6zWvN+KlMoWEY5teu1uyvXr3i9evXs8X6drvlfD6z3W55+/Yt9/f3c5vb+Xzmq6++4v7+npwzx+OR8/mMtXYGo5xzjOM4U9breVcwqOr91KTvP/gP/gOAf5Nz/pd/7BjmnBingfP5xMPjPW3TsNldEb1n2UlX0PrTFeczgE/FoGvGrFDkmJiGkTBOnB4PfPr4ifE80DYNfduKSHBjMW2DNoa+JJ5aK3Jj8UrokoWhLZo6KckCAVhn6DbSTtc4h9ZGJkzUJK+KLkvDdrOl32zp+h7XNlgrYrXOOfoYefniJeNwou86/t1/vadtG9Fl0Cv1fJbFVyzTy84/V6GYmT+K4kDnBPjJSgkXWI5Dzp+H0v7QcQwx8unTJ1ISC3W96eQkopyMWLPHAgDlwuYpVamcRPQ5V7ctUbFv204qwdaAE/FeY520tRXgp7ZfVkZcKADlwvq5XLTW1YmLx1egRv33N57z9NUK8FOZPg8PD7x//57j4cDpdCRMfj4XrSRwrxV2SsAggY7olVCcaKqWz9N3n0leSs1Oaa9u9vBMc/Hbjt/H9oEColuLLq1qzopbCCkRmGbLdrF0T0UYr4jHoqXXGTDWznNns92KBoh1bPd79lfXM+tLmQVIWcasnNPqS4LgVIQSIzFM+GkghBFIOCsCutFaknGE2iqUZH0ejmfG03BRLVUauq5ht9+CUggxnsIeKCBLFYGu2lSl1ehJaMSTMX62ubi8eknqLtbL33P8gaAPSJVQFhy5xilGzscjn75+x+nwyMOHjwyPR8bziXH0+JCJGXrtcN2GptvS9hu6bkPb9oUpu5zrN1g/ZUqrVdIlQ1xaVRIkhO3jrMUAMSpSUvgUGMczp2lgmjzD4Al+sZ9e7ptaMYWma+n6luvbW/7i5z/jr//6r7i9veHlq1fsr/byt2Ue7HY7nmsMlYK2MTQxoYxM/JAip/GEipHN6cDxdMC6lpwNbTOUZE9AE/kYiq7tyEkVgVrZK1LK81o0jZ5pEIbiOBTNuljtmgswUHRnoLA3jAA/zmmsEfbBcJ44HaV14eH+nk+fPjJNA8fjgXEaUCqzNY62Ez02pRUxhlnwW5fkShktyXDIKG0BsbcWBp5oF55PZ4bhWBjPPcY0oMDHxBQCwzDy/sMnHh4fRQNqOpOCp7GGq76layzYItLdd/iYsc6glsLms83FykqXxmNfh2UeZKWFom9NXxzWZdYaHWga0Y8wSaEdpKwI0aC9I2Poux3bzS2uaen7jWiPFUaOsS1KifnHZlN10EzRAxJAQGkZX6Ol4KIKOLMwqBZGlbYiRoxSYjFcWgjJHkVxMzUbclsE3IsY7UxUqQwJZQpYrxaLdgWmxmlpxI8dwR9o2w2Hh6/x/kjXXfH69Wv2+9f4MPF42jGW+8vHCaUzV1c7Xr664/bFS/b755uL85Hn/5V/FofGdZxaf69kvuUsaz/aolyLcj2q6dGtfKWUBSAhF2vwPLMhdWWGV7DHKNmDbESRUUZANYU4qpoynjkpcqyrWfU7U6IFqWXnVCqQVUTaDZEYDUVS4iaWc2bKotsTYuKcMmMuLUHGkovFs3YFgHeeZspEGtRwhuORNIxkil15uU6Vdf75i6sgfyM6e9Z98buOGvZVwFNwHz1r9C3/lesoZ03bOq6vdmz6jhd3t7x+9ZLtdsN5mDidRqbJ8/Dpga9/947zeaBverbNlsY6bvbXvLi6pXUGmwdcGuZY0Adp0cohknxEmTQTtmosn4tgby2+1fnmrCGq2mq0wpuV3Lsp14KJ7J2xMCpnZ7pvjFR+8r1eqzK231JELR0jzzyGq3lYWT45SZtV8KQYUQirx2hF4xzbzY7tZkvbNjTbXroS2gb6Dqwmtx2paYhF+y2EILGHrhc8g3FYoeGgY8T20iLVNAbV2vki5yJC5IeJeD5Dzhin0U7iV9e32LYno7E2gZWYv80JlaXiksaB5CdiDJwPjwznk0hHDOfikpvwfsJHcbn0UaRKmsbhSv4vmkDFnUsb3BRpskLFgEuJiABbLgZiTngv+cw4jJBhbMZvRK6fO/4gV6/nOqpuT7U/r+1NlenzFKypN2kFXKplemXW1OdUl6uqA/S5FpKn7SUXLRCrhLRS4CtINE0TvvSsr23en7ZW1X83TcNms5lb2ypgsxaY7vt+FqR++fKl6FmcTvN7rFvHnra21XNbv2fV8ajgz1Mq/nMcmcX9x/tpBrhCcf2RDct8a8K+PmYoKD95cC7TrBP7tYBn/Z2aUX1pFShuRWZpAZNNoLS3GKFjZ8Vc+a2Vf5Vra5VUCMTm3MytDVoXGrteAi2tNa5p6PsNfX+i7TqapiWRyDrPgYac/9PPvrSq1AuRCzq03FfL2D77kXPRaRHESWstvayz+9kTMKawMlQF9TIL8FlbxIprF0ZLsq9VobXbmbo5Oyyt2jCXCtyqcrT6yOuF7LvAnqfH02fUtSUWPZ/6fb1eyO+rVWaloZaqocpLNss6YWeFYChQKzbLan7+OY71dZrb9uQXs/11znp2Xqt/UxOLZCLWOpKWca2fwzmLK5pQTSPtCsZarHGl5cMs4Mpy0wD5Qtz96SRI1R2Duu5LINB1vegRTRNhEqC5Mo6UknZdWwLc6l6ii7uCVJT1IiJe9dnKWmmtm53tluulnpzjD3uoz/z07WH37z+fZZos9+r6sQpYphSJfmIaB6ZxwHthm8bqNlSACWOEvdV2nYz5Suvu859EkquLT1LngVFzq13VMZtD1AJwxJjncwhBXKsu5j4sYu+ltUobQ7/p2e227K/27Pd79nth2K5buX+4Y5FElzgyk2NAIbo30zgwjmesbQnRY5KTZDPJ/KgtXCmVdSZQc6u55W6p5q3WFSVU8Nktc5XPCvBTGBwUcCBl4uwWOuH9iJ9G0dCL4j5WDQqsFYcRYfWImPo4nDkcHoXxqRq0csQYMLOAfJiT2qUSv24rldaU4CPjKBqGU2GAphhFZD8ENJkQndwDMTH5gDHVKTV9Y099niGUdUTlLEBHrutBDTwkOV9avUCpjGjemVL0WkRYRctFgJ+ubeYYoe16mrYvYHODMS1Ka5zrsLaReMOu2inLeip7tcXoqsdTAWyWIoRCXKiMLWBVcaFSwjwQ7bwCgigt64Je9rnFxawkUPWzroAfraQZM6mEsS3kULSEuvIZHChFyhEUWOvICibv5/ZfpfTsbpu/R5X6Dznyt7xcLnHjHHOs5soMTJcYEG3ly5gifCSGFnOrqqqxybrlXa3cKsu9QNWIWmXzqrSQzXujKkCUQpR8kb+5+LtyniVRreWohJF5jZGWFyUgk7LlfsSUL+btQCXQTYsN0hJtXYdxDSlqYhFlXwU0rKKc+Xrl5Ydv5FnPdTwt8H3u98By/WEekXmBmAurReOnxKVt00heVooXOWWCD5xOwjAdx2luK3bGse03tK5h0/byt1aYGAYPCbQKosc0X6vMmrJ+GSuuv8tGWT8D8/c8Az45U8CexeHyUlR7gbeY/3Z5x5ou1dO6aNH+xkL6nAtrnvf4JWQpN2FZg6pOaMUEnJVYr+v70nXhcG1TCuJOrNKNgOIVcBV5/XIflupSLvHjkjSu3l+XNkiytIbN++PqWZl5810XLIWNp2fwVWcta6915UbTmKbFlfzCpji7k+qcpQtFqVnYOwY9YwwgTPU6/1TNqzJzDlpbvST2lX2/sgdq/vJdx58F+KmuWrXFqurerJOyCrjkLBo5NXHc7Xbc3t7inOPx8ZF3797NAsgfP36cQZIakNbXq+DMOrmrWkDrhSWEMAsyHw6HGbTZbDYzoNL3/YXDVwVpqpiy1prXr1/z6tUrrLVcX1+z2+3m59fnvXz5ku12yziOvHjxgvv7e06nE7/85S959+4d5/OZX//613z8+JEQwgwM1RukMor2+z1t27Lf73nx4gV3d3fc3d3NbWHPeeSc8dFzOp/48OkjKWb67Z7j6cB+PImwr21RCPij6ub65FAzuCPhcq1Is7qJ61JmrKVpW5mvSvrmUwIH2JqMGhGLNFpjmxbXb0BrXN9h+4bkobUNfdOCgt1+w263nUEfovTfuuzodEIbR9dIZbvrNzRdhy2Ljy6BgLGOm9tbtFa4tuXN6y/46uuvmILn6A8McSwLweLypdWqBlGq4DMAVK+NEuAJXTQannUhlkPaKAaM1iKKaww+ixZF9GEGUWvvra5li/lcFda5woKSNi/bNjL3nMW0oqXhmlaYQNoUF63NLJauS1VGkPAgQFrrLgCz73P8vurF0+dN3ouD0/nMMIxMFbgMoYC+iWmcRByu0GpTsQ9aNJiyaCBoeTArAU5UBYagBNwl0DBGEqhnnov/4GMFJhpjcI3DRHG4MPM6WYGvTAgdXd/PG0pdL51ztE0rLTYlmRFBUNGUWJyxngIoNdpeJbHldWMMhGkieI/K0DiLouPFixdsugY/jbz/6is+ZWkXrM4L1hiurq6EuZkS52Fg8hNaW3IOjNMZZSym6TDG0TQt++trtlfXXN3esb+S9qWq5bU+0z/t8Qe84zppgfneK7y0ApCvAFxVqfCINoeX63w63PPh3dccHx64//ixCPyODGNg9PJ37WbHyzdv2V9dcXN7N+/ZtSDxneepJMC0jaXtGmIQ0eCQqli/ISdhOY5D4DiK/erpfOY8DQWgTbNQZ9VSg0yUOhhd3/IXf/FT3n75li+/fMs//ad/xV/+4i9LEUaMGnLFHp/5yAibLKKIShOUMCbD+URWI+6h4+t3f895PHBzfaZtezIBskHhAMM0NfgpoNBkIimHshYuLZIhJFQWJ0VnHF0j81VaAKp2kiSFKIWz4h6iNaicmAahoh8PBx7vPzFNI/efPvDp0zv8NHI63OOHI8ZqnL5mv+mkOKch+pExBH5z/Dt+8/e/xhrH9f4Fu901OUPbNLx6+YrT+cjD43vuH8RCvG27UvXWONdgjSVnxf39I+mTmHM8Pj5Ku39p9UrBE5zFaQM5M4U0M32GaWLyk2Svz3wYbdhur8hxIPlAinlOxmSd0mhlMcot2kcKjI44vUrwdfmFbkBvQFl21y+5efEG1/Q07Ya2u/oM8NPimrYUVCTwpwBn6BJT1SIUFBC7Jrh5qYfpFdNSXAnIGSymWP4yx1lAcamswcgqaVZLQlkLY1DjGMhZ7o3UbADH/uoNMXi0sQQCh/FeYqndnq1tMW7Dp/sjfgKlHO/fv+fhcGaaxmcfy1riyHNcyQxS1I9etVI0ENGEbKRooBtss4VuQ242JNcQrSPmQEIKwyaXsVAKo2siWsA6bYtCdp7dmbIWXRIJBC2YBlDopCAV8K4Yj6AyWUfR5SEV4E7u95QNYFHFec1kQ8rgNQQh3KEVtE0FjBWpMLSprqU20KkWtxmZzicmH8jaEKaBUwFfFUVvJqcy7itmc/0230fPPnzl9Vdg/5OFuxamVAFz5qLNCnS7iKu1wjmDNYrddsOLu1v2uw2bvif5yMjEh3cf+btf/oZhGPj04R4iONPw8uaOn/3op2zajtfXe764ucJqRZ4MeRBAHCSRL/CpEMFLLKvrHNRF9ZtlbudagCvgXjVNUFlY5z4mxhA4TxPHQZwtpxAIMREFtaVqLcp8l+8U4fEC8ZZ45k8b0WREt+2iuJuSAM8q46yhcVsUsNvuePniJV3bcXtzw9u3X7Lp+6VIrxVN4+haEcjvu46m32GNKfFqiXWKLmSez0AOaS+TYndOgXMIslzXIha5FCjcvC6mkFE6ixlFCrPRgqvAOxqDxEDJtKRGdPNU09FsR1IMuNORcRykOHI6yD6XEiF6pnEk+ImcIqfjEW0MTbsREDZptGlxrQPjcTER0SgdaKPEBcEkLAqTMsRE9AG/osJ+2/FnY/ysbdIr82eappnlstb6qQCNMYbtdsubN2/o+57379/PbljTNPH4KNTlpmlmYKYCMlWHB5Yb8HPAT4xx1uY5n8+cTidCCDw8PMznuW77WgRhl8+2FnGuSW5lKdX3rqDX9fU1OWfevn1LCIHj8cibN2/mdq96fsMwcDqdGIZhZg3FGOfPWfWIrq6uuL29Zb/fz05oz3tkQgyM08jh8AgJbg+PDINs3laByc23Ly+r3Jg12CMXZ/lef1ZqTiZzcYVJKQIZm5GAWK+shrUIbtm2JZMxbYNpLFaLTkAbRHNms+3Y7jYoFGGMhCGSo8JgaIoYYuNEpNY1rVSpnrCojDVsd3sB/oCbmzturm85T2emx4khDhfJY9UwEgeranuqlqCkLNiC/OuVTefzB7g5JQEOi1CdMYbgK8OtuqfFORjUa+aGKuNijQA+FfhxYuFuG3H10kaYIHKPWrpyj5qi1F837ZzlnjLRfC+0+ulxERD8ngCksvjGUQAfqXZ7fGE4CCof8cEzjdMqOCwvoJd4Hl3ji/KPXMGqEhyVRFeCEj0HhP8YjpowADMYnXWxeVfqQiQWiph7bGeATW5TYTUKqCf01Kr3Iqw4c4H55It3vxykuTrG0ooXglByrbVowF1dsd90jMOIPw+MxzNGG0bXMBlxirvaX3Fze0MIgfvHe44nmVQ5R3yY0Dmh2w5lRJtks91ydXXN/upK2jm7DqpY5uev2jfO/fmOf+Br1z/7BuiTyr0rOj71qXNbSAqkMBL9xHA68nj/kcP9A8fHA8N5ZPKeaQr4IEKwrt1wc/uC/fU1u/1VYS40SzD3FHzNT76XBNVaARptY0AjItwJOcdsSFHamcbThE+lnWmapDpW9uuZ/Wuk+bKuU23T8ObNa37+85/x9u0X/PgnP+ZHP/ryycX64Y4ERKVmccmQEkMYiFnRHB/4dP+OEEe01tzevcI6jcKVO6vqDya0FlFoH0ZyroUsYRiLnIvsEUZbGlu05EKELCBagtJKDNYI8KMUpBiKYHJkOJ85HUV753h4ENv5MDEOB4IfURisgb5rxLRAQ44enyYe7s8cDgPONfg3EjwLI6xnu9ngnCnBuehXuCqoqcS+VmtDCJHj8cQwVr0iaZHPScQ1U3GqGhtfGH2RwQeUKna90fOENvgsh9aavt8QPYz5RM6huDnCGvhRys7sDoWA+86ISL44w5SE1PXYZovSju31FTd3d7imx7otrr1C6wL82BYRiBbNn9pqVZVehbUje3Bl2cKyx8zHvFcVhgqrWhqglFmYPQXMkSct672wldT8HPleC1SLrHFBkKWVO/XkBP32lmk6iZ5fjkz+SKu37LoN/eaalBR9f8X5NBFRPD48EjnMsf4PelyEl1nYduXh0j1Fqi2TyoHrUE0PTUuyDmXMnNgLj6HIPVS2eTH+UFoKg1XbMJc4IVcGkdJgGpRtZAySLuwy2f9QgVwF3nUoIVcRd84IkFfawVLRQstZEZQhGUPOwnq3yPND9f3OWeZVjGibaGwLKWKaI93xkRACejhxPjySOFElcgU2mMszBfBjvpg/1I74XUdlA8vPa1OVen3kqGcorq4aZw1913F9tWe/29K1LSlmfA483B/43W9+x/F0JkwBElhtudru+dHrL9j2PXeblttNh1EQVCTEgRi15EXaSByJrMusOgkosVFemVwUgqCkMUWHqQJCwpjLhCTivWMIDNPEOHl8iISUCtCrWLR9Lq5QGbc8G+aUh3+4MObpsQJ8lvy73lei+dY4YThe7a94+eIVm82Gm+trXrx6Sd/35frIvu+soytF465pcW1X2KWZgrRJS3Lw1G6FOv4pRWHnpISfEtMkLVoGaLQoQVm0sClzhhxn3dEq1q2y5KMVhNfKopECRzQOJVaZ6KbFJXH7Vc5hzidi8MQs3RTCuBWWrVKKUArf1jXsryytFl04bcreqzTWeWySylVjAqSMM0YoFhlUyqSQiDp+ZiAujz9bCboycZ62cVXgpAIeT1lA1WFr6WvOF1/rxPFpm0VttaoW7BUYqaLPSqlZN0cpxdXV1QygVCCn/m1tVzGrhG6t+VPfZ80++tyxrryDCFpvt1v2e9EjePnyZVGXFxbSZrOZAbOmaei6bmYOVWbRGnT6IVq96nUPQfozK2V8miYwmuZJ8v5t8Vk9s1XeMgcf0hJgMCnhmsL4AVIoQR8Is2S+zmYOUrJarabzz7XFQy26CaHqzWQR2MsKpUQPwRhbLMdbmqbF2LUj0YKua11FGKWlr+83oMGezPwZ80Wl6fNaNpTn1QQnxopeX7Y4PN+xzI0lR7s8v3n+FGHi9XUENbduGVucfqxFmwoCiNBh27blXpTrKci9XBvv/fx9brF8CvxcMBou5/23fKxv/N2Tl1g+U2k5fdp6NgOSLGN3sVmq9as9RTJLSFgZP0Vjoym04j/V8blc4OkzVLmeWmlxoiiA9OyIVyqjc5DC6vqVNU4C3UXzrIKbFcRc3m65iHl1uZanSWCSkmyK0QfRFgqBHGUzrYFebfvUanFAqIwq6ywoyrpc9BqU6EspFqDLOldaLqT1Yl4r5/trPcvr4P/Q0dLvX6u/NcRe3X/lClMFx3MSR6V5nzUSxotw9pkwToRpIHoR2Y2xii4mUMJq1EWku99spH25uXTh/OwpXRRU5D2VWhhmbnZAVJCK2GPw+JCKyPjShpkL86xS4eucMsXe2GmH0oh9+9UV19fXbHe7C7fQPM/pHwb8yWSmIlqdBe1dMsoCToUwMU0D0zQwTifc6NCqFTdF5eTze3H8SKnq6SSZmyailC7tXpJNVlC+JuSptuqWdhR5vOg5sIDYSztrKA5eAbLoh1hr6LqWxglQ39W2ca3mQDjGqYBDch8FX7RtjLAfpGiQLvaRuj7MbVIqY43FWaGt59rOHgMhJ6JSuKaIIHdtYWaU+zplYTA8c3sQgCrAjzeZFBxkXzp3ipdSAWTmVlhYrRkyLkqLfovSqux7whJ2Vpc2x9p2Xpy7ikseauUwOsct1EVXQOk5roF58NdzcX5cLbf6RfUpz09/OhNmNsBFjFPW/zJ/ZuCfNWtZQFytHc71tO2WmCM5DOQUSgu4RRuHdR1dv2WznQgpo6LYjz97nLq6NRa+wxPAJ+fVqi4zJhf3NGnFMgWoWWKfy+sCiwRBhcJWrdTUF1fLz3ke0PJVxro+T9Vvqqwj5Tms3l/6uKjr/XI+pbVaKYRxL2uQntvTEkqbEtOo0u4nwtSuaWm6HnLCuAZtnKwJaYkHK/hTU+nL9p0/wbG6j9VqLJa29MvHqeNekM8aszhr5vyvtnqtC7A15rPGYXuHNZZN3y/robHFdzLP9vC5xFFGa7muxhCL3MHMyJvPav2Pz89CGcdL6YEQIt6L3Xeci3MA+jPzZx20PtH0+b3b4HMPaGndXz2itZlbVRsnUhnWOvYl3+77Ddvtlq4TYyVW4ys5R8mr7eK0zHwtssh21DV5tQxqpctaJe5X2gqbVK1i3qwUWdd7QfQjJUfKC2CupBWYEutW5r/SsoLIvNAyB3Mu52hLfC1rfjZcsMvrdUoF5zBBdLbSXGGGJWerQLNcR+ucaG0W+Znvky/+WYCfGKXCcz6fmabpQptGED75oFXH5nw+8/j4yDRNbLfb2RGo9sVV/Z0KDK3bvZqmmXWErq+vubq6ous6bm9vefHiBcYYDofDXJ2S5F1YCbe3t9zd3c16PPXx+pqVhXSR9JSvmlA+1fb4tt7K+hp93/Pll19ye3vLOI68efOGx8dHxnHk48ePHI/HmeFTQaj6mbqu4+7ubgaF1tfyWQ8lFP3D6UgIkfv7j3z8+IGu69nGK5rtBoNbEmhVvl++xPxThR7mZ+SMsZZu04l7j/ckHwnTxDAOIpqVMt22p9ttxWmrVOtBqM1JW5IJQq010uOslRX3LsBPgYd4FNQ2WlSykAXtNZ20i13d3HH36g1N19NtdmIBqNQSVCglbS1Gs91NvHr9hp88PPB4eOBxeOT+eF+AaAGZxPL0c9pTed5sQogM5wk9CXV02XKf9xDaa4PRsmjOWjezxhXi2IYIFzrXzACQLsl+07Z0u40E8E1D00sS03SSJFpr2G53XF3dzCKwNWz03vPp08cCtrbc3t6Qc6bvu++1cH3uvn46t77xOgVMlHkjwt3X19eYMp/WNt81QVqyJeYKHhcPl4FT+WI/VdUu1Bi22w0v7u64vb39B43Vsx8zvlESMlc2JWvJbqG51o1UxPjKB67gH8zAt6x5a/2rBUD5/Xl2vXpLq9c4jBweD0zjwOPDI4/3B8iR1hoaK+GWLtpb2cp6nVMUwHwvgHkIHh8nEpGYMmOQwoFWmabr2Oyv2O2vuHv5ihev39Bvd3RdL+2Vaql2f48P8Gc5nq4HJcShoAzkHMhJdFCmaSzrZcRo0V0HOD88cvj4CT+OPLz/SsQIj0eG01BEnSPaNGyuOpq25eWbt/zkpz9jf33Fzc2trBvf56hBW5ZApd/2XN9eYyxsdj1ta5gInA9nTgdhGB2OkdMgOgZTEP042Wu1JNHa0HSypzet4/ruhs12w9u3X/DP/xt/w1/91T9ht9+z3+1W51GTlB8G/Akp8+E0cYqZaAyq1aiYJHmKGR9HHg8fmKYDqES/aTke9zTNnk33CmtaScyUrE0C3gizVcADAbFq20bNEGvSEWNgGE6iI6ALwKeUCLIH0bVLpV0uxiiuXmdh/Hg/kPOEVpHb6y2b7pqmcfz47Ru+ePUSrTXTNOL9KFTy84M4OFnHadtzbAX4H4cea1vOg4g5x1ho70oAEAlYLQpZg692jdy1KYuNfJIWk/F8xvuJvut4/fIFu92WyXsOh4OwwseBOHjG0T/7ODZNy09/+nNOx4+8+ypwPhkMEZcDmiRAzZyIFL0qpSBp4pQhK6xuaewG6wxN5+h2Hdoamo2jaUDbLMWsvkdrSbJF8FqA7GrhLVhAme0rkWXBlyrzkoUVtIIcKo4g39O8piu9ar2v+9r8B/UFl/X7Al8qyS6r56usQbWQM02Xub79krbt8XHg8fyBwR9omz1tf03T3LLbd3z5peXu9sToJ+7Pjwx+xDr33EO5Al3WoE/5nlRx2l4y/agUUVuSsmjdgttAswXXgXEFCNIyDBlxiTQC8mmtxelMVdUdLVV4tWJ85CIiWwAfhWWdoM4gXhlPXbQSa9I5A6nazG1iKms08romA0kty1xd8nRCFcZCxKOUOAwpI+1ijTbsb1/Ttj3n4yPT+UyMmRQm4nAgpoGVepn8lFO9fepdsr7oP+gx6/qsAOV1QWgG1FhiuEymcbYwfBrubq95eXfH1X4n65Ky5CSggc4ag+H66oq761ta1/LTL77k7csXdK6hyRGbAiolTHFi0zrTWkfIregsdQ5aR9YwKfBrRKmCslWEWEEmzldOVdfVLLo+w+Q5jxOH44lPjwe8D5zHCR+rDEMBNebgU+75lOfbAF3Bl4y0HubLa7ku0jznkXJm9BNaG2xhrbZNy3YrhZndbs/LF6/oO9G7ff3qNX3f0XU9V1d7nHMIe7kWEaqTnhKNyUaMSaqwveh2JXG+S6UAKwrppUW2IWcwVmOdsB8rhFqZWigBRUWPR65xShCGUea8ky+lQVnJKTKg5pbNAq4nYb6bJuKyQptAO0VykuJIThJpppTEATN4Usqo45FpCrLWtB3KOtlHEfc2oxXWdaAdfTbcXHts00msGyMx/SNl/FTr82rBXquwFfypbJJpEqvSaZo4n8+klOa/WbOA6tdamHnN8qkiy9vtdmbD7Ha72aIdKIKBmRcvXvDq1Succ9ze3nJ7e3shZLlmJ63ZRBUEqq/3+5g+3+xVXRDK2hpWkd43b97M16JqANXPVa9b/XzGmJmVtH7NZz8UxBQZpjMpRo6nA4fjA4fDHu0sKVba7mc2gYsAYyEUr5F5soi2mraFlIi7nTB9vMcejxLEpkS72dAWBpR1bg6WBLXV5Ep3NnpGYI2yxVY8Mg5iWelUh1MCclgtbUpN17HZXrG/vsG1LU3XLRTMWgVRCuOE9dL1G26ub3n18jXWWbrf9EIrJAuLp5zzBZhQFogZZAByzExTWiqL+vMgxx8/hGqu0NbqTRUWrZXUev9WxzkRnBSEWYAfEauUvtSGtpN+XJlfW6xz7PdX3N3e4ZwTBocP85w+HA7kLM511WFP2Anfce7f2Ky+HQh6Cv6o4uBkraXrxAkuxjjPp7mieQH61NfIcwlhfngWYJTf10q70moWsq76Wzc3N3/IEP1xR72xPv/L+dpUdyRy/uaWn9c/zpHC6i3W8O2TqiTLt+97ZCB4z3A+M45SGDifzkDC9B2tlSqm2MgbskniYFhaafuuE9efYGjPLaMfCTEyxYmYZYO3rqHrN/SbLfura25ubmm6nsY1c9D4mSsx50N/0grn9z7y5VdO5CytmsEPDMOBGMNstqfInA+fOHx6x3QeOT18Yjqf8cOInzx+Erc91TZ0bU/b9Vzf3vLy9Wv2V1dsd7tvaYe7PFS5ByV5FJZD07VsdltS8rRdg3WmMEdHTqczPmSGITMOFJp7FLaWVlhnxdnDGHHCaByb7YbXr19ze3fL27df8NOf/pSf/sVPhQ3bd585qee98vWIKXMYAxPitCM26kWjI2Vi9JzPj3gvTKVPD1tGf2LTTajc0biIQmN0i7W+AAtVYFmSLGldX4AfXQQuycLs8pPc79ZZnJIiRTHIk+WgtkrHGl+N+GkghhHwaJXZbra8vLuibRpe3N5we30NZB4eAn705DgRphPT+YFkG4bhgeHcC2vFe7RpGceBaRpFa6Hog4jYe2kBRSrjrnX/3/b+JcaypNvzhH7LzPbrvPwRHhn5uPnd+9261aWiqqHurVKPGCAEUotJI6RGMCokpJ7CrEtMetRSMWn1hElJINUACUo81CUkBgh1C5BQ03SLh6DUxRVU1X18X36ZGQ93P4/9MDMGy2zvfTzcIyIzPSIzos9Kecbx4+fsvc2WPdb621r/lfgZIiFOBTV2Ke1/sVhwcfWUzWbDfr/HRyGww/pICIbh8XEfCud4+tkzrl8adtvvCb7DxAHjW/03RfJI2pszCBSj4AfR+stVQWEbyqKgqiyLRYF1BltbbOYLLjSs39gqAT8FkHk/MsfYDOIVk1J8GMfwPHhkjBDJDu/d8AXJ68PoF07XiunNGSaaozYn/D6S6ySNX0yAhogSyzhgsXxCWVa0/ZbedITDoGTPxRJXLDGmwj6pCUPPrt1hrr9j127ffxp0jpCbHdgogMHogHkj+GiJ4oimAFcjrlaQxVhi5l1KfZMLiZgE/OTeNyh5tpHc9QmSSxFh2nezqpIJfRsj+LJOrWiREqIWDAlJhylaQq+rQKqg66UJqvkQw/hawxZyBPlcdx6JARFDszrTDAhXcP38O4r9Dt855dvS+mGq/+kcbDTXP6jMx6hMvlOOglBJAGkanyEpXSlGahZNzWq5ZLNes9msGPrA0HmGqLTeEpXce7VY8fnTz1nUNc+urrhYb6icg3YPh2FqfFrXCusoKZQouCyhLpOvMjCEnuNiZ8cAa/aBIkwHrKKVu/phUG7KQ6spaIOn7QeGlPpsZv1wfGale4UAIdvCouMmchxl966RIj9YXTEyeI+NaDVC0YI46/WGum64OL/g9776muVyxWq14urJE+q6ShkU1YxOxU8H5gnIc85qdccE/IQwpL3EIF77dD5GrDWpSqK6hVp5OWB8IHoFx/MUU3L/CHECEH0/aFqnDIgtEVJFNqvzz2fQNj2jJNDJujJFDg0UZU/wEWM6fN8SQ6LXSCnYyqu5x3QDxjlKo3x+pDVKo/MF5wRMoERYLlcYV9D2PcNuO1Y+fZP8bKled9Ow8umxS6XZ5qFp81Ss/X7Pq1evGIZhJATMRLTza83BGZicxPk98/0yEASM5dZzNa4MqNwH9uTrzV/P0ej72pzlbZNsGqx2/HxOFckhi7kN82ph9z3DYwIHAkppIikEUZSEs+ta2lQVJoR0wpRv+y7rieQg0pnTKEAK6XOlcvOUwVP7gRADZV1TpHS9zOekHFEhpQoo870uACYZLXlzSCcYMZWlTYu3cyWlqymqOpVtV36fTER895mJ03goU5nWQ7tPQILVLTtVyQo+jmkLR10i2aCae9pph4szp/sRJUYFXzP4w2w+jpFspbZXF+GFntqaqWJXUZYa8eSUg6msptcj8761ehqDEBJ/lvd+jNKDicNrnmqTVHRkn96VdxrXuVuTA6qlzLVSTVEUlFVF2bYanZOiXeYAUMib8Xi5SReRvAnNeH0ggUEyAma5n4r3car5xrZnD+EYIJuvheOp6F2sZhp+x+/PPjteI70vHH84Rl5X3JuGcpyHkM+fcZ72m99PKSMm/4iekKVKUCE3QHS82gi2KBSgrDSKRcdpqcbAPCoTdeTuG17xPfCK/BBRTpswGj8hVT8zovi2PnOuiKbggRH9bEwVL4mBw27L7uaG9tByOOzxveajh5zqFSOlc1QLJbevm4X2WVVi7cNmw2ug7NiJEU0dS5XUympMFTXWHD33NEa0DSZdN1egsymFtKorlssllxcXXD29mkW7Fiml9A449Z5An7GdRsP9iwxyGC2trA69pLLrWtnocDios0JFXe4gGcY+dJgwhbYjAh5in22CDAwkxzxMDnpOfbNWyGcUxJy2FzWFru/xQ0/X7uk73a9FlK/LGo04Xi6WlGWRwH6tZERMqWQ+lQxP+gk+8WeFgA8GMQrqZ14pTXlNJ65icLYc+YpcTmsCNHVFI16JaJp1VRIRusTD1g+ePqUGRZTb77FFOX6W9N2Opl4wdAfwHbEd1DmAkWdQxIDN4AcoqgOuqHD1UotBVBZbKNhnbI0xBTJyBB1XPhyBgKOFJ88j8uZC3mu486l7h/cIxE9cLePSOP/YHSd0HF/oGpLX93H/G8Gi2YWMAhUmFNhYURYLfBwonKZy5IqR1hUIQhE9Vd0oGfG7RhC+o8zNa7UrchpsftzZ5jb/vEnjSqafzJ8iud0j7JH6YHQu01vH8NixXsYzojizkfO1ZuD9a8rMtmtuQdZXgpryc6Vr5Oqrkp39WV/kNCITE/dXNJqK4gqMK3FVTVEtEBH6fQFd9kFMsodyWtx4zHXHcHg8mWyUWTfk97nn9bgyTWmZ1uhfikLTWJu6oqr00MFaTefBRMRG6qJgvVhQWseqaVhUJU1VKn+XooTjesh8j7sDumSfIApYBIsZqbFHqocIBFJVymnvk/R9AYLXkt197+mHlP7uJyLjPCNV/VOb8xjJ/TelaKa+4bj/xoPnRwZ/cj+4oqBpFhSuYLlcsVyuaZqGxXKVqiKnCl6pOqwe8ExUKSFF0sQ4JhpqVSubeUKBxJFkQuJplGyfM/47ztGUbhsTX56aH5FoIiGl9QbJ1Q81Pi9Xp8wHWnM7BZmq48YYiUYIIfviedVM3zc2pfjalPYWZ9kGGWhK1ZW9R/wwFlrJvqJJgFBBqdFTdc2hbeljGLnd3iQ/C/CTHcsc5TOP9MnRKyPZXzoFur29xRiD957dbkdRFLRty3a7HdO7sqM5LxNvjBmjeeYk0fkkPnPqfP755yPh8vn5+WspXXcjaB6K2nkMkGXOBTMvhZ1BsbtpZXejke57vkcTAbFCFK3uFUJgu9vy/Pn3ehpmHc8SGWf+LOQ5MjMa5u9Mu5LyGGeDN+W4Fk1NJueuhzWrJxc6wVP56bxAdr06LodDy27fMvQt/RBAnOZfhgKJXsvp5T0SwZga45SHZrG5ZLU+o6xqNldPWV1cYJyjqOr8YEwPqeVRIeLKiouLS4IPlGXJ2eqcRdXQDz27fkc3tBouOKQQzOj1AYwuKrpem3Fbzb3zI7iO30kG73n58iV1VVFsNom42uCcJQYda3XiPqnrhvX6TKN2QqBNwJsrS8pFg3E655plSvtyjjKlkVWllvsWgf1uzze/+x1d12nVoMNBjYu+H9cCmysqvQf/Wh2cAmIDIXJ2dsbl5QWFc5yfn/PqxUuNKOx6fNcnwC6myi6z3P0UHZXJ5IIEYkL/rdXYF+usph4tlpyfn3G22bDZbB6/UT9CBBLZHzMj4X7HYQJz7tlMZkjPlGbwmql7z83f8HAxjiG7RjRFJCbQtG3VcY1RsIWmRriix/uAsZZuGLjd7fFhoPeBaPQ0umwcNkKzXHP+5IrLp89YrtacnV+w2mwSx4Y7Qrnmhnt6sPcCwP5QCSEwJHC973vaFHVZlY5FUyVS2Yg1ahwVFkobGWLgcHvL7vo5Q9fx/Jtv+ebP/oJ2f+D5716yu72lO3S0h5au7YkIF8s1z371KxarFZ9/9SWXT69YLBcK9sq0zzwYbXcEG2oZ6max4uziCcZYlus1dVMTQsQVAqJrYgZ7ECgMKO+aoShMiq6suLp6wtn5GZdPLvnjv/3H/P4f/D6r9Yrf+/orNpt1SsMwyaCeHILp+R5XLyJgK4ctHFVdg3PsDwPWOdpOo5P37ZDAy2sdl1XFarFj6ANluWCzvqQsLdBAopoENcp9WhCLsqBMhOo2anUpEcG4yHJVzYxDgIgfOg6HlhA8h/2W/f6Woe/5/vvf8uL5t4QwUFeGq8srysLxxbMrPn/2hMJZFk1J6ZxGYXpPfzjo/PMaJUCE/WGPuX6pTrLG1Cmw37dpLGpIvk08Nk2zoiprdG/TgxBjtEKkdTZVUlQOi2Hw7PY7ti9ecWhbXtzcst8fGLwn2AJbPy5YoP1b8dXv/QGr5ZLQH1gt1rS7a26ee/pDgABDP9DbFnHK3WCNYFyJLWtEHMvzK9af/YqyWeAKKOuUemcqxC4QcRi7SNE+pVbgyhx65MgdiPPFcmSYHtGF9BmOzKrRxZit6yNHDMfjfv6Z4x3AjPPl6PPccXbz/pEPVsTgSrUHTKiR0rH0LWJKCrvBmlpTK2xBDIEiNBTLhj70iQD8ESXeY0NIetjRCdbfc1nsIBYpKrAVUtZIUWOKGjGFAlwhO4KZ70kdSLGGsYT7DJPJcNGI7YRATGtcDF7TN6awoPQhTy7mEbNDixBjKs0eFYBRW1GI2MQDAiIek9JixnSsoEwhWVVaAjrbMUqyq5VtlxhXErCsL59hbEG7u9HKj8MAwRP6fQI9mIAfSRXDxk5+DwbrnTFrUgOUQ3GOu0yQW34ipWnS9KDzdcMXzy5Zr5ZcPTljtahZ1CXeeoIIYTB8cXmGG34PP3jO1+dcXVxSuoJlVcDQ4YMgQwdR0+WiiKbMiUDox35w1lBUiRoiCBIUNOtDpE8ZEVEYy4jn6R2jlggvjGXA0x16bq93bA8tt9s9t7u9RsIq/ZICFDFAjv5BZy+S0790EIkRJIWzzKP65/Im/tEfrToxlFXDerXm88++UNBnseLqyVP1K1Yrrq6e0iSqks1mQ1kUIz9mTuPLe0mKZxvBnyg5UicQQ6owaiCkwIQwDAx9n6aYSeCPqE+X5l70gTjovPFdT4gazeVjoIga6eiMxWVCZ2PTPBByNB0ZV0jg04BGa+nMU4AJEYwrKMqIsRY/NMQY8LYfuYtjzJX4AsH3dIcddG3KYtHoPiOJSkYMi8LxbLXElSU321v+/Le/4dXN9Vv18rMBP3Ni5AxqhBBGUuIM5OS0rsPhAEDbtlxfX792QjAna85gUo6AmTo1Ht07fyeTKecy87nU/Jtkjoy+nk4iR/f7IXJMADyljOVTuYeu96bneXRJXe+DltE9dAdubq8pipLV5kw3ivwM+eSBuSOQ89bvXlgQMz990VxLl0A8/eb47XTyphO23e3p2g7f93R9T5tKQvsQ06qaS2Aqn4lm6AiIwUiJ2AJTlFSrFauLS4qqZnF2Rr1caSifs7MHljvPrg7qarkm+ogfBpbNktJVCgwfNIczRiXmjHEedaGXyqHCkVROO6H/78vZDCGw3W719WxeaNiypypLVus1ZVGwWCy5uLikLCsOfcftYa8pBVVJsaiRlGK4XK3Gxc+lMqeFK1IVM6HtWl69esXhcBjTM3N1ugxuSkpnuCvTSd2PkakPnXMIyjO2WCxYr9bEEMc0UCOGbapyJiKI96+rGzXcSJEUnkCUbAgmANYa7ZPlcrz2oml+dAseVUQS5cnkmN8zFV/7zoOXexPo80bF3WWlSLN7FiprjEXtmkAfPH7wkDbfaONIKi7GMPjAvm21akKIYxljZx1WNB1zud6wOTtjsVqzWK2om8VEXn7nWd8TdP6TJIbIMGhZ0q47sNveam54U1MVWmUCM1aMxZqIMyAS2fUHtq+e0+0PvPj2G777zV9y2B/YXh801av3DF2vURdiqJqGy6srVmcbzi8vWG3W1KnKxrvIa2CLMZRVzWK5xg962l9UJUU/JE6acASwGrS8NmYy/qw1lEXBZrPmyZNLnn3+jL/yV/6Qv/rX/iWqqmRzth5TvMZT1PQ0x/8+sogghcFVjnJZYcsC5wa6QRAzcDh09H2rZZPZY4wCIr73OFtQVQsKZ+iHc5yLxOiAghi1WkzX94QYtW1WU8KDBPAxEdULdYooHPfFoOVdu26PHwZ222tubl7S9x031y/Z3l4DgUVzxma9Ue6Ly0ueXj3FWoMRj8ETo0/XSsBrUOcEoO86trJFjdv8o9FFNpUjV3tMIx7X6xWLZjnjNfBjldei1OcPaYDdbrdcb7dc325pu47b3YFD2+oqYZQk87HFOceTJ5/hjLC9/h5nLLdG2F9/xyB7IpKqxoieCActI22NUFQV1pbUqw312WeUizXWRlwR0pyxEAs0XbVCTIEYxxjFNQNiph1Lxvc1nWv6zJ3jtHFNz6fMx3IckXlflMR0l2MY6CGJdz8lCoBJtFgqbFkR8Sg7uY5lYtTokhBxUlPSECVi3fuJhp3szmRdzTuBZG+NbxmwDnGFVtyy6cc4xWXGwN44XctIihKSsV9HECLfLE6Ykx6I5oiR7Dwm4CeDP6n8e/6uvpvBOwG05Ly2TV39uXIlRSoY9IA2zDQsxqQ2pD6IyT4uQIyjiNCsz5MuHTcvvkPcLdH3hL4dwSfGx1Og8kOlfGWQJ4NrU6tfX+H1AASKRKi+XJRcnGl612a9pK4LytLpGPAQTUDWS0oM0UeWzZKz5QprLA5BwkD0Gjkrs6yGsZrYMPk4xgqF073Lh5hI+SOhHxjCMB4j5X+NFUIiFZYIVhRkGHrPft/qz6Hj0PUJ2EtAcUzVwwgauY8dR3tOSQVhPEGOAhIIs757n/6iZqcUNM2SyydPOT87V+Dn6ilNrTbx+fk5VSLaXi4WydebeicfCivgl8AetAKvptAFTAhaHTRqWqSNqqN8eBtjxI0gOhixCtgSCSYQUkp2CNAPCX2J0wyL1mGNm62P+eA32/5qn+S1LQ6eaHwaI5NFY6zDFalfipIQ+vS6IwSfDvQUVAwRYhcSybuFQsBqpLt1DoylWS65evaM1WbNi1cv2fddateb5WcBfjJHjfd+jKrJaUx9349RAHc5c/K/+WcOkMwBk1wJLH8mSyaDziDTHAC6my71NnkXcOdN1/mhaV/vcr2jFI73JQkg0L1LJ9UwDCNZd+Zg8t4j1qST21l+NfcwaIwb5Ow06chgjyPh3bHM+ElSKU1ixBUFRakl5bXSlE555RmwWAFxLpEUW8q6oagaXFGyWK6ol8uxhLvYHDY4GURqfB17iXky6niutJpVVesis7dpo5exSWJmP0c9knQYZ/vr/PUjSUxgqrOWtm1x1jJkAKYoUqWuqURprp5WCjQCPgRsVVIuG0yKsqvrSvs0gEknCt57Du0BIhz2Bw4H/ZlCVRkXPHVWsvM/PevxKeXbx/YRWDYijDnnNkXJGX3mzPGz2Ww4Oz+nqrTMcXs4KIcYIH1P3pFzqo9uvn6EK0I2tGI+QTx+htcJvX+65Gu+rU/u/v31deIedCaO/5vG/rsuK/Nm3vOdN8F6OQUk5FDfVLI7DppSqlWnRtOGTDkZIgw+IIMnh6CLSemwVY1xpZI4NwuqpqGsqpFwNldCyRv0HI7Kz/uB7Nq3isDoWMQYCYNW4xq6lsNeGPpclVCfuDtsOey2+L5X8uY0ttvdjvawpzu0dIeWvu0Y0qmXcw5JfAirzYrVek1VV6NTc+9zzfezh3pLNALL2iLp1o6lkPXaGlmnkYeow5LWX2stddLbar3i4uKcq6snXFwosXNVacXAKWUvzv59/2ieCCk83Yx+oKbfpdNKk07oo1aU7BOA2fUDXSK/zBW/lDi7wIieFhIj1gpWhLouWK0anHPM6wcpf0cyiL0CpJrO2zJ0Ld4PDEOL9x0h9FgLdaXOdjNPf3DZJNQ0rhB7+lRhzydy6JBTqINyG9m8ZutCB2h6sEsVHDX6WsGfuq6pE4G/KwqN1jMm8Yu4lNavUXxd33NoW3aHPV3X03YtbdfNIOLHV6Ya4QVFStv2fYvvdpRlxdCWOOvGaDfI1WnB2DjOzbHiirVYJ9gizZtoIaaCCbmsd67akh20dJFpzZmclSlSBcYqiXcOhx6OSr8P5H8Nmr2vR2ZQlIxYAamt45aWDZbUDk2VTekZqboUR5/P/5oR7H0sGbNwxudUhzFZAUdtyw8WEzqjxMlqF47pxKkPcmtmyTWT7tL+odWBVKdxRCdk3n36jPM1UibTUD+aO0qmR4zM7EfRQ8vchHTFo2XOiKaBGoNImMbXLD1I0rW07TZljTlN9yoq/Sn1J/bCYC3B54i0aQ/mCIV5ZOKtI7ND75kjrfJhgJFcUcsmMl/GvapwQlXogUFTV1RlQVlolF70WkkyDp44KKCNH7ConWcJSPBjqnEG6SQGcqn7EDN9Q+ZQUj3EBLznpzcpBExBYpO+pxxoqhYzjtnsw8bMY5sqbsZkH+tQSP6ExHGoxDj5o5OWczfmVKSohODm8e3R+0SzaM7ZbDasViuWy1x1ujnKzBmzVmZV0GbLCUrwPCNOFo38sqIHxXlMxpiqaBk9qM++S0wRiZNZG8Y5OJK+Q4q40fv7CATlthokMqS0eWWASsQkIYAfjnxYHQcDOS3QMIHExmjVMCVuT2lfNqaqhw4xSkwdvfL6hdlKMfVK3v3iWFlOhJQCr1yXb5OfBfix1rJcLinLkvPzcy4vL7m9vaVtW8qyHEGf3W7H3bSmOe+NT5wFeQBnbqBc8WsOBokIt7e3fP/99+z3e66ursbKV4vFYozyyTwc7wqiPDbIktv4Yybl23iFHkMEobSlnqr7gTBEtttbvvvuW9pDy2K5Usd50+IKR+l0MQ6kEEPu9KvMN43XZTzhinE25POmG9NuHCmqCoPR0s/DAF6rgEU6+n6vp+IYfFAkvalXNNUKax3Nek2zWmGLgs2TJ6zOz7WEcb1EypKc/z49c/5feo6oY3qxWFLYgmHoefrkKc+ePuN2q8TXN14/qGXRDUTBVYlpP8QUORrn8zrfaLrPI0o/DHz7u2/Zr/ZYYzkcDhSu0JKViZhSeTgsRaVEqXVdUxvDOpGJlHVNvV5iEuGqKzTktdu3tNsdfvDsDztevXzFMHi++eYbvv32d7RtN0b5lWVJ27a0bUdZdontnnl0+k+UuduuCy44yqri8vJS15ntluAD6/WG29sbivRsQ9+zu72h3R+IBHwYCFE36+g7BSDSJu1DJBgQH4kxnfKEmDaSMBL0vS/5IdGF2TCYvnz3hCDOxvj4pen3+/yJ+R9+JFIiorxRTSJsr+qaqq5VD+2B/W6nKZ1DCs3G4BGGFBM/tD3SJ/CycrjEAba5eMJivaFZrPjsi6+4uHpGWVVUC60IOEUEvg74zOzxXwb4I9mIFPCe7rCna1uGXWT3KqUbSsQZ5XXpDzv22xv80PPq+2/57jd/SXvY8/yb73n+229pDx37bc/ttZIOUjas1iuKsuLzLz/n13/0a1abDZdPL7HuzVGwb390PeUqqyVl1VIUVUoxtZoiadUgqWo7llj1xhKMoapqnjx7xubsnLPzc/7mf/5f5utffc16s+bLL79kvVljrME5Q0wpmBPpOtwFgB5bl8YYmkWZHH4Q8RQWqsIRo6Xv1LkKMdL1EHcdxvT4aHFFyaFVW6epGw71AmdrSrfEGEdRlSwWNdY5rj4748uvvqKqSra7PTfXt0r22aaUrsSf1rWHlN51y2F/S/AD+/0t7f6GGAJNZVg8vcRY4cnlOZeXZym9S6M0vI/03Z6+2zP0Pdvtjv2uox8G2s7rqahEGCLBRERC4mBSEtXlaklTN2NJ85w6f3n5hNV6DciYYhOjHiTEEDm0Ldfff8ftdsur62t++/23fPf99/TDwG6vAFAk4kOqyPToerQsVxslVu2+4myz4UVdcLj9DiuRqhCsU+ckhEjbeQbxIJ66AWcF5zSNr6wbbFmkwhBWI0Z8OsDMfD8mHTTO7aCjZVxGB/3OCcjsEzNQR6Z/j5lm3m07nTsZxzPm7jtz4CKDPrr3jcBHBMhE1bnwRjooGduUo1Ue107NjtzsIUeQRo7ul8EaTdmxZQVljS0qrCsxptBKOlEU4Izq5BM1OhErRGuI1uBNIlRPlcFkDPPJ3aSAWC6oERJt8rw/M6NIbsMYmjELXhSMEj+P30sZDTIbB8Ziox0PZydgIvsW2vcZYgzGECRCYSgWZ4gtwBSsz18gITC0e7a+p/N+dJwVKxN9nhEMPfxEzR3LPHVR0OAqZxNvjDWaRpqKPVT5oMcYCqfckk1VsFrVFM7y7LMrnpytWS4aamvo9zti10LXQ6vAT+wDhVeduaHD9gd1ziGBgGBiwCaen+g9YdBCCqHvCUNPFC1S0Xe9OvdOo9l1rVOwN8TAofV0iaFeogWr4I8fPL4PDN1Auz+w3+44tJ0SAOfqXCJoSqBJqV7JP5EETiZwLNuExuQ5OSs5zlRw5jjT5PHmYl03/PW//jfZrDd8+cVXrJYrqqpmtVynKFBHU1e45D8oFxrM5ycSNcoSjYzKaV/W5kphpIMNrdIlSPKnAlZcSi2NxOjxOUWPFK2D4jPK3BDpI/RRiAG6PhCHPruYRNT2KkzEpbkz9AckaJGgDOplBElCGismUiS7RHAYI3gvFENFJGC814PjHJDS9VoFOqqtm6szxOg1E5SICVaLC6DpnYZAVTguL86p6uqtevnZgJ+qqsZKW6uVMnrnSJy+7+n7nrIsx6pfc+LiHP3T9/3I7zOipDGO1b1gQk9FlBj69vZ2vEd2PDVaob432ufHpGs9hvyQiKAPKSIp/F4ifSoN27YtNzfX+MFzc6ul54e+H5FbGU8o0sb5UATTPPInr/Q5okumc5Yx913QknlRS1FbjKLkTYPvOoaiYL/XSB4Q7BBwNlUxqNes15c4V7C6OGN5tsYWBcvLCxZnZ0zh1+a1ZXCM9sr/E8Y0hsI6DocV69WGs/U5AhSuSAm5aSE2glg1IIPXHGA/hmJ+GF0HH7i+vhnTnGKMLJqG5XKpc9M5XYjTgpwJil1Z4FIlr2rR0KxX2MIlg0r7ZYfQHw5K/Nl1XF/fjFXprq+vaduOuq5pmgaN7lOgNqd1juP9MfegZISJGKzVDXCVwN5F03A4tDjnuH51zcsXL7jdbunbFoLXYRY8vRcGL0gM+Dhobn0IKScXJES16yMj6JOrpfl0evM+5MesURO4fDzP0l/veSn360KYHVfef4mHH4KZda6z2lklB4c4ki/HoPnSh1a5bYL36kiIRoWEkfzZE/BYZ1nUFWVRUVQN67MLzi4uqRcrNheXrM/Oca6gLKtjbo3RK/jw6/27Sjo4Sn0X8F3P0LZ0viMMLTF6rASc0ZOm7rDjsLtNwM93vPz+O7rDgesXL7h9dU3X9ux3A/utJwSoXU1T11TNgrOLcz77/CmrzYbVeqWh1j/p4QVrCopCCRytVU4vkwjgjVFIv0BT+UJyorwYmqbi4vyMy6dPuXxyye///q/49R/+mrppuLg8p1k06InfPL0ry2ycvycRgbJ0iTQSEE2xc9ZQONJhlSXiGXzEhz6d0h3Y7bd431OVFdvdK7zvKIsFVGh/lUJZLShLx9lmwbNnF9RNzYvnLxn6A10bGfpA9C1+8PTdnvaw02jL/S2H/bUCQoctQ7cHIk1dsmhqnLOcb9acb9ZYayhKAbQYQdd3tIcDfdfTth1d1zN4zzAEhlQpTAYlxDQC1un+7oyhbhrWm02K5lJDvaoq1meJ60xk3F+9DxwOrUYWxUgXPNvDntv9jlc3N7y4fsXgPYexomtk8PG9AD9iDFXdQPScnV/S1BWh37NYrujbHYWNGOtH52kYPAEoSwUCNNpOo2ZdWeLKmqJeIdapfz5kD6JgJA4WjoCdOcQyOnnjOLtrM43/O/rM5Db90EEfx/+//s05SHEHAJpjHAKarm1n15u4X+LRZx+fp+leSX08xrrEoz+MqIIUmvJvXKEErMYl4AdM2s81BjUBPwYFf1LVtWDM+FpDoqaDSsMUnZoPMO8fwans+2jwzl4jsxQeGK80A32QMRZegSYzEIzRVBbmMfcJDBAFJGKIYMFVC42O8IF6sca3ezpj2N+W0NrpmYhqHxs7u+Z7kNnSnaMoTVpbS5f436yjtoUS3jpLXRYYa1guKs7PVpRlweVmxWrR0NQVhRF8p2mj9AO0HRJS6mZQp96GARm6lCkwBR6kOD1AIz6CV76m4PUHgTB4gh8QDFjluYyAi2rp+GRXRq8aCVmnkTGq0ntP3/V0rfLu+cFP3Dwmz6uYqgaHFNEDIWjUaaaUEJFZNTqdA7lIBpAKRDDyqD6mlGXJV199zWq54unTZ8rh6wrqutEUfGsoCg0OcE4rJt4FZ2OMU4lyY7BMOECu6qWRXokmI4C3QftErPZ9jPRDi09VhRX08clGz/Qb4KNo9cioRYJ87zGie5qzqcKW5FVDNCwo2fVOhJDWXiOpaA5gRCN2QzTYmCOWoh56RY+YgRAqPUzwGgkskiqXxxnna0zrThCEkNI5Y2L7gsJZlssFrnx72uzPyvEDmlPdJIcTYLfb0ff9GP7rvR95gJQocKo2kcmdM3lzdhjnINHEXaKVQJqmmTGIl2Oo2d2oovmzvqkdj9Uf98kPTd36EACVtY7zs0uNguiv6UIHQNf1GDloGkHb0rZt4ms5ZpCPYzDBDNFlWth1W55yZefRCRluifm3CLniRAZTwGCKgqKuMFZ5KupmyeD6cUMWMdTLFc1yhSsKqsWCsmkUPHIFuSLLdFOZgiDG+x9vdUoXpKkJGi1Us1wu6IeOwhUakpiNu1mYaiyUPDgMEH0cbZLpxGpaaB7znDoDosMwcNjvk+8fqZuGECNVqVU4ogi9Hzh0LVGglIgpNQUuE8EJaNRSOgWK3iuRYcgb2JAWNB0/RRGPSN2PQj1fi6z6MTKbvzpIpnEoKad6luYZQmC5XNK2LQhcXF5ye6MRiCKCLZw6Hocd0nd6uhA9MuTw/hlYoL5PSufQKJ8+heoO7wH4+aGpXg+CyK9d4z4gSF575/iX41z/PIszQBpJRIT6IDC+VkM1pKi+nJKn/RjwIdBnnpNE2BdT1T4l0NN5ZayeuGgFiRXNaqEA43JNs1xRNZrCmdOMJmcrb+NvH3D3YVwfVER5UwwKdmuKdCQMhkEiIQwYfCKajBq50SvBYdsOtG1P2/Z0fWCIgo8GcSVlDRHD6uyMs6srqsWC9dmGqtb0KudcWpvGVYn5KHgXHzzPFZOqcRRlQVVVDH1PWZWUVYH3IL6g905PWqsGKTUF98nTK54++4zz83PWiW+oSiVf39xl719pIlrVEYljAF2GE6cFPaew5rQo6FO0ToyRXTqYGvqBqgwQLM4W2MLQ9DXGRIa+pev2GBPp+xY/9Hiv/EHtYa9l2ltNGVNHpIOUmqD8SMqfUJUFZanl1AtnNSXNCFb0VF1Lv3uGoddo2Vk53ZB+JDl+uZy1RnHalOalPyCJc0jL+rZtxz5VNBOrOu77nlc3N+z3B25vt3z//DnPX7zg5vZG07yGnOKpFediWkve14GYpFQtVxTEoBXoykrTt614LZqSCHglmjQvZEzN0Op46fS/KJQANgM8Y2Gm+T43SyMff7+z28vxOL5vTT8a53K8mr1tbZv68u7M/mEiY6RPspJmjYjHm8P04j1Mz2OS2llvyt3PJd0BY9qvsSNvy2xnn17fN+4SsKTtyTn8cjROx4OF0aadpVyNDzQDwuLsVrPmTHt+ZKzixT17k0gyuFMlIgMSZOL8kekZRiwnAbLGOoxzuFIj12LwuKLCuApSxaEYg7Yzkd4+toiAS8TMzphkM1uqMgEG1lFVCqoUxlJbN0b7VKW+XtQVi6qiLB1VUeBEGNk6cwGaGEd6pQzq5KmqaWQ5dTelkY1reZwAnzClwWoJd60uKoCZ+UA6xpLfMp/PKBnzUfrRWMI7+QtGo0rmWOCRZZbGi6TIO/LBXlbwbM5NS48c0aaYzFf0SGKMYbVas2gWGsGdUuyzzW9NrpZ1fFN99NwXYeQ9lZB5UlV3weskDePeOvk2IY3RY5oFvVfmXNLPCpmyKacxx7RG51O2KDmuDoYYMIFxjc2rd0DGNQMJCv7GmKo5Z0AtV1uVkUYDATNYTNBiDsZ4jNXxYbzFRAVrUyyTKjMEkIEw9LTtAbN3DMmefpfI7J+1qldO+Xr27BkA33//Pbe3txwOB8qyZLPZ0DTNWIHLGMPZ2RlPnz6lqipevXrFt99+S9d1HA6HscLXnKtn7lw+efKEL774guVyyWeffcbFxcUY4XBfOcmfI9Lnly5NveBv/Ev/BV69fME/j/+MG15BNLy6vuaaGy6efMfz59/TNEs2ZxsWqyVSpHSpWSLzRJKV35lN3PSJIydjtmiZvAMapo1SREmYY6Q2K8q6wvsBnGALJQnf7ffs93tELBdPPuPi8qny8ixqyqZSLomywCQn52gnPXqZEdjpfUEQp4RhdVNzdfWUw25LUzf82Z//MypXKdO8NQSrC0SJoShh6BNvQkBL98ZUzWs09vLYHH6S7uYSY0wh/FslanY6F/ddq0DsasXVlVBLxO9heKEg7Wq95klhqU2N8w7xHjFGy0D7QaMzDi2+6wh9z9C1dIcDXd8jMHLqLBaLce6t1+ujfN/HnnbZ4dSUaDMaTs2ioaxKFsOAKwoun1yy3W1xRcHVZ5+x3+/5zW9/y8sXL2jblu+//46b2xv6vsPfWPxhp0R/Po67gtJsRPo+cHu7gxAxxrE9HGi67nEb9l7lNSvyDX97u0QyiOPJ4fIalhvHUpkxKHBokuHtQ6DtOw5dy+1ux8ubGy1Nrbs2IfWzD4KxjsViSdUsqKqKq2dP2VycU9U1Tz57xursjKKoWJ9dUC2Wyi3jCo5N+3se+he2BZhEQIq1LJYrDOCHge6wY7+9TiW7D/SHWzUKuoHr6y1d2/LixS3ffq8cP7vbnv1g8RjK5YLFxRJXlHzxq9/n6z/8I5rVkl/91b/C1bPPqOoaNxYW+GmdYqxBsFRVyXq95vLJFXVVsb2+oT8c8D5y8JbeG1xZcfb0c1ZnF6w3Z/y1/9y/zFdf/4pmseCLL77k/OIiRamUOnZGo+u+55M3/PbTxTnL+fl5qmjV4YOnk4CEAXwAH0beh5AiaiKRuFcuMWsM29uW3fZA6UqWixUX6wuKouSiv6AoPb6vuXlV8OI7TYG8vdmy317TdwO3L1/w/bffJcLkXP0uIChBMxIpKoepVxgRmqYcq8CtFpWmMFlwBbhCTzvDcNDr9z1tu6f3A4MPDD7Q+6AHK9bhqjpFTtaJa6lgudLUSh8C+92erm/pfSDwguvtFmMdZV3jioLb2y3/v3/2z/n2u++53d7y53/x57x48YJ+GLjdbWn7bgSB80l1fNyD6VFEBFNYiljSrFaUVUHX3nB+cYGRnjh0+H5L9L06cZnvQayWsfeebr9l2F3j0uGOWvbqbsZkB2WuubTJM6Z7MZkdc2zk7jM+BAKNfJD6y0Ti/xaM7Oga8afNjzn/5fzfu6/1UC+vv485I3M1nYf+qjx8kCJGRSNWxBZIWWHKSiN+RCtgZTDAMGIFswNMvaI6hznSx0JK+4rZkUS5QeIICCmptES1Bae48tQXMZ+NjN5sumfmI0nAoyIRx99lsqERBTH1WgE/VQ0nE0bnQ0Y9QLGYogQjlNGzPHtC4RyH+obDfoePKCDcd3qYZ0yKms026rc/RXFHYo1hXddjCmphHWXhUqSio3SzNCEx1KnEtcsRP0aoqpLlssE5y2LR0BiDA2yIKUUGjI/Y5E9L1GAaAQoRypS+Y0WBFwFiiuZRG7qlb/dp3T/oGmAgHhyhdIizmtIkmSfU4CQiweheHjP4osENwUf66PGD+gRWhNJagg1URUFTDmr3hMiQq8zJ8fwKAYxRQCMDHfP1RSN3Jzt4TocSZrxEjyFlWfGrX/2aqqxYrZaURZmArHTIO84EPXDIIzOPV7Ub9QAixEgIhoDTa3hhGGyKZpq8Sq3w3KmtOPWMzkBridHge0/XDcQY8EMk1yMKHrxX0CxiMLZABLwR2hRhM3joUsSWQyPAJGoMkR0Pw2U2LXVtID9jSsGLlFhnU6Vug3Wd0tUgYPSwJYgg3o1RTzFEomh0b/DCAU/4Dq5vXmKrimpzRvlL5PjJAy0DLVVVsdlsxhLP+fROOVMWDMMwpmM557i6uuJXv/oVTdPw/PlzRITD4cDt7a2GcyVy6PzjnKOu6zGt7OzsjNVqxXq9nir53I004OMDfT7U8xau4KvPv6Y0Jd998x2HrVZo2u908bu9uWV7u2W33VJVlZZ+jaRUrxnwc+dEatqnZfxFkDGE9djlmMj4FLEHUtl4iVp6z6R7+6En+B4/DNiixhY1Ygybi0s2V1eKPlcFtkpVw+TO4/DwAc/87fn4cWXJarXm8uIS7weaqsEZS5DIkOzAaJWQLmolQNpM/TOmCE3XfV/eZ/Ce1nvargUR2r7HFAWHriMAq7M1tiwIfYffpdMAZ9kMPUUokqOuTnj0npBLoA89MUVlhGEYHREEqrIkxDhya1XpJDWTq+u6IO+lyaMxnNagsizHTc8VBav1itV+T9v1lHXNdrcjWoura/a7HQc/0MeIaVv2bYsZBgI9Ig6RbFEpKDj4yKHtk5N1oO36ROj6S5S7o/nu32aG5E+QeTouwY+nIDmNkxTWKumEXLmRPP0wcGg7dvtD4sHSE7qcRhcSx4CrGpqlVnXaXFxx8eQJVV1zdqnpStY6qkYBDkmRCnEEoEfU4E7LfzmiWLQaL8RIWVbYBJgdnINkkLdEhsOOiGEYAodDp9W7di2325bDoaVtA13Q8PO6bFicX1BWNVdffMHXf/hrFqsVTz//nNVmo5EbMp+TPx780cocdoz0Xa1WCJHlcsFy2TD4iAyC9UJVNzx5esnF0885P7/gD/7wD/j9X/8V5W1ab6hTlbwxjSQyYeTzTvsAmjTGsGgW9MlAjX06LEzr4xTxo+N/iMmo7QaGfkAE+m7A9wPOOtrVHhMDVVlRVkJ7WGLEc9jfsLt9xdAfOOwO9O2Ovh847G+5vXlJ16bqIKlkcOGEshAMQukKyqIYiU4XTYm1hrp0qfINOKs/xEgIPV27T+TOvZaYjVrmVqtlajSBtbp2l5USN7tCS84XVY0MWsWsH7RM9RAC5qB2Xu09ZVnx6uaGv/ztb/mzv/gLttstf/4Xf8GLly9UbWYWfZsVGicj/9FF0AOgQoGp4Az1YkGzXDD0S4bOcIhaOVDEprVf1y8/eCR4fN8SugOhKwl+la6rFX7UK0w3IjvnMs6v3KI5+HPXzrjvNXc+MweNJFVWfZcIKT0kyQ/x1o/fe+/7olDvv3d2RuXH3OpHyNHJ4hTpkkAbxCLWKeiT009zxAfHgNj070Q2mwbPBP5ITkfW9A2N+M7pVbM2J3LacR/KV49R/zaGf+cI2uyo33mY2fXG1koGf0hOpB6cxNkYzH1AikJRYtwIRUW1WGGTDV42K9zhkFKqDVF6jYyybjZoHk9EhLpwVGXJZrGgTK/XyyWFc1pxNgE/hQiV0WiewjmNWDdCWRbUjRYdKcuCIn3GxIjxKaImREwEk8JoJOr7Fk3fUeAHTfMhnfHFZPP6IVUPTnbuMBANyDAg/YCJCjJlvUtKi1U7J21WkVTkIJcJ18gTjfjR+ztrKKxGM/kQ8dE/OGvUps3p7ymCM+0/k58y2cF3C488pio14OKp7vdVOYvOHZHNBOLH8f0c0RniRN0yJKANDAxqR0iUtA4nHVmt2BtCUJ4k72egl17diCFKHK8bQmDo9QBRExYMSsKfOsLqXAiix+6Sol19gk0DCv5o1JhGGOWIsNwkjWxNGIOdsouyv2NSFXNEkFTtOMQIwSggKdpOhojXyIBEdwBDG+iJcHBUyxVlttfeppfHUe8Pk/mJgE2loBeLxZh2kVO3cvrHvFT7VHViIomeHEYYhmEMXxORMY2sKAqePn3KkydPxmiDeYrX/Nnublo/Fwj0SwSfiqLg6uozYoRn3z+ncAW73Z4XL1/SHlqM1dDtwyGh39m5yxMhJsBm5jvMOTjzfJstQ7NXc4bzZBLNvnt08JGMCuOUPFOMofSaMynG4soyManbWVpXuqpkgyuS8aW5TKDMfT2kqRhKHJ7Y68uKsigZCHiG6bTG6DgNPp2EWwXJMJHoc2rS6+PxMWU0LCMjXxOiubm73X6MmkM0Sq/tO3b7vToBqTKec+7IwYk+4IxFLBSFbtDaLxZjtMJanoNlqZVeirJQoj47hViPD/hgXz/cpumX6bejzY081iZDVclhJ4fUWMvm7Izee4qi4NX1Ne3hoIt2UaQUUju7R95IFcDLaUo5henDGLfca3jfL5Nb8VCO/kMwSJyvmdOePV5vmiTTe3F8f6qGMZ9gMUZNDQya1jHapiLJwLQggVxnRSNH1UgvipLzi0tW6w1VXbNan7FYrhM3VYV1qZKUybwayfE66qf34ko+mhyPHzXoJUUSSD55TaevUZRPRozDugpXRspmwWJ9hqsWNMtIv9brrDfnnF9cKeH5Z5+xOjujXiyUlDanCcwdkuy0zjprOt0/+sjxw2eDxff0qXJTSEo2xmqarQVTV9RSUDdLnlxd8eSzz1hvzliuVhoVWBRasvTIS85emdx///Tm+1xJnXOEGHHGEW1UhymijlZaG2U8Ecxu3PREISrJsYiSfu7bPT546l3F9c01Xd8pqasViqKkPSgY6gfPy1ev2O1u6ftU/SX6NPVSVIoxODtVKtISuWXiozFYZ5GUKth1Q6qsNaXQ+6AE9T5x60jKf9AQeCU5vdlu2R/2WOtou44mRWDfpjQuhFS5RdfNsr7BFQXXt7e8ePWSbfq+98ORLiM5VWLSrby3nMvsKGifYW0i7NYo8ugczhUEIoUtqasl1jhM7HHhQD69DkHTvWIqODIaPPODnLntktfAu4CPvD6U3/WQcuIizHbMO/ZZPH5xtO48EL1zN7rnbdE+4/UjPLYqMzgC9y1DU5uUJWDGyZPXT5P3h0guuR5jJGfPxJhqOsW8nSWnmhSBMbt3crFnz5MPPY9tYOZu/B17mAQUjOFGdz4mszem3XzaUyeZ01loO8a/ijq+47RLc0CswxQaBWWrBlcvNKrUp8jdWVrbY4uzhovNmqooWC8XlGVBVRSsmobCFRTO0lQategESklgjbUj6bNzjiKnohqDFZMijDXKSkQBH2um12I0vczaTL6eGX3QPSythyEEBu/pQ05FDcqhFCVRB2e1zFL7YuKOyVW/kj80ptHO+CBDCFgjlEVBBMqioCwGvA8MITL4MPoHWacw968hp33FONlp2ccaVT+zhcaD10eSnN2TyaVJB1VxTB0ORD8ACuAExUjJEUqSr2EskSkVLYJGz6Z9LtjMJ5ZAEo02SGZHtm5nvqeOgvSUfsShpgcnLyQgeW9O0VVpvocRpMpmbhgvksfWFGkl07PIxP85zb+kQ2vGKmQmBqUF8Upa3YtGOYUYIY03sQmcspaiLKibBYvl6q16+VmAn7lopYdLyrLk1atXDMPAdrulKAoWqbpLTvXKpNCgqF7TNHz++ecjWNS27RhNlH9WqxVnZ2cURcHnn3/O119/TV3XnJ+fU9f1CCTNB/9JHpZmseSP//a/wvPvv+Py8gkvX7zg22+/5Z/+03/KyxcvKYuK25tbvnPfURQlfT8cnXgyOntz5Ge6/uiQc7+jPHc/RoOf+aSVtFEK0UJR1Sw2G4L3lM2Cph8QY2hWG8pa07u0vnv+usxe5vcnbgbu3VCn74Ki3Gdn57j02YvzSzarM1rfM3Q3tEOPMaIGtzVgPEUXCGjaF71WSzNm4qd6H5LJ4HJLuq7jxcsXWGs5tBoF1CwaFsslF08uKKuKcHOdUsMcTVWzSqcvVVGyrGqs1c21KUvtpxCVDHTwRKMOqYhQNw3LxYKiLHhydclmvVLOjqrEWHn/nI95nieQxCZiORHh6ukVi9WK9tBSL5ZcvXrFzc0NES1TvNvecjjsadsOpMOYgxo/MVfyCgyDRqu4VAo5zBf59960H7KGPTTT7n7mB8hsE41kg1n7JVcY0Xx4ja/1aWOOIdC3LX3X0nedEp4brfAkhcOWJcRIYQucVcf1/PyS1WZDWVZcPLlivTnDFSWrszOa5RLrLFXTUFQa5WNTqXJt1szIecj7eNNi9DPJaLCLAVsgJiKuBFem6MeSIAVBwJRL6tU5tuoQt6RcXOF9wJUNVbXEWMf5xQVPrp5SViVnFxecP3miURt1jbE5He4dnotjnzHO/xKVD6Fr95qWtrulbTuGIeKD4IqKZqnPszh/Sr06Y7na8Ou/9jf4/Pd+n6puuLz6jPX6TPkOZgdA8zD2d5fH3eeNkVQgwhE9OFvQHfaI3xJ6jYAk+FQKODmJR8+iYfZtr05ViIHBa2TMrrtl124pygL3Z3oIJqJkrN7r3jT0g1a8SpEAJjkCdemoS62c5qxhaVcUrqBpGjaJ0NkVEVdo1ZPdbs9ud80w9Oz36XQ/6IHAdrclRBhEyW/FOjzQe8/gW15985LbmxsQjQzOxTq6rtPUM2DcS4Ux/L3re56/fMl2nwipu1Z5J2CK4BpVnEDfKO8F/BFI3HYRqLDeUpQ1ZV1pyqMVDANxKFmuzrl68iVVtaDdvmD7/C9G8uyh3dEbcM1a8wdyo0WrCCpIEJKjnRonxw8ygYPHkOW7AD9y9/8PdNXdtKz0y/Hre0663gb6zKMIHvod5L1xpo2Hd9npG8G3mLBYvXEQQ7Ql0VhiWkNxJViDxnYkrrRoCEEYYmRAiVpdRNM4JSAmICGoDZFBoAT5qGpl5GrJJeLTJJjtQ3LU3cC0PcWJQ3GMPIroHEj7QQxzPiGO0EONcNWy0TZddCpAEdIhzLx0mEYnuGaJKQq8cdTnO7wplUOM7wnscm8/9nIKQFNW/I1f/wFlAnvKIoE9pUb5WGsorcUagyFo+fUEDthky+lhnh3B7jKlkRvRUuAiymvmjCbbWbE4cYgYSlfgXJnS0P2Ypt55T9v3BD+w7Q7ctjt88LQxRV+QYQWN5PIihHSvwXuNEEoFiHL59+DVZgxDUELngxbIKYuCs/WKth/oI2CMVjVlnwrCyAjCj4vGDFiOmk9IlEhI4Mq8SENeS95XxI+IaMXldHgHerjRta0C/CEQg6ZckQ6TQTlAq7rRg+BU1VMBMq3IFYkMQ0/b7Ykx6AFzqbrqQ080GYD3mh4ccvl3myaQBXEIqWy6Dwk7YCRl1nUi7a9eQT0BJAZMBniCH0mWKxHKtPeWzuHG6KbM5ZVAm8RTp4fnag+L0SAFicr7E9OBsU+2gE8VXJXTLxU68D3iCqSukLJktd5w9ewZmydXb9XLzw78OOf0dN0Y6roeow4y8WoGfO5G/ORUjcViMQ7cnEaQ+YOMMWw2Gy4uLijLks8++4wvv/xyTC0piuIE9PxAKcuSr3/1B6zXG4jw6tVLqnrBN7/7jq4bsK7gcGiVq2m/T4z3yfAfF5c7XtTRycfDcvSRGdAzIbqzP6dTC1sUlLEmhoArS8qEkpdNgy0KPbXMLsuDzyBkEuk5keLdfPUsxlqaZoGNSla+aJbU1QKGA6a/TYuXpmxYZwgBbGGwg1FcbGYE3heB9hgyAmjCmJ/qB08/7EfgrG4aJdQl0qyXiLOEQxgr7dVlRXvY46xj1Swwmw2lK6jLVLXHGPrSs2gaBu8xrsCWCrblql5FUbBaragTP4SWhH/05r6hI/Rm83TP1UqJY9u2J4hQNwuaZsF3333Hbqdll6uqHh2bHEUSYzrFSKXcvQ/T6U5852H+nuU+FONNyMYPB32ml/H4stnIjHGMGDuKFEsA/tDPwl2TUSOp+hOAKzSCrqoqzp884fLJU41WuXrK5uxcU7oWS4oq8XY5p2VVRaaqEcxTRfJ7HK0rvyi0ZybKE6I56GLSOmSd8kqYAOKI4ogSMLbUKi22QNwCV6shs1idsTq7VA6Zy0uePnuqxQ5qTdfJRtrMjXiXB3v90zOHS1P3lIywa1v6VKEpRsE4R1FWFGXJ+eUFZ5efsdyc89WvfsVXv/9rnCuo6gVF8fZSpccRo7P3360VP0pEzEhmXBYDEgVrOq2kM3iiD8kKfz0iYAR+IiPoE+LAEFqMCD70+OgprNNouMEngMdiEpBuUjSlno4KLo336EuIyp3mvVfnM0XI1XWDcwaxA8ZqVbfBe/b7PcOglVXHIgC+p+06HXuFA6clpaMo2WXb93z/4gXf/u53r+2R4Z7KqyEq2bNGRAYlcA45EtaMQE887uTp5ftCDPJJcyL/jwK20Cgf69RRwFdEa1ks11w8eUazWHPz3NDdfk/wWp45DC2+M5r2PK80J5ktZhoH40CYYT+53Xdj1N4p0ufuSJ8dcjz03SMA6KGlL76+Gtw9AHtbOtldAOh9boojZh/TAcTs+WOMBEkpV8YSjSMalw4aXAJnYnIMQyIzV2jEx/QX9Qx1/wohpXvkqB+90zTHM1HwnFYigz8K5sPswGQaAKPtMEUrpQgOyZxR03em7o/JpB0NSQWfzKzvmchtMxg9Ao0iqcpZpdGYPlIs1pQ+EKxDdjvohrTH57XtcaVwji+ePBmBn8I5CmupiiKVzpYRsBGCcpml1J8x+sVM2R/WmkQSnYEfJaW2VsvBGwRrHIVVfieb19Sxb9WO8yHSJ+Cm8wPtoIdUPeAFMAoZ2hzpkccZCrYNgx8BCZ1uKWU9R/sMg6YMe48zOarJ0nQdrQ9YM7A7dAmgSKCPzEfaJNN4UvADc+zD3I32yYDso0mO+Ek60SmjdoAfBo388T2kfSJHmYY64opy1JWzhVa9ip7B677kvafrWnzwhFiA6GG5HhhO43usCIYddaKwXKriHf00dyLjofPkrqaCBkzzm/Ra577X8wkj43izomNzvM6da406STNO0r7Mnd7PkWXBDxgifW9TxJ1mjoiz2KJAioKqqVmtN2zOL96qlp8F+JlvDrl6VwiB1WrF1dXVCPxkkCeXX88VvrbbLV3XjQDPPFcxXzO/b62laRpijLRtS9d144Cfp4jBu22q/1kXDUfT9KnFakWIkYuLPV988SVlWbFebViv1+rUlyVERnb18Uh4nAjT6cI8emc+9N+Y/T3aTXJ0uRngPRpxeQs06AlLzsufBx5lS0HmF0l/mD/FQ3ns+VuC4KwjOD2dbeoFy8US6QTXFZj+2ACYqoFZjEfD90abIIxGwaOLTA3PpUazFoL3tIcDxKgkntfXtF1LURQ0icxTYqRyBUSUAPTQEpyHEHGipHghBP2sUTJdU7gxfTMTgRbpvbxBv2njeSeegocM4gdOLO98ShfvaLE2UCbwuaoUbNBTJ/fampO/Ox9MOUViDgL9MiRv9hOhutwz0+S1X+7v17uxTEfGfT6fye8dzf9shKNlTeMsLU4mMCAiWk458bfV1YKqrFJ56HNWm01yZBcUZZUA1ZTGmefXLCpE8iRPxvOdyX3n918oBCQygemRKbUw5X5rLn0BscaInnz5IEpiiFA3KxarDdYVNAsFYLXPckj20c2Y98Dr6+P8Y3E2A/T/wzDg/YAfem6ub7l59YLusKfrBsQUuCLSLNbEAEVZcXZ2ydn5JYvVOoETmqYnbwkDPNq/f2h//kSJUW2UvhsSJ45nGLTyXPAKbOrJsmgF2KgRnvPnzKHeGZxM9M903rM/7OmsnU71I4j41CcZ+PHJuRNcMkI1fyPivGe3P7DdHxh8ZN2vkquXyq2bCNGoY+M1kijkf8f1S4knxQWM6LMNYSAOmrqnROwdMagBnlNcYpgqq0w/8zU4kbtnR2Qkv5w5vHIE004v3sPElGSPaAVQ5eLIPBJkQIiIcwVFVVNWC4o6pcEEj7FFqvDVp3SvAfwAYjUXhbvPfadl45pz3LjcA++a6gW8lkY/vr5jvxxH/DD3eh7AgOJrr++L8Ln7c/QdSc50eN/hvcf31b5N66cBsk1okq047hWTN5ifPYxjN7czEKNh9ubse/ne8fhl2ktHW0fm+j/u7/FQct5/atgqaDA32ph0kPe4ecTY/MqS25fAqWlvnO3JIxqpaXB6cFfjvNe0XFdATJyO72EyGmNY1gr41GWpJM7GUjiHFYM1aOpW7s+ZFTMCPznCJYPjY6pXsjcRDBYbbVo7c2qXIaay3hLVAc/pWYP39F73tN57+uycW6MpyGkM5THih4Gh6wDRaJ9h0CqJYQKpxvS/pNccfJWrlMUIZSK0jul9k4G/mW0zPwLXsR7Ha8qEYKXny1xRx2DQY4qQqmwz4VMhpCgs0h4TDTF4pbswhe6V2a/PbRmbqFFcEjVK37oCCVlvc/t7cgLVN1QagSEq912IE99RxhrGKMQEYsbZZTIQDCA5pSvP//TZPniijxjR6N3e6Zhyxo7RZS7p7ejZUL3lNXFqR9p7UhShsYXyRQGuKLVPilJpS9L8UM6i/q16+eDAz12HqyiKESj4+uuv+Vt/62/x1VdfcXNzw+9+9zv2eyUNPhwOxBjZ7Xbc3t4epXPdlYxeGmPY7TQcsWkaylIridR1PTqkOTLofaXTfHIigilKmvWGZ1/8HpdPOs4vrticXbDdbhOAo87TZr0BFBTQ7ybXeNxZ5M48nTan+bZ5zCFyR+L9v444kjUIRUJq3XgwYZxjfgo0Aj5zIGje7PRs479vWCBNCk0sjGO9OnB19RlffP4V17trrodbtt1tSmfSfHJjBVcWysshA3Y7YJz2oQ+ewHsADNJKLPE4tJF0qtF3LS+fv8BYw6vrV7y6eYUrChbLBefn55RlxWa1wopG/oRhwLddKqHZMCxanHWYoqCpNYJAnP4uxrBaLVmvNyniZ5lAoInjJ8tPAXp+eIfonq2AsPJYrFYrXKFpa5vNhuv1eox4ynnY+j1zVEkkRj09N4PQDQOHrmffPn5Vr58aEZbwA3394Ife7VrHpq7+NpZgJp/85w0TMgHh4D2+13DfIQQN2BZD1SxZn6vDWdQLzi6fYIxlvVqzWKwoioLz80vW642mASfgR4yM/F264JjxFOedHKbZ29NHpnXt55a5iZ2BgCGVBe87rYBU1g3EgNtsKBOwKmIRU4JI4v2pMaJl1ctU2dLMuXMevOsDwOq8c9J6GkLgsN+x225p25Y//xf/gm9+85ea5tcfcNUKVwbqZkUMgbKq+ezLr7m4ekZZ11w++Yy6XqpO5e1lSn8u8T5wfX2D7z3tvsf3nsP2QLdv6duOOHgqYzCFGoh4BX8gl/BNaQllibGGED191JPNvt1ze9irEW2scvWM4zGDAakENYmrIhnKi7pmmVLavTcMXvemZrnkCoMxTvcip4ZziIauDwx9oOs8fR/oO0/b9hzaA1GUX6gwWrZ4GFqC9xwOLa9ubnj+6kYN9xHI1/5J2/vMwZlGkxGhsA6XStjmn0gc147559/3HMwpGlraW6sMFlZ/LI4QSqK1NM2K5dlTlqsLApH97hpXNRijYGcIA2W7J7Q7grFIIRhb654fgZDmlMBRRx2tOfmVjI6Pfvyn73kP8e+MkNsRfnEHkLgPyLnzfo7wunvPOfgX8ET8O+3zP05ev24kjtXhiCiPi3UYW4xlzKd0mJCqYSnIqtVXU7lor86kEU+0qWqfTBwmiJnKnjOBOGPal5hpYszmxKxX07f08CSk64RokKBR6CGCCem7s8CybNtmTqE897Kfk1NC79v7p9gfIWJ1LriScrEG6xDnKLZbiqDFU4ag68VjS+EsXzx5ksiNNVrDGEORnGcFYycQS2TeexOQIQk0NimyJzv71qTqUDhcqs+UK/VJcsT7QZ38YdAUrRA8u7Zjm1KVbvuWbSL0d67ClmXiMbNKFuwj/aEdQfyh6xn6bpwbGRDQyE3DmHqUwPLKOWxj6IqBw+AJUdh3HTe7PbuDSVXphDiO14kwmqhRnApep4iVGcCXZR718+jAjzFUZalriqSjBikQqQjeMfQ97T7gfdS9zbkxLczYKeo4/6ivXjKVX4uEFNGTq5uNidTJXAtBUxmH6Imhm5bcxPkkpRJDxxjpuj7ZUAlVFVIUT5o7EUYunxCVsTVVqG27Dt+1SIxKII5Gk63qBU2lkXN1WVLalLWU5qhW6oqpyh964KAM4Iq5otG9RSVYVyj/pXO4YcCWBcVqja1Kqqpm6Dp2Nzdv1ctbgR8RqYH/A1Clz/8vYoz/lohcAv9z4A+Afwb8N2OML95xPGjD40TuHELg/PycL7/8ksViwTfffMPLly9H4Kdt25FMtm3bBwfr3dC1siw5Ozsjxsh+v+eQyFnLsjxm/f6E5XA4APx1Efm/85N1KGAsRVWzOdMy3k2zoKoa2sOB9tByc3PD0A8TH5MPE9CQT+5mAMudpfr4ZOIh0OfO70fOUJydm0gihU3IPTah4omTZTS40vO8K/ijH7vfWDEiWipatKLcarlmsz4jSKQqy5S3mtNOBAxYZ4lR8C4qgaeRFEF7ZGCJiPxfeMy5ODtJhTiWf/Xes98raHpoD8q74Czrdo2xlrrucdbSrRTsid5DP6gx4wMFRk9qjKFO0QSZq0Vzdiuapj4ibs8o/w+Vh6KvfqhIOqXRRR4QrTooxtK2LXWdI380RTTMjLrs0OSAkZzOoCkNYYwAGIYBHm0uHj/7u31uZsyPpwrz9+5+4V2fQGU8oWQy8sNI5DdzJmbzOgQFf/SzugFGMdiipGoWaiC5gmaxxFrL2dk5q+U6HRqcsVgsyfw9I9n2+HN/W15Lh7insfMuFQGJR2vT48/Ft8rMUZz8ltGIHLxXsFHQvhChaWrWKy1kYF2JLaoEEliQRAyd++mtur6/16YnOe6z/P7Q9+z3e/b7PS+ev+C3v/0dQmRdFyyrUquvFI7C2VTJ63Murz7DlhWLxXoEXt/4ZD9i/gc9cX0UHcYYaNtWy8S2A75XrgbfD/jBQwi4HF2A0I+VdSYSUBHN89cqH+D9oGlfCVSPMVK4gjpVpRsDDACy0zLiB6nqSPDEGHDWYW2Nsw11Hzh0PSEa/ZRB95x0eqkRP2GM/NEfXbuiCDZ6LSkLDL5nQCtD7tuW3V6jRJ1T7o184p7trHlK7UjfI1l/eT/MBn8cx/c8Tee+rfmx56LOCQXlcnSAMQaJdqxiVBQVVb2kWqyp2i1ls07Emy1h2CpR/dARhx58D9bfg+scLUrHz5DaO48I+VH74+uXPv77UbTP/Sn5D4E+d8GfhwCgN4FE6pz5R5uLr7Vv9h9M0WZjryZHXU/X0yGwkdH4HB20FJE6cuMkfo4YJBUxSRNybG+qYDlG6hxvsvMIhfjan+9syPf2p5D5448/OtfbsW2U52AIYRyL8/SuyclO4I8Iin46XFmlOe9xZYV1pWa6IfOjyUebi9ZYNoulAjWpCUam9C7lTMp3zV05G7uzqI4xusNMQItNpM8Gh6UgFebWXS5mDpYwHk5paqpWGe36niEMdN7TJVJnEY30l0RgHwFC1D0g9ZBG/OSD8PxcE+dTvrfSYzByZooIdVnQJr5Il9On0pqZk4jnvsl82EVFWSFX+EpVpI4A33wArP32KDoUSFw3Oh8ggrMUOIIVINB3hpi4bcoEnI2alPmPnmjYlBERYxg56GIM+DCM8+LuvAoxpZL1fhxbzjoQjRqzlpErOFcTyyYkIxCVDp6CGsxRAnhDSP1/GAa69pBuGJCgehJjMc4p8XjUSnFj5yBpL9Vn1jZPlY0lLUPRGKyLOrZCoCAi1mLLkqqusWVK5x4GurZ9k0qAd4v4aYH/cozxVkQK4P8kIv9b4L8B/O9jjH9fRP4e8PeAf/Mdrvea5MWoqirOz8/HFK/dbsdms2G32/HixQu6Tk/M8ylCCOHotU/OwzySZ7/fc3t7yzAMLJdLbm5u6Pt+LBc/N0jyswD3ToiPVRIA85/GGP/kcXSYB66epFtXUFVaAcYmNHMYBppmoZXTUs7+Xetj3LzmqA3TBqROTvKkj8yXY+eH45f3WDmTAxjvficbAKPzm5/nfk94fByO3aC7J1bZmTLWUdcN6/WGgYE6AQd5QdJUAFIkkl5cT4OUP+EoKklv/ShzMS/DkjasKYzcYLLBM9s58tzqDh272y1D12MRmqKkrQ7URQlVo2CQtRy6VgnsjOCNprG5sqSo67Hymy7aVtNQ/JBOYlJkwt1Bcff578zPh04vR1284Tp3Dd18Z5EpTUiS4vOak8n5ctRPBoEy2KPEbIFBlK+mG3qtcqf3epS5+GNBazmaC3L03pu/eO/L19yDI1wnn2jEeGRIZYMfyRWdnBo8KZ1F+3jQiLcQ0JK0LhH8N1R1k8CMWanMtFOP9vRsruZJfq+v9WDjX2/lrL8fbS6OF3zXU+/5Wpme3zmXihVYDMpNKkBZldhUnnisUCLHHTCurPd4iG92GI8fKDs5MYE9ftDqUDfXr3j18iVd2xKBxXKFEThbLVgvKk1NspoaWpYlVb3AFqWmdxm597lef5Z37LvcrmnuPIoOvQ9sb3Z4HxkOnuADbdcrKWTQ6mWjEy9aVcYKiTAyuaUxp1NFAh6RqNE40SClVdsmVdLSU1wZnZXRaUAgkwan5+r7geAju90ewzWHruP29pbd/pYQKxA1pmPIRrEhJP6LGFIVL8mcN3qf4PUpex/og9D3HTFqFZpIJrIdw+wmPTHtKWF+CMTsRUqBgOO1eL4nH4MnjzcXc0+mnZG76YVaLEadKnW6LGI0WsRVDUUY8F1k8Dut5uY9YegIQ4e1PVq95ri5R+tUfuNeG+YHrvXxeB2e/3vvx+O0/+W+jrOLPATqzL9/H+Dz8PtT6lQaCY+jwzz24vyYLtkJswEXSWXaswM+SzfPKZQjlpNIeMdKlBlIGveyaU97GPS6v++zLTi9nhupr40MjgHA6fWov2w/xziOmbs20p0em+6dfnIzQ2q7mupmrHBXVBVls0CMoesO88iuR90XlVcrRzCmalwJ4J4AnXTju8BPapmZ9UE+DDqynaKuZVMnZPDFK0dpjFq2fVCbtR96ur5LJdyHFJWoMqaRYbApP0kiSJj6Pt83zNIKRx0yjd+JA0yIUTTVzc6in0Sryx2vFZHX0r1G3SfAIu+ns7F5jx35aHPRWuU0y/PDoGlaJkV8l1WJtwbnNPLYGpuKGyQuuxkQZITRnzQmHRYbBV4z36FIQMToIaKPIAMg43pDVDB/yuCYjRfJXEeJqN0wrg0ypi+T5haamu1VV8Y5TFEqMXPf46NW2Dz0PeZw0P0zKnCaAT5JOgpDwjIEjA+j/5iBvdE2SNGH3aBApDUeuh4nQhdgF56DvX6TSoB3AH6ijozb9GuRfiLwrwH/pfT+PwT+g7cNgvtEB4YiaWdnZ/zRH/0RwzBwc3PD119/zX6/55tvvuFP//RPubm5oW1bdrvdWMWr67oxFSxHB2k0QYO1lufPnxNCoCzL0fFaLBYMw8BisRj5O+ZcQR870HNXUnvyyvwoOhQxmi4VoBTLxrqU164hkTl/NefXHjl7s4eZ1urjBUwNvvTGXSKeOP/Q2wz+fPYZj66vX5t22xwmqMhOvu/RZe4825tuOQEGVV1z9fQzhmGgftnwly//jFf7F/TDwPbQ0na9LkiDhhEaTAp5TDmpw3EYdIzxceZi1LxlJbHLG5Rg7cxgSQ57DldFhKEf2O/2WGN4uVpx++Kaqiw532x4dvWUqqro+56hH3RO3Vp48RwxwnK1Zn12rtVpnGW10tOcrms5HPY4NyTEf/Lc75uLD50yPqyO+6+TQYjjzzLeN0bNT7ZOOStC1BOBPoE4h8NB87z7Tk/Dw7Q4D0TaLjJ4YXc4cLvd0jT1eOv076Ovp78MmQxjjUQZZuXt/Th5cl+7okjEuNmo02gq4xxiCzIhNKg+NpsNq6UWBHCF8r+MxpO8vo4c/f6jl/Y8JmetfKy5yLsDF/OPCaTqRzHx9NgUxTJ1gzG5VK2QQjt0PZ7MSnIcY77m/Pqv3f/eB0qpDBn89J6bVy+5vX5F13X89re/49tvvyNG5fB59uxLyrLg86dPeHJxNlZNiVGJ0pWYu8FYgzGF3mK2BTzG9jwziB9Fh30/8Ju/+E7H+aAe074d2B86ukGTdWPyJQ3K9WOI+KjkyDpXoO1IfGhgirSPFJYcHxM9RK8pHnpqWSJoha98Sqz9peHofT8w9AoE3dy0iLykKivW64YnV2uWi5rz8wZnFtr/CIUr0x5oGIaAHyJGHHXZaDuiwXcDPsLu0LPvtKJYGAbKwup+Okufn8VaKCFmlNEhm0NCWTKQq04QoxOvofAxjd847dM87lzMtL4iJpkNBgkkLzjmSsGIGMSWiK1x9Ybm7Cm2WdLefMfQ3uBDxzB0DIfbFK5fUCw8Js8Xkdfn03yZmQ306WjmHeUIO4jjwvHQfjl3grXyTBx/vwvyvAvw86affIgUYyb7Hr//aDq0iag2pnbkuRcNuUK73tcoqapxFuc0jdI6JQ8e7bwQ8VG503xOVyaqg5fs3Bgm8DakdonIeDgE4FxexOZKnrudM7uLDD2mPh7BimN7JqegxKjVrMLUmUegT/73SPdZ55LHYiIgTtw2MQo+5NoLArbQtMw6sjq7oKgq2v2OIaW1zcbBo+jRGENZVbP9TB1xmyMbs3+RGwFHrnz2IEzqy6NPmZzWpcAMwROjH9fRGJXnMngtQND3B7p2jw8D+90Nt9sbBj/Qeo36QYQ6CFYcRiwOi4sWCSA+leYmBYsYJY0fjMVnPqAUwQm6rhdOuW4MBhOFfvAsuo4uzZ0yEV37mPSV2jXf16dpH6eUryhojJaMdtZ8POXXj6VDEaEsXQIuEkm6tThRn6woC8qyIISAcwV1An66vmff7vE+KHCXgwdS5M04F0xed6boez00zIeMokVa0HE89FNUkF4nP2kkpoOWorCMkbBpfGlqYIr4iWZcv0z6IVicOgx4P7C/3XLoOsQHutstr3YHjcAuK0pXpMg1p7xx2b65C/+LUYDM2ORbDKMN3Xaaamh6T4Xgup591/H9zS377u2UEu/E8SMiFviPgT8C/kcxxv9QRJ7FGH8DEGP8jYh89sB3/w3g3wD41a9+dfdvR0BL0zQ0TQMon8ZisaDrOoqi4Pnz54jICPoAKWpAnbGu69hut+MJvDFavi9X4cknopvNhq7rODs7GyN/iuR0ZPkUwR8AEfm/8Vg6FEHEgom41Nd5pYkptcN7P0Z2xKj5+neBmvyr5F32XoBFZiDP/DUjqHT0pfm3R4NmevvY8MkGzHwrTvqfA0x3+4S70/TOFdMCap1jsVhydnZOF9qUFqc8G3HX4odE3hxS2yIJjDGT8TW/7yPNxfyccb4hZoQ5/S1IdiQSIo0unO3+oCBQ1yNeQVUBzlZrXZCjkkUbqyauT/3hY8RVlYbL9t0Ypun9MM5p5+w7z793AX3utP+1704nHuOnZg7mcXpCNlS9T9WnhiEZB2E0AieDNjJ4NZ76XoGidrYgP+pcnLXvh/XHO+CmP1juzu84gj7KizClxmWAbU7snSM1Qwj0w0A/VjDSjd45R90sqGfRmhOPwT2wxVtBn7ePs4f66X3tiw/J8TPkcSvJOS7SPhaP2xkjuWqFfktPD+ftjulzGey8g5295YHmzmAuyTrQHvbc3lzTHlpevnjO8++/xxjLk6fPWK031LVWYfvsqZYe9X2v5V0RxDmNTkrG+fvcjx9Lh5Uz3FxvFQNL21zbJ4LnENMhsiQHbqq+q2BIWouDpnVhJFWtsQp+SQpvB3wfGIJGBYmRdGBlEhgUplPMdE2NKE3779AxDFCWBS+vX3J7ew1xYNEIwZdkR8laS/DqHIRUsMeInsiGGOnR9G0fIn3Xcdgr8E0Ium+hRmseiPNDlvw6c/BNI/EIqZh0LibtTbqvxLQv391/H0uPX3/9tb6XnmxMn1CPWO+dTQ8MIlpNzxQVrl4SrWFob9GqTynip28J1hF9P5ZwHzGrh9bfO6DP0Z8e+MrUf7OX7wD6jJ+78/2Hvvsm4CdHfjz0Ory2T2abMD6aDjPQLaD8J3MjM2ZIZTLupj3epFLgRg8gkt4zoBPjnbbP+uI4Mvu4f+b98CY5PhydW2djG8dmTL/PQB2yaXxnvXzT2pn6JNus+f55/IYZBqiRFk4r5dbNuF+4ssIc2zaPosen52dYN3PyYeRbkbyW5px8/fYRmXkGzsyEhpPXOLL9kfp6rDwc1NZVvXmtPDWund140Nd1LYMf6GPE570TjcA0GCyGzMRmQgK8E36BUQ4xEll8FJnGaSSt9woIOLTaGMhY1axIkT9mpvNpXKvk9T/19/ieyale45QQXp/LjzcXv/76a6w1aRwJJiZ7JYUkZ0Alxqi2XVUr0G+F3vcgfn5h3QfGdL1c4TuTW022tzHKxeVsh0J/qTx6Wnts3mPuPrtRvyUSM2I4rQ8ZZEwHFyEEfZaUdmeKAisQB0Mwe/o0pnqvvEJWhG7wlFY5F0tb4BLn1BzYn3wSoQgFxobRn86R8G2vgLKJENsOFyM3t1t+97tvuL7d3qeWI3kn4CfG6IG/JSLnwP9aRP7mu3wvffcfAP8A4O/8nb/z2sr3kEGXU7+MMZydnfHll1+yXq/Z7XZcX1/T9z3b7ZaXL1/S9z23t7fUda2RFXXNcrkc2bozh0hRFOMpVAhh5Aqa5xZ+ykTPMcafrMM/+ZM/ibvdLq2j2WKdDIQQFCUfT0DCjAPFGIyRYwdm7ril3/XfoyeY3ovT9+YT5HWMZgJSRlSDZLiNJ4bjVnl0u4dej4Zs+sN8okpCrrLjlE1aSacWTdPQHBqauqauamJUCrkwpMVqiMQAQx8SkBBHA/eOLh5lLopI1E1eplMiIGcb672nNLwo06aaVR58oG07Qgjc3m558eolu8OeuqpYNosxNSB7OrZwVNuGvi+p64rlckFZVmPqVJ6rVSrDrbwULgG3dkwjnKp/zVUjR//eff9dQKLp1JPRKRuNvdlnchqDyaeCRZF4LMBIhQDOGuq6xDnL2dmGs/Nzlqv1XBcfdD19uM0/6OPvcL3jC+YKixnMyaeTI2hzB/jJv+cTTA2PjekzMqbxjvebrx333P+h938skHAnvfO97Yv33jsPzzgtaRm21d/j0fNNX0wRjzM3++i1zNMh+NGDwnuP77tE2LjjsNvS9T3OGtbrFdY6zjYbNmcbqrKkrCotGQyIs1N1ljEtbYqcvNsHjyWPpcNN7WJ2RqKkqBCZpesiZFgmpnaYlBZlReN5ghGCUeVaickviGncpw0nCtEbrYCWKg4asYTeM8iQHAd1fgG6ttcTzxDxkqtrZpDOE+OAxIDShGokUmEduDhWXIQcdaNjzw+BPgYGH+nbgaEbNCw/vL6PZjfyCI0Y90emMTz+Tx3RaU/PQNaIRowXkZmX91h6/JM//ttxAnpzxMUEWkuMiHHTv5IBA610igS6osIWldpBYuiHHroWM/SaThd9ar9GLkyO/qxf0iSX0eg5tmzeiNjP//QAQHOf5HuNgE+c+iEevX49dSv/O1VwgxypmcGP/PfgfeLR4G7Ft0fRYVW6aK2ekhMDMaVuxLy2yVEHzdo0pXEjAROVFDfGFB3MPEo4H/ZErXA3tm+KlB77JL/OnEBRxnuJyFTJMukr97PqZDK6RjvzSH3HYwNmZvJczxnUuc8OkrzGTtfKNo867NnOz20QxGhklCsKyrLC18NcF4+ix7/69e/FscT1fIMaUSDRvS2ti+PCOtrz40Seeii3ReJEqOujpmJFjbIPPgE/ftAKXKliY9cr8NMNvVb1Chrpk+0Xl8B6m6o42RQFNY84iskWjiOYYEaAfgiBMOg6akjASCorH9DUprmtpDZVAqzG9r2hc8e9aAJ+8hjMOn9sHf7Jn/xx1EiqTIWgWQY5dSrmbI7ImLalbbMUZYl4P9sucl/bCcNNoXx5/opEJUSOajdWdcNi6fGD1yi+NJdtIo7WDM7cHzHtywn4ER0nc+CR157FjKlo1liw2p6irKjqFF0U4pi+LMYRrSUg9CEwZPBp1EccK5gbIymiXaNoQ5q7Q9+z3d3S5SrLqwVFWbDb7zm07VRM6Q3yg6p6xRhfish/APyrwDci8kVC/r4AfvdDrvWGe+iDOcdqtSLGSF3XPHnyhGEYOBwOI2fPq1ev+Pbbb2nblhcvXvDNN9/QdR1VVVHXWnI6RwMBWqEnlXDvuo6bm5sx/Ss7FGVZUpZvJ5P8WOWn6rDve775Rj+WQ1LJm0mMujCmnN/CuTGNrixLFosGY924uekUeR30ycDK+Hp8NT8NGdvD+PHX8KFpgRsNy/H3WZpPnCKR7gV9xg0lP6YcfXACfWbGaLqVLR2rzRpjBG88FxcXXFyf4262PP/uBt9qBEnXBnyvgI/vA+NRi8yd1KN2/+S5GJJxRtQQ1JxPmptnkm6MRGy0KTw6JkMl4ruO65SPut+3bLdbXOFYLBZs1mtc4RL4qoDr7nCg63uKsuTQ7um6A0VRUtUKjBmTQ611g2vqhqZZYK1ec5HIfUdwKG1+GQjIAMOkk7Gvxn/zzxwoktT27P4GGA248YRyTF3UUFPn3BhhUZX6b+Ecy0VDWWqp+ovzDU1Ts1gsePr0iuVycdT/P1WHbwOyfi7JAE6M6jxm8Oa+/geYg+1zwzQTf4PuB1m/zhXILNybI12+rvf3FS0yu8973xfnMgHL95n8cOxkJ4Bn/NNrFszr6PI7P4j+Tx1zT9ce2N1e03cdL55/x/fffpP27yWbsw1FUXH12RdcPHmKtY6qKpUEn3Tyl8dzOn0HxtLmjy13x8RP1aGgpKO6nIajbUeDgCJDnMakSbwHkvggIroGe4lEAs4JhQ0Yl8rNFjq2vdEzZaKwrBvWyzOssfSHju7QQYw0dcWyqUGEly9vePH8mn7w+KEnxlRK2PfEcIAg2NhQ4jUUvXD4uqZ3jnbR0HXLMZpaEPCBru3ZdgODD+z2HfsELIXBY5NjmiMgdPTNHJPZcMwJLdkdyT02QpIxIimsPumI0WqYY5iPqMe08SE5dS4Eolei7q7rsMZRulqjsVyD2AIxDltUVIs1ha/x3Z79YkM0hiAadW4OHRQrFkOnfGbkioPzGNv8zxzcms/pGSh0FA18FzSaX2+y0XIfPrRvxOwo53E6G6/T93Lky0RcfLS2p6pXkMGeZNN4n14rd0cYAciMKDyebSMilK7UiA1Jh5FkbtDpcC7boCHpeaQpMD1gsdYjUaPeBp/sngSWEiPB6SGnJ53G+4BEjxeDMQoK6PsateATZwwx4sdtKzF8zdQfswU7G99jX8Ps8/P5w1EfyhEYMEUSxRBGBzL3VeY5MmJGolntEo2e8CMokp9BMK5MDjIs12cU9xDw//S5KOP+kA38cY/PdnFeCPLSEMclZlx7JEeExJCMuwxqJbDKB2RIevEagR6DlmH3Katk1+7Z7rcM3nO737JtD4QYKMuKKqWbV0VJ7Uq1D63FilV/II0XQA80ikQIbHQ9jyEwHFp2+1bXnCGk72rabeEcYgbKsqVoO5zzWrzBWoyk3cXPOoAMNOVILo7GUo5A076c8SOm9+bLw0/WYYxa+TH1bUQPMjJf4/ygSjExfacoC4yz850jP8+4ZuQDQX2tRM8RrQ6mh8RCWdY0ixXBe7a3t9xcX2vUVteNvHQ5Miy337lEzD0DiCcfFTTSU+1bYy02RKKJCoaGYkwxK4pKo+aGKd2TmKLoQmDf9RopG5UPNKYo95vrGw6HPZIqrmYaGmssRgyHw57vv/uW7faWqqo4u9jQNBX94Nm2B/phAmEfknep6vUU6NMAaID/CvA/BP4x8HeBv5/+/ffeerdZB77NackRPwB1XXN+fg5wxPHz4sULFosFh8NhJGpu23Z0DI0xHA4HttvtyPOT0dIc8RNjHHlJYowjsfTd5/2Y5dtvvwWwAD9VhyEEttst+VSH2YYSY2QYetp2TwieqtSBXxRFCu2TRNYpR/taBhxGeaDLJ9Nnxkoh81BejsCfu++NTk+cjMeYXt+95/0OFRxDv8efkRl6TTqxFKsRP4RIs19o5E9d07UDgiH4iB8iQ6tcDKOnMOub6TlxInL+WHOR1DUhBiRqbrRGseRNIO8Z+iJGUoh+WryGwNArYevgB/qhw1rLsj0wRK8nxq6Y5p1NpaNTZbMigSdFUVCMEXcTkr5crlgt1zjn6PszDd10bjylyOmc+qxy9DO279igPPqZIvvujL94z+dH9ScwzM4Ap3ToVFUl6/Wauq5YLBqePn3CcrmgrivOzs6oqopbDcN8lLn4S1ubZD4X0+8ZrLnvBDR/Zh7BNSfsz6CebsZuBO2P9Da7zrtE9TxGn72Pufiu++K7yV0AaGb5vaH5P7xn5nwKaEWJQ0vXHTjsduy2t4gxLFdrzjYbyrLi7PyMs/PzIz3o05npl58KSL3tqdO9+77nMXWoZcCVQWF+RBEkgT8RjQaCscKlRY1v3TmSYy1gTcSO0T6RRGOFRvxoul5ROpqqwlqnRKJenelFXbNerxCE9tBzbXd4D8IwW9OyAzsgBBwRIyniJ0X5lGltzgdjeev0/UB/6BiCAiJ9l67rY+LHma256QQkPfpr8vpRTno/g8NH82EChziex4++L4La/WOUSkrxVXJRJXMWUyCpMp4xDldUBGtxZY0taqwfiAhd1yPiafqOEAY9bBFNC5nP0LEnYhqj2bnPTll2+MdueK3XZv9M6+28T8k/98rs+rnt4174Ogg0/uRUpnRQMpL5h1ypMaQo8NyP0zjMz/mYc1FgdAhDmNsFo2k2fZDjdoQQkBmpb/7xIQNaKfeRZPOGqGBJSFE/YqY+ERmvOX7+6F7TujxX66jzOBsTzBWR35MjHeUmvT6mGL87bxNMjn62M8e0xvEr6ZA2kbxnJMEYC0Zw3lNW9fxOj7svzrMvst7mUaD32G35o8c7DLoA5YpMJNL6GMF7padI0Wia3hXG4gQhBPpeU/WHoBW9+mEgEiniFDTgEtmwRvzYMeInl1HRxzVjNOvE7SxKwt/1ECImpdYayYTObuR0m2elaMpbooQ4Ku82t6+O+/PueqCpX/KajfZYOtS5k+dSGEeymRUCmuy5OM4tg1a4PLoWsyJOQaN7kNkYReNprXM4Vyb70+FcNUbqDX3PMPTEEOfFVlJfxeSfzoi1xz/mJ5BRZ6S9WxIHnXIRWa26VSkQFEJg6AeMn+hPQlDajC4EuiHx9gz6ftd1vLi90YMWI+PBqUm8T9ZY9rsdv3vxgpvra+q6YsCzaGs9XErA7tvkXSJ+vgD+oegOZ4B/FGP834jI/xn4RyLy3wX+BfCvv8O1pn58/cTtrZ/7KUbxmwz++677S3Oqfor85je/AfhrIvL/4BF0eLR4PP7jcgy0PHCHo0X+gc8fWZo//pkfHAkPjc27ftcPkLsI9x0pgH//0ebi/FafznD/Rcv1zS084lz8pcm7rNc/19r6WPdN13ncufhOz/jQ2vBQn2enIt6Z3+/QDw8uQ3f/8OP69LidM+ProWu/hyGTQqIfXYevy/vZJX/R8mGb/F7m4oeWh4b4fxa25sTx99Hr8Jcm72fs3O8vpXcfby4+eMj62gfvffkwwPlpyju3do4MPiyP6Ge8/ckeepR4BOx9IH3eGXaf4iiSxzlhfMebiXwLbIHvPthNf3654pfR3t+PMT79qRdJOvzn/HLa9SHkl9LWR9EhnObizyynufjj5ZfS1tNc/GnyS9DjY+vwNBd/HjnNxR8vn6oOT3Px55HTXPzx8qnq8DQXfx55UI8fFPgBEJH/a4zx73zQm/6M8qm291Nt133yqbb1U23XQ/KptvdTbdd98qm29VNt10Pyqbb3U23XffKptvVTbdd98im39VNu2135VNv6qbbrPvmU2/opt+2ufAxt/TTLV53kJCc5yUlOcpKTnOQkJznJSU5ykpOc5AT8nOQkJznJSU5ykpOc5CQnOclJTnKSk3yq8nMAP//gZ7jnzymfans/1XbdJ59qWz/Vdj0kn2p7P9V23Sefals/1XY9JJ9qez/Vdt0nn2pbP9V23Sefcls/5bbdlU+1rZ9qu+6TT7mtn3Lb7sovvq0fnOPnJCc5yUlOcpKTnOQkJznJSU5ykpOc5CQfRk6pXic5yUlOcpKTnOQkJznJSU5ykpOc5CSfqJyAn5Oc5CQnOclJTnKSk5zkJCc5yUlOcpJPVD4o8CMi/6qI/Kci8qci8vc+5L3ft4jI1yLy74vIPxGR/5eI/PfS+5ci8r8Tkf9P+vfi537WnyInHX78OoSTHj8FPZ50+PHrEE56/BT0eNLhx69DOOnxU9DjSYcfvw7hpMdPQY8nHf4ydfjBOH5ExAL/FPivAn8O/EfAfzvG+P/+IA/wnkVEvgC+iDH+JyKyBv5j4L8O/HeA5zHGv58G/kWM8d/8+Z70x8tJhx+/DuGkx09Bjycdfvw6hJMePwU9nnT48esQTnr8FPR40uHHr0M46fFT0ONJh79cHX7IiJ9/BfjTGOP/N8bYAf8z4F/7gPd/rxJj/E2M8T9Jr2+AfwJ8hbbxH6aP/UN0YHysctLhx69DOOkRPn49nnT48esQTnqEj1+PJx1+/DqEkx7h49fjSYcfvw7hpEf4+PV40uEvVIcfEvj5Cviz2e9/nt775ERE/gD4Y+A/BJ7FGH8DOlCAz37GR/upctLhx69DOOnxU9DjSYcfvw7hpMdPQY8nHX78OoSTHj8FPZ50+PHrEE56/BT0eNLhL1SHHxL4kXve++RqyYvICvhfAv/9GOP1z/08jywnHX4actLjxy8nHX4actLjxy8nHX4actLjxy8nHX4actLjxy8nHf5C5UMCP38OfD37/feAv/yA93/vIiIFOgD+pzHG/1V6+5uUC5hzAn/3cz3fI8hJhx+/DuGkx09Bjycdfvw6hJMePwU9nnT48esQTnr8FPR40uHHr0M46fFT0ONJh79QHX5I4Oc/Av6qiPxaRErgvwX84w94//cqIiLA/xj4JzHGf2f2p38M/N30+u8C/96HfrZHlJMOP34dwkmP8PHr8aTDj1+HcNIjfPx6POnw49chnPQIH78eTzr8+HUIJz3Cx6/Hkw5/oTr8YFW9AETkvwb8u4AF/icxxn/7g938PYuI/BeB/yPw/wRCevt/gOb8/SPgV8C/AP71GOPzn+UhH0FOOvz4dQgnPfIJ6PGkw49fh3DSI5+AHk86/Ph1CCc98gno8aTDj1+HcNIjn4AeTzr8ZerwgwI/JznJSU5ykpOc5CQnOclJTnKSk5zkJCf5cPIhU71OcpKTnOQkJznJSU5ykpOc5CQnOclJTvIB5QT8nOQkJznJSU5ykpOc5CQnOclJTnKSk3yicgJ+TnKSk5zkJCc5yUlOcpKTnOQkJznJST5ROQE/JznJSU5ykpOc5CQnOclJTnKSk5zkJJ+onICfk5zkJCc5yUlOcpKTnOQkJznJSU5ykk9UTsDPSU5ykpOc5CQnOclJTnKSk5zkJCc5yScqJ+DnJCc5yUlOcpKTnOQkJznJSU5ykpOc5BOV/z8x7a/W907oYwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3IklEQVR4nOz9eZwkV3nljT+Re2ZV1t619r5pa0mtHe0CLIFYDAMYbGwM9ry2MXhmGDzD8vrHD3mGV8LY47HfGbCN/TP22AaEDcZgjJDYhJBau1otdUvd6n2tfa/cM+L3R1VX9zk3VdklVWV2N+frTxs9lZERNyKe+9x7I6rO8YIgCEwIIYQQQgghhBBCCCGEEOIcJ1TvBgghhBBCCCGEEEIIIYQQQiwFeukhhBBCCCGEEEIIIYQQQojzAr30EEIIIYQQQgghhBBCCCHEeYFeegghhBBCCCGEEEIIIYQQ4rxALz2EEEIIIYQQQgghhBBCCHFeoJceQgghhBBCCCGEEEIIIYQ4L9BLDyGEEEIIIYQQQgghhBBCnBfopYcQQgghhBBCCCGEEEIIIc4L9NJDCCGEEEIIIYQQQgghhBDnBXrpUQPuvfdeu+SSSyyZTJrnebZ9+/Z6N0n8DKC8E2cTd911l3meV+9miPMQ1TpRD5R3otYo50Q9UN6JWqOcE/VAeSfqgfJu+dFLj2VmaGjI3ve+99mGDRvsvvvus23bttnmzZvr3SxxnqO8E0L8LKBaJ+qB8k7UGuWcqAfKO1FrlHOiHijvRD1Q3tWGSL0bcL6zZ88eKxaL9iu/8it26623vux2mUzGUqlUDVsmzmeUd0KInwVU60Q9UN6JWqOcE/VAeSdqjXJO1APlnagHyrvaoL/0WEY+8IEP2E033WRmZu95z3vM8zy77bbb7AMf+IA1Njbac889Z3fccYel02l7/etfb2Zmo6Oj9qEPfcj6+vosFovZ+vXr7fd+7/csn8/DvsfHx+3f//t/b21tbdbY2GhvfvObbf/+/eZ5nt111121PlVxFqG8E/XmO9/5jm3dutXi8bitW7fO/uiP/sjZJpfL2Sc/+Ulbt26dxWIx6+vrsw9/+MM2Pj4O2+Xzefvd3/1d6+7utlQqZbfccos99dRTtnbtWvvABz5QmxMSZyWqdaIeKO9ErVHOiXqgvBO1Rjkn6oHyTtQD5V3t0F96LCOf+tSn7Nprr7UPf/jDdvfdd9trX/taa2pqss997nNWKBTs53/+5+23fuu37BOf+ISVSiXL5XL22te+1vbt22e///u/b5dddpk99NBDds8999j27dvtO9/5jpmZ+b5vb33rW+3JJ5+0u+66y6688krbtm2bvfGNb6zzGYuzAeWdqCc/+MEP7G1ve5tdf/319tWvftXK5bJ97nOfs4GBgfltgiCwt7/97faDH/zAPvnJT9rNN99sO3bssE9/+tO2bds227Ztm8XjcTMz+7Vf+zW799577WMf+5i97nWvs127dtm/+3f/ziYnJ+t1iuIsQbVO1APlnag1yjlRD5R3otYo50Q9UN6JeqC8qyGBWFZ+9KMfBWYW/OM//uP8z97//vcHZhb89V//NWz753/+54GZBV/72tfg53/wB38QmFlw//33B0EQBN/5zncCMwv+7M/+DLa75557AjMLPv3pTy/PyYhzBuWdqBfXXXdd0NvbG2Sz2fmfTU5OBm1tbcHJIee+++4LzCz43Oc+B9+99957AzMLvvjFLwZBEAQ7d+4MzCz4+Mc/Dtt95StfCcwseP/737+8JyPOelTrRD1Q3olao5wT9UB5J2qNck7UA+WdqAfKu9ogeas68s53vhPiH/7wh9bQ0GDvete74OcnJVx+8IMfmJnZgw8+aGZm7373u2G7X/qlX1qmlorzCeWdWC5mZmbsiSeesHe84x2WSCTmf55Op+2tb33rfPzDH/7QzE7l2El+4Rd+wRoaGqrm3Lve9S6LRPSHimJhVOtEPVDeiVqjnBP1QHknao1yTtQD5Z2oB8q7pUMvPepEKpWypqYm+NnIyIh1d3eb53nw887OTotEIjYyMjK/XSQSsba2Ntiuq6treRstznmUd2I5GRsbM9/3rbu72/ns9J+dzKUVK1bANp7nWXd3N+ScmZtjkUjE2tvbl7r54jxCtU7UA+WdqDXKOVEPlHei1ijnRD1Q3ol6oLxbWvTSo05wspqZtbe328DAgAVBAD8fHBy0UqlkHR0d89uVSiUbHR2F7fr7+5evweK8QHknlpPW1lbzPK9iTpz+s5O5NDQ0BNsEQWD9/f2Qc2YGfiBmZqVSaX5gF6ISqnWiHijvRK1Rzol6oLwTtUY5J+qB8k7UA+Xd0qKXHmcRr3/96216etq++c1vws//z//5P/Ofm5ndeuutZmZ27733wnZf/epXl7+R4rxDeSeWioaGBrv22mvtG9/4huVyufmfT01N2be//e35+GRO/f3f/z18/+tf/7rNzMzMf37LLbeYmZtz//RP/2SlUmlZzkGcv6jWiXqgvBO1Rjkn6oHyTtQa5ZyoB8o7UQ+Ud68ciaKfRfzqr/6qff7zn7f3v//9dvDgQbv00kvtpz/9qd199932pje9yX7u537OzMze+MY32o033mi/+7u/a5OTk3bVVVfZtm3b5hM+FNK7LHHmKO/EUvLf//t/tze+8Y12++232+/+7u9auVy2P/iDP7CGhob53zi4/fbb7Q1veIN9/OMft8nJSbvxxhttx44d9ulPf9quuOIKe9/73mdmZpdccon90i/9kv2P//E/LBwO2+te9zrbuXOn/Y//8T+sublZOScWhWqdqAfKO1FrlHOiHijvRK1Rzol6oLwT9UB59yqol4P6zwo/+tGPAjML/vEf/3H+Z+9///uDhoaGituPjIwEH/zgB4Oenp4gEokEa9asCT75yU8GuVwOthsdHQ1+7dd+LWhpaQlSqVRw++23B48++mhgZsGf/umfLus5ibMf5Z2oJ9/61reCyy67LIjFYsHq1auDz372s8GnP/3p4PQhJ5vNBh//+MeDNWvWBNFoNOjp6Ql++7d/OxgbG4N95XK54KMf/WjQ2dkZJBKJ4DWveU2wbdu2oLm5OfjP//k/1/jMxNmGap2oB8o7UWuUc6IeKO9ErVHOiXqgvBP1QHlXG7wgIFEwcc7y5S9/2X75l3/ZHn74Ybvhhhvq3RzxM4LyTtSaRx55xG688Ub7h3/4B3vve99b7+aInxFU60Q9UN6JWqOcE/VAeSdqjXJO1APlnagHP8t5p5ce5yhf+cpX7NixY3bppZdaKBSyRx991P7wD//QrrjiCnvwwQfr3TxxnqK8E7XmgQcesG3bttlVV11lyWTSnn32WfvsZz9rzc3NtmPHDkskEvVuojgPUa0T9UB5J2qNck7UA+WdqDXKOVEPlHeiHijvEHl6nKOk02n76le/ap/5zGdsZmbGenp67AMf+IB95jOfqXfTxHmM8k7UmqamJrv//vvtT/7kT2xqaso6OjrszjvvtHvuuUcvPMSyoVon6oHyTtQa5ZyoB8o7UWuUc6IeKO9EPVDeIfpLDyGEEEIIIYQQQgghhBBCnBf8DFq3CyGEEEIIIYQQQgghhBDifEQvPYQQQgghhBBCCCGEEEIIcV6wbC89vvCFL9i6desskUjYVVddZQ899NByHUoIM1POifqgvBP1QHknao1yTtQD5Z2oB8o7UWuUc6IeKO9ErVHOiVqzLEbm9957r33kIx+xL3zhC3bjjTfaX/zFX9idd95pu3btstWrVy/4Xd/37fjx45ZOp83zvOVonjiHCILApqamrLe310Khl39H92pyzkx5J05xpjlnprwTS0et8k45J05HY6yoNRpjRT3QGCvqgcZYUWtU60Q9UK0TtWYxtc6CZeDaa68NPvjBD8LPLrzwwuATn/hE1e8eOXIkMDP90z/4d+TIkWXLOeWd/lX6Vy3nlHf6txz/ljvvlHP6V+mfxlj9q/U/jbH6V49/GmP1rx7/NMbqX63/qdbpXz3+qdbpX63/nUmtW/K/9CgUCvbUU0/ZJz7xCfj5HXfcYY888oizfT6ft3w+Px8HQWBmZkeOHLGmpqalbp44x5icnLRVq1ZZOp1+2W0Wm3NmC+Td7t3WNHes8f4h+M748CTEXatXQjxw/KBznK98+S8hLuVK2MY3vgWPMTkO8b9961sQb3viCYjjzXhdMsWC04apySn8Ab0Ub2hOQpyifQ4MjUJcKvm4Ox/jQrnotCESj9I+yhCHqVHNzSmIx0bxHPg0vRB+P07HMzPL5rBd5bl7fpJoPGxms7mQGy8smHNmS5t3V1611cLh2eNv3rAZvrNu1VqIV/etgbitxa2T4Qi+7W5INUBcLmMeFooY+z5e4EIhC3EiiTmTmZlx2lCgmxSO4D1JNuI9LhZw+0wWjzk9NQ0x/3ZHOOwOZxH6WTiy8JBXLGGOxBuojSW8TkU6x1gs4eyz5NN36BieN3uvstmcfex3P77kefdyOffSgQOWTs/mTmQu9+bxsW94HsYBfW5mVi7ieRVy2GenpjDOF3D7xjTmcbq5mdqAxwt5le632+8XInBPY0G8cPVtzgaCKidWLp+qv1NTU7Z+/frajbGvYm7n07gxu1+Ms1Q3ZqZx3G5uobyisaeQz0E80H8c4m3bHnba0NvXA3FnF8ZlH4/R2NAIcTgSwziEedzQiPU7lcb6a2YWi+J3uB5yTnBc9TeklpAzmdeZLW3etTan5scMp39U6S/V+pOZOx450OXlvKt2fyrhVzkm74PbyF9fbD2szNn3W5cnzzMIApucyNZsjO1es8VCodlBI5vDOVKZ5sk+zaP9snsz2traII4ncL4xPU1j7jQeo2RYd2PJDog9GlNLMyNOG0ozByAO/EnaguY3LCjh4yAaGJ53OIw1nq/T7D4wx0LB0uZcYIvvCNyfo7FTHT4IAssUyzUbY08nHMZ2JWJ4P6K0VqhUx3yKozEcf+KNmFcR+tz38Bj5Eh8D42IhZ0whRz8LaB1apkUhzRVmZnD9EPh8VkylnMLcDUdwfRBL4riey2J/DEq8FudxCMNQhfmmu4TB8ziZAkFgVipazWrdcsN5GaX5ToRifibA9fVMqDYnqnbuzqe8bnoF1+70ubvZ7P07nWpt5uvA24d5LWjV5yaR05IyCAIrFBZ+frKUte7SdX0WnjuHTEC1jJ5VBQVai/vueoKGFgvToi/M87jQwuN2nrKgxPPuspuXIao9YW/hGl2mOlKme1wuc41YfN6FQjx3xDhCbQxT8eJnDDxe+s4oY+ZTjef1X2hun77v28GBoaq1zmwZ5K2Gh4etXC5bV1cX/Lyrq8v6+/ud7e+55x77/d//fefnTU1Neukh5lloQbnYnDNbIO/S6fm886dxklXO+rQt5memESc8ZmaJGD7MKFJFbUjhpKlQzEPsPMgI8YNeKjRld8AL8bXjh4fOoBeiz70FYy5eHo8a5k5AnNiqHKPKYt35PFShDbxNtc+rPFBYyrwLh8PzE4cY5UwijgvbFL1wSFEOmZlF+KVHA730oIf30SIvwHFoiETwWiSpDbwAMTOLFGiyQLnM7S5UeSHBbfZ4kD2Dlx6RKscolPDzRIpfetCDfTrHeNx96VGkF0wROgafx1Ln3cvlXDp9aoxdlpceMd4CvxPL80sPnLDw+K+XHmfOYl56nKRmY+yrmNudyUsPXgyHKHedvHJeemDi8ksTp/aZO4430kuKai89IpE4xOHwwi89Gprcmn8uvfQ4SS3HWM/z5udC3DuW4rFNtXNxp2G86Fv6Y1bbfnlUIc7elx6n4tqMsaFQeP6lR4geAvgB1jJnPlqhhodonOY+zsfgBzKe8ef0oJDGVC/kjrE8X3GTaOG5fdXtz2Qe7szllzjnXkFBOJN212qMnTvYGbWLY2e9aO7lcNeEtGbk+STljPuSivfnTrQ8Hp+oUZ7PeUm5T+cVVMuZSvevaq5WmctXWYtzlz+D1Hd3cmpvldtALFWtW24Wm8eLXc+fyTFfNUuwu6U+z+W6TrWqdeFQaP6ZVZhfetCkKqAaUq5U6J2XHvwwnzbnmOfVdIwQf16hCfzSI1SlrgS8Pqf9uXN/95jVcJ/JUU3nmJ8rUuzU0grH5HfCfLGcfZ5B7i6Lp0elgwdBULFBn/zkJ+2jH/3ofHzyN8D4uwvtW1Sm0oOPV/LbZKdT6S3wQlR6u75ci+szzTmzBfIuHp/9Z2bJNnw4Mjw4APHU0AmIu1b3Ocd5y9veDfH+5/ZAfMklV+EXEtgl167chB+nvgDx0zufgTiTd3/jPpygQp/HxVYsig9c+JZlsrhPfuheLtJb5Apvz/NZ/Fk0Ti+D6Le+s1P427qcpTxYRajN5YL722GeR4tMSsPs3HcW/SB0CfJuw/oNFovNLkC3XnEFfOfKKzBHeOEajrjH4r/kaGzCB8r82yERemBdpt+aStBvCCYSmAOJQovThmwG7+HRI0cgfvTJpyDmWsFv7fnFTQN9niu5f+WUmZqAmB94NlPcmsbfpAzo5VGQyUBcpt+iK1Wod7E49q8oXbvQ3IMFL+y8JViQVzvGhkOh+UlDhF8S0mzDMx43ML/MzEIe/myCfut034svQvyNb34T4u5e/Mu5X/+/fhPi5la8N+FIhYUx3y+eO7zKVUeFd6lnJdXmTKd/vpjxeEnGWPg+jRX8EID7U4WX+iMDOC7/1RdxjHzySfzryCuvugbiSzbjX9blM1gzxsYHIX5p7/NOGx77Mf41ZBDCPn/wMO6jVMQTTcRbIG5IYdzc3g5xqhVroZnZ5k14Htdddx3El112KcTxJLaRX4QtxWKYeaX7WIq88zzv5f/SYwmotk8/oHGbXnNEqeYWqTOUK9auhY+5UL+f/ZwXjbT3V3Cdqn2nFus39xiv7H6/2jHW908qL7i/cBGLY5zN4i9ZlYqV5rAL/1ZuiF6C+IbzFef9A+Wk52PtSyWxbs1ug+2cmcF5F/+Bim+cYzhPaEjiF1ra8IXw2Bj+hr6Z2cwU1ip+gM3zlXpQPu0F/WL60VKNsScfvvGssoHmSPEI55Q7Dw1HkxTj2BGhzxP0Fw/RBI5XIfrLcy482elK9xx/+SCbwXVpMYufF8qYp3GaLvIa0n1W4V5zJ5dpQhiN4ufZTLV98lsODEMR95d4wjGeA1V+eRoEgfPX8wuxlM/sakKw8P2r9peU7u6Wfqyr8AWKF33I6vMMvg5V5nFn8kyQf8bHKJ32C4m1rnXJcMkic28ipmheHTF++codrNILXuxP/BcIXVS7NtNfeYejWD/39+P6ZN8AKshU+mWXalMk55456/NXP/5Ve6HLlAJ+Dsi/VEX3hn6hIsR/Cm3u/CbCv9Qx18bQIv6Ka8lfenR0dFg4HHbe1g0ODjpv9czM4vG4xemhkBCLYbE5Z6a8E68e5Z2oBxpjRa1RrRP1QHkn6oHGWFFrVOtEPVCtE7VGtU7UiyX/lftYLGZXXXWVPfDAA/DzBx54wG644YalPpwQyjlRF5R3oh4o70StUc6JeqC8E/VAeSdqjXJO1APlnag1yjlRL5ZF3uqjH/2ove9977Orr77arr/+evviF79ohw8ftg9+8IPLcTghlHOiLijvRD1Q3olao5wT9UB5J+qB8k7UGuWcqAfKO1FrlHOiHizLS4/3vOc9NjIyYv/tv/03O3HihG3ZssX+7d/+zdasWbMchztnWazuWjUt3DPxPnm1erojIyMQHzx4EOK+PvS1qPSnasvh0bJUOReEwhbM6cZ5CfxTupb2FoinR8YgTkdWOPvbvOUy/ME0nvvoMdT769iE7e27+CKIf/13Pgxx4X/9T4i//+APnTaESTu4TKK7iQSaooZIlzTdQHqupBtcIt29Eov6mlk+i9qiQZgMiUifv1BA3V/H2C5AvWPW9K2oS0myf+kW8ohom9VP9cu+Hd2F9/blWKq8W7t2rSXm8u3iLZfAZz5pIRbJ0DtcdvtPiLwmxslfgU0BffJhyRfxGPk86uM2kR7j2BhqQZuZPf744xA//NBDEO/bs9f5zunwPUwk0CS8uwdrS0e32/+6u7shbm5uhrizsxPivghq00ZI9541QJvT6AkSqfDHkz5pcwdsxnwyMSuYwb8cS5F3ge/PeyawEZr5rAWMbS4VssaMDw9DPDaIY0X/sUMQP77tJxDnC3iMFvJs2XIZett09qKWqplZWxfmQAMZRrueVAuPRY6O6RIYnNaCarq+p/etM52HLM+8jo/NXjE0DkRdH5fHH8PfFntuB9aZ6UmsfV/64l9DvOXiCyF+wxtuhpik+O3Kq9Bzycxsagpzf/dLByEOU11gn58B8iUZKOH+evPYHyf2uprnP/jeDyD+u7/5O4hvvhnP6+3veDvEV16D58X1tl7G50s2twtOKR8vVuf6TPe/0D65vrckMZdbU6jfPjyNY+5EBXn2xZqfL8V51pszafPLnedizncp8i4UCs33kzLdLDb+jNC8OnC0+10/t3KJtLzpGKUS+YJEaO5B47wXoDdRT5frK9LU3QrxwYO4j9FxzFueW0Rp7r+6D/fXvRL9i/btw9poZlYqoFdJMcfjxtLr91eD93n6Oos111+Opap1jbHofB9Ikudfkpx42UvIc8ZgM8/PQxxmvfYCzTfC5FcUxryLUxqybE1Lo/toqki+IZkEHqOQwzblkuSvkUWtffY15HVVkefpZpYvk4dODK9tOMB9hngezbr3Veb8Qdm9F+US1QV2Qg5O7ru2ta7mVPFtcuwzauHZUeX7S7ESeLW+vNX2Vyq5ObdYH5EzYcmenTQnLTbnS5QdQp+fLF3xMI1/Mc/t42RxZG00D75i4zqIb9l6OcQJqmXbnnsB4slJ9B7qJy8vM3duzebozGJz4kzWpE4bqj1/ppgzoky1jg3ewxX8VUJ0zFAU58hnhafHST70oQ/Zhz70oeXavRAOyjlRD5R3oh4o70StUc6JeqC8E/VAeSdqjXJO1APlnag1yjlRa2rzq1pCCCGEEEIIIYQQQgghhBDLjF56CCGEEEIIIYQQQgghhBDivGDZ5K1+1qmkcVdNR/jVcib727ZtG8TPPPMMxDMzqInX0IC+Bw+RLv/3v/99iO+8806Iv/jFLzptqKYVXQ8N9Plj2yndxRJp7qY7OiDOkDZfroI2X6wRNeXXXo764fu274C4cRI9ByIrUN+2b+NGiH/hF34J4j17XnLasHsAtfTDCdQ2jSVRK3VqAv0skhHcfpr0xXOkfZrPuzqJ4SJp8+EuzSfd2SLlBEnCGlsQ8OtbL+Jqvwekf8xaqBsvmvUIKBXLZ+zpsVRcdOEFlkrNeqtkyT/DkfImPw1z9IzNWtLYb1lDnvVsjeoV602/sPNFiKdnUFOe64iZ2U9/+lOIoySOv3ol+mdwm44ePQLx6Ng4xEeOHoU4EnHrxuZNmyC+4grUrZ8mL5Jh8qXoXIm+EetWrYW4IYa1zM+7GtgRD3UoZ8bwGOE5bctI1vXJWE7Cnmfhk5qYHt7/chk1nEtF1NDeueMpZ38/uh+9FU4cPQHx1DTWy7CP+5wexz73//vz/w3xio6VEHevQ21VM7PNl14M8RVb8X5fcMEFuM8V6AESjWFhYpnRwPmB04Sq45kT8w4W6TdQSb+16jFPi+s53hrnHWlgj1Nf2fnco84uHnzk6xBv3II+PclD2Ef37EWN+B00Zg5M4+ctLejb09GJY7KZ2erVmJv9o1iTB4awb3e0YX1ONuAxhodRW398fBzi3pWrnTZkyQNi6MQQxF//Kl6nH3wf/b/e+wGcS/z6v/91iNvb2iAus0mBmYVCyzvHPZdg/6A1fehB1eJhTiRID74xiXPBXcdd36w865azlw/7rjg+I0vvbcDHdJTXX+UxzySnXq5G1trDJBqNWGjOqyNPPhSTUziHCodwntCQxJpgZhYO4zbFIt7vEnt8GI9neG+CMuZUyB+HuKcDfbXMzFaQF55P08/pSVxv+KTuHaGanybftO5OrDPHT7hz8cBwner651BYF+uahT0HlpOmpqZ5Tfawj3PSRATbEQvR3L+CtrrRNpEoLsi8EHlZkBdFOYO1rpAfhzigWulV8rqgnyXIhzBUpjbRojEax9wvR7AvlX38vFRy21As0zaU22XDMTiUoLkb+XGw/yWvHoLAXUuHfO7jSGluPX4O2jW9Kjz29axTO4AqdakWray2HjkXfb1OZ01rg8XnvP4mM9iDjmexf7an8HlcW8J9TpSOYV1oJh+J5jDWtuwMeleGSrjeSOPXbVMvzgNnjuE62cwsz35CvH5zDGucXSxI1TWouX4arocOfWw898fPuYlF9isKKvwNBs0l+RnSyYMsJoX1lx5CCCGEEEIIIYQQQgghhDgv0EsPIYQQQgghhBBCCCGEEEKcF+ilhxBCCCGEEEIIIYQQQgghzgvk6fEKqaarHWItXXM16/fv3w/xs88+C/GRI6hpz7rOvL8keTP09/c7bfjXf/3XqtucTpy8AHI51Kzk8/7Hf/xHiNtIB9rM7OMf/zjEPT2om3/6PmutN1jK562Un9WzdzTqSAM02dwCcY78UMzMoo0piENtqCnYvqYX4oMv7oZ4U/pyiH3yqrjwUvz8N3/jg04b/uQv/xfEgzPjEJdJC3WC8ixMGrCFQp5iPJ5XQZsvIO1Tj3VJSdu0TNrUrFXNCoF+wG2soAlLMolT46ipvGfn4dl9lWuvcbmyb/W8f06uhFqHsRTlEOkaBnQ/zMyCEt6UKOkrhkmncnhyCuInn0LPhod++jDEO3e+ALHjsWJmXa3ol9DWjrXgimuuhXjfAdSCnpjBc4inyOski/cvn3P7374DByEukg79yp4+iHuzeMxSGftbrES+JO2o7+9XqAGNYewPLexXM5fL0RrXOs8C8072I9JHzk6PQzw+iP4p+1/Y7uzv4L6dELOHTm83eiI1NqD/xnPPYe07egy1vA9Ooib6ngM4fpqZ/fBB9Cno7u6G+JZbboH4537u5yDeunUrxK00foUC6ntOC1y9VPb34rmBK/O78FxiKcbEeo6xpzPej94VP3rw2xC/dHg7xEeOoreQmVkug5q68QJqzu/ei5q5Iap9JNNth4fQ0+MIxeF9h5029B7CeVRQwhzoH8b6emIQtfQjYcwrvufZE8cgnpxx/R0mqYbz7zSlm9EjYGIMr/3n//SPIR44huf5gQ/8GsSbL0R/MjOzcALnoGeTX1vYPAtVVC92KdOAVvZcbXUvwLHBJ43itWvRd+X6rZfg96cHIW5O4NzwuZ1YD9uTjruXTZGpR76M2xTYb420+cOUZ/Sxo+tcaZwPqIIFzk4WrndOffQW/l28M8ohp6bVKe8Cmz9h7tMlmueFolgDErSeMzOLRHA9VqJ5Xpj83mIx9OQIqA1+aRzbEOAcq61xrdOGJJZXK5bRr6GpETXNnfWAj/1m6ATWocYW9CFpasJ+YWYWiaI/WLmCjyC0YfmtbM4qIqmG+XwrZXCsyFOdYguPWIWuEgnjD2PREH3OMc2boxiHaXuPa4hfwcuCPD2CgL1iaF5Nn5f4+xGep1H/5Dpmbo3n+lqg9UUySudFbSzRdShSXpYr3AvuTux/WTypc2+B4xFyPnOed+klo9r4ea55fPj+KUvSDd04ODWM47m0NeEcuKFCHy+Sp2pAD45y9Lxl1+69ELNPT0AddlUTjusNybVOG3Ycw7nhwAQ+6+B5LM/LvIA/53uOcbiCjxPPDR0vGP4CPdPjQdanb5S5Hleo+Ql65hqmdp88ZKV56cuhv/QQQgghhBBCCCGEEEIIIcR5gV56CCGEEEIIIYQQQgghhBDivEAvPYQQQgghhBBCCCGEEEIIcV6glx5CCCGEEEIIIYQQQgghhDgvkJH5GVLNkJHj733ve84+vvnNb0L805/+FGI2Ns9k0Li1HrBxOcPm6Wwce++99zrfmSGz37vvvhviFStOGSDX2vgyn81Yfs5QMBJHQ70SGX7HGtE0KT+KhqdmZkERr58fxn22k5Hy8JHjEO/e/gzEm6+5CmKPjNJf+8Y7nTYMTwxD/JV//QbEM2QQbGQsGYmRyWqe7gmZuXkVjChLZGQeYc8j8ugkjyPzImSqRBs4RoVsqmTmnFeIzGYHDs4awdbDyKtU8q1Umm1fKoH3tFTE6xui5oX4B2ZWCvA7bOr30kv7IP7yV7Gf/nTbIxAHdE/jccz9VZ1oWm5m1tuMtWF6hvKMzLV6Vq6FeHgcty/OjEPsldCUzDw0GTQz238UDYBfoPPOZ/E6JRMtECca8fODe9Dcd7j8EsQbu9HY3MystaMV4nYyFJ6Zms27SLCwGefygjk0PIi1bP9uNCnvaKNrb2bvePubIC4V8H74PhvTY13p6+mC+Gtfux/imQwZo5Xd65XL4DGO0pj6tSNHIN7xxJMQ3/HGN0B80803Q7zxQjRfb2ppcdpQzcicx/U4jTNhMrXm83Tq6ysYIr2X+e9aMD06YaE5x86/+X+/AJ/d98BXIF5zJfanzp4OZ3/jOcyL0cPY5zvCmKuRDtz+yAga6UaTWH+jUbqfRTTqNTMbHcB9hCI03qXYWBAN+jwyUS1QHqcacfuSh0a+ZmaRBB4zm0XDxakMtmHlKpyrJUJoSPyT76Kp/HOPPgrxHT//NqcNb3v3uyHesGEDbVFHI3Mv5BhzvxyOOTeZlpuZY8gcITPISAg/z1A9jHo4hm7ecinE+w8ehdjLu/PLRAhzsYFqyUwR8yhCc4UctalY4vGQTKmdFpiVy2xEjp8HZNjN9TFKcZnmXzy7CXzXfLQabCJeK3L5ooXmzFJ9f+E1JM87efysBI+ApRDe/4CMz0NlXHuFfTS5bu9A03DPw/2ZmRXIGLs0NQZxN8370incZ5LGr/Ec7m9iGNcrqUacF5iZJSLYt7J07UL0+5xsel29Dp3J9gubw1bI3CrHXDoS6SYLz5mJhxvxfmRG+yH2wnSuFfpKwCbfBcy8gAyBS0Z1JYxxwOs56gvxiFtvo/SzUGjhOkI+5ebHKCeojnD/9KPuPfeolrFpcZ5in9aYZRySrUhO5TmqpcUKta7A61gn9+eO7Xzz3GKxz36c3rcE3c3jeYCzAeZkwIbRvKbzeH9075w6ZRXKDLtW88f8A3eX5xOHR6ctFp7N+rXdbfBZUxznP1FaS0WiOD6amXkNOC9L0vgVpzoyNTUEMY81vF5rTuIxmyvcoHDQCfFTOTyPCa5VBZ6DcRsWnnuEuVha9TkTz1fYqJzXvTxXcbav0GFjIVoL03mX5/bBpugLob/0EEIIIYQQQgghhBBCCCHEeYFeegghhBBCCCGEEEIIIYQQ4rxALz2EEEIIIYQQQgghhBBCCHFeIE+POarp+LMG2rFjqBv97W+j/vGnP/1pZx+Dg4MLHoM11Kr5hjDVfEcqbXNS9/PlPi+TBh5v39zcDPFNN90E8YkTJ5w2fPe734X4DW9AHfV3vetdzndqRsk3m/NQCIIifFRmPUbWFE2gdqqZWS6DOtnRBtKoIy29VRdvhvgp8n1pP4R517p2DcTFsKvB+4Y3odb+S4fQ1+CB7z0AcYp0nEusl0eakaytWkleL0R5UyyRnip9yZGlJD1X2p15pFVdLrl6yF6Uf4Daii2ts/fP9wMbyYw7319O4smoJVKz9y6XRd3lYhHzsED9OjeJmshmZj3dqAl54OBBiD//+f8N8ZNPb8djkI9IsjENcWMS71dXq6vBu74LL/hL+1GH/rGHfgCxF0ftzKFB1Mr083hd1vei3v+Fm9c7bShk8drszeA+pslfaPdLeyEemZzGY/ahvnSRTnuA9ZHNLEG5GSFDm5PyxkEFb5blxJ/7PzOzMI09gYd16kT/CMRRz/XTaG1B74Qj5Kfy9JPbIN6wDv2Mrti6FeKRfvRJ2P7MCxAXK1igTMxQTH5FBdK43/vC8xAPHEUd/WeffBri177uDoivuuZqpw1rNqzFdgZYi/bvx/rLGvgb1m+EON2EnjD8haCCJqwjA0war3b6/atwL5eTg4eescY5P6yfPP5N+CzroQfWsUG8dmtX0bUws3AcvQ4aG3H8ampZCfHUFObAd8cxz8ZISz8Ww/2VfXfazPegVMa6UfLxvBpJJ7iUxxofjpAWMftqhd3fV0okcewvkp/Y9PQUxIcO4zE2rcUxo6urB+KhQbxO//v//V9OG3bTOPO5z/0hxC0VPHBqhWfe/Jy46nw/wOsb8t3xzSOfjxCpqB8/innZ1Ipjx+gJrDWjg6i1X8ihAHyywZ3bReiYTVGcg/aEMB4YH4d4OE9+Q6TD7PhxRNy8K5cxd+N0XeIxnGexT6DjbREmHXw+YKVlEN/OGnsBvhwz01nz5rxdfFpP8BQ1ID3/yXEazMzMKAXKEZxjFQ39iApG/hr+OMTNMbp3Eawzk5Ouj0w6iu26qBfHfb7f8Ty2sa+tBWJ/Bc4D9gxhGw/sQ88QM7MoZQVJf1u5xFr6vAf2WKqyeUUW6+lRO3yLmmezeZdMkW59But4kvIyUkHLnb0NeM0XofGI9dwDn3K/wN4HGEYiFcZYx/uHvc5ofV7J13GhNtLn4QpJwPNkXlRGyI8toPV9mOf+VATi9Lyl5Lv3okB1gn2ZcqXZY5zrnh7MYp9/Od9/ZQelkL2+qM44vk34cWA4NrI9H3tvmlXIU6fscI4sru7Uw8N0Kdk/PjNfs5LkNdrchM8n2dNsYNIdY5t68JnaHW98K8TjR9En8tALuEYsZnCe7YWwRkSptgVlMrQ1s81t+LylIXkBxBHyAv7RTx+HeGSUPAapLjmd4Qz+/MHx8HBqfBWPJONnfjymuI0I0XyzTPsolGbHlfIifN70lx5CCCGEEEIIIYQQQgghhDgv0EsPIYQQQgghhBBCCCGEEEKcF+ilhxBCCCGEEEIIIYQQQgghzgvk6TEH6wVmMqgFft9990H8P//n/4T46adR142/b+ZqlrFG2mLjapzJ9tymeBz1P1tbUUN7aAh19hsaUEMvQX4QHJu5us7RKJst1I+IF7LInEZiZhr1/iJNqJfLunjRJH1uZpkZ1PdjfXCL4bnHO1ogXrUefQqeJ43563u7IS4l3GvZ2ola3a+/5XUQ//j+H+I+SOO1kCddZ9KlTMRZ79p9l8qSe5ks9o8y6ZRyfywWyFuGtFJjUWpTk5t35TL2h/FJPK/k3Hf8ch3UUMsFs9KshvfMOPonNFJexUifMVShuaUM6oFvexT9FF46cABi1qINh1A8ulzAnAiRlmk05HqoRMOoVdneiucxOIU5MDKM+tEzpLXfEMW8aiON84aIW+8aKTfJGsamqY/nc3hexweO4/dLF0K8+sqtEA9PjDttmCLPlUKAHgOXXDCr11mKuZrty0ngBRbMadQGpAvb3olt7F1zCcQHX3rJ2d/YIfRs2bsXNer37R+GeHoMfQ+iAebg1os2QLy6uw3iXA79kszMcnnM++dfQI+Wg0dx/BqfxLzOTGHOPf3YoxAf33cYP9+Gn5uZXXbtVohXr18F8dgotqFAtTCUx3j1esy55g70BvAraaHSz9hvwLNSxf+uBd19Ky2dnvW0uPrWy+GzDHlhrL/oCohjZddb4XgBNd/HT2B8ZM8uiNMpzKNEFK/Nym7020ikMC+PHsU2mpk10HgzMoy56ZfxfnCdKRewDdEw1spyCce7eMgd54OAa12UPsdcn5nBvvLc7oMQd6RRD7mVvGUaGtyB58jhIxBns3gd6unpsRh4/hGu6JtDXhSkx97SiNdvYgTH9dw01csJ8k8gfe/WDvSwMjM7cQJ9AvM0T+rswVoRT2Aul6ivBNN4vwKqG6UKOvnsN9OSRD3qKPlOlItYb6p6EfLnTgvMEU8PSNe8VD7p01db/fJ86VTTyj6v57C/+tSni+UKnoyskx2ma0NzoJCHfT7m49jS3oRtaEnh92NlHA/NzJrSWMvWr1sH8bpejIe24RiciOI8Z9X1r4G4bYD0yH303TIzmykcgniMxtBi+QxyBo+C2wc8zlTKG65/wctGnI/LjV8O5lvg03qNlk4Woz4RrfSrsB57exrFuFNHz51Pny6dT3Urygcwszg9JyiHcBvWdS8UF57XhMmHpEj+GuydMbsNrmn4PN2178K+L47XGvVnx/DNKs3tMI7M3Ss/MDPXLuCcpZqnx6vef4WfBR7lGI3JvWkc+9INOA88MjgOcZG8wvj2WwXvMH5M69p+cJ5jza82vjqeWueYx8eURS08t359iXywfm79RRCvaMHnlcO7dzv72/Eirm3fhJbDdskll0Hc4GMnmxxAL0ujHAoi+Ix1bALnhWZm45M4L2uPkbcFrVPXt6F3lz+D208XMWnK5EUU+K6vo0/PeKp5erjPzRY2yuIsi/DDGbN5P7STlKhGn1zvc1sWQn/pIYQQQgghhBBCCCGEEEKI8wK99BBCCCGEEEIIIYQQQgghxHmBXnoIIYQQQgghhBBCCCGEEOK8QJ4ec7D28Oc//3mIP/vZz0I8OoqaapEI6exX0Nmupju23JqFZmZh0soskw7xevKQuPxy1Nzetg29AaanUd/6mWeegXhyEnWLz+QY9SQUjVhozmfDz6A+YJn04sPkI+FXuH0hErIrkNdLNNECcZGE7no2oj7uzqfx+g4fQ8+BFRvx2pqZ+SSgeunWqyC++uqrIX7gh9/HNpNuKed2OSCN5gp5XnIkAxfWlWQR2HKJ9kkeBJTGFg67mufpFvKpiGDuBqHZ+10XTcuZaTspdNuVQj33yWHUfIwmUJcyTbGZ2SOPPwXxd7+LnkTZQg5i1reNkg5lga5/QNqjA6OoI2pmNnAUPR3Gx8YhninTPYrheecLJEhbwvvSP4y6l+G4O5yVSLvS82gb9k3yyb+GNHaPnUC9zkNHOyCOll0d4RbyPRqZwDpyqH/2PDJZvCe1JAiw/yUbmyC++NIrIR4fw9poZrZ/7x6Im9rw2lx+JdadIDsO8SM/fQzi1at6MV69BuJoDHVMzczaV6B/0fpN6Iexdz96cjz51A6Ij55Av41MDmvEwRP7IT48gvXXzOzx5/A8tlyCurItKWz36k7U3R+IYz/Yv2cfxFfecBPEazZe4LTBJ+HfgP0HTuvfrFu83HR0brSmptn8eu3r3wqf/dWX/h+IW6hm3/GGX3T219eHGrnfOoF+RXnSqc/ksa7kizj3u37zRogvuBTH4J9uwzHYzKzoYZ9mj4+xAbzGo0PYf0IBnkMoRJ5UNCRV8koLUa2LRtCbZGoSz5t17/Pkl9I/jH5k/SdwHGrvdD0m3nznm3GbdnebcwPsPyFHfNvMDCcdqSSOLfkszS+yOBfua8F7WCzgGDxFng6DNN6ZmaWjWEs2rUH/oPf/5r+H+MQkrlu++vffgPjg4RMQD5C2dIknWmYWIj+wTAH7glekcZy0m8OsKU7HcBzjKqyTCuQ55qhLz+2k1nM734uad7K+0rzZ405NPmq+uX2cS3WM/FSM5jehEuZcYxTnGB3NeMzOFVgz+lqxLpmZ9XWit8/KNashXkseVP5RvF+TQ+hx1tmN2wfNWI9nRt3xKVvA86TSZkePo38Y33bXs4PX61X0ySttQ2np1VEa3/eD+QZwb2EbCsduo1IfoTUdn1uI1mN8EPd5CHt+cF1x64zjK0K75P4UeNyGMMW4g0QFTXmmFGB/YR+QfJ68ukjnni8tVkqzAuvkVxh2yrSTAs31/Ln66NfYR2a54edn/CxrWY5JdYGfbVx18VqIV63AddP3HkE/ooFRrG0NKfJx9Nx6OzHD62DMsRDlebUh7tV6BZ9t+JGQeXPFYJh8fF44chTiTetuhviqS901ZLoZvzN4AD2pLrwBPah61qH3ZIh8eHIz+MyvsakF4liFuTz7pI0O47p0Zhy93DZ0YN41JzCv9h7HufvxCVx/ZMvu85uAPTg4T8oL55H7fYx53hcNu89veK5XoLlhYa7+ut5KL4/+0kMIIYQQQgghhBBCCCGEEOcFeukhhBBCCCGEEEIIIYQQQojzAr30EEIIIYQQQgghhBBCCCHEecF56elRSaOumh7g9773PYg/97nPQVzNw4O9MSr5c7CGJLeJ2837cLwUqhyzkq9INe8RbkNzczPEv/qrvwrxCy+8APHBgwchjsddjcI3vOENEHd3dzvb1I1YZPafmUVJe71EfhzhKGrxeRG3OyXiuI+pCcyjpibU++d76DWivnsfeXwcfQn13ntXor6umVmBNB9TrXhP3/3LvwTx9ueehXj/YfQxCMdJh5LI5VxvggJ7bkRYf5w8JHKoY8l5yZr17PmRo++bma1Or4B4y+V4rcrh2e+Uir4dewH1zJebSD5nkTldyuYk5kSYtGibo6wr6wq/Pr7tUYiPHcd76LMGL+0jYqjxGKNjRhOoIenF0X/BzOzEIOprjpKnR6IB72mY1LvjDXiMHOmL7yfd5lIStzczm/HJNySC9cgjC45kHLcPxbA/xujz4VHUylzT616HEqkq79iJGqGlOf3+XJ4VfpebkJ36vQeqOyGsZeyVce31N7h7i2BO7X7xaYjDhnWnubsN4qlxvL/jk1hHjm7bDvEg5ZOZWUs7HuPyrVsgvvgi1A9ftWolxDuew2M88wzWwoEZPMdiBdHlyQnMy6effALiBPW94VVrIW6I47iS87GWPR/HftLVjffGzCzZhLrrAf1+i3/a1M+v+TTQt5N66Fde9nr45I7XYN/4/ne/DPHAvj9w9nb5VXgPN21CXfrcOParA/vHIW6I4vaTR1AH/1jsIMQrOzBvzcxWbsLrPVnAcX5oCNsweBznEnt3Ys5MjaDufWBYdybG3fHN0RMv8XyRx1Ds8+UQ+x/h56tW9kD827/zW04bfvl974M4GnW9tepFyAvspNwy69YHNByGHU8ct5/nSM+9txPnah0J/E46heNTgTw72ldiHr+RPJBeeOElpw3D/Zgn7Rs2Qbx/BH1FBkbGIS4ncX4absDa01DAcd8ruJ5VRnljAc/FMPcjZEwRoTUCz0180jD3i67eP+8zkcY51FR+9jrU3NPDPPNOjq3kt+HReQbkyRNU8KXj/pSMka+gj5rxXgHH1E3rcHxcvxrjxiashb0tmNNmZq2Ux/EYrt8KCfTy6m/EYzzz+G6IB/4NfSKHM5izM0PjThtS5FfU04FtGB7EflHI43yWl+eB098reEoQ1R04T9+ixnnn+/MnyUd21lLsI3Em/iVEuMqzDDanKDs+FNTHK1x/38c6ElA7PZrjRNhjhfdJPiLsU1LxjtF5hUm/PxGjPkw7KZZ4jKZ7QVlVrpBkPj334Wc43txBZ/+3Qr2uA0vhV8v74Gd4/DnndfU2uHc8RD+Lh3EfjbQ+jPo4r9vY3QJxH80dV6/DOdUo+3eY2dPP45w4M4RzS48mL+WFu+o57+Hh4JfnOy/7E+48gs89una9CPHtN1/n7G7DGlzDr+zqg7iQwfUB+06sWInP6Mb60fexMYnznXQj5oCZWSs994tQ6RoO0fNo8lFL0DyuaQOeQ9sQPrfYcwI9QszMxug5XsB+qATXLk7DEP0kQs8YEhF3vsOeyE79nNvlIiw99JceQgghhBBCCCGEEEIIIYQ4P9BLDyGEEEIIIYQQQgghhBBCnBcs+qXHT37yE3vrW99qvb295nmeffOb34TPgyCwu+66y3p7ey2ZTNptt91mO3fuXKr2ip9R3vOe9yjnRE15+OGHVetEzVGtE/VAeSdqjcZYUQ9U60Q9UN6JWqMxVtQD1TpxNrJoMeeZmRm7/PLL7dd+7dfsne98p/P55z73OfvjP/5j+5u/+RvbvHmzfeYzn7Hbb7/ddu/ebel0ekkazVTzwjBz9f+mp1E39O///u8hHh5GjWXWUmU/jWp+HZWo5sHBx2Q/jjxpwPP3GxpQ19bMLJVCrbgS6RLHYqjhy+e5ejX6IFxzzTUQP/jggxAfOHDAacPrX4863nxep9/Pk/+9ZcsW+43f+I3lz7lIePafmYXj2K7iDG5ankHNO68J9ZHNzLwUauuVx1CzMT+B2rPhtnaIS3T9+9ahXuAj3/wXiKcuvthpQ6oXNQOnpzG3m9LYxiu2boX48NEjEMdILDXvUxkJu3qsno95FpRJazRMOUDfZw8PK1N/I/HToOD2vxMnxiFeuQ49PlpbZnWCi3MGJJlMpma1rjUcsfRcP4gWyU+D9B0nSVPyh09ud/b38DNPQhyw6KFHeqdRvJ7hKNZL1lIs+hgXSq6oYiyC9WfjBeivUI5iDhRLeMwmyv3pJrym+RzqV5cCzGMzswzV+UQYtykVcR+s8+uzLj5dh+ksFoWxKezPZq4fSoa1vOf6fDCnoVmzWmeezetOU5sczWv69YjOHleH9DU33ghxogG/9PyTj0EcDmPObLkMNewPkT/UkWOoxzo0RgXZzEYzWJOPD6BW6ZEjWMted+tNEL/5ja+FuKsdr+nD23ZBPDmNfdXMLFfEvJ6YwRwbJYOjp/bugbicwH7wuhuvhbgwhXquT237idOG626lMTaJ53G6hc/J/65d3pXn/pklUuiF8a5f/DDEF1x4KcTfI48PM7PHf4TeMat6WyBe3bcK4qCAffRwHmvE8YP4+fO70EvBJx19M7N1B1BT3g9jbnasQB38i2gcX9GA13DwBN7jWATnFtkKeTc2gfPB/iHUl54x8gzyqF4GOAaXyrh9z0o8x59/51udNjS34XkG5CMyb6ox9+NajrERK89rBJdY/5u02YMSfV529YZ7+nD+sL4Hr+dVqzG+4DV3QDxUwvFx506sLSvX4Fx79UrUZTYza+y+COI/+Yu/hvhbn/8SxF4Ba9HIDOZ6bydqjjenUH86ygOBmfkebsMWH2Vap3SQT2A+i58XWJTc8RtzCcI0ptK6JjV3330zm7La1bog5FtwMtfo2nmsxU85GI6669goacqz91qhMA5xUxJr28aNmEMttN6wCPnOVNDZHilin84N4jGKjdiGSCd6To3TvfrqP+EaJtmC/eKCHtcnLRzHfaQoKZoStHaL4HUKh8ljwsfrOkW2hGV3SVPBLMMdF3Bjv3Z5FwSn1tHsX+R4erCfhtvHQ2R4EWL/C37ewZ/T92O0tk6St2Wk5I5vRt5mUR6HA67p9DGdN6+t2delkk584HOfpGc47JXI15KfE5GufYRqRKmCl0qIcjHCF3uubpT9WU+PWo6xy4njd1olXuz+Krn0hCgnWlLkHZXA+tjXi3OCZBTnbalmrLdRWtM+8FOcy5qZFQvYF9hDgtvNKVovD49a1bqyX7b5gkP9jz0hHnn+eYi7Vrj+fG+58XqIW6k2BTQfyY6PQ9xEXqSpVesh9ulZmMfF1MwZS9pXkL8GPRvOTKN31+QUjsk8BlzUhXnY3uRe853k5XtkFH1uc+TB6hmPEXiduDLGaW4Rq+D/V6S1ND+PDuh/z4RFv/S488477c4776z4WRAE9id/8if2e7/3e/aOd7zDzMz+9m//1rq6uuzLX/6y/dZvucaHQpwJn/rUp6ypyTUqVs6J5eL222+vOGCbKe/E8qFaJ+qB8k7UGo2xoh6o1ol6oLwTtUZjrKgHqnXibGRJPT0OHDhg/f39dscdp36jKR6P26233mqPPPJIxe/k83mbnJyEf0KcKa8k58yUd+LVobwTtUY5J+qB8k7UA+WdqDXKOVEPlHeiHuiZnag1qnWinizpS4/+/n4zM+vq6oKfd3V1zX/G3HPPPdbc3Dz/b9WqVRW3E6ISryTnzJR34tWhvBO1Rjkn6oHyTtQD5Z2oNco5UQ+Ud6Ie6JmdqDWqdaKeLFre6kxgrbwgCF5Wb++Tn/ykffSjH52PJycnnWR2NShRK4z9Og6SFriZ2aOPPgrxvn37IH744Ycrtu/l4PPhNiUSrr48fyebRX1d9vBgT45K1/V0WO+Mr4uZWTPp6fI2LS0tELPfRiaDOtGjo6g9fejQIYi3bEEdfzOziyv4TrxaFpNzZi+fd97c/5m5GruROGrzZyfGIY6nXE06C9M9beyAeHoU98EdMtGAfg4trahBGCJd/G//yzecJqzZcjnEYyeOQrzjaXy77udQH3DdKtT/GxojbT/yPQgC97p7QZXcNdI55F1Utcgh/cAK8roxEpve+exBiDu6ZvU3y6WqB5tnqfLOL+XNL855ySQb4Ttl8it5fi9qzH/z/vuc45wYG8F2cTv5PEg/OmC9aaoTU5PY79eudHWX3/2Bt0H80j70ZHhmJ+prbtywEbd/aS/EF1+JecxJ8uRTuD8zM4/0wT3y5Gii/hWPY91OpvFeTE/hb5ccP4GTtGTUHVLbVqDOa6wFfQzyHv5vNZYq5yzwTukgc59ljw/SEvcqdLDWFajdfc11N0O8ohXryM4ncUwenMSxIxLDe5Nuxuu2ttH90+nRSdSoHx44DvH27ZgjU+NY666/9gqIX3MN+ml0pdHX4KGf4DmYme07cgKPUUZN3ixpaI/msTc+tQf7yYXrUYd9FfW1HU9sc9qwcs1aiNeSNwbc7zPU/F2yvLOInRzpOO1CKZzzXHHjGyDuW7nSOc6//MPfQPzii9shPnwQ86qlGcfg1Wtw8dV/AmtnrAGP2T+Gtc/MrP8w6o2Pj+LcbncJx8yWlnGIE0nqTyGuU7i/cIXLniLvoM0b10C89+AQxMcH0XckSvrirMO+9yU0mvyH/4N+EWZmja3YR6/div3nGtJLPhOWLu9OnQ/P7VhDOQhQi/vyS690jvPR//IhiI8+9yOI+xJ4z697PebyCPmEHNr/HMTPPfcQxFdeip5HZmZbNl8AcXYCtZwP7MfcT5D5wXryCXnta66GeHIIPZAmx93c3/Ei+vZlCpiHoRj52tHYwrr1QYBzQbKAsPYmXMOYmZEFi2UK5Lc35y3j1brWhezUrxbSsUPsz0FxKOz6GoTIc6yUw/sd5HE86+rG+93ahnnd1oP3f0XfVoi7O3DuYmYWiuO1jU5gnhvNsbouxzq0uRvr6e7d6GWTbMMxYJw8Bc3MBoZwjC2EsT72deF5h8PoO5NKsbcC9v99R/HaDw6QH5JVWufw+u/06zDr6VGNJVtPBOX5w7kZzx4f9HElMwvP2QhDWqNwm8v0fCQWx7ldVw/mWXmGcsrMctM4t2tuxbl5OIx1J58nH0LSh2dP1BL5iOTzbv/znbUh3y/2NmGvV7qO5G3J8v7hCvUqRPNHXksHc8c801pntvTP7JYDx5OFfJv4WVZ1DxDaf4VjRsn78sK1WMsuuRTXpBesxrnl+FFcf2QyVFemyYftGHoQmpnFY1izGxPY8Gl6juh5Z/78op4sWa073dKD/GZ9mmtMUA24/6fu2qmvBZ+xveH2n4M4kcY67+fxerOfRlM75gQ/izH2FTWzmIe5HKPnsI5fs48em4Mj6Ns7NIJz/6lJrK/hBNZOM7Pkesz1dBLXRbv7cZ+5Ij1r4VpGz5SSMRyTw44fklmW5hJn4pVdjSV96dHdPftAoL+/33pOMzodHBx03uqdJB6PWzwer/iZENV4JTlnprwTrw7lnag1yjlRD5R3oh4o70StUc6JeqC8E/VAz+xErVGtE/VkSeWt1q1bZ93d3fbAAw/M/6xQKNiDDz5oN9xww1IeSggzU86J+qC8E7VGOSfqgfJO1APlnag1yjlRD5R3oh4o70StUc6JerLov/SYnp62vXtPyY4cOHDAtm/fbm1tbbZ69Wr7yEc+Ynfffbdt2rTJNm3aZHfffbelUil773vfu6QNFz9b7NixwxobZ/+cVTknasH09LTt379/PlbeiVqgWifqgfJO1BqNsaIeqNaJeqC8E7VGY6yoB6p14mxk0S89nnzySXvta187H5/UWHv/+99vf/M3f2Mf+9jHLJvN2oc+9CEbGxuz6667zu6//35Lp9NL1mjW7hscRB28T33qU8537r33XojZPyMWQ02zZBJ19FhrrlhEbT7WGqukPcaahPynWuyfwR4d1fTMQqSZxpqHZu61SqVQW7OpCXXSd+1CvVWmvR112vlN7S/8wi8436nkNfJynLzuN998Sh9+OXPudAleFnkMx/H++KTH6Wdc3VeL4D2JRDDP/BLqav/4XzBPu9avhtgLoT5y3lBn7+CRg04ThnPoO1AeRU3ekI9xVyfmQHsn3tOHH3sK4umDA9jGCmnqkfYpC/5x7rI2atnZJytwYtzQ4GoURknHOzuJOuwHxmbmjj27r2eeecbe8pa3zH++nHk3ODRoM3M1p7sba1MOy4A9+swOiF94ab85kEY5S5hHSJM3RhskSAM5Q/WuWEJvn1tvdfXG/68Pvgviv/rCn0F8+AD2p9IU5vK6LtTW/MWffxPE4QTW6F070evEzGwqh3qZrc14bzpaUR88V8A+7FNe8riRnUaPj0q6sKwd7Pv4nXx2Nu8Kudl+WKtaZ8GpBju9ydFWXdgTxszMI/+ixibUMr3kMtT37yW98B/f/x2IDx48DPG6zRsg3rBxk9OGnzz4IMTjQzjeBT7ezwMHjkE8OjQO8b59qCd+41VbIX7DG2512vD9H6NH0uiOPRCHnT+wxXhqGnP2yBFs45WXXwZxa5r0Xc3s2AHsC31r1+MRo6fG/dBcLahZ3plnnE/zOImIdWfy2FFjUj5uE6Np7UWXoE+LhXF8O/LiCxCnY1gb2xrxHBvS7tjiJTD30/EWiI8eQj3ykQGcOwR04h7pwx8nff9C2dUBLtE1TaZx4IgkcK7neTj3sDLGCfIV6SUvlO9//VtOGw4dQ639m17/Oog3bp7ts5NTs5rCtRxjA/MtmLtG4TAtfXycV110EXpb/NIvvs/Z37VXvQbPrRv38cKj34P40GG8NpuvwLx8zzvfDPHBfejxkU67Hkb9R9BP45K1qK0+cAJrR1sPztdvvQbH7fF+bON0FscuxwvFzIoFzEWSuLZYhOYiIcz9ZJLGWPLVyk7h/huSrnfeZAZzl2/v9JyWvj83t6tVrYsEwby2vh/Ga5kIcN4dJ03sgHxJzMySMbxWsQjp2kfwWjVFSTeb1g/pNGqB+7y+iLjn3NaKa5L2leit0BDD+8NeiONxzOuWIs6HxmndW+py/QKmaX7SVMJrtTKDCbAijXG6BdvkpTBHmxvxXj0x7a7txqbxXhQreBme5GR1r1Xelcvlea8O1/OB2safVzoN9mCkZxGuFj/509A62Jk/0jy7o7Odt7CpCPlcpXE8iyUxLpLRDz8/KRRw/ZeneGbGHWNHh1ALP5+j50DO/IWfC+HHvtEzHloXlx0vFbMyf4enk3PfOenJVcsxdiFPhldLNQ9bPnaIxiqPryXFfgUPlASNNRdvQd/JLvJEamon/8YI1sajtFYPl9Aj69KL1jptmAmwdh09hGua5/fiHKBEfYn9dpzex49mnBa4NWMhv5QgCCwIgprVuiA41T7ufyU61xB5ZRwdx7HHzOxrD/wQ4hW9uHa6divO29Id6PNYDuH9KdMDsQQ9Wy7RsxQz17cnws+Oaa0dTbVA3LQCfR87ptDr68gBzMNjx3CtbWbWSv4oW9fgPpP0PPRZWksX6PFzkp6xN5DvtV/hqQL7LHEN90In/Yucr74si37pcdtttznFBxrheXbXXXfZXXfdtdhdC/GyTExMOC9kTqKcE8vBzTffrFonao5qnagHyjtRazTGinqgWifqgfJO1BqNsaIeqNaJs5El9fQQQgghhBBCCCGEEEIIIYSoF3rpIYQQQgghhBBCCCGEEEKI8wK99BBCCCGEEEIIIYQQQgghxHnBoj096gGbHD/xxBMQ33PPPRA/SGamZq4BCpuIM9VMk3h/bEJeSUMxQcYtjilulgwByQC3oQENS7kNbK5eqQ18HqOjaKTU2IjGS2vWrIGYNfre+c53Qrxu3TqI2Sj9XIKvnh/GPGSjrPwwXkszs0S6FeJDB7dDfPDgoxjv+xHEA9N4P/IFzLPmRry+XatdF/GikcEQeUU1tGBfmM6jods1V6IZaccKND/827/7GsS5/nGnDT4ZXwXklsfm9myUVWLTshDenUQSr0s0ivszM5shg+BGMgAuFGfvb+AHljPXRHI5STc3W2Nq1uAqSoazu/cehPip51+EOJJ0zb/ifL3I/C5J1ytG16shhQbfg6NoxNu3aiXEt96MZvdmZtEw3qMYxWmqwVMT43iMPjxGSwMagPWQOfNll1zstOGhn/wY20Dm5709XRDvP3gQ4qHhIYjjVLO5Bg8N4fZmFYwiE1inj8+ZiLGx4nKzgJ20g2t07m5D3muWy+B5WolysAFzrLGpBeJEA/aDeALzpasTjZXNzC696CKIB8n4Okb3b2IK83oqi2185LHnId67/yDEd9xxi9OG19/5cxDnPTRw+/G27RAnw/h54KMD3P4DhynGNnR0tDlteOE5PEbfOjSBX715y/x/Rzx3zKgVbB4Zokwb6z8O8TMPP+Ts4+jBQxD392MffPuvvB3i17/pPRA/ev+/QvyNv/tziJ97YTfETW2Yt2ZmWy9Cc/mpTqyvmWk0DhwnA8V4DOvS9DSaG/oB5m1guL2ZWUCG7uOjaO5c9HF+EiPzdfaH7mpuphjnfkOD424byMX6uR3Yfw4dmr1X09PTzneXm1A4dGrORjnf2toJ8XXX3QzxmlWumTLPz9duQYPLcBPeo6ET/RDveOxhbB8ZyXe24zGDiLtm+fI//AXEl627BOIN3W+HONKMNbWnD41Xv7JrBx6AjFjDUaxVZmYtrViHY1msXzwPCJFxdWc75tXAOM69Ei04v0kmXCPz4TG8dl2r0HTTJmbzzfd9G5uq3TjrlUrzBroR6p9xD/tAZwLHnra0u35raqR5WhLzOBrDa89zj1Ier22STOMDmocPT6Bxs5nZxBQeYyiF137tapy39bWiKXWyBY1f947ivDxEa8x4mzu/DSYwh2KJFtoC12pNtK7t6sJ1WVMXrgVChsav+/e5hrdTGbxfBZpzw/JwEUarS0HgFy2Ym/OHaO5follfmdoWruT/wD+i9Rl7JZdLmCPJCOZZisa7sVHsC80rsS6ZmXX2Yt60tOA+81msx5kZ7BsxygGfrgPPgvI5t06EDWv44IlhiAsF7ONln45RxqPwpeY2lSo9w6k6aZ8zMq910i0zXMt47VXN2JxrgufR73yzy7yZtbVj7epZhTmYozwfm8Fa1tKC3+/GabjlPGzzRicLzfpHsfaEunFeduAYjoeFHF0HqulBQMfg+X+FxR1f+4We1wRBYCW6LsvLqZVsQE7mZTpXJyMi7lzipYEBiL/x3e9C3JRugXjzxrUQJ9twLjk5gvPuCM2HIskKc/kcjqmhEK2dE/TonusE1Zn2FpyjJTZVfy579CiunXl9sb4Dx9A85d2e41gr4yk8z0gMr32+4D5zK5Uxj7hLe3N31FtErdNfegghhBBCCCGEEEIIIYQQ4rxALz2EEEIIIYQQQgghhBBCCHFeoJceQgghhBBCCCGEEEIIIYQ4LzgnPD36+1Eb7BOf+ATEzz77LMSs9Wfm+oKw5hz7afA++PvNpHfMGne5nKtPxj4ifAz2/OBjsA5yaytqqrF/xswM6sKZudp8U1NTC36eyaC2dF9fH8QXXHABxGfibeJqLZ49BEEw32aWNvTJw4MlIQ8/j/rVZmbt3agBeej5bRDvH0QN5Qa656k0HjM3iDkwUyJvjIry7JiLsSbUZQ6RTvPUCGpI7tuDmuZXbd0K8UvX7IX4n//th04LSqS16LGeqs9ap6QhSZWKPTsSJEju+AmYWT6PfT4UwT6faAjPtcX56rLT1tFm6TnPnmwBz/2RJ5+GeGSG7mfK1TyOUn2LReh6ekX6HL/fnMJaFE+gHu51N90E8eYNFzptGBtAv4SZSWx3Tw9qP6cbqU1RbMMoaZteeHkLxOvXrnbasPdF1LIs5PGeJ0lXMkb1q5F8lIw0QqcnUPd3eGTEaUOaNKp96gujc74h7Mm03HihUzUszJrMPtdt9l5wa/jUDNamA+RFMUz+DIWZcYgzRby2F11+JcTHj+L+Dh7C2Mz1mlm1FserbAbHxDhpo46P4+eFHJ7T8ROY0//6HfRgMjN73e3o83HHW2/DY+Rxn48/fQBij6Zlx4cx758in4TrrrncaUORDFYOHngJ4p41p/xwitQnakkQwnuez+C5Htj1DMSFslucN15xFcQrt14NcaIF50mNbeiBctvb3g1xNInztJbv/DPE8airVxzxsLbt3Ie+S1nyf4glWHeZal8K70m5jDnhF1wt4hDV9HQDjpGtbehfVCpim1n7fetFGyEeII3e/jHUMzczK4RwLpHN4XkMz3kezWTcuelyE4+GLDw3hyt7eD03bUAvjDWr8NzTTTQOmFmONIhninjuPZvR56VnNQp6T5w4CPEzj/4E4iiNf7niuNOGZATHn60Xow9IUxNq4+dozvrEju24vwacS6Tb0RujKel6egwcQQ3s3hWYmxvW4j6efw7rFy8RItTGVb2Yt5EKv6t35ATVEVrPWbZQ+WDLjF/IzWvHxwz7Z0sa11aXb8Ic27QS51xmZokEnXuAdcX38bxHp0g/PIQ563n4/dY2nKvkPVf7OxHBduZm8DxGh7EuNDfi9uE06Yuvw35yYhjzKRty/fliKbw2CVr7lsPk3ZXD69AZbYG4vRNzrJhD/fHO9hNOG4bHcRwvTGP9DIxMPWqYeqXC9Pwzi2IWr0WZFjg+NayiFyjbANBa2C/xcwXMq5kc7qB7Neret3W0QBynZyFmZpEoHiOVwLxqI639UVrHlmlB79Oikv00whXyrmMFejSE6FkGH3NyEvuGc239hX/vmO+VmVmZ9hFxvClmP/fOL0sPFzo/9qoI6H4GPt7PEM0BwhU6aCqJOZag9WCY5opFuugFihu7ySOE6m++QMaIZjY2iGvKJnrW0Uo+XZM5XKNYhDwDKxkynkaZTX7Mff7Jz/BO/7xS/VhOTn9mZ866FfHZM6XCpYjG8XrtO4aegc8+g89j2sl7smsNrjkbyGuG5zchz60zJWpDJIV51kCf56cxj0LkFVPMY5yO4/i2cT0+xzUzy2Rwbjk0ht4kCcN10PpuXFdN0tw/S8/IQ/TQIV/B07TEHkjOtVr8323oLz2EEEIIIYQQQgghhBBCCHFeoJceQgghhBBCCCGEEEIIIYQ4L9BLDyGEEEIIIYQQQgghhBBCnBectZ4e09OnNCn/6I/+CD575JFHIN68eTPEw8Ou1jB7V7DnBmvWpdOobZsnTebOTtSkZE+PiQnS1TPXtyAadXWZTyeZRN019uxgDfgyacdt2rTJ2Sf7fIyNjS3YJvZT6epC7VM+b9bzO5v9Oyriz/0zVxPSp3NLpFD/trOnx9nd8SMHIZ4gfcZUHPVtDx1H7dhLetCnIN2HbUqSPvn0COa5mVmuSNqzBdTaK5RRSy+dxDwaOvECxM/vwL5y3TWoof7iXtSoNzN75oX9EAfU3xwpRvpBYxo1XlONqGk4PUnnVEEbk4/hkTx1um1WN9EvBzZ83PXkWU7GJjNWnJNIHCV9xm1PPgnxZIb0qkOuznZLGjWPAx/Pp1wkLdESXq+yj3nW2oZ5un49ap43NmIempkNT2HebbhwK8SJliGIZ+i8Ewmsf0XSYJ3JYd6uXoV65mZm7a3YrmwG2+ToiZPOb2srargWSXcyRz5LYc/V4OX+VmQt+MnZvGOfqeXGs4qSpnOfLVzHyxXaOj6KtS2RwLHk8q2o3R0O4THY86OlGXP42OGDED/98ENOGxop79etWw/xczuegri5BWt4yLDNJSoDOZoHjA6jZrOZ2be+9T2I3/YOHCN/8RffhfvM/RPEO184CPF0Fq/Tjl3oz7GiC3WCzcw2bcb+mctiuzNTp+YB2ena+yucxPexPx0+jF4YmSmsET3r0RfBzOzia18D8QxpyR4fRC3aLHlZROI4r7rxTe+EuLUb5zwP3fc1pw0pD+tAjDrW+BjOBy+5BOes7SvQy8tI6/n4MZwXDA+OO23oaME564UXoU5vLo/Xeu8e8nnpQv+xInnPHB3ANsywPrKZlUmwOETz7JPzTfaKqwWtqYhF5nSE8wFeq+6utRCnGtALoxy4Y+xUBu9RQw7n4x5prafIh6BjNd6f13Wj98Wxg3h/Ro8dcdrwjjvfCrHvYe6P5w9CPFOge+bjfUjT/H9lK+b+ju04FzEzmxrHNUQhj/WucQDjC7egB9ELhwYhjhaxz2/auBbiZ5/b5bTBIy+uQpHmM3PjGfsXLDdeceaUpwd57qxowDF04xq89pdeimtMM7OQh/OR8VHs08eOYq2zAOPm5jh9jt8v0lwlyp5mZpakcT0VwzF0enIc4kMH0fPPD/BenSC/jSL5x8Xj7mMK9vRraMCC270Sx0S2QgmRLn4ogt9f0Y7ntHkj9k0zs8Ex7I85mixM507d36DGeVfITM3P2YYKOL6nw+TPFiHd9IqmhngBeZ3PfonZDPa/Aq0vXtyN1+51q3DsWbt2jdOC3CQ9U6FxPNGAa8SeXsyB6WmsdVwjCvQ8JQhcjXn2jmzrxPUFez7YUfSnGR7GWukYg5LfQrmCh5nPOvfkr3JyUVNrb4VXw1I8J2KfGX42ZbSmtTLGkQpNyLEHIHldNjZjnYjHMT98mg9lyAch3ozzkJ5e7AdmZsP9+DxzKofjZUsDrpMHIjhvy9JzQWN/Dkox9qkxM/NoXcz3q57P+cKeZ+G54/vs6+LxMzz6bsgdW+JJvMd8D5/ZhT68HU24fri+kbxkSjim8tw3GsP7Z2YWjuLPGtswL7wi1qbREq69YxHMfS+PtTJPc/tYxH0WvWEjzk8DGscHB49B3BDF63TlRbjG2TeIeTxBz7FyRfeZHXvvsZHPyaiKTQ2gv/QQQgghhBBCCCGEEEIIIcR5gV56CCGEEEIIIYQQQgghhBDivEAvPYQQQgghhBBCCCGEEEIIcV5w1np63H///fMeFp///Ofhs0QCNddYI439N8yqa845+n9EYyPqjPL2IyOoqbZlyxZnH+zpwX4ZrOnO5xmLoa4we3qwzwh7nZi5nh779u2D+ODBgxC3t6Mu5irSzefrei7pSFbCL/nml2bvU2CUE2W8PwFpgbdcgBp4ZmZG96xQwlwdnsIcGB1Erb6ZAdTa61yDeeiTd0VTS6vThO7GPogzU9iGsQnU6s5n0RckTbs8fnQPxDfe/EaI3/HWtztt2H/kixAPz2AbWP86REKT0QTei1gS49IIbu8X3TyMN6CecVM76mnGk7NtKJcqadouL5PFsPnF2XN6/Hn0UHnpKOrfFkjTNR519cbDpG+aIR+JWAzzKgiw1kyQnK1HeouHjx6FeHhi3GlDqh110W9501sgLhSwP3F9DJOO6Ch5RoyRF4EXcWt4Ms2aqdgX8lnUlSwHmIc8loSoJjQ1oaZvuTjptGEmOw5xkfIrl5q9f6WSq2lZL6qNl5U+7+pcQdvgtUwksP8FpL+aobEpmsD6evnVN0DcGMecNTPr34d67xddcCHEM5NY2/J5HEMbU3heiQR6LQwNoUbzdMa9DsUC5sx3//mHEL/lrXheb339zdgm8sLZf2wcjzmNfXnPnoNOG5KNWLSTLbjP6ZnCaf+N16CWhEhn2ePaSzqx6y7Y6uyjc/XFEE9P4z0OJ8bxmN7C+sQRyqv1F+Jc7v5voQeLmVnUx3raTnVhVScW1DV96JVQJF+tcfKoYj3yjrQ7Rt14Gda65i48r4eeQM+cchnHyM5O9CTbuQvnhmPTpI/skT+AmZWpT+dINzuYmzcHVebby0EyFrFIODT336jF3Ut+GmHyycrl3OsdjuH1Gx/BexQK05ibwPqeSmHONCSxLrR1oidfMuV6xqXIPGZ09BDE+TyORx55yr3lTvTXuOoKrMFf//YDEB85jjlhZta7Eut+E3kxNZAHRKIB+3R7O17r9X3rIB6kNofCrv702nVrIQ7TnGjv3tl2sy/fchMqz8zXl+Y0nndXO/afNvL1ae7G62pm5hn5N9EaZHRmHOJiFL302jtwnynyjYyST0/Id727YuQBkaQ1TjSE+8xOYw6Oz2CtSzTg9zvIF+FoP2qHm5mlaT2QaMJr2ZJG76eZKczrGZr3Fch7KDuF/hF+CcdPMzMvwO9wX8wUTsVBYGbl2uVeQyxsobk1QG6G5rhxWmtFeA3vzkMdzXQqh5kM5glbKpZJO79/FO/fv/0I9eK3DLh+Gtddgf6WvX04xxnqx3VsNouNjFFNSJE/R4LuX6yCycMMaeF7NIxFYviDnpWoxZ+jueH4KOYlP3PgNZHZGTxzOQc9PZYCx2eC1sAhysEQ5Wg05M6D16zCZ2rd5HvW2Ij1NxajY4TZowXzmktChNarZmbtK3FuMkF+DitacN5xbAhrVy6D27OvlUedu9KzUC9U+/namdIQT1h4bl6XLeA9LFL/CdF5xGPus5MYey2HsV6+NIrP7MLPo8/ZurW0Dh7CeXeO/KXbNrjPaXsvuhTiQhbrRGkM/TEaUnge7PsTpmcjAXkwVfIOWrGCPMXICyY3if5EPj03XNGJ9TlM89ufPvMMxMWS2//YW9RofXGyRPsV/AVfDv2lhxBCCCGEEEIIIYQQQgghzgv00kMIIYQQQgghhBBCCCGEEOcFeukhhBBCCCGEEEIIIYQQQojzgrPa0+Okh0WO9DbZu4I/r+Tpwf4Y8ThqgBYKhQU/b2pCDeCWlhaI2VeEvS/MzC6+GLWn2U9jzx70SlixArXh2NPjxAnUsOztRe2/a665xmnD+Pg4xE8//TTEExOoB3jppagt19Pj6gqfTjUt+LOdmelJC3uzOnLhBtSgY325gHwngpjbndrXroU4SvqA8f27IU7GSaeUtPvGxjC3iz7qteYKqDlvZpZuxlxON7ZAnIhi3NyAuXt05ADEsQRehwTpCr/u1rc5bXjosScg/s4PfwKxRzqzJdIYZN1ZP0BNQvbDqSRn6pNefIF0aLNzmp+sh1gLcuHQvC7l17/7XfhsmjQ8k42o/RwLudrqrF0ZjbLWKF7vLF2Lkoc1dVMnatBv2LgR4kLR1WPsIk1q1phNkbY311yuqWUfRVgffewxiI+Rpq+Z2bve826IB47hNk8/gXqccRonxsdRtzJKWu9u3rmJxx4PefIyyedm+3CpfPZ4elTDC7m/L8HjE9fLcgnzODDs052kq+/7+H2fNHk3kF+HmVluBPVTPbodl2zZCvGxY1gvZ0j/NpbEcT+exhwdG0K9eTOz7DTW5PGRUYj/5d5/hvh1t14N8aWb10LcP4Q+JaxT27oCfWrMzPJlvFbhKOqkxxOn4kKx9vXuJBGqXdEw1rZwvAPi1RsuqbAXzLuGBhxDU6kWiHmOEqoyZ2kgneXu3pXONi88jONZOILn9Uu/+j6IyTrIJsnPprm1BeLWdrwOwYxb6wZ3fx/iE8fRdyk7TR5wbdjfjh4bhHh0EuuWb3hOftnV+49EqKaTj0/znOdYpIIP1XJTLpTNC8/meiP149YmzLs46TpHIm57PdIRLubx3KO0Dz+KxWhyCq/v5AR+XshjPDHl9tO2nhaI116MvkdBfhzixib0B9u7/XmIX9yDc72du1B3uanZ9VHqIO3mAaqpLRvW4PYd2OZjx/GYPSvQy2T707guam5CzxAzsyCC1/rwERwHejpnvTBKZd8OjbkeEctFPFI85enRjG1MpTGnEg3o1xGhebmZme/TOrYR442XrIW4FKC3UMcKnMeVDcc3R889cPt4uYi+BqUw9qVymX0KcC6ZbsCxqSGO12FibAjbVHT9NFIJWg+UMSfGpnAMPnLoMMQ58mZIhbE2hguoT14u4lzUzKyZ7l+WbCgip3lKBEHgePEtJ6l4dN7To0gN82ke7bOvVqXFE02k2GvCJ/+EQghzvakT/ThWXXwlxCVar+waQG8iM7OxJ7AOvM7DcbgpTDU6jOdZIu+CxhSuW3keUJjAHDAziyXQr6ZQxtyeyWKeJFM4d0jRXGJkmHObnjFUuBfOM5bKlh4V18DnF+zZsfDvcPP9pSWxXbAJc9TM7MbrMU9jlKeT4/i8rK29BeIO8lAq5mgtGMH4RAjXCmZmHnlkNZJvazo1DnEDrWFHaE0Tohofon4RCbvPsXy61tz/6/ncL5WMW2TunEIRbDuvlcLk5xercK4x+lsAPrMcxc/vxmd4P2rE8fD6tTjPTtI8sFRwx7dcgONRohnrRn4U5zAh47U1jeOUt4lGXA96eddDqUR+Xt3duM4sbcLn2Xv24VxyYhTXE50d+FyxnfJ4Mus+ty/Tc6VUinzQWmbn7aVy2Y6P4rOal0N/6SGEEEIIIYQQQgghhBBCiPMCvfQQQgghhBBCCCGEEEIIIcR5gV56CCGEEEIIIYQQQgghhBDivOCs9fR44YUX5vVF2U9jLfkkjI2hltfIiKuzzXrj69atg5i9LKanUWctmyWdbvLG2LQJdWgfeughpw2rV6Nm4CWXoD51VxfqrbJXCbdp/fr1EHd3dy+4fzOzJ59EDXu+dmnSnORrz5qv3Eb2RuH9mbn6f6xbWU99wMMHX7LGhlm9uwsuQT+TErczTLqGpJtnZlYmncn0atQ3XptCbb3EkYMQRyOoz3hssB/iQhF1S8tl99plJjF3x4ZRq3SGtKJZCzQWwXtYyuP28Ri2MdXoate+9c47IX7sadSKHp7BNkXjpAlLupaxGDZyNIbnWMq7HhPFAv5s8Og4xA3p2XJYSUd1udm5f68l57Q4jwygJnYkQfqLpF8di7o626xvyqeUy2O/zZDuZ1sataBbSWP+oosuos9Rn9HMbHIS72mY/Wzi2G72YhoeRj8b9mW67rrr8PPbbnPawFrtf/vXX4J4YnoSv0C1J07jhvl4DlzvgrKrSxmNYh8NkRa8N6ed6fn181ZgqvaBCp+HSNc5KPN503foWnuUH0Y+PuyfkuF7Z2YR0gefoTrQvXItxCvXoy7pAHl0HD6MWuCpMdx/F2n2mpkd3off8fPY7lAZa9XO7dshjpPnUoSuUziJWtS/8N5fcdqw5fKtuM8k1vDTPSIinOM1Bc+tuRX1b9NNeH3DUXc+4ZPeuOeo8NIReX7BEtnkJeNF8Hr39rmeHk9Ok/43tfOOd/4SxBsu2AyxH5CHFflBGGn0HtjxE2P+4ZkHIS7ksN1TI9hfWvtI05z8AWZy6BvCPlsB92czK1ANZ2+StvZZ34JY3PWhWm6CcsmCOf3q7DRqrxeyOB5yKarURRJJ8v2I4pfy1O8bm3EsIil9e3E3elvkS3h9j58Yd9qQ244eHVddgbrLWy7ENUE43gJxA/W3li68f+EYnuPmvg1OG6ZHaZyme5tuwrnBoYM4h33t9TdCfII8QRoaeX6JeWtmtmc/egBMUX/snFsrFUtlM6udp0cyHpnXkk/ReFbIkS9CifwCJl2Pr7KHfThO8+AVbThXTLWi95qXaIF4YoLaVMJ+EYu7vxc5Q15rhTzeH9aET9H9Kxfw+/kp8tUax7oTC9w5lZVxvT41geP2nt04Br+0G31CjMbgtd3kvRDH69La5s6x2yfx/o1n8F6EI6f6fxAEZgXXH2W5CILg1BSN6gxbi5SoEFX6TVhnburheBQm76bGZvSn6bloK8SplVh3Qklc33WQZ6CZ2Uz/Xoifeh4141fTEqS7DetEcwvW33IU2xyKY96WcxU8qygNyjOYm7w2m5qhvlJaOAfYt9Ax7Kj4k8V9fjbC3ntmru8Zb8LzPI/8GjzKZF6b9a5En7Qbb9jqtKG1GXMoS88pxifHIQ4Z3r/urhX0ObaJ190TM26tG5shz2KaFyRpXZxK4GSFPXw88kb0PH5WUCnn+Gcv7/FT6+cnyWjcIpE5T48w9r/AY38O8i8J3LWCRz/LUZ/1yKNz0wosPM00V4yRD0WikZ6ppl2PsnwBx/mmTvTDSK3EZ8mlYRz/ijmqIzQvz2Vx/6mUO75lSnTtaH3ftwqfoedy2DcO9aOvGtv43Xj9VRC3H8C5rJnZ1AQ+n+7pQT/v5rnnO/lCwR7diZ5PL4f+0kMIIYQQQgghhBBCCCGEEOcFeukhhBBCCCGEEEIIIYQQQojzAr30EEIIIYQQQgghhBBCCCHEecFZ6+mRSqUsEpltHuvT9/T0QHzoEOq5Fouunn9DA2qdsgY9a9Q/9thjEPf3ow4te3zceCPq0g4NkYaomR05gpplfB6XXXbZgtvzOWzYgPq6vb2kz9vS4rSBdfLZk4M9O44dQ/3br33taxBfcMEFEHd2ouYan5OZq83O9/f0Nvg11rnf/swT8xqJGzeQHi5pgBpp3FV6hejTNgXSgY71oebyGtL3a23GPC2Tzt4L+1DzbmiCtMXNLNmIYnqxCHb7ZALj0dFRiKcmUT83M4X376V9z0HcP77PacOFF14N8c03Xg/xt35wP8SJBF2nOOYlSchaKoXnyL4jZmZl0poMyhgX5zSW6+HpUbaQleYSKEIeKewJECXt0sYGVxOSbqnlCpg3xSzVSErlZBL1paemMK8GB1FP97LLtzht8EiodWoKdSS5DvAxuT7GSOeePZIqcew46koOjaL2ZSaHWpf5EmqsRumYM1NY9wOqTymq0WZmxcI4xBGqE2FvLu+8s8fToxo8bpiZ5cknJh7FPsv3L5/BnGI94wjpI4/Tvdvz/BNOG+JGfaUR+0Y8jfV0y1asS0Xyc9i7ZzfE/QdehPil53c4bVi7Hj0frrsGx8DRAdQsf/6ZpyE+dhznDoGP1/Hqa7B2XnbFFU4bVq5FvdWAaoZ/2nmGo3WcBlKNaFnRTh+TT0wFxeoQ6fZWsfRw4HLveIzR9qmU6ynAfkRTWfzWdJH6dmRhHxVW/mbPjz17DzrfmZ7GbSZJc76tDeeHja2oaX1oBLX1s9SIEt0LnreZmZV8rJ/sdbd2zaynGY8ntSAVS1p0zqyDVwgzNDZZgFvki257m2Mt9B2sX3yOE5PoyReQ90E5wElNifYXDrvj/OgJnM/vCuNaqJzHNiRJuvmZF3Cu1tOL89HOFegz2NWCXl9mZq0RbHdnL+bVavJPfHoI56xPP/Y8xB0r8Pu8ztl/EM/RzKydvGNGRschPnBktuaWa7yeSMYi815XMapdiSjOd1IJrCt+bsbZ3+FjODcfG0PPgF7ymOreiN5BK1bjeq2BvBRiPuZ92cPjmZk1N7RA3ESeLY30eamMfWt8FOMZ8vhobcE6k826OvfD0zgXmM5hP5gg7f0J0s5fvYK8K1MYj03g/pJx1GE3M2trwXH58ACeB2rl13ZNEZw+UrJmP23r8/gZuH0kRD/j70Rp3tuxEb3SIh34XCAfwvEvTr5ZsaQ7xnZsxO/kj+MANZ3BnCi1YW5nSlinCsWF56fFCPZPM7PGZvxZvkAbeHiM0RFcO3sh8hyg2YVPPnjsL2ZmznOHl5u/1GMd+4qp5CPB50XnHSYP1TD5zLAPTU93C8RvuvNWiFvS7v0+uB99tkLUqHCEPG4zOMZPkL9wmDwnpmmOMDKIdcfMbHxkHPdB5xllbxr6vkc93smpgOtDhbxZ2AZv0XPupSQai1r05LNiOrdSmefylCMV5rBhn9aQ5Pd2eR+Od29+zZUQ9/air1qsGZ9j5APMgXjUbUOEltcBPfdrWEnruwSOX5OH9kNcmMC8DFGJj6VcT9ZEE04WCz6OwwVqZM8qnDv6Iaxlw/TMoIc8lsab3PntavLwuOZavNbRuWdlmUzW/ueX7nW+Xwn9pYcQQgghhBBCCCGEEEIIIc4L9NJDCCGEEEIIIYQQQgghhBDnBYt66XHPPffYNddcY+l02jo7O+3tb3+77d6N8g9BENhdd91lvb29lkwm7bbbbrOdO3cuaaPFzx633Xab8k7UFOWcqAfKO1EPlHei1ijnRD1Q3olaki/Myob19fUp50RNUa0T9UB5J85GFiXm/OCDD9qHP/xhu+aaa6xUKtnv/d7v2R133GG7du2a95v43Oc+Z3/8x39sf/M3f2ObN2+2z3zmM3b77bfb7t27LZ1OVznCKd7xjnfMa7w//TRqXnPHGBhALWL266j0M/YBufJK1Aq78MILIS4UULwxQr4I8Tjq6r3+9a932sDncfvtt0PMmvbsM8IeHe3tqH/d3IwaaTMzriYst2FiAjUny2XWEUYNvHvvRd20yy+/HOLf/M3fhPj++9Grwcz1/eB2btlyyh9gcnJW//U3fuM37JZbbln2vNvz4i6Lx2Y198aG0LegqXcNxIGjc+hqoXqk008ylM4+rAm1TBsTayHeRHqDU1OoARmEXXHFpja83iHS3S4HqCGfy+G70P7j6GOQbMCTGBzBwezwcdfXYN3a6yB+69veAvHjz6E+//g45gRfW4/0PSOkS8+fm5lFKY6EUSM2V57TMw5m/1+tcs7MLB6OWyIyq08Y87ClTU24rwjpwmZIK9zMLNpKGrkxPNdsFu9xPI7Xj2tLWxtqebNeOddHM7PmZtRo9DzURY5GY/Q53rNEIrHg50XWv62gK8p+Bb0rUW9z+zPPQDw+iXrT0RjW9XAYr1sjeUZ4hn3FzCxP2rJh0keOzuXqSf+CWubdy1FND5g9rczMBgfQ96oxheNZawve/3IJNUInR8lvKoM1YGZynBrpencNTKAG+YqutRCv34zeM6lWzHPMKLOtr8F5w4lWvN8H9+xy2hCJ4V4mM1hfe9egt8LxE/j5wATqsa5ehRr3N996A8SNza4WaoHGCc7bAP57NqpL3nl0D7mdAWnwehU6+RLjHgLv52AFv7YMz7VSWDd4HsCwZ0dAjQjI72akH+e8ZmbFPG4zNIo1uhjBGp7uwtzv37sH4kye7g1pPyejri9JmPSgb7sNdbNXdM4eMz7n2VXLnGuKROc9PYbJL2F4GPvc5NR6iKMpvFZmZoUmrG+JJF6PdCPmQCaP12ZiGjWOo3Gcvw8MYi07cdQd50+Q/w+PmYV12O5h0gx/+KfoXVgq4Hrg4ovRk6WYdcf5xk6sZ4deRJ+jTBHzKkJrJT7PVeswT32ar3a2ueu748fRJ6mtge5N42w+lcq+vWS1y7uGdMLCc7rhiST2p0bSkPd9vL8zGddHZvcuvFZ7XsL7v/ECjLtn8H6voDVN30r0S1mzDuM41TEzM4tgbcplcJ9P78C5fODhXGHVKvSJ6V2FHliZ6XGIjx5xPT0shPO6hibsOyvX4hx5Ko/jyKa1uCaKxrFvZqfpmCW3/6fi2NeiHtaUyGna++U5rfnvf//7lkgklr3WBUEw74nA3no8UQ7Y06OCQD9PB4sB1rqGDtSYT3Wg3940jePNIZyzJMkXKB5yPePCAfaHplZsQ7iIdWOkjP3Lm8H71RTBaxqn8TObHXfa0Efzv+kZzO2Jaezj7KVWJH9GHvf9M/B+4bvj083x5+6vX4d17Culoo8EnWmEPLDitLYLkxNaWxs+h3jLW94I8UWX4PO1f/6nbzgtSFDf6UzjGibZQOtsesAzRN6XDeS/WS6Sp26FNU0Drc1LZX5+g3mbL5JnLnmAGHvoks9FUOE5lk/zT/bareTvVqu88+f+mVV4BkDz6HIJ210q84rPLB3De37pGhyfbr0YvX7X05iZasGxIhvBPMzP4NjyzOM4BzMz27wO62ec5gopmluW6fJPkSfV2AB6m45lKEeSrndXshHbnabny1Hynm1uw/P2AzxG/hg+H+Dnq5GiW/PHR9En6zite9rbZz3MMln3uy/Hov7S47777rMPfOADdskll9jll19uX/rSl+zw4cP21FNPmdnsQPsnf/In9nu/93v2jne8w7Zs2WJ/+7d/a5lMxr785S8v5lBCAL/8y7+svBM1RTkn6oHyTtQD5Z2oNco5UQ+Ud6KWpOd+ofGiiy5Szomaolon6oHyTpyNvCpPj5N/JXDyt4APHDhg/f39dscdd8xvE4/H7dZbb7VHHnmk4j7y+bxNTk7CPyEWQnknas1S5JyZ8k4sDtU6UQ+Ud6LWaIwV9UC1TtQa1TpRD1TrRD1Q3omzhVf80iMIAvvoRz9qN91007wcUX//7J+vdHXhn692dXXNf8bcc8891tzcPP9v1apVr7RJ4mcA5Z2oNUuVc2bKO3HmqNaJeqC8E7VGY6yoB6p1otao1ol6oFon6oHyTpxNvOKXHr/zO79jO3bssK985SvOZ6y7HATBy2oxf/KTn7SJiYn5f0eOHHmlTRI/AyjvRK1ZqpwzU96JM0e1TtQD5Z2oNRpjRT1QrRO1RrVO1APVOlEPlHfibGJRRuYn+Q//4T/Yt771LfvJT35iK1eeMnnp7u42s9m3eD09PfM/HxwcdN7onSQejzsm4GazRuYnzWweeOAB+Oy+++6DmA282fC70jb8p1F79+6FePPmzRAfOHAAYjbuYQNBNvg2Mzt8+DDEJ06g+R6bB69fj2aKbEacSqGJUqmExjFs+F5pn7//+78P8V/+5V9CvH8/GjzydRwfH4f4G99AM6imJjR+MjOnWLF5+tVXXz3/36cbJNci746eOGjROYOsg/tfgs+u7FkLcZEN4SqYZ7MZV5jMQP0QmiaVyM8rRIZ9Y+OYt8UCfqG7Cw2QzMzWXnAhxIUjByHe9eI+iCfoGAkyM7zwcjzG0MA4xKWca6wbS2CuXnnlNRBffdkVEP/ooQch5nHQJ8MwL7awybWZWYRM3sthMp2bM5U73cR5KXPO7OXzLpOdMn/OxKy3G42LmxrQ1Gt8dAziySnXhKpAvk6pCNaneEcPxAkyaGtbQaa3abynra1oJhpyzBDNwmE0k0wmyFCN7inXATZLi4Tx+yGeMDktMGtqxGu3gmpsPoNGWREyfSvksKZGyWi5VERTskIF89Ew5yq19GQbi6VT51+LWrcQlSajp8PjgJkZl7/hITQdO3ECjT5jEbyWw/QbPkP9xyD2S9hfk2msKWZmGy66DGMyLk8kW3CfZOJnAeccjrnHj6MhXP8AttHMbGwEx7fsDNbTYDO2MUq1cf0mNA/uJuPz4WE0gBsZc/t/45zB26mD0gann+dp/13rvHNNE6mhZ2CyWtX7s4r3OZu0evS7QCcO4Dxg707XvL7s43eiCTQejMWxFnKjQxSzoalXxjpUrGDc54XwWkdjaESYpWt5aADnn2MTaKTMc5F4DM+hUHZNra+6Fsfxt739551tmFqNsV5uykJzc4DhAaxFR4/h/P/i4vUQl/LUn8xsdAj30d6Bc7VoFK9XUxPWkvFJvIcDx7FfT42RmbLvzmm6erB29PXh3KGQw/51aD/Wr5FhNL72y2hk3rf69RCvX3+x04aZSWxniPJu/6EXIS5TjY2TKWeUzF6TCfw8kcS5jJlZMYO529GM4/7ze2fHlpJf21rX0JiyyNycIdWA/cUn09rJcbz2kbRrKMsm4Ok2NFnNlfE6xBM4jytRlx0dwrGpuQm/n8xXMLUlg9JsFrfJz2C/SKXIgDiCc83Gxj48QID3vyntFvh8G17rWBcW+S1XolH5jbdg34l7eO2LM9j/C1RfoyE0PTYzG89i/bzqCmzTL/zKKemWXC5n/5/PfNb+63/9r/Zv//Zvy17rZmvF7DXxDM89KHu0Ka1RPbfOlH36ThLn0am+SyEuRjHvwmWsEbEIGdFjabRU3DV0jtF6OxzBe0zTQ8uGsA7FG7DNhSQeNBrGuXtD2m1DtoTG5eN5zM0Zw3G/QNdykvpKieYaZQ8/rzh18fGYAW1VmvvcX6Z17CtZT1TDq/DsJETG5dEIjqdR+k5zA7bpTXfcAvEVW/GZ3OOPPQXxC88fctpw8xU4Vw9NYx5nc1hQo5TXgzRvS6Qwx6J0jumE+0jWz2IOefQcw6c1a5FKNs9nPY+NyymffLfe8vqP14fh09bFy/X85GXzzjtlYM5Nz9P1LxXwflU613QrzvWaOzCeiOCcayCMc41IFutGNofjxODoCO7Pd+fyAU1xpkZxbRyhy5Cbxn14CWxTrA2f91iZ5prTaHxuZjYxjscc6cdxubkd16Vd3fhMoGMF3sc8JWbuKD4faGt01/OZKZyfPPHkkxD39szOHfIFdy3ycizqLz2CILDf+Z3fsW984xv2wx/+0NatWwefr1u3zrq7u+ElRaFQsAcffNBuuOGGxRxKCOC//Jf/orwTNUU5J+qB8k7UA+WdqDXKOVEPlHeilpx8EPjtb39bOSdqimqdqAfKO3E2sqi/9Pjwhz9sX/7yl+1f/uVfLJ1Oz2uvNTc3WzKZNM/z7CMf+YjdfffdtmnTJtu0aZPdfffdlkql7L3vfe+ynID42eBrX/ua8k7UFOWcqAfKO1EPlHei1ijnRD1Q3ola8u377jczs7/6q79Szomaolon6oHyTpyNLOqlx5/92Z+Zmdltt90GP//Sl75kH/jAB8zM7GMf+5hls1n70Ic+ZGNjY3bdddfZ/fffPy9VJcQrYWJiQnknaopyTtQD5Z2oB8o7UWuUc6IeKO9ELXn8qWfMzOzNb34z/Fw5J5Yb1TpRD5R34mxkUS89WNetEp7n2V133WV33XXXK22Tmc36W5z0g/joRz8Knz31FGrxjY6ipnVDA2o5mrl+GNyxXnwRdWezWdRuZM+OfJ60/Wj74WFXI23Dhg0QHzuGeuCsZXfxxaifyxrBEdIPZL3xiQnUiDWb/Wud01m1ahXE7EXy13/91xBv374d4l27UN+az7uvj/RazaxYRM27q666CuLT8+zkf09MTFT0BznJUuXdyNiwRSKzmoe7XnwePrvy2tfiMcnXJahowOQtEJmjR84aj8N0T3c88xzEHeStEG12/TRWrkLtvaNH0Z/GyBekQPenpw81DWMR1C0tToxDvHq96yvS1IYar410L9/8xjdB/OzOZyAukZ51JIR9IUT+AIErRex4rjQ04Xl4udnzDoLAivlCzXLOzOzF3S9YbE4zvWclaVoW8dyPH0dd0GSK9eLNCgWsT80pzJOmdrwfRnqoZD1j2WyGYqx3ftm94E6uV/S8Oe3jUBW1RepfHuuMVvjKzBReq6eeQE3I6Un8PEx6pzN5PM8yeRAEpPEbBK4essdaxORNEpmr68Gc5n4t826hYywEn4OZ6zGVbsRaNEHeE5OUU5kCXrtwCjVCm0nrvW8ljl1mZivX4J9Rh2jcL3POsL48+R741I8mJ1CHNJ3GGmJmVszgvcuMYo7t2fkCxOEY7mPzBZdAnOcxhDxi4kl3vhMY+8gQp2vZ+rUdY7FdMecnC1JpCso/o12401b20aINiqgP+8xPHoJ4+DCOyWZmU1ncx3ry1ursJE1dZ15AMWkNh0lTvcDCzWaWKeE2LU3dEJcLmNv7Dh6FeGYSaxl7KPmG84Le1TivMDP78H/6TxBv2Lje2eZ0aplz7S1xi89pT/vD6Dtw4Ch61x09dhDiSNj1MBoaGoc4HMJcTqTIH6qEussTI1gXhgZxf2XqG/GYO7Y0pXFdkozj/HH/S+hVsPO5ZyEenURPj02b8J7OZPE6RVhM2swaqc5bgNvMTGKdP3EC558dK1Brf3QK83DnNhyzC1PoaWZmtmoF3p/169dCvPvYrIb1SYn9WuVdU2Pj/HoiMGo3jbGNKeyvkZBb7NrayLMjjfuYzuI+Vq9CT6uuHvQAicXxuq3oxO/HK/ineGHy04ji+HXJRZiDvo91I5LEfAnFSMs7wLnpuvXuGnLNatRqD5POvfH6wBb2A8hM7oF4ZhJ117dsud1pw4lhXL8/+fSjEN9663Xz//2j+/7JXvvGdy2Yd0tZ64Lg1LjHmv1klefO3SvM04s+Xc8WXKOwR+B0HmtVMop5FEngnCWcwhwKVdDuj5BPSJzy0C/ynDS6YOiHsM7kyMQqFXfv04lxPMYwlWSf5oOpBryWrUX8fOy5xyEuF7FGhIJK8yFag/Cn854es3Gtap3neS+7buBnhyHKsWjEXU+EaKwJkRp/mLxqtl56AcQ3Xn8dxP3kmfWTHzwM8cY+fD5nZnb1hejpkSri863hDHoOFKZxrAt5eN65ItatJOV5UwWfwhnyHy7SJc7SPnP0vCAc4ucD7IXpmIA48Nrc9Xx0/7tWeRfY6TUOr3eRPDenpvGZaEdTi7O/jesxjxo6se4EHfidAvmhTuTIoyOO1y7dh8+e4x045pqZWRPWS588A09sxzVkrJH8njsxl4MU+h9d0LcG4uLkuNOE4RO4PhgdwzGx/zh5AU9hTd+wbi3Eza3oN9eSw3uVpf2bmaXJhGz/0YMQJ+Oz/YWfWS7Eojw9hBBCCCGEEEIIIYQQQgghzlb00kMIIYQQQgghhBBCCCGEEOcFeukhhBBCCCGEEEIIIYQQQojzgkV5etSL9etRF7iVfAzYy2JmBnVozcySSdRSvOOOOyB+5JFHIH72WdS+bW9H3Vn2pfBJKJM/N3N18IaGUE/3yJEjED//PHpKrFmDOmysoc6+I2yaZmaOxl65jPp/t9+O2qU33XQTxD/4wQ8gvvfeeyHesWMHxJV8YC65BDXLL7sMdRNPv1eVruNyMpPPWLg0+y5w5ws74bOxcdRzbOpGXVP2GKiE40NA2t1sRsE509yK+oJZ0h+PR1kj3SyWwDxp6ECPjkQravF1kJb+2rWoA5wZRc3C1mgLxm2oH2hmlmwicyrSiLz62ush3nLxpRC/cAw1DNn+gb0YPN8VpmSfj0gYr1VsrhrOaqLidV1uxsfH5j17VrRhrTk+jNqK5RJqeMYi7j0PSJizsa0F4mQT6ionm/H+tLVhjrS3oR6jR94HMxnUMjUza/ewTlfU418Mr+D7IyOoEzlFHh+sBTk2ipq6VB6NpWcTCfKACLlDamB4v9iL6WS9C5M269kE96ZKt4J9PtJpzLFomK4VjZktVNtYR7a5uQXiVMo1vAuFUb/WaadHRcDxhcGY9XTT5Bd20404PpqZPUYeENkx3Mell2FtO3gENe4npjBn0ytQ0/yCi9Dra0UneQBZJR+Ll/eQYD+J2rLI37up0FTWLDePNcyxX5VL2OfD5AeVmcbr/+KO7RAPk5eDmdkkeXpsvfo1ELeRpxXPuxw/I85L0sBubnNzP1fEGhyUUC964Pg4xCPjGIepDfEEjis58i9636/+itOGN735jRD7NL+pYhW0rBQsZCfzLU++OIMDOMY+u+MnEDe3kAeWmYUNx7eZacyrIfK3i0bxfkQ8vL6tpC89ncF5Fmt5m5m1kIb8xOg4xEcOolfJgX24pshMYhtXdmFtKszg/r725S85bbjmylsgvnQL7mPPS+jP1t6Oc4s4eTo88zSuIcYoTwvTGJuZpSJY98d3oEejF56tAR7rly8znd0rLRadHe+nRrH/uH5+OLZ4Ybc2tqQwZzrj5O+URm+FtRehX2JDE/pgxRI414+T14KxV4aZeTRvDtO1Z71+ZxCm+U+ZPg+HcR1bydcgoLmDT/NRHtNC7ClA404yjt4nq9ZdAfGJiUNOG9ZdcC3EBw+h39fDDz84/9+5HGrLLzene3rwoMk1uUyeHjznNTPLkU9PQyt6/xSS2IeL2XGI0+TpEadnFR75N5RDrqdHQHXCS+CzjFgJ86pUIL+9KK1RQliv8zRelkquV2I+jrWraSV+J0e+dKUctqHnYlzbTc3g54efR1+YmOeuQ8OUywF1oJPr3DN4HFEzeH4ToYVUNFbpUSR5ilGephtw7Lv04osgnhrD54Df/fb9ECfC+P2333Gn04KLO3GMzwzgXJK9MwslbGOE5hlBHPM+oBofjbi1LkTXaqaA84IBGvOzBV5vYr12PGBoTORHUmauL+XZRKlUtJM+NzyvDtO5rerBtdTVV2ENNzO78oqtuA9aHzSTh0cjrVsbydczn6N5ObWpSF5vZmaD5G8RpWe9qRiO06Us1gm/jHmZIt+1qIdtLiZbnDb0kgdHahCfsx8nb+CRIRz/dj6P/a9nFfqMpJqxljYU3IGnlX4Wpf6VmZ6tn4VFPDvRX3oIIYQQQgghhBBCCCGEEOK8QC89hBBCCCGEEEIIIYQQQghxXqCXHkIIIYQQQgghhBBCCCGEOC84Jzw92PuigXS1OzpQe4x1281cv4x8HjXP+Dv8Oeuwr1qF2qgrV6LvwcUXo+62mdm+ffsgZl+RzZs3QxyLoRYft4HjeDy+4OeVYB129uBgL5S3vOUtEN9yC+r5Hj58eMHvm7n61uwzcrr+o6N1vdyEbV5K8vCxg/DRvn2oE3xFF2rSnYmIpqM1S5+XfdSwa6djXHwVas0eO4p53d7b7RwzoKOUSFva4phniRDqBx4+eALixhDev5Y21He94JLLnTZ4lMvlEp5nK/mM3HTjayHec+8eiAtZ8tQhLcdK2uF8zKEB9G8IzelpVvKhWW5SqYZ5Tw/2sSnmC7Qt3p90E3lnmFmcamRLB96z5jb8TncPakFv2ngBxFnSF3/hhV24/SbUazQzW70G9TMd6X3Sfq7a1z0OSau4wn1LJLD+sC/Sk489jk0krWgWOOY2l1kiPFxJMxzblSZ/m8sum+0vuXzB7n3gsQrfPwvgDlXhWvP9S7IOKcWcD643A/lQcEyav7ONOBP3kdM+5fOgY5w4hjqmx45g3NvR4uwzHkPd3o4VWNt6+7CvTWYnIB4Yw7nIhl6cW2y5HMeASNjVnmaddL52wem+F95ZJP5cBZ+NmcxNTY88dEpFvJ79J3DMbKDh8OAOrG0Tg4MYT7j+RT3rcO5282tf72yzGPh+sa7zmo1rne80NuEYu+vplyAeHsb7nC/huJJuwjGjuQ31/q+7EX1K3vOLv+C0wcHJrfppQ+8fnrHIXH0Ik9+QTaD+8P4D6OlXyUNldc91EIdJhz4cxnNvIF3lso/3NEY696MjmHepBncuXczhMUqk5z06gjrLFmBfeN3NeA5bL74Q4kOHcM0y2o9zYDOzwRNY38bGyP+QNMjjcRwHQh6e90WbsC+VyjgfGqb+aGa2lXS4d+/G+eKRF2f7dLmSYPkycv0Nt1hy7r4+8cg0fBYtYN0n+XeLRt35UHYCa333xtUQr1iNORJPkQ4++e1FY+wjgvsvV/BA8UO0DffxMI/buA71A9buxpz1eH8VplShgK4NefqFQrgPZyUccH3FZwgXXYrelvtP4DzRzKyxaR3EP3f7eyHeffTUOFLJ8245Od3Tg+fJjocHXd9cyb3gBcqTxjT6iAXkJclT+RjNw6PkrRalnAj5FbzxynSPPay3foj8MBN43hF6PlIkvfhQHNexEcO6ZGYWo4sV0PogEcFczhv2lXAcr8Omy3FMHR/G2jZ5fK/ThrjhMbmmnZw7sD9dTamy1uNnU+Fwhfsd4P0u07p47WqcF190AY4bmSmc30Qop/7dG/FZ1uUbNzptsFEcP5PkZ9TWhHMkbwU+yxoqkr8wT1bDXBtdD5c45cz4FObIgaO4JskU8DqlYpj3fC9KtAYqVTD1CV4mx07C/oy1ZCo7M/8csymF1//yy/FZ1PXX3QjxBfTM1cysuQX3USTfXJ+e0SVT7AVEPi8++vZEaPxMJ2kuamaxBPkT5fGeZmn8SvjkLTSGc4uGFno2TP6YRTYrNdebK9WE87zWVrwu3D9H6Ln90UPoi9VIXpTssWtm1tiE4/IFF6Bvz5Gh2b5QKsnTQwghhBBCCCGEEEIIIYQQP2PopYcQQgghhBBCCCGEEEIIIc4L9NJDCCGEEEIIIYQQQgghhBDnBeeEpwf7QqTTqK/b3Y0+BpkK+pnsNfHnf/7nELNGHftMcMzHOKnHf5LmZtT6MzN729veBvHq1audbRaC9cereQ9U+pzPs9rnvI8y6f01kk7xli1bFtx/pX3Ww0Ph5fBiIQtFZt8FTs5MwmfP70Sd58uvvQHiUMzVxWMNcke3nvRvQ6RNG3j4XrJn03qIuzahrmy5grbdyAnUpRwaHcdjRrB/hfKo3xrzsQ2RBvSD2HDZVRB3r3P9HYw1eOlSsT7/tVeh1uk3v/NPEB8aPABxqYz79yrI/SdIr7hYZu332XtVj3Q8cPCgReZ0KS8lP6AE1b+NG1B7dN06V4u0f3wU4lQH3rPOLtRTTNK1iZDA9BNPPAFxNos6leyzZGZWTeaTK1G12lR1BxX0ujs6UF9806ZNEK9ZjR4f06SFWZhBTVaPBKaLBdS1LHpu/0sk8Fqu34B9dtWcH1Qmi9rnZzMV75W3sM6247ZBHW2x/k1ehd/ZcPpulZRivWsWI/apRrC+7uQE6rSbmcVJozXRgPOVE0MjeAzS9W3vQW3pCy9DXdruPvQTq2Bz4eix8nmdPg45Y9JZzPTUpPOzwcFjEK9ZibWNpLwtHcML9uKT2yB+9IEHIZ4cxvs1PYW1z8zsLb+AHh7rLtjkbHM67KXm4OQt5siaDRfyBtbSjr5NXgjHSD5iYwprfjKJmro33IBj8Cc/9UmI+1ZinpqZ+QH2F57P1JNIU9yi4dmacUkvehvsOYB1/8hR1CO2px919pfdjBrG6Ua8fkGAY+KxgaMQr+jGNiQ9rBt9q/B+lkgz2cxsZAj3efQIasAf2LsT4ssuxVpy8w04d4t4OAbNjI3j5yF3yXjoyH6Iy2X0zInH8DtNpCe9sg/H4JlpXFu1kv+YX2Hs2fY4ei4cPIG657GW2Ws9q1eOGujLydXX3GyNDbP3tUzeTbue+B7EGaptzVHywDKz1h6s/b1X3AlxIkl67D6OV+EojkXs4eE744Y7xno8TpMHB3sMhMi/IcTmJVTsPPYEibj32/VGpPk/f4HXYewnRm1MtaIf3YUtb3DaEJTx2iZo3L/6tBozWcFndDkJ/FMjvuOF5nij4bUr+q6mf6ixBeJwEvukV8ILGibfCY9qAPsKhLlNFaYkPte/MvkfhKjdIRyLyj770mH/Cox8Jz3XKy0cJa9Xw7hMfgrJBPkpBLjPUDv6UmzYis8UdkzgOs7MLD9JPk107Upz99O3wNgvZznxPO9UbtENDFMf5hLC/Xd2f3g/m5rx2l13DT5ram/F/tfs4Tzt3W94HcSrO7GWFqfQ49PMLER+UiGa//u5cWxDE31ewvMem8Y2FfO4vqz0DCkZwRw6dhjHtv5hbHdAeVugNUyMan4sRjlZcu9FqYj3gtdup3t61Pp5XjrdMu8R8/rXYp2+cPMlEK8jT89O8ls0MwuodjU0UJ2gupIr4nylVCTPK6pLUzSnSniud1BDCz4/LpKnx6SP686yj23qiZH/G+UAn0NTk/v8ZmYMt8nQM7xUGseAdA7nLwXyxc5ksV6PDeC6LUTPFc3MmprxZ++57TaI73/wh2Zmlsvn7Wvf/4nz/UroLz2EEEIIIYQQQgghhBBCCHFeoJceQgghhBBCCCGEEEIIIYQ4L9BLDyGEEEIIIYQQQgghhBBCnBecE54e7H2xefNmiNlXYmQENZjNzGIx1GtkTeWJCdRbzeVI25a03UvknfDiiy9C/OY3v9lpQ28vaiD7JHq/WL+NRWvgvwL4GCe1807ySvw56nEeZ0pjImWRyGxuTAxiTjzzzJMQv/Ud+Hlbt6sPmMujjl2Itbyr6dizXm4Ety+THjvr4ZqZdZB/Q3kGPTemp1EjNEeajms3XgRxL/mIdG8iT4kQ9jUzV6M1YO1g0gFesxa9S7ZeshXig0f3QRwl7dRUs6vHWpgmfVPWeD15Lesgcf/irhfn+0E8gm3ftBGvb4I0JttWoG+FmdnKzXiP21f2QMyaukf3ov77M888DfGuXbtwf+14zMlJV7OYvQbY8uHVQ/evQh2Jx1Ev8zXXX48b0L3+Kn3/6AG8Lpk8amlOkU53Pkc6w2bmhVj/FOOZOX+obA41MJebIAjm63W1un1GNZprGfd5Z6dUuxxPENre3UH1NlXDNRqBsL2jA+I06dHv2439wsysTD4GefJEOjyAGrydfVift1x1LcQXXHoFxFHSFQ4q+iawbnfw8h+fPcNvVWIRt4hMDqLG8dOH90CcDKMe7vgQavrvfPIxiPc9h/d08BjOBVdvRM8lM7M73no7/sDjeRF9XG2ut+CnZk3NXc7P4gnMiyh5l3R2op5/gbSiX3Mral7/5m//FsR9q1Dn3vddjwnuwou02FlW2jrS8/kTppxoaURN4wM+eXyccLXVE0nMs7YW9OBoa0LN8JXrUU/6DW++CeIdz2LeHTtyAuKRYcxzM7PRIfTPmBrrh/iqrTh3u+hCnBeUypjbA+SPMzaK43om544TwQxqVifiWI8uufwyiMPkYXQReZhZGOeP4+PYhocffcRpw+PPbcfvTKK+dK4w28Za642v6Oqb96C89jW3wGfjJ3DNGOI6Ne56U7Z1YA9qbEHN68YOnOcZ3y+6thYmLwz2dHRa4PpFVfOB5M9DjqfE4n1/nHUntTREhShwfr+TCzLWSp/H1KCCZx1pv5d5kRM6rb6Gaju384PATtrPOettZ56Gn/uO54pZnLTVo1G8HokyzXEDzOWAakKRxp5ymLwQyq5RWZTaWWbfEGfMxXVUQP4KViZfkSjnjDu+BXQt41FsNz8XKubxPMJhXI+U6LlUax8+21q53p1rHNpJay3yYAnP9XEvCMzIc2JZ8fz5NRg/hkjR/W9qxDVsS9z1L2puxGu7bi3WtvW9OAcaO47+Vh757aXLOO5EpnFMd57NmBnZwdl0hjw5yNsyO43PCVPN+GzSD/AYJ4ZxvA45RzTLZ3BNOTyAfmPlIvWVCOZDkXKS52ihCLYpHnOf34RDeAzO89Pr8ex/167e/fzb3m3J5Gy/2nLxpfBZazPOyVLkWxeOVfCL8jBPMjm6p414j1pbsTZmye+Zp8lx8tCdnnG9ZPwA73m5jPdohuLRSZyves14Xs1xPO/MCD7zS1R4Dhkl75ckeZOGPDyPXAGvQwuNsdEp7I+TMxj7RdfTlJ/rRcjn5/LLZn19ZjKuz+LLob/0EEIIIYQQQgghhBBCCCHEeYFeegghhBBCCCGEEEIIIYQQ4rxALz2EEEIIIYQQQgghhBBCCHFecE54eiSTqB32mte8BuJvfOMbEG/atMnZR0tLC8S33IL6qo89RrrO+9AzIESaZytXroT46quvhnjt2rVOG6p5WZxN3hZnyrnY5oX4d3e+15KJWX3Af/6ne+Gz53fuhHj/3r0Qr+hydbaDAPMmRFqxHmnTlh2fAgzZCsMh6upSeuTDsuoS0gmNoF7jwCBqRl60FTXmE82ov8nWGIF/BrrJrK1Mr19jpPl5/bU3QPzDH38P4hzJULZ1udqYA3kUVyxlsQ3h6KyGYWCBlY38P5aZXDY3f6sffvRR+GxkCvWpr74Wa81TL+5w9nf1VbhNqIjnnp1GPcVSBnUrJ8dRZ7KnB/VU+/pQ3/2kbvXpLHdp4N2HK+hShqK4Vd8qrNtvePOdEKea8Dx++sg2iJ968gmIc/tfwjblUXPSzKxEmqv7D6H27BVzWpe5fP08PZZl/1UV/Fk/nLW+F66FlQTH2buClaHzdI39ImqnRimHIlEsLBOkQ3rwGPpDmJl5pG9d9LH+rt2I85MrX3MdxBtI476pDb2i2MPDuU5mVc0Ugpf577OdRNLVVt9y+ZUQDxzZD/HwCfTlOXQIdZR3vYT6tuMlPMam67GWvuN9v+q0YR35zAWUeawxzzjdkIsnfZ5qQG1wM7PNF1wI8YkDByEezWLeXHEz+pD88gd+E+LePqyVfhlrWyjsntPZ5OHBrFm11uKx2b44PDqMHxZQJ90nzeqZCv4lz7+I87/RIRynL1p/AcTJBtzH3hewX0+QZ8eLz6GvVrHgah6nU3hPN6zGcbmzoxnipiTekWQK83T3AHqE5IpYLzN5d17UlkYt5x7ytmtd0Q3xkcOHIX7q2edo+06I/+Her0H86OO4VjMz85x5L/lIzM3Da+3pEUnGLJKcnYt2rUJvynWb0F9lYgivSzjk9vGpMfSrzI/g/WrsXguxHycde/JF8Mi/gefyVdcb5q6Nq60J2dPjjNYLhOMTUs0/bJHwOZXL7ryumndJANrwtX3UUg78+fmUez9ozUnXvxRy106pxhaIo5QYEbZIcTysyG8jRJ6LpHNfLLka7RHSmC/RMSJ8jck/wS9hrQt8Hs+wPnMTzcwC2ifPWaPkq1WgRhbpeUCZPULoOq++8HKnDWMjOE5kpsYhDsVm75/vl83G8bPlpKeled7vp68LvfB6O3FM6KDncc0V5hKO70drE8QN1P/CObx/CSpmIcrzxijmS7xCG/LTOC+YnkAfkGlaRwfjOHdsaUNPiXiCcpQWKAny6zMzmyRPiTT5M7SS98lEFtc03PvL5JdTKpIfUgVPn2gUOwN7Ip9eL2e9irHNy8kNN9w67+vcQut3Nhb1SzifCQK3rrMHSiaL51I2vL65AtaqRAzr59QU5hBfu2jMrbcjI+jRkSE/2sAnb5IE9pUJOu8cPd9JUVaUyu781ihPwtTOaBTjFvJ59eg8y+zJRJ/nc66HWYF8d3Y8/TjEa6+4yszMQhV8aF4O/aWHEEIIIYQQQgghhBBCCCHOC/TSQwghhBBCCCGEEEIIIYQQ5wV66SGEEEIIIYQQQgghhBBCiPOCc8LTg9m6dSvEX/jCFyDesAG1Us1sXvPtJEXSuL/xxhshvu461NmOx1G/bOPGjRCzzwj7kJhV1wAV9ed97/9Na2qa1Y7cuBE1sv/yi1+E+MUXXoT42uswB8zM0cWzMOcAfuyqr5IGL+VQhHXxK4jZ8s/8CGrprVi5CuKmFehNkmxGLU3fIy1UPglXEtIC1lZk8WCG9nnZpVdAvKoH9ZF3DaK3QnMLahyamSWnUBdxeho1BBMnPT2CwNF1XG4ioVP1oEjaozt37sKNSW94y5WXOfv76WPoRdH9El6fDX14z3taUY8xuxp1KzdfjDnQ0YGard09qMNtZuZKg9a+3rk6y6xpjnX6hptugritE/XICzRuDA6SH0AFDd0CaVXOZFCb3Z9rk3/OjwcLt7+63j97fFTZvkKt833Wjib96jL26wJ5fOSp309Pok6/kbZtjOYVZmbNpMt85dU4Lmy6aAtu34F6x9EkarmHIqSZzr+rElS47nxtziXjjgUoBxV8exJ4D7wE6vqWQqiz3N6Hc7eb7lwHce8a9Oe4dCvW15YOrJVmZj5fYB50q3Rtn7Z3xnHSHh7uP+bsI5fHL3Htuv4qrG1v+cVfg7i5hbxjgupaz8zZXMGaW1osEZ/tv2zRUZxBnfQQbRCq2IFw+TQ+g9rN2/egJ8doBr3S/uU7X8e9hVkzGetAMuYu1zra0LNjxSXob7OKfCQicRx7XtqDfmBcHweG8LpEGjFHzMymyffjb7/yVYh5DC4WcG5Ropqbpc9n8tjmcAXfOseLgvTZw+XZ79Ta0yMUic57xSXTeK/SzRhHDefdV1/7Rmd/Lz72rxBnRrEOtJNPgUWwFnJeW5j9OPiI7vViD6nFenrw9z025ODtK+zPuY+0zgrYg4PngU69JS8w31/w80rbON857bLUevj1QzZfjEPcLjISKFHnKacq+POlaIwNUMc+X8balAswbi5g3oUT2Oe5voYr3PNomD07MO/Yb4NOmze3EtW6MG3g+e5co0y+II63TIh8IhJYw0slzMsye5dQX0p2rXHa0L4Za/wUeTqW5vo4r9OXm393280Wn6t1XeRl0ZzC9XiCnkGEA9fPMES+MWH6TjKCOv4x8nxJRFogTsVwHhij8bWQc30oRskL4cQkeoFlKUUi5N1WpjnT9ATOEQKqW/kKnlmT4+jvsKYP/TWnyENw95ETELPfFT9T8sl3phxy88aL0nhKfgyn9wOug8tNqrHRGuY8RXl9PzqCHlg++W8U8q5PWhf5l7a24Hw/V8T1/PF+9OhsacH66cXx+may+P1kBR+XkIc/KxVxHRqP0ZyKfFmmsuxJh/d0lOZs7RXmVK20ti1TnlmpSJ/jMaIJnM92kQ82P2ObZJ89MxsZw5/F2rGubL3u+tnvTmK/Wgj9pYcQQgghhBBCCCGEEEIIIc4L9NJDCCGEEEIIIYQQQgghhBDnBXrpIYQQQgghhBBCCCGEEEKI8wK99BBCCCGEEEIIIYQQQgghxHnBOWFkziZibFT+H//jf4T4O9/5jrOPo0fRbGZwkIwLq5ix8efMqlVoDLx27VpnGzZDF2cf4VSjhedM22667Xb4bNVqNEA9cQwNozIzaFBk5prQGpkBBWQk6BresQv5wp97lYzMKS6RcWCkAQ2+wkmMy2SCRF5dZ2heurj+xE6unSt6Ib7y8usgPvDQITxa1C1tDa1ozDQ6iKZWuXx27tC1d/0NwqF5s8VomK4oGe698PzzEB8+fsTZ30VbLoY4fvGlEO8mE/dcF17f7tVogBomw++1a/HzVMo142IWa3DGNbiaQeYrwaNkbmhAwz2u471kclYg01U2eDMzY2u6TB6/MzYxbWZmefr5chMKheb7oWP4/gr6gHt7vAWiSjtYMHRwzKPNzA8wx3JZMo0vsYEpHmV6BmtCkVrRt24TxM0daBZtZrZ2zXr8Th/2lRgb11HOsC85Xwc2gq14oXgT7kunmXZyHzibqVQDSkUcnybI1K61oxPiSy7FWphoaMFjhNHg0iNDzaCSuS+3y9mE200m4TRw8+72vrQf4n/71recNqxswxp+8+2Yh1tfcwvE1YzLl6Pe1pPjJ45bfG5eMDOKdSEzV4NP0p5Ck9SRnDu3K9PyKdHcBPFUHs0nn35xJ8TNDWh4yd7LoRAas4bcyZ/1dKDJZtnH8evCLVsgjifJWHUazSgzMzhajU+OY5tbWp029I/hPHjfkeMQJ2J4HhEypI1E8DqyiXE6uXC9NDPLk6mmX4c5XCXCXsjCc/U1IOPdFK0HYw2YPz3rL3P2NzJ0GOKpcVzHlqfQuDXa2kJ7oFrG4wINBWx6a2YWoo1Ci60TVW5NNZPxSj/zAjbrpu2rmY5XMTJnk9Yz+U4xlz3tv13D3OXEs1N3mscrjgtFbHc45s7lI/zsIsDrkS9i/yvSPss0Tw5oTeNT/w1819CZsyxCxuY+TZx8p16SgTu1IVLGOlUprQOf7jnlHdcyjstk3stjbJHPIeQ+M2rvWwfxwMAAxCODs8+6auwnbZdv2DRf0yI0Z4pTzY7wGjeEa3Mzs4CubZieGUTp2iZoXh338DlGiIzup3OYk5lpd4zvnxiHeDCP64OWzi6IeX0xfPQYxDkyRo+FcUwIee5zi1IBc6abTOLHM3geh/uHIC44z5jwOnDfDJXcWsedgWsf53ktaWpssPS86TZeq1BnC8Sjg1hn2tpxzmzmrit9StWTpuknCTxcXxRLaBJuXpg+x+s7Q2O2mVkihmuQjhUdEA8N4T0OR6m/xTH3A6o7mSl6ptSPczYzM6+I26zvw2fcK1owD928wv4bitA8kGpbuq3COjSB1yFNz1+Gjs+2e2oa5+8Lce6sdoUQQgghhBBCCCGEEEIIIRZgUS89/uzP/swuu+wya2pqsqamJrv++uvtu9/97vznQRDYXXfdZb29vZZMJu22226znTt3LrBHIc6MG264QXknaopyTtQD5Z2oB8o7UWuUc6IeKO9ELfnyV/7BzMxWrlypnBM1RbVO1APlnTgbWdRLj5UrV9pnP/tZe/LJJ+3JJ5+0173udfa2t71tPlk/97nP2R//8R/b//7f/9ueeOIJ6+7utttvv92mpqaq7FmIhbnrrruUd6KmKOdEPVDeiXqgvBO1Rjkn6oHyTtSS7u5ZGcwf//jHyjlRU1TrRD1Q3omzES94lQL2bW1t9od/+If267/+69bb22sf+chH7OMf/7iZmeXzeevq6rI/+IM/sN/6rd86o/1NTk5ac3OzTUxMWFPTrMZptSayLuLBgwedbf7u7/4O4kOH0APg2DHU3jtyBHXye0hLrLMTddxuvfVWiN/2trc5bVixAjWUa6FZf65TKR/MapR35L/hsS4s6ZBmSK/RzKxIWnossxkKkT4x64c7UuDUF1jLtpL+LcVl3ieLf7KmLumYhliP3PHDcZpQ9byq6fjGfLxOP33whxD/yd//PxDvP9zvNCEgzdbhoxMQz0zk5o49Gy93zpmdyrvQKUsPS8RI55O+UyKtxXwF8Va+vuvXrIH4puteA3F7cwvEBbrHmy5Cj5BrrrkaP9+02WlDG2mPOrlOsG7yYj1AKvlpMCXqjyHKS4/aOD6FffrPP/95iL/w+f8FcWYaddzNzIqkA5uI4R19y5vfaGZmhWLRvvL1+2pW60ZHR+ePcybX7myjUn5wDk1O4v2o5sESjWKNiFFf5HlCOOz+3gj7e4Upp7wqfka1mBecfp0mJyetra2tPmPsIqeflTZnjfJq/hhBmfX/F9Y8dv3dFn8/nGaTJrpfwrx8Ycd2iB/Z9gTEF196lXOMG6/Dn7F+dJg0r6NJ9H+ohbXLyWtZq3nd6ce6eV3LKa1xkow/Th4fJarR2Zw7t8uUcJtyAmtFQxt5NkRpn5N4z9NJ9Mso5Vj33vV8KpFuci6Lmfbxj/4GxFu34Dxg/569EO/etQviw8dwHZSNuBrzhwbHIT56GD0+QqS9XyKPOBbrjzjGEqQNXWGs8sgnhMeBYE6YOwgCm57O1KzWnTg8cKrW+Xj/nvzuX2Abs/jA55Z3f8LZ7/FjOyA+uv17EG+6/GaI2zbdBHGZBModXywezyqMPWG+YYt9hOAsYRb226iE40FW4vu98D6reXpw/lTy9OCf8dzidP+Gqekp23LlFZB3y1nr+lY0zo9T5SK2q5TD8a+Ux2vRsNKdy6+4HJ9vxFI4ty8H2MfzedRY71rRAnFbB2rpp1Kok5+r4IHS0YHPT9hHsET3sFSmusGeHnRd2HsoWsEXssR1hY7JvhO83sjnUe8/S74SOYrz+QpeMCX0nhgfRL/a3c9vNzMzv1yyozserFmt+8pn/r+WmtPg5zlShLxNuYYHgTv58KhQRAJ+ToH3IkHjTDhP+ZDHe1GgazsxgT4JZmYvHdkH8RT5wKxfg/7CqRR6EETCNNfEFLMMrS+KFdYGg3vx/sY93Mmuw/j5D554FuIJeuDDXmQ+5WQo5NbzaByPyeum02Pf921gYKhmeTd4/MT8cXJ5nKdFaB5XoP7V3NTs7HdgCH2yeKxpaMR5c6mIeRRQXhbpec2B/fjseXzU9fRoPu26mZkZPYPL8rNGKlWxKOYVP8OboZdL2YzriXGUnqOH6HloSwp9eBrjeF3CNI/jMTeZwu25NpqZTU3jM7p0ewvEjz47Ox/KFwr2R1/8eyfnKvGKlznlctm++tWv2szMjF1//fV24MAB6+/vtzvuuGN+m3g8brfeeqs98sgjL7uffD5vk5OT8E+Il0N5J2rNUuWcmfJOnDmqdaIeKO9ErdEYK+qBap2oNap1oh6o1ol6oLwTZxOLfunx3HPPWWNjo8XjcfvgBz9o//zP/2wXX3yx9ffP/mZ1V1cXbN/V1TX/WSXuuecea25unv/HvyUphJnZzp07lXeipix1zpkp70R1VOtEPVDeiVqjMVbUA9U6UQ96e3tV60RNUa0T9UB5J85GFv3S44ILLrDt27fbo48+ar/9279t73//+23XaX8S7fzZaRAsKM/wyU9+0iYmJub/sayUEGZmmzZtUt6JmrLUOWemvBPVUa0T9UB5J2qNxlhRD1TrRD146KGHVOtETVGtE/VAeSfORlzRwirEYjHbuHGjmZldffXV9sQTT9if/umfzmuz9ff3g//F4OCg80bvdOLxuMXjrk7s6VQb+FkrbO3atc42n/rUpyAeGkL9vu3bt0P8+OOPQ9zS0gLx4CDqvrEW+OHDh5028DaseS9enlrl3c6du6yxcVarzicdPN/Rix+FuKvTPd7KlX20D9YfJz1xHghYPpd0SVnP3K+gr0sS544nh2M0QucdeKhJGJAmM/dOzzEiMUcb2Kuiix6Qfqcfxu03XXAhxOvXrIP4hedR59LMbGKETLJIpvekDmkQBOb7S59zZi+fd75v8xeSdV3jpJ8ZI4+AqOdqXBdIe3Qf6UiOjGLurlmHWt/pRtTYnSmgbmWONM6f2f600wbWxO3rxd/MWEP3jD2PEgnUR+Xrxl4yrJ9r5uouRyLYJu5/rAPM++Tvp0iXsjnd4LRh7eqVEF98MWomr149e11yuZx95ev31WWMPRepNC/g+8PjdjW9cP5+sYiavOk09gu+/7PtIo8jylPOW9aFrpe319k4t3O3r6Qfv/Dv7ji+IWFu08JtOJMWcrOqeXGxv9HRwwch3rMLtftvuvE6iC/einElUnzt2SvhLLCQq+UYGw9FLDrnWVAkD4Ai3cAcjRuxBIlxm1k4hD/LG9aKVAL3kWzE7SMeatJv6MMxeGwAx+h1q3EuaWb25FMvQDw9NQaxXxyHOO2hlv6KVvQRGe3EMfjIEZxH9R/BdY+Z2egYzgVilGdlZ77IE9KFfSZ4ThtibXczC9FcjuePJzXkT+6qVrXOC8/+MzOzIjZymvzCWptw/yGnTpm1dWGOjLTj3OI4ebC0rkX9fy+MOeeuBWgsquLDZmYWlFlrn/Zh/HBrYT8NXmdVhvZJ6ypn7UY5WKb5MR+zlCffC/JvNDMrkidAvoCa5KefZ256VjN9w4YN1tTUtOy1LpVMzftL5Ki2+aQxz+NApXl0dgZzNRpDLfxMjs6d/GuKpNdeKuD1LEZo+0IF/6Ii+11Q3XDGYDoxXktX8XXhPK2wCyfXnTxyPASxNrLfW5lOolCq4FtXxJ+lmrCG961dP3vsYsGO7niwZrUumkhZNDm7ZuPnEh57BbF3hZtyxpXHoz4bUD0tsCcA+cLkc+itmJvGnD427P6VwfDUOMSdK/C6NCXQ1yAeZi8F8lVL4pq2EMGMOnEE/bBm94nXurkRPQuSCZwnROPYBj+L/Ya9aZ0peIV5oeuFiOuk061JTq6xapV3ufyUxeZudZH6X2NzB8QNjZRVvpt4PX04R+IVB+cZP+coljDvmluxDemmdogP7UffGDOzoUHMRXr8ZYkk3mN+iMf9L0LPnqNxzMNwhPdntnIdfiebwf7DObF/BPMwT2PCvn14nqkGXDunEu6zk2effhLizRfgM6Ps3LhcKLrj88vxqq0LgyCwfD5v69ats+7ubnvggQfmPysUCvbggw/aDTfc8GoPIwSgvBO1Rjkn6oHyTtQD5Z2oNco5UQ+Ud6LWKOdEPVDeiXqgvBNnA4v6S4//+//+v+3OO++0VatW2dTUlH31q1+1H//4x3bfffeZ53n2kY98xO6++27btGmTbdq0ye6++25LpVL23ve+d7naL35GeOSRR+zCCy9U3omaoZwT9UB5J+qB8k7UGuWcqAfKO1FLPv/FL5qZ2aFDs39xrZwTtUK1TtQD5Z04G1nUS4+BgQF73/veZydOnLDm5ma77LLL7L777rPbb7/dzMw+9rGPWTabtQ996EM2NjZm1113nd1///2OJMRCnPwTw8nJyTP+DktW8J8QVmJqCqVuZujPN3P0p3HZLP5pT57+xIk/n577c9bT4XNiKQ3hcvKa/eZv/qYNDAwse96dngfV5K04Z87kntdD3sr5+zyG/4KW9+FXkbc6k7+PjPCfGlfR1nD+tBivE1/rAv25NN87swoyJxzOfX5ys+XOOadNQcVmVfiza46r7Lfacc2VgeI/y+Y/ZeT6GK5Qy0ol/Fkmg1ILfA9ZzoqPWU3eqtI5V5O3CrNEFuUNjxN83jz2VBJmKNK1zOcrX8vc3J+D1qrWnV6bwuHqMhZnG9Vy3My9P69W3orzoZIUBP+Mr+3ZIG91er+o9Ri7mLldhb1U+Fk1qUT6Dm3us1QKfZ9nk5WOVk3eitvA6o5TU1gLM858EucaZ3INHRmhs0jeqlY5Z3bq2pdO6/slrgssU8JToArzCUeGieMyj7F0TBosuG7w2FVkWRpz6xnnWY7GmpkMjl8ZGs9yLDtDMmDlCvWTr50zP7GF42rz02rznzPZ5tTcbvZ/a1XrTh8vgjz26UwW15CxCH5eqY9n8jj+TM/gd0Iejl+8jyCM99e5F44MbaV5AUtLLa28Fed9ZRYpbxUs3Ld4bVc+E3krkrMqLCBvNTAnp3311VfXpNad3k/da7Hw+qHSHKlM518q4rmWi7xGxLpTomtTpL7AcySWDjMzK+Rw/WAB3UPnG5TLPO6XWPaHJM9K7nMkvpZBhXHhdAp03TjXCzmqt3RdODYzKxd5DYLxSRmw8tz/1qrWnT6WcF0JkbwVy1sHFeSteEUZoj4aUA6GeEAleR1+ZsfrsGwFiZw8jck8PmZonyxPxv0gnMPzztBzER6vzczKBdxnjLYpUN/jMdp97lFlPK00vvIYzvOlCvWmdmPsqblziXIkHEXZJmedW0HeiqXXqslbBbSPYomk/Eq4hzz1+UrPDWdmsNaxvJXnatJjm6j2hcMoVTVDz2J8HsPNLENyVvyMu0h9IVelv7EEVZi+Hw65uc/zzzx9p1BGeaszeSbgBWeyVQ05evSorVq1qvqG4meKI0eO2MqVK6tv+ApR3glmuXPOTHknXFTrRD1Q3olaozFW1APVOlEPlHei1ijnRD1Q3olacyY5d9a99PB9344fP27pdNqmpqZs1apVduTIEWtqaqr+ZVGRycnJc/Y6BkFgU1NT1tvbe0Z/wfNKOZl3QRDY6tWrz8lrdTahnDszlHdLi/KuOsq5pUd5Vx3l3dKinDszlHdLi/KuOsq5peVczjkz5d25yrmcd7XOOT2zWzqUd9VRrVtaflZy7qzTVwqFQvNvak7KPDQ1NZ1zN+Fs5Fy9js3Nzct+jJN5d/LPwc/Va3W2ca5ex1rknJnybrk4V6+jat25zbl6LZV35y7n6nXUGHtuc65eR9W6c5dz+Toq785dztXrWMucM9Mzu6XmXL2OqnXnLufqdTzTnFveX7ESQgghhBBCCCGEEEIIIYSoEXrpIYQQQgghhBBCCCGEEEKI84Kz+qVHPB63T3/60xaPx+vdlHMaXcczR9dqadB1XBy6XkuDruOZo2u1dOhanjm6VkuDruPi0PVaGnQdzxxdq6VB13Fx6HotDbqOi0PXa2nQdTxzdK2Whp+V63jWGZkLIYQQQgghhBBCCCGEEEK8Es7qv/QQQgghhBBCCCGEEEIIIYQ4U/TSQwghhBBCCCGEEEIIIYQQ5wV66SGEEEIIIYQQQgghhBBCiPMCvfQQQgghhBBCCCGEEEIIIcR5wVn70uMLX/iCrVu3zhKJhF111VX20EMP1btJZzX33HOPXXPNNZZOp62zs9Pe/va32+7du2GbIAjsrrvust7eXksmk3bbbbfZzp0769TisxPl3ZmjnFsalHOLQ3m3NCjvFofy7tWjnFscyrmlQXm3OJR3S4PybnEo7149yrnFoZxbGpR3i0N5tzQo784c5ZyZBWchX/3qV4NoNBr85V/+ZbBr167gP/2n/xQ0NDQEhw4dqnfTzlre8IY3BF/60peC559/Pti+fXvw5je/OVi9enUwPT09v81nP/vZIJ1OB1//+teD5557LnjPe94T9PT0BJOTk3Vs+dmD8m5xKOdePcq5xaO8e/Uo7xaP8u7VoZxbPMq5V4/ybvEo7149yrvFo7x7dSjnFo9y7tWjvFs8yrtXj/Jucfz/27tj1ia7KIDjp/S1HRwCIjRCQbo5dKrgIKJbvoPfQKEFcXJz7RcodCmuTh1cC2pA3FwsuOpmKC46iBTa826FUH3pvfd5yWP6+0GG3DzD5fDfDkk0l9nLpcedO3fy0aNHU2e3bt3KZ8+ezehGf5+jo6OMiByPx5mZeXp6msPhMLe3t8+e+fXrVw4Gg9zd3Z3VNXtFd200V05z7XRXTnftdFdGc+00V0537XRXTnftdFdGc+00V0537XRXTndtLmNzvft5q+Pj4/jw4UOMRqOp89FoFO/fv5/Rrf4+379/j4iIa9euRUTE58+fYzKZTM11eXk5Hjx4YK6huy5orozmuqG7Mrrrhu4uTnPd0FwZ3XVDd2V01w3dXZzmuqG5Mrrrhu7K6K7dZWyud0uPb9++xcnJSaysrEydr6ysxGQymdGt/i6ZGU+fPo179+7F+vp6RMTZ7Mz193TXRnPlNNdOd+V01053ZTTXTnPldNdOd+V01053ZTTXTnPldNdOd+V01+ayNvfPrC/wJwsLC1PvM/PcGb+3ubkZHz9+jHfv3p37zFz/m/nU0Vw986mnu3rmU093dcymnubqmU893dUzn3q6q2M29TRXz3zq6a6e+dS5rM317pse169fj8XFxXNbpaOjo3PbJ87b2tqKV69exZs3b2J1dfXsfDgcRkSY6x/orp7m6miuje7q6K6N7sppro3m6uiuje7q6K6N7sppro3m6uiuje7q6K7eZW6ud0uPpaWluH37dhwcHEydHxwcxN27d2d0q/7LzNjc3Iz9/f14/fp1rK2tTX2+trYWw+Fwaq7Hx8cxHo/NNXRXQ3NtNFdHd210V0d39TRXR3NtdFdHd210V0d39TRXR3NtdFdHd210V05zEfH//Ud6vZcvX+aVK1dyb28vP336lE+ePMmrV6/mly9fZn213nr8+HEOBoN8+/Ztfv369ez18+fPs2e2t7dzMBjk/v5+Hh4e5sOHD/PGjRv548ePGd68P3RXRnPtNFdOd+10V053bTRXTnPtdFdOd+10V053bTRXTnPtdFdOd+10V0Zzmb1cemRm7uzs5M2bN3NpaSk3NjZyPB7P+kq9FhG/fb148eLsmdPT03z+/HkOh8NcXl7O+/fv5+Hh4ewu3UO6uzjNdUNzZXTXDd2V0V07zZXRXDd0V0Z33dBdGd2101wZzXVDd2V01w3dXZzmMhcyM7v5zggAAAAAAMDs9O4/PQAAAAAAAGpYegAAAAAAAHPB0gMAAAAAAJgLlh4AAAAAAMBcsPQAAAAAAADmgqUHAAAAAAAwFyw9AAAAAACAuWDpAQAAAAAAzAVLDwAAAAAAYC5YegAAAAAAAHPB0gMAAAAAAJgLlh4AAAAAAMBc+BdmbcSDOOeeEgAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -942,19 +945,17 @@ "test example:\n", "true_class: ship\n", "predicted_class: ship\n", - "predicted_prob tensor(0.5685, grad_fn=)\n" + "predicted_prob tensor(0.5685, grad_fn=)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAb6klEQVR4nO2da4zkV5nen7duXX3v6Z6eiz1jPLZnF18A2xq8RI4QwYk1QZsASUCQaOMPZGcVLVKQNh8sIgXyjUSBFR8ipCFYaxLCggIE7wrtAs6FRYqAAQZfMjb2mvFMe9oz7h739HR3VdftzYcuS2Pved7uqe6ubvs8P2nUNeftU//zP/V/6l99nnrfY+4OIcRbn8JOD0AI0R8kdiEyQWIXIhMkdiEyQWIXIhMkdiEyobSZzmZ2HMAXARQB/Gd3/1z0+1NTU3748OFkLEcL0Mx2eghr9Dj1YTd6akEv73U++HOyKY7Gbnzw23Kd9nIdsHHMzMxgfn4++YQ9i93MigD+E4C/B2AGwM/M7DF3/3+sz+HDh/HDH/4wGWu1WtGxeh3mrmbXnFd0/UbajLqRz4we9CqwTusdzDo8RGIeCNqCD7y7XewPPvgg7bOZj/H3AXje3V9w9waAPwXwwU08nxBiG9mM2G8EcP6a/89024QQu5DNiD312eNvfLYwsxNmdsrMTs3Pz2/icEKIzbAZsc8AuHa17RCAC2/8JXc/6e7H3P3Y1NTUJg4nhNgMmxH7zwAcNbMjZlYB8DEAj23NsIQQW03Pq/Hu3jKzTwL4S6xZb4+4+9NRHzNDsVjs9ZBvOXbNanyAddo0Fq5LF9Ln1glWweHBtRHYclYIrDewlfpo9G/e1fjouTbls7v79wB8bzPPIYToD/oGnRCZILELkQkSuxCZILELkQkSuxCZsKnV+OvF3allkGPWWz/PObR3onE4TzIJXTRqo/H7y2qTJ0OVymV+sDYfY9F6mePgnHcJvVw7urMLkQkSuxCZILELkQkSuxCZILELkQl9XY03M7oq/GZICmG86Z2EYOrbwbl5h3dsddIr2s0WT6x57oUXaGz/gX001mk0aGx6ck+yvTrAV/c7b4LXsxe96M4uRCZI7EJkgsQuRCZI7EJkgsQuRCZI7EJkwpsiEebNbMtF9HpeW2/18XEUyxUaawd14WpLq8n2hSvLtM/Fucs0Njg6TGNTo6M0VrD0/Sza9YXtIrMpgte6X1e37uxCZILELkQmSOxCZILELkQmSOxCZILELkQmbMp6M7OzAK4CaANoufuxdX4fBbItUJRB1U8CN2md/Y7SRPZaoUfrrR2YNR2SbVYs8vf1RqNJY6/ML9LY4nKdxmqr6ey25ZW0JQcAhYEhGluu8cy2kSH+wrRIiBuKoUu2LfTLWt4Kn/3vuPvcFjyPEGIb0cd4ITJhs2J3AN83s5+b2YmtGJAQYnvY7Mf4+939gpntA/ADM3vG3X907S903wROAMChQ4c2eTghRK9s6s7u7he6Py8B+A6A+xK/c9Ldj7n7sb17927mcEKITdCz2M1s2MxGX3sM4EEAT23VwIQQW8tmPsbvB/Cdrm1QAvDf3P0vog6dTgfLKzUS5PZJqZjeSsiDPsUS234ojlmwXRCz5Qqd3t4zC1G+U2DHLK1yy4tlxA2W+EtdD7Zdmg2st0uv8liHnFuTeWEAVq4u8WMFGXEzL83S2B1Hb0m233oz/5Oy6LwoZphx6MF1ELlrJBbtXMWuHQsO1LPY3f0FAO/qtb8Qor/IehMiEyR2ITJBYhciEyR2ITJBYhciE/pacLLV6WChls56GhniBQULpfS+XO0Ot4xCNyywQYpBrEC8Nyv0+J7ZY5HNl2dforHJyclk+2CV53mt1ldobGiA9zswzb8k5WSSl1e4bThc4cdq1IllC6BY4AUil1bT11srKgBpXBZxsc/oOXvoFfShw4iuXx4SQryVkNiFyASJXYhMkNiFyASJXYhM6OtqvBVLKI1NJWPtYEW7WSCJK8YTFqJYu8NjhWiFnG1d1UtxOsT17kipPgBAq8HruBlL4gici4lga6VmMzi3YtolAYChkfSWTNFqvBUHghifkIFBPg4jE9ki20IBgEe7P/X4mkUFDNno46e7/mtOd3YhMkFiFyITJHYhMkFiFyITJHYhMkFiFyIT+mq9zc1fxiNf/a/JmAX15MokEWZktEr73HbkJhp79zvvoLFS8PbHat5FyREe+TFBdkQrsMr2kGQXAKgMpOeEJaYAQKXCLa+pPbxen4PHSiSppRLUwkOZv571Fp+PhcVXeezKlWT71SsLtE+T1UkEwsJwU1MTNHb0tnQtPAAoV9JzErlrzFKM0J1diEyQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhHWtNzN7BMDvArjk7nd12yYBfAPAzQDOAviou3P/o4t3OqiRrKdGjWdDlYldczXtqgAAhgKLp33722ms7g0aKxDrbaAySPtE9kk7suwCW258cprGCqxfkFXY6PA0r2JQFw5B5hh7xk6Q/XX2xRdo7KVLl2js8vw8jdVqaRutvcqtvEaNXwOrq7xe36HD+2nspsN8u6lhYr1FmXLMSo1y4TZyZ/8TAMff0PYwgMfd/SiAx7v/F0LsYtYVe3e/9TfuqvdBAI92Hz8K4ENbOywhxFbT69/s+919FgC6P/dt3ZCEENvBti/QmdkJMztlZqdqy8vbfTghBKFXsV80s4MA0P1JV0/c/aS7H3P3Y4PDvPyREGJ76VXsjwF4qPv4IQDf3ZrhCCG2i41Yb18H8D4Ae81sBsBnAHwOwDfN7BMAzgH4yEYOtmdiDz76j/5xMrYaZBoND6atLQuMhkFqZwAWFBRcXFyksU6rmWwvl3i2VmmQx7zEs8ZqTW7/eIefW4FYbCxzEABKwTjK5WBLo8L1W4fNwG6sd9LzCwDDYyM0tmdigsbajfRzVovcLl2Y557uzEtnaey2I7fRWLEQWMFkToqB/dpDvcn1xe7uHyehB67/cEKInULfoBMiEyR2ITJBYhciEyR2ITJBYhciE/pacBLu6DTTvlcxeN9hxtBIhX9JZ7DKiyjW6txeW2nyfeDOvnA22V4Jst5uOvI2GvvN+Qs09ud/8TiNNQvcRqsOpLPUhoL5GA7swfGxMRqbGE/v5wYA99zzzmT79N49tM+th26ksYJxe7AYZN816ul98UqBFVbbxwt63nBwgsduPEhj7Ta/rlZW0vYgs5yBKOGQ23W6swuRCRK7EJkgsQuRCRK7EJkgsQuRCRK7EJnQV+vt1SuL+B9/9v1krNPkGU8FpDPARipDtM9oYBndfJQX/5ue4tlVUwfT+8dN7uWFeqrD3NZaOPMijT155jyN1YKUJ5bAVgoyBMeCMd52E7cO/9Z999LY1HDalhsu8kvOg+3LGg1eILLVTttrALBC9nRrtvn1NjjE52Nigtu9F1++SGNzc2+s7HbN8YbTFtv+A/y6GhpKW6ntoHio7uxCZILELkQmSOxCZILELkQmSOxCZEJfV+NXVmr42S+fSsYGy3ybodXVdOJKpcLfq37nPe+msRdf4ivd87M0hLvuvDM9jiCRZGWV15IrB8kp996bTiQBgHqNrz5XyumX9OgtR2ifO2//bRq7Ye8EjY0N8USNTj193udffoX2ufQq30Fsdo73W17iJcoXFhaS7Y0mn8NyUL+wMsBf63aLOx7NJncThibSzsVdSF9vADBOkpCaLX4c3dmFyASJXYhMkNiFyASJXYhMkNiFyASJXYhM2Mj2T48A+F0Al9z9rm7bZwH8PoDX/JBPu/v31nuuZqOBV86nkz8mJ3ltskOH0gkBd7zzKO1THuBZFU+f/imN7a9ya2XE0nXELs1xv254bJzGpsb4sf7h8ffSWCGouTY+nj7e3qkp2ufy5Xka+82Lz9HYlQVey2/xytVk+9XFFdpnIdjl9/Ii35KpFSRRlcvpen2VAV7Hr1AM5neMX1cTwTZUe/bxen0DQ+mErsogT/RaqtWT7Z0gSWojd/Y/AXA80f7H7n5399+6QhdC7Czrit3dfwSA5+cJId4UbOZv9k+a2RNm9oiZ8c/gQohdQa9i/xKAWwHcDWAWwOfZL5rZCTM7ZWan2i3+1VEhxPbSk9jd/aK7t929A+DLAO4Lfvekux9z92PFEv/+uxBie+lJ7GZ27dYXHwaQzm4RQuwaNmK9fR3A+wDsNbMZAJ8B8D4zuxuAAzgL4A82crBmvYaXfv10MrY4xmu//YMH/2Wy/fjxB2ifH/7PdK07ANhHsowAYN9QsKVUKW27VI3X/do/zmvhjQaxalAHrRXUk2NZWa02H+PLz75EY+cu8bpqjWZQC6+ansfRUb610r4qt5qaDW6vRZQraYutGNhrUWx0lF87Y2M8Vixyy25pOW1HXrw4R/vU6+k+jWCe1hW7u3880fyV9foJIXYX+gadEJkgsQuRCRK7EJkgsQuRCRK7EJnQ14KTnU4H9ZV0ZtM73vUO2u/9D7w/2T41wTO57v+dIGuswC2j0TIvAjk2kraTihVuk5UqvCijB+PokC2vAODKqzxLbayUHn8HZF8oALf89l00tu/Qb9HY5Vd51tsoyQBrtvk5m/N7T7nAx98Jtjyq19PZYUvLS7SPd9LZjQCwtML7nZ/l2Y/1Gs/2a66kx9hu83EMDadf55YKTgohJHYhMkFiFyITJHYhMkFiFyITJHYhMqGv1ttAdQhvu+3uZOxj//xf0H4r7XTm0rPP84ysjvGCgtUgw67pPDvp8gKxQjrcVmm3azRmwex3wPciu7qYLuYIAMWL6aynC5cu0T6rqzxTqlPnVs5wkCH4wnMzyfbfnDtH+1iJv2aTe7nN2ljlc3XlSrpQ5fwczyjzwPIqFLjNZ0FseJBbsBMkQ7Aa7AVYW0pfVx5kN+rOLkQmSOxCZILELkQmSOxCZILELkQm9HU1fs/UJP7JP/un6diBQ7Tfr55Kr+xG9bYaQXJEO0gK8U5QmwzplXoLasK1g9VRD/oVwrdh3q/ZSh9vbp47F60WdwyCBWZMjE3QWKORXiG/PM+3eEKRvy5zc+lkEQBYbfLxt8g2Se0GTzQqVrgshqq8QvJAVNeuxc+tUWfXMXcFBodJ8hU3k3RnFyIXJHYhMkFiFyITJHYhMkFiFyITJHYhMmEj2z8dBvBVAAcAdACcdPcvmtkkgG8AuBlrW0B91N1fjZ5rZWUFvzx9Khl74snTfAxIJxEUizxxohTUkiuWeM04gD9nkVhDpQp/z6xW+bHKZX6sygAffyGoa1f09HOOVfiu2oWBIDGoyO2fepsnybSIO1gZCrZ4WuEJLSvLvN5do8X7WZPYWoG32Qjq5LXJVk0AsHyVj2MosPOmx9PzXwq2ACO7WsE2ab21APyRu98O4D0A/tDM7gDwMIDH3f0ogMe7/xdC7FLWFbu7z7r7L7qPrwI4A+BGAB8E8Gj31x4F8KFtGqMQYgu4rr/ZzexmAPcA+AmA/e4+C6y9IQDYt+WjE0JsGRsWu5mNAPgWgE+5O/8D6m/2O2Fmp8zsVGOVf61RCLG9bEjsZlbGmtC/5u7f7jZfNLOD3fhBAMlSKO5+0t2PufuxygBfWBJCbC/rit3MDGv7sZ9x9y9cE3oMwEPdxw8B+O7WD08IsVVsJOvtfgC/B+BJMzvdbfs0gM8B+KaZfQLAOQAfWe+Jlq4u4q/+zw+SsZXFBdqvUk7bNYNDo8HR+KkVncc8eP8rlJn1xv2OavBpJqoxVqlyi6o0zOuxVSvjyfaBQmBTBm/5VuXnZhZk362ms8rqJAsNAJpNnonWsSD9LhhHiWUIBttJYYDP1cQwj40P8+tqZDDIliunz61sPKvT2sTm82gu1sHdfwyeOPfAev2FELsDfYNOiEyQ2IXIBIldiEyQ2IXIBIldiEzoa8HJcrmA/dNjydhs7RXar91eSLaPTU7SPqVg+6fFOZ6cd3WRF0RsttPWUCfIukJQ+DIksMrKg/ybyV5Oz28r2GuqEHhvQxVuAQ4P8li7STLiOtwawgAfh0X2ZpBRNkjszclRvnXV4RFu6R46uJfGgiQ1rNb5ll0FT9uRpSI/54kxlgnK++jOLkQmSOxCZILELkQmSOxCZILELkQmSOxCZEJfrTf3DryZLtg3Psyzgq7W09ZEs71E+7z99rv4OG7gWWOXXpnjsfl0bGmBF2VcWeEFCttBwUZv8+yw4VI6sw0A3v6u25LtF65w6+eVRW5F1hp8jmt1fm5sX7yBoBDocFCAc2KYZw9O75mgsYM3HEi233bjftpn3wDPiFsKCl9evszt42JQlHRoOF0MdGSUn/PUVLpPqRRYrDQihHhLIbELkQkSuxCZILELkQkSuxCZ0NfV+HajifkLM+lYk68+10gdsZXz52ifyWBrqOkqT4Ior/IV5sFCOqmlVuTJHe58xR3gq/hgtdMArNS4Y/Ded9+ZbL/z9nfQPufOvUhj8wt8pX6V1JkDQBNeSkHtt8ECP+e9Qb2+iWH+erbJHL88x6+dZ+dmacyq3DUa28ddnsExnlwzRJJyJvfy5xsZTzsybIsyQHd2IbJBYhciEyR2ITJBYhciEyR2ITJBYhciE9a13szsMICvAjgAoAPgpLt/0cw+C+D3Abz27f9Pu/v3woOVizhwMF03buZc2pIDgPYqsa+M21q/+fWzNHYlqKsWvfstd9Lb8Sy3+DY9nSDZJbLXCsZriTVWeVLLL378/WT7+4ZHaJ+7Cvysa+PcMuq0uHVorfR51xvcYr3CtjQCT0ICgBefuUhjc7V04kq9zOd3cB+vbbjnwASNDYzx66oYbP80NJ6uGzgwxC1FKzLp8vPaiM/eAvBH7v4LMxsF8HMze23Dtj929/+4gecQQuwwG9nrbRbAbPfxVTM7A+DG7R6YEGJrua6/2c3sZgD3APhJt+mTZvaEmT1iZukEWyHErmDDYjezEQDfAvApd18E8CUAtwK4G2t3/s+TfifM7JSZnWq3e6yhLoTYNBsSu5mVsSb0r7n7twHA3S+6e9vdOwC+DOC+VF93P+nux9z9WLGoxX8hdop11WdmBuArAM64+xeuaT94za99GMBTWz88IcRWsZHV+PsB/B6AJ83sdLft0wA+bmZ3Y80/OgvgD9Z7okq1gpt+66ZkbDGo7bU8w2wXbjPU29wWutzif05Ugm2SGiSDre29Za9FmPfW77knfppsP3+VZ6hNF7hl5ME42oFlt0QyBF/2Gu3zfJBxOBNssbUyxF+z0ZtuSLbvP/I22qc6kbbCAACFQDLBJ9eREW59DpGMuEJQr8+NHItLYkOr8T8mTxF66kKI3YX+iBYiEyR2ITJBYhciEyR2ITJBYhciE/pacLJYKmFsTzqjaHr/PtpvllhvgcuA6Lt6q4FV1gwcL1a8sN2jvRYRPmNw4s1a2tpanuNbExUGJmisuMqz1C4EBTNPI22VPV/ir8zyCC8SOnyYfxt7+gaeqjE1nd7maWCY242NYPbXvkOWZqDEiz0WoxgpElmMtnKihSX5xaE7uxCZILELkQkSuxCZILELkQkSuxCZILELkQl9td4KVsAg2WdtINjLq1xJvye1m9wGiayrlkXRwLRj3bbeeQutQwTFKJfIHmvPNHhG2XhlkMaeqfNijk+3lmlsnhRfnDp8hPY5eIRbaBOkUCkADATFNAud9Fw1AwutWOLFIYtBJlqpwvtZgb9mbZKhacHrXCBZb5EdrTu7EJkgsQuRCRK7EJkgsQuRCRK7EJkgsQuRCX213hxAk+x9tlzj+5eNTlST7fVlXoSw3eHWSpsV6wPQjmw0ErSo3mSPuHMTxek+X8ByIT2/f9W4Qvu8uML3o5sf4nNV2n+Yxg4emk62H5lOtwPA1PgUjRUCe2058D7rxGYtBVlo1cAGrgb7r5Uq6esUAKqDPMtuoJruVy7zLMBe0J1diEyQ2IXIBIldiEyQ2IXIBIldiExYdzXezKoAfgRgoPv7/93dP2NmkwC+AeBmrG3/9FF3fzV6LvcOmu30CnqxwldU90ynV0CbIzzxoBUkyQQhNINVfCer8WSnIwCABakJUaKDBzGU+CptqUQSPwb5XK2O8ySTWyfSNdwAYM8k3yZpZCx9aY0M8VXwgSq/HOstbnk0glp4Tla0i+Xg0o/mPoiVg0SYqAZdmYyF1aYDACcORGQmbeTOvgrg/e7+Lqxtz3zczN4D4GEAj7v7UQCPd/8vhNilrCt2X2Op+99y958D+CCAR7vtjwL40HYMUAixNWx0f/ZidwfXSwB+4O4/AbDf3WcBoPuT14IWQuw4GxK7u7fd/W4AhwDcZ2Z3bfQAZnbCzE6Z2anVOv/GmxBie7mu1Xh3XwDwvwEcB3DRzA4CQPfnJdLnpLsfc/djUTUaIcT2sq7YzWzazCa6jwcB/F0AzwB4DMBD3V97CMB3t2mMQogtYCOJMAcBPGpmRay9OXzT3f/czP4vgG+a2ScAnAPwkfWeyAwoltPWxcQUT3QYGSY16Fa50RBZb612VLsuqPtVSE+XBe+ZhaiOWIFbK4VSkIAS2JRDxOIZHeUJHPtHJmhsZIDXpxsOatdVBtKWVyPI7VgitQYBoEYSqIA4salKbMpKkEwUWWh82yXACnwc7vw1azSayfZKJd0OAJUyHwdjXbG7+xMA7km0zwN44LqPKITYEfQNOiEyQWIXIhMkdiEyQWIXIhMkdiEywSJLYMsPZvYKgBe7/90LYK5vB+doHK9H43g9b7ZxvM3dk4X++ir21x3Y7JS7H9uRg2scGkeG49DHeCEyQWIXIhN2Uuwnd/DY16JxvB6N4/W8ZcaxY3+zCyH6iz7GC5EJOyJ2MztuZs+a2fNmtmO168zsrJk9aWanzexUH4/7iJldMrOnrmmbNLMfmNlz3Z97dmgcnzWzl7pzctrMPtCHcRw2s/9lZmfM7Gkz+1fd9r7OSTCOvs6JmVXN7Kdm9qvuOP5dt31z8+Huff0HoAjgrwHcAqAC4FcA7uj3OLpjOQtg7w4c970A7gXw1DVt/wHAw93HDwP49zs0js8C+Nd9no+DAO7tPh4F8GsAd/R7ToJx9HVOABiAke7jMoCfAHjPZudjJ+7s9wF43t1fcPcGgD/FWvHKbHD3HwG4/IbmvhfwJOPoO+4+6+6/6D6+CuAMgBvR5zkJxtFXfI0tL/K6E2K/EcD5a/4/gx2Y0C4O4Ptm9nMzO7FDY3iN3VTA85Nm9kT3Y/62/zlxLWZ2M9bqJ+xoUdM3jAPo85xsR5HXnRB7qnTLTlkC97v7vQD+PoA/NLP37tA4dhNfAnAr1vYImAXw+X4d2MxGAHwLwKfcfbFfx93AOPo+J76JIq+MnRD7DIBrN/Y+BODCDowD7n6h+/MSgO9g7U+MnWJDBTy3G3e/2L3QOgC+jD7NiZmVsSawr7n7t7vNfZ+T1Dh2ak66x17AdRZ5ZeyE2H8G4KiZHTGzCoCPYa14ZV8xs2EzG33tMYAHATwV99pWdkUBz9cupi4fRh/mxNb2wfoKgDPu/oVrQn2dEzaOfs/JthV57dcK4xtWGz+AtZXOvwbwb3ZoDLdgzQn4FYCn+zkOAF/H2sfBJtY+6XwCwBTWttF6rvtzcofG8V8APAngie7FdbAP4/jbWPtT7gkAp7v/PtDvOQnG0dc5AfBOAL/sHu8pAP+2276p+dA36ITIBH2DTohMkNiFyASJXYhMkNiFyASJXYhMkNiFyASJXYhMkNiFyIT/D8eS5uOWTG7pAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGdCAYAAAC7EMwUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsOElEQVR4nO3dfXCc5Xnv8d+zq93V22pl2dZbLFwFbBIweAomxg4B4wwa1KkLcXsOCTM5ZtowIbzMeJwMqeEPNJ2pxdDBQ2Zc3DbNuHAKgT8KlCkEcI6xnYzr1qYQfAzlmEHGIkgoFrZW1suutHufPxKrFTZwX7bWtyR/PzM7Y+1eunQ/++zutY9397eRc84JAIAAYqEXAAA4fzGEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBlIVewCcVi0V9+OGHSqfTiqIo9HIAAEbOOQ0ODqq5uVmx2Gcf60y7IfThhx+qpaUl9DIAAGepu7tbCxYs+Myakg2hRx99VH/1V3+lnp4eXXrppXrkkUf0ta997XN/L51OS5J+9atfTfz784yPj3uvi6Orc++8uM6t4VfGeku5M/4nuzN0j9mb+4uKptaRod7JdhuMjK9UTJf0s1Le1yzbODg4qCuuuMLrMbwkQ+jpp5/W+vXr9eijj+qrX/2q/vZv/1bt7e166623dMEFF3zm7568EtPpNENoljgvrnOG0Kc198cQOmvTZQid5LOekrwxYfPmzfqzP/szfec739GXv/xlPfLII2ppadHWrVtL8ecAADPUlA+hfD6v1157TW1tbZPOb2tr0549e06pz+Vyymazk04AgPPDlA+ho0ePqlAoqKGhYdL5DQ0N6u3tPaW+s7NTmUxm4sSbEgDg/FGyzwl98v8CnXOn/f/BjRs3amBgYOLU3d1dqiUBAKaZKX9jwrx58xSPx0856unr6zvl6EiSUqmUUqnUVC8DADADTPmRUDKZ1JVXXqnt27dPOn/79u1auXLlVP85AMAMVpK3aG/YsEHf/va3tWzZMq1YsUJ/93d/pyNHjuiOO+4oxZ8DAMxQJRlCt9xyi/r7+/UXf/EX6unp0ZIlS/Tiiy9q4cKFpfhzAIAZKnLT5VNWv5PNZpXJZHT48GHV1NR4/U6hUCjxqnA2zosPqxpFRdtt1nQnjdmub9NHRF3c1FvOfy1RzPZQFJlWbn2Y48Oqn2RNTPjiF7+ogYGBz30cJ0UbABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABBMSbLjpoJzzjsmYrpEZuD0Zur+MUWgWLfRmcJyJNNSjNE6hueiubFxU+eyRMK/uGC7TuJRKW9Xxv1zHrDcjy21HAkBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgpm22XFRFHlnd5kyvnCKmZrtNq0Yb4IF43Xuiv5/YLxoyz0bGy941x567z1T74bGeu/aYj5v6j2/bo53bXnKkGEnqch94hSWx1lLLUdCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgpm1sj3POO07GEjtDxM+5V8rrfPpEDtm2MZ5ImuoLzr//yImcqffxgSHv2o+OfmzqXZGu8q6dm06besci/+fQkfH5dhTZoo9KyhKXU8JlWBDbAwCYERhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgpm12XCwWKRbzyx9yxemSmFQ6huiw3/1CSZYhyZ4FFythdlzBkJZVLNrywOJx/+do+fyYqfdv+rOm+uzQqHftSK5g6j007J81F0tV2nqP5L1rqyttN9pxQ7ktqc8U1zatzMRsTI6EAADBTPkQ6ujoUBRFk06NjY1T/WcAALNASf477tJLL9XPf/7ziZ/j8Xgp/gwAYIYryRAqKyvj6AcA8LlK8prQoUOH1NzcrNbWVn3zm9/Ue++996m1uVxO2Wx20gkAcH6Y8iG0fPlyPf7443r55Zf14x//WL29vVq5cqX6+/tPW9/Z2alMJjNxamlpmeolAQCmqciV+PuRh4aGdOGFF+ree+/Vhg0bTrk8l8spl/uvt4hms1m1tLTo/fcPq6amxutvFMZtb0mdiUr5Fm3rTWBavUXbsHTzW7TL/F/LNL9Fe2BmvkV7ZMT/q8Alae4c/6/sbphbZ+udrvaurUwlTL01nb7e2/AxhOnyFu1sNqvW1lYNDAx87uN4yT8nVFVVpcsuu0yHDh067eWpVEqpVKrUywAATEMl/5xQLpfT22+/raamplL/KQDADDPlQ+gHP/iBdu3apa6uLv3bv/2b/uRP/kTZbFbr1q2b6j8FAJjhpvy/4z744AN961vf0tGjRzV//nxdffXV2rt3rxYuXGjqMzwyqniZ5//jFv1fGCgzfmbJGXpbXkOw1keR7XUby2tIsWJpD4hjhv/TtualnMj5v1Zife2rosz/7jE6Nm7q3WOM7ek75l9ftFzfksYM+TfDgydMvfuOfuxd+8Gve0y9L1n0Re/aC39vgal33NleVzPdtpzx/mbZncaXhCwPK5b7saV2yofQU089NdUtAQCzFNlxAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgSv5VDmdqYCSnQlnSq7a6ssq7b8w3j+53CkX/TDBzBJsh5yluzISKGcLjoliJn4sYcrWs34fS2/Nr79q6Otv31VSU+93+JCk3OmzqXZny7y1JjfPnedc6Y4DY0LB//l5V0rbu/OiId208ZvsOnxM5/+9BGjferqLI9tBoyyW0rqVUnW2/YIrHs2RX+pcCADC1GEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgpm1sT1lNncrSNV61BUPszFgsbltIVChNraRC0b8+ZooFkSJDvZOtt5UpwsOYOzKe949uiZxt/8gQ2VSb9o+OkqSxMeN1HvePm6qsTptaW2J7onjK1Dsy5E2lKmyRWpHhxjIe2Z5vO1uCkCn+xnobl+H+absGjTE/xscgXxwJAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIKZttlx//unTytVXuFVGxUN2UpltnSl6nS5d+1FrReYel91+SXetWXGpwvOcJ04YyaUs4ZfRYaML0NemyTNqavzrk2m/PelJDlDslYyactUmzvHlmHo5F9flkyaeifLDA8DCdt1ODruvz+PZ4+Zeh8fGPCuHRw4buo9Njxiqlfkfx+aO7fW1HrRRV/0rk0kbQ/plru+JavPEpDHkRAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgmGmbHTc6nFOx6Jc/lB8Z9e6bsORkSRr0j6dSpbF34ctf8q4ddXlT75ghOy6V9MvoO8kYNaeC4RecIWdOkjJ1871rY8beivk/R8sXi6bWcWO+myL/tdhWIhXlv38Ov/+eqfev+/q8az/u7zf1Hhnxz3cr5GyZhPkR2/0tlxv2rl3Q0mDqfUHLAu/aKmN2nAz73pKlaHmI4EgIABCMeQjt3r1ba9asUXNzs6Io0nPPPTfpcuecOjo61NzcrIqKCq1atUoHDx6cqvUCAGYR8xAaGhrS0qVLtWXLltNe/tBDD2nz5s3asmWL9u3bp8bGRt1www0aHBw868UCAGYX82tC7e3tam9vP+1lzjk98sgjuv/++7V27VpJ0mOPPaaGhgY9+eST+u53v3t2qwUAzCpT+ppQV1eXent71dbWNnFeKpXSddddpz179pz2d3K5nLLZ7KQTAOD8MKVDqLe3V5LU0DD53R8NDQ0Tl31SZ2enMpnMxKmlpWUqlwQAmMZK8u646BNvhXXOnXLeSRs3btTAwMDEqbu7uxRLAgBMQ1P6OaHGxkZJvz0iampqmji/r6/vlKOjk1KplFKp1FQuAwAwQ0zpkVBra6saGxu1ffv2ifPy+bx27dqllStXTuWfAgDMAuYjoRMnTujdd9+d+Lmrq0tvvPGG6urqdMEFF2j9+vXatGmTFi1apEWLFmnTpk2qrKzUrbfeOqULBwDMfOYhtH//fl1//fUTP2/YsEGStG7dOv3DP/yD7r33Xo2MjOjOO+/UsWPHtHz5cr3yyitKp9Omv/ONP/ojVVX7/U5u2D++o6rCFlETGQIoKoyRGZEhX8X6rsHi+Jh3baKs3NS7rMJW78ri3rUjY7a4FFf0v85jhhgeSUqUJbxrywzbKEmJhC1CKIqVLvpozBCrNFr0v11JUlVNtXftnNpaU+9C3n8t5XHb/f54vyGvS9IHvz7sXXtR60Wm3vGY/23cEpElSXHDbcUa1+XLPIRWrVol9xmriaJIHR0d6ujoOJt1AQDOA2THAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCmdKvcphKxbGiimN+4Wpxwyy1JXxJ1ckq79qKcttXUoyM+ufBDY8VTL0Pv3fYuzaZtOVqXdC60FTf1f2hd+2/vPR/TL3HYv75buWppKl3pWF/Vhnz9DI1Nab62ox/9uLv//7lpt7z583xrr1wwRdMvWOR/z0uHtmeE+dHc961ZYb8NUkaqa8z1Tc31frXfqHp84v+m0LB/74/PGzM9jNkaVp2jzPsd46EAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBTNvYnn/52Q6lyv0iJYpj/lEVMeVN66hOVnrXpo1RLL+3aIF37fy51abec5su8K6tm1dv6l1eZYuoOf72+961B97uNvUecc67tsyY2VQm/941xuvkogts0UcrvnKFd+3cKv+IH0mqivs/DLjI1Fr5/Lh37XjBP4ZHkoYHjnvXjhVscTYVlbb9WVvrH+/1Ue9Hpt5Hj37sXVtRZYvgamj0v+9XVvrHWA2O+O9LjoQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwUzb7Lj/ePNtlSWSXrUVnnWSlMtlTetIJv3n9PKrrzL1fv/X/jlp/T2m1lpy6aXetckKW07WcM6Wv5co98+cuuKKy029Rw0ZVcmE7ea+6Iut3rWXfvliU+/mebWm+ppK/0yw4qht/3T3/sa7tu/YMVPvnqP+vYdODJl6Hz9+3Ls2P2bLpUskbbeVZMr/PlQY988klKSxMf/8vcpaW27gEvk/TmQy/r2HTpzwruVICAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQzLSN7Tn66yOKxxNetXV1c7z7LlhQb1rHJZcv8q5NpCJT74Nv/Lt3bUO5LVqnOip41/YdtWUCVdVkTPVza/zX/kc3XmvqHYv8n0dlMrZ1z5s717v244/7Tb273j9kqh847h83lR0YNPUezA571x4fskXrfJwd8K4dHxsz9U4k/B4fJCmZ8q+VpFjc9vw8U+N/36+trTX1nlPvH5eTqqw09U5W+NefGBn1rh0y1HIkBAAIhiEEAAjGPIR2796tNWvWqLm5WVEU6bnnnpt0+W233aYoiiadrr766qlaLwBgFjEPoaGhIS1dulRbtmz51Jobb7xRPT09E6cXX3zxrBYJAJidzG9MaG9vV3t7+2fWpFIpNTY2nvGiAADnh5K8JrRz507V19dr8eLFuv3229XX1/eptblcTtlsdtIJAHB+mPIh1N7erieeeEI7duzQww8/rH379mn16tXK5U7/zYadnZ3KZDITp5aWlqleEgBgmpryzwndcsstE/9esmSJli1bpoULF+qFF17Q2rVrT6nfuHGjNmzYMPFzNptlEAHAeaLkH1ZtamrSwoULdejQ6T+cl0qllEqlSr0MAMA0VPLPCfX396u7u1tNTU2l/lMAgBnGfCR04sQJvfvuuxM/d3V16Y033lBdXZ3q6urU0dGhP/7jP1ZTU5MOHz6s++67T/PmzdM3vvGNKV04AGDmMw+h/fv36/rrr5/4+eTrOevWrdPWrVt14MABPf744zp+/Liampp0/fXX6+mnn1Y67Z9/JEk97/6nIs9csGxNtXffNW3fM63jxhu/7l378x2vmHrX1/pfJ/WVVabeFWX+WVblUdHUuyFTY6pPG+rLK20ZeeNy3rXJlLF3wf966X3n16beR/o+MtXnx/y3s6zcdltJp+u8a+vLbdlkY3lbHpxFIumfBxc3ZsFZ6y2PbzU1tsfCeNz/vnxiyD8HUJI++uiod+3oqH/vkWH/jEHzEFq1apWc+/Q7xMsvv2xtCQA4T5EdBwAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIpuRf5XCmRoeHvLPjLlt6mXff1V9fbVrH3Nq53rVfXX6tqXcs5p8Hlk7Yvu6ipto/PyyetGWqlSUrTPXOsJ1F5U29B471e9fWlNmuw6Li3rVfvHiJqXf9gsWm+o+P+X/jcLq21tR7rOC/fyJne96aiPlfh8WiLcNwdHTUu/bE0AlTb1csmOpPDPv37+7pMfUeHfHPbBsb9r9OJKlQ8N/Oyir/+49lzRwJAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCmbaxPb+3+HLF437L++b/+o533+FCwrSOd979yLu2GNl6l9dUe9eOucjU++PjhtiRon/EhiQVCiOm+shwKysqZ+o9mB30ro1/NGbq/WFfn3dtLmfrXRwdN9VXVfrHML136ANT764jR7xrozLbbbxunn/sVT5n2/cDAwPetf1Hj5p6O0OcjSTFYv6RQ5GhVpKqKvxjsmrL/W8nklRe7h/FM3LC/35viVTiSAgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQzLTNjrv5f/4Ppcr9MpPmNC7w7vur/2vL1crn/TPB8kVbJlRBce9aV7Q9X4jLP2sukjP1LhRs2+kM/WPmp0X+vcfGbes+2u+fGzg+bsvTM8aHqbam1rs2n7dlsH3cP+RfHPe/zUrS0aP+GWK5Mdt1OD7i37uQz5t6x5O2h8bK8qR3bSpuvC+P+1/n+VFbhqHkn5FXUVXuXRsZNpEjIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMNM2tudXB15XIuEXhfHmgTe8+0byiwI6KR5PeNeWJVK23mX+MRiS/zokKW6IVylL2p6LlJdb1i0lEv5rT6Zs12Es6b8/4852HdYk5/ivI1Vt6j0W949LkaTRwrh37bgthUnJykrv2rFhWyTQ8FDWuzY/busdjRkiaox5UPmCMcpqaNi7dmjQtp2Vhgih+Rnb7bCs0v++nDTcfYr+N1eOhAAA4ZiGUGdnp6666iql02nV19fr5ptv1jvvvDOpxjmnjo4ONTc3q6KiQqtWrdLBgwendNEAgNnBNIR27dqlu+66S3v37tX27ds1Pj6utrY2DQ39VwrvQw89pM2bN2vLli3at2+fGhsbdcMNN2hwcHDKFw8AmNlMrwm99NJLk37etm2b6uvr9dprr+naa6+Vc06PPPKI7r//fq1du1aS9Nhjj6mhoUFPPvmkvvvd707dygEAM95ZvSY0MDAgSaqrq5MkdXV1qbe3V21tbRM1qVRK1113nfbs2XPaHrlcTtlsdtIJAHB+OOMh5JzThg0bdM0112jJkiWSpN7eXklSQ0PDpNqGhoaJyz6ps7NTmUxm4tTS0nKmSwIAzDBnPITuvvtuvfnmm/rpT396ymVRNPlbPZ1zp5x30saNGzUwMDBx6u7uPtMlAQBmmDP6nNA999yj559/Xrt379aCBf/11dqNjY2SfntE1NTUNHF+X1/fKUdHJ6VSKaWMnw0BAMwOpiMh55zuvvtuPfPMM9qxY4daW1snXd7a2qrGxkZt37594rx8Pq9du3Zp5cqVU7NiAMCsYToSuuuuu/Tkk0/qn//5n5VOpyde58lkMqqoqFAURVq/fr02bdqkRYsWadGiRdq0aZMqKyt16623lmQDAAAzl2kIbd26VZK0atWqSedv27ZNt912myTp3nvv1cjIiO68804dO3ZMy5cv1yuvvKJ0Oj0lCwYAzB6Rc86YNFVa2WxWmUxGVfWLFMX88s+Gs8e9+ycT/jlZklRRaRmetpfY4s6/3hnfQxJLWLLjTv+mkU9TnrLl75WX+7/mlyy37Z+yqrn+60hmTL1TMUNuoPEtPlG57TqPIv+76Vgub+o9OjLq33vM1rsYFf2LDdsoSWUy1Hs+lkxI2XIGa6v86zNVtseJOWn/+1ttlS3XsbLaf90pQ87c6MiIHvjhDzQwMKCamprPrCU7DgAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQzBl9lcO5UD+vRrG4X9RGz8hvvPsWCsdN66j53bfG+iiLbFEf2aPHvGsHs0Om3mMF/3iV4njO1FtFQxSLlSEqR5ISFfXetS7x2fEhnzQe+d89YsbcnsqkLZ6oqsK/vjA2buqtoiH+JmXbzsgQCVWetD0cVRjioOrSVabeLdW2rMsFTfO8aw3pN5Kk3Oigd23M+UcwSVJZ3H//1Nb4xweNGO7GHAkBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgpm22XFubFiu6Jcdl6lKevcdHLVlK40VTnjXfunLS0y9XfNc79q+3xw19e7r968/cbxg6j08PGyqLxT8s8xcwbZ/qsoy3rVfWnqRqfeHA/6ZXb/J+ucAStJI3v92JUkjo/7XeVz+eWCSlEr4Z7BVJWzZfrVV/nlj8+fUmno3NTd61170hQZT7/qU32PPSSeGst61H3/sn3UpSfGk/7FCZdUcU+/qtP/+mTvXv/fwsP9tiiMhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAw0za25+PeDxVFfvEjhTH/qJcROdM6hruPeNfWxW2RJvPLq7xrEzlbVE5FrOhdOxK3XSfO+cfw/JYlFsi4f0b844muvepSU+9Lv3yZd+2RI++bevcft8X85HJ5/+Ki7Tosi/lH1FTEbL3nlfvHt9RW+d8fJKlguF31HvW/H0vSO0d7TPVRuX90WE29f1yXJFXUpL1rK9O267Bunv9aqjP+EVlRmf9o4UgIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEMy0zY6rb5ijeNxvRn5w5APvvoWcMfcs8q/v+n/vmFoPJCu9a63PFoaKY/614/61klQsWLPj/PPGYp55gSflc4Petf/xy1dMvVdVVXvXLonZ9tBIxj8PTJKK4/45adG4bf+M5v2zFwcKOVPvvn7/bL/3//MjU++jI1nv2tGE7XZVUV9nqp/TWOtdm6rxv99LUrzCP5euMlNj6p2q9M+ai+L+48JSy5EQACAY0xDq7OzUVVddpXQ6rfr6et188816553Jz/5vu+02RVE06XT11VdP6aIBALODaQjt2rVLd911l/bu3avt27drfHxcbW1tGhoamlR34403qqenZ+L04osvTumiAQCzg+k1oZdeemnSz9u2bVN9fb1ee+01XXvttRPnp1IpNTY2Ts0KAQCz1lm9JjQwMCBJqqub/CLezp07VV9fr8WLF+v2229XX1/fp/bI5XLKZrOTTgCA88MZDyHnnDZs2KBrrrlGS5YsmTi/vb1dTzzxhHbs2KGHH35Y+/bt0+rVq5XLnf5dNZ2dncpkMhOnlpaWM10SAGCGOeO3aN99991688039ctf/nLS+bfccsvEv5csWaJly5Zp4cKFeuGFF7R27dpT+mzcuFEbNmyY+DmbzTKIAOA8cUZD6J577tHzzz+v3bt3a8GCBZ9Z29TUpIULF+rQoUOnvTyVSimV8v8eegDA7GEaQs453XPPPXr22We1c+dOtba2fu7v9Pf3q7u7W01NTWe8SADA7GR6Teiuu+7SP/7jP+rJJ59UOp1Wb2+vent7NTIyIkk6ceKEfvCDH+hf//VfdfjwYe3cuVNr1qzRvHnz9I1vfKMkGwAAmLlMR0Jbt26VJK1atWrS+du2bdNtt92meDyuAwcO6PHHH9fx48fV1NSk66+/Xk8//bTSaVtMCQBg9jP/d9xnqaio0Msvv3xWCzqp5aIFKkv4LS875P+27qEP/LOsfss/c2q04J/vJUkfjxe9a5OR7eW7vPPPDys427otWXBW0efcxs7GoTf/3VTfPZj3rp0fs+WBfd596ZMKhmy6EzH/25Uk9boR79p3c8Om3h+M+2fNDVfabuPpC5q9axtaF5p6l9faMtgUM6zdMxPzpOpq/wzDyhrbk/1Ywv/1eBf5r9tSS3YcACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACCYM/4+oVJL185RIpnwqp3fUO/dt8cY2+Mf2iPZwlKknCEuZ8yYZlOQf+9CCWN4rMwrMeygsRH/eBpJGjr6G+/aWKrW1DueGzXVf2jYn2/IPypHkt4t87/lDlX73SdPqmqZ4107v/kLpt5z5zd416aqbLFKeeMt0Tn/6zBVFjf1jhvq43Frb/8REDP0jsUMtd6VAABMMYYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACCYaZsdV15eqWQy6VWbKk95900kbXO3MOafCWXNPRuPLL9hTKaztJ4+0XHm/D1F/uFxJ4q2Df3P/LB3bSZZYes9+pGp/uD4kHdtf40tJ21uS6t3bVOrLd+ttqnOuzZVVW3qHSv67/sxQ7abJMXL/B57JuoT/o9BZZ6PaydFMf/tLBT8MwYlKTLcf2KR/2NnzNLXuxIAgCnGEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAAQzbWN7xgsFRYVxr9qhkUHvvunactM6Rody3rWFoi0apGCIwShYo3UMvxDZkj5Kyjn/uA9JcnH/m/BQzO/2dNIv8gPete8P23r3V9qe/5U1tHjXNi2Yb+rdOt+/fm5mrql3zBDFM2TMjxo1xF6VlcVNvcsNUWCSVF5Z5b+WpO0xqLzCP4YpVW7rnUgkTPWlwJEQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIJhpmx03VshJBb8stnjSP0Nqznz/jCdJGqtOeteOj9my4yzlY8ZcOmfIjovZWiuSLd8tivzrnaFWklTmn31VVmbrPVbhv+9zmTpT7wtrG0z1c+pqvGura2x36+pK/1y1VLmt9+i4fzBhXrYQQ2fIPYsnjA911tuhoT6R9L9dSVLckHuXMG5nPO7f2xmy/SwpgBwJAQCCMQ2hrVu36vLLL1dNTY1qamq0YsUK/exnP5u43Dmnjo4ONTc3q6KiQqtWrdLBgwenfNEAgNnBNIQWLFigBx98UPv379f+/fu1evVq3XTTTROD5qGHHtLmzZu1ZcsW7du3T42Njbrhhhs0OOj/VQsAgPOHaQitWbNGf/AHf6DFixdr8eLF+su//EtVV1dr7969cs7pkUce0f3336+1a9dqyZIleuyxxzQ8PKwnn3yyVOsHAMxgZ/yaUKFQ0FNPPaWhoSGtWLFCXV1d6u3tVVtb20RNKpXSddddpz179nxqn1wup2w2O+kEADg/mIfQgQMHVF1drVQqpTvuuEPPPvusLrnkEvX29kqSGhomv+unoaFh4rLT6ezsVCaTmTi1tPh/gyQAYGYzD6GLL75Yb7zxhvbu3avvfe97Wrdund56662Jyz/5dlzn3Ge+RXfjxo0aGBiYOHV3d1uXBACYocyfE0omk7roooskScuWLdO+ffv0ox/9SD/84Q8lSb29vWpqapqo7+vrO+Xo6L9LpVJKpWzf5w4AmB3O+nNCzjnlcjm1traqsbFR27dvn7gsn89r165dWrly5dn+GQDALGQ6ErrvvvvU3t6ulpYWDQ4O6qmnntLOnTv10ksvKYoirV+/Xps2bdKiRYu0aNEibdq0SZWVlbr11ltLtX4AwAxmGkIfffSRvv3tb6unp0eZTEaXX365XnrpJd1www2SpHvvvVcjIyO68847dezYMS1fvlyvvPKK0um0eWHxRKR4wi8Ko3ZutXff6irbwV8h5x9AYY3tGfeMJZIkZ4zKicX8d21kPCCOGSNNYjH/aJBYmW0tZYbIpkpD/IkkpdP+EU8N1bWm3tWpClN9VdK/Ppnyj7ORpLyh/ETStn9GCuPetYXI1rvcENmUjNteebBG68QM8TdRzLadzvnfxvP5MVPvZNK/PpkwRPwY1mzaMz/5yU8+8/IoitTR0aGOjg5LWwDAeYrsOABAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDDmFO1SOxn3MGaInxgfK/jXjvvXSlLRP3VEhXFbbE+hWLrYHuf8tzOSf8TGGa3F8FTHGdeimCFWydZZY2P+v2GNS8lFtrtemfwjU4rG69CUNuVs684VDPvHGNsTFf3rnWEdkuSMazEkcMlFtvgoOcP9LbJFNsUM2zmW8H9MGR4akuQX3xM5S8jPOfDBBx/wxXYAMAt0d3drwYIFn1kz7YZQsVjUhx9+qHQ6PenL8LLZrFpaWtTd3a2ampqAKywttnP2OB+2UWI7Z5up2E7nnAYHB9Xc3KzY5wS2Trv/jovFYp85OWtqamb1DeAktnP2OB+2UWI7Z5uz3c5MJuNVxxsTAADBMIQAAMHMmCGUSqX0wAMPKJVKhV5KSbGds8f5sI0S2znbnOvtnHZvTAAAnD9mzJEQAGD2YQgBAIJhCAEAgmEIAQCCmTFD6NFHH1Vra6vKy8t15ZVX6he/+EXoJU2pjo4ORVE06dTY2Bh6WWdl9+7dWrNmjZqbmxVFkZ577rlJlzvn1NHRoebmZlVUVGjVqlU6ePBgmMWehc/bzttuu+2UfXv11VeHWewZ6uzs1FVXXaV0Oq36+nrdfPPNeueddybVzIb96bOds2F/bt26VZdffvnEB1JXrFihn/3sZxOXn8t9OSOG0NNPP63169fr/vvv1+uvv66vfe1ram9v15EjR0IvbUpdeuml6unpmTgdOHAg9JLOytDQkJYuXaotW7ac9vKHHnpImzdv1pYtW7Rv3z41Njbqhhtu0ODg4Dle6dn5vO2UpBtvvHHSvn3xxRfP4QrP3q5du3TXXXdp79692r59u8bHx9XW1qah3wVVSrNjf/pspzTz9+eCBQv04IMPav/+/dq/f79Wr16tm266aWLQnNN96WaAr3zlK+6OO+6YdN6XvvQl9+d//ueBVjT1HnjgAbd06dLQyygZSe7ZZ5+d+LlYLLrGxkb34IMPTpw3OjrqMpmM+5u/+ZsAK5wan9xO55xbt26du+mmm4Ksp1T6+vqcJLdr1y7n3Ozdn5/cTudm5/50zrk5c+a4v//7vz/n+3LaHwnl83m99tpramtrm3R+W1ub9uzZE2hVpXHo0CE1NzertbVV3/zmN/Xee++FXlLJdHV1qbe3d9J+TaVSuu6662bdfpWknTt3qr6+XosXL9btt9+uvr6+0Es6KwMDA5Kkuro6SbN3f35yO0+aTfuzUCjoqaee0tDQkFasWHHO9+W0H0JHjx5VoVBQQ0PDpPMbGhrU29sbaFVTb/ny5Xr88cf18ssv68c//rF6e3u1cuVK9ff3h15aSZzcd7N9v0pSe3u7nnjiCe3YsUMPP/yw9u3bp9WrVyuXy4Ve2hlxzmnDhg265pprtGTJEkmzc3+ebjul2bM/Dxw4oOrqaqVSKd1xxx169tlndckll5zzfTntUrQ/zX//WgfptzeQT543k7W3t0/8+7LLLtOKFSt04YUX6rHHHtOGDRsCrqy0Zvt+laRbbrll4t9LlizRsmXLtHDhQr3wwgtau3ZtwJWdmbvvvltvvvmmfvnLX55y2Wzan5+2nbNlf1588cV64403dPz4cf3TP/2T1q1bp127dk1cfq725bQ/Epo3b57i8fgpE7ivr++UST2bVFVV6bLLLtOhQ4dCL6UkTr7z73zbr5LU1NSkhQsXzsh9e8899+j555/Xq6++OukrV2bb/vy07Tydmbo/k8mkLrroIi1btkydnZ1aunSpfvSjH53zfTnth1AymdSVV16p7du3Tzp/+/btWrlyZaBVlV4ul9Pbb7+tpqam0EspidbWVjU2Nk7ar/l8Xrt27ZrV+1WS+vv71d3dPaP2rXNOd999t5555hnt2LFDra2tky6fLfvz87bzdGbi/jwd55xyudy535dT/laHEnjqqadcIpFwP/nJT9xbb73l1q9f76qqqtzhw4dDL23KfP/733c7d+507733ntu7d6/7wz/8Q5dOp2f0Ng4ODrrXX3/dvf76606S27x5s3v99dfd+++/75xz7sEHH3SZTMY988wz7sCBA+5b3/qWa2pqctlsNvDKbT5rOwcHB933v/99t2fPHtfV1eVeffVVt2LFCveFL3xhRm3n9773PZfJZNzOnTtdT0/PxGl4eHiiZjbsz8/bztmyPzdu3Oh2797turq63Jtvvunuu+8+F4vF3CuvvOKcO7f7ckYMIeec++u//mu3cOFCl0wm3RVXXDHpLZOzwS233OKamppcIpFwzc3Nbu3ate7gwYOhl3VWXn31VSfplNO6deucc799W+8DDzzgGhsbXSqVctdee607cOBA2EWfgc/azuHhYdfW1ubmz5/vEomEu+CCC9y6devckSNHQi/b5HTbJ8lt27ZtomY27M/P287Zsj//9E//dOLxdP78+e7rX//6xABy7tzuS77KAQAQzLR/TQgAMHsxhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADB/H/1BgpSnPvEFQAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -966,14 +967,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9SawkW5Mmhn12znH3GO7N6X/vH2v4i00WC2oBAqpbIiGJGpoSJGghAtyIEthbrrjgTgI36o0AERC0ELTiQgtRaLRaXFBaNKGFtCJACewWusEuoUv8q+of35zTvTci3P0MpoWZHT8R9+bLzPduvqrMP+y9yIgb4eHhfkazzz4zI2bGWc5ylrOc5SxnOctZznKWs5zlLGc5y1k+PHF/2RdwlrOc5SxnOctZznKWs5zlLGc5y1nOcpZ3I2fg5yxnOctZznKWs5zlLGc5y1nOcpaznOUDlTPwc5aznOUsZznLWc5ylrOc5SxnOctZzvKByhn4OctZznKWs5zlLGc5y1nOcpaznOUsZ/lA5Qz8nOUsZznLWc5ylrOc5SxnOctZznKWs3ygcgZ+znKWs5zlLGc5y1nOcpaznOUsZznLWT5QOQM/J0JEf4eI/k9f8/mfENF/57u7orN8Ezn34/sv5z78MOTcj++/nPvww5BzP77/cu7DD0PO/fj+y7kPPwz5bevH8Jd9Ae+bMPNf/8u+hrN8ezn34/sv5z78MOTcj++/nPvww5BzP77/cu7DD0PO/fj+y7kPPwz50PrxzPg5y1nOcpaznOUsZznLWc5ylrOc5Sxn+UDltxr4IaL/ORH9hoiuiehPiehf1Y96Ivo/6vt/QkR/s/nOz4nov6ev/w4R/YdE9H/WY/8/RPRf+Uu5md9iOffj+y/nPvww5NyP77+c+/DDkHM/vv9y7sMPQ879+P7LuQ8/DDn3428x8ENE/yKAfxvAf5WZLwH8DwD8XD/+HwP4ewAeAfi/Afjff82p/jUA/xcATwD8XQD/ERF17+aqz3Iq5358/+Xchx+GnPvx/ZdzH34Ycu7H91/OffhhyLkf33859+GHIed+FPmtBX4AZAADgP8SEXXM/HNm/jP97D9h5n/AzBnAfwDg69C8f8TM/yEzRwD/WwArAP/yO73ys7Ry7sf3X859+GHIuR/ffzn34Ych5358/+Xchx+GnPvx/ZdzH34Ycu5H/BYDP8z8MwD/DoC/A+ALIvp7RPRj/fiz5tA9gBURvSoR9q+acxYAvwbw41cce5Z7lnM/vv9y7sMPQ879+P7LuQ8/DDn34/sv5z78MOTcj++/nPvww5BzP4r81gI/AMDMf5eZ/5sAfh8AA/j3vsFpftdeEJED8DsAPrmfKzzLm8i5H99/OffhhyHnfnz/5dyHH4ac+/H9l3Mffhhy7sf3X859+GHIuR9/i4EfIvoXiehvEdEAYARwgNDA3lb+BhH964oM/jsAJgD/r/u70rN8nZz78f2Xcx9+GHLux/dfzn34Yci5H99/OffhhyHnfnz/5dyHH4ac+1Hktxb4gcT5/a8BfAWheH0fwL/7Dc7zfwXwPwHwHMDfBvCva9zfWb4bOffj+y/nPvww5NyP77+c+/DDkHM/vv9y7sMPQ879+P7LuQ8/DDn3IwBi5r/sa3hvhYj+DoB/npn/zb/saznLN5dzP77/cu7DD0PO/fj+y7kPPww59+P7L+c+/DDk3I/vv5z78MOQD6Eff5sZP2c5y1nOcpaznOUsZznLWc5ylrOc5SwftJyBn7Oc5SxnOctZznKWs5zlLGc5y1nOcpYPVM6hXmc5y1nOcpaznOUsZznLWc5ylrOc5SwfqHwrxg8R/Q+J6E+J6GdE9L+4r4s6y3cr5358/+Xchx+GnPvx/ZdzH34Ycu7H91/OffhhyLkf33859+GHIed+fP/lGzN+iMgD+P8B+O8D+DWA/wzA/5SZ/7+v+s5HH33EP/3pT7/R753l28k/+kf/6Ctm/vj0/bftR3LECCR/cP3nriOPno7fpdOjbgkzg8G3Tk9EoOZL7SWw/dt+p31NzTMRlhNx/cB7B+c8CATnPbwL+pm742pP7vHoOu68qzsuSt/h9uLs5fFxhxfP7qUPAcB7x11wIHJwTp+J4ByBiKT9OQO2PpA1G8GRk7Zj1D5isH7n+G65MHLho/MApM3ftufxd+t7eiJuXjc9DTDXv46/34w0Ou43OulHO8+r5FWftPfeDKHXnqQUvpd+DMFz13cyJ5zT9qQ6RwgE0v4k0K12kMul+j3c+pea+zluNT5plaNP6daLo89kHDm5NhBC8PDegxwheA8fZP557+GcjDXnCO7k+pkZKSXknEHUHF8/Rx1ndMe9t8cVLvJcCmJKKDkjl4x5mpFz1rG93PNnn35yb3Px4Ucf8fd//6e3mw9fs5a89bZ9+oVXt8fbnOX1H3w7qad928t9gwv98pe/wNXTr+488zeZi33f33We5ZcZsLVPPrOD2muTmcVcUEpZ5hkvc9Xm+mq1xmazhfce3gcEH+rv0dEZ2wvi+vkyZ5f5f3te27UvZ5K5UMAAcs4opQAAnHN1/tmeclvkVxkMLkXOw4xSCgoXXbN8vTY+2s6ptqntUyDgZ3/6p/c2Fx8/fsw//vGPm3t+B/IGe8Rvm3zyySd48eLFvczFYeh5s10vexkBYEaxwWR7AkxHAUx/KEU0jVv7ZbO/22eLLiTnt/Ei+5u+PlrMl2PaodXqKFXvvUP3tb9du8870dsYQC4FWX+jnZftgLtLNSZQnbtEhBACvHd6nqR7o8xRrnPU1ZlceLmh/W53b3MxhMDDMMA5V/f29rXt+XXNe8Uev7Q5Hz3kfpbXp8emlBBjPGrP9vNvIrJ2LWukvW6vpT1/e0+vur/2/ltd51XXeHpue7ZrmecZMcZ7mYv9euDNw40M52YPKW+wCJo9Ie0vNkR7j87JAwTkXKqetph28rl3zsyVO9vE7Bq9wbr31N2RRPf0pluy2TNmo8qiQuTqngRQvZNypDvaPiutwGq/5JxlfcLyXZmXHuTcYmcs1k7dq6mxHYlcvfqrz5/eORcBINz15hvKfw3Az5j5z7Vx/h6Afw3AKyfyT3/6U/zDf/gP392GepZbsoxn94tXHPJ2/RgI4eOVTELdCGBKnP2gGmv1AurCshihsm3QiQKKujnmnJFTOtooiQDvHEJYhq1N5tIs5CjyYNvobbx5B3jdtDsPdF7PIRPKeYeLiwfYbrYIocflxRNsN49A5OGwAqEHQFhwDAJ5VxeN+vunw1sxIwajcAKjNIAFAHbg4uXZjq/3V6qy/k/+o797P30IoAsOv/PDh+i7ARebS/TdgL7rcLFdI4SAnCfM8zVKiSBtOkeELnRYDWs451GKbYjyHGMSxYkBXadxGCNudqOAP3U4EELn0XWdLMi8GADLfTNyEeObmZFLQdL2LaocMTNSTki64JfS4EvkFkNJgSpT1CrQYTZVveATxYgZjekFuGXRzvU3y5GSRbo5nJpf7b1dX4330o9d3+Gf+8PfhQ8dhvUWoevgnLSr8x5dCFitBoTg4cjD+64aY3K5BO88et9Lu4Dg4WubEYX62pGv94K62S1ypHTUh32IuqGKskoYhgHDMMB7jydPHuLRowfo+w6PnzzG48ePEELAgwcPsN2KYbte9Vj13dFvppTw7OlTvHz58uh4QBSBUhjOOQxDj9C9eqvLuWA/zphTxv5wwOdffombmxtcXV3hl7/4JV68eCHje55RcgYz8O/9r/6X9zYXv/97P8X/7j/5f9d1sv33CPho50fT/Hx8UPP+3a/rsUfg95sJN8+N/vN1uOlbnfjITqKT32veP72eU6FTBLoFaQGAGf/u3/qXv+6K3m4udh3+2l/7qW5/rlFOHUCiuJVCAMv4F+MFgGOQL4BjABlMsj9M84TDuEPKud48Aei6FVbDBiF0+KM/+i/jb/zxv4QHDx7iwYNHePz4I3ShgwPgdY2LDERtMPIZFJKs5/AIrAALdzBVsCCjIAOQ9b6uYCWCWYzAFGekPCOlhJc317jZ7eCcw3q9wTCs4L3Hatig7wdrausVePIgciglYZxukNKEGCP2+xtM0wjnAob+AsH3KEyIEcgFYJC0I0lbX1ys0XWyPv2P/tv/jXubiz/5yY/x9//+30cpBanRP/T7r/raIqfDbrn1u1+/4rtHX32DuXUM2J2iCq/7rbdcA46+e9fFtcbq6Vp198387b/9t7/uJ9+qHzfbNf7Wv/pfV8NQ9rOcM+Z5RikFzjnZIx0hZ0aMosPEmHEYZ+Rc4JztlyTrXJbrds4jhA7kHLqux2oYZDznhJISwAXOMYJnEDG8Y3gvEzjHhBSjnK8Y4KQGrJd9OeWIXARs4MLLwidqNhwIne8QXAfnHFbrNfphhVwKXo4H3EwTYkp4eX2Dm/3eTEOYMZmrMb30nPcdtttLDMMKq9WAj773GBcXW8Q44fr6GcZpj5gi9vsdYpzhnccwbOB9QCkF8yzOFwD4R//pf3pvc3EYBvz1v/7XsVqt8OTJE6xWK6zXazx69Air1QrDMODy8hJ937/C8bPoZwbkTNOEUgqmacLhcEDOGdM0YRzHqsellFBKwVdffYVPP/0U0zRht9vh+vpa7BJ9vIkd264ZNu76vof3HtvtFpvNBqUUHA4HjONYr9P0SQO2WpDrFAyy9733GIYBIYRqQ506rNq/DeSzZ9PH/uk//adfd0tvNxcfbvCv/Jt/CygFJSZwlt1lhqvgjzgAbQ3LABfkUnReFoxjws3NjJwYffBY9T28c1itO2wuBnjvcHVzjacvXyClhBAIfXBwjrBdD7jcruEdIXNB5lxtNGuW4DxC04ZeHShmo3rncLla4XK1klkUI5BmgAtSicglgcih79bouxVAhEJyf5kZY4yYclb7WM5awEh5RuGEmBKudjscphHMhIwODCfzcnOJvl+prRNRuKCgIFFEgdocxalN3aF3K3gKIAD/8f/mP3jVXPxWwM9PAPyq+fvXAP6l04OI6N8C8G8BwO/93u+9Y9DnlWrgWx7/Ovlm3tLvRo6RxTeQ1/Zj24fw0F1LZk5VStiMDmoeqrCxLoC8bPwFshUZ2ioKqLE6loUJRFCXgvxfgJzMkyE/Y6gwF67XYowHNoOJIIa7c4shyjhqJlJrhosAWSXLwzkH58VIlnM6nEZJyt5M4FJae1+uz4AfLtp0ev26CYNZjQK7nhOj+fXy1nMxeAf5T9tBNREuGVxIn6UtnCN4cnDOwDtuHvIesyHrAsCUzBW1JudAzAvwRxBPmTUTM4r2cavAHgNBS3tUG7gBG+TBsKalyhBpkXxD7109FzOBwGAn91pNZ0Maj4xF+468U7jF4I87i4/hTJwa5a+Qt5qLXR/ggjzIe8A5uBDg+14YAMHDh069Bh7kAhy59tYAeBQ1DB2RzkssoCzblfMyo/n4rmvT6D+LciKdxQQQcTWAwUCKSTZV73BzswOBEYJHShnjYUQIATfXO2wvtgjeY7tZY7NewTlRUoL3yDkpI6eAKDdeM6jCJ0rOHCOyfiYMoQJWZk/OGbkUjFNETBmHccTzp89ws9thv9tjGiekKIqYzIfXdeHbz8Xv/+7vyVp4tDfS0TJwCxghGWPMCxByureSDjnrO25PVM9m777ZQrPMj9u27Bvvpifr7um91R3M5ltzdTbO7J5v/S6fGMp2sUeobmNQvVrebi52AQCDmeoYdM6WEbsDnWcGzjoHUAG7DFBBLkAuqa6Hedlm9XoJnqGOBzoyqAkLJ1X20+ptAIq0YUEGOMlYcwAqmNu0o3o1RAVXxbI2FgGFkFLGNEeknBDniBhnOHXIOOfAJaD0GQA33mf5HTFoCnIWb/o8z8g5IaWMot6CnAqICwoTSiGUovfkACgz9XUsvjftw9N+/MlPfoztdotSGKWcGnffUu97m69/I9W03S/f5AR08junM/A1v9bOp9Pz2r91DVqOa5nB1oWtwX6HvNVcXK9XEMacA1BARHVvKEX0FnE0ucYIluujWw/AnJHibAJKcTI+iRCd6BMlZ3BOYDB8kfMTgOKX9avoxkvHWo7qMUt7VAaGX9yjZto5InS+R3ACSnk13KtTyq6VzSmLk3muHXLSL1wySk7IySHFKOBuigKG5AzOWXXCjMJAjJOAXYV17r52Y3zrudj3PbquUwfh7clDt/S/42Occ8oAOQZKTr8bQkDf98L2jbGCWAbce+8RQqhrtj0qU/GELfQquQuIasHl9nrbc9p1Gmh5eh/23XacAwIanbZVy3g6bTMDnF5zH283Fy/XCrQoE8fRYs61fUME4kX/d86h741h45EiIfmCzjt0nV/YPlyUKcPwjsBe7BD7XE5fwHBYFA1bn8z+lOljtoxXO8VBnJ7eHCDGoOOitiYrMGSAHCqoVKiggFCYkXJGjFFmcAggH+CYhanHNrcNkFNmkevgfaj9CihAVpZ5XpDFgiPZ+x24Pl4n3wb4uWsbu/WLzPzvA/j3AeBv/s2/yc379fCqHNx9iuMfe+09tSEhty9zUZy5Hn/0wRvteX91gR+uWrlN9GVTeYW8th/bPqSOmFPSDRFHwA8xCTUEvk6ueqKybHbcWE+Cx5wayaibGhgoKMhJmR9ckOuGdkxrbBdQMXTtIvWkjsBuWWhaA6YSFHIBp4wCh5IyckyAJ/jgMHS9bgQdvFtQ9awsAKYCdqUCB2wGjhq/okjO4GzMlaKKPSlTRpkpfqEMOm9K/NfKW8/F9dBxoAAPD8fC3kLJKDmiIIOzulpV6Q7ewXuC9wRHDEcFWFjOopqo0RMTizHOkIXTiVHkvVPvhF2e0Wy58aAs/XULWDHrxDZtZrBzgkWqomb2iSNZ/AExHkTnatgrLCdkBSyLcntq39FiANWN0OxFlmsr1SrTiyMz9JYOoOazN1g33moubi42HFYrOB/g+g7kA3w/YLW9QAgdvPPoFOyRkL6gyoEYo6RtUAxAkIarkFUddYVBjRFohuDC2YP2wKJEt5uVgW4VFAKh5IJ5mkFEOOz3eP7UwZFDvxowqEfs4mKLzXaLLgQ8fPQADy4vEELA5cUG2414QaZpUjp2QFYFlJmRU0ZSZXSOCQCQU8bNzQ7jNCLGiOvrG4zjiFIYc8rImTHPE168eInDeECcI65vbjDP09ILr98f3nou/uEf/w0OJZ2cheraujCp5PQ2pgozinmkgSMmzNEPtwr+Ky7rDU09vfa7m+NNwaNlHr/q7UYTKM2vnBzPJ9+r+xHfcRDauYp76cej9XS9YptXOSvYwwKEo9ipZD0KvsN6vUUIHQpHxDKDkVEiI83CboyJkRMhF51tBs4Wh1wIjqm+Z5CSI1Il1YPg5fNSUJLOCSRkPsj62BPQdzKa2mW3QABOljCPXDIIgA8ePjiUwpimhJvdASlH7HY7HA7C+AEzSs7oug7DMIBWK9R1ggjMso/nUpBSxGG3xzgd1OBKyFn3FU7IjsDsUNjJGRyhCw7OOwnHJlX8v2UfnvbjH//xH/PHH38ftjeZMv5qHar94O7xdde8fFN5c7339iFMy3y985z26q7pRXjlb7b6te2Xt6+BTlrGrqU1PJdf7bpjNueJvNVcfPT4AYszwIAeCwURI93+FoYw1/XGkRhPXA2oDIJD4QJwlrnBdg6HmBNKilCLr+q1REUfQOdJgCKyeaoWJjVOrpP9kljAJHFwyJ7d+Q7By17e+R7BS3vlIsxWUidHUaCmKEhjc4fI6xoBMCloAXM8FuQ0I+o9T2OP4GSOpmlEiRElJbA+MjLSPMO6vvDtMfZN+vC0Hx88eMDb7RZd11VmyilY0YZL1R9qjjOw5bZT5Djkylgyh8MBMcYKstj7wzAcMYIMsIkx1nAwvf7T+zl6beCKgUkGzjAzuq5T5ny8FYZ2xCBt7tE5V8/HzPWcxi5qGT2nYJXZL/a3MeKWEMFv1o9tHz78wSNOOQswQQ7OA1QY1atBxo5VDbKIiyKEDkM/qJMkgtyElAq8AzpnIA1QkIAsc67vPLwXEzR4Wo7hojqQruVAMx+B4MyuIQQv+4w5iJ3uXZ4YKMLaYQV5AcAFtW9IbCCbc4UJGTI/53HEOE3CPl9vEHwAbK92DsUczKUok7CD71bCOgxBQ70KnBpczAWcCkpJIPJiV5FYiY4L3Bt4J78N8PNrAL/b/P07AD55869bN+jkoPaTRY7wmFcsLhVB/7qDsAAR1UBskYs303ztik+u7q+GHC06rQX69fJ2/WgDFDqFTPlUw5FYN7ambUx5Ms9JvT77nI6v9QjNJlSUU34bC7OHTm6xtcHNi9LOcFtgVNeldtwZcMWqnJSyPEiU16D5f7oQ4H0nC7/dewUJqHqHTKc2CzpTET+stUMxJYiEZQOWgwvAVbE1pfNr+/IbzEWCoyWXgmAxAv5w9YhxNQgsxlW8rWb4L5flFFTjwnDUgAMVdODqPZGuKmBWwMw252Nt8jVXL20EokoVbc2rmgPC5j3bPdOifMFQem1jJxrMyS6GZYXhuoHUjd6utBmId029N1wp3qoficSD4LwH6cN5Yfl0/SCMLvLKcCLNneFArmHqNWBA7VVtm8ILsFM9o2g8oa+AEeT+BeThol4dskmHBSJSoC/Oi7UedkGMTO+x3x+w2ezRdUGUrZjQdx2IC0gNh5RFkTLApypL7evCSuVP2O32OBwOmKYJz1+8wH6/F69lLkr7j7i6usI0TUg5V0YRgGXs3GMftm16tH5Ze6tRYaF4tRGh3cSMYp+cAiPc7lbWf8e9dcylORG+693mG0fbJ1UD6o1G+5FF25qiJ3tYPWpZi4xc2t7zcjrtoaPTLOPrzff5b6bfVMeLtnxdC2zLUmU9BPFk5wLNJwUADqUAOQt4VIqEhy1XTxrFrOHGze9Whl5tC431Z1KDVRTgVLIYxL7cYryCUcOkBcQR7zRIGRkKNqUkQI3lwEgpwjmHlGINO2DOSztYh6izo2gYd0xRjRxWFp5gZDlzZc4yy/17x3odx8bfa0baW/ehhKytTxrlr5ae9yayrOl8+00Ad8A/r77VV8wZvjXH2tOcnmgBOszoPDXgv0beWkc1wIdoYU4sxrl9Xo6+RODF+1/XZGGoVapnMb3DHHfHjSO6kXyH1Bg0prTD16jkdR1bxnZl0ZGGCIX+CPgRJ5uEihirrw2bX67NVhDVl+wH2WwhY7gnlEzIKSJFYdSWnFUPlmccAQdF5+exvv8Keft9kUiM4DtCnO469uv+ftUxbRgVIPltWvujzSsUQjgCRVoGz6vAkruAIGMUmdO4vQ6bB9Z/R2kEmuPa40/ZPi3jpwWBDBwyJ2sbrmb3Ydf2NfLW/Wi2kaUZaPfD2zqk/O3c0velAH1f4H3WMGZTPBjgrLYWa74fm2/tXONl9TnZi81ErIwfahg/qu85syVVjzgKl4MBj6rfcmMjNO2aUoJzHn1ZshsZq8hZgygIveSxWvJXwWwdIiDb78haI98RRzixrFmvm43fBvj5zwD8C0T0BwB+A+DfAPA/e9Mvm9rJ1bBt37/995Hty6fH0OmRjRwvSnXRq1pPo0XedQG3zvVXV4gWFstbXOo36MfFC3k6hxmoTALT+RZGl9Flm8lT58ti6DDzEcXNFE8m1JAcAYuX5HpcJwLBB48QhHXEGhxtE9HmJprrNruU9DpKznJelo243bAJglwHJxuFAwnLh4/va/EyCHuEoQSaHGSxYkYkS/xFyGpog1A9dXZtb9CXb92Hdh/OOe1N29RJY9+F7ZRLAZFHzq62QSkOzpVqUIsiJUwSLtD3ixou2v7MFeSxRfSozcBLx5D1j/UZL2CcXj/rYimLp9PX+sCySVpHC3GgjgD5fWnsxjBu1OXKxjIqKZqjlg1gWX1sI7DfPPZovqG8VT8SSc4lsrhk5xG6HqvVGsOwkrGrcYaiICgtXCZSvSPSRcORq7RVwJKzygStJDu07J9m2WTUdmpv+7gJ7mbogQX0k58VD39mYE4ZpDkL/NU1Ui4IwWOaJwkPo6XHui4gF8I4RRRmzHNEikkVHAGGYkq4ub7GYRwRY8L19bXG1euYZaE7xzkKfb0oa23Zqu+9D+t5K2qjioMqJQIcLOyOxZBu9v5m7LW7YNs+ZF6lukgvp3rVnnv816kB2XK9bEd4s8Xq1r3bLZ2sy8vFHa8L7Vdvnc2+Uy9u0S/e3BcC4BvrNwtQb6C37MsGnMhFSg6RACaG4wCQQwgZ/bCCzx1AI+aUQJw1mbPsZ12/Qj+s0XcdQlhycxG1zUG1j5waNcSEnAAuEo5SckTOUcB/dXowUJ0dpRTEecY0j9VYdN4dGZWL4ZPA3AI/Mo9yZUOIrmBe5RST5GZLseZws/NakQFJLks1J4mAn1iYPvRG/LK37kNmVKB3AQwXY7kyV25/82io2ns23ZrRsRzfKE58+4QnZ2/+5Vccz7YbtVd00krHaM2yPpyekI6Pr+vM6RxtPzs5vcxr2x25HnwXYPIag/Pt+7EwmAwotOta9AFbC2xs2eU5VQZrMQEi2fsafdUcngwC5+a0pg+oHgICfAEKOwFTG8eB6RG2YlKjz7QABbPoj8FLDhYip/qOHJ81ZDkZy8eu8wjs1te1P2z+qIOEBBR2BciZME8TPEmoY0oR2XLO6HmPoGhbd96Fjkp0xGA5apNm/TkFXVqgqAVIToEeC+9q9fU2lKvrOqzX68qWMXClTfrcJmc+zf1j4OYp66c9zzRNRwCOfd51XX19mk+ofd3mIjNmUM4ZzjnknGv79X1/lBu1vRYDGO26vg5ge+t+1D40cBEs11w4IxdWFovMN4YBwOJGKiXrHC2qczIKS0giwPCeEDoNf2SPMnQyjp2wfgiS0kIAnkVLAVHNg0eQvLHexgVBsg+xzH951NSwMGC2OLfMW13/BHMRPXLOBTEX5CK5IXNKgGeJ9jCbqBRlIzE6H7AaBjCEwTXNs87VCGNF+U4YryDAeweQ5CbqlRmIQqDIS0ja18g3Bn6YORHRvw3g/w7J/PJ/YOY/eaPvNkb4myqMrefiznHJy6Z8vHi+6ryn779CuXzl8X815XQRfp2i+8360dW9su751nwMGYCCLMCq8kCNeyb1cIqlCAYjt0ocLUBRXaidg+90gWWjAy40TzGQ2HCfGo8LSHjVkiBYQ0FgLAT9PWfoLiT5WBKKLwrDk+a3gaK/IHTeYwgSd+w6VRasPXRDauNlmbOEq2UPxwnByYYbitDeCwORUGn9GVxZUFRDlu65D4kkHMhDlBQkNYATUgJizJimiJwKuAR0nsDsUepmRsglI0XNRq8JqpkJKRekvAA/iwK9ZJA59kydJHdurNcj5Lxd0GyM1DEmngDnFlDCTkUAKKttXcoC/DXhEo0GfHQ9hRePy2ICL6CP6FMtb6L5fSa8UWZO++5b9iNpQlWQB3kxHtfDGg8fPsJ6vZW2zTJfpOpPr2CfJbDTHAdsjBataEeARQ0D1OS2MYXSlPTFsJFNrAVzFuWnfc13vcbxMVlPvRtnHKYIIuDlzV48WM5hveox9J3GgQudOYSAh4+uND9Hwbg/VOpynEV5zVly+MQ51opdKSVVyBUoZq1kUgPRDVh8N324iMNiCqAa7rIo6ZypP1JbDXpUFWq+BvuqAQEKMrM5PZovLnmCFuOtoNxSIuquWsF8Y9Cd7D0nBu+dF3v61kloihlHXF83759MWzuRXAM180+RIDXajg7/ms3x7ftR1upqXJky733Nq5Wzajvk4UOP0A1Admp4ZZDzcKGT1/sdxrmgcIQPHXzXwzmP9WqF7WaDvuuwWm1gFSjlP43vrw2kydvVsEsJKCmCuSA5j6jX5lDgdbxxTuCSkEvCYXeD65trZVQyQueroWXgfk4RMU5VQZb8Bz3m6YB56FDXDxbj/nAYMccZJUsC65Ri7R7WtdR5h9AFYT6VXJ0LzgEhOCk0UPeTV8s3mYvMjHkScMzyOOhggcwjS/hva5f8W7GDagTw8r4VNtC9b9FXbLwXXW/qUFqup7ku85xXY5cbY4ZlP7N+byfjLSDBHCgl17XfinTYrZKCXEfXWZr1vW2zk2u0uUb1OvQoDZ8upXWsyLfjHL+uT96qH0X/KgL66Fys66nu1gJEYhl4LCtvcJLDseqegIZ9FwVvICkDQIAaeYCFpTPMgSH1JCTEyuWmKpCT66jOLr0sp3uuOBGX/rKwsn7osb28BBEhzap3FSDmhHEWdmpMCaUkYefY9dqeQgBIclWS0/VIfkH2hByR2QGcsd8VxNlLX3EGoHM+56WtKshlqRXuX0c19t0piNMybVJKR+8BuMUSapkuLchiVRgt15iFTNnx6/W6/s40TTUxtIV3lVKw3++1GIokD5+m6QhIsj48BW6YlzD1FuCy16uVhLK3oWRWwRQ4tnFb1tA4jkf3Z+ddrVa1XSy5tLXNKXvoFCD6Nv3oiLBaDSgpI05TLdiSUkLScDqPxeEcNCkzOVI9TFlIlOCIkdKEeTqAuWC16jEMa/jghOW+Cto2sg+S7keCzqpj0kKmnUOnIcPBEToFiAMxPAv4FchV9k8gkiwmDMA7eINOCHXtl5ywAsYeDiP204zMjCklzDnBh4DVEMG5E1uL5f4AxnpYoet7xFzwch9xmCdJQRAzcirohh4PH15itVnpGA/oiBCcx6Yf0PuAHC0h9qvXUpNvw/gBM/8DAP/grb5TH4agn5porxJR4FSNq+/cvib97C1ce68+2/svd+zTdxzzNv24gHRLP7SLmurvJF7EmmSyUvM07W2jU5kn5eSall8k1HHimFAUKGrje6n5juQj0MRmWfK3mJ64KGxmtJ+YTaYYFQtpWbyppku1YU/eea2gstw/M8OTU6ReklQyFyQwOu/B7JEblkMuQNa8t5aorF5Pqzh9jbztXCToQt+wZKqiygAXq15QULITdL4wqLCi1KRgjCjm0EXV8hUtbKBGwVmu9Qgkax9tVxxbus3nCiSSetBk44JSPF37RQmrI6NqWv+rslObmuppj8Zlq8A3Zz2+1kVZZj71Qt9O8fw6eZt+JBC8Aj7QMC7vA/peKmZxkVw3pYjHsAs9iOSYrpPXUOBN7kEYP8toN9oxBEBiM7bK0f0zczUEW+DHjIC7+rnOVzZPOS9Gib1uPV0KABERDmNAr+FgwzCIgtMFMDnEJArqfr/HPE4oqpAZ8DMp2HNM0bbqLycAjxovC4ur/nNvfbj81nGyXvulYxYPHX12+1pOElkend/+4aPPbiVJrgAQm+l3PK6pbYvWf33M3K1L16s266O/+fjlq1QCNXRfeS5GNdYM9Flen5zwDablW6+p1gCmlFdjxWnf2u9bdUEFWtmDCuADJNKXC3yIEppJBeQCfBDgJ3Q9un5QJd7ydy1hXqdIGAGivLIoxGYUFk3mCvKQGiNabsFAb83DI5W2XPUqn4K3ZhAykSrpCTm7qrQDkui/sKxFMc2IcW6YQgrEczPOdZ5rFVtYSSNb4xcm5zuYi8zK+FnWM6Laurp7NGWd0egUFcho2omxVGeidi05Xg9Lw2a1vquX1MzD1uhtb786MQz4aUCfdk04CgcpGcY+rmWj7JvmrOPmt+8Aftq/7Jj6LllfHe2eJ/lL5P0jp86d3fLm/cgwprGEfVj71DDQes7mhf5BNlea9Wzp+UWHrbqStonMoEUXEJVV8vuUwpI7jxmuFkFZrtW+VHvuBKgDWFIMaE6ukhlIZswWJGWaHPVtq0eyAVKnQVntXq3FC8BIygyUYW9j+3YVq3q9GlrzOvkm6+lpguKT8zVzYQF+DLg5/d4pA6jNr2Pr2ykAYrl97ByW+8cYNZbvx/62nDv2fBdQatKGelm/2e9abqEFaC+3xkW7DrfntDZocwkZm6cFmNp8Qd4vBQdeZzu/lY5qfajz3JwGlisLRKDSJq1ebLoFHLawYUkPkXOU/atIDj1j53mdeG0eStZQ6tNuqP1MUOe+vgdxKpj2ayFgy5zWfzSnHes6IL+1rM8pJQETmZGU2UOaY6yukcXsYekvRx6MDC6TJhkvGEcpOjJwwfZiI2O0FtkRxk8XtCpZARJJZcHXybcCft5WYkr48qvnYHA1cEmNZ3JmMOpkaQcfm7GJxaBA0xHAsh7rublOusXwrLqv/nU8vN818PO6879eiXn9eW6N7jc855sLOULo19K+CmzIB/Lb5uU0hVceuvFWxseiAFcThpvQmLofnd6P6vDqXSC/lMFclA7JqJ4V5c3cMBGOFBF7YhguRGTjZKHId92SYE82R5IElZQkKZcrthocGUXEgCfxSxJL4T2poMVAKRqLqROfSEpusyQSJM7IXLTdclWg71Ocd7i8vID3jL5jSFEoRggFjhgxMvquIGeg6zxWK/USWHnS2o0ZIEG5c4xgJs1PwbqumULJFdgiNTBM2ZR8P0eF02U+1+djSq8ZVdJXmkeoUWIUVajncQSQ15LKJNRtCfNyx5avfZ0k10YBgYhhBSsW1VX+tZ9q9KO65ti5ltthtLd3H8LMSHMSzUurZs3jhN31TrwPCr6BhfHTdxJnHEKnSoblW9K5S672j4AgS+YW1jaqYWBYbtru39m9s62uTSeiNYyO26Nl/JSqgKJZw7H8DgGdb8pvdhLqxuQxJwaNEVwK5pgRk/RRKZIXhWFsJwI5nZFkXP071kq+++13ItUobAdJY3ycrOVy5BJIUT81m0vnQCm5hrwtCXEJ5GWdtq8UA3d0jwUzpmnEdBhRmNEFqRJHmnS00wSFzKbT6dVQcxlt+9lt3WrP4/4F6VqOans2RzXsBjoyxZqbxnId7W/Wg7g99P6kUUaODQ2nxqSNRaV/pySedzAkTwCh7wb0q07KvXc9xjlimib4rkfQRJd9P6ALgyrwAXXs1oZojb52xRIjX/z8GTEesC8Jjjx6XzAEcdBIuEgGlyTe1fkA5wgxbZDSSpPaS2l3UcJnxDjquJBEkzk7SRY7T2AAKYoDIZeMadpjnmcwC5un5uvTULjiCIUTGFI6npF1bxAlX5Z+MwLuuQ8B5MLY70ZtyqLjsGEbNP8BWBIo13+sxXnRV2uCclcrSi6guBmwdszJHIKtizYXjKXaGoH26vj9BcjWcCe9lzotbS0nuTaShbtWTWPdv8244dIyk44bvwY8V3DIFiJtA4NGjr52ujjck9Q2tfAXd+vzGh6ktoLeoDKp1NBj0VdL009V1QPheK8XdoytW071wVw0qTQDYHW0wQz9UvXKUvJyTh06pRTRd3NGyhkpSaL1OUZly2UcpgnjNOrvpHpNYptSXSvlhQKZaPrIlJgKb3Gdb0fjuY4905H0vUbtfddyyvRxziHGePSZgTfzPN8COCx8qw3vAhYGXQu8nDKL7DeYuUYUGLBiSZmtCtlp2Jdd713AuV1v+7BrAhbgxICbuxyldwE19rv2ugWmcs41fM7C2Fom0GuSO3+zvsMS4tm2DxHgugDnNXG/OtQXnVAdk+qwIGKEII4UYQdpQnZa2oGcADkAIfES/sjFnGsCxiBFmafBwXde1j3v4c2Zor8LENgxCgkLjlMGJ2G/FViRF8Ccycs4lHWgCx6OAryT3xDG5aLzaifV9d45h+C9zDVwZUjN84QweTgP9D0QgtjUXMTxAi6Sh/Zr8+SLfKfAzzRF/Bd/JpXgqrHhNfGUc0g5Y1LKHYCjSZBTkvg58zCxobO3FeYYZ0zTWGMJmZOezzZxwDbJ14eE4fjzb7RHVe39FZ/znS9ffapX8QgWVUH00HcB/ASsNo+QU8Q87TW7+eJNsDCSmlCWlg2lsJkrrDkFFMlRJbXyI8xmVGrtsnEBFBwoyG7j1OsPkrhWZDlPQUHkKK8raCht470oTmJUljphwSSLR7HqKA5912O9WsG5IBM2SynLPM+Yi0zq0mR+F8qrZoR3kpyLtQpZMSXSLFGWkrXgAu+EgQHfSQhKnpFKUm/OrHTb+5WuC/j+Dz+GD4yhZ4QgyQ69V0pldJhHj5K1goqXkILMESmPYM5aVjmCCUg5Y5ykMosoDcIcKSjSqBAlMpdFxQCKggdRjYlj61CMStkEUhaKqIzB40oOy3xe+hTW1iR0SOeC/GI2JRsAW8LcRdkGQ1hMWuo15sUbWcNmGnGkCdr0bxtrogjahqDK1D1bKlwKxpsRIFdDvagQHD1FpzRmmztSJWEF5z2GfoXNOsFruKKEqGgVAzLasHggBGQzL5Cutxpn7Eho49IHy7oqbaLHYAmjXNqZ0OaxOrqnutlz87d9KE/ODJ+mnRmE/ZxxiAfZJ2KqjCHO0OTpUpnIBTFQsk+LcpbMCD01aI5MrHcDBJlyegROGHgAnP7oySxp4B/9m1FzdqRpwn63Q85Jqi31steCevhOwvpK4ertJUVyZGxd4+nTZyilYLNeY7vZiIdpvcHQdSASJmCuRjAqBnF6ra9ut5bTZHfAzafLSdrzFl2vAUtvqL9tlpkdb/+w3h8EPloAhPsRgs2FY8Pb1qo2r0GMCYdxRMpF8tH1Ad47XD64xMff/xj90GPzxReYImN/OEgC926Acw5D12G16tH5gKCVP4xVa84PS75v7DzRIDMIEYQI5ohx3ONmznDkcbF+ArcxxpsY6IUj5vkG+/1zCSk99FhvO12LRxSekXnCNO9xONyoEUEIgeAcY5oOCEGMiGmaEaMwgKa4R0yz6idaxRIEQAsNlILCo+TDY9by0RqK6riGJr8rh0hOGc+eXWn/aT86YUJKHgoGu7rBoCm91wCfC0u4xeCIGDUihtGscTgGVOzLaAAVNSoYZmBoLcvmPEfAD1l2UzJlUM5kE8pANAt9IKqAT5tvZFmPmxAzLOv08rt6ba3DtRqoBanEqoPx0Rw5tn/uR7SqqO1HznT/BXRbigGI4VQvwgDwpi0FuGEsd0yGDFXNtXBG0nLuYjQuXFFxpBSgCzVRLKvuJ/oG4LK9v6zjJcs4Z2YFe6SS1n48YL8/IKWE65trXO92df2uxiORGo8KgBlKwxmLL46b3mjD8DXXS6MXWWicdL85dQ0IYymM8Q7kVA+wkCozri3MqgVyjP1koMwwDEcgB4AaltUyf42ps1qtjtgxlpvsrpxAxvjJyjK+ubm5FQ5mYWIGxth328TNp0ma27A0A6EA1NevCvuy49rrI6IaUtYCSW2bWHhZ13US/n6ffQhZyytolxNinMX5QaQYQIB3Uj3ZkbJHizJCS0IpUg3ZUcHQe4Ac+s7BO03vQEsYpXdi5xEAzsBctM0LgVnDHFPCGKMcs+rRrQfAqQOGfJ2jnApY7bxMsk6kKSLNseqexlzyLsA5X52tliOs6zuQgolegTdZmqTIvGD+Qg6AsvP7ngCKYEgCdyZgt98jl4yud/B+kDy2BcgpwpUMYoeh07QPr5HvFPjJOePl1U39m8EIQZBGoxOPWk2l9eoXTTRrk9NKe0tDtgqynHWaRhwOe10QcjUqnWtLgBJaj8iRwnbHtXP7yVuucS1V+NWynPRVG+ERjf8VpzulON43+EMg+CBGJUWvOwFj8ca5miuk/ZbRieV6Mgy8elVTnjIDTLEHsXhQ7REs1IuqgmXUZDMM7XXteTNOWpuyLAqdhQ/JguhB5GE5pLgUFCooSVFWyMJARIAPsgc6J+sQKemw8bItmdeXBwGKeEsJ+qzFRKVtM8ppqed7EOcc1ps1QmAMgwE/Gd4nEBXk6NH5HiWbMSOPlB0KEkoRhRh6b4VZEnZmBsEvY96UizZ/RzW4TG0yI2VRJKuiy9w8a/80r1G/gTpO2nTNQoRp5j2331lUM2DZVEmZL6LsLUmtZQy2c1C+HTQhqVzjQtuVzVcVzXLy4/cgsoEJ44oKgRwjzhHjYawJSi3ScqEAa3nYfpBx66TiGsFJ4nRqQBxHEFirAOTF4DIGA5F8fpI0kRRA8iSsIHmt7duWWmgAguMl6rhv7wJ+YKkGCsTLmRdFysJUxHK04df0sdKCC5mBIopWoSZzh/5DulDUtcca/R3I8TpNr3i/hYQao4sNNOfjIcaSqD7OM3JO4hnzAoARF42Db2ZLXY+kcVOMmA4H5JzROYfcdbVqhOV0YZ3id7YKtXfyOrG2b43jhkV0MgzsrRqkSvqa6OiYugQtR5odfO9yO1TQQr40f1NdC4p6X7OyV0UX6boB24tLrNcr3Oz2GIa1rKc+wHU9yEnuG++7WvUDWNbgxXZd1lvY2qoMS1IGTU4R8zyB4LDqLpBL0vPpOswSthWTlKFNeUbOs/Z3grE0JSdcrJ5ko/BnTd4sRtCMeY7IRc6X0gyQJWFVVjBkrXXqqJPHwgY1eG8B7PidTMXCjGmK1n1VDyhePLEMNXLN4NUkvkC7Bi66F9vWBqgjokn4qtdvOYzukmWMyxyX75mRd8cXmmtZrsk+4AoAgU3PWdgQp8CP/EZreGfUvHC3Zrzue7QARmLUWs47woKrN+gXbB+9vwlpQJpzy3WIAd0eo9fHBrBYFa6lve0Sb7XzyXmOHvofFVqM+FKETass6IVDq0a6AVDtGsf2PoOKhmYWCVmJKWGOUVgAMSLOs6x3FSSQsetMN1sU40Uv1puzsVBvFqY/6302Y00etKwtR4vou9kX5beP9YGWMWIgRdsHRFQZNm3CZAA1vOuu0ubVplQ2zClQ04JL9rexfVpAqGXUtO+3yZfflLVjc9GALDvXsS1493fbdmu/Y88t8NN13dG13ZcwbMw1Y1rJG0Wd75XA4ZyGLtvQsnlh+5cyhJwBWLQca2qlqKXHuAAbE3GxJ3LKSHMEgZGDA5dO9BVmmDvYmH51Xmibyt62JNSuoGqQCzktcuK9h1PgR9bJJQ+orH3L78jcVXAu5dpmpRSknDBHArkg18vK9NcccR6Ad0HTNXy9fMfAT8HV9QGNfqa0JimhF1PCOI5ISklbEk8ZdVI89ilJYzsiFEX5nKJ8AKqykVLCfn+N6+vnktdB0UYz0Iotas0F1SnUjn06+gRHVsubyNHGRkdPp2LK7603bUNvroeOTmkGwPFlvwsF1yYxkYdzpU42IiD4Dl03wLuAqoAQ1UohzAwXI4BRN7Ok3pfSKADGQnALSFMnHxZvRCMlZ0k+pwdVIOBESSG1VI7AAzIFSJSTrMmJY5oxxVFoerVSg0MprqaVzLWvCEiSGNA7h1W/Qhc6cMlIcUTOETFFTPMB03wAA0iQRLYMgssFbMZoVY6o1Q/uVYbVCn/4R38I7zNCiHBOEqgRZgAZXHpw3MoCA/UwMmGcd9jtniOmGbvdFV68eIo5Toh5RIEkbyNVGMxok71WgTq7LTXQZbM1BVHCb6T/ZY5a05pStvRXA2qaLty0k+0Fsogu9N0uNCBALWdv2fvFQKvUbijTSBdqC2mpyjMs47/WFWM+2tRfRc0Fru+lD51zWK/WMg9DJ57pIOwx77y0cy2DrIqvJq8uOQn8WhwKLaGZ3sliI1X0uGlrBXgcgZJ0hoEot/qjsLLaWCqCKB079D1C38tGH6Rsuw2I1y1TR8oNk+YJZWVwtcoYdPcXr5AD4LquggnV5NBqCyknIGcgJSyrZ2vsoAEeGK+90G8orW3WghZ3HnfrTVMetF9gxoUZeaUqWymmqnSZN1COVgOQFs9j7wPWfY9cCoauRx86yZ9mFS3s0e5DFWB9u0WrrvHUfJcW27oCOM1ya1wnai7CbJWjfZygIL0au++qH0822wqEOkLoAlbkwUXA11IYMUWQM/q5POdckJIArcOwRi5CP6fQASSFBbz3kjTaBRAp+NPk47J5Dkiy/pwTCidM0x77ww1SnjGPEdM4g8ij7/YY+lGBH0nmGlNELjPgMuAY5DLIWehARCmzeGF5SRDs/ZJ8OWdhFZVSMB4mybNVEqa0Q0oTQITgrVqOg/c9vAtgZIwTIeUoe322QgIOOc/IWb3V70i5cc5hs95oB+p7RDV83QakAOQtAGRleVH7vJ6kDue2IpON54YdeiLmMAJkL6q4ru0lbEZ6MymwXMNthyMvayRYGces4IcAfaYzMZQ1oiGFjgDfB7SsmWWdpKPzg4VpsD/sNL9axH7cIcZJmQVrdCFo/7mjtr5PMbYLmb6hBhoby4PNaDKws/YM2j1JUjQZXCOsARBVFlBheWQzUmHrsDhOnJOQrezV+HfLYma/V6F7Xvq5Tfo9jhOursVpvj+MGOcZOWfEnIVxyRJqXS0aHYPMwpC1kEqne7jksIQuGDoMAHXoGThpLalhT0wKXJGWvIcO73cH+gCoAJpc7hLCFGPE4XCorBwzxodhwMXFRc2VY3luWhDTkjjb3y0AZABLG+5lr1s9zq7FgJlhGOp5jGlkoCOAyhyycxjoYkmsV6tVBWNOK5PZ7xmL5+bmBuM4yhhQENDayp5PSQDtc3vfdpyRL+4z1ItZdOhkQA8Acg5d38OVjK4Lorto+FNRYLzkUnVIYlb7crHzRZeX/DYyzptk9BahBYBLqWpJ0eqVYEnEbMAPrVbofJBcOc7r2KZjXUQZdaUIm7Dq+YCZBHDOKmgyvC8Iuhk7ZwV62r1AmYi6FpBV+zIACEJwCF1AP/TwftHLwJofKhHIFWTvqy7uHB3lnH2VfMc5fjI++/KlJsVdgAvbROY54nAYkXJCCKHGHPZ9h+1mDe89cmbE2YACVEW367wmQ5RSotN4wDzN+Pyz3+DnP/8ZRqVH3uxu1LBnzMbwbE905xq2LOT2N59+bnL6/TqITrOfmRHcGK93nN2Ug/Z3zNuOuyYzluNPr/J+xAwtowwuyY6JCF03YLXaIvhO2QRLfGrOEk4xzyOIAlJOyHHUsCYIPbbxgJIar7ZJ2r2VnCVKiAgpKuJfChqX0okeoSZCAWpyiMI1HILqf+KVibkAMWGcRuwON5IfJWR0fgUmh8QFpB5JC0EqAGJhJBaq3oP1Jdb9Cpwz5nGHFCekkrCfrjGlEQBQnAMTwZcC5wcAEhpGDDg4ASYLNITtfuXy8gL/rf/uvwJgBmMHxgwuM3LegznC0QU6+h4cVuDiUUoAs8P1zXN89fQTTNMeX371GTIV7Hc3mBIj4QaxGJQlylMIDl0IlW3nlaGVUkJMSTUNAZ2OjcVmzpl+bZ4KwvGGCK5AAFRJW5KyiYEx9L0YYKGt+CBBWpLZ32sIzKIsiyJUNJmnKXaqFNJC4/ZEFfhJMSIX84Yb8KNXabf3s8/vpQ+983h4+VDLuA8gDXuUWpZipAjwo54jD5CTvBlRvfECqXvdiByKk3O0hkNVGmyNbLwpt5kqjDTNiNOIkjN2N9fYXV0BYGwuLrF5cClr+maDQSt2yNpo5TGX8tRon13T5g3wtqzK9lpnsuajscpfnQ+QkaGAVM6gwx4UZ6QYQTFCIoKPkVYzZJrbu3dpzJ8j0OLt7NplbxKeoYCYTtAEcEqybp0osQAQQoeuk4pvfd+jG1YAHDZdj7iRKmmr9RrrQfLMdD5U89UAWQJJyiwto3oLif0aqas7VctW7oQtLxq1B4IB5HqH6tnWccKnbVbHEZ28dzp2v6UoONCKM4DGe4TOY72RhOopFcxTVODHoVdHVM5AnAUIJ3TYbB7Cd2uAHFj3wkCEzolH0/se5DqQ6wDykKK3BFfRsoJcZszpgJwjdvsXePnyS6Q0Y5oSpikKaEwDvF+rp1Bz95SEOe8BNwvw5CPIawUuTCjlgFImlDKBOYIQEDyEhg9CjAdM4wGlaCUvBX4O8xViOohSGzqhx3uP1bBBFwZQcojxoHqDR/ADHAXkXBDTCj4a0/v1SUi/iXjv8fDRwzp0K5BW9TUoIM4LbkHNXKgGSrtm6msrdlGNFCxAixmTwPHrOq8b85r5aKs8AqhVTpvmmDWhZ2fJNZhzxn63wzyPlSGYYoQPARcXF9hspHrcajUsIcR8cq725Mw4jAdcXz3H7volpmnE8+dfYX/YYbvZ4oc/+hHWw4NqFAELaHZfIvUnJFTK+q6C3BX4KRU8O12rqFmVuQDFXsOjKCegcEEuVBO4pryEJVaQieVsVvnKO6cksaLzXLhsC3DLmgxc2SMs+ROvbq6xG0eAgTkthvSUZuRagdL0Ja45Kq28NOtA9sqULwBcZnFqsfLpSPbfW8XyGAq+SrJqM2UkhZAwR98S539jaQEMA1oMnIgxYhxFl7ZkujlnXF5eSljsIEUuzJZsgQ4DZ9pQqlMmjeUJMsDGAJ4WiLFQLwN4LBysfVh1LSEi7I/AFkCqED958gQPHz6sBSuMgdM+rCrXNE344osv8OLFC8zzjGfPnmGeZxhb73XrYtueBhhZiXpj/dyXMHMtrpG0ijE5h9VaqlNZVWapGCc5sQSozeAsTgUHhqSgI/hA6LTyV9cFDApGy/6QK5BZq7LmjKX8jyXAB0pMmA+j6EoXF1j3A7oQ0HtC0NlfABRVY7Iy90phpBQxqzPTaTi36M8KMOp3BdkBKHhxRAKVeSRquoP3TvINZQulXfrHOcKwGiSShIzYImM1p4RIBewIvvMSpuatff6KMX6YGeMUdVGimujIJsI8zwL8pKRJspQODEIeGM7pgs4aBUOA0Q790cbGSgVMOBwOePniOfb7Ha5vbvDy5RVSypgzY45N8WV6NUxCreJ4BLK0gM/dk43qd+jou3T0d/vd0030zjNqCSNazi+z5fi778BKaRWTGufrllwGzgc1rrua7wfaz87lhfrqZziGKLRYmD5VSa+P41+vv1837OZ+Dcw5MhqtyWQjrm16a6ei5TSFdcPN4nkEI7gO7LJisQ6laKxt0QWNGVMuAvxwxioN6HwQRSpHpBSR9DnnKGOHvVacylpJrCzXwlwLob0L6boOP/zRD1B4Qi5XYJ6R84SUejBHBLrE4D+GdxuU4lFyh1II/RCQ8gGHscfucIO+HzDNE5z3UGK+TFKYb12QbedIFiZv3g+Zu1xv0owV0yhP7Gxq+hMnc42b56P2ojp3DTHvulDZPwYyOHKSMNj5OvaM0p7V+8mq3NmYMwaiwSaOxIsQnYYO3QJ+7l/E69HJnOt7kPMwrNAMFHaSVMmpi450LkiOjMU4WQA2aS/RV48N5gp8m5WDOtXqEcyMeRwxa6jt7uoKL58/A0PmExzgQ5ANVem9kmDUDABXr6EyAAkL8FMfBgA1xx9ZYVJqhLzXctidLgPKUHAEFz0oa1iDrTV3GVT1DdwaevclpPki2ta290/lleOJUCNPrF/IvqAGhbEiLW8eAKBjeGhplhC0VDYhOAFtSykI3mueE9cYaRY2pTDvLXDlzcGfeuQd93u6O9puYZ9WsOx0u2hPQCd/vwO5pXA388c5q5riAURM01wNgwVkYGRLyA4BRiS/gDBJQQQPK1XbsPDsBiuDGTB+goVjCT19xhxHCb2KCXNMIPKIaZawLFcgwI+Ucy+cACp6H2KoymooTN2F7aMQhep1zJLQWfJQCPs6xllYr3HEnMbqDPI+IZQOOagRBsnvIMZykDntAS5SZr7kBOcIpYYT3684Igz9cLJun4xJ10yyZuk4Ultcs3bhpI8a0ISbvjcPcvvbt1WAUwDH3l3+OF0zTvWlOnstTlN/peSkDIIZ8zQh5ICyXkH6FvCai+P02utvALXM9zw7lKLnmiccDjvsbq6l7zSpa13Db+l5314W4GUZm3Xva4zyevzJ99uZVN9Zuk7VyCXEUtTPsoBJCojVAgtYwkJcBcuOlZwKQNlYqGOCUaJU9wGAVGydUB2jGVDcXLWENC/tbDpUs303zW6MUTZVummJhfHDTSPYWvzKefIO5JSl0uaymaapJllOKVWWz+2cVaggSfu5vW/rStC97zR8667rIaL6e+2jTfp8GkZmv2XVwzabTS293iszug3LMkBomibs93tM01TP+U3b8vQ+Tt//1sK3w+WMGbPYd6afENgSktuk4oXxA7KiOwL8eOeqA4Db3KE6Z+r3geax5MIrKcOsfu+kYIijCsHq8r4kmuZia8fSVqRAru31R2PKazs6d2t9M72J9J4WM6jZHCDOpKCLRDvyTJcrZosSALbom9cvpt8p8OOcx+XlJYiAYMAPlyZHQ8HFNi1UudWgE2HA5cUGoQuVkroMTlk8u85jNQiz4Hq9whCc5PrZvcSXDx+hDx7EQJwiYkzgKWFOEbAEwrfUS5MFEFoYBndokaZ5ntoKBFFeji0kU5nvPGf9RdsU+PYGhCa/SjWKabl624Dv3epkQBLEWZJtjSBWRc4mBjkFAEqW6iVWtUk3IgECHEo2o08Qc68UYKpGISFrGb9lH7Ybtcmtr0tRNHVJ9mltwwBQyPIMN40LGPwnSYkFeS7FIWVGzIQCuS5HUk4zF4JTFkjMQNKwwZmBVAoCAWNJ8HkCuKC4AurUC5hRE/EVLuLtKYSCCE9awpGXUCO50vtXcImAoROPUkxAZgL5Dq67BKMguAsMbotAK6TEiJPmWIDS/NMEQkHoAjotp+1DgEtJwNnclOk1pgy7Zt6q0cB23uba9B8L/LJespXPeQMyZAxJglNo8jajdlJ9EHm05W4lxEtYVdQs2NVbouCD6MUWwyue+GIUabJ+4XrBNq4BArF4MmSDr3d1r8JcEOMExxlwDj6wzp02nGDZBKmuOjpvSEImzSPitJy7s6SrBu5Qw6qpSqTdtn2iE5sZlDMoJSRKGhYkv2fMQClBKSwsmfsSrmIAjqv0/2ZNJCy/aYZmNVosIWXW/hVvrAA6Ac4P6Af13I0RKUrOm2keEeOEksSIPcpdwEtfAtA8Ue+GZVDvEUdm3df81qJ5H4WysvHsWFgfDPVCClNnqeoF5Ch5WsAS0y4mNsEVgJOsh2mcMO7EQ5ljQpqjsFp4K1UIq7d+MYLoyAS9+x5P7+R4etDRul6K5BOTTxYD2sY4aRyYJa2tayVzDSXNFvpd8jJmCUto8DuUavSpZkrODEgBZSxZaWZGP044HEZJAJ0yvO8AcsgMWEFby1/gnVtCvUjCGhmyD3EuUnkEBrpECe+aJ0zTqIk1hdlKAHaHA4iu4MiBNfkzc8YY98icQGBkjsgsFfNSHDHPB6QYwcjwXgAfzfkO5qKsolnvb0KcI1KRvEIC/Agw4JxH8hEMoEsa3lUKuAgTbbtJ6LoVGBn92IPZ0gCEWt3zvsUMZdungUaNan6yWfmWddVElDBh+VTjRt/nJidTA/bYD3FZSrvfnkvHeiJz812gGu5ty5RynESWnCSSl8qsCXGecfXiOZ4+/Qo5JUzjiDjNWj68gJwUB5A9V34rpcWxYXqfXLuEQOx2N3j61ed4/uwZxnGPp0+/wG53jXnco+8Cdrsbmd96/9M0vVnnvKEch1ZLaxn4I4Z8w7qw/m6/j+M/lkOpYtMW4iVB6uL0qka/gre5AZgWg7FxhhFJgnd1TORkDGNGZtT2zKxgK5S4zgbGLFdaDODXh6q/Yme5xQlGRBIW1uzxVV/WfZwNULb8eFo5lHVca90vGWvvHu9Z7okWBlAbnkVEWCuD+OHDh3jy5AnW6zXW63U1xoVYcKhr7uFwqKCOhe60bWJhVAbgnDJ1TkPEgOPcQQCOgJ0WiLLPDLixamCAzAULwzbd1ELTLDzs4uICRFTDvSzJtX23ZfXYb/1lSGHGNM9gq2xWCgoYXvVUauaeLJOq5HFZUoBo3jkDYiS9ghLPG2DHg5SNpwstMZg8Ckk1sJQKplFSi+Q5LTaAeUuLgLdJtRnLOcT6W6wTKoQAHuT+zBlmueqK5uqSymJSmSvz4nBDY39Kvlg0uoHTFCS5souqfQssi3pr1jOqXkdWfOANbP7vFPgJIeCjjz4Sx6JFVajBDgaEmh+WybIahAa86nFxsUYIXheAFqmXm+y6gNVKvnvz8gWeP36EaTwAecbLp5/j+mqNznVIc5HKYXzAfspq9J9OipO/dSFEu0i2UnORnFDKzUypRuIJaKR5bOy7yz0tSkSludfzqeJYqzbI+ZdLsGnANfHy/QqjZAkTKVlAOracD+SQfUEqGcgyCRy4xlXWW3BakYsYrFWjChF8CGqkOHWMqVJUZEMUA7bZrEoGZ6OAsQVjSwJaEjNXwuK0jU0ZaKwNtuRYXOQ6tS2pOMwZGKODZw/qe4DWAICi+aIKC+iT4VGYEYsAKB0RQppQKMIT0AdG6AicCEiKh3FBzEkmOGV0WMGT5A5iC28tapjTN0P0v068Y1ysM2IpOMyEWBzge1A3AC6gpxXW7iECdZjHEYdyjYQIogNK2iPFPYCEfuix5jWG/QGh7+BzRolJjIK2veFEWSnaxiUCrI2hZGfAbLIKM8gYIHGyGuLtgzKHyKqnyTImbaYbMFl1NQKhAxdNmA0prSjDcFGEvPNHIWBQ3gOK0OFLDRw+Vg8FqNCwExJAu9Rkrotnx91aG769lFJwONzAd5KYrrCwf7zv1SvOECCTAcc10bKznaMUSKiH3EFwAb3vK8BxqqAQSIvFqPF9Cg7p6w7AWCTsba8MksIFngi9xt2v+wHb1VrCOeEhVeAg8EPDXLB/liSvDNZwFMAwAs2PkkShJ0fwWUJIpHrVBVabDnGesd+N2B9upKrDYY84T3XtsKXT8nC01GnvHbreGBvvQCpwsSxPdwGGC9CjFSVyjVeuR8pYlL+DD9isN5VZYsBM5AllFuA+sEMHBw8HnxmYRXGcdgfcvLhCygleczL5EAAuGFaiyMI5WZ9o2YtPjVZqn0/uqR5DVPe8wsayK5KTKOY6R50qWI6CsgztnuScludCAAoBKvI84erqCuM4yvqiHriU4rfosDtEE5pX7AniCCBmrbrXAj9i4MUUpXLXPIOcR7/aoB9mQMM3OyLEnDEnyUnivUOneZZCGCTMywVAuUCFSXLJpUlDWkbkdEBKM/bjHjc314hpRmGPXKQyVL66gaQPIRSewDwBxAhdRugKwB65jMj5gJILpukGh/215IQpEV2QkF7vGY4KCjLifNBqcqJvxRiFgT3vMKc9oP1p4eDTNMKHDiVnLVWdMPQrPHn8MdbrC8Q4gMCYZzHkQvdu5qLNdbDkm7ClkqvRu3RwA0PiyHnBJyCQnFj1D3tejDJZ4vR1WXLf2Uyvv0VkJ1/EdJ+T37NLZbCAtikCIPR9BxckSXVJCSlPGMc9Pv/sN/jFz/9CEror8LNar1DyDEZC3w8yZll0vmmKMjdLqUA6l4IcI0rOuLm5xq9+8ed4+vQppumAp8++wH6/w3q1xs3VFTbbCxkbMSFpqNl9iTmRpY01r0izh9W0A2boe1fXXcPnbp9TnivYAWWFQ3KHZAMBOKs33gxuD+8KXAG8l9yRjgmdI0lN4Qih69APAxwR0qx52AojZdb2ZkxRw0uYJPTSydw1oxENCAEsY1OA4sVhYetPcRL2xd4tYJIcUE1s0Z+FkW96mDibWcEptZ0ybptQ9ySnAF4Lqli4FzNjtVrh4cOH6Pse3/ve9/A7v/M72Gw2R6DN4XCoYVHTNFUQ6FSHaRObG6jTgkPtNVl1Lfu7zQ9kLKFhGOq5LP8QALSOJDvemEvGIjLAp+u6mjfI7OiPPvoI4zhiGAY8f/68hoBdX1/X9mnBsr8M8KeUgt1+J5NGwVbnZf2pupW1gwIfBELJsm5xyZLXR0NrPcS+co7gAZASNxwDwVZhWnJdwUFKsXPBfo7YvdxLQZScQMXBO5IqsZI7GiWLXQtAQvQ0dBkabUSeMZBH6HSWOCMu6HjJWewV59E5sYHTHCWtBUS3NMeqVEBWx7K2Q1bAK0VJf2L2jKqHqjvIay4QW1qBwZqQ/A2qXX7HjB+JWXMEBL8gdgb8OBfQhb7GyvWrXidOh+12JeXLqjSIJgnwMwwC/HCKmA97BOewWa+xHlaIw4Sh79GFDiUznJt1EXv9ZGiAtiOpWGM1Vitcs3z3CCxqQR/S39fXjbFrxxtVWHeu5VPRXheUnuyQFpyy795foq56ZeZZKEtyQB27dVEsXODYiRJzYvTaZR6HblhyKqVlYqlG8LU9ZKjoUkBCwR+9HpAwfeyjxZpsFHSu3zF2hGRSB0ohUCFkliS4zIzEhKSxmgmErB68xIQkQDOSemlk0VAAgqnmBGCWzTOXBMcezBlSGJkakHcJpbhvIQKCL7oAC3gB5+G6Fch38DQgUIdAHXKaIQmYE4TtlcA5Alw0rtQr82YB8WycVMZJfTQrV9O/t0NazFMK07Qq8FMR7ua5AqIVR9UgIP3syGNn79NybAtkWNhR/axONFtvqppoF1jbVL6/GOI2L0+rityHMBgpS4LYUjKoqDf3yPRWoJzNsNbPWKrRVX6GNoclua5AD50+jpVonHwOiBfEOweuYUHqQdHvOk2AvmxWmhwGpB7yJt+B3ketnGB9YJP9pIpazlLW0rJPMhdRfr1D9qRld8UIteeaS0aNuiPPaLOxBq8Jqd+BWKiXXMFyr+28qMZcBVSX52WHoaPeJ0iOq0JlOR5AIqtdYcClzhcGrJx7SRlJE0fmnOGyhzfP3YlXuV4jL+DVcnMt+HPr03rP9RhbN8qSdJZAEBtE2KTCqDODbblrgiiBxfQKBaLjOGLc76VPNTmkKVX3Ie34l7+X9mifT6WwVOtwzJpnIYGch+8klwE5J5FFZHNIgLaqcNr6Vh+SjyClhMK5OilyyZJnQSuSCGvAieKZI8CTXs+EwgKQrQjwQdq3aMiY5DVJyDmKwWP7RyU16/6p1b5ylgpi1o85JwkxJIB9ARVJfgtIrrucM8bxIEAFM+Y4SogcASlNsnZ4D8lb9q7moj7zonotekNVGha9j9F2eLNvLYcvk/I49PfUqD01LHHydTSnXM5Xbh1o2xarniYeZwIXS3KrYYBZxsXhsMfN9RVijJgPo+T5SRGHwx7TNILBiHFCjJLDZJ4mzLMAq3GekJKxwSSfx253Lfndbq4wTQfsdzfY7wVw77oVYkxIKeMwz0gpI6X7Zd8ZsGbsaSJWRtvSvrXaF6veZztk2z9HfW4hFahgifoaVWe73X8tY5gr4Gd9pPuMpkQgApxnUBbuQp3beq3SRguTue1vXm5aT25Z8ywl37IC139tzeJl+B4t6GofUftdZedzHfPtBdyvgnM6H07X0tN+7Pseq9UKq9UKm80Gm82m5gFqQRV7jONYARYDIVrg5/Q37rqe9tGCOPZsDB/TdSx5s33esosMQLL9loiOwLyWRWR5g0II2G63NcePpTE4XVfa906v800YIt9U7H4IqLaa7b1FozzqDLPra3QbWb8A+Grqyjyx1zoZJcTd9IBlHJqWwOTAhZFiQo4ZDgWWZASa9JlN98mlzgun0TrVZuB2r1t0ZQBaRGGxhckRiBVkb/qO2zmji4fZecZ+WtYK24TkK6Tfa6c6mnFkkSSvk+8U+CEirPqgwI9WZsCSy8Q7yQ9DzlBOmSzeKS0qt54S1uIxYlje7PYSR14yvvr8c3zyy19iPOzwyW9+ic+fvsBhv8duTGAKGlkwoo1XPV7imwWMlolxuofLKxuCd0+euiDURbJdsG9/pylkVAEJGZyM9hsVgT/apNrLZrzqmr6NEEmm8aLsh2XhtP2ioGSpDJXzcjOLxwooWfIIUEVrlolgNOfCkniOoZWSlPJaK0PVG9YBX8uqynvHxrxVoSkKYEDzi+i8I4uFJpDrQW4AuQGgSzA/QuEOc7pEmTZgoCotohAHFPZ6naIY+46wetDh4WVAHxweXfTYrAL2+z3SJ7/GODMYUZSsJF6iLkXAB1XeLVcJHxlN9ymlZMzTSyQmAAHODSC3AtEGRD1KKthNN0ApuHn5DE8//RXGww1ePn+OLz79DQ6HPQ5zRIkjiDM8AV3wSH0HFEY+UgpEyZRwnONN2xYxyQwLUGOQVt2i9resuMLyseR3QRg/TCAyL5Qt+DI7OwAdSLwCpcArom9LpYRTFKAouq+VcqREvSZ14yIljVkouMGrx0zv09uMK40nzESB0GP23rcXLoxpSijFg3xGKA6+EBgeznNN7Fo4wXuHOAXNPeFB3Gkrhfrak4ZQ1JKaxuSjuoZV5lIFgKwaFGkIASPFGWmexPN7vUOcZd0+7GY4f4MQAqa54GY3ayU16y0sgFPd6drJbg8h1usBFTIQHFqAyC6s0Xcr9GGApzUcVnBMoDIAuQexR+8JvhuWPE16PsnfJNfQsp9CdzvG/z6lrvk41r+PRbQcM7IdtcdT3Stsz8o5YdZ8MlkrH3JhxGnGNE7gwvDksNKcAlyyrr9F8pLNM2JK6LTQggfgC8NlzfmSMiJkPuciAIMZRmZRdFbBjRkp5Zo8soadwNZv+Xx3c43D/oCUEsbdHtNBchkEF8TwDwHbBw8wrFZSJWi7rTkRvIZPpDjh+vlT7PfCcvnVr36Nly9fqOItQPU0Hu63/9oOM2OLDIzJOIwjvBNDlwjwwYs3f5rADAyrDZwXNosPnYYziec9F9kTfS3qIOGNuQC5ANOccL07wBFhP+6wG3coJcNThiPJjxMzo7ADwyNnh5hNsZY9SDqtgElKYbsM+AIgZSl0sN+jZDH6pVR7VtZvRi6EmGbM0yg5FOdZmEVZxlFMAhalmBBTlrlVHJxjFCrgkpAdK2NCdIJSEqZxD4CRhw1Wg1SDklD/fNze9yRV39B2MccFNwo9zBjQ8GGbqwt5ewF/zAFFsH1O1igBAo6NWHu20t7V8LHhVK+x0YFrqAlk7paG6aL3ME0TplmAPQOvmRnTdMAcR+z3O3z11Zd48eKFJKudI7ICvl988QVSyQihwxdffolhWCGXgukwIs5R9YhRx0NBmmeULEDSF59/huvrK8Q44/pGkjx33QHzlDEM67q/Fhbd6f7E9qWCFqkptY0ljMKAIagOy9YntZ0X5cNshQJzYACpZERNO5GKMJekWqmcl4AlbJ8AOA/fSYWebugwrAK8dxhWa3QrCVMin0EhS1iYG8FeQItMAVn1TMt3t4zLGgtbnReOaAF+bMzAwsS4vsEGZpGNY7fs5dUaUl1M8zhaYitSw42bgPzvQmyuWAiVcw4PHjzA97//faxWK1xcXMASMY/jiOfPn2OeZ+z3e6karY4LS/gMLGu3VQez1y2wY/tWyzpqS8q352nPa+XSTwGk0/XLwJlTRpGwJTMOh8MR88fu/fHjx+i6roaurVYrxBhr5a9Xgcmnv/uuJJcCzhl5FlagDx7D0MNpyH8fgubXoVoxFM6ByaEQwzuplG6RpiUmSWrsuBb5keSW1JjYej9F1mlRL4Tdw3AYQsDQeQTvMHRD/T7Bqy0rkRbOCBZqu8iINwC4Bd2XRN/khDXqNVJD8v2odtlWKrb3maV9dD0iy4FUCkqSpPGOCMEqSyqYxlnW994TwAUJEjrm3wDW+U6BH+8cLtaDhHp5KwlY03PCeQ+v1aBIc8CYl7nkqCEwrACQJDhLmjzt+csX+PzLL3EYR/zyL/4c/+xP/gQ319eYpx0O+5dilGdGpkFKoyrw026igHTq0Xw8mg986y1TBOonLRpjwIRDg5rLyOT2LFWjaAfu7d/no7dLNXhun0ev7R0BP8OqbxBpq5pg7VaQ0gjKkm/FYqmPWANYFkjSMB+Zq7JAFF1ko4I9NWkedBIbGsLHUF21q4lg/g6r7AMYeVUPDpBAUQjoI1FeHuTWcHQB8iuAvofCPwDnDnHegMsKBcCcZNyBPZgHMPcyedMMLhHdVqph/OD7K2zWAT/+/gM8frjCs+fPcLVLeP5yQkkjpnmP/ZTQZYIbZhTdcL3r1CCG5Eq6b9IWgFIi9rvPAb8F9R8h+A3Ir0HuIeAGzPEKN88/RRz3ePr5r/CLP/3HuLl6ht3NDi+ePcc8TaBhBbe+kKpSnrEaegFgMiPSJPylqu1CUX7AFFaoUiRUK0XhoOGPpOoGmeKxmMTOd/Chl5WDOhAFVWQShIPFYqCqStID6ElBoJwRImsb6CZMhJQ6RK1oVRA0aVrBHJNu7IyMBEYW5mIfEIKDg4R25SODW8allToHAHoHldlKYex3M7qewBQREiEERs5COY7pgMP4AinPsOTaRAAXya3FTODskJMDinkWUeeVKZFkII/Nc03CKptX+/4C2BiYn1NC0va+ennAfi9VHXx3DR86VFYNLWCHU0vJ4qeBhRZN0N+vpUWW5NBOE133/YCLzQrr/hH6bkDnLuF5C8ceVNagPMED6MIGFOT3OqW+17XMGpmW9cba4d6lVmFaln5jSB3DQYCqHQqKsixhWBRMgnoJkwI8s5S8zSkjzlFBINZ+kSpNwTmk1VqVeQF9cpZKJpNV2SQH33fomBAY8KnAc5IQhHlGYT0+zkfX64hqqVpmxn6/x+EwAgT0nXgtl7YFpnHCJ7/+NZ5++SXmecbLZy+xu74R/YCEJj2s1/jBj36Eh48eYb3Z4Ac/+iFWjx7BeULoA3xwOIw7fPnpr/D0q6/w9OlX+JP//J/i888+RfAe62FACB57pcTfWzfW8sC3P4tRqs6AWat89eiDx2GcsdvvkVLG5uISPnQYhpWEbIZeQdgMZgGiLfkkQfL5pCz7UUwz9ocJzAXX+2tcXb9A4Yz14LEZPICCcS4oJaAwY47AOENDSoR1xACcy3BegB8KDN+J8Xqz2wMaxrLf7yU3VinCmisRnAqmSap15ZQxTsIUsYo4KYlhPE0zphghJdxJKg1C8qeROQucOJVyjrjZX2GcdojrC2zXa/SdV4D97nb+tsLMiNFKLltuOgMNWNcD1wDfi+7jzCnVrBMG+githI5+55S5ABznLamGIqDVYLQCU1M44IgpECNyiqJ3JWFWlVKwP8ica5lBpRTsxz3G6YBpHPHLX/4Sn33+mZZRFjDE+4DDPOPTz7UKpbPvZkyHA+I8S2jeeEDUEC8L+8opYRz3SPOMXArmGIXdTAGhewrvBNT0QfT9ON9f2CURtBrTsseLv2kB22oYDLcOhAVoW7Rnc6Eq+MEOpAy1lBLmNOt6GWUOseU60iZjLXhBBAod/LBG8AGr7Rrb7QbBewzDGsOwEeA6FfikOZP6PWg6CLjqr1HoRpNHix4iwF6GKYiVZQCo/mN35nRdByIzUrH92bRv0ZNt/655/hYkCUsWc9VzGoq9mcPvQu5i1phO0Pc9Hj16hGEY8Pjx4xreZVJKwW63w2effYb9fn+Us6cFjdr5N46jjOVSjubiKQjUAj9tFazKem4SQVt5drum03lv93SaL8iud5qmWpmMiLBarfDgwYO6rw7DoEzJEZvNBi9fvsR+v8dvfvMbPH/+vIJTd13nuwR87PwGJo+7PVJM6PsOJa/FkbZaodus0fedjlsZv4kZcOII9w4IXvY+1tApgMHeA6FocmQPDf7SG1QtvAjrxpUCVwhOQwLW/QYPL2T+rbsVSJ2+joJUmlRHk+VdBSeULMCvmCuql0l+CUn1Mc+IKcI5h1UX4F0vbPLgEFjPo9OGACW3BKnqpU6zwuLYDp0Dp4ScZ8zTDO8dgnN6PRnzKOSJrnNwyEjJg9jBl0kY76+R75jxA/G2kYZ62UJjSVYrJU4WGIu9NSuCFeTJRVD1rEpLKYzxMOHl1TX2+z2+/Oo5Pv3sC9xcX4OLlKkGiipRXr30C6IN4AgpPJ0LVBe7O26o/bJuLscVvuRvRpN4kk6Op/Y1zE6ux3MFOJZrYENpG5zpFLkVHeR+J7YZGLJYWTu2wmDOEEfKSSy1Piykqyp6dne6KcMW2VxqwrxjME2e2+ggy2lxdPMVUjoB845KsRpwRAo4BIA6EPUABgArMHfIpUfOHQoIqQCxQIGfNaDAD4oHlQBwh67bYr3eYL3ucHH5EJcP1pjmhBBWAAKYvXhrEws7I2ekIqUHHRUdo43SeM/CXJDyJKV8ITkzQAGEDkBAycA8TZgOe+xvrvDy5VNcv/gK4/6A3fUVUowIXDQnk+SNsfKEZoDWJrd+rd29eFBbwHXpuAoFNn22QHw2j1ETA3v9XBQy6VqujB9Tgux9MtplEUMGJOBNUaA2Q/LjSOlGY3dJGXRGAXuj4ELWKQN4pWF1vMuYtMWkudV7E2YZP+RYnjUcxHuGALDiLUppFsNEUQIuhJw0IXIipEiah52Rk8zdOn0a4MdAkaPcP7W0u6vJkD0tCbeXKjaEMmekNOvanuFcVIBHYrhBFmom7eq9hIxBPUEWG+1c0LwyOmcVCAq9lLP0jgF4eNcriNpBmE0BxJJPiCBgklfgKXhhlpICjc2yCht8BkS+C3kVnlS3BhxNn2pgyp/cAOpQw0OrT2QN14pZcxtoNamckaOw17J5qtlp36vSq8piTsK4pAIBcsWiAgMoUVhBRUM+5nlq9iBRaDvvka0s7jhiOijTps8oWu3EaVfOhwMOV9e4fvYc0zTj5dPnuL66lv4iDyKH9XqN7WqNzjkgF6THEzhFMDvRaIpHSRHjYYfdzUtcv3yO5199gaeff4YQAjYrKd16rzl+dG878b1UkSpqYlB06BE6MdJMMY4xaSnbJdx5SbKuryvot4SMWNUgYXtkFM4Yxwn7cZLwT3ToPAAoywFUQaScJIGsJHqWPvNeqoZ5LBXGCjktl+x030iNkWIGUdFwsoikYV1STWxJnlq0nG/OBvSoSa16F0AgJyw2yT/MGiaW0He9VMNU3SJnq5Z0z8IWUsG3jDTrXMvZ2BqhcgywLBB867wiqse9AvhhvgP4MQPRwJ7GQDSDznLtpDhLyFWKSGrAHvZ77Pf7o3MKILTDYTpgmkbsdrsa+uIUGEhO8lWMyhbKGupXsgE/wuocx4P+Vhagx/L9GCtMAarCDKIEHyW3nPceXS95PI/C1b61LIzv5bGAPkcMCJuzaPpZjhbHiGrurIsuw5i7wkjP2l+lPaeaAIsKujDPnQvVcdV1UrzGhxVcGORzFHiSPvJZHiAP7yc434FY2EAy2Mrtxcb2Ad3DLLm4WTuptC1iO0qrJzd82+Uf2f+s2AGZw1zP8o72ROB2f7WOF6t0ZUmct9stttvtUWn3lBLGccThcDgCbAyMsZw8p/lw3hT4OWXwnD5Llxxfc1s9q60sZ8daCfm2ohgR1blufxuYZPfgvcfFxUX9vFeWLoA7QZ/vQljX0ayhiikmOCLkkuHK0k5eQy5rOgdoUnJysh+ojlAMjFc8QJCSxYYzdlq1ibGEekmOSwFBuxAwdIOGy3WS5FmP9ZXxY9EHciad2gvbBzgaD9nsXaijwKaO6cmMJry8dRoYuGwOPdR5aOeuugWWcO6SMxwBORekJLpZLgwqr+/f7xT4AZaqFCGooq2GQjUsHFDNQLaFTf92agNrx8cYsT+MiCnh+Yvn+PLLL7G72eHp06d4/vIldjc3YI7gMgFgeC01DgAxpwo2wSpOAbhLs7+LlqcfyLUZgGFaegPenHwBdYFF83kFne7+CTXXdEDrJsQnv6dHHMMf7wIwYInn1gsz5dWUEmeDvPGCtU1LipKmIklJS0xLUuYi1WNkY9EFQcwQ1Io1DCAvIEINQTm66yX8w0rQykTNIFh2dZIHCMUNKG4AUQC7J4B7DHYDCh6i5C3gAhw2ILcCkzAnglj2QOnA7OEJ2HQDes94dNnhd3/0EL/z4w0cCg67PX5z8xLPn7/Ai+c77K4T5lSQZg8uPUryiLMovcEX+IFrPuolUdk9CzlwGMB+AGgFYIU8FczXXyEX4Pr55/j8V/8FDrsXePH0c+yuXmI6HJDmCZ6lDKLnDJ9nEDE8CvpOQq7ynCRRp/LcEwNOI/qc1DIV0IsVhGCokgVIjy/IfZOmTUY3ORCtAVpDKsN4cAnyaQYoS+8Xx+icJFL0CJq6lgB1aIpiLwsxE6Rqhg7VzAUFAm6mnMULqqwMAkAFCkqirk8G1IEtJGABRGyTuv/Z6ADeArlHjgPAHcAewQ8gdigxo8wStkdE6gKUpHJxZk2aDqQZNaF4ThWralre9EsDcKFzuX1dFqWTHBxZ0kmdJyDxlJIyBJ2Ukq5AcLMROj2PMA90Q3auyeuUq1HMCvw45zFsArqhQ14T4uMOJa6RucPhxoFjQYxAHHtw2sCovF7D2RxjoQRXhdcq1ghoFrrwTkK9GgznzveN8Wbv2pgqrDTqUiQnRxQAZzpM2F/vkGLG1cuXePrFU1GEU0aKGSiiJHYGrN3s4UfxKlqoYs4Zz7/4EleffSHMgc0GZbsThs7ugPTiGkSE3X6H/WEvlbNyktAHSNhXKTIm+qFHr1VLhPFzAEicQMH7Oo6IBGz+9JNP8Oyrp5Ic/GaH8TACkCoZ5BwO/QDKE14+vcRmu8W8f4nnT57Adw7DdkDXB7x8+QKf/eov8NVXX+DF8xdIh2u4MoFSAk8ZJQmV+n47stnX2RQ4YYfknIX1oMyAXDLIO8yzVldzkmx6v9+ByKHrBwwrTXw8SvnepGBdjBMIQEkZQ99jGHo1CCTPym7c42Z/gOVwQZGKdeNYkLOEl81zxv5QZC10AeQ2AAGFNDSgMGJKmOaM7AuCdwgk+/88RcRZAYYshj6pBzTOM1LOuLm5wX53ELaHjs1cJKfLnCKck4onXc2ZpcAvW7leiH6gIeUxTpjnA6apU0D+3QA/YqjIbx6FR1RrYnEiHTN+FuZPBRgASLhR8x4vBp85xcxArd5xBQiz5t+RKmnp6JgY5f0YBdznUjDPI+I06vuxFliIGrZl8zpnAeB2hx0Oo1R5e/HsGa6urtSYKjWEwnW+MtkKG0BcUDRvE2yMocA5wmo1gKhXJhAt1Yk0hHg1rPHo8fewXm/hQ8CwWsGHgH/287+4tz4kInRdD+8kpDBnYYznlLQbeWFQyRd07rLZkKqSLtAI25tEsGEn+q4DeULXrRE2a9V5JR8cEaELK/TdCt57bDYX2G4vEaxk97DWMJAeGT1QCLEUJDX4E/fCMiYP322xWpOOJ2E2cykYxz3mSeasUBJK3c+8bMy6t0HWXNPHGaBclrVKGkL363ZeLWHri9G6sKJMAfiuoIQQAtbrNUIIePjwIX74wx9WwGelob9W/YqZcTgc8Pjx41ri3RIn932Pvu+PEjmbnWfgTAvM3MU8Ao6TO7dOMbuOU2bNXecEUMHbliGZc8Zms8E4jvV+7T632y2GQUpLWShYCKGGua1WK8zzXL//7Nkz7Ha7W79/Clbdt3Dhen3C9A7oegtV6zAMPYJ3yuZhlFTqMyk7pgsBm1Vfq0cGrZDcdR1W/UpSP5BHQAeDcJfVV4D6UoDdRxOuv39AKYztaoWL9RreOQxdwKoLyqZljd8R5mdKE3IponM6Yf6L6aj9adPFEbq+g+9ERwldqMCphHQpIECmY4qdXBRATjkjpiSkgsiIWVjCJWdwzro+KaBdCDkKkEbMSCuPEDSfbmLgDdKlfbeMH8jCI3F1Et/qsFDUmSVTPlcLv0HydI1RPyMkNv6Aly9eYJpnfPH5Z/jVL3+Jq+sb/Po3v8HnX36J3W4vwA8L/XwYBqw1lnZKCaTli3NF4r5u4Oumf8c9UfsZLUfLPycoUAWQTr3Kd6E/tljg6BmwSWoayO3v3H59P8JcMM8TaoiGk421KvpOPRt6f8YCMBotWPIdWMUVZKPLMUpiZAhi6rwsEiBaSrCb103L0FpGcwBaHUSU7MJLmctice86bmpfkAMnNR7dBuwegagH+R+C3ceA68H8MUp6APIBHhfwbi2hJb2TsnSAZKovjKHz+P6jFR5vOzx60OOP/oXH+IPf2eLm+hp/+s/+FJ/+5lNcXd/gi09f4uWzGZkzYg5gXqGAMI9yrV0HhMAIwQxuvj0s7kOcQx42AG0BtwXhAnF8iavPP8G0v8HTL3+Nv/jZP8b11VNM4x431y+Q4gzKGR0ngBiOI1waAU7oAayHDsF3SLHAdxGFE5gyUs4CmhBDcR/kDOSsc764WrBRgB9bwA3Ak7hctrLFbit9BofEDimp9zUTKAljavBCR3aO4FjYHg6CjjtTxotRuxkRQEZRY1pKMJqSL2AGJKksASiMIiXcJKaWLKH1ssEvuWG4Kvf3vrGyB+VHYHikaYUcPTgHBLcCgkeZGWncI0UBaL3GU8U5YxyTeM0TkCZjDgjwY96Mo+VDJ6Ew4xZmlbyHkzG6JJ1F5V0puMcAagJnY4Z5ODaqrasJ9WSzVeDHWyI9mYLGCioaCx66gO3DAestEC8cpicrlAcXiMnjJnocXEHOhHm/Bs8EeAfvegTnQcxwRasvkYHJCxBdSkHXBYR+g657F1smLTmipKVA9T87woBE1MSeCcKs4Jwx7UfcXF8jxYSrF1d4+tlXmMYJX37+JX7z81/hcDgIsKUG3cVmg0eXl+i6DtPDS+TnjxCCF8aGKmrPnj7D06+eCo18vca42cB7j+thwFfDCgzG1fUVrm6uRGl1QNHxPqWIuXEQCFDFGEdhGADqJLD5pUZXjAlXL14IW9cUQfV4eRdEyfMOzz5dIXQB680GX/76R3jw6BG6PmDzaI1h3ePm5hq//OUv8PzFc4z7A6abp/DpIN6/5JGJNEziHnuRJOmwzR9jMBMRYpwxzSPmaZT3p4PsPUzIrMekGS+vrjDNCZvNBYg6hNDhsN/j+dMlT8XN9RUKF4yHET4ErFcrxBQxRw25ixFzmsEMTGOHOPZwzsC4Djk7jOOIq+uMwg6rbY9hcynzqTikUuA4Y4wJRAneScgKqaE/H0bM4wTmjJQn5CLMqfFwgADLGTc3e4yHA3JmTLPk9slFw6Qzw4dOwIVB1wbdAXwgdL2H9xJGnuKIkhNm73A4XMM5yfUYozCH7l3Y8s0sRm5jFsPcSiAryb0kha3eWy7ItreUJdy9lCUsK8ZYQ0ra0tLzLIlnS86IccY8CXNrmidMoxitlpxWXi/HjOMe07gX0GCWeQyoLqWsgBitwlrB7rDHftKS1hoaBhZAkbOGskBDlQBooENl7Btbsu86BO8RgsdmvULfdUgpYucdpnFECD1Wmwt03YBHjx7jr/3zf4iPPvoYoeuw2W4Rug7/8f/z/3FvXWgAkzAfnLAeNck5StFQOdFXPQDyth8d89creGcsHmgUXAMYOQ0P36xXuLjYwvuA1bDCarVWRkmHEHoQeayGNVbDRpP9dvAuAHDITEhFAKVYMuZkSdSzhLxQkZxAwxagonm7pPrQzfUL7HClDCvJr0S8hLqLv4pBRXP9eK2ayQyXBQAjG+Z1yLcGh63OBJBCYXTMqDIHzrsUA0m6rsOjR4+wWq3w8ccf4w/+4A/w4MGDowTKLRvG8vwcDgfs93tcXV0h51zz5Jw6ciwx9Kmzv9XdWvDHWNUAKlOTiI6AnxbgaVmE7flaho8BtRa+Nc8zrIT7er1G13UVBDI2iCV3fvToES4vLzHPM7bbbb3nn/3sZxVcMjaUyV25hu5LmFmqaUJCnpz36NcrbLcbrFY9+hC0SqUyVzRkVBRxBjGh9z0ebC8x9B3W6x6XDzYIwWO1WmO7uZC8ZRTQOUn/UJh1pWKQ0+quIMxTwXSQ9g9adYuIEJyE+oMAZClek3PG82df4tnzr0A5wbsM5zWvLawaOCTyRudD13dSgIpEv4SCrM47KP9d2PC6yhQIYzCXLJU45xmpMMaZZZ9MuVZJZBLHtSePwglxzpjGGbwKWMUOIUgKnDhLVbDXyXfL+DFvrnl5HUl5M63+kkuR8mxVbOFpQ4WWz4TSKhNvnmeM04hxPGCcJkyzKEJcIooCP+Sc0LqMbqfGw5J09TUD/tgVfqKY33m7zYJaXclHgM/rwZ/jn5bXLFDjacUX/Tq1b94z+MMsAIUsmFaC2X5HQTtTfKtiT7ppKpnNNt5cNHzAvt5kJHcNyKa3Wu/EusGebWy4pX2JbLEWwGd5LYaIGaCStK8DMIAxALQG3AbQUC9GJyEi6OCoF7DJe5ABPy4BpWDoPS7WPR5crvDgosfFdoXtZkCcJBb++voGN9c7jGNEnLMW8yWAHbgQSiaUxNAKu/VGjWlx/0KAC5BExvIoqSAe9ph21xhvXmJ39Rw3L58hxRlRlVHHBZ65VuSjkrV/PLwjFG8l1j3IWVjCsslUtg2rV42XGHoDeIyYbImu5e49GB4gD0ZAIUlInJkkQTUXcPGaRV9YYgbGFCt1DCzKjP12VeisNKuVUZXr9ZpvjJkrG6SyDjV3ZHHQXEaLVFCpeZzSeu+lD5XlU7KAJ5yFAcXKhOJsn0lOECKAM1BSQU4FJQE5MkqR5HUSAlbv4mjdaQGerw0hpQLxnRwhR9omaNYl7XW2tZSWag0KmpEBhlY5iABvABwR2DHYMVJ06AZG6IA0E0r24NJBEuNKHi9xiHptM6dz2oqAFn20a7oBhBngAEcdvOu/ZZ+9osnanaBdx23M6XFLNQvotVllnoh5mhA1ln53fYNxP+L6+Qs8/+qZVLRS3psjAsWMFTmUrsPkHUZVWlKca+6O8WaH+WaHXApCLghFwjl5nJG7EYUZ19cvcX39UhLxe5IHM8Y4YYqzgvBmbEkemHmeBNw3IxqAUzZdTgk315LcGbzUlCEyxV4Uq6gASpwOWA0dSo7ohoBYthg2PXa7G+yuX2J/cyVrV5xARdmkWfPj3SMQa964qiJQsy+pUVk0jp+4aJJYy0YmCqgp/d7Hyu4Q0LhUoGAaR8lXUQr2+wPGcQSAqjgyF8RsYDswR4fZJ2WQiuFWmJAzISauwLuENxOYAoS/KUBwEjomcnZiLBQJBy0511xQuRZ6UL9MzojzVAGGOEfxXjIhZclLJM47oBSq1wWYY6CO8AqYlCzV+KRSGCOmXEtm37e0CTvt2XSYo+AfvttLXtiYgprwXBOq5xoCV6rO2hqmOeem2pC04TQedN6MtTqRHDMJi0xBoJwzpnGP8bDTsK8F+On6riaXnWeZ37lk3BwOOIyHRevUzdCAH2ZGRlEnCAAqCjxDkJ9g+dUWcEkM6h7OEeZuQskCXg7DCn2/wmZ7gcePHuN73/sIXd9js92g63t04f5MEXEOuMrIYeI6B2soVqsPYllfK1OXdUQ2S/KCh3A9ljQkM3Q9hkEcA6vVGpv1VterDt5Lzsa+X6HvhaksiWMDGOIEKzBbl5E15FaKhmjtIQ+NjGB4l+GpIDtfAaSCjEIeRHmBaphk/2TpM9mVxVB1VSVrdunF3Gr+gGaukPFujWL6moWkvNZ2+oZyykQ5rd613W5xcXFxpF9Z5SwLd7L8cgb4AKhhXm3YOiB925Zkf5W0wI+xi06BJ6ve1bJ9WhCova8W+AkhCFBZSr0X51zN6RNCQNd1FdyqTGltG7uWlBK898g51zLwp+Xr2/t5F+BdG6oUnF8SHwdfwbGa3xGiz3DhRSckIHiPPghreDWssV1v0fUB69VaGXQBgToFfoxFo3qFD+JkIEKagbiReSzWq5zfk4DYAINzAmvly93uGt4HTbhsiZWBBQxt8ADSHMWas7CQJJ6oidPNXFTgh3V+Gri86EjGBm0S91to57IdwUK8Ld+x2FNcQ6lfZzN+56FextxpERMylggJdf90M5XBstBoQ2CdCAMePrzAJg4Yp4+w2+9wfbNDmid8+slvUHJCTLLZiQGq1SuU3XMMJi2K95skvmqmzNF3l9d08vnx944Bn0Zegf3ImNPFFlhCS/Q7p3N2AWPuW7R6VVkAuWJsKd0gShEDyqnRXG+2bpyQjORZDKs2fK/dgC2Miy1PSDW4W0aClos3UAkLwMTVMLLN3em1OBBWAA0gdID7GBx+AOcGhP6H6PuP4V3Apttg0w0yWQeC7zLIEULv4AdhHqz6DkMHbFYdfvrjB/jB9y7Q+YwyPccnv/wUz5+/wK9/8Wf41c9/gXGccf3iCvO4l5v2DDjdmJlBcAKsOAmHZKBhK92zkAOFLUoKOEx7cE64efE5nn7259i/eIrnz7/AeP0McX8l3stigIloEMwMOCkXLBq/JAVk8ui6BB96eHYohcQotHBK3ZxzkTwNzIDknBCT1pGH88r4Ia8sH33tAkAO8GuwW4v67R24aJlW14F4BSYgdYALUgUndkEo62AQJzjWpOFploWepZpM0Wskz9ofkASkukY4UqZZE35HDM0TJCNsWUt0nDPXRfr+GT+EnHowBw1DFFCDyhrEAZwK8nSDNEuoUqfeCAkBm8G5IEdGmksFqhYee/0R0/z0hiv3BFVp/Bp9oQ1U5Lp/CcRDCupZ3h3dDKoySZBQLJDkgVvisN2SONsFQD2ovb9EHx6g81ut5NXDQao4eefAoWAIHbhkeOewGjp0mnNOWEQt44fU4zYhpYSu67Beb9D39w/8EFDrolS/RzteWMMS2CpkSDzefrfDixcvEOcZu5s9rp6/xDzPuHlxg5dfPsM8zji83KEcZvAkXmJrO5pm8GFEiQmHnPD8sINzhDjPmNTwvLnZYXd1LYpI32Pu1YDpRAljAOM8IkXJ65MdI5Mwe/bjHvv5UKszFl0DYpolzxNYjSsZIQbqlVLAeYSjWMEvA1WcK2LYEEFCuAnzFHH1khDjFXzwuLruEfqAaZpw9eIZxsNewofTBIek4XwGn93zfKyOnZp+u+o1RA7OBzgNAal7W5HcKWDx2koVFsJ6tUHficEsOSseCiBXCm52O3BKmFPCi6sd+kkAlqT5BUIX4IcBjgQA309ZgYoEsIX5MA4jocAhbHoUWsN5oaRT50AQkEyqHTLmpFWCuGCOHilJ8twpCjOl1X9yzjjMEaPmk5pnLSHPhJg8cpFjwCOmUaqYdEEqnDADscsAOS0PnjVcTKrUpJhQCiPGdwP8FC5aZe041w6XRqdgU0VsXbd8hpZwOWGeUw3XSjFqTqUklc5OgB8De7KyfIzNIyDs8lqSqLNWRotanjjW11JuXediShKCB0JiyT8BQEKXmVEghkro+woeGxjivQcps2692aBfSx6e1WqQcAYNj+iCh/cO62FA14kRt14N6ENATAn73Q7TNMnaPGwRugEPHzzExz/4MR4/+R588OiHAT7I792XMEu+upKWcDnLO6RKYX0QJC+h95bMWDXsLLaCOSYEMAFAUq2HiLDebLG9eICu6/DgwUN878lH6LoeIXTougFEhKxVeaRpHXKyNYIByLyPhTFnVJDXqhcDkhMIWikssQBvcB5whJIBogE+bEAlqZ4hYXfM1bUo/Ql1qlRdWhjRtTgLZA0ujKV4A9AYa7I3L++pc46FqfRuYB8RAxSJCA8ePMDHH3+MBw8e4NGjR9hsZE9u8/G0LBvvPbbbLbquq0BMDT/UR3v+ujYDFUyRMbWsNe37bZjmKUB1WpgCOM4JZAyc9rzGBrTPLNk0sISP2bntXMZ2aplD3nsMw1AdCj/84Q8xDAOmacKzZ88qw9B+6/Qe70ss7Mw5h+ClKudqJfpDCB6+kgNYkhevVgADve+w6gcE5/HgcouPv/cIq6HHat3j8nIt3/UBXeiFCc4eS8HmhXnVr9YY1sKyIw5AEeCPgBp9YAUTwFxz5eWc4J1HFzqM84j85Wd4sbsRFh4VZLI203WECKlkUBbbvEAziQDVIQIQslbNBKDOf2MHC2hUlMVtlaPjNEvi+8KYe6mCm1LSBNFSCMec4+K6tJTrXy/feajXcTIjsSnIO9loTPNlNSkMtXOStFOQfPH8lsLwfoOh75BzRt93WK8H7PcHxHnEX/z5X6CkhP2YEaMl5xLPEZwsjHY+Nk84H6Ogbxz3+MpjjpfDW4wcHNtXd66etLyoyLo+LUYXnxx+grTco8jCNKlHpSwLI1DbMOciBnGTo2M5gRjKRWPNnYUftNdvhl8zVpQesiT00msh80I4khlmiz50HOlCCDUkhZbqQbiEo0vArcDud4Hu9+H8gH77MVbr76HzhAc9cNkLu0WuJYE8Ydh49IND1zt89KTHwwcBl9sBf/TXvoff/dFj7K+v8LN/9uf4s1//HE+fPsef/sk/wZ/92S9EYU3ibSXv0A0BLmieEwY8S2lly4HFRUmF95r40Braw3WPMKeE/c1LxDHjxee/wCd//p/j+qtPsN/f4ObFF5imEew6IKwBkrwYnKUaBiOj0AR2DnABXQhwCOj6gn5IAGXE7FCiJkZWo0PGiCQXrQCe1DsVw8hLokN2AXACAhUX5DrgAL+poV7Fe2X0AEYfIwe43oE6h+wI1BlDi0E5AiXJ4j6PyGkCOMPlEVRmBYcKvK4PwZMmoWcYl0ik2IWLDgkFDeomT9UoqEbEPeekYHZI00pKP7sNgE5KlZcNKAdwJMTDHvMoNHzXK9txTijThKysnzSmCtZW8Kq9VF6UP1vDpdu4YkIL7ApQ006MAiZpqxrqVZVIU6pcZV2a0imKqiRxJoiy7RBATPDG1CEC+Q7kvVRD6p5gFR5gCBt4ugRhA09SurPvffXuOBLmytAHdF68UMFbDiG7BqjxcsA8R3RdwHa7Rq8ew/sWD0hOLG6q+Ghp9CJZ4IU1ECPSNCGnjBcvnuOzTz/FYb/H7maPl89eYJ4ipt2E/Ysd0pywe3mNfDMBc5RKmbVc70EUFO9xk2dcJ2GLTOMB4+FQwyOsCoqnJdlh1wX0Wo2HgofTSksRGRGSpP5qd4WXe6lCY/xGKPggDEBWw0tzUtR5JsMjOANOlrACU3irgsuMkoGnXzzXeSdLFJyFkKaFZVYY3taZxvi5N5GJUVk/ZAYUacU5FzTsQ13tZgjkUsGMaRyx390gpYQHDx5itRqw3W41yXlXGTTPX7xEYeAwJXzx7IV4GRU+JOdw+fABHq4v4Z1HHHcY9zeq0EahsZeCq2vG1U6KGfSXK2zcA8B7+DDAhy3AERxJ6OZcQHNBTtJncQ5IszB29gdJ7gvwwtzOGbu9sK+lspwkeeZCSCkgK631sN+DMEmI0GaNfuiQk+hkoq+JwV44oWiSaO+9GMGpHBlN9yWlFBwOO2VZzTWRck65AjlzTJpQMwnzRoGp8SDgzTzHyshJMWGe5ZgUI+Y43gJ+JOm6Ajwp1pw9JSfkNB8ZdDZmWTfOIwYBzMEie44wXgh9Thi0IlA79nwIGLSt51FyZRIROu8RnMewWuGHP/kRnnz0PfTDgCdPnuDywaUAPP2AvpMwivXQowsdyEmFQO8IKWeMhwPmGEXfcgPIBazXG3z00fexvbhQxgwAt4Tm3IswI8e8lKbXnFqynhroI68dSX4MqS7YhDDFjKy5/JwCHVJhKMB3A5zz+Ojx9/Hjn/wuVus1vvfkY/zgB7+DvusrGMKFcbPb4fr6GjllHA4jDoex2iJGOoqFEbMlsaDKTCYtUCBV2uSeCEDxDsFpkQLaoOsIpdgciUChmmxaykA7ZS4AZFEVDLWHZnG2wHLc6F5sBrl3qA5Tq/R19Lj/VGmn0ub1+eijj/D7v//7ePLkSa1u1Wn+uDZnloVRdl2Hx48fw/LLDcNQ82XZ3jYMAzabTWXXWPWsFrxpGUVd11UHkL1vgM08z3U+2nxrQacWoJqm6QjUMeaQ3YuBwnZOy/1j57H7bcvFt6DWer2uZd9DCDgcDri+vsYvf/lLPH/+HDFG7HY7qTaJBfixv+9DnHN1D+tCB+88+s5jWPUCHMNMWJaEy8MARx4Xmy2+9/AJhn7Aw8sL/ODjx1gNPbreY7UWBlROGWlWNmVk5CjOMRc8gu9BzuFi8wAPHz1G6Dr0YY2h20p+SEPwAXWyFdUJJOQ/54TLiwd4+PAR9ocdrscRv/jkE8wporiC4ovavEX0XSLBcZUAkdlCZFXX1VySXIqAyICk6FRVRCp9dshMyHmPaRyRUsZ4GDFPEbnL6H0PKqQh2wBRAElAp6wbzHjDFD9/GYyf1gPM9ma1/MXQr8FBy8e2EJFVhGIAXhTj4psYW4/Nei05GYLXEr0AzFsDQ9NvK313Ud3olhV0AlLYBozld3Dn6+Pvtu/Q13x6emz7LG21eIUXj+OR1Xav+M8StsI1f8nR5Zk3gRm1RHfbHEeft9e2eEvbO21vwWi69TtsY4jquRYvedvXMrvE8PEAgk6aAbDwLtqA3ADnN1JlwQvDp+syXI1FK/DOofeMPgBDIFysPR5uO1xedHh00ePRZQ/KDiWNuLl+iZvrl9jdXGG/uwKzA6MD4OHgwcUtRrW2lVGMzQACQdlM9y0Eog6SODJKboFxj3F/hXH3EtO4R4oTco7iIXcsC5UqNMwSYiPKKARwoaXksoV6uaKufA2rM3r8UfdzhRQAmKJhlbukCh85qTomqE4QBhCcfh6WhdRJWBAHjxI8yAEcPFiBHyYvRjRJ0tKcGeLdTvAkiWmdtr2AABJCKP0ijAkbc8vQP1kfTtY4U/Du36FCYPZgljFdHywPZgn14qztVYLAVwXq/cxqELKMRTW02zm5VCxbFL2K8hq4elRezyAgi+GkZS626xeLp0LW0FNl0kAmZQaRgrY6Noh0/pIDUQfnmgpe9iCvQK8Z3VpNUnMdeUfoNL5cYvLN62seOoDIYw4ZpUjMfvBafvy16/Tb9qLd7RE/CpVpUAo4Sa6ykhLiNCOnhHkccdjtJGHybo9RQap4mOWYmFFiBhl1uoiz2EOSrUtYdUaeZ8RpX6v1HPa7WjWiqDcwATUpYQkBpRP2T1j16GiQHueEzBm5JKR5RpxGoS+jINc1NOtDAFYowMpFUTmSsBFJ3m3085aZa5NJvivhiTbmWMai6RJu8d46W1dkwNY2vt+O1H0Gtu0tzpolHLmpAmWdr7djNG+J0ecaLrCEzzh0fQ8fApwmqp1jgisMkNf1SgBEch3IyxxLWRgQXBicpfJHTISUZW0u7MHUAc4L2zEAYIeSexQEWGh2UuU4ZYdc5BGTVAWT65WcarmUSjmXaicGXDh9retiyXV9zKmgBBaKfGFlgypbUn83wipYabjZu0jurAZc0jAqq9SSUqoJr+dprmDP/mDhVzMO+z1SEuDncBgFVE+xgjoxzZhnycfTAj9WslkMtyUpc8kJJceqc5nOdMpMWMYfKkHD2DvGoC9szDqnBU1YppsCP9l7ZAXdvZfkxF3XYbPZ4PLyEqvVCo8fP8bDR48E+BkGCTdxDqu+r7nPjOBdSsYwrLVyngNcD8BjGFZYrTfo+5Vcp60Ld+je36ofC9eHOF2OqzK1bWZpJ6qRhmUPl/1QAVxIGHtwwtwb+hU2my3W6y222we4vHiIrhsEzNWxH+eCg5+AkkCIln+5jm0G6vxghjL527ZY9kjRlwhcmqpa5OGclopuSrAfWR5EtX0XOwqouzIbU0bGF1PrxLFVclnH2r+Xo96NmL23rINSxcuYPnfl0jlNXmyASt/3Na8PEVXgxNbZJVRx+FrgxxJDn/5mex2t9H1fQ8zakK72Hu8ChyzUy6p82bEGHLV5eowB1IZ92fUIW3ldz2Ml4IkI4zjWe3wXQHrNd+R887yExBEWm8eRQxc6BOex6ges1xusegHlNmsheXSdQ9+Jsy5xRCFGUfBFiAGoKgJB7JHgA4IPGPoBm2Et4eLNerqEUpmSLmvvZrPFNO0BArrQQ/RtmTOl9vFikMo6q47tBvghZ3iGSKk2q33bnMZUTdl2DLSPrCHW1rZCdGgqjtXzf71858APyBLwwu4QiEkbx6nCfoc0KGrwEtrhiCSxKjPWqwEXqzU8HC43W1xuLzGNM3KecX3jahAt5yIMBdMPCW+w6dwGf5oL+5rPqfncjrbKW6Ya2qGvyJrBp3/cPuftz9+dyMLixTtr/PwFAVP+nEygQhkxA5SXsnTiiVWPrynotrk1dyF0ZaEClWxxjnc0h42jk7ftzH03IHSSXK/vN+j7DYCAnDdIeQ2mHjl0SMgaBhQBzLLRewCdXlmR6ijOO2xXK1xedtisO/zuDx/hhz+4QBccOGd89cUzPH/+FJ9+/gU++ewzXF3fYM4zwhCWCc0M8kXHfBEluzBy9sjZVXZIYa4MuPsWAoE4II7XePbVZ7h5+RJXX/4aL6+eYr97gZgkGSfgkQqJhxcZLmf4XKQkekcAiyUpJQ4lfhy0lMguxWnpbVNGzcyVyi2CV0qOIVuoBXAQEAjqMReLVcCezOLZYiak5LWEIoGCKcMOIfRYrwelondY9R0IFt4VwSVjPhBi8KKURQYyQFxAnECWl8hBkjobCMKW32FZ8EmVLcvnseQTQH220qf33InwQRIbh65D6KR8py3+zFyBK2v/otdNDnCsLAtz6Nn18ekaon3R/AWoEmrVDZbJiMr4YaGTc2VH2XEWAuMX01iZe3JOvZqqBDvVZ9Vo8ST5JZyD64Ui6zsP33kFcBb2iHOEoQ9Yrzv1fiprlAidd5LDiSR5tHk5Tad1waFfdXDBidc0uOO17h7Fw5ZSAfMzM0oSL26cZoy7HXKMGPcH3Gh419WLl/jq888kya/zuNxsQRvCPEQcwoicMtb9CsEH5JjQdwHrvoP3Dqu+w2bVwRFwc/0C04sZcS7YjxlXaURWr2iOqXqOrfra0A8YoHRy9rW95lQwZmVJgBGC06oaThk8rOCLJjJjRTxoCbOTfqYaVWBOGouFrwYZUMP9FgdSY7TYtkQGwNgeo+detp/7E2oMMkAhZAMsPYAO1ZmlFU1DZw4U4OLyEo8fP8IwrPDo0UM8eHCB7XaLfrVCt9og5QIOAeh6TPOEw5ywHyNiYZTskItUFBlywJYCgvOI1CE5qbA4zwnz6JEzYT93mIsY5NE/QO4ewPUdugvCxQUBSEj7LfJ+i1IS4mGPcbIExIMCGDOmNGMuUpq9J4/OO2QkJOeRvAdTQSkRBUnmc1PlrxQBpAgFcywgKgKyzlo0QkO6cskgSGUVAQl5Cd25ZznsD/jH/+SfaAUg8boKULOEbsU5aXnihHGaax6jw2HS0KKCWVlcuVgoiCUU1te3KnlpCfS8vDZg/sipR3Qrl4hX1mLX9+h6CVnxGgrhiNAPA3oFDod+qEarFESUyluSUP0KDoT1sELf9Viv1/i9n/4+vv+jH2DoBzx+8gQXl5c1bMN7M6Bkrc8p4WZ/gzhNFaTsV9sjxo/3AakAhynW+QrgXtmwUvhlRs6S5zPlpf2XcDZl8Hh/ov+rfuKAEMS2CGFA14vB2PcrDMMWwQc8evwE62GLoVuhJODqagfvJ6m0pmNkt9vh+loSCgvj56AglO2FUt207pDOdB7AgBmG5NGScD2WBK/KQEqZEZOEh6XMWq6d0PkOPgQB4QDEzMu+Amh1WodQ8zQtTFtqmD2msokPR95zGrZqFQuPQaD7EwMNNpsNPvroI2y3W3z00Ud48OBBDd8yJlDR+dhWxWrBEns2QGSe55rk2PYPC0uy1y07pwVrDIQyEMaOsXOehoV1XXd0vJ3P2DwAas6eFkxqWT5H64S+tnw97VpgjNh8wti1PEEA8JOf/AQPHz7Efr/HZ599hqurq9pubQ6g++pDW6MM+HFO8j0WSK5Y7xw8ES62W/zgez/Aelih8z1W3QrBeeSY8PzZcwTvACogTVBVihQEYgaQCaT5KQszkkZ/bC+e4+mzZ+i6Hh89/j6+/9GPK/OohndWVZ4avcCj6wYpsuAcnjz5Hn7wgx9inEfs5p2GsWekJOsLAKSS4LIoF7FI4mZZizt4H2S/J3H6AxIaXCCOmJQtGoLhg8ewGuBjEhuYJc+RFBuJsGgWglMbKINmCeOVsOrXc36+8+TOcB6seQBKEUMrlQgCNGbPaaIlnbBsWedtcsqCRUTgwOCim08qyBcZQ+jx6PIBHj98hJwy4jxKFu1C6iSUjaoaIHjFkvUqXOXOP1v0Twy8JU1p8361/QzEWmI/q6+X7jhv8x1DBJfNim4fR8ZQeAeIATS5sZPwPCvjiqZsOpyh4FKiznLCVKZH0WOpQgDV4LFFU/QdmVBHXhq7d+ajZlFurR5im7dDP2xwcfEIPnTYXjzBxfYxGB6Hvcd+71DYY+QBIydQIThMIIwAPBA6YAgAChAzkGZ4H/BgS/jBkw6XF2v84U8/xk9//2PEOeLzTz/HJ1+8wNNnX+Dnv/gV/uwXP8c0zZjSiG4TajJyKkWNWJbfYYeSO4AKciJNAinRmpXldN/ChP8/b3/yI0uWrfthv91Z4+7RnDYrM6tu3eaRokgKgqBHcEpAUwEaSYA00UAA/wVxpin/AI04EChNBGlG4U0JSA8SBEiAgAeJIPkA8r3bZmVzughvzGx3Gqy1zS1OZlbVrRt1LeEZcSI83M1t2957rW996/ts6VjOM99+85e8+/bvOL//DR/ef8P88F4ZNQGMJ2bDecmkUjAlY5M4R5jOiBaOOnx4BWuMESpytZViHckKmFtLUUGzppvTAgcHxmvQIdejMX+McWAtxnms91SM0DrTTClStU7JafIorj/g6HrP/iDq/4fdyG7sJTiNi7pfZKbgWaZAzYkyQ4kGapGWr5IEwGjq41XFEjVZbfpU7T5rCavV9o7antfyW507z3kYY3CdxwdPN/TqHqKickXrDdbgvIrH1orRuWed0Z8ZbOPbVjQvvQJ0rOetgBxXue26fmXzx8qMqs0VJlOV4dGCWDl3r6Hrtqd++5bXdVHGoQrt3FgITh7OyufvREA0dI7QWUKQdoPG8BkGEVs3FgV+dN1ZWST6GXWJbufhrGW03QpYNmOC5z4M2oLGtUe7UilJ3JAupxMfvn/HPE0cP33i+29+w3S+cDke+fj+PXFeeP3qDW9++Ypx3LFMicte7NtPNyfG3Z6UEuM4cDjs1IHHEIK06+ZvDe+XB2abOB4T75aTiAnPC3ESJoK3KoZpDLua2JmMK55DDVgre85UE+e4UEomm4LvnN5rYNwVnGn70sr6BF27NZFvbIVayfVqC19rvQLLxugeC9uttrZk8rNlc204btvVM9dIqgJcDfZUxTbA63kGDJ08szF/rKFrotXGcH93z9s3rxmGkbevX/Hy5T27/YGYYVZpwptXr3j55VcsKfG333zPf/Ov/pZlmlmyYVpkTe2S52A6gvVEt7DYnlIcp5g5HiMpVS6p51JGrO1Y7Cti9woz9PQvd9y/2WFqZnl4xfL4AykuvIvv+PjwgZQTl/nCtEzUEmUtzhZnYWe8MC1NInpPcp5qMqXOFCM6BZSCsUUE5nMlRWkBW5yAHCGLq5e1hpQL0yQxxLb1v9Ys4P0foQX68fjIP//n/5yUIpfLZU2wWuvIlm2UcxEHplJJUVg/wuKQgsgVCm+is7L+rIWDep0Ha0KYm7uWEvgbMGqdxF26Bm2r+f3Qi5bJ4cD+5kb1eAb6XqyOQ9+tjjM3h1v2+wPOWbre0wVPjAvf/t3f8e677zDGcNjtGfuBcbfj13/2p/ziqy8JIXBze8u428s5a9dZSonT8ZFpmkj5wqeHM58+fWAcRt6+/YJxf4sxDu9HjAva7p6Z4qyLreyv+RnHstai5yNM5pyTTnhZWa0zeCds4DXZBq57njCMQ5B5vNsduLt7hQ8d47Bjv7/D+8DQ7xh3NzjnyQk+vP9ExTBPizC+cmaaJy6X86rfFONTYEBuDEPVzgTrHdYJg9m2My5FWJQ5YYBspC1ZxNIrSxSWYEwC/FgjTmvBOwG8VAcKRHS2cgV+gjJYa22dFkY3QKtAtrmmL0JLwDgnRSavwtNmm+s832GMiDPf3Nzw9ddfC+Ps7o5Xr15xOBzw2hrUmCwN7GlMls+PxhwCmXMNeGnsO2vtE4eubQtmVmmKz19n23K1bfXasvIam2fLBvoc+Nkyl7ZsvvaZ2mu2c2/rUmvzan/bwJ9lWdY2rib67Jxjt9txd3dHKYUPHz7QWsViFA215g72fIOobWzO07XzpK4grAOxeHeO+7tb/vzXv+bu5o5ljkxHaWmP88Tx0wfV7J1Z4oXS2jStAGredHRGXL1OlzOPxyO5FIbdyLjfE7qOP//1P6F3A8Owk+JV12+kBez1hPVeHvoRa6DvB754+wseLkcu88R3H74jf/pBOiXiwrQ08yi0K6Ky5ERSC/uuGwidaBH1riM4ibuWnMglkWtlKZJfFSqhCwxYks9aGFE+eJFr0fIhyZUQh0vE3n2eha36u47fCfwYY/53wP8Y+K7W+u/qz14C/yfgT4F/DfzPaq0fft97QQvnSHAHxrQqcL3mHO2Jn58PqBbDVS9iS9cLvtCrkvs4iLWkt47UtA34DOD/mQWrcXGeNNn8jvnQPtN14vx0dLkuDJ8lWBsIZ/2uveaPQKQfv+rmdTbnfN1k/tQY8x3PMI5G23lWKr35iTM0G5CtKnijZY26UtWuZ2zYts7o6xTWIF4+yk+MRZXnrN0mpqWn8prOeUInSXHfj/TDDnCkCN5DKhaTDaZkmfw1CeBUtenHaPKyugtVumAYOsc4eHZD4LAbuBhhJp3PE+ez9HJfpomYIkWDjWqNqtVrIqtfW5KzCgBv8qEN3vesYwhAEXG6ZbpwuRyZpwsxRVLRPmFr5PNXSEUqSpSCVacXW8BVZedUw8rfMI1ObFYWA2tA0cZnOw+vTJ1G/2w/awyaBqrI311BxBZdC9jXtJwkEfFOmBrBO6XaajBtCsUaaZlwXorQyWGyUJfkkyh9tD2M2QxK24ANP94jrz9o9/11HFdU99nG0bZWNE0mr+ejNO7rJNNzaqBzXTusNJf+ibVmM3bbF/nZdbBdr8+OlnE/meDXFPlHr7+GvZvXa69hzFWNzxqMMypK2z6/ud53eg86dZKwFlwDftb77Om7Pvl8hlVw9ic+9vPOxU2Vr6IaaGqxnFRwebpcOKtj1+V8Zjqfmc8XEY9NSXQ5fIfprLi1OQkG+mHB58ywGxj3O2UDCPup1oLrO4wXIK04QzYoXFeJmuHVFbC1K5QnBI6WtAholdWxCoOyWtYitg7hZpdbwfufWeM/uz7rzb3un2w3kae30frUNZ15OrSmfX2++EYYLdsT2Wj8GHEks0aLJk5Fy50jeC8txJ0wM/q+o+uCMPm8o1oRsS8YihFdsz5l+g9HsFL9zxhyNVAtGavC+KKTZpyHaig4UrGkUsnFU6qHGihGHtUGjB/w3R5LJndnXLhQiqeaE7F2pGLFcjoXRMuko9ZOKq0ECo5iLNV0+sii8dXawk1LwjftvloELBmKyMhp25tqweVti47GFMqI0ePZ5mJKiffv3xNjZJp+DvhpzOUibItSSElYPzmrg5QJ13tzBZIheHN1xGz3zQYAqpu2pNZi3twkW2V/6/TjQyB0Hd45+mFkGKXY0Q8jwzAq8BMEHHee3eGGw+FGWH9DR98H4jJzfjwyXy5YDPv9nt0wMo4jNzfy/KDW6+O4o1a0ja9ibMS6C0b3ZmFKLTgn4u/S8u1XYfOKiCanrMKOtgWFzzcXa0V1MMrKsKbWDbNV1qYne6fuLVXjkGY0AwYfOpmbXc/Qj4zDiHOBEDqclagn5yI6PVXYRiLWfU3uS8nSxqeMjSd121ZUMQ2AKU9cbFdz6tqaqJVfW8XNJ2ucXdb9o8UDEs9U0tU0QBOgK/tFHcTKld2zXsf2fw3Wrqfcrlvbb58AP8+YZ1zdsYZhWF2tGtDRdHGac1XLq+wmDvip/aTlZ9v2mZSS6MZsAB4R1V+eAD8t1/wprZ0G/LT3aI/2nO35bBlC7XUaeNPO/3Om0fYzbR+ft3dtbeUbELZt/WqMv2VZVh0gYHX90vd6lrlouJr8rNekBe6lQPvMRlrvx3Fkv9th60S06gqqToYpLcQ4c5lPlJJlDjoBVDpbMV5AnHmexflS3S1TzoSu43w+s8yLtH5ZRw1Ba03qsqXn3OZWVUZ8A9f6flAms7S5X906paBpZGCp1PW9Ta24knFFu1dsXedpUdH9vP5b7g2rmmdXXEMlQVT0XYrPGgejeWNGGaYCAv9MFLUevw/j5z8F/rfA/2Hzs/8I+M9rrf+xMeY/0n//r3/XC5VSucxRN7GWSEty1tg9LWGhlJXmar2yfFZ9Bvt0AgAhOMaxw3vL119/wf/gv//v8OnhkX/9l/d0neF8Pmn1UCZpswZtrQ9tQW5JK/DjBGddjH+cNDx5mr7mj5PC6+r7dJG9RgdP4KbPs//23FUvYU1B26uur/AT5/cD8L/gHziO1jl2h9vVlk+qJZlSI6hLQNZWGqiIYUnbPORcTVWHBNns1+qtra0Xvdlpb2GwK79gnaDb66dBljGG0PV0nYje3r98w/3Lt3gX8H4UkbsCpYoDRsqQ0pmcPWJv/kjJN2TvudgbvNkTvOPFvud2vGE/dvzql6/4ky9f0g8B6w0fHo88Hi/85W8+8a//+gOPj488xgy9x3gINVG99L2bBXJSDLcq2mylJaBWTymeohbc17ah9To8yxiC2CY/vvue0/sPXB7PzMeFlCx+fAV2JyCYkWrQdFq4PJy4zFJxQunEne8Y/A2uC7gwguskyDMRZ2Tcsyb3FkH3sQKkXRMkuGouGawLWNeBtfjQ4/om9GzBabKQM9UlsmntSvJa3nic9QTnOfgdt13E+8qhy4xB5v2cIktdyDXT2UT1IhBbnaM4ZXe19rqqi2ituthWbG1aAdcNwhRoFAJx+JKb+2eT2GcaR43hgELKC9VUCfRd079hvdaFQo55XTOz6ohQioqXc9W8hc0tJ6HmdQKXdUyh2S+3dVurttZQbBDgJIy4Ti0uc6SmKNcxJUzK6xs1txFpKRJgyqLuaq3Vzkurl3MOG66Jjw8iLup9h3MdzoV1U27n1Tqur9q+DQ7YAHWsS9R6hds4fw5NPdcYAqQY+f433yqbYiZlCTjPR2HenB6PvP/ue6bLxPHjJ77/zW+Yz5eNG6AAuNNlwhpLyQqnWcuwG3GdCD92fccwdMqYbS1GhZsXL3g9f8k8z/TjnmF3kMT3cmE6X67Bo65Vu3FkP+5EIHsY6IdenkOixAur1WgTcaZgdZ/eAvQrVce0na/JHgqbrhokQFt1N+QPzeb/bMDVqmtO2z8biCZDegWK2t/reP6nPFN8A2CsCktiCc6z63qCFW2Tru+FFm4QsMxAcE6qsdZyOBy4u7mj70W7YplmqJCxpCoijsK+krnQBa/mFmVNGo1xojmyu6XrA268wd+/ouTCu+4jtrxniZl6slyiJZdAjDAtmWoT0ywPS2aeEvOUSbGIHhA9GC/jYQOUhLBSA7VUlgVlVSdSrFA7qBlrJqqJYBK5PlLLpGPW1hWn94Loj8Ul6/hlavVrK1xrKarkdQ7r8XxzMSW+/+EdJWdx4FIKfmv1akUOYLXfviYK6H3opKpkxFTAdl6AhprFWKBWtRCW9sO1XcuIe63X+NZ7iw8CQoRhoB+EwTP2UtS01jGMkhBb5wSY0daEtUXaGLI1lFY4GUZm1+OdpQs9puvxruPl2y8YxwFjDGM/ri1h4+EW60X/SbSMLlClEFTUVSzluDJSlrQwxxm7OM6XizJDAsPgCNVqy5JogQmgLIwfnafPNhcrgDVYr8Uc05ie0krRdZIgO+/xoVsBKqN7h8gZyPe73YHDzZ18FutJWYTjYypcpggIO01AwMq8LMwq+p3Uya3qerh2G7RNZbMpVVDkUx2DWtJfKykuUpADUhYmcimFOU7SgllboaDinOp22SCvQSJXYdF1vTiz5VKw3UQXF1IuXM4LaUmY5pILK0CEsaIHZ7Q4b8Bm1/AgjRWffy42MeeXL19yc3PDfr9fQYqfcrSCp4WDliM2oeQG4jZwo+nubIGgrUtXA3Qaw6axebbv1dqvPmcFbdsxt4yf7TluXb1+Crhqz2377/Zc7bpG+CeaPQ0Qds5xPp9XgKq9R2NJNUHsr776inEcOZ/PfPfdd5zUKTSl9J/yDHPRGDFIgUKMEykKXhFs0wPzwkAO+rUafDGky8SH73/gfLoQ88wlnnSNicQ0U2rBLAlTFwyGm71hGER43s5emDelkvLC5ZKJ0fPw8R0//PAN47jj/u4FwQvAEqO4R5ZaiUtc3TOn+ci0nIhx4Yf33zOfL8Q4U2JUW2LJD3IpqkNXpVmBStmAXQkoKUnRrFp8lnVvySI8X4CkcTUI49V3lpw83kBchCmZl6x6hoZS1WqmAglMEfCWBKTfBfv8HsBPrfWfG2P+9LMf/0+A/0C//98D/9ffdQOA9N4dp0Up+DLw3ltMF9B2YRoFtpZMSULnDcZjO6XvO6s0TSt2xJqIhc6zNwOlVP7sz/+Em9sbpnnmv/yvXtF18PDwyOl85OH4oL3Z0m+bcxJEEUNuVZgtY2cLAwI/Kik+vVqb71pyexWofPq8xnCR70XnxGxeom4e7VyuOhvXCPpKnV+r3O30nvZNH4H3n53w33scnXMc7u5XQTxpF0nkOlFrJqdIXCq5aJLoqp66IpZ6outCplXRVTR3TRCUS1zR1sDPLuGPrr+K7xnLMBy4ubsnhJ7Xb7/k9duvsM6zzIllydSYyWViXj4JlTAWUiyAJcc98bLDhQ7HG+Alu2Fg/+YrvvryntvDwL/xF1/w53/yhgoc58h3Hx748PHEf/1X7/gv/+X3xPjAcU6YMeCKpXMFFx0lZ9wEKUqQTrYiaoqKPldPrYGSPSVJwGtcZaMH+ixjCJBj5OM3f8fD999z+nDk8nABPH73C8JO7zvd5B7jJx7nI8fjLPCNEQeM/dBju3u6oSeHAF5AGmcXghF2TeIKljijgZiO35qCGYdBwArrO5zvtVI50A2jAAk1S9tQrVAilIVcKr5WnN7nnQ101hNs4D7sedkL8LPrEkMnlPzjMkO9iK2iTRhfheEQHKl2iNOQgHIUATRrEqX/WosIqdb6RHuplKuGTdqsAdvNuvVXm+ccRw1moZDSTCpJAZBWkbuuX2VTtYanmLLT5Ftl0K4JzAbsqetPGogiCiZ+89wGxGYX5H6wlu5woLu5AWMo84UyXyBn6vlIjUe93uvHwVaLw2JMEZe7WjBVkh/r1f0xOFyQfvHQ9fQK8obQ412Ps91TrThTlXmwNhMpAKDcXDSJbJ9l/UxQr+gy9umS82xzMS4L3/z1XzPNEx8fHpiWmWWeOT4eiTFyfjyurV6nh0fef/c98zRxsz/w+sVLhr4nR7FPLrlgXVCBest+HOlHSRJFK71tEBU0Ebk34EIgpcj98S0vv5A98nw6cTyeVJvkGoDudrvVBaUVa3JOuDJTpkdKLpR0BX5MTVoIaMm6znvr131vZQYaBVKVvVedAt+13Y9PjxYztALQVnOqORtdK/ky7tZeid3PGd+AwTpPFwacDQwhcDPs6JyXmaN+swWtzlMJITAMPc6K/e5+N64aEtPlIsmGcRRl8DivDA/rGDrPOPTUIolAE8Tf7264uX1JP/Tc9D13Q0fNlTF8R42/YboszHmmPs6UbJkXy/kSSdVwuUQul4ilMF0Sy6UBP55qBhX575Wpkal01HJDpjDnhYUkc7r0UGZMzRhmjIkUM8m6W6ImPwJAGhViB6ctEImYRM/HOgHza92yh5OGBuvG+HxzMUb+7ptv9F+yrpdSVetH9FW8afomhqoaMZKfKxBpLNV3YD1u6HAHAWZYJphOULIAhFbsjPu+YxwGnHMMY89uJ0Ks/dAx7KSVZXc4sLu5wXvPfthxM4qRybAbGXUuhm4kdAMVmKaZyyR6W6ecOKsmXrGOyUor9hhG7DDgTWW/3+H5hWqfdXgXsM7SDyPWd2AqMSZyXjQplop1SpmYJnKOpLwwLTOXeaIaw+PpCNYSfI+hx/SeVDIpJ1IrDLY2YJnDzzQXtd3TGFyQlmKrRWNjjTCiuqBMUQF+xE5ZCljWOmETaBwyjntub+7xLhBjZpkjpSRSLCyLJP1J3d5KLcSUpKWraHtzvcbnVgP0J2vZtuJirZp+iKtkilIoEZ1L3b1MphphZ1yWC6fpLHND55UHMh5MRzVFNLdqxlvPsLthv99J4Wu5ENPCPC8sy0fyJW3YTyo4axwYkSYoBo3VK2SLq0X3UbMFfp5tLoYQ+PLLL7m7u+PFixfc3NysYE1K6QnzZ8uAkWt9zTFa3NNAmsa+ae1P7XfAyu5rIE5j3IiD37T+fKsn1ITZgRW8aWykn2v12rJ02tFis62o9HqLKMjV/r4BS9579vs94zg+AX5CCJrfymeIUdhmzSGtiWNba/nFL37Bp0+f8N7z4cMH/uZv/oZpmp5tX/TeqhnFTMlZtBX7oDqMHT5I8SM4T6iGUCAeL3z/d7/h08dPZJeJXoScG2OwAiVW0gJUg/UDr156fNdjp7MAP6awxEidM9Ya3r37DQcFyqmRm/1A9YHLeeJ8upBS5ng8SZtYSjyePvF4+kgumSXOzFGKcmlaIBVIrcUyN04eBRXYbi2bVVz7SkwYDM5WrBFgMWbRVMLU1usvcYDKNtRSSUMQ97KUmc4Ly5LIGebFkhJQxAxB9imosX6e9//0mPzOZ/z08UWt9RuAWus3xpi3P/dEY8x/CPyHAG+/+IoYE9YacBpIG0PQymWpddWmKCp0V0vBOQNVTlX+RFgiZWXnKJXNO0wpjEPP/d0t87Jwf3fLzc2NBoCVmKTftVSx65RKwFXM7HriW8ilrj+7utz8lmOTDD1t+7o+oYWn1J9mBv2sk9P2uebHz1iBqw3y/Vtug99rHLdj6PsO74MuWhqwV6A4DcqyuiBdx8ZsPrFp1IK10svnGwe0cu/6WT77FD8BAIl7j7hJhdDRdyOhk/auRnmuZSGlGWubRbu0/VgjFU7ZxAKmOs2AF2pJQCYEw24M7MaO3a5jv+tJufA4LUxz5DJHTlPk8RKlPaOgSUvBOotAwVWCjdKcleRzr8lQtVR9NBcs8/ml+QPH8PNx/OLNS+J0Ic4zJWVKlnngQq+uH0WrkwVjA6VIpWmtVmPJiMV6dZ2IL2swfK2qP32sQcI6bo1mrS4+iNCbt43ZYVdWWVZnl0LF2YpTm6JiKt5IAOJtuT70595UnClYIxoiVq1cTW02jO3BFTmtQl+uWv2qP77ptnfq5vufZ/m0gOA552LwB65Bc1EtLUf7KO2UWz1VdNU2wBRmXX9qbQ14m/fafL7G8ClsmD1srsoa0AoaVZ2Xvqquw/TD6iRDKWCTsKusbSr/qknWeB9PYEEdFr2vNHgXS3KlNK/U5uvjx0D7lcwry4kAVab9vLavnwM/DZrXr3+Eufjq7VtOR+kff3x8YJo3wM8SFYB5ZJlmzqcTl/OZZZoZQrcCG9fz3QSW1uKCp1MdhIZzXUERqEVYU10/4LwnK+Et54RRtk3OZW2dwBiGccew24kjUFbL7UQrqbMhRdDuvlqvV7+1Iqx7wpO77ekFXn/X7uXt4LRvKk/mXW3jva3Obl/vx2/zB43jdgy7YaAVNJx1eCfiut5Li43q1K9JX64CYocQGHpJ+nt1ixH7dtXnyEYMH40IqdfqpAlSkwbRa3LkIkKtoqfiheHqgrSnDCOUSt+PdKEnJ4OzBRDHpap6NUJPF9HJigjGihuYXDljHaZWpb8L9Fttr2BbVpkmA2RMDTT2lqG15hVQ5hL1uty2+WpQcU6lzltt5ZQ14MqoMViqaS5t/7Ax/HwcnXPMc4sL5WYpG/v4apH1Bjm362tYrKlUW6nOUZ2nOof1Hhs6Aa1rxqSAKQK8BOfEyabr6fsB550kZfud3A9jz7CTe2N/e8Ph9hbvPYdxz824xyvwM4w7Feod8KEXFrv1ZBy5FKa4YKLOvipNzMYYbcmTynRwlsF1KoAfcFYS1WazLjF5Xp3YxLmtbhJkfagmV9kkyNb4JyK413lZ13TpWffFrlsB4AZkCHHFaouXVdDH6cNLQcGJVpxxOn8U+PG+01Y1h1FWT84CBixxkeQvJxX0LpIcpsjnsYC1clOtq7WuQ03eyCiAaPTc29paW15UlN1ZLKYYYdfrY2XD1bZnGVpvm3JnAasAl8dUiy+RirQpSp6ic8yUa4y+yYLYjlktlLru0NsF/w8ew8/HsVm2N4bKVstm8/wnBbaf+vm2ZWp7/zUgZesCtm2t2j5/66zURJMb8PO5hfvvc37AOre2LVk/cT2ePNrPGjjU2IJbIKh9baBYm4ftaH/XxLGbxs84jk9cvv7QcdyOYX8Y1vhfBNaTFDFqM3SpbGM8i+STTcg4LQvJFyJJCiemrqtGypUY5V5NOUtxx66bisZFoicEhpQW5vmCsRCXWR0HIcZ5FfK/XM6cTydSihxPR46no2ARJa1sxdqCpNrkOWRWlDb/jGietph3NepBPpdVADCXIrqpBmG1azHDajdNNZXqrsZH1olxScsLW56v0/LqaFY2XNifOf7o4s611v8E+E8Afv3n/536r//6b7WXryM4xzB03JS9avGIVaY1MF/OHD++J8aF+/s7fvHVW8Zx0Bte271gDfoaEFFKpesyXS+tBvd3d3z91Vfc390xzRPnSehvP7x7x2+++5Z5nomx8PDpKAPq3CagaN207cNsv/ns0rZ4tC0A6//bvz8HgOr10YCNBuSsAc5nQeuTZO5nrvf2zH5HlvL7HtsxHG5vauiG6xhYyCVKRaw2NwoLOUMxTxK4JtthnNJqkVadlT7dsB4MxhZsdWvSajeSstdPL4GuMYbduGc3HvCh4/WbL3j7xZeEruNwe8/N7T0YQ99f6DtB7bvOc3d3s1I0iy4cxvXgOqwLjDf3DPsbDruRf+NXL/knf/qG3dDz6nZH5ywpZr5/98hffvOBj8eF7x8rp7rXKlZHpYGVi5y9rTgL1QFGm5+KLIJJNRdMbTbzg/a9Wpx//nH8i19/Vb/95m84Pp6xtWPs7+mGkd3tPaHryXkhLSdKSZxmTzd+xC9SpccPGOMY9ncM+zv6YcSZgll70TeuUsbgnZfAXdF6OZc2lOJAIsLEjtANhG5U4XDRXCoVSk2UkqgUnKkMnSjal06AMmMs3SD0dOc9oQsilpYS+XzirPTN0/nCpIK1uajLRdnokqCbqtxeeHqhJ9aKTRmTNcBK4ssqn1eq3PJ5VJpX16XKtU3spzb2f8gYjsObuiwR66poiDjZELxqGi3OaVK3SeAacP3ZubSVSlK19pymPdD0jkSwtqzPtgK+Y6h9D0Mvc3s3YvZ7jPeYm1u4vRMQYp5w8yRi2h/fUz6+g5wwy4SJE6ZCbxxBgUDnepztBUjqevBuDVyd79R2WFq8vPPC8lEAsWJUt8AIkKoOCFmX2VIleC/lGvDVzUJrEDHs2LQsTNOW+wcP4Y/G8e0vf1n/P//v/xdzjBxPJ5aYtNVqkiBzXpiPZ1JMxHlimWYRgMXQqT3yzd09b7/4Bbu9uuiYAMbqXOjk+nuLC5IMzNPMdD5TcoLicHQY47m/2fHy/g0Al2niPF3WinbMAo73Q88wDNRaeXz8xPHhEywzxnlNBosCBPJZJe1obToNXFPWI9fntP3c1LxmQ+YnQJ8fJ4/bXfX6nNbW3WoHgulKcFg31dfnGMPD3X211tKFwG43ivuPC4xdL62XFilg6Yds641znq4T98F+GFbRUmflHjdG3GVSaUlZxeRIAQ7B8sWLG+b9yLwYzrOgS/e7gc5YfDWSqM7aXlQrffDUVOi9oXMqnp0uzKePlBiYD4Vpn3EWyDOdr6JNtx8Yu0AulWmBKUoymqeevMzUksnxTEkztSRKstTkoGZxUs0CWlEsNQujQTQZZa5LMUn2y5zkCsl65jDerPeLjJkwRH8XeveHjGMIfZXWOfndU00Nrl917PqdamZZR3DiHJhdILmOYh1u6PD7EesdgzEcrMEb6Jyn90GEV/teY1tHNw70yuDJBpKyqv1hR3ezk9h5GDns9uKGEzpM14MxFB+Izsu6ZT3ROhKwGMts3ep2k3PBl4qfo4iPOoMfHWOQ9b4I8gsGcYwxRoDiPK2i2jHlFQyeZ3EeulzO5CWuBgg5RTFTwMr3PqoGRaIq8Jmr7Ok841zc7ff1Kviukbg1WpwyVCsMOmMcxgV8v5OWr26kH2+kVZjGRDYkDMfzBYM4483TLGDPEpnnWVsBRei11qJAeVqD8TUC1oIFtPiorPdSE3Ky3uG8xL0pxtWVqQFpBhUC9mIWcr6cmeICVYph1jhKdZTqyTVQKaLbVaUw7nyPcR1WNVJqLXiflc2qMJzGWRILFZUisIiGv8QyuYgWEaYxZ/8IMepf/EVtbV63t7ccDodVqLixWratTw30yDmvtu2N5dP0d5pzVWP+fG6XPU0TMcYn4ApcwRaAeZ5X0ef2fYt127Ft32zsH/18T56z1e3aavB8DuBsQZ4GyG41fdo5NrYowH6/p7Wsee9XllS7Rs457u7uANjtdhhjeHx85F/8i3/xbGN4+/ZWAs8qzowG0S5rzb2mNkF7Jy6mMVNjYvQdb1++Zt+PPCxH3s3vFdyRgl2twkC8XCIlw+l04XQ6kxWgH8eevvOUHClZ5WUcXJYzqSa+++FbUsk46zgeLxwfTsSUeXx85OHhKNqnZSbmWed00rbfzHE6MU3CsF+WyKKMH6PakdZYnBXwuNaqRADNe6xehRaXpyKxwQpQa3G0ZEouLMuFuEQFmArWVjyGvhPtn5KKuJcnZVWnxEb77mePPxT4+dYY86Wifl8C3/0+fzTNM//1f/OXysi5oe879ruRbCzjKC0hvopj0OPH93z7N3/FdDnx9ddfcXu3p9M+QGfUKrolHRvEDSCXQh8z1jpevnrJn/76T5nmSQZQB/Ff/eVfUo3hdDpzPk1UxD7UWlZL6Ssow1OkZVMFvv5IA9EnpcXPj22I+vm/hdpOldatn3qZK/BjFMln86y6Op5cn/w7j7/3OFpjhP6rjAxrDKnMmCWTy0JJRYM7A8Vg6xWlNk281xi90RE6bLoCbCtUZqyKgCkzTJOIld0AWBMwJmCt4/b2Na9ff0Hfj3z9yz/hV3/ypxpQe2wQKuhpOHIejpRSefXqfk0ZrkK+IA5TAiiFfofvBg77Pf/OX7zh3/zzX0hg3w8M3nHOM7/59oH/37/8Dcep8M2nykM5YGrG1wFHkAXH2BWIFvaaVn5MgOLIxVFKoBQPpcPUAcMowWQIhO63Vjb/oLm4LDN/+5f/LaV4LAP7cc/u9gWvvvoV/f6GuJy4nN+R4sRxcgz77wkzWN9hux3Geoabe3Y3r6TanWZQoKiiDnrK4vBOnH9KFbteqR5e5+s1+fF0/Ug/7jHGEnMURxelMZeSgEqwEFTIzXvRELDWEYYdoR8l+XdOxBZzIU2TVigL8xKZ1bmhgUu1StOC0cTeGqf6CwK62dpBqdQYIan4ptWEhkItllpFyK0Jc1KvjMX1nv7twe3fexybba3zlc759fxD8PR9YD4LCy9rlbKWlmw3ejb6fYNUDc18nWadvlZjGkgtAWCtBoxbRWTN7gZe3EPwmLs77It7CAEOAvxgLTZG3BIhJfIPvyHvbyEu2OMHzPEjtlZ64xmMwyIVbOd7qjFEY0lGRHG9b9U/r/o+nQZAHqP22VRL0cdGYWo1/yu5Mi3SUiIV/UjJRYJztUfOuTAtmZilSmPdNXB/rjEEOD4+8n//5/83Upb7M2vfeIoSmJqCthgiLbBZxD9NlbV43B+4f/mKr371K25ubqX9XF2ga73ys0Ln6UcRdnzkgel0oWYwCvw4C3f397x89QrnPEuKzKqDt+TEkqLo7nQdoevIOfPN3/01sUC9nMAFZY4IOOtU9NnWKudNXdeFqvt2QXRTdPfTk87r2v9jsLSuwWxjID2p7m6Bn5xFC4BrEcUaqOpo91uAnz9oHL0CP4fDgXHYEaxj9AFnVGze25XlLFGvkbYSH0Q7ab/n7u6e0AVZgzQBjXFhmSXZzLWQ0oKplZve88vX96RSmRbDeYZaLf3Njt5qopYyGWk7cbWyCw5bPEOw9L6IzfNy4vKQSZ3nsl+47CLBGQYSvQPjLftegPlSYY6GOcn6k6aZPC+UnJjPjyyzgIlxsqTFUbStJ0sqSy1OXMCMpetGgu/06gkYVGolJRlf560yT+wT0EWC64oxvzXA/YPGsCUU1gnwLaTEqyBnbaClMfgQ2B8OooUzjtypCPKCYaoiuG37gN0NGO94tT/wi9s7huDpfEev2jK+6+gGac20XY8dRqoxfJpmPlwuFCrdrmM49ATn2A8Dt+OIM5ZsHNmI3kq2ooVXSmVxkdk6EobJZS5t/yuFOWYp1FhxIRu8ZRdGzCBs0ZKkdVMSfGWU5ExcjuRlolRpoUgpKYAuOkjLPBOXWRdYdZNaFixWACAXRPy9qFB2LeQq7VHPOhcNVN/muyo6Y58AP9V6irEY3xOGPT709OOe3c0LfOjIqZBTphbR/TgdRSw2RylOlyLAzzLP5CKOXUuc1v3/KQPkKt7c7uUtC6No7mLM1aUTRCw4KfDThKHRwo7zomsTF3mOMYbOBbF9xlNqIFcxtBBNtw7vHdaLk181WXItI22MYuRRkO0lUwpgDA7dU40V1mKVVjQxm1ONyt/t6vUHzcUQAm/fvmW/3/PixYu1vfinRJAbYNKufYwR55y4u6W0imw3wKYBP63o077fOm0Nw8B+v1+BlcbQaYBP0/3Ztnpdx9z8CNQBntwbW+CngUONhbQFtBqItbWFb6DU1mGstZUNgxAkGlAmhe6OGOP6fu1nt7e3DMPAPM/c398zTRP/7J/9s2ccxwpVwAiLCP1bZUc604CfrCBxpC4RQmIXOr5+8wXLfeSbT9/y8dsP8ntjFPiBeYkcTxdKKhx3Rx6PR1JMOFvYjaMUekqklAiI9tV5OmJmy2W+8P27HwA4Pp55/NSAnyMPj0dqrfje4XsdczXaqLUwp5k5L6SamebIFHVeBoe3FlQ7rAudssLK2uqu04pSICeZe9bITFqZETmDE6mbeTpzuUw65sI6tNoSRvUsc2Q5Z9Ic5TqXiCnpJ0die/yhwM//BfhfAv+xfv3Pfp8/KqVwvlyotdD3Mkm9d8xLlA9UhUpl1I7xMl2YLhfmRXoDy5pUXSt+20pM20CK0pZL0V5ORUBFDVMW3XEYVQ9DJtvnzSnComqL2ZW/81upNj/63RYeevrL62vVzVO2UM7n4M+GQ7SpRv0U0rS+6+8Gf/7+46jB6nVhs9hq1/auVi1fr6W56je0/6yioq2SVCxXwKuBauYarDcHBsxT4MeYgDUdznmGYcdud6DvRw77G24Ot4TQ64ZmJMhIkZIl0BAXoBaDN4chuFJiDT5I4rnfdezHjv3YE7yjU/tdg1TEpiUxx0oqloLoFVzptT9mVmwpm8YKI8FgRFeGK0uhJekr6vVcY4gEs9N0AQYsA8Z40QYJg+gE1CxJd60C9ngRzbUuyL+dF6aFF3p0rZlitaVt4/hmnVW3L8Q5zUhy1lqswGgCH65AV5BgvyC06ar3nVGgwlqj1WBLCPI3Zv1bYTpc6wsSVKUs4m25FL1/rnRJY6oAlKsIpGxMhqY8YTWgA2lpqBR136g1C8NLW1TXOdf0HuA6r3878PMHjKOuf1uAepMI/zTDaLNO1HW1k6mqbQym6tfVcaEoEFapVZg08u5yv4tPeocJHYQOugH6EYKHfqB2A9U6EYR1CVLCjHvsuAPvcWnCxkmAfxzeOAXdRO+pAllPeNvOtboLakBt2j3y2cfeYvdF94pclSqcZD1JSdqZTJExN9WScmFJG+Cn/k7g5w+aizlnHj59IqvVcVbh1OYeZOsKZ2EAcUZvianHORG47vqebhg0oChXcFWZadYKM6E5srR7QA4JPbwL9N0g8zEHXJbkzueEyxJQuBBwXSCntOpjGCtaPS1B/lEeUBtB+1r1lIr32mzHKkmle/z2MOv/rsHzSo//XA+Ba2xAbWBQW9+l2mYsv20+/kHjuJ7rJuhvZ6Sz7PpZnvxfPq9pG19zA2vJIhIgi+6dJNW1SuDcBY9TZE/WJCsJXsOW5IILA0uTxpALnbcEb/WiV2rN0iqak7A6sBhbcFrFFFc80SxA961SlEEClGwhB0wNwthJjposplqyBFPXYa2srWoizAqruG217SOqYKU84PPbQhesnz/+4DFcq7bOKctPWp+rrVrJFXZhS9a87jtd39MFAetqNWQMpg+ra944CqNr7GTf7IM40riuwzdr4a6XNRODKYYaBbwsLmj7rFj5Widx6xXYlqa6ouBZhjVJKroXFgypQqoyI2IRJyqn4FYLR9fWoirW9blkAfCWSIrL2uKSNFnOuremdC10rHvTyqbI1JrXf8vcbw5mv5Xx8weNY9X9u33FXOPm1r4thdJ2PZ22c4m5RK3S/l5NoVSkBTKJU08DnXMWQWsxNEkqCnzNUeResro8mSfrwdUlSvsK2prZHIthBdFrLepOlNa/b2tcu/amInF0ix8Ru3fJFxT8UoDmGu2yxtubK7fGFEbdjqhF8yFtATMag7d9iO3X5xvDBmQ0jZymk/NTtufb77dtUA1I+bxl6ylrdPPpa30CCG2fs2XW/Nzff/5a7ev2+7Zvbdu7Pn+ttUC+aePaagVtnbt+qrVsyxACnghgb6/ZliG02+1WhtHPHH/Ymqq5naaDmttBS5rXNUHbGWupYn3eiWte14SxdYHSLW3N9YvOk6yMHGuki8Aanb+maf1VUhYdq1IhJZmnp/OZ0+VMilm+P4tmVlc7OiPrecmJmjKVcpVL2DCW6/XjyLW9jggtI27/2v7MaKfLE95cC1RL+3yZ1krcjJ20prYy9eQa/955/+9l5/5/BP4D4LUx5m+A/w0y8P9nY8z/Cvgr4H/6O98JERh9fPjEMgXScqELno99x8On93Qh4NQQ1FJI88Q8T4BQQ5dlZpknWYSoOOvEQjFKYHo+X3g4nkgp8fh44v3HBxFZWyLLIohs3weGsReRWcTZSNByoVkbFeqr6qRUDavrl9GL2wbpc5BnO4HXn+nzNL/UgGf7VxtgqLZBbT9vgaq8EobNzcNmcLcNYVdz5B/DQfwZ8P/8h4+jwRgvqGU12jZxtWIXXYlm5SlOL9KbbLC19fKLmLMBjBcxV1B6ZBDRLx8Coe+xzhK6oI4WGyQdg7MB56QP+8X9K16+fEvX9bx58wVffPEV3vvVMk+qJgsxL0AlBIcPbgV+7HrRVAgDaWsy1jP0Ha9fvGIIvWjQOLHfDSFwe3fD2zcvebxkPswRf0mA0oiRvq5arGgfFLt+dgnuueJ+CvKUBJdzJOUZ52CaJlxYR/GZxhByyrz7eMS6RPAOZzPlFPAf3jPNMynNLPNFwLJi2R/uKNXhQofvR6zzHO5uub850PU9ebFEV6g5Eir4WikprUFIu0fXr2uVX9tVhh3WOWFwdD0Vw2W6cNFWk6z6AYC0hqnAewidtolZ0Ruy0gIg+gXyvn3JKygcc1JBNdTOXVTlc5J2v0ZFlXvCEKzBW72/U4Ysi/Eyz9KDnCKX8yNxEUZhSVFFGDPVqHMJSBtpa+Z/pnE0xhL8qEmAVOaoVjUI5Bp7F+hCJ+03pGswswEDfAj6WTsGP8h6OA6M+z3eO4Zg2HVGEgQxpqEWeJgWPpwWUq2kcU883Ig7Wj9SkRbGJYlLj7EVb4zoJriO4fVbDjc7bE7spgfG6QFTMjUWShSaufcD3vXUXDDHM/V00fkfMJtKpHXS/us9eF/xAZwH5+vKNItJAuQpJ2IWcOUyZ2KUILYUocoaa7Fe9EVirpznTEzXtXnT+vtscxGqCuGq1pUaGNhe2Q65QsyrxoOtskJ13Y5hd8O4v6Ub9uA6ZWAVEdFF2K9R6T/GJswiSbsATBJfpFKJkuWw5MySkiaSrAGHxyPtqSjDTp2KcJChJkgxs0yRnCPFRYpT+LVmad+i9bvrRy4b9iZm9fRqTb2ykdUfBTJrENhAndL4QtoOpUCohukCIja2lhHWqgSg5tnim1oKl/OZmsHb91xOFxHuVT0YZ83qZHJNQo1oi/igc25k/+lRnOqcsEKMtdSUKGmRwbJGhCAxVOPxtsM7g7NeClzGYnqP7cC4yugro5cg05We0d8QY8Z3jmHfseTKbGBW44y7nac3hWDk7/bBKQjicU5E/VN15CoaRDkaSrKU4olzIS2eFBcePsycHieWuTBfjlwuH8lpJsVZLM8Bg8OaIMmusoFTMsyLU8Za4VIX7NzAtFZwquD1MsjxbHPRe8+r16/p+47buxv6PmwGTK+z76WlBjEGqIAPgUShloTxHWPfi4Dz0BP20kr06v4Fr968Zug66YRX9ts5VZblJHPRTkR3pgAfLhM/nM8UKm9uOnLq6L0j5MSNFYbZUh2xWgowxcSUxCWm6Dyr2g5vnYqL20oRK0bmDJeaKMVyviycnaT6YnXaQJ3WEpNYLhfiIvvxvCzKxtXkpKpldYWgdsmmVmpuleuLFmerMsAUWKp52xb+PHORSkbWM5RhbIzFFk12jcV6g6tGWr5ch/ED2I6CJ1VLroWooGOqUngoRgxgouoYxSIuZqVkYpxZlnnVh2lLmHMB79VowMr6vra7lg0goeeek4C+FQFTa3VSBFTwDCAmYeXIc8SV1BgxGkpZ7tMlVry/5i3yHpVpzhgrLIhlvhDjhXmZtKWsFVR1fpq2CzTQXgBciiGbojqe0hK3yTSebS5aa1e78S3L5/MWrC3gU6tYYG/bwUIIKzsnavvcVssHfuzwVWtd26LaeWzBk8bYam1kjaXz+WN7jp8DNFsgZ6vVs9vtGFTs/XA4rDo8rQVs+5pb9mv7/O0zbl3M2n22vX7W2pXtZIzhcDis1+/Z5mK9tlyvuowrYUHaoOI8U1NiuUzSOhdmKIiGoYNdGBjwstaVwlIk57el0ntPNZXOiSu0KUIm6TWmjcpeLFUY1ElziC4Yui5ANcRamVWn6zzPPJ7OlFrwaSHMEucMXccQAsYa+s7jOkcqmXL8SDx9olDAZOkIyIVUF8wi0aJNhb65FluJnaopJC8i7MYYOi+t+AB1EafXlJKINecGBCeVEVG9uCoGV10omJ1cV2+s6J8C3/6Wcfl9XL3+5z/zq//R7/rbz4+cMw8fP2Ct4TFI5d5bR9dJIu0MdLbiqAyd53bXEbwl58QyT0yXjhyFEmaNJabEPEvf8Lt37/nbb77lcpn48PGBb79/R4yJ/X7HnYriOXugO+wAoVznuJDigrUiWOlCEtG2FemFKwijAhlVoZVtLPoj1PeK8ZknT5T8YSt8eYVo6meP9kpP4KEnP9/ippt/fo5JteNf1Vr/6U/8/O81jgaDsUIhbW5GpVzf01qL74S6XnxeFxe7Ah4KgEh5gmADfRiwRnvdtWd+d9hzc3dHCIHdfs/t7S3euxWhNsbiXUfw0ht/c7jj5vae4AM3N3fc3d5jVLRsUWcE64Tta62hHwLDoLRJ0zzBQJQ05dyKFqKctdzsB4bQq5uZJJp91/Hy/o6vvqx8PEa++fQJ/+lMrVIRFJvaLNTYJMGjpYnPXtlAMr7yvjnB+Rgxlwq2Yn3C2HWDepYxBIg58937B0KIjKPH+8yCobqO7ngUkUYVFizFcXP7gq7f47tAp5vS/rDn7u6WEAJxcUxOBAmj7xg6sXi2xq0BexPgbtUnsZ01dF0vwKu28hi1fD+eRGFfRCMFrGCtAkm11IcOHyQ4n2JhSZqaWyeaTY3RYyV8EUtV2eh88CKiVkV1vyj12pSGqlv6rid41ZMQfWjRMzifWeaZeRIHk4LV8zQy5tWAyVqZ0yp9ed5xNMbShR1Gq/HtvipZ2rtAWuG6TqqToIKQKuIqbC5HGHrROBj2+MMLrA/c3d/y6u0rur7jbgy8OnQEZyixUhbRcfnrdw/8t9994BITF9dzDj3ZWLL3FBOoxUrbxhTBOnzfE/oBby2HuxvuBktnKi/ziRf5DDnzeLpwPE1QoXMD3naUJVH/7ntyege1CvMMJw8rguDOG5wH31VCqPggga91sk4tWq19uFyYloWUYVpgya1akkEdGawXUDHlymkuLPmasJT6/HNR+PUzxnicHXDG431P3x9wLkh7wXkmp6xVIplC3XBgPNyzv3lBPx4wTpyEitHkr1ZSrcQs4p8lXveeGJNqXAnws2RZxJcoAXKpVavgjcHnhGlkxGnJuCAObNVJYJIqac7ab75QQqIEsQcWlQxp06xayaoYSQqLWlobfR9jdN7+xN7Z9l0FfK6t1Vu2QtHxFA06a5oTaMC5liy017PPFt+UUjifT9J6sRR5Pwxei0zOVIKpSuau6y5vrMco8OO7gW63xzlPCB1jry3VFLy2rPkuEPpOCiL9jn4noO/oPdYPYB3FB4oHbGEXHPtO1oqbfqTc9eRcub3f8erNLTEXPs2RhzlSqQzB0NuEN4ZdCNwMTWsi4F0nF8+JAK6MQUtOCzV5Sh5ZpolvwyPvreF8Lrz/4ZHz6Xth28aJoq3dBodTy2znNszr6sjJkCiUWTQWnLN0XdDkSLeQK/LzbHPRh8Cbt19wc3Pgy6++YL/f4bQdTxhzAvw4Y3k4Hvn2hx/ExYpKRFoix6HjsB8JXRDdvJsDPgRevXzJmy++oO97zpeFx6M4yZyWM+9UY+JSDadqSaXyYZ55dxHA5HzpIfXsgmOsmRfeEpxjqY65irbWp/OZh8uFWmEcxNSiYMF6TDWis+UE+Km1MqeCKZnkDCdvOLWCR0pYFQzOKa2Mn/lyJs4XaRmbZ2JU2+tWrUduj84Le9dUqDmTiEyXk7CFUF9IncOFTSHiOXMNNUdu9RbRPZM5H4zDKTuuWI/xA7bbUd1ARrQWBQw3CvyYlUGcUeCqZJYcmZN0I7TCdGkgtC60XbAqSSCxH6ptKZ+5rmBY+zNjHEkh61K9FM5qUdFs1bwsGojQwCPBgxPCGq/VECPMrqzFRUBcUL0kzSUvXC4nlvlETAvLIsBPpZ2HAkAKULPmQ2VduzFX4GcDajzbXDTGrMBP68z4XNdm+9wGbjTgxzlxSuy0LflyuayaPNu/896vQNGWJbR9z91ux+FwAFhzmq1LWPv5loXzU2SA7XOGYaDrumsxWwGgcRwZhgHvPTc3Nyvw08Stt8f2c7X3asBPA38+B7m2LKLm+NV1Hfv9fgWjnnMulix7vzUGtEiHxsUlC6CcjWUaL0zzhUvoGVzHvtvhjOUQBnYmsFQPOTJHieFtgcF7jDN01mFLxZSCt5Zei/S1ZuY6UTLMKXGOUtTa4UFkgJlLZUqZmDLHaebj6SStxheLDQ7vLC/v79mNexmT+1v2twdSySzvPBeESZTiiRQnoJJioRJ1TDuCVZaoDatjV66ObASg6oIwrURD6MISF1LJ1AVMkvsxtYprZZVQwVi64Ai9mOIMwRPcb2XCAv8I4s7boyKBmWgsAAWiSZS8yASkkrUqZmtHGVoyowtllcp/TolijIhdxkW0GKaJ0/HI+TKpQNPD6iB22Iv1JfW6kDWXGmEPXfskMYWS8vp+AgS08mKrPpqnH+pnAJefI/eYJ0jOBvh5AiA1KshVg+NHr/nkPTe/MT/5hOc5DDomck1q2ynW3UKrKyIEQrEKdqDtGO2rdVBbYtrjrBfR0HHEOc847tntZCHa7w/s9wcRKvUSFBtjFPgRxs9ut2c37vA+MAwjfT/oZiDtWMJuMFL5tUbdTnr5mbG4hs6roxbIRlkLanEaWEW/1zlnCJ0IlU9JaPfeGsoqAms2DwE8zOoYpUmMch/lWap70aIVW7A1g/3dYl1/36PWyhwThYTzkYrDxoV5ntQNcFONqhBCB0ZAvUGrH8MwMHQdPnjp302d6jeIhlNV4Me5hnYL2NPaM4wme6Hv6JXqjpWqQKmFVDIxb1gq2qIVQifAjxVHIu87uc1dhkWDF+21NRgF+9pnErqmAD9OksFayT5Rm/OBKvZb6xT4EWCp2fXmKHbCDdDq+lGcArNa1KaobW/CXKkmP9l4n+uQa+rU1cqpeOTT9sIGVJZ6rZLJuYuwsXWiMeG9x/c93ThgQ0e/28mj7xj3gf1tT+essH0U+NnNifBwJllHtAHnAmhl3ipUboFcG7gi446T9oZuDHS2MlTYFUctSYRIVcjV2Q5nOoxNuL4jhCBaJdqyZFuVzKu7UXD4IO5Gzqsmz7XfZQULShX6fqEtuZu116DUeW0HK1IAF+Dnqkv17EcVxwqzLqVGXe0cNVedN1eSvoAg2hJkm5h1UVemrPbTLTiNa5IB8h4xXS1rt20HKSep5AOuFqxWpFZdcAyVjMXIPpyzUrRb+8Znbdi0c97sobT9HO3pMev46M0J5qrdsB0bef+qL/XZWFQFldZ9/nqs14zt7Hi+Qz5Ku/ZRYhwdTKusEHGQbKCVXk9bBGg2llwNxXisSwLcVgGvPJUsKbw6NoHNDuuigNUOsF4dCxGWQ5HkszoQxz4tcDj52nWGcXD4bJhrYS6yR3onLWSNWNQe3pi17ct4g3EWTBHgR/V5artX8RKMeoN3Aryr5dfK3Nk+zNpWdf237N1GGWJl3cvb40fh0jMd1liGYRR3rXHHbr/HO08IvbqtNcaPJdVCeAgsKYp2jdoMV/Q6O7fOYW837jtOPmMBAV6z7MVLykzVMBVpyZKfCUi2pESMloVCTMI0NQrspgbexsg8iz5J8N2T69MKL7QVpGo7aSkkY0hZrNktFZeztPytbAJhw5Z8bckoZeOG1CQYuGrq2M/i9lLEhriCGrijLJSyXrPnPIwVt7p2NM/IusZiZo0/rg9pj7LtPtO/A6Mt0LoOW7EaaQ5htRZlnV6ZLy2ia85KxlhlqEsRSe5tWeNskbwHWJ3GQJK7glXgR9dWihaY2gdtcYXd5Cba8lfaOigfxpo1tNHfCyO0NOZRe8kVGF9D+nXvuY5UA7hkHfgdrl5/0NGAkG3b7E+3r7f7rD75289bnraP7fNaMXkLJjUAacvI2dqzNxZSc80C1vf6/Fx/Cvhp2j193z85V2vt6mTmvV+fsxV6biAXsDKOUmPfbVrZft+jPbc5ff3cNf5DjrW1jXYvmSe/a4XRalgFzHPOZNMKOFKUdzg8DkfWmNKoA6F2kLSxq083hqrzoLHgU5bYL69mCW0+iNlLUm3FpPqAthaKd9pyCSDreggdpuRV6gKgJBG1kI4sjZaswSEujsY6ZUN6MFJ0KwgQ1nnRL4454c1CxOKoOONwVq6RKVVh1+vnNA6ME/DLW3vVGfodxz8q8NN5x5evX+AsdAGcNczTxPHhkwjDVaGcGyqBW+z9QXR4nIrjUskpclH7vHleOJ9FvOvd99/zm29+w+l85sOnR77/4T0pFca+Z+h7druRvgsY7S3uTOXQWUzv4GbEGenjnWNmWvJq9x6TqnrHSE6yqV5v3SsoU5GEPW8a0qtiNyvQswI+tUWC+jr1Jx7b57d3++wH6883G2dbdNbfPu+WaqxlGHfXvu0ijiMZS866QXoFM6yIOArNz+K18tH5gSHc4K3nMN7y4uYVne/UWUHo7V3fBA9lMSo1QLbkVJkmGYdaZmo9Yozh9mbhMiVC6KhYxnGHwfD9d9/zzd/9hpgSWQWCvXd89fWXfPXVF8Io2o3sxgGDbPzr5a8tOKksqTnEGIIqqltnefViR3KW24eZ736YOD1OxNlxSpZpBoPFhR3WBgEC6gxEaq6kpZBTxVWUeWLJFZYslTbjKu6J8PTzHSkV3r17wPmJvo/SEtQP7D4dFVQR9yRrDKHvefnqJc57xt2O27tbui6IqOVeQKCcIimK8CNF6I5t3JsIYLsn2n0kq5ZZgx1hkxnV+azMiwBRLUlsd39bbI0xWG1BqBXmJbHEooF3SyJEUNtqdVgYPwWMMLmsM5pElGu0B4K7GqH2W+vkOfqUnDPTRejR8zzx8f0vuKgF5Hw5k+JCTpH5LFXOtCxcTo8ifAnAv3qWMZSgpceHQL8bccHj18q4xftFflaSMHtCv26ESTeym9sbXr55JZbf445wc4f1Aest1VuWWkjWii2794z7QK8Viw+1sDs+wmSwJhCMp2BZgKVWioHqgd6CM5iuYnzGu8rbAd4eHL0zvAmWV36glkLY97h9J44HC+RFxL9fvLrjRQiyrmrU6rzj9nbHbj/ivWV/MzLuJGA63BwYd9oq2jt8B64Y8J6xiCvJkiwpa6Uwa0JTYU5FBJJLBVrQLbpd13bc5zwqhiT93ogQocVS80Xc7HKilIVSM9oUA8aQ0sT59KDOSBVvxXErqYOJVPMag6dogCnv2IRJRa9DBEsrMM9HHk8fr0FyY7utID8rwJhy5vvf/B2Pn75nni7kNEv7rHVYq9oTCratQv3VrHtiLUa7HwWQzVU1wIyA8wZWanjVtcEYSTRLjJQkAffTHXGj5aMivKVAynG9fsbCZ7vmP/iQdeZaRaUmDdw7vHMEYxicWfVUWrJVsCRaIcBqoi0ufDFmEcKsBaeMH+ssLijY6wMu9FJo8R3GCzhvghORdWvYDx03ozBVnYrW1wpTMixREkRvLLtO2kuCE2tvZ4yyrzMWZexWLerQ2uaqJH2mLc5WXFGLYxw62VNr4f72lqRt+rYWTC1SOOgPWrhR4UprCcEzLycqwlJcoiGXiPeOru8IwUNN5DKLc9IzH/3Q8xf/5J/Q9x2Hmx1dFxjHHXd397JGGgneDVIN/uHjRxbVDlyiiBw7FVEuWVxW3DSTfObxdObdwydC13E8zXx6OBNj5tPpzKfTmZgy0QWSDRRjGPqOl0OHMTD4KFIHET7Zyvc5EqwjmY5kArnCx4dHPh6PAjIU2HvR3/LG0OFIFExGdINKYVa2QjLwYBIhSbLR1UzQ1syGstWawVScE/2+rl7ZB0+STE3ujDLtQOZrXGai0bhtE9E0W48NG/YffDjnuT28JOfKsshcaoYdGGmZGXY70WUaRpF4QIDbFKM6dxZtb6ziPtx3QCWnhRRvqCWL69YyCxATEykuqk9ybV3su1Ha2K2Vti8nYuZxEUegBtanvNLLtfXRrHhUrZUlzixR3ut8PmkLfGZZhNkhwI7oS1pjKbUyR3EzclZaTauxhG5g2PXSjluTxGRxxkwXap0wRkxMpQZn6JwwaoUZb1fAMil41KC7P8auCFcApx0N1PgcVNnq8bQ2rForXdfx6tUrYozc3t5yd3e3/m4LeDRQp4H37bUbuLltrbq7u2Mcxx+BKz/XgvZTn6cBSA1o2YI/raVry1jatoO11wGJRRso1LS3WuvWMEjxu33eJlq9GiPoddue/xa4eo6jlML5eBLJgL6TuBwFi6U2oeLGlRwjD8dHaobRBJI5440jPl649QNhB4/pQrYQS8bagHeD5KTdSLWGWAvnZSE/yj1ymU4cT+LSNSV5YCx92GMOGxfYKrHIPEUeH0UyxjqjZiKOwQ2MfqTrC+MukfdS0hr9yP3+npQjszXMigl4LX5b69iNB4Ze1oDQDWJoUA22VGnbt5YhdATvWGLi/eMnjpczqRYuaZHit5o6ZNUTm6YTKS3gHHbsIYjpVdA9/ncd/6jAT/Cer9++JDgYemFffHz/nvnDt0znB3LOxEWcBsZgsOYtXedXsUKDWBzO07QmX48PJ5YY+f7bb/m7v/1bjscTHx+P/PD+E6VUXr96yW4cuDkc6DyiI1ESnS3c9AafHb3fcRhHcqmclsxpyqRSmKYL03wm58IyX1hmVhTyyhySowLZJEzrpyzlJ6rDupGazb/Xozx93oo+KJOmBd3blzJPw9dWZXhyPG98izWOYdyvm2SRqJqYhcGDM5hgMa5KMcI72UStJziPs479eMOLm7f0YeDl7Ru+fvNrmbibmsIGf1ktt1OSFoWoSc0yR6U4Gu7uZi5TpO96um7gxYuX1Arf/OZb/ov/4r9iuly4XM6cpzN91/Hv/vf+bYINjOMIrzx9v9cNU5FdBQGMfrvELIG4teIK4w02GN682nN4sePDxwvf/eaR88cT57Pn26Mh6mbchR0+GCBj6wVDJKfMVC5QIiAudWCpGXIsLKlgXaWaJt34vEdMie9++CiMD38UrRcfGPqdVkA6hkG+f/vFF/zJ6z/l5u6W29sb3rx5Qz/0Ws2UQJC6+kFJ642yYQQRbe8qiZh8q9EFKghbWu5wZT3IWOT1b9vDuaftY80pQ5JcSe5EDLBZX0r/bGN7tNc05rqBGtc2agWo2FaYpSyQ1dpbHD0SKWeWeeHh40culwspRs7HR5Z5Ii0Lp8dPLNPENJ358O57pvP5WcdQNH4Gun7g5uaWbuiRsLpgTBW9pOCoxdHEu41xiK25VCdfvnnF17/+JeNuxA0D/rAH5zhfznw6Hoklk62Frsf0gXG/58XdLcYYfkgL+/fvqJ2hb/ax1ZCSME6qMbgAbjRgLSUIs8p7xy9G+MXB0QfH2/3Im4MELv5Tj3noSLFw+jRzflxw2XLXveDw6iXUQpqlRdd7x4sXB25vR3xwHO527A7CHPO+w3rRIjN2LVsyWC/ON9WQsic3TaSlUlJliYVPp4VpzlhTFShTOMH8xPr6HOPYgB8MxojTirRJQClejQ2igjdXplxMF07HTxgKcb4wX86rbWtUsEfAyXmtBJb8WZhepeqbVAfoY/D476WXXRIfp3PhWoEzqJhozRwfHzgeH5R5OxE6iy2eWuLq4CUlNq3eGe3xV1C9Ku2qMQoMUkQuGgg759ZqfAOuSinkJaml/bUyTQN17HqWCgAVajaYLGPYtOL+PlXR3z2GsuZQpUKfS4Ug+nB919E7y06rcZJcSKKylMqUpPqXq2gvFbK6kcj4mFqwRfXCDOv4NcYIwNrHbAyud7jeYZ3hZuy53Q84a+mUMWuMFU0TP4CxOLdn1+1kPbEOb4UV1NuCR8XFq8HViqlWCEZGWQCmrBrLphqoDls9u6Fj3klB7cX9PWjV92kiGbQl+irYOk2BaT5TkUAXU4gJQnAMfU/Xe1JEWofS9Gzj145hGPg3/63/rrIshFp/e3fHV19+LQ4/RopZxhiKgb/+5hsu88QcYYkLi4JbQyuMxYgxM94l8EdKkALX6XwFfo6XhY+nSZL/fhB3LSeV/5vdIHja5QPL5UyumY9xJpyO0srgBqofyLXy4eMDHz494qxlZwN1PKgJQ6B3wsK0GcqiNtYxSWunqXzMGS4Zb2Ak0ys7zWlbuzRGiX6GkPLcKnK6ZWRsRWxzaSK5zfpdq+Abs4pW1nrOueic5/7mDSkWLi6TUrnGG8bS9YHdYUcIHh96ZUzqulIWQBikodM2RysmErJuiY4TLZbQzyj91bJGyj3iNPnesRv3WOsIXlrUDUZsoGfRA5yjgEAt9i1ULeo4XJBOBQF+FlKKvHv3jo+f3pNi4ng6c7mcKaUxG9A1vYqjmpE2EmOE9uy7kWF/UOCnyJoxn7HHTxRlGShujLeyZnVONTX1vs8FplxWBuxSxRX1j4H+/BzwA0+Bma0z1xbU2bJqtoDQ9vlwFW5u79laptreeTqdOB6PlFLY7/dr+9XWYr0BNz913p+DKVuGT3v/z5k/7edbV7Htcxqo09rAtm1frQDhnFu1jdrnam5yDejans9vEXb+g46SM8eHR4ahp/ce570Wg1Qk2SBSBUBcFj49fGKZI2N2LDngqyWRuA07DmHAx8BsKnNJ9MOO8XCLc16cCFMV8sg8c5onqJXz5cxJgZ9YKjFXjHXsxwxcJTlqteQM02Xh8ZNgCsZKPBG8Z3QDu26kXzKHQyQvwvgbw44XB0/OkUuFi9SUVRtU9GBvb19w2N9gnaPvxlWmojeegJP1uuvpfWBaFr798I5PpyO5FM55YVF90yXNpJyYl4n3D99zmY6Y4LF7ic1NRXTMfg/23T8q8GMM9J3HO0MfpBLfeYu34KwEiNkINbi1XwnyeaWNFm31ahS3Znn49GsSsdYthc17nCtYIyPjraH3jhKctpeInXsxmYxoYJSSSTliTCYnpz2DVfgLn13bWivFWkyR9o7SaPt1SzvfwkSb/+tAXQNy3QLaHyrC/aPh3BCAPv/dFSB6ZuTH8KNFTlp4DKboYtcWPW2jEmBDxCqdFRR7HEf6MDLudozjjrHfaQJyFSUV+rRU+HMWMC0nAWCu1Wyx5m73QrMvbD3nJWX53SKL+HSZVJx3EUpfaG5x6zCs4yBNBZqEtaJm21j0Gd4begxD5xl7x6631OTovPSG2greSNXNrKJcMjmd8xRXwXicd2B866Deonl/nEMTPknHEsYULTgta59612VqlSp2PwhrbtztGHc7hkEc09Z2UmWySYXJaYJhVqaMAJ5XNwkJxGSTaS5Gtda1ytXmQG024thVAb+1BKCVRdXqwLuMdwLqeKVOXltmxKHiKZikp2KMAD/2+mFaa4HkW1WZPo3iXjHG4bJU5JdRdMOSX6g546wjOk9OUSnvlb4fpYXvmQ9pqxQNCqGcVkBFqt21bcJqIm+siC5bPCAViK4f6IYRN/T4vgdnmVO8BvOmAXZSAXFBmWCdJ3SeLnlq9asmQTbyEMtjJ/a0zpK9JTtpw9p5wy5YumAYOkffeWqtDH1gHDqiy8RLInqxwu68Y+wclEK0kLw4FI1jxzh2+OAYxkA/BN2wFZCElSkidDEBoWqVinRR4CfVSpGOFbyzOFdw5Vr5LHqf1D/ChBQWpATn1jswyuhwSt8vhuwa1+fqiGhoVqjS8jxPE8k5ck6rgGXcsH9a65ckbtfgMW80AKpaNMu8ydqmCU2nSqa5sDZqKaRlouRILcJb8U4YfhVHqdoSbPQzUbWtVvdzU8Eqg0sdK67wLqsj1ZP9SysCatC5Xj/Bfdr+0wScr8H39esfaUndgMi1XIsGskZaNQVQ4EdvxlqrMnmu+oENbG6JXK1gdHyMsk+L7kulSDtirVA1qcUaXLX4KsBPZzKTzThnKd5TVE/IdgVbZWxq9YCnGkupQeImncNN1FY+WNV2XGUlGGkZNeQn679VwC54TwlBGNfjKMCP91rkMIhAu3x/tWYuDMNATGJvHvMk7chO4sCmryef/4+zng7DoGyjomu90fko1dS2r/jgrzFqyWDF8bBoMSPXuoKqtVZcjCxxwSobY0mJlKSdOanumi0yLqairQyqiWF0vy4Sz0xVYmS82GuXKol+igvFurUN0xgLpcr+hjLvdF4V3ZctogMWyRQKjowhiwtcK+5QxQJe2V1bBq5ct6d89BYhrV+rsoY0Hn0qtgArnfA5xlDjzVqKrnPaTqrAqFUWr9E26TXSq62dHKpTfTCNH4L3upcXqE4+Wb06kpkiwcIV3BagqLUNSkzUrcBP8JHgZY32SyKEqAzAJqoPPniCF12fED1dDKQYmS5nlnkk+qQxibgh5dXUoWKSgMvN4ch5YUZLa3zQ+7cj5J6ck+i2GYuxtXVj460wfnp/3XesMaQi52hNFf2jUq5V6D/C8TlQ87kr108BOW0t/ql2rZ96/nrvbPaMpvXT7Nu3P9+2jbXX/xz4+V3sn8/1gH7usX2Nzx9by/jmErbqqm7OcwvOrnv9z3z25231Yi3qXMkMPF1A1gJ7IaaEsxFfKjmrKqy2QhVTCUWMD5KpT8agqOtd1cJsVY2yeVlYoopcV8FmTWWdM1Xzb6v3Ny3Oz0WIC1ZazUppRSpUL03iseADgzPk7ChdT1l6DJVgLcGJNt5ukLZhax19PxK8AD+D8QTjBWDtejoX8NZzHKQIkGvBpEAoiVwzPjlSFvmaYeoFpPYO4yW+3mgX/M7jHxX4cdayH0ecLfQ+40zhdtfz5ZsXvNhLiw6IG8/r16/5k1/9ksPNgaHviHHheMzMl4mzunct88LlLAJ5OUWck2RkGHoO+x0FuLk5cHt7w+3dAW8ywURqTvzi1S35q9ciylYcS3HkCg9T5WEWMdB3Hz7w7v0HYooE55isVP6dkypA5Qo4NPqhNU1kzK1VTVYEWsRli9IbrpsjsCpibMCfWmkWjLDRLtDK3+aP9fsWbepi8UcYQ5mcZ9lHvdgMYw2herHFTGJzXYpbKbLOWnbjnvvbF3Sh4zDe8eLmLV3o2XU33A53eBs4ns6cjo/EJILMk7okFK0IV64Wl8LA0AlqDCUt5LiQraHkhZIFBLq92fOrr79knmceHh54eHzAe8d+HIWVlfP6oAkNbsbAsL3WhmJkQsYswYQ1js7CLji+frWn/MkLjkeDT2/ozRFA6Hc4ak2UdKaWmZIL+92i4muBlHeU0nGeEry7YC4R68D3FftHmKXWOfY3d8C1AuesX4Vth93AqzevGMcdX/3yK/7k17/ixcuXDMPAQcUqa6t4oQmVPrwP9F239vmb2irw1/X+SV992bZy1TWJaD3tKztgHZanCbhoWFQJyK/iuyuLqJZCijr/SrNzV72MBuKZLfB3XT9LvgYXWTeLUsVqOysQmZKInILH+YFQrbb2Gfp+Fjq59czT5VnH0BhL6Hq6YWTc3zCMI83dSoAey+nTO5YFrPf04w7nA9gB6/YY4xn3N2D3lNJhiwj22mrp8ez8QDYZXwNxMpgMQw9LFNB+HPZ8/fYLpiVikOQRBcWNfg27nm4vIGG1ojlireHF7cCL2wHvLDc7x2GQALdzIy92lhQLD33guJswxbCrjgF1YIuRkqT949X9jrubEeMMtvOYTirSKVdyjThrGQZPH0R7QgXkZMCNWiEXabssubJEQ985phkuS8H6zGkS6/fLvIjD1zMfu37gf/gX/5Ym7v56XkbAuSVmztMilvP62Sow7vZQ1GEuZ+ISRR9rBXJaUPz0a62oFppoBzSkZU3ElGVqjTD3AMgJstgVl2UhzxOUTJdmTE2iQdMFxv1Bg6qeWkaZhCVBjYq7WXwDVVOhqmV9yknbpBtTQNb9pEGbMaqpYQDj6Idx3ecayNPG1+geaN3nAXJj26Q1oX+uwxhDFwIlNzBGPot3ojnlvSd0geAcOWXq6rCXpSKbsgij42htX8a29teKqQLqiq37tTiwCrKC2lMDqKNiUdem5bImsdKGYqjOU624gFUzUuyIQUSwvRVgdwiGwQurMmjCaJ2lG0aCumx2gxOWl7UMXad25pU7tS3PKfHy/p5lmiTZtE2DwADuWvTS+3JZLnz89Jrz+ch5OvLtd3/D4+mjgBZWChSyxmRh5DzzIQlxIOXE+XxhnidSyhjjGIaR3Thyd3tL34lb0+vXr+mHge9PRx7fW9KyUH3gnAquJGyN+HrBYBiWyA5wIRCXwjyLwPq8LCzLTC5VgLGSsRZ8jvgo7p9xXlimRC2JWiLnItEy2uJXKkyXM9P5gneW0/GBx097fAiY/S3WewGUVlRVAPDiPKlmLkvClAumJD5dHjHLSSrXCvxYY1SzCQSoa0DBVofFrm6bbWpJ7afS3KEEfGonwVrjfN4xlHalaqWo3IweqpF2XYOnVEcpIk+Qs5bbCpoMGmW9GWH+hI6hHwQAM9d67GpRjRQE7UZYXsskdF1H34l5SQjisCk/94y5UwZGWXUoW/uLoQGLjgqkFKWdPmf2+56XL+/IKXM6X7ioAHjMGhPXKutJEgFmpyB/8J67uxv2u5FSC4fbPSnOnM9HljxRquRkO5/pbKH3jpe7jn3ntVVUPleucEmifxdL4ZQSyx8BhAVW5k1jqaSUVhbOlvGTc16LHV3XMY7jKtq82+0EHNgWODYJ8k9932K+LXjTfv74+MinT59kze+6lVHUjvbzJhi91ebZHp+DTJ+DPNvvtyDP9ncpJc7n83pNWptaaxNrAtXTNK1C1C1nhSsI1M6ztZU931ERoUTZ69HCrEWXoKosFVNZ5sinxyNnv2CHW768eck+COPROF1H5o6jybi8ULBcThMVw/HxxMcPj6pteNUsFGaRrj1GwF5nHZfHiWP/iHcek+B2vGWwC7swEqqjqHNY1Zywtx13u1uGoed2vOGmF83Zl7sONwRySZwe7zkdP2INDF1Hr618L1685vbmTq9xp+Yk0n4bECZm0ILYkiK7uxecpwupFM5pYSkisD/FmZgj0zJx9+kFp+nIkiMP8ciUFjJZ9OZ+jwLzPyrwY61lvx9wJAKL6BLse/q3L8jxgPWB0O0wznP/4gVf/uqXjLs9cZmYziemS2I6n3n89Kh2Z9JqkUshxUWcH4JnHHphXWK4vTlwd3fD3d0tvi54ZigJ8+qOMb8VDQ4C0XTkavg4wYcJ5pjp+4GcYVkWgrVqH1oJXsQLa62ctH1jRVvXSXOdPKsAZi2kjNjzNgBn3fm0moC8x7V00p6r39fKavSuINOTjdNuFqD2Ws941JqJ6SgMnr6XxMBaQnXYHEgKjpVSGIeBF7d3dKHjxf0Lvvria8Zxx3644W7/muB7yBaTPBTD6XzhdDxyuVw4T5e1N/MpGHPdVptworWWkhZKmikOSlqoOWKM5+52z5/86iuWGPnw/gMfP44YY9jvdlBEyLuoXamAjsoyqWiLlb6vRkwFqXCYrOwWX/HGcugcv3xzYB8sDw+OMr3B17OgyUYohSUnlvlITrNsWuq2I2yJHbUGHo4TU/xArheMA9+Dcc+fbFrnONzcCYtKq0bWWpwXlsi4G3nz9jW3t3d8/auv+fWf/SmvXr8S3SbdxJIyDcpaWTPrpjcO4xoMWhUerI3ZA2xbva63sNkg1g25bxt8XdtUSpbqloA6VSnkFWMrLlRF7ZMGdPqe6/PLKnSbS2MAQUHZZfr85t7U/nZNSDd/21pVcq6UKsGlcxVjAs5nvAuUkhhjpO93pLg86xgaYwhdTz+M7Pa3Yr8eLEMfcN5QS+KHbwPmbHAh0O/2+K7H+QO+f4W1Pf3YgR3J1eGrwxXpFe5NYO9Hiin4GlgmQ46VYYA5QcCyGw98/cUvpLKojjfGGELwdMFjraHvHf3g9N7IWCM6LrvRMw7ynNAZfJCq68vRkcpASoWHseNxL7pEFo81Xu6PnKg5E7zj9f3I3aGnApdSmRUQTtNCignrLMPoudlpb7w6ShgFxqxV4CdWaq4sybAbHNNiOU8JYy3jpTDNBXKE/PxC6/th5J/+m/820HYA0V5JVTTHppg4nmdiLswpc54TqVSq9UIBXmbqPF8FP+FJsLjVL7gCP57dToJjq62QGEPKVYBMWKu8UCEu1Ai1ZJYpU+aTjEGOhJKAwhgC9/sbqIVaR3VwqFAzVKmG+8YCrZWsyUmtlahVLXFgi8Qs+/upnJhikoqtaWLl0vbjP9NHELykZWKs9B5JSCUATilxmS6kFDd79T/8kPs+kI3YV0tbnhSJQnAEL04zwVlSa/dCEollmZmXRLWe6gLVWB0TZewJoiV7Uq1yfdHvaaD5lQsESfWPKpcpcikR0LW0FVD0/pI9raPUHowV1xEnTiN9sAze6hztCOqqNe4Poinm3BNdLW5ucGaPM5bb2xvRwjFXdzWDAD+tIIA6ELX2A2nFWDiePjLPZz49fGD3rz0/vPuWlBam+RMxTuRiwBRKjc82fk/HseMyXTidzxyPj1ymmWmOdKHj/v4O7y2wxwfP67evubm7o378wLc5M5+l7eacK8RIjZEyzVAK/bKwNxUXOqjibForzHEhLgs5i4W0rxlXIOQFHwUsmZeFy5woKXKaFupllhDQeYy2T8j6tOCd4/j4iYduIHQdgwsMu93TaWEMxVnRaSmVc4zE6UyNM/P7b4mP71bgp7GOhj7QeadaFb0kTZvEdk021UrZB69ufS2O0tWtAT+6f7bi6LONIdJqUbXdAiuNalmBH3CU4sjFQhYg3dY2PxSeCn5l6XUhrC5LraAigGxLxlGOY6sWXR08vRPmcQN++rZm6ayu9ar5BWgPpQKQel3lJSWZLbXw8sUd8zytpjbzLC6MSyrEIiy1GCNRwZIGYjjnGFU4mFrJJVFL5nj8yOn8iRhnHJm9W+htYhccX97uuB27VexdhHXhIs7VTDnzMC9Mf4R9sZ17jJFJ5T3meeZ4PK7F9q2uTwM/DocDL1++pO97drvdKo78OUtoe2wBoS34s2XUtJ814KfWyjAM7Ha7J8CQMYb9fs9eTYW27WY/d/ycgPXnrKDPBahzzivws/3bphXU/uZyuayW9g08a2BY+7ut5tCzHRWIBXympkx1eTUcsaC6cYAR3cGP6RFjHIdXO3aHG17sb4V5aAyYSj57PtQFG2dO08zxKNpoP/zwnm/+7jvmWXVwVBS/6zoGHf/Od/Sho7jC9Hjh0T0SXGDsd9yNt0Qf2YcdvjpSttRyLUb1rudud8s4jtyNt9wOB0LXcffmBYcX99SaeXh8x/H4EWsM+93IbpD19/Wrt6vLtDWOppMXinjTqto0qKP4qzixpEgqhUtcWHKSQkScWHJiWiZePLzmOJ14PD/yV9/9FfnxIzVHceiLv7sg8o/c6mWuVfl1cawE70TB2gd8J9oMfeuN7zvpqTUNUKjk3Gz0ygp8tAA3lEIq0CW5o1rQK4gf6t5kCd7Sh6YVrol5tYzVMmGxLtN3HaETVL45CdVa6fuwtiY0K8utvV9jEdQNWCNtZ+bKCpJ/wWe4zXqttCgNNCqEfNuAoPb9erQn1T+O/uj23EzL2yU4LTi6EkhOEkCLVeBnx353oO86Dvsbbg637MYdQ3dgHHcE11GToRhLzQKoNcv29mhjd6VwqpONUeqmAj9939F1QSuTbu2NDV1gHGXTnvcTSxQHub7vhAKr1awff8gnX65j1Crjm3GQ8zKEYBl7TxwCu3FgN+4AAX4MgiI7W0jJXYGfUqk4ShmoBOYIoevwIUml11bMH2FAm0VlyWW1fBRqqFzzYRgYdzt2+x3jbpQe3b6Xz7rZBHOWlqvmmCaBvrRiOW37WN1EtJ2jVqlOa81yvZ7rplubtopqkui1avM9Z513FXUa0Y26tL9VBoFW0UpugJMCQPp9a92q1GtbYW2uT3Vdb6pSh4raecu56Zxu3zdWRYyi7VCLOKOUrC11XEuFz3UYo0K6Io5ttS3Wea/OVuIi0tyvRPBaaO5W24moRoA0CjkZSRirEXeeYsSFTkV4q2lVUQlWrbHrRroFfrrO03UK/HSOvrPSHYIyDiwM3tFrQtGCyoq2khlpAlmCI/VeBYDdykyrGSiyhofgCMFRasXlgs2V2uQctN1WY/8rIADKLVWOpREpsmIgYAhBwMhcLENvSFnKsF34o+A+WGM5jDtN4LU+XiFWAYAkQDMsKWNdoRgBfnK1RJV/bzpoFVmLGnfUtvvEaCtjbddk00rtxRENAzbJelMra4IiF10GvmYkYbTSOimczwpVmgeLvocwXrNuggWj7ZXeqoNirSSXKV5asr0CP7lUbLS4ZElWtIpyjFK51rW+2fWuge0K/JhrKbFluMh6tQI/LonYrG3Cjs93tCr/U7r8le27lnnq1RWpObCllNRAVG5YYf04vYe3wT4reC6tq/oe6/+3iXQLKLOuZVkp8CLOmrWIVBRgBEN1heqkRcQWASeuLOayrjPGGr1vxDUx58zS9aLjp4muswL6t71awDu1Yq4NzLpqLQk4XOm7DkxmWHrV7OuwthKTsDScsrqetzL946PtFa1KLvinAMopSeLpnad2smeHEAhdR0mFEjPVyvjknKm54NQxrxiDxeEIEv+1ubuCD+KqV5JgOYa6qWBvxqtq61bWFqNahZWh41Xa3lNbWwO0sqG+8XpTFXW0qbmINXGLY4slJ2GNGAq1aKGtQnJ5ba1fhWeNoaBMCVPF6a2IWUUtWcFLAU7abfpH8fUy9Tp3zE+8vl7LDUrMOoPaddkk3MZe485mX26ttAvLnVyxGqetbORtrP7Z+xtzXSvYsJTF3MKsr99kLjRKwhQI3lFKwLmmd6PuYL7iFNx3zuE2eja1FNVz9FeJBmeo1QlrWLUxPYnOQjBG91YvYN8G+EkVsmCvsmdmS/4jJR3t/NNn8h5NqLjFjA3UaALHMUacc+vftTnxUzpAP9U6tgV/2vs3x6nte7X3MOsaKfd+O8etLs/nbVTb/O1zJs/2Zz/396Dr7rKwLMu6zjaQa3tO2xa5rfNXA4Y+B7ie6zBc44gn03CTPjXWajGivwvi3i35srZcKjHZWy9aWbVgkLV4WSLLtDBNM/M0CxNfCxxU0Vl1TlbcqrqpNVdZp7WjwDsHBQF5FRhNxZOK4ABDP9B3uh+FQHCiWdv5jqHrqTWzdAOpFybsOOwYx1GL4DsReN+sHaYBP7r/1STAjy1FnLBDENDJO1wSjTS8w+eIdY5dmqjOkmth6Ab6IC6OzjqkQfu3H/+4wI81DGPPcolitz6f8MbQe61uqQ5H1SS0oamy+FWd+JlpSUznSQVo9xLQuoD1PTElppg4T7J57nYjDw8PpDhzM3q6ndj2OQw2F1wWa0RTZJPYhRv8/oao1P7TFJmXhXEcxSnKwP3tgbvbA8ZAjNJXnVLi8fGR4/GoIlsT0yQq/NM0scyFisUbr3ojrAyDlsxe21meMlzWr1USZ7TCtwa2aNLUUCTzBJN41sNay24Y6Lqe/V5QT8MN2HtEW0TFDzHcHm754vVbxmHksL/h1f1r+tBDdZgmBl0NVcU1ht3A3Yu7ldq5KHXzuuhtgZ+m9dIsEHuGYcR7x/39Hfcv7qXavxu4e3FDKYU3l5dcLheMMerkNWKdY9yP+N6tVePrlb/6T9TarrVUklKVTbjkgq3Sfx96x+6mx3YHfp3+hLsXN5pAaQtjySqCKuLOF3WGKkV7RItl93DhlAK2P5Fy5DQ9EtPzMkUA9rs9//Tf+/fIKTFPMylnROBZKNyvX7/mz/7sz7i5veXlq1fc3t3R98N6v8p92oK3qkGKuGh5F1YqOKyiPTRRU6lOJZZFEPV5jlwmdRiaE7OKHjYBRBFTjiKAWKsmSlcQ6MmGVtvPs7aMXIEZ4Cq63oClUn+0GZYWgOtaJBuTJD7NsnoN1DXALs3yq0iXvqFirVLbrdhO2meelMaI45o8Brq+Fx0RL9XKoT9wf/eWYHtc6An9Hus8qcDl/EipUtG8HEW/oO8c59ELgCf0CQ1MJcHzxmIj5ClhE/hq2XcjoJoxDZD10t4iIKBZAW7ZxHVtKpaSDJq/UJTu2wAyWw1D12EPV62lrMJ5Rp2hnDU4j9JyEQ2aKpoVfRCRWufktXJUQEXvPwlI5AWtBe9F28Ba2O8s4wC7ZOkHyxIL05x5eeu5TM+P/HjveHH/SgsGyjrDiPA0MKdMv4/EXIgFpmLIFeZUOS1FrZwTl2leXT5aILelb0sCK9Wg8XDL7f1LQhCdpr4TbaSUKrHhNfowFUgLJs5QMuUwUu4OommRIiZHSR5zWYGF2lqa2byQjplV1tXqLlKruu3lNXBPSfRQ3r//wOPjoyRXGtSGELi7vWXcjVp5b9XSa4LWkjb5emWG5pSZl5mUMv/ff/mb5xtEQXSk/amThN57R4wLUy3kxVHjgrOWuCTOF2khejydeff+E/MSKViy9VSMOHb5HmMdwkTdsiM3CUIrUGgxRuEbqaQCplpsFUeirR2zQaDUqmBMNV4YOd6L9ayR+VEUhFio5CLt0ylHLtMZYw2PxyDMDmf5YZDg2FlL3/WrRXIXgmikWEuwYRX+F6DYrRVfgwj6lzJTilQ5+6Hj9vbAEj2YiXkpYBK7y4AxjfHzvKL5VLEMbrbNVjUkllo5nU/88O4HjsdeHCWDxB33h8zXr99yvyykJbJMMzkXLsdHPi0zqRYomWWesDnR+54+KGOmFkgLJWUmKjkuqqUEuKa3JUC+7ztCtyfcGkytxLQok7QyhIHRy3P3+xHbWYyDXCLLfBa9pmWCNEvxNYsxRy2JnBdKSlAK1neEUeZ3XmbSsmBMZZ71HjLQLCdkjWmArGfcjeIqaZs7kZPiR4oU1cQLVphA1jlCN0jx8EkR8x94mAzuAcqmdbY6LdZYTDaUrC5fNmCNaE8qDCox29rKJuLypQGlDXADcSVExifXSlKgO6erw5fTtdgaQ99FYifsA2HBSVyUVZ8EVMxXW8qauD5c253W1qdV72YjuB0sHaKTFXwQkLEIK2hROYMYJbYyVrojfOjYjTvevv2CobOYGunyEVcmemfYddLiZ2gOf4LWeaNxk4Ueu1GZf96jgTrCbJpZloXL5bKKFbdHA1oaCPn4+Lj+TUpptV3f6gRthaG3LWOfg0NN3Pnh4YGUEsfjkYeHh3W8xlHYj2vcmTMfP37k48ePNAZ8Y9JsQaV27p+fT/vd589p12P7uy2g45xjt9vRKVkhxrgCQ58+fVpZU63NqxV49/s9wzA8u7AzCBBxtz8IgGg9vrlD6v2ScuQUZ2gMZhvBOh5PZ06XC6Pr8RiC5n/WOF7cvmKsmdPx7tJJZQABAABJREFUr/nhN+95fDzy4cMnPnz3QR1MmyMrzH1kGZPkJjeGnRe9LVOMIJhUgvHsuhEC/Okvf02HzB0sVCtMqF9++SVff/klXQjc3Ow57IXxeeh3jK6jUsj9XuJPZ7m7veVwOCiz+oa+G7k2gCqH11mNZSvVS5HBURlqT4cUlkfNY3KtzCkSS2aJkcPdPZdl4nh6ZOx7Ph0/8HA88le/+YZPx8ffOS7/6K1e424gzkceHh84fnrPbhh4dX9H6EV0sCKWutYahnFgvxf1/UbTfnw4Mc+J03nicAjc3u7pQqAf9uxv7hCbymbJXum6wOPDJ84nh315w/3uThgJIOh4znITZunj3u8Cdy9ekDGc58RpSsxL5LTbcd7vsdbyi7ev+cXbV+JOQcYgDlfffvsdP/zwA8uy8P7DBz59koVCNr5FETn/pApQNHGOUSp/mJakSi87DXqo0FSG6wqXXkGhDY7MVZQGCXyfcQybTtMwjNwpGOCDZRwDzls6H9j3O7zzvLh7wS+//CX7cU8fBvbDAe88l9PMw6cjKYr4oFHq7OtWxTPtM5n1vnEqdGrN1jLRboL7jdi0M003+IlYsOb7cpVaog6qjdDqYNfvn1SJ2t9WtDqKBABZM1JQ22jLWDzjvmNZvlpfRfMCER0vlWWJfPz0wOU8yb+jgCLjxwuPc8D0J87nE9P3ken3oO79fY/9Yc+//+//+8QlcjqdRRjbibOXtZaXL1/yJ7/+U25ubuiHnv3hBh/CWqWWDag5atW1Et9aMaxtei9a2cVQaxYniAKXS+TxJPTTh8cTnz4+ElPmdLxwfLyQUuFynjiflNJ8mUSYu4iod4wyv5vmU62VVMQS+gr8NPBGK0OwtmrVugWBFP1fK+OSwEJLSJteivxMNKzSCgTlEqnayiJgjwrXd1Jp6LvA7e2Bvu+edQyNtQL6DAPd0NP1wyqKb41ZgZ+x20tIayzVCHBzOT8Kg6QaqcBW6IJn6AQ06odh7ZPHBPxgCdZiYqVcMtlD6Dz7oRNAR3WIZbilNLj+ey2gWhWIBIrIxhijoI+6uTXNb4Nl7AOjMiuXtj6CJA1WWC3elCvwU68Jrw8OOq/VWEuOKAW+KA34Wi30wbA7GHp1mhwGrZpheFFF82aaEx8/eqbp+eeic4FX969XcBEqxbTxMsypMCyZmAvZOKLxFGM5z5GPp0U0gC4TxT6SYnrSjrkmr0YdQJS5sDvccnv/QqpZQ2AcxFY7ZYhZAYZS1bO3YlPExhlqwcUbXLwIiyctmLQoO6CdvwDhpTYgr65bkqzN8o+ibhXylLwKRsdlFvfOeebb/Xd8+PBBr5Ow1Pqu4/Wb19zc3GjVvO0DVtiVa3HAruBlYzKWUjQhyvxn//n/41nHsVZhwYUuYFXLKC4zJc4s1hJnEQee54XT+UJMmYfHEz+8+8g0RwoQqyTU1gesH5S65kSfZF1LdZ+zV4cs5wRwNRjlMAcMAur4laGgrBpk7RDRYKNi6NqK5a2KLwuQJ85pVYCYpHvkdN6gTDLhGpvbKfDWdd0K9gx9TwidOot1K/uq870wEhUsc9pW5oPFOUPOiaHvqdywREfljJszxmamacDa52/1kg0+YU2lC4HcD7KflEzJkdNZdJm8c9zc3PH6zRf0/cC9sfzKdUw5sUwz59OJFBMfqEyPn1b2Z5wu4BxhNPhuwFlwZG2lTMzLzIUjlcpSMkuRBPf+5StevnmDD4F9P3AzjBgq5+MD5+MnoHC377ndy3XuXaeOm5VUInk+S0IUJ0yWRIuUV+AnpQVywtSCDx0dB0qKxHlhnhexL08zJUdyqUwxEpuGjFM9HO/Z7XfCpnaOvu8IQUSWc1woanwwBGkT67qem9tbKSht+1T/wYcAPzU7qulpAua5QCkOmz01i+YP3mONSBYUU8BI/GCdCkAb2QeyhuMt9jYGYQ5gZH0rwqyrVTTX5mkSgMU04VjDOAykoYjYu3N4J+lXjAtR28CbfEED1BqgMM8z8zw/ZaQYEbF23kts7APWeUqphBCJUdguKUYW/ZsYIzlJItwrQ96ZHV988Qte3h8gz9TLR4gnPJmxznTIfWFrEjZBrXir4IgzDNZi/wjAz5Ztc7lcVsCntS1t25hb+1LTuAFpZ75cLkzT9IT900CWLcDTwJPGKvqcITNNE+fzeXXOagXkYRhWUGb7usfjkdPpJPGFMmu3zwHWAo20+y5PAJnt13Yttjbs7W+39u+iJ/OC/X5PzpnT6bQCX6fTaWUFbdvG+r5nv9+vr/HcLEpnLbf7A87KvWoRwNoWYdrkJTKfJpHccJ7sIzjHw/7E6XxmZwX46ZT54/YdL+4OZGv427/6lh++eccPP7zj8fHExw8PxJSotZXrDX2/sAyiBzmYHnPQeDdDjdIeHYxj3wsg1P/q13z15heSq3cB2wn4en9zw93NDc4K09w7ie3HYUfvO4ndhr0Wzx33dy+5vbtVM6OBzneSza61lw1LGcnyG5DeWbsxmtF7q1aidhnElHkxXVhS4nx55H6/43j8yPcf37FoTv27jn9cxg+sbitXCqU+NCmhSvBYVJRpS0kTBF4faum8PhzikGEMvorAqbrFEaMEelkdTSSovep3CH1PFnKTs9CteGr3KsmNVLa82jJ6ZwneEJxZF6dGu1tUg0iQ+oWc05PFBKSCQG0uQeVatTQF6rUN5gmsowv+FYm4ghRb/k/7uakbTt1zjKExdKGnC524FPgg+gWhw3vto+x6vAt0oSf4Du+DVPdWajfSMpBL0/d9Cuo0aqBRGq2V6tA1YLVcQYVr1bOxclIuUoFogqCuXQ55XSEH1Gu1GTb6GG3RWK/49f+rEGXDjMzmml+fW6roZJSyrbHqRlbFgaNUQy7yKFp8K0XzLHOtWmMM9ekJPcthjdG+YwFUjRUh16CCdMMw0vc9nQbt9jPKKsi4rBatOj8F4DFXhs2mwrFEYfOUUrhcZk6nCzEmjo8XHh/PxJQ4HSceHy6kXLicPgN+JnFka8BPVeAnrbo7G+BHae6s4KoMxI8ovmuLltDxa62rIwCUlYnAmpQ3MCnJ7yiUEqk16b2quIe15CybQ62FIfZYb58VhAVWtsO6iWzul9Z252yQs26AVxUQq5ZM0dYtcTYoJApFE8ocPKZWsgpLWlNJ0RIXaWezxpB9wWpfkbjt6AxqAYQafmAUYK1XELQ2bHtFhtrSJrO07Q+lVpwVCmxj+lhjkZBc1jujyac1dU1msebq/lSfvhX6/ivA0Rh9Rp1crPD9pJHJULNl6KxUkf8Yh7ZItZMUxpW0TqC2ohZDNV60o4zFF4MPlWIcIWVxjNE9UoRIr337dg0m5HM2sd7m9tKe7zCrOYQkNgr8tDW4SEDtCJhiMaa1hmlRQgsTprVCynCu98DnwE+bW6aoU5ju4c3GfRhHRtUvaJphfd/R9wN9PzxZd8znwE9r59J5YIwll4J119bWZz10/KyupZa6UtSFIVDJyLqUlf3YHNVKzeRqFCwzshZZpV6Zqrdd29t1lun1NqZxU+tm/hRW1p62RtX1T6+1R0yDkaCxiZ/G/tf9b333Uqli4Czrn/4u2abfIIK5yYl+VCmVEDPOWpJP17a7cP0+l4DzogUWsty/Mc2kJGvNNm4SbPn52xLaGK5OTfoejT0qRQfD4haKc2uM50PBVGkX6AHjCyV0JKOsCu/xPlKtWMCDKs2Yq2CuXFltI66yZ5WSyPnaRtKs5MVJyGEqa6u6wWg8Ki4xW8FlAbOEiUfJwowsBVNUe6tcDS5sUdMKL3pqxokgqoy1xCqlCOu2acgkBfB9zljd79q+l7OXZDheHS8pFW89FeiV3dQ09Z7lMGCcMm5NRex5rpGY7NNO1j3b1j+RoJB7vK7r5dMWL/Pk+2tlQ+aS7G+bn6/xqdHWdtaRXs9msx/CtS1UbsWnduU/2Yp0/cjXh9FIdxOrrblMKdJq2NqBMMr+6XBmoCZLLReqTbiSMEn09PTs9P/bjgT5zR9DjmDLWtnmYp8fnwMkDQRqIE9jw7Q2rc+BH7kscp0bc+jza93YQ41B0xhHrQWsFRXa+7XnNeCqsWkaI6itLU1np+WNn3+e7efa/u227bmUQggBYAW3Wjta0/TZ5tGtLVNigKvw9PZ+e7bDsDLBdYlbYy+zFos2XQR6A68xYpU4IlVZM2vxWCzVyuvlmElLombZ7yytr1/mbXAS/wRlPnddrxIyIl0RvHzfhU6vi6fvRNLCdUHAH2cZ+0GYjW1Obe4NU1ucdP3Q0up8bXtede22F0ZjVkkldXc1Blxbt9tcljbealglY3q1hK+pZ9eN1GHm3I/s+oFRz/+3Hf+owE8b1GEY+eKLt7y42yuCFrQvMjFdFnIuDA9H3r/7QIyK4BqphIV+4MWrN4z7G7rQ0Y2j0KeniWURNHvJhSUlmj5HrRKQHIbAZb6leMd5ThwviThHHi4Ln04TuRrsqWA/zWQs37z7yPfvPoprmNpt+oq2mkjV5/XL13zx5gUAv/r6a0FWY+T7H97x/sMHlnnmu+++5f3796QUeXh85HQS5Ph8mZjmGWMrVe0iW2AFMsi5bDRMNv+XSGydKZsL/BPHM67JXej51Zd/TvBeBO+cx7prK4urlhoNJRXODxd+k7+TxEN72g2GZUlMZ6FCS855RWi34AFlo4VkNnow24V+/ea6FUnlvF0ScxW83ly6a997XRFi+bn5ydfcvmHdvNbTX7Xkp1l/l+v7ycvRtGHiIkyXaWpCzwL6nC+Rb9898niameaLVNaeMyjSo5TKZRLgZVLdghB6AuJIZYy6NFVHrVZbcSRkbTbZ1ghNcns9KhBjlkp3qVymhdNpIqfM8XTh04NUQh8ez3z4+EiMicfjiY+fjqSUmafENMncXebIPKenrV4tYcqtUsOaYErHbl3Ht1wznfVzX0X0xJmr9b+XmKgp6/gp8FMLpaY1OQUBemSkEwh5HqoyfgySCFNV30h7i12l1h2Y8KxjaIwwi6yt2gslbYMJS8aQlqTsNEspiSXOAojFLAL7tlBKFr2KUiBbahJGToqBZemx1nG59JxPe5x3DLuR/Y1+Pwzs9uNqadoF1f4IDt85aXELBheurjBFExXvDVU1oawDp52fpjbgymCsoDYWQ3DSugWoxockTAIny5z1VdJdvTnbDbsGG6VUDF7bA6s6QIguhjVWwwYJH0y11+RYX+/QO3r33NCdFAA+xlmTPj1XVLcHiLky5SKtbh6c9xgrLVoH05FqFYDkcPhRq1fwXhz2FKQtyk7c7Qb2u1GtqQsxLhiEzViKAjO5qOaT6OqZJJXfUqXX3jSQXpE/AX20X18/i6zXcrMag7A5vDzfqg18rRVylASjIjbDFXxOvAkDh5dvANY13TnHfr8n9L2MVgssG9CBgl++01YpTcowmCLtLZTCSgt9xkPanEQgufOWfRfwzooWwTQL4xMoWKqtGOfxXUfA4I0hNKqcdeCkkl8QC/jmPNTYbQ34BshJACIDuNrhirRd2/XeVsaPJqR2LbgJS9E6aVPb7Xqs7Vbwx2jbVwgeH6SlJKYsbI8KMVZxuqsVY5S9hcG5smk3nNY24M6LY9LKEHLqOBTcqpfSxCBKjSzxSCoz4oI2UYjEJVKrOGo+91FrJS2TuIIaAXPisvD4+Mi8zHQhMI8S98RUqNUKAOkDLvR4axn7jrsuQK30ppDnE5dpIBlYFATYdR2jMqJ6ZwkNZEX106giaOplno3es/Ne5rMBX0SDpyuJrEWHvXPcDtLuG/xAF3oqhiWJQUktFTdNhFmYsyZnTE7klDifHrkcH3HWcL////P2J7+WZVm6L/SbxSp2dSozNy8iI7K4lRJaSPToIPgDaEEPgYT02kg0eOIveK0n0b0SDZAQAgkk6CGEQIIOjffEffDIdy9J5o2MjHB3Mzc71d57FbOiMcZcex1zj4y8N07Ech0/2/bZ5ZprzjnGN77xfRs22y0lJ3bO0W+2pBgYT8/Mw5mYInOGkKXAMo0jIcxYazmejwtTpe9F9LvkTJyDMn4k3q+it1fHZ7q+Zw6vx95yznI47Bg9TLNZjF48jpIdm82G25tbum4r4tfbHuc9KUdiCpSS6bqOzWaH9+rqpa0w1pgXRTBrK7CSQdcy3wgwLcBKLTeKfkirLT9uSQYVLNYYWFphWYCBCtB8bkN+ESPOCxggel1ovCQirzFGZVDOQH1NASBziuKGbOFwOND4AyVO5HNDnk/E6cz4aeQ0zhgSjoAlkU0hkEkIyzqmiZBenwkbQuDbb79dzsVut3sBuNT7K2hRW5lOpxPffvvtArhUd63P27fWoFAFZsZxZBgGqn5PBUUq46oCOSGEpe24sm3qT2UIVdmPNdNorcfz+eMr4AQvwZ+FqartfkaLtvX5leUzzzNtK6zyeZ55eHjgdDot56BXYe/b21s2mw3b7Zarqyu6rqOUsjCU1qyp3/uQsFnawENl9xacAiYUySnxYLoeu99jmpb91QHXeLCGMM4Mp1HWj7zHdw2lccQxYaPBZce+27N9uweUmNCp+cB+z+FKuhXevL3hi3dvaduG68MVN1fXeNdwtdtztRd2jpAPpOBmvMM0Aqwdnx55fnqSOFnBc+ccNyWClZX7PJw4TQNN23B1da2RqcUZZQ9idLrrmlGl7hCNzXq7aLHZIFuh0WKQySKG7XNhW0TbceN6ut01s3ccjGMcnrjd979zWP64wA/ypfvNhu2XX2LyTIyJYZyJKZFjYZgC8zTTPh25/3TPPAdxrtlscV56gm/evBVKu74epVDGiXkOIr5X6dyKGM/zhDFwvd8yTkFcDKbE8xiZx8gPD0c+3D8ScqE8TuTNiYTh/vnMp+dBkgPvca4BjNgvhkRpDW/v3vDP/+lf4L0nKiIbQuT9Dx/4+OmeYRj4+1/9ku+++45xHPjNt9/zw8ePzHMgl/uFVgiGYqsFvJyp6nBSyhpxl1sva3BmdVurn6wNr1/vaJuOn3/1F4qn1Es4g7IfTCkQZFM4zQOnx1ESioTobGjFKCW5HSnS/gOqH6qMnAQpykSRZGSpiakoJZeFnBVyTEWKK2psl2SwIsj1H/V8lmoPXi4JC6vXp15nC360Qjlq9eNFxYYLQFQfxoppVFD65cA8BRTTBYxY+IVASIkQJ8YYifwBgJ+SGRX4mSaZh8Z6ME6AHyuC1GDlHBYjbhwGqYLVUvFSSBIgRWirgeNR7CMfHo58+PDANAXu7x/5/v0n3ZROfPz0yDxHBYTOWtGQCmIFyQTgQW3TKzCjUjrLoeNrkEpAHSUFRi9sELPoUVDERjWlCLmQ50AOkaUcocyhXGadf0IDR9M2TEKshTOWgAiqlSVpcSqc6JzFN0ath19/HHWPQih00vKUk5wT6ecXsC4loaDHFMhZhCgbB3OcyfFMipFsIGnyOFmLPQtL4tg0PHUCAnWbLZvtAeuln3y33+Gcp+9a+o20mrWbhm7TSvW+87S9gEDJO7L3WAO5cRSvIJAzGK+97LUDUzJAWcc0AatJaBVtNqBX6KWyahCKxaobU4CeVChZtuLsBJilQCwKlEj3ufRcl1UfNrVCDLYXHa7XPlLJPIQZYcqJ05HYtudlPQpJ1sjWQG9kL2q8wfbuArTklbizrs2Nb2i19ejyreT7OCvXaowTIUxScFCApAA5JlKowIy0P5pSKFbswA1FmUoK/KyTVwypMiQ1qbHWYFsHjTzepAlSEDBpthR172qc6MB0wObqbhFdF6C2srsuYI+Ildf1Xr+fc9JK4zwZiNlctPxUy+QPAfxYK7buTdOx6Rqudxu6xnM+DzyESIiJjLTxZSOMCtc2NEZBK53QxViytlMlTFXXICVDiZe21Us7QiJXnZCccLlAqWNeWQq8SFgrKcG5jHNJ2CMW2tat/n5x9eq6VsZinJFTmAmzYRiLLpsXVs6yMeh8leS20NiEs0kBJ7lPwCGLdUbXfKnyYxLFBDAJ5w39xtI0lhRlXTN/EOAnC/ATkwA/1pJz4vj8xPF8om1b5nmL955xCsxzpmla9vsDd3dvaLuOrmnZbDqcNTQmEeYj53FgjImztij3bcOmkUSjs0aE0YGiCXVGNcysFEU3vhHgxzkFfhKUTKPMU2sMW285dL1Ut7sNbbsl58LzcSAOAzll3DjQjKMwbHIQsCJEptMzj0+PNE3D4bDH768wpUj1e55IYVb2qGOeZ85zwERp3zoPA+fhDJSl5bcCO03jxUBiDqKHuLAVDK0CP33XMb+i46W1lsPVDmMTz0cZI7lSLMWKs9XtzS3b7RW+8XR9j3WOmAMhTuQiDAoBe+wC/FQgxkkv8mpOaVy5tIQrY6zGjrqfWaOtkNSIXWL22pqL7nVVJHqt71KBn7XWC+gaUKTlrq5vAhLMhDko8DMTFVhzzoMTIDlFAf186znsrzjse0qaiadGwMrjA+dP7zlPAvx4E7CICH2yRX7nSEzjYrf+mkcIgd/85jfsdjvevn3LZrN5Afysj3XB43g88stf/pLj8fiiCLIGitbATwVFjDGcTieen59JKdF13TLunzOB6nVWmTcybw4cDgdqa97pdCKEwOl04nQ6LQ5c4zgCLEBMKWVpSftcy6f+5JwXjaOq5SPg5Gb5TNVaHmCaJj59+sTxeKTrOr744gv6vme/3/P1119zc3OD957NZkPTNMwV3Fam1KsdWnjLuZCjyCPYIlmTRa7HpumwzuK3O9rbW1zXsdte4dsGYy0hRp6fnojzTGsKm/0W2oY0JkwEnyzdZsNut8f5ht1uz+FwS9M0XN1cc/vmjrZtuLq74vbtNU3bcHt9w93NLY33NNbTOomRhAkk10Jx8jPPM3/z13/Nd9//hjAH0jyTwiySCo2l6xpyKZzPJ47nE13XEeck+nqIkYozIjtQc6diINtC1nyhcmhNjbWKmDTZLOxpCWolPvUZuuKwKlZ9s72mdB1XTUNk4M3t7ncOyx8V+Mm5ME4zjkBTEo5qnVyWhLho1a4UFoDFWtksTZZAxHsBYGqJtNLDa0lwaRMr1QEsYIygoNIu4pkm0UaYY1LRzCIaCiEQzUjCMM3Se5trBdp4peGWJRi11ki7k1J6CxBiZDfsmUPAe8/V1RXDcKbtWo6nM9M8LwiyiPtK315aWk3kq6wnflnO4uXWKkOS+4358WNe+ZD9TS7UnC8bXSlRN7582QDzonUrzkHhkrRrlxWpQFBV95Kl2iyPMUhRq1Yx5LslEHS08NlGeLEqLihjiOqAYS+ffRWYXjAaTXbKcknp41fAz2f0yxf8ojWYVH587teymtURSaigmTkIUV5e3qo7z4Xy+9LZ4fUOocRKn744JUSs9YQ5YJB2nmme8VNDKgXjLNlnTQRsjXaWc1YBz5Iz52FU3aDI8/OJ5+cT0zTzpLcFGDpzOo2EEBnOM9MYtP1hBfIllnNR2yIol2tHT+7ll13dby4PqF1zxYBNl7VisXlfOXotyGtZvbhW5RSLUPZCZZ3UJLtW77QHW1lFlTkE5dXFnaFI1S4FYpgJ3lUMFqnGi0huSlEc5IokCwYhxBRTiTE1ma5XqbCnpIcjYRKYIAm2cQ7rW1xStzDvcU4BMyPXajaZYqTin0okF9XM8Y7SSJKSkyUrdTZ5i09yPp0Hl2Q+ZC9MIGMMrkibEMtnrsFz0YEpmvwXVpE1FRWpoHA9asBemUN1mBfcT19T2oVrK9PqknjNwxiKtawde7KujQtzZmG0VMc8R7EX8VEBKS/frbZ/NN5rlVlbQrR9Vq7JuBQdZC6kF2thVp0salJT91fqmomOQAXWK/ija55ZAT/GLFTlqK9X0kUXozryGYT5grb2Ouul3a4UcTRbs19LBbns8r10tVb3qUbsrvXBRQPOYguLCNXrDaEEkb7R1h630Mu7tiHM0g/zOaWdha5fUKtMvTC12i/fZqnoWwX1ZHxkvaRIAJl0AawAX7XNXq5wnTQ11Lxc+fWclmUPq+uoqXZ4+tzaJFY/Y70SKuB4mST1NXTe6fzLpQhtXdfaYmTexpSxxZAXA4QEJlPMTCHhc9XzcIvT4x/mUPezUpYhqq3DMUZpgVWGRUyqB0I1+YiiFVPbNqlto+I+6rNokiWE8VEduMQ23JKcMGtdnVF6fQjYIDuMyqctEYWpG3AR58sYg9xvG4wN5AwxhpUrkbA8csmkJBIEMUjBtOrMzDEyJYEaXZEELeuctM7jfKFpW9qkLRHKXKoApLSslcWUJadMDLIHGWNwOS/6UtM8y7x4VY2fCtmXF9frIqVga5uNJu5OWpsLjuwcplxaaZafysBZ7/26f8jLC/sLihQi9PpZtidQNkGdm/X+gilOeJKlKBD6Y+CnggxruYgKDizfrzIwP/t8diWtYe3Lf8v7qCNy0woLsWmxJRB8i9E1SGJplrSrwLKeSuz0h2ClZ87nM9ZapmmS4roKXH+ug1PPz+dtS58LJtf20HWr10Wz0iyMnzWrqgJNlyI9y3tW7Z/KvqlATm1Rqy1flY00juMC/NTPUYGfquG0PtbXQM0XK4OnClavv9v6p2oLNU2zgEKVKVRbvOr3XzumvebaWlCh5aLFGoy06OfafmkWMNXpNehUWkLyQMkNrbZh1dZ0tCVrt9szz5Htdsf+cKU6Yweurm4E+Lm+5vr6mqZtORx27PYiNF3dir3zeGMXHTzfeHzjXwA/uWRtQ5biRHEWcmXzX+a0rONuYQbWEJRc1MHcoEG1xEkaL0mXQiSXvAA/JgvwI7f1XGahCJkCZmk4mCnzBHnGzLNI1fwj5uIfFfgZhpH/7D///9DazM5HWpvBuEV5n2Lp+j1dZ+jaLSkWpiFQisM2Ad/IUt5tetosYqxRVeqtd6KhkQ05JMZJJto0TQzjGUrh1ySG8xPOWYbnB4bHT6QYGUJi9h3RFU4h8nx+IOXC83nieJ4owHazQ8y5E3EeCdNI8FYV9qMglt7rxdvw9s0d292WEAI31wd+8fOfM80z379/z6dP94zjyN//+td8+PAD0zzxww8feXwSpHmeZnFfMQZfdCFTRLAyXBbhzBWYUQoYqxdYXRhfeQzneeTf/tu/JsXAPCpTQF0bSp3MywdTAKb+znaVWEj4ko3IY0v06JAavqCbJXv9Lha5VA3FahDyD34x4QFIeCSv+Q/xn+rGBnCx+Lz8bUkoXgBrK+CnBs4LYMAS6P7o0YuWiKfrGpqm/qUyfgLMZ0Kaaeno+ysogsD/8A995X/HI8XIp/tPnM8T9/dPjONM3224Otyq6OIDz8eBzWZLv91wdXO1bDatOlOEEBjHeRG8e3rS1q2nE5/un5inyPPzmU+fjsxz4nQeeXo6S0vXlBinSEqFmArQSQXYXhLJvApyqogzsLTqlAoYr4UFl2tvdUcBccETdoVYRl7sjSVIyxinLlyrwFucPwzGFJxrsK4yUCRAsxYam5EYNy+6PylFxuksgbhJNN7Qtq8L4MUY+PTDd3Rdx3w+0jZSkc9RWVIhME9KkXWIM5cHsLRG5lljMtb0qwCinmNxGqmAQowC+gWTmSlY6zjPJ57PT1Lx0nXPaNtGs7R6icOXAOSeVltaW7WJNdbSeqcC/mIF3zTy3LYVq3ZrDb4VUT0Bh6oNvGjxLAmUEUbPsmTYy+ws1Q1x0ekqOFuwDdJqmzJhlrGN8yqJLZdkOC2A7Ose1jl2t7eEmBmGRIkiQB2KtDRaL6Lrxjo22w376xuaVv5ttBVk/bEuYKQAcY0KG9cAywDzPDFPg+6RI8MwCxss1YCYF0mL0wRVkmG16QbVXxEgJyZxLMSA8S1WW5XQKmvMmeE4KLsokcJIDsLGbazDG3EGOuwbNmroUPXhMNBo334uRRLJrH392kdfkx+jv61vMc4LuD3MzDGRLSTnyLb8g3vCv+vRti0///nPcdbRNg3WOg7bDV++uWHbdbz/8JGP9w+EnIkUEe62Bt+27A5WEpGciVGSENd4mq5Vx1K3UPtKcVAaKOLSVlmWOQVSkqC9JE9Oftl3S14lanqhWJ0jBnDG4awk487XgFuBVgXwkhbGZC4ZrPMYgzhprgoTZpXtSk5a2/8ylowzE84EAZtJmEVHKkmMEzMxZnKRtv0pyBrqG0sMLU3r0N6BVxu79ZFzZhrPUiwqKkRfEmGamcdRRPC7Vk7cPFE44qxjmgPDNON9w2635ebmiqZpOJ7FccxZj3fQ2ILLhdZ5Oi/r5W674eb6ihAjc0xMSZibFWSw1nLVNmwMeApNyTRZ3JvmGMjzRMyZ9+9nfnj8JGtqt6HtNoAhxaysxySGEeOZnKRFa55GQox8ej7ydD5jvWPMge+fH3DWsLWO3jlcKfTO0x6uaEthd3OFKYlhHNh9v+Ph8YEQZo7HZ6ZxgALTFBaHzhgiSRk/Vtt9pzmScsE3zeJq9TpjaDifWuYxKTCaMYjTKMVpa2/BGmmHrA3CzoK1DYUiLkRNswgxuwr+GHMpPBiztL1j3AvApt5tubQlG92fPoNjUcFLFC6X358tTRWogItOzPJ0XfurSUlKGe8dk/d6XrPYVRtpr6xAV9f3ymxq2W23HA4HSD25NeSwwVvLx80B1zxKDKqxgCSradkTY0p/kFavcRz5q7/6K/b7PR8/flwcqw6Hg4hSr+zpu67jcDgs+j53d3fKzpsXUeY1a2d9u+rdGGMYhoHj8bjo5qwdMdc6Y3Wc7+/v+e677/Dec3d3x9u3bzHGcD6fOZ/PxBi5v7/nhx9+WHR3wsK+cgsQVdu46uuu3+Onjsqo22zEZOfNmzd0XcebN284HA6klLi5uSGEQNd1vH37lt1uh1eJjgokPT4+LqBPZSi9ZqtXzoXjcaJvGw77PV3TkEMgnAdKinjb0rVbYd5tD+yvb2k2PV3pGMJMCZlN2/LVL35B4xzusMe/uYHGU/A02wPnYWC72bLfH3De0/dbdruDMNG3G7Z76RZqN55u2+CcGA5sul6KRgurRvKEKQx63oVlnk1ie+j54qu3EksDzsgYXF9fybwBdlc7pjngnedmu6MpYGOixJE4iE5hNcyQfD6SEffTWAKpSPeBjRmbpKfbhISpe3xUUkhKlCFQYiSHiXj+RA4DD2ngu/iR+/S7XS7/uMDPOPKf/9V/wcYbbjfQe/Btz2Z3jWtaNt2Ww+5A61ta70kBphzAOHyXyEWC/q7vJJCcZQKlFCUZcIJm55KZZmETCCJ7IufE6fTE99//BkNZ+luhYJoO2/bkAsfzkR8ej4SYGIbAMEpvrAFa77CqhzDPI6FxWlGXRcE6uzj3dH3HtSYMX3/1pVIuAx8/feLx8ZHT+czbv/kbfv2b33A6HheRrmq3mFTvQJwZVLhxxUy40KrLi6CfYpYqlawZrwv9zPPM3/3d3zBPA8+PD4RpEvvKeZZqT1m9ZxGdE5AE2hhhaknLxiUpKFq1NsZhTYMIczVYqlipx0mGJruzsxpYrun+Zvm+xvjFBlehZgwXHSFYYThcKkGX2xrIatWkLI9bTjKL9fSquvmizauOzfIIlvdAKy9d5y7vpX+PaSKbiI1qr940/CE0LGNK3D/c8/x84rtvf+B4HOj7LVeHI23Tsds/8PR0Fnro4cCbd28Xaup2K73v5/PI8/MzIQQeHp74/vsPTNPEw8MzH97fM02B02nm6WkkhEwImWnWpBIPKsRqbSvWxbUipolELknFlQXgqYl3iplYnbxiJhu57koqS6V1yVzllUBx9bQARQXUdl0qbdJAa4wwc2pw57wEStZC01m8Z9GrcU6Ah04F3nPJ5CTV1HEaSA9CgTZkvIe2ed2BTDHy8Ok7vG85Pz/SuEZYU7Ha1Ff3scJ223Fzs8e5Rh0WpP94dg3YcnFA00SszDN5CAK2ZW0LwDCXyJQTle20/F4o1UhgWS1p1VJdWnhEo8IaS6d6B2Ij36gOjaHvW7penGn6vqXrGl1XPa2CSU3jZVyMpfFusZ9uFPzBSD2hagQJDlzFWmuVtn4uAKPiphdQqP6+VFcr++xVhxAQ4Gdzc4OdAmMZKVMikQgxEEmSJG6kvaTf7dhfX9GqzbRXsG2VRijwo8L4xuAVDKnMA4zhfDrxTNEKn2GYVAhSq/8CjNnFertdxktauCx1jhoFYqsO1yjAaA++s5cqs4GYM4+nE89PDxKITwNxHi9OkW1H07a4zU4/q8e3G1zbie21gkCSnEtxZC10aay4d1lnda+Q1tU4B0I4McZZWEdOU6x/hPvFP/ZompafffPNBWEBrg97vnz3BfvthhATxjkBfoq4thVrcF3HVrWK5jAzjhM5J7q+Y7vf6Prjsa2ulabF0oG2b8aQ1KAikNIsSXYyhCisIDGdrNfvBTyvLZSy22UpjRiJN2o7HVZ0SDJGnG/1uRX4wVp621OabkmC614l8w9YSlYZQ8QxYBH7cUMAknzmOJNyRCZvopRITDPn05lxGmkaR4o9TeuxttC4/AfZF0sWrRBjHNZ3AijmTJxnpnFSd7xeNbNmQsxgLHYYeDweMUasfEOJdG1LSJGCXJc+Q2sK2RZa62hV23Lbb7i+llbmOYrmXinCHHEKMOxaT2fE7teXgi9GihYpkmZhdn58GngOIwVo+y1Nv9E1sqFVt6fhfGQcpO1kfHpmPJ2JKfE4TpzmiWItH8cz9kGct+52ew6bLb13fLnbses7Gue42rRsO8/5fF6S0GEYSNpalFLW32nRRRGgFgV+LNaJCYrz7lWTzZIN47lhmpzYtpMBYYtRHSFNxpAV/Emge5VVkLxq1lVR+yrCXcXLZc8zyuxlManBVHF3Be3MZS1eAKAF/KnRqFb6kQLUy9hl9b1W+9LlB2r8mSlLscw5cQWLUbRCvDJhnLoRGWNlH9Wx2253HPYHyBF6R4lbTC50mz2u2VCKJJolF4oR851iRHYh5j8c8PNv/s2/YbfbcX9/z3a75ebmhp///OdLst227fIdZE6Kjk4FftbtSxXcqOBQZeFUhkx9z8r4qcBSBV/WoM/nBSDnHO/eveOouVx9TgiB+/t7vv/++xfC0uvY4vPXe8nGuvyuhdf6eSvwc3V1xe3tLX3fL8DPuq2t6vpst1tijJzPZ2btOvn48eMCjM06X1+z1SvnzOk84mzDpt9z2G2Zh5HTnAkJnG3o2g1N17Dd7bm+uqHbbmiGzPA8E8LE9s2OL3/+M/abHWx6OOwozrG/vuPLX/wpKWU2m63YpzuRg+m6rczDxuEar4XADE6cs2toSIEcora0Z+IcF2DOWjG/KKaw2fe8/fINlMKmbeh8ozGqiEWDFKRTlDiz9Q1NKZAKOcwklanIUZjOuWRinshF8oWYZnKWFnSrYI9JGaaACVJci3MU3cUQmI8n0jSTpoHp6T1xPPFkA+/bEw//CLfLP26rV8mM4wy+0OZMdND2BVyHzwVnG2GtLFGDVpxQijSyNNaKnnEqFGk8vmmkEgO0IShSa0kp4r0jJShZ6K4FsXGvorAidWAWd6faAgIXRXLvpCrd+Eaq1U2zLJzrlqyFeqiLfKUM1/7o7WZDihFjDVeHA6frK7xzXF1dqf3erGLSukAgiuXwskpQN5wCAkL8toTktSk/pSaU4sBShXCrSxBcKOZV78QoaCLCkmu3BCOVTOsVZPGiL2MM1nhxaMFiXYN1rT7egq/nfG3tXoX2VsASRsAmva0PvJwWHaNKDzALVaCCQOunrVH4l1yeCgBV1nVlCqxwoAvjZ3GgqWDYxWkHIATIpsHNEStuo38IKQrgwqIRsfLIPAfdDAvGOrruuFDZ+20vdPEozhxJ+4LnaZZKZXWz04pG1buqbh3irmZF1LegoI8H7ELjXJIHBfbyQrgQwMZlafGL1mDVctoYFTYs0sJRVPTZUJZgaj30xmaMrTT+S6uCURBI5uqFcu08i/Bp05qqt0rjjOqkCOjjrSGXRERUuqttsrzvpW3gVUewCAhdcsEZS3Zx0VoSm/qs57+QkqNahdfD1MqlXYeilSZauU/1veSaMbkslP31dWtWwZPLogtlDGQr7ZvWmKVvyRorY5OFws76NpWNU1sHpGVM2hiE/ROaJK42K+DHGkMwCjMbnfK1m8cDrixrRK3WVsr7kqsXXt7+DPj5QzF+MEbaJWJB3C3zZXCEBodx6qrlLmtnBbDk+l8GSc9hXliKqVyuvbpv1Krx5eeyFgSl02drybYslW5nRRuiFkJAWGXCuk1M88w8jWAMjaZbxlhskhbBlLQQMwwynvNIDJMCTNrGgzABupBIGawTrRdrC6U4spMgaFbNL2OkNc5auY5TSdhcZO/JBmxhVibFnGR/ygoMv2z++72HcKHOV3dA9PoRFy9xhhKHqEsLn62xjDGYaJa9Netjl1qBfheUJYORNcpZaaHTplORW6rXNLq9Jvl3SvJvgcbLUnJwKP1ev4N1K8BOwdza0iLfVf5WdGmtryfkyAq8lgX4kTjrktyi/5ZWiqTnKFFd3spqMl7Wn/U81TjiD+AkBEVExq20nckWUbVX5BGVFYcpogdmamFCzs04qQNlEVZpXNoZa9tkWdaXKhfgdf8rRiKKXApuAX7sxVFGz19O+toxCkAcwwIcFgMRQ1NkXe58JPmGkjPjPDLN4k40zZPovuW0cp61EAMlCLNuCoHWz5A9cxuYnfgcFppFm0aAgy3GCAOsOgkt5S5jdB3VZY2aSCMFh/hi6XqFERQtrJyMaEbKSaVom0WKcSne5twoMGeVJagM+yzXawV+isuXOeGq1tylzQNrME7BIWspbuVIuwJ+qq+nZQ0EaQGq7rhL0fa3H+sWoHpe5cvLjFz0iNzltgA/wvaR/foCTi3P17jaLI8R4LnkTLaOwkWHdJHo0J8/1FG1cVJKeP8SbKwtTZ+3dvnFxaldBI8ri6dej1UouZ7Pn/qdc8b8lsGo87fGCJVFVMGZ+j71+DxHrOO3/huwPHd9fwV6asvWdrtlt9ux3W7p+34pytY2rgryVRBzHVvV1rPqVDaO48Ioe21XL2MsvhF34L7f0G92mGIIzQC50LbqHNy2eN9e2piVBJHmTCoZ5z2+a6FtMU1L8Y7eWJJ1opnW92y3W2VvdbStFpJ9ndOIS6buSaZcxKVrpbcUS1YwtyAFYJm3Be+EpU4pNN7ReAWvKZDF4ZJUMEl2w5wL0UguUNQ4ppRCUeBH9nkFfnImp4mUAiZnyhQxMUuhZZwhJHEznsOiuzgfj8RZgJ/x6Yk4nhh9ZNpMzP53A3d/VOAnpczT6cxzHPlhfIQ00W92XN99QdtteHP3lr67xvuNSG02inC6hmKcBHhcwIOmbWnVPaHfdByuxNXkeDzx+ChMhKfnJ+7vP0lbynDidH5WXQwBfwqQjFN6sQQYjXNYLK3vMDsBbN68uePtmzd0XcvXX77l6y+/YLvtefv2js12s4BAC4KLQgJFNrq6QF1dHdhsOuYQ2Gx6fv7zn3E+D3zzzde8f/+B4/HI3/zN3/Ld998LIvvpnuPppPBJtdUEt1Shxd46aQ/hav2u/3vVMbTOsb++ot90bHpHDDM5JsI4iR2oWo5KZcTjXKsbT4PzPUY3Euta3Vj8AupYJ24osqE2eCfgnXUe7y+3ja+tC9rTiyaeRoNUe7EuXgCmGpDy8reAMHZ1rszl9iXW/S3ADzrKFbWvd71MKS7AT4UW6gYglRfJ0WUTGYYz7z9sOJ6e9M1ec/RWn6nIQlfUTj4nacU8nybA0DQt79+/x3vPbn/g7fdv6fqe6+sbvvrqazabDXOYGcZp6V0WrS3Y9B1v3lwrAg5Rq895Ea8VY51QW5Ky4VLwE1tnAGMyS+tRkQ1AQHRJZkuR1whBmUBTJM3SMmDLhTYtxemykACcU/zQ24WN4l2t0oHXljNp5RIAqNrCSi+/Mnu0TQwV2ozRkPIkmjolCTDkVn31rzyGKSWeHz7hrGP0LXZBCM3ll64DzmXmuRfmhJMNuVgrWj41A9QxkiTLLqmhaKbVRCyRi2imLdVGaluCzLW2FQDXKripPksiol0SxWTmnEmzBF6TtZyVWdJ4dwF1Wq9BDOIU4+2PklPvvLYgSZLk5MKhuhZhwHgNzOsyUKc4ULWg8pJrXrS+6vpaQBO7/MpaFHJYa+m2O1KZMC5QTMY4cA3gCk0nwZFvGlzjySYTS5L+7yQsiZQSMWhFNufFvcvUsaH2oIvI4HkcOGr18/HpmafTSIiBME1M00jJGhzpiiXUaFmnRZ9C5lycBsI0kHNkOD8znI9AwbctTmnyznusd8QY+fTwiYfHhyW5L0hRZLcZ6fuexjechsLhacY6R9eK5apct82ihxPCxUbXuUtgu2h7WZnsxlhCypxGAX8wZtFFivEVg9zC4jgYlfEgSvUzrXf85vv3fLy/5+HpiWIsSduPm6ahazucMcwhcjweJXk4W5qTMJl842j7Rlsqt7TNTgsjIkqOEdaOtbKIel9oeh19YykqglxZa/KXmmiCLRa3pKQOgzqQuAvaIcCanltF5AtQ8kzJUmGsIs5QwGYV1y9Ul5JS1NY7BnKOTOOZEKbLY1QbJkUFVazB+5ZcjOpV9Hjf4D10bW1bfd2jlEKcJzBBfcotOQX6tuWw3ZENjMOZYUD0bhpxjss63AXDaRg4joPGhBL32QqYalFstpPGQRKn7PdbPbVFwPoC3lkRvkda7ZLO7XEamcdB2kg+feD+4wdCDDzPE89hIlNE20rjJHFEdDpfJykWpEQ4nonngVwKcylECsU6igrvp5R4SJnzeaCxhunhno/ese1a4rs78vUBA7x984Y3b+6Yponbmzuej8KyuL+/53yWNWYYzsouzOqmeGnhDlrRfq0jZ8NwdoRgiCFrDJKY54mUCtM4Mo2jMigaWhV3Fp2RRloendf2YwE/1sm0c8I8lTYwLVpW4MdctFaM4cKa5CUItDCBzJJ36u0fu3qt2Rs/BR6sQX0Jc6UgUrInGmi8JbqLy6P3F/ZPdfkSiYkJirq95UIuFt9u6bdX5DQTZ0NKIzHOzONEiJEpRIYhMr6iK1s9mqbhm2++4Xw+8+tf/5phGLi+vub+/p7D4cB2u+Xu7o6u6160a4UQ2O/3i5jx9fU1MUrRoTJ+1rcrYFPdtSrItGa//BQLZ62PU9vBqotWbRPLOdP3PXd3dy8KLWvWFvBCn2it01OBHO89Nzc3HA4H+r7n66+/5u7ubrl9e3uLc+JY17bt8tkqgPLw8IBzjvP5zPfff78w9Z+fnxnHcRF6riDaax1t1/GLf/rPubu+4s/+5E+4Phw4Pz3zaf8d0+nMZrvl5u6Wtm8JpTCMkWl8Jj+PxA/PMEd2uz3FO5pNj91u8Fc7jPd0BTot4FQ2s8TtluIqg13BQIN43ZqkMU0F1QFvwDhKLrQGsmqT4Q04yVFc52lLDzmLu+k0UEpheo6MSVi3cQzEKaKpghJKCkY1eyi1yKIFniR7Z06ROJ5J80RJmTRMlDlQYiIeB2H2pMQ0qiZwkr0zhkAME8P5kTiPnLaWH956TrvfTYX9I4s7Z47ngen0xPHD3xPOz2z3V9w9CwCUkuWrd79gu4WMiog2DdY7irEsYai1iiQ6cSzRpMoqFH06id5IDJFPnz7Sda20oDx+ImStUKYsqFoRQCouuiFiVetMoWs39K0Eo1++e8e7d1/Q9x0/++ZLvvn6HX3f8ubNHZtNv9gBVrBnSf1XVQ7nHV27l6QJ+OKLt6ScGaeJb372DZ8+feLT/b3aYVqOpxPDOHIezlq9vQhSVqcqmdyKuL/MaHj9VFNourvDnpI68q6hpEAOCvzEhLeiKeGMwfmGtt0IQONbfLdbbrtGXIKcbfC+wyi1v2kE4HHeS8BvJOD3Tav04EaCLaN2sBUEMiv1flv1CdaVR128bV285X9Gz2tlMJQX5/By1IrN8m8NcNcQz0+tly9Bn+WV9DUq8CMBUMmF56cnfvnLwsN9q9oq8AfQzavfgqKOaTmLE8DxKOLLl2qvYbfb8+HuC7q+4927L6HAfn8QTQrdxKZpWgTMur6j63vA4JyOr7FIH7ynFJimyHmUVqJpjoyjiJyTAiSpFjpb8E7OYKIQlcWQjCWbai2sLKlcCMNMGAIUgS1MyRgLTSO24sZC24rLlrWGrhc9GWcNbduItkwFger1Ix48krQkSVhSiozDeREhnSepls5zYZgKuUQKCWPF3au2FL32bMwpcnq6l/liBSyprimVHWd9bY8yzOFKWjSKtmMZKw1wpogejrrqVQCcCjQXtBovIJBVKmku2nJKWZiRMhc7Gi/AUrWUlulSxT9FuFgqL6BlbuCia4ECu2vGQZ2zVgVKJLB2C+B1UfaqrWfyOkYDdahLZAXnL1TrvGLo5WIV/FqZDhS51v8QlU1jHd1mxxwtxp0l6XQW11hMAd+2+L4VXYNGhEAT4oKZoqwbIUQmBWFTTERlgsm+qCm9tXjVihmnidMgVPfjMHAcJrFpHifGYZRxTZGSxD1z03eEvscaaTEUh47EPJyZhzMpRY7HB07PjxSKAnWSFDkvrXkxJT7e33P/9AjG4BvZ3511bDYTfbfBNw3nsbDbzQp0tDjXCAjgRDtnvV7W9i5nnQKUUV1uLMZLO1IuhjlX5pPuGVY+z2seRZ1L5kkYD2EcOD8/YCm8//iJ+4cHno5HYbhqUaMATdtqC1HkdDppq1EWvT5TaDvPZtPinKVrd2z6a5xtaHxL16pOgROQeZHD80h7o3M4r9Z/a/26yv4r4EojAFIxlGwpST5XdWPDVPFWBROryyGFnKeFSZhLVlZFoRixYSgUFQ1Pct3GSJpEhPj56YFxOKMhnYY30tInc1+An4LX5EcSk8Zbus7SNK8f34j1+CTxpgkUKvDTQNkwzhNPpxNzDDjf0PQ9xnpizIxzJKeCP7U8Hp+wztF3HftaifYNncYxUpwaBdzse7bbzYqlUZN0SeChcDydeTqeiaEwzSOPTw+Eeebj/Sd++PSBECOnGDjGIOCRuXA3nalMvyKV5yTV5HweyKNqT/gGvKM4Rw6e7GVNnccJsiglnnJiUzKH7YbeFVpb6PsN79694/r6mnmeub2543Q6cT6f+fbb3/Dw+EgIM8/PT0zTuCTd1eI6zEEZhq8X5OQMw1lY/jFaUiqiMfgsGibn4zPPD/cKqjZ0/UYTb4k5q1CwVxDoBfDjL/c7TciNtpkaJ/G5NTKGGGmzleJkBYqqaP0FEHLu0homQKEWNerr6+26r6/tx51bM8griGRIzlF8Xgoll2vqApAsLCBl1M7zjCFj1b0xF4trN3TbAynOUviKllSklXQYI3OMDFNgnF+/1atpGr766it+/etf8+233/Ldd99xdXXFw8MDu92O6+trvvrqq8XharfbLSLL2620Rq9bqyqoI0CkaPmEEJbb9drs+34pZlZr9zUIB5dcoIJGct1dxKg3m81SjOi6jpubm4UVVFuJ1myftm2XcanjW1+nijJ/+eWX3N3dsdls+Oabb5Z2tqurKzabDWsGUQWxKrOpglnPz8/88pe/5NOnT0t7V4yRzWbD27dvl+vq1caw6/iTP/8nvLm54c9/8Qtur654vn9gYzvOz8/s9nvu3tzR9T33z48cv/+O0zgwPTxz+vCRPM58+eWXFGfxm45mu6Hd77BNQ3aWrXeyTyV1tVwKEpI3ZICisikm40tSEEjF9TEiEWNkLhZnoXH63Kwei9C0nt6igHkgzCM5Rqbjiel8pqTMfByIZ2m3JupPWbZirDG01ksMVgolTpAjOQbi8Zk4DkKiOJ6J40wKgenxSBxkvTwN0qKXcmKKAyFFYgoM05k5BaarlodyzRi63zkuf2Q7dwnYQWjzQd2spjlg7MQwTpyHgc35DCXTtaJa7pIXEVLnaIrHOFkgC0USmGJWlGlZ6FrdYLuul0noHHOYGKdBJl/MYq2axTY3xNr6pcFRgb7b0HdbGu/Z7bbsdhupfG566e3r2gU9r8eP0FKjRUhNfhaaNOCNwSpVsG1FEX6jKPXV1RXWWvb7HcMolvJBnY0KiK1uYfm81QFE3vMPRBPhklRRKpPGSuuMcRK4aYWkMnKscwtdVBYzf+mdtQ5vvW6kUj2ptESneiBGq9RNI9Vbp4FspRlXivSyMAPGmQvwY4WCDhX40W9hVkDOC+Dnp8/fj4Afaq5aXtzSWPrFUV5cH3p9mQtDomStthkVGCRjSsIWcf+4WJS/3iGUTwm6srYVVmeuaplplTHhvWcYzuScGc5nhmGQ1ix7+Q7OOdHnUGpsbWFzrln0ewxWkp4CxhpJBFJNIBSZT5YS5fs2Tqq6BohkvFoaZ+ME+AGaaAitnMNgLdHJomoq68eCb0TY2BhotFIsrVuOptHKysI00V5/UfVcCAS1Wv45a2QBAEvtr08vKLNLhQ6F/l55buacsUaYOsaURUi3BoKliBNAWf3UdlZJ1mrVSdc+BaiMtYuYb1oqXBXEloeSM9kqA6Q+Tz+XYfW9zQV8YPWY+pYXxFTAllJkzZRqDZfPpE9M1lJb/LItkiQjJgeLD5IWBwQAS8oAvIyfvE91JWR5XwG6FPgpomFQmT8xVmblH+Co7Qj1J1/cLqujEAgAVfe9kgoplRfAT86ZFBNJ3TmkAQg9V5ZipY1s0Ruobog6HEXB8YLBlMrVMouDhUE6qIqCoRgB2QvqcOHtolFXBVutk30gqpB0mEU3LxdwGRUWnqBYfEyc/QAq5Oz9rG2g0g7mrNrXazBvVBBa9r+imlbyHY1vBPjBEIslIwm3T9U15PVAvHWrQa3qSh9/xJTMrNbKsi4oqKPFAFOLNKbOILP6G6rhE6FYohUHv2yzAtwq2q0tLev9bSHzGZb1eCk61IsN9FpHx+Rz1nJNJlZunSVj1qCO2ghWf5KFwWO0sq1gXE5Z9ABj1GplUBcq1a5eFRtAW+6pIK/TvaTFernmXlGi6cWhq50aaFxafhYx1oqdKTBsSaqtlsTBJgbMbLFOHAznpsFnSQIs2hLrLCY6bMn41CwtJYYL+O2Mxeu6VcWFje5LlRmU17qPZd3CoOsoRYtZ+t3yTwQoLCsvtcHX6npYX6cUGbuQE/PsmLVFxBgr13WS7ydiwRtyLvSbLZs5qNZMkFZMXcdCjLgQRKsPwzxPrzeA63W0fv5V+2SVJTAGbW+7MC6ijwrcXMAe65xq5FgFfrwC0dUBSIAflhZJ+wJUWQAbBd6X+3V/sk6F841RFrKCNKu2nZ8CftbtmMDCcpXYLi5ObmGeCfOsWnBQHawq24eSGQevY5+xJWJKYhwnkZ3I1THSUMW7pJBX98m6frzusT4H9QdYLM27rmOapgWsqEBPKWW5DSxzY/296/iCFM+rVhBchLQrkLIGfurnqi52dSxKKYvg9HqtqN+htn1VNlD9LDJu9sVYXwBg9wL4qe1da3euhXBQXrq9rfehtWvXNE0Mw8D5fF70kKqeURV2fs190RpL2/X4VowWirUY54TFPEe6rqfvt/R9x3maaH3DbGeKb4htR8aK05dqbZqqD6bXH9aqW6gg3TUHw1RHAxQBlxulCJv0stLJ301dL0QUDyikEkVwuRQtdkk7choG0nmQzqFhIA+DaPcMI2VQZ7YgJh2mlKU7oRhDtE7mUMmUMEEK5BiJxyNpHMghEU9n4jSL9tDpTNICXR4HchAt3ZxnSo5ikqFxRwbZSF3zO8fljwr8WGvZbneQIrbdQUjM2fH4dOZ4mslZxH0Pe6Xx3d7QdS1t37Hdi/J333fs94Lmdm3Lbitsm9aLS5LVqnffC3XW+5bdfk9KkfNw4vn0rNV5+RHaeKX6lcVqHaBvBfjx3nP35pa7u1vatuHu7oa7u+uFHgcXwKdwEVW+AAUr9k2pAY1Q8VIRByBrpPXksN/xz//ZP+XLL99xPJ744t073n/4wOl85jfffsf9w6P2ZwdCklYTr4vMknyuArfXXpFlLkkVNUQRq0qxEKMV+20rLloitObF9g5HKRarCRXF4orFFGknkeSiUsztEggvyaTRaaqtNoYkbI5ld9e6dlkBKhVcWc58DYYvANwF+Kkx9+InVbG/5TA6inx23/q8vLyxepypPdwSSKOf0xqpxOYUyeMgffrP95zuv+fp4wdpfWt34k7z7z9kP3mEEPjNb75jGmdOpzPzXDcF0ZlSTA+DUcHXgPcNMcw0jWe333Nzc8O7L7+k76WFyFamyYIMsCyw9YwJEAHDOLE5W2JMjKNhGLSVJkofrAG61tG3UvnNctnI6zlPsVXEpQEauS5DJscaYIsGBpSVrk+9XSvU1eK86GIqtwUAk9aEHINaoWcZpyJipCEEUo7iUDaP0ko6jZzOUu2UKrcGBpW18spjSIGSCtlkvYaNgF7mEpyAbDSFhlJ6ct4wh8KcCuLTnpEWNgFvvZXqpLee3ntN7srS6lWTDUpZNEvWAoUGQ+v9Qruttta2romrz77+HvVHzpNZktULrXrlqGEiCn+Tc8RUFHYFYJkF8uAnwLZyeU29vbgk6jVaWDHxSiGmyDgOxPT6lHZpL8nEORHmSJjluhpnCcTG88Dx+ZlqXJCyXI+yzol4fkqSeFaWzyWJFADPgrIOqpaItCY467GNw7WOkqAxBeNkXW2spdVq9LZr2fUtlMLp+MzpSRKm7WaPswdKyZzPW87na8I88f777/jh/ffKzKk97YVxlvYAWbZHMLWt76htFpYfug943yjgVyvaAvxYW4Ws61pvFITWoLwOubXCDFURYmxLsVrV73uc80vl9VXGMBems4Ba55MUl1KMBHUXfTo9M04TIc5YJ9R0HJKoGymINL6j7/dicGAyxkaJSFELbiIxZKbzhEEAL+ekpdI3bmEsGm9U1q622TVcWHD1fK4hJofV60hAT6dLuCZ4CmzXbHrRJCmXNi5AaTsyGauTVymZGCZxHYuJ4XlgHoUheT4fJeGve41lAXis9RQcxWwopsX6DZvDG7a7HcYknJ0w5vWdvYwxtI0XwDdlUhath7aRFvRSCn0zC11f9+6YDHFOzFMgpsIcAnaSRHtsR6ZpXuZe0wijpO1aOi1I7ueJVBKN9/Rth1PtEmPBIUBT4xx9J6yvo3N6hpHimTKjNxicgsYxJxXLvrBAZK40WC+aLVMyBC0EJCuALkYjsFybAaUgRS7kODOFCZMD33//HfPpie1mS4qJ0+lM4z3b7Y7b2x3b7Q5rPTc3d+L2dXpmnqVyPYzjkoQ+PjyKw+2vfvmq41iB/aTnISYRnp/nCo5HcQNWG2mr17ozl4KBdbLW1CS8gkCXVq8LACO0Krn+zQqMcdb9SFxfHn5hszprl9bl2sZsde4uosyfAT/rFrBFq0dvF1ikA3LOTNPMHGZqa3R9fe/F4Uj0YxoaL/pNRsHqGCbOj5+YhzPGZLw1WNNibML5DU2TSdliyqD6nq97WGvZ7Xa8efOGP//zP19YZWvHrK7rGMdRHPRUWHnd9rVukVuuDQVHKphWGULr1i2RXbgAJMDyGmvG1frxa7e1yuCpz3vZmic/Vax5/bc1gCP58nYBer744gtubm4k9+26Bbiphdp1e9f6WAs6Pzw88Jvf/Ib3798vxaycM4fDYbGHf02hdes927dvsG3HMUTi84mSCpvrWzbbK64Oe756+wWbzYa+35FC4nQ+wXWCd3+CKYU/+/mfsr+6ouk6mQcGzf0EXMGgLLUoq2JB25FZ2I1iqR4oaoAwpcykgss2FXHRKoU0z6R51hh/JEYBcnKIsmakRDxLiywpkydty8oixOxmcebKqutDKQIYqVnTrG1fJScBjOaZEiPpdJLXSok4Cuizvp1KhhSwRXSKWm9UssIw9RsSG/xhT/v2a8rbg579//dvHZc/LvDjLJvtlhhmbLuBKRByZj4NEjhNkWkMC23v7s0dXdey2W25vr2iaVu2mw3XV2Lnt+17DvudbJjdBQTabbYcdnucd2x3e+54AxTmODHNk7h+jTPTKH2d8zRqtVScVGpAKMDPBuc919dXXF1f4b1jf9ix328vC+0CrhQBDMpF3PkCANVEuCZQulDkSE6SvHhn8bsNf/EXfwbGcjweORwOfPf9e+7v75nnwPk8qJhu1NYapYpixOY2peX+8tkC8HqHCGqGBCkWckSBH0NxDmO9BEbZYbMV69pihcGiwE5WwAe13TELAGRWv1kJbGXtj87Sq4mRoDkLcm5yrQxK8GhU2dVQ2Un6yZfEsgJD6GZdv9tFANcst34qab8AeeuE9se4T2Uk6GsWraabyjqyMrFHcbiZj48MDz9w+vQ9vtuwvQJrX38cQwi8//49MWbmKUnv+zQzjAPjKBbLGruI3fN5wBoRS29az263w1r4kz/5hv1+qy40e7xXgVP9vlEr/7WVRjCDQj8Y2lbmwDAU2lY2rBwyOUjisdu0bLcSKBtn1M3NCKLtGjBO6P+N2NaaouwTWMRKBeCJlBIlWC6BUiI5J8Zx0EAwMQ4j8ySMjhRGEVLLSRK3WG2S0wJ61O8YY2QOE9M8M04j5/HMeTgtAV0NrOxPXEG/71FBGUxZmGqZIliOFdFkZ6rQeUvOHaX0xBQJeaKQsTbTeGlL8w5c4y76XNbLlX0hB8h4KjU/rcdWRWwNCHtKv7d3brFhXwdfL2bUAtqwAL71dv1HVueoskoqKbWYs6rqFqUIrdrH6pSWt9E7V9doWf5DqpfaNCZMCwG25jBxOj8vtO5XPTIiYjhn0pwkiQyBaRA6b87CHCklM88T51GCXkn8W21/Yunt8P7iGOSso6kij1ogsdbiulbaVIw4X9josA4aV3DeYCgL2OOtZds17PpW2R6BMB7JBbbbDdudFD/Gccs4DozDwA8f3/P4dC8VxUnYHRSE8YenACEZRGZHkyynrYXVWa4WSbKAec46oWQbcd+pyZrRany1I7fOSkLcdjgvtve220ibsG/ot1uxkH5F95JSMvMwMs+B4TQwh8A8CageQ+A8nxknaadzxmBLUr0XtFjl8a4TNxLjL8APmRgH5mmUNrY0qYV7TSLU0a5p6LpGwR1E10pBsdoOLUml12S2goOVtVkZQYrAIIUJW+myuTJKYKmV1uC7MqycF6ANdH6qAPE0EMNEDJHT05HxPJJyFMA8zbISqCh1dXm01mNch++2yvLZ0O9v2V1dU8pMTs+U/Ppz0RpD6x0hJdGAKgKKt96ro1yhayYMEHNiCrL+xRCV1ZUFEEK+T9N4pknaFr33+LbRKnhHPwtbIeWEc1bmZs5srBhY2CwaTgZD48QJsbby1rVMAM5GY6BCm2R9jCo2LR9DwQgsjetomo6SM6eUGbIwh0JJBNXo8wWcLpPa6EyhEKKIt5cw8UOaOD94BXgc0zyz3+057K+5ub4lhEDb9kzTTIgzp/OROYzEKBbwMQTOw0Dfbzidznz37W9efSwzZRFVjykQ4iRuvCEwqgNZBZE1VFj2u1o0REEzW9u4aouWuQCpBqRFRNlgF0mBl8web5VVXMEkBYoq8MMyR1cMoRXwU+//XPungnrWfXa/rcWLHzOQrbUL8ACwFpc2qlloSsbmgCkZ7wy7jaNrGjAJ53q8L9gI0Krr5+seFfioTl63t7f88MMP/PVf/zUPDw+IW+mWEMIC4Cxab6vXqCCQrJEXPaC2bS/zUtfIdZxSgZ8KhNTYYc3OqcyaNVBUQZs146fawldAqH63vu+BlwBSBXOccwvw07Ytb9684fr6Wq7tFbt0VCB1DeSsWUQhBI7HI9M08enTJ77//nt+85vfvGBCTdPE4XCgOqO91mG8Y3N7h82FU4gMc2DjGq4O13TOcbO/4ot3X7LrN7SuJZxHTt2R1jf0bYt3jje3d2wPe3zXyjxA4hN07cKAKdJOTGU8KsOSlCiziCyneSSOAyUlcUIcZ9HsSRkT5TFhGAjnMzkn5vHMPJ0lrgxBRJpzFgbOMGJKwaUkXQ4FbEy4JJ/LRBFiLjmTp1lcw3ImTtLCVWIinU6kYYSYyOeBMk9SZA2VQVkEtCqFbArGquC0d5iduC5iLa4Vh1e3v6a5fQdvb3/nuPxO4McY83PgfwF8hYSW/7KU8j81xtwB/2vgz4B/C/x3Sin3v+PVtJ2nwTei27I4VxmhusaUsCEwzRPDOIjbgwHbONpWaGlWN9QUAgZBbmPsEPVt2aC7NtCUosGgBjLW4RvZvEsLFKOtEtrnmjMxXujHbdPTtcooattFwNnZixPTYqmorBRqZdsW3TyEVvaCHVJWdFudeDEE5nnCaHuaMJo69oc9N5OAVVeHA4fDQRD8OSyOS5+DDbXyX/R3Fsr9PzfG/NXvP4Zo1Tku56pEQ1KqecoQlGKeU6GEjM3QFHVncdBkQyFI0ukMJQcZGydVLKl21Nt2ddtgnegxLXRZbV2wplo5G5xNWOcU0FFXnBUAt7CBVGhPKo51hLKO2U9dvb/lX+o4kl88r7qtVLaSItAoJV/pwcZADIlxUletSZgj4zTQYmjCuNibA40x5v/Ca8zFgvbZZ3WRk3YCqTaI+01NLqRaLxTJGGbGccAawzgO4gwyz3jtizWVeaKbZzGFYiy2FEqGbIWh1XhH20offs6enLQf2xWyk/PWdo0KBSsKtXisO/kxosVj1/1YytzIq9YEiqii1NuQl++UktKhg7iiVDG8GMPSspKUWSdtDVoHLRXEVcCismwWramL2KKcbnns8fkIrzgXL9fimlXFhUVDBUSlXaKq4KQkDCtnxTrZmEzxaGuhsLKc8RV1XdygHIXaCiXfSsY2X4b8AnYtAsurP/4k+FNZOp/dXW8X1SH6Ebq6Gndejkf9/kVvX1hJK/CHstzOCwikazoXy9UaYMUgbjB6vNpcLKi7TZEKvnNOLJt9A8YQUyRmSTCTivnLHiUuedYKSJX1++eUCSVggLZpxazAXJKbolWoqPtHCLMy2NKyVkl7lwTI3sm+6byHIs4oTSsgUNO2NE0LBnVmknPlmlbdGAvJKj/BGKxtMa6RNbCOl0FEZRV9z0uqWc+/rvcIoOOs7JGNF+0f69yShFXgxyrwY73HWI9rNxgvsUe3ES0hSuHV1lNWM7ACKjVG0L+uRTtfVqIvFV9nHdl5FjYe5gW1vZgalNcWHCmCZJtI0WJsVkchszA2l71vOd2GUsXOFfi5tDvrbYwIE5gFMV2o9LWNVj6DrrPGKABd2ysq8JNXgNGFgQYKMGtyvZwnnbc5K2Nz2TNZmIfSPlZbNV93Lv7oKBdHRvn8ogGXi4NkiNI3uyTg1hhSKQuD0FqJaZ1e50RlISSLDQ6XL21T2Xu8sfTOk6LDIsVAYw055eX8VWaQNYYwb9RgIxKdJ1nR2guzIRoFh2rcYyQZbH1DLpkmtsQUFLgPUBJYS2MdTi4eYaQjhYVs5LqpDBNZy8ulvXQl2rzE295TyNJ6UxrAKHvK0KZE23ZEdbx5zTGs11+9oKSQJeCIS3INFif73GdeHcAFCKEgek8la9EOdSs0YkJRai6QKWUF/OQa/xiKzqfiLCW7JU6IKxCm6tHVtlhZf+3SAmZXgNBa+84q4A0XZzL5ro7qvFf3MMMlNrPWEmOQ5BG4VEeKaHgVaffzZByF3Fi6VvQKhUBhlli2GoXo8WpzsWrmhBCW7oq1cxVIAbMyfiq4Tf2eetS2LfnOcdnz1+BY/fca+KnnbW27Xl+vAkzrv1eAbf3YNThkrX3x3PXj1qzp9X1r6/capxpjFrBp3dK1Fouuf6stXsMwLMBUBYrWwE/tepmmqYpVv9pcrPyhpOF3dqL/6n2zxA9N09K1HVt1/Woax6btcM7S9/3qnGVh0uSscYK2HJdIzlIoIZULyycmmAWASdNEGgdhcs4zSZk6NskPuZDOtY0rkaeBPA7CWA7SklVSJg8jZVQDjJwEOCpgUloAmxwuwE+aZ/l3LmRt4SoxkoeBMk0QE2WeYBZ9UmJaAJ/lR4M3WXIVVyhgjGgh26bBdD20G/n5Hcc/hvETgf9RKeU/NcYcgP/EGPN/Av77wP+5lPIfGWP+Q+A/BP7H/9ALOWe52u+xwDh8QdtvxVlrFjvYilzHlDgNA1OKGGtpGk/7ocVZR9e17DYbvPNstz3XB2H/HPY77m6vaduW68MVb+/e0jYNfd+x3Yl4mzhFWMkbe0ff9brQZ00ORcQ0V6qbMkcEjBHgx1hLyplpmi45jP6uG2JdgBbHqapvwirvWQYVwjzz6dNHvvvuO9q25e3bd1xdXbPpO/7iz/+cP/3FL7h/eKRte776+hseHh74L/71v+G7774nKpUzxrAs6NaIHSUpLYEe8PellP/S7zuGpWSmcGQcBh6ePjENI9a0eCMU9ZIV8DFQSqCUmQIibNiOgkS7hq5RK0bXiHuaFSr0GoUXZPwiolcrL7XislRfMBpEcrlfKbXV/lhAuFrZBFa3l8XeINfIOgNd2Aer+7gECxXDKwi7sLagUMEKaqOTJMm5OHLRRNw6jHHEMHB6fmSeTjx+/IG/+/Y7Pr7/NV2/4TCf6TcvJvKrzMVcMuM4EELifJ6JQe1d50nZBFYr7PWalcru+fzMd9/+vSROJnF1vef5+Yab2xusg67vZEHXtktvDMau9DQ08fS2pVNtnhgTIexkE0oiHAtiVVxFljOXFkbU+rlgiGkmTrMyBifmScGbOBPDDAaaRipt1ODPCuj19PS0uI6cT2fGYVSAp+qelMWxS0ZeNX9eIICivyBAbeGw39E2jpyyBOQqjpuTsAmTUKJfZS5K0tZc1hhN7rLGcNbZRRfDNy2+6fBNzzxkTqfEHGZKHin5DES6tmG37fHOqTYai8ilrH0GWyxNU63WHTl7XcrU+Qtw/kKBd04Au7LMpZrkXm7XxHIV8rz4fzGgHaJw2QPlRfR5VdtieWYp8qTPXo31u9TklZefpYL5qbb0pcg4jTwfnxnHYT0ErzIXS86M40wqhe12R9P2wkTV6t0wDDw8PYhd+hyZ58Q0BbpWXE02fc88zQznkRSjrM33z+SUuLu95fZwoO863RMkwBmOJ04fP5Jy5hwnTrO4AfV9x27T45RFe319LawtZ2m8nO/DbcG3HaVkFUWXlsCm39DNE80wcvPma26+ODLNM+fjyHAewVjabkfT9eQM5ylg5ijjZ530p1cwAWWRhYkcI41zXO13bHvR2Pvm6y+5vb7GOkvbNgL4GINrxPLeKhPCalXM6h7jVF/Aec9/9n/8X3F6eJ0xlMqurHNS3ZWEsA0JjKdYQzKRNglDy/oGY5yI9yqoYa2j77f4JlFKoAonWyOdJLkIWDcTLoBkTGQQpkkR5rDzDt9UC9tIduvEZqUHontetW+u8UN1uXTYhfFjLnGEAL3LjKmZshE2Z6otJqpnVIQ/560IfPu9J/d7QowcTw3jKO4oMScVhzaUpAB1sZRkKBbinDgdj6qFE7BmwPCCZfA6c1GBjKKLaF3z6/rSeMt+t5W1ISXaOZByphlncrYEbdGcxlHE4DUZFGaOx2fRG3MxMEwTxhqG85nn5ye8dRw2Gx63Oxrn2O92XCmL1nU9TbehtY4317fs+q2IfA4D0yishOH4zHg8Lm10w/kk14g6Egrws6VpekopdNOWMexV5HVkDpNcx77HedEhmXMUVieO0LVEW2ic5bDdsFOrbGOMJI1+4nwWoVw5mUWBnyIF15JUK8xRcqJV8HW3ExmH1xzDmAO5JIzJWFtoGsd2t6XrGmKI9H13SZY1ySr5EpNXYJV6nde5oiDqUjBcClxoK7rOiVJZ90XAQSBZQ6yAWSkvwogaViyFSn2PBbRbgRJVHBx48bg106jO77o3L2BcBaaMFTDfOt0BL0AXRQoAzlo2rad1jq5rCPHAdtuRUmAOIu8wJ0fInpBfpJKvMo7DMPCv/tW/Yrvd8ubNG25ubrDW8vT0tAgw39/fk3Nmv9/z9u3bhdGz6HHBwmCpRb016+lzBtUa+FlbncMFlFm32q11dSpTp5SL9s/nr1/vd85xdXXF4XBYPlv9qcLn1lrGxX3OM00TT09PLz5/vQbgwm6qYFYFc56envjbv/1bPnz4wOl04v379zw9Pb34TgAfPnxYhNdfawxTLjxOEw2Gvhg8hr5p6A9X7PsN+92e/f6aXdfTuJZNtyVGMZfxSqJrrOi65pIp40h+HgRciTMpjEtb1jydRJYhJvKswNacyLO4neZ5JqkJjc1avCjQIJ+LUginM9PpJNo58wjzKBbrIWBCECfVYYBhFPApREoQB56QIiRlBYVAikFbZAXoKUWBqCTsIhMCTplGLgTBQrToUcpqVi55ab2nymdYTNvj797R7a8ob64pb39OvLv9h4YE+EcAP6WUb4Fv9fazVqp/Bvy3gP+6Pux/Dvxff9dF4KxltxPtnXG6pek2cqJm7W0LgWkc1LosMJ+OpLISVKUCCK281nbLzfWBtmm4ubnm+Z1M/LubMylmurbjcNhr8idCbE3nVy0I2h/vLU0jPe4sVeCibIg1rbqek/yC8l91fdaODEtPvDGLXSOwLM6X6rQIRz0+PPD9d9+x2WzY7w9cXV3RdR3vvrplt9vz8PBIKYbb2zu++/57Pnz4yP39g7Cj1M2lCh5ba8mwtEZYQfXPrzGGpWRCPDNOJ56Oj5xPZxq/Y9uJ1WoshakUUhEB0XGeySlLMtlMOCuuX0JblsS0OilUa9vqttAqLXoR1KuLqIqMOq3+akMXtU2kBhcV+KmWqRdNDLSqWRfOKlQtl8DFAcisgKLLIfNQa0Llwv6IRVr4MAZUgFquj3qdWGJupFporFDjjRMrvqcj8/jM86cHvv3wA/fvv6ffbpjLTL9dgJ9QSvlPX2UcFbyc58DpNIiuSAqLU5VZRPy0Mq99JMN44nQ+ApLovHl7xzCcyCVwdb3XKnWm7bxQE5fReZFeQ2Mp2S9BFvU8qtaOLID1dtEWI2XtIK0duS7+and4Op04nU6q53VmHAeMNWw2PV3XYW0VCxRr6cfHe56enkQx//kkwA9V3LleY9oWgZHbC3NFN9wirEKPw7Sw225pG0+MgeGYmXNagJ8UBVzhleaifqrlOtXVS6rhQClWWrZcg3Mt3nd435HLxHBODGMgxZF5eqSUwKZvifNM4x3bXcY6sbs11tHqumJN1ZYplOKWdtKLSHRd4/TaX1Xe6u0F9FlAcDRyViBmwQgvM6dUpFWKq5KErqtjXP58uXuFylLn6o8ra+tjbeeeUw3CRI/ifJY2Pj1ebS7mUhinABj6zYa+1pt1jXl6fmKYJmndMI4QEvMcMNZxfX3N1eHA+XTCFBG+HI5Hnh8emKeJfd/TNw27vicFafHLOTOfz9x/+ijVwBw4p0AxcHN9xbZrMIhj5m6/p/UeY8rimumcp9/IPm4XWZeC72aaOeCakcPtO67ujozTTHYDwQ4Y4+h3V/TbvSSj54E0ThLEWLfYjteKc0kJO53JYaRvG27ubrg57Li+2vOX/+Kf8s3XX+K9Y9O3NK22MzW6P1iL9WqXvay1dmH9Wuu4ujrw3d+/zhgahJ1RvBNGA5aSDU2TKDiwkG2kzUGDGWGkei0OlSJV+rbraUomJUcIUErCWUO2hlISgZmSxgszUZO6VDI5CSra5EuCmm3GprL6nDoH18CPtYsj0dJ2AmRjsbpHyq0L1FN3xZqEiPKPCn+XIiB3jALeN3YxA9h4j8UKcy5lbDaknJnjTEgJYQ1XVz05h2REH+gk7nHWJlo/4ezSqvdqc1Fydk2UV4B/vd1Yi9/0FAwhRXwjAsXGOOZQcFZFdbXSnrPoOBprcLnBlbywMur5P5nKsjEc+g2n7ZbGeW4OB8L1jRQ2r29pmw3eO/r9Fe62wRhx2EuqQ/f8+Innh3tiDDw+PfD09CgtCyEyR2Hxtu2Opt0IQBk6+rAVYPt8ZB7PGAyNbfDGS3EoFuaSyaYQ2oboipqd7NhvetGqMihjfWYatS3cWjF7cI5SMt55speCatNI2iIaKIXNpqcVwdvXiW2KtHdnEkYLeb6xbLY9JbXCnOgDWfXHpA1DxrikKmBeW0w/Lxzwk/uOdBbXfffCpFgKycveqI9X3bP6Pkt7jbFLslDKep9SAKgCtRUQWn/xFRBVH1vPRz1qcX1hEa3YJ0sJRIH3xnsOuw1927Ld9PhG84qSRM+zWEK2xORJF+Dn1ebiOI7863/9r/n666/5+uuvefv2LaUU7u/vaZqG+/t7fvjhB04ncWs7KAlgDa5UIGXNjllYvj/R0rQGftY27+vzuH7MOqaorw+8EKNeP7cCQNKlcgF41gBSbdeqj6taRNM08fz8/KKNy1phxFQ9Ia/F88qEGseR5+dnfvWrX/GrX/1qAYKqju36uL+/Z5qm+lleZQxTKRznQGssxnqytWTf0O72bHd7tts92+2BXdex2+y5u3mj0U+CIgyeME1MwyAAyhTgeZD2qGkkDUdx1xqOnE6PshbOgTTNwuwJiTwJGJPnSFJWTWutMKG5yJMI8HNiPp0oKWHCDGGCkjFzUPvghDkPmGGkpEyZZtHpyVnasNNMKZk4z4vBhrY1SK5QVJ4ExJRKTrJqEtVuBSPsSgRMzhhqR5EgB7XsYjFNh79+C3dvCHfXlNuvSdc3/9CQyHXyOx+xOowxfwb8V4D/B/ClgkKUUr41xrz7Lc/5D4D/AGB/dcN2U/UARtk0UiQ3DWRRn3dWdESCnvi0TIhLj2pdLEWkWShU52EQK+og9MW+7ejaTujrFhHW6xq6XkCjthWQwVlLLn7ZiHU91RW99r8DK+CnJiiwWvhXyQUI0i9tLRKMVXDIGAmglkW/FK2ySGtX27YiwFap6/pbqI49+/2Ow3HP4bDn6nBg1OQ9paQg04XabY29RGivNIbbqwOg7lfLZrTqdy5mcYMhi+5QKhmywaqYtehuaXtWLsQslNWQpDfdWksTIyFFxLXFXmzbl6T80j+NqWpBMkBrBxrjRB/GmApAOB3HBSpaAA5B78xqvC90/cvgr6uf1epZJmyleP8Y+KkBswI/qiFSk5EYBobzQJgGBmWsGCPlIwEMftw//fuOY9s2uhmWRaulCtmCgLRt0wogulzu8vioQmVCMJHWsJyzVDdTlNYtdc0orJg6FVTV4LoGREUXvoLqXq01ZCpSXh9nLvozpRRSUIeYlIjzvABXMQZiiphsVhRcQykzMVoVl5SWyUpRr1f0MtY1mKvfPVFJJMvf6/lL+n1knusctEbbnsxSSX7NMbRsVlVATfSKbgxFN4lSxycS44S1Tq+nvKogyK+lmqmtJbaKV1q7BKGpZEyRCoesw5cGx3L5jJgaLNUNjEtQalglnvKFV3F1BcRfHhWMpxR5bX1OLpdrdrlGLpj66vmfv9b6xesvpcYn6R2v86K6o1QHHT57+u87jm/ffUVKnyWE8iC9jhzONzgflB7dkXKhaXSvcCJaLFX1gtdWLEpRAU8Vo8yFbB2mII930vbcWOisjFXbtDLvfSOvvbQJLh4YWFuoMa2R5RNKQUJPS87QtBuabkvCYV2mmEgxloQnFi8MPtOQjV49xmtLhACWhiztSNZLy5jSwruuo+06mrZdmD5N4y/Cxk7mndGWFKtr+sLGrR2jnw3i7zuGh8PVivHLJY7Qf1trdC5J63epiZvO2UrTk7G/uLqUom2r2ekcclRdn1ruuFzOdVdaXdpZnOmWsdI924LoppVLG9U6ppF9MWu78uX1f3wSargkPl+Zy7pQCynOy/hYLN54nILVjdfkJeu8Upcga8Q8wjivrFNbvymUhCmJRWD6x2Pye43j9dWBpWin6/5Se617e4FK+a1ja5Wd6rLGK/bi1ITuITknTLKiQWF0DQSSKUgHtBH9RgUiRtWNSynhu4FmOMu5TB1NkcSwZEkqSs4SEznRz2rbTlgROWN9wkVpd/HNhqbp5Xy7gnEiUI0K+pqCjJHRpLnUdc9gTMZ5iVX7vqPre7x1dL6j9Q2tahCxWo/rQizTcIX0F5b7Pjct/X3HsNtsl32gjpFRULM6nJVSKDaTU5ayVNa9zNaYhNVrfMZGXfaL9b1GwR+jWnPy3VMFDVefBVjiRo2QlvyGZV6/CDkv762Ajv3xH3W/qLc/nxsv/y0fL3O51C8F79oibzV2iikRoojyt3NQ4Ed+zyERk8gv/MSY/Bm/xzg2TbOAF+fzeQF4qrhxdeJaM1ymScR41xo8q9d+AdgsBfrPz9TvKA59/tifenwFmtaPWTNzPn/eEhsZszCF6u2fYiR9zlqqP5+3d9XzNgzDwub5vB0NeME0Wv/t9x3D3ZvbJZdyVjoAGmPwxojNec6UMJO0kFdju0JSDbfMPE1M57N0AgzzC+AnD0dIkTicyKeT5B9zpMwC/BASqOAyc1TwplCspVhHNpCMJRhxA47nM+kkuj4mTAL+lKrxE7TVa6KMkwo6z5Q5SDycgmhd5QIxQkrCFFWGj8ypS9vz0kHw+fnjstPWYkoGkkEYg85RmobSddD12E2P22yx/Qbj29d19TLG7IH/LfA/LKU8mZ9aeH7iKKX8S+BfAvziz/5J+ct/9k8YhpH7Lx4FXUxJTmrOhHlmGJSuPk8cT2e1Xg9M06juOmWh4ZZieD6eMMDxdOKHT59wzrLbbLjaH7QyseH6cMA3jt12y/6ww3vPYX/g+vqaxjfsdhv2+x3WaQ90o9oB1uOs6Cws/bZAUWcf2RPWSDmawEIs0iIAde9QNop1uIroa0DROM+X776ka6R/9eb2jt1mi3MeMsRpxgHv3rxl2/dc7/ecj0+8ubnm8fGJ/+//72/48PEjKRfmGEm54HC45oL6PL3SGL75+quCbbCuw7cb2ghtu6Xfbmj8RiY1jozlPMAwj0o3zkxTBKpmgbskyOpc4cyFqSOaP1Wr4MJoWFg4RoAeW6nrS0h7kYMRkIBF62DN8qHaqmtiJZ7vhrK0HLzcKC6Lqzz9Avysqjt18zRGKqhu+URgVAOJyvjRjMlYSp4p8xMlDpTpSDaW/eEaayGFwPiZcN5rjONuty0g4Ok0DgzjtABr3jt2uy1ffvmO7XazgE/SlhWZQyCXzOGwoWmkdbKUwDSfsbZQSloSHeku0daZGIlR2rJE12BQi9+L1fE0jQx6/zhNjKNUJrbbLdvtDu8c2+2e3XYPBU7nM+fTSEyR59OR4yD09pCEoi7VkY7GS/XteDxxVmHH2u9sDLTes+03cl1p4iYWtgIMicNXXKrBWSt2uaBgZtbc4NIi0LaexokeGVlav15zDBt7W7yrwq1KPV6A1YwxiRROlDJyVs0D7zpCyjiT6dtCMgZXGnI2bLqObb+laTzb7Z79XipoGWl7iqkQpoF5eFY2VmZxL7NVgwDqtlV0ml3y0kqRv9jcyrw3L5OCl9d6/eKXv2cV8OOzIK2s2EIrhK4sc12e/7KKKu+YpQOKlDLjGAlRwMNhPBLDzBymnxQDfo1x/LN/9i/KcRixztO0YK3XYElB7aZlszvg2g7X9FjfMofAzfUVm92Bpu2oWgsxRrz1eOOIIfD2zVt2e2n1Sj7SuEYSEyM86pgSyYqrj1FGbnX42O92eNtilPdRwQxvW0wr5087EwBQf0vGaebNu4FPj5HTMPE0/cD0ZCX2Ch0WTy4wRctMryfEIfzAgiGKgL9J+Nbhm45u03F994Y3d1fsdxs2uw7XyPtj5RpM2jZagXPnL9o/3v9Y+LMC6q8xhl9//XXxjVVhzQv4U8EJ7xt8vwMr4HmISbVVjK6JUuSw1inor6A7Uj2cseSkrTIWAUCM1aytJjdGU8MLOCTx0wylXIBcY2jaBq+so6gtY/ISedlfnVGbBU00naI8ribrRcRzxR0RQhaxbmMtXdvSaBvg9c2B68MOh8WXFo9nnKSt1hmnIrzVlhxStmR11su2oxiH85bOJtEcMZneRNH3Wx2vMY7ffPVViaolVDWrhBkiLb85Q9SkPWPUzMnQNco88yIyOseeOcSlJazo68Uga4hzTtoSjZEkxOUlvshIm80QA8fhjLOO/uGe/v33InfQ96J7oYLQjRcB6FISxnlpGbu+Zbs/LDiFtNpKTGutAMTzPBLiLHvh6ZnhfEKRRtG7yIl2ODNMskcKm072s7urA/vtBm8tG9/RWWEmbDc9rUGuyRRJap3uAeM04c0SI7gScSWKffgrjuH++q5UdrBBRcqduwiPF2nvks+Slv0dHeuKhtT4HlYgT3kJ+NRSxnKOqW07ScEIKUZJcn95XgyBGKsOSyYnYXw2vsG3NTa2y55Z97MK7lnrX+y19cMtRZhy+ZRrUNe8AIdW+98KBMpZnpNLZgqiARVLwtxbjuczuWRiFFvpEMRwZg4vhdZfJb5pmvLhwwfZ07zn7//+7xcHrv1+vzh5VX2fDx8+YIxhv9/z5s0buq5bJCOq5Xpl4bwoJvKS/bNm9nwO0qyfexnr/OLx9TE1Xlh0zoxZpCwqsF+Bncrqqa9Tf9f7xXmtW1q51tbxlRVU28Ir+/2Xv/wlP/zwA8/Pz/z617/m48eP6/F58V2zdgCsz8VrjOEXf/GnpfGejXXcNA1b67jzlpsUuQ4zbYiMzydiMeQQiKqvk9LMHAZy1vZmzf/NecY+DxASNs64ecJoW1YcxU2XlLHVsSvKgl1KIYdECgoCFWmBBYkZiurxxGkiTNLGRZgxuneWqOLOJWMqgFQKNiUBdhBtLPkpNCXhFUg3RYB9QP/9E+dMi0GV12ONaCPNBoIpRGsZGktwBrPd4t99gb26hps72j/9U3j7jrjtsYebV9P4wRjTIBfA/7KU8r/Tu783xnytyN/XwPvf9Tpd2/LnP/8Txmnm6faZSWl0KUjSF2ZBKWNMnM8DD48PC330eHxeRFcrHW0O83KhpxwJSahVbePptR1su+k57LZ4L9Tuuxuhzr5585YvvngnmkA3V9xON2oX37Pd9ljr6DqDadul+l0XjZyMIJIL6HOpbMiv/LJPTyvFxgi129sKblhlBTje3r7hen+FMZamE50Uo9WTGALWGO5ur7m9vmK/3TKcjlwf9rz/8AOPSt2bQySfB1IOL9rO6jC+xhhKSUKqsL7p8G2haXvavqdtOrIRbZhiDLFEOBZyyMScmaME5wvoogFUbU0xWl1ZAB4uG+uL99ffZvn/hb8jt6uTFlrh1YWciyj3kpEaA6YB26gQX6POMzXRqYGvCuct98tnXSiaOs4Ls8st6NMF4MGQi1fGjwRixRgsCV9GbAn0JnHrLNvtnpwDKZyI8wX4ea25WI+cRdtnHAappPSyMW02G96+fcPV1eHFwltty3PObLc9jbcL2BPmUUETFVl3It4co8yLeZ4WAPd0OnF8flJ9gYl5HEk5czodeT4epf3qPHA6nTHAmzdveXP3lrZtubsJlBtJQk7HE+fTWYCfswI/WlEtxijDJZMShJC4v3/i06dPpJQXy2XvHbc3B7qu0+Bbqsk5JUal0eck3y8qfVNYILnW68il6CZcxd+FKm303wIiLcDBq83FdRBhjLgFpVphIpHiIKBGEjF4a7Xtq93iG0fEYLIjF0PXtvRtT9M2bPqNAG1NI+ustpMOw8Dx4ZGYpCc56abXNM0SgK0gGgkq6zfWXzWgqVU57yzerZPyVZC6CjaWW3ldKSmfP01vrsEe++MHrI9iyNlooaYwTYFpCsQ4cx7OzGFU6/ofJZqvMhdzLpynGe8LxXqcl+TbOgXGXUO33eNTxLcbfCf6BttNT9eLPkbVL8sp0ThP4xpyjBwOB/rNlrZpyC6RFfjBOqz3pJywjcc0DcYZ+q5ns9motpPHGY9Z/1eLICqe7xzyOY2yiLyjn2Zu3py4/jRjTwPuh0gwIzEXcujIyStDpJVKn6ljZMVJpgQsEUcWfS7b0m479lc33Ly5Ydu3dH2H9RX4kXmYSmKaJkKsTFG3uCBJoLx2uSnKSnydMTSA95aUVg6S1NKetpNvW5wXVoeZZlmDZlkXUrqws+yq6GQMTFhykO8n0nECOgsDRtl3L3ZKq8BPISVxMC0lC/jkywKEGQV+Sr60tGsaAIiJotN92Fqz3M5WWmCl7XsW57lSmGMhJNW38Fe0rsG3lv3Vjru7W5xxNLnFl0Yq0OeBFJK8p7kAFDHbZT4G1bm0DhqbRPDYZFqb8Svg5zX3xVwE6F6EW3NaznPOhRSV0WEd1jVgofGWvvMkb8klMYWOpnFM0yyFjZyVLSvn2bcNpUgSl50VbUAjDlqhiOHIeRp5PglD3CtDz1rLdrNhu92K689mo0VCR99LS7Ozlr7Zyv6ztP9rsaloklEyYZ4WhuzxebNoAsUYycq2pVqFO8tm19P2LW3jub0+SFxtLDvX0ttVKqHgiJhFSIxnDcoc1fNKxpaMVZAXyquOYUrqUKYxm7WyzyxJ9TpxT1GSuxUL+VJouCTH9fZ6F6lxatGLuDK7pKUoMwfLNNWCkMRGcj6qJpdRbbwkoKpr6NrqUih5h7yvjJ3sl620TmogKntuBavk+nrBhF0xPNb76VK0BF0Py/LVi5HXmJNYSYcsQLUADGkxA5BWwvBib3ytcUwp8fAgOWBKic1mw5dffslf/uVfcnt7S855ATPO5zP39/cL66frRMOp7/sFbPkcmFkXjdatVmuGzlr8eQ2S1MdU4ejPGUSVJVxfe+20Ze1FkqOCP2tQZ60hVNu51u1dn8dP9e/1uw/DwMPDA3/3d3/Hr3/9a87nM+/fv+f5+XlZJ9ZtaPVcz/O8fN5X2xc15+2d46rx7J3j2lmucuagrVvTeWQMiTgMTA9PpHlmChPDdBLx+RQJ2k5lzzPuacDERJMTXYzYkiEGTJxEaL+A0zZNk+WHIuu2VTZl1nbckjNhHJkHyWlyDEJEKQUT18CPum8XsX6vr+/JCuoIolPVd7Rmh6F6Vi8PUcrAhc0D2t61zGWzxMyRzAREazh7z9RY/GZDf3dL8+Yt9vYN/puvcV98yeQ9drsF/wqMHyMrxf8M+KtSyn+8+tP/AfjvAf+R/v7f/yNeq/by0vcd1qllbiOLZGgi1jntDbfLxdi4y2IzzzMGIy1cOtFyFkq+iTJJvQoPFCCmzDRLe4dT6rBMMEHN27YhRmHn+Maz3WyZJt1IN1u2G1Fh79qW1DYS/KozkI7NkqDUgS5GW7moVW+pzBmjwmz1gbBsMEYXeWPXjzFaxa6JnDzPO6daQDvOw8jhsOegbV9jkGq1PLWCUQXgT4H/2+87hhLEdjiXca7FuSQaItZptdKAtWRjaJ2l857SZKyRKohBNpicXi6y1Gr9AqatEr3fkq/VuLo+dkFV18CPUXeQBSZaAT81OVSwR7QmGooKRi/Aj47PUi0xdQOXfueibUoo8IMGOUJGqsCPWQE/tr7IAvwUJgGAbCY1ieQkMJAN/EXC+UpzEXXEuVQMqsaS8yKi3nUi3uisxSLzTNoVhFLate1F0ypfhPPkEAAwxqKVrQvLJ6XE+XzidDwu7VxRHbWmKagtbnUJKRhTXaSE1TCHyPksIrvDWdwKYkqEOSxgjFsqJdIuEWNaXjNGdUKIadm4FxFOrVYaqpOTuufl+nkuSWOlStdmp6IuHzJXtQLEyyrbq85F6vzOq/NTqFRtmVbSZlmQdpuckYp+1gp/yaxmApVRuQS7yjypgeairZTEPao6nlVL6LomFw3+s/7Aaq7W812DJu+kNXL1oPWcW+5egvYXcTkXqOklSPTZKvLi3nr+ZA4XUjakhF4f9UdYYzFJq1z5g81Fo8CEX4lCXrRqGiDlhpS07U5Byb6/OJxU166cpcpUkjxms9mKI6X3Qm22orlRjBEKcc4Y77CtV6ZGp3pYdmkHW/Y2ZapePqMC61a+Q21LFqClpd/0hFR0v3WL+HauGlTVOrygvxflGCjCmmzblq2Kju/3O64Oe/quod/UgB51NgObnACwix3yhSbfNs0l3rDSvvKaY1gT3RiFYRNCJMRADJEYIsY52hd6XLoXafIQY00Mtc3SGdBzXBbk1Chrp8GYTPIZ7y+aaMLye1ngWBiympjW/6pTqTHCeDVWRbbroFJEbFI1ysRauuqeVeCniPaWFVanAEAJU6xaaKdLu2SKYAqNbalOq23X0m86OX8aE+ViiEmA2JgyeZYGMudQdznwztD4gncvhuBVxrEWo37bYZRVUZQaUUwCY2UM8kUUWnSZpBDQNA02Z3WvYmkDqi1B9TXR/aJoS1KxULLM06SsIWsNk7UKDuqaWYoWWdKiGSKi6xcba0n0jK6pKs6vBRIBbR2+UVC4FGIpiz24OEpZbSl12n5nLrFrDXTXR76s/euYCN3Prbr4UmM+ea3XGcPPxrK+T9EE7fMdwdZiRQUGNG5+UUioyT8vr4/1nqZDQY1TxL1V48hyebBZ7pD0bykg1wQSjc9WhY8a+xusxmxSPKyPkadmRImtULJdWuxf7Of6/qWI3kj9PtmIHtiP2C05kxREmo24y+UirV9ZwaAKGK2OVxvHCq7M84wxhnEcGYaBzWZDSom2bdntduQsbpMVbKmPryybCqDUAtnnx+f3ff7vnzp/9dpa273Xnwr0fM4eqho89XcFe9ZAzloYeg0CrZlA6/erekDzPC86l8fjkfP5zDAMC3D2U99hfXzmYPY6sU1Rc8icsTHicsJiKfYkDldzIJ1GSojEYSQen0hzIMeJPJ0pOZJjgjgLIj/OlFFavUpO8reSMTFQotqz6zVJQfR09HaOiRyE2p2TCi7nTJkmcdXKBWKAGLVFK2AUFCYn7Fqnp1w0d3Q0NA6+fO91XL3OU9e/5ZlGtfEuaqqLzo934IDG4/Y9Td/iDlfYqwPm6oDZ7aBvKY0H75f2YX58ib84/jGMn/8a8N8F/l/GmP+n3vc/QQb/f2OM+R8Afwf8t3/XC1lrOey2bDc9u81GHW4upybGKCyglBnHiePxSAiR4/GZTx8/qcr6wPF01KpEFseBUohJAi0RPZyZ50krWYHH55FSCp8ejsD3GGDTd2w3Pc47Doc919d7fOO5ujpwfXWFbxpub265ub2laRqu9geu9nsBhNqGvpUApus6urZZTdgLolxDy6pzIYGbUUK7iDrXChDGLra09Wd5nShBWV3AG+/56st3XO333NzcMk6Bu7u3fHp4oPz13xDTR0HidcKH6QzwBvhv/L5j6GzD9eErGnsinC2unGmbjq7Z0vhWMA6tAHe7Hp+vCSEyToHn00SImWkOnMK4LJiVql51YioQlFRoTwID7ZclkVlVZRZktyz3GXVpk2s/L2J1us1rUr4WevYa7IqmhLErzac6hrAAUjUwKKzcS5DFYansLLH3JUtdkp1Vdiu0vkJjM84UUuvp9htKJ+fS1o8mx55XmovGGPq+pZTCzc3VUi08HIRCe3d3y9u3b9gf9pTajlmkZS+p/Wq/6dl04gIV5plPH39QVpS6wRRDmBPTIHP1PMjcFW2umbH2YzcNjYKq4zQyjKNuPpau22Gdo+/3dP0BZy2Pjyfev78np8Q0jeIMA6rnJPNos92w24tjwjwHnp9PhBA5nyemMSjtXhg/yWeGYcSpJlfOkZKlIjCcz8zTuIyj0aD/UlEzC2ovYqRZg2mDVzDXLkmx4f0PD/BKc1HmyKxVQ43gF4dCSRJMlraNbIGoSV2SdtDiHNWS0gE5RuZxIsVE24toqc2Fpu1UNwHiNHGfIIaVvXkpuDkxu7gEQilFTYaFjXkBomSj9I3X9hvDpmvpu5bKJrErgKFW6Ko9rQCy9hIIV4CcS3vnks2sf3+2E2ZNxLK2sA1DIoRMiJHTaRTGT5o5jydCnBCllSouDrziXPTe88Xbtwr2uCU5s65RkBX2qqWUlwSy4Jyl9XJeUMCvFEnYq2BpNUNYErUsV6qAdnFJeIzuW5Xpcylm/FhvohYn5PSqVpRRe1wnzJ2721umGZ6OZ759/8Tu209Mc+I0wThHQBe32tZGBdaVBVCg9w1ff3nFuzdbbg5b/sv/4uf84mdvabxl01na9gJEyCmQPWOxf7dVq+rCxMvlIp6ZpO3mVcYwpcTz8z3n88ynT8+MQ2CaI8fTTAiJ/dWWza5ddJWsqQm9ODDNc1zpKUl1t1cArmQBAAyetmno2i0FmLqJrhUgfa4xjwoJKwyMsy1tI9dFdcF03rHfX/P2zRsptBVUOFz0W1zTkFPi8eETTw/3AGz7lr6T69E7EbovFGKJpJyYYyR+fOQ0S4X2PI5EjcW2mxZKomtavjg4NpuWftPw9t0NV9cbxfkU+EkwzjInpylw//DEeRjpWs/VdU/fNzibaNyEtdUo+PXm4uoqv/xnLlpR0gYjtr0ZSGGmYJhjYpqltavkQtd4Gu/ou5b9dic5yyTyBTEmUk4EdTQruoYZYyhdi+s3amfTYFuxdU8xMMcIBYbhzOOTMMu8vzCBGq9rqhHgp21aYer0G20NEyfbtmsVzK8MiELbiUC6sDrPomGRDL5rabK0GLZtS9dIsafETBgmirUEl6UwwEVzpLZbh5ywzknC4gR8thbIjpiFqVbZt687hpqO5bLY0ZdSgdGLRo6B5RxgLRc9njXqs479LrcrW/3z95SwtpDzuoV5/ZpVQ07mTozSyQBGNU1FvNUaYUtIvUJmtDGWvutW7GRtDTVAtWRnBS4ieUN+8Tk1es0XwKmWW1NKjNOobOikzq9Bx1bmQ1mKTdUl2S/5Cq88F42RvPDh4WERa+66jo8fP9I0De/evcM5x6dPnwA4nYS19uHDBwB2ux23t7e06kBX2axrcAVY4ozPj58Cgdfg2LrVaw3ETNO06A3VvdQ5MWOoItQ3NzccDocXLV8VILrsvz9276pgWNWuHMeReZ45n8/86le/4tOnT5xOp+V2BYQr+PU5gFSPmo/p93mdPINCkyLNnPDzhE8RimVMFluMAD8q3JymmXgUseaUogA5JeOK2q2XAlOgnCZIiRyzFFVKFrAmCDgUU8JGBWxipsSoIjmZEiULq86NEi9FXJR41a7Ae6utWxSUIVhBvLLkZLasjQ5W3/uS4mG4tHrVowI7yQjTJxZDQlnnxpIwJOdJhx1sOpr9lu4XX2Purim7PeXnP6fc3FD6Lfn2LWm7JSFOnO2PUPgfH/8YV6//O78dP/pv/s53WB3OWnabXhajLZqcCOXcGLtsAMIOmDmfh8V2ue96Ffk60T/2daNY8LaQJAlJOXM+n3h6epTWsOOR03AixsA4jJxPJ3JWyrSR5Gi/33A4iLbF7e0Nt3c3dG3HF+/e8eWXX9K1LW/v3jBWEGi3o+x36gxmsUYSmMarPSu6BEsJTas3Onn1XIgC/KUXWECHl0Je64VkjSZ778Sm9+aG7W7H8Tyy3e/57vv3fPv+A/ePj4Qgi0MIc21d+k9KKf/V33sMnWe/e4PJHec+UFJD4xta32t7DzReWDYtHS2GGDOnYcJlyxQip5yZioA8FTUFxOGtKvArI6OCPqVI0pUJpCLitCVlbUhGbYr1dkn6U3Qjr64KlyRQEnKtmmjl2dT71amiCmUX0OqG6rhUMb5SSFkqH5QswE/W5NBcNnl5/8yPDgWGrDXEGkz3G4b0FrPZ4RpHu+1w7TJNj2UtXvJ7jGOtBJZiSPtC10X6vufm5pq2bbm9veH65pr9fifndeVMUStJVT8D3ZyH8UzKhRwzYZYK5TwExtNMipnj6cTj06MIMesPxrDd7zlcHbDWEWJg1rnddR2dusW13Za2FSeh4+mR99+/VxG7iaA2tJv9js1uS4Ol8T2H/bW0hE73nE+jOh2IJbYwCAXcyTkzjRPeyfUSw6TtF4Hz6cQ8jRiEzu8qIHsZ3cXaSKqlGcplw66Ajwh9wldf3MErzcWCuJd8vs4L402q50aTTBHXZQnKM8IoqNe/wVBSJoQoLQl6XnIR8GCz3WGM4fn+HmHWZnGXUscEaxPOSeBQGVylFGKciVFAw6xVbuCFK0XabijbfmlPdd5KYuzcwt7wzoHzMnutgiNawa4AkNH5ulBRFlDoJfBzoWVXVpe4SI5T1DbjUVhnaWaYRkIcBYR1Fz0bXnEuOue4ubkR7LiOobVYFX9HWRmX0V2+iKwtqEiqJvzWVG0Ww2JRvJwFBQXMOin5rGJbC9JcfpffFkyYTG1TEPaIXE9Xhz0xW/p+w/VhLyAzgfMUtb2n4DwY/Iuxk2dLe0vrPW/ubvj5z95we7PnL/7iF/zZz78UoKnMiM7NGko3C9a+MH7qPNS2r9rKknLmcHXFa41hzonT+ZnTaeLp6ZHzWQCf0zkQQsY1hlJuVOMvLUUFcTAdGMd5XSOg63py2unn9ngkWfeNp20l6Wv8hHfiUnQezqRUNLa5DJ6znsa3LxMQ69ludtzc3AnLA0tRzb1OCwAxiobBcDoDhc1my27Xa8uMCBljtAxTCuM08XA8C7uvFMZ5Up21wOOzMJS2/Yab3ZXifY6b7gDsL/PUoCBsZA6Z83lgGM/MM7St5bDr2e17aQM0FmuW1tlXm4svj0uCJGAFKJ1uKYLM2vYVoqydKRewjtYLoGmtx/oGMByPJ1JMBBsYxkSqlXhYpABsznTWYZwDJ6CPNYi47iTWxZVNVQ+NHuU6N5Xh1i7it/v9nv1uL0XO/YHtrraGdbSdOqq2ohUUYyLmJLpERgH6dNEVaZpGWEkpLxbxyRuS0+vLOYx16tI7MceIbxp834mZBSqmVsTSvn53iUVecQwFz6A2QUr783pLuCTWCwPPLCvIj19uzYJZJ/2m6rfYF88VkCkv83xh9JgKEOSlVSrltCTdNX4UUAUtJK/jVjWmUVB4iVfrlzblxWdc5w/134Jrrdj2sGSqMcZlD5mZxZl3GDSUzqt1RJ7mvafbbKXLQo5Xn4sxxqUNqZRC27Y8Pj7y7t07vvnmG66urmiahsfHR4wxHI9HPn0SosDV1RUgseR2u/0Ru+bzFrCfYtZ8fvvz8/tTLWDrfy9t085xOBy4ubnBe7/YuX8O7Py2z/BTYxpC4Pn5mfP5vLh3ffvtt0zTxA8//MDxeJT46bcwnj7PM1f3vc4YloJPGT9N+OdH3DzBFAnHmTFIQTmOouuT55k0DJRUDV2UTY6QXihQ5kAaZgVxMnGOIggdk9itZwWBZmH/lBDJ6uRlEgv7p3KO62d8kYfqb7t0i9RcENCC48tsUncK82OgpDJ/ltOxvm2kMyZjCAXEw8wQiiUaQ3ENeXvAXO1wd9ds/+IvaL/5krTdMn3zNeHqimQ9selJzpOTFGCbz0Denzr+nVy9fu/DSJBbuCxAxtrFkabYOgHz4tZhraHtWjabfrlIQ22/KJfX8SkK3VUR2BACTRMpGULMxBAwRto+UlJXiCItUbUdJGexaRedoUj//LwgxULoSDTeM40D0zTi1WJvHCecs3Qrem2t2mIMxutGXjcXDchrdfJyOUiPcCqXdoukQaqADBfHjKB92OM4Ms2z6h/FiwD2Apj87ovg3+XIOTMOo2gpzLMI1mZRrUnOCWvFZaxlsR2OqdrbTeQQKWEW6l6MOmvkHJicL+4SOWOyKsxX8IYCREwJFIogvXVTkwGUs1iBlsoU0uTI1PYuo8nFov0jIUJNhpbJXKm6+ve6sZaivyX1hkpqLkkcj0AjeP0paZU4vZj68v98EfbKSbRFQvRk4zHJkONPgEa/51FtIJ3VORKkdaT2RFcKaj3WVGZTE8MibRuYIgGtanWlmIkhLc57qB6Fs+B9bRG5BPveiyuRVd2Qyj7oup6+2yybVYjSexuiVMpSro4jMnYpp0XfozoUrN0KUopaJXXCkCkiuFg1edYuYzIaFxFia0T02rsLuXMZRXsJyiqzoII+8lyEKm9+21767398npCb1b1VM0s2qbLcFp0FDTSXLF8q2jEEBctmxnHUhESEBY2ep8XBz5glwJa1q+58lSmiwL4Vm2ZyXthR9fGlVE2NSp3OGHVPK0UqMEZQLOmrNqIrY+p1iFL168a8BFHLCbrMvCVgEtB9ngMhRGLMYj+t7mzWSMBdkDHM1lL7t197PV2OXAGcWiBQ+3SqWtFl4l1gnArYyGPWbYWLvJhZJx2r1OQzhUEBU+p50jvr9XNBmlb/1+fVdbEg5S+dV84aWu9Eb69v2G6E0XUaMpagxCPZgyWSMpqMZZwteH3+tmvZ73p2m46+bWgbhyFTsqOyx+rZkPOIjpUAsQnZt6NWrXOpe+elUvsaxyWJqOcsL6zAes1UEMoaua7KusCjIKuIy8r6PM/arorYaUuLTlbA00iLeq6tXpcETtgfRhNHWbfKsmpd2gdyZW/WRNhaOS+VNUVt8Sz0fc9+v8dZ0Styzqjd98wcAy5lvG9pGqk32iWus2I6ESLeBoZx5NSel0KZcyok7ZXlbAs+QbEZHz2uEWFnAbxaurbDGDknvy1J/73Hsv63BiTNhfljrMWWIjGEFbT24ugmsYgwPw1GW9Sslda6XjV4ckpM1v6oDYesWnA5E40l6PuGeRJ9uays23zRRqpXv8tWnPFW89w5yzhK0ucr+Fky1llCmGlnYa43TUOjml/n80lMVrTFJoSAc5YwS8xkkemaAG8sLmWy9QtDxVpLzJkxzKIRQ8HOQa/3gtOWxFwZKX+AJbXueWW1mNW8wxqzdJUukbeurT91TS3tYvCj9b+8WCwvz5Z5fYmZSt2QXwAun+0nphYZq2Nb3ROB9Ur3ArS6gASsHvb5513yrd8B/Fhrl9eo61I1sqlx9iVbMZdc7h+RbP4+R/2sKYmOm3NucftqmoYYI03TsNlsNPdrFjBtnuflu1Xtn8qAXIMhn4M7clou5/Ef+vvnt6uunBTqLy3ca5eu9c9vu64+BxzX56HOz9raVdu7KgOofs/PQaT6XX+q1eu14xsDuAIuZcwUMONEmSL5PIq2bwjkcZC24iBtXGUxcUrL9ZYRXcc8R8oo7lomZewsILyJCYKwfEyMkltqwbo6hZlSpE6Frg2rnGztEFnjCstKs4fLGlG/2LqdCzSk+oktqd6tWabEvLp+JjRkcmJugbXYtsW7BjYdvLmBmwPu+orm+gq/31E2PbnxRGvJ1pD0tTLlMxfO3378UYEfa0SYrlrlCnOgnnJp0anUce8t211PycJwabwXBflh4OnpSto0ktL1y8VtKFXwRlHEYRw5nc5EFSY9nU4iOhcEiBBwJFJyAArDODOMog7/4YdPonniLPvtjt1ui3ee66sDV+p8ctjv2e/3eOc47PfsdltxYdj0dJ3Qaze7LV3fL0J7lTVQQww0wTRWE6kpUMgKRAUVycuLYFhFecdx5On5yK9+9St+uL/n06f7xfJQzs+lkvBaxzxN/Opv/5Z5HHh+fGSeJkmUFnp5xhAxCLAVVKclRHH1SimL4OHpLBQ86QyQQyl9dcMxla5XlElBwRIxRAFcsmaNlNVtXoIuCzijYtrq7OU8KihbN886IuIms4xOTbbsKuXSgDaXTAxGxItzIZVIKVWIWXRiSoFSLYv1kywLTpV4N2ZhiJlYeD4/MMYB1zqa0q8ZP692NE3D119/RUqFMItwrVebVhGbk0pgSklQcmVTLZsP5dLfTWEOM+dRRHBzzALwlYLHsmk8NIau2bLbtioEmpm0hbHf7tjs96IlYKu2iaFre7q2AwzjOPPxXmirz+dn5hzIJJJNlEY+wxgG5jQLQ6hvcd6Sc+Hp6YHn52fdhC3XN3t1KAsquJwhz0zVvcTUNiODs1s2vQTrbevxa+cqU0darxaj1r6aLDi9XYUlawvT6x2FggKNPwpKjObAkpQbk7EmYersLKMkkvpYMDA7GAaMtUwhMMyBpm25vbvDGDSYirRtA7kXppSZLkl7ZeF4i3MNFGllabxcC0tlcwEh5H1TsswzWCMi3EsLR9Gt0dQkUWjtTdPifW0Nu7CC8gIeyrk2VhJeofWizoLjApKfzwPzNGvFvhBT0QStYbNpCcFi7MwcDDlH5jC9+noKQE7E4RlrRWdD9HCszLtaPCjCqikYLhiNgt8LJrRE/aIrtwC0NdiXAEFGXK8PuGRepYJEnwE8KwCRF/cJYFSrZTXoKAU6B9f7Fm8z37y75uEXX3A8jaT4ntPxidrFS9YEXl/PWtjtDNvOc3fV8fOvbvinv/iSw67n7c2WQ+8Ai8SEVoKohIKImVyEsSbtpNMC+g7ns7KJ8wIIz+pi8hqHtYbtrlPgGUqpGmBSFKjzp1NdHXHGcTQn0TGIcSLGRJhnci6Mo2c4nbUw5nFGWnhEi63FVI0dXX/FQaZgLfR9x9XVRkW4dT2FC+POQOMbnp9PAtAu7c2GqYt0bVSnLsN2u8V7z89+9jN+9s2Xqllj8d4yh8C3Hz7w4f4TxbQcrgOhNFQB35IlaR3nTIonTn4kTpEfPn6k61revLkRl1Xj2XY7mq7DZaAvtAloLdvTjpAz+/2G2zd3XF/tKSVQ0olS5n94UP59Dl37BTAVIM9kubaMJuZdKaTs8TljnYjp21CvO0NIaVlXGuc4bDc0bcum79hvt8SU+PTpnhxmpkkNTmqyM8+M8wwYJmc5OdHxSVr4Q+fZMtUXWQCDeKYqUBQmqmbk6XwSoWdT9X6kZa9pRIxdGD8C/BTKon1X9D2rU92p8XgvDn+NkeTBGkNvPd5YbWmWfTMXmJUN5tuWXQi0fU/jHNuNp/WOmMRZJ63A+dc4yjpOyZe2/1yr99ZA0bF1td3/Eo3/6JJYJclrtsW6zUd0ueSFfowPXD6LzKtL0XfBXTQnqAUJ5xLGuJW2HsrsqaLDK72wS/C6fN41CPF5Qv858PMCENAHpBjlOlC9O/m7fr+i+5K+Tk6J9Acoav3UMU0Tnz594kkNbQABpLWN6vb2lk+fPpFz5nw+E2Pk8fERMSPZMk0T3nvVSN0v7J+129ZPWafX87P+XY91u1g9z9vtls1G3JXWwM+61azqagLLGlBvr0Gezzs/RCPzvAg5/+Y3v+HTp08Mw8C3337L/f39Qn5Yt5n9FMD1OZBU3/+1Dothh6ObE/bjIzw9kaeZ+elMmaWdq4wnYfnEQFZHrZeyH1qoLIUcCmVOlIyw2ZNoGtqcpUi4uk0puCIaP/W6XtUDXwA/dT2tgCwIy8iugqCfvMLNqoYm1UoF5LVcZy6wUgFikYg9F5iLqC8U68ibDaXrsF1H/+UXuKsD7rCj//Of03zxhrLpiV++JV/tyRgG43hOSYqmNpKBgEg6/GMKIn9c4MeKc0zOmWCDMlhYWgrWybr3BmMkSPKNp2lb7T8e6buNBu9VxyYTU2KawzKBRO+nMM0zwzQvjjSnkwjKztNAGE4CDg3PDOdn6bcfjpzOR6pdcdbJ0CnzxzvH1fU1Vwexi786HDjs96oJdMP11RWN9xyurmRhaTxX19fsdHG60AytWDf6SueXnsdSysJOyFldSmoVflbq5Tjy8eNHjscjz8cT7z+85/7xicfHJ8Zx1DaVSBWgfc0jhsCHb78lhJnpfBLGT8lQpEdS2p0C1QEjq4aRkHNkowtzII8jpCRsCVcTl4tNs0n///b+JVa2ZWsTg74REXPOfKy1X2ef+zz3/3+7CgESiDJU0SkaCIFk0TEPFYJWISG5a3ou0aGFVBYC0aFTEkjVQIISD7mERAMhlzDIVRgb2wWUXf5d/7Puvee1H+uRmXPOiBg0xhgRMXPl3mffc3Lve/cmxzlrr1yZM+eMd4zxxRjfSILaMhcybYEJkwI/CvSoYVuPVRrE0wyZ4q6nLnskxJBdkMlpzidl/C3us4RQbQMW7g2HSW/PxKCUkSgp8VflAzGyLm6WADbWMxXzIp8zYzcCPh3gY0DnJrh0/mkaQsDz55/VKK6MEmpjJ5uOSE98pK2JoWCPjKmUEmZ1yzxMYzklNE4gMMP3A/peSNV56ACn/BQx4RBl4erXawwb4fLp+x69ZhYb+kEyxWXGr3/9FW5uJbPfOB0Qc0RGBlMGPAr4lKIAWOu7jZw+M+P+/h77/b2kq95ssFpLCuk4TzJPUsR+N2E6TFLvLoixRBKGKpl0HFaDpCeWcUDFELCTSxktLZSiJweO0CmQdG5h5KrwNU83cKDk+9ExCoKEUyYuJ4wlDS1I0ygTxjniMM/wQTILPXp0DV4N4JwQQgD3GX4SAioxPSs/iYQZKWdMSrppa6YLZ5kuzBuPkJNDjGIkpsTwTj0m8oSUZjGagytGSk5r5E7IE3MI8Dmocq4uwcSQXAqy3kgIDCsAcMDhcECMEbe3dzgcDtoOArB0XY/NesAw9JgCkHIPRxlzFGOKz6gUlT7kjDTuQKGD8wTvoIAOA3AFWBMAqAVkqpIiTpNkR1PiAXWsjDfjlLldJ+u6a6fMRRYKUfNYFQfJ2HNcnt7c26nH86db/PTHT3B7u8PX37xAoEkxKeWvUYUJDLjgsPIDrlcBjzcdfvT0Cj//8VNsVj2eXA1YD0K+mpKX7JoMRBBygnr/JSALSfdhf8A0SibBly9fYr/fL7idLFz8HEJEGIYeXTeqTSSbnkH9RJU/icGIqWZwYRZOrDhLBlMhnPcg2kP2pwDvehBkDoSug3C01NNqMeDEiBPC0yt0na6nyp9lyj0zK0nqQcaB7xT4kXkY5+rFNQwrDEOP58+f4xe/+D10XUDXO3Sdx/5wwG5OeHW3R+aA9Sbimj2yhuzHGME5YZ72OMwjvCNM+wP64LDZrBHWHmETMAQAnUNYS+gxKblzIsawXWGYJqy2G1w9eoTHTx4jpwlx9sj5fMDdcV865+AK2TjgWA4RvPfoAHgN9WJH4onIQAwCMMQYEacJMWdgy1ivBqxWa6yGjO1mK0b/HHHz8gWgBPlRvSriPGPUDDZlfhLkUNC8GZXLDgRNU67hG3X6lXo0t2hrqOOxGrpdL3tb8WxSMKlyj0A560SPCqSGERE6OHgFycyjjQnIXkiqu77HDEI/zRj6Dt5vJLy9yST1PoQbgxHNTscsJNrOVUCH0AAfi3vwg7Y8BfwY8b3s+wYQ1HvY9SnXTE/V46au1cwGTLtC3G4ZvmpZax9VMKI+8OFnD7072nK1YIAlaxDPv1R+gJqF2Oop90DNhvaepC27UX/YawNTnj17hl/84hfYbiUk/f7+Ht573N7e4uXLl5imCZNmke66roAiXdcVvqQ2y1Y7D055ypzyEGrfW2QtbVKyH3v/WAr3Y2CxBXmOx5sd/BuR8y9/+Ut89dVXGMcRL1++LOFdJdNrA2Qde/G3YWkFfD7jhHQABhD6OcHd3APfvgaPE+LNHTBq5Md4B8RZwJ9pVBtSPfCzzOGUhLOQE5AjAxmVOFr1vtaJ2bxxHBFCoztBD8iKvw+hvm5+A3Jv0SdJzUK5ae32BnA1vaxEyJHqlUrSDLHxZmbMqhWMAGYG4AhuPYA2W+B6g+EXP8Hw4+foHj/C9X/iL2D10x8jhoD77QZj32GcI8abHe7GWfTnnAHKSCx6H97BzviwoV4qi/1JNzXHoghaqBdAi0FoA7YLkolLshrIYpOSeIcUECkEiV1nhu+CpK1NCZkTDgcvoSGQRUsyG1javsq6njV9b9Zn+NAJz4K5LseIzMDuMALOI4QJznnkLK59U0o4jBNCFzDOEbv9QeOkA3wIcOTQdUMBfoJmTuDMmOdRSKsL0ZoQXk/ThJgiDodRCbzucL/b4+WrV3h9c4u7+/tyTUqG8p93Y2XOmKadpCiNB6QkIA9bWlm29Ji6WCUu+6455wjmGWF+d4bbLCdehnje2LTMOrFzBVDsRHthDdVNnLWT2WZ4c0JCthhAJ0qZ3KasaznMILFNjxwoBDl9McQ5Q973s0Ku8kzibJpAo1CYIqH/UAUI9EAF4k0jIWqOEzh/90T+PmILIxPArl3Q2k0IhRjNFr+s2azMgyM3G1QlTdNQu6z8TAVTk7bOSmqYAdDsQXOASzIHOu6K8pGcEGkamJmSeLj4EODBYHJgmGvoVIy6aR6x3+8AZpk/SmDs9KRTyqNGGbiEZzlHeqotmd3Mg8erO7ykzn4z8FP6F4D50zgi+ODhz30qZgZB+7emfS27ILcbnPl4OHltruilFZrBqqeSoIRpHHF/f4c5Ttjt7jGOB812Nmq6zRobLp5FruXCEUBKjQLWMpFjMCuvVjCvHYmrLl4kZPcUI6WG0AV49VBwSm4pPx4leaa+J1KYcwyKk1LZNWS7ufa3ncixRwgdEktYRQhdzQZ1Rj03xYiX334rfAmrtWTgIaf7TS2bAXXtalJclJs15k1u67oboPmKaStlnavrZXtRsz4f7SXmsFlLpoqk88jkMU4zdvc3mMcd4rwH0gEOEqqbs6tDVY1nkFPvzYwcDxj399jd3iDPAa/DBJ4HiFeCpdsG4swQHVE8ZlKKmOcZ9/e3mKYR42HEy5cvsNvvxNMvmRdqxLmENIxg6Ef0nRjROROcq1wfJSSCxUOAHetBBGAE2VWxZFh4VuW403TiCeohoLoSUUHjLARsmkbkHMp75fmtEZoky5QsBcZ7JQTGUoZceEQEQI36Pumh1IRxmjFNEdMcEZMQ2ma2MBenY0bKygzEzEDM8HPC7jBiuD9gihmuGxDZwEBxez9MUXjKfAD5AOc7uNCBHAPUW2T3WaV6+ZIa3NIXAgIJmOd0w8wsXopMrITnFsonh0kOAGsSgdl5SCIHcecPwaMPHXKXkNRbmjV0PTvxm4bpv8wSDm6GBzKgQAuzZZhR4aWRuqxb88rGmI4FAysJaDKYEpKCQ/IaZbwa8EMkHqSOjGjd1lRI+AIRIme4/Q4xJ+TUY91LyNish7Y557LcnEt4sScf119nlxlzNtP0O8ftZm0EQHkF54Vx/OD6oj/JX8f3Kb/zUbhVcw3ZoZsZq0dPOPlOA7yfCvF5J7E1ovESOgZBaghkCwC9J/QOeGM9LOyLSLJ9HQ6Hkt2u73tsNhvM84xhkMyBzgkFALNwSo3jWD22nCvAjIWBtc9r08C/KbzrGCR84E3V/Njni1C8Ez+mUxvgY3xHx6FdrYPAqfKd8lx6UxnOKgzxXI4JfJiQ9wfkw4R8GIV7J06gcQZSlJ9ZwB7KNfrDZa5zRQEfO7iqmZyXv4+KUEIche6D6ydlftX37C2DOIuZWe5YlS2bcnakXyxHdeZgArJzFfwJFZwJXSc0MEMP/+wp3PUVwtUWw/NnGD57Cn+9BTZrpL5D9A4TARMYM1tolz2r/m7pFt4mHxT4YRaX1cy26AJQowgEuCz8EcwsmaAO4lrvnFdX1U5SeoZOJ0Isk3eaZuwP8to8hIgI0zxjnMVT5le//jXu7+8Qk4RPHUbxjmFmhK6H7zp0Q4/t1ZXahcYfo3CD9j4T4f4QAYq43Y+gF68kk0L3FbogJ3lrJc7zzmGzWUnWGucQgqTtlXjTFbp+gMXsEyQt6DgdlBQ1YrfbqRJXPX7mecbNjYR6TfMkr8cRc0zY7Q+YdGPKtnGcUVKa8Pr1n4FTRFKDuoTLca58HYDpSQCaicRAQgL8JAAJcjWmqFmUvCjMUMWGi0FSJ76sKs2b+lU7dQKAlF1zKhPkdJMI5DvAdaLhOg+QhIVY+mZmBqvXFDmHIXTqYu/hVxuEbhDludvBT6OAXSS8IKKMJYlBIIjiL6aOLg6SAtbJkZm0DavRRIRMlhbXI0XA0fuapkqc5nTBAEM8t4DEQE66IWQh0jZg1bimkhI05yy8GVHJ1ZESOM4gZok/daJMsnNgH5AZ2O8PuLnfIeYM3w/wu5W66z6B8FoGxGnCgaX/7m5vsN/dIeWMfhiw3l7LnHEAeSnL65evMB4OmOeIly++wc2rlzDvJSIC9ZKZ5smjazAz9vsdplFCjTgNIER477DdrEuWqeCNs0cz3nhTfqpisAB+WoXQYAai98LxY96Q9lxT/mzNomYCSiCtlU2RPunxAsiS6yTcjgiMjDhPyCnh22+/wf5wB+cI03jAeBBPyXmeMY4TODN86NB59UQIHYLOMwGB5FTLey+nL1oG2Z9I05gLoOYcwZPBU0m5PADnGF55TiREQU+nNQsWiDQLloV6BYDMNV5OREAEcj2cF0POdwlBQVWj/wr9gGG1wmq9Rkgd4AjDvMYUJ7gQCl/A/vX5+vHu7hZ//1//e/AhCKdVU7cCSKtiYYa4KOKVV6Y1Kqxfq9T3uHmrGovmfdUAPDhtKB3fVk36sr5bn7KTcLOYEr55eYOXr++wHyfMd1+jiy/gMpByQMoCKnBSsv7gkIc1Eg04uNf45R8DIX6NEBzWA2HolAcvGgiScdhHTLMCvtMIS6u+2+0wz8LB9/LlC+x3O93XpX63enJ8DulCwI9+9Dm87/H65gDnOuz2I+Z8B6JZPBzijHESL5UQPAKEx9B70jVPUtMncqofmUEsYZIEAVWiZuqrWcCkzatyP2GedxKyq7xtwjmhfIUARuPwyow5MQQD0+QGmp308aMNrh9t0HUdpmnEq1ev1EtCDkf2hwlf/vobfP31K8wxYz9FHGYL1XYQHjUCoOEMnLGbJAHCbh4x8jf41be3CF2Hq0cvsVqt4XxA6Nbwodd8CR40XMGvrtFtHqHfPgY4ArwGcD7grggJHxszoXOyJ+ac4JLwK6WcQJpJlmJEUv7A4Al95+E9gZPHFISYOU8TXn37DXwQQu2rR4/Rdx5XqwFPHl9jWvUS4heFv+ew32Pn9FAlRuH1YSDlKB5EOjdZJ7AcYDXksPrauWUa6AWBLOnqmyXlPBGQ04zJVYO04L4L47fi0IWijwAPVzIqetsXy/olmQqHly/hfcB2s8L4/BmurzbCCzge5DT/rIrqEriwjrWqWGipHLBVXi0CGqfJaiibl73RLIyHA7LqITa3Fk9XPUl+zKvJ6CjEm2ueLekBl+gCeVYq73WdREcIp9LDxde8/KD1yRpKZt4eQO2/FrgoLdICEK1XSZSMnZwSPLkSJmiZNVshA53fI/BjzzkeI9M04dtvv4X3Hvu9ZMhbr9fo+x7Pnj0rZMrGB3Q4HJTqI5W08MdhX33fSwY89f45lWL91M9xOQ1gOuVx0/L6mNepZd469vgxsGeeZ7x+/Rr39/c4HA746quv8PLlyxL6dnd3Bwtjtucdp4I/LuspL6Oz8/wwgw4T+GaH+VffAL/6Enme4fZ7pBjhUkSYRjhNkONSVL21WYfYDg9Yj/0bfVvxeFIg2t4q556QrH5kgLjVmRqo5xgkpvqiEhKYtaS6NFFZP4zBNcHJ3g2Sgy/nwY6Qg0cKDuQ93HYNt1rBdR02zx6ju97Cr9dYf/ETDJ89BW1W8D/7EdzTR0gh4H67wv3QY2TG65ywnxL2MWMHYNZDBDkkJCQmZFcZT94mH9zjh1nDRQq6Xr0pnJOJIm754hEwzxF914txqJPPQjiMxMvS5xlh4Wq9wmZ7JQR2sQI/9/d3CEEI5iSrj3B8SMIYm+AkRIO20OgAnGLEnMybQNxxMzPmaS4nAGQGFAFd8BKaQIShD0JKqTH6zgdVyjboFY2ui3fCYdyXjeHu7g7jeGg8flIDCE1ankndwzUTjKtut9+F/P2mknPE7v5rgDM4N14+OYEh7mYx24lVcXqFA+D1lCAjgZ2leBZPLJlOqkmAAFKDjW3QQF+LSVhEjZ5yWgr1sDAXSuQyEch5OT0kgqQWUcPKdWAXFMwQhnVR8ggpMRwzPAJCGADfwQ1bhNUGOWd4eDgXwHEG4lzipjhpymJiECWpi6juUk8Hcdm2TDy2wAFIuryBMyiTkJO9N+FyegOYpxFgPA0AxO03KtjTuIRKqFcqG5249mcBvFSZyw4ahuGQ2ct9AUzjHrv7W8wpg7oD3HiQtK9dwHa7UbfODE6sYRs7yWrCjNVmjfVmA2cZoLwYVbu7e+m3FHHY7xCnGUQSVrBerdEFL4Sx65UqO3K6kBwhdQGcO8l2sl5hs16JG7u65goIVOO/jS8KQAGygbqZynDU12qk/0Ynb+8o1VW4Aalz3ciYWB3idLssrqgyHiV0T+8Fp5QyoszlmJApYZr2eH3zrTwjCx8aczW8ASCkHimI0tmZJxUJ1w85D0tVHoJsOa7xvCPXwTlJB+zJlVPljoDOTtwNBCIouayzzQOFB0fntBgeQY0ghqRzUIOHAsgl2W98Bx9Yl175L3QBoe/RDT1ckkQEoYvwc4/EgPPKK3JG4Oew3+Pf/3//w+Lx4xXMspN3WwKZLVxIPV69U7J0SQNshxi2x1bAp2oCC52gaj4ongVoxnAzXJnr+6041FM3ySam1zsBfzKzuCbPCdMckfavEPKdnAImB06yz6ZZAePsweMGOQyY3D1efMXw6bV0H88giJdKSuJNGmPG/f2IaRL+u0m9ZVOMAuzOk7jAv3iB3W63mIP7/f4H9NpSjGMiRsb19RVizGBy6O8PiDGBnCr3s4DLXWep0Z0a1MLP45Q8XkAPM/KjGqpqX5XtoD3FdWWNyXnCNIuH8Wq1KrwS2+22GICWIEPSNyeMk3r/KFzddQHrdacpwgPmGDWEAIUI/XCY8PLlDV6/vkfKjDlJWlorG7QezAFE0LTvCXNk0DzjfroRoLcL2LzeoV8N8KHHevMIXb9G5wO2qw36bg3q1/DDBn7YwFGGpwHGxXduqQaSqPvSrgJcETuws3AfIYLPhEJ67TIhBo/Oyd6f44z72xtZC+GECsBbmvc15i6UU/ychRcwxUl4z5Bl79Sw2JzmwtNUDstaca5k/7NkCWYAcmMAQtdXZirhbNHWCq7eKPZ3XQ8aPcvxQt8qhm27rnvzxiQEEr3rertB74EUJz3wykX3OKfYelb71IAOrjojhEA52+EiuBK2NjqkeZbEGAuvigElQ9HfUWpx7LVhIE1W76/K16m6c5OExQ5SJXW5ZZKl4j1cW2oB40MASgUmiQqwAADH3iunJFu5cxviJd4jXqkNjjNCid5N9sc79sz5ZJ7nku0rpVRAnOfPn+PHP/4xNhvJXjeOI3a7HV6+fFmyfVnol/e+3KPrOqxWQgNQwnLZPCGrLnfS+6kB0WQNVm+VI+Lm9rtWbgAnQ7psnFg9LWzNuHy++eabYgua51PLUXT8257fyimPo7MKMzAn8G5EenkL+volKEXEUag+fM7wcRYqCTAcG2OmHQ3aAaH8Ix40pq9Vk9BRtXRduR7lMMs8nethV51B7Uyi9rvlpf0r5THvHSH0yEY8ghkOM8TLMbmuAD+p65A6D9cFDI+foLvewq1XWP/0x9h89gTd1RaP/tlfYP2T58BqAH/+FPxoi33OuJlH3KWIMWXc7Cfcx4gpMQ7MiLqWl32fxFv3XXrww3r8QMKyJDREDUuSVJUgMTDnmMA5YxxnHA5CeEjksIJNQAVsUsZ+v8fNzW0xOmcllM0sWcGc9xjHA+4PQux4d/sa93c32O122O3usNvdIsWkp20aUhDEmFxE+zIwaxy2uIjPekLDhUunnJbqWijzmdXtlwFF4mNKcC7COY+YgWmWUyv7bsoJ4yTAj6Rp3avHD5d6S6x+LgAagGLYtGil/HofC7KGQ1FBY4r2b9l2ZFOXzbUUqyBj5lIMIFMxauwEyRqzuLqXGcsQl/HcbN7ttLUgMBkngJ5OmtdDcZm3+Hg9MdVTzsxcEGeDYEpGMLK4XuPC0ROVNhoDGaxOeAR1Abey10aom4dX4w4aq4rKZJTBNZa/jZs5m3Dpn1Y5KYs/V/fm3CgnraKS7e/M9XPtO1Pm2ICinJGRECGnpdM0Yo6S8a2Ag97LiefdPbwP4MTgJCdy8zRpPwoRehdEsXXBwYWHp1qcE3KKmqlGYoSTrhMCUDHSbJm/ZG5KXLYvxo5zVLzziBQ4tOwtDfAjHN3mStq6ijbKgns/Wb2ozAN9jUbBRd3IBPwhs2V046vzpowJDbVCwVepKK0C/CQBfxqlVro8IWfJqJbSjEjiFWXXyWvhM1kaCOL5xpZBz4kRS6zAhpKb+uLxQwhB5w4BTDXHOpOcMIsyYDkZuCxK5CRkNzCDXEKfJR2x2NIKYHVdIYiGg4D0IAQGum6wRjmr5JRxd3sHHzzGUZRRqMKGBvgB5CTfxmbLybWI0YfuCzoQj4MeuO1yoKBKrB8U3Y+W1zz4HizMq31ti79kzmEGpigGf4wJ0/4eaRZPk5xIQ1ggoE/KYDjEiTH5GcQdbl97BJr1GbEAPzkJYBljwn4v4UY5JwUlogIaBwl7GicJK7Eskm29zyQMMdCJqJwax8TYbDYgEsJw89p1ziFq2NQ4jks+vrKfW6hjW8xT5bXr5R/WPU/GghkOE1LSzIlOQiqnqYYGGIFv6UWqAECKEopkxgcR1MtTsio68ui6AZSyhvI0YZ9A2V/t3s4JKCHggWrs8EjcIaYAhsccdf6xQ4yybs6RcZgi9uME7xidz/DvY1tEu54+3BcroFDXdvGC0jAnCKGz0BFIJtcMXecI6j0rh0MLfUd/nJMMZqSeVSV0mgA5xJJwOko2j49mNxuwkSVEnEgzKcrBWvH4UR3EyL7r9+271SCsHzV8cY1ekyH6i3HIFXCJAQtzBMlaGzXxSIwzPJHwBp17X+SqG8q0qFZgOeRqAYycxSsAQkZr49/qbmPfkqvY92tIHPQ7LQ7S7I9Fjj1F9L0T03ppgB9fwItn2RrBYF2DuIC6pte0XkmnQKAKOFjSjibUy8poio0WqQzdqm6cXd71sMwyXBFRSeJjB5KStGRVQPAy9hV4sf61MClzMDgF3hx7zx0DP8eeSa3nzXE42XGYlf22vdw8kyxLl4V32XvWxwtPX34YinYMVrUeR1ZeqzOz8L+dTRiSoZmzki4LPYbPQrzsM8NxtX/Ew4bLK8DGmS72lI+yZz0ceK36Uj4tNqleQ/Uae1W+Z3MY4mFrJZK9VYn2dc5FtfgYhOgdogsCwA9r+GEAvIffDOChg+97rJ4/Qf/oGmE9YP3jz7F69hhhs4J/fAVs1+C+w+wdErOEdYE0nZGQ90cGEmRNZ1IgSuuRuSn8d8iHBX4yY5yEp2OaJzkBmifc7+4FTJkjRgV7CpAC4PHjx0La5QjjJARW0zji119+iT/6oz/CbrdD31W3y+tHj/Dss6cIwePVq1f4+lshvvqn//Sf4o//+I+w3+9xd3uL29evNJRMTtpA4vHjVJn2zsOpZW/O7KLgNSnEQWUUtVGvMSdkSbOAeUJxkVw4xTtzlEcBwpjVDTSL90TU0zXAFndbHLgYPb4juGZhqtbee+lFwM9iUuWGI0WVTiF2NTXDFm6CeAhpPC2zYkYExwSf/MMTkszyHbV6jHeHcypgF6NeXzYmAMgemWWjs9S0AMBRAArnPLphQDd0akgN8L7XjW/GPAvgk3gC8wFgD0drdOqKP/QBw9Aj5YgpShaPjAh2IzILr0zhvTBUR091vXdgJ4qgkNUat4nTBYY1CxgD3oF6D9Nwz7gcl1EoaehlYNUwLlH8ygkEK0k3bFNqQr1iLFn6UhZAxbGEtomRMON+HkHMOMwR+2lGyoz9NON+nJGYwc6DnYzlabfHzYvXsrlmCDCoXcskQMzQ97jWrHoGjs3TiD50QBZwIsUZcT6AQBgJ8n5KuL+9xe1qDWaWk5LDCOeAYRWw3QwIwWN7tcFqNSiAqdtRoywfe/y4slaxjrWqMAEavuQs+8q5hYvxUPZDV5++2Nja9LKG2RowohURzwPWEDoBHtLEiGlCzlE9fiYY4GNefQJES8rslDzmKQh4QTrG0WTgAilnj5wI+zDABXGvHsIKQ9cDzqPza2yGNbxzWHUdhk7DxwLBBUDROMA58b60LDGZMcZZiMcBkPfwAXCc4UJXDN1hrilPU87IyPDOw/c92Eka6zB0oqAMGX7YIGnadfzp+XpwHEf88R/9E5hX1MI4abQX4QjRsWQgWeEHqdxb1VjFu+0BDaJTvn/01VOgD5prjn9binAwa3i37f+yvjKjpDY1Q42zKFS3s8deM1K9/qZH3wfbeWFGj+0LmQX8Ee8YAyhlb4oKfohRMBd+MJOTXhPfUzgzxnEGIJ4/w7DB9WHEen2tdY7YHw7Y73Zy8p8knPf1q1e4u7vBOO4LmCWcLSTpBWF6wwkFt4Dtov6xNnyMSbj3IIDN4bAHEeH+/q6EehWiZwCZJVGBqCSm8yTM84jd7h7z7OFdRo6j6DG6p6fM6IcVnj7thOPn5Q3u9zsAKBnFCBLW5omRmeCCw5xNia8k5Cl75Ek8lhPW8L5HFzxy9hg6QkbCr765xW6c0Xce19seQ+8ftMkP7ke2U3jVK0j2xaiZVTNn4fzSgRu8rHGeGJ48OAOdD1j1K+WTypijzMs+eKR5KvuTUy8vICPliJQzfOexfXQF8WifsBprmP80jpLBVj3Vpaya/QYoe7UUTTgiQUCORyTA8qrxQq0ghH602DeKIdkAVUVPUwPEDhWyemUerxcWYuHyjN3dCr1jDF2H1dUWQxfOCv4s9EIz+AjlkI2owvfMctgMKBGsrq0pSahdVj3h9evXiPMsmZg0A1TfdWVPM2oBOxxbgoXaBnbQ4RrOSAYIDq4B3G19q0Djsi3ts2x6JtnhTM1YOGuUg/cem80GwzAU0KEFgSrAGxHnWDMCRwF22zTtxk8mlbE6idb/vuS7gB/Tx+Z5xsuXL4uHT4wRq9UKwzBgu93i0aNHJXPXOI64v7/Hq1evFpmSjz0kBw3lc84tQsBa4uZjz59jj0pAPEs7HStPnz4tmbxMf249hJgZ0zQVr6Svv/4ar169wuFwwJdffokXL16IE8PdXQlva0mZTwFPLZglPLPdgvgZqBxHzjnc39+fsQcZFBP8nNDPCcOc0KWMdUoIOcFlILArHm1V22+AmAIJQcKHSdc7svVHvlK4btDoIwZEG1Dpql5u3tRmr9ZGk18SpSDfjarHMCQBT9TXiYDsCOwcYj8g9mu4fsD2Rz/C6tkz+L7H8NkTdI+v4FcDrn7yI6w+ewI/9Fg9f4zu0QbceeTtgLwKmBh4zRm7ccQExmsG9nAYmbHLhD1LREokh+SVL4gJyNIWmcTT+rtW0w/s8cOY9eRvnGaknHC/2+HFyxc4jAdM44zd/Q7zLCht3w066YZymibhT7fY73f49a9/iX/8j/993Nzc4vr6Ck+ePEPf9xinPYgSui7gq6+/xJ//0z/D4bDHr3/9K3z56z+TWM+7O9zdvBZU3BNIlawW+Am+U+4JUUiclxOcFtAQolFf/rZdz6AKC9lhXdgNUWcGYhIjRZDpVLhlUp6rgVF3Dd0sdPOykxInYEtdkd+Du14rxIBTjNNIjHU3NWOFnE6+BgnnLO75zLxAXpEJiFSMUeOPAbGEA6hBAKdkwaQ/DBjRs9mggCGfQowMWBaqaogbZEQOCH2AcwFd6NCFHillhIMTwkYkEGaAJ4CDuJc78QwLwaHvPWJi+ACQz6CcAJrB0EwjZTxAsUEqxrTgdcKFUuJxXeNGa8CPI6DzeBeW9u8tXAE2I+Zu3U0L8JNzAT2TerilLGBPzsJBYUYXaf/BwKFJsiHtDiNu7ndIKWPKjDGZX5XTdKCE8f6AW38LOWWSRY2cw3qzwWq7BQWg7zpsVmv4rpP54B08eQQfoJNMOKiieArEyel4Y/Eouhdw7rDfS3rPzmOzvcJms4YPHuv1CquVuHBbfP7xKYpr+qsYogBA+eH1rhr076kTK0BQNrqq9JZyLAxt/R5QJiORAj76470AK0SMnCJSnjW8c4ZBu6SALzgjJ31aMo9JEijYMny5CnQGDXcl5xC6JCc/zgungCrSwQWsujWC99iuNlgPK2n7jmC0V6yhXpkZh2kWrqmUMGeIxxggVD+yVMJ31meMPsay3kTjWdC1jAHAyX4AAB6M0K/ey9oa44yvfv1l+Xv5hCUEI95SpOstNwiuGmIt8NN+801jjx/+8SaQ51Tpqrzh/s0YPFaOFx9quyYG0lj3sBc6ufgthXq3PrHwlvezN9oeTkTYbrdYrRjrcUbo1pjniNevb3B7d4vdTrx5D+MeKUn4+TjuMM8TCst+AZoNINFnLJ9Y1ulm65flj0kTApBmr9H5V3gqtC/s5NoFQENxLIEBwEgxYhwPSMkjeAZ4Vi8z0YUYDl3ocbXtME4TXr3eI0U18Ik09EjC2YInCfV1Aygr5w80JByqVCcGZY/EPZzrEIPT8H0CKOPVzQ5znLFeSTr7/J4MzpyrJzORJTGwsBz1fNTPne7rjiTNOTugDx1okH6c5ojxIBlsvffIMWoYjXgWOwVSEif1VA/CJUiEMAWEzoOTeLB7L1QGs3eYR+USoSgnzgpel6QKvBzrp/aeh94LzWvjHrQw2sX3C/IqQ49YT5/tvhXIreCFZIvqPTAe9ph6Sc7gsUUfzr83mp5ZAQoqgPoCTmVWfUYTPOhnFtZlqbN39/eY5xmbzQar1Qqh6yTBxMJjqYLSx6CPtYtzkrHu2EvEvHS5mcv283DtM+/L5YrQeors9/vCYWP9bIb/qUxSNZKg/sjaUr28Hqy/ZlC/R/X0GMho328lpYS7uzsAKODXMAx4/vw5nj17hs1mA+dcCdvLOePly5fFa8a8haZpwjzPEvK/WiGlVAijARQQyMpwzN/TgjeHw6G8ttAx4xMysOc4dbp5KY3jiMPhgFevXuGrr77Cfr/Hr3/9a3z77bdNqGANda26qOwJx9m7DNQRqpRukWXM3h+GSqdyNhGjAS5ndEl++pTRZ0ZQbx/PFYwRwKfqIaLDUAEXHWzcGi/sUmfho72S9Dtlrum/ZquimYPLGUaaiVnenzhDtF7GxIxZD1qYNPTLOcS+Q1qtENZr0OfPMfzsZwirAdc/+zHWz5+iW69w/cVPsfn8M7g+wD/dwF+tkMC45xkjBHy9u73D62lCBGFHDhMRRjiMIIysnj/OlfLltsI1RfVb5cOTOyc57RIFXUjTbm/vsNvfC+HrqxtM04yuCxgGI07L2GxX2O02ePnyBb7++kvs93u8ePEtbm5e4+72FqyeHH3fQcJ5ZMJ+++3XePniWwn5urvFOB4wzyNSkswizaoGWXidIvYkqbkhSoe5z5eBQ2pIuawhBtDBWTcBG42mJMgc0M0BkihJ1lZuTh/NCLNWU4vOlDWqz28VwmbvOdHv51R25bT+wS0N81IDi7V9DBDK7kjxLsAPS/uqkuC5ev+Y90TOXJQx8zgBo4QCAepBlK13xJMKEKJpuQ8JlwgJx1LXB4nJdw4hEHyQ8oUOCB3BeQKREV16dD0hBIb3DOckpbxDhHcZwcv6M/QeWPcAA54VuCCAgiiHIEg6DCenbcF3C++y9mQNgDRkcO8R+GmXRxt38qwFGWCjIMBJ/AZDUtpm5wDIfHENgu5YF1NH4rFEAoB4L9lNPDECzI+rqmOOoKeDDDYGtqwnommGS4SUZjnRJi1PklTbOSdNva6Zu7Io0F3Xo+ssFTsjZ+HMIKckq8ELibN3wrlB1HQBVVqc5qSglbKJcMuXdNzU59eQZN+qITjU+IwvNzp5xdy874TwLtumy7LGCECd0fhZQWPZrCLN71pXbsaSueqW6+zexSOFNLwOSgA+QTIgOMxE8MzIPmDvAjoISCRk8kKS6zonc4pIGHFJ1owxRkQNOYkxIsVU+66ZQ8UwKWObGzC/bTUFr2wJJgd6sPCdQ5SHA43BYm2H4zKhrKnFqEEzk6naA4vR9o6Ax/cHRt7wPX74SX3GiQ/R9I38sTBQvr/wuzbB9727ZhSs66gkc5B+7foOfS9EvkDGNGluJkfq+p8XwI+MO1uDJbSaFz0tugOR+YkuR8tyrTEgWhTmkvlDQ2flt3J+2byEZBc9jA4hiscPOOp+KUYvw2HOCTFHjFMTNgvSkFBVTImRSQiTZX2QPUDGsZTePEKIPMABYA9mAX1SkkOyaYoCQIGx24fiQXzWfmQJ3yegUIRVnUqzcrH0tyNNXQ4WTiaisr7ZUXRwLGnec2vc1z3VHsAGPCfAQlNZQ09gYyTb2iyGkOm80SmRbEogPTy0w5paL3vWw/pWRbLRh9XT1kibF9RNRZ/V65t9f/EUrWdwDn2QRCfX2zWut2tcbdcY+gF9ZwkTfli/HYt5wzTLyEJRNmM9Z+hBX9MehIVxLQcCDTFvQ5rbSl1fTq9Xtdu5AcYsCyrrOLNF/bQBV+uj3h1Nn7bgg6wfNZzJuIWOU4i3ntvi7RPVS75JN9/oLm34V5kYi4XnfHIcSvWu679lwAJQCJ3Na84AjvV6je12ixDCIky69Zpq07sD1SvGynH8uZW59b6x8rR/HxNFAygUBMJFe19InO/v7wufq4XumdeO8SW23jtt6vhhGMrfq9WqAD7DMKDruoX3Twv8mEfS2YTaFYOVqJwl6zGOAZf6m5vvmk5Zh4Dqme2XdUia96GNVGNXlRtXpYn1IguZkueSKfRgcnq4YOuf9rsHgtfvdR3QBSB48NVT8PYRwnqFq5/8CNsfPUdYrbB6/gzDs8fwqwHuagOsB+TgkR1h4ozEGfscMeaIKSb1+nUFa2AmdYqQrJhJ9faipTdmHL3jXPygwE/mjP0o8Yr3u3vM84Svv/kaf/iH/xFevX6F169e4Ze//CV29/cYVgOurmRiPnv2DH/65z/HZrPBq5cv8Otf/wr7/R7ffP01/vRP/gT7/R6bzRbXjx4hhA6hE5JYIuD+9gavX71AjDMO04j9YV9J0FyGK8GFutlSKnF9MeXiHl5SBAMoeBFsQNWBU99DeW9hOFING6togA4pBxArwal+g1EXWmpcc5upgeIhYo+khqTuHB3XiCNC368BqKtwmSi6BxBDMuhYlesmWA2/xo7Uk/m66RlAVFqlfrcoSJoFIqOmATaQgCETRSdFYjtVBAhBwBzyWK02WK168SzwHsGLIp1ZTxk5ABjAbItoQN9lOB/RhYOkdKWEVS8u2zl7rPstUhROEofmRMc14I2TBaOk+HZ1UymbXCGoJQVN5Lt/hv/wbP1oC0a7kLanBK2xVU8TJYQiayxwVO+znDMS1ZATIfJWM0VJXjlnDCAkEiLaOTFC1CxwzJYtXvpPT5okhEyVrgkgl5FSh/3+BvvdDXzwiBqeNs8T5mkH7wFHHpthC0dbAdV8zaQXPGPUDFVd6LBerSS8aztgszZ3aL8AWM1V9EiNQzkNo7pIi26vIXumJJkC9R4MFVLt1spb3qej8hafWHntyVJpS9y1hBEBktVNstMJQTKjJI+kLOAS18BXqjVHA4u3D5atlwmMVMIPODukpD5D8wg33oHgMLmAve/gyGHfbfAyrOCdx6pfY9WtxJjuJQOjcw6+6+F9JycvuhlmZsw5IrI8C54Af7wWHkE4hOKuv1jdFWwXm2ExYc4mzjms15t6AMB13ZcmPA70OVaPlp4+8hVuvn5sgLxHBOQ7pIbSNHIElj4snxlrv/mzPpRwZux3ByhrPwBZR9brFQY9wJimCZv1Bnf3t5jnA5gjhr7D9dUWKQ2QiSE6gRCn6wEIaxhtAcSlXmKwKECOatyy3YeXY5zI/JABzm14j85tSGaQmMwoPmC3u4V3hNUQ0HeyhvbDgL7rwSBMKSBmj5gy7u4OiPOkHSUhtwLOErIjgHqw83C0gjGq2JrhnCngDoQOxAHIjCiZFsA54iVN2O0YXfC4v7tDH95HqFfG4bCHd054InVPLgcz6hW5ECIJ0xPHEem7qAdZzoOcL2HUc0oakil8VQ4ZnGakeUS0kH69p/cBIUjK3y702GzUkNesS5mzJBeZZnk9T5LRVQ1Z8yDPSfdRAxyOwRAs9ceqkdYDztZ0o6IEq5Xhqt7WNInoOAA2Q4effP4Uj642uNpu8cXPfoonjx/p4yz86nyaagl/IUj6ZxKdkGAE6K5k2RQPHBRlyPSdeZ6w30v0gREHe+9l7Pd9Cfcp/QXUJAqMMleBytVlZZO5LeFFnGueIgIpqKScMFT3H/tuXevb+8k9vPfo+x4pxUL6DyiPmHLdtGKARIoRu/t7jMolY9e3AHz7msqGKD/sqx5wbml10ne9VrIe38DSt8/zjL7vsd1u8eTJE3RdV9K9T9OEm5sbfPvtt8X7x0KdxnEsSYPaUK82HKzv+xJCZl49JsblY15ElrXLABkbR+ahdXt7i2maSkjXOI745ptv8PLlywJctYCNvTZQxzyK7P7b7baAPPY6hIDNZlOubwEho0r5+3//75+vAwmAI7AnRA94n+HZuFCFWSvb+Iac3Ys5Z7azrT2kdjdrIhxZlxybbq6eN2Q6oIJuMJVNdQiuq5vtPZnr8+Bs/yZw14GDZHalvgP6DuQJ/XoAVh1cCOgeX6O72sL1PYbnP0b/7DOEYYXtT3+C9fPP4LoO4ek1wvVWbLnNCmnVIyLjLo84jPdIOWM/HTDFiJyBOQIenXD2KAdiiowxEvZRyitpLrReZmdmdfh5BzPjA3v8MGZNaWiEVTevb/Hll1/im2++wTfffIM/+qP/CLe3t1itBzx+/Ah93+Hpiye4391gvV7j1auX+PJXv8bhsMfrV6/w9VdfYhonrNZr3O1u4X1AbsCBcb/DYXcrBoc3V2YFUdRwPQlSGBrIqa7sTQ4445SxUCP5Xlvb5sSODOQBiDT9MEjSuxVXWjXw1dAky1MHPRHTa+omoM9ryW1aljjbwM+t+6oh7ZwrXBOLNd9xCQXTkjZGjIV6tTMd0KReEurhq6t7lcZrKkdknirwY4uAzHgACvZkmdiJSE4bZdsHsfCKDGGomdYcwTuxy1crQmaLe+1LRiLhJGE4l+HdJIsOZfQ+aU8RMPRgLGN+F31bi1syjz3IDuA0M1sZD/W770/q4iqElA8NRTtJZOcWZHLZtyFPrKeUSk9h34cAd4GBjgGfMyhlkFOi98yI6vGVk4Cy8h2ZxwAhRgLNACNhnvaYph188phixDQroWuchA7JOayGHkPfqfLkqwLBjBgPcM5jGDqsVh1CkNd936mSb3PV5iJs36nGZAOzl6qSASAyxmua9/cDGJTHNmtCq2RWdV3LpqBoAbUMJCXzBmoMQyVwl0sZRBKYYWODmp+m+kfvmJTFsqyXCalpuerlMsNhEtgUoxvQOQFnh26tob9eMv70A8h59P0Koe9lnqiRxZAUm9nIRgOB8sNytTxNsuE3NdO+rO74tW/PLUSEru+rEt+e1JfNpVH8i/FfgQAzxk4BPgsPmiM5fr+dy+eWN95T58l3G382ot9NfpNT4h8qOYtHCjlfgGPnPPpB0tWnnHC13aILHXKOuAkB8yRZA7EakHMAWk/VlDHPScNoCRTNK7gJn4GeBpZ+rgaunDCgeb8FC4GFAZnFiM9EQIPJpXksnuP74NF1Ht45DMMKfT+A4TAnjzl75Mw4zAIwEBESAeAMR5Lpy3jtXHAg1zc6TtXHpDgOkv7dafIMdbDPGYQRU0jwjjAeJHzs3MIsHDpZvVDIW5YsO1WvxPJtqFS2UHbNdBghfUcKbuWcMZWkIMIhKFxOus/FuXDKpCxn1MNqrUalhDGHIPuTcDilhvtHiGn9FEDuoMDFDFJDMyKWMVDWDRszteZlLByvcQKcqLJ2AsyAq9kH5QvQMyuhJui9w7NHV/j82WNcXW3x08+f4fHjR4hRMsPNczwr8GP9aFyQtt8J2bzT/Uz1f7YDK+U2TFm5NRPGcdJQyRrSY4CPGd31hKV63lYAqd32614HVF6dxXpNXLyJ3p6Jq677bT3rd3jxfePtMX4iAyfalOEWWmTX5gacP15BW68fLvvP+9FRF7r0URne9EwD1ex1Sgld1+HHP/4xfvSjHxXgYxiG4kVzc3OzIHq2kCvj4On7voSA2cGFkSG3nlZtWe09m6cmNn5M/7fPjbj522+/xVdffYVpmvDy5Uvc3t6W7xm4VEIOFeCx19fX11iv1+i6Do8fPy6vHz16hPV6vQCE7HULAhkn1FnFydzLTjj8Mi3XEvP6z9QCP1zBH/uXKpet07dcAXKqQ4U5Y9hTsirANmp1ihaAiZtrwB4Eodfg0IF7IWgO2xX8ZgAFj3C9gb/awHUd1p9/htWzJwjDClc//Rm2P/qJkDh//hzD0ydAF0BXa2DdIxNhIsZMjJgi7nYH3Gg46eFwwDzNIDh0GIQbE1IBsYsIMQFTkjollAAXBc61rc0I+A75oMBPjBHffPMVxnFSdHPEy5cvcHNzU3h7hFhsRpodxsMeOc247wJev3yJw36H25sb7HZ3GMcRs3KHAJJOPM6TEN1xLsCPcZYAaPY7VrCgKkymU9ZTMC4DpNGVAJgB1b53yhxQhazoqnr0gBruQFwHo76j362Tom7PDfJphbZNpkF4qPkGq3F3TpFFsBrIy/AkhRudXwJSVhPWk42m7bikhDDgx1wgW0PA3AMh6X5ZwQlGNeiULBq89CBJRMofAwnzgoBtne/QealHcOJ5w9mBMYD8BuCsHmHqcULCO0DkELx6GXCGD4yUNdwJHoxU62vtQpXzpKCzjhAa4K/wdpDTNKi+fPe0MX0ukXFVQwHsvUYWmyyXdcUUYRnrAgRmkix21WMtQzQuaPp1D8oOLLF5ahQxXNbXTsK1zJi18CUfCM4xHDFSnDEe9vDeSaa9JPPfe8IwdCBAgJ+h11M9X0FYBZicE0MmaBY/I1+X6ta5Ra4B7exUUO9jbeVKH6N0cVl/2Vrzzcb3D5Gi1Nq2d4zGlEq1q9RisdOXrUEoym/O4unDWTxnSD385BzXOH4MUFMjFKhj/TvGbfUWqle27EBaGjDM60EAQZdmUHSalt0hE+u8kXTuAKsSwRXA4WVZiAicmxTH7JrGo8V11lzMD42ic8kiNK9ZUwnVsK9ABqPNOFRfL4GbFvh4VxDkQwA+p57x5vK1/fabl+1tBsm568qsukFmwBlAZ2EwpGEFjNVKCEeFsyVijj0svNy8d2LMmCfxDokxYo7i1ZFzKuTDEqJhIQqVy47Nu48afeeNoJnpOu1+3ayF+k9mSS0ONYgkxEnW38Tinm6hK1DXdMusBzj5zwFdRwidZt9TYnZR0E3fakMlMpyeDDFHNZQj2BEmJuT3APzUVqkGZ0t8SoTiibFo0qb52n3AfiwEWbLHOuQs+49LwKrvsF4N6GJQGgRd5wgSrqr6EelNhWTawFJXudJyAnOv+5uEfWRmBB91nACWucn0J9PJzKsaABbZ5QrIQEWHg54iVG3U1h5opisgeI/1IKFcV1cbbDdrbNYrDL2AfiVdtXomnftgpILkuhbCSb3VozJSVA9Pe0+9ydV+4JJ1rY6BErqTEiIJZ53pRqRhfwAWGVDtd5uiO6Ua3mU2QvHwPlkZNOOs2jJl/LWHUZYOm4SSwZJ0JA0bjApsWBsZwGGZEAu/1ZuWi0Wx6iHu+9FtTgMqb7v+1OsYJWrjcDjg7u6ueN7YfYdhwKNHjzAMA/Z7IcI3QMgyfZVEJhouZ9w4byqnrRdATQ3fhmEd10f6q/IAXV9fF6BJMkPSIizLgB/v/QMgx7x8rq+vi0dPe816vS7eRn3fl/u2pNVnEyKwd+DggD6AVx14ykgTFbJkNgARWBwtLixgAzT1s0ykSVVkh8nk1OOH9LWT13otIIcP2fpMCFt1jltfEVwIcKGTg8DVCrRaSXKQ7QphsyrAT9iuJT37Z08xPHkE3w/onzxGuN7CdR1o1YM7ScyTFJ/IYByQhS8oRUzmrZkzcszISdZ8cg6eghJKJ8yRMWfWbF7KPaS6gkXJsO0PZdN/ex9+UODn/v4O/+Af/BsF3ZznGS9evsCf/PEf4+bmBvv9Dvv7G6RpxCGNiOM9nCPcvvwWL776FZz3gk4fDsg5YZ4jop4IxXnE7i5q5WsK75wlFaa0KMrCyImKogTIwCL7Xe2hZlGtK2Ft5CMhbhbLXG9ixjvrpqqdlZHUIKWSHnrBrVGMRe1IV8MpWmHbhOnhWn1s8PxQ8d7j8eOtKkby0HIybspQMSLr4mbeIAUAso05syp2wrdiJylls5XbqBEk965wmXjx2IrB6tc354w5C/N7dBlRU+N2rhewBwQPj6AufZ48PInBGOOAlB5DNr8MIo1D5WooCoAkfDG2XDExMsnkzpwxxQmzhQkatwERggu60Khbb3uiQaIkF3bddzSgv49I19mYrr/raY71rfAzeZYpkI0WAuK5yF4WWO9EEZe5YUu4zLPk9L7eAyGofsLKb1WV0XLKMouRI0qwcXE5bZqMcX+DF9/kwhnkQhCwp/fYfvYUzlEBfqStq8dPnIX81znZ8PuuVyVZDBOGcDxwql5Z3oyTRlnjbJxflejZNm/nbBaTAJY278+tHJFmI8TDW7eQsf3NBfzRcWbrDNl8NK4B8VaKWXhFUp5l+fTi7RdaBj1zqU0C4MkDW0hnCZWUkUwVHnJAE5qqzv9EyhXGyJQx8ywn6OwQOcKngxg98176nxxc6PSEnirJnZZbdPLWg6dV5qnMN9ayWf0M7LEwrPem4JIRSlcFsmnC8txlazYHBGVNXUrxIuKH17zJI+j49YfwmnnzM7772acU1VMnxMefnb1e2emql4RgHkULgCNgs1ljNaywGjps1wNiEiAj5RmAhG2Z18g8ZxzGWDxFxmlCzpKdTAiXJePnOE6QtO0aOmJrUzaAOmuEqXkgNHWmdn6m5j00hp/8nVIGJ2m7FBMmP0KCOD0SiVfTnAkpW/s6cFav4CAHJV2X8fhRh+12BXKybjsfkLSOQrAOTJOAWpkTYhyRc0ROM/bjHuBJch68N+o7KgCNGVneu+rhoW1EsLlVvTvaoepITmSdEz6I7Ai9c3CuAzOj7xyGXgzzVe+xHjo9+R2x2+2lTVLGdNhDts6A0YcCMpBTXknn0K1WAIB+6HXcia6V9QBDMlRZJs6alTM3qaCFvF/SzAsAYJmCUgUyMiGre3Y+AQ4ROXRB2my9XuHHnz/Ho6srXG9X+OInz/H00Vb2R4KEFcWE3X7ENEfZO84kplNQoz9zlvT2Tsf8zLWfnPJP5pyKF848CzDUhaB6hu4VzCVLnoX3EBGCr6TcSYEUAXkku5PYK5qZLWfMCiIYSEclXE5/VBfLOYvzHufCfQg2hdfq2tRRAazgHYa+lzG1P2DWdPRgCWEqzwLKNZN6HzCbt4quF83hwen2Phr8ZxTjzznmJWrluFwtqJJzxuFwKAcLh8OheMA8f/4cXdfh6dOnePToEVJKePHiBb788ssS8nY4HArvjxFAHw4H7Pf7B2Ffm82mkEgPw4BhGAqwZGFhLYFye9hhHjchBPzsZz/DZ599BmCZbasNKzsO0bL3T/H6tJxAdgBxiujZ7nFe4AfIgwdvB/BnV8D0COn2HuNhjzgV6+kEfq50HWTAEEp7BEhmWCHUl/JmcsjOC0Dkg4RpkQN3QX4cIfcBqQ+Ad5LVeb0SZ4OuR9dLdEc3DOiHFZx3CFdX6LZbkA8I2xXCZg3nPbrrNbqtAkJXG7jtGuQ9wnaLsF6LB2Tfg/uABGDPM8b9AZEZu3nCPgm/8e1hh910ADIjxyxuR97BrTv0mhRinHe4GSccmHEAYfad2qJyuGL6Mpmh3Ojkb5MPCvyM44h/8k/+ENM0YbfblVjMr776Evf394jzhGk8IKeIHDPmseJ/r9obtfUqKHxEns2drlmIHFXQB83HOF5ASEOyju7fXL+4tkG7m4sahelIQWcqipZ1jHgNGBDkUblxmgW+ObkAnyCUg96OUPdhe8yDxvrh4hxhvR4W71XEFAXUkpdNuBtrSnCrj6VE1Xh3QBY/Mdbrpgqg4TaS5xe6HHJw0Dj/hitoyhFTjmAwZkqITjwWhjBgCL1MlCzxocKppClsAQivj/Wlkl4yilJuYBNxg9qT9EGijEySJWI37uHjVDuIUTyNJO6fFgRvxQBVZbrwQNlkfk9i4E+psm1GVEe3M9ScuRqoEHTaOyUphQcX4rsKImU13lm0CRgR74KTKVcFeo4TZk9gzpgTwSlXQl0JMub5gHQbK9+EpipdbdZYr2RjXQ1DGUte4+aZJd7a3HfrZug0xFBaXE7WuXAxFZfTxoA25Zm0f4rb93GoouIs70M5Utx12W/2lOZRpyCDFhIqrxuvAzNq5Arh9iEieDgECmWZKvq/GpynSnm8AtmcsRHuWZdopuZq+1TKnSx0gsT4cFncYl2e4aIHnINPvYZJknrNKal4girWsla1rtgG0lmYDddCVsVbQZ+ScfA9SauwLk4EqSq8y/Wf0J6RnbrmGNxpFedjL5tTnjkfAvT5wVIXrzdeYnV9XyEJZbxmUWSNd68E7ZF4yoIJQx+wWQ8CBiOBEcHISLGGd01zwuEQJQPiPGN/OCCpEbPbdU0mGq9EpJK+vWSKsdBcm0MP1gN7RViuS6xz03Qm2VMtKQUA5JSLocrki2dP0rAmOYl0oq/ovBIuPcZm7fDoWsH2vi/Az35kTFEAJk8Z8yz7KKcIzrMa0CNymkBgROT3AvzYmmrerM4tUyGXVtI1zw6tFsup3ojI1E9pY/Ku7EPBE4Kn8roPHill3HsHpIQ5JaT9qKS8jOgSnJN9y4cOvtODhuDh9eCDqGtXsCKS8j2DMzRMTMOZUizgT4rzAqxI6vmSkiuZzFLiwlfHbwgJ8164rVZDjyePH+GzZ09xtR7w7MljPL5aC/9aNDLhiHGeMM3pzOuM6M0y/rPu6ayqt/ANsnoZOfO8dprCPc26vyc9eW90URIdYFaPGdcAQtxVo1lAM80Cp9lOLT28eY3k4l1T9XQDfNp9XZCdagcsB5l52Nkabwc31eNLryo6z4Eli6QAnKK3p5QKMGR8QeRcs6d/10R7l2t+cznlSWNeOG9by9u9U0C8Gva13+9LiNbTp09LyvaVgqdEhLu7u9IubaY08xwy3iDjELLMXwaqtATJ7XvmZdN6A9m4bz1urCzHnj2Wnt5AGgN17HUL6hynbT/WLYBKTm3tbN89u8dPcOAhgLcDcL1CTjNmJ4ck9mPLqXxHdQ8FM8o+qvp4JnWSIA9Por9ncsjey8TpOqBfScbXoQOvBrB3SKsO86YTcGW7RX91JYDNao1+JaDOar3Bar2GCwHD9SMM19dwwSNsNui2a5B36K/W6Lcr9QrqgaHTRDxBDrcBWDqGzAnjFHE/T4g54e4wYjcLUff9uMc4i43osmQedsxw8PCug3OS1OAwJ4wAoiMk57E4USq4gjUi3mkqflDgB8wagqWJyAiFAJHASLHD3HuNL11ySjwQm9il0tyQpzaLpO2+hKPFs8AT+uKhYbDY2BbFOEKH2kXaLm1woAKGEI6+J0oRESqhL6B1l/u17rVvcndseVtLlRhozajDqxcPvvd9RBaJDtWDB6rc2QIjyk1xlXa+no45LnXihseFNdVn6IJkunKubKqwzbAYbrUZnSqUlj3LjDXkBMpRgq+cAj8A+tCjV48fcqQ4G8G7AE++nLKwtr0tSeZ27V0D/JjTIVl8OyOR/Lic0CcHRleHooIDve8LUaRl9LK+BQB7gnFMFVTpA8pDcLHOGwPrDJSs+poZk80CXu+o/7O0u4I+hWjNAU69RQRgEKXNJcCF2idZ+9n5AOdkk+r6Hn2vpxrmTmueQC1/Ui0J6mS2erWeEyhjG04AKM4WF5yLpw+bgaVjjrNTfqZlhhIiqFfb+zGiqQHi2rVF4u+B9tMKKterWA07MVSpvLY7lLs2AJPgKXYtqaOjEHW34/1keUvp6jgjaMx2UXx1PjtX+CNI+SLKulLWQwj5Hmm5zduQs4aHajm5PovLfNMMR8X4VTNZ/yRoZhgS8NO8cc4txSsHFTyzgwU6NtzfuLHX8SVKcb03YNvlEvyw12W9I1tzWqXa2sbmsLxnH7dKbPv+m18v15c3K5l1vV/e4/h9lPGAE9cet0Mrr1+/fsOzv684HW62z+mzjzuNrN6NB6/NJR3TQkQv4KWsfdBwDdnzUs6YxhHBPGbGEc55CXmPETFWAxZRHpAtixDXRx5pOU3ZuF00FsJgUDa9wzIi2ZwWL11HLKG5Gp5LpPx4PiP4CB8C+p4ROiHidMFjSIyUHIbeI0ZGSh7jBMTUI6cZ00RIcQaBESifngZnFgEMj+q/aD/zFK8tVQ+EhAja6fqzAOZJDk2YgewsmyQwdB3ieoUuJcAMmmwAXt29cpzBRJKBbJJxZyATAXpYVsObC4Fx2af1QET3L+8JOXkdM6GAFzGJ94p4lRFSkutdJmQNhzIA3TmP1WpACMKf4jRTYUwZu8MBDrJ3xiQHK1NM2B9GTHNqstqeR+ygxfRoW9uKR5yl1FUDlDMpQJMV5JJ5xDlLyJTaK6ygjXnqtKnZTedIOSrgkwtwkHPjOaXjwKkn8cLr2zpYLWHOGdlVnYSJkFOSfrd1T+soIYCiowhlhgB7nJs4AT3QKVO8OQQwztPqfW7F4KIEHM85WeveD/edlauU7wR4/6ZDjkUZ9e82ffo4jri5uRHCfQ2lMrDk2bNnxSnBe18AMeP2MXLoY4+fq6srXF1dFcBmvV43IaJy0Hh1dVW8flogy0LL2npJ0of1wpvHAJ7WU+c4KYvpE1bXFvg5BsWASop9nFr+HMIECcntPPzVGuGwhU8J/moFp+T/ZJ46sphUm91XugtWT27vvHDMQrhQgxevfvYeHILY1Ar8wDvw0AEF+AlI6w7wHsNmjWGzhfMe/bBCtxLvn2G1Uo8fj367RafX+PUAvxpA3oHWA/LQC81A58Ge1A6o2akjJyTOiDljP43Yz6N6tk6IaS6HiKauWoZIkMOcMxBn7GPEmBOmnDETEFmJsNm85asx3Gbzehd6lw9O7hznAzgJd0oXgOvtgD48lxMG45Uoi/ZbLAi75+L1sUGnckJDqNuoKbTFsllcfgz+mElUW/lhHdvr6cE1ZpABRtwrHVgXW+K2Hs039ZqHi+9RO4jOAddc+dWf/QnOIQSHzm/lxDEJqSC8R3BCvCouryt4F2Qw6wl8i4ZZzLMAPxGZo558CepMzmlWjVAGd12s6qm7h4NTwIaURwAQBTmxAEvZJSQFfozLR4xWAxoIwXUIvgNASqYln7ehHeVQGeZp1IRikbjFRgCJgcwJwe+xipOMn8Ir4zB0gz4LpV5SFClPhmUik+aijLOH61lPnAr1ON5IpVxNTHo293DlCmjIz5tvFsLB8gFDeAhIjFhHSyO+xMfnDikLT0FicffnchMd/86X8Kqu6xG6HpLCvUcXOnnddzUtpZ3+adpi4iT3MkJwIiAbUSODU1KSR0JigJ2N1XraGWNUEs66HojXUAZrRg1fuIVqG55ViISwHjZm7QNX1x5dRzPraS0xioug9ZZOBz1yWNy+qH/6FeeUwosAyxwEJiCS8DZJVQtLH+F4/FomtMbIBcFmceslSP7twA9UOTJ+ZgnL1Kxh1r9acHOLZdfwbXE7h5tmbQxebyFj+K6d6PsLM2OcxuWbpHPENvbm9zJlZ7s+8YP1qt2PzEgr79u8hHi3oQBGRm5fAQq7AUG5urQ/+q5D1/dqvFQeFAPEyerh2v61Q4Gmr/U5VB8FYBmOZwZmud7K055SNgYKlb6uYH6dx8A//Pf+3d+0q94iqsAqMF70hgWh3bFOYmO01pmcgyNGRx7ODXqexdgsQrdkLT6MI/b7PVJK2O12uL+/Q4oJ47jHftwjK1npPE8wL0Xj8Gh5YhwqpbvMywbSaI9hrSasIK/NM2dzMYCc7NlenPDgLZOLTwghYtWP2Kz3YgQ96rBayz1S7sEIYCak7JCzk+wls4AWMUo4SpwjHBi+AX7+X//38/Wi2tta7bbO7Zyqn1vCDba1FXZwYXqYGawCLiTdejLEe5KZEeDROdnzhq7D1XaDzIz9GLE7TEiZmyQGGfe7Pe7u75FTxjTL+4B425hB2YWALnRljXTKGUjQ8HJH6F0vBxUQVdSV7s7FeJxm8TpKOeJw2GOaR/1MwKCH4SVr9Lr3dn2PlBm7ccIvvzrAt+0LIOaMcUpISqZ8TuHm8LR2mr6MCXGcwSmBHCF5D3KaJS8LwXaMs4ZlJcn62km7ibdOlPvptkFEiMMKOScBgxrdcY4TZj3hF51BQCNyBE+drvPN2ggq3lQ5ZaSY4BwjkdBYOM3eZjQIKaeim5lnin23eC7nWLzjWLm6iCxERMNmfEBQUIlVBzLPwawRC3TKomTUg9f3JK3nz7HX6ps8Vk/ptjamiQjffvst9vt9yRr9k5/8BKvVCtfX1/jiiy/gnMOLFy8KybJ4Wu7AzMVDSEIa14tQL+FuW4Z9maeOkS9fXV0VbxvzPpJ1WuZxCxYdv7a9swV8WiDHvJQMULJrjvmIWrDS3ktJx+8Z9VQmYO4cVo/WWP3ic1w9GUDfvISLM+jVAA49MKzBXsJ+Xd8DzkkYsIZfUQhwXa8hl53q+w5dv0K/2sB5D+p6/a4H+h40DHJQN/TileMdePDglXjnhGGFMEiWNtd18J0ASD4E+NCBnMwJp+FxFBwoqNdf5xCD0ygPRiSxLVKckEahqTjMI8Y4I+aMu+mA3TwV0DsqnymnLCo3OYTQwbuATA4304Q0JdynhBfjiNfzjOgIo/eYnYNjIMBVoNbmCY51wzfLh/X4gZEtZzkFckAYOqyGHkDRr2HGwbuo26bEHelQWMAhrdWuYiqhPLdRvo5arQV+GhX6rWVqCtdcXRUo0RkMea0G7Zu/WxXdU09/APxoPRzehzg46pERlQwPGibVwZGHdwP6sBUvGkVnjz2VzAVWgIWExMJxYOTOhVvFQKOmwsXTQkqirn4k7nEariXeB6J8Z0pglwvI4sqpSu2PLvTofA8xEEnBn8rp0orcw+l9CIADs3joeLaT2QRgheAn3WySnhx5DP2qAj+o48tCnTJk8iZFgx2huvW9B3lbOIcZSS1wYr9b3pC33dvE7ByowmEIN5GkFre09gyHzL6AThnqVUbS1gYMkG5eoetLthPvA7wLRfEN5napKXQJDNLMOKIUZjAnEBx4AW4pRxgrflFIL62vctlgFzgvm+KNpn6tgvIeoIMHS5F4o7WrDRuIrsBMWWt48evofnJ9a1CLlxokS5YZ6krczXBwyrNFaAwjLVF9iIILej8iMYBcA/oUYMA79eZpgJ+jUzFbH6jsempZlWeqV4XWm22zANUyktMC59o20OCv8owTa/SZhFmyPCzqBQCunm4aoGLFp6PvHyvEbxK7R/UwNCCQywXtnrMEVaqyGIIvSu1KFajWy26hXL5FeaXm7wJs2T5Hp/iz3FG/N0kGjsaGrS9Wz/Y0lJnxj7q6Dp9HJGNQWS9OXFH7R9q89Km+Z4CXZJEUIKTln2r743A4YLfaI8aIrpPsdzHOcJ5kX01JQQgzBgCJcNE1KSfUw6yC0lpJmhpQXb/VcmcuX9TLzP0+a78RnMvN7wzvMroQ0Xcz+p6w3WRstoC6EELC3SWrF+u+GqNHzg4xZux3E+ZJgR+huPzBPfbdcqQPtqCQTCTYARI1e5Vz4lBioErBHXL9mjOPH4i3DwPoe+tvYJgi+tWMlFm4fw4HzYS1R5olG9b+cMBuL5m8JFSk8nUMvXCMhNAVXcp7kowxRIVTUa6xsKVSU+ScMY4d5ln5YVRnl/1fQgzFY7+SxVoWIQOhMkv6+d1hjxxnbVI5ZElZvX8Y5RDlnMLcerqgjt3EyLMQOZMjUdocNJxXdAXL7pRzQvIOzNJ+bMBPAXLrGHTKb1Sh3grGLHmTNBOUrx47BiCR7lWcWX8EoM3OKTGtpF9PXtoyRgvL48Xrtg04G9G/1p/Fm4xdLb6Eqmv3pARn+0nZunmxbyzaGfxOXgbfV469VY6BiXcBfI6vizHi/v6+1Of6+hrMjM8++wxffPEFhmHA1dUVQggYxxF3d3d4/fo1cs4LgOcY+NlsNuV9e73dbrHdbsu87JXg3EK7gOqN1O5zp+px7PH0pmvs9SmvnxZMqp5rcp3Ra5xTsidg1aF7eo1+7UDIwDfXALJ45qwfAaGD63r4Qblz+uZ118OvWj4e8SbsV2ustldwodNr1kLY3PfAINm40HcK/BDQB2AlRPiu6+E7BZl8AAXJqml6ZtO48tv2RgKiZScDY84zZk7KyyecdClLGJd5+dxNI/bzVPYOBgAGHOtBJsze7cAMHOaEfYrYxYRdnLHPCYkJMxmHIElihBbw+A0n4AcFfoahx1/4C/9MWYyqS3pVLFqQ5M1qdrVYuH3nwSpvfx4DP9Vnpyy7C2XaXnHzL45ef4cRcBL0OfruQlmlokScfkpVCh886sRrVaPPbqtIVqstwBFdCHAU4X1A8CsFezp4t0LwQYGgmlHJToBzZjgy4CDBoYeEU7kSBuWdR3BB24eLgpmdpEIFWBUYI/oynh5xuSsGN2XxRGiMTWspC6dw6AB07RYMEOAoH6UElc9bQ4U1PbwU0bxXMoIjAEE3T8nM4ZyDd4Mo9Dp4C7DodGNlVnc+XWeYi0fDWYWXBuOpCxagT9WctD2o+S0WgA1PUTAUEFB3cD0gK+LMOwBiuFXgp65hGbmka5SsWcrZUmJ8BTQy47wso0SlL4DaL4tNDy1wYFe2fa0bLNexB2sHU/is3awtqfIHsCrIkuEmF2Dp3ELkYYEAUk4zoKXQxTZjacNisGm5s8YIH+NS7RgH6i+Q9Iu1rnnekHoCGRlfHdYOjit/kpCzo4AIRAbgWriCnmSReoTYSZWrBJha9Prspg8XSlE74E6ug2rysmXGssGrbfdg8bTPziuhC3j++XMppu2HNs6BMm6tvZYHFdJxRclr15Tj0pe3Za3J2uk58wMQE2jDuJrnGvCjyukwDA3wo/PYDH818Ox1qZP1lXflmqXHj60tcr2VwfujU04bPwbw1GGn7ebq1NX5ykDhbbI15xzSjr2SphwCXWuT6zpKzZoqfWLLQgEU9C6NOYOy76COEe+FTNcRIQ090nqNmIQbwDs5gBjHTrOJ5XKqzJkRUwIpCJTYDkpQ2v3hEDox9unoc2aIu59m9YJDJuXEcBBux/09htsBw6rHsO4RzDsyeAF6GQClcntPDs4xyAPcOwQnaW59kzny3NICcXUtre+V5iE9XCOU/iz9Q6igQqPvOefqHC1joHKJSciDeBB3gdEnSe/OvWQRTSFj3qwR5xkxxgL0mAe1lTqnhGkaQSTp3+1k37tZw6QJMXaYZwOEGp67cliRC+hjh1d1TsrcMz6TNikHIDpejKnw2cSoQAtI8FEioa7B+4HvCuhztKc5Eq9PH2r22BKenYFEdnBgXH9SZ+PIkX28ZiEzwDTlhBiFxNn0ejtEakqw0JvIjA7V+VnHxbFh33p0MLO25wxmBX6ieClZZq5lOwA5Vb6+OqYB51Ix/lMTmiaeTw9D0+zaYzm5XJxJTgFN7fvt5waiHANFLeBhwEZLmvzs2TM8evRo4cljQM7z588RYyzgTc658AK1JM6tZ09LuGzzo+XPsTY1fiBgCfyc4gBq69W+bnX448/b61qwpz1Aed8cP0xyeJodSVhUDnDrAf3ja9Hbhw2wfQx0A1zXI6zXIB/09Upehw5+JQkBfAjwnbR3GAaE9bZ4/FA/iL7YdYB6DlEXBPBxDghOkn+4mum3IAEaJmPYBKAWou6LTKwk1IwZGbMeSY9pwpSiZJ0d90jTHokz9nHEmCbxaswzJo4V+FFb0bPovpkSchKPvjkzbmPGLmYcUsYhJ8ycwXDFE9AOxMXi0blpEId7N4ePDwr8PH36FH/tv/lfLxtdWZwXunqr1DZyBIg8+KvoS7x444HHRvu64X04dc1xhM1bnv5WqSFrrRFlWioVEqvFd96AFZUXLa7VfLVgXKYQ6/X/k//xv/LO5X2bOOqw7n+C5BOCm5BT1sVN3IY7HzB0q6pomPKvBkDdEKUSsvHXRcopJ5DzXo0Iva5kaZNp9xD4acO+aDGOapPZfwA7eyWKuqSFrxmFpF0ZBfxt0tPXhZHE8GatK4vnAhMjdELYaV5Nls3NOa+pcB+6rDJQPH6ydiaR8Cm8DzGU/6RrZ4MEMCtZqCqrxnvCMMPcDJP2BmUWgY/eAVoDv3FtBamhpJsh1+x8BvbIfcwYpfK+ADuujHkHr8TfrEo44JgkVljBHO/q9aQrMrGMSGdaIyfNFmdLkAFilfiblfg0A6qQyem26PASZpU1lPWsQgRyXQnhotIP1fAEJTCOFzINxWNGzoSc6vhDWT+oAVqqUgqCun5rhIeF8AQgKADKUTZ6MOA4wLMAshZiUIzkYrgbsCEpcp2XNcC8fUqxi0LOyAYkqnFfwTscLfLN38VAq6Tcqgajjt9lW5XRq4DQm0CVHyKbzQb/3H/uLy3KTG3JWiJ41DYEoOO1NR5ryRfSKIkAUNN/s564N2ub9YuTjHawZ6oSaRxaRJI5xjgIgrNsJWYcWgzecl/XlaMh7dcx2xg4bWMUJdadDn2z36zjmnW86s0WwE9pGQb6vn/nPvpOoQpS+rLjZ82UpGs7V69J48MSgw2wUM3K+WMeaazhQjIyK48LgUIHv5bspKu+x9VmC2YJz5kmyXy63+9wf3/fhIPtFBSYMM0Sqh1z0gxjtkeizBXrL/tdpkjbnWUyRnVzIbAjJCJwIhxyRJw9pnECgXB3c4P1eo2cI9I8iqfIZiNZqRToAYknZu8BggcCYdMHgIN4q3jzun0PwgSw0z1KDQQ9VCqeZkdNIOFvslbK3KlJEjibYaEntUABIaSdUcZmtrWWoRklZ2RmrIcecbNG5oyrzRrPnjxGjAk3t7d4fSspqne7He53OwnRGg+Yo/RpBfCFz9C86CxjWfXQgpatTEXAdFcSDxUJ33cYhh5dFxahXmU4qG4/TRMKL56CR0ROs5nqfLcYswda+A/oPl0LbZ+xQx87JHKQ11xcsnTtSzPinICcdF7KvIiJMas+ICXV32T3ByYckDgXUMyp7ipEyty0sR6+NHtNeygknOjFHF2APjnLdWPmksFvnifJfMpcvIoAUmDOwudRSZp1chcAMsiaOSuht3g7Ga+Tcc+Vhm0HRrFovsvL9IfIqdCjFtQodoaSJxuA0ZIgt1m1zDun67rF+wb4PHnypGTD+ulPf4rf//3fB1HN5GXgTPv8lq+n5fMxMNQAIemLXLyyZgVvrZ3t3i2A09a5zcxlzyx9ocDPsdetgV0tsbSFZbbXt8DPOb1+GMDsGLEjxE2P2Gf0jvDEBQyHGbS5hnv6OTCs4IcVuu21hHb1FQSi0MH1KzkYIAfyQdejANd1Mml8w0HglBOIqs5ZNSrA9A1S3SYzFR41AXoE4onIklQEjDknzCzrwj7NOChPz24+YD+PYE7geADnUfZgjoh6/SFFTOpda3SiBELnegQKyJkw54w4e4w546txxu2cEBnYJY+RCSAPUjqKDEakDIXRlcJYkh4FdkJP8B3yncAPEa0A/F8BDHr9/5aZ/4dE9AzA/wbAHwD4YwD/LWZ++bZ7bdZr/KX/zH9aB/qxp8EyS9ZSUTxeXBp0o36hvv+G7z4AlfjU1Y0c20tv+ettsuAqWkzohjiQaFn6d7g9n65u2ezNmD4cDgDwnySifxc/sA/F4+cajjIIEcklXUh1UfEBna8ZDhzV02s7UQKgHhEEKDE09Jo21KMuQLkozORmECYArOTOilgfv14G89ldCmqbqfVisato8R3Tl0wBB1jj+NHcV1jlJZOJRyV9zhDEhpGRFNBYKjhZ08CDVddsgNCijxjqYM1P9P/AGeZi6Ycj8Kn5RB6oxko9zdXyqQ7AtKxTPfVebl6LqWqbm3kxqEIk4vRH27uQPtISoQcpcHv8PFr8BxAcMRjiJumacViIMK1sBjIp8FPag4/axkCfUka9Jkv2FAMVQtKMN7mGkc2SGeIsc1FNQR0vmo2DqsInTSOnAqakSnUYpB4elAGQq6ccDfBjfCqyIRq4JacN1uYgy7yn7agGqwx9nYssvB+m+FbFqT7HQIDQKFKtVDue20RWtSWO1tU3LermaVfuhSzKBFoPVLlHOUmDgvNLxfdsc7HvO/z8i58vytzuVW32DVvXtZZKHFtPqh7M4eN2tFPjJpNehiaOQcPHo8/xTajVqff7rsdgruvOKyFxndvtc/XF8nTSxmUBK1HK92Bdoeb1CWFIyEguhwQNRxtqX5Z2lbKebz0lA6IUcFZeDFs/a7246Qc1zAxtWewRxbRafGKAh3hAWXrwINlLmBHTCjGukXPCbujRhYAYo2RnjEnDCqVcOWdwZOTs0O6Ii/CJRR1PtTqkAjmXjYGV9yNnwszqjRATbukG03jANG3w6NEVVkMvfGx9p94/6jlDTk54KRdg2LyHvZPMUe49zMW2omTepLbfHO3fyyWHJJKWbV1rP5I+tA8KEHHCwCrgJde+yDmj72pyp6HrsVmvEFMqwI2lDD+MBxgps6SibkBQQA+e6im/K4Aumt8ouo+MMfEIGoYBvpPkCX3fLYxr4yqxEGjzMEtKLmweTUQMDzsEhIBJKKS9Z+vDCthT1adMt9RnViBYaQG4GvUM9YRL4l2euPVCq21l7ccpIk1V7/ZNCI+NlVMG/WJfs9/NPtN+hxVUFc8eKAfTVEAgI5QGUID5YmMUVVd14eyXHj8xFa+flGIhn81H64AcMj1c15fD/bxz8dR6X9pZgQsDe0II6Psem82mvLfdbksY4tXVVQF9DARqdWD7XggBjx49wmeffYYQQknvbsCNATZt/7T7TQuuWNYtAMXrMudcuINaR4hTdba6ttnMjL/n1HXHXlrWPkYI3RJDtwCQAT/nnosZjOQIuffIXp6xcj22c4a7egz3/CfAao2wWqO7fiQHGv0Av5Y06RTEmwfqCS5ZJFEIJxlih7DZ0LS0/BzLuKUEUOJmQ6vrsZyZyYGMHR7NiJgV+BlTxJgjMmfcTyN28yj8PaOkZJc9/gBi4XVNlJHVK2jijFmpI2BbJATEkmyYhH3OGDlinxJeThNezxEZDgk9MoJknwaLXQk5VLG+N0oCyULM78QJ+y4ePyOA/xIz3xFRB+D/RkT/JwD/DQD/F2b+m0T0NwD8DQD/8lvvRBLCw7BQH/tgaUwfwTMnrrG/F5ryg/uUd/j43eUtHzTTG42GN//1Nll4/Jhlb3dpiNEWNXr3258sEZmhTLKYAfgPmPk/+0P7kMih61a68IgniywgBvx4STfahNMAKEZfVe7tjg78wINDNzyoNamnZaTGl6hRXEmWCSCY6x50wyuuOk2bcCHOdiTgz/IKa7emjKa8ax8uu4/A8AAciAnMDiVw2kgfYTDGsjwMCYNh5mJU2vVlHDDL/WgxUc4zF9FuDhUsPBYi0se3CybXf9kU9brUio1WFZejJqv3NY+fQv7aXkQK+jRhgk0bEltMujRaUc6L0n3kTcX8cE6VxfP0hF9sqpAsJmXgqsFdx6O+zVm5HcTYsXIYIbZiKWeZi7rjAdQ6+ZvSTrLulCZr2leGZym0Y2rKX+teeWW4nGaDzfsHauAxJHzLlXaXkA1qgB8J0ysuzDY+FmPB3nOonB9NnVDrKN5bvPj8uL9AqAoqPbzmlAIu07BVvuSTrGTgR3vJ2eYikSsngsuhqGsntVw3ZsBICZx2hgA/+ah4y/sswkuKxw8KWwpjeUImxnYNxXLN+8VVPPiFN1B58jFwcGTYmNcVmWFCzfrH1tdtH+ugszH3BinfXDy/WQu0p5tmPtN6ijLOaul5sVyUa2y9ItlbxJtEFLqyHpUBqW3bNKYZgAsFX/8hiDcMUQCzQ06rYqxA1/iUEsZxxGE8qPE4Y47iWZJyqkZfrJlsBLxu29bWAgPnLfOhFrLZKAtozFnAipgwTRH7/Yj7+z36mND3Q/GGDZ3o9GBCRtINNAOZQeTAjsB54fFzvn2RzRsuF3DUOQNibKW3dkD5W9bI6hVraxkBeq7F9auMEsZKWM4ZRt1jiKpXZS7jiOGdJRJgDH2H9WpAF7wao0KUHIKF+DHiHBFjqlNSO6pkrLR1RVUNG4Iy56UCtsdX/pE6/soYOQJ+Cg8g6v5LupY5M9gt5bRsjGebizYvKjGxQ1ajSYanzdFaxsy5gG6Ajl4jX2r2IesHGStAJUMXICXreAdhQcZe2+OhHIPkbUaw1tBv61YAG01Nn3JWrypZU51rDqXqAgRADMSU/KLfUsNBVACo43aVL5TXpqfy8pKz9GPXdfjJT34iXomaWavqJUuw4pQHj4FABvAMw1B4d9rMXC2QY2GxMUbs93u8fPmyZPaqAFvDM9rshYs9sGm7pB6WpZ0bHqYQwsl7HuspVsfW4+cY+HkTz55wdY0lBX2bcn6z2ZR2OMoSdtZ9kQyYcQ5ZCZFnYlCeQeMOhCTE6o4ltGvuEXgGeS/Ezkn4fpgcMmkWMOfARgfiHMxlsZmuknFWtyOXAV9CHtUWZS2X0iCklDEn8+wZcUgTMjKmnDBxRsoZ99MBu+mAmDNu9/e4H/dgTgAmEAT4mZGQSO4zGvADaFSI6MPm8RMZuM/AIQNjZryeEm5TAsPL+gTJYhaI4SlAjSbJNksOwbkSUWM61HfJdwI/LCP0Tv/s9IcB/AsA/ov6/t8G8PfwHYPAEaHvuqqAFitj8Wvx6t3l5HKqnxwZn2/7yjs9/l2a9vi6VoldQg3HVz58/Hc977QRY4awirlO/KA+JOex3j55AJa0Hj7eWehNLZt99rBGrhr0REc1qbO3GPPoRTlqDAe7Sw0FWtS73o0r/MJk4TzHY0PvacZto3CVP6j9hoFZesoJqgocbCEKKOmyUe9rCpEZO/YZNdfA86L7mfksc/GoZUp7LU7WiwKkxmCjkD68RYF6CnAHNOMQ1SAqHyhBQgn5EMtbxwMrkFbnzUNvH2sTe25TsMyq6Fl4RXUTMdChHT/1PjZ+6rgVRSoDqWbHEkOkjQGTlzmxKNPOgTXLx9KIldLp7x/chzkrguOMwJmK9w05kvST1LQ8L5VBzgaoWjtQaUtX6q6hKWC4zCDNMIQmPbQnVVggz3Wakc+hg+MBUIVfeFVoMebJCgQt7xtcjan5aSzpk9cukpwdDdiH4I8937zyuJTRlDEbOYsV/Uxz0XuPx4+fNPcui04xuAz0QTNmLTxRyyKG+QLgOCH11nU2mOIEWj6LqnHdAj9SDPntXCW6L+uWGXplHT3yKmxOIw0AkTW+ASD1NxnCVT7QlYT1Xkd7RglVOjK0uBljphEI6HSm9ZQAS4tkVTScWJwdLEBEy2ygQBnRddcut7Q5KRXQ16KcPng8AV6Rgs71cE7C2DarNR4/eoTMGeM4YTwI2HMYx/p6GjFOEvY1TpOS2maM04hpFIMlRvHYYQWHLPtPTgmcSA3n1kNTwVsyjzI5VXU8Ic0ZMTK+/fYlxjFitRqQE+F6yvAhSKhF6OBcAgIXz5iF5kTL1jpXPzILUELkEKOEJknUQIYkS2RAAR4xkFMZWzb2Ze1UZdw7BE04wIJ+LTut6V8GwCmWMeyI0HkH87zIbHCpeDfn4OCwwdCJsfro0TUO02dIKeH2boe7u3vElHB3e6/hfhnTqDxPDMn8ZEVRvL0Ui1i5s4LaVQLydr1x+WAB8JinQAv4mIFb9g9Wj1sNg+k0xK/rAjoxgM+k22iolzZ1Zgs9Vg8NVtWDIYaV9mFU8EO8BllIYE0HKQqZefBpj+dkvQ6mqO1nB1l1RQQsa1idu3XHJZDxjXHNPGVAg9zztGdJTTIhwOMyLEr1zWYzNC8gRw4pZXgfZJ8rPF/mCfr2sPRjffXos7P043a7xV/5K39l4ZliYI6BPm141/FrC8MyAvM2LKtNTjI22RHnecY4jpimCbe3twuQpgV37KcFkCysbMFDB0kd33oImVgd2n4EsCB9boEfK38L3thn7XXHAGGMsaSub0Gjq6sr/PznPy9ZxuyeOpfPtC+qbcgO8B4Mj+gYO1L9fN4Br2bAeVkXblaSYW5Yod9u4UIH1w8Iqw3IeyQXEH0vQI3vwGEASMiBoDUAABiASURBVDi7fAggDbG1LdNRtdA6VB5QNlJKmKeQRASM44jdOCKmhJe7G7zc3SJxRiLJ4JVzxt1+j/vDHjFFvLq7xe39HRgZ5CPIR2QwDjxhZH2toJEjh6Hr0XkrSYCDx5yB1zHhPmZEEO4oYCQPYg+HFRz38OSxdmvJ/khCmJ2dONKshl4cLpxDYtbw/LfLO3H8kBxJ/VsA/iKA/zkz/wMi+jEz/0oH2K+I6Edv+O6/COBfBIDf+73fa0I6Gr/Ytz/9HUr4BiW3WVrf6avv8qh3eu7brnmHMv1Gz3r3+xDRv4Mf2IePnnyOrlsV92v9vAIwpG60y+9rSY/KWgyGN9ShbLYoWl9tvdoeDeRwGvDRmxXnquY+Lf9JBRaOruFiqspTqe1DWnxbvmAgEC82xoXpUR7TGDE4OiE2vXChK55nLj66vmrerw9beN4QqVFOGkfK7b1OvG4Bk7ZfqrCptdafBviYAVcMPSXcLUpXO1ao2kq6hHDTYaXli9FuRueyvG3PW+kW7y5OcRzEKdOGJZdyLu6ghM5JwSaX3eJezb3/HfzAPvR+o+MMizSO5aTWke1tUm41SgmwKER9n5ZtTBX4kVYhPTlRg8SMPGoIq0n5qEhSs/uyxQrXEilfhnOh9EUZ940nFbnK9XKy/jaqji5ZHE4uxsGi8dp2PLozH/U+ijEGLIGS5h5nmYuPnzzBsFo1j+XF68W4Oa54Lg1ZFNlT9zl6eL0bqeeB883cbcaqzQE8bDM6fs1H7X1UpuPymSdhuwYs+t6M5cWzzYOuAiH18vpdbn8Wzy2LgIFqZ+vD8lyrN+o4b9upHUclnLKth62b7QaUbf7xA66wY2PEe4euewiezqsZ82ZTToDHcURKSUCgUbKR7A8HHA4HpJzh9+KBY4Z9dGq8zMLCxuIXL56zjMU8rpUmuY4kacEck9rKDvf3ezAL+fB2e0DX9QghS2ZGOHjHSEQAW+r2XNrqeGyfqx+vNtsHHisWLpV1reISei7pv4+VSOecEhgLQFOykzKEW/B4jpa9jAHN1mLz3mvmL9IfNpRdU8HTUMOs+lXGJmWklBGCZLuc5yhk3rMQyaaYMU9znZvtaGTInmt6h2MEluxqAEq21RaAIKLixWDvtX1kew7rXGeqRmxQL42+7yw09Cx96Lu+jhGrTiYkJOX0s8bHAugwMmcDQOqaBJSThKKf6ZqrXpbL/UE8RFtdCKWLH4zbxe+23axNj9fdFrRofzIn2EHMYhqWR9rhaPW+z8rPZb6i7ZgoXzuy047rcLxvnm1NffwYX3zxxQLIOcXT04Yy2dgysOcUZ40B2QZw7/f74tVzf3+P/X5fOLNub2+Rcy4gzTGANAwDUkoFMOn7frFn2bOUbqMAM22Z7X3z7mo9e9rxcUzE3P59vAcAKKCV1XG32y3KYADYMaik9ziPnfH5MymPuC4CRLIPkEAtnDI4jgAA7wPSJP2chhU4T/CdhH1xmkAhILkOsx+QnQd8Dw5ZQSOPjqXP23lWbC4ieFLAhwhCUcAC+rADK7FzTBOm6YApRtzd3+HV7StJv+4I7CTb8t3uHvf7PeYY8frmFV7f3Qrw0yVQkACvXR5x4BmJGQeuwM96WGPoBhAcwBItMmXGyyniLmYkchjDCtEFEAI6zvCI6CiAPCGTlCUFAX6C93DeKXgLEOWFTfsmeSfgh8WP6S8R0RMA/wci+k+9y/f0u38LwN8CgL/8l/9ymzgWD7T3U3JE1nziCYvXC5OOH6jyD+/1ptsurNVTCvQblOq33OfN36Dm8+Nu+67nNHU8cSktF+wf3Ic//eIvsnEHQQGfenJb6/LAd2dxTfN+A560AERViOQ7C6zl4ctqEOozljlRFLxo36PjUtKDO6muIsBC4X/BkYHSPMmUA6qLjoz3OioXKqKd4B0N1xaGON5VzzUXf/qTz5tQbTX4nbkLUn04Sw2JCfS2EVxAPK0DNa9LAexp8iYrWrHotzLdSRsk6xCwcaJX67ioq4OOxxZ4ovpQ012IqWnSOiaL0sYonxrgJzaNKoV2ApQN9DCwjsv9imdXVoVKy3/uudj3z5gNICsNTKr4qaHBpoDYZliVcZsZLXH5W1cpbdNClA0hxrMGNfd3JjGOJNRBs+oBespiGqmuHRoS1gI/dERO146PUtzSHrVsi3aqxTpZo6Uy3a4/R986MshbT5pzzcWff/EFx9hkY+GjF+24LuXUNlPjppmubSWX92vXZ52v7XtH5att1Cj+DwGzen25tn2//C6TfwmElLnH5UOmExcuXrcGSvWEkjI/LNubyqzlPlsf6nsnga5TYIW9f6qMzWpa1xeiB+17DLpXxb96brX3Nq4I4yHhnNENPVbTCilnDKuDgkCStth4LUpGMGbM04Q4C99BnGekWQChaZ6EUBhKUlwLKUTtEA7A4OpptYVZmPFlhlBS/hrOwlEEqO3whq48Vz9+/uwznmMEOYd5lpTZXr1ZxFhW7j5dM6vOUvUgMawE+nbOVb6rDLRehbzQT7nqU45kfTXPUa5JB+QrueBEmQGvCQQCCHAO3mes1yswy2k/5wwHh5giutChtyxvMWLWcOQCdtRWAVDD3kpa8pjUQxfNIa7tMVx+t+8JBYC4FHVdh1U/CNlsF0qYAp2xD/v1FVubyfLIAJzy1eRG4yD1pFIPpbwEqs2otlDG0i52gsgP/SrbpfYBQNLc2+kJvYB7NatpnGfEHLXtG++gZuAvuMsaAM+y/jzcuo4nDdU1VPcPCxev+0izsTag1ImGX9RbrztLP/7BH/wBf/HFFwV0MXDCwB5bL96UoeoUqPamVPC2bhrgZutS64ljz2lBOZsbbchYATY1jOugYLrNBSujZf6ysrdkzO1a3h6wtyCPvd++1wKzreePgUkt91bf99jv99jv9wvQ7Jx9+LO/+PtMADwk8U9PjJ4dujUQOkl4wkpO7p3TaC3VU6F8fTkBOYKSUA5kEi81JnkfzKJXJrUB0Fhl5r0HRtTyEQhwHuSDhp8FsAuaWCfBO6ALhPXQ4Tpt5BBXsiogM6NzDqvQyXrqCOuuQ0ZGohGZZiTO8NHBJYcEBuUEx+o9apyfYM18ySVwQHz3CY5NTVZAF4wExpwz2EmymaQJVBJn0OSRdE+3398lv1FWL2Z+RUR/D8A/D+BLIvqpIn8/BfDVO93j+MWRYbu8tlW63/nOb7/pWeTNxtE57qjm22/4rDcr5EcG5w/rQyI4V9FoA0Jad/9qnlflFYvrzRDGwmhpgZ/lI6mx+xoDEPrF8qT6wSIWG8vF/qFU7iEDEIDWmAFYT9hqeapSXsapaWMw1LmWsORc4tq/Shvb1rTcE3pNpuaNRs4xF62qBuSRc0qw6VA6hlFDm5rFqClHabdqcFQFvQ69tj8elgPN2Kg6FgPsyvhYFlxfcR1j5Jr3yYjQVMGhar+6YzCxjB0LMavAiJ3n5ZyR22wXqlCbB1MFsVypSyr3bp9R5Sx9aKTOjbanuJQaipKxroAytpkUwm5Vhs27yjZdljF7jLiSk6xFYCCT1hdcT6Oh6d4pSZlcgnMRgHJzeOlgRwElUw5jEbr3UE1tDVrWELMGUig6arPOGRhg1yzb/UErLg3K5vN2raGHZdP7/aB+zDnjsB/b0pT6mOG+/GkImpp2kLeOlN2j9aVds8nVjGhH9anfeAtocizFm2/x3rIUNsKO57rOMnmddewd3/8EeGJgrq09rilze/r5XX3+Q/tQ5lz1FAHq3+VE/g2G3MnXzaJHBOE0OAH6tEaA8EApgW8xhqoyvzAezWDkZXjONM+Y5lmz+8wFOJimqZCSHvaHAghN44h5mpBSwp2elqeccJgmTHEu+77oCA591yO4rrjk2z0B4P7+Hl3X4erqSsO9ArbbDYa+h3OEXomFlwDXcT+cYS4eDoU3JYQA573si2qY+CAeld45hM4LfyE5OB90rdK+KCCQGqHE4Ox02V2GH5syZOFFC+7H0u+yjqfMCEkMGstKyQACKsHpelgjPpJ+3T15gv3+gBgjXr++we3trXg37Ha43+8ly9us/VWABCmaZYoyLzHnnYIhktWrHYf2ug37MiN8NayLh8N2sy196oOklm/3xrPYGcZ3Zh5IelpgZN2eJAQ6a0a7ltTYMlmREwJxziT5HEjAFcs9wc28rKCJ7YHNXG24sViVEN94qPSdZEYEM3b3O8S5ZnqKMeKUPNz/zFiuY+X0blV10lwUBa2LrdZ0fPX3kx/aj1dXV/irf/WvPlgfj+yZ8vsYaAeWWbSMJ8g+bwG0FvSY51myHjaEzuZBREQFEDLbyn4sk1cLfpq3zX6/X9hi3ntst9tCJv3o0SNcXV0tPJfan2Md4Dgle+tFdBwC1nUdxnEsINSLFy9wd3eHeZ7xRD1VjeuncA2eqQ8BYavoyeOqW+ERegx9xnazRQdGnifk/R4cYxO6Lt7kOUdoQmHMk4A18AnMBHYelFlzc0hmZeZZ1p9ijwIxToiTZtpKBhRBMoUFSfnuuh6uX8lexcDQAx0TKGyxvVrJrPBO9yxIOPQ8I+WE3X6Pw3hAyhH34y120x3mFPFyvMPraYfIGfc5YZ+j8q0lxFn41pJmgkyshyJO2H+SZtuQ/zIiJSQAkUdQTmrRis3hncchTpqtUcA15x56+x7Lu2T1+hzArANgDeC/DOBfAfB3Afx1AH9Tf/+r7zIITsoRTnPKODQz+c03eNNN24Xw3Z7/dnlXIMZu+t1lOF3bFvz5TZ73UL7++mtAUo3gHH1YM2+1SnZ1oSUcGXJHijg174EUWGiM8LYa5bs4rejJNfW7xwZcOaM/dVpRSwuU+z8st52K1DIvd0aCLfSyqTNzAbbKgYoUpzksIjG2y3cNCKun1hYuVm4EBCJ6cq652BqVx6cN2ny1ArkaHksDTI2TYpy39z7V2nRyfj/sOxRlGM34aLuRmrFSnt2MyapU115tQbvlekJHvxUosY1IiRNLhq6cYRnXWNObw5SnJtvYUQthtz8AZ5yLFdTk8q8MJwKUcNyeL+3XAFtaN6poJErmNpxYUaiBxwiaGYUaDKIqnwa4snn8EMBOstiR3sSytJF6/1TtGYuOts28ghlZT3ObeXOinKU9tKdLWEOjmC3lLRsBPfj8bHORGVh4/OgzasadSrQt7/8mXqF1FymwvM6BN4EPDwr3DuAPY9l99evcXGMeZmgxKvnMTpy5Aet4eZ+T4A00owUbOTTpGros8/Hfdmp7zvX0VAhGW/aHoNVb2p/0n8XeiAd98RAUpAVQ2q7prRFx6l4AMMVZ04AzUnPibcBPSgn7/R6HvfADjYcDJuWwMEkpCa9PC2qQ8BGE0CEoQMJgTSPP2O/3mKapnIDLiXSH4L0AMN4LJ99RXVTONxchXC8AEDSEilJEyqJYO0/o4OC96T9qdJF4bVgIDVnmLHLlPdnLbZZU/UcfDJuby/5pQ+dNj5LvO1by6SRrvISY6bO6SsDcdz3Wq7V4I5CEbYv3VkZS4CNxgkuxzl/W+aogSKKEqB4N3vsCFrY60jEA1I5B40Lpuw6rYUBfDGl5nN7rbHOxHtqpAQ6ANFkEaRsSa8YhI/PmyqVU9T1S7q7Wo8m6w/ajdvycLsMCkGBZv8XrR0LeDPgZD2O5rgWR31DLN7xu32vX/+M2UvBnsQ43t3rLsl8P/B7I2eZi3/f4vd/7PQDLtbV93ZKJG7Bj7x975rQeMMdrsnlCHnv82D3tcwN+LEysbYtjzh4rWwv8mDjncH19je12WziCuq4r9TvWy9u51b53DBC1IVu27jOzzL2+L/xFu90Ofd9jt9vh/v5+Ub95ns82F01f9EToXYeVy+gI6DwQCODRI6ckB9zqUV/AHwXHOSdwiqqbOsBHXU0jiGR/YEuXpW6hFkJNcUKeDgJepxlp1ozQXQ/XDSDyCJwQHAANeQ9OPIFc12OwNdlb+ndgniNmHRfjeo1pmhBTxOt7j9sdYUqzplsXUmcpe0BKCbt4AKeMzBI2lhlIeljsLQyTlU7Bfliz+RU+MSWtB8NRQmKGowjvPGafivfg2+RdPH5+CuBvkxzPOgB/h5n/j0T0bwD4O0T03wPwpwD+2jvc62zydiDoO798pEydo0TH8t4f8M7yq1/9CgD+40T07+EH9uHbAJglYvP9y/su/foOtsgbv/Db6432yW8Dok5cI+XvAPxr73suvql93mZenv42f+fb7/TdBRj3ToX4jeSdinYGYTDudnvgTHPxvRbWHvEBnnFafrtrZpXjzaL8ff65+Bbc6Qdc+lZ581r+AeU9FeFU3VqvTUnV/P7X0+8jR9D1+3tO00anwdD3KD/wcc0J+gfZF9+PNABQC3Z/v7s8+OOHdumHGhFZDhzO1Ie/tU3rvcjpefmWEfKD1tPTetd3l6d892xz8Xdib/r/Q1EQ/z2tpx9K2/605DdpKfMqfJvQh9zsiehrAPcAvvlgD/3ty3P8btT395n58x96E+3DP8HvTr0+hPyu1PUsfQhc5uJvWS5z8fvL70pdL3Pxh8nvQj+euw8vc/G3I5e5+P3lU+3Dy1z87chlLn5/+VT78DIXfzvyxn78oMAPABDR/5OZ//IHfehvUT7V+n6q9Toln2pdP9V6vUk+1fp+qvU6JZ9qXT/Ver1JPtX6fqr1OiWfal0/1Xqdkk+5rp9y3Y7lU63rp1qvU/Ip1/VTrtuxfAx1/W7654tc5CIXuchFLnKRi1zkIhe5yEUucpGLfJRyAX4ucpGLXOQiF7nIRS5ykYtc5CIXuchFPlH5bQA/f+u38Mzfpnyq9f1U63VKPtW6fqr1epN8qvX9VOt1Sj7Vun6q9XqTfKr1/VTrdUo+1bp+qvU6JZ9yXT/luh3Lp1rXT7Vep+RTruunXLdj+Z2v6wfn+LnIRS5ykYtc5CIXuchFLnKRi1zkIhe5yIeRS6jXRS5ykYtc5CIXuchFLnKRi1zkIhe5yCcqF+DnIhe5yEUucpGLXOQiF7nIRS5ykYtc5BOVDwr8ENE/T0T/ARH9IRH9jQ/57PctRPQLIvrXiOgfEdH/h4j+JX3/GRH9n4noP9TfT3/bZf0hcunDj78PgUs/fgr9eOnDj78PgUs/fgr9eOnDj78PgUs/fgr9eOnDj78PgUs/fgr9eOnD380+/GAcP0TkAfxjAP8VAH8O4N8E8N9h5v/vBynAexYi+imAnzLzv01E1wD+LQD/NQD/XQAvmPlv6sB/ysz/8m+vpN9fLn348fchcOnHT6EfL3348fchcOnHT6EfL3348fchcOnHT6EfL3348fchcOnHT6EfL334u9uHH9Lj5z8P4A+Z+Z8w8wTgfw3gX/iAz3+vwsy/YuZ/W1/fAvhHAH4OqePf1sv+NmRgfKxy6cOPvw+BSz8CH38/Xvrw4+9D4NKPwMffj5c+/Pj7ELj0I/Dx9+OlDz/+PgQu/Qh8/P146cPf0T78kMDPzwH8WfP3n+t7n5wQ0R8A+OcA/AMAP2bmXwEyUAD86LdYtB8qlz78+PsQuPTjp9CPlz78+PsQuPTjp9CPlz78+PsQuPTjp9CPlz78+PsQuPTjp9CPlz78He3DDwn80In3Prlc8kR0BeB/B+C/z8w3v+3ynFkuffhpyKUfP3659OGnIZd+/Pjl0oefhlz68eOXSx9+GnLpx49fLn34OyofEvj5cwC/aP7+AsAvP+Dz37sQUQcZAP8rZv7f69tfaiygxQR+9dsq3xnk0ocffx8Cl378FPrx0ocffx8Cl378FPrx0ocffx8Cl378FPrx0ocffx8Cl378FPrx0oe/o334IYGffxPAf4yI/hki6gH8twH83Q/4/PcqREQA/hcA/hEz/0+bj/4ugL+ur/86gH/1Q5ftjHLpw4+/D4FLPwIffz9e+vDj70Pg0o/Ax9+Plz78+PsQuPQj8PH346UPP/4+BC79CHz8/Xjpw9/RPvxgWb0AgIj+qwD+ZwA8gP8lM/+PPtjD37MQ0X8BwL8O4B8CyPr2/wAS8/d3APwegD8F8NeY+cVvpZBnkEsffvx9CFz6EZ9AP1768OPvQ+DSj/gE+vHShx9/HwKXfsQn0I+XPvz4+xC49CM+gX689OHvZh9+UODnIhe5yEUucpGLXOQiF7nIRS5ykYtc5CIfTj5kqNdFLnKRi1zkIhe5yEUucpGLXOQiF7nIRT6gXICfi1zkIhe5yEUucpGLXOQiF7nIRS5ykU9ULsDPRS5ykYtc5CIXuchFLnKRi1zkIhe5yCcqF+DnIhe5yEUucpGLXOQiF7nIRS5ykYtc5BOVC/BzkYtc5CIXuchFLnKRi1zkIhe5yEUu8onKBfi5yEUucpGLXOQiF7nIRS5ykYtc5CIX+UTlAvxc5CIXuchFLnKRi1zkIhe5yEUucpGLfKLy/wOYMtNfANIs8AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+9klEQVR4nOz9eZhkV3XmC68zxJxD5FCZWVnzXJpBIxKDJEDCAtPGQItuaI/f5zaN7a9puo2NedyW+9LITd/mwbfdps31bcTtBtvYDRhPGDEJCc2zVBpryMqszMo5IyJjjjN8f0RkVr7vPsqsgsoIUazf89QjrYyIE/vss/bae5+T+b5WGIahKIqiKIqiKIqiKIqiKIqiKIqi/Jhjd7oBiqIoiqIoiqIoiqIoiqIoiqIo5wN96KEoiqIoiqIoiqIoiqIoiqIoygWBPvRQFEVRFEVRFEVRFEVRFEVRFOWCQB96KIqiKIqiKIqiKIqiKIqiKIpyQaAPPRRFURRFURRFURRFURRFURRFuSDQhx6KoiiKoiiKoiiKoiiKoiiKolwQ6EMPRVEURVEURVEURVEURVEURVEuCPShh6IoiqIoiqIoiqIoiqIoiqIoFwT60ENRFEVRFEVRFEVRFEVRFEVRlAsCfejRYW666Sa59NJLN3zf2NiYWJYld9111+Y3Srmg0ZxTOoHmndIJNO+UdqM5p3QCzTulE2jeKe1Gc07pBJp3SrvRnDt/uJ1ugHJ2bN26VR544AHZt29fp5ui/ISgOad0As07pRNo3intRnNO6QSad0on0LxT2o3mnNIJNO+UdqM5tzH60OPHhEQiIa973es63QzlJwjNOaUTaN4pnUDzTmk3mnNKJ9C8UzqB5p3SbjTnlE6geae0G825jVF5q01mbm5O/uW//JeyY8cOSSQSsmXLFnn9618v3/rWt+B9jzzyiLzxjW+UdDote/fulT/4gz+QIAhWX4/6s6U77rhDLMuSJ554Qt797ndLT0+P9Pb2yr/4F/9C5ubm2nWKyqsMzTmlE2jeKZ1A805pN5pzSifQvFM6gead0m4055ROoHmntBvNufahf+mxyfzcz/2cPP744/If/+N/lIMHD0oul5PHH39cFhYWVt8zPT0tH/jAB+Tf/tt/K7/3e78nX/3qV+VjH/uYjI6Oys///M9v+B0/+7M/K7fffrt88IMflCNHjsjv/u7vynPPPScPPfSQxGKxzTw95VWI5pzSCTTvlE6geae0G805pRNo3imdQPNOaTeac0on0LxT2o3mXBsJlU2lq6sr/PCHP/yKr994442hiIQPPfQQ/Pziiy8O3/a2t63GJ06cCEUk/PznP7/6s9/7vd8LRST8N//m38Bnv/jFL4YiEv6v//W/zs9JKD9WaM4pnUDzTukEmndKu9GcUzqB5p3SCTTvlHajOad0As07pd1ozrUPlbfaZK699lq566675BOf+IQ8+OCD0mg0jPeMjIzItddeCz+7/PLL5eTJk2f1HR/4wAcgvv3228V1Xfnud7/7wzdc+bFFc07pBJp3SifQvFPajeac0gk075ROoHmntBvNOaUTaN4p7UZzrn3oQ49N5i/+4i/kF37hF+RP//RP5frrr5f+/n75+Z//eZmenl59z8DAgPG5RCIhlUrlrL5jZGQEYtd1ZWBgAP40SvnJQXNO6QSad0on0LxT2o3mnNIJNO+UTqB5p7QbzTmlE2jeKe1Gc6596EOPTWZwcFA+85nPyNjYmJw8eVLuvPNO+cpXviK/+Iu/eN6+Y+3AEBHxPE8WFhYiB4ly4aM5p3QCzTulE2jeKe1Gc07pBJp3SifQvFPajeac0gk075R2oznXPvShRxvZuXOn/Pqv/7rccsst8vjjj5+3437xi1+E+Mtf/rJ4nic33XTTefsO5ccTzTmlE2jeKZ1A805pN5pzSifQvFM6gead0m4055ROoHmntBvNuc3F7XQDLmTy+bzcfPPN8v73v18OHz4s3d3d8sgjj8g3vvENefe7333evucrX/mKuK4rt9xyixw5ckR+93d/V6644gq5/fbbz9t3KD8eaM4pnUDzTukEmndKu9GcUzqB5p3SCTTvlHajOad0As07pd1ozrUXfeixiSSTSbnuuuvkf/7P/yljY2PSaDRk586d8lu/9Vvy0Y9+9Lx9z1e+8hW544475LOf/axYliXvfOc75TOf+YzE4/Hz9h3Kjweac0on0LxTOoHmndJuNOeUTqB5p3QCzTul3WjOKZ1A805pN5pz7cUKwzDsdCOUH4477rhDfv/3f1/m5uZkcHCw081RfgLQnFM6gead0gk075R2ozmndALNO6UTaN4p7UZzTukEmndKu9GcQ9TTQ1EURVEURVEURVEURVEURVGUCwJ96KEoiqIoiqIoiqIoiqIoiqIoygWBylspiqIoiqIoiqIoiqIoiqIoinJBoH/poSiKoiiKoiiKoiiKoiiKoijKBYE+9FAURVEURVEURVEURVEURVEU5YJg0x56/PEf/7Hs2bNHksmkXHXVVXLvvfdu1lcpiohozimdQfNO6QSad0q70ZxTOoHmndIJNO+UdqM5p3QCzTul3WjOKe3G3YyD/sVf/IV8+MMflj/+4z+W17/+9fInf/Inctttt8lzzz0nO3fuXPezQRDI1NSUdHd3i2VZm9E85ceIMAxleXlZRkdHxbZf+Rndj5JzIpp3yhnONudENO+U80e78k5zTlmLzrFKu9E5VukEOscqnUDnWKXdaK1TOoHWOqXdnEutk3ATuPbaa8MPfvCD8LPDhw+Hv/3bv73hZycmJkIR0X/6D/5NTExsWs5p3um/qH8b5Zzmnf7bjH+bnXeac/ov6p/Osfqv3f90jtV/nfinc6z+68Q/nWP1X7v/aa3Tf534p7VO/7X739nUuvP+lx71el0ee+wx+e3f/m34+a233ir333+/8f5arSa1Wm01DsNQREQmJiakp6fnfDdP+TGjUCjIjh07pLu7+xXfc645J/LKeWcPJcSyW0+NvQZ8JvB9iEPXwYNGPGF0HPyZa+FnHFKYC4MA4mq1Etn+FZLxBLaxdR5raXgefodH54GhSBzbZGfoOwQ/MDqyHeKtWw8abXCtXog9H5/MOzEsRT61Wfi0XPy8F9TwdbMbJPDi+AO6fCvn5Tca8sI3v7Zuzomc37zbubVX7FbeDQ1shc8MbxmAuLQ8BXHMMX/Lobenj9qK/VkuYV7x9Tg9X4B4pW0rpDNJiAOfrpeIhHQRag28RlUaXz7lfqVWxTZ6eDzHxpyxHXM6cx28yCF+hYQNPCanjUcfsGg8Nxp4DrU65aGI2NQGvlpB67zDMJRyqXHe8+6Vcm7f4V2r9am7H3MsneqCOJvFNiViKeN7fMqhdDwDccyKQew4OB5dirkwhVTbuF9FRCybrjeVZIde7+nFNcaBA7swPrgf4u3btkHcn13/WomIHH35ZTzGdqyXPDZ7ejc+5loWckXjZ0defAHiB+5/EOJK6cxnarWa/PH/9em2zbH/79GTku5u9bvxG1oc04iMmN/C0NrgLTTGw/VjoRwx23juBPQVAc25Eaf1I7NRqwN6A5VGoW41aqMV0WjLuFwBxc03VJYL8muX7mnrHHvw4N7VeudQ7XBjWJv8BhaOeAJfFxGx4rSucnBOXViaww/QNe/pHoT4V37l/wfxvr2HsQ2Wub4s0UV0Ejj/JAOsqZakIW6E+H6X1rC+h+dUri4bbZiYmoS4vx/PK5vFuYWmeYnZ2LeF5VmI5+amIe7uGjLaUK5QDaAxPDTUXA+VyyX5+ff+bNvm2G9/+9vS1ZVZfc9aNv7t1KjXeYBRuFE53Qg6XuTHz7FW8TrQKBIbHiCqFRvMExsdcoM5go8fdan4GMY8soZSqSTveMc72jbH3vaOmyTW2lPFqLYViyWI02lcy5fL5lp+cQnHfTKJazuvjoM6mcL1YU837v8aFawriTgWx3icN6UiNdqz+B5elBjtIasNXBcFHq3l6TQzcbw2vX39RhvGlxYhPjmJe7GQ9veej98ZUC4PbhmF+NDBPRCfPn3caMP8AtbH7h5sZ7lYFhER3/flmccfb1utu/zyy1fn1T178Dx27cJ19cjICMTxOK39X6GdaykW8fouLuK1WVpaWvfzjz/+OMSTkziPiZg1+1zhGs/XYmgI57KFhQXjGNxuHs+ui3nP38nv5zbwHjaqjgU0afP1Wnuv1vd9efLJJ9tW6976q7eJG2+eo091pRjS/Tbav0uIfSsiUq7gz2amMc+yXVj7hoZxD/ny+AmIM2m8Ptu34Hit8b0rEfF9vAbpGNboeALvyfF9xe19eP9HKngOtQbOAd0ZXKOJiDTo/soS9a1Y+HrNw+84NTcDsRfi2nOQ7nPV6ua9zoqNP7N9/M4uN9s8dq0h3/uT/71hrRPZBHmr+fl58X1fhoeH4efDw8MyPT1tvP/OO++U3//93zd+3tPTow89lFXW2yCca86JvHLeWbZ15qEH3eg11ur0uhG3jgcxnYdlLN7Xf/+Gx49Yd/N7jBU8f4iPyTG10XbpwU7MvEHgWrSooWPyQw/hDf4GDz34YVHUHsjiNvC9LcFV8EZ9fz7zzrat1QcLfKM+Rosalx62RT30iFN/hnTXLcYP7OhcHbr5wQ89uI2+ccvM3Ow6gb1uzO/n7+RniubrZj/wnzpyWoR2sO7rdrjBWNhgfEf9zBjx/Pp5zrtXyjnHsVcXgbxwdil/eOEci9ik2PTQgxfG5kMPWrid40MPvnEpImLxQ64NHnokk7iYTKdxYdbVhQ9/umlN0tOz8SKLj8HrGuOhx1kcEz4fmDdDMxn8Tj7PgB8qS/vm2HR3j6RbfWB+J9V1fejxQ/Nqfuix+v42zrHNeue0/p83w/wbEPb6r4uI7eK5BPQemzfY3B6ag1N0ozCTwc11POrP9n1qZxLrdjLAGms+9KAbKMZDD4wtx7wZmUpju9MZ/A4+D+OhB9V9L8DNc6pEx6caLSISUh7xQ480taFdc2xXV2a1/vMcqg89zvYAP/4PPc4cpz1zbCzmvuJDD344YL5ufo+xPqSYB7Xr8jFpbUfrj1iMHjLHzFoXxPDmrE3XiM/Lp9/pDWiG4yvB+6x4REfwe3he4IceAX8L5TL3I6+ZeR0uYs4bfAxng5vgzPnbTzir/cE5laCbtDzXnc1DD+5rj3KIv4OPafzSFM11Z7N322iMb7SX45jPKUqaZ6NjbHQe/Dp/p8+/zHsWdWzD9VNEO9ZyPmudG49JrPVLKTb98qW74UMP81wdelBpx+gYNCZd+oUY8/00XhNUp3xzTWXRQw83TjWbvpMfeiSSNJ4CfH9Iv2hivF9EbHroEQ9oz0ivBw1qE7WZ/8aCz8Hnp9Ai4tr4M37oEXPpl3rOYq+2KZ4eUV8ehmFkgz72sY/JRz7ykdV45Tf71xLQDtE49lkseIxv3vAjG2yM6Y6pcXzLvAlo7gg3asOPuoL98WD93+A9+8Xs2eacyCvnXVCrrt5vd+mOmRXQNadJNeqvLAL6DZhagE+R3Q1umiboZlWthE+Fy3n8bXi+6SdiPhCIJ2kjnKBcp4khoDs2LrXRq+I51cvYJhGRwSG8CZdO4Y29cqkMse9gsePfNKC5TJaW8TeRahE39TyaXGxe7Lcmo9AyJ6H1OB95l7CTqw8aeOL2KvhXF2Edr0emH6+niIhj4wYhEac8C3DRmV/G98fjmHdJyhmf8rhWM39jguudMTr4mSE/7InTxBznjRVOX55n9rlr88IXc9ujB10ezTUB/XUJPzzy+A5OxG/jGmWBF7ErN2jO8c7njzrHJnt7VzdQdhpvCvWP4F80JGy8/vxXGiIiQnlZ5zu99HDUpw0g3/x36FejHerbBv2lkIiIzYskrmX0kGv29CzFpyF+5CH8bbCtW/E31A7SX4KIiOzfg3/JwX/94zWwjdUqvl4s4m+3jI9PQHz8BP4mUbVm1iv+rbUC1ce1DzXDiHHzSpyPWhf3a5Lwo3+DbqNNoRWxKaQpVoINFr6Bz3WJx936v515dtDNfX6uYrz7/K/tzOUmP3lZ/w4nPxQxjh81TRpPlV/hlxH8iPXxet91HvKu+dtzzQbwnoI3eBZtIoeHsR6KiBRrOYhnFmgNUlu/3qXogYVxE44f6odJYXxaey0X8bddR/vxt+n4r03COv4gT3/JkenCBwynT5u/ibpIv3lsURL0028d8i9UFJdzEM9M4/HqNcyVgm/+RmAgOB9lerCvVm52bPQgivlR59jDhy9a85B7/RvrPykExt4aX4+49Wj+ZKOu3GAptdEDC/PwZhtCmif45tXaPCkUcA2/Huej1tXr3uo5evQXDnyzuFajhwkRD6VidD/Dod+QbngUl/A7luq8J8TvKJXx890Zc08T47/ipWJmO+uvHbL01+/dadyDZhIYF8u4JxURaTSwnT6dt0O/kc2/HNYglYVKEf8aITePN3wbZfyNbBGRgP4Cfm7qJL7e2uNE3Uxdjx+11g0ODq4+7NhIV994aHYW7+G/SNjo/fzXJOPj4xDzg5eBAfO33Sv02+08jjfqY75vsUzrcH6Az20SMf+ipVTCnNjoAQT/0hV/Zx/Nz/xLCiLmX7yUaWzMz8+v/j+f83qcn1pXl6BVs5L8oIv+aoMfSNQ98/pt34ZrJsfB/orTHtL4q4kurF38R8Ie3TsRy7xnl3DwOxIx7JMu+uUWl9avIdUpj/5aqCuNOeFHjK16SDWc/gppyxCOrwQpbfAv1vUNZCHm+z38kERExKN7ib1JbLfrN9sd8gOZdTjvDz0GBwfFcRzjad3s7KzxVE+k+XSWn9Aqyrlwrjknonmn/Oho3imdQOdYpd1orVM6gead0gl0jlXajdY6pRNorVPajdY6pVOc26+9nAXxeFyuuuoqufvuu+Hnd999t9xwww3n++sURXNO6Qiad0on0LxT2o3mnNIJNO+UTqB5p7QbzTmlE2jeKe1Gc07pFJsib/WRj3xEfu7nfk6uvvpquf766+Vzn/ucjI+Pywc/+MHN+DpF0ZxTOoLmndIJNO+UdqM5p3QCzTulE2jeKe1Gc07pBJp3SrvRnFM6waY89Hjf+94nCwsL8h/+w3+Q06dPy6WXXip///d/L7t27TrrY5xR3xXx2eDW0Hzb+A9WWM/Y8HKm97PRpOOca1edxR/R/GRKuhqs3w1n10nnI+dEREJxVs3GfEOfmox0SQs9yowrIC3Uah01IhuCWnpsjMzamIkMaoZ6pI3NBmIipsYiazZWa9imSpV8Qth8LU66iBV8f5yNYMUcDT1J1Ekc6uqFmDV3WVvTI014N8Q2FBumZnyRZGVrIfb9qgHcOVgrnK+8S8ZTq7rTlmDba6ThmltCPc1kwqw1rG9bLmH/hT55xdRQE9E0oMWC6JPviH8WmoohaQWzRivr9SfiZEwXW9/9N8ofkzV3A588AljHns6D88ww+6V+ciIawe+J0oduvTH65xGcj7zr7xs8Y5RIpuJ79x6AuF7Fa5VOmmbbqRTqbQaUI2w6xssPv8E516AYX280zJxj/6LA57wlzxb2CqK4Trqkxyfwz7FPnDJN9x7sQl3ebDYL8QvH0G9jYXYO4hLp/hYK7BVAtc81/+Sb1ztsIr9Ww9xit/dX4PzNsa6ErWtvGFsbxhJn0zYagxv4ZAnVmYD9Jdb3HhWfvTBExCN/GR7h7EcT0ozIXgOGh9wPYQdgrGkNP2Ey4ub3b2Bkzpq8zWOyUST3bfOggRvhlvsKnK+8s21H7NbahOeaWAzHEA0xSabMeufb2CNbt2J9Wz7+MsRdpCk/MoIyDg5pOzucAxFjoZv0uXMzWCvKJZznE5QVfgPXFiePH4X4wEWH8f0RXizlUh7iGHk3lUi33qM6P09a0dUarm9COu9kyqx3hWU8j2QC15NWa/1ihWevc38+8q64XBXbauYFr5ksqgketY29L0RMfz32pgnIv8FmY2Wa/9jfgRdEUSsSn76zTnrhIRVMc81FtY/GIrcp9My1fEh643xPgNvoR2i3w/Eo5n7ifZmIiGWt75WxdqyUSqjL/0qcr1pXr9VX57VEAmuAJWQgy10T4VOQJg159uWp+KwJj/1VJS/KBuW647IpuTm3CBkIszG5S3Oo77DnH16frdvQpym/hLVzadn0YfF5X2mMP+yHWALXgnXS2m/U0A/g1Dj6tVl2hD8CrVFt6odE61r5xg2MV+Z85F1fX1/k/YdmW7Cf2BPCqEPSlEBaC99fYe8K9vBYWsJ5h6WR9u7dCzF7W4iYfhosx7S4iB5afB4c837jNHkIst+GiEh/fz/E7AvCHh/8HQs0v+ZyOYj5fhB/n4jZN+w9svZaeZ4nY2NjxjGY81XrerM9Eks0c6OwgNeD721xzeii+2kiIpUKXnPHxjG7sIg5sHMHeoCkuobw82R+59XJvzZiaspQ/2aoPiZob5yk9TSXzzh5A/M6rs4LXhE5NYPeaiWqbf29mBMezdM7tmJ9fX4ccz2XPwbxoYvwnoOISF8P3lPY0o3ruvxkayxs4Pezlk0zMv/Qhz4kH/rQhzbr8IpioDmndALNO6UTaN4p7UZzTukEmndKJ9C8U9qN5pzSCTTvlHajOae0m/Pu6aEoiqIoiqIoiqIoiqIoiqIoitIJ9KGHoiiKoiiKoiiKoiiKoiiKoigXBJsmb/Wjcvd3HpJ0S2uO9am7ulCDLldA7UXW6xURqZVR261WRf2xmMu6o/idCwuou+35eDyXdGwtK0KTkp4xbSTLHBri0ht84CxgPdWNwS/dSHae9bMN+5Wob6CDrtV4ZS+HzSY7sEusljZonrT7XNLXTMZZf9E8WY80P60Q887Q7rZYD5c06kkf0O0i34MIveMqeXSUfdSA9EhUkPVUvRrq5fnUZjeN7x/oyxpt8EnLtJRDHegGjZcY+TlkkqhxWAtIQ539IdiUR0S2DGyBOFfFNhQri622nr0+4Pni4ssPS7ylh9rby9cDx0A5h/VPxKw1y+UZiAPKgdm5eYhtG/vXslGLtE7eGIaesY86la2j0nswt1nf1iU92FgCY0NnmfKwO8P9IlKvs/4tHpPrVcMjreI6aVwb9Y20NiP8bFjL2/Oi/VGCIJTlZeyTzSQ3s7TqY2PH8PofeepZfDOdVk9P1jje8BBqeDrk4eE6eG4xF3VGHdIldUmDN0aazqkIT4G4g8dgfyGLPsN+DTxfmd42G3gtiAjJrUqV1honplB3NmQ/HdJAz3Sjdqobw7FcLW88R/J5ggHOOXjJnA8cN3bmWrOnxwYLhqiWOsYahcY8zQWTp8YhHuhDndhu0jSu0PVxIkR4n37iCYh3bt+O8TaMqw3SAmcrjPNySUgPnNdZ/DLFPtdv0rUPXHMtyeODPXJWPI9cd2MPqPON7cYifUhERByae+pFnM8WFlEfXESku68H4jfccDPEZe8fIXbTqE/c243zlWWRZj2t/Ww7Qvw5wFpgC67tjh5DHeW9216Dn7fwOszOHYd4eAeODT/E44uILCzgd6RS2JeLC7gWWVridRdqjsdiOG/YFs4DDd+c531aD8bjqKvtec0a6Xvt3U8cPzYpXV3N/alN44c15kOHBiDHIqueNKtvYS8gShHXxr4MyROEdf/Zu4J9fUREAipWYUjrNBrzQntOy3YppjUVDVEnog1xF3OAvQS4Dewfx3ME793Yg4DXcCIi1Tr7dPA9gLX/397fL63XvTXWD3jurov9XyVPRt6riYiwpUmD/aB4HmffLPJgYW9L28f3O8UIX8hu3G+HAbazVue8xM+XK1jTC+TXMDWHdWp86pTRBu67ZBzzrkZ5FviU60beIR77/kT4OPm0j+KaYDkt/yI5e/+i80EQBKvjjtcB7EPBtY/H28rx1jIwMAAxe0/Mz+Oelv00+P18LdmnIqoNO3fuhPjUKcwRPk/202A/Pr43wz4lIqZnUpTvx1rY44PPk89pI48QEZHJSfQhTJJHxNq+Ner/JhOEZ+pPncZfqYhrjWwfXr9E3LwFXq1if/gNjPuymCeuQ/cl6Bom6T7GXBFzwPPNNkySz+PeEcx93rM0qljb6uRDUiS/ogb5cySTuDYVEXGp6A9vwTVVg3LZoYm6Wsfv6O5CX7ypWdwHT57GHBMR2b0Tx2y9gucx2Ndsd7129vfs9C89FEVRFEVRFEVRFEVRFEVRFEW5INCHHoqiKIqiKIqiKIqiKIqiKIqiXBDoQw9FURRFURRFURRFURRFURRFUS4IXrWeHs+8OCHJZFO7LsEeA6TbtrCA2mC9WdQ7ExHZNjoMcblEHgCkgZbtRc26JfL0+NpXvwjx2EnUiS5UTF27kPXeDeFm1mokjUrDM+LcPT8sQ3Oe9FT5O9lygvWzg/XPwXJNjULzO0gPdI3uJWtCbza+7696BSSSqBsbJ93Ygf6tEMfimDMiInXSvZubRf3jUm4KYpsEbS3SxWfRXtaIrNciPAHIQ4D1WVlu1mqQNi1dA5vaVK7iWJpZMrX5+jI4/qqk8TpfQ43XfANf3zO4A+LlRdRfnS9iP4au6W3ixlCD2wmx/IWNlh6p196cExH5zY//O+nuaukTeqgTWq2it0xP/HKIG3VT4/PpZ++D+B/+8X9DfOIU6p+y1mxvLx4zmcTcL5BWpliYhyIiluA1YJ8jx96g3hn603j8GOlZ93abupRd9DOH9KQzNGZZb7oRkLcJae46NHjiEdrNlTLqbbKe5krXNzxfTs0eMT6/WewY3bmqhZ3I4NjwqEYEpMFvu6YGb6mMept2iHUiTlrtlo39YvF8xlrfhra3KfZdmMd5euzlFyDesX8/xP2jo/Qd5CtC+cA56kTMb6yz7pBWv0PfEevCvs/24vrFIr36pflZiFmrWkREqGaH7HG0puvY02mzca1Q3Ja3w0aeKmcHr4OoztC7A5ozC+TXMH8a621vD3qqDAwMGi3YOYTzWx9dU5vWTax/a7nnw78NP9Qg3yWb1lkxnv942uOLYywcotpA50U+PCsvN0jnuB04sVikZraIiBvH2rRnH17PmRnU5hYR6cpmIV5exnG6fds+iH2H9OD5+jioFe2HvDY3fQWWC1gLxk7i/JHL4boqnURd5jDE16041hKH4nrd7IeQfEV6unHePz01BvEijbfF4gTEqRSuu/v7aO9Wwf2eiEgmjZrX5RLW0JV5rlaN8h7bPHbu3CU93c1aEBh7JYI8PKyI3TlNLeKQr47N/hkB5jtvp1h/3ac4iBzk6/s8mj6F7Nu0fhsMIvw0Jsdxv51fwpzavWcPxNu2YQ7xV663BxUReeih+402vPDC0xC/4Y03Quys8Syz2F9pk/G9cHWvXvFZex3rFPubsodqFBbNqgGtaRrk81L3cV9aaeB3BlXq/4hbU4kEraOoHobUx36DfQkxfvZ5rJXss1WP8IUkS01JkKcHj58Yjc9alb6D9poWedKZZmwidQ/7PpGk+2MtrxO/zdtY27ZX18fsocM+EQXy4c3naT8pIpdeeinEu3fvhpi/g70uuK50d6OnQJzmfPa+EDE95jbyy2BvkuPH0SOLvTHYR+Tyy3FvLyKSpXUG70F6enCt+dBDD0H87LPoz8j+R2cD92WZ9rRrY6P+bzLFYlHcRvOc6tT/I8NY932qO+wNKyIitD/PxLG/Mxm8Z9CTwWtYLOF6qFEmj1bKqTAw16SFeVzjDB48AHGC9xNUJtinqVTGvI3HcI0W5WfDd1N4Le83MCdS5NNTKGAbeF4ZHEaPXfbRFhEpkd9MPI3fMZRten7EzmHfqH/poSiKoiiKoiiKoiiKoiiKoijKBYE+9FAURVEURVEURVEURVEURVEU5YJAH3ooiqIoiqIoiqIoiqIoiqIoinJBoA89FEVRFEVRFEVRFEVRFEVRFEW5IHjVGpkfPHhQ0pmmlUqSfXfImDmVRIOi7l6MRUSGR/roJ2iaEpD5Dhv5Ht+9E+JTR5/BJlWwTc+OmWbOpvPj+saQgWFkToRkWmfzM6wIdxc20TGMzNl4ko+JrbANJ1J8f2AYp4sEdEjDwHiNcZ1hwLrJ+PXyaj82qmjEY1Nf1RpozuZHGMBZZP4ZT6J5VpX6p6cnC7FH5mxFMmK0aQj7ZGAkIiJkOBTaOKBsMk+zuM/pHBoBml+GHl6/XNk0ynLIDHamWIS4SsZ3FR+/M1FG4/KBLBnp1bDvizXTcDNto7mlV8PvcFv98sOZ6f5oDPfVpae7abI1WySz7ZGrIB50t0I8O45maSIitRIaOvcNotFnIo3GVZUcGkaFVFsCMiKUgMwRI/rMpo60KZfZlDORwvN2XTQM8zyMHRo7nmfWGtfmz9B4jKMxlk1jg+eamoeGe5bNhmJmRyTJgDERw3a6LTPsesM07NxMlnLTq0Z8WTqPVDeOlRpd/xjPEyKG4WjMwTm0m+ZpNhU2YzJptdd/v4hIgvpwnIzou5KYD8P9OC7CgPIhZCNY7Cc/oHEhIn6AtS0gs7xSGXMonsY27dmH4/ul59GIML84D7EbMfgcl8zSybywq/uMTV21ivV8s7HscM24ofWEsd5A2ChSRKRRw2vA8zSvi0aGsH9DMmlcmsHa2UVzbLBs9tfU8ZMQz06dhvi1114NcZxM/4IQz4s9SA0P8Yg6w6sPrr8e1bJCHs0SkzHMwxgZg/KVcSOMmatk9Pny8WMQO63aV6H5vx1YtiNWq4Zw91XIzLc3i2frh2Ztnp5BE/HuiSmIs1k0asyXMW8yKcwBy8H+98lofm4Bv09EpFFFA+fpGWyDF+I1fORprCUNHz/fP0hr3DrmyML8KaMNmTTN2zbm2dwsfmZ5GXNkcXkaPx/DNXJhGetlLmeu7Q4dQANYm0ziU+mmOXolan28icRjjsTjzZzzyUiZTY95hDkRv5PIayiLjsH7jYDcjHn+YtNZn8yBeV8sYs7DhjE512g+BL2/RLWAjXmLZTQ9FhH5xt99FeLCIubxre+4DZtgYd/nlvCY5SLG1RK26d7vfctow7Hjz0M8M4l5vlQ4c4x63VwnbCb1ur9q1u7Tfo7Xzdw2N27u34KQ7xsQ4fp5V6fXGz7mmVfHNlZd02C4WsNr2NOD7ewhw+dyAettKZ+DeGEB11GxJJn5RuxpeK3EfZnkvqPxGCMzYJ5VfIvHVlwY2ppJndegrTBiqbSpBEGwanjNdYVNx9kI+6KLLjKO9/rXvx7iXC4H8ZEjaES/sIDzApuMc8zm3NxGEXO9yWOFzdD59aGhIYj7+vA+CO9hKhVzbbm0hLUtSXuYri60nL755pshZgP3Rx99FGKP5iW+HxdF1PqzU8wuzIkTb15bi+pOkubLBO2DbMusdaUS5maK3pJy6b4r34+2MM8sGtOBi20ae9FcU8WFvpRSs1jANmb7shD7tDUe2IKG7q6DbazXcf0rIpLuwrXjfI72rQ7lfg3PK0Zjo0rjN8K33IBvRSYS9J1evfXfCEP6V0D/0kNRFEVRFEVRFEVRFEVRFEVRlAsCfeihKIqiKIqiKIqiKIqiKIqiKMoFgT70UBRFURRFURRFURRFURRFURTlguBV6+kx3N8tma6mFl0yTrqIpJkWT6AWox0ztb6rZdTorJM+ZIU0Jb/6N/8I8f/7p38KcUDa7nZyEF8PUVtXBL0qREQs1q8mjTOLfmBoNpOueuDTOyI002xn/UvO2tIsvGZI+Rlan+SVEvUl3EzSVnTWviFCU3Yz6e7tFrulJV8qkjY4nXyZfBNqNVMXjzUb46wpSO/36BhligPSlo4J57r5HDPkt1isjY9tclz8DjdFGrA0/hxnO8S+9xqjDeML/RAXqatCH7X1pYoau+96A37H66/ZBfF/+cM/hHh2HvU+RUTcrhzEqUQG4tVLFZm0m8vC3LNSrzTrWDKL+u+2uwfiZ5++B+J//Ms/Mo43OTYBcffOAxAP9KFnw1QO6yN76bDfRMh67oGpjWlRrXFcqiWUq/EEajnbFl6fmIda4CnBNvZG+WmQNrNH2o850vhuCOqsF0h/3LcwcbO9pMNumfXVqG9UE7yWFmbDa68I79xsabUtvqCWbHcD+3Ju4SjETszs60YVz6tWorpRxb7nespasg7lj+2s/7qIqTPKBlJPPvISxM88jeMkQTnKfhms4RtzzbxnLxqh+prMYJ5fcSXqGcdD1F+1augPNpzFtUYmYfYD+zmY/mFnztOxytJOLDsQy27mPLfStnj9QDUjNItznOa3GGk318o4ZudnUcs7T/rudaoJfd14vbyq2V+sKb9tFH1D4pT7i9Poz7BUyNER8byHhzEnpsgzRMTUbnYod793N+rSH3sBx7RLfkbX3nADxK97I2psp6n2iYh88x+/BvEX/h9cNw+2dNfZO6AdOK4rTis3eFnJq8yxk+iT1dtH6xMROX58HOKrrsP+idH6IiCPDosWGmXyJXv+GNam4xN4vUREtg2hnrcf4l5ofpE94bDOxxM458S78P3HT2A/lMvo/SUiUm/gMecW0KOjsIxjo1jEObWQx88nElizy0X8vBs3a8DYyecgHiB9/9JcU++9WjXX6JtJpVJa9ezyaf/HmvLWWXhWuaQnbtMYZ+8fhr+TY14fsd67iOlNUqexXCUvxAr5ZVTKeP1nZtCvj3X0ZxfwdRGRp55+CmKHlk5/9md/jm308LoXFlH/P09xuYR5Xo+o+TU67yNP49oi3XWmHnttNliIxWKrHgYe+QTU6fqx1xP7fIqYviABrd19+ozt4vuXK7gOr9UwR3g/Qe4aIiKSzqI/wsg2nGN76PV4lvp8EetS3R6D2PN5rxCxn6fxl6Lz7qL1f6GBbWCfJjdOfn+0pg0jPQJ5XsE9SyjNOYHrzWaz1tOD6wrzmte8BmL27xARKZLXz/333w8x14ktW7as+/r0NF5/9vCIrHUbeHrwHob9Nnp7cZ/Nx+OYvfdETH8UPg9e911//fUQv/Wtb4WYfUa++93vQsz9LmLORXx917aR27vZVGo1cVrejQuTuK4e2orrtgO78V6KG1HrLBerTyqG51MmbwtJoveFS9WLbY8dMtyIBeY8f2DnITxGDetOOo55FbewBizVcb4KqG5V6fVl8k0TERncvg3iBHnQBeThkSIPwAXyUFrxVVthdhLzeLAP7xGKiMzPoadcjMxNFhvNedqrn32t07/0UBRFURRFURRFURRFURRFURTlgkAfeiiKoiiKoiiKoiiKoiiKoiiKckGgDz0URVEURVEURVEURVEURVEURbkgeNV6eiRcW5ItHbLeLtRIi5HuYY305iVC95m1UKsBfuboy6jH+b3voc7d0y+8ALHvo+bnlkHUE4yR9reISL1RNX62FtbCI3lr4wmVzXrXJOgaBBECr6wjy7roLMfHjRD+Dtb2I48P9i0REbahsPi8O+jpUSrlxWppy7N+e7mEWrTJOOovpiK01VmzsbCE2rE2pWoxj3mV7EKdPMuj/qiSx0fcbIObQp3JBumzenX8Tp+0poManmeYuRiPn3gdHr+K/hsiIl09oxD3DmLfhnXUT73u8EGI3/PT+yD+3Gf/B8QnX0YdyiDsM9qwNIt6nMntWFdWPSci6sdm43UNSqO7ea2T1gi89vJ3/gbif/zbz0Gcz2FOiYj02niNHfKf2dKfhXhuGnO7VEPNR/bjqJHnQ0PMeucL5q5P5jKBQ1q0LmpIFotYO9wq6nX2pSj3Q1MJuFHBax54pHFexvOsNjCPYi62mewCpL5MnjuOqVXPdT2VxnbWa802ttvTw27sErvlxVJcQG34pJOFuEqa17GYWdcXFzCHqst43nX28THGGZ6/ZVFsfKNJaLE+KtYu38Pra9HrToDXxrXwddfFfIpF+IfFXNRH9cn3Y9s+9Ii45ADWxmPPYg4FJaynqV68VnaEPwJrvZdKmOcjW8/o+sYsU8N3M3EtW2KtdUFAY8NhbXDSTOZ1nIjIUh4148dOoNfCMw8/DfH3vvEdiGO0DD68F3V/G4f2Qlwumr4GLx15HuIC6UtP3vsIxMdOHoM4IB+DpRKeU8PHa7yUR61bERGH5m2H1m6nJ05BbIfsV4PrhJce/T7Ez9x/JcTDe/AcRUQefPgBPGYF/VPq1ZyIiPhtrnUiIrYTX/W0C2gNlCAt7lOTJyBeLJj9bbk4vx09htd0zx7UZX6BcuQk+WU45OlQIC+EUs3cP5QLOK5X9NxXv+MU9v/wjp34+TqOlflFnGPjVKOXF3NGG6oN/NnSIq41ZqYxzuexzSXSqx4exrVbKDjPD9KaWESkXMT5aXZuDF8vNcdPvdZeL5l6vSr1+kr9530Oe1rxWsNcy7O2eo005uuUI1XycFlexto1P4/5sbSEeV7ImXm/SGuBRfIzyi1hvDiP2t1l0ozPdKHW93IB835qHnNSJMILkdZ5VaqXQmuJ7hTOyf29OCfv34eegadPoa+WiMiWEXzPe977zyAeHD4zx5ZKJXn7u99lHGOzyPb2r/oDxGy85jx3NCiHYhFzLPtD1ah+s4UD35PhueXgAfQdGNqCe55EAuuYiEhvD3qZuTYek5biUqhh7tdCPM+t2zHvErS2mxjDe0IiItUyru0SVB8d2l90JXCPs1DH8enwPRrD+8W8/+H5fN+HvBNjre8M2+vpsRa+L3TppZdC/Pa3vx1ivk8iYnp0XHklrj/GxsYg7unBMcx+G1nyeeLXo+DzKNE9IL5HxJ4e/Pmo81wL+4xEfWcul4OYPTq43xYWsF6znwp//itf+YrRhgLVZPZfZE+PjTxdzif5fF7sVs3ivdHoVqorLl7z4oK5lnc8fM++vbsh3r0HvYS2DuN9i4yLHit1WmvGyAOkVDDHeJxyM0H116fa9vgTD+J3xLEYVoTug9C94hHy7xAR8djPMom1LJHG3K8H+B152sPkl8nPpkbzjm362czQPYVsFsdXqdC8fn7j7PcT+pceiqIoiqIoiqIoiqIoiqIoiqJcEOhDD0VRFEVRFEVRFEVRFEVRFEVRLgj0oYeiKIqiKIqiKIqiKIqiKIqiKBcEr1pPD8exxXFaus+ka+gkUUss4ZI/QGDqeyWSqIVqk6bZay8/DHE88V6IH3kQNdMmp1G3tEF+HSttX4tFWnEbagqy1wW1mYU0TfeNiGdapOPM7zB6bn1LD6NNFhl2RNmKsJY7HyNcc16m7vvmUi4XV9vj+6gfxzrptQrq5mUyqBEqIuJTLjaqqGMXpw5yKCcc0k6sk2Zo2KA4MDUhG6QjyR4DAR3DtlFzMGbtx89n3glx/zbU6zzQa2pPW4IahNktqN/3mstQh/J9P436nX/6X/8LxF/5s7uwTYJ9n+kzNWFjAdYJ9mCpNZptjKofm42T2SluptnmY88/Ca/d//X/BnFuCvXGrfSwcbyQtJ1rBdSi7cpgf2d6+iFeLmFOVEhDslqlMRyanh7pdC/ETgyvke/iNfJjqC3qsRdND3obxHrxO920qQkpdfKZyKOGdbyOeuNx8uRIxclXhHRyQ4o99pcSWdVWXqFRJ0+dlh5lu3Xuq8Ws2HazD10X88FuYFycQR3o7h6z1jXIj6hcwJxx2G/DkDKlOZomG488Cnhd0PwM9n9gkZYpz38We3rg9bbJ0yVuo+dHPMJHJm5jXjuk4dqXOYCvhwMQD2TxmKktqLfak8FxkUyaec/a7zMzmPdDQ2fGe6mM2qubTTy0JN66Dg3WPCbN60YF4wXSjxcReehB9JEYe+kkxEsTmLvhHHoKJOga+5OnIX74OfQEWZidMdpQJ13005SaXWnMiXQ/6k8XAjzPlybR76FucV0hAXMRsWjuj1PtStB8Z3oIYBvqtFZ58PtjEIf3mWszm9a9cdpihL7d+m/7fbPEdcRqXWs7wHN3SE84kTLrG5PPoTfB6dNTEF//ujdCzGvjqdOYR48+ixryFnleXXQZeqmJiJw8NQZxQPuQyRk8r4F9OyDu6kP96XIe56CZRcypSsmsdzOzmKtx8jmamccxWy1j7larWB+XFtB7ZmSEtPxj5jzZ8PC8n3v+CMS1avM8vEZ7825xcV7qrZq2TF4WVapthWV8fSHCP2V+jvw0FvA9rL2+XMTX2dOjQH5I5TK2oUHebiIiAe0nWN/dwMZiyHu6vhp6uDhUj3t6cR0pIpJfxJreS3r+73jzjRBfTJ4C/XTMbA+Ogxjt9VhHX0REbKwRe/aiD2G4xrCxGOEDtZk0Kg0JW0O3XMJrGvo0l5AWeyZj9jf7RjTIl8e18PXu7izEN958C8RXX4W1sVbDnDp+HGuKiMjUJHrD+D62oUy67j75icZjeI2LRfJOi2EdynSZ3pQ13lfR/qK3G3OiVsO+bjTw/XyPxw6w5jtxc21n0bwd0hzbaDSP6fvm+ngzsSxr9Z7W9u3Yd29729sg7uvDMV+rmeuZItXLiy66CGL28MjncY87PIz74u5uGuO0L/M8c+/G38GeHPydfG+lqwvXfezZwXUl6h4Sf4a/k49RrWKOptPpdV8fHUVPwfe9731GG771rW9BfPo0rpEDuGcXRvblZjG0ZYs4LS/bTAr7O5PB9YpF93Z2bTPH+CX7cZ11xcV4/6ub7jsUljBPK0tYT3t7shDvO4R5PNhr+mmElGcB3Rvg8xgeQu+S//J//yHEjTheD4fMhK2qOc/XaZ62HTzvgO5jhOSXksrgtchP4L4sN5eDuCtu3rNzbKyHXkje3K3hFpxDqdO/9FAURVEURVEURVEURVEURVEU5YJAH3ooiqIoiqIoiqIoiqIoiqIoinJBoA89FEVRFEVRFEVRFEVRFEVRFEW5IHjVenpYblyslldHjfTM6gXUx+xOo+4e+yKImBppXRnUCsuQT8ieraizdmAP6rpNThyD2K+jZpq9kV9HBIZnR7i+UFlg+F2QPmRUG/grSFPbdVDnMKAPsI56yGJqFrXJikgx9irhQ8B3tFeX0o0lV6+DTZqPoUV+GQ7m1NKyqTcekK6m5WDsWph3Pl2PchH1F1kzUuga8/c1P0Q+BPSsc+ce1LvdsesyiKdO4fvnG6j/ZwmdN+njiohIEbWIrzyAOpK/8F7U4P32N++F+B++822Iu7agVmO1grqKlpjazdUKals26qxt2+q7Nmuhioi4Xpe4XlPT8J5v/Tm8Nj7xPMR2DPVQp2dMPUaHNFJjA1TvMqgLmybt2GoV31+n4yVc9BWwLIxFRIR0013SKE+m8RrOk+9IlXQmY934/q1Uo7eNoA+FiEi1hJrVizPYzloO32/X8f2WjWPe9nAseKRF7Limt4njrK8dG7Z0Ko2xvckkMglxWjqd3dksvFYjb5IY+QE0IjRb40nyP0FLDwnJj8gylh/kr0FjuG6Rlnto+hc57LESkqcHeX4kbMpj0icPaHLi2mnHcO0hIhJ243mkerHupDP4uku/erJ1BP11EjhsDK+TqKyxSEd9eBsec+1pkUT0ppO0LUm25liHdLcXlnH8vfg0avM/8/CjxvEmj6H+99tu/WmIF4dwbhgcQO+gbdtRDzeZxP6957v/APGRl1HPWERkmfT3U3G8aCMDWJt2DaNu+gxp86e78fM9CawrlmV6K/Bajv292KuqVseaHtDnEw6OT4vWQ4FtzrEB1TCHcnVludJ+1yyR0HElaJ2T75Gnh5D2s+Aaxk6Y2uo7duFnrnwNrqP27d8F8fDufRBvPYzazn/+1bshXlzEsTHimuuqUgzz6ORx1IzP+ejhUe5B78LLrsXXc8fRb+iJx56CeC6H3kAiIh6to0Z6sN5VkuhV4oU5iG0P87BUIN3zRazhyYw5xy4s4mQTBDjmA6/ZL+3Wuf/knXeuascvLOAauFzGa1Un/f8yeeqIiBSX8Twtmr9CqvtpmpMt9vOjMd+okg+XRM3zmPesez8wiB5VO/bsodex/nb1Yl7v3oXv74vw53v43u9DvJU0zd9861shHhnFtWK9jud9ahz1xh964D6Ir7nmOqMNiRTOqacXyBtrzf6wRL4am83i4pI4rVq3TGtg28bqm87wXGLeNwjIj6irG8993z7UwR/duhvinh6c/448+zLEc3Po0bK4ZNYZ9psxbm+Ql1AsFbEnWUOV5r+Yi34KhZK5vqw0aF3Vh7lcyOcgDsjjKpPGed0nDzm+X+JHiNW7Ls5FXT04B9gt/xXPM9u/mWQyGYnHm7X5llvQw2Xnzp0Qc81gnwkRkVIJ6yN74CaTeH2PHcN7cpUK1jL2GeF6HOUrsnI+K7B3G/uOsL8Re3TwHo/9OficRERcF3OC28D+fdyX7GUyOIgeWS+++CLE7IUiIvJzP/dzEP/lX/4lxFNTZ/zMgiAwrt1mkkylxW15enR3kacO9cVAL+bde/7JzxjHOz2G3kEP3o9+zkuFWYjTCezf3jjenzlBc0vfEM4tP/e+/4/Rhv4+nEPZe5L3zrt27oX4phvfDPGDzz4E8dQ0tsmqmHWmQGuBbBZrfm8S606xiNe84mGe9g/i533yVyvTWBARcclbbymH94TyheZ3Bt7Ze7XpX3ooiqIoiqIoiqIoiqIoiqIoinJBoA89FEVRFEVRFEVRFEVRFEVRFEW5IDjnhx7f//735Z3vfKeMjo6KZVnyta99DV4Pw1DuuOMOGR0dlVQqJTfddJMcOXIk+mCKcpa8733v05xT2soPfvADrXVK29Fap3QCzTul3egcq3QCrXVKJ9C8U9qNzrFKJ9Bap7waOWdPj1KpJFdccYX80i/9krznPe8xXv/Upz4ln/70p+Wuu+6SgwcPyic+8Qm55ZZb5MUXXzS05dZjZqkoxZYkWJLkdLM9qPMlrFVcMfUz+wbwu5MJ1qxH/cPR7aip9l8+dQfEn/5D1DM7egL1BGfnUBdORGRigvRYScw7IK1NCVi0kvRZ6WXWZw1CUznZJs1X1hhkDUnbxn6y+DvYO8GQAzXb4JBOOnuPrPUJWWnfpZdeKr/yK7+yqTknIrJ1xx6x3aZGohvD/q43chAXl1ETslE1NSG5v1gznj1UhN7v+ZiXrJltPrY0n2M6pBO6ez/qOr/22jdBPD+HGrCFwnMQV5dR57lewThpXWm04Z+9/SaM3309xE+9jBqDf/LXz0Bsb0Fd34Ek5tXyIuaQXzWF6n0f60ajivqZiWQr11s+DuVyuS21TkTk5JOPSqblcbEwjh4pfQdupRNBrcT7nrvfOF7ooK72Abrm3XHsi7Q1A3Geamp3kj08SBM9QmM+mcYa2TOIur61AOthWMfzjpNvRE8Mz+lgL+o4D3ab/gqTy6gVHKRwfM3UsB8c0vMv57GOJ9nLgsqfVzN1dKtUF1j39Yxma/O721XrXFdkRQ62UEQN5cF+nP9CYS3aXMQRSXOX9IwbDfbH4BjzoWZhntOli/QFqFIfZHdfjm1YwDz3p8YgtqhNiQDrc4zmVCdrav0nM6x5jhqvyQSOC54yAzpvj95gkb7riicMHMMnr6eQxuuaj1RbY7ldeffYD+6XVEvr+Nj4GLw2PYV+GSeeRz+Ao8/iXCQicuVlV0A8dWoS4nQX5vJ1b7wB4tBlnXvs/+tvxvq76xB6N4iITE7id9YbWAdYJ9lrYE04WZrD1yv4uuWx5rV5zW0X6yOvLTjP4kl8v+ERR0uNBvn8sN+NiIgf4Ht4vZNora2slvdbO+fY0LIkbHnIsK/A9j6cm/bsRY3kemDW9T7yQervw/j0qVMQ++SD1dOLdWEgS3XBxuu3YwfO4SIiB65+I8R3//UDEN/zKOpPzyyg7vL8Amok5+Yx70IHx46Qh4iISFDC6zA9hetH18d5OeGgdnPJewRi9hyQEHXV52fN/V0ihX3pk4ejHzazv+n1Vm1brXvksSdW53uH/PyqVcypNHkKSML0LglpT+h34/XIjGJeh/NTEHeT19DwFtR33zqKdWpgGHW4RURGd++GeMeWrRAPDmMbUhm8NqdncK0xUUKPzkXyj9iSNb3a3vne9+J3xHkdh7VtaRHHAXuWVRs4LhbyuG4cn8SxLCKyfSv5ClKN9tdompdqzXHWrrzz7VCk5bmU6sa+icexf3t7cW8VT5vflaI5NJPOQrxtK/oXLc7jGB+fwBuay2WsO+XKxh4AMfLsMMxAac0Tkvcka84HlAPi4Lw/TTkjIhL6OEcOuVjbyrSnObAf/Wm6ydvymWfJ74imdZvvD4hxmmJVsF9W9mZ+a6/Srjn2yiuvlFSqOSZ27ECvKPbLWHnfClEeEOxVwf4X7F3R14d1pkw5xt/BcwR7fER9JpfLQcw+I+l0et2YYc8QbrOI6enB38lxVxeOZ/YySdC9z6Ul3HcXCuRNJCKHDh2C+Pbbb4f4W9/61ur/e54n9957b9tqXSbprnp6zM9ind5C94oz3ThXZRqmf9GD3/kexNUu8oUkb8nyBK7d3/oG9JMKJk9AfHoS7xU/+AB6uYmIvPXNb4N48hTWorGxcYwn0SOpTnORVcVaV6L7FF7EveIEzRtzJVorVrEWVmo4VpwE9u22bbi2GMzS8WdzRhuW8niMOsVSbrX7HDw9zvmhx2233Sa33XZb5GthGMpnPvMZ+fjHPy7vfve7RUTkC1/4ggwPD8uXvvQl+dVf/dVz/TpFERGR3/3d3zXMr0Q055TN45ZbbomcsEU075TNQ2ud0gk075R2o3Os0gm01imdQPNOaTc6xyqdQGud8mrkvHp6nDhxQqanp+XWW8/8ZlwikZAbb7xR7r/f/G1kkeYT4EKhAP8U5Wz5YXJORPNO+dHQvFPajeac0gk075ROoHmntBvNOaUTaN4pnUDv2SntRmud0knO60OP6emmFAj/Kf/w8PDqa8ydd94pvb29q//4z+IUZT1+mJwT0bxTfjQ075R2ozmndALNO6UTaN4p7UZzTukEmndKJ9B7dkq70VqndJJzlrc6G1hjLgxD42crfOxjH5OPfOQjq3GhUJAdO3bI33zzuxJPNHX/9u3G5L744gMQz86g3tnjP/iu8T3/4uf/OcTZXvyzK5ue/8RJTzWbRY20d9z2dohDGzXF/uwv/8pow4ljExC7MdTWC0lHnyUr2X+DCcmPw7LN97NmeWixjjPr6XKb8P381MxySEs84rKHwu8hjcK1Wo6vkDfMueScyCvnXXd2UJxYc1gkEqinuVzCvijMoxaiK6aPhOPiNY4nUK/Qq6JeILfZsTGOuaTp66NWn+ugnqOIyGtfixrmt9760/idLrb7dB/qIl5yyX78DtI0DKmMpLpMHeBf/tlrIO6O42e+8L8fhvhUsA3ijJAurZ2DOJnATLRtsx8KRTyGLahnnO1tvt6om94sr8T5yruHvv8tSbbybbj/YvjM4etvhnh+5nmIMw+jvqOISKwbdZW3bEc9cD+P2vmsb9qVwv6redgnjQa+P0t6qiIifVvQcyNfxN/M8BqozT3chzV373Y8h65+PN4yeWWcfhH7RUQkRzq+sQR5k9B4ipPuencSNUCDImr2+mXWcTa1aS3yAanV8BheS//f889Ol/J85VyhsCy23ezz7n7s+54euv6kCRr4EZ4CpN9v01zToNgiveKYjbVQfNT99Ry8NvYhXAeIiDgXHcQf7ERt/i7SJa09gRr47jjm0KCN35lMYW1bjuj3NGlic2yTJ4fnY/0NBV+vkPT0Yh7zp1oxdYBjtH5ZXMY8XavrXamgpvorcb7y7pN3/HuxWzrFxQpe8xrp3CdpTo1FLIEGhkchftNbb4G4UsFaVafxmB3AteCLz2IOJK0sxO96x01GGwo0pvNVvCbJbhxP3//ONyCu1si/hvzEHPL2anhmR9Tr5JVGb7HoGDxe2cSDdbgd0pZmTx4RkUad/GjI9ChonZfvr7+WXcv5yru4GxM31hxbu3fthM9k4zjOUwnSSXfNehdLYH3atXcfxDyXFJbQJ6BcykH8lqsugniO9IvTEYvp6iKO3aEe1BDvSWCuz59Ebf2FrZi3W9L4HSOXoiZ9rmz2Q2UJ58ilWdznFBbQ76acxzY1aphXWwZxnmd/omXyWxARcWjd61NNjTnNGtzcv5ja7cz5yrlqtSZWy0cmmcLz9Gm+92nvtHsX9r2IyL5d6J2wQH3jDmYhvn7/uyHu7SIPEPKlsXtxfjsyjR5YIiJ9W3E+2zWA6+hyiOdZJG3+Au17F1ysM4t5XEPZM7jPEhEZ2ovfWaF12dICfqaUQ2+TZdLqZw8mm/bilWXzt4prWVy/eg3yJFujq14rb+xZIXL+8i6IB6trW8emuu3g2sBz8HoMbjFvJg5tx7UW9/eLJ3APUl7GvmE/huVlvD4heVk6EV4W7CNYqeCaxqN7E6lurIXlErapTN6vyRT2Q6WM5ygi0sP7ooC8EXtx3+rEaS2YIm8u9geoYZ7FaF4SEYmRN1BIXnl2y8OT7w2sx/m4Z3fppZdKpuXVtmcP1q5YDK8n+8/29ppeUexvceIEeiPwb/o3aAxz/Nxz6Ac3OorrRva6EBEZH8e83uivCzjP2bOD99ncL1EeIENDQ+vG7IHBx+T7hux9sovmFPYtETHXgtdddx3EO3eeWU9VKhW59957jWMw56vWiV8V8Zs579qY83FartQop4Jlc4zf+vobIf6rR78OsU/35E5NzlKMc82Obbg+4nsEp2bHjDZ86a/+F8QTY/gw6OQ4rql6tmAONOg8l+leS76M1zOTMutMVxr3RcUi1uxGiP1QK+N4y5CXsJCP4fQMjq1kgjzNRGR4AOvC+FG8b2V7ret3lvdORM7zQ4+RkeZidXp6WrZuPXOhZ2dnjad6KyQSichioyhnww+TcyKad8qPhuad0m4055ROoHmndALNO6XdaM4pnUDzTukEes9OaTda65ROcl7lrfbs2SMjIyNy991n3Ojr9brcc889csMNN6zzSUX54dCcUzqB5p3SbjTnlE6gead0As07pd1ozimdQPNO6QSad0q70ZxTOsk5/6VHsViUo0ePrsYnTpyQJ598Uvr7+2Xnzp3y4Q9/WD75yU/KgQMH5MCBA/LJT35S0um0vP/97z+vDVd+snj66aelq6v5p6Wac0o7KBaLcvz48dVY805pB1rrlE6geae0G51jlU6gtU7pBJp3SrvROVbpBFrrlFcj5/zQ49FHH5Wbbz6jMb+isfYLv/ALctddd8lHP/pRqVQq8qEPfUiWlpbkuuuuk29+85uG7txGjJ84tup5MT3xMrz2+MP3Qdztombdvu2o9ykikluch9irkgZzAXXW7r0fPQaeeBp1ng8dRI3Liy9C7fByhAbowDBq1ZbJz8EnnUOLNRlZ7y5kfw7yxghNfTz2CTHfgG0I2dODNJq5TfyNjmX+MZFPWtCsxrZW12/lnN74xjeu/myzck5ExHFT4rhNTcR6A/ufuy5DOpSua+oDuqTPLg0ccsODqK84OIJ/3rd7H+bVrj27Ie7KoMZoJpU12rB9216KUcOxsIy60Mk0aqcODJJmJF/zAM+p0TD19bIp1OtzSSP7ddddAfFTp1G/0yqRDm0V2xi3qZ8jpCG5nSePoTb0xKmmTmLQ0j5/4okn5Kd/+oz/yWbm3bMvj0us5SUzOEjaz089hjHVhYsuu8o4Xk9fFuJdO1C/dCmFHdSbRC3RRAz1yl3SCbVcjHuypqcHe8WMT6JXjOEj0oUakukM9uPCMnk+UBtGTRlg8UPSyk/jn8c2yOOBtSF7u7P0Oubt3AxqXh994WmjDZXlHMRBDbUvvVqzDSueHu2qdV3pLeK09JwdG8cXe3j0UD8ULdQIFRGpkG51dhi1Z0dJF/qyKy+B+JLteP0bBcyPrzyMmryn4/h+EZFygNd3chHblBnYAvG1t6PX16Ue6rOemMDr2xXLQnzynkeNNriC+qgx8i9Kd2GOJVMYFyuofTo+h2uXJep6W2hciIibxOs5S31ZWaOvWq81D9iuvAsbeQmDZm1IJVBDfnQr5khhNgexHZgLmGHKq8DF2lUPcX4rVlFXO8xhLeTpq0B+G/mimftx0sTt68pC7MSxTSFJe+cWsI1eF77BFmqzZ86xPvlpJEgXPU71mNePtoO1LaBaGPp4/NAj/zcRSRoa1ZgfK0uHpp/BUlvn2LnZGXFa/gL1Eo1BWjBkbDw3P8JPzyYN4sefxPrUn8XcTgses7sf14/9w6ilP7QHa1Utafb3SA9esx03of/adjrGy/OoOd5t4Zp1Rz/2a4o07O2UqbschKTXXsOx8OgDqEf97W88BbFfw/OKu9iGRAbHzvwi6lmLiEyMz0HcTR46PV0rXjLNuF217pLLrxC3tU657ror4TXu264kzmcPP/mEcbzFOq5XdpOPzBbSqb/86qshHpvAfrr/pZMQn26gH8uRBdM/5bbDWYi3HcaxlPPx+h89jdd/ZAg1zt045lTDxeOdXjI9q6anUV88Rp5K7JuWX8B5PV/Aesv6/920HvZJ015EZOY09h17lnlr9s6Vlu9Wu/KuZtXEaXlg1GmuccjsyclkIXYz5v2Tio/rqiL5l9Rpn1/08Evz5F9UyFFehfj5nm6zDfEY5pVPE7VHPlFV8jIJArymDfIprBUwDiNk4iukU5+jdRXPqTNzmGfz5HcUBLjOdow7cmbesR+Wx95brXk/aBW7ds2xAwMDq59xyf9rI1miKC8H9vlYuYG+wrFjx9Y9Rpb8irhNDnkNXXrppUYb2HuEvS3Ys4N90vjz7LfB/hrcJhGRwUEcC9u2oW9MKkVrS8rB2VmsfUVav1YqOJajvIOTSRx7/JlLLjmzl1s5frtqXb1ek0Ca4ygRZ+8YHF958n9ezJt+UTsG8B7cAHlLTi2jJ9hQN/lD01zST/d9T8/invT0kjnHjo5gri+Sf+nRU+gbElvE3L7iMPrDHTqEa4/lZx7COI/HExHJF3HvO5jC8ZhOZiGu0947k8acOTWJx7Oq2OZSAdemIiJOgD8bGsUa3p9prpm9ui8LT+La5pU454ceN91007qG2pZlyR133CF33HHHuR5aUV6RfD4vPT3mTS4RzTllc3jjG9+otU5pO1rrlE6geae0G51jlU6gtU7pBJp3SrvROVbpBFrrlFcj59XTQ1EURVEURVEURVEURVEURVEUpVPoQw9FURRFURRFURRFURRFURRFUS4I9KGHoiiKoiiKoiiKoiiKoiiKoigXBOfs6dEuXnf5QUkmmwYyfd34bOa7//iPEI8vozHMaw6/wzieQw7eUxNoQjZ5Cs3W7rvn+xA/9zK+/5Y33wRxWMM27O4zXXV7r0KjpFOLaPY1t4BGL/lFNN1x2ECa4goZdHp1NNRpNhT7wWJ7bsPInM282d3LXicyvq75FcZ50KfgQxs5r59f+gdGxG2ZU62Yz61Qy5+G2O5isy7zmmeSaEh0aCcaCt1w2ZshbpBRaz0gA1oyNJqdQSOmxYXjRhsOHULjqsEtaKz0p39yF8TTM2hq9Bu/8UGIL7kcDYjZkNqKuGRzSzg++regeeE/eethiF84gmPh4QfxeN0DaOAYC7EfFmbR/FdEJJXE6zOdQzOuVG/zPELfNAzdbJ567oQ4LRO0RAJrUW/P8xAPDqLR1s/efrtxvMsux1oTi9EYo3GeSqDpVOjhRQx5jJJJbr1h9pnt8jEoTwRN22IxNMKyyYiwuIz1LU0GbomkOf48Mt9lvzyHTKYtC9vkNWg81vEcymVs06mTaFQoIjJ3Go1XZ07hXHL0hWebx2405NGjaPa+maRSWXGd5nXfvm8XvsgG8Bm8Nr39aJArIuKRkdnr3/p6iBPDZKo7dgJim0z9rrh6N8T3TWPf9PumqW6lhNcjOYDXt5bC16/bgSaBr92BtS1xHM3bJl9G07lb33Gj0YZSPgfxgQNo3Dq6B7/TJZNrIaPRS4exDVUP+7m6bDpujk2RUatHZufOmvFut/d3X5ywKnbLuDRu47zQqODc0/CxRsccNI4UEZk48RLE3y6h+V2phPNfoVCAmM0p2UyyRsaELx9/xmhDguqn+GRQSq6o0zOYy11ZzAGvjv0idarXtrl0t8nYtbaMOeA7WPzica63mAf1IrbBpuJp85wiIj41q1jGvl4xE/X9CJfYTSaZSIjT+v5aFfNqz04yEc/g9axFrKUXK3iNi0VcLy4tYt45DRyDHhmbVxsPQxzGMNfTfWbu7xrBmtmTxpoY68aaO9qLJqjpGM2hIY23AK95wjYNZx2a5y3Kq61bBiC+/BJcm3QlKQ8F4xUj8BWKZTQSFRGZX8LxNDCYhXhhrjnXBEF79xPvevd7JZVqmm9Wqjger7vueojjNKafO37UON4EGXL3Uk7Z8zg/PfbSixCfnMB18dhMDmJ3YAjiqy85YLRhfgqN6B8p4jHCNF7vF4+OQbz1hpsg7iVD97FlbON0iWqhiBypYg5ssXF8JhPYl8kkjh3H7YeYTY4NA+O6aSi9uEj7QVrP+nJmrFSo3mw2e3dcumqaPL9IbafxNDyK1yswh7gs53FO7enGazZKazsJcH8W+Hh9LJpT4zSvbxnEPaqISFca/QGW81hf83QfyKN7B2mq6ctFPKdnjzwN8alJvL4iInWahxdpLdHThUa7AyO4rvap5k/O4V6vn5a0wxnTADxGdWKpisdcbq2Z+Ls2G8dxVtdO7CHC5tl8z6Bep/VpxDGuu+46iK+66iqIeR3H95l4fZPL5SAeGxsz2vCOd+C9RDb05rUif0eUQftaNjJXP5vv4GNsZCI/P4/1dWgIa/6pU+YetEQ1mE3i135HoxFx33ETmT41Kbbb7JO9u3Ed51HdjsVojj2K86OISK4yDvEVI/vxmEt4jKFLcIyXCvidR47jPnd6ButKuWGuSXZuw/thvofXfOwY3lOwXcyzLWncY27btgfiwzvQ6Hwu4u8fMtRXu3fhWqCnB+fQrIO1b0sX7lufpL5eoD3OchVrqYjISyexJsdovbsy7Xt1XIuvh/6lh6IoiqIoiqIoiqIoiqIoiqIoFwT60ENRFEVRFEVRFEVRFEVRFEVRlAsCfeihKIqiKIqiKIqiKIqiKIqiKMoFwavW02PrUP+qFmpKUHvxp96AvgjpXtSke8111xrHm5xAnbapcdStK5Eeb1cXavft3IFauHv37oQ4FeQgvv3NqDcoIlK2uiF+cRF12L55zw8gniZNNdaLPD2N2nAO6wlmzGdaHmknVmp43o1gfW00K8qwYQ0haaGGdsT7ffoZaU2vVTAM2yz9XKxOi+s3NU97e7LwWk1QcJP7Yv/Oy43jve6qGyDeOXwIYn8Z9Rq/d889EE9Oo8Z5SB3Cvgcp0pwUEamXc/id5D/zU7feBPELL6D2nkc+Io066uIHNrbJtcyLFlBulmuYZz0pbPcHfgo1DRPVa/A7bNSiLuZRG3X3TjOP/QA1CL/zg5chjreGZ+DVqeJsPtu27xHXbeZClfo7FkcN3te9AbVN3/7O24zj2aQDWiyinnQshq/392HfODZ+p+fRNSVPjyCM0C4lTVaPtD4bpJNeI78Mj3xCejN4zavkYZQnPwcREd8j7dgG5kWd6l2DtPj5855H50D94vmm7nqmGz1Ydu7FOtKTbepvVqoVkb/6ivH5zaKru1dct9mnIztQg7mvD+eaiePPQTy4DbVTRUTSvThm6z5qevaS4P+2NM7bC7OYL4VRzKm3vf6NEMdjZq3r7cF292Xxerg25shAHx4jnsHvPLRlL8RjW1BX2rbIj0NEQtKRvXg3ambP1jCHZhdRy/TwLtQttWwcq+wdVa+Yesgjg9gP6WP4nmPjZzyQajbqLW82H37X+yXV0vH3qUZUfOz/qQWsWzMFUxt9mTxUFhZQ1541kVPkBcT+EjtorZdIYw6VKqZWtkNeQCH5iuTG0XdkNMA83LIddYFDH2uGFeD1S0ZoP9cqmHdlD/uqUMK+nDqN68c4+Rtt274bYkNv2o2o+eT5kKD1yMJCU4vf8wMRMb0ZNpOursyqP0RhCXM+Tde4pxfX6vkc9p2IyOIE+iv45N+WTGGtsJJ4TPYOi9Pazg9pfiyZ4/TF59D7zCNd8wqttRsBtikVxzb3d2Ft6e7BNg9uRX8iEZGR7ajnv3sH7o2uvxb3Y29505sgTpCefxhgnlUqmMezc/h5EZG/v/vLEM+Rt930dHOf025Pj3Sma3Uf++xzqE+9vIzn9YYbcF33hje+wTje+MPo+zKex/3bseOo9T1E6xWXfLeWC1intpNWe2rZHKMTi9jub76AexQ3iXtrt4H7jTHS9h669LUQ27QfrMXNef7YFPqiPfbCIxCnaY7s68X5sIv0xnlO6KV+SKfNNliCa0Wb5pG1a8OgZnqCbCZp11r18UvHcL1ZtzAH6g3sq2rV1OT3aa0+PIj7hS2DuJaL056FtfTjtEcMaG+QjJteFj0ZrFXDQ1mIPep/y8U9J/sxNMgP56JDqHu/tGTuApdp7VYs4fhjr4o+yqMDF6OWfr6E42s4ht959U7TOy9Bt3WWaPl3suUz0mh48uKzpsfnZuH7/ur5P/88+lCeprUG99Pysjm/Hj6M+4k9e/D6eB6OP/bP4NfZpyceN/dqzPe+9z2I2f+Cj7ltG64d+8inkNvIviVRnh78GX4Pe3jwMWdncZ3C7+dzYq8TEZHxcbx/un37doi7u3Gd0FZKDZHWWA9oDZyic7XJP+OZo6Zv1o1vfh/ESZqPpicwd4+N4fz3wP2PQVyt4QAdGMDa2d+VNdow/jzOb4dG0U8j6eF5sbfo/q24n9/Vh3n5ltdcjN83geNVRGQr5cVFhy+DmO8RpWh/H9C+9OIr8B7eAu1H5ks5ow0vTOK9/u8+9h2IT7U8znz19FAURVEURVEURVEURVEURVEU5ScNfeihKIqiKIqiKIqiKIqiKIqiKMoFgT70UBRFURRFURRFURRFURRFURTlguBV6+kxsKVP0ummFuX9d6PPwUX7SNvPR+2wkRHUQxYxNSUffeQpiA8fQK3FmwdGIF4qoVbcM0+jPusbXouaa/GaqbNdruUgvvoy1GydXkTt06EhPI/rr7kC4piFOmaPPPIoxM89j9qpIiKnTqFWXDyOWnysVl0inXyfNO/DEJ+bhQEeIUrq37boWRvr7K7VMGyzqcdI/4DEEk2tx127UM99YBD15YazqLd5Pfl3iIgMdqMu3sljqLnrkPbpa69+Db5Onh2slbqiUb0C67+LROhIUt7sv3g3xG/9adTOZ+1Tj65XyNdTTN1kkpmUKumv1kiTcHR3FuJf/v/+MsScFXXygzhxYsJoQ6mE57Hoo7biE08/3jw2e860gX/30Y9KJtPUHZ6dmYPXkinUI37DG1HTuq8fPQNERGqkIWxZmEcJ0jO1bdLQpfdXycdlfBJ1LI8eQ81PEZGJk3ge01OoX7swh3GxiFrRVfJ9qXrYhhrlpR9x3Vjn1yefEI90J32P4gD7MSSddc/HNjU8U3ed7FOkuxu1hXfvbupt8jjbbNLZrMRizdzqJk+XBGkqX37J6yGOaunxsRcgPn0U60JfN+bx0DDOb6Np1L+tzqFe8u4B1JOPkL8ViVFMhSLuonZ3Hb9CvAZ+IBbHc9hHGsvLRdNjIuGiXni9ge9xKE+3DeIcXCtiG0pFznPMuaFtZkfs3405tnc3avCOncydOX6pIP/9E8YhNo1D+y6STLqZC0GIY9wjr6ChInkUuJhDIiLHp1EH++QEzrExqnW9PehrUCziumvfIdS73TKA7y/XzEVNwHlTRp+W5D70wLEr+HpAGtd1igOaYl0W9hZzHewEWKvKy/idTzzxJLY5hn1/MemPs3+Y65h+Njb5M8RiGFdaPkyValUeeOrfG5/fTAI/kMBq9uvQIM6Z83PoCVbJoS/MzCzGIiLPvIh66RW6SG4a60DgsE499jdrjCeT2N/pELX5RUSSLuZmPEY69rTvyVDepFM0z1dQZ5lr19wSzukiIkeeJ6100tHuJi3+bC/2S3cK619XmmKaNzJdphb7rl1Y32zSxi/km/Ob7wUyN4HXejMJvaqEXrPP+7I4xy6XcDw+9PBDEF92+dXG8W67FvcYc9Po6fLwIw9CvDSPr+8b2Q3xeDEH8UvPLkGcJ/8/EZHLr8R2Hdp7CcSnx9Erb9829CtyKEeXFvF62FVsk1RMP4xiFfOyZwiv/9wYtmFqAve9C1Tz2eNueBjn+d5eU7O+XsZjZDOY19t3njnvaps9PcLESQlbHk2hg+2qVbIQp2u09sviOkxEpGFh+20Xx2DNoz0heXn6tCcs034it4h7AdfYU4oMDWDNTiVwjVMs0pybxDYmElh/2buA/RlSabPe8jp5mbxgJyZw35lbwvG0dSveV7rtbW/HNiweg7jLwzaKiLgBfmc1hvP+YGsOrtfb+zvNvu+v+miwh8eKl9cK7K8S5SNxlPwWlqgvy2Xshzr51bKnR6lUWvf1+fl5ow38M/a/4H32d7/7XYjZK6hB3jW85ioUMIdFRGx7/evIbeBj9tB6d//+/RDPzOAcEdUPfMyt5O21to0btfd8s3vrqLit+p0I6X5YBa/x2Azep6jTGk1EZGYWz7+L7oVceQl6lH3+cx+F+MQJ9LQK6B5pvh/vEYxcizklIhKUsN2jB/E9//43fwfiRC+usXbR9Umyh2uC/OVG0ANEROTAoYMQ92Qwj/hmsUXX3aYpc1sc27SDtlEV9o0VkUN5vOd6YBv6xf3Pf2h6oDZqDXlC0EvlldC/9FAURVEURVEURVEURVEURVEU5YJAH3ooiqIoiqIoiqIoiqIoiqIoinJBoA89FEVRFEVRFEVRFEVRFEVRFEW5IHjVenqI5Yi0/Ane8tY3w0tzC6jXeuIo6nU++9QR43B95I9xxTXX49eR9vup06gzWiTdvKlTOYgvIc3m8XlT6/vxF1CvsXEMj/HSJGrJpUjrtlJGzcJf+uV/DvH73vteiJ985lmjDfd879sQP/DQIxC/+BJqoXZlUNcyDFCIrVhBXUWPRdTZzEFE+Fkb+1DgN7TX0+PGa94uqZbeuE06pEGAOqT1Auozfucfv28cr1ZC4TuSdJQyaXd7DTz7ehXjhodxLcTP+z67spg/80l72guw/wP27CBfFdYo9OgrWRtVJMJXRNb/jjDiGPAdlCUe6eTPzqH+Z7MNqPeYJ13ZcksDnX0b2sHC4rxUqk39z/wyaj5296C+cBiiVm0D5R9FRMSNow62G6O8quE5Hj+B9e7pp1FP9Ykn0a/h+Rew5o6NzxptqNcpdxt4jWpVrGeBkbrkF+SyNw0ez3HMZ/jpNGrHVit4zb1l0qwOSBfWp9ct/Lxl47zgWmQSISJVi/T5fdIkt1t6nXbEhdxE4glbYi197ZDMLZZLGIekP59bQN8EEZGuBF6PxRzmRKOEY3ppAeeayXHUDO0f3gbxyChqgg4OoL6yiEh2C86Z3X14/RuUD11pvBapJNZCx8ecc0mWf7DX1H12SM86RnncS94IVE6lViV/CJofl5cxB13BcxIRcaimJ6je7hs5Ux+Wl9ubd8fKy5JqeXl4HvZFpY51qUpa4QNbUbtWRGTXXsyD7bt3Q+yS1ix7DDgW9pVtYRuW86hHLZbpocKeVBXSl/YTlCeksRvYtE4I6XWaP/t62B9CxK3hutijeaR/EPXE37wLNXtrNZ73KPfJb4Wt2EREUt1ZiKu0XrGqzXppVcw6udlYYShWaz3a35eF1/aMDEJ89OUTELPXjIhIphfrVXcMr4lH47YmFFexAysVvF6FPO4hYg3Tu8umLRzPga6LcSKBebl3P+aEQ74iAwOoeT03b2qOz0/jHBiQ51AY0rW2ca2RjlE9c7D+JcjbhPup+SHsq8EhrIluy0/FarNHYGV5UcRrti1FffvkM09AvGUQc7BYMuvyRYfRP+PiS9F3J6yi98wseU4NpjBHUxb2h0f7ib4IX4Nh0qlPNvD69vmYD7vJi6GnF/XJx8dRUz6zgOsGq2HWiieP4176+muvgXhvbxbi6WPob7l0Ete3R8fweMfH0a+nl8a6iEiV+pb9FndsP+Mzwv4Bm822HVslkWy2J5fD8ZIR9mtDr9DurKlzX6zi3NJLvjzZbBbiGHlN2g6t3UNcp7EvoRUxt8QcrAO0zJJe8hJybMxt9hrI0L0N9nyoR/iwsOz8ch77pVxETyT2EanRvPfa16A/TmU2C/Hj3/mq0YaETd4UcfJLqTTvI9Ub5r2AzeTBBx9c9bC47LLL4DX2q2LYr0NE5M/+7M8gdun6ss8E+2X09aE3DfutDFBdKhYj5hWCvUh201pzchL3RadOob8D+2dwG+bmTM+sMOR9Lq4j2A+FfUeuuQZrI/uMPPfccxDztRMRecMb0H+Yx/+LL56przyONpuwbknYMg8uFHD8pajvBvqxb7oPoBeziIhNPmgvPYNzx0AP9l+8hu+/+Rr0xN25C7/j4CWHId53yW6jDRcdOARxmvzg+vswb3zynvyrP8exUyWvmKvjV0F8atrcz1906FKI4w7mvuNiHjZcLI5lwXVdQPcYXPJBdAPzccQuwRq9azeuf+RtzfpbLlXkrz79ZePzUehfeiiKoiiKoiiKoiiKoiiKoiiKckGgDz0URVEURVEURVEURVEURVEURbkg0IceiqIoiqIoiqIoiqIoiqIoiqJcELxqPT0+/8U/l1isqQO4rx+fzQxs3QXxrh2okZabNzXl3BTqbw5tRY+PAmkKugnUK5ufQq29uTnU5vvv/+P/hthvoJ6ZiEi8FzVbn3getfTm51GPbv+evRAv51GvtUqak4Nb8PhvehPq8ImIvI60T1986SWI/+4f/gHiv/07jKemTkOcTqHOWz1A7dIam1iI6TFhk3a0ZZ+J2fths/n2t/9WYi39ycmTqOtaIV08FmO3xNStdBzUpLNd7K+QdKBdF9/v2qh9GouTpnkCdS1dxxzSrPNsO6hJaFmk20v64ezHYZGmuWXhd669fq98DPLwIO8Ww1eEPD4MtVJq08iwqffPGuVWfgzi0ZGm9qJXr8qDj0d8fBN56eiLkkw2c+Hxx56H17aNYh14+SjqhF502cXG8YbIw2hiAjUbn3zyGYifIQ+P8XHUqi2SN43jYh4mU1h7RERSXZgXDQ/rFWvOVqtYK8rkYRTWMQcs0p8OImpN2cO6b1HmxOIUk1x/IoXeKJluHI9dafxAb8ocf3XSpH7xKNb9nq7mGK7X21vrXjryqDgtrdAZ0rjma+H7eC3270e/DRGRPqpNMZd0R8nbZH4evRJKJfS0yp/G7xw7PQaxGzP7Oh7H6xGPYe3rSuL17CV/hyxd3/4B8hnpx7g3i7VURCSdwZ9lSAc4RdrSNnmhWEmMWZe/K4PnWC6Y2tPFHB6DNcW9NV4ZxVJ7/RWG9u+TdEtPe3wc113LS7h2GxxFDd6d+/cZx0uSNrfFXhQ0N8RJEzmVwOszMTEO8cvHcGwUeR0gIsk4zuM9XZhXbgzXBrUqnudyAdeXGdI4d5N4/AeeeNJoQymH42dkEL2gDh7AGt3fh3E2hW3O53A9yrrc8aTpJSMx/NnkBK6T/VY9rYTra3xvBm96/esl0WpzQEZk178G9Yufeg7XxX6EJvmu/TgvLy1iLg+NYv/GM1h7YnYW4irNd9Uq9n+pYq6rajXyySJPHIfE8ePk/9OgOTVGHkfFGrYpTvVTRGT7KPoZulRzHeo6P8R6FRecByzBObtSwX5YLpr16hTptReLqDmebtVU32/vHJtbmpdqudnnsSTOHbl53M91d+P4G5tE3zQRkclZrBOXkKdHIo5zTw/5o/SSR8fhA5jDOdK1j1tmzmVpDZUmP8yZQg7i//k19CXo7se61JvGOXd+dgrjk6be+Hgev+OFBdyXHhzdDvE1O3ZD/J6r0Mfi3vvQj/GJJx6DeGYaa6uISLWKe/wYeQ4USmfyOMrncDOZn82cqdeklR6nuci1cYzbgrGISD95mnRRLYvTmiZGHh7sQ2CTH0Oc1nLs3yEi4tC87lBu2iGucaxwfR+V/n7cI/I1irpmDfpZMkl9SeedSODr7AmxY/tOahSO3yMP32e0wathGxoB1sNSrZl3jTZ7evzlX/7lqu/GxRfjnvTGG2+EmPt+716sQyIil1yC+v0vvIC+kidOoO/WwgLOI+wBMj+PY5j9VqJgP42HHnoI4uuuuw5izvMHHngAYl6Hsw9JFHxMppv2LOxlwtfi8GG8X3r11egrs2fPHuM7Tp/G+nrffZiXa308KhXTz3gzmZzOrd7juuGqK+G1meN4D6+/H30h9x7A+VNE5MRJPNef/qfolRyO4Pz1uS99EeKtI/gdPT24luc1VuCa/WXTnFqnNc8S7RfiWZzXr7r+NRAPUo709mB84OB+ow0pqh+lk3jfyavQetXDfVG1jus2t4jrPiuP51QtmvfMi6dx/5AfR7/ux7ubY75q+BG+MvqXHoqiKIqiKIqiKIqiKIqiKIqiXBDoQw9FURRFURRFURRFURRFURRFUS4I9KGHoiiKoiiKoiiKoiiKoiiKoigXBK9aT4+J0/PiuE3dx/u/+QN47cDFqNv2Sx9APbKt3ahpJyLisf+Ci5qSO/buhnjvftS1OzWOOqNPPImi/8+98DTEpQr5JIhIoYS6Y90J1G/cfTHqO15zDZ7nG1+P2nv9A3iefoAabKxHKGLqjl75mssgvuxy1FG85Za3QPzf/ttnIf7OPaiF6pJfRDJlagDn86j1ZnpIrLlWpqTspjK6c/uqVvXIEGrsVpaw3V2k490VkXepbtT/S2ay+HqStIfT+J0p0tlOp1CLL0Exa4aKiMQo1504aaHGUD/QZg8Qmz1XMIdCe+Nnp7ZxjfF19vSISF0goMQIhdtslrZGHfU0v/89zN0Vid5apSQP/tn633++CQJXgpb2boO8HVg/84EH7of4QIQu5a1vuw1i9tbh/n/Na/EY19+Qhdh2MK/mFlD7eWERYxGRsIa69ak4XuMKae42bNITJ+nu4hxpRJKnR7rbzMOubvLcIA+Gnm6sT8kE5o0t5FFUw/NcXEBtzeUIvf/xcdSaTZBf1IruOuuvbzZTYy+v+vHMkPA66/c7pF08stX0zLFZexbLjnh1fD0kD6RaHTVCPX+ZYrwWjm1q3Q5twRocI43zegV1Q+dKqKc6dxqvp21hTrmkRc21UUTEdrFdMRfPk7pFXKrPdpy/A/MioHHjB2be+AG2oUEasWv7mj1nNpvegZFVb5yxSRxPqR7SDu/H+bEamP4lhVmsM7kl9COqFPF11gZPksb5LHkzTM7jmM4tmPrufhX7cKQf87BewTYU5qfxOybQNyRBXmlxip87+rLRhlRPFuItAyMQT0xj3/Hagv0AGg3MswR5n9QbphaxRe8p++Sn0vKEqFfbq/ssIuJ7nvitc8rRNf7m3XdDfOzkGMRWAtdZIiIjw9i/Y2OoMX5y4kWI+wdwTzDYh3uMbDfW1O4k5mm3WXIlRtdQhPYdtCeIBzjfeXWsNT6vy0JaN4Sm3r/v497Ip8/4Fuad72O8OIc1eXIC+9Gl9WoqZe6turoH6T3YWf0DzTHe1FRHz57NpFrIS5honp9PdWgH+UqOkUZ9JmvuJ5by2Hdj0+h3MTqEHki9GaynCzFci+zeid5ccZp7utOml82JCbzez7+M/jdPP4N74ymqfXXBcRGnZVtA+tz+HHqfiIhIGvO4kcF2PvYcan+fegrb9O6bb4D4Z37mXRBffhl6fjzy6CNGEyYnMY+WyBd0cU2NidqLbyYLc4lVT9RqFev49OQxiE+Th1VPn1loMinel+JcwXNDKp2iGK+XHScPD1pXJSM8lBI0Tydo3ZSgYyaT+Hqa2sB7ZfZ4iEV4xiXIr6ib/NsKefxMTxd5dLLvSx7XKi75nfYN7zbaUMxhG06fRH/GuYXmWsTz2usjc+2116724R/+4R/Ca888g2288kq8tzUygnOpiMhFF+Ge9ODBgxDPzeFafWoK69LkJNbGmRn0B+DPcw6KiNh0b2N5Gfckp06hz8EQ1V/201jrfSFi1gX25xAx83RgAD0irrrqKoivuQZ9e0dHRyFmrxquW08++aTRhnvuuQfiInk/rb1W7Fuy2dz8jndJvOV591NvfCO89tT38N7JgcOYQ/c+Ydb1Jx5HT9Xb3/s+iHt2oV/U4GGsGw3aC3jkh9loYJy0TT+KJHkadXdRDtB9iobguqBrK+bI8gTm6cSzT0JcnDLn2JA85hIhrUdpvxCSB135NI6/Ivli5U/ieJ2jeykiIvlqDuKFZVy/jN/c9Pdmf9j10L/0UBRFURRFURRFURRFURRFURTlgkAfeiiKoiiKoiiKoiiKoiiKoiiKckGgDz0URVEURVEURVEURVEURVEURbkgeNV6emwZHhG3peF46gTq5D33AmpS/rfPfQ7iA4fQ40NEZOde9MvYtQN12baPoL7q8BbUtdw5ip/ftn0HxG96800Q5xZNbff8EuqmlUqoi9efRf+H3Xt3QTy6Ddvok/6jkCa865iX1xLUWGbdxyrr8JMu5sd/57cgvvIq1Gb8H1/4XxBPz5r6110Z1LmskJZ7sOa8wqC9upSB5UrQ0rkvlFCbsFpB7b7QIv8Mz9QhtUlbPR6yZ0CcYtb7x+M5Nl5zJ0Q9ZCtCx9MK+Zhxep005MnwwSbtfFNKH69flHqtqXxPHh+kF8gKfXxM18JrE5Jnj+OY1yI/OwHxxJEHIN6y81Dzf7z2atyLiDz6yGOreq/FZdR4nJk9DTFbJ7A+uYiI62J//rP3vx/iq69FzeIgxLwp11Bz3ffwCsxMYyNmZ01NRY/Gz9Yh1Oe3SJdSEqQbnMG67wTkr2Bjmz3f1Ilv+FjPlpawHi0uYE3O52YhLhVyEPukx8n9tphHzUkRkcnTqKeZTPCYx/+2C9/zxWqNQ4t0R8nKQlw7C7HXQM1QEZHxaZzz0mk8Zjf5FfWTnjh1pVRI95/jRt3UQk2RFnQmjTXbYjMbrkzkj2F6EWHHNBqmx4RHNbnRwHne0LylvA598vCgNoXUUb6YNT8IsR8apJM+PXdGb5U19jeb6rInTkv3v1zAvppfxPF4cuw4xHMLOD5FRJJJ0kEOSHuW1hsp9uIiffLMAK79Yt34/v64mfuj/XshHunDXH/+qSch3n/wtRDvXsT16Bc+h95pFfJBs13T1+D0CeybsTh6BDwgqG/cqGPNjjl4nvE4rm8c1lRP4ftFRJJdWTxGD/Zl70DTe4HraDsozC9JvHXtp8m7Z3oa+65cxXkjHTPPNU7+dYMDeA1tF3O7kMd5YHHmMXw/+ZD19GAOOQlzhkgksQ1x0tZ3DX820i0nHy3OgbCBtcXhIi0iIdUPmzw3QvLeKtMce3oC1zeFEq5nLFrLuC77mIiksrjn23noWogbtWa9sxvmnLGZdKeTkmzp3C+Sp0d/bxbiAumk5ykWEckvkZdaLgfx0iLGqS70MegnPfiDNO/vGd4KcSJt6tz396JPyIuUE6kufH0nLQ2rJaxlDuuX9+C6bzqiVJTI26mPzGgaNFTyORzvd3/zmxCXSzhWb7rxzRD39qJnjIjI7ALm7VIO8/b5585ow3ueJ488hF58m0kYBqtr0xp5LxUK2BcnF3DNynsxEREr4HUQjckYe3RgXWEvi5D8N9hHMuGYeZei2sZelTHyo4mRRwevuxPklcCeDux/Gvkd9JkG1Rf2hOjqwtp1L9VGm8ZjPMLDbHgA1zvpDPphBFPN6xl4Z69zfz4YGhpa9Xp53/vQB+HrX/86xNwPExO4Nxcx/S7YRyabzULc24v7y61bsZY5Du9ZcR5irwsRkQytHfn6sk8I5zl7dHDMHiCVirmHZR+RLVvwPuGhQ4cgrtP9tMcfRz+jahVrHV+L6Wn0mxMR+c53vgMx33tc65dTq7V3PzF4+CJJtjyEnjuFbT94Ja4DXnfJ5fjhmnm3auB69DHO9GFexWg/FlRxTrZDPH+LxmFYxNeri+Y90mnyJXQqeE2LlLuFRTxvr4T3sOrzuK9Kkl9fsmb6sHhlzMVyAfNwIYf7/dppHAs+fadXobygfonFzGuRHca+L4zgfffsa29ufne1LvI3uFd8JfQvPRRFURRFURRFURRFURRFURRFuSDQhx6KoiiKoiiKoiiKoiiKoiiKolwQnNNDjzvvvFOuueYa6e7ulqGhIXnXu94lL774IrwnDEO54447ZHR0VFKplNx0001y5MiR89po5SePm266SfNOaSuac0on0LxTOoHmndJuNOeUTqB5p7STqcmmtN22bds055S2orVO6QSad8qrkXPy9Ljnnnvk137t1+Saa64Rz/Pk4x//uNx6663y3HPPrWrffepTn5JPf/rTctddd8nBgwflE5/4hNxyyy3y4osvGnp26zE6MryqT1u87Cp4LVhGLbEcaaL94NFHjePd/9gjEPdmUMduzy7UCrv8soshvvJS1MDfv38PxF29qJ26exd6gIiIZC4+ADFrc5fLqBfI8uNLSzn8PDkdxEknkzUQRURc0vR1SEtTSNfwvu/fA/Fb3norxL/+ax+CeHAL6kv+xzv/k9GGqWnUfkumse+qlTOagyvyor/yK78ib3rTmzY975bLMxLzm9qfz76MBXhL9iKIT1awr/Inxo3j9aRRL7WH9I4zpEfe04N6uKy3mEyxDile84Rrelm4pFufSFAOkLeCzZ4fFr1Oph6sucyvR2GzhwfpJNYoDy3SYw3pnGo+5pAdM3N/7tRRiH9AGrt78k1dxEZLE7NdOScisrS0uKo5evo05ky1ivqMvT2smY0anSIi3/vuP0I8uh11QN9yy1shHhxGbdEu0uRlld9sF47zQ/uGhfFIt71eR03HCmmLWhbm5ewcjqdTU5P4+jzWkcFB1I8XEclkMC9eeukliGem8BhxHk8xrI9x0oW1bOyZNI1PEZF9e3ZDPDeNWtCVclPru97yqGhX3jmSXO1zh8ZsvYZ6m30pPG4q02cc77mn8PoUC6ixuWMUr8+OXeiDMDCIutnpDF6LwMcx7Udo8Np0fQLDk4NrFcahT34ZNEeH5J8RRqygHI9rG9Uy0ioOA9J8JWlTXiew1nHU76745O1UoDXTyfGTa47X3rxbzC1LtdE8hz1798FrO/egNv8TTz+Jn33Z1G1950+/Cc/t+BjEjz/wEMTv/pl3QVwmbdrH70Xvi7k6avYePnzQaMOevZjLDrlSXXHdDfg6TZFdA1h/91+BusLHT6AO++Ao+r2JiJyawXkjdLEWWT6uL+t5POZrL8I17T/92bdD3E8+JbGUqbseo/pnxzBOttakpWJR/snXPtfWOTadjEuitY7o7UGt4FIZNY1HXdIfjvAIYz+8LUOjEFcqqGmcIIO23BJ6ALB2d34JPSAyXeaaxiPvkbLgWoG18m3aIxga9bTWc8ljLmrDyLr1bJtRqWCb+mlOvmTfpRCfOInrtEIZz7FeNVsR1LFvx47hMbrSzTHut/yU2pV3XqMhXqt/bJo7bKr7e3agxxV7gIiIeB6O2ZfHcY1U93DNlWhgW+fymHMTJ09CvHcL1qFDe7CuiYjsOYR7459+y09B3Hg91eOjL0B8YuxliAsl1A7v6sa1ZH8J2yQisjgzBXHGwZxaquQgLg3iemX3NhyrRRp706dRIz3dZfrIpGnfmknj+Fzrp3NyrOlD+q1vfUuSyeSm17qaVxbfag5E18W8205eagPkYdWI8BUIaFAHPq+LjEXLuq/75D/qk5dFuWx6olbI4sb3sE0e6dTzJMveaLyrYW+ZKHNKXu/zepLXZg7Vxhh5zrEnoEUeH9uGTC+ZKy5DD4dGA2t4udHMS6/lu9CuWveFL3xhdQ/7q7/6q/Aa+0Tcdx+usW688UbjeOzZwV4Up06hR9ZJqmUMz1M835rravMz7PvB/hlcE/j97Cty4ADeEzR8esX0yJifx/udc3M4J7APCffjIO2zpqawlt51111GG06fxj0r5/1jj53xJ/PaPMeOFwoSb9WnEbrvs3U/jpXREVw33/7enzcPGOJ6ZYn8M+rP4MOb+jz2zexp9NKr5TDP6nnyplw25/lu8h3Mkr9efgq/0y6hB4hNfmDWDOZIhfY8+Rp+XkSkUsR2C+W6Q3NAgr2gyJuyQTnj0Xq4FuFNGQrWtp5r0Wtr8lBzrVEvl0XkLuPzUZzTX3p84xvfkF/8xV+USy65RK644gr5/Oc/L+Pj46sJH4ahfOYzn5GPf/zj8u53v1suvfRS+cIXviDlclm+9KUvnctXKQrwgQ98QPNOaSuac0on0LxTOoHmndJuNOeUTqB5p7STW9/WfDB00UUXac4pbUVrndIJNO+UVyM/kqdHPt98OtTf3/xNgRMnTsj09LTceuuZvwZIJBJy4403yv333x95jFqtJoVCAf4pynpo3int5nzknIjmnXJuaK1TOoHmndJudI5VOoHWOqXdaK1TOoHWOqUTaN4prxZ+6IceYRjKRz7yEXnDG94gl17a/PPklT9hGx7GP08dHh42/rxthTvvvFN6e3tX/+3YsSPyfYoionmntJ/zlXMimnfK2aO1TukEmndKu9E5VukEWuuUdqO1TukEWuuUTqB5p7ya+KEfevz6r/+6PP300/Jnf/ZnxmtROof8sxU+9rGPST6fX/03MTHxwzZJ+QlA805pN+cr50Q075SzR2ud0gk075R2o3Os0gm01intRmud0gm01imdQPNOeTVxTkbmK/zGb/yGfP3rX5fvf//7sn379tWfj4w0zW2np6dl69atqz+fnZ01nuitkEgkJJFIGD9/9223SrplNj4xiaYttQoaGi0uoDnb2JhpaHT6NJqsrvy51QrHjuNnnn4OTaz/5u/+HuLtI2gMfGAfGr5dccVrjTYcOIimnVu2oKFQNktGrmQK6dXxvAM2QCVjxeW8+edfHn0mRYY5sRgaLb3rHf8E359Bg6FyAc1u3v5WNJqpFc02/LfP/Q+Ip+bQ8DHbe8ZkMvB9KbU8eNqRd5abFstt/ryrF69x/9AAxGkyDZ9/Hs9DRGRsAU2nwgDf43t4Pdjk1uEJwPDaIqNKw3JaxGHDNgu/03XwoBaZV0pAE5OLRllBjEzEbbMNrstm6Pi656MJXUCGbnac2mSjwVEjxLESRpipp0Ic8we3oanV0kyzznhrTPvOZ86JvHLehRKsmrPPzaK5dm8Wze1vvPGNEBfzOeN4uRzWxHgcr/HSIv42hUumUtUqvj+fw7ydPIULjgJ9n4jIxCQazU2dxvO6/NIrIL7oIBpkniazrvFZrOEhmbR2d5nm2g/c/wOIK2U0KTuwdzvENo2N3CKaAy8VchBXq2RKFppmXKkk5ubgAJroVkpN07HGGiPGdtS6eDwhdsvIPE4Giw0f+6mUR8PUZ5662zheXzcajsZDNP8c6sfXR7fhb+oskLHv5HE0QG3Q/NcVYS7KXpUeGWbaVE/TKTS+SyXZnJk+T4Uranlu+Vyk2eSTQ/7dE65dVJ8tfH+9ZrZiegbH6/wijsXwFf6/HXk3s5iXZLWZ6z1ZNFF143g9RnehsXmyB98vIpLuxnG/ay/2XzqO81O2H9dZXUnMoytiOBbcbvz8wACuA0REHJp/HKpN2QH8zlgcr9m2Xfj5Q6/FsfDYCTT+nJ01Ta3rFpmbB2RaHaJh4sAgHuPiKy6DOJ7Gc/AtrHXzM1jPRUTi1HcZMq2ea5khrq3D7Zpj05mYJBLN8W0v8pjC9+7chX2ZK5CLrogszeM16urGut7TPQLxwgxdD/bNNcyB2WjXNI7ntQIbqXKu5pexroeCZsBxWgfEKY8TrllrSlXcAxQqOIfu2Il1/jVXY55lfFzfeHVsU0g1t+aZ29ZSDa9nysLr1R9r5p1ntXeOrXuBWE7zujbICDT0cTyVyrgGTiXwWoqIjGyh/Vcdr+/cAtb93Gkc8+kerHVeEsfrS3O4Lpyi/YuIyIPPPI1tGsJ5fesQ9hHn4JXXvAHiRAJrX0CGqKWiabJ6ehLXn1Uy356cwrVi//AlEO/fhWbew3Hsl5AWErUymbqKSFec9iA0DmLBmTaFQfPa/+Zv/qb8/d///abXukqtLm5rHZKgfWrXAOaV1Y/n6tXROFlExKfcZaPyYIOY110hXeM6mTXnC7juFhGxaC1XoH1PoYG1baAP9+8u9UNI+9oUrQN4nSUiEoQ4Rj0yng4o5hu4PhlbN8iMvVrDeL5g5v4jTz8HcblSoriZd2tNtNtR655//vnV8/2jP/ojeO3222+HmH+b/5577jGOd+2110K80tYVNjINXzHUXoFNwtlUPMrInI/BxuV8X6NM+8tGA6/nENVK7sfeXlxDRL2HY+6HFO1pYjGsU8eOHYOYH0a88ALuu0RE+vpwjc19PbvG7HttP7cj7zLJlMRb53wx7Ql3l3AdMP7db0OcH8N9rYjIfB7XVFU6RvwUzrG9NdyXWhW855mg/WASU0pqRbPe1so4pl+ex3rYoNftCs49Pt2XiNN9xgSZhjvmjUXppW1onNajNt3qaFB99mwcGyHV01kb2zSTNffzfW+4AeKBW96Cb+hq7Qdt0wz+lTinv/QIw1B+/dd/Xb7yla/Id77zHdmzZw+8vmfPHhkZGZG77z5zQ6Rer8s999wjN9xwAx9OUc6af/fv/p3mndJWNOeUTqB5p3QCzTul3WjOKZ1A805pJys3VP/mb/5Gc05pK1rrlE6geae8Gjmnv/T4tV/7NfnSl74kf/3Xfy3d3d2rT2t7e3sllUqJZVny4Q9/WD75yU/KgQMH5MCBA/LJT35S0um0vP/979+UE1B+Mvjyl7+seae0Fc05pRNo3imdQPNOaTeac0on0LxT2skPHnxURET+9E//VHNOaSta65ROoHmnvBo5p4cen/3sZ0VE5KabboKff/7zn5df/MVfFBGRj370o1KpVORDH/qQLC0tyXXXXSff/OY3pbu7WxTlhyWfz2veKW1Fc07pBJp3SifQvFPajeac0gk075R28vyLL4uIyDve8Q74ueacstlorVM6gead8mrECqOE7DpIoVCQ3t5e+cEDz0hXVzP5WSU9lkDNunIZNdUW5k1vhaeffgbi8XH08GD93CLpJI6Pj0F84vgJiGdJo9AlvTIRkR07UM/voosPQXz11ddAfPlFqHG/e9soxNtGt0KcSaM2qiEtLiIBaRCyQm8hh3p0IWn3JUkvkDUOWTeRYxGRr/7dP0L8mT/+E4hn1+gUh0Egxblxyefz0tOD2r/nk5W8+8h/+YIkUk2NxOeeQu3a/h7UNUwnsW8W86au3LEJ1MQ9NoZas7aFx2Bt2noV9f6CAONGSFrTpIfc/BmJCPqkz+qTpmCIqneOi3ll0bPSWAx1Fh027BBTuzQIsE2NBp63NHBMC/WTBHQOjGUmfyqBIoUH9l8EcddQVkSaOp4Pf/vbm55zImfy7uabr1vVB52ZRq3w3btRX/y6666C2GqY19zQ1KVxX6hg3lSWsT+XplEj8gTVywqN+x27dxttKJLuZF8fajtfejF6ejz68CP4+eUcxEPbsf5d8dorIX7ppZeNNrx89DjElRK2afeOLMTVMta/uRn0FckkUB+VsyxwTC+ZbqrLXaTBmmj5KNUbnvz5177VtlqXtd4qlmXqxIuI2DR+4g558jimtmpXD3sd4GcypFd76bU43w0OoWbv3V/73xAvk4ZzjPwDREQqZcpr0jpljV7Wwx0dRu+FJHl8JA19Xby2IiIOaUe7JN7POsBCfSvW+lrDy+QvMDVt+g3MzuUgXlhGDfS1XReGDak2vtG2vPv6Q89LprW24zWKG8f+tF0eb6anQOiTL4GL/Rcjf6eA9G0d0pp1af46myUya8CHERq5gIVttl38zuePoq7w7935pxAfG6f5UkTcFK4vHTrvuKAu8M//0+sg/qV/hnq5oY95RXYPYofmtYjT9UqQV1Cl2pzXi8vL8rorLmnrHPuBD7xb4i0d/iNHUMt5bh7783VvuhpfXzA15p95CuebgJJ5yxasZwkbNYu7e/G8F0m3+fQ0rhXTXaZfVJXmcfYceuOb3oRttPF6ZEmr+97vfQviXdsxp5JJc21XE6yp37//UYhZh/uywyh1cePl10Ns8VqPfEUWlmhtKCKPP/4sxJdcgj4icTsnIiL1ekM+/6V/aFut+80P/drq+VdrqPdeq5NHDu29ijVzXZcr4VrdIQ+kWAL99o4eH4N4hjxgfKptW0k3fyjCv2iJxkKVPCC48sXJi6aHvG92rNF6FxHZth39Nvr6s0Ybusgr6NQkjpXpGdyPDw1innfR+maE/ByS5HU5E+Er0k/7cSEftOefP5OT9XpdvvDFL7ct7656y7vFbdVim/wRHZvXduzbY/4urL3BfMZzJMfsbWDTGqdCGvRzs7juFhGxqN1z5D+Tz+UgHt2GedTdxX4J2IYhqte8r202gnyX6Dx5fcn7MON+CHl+zM3NQjx2Au8ziZg+oOyh2dvfHLNB4Mv81PG25VwsFlv19OD7QldeiXu1n/mZn4H461//unHc555D75KLLsL9+s6dOyFmjz/2sjD8+Kjvowy0+fqylwVfz7XeFiIiSfJzPHQI7/ntpn1zVBs2avdGbRofx7UO9/VLL70EMXuCiIhkMjivcL+sPc8gCGR8vH337D783/+zJFptvmYS71PsOY1zapW8R+tL5r1in+6P8Y6+sUDr4iJ5epRwHrCK+H5/mfw46mZtDY273hzjZ1wy2OB7cLyFcShnbDuivtOP+C3cohKt/Zc98uaiew3eZQch3vLP32k0IXclemMvJzGfjhab16pWLsn/9d73nlXOnZOnh6IoiqIoiqIoiqIoiqIoiqIoyqsVfeihKIqiKIqiKIqiKIqiKIqiKMoFgT70UBRFURRFURRFURRFURRFURTlguCcjMzbyUBfn3R3N7W5yjXUe2wYmoYYbx3dYhwv04X6xawHuEw6a8uky8b6/4tXoVYca4guL6B2qojI7DTqzT38yOMQ33ffAxD3kKHP3j2ohbtrB+rWHti3D2I+RxGRnXt2Q8ya5ukUaZuSJmFhATXwCgXUOi2Sft0LL7xgtOGhR1Dzt0w6+43GGU29MDR1jDeT+7/7XXFbguf5edRnPOajdl/QwHZ7ddO/hCQ+JVjK4Q/iqHvnktaeVyX94hAPGBd63Y/oLw9/xqqRAemUxlzUMk2nUdXQ4UelIWkYRuiuC8nvu6THv1xAwcAq6ePaIWrCeqRj2hDqe8fshxq95fgU5mbaz4qISBDVh5vMlVe+dlX7uVHHc4uRJ0CD9FKthtlej3Q9KzX0NphdRF1mn7xkRntRy3noyksgXiQfpZ4tw0YbevtQQ7e3Owvx/aT9XQ6wDWEGc+LkqTGIWRN9agq1S0VE9u5FXd8qeTUtzp6CuCeD9W7PLvRT6e1BbVPWW/Ui9P8tEsd0KE61fEJqUX48m4hv1Vf10w0tWfL1aXhcp8y2FpYwpwKqA3OUc4tFvBY3veUmiLN9WYjzeZxzbcf09OjpRQ36dAqPUaV66tFaYrnIHktYh+p1nOfTqYg2kLdJMokauYkU5lAsiXGNfJx4bXH6NMahbS7jto+iTrozi309t3TmGCFp8m821cUpsWvNdUZvth9es+h6SEB+HFHS4rxG8EnzOMJnZy0N1uWm77BoTo6cH3j4GBrn+HqMNOUDOoc9W3Ht91M3XQrx57/4TaMJPs0bbJiyfx/W43fc+BqIR/swl+s1XAvWqnj8cgnnFBGRiQlc4x4/fgziaiu32busHQwM9koi0TzHIMB2BbSu6iZ9cM83x0itiuefW0C96HnS9447OM5T7O1E3hectvv27jfa0JvFObBWw9oxNobzmx3DNiwX8P1Dw+gT+J73/CzEmS6z3n3lHzAX9x1+DcTlEu4Jjo1h/Vqc+VuI33jj6yDevW8vxO4A+jOIiAySV8VFl1wGcbU81fwv9c9m48Ziq9ryQYh9xzmXzeKYd6umb51PY3pqBs/72te9AeKRLTgffu8734WYx+HsMfRAmzuG40RExKL1qJ0gzyrK4zKVy3wBx8nEKfYtwDoTj5vzW1c35jH7ZMXJG2pyAtcztKWRlEU+hXQ8P2a2YZj2rXu2432Hhh/9/+0gDIJVrf8G5bzFauzsWxY3fd7Y92ojn6tyGddNDfZSo5zZyKdARKRew7WbT/OwQ9dseRnrToL9b2KYI667vgeEiIhF+07OuygP07XwefF3TE6g91qtYvoX8Xda9LvL9dYal/1YN5u1OcHX84knnoCY++lN5D0lYvqjPP00eqwuLWEd2UP3x/rIr4rnV+7HqOvNP9vIX2P/fpyj+f5ZnDzO2D+Dx42IOaezXwr75Zw8iWuwb30LfbqOH8caz21iLxQR8zz5+uXW+Om02yZ6UGKSlFabH30eXstPkDdQHufLoIR7ShGRRg37t8R1h5auLg35JJ0+uz6mN8ghEZGA7hEEvF+gjVCchnpIPk5ct3i/EkSUrZA8AWt042+Z9mp0C0+c/Xj/ecdP3QTxtnf9FMQzg7gXFBF58tQcttPFsWC31gZ2Y/09HnzmrN+pKIqiKIqiKIqiKIqiKIqiKIryKkYfeiiKoiiKoiiKoiiKoiiKoiiKckGgDz0URVEURVEURVEURVEURVEURbkgeNV6ejT8QBotzUaf9MtSGdTBc0iDbnKSdNxEZKB/EOL0AdTTzedRn3eBvCuGto5AXCA94y//5V9BvEh6gyIiXT2oqXzZ8JUQh3SeBdJbnVzE73zx5MMQf/OehyCO0hvv7cK+S6awH7LUTxKi+Fsuj7rs09NTEBdJp31hAd8vIlIu43vcBLbJddfqs7VXH/DU+ANit8SUQ4/0333Uk6v4qCNnheYzxDhp6VkJPGaNjumQkLOTIm0+EhwPfRzCkXqK1KwE6d1WaqgJ6ZDGvMTw+oQxzJkCaTbXqhiLiGwZQq3ozBbUnK8mUee5PIP9Fjaw31wHdRd9QS1M1hUWEXFofFUCbnfz9dBvb86JiFhhKFZL1z3u4gXzyUumXEet00bV9Feoke5nhXRB2atAquRdQLKePunfjp1A/wxn3qy5r7n8tRAvz2NNXCTfo12khxpL4Vh4/KEHIb7v+6hVOjxk+ors3oFtmJnGPAvqqKO9bRSPkSZN1gTpHbMOMM9VIuaYtKmmrdS7arW9euPJdFJsq6U3TqKePunphuSpUw8jREADzDmPxlEqjZqd5WWcz772lb/ANjTY6wm/M5XEayci0pXBOTaZQG3+3kGc3xzSLXVJ8z5Or3fRiskVU3c9meQ3YY5YVH8th2qVjcd0YnieqS58nT2ZRET6SB/VJl10J3GmhgdBXSbRfmBT+aNP3bmqp9zTm8V2xXg84WdZA1lEJJHEdQ5rIPukbR3S+DNGLP0gJP3iIMq3hzVyI81HzuDSyy5rmtMckCvhHNDVQF1mEZFybQziRgXzpN6NmvNf+yLW/K+HuN6s17DfZmdR/7gYoYe8sDgP8XHyBFjRL2637rOIyMUXH17Nn4kJnIvKNezP5QLWph7y+BARicVIVzmFY8wjj6a6h99ZI28Di3TzWXP8iSdzRhsGqZ5tHUUPq6Ul3Mcs5XGeDmlxeMP1V0B87NhRiMu8bhCRI8+O4Xs81lfGMWtZ6EMyvoB59OW/+wHEA8MvQ9w/ZHoVjmRpfUnv6XOa/VRps5eMG3PFbflB8NwSi9Nav45tq3nm3NLThXPH8hLWy+efehLiK16De8yDe9GjjPdrU5PoKVDI54w2FIv4Mz+/gScUzX/xxPo69zZphwdGPolUyjg+vQa2gb0TLBvHqkUF2CWdddeh+TJm7qXjL6In4PVXoo+Ms8aniXX3N5vm+q01p9Ae1LF5f0E+kg3zerLGPOv+T01hXVlcwHlgB3njcfXf6PqJiCwXsE7UquzxgfM032fwsujxwNYFZ+MfyvWDPVG5ZvN58P6+TmuVWpmOnzTXOzHagxj+Ya1+aLcfqmVZkf4EK6+t5amnnoKY/TtERG6++WaIuU489thjELPHB3vaDg/T3o6uXdTakq8nXz8+L/bk4O/gccPv57WriFk7lmnfxF4nDzyA3sDz8zgWN/LwiPI2YTiv17ax3Ws7O18Wu7VWXb4XvWNiy+g53EU1I8ZesCKSoDWRJXjNPTLxoNuA4qxvnyF1qrd2RHfxyOVbUmzRYRv3Hsnnh65pxcOcKllm7tfJA6nWg3Hvgd0QX3Id3mvZfiv6i/kXozfbk7R/OLaI10pEpMTzsEvXonUpIpYIr4j+pYeiKIqiKIqiKIqiKIqiKIqiKBcE+tBDURRFURRFURRFURRFURRFUZQLAn3ooSiKoiiKoiiKoiiKoiiKoijKBcGr1tOjUKxKILHW/6PW18vHX4J4bgZ9I7oyptb3jTeint+TTz0O8V133QXxvn0HIL7ssoshvv/BeyG+9957IJ4aP2m0wYrjM6YY6WynEqj56pKmmk36gYkYv47CZsUC6teJiBTyqPHb8FA9rlp/HuIK6czXG6SJy3r1sfU170VEUt2o6WtqT4ZrXzQ+v5lYsYpYK3raLrYrbrO+I16PKC3ERh37L0Hae/Ea9o+h/Upal4GFsReiJmQQobVvURcGdcwL1soPSFFwYIT0klOkzV/G8Vf1TR+XdGIU4mwfamTny+QHEKIOZYz0rsMYjQXS40xGaaFSLoashZ9q+Rv4gSwI6mZuNraEq14PDY90Xknnk3Ok4ZvXnN9TrZFeO3mkJElY8vQMevVMTOP1KDSw7+ozpinAzEk8hhXgNdwyijmxYxv6vNikXfuYhzW3WiSPkAg52VNj6D2ySB5De/fjdw4ND0DMeses4cr1LUKK2NAa5mMkWhqroWPW683EsgKxWmOANa+dGF4r1hANQ1NE02sYZgh4TKqnsST2XW4O5/kwwDHokLZqqWL2V7mCOWHTEidO2txJ0hdPdqHvwZZeXDcMb9kH8Ugfvl9ExEmTHxHpkuaKWLNnyCcrRrrt27rRp2RgdAfE7N8jIuLT3NQzSL4g2TPn5XmVtnp6fP+73xFT6XYFnu9pjrXMOZZzl9cThr77K+hOny2d8KMw607E0p3Pi9r5wiL2w5FHv3Fe2vbjQqFQkUarRl1+OervDw7hPPDoY09CnMvj/Cciks/P4Q8CvCaJBK83eJ7G6+PRvB8EGOfzEev5AtbMSfJksEmD3HZxXZSgddLsDPpsuRZ+J79fROTggUshvv8R1BjPZHBfk+3F9aSbOgyxR7+Lly9hv1WmsB6KiHgNPM/7n3gR4gN7mp6M1Qj/s82kXqutVjCL1pvVGnkGkidWOmHuneI2zl/9Fx2COJdHH4NiDvd7MSobVfLNGt2Dc0tvwdxL55dyEJfI/6ZK83KN1qJ18sNslNevx6yjLyJik9eWQz4gDs25PG0EHuZUnRY4DYs8Az1zPxD6eF4Lp9Ez4vD+M2uFer29t1p8z5eV32mNueTpwb6RVIcKRfNcM+QDMDeH9XDsBHoibduO9TQR43UyjgVeI0dh+CuQvjvvfdlXiz1TGfb+Yj9OEZFyGXN7bGwM4l3kXdLTg/c6+LxLtBbkscN7dxGRgPbrFnu2tMZC+IprrM3BcZzVdcpGHjacg0eOHDHew34XN954I8ScDw8+iJ6PL7yAnjtzczhfb9mCa3f2xxIR6e7G+sffyX4Yi4tYb2dncWH92tei7wHv7aPWluzJce+9uA9mb5MoX5C18H2qBPmfcixi9kOSvC7Xvu55ntx///3rtuF8YldrYrdyvY/uIw2Qr1qc9oOhmHMLb+Ftfg+t0yyHPD7o8z4NQ5f2Zm7EOLXoGvE14ywpkbFI0cf7hMUG3V+L4furQ+hZLSJy4JZbIB69Fv3ett9wNcSJvTieZgNcWzx9Cv1U520cO/O+uber07zj0/1qa+X12NmbeuhfeiiKoiiKoiiKoiiKoiiKoiiKckGgDz0URVEURVEURVEURVEURVEURbkg0IceiqIoiqIoiqIoiqIoiqIoiqJcELxqPT1yywVptPQPp6Ym4bW/+suvQPytb30T4h07USteROS+B74N8ZOPow7e88+gDu2zR7bhd/5v1FrMzaJevcRJJzNpdi1r+rKGZKFE2tzLOQjZgoA1KlkO0LJMnbOQtFBtB3XVnFiCXiedYnp/SOpyrNUYBKZWZ0AnYujJh2c07tqtnp3pzq5qhcZJr9GQ3nNRLzA01ABFwhD1jK2Q9N7pksdIc96Q6SbFQM9D3TxBKb/mMUhUsO5RTNfYCbANPaTJTFL84gXk4xIz9QETCewrNzwN8cgAXunhgb3YJsori9rMPZ8gLcCoY8TIM0dax/Tqntz3xCnj85tJEISrGrQWCRCzfibHUfqpHnnB8NNtjmOseUylY5CSP1nG76w0zHFer2JyV8hLZmkRr/niPPpvLJOmazqJjdxxxUUQu655zfM5rNOjo5ibA/2oucsyvuy7FISsE4z97NqmDrdDdZj1i4PWtQq8iMG7idiOiN0SDWbtYNYQNVyXAlOHNM51xMeD+gFe/5iF48+yKWdpfuPZzI7SQjV+gn3dIA1zr4E5Viqiv0Zh+ijE00efgTibQQ8YEZFMD/6sqwe1vi2aY2u0LnCS6/8uCuuVOyzULiI8wvl62ms0UB1eWGwyfX0DqzXOa/Acur4Od5RnVUg/Y08P1klmXW1+fSPPjk54evB3bqSZLbKxdwnPM+djtdWJvjlbFhcKkkw29ZgTSfQUGx5BPe+LDh+E+PHH0StIRGTXDt5n4Dgsk750pYa1h9fG9TrnKR6d9cOb7+HxgXkReJQnNFZqjSLEzx5B3fOTJ3BOzWbRz01EpFjHelat4HdaIc1rNcw7N7kbX2fvPJcXJ6avyHIBPcuefwnXEqcnm+sAr2H6H20m+fzS6lo0k0nDaynyR+mJY05GeVnUa5gUFdozOrT+WFpGzxeHNgjVYg7iQg714/sH0dNKRGT33v14DPIhKOQLEOfzOHZYq79CPgmex+sjowniC/nahezbhO8PKQdt2nNa3Nf0+VTEHHvbTddCfN01qHG+tHTGG6NWa2/e1RsNcVqnGHjku5nCHEmnMS9jjjlv1MmbcmYG9dm7SPO/m70saF6wNpiTo+Yufk+5SHtfvmZp2nvTMTea970In5GeHhyjCwuYN5OncN9o79wJcYPW+Kfp3latQp6pEfD+wQ6i13rtnotd113t443WHty2qFp34sQJiCvUN29961sh7u/Huen73/8+xKdP4z2HQgHrFHtniIgMD2P9Y98PHjsp8hadIY+sbDYLMftnPP003ocUEbnvvvsgPnbsGMTsmbVnzx6IR0ZwzzvKXpo70MdpO/nxiIgMDQ1BzH4ovb1nfLaKxaLhv7KZhHFHwtb910qM/G5oDVajvGxEbLUCwz8D606C7qfFKW7Qfr9OcZnWdaWIvz3gyuPRftuKY94E/VmIkyM4FrbsxBwYvAzvnWy79gajDX2Xoo+1tRWPWbDxRJ6aG4M4R95fKQvnBL+KNWChYtYrvl62zX3f+ox/9rVO/9JDURRFURRFURRFURRFURRFUZQLAn3ooSiKoiiKoiiKoiiKoiiKoijKBYE+9FAURVEURVEURVEURVEURVEU5YLgVevp8Sd/8l9X/Q1m51Bn9vHH0I+jXkTN0GNHZo3jHTvyJP6AJQdJx23u1Al6AwvskgYh6Syy7mLzO/E7WEfU0GA0ZMroGZUhm8galaZWt0U/Yx35MECtVMdF/U+L1OZC9uywTW1GJuBHbYb+6hpPjzbrUu7YPiSxuKmdLGJqqfP1tCPO3Wtg/wbUv4GPWqnd3agZyjrOtkN6yKS/6lpm20PSil5uoDZm2cU2ZFO9ELsefmfcRj3Bg4dR51IsU4SXtYjdkM8LdSbrDubVfAG19i1KonScdGkjriFfH1/oPWHzmI026++KNHVYz+jus+Y8vZf1UiM0eIW0vlMJPNdEjGsPXrN6DI/ZRxqSfaRj6UV4epTKqJlarKB+eINO7IVnH4a4J4teCJdejFrSfVnM0zi1UaSpL7oW1j+lsi8V9hEhjVbW0m/Q+I5F+IokU+jBYlHB871mvgX+xjr95xPXtV5R/9fwLqG5xY8S2uY0JK8IzydfrDxq6MbjeDEySfTG4K+sVc2c477ldvPrhkYoTZk2zbkB6ZjmGzmjDZUlzKFcmc4zhTXe5hrvchtxrLoujd2IZVxocY7R+F6j9e8HWP83G9taU+tcbLvhJcPGBpFS0TzHrq8PzmOY12o8Fvj1qLWd0c5XARuvnc5tbWV0fYRuN18/bsPKtQjDsP3+H4Erod/Mt2oVa5FPfbFtdCvEQ4O3mocTWkeRv8JSDl9fzKO/wuws7lNyuRzEy8vLENfr5rqEPXGM3OQ6IHgMi9cO5DlXLOL72b9BRMR3cM5rhDimLYr70jyvY5zMYH1cJF+KpZxZr/KFHMQzp6hvW75Jgd9e3yzXtcVteZIkEthPvBbh4VCvRawH6D0shZ+I4/Ub7MPv6E7TtejCNdP4BHoMnKK9t4jIcgzXdYk0Xq/uPtT+7uvH68vweVYrpMNeNX0OqhX0c6hWcc6tNzBPG7TnaXg8lnDc9HSj/vhNb7jeaMNVF6N2foHG98zimbheb+/arlkHmrnAPlgh+fwUF/D+STJhrmFrNezfFPkKxukz8+T5Eaf9WA/5nDXoelXo+oqIFKke8pomRv4IvE/i9/O9EPY78htmnfGpfvTQfv30FPpGjB3H+0gurXeWyVeC/dnY30YkYv9HrHhFRd3/2Uzi8fjq/M9zFc9LG3l+iJg+H3NUi772ta9B/Ja3vAXi97znPRB/5zvfgXh8HH2f2GtIxJyTFxbwPgT7YbAHyNatuI6Ik9corxvZ80NE5J3vfCfE7K/R14djqZv9dShmHxH2JYnyV+Hrxeex1meUc3yz8boT4qWa5xRegn4kCz9YhLhheAaaxwvI4NKnNW0igfcEYg7GHvnySjfepwjIR7QyhNdHRGSAfFcGBtBDpX8L5kB25y6I0yP4/u5R8p7sw7olVM9FRBo0J04sYm2byucgnstjX7se5tGWUVwXTM7S+EtgHoqICC03bfYh9Om/Z4H+pYeiKIqiKIqiKIqiKIqiKIqiKBcE+tBDURRFURRFURRFURRFURRFUZQLAn3ooSiKoiiKoiiKoiiKoiiKoijKBcGr1tOjWs6L39K6ziRRT+7GN1wLsUUabPY5ahWLiASkgR8aj4NY/5G+g2X2I8SnWRdvI/1x8yw21kHEA0Qdgb+D2sS+FKyhxhrNfHzSv4tqMcvocSvX9l2j0ZC//fpXI46yOaTiWyTW0itkPcfeXtRO7OtBXb1EHLX9RMxr7pGWbCNAHcmEoZVIx6QOZU1n9tsQEYl3488GyFfEc7FNLnvNkO5kJomahEEDr7nnmbrJ3A8x8kcJyeOjSp4RqQTqBfqkS9vTlcXjRYwe38fzqNCYd1qHrFumbvVmEwTBqr4n63yyTrpPPjpROtVeA69pSIYIrAvrBVzP8PUEeYLEHPIIifCy8ALUk/ZIe9+yMAfYPyhFWtE8vtIZ8tuomxq8Voh5EpKvROhhG3w6RpU9kOjaVEjjvBw19YQ4XnhMN1peHu329LBi9mq9Zm1T1mF3qGoHYYQ2erhBTpFPD9kTiUv+Gk6KakaA+REum20IauRxZBhI0diiRsRJj5Z9nOw4vR4zvYO41tmsm29hjrHPU0geSha1KaR+iJJHtuhaJKjd6eSZ8er5G/twnU+WS8urfcR9xXMP6wuzB0sT8qMJ1vfoMCyR6DsCGgy+UY/N/mI/IV4HJZM0B/ejxi5rJLMucpzyLEo32WVvGJtzmfqa6i23gcdGjL8zIvFcGi/clytrg0ajIX/3t39jfH4zsey42E7zOnjsY2Ov74fH11NEjIWsS3rsg6TDPDA4AvHhgxdDPDeP3j+sOT4zM2E0IU+6yuwdUOd1AIkfWzyeaN1l0frfi9C5Fwu/I5HAeZ/SSuJxfP9gH67tdu8jjWsb192hZa6za7VDEC/Oo5dXvLX2qNWq8t+f+5bx+c0iCMI1e0vLeA1jmv+cCF86mkODAPsyTXnKlyuewBxN2rjG2tJ/CcQ786bO/dwiekA89/yLEM/O4/VMkadZbw9qnCeTqOXN67wsadg3j8lzIPZlLodtmJ1HjwnPw44ZGBigGPXH674p/v7N76MHHftZlutnrlWUN8NmEoa+BK01gMP3ARoYl5fIay9hzi018p7MU/9m0niNvTrtoYx5gOoSlaFSCdskItKgPV+CvAhsvp/i4Xk2qngONZqrlvOY19UoLxn6Ga8teA3bqNXodRp/dA4erTWqDbMf+L6R8bq30rb2enpYlrW6nuP1Ca/zeB91Nj5p3Nfs1/jXf/3XEN98880Q/8Zv/AbEDz+M43dsbMxoA3tyDA6ifyl7eLDfBn+e/TVS5Bl54MABow0b+YBs5GHHfct+Zuxxx/cbRExvWY7XHoOvy2ZTSTsStryqht/+OnjNIi8iGUTPjzjd0xMRSZCXaILekyaPjr5h9N+IZ3HusNinpY/WN1nTTyPehfcMHJojbZf9aNn4FeOKizlS9MiPbgnnRxGRGfLRnSZvNZ4S3QDHfKY7C/HTM+gJMl7Ba1NJmp4eGfKL4/vXK9O+FZ79Hlb/0kNRFEVRFEVRFEVRFEVRFEVRlAsCfeihKIqiKIqiKIqiKIqiKIqiKMoFgT70UBRFURRFURRFURRFURRFURTlgkAfeiiKoiiKoiiKoiiKoiiKoiiKckHwqjUyv+v/+az09DTNXEwTMDbTXt8gXMQ0QTLss9mU0eL3k0mWYehNbYgwtN3QhpzeYB7i3A3aza9gx1o+L4rZfP0cmxDhpW6eJ71nrRlmoVCQ0TYamWczl0s80TQWSjpo9sOmUz1ktOxEGkCRsSd1fyho1MPGuWwYxaa3DWsZ32+bhtL8s5hFJoD07LMR4njzYmR+ScMxRuftuhHjjww0zcGARq8JC9s80rMLYl/QCI+f37LZt4hI4JBxOb1u2c3POKFp3rjZ+L6/ajjGxmNmrSHTVc80wGZDPTu2vrFckszS+HXD/JeM6tjEtQmOl4DN1MnUj82orBCvqU3G565QHjtmsUkn0STMZRNiapNLBmABGV4a8wgZegcNsw2VEuaTy+aw9WYus/n8ZmM7abHtZh9aZJBqmDVbmGOpjGmy6vnYF2yiysatrovfwYbRNTIbTrrYb6ke07zML7H5OZrqcj1mY2w3hsdMJsigmg0ZIya4OhlommOJ1xqybsy1zGLD2whjba6HbCgdrrkWUbVyM/m5X/wXEk+06o3RFfgDNnFk03EREYfyyt9gvcjFjI0gGw38fIPmbMeNMDKPxdd9D7/e00WGlmSEzvWV607ICwkxjcctqq++YcZLeWlvkKdEncZ78zvIaJkNwVvfWa1W2m5kbruu2K1+jVl4fepUrBoenpsfmOOcPGrFonUVG8m69J1xul4jg2imvKUvC3Glusdow9TUJMRjJ8YgXsqhOW+RzCN9amPA+wNat9kRazt2tAzJPLTu4XnOeGik+oP7vgexJa+HeHT7NojdmFmvskls19AeNAJNtepNpWKaE28mYWBLGDTP32VTTl7POOuvuUREPBpfboz3a5RjNpqD8n5iw+OzYaqIbOlDI9ftI2je+9LR4xgfOwbx+PgYxOb+D2shz9kiIg71FU+B8Th+prcX6+3o6E6Iu7pwL8dmv5NTaMIqIuI3sEas7BtXcNfUdN5Xbzae3xC7Ne85lGdxmmv6B9CcOeC9mojUlnFtWqlh/1QqvA+ldRWt3WZm0Tg3TussXpeJmLnLFXllHb2CE6P9A+1TPTJwnp+bhXi5iOckItKgNXqM5nVjKUV7GHZsL1WxVpbJKD1qfck9Y9ypan3GvOe1uTiOs9rH/N3c92kycM+y2bNsbBo+OooG0vx+Xovwd37wgx+EOJ9Ho2YRsw4YOUTrhCTtN9m4vFQqQXz6NNYVPp7IxvsH7jteMzPcRo77+kxz70wG91H8HWvvjRUKhXW//3xTdQIJneYapDqahdeuuv0dELuHXwNxeisam4uIJPpxHWZ34XwX0GQT0hzpU47wPVSX1pJOzVzL8/6tTvcVGpSXRQvjXB3ryHQxB/FUfh5iy8fXRUTqNtbHZR9juiUg3TFccx3NYW4/mcN6WhMcG3HPXGsUbVqPUF+m483P1L2oPoxG/9JDURRFURRFURRFURRFURRFUZQLgnN66PHZz35WLr/8cunp6ZGenh65/vrr5R/+4R9WXw/DUO644w4ZHR2VVColN910kxw5cuS8N1r5yeOGG27QvFPaiuac0gk075ROoHmntBvNOaUTaN4p7WR2pvlXBNu3b9ecU9qK1jqlE2jeKa9Gzumhx/bt2+UP/uAP5NFHH5VHH31U3vzmN8vP/MzPrCbrpz71Kfn0pz8tf/RHfySPPPKIjIyMyC233CLLy+afCSrKuXDHHXdo3iltRXNO6QSad0on0LxT2o3mnNIJNO+UdrIiB/O9731Pc05pK1rrlE6geae8GrHCH1H4r7+/X/7zf/7P8su//MsyOjoqH/7wh+W3fuu3RESkVqvJ8PCw/Kf/9J/kV3/1V8/qeIVCQXp7eyWfz696ekjIfgA/jD7mRp/ZwPPD+PwGz4vOplfP+TTO9VJFvZ9/xudBGrHrvvrDtCn6KK9EZD7I5uXdh3//i5JINrUfXdIPt0mLn7X5o+DPGL1vRemxr3k/6f8ZX0kmK1E9a9M1NofP+rnPmoSGFjgdP6qihDyGDf+T9bVPAxJL5Taxol+UFiprtxvyq62P1Kol+fTHf3bTc07kTN79m9/4JUm0dKe56YZWO73B4b6VCIsiQxeU9W5JI5muMWuzsyGK5ZhjwTJ8BMibgA7CHh78lWKj5qNDWppBaOqhej4Kr/OYDnls0OfZQ6BGmrusEc6+FSIiFnveOOwr0Xy9VqvLp/7rXW2rdduG/+mqp4ftYD8lUthGJ0na7xGeAj5p/Ad1rk3Yl3wtWDe/QmYKPmk2r+h5riVhofasK1mIYzHUr/V9qnV0DvGI79gI9qXYaIVFFh3mnLuBpi9746y0Yr1GBGte9/2aPHn0/2xb3v37T/wfqzrChlcF+xfxuUfNcOQpEGzgibQhVBsd0u1mXefmR+gzEe+B93NMuc8t5vEWNf54rWFRnTH82TZYR7MHyIZeNGJqUnM7V45RrVbl//j3v93WOfbjv/cfVvOO21mn2sJ64FFs9B6eQ0PymuE2cP+yl0Eqvb5Wt4ipGb60hJ4ei+TxMbe4CPHCPGo98/GqEZ4Y9QrqSdfJY8xiTwZaK6Rc1FrftQv926644gqIWbtdRKQrhXWd94wreVitVuUP/uAP2lbrfvn29636+QyRJj17BAYh+8pgvzbBHEmQP0M6iX0ZsN+K4Q2EcbmC19uPaEOD8r5axzwuV3EsFWuYD2Pj6ENz9GX0AJmfw5z0Ita3huUYebF1d+E6YMdO1G7nscVjj8d2lNY+D//hEby+I2viRqMhf/Xlr0DebWatG73oGrFb9Z89r5Iu1hGX1sC8ZhYRyZdyGOfwGrE3npD+e0A1wec95Ab7ERHT881mrXxKCvZcSWzgz8bXOKq+ez7mtuHRGay/NksmcHz6tHM1vNeMFpiYno9nfu7V822rdb/zO7+zOr+yl0V/fz/Ea9sjYvptRP3M8HSh8y4WixCzX8bExATEU1NTELO3hYiZM+yfwT4jfN6LNL/yOfD7a2wUJqafBq8/+Zg8r7jkD8d72gZ52xw/jvU46hi33XbbK35noVCQoaGhtuXdb37x05JIN7//uhLOLTumsf/5PlKGvPVERLpH0CsmNYCeVeUEeXykMLfT3TTGqUjEqO70Oub+LXQx72p07+PU7BzET4y9iN9JfkaTszMQHx0/AbGTMf1E5zz0Zlmi2jfQg94nEmCbjxZx7VBIYr+lA/z8UNxc11UTeB6D5DeTSTave71cli//8/caORfFD+3p4fu+/Pmf/7mUSiW5/vrr5cSJEzI9PS233nrr6nsSiYTceOONcv/997/icWq1mhQKBfinKK+E5p3Sbs5Xzolo3ilnj9Y6pRNo3intRudYpRNorVPajdY6pRNorVM6gead8mrinB96PPPMM9LV1SWJREI++MEPyle/+lW5+OKLZXp6WkTMJ5/Dw8Orr0Vx5513Sm9v7+q/HTt2nGuTlJ8Ajhw5onmntJXznXMimnfKxmitUzqB5p3SbnSOVTqB1jqlE4yOjmqtU9qK1jqlE2jeKa9Gzvmhx6FDh+TJJ5+UBx98UP7Vv/pX8gu/8Avy3HPPrb7OfzIYhuG6f0b/sY99TPL5/Oo//hM0RREROXDggOad0lbOd86JaN4pG6O1TukEmndKu9E5VukEWuuUTnDvvfdqrVPaitY6pRNo3imvRqLEoNclHo/L/v37RUTk6quvlkceeUT+8A//cFWbbXp6WrZu3br6/tnZWeOJ3loSiYShm8ewJDMPi9DwIIjQVT9HAw1rIzVFQyf6h/EZ2QDjO85Vm3rjH250xAhnhA3fsREbeUBEFb525V0slljVfWddUYc0Q20jL812sx8Da32HhuY1PYekQxq63UZfReS+8RnSdycvhI0zmbwY2LfkLPw0WAOdPTi4X+yQ9FpDnjDx+2zDEEKEz4ztF4JWbq9on5/vnBN55byz7DNS8nHS6DS0Rrnhnqk9u5EGvJHLnHaUI0aNNbT3o3TuMQ4t1pc2PoJtcqx1Y8sij5AoL5mAPTvYI4DyinR8gwZqrNbLZXy9jq/7VpS/Ck6zJI25Wg9r9aa2artqXRg21lwD7DzPp/Hl4+ejxrhHfhi2jVqxEpDOc7h+7UuQnqfH/Riluexg51px1BV1Yni94y7q5ToB6rEankr0fexLIiISkDb0Rj4Vpj/R+mPNPN5ZeHdRw3EoNd/brrzLLS1LIrFynWiOpfnS1COOWLJuUEhsqnXsu8Max667vs9WlJ+Gs8HNqagN3lq8yPlqzfvperIPjIgYv8LkG74GdEye/4y1CL7Oc4Yb4VvCfcnxynmvXOd2zrG+563qtm+k386vR/m48M+MtRiP2w1yxMxD8rCKyP0UeVn0kebxjp071/3OYgXns1oV6yUbi87PoeeHiEiefEPGTp6EeHZpAWKLzrM7jRrMrM3+5JNPQrx9O/oziIhs2zoCcW83eTu16sjKdW5brcsXDM31FeJJ8uPI4PXt6cFzEBFJxFGv3SatbzeGxwxoPdJo0OKD0prbGnPNupSieTpeZ78LfD1NuvVDg6iRfmDPXohffvlliE+MjxttWFhCrXYev+xFk8/nIe7txZzjsczzThTbRjHnhge30DHPjHe75R22b98+6enp2fRa1/RyafbJRt5DcaorlVqEjwvVw1gcfUH8xvp7ysCY/6i9AddfM+94T9g3gJrw/VmsfRNjWIfO3ST5bNZV63uictwgn5HQ5jkCPx0170StP6Lb2N513b/+1/96VU9/o/mUPbSq1YicI6+JMu29+Hryd8YpR/n9LI8Udd9pbg69E8apFvHenD05+PMMz2WXXHKJ8Z7Dhw9DzOe1kccHXyv2SuHjRclGsezUnj17IL7mmmtW/3+ldrbtnl0gEm8Nie09OLcM0FzTmEafFz/CQ6XukW/nMq1f6J6CHfD9L/x8ivYThRyuoXIVsy7FMuh/kepDv4tsF+bdDZdj3jjkRVkqY5vyl10G8YlpnHNFRI7MY65PNfAY8wu47qvSjY2Ug2uVeg3rVsXC958McI4WEfErWDeWyHMs1VoP+RFec6/ED+3psUIYhlKr1WTPnj0yMjIid9999+pr9Xpd7rnnHrnhhht+1K9RFEDzTmk3mnNKJ9C8UzqB5p3SbjTnlE6geae0G805pRNo3imdQPNOeTVwTn/p8Tu/8zty2223yY4dO2R5eVn+/M///+3dvWsUbReA8bPxiesHcUHERPGDFIKFWPgJImpjLGzsRMFWVBTFQp5Oq5h/QBFEbNOYwioYUIOSTvA1KlipKH4hiImvJqu75y1eEzNnxszec092ZjbXDx4estlsZu+9MrubcU765f79+zI4OCilUknOnTsnvb29smHDBtmwYYP09vbKkiVL5OjRo3O1/ZgnRkZGZOPGjXSHpqE5ZIHukAW6Q7PRHLJAd2imx/95IiIir3+fBUVzaBb2dcgC3SGPnA56fPz4UY4dOybv37+XSqUimzdvlsHBQdm/f7+IiFy4cEF+/Pghp06dki9fvsjOnTvlzp070mFOb53N1OnvM0+xUnPqY2hUQFPGW9lT1+NOa2zom8xuTsZb2Vuc/XTM8Co0d7zVVAfHjx+Xjx8/znl3kxN/TqG0463aSmYkUOh+RYy3MqceMt7q99c4jreyt2nHW9XMt9SIcSHhkSLBz9d+f81UA3Pd3Mxtmpz8c6qfHb8SekTs5yNOXw+PtzIjXcz6x4+3CgqN2GkLVxMqMzSmJ/Ql5uvNz1/MOBHbkEgjY0qCaxcaBWCee2Y+TiLhU7Cjx1vZOM3nzXirZu3r6jPGTZXsc6ydn1Ozs3HCt1uv2TEXwbUpmfFWGtqDmn2C/bhu9lMRp/nX7D7anHJbawu+5GkzI7O0bsbxxIy3svtCkfA6+I63Co3Jibm9hsz4mlrt/6d4N+05NnBKuR1vZfbrv5KMt7L7JvucG/x8m+N4qyjhsU6z76tCz2f258uw14/a19l9ei1mnKP7eCszAiZi9EacqfsxNc6iuc+xf7qzo/js2JFGxlvZxzRuvFX9pxn5YZ87zHNP6HVU5HNL8GN7G3H7BjtWpGo+tuM67FgSkYjnQDsiMtSV+Rm32yz28/axMmMTI7ZrcjJ6FOLU/WnWvu7nrz/bWjWjpdSOzzWjpCYmw/s6O66zrc2+fjHN/Zq9ObsX+WnGeYqGx3/Y1/sTVfMayTYS2lcF76d97OzPXtQ4n7iRj/ae2duI+1mLazRqO6vV4NrOfP/4/ff4jW3btjVlX1efsb1qfx7tfTO3YUdNRV0Wfn82+/u1uNf+8Y9n+IvsNtRjHlP7e6J4DYy3iukufh3c3mf97bKobZi6XrP2dTPHR8WNt7L78EbGW/0wI2zsCDv7sR2HFfdcFvXcZi+z+xH7uiBuXxZ3+1HrYO+XXRe7DXbt7fXtfbDjsOy6iYTXzm7TzN/XNv13dj/+rNm39uB9LZuXCj9/mHHUEeOt2svBx6Bmfk1ekuD6tP0Krp+a96mT5v3E+H+DX1+NGM3ULsHb/NkeXO/6P+Z7mPe1ofFW5nt8+2Z/VsLbMGHWqmpeG/ycML8LqZlx1OY9Uc28dqmVTOttEe+lze8ma2pb//3/3z838ftGkZI2cq0mevv2raxduzbrzUDOvHnzJnKWb1roDtZcNydCdwhjX4cs0B2ajedYZIF9HbJAd2g2mkMW6A7N1khzuTvoUa/X5d27d9LR0SHj4+Oydu1aefPmzfQfSIK7sbGxwq6jqsr4+LisXr068l/bpWWqO1WVdevWFXKt8oTmGkN36aK7eDSXPrqLR3fpornG0F266C4ezaWryM2J0F1RFbm7ZjfH7+zSQ3fx2Nela7405zTeqhna2tqmj9RMnWK6bNmywj0IeVTUdaxUKnP+Paa6mzo1r6hrlTdFXcdmNCdCd3OlqOvIvq7YirqWdFdcRV1HnmOLrajryL6uuIq8jnRXXEVdx2Y2J8Lv7NJW1HVkX1dcRV3HRpub239iBQAAAAAAAAAA0CQc9AAAAAAAAAAAAC0h1wc9yuWyXLx4UcrlctabUmisY+NYq3Swjm5Yr3Swjo1jrdLDWjaOtUoH6+iG9UoH69g41iodrKMb1isdrKMb1isdrGPjWKt0zJd1zN0fMgcAAAAAAAAAAEgi12d6AAAAAAAAAAAANIqDHgAAAAAAAAAAoCVw0AMAAAAAAAAAALQEDnoAAAAAAAAAAICWkNuDHlevXpXu7m5ZtGiRbN26VR48eJD1JuXa5cuXZfv27dLR0SErV66UQ4cOyYsXLwLXUVW5dOmSrF69WhYvXiz79u2TZ8+eZbTF+UR3jaO5dNCcG7pLB925oTt/NOeG5tJBd27oLh1054bu/NGcG5pLB925obt00F3jaE5ENIf6+/u1vb1dr1+/rs+fP9ezZ8/q0qVL9fXr11lvWm4dOHBAb968qU+fPtXHjx/rwYMHdd26dfrt27fp6/T19WlHR4feunVLR0dH9fDhw7pq1SodGxvLcMvzg+7c0Jw/mnNHd/7ozh3d+aE5dzTnj+7c0Z0/unNHd35ozh3N+aM7d3Tnj+7c0JxqLg967NixQ0+cOBG4bOPGjfrvv/9mtEXF8+nTJxURHR4eVlXVer2uXV1d2tfXN32diYkJrVQqeu3ataw2M1fozg/NuaM5f3Tnju780Z0bmvNHc+7ozh/duaM7f3Tnhub80Zw7uvNHd+7ozs98bC53462q1ao8evRIenp6Apf39PTIyMhIRltVPF+/fhURkeXLl4uIyMuXL+XDhw+BdS2Xy7J3717WVeguDTTnhubSQXdu6C4ddNc4mksHzbmhu3TQnRu6SwfdNY7m0kFzbuguHXTnhu78zcfmcnfQ4/Pnz1Kr1aSzszNweWdnp3z48CGjrSoWVZXz58/L7t27ZdOmTSIi02vHukajOz80547m/NGdO7rzR3duaM4fzbmjO390547u/NGdG5rzR3Pu6M4f3bmjOz/ztbl/st6AvymVSoGPVTV0GaKdPn1anjx5Ig8fPgx9jnWdHeuTDM0lx/okR3fJsT7J0V0yrE1yNJcc65Mc3SXH+iRHd8mwNsnRXHKsT3J0lxzrk8x8bS53Z3qsWLFCFixYEDqq9OnTp9DRJ4SdOXNGbt++Lffu3ZM1a9ZMX97V1SUiwrr+Bd0lR3PJ0JwfukuG7vzQnTua80NzydCdH7pLhu780J07mvNDc8nQnR+6S4bukpvPzeXuoMfChQtl69atMjQ0FLh8aGhIdu3aldFW5Z+qyunTp2VgYEDu3r0r3d3dgc93d3dLV1dXYF2r1aoMDw+zrkJ3SdCcH5pLhu780F0ydJcczSVDc37oLhm680N3ydBdcjSXDM35obtk6M4P3bmjORGZu7+Rnlx/f7+2t7frjRs39Pnz53ru3DldunSpvnr1KutNy62TJ09qpVLR+/fv6/v376f/+/79+/R1+vr6tFKp6MDAgI6OjuqRI0d01apVOjY2luGW5wfduaE5fzTnju780Z07uvNDc+5ozh/duaM7f3Tnju780Jw7mvNHd+7ozh/duaE51Vwe9FBVvXLliq5fv14XLlyoW7Zs0eHh4aw3KddEJPK/mzdvTl+nXq/rxYsXtaurS8vlsu7Zs0dHR0ez2+gcorvG0Vw6aM4N3aWD7tzQnT+ac0Nz6aA7N3SXDrpzQ3f+aM4NzaWD7tzQXTrornE0p1pSVU3nnBEAAAAAAAAAAIDs5O5vegAAAAAAAAAAACTBQQ8AAAAAAAAAANASOOgBAAAAAAAAAABaAgc9AAAAAAAAAABAS+CgBwAAAAAAAAAAaAkc9AAAAAAAAAAAAC2Bgx4AAAAAAAAAAKAlcNADAAAAAAAAAAC0BA56AAAAAAAAAACAlsBBDwAAAAAAAAAA0BI46AEAAAAAAAAAAFoCBz0AAAAAAAAAAEBL+B9UItuDloTukwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -985,14 +984,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9W6wtydbnB/1GRF7mnGutfatdVefUOef7Tru7LYzbtgwtDAJEg4TBGGR4MbRBxjTGQrifkJAbhBCWWmqD7AeQn4x8wQJkS8hCCCwZcXmxwcLdamTjFt1ud3/X832nbvuy1pqXzIwYPIyIyMi55tqXqrXrfFU9R9XcK2fOyMzIuIwY4x/jIqrKmc50pjOd6UxnOtOZznSmM53pTGc605l+eOR+1RU405nOdKYznelMZzrTmc50pjOd6UxnOtOHoTPwc6YznelMZzrTmc50pjOd6UxnOtOZzvQDpTPwc6YznelMZzrTmc50pjOd6UxnOtOZzvQDpTPwc6YznelMZzrTmc50pjOd6UxnOtOZzvQDpTPwc6YznelMZzrTmc50pjOd6UxnOtOZzvQDpTPwc6YznelMZzrTmc50pjOd6UxnOtOZzvQDpTPwc6YznekPDInInxCR3/lV1+NM35zOfXimM53pTGc600zndfGHQed+/P7T3+h9eAZ+znSmM53pTGc605nOdKYznelMZzrTmX6gdAZ+HohEpPlV1+FM357O/XimM53pTA9DZ376w6BzP37/6dyHZzrTmc50pjPwk0hEfiYi/4qIfCEiX4nIPy0if1hE/u/p+5ci8r8VkSfVNb8hIv+YiPzbwO15Yf3V07kfvx+U2vx/KCJ/SUReiMg/LyKrE+X+jIj8+yJyncr+V6rf/iER+ddF5J9M9/jrIvL3VL8/FpF/VkR+T0R+V0T+rIj47+odf+h07sMfPp356Q+Dzv34/adzH34/6Lwu/jDo3I/ffzr34Wk6Az9A6qT/E/CbwM+BnwD/EiDAnwM+A/4W4GfA//To8j8J/L3AE1Wdvpsan+kUnfvxe0f/deA/B/xh4G8G/scnyvz7wH8SeAz848D/RkR+XP3+dwF/GXgO/M+Bf1ZEJP32vwYm4I8AfyfwdwP/8MO/xt/QdO7DHyid+ekPg879+P2ncx9+7+i8Lv4w6NyP33869+Exqerf8B/gPwZ8ATRvKfdfBv5i9f03gD/1q67/+XPux+/bJ7X5f7f6/l/AmO+fAH7nDdf9f4C/Lx3/Q8BfrX7bAAr8CPgUOADr6vc/Cfw/ftXv/kP5nPvwh/0589Mfxufcj9//z7kPvz+f87r4w/ic+/H7/zn34enP2ezT6GfAb+rRboiIfAL8LzEk8AqzkHpxdO1vfyc1PNO70Lkfv19Ut/lvYruWCxKRfxD472O7nACXGOqe6ffzgapuEwh/CTwDWuD3ZmAex7mfH5rOffjDpTM//WHQuR+//3Tuw+8XndfFHwad+/H7T+c+PKKzq5fRbwO/dsL/+c9hyN7frqqPgP8GZlpbk34H9TvTu9G5H79f9LPq+NeAX9Q/isivA/8r4E8DH6nqE+D/y92+O0W/jSHxz1X1Sfo8UtW/9UFqfqZM5z784dKZn/4w6NyP33869+H3i87r4g+Dzv34/adzHx7RGfgx+n8Dvwf8EyJyISIrEfmPYzsoN8BLEfkJ8D/4VVbyTG+lcz9+v+gfFZGfisgz4H8E/MtHv19gQusXACLy3wL+2LvcWFV/D/i/AP+UiDwSEScWCPM/9XDVPxPnPvwh05mf/jDo3I/ffzr34feLzuviD4PO/fj9p3MfHtEZ+AFUNQD/JSw4028BvwP8V7EgT/8h4BXwfwb+lV9VHc/0djr34/eO/ncY0/xr6fNn6x9V9S8B/xTw/wJ+CfxtwL/xHvf/B4EO+EuY+fv/HvjxG6840/vSuQ9/oHTmpz8MOvfj95/Offi9o/O6+MOgcz9+/+nch0ckKRjRmc50pjN9ZyQivwH8w6r6f/1V1+VM34zOfXimM53pTGc600zndfGHQed+/P7TuQ9P09ni50xnOtOZznSmM53pTGc605nOdKYznekHSmfg50xnOtOZznSmM53pTGc605nOdKYznekHSmdXrzOd6UxnOtOZznSmM53pTGc605nOdKYfKH0rix8R+c+LyF8Wkb8qIn/moSp1pu+Wzv34/adzH/4w6NyP33869+EPg879+P2ncx/+MOjcj99/OvfhD4PO/fj9p29s8SMiHvgrwH8WyzDwbwF/MkXIPknPnz/Xn//859/oeWf6dvQX/sJf+FJVPz4+/7796Nxzde7niIBIukf6p3yv/0r6/fj8ib/3Hd/3e3748al7y54itTx+b/h5WeCovOryXJlObzin9e86lynn63PVw6bpYfoQoOs+0s36p4QQGKeBEAJCRDQgKN5B6wQngoon0KDiAIeKBxwi4JyUseCcIgJtK/Qr8E5oGug6wQmIE5yj6rDq5TS/y926njqneuq8HN1WTv78q6aHmovSP1XWP6lvUP968vDogSfOVRfInR/u+fr2hr23+N0h8I53XJLed6Pj2a0nzh+XPzWJ0/dcL335lx5sLj5+9lw/+cmv333kPe1032vcT3MhSfzyDv+uitb8Se9pyzt8EV0MJyeC5IctnmHte1/977xOVVbzsc49oenuRyz6Dmn9lqnAV7//W9y8/OrkUHvffnzy7Ln++Gc/v1uBb8Bz3umSU333Dte+bbjksfEu9/wgtuL1uvmOD/tL//bDrYubiyt9/PTjfP38eNU0F+q5JDjnFuWsbCTGCGprnsj88X5eAPNlTgRxLrX9fBxjJMvnqkrUdM88t0o98l+HuOM1MNf9qAHfafwcN7osf7nLBMgCmdQVS8X0lLCVivzy93/Bq5cvHmQuPnryXD/57NfT7d9hHTymdxzYWhd+j8mwHC7LSr21inLqmXevuo9vv9ezqhL1Y49W28XD/r2/8hcfbC6uLq708ulHb6/xYiy/w1vVMs47UTWm797ozXc6IU/JqStkPp/XTSGvodVz3kmpqZ6T6u2TnO5EcOJwAip53ZRZLwF++du/wauvvnyQubi5eqaPn/90KVeoEoLxNkGMR6bna4wnZINZEVyKREcK0lEnyYmjxdjV+ef5zhV/d/MaYLxeQCGqEuO7TvhluXkdqespizroCZ5Sz7h5PUlXy3y+boLf/81/5+RcBGjesfan6D8C/FVV/Wvpof8S8PdhKc1O0s9//nP+/J//83cWoeOF80wPTyLym/f89F796NzPefLk38I5aBrwTsuxc6RjKce+nc97f3Qs87Gk48bPSkl93rl0vjpG8uQ8rcycOoYlryiAy6nj+hPTRyHG+XwIdj6m4/xbPo4xlUnXTcHK5vO5zDTdPQ4BxlGJ0er0xef+QfoQYLP+Kf+J/+i/xvXNS37xy9/g5vYVXvf00ysaHXjUe3582bHpPAd3xXXzCaNbo25D9E/BdbStZ7Vu8F7o+8h6E2hb+PFnjj/8RxsuLx2fPnf87CcN65XQrxyrjcd5UCLKlBobRCX1k+JcRCQtSaVPU4ffS4IZMDpQqcqfFvx+lSzH+wfqx/VPkD8xZ+/VPCmcQyQbc0q1eDG3gTsxcURQJ3YfEfCuaqj6PpXiIUf8+76Glfngvrl4Ly0m7OKHqsg8eTWjsVQTON8nTyZVm4h6fD5AHMuk1qTAoYrTWF5j/D/8sQebi5/85Of8L/6VfxMFYqyW+MoeNypl3cx8CGZ+Yz+cmiMRCIDindI2ESfQeugaA3Ydao9SIUSYghgPizAFLe1ZK5CqdTsDqIG72NDqu4au80nYtN9A0RggBlNko6b3qqqrtXKphBDQGIlRGYMS0jVT9ESEqEJQR0RQhJhqpAJR8n2EqA5FFsPhf/an/tP3dQm8Zz/++Gc/55//V//8HeW2XpPsxOmHSfX3JCDH8j556jqppvHRpyatP/fMuTzlfbpngSju45X3Tct7yryJcrGYxl1knqKcqnP1/e/4sXuwufjoycf8N//RP4tzjqZpEBFijEzjWICYmHhF13VcXFzQNL5USlUZx4HdbkuMga5rWa16vPf0q56LzRrfeFPGEu/suo71aoVzjq7r6PseEWE4HDgcDsQYGceRYRxQVZrGl7plhURE6PuerusW7ZWvHceR1AaFZ9fsP/e1iM4wqipamI0grjGBC4ridgwqZSDMOYf3HpHES4LN4VOyv4jw3/vv/P33dcl79+Mnn/06/+S/+G9aPWQG5sRx7/JU6Gi5eNPGuNY8MZetyhdFnmqNXCiZlRLn5v4o19xXQQI2Q6CWeVSl1D/zVc3CK4qoVveXxbMW9TmqfymTH6lpXYQCcua14O/5z1w92Fy8ePoRf++f/p8UhX8Jdt49vguInihT5BgxoPSeAXHn2gq8FVk+q27LzDDVVfMsyVpy/Knun+siie9473HO0bYdPs/1fJ97RoZU/7oEMjuBtnFcrjx94+iahqv1ir5tiOIYnSekdXNKesyf/rv/rvu6BN6zHx8//yn/7X/8/0gMQpgcMcDhMPD69S3jMNE0nr7v8M4RQmAYBkIwmUtjngUOET+3fZKLYoxM0wTool3rts79k6nM2TiDN867BMiDDXIb223naVuHc5L4coeqst8P7PdD2vS3Ot5hE2ISCTL/YLw4EKZAajurXeKVzlkdYs1bM7xcyV3eO/q+pWkczjlcY23jvdC09hfgz/2pX79vLn4r4OcnwG9X338HuDNiROQfAf4RgF/7tV87yUhV9Qz+/Ororf1Y96Fzv5aE+VnozMCMe4fj+8ofAzx3jv2sVEg6FjczgaxgpPpWTPX0Aqrln6UwXB8XpUqZFYp0z+Pf5I7AMD9f072cgFPsAjdfT3rX42NNoNo7KMfvPRe77ie8eKFsdxP73Y5xuEH0Folf4nTHqu950l3yqG8Z2paL1UjwDdsp8HoMjCEwBmE4mFDYdND1gm+UKQIS2WyUm1dKGCPrtXB56Xn0VA0wbJSmm5WNJvW1Fy2L51Jpqk2FaoUT7qg8GeHQ6ufSBm9ty18lvddcZP1ZOln+OdLUqgZcNFGtLR5rjtbuWmuUWbSRSnDKt11Iq/c0biUVLfl8shJZ6sonLssLayVUV/M11ysvkkI1v/Pin0zEVIRiLialEKUiJMlCdWYy+ViF0zVd0HvPxU8++7X58fNb2fMk84n5hUsXa+IVqaxqJYBk/jM3AY2DNs2z1gutlxmsSRdJqMERnS0aNb++FIFEBXtmbjfEABdgUkFC5suZNysa5nuGqr6aOzLVQ9M7xfRRhIAS0m8qzs6LoCRQhxn0sZc/3pnOoOM9A25J7zUXf/STX7P2q3W/ml3l7yd40jFp3cdH5+25y/WqNP+ydHqcLOrxxtdOOqI6KxgljYty/0q1qJ9fv9Tind84qxeyYLbmsrEn1SaM3L3N2/su03vPxavHHyVQA0QCzjk0agEzgPK3aRqc8zjnk6A+A8P3rjNF6WShRNbtEGNMgMkMLBzv+GaAZaHwMLO2MnerazQxj1zWJdAI8upqHS15ggoYLFzzy/l+b6K8s31cbK7nUll7y7L8XnPx4x/NeoYSUU3ts+Axi9qWP28CfY6nmWokJma5KJ+XizQHSX0paQ7Z+XqiuCLSaFrLjp83K5FpkpZNM19V2qHqyguUdSOBP0s2lPp6fns7Tp021/+oLosF5vjzRnrvuXjx5BmnrMQWda6W87p6ef4s2p+8nmZ9Uxfla8p9Wd9HCuOVsl7fmQYKKlpkjwwGSun3Umxx/3ImRmII9o5R8T7gYlZ4dO6x+sF3eLE9K2oEhBAih1FsUzlOiBsZggkP2oI6Wz+j1ve4l95rLj5+/hPariVMEINNjBAjh8PIYX+gaRpiVLx3hCkwHIYEJAoaMkcyHguC88lqUiDGQJgma9eKJ9ZLzwyq2XNjDGk6WPsIQtM2tG0zywYSEYFGk84hDuc9vmlSX40FyA4hEqZFByAitJ3Dtw7BLeTmGCaGMQE/yWtCJBKcGrCX+H/m+zGD7+kKMC+LECLeO3zj6FcdTetxOJrWwKq30bcBft7AQasTqv8M8M8A/PE//sfffck+03dFb+3Hug/b9o9r47Nlj85WPpU1T+MV5wTndWnl00hR9H3zBoufBAotLH4qsKc+zjq+iFa67LxgvVE+qdaUNwE/edMkWVoTw3w+OIrFj7jZamcBDuXjON83JuEgpt+yoF0fS7rmHcCK956LXft36G/89cg07TkcvmaaPkfkBY7fopFrrjaP+NnmRzy/WBPXMD1+jLbC779u+StfjEyj42YrvLhuGEfACeqNuV1dKX/13wv0vfLTz+CP/GHl4gKef9Lw2U9bVr2wuXJcPvI0jbBeKet1LAYmPnVkZpZFNM1CjeQdL82dz6y+JmZdv33++d6m+gND7zUX5ekfS6YaUg2SpGnX7ZL+aFI0ZrAnfVx1XbpWXLVrlatVPaKcL20r97dxuby29ll0ytt7JWuCeVXPi2z+R4EMQqiYAl7LSFmXyUiqagJfszDn5vuqM4RWsQnoUnnRE7PqDr33XPyb/7Y/rk4SgJyQg7LvXsnV9Y1n/md9mHlQUSDSE5NzJiJK66FvzRqzbYS+pQJ+TAiepiSkqlkcZsX/Ll+0kxGzuAEImOUNgAZhUhNBZysChWKhlAXNyk2rCOOzcqjq0eiM7xJt1gsonigGCKm66j7WT/UxKvPYS89E9G2D7r3m4t/yt/9xLf2kMxR27+V638N1/vnUWDvS1Ax4y9NY7xxXs7e0a3nKwjqhTCFiUlDyuTLHyg7qnZaws6JLQLYo36cqPytXM7iR1ld1MxAopxrhnem95+Knn/0hnaYJ58SAnLQTb7vnS6ClbVvarsU7b0pIsY6TxSe/12yhYzvxPn8/AfxAUlQyyFrmtCky2ZqmtnagUnqydU2twBZ+Ta6Hp/E+zYt5J0tqk0JHUVlr67z87JNuZIumnheNWo45BVq9gd5rLv7hv+U/rDEmTpR8y21OuMV4KkvJPZvRC2Dy+CJyGy/d8XKZ8tZS8Z4syxSZJgN/ahbPtdyTf09zRiTikuWO6ghqFlzEDPYIps75wquLpWbVcZntlbldzem6t+ZjN4MqpLGgMMtfvOscfe+5+NFPfq5mWZTklGPke7H4zzUXpJxZ/DK/dMX76pLLqi7GKxkQTdZHd4vf/3Zqq5eJJkeyVykbTT4Ds3CdJpzzeOeS1ZrDw7xgZ/54ohFVY1ojhejMincMBiZ757g9mNWgbzz9Rmm6Jo1Rd/J+R/Rec/Gnf/Tv1M3VBcPBQkrEEBimwPXtLbc3O7P46Xqz+JkCw2FMFi9CDJLkN4/3LYKjaRxN55OuFZiCWTObhaHx6hAjYTKrYud8ca/Nlo8LS0UR1uue9XpllpPO5BXnDBAScTjnaduOfrUiBuWGPcMwMoXIfndgvx+TzGYt4RvHo0eXXLTrxN88Io4YJ4Zxz247zutBEY7NvVcVokY08e8QprIeFKswkaL79quWJ083rFxH07as1g2rdfvmHuTbAT+/A/ys+v5T4Bff4n5n+tXQe/VjAWKOrXfufHRp0eNIE4oC7DgnVu7YskdsJzoDAbV71+K4fLSsDQX8YWlFtuCxev+xHp0vwA9J4agUq/q3Wtmqr8+WPrhk6JPLRAqOAdXOfXWsmt73vs6Y6b3nYgjw6pWiGohhD3pLlGtwX+PkNZ1GHjVXPOkF1gf0ckS7wHYItAQIkekQuX0Nu0GTQ4mgotzcwM11pG2VGJRVH7i8NN/Y9UZYbRwBsxJqWgMB+7SOZ8VOUodKLUTX4AYwAz41yd1DOfHbH0x6z348Eh7q9sjn5b7jerLMk0dkdvWSujyzkGiPPX28RClPt7fcqfObqezcZYlnoY2mMtnaj9rypy6fxMF0nOfsPKTSTTW3qSuCQRmZ71BXvuG6KEIyxZ8F0gKAzG9JboasTLgE1Kkjy5a5CGC4oE/3N8u6BPw4c/dyVdehpv95p8Ro1jteKK1p/E/NCCp7wGH30GzynLhVUCWGeYgtXiHz06IUz5pFHYunVnZVlYgrPLi4NSarn6UQLBj4M3ewVI9fnrmX3rsfa/WhjLXTDycrKDPpssg8VJdUn1dMJV8Mcz26VksblmeckOyzUgfWt3eVOWt4gYJZLas2P3d5Vo+LzF8rhTnqXLcKtisNsjTXf2f6BnPRlPmY3AxMfpndlwpwk8zzvcsm+jbe6/E187klD73rLlKPeeUYSDjurxpAWpyr5oAe3avshFc1yu8xn8wTrsyiNIakKCX5vvVz67rfac1KV8/z+NS7vGU6vmc/alHEZksbO39KRrtj2XMM5HC3XNmRr+Iw1Te1cZCYVeFVSgZ9jmZ7obJ+Se7LBMJqtvqKoAE0pK5KTLtserkT71Az3aPVMc/pO20o6f+l5dZc73mdgndaGr/RXCwAT+GllfVU2uiZrWbyOE8AdG5DTbqAZtky8RjN4ze9Y82oZbYyPrb0kbnIzKRONUBuuMKnq/pUrVf6vIDGSgDwye0nqq1nTtM4mGe6LuZfvmNeOxPohzCl9nFOCQh+irSdIn0LISbrvyWfvYfeU18UmrYlBAExwCPEyDCMHIaBEDxE42VhCoyHMQHoJOBHcBLx3tw2Q7AtDXFC1Giu4Cjez+N0mgLTNKEKzkW8N5hjGEaGYShASu4T7x1t2ybghxSKIndHkoWdw/sGkRmUn6bAMEzs94cFD2iCJ4QAWYdJwJ2BPzBOCchZKCjZdXLJW6ZpTPXN6092DbF5oShT6IkxAA2+cbSt5230bYCffwv4oyLyh4DfBf5rwD/wLe53pl8NvXc/ZpDGH7t0HX88BdhxTooFjy9WPrPFkMgcAyiXOQaXOD4WZlevDAZR/YW8ft2hpQA6n4zVdxFmBUdmaxzhza5edzYnoOiNd4Amnd9JdTa60KqN30HS/UZzUQukFFAmlAORGwKvmMRz4JoDSicrNu0W33meXzb85OOBqyth3cN+amh3nsMobAdHiI4QlMPBMQV4+XLiF78XWK+V/RA4jAP9Snj8JPLsOXSd4+pKefLY4kRtVsJm4/AO+g5WKTC0jZ+scaSOL+1ivb1ctKodqaLMK9XI+INI35Cn5vejLFSL48WkSOeyVZBjRhrT4JM0uVSy8Hf0NysZs2Zw1KTHk07m6nCq/FveTmQGNXI3HmkxGbdBj8okAbEIVcl6R9JxWbDLBEzCc9QZFYlq5yQJ3m+mb9SHNZBd3CCOXqbe5MzA9nyN3acA03GWmUVcFcdHizwdC+Oy86rKFIQpCFGVoEKorG8AlOzqZecjUuLrWIwdG0vFtSuJtRniqdUFrX7JjaDMdSELxIBKMnuWfN6xAH3U+qcI9bJUorKwXo+7twzB918XSe1ZK0v1897yQDk+vq+udwpm0hPHlaXFifWpbpRaDD2+a3GVPPH7qToXpWlRq/uvLi4VItn2blaOllrnvKbqm2oDfGsZ1WKZ2Npvcz8DJVkwH8cR59zsdpAsQBrvic6sgrq2TXEkfLlWFUKyUnbqyK5iqmKJFuSuNU1+dh0TZAGe5QCBqb6aBJa7sXXSbIymTJLbsjCPmS1knp1n/6J1TiGIi99nfpYVmm9I35CnLsfGAsB4Q1Xqdj11/thSbb7/fCynlP3quABA9fl87Z0Jrun5+UH2T25bo8hsM0elSp54vwwQvIEhSUFJ0lpZppoeF0zvce+tMn3zuVgWPpbru1RVkqpsqVQ+zPXP73I0EArjmnsg865F+cX7y/LB1WGxeiy3rMEj7gBJVFBOfaMaADDxxC+LyFGzpOfVLmXzu8wlNZrlbAiBcRxtFXaOxnuzPnxzZ75XP2qM7G8PDIeJ8TARhgABurZj3Udcsl50IrZD1RqIg4qB70pxp3UIvnE0rUtrgKNpDcLw3hXrxXEUBjHLGQO387t7nJi7VrakFIS28XgnM/Dj5j6KwdzBpmHksN9bXMLEn70TGu9oiwuY8TnvfLp2QqNYyA7xxBBwAk3j0vSbLfvq5djAZFDncNIQY6BYeWZ3sGT913iHJgunaZw47AbcOyiM3xj4UdVJRP408K9hXfbPqeq/+7br6h3ZM/3q6X37USQHdc5BnE8Fd56BH5/iATqni6DPtWvYAhCqXcDuWAJRJiZSAT/5OM1vVzHE482kUyNPqx9KUDxYuE9kFy50DuhswtsMAp1y9Tp2AYPlsWQhTW1uxGqdya5fb1MYvslcNDE2CaJuBD0Q5ZrJfc4oX7CXPbd0XHPFswaerp5ysZlYr5SLp2u2ceI3fjkxOXh563n5uuXwZU+YHMNBmEbzxzvs4auvRxqvXD0aefpkT9fB06c9H3+sdL3jo2fCx58IXSc8feL56Bl0HTx5LDx9IjQe+pWw6iX1d/IHPKJ5L00TMh9m7asEvs1m0XP7/0Ghb8RT8/vVf09FPBcqsEfuHAukiSblvjlDzNKdIC9YeWIlIWURT2WedNldbz49N/iduXg0V61NcnV0FljzBL3bfuXOWhzW82Q+muCY4iPVcVF8sJ00UbVMdqI24YU5YvA99E36MPO+InM5E97yCE/OHhWeJ6Vrvc8uF/P1xrc0jXZHkwRMpykajtr7hikav4lafN+HSRgmc+uImuLo5M4p9XGpVhXwI0LAEytz8TpnSLaA0QTI5pYurmH1WCLvblNAHDAltcR8UFeuUXWz1Ct5Nw0yEFQDBuVrrSw8QD/aOpVdlpZ9tSh3/yOXv8s9x0eFT9+vDuJ6dJ87Ssm71e++5jpeX+cflnNUF0dHz8wDN/OZVL/yLSs01WVlN/YN9E1l1HJ9TE5vAhpDATVrN6eYAnVq2n0GcxPo+haRFLh53VuMCJfM+WMkYsqHYfBCaCxTZsFfyAqAFnAgA0c5EGh+/byDnQOd5vaZrRpyq85jP8sdOcCpVr7oWXGwuVMJVlUv1pYui/Uh0WxJEd8FFHgjvfdcJLnPybHVlQ2i+6pzyuXsPjew/PcU8CPVvwuY4PhedwCf+9/IJnKWbSrHVonpnQSLgubma95Gx8DpUTfLnfMzL57Xd/tX7lgIHj/qm87FzMOPWikziQWwkSvuZjYzM5IF4CWnwKQ7VJ/MK1b9fVlO6vvo8mqp5P3yg9NZnpDKQ6HaxYkhEMPstlTiXJTbLFdnFV2+W26bInspIU6EKEQNIMrYmDtU27V474r15Sl6334MY+TVF6+ZRmW3C0xjhAku+w0r36U4OQHVSCMObTxzh5isLpi7G0gKIZLkmRTvR5y5sDUpaP5hGNntDiWGT55nfdugK5fEwcT7BNqmoW2yC5XMmRgVcxkLkR3KNAwoyjgMNCKId3RtU9zXMz+w7F/KeDiQXWqdOGKMeFFWXZP67JhfGs+OaePNRF2Hqlkjte3cP2EKdr9G0BAZDyOikWunHLZvh3W+jcUPqvqvAv/qt7lHuddSbajoXYAiOXHEkeDxDqvPggceT/o307LEPfW554pT174D234wet9+nF23srvWaVevGqgp7l/3lZcjsEfuWvxk30Y7nu9f73wXfZdZXjG55x4RebFws9ATlSS/aiWQpjKRPNHna7PSVu5Ful/VwadcukCKO1h9XlUW5d9E7z0XNSlMps2CTCAjUXZEuSWwYuSWEY/KllWzZ9P0aHcg+pEDLdd7z9XlxKCwOyTUHiFGxxTs3tPk2O2tv25uIzfXE22r3Nx4DvuJvvcMe0cMjr4HnZTGQd8JrYfNGrS1tPDaUSkr1ULPEk623YBZiV86yyXhKS+beu/Q+JXQe/VjPcip3AYWg7+eFKeO737kxCQqAI6kRUpmDlkr7Yvq1YBP3ciVgvfWVyyTLj17IUnP5Za7q8YXalktAzmGWVTm4nJ8HMG5Ao4gyVczBSx/lwn5TdZF5yQFkT1ul8yIqjZhae1Td3Vum6zsCVl0mnc7SxyhxJtsFytZIcSUVUml5LdYrMyVsrAAfsiBlucXUGQG1kqHGZCm1b0X7l3leUcuD6oUa5pcFxJvXih3Usn72RUg33yOXfNuetH79eNp5efI5bi0w/0VWCgMi2lz+prlc4/lqPlZ+b0Xm9z3PLs0WX2sejSPT9ezuDLk4cLxdLW7nrKAOHU/4+fH9bhb91P0zWRUe6CNoTRX8jscWXzEJCyYImHAj6Qdau9dycDlcywdUnkUEigStY7HM8f4OQZ+5vaY3cXughDH1j1wslfVZtLCnSwpxnp82eI+d0GPO+Bm9b1Y7p2YGgvg5C0i9vvPxRMDRJd6gL6t/Jvrc/I4s+sy7+edi1I2n9f03EX/loF+NM+kOqy6UdCk7CcXGJb2HsubVLyhHFYCUDVX66u4d77ldzj124nS32Auii77a4FBytFfUoFjoe7oazmsyy2uqYAkrceGnqjAqdOnzi+BnQws5HGS23nR+mmBjtEg56KT1O1D3asJEKwLJCWmfh/DeiOIMk2SwFmP80dC0z30Pv0YNXLYDYQAYYgW4DkqbdPQOM80TQyaMhfn/coy/nPWNZNgjmUec2tqzBvAuZItMWpkmlxy160awidr7syv09jyySqoAD8VYKwxEkWYxskykqZzpqMmwMn7wsvyMBKdLYNsLYnlt8bPMmRtAZ95QcA26YyvGNhvGR8tLpNGZRSIMW2Eq1kmTSMMh6lk3HsTfSvg55vQ+1r7/I1qHfRm0fBXS6eAmTwZXTUxZ1BndveS6rhY/CSQKJ/LwbXq+/sTrl45VhD5uZXHSuYd1ZpZ6LR4bv9IYYyk3fD0ziTT2XqN13ldz0yZmAXEdJ2mexgfuwv86PxeqnX7zW2gxwvCg5EDGiI9sGHSnoM6osLrceL3b7fsFUKz4fHNDQc82rd07S2tjzy9DHz2ccPmItI44fp6wDeecWzYDwYAgSPGHpHIOE7s9p5xVLzrELUI9Ie9sLsVug5evVBevYj0Pbx4Dq9fmcvX48eeJ088vhH6tdCtZTHGDJjIIteRgGQ9Mf/9gzy5vgnVCGd+8TIBcvBXmc+fQkglFz9xPtEdmTRfU/0+V0fS8byILhSCt7xKLqTppBSpJ/Vf1l6LsJr95NMCuqzxUXcnB6Q0UUVSjBzN5zNTgfRD8r90vIOr13uTCLQNuBRXJOQg8jk9rywHrFTXlUZSsCDG+f3msooBNIISNMUdq95E1eaqqmXaijiipIxaC8NhLe2fLXEspTppnGVXrOrZOfbS8Q5r/f7VqRNi9V3Zvr5FErK0jAB7W1SJaq43ZgHg65Y72Q8PQXfqfwRovOn5xwJ9PbeO9JhFmfxHTp2X+dpaB531qbvM8H5Frh6DeV7dVTPv7U8bEHfm/mKnW1jcsQY1T9f/O6IKpMhZt+xL4jQV6CLMcYCc9+nj0hpFJWTonftLtfNfx9+pAaCcpQas7ZxzzIqHCRu5PqkUJXBrUrJEbNe4FmBKX7psMWPX5t7O8aPyM+ego/LGv1nhuQ/8+U5IdQ6ee/pn4GieHQE65ZzO5+bVZd4EnFts/rZgfxoX/SMyrzkikqwbUmXEISjeBXJSC6cDooMp8cFAe2MWpswbCJ/4Xd60rOTRmlcs3uPOQs7Rwd2WS29+5/yHopnTV2uKznDXzM1msJY89pIcUc2KUvcCwNmXMo8RvTt+j5pjyZuWjOruPefjvDZk+f6Y75oMEJFg8zTGiRjnYPNS2QQv/y7JxIdqFU3rtya3JTRZSEOa1w/Yn1lW06TjkDcQjWe5tsG16T2hytIszBY/ktoq8cU0iJ1zNMlSx8Afu7ZtHVGbYtFTVyaPEc2genpnl6wxRVyxdPceXGO3cF6TIZniPDQpBqRIg2984d95rPhGLJkRgqTYcKjdL7uwLTtJyjiK0ZX+mH8WmsbjfOIlzvQ0EbN8EkdJSf8uLPU7B35mqmv34QSxNz//VB1+FXX5/pDIHKMnx+Gx7zNQYcdmldg4LQGzvDeAx3uhaZL5slNzBxPSsaTzlfWPn93BFkBTBTgtjpPMUuuwmU4u+vmvVq5eSnHnUoXo5u8upO9JHyyuXiGBRQmYipVcFYJZdqLmHuYSBwqYQKUJnVbJbhrGCEy2+hBjUoCWyIrIFcpjBi7Q2OAQdD/Al1+x7l7zdXD4i+c8G0aePg589qhjvd6gcknsPTdjz9VF4GYHL197bm57pleOUUHVE+MGgP0+MA4TgnL92vHF55YpZb0yy57Gw9MnyrNnE10Hn3wS+NGPA6sV/Pizhs9+0tL3wtOPG55+bBnBuk5KiupFf8ux8FX9Lc15V+n53pGbF8b8KZkjmBtF027GaYS2OvaybK7UmLWiXRTS6jFw1O6V8D9nrVm29dJ2Y762lqtKkFyVxbG9VL5HFsarII8xtUPN5rWe3PneWiZpSfW+AFMyE5By3UOTc7BeOaaouAFCNEuCEBIvqMAze40kvGkWYLIgnGOwSAHEs6KdXyuGtHtbuZCqulIuqGMSZ2CQWMD2xXNh0Y0RTRlE8vl3B8aE0vR3wIJjsGJ54Ryc275nqEARjSjmSxvDUPzjxbWI8+n+WZB8WJLqn9ITcjzq3+Ee1b3K99weHN3vmKVx+nt9j0yaOq0+/251lfKvlHd9e/mTlahLZJC64gz3g1Aflo7buahNqsmli1mpYX4tk0UE3zQ0jadtWjPRt90J8qBVCYtsSzmGUJ255Y6FVaIs4B/zhRBCAXVK5j1mxciUClOyiBDChIwma/i8ESeCd40pK3fGhivujDnQdfntBFhFaq83AXUFsDr984OR8YvZGmahw8u8ws042NIaaXYxnfvMxkNel2YOdoezVPfMa0iIIzG55hm/y33lKuDHoQnka/2EumBzQw94HVBVxmFiGgPgcM0a8SsThl0Lzqf56UqdZLHCHtVR5/a400jKkXe9cmf9/iCkd75WEMZRmTTQCrPMckhlhl8Go8zvJct7zq8/n41xBlgL2Ioi5AyEaQMpr2dHC1qp0sL4/Bg0v1uDGIxPOOcQny1eBCetyWr5vY7aKQMNZYpmYDofq1m8jNGsUgQYDjbWYnjYzS2zhDQgxOAVcz+3qihKQ7HMlRkckxKWYV4V66QJRcTNYzvz4NbRrPrCe5aU53k8cmmb5dV8x2JYQAbkKeebFG9JV1a+5ht2IyWjrdlSycjP4ipxyYfye1aZT2vZOE/Q2UozrwNu0Q7hHfrvVwj8UFDP3BJLfnOXndxdHuYrjnnViYurP0elcqPqLLDdvxTdd75eUN6hPov7SXV0l539QaOFhU+21pFk2SPzbxmQya5cGbRxkpmnVi5jVG5c1bl878q9y90H+ORjqnOpzrU5fN2uy50YZoVqsc7Po6bmsaozI1elZOxaZPKK87vESMnSFZnPo1LeM6Y2xKmFFXEkZvnQlAKk4lE6lJ5ACzgcwm4KvNzv2YWJi92OV/sdTbdiM+1p3J6Vd1yuOp65kdXk+eqlY7Oe2A9wGENJi6jqUfWgQoiOCTNxPRxmlr5t4KY1YHC/g/1O6bosYI+sVtB2sLlwrNZCf+m4HC1tqWtS1iIqhy7JS8TdZXUmrf7e175y9+hXpIjcR7M7VVIWsrCeleMyGdI5mX+/+yEJKfme3J91WupPtWzNa3QRKBb3pJ5zR/0jyzNzmXl5rH+fxfgja5/0gPpKqnuVfV/J19a/5jXJVUKkYJMxz5mHJcGAbUQIfgY1oioudUCtT2msgh7HmT/ZifSOkjpP5tdYJGsqw17Kdao5JbtDRUqg+3L3WoOToiswi5Tzb+URWm5fuenN95FKkDmeY/OjdBHzpdrorcbD7Opiu7rRzLSDpcVV8UhRBPI6/7ArrFRtXY/eHO8k1/Ot96n+LgTXo/e9c8HycDm75im90I2O61+O71RTjv4e/7YUosuaWj93MevvYyxaZujJ+mXF7wPy4QXgIktYaznX5smhmueojS+XlEPJu8klMLNWcq/MfEoVPWK2NQB0fO643LI8LNe1NObFWrfINFXa9gwOaI7rxvFzMk+9v+FPAtT30B1XqXfZpn4funeALINK1DyqLlG70KWTJ/s+zye727G8IfnSI2apaDDelAXKHKVHEtiTBdoM/DidcN6AH9EJTdaMcRoJ44TJcQ0OC6op9QItQOpfKRWq3mN+cRYoSHqL5TvVFjOndLKHpeMxdNJNzn4o87YGXxZADPXcztYZeT2ZmWI9/994XLVGPU/rOXjszkp9vnoPK5OrMLewBZdPK2yMxBgKAHXfmrLg1IufasXFPhkiEMF2mk60+bcje45A2XhUqCwKtRL8Eo9J6+cM/FRvtgBdT9dTcNzJa1UJPrP7aQbC6maqIdLM8+ZrraqzJZJZUt4Fu5W0AVVum60mS+2Z7Y+qJyvMsavm8/M969mXy7j5faLyLt33nQI/UWE3YgM+DbxsMn5XEKi5z/EAlxNljq+9jxZcb9Hsx6IJLBlGfYv5++lF+P7aHDOy6vm1ZPMW0vpeVVXq4fKGNfobk03gOWbPMRBTsnwJJfBztvhxKX2w88m9y5nFT5OseZwTMzjI9y/nKTHNFq5eko8VJ2bulifXQpc90Q7H610N1JYgzMIdV6/jNVOzRa3O07/w93Sh0+VxFhLN9DG9V5yP83s4KBm+PgwJxgI2KJfABcqayIpRYTsFRg18fXvD73z1Fdf7gVFHrq56tuOO0UdWfkXTTTxd9zx/Ao1vEI3c3jhEG0JsCcGnmZWAphKo11hqVGWKkajCbg/+2gKHi7NYQX0HwwTbXWC1Fl68Fl68VrpeuHrkuLpyNF5Yr2G1MkCx8fZJIi81DzkW0O4ztT1J97GcXwmVVXIh/NfZuIognxbdJeiTbyHlbx0n6HgOlQU5Cyr2wPR3HqdOZteCpcVPvvVdHldAuqrozGLNRDtbK0uesLWSk6W86rDIcnniCpSd2VrYOF5Pcn0dJXbCh3T1yq+zXLSPTderwgulP5XLJv2iWLaruVwRESXa78XuP90yZ+6SFK9H766M5W7VVFoIRGgK8H1q8cpWafN6ld1GyvJfnjTXObtuzcdVNy7K51U7WfxoIIwD29vXHA572qZjvbmka3ssOwYcC2sPQZVMN5+r+uGdrq+O5cT5+y/S0+VPMLWjKt4pJvlEvUhK5qPLC2rwtZZd7o6eupfup8VYO6aH1EfeSkoeI3mHP/8tJZICbxYwuYzJMWlSUhSNDEZncIbZLau4AlT3PVmjcr9Z0K9Tsh/H3ZnvU1nVFNl7zvwlIkSn+CzI5D7U5fjNfOE4zlFNloHIHZU59R4PrWC+O81jrJYPjsqIzLymFvVPiv3VD4UdKTOEqUlGtFTsqsoUBsZhh2pEY7D4IaW75vU1cz3HHqcDEHBhj8QDGiPDEBjGgIinXV3RdBeIeHy7wvkOEYdzDU58GnsWaFaY00OLiGV0cmbpaRs28+K/4N3MfPm7oDsa3wkgJo/r2UrOrqzH731g0PJ+95V5SyXLIFnKEfn+RZ460jmOeZ2Vr+TQDAxhYyeGQHQC6tFmTttZVsGKh9TrR/2MWRjIf+s5mtfeh+tb5xybq1WSSSveuajg/FwLqE9yQ0t9mOUHZHYFy5dWjVh4n0vyZ5pzMStxzLLPLM9m+Tfx+qrlVBVikkFi4tcLYTfLylLuOc/9dE/NQPtxy5iuS1WHub9c4QEFKEohUorMKrFaSWeAbE5q8mb6ToGfEOHVzgZsXjAhxTIgjcm6R6UcIToL3FlprBtd5x/KwNW5VKJli5QBXvmdL4QvmQVUrQaWajbNlfTbbLHhqgfme0Y9Uhckm3fOKGBmwDCnmqteKR3bzWfsb8lJymDOg8Ut3/5BSOa06+Wvq9y+vAXnPc7q5b1l+xKx35vGLH+8N9evDBg1yV9RnF1bnleDQJUlUA7uXI6Z26HodnK3FaqNnCKv2gRfunvlTF7RmW+mqrlqpTltymHeOJPZBQxRc+lKzwlRDNyphCpVUuIpTYHIZrPo3I+ubNM/cD8C4FA6VB5jZodfEHiEcMU+Hpj2tzgZGeLXHCbPul3z1e1zfBd59uiSq6sdz5972m7D9smKP/TjgVePG1q34fW1IjSM4wWH2KfsQHO8kMoy2kCf0dphfC3cbK1vv34R+d1fOJoGnvxW5OlHkb4XfvTTwI9+4lit4NMfNXz6qafvhY8/8Tx/7mkaZbVitiYjFqupeq055gZ1G78TCPSrJqHsJJcBI6ZInEQ/K3M8OXEs1TUL76/K7TI/WIGgMOW5UgFJiLnw5V3j2dS1Wnip12xB1cZGJCW60HluAikjVfqed9uUmQ8mYKhY/lQTXJAUpB1KrmgFTe4Pkr8jcwyAMkHTve+YvzwgKYSQskykZ9axGHLTzQe1EJ6Fvgo0qvierRWzAsEC+MkCjqBx9g+f764LNX0hbJWlcwZnkGqXa1EXN4N/le+6lnUuj495RGR+qsy++PXHFdCvakaNECeIE+Nhy8uvvuD65jWr1YaPPgK5sFSr3vV3XFK+LQnz0Jo7Zcm1y3otnFQ286VvP9a7J+9+fWt9lxfM83IuVPNDuXM+9Vwlh8jRIDnx3ErArZUNjg7z9w8x3d5O85jMYE+JA1GBPzFGJiaIEcnBRcWyuMzvqCV9svMpiCiS5s0cuHMRUDSBJsfncmyhbDWU69I0zaLMMcWoiMRynK0ELah7TDzewJ/MVxeYXwGRKvenurV0WZ9chxzzwo6PZWgt9/4QVLGo8v1UGftbc7z6d6niAmUGXGsK9STXikfHcnMlVnj3RIxTAmy27LbXxDgxDQPTeAC14LeW5VWJcSTGEdVAPLwmDtd2PNyi446oyjBGxklxvmF1+RH95jHONfT9BW23xomjaXqcb3HO4X2H8w1OHF3X0TQt3ntWqxVd2yUZwLKm2rGZnQs1zyoC84elPOZhmeWPJVhT1aqiHFhz7mWq6+/25am+PS5fuXpJcvUSKfqjVOtpvZ4lW655rcOEfJ2zuIBzs4yULFOzHKIaERXCZJmb1Hu08WiJG2YAXnlinltHbbmQa7JsE7P8lPSfB+5X33oef3w1y6Aw6/hibZUaiRAi02iubeMwcdgPaDD3V5/dFkUqL485VbuqEqIBMz4F1EfMnXUMIzl+Gi7xu8ZbFjAB7y34PhnwNMGDaYqE0bKdTmOwDF+qZnGdxRzNAC+IF1wyBMg6rKplNgshpWhP+qSIpab33tWie2qW2cWt6IHO0fYW3sJuMGHgT75Qkngn79R/3ynwo6oMU0LPgpbBmH3tFIgz3DkvCqpITvyqmQFlpmsvrZVSkZYoYDn108X5lot61VTGpcw+gnk3Ni9esXS8lJGcFaRch9QXKTXu3Tq4pGBBBjRsgc2pPoGiANilMwMJs7hN1pCygiV5ktWw5gNS7V7lsvuVHLlz5axecuy+JYjTZXBoWWb7ygDs/BxNgaGXwM+de8tcvrRFrnPVDPNOQJq4qZyqATeu6mMLriyZ7ZuSdCTMlPukvj/t3qUWYLU+L/n+qc4ZuMp/te7CB15ly8TwWLqsFdCjdEBL0DEFXAu44cCLmxu2zcijq56X2xt8I3SrDY2Y29emFa42LZHIZtXQNSONJ0W2z88SZifnud2zlYGoBbYdJ2vvYRB2O8F5ZZzgMJoLGF7BR9ZroWmEvofVWri4FIbRAIQ2WJyUYn3/JgUjn9ZjgaISCOtpdOL62sT4uJlPf3kgKgPbBkq23smCw8wLmAdTOq6BnrvH1fyVBOyyVL5LsPOqCkjZm1nwI1mUSdZsSeCIyJzVtH63Wj4TsXUgj6O82JYjFkf1DWo+UP9Cml95pSghIhdKbg7yaDd5k6vDt6E5zkWtdR0962h85abJByJ3zYftsrxW6NGCMrei5vFbmrIWHk8PbK3ugGQBaJYcJf9bgX3z+qvztVQ74/n2Bcg6JYnmwZKE5LnlALP4iWFiOOzZbW8RhGkaiSEkACq7VjwsSf0KsjyvHPfm6fgtwHKzh3uOF1+qdjvxVneefWqu3fl2t8b23HlEzK/7hpZ8g/yR5/IidlSdQfPeNe/DzMGTTyrA9QmrH63iURyVmQf6sXxZ8RGZ3/UY5Dl28aoBk5PuL9XfU1Rb/9TndCHMUOJ1ZZkk/7T8q/f+XdbZnjfLSbIof3z80HRnLQHkaFQt58VR+5W1J31ZCo5z/2XGKXnM5gtTu4iV16TER42EMDGFgRgC43hgGnYJiAuEKSb580AIBzQGpt0Lpv0rNE6E4ZY4bInR9KkxgPMtYxTGoHjfEKZAN44452naEe9bO24mvG9w3iceG1Ft0NiiarGCZuFQE6iw5C8PDQ7cRzYOtSwhRZ4hu3hVXCLJBzPdXfGX7li5C5fnyr0Xx0euW2pPvevetbx3Pg/HsuXda/M8qXXeRUsIKcNUun+sdpFP8POTnCDxK0kTsrRvdfzQbpci0K2aIj/NbKCSrpNO5SYD62KIKU7NLJPMoM8ceH4G41MGxPQOrgLhFUU0gMakU1p53zia1puXSdPQNA0L90hAhoBggZY1UgBzVYq8qjkgj5Dun+pp2KmVjXZB4Qqa+f1c/1pHEskuLfN48N7Rdg1Nk+ajEywmHBTLVGRm4G+h7xT42R8G/sq/99dTI8ayKEbSgJNZbCzmhtgORx7IVbeQkdcsuOZCsb4n9WJUtUg5lMXf9EQ7ntfmtFOSgKoQUgCseVETLC2cT/ZYkvy6FZktSABlYt4RmF0rnJ9dIqJGsploWdTzwCcNXu8Rb0hv25qZZgyBYRyJYUoI6IcyyUzoqVQDvknATVLKcaTB70qZOY6PICnQs7mASVEuSxDnZE1EKl9b/JQMX3Jk/VM+c3BT4bTsuQT+ZkXQQLrZTDQDfSKmnJayp44zk5ITx4l85XxaMnkl6yglLbsuNa2bjz8cOaAH1ghrMgAkTOSsASFG9tNAUOXrm2t++4sveLW95RCUzfqKq/XAeBi4aoVm3XJ9KTx73NM0kZvbnnGa0FGSZd+yM5YKBOlb2lHFM0UDCHaHADeRtgH/uTBFC+y82yqvX0VWvfDqxciLrwJdD0+fCI8fWxr4i7VjvbIAl20OFM5cFam/3Een9aD5Zz1d4C2XPQDNgzwrIQWkSBNDT5yf3bsoPKjmd04nvI4IkWY60OkWIZrA6G1RHV3H2KyI4uzjmnStw1NNgOL2NdmHSM9Ix4gIBDoiLYowSgoujC20GTGXqEioLD+SO1Pe7bJ5pnaRzMJNEV6LkJhFc52t8/Loy51VdVhtPv4GvepbkZJTqCtBdbFe1NWy4ywwaeE9ucDyVSqlY261mZnceZe0Q7pgjJVwSXXd0S1i1gRkdobN3i6Sjn0WmGulj7tC99xHyX1s4Suf12WxDZckG5AEHkckhBGdDoTDlu3rr7n5+gv0sGO/WdOKEtueNi8aH4Ay+FP6LPOY8s7L84trj6/R6of6sL7nGxaH40fc5b5LGXHx2zKA0sl7fVvS6t/FjfXer4tnf6hlcSmUz6DO/Fty14rznKktg7x3eG/p3F0aa0ubtbTBl3iUlJgdy/lxTHUZs+IxhScHm44xzhY/lUK3vEf9sfs4sTXehRQnwnvUzYJKDVzmv/Ge+h4DWEdPL2W+ezev3B5aYqVQrRFWIukRVkvy2rqEiGtA+u5skhPHeV0W53BNY24sq7WVioHQb5imAaISYyDGgMbINNwwDjfEaeBmH9kfdoQwMu23TIed1cCvaJqOpu25uHjM5ZPnONfQdRvadoW5tnY419hx0xrw4xxt2xeLH7MIaqndwWZtdPEm86Eu49x8CMqKdlHvypd5NOZ4OaR2trGV81jKXN1Zc2TeIpH5txSIbi5buY8xW8TODEjLOqLlThRQqL5gHvOpPVUrjwwxJGHeBabIdbltI6jEtEqLAYQpXbhPQdff0IilfZYhS46VoA/Tj7nWWnbYq1mSDSdUmMbA7nZMf3e8enHNOEy0TcuqW+Gdm8EqFN942rYxWXScGIaBqErbtnR9izhJAOuIorSdp+s94oQ4gU4gTug6ZxuRaZdYEn+eDpH9biCEyO72wO52KC5o2RMk+96IE1br1u7vha5vaDuPhshhO3HYDcSojIfANEa891xerFitO1SVcRqMjyc+UTYSGgOn2tYjskJWLYhatrFilJAlWi3W62+j7xT4ubm55V//f/4Fa7CcLIVITH6vNZMVEVwOopSQPsiWJckCQ3wxAcM5VDwqQoiRKZpNTIyRkI5raTqb/5f7F+VHygQWmU3UQ8jmWkqcBsI0YItAJKeMbVyLd61d5zucbxMjkiTGRqIeiIwAKVWuMVjv7R0l/ZKFCUloiYgkUMQQytX6gqbraduGzcWGrms5HA68evmS3W5PCIHxcCCE6YF70ZgqooiPKYGA4DuX3iEiPpiPknMF/DGAxxVrINeYwOE9JcZP44UmxQESD5JcvXJWL2R2KZOj49rVq4BA1r3vBPzkv7FSvGKcM3bVx+JMUSMdl/NSZfISkJDGOUCY+TpQ0OB8XKeQzzxcJbl6fTCKCB7hEnCIPkL0Cri0CqcGnWLgZtghHAgvJg7xwKpr+fp6S+c7nl4+wvtHfNwHWPWEfeDlpw2vdh2ff9lyu700Rhk9MXiKeedJ10wh2YKg2hKiRxTG25Gb/YQIvHgt/O7vCL6Bx4+UR48CXa989pnyox9FVmvhpz9p+dGPG1a98OmnwvPnlvpxs8HcwJIy+iaPj7ty610h973olKz4rSgJC8I84CsUNAM/s8XKfH4GfmaeJ4m3IuDDQBteIzrSjl/THX4fpwNt39GtesR7xv4JQ/cR0bVM0jG6FYrggkOCIZlRPCG9s3cHvOxxBB7pDY/0BgdMsiHIBRHH3rccXGv9H0CDAe5xiuhoI2VCDBwSgbYvZpZ5R1UAF2NJAS9gpnySd10zYJ+EyrRYqorFEspgWXLvKk1bfHkellSVIa0tIfm1zzGPsjCZy1b8Kg2BXNT4TlYxa+25Am+OAw0wC68iAlGrIpWyqslpTJnHk5q7XzEXT/cXDMz3aT3ziVfnJTjq8u4gKfCyHcf0nwW1DOmTyqWXdWQ+MoP8MQYY98Rhy3D7klef/w5f/t7vcLh6zEXncdOB1fqCdeutUvqAzFUyP8hvlE5X872e/sLxQerKuttO6Fv2NT1H7vz0tireKX/v9W9wL35/FjbfS++cv1vy+Dly4rdvVo+3k8lZvgA/OXbPsauXbQS53BOIpDgp3tHkTF7e0u/eqacmnpaECFPe7qfMs+b06TPfzgnGAKYQbOdbjy1vYiXjzK2pKcOXKrgJRG23PPhI4y1b4Byweh7XOfvhsVtZDY5lsPw+XfJDuXhVT0j/zlaFGm1DVKeRadhbxqS0ZuQxmuVxywSYj6VyqSbxJcpYuPvkHEh5tn4FUN+Aty2Rpm1Zr69sLKgmEBHTRjGLxcPtlxxuHMNhy/5l5LB9xTQO7G+3DLsdzns2j9asN1d0/Zqnz37Ms09+ajF9fG+Zn0SQSo9yriljuUkgkPeepunxSV9xGfhJ71iWojIGTAfQ8r4fCDNQS/CRxZpcH1eNs3kTgLsAUKl/tFEg1heaZJ0MQuRyx+fLOfJSmRaxJEdpek5hx/liTXKUyyp5vUjn0ZgyXInNJ5fjwRT5jAXDy0CUZfGMjGMzg828eSPj2LKvWPUcfR7a2sfqrUwESoY1Nfk+x8hRFQj2/bCNvP56z2E/8urFa37/dz9nv9uzXm14fHlF07Sm144jUZW+b1mtzW17t9tzc7MlxEjXt6xWq5T6PBB1AoGLyzVXjzdmPdNGmjbgvIMLT+MwWTn3bYT9duT1qx3TEHj59Q2vvr4hBCVMkTjpDAKKWeQ8errh6vEK33iuHgmNawgjbF/tef1yyzQFtq8P7LcDXdfy/OOnPH4sTGHi+uaa3X5n88+bfOKdo1t1NK2nX1m8LsR06EY4Cl+R5mZRON9M3ynwM02BL774mrwxC5JAn5CQM2YhFGNAWcjMJlQ18OPF0zibAOo86gwpmGJkipPtoMZASAyfJOwDiFaMuUqhaQzSVeedCbgF+InE6UCYDmmyWP1BaFyPFwN+mhRcDclLj0M1EtgRdUis0xMxP0PnpfgrCoHCMrxHXPZFJJmmtWxGoesjbdcSpaGPsN8NvHi9ZXu7JUwTh/2OMD0w8JOkU8kfp0lIUrPKcSA+gsSy7SvJZ6nonpU7F+mvS7/nwNAUVy9dxPKZM3/Vx7O7WX6Gy0Np1icWdBr40VrPubdsJLm9aAXSxHldWLh6MbuL1edzOmVx1lT5vFKd16qdPgCZqa8gNJi7Vwu0CC3QlF2QiBLDhIhjdzjw4lboDg0fXd1ws93S+4bNquOiH/BO2PQDm/XIhKPvJrwPOOeJ6k5I78eqwCwqWXd4QAnBkRGEaRL2yTVwHLRkAfMuIJgL2Lr3rHplvYarSzhcWb90XY55MLtZnqJaca4FnIUSo8fuGhWAVS6XIigubvYQtJCImAd/BeyUY+rfISuqM+gj8y1IcZF0xMUDfrrFj69wcU/jetp2hZMG0Rbk0mJDiENdQHE29dPEM4DG2tOZDRdeJjoOrNkm4McTpCXiis9oREw5SpaFQSMhRqJiOyJqZnKCZgyivKKBNdmdp2ofrcCSWpFJX0XqXs/WJLk8My/5ABTTmljtTXD8tIVMdjSO8nsti5wCf6qLk4CbQYT6AUVZKsxwGe9ngURlJCcHUpK8vlL4ctYfjXdqafO7b7l8ft5kKAAe9V4tR31ibl4aJuI4MO63HG6v6ZqGMe2SB+8tm86JWCjfliS35xFPy+Pz+D0X7VkVkkWZ+svpkfG+OvS7Fb+v1N06zMrNqeJloLw5Q+Dd21eyYOK1b6ruA9JSHmTB4xf8/uhwtvoRajeEovPlqSRZzJgVrrtrSb5GF3/n+9j3qFrimWkN+tS7WfXhYgrXv1XxVDIgLrl8mXyzcn2PgngM/hz9moZ5fujJWzwIVToZRajDmKwFyp1MNi4yvCZByzadxHlcMjMXJzjNQisz8OPkdL8pZAuReR2ZBVFbhpu0X1EzbUUIwITGCaYOHRqIHiESppEwDoRxYBwHfGxBwbuGpulouxWr1QXON4iYDJdbIc+kHNDZLNMaXHpPqeL6ZFcTqeSL+Q3zWlG/cLY6eFhSbEwfM7gj7grc73ZVXzXXcsmN85DO8vDiXHXlsXtXNUHuPj/NrWVd5oZbYFTMc6LmqYu3lLzUpjoU6z4x4PLofU/1xh3w557jh+7Jeb7LUs5Ilj6qJhiEAOMQGA4T+93A7fWO3XaPjkLnetpGmabAYRhsk2yMEAXnHdvbAzfXZvDQ94EwkfTpiDIhTmibhmkdoREkWRG7qIRJ0exDV9oKYlCmITAME/vtwPbmYDjAmK6p+KKBMy39qqVN1xq7UaYxMh5GxiGw2x7Y3QyEPjJeTYRNtHfajey2B+M3jVkl+cYTFdpgGMc0WQwwyPqmFJlVSv9Zfd62Vn6nwM9hGPhrv/ULMgBju60KmJmEd64AOZCj+iTQJ/kANc7R+QbnDFFrm84sStoO6cxcJOpshTGNkWGwgGpjCOZ2ohYIKoY4L76pjtniQCCh44l5SrLOUUWnAZ1G0EgY9wkESsKumuDgG7P4MeCqRaSxAIC9x3fOwJy+xbUtMSrT7sA0jWb6OeySRREVeCI0rQkVXd/z+Glgtb6g7zvGCKuxZ3u75fOvXnL9+oZpmtjv9kzjwwI/rYePH0e8V9ou4LzSNErXW6Bm8RHfRMTFWSdQm5wuWyx5xTVSXJlyPm7xapY+grl6pfO1e1ftDpbPF+XCVU02r7MnBeOTwA9iLiVZf5F6UchMfF42FvfIDH4hMKX6uDn+yx1XL6ySztl8KO+hoG4+fnhSXEolFmObKrzGrH2ugAMk0CVNVECZYmB/sLH61fVrfvOLz3l5u+X51UTDmlUbaKXh2dUtfT+xP/R8eb3D7QL7XU8MYiBOHWR2oaLOO0mz5LacnTE6g0YV9nubk02jNI1jHAJ9D/ud8PVXymqlfPHFyMefTnSd8Owjx+PHjqYVHl15LjZpTnXQtllZ1aMxc1eIKH8X2ky9v5ibTGsJ9OGpCNqU58zHFQCELH6TE58SpwvFScQx4RjRact4+zUStuge9Da5J6yfwuZLnO/o2wv67gpcg/drmnYD4plcx+h6BOhkTyd7GiaexS1P9day+DXmyqniOPg9B+eJUTlsDwzDyBSUV/vIza0SxUN/hesuiBIJtIQizlmQaHtbmzgq2KZAQmW1BDMszMmurOZZEc8Sgiw5s9/xNtyD92X98Fy3RNWQO3V6WeDuXzl1TyhJE2b9XOZMBDnSPTCnRtNk/WhC4jAExjFtrJSxJXStp21TvBPvLZClUnzls1BUnpt9wyDb+5CZqTkOHimLMVsxZHhP0DGgw0gcBuJwIOx3hP2WoWm4efEVEgOHzRXetYy7PdMDboqUKX48RObXOnnN4kBmlnjnmhP3kZMF3/ysijulM0sl6K03eGvpd7zffaWPNJ9S75PK3Ieg2aoMNUuBWLkGaYyWKVEkWYxUKXYLL5137V11LGkty8CNpjmU5YA8nutEHzVl+SIQiwLodHb70gTcFCA8Na7ON18MGuekZH087jJZfGQx1oynOguEnx6kZP7I8WBLcyJfXL1WKf6GSfKtqOKORedQQoiMU0jAT+X2xdwHy7vonT4GbFM5hVXI7icgtK6ha9IOfQGcTHaawpT6ehZ8vc8b2OB9wLuA6sT++nN2118wHrZm7TNsmUYL9uyTS6HzLiVngGkc2O23ONckCx4L1jxbhAgxbZ6pONC0IRccjgjR/Ed83vCWuU/zuFo0aHrfD2m9dWrO68lvMyd5E4harHJmKZ63Dz4lRzhc3DsrBkfPzG5f7k5d6vFY84Xl3yK3VWSn5/N57XLJOjG/wykQUpnBndni+e73DxHj585LzG9T1XHuC/O4SIHns56ukK17Y0wWNzHinWcaIy7CNBrAEoLpNc0Qcd4VcEZEGQ6R/W60OebNY8B5R+Nb1qs4d6dADJFhGDgcBsZhYpomq0uc61iGReaxGfgXh/Me3zRoJM1Rh7gq6D0YoOw9DUrXd4QYiBoZY2CaQjFacXshhDWPnmwIoQeZZR44Hr3v1nffKfCz3R34i//uXy6LHmqZWlo1dan3LZtuZSZSKIOad784jzTGlFZty0W3ovGepuno+7U13mZDe9UhjS1IOdzAYRfZ35r/3PZw4Ga/Y4qRw3hgPxxKoLUQxpnpq5lq+qbHN5YCtmlX+HZlzR0mJEwQJobta4bdDRoCcdwTE2DjfIN3HsTj3QYnK5q24/L5czZPnuBbz+ppT+c3TNPIqxe33F5fWxraV19x2F6n5caEC/FC2zW4xrFeb/jkRweuHj9lve64GScuL9dcX9/wW7/9S16+eMk4BrbbA8MY7u2Pb0Jdo/zap5MBPm1AnFqg306SS5bSdBHnLePAbh+YAuaG51rAWfTzNqc+JYE9moCgHPvHJqZIum8GfvwM9tTHNfCTv+fjk3xdqyWjmisxmmWOYm5bobh6ycKlK5+XQIn9YzhyFuzsfjXos3D1krTpnGSe6Izx5fN5Skf3YWQiEfBNQKIQtSfQIjxC5CnoNTCgmtiD5N3+yDhFpjCkhcoRVFj3K/7Ixzse+wvcZmTllJ985Bm1J4jny3FNu+25/jowbj1MKchOihGV9e/ipCJhVrxLS8w7NlEdGmxATJOw3TqcKK9fjbTtROPh8gouLiJdp3zyo8CzjwOrlfDZTz2f/MixXjt+9tOOTz9paVvh8SPHxYX1UeO1uBbWO1lzbXIHzztESfI1gYokyUfm5BLuGEx6qH6UWRjNQsOdjF1W+yKXHwsbySXHOfDJks/HgJcBYSAOLxlf/S46XDPEWw7hGiHSrh/TXTzFNS2rzVPWl89wTUf3+CP6zceI7xiaC4bmEhFhowc2HGh14rm+4iN9QSPKejWwWg0gwiTYJwReDa+4DtfsB+U3boTpFUyuxz/9KWHliovZhClomlxnNeFxuQuCN6AQmHcEyoaDZV2RmJxxJQlluX2zRUw+98F0z7vCYTmulSWdxdVl+Vk5yf/K4ndAa6ud2aWrWMOCeRnnDUSdx3kBalUJU2AcTBDa3h7YbvdFwDWrB2G97livbIMmek/jsoQk5naX+WRRqGblr0QKEtv1EpfLW+VUMX/4mIVXu68OA2G/J+52TNst0+014+1r9tPI186xffU164srpsPA5uIx03B4vy56C7mKFWR94lgHvvtlSVnfPy5/6pJ717Z7HiV3jh5wML8f3nOnJovvct/vy5H/oSiDLibcGxMPU0yJR2Z3EI05CYfNDZcDe6Y5YIksKtcNZkU2JiViBoBs3HuZrYZmRcwekYGiGM1JGwE/JZdKERpHca+c1fIlcCGQNt5TeuBG0njTUnJWMmfremuXLIxUNhAZUMkKVgXg4qQay9l9VlMkgzmG5cIV5sHoaJxkZTJGpmDxQPJGawbwJPe3arEI0hQqYpwsM1AtZ+72O25vbwghFAsMEdj0a67WF1h69ImIgUO7w47twYI45yQaIo5Vv2LVr3BOWPVK3ynoxPbmS/Y3XzIOe25ef85h+5oYAmDZfXJWIHNNhMOw5/r6Fd43rFYb+t5i/LTO47wvVgwxtX0MPlk2OYgDwbdJ3r7r6lX6Sir3tSQDeudLKI6H7cIMas7u1ogQF8BIvXFRcbiyIbY8V58/PjbZ3t4ux+Opga/lvdP5arxnNyHSfbQqfwfIufP8SI5VWANuqXQ1B6Xce5omcwtSqTL+Vc/Smd8cgz9zE8/nTrmJPgQt1525jey5uSKpDqqmk6vFLjPgR4t8FyOMQyRMASHQ+IhzMBwCw8H4NBpt49JpkbtFYO8DTgazBHLmlWLzp2WzuaCJoMnFPITAbndgu91ZhrFhJIRgwFPIG1/pjVyKryOSwpp4mra1LHk4fNNYPF7n0r6axS10PgWY9sJ6vcY1jnGcGG9vGAZLrjOFiRgDV8MFj59dsrlYozja2KRxUa2JQpLx3k7fbTr3EHj5+obi06qKV3Mw8cDQdNAprW+YgINGgmLuTk0L4ghdRIKn9ZG2FZQW55W2UTSkNMQquGiDa5qUcTCU8HAI7HYTY5zYDwO3w94Wgmlgmoa0yGb/Q4dvJ5omIM7TdkLbm+uZCwEXAhoDw3ZkuNkTY2A63BKGHYD5dzuP4BOKP9F0K9xmwq2t4X10eGmZNHIYYXcIjIeJm9s9+5stlgFgImowC6e+wTeeYVLWVztcuyaost4dcI1ju9tzs91xfbtjHAO3W0MrH3IaOwcXK8X5iG+jAT9eaDPw0yhtpwmssd0VEQuaF3Lmlyple7H6EbFJWtzAsiClJnwcATzZBazO6rX4QMVE776H6syQtGJCGYzKQ8FQe1lcl7NF1QCPxjxsDCByYtfPmcEMPCqgVPprOktmTnL6XY6l4QfsS6u/x96oAXqQHrQlC2slfmrSDEM0MHE7HHh5e8NuHLm+2DIMB6a2R/qBdTfSibBZm1I/qGPfBrILTtYB85stFdljzSf/nl3AkmWNCjE6cqawccgMHw4H5eZa6ToIGtmPgdUafAfSKBcb5dGjyOWllVmtlL6vxpPTtIBT6ntMebcTza4rJhjnHZ8C8hUp/KEX1NqNK4/3rJzkSXAs/NQfWcyV5d/kKiUR4kScDui4g+kWhpcIAR9HlAl8i2eia8GHjj409GwQN6adSQPtNzpwyUirE5c6cqUDrcBFO7DpBiTxiCBm/urdDRJf0UZlNQluELxfQzyARERsCZ33VaX8DaXhU3y1LGwURSOWtqK8L7N7JVL6q+y+5/MPTvMCvrx7DeSQPJ6kHJPlp4Ur4QngCOb09kfHqM6WaZjJc9Zl5/gXlJbNAmIIIaVfHRkHC3qYgxI6J3SNEBpQ58wqIZs6zhG1FwrpEvip4jOon9u84FBqFj8xzVFSHL2Y3LymCZ1GdBqJ40BwjmF/S1ZY97c3OPG20/+AJFKtK7I8f/qC+otSN8VcZDl3T91Eju9zslTV/7MacU/Fvg296z3vK5fn3Py1tOuHqO4bSRcKieib49bAzFPLMTOvhaXSVT2lvN+sYDtyDKoC6GoGS5NdrCb5Kbkuq7iqZ41/3WEHaT3LenLmbZJ/X75NeY/8LZc2TGcOv35vf9ZrD1LcfvN7fRh+moGl6juZ31QKZuIhMcVNQSOSrH/CNDGNBwuyPE2M00CM0QC91FiH7S3b69eEMKV7GT+R9UAXTakMOhF1IGpku9tys9um5C09YJvKcb1Gp9FiZAZFggE/w/6Gw/6GaTwwDXvbnI4xycPNrOSnFy3xT6LSthMhTAY+SWmAAjjm9calGAXB5bFqrkM51XgNJizcwkXMw6G4q32geAQseerCskbr9Tn38vzbfe5f73oM2eVxDs4uvOO12aqjus/bKe8S5vF7xATz+ZTIJ1OIARf9OwM/dduVY80g9Adwgb6HPRTPL+a5Wc3SKjHFEQ8tgHnKmCV6N+tWtDaTHJeD5Lo1mS6tRJBA9C5ZEGkCZNWCaAeTcaZgljc5a1j1z4mFPs8Xl+aoWeNl8H8OxZQZ8RwjzDeeRpu0kSBEtTpM48gUJsaxI4Z5s2CuwNy4sjj3ZvpOgR/Tev2chRWwYEUWcb7t1mwuHtG3HRPQS8qk5Bpi04Hz9G1Pt9qYeWTX0a7WON/QbDY0V4+QpsHHCT+NECPO3dAER5wmmraj6XpCjNwOe9rBfAL3w479fpeYtw0sEAvO7FPgGufR5K7lmhWteFss3ArXPiKGkfHmBaN7DRot8LAoTjxtv6ZtL2j6FRePL7l8/Ih21fH0+VOuPnpEDBPPrloO2ycMhz2vvlhz+/ol0zhyc/Oa/X5fBqSiyBTYXV9DULZdw7S/ZrVq2e0PXH/9NYfbnSGlU7arfzhqWvjkRxavKMYJMztVGmcK92rleXTV0naO3aBcr2EIyhSVfTJlw/nkfmzmkDlYmxPwSZzwXqosYNiiKJpcvUy4Wrh9CXMadJnBlaILJ1pMiYJ2z/M5umWw5lAtNiIG+njs3rVrrcIi9luc5fgC8CAJbInzexWAqQp/s8j2VVkJPSRZX8EwOsbJpWdcIPIM2KNyC7oGutJGmbFkN5owRW73e4Yx8MXrl/zmV7/k1faWi0cHnvqGvl3xtO35yZMtjzeRZu+4XXfsaQjqCWpxhEyZyx2Wtc7UyJW4WQAWJFli1GVAUy6pqDCMNlfGoLgXcJgcXacMg/DlV7BeKV99MfJbzwN9L3zysePpE6FthUePHJtNCqLW5kC1sOqFtrH+bFspbntSkJ1kloogSglObzw+l3lYkqqJCtCZLX+zElI11ayIVB+XFAVnlmdWfA39E0Q36NXPcB/vYLjBHb7GbX8fiSbMDoeAI+CmL3C7l3jvGXe/5HD7C6TtYPMMNh+lXciWJ+uWzimP3YErgcbB1SpytRrN9NVFRJRxHNHmloHXCMq6WbHuOyYfGTthaoXonM3X5Occ4jzpS/rXAgxpPVRM1XFCTrOZmUTGeOxYFq5eBhp9gMlYulCo1DJyTbX8m0/NDM1VZaj+zVfle5PuXNDqrG0mBShOFudimsxkuph+F8Erx1JSDoeBw34kxshhd2A8DEVANuAH9gQ0GJjXetuZFgQDcuZal/hXlcA6x1lwxDbQNA2qkRAGYlKyxnFgmibjRilr23jYcfP1V+xvX3P98gX77S3TcECAw25brIyvX37BeHj4+HfHiuaxrCv3fqnO6T3XydH3fPAWvVnuOX7Xa07R3Rnwbnd+HxVfjg4yh/9OKa/tSok1sgSgjnftjy7PSqomkKPuQxEDxFGapqVpW5w4mpxaWMyyISt4CwuB9F/m+eJS+F6Zz5f6i9khL4SIBEh5E1IBi1VoLr7JhShbgcqcPrkAROkeZZTXyFXhuosmLIuTxS6U2Z30A5KtyHla2UInTvBtR7/e0LRdUiADWb6gAD8j03BIIPdEO42oGujSZOts15gF9DiWdnIirPueTbLgOQy37A6hyMoiZnvadw1dv8GJp2tbuiZlpgw7DtsdMU7sbl+yu33FNI2M48EAGUCSt4NzpigOw8AUlXh7zRjN/Wc43NC2nY0p19A4n/h7cofxjlW/pm3bFO+nNQ8FjO8i4J0vQcqNr/sUu2/mud57ur7H1zEMHopknmsLMLWec/dwuIWlzhFw+a7Hi+eWMza+ZwU+/VqP/2Sh8maQOK8Q1TzCzTxD6jLMNxKBGAkyhxUIIeBcSH3kmNfRuY71Wo7eBaI+hKVPJsl1KY2o8ycpayKCb6FfNyCR8dGKZ88fsb/o2aw3XF6uaZuWdiU0vaV877qW1arHOaFfO7qNI8ZI23X06XxOHgVK03raLiVscjZ/nXe0q8ayZPnMykzJ852jW3l8Y23dtM0MMCU3j/xf03jWFy1NJ/gO1EWCTiiBtnOsLzua0ernO0ffdayvWpq1I6rQNw1ugmZyRHdJf9ERo2XpDtPExeWG1XpF2zZJ/00j/0RMwXeh7xb4QRDfkj0gVRziW1y7wbuWfnPJ1dOP2PQrovOExhPFEXyb0gZ72q6nSwHMur6jX5url1/1tJsLxDmaaaAddkgI0L0E9eg4cqWRxzoRVLkeDrw67JlC4Pr2Na9vXpspVwiEyRZbUyQN+FHfoL5FXYPvL+lWF6BCuxkJw0ScRg7NL/DyOWjAM+AZcd6zuryi31zR9mseP3/Go+cfsdr0fPazT3j+oyfmoBA+QeLEYb/ni9/7mNdfv2S32/J7v/MLXrz4mmkK7PZbxnGAIXD91ddcv3yFE+ULD84ZYjkFMznNKZbfT9x6O3Wd8Gs/b5jGwP52YBoPOI34OOI08vhixY8+vmKz8exGeHFQhgC7MfL6MDJGUGmSpYtZa2jyy9CoaDDG6bzSJIDH3L4Sc8hgD8nVKx1nkATuun3lSbLc/aqUpIoRhmiWOWDBxlIYHIvmHsUEJMEydiXLoxjm+RfFrs9ASZQZe0s8G7wpkzFvkuTzqavqRBEfKsaPc3BxIbidY7/zaHQgj1D5DKEBdqhcgb5GsZ0wTYw6b/IMY2C8vrE5h6N1DZerNX/ok1s+3jRcug0/Wnn00wt2YcAPytdfeHAth8OK8eBTW9uiR+mRTDJ/aoW1lCqSb1o+HYEGFMIQ2Q8GItxsPf6LgHPKb/5WoO0CXRt59mTk0VVkvRJ++hPHJ8+F1drx2WcdH33U0DTCaiN0vVm0PXnkuNgYOHR5Af3KIWJujc7FBDqFZBHmEBqkskd5cLJXnwWk/Ncdfa8/lLW2/J6tnNQJ6hxRIDSXTG4FRNrmkvbiOS4ckOtfIK9+A8Yd4fXvM778HZj2xPiKGF6YxdXlBnd1iTQtq2c/Zv3RT3Bdz8Xz53y6/pjeOx63gUcttA6eXAQebw4Grnml8+ZfHbtX7PULGhWumidcrjxjEzmsYVx7gjjzHNCIqu1shuzjlSxZsoti5oLRGchpwJArGWoESryb7NVUdpmkFvY+DKVoWtk7Itc2DXlNu8R5jc+C3azk1XJVLk91zoQEnYMaV7xWx5FwsHSjh8PIbj8m8+oK+CkgtHLYH9jvbQd8OAQOQ1JOmS0Wp4NwSK663lmGCvvd4zCmHSUDP1LcZKxuzqx2naPvVrRNa9a1w5Zxsmw8u/2WcTgkRazBO8dhv+Xll7/H7uYVr199zfb1K4btljCOiAjTsGfYb4nDnrbrmcaHc/XKHCwPvwIelhLv5up5qswpReTOD2+o13sUf+cyWn17H872fnX4joGe6rFzH9oXdczWb2Wd9otgucu3qxUumxu1YiXO2ZwQCzqaFfC2bWi71oLeTxNT2mkuVkCkZBpiinaWdRzL2IbGGizGRZAZGs6bASI5e5PV2QFObR42KYWwpHnpEuCdFcl8f0iJH0pTKTMoXZ0nBVoVgQhOnc17WzApJoYPSHO7V+QaBKURj2u6qj+yUDEHIAvjyHg4WHr1YFm20IgXofE2A3zTEybbpOjallXXWSYe7+gaj6jy6nrgdjsyTQMxDogEvBMuLjoeP3psoIoqEhXVwH57y+3uS8I0cHvzNdvbF4RpYr+3zdwabBFpCDGy2+/BDezGiNzeWh96R5PAdi8NXjwa1YCqyVJeP378mM3mIvFlK1u77zVNy+XFBV3fGyCYxzsJ+BExcEkvcV33oP1nNCu4J4GfN4A+Uh1z4ri+Qo6OOXHeKMsB943V5SqcTa30zkDMOFFy2yrxfvL9hbzFlJ+1kIoTAB1FidHhvSVeMTc9izFTX5XnZuEBKT5ebsUPTZIzpJWHVnVxCQtQaDrYXLZ0veAb0wHHYaJrezarNd55QuiYxh6NBrZ0raVtn6bAMFzYuO1aur7DiTCGiXEcEqCm5Gw8rnHJuMCxvmzxyWMlbw4hStM7VpcWg3e16YlPwFz+XeFz5v4VECf064aud/gGcIEpDkQi3cZz6VaEEOk2DZeHNU3TcPFkRXthkp+ferpgQO76kZW1Da6JEAJd33F5Zdm7LQFSpSTmdn0PFvodAz+AWDAqFQuiIb6DZoW4FtetaVcXdKs10XtC06DOMbkWmhXRNfi2x+XI9V2HbFbmk9r10K/Nl27wNmnDhKQgyzM65wmqDEAPuBBoxwNNY/62IWlSpjs4y0R05JckvkGaFO9HOpyLxGkk9BfEdg1xwpMcaJqGtuto+5521dH1PW3f0/Ur1uuei80KL9BKS0PksO+YdltcjLSN59Vmze52xehGpnEgThMREwpiCk43MIGGtEOdoyM71NKAPejUdg7WG2E8QBwjQsQlCyunkc63XPRw0YvF+RFoI4hXBhQXLMtRxIR+jVpSnsdgUeuL2bPLfpOVe5cTXJXFK8sTc1gTWWT3ss/S9WaW7KgWOvtYRjEtFjdgCpYlpMpmhJRgsJaRyyo8Z+LS6tlyVJeqTnfOyd3z5EXvYQUjEWgas55KYh/mdLkCNulvdsI05Lwoj3kXUy1gIRLYDgde725T8OcthD1NbOjdwFU/0saGTTfStJOBeFO95Vctu0o1Xqult2hUp6kAQYkhl7i9KFNQi1UtEbc3y7S2gXEfuX0dWK+hdQ6dHJuNsuoteGLTCpvJ0a8sG1jfWBboEJS+E5qGYpVmj5uF47LbItULPbCrF1SKYAEpZnPs+XwleaRxxZ2xZz/HNOjUeeMfgHZppzIOyLSH/UuQFvWviCpoiITxwDS8xukE7BDd4tqWpm+JmxXENW7saeMlnTaWN06gcULrAp1zNA5WPrJqIj5MdDLg9YBTwcuE94p6mFzJAIqL4NAS5ScrJvkY5ug/FrvHxm/GT7LJO0mRyYfWRmlUyVzmQ7km5KEyC2RKdlfQlIkmxx2YfSSX4uq89mfXjVzn6iGZCVYZEDSYxU+MkTBOTMldYHbjqKwPMUVnHAwoskwTOTCiLMZSBtTMMst6xZRNEzuiOwX8CBLNos87R8DjoxDjxHg4mNtDmBh2O8Zhj4gQve1oj/sdw27HYbdl2O8I40CMExKEMI0lXslw8GiYHtysvWz41l1DHotVmbfd597ztRJT8ZJ3yBq4UGhO8SFdDJR766DV77oo+w4vdgcMO75r/fz6/d7t9g9Fs5wwK3GmOMy/5zlaFLUjPvqme+d1Pe/Oi5vTxVtw0MplIwHTuTYl3XNi4NlFtfDzqubzVfZ37i8p60W+l2Xek/LsfOnc9AUWyHe4A6ycEK/KXChlM5B+71j49pTdWuoxSn62YlY/zi36dK648UQRR1TFxWjxO4MHVbwzix9Babuepu0Aoeu6FKfH0Tqh8+YyZZYwaR3KfZTAtb63dOo6TWgIaFA0TkzjnjDZpuo0DsmVLCQAIY+XtCEtpOxOEKcpKdlmuRsSeOfF45JyPaQAuCF0rNcrU5yrXjb51taa2AbGrsV726THRzQmgEjMCsg7Bxp4aM+CBb1lkCxciWqgpy5zdF5OlXmHR86ylHKHIehyViys/O6AP7m9j/jKYg2pwgVU16pqijehJc5YjNFcitT0qxnsKVfNQGe16X3iDe95829KqbWL2pAaogQYpBxbxmoHeLq+Yb3uaRpP27R0nWWg89HkbgMmPW2yjmyC4FtTyprWgB8RoRkF3yQXqQxTi1k7+saXeLMluYSjmAk6bwmVYlSzMEg79Q6zWlbMJTREs9ZrW7MOsj0ATc/SdB9vwabVQp003tN0HtdY+3ixxEaqivcuJdCI+MYbYNSZJWiJG1fa7pv12HcL/PgeHv86tiXd2d+mQ1Ybc9F6dEn34+f0m5VlAmlbcJZb5iCt+f5LY9eKY5KGbWiTmYXAFKyhhwm3PyBhRF/eoC9eoOMBJRLFgkUNGjmkwFEOYd1vUCKNb2hacxkZxsgw2g5+iE2JbaI6EeOId56Li55110EMxEslPr/AXL0i3iniPP3lY7r1Jb7t2Dx5xurqMV3XgGzYbU3hEe9NiYwt69UjeNzQtZfs9oLvnhKnicP+lmlMAanjSFDbiZiGrZnBqzJpIKIGboVA1PFBuzAq3I6RMMGgnkCLF4fz2Te4JURHiCYerDtPq0qTAjFPEUICDFQjQR1TzsDmYXSJp2Wcrbh3GeNYWvxYQENkVkwEUnr4WYFbMs2jF0q6UEw/hChI5eplcpeaZYAkV6+af6ZYMJpSQWqc62LxfQys0uRrml298nHeGMi76cXtS+fdvA9hgem9xbgB4eXLrCS3wFOrHF+CfgRsQfcI18BIEhPJy4bDFqdhmvh6e8123PH5qxWff/WYYbtDes/j9QWXsuGTlfLpxx2by46vX3gOw4o4NQnUWcbyWIqO+W9esDJQlU5JLXTklbK6ruyWSpLthDAp+52DEBgO8HsOtrfQd8LLV8LjR4pvlNVaaTsDfp4+HbncwGotfPoj4fFjYbUSPvoYLq6cjdXG4l4hEdUxCUnC8W7TQ1IGcvJxDezMUo6mAIwpG4xLLemkAJzi1JAUwYDOZL2tzhP9BtUOz0d4d0CmPdI7fB9h3OJ3F+jWE+OAl4gn4oJDt3umr19Ae8MX4wFuXtA2nifrliebls47bh6v2T0yAFw04Jg4HEb+yi++5je+uGEXPC/0klFHVA604ZYmvCJKQ+sGRumJwBiFSRPkE2YlJaojWoJ6RmmZtCGKECQHfU4TbZHBqmrLD6ikgAnsr198ZQB2iiERU1BRjZFxHNnudsW1KZt5ZXdn5xy+bWi7fjb1zp9gps6q9pxpHA1sn2b3rvEwMu7NrWF/mNgdxuQjX2FMLu2YYbtwwzAl4EcZRztfi5POWbytAtBnBRmfrBWkROaXJIi5tEnh1OKpTMAk1+xEmKaR7fYl+8MtYZrY7W4YhoPFE/ItjfcMhx2vv/6c3e012+0103ALOiYLrglRb6GdwoEc2PtDUK1wSnXybSzgruJxWokpmn4G+I5Ij4tWx/dW4d4flhrL2573tlu/2xzSu18/HPu886x6N36uS22/MrscO3HFGsL7hsb75Bpjc9RYb+pNccUdPQdwto2qDLjMrzln2YmUQMjO4YFI2oDEgkH7shEm5I3gEEzBVzV353FKCk+T3S4z2ZETh89AkJvfe/nvnK0ggxBl1lf6cBmfOv+WLRCNOWdwPgUS5thl52FI73yp6ooWQyOplVDS+lFbBTURnzJ+WNw7GyTd+oqrp6b89V3Hqu9NFhbbIFKNXDhHaFqmMBHiyBTN/fXq8jGPrh7jELbXr9jub5mmgd32lutXN4QpZxRKWUxjax4SzuPaK9r1E7xvaddPaFZXiFgcVPFtepdQYrlJSlZj/WZW9m3b8uTJUy42Fwbwh9m9NwYbd23bcnl5Rd/3NkZTxiLTj20gN01L1/Y0+bkP3oNaxlo9N3LcnVPj5vjMSQCoVgzqiVc/Y34i9WFVkXKP6vCo0Kka5TKZQ1j5WUZ8s7xYXLqcBfb2zqVEQszArSohHsXsyRtZLOUaOJorD06ySH5b2fukny0OrG+gX3likJS4RwhTwDtP4xuczOMXTGZoGwtsHqNlggXwTWMBlRGmIIyTSwYF80aWOJcCLgt936Us04JXlzbgHKtNn/RakuuGFP1Hki6RZTTjrYLzdp+uyziCjdW2tdTsfd8SQsQ5x2rd0XXmXxajxfWxY0ocoxAbNCq+8XQrA4pcBqi+Rc99t8BPu4KP/4MoDejKHt81yGaFtJ7mowvWP3/GxdUK8R7fWkydMSr7YGDGOMB+Z5G1xwkOg7nnTFEYp2BC7uFA3G8hjEwvXjJ98XvosMdLoJFojLlpaVpLueid52pzhXOOy0cXXD2+QkS43u64ud0xhcDNzYGbm70txHEghgPetTx+/IhPnz+jcUITntPEYIJs01o6d+dpVpf4/sImpJlZlOl+cw2NU3wPTWOC8dVFy+U6chgmXPcxjz46gAZ0tHfSOBLGG2I8MA4Hrl9/zeGwZYoTt+OWMYwM48jt7obhAc3ZwUCbV/vJFCu1xUgl4qWxnXfXMkXHOIHzjstOwPRrHq8iMVrA7cMwEiKM6i17mzoOEXZBCHkdTszCO62An9kFzKfA0iZIzTFX3Oy6/nbgBxZZi11y6QKz7Mjxfgi2i2JzfM6+RX0cBfwc0NmnY28g9uzelY/9LCPFSq6MlXfQh3L18h6ePTMg84svkiLGCuFThMfAa9DPgAl4hZnMTMb0imn2bF2yGwZ++fornBc2Dn7UdFyvNnzyJPBrzzvadsPuYuKrn3a8HlaIb3hxvWGMWEOox7LpabWBbZYmeamYjbdT9iZrLWahPEtyGDgls8CdSaMxYw3KzRTYSsSJ8uql0jVmDdT30HbBLIM6SxXftsqTx4HNJnL1SPib/ojjk08dT596/gN/a8+PpaFpI+uLQOvVBpVOqc5m4Sgzt34wWoA86fvS/SsDXwnYScdmNWc7xtmaTh04HwzE9KlbBFQaJneFoLh1i390idMBbp8gzx/DuIPr30JfrmHaIbevaG5fIlNEX2853A4MIvz2L+F3GtvR+OjRJR9dXdK1DZ89f8Srj65wAvv9wH4YOQyBv/b7N/zW51smaQibS8L6EifCanpJN3XgGqJbEZueiHKIkVETEAvmzqSeSE/UhomGLRccpCfg2LsO1Rl4NDwz7fjqvENb5LYPpHxO08BXv/wF3ju6tMMaUuaZEAK3t1u+/vprDoc9MLuV9KsVm4tLmrZhvbng0eMn5jLiPb6xDC2Wncbi8Qz7A/vtzsyTx8A0TGb+fxg47A/EEDmM5roVNY0jnyEI273KAqUpB8bXp8lmaIwxuaQpYrCNXVsUPRAaRGy32vnG/OzF0r+ba4JiWz0BYmAadoRpYBwPvHz5BdvtK6ZgwM9h2OPFsWo7SwgxHLh5/TWH/ZZxPDDsXyK6RzQisUfU4WKAMTHfDwD83LfDe58cv7DiObrP24bbrDQcnz8GnrSUnofyEh6qvy3veAxBnX7Om+tZPfetF2jWv++pz4clJa/fObtWBmGgTtltoJvNxQz6tE1L4xsDMZPrjP2f1yFJqbLNws1cvZjjGSZt7FSmHYQSR8USdCflJ4EMJgMllypVRtUkDyuHKTAkC9uV+OICVCEfKc6Lm60PstJNDXdVwA+mCM3tkgum3tZ8+5SWWUPJJpWVU+8sa1/jP0xWqEXMEq3eI4Nq+bdYlcsCmWuQrslR+spGoiYLIFVl5Xu69SMUpWta+i7FFcl8UBV/+ZTV0x+hSR6AgKCs+4Z11xBjIAw7Xn61NeD61Su+/vJryyiW3HtVHSF4IoJIQ9M/Y3XxCW3X8/ijH/PoyceISzzfN2aJPRyYxhFUSyxKiyfU0zQdTdPy6NEjNuuNpZAeBqa0ERBDSK40jbl6db2NU5mBkyynuZS8wd3H4B6yD4+oPDEBHSfBkgqRKYBH/nvfun7CIkbqgxrlmc3/7MdiOblAiO485BgWmqsj9/L+mY+kOFwJZLaPS/PYgIcYrB/DGCpZMPEgnzeHSPFsFy934snfjub8orr4a4+cAbamBe9bm6uh4+pyVXhI7hMninexbJKZzjxbR9r0zXGOhBANaFEgqGEFBkSlhB9ICcCc28CL7ba3nUfjKr9Eru5yJS2A8vx2Aimgc3pWj/FKKv1TDGzPniNKLbfmu+X3SU90M3+WAmFVssV7dN93HNzZQXsBtChrlNaAn75HWo9bbWguLmkvexvUnfk9uxDRMRBUwUXGEGBSJlXzc8Q6dExp1uJkad10CpYebRjRcaCRQIcBMx0WBM05xcu8U9N3Pev1GhFhDJHDOCGTw7shIf2QO9oJdK1ns+lovKNHaEkTs+mRpjOG3F/g2w05pl0kmehNE9MUwSnBG25gk7dFHERt6VbCKvYQA65rIQwJ+BF0ahl8Qxh2OA0M0TMxYdmkI80gVMHfH4RUMdeZFACb7E8qJUpFMhdN1jlpF8qheAR1yqCAVwJqJqhRiUQCgtdZVC0TyVUuUE5wOeV7cfvK57JSyyLQsyRGvETl5/fBqRnuJGXHQTHBzOXNUkeLJY89X8uxfeY6nP6cduNaHHP6/EOTc9B1StPM7WNv3qcarBHWqK6BXfqtWsgy00znYlQO04REZTcc2O539Ahh2NPGPb16Vn7gYjUyNZ6+nyyQb274QkeKhio54HMSixfljsvUYirMgsqxJqEqBM0ObMYzDqnNm0aTEK00reK90raRwz6wXke2O+HRE6VpDenf7pRhtCf2FYCnks3GgQJUPRwdj42Tx2nc5cE0j8G749RuaDuaMd8j7UqrT0uFWyFNQLRD9ArRxzB1aLiCwyWMDjccDAiWlHI7jigwjCOjjDgntBJpRenbhpu143ZtOze32wPb/cB+jLy83fN6PxIEfDvh+gBxQuKID3uExmQCYoL+llYcNhq88VxNQeOZ8NIUeU2k0ldSgxVr7iIsVQ3+ASjGyH63pWk86IT3njBNHIaDJR/Y3XJ7c81+v0/9Zmb2YZoQJ7RTh3eeaTMU3uVSGkSLWWfAzzQOjAlMCsNkwE+w4KDDwYCfcYqMg1nCihckZCk0K30FGzM+HySB4ykNawqUqjqhTAb65J1noGSKw+G8mVM7ScFpNbvrGWhk7l07xmHHOO7Zb1+zvX1NCCPb3S3DsDdXg7Yj+IZpHDjsbznstykDzogQ50/aURMNVWyRB6I0p+bMLvVvcurw6PKqTMUpys5s5tF1KpRcZvEaSWSsEChZ/L1PqTgGi+6rZ/WkSqEqUuvxxZVetGiSk3dfxmW5I9h+R5SHRRbcrW3qjpgZRFY6zGrHlZg/880S300KQ+1elflwphLPo7JoOK6PuavOtJAXqrqqzt6cIUKIc0ayOXh6ul9+z7wmLFSz5fF8ZtlLulCGZzE5Y0s5e5YTKRmjrA5S4sY8JN2fwWiu9RIY0moxoOqnXMdcv+TWqorH4Z2ti23T0nbmXhJjiomoSotAdivDUlA7lK6BrhVCsPhjMUxM08g0jmZNGSayG2DOMmxAZItveny7omlX9KsL1psrizfVtDjfWGwQ1zB5C7qvQc1SXRx9v6ZtepqmZbW6oF+trb54nJsS8BPRGGmahrbtabueJArYhuoCyF8GFH7YTpznAhVQV4IXc5eP3FcLqX48Dvws1bmlkJZ1Bin6QLnJ0XhHuFvmaJ4cj/FTb7EAfU606XJMunmcZuBDZplcU/bNWt6zHelqrTpaSz4Es62tfU52Wm4bMXnAVJHEJ5RkbBFAs8dHsq53UgIdlyxaRWCzh8QoBDWd1ICfOSBArMZRzeVyXUDAL6srhf8evYRmwP5IpijjYVmvZYPkMsm6zc3XOLe8RgtzPb6WE8f303cL/MQAw2twa3P7coJ4Zz55XcOji5afPvV8/MTTNI6+M3PYKQqH4FIEe9hvzRpjf4jc7sztaAxwGJPJ1NgyHVZo8AyXjzj0HxHHPToO5vKl0XYbU4p4kZx2DeJ4YHf9CgVub27YXl8zhUgYA42LiHieXK14/PgJq77jJ58+4aefPqLxnlaS6xEOXGNuaTiitCgp21A009uIMk5aUlCHIfBabDcgC3LjGHj1amC7HSEGZByRMEEM6AQaHSG0hOES0YZWAperNRsxs9Kr9WOmaK5ev/FAXehUuQghDfQU7RyXosEoLkI4BEaNBC+E0RWfxGyn0UXFa0RFGRHaxhFwOFFGDeZqJa4Ils6l0EUk74BkzCFe7CMJBMrHcuTqVb+AHh9KsvhJ4kyQlMkrCWyB2YxZ8g6XTUBVSbHCbBHQOqhz5aLl3nKcXboWLm7V+RLb4wHJXL2U7TbgfcpqgQBrDPx5BvwkPbUBvgTMXdJ29LOSltoyaYMaldvDgd+7fsXN4UDX9nx6dcUmbGmc59PNFVdxZHvV88vHe/pO2e9gv3UlNXuxjDnKhJV9l1WP2WsN9milg2STdEVKGhHNUniZZ+aO5WxHDTMIEAWJMKninDJMiuLY7gLbPYiPfPlV4KOPBN9OvHwpXFzAZz8VHj/2NF5Zr4TWR1MEUuyGB6V6LcnHeW4cnz8GJSu3yHzO1e0kUDVkCnycw1VbPDTxG1z/GJqeJnxMww0+7HlyecmzZ0/wamawtgMaeLl7zcutBQuPU+Tm+pZD41k1imB86tXNwOvbgSHAl7fCdrIghm6/Q3iJbzpwjjAN4B3athZ4H2XUyJTqibQIHqRD/RNwF6h0iAuIqO0cRQOfi3aa5jWSII4iVGnVkA8IFiTa73f8lf/fv2NBO7vWYtuk1LwhRna7Ha9evmIYhiTgmYDT9j3rzQXeN1xeXvHk2UcWT67t6FO8iTCN5h4cA+MwctgdEggUmIaQFDIDPo+FI9KaSFIGs2LqxCM5Rp8TGsmCVbDdKlWLSRHS8Mmpgslm0nZTjZEYxxKUWwIIkagHHFbv61dfsL19Zce3L9jtbuxdpoEwjagIh7FhSu86Hm4I456oEeeCZeFrqrGt5uJmgu8HcPVa6sMLtn1q9sudf5d/s9yYl5llQIuaB88AD9XZvO6eqkNd1SPHhntfa3nu6CXfwN7kLb+feqpwpDS843UPQWbNpinY+hxjqw4u65ynazuapqFru3KcEQ9NGxLGkWxzao7fQ3HDUFIA5ihEF8u4DCEkF3StYLtkfZTCDsTEpwVQl7LgqnI4TOyHkRCVIShjSLvkWLZbCyptAYAhWeCUzEw2T5IqkuKnzeuE5J4vSlB616gEjUm+scIZhMpxk23TMwWDV6D9MP1n1ZrVudoqSdNvyxP1ubujamYV2bIkK4XJCsv7Ij9oAbcU0QYvK2tPjYgGhEgIB27HHdN44PXr13z94iWH/Y7tbiBGixC6vrhkc3FhoI5fIb7HNw1Xjz/m8uoZTdvz6MnHbC6epdTRzviyKl2zsYDUaApYC+IcbdPhfWNuwq2FzBAn5v2Qsnppcmvz3uGatggT+bVtHGX+JIs58UHo1I7tCToVyLkGRmawhBKcuuZ6GQyMOvO1GhTNqbfnFOnvTve1T4lrV/6dn5cOSQtwegeXYuGYO5PzLv31Cx4bxombr19ye32T+jdlsOo7rp4+pmn7tE5XFoblmR+qL1Of6J2Vw0gVVVO4zFppLPKjRrNec6J4b1b6TePNYETMvcKnGDje5cyIySVWHIowRWVKez5BYYrJalmTZ0firfFU/1Zgy2kHQ6iB47nAfUDPMVXns5gpxxD76Wu/iXb43QI/GuDwApoA/rEpQyk716pv+eiq549+0vKz5w1d47joHI0znHywdYVpdAyHSIjKfh+5vp2Ygprb12S7jyG0hHFDjIH9i2dsnwyE4cD+9pbtzTUhBCa1eyoQomOKts8Rhi03ww0hBl5fX/P6+jUhRkvh3qxoW8/HTy74yWcfs171/Pynz/nZZ89ovLfdS2+L3RSEKVqQpsMBhsHi2+jBLJWIyn6MbHcW60bHEQ3JbCBZ1IQxsH19YNgZ2COHARlHW0QiSLRn+vYxzl/RtpHLzWSWCC6CD2l3Ff71B+rCBuVxMiG2XXZXrHkcip+UaTfCoCUInYjQOlg34JPS5ZxF15g8HBpPEHBDZD9ZJiZ1HnUNKiYw+YTkOGfBshBwjeJSGkznM/pL8rGudyWMsi5bhmM6jik2jwLBiWXyUpBQATjBgIC0JoJIdWy/ZW8Iy+xF0SdrEGhOAT4n2BExl4kcO8gXV68UH+jt0u97k/fw9Fng9haaZiKFIke5xJb1TxH+JuASy273m8AtthufgSIKUCBoiguivN7v+M0XX7HyLZ2Hz646Hk8b2ivh168umdyGw03L58+veL2LvHgRORxA1WE2cxYwsY6rkAOC25NOMUC983eW7WLqoKS8lqC9CWVDkrW3MW6trORkyuMncrv1iESaJvDFl3u6PvDsmWUN+8lPlY8+cgxDw2efOVY98DTCJgv7H2ZXrAhjlXvXnM79+LwmMIMF4JM/Xsx9MgdDLqBm4o0m6zqcdAYEtI/MaisOrFvlcqN0euCnbuDX3YGWSEwK+jSN/NbnvyB8DsM4MA17Xt1e4xyEacvt7jVRlS9ejXz1eiSoY3CXjO4ixdG6gcOI9w3juONw88J2hZKvg2JKRyBaHITmAud7xK+RtSKdI/oI7hLnTNjxLtLUCgC6jCGehwdyCm18MNre3vAX//y/gXM+BfDzBs7kGDzjxH63JxTzTRtHvmlTXB/PxeUjnjz7iK7r6fsVm4sLsxwaB8Zhj8ZACAb45LS+lrYdvGvwvk07zE2KEyEL4CeD0CJC03S0TRJCvUOcxXeQ6CA4VC3ZQQxZbs1Cs+ASsKuqxHEiBhtvo4+oM0YrukV0z3DY8uUv/zovvv4lIY4Mwy3jeKDwHrGpHJJVkcbAOB4sTbvYemAB2BXvAsKUeHhyn3lIi5/ULdnm4vjOtYpxdMnieAn66MnCs2xZAzqz82sGchRSNLTTsYCWN57BhffhUjPY9F4XPGDxD6GkSFq/owErmhyNNVuCGi/3rqHvV7Rta+l5+1UKxhkYxyEFXE3sy5CZ5Brm0BhSwN70Y3qWOHPrgcxycp9m8d7idsSpWueq+QCmuOz2I9uUnW+MJnuKCDoFwpB2klcdvm8tno0zBdLun5XbFBdDA4Jls5K0Ay2aGENM7ZMA5HGKln1KzAVIxKfgsxn4iQlYiOY5uvoATDXJTrU7Vz3flwqdLq/Lv2oGrqxho1RqeU57Ts54ZmtqwYYEctpMJ61tMCs4DbgU23I/7Nnd3DAcdnz11df88vPPGQ4HpsNACJZC/fLqUz7+0Wc0bcdq85h+c4X3Df36Ef3qEudaVusr+tVFBcbZP/Oc1/KxDdLZIm12HYKmcwWDy1YlJEuKDIDUVlDZSjOX/5CUgbr5MXdV3Rp8OgaA5vnqzK1QzJ0nZ5pUZrAnxJgy6eniXrndskVXDqj9vnQanKJM3jyW8g/5NxEzksgB4JuupWlbnLiU4ttUeY0GHIdh4OXnn/PVLz/HeUe/XuO7lourSy4fP6LtDfgJyW0xS/PHdXwIytGYClyo5UnMSTiwOLkpe14YDgz7W2Iwy98YDqBmJNG4iKD0XYtfdah3+LajcT0eV7x2vMNcSVMA82FShsnCjRymyGGMhimkGGiqxienNBYSXrpgC+WN5k5aruy1tWcF2Sz/vlOjJYrVVXW/6N1T70FvBX5E5J8D/ovA56r6x9K5Z8C/DPwcMyb5+1X1xVufpoqGAXVjQvasA02oFFovXHSOq97RN8JlL7ROmFAmNRVzamHwQozCzimtClNIFj8F+HGEqSFGYT929Ls108GzJeLDyDRNDFFx0cCLKThkMuVvioEpRdGPYSRMFjTZ+Tb5F5p717pvWPdt8dVtGo80M/AzToIPptzHoMQJQMu4yMwmJDBhGpU4JXQ+2CdMkcPBTO8JEdlHGCOiZlkjanF0RBpTaKOZnzZOEa/41lLiJfq5iHz+bftRFFq1PaDZTkRKuF3B3sHSdUZitImhOYyMgHilqZTwmMCgRtQCwwol6xeQsk3ozCDLMbNyO1eAwkelFCmgz2xOnXbd1C6LKY9ysZbA1m49OrYA3Fl51pTVS2bl+uRndq+Bu7/NC2tV3/yOLDJPPEgf5jq0LTStWbSY2OIwaM9cvoQLkEvIbpnqmX38K56jGUyxtp1CZDvabuNuPHAY9xwaodM9K38g+oZ1O7LqA0OYLDK/C3MnVWLuMWV85q089Mi+tKRzrISgoxZJ770UuMsipY4QbPkaJ4sD5Xc2n7/+OrLeRJwTbq9hd2sDaxiFdqJkApkXi4ftxzIPKs1RslYsd8vc9yGBpRaM1yz4qhZMrZSsNkQR1wCdBcVjRSMbWm3o245N09MTU3aSgXEa6VYbM1NXiMOYYmgphyGwOwwEhe1h5HY/EvHEjpRZzKUdZYuZNE0D09gY8BMw11ZRQsna0ECK3SM0FteFHKwrgV9Vrxe+IGYSn+dhFv5F5uNqVD5YH8YYuL5+iROflCV73zCZy1WYQon3M4tM4HyDbwbEWeYJ783dYLUaiCHSeG9tNextPYs5iCcpDbEJr75paZsE1HvwmlDBCgVzzoBpE6Rz3JGlcFwCw2plbp4HadldTWXV5kgMEwJEQkpXHBAdECyrzXDYctjfEOLEOO4IcbA6u1zHlNEk/Y1hQlOGS5GcbrsaxdWuYgq8+GDyTV5P8nH1S3VUC4mnRbpTfK8WISUzpSL7nQZ2bAzrPO6PK3bMBOXk4bej97zRN3zug83FmlTLP4vlZmFBUKW5ds4CrS6UQoU6UKzcfUA6TJaKqsWXvDwz9XW9JtX1knKPBANpCg4fjH9ENdlW1CyLAoAmnlrG0LGVwdE6WFk91qP5eCHWBAIhBqKLr+pc2sOEXi3WQaVdH2wu3u/qlY9lWfsF6GPvm623qxrO6yt5DLjyU7mFVG0jLousc4LPtBSFEJimwJhCUkzTlLq+wbmWtluzWl/Rtj3ri8esLh6ljfJL2m6Dcw1dt6Jp+vndUiVy3KdZhqx4de7fyt01Aw41uJPfYn73is8XkGD+PR0+7FysOmF2S6RY3x0fH9PSGknm/2QG7bJBvWrVPvm4vOQpq6YFV3jrq5wCfd5YvtSZ1PwyW3YlF/zyN7dF+idGZRoGht0O36SMUijTZFZgzpvMIGl9sFde1O/h9H4S/yvCezlt75fGqE27bIEUQQOqE+iEqMW8EiJlR0kFwSfDg4CXgBeLmdt6C9HQNNC2eePVeGz27siusKjFt4ya9fI8FjjBA3Ldaw0la8G5D7756rkcFsdKTmHWd6tz+vS99C4WP/8C8E8D/2J17s8A/zdV/SdE5M+k7//YW+8UB7j+XaR5jRwC2lwg4Qp/8SmNv2ClyuPmiqcJ+LnozVIkMvvpxUaZGjsee8d+bdG8Q9rViKpo9BYFP0aGx479k444Ttxe73n9css0RQ4xsAsxKafK7WhBK28PO272W6YQcG2La2z31bkGEQN4WhlhukHHkcO24fa1Bd5zjUsCKYh4E6RVaGmhafABmsK5kmBNZiqmaoHtXGoEDQ5V+5gFEOghjdYxoMEserbXE0jA+0jTT/gm0qwc68cN7aogkF8C/8C37cfGwcfrmGIqaUqbna0DoHPKpoHGw6QwBAN/IsrkLGisqCLOzPUcgptMdO0nuIrKlNevHGhExRQFMiJbxCUCBtoIlFTUpmQnLCjHGSLvfFZCUqpzSIuy5iBMoeJRgYVwolpZ8Kgkt6y0eJpHD3DXpcuS5CTgT7MkYM8QV8X+ObLEOMrq9SB9CGbxc3XlWK8F28Ca3agQh+gK+BjL9PUK4ZPU2jcoXzNb/WhRkgWr7CSwnSJDnPh8t+OvvXrBo8OO582GH198hW/3PPI9P338iOvVChknbm6EvffEyVw1KX1s5k8GmuQF5NjqR+Y2LewvI4F1maTsJeF4RgwBLbDlaQVIxLICJcuoKUSiem63wi9+4djt4euvIl5Gfv8XgatH8LNfU548hfXK8eyZtfVD92MWCIpcVoSBdFyNs+wuvBhfefyRlPYEUKmzcS6Zl2XTaNHkRqmI63Bc4pjAT6iPTIzc+oEvm4GGSPCB0BiYvn26QeIz/Diit69g+wo0MPqB181AVBgvHE3jUGnoNk9o149QhIPaxzmP3zyB9ZUJbcfKs6r5hTZr1Peo74n9c7R7TJSWqVkTXEtUh8TkdCSK5feKBBFi3i+tAeZshTfTg/WhoDTeNkJsx04S4JN23ENE4zSbCKaqxGocb2/NMrDxDV3Xc7t+bebfOaioqvWhMwTeYn+k/bbozaIU48eTJkEyW/xgVpchjTVNplBOLGh52yTBx1vQSdVIVAPvQFO2I2cm3skyMmpgmm4ZD1vQwKADosmalT2iA8Nhx353y3BISRU0gpq1ggXSNbcGnUbLXoaAb8zlwom5c/tk86KRECYkRmJIbW2M9V/goeQbZmG9BkqXv50qPx/fsfI5Ub4GBKQSpmfRPweSVMb9jmm3JaeWLtlguh7f9ak/y6p4t1b3SJTvK2i+W/m3l7qnxMPx0/wQsiWNrdneVUGZvbcx2Db4xqVA0HOA5jlws5b7mFKerE6TIu689bhvHI1vjP8WK1SSpUyqRdQ5EKtQYj+YlaYpVSEGy+STrrOYW0pQIWalOblnmatXw6rvcf7/z9yfLMuSZeua0DfmnKpqZqvYhVfhcSLOPdzMRBJBBBIkHyBFeABaNGjRQCRfgy7PkC1oIUIveQKgk3QAgQaQkPecOHEiwsPdd7UKM1PVWQwaY05VtbW3FydiedzULWsvXWpqWsxyjH/+4x+OEPzC7ig19ajZRDWkU6gM7nVAlDpOOl8XIkUJpel11DKpLXY7fDapTC1KTBERWtav/w3P1Re3iE7zhvVTLtm2R200up42NG0PLmvb0FVi9SM8tc272q5rMgkmj+DwfqAfbhDpuH3xBZ9/+fekGHE40w4KHV/86td8/tWvCaGj2x0Iwx4RTwgD3g91PA8rmFXf8/Idny5y6aZIdFtQy/tfjFg/0Wk/0R+fty8+uUlr29aWtTKxjIWznlZHQqVqf1poozrrgyLWxsvC+GEBOVtqdLMDV+aThd1Y2y7r3LGuLz4BouxrTRvox48vDyttPl+bjrUle07LINjE0d0Srra8b7EMcyUbc8Z7GHqPC56u84Qu1DErVH1bYzJtGT9an49nnhc/apfLUKYWLCkWtWEhWrWBXgtotnysYvaZdwbsOIEu+Jrm3ZhcXTCR8a7vLBOdc4TQETpjecUkzMn64pwKc3Rmc2ZdfNkpmqxDUYipkHID0g0fWNpgqzOeLrssNfeJMriYvf+9bj8J/Kjq/1lE/uHJ4f8p8J/V/f8t8H/k5zSAPMOH34E/QHcPfo/LnxNuofMvOGThs/4Lvtw5+s6An+CqQ75ZnWihL2b82l4zdDbPbZPheEM6fUHJysN95u59IqbCmDKnGElFuZsS786RORfePtzz/f0dc4oM+x273WB0s5TJKeGdY5AZ4h2FjvEhc+dnvLfG5+vkuBs6+sEDgUGu6YJnFiEIFcRo8RiweBZVILlpLpQiZpSrZVFJk5LPllUgnTMlJrQk4jyRc8ToJzOQ2d90vPrNgf1t34rkEXj319Zj55RfX2VSUs5zSxmKxTcp9B4OHfgAY1TuZqVkc1KSLxQqC8mpiXumgksZKcK+CE59DbtRpApI28KzdbBTVo7a8BmDIhZEvhpeWr1aJwYC+Zqwx8tKgW0rYajVR27NqzEIlMXJbaivw1bOSr0/ahF1pRpT6rRmGtSPgB9X26yBQDUMzemK/zirvsX20xZawXaCeJY6BMsk8uKl4+oKwiY/vS4TyRUiv0b0JXBC+bt6/HuUe9CJrfIACuIq2y0rqWScFP74eCS8E676jv+uD3xxfUU/XPEqBP7t51ec0oESE2/uHW7smMfAmEvNvtX6CU/G0YXYvBpWwMrKgEvgZ+O560qN1wV4rdds717TUD+9Y8s8phRSdZbLQ+F3v0v88Y+Fm+vC++8Tr14qn30u/Mf/fWdp3196ina8erUAUc9Tj8Jmxaf9vXQHVlBoAyzWH/epfSfGsJHKgGuhk9RsNFBF9OpxJ3jXWc/MHTntgcS9m1A/4kQtllqFUpTRn5HDiE8ROb7BP76l5JlxfMt5emtD/O01QQ74ELi9fcX1zS0F4cNchdxcwF19huxfWq1kXfQXpNEKxaG+r6GigRwOFL9DJRDlQJZh6dOhmGHoxTJJJXFkgoEWjkZwW5vRuj1bXxSBLiRKhhRjZYlusgoaH5nlRWvTzzmjJBRhHieOD0fAmeZITe3eeWHozFENXU8/7BFnamtFAiAUSRTnDZAvwAYIbKCiE13G14rdWArZ0BGgiu67akgWCoFMQFBzXIKZGiVaRjFKJsV7xtM7S1YwnyhpBAqOhFCI88Tp8Y7pfIbqKIsTvHiGbmDobXHHTMJEkVJZDbYy6kJAvEcVUg1BIbew6qo/9Uz2zTKSLI4AF6DPT/pQzbFcTm+m+A+dvlkJ1s39WZ06Lcp0OvL49ntKyXRdT9/3OO/pb14ytLawWQVZLavNi/2Au/yv2X76/Etj+cdM54+/93x9cXtdrRnqfO1TBvq4C+AneNOj9EsYhiWoKMHh1Nh8OetyvdaHLfOoq30/mDBwBVW0JszIVWxd1RhxWjUpXHWSBOi8ZelClTmuoRtFy6IRVNSR1ewhbSGXIvRdx36/qw5SA3UqoKHbcKA69lemgR2vKeul4DfOkRZbHGgOczu72VGrzU7VHZuXLFLP6mtswJ7lwCeatb3x1iHb7LdG2CaLBvq0P5stsXHW13m3XW9j51e7X1Tw3Z7dQen6A68+m0jJUXJm6PcM3Y4QAi8/+4IXn32OeA/Ooy3ETD3LAphuAAW248Clg7llyjwppE3RrI4tbaFNPmV/sYAgl9cS+EX6YrPHW3U2BrfUpKV1virruQ0k3bLzshNKqdIQNeRSROr727tY2u+yAiANtJGWzfbpg7Ge86nPn2w/xPRpILM9zDZ7kyy2WQOdt6BPg1bb/VNKpNnC64OH/c4jPtAPHb4PlmY8dATfbe67KTeqHfhsfdH64MKHqaBO6x5OIFQbtAuOfd/hPfShY9fv8R46D0MnBvp4oa92gBPLDLid+4Ca3r6G9wW/pnYvWoEc+x3ruBULzLmGyE7Vry0wTjXDaQ1hjW0hrlh4udWWW/xVbQb4Wts/XjT/Hre/VOPnK1X9BkBVvxGRL3/oRBH5z4H/HDBB5zzWAfBowibRUgCTd0iZkVIWfQlbjW1SkHX1elvNSzlvTZ5Lk6E4Zx0+gyuWHSxFpU+JEBOpFLJPzG5mTplzjuzihIuenHaUuLMsKHFeYqNDAC8FR0ZLMqHR4iB7tE7+yRWCBJCMugF1CS3O2C/NmN/0ddausb6jXpp/bdGo5Bo+lg1USamQk31Y6pKq6wopmr/w19bjtg5//frvGLziVMmipEqfw8ZPE7g2n3HJANBixtuAunlpe9NS0AJOPZ1apqUlw0sd7FtxBbXVpQKQdQFbpNpU4szQUd3eZS3Sj6CAZjjXkzdj/bpygzm82iaY5ihvzt9Ggjx1svnk/sYZZ3O/9qhbn+HHx4+/qC++evUbQhB8uLx+s5dMtHCoR/bAHhETflZLG0cjSy9lvAVkVSkCU84c5xlFOceZnCbUe4JM7LsZcYFdl+hCJgRHclXjaeMELb1etke02ahL/9k+w/r3ur+uznB5Tq2Yxd75wa2NPZWFh4nFnUdhnq09fPhgjVWccncH+4M5C+MIcf6xa//r+6Lc/GY1JKQZFdaonoI/T9vk2gZl2V8aYyvspXHKdpfG/FlE8VHQzsY5AtEJo6MCP0LCGESp62C3Q3JCcsblBGmmlImczlb+4QoXrnG+I+xv6Pc3ZCC4iHMJXECGa2S4tok21fJWAQyYQwR1nan6iqvMn46CR/EbEUNdy4G6Ck8TMtVNw+OHPdG/oA6f1uPusFtW7ddnWap1acKtS7Q2v3ymoBRy2jJZqj5DcDiCGUhVWwSAFgIlawrYZuheGKfb9nDhHmx6/jK21XsoCwgkGK3ceVcXyNaQzqIWu19yJKWRHM92foNy0kyuYdci9Zmpq58VaFIwhhprmuiVnWbPYIsTpdqgps9goM9fV4/bOvy73/79pfu4KcNts/lBRs8nQJ8f27ZDodavNzbjcoZamKA51wlRY79aOE7ezMCLJ/upO6w3ekZD9uOrycWn8rPv9YPn/UV98ebFZzb/6GVdboHNlg55228ux9UWvrAeX4t2tUqcNAB9vaa15cr4qfaMljrXLq9qY+5qi6xznl3dnK0W9tUWQVvvbZamvYPZq5fz3icGvWUMqO/L5XixlIGThf3d5qM2nlUfe7mygUWVjfHDbf5f3Rc//+q3F81ZNnV50fDW4evJR5cGURv6tgtdl9W5QkeiUM2jeqVNf1y+0samgHro+h27/RUlF3bDnl1/IITAsL+mHw6LcHRbADUtyRqiVNaxbS2M7cP9wPYTIMXT/vmpXqa0eXf9+we2v6gv7m9eXthkDezZAixr31r9Q6uL7Wjc/A9jlsmmfUpjbTQGDyzsn4t3vWhEFw+8lOWnGD7b5326/3Rbv7uROth0v1YQFz7K8mWqr7XObzZlmvyI24xfW0BLtuV0WWSf2v7VffHlF79p1vfF87ZjToyx6MRIHl0Qgoehg/3O9vsg7HoDeYI3UXpjPtU6ZH13qPpTjRHpHd5vyg3QCoI7MWa1FGoWbTGGZLEsiDlVsFCowvvUxWJdNGGLGku62WgNEL20lDZ19Kk/ftDp+KHjP20f/NT2i4s7q+p/AfwXAG64VfA2UMV74EQ5FtLbnji+5cPNkX/6xz3pdGQ47Lh6fUUYOjon7IKzihddEEIvhgAKLBoxUo3KdYAuS+gCTm2i9hDwDE7oVNHgCTtPVuXq2vH69Y5cMuP4kmk626pNjORoegRDHxg6o5X1PtAH0FIYj5F5ylVrIFJKAhwqV6jsyHge8o5z7ikqzLknF6sCh1HTiyglQnG5IV8sHAUx5F+84Hs1tX9XuAodzllM9zxZCuD9beDw4sDh9q+v4m0d/g/+4X+oHhsIB18IFTFpHdB7Q2Yb6JOzOcfUcCezSaoF0ACwbKKbnUDvbVBy6pcBuuDI6igqpKScZlvNzB6yryBBBwxW/xocua5gaXCUzmjYQwd01ehxdRWKql3RDCSnS3iXUHNYFVBXgYECodIqLPGXQSQFSCJkUai0b62CIU6MECWy0Q1qzjOXxxvTu/nhTn6OG/Cvr8d/8w//iR4Ont1Q05dLQ7Db/w4DfALwGcLfAztMA+hNPScBMyzfafw7FuBmTJl354lTTHz78Mif7j9wvZsI+2tur95z1U18ceX46mbPVSi8LzNxTObPmxQkACLGILL3cGiLQ1JP0ZaNpBmsfGKQ/bFS1E/urltjFLXrNNFpO7kUq7xxEt69g/NJOZ4VFzLf/LnwxeeFnB1ffvnjKOzP2bZ1GL76T7SBPB+DijbLfSq8y9pVA30UV6nQKxC0CemSVfNn2a8Z9lwNbRQE1UD0A0kL6jzZdTbJOqHUrE9lVyhN+CzsYfcCKYl+/BKd7qzV+T3O2Sq0HwbSMNi44TK+K+AD4eo1Yf/C3NwqhK8q1i6qIVrEGGMqDi8BFvn5C6vciJYI4te2Y8FetQ0vVqJuQMa/ftvW46svPtfbV19ZBG+swH6BbBFaxHlmHI+ktEnxi+B8j+v2iPMGRNZwxWYgOYAS0TIhFPrOc9j3hNAx7A/sq2aE7zp8N4A4CjbONsO52fUtIEgEgg8Eb5ndLN1vzyr0bPNV6vfEZOBoA2tKKcwxkkuilGgi3dO9MWrjuTJ+dAH9U7JkB8F5ECH4VRxX1OrR5EJaSvlmmFnFNkMXtII/NpPmUix87q+szIt58X/0n/7AyPHp/c1VLj7/6fNXp0FzC1tTUo7GZMJC61zoQAvx9Mjpw1sT2z4ckHxlmk77A5oLQg1NbzfU1Sj/eU/z9HU2ntqPbD9+xs+81zNt23r81a//ra5jpNVI3weuDjvLjCNS2T0Wbth3xrgxxswa6i1idm4ubnH4fNPSU8uY1FcmXt93DDtj6BWk9j8FlylRkGJMXNcc1NzEZRsr2oCeolXLjELLXKiii21julo1+09btMzR+ox41OLQKVoWsVvnFpgIWspIqqHCuhDqxCQXnCSyaw6Yq+VroaJFhZxhVtNmU81MkwGQf6lY7qfq8D/4j//HujjKNnHbM2vTEeGTTeyHfPttV2h2YdtfaRKb21VHkvYMbMqwMakk4IJl0rq6eVk9z0LwA53vcc7TDXubiYrNRWsYmt1IlvuvTvXFa9XnudB/+YHtwiHf9t8fKKv143bv5+mz23p8+avfLGbXU/CnPVuDSIIXE/t1btHdEpFFrLmFcLUwLa3HGkC7LgnrChiu+AiFsgKdT575p4Cep6Febb+BMFopZAYYPAEXG72s9vFmdmoxX6VoIaeEioUyx2linkbSPCNgTEUflixgUjXIUjJfltq/dft8f6WNs63D3/5H/0kLLsWJaRQ6b5IhTqAPjsPOWf11wtXOGdjTCfveJEOCE/rAEk7r66KVbMreFh9XlqKT1c9b2He6ehQqlsjE8p3YOFYKaLAxNRclIAzesonHZKFiqpYNLFd7IxmJGIUKGFFtjCqDwlpt/23a/lJU4FsR+bqifl8D3/28rwlIwNKR31lmA45EOeOHHe/8Pf+f13vefv/A8PoF17/9Fd3VnkPveXUV6IJjcHDwRg/rHeyKAUBdZX6Yk6KLU10QijN6utZoKqdC5z2uypfuRHnhzMhNcmVaNEDWdaDIOVkHK4U0T6Q4UnJhOs1M55kYM+fHE+/enokxcff+A48P91b5MqDSgwvo8BK6a8R3hP0rfH+DOE/oB1wIFkvoQbIsbKYKrVRPq8NJsUm1K/S9cPvKs9sLcc48PkzMU2J347l5PbB/8aNV/K+uR8Fcf3GKBK36R+CDLODFNu7VFNMNDOnUaIlFsdTnYKLVNcdeF2DX2cDtitL0frMKqQQyQpwLD8diGaSATM280RcYFByk4IjBI05IA8TBnKFyEKSCQMFvMmxVWrxNMLqs+OXq4OsSboixBQq44kxHSKjr03WScEY5LW4Zh2zAqsQoKyOt+7Lsr8bmp/efsw7BUPar68D+UAihLKFpJnxWMGnfK4w/+yWO/xD4DMWh+i9Ydq+pTryJap1cWFUqcI6R/JgIznE13PP65i03ux1f+x1///qG4A/cXQfevrjhYcho3HH/kKq2QRXrRREX8c5SfmvxVT/EkctQLS4BDawTeNv0B/afbrr+v2A6H5lSLKCPlGZ5kYuQcZQRvptNd2F4k3j7PrK/Svzqq8wc4ddfP29fBGgzYNPykZoymKdtqAGK7bhbww2da2LNTaeiXaelPtXqADSwp61UV60JgUIgYWlroxsY27Kvc4YUIbgguJ2ZGe7qC1yaEc306YxPIwBePM6ZcyIlkUo2fawBQgFxgXD1En+4rdWxhnq1zDHAMvFqBW6b3USxEIzFBmv+hlsNdKfGOgFWofo6p/xEgr2/qA5D6Hj9xd+Ri5CS1BBfI8RqgfP5EfnwlnkeTUcnGJOpG67ZXb3Ch4HmVBj5OxOMZ8V0vuf88JZSCkPvubna0fU9L1+95osvf0XX9/iux3c7ECGqUZ8LLNlLzFlq+iTgqFRzGrvGW3vwruqWKLl4cukx+nkxVmrOpGlENVFyJM6PnMcPaE5omtBcKXG1/5Vs9ww+IA348Y1JJGuK6GZwqdjKOG1F3dcU1WURpC5iWigppR9b9P4L7Zs2WjSDf3tcn5zzQ9/94XPkyQelZEqc0VKI08g8nqAU+t2O3X5vGofHOx7ffUuOkTLd4HIkdAP91a01MHFbWRnb/hor9WeAPj+5/Rzw6CccUv6aOtxo9SAw7Dqubw4WJifr+Becp69gUAhC8JYowbvmSDqzfUgGfnilpcTwTuh7j/eO3dCzv9rhnK9phisry0WymvPalqUtdCuSGypcqCw+pVQRe2k/FdRHTR5ARRDtllmt5EiKUxV+DfjqDmRdRe4bgLoUTAMKl/4PXeeh2YICOeU6b9QsSFos0YkWUqICvxbKNs4zKeXa15+nHrdQS5vK2/7SuH+gjcsPfKTa9AVXAEYbFX25aQUFHDXkrX3k6oVt4cHm3WB7vnDzInB1c1PBHLNrqPZ+bujNYpfZ2mTDAhZm/JN3WGwXae/zQ2+2fGEpt/X4Zn8Lfl3+eVmun97+4r64XP3J5ReWWD3uneMw9PTBdGx2fY9zjikmjlMk5cKcIuM0kitdYylDERC/vI9s7rECC3XB5Qlj568Z7cx3amAFtEWm5VUXTPFJaVewrzFccilkIMfIfD4zjWdKNOCnCwEX2uJOh/M1Y2iMIFKTA7mFEbWEL356+4vqcUkGIjYuBScMvYF1+53j5Y1n6Dy7XrjeBzovdB52YSUR+K3eYm3XcFkPUgvMhu3qg+i64KOlkKXO+0JdpLJkFgErVqeWw7go5ACpr3rCxbJ/taj7lgp+zi1FvGUMm2s4WExKymY7FWTTfrcSL0+3n57UPlW6f8n2lwI//wfgfwH8r+vv//Jf93WlKXZrmdE4oihxGjmeRnaPE/Mwo2OmC4WCo+thUCV7M8yb9o9HKXVe8gtroRWvLujeyrKwCl/w3TqRe5M7oPdQfKXctjEXE83K2YCfaRTmUW21LZWqtVM2oU2GqE7j3OZmlIy4DtER0c4E8ULCeUtrTslUhIEaG7VQDlekuKEAbnH0XBC6ITDsHeIdfSzVKXC2QuWfOsJ/bT1aiThW3QdDYauuDVX2dxmfqkDhEo/cKqRdShZleceaUtqprVg1KuninzUbKMvFM6nHwj6c/Z3FKHzZK8mD+uqg12d4Kt/BxnGWKuBzQalsLAptzo+FpLn1NS4YFfadNUTmknFhk7CwGbiW760soGXufmrx/9V1aDfwjQJan1OrYbMa3hb4IvTAAWP3WLgX0lsfZn3Q9QlXU6uJp6nClBKnOeK9J5UZLzPBBXof2YVECoHe5wpsCqUpbVMQiTiJVtc1fbRdv6z3+2jJTtffcvFBmxYuT+PJ1z8qs6fX237faKMxC5Y3QTgeLQPYYV94uC/cX/3oquZfUI8bin5rW+3PC10f2bTBJ23y4txNyMJyvJ1/GRYmy0m1pqVqa+EpTXQEzKCqiFOFfGp5OSz7lgnnE3pQlhU7VNE0Y4r29rBOAB+QMKwpx8VAaK0TfhtCpeq9WFWVxXjaPHatNl0PtCXbumigrT820UUunfnnqUMQcYRuhysWOlJKFQNtjJ8UccEjycAM523lLvQd3bAndE+Bn0TQiGihpI7YBUpWut7T9x1937HfDVwddqYFVIEfccJcYMoGueZcyKUq3W/1SepdrHjWAjGxfttUdHGA6pq+OaA11KrUdNal5JrMwNIcr/MC9jerAS7SuEPNqGuGHeuq2g8ic+uFG8D9I739L6vHzRWbU2H7ujlns/8Dj3oRBrBdJWbtVu0zbWWZE7mCQCF4NHcGWqZIiZEcZ2P9pERxDi1pSf27FYj+97F99F6fKJiLc36effwXzoubeXqrZVYFkA3QWEO02vy5XaTZztfe1UUnbaFh67Vd/cxt9IHMprWwg0XHo15UsfaetZAq02uVqashP7WNL/qEDlb2ZlsQbWBBDb9fQvF1uUfrV1JtWkFWMGilAVYQQ5Zj3jnwZlktoZdVF49Sw03EFhhyZXw3cPlZ63FbpVsWxnL04zte9F3Y9L1mLWwNhY2t0TxJ9GIOWSpHuAiJWq5ZbSznuwpQA8WYqzS/YbnNk+dVljr8oW3bTZ4++9O+9NSC2z7tliElm3K5vP6Pbn9xHV4CPk/CqJZZ3U5qIT7eObpgoH9RCKmAQC5rH1suvhjb27vU2lyoP1SfpbahTXvabj/M9ml9afPsn9pnDXHdfveTD1f9wu1zLvNq1a9r/fZpWGb77uX1+OQ7Pdn+4jHVfrWxqY6LnoXd0/dC35m2b+cdnYMugK+YqW9lIasvaOW83mIJfWVd/l3O3bRzql/ZztVNK/LOflzR5SJL92aVg5C8yo+A7eci+GqLZsdmgdHGgtZrLkaiZihsrvWjc5t+1Fw/8ZWfrMeflc79fwf8Z8DnIvIH4H+FVfz/XkT+l8Dvgf/ZT94JrBRSrBOWrzEDHVIzrOS5cDom+n7m0Sc+fF+QozIMhav7QgiOfafcDEpXRYRfDCb+tPPClZfK/oG+TnYeCw0TZ+FRw5WFBxQVctMkaaK8gum3blKPV84opXMUNQX9vDvUdPFKvD0wT5GcCq9ejtx/PRHnxPt3L7n78EDOhdMpM06Foo6oA5Y/RSl6ooxGf5tONh2XAvNcV34zpBFKxJ4ZQZ1Dy4ryi3PsDx03t4FUCrvbjlgKLih+WCm7wH8H+K/+2npUhZyM7eCb+KtXQm/AT8wQk1RRVxPQigVcVlKqHcyZMeChiiTahbvOMXTm9OPEUoGqLT+n0rLcyzIZNvdjCVOpiyVFTEwWgTladilxwkThVGrYVw9DZ4NQVxlAzQD2Uk0jUYrTlbrrsV5XoMZ5XRBAaCFa1POb/JGjpn1nHZjEUtQXYSPiXI1Nh63kVANz06ufpQ6h0iwHoeudaVZ5RWrIRKvnVeh5j/AFcEC4R/gtMKDyFnTaFIJ9t7bkZfwpGEL+MM18c/fI3RjZ7x/46vyBXTcTZM8XV9dc93sezx1vHg6M0XOKJ1I8AZkujOy7sRrPLxB/ixbP6QynEyZGWXq2lN3lRwqX00XbLsybDSCwNWfWozZoN6+0IpDLefV6dSDP6jiPgZiEt+/gd78r3N8tIj/PU48bR2Mb0uU2WlRbxk9zWNrfQiXkLNdRy4BXP6+h0XWVe7WRFsen2a5U56iK02+vb4yCDQW3FpfgwAXb9w6vnRkqSxGqzQ+lQxSCVoPNmVihqxNqc1K2pvkSlrQYhHVibeBurVaVFkJrDlKbVNuErbCELLbvbmyjZ+uLOE8YXphIvPqVXVhDTlNR9MMbshqbK3Qe5z27/Y7r21u6/mBttlIMvSa8WnjX9U2PfHGNUHh1+4IvPvuMoR948eIln73+nNB1uBoapAjnaOBsLoU5JqY5GssgJ0reaIaUXFe2InG2VKuWormGHpW8CM1O0VIW51w4n05M55EUR8ZxJMVqpJb1+bcR8t4JEmyM93XVEFVSNCFLLYWU0wIAL9pgUiiaIBvTaI4zKdb0yTmRVwHP57Nv4KOR4/Iz/ei8H/r+j96jDkc5zcyne3KMjMcHTg8fLPHD/kC5OoBCOt7h82RGRDyTRw+5Jx7vmB/e4bqe0Pf4Gq4nCzXw577x0+0Tb/6pwvjXvvMn/3he2wasbPve2MJm3wi7Xcew6xiGypapwHDwjj40xo+r7J9qBNR5ouuhz2bv+SqiLCL0XWDoLDQleHcJuDsxO6LF2CqM08jD44mUEsfHB473D6gWDn3HfrDrDH3H0HfgoOscewmowtAXUrFn3gXH0FhzUiglGdDgGrAEMWVS2WQuwvrh0JtIu3OOoevqc1cdjSrqHrxYQhJWMKwUJZUaYpIz4iCmjhhNCsHH1MJenrUvtqbyE83vo3Pbptu99scWZd6CPxunHTCgZ7ngqtmyAjCXd9pchqbRdnH5FRKwNrJMXKyT0jL4rBNzw7cXZ3Hr3G8fZVNAbfdpSFz7+9Ik/Wh7vnnxJ4Et3WSIs7DXLAIhEJyj8x4/WF+zcJ3EOA9L1q4GdKYmol6UlG2OWFld9gjqClLsrS80cjZluyyItfISWWq+1d2nS26FfD7SAFrAmg2A064PaA31KrmQUyTNE3me0JrdyxYGFFdWW6ltDZh11d/BNd07eWa/3+xvVUvaEJznatfR956rfeD2KjD0jt4L+76KOMsaDtbKCCzhRSp5s9CzlpdrNi/b77GpS2OxN63WJou9JSWox8BoV33WdgtVqKBOs2OVKjZds7D2QUjZrRnBqo5gzMYWsrZmgDfokihorc3t9ul2cnm49Q958vdPbz8nq9f//Ac++p/8rDtcXKxAnC2zgOurN9GZwVcgzcrDwwxuIpaZKWTyruA7wQ8F5+GwU15cWVjQ7Q6+uFaGAIcgvAje9ICccuXNcdkH4bpTQ/EG4yuoShVIrsUkYqn+ADwGILTRbSHMeAOrUHtmDq18oLJapnNiHjMxZj68P3J/d2aeE2++f+RDTSP/+Fg4nwspF07TI2N8JJXCNM1M0SbhlAdyDiiBogdUB2uMuCVrVDNwnQ8crntevOpRD3mA4iHGyPHxSJxje4F/UtX/9K+tR1WIsRACdD04b2ypMBScV3QWzllIagScWIz14Bx00QZKdYIrNQOaFEJv8lghKF1XqnEvtiKJoLMZDDFDKh5VD9qcAQu58l7xwXp9VCWqrepOU2GqOk8hCz4a8HMYlP3O2sV1LxyoK1FINWKgOBswSwN9qO2hAoZSBIqsE2KbZIGt/dz224C0LARV8IfqRJeto7510tfB/lnqkPpM/d7RD0rooPNKQkiyGSiXxn8AvgYm4IzIH0CvgECRN6CT1VkdeMwwWR1lQ8aFu/PEv7x/YOgmrq8O/PZ4w/VuJLiBX90cmPOeh3PPdw/XHGdPOb3jnN9QNNJ1J672J1t5Hf6Org/k0qHvYZxYjE3Lgicga7p5238K/MjyI7pOzfbJJR1z5RHW62yZP8u16pGKjqTiyOcO8KRU0BI57BeNn2erx4tQLhows7J9vFuBnEuAkRX4cWawuLra0UCdLfCz/d4WBFqAGmfhNSzHZTESt0bS+uCW8dDKvlsNoyVeS5GSsXSe0OFwVbi54DYrVs0y02o+1XFR6rFNX1N0DUelhmMWm360GCDtsNUerQ+sS3iXXoaxPmdfFE+3e0XLtLWKp9urTSmCMw264CB0gdAF9ocDNy9f0u+uaWEEAK7MOB0RzVztXvHiytEFx2cvXvDV55+z63uu9lfc3twSqrq7iKMAj+eRu9OZlDOn88Tx7MilECPE2RYSci4kKWguzPOR0/FoRvdkRmdRA2ViasBPYU4WNj3PkThHSp45n07Ms/UpV8sB1SWsDDFhypZRruUTU4WU1jj7Up1UqewvEQy0LxFFiCkzTSPzbOBVzGva6+e0b1p9fcr2Wg3/H3Ka/rUqGUqOE+PDB9I8cbp7z8P77ykpMR/25KtrBIiP7/HZ2oJEsaygsWN+2DMOAz706NUNojc1E1qHhB9lCf/EY8nHL/jk759yxJ+asj987i8wL4rQD6Fq19QMrbue/a5n2HW1Cm0u6bxj6MIC3vSdfc/GjjbfBBDLrGqZXw3kCc7RVR0SH7yNV9RxWGr/d1LHLTiPI2/fv2OeZt6+fcOb779HS+HVzYFXt5Y19tXLW/r+FieOvhdCb8zYUh0bgSpvX+p9TIuSmkVMitlM45SYY8LCNDMpZ4L3XB12DMNAqDIJvmpvdaGzcC9VtHegHdSxlupgp5wtJKUy0lIuTHNCxRPmWJkYz9sXL2bnhpb+YN9c29pH4I/qaj5onaMuTtheZTMOPHH3K5xTh4iVdXXxDMuhxjK1b65gS7U3P2F7tBvZIsAnOt1mfrx8f1n67Xqfy/0f3D5miTxbX7TLb6CvJ4waVKvwOWgupJSrrl1H7xxD8DjX1dBoIZfMnKxdW8ikgf/naebxPFmbnGZOOS9aLQsk10Q6abb5UhvrvjR5jhV4kI9a1w++6Lr/BNy5RIW34I8x9lKcSXMkp0gcRwunzpY9syStAK/ZVaWCiguDdsnEqaabycIieqa+2EIUM6IRtBDEQroO+46rvefVjQE/jbTh6is3N3wBZVStDudUs6+Z342ubC+h2rFt0XxT6u19l4MNHC3r9VUxcrJavlRXj4kag9zkPZxlvQXLwFg1LLOy2CQxlxoaVu2fmqF1ioWYbJxtqeJZSn1b659qK09Hpqf2hF4c/7HtFxd3/nhrg2/zPhxNJ2BZHRYzYlMRi6drxnvV4fFB6bI5KYeoJFW0eIIqnZhBL0Hxta/0zlDEBcHeDibULtkayabzmpZdq2BaL6y6drLMJdRLOhzBF1tZjAUtwjwnxnMi1mMlJ9BcDVcTgnYUoiSSRkplP7XwJ2mCfdqmi+bobH6V9ZWcd7jeGBDeW0azX2ST1pFYjO1GEGnuf6GFq60Ne8vWEVjAFrc4rNVwr+BWm3NTKYt4Vi5CLqa2XsRC8lztrNQBO6vW7wlRjb2To4E6zoP3BRfNkYrOkb2dv3QIXef7Ty3yaG0TaxhhLZbN35uFgY+OP/2c7bm0yeXJOc9cf00sbXuf7a3WqcoDff1rj3CFyhWoiT0vsf9Idc42F2i7UmP6k6WgnmJiSjN9CqATwc+Ap/MzIcx02ePdCHJCiDg54tzRRA/DxLBL5OwIISMu2QBNAlItsMbIUZS8McSbodP2VidnpWNX4GuZ3KFpGQkbWrq2EpI2NCwF2GKKQYmxcD6nNaPSM21NbLfd9mmWrtbHlv0n9fzJ47K5Dk+Pb+9lv1197y07bWlHi0HUCufjN2DzmSjLCvfFAAcIrmZPkFpPbSDRdbdetY2RbXxu77rayrocX+aD9mKb85eIBlnHV7lAr55vK0usqIXGtVYlymqstDlhUbLRFUxeriSVQWUpf7s+sNt39J1jd9iz3+8Z+p5hGOhCqOlh7d5Fmzi/mEYFaiFYuYYS5WSr9nXlPpdMjDPzPFKqfk+aJtOcqQ7jYvgkA2dijFXTIy7ppkUr85FWIdS5b2vY1LlPa3rrUlPd6xqWsjo2uhSXOQe2mluqwX+5kv6M29Z2395Atrv65PAn+sXWp9s2PljeEzVbIicL48rRQLecE3l2pM40REqaQTOiFk5XSoIMJc3keQJVchwoKSHeI1Vf68JxlCcv9/RZn9qsF9vH73c5yn765deR9cc2efaKbAyWljq5hXm1cCwre/vtnGx+1nAt0HXuqPakQM3eVReslhDrNm6u9qQu7ddCLY2xFhnHiXGaOJ9HzuOIlsLVriOXjK8poFta+WZbL7ZXHTOdFpw2p6+FgLAaGdUBan0rZ0saAsaMCNlAo1wKOVt/U7Q+vxp7v16ozS+W+UaXyvTehPeD1/q8zcV7vu2ToThcdq1t2922ye15F4NFHX9t2nli3LTrbK+5uZg2h7p9vJ1TeNqMTRpheaLlwxbctLmAPrnC5UR4cc31KutJ7VmkPe+T4+2u7ZLbce2XmguXrbbFHwyR2p6qWsMG62+1zFZs7BjEtF2X/rU2eVK2OU1zYfZm5y3zBWyNmk+01LWiVakAVRu6dbGFVt23yxpfvsOWNbb2y9X+ugR9mpPSwn1b6O62nbZrKa1P6MZek4tr/hJ+RvNajRxRbB7S9py2wG/2zCfa2eZ5tqFpS1034Kd9p0ZYaKkYgF62Y3vH9Y+L9lPLpbHbS1n3VY0FvoRubSRImk+nCFLMn22MPWENASsKRZSUhezs+6W9C83klY+erE33F8+6mY9lPetJqf/49rcFfoQ62TjwHpWA7/e469e4YcfVV7/i6//wN7z+/DPG/orH/YEUOsYkHCclFiVOykM2Mdr5BNPJwnQ6CjsxAKH3yhAsi8LN4Hh18HROGUphn7NpBCWhS1Y9YQiEfaipiduEiC3wbxsfmzmg7jXkURVyUkqyLCOh77m6FXa5EPrAq8+uyUWZxkycbdI8j4lpNmrh/cOR02kixsLdXeZ0yqSsHM9npjmSgUktfbvmmvkrKY/3kT/+LvL+W0fYO/avO8KVp+vg9qqne9k/bxU6odt1+AC+M5YPzpEoSIFZHbN6ZhUSDkLV6/GNXcAqwI39boxmaHOZMqXCOSZygftz5t1jZM7K/ej4cPbELMwIE8b4CWfoRrtQQojVkRnxjFrv1jvoLPvGblD2vQk8v9h5rncW5jI4pXMWppSzLuENRavqO1CKpfNWhVzRXwWylyUKjCbZBIabbJ3OZtEuYQkso25znj+ewZ93VG7tfBXofTpKrhHUVks9QgBeAb8FrkEyot+gBOARiPXFN++2vKASc+I8TiSfeXN/zz9//5ar3ZHrXeB2v0dlh+/gap8R7zjGP+NP31CYETmDnHC+48XLPZ9/+XkVsxyZRlPcn8eeeeqW+y9OoKwrN4tZI9TBu4V4uSdTejPUCuvqXEbrJGVnrN9eyq2tnC1Ldya6OZ4m8vy8wA/UfiSw6DdIY+hIFRptzocux6VOaDYeV+Fm0bpSsmH/NIOj9ltYGULQQN+1zW5BzqeU51bsi326mbygTfR6aWhXtFSwSbfZwIsv3GzfZlxvfopW8tDGqDUg11YJWx2VevOyYfbkSultmbyaPbyEhj3zllLk3Xd/xHcDw/4aH3q88xZWIYLTiMsjks8wz+STiTxPGnlA6fo9RTqKs8xcu93A9c2BEDqk60wTKThUOmIWJCoxnnh4OC5GqdiKO+MUOY0muPr927d8+91bYoyc54nzPFkWESBhhtzp8ZHT8dEyTE0TOk+WcXGj3RGzkkpzZltdJcp8Np08rO0ZmbXUijOwwqUZV6IZiyVVds+WMr02GeeMO+Z9FX6ujSKXRSL+I6D+l9/s4f4qJ2kD/uR5Ik4jJSdO799zfP+WPE9MxwfKfIacSZoZ04QIxPMDmgwkyI1u7zzcBWLKuNDRXb2kuzrhQ8fh5WsOvrNznlrNT9+rPdu/t02f/f7eO25vry17V83UNewG9vuevu+qUW+GgIV6GXPZe09XGT+LpSgWmulaSLystqVH6sKkIJsUy6koczJ2zPu7B759855xmviXP37D737/B+Z5JsWJNE8E79lfHfjV11+x3w189vIFn726NZ2dDUSw5XlIKQtokesqtL1RoKizsCz1FBrIa32pqDBHRYm4ORHnRPCOrvO8KFccylDDwVxlEdZwWzHHVJxSiiyMKJfsGXdJcS6s4PYzbG31/pMfwKVf9MSpWid33Zy/mZcaIK2Xp69mXZ2QmsdWS3c7adlHTXduDQNj+5Un4Mylu6rr/ke6hnaHH9Zr2bSKCoq0bvTEkqmOeLNwPuZB/yKT4aeedrMAsJTKYmvYTtHCFGdSWkMKg/eVjWcAbhdM9Nl7x831Fa9e3dCFQKzAai6Fu4cjbz/cG0s0Js7REo0UarKI2rZK1aNrGcLas9ZZroKmNXyrAazUMq37DTS2emyKoc1GMz/Z1SQFBhZbZmtRjOGUMyVl4jQTp9kWFlUQF+xaHRTnkZptk2ordsEz9MGu7z1SGT+SS01G9LxjaqGQ40w8PVp48tmTz/cMvePFTU8ZrzjsO7rg2PXBMpKKLOxIKx8rm5Kr31jHzi2zSmpbaQtDtL9rnUg1UqXa/+2bSLPj7Xy/gPmKD3a9oEJfmeC6gDZ1+U2bX2habpZ9WkjOwKlOHLO3sh28yZ+UAnPSRf90TitbKGslGG76V+sBTxl7rc0tANAnxoNPbX9T4MecTYc6Dy6gLuCGA+72M9z+mqtf/5q/++/9A1//+nPOxXOnHVGF9w+F+CaTo5JiYcy2evjghXehTiZF0WyWvu8KobMMCy8O8Pm1p/fwQhKvmekpHCJcRUvZtrvds3OdreqIiU49bfsNkFhXGysHoBRyU3lq870Ifui43nUg8Oqz6yqAVwfkahTHKZJiJs6R9+8eOD6cOJ8jf/rjB969nZnmzPfvMg/Fsq0kFWIGzUKaHTkK8Vx4fGv5f/fXgc9+e+DwouPl646vv7zh1ee/APCz73Gu4LuMc5YiL6rFeM/FMRbPrI4oIKGuSnvFuWwCoBX4MZ6ILtI5wDK4nlPhw1iYE7w7Tnz74cycMg+T4+4spCxMCmM1XLq9oz+ZA5OdJ4lHRRg1MBEsTXFwlLrCPfTQdxaj+bBXbveB4ODQFXahdqSsS5agxXiqq/LqDA4oKKXGvmgFmIpgOlHNma3p7IEKHbfCXKyFxQHbWiEr2+cXMK6lrg76soalLWrXq8Fhb+5QdvWFXgP/AHwORER+j6WIdcA9Bv5sjKZ2IYWUEjlNeBf59sM9u0E4DD1fv3b0Q0/wO3w/cXV1wnVwN/4B734PZQYZUTfiwsCr15/xb/7h36AlMc0z93cT0wSP2REnX8GBp0K8l2W4Qj510ljeAZaQLhqLKFdkwrIS2LY1gyrbSbfXXPc1Z86niZFfAPiRJuS5AkBbDZ4FvJE1jKuBOQ3g+WSo1zak65P7avteeNpE13YLbcVt+xmspWvbSnm9wIOarg8gRWjRuLr572JBdl3sMuCnnpZpwM+66qp1GUcKqNOaMtnK0rcqriDBokX/C/m4Kc58/82/sNtf8eL1Fwy7PRI6RHZ47/FlRvKIpDMU06xBlGl8QE8PON9T/I4crlEXePH6c65uDriux3U90u2Q4CnSM2cbs6bTkfPjAznnhfUHWAauWEgx8cff/4F//KffMU4Tj9PE43Q2JqUXG0u1cD4eGU8ntGRkjsg8LxXSxsyNtDahsYwALwknlgHI1g+qc5QzWkyc2sWI5KkmTJhNa0gr63NBcOzH2BQdUkOym9htqgbtAgX/guDP2jZtk8Wz1MsPLr7x6QfZuHe00IY0TZw+fCDHmeO7Nzy+e2PhdfMZnc6ghRTPlLN1BM0TmifQQimRnIxZHeOMPNyDC4TrB8LVEd/vwHfsrl/UMM/L+egSwNLN/z+3IOXJ7iWQ+jE29qny+mWBJu89L1/crICNw8TQ9wNdF+oin7UrSzPcNH48fegqgLFqynkvVdeHBfwRQNQWxASWwdY0HjNzzMwp8/b9Pf/8x284nk78u3/6Z/7r/9+/Y54jN1c7bq/37HcD+6sDv/7Nr7k+7Pn85S2fvbwxxt4GrFDZuAtlDZEYx8g4RYrCnKRm3FISCZVEzpalhmRpFhpzT9Cqk5BN96jWZd95ht7S3iOKq5nFSnFVP7Dgvc2VziniHLlIzSr6nPWqi7blCqh8uqVeMFiWb3PZXZVVjKNNLlzO8WugrSyfa6Nw1YuoXj7PJ/2z7Tz4A8DmOovVc9eLLtcW1vnu0iZhmZOF1eR0F+DPxi5ic+7yOPpROf4SW5unL0fIxoupT1pNtqyFcTINxdM0cfd4BEyvs6uC4jdXV3z+4gW7vuPwauDffPkVV4edjWliDJ/v39/xx+/eMM2Rh/PEh+NobKBSqpNewxaThRvllMl5XfwvNGCIqjsHTt2GVXPBa1l+TMi9FbAZaFIjYHwFhoNzBGeZ/dJcGbMpGfAz1gy7Cs53FgIhDtlSVy6An44WYSMiNbW926S4f75aLGoaew/3D8zjmUdXuH+TCK7w+uUVzK+4uRrY7Tpurge60IB0XwGYmtBi0zoXm3NDd279Viu7aAHpygqPfOxPrYxNxCJmfAWczN+zi5cNmLoCgLZG1SRjShaKOrRAEiU5u//sqsaZQuxM87aoMs3KnGxh6iy2X6rBuvqdT0uzPf86Bjw95+dU39881OtCXdw8B/AdhB4JHS44fHB4FbpsDblziq/OjQ0GVuAZFmPExK1swnPZtFlaJuGhM+GlIHCoQIWLSjep+eRzxs8FV1XEi2/0urWLLvNABX5yBX5KaSG/SludNtRVTLtazCD1fnEDAaOqdUFIMZE6IU49UhJe4GofmPYO72C/M/TQO5hjfe+IZa4uNQxqKpSYCb2zcLJUKjK6qrQ86+akQa7mHFUEtKhYKJaauHMLX7CyLCwizADLb6p9uYoLqpgY1hiVKSnnOXGOkSkWzlEYoyMVmNWy0CiCpoIm67DJQRZzOGacafyglbVjOhCIobW5KFMHU1KSMwHR5tJLMYfwwgAWcxTbxG2OTeuAdq45F3rpYFywezYWwEYxT2QdnNoEC5+c+59l27IyLkeLdVDZUotVBKHDlLIK6B7YI7IDNWFl1ct2TjV+mrGiVaw75sS56k+N88icRptIS1+vBcIjwhF0BiZUR1QLzo103Yyq0IWJECZy1spKuTDflme/xMo3poS272xTwTfgp7CwmGpN09LW84mfVp4L9buWhGZULeTiOTcz3NYwy58M9eIHzvmh/U99d7nvxonZ2jGwab+y/M3lKZe1sXUoN4ZHAwvW6tp+sK1f3Ryr7bZdc2PQLlcQvdxv1xddsdgNu0e2fffT5vpftWkpxHkkhEBJM5o7A49LoIhaeI6ao6WloCmiUsjiSe6Ec5ESlKIdeAvPauid1rBppY7RRckoc0ycx5GcUgUC6xhWte9SyozjyOl4YpxGTtPEcTob0B0MRFdVzuOZcTxbVss54uK89ilZ8niYzr24SvEOyz2X+0pzVlmcVi3F9H6qs60tvbxaKLPWCVkbc6+mpV0ydhUFaeBg6yS6/n7uetzub322p6vvsjnnhy62NFhZrEzVKmAaZ9I0keaZHCM5RrRmeaIU1NZY7YlKCzGt7QILeyYlKBPiMkwTGiarp5Tq3Nacu0/NER+boz/kCj4ZGtZvL31uc7mLSzzp39txvdHsP3nHv24zx8jaZwN+vPdrCFVzALSG1S9ZvdawL3vWy3CwZku6TTN0nzDuSzENqpgy4xw5naf6M3IaJ+Ic2e+6ZbW+6zp2u4HdbmAYevquuwR+at0srMgG/GQl+oJzGapvaIx3E0AV52pCivY+G/tXWTLx+eRMEDdnnDMHsqCLxl8rUxuOagiMMxB/DZFj4wz/Utu2oX1ia03saV9dmLt1XzfnL1fetM9NjIpdTj++9XKNT1kkm3uIVHbWRz3xEw/fbl/nLa0wd614qddr5yzgz6cf/aLffmp/c7lfdNuGdC32gGxHnG3L0aX4mpZNK0MnYkBJFTumHvO1/TlnIWBDCPTBEvd0IRFatrVqx5Z6X6mL+Daz+gXsaQ6M6BoOtIRTLfZSm6/a/uYce6Vluxw/dTMXWFbpNUPmOpg0HanVMITFjFpsRbmoP7P9lF+qHzZ9npQySkR1wpEYApyOO7wYo7cLSuk8IXigszHCK17bGNpEmWVxMdab1EONmNHKqWxCwZfXW3ttUWfAZ72cw7Wms7nBpo9tbrnYv3W+d7XLOTFfslAzfVE/wwb/XITsq4mCCVnnuvieKzniU0NHs0EXOYPWMjYmzc9ZoPwbh3o5CDtwHXQHcB0aDkR/jfhr7s6ZP/3hj8yn99APsLuB0OGi52bXMXTm8E/JWVruVMhzgqSUqOSxUle7gMYOnIk456wmXrtTuoPQi3A6nXl4f8RlpXt4ZHi3Q7yjO3jClWV16Dqj70oV+mvpPFsHhrUztd8tbVupthWi5LyGStSeaRNoMVYKwbO/Bt/t2F8nfL/n8y9HUoLfHpVxVOZZ+XCXOJ0L86R8eF84n5R5zjzcTUxjYjgErm8D+0NAyLz59j0P989sHglkX1ApC9g6ZzjOjlSUU3Tcj8qcTZ8pi4AX01wK1sB9UGOaeBPKsh+IatdKWvj+YeLffXfmOGfen0a+uz8y58KsgbFUBo8LFGesKkmKO5tjPefCnG1ITq6QnYk7uwHcYKBcUiEh+CLILEQnBAdjUXbFWEiDKhXOoMetncVlVGwVLLaxGCEXTy7GUjC6Xm0LzoRjARMOB9Mb9kpbnTEhK35sdn/ualwnoeaIbIw8a+GLouFmwOmAlwh7kL9D+A9AX4Ls0HKHyUfOwEgzktehs4AmCsJxPPP9ndKHQM7CNGWC7/hwPvDudEXMcD69paQ3aEnM88yRSMo9x/OfOJ9+BzIQQubFi8w0ZqbxxIOcLoxeNn1yeZf2/9IVBejQJSYv0UAee5fEOss0k+OpSyOrHSdNTHMzaWzSYT/f1oQ6K/MHWBk/LbyrORxVUwITFG8rrCuzp4WGVfaPWJgY9birumZOdE1JLFxkE2ubbP7+IWxxkfJZprDNSWa1bDOoIqvMGc2Zb9/Wdmzzr82CzRZrZy9+tOgybhtIW2hx3r5dX9hk/lqu/OxbKZnzwzukzEz7AUciIkyPBmTfv/uO8WirZUUSyIyTgptm5tOEuEC4es2wu8Z3jtAHpB+QfkcW4Txn5lRAZzwOL8K7t+/57ps/EGfLyteA+aHfsRsOlKJ8eLjj7d17xnHkHGfOcaaguL7D9R2KmqBz1fUpKeJSsvp13kRqgZwto5eIINrZjwBBlnK29NViAE9MaDbGT1cKvp4k3uHEsp65ItavqxPbMrVMMzVzUF14cQZ44YzRJ67qCZQnjfY5tto+t1lEPjmetzYtzXS7PEnqf1L7aEmJPM+UnDndvefu22+YxzPT4z3jw4OVOwVfr2ZaDyakmdNITqM5Ot2A76zcSpkt65l4svQ4DeQYTRi0rWa1uOynD/7p19n8deGKrYtPuhRQHTMaW1AuBoCVnP9kDN1YXb8U58CL43q/AzHgh2oH7oauOiNKi912YivwlhDC0ke7xamrjB8ni9BoWy+zWnd2fSCpI2azGd4/jvzxzR3nKfJP37zhH795w+k08t39xLkE1DkOt6/49W9+xU0N8/r89SsO+4GroaNzVKBaafO3LUBZGVtmVF1CY07n0cSfpQfxthYbTExfXEZmy5Ji84NHxKOaydEYElFNEL5ooe88SmaMPcELuyHQBW9OcHV0cTXluxbUO7pOL+aL59hEhBC6xUG2QrD/lnm5/f3ks6W1LTYEn2z2T2f/+qXLI7rRpOFpr9j8fjJMLNeuTsWSwfeJG7jC6vUiC6up2Sm2v1h0dVHFFlNWMKgdf3rOYiO2n8VE3XiZf4PtMky/mQC1LLKN55337LqOIELoA/2ux3kL+yo1hqYPgTkn8qy8ubvnn/7wDbuhp+8Dw9DjRLg7njiNiZgKOSkBRZxUoejLYDdgESxXVeZUakIDLp54HecuasvmTG0EggocCTQakzQgP+eqV5qNc14y4zgRY6TkwnSeSDFetllY7E1Rhw+mkqgtac6yOKRLTTu/Zkl+3s3KrVSCwOl44u7Nn5jHIy9vd7x/d8vVvuPmZscXn9+yGzp2Q8/19Z4QAl3oGIYdztXQPefreGK+Y2vfbR6xBa5VCzDnxv5pgGADr7ctq17FOcSvIXe4WjpONlIwLXROlndbPIm20CTm6zkgVAKBKkhRQn1GL9B7Yy8HLwyV8TNGk7UpaqFguQFY20WtNkfKyoBb3I+fUSN/Y+BHIAyIH5DuAL5Hu2vmcE1xN9ydC3/4/b/w8EbZ39xy+8VXdLs9zu+43d1QpGNWz1g8WYX5ODNOlrYuTpl0Mtpd6nbEaJPkOMNxVoJX9FbZ7WBwIKcR+f4dMmd8CPjQI87R3wT6W2Me7fYD+8OA947DvmN/6Gvstwn+rQ2iNr4NfzxXVhBsmxWm+9IGVvE4CRBgfz1wuALVwqvPXlJyMq2Eyt6Zp8y79yPHY+R0Kvzp24m7+8z5nPj2O+HhMdL3nusXHbtdIOeR7/78nlzGZ61CRUk+XzCw5iIcR8cUlVMS7meYcmMWOMQLzlsmsODBB8vQJpUR5SoVsyRhzBCz8N195v/7zSN355n348ib45G5FAi9gYLi8f0OP3SIiJVTNDR/nGAcDW2VkCEUq9srR68B55sOkMNlIXnhXMNc9lrYlUIQuAVuRAwEotCrKYaZk2g8kKQrmyjiSdSMYE3FSIQiHrxpERHqRCCK5M1A/VTNDJ7dIHq6tcn9wvG+GMSsxrcaOZah5BUGa40I74Ev6mT3R6yFHFGm9ap1kq5THKpwHAsxz3gRjqeJ93f3eOeZc8eUerLCaTqh6QSamadMTImYeo7HP3A6v8a7gRCEFy+EaUjc33+LyBtWho5u7aG6leW5VjxAMIgv1KON5ZOxTGYtM16dtHXd5/JKH7kn7aDq83PvDFMtdfpZDeitaOjqdKxiom5zjnOb0DBHBX5WdnCzQ1xdDZYGAi3H12dZjMenQNAnnn0LoegFkMNGdHEN9QJjSVrT1IurtP9LZSrYMGwVvwiq14ppos1an19rqJfWUC+wFRffnAFpzVd/MY2fkhOn+zcG/Bx2eI2WOStGSs4cH99zPt0TpxOFhOqIo9TJxIRRr8Rz9dmv6DtH13e4YQf9nqSJ45xwWNiqCRAq3719y+9+/3vG84nW1kXg5YvXvH79OSC8v//Am/dvOY9jZSEkVKDfDfTFQj/zOC1ggeSMlISApYmXYIZYtkxe5lBkHAmpgvAWemvx8eIESqHEuIAZUhcYAMT5ymYALQ3AKGhO5FIq63RlWYTe47yNw9KEd0s2odnyMeDyV22LPaZP2mdrs9uTn7p58olx3vorgoloj2dyjJzev+PDN39kOp/I00gaT6gW+uDwncWomyD3jGomzmfifEIxeX7nTYy/pGQhCggUD0kI87xkhPkY9Nm+6I9tny7TpRe3rH0iq7ZNPWML5n76XpdQ0C+xOee4PuytPirz2wdHP3Q1BKA5xhW8wdFSIntx69zeAHd3GWLrmpnuHE01JSaYi2lhvXs4889/fsfjaeQf//g9/80f3nAeJx6PI+cS8E44vHjN3/3273lxc+Drr3/FF5+/Ytd3dBSC5sXxb4iC1nbUHCGzVyzD3vE0oji6PuB7az++c6hXSBkXfHWEBOc7nAuUUoXbcyYW5fE8Ms4TfefJZPaxp+8CL9hDnW86aQBYW1Cw+uy6dSHhuTYRyzS2hnzU+b555BsAUtvx+nudszegylMWULOPNn81Fs3FMr2sHf8p53gLSn0q3KwBBUZQbK7tZb+Q7e+nzKSPXNr2nLKSQJSLc9rx1ZW9hKWXKvoFbdLLrZXRZfkvprKy6C113nPbdfTes7vacf3yitAHYkqcp8l0fxKWrS4lvn//gXEynazD4cDtzTXee8YYOY+pAkamXukFdl1gtxtsXvEB700PosAy74yzhU5qNS6WLKeb9ymyCi3P0ZL+WAKExBxt4bpsR8DS/jKZE9TE1s/nkXmaKcX6cU5506Zq3Te7zgdEfU2OUa+Zky2Gq43z4hyuars9r88h61xfLCLk/uHEP/7uX7h7/4abq45v/rRjvwu8ennFb379GVeHgaurA69f3tL3Hbthx9XVFcEHgg8MXYcTV/WbTKvIwEhbVbdQcLMpc1bLqqurT27sI60hetRIAys2Fbdcx7mWeMoyL1rIriN0pr+ISJUwqcL6zuG8rriAb/3XFlRVIZQ1VKxzsgg/98FkXHJRuqCWFazAmAoxG0A45yW86MJfW0YiYTWef2L7G4d61coRD65DXIe6jiKBIoGUI+fzRKcZXGC4OplB3imFDnypDVhRdThNuJzQnHE541KkZEzcqhSoaXGX+Esx9kVpDm0pkDNZBckzIo7cFXKnuGBejes8vjhC5+hSNo0iVs0CUXBVHGUZmM2/vRjQ2+qfNsFRMXR1lVWx2U9wBFEDClTRYJUdvGOeczUmCtfHQspGRd5fdcQCXWeN0nlHLhBjYp6nZ6/C5gCZ/ysL8GGrSUIqkDahpQsrwDWGgXw6E5jailQqMGdlTJlzLEwxM+VMLAVxuToEFv7mamc0QsUSUESqiKmtZJsxpFrYhrq0Ga9QwwZRS0Nf6zDLKs/TQphaZEjrXw7juDSjzmkjg+qaFcit1HltHL46ILg6ILTn2YbuLEX+i0y02zWdHzLnrby2DArbPBYQ1yMcQCIW9tUDlsL80kD/2HAqWkgZighTjIxuwjlPKplYqo5HHlGd7f5qIQu5OFIamecj3idKMRaAcwnkhIlM19CGhWEjm8dY9RfWzdXn7upnCaSxfiZ7v+11Prpm3Xl6aPnLfaJMnmf7KNRrAV7a/kpvbX8jT8+Bj0LAZD2/Ga2LwVjfdWk9dTxb95+03+X/1XBt/XQpoqV9tULcTmZ19bIZ1rB2xNo2tfYnG/DrdNhCvbi0yT+Z1asel+357REW1s8vUYP1/UqyTFdpJqWZnDLzNJFzJs4TOSXT9iHj1ETG13SONrE45yw1dBVsFOegWGaflgEjl4xi2bWmaWIaR5QMmhAnzIfZGDMiSwhHytmyReVk42UOFhIElFzDz5pDXzOpbA3QJYsHrOc6C9FanK7tqugGDKg1zEKPbzUg6/i1XUW1ft+Mq5VxqMvlpLZreX4HZuMgXrB9FgfryfjRHJjlXTeOneqSNbqkVMO6ZkvdG2fSPFNSJBfT9yuusqao5V0zvKxlsDLWWiYmcyrcsqq81M3G8ZCPnkw+0Qc+6uyX71jnO1U1bYyS63zpaxZXQZbkvdvrbO/80cV/ka0Z8GavWBtpoqrONfYkS/tb8u/J5oc2dq5jyQoWrZNEe7NcbGV3ToVxTpynmdM4cZ4iY0yMMZMVcGbbdX3Pbjew3+0Y+o7gvQnYlgZU1P+2Qyhi4yRrv7DMXLaI5VXxS/mu9tHluG7grKNlMKtaGBVgyUVIKRGjgT25hmaKrUAsfU7atWpIQ2NJPddmAFdlXtQsgK3MNwXCAswILLFwFyey6busk0jd30bst3N/2Farzngb77gEldZ6W++1lIpegkwX16uj23J8uX67l6z3bdfU9UF/cH/xcJ5YPZ8wgX7J7TLUa2UmtSPNNPVYxq4hBHZdx2E30A2BaTZusc1plvJdFWLKnM4jTmqwlg/44IkpMUcDfnKOpGialdkJJZkDU1gXzpaiUGp411o0rnb8NgYAC/tuyUSpG83YOkY2Zse2/puItFaNv5LzGrqWc23vegmsy9rntPR1WNClv4rUHLXVt/GfANmeY5Pa6W28MF5qSpaWffTK8aik5AhBeHzcoWoM+13fkXNCC3gf6EKm+Iyo4p2jOF/7XANorM0uiT1oZbtl/7T3r/tYRE4uFzOjPbXowojyRcnZI1KzS+c2Hq7jYJN0QapOcJ0vtM2BgJZVDBrdZG/FFmBVqtyM2rN4Zz4xWgNEag05/URNPR2PfmT72zN+/ID2N3D1FXTX6HBD8i8pHLg/f+CP39zzVk4Mw3uu//QdXRcIw57++gbX9fjhQLh6YeKXp0x3nwhR8VPGn2IVWroh7zKEjn7fMbwYCJ3j5Y0yXDmCgF53lJsd9JH5nEin0RrE7CiPgvOOm5dX3KZCCJ4pZaZkccy4huZKFSimAhE93hsDpXNG3xKBINq0tYBW8QZOLKtcrUar1apa3cVKZ1PnOVw7dvvC1VRww45X58LxnBleRe6PGS2WMrsUZXqYuH888Xj//lmrsLrCdKJ0rr27oaSKkFUZc+acjREUSsIJDEEJQeg7T98pfQedB1TI2Mr+qcDdXBhj4SEXTiijFKIvEBJOC8POsbvK+ADXN54XL/c4H0hFF8T0zbszhRMpKcXNqIs477g6BF6+3htjq4fQWyEbK8iMUfUwu8b1cPQYOHfA6txh9LxQAa+DKJkqfqgW+lWUqrOEOTde6sAD04LsgvNKTJCjglrbynmlKZqtZxTJX25rHq7VwTKYSAI5g+RqvbaG6lDt7HscUL5EuAJ5j7hfYeJTjqL3rEyZp1t1zoqBZNM881gMeMjqyRpsci6JoqlOkglKJgLv3n3PP//zf4MPPZp3aNkTYyKnb1H9njX7VqW6XgyRn5rcBBsKK5VfGttHMdAnX5y7mkZPzbHtb6nXcyD12up/rCL+oq2JOq+/m47Ealg3Z8XVcJ4GQ1HP9fV8J7pm9RJMgBPZZAR7+qOrE1SvAe3erZSelkszKNeBb5sEZeFjSXXeYV2xprDMpBsDervX9LaaHtHCuKhbafeqRmQBLrN6WXks4/KG5fPLmEX1WUik+cz9+zecjg+kGBnPpsEzT2eOj/ekOOHI+DIhFLzr6FpWoX7Hi5evOLx4zXD7gt1uh+/72n1NtyVrYZpnRDOn04n7+zvOpyNoQivwM+z33JaIc55IYtZE1ETMkRhNPFNzJk+2oBDjRJkbOFtADTRyTsgtoUGpwkFi7J8kpRrFZrU753A+0HUdaCE4oAuIFnwZocRaX9annYIkG2ilZUxphq7zNUuhjbFFKzuzAfLVW2thaM+6LZnLVueLphfAp42yxUFY/jKLNU5n5vGRnBPn+3se378lTRMP79/xeHwkzRMlR0qqKdnVMp2ZozAhZQSM0i8LO9lSa2o1cFeIx/pT0WI/JeNKNnbAhYj9UzdzBTcu3mnjEKkWcjIGV5pnHj68Y3x8xDnHMAyEEHChYzhcE/qdGdJ9QKq2xiXHro0vbe+X6Y2+0vqdpd0ieEdwsmRIXMO1GvDTGJXt/akOX2uf6/O39dqYbcU/F+XuFHnzMDHFxO/+/Jbf/ekNj+eRb98/8jBmYlJ8t+Nmd2DXB774/DN+/eVnvLze8/JqRy9qTB/NdUV4i3AIKh6twq0xZwv9jIlzzeBnEgwZF8pGa0urNooujKUuWDIMcPR+QDVURzLWfg+n85nzeGQ39HgHWgqd9/j9rmZXaoxRW/IMBevXz2ji5BR59+bPOOcIVXC7jTGuruA3LSbVFlJcgeiGpW+2lfWygicN5Plo/2lv0OW/zbEKEGxvpNteZgeaHNnHV20gUj3vKWB1ARRVcAQbi5cFnQU4qu20YkQWllfBWNXNws8G9PklzdHtVsuo2QPNeth+7rLiVbnygV9d33Kz33H98prPf/2aYT8wzjOPlbF693Dmu7cPjHPidDzy/bd3pJjY7XZcHQ5471GpNoJCnE/E8yOqmT50DL21Hx+MeWLRHr6OVWLyE5UB2PcDfd/jnKPvgkmGiKPvA6ExM/tuAXtiy9JVlCmZxlcpJlg9zzXDXowVOC9McyRGi3aZ57Oxg0smzSMlz4CFZiIGFDfDMMaZaTwznbvKdDHGUeh6hqsrQt8bs/pZN2PgHa5u6ELPeDpydfOKeY5QJt5/eARNHB9PzOcju13H9dWBz19/YOh7rg4HXr54Udk/A9eHPd57+q5jGIbKtAmWxbT65dTfDQACa78tPTtUa18F08SzheJcTF9WgZzNHwMx4ebS2Fqrr9Tqj3ptky+B0BtZxDlh6MxOM4yghgyK4KRmVMMSVbQsYR5BvGU1c14YioV7xZxrmK6SqlaVMXZX/ECbEf0T29+Y8ePA76C/Ra6+RoeXlLAjhluQgXy653x3h5/fEySycxNeCvurHbcvb+mHjqsXr3j51dd0wx4Zlf4RyEo/Z3ajoYPSjTbA+YHhsGf3yuF7z/5g4T5eHPm6h5sdpfPE8ZHjaSTHzFkKZwrihVcxM+MIvWdKiSmlqhngKdWJc1pspUUcfV/oO6OIHXae/eDNGAhKaANXHcWKmtOfKt0slaY+zuL9OBF2naPzhiBe3Qx03s49vCxMqXCalN175f4M4xh59+7M+RQp4wP3Dyfeff+8wI8CM9uwkiqMJqYSn8ici3JMBS+F3hm1/hpjIw2D0Ael75XgIWdnQAhwKsqHuXCaC3fJgJ+zKNFlCAmhMOw9t9eJvoPPP/d89dWBruuYsxCLIyaLZ3g4n5hiJqv9eO+4vtrz+WshdILrwPUWvjFTiBXYKHiyrUUyqdC3TF0V7PMCe+/Yu9VxQczhHEtmroh6kpoWuhoXKCSFYxGmyogSDy4LOVqoiRNIyaiJDRQxg+WXmmmbO9JGw617kivwM9uE75oNM6C5gSQH4CuMFfMe4Vf2UjqD/ulH76zLirYyzjOpCj0rntJSN7JRGdKMklEtvH37HdM84n3g6vCCw/6WnDIpfwd8z8rhaoDNygl4WpLN/KHl5RBd7yztKT6lKNEcRwN42vrMqpNkAYJL+Jjs6jGeWC9/+SY0oGYDzLgnadjrgy8AD9TMenXFWtbzbf8JgMTK3AMuaPmrZkX7vr37BePniUVf10CMKdlYkBUIVGnU6breKLIkU0FWgKc5qtvvtj4oFUiSyt7R6uivoV4NTKo1X7BVHafL6qKXBQtdQ73Qi5C059wExWkixRN3H2YUIc4z5+OpGnTJMlqV5txFRJW+h8O+pxMh9DtevHrF7evPcdcvCLsd0nUmel9cFTzMzHNEc+J4fOTh/s5SsZdIKRUcv71lLhHn1EAfErNGUp6JcYJiCRF8RclKyStLRLRqJ63hu2BAEZVpVFCyJhtPWwgMNXa/66wXdd5EnUtGZ0Wj1bOTghMzeKRkO8cQDRCtdHUzrBbxywb8FLu3c5UV65471Ksu2FRHawEsfe0TbJ1DFofm8ilWBy6NZx7efk+cRh4/vOP9d98Qp4nxfOZ8OpFr5jPKDFqIqTDVMB9HxBERUdPUqyLE4l01iN0SrrwYrlqqUGj90Zb2ewURVhezsa7qGLCcsW6t2xcsa12azoynE2//9Afu3nyHd57r/RVDP9ANO24+/4rdzS0uBJy/qiF6LIwtu+YK/DgL5H6GirvcWtpkV4Ef5yzUq2sJOjbjojG+V0bMAuDJ6opvmQFWmgYwjCnxULVEvvtw5I9vHjhPM//0pzf845++53ie+HA88zBlisLt9Y7b22sOu54vP/+cv/vyM15c7SrwUwhqcySaa920ehYTeJdg4V1ZOc3GajhV4Eecx/eZ0DeNigbvFXwNU3Ai9F7oOgvdcM6ymRXNxHk0dkSKHE8n5nlkvxvoQwAVy6K02xnwqFqz5gpSMym58tE08VdtKUXefv8nuq7ncLiiCx0+BPphh3hv4LDvFgHVoi18VC1TYGPrbYSRG6iz7cPCZl5hPfi0XS5TxsXkselbm8PraLGxxjbgkVx8QTfgz+WFttEHW9vHXVx/vaaBP5ccSsHm6JXFtn0oefJMv8y2hMPBMnkvlqqCz+Z/XfnA17cveH19zcsvXvD1b37F/nrHaZ55GC0j8DdvPnCaMpxG3r19yz//yx84HU/0Xc9uGIwx2wdC34PAfLpnfHxPKXnJqCVSQ71CsP2uJ3Q9Tjxh2NH1O5z3XF8dOBwOBO+Rw56AHe9d4NAHpKaZD96y0Jbq3JeiPI4z5ykSYybHxDkau2ccZ5u/tZBSJOVEKYlpOpPmkZwi0/meNJ2g9lHEM+wOdMMOHzriPDONI2MfSDkzzhMpJfrdnlsn9Lplyj/PJgjB91xd3VKGzPl45vrmFXFKHB/f8e7tt4znR/aD5+59oO8c11cH3r5+wW7oub2+5vPPXjMMA1eHHS9f3NDV0LtDBYG6rqfvdxXk9RaKVwEgaS26gvO6tF9oCyBS2bElZwNYijJPlnmrZBgnZR5tMWmaCtNs42SMxog2h13BWYbC3d7T70yk+uZ6z2Fv7WvXd3QhVECwI4SW6MIvDCLfdYQaXtsJNEJFLK6GqxXmlEmlGNmjyCIhWprN+xPb35zxo64H14PvET+A61DxlXbmLO1ZtmwkkmtQSShMk4lXhWFiPtcsIiO40bRSNBZTBlYg7XBpRHzBZU/QhFfFabCYbKox1AeKKr4agqWqFZeqJaGbQX0B6HWN6QTQbOKStmphjcF7i7nPQReryLfsJZXeLqzOryGvVZi6YgkoqLOG5p1UJ6ZaHaoGGqgJ8fkOfAaftVL9C857fBfwoXv2amyr5m0lfrVqq3Gol77tyhBoOiOrM9XQy1Qg5rwwqwzdNCS21H+WHSkjlqAZIeEkIVSBaJpBuHX8Mxa85ex8kg0D0lYzsfOrg6CiFMNc7Soi9Span0WWGNz1tW1iDLVuSqkO+LoAg2L1FesyjhNIwQaeXCAHjNOnVY/Km/Oam67JL7ytNkl7s4JIRGQGkQago8VbWWnTtXKYKLIHCTTGz895aOsHVQB7cetrPaymy9JWoMXtJuYK/PRhIHV9ZbpttXlaZi6eXG1rsmzsu4tn3q6aPhlEm8cDSAUFrW3VffXV6G7ATwcMWEjc8Kkr/lXbx6FezajerPpt+t8nQ7p+6DiV7rq9Tnt7kcvrL8fX+61fvPgFbEt7teRsTFyvtzDP2ykXFacf7a/2aAsNW4+L1PbWHmI5Xxc7/yIjyzJGte+u5f1LbDZ3FEpJFjabEjmZM6WaF60KVa2YpIHKIh7nTHOg6zq6rqvgh9VlGwntVcyh18rqSCkt118zP10afUuoUDMIdQ2lYgENdNst2hdrmenmx/62OW51MKs7vHy+bUTKGg69vQrb/dqGlz/q2csVt+8guk7sz71t/Ljl3kUvxq9tCIU9uFKW9l5QNW2/OE/M5xPzdGY6n5jHM7Fl8qpZXLSFaFGMoVNyddYzvoY3O7FFjDYvG6O9hRXUpyq6yZi2hoh9euxb+0Wrf3163qafasnkZGyxNE/EaWQ+nwneM4vDlcZwmgjDhFPFp4QL4UmJbWq0MpOE53VQlseXDcAja3iXyOJC2P5mrNqOhctYtRpH67hU6yBlZZoTc8qM08x5nDhNs63wx0hMcQnHcCJ0IbAb+pq9q2PoAkMXzBltldH+f1pPmzOa/oWFedlvQRbArz3/0l7F7E/LgGQ/lqnWwLFS1OQTygbg0jWcojQBW11rsZUx9d22SSWeYyslczo+0nc9gpJCR+g6ihZ81QmhmI1sb+qW56bahpsB/7J+N/PM06f+eL/OQxeDln769/I9YR0j9NPfha11tISPLfdtixr183VfNt9t89w6Hm172sfaQtsrXL7lc4J2201pc/barmQzvy8hxHUg8xW0bSCNr2LAJgJcQw7bTFiKzX8xLvXonCNopun+z/PMPE2Uks0PqIsFyfsV+ImJ0GXTEK0Czd57Jm/PkBsj14kBFMETa4ZA6cISjrf6kwVNlqY9p0SaI3GayKUQ55k4mx+cS7J5oIZ9lZplT0uuobRV41SoftPa71zT9NFNIpA2TD17XdqFG9tFvAmv9/1AP+yYxh6whA05K9MUKVkI3nM+jZRcCC5w2o3kZHqWfRfoqu/eADQzWxroU6rt6EAKIr6WQx29l7DO1jdslmlcWJs3mz29nrMsPS42lI01OTfbSS3pUdX3UVFSVkKIFSx3aIbUtSxz0BnlEecaU9oRCrhg9yqVHWThf2XNVla0oTwfGUY/R47gbwv8uB5ufgv9C+hfI90NOI9IsAGvv4YXfw/pcwqZpNHcQJ8pOeIn5eFd5u7hTwSnuDkSxgnJmYCjUwMA+vElu/k9vh9w42ty+QoZBnhxwOkNwTsOw8D1371GcuZu6PngPDFm7qeJMM7ghM9eXvHVZ9eELtD3gX6wDFILzaso0zkzz5miwuM5EdOE947PXxaKeoZOuDkIL66tgkqEnBwpG041T3VVrBiqB9CWm12xSSkW65inZJowKcNpVOYIU4THEcYJUnH4vmPA8VJf8m//4/+Qr3/zBQD/7//r81ShIiTfG5ulAVtZEF/AK95lOkn0FDqBfRCCE/bB4m97bwBMjEb5P06RD8eZORe+f5z5/fuR01z47mHkGE+MKTPOZ87nR4pmHCOeE11wxs3RRPCBVDypOFJWHt4dmY6PzKnUlc2MZEc8Cue7RAjORJY7m8WTg+zVVsbCAJ3l8opuYJaOguNRTSDNA2N27NSMoH3nGUKldzrHro4p4qxj2qqgGWcZYSyWUSwW5TFgYtZJeXTKFC0T3GkHMVoc6RiNHfTLbcolt0ZsX46IfIe4I13vGA4e74UUr5knoZSBkiZymtHSMl+14IGf7xw/NU5XlOBT17DPUkpM49kG0qLEeTbxs+lY9Z8UWhCmtsH86ZU+9ZwNaairBSq0cC27QsDicpsmUMCImRXg0Q7lGhiw7GfXQI8BPrcIOwAy/6efXT4/tq3OyRrqte7LxeftuKsgTxN93p6/DfUyg786OU4uRZwvRJ83+wJsdIOoDq80K7k9dwNjak0gqxNqgKssoE+b2wwwUBZUnNrSan9TUcuc0Ixt0QW+0+Z3sUJ6Wh/EPl/ZKoqVDfV7pT6ouiWS5xfZWhCNTerNWDPwUqi6Izi0SI3mULruwM3ta4bdnpcvP+P1ixe8eHFL7gaySyhKYkaJFLKBChrRkohxYjwfGU9HmtaYqDc9ObVWH9SyxnmUrBmaZgxU47hVqrtwhhbApq5kaI3ZE6ihKNb7UAsn0qKkaGLwLRRRxECDFDM5Gmu0c6VmXCsL+GG3aI7Jpeu1iGs2zZsW618blurzVagixK0QOdUoLMY6ynEmnk+UnC6ylKwZmJR5HjmfHskp8vDue95+83vm8cR8OnF+vKcky4jYGHExTszT0Qz+FNE0W7vwSh8sRGfoO/bS4RQSGacWBlCyaUMoQswjcYYuFU7jyBgjnTgIHt8qripSthTFjSkU54mSLATwqe4FQJpn7t5/z+nhjvl84u77bzm+f4MXR+ofOfuOMOwY58jw4Yaw23Hz2WcMV1eI94R+wNX0yjnHCnhF8nxG8w+FEv91m6vjXfDmJHlvNowxfRpIbvXcxJqhzvnU0CFZB0ytxntMuYZ3Fd7dH/nTd+8Zp5lv3z3wh+/ec55m3ry7ZzwdSTHRe8dnt3ucc3z1xSt+/eVnXO0Hfv35S15e77nedWZ7aIZSRb0X8U9pTXHRFSkKU8wcx8gcI+eYmJLNl34cKRhLr+s8wTtElX0X6P0eJ46hMz2hBvyIc+Qkloe4YFmU+h7vhL7rEOcq+MOS0ac5gWCAEr7qJz2jw3k6Hfl//N/+K7quZ78/EEJH1/fsD1eE0LHb7bm5eUHf9/T9wOHqmhAMPA9hqNmbbJ5fHqsu1qIb8GdBTp8AMrJ8pc47F+jNxrR5CvpsraAVkFku9uQ7LYyLi+9d/n56zD35ex3BP95fwaD23U+EuX3ifs+31bFxfU1yLuSUDOjJGWLCl8I0nznXNh3GmeHhzJALj+PIu8dHphT5/v0DD+eJ0xiJuVSWabAkNXkyyVfX4ZI54zmONr7lZMvHy/y2ll7TrRHn6IY93e6Ac44urMyO3W7PsNvhvWe/3zHsLDxpvxvY9T2yjBGOnAuPxzPn88QcI+/e3XN3f6Soify2heCWZcqMhRktCdRkNbrO7FcDPAwY6YKn7zy73cCLly959dlrcsnMMZKyJTjq93t819X2/8ybOHzocA6ub17w9a//npubl7x/e02KI4/3O0qemOYHxnMiTmfimAne837/yId3j3QhcLjacXt7Reg8h6s9tzfmn+93exOADp6+79kNO5w38eeu62xuqmFWzUZpbdxTQ8CAgDJUfd0YPGkwYkaM5qeVoszREZMRRKbomWvExpxKjeCp7K0IJRbeT2c+iIXGCw1oMzDfL2Vtjdz5GgLdVVZY3+GNIrmh8ksVoTZwSxZ94Had/7YBP76H699Cd4UMryAczCmTao73V0j/W8AEuLLW2PX4wHl6C/OImz/gjn+GPBLSiTDd4zSxCz1X/UBwnqvTCxjfE/qBMP2KrOB2e4iv8N1AGHpe3vZ8/eUNHngXAjsV5inRPZ7h4QRiwM+Xr28IndFD8S0XtyXqzlkpM4ylECN8eMjcHU3LxkmmCwHdmejYiyuPqBDPSsJyHn0oMM11BYgWmLJE1BoqWAEGpbJOVElJOZ2Veba4/uOMNUQ1mtgQArvdS16+3FV9hOfbVITkOwNKuky1KJFgzCvnMoFMR2ZwjkPn6bxw6DyD7+i9iUnOyRg896eRb+/uOc+Rbx8mfv/+xGkufJgypzkzZ+UcT5zGIyVHyA7JzmLN04zOZ7z3NZW6Jxd4uJ8ZjzMpK+ItjEOyEI+J8W40Aa6QwVuogHZCCWLaTfsrYI86T5QDk9uTcDyUjqQBr8I5C30WOud5yYCIJzjYe2EXjHnUecsM5Co04KpDm6qmUSzCfSiMFQD8EOCUrD7PO5gTVdX9bwH8tJ8qbIwgckTcd4j7QNcHbm56ut4zT4nz446UClHM6FdtTJvCNtX2T90Vts7/D5kOG0NHBMQcgHFMiFhIzOiPAKTZQkEUMC2idvVLxs+6GYcLeEKP9NjQ6FjCtdRDzfxlMpgmZi0EhOsK/uxR/ZIG+CgvQHagA8gLqMDPc24roNNAmQ3oswFmDNRp58sF2NO+6xsIxDbUyxwdV42dp+FjF/vV8Vkdo6Zv8WTFUGzYkLKaxc28zLCksc0Nh2v2tSwn2rdk+13dMBHrSWUFFkvbbwuE1Xpv+0Ws7TpMXI9iDpxsAB/5mW37L9mW1d0qRqqlCjhTal2a9GrBVsgVpesPXN++5nC44uXL17x68YKXt7fMwJlE1gREIhFjNRroU0okxYnpfOJ8OhKCow/eVtBKIWCQZoDKlC0WVqV1Zau5BGKMElmMF6EJRaJQKoOxRWQtRnwDxEuuyFohzbKkfHeuxr6XbFTqOeNEKb4QnF1zFZWu97UKWp6ttUMw4UVKQmt2DFscdHxySPgLN8X03RroKVRK9jSSS2Y6PfL4/i1xmtjt9tzevqTrOpQmfF04Pt7z4f33zNPI3Ztv+e5f/on5fLJQuRRBFd8P+N0BxDHFmePpaMLbs2VXQwu73rEfbKW5AL4LFlaplu0LpKYKtvY8ZjiXTJcN+JlipDhPKLn23Ar6VOCsrTJqzsynI9PphKCWztytwBDAPJ55/+233L1/QxrPPH7/Lee7DzgRJtcTxOP7geN5pDtcM1wdyJq5ii8JXc/+5oaeHSUn5mkkpUiOE/PxAzmen68C62Z9rYE9NhY4JwSRNUnF9tw2OG2AUK2OnIJpKrkqaErhXFM+v7s/8oc/f8/xNPLd2zv+5ds3jFPk4Twxnc/kouwOe/bXe/ou8JsvX/IPv/myAj8veHm149B7Bo+Jc0v93XSmLJZ2qYv2cwH8zIkp1bTO45lcneHDbsANFgq16wPem+PUB7+Euxij0BE9pOgo0XQx6Qe6EAjB48Qv7PiidWlJWZlTLRXzhtXxHNv59Mj/8//+fyGEnt1uvzAMDtc3dF3P9c0tX3zxFfv9vu5/yW63px/2dD7gfGOJGPN7S48TWIGbBdTeOFub+WnLylH4mJnzyf0NkNguuJ3zWMEYe54VmPnha15eexkhhYvvtmNb0Gc5X9Xm7OYw6+X3f8mthc8KmKhxMt1HnxMaZ3wpjPO4AD8yzviHE92cuDuf+P7uninOfHg883gaGedITAXvHV3wNbHCDCjiMiUa8JPiSKqJFWx+rlm3ii08LM2iWGF0w4FutwdxlZFhBdq3EDDnGIaevu/x3nFzdeBqb8cldIgPBvw8PHI+npjnxPt3H7i/P1qUgfOWBME7+qG30GiBPkDwZg85EXwFftqipYVCefousN8NvHj5gs8+/9x8yZoRE7GIFxXZzOfPt4lYdkDxcHX9gl/9+rfM08huN/B4/wHnOk6Pd3x4eGQeI2cXebw/4VCGruPN7j3eOXaHgevbPaHzXF0fePnqlq4zTaAXtzd0Xcdhv+P62kCgoe/Z73YG8gUDwMTJwg4TgSDO/HuodkGV9xjW6JWsLa26+WipmE05zso0W2TO6VwYRwN/Ho+R8zmRcuF0joxzMtAoZVJeF/Mau9DsmbyAg33fE4Jnt9/Rd52J+g9djegx3SYfDMjq+q4mOar2/s8YS/+mwI8iqB8Q14NYWtGLNdhSUEzLRTEgw2z9FjoRKOpxxUEWNCmkhJSIV4gCxXm6+cw8HSkl0Z0fmY+PlJTpDj3xdEBKJA97NLuaTUQtntsLITi6zhSaQvB47/A2+68oG9AMcqiiTGohOynZQJySElMhJSFnZ+FgVggWoqVQfQ3Qxj9Yhvpq5FNXsevqWlEySkowRWP82D0hZWtAC0O7IqzyzGmkrRMIuSipCEksE1bWssQXWgpT0yVqsfI4oYiBXkpVWi+ZMSfOKXLOkTFHppyYSyZpDa2SatQ4QdWhzoATQUgKsRSKOBuMa2YxG2/NSRVHTR1vHmtVAqFloNHq5K1iHqUO8spKKadmm6rOaDKxr+wKU/L03o4PXumqmFho9Mlal20VpZEWVJTeWb2KwmAC9SQB7cwJT5Xp9YsBP6sFwxLC0nSLKjwpnBEJeJ8JwaNlTx4S3pvWyCwTMAMTiq06rOnUf8amix+xGBCX5tIT4wnZhJDUSbiCVWvYwTrwycVOvdHSz2RdmaUay9rAnpadbAd0yIVmTwD2SM1iZsDPDtgDL0CvUekRXqC6A+mBm/r9592kadgIPM3S1d5UZGOw/Uh4F2zOYQV9mvHHD+5vDM92zbp/Cf5s6mMxHNfK141h2cIAL6ewBvHU9tqaRgvpWmJkWd5j3Wc1lD+1L+2dNueveALLiu8vEeq1qb/lkBhAV+rqUNNkQqmZAJUQAn3fMww7hsFWD4e+AzXQIdmUylyd8QZINEd+CR3T9UFsqK1JC6SlqW4huu06YuLIwiJQ2Ma2bRzQx4waWcq2rXo1B9KykNVj3lXdOCjBMu05lOALnauMH6CkSsvX5ojIZgXM+vKiWdKe/ROt6jk2VZuLEQPKQEkpMU8TKc2MpxOn4yNxGtGS6bqOnPoK/Jh22fl05Hw6EqeR6XxmnkbmaUK0GEgGUIplLBXI2cL1LOOasYtQNRFKhZY5ZiUmbFiORWu4Xc2+VLPE5GKryn7JNFNZUilRUqO02/VzzsRxZB5PQMt+tYbNqGKhaqOFqqVpNM2qnFBamE+xkIRptCwtTphOZ3zX0/Wp6j4JKRvLM6VInkem85E8Pz/wY+PVk3bKx471k6+s6xb1t41ENbyu2nAxFaaYiDExzhbedR4nztPENM1Mc1xEWrUyVb2YLRWc0Hn7sYhyy6KVUWIdm7RYOMDyTI06hxlCLZwr5UyqArJzStWRFzSrOcNe6ILZS1JDVZp49RICscwb63jpsHAWqWEtrjk2sgqhLsUksobuPHN/1FKYzmdSiGgp+BBIKZpzXlf/j4c9JUecE85Xh8qWUrowEFRNs8VXsVhlA9rI5v/VrGgTmNbFKan1/3Te277p8l29/FyaUcQaCt+udnm9J3Mq65y6gEMiy7PLxTmXzyMf7V+CPivgo2uda73+p6vhWbbLrF71/8bgrGFO1LDlGCNTirh5ph8nEso4TozTxBQj8xxJKZOTjbdtXl2SS9gNl76HflzWZl40y7SGNNrq0cLwBEsFX+pChlRHpGV/AgsHm7uZroKMkhW8jcPTODGNU83KPBPn2e7niy1OqyP7BsCCOll0Dc2x3BZg659tvjVxat91Nk85wZWqgyeYP/yMICybEmxt03lH6HpA6Yc9w+7Abn8mx4kQerK3hapSDOCLkvGTaRCKF8Lo8Nnjvee8G0kp4Z2j7ztSSraIGYztozV81TtHlwOqVZvMOdQ3sMTjKpJ5KQkhS1m61vo2LkRxa3p2ly0le+5sXOyCEIP1JF8Fn3FtMXX1XUQESlmyXZaieJ/q/GqMrZLVMnWrSbl47ylF8MGOFwWf1sxiP6f6/sahXgF2r1Dfo74H8RaXnifQhE7v0ePvIR4R3+PDFbhgK4ChR/prq6TQIyUip+/JGpF4ZiyJeD7iUI7xzMP5Aec9u7u37N98R+h6bj97yetvPqcfes5fvCD+6jVdCEwnmE5GSe17z2evrxHvubre40JAnK+gTxMcBC0Wk9himEtF7XJKaBEejpngHefBcR0Kfg504tgjDDgkC12EXTHR3yKyuMta/1MtTKU1iMr+MHYjx7Nnjkb7j3Op6uMVTVoMe+G5MwnlInw4Okan5E4ZnDKOhfsxMUUT/txde3oNtmrWGwAzdcobIqHAPJ85Tw+kHPlwOvLn8x1TjNzlxH2XmEU5Y0yYmIHDjq7/nEDBd47SC8k55v2O0/5qDYNQhyo4X9j1poAeguA7GyB3Nz3hukMcqCRULBZWgrMf5/BuwNMjOFwCTTO5CMc0ck61eKcCsRCc493Qc+g7Oi+83Duu+8rwOuy4GnocwiCeQJ2Ao0I2sOcgws4wTK6cNwCtwNgXUjG225jlFwJ+FtPUXkpaqnutBuM9Jf8RLd/hxHMYAvuDx12dCK/3wA3v3r3lT/GPnMuJov+I6h9QvUO5w5hDP/MpVBcdkksAdKPTUQ0kbX+01f0C6nKzBy4W3xYx5e3ELj0WhiXoksnLrfsSQG+Bq7p/A+xtrKKlrA+IHhAGjPFj+/bZSztfO1QO9ZgDHVCety/CNsRrE+pFMzhWQ7058Tb/SJWjtn9+cfhbUFt1+Ns59bu1KG1fNowfac+xagOxAJ+XE9Gy62pfalvzzTfewcKCEaUJe9t+DSHaMHC0fncTib3cq/G6tO63kvUncAABAABJREFUc/Lmb0gUsYxRvlL8KwRMI5UszNRn3gQzVChKwELWBAfaUYqFHDTny6ju5oy/enXL11//itvbF/z217/it19/xYuXrxjjzOM0EkvhODl6V4jJkcnEqCQtBFHLVlQFJoMPdCFY9hLfEULHVT9wuzvQqbWRVr6h7+mGrq7YVw9TlRwLJZrTWlJcUr5bWmxjLAXv8N6Mv/1hz7DvLS6/G3A1A0/ohkVDwS/tTOl8JoiSUuTx7o7z+URJhXGMpGhtPni/ikrXWHzTSzI2hK+Zfnw1nJ9ry6q8mxRKgjxCyZwf3vPuz//MdHrg9HjP3ZtvmaYzh/01L168pu8HimZynilaTAD5fE9Jkel45PTwQE6x9l173hQjk55Q4HR85P7xgZyS6TVUp0zF43xvbcoHg83qYk2uq9aiuiwqzTEzRhvJztPMcY5E8RCcDV05c/zwjvPdhzrA2riRU+LhwztO9/coxv5yTSexhgWmGLn/8I7z46PpVpyP5GlCEKJEq4M54OKMdB2h67m7f0+/29Pvdty+/pzd4YqUIqfzIzFOBvw8viP9AsCPYPqP3ulF21t0Tqqz2wa1hf22Ii1L6H4BYi6MdVX9w/0j3799zzhN/OnP3/PPf/qW02nkw/0j7z7cM8dEzJmYDBgrKSC5Q3JG0oikEY2Fx4cHvv3e0QdHEKWTutpUNT7M8bBMQs55ut2ebtgxJ2MTfLh7YJwi333/lnfvPlBKTVCihb7v+fqLz/ns1Uu6LtDf3tDv+uroZ0pONifU0BTNGe8sbAERBu9rimMhdNbPus4WeXMd2tuimJWcbCaF59lKKczjEXGeOI02jvhgzALvGYYd7978ma7rubq+5rPXnzMMO65vX/L5F18z7Pbshj1XV7c2VjhPt4xH5njZHOnW0JHWeOqmy38bYGQzh16CCuvXPwaItvCRXpx3IboMS4hsA4xo99ncdz1/u7CiSxjX059FBwZj/CxZ7Fgd2F8S+rlcPLAEBSXNBh7HmXQ+QU687zv+5btveH98ZLjbcfX4Ad91nOeJh/OZlDLnOXI8jaRUyPNkkg9Dh2ah+FpWTgxUwsq36zqKt2QDLRy7VPaHPQ+VZSdIMLYYiGWjzaXaD003zQpVvPlEuRSmOkemaSYVA9PH44nxfLaEJXFGlliQuphRBJIFcqsTshogIgJas+YZKAWQyX0x1s8w0A09/TDQ7wZjTW00uFpEybMDP/Vyi5hECAxXB7o88Con/j7+R5yPX3P//g37/Z7z8YF5PHF+eE+Os/nBMSE1TDbVZD3TNDNOIz549vuBD3cmpr3bDVxdWZa2lfHjGYaefQ2z6/vAMIRFP81Elm3ByTlLMmGDlFv9B9l6TdYavDj6IKi3rI+7wXzy64Mjxs7CweaOmAwMnOZCjObPx5StLRZlHCPznOr1q52WEtOc68KY4FzNJCcO78MCrBvbx1l4clht9R/b/sbAj4fdS1TWUApVkDybsXT8jvzd/wvGN7juGt1/hoQB3b8mvPgN0h2Qbo/fv0AoqHjK+S2UQpwTeTpCibjTmqI4+B19OOC859XrFzz8+TXDrmf6+kvy/a/p+wHvrwj+BnGB/nDN9dUVLgT2hx3Od9V7cktla7YY+ZyVon5ZOc3FVt5KVo4nGzrPwXEF+FEYvPLFEBg6A2a7CEMBjzDXQYG2QqQ2gU3TREyz6fpMwhyFmB3HsWOK3lZ5YkZTCwmwsIyi1fh45lTgOcOHkzA4IQald8o8Z47TTIy2krk77Iwd4pRSRa4mKYyYcOUpjXw4H4lx5u70yHejUTHnAqdgIeOjOuboyCIwDPT+xpzJ4CidURKnfsANuyrsbOFUiiCdMuxs8O46R9d7A352gt/ZKnCuKYwBXHA1Zl3ofEcn1i00KSVH06AYI3nO1ahIxCnhRTj0Hbsu0HnHZ9cdN3vPru+JeyF1Ho/jIJ5eQDKEmKuRLuwRQoud6SxOMyum3q4G/EzFGFW/2CZNJLOCP65qeXCP5m+AP+Kw0IHrvWO/y9xef04XlM59x9vv/h3TeIfyR7R8g/IA+shlCvRPb63J20L5xrR5wqpYwR77rRgdEyBTKLlsTlzNIKFqwMgWCuhQ3WOAzx4Y6uC+s316kC9AX9b9Vwb+SAC2YM8VaNvfIQ0Q4gqlCtYtv9vDPW9FmvHXQJ81RKsZ1dswrjWT16pe0AAe18AdysLscMjl/gbMcfXGK/Cjyz1gXV16uv/R07snRaL1ehXsaS6VAQ6m17XuGwrYkrAYclQzNGDlsda61lvpBQi0nlEMBK6pyI1hYqGZRZq+k4Ukf0RieYatrdQgFlqFUJ2KDi3BVvxrvH4pBvwAvHxxy6+++oJXr17zd1//ir/78gtevnzFaTpx93hPTJH7AFIicxKm7DjVvm5MAreCPzVFbe87htDRhY59t+N6t68ZvCz1q6IM13t2VwcLx6p6dFqUdJ5JY6TkQlRlrkatgRbNkLZMF2as7dkf9jjv6Ya9ZUfx3kIu+gHvHfv9nqHvcaIElwlSGMeR7/tvuL+zdLzizkzTbPO98xYarQb8oIUoZlTlVKoTt2qVPNeWFT5MiuaETmdIM3fff8ef/t1/zfHD9xwf7nn//TdM44n94ZqXL7+g7wdyjsQ81ZT3CcnG8Gkin6rgvQEi4lbR76LK8fTIw+MjOSU6HxiqZoCKLY654MAFY8iqkIqlhAWQmo1UFeYZ5lnJOM7zzGlOJEk4b4y/EmfeffctH/78R6Oj1xQZKUU+vHnDw4f3C3uj8vXIVSi65MJ0HonTXJ1HXVdPgYonkh8fKGqAgvv+W3PQ9wdeffkVh+sbYpw5nu6Z55E8nxkf3pKnX4DxU/uid4Jz5SKcdd0qq2mFLipz1I4nhLnYvHaOmYdxJuXCd+/v+f2fv+d4PvPtn9/wL998x/k8cTyduXs8kXJexiURQZM34CcVJI+QRoiF46PjO6emO0TBV4YZJSHFVryvho79YPoQV9c3UDIxFY6PR+7uj5zHie/fvue7796QcyKNI3mezDHSTOeF/W7g5fWe3nuggrk52nurq+ORzSshBOvHux2h65YxTBx458EZ8OOgijm3eamFfT1fFaoW5vG8OL+NSVrRe7zzNc27sN9f8eLlS/p+4NVnX/Dr33zgcHXDzc0LPvvsS4ZhoOtMM8Q7h/ediUaLAebiKitoRWdYPUVd/17+r0ekfmFZ51gXKj49W65c5kWDR9a/2RxvbVLqaoo9SmM0rPfY6ghd6vqsP77t65oVVHTDjNW2UPgLgj+sy4FaEiVNaIrkaSKdH9E488F5/jgc2D0+0A0Du7sDLnhSNl2tUgo5l5om3ca0zju864y9n6yMjLVjY5erwM+a5a4yNdCWq7UuNtZ21thttaIKxYini2B+BTzroJK0IMlCgM5TDQfKmfl8Zh5tTojJZBRkqcNiOmvZrldEKMWb8LRIBetthC1qzJGSswHAfW/gz26gHwY7pyaNKFiSHa1A37NvsukNnaf3B0BxwUCYGCfev/kO7xzHx3sePrzjTUpMnChxYp5NxyjmzFyZeqfzyPF4xHmhHzr2ewuhG/qe/d409IZ+sL7rHYf9nuurQ7Ureg7L+R193xtY7XuC74CW2bHqBNY6s/ozXxEsLN0H6yVDZ3OvmayViACU7CjFmDvTWJhna4uPp8g4JWIuPDzCaTQyyWm0rItFIaWJXGBJId9C6ZFlAbyiVDhnWRfdxxPWR9vfOJ07qKsr7Iv+RlvkrRaAmgGkJaJpBBRNZzSeFqO+1BUYLdEomrqybpYBV6tDRCYScTXefjybVszx8ZH7+3v6fqALha4D5zqyCFrT9bkguM5Z5TtvjCVY06Y1doEIS4hDHVxzNmNKinIeC0efyV6Z1IziDEgxt9HeXxfQJ0VL1Zdz4nx+ZJ6nDfADqQSmtCeW3hgPVVxKYKH6FrWQrOcGfrS+W6KGmWEARXGgXiypUwcEox9mv4qBNg2OWSA6R/Smeq99sJmlgK+xsa4IvjNQxHUd0u9sgg0G/rRUiq7vzUnS6pyqpaTuquPXdc7StwtVaX11BUsFD6TK+DsV1NUHRU0TIpnxallJzKmZ50SKiSyCI1GyowuOIXQIgVQS1/NAH7sF2MnOI1nxKSOxWL0XT6bgxdFt6NRCDaerk3X4xYAfXcIALmtYWfV+Ym3nddCRM12Y6LqZrhvx/oRzZ7RY6neWzFo/76E3eOd6rDr+61bb8EVbXvc/fv5mjLdj1TDDo9qzplY/YKFcFQSSAdSEmJEamqW3IFfYUHkF0mON/Kqev4aDmf5P23coHcbyUSuTC4rLM2wN9KEZglvgRZdjzSFrBnZzwi+ygG3cmKf77Wbb45crhiyfbcOlaIYibKvr0kB+8j5ax20bDrc6CT9eDo0odHHFitI4WMJcFFu5LKz6HIXtGk5j26zG8dYw/1nP8xdsF6ET9UV8pXC3lWUD4txSNhaWbIkHGqASgickT+cNHO2DZ1fDG+g6UmcZbdoq17Jy1AqSVu/GMup8INXzvPcopuXS4supTqCq4jL4Ypl+WogK6KId5ZxYRo7OrnV1c/UE+Blw3m2AH89hv2PoB6QCP14Koes5HY/kXEgxoepxfrpwWLSGL6mKZbl0pnXgvMc7+/2cK9VG5qxzxpwoaWaaJsbxzHg+M41n5nlinie87xjPJ3LK5BJJaTRHQzOeVFPZg+bWny2MWorN77mGIOecn2RNanW4aUTaQmOpQrv1mkZbruO/LJmVcrEUtbjE6Iw9mOPM6XTieHxEczF9BISUEuP5xDSNoA1kthCe/z9z//Ij25ateUK/+VgvM/PX3vvsc05E3Ih7M/NmSVlZhUqih5BQ1R9AC3oIJKRqI9GgxF9QLSS6KVUDJBoggQQ0EQIJkKCRlRQpMisf90bciDivffbD3e2x1pqvUY0x1zLzvc+JiEt4ZLKO/Lhtd3OzZWvNxxjf+Mb3XVrDxzArQMfqbq8zrc7JgsYS6oZpVVPKqqDlPJ6w1pFSYB5PxDiRwqR6P/P0bPfv8njKUFx2qMufnPej5aqXek8ENW6YssZFY4gcx5mQModx4nCaNGGZAlPIzFF1DFNRqYDFatig7lspF6zV5HWeA0aE0TuOXgWYHVWQH8FKwpSMtdA6S+erW24VNtfkVxlFMWprTIixOgMtzHL9HEvLyyXQfVm6WKAFY6jtJwuYsQAN2v4vRRAHKTusySuK9ge10P0Rx2JJLatUAud3q8LutrakTeNIzonuOHA8HlbWQ9f1xNBrW2aMVbS3JTZdtWNu6Tqpa7OyBdYLtbzd8k2e/Gh93g9/dvnkuZ+MwovXNhdj5uleVffpBZTg6di+uCJP3u/j+7K0eiHn0X+OOZbP9/EZPsMhnFu9zLlQY8xZ565UZ6uYItM86fzLmWwE6zy5aFujrkVCSspITdUxs9R9ouQEooD10mJUUibnSiM351hEzHneL+51y+Oama55KZj1HBGpwH1S1+q6X4gIYY7Eml/EENRtsxRyVjBoGURGqg4P6qxrjRY/lxatUuxZZ63erVKKdjP4uu9VMeB6Mddr/XEc/mzHOizk/F71HK1z+Cpw3fUD/WarjqPzTD9sAbStTTIlO5w3ymqxrALzyxiUUihGdI2LCavuSEhBY5W6RjnnkGpWYZ0l1RZnayzeF7wrlVVjq96XUcZNFcm0dnlfo+vequPvznNm3eeqd7RFXcOLwWLJ2ZCyAvY+G2JSF8uU6z5AruNKlN0lS8uwXCQ2sq5ruuYapFzKtP/48W8Y+DGU+pb6AZa2Aq0Q4DfY9lqTRymU+R4moYzvyY9fsdiyLZVr4h47voMSoGSMcbAIs9ka2FmPOE8xlv0UmL9/j7OG9497vvrmTRW+6mibDms9w9U1m6sbXNNyfXfH9YsX+KZhc3XD5uq6LvIt1jSKuErBOnBi6fuGXXaV0hU5HBPeZsLjzLsm0HvH6dpw3KgrQtt7dp0lFOEYMyVl5nni2++/5f7xA3Ge+PD+G07He3JWB6+YDK7d0l//nGZ4gTENzmwxtORYmA+BNKvL2OKO85yHiDpNSYG2JlzZWcxVo9yGzhG2lugNUYQpF1IN8HJdiFI7kDYOkUKXAi/Dy1VhfpwCORfGsdAf1LWl3ezor2+xzqtoonNwkRAZ0JJr0omUM+S0bBNa9RWEnCJTrHaI2VJKUzcXDYycMeyGjOt0CQzTSAraQ3p4fOB03GtAVHTRQIRHSZiiFn7fd562VrLfjV9y9/IF3nk23Y7Wd0gUyj5QxkyD4QpPj2Pbtvz0+oqbvscAndW5IlK5OH+C1VgEUhRygpLVjnXRdIAMkkBmQJ0NDo9aWfYWmlevGIYjw/BbNpuviPGRObwhTfdkTkDkD9tClg3q/PgHo6EnQYWB1T6ei79ZIqvzJqyvXNk8ZmHzfAG8AhqM3AAK6hizQ8GfFniBcIVav21QJpACPAuYY+hBGjAOI4sekGXRBlKKr0WwWKOaSNYqAyL/fjLUH3hUVxmzuMvohrO0ep1bt6hncq7u2eoWtXiUGc7aLp8+VjtU1ucuoE+ptf+PA8IlNTIXjy+Pi8Bp2bTrJuZMDaAMGCmq9maW39d7e/n3nH+2MHtgCcJqC8Ri+4q25AhSgfEqPEohSarOV6owJ6LC+l5qsFXp3ZY/wWQ0Rttycql688IaLaDX3xlN4qQUitfNfxgc223Ddtsy9M0qvtp5x6ZrSV773nebDUWE0/HEfrMhhMDju7e8evmCrmnUtjbMpJyr3bcGNl3fc3V9TdN14C3FKMjQDz390NfWWAWFDAYnFica/Kj1s1bGuios6ayl71u6Tpk9m+2OblDgp217BfKtVVOG6ojSdfpY73jGkJnnmfc//Z79fk8MkcPjI+NpJMXA4fFR9T1SYjydiCHgnLZ2xhhrhU9tsJdq3nMcReAUhXCaOb59TxwPHN5+z/ffv+V0/5YYVDQ5F+E0jsTwVl0JJWsBi0LnDZvWUf0PEM0VcA6yaAtNTJGQ1GJ4DpMmKqgOnlhb9R4sBUfBkrJBgq6PKRVNfOCCeWMotsd2PTQdxznx3ft7BfokYSWTw8T3v/4r3n/1a6RkfBXHpBRKmCgxYIDGKYNsqTLnahMf5kAKC/CjoFFBiJI1aRHWyvlKYzeWMGlC3vYduSTmeCJnFXeex0dymJ/t/i3HOZk9z/MzZ7BeW6OgVCqFEPSeziFynCZSypxC4OE0EVPmMAU+7E+ElHn/sOe7t++ZQuDhceTdIRGiusRMpauWzvVLIM8QHme8iyTec5wTrXfcbTfc7TY0zjJ0DZuuwRlD61Qr0DursWxnMMWsAGlKiXGc2O+V8bM/HNkfDoCwaT3bbsvQ9/SVteO9JiMx6YYlYpC6DtnK8EHA2aIMBFDTjhRIKXEaJ0IMdG3Di5srhqGjaxzNpsN6HQW28CN7xDMcT4oBCxhKLXgoyhbDzH5/j7WOaZo5Hk/4tmUYtlxd3eB9qyz26sKnYM+Ac57b2zs++0yZe5thw253pWuhUeB8AUs+OamLb5f/WFkt6zmznPknYMvCyjjzzM6tXk+BnOUHl2jmGcQBqktZ3b/Xx8vebdf3taZKyJiFCWTWv/9T3UCpzgDruTqDbxvwjjlFYsrEOZDzA/OUqjNbQ9N1qhNXQWiRCpovDJeSSVlzgbPjo6y5gFQSglSWq63JvzFGRYorqyanRIpnu/TVcKJauwPkORHMjDGG6XDA++YM1hktmoSQtMWzSAV7KviUFbAFzu9vFkv25fpXcApZz91Yi+96nG/wbUfTtlzf3bK92mEbV4WKZQV6F62iIvLpkP0j72Hl9LNSvM05L7Xe0w0bSpe5qUXKME8cH++5ubsjTCPzdKxtX1F1/nyp7bcZU3MNY/VLJ5AyY5PA6TgR4wMING1L1ypo2/UNfWX89F1LP2js0bUtfX1O0zS0baNM5bapMYlZC1/K1HbVnbNqBa3i90srlsXbFme1c6izDnpPEbjaeVJWgH+cC3MspMoEmmcVhh6nSFhaw6IyhYBqX1/3pmpTrwYr/3/Y6iUr8KOTal3wTNULsAOmvcJIRMKefPyA5Endm+IIRR0IjFkSf4N3tT7pHN7WRdc2GNeuSJ1YixjhGCbu94+KgNbN1RiUrdEqWLS9umF7fUvTtrx4/QUvv/gJbdfx6vMveVm+0EWl2dL4bf08BuM0ger6hiKGGAv7Y+b9vVKDHom0Utg0Drnz5GtH3zq+fOXYtYZJBBcyMgfmw5HvfvMbvvr2N0ynPd999a95+PBt7QnUpHG4esnnfz5y/fLPsG6ga1/j3I75lHj4bmTaxxXtfe4FuVTgp2I8erQGs22wDUhnCVuLNKpJtJ8LMQsF7UUVwNoe57YYo+DRUEVZ53FirNT10ynS7gM5w/b2BTevXuPahmwcubpkKFqvi16JCQmK2usqD4iobXyKVS1fmMao9qLZUrKq76cQyaFoS0Uq9Fmj7nAamac9MQbu333H48M7QGh8wTmQkpknrULqgHQY4xi2Wx6YeRFHfNOy2d7R9VtyyIwfZuIx0mF5aVu2xvFyGLjpO677Dge0xlZa7fLf8x8iiyi4cIFjwWrtnoAZZCLFR46H70hx5Grj8e4Lhn5i6L9hGL4hhEeE94zzg/7N3/r4KCj50a1nDUGAqoZ9GXWYBTRagudFbLEDrsAMGH4K/AxDhzEvQG4wNBiqrg8Nwg2gzjlizqCOSIMRjxirzKEF7DGOpfVsCbYWETgF5AvOZ5yrDnvPVKheAB2DrG1WCgTVYG1p9eJSq8KcQaAVHKpAEWCNPnYXj20FeHTNZQU/FgCJ+prngPPMFDo/vhzFNTgyLLrM5+BOqG1cyuxc7+MFxLNe1+VaX7zXk2fVtcBUW3QRheRKfZYKyFMF3DMZtbdWMEir2KWCjhe1vOe5eReHBhAaFPmifDkNJJYWKYurGi9L5QcR+sGx2Sjw0/eeprIAxHtKq/pA1nls02IwHI8nHvqBeZ55++oVL+9e4K3jcb9nnufauqxvbqxqYVxdXdO2M8UIoUSKFAV++m5NhJpGdXqGpqdvBpy1bDfaxuWdZTP0bIbK4NkM9NXatt9saav97QL8GGuqBo8mmAsABNpKrQySwP39B07HIyHMPH74wFjFk7/76ise7z8wzzMWw2gs3meMdTQ54ZwCUdrK83zATxY4RTidAu/f3zPuP3B895Z3b98zPrzXeKfoxhmmif18UOFJijIhDGz7hmbXg1d3ypz0fltvcGhsE8LEPJ20kl0iRTQxUeDHrMCP4BBsZZLojEkpkWrhw1WwGGMp/YDtOvAdx5AI7x8V2BiP5OlEnCfe/M0veffVr5CSaGx1vDLqYtl7ZaMNraf1vhZWypq0hDmSU67tIqqgVUQYJRBRfTZTajyGtutZY7HOMc5HrPcImSxz1USKxPlITn8aO3f4CPwRWODzgqMY3QPmEjkGbR85nEbefbhnCoHH44k3Hx6ZQ+TxNPL24cAcE/vjxPvHIyElpgCneWE6OVKpY3EpvABhzpzijDVwCpEPj4eqHzhwt93QeMfNbsPt1RbvHLvOses8rbdsuo681QRRdcEiMSSmceJwHDmNE4fjicPxiHOWbX/NZrth6Pva3tTgnFcmW8prBdsYbSXBN6ppUscSTu95nAKhile///CB0/HEMHSAcF225K7hetA2KyPqKvns1ckn91Grk8v5f3xvUwyEeUJE2D8+8P3331c2eUffD1jrawKo613X9Qy9WsT/5Cc/IcW/y2az5e7uBX3XYE2Lsf68tpjLj/cDoM/6S1n/fwn+XH7ZevLLnn75cy34PAV9zPphP4aRLt6kXpu1brYAQJxBIIxZXb2sMaqDt17DP53CT4UyzucIyghsWwxCGE/ElJlDYBxnyvsH3eOtw3vtBNDX0TMUKXX3pwIeFbC5CChkQaFZPnupof3CljFVHFlT5zAHbcsSYTGXMIBxbnWKijlQpdUqa1cfKwNT70FOygpaYqE1zrkAYhZQQa+DWe3cc4qry2UKgZwyzjf0V1e0/cDm6pq2bbm6uWbYbrHOacu7LO5kcv76E97J872oibcYjHM0w4ARoWlbttsdpSTGw57buxfEeeJ0eGR//5YUJrzJdC5gKZQ8k+MJKYlcEqlq5YWQmOea8x1GHh6PpFQ0FnIK5LRdQ9cr2NMP7domNgw9m762mVcQ3NUCVN+1GGsra7nGJ87hvDKvnKtC+FbjliV2aVo1pbDG0nTaIqo5gofqfBirlmvKhf1x1hawlDkcJ+Y5knJhrj+TOnaUzWgosihzXgLdv/v4N97q9clRFx9BKsU5V5G6RaS4DpkloRdRrQdqoIPS1tSStybKolawGNVoqK6W1VqyMimWsWh0btus23pIGR8iRWCcJk7HIzEl+sOebtjgfEPbFtpWmwVSspU9YojBkpMlp0JJEVnogyJkCikb5pQZo1bo5pAJsyWUzDyOjOPIeNxzOjxw3N8zjQfG0yPTeKAUdQrLRXBNS5wPpHBUthER8ZlcrW9TqBadS+/xn+K21WzSOKPEiNZAA7nRdi9xinqrnm0N6uqqpk5bS+IpWj2EqjdhoFh8dbIwInirwbHFrig1sIpZgmjVyV0s4gu4XL8c4NektY4rWSjStQUEqs6JsoQMCSRqwF4CUgJQLYRNpXOWoH3vAhgNtl3jCWFmDjNZwHURqsBoyJlYleanyjKaSmEWYS5FhQ9RoGzd1P9EcVGuoE8RqlPLZe1teXdbQaKEtZEYZ2IcCfFIyhMQMSZhzhZ1f8uz+BHQ5xL/+QgLerK4iaz/eEpCblDHLY+wQS3WB2CHWR22dhizrcDPgKltWgVt+dLXU/t2hXabdZTA0s9br5MxH5/m+bERnAP/J1htl3at5fESiJ1bwC6CJpb2rrMGgD73h9u7zlW/GtxVyncNo84/X5+/fF/O4inl/KMz/+jfZ8DGXLye+eEr+oMX2lzsEZdfSwsXy2eQy/Pk4vP8wPW9eN3l+58qTfnETah+X3WbliRi0fTgQpDd/MBrVVryYhvqqp1pyZ6+69hut0o9L0V76IG+Jn1N09D1PdvthqbxJLKyoqTQb3r6TW13aDtNioxlaAeGdsBZx3Y7MAxn4GdYgqlBgynrHF2/oamV9KbttBJqDdb5VXx5qaJBZWlWN5Z+GFiczXKMq/j1YbcjxYjznnmaKgiRMc6Sc8ZZaL2r7hfPuTlWJihLC4nFe0/TdeR+g0iCoixXYxMiQV1fKBhTubCuoRhl6igjbaF4g2QVeUw51zbwXEVDz/Nmac3JtaVnGfvLHMq5VKFyA86dK9dtj7Q9uFZbuOtYiNNEHEcNvufAGBNSMsmy2ptL1Th0dbwuCUTJBcmytqTlnNf5pbVaWdujQFZPCm1X0AVLTP3cevdJkhFJ5JRr9fPZqJPnwyzr6HKurCuZ1PbrWJSJuNivxxjZH0cejqo19Xgc2R9H5hjZnyYO40yIidMcmKIG7zFrIUxdSJe7dA5cTI1IynLvqmOpvajKa2FPrYiNdRjnwXkWC/lc+Zi5qL5TKgpQSo3DrLW13VMTm2EY6LuuWgmr3AGXbS31f0YHGZmqeRjUISznwjhHdS2bZ8ZR29qMgRiTOio1TrfsCzaMkYv1+dluo941/ag/Ms8XlsSS9JaClMSCEgVjsTatSbW1TvMSAe89p9OR43GPlELbNpy2G1Ls8E1L25SqbaZtYKyfV34gtjnHpB99iDpn1sa6J3vW+UvW+tcC9vxwAvgD1+Ey5JKL+GFJztfXNue9cGVOmfOrLhPlmQ+p8d25uLPEe8umWHdCEWXM5EK2nlJYgZ/lg14CP1LZP59c9yVu0AsClRm9rK3G1miifta1dasCP+upiaqDgNHCal2q6qUElrj7/HPsAurY2j5kzuPXKKC1FINsZdNKyYTJkAmaMxiLMaVafne0g4rkN22Lb9vVNEHKeb9Yvy/X+5mPJ8PdnC+vjlezjlnrHPgGK3ruXb/BWqdOhHEiNS3eRFqjwE9OnmRBKuhDMrWd1bBISYtUE6Ysa+vcpd7XubhWW8fQ9i3nVI5GRK/10k5trVUdqKzsn+wdvtiqc1bUKWwB6Or8Wdr+9GMvmqp2TU4tqDYv6rDmrLb3uvplbcZJwbm8tuFmpJqbGGXGyzlG/0OOf/PAzzLSL8IAKQFyoIQ9HL/HjN/rRDce4x3GD9Be6XPThIQ9VH2fxcLUGENagB/rVAEbg206XDOoCwEe398CpqJ/+vHVZURvfnaeU/bYYghvH7k/zDjn+Oab79hut1jn6fsdXb/DGIdzA953IJZSWoq0aqE7Cj5pcuR9i3WeYgsf4kQ+GHpnCHHm4d4xhpG/evs3fPPwHfvjA//yl/9fvv7u16Q4c9q/Z54OyGpvVxA5cnh3gykTzt0xdeqCEqfM9BgIp1R7kN2z0tn1tgk0CdcL3bVh6BymN3BrMK1hNoVkM4mCWMGbolaFUoEgVIPHu7rFlIKpfa6kQMkZX5JOZpnVwm66J3+YKdYSciKkiCB0XU/fDRrAWHWlMZiapOkilur55FRwTcR6RYJzOdukS5PBFpyF6y6xa2e91uERsfcYG2jMA54HQPBYGgyFTJEJkYBURlbJkCiM9w80vsU1Pbk0hKi/ywVyZUodjNrbQ+E3KTHFpM5vAo21tcpiVuDyOY+SheM+MZ6EOBtStBXUWGlcYLYYc0XKJ45jZAoj7ft3/OarX7L98Jb7+wdiOmFsArME4Ze7/+868Y+jBPPpwx/CC/TsWQTvZGEoicGYBqlaO+qudQPSYvgSzGuQActfYPgJmAbHFmMGDBZvG6xRkCfmDVk6RCxZFp0eo2jmWldzF1DBR6jUBcgA4H1htzMMvc7F+w+/47L8LQ9b04bLFqyFhm0vzvLp4wsnLy5auta/ffrYcKZ4G7lkDpmL/85tVpdB5w8HoHrfFp23y4DjsqULKStIs2iqLc85v9DyfLXRLmXRp1Dwdg2ql/ehhgTyNHi2nOGhNV2ua0g9wYvXe+ZDzufj1kCkivStwZHUoCkRqyZMjBMpz6QcyDmuGh2A7oGYJ0GId+psYa3lyy+/4N//h/8up9PIw+MjHz58oBThJz/5KV9+8QVN03JzfcWXX35OzpnTdOI4HhERur6jW4QRO00WrXUMbU/XnitkXdvUfUjZSOqg0eB9tYD3Daa2RrBUSBfk66O5JVCtS9We2VrHbndFzom7mxtiUMv0m90Vh8cHxnHk+zdvOB725JxVFDjnKhKtpIWu+yfPeA8zJj7Qu8SrVzfIbc9023Oz84TTXpkFk7YqlZiI86z6DiUhWXunJSfVnpBCzIm5qAaFKQWTZkBIYSSMR6RkpXVXwckc1fY2G+EoI6W6gS1zHwOubXFth/MOf3vL9vYW4zzBXxP9NQnD/Vy4f/+WnDKnx3um/SM5Rg4f9pwmkGIr6682tppIY1QsfOMKvVvgcrM29ZtynsdGlpVKi2FLK6c1Z52pUsd7VbeEosLiUwyknCgpaXvHn4zxs4w5vX4F1UoUDMc58u5wYIqZDw97vvrujbJnTife3z8wh8Bpjmur1xQT+6lWbFNmnJMWAosj5jPcLitDpOjKa8BYwXktDjW9ox08jXNsr3fc3lzTNp4Xtze8vLtRN5vG1zZGA33LaBpmMczR4rMQkhCKw/mWtjPc3t3iG0fTNPzsi9d8/uqFtmVd33C926nmhXNk1EQkSiKJaqXEpPMpxMiH9w8cj6O6HVWNihAC9w/3jKeRm5sdw9DhG21jzIuNsVn2rD8RlH6RZSrm8sPv42p7IpdnUjI5zhRjKSmQorqDza5hPO5xzpHjxHTa07UdNze3fP3ylYpE377g1cvPaNqWzWbHbrvD1S6Fy6T36cd+em6655oajUltkay/O2Mv58LgxZxc/v7T6ORp0eLyuj8ttpzDmGU5Nix7/7LXn+OGP90hrCYhdRsudW9QwohFqpRHjjPTPJFD0tboRerj4krIeffX+KOsaDML4MWasIMU1f4RBOu9ivguxYiaV6UQSTGyspIq8mOtAutgtKhalp/b6opaCxwViOmaRi3WrcX3CtIYa3BNo/tddaNr6s9VJ88S55kP373hcP9ATkogiCHQ73Z88YtfcPPqFS8/f83rn/2Mmxcv8L6B2jKsRYXa4kbVyOVPBf6Y9Trrhf509BhrsI0DCp3xWN+Rc+YqTNy++lwdBUvE5gkjhRROhOmRkhMhjMzjgZwTdr8nzPdIiRjJ2Dxp+1yBUhG4MmfiGLQA3zh861QcuW1oO70PfdfSdao72Hcdfd/W2Eafs7iDtY0/P7/Ve6XMyVaZy6L6QraK4WeX6nWwUFv9YlaCSEpV3HsOWjCJsxJIiuCMkhsUe63afkVBLWpBYAEhf9/xbxj4kY8WX10JZXH1Cgfk9B5Ob8H30F2BazQg9I0OnOke8ohIVIpXmhROlZoEChX1rL3I7RYvOsmatqPprjC2wTcdvlPBYFksgoGUY50Uhf14ICdt7/FOGSjWWvrNFcOwwznPMFwzDFcY6/Bug7f6mpYGb/Tcndlhm4FC4SF6DhFaDPFoOFjDcXrgr3/7r/ntu7/icLznl7/+Z3zz/a81GKx6R5ARZrUhl5Hj/TW2BKw74LvPcf6KHIT5kEhTofGalvlnFnfGCPiE7aC9svSDwWws9s5Bb5CUOISogJxVe2JX0OCvkkKcEXxNaKRahEoRyJGyVDMlkYhkMmaeyPEeMUKYR8ZJE5Dm+obm5gWNb+i7gaHZKMpfq/MCJAPJCNkWpEkUF3WC2UKqzDHr65cVtm1m02RKiSS3J9lHxAa8ecSxr0Gtw9dqXGZGJKpwXCiUqBN4fNxjfYtvA+IGYnGY2i60qO4fEUKtQXyTM2NMtNayxdI6MCK4In8S4CcX4XTKTCeIAVKqC1FFQA0tqm+zJZeG0xgxZsK5e9r2N/T9UCmIQUGf5xYuXo4lQHoSKNUe/eW7SLXz9hgGhBbkM+A1hg3wC7S9a8DwCwxfYsRhTaN30giNU2ZZEYuUDqGp4t/q1qXry+VcugyxlrNSBN8sjyvo4J2w3Rquds8LwmoAdgn8rFykFZpyFz8/P5YVtDnr/ZiqnFQuQKOljauwNLLZ6ngFi9tX1aG5uDo1lWEJpj5t9TqDMHpdZQ3MlyBEg85an6sBaKnPWYLAc3Vu2fjK2u8u1ZljZYnWd73ktFVS4Mfhx5qKPE0W5OLrT3MswI+CbGZxhz4fIohUSnNJxDSTV9Anrb36AhjjtIJY90FqRattNRj57LNXeO+JIfLw8Mj79x8opXB794KXL1/RNMq+MU7Xqhhm5hAAoetauhoEDYMye7QNoqNr+9Xlx/uq92MWkJA1uAYN6fPl43p1189R2Tql2usWsevt6PtBg/8iSNRYYJ5mrndXnA4HTqcj2+2W/cOD6seFSW3PTaljWGia5vlunhSIBzpnuH5xhXdXxHnH7e0VMQTCNHLYP6iAZ4rkeVJR0RQpQTV7xuORh/sHYgzMZmYsUpk7CSSAFPI8kqYTUjKt9/SNtjRkU4hRGWAlJcK8aHixAoD91RX9sIGmw9++YPOzP8M0LdZcgdkhKXP4+hu+/vCWEGYOH95zuP9ASZk0zuTZnHHUOnldTtgScaawNZHBRHW7dJbO6erQOmXbAsrmES6ySU20xAnW2VrhvwBeU6ZYZZweRi36lBSJs37/kx7LOWNIouvPYUp8+37P/hT47u07/tUv/4aH/ZHjeOLD4yMhREIunKJqHEURQl7MNpS5s2gGSZ3gxrhamDSVOavtJXhwjdoE+87T9LWNa7vj+uaavm24e3HHi5cvKpvP0zi/XtoRMEUwlVkWkxCKxfqGxliur2/YbHq6tuXP/uyn/OSLz2m8Y9P19E2LCMSg2kBZYMwQctF7cTwxThPjaeLrr77hw4f782cxlhgij/tHpnHk5XjL569fsN0NtN6dwWlz3h/+tADC02NJjJYEf23LksstRUXN12NludjK5DGMxz2PH97hnOfq6pq7uzvatuOnP/kZlMQwbLBSuBr6s+DuZRyzsIAuAaHlVyz7NOve7C9+t7zGpTbPD2v8PN211nDq4g2fAkCXf79An6wCz0sRaNUAfFbW5A8diwC9vpcIK0haqt6nOE+SWR2Qp1mjEnMpkrB8qosKi1QRNZa9tl5pW0W6jSHHQIoBRLDeYZtmXa+WFsKSMiVp+XYRt1+ZJHYpGCpbcAWNrMNYQ+u8Fmi8o9tu6TcD1nv63Zaumh50m4Gm63Hes7na0Q8brFPwofEN4/HIV/1f8a79TiUyDkfmeebq9paf/b2/5PWf/Yzr21tefvkFV7e3AIgxq8j1Ei+czS/+dMc69tbA5mK0CeCsCigDXdPTb67qnMxIrm7DKSBhVMez6ch0fKDkwHw6MB4+qKxHajk8RnKasQQoHpNRse6YVkLA2krhQGXbFHhyvt6frq3xkmoT9t3F4xr/9MP55wuz2XtXSQ6iWnm1vdlWkKdU4GcBCUVkFZhOORHmI3GaySVT4tI5VEFXu6xfGSOqT2lyArToqbImv58J+3uBH2PMnwH/S+ALdO/7RyLyPzfGvAD+18CfA78C/rsi8uH33fgny4S5WJpqRVVKVFU7YyA14DIivgo32RoELVT35VUrbaoqha4Yv6AMmZKr7d2i3p2rO8ZFtaEuJmJs7ZFXITu1nhcVSxaUBZAhJm05sjZhCKi9o8XZgsHiTIMzDcZ6Cg0ej6GQJWBFFVQeUe2J0/zI4XRgHE9M80zOBms6HfAYquoDmFivX6l0s4AQsUWpJqvqd51XOvSEObwB+PvGmH/+x95DEaWgxyxMMWGcWvL54DHWEmpQFkumJCEHFWg2IpgsdYMy5Jo+llTIISFZCHNgPinSOU1hRT3VESkjFKbpyOm0R6TQWMum7RDf4ASahVarUDagDBspRh1SSlK45tLCvA5DnZgLkFBW8OgcmCwbyVm4dt21V/BQmQbatlt7MEu15q3Ji6mbTW1uJCNkyVrlFWWuNDX6MFJFOM+rcWOM+b/wDHMRUXHntLR6cZmwf9q2tQREKWtbiDGWGPM5MVuU7JZ2rd+5gzzJZus1/J1n++nJLwHPutk6jG0xdkDoKHlHLteoc9c12t416JeoHauzKobrjND7SOMSuVhy9uSsbZJ6GS4CiCef6+PPsfy4XqxqP26t0LbQ94Z5/gqeaS7qWy2tXJd07/r4AjRZ8yxYR7KpY8x8/Bw5L83L40tNtPM8OLeF6dX46Dnruf1AZPvkdl7+TtZ/a/vvupqv+7Rcfr6LL1PK2eWxjssFaFgDWJaZK0/+/XRvOsNB56Tk4n30Sc83F0H3Pqlz76NAfP3UutSsbUraLgvGKCMizDNTM9W1pQKxtqzg3PqqxtB4z9APNL4hpUyM6iiy3Wzo+261Z7Ze97/oXQVKRPvjW2UOra1b1tI2HW3baMXVqYvWAj583BYo9WeWZRVeEppVBeCj6/PpD59Uz9FrosKLKvDpfYPzDWT9OaKgpatV65wKz3UPpWTm4yOlcXhaTFNboJoWrEOMocvKOi05kpuWUjKSEjnMOl6Np40CIVLcRChO7eFLpNQCV7GZYrQAVHBVN89U28zKCjNSnYnAGRVcNtZh2h4/7PBdh+m3lHaD8Q1JGkKxzECyHmkciIemwbQtxmYldBZXHZEUcFvnqdECTiBjS00Iq5W7NVCKpXU6eK31LBqNZ7HS85hYAR/QJKxp9R66jM9QjFedv5hUC0yPZ52LH6/quRRCTiQxnKaZ/WHk4TjxeDjVVq6JcQprm1MohZDUiS2JMot1Zi+gz9LmviSdCvhiFht5hzXQtZahtXgL15uGm40KuO82PUPX0TVnpz1NHnTeGwyZM8PTSMFKISVtCVgFiI1qFXZLC0i1KM65ENBi1jQGFbCWwikGpqRA0P5wZJomFYs+njgcR4xR1yvr3Nk5LKmrUr5weVvvmpxbETWmeMZ7aMwnle+PAR+pYMb6/Iv7L8sWIOsf1wca3xkx5JyIMZBLZp5HTqeWlCLH04HjcU8pmc0wEKMC5qvzlwHkvHcua+Hl+y1Ajq0J4plxe46VnrZWX4zdC5Dmybmfcabzc3/g8eVrrnFCXTNr5s75lS7jN4FnnotS1zG5iCdqBKD7ulUtMFe/itci3bo0yOVVrvneiu7Va2jMmYxiKwi0vLbVZH1hzq7ADzx5fzi3X+mcdvXnhpVXbQzOq3aWsZZuGGgH1bsbdjv67Ua17652K/DTDgNN3+GcZ7Pb0g9DbbFuVWfGWrY3N8zjTI4J2zS0c2B3e8Pm+ppht6PbqkQJ67iv11AW45jKhaqP4zPPxfVeLiNKzqNQ6nlcLArn+1KfJUWQXEGqLJSk32OSqpGmLFGMU+AcZVgtdT/zyehexhZgandI0X2TbM57j80Yk2o+XkHPVRdQ1hZ0KaXGOvo+3rm6xlo1daEyfqwll4J3eQUPlxmUa/4eUyKnqAW9UkhZhfJVpkYqBlGBIlEMIsSkxhzVEW4RgP5dxx/C+EnA/1hE/nNjzBXwj40x/yfgfwD8n0XkPzXG/CfAfwL8T/6A19Nj4cUtn1xAckDmR8z4XlHdsbIPXItpBmUj5ADxhCkKhhjXrzdiretKhqISnqUUYpwhRVLRioUxHtcOuBSUkdO0uKarN8NjG69iTWZLu9DkrcNXpN8aD8aTxXA4wP5+1PNPe8Uo6mCzYrCuYXPzOf32DoxHcouUBlMCfzO9xYZ7Yp54PH3NcX5HLkLTfcnLl1+Sc2I6PRDCCGbCmLdg9zSNgkIxTtgygRuxnBAstA6rdBqSh2Ih6ML0WxH5B3/sPSwiHObEKY58OH7A2pl249m87PC9I8TCoSqSx1iYx0jOovcj50VoqVrUafAdQ1YqccrMc6oaBWeb25xGcjggJXHcf2D/8BaRzOvXXzD+5Ge0bc+w2bHZqOua5Ai1GuiaFu9bBEOMglsWNyK5qMuSNU7F2AyQhDJVvYZgMNFjUsFKizNDHWdaMy4IxTqKSxQKyQZi9Y0vWKRWqEtMyDTreDXn2ncWh4ghkBnjFU3scFZIuJWp9QP6Ps8yF1OCDx+Ew15IaVl5E4YJQwImChEkoh2lygGZ58z9wwHvR21dq8LQc4zrIqun/LdgAC1Bw+8Efy5CESPoRIN+sau2DW37BU33E0rZ8Hj6Cw6nnyEyIOanwGvUyesayg7rYNcltl2mdYkX3QPXzZE5Ob553PFeBmJpOeaGLP2PnM/HhwKHpgpWiCgTquuE158Jn782jKPnn/yT55mLSLXw5RwYamtgZe2YGjyKrLTxcxhy2epl18dO7MXr2DXYtBVV0hawM+izgAoLYKSPL4GWy8rbk1Pn3Ool52BkXccV9Fnox0bOI0ouArdF3LpIIceRHGZyKczTRAgR6xz9sKVpOx2Xa5X5AtBaI0VBq+06xlQcWxf0BUz5qCb2LHNRpJDiXIPQcxRkLv6/PGoaoe1ajGnZXbU0ncH5wjjt+err39C172j7ns1mq9bubUNbrdSzLM01Qr8Z6HvVybm9ueGzly+RIvTDwLBRwWVb3SugimEWBa29c3ive+EiYmiMeWqTbjThBCpr6zL8PifCS20qswDQlb78MeOnjoVS7ZlLbQ+WUsgxIjlrm1QWqKKJxjVY31KHlgKBhuqSxlKFf5Z7OJ8O/PK/+H/SbwZuXryg63uaYctw/YJuN9CIMLw8tyFKZblKqVXIUjgeR7Yf9oQQOR5P3N8/EmIkjEdOhwf9nM0jiXfKFJJIyrOuOcVgck0SreCsJkmbbc92u8W3Lf3P/py7n/8Fvhvg+o7T1R0Zy7tD5N0pkoowDjuGL7+kzRl3e0t/Omrb18PEdJgpWUixkGO9/mlWp60cScf3HKYHTM7Y+YiNE95aNr0KYzat5/ruFZvdVRXANDhnkBRJxwN5UtByCXC7buD29c8Yrm5XocsQM3E8cnj/hvl0fPa5WGdkDcb1X8dp5s3DidOc+Pr7e/7pX33F+8cjD4cTX7/9wDirXfsUA7nqLaSqD1GMIa37llntgVtrGby2zbaNpa+tA13XMPRaQb7adtzsehrvuLsaeHkz0DjH4D2bOudChsPhpOwccaTaSmcXZgqslu869ho22ysMOkacK7jqYDNOs8ZhUyCGSIqJh8cjx+NIzJmHaeIYZlLKHI7KLIgxcXjcM40TbdNye33DZtiQYmQKkXn5mgNzCITUrtbWLEACKxjzLPfQcG7XgTPg8/Hj5X3PX3VPOp/WGZTRF+a8lAk5R6ZZMNaQUuA0HnHOMc8T0+lEPwwcf/ZzrAhD37Pd7rjaXa2MISN2fc0zGHNe9dd2KllYk5ef8fLRZXtWBTIuQC0++rtLgOsJ+FP/sRQa9RyWtu4F9Fmuytnf8gfe5tnm4rnt+3yypRYHrLN0280K/JALaVa5iFTX1MUARkQu3K+oeZxef2udth0bzddco8ZAJXXk2saFs+fWrYsTshUc0r2woWl8BYOqkLA1uKarch+ObtioVqxzbG+u2ex2OO8Zdlv6zQbrXdXl6VT4uGu13WsFe5pqaqRCwmGeubp5weH+sTJbFSjoh4HPfvoTru5uabuOdtjo3si50AtPGT/lKevnme6hAfH1Pc7AU1lEpYuo01ph1YNTjTipjws5ZTUlKIUcZtJ00lgkz5CU/WNKwBRBiiHGzDTNzPNEjIv+klkduWQFKzXe0imvk7Bk0TzV6B4XpogxhsnPVcTZ0LQq7mxrq1fT+sp+ru1gzrHdbtlsFNTbbjYMfbe6hjXVHcw7t7ZqLwWAnDOn8USIQR0ip5E5RI1pQyTWeCikRCrq8hVCXM0UUn38+47fC/yIyDfAN/Xxvlaqfwr8t4H/Vn3a/wL4v/7+QbCMBXOxWpzRd3KEsEfmB02aRMV0je8xzQ7jFmp2bTawDdZ2aK/cRdJQEiLzGhhKmgGr1aqktu82R6xkjPW0sqW12pbVVLE7Yy2+7WkavWHeNDRW7b9zLOQolZ59YjyMlFzI40yeZh3ZOWOk4HzH9QvY3gI4cm7I2ZHTiePDXzEevwIS1p0wbsa5DcPwc7a7zxSwkjeU8ogxR4wLGJvwvqVIIaUZKxPkCWcnwGHbniXFSxVXM/0rgNNz3MMiwjFkYjpxGt+Q0p5+23J72tANnhQhTIWSYZ4Tx+OsdoelUHKCUifyrAtzSsIctW88FWFOpVYrE2oLXkjTA+H0npIC+/s3PLz9WiusP3vEhkTXDwzbaza7OwV+4oTEEQP0my39ZouxluI6rGvrnJ8pEnQFdOrEYBakOKhImEQD2WGyx0qrLKy66ZXF9tkaxDpdtKwQjWAW4Gd5vZQoIdQqQf0SFXcsAtEa5hgYc8YJJKtmvIIGjnLeWaOI/OfPcR9zgcdH4XhSm98F+LEEDBFZvyfOeiyWEDKP5VgtAy1GdKzlkmpmfkax/6DjCejzY3+5BF4XwZwpWGvoGstV1+Bcz2bzGcPmF+Syo+S/ZJz+glJ6hNcILwGLqo47LJmhLdxsI4OL/HSz57PuPcfgmUNhmgvBZOZ8zSzu4lQuz+/jIJIK+ij4I0bZiW0HL18avvjCAF/CM81FPZ1SwZ0zjm6kVpTlEhBSMMcsYBBLq5dZgzsn5iLQU4BngW5sDSgdtmoNLOBRfc5SWVn2U84B6A+BZOrmVYNsWdq75JPHSxSu8ZpWi5b/lsDUIhhJkCZyOKlt8eHIOE74Rjdi1/g6fs5C3KZaipmF9rSc6gUIZMwC8QpS+6rr8WxzEYSS4wo2rQwIMU+DagO+Uaqx85bNpqFpwDphno989+YbrOm4ur7m5cvXdF1LS8G0BoerwI8gRui7nk0/4IzT9bg6IlrvVt0BtzqZnE/AcKa0n39s1s+xHGUR0vwooBSRldNUsLq+CWfB2mUM1K9Ft0hEjQ1K/UpRW4KlFFKM2tteiuq2GQvWq7uOa1Y7XykFsTq6bf18z3UP4zTy1b/4L9hcXTP/5GcMuyt2Lz5nePklze4W570KWTu3XidTwShNTArH40z34UQIicfHA/L9PfMcODzeM7s3lDAj5gMptBQXSHFPSPcgqgGwjFvrlGVoncG6jn53g+972i9+xvXf+Qf4fuBoe45uIGTh3fEDX0/3ZBH6fkN3uwUpNPMtw6z7t3l3Qu5HDSrHTJkLlEKJgZITJUzEOZNKUDDokCmnE945rq8cm9LQG0/X37G5+7zaMhuaBvI0kROUoFXPLMrI7nzP1csvuP3sS2LMDMdAmDPT4QGSwZv79fI/31y8SPrrXD9NgTdv73k4jPzqm7f8l//qV7z58MgpJO5PCvoUA6UyZqQyUDFUHRJNMJ21WKdjr/eGqwYaC5vestt6debaDlxdb2kaz93Njld3V3SN59XtFa9fXOOdpcRECcqkefPhwMP7PTEXTslwStpWYur4N7C6sHlruB4aroYebw19p262S5FimmdSTNy/f2D/eGCeI2/f3XP/cCCkxLvjkcfFsv50Yp41xi41yR76AWNbrGtJMTGHRIjLVyREBZPKKqp7Brmbpnm2ubgcH7N+Vh25j5g/a+sOC/hzBmDkye9RULpkDfGrmxDANI2aYGKYp5HxdKTvehzC7W6n4KuB6+2Ao6ltUgKytEwBshQl9L0W4EcfV0Dm062Uc9y0rCsV9Kl79o/9xZMM7AKAMssebs46PnVkn68lT5mZF7vBs+6LS1HI1s1ZoMYiKCOmOkQ6azGprJo78zRSclbx5bhopZmVUGsdNek2WO+xjTpLu6bDN72OndqKCyg4UIGiZU8zxqiQd6tuT13X0XaaLypTsf582NAOG5zzbK9v2Fxd45uGm5cvuLq9wTWeYbuj3wwY52j77kLjp+oAQWWnL0U6veY5JW5evWaepppD6drpvWd7fUXb92s8lxe25jJalliL5TNpzuGfdS4aFt3Qpf2pFHUx08KOto6W2tYc6r1KKRNCrMSNSJhmfW6YiacjpWQcmcZEDIXWFXqv1yQl7UoI00xOaT0La6yaAYvUIKaeD+e4sxQhrcBJegJumhpgO29X84mmsTivmk9939J1Ld45dUgcerx3bKtb4mId3zQKFLWNw3tXiyAW79WAYg4zKarkzP54ZJpnYsocp5EQEqlkphCV9ZOra+YK/KjA+e87/lYaP8aYPwf+A+D/BXxeQSFE5BtjzOsf+Zv/GPiPAdh8+QML0QIvmzVgE+sreFJ7ykvBSNKWTLPUmpdNtlopV+ROX3IJLZfEoSJ7tVK8VG5136nuEiVjodqOmtV2z5rqDOYMpbr4qJPYcs4N6sqR17OSRWuiFCgtJTly0JNLKZJKJKeREE6EeMSYgjeCMw24Fu+2NM0NMNE0J5qm2hGbtgYUlqUjqZhSF6cZYxxiRIEf4zB4zpJwz3MPr29/uqKw8zwTwoiYRNsLKXtKMqTACvzMo1aIpDJ+NFDIpBDVSr1WEEvth89ZEwN1ikr1vRIpBkoVf0aqhk8Fk/QrU0pCAT4VhwYgJwUURRVMBFcR56JMJLR9yaCW2I7qVlKowIxXZo9pwaotqag3tlZsrQWnPZY4wXiLcR3FNBRx5OJI2WCTjo1izn3btgYKy2eyokmsM4I771FnDP457+P1zwhBneJElra3auFOACYFT7UBYJ2nC5haFiym/idrgr80b9j1b55EKz8auFwePxrhnJ9ef+2cpW0aGtey7Tt2my2pbHg49jSuJZuWJA2leECFSU2tiHdNYdtlBpfYNYErP2FKQ+8yjaOOw8s31UDthz7XOUw8f19YoU0DQw/b7dPP9Mfew+7myzUYW/CKFfz56FKZJ88x5zZGWYCaS+BoCUTP90LWNtracsQi8cjaYsaTxxX0uQgoLw9Znrv8aw1CLhMCWQGkJ69dz0s3c50zUh04FlfIkiI5qXhfyRGqW8uiQaHPVtBM12u13jBSK7Fia4WwthaLQMlqO/3pPfnj7mPnFfCposMYanXK1H/rtTcYmtbSdlqc8I0Fo0pjuq+MQKJpGkKY15jLRVcBlMURUS+iVpkWdx9XA+JzBfNSPPgytF/YZB8fn14ZzhPokvGzBp+y0ssXCrNU+vLyWIPCUoULS60OyuoSJNXeXfeASnVOiXGamKZZW6dj0NaTlFRfbbnIz3gPh81Wg9J5Jo4TznrCMBGmgO+VDWmbwuK0qdqCaJuUNTrebNGEQRyuTfh+0PavEGk3WviSXFvD0qyFiabUsV3ngAFrC85Vd7HtDW5zje17aLcU15JMQyzqMBpyIcRCqte4iLa669jwGC9YMq7N+E6NGnJJuGqFbJ3TBMk52OwwaUbijM2JbCrtfXOFHQbsZgOba2S40oJJI4ircZ7rNL6x2gBtRLCuxVSdxPO6trSwgfuBQfjH3scvf/LTJ+N5GY/qppZJqYIYIZJiXivXGE2uZGGP1HMzzmq7pFFB1q4G/VsP143qRm66ll0VS99tOm62PY33XG86dkNH03iaah9dRJhjXuOq/TixHydiFubimIrC+t5rixgrY13byJAqAFoT2BgBNMbKOSnw83hg/3gkhMjjQR3KYs4cx5mxtt/PITInBYtNpRCouHMixUhKKr6dY1CH2+rUK09icz6Zh89xD63VAvHH7J4fOxZGwDmGOd//p7GLJotm3RwvgaVz8piyMi8MhmkaOVZm2m6zJYYADXjjcPYM9CzFkpWLa2qxZgWBzvvz+bR+KBa5OOsfAX0ujzpK15f7JBb4gXhi/bznv2RhTDx57T92X9zuzvdG/1DfQs4RsXEOK4LzDb6CLsZazRtyxlYjASkFcl6dlq2rLk4GrG+wTafAj2/xrYJAkjPiahxrbH1c968a2zRNS1Pbntuup+s7jNXXsb5R7bthQ7vZ4ryn227ptlt809BtNrTDgPOetu9oOv1b3zTKoq2sW7usf8au42W5F/peDb6tGoelrMCPre1GZjnnGruszeRLsWUZu/JprvHH3sObVz/ldDzW4s65AJOTAlQlF2I8Az8xhh8Gfhax4zATp5GSE94UsklYI4gXbFO1zCrrSdnCi3LgCiOu4/Tyk57BMNZ7vP7C1OtX3VNL1uhxZQkCtgjR1dYwV3A+nItnxiJZNexySjRVDLpr/Ar8NI2yqEspxKTnn3J1QsxLm+zihLlgFhdfFfjJSVu+ft/xBwM/xpgd8L8F/kci8vhDNMIfOkTkHwH/CMC+/HeXy3pxZQGnVXjaAYYXkEdIEzI/QImIQXvcP04ijCObpiJxdg2qnixTxqwVXaOiKSz2t0u9u6RElKP+VR4hjRgE1/T4psdaT7u5o93cYY3H2w3eDRhj6PoBJwXJytTItuqdxIJEbStjvibebykkQnpHyA/kfGQaf0MIv8XaFue+xLoXNPaG3fbf4frm58Qw4cwdffuenN8zxQdSOmBMiyRPEoMhkaa3qBuEOfeiYsE0cAH8PMc9/OJn/56UMjNNB969ecPh+Jamtbx/6/GNxRiPsy0Gxxwip6MGKIAmgnUBkrRUgxUfE2rgwLKJZHWLkkJMR8J8pKSAM4Wr7QaD0LW+ah1FctEvwdJIwi8CnnnGz6JjxSaiSWQxjLNwCspkOZmsSReG3jraKsoWYk8UTyYTm4YyXOkCuS4cKtQlPmNq72abMs41JHvNMW6w2TFlh3NV0lEUIHQGeqvBWSuRNiV2kvEYNg4ab0gIYxE+lrB8jvv46rP/QN69Nzw+CjEt4M4jyDfAAfgbkN8ifAfcAxOQETHkkuvmUwHOGgCJeM5L6MXi86Ngz6fhhJ5H5NM08uL5FZmwzrIbNry+vaFvt3z5+U94/dkvCGmDc58R0hVzbDlMHcfJ100+4V1i0yV++urIX7w+sTEjP7ff85pveQgDj/M1h+I5Rc++WFUIX8/hU1DqEv5ZWCrOCW0reA93d4af/9zxl3/v4pnPcA+vfvIPRMWYzx4Ji4aWoYo1m9ryZS40Hy6eb7E4WVg9l+1d51uQq5MLovbZLNUxZwFfl9laFTWGxf71fHE+Cp7Xn+j1FI0KWPcFWUCfBXSo97vusmpjqYGyowpcl4KTgCkzkmbCeM/4+EjTtmx7A03WoGpxWBQVPc2lVD2SqAyGAiUZTNGKHzGqwGwplJQ+2VSf4z5e3/TS9WCdwTcWaxch5mo7bu2qwdE0lq5v8N5yde3BzqR8YDwe2d+/J0XDixefkYvQ9wP9tmOYBnzj8E4FIa11NM6pSwZL5VJDAWsMxlU411Jb/D4a8SJVQu0MBq9g35Ot11bpPW2PXYosuQaAqersKUE2r6DOGrSJBn0L+DPP+lhb+cLKHgiVqZBSYjyNhBCYppF333/P8XBQQK8EkETfNrjdFtM1awjyHPfw9vaFhMOERIPJ39G0D4z7DO6G4Wak3Qxs7m7xXWWX1mow9TIKEMVi2h7nhJ6GG9MTU6G/vmW4eUFKiTgemI/3CmzmIzk9giTEGHW8qYCIswo+DLstm+srXNOQ7z7jg1xBdHz4cOT9/XttoYqzuocYQ2paYta1UqzHNAXrhOFmwLWBnIV5DIQpKlBoPBanRhufvaJMB2W4jnvKPGKto++2NG1P0/X411+Qb+6ATConKIHSHCmPgsyNekfUcdT0O6zdQPaQEmU+kccThCOtS5j2kyTlj76P//Af/vuyVPRzBR9jrUTPITDPM/PpyHQ8kASc6OJqvVXWwKoFomvi0Ldc7TY03nG92/Dy9pqu8fQOtt7gDLTO0nmDs5br6x23tzc0jaffDAy7DcZY5hB4d39Qls/bB759c08IiXeHkXeHkSLg+41+OcfdbsfdYGms46ZvuO4aKIXj8ZF3jwdSThwOj5zGAzkX5jArIycVTkfVLMq5cDzNTLNq/IwpMtfiXco696wxtFUrT4xhPB4xKZBjYDo+EKeRXVvI0xHSDLljdfY1RpHu8rwxqm8GkUXv8iLPuHwtc/67Nala8gX9vV3Bu/PPz/H1WhNZmYqlgpZa3D0cHpm85+tvvlKx82HDNB7xxtB3HbvNjqvhSvWcRJm0ysyoZATOheflfC/X1vWb+YgVKh+n7jxpUF5/t+zxy+uel/A1RjCwiiQb8/T9L1Pppd378niO+7h79VqWYv3lh5SiJ2us2n7TNLRNyzAMtYsgaQGgtgGnMGtSHAJxGpFc8I3Xlmln1VnSt2BUl85Xd2BlEusndU2La1uoDNVlz1tbna2lbTu6Ct5Yr2xT6xzD7pp+d60Czbsr+t0Vznu2ux1D1fVpupamW9rNFktwtEularxmCvniUiigI4hzuL7DCfgaTy0MtpTyetMXYPMSdpW6+Swg90qIeKZ7+OInfyn/7P/zT2uRfmnjUikPtVfXNq5y+biCdqmyeHNKKyAkKVLijEimsULrtGDfekPfgDHC4eGB0/6DMoFzVtkOzdbWuSAX80Q1WYGq43tO8OrEkMvPVp9f9L1KLtgoGJOJseBdxFjD8TDjncZsXatOptYYbQ3zdm0T897jrKHttE2QBcowuqakksmicWoRXS8XwM+4qtFZNYQkCzkokeL3HX8Q8GOMadAB8L8Skf9d/fF3xpgvK/L3JfDmD3mtSyhtTaGsUfDHd9Dfrg5f5AhpAglIngFlRizJlTJvagpjnAZUC83baXKyCD8/AX+WhRUDok5UKUWQTJ7uKeMHkKJW8L7HuoYuFTrT4lzL0A04rxa2tvM0plHgRyxZDGRldki1mZbgibOnlJEpHQn5O3I5MKdvCfk7nNvRlZ9j+QzvXrDZ/ILr679HjCNSWhp3TYwDcvwlpfQYPJIdJRtEEjl9QCRqEG9L5YRaMC0XwI95nnsoiETm+cT9h/fcf3ijt64VdZ9oOvp+i/eNAj8npQZbzm4I60yrCeJKozWqSaQjOyOibUY5jcRwoqRIQ6EbOpwxtI0HqayfkiiSMKLS0a2pwE8JuKC6HUIhSSGJJQTLFG1128grdbP3hq728hZaCh2FQvQdpU110TxXpMVWD3cB1whN0YmYbEfJDaSKUyh1DSsZS8YbKI2lc4bkEk3ObKTQIFxZaD0EUXDFXmIozzQXc4aHB8PxWMgpAAFkD+Y74AGRbxH5rr7UqL+vzl2lmo4gVUh7DRPc8gvW1fJH94o6N8+f7OLvzgyjT46L6MRay6bveXl9zaa/4uefv+IXP/uSOQ582L/guw9bxtAwpw5RjifWF5o20A+Jz+4m/vz1iZ058vP4gc/zG97PV/zq+HO+CQ4bHM14yQ74kXO6POpTrBG6FtoOrq/hyy8MP/+z9fM+y1xU4OYM/MC5jauGrjgWynhtiWIBh+pryLnKuLRu6bpY11iBktPaKy3SKsvGWiwe7KLhUwPjj8G8SxCo/vxp+F3ZexcOXMsecQkmncudRqvVZRlxCv4Ym7EkTfDzRJoemY/vkdSTpw7pqmaNHfC21ZYt0dZTUzXFSm1XXAh85AJxVgAoZ2yIys5bzv6Z5qK1Ok6ch7azOGfw3tH3Db4yBppqw67Aj8c6y2bwGBNI2XA8Rb57MzNPKvbXtgPDsKGfe7Zpg2scQz+otbDz2nJcVGTQWafVzycBfn281nXPY3+pHkr9xxJCGbMwHmB17qgJhjHn6mIRBUhzFlJl98QqUCil1JaQWMGemVidKsZxqv3smWmc18fzNBNjJMbIfn9gnmamaeT927ecjkecg77Rdpc89Gz7jrY6ej3XPZRSiONMDoU8ijJ+JoPrX9LvI931joih2fRY36Ed6tWBqV50EYPxLc4bWtuxbbbkAn2IDDdzpXKPhEn17lI5EcoBIVOM1Zlg0PtpK4W872g2PcZasuvY01Fi4e39B77/zTtSTuQWSmswzpJzS8paJdfgUltGW5tpBq0mNqeJeQoYLI0f8L7XcRBfIykq4y7MSIoY43B+wLpO46nbF5TNDkokTe8hHilmT+lP0NRkymqV1HcD1vRQHJKhhJEyP0KaaWzCXpiyPdt95Fy2yBUAiqWsjLEQguqHjSfEeaxvWIw9mmrlq+ej8cTtpuPzuy1d2/D6xS0///KVCjNb6N0CyBecZKyBm5trXry8U1e9tsX2PUXg6+8/cP/2gXEK/PVXb/nXv/qWcY48zIGHKSLGcH17y/UtdE3DdjPQeEvnHddDx6tNT86J4+M77u/vmeaJr7/9hjfff09MmdM0Mc6BkrX1PkZt+0hF1sJcttVl8QLo99bSeIf1WvSZphNlFkqcmQ/3pDAybz05nFSfMyfMUhQyFd5f3c2eKc9YEvOP9uslwvgExM5lBXYWkMcYqUWQy70NVsbe+ud1/8LUfUxBseOYVIvFWiQl+q6n9Y4XV9dsNhs8lqtuoy2nYteijDMKfGLO4t9PR+dF4r+wyy6ectnOtiT1hqeKi+s1uAB8noA/y/VaXp/zFrxcyDVtrsD+k139OfPF5VPLxfvZxdjD0rQtALY32gZlqMyRVHX/InGalEkxjoz7PSVn2q6jGwZt93UNuEaBH2tonN5tZ6sRgDE03UDTDxirov2LRLlzCnqaqsHTdp2CZb6pbB3P5uaWzbW2+/bbHd1mh3OWrh/oen2+axzOL1FZYa2liGg+eXE/9TKcb5x1FlfbOqn3S0TbqUq66G7hMjI352tb3+cSHHyuezhPM3/9L/7lCuBI1QrMlQWoYE+o4GtatXxKyRUoUhAoV6dtUxIUlQBpHHReWdGt17ZVa1hbLTVW07m75G3agF7X+MtrIuY8xrAXjz8eiKiJ+GWes8zHkLkEYpe5Y20tvlpD421lclvatsE3ulf3g+o3OWdpe49vqiu5V22pUkXl1/XHKiNdwWk9X8mQo5DmZwB+jK48/xnwz0Xkf3bxq/8D8N8H/tP6/X//e9/t48RpGWwVtMH30F5j8qQtXDmAaxUIyugNl6JtPEvVoL6GMdr7JIgq3xdb6f+6saiTk4VswRYoQV/fuPNNlMV9aUl6tOcPU8g51cFnSC6QXMCIr07WFsri+uWWQgCLUFwRRR2LTJQyksuRImMdgiqaK2JVnTxTaVsqUO2do21boMVZDTIMDUZaDD1Ih5WOUloNNkQFlNXSXp9fN4NfAP+3P/YeGoTG6Jdbk8nqsiMqoLY4Y6nQrSKy1pTqpsJ5Xgmc9TRMBeaWn+kUPdt261OctTTO4owmR4uK/mJlV6zF5UQsWZNeY/G1OfocDDzFvM0aEmhCk1GQUHV8uBAVrWNCyvnxpVPFCvBQ77euAFXrF0NBJFIkqyCgUZZFTFEDy5x0ki+gmOgGtFTd6/Esc1EKhCDV1nFGW7xOCEeMHIAj2vIVWdGrNWRY0kAPtDqv8Kh4sj0HBT8A+jxN+it1ts49qNm8qW16sl6E5VZ99DpafUmVAmmMsq6yZPo2sx0UCH04Lq8tNI3Q9zAMwraN7JqJDTNdCTQl423GWTDOnftufuQT/Oi11UUN542K8TaGtjP0vXnWuch63VgrEGJVV8oIiF3cDtANYgG8Dax6AjWIXdh4Zr3cSwug1F75iIjgjFEtC6utKqacHTDOFORLMvLT+/V0C9B/lJRqZepMYQWDcxcuKEsZBJCcKEWZc4i6/aUYSWEkx0nZC2lWs4AEeT4RJ09xXluGm3Z1UEhZGSghRVJJlKLC5zkDJSNhhqxByA8I5z3LXDTG0HXK7mlaBWG8tzSNtns5b/Beh6PzVZ/A1X2pREyxtc21rpV1HV1atay16hqEsmlE1EVn9jPZZWVxiQbSS4BShwjnhOcC1JOLOXBeOuvqUMHC6qqozB7VbxMRQk7EWvmLKWuLUU2sF/p3mEO1JVUmQoxn4CfGSE6XIJCCQymqo9I8zcyzOhEtrw9GDanMskdfVG2fLbbRNsJV90qUITaPJ8S1iDc0px0FcJ2hcT3Wy0WgeE7YuFg/jUUZWF4DQcRjcoMUq5XMkhHtgaeYmjg4r+uXscoscpVdZM6xiWocaexhHRSnwE9jHd5W4Mfol4hgrO6B6irn8FXE29fHer4CXtsqxFl1ZTUWYzowDdarfTHW1fjAY8Rpi7vvsd227vGuMs8aFeocJ8I0Mo+jancktVku+QkX9nnu45Lh1j0/X1LqKzCpbeF1GtR4RWMc1SLR+auV3N3QcbPb0Hct19uBbd8xtA3eQlcTWEfB1zbkxrvK+NC2qTBN5CIcDkce9gdOY2B/GjnOgSkk5pgJqYA11UkrYoEUAynMuJKIDUQnpBSZx5HxpO6x0zgzzSoiOodICIkiQkq6p8IiBGvWz7oCAYs+irXVrcqspRyNAJa4sGgLfQVBFkfCGu7pliDmmefiGQD5IfDn/LiewPrDi4Vs3f80TlHm4rk1awVNzPJK1Vq5wiwLMJ5yYg4zAMfTkYf9AzFGvPG0rsE7j8fh0DHvjNX5Z6pDobPrdV5aG9eCyCVQc7m31x/Yet/s+UMtSf36GS+vySWTZPm+gkLLDr7+Up780eWWwDPeR2pB1tbPbI2torj2fH7U9ayyZGJaCgsgC4AtmhNdunSprXqN86qF+7pn1lzDW33PxnsFY61dW26A1QThPBdq+/SSsyzzAHlyntaehX3Xa3gJNqxAzMWFlaejeWE9y7Ko171ndUaUBQA8v7buLjp4ZX1NefL6onv3s9zDkjPjcX9m/JRSmT4LwKOki2V9LTnWVm9tXaLKsJTaViqyAD+aPWc0zk1STUoMpNruVD5qy7/Y8/UamAX0Wf7H5dZb/23O12f5zRrz1EVsXcfqr5aXMufWRAxIqfIHxVKs5p1ShOy0bazUdrAigkuaIzrvMO68vhQjZ13AImsB1C7jz9kLAPHHjz+E8fPfAP57wD81xvy/68/+p+jN/98YY/6HwK+B/84f8Fr1OCcsWAfNAHRw9SVW/muYeKDMj5TDdxBHmD/A6RtIJySOKgBdQaBz4lMQEzSQKglsqAu0wxite2tApI4fNk5YP4FxSyRdB31CbKuADX4FZGSeSPsPGoxMmamNGBwuD7g86M2cPZIaKAaygWJQB48TkieyHAjlV4TyK6QmLNa8wLAhxZa5CIbE8fGRxr7BOWHTea42t4zTzBSumMIOQ08jn+O4pjCQ5RUl71QjgIyxBWcdbRU2Pc7/CuAl8B/+sffQG3jdgmnhTWuIrbYGWK9BqveG1oGzoj/roRRTN7U1plKNorroLNWJQiEv+kuUdQHwNtN4KNay6Rquhw7vLG0/0LW6GKc483ivgEFnDL1RK9vdYFV3pwqJLqudNUJjS2X8qPAtGEpOhFRbEUqpLh2FkDOpaNKUq4AaosGZ5IxQW9YUliXXsbNOfKi6T9pyEI1ikN6CkZm3+ztc27DpBpq2x7lWrVextAveArvnmos5Fx7uJ46HPSl9C+yB7xD5l2TzHuE7xLwFHlDgR1k4gsVIo/OJqzqsOmCL4RZoavDz6eLzyQIqS//0iHBCQabvUC35CEZdxZa/NhTVYMFgioNsGUPmw2kmimfOjzj3jt5s+PxlxxQH9mPDFBrePVicg7uXmdevDXd94S9ePvB3t1/TlZEbHhjKSO96bOuQbkCkUybiH3wYRPRze1fYboXdDm7vLC9eOl6+cvzjf/z/gGeaiyJVk6wKEKsYsdQNp26MRhOVpmmw/SIuqwGKxaiemVSgAKruVF1Pq/NQmkbGo1ZQUtciVajO9D3tRqtgqx4M5hyYmo/PV9aNF6mC71KYTyfG8aTgbdTeZmOMVknb9oL1o6+RYiDnuv7nBFn1KcbDI/N4JIZA3H+PnB7Is+OQH4j3rbY4tR3ONwpC1P7pLIU5BWWciJBiBfxLxsSAqW1IMaVL4OfZ5mLTWF5/flWBn5ocWW0XVN0fg/MK7Jm1f1xnxBwsMTWk4miqlfowNGy3PZvNwLAduNptcd6RYuK43yMiHP2Bffuoluz9hs1mi3OO1nnaCjIsrigAzi2aAQbnPc41XMB59f6W1Y1LHXy0HWSMibm2ZU0hMMeoTIqogLdq9kQN2Io6coSgVcAF+Cm5VJcOBYFOtaWrlEIIChrlUohBmUMpJsY5EZJQnMEXFVBKsjgyavvMc91Day19v8WwVImFOO1589UvkaZluHnB9TzRbnZsru+4+bynHTyLZtb5OurcTaL7VTGG4oVilE2cfUt0KjAbckuIQ9VWUZ0eATrfMLSNJjmdw9TqoQaduh4Mm5aXr641iHS128ZY/DDg+143c6hW7UKUQCwBQZ1vmkaf31S7dU1Uu+qUJtiSawulME2ZEDLG1zbCuva0ydOGTtegm59h+5cag9W5XuLI9x/eUL79mjQfGB9+S5weztpbqyfc881FAzjvyTERs2pDTXNt8ZonSo60zjA0TkF2B2IFawuehMWy7bfc3d3QtS1fvn7B3/vFl+w2A5vWczM0ygKRvLIHGwuN0+C9aXxtXU98OI6825+YYuKvfvuGf/nr7xinwLt95O1jIGZtAw+iybw7nYBM5x33MrGJe2Uvt57YeWJM/Obrb/jtt98zx8D7+0fu9wdyEUIuxCx1l7VIbXe3FYSoofSqprCAN84Y+sbTOos3yo/uljvjBZcLfQOboWW37dkMnYJbtsbHNVU9HI/PNhcVtFmq/Z/e34v/6c9WlsQZeNUWo6Lj3SqbTj+z6n0uj00FxFW/pEauOZElIgjjPCIPGe88mMLhsKdrO+5u7nh58xLvPa1taF2DxdI4h3ceZx2bzcB2o6yUzWbDZjOsovTOKoNZNT2Uudl61Yax1tI26h6kV6PGXsIqZLskqj84B8zTxysgZC9AL86Llpgn1/nZ5uJyOGu1Rdc62qZhOwzaRgO10CrnMYkwTjN7ORKV/kOs+YayY5Zx7at2mH6JUbDbO0PrFYTtGkffKIDb9APtMICxxJyJSQW+z6wrgzfgUJ1AyRnJQV1/Q0cJPUYyRrZV16WC2zUZKlmUKLCOvdrq7txFy+E5pl7yDwE1ErqkY1VgYtHGgzMApI/LxeMLQKgCJdPpxHPdwxQm3vzqX5xjv5W5lHXvq86WUhPClfm9nhXUSlLNH5YkS0gFJOu9DwbmenkWzdczkGbqNVvcQpdd9pLHvFyE89suP/toufgISzbn53263LBkPSpPLIgxGpMbQ7RlBdCdD7XFz6h7mKsA4rpncrF/sirbUI1c1GXMYG1HTkqF/V10rD/E1ev/zg+toHr8R7/v73/kRTlDaxZcr+PVWnXwKhE73SPdCySe4PRGnx/2YB6QXN2YyDUxrINCyhkVXdpRVK5XFyzrEFfdXVJQlyzjEN+C6+oCVrVxDIhRu20K5BCg7DHWkxrRQAaPl4CXBOIgtihv2mKKwxSHSETKA1IeKHIg5q+J5Su0BesGdcsb9GZlsCYznY6M/p62c1xtBna7gcYfeXe/wboBK1u8vMDLC8QMRHlFkZ3qXJiEkUKDY+Na2sZx3XzGL9/wj0Xkv/7H3kNv4M5D8LBrYGxqxqjauQr82OoqUm2Ey1JhrMGCyDp3ay99dW2RjCGtTJqFwWVN0cq3MfR9y9VuV+nFDa5xiDGEOXCcVUQzOE90SptzTUsnitqXWgFRhFRwiy4SRUGhYkhFSFGrAqFEYk4I1WmERYleE03tV83aCiKsDC8RVCTzYv1SZL4gZYKi2hrJVr6Xg/vTgWbYkgRuYmZQ7HHtsa7HQUSeZS6WIhz2kXE8kfM74APC1xR+jeEtwgcU9DnyRPAFgxiPEQ9mB7wG2WK4w/AF0LOw2C6g8eUv9XIsaPnye3nQ9zeL1tCH5SwVcJKnVRNt57NQLHMUHqeAWE8sR6x9wLvIi+sbisw8HIXffDcrSGsN1zeWz780vOgKP7na87P+Lb5M+HjAu5nWRRXjbHqtWNvFhefHLvvFIQvgJTWhLlxdGa6uLDc3jptby3/4H/03geeZiyAVdMxglEK/1EGW8aa81ILpesTr2mdYRHvPVVqgiovrDZKSkUq7TdPIfNjrmI8tLgftS6dAWwUIRSnrmDpmV7219VQ1OF6Ee0tSEfacCYcHTo8P1dVBrYStNZTtDoZNDXyWYLUQ5okYVUE+p1C1dxJhPBLCpH39p/cw7ckGThPMRpNz37RY71fGSc5qJzpnBX5KEUrS76ZkTIqY6iyVciafq0jPNhedd7x4sa0ts3pvMJnF1VArkdQpk8Eu0DiEBODJpcdX4diu9/R9R9/3bIaebaW07+OB8XRSVkBldVhr2e2uyFLwvqFvGqRtsUYdQ0p1xXBNq9fOasTh/NKie74EkqUC48IcIsdxIpfCcZw4zaq5cJompvo4hECsYyxWx59cCuM4EsJcrUr1OQrwzJUJdHYVKkVdCXMutXpnVsZRCImlMy8VZVcWUUdGwdB1Hc91D42xNM2gabPomjWFEw+nE6HAcDwQbEu7veY6WbqbzzGe9T7qCpOxRuduMRZxXlc9r4ycgiE7T7LahpSiEE0hFyEZdU9CVBS5bVtwFhqjAaMRSEuxTOi7huZ2qxVHI5VGbnBtj2t7MAvbVeetTQWTMsUYrBd8TXp843HVwrjpGnxTwcFqYpBSRu4PZJmgVsRBCy0+O9qoGkHtrsPv9DySUVWL6fEt99/8kuPbrynhQHj8mjzfY6zB10C3Hs82F9fksIo5h6gsmhACMQQkJxoLnVeRcLG67KvIfMYi7DrH69srNpuBX3z5Gf/OX/yZujlJxkvCiBBSUgC0FFpv6evnURH2TC6Z+/t7fv3tW47jzL/6m2/5Z3/9NacQmXLDqbQIVoOHmhy6ecaUQHKWAzP7fGS2ev+TN8SYePPNd3z77VtCyuxPM4cpaAGhnj3GqOZJjZOd96uz38I61MukUYkz0HhLYyv/1xhaDFmgOGWKtQ6GzrMZOvrqerO2N9axv9vtnm0uwhnAAS7jp3NIUrM5Y3giVF/ZDvU1Fij2gnXqajZhlOnkKkC2MsFFVLssUwHwiRAmrDGEMHN/f4/3nturW17cvMB7T+87et9VZklD49Th7fb2htvba5qm4cXtLcXc4JylqVptUkT1zULEGsPQD/Rth3OOznu8tRefRffPIrVlRM7rzvocfgfoYziDC+aj6/n0eL65WA9rDG3T0HrP0PXcXl1rQWgx0FnPXj+Ns5YwBShCXsWNa+xolZWpBgaV8bN+1583TmPFvnFse80jmr6jHXqMscwxMRHPoAoVeDXK3ltBl1I054wzJc6rEYVf3f1Yz7ksHuty8b0ynNQsUPfaNaK+ZK2uCVW9IUbB1BXHuCi4rS2An/z8nJZ3w+bZ5mKKgfff/M16astxDh2WNz6Pt0V30NbWvY//dr1mIpR07vwx9Rro38tlZLI+/xLwOitefvLSH4E7F//+eOhfpgYfT6bl41VQQuo5nJ+ezy90+WVNJbhXQoUz2MoGt41qa7bdpTC0rw6eBu+fOhn+2PG3cvV6vmMZxE9P0FiHazqMOIpsIV4jrkHyCM1Wqc05YFxXB2ltCakI4lmv/DyYWJ8hF88zmnSYCCbrj0CtN6tukFLBMqAuMGTdFEUSYhqKaTDanU2pFtH69lpFF3Ha9iKRUo5IeaTIkSKz0tWgos0dhg5jFDkRMaQUCWHEmIYYHTEaRZhxGNNiTItdWrykxRiv4JYxaIeKVIqoOlk96yGCSQFSpFQniGUDXNDIxekilURI8yoC6KzSwzXxWwCSKvaJUCSTKvAjZXF3qW1vF4uBq5bDzntc1WpwMa8LfM6FUCI2W8Z5rhVsSyiBII4icEqGMdlKZa73Www5GnIyWpHOkVi0xSWTtWWP2vpSnbiUclfOQ25ZkDFr4KCLmY6dkiakxLOIqjFIDhjKGRijUsxNDaCM/XQh+qNvo5DSTM4nhEdUwPkRbfeaOAssLxnn8n3AsAMa4AWGl8AGuANecAZ+akSs73b5znXhuwB+sJWlMiNcA1vO47Ymvx8t0KYytFLJNYgOTPPIaTzgbAEZ6dtIiIZNl9j2hbazXG+E2yvDjRc2bqZJB1wJ2FUgVQHCJIZc7+Wnn+HT42OIS8EfjRWtExVic8vvnumoAIohIwREcgV/tIIipTrdSSFZkDIoG9GIgmfF6hpc9c+kjj2MqEBrmpFcKHHWFqqUyKaQnYBzJF8l2Jy2J+QLKrr9mPFzEQwJguSIFE3iw+mRcHqklKxsnRi1ikHClVnnyHJepRDDpEmYFHX6S9r6FaaRFGZyipRwQtIEqN4aRijW6txLrrY0aNJcpKgDTalVp1zO7IiswI+Rov1fP+Dq9cceBs3fdLPXoEXD8qXd9ZzCyALKUR0B0WS/lIZFvw5RKnVKkZKrBkKtFDdNcwZsavJTqq5OrnpHpuh7ztPENJ5AoOk62q7HOs92J9hGRaLNEtQIyuCpNqP7w4H94UTKmeNc3YBKYZwDU2XqxHAWbk4Xj8dxrKBOBX7S4u4Rast1ZpomQggKXOTFHWwBHDXhWfRW1H7VrY4vGhj/QND3RxwiCsYY9FwMum6bpb+/MqaULVVbAhbhbFnvrrLsEJW4T4ECRCzJqIx7zmfXsxwTcVLB5RgDIQQQwZeWBmXFuuzwaOIuKSJR502OgRx1b1v0bIyxZAm4hbUqi5ClCmiHMOv1jpEcVc+gZINNRVkRJSFVGDqLgiApJsLpQDiO4Botw+WMpMwcRkyKWiJwaOHNGmyjYEMJHe0wEDdbsiuUsEGZoLq1lGdcSpdDcyxT9aWCMq2nuTJ+VEScWsgSg5JWjc7bpe19bU/IiRBmTscTVlTHx0mqY0SopqKkUkjFYESFgWOYdd6cTpxOJ05jWLWuUkpksVCr9qbGm6agIvRAzoYwZkYTSaZ21jkF4cZxXMXTQXDW1JZ0besDW1tfltaaZaeug+FilxP080suNV4WvDOaOOORvsWZRNd3tK1qWHivunAajUtta3/+NXXNyGritSSQ+lPz9DnURFRz7U/2/HOCfJEdVyDlR4+LpFY/pyHlRIhBWY3zxHE84qwj+kjw4dxSVIuWOBCjQsRihCRZpQ58g3cNiAI/cY5V73Bi6Dq886SciTmrzldlEJ0/0wUgdiEjYMx64lw+egoG/UHgz7Mdq5ZmkepKWWUXautw7d1lKfwLVCeki69UXY+WotPC+pCCFAMU1ek0lhVLEqNGDzVGUvZzAmOrY2hc2a2qDwriLJL1YpRSyCVjrcONI7bpyLX1tx1PWiyrDpp1mFZApxbzSlEwvR9wXYuaaXisdU+GYP2Tj8JTWUGGBZrS5y5sl4vHlz///dIw/7/cQc4Jdp1x9fOeHWAvT/4cQy75kbNOLdMrMmTsAubVdjBEc9EqR0AteC6g18evraHCk4I6C9tK1wE9sQWwOcdKl+d8sW784Ke+QIrk6WeUj/9/ibHVCyOL7FipZyIK7AAKaFp93aUtfymCSDXO+H3Hv2Hg5wJCXpJiziml8y3t0OtmFK9Jm1skR8rDNaXMyHhPmbb65DgiJVLSjNrwnkWf1II3sozyc3tBqhxUQzEZybMm5Maj0JpR8Mcoim+MB+P17HwHXieg+CPZ7xVYMVcUs616PztIG/1sSZAsIDMp/4qcvkFkJslbSpkwZsCYDZjPMKbD2mu82QCe07gnppm2bShyxWkcCGlPzB2ueYVjR8NnNLwgR0/2HaVoP2C/aWlaW1s4zFrxfLajZOTxPenxA+P+A8fHe7ptz9XumqbvSDExzScV3Zxn9scjMSWsUXqqMRaqYKBWHWQFfoRCrr5eSFkRXEehqT30TePp+l4rAFWgDaBwYJwjSXRTfZg1IXp8fORto4nAOCemkCkCoRhC1gBEhTB1Y1RXZ23RC2km5iU4VmaFCJdsw/pdzmyfdZzXCoLR+6LVvEQMR3Ka8U7FVmlaTGfpbWbXe7rWka0wkkkCo0D6E+ysuUQOxzeM068p5Z+C+RrMPfBb4ICSyC3Qg/QYroEWuMPwE2CDkc+An6NtXtfAq/qcSx7JclwshE/+XTDmHmveAxNCVyspR+BbVo2hC1C3NhQhAuM0kyVwCi2//vbX7NpM32653jV8drVl1/b8nS8c89zSDY5/7+96/vIvDVc58NPvv+P6/l9rZc4OhKZnLj3H0rAPllO0xL9FdlHhHnTtQCvjTcY1Wi31z7zaihQkHCgSkHwCiRjJWJmxkokp1vaEjFzfcdUZMBusNNrsYp0GPCpog5hCrtc6zTPhNKqQ7nHP/HCvG2vrMScNTOXQUPbdOelbAIkKYD7ZWFEKbq6CfZKDru0lMx4PjOORnMva/mMwnLp2FeFV/bUKKAfVdFFmYNLEYwFvatBUslbnYenH17WkmGWDNJXNoBt8rm1nBtWiUBp2xpaEEWX6lJQvKozPeBjBtfVcSbX6VyhUhoaxa0Uyi7acFinKuhMV2TUCzu6wVoh55nH/wDxHbW+8u1YL6c1A17XVLSsxVbvUUgof7j8owGMNrVOdlm+/+ZZvfvsVKSe2u2u219d0Xc/P//zP+cWf/x18264tu7kUHu4feLh/JITAt2++5833b0k5M4bEnPRzxZwqTV4B+gU4z4uTV86M00QI8wr2pKRgSKmW0OrqNRJj1DW2mjo452m7Qa2svaNtuloMMXSN1fbgVkWSPq52/7FHEeEwh7U1zxiD+JZ2s6VxDdu7V9zcvaTfXbO9umJoHa3TADHX5DTHQAwHSk6c5onH05FYMuI7pN2A9RQ8mYYihtP9A/dv3ylYOh8Jo2opbLY9026D847NdsvuaqeacjGSKvCjrXXKkJV1WC8rq9X5emEfq65p1ZUlZZ0LmFqdVI2XfnB0rdOgO5yQNJNS4rQ/MI0TxjXYzR222+IwDMXTiMVby7bt6XxD33e8uL5it9sRdp7WHJhe3RLGA/u3t+oUlSKn04EQwzPewYvDGOY58Ob7t9w/PPL+/pFvv/2Wx/2Rw3GCkmm8gnpm6V83IEbX0RJGTo/3pKnFpJl4OtA1Xqv9pmANbK92XN/d4htP4wynoLvH/uGB+w/vCCHy5v0jX7+9ZwyR9+/3hGkipYJU3S6DxUrCZk1OTYiqnYHw/n1ksgmL0EqmqWzlY4Ax6i7qjGfbV3ZXbXfR8EZBRk2c0D2iJr+lzhxdiwvFgG/0OvjWs9ltuN20SOkpVw2SA19++TkvXr3k5u6WoVeh8UXIXb8yf0iV+m9/XDSXy8cABug+LWdmS21lMrIADvU1KoPHmAtdF6t7iFQrBS2msKY41iw4WWV6AzHNFMlYY5jDzMP+QVmo1uOtPye51tXW0Y6h73HOcbXdsd1uL4Afr2D7HEghVOBnQ9/1dG3H569fc3d7R9e2vLy94+bqagWWfLUH13XKXl4QvVQ/AMatbIzlutmF8XkGD579EKluT+roWJIWrEYXKFGv61JkLiWTamv6aRx53B+JQeOf8XQ6CwtXwDPlhA0RY9U92OQExhCShVQLV9lhi7Z6aQEtgzWMY+B40kJGqtqciIKovibguZ63MZZ+t6ff3uObhtPxxPFxj7V2LWzrPKtt0qUQRy1s+abh5vPXbF+8wPmGze6GblCXP7MCteac59axuur6LP/Jk0taAQ05AyPL4z9FaIPQMF/AjdRzXQaTWcGvZVwBWO9VKNtaNtst19c3NK2yjrt+wFpHioEwz8oAPux5vP+w7nExTJW9dwHWmjpuQa+hqUy+FQ3Tot+i33ReAD/6TItJERWgWudOvdY1r13JJk/QIXkyU9bHl6DrUuc2Qo7LvFM8QYvJhjyn2nKKAmR2eZ55+nY/cvzbYfx8lPstwI93De0w4LxXm7ThTgNTIB2/p1i13JN0Qlyn7B87VZHDAGWqaF+oSHDN0CsqfAlrFqIKMwNK5axnsYgPYhDTrEwc8lRbPyySZ0oa9XduRuyEii5mbCn1bXL9OhHz16T8NyCRIjMQEWkxtseYGzAd1m7UwQJhmo+M876KiWn7Q2Eklxbrb3Ds8NzguVXUrw4A5y1t39H3npKFPGnv6LMeOcNxTz7tmY8HxtMB2yga2XaeUhKhVuSPp5H7+0fmOWCt6kIsCfvSFiAKp+h/RpNPQXAUrGiQ1LeeptcKs6ti122r9o2b7RaA0xRwViuic4w8Hk86hiTjOG8Ip9NU2UjK6DDG4L2ncU6HZeW3qwbIREozCxtJKo3TVDaXzuvKbKmL2QL8WOdW7RPfKi0v58g8PRLDRNO0NPka3w0Qd7QmMzQO7y3FFgKZgHAQmP8Ue2rJjNMH5vCGLL8E8ytgRHiPYUIZNyrYrAycVyjb5wsMfwlcYzgDP9rafYcCP+bi68dOflkUC3CP4R3qHjZheEDYoxby359fw2i1tW4XIDDFwJgTc5x48/4NN21m2+/Y9l9wu/kJmzbxxYstxykxDMLf/dLy938qDHPis/cf2Oy/IhvHvPkJsb8ipIZJHKdsmbLhD5k+5gf+ZYwyfawvWuH3osvKcwZIUpA0UvJMSY9ImTGScGVERC1Nx6Na97Y2UV7cYFoDZN28xKP6TbVdViIimhimaSQcj+SYCMc94fCBnBKmsbig41q8oxw1iFSGyYxI+WjzOZdac0412SxImiEFimTmaSTMowIDVesFtAXKOb3PklVxWUSFnHPUBEcWoUVhpdrrXqLBuQbeeQ2s1nYtYypIZ88BEEoTN42yMoxo245B9xCb86p585yHMYLzBZFMLqEGb+Us2Gxq66TRqvEcQ/3MXvXscDSux/mCtUIugdPpQAyJq91mDUqbpsPVdr/TNGGOWv0/Hk8cDntyzuuszznxy1/9Nf/in/+XxBC4uXvB7YtXDJsN3WbD65/8lN6YdZtNKXH/8MibN98zThN/85vf8tuvviamTEiZkHMFiNQmW4evVOBIal++OnhMk7Z6FSlra9d53sja9rW0rLVth/cNvik0K9ij+4R3HmtRQwBLdctwz56mFBHGlGpfvtdE2DXq4NL2bK5u2F5dM+yuGTYb2sbSOP1UdqlCkyhxIsXAdHzk4cNb5hiw3Q63ucG4BlyPcVuKGOb9A4fvvyFME+H0oC52JRF3G/L1TrVqbu4w8QXGOUIMzEHnX8iZuFTAk9FKtQCpQK6MonKukivTqFa48yK8qVClUHAWNhtL3ykInE73lOlAzonpeCRMkzJ+tnfYfou1nlN7hfcdrWuIcsUgPdJZmk3H1e01aXA05qeEmx3z6YDxDX7/yDiNHOUtUU7PfBdh2V1CTNzfP/D9u7d8uD/w/v179vsTIeo89das9PqVpVtHlaTAdDoSw0ycThwe7nFG2zWd1bn42eevoe/opMdbwVtACt/f3/Pt198yTTPvHw+8eb8nxMz+MFeLasAvhSqLlWopLwLzSJlHSsk8xiOHeFTWYgmQI8ZYbHeFa3cY62j6Rl2RlmJnZRPEosNAUIekNUEtCZFUK+3qyoOtbZTOgO3o2yt2u0HdJqXBSOHFyxdc3yjg2TZe3eOkrOvykng+//FxlV2BnYUt+TF5xVCZXMt9XJO+hSmibbgirqYTGt+sr72whtCE1yBqMFNBJDXxUM3Ck4wse6M1FlvbyVQouwqne7cyFTfDwNAPT9rBRFDQNyjjZzts6bueoe/5s9OeL15/zmYYMM7S1hY7a1VcGGNqu9Fl4lo/bSlPQQBZCvQXsc2TPrAfzI//6GPZl3MuJLQzw+IIPkLRtshFcuHMpipMNc5PMRLmiTBOT/YQY8DkTDJxZYGa6nCZskFyNTkQS4M69hkjOKtFrXCaGQ/z2po+hQBoYXohZeRcyFmf351Gus0B51tyKuSgc1FjnadFjZIz4+FAOJ5o+p45ztxJpul6jPVY3+oYcW2Vgag3oIIOpSyg5QI+XB5m/R3w0ePzPXzOe2kQHDrmz8UWU4FlU92eYRUPUys7nHf4TvfvzdUVLz7/nL4f6PoNu901znnmeeZ0PJJS4sO7t8wxY+ZJNcpiqsX6peh3FghXAMidWXDLdZDK1i3yyZW7nOTrf+ZjAHSBt5SLzYIn1Z+B/JBD/FPQ5+L9VuC5/qDkM0idw9L+L4gVBZ7tmWTw+45/S61eAIumvqz/0gXTrB9ucSrDLJJzWT+osRTjONu2qy+msi8y6uilCQ6lgNG2HOXuLQvAGenUa77QBU1d6GriKiDGVqMpQcQiFxbyRaonp3jV9Cn6GkrXy4iMiEyIRM5ihAsd/SwuZlhEqKW2vehzU54IMVOYScxaETaRYgJiJqUaOzANYC2ZSCyOkoWYMyU974psjFJHG6cq922jVfnmQlgOtMWklFSFCuO6watoaAV+WHg+58disurwLKCdAbzB0Kg9pnM0Ffjpuo6+7wBD17U0jVdFdLtsUQKi56IiYgsCvGxceh/d4npzgVcUKVhxNTlWa09ZxIVX4Mecv86jqm6qZ2cU5x3WOQTBugbrM843NE1H1/YMbce2a7lqVSOhc7rZOBHCDy1Cz3CI6OZUSkYZNcu8WJy6OmAD0rCAPIYN8ArDC1TYeWnLquLsNLAak/4Y8LMsSipErP9u0BYx6uveYnAIV3oOGNR1LJ/bkbjo7a5U4DkkDuOEiOc0HhmnPblk+vaOl7eFvjdc95GNzfRM+DxDmMFqBT3bjmxakjhy1uD3D+7s+UGMawG3FuDqidrAH39IocQDkmdyOiAlYEsEmRBJlBgo6YSkRI4H4vRIsIKzLXhNmoWEENDgNkGZETJxnJmPR21XmI6kWZkIUSxW1GFEvEHSAvwEUgp1jvMpJbwCP0ugJjko8FOKtmfFWXu2qzCfXlLVcQKQVBlFS6tJpfVe0vBXUUSj2hTeuTrOl97qZd0vrGJfF7dK6o7kraGp9uZONExJuRBzXttynvtY3MzyQmOve9HSgip1a0pZv0pZikI6porRgN2gbJ5xHImusD8ceHh4IIRI23UMmwFjldGjbQAO33jatiXnrAFwKZBZWZvzPNOMI83pRIGVkaNrvV6nXDWQQrW9TotwdlaGTqkaPIu4Ih996XK/UPrLBXPrLIK7tLJJzUpsZVSeHV90LfeVQu/r48VZcknIdKz/LlD6b38Yq8LIxlpcdX/x3UDTb1Q3p+n0uqOt0CkFKna9rjFaqdR5NE8T4/FIiDMuQ7PEOjaD09S1zCdKGJE4YUrAkxFTsCWprkRJxPHE1Kir13JvFAAtyiYSFPTJVRsgF6hFmVJZcBo6nYEfqSAQcq5qFgs5QjJm1e6i7gTOWZpG3XNEIhIminXEYikuQdOSm4bitRUTSWByBUQ9vu3IOdNudsq8cw39FJFLP/dnOrTIo+530zxxOo3aeljbvVJWxpMUWT2cltaltfheHWARIVTnNVuBH19F8Mc5MM4RMRWQtDoJxikwToF5DsyhapDlpWpfYYu1gCmrC6MRwdb2OtW4qGuwrXXPjybcpWbeMiGVsWmqsFN9aqmLjRR1jJXl8fJd1yDqOrm4IamVuWo9tW2LXVzpMOqWtrjS5Eudluc7jHnKdPjBe133qvU7n64Ia06w/EsWpole31K00LHuHzVZg+VuXaBKTxK+c9INdTuSukPV16ZobGzFEmJcNdlyKSSnupKpggfWWlycVYzdwP50oNsrcHC12Wrc7BybfqCvWm2N97hFsL+umWcg4RzBLf8v63hhZceeWVF/8K35gw8DF0UkqftBIsZZOw8q00dqQSctFu51zyg1Xnh6akuLU309EW1ttnV3sAYp+p4ex2wy2Z49ukxlA8Ywq5nAEosgWGORmnSvrlLGVsvyhAiEapRhjCElNbJYgIeldSnOur+Khfl0ZDrsySHQtUN1XHR431WDhU8v2hmu/Hg8Sw2XzznFmdnGE/DnWY8KbKxjyZjKmkFZS7YyaIxbtcWsb3C+wTpX9QU7fNPR9gP9ZodvGqxX0DqlxDRNdMOmXu+CmSaWNOEcH3LxWS/m38J6qtfi8hLI5Ueo/1a9rGWxv3ju5WtIbWNdn1DXhApsmOX5H18r4cm6sPzwjM1qjGrNAlLX51/c9Et1ox87/q1p/Dz9cMtFUT1Cb6DYgrVaVciMIEdKPihjplbVRDylGerFqramUi2zS9AVNCdkdYCJkOrPJdUv7Qc89yEmdeQCMAlZzBDLmVqXowfT6L9NhzEtKiI9AINSRUsFmiSSy1tEjvWzeqDD0GNMj7Z8dRizwZpBUX9XMFbAzJymN5zmPZiM+BFswNsJ27bgTogX7CbTdDrNj6lwTEJOhXlMpPi8m6qzjrvdNcc08tndK5KF/nrDzfU17bZfHQ1COhHikTk8EuYZtbqtGj81wF82y3UZMoVFSLiI4Iro4LY7mk1PW9sV7l7cMQwDu6sd1zfXgN6ycZ6YJhUAPZ0MCSGnRJqV9meK0FinuJvr1ObWqDiW99rSpyopOplsTJikLRiL/TUYbHFVYBi1EGSx26sVHmp/agWTnFMxt5ITpu1wIbDpOl7dveR6u+Wnn33J33/1ir/87AXWeny7xbmGYyp8K5FDev7AqEip1yroXGHW85Y7/c4LDL/AcIXhFiM/xbBFuEX4EtggDBSu0HZIj7C4fS0Lz+8Gfs5B6A7wmNrWZWnQdjNPYayP3wFvgUwxpT5Xg00nILnw7v5AngNDd8Cbv8ZmS9de8/plz9/5Oy/oveWnNyOvCfj0lu7wBnn3jtxsmbYth+4Vh3zLsfQcJ8scLDn//kX0d37cP+EheSI9/EtynglhTylBGT8yYySrXsQ0ahWJBz6YI6duwJoG73oF1ySRRdtlSwnkPCGiVak0B3XySoE4j4gUnBW842xfXEGtUlRgWTjbr1I39rUisrpELdpYGrwu1S4N5JYN87wMI5ogrC1dsYJDsu7sa1JvEVzj2TRXDJuWXIRpFkKUSr9WofalcrMkQVkEimqjbbuWTd9hTU3UDEzzTHp4JKf08W34o48ioro3UlSPQJaKtAbluVC1iCAmyxQspVS7WeewxmmyUBLWBE7HB96HGcTx4cM9796+o+taXr58yRdffknXdfimoes6TGNoG8/VdlOrpSfGowq6zzHw/uGe0zhyDIHH04lh2PD6iy94+/33DMOGtutpu4GUMsdx5PFwYJpnxhBIotd1BQzQ5MZCvf5WrUqLOjouwJ5WapU9lmsBQYuCdVwJNNbStDWBaVQ7p208Q9fQ99UBpvXqpiNZ28AlY4vHlIWt+Xz30LUtd7/4C60k+g5jPa7paIcrnG9p+g68I0liDCfSfcS4apleWy+m8cRx/0AKkXfvvuOb3/ySaRrpdzu2t3fqnmVbsD2IYXy4R/bfY2KkNxnf1pacMlIeT2QMcf/Iw/ffQ2Vn5ZoZlHpvVuBtYY3I0715iZSfBM3lIkGo87sYYYqZ5BSwaW3BW0vjLJve48yOlDL7/Ynx9KCtatmTi6MfBvrPv6Szt+RYKHmP5AFjM+12oOlbmu0O220J88w8B/qXj8yTanjxf3y++ygiTHNgfzjyzXdv+O1XX7PfH/nuzXtOp6mCAIszECpgbGRtecMYUomMOem/WUAhs9q8W+vIvsP0O7q+wxll/EgpvPv+A99+d0+YA1P4r9r7k5jbkmXPE/qZ+2p28zXnRJyIuO17LzNfKisRBSQUiAEDhEAqMSmEVAhGiYRUU5hVigkjpGSCmDBJCaQcIEGKRpVCQgKhKgESFEWVgFKRlZVZmbx8790mmnPO1+xmreXuxsDcfa29z3duxH3xRdwbh22hE3t/e6+9GjdvzP5u9rfIcbA0oxQyeb4ad2KaLFzdJcWr4hS6FOgIVlijc7iuRzUyjIlhnADjgPSZR8yrRUSDlR0PyZyWkHmzzKnI86sqjhz9mDcJlGgRR9GsZK+erhFWq4a28WzWPV3X8OKjj+j7NTgjKx+mUDkSCWaDn5defg45T3lY/l1Ktaf8zHO2xryJt3TaSrS3YdC2xsXocS7WdI+y5qWU6glLGXi7SDmllv1lwDjoShpZ2eQGcFGMh0+ESQNtGDJIY+laFFtazaHcx4nmuKfxDQ/jgT/9/Jf0Xcef/uLPeHlzS9s03G6v2a43tE3D1faK9WpF0zRsNxv6vsc7T991NE1bNwZcJkh2mfsNsCKvuWVOHM9nFBGh803m27MNozEO3B8f6hpS7E2rumlr5ziODMMxc/wEa1NPpWVAjRQ45OirmTePGTAV4eiFXSHQzeXcEZgmI31PaoUMQgYujbfH/Ii6KSMRPR4JU0CcZxwn7t++tfk4pzqSr+nEqsNNR8uY8IcGcYnDwxvarmf/0Rdc3bzANw39+oquX2E/tmAE1zS06yt831cgJZd+ynP6HD1Se3YBKnXGMZ477VIz757kvoQY555FXc/gqG872n6N856m6+jXG7xvWF2/ZH37Eav1htsXH/HpZz+h61dMw8BwOBJjYH11C67hsN9b9M8wkcYBDVMe4wZbauYpc5oqF99ycSuR4blV5mdYvs9gIXBCP3qSNrcEljKCWnxNnzkflpxTJbKyXG0ZSnASHCPk6G1P472lw+dNtrwgzQz8v0F+hxE/RZbekhnuFu2lOAmoBEQm48VJR4QJdULSUoKvtV9pUS6gAckh88QJmQYDhcIAHDMgM+bUiJIalnczYGHhLG4zbxLbR7k8PGJObykXn4mXyUaUVEBqb9ctFcNoDTiio0RXGGlzb4UDjGjeSOCmt0zhl4hTXGcl0pMPdN0KLxP4hPNm1MYQOR5Gy8efIofjRJiel+THQko3XI1X3FzdsE8T/dWKzWZLu+7Y7x9QAiEOTPFICHumMCDqZpAkaeY/ylNQjYjIjpyAS1jRNhFY9XjM2F/1PVfXV2w2G25ub3jx8hYR4XG34/WbNc4Jj48NrbffpxL5oAnwVulAHL5raVpj6S+kgwoEcUQxcuc0JTSU6IMF2JM8rrwXeypFSZJIkidyl5Hd/F5EbBdCGqQZWa1W3Nx8xEdX17y6/Yif3t7wBzdXBpC5HhHPg7MyuJ7nB35UlWkMFo2VCo+OlWW3PvljHH8N4WNEP8Lxc2CLckXiI5Qei+6xhe50R/EbgCV13CvKKo8Fi1gQGmAPvEH4M5QVxv/z2gBQlCRG5u2KPRUTD7sDh/2BdXfk5frX3LQ911cv+Pkf/iF/7a8Eeifcxkeu4z3Er0iHt6SHB1LvmFLDsb3h6K85asdxEqZgG+C/Zcu+5/03aZPf8kppIu5+YWNtfCDGAvxMCNFIPMejER/rjh1HhqbHSYOTHsGTdCREmx8tasdSBTRG0hSzwRCN2JCESKqVh2bQHEuFzBEEkne1zTly9T11d0nLJrK1jMzVfk4NkrIwsgB+1O6rRhSUoGFzaBBwrqNvYLtqCTHlqMMC2xYCVgxoLpsQmdjZAX3bsF1ZaeouV/hwIgZqPLsWyQatceCEoHnHN5M5ihCiMk7mHE1BOA5CTELjHX1XSvuCy1URh/3E7n5HDPDwcM/d27d0XcvhcKDvV2y3mzyHrq2qjDNDUVW5d2KRJyEQUuBhv2O32zGEwGEYWa/3vHnzmvu7O0IIbJJapcsYGcYxV+0aGEMw0KcA+4uhUJlkxBn4KImSuqnJShQbh1MiabC1G/DqSE5qVZaSFtFmwuS28XMJXu/o8qsmm8tTMkfVuJGeF6V1bcv2088spblZG/DjO9p+i/NtzdZLGHA5hD2gZuR6ixA67vfsH3dM48j9m7e8/vzXHPY7tjfXaBxo21zIQToUYdw9ovu3EANt17BZGbHycDRS4pSUITqOyUYJhcuwPPkTj2+blPMXsnhXg/e0xAIIkssiQ0LHgSCT6WLdViLrzaph1TcWxfRwR9rfEaKyPyrDBPFqy3izJm5aUmjQeEDT0QzlVQ84mlXC9VdWuGGYaLZ7xuH5OX5UYQqR/eHImzdv+eLLL9ntDrx9+5bDYcC7hq7prByzU9QniyZzLkf5SiaUNbLYkJSQwWzftFYZz3vcak1/90h3nPCiNnelxFdvHnn9dpfTuoSYcgGKaJXQbNqKWBQ7SEq4lPBAh7LGotu8d/imzVXsRqZoUQtivM21wpArHCO5LHhSSCWtb+4QBqpLwkmeuDWgJKsEqYokxWmg8dC1nq5rubresl6vuLq+Nj4wcUZWHqIRc6dELn/17M5mkYq5nO2Yl/eabfRlOWybC/Nhy6gAqBEmIoJzllpr763Km11vYTSUUKL698LBLuOprEklSyGDs4Yx2UFTCgxhsnnTz2kqLpchB6wCZb7/u/2Dkfn7hq9ef8XNZkvXtHx0+4LrzZa+63j54iVX2yu6ruPlixdsNxuapuGKLSvJUe55I17yPbu6XmrVm4F2343+vHO5n1iKYQgT03REYzBb2RvvakwwxbI5EmolSE2xqltycYgCbse88RRjsNTFAozkvjA4q6Ak2OZtk4sFGOBTKENm4EKazqZXERrJ29wipDQRM1I2HA/vOOYlNdl782PDNBLChPce0cD4eE/TdaTDnunhzvh+rm9ZbbYG+jiffZqeNUKXo2hc5n4x+ykugB9qPyyyjPx5TlWW2UOcyxGreaMjR/aoYhx3qrimMzLrpqXpOouWbRra9ZZuc02/2bK9/YgXn/yI1WptG0THwaqPqrDbH+h2O4Zxwn35FRKtnyqTWYo6zwWawSDJY7xE4CyBG5tg320PBQMjF+1ZNkneAX1yW1sWiID3+K61k6SYOYVs7p/hpvmssvg748oWOeo9beOJUYiTAZBSqg2k30PgpxiYp+IyAOAyL4onpQlSgJjzk9VINgvqZVUVhJR3blUsGUwwwk4rN6mVqNnCST1qZQggeSSJLWIpMyNR+IBKeXhYKmEpVUl5kjcFBevkJ8fkHRLm5Ubybqdzxbj3deAbUBBxkqzqmA5oOtj9RLsv0UiYeiaxczuyo5d350OwsrhKyM7N84mlenX07Yrtast1GGm6lsZZSWeikqZAmKzaDjFH2nhH39iOAun0trQMMOaIH6JCsIG5alua7IBprgYzNobqH489iDAV7hCMGyOEkSmMTNPIFAZUwTWGiovztG1P0+XQ/ILUi9iEKWZs4RM+muZc/g81m0vyxJGmydJXyJW/iDPwIyVt0V5TSsZLlQKejk3Xcr1Zc7Ve0bdtTi9xdQfJYyXsvXz9QP6tRR2qK9ArrBrXHivEeo3QGuDDS4QXwDXKBmGNYtFthRsFmXcRTvvabwN02IRlLV3SvhRL+3qZncM7LKWsse0mKSTgkit8mcEVUaaUOAwDd7sHkjgedm943H1JcMIqPrBKe+S4sygT15FcR3A9k6yYpCcmnys6nC6O721KyvifP1EgJdthKK+q53UMv6VoJI2PRpQcDmi0ecDSShOkgGiwXd00kaZj5qpqsFQKl9MgjyiZcDlknrQ4G+UW0m+Rb6IJkQK6lPmvOBBaM6hKBI5kC7fa0LlBZdkWWoLIT8GfIiIzrGgfLM33TNCJ7YTktdXm/kUkkS52V2xH1iGW0F0/r9w6MVpkj3Pz+lLu+zn1Vx5fIUxS7FtSyutblLyzDFP+fgpWlTvmdFlJEecgugg+GHHooAzHRAxm4KQYaZqG9XrN7e2XHA6bzI9jUTNt21r579z6Lhu8zlmKqnMlTcOMmhACwzAYaLTa1BSrtmtZb2zHbru1qlshRsYxMI6TAYSULiAGpKsjJaGJDk0GILSNp2k8qpLTjTQbPK4SJ3vxNcVrmcKXcpqNJnMYCvF4HA9m3Hcdq76h+QbG0W8ngnrbjEp13idzMUVznKJa9SWxdcrGDSjWF8MipScPO0uLCZHpOFq1OWkQAiCkMOGc4MTTtC1t3ulN6vLwTUwa0Gmy3U2XR825M5r1Xl8Wk95ynJ3AQZrXNy1ldC26OemEwzYv2rajaRyr9Yp13+ZNlh7ftCiJxpvB6l2DpbzbGjBNRspaot7AZf6vkvo0GSD4XWyIlMcXWYA5c/83sMA4UDSv+ilXSbQ5V2w3wowACpBgIKXLUQFmk8ZgKTspr1toIkypUlNqKvQF5Ei5XIwCMk+WzbuW4gWNc3SNcWZ4L/jGEVVopszJVmzTnL6nJdJdsT5Kqqxni2QQylzvSLhFpK45Ttlp0VTn23knm+xwKSFYlITLa0TK3DcV+Hlm4KAAPuW9vT49e59/PPsnGQRajA2Zl6n3Xbn+s/MWImitzqGBAVo/s+FoY+mJm7HzSb4vUVQdJWKpcAjZpec2NGfSAK1hGtkdHVMTaNsWRelG4ysdg30WUmR33NM2LcdhYLXK0T99T9v4UvhzJr6OJY1qrjL43OIkFxoQNbA5QRQDbEohiZSL9WR3AQsOKvyqc+oNzD15bqvs1Wdfsjb5SfuTAQrJfmX+PlfaFaidolgvBpIli3QpgGE2jETJdkf+hUDlCM0AmsvV8ay4nqVYSgpoGEjjEeLE4IQ0jRgpiIEaTb9GXUvC4XxDuxJ821GQxsrns3g2ra+LFLhnHIveN2xvX9r9dL3NfeIq8BNTpiRR6Fcrtte3NG2Lbzu61RrnG65uXrDaXNGtVjRtD+LnKCLncR6arme92YII26sbrm9u6bqOaTwyHj2FRD7FXFF70RsKvRCYDlTK/KYVxF32I5dT0+y3i4j2Zbd5J+LHOLX69Zp+1c/X0lyFejhasQoFsKqy5mvPXD5lk7NpPKuVUZvEqIgLtJlI3OV19OvkdxLxMy+hZjxoKR/pe1yzwrcNEo/E4QGmHTLcIeGApAGngVYc6s1gSuJyXmtDcg2IGeu1eksKVopPk4V9TSUF7IiEgy2C6QjxQEkNI+ZS1ika+GRuXAV5ZhInqLveCJabPrzzlIbdm3PjskHhnafterpuhXM9XbOidSuQgKiR3MI9qp8T4y8gGtqtJLxvSdMXHNuVhexKQCQRQmQ4jkxTpHAUSdHwM22Oeddwtf6Yj6Xhj1Lg5fDIyMienZVhPgaGh0f2d3dMxxEZJpoQuV1d8aOPf8S6X+PF0UqD1LvUvLCVUtQlXNPC/dtVb2GoTUMYR16//pJ21/F4eORh/whOePv2DUM4MMWRw/GBh4cvGIeRcb9n2O8RcVzffsL6+grvW7rNS7r1i2yc5d0wESSX3bVFtYGcntbkqmSkSBh3xOnINA68+fIX7HdfWSn6OBDTVG3rusbU/6DJDst64/nZxzf85Z/+hE9vP+aT6yuu+w7UkaJDVejFsXINwzcg6/rtpSXGn4I2OB0RvsTR4bDKcvAJ8MfADciapNfYnqIjYbxHKoouQpTnqc9R69x+rVSIwM7JFYLHUs/+2Hi9eCCxwoocH1DuSHKPqOLxiNpOTEgTKlZq+M+++pL9fs/VZkOzaVB3x9Z7/lBsYfOHA80Q8KuXjKuX7NpX3PlX3MuWQ+wZB4tC/0b0A5r772Lq1wRhcoyDZxocYXSE8Xn1qGEkvPkTI7HLqa2WNJONc020yXLI3TARw5EklhoUc6qqVaozJ0o1IsnSYiWBZB4u47UpPCsJqe/JzjfmjczQ9uIuU7G4ZoAlL2Hz6NdcUpi8qyHz2MllK3GAurwwp7wRKjQOfI4YWrVmKDrvrRJXzsOP0wyGh8w/g2SnJRtwc4nsiWF/wMdoobR9T9N4whggmZP93JKSsH9oMvBTyoFnEBhhisow2j1O0TFMnpTMsxG19ab10DcNTlqGQ2L/kIhBCWFgmg6oKn/+53/OL37xC9brNZ999hk//4Ofs1qtefnyBa9evaJpGmJ2BFJSVus16/WalBK+afGNRTQcDge++upLDscD/WpN2zZ0Irz6+CW+aZhC4MWLW+4fHghT4OFxx+Nun513i0a16lCaowsSXQNT3+Tw+xHvzYEMcSDGkI2gzMWGRT8Uwz2pQpxIJIaDkMJQAS/NYNA0Hkhh4upqS9f8iCbvrj6bOCF2Pbby2nhxaSREcBlkKtCJSkkLJoNrGYTNpbrLuqPRoUEYdkdSCBY5pxkwE6Ff9Ww2a7z3bK6uuLq5wXnHeNgz7I30Mn31moe7O+Nv6ta4DjOYYTFMtf4rjt27MoNFlYcxOz4u2dqdwkAME77vWXUvuH3xwiILXt5yfbVl/7jj+DgxHiMhKOIT7ZhYrzf07YbGr9DouL+7J+TKflbBxoCwucyy8Vil3z4c8xuJAuI9/XrDenvNFLD+76cM4IVsEUaLSCdloCg7d75F2pU5JW1H320Q7/Ftj+8MGBVpOB5GpjHZbnwMpJTYPQyEEVLwueCiORwuCZ00KIlRc4WhPL+3KdCIcNWteZmr4roWpIGYIlEDQ7AIMFHNa4XLm6WmVJeURue0J++0OoQF+PGS8KJ5rZhQzfwkaSJqIhw94zgwjsZHYzzhwjgpdw97ktzjBfpGaDJgK8mcmWcvQsIp0GNArFtErRVNn+Cc9bMZuLH+PgMDp+d0tZrOfD1zCn0eIPN50hIUIxpv3QKLLcve8h7LfS6jiFSjjYWMQthmeF5PS1UpEikJMY28fojc7R7wzvP68Y4ub6Su+hVda6TPm/XaKuW2HbfXN2zWK5qm5Wpr0UFLsCfFyDQa6X7h1NHvIFXPi3DbN3lvPpKScV7u0kiaBkJQhsF48cBIt7HRmCslGqZSE2iSMPviFhFTOnwNSKhk43pS4VnFkzLp9hJscye2ygz0oMk2gRf6NKAgR0PnzRJXon/ypUWEvnN4nzlNm0QjA14DehSmdEAV7qdICMY9uDuMDNPEanvDj/7KX+fFZz+hW2148elP2Ny8zGNUM1idLyZLMMNeUwUnn0+H/XrDX/3n/wWatmOz3dI03ezzizBOE/vDkRAim6srXr76JPt6LW2/wnlP169YbYz+ol9vSL5jTJY9I53Dp8T1y49BhGkaubq+YXt1xTgcOewe2D3cEcPEYb9nv3vIvIGBFGwe987hfdngMz/fcNNgIGPe7IrBgFSXq4s55yzVvTPKEItmkhlkK6CfmH/jG8/26prVZpM534y4PUwTd2/v2O/2uSMYGN42nqvtmr5vja9vPBDDSNN4NpsVXddm7FwzT6As/sGf/gfv18vvRaqXOp9TYxojv/UtIKRwQIdHZNojcUTSZLtLYqCPZgNGJZ+j6e0z3yCusc8X5SJTmJA28/2EI0x70IjEAxo7a/AwWUpY4QSSUhbewmu1OkElHGCRs3D2XDOuWEZSKXVsTPJN02Sego6uaWl8a0fHiKYDLu1B79D0mqSRFEeSBqJr0PTANLUG/LiIc4kQEsMwEkK0Ttm288TyXNoSx6q74to5PpPIVTjwMNzz+W4ijRNMkelwYNztiZkjx8fExrd8ev2C6+01rWtYNT1eXHX5IS9oudLDfjjweNhZLnjr0db6SAqBh8cH/LFhmEaOOe/5cNgTMpH0OO05Hu6NmPRwYDwccM6zffFxRo1X9Fc39NuXiHjbRcwLqe1SGmG4dz2+8AC5htZZhMR4eMN4vOd4hLdfjQzDG2KcmMKBGIeq/tmullxu2bPuLJSx54ZX12t++upjPr56wc16xbppbLFWR4zQitCKo/0OcB/VBk0fgfocSfdjHC2OVQZePiLxBxjBskfFQClzWQrJumKRN7Dcbcqm8zdcQMpElbm0WKO0CAHhx1g59wdE36LyS2AHMqHs8rUbRG3clGLkISW+erhn93DPdr3io497rrcD103Lte+48R3tFOhDpOuuCN01x+aGnbtlLyuG1FpURdS6C/N+EEvP3s7GZIxCCI4QHDGIYcjPKSmQdp/P3FJSdmpzhARWHU8EI1IerZKIgT9tNlRL+F3ewS0k3wqSlgT8OYVRLQdTsJ2PWiGklhedW6SGTteImvkzzcDG7HLOBrc5GmaMFUu4AqmVzTQfJ4J3Fu3TNZ6+tbnVkYhhtCpSMdbyqkZonhOzcypmiQhCIYbANAyMKRGbJnPKtAYWZUDmuUUTDAdXI35sX6GApzCFxDBaeleIwhhs9zHFlMvUKq339O0BL4HxmDg8mmG4299zd/clMU7c3b3l/v6O1WrF/f09AJvNhhQDm/WavrfoSd80tKq0XUvX90xTqMSiIsI4jtzf3xNjZPp0qtwl19dX+K4jhsh6veL6+oppCrx585auu7eyvEdzDFNKTGMkTpbb7p3SBEeIjhB6jKcvMk5KCMaz1DZNBX4khw5ZqXFzPI0YE1KuBGblr417ahwPxDCRYuDjj16w3ayf1cBVhNS0LNMGRc2hdWXnNztHCQsMUag7lpIj0ERdNsp9jfiYholpOFCAGUm533/0kvb2mrbrWW2vWN++NP6PrqfxnjiNPNzdodPRooPEob5DnJ+5zStgXwDaEvb+1FMuwFkFkRxxgnFVxGkgTROa03222ytWfc+LFx9ze3tL1z2wvfqSvn8wYE8tsrnvNrTNCu86VIX9/sCUS7VXh3YBAsH7wKnn0qXppWk7un5F242WdlGiy2LM81kARgonS1nKpIl4EdNtYxU9XWO72E3f47xFOI2DPX8MgTQa0f1wDKQgpCgGigYy+G62QFYRKQM/jQaaNNE4x7qB63Vr99oK0gohRh6Pe5qDN+L4SXPartnPmhU6r8D2GJYZW2ZmA36anB6GmFNrGw62IZlSIIaOmMmGm9DkCn7CFBL7wwBuT+OE0Lgc3ZzTxKDyajyfzICLPWJJPy5/L/u4vqe/59ZY2nInXy0juhfefR0nJcrLWtaqUMW6y18XvyXYxOJaZyaVMqcmJ5bkyvbbmmpWnievu8fRKlA5Ee73ln5phVIa2zTJvkLjPV3b8vLmhfEAdS23NzesVyuLPMzpUyEEhuNgc2tKhAxaPrc4gW3rSMkTcQb0etgn420NY+CwHwlTrlJKY5tZzqHeggBKVghyNqcVPS1tC1VIYulhSC7iY/aNgUALd7kWC+Ckn5musj1VbcH5wq7OZYDLRX3sIFTVeJWanlXvqw0nWNS2jokYjS/o4X7HfndgnAJv7h/Z7Y9sbl/SrDaIc6yvbtnefARXOVghlQi8sgtXgJ+8JqlVRz21xb69tH3Pj//wr9D1K66vb2i7nhJhpRh34v3DI9MUuL655ZMf/Yj1eo1rWosQcrmYUuZLc65BXWMbLOJtbHlYXd3QtA0pBiv73jRMw8Dj/Vvu324I48j93dsK4oRxZBIrRtI0ljZVdFcCO0KYkGB9PqoaEb2IVZfM8/hqe8V6s8nRyC5Hc1I5lWBBYNE0XN3cstleZW7CjqbxDMMIfo1r7q3tM+1M37W8fHnD1XZFmCb2+3vG4UDberbbNX2XcRKZueS+6TT6/QM/ywkyN7CFC0sdRE6g8vPEyUIWC0AggromuwdzVRHNFZRKQfsyGSdx5HhqnC8TYg5NxqJ1tIxvTaiMII0d4ycDf1QpZNBSFvwSCZSrNpgsh02d1U9eFeNhgIC4Cecncy7cYOR3aSCme2J8S4j3pDTVSigzhanksnPkBcebi6fmkLucvuQzmv+coqpMKTAlY9Av1WjCNNV/MeeLk5RGPOId627Fzfaa2+tbuhPgh1opRynAj7LuV/RdR0yRIMpUdvmdM3LXlPCtpxlbcFIjhMZprGUSY95RkcwF1TQrum5L063o+y19fwXizEDJbdnk6mQijsatDPhBaJ3Di0OTQ2KHowedaFqP93kvN0RLUSzduxgMOc3HCzQOusbTZII+783QH+PEYRxISQjRSIUPITGEyPid7GwKSoOld10xk1Yap0IBYJQyqViHK+UR9cn+Xf78JkjV4pg52X1xbw6hA9nYF3KDpaR1oAeERyAyZ8FmcCYDAgkIClNKPB4Hvrp/ZGwaXrdrbptIG5VrHNr3DG3PKC1T8oTkScllp+sElvyNT3O+a6gKMQjTKEwjTJMyPTslRZ47s0Fekk6Xe5OC2PS3UJXNs3NSan1CkaqL4hDMmJfMZxdvGhJnYwsy6OPquVLZyqy7SqaX2cZdtOvy4/zdnFolCxMq/24xvzunxqHlyo6LQ6qDNIfTlwaYd2YXTgBCIUEs6UQuV16IKUEIhJKL/V4A8C8uKcFwTGiytC7bRyjbc0bunKKQkgeVvKmriEtWLdBB63u6zN+UfMT7POdkgyQlR0qp8qI8PlqJ6uPhSNd1bDYb+n5F0zb4rq07XD5X/fK+WcyNwjRNjOOY51gzlkp1GDTv4tfKjiG/LyWc5xTCsg7brvVcbaiun5ryhoBFQ5XweU2Wll2iP0K03bgpVxuLMTIO5pxorqKVklUpOx6P7Pf7Z3dWUuGPyGufyCJ9Y/lIQjZ8DXhVolXyTMlII5OBq95byk6Kmjko7JklVxLSOIJGRJKlVK1W+KZBpyNTjsxIySL94jQZv49vsp1kc0C+c3QB/Dw1rRf/tIACpQ+W9B8tANwUiN5ZtN04EETMyB5HwpjTorNj5J2jbR1Nk1Pc8zVSSqRYHO4M/EiFf57VMXlKFJvPmral63qatqkphhSi0FxBr0RZzhMruJxSIKpoNODRIoKMlN5m3oBjtAq1+RgtVWc1ZQ6JkvNldyV5HhNN+Gw7e4HG50qEbUO/6gz4aQRpHT4GIxT13qKyMtBtOYeRGplbbLDsEFKcxOoclgjf/PzRbOBS5t1SLAPjNHEc7LlWhxH8QFLH6jCA5HT2vkULdwoLfo1nlOpmLKJwZjBITo5ZPm+ZE+bflzl/XlXLOW1u9fNm7qKQQTmBrSWuXsc548QpjuJJ9sC82J7cJ2dvi9+kWBRHcZxUImXV1IU+QRcbJ7ktyhopNgPHnDqFCPvhiKK0k5EZH8chc6+FPDYT4zgQQqmoFb6TiB/nhNWqs/TB1gAZ52AajzYmm4kxOnAlw8FXX5DCIZP/VaRPrXKykCuHqz27xJCrilLnp4UlZOM8hToPVvtkAQDp+fHVsJltj+RKlLSg0REXFYgFiM62wyTGDLDbHODEEZuG1nlCjBwOVshmCoFpsPl1PB7Z39/x8OYrwhS4evExTdtlALoz0EQW98jSRiIDis+tw4bt9QvarmO1vaJtjZ+uRGyLb4nqmEJgvd3S9St81xkFSq4SrdU+k8pnZQ26eCtSMzW6rmedr5WfkjBNOb3MqoBNw1ALSAglql2JYSLGKc/v+T8xDqa2BXGe9WbL5voa3zRcXd+yubqmkK47XwpHLEC1rF3nHKv1hq7vkUxw7Z2jSWrZP6uVbaCEEY3R0uPanq63YAEcdH1v/IV9i2/ynJPX9FgjYb+e1/f7BX5mv2Jh6CuOmKGLSIPSCKATcXwkDm+RaZ+NSbES7k1jLOZa7BRBnBEXSia7ksx6b5QyTR7zLdIUzoc1qhnUSQEtKQ5xQnNZ4sIvZNE/I+R0CgkjxGH+PGZOjRqCq9QS2VrdZoQIahWm8A7f3NGt3iDS4twI8kAMO/bTP2E4/JqYDgzT2xzKiIUdigPxxJhLyYtDXJsdsIRrA02baNqGzXZN21nJvzdf/eNnUWHUxNvxgUM8cpiOjGHkOBx4fHjg8fjA7uGB4bBnPB7ppGHbrmid5ycvP+Gf+4M/5tXLj+mblnWzysRtWtFRzeTOijLFgeN0IGrk/rjjq/0DUwzcDXte73dENULUUa0U4+PjPQ8P90aMeX/H4fDINE6ItvhmQ9P2bK8+5eVHf0DbbVhdf8zq6pUBSclKDgs2wJtcbaXxPY1rKci7y6Bf2jpS6NnvW958teH+bcM0BnM0JttJr4Ys1O3dRjasuxfcbK+42W5Y9SvapichvHl8YJoSSR1jstz8fVS+GBP78F0Yuo7CmSP0FN4IzXsMiRWJNSpt1okBncuIH3LL2MCG+YnPUr2Wt39iwJx/YL/Vet7b/O0R4ZDjQx5Br0AbhIGkDwTZAWbUWrSSFSlXIIbEP/38K+6GA1dNw259w+vVlk3T8rPtDZ9+9Ipj85K3zTV345qHoWcYW+JkzvJvvxLmBSQqByuOxOMdPNwlHu6fl2hdgEZt789JJnBd3IajxNXU2wJYJBFlwMYteVJyFYiFA2B6d7Njky/jKtBiOfBaCHqzg1pAlxMjtBj4Wm5J6ytYUEQBpcwQLb+dHUHvPSr2XN4bmOqd4FuPb/LuqlqkTyhlqHODOe9pJKeO5HLpImQQ2qp3dF1H37YkVYZxIupISIkpluDt55UwKV/9erQ2zOHoZnDYGmaOepPneqFrzJB1YuHwItD6FatuixPP3g8QD1beNo4Mw5oweTQm7u/uLB3oOHD35i1t1/Gjzz7j17/6FavViquba25fvABgt9uxXq3wzrNarVit1nhnfHT3d3eM48h+vyNkrhnvYeUaglNSmjgcHhjHicPhnsP+gRQtHTmGmXepRscQcAScBEQiIhE0EMNIGI8YAbYZwSkmAxGyIzKOY3VCUrKUgJSildrNgJAZSUIIE/2qZ7ffM07Ts+lQNREHKzOcQjYcRUiupJe4PDdJzg8pa3kiZpJxSREywCNpZNUJxIbhcGC/f7AS4TGgmcQ1bBvQj3DSsNn2vPr0Y5qu57WO7O8+N7L24wPDw5dM44DvHmmOmzyAC/BGBuPSPD5rboQu5o2cBmRf5GFpK0U5qHKiHbYcX7zgsFqT+hUPzqEhsN/tOex3Vo4ZR9f3rJzt7LbeGeglSpqEKWl1fgsYXOMh5N1V4/n0aPxZzjdsr264fTkxTTFHAee01DChMZo9R6YOkBmedslIj6U4La5FmhYflYQRm0YZSXKoYJIU0HA0DkADAQOSOXDcYrZsk0W/g7LysPJWRevF7YaPX72gaTw0Hmk84zTxcDxw9/iAl8AUJyYNNWJLcsSuEeHa+VMBuYtTqLayaK7kCNlm1piB14kQI0fvefPmDrJO95Owuj/Sr1bsR8d2e6BvW15ebVj3na1fWZfxGTe3RFhE97i5H0mJGjCqBdsgWII+0Zy+GsGvi3OWjQafOany++x0zeDPvDFRgCZxBQQKOeInzSCmJmKKc5VK0RlY8uWejSts5qyJZoMtHWixarMlInJGeuz6VqDAGR9nKZld7lNhtLxChmlifzzkVJRc+MT5CgwUoGruLyVN+tnUV6VpGj775GW2pW1j4HAcuP3o1qJOH4/4z+/ZH6ecgqYVO3OugNslBXMZncU8t6FM48QwDqQUCePElJ9PKMCLpf1oKNEzad40MENifk+2ZbSk552i6CeBYflzIRc6yDrZt8ZxBzn7Q20tabxVq7Q1b7INjxB4fNxzPB4ZhxHn/33efPFrNte3HHePvPj0x3TrLS8+/Snr6xe5TVy9kSXwU7dzn1GZ3WrFH/zVf87srrbDO5evZdePMXKbN/KbtqNfr3IqbI6eKfe5AF5ZgFclVVUaT+N6VJXrxrPaXmV9GiCWUmT/+MjjwwMxBI77PYf9nhgCh90D+8d7YgwcHu84PN6TCEiu2OfF7h1nXHqf/ORnfPzZj+m6nttXn3Lz8lWO3C18iNYXakBD3uBKKTGMQ+by0cxFlfBtz01ItG1PCBOH3Y5xONL1a65uXnL78tZSBL2N5ZQiUxiJMViFt9WGpmk5Ho+8ff2G4+HwtXr5naR6VX8vDzxzUJKBP2Iun9No6VjjHgmD7Z6IYExOhpipUgedRXUY6VOJ/Jl31Rbc2DV6Zg5tIyWL9llEGamRdMzATzjOYI87QOYHQo5A/jyNWGpKSf/KaROLbosaTw90OL+naXeQnWsYULlnCL9kP/wZmgIxHuu8MqdSeFR9jsf1oD1Ii3NK7yLeJ9q+pV9v6fqCej6PJBL7eGQIA1OciNnAHo4Hjvs9w+FAGEbiNCGNZ9W19E3Hi80NP3n1GT969Rl907JpzaHQaIa8Tdizoxd0ZEpHoka+uH+NvPEcxoFDnJjuR4YYSA60tUlst9/zuHtkHEcOh33d7W1cS+t7fLOm72/Ybl/R9RtW169YXX+MiCOkXEpPcr5n3t1rfU/rLI1IamRXfk2Cd5H1uqfrjIgUtd1V0EzMlteCmBHPpqFrHJtVz6rraZsW7xtUhcfjkWlKRIRRPQHHMSkPk3L4DnZTbAB2IB2im2rQz9zyDSlz+phyrKqTcfqUfl3AncU/PX9/Ju88ipx9XUwiB2zsGjIhPAAHVHdYxa+39jcTkUfbmcsOVnmOhBGmfnH3yP3hkY1v6K8DsglcrVasti9YX10z+Gv2bs1h6jiGlil4UjQw47dzMRY7KQnG0frA8QDHg3I8fAe7YmSjqEbbzPtUBfRZxi2V3/i8CbaMgDEbUk8MmBNgJhulpUqdvc+hrUgGUgDNKbaLMKNTY2I+8xx+vPiuYIpg83V9srzouxzmiy0HzuWdVW/RhQrmvKRUSTTrs7sCbjITp5LzrUVoMrFw03immJimgTFEoipBv5tYgxSVx7uYQbOii2KoGhdB01pYs288XiyFt/GOtrX77pqeVbvBOZ/BgojD0bUdXdsi2bE5HPaoKsfDgbdv7/Des9/tGUerNPjxJ68YJ6soMg4DXWcRBJvNlu3mKu9Sw+FwMENmGCyKIaWsgwz6ajBixWFkHA6MwyE7C1QHhlTWxpw+KCUoOkdTYLusMQMpcZpIwXa0hsNgESYxZuDHOJym/L6kJMRkUUuW4tuAKG/v3hKjRSI9m6iiOa0shRFNtmOrpQQ9HjKvFilXXCl4eXbiUi5moSmCTrSNoJ0jHBM6HYnjMfMUDohAnG4hV/Dru4br22u6bsXubZ/bbiJOB8LhnmkYLEIoHbPtZJElNg4iKVe4sbJOpWNqndKWnAWcvC9RW1LBLJ8C4+6B6fEBwsRhtcI5x+FwYBoGAwp9Q9/4HJbf4p1kG8q9w91zXnHJ3i0/f16xyAwrM7/ZXtGvHmsIv0WblQqGeXOvukzZMSS7c86Ba5imAZcSigc/4dKcWlS2OFw5dwxIikain/uBAaM2a5kerAS6oHTO0TeOrvVsNj1X1xuatkG8h6ZhHCfWqxVt02Zy3CkT9WdTqziwcUGEv3yvi3nc2ZJu0UjWf1IelzYOG/b7gwGMXSBIRzckVqsJcSuGMbHuOxpxZkYDjZQy1s+vx2VkZ41IFfMVvG+rPV10HiXUql0LxHNe6zIY0uRIBDuPRRm4mnFQjs0pqU+YEEbOXNrWQdBKOpuPoKSmVaqGmG2zhaNOvcPyR8prYwE6chp2BrkquXiO2pyXWDVuuVxSehpHo1igrES1QWe/W+ax+F2APmCVtG5vtnlTwSJxj+NIt1kxTgF/t+dh8uhusLTnnDbsCrZOibgqwFvm/5N5PlNVhmYAsY0i1KI+QGvlpjLmU45ws6invF7nyNPSjsWnLYUi3tFSidYqesxp5955vNi9Fc4Z1VLmO9aIFucaSoGKlBIxRA777O9ME4ryePeazc0tTd8zTQOb6xf022va9cbASWeV4JapXnX2euYptWlbPv7RT07A0LK/UEdZWthVkm3IJ+b2ec/wJAY8G7s5FR1ou57N1bV9FVPm+lOO+wOH3Y4YA/vHHbuHB0KYePvVF4hvCOOQOR53GZydgdy27azSWL/i5cev+OwnP6Nfr/nos59y+8mPcK7J+vEGPOocoYma7zRNE3dvX/P4aDxD43EwOhQXWE8BcZ4wToQpR1u3Hf16y+bqFt94VtsVbdcyTiMPjw8chyNt27G9uqbretzjIw+PR/T49XbN9wr8zFOpvanpGYvvCrkSefeLOGVDSE/GDyX0t0KoBvQY+dZytpV6bN2xqqhrdmrrAiDgcti6ppmwtAxgcbbgLd5bFE5ODUtdjgpS0BFRm0DqM2XjSMSDa0iaCPEIudQfEglpsPv3LRniMwNg8cwWIGvVlURaXLNFXIf3SttHGm95iyKdAUTPKNOU+MUXO8Y48jgemOLE3W7g7X3k8ZDYHRxTXBF1TdQVk/ZIankc4Iu3e1Tu6XzDqjkY+hs1Az+6AH6UqBNRB5JGvnq85/XdI8cwcv94YLcfGGMkIEx5Md89Htg/HgnTxDQG231MtiOSFFJShuHI4+M97TgxJmGYrORqTCmXe7cFwzvrR43vaMQipsqOnFVo2YEeOewfOBwCIXhibEisQNa1rebJrLjfG6a4Ypg69kfPl28nNps9jWvY+EjnWhLCREPEMSS4j8rxO8n0UizcO4MtOQpiJlmWXGxgAeTUcVXAIPc0uAMLAOg3SXEgzo8r0R7FgHJYSfdrbNf8BaUSGRxQuYccsWSvUFLSBNN/SMok8DgGXvuBEeGrYWAzDkxu4CEeODR7jkMgxjwtqkVaSCb0PTVwTu+5OHEFz1YSKSohQAjKNCnj+PyKtBgsyUBXvnpN15odjKWlqMXwyYvwTM8071LMuslnWk6czF/Nuxo5eAM795wMmA2n5T0vF/0y/59Zj+8Yk9VKLf+0ju2Y30xJrYQndi9JT3zXDKY4K8Ospl5VG+vGe2Dht03TWL44FtodUyLq/Prc4pxjs9lkvVnUVDXQMIOvkAn6xtP2Ta281TZm8LTOiDmdeOO6GddMXcA5i0oIYSLmtCtVrW0hOSLleDwayfL9PW3X4b2zdKhsNDmx3V/nHCFEM05y9bMwTbbT7M3ZDcHSwIbjkWEcOB4PHA9G7pyijQtVe2/ktSmDOIEQA7vHR/YHM9AO+z3DcDwFflJiHMxoijnioET/2GvMUV4lPdz+lVSOcRw55Od9PjGw2uVtrHnmXAIV+UiRCplXRwG1aKEYsr2THRix3XrvLJI5uUXp6WhRRlPTMux3HO7vCd3A8PjAdDgwHY9ojLZj7z1ecolhqGsSKOokk5jaYJGUz/+uwVafZTmhzI6h2Sv9akPjW1tDElaVLKcFOoGuMSO5aSy6tsmbLb7uert3SdRl2ZJP+gXPIsYBYZxgFo5f0hwb2qYhagLnDBghr5nFmSsNlpI5a2opG0YiKkjWbQKzB2PMlGUWTQyZY2wyBzMWAtI51MrOrxkcEvKcZfNC0zZ0K+O3wFtkke03NRYp4IwyQXMlr1juA6qDWcZlOgN+LDBJaoUq0WIPpUUkhQE4MVc9jbkSUkq5YmGySNgQEtNklchSjlz8LjmbyngxAEBqpKrLfb6shSWtY1nBcP5+du7N+Sen0Oa2SZbGVfuonI59hQq+qKptevpmPp82oMoMMrHoW+W6tYedbKqUZ6xAUrHNCidQss0aU1dEU66gmu9Rl2BmKlEqaXnnJ+05J4l/dzorz9R17QzkiNB6R9d4UKVvHH3jmVpHclZT2TZztPppjfN0rc86LwAdhBCZJqveoWEypz8E4jASx3GORs2bE6mC4wV0iWaj5Mgna47Z3ipRHmV+X7Ze7VfLTamEpfuKoM6IuUErgbal7FvUB5ojwFQ5STNFc0XSiWkYODw+0K7eoAjH/Y7VYFynTbeyqqGlT5U+Jk/YXc8lSu1z558vBsi7n5c/l+sQZz3y7GfLV2Qe/957mq7DRU+3itl+mTgeNqx2aybnOHQdznvzB0vgyMJeLfdi4NvCPyoRf3kjFMnpuqLkSlRYFV2r0hlC4Lg/MBwPxClweNwxHA14mo4Hwjgwecfu8YG28bR9Z1WpvQUZNN2KlWusmme3ztVZJ5q2p+m+nlPi+434WRrtZSJl0Xia0DihQUnjAT0+oscHdNzbwNPZeC+kW64pBHVGvlXyAbUaNjNm7WS5POfBoop6JWnmDnAOcpRHHfzYxJjRBAOjciSQhDGnhpV0sLB4b9E/kisg1PgjAXU9QxrQ4xcIHnUdKpm9u3Ho5iUguNRgpLpiCaKZ9FNiC8nhm55+84K2W9E0sF5D02KhuOFInJ6XUfZ+N/K//7/9Sa0UETVwGB95+3hknAK7Q8vD4RPGuDWQK/Q06vgnXyamf/efsV1/YTvrksuT5jBXW3tTwYMxAllrv/105GHYE1Lg/rjjzeGBmBKu9TSdEVUOhz3DYUdMgeP+SBiNpyVmvaYU+PKLLxinf2iM+e0K31pZvcRiAgVKqonQ4qTNM6Lkkq2WmugkMk0jd2937Ha9EfimV+A31q8XHoeIB3VEWfNw/JSot+zHFVO64x/+0z81p4qGRjxGWt6g4okIA56g7lwNzyAKckTJFZ60RMgVQGAZJyJAQ9mtoLZVAYHOT/2EVb6ciesHT60y8zVLHKDJx0CHcMRyudfAI+paVA7AiEvHXOUogRgZexIY1SJ/pgh/Eva83g1s+hWP6w1f+IboI/fuV+z8NQ+PPYfjA+g2P1tLTblZgmAn/1z+1qHSZX0r46CkkNjvlPt7uHv7vN6KUuIL1apY6MLZXCxWBdgpVy9EfuYEUHf4BarWZ66VuS+XJVeLs6qKxhw1kI18ODVYy9/n921xHpm/Z940mw84E1lWjcvGSraNiMkM5UnBu5QdopxHrxY7UqObyP1cwas5Kk6kEgevWitJvll1cByI+wPHEIhqwFL8Diyjruv5+U//MDu3eV0ThyspBT6nFLji5Nnup3dC0xhRpxOHl8y/c73l5e21lfOeBo7HzyydYEEuOgwDh4OFQIcQef3ll6jCm9ev+eWvfmkGYttaaVXf0LUtN9fXOOd5uH/gsNujSTns9+weHwjTiHiH+Ez+/PY1r7/6guPxyFdfvubNm7dWVW2KtapXDNH44JJxRkwZ/NnvdxyPB2KKDMcj02TEt2kqXCiZbyKm2VHNhnAtLZwNPuddNfYRmELg7d0dj7sdU3i+tdFWixbNHFGaCdOlvroczp8BRinxeLECPWEaiMPe+GGmkVYE8Z7UtExdbzGXAiEfr+PI/vVrpt2e166lxXT2+vNfcverXzIOR/RwZNN1xMpHUqIAlukFpbpMcXpzSsxJ5EJ2SCkRfyWVonCbgGB8J77pWG9uQT0pqJGQBquu1jrP7dUV4kpp986qtTStlY0Wj898FHDuMi3b+7vxUFJK7PYHpilYEYbV2iJ/NhvGqyPh6BjDSBTrd8W8qiAJBXG2KK6oEMQjvqVTkKbF+cbSF4+7HD2cNzozMBlytEWJGlD0JPpD1PYknTg617DuO/q+4+pmy83HVg7ZqA+MONRItlc4FY76QJgykCqFla1EFpQUzBwBvXS2pICPGczQskVk99E2ttsdEwyTkhx00eFSg0+eMQjtBE4Tu91Imgww8Vhve85Ur2rfK3VP1yIk8xzqGpqmq8DNEuSywgAF8GKx1uXKvdgaIpJypCk1EkjV5/eWOrxARM1KyFV8VNXAxLYFVabQ0oSpRoCkDKoVEmjbVJnTi06isPIT27idF/MKYIn5VWhEkssktRPFPC3VrMpcqplTjUwefUJcXR5I5rlDNfvr38FwbLzjxe02+4WZzNy1OA1MrYNp4nHb0otVFgtBMgn1yHi04gCbds2L2xVt25ZbB2C323N3PFp1st0j+9dvbf2ZAlMmWjcailkXp4BNSftavD9RydP27TISuvQtuy9Xwe2qNgWroJfmiB+fbc2su5TTY50XECVMR1IciXHi13/6H/L29efcfPQJ3fYadULbr9jevqJfbSmp0ctUL7uvZ1SmZp5EEUSlKkDr8y9mcp2ju23Mlf5GxQvqSZ++VP1fsdOMkcKBKG2uFqZqFUuvb25yFVOz/cbhQJwG9vd3QOGStWI9KVnlrJhsY2CcAuJDHp8LqgNpTDcF9CEXbFAPWEGLw+7AcDjw5a9+yd3r18QwMe73hKOltMfJIpzHx4bp8MivVyu219f89C/9ZV6+eoVvO65uPqHt+xyB2Bq3ouu43h1t7v8a+d1U9TofE7m3K0CKBtbGCQ1HdDygYaqoau2TYgBPccpYGCx2rmzI5AtUAFHKSXK8T9kNEM2Ok7NNV1XEzTmPUgArBWJActgf4enUMAkZ+NEEeqzRPxRSaecJKaDjgwFVrs1RQBC9gNtQHVztEBU0NpBcRvUbwOGaFd3qY7p+Q9sK663QdhDHI8PjW1L8+ny/30YOQ+Df+ydWZSzqSNLEFA8chomQIlNoOE5XRO0spD16PEJ6UI7hNY33iFo1kAKolclnyRdgpUNth2rSiTFZud7DNLCbDua4WkYfihLGI2E85DDMiRRKyo/pN2ni8eGBcSyTbM4RgVweel5US3SWVYsy5nRSA2pEtr4Y95qYpqNF+yQh6TXi+tJBqb3M2W8TPcfxmqQbDmPLcTjQNtYlvTojOM+cTYilLSbp8m7sc4uihGy8tYshWSZmqe9ncEcXf79ncXjvmvGbQA9995gKNhQA9wphBUwZ/JlAHlH5HBUbKyqKaJzPJ6CiRPJOI8qX48hdSqynQPv4SNhswHlGd8fk3rDbd4xTAp2gEEyXaVIKd1Fpg8KUk83X7HjbTrCFT2uCcVCOh8jh8PzAT64vaAadrf2ZJSkTwD/ZyjkaooBDOn/uKMBnPo+UvkCtxFAidpLaAlsjeM6jvPTp7qCLV83gyzlYtJQ6Zc+/ggxaBZ2B2qipkjI33pfhbeMwz/NzfrsQa7U9V4Gfrm3o+o6u7xii7c5PuarDmNJ3kpLgvefly4/yjnDmpnMu80dIDlEv7wtfjUUmGh9ZhiXzvaWVEjelekxkyk5FcR5SSux2O+7u7pimibdv73j78EgIgYdHj3tj+eq3ty948fKlgUC+Yb1a4Zxn/7gj5ipn0zgwHI+gimtm4KcAQsfjkYeHO+7v3xJDYhpLRIPmkGaL1Dkej4y5+szxuLcUssrfk1O9QsicBxlwPEvjWxqHBkA0JzvoACEG9ofDbDQ/kxhkl6lqHQbmZFNaJZ0AP16EptomoGo77cYjMZIyl48XAees2o5vcI3xgYi3VBlCYNztSOPIY7eib43c+eH1lxzu7gjjgE4TvW9IzP2+8BaU/uV9YxVFF7uW1ma+VnJzbuYwcd5Xbi9xzRyZlnmycA7p1ljpdRiHkRDM7vEixu/iPL5pM0+Kp/UuVxjyeNdW43U5P4Fy7vA+t6gqY+asMV6KlrYzYKXrOlwMpMbV9G3rR+W3BtKYPnP6nnicHxGfcH528NN4IB4e8iZitA3P/HwzuGzOg5m2zoBVsfXGYbppBNrW03YN/apnvd3QdC0iDYiN477v6ZqW5M2eMg4qI/NN+ZopLYGflCM/ct8u/pf3aMp6p8ypgsu2ihOHFadQJEJMbvHPqmROKMMYczGXUp7FHKvvQsp9ln5bojp95hEpBOcp6VwYQEq0S+0VlKiglIQkVkWqgEFzylhJJXvHualz9HxaBZrsZxQQRS39NJbIq1knJWV5CUCcw6J23DJiqaST2sa2iLMk/Zw6tAR+SpqSvaa60bJMhyvPU8AJyut71vlvK84Jm3WXoz1HUsz2dNfQOhj7hm3fQAykJExTjugE0hCIGuj9iutVS39CeaGkAR7TSIgjcdgzZpqIGGItHlPSHvNP5l9nRLCM1yftlnc+MySn8jSdHy/xHQRtEd9lwGtKSB5/pTKbZoDB/BErAmB0TYGQEv7hnhgCr95+xfr2BX24ot/e0pbNs/KcLIidnxf3yVjMnN+zWKUXa3bdZjwBf/JP8yHvtw/L0fWMevq9iMM1niaXSO76Hs0bYWEaGI9HhmPH3WqDb1pL+8t0MmbrFhuVHLVTKsTO9m91SOtNLSkWBFVnNtAwcTwcuXvzhq8+/zUxTIT9njgOZndLTg8Xq1YtznPz8iNevPqMzfULVr6nX1+zub6pm5xgmQWr9ZbwDTa0vlfgRzAkbNm1Tx2FlCNrFE3BdkFyLrFNYIuxUSa/go7mSdX8xbw7X7b5KKleBV2VCsGY85OVl2FWLeSi2TMSmSdFe2t5fFI4gkQywucsPUvVDJdS+Us7cyRlrpHkxOGbNd71uVydEVbX3XkFWxJ7hAZVh4YWjR5Rh0iDRG+s301H13Q03uFxuFymrJHxiYn720lSz+F4U4EfJRJiyxQgptE4iZJD02S7k5krZcRzcB2NcwjJHHQtRlIOZyZSuB2cGN8TWCrHpLYHMQYrkZ0UxM07qikaSz4KmjxoSc/Jk2NKRnY5ZULFwgMFFSAoXdLuJRuxNf0iR1ohpLxbqgoxtsToMvleA1qAn7zjoxY1Ah7VjpiumcKG5FqOsiamFajg1edSvjPwA57kOutv34G4PKaeTuNZ7vKUcbqYtk+ier4JCLQ8R/67TuTnU3f5eD5eKFwyCrJGuMEAl4+Bz4AjcJc/iygH+0wLPJIncAwImjSxHyfu9kdwDcG9IcjnHI4dIY4g24XumnwfBWlcgswFhC0V0VgYVW5hePLehevbSO23J+qa9XS+iJaDBF0etvxq8TrP1VrmSZYUIMXwmUEcpZqGy7t85xI5KAN0ASMWQ+bsTk/uq9xL2TUrCwO2I6PLakrVblpaplr/b/duAEDJ75+CcByOOIy/xqqdLO/l+XUoTug6qx645Inw1bl2tapQrTiWjfZ5hVuoTjKXkQLqUO/NyHOuGnpd17Fer2nb1ip0DVYhJGmydBYwEsFxRJDMm2PgfCwgjCrHw5HHRzOaC7n2MI7sMpHi8Xjk8eGRx4dHA6HGQJhiNp4y2WnmCiqRPeMwEnLp4Dmyx4CelMpaPM9TZXd/NgC0tmFpz6XRmVRrH3xWyX1Nyz2WW6oVLaxDmr2R0zAqEbod73BoBmXaprO/uw26maziSL8idj2qiW61pl9trWS4b+08UfHi6doej0NiwiXMkRdXNzu8bypJ7fI9NVw9A45Wa97eZ2O0kroj2WnNvAZIBX5oews9doI0mXMG2/AR7F6c73IURINzbY5wmyOPigG/GOKL92e24zOqsJTa9s7TNS3rfsXN9Q3ExNi3dETCODCOR9gnizSIAdWcRlnuvdigi3Xs3Gefe8QisqCALjldoKRcawXvCsDk6rEViJEcNbh8oPK9GUdYlTzjtZSl87oYEHUNK6CFGPjsfQb5CqdG1qP4Ft+u2Gyv6DZXNN2K9XpNv1rTd53xGToD15e2uKUFP7+YQ7x0uxZtBGid42YwfE5zOjlTtiHLe82FQDQPJQFJOHV4nc9fyZ5diQZa+Cd2A3nesrFv/V4z2EoFYmZ71LjgqFPJckarp7TxcTaxacqESpqs5yyc03qGsqmN1nXdTIlFpTIKQDVHAZbrfgfLIjFGHu7vLX1pmuw1BobBOIh2j3uG/Y7xMFau0ZQSw/HIcb/PHJ+Oh65jaNs676oq9/e2Jo3DxHA4ztWIQ8lA0DMS52WD6kn/fQfGedKGecIGeueT/FpBg9kWlrN5pBwBVOB9ORtKBufJ82UME2EcaZpxEd2l1ZYq89C7D/u8ot/g/fvl/a32dT+brb75V7ZPKYi3SqZNirSrNf16myuAGcCmQNNZhF7TdbQ5Hczad2l/lIGwtL9LYqStlW3Xs9pcAcL1zQumwTZ6pr4nDINlw+RqX4pVqFNxXN3c0q03lqbXdjmN12ffNUcUNi3das26Vhl/v3zvET8lcqYsdyfEoxrRcDADftpD2EM4IMlCE2tpt2L5nWI7zAttzt+VstwtndpieC3iGJYDuSyE9QfzSxniqou0l5TQmNMiUkKy0VeIwQrEJBQOGVdDqL1vT+6zGLFRrWKCfd4gODR50rhCQ4tTR5tamuRpmo7t+pauXSHi8fS42EAaaGQN/vis+ptCz6+/+mMso3bASrCPJPaoTvY+7VCmvIs5IaIcRdkfSipXsAgozdWidCTHLYDh9QiTHSsxp4RYweqonphaLJYn1HYlOYht7htCKduoKRHVIltSDEzjQ+4qlWWBOeBYMJDFHH3RVb6vAiTlASweyUMn6So7vJLTBReAgBS+B4saicmioWTqEWnYD1uc9KAe0RZRi+JCunxPHpUe5PmHqWAEvwkh1vtcOshSZkbOLJb3vP62srQWzOU5vbt6l9jIy8nNdMCnKD1wzGe4Aj2g+ueo/hIYUP0cla+QQkQtEcEiYyLmdP7y7QP3QwJ5QF1C3a8IoWV/uMWIpT2nwM8CAKr/CuDTgNyA/BXg42zArfDS4J0aCbGf56HnESWdAD9ZfxUlX7Zl/j5/VhaLYtwDlVNEyrHlGpqNQUwTZVkpET/lstV5zQZvNktOF+dyuwpzicdF9MMC/DkhoMzdUdUie04Nr3yMzkZ3SlQnozo9iDlYYvdayKgTNjc4hGkU4nig9cIYE0OYZmSqhCs/s3jnub25rs/DAsQoGxhSnmXBU1CfTfMql9vEkfuaGkjdNIuqLHaRWsI9xcj11RW3NzdMIXD/8MDb+ztLExsn7u/vaZuWly9eGnmk90y5JLogfPHFF/SrnrZtc6RUyziO/Nk/+1P+2T/9E47HI198+RWvX78hxkSYQk31mne0jaSykmum5U730kid+RSWtrVWBLP06Zx+5HJ5VWd6jposcrb2+eczcOvzaKpAVSVDz+ok9zYlEQpvoM7p5KjDuw4nDU4bmk1ra+j6hnTzKj9/jg7J4f8l/appOyswJZFOVry4suPjtTlLSt6M8jkdy7U14kekRO1Y22mO3HFujuwpaSom87i0frhYN7L3mbxFgRgK6WsZXidlppeajm/gQY+TJvd1i1ax+8k7xQq15DzLxOznFU3KNExognW3ovUt/iPF/aXIcNhz3D3y+OYLxuHAw8M9X3zxa47HA8NwZL83Ph8ohN6So6eKLSB53pnvv4zLlGay5FQ3DBNC5uVxUktTi3qUxjhiwopaSXYRgaWlTncyolGvBrppDBY9kVPLqHPtrFmp1aTmKBlLzVuZzeq8lbnPJZdXqyvarjew5+YV3fqKputZX7+k6zc03rPqe1rfWBSbWOU0yWvL0pF+HiVqJvmtnS3Pm5l8Hq3E7oUEXlVJGmfQ7dwxru9LWtoCWKZUCstAatPSxi5fM4NlUlKvsltYgCRAy0YuWMVitX4eXcA5yywIYcrqUhKp/j7fbJ0PTyOnMv8QMeu39jhOfs7pH/W7soGOAVOWKlqIoq2fLbrQs8swDPyH/+gfkaJV2yqkytM0oTGxOwy8fvPAMEw5stU2Do6HgceHHWEK3Pc9b7/8Cu+9nSdMOcJ0ZL87EGJkHCYOh/Ek4o3iBy4B0dOX2lrz1Dd/M1s/xfln8V1+zWBOWe5rZlNZ3Cl2S/5RAdqwtPoC1Lu2zeNKTo4Vn+cCEsNhz/7uLZqU63FYrK9PpHr9hbT1DUSeaoVv8DOW9zT/9U3OcP4sNYpKss/hoelXrK5u8N2Km48/4ZCLE8XpSAqD+fHOUjhd03B1+5K272m6Nq+J2YrU5ay+vKaAeFzbc/3yFd1qyzgc6VcbPv70x6QwMeweCMMB7zzr1YouV5UdoxKS0m82vPzsp6xvX9J0PdJtSb6va6QAvt9y++ozrqaXX9suv5NUrycHQ6kmkzItaCmTHnMJdajo89w9y6CYI3y0GENuYVicAz8ZNCqLbtlptgEgpyRX2brWucucurwJpNHKS2z/yo9KiKcdbQZUqQhQdnTPd2cSTkdUw8lgJzVEtyFNHY16VtrSqKf1HatuQ+d7zEldQ2oRHWgFqKlHzyMpNTzsPsFIdAeMmDqAO+T3E3AAAgmrSkYuzWvflUoVg70nMBPRnaXDLdy2eecsO9sqGH9ScXos1H7WTkFiJ7sXUUiDXa/MtLVfNBSAzYCFFgNwCiBU7qn8zkrzGlhiRqoBNlkHGbAzcuBCxN2geGJY5/M3GLjQgnpIqwwm+XwPZtzBdwP8nLfA/Mnyr8XO5TtAwnIUfBvwp5yzXmBxK3Lyr+yBKDdYRbIBq6gHRvSsaO5/yiPoWyrirkstGsfN3f7I46CIHHE+Ie6OlFqG8QbYZL12pivJIFQFAEvf8MDajuMj4BOULYUfyonPQO87zftsUqJ+apOdWGK5Xau1UebeRXvnCEdkOV/l32aAu0b3wJweQIn6ma9krylHry0uupAK+mjh0poNJRuacvqrAvpgHCdlJJ48ZTHQWfSU7BwXjdWSyzo7YPZbrbNNQImjRRxGYKqRXd+Z+nBOWK/6vPyd8jeUCILSgUo0T20fXRJyny4ZiNENL8xHOyfQti2r3sqfdp2lsZSUsN1+ZyB+jBxDJDSBcRxJMYOnIeaSpPD48MDrL7+iaRtW657VesUwDLx5/ZrXX73meDzy+suv+Or1G3OyJuP1WaaU1PfLfiun3fi8TcpBerJQU9fTwj2DzLueZRV3Ck9yk31LmZ8jVYdhwaGco9FyXy27cvYHBTV1medNGocXDykbnbXzpXp8ioGUiYBVlRTs+Rpp6VZdfu6FXeQbi77Jm07eWxqztdmcMq+U6DJf075OgJ881gRy5O7SWTZgtcTuanZOoKSYzREEqZynpF7XKip1xFJWIcP2ZsvxiX3259IiMZjj3eZIKLc1bpowjhx3D9y1MB73NI1jt79HSSSNyHFOp6M85yKCr4zDtJirihs+RxjMnE/VViKrXEprNBiXkEVL103IokvLfy8GbubjybUM1SrlpThXnAUqZ4vd+lye3OcSxcb51eObHu89/WpjlW6alqurW/rVmqbtWd98RLu+omk7Vttb2m5lHEDeLzYVSsSSNcZ3Mq8qlAjb0vaSIyVt7o85gjBVwvsKxy1AHj15D4X7Z5YyVhzJpeyfmC4sXZcZ9Fncy7lIjhC3dcovPs/XTIkkudJWdvpP72O+z2WqWaVQkPJc83xxDtjMfvl8v/PfLkflWdpqJsWYu953IGEKfPH55wbYDAX4WUSbHkceH/ZW1jwaN09MkeNh5OFhR5gih8azf3y0ogTTxDgZcfM0RcYxkKJFkYZw7tnNtsH7nu90TX3PQTJvMcjZ58XYEilje/E55QdSD2dxngIiixNc5tdaAkbZUKh3FcaR4bDHt31Nr57BzXku+s6MnBP5zRcp7bX86/Szb3Cbix8Um/AdDeX29W1Du1ojztNvb9jeWLSYpCnTtcw+qfOO1XpthPneI66sScu+I2fv7P/ONaw2V3T9mjCNeHFst1fEMDE83jMOBxrvudpuWfU9MSmHYWIMkbZfsbl+Qbva4tsOfEfKfELkud21wtrfZLqL3yy/A+BnAaGUSlfFK9NIylW8UhxIOfKlADVSx+BikC59C2FGUYuz9YR7W2d/zj+W2Qk4+0l1+2W+egENS0qwpHmsLt2ZkupRwJ4SPu2d7aaUJrBFPfMClH2xMphTg9KhTUeDZ6UdLY1FFCyMpkoz23ga1+GefYe6RMVoNugW//Q8EqJEy5BbrBi7KR+fjZUnh7FQ06XIcQbVYM86LQNby8DOi1veVbV7jPm35fplUJR7Ltd3T/wTTvuPnvw7ySets3dpB28LeOVjWvzTlhLRY0CCVUNRfeIecsrXc4sItI0Qk3GdpLTYxaVMtVTdvNON5OyPp9a989+8M3NLNc7ec5eLkyzeZ0DN2nEDcmsRU7xAeAMZMJv5gawfVN0VMCOnHAqCpgHBSiprLWPvcz9qM7F3jijLwJ8990JH6nKPMA6Avo90bWK9EdYbz3r9/GOxVCrR7BwZxw/ViHSzBmvzCdS0DalfZVBhEWVDJeMzzq1Ciiz5XAnNnDfK0j5y2RCe576F1aIUzrsaPVMIZqFMy8WJyXOizFBwjRJdGKlUY76EqAtepPL9LJ+pOsJqYH0qwEq+riuWmN2BASf5b/edGbly9tdsplSHYfFdea3vioOjZ2eqY6xQuFLXvSWQUkoUiwjrzZqbHP0TQmQKMTt/ksmXrXz6NBpI9PjwaBWFmob1esVqvWIcRx7uHtjtdgzDwJhD82u1oFSibpWn1uHFbVbT4NQcLD1a64JcAF7NbbacqckOcLFsNf/2WXeqMxCjmYg01fT0hTHuzh63mjCLuS3v3pkNg3W6HLlQXAipY8DbPJT7fcrPaONJ6rRcUoXEe4u+KeBK4eSpRNMsPsufSyETXVTaWiyHokLZ6TR9zs7GfGiOus5E62UrRet3+VxSHK2ZY2XhghmolDvEe7k1vq3UjqNQ7LlUwFW7h1J9LsRc2S4akFIqI9U5SQRJ0Uq0q6VbTOOAcx4NIRPH5q6pRav1EWv0OCgqWsFvtESxa75+4aqYGIbRUoJyFGUpDWw8Qmm2uc7SfWZgLxOie9N903Y03gip+9UVXbfG+4bVakPXGfCz2V7T9yt827HabGlXayPsbluatrHKdFK4gbTapNW2/Y48zlPwZkmOrHNlwWS8WTXNS2Y91waqPfq8v9l31l1yJTcRYnK4FFimRC3/zb8t7XB21rI+LfS0rAhW+kY57mQk5Tl/+bmiNarQNhYKefg8By5dIjvv8qbKGlPupdjVy6Z5fv3FGHn7xqJPwzBW4MciRZVxnNjtDkw5WjSEyaIkjiPTWNKINYNhYuO2pBDX85xuAJ3rIj/+k+v+sutKbfPF94uTyeKz+rmbbQ11UnU3774t1g5Z9CPEOL9kBuid9/n89UI1CKI8W1qsE7p8nwoXXTWNn02WFjxQOXXzH+/90WKJqWeQ99zYufX01Nt3YJ9l03qriCgCm+2G6cUtKQY8EZ95UEUSTgzY7dYbm+Pahpttx7a3+bJpwDeLsahnF1QlOownzHv8dc+qsUqeQ6dMQ0vjPZv1mq5rSUnZhESIyebW65521Rj3XA++PVlB7Xrx/LpPy/dczt2cLZb/ao8TNBxJ8YHASBzuCGGfWbVzlS5xebDkE57MTZJz7nIee6lSUZ2/cg/5dWk4lIGfP3cnB1uXOa0INp9SEojT4g9W/6rm+ApzPjRGOFmrtTiPyyHNhTgRFHGRSq5WNpzV4+MGSR2NNGxY09ESJ2F89MTRIl7anB/Y+o5N39A2z20cCRbZYlwqtSG0RNsos6NcDNUMAAEzhBby2U7RyVlTs6OtFOO+VBAK7xydcuqXHR/QXO8IHUGWqWQWii01wkfMeKbN1ywATUl/KlOXLu491fdWSDuX6yODEeLyq0XwWFpSSRkq0SGLFKFy/brzWqKIGiwyqP06pfzW4p1wtXYMk8sVyVzu57NjWY3vpX1mnyzOJPNLncjfs4tXHez8g4UR9PQvhPMUMPt5icjqcPoZIluEo0V9iQAPRP0K5RdQdrukRJORjXIlacjEnJOlHqYH0JaoE8gVposVc4RW0V2zeG1BO6ouNaIMtE3ixYuG62vl088aXn3S8PEnzwvgOYHe+4VZWiJoZrBnbtmlgVgM8dK7pTpeFSLREjFp86RndhSqsZL/p+W/bCyXKlPL9yLzLQhABl5gTn89N4SLYaNYxa6AGWkheULKBnCJAtXZCaIYR/l5ZmOrhEcXIsRYjb5lBJQ5uwYCNVLSOM0H/444SGuUcAF9TsCfxXECOF0SrLonlsP5JqXWwp3XvGWaHFDLtKeUaPuO2xcvjENhf+BxtwO1ktC7x0cUeHh4qJw9Dw8P/Pmf/znOOdabNevNihACf/qnf8avfvErpmlifxgYjmOOamD2MBZoYdGTcnpMdS6KIVx786wvCwTRnL5oxyi5gk1mOJ93wZc8VM+nTNVEmg6WWlyKFRiSSokIUF2kdZ8QodcOT4lQsiTczBdYbRtLX/Q51U9TcehY7EyfAlpJU+3j5HQhIG8+ZVCzRKwiCztEcslrO8bLwm6RPF6VnKIUqxOdsueQYVw7hqyfPI5y3MLC8c+9Xcv6vmB9qXov/bZENnxHwI81mi0bmYhVYrQa5SkSwshh2HM47Dgcd5mI/MA4HgmTpQgYYBYpkTeaNwdCSIzB+I0kBVyOupEolKIBFt1BMUaRmCgbWanw0hBQ8aTomcYD43BERHh82PH29R1t0+Gdo3GeaRwZjwNxHIlhylWuG0QS4mbybu/NoRBx+LapfxvA09M0Hde3H7Pe3ND4hs1mS9f3eN9krrAO5xu61Yam7RHnaNo+k9Vn/Wtei0qEG/NoPo0weT4ppdcBpmnASJm1RjxYpcFQ2/b9t6FPvJ8dLlsXzLYspb+tXVtiDHUMV54smSvpmZS1ZwEMiOC9R9WdzNkSA/HMNZ430PKY0zgDXUnzBnoipSlH/ZDH5MnVT8w5Fp8Jzqofp0yKrQV4ntfW55bjceAf/fv/1DYbhrFy78TMURNDYpymTLA7byikaBE973Ad6aLqY2mX+t1s93wt+CPv+fgE6JnPU8CaAsjXNnMLe8Rl35Z5jiZ/h5RI35y6XK6V50aXAaTz254LF7ma0lhAspgjU1Pm2KtuOGVtfW557v4xr/+/6YjfdAtlBmr7Fue3aFLWq5ZXH98iKKsGVi04UTqvtH4m2idn67T9Ct+1NiYcOFeoR7KxezZV2AnymH75Ak03xqU4DIQwWYXZtqHxZZMlRwLm1HVy6rDBIYFStdZMAasyGb8+4OfrgR8RWQH/J2Yv9X+pqv89EfkI+F8AfwT8f4H/mqq++brzVXNOT/lvbOcokNKBpEdiOJDSSNIAYrml1VCB4j1k4z//7ZYDpTiNpxElZaAWZ6GkegGZoFkqAFQG1gz4iO28LNvHke99acSWCdxercJMruhRw/IcvubMzuURRcB5RXI1B3GKkUI3tNrjtKOVlo2s6eiYBkjHRBwt+NI7oXFC13rWG0ffCTEOAH9dRP5f316Hkk+hzFE9iwifmiKlWBWshsqzQoNFXuQIpQWw8u4Qns9jGsixzjV14d3FRstxNbJH7VUDFpZln1uP8LOu6rWk3psu7u8U8Cj/ZuN0PqJEES1AGymgUgF+8vv6uZ9/V8iDl1FTNWrILiUi/3eeYSyKQNeWSJ+FI1Kb9NQI+M1LwXygLFHR9wFET/zWrnH+ZdH3+XlKm81cTMIRxxuEOyxtb4OUKjulT0hZLOxfqlFkWEgnoFU/QinBWNP/MiA4R4O5xX1Y5Tbrf8HSdzaB62vP9Y3j6hq2V8IwHOHZxiKW252lpGjIok1LnAy5Hcpo81KiA2ffqp4pI302D5pSnSuT23kYeLl2qvozuH02dPzSKNHSR+YR7Ba7V9UMLtfJ9+HVwJ+k4JLDFcdhAfwEycV2TrpL3jUt58+LRU3F0WX7sGiEfP8sIKHEMkDt2cZimVLOx5icHVPAswLQlYik5ZCdT7LQxgL4Kc7AUoelyo2q0vU9Vxhg0N4/YDvYCe8cwzCgSRmOR4ZhIIRgET3jCALb7Yb1Zk2Mkddfveb+7t6M9slKxi+f6n2BfjPgdbaDuuiTy/PUv6td4Kq+LHhEc6SN1n5n4go48zw6RNE4VZLYOYXc+FHMPHA1NHyp3UL/WAdhAY1y/zcnIY8R7zPvSnFUOO3wegqMSCbxLVbLPD1Ltackrzl1s2rxvvY0yZtUsohUJttRqUQixBNuwwwbU7aR55SC4pBI7c/l7mrk0kKv55ENWgC95VHPpkfyHKXkcICSm2U0BMkiC8ZpsOpfwf7FOFnkT7J1xqYZxWyJySpFKTnY2dV4Usn9UnCceV85q09zQRRLJwPb5EpE1DdG+B2C3dNx4LA/EppI2xgH0DSOlRjXHOfSAVx2JP1sl+Zy503b4RsDf/rVFf1qTdv1XN18zNX1S5qmYbvZWpRPrhrWtMb9Y8Snlk5Y0k8qKFgQmMQ70RVKesaxuDivmi1tkVogkmr0T7mvEEOda56Ozll0DHJ/XfRRzZN3BRRQMzmlRO5YOqMkRyoVvJyv1zOZ7dkCGrt6H+ZQOndKyvsuGFXWaEVjOvFxLL0rpxKWLAo9/bVFvi7miXxfBZCHkDei1dadbJaWaoXlB8+lR0v1+ooQSqqxVVFKOVKuknIvpwtmV6xGtSzB8YWcR2CVTaYTf2TRJk84KfM1z897do15A8rNel34q3irMqwLEE2XwE+u8mnjdXmtp+6oPMXS1yVXoZrbcAmE1WVEQNN3MxafV96jDOBJUOh9h4vx9rhcbdqvWrxe4QSuemHbO7yDvlX6xlaumAyEt+m6RGYUveWesEjfLradgJFu537gfVersdk6YlxcfrFZ1DQ+bxpl/cWSVp37N0pQK4AUk3LEQh6+Tr5JxM8A/BdU9VFEWuD/IiL/O+C/CvwfVfVvi8jfAv4W8K9+/emW0T7ZmU/JyOtSQMNASoOVcNdiFJ05xOIWny928MroW8yli2Fd2mv59ftGzjuf1zBbOf2+plbUOVersVLSHbxv8N7u29ewvBLxk8NrywCHXK1Kc3/SPNF6Grz9p4ImI6pNlGYRxIF3incWZRNHZUpiO43wD1X1P/k8Oqytsnh7toqcGbY2sZ404ML1K6wckkGOhVFQF7jFv/KZzJBc7VOFK2r5WTU+T+9aOO8yC06bs/t7V5afL2+2hKkvrzsvyDXRQMuxS2BDqoNzcs2lZfxMY7Fp4OOPPQ+Pwu6YGKcSvbXYhdLFS70nPXtdSK3q9JRXp/WYkyY7+cX5ORdtd/KjhdEihRtqQhkwfqkDYBXnzAzL4IzCHGFVUhYXkWiiWAW+K9AXGIC0xaJ+GuAKWCG0WFWxNUILbIEe7ze0/QbnO16+bPjss4ZXrxyffOq4unKsVo6+X8OzjcU5sqX+JSyMsLKSz/0bMuS6AFqWKUIy/8SaY9EXixFR0sveUX/uF8uoI1cAptxlpDh71f0jc5i4xXPkVyn/I/NUlKlOccU4dhnYUEXU4YvfVLuN2NxImV/tVVVxojM9yfI5lj51GbFap6b5cZ91XZwbs0R+1qmvGpILA2MxVGbgoDTXYoy+Z3l7KlpiueQ5bMOi69pMZopVTYmRcRqZpokpTAzjwDAM9fdJ07xDW5w9PZ1/7frlPsvn82SzzJhf/IKyhjw5A5V2klNj29rudBycOXTPo0NlYexlwCD3yxouVqNUTreiinM3W4cyW+H5fufy6b5G3tQVKLelLl7rbnYBfiroUvrE7PQUwlabP+ZIhMKTJMVWcfMxcwqKrzdhOFXKz5KjAPP7koZmwVxax2Jd2s7Aq2XD6vx2brWlQ/bcY1Hz7mlObTweDzw8PDCOR+7vH3h4eGS/f2S/3zOOQ64IFAwo0pSjIXSxbtvMVflhpGx5ZnVrQjQTOi8r2aaEy+04p5lq/S1q0WUhTLjQEEIwbgokc8IEpnFiGCbGKRCC2Ru+6UGhaVt802Ti5hm86foVbdfhvbc0rtWatu25vr5ls72yVK/12srbZ7CnyecxW9c48Up/mUE7Gw8p992zLVSeT4enNtsyWqY4S8vXczvjfGp8KrpsNslsNBfwp5xgWbUvJSuPLq7wi2U7D1fng3fOraV9ToEzez/fT41klHn9VyU7sjllS6VGAeThuLB956eYn7Gce2mDzm2x3Iidgfq6EfpsYzGp5tRFI/830nwWhODz0vKkhZ7vv1S4nAGs83Vg7i/z8rqYXxa+3rI93mOZzi1a59d5LJRKiQI2p5dNGedRV9pzsaa7mStsmdI1r5enfXgZLVnuwyKhp1zqfTI6g8KlWzcQ8niYo6CeRYfnFvzpqn2+yhc7891jirlw7nE9Le/z15b3sPwzW3nZpHXOCt94b36SF0WD2TyqVoF0GA1ecU1j3HmYjgSje9AcSVX6WfF9nfc1aqtUak0Z+ImZQ7H0G19I8dvG1qHDwDSVTBlX+we+MdAQoZGGpnV8nXwt8KPWqx7znyV0QYF/CfjP58//LvBv8LUTskIKoBFJgZLLbbnHQpoOhOMdGnfE486QSSwqxio++FzZIAM+ruxZO5bG77lUs3mB8C4buKDrwEk4Zv3cRml2IMgkcTZgixNVrlIMsuUudgF+6o5aBXlmg/7Un5iHS9kxc+LoXIeXBo2OdFCGKZoh1QiuM9Cn9YnOJYjK8UE5xnrmMiN8Sx2S9VZ2ymuOwnz7dSJdgCdS9gDhNLKlRLRYdEXhGiiO3jLeav63vHaJ5Fm8SsDIpJdphfMCd3JfdbIp3zn0PArnSc6f039SmzgbcPUcZgxrBXnmNLG5Hct53NnrqQEDoKrPMhZXK+Gv/0cafv05PO4nhsFy0lPqKLnpJ9NjTeN6d7E8F83PPP+1bPv8WhwkdNEvzo9/V2/2doZxhRFhhxE6vwG+QLkn8YgyYmTeDcoaMzzXGJCTgWMcBiCawS2sEf05wqfYhsdLDPBpEK6AHqFDuMaAnwYnBgCtVg2vPl2zvWr59DPP3/hPdfzk557PPm356c8bXr6s0+2zjMXiIxYnrvxzucwk2dHQOpbM3CucC2XH/R3guipx7gHV0csgjRQ9SJlH9fT4rEZZnNNAIDff/GJerp6vzoZ6NTaxhVhVazcsj+gbC4cHRVtXIwGsElm9eU44q7L1W0LolZkfqBhdmhfkQrORVCGdJh4+11gs1oa1wFkbynxIvf9FwxQaJq3f5aMlH7Aw3ufd33ODa74RJ6W9lHXfgW6JKbLfH9ntHpmmiceHBx53D0zTxG6/Z7/boyht29K2DarKfn+o5XVTjphQFrotllwxWOtNLkw9OX3q0iCl6yxnXnI/nNdvcgh86Z+z/ksbWtpHfFbbRpJayaIl2FXUVdK3KfeVZ6HKt3I2p/qF3VI3kTy+aSnRaGXj6LTimVbHUReOgUXT5N3v2tClStxp9a4lwGN2kK+Vv5Y7/JJ56CxKYd4JLWxnaKHytfdx0f+WUQupRCUVxzI7IvM8tNS7nIDC+ZmfRY9lvpymid3DA8M48vh4z68//wX7/Y6Hh7d8/vmfcdjvGI57dvf3hMlK8hImnMZacMJ07iFk/jjx4FoUq6SZKul1SYdXs4ujVSuVHJ0BprfCnhRzWe6EMowjh8PBiEAPB46HI6EJaExorsx3d//A4+5g1atoWfW3IJIBHiNrXm02RtDcNGy216zXG3zTsL1avN/esFqvceIMNCoV4vycMnZCAp7X6aSKBCG5BZl76QM5zSRHpzzTWMwdhZP+kSuZsRgH5bX0UMkbAXriKyz74rzenXS/PBfn9Qsj0Lbv7fwiglOPaqmklyO9xOy9Mifpws6Kda5UQrTIMuufBUwqzWxvDFRYGOJiqZgjE5pBoGUWZZ1p1e5TF1NuiRIpzul8fK79lCKaqxY6HEtOoOfSY4qJh7sd1PbXk42oc6nz6uL5rV3nFPt5Sp7XwMU0xMm3cnadBUiyOHRxPzqfJ39upPq+VlD0zVzlrZDnA0QRSs1jLRv6UKsCirNqca7x1XauUVzBog1RNVBHyyZu3lD3B8bjjvawou17Qk5LlXxvznsDFXPFswzWPuNYXDZwtvOWY/PknbzzfqkarZbcN7neNztyhtqUxltal3ew7mHbK2jkcH/P7uEtYZp48/otd2/vAVitt/SrdfXtyamkcRqJweaApvU0Za5sPL5xGcAsHFRKWFQyjdHW8q5refHiBZvNmuE48NWXX/H4sLOS702DF0fTtWyut7R9R9evuXrxMf1q87XP/I04fkTEA/828MfA/1hV/00R+UytdjKq+ksR+fQ9v/1XgH8FgM1nlJ0MUk7xSlL9YY0TaTrCdCCFMe+OGL+PihETzhZT7tiynJgWngKnaj8HfOrrwlkqr0vQpr7POZgnn8mc7z7vMvLOMU3TnPz9jizmi3NDrSyQTiSXw3SkIAwDxMxsgxNcY5lu3hsRa4rKNETSuHTe5P/5rXXIz1ga7PVfvcw8WOtiVifHMivL6T8RSqpRjfxhniJmpZ5fU7GID1uQ5u+SfX4CUJV/pxOOXWNpJNhC/C7Y8z5Z/m4J5JT3OYKJs+ikWoK4HLM432+Ys55rLF5f/4xPP3WMk9L1hVPKwLcZiDm/kW82kc6/XLb78hznDt/5onA61Z9fu6STmeMUgRFytI/yiOoOi/6J1aCrhNq6xqqpFSCyXHPKx29w3CJ8jAFEr0BveBf4uQFdGSiNVWTrGuHmSrh9AZ+8cvz05w1/8EeOly89t7eO1WrxDM8wFrvW5sPiPC7nJOu2jpSKUzHPfS47ey5/eE4KLIstNBuuZ8BSfU99pQDkRWVKTfvINtgMktf5mzPjqoSm8w44kYMaUc3VafIpWid4fzZGVbODWS7/rgGxXCsU43pQCr3HMr3LohWc5F36xX0911h8+fK23s+8g8rCiC16OWur06c+eSzedYzra11X9HSOLbhDASSaxrPqO0KMHPZHxnFgHC3KZxxtB+x4PLI/7FHVnDJmc0eYjEtAdY6qKn1By/s6+k81kz9kRr4WHgmnfCDL7iOyzPaWuYuVOVzL2n8yDp9Fh+vrF9UgJ5djhgTJ1Wif8vz2DGXk5vuroM9ibHA67kRsx7Bwszhy5a+s1ySpgrzFgSjtXtI9SvTPsk8sgR+fKzjNm1RPp4DVNdqBVcnLJvkCTAXMOVyolEX/WwJV8whN2Ylc9Inimcmswyd08Sx6/PjVj6wtY2IYB46HI7vdjru7Ox4fH3h8vOPt2zsOhx1xGhiPRwN91IAalwEFqZ0+AiWFw6GEWulMpZnnWckjOm+K2sZXjiDKE+rMlWRzkuSKVNM0gXNM00SYjL8ljBNxCnmM2g51jLa2N22PiKfr1nT9ynh6NlesN1uapuH65gXb7ZWldF3dsN5s8N6z3hjfz7l9+86mw3n7qoJXJEepV3NP536aIzKeRYfizt2a0s9Kny+pTwuAcXHcvA4trc/5u2rCntzA/Dymr1jBlpQLSNiamO3ck/BR00sdJ6W/1/tOJxE/8zPkjlOs5jrvlTU5z4klvazYTfUai6dbgLEZhDtbmvN6U64tJQUxW1hzqtfz+YsIw3EEykZPvqEFKXKZP9+xVJf2yHKNKE1bFZbnSyHPO7NdcPark7Z4Wk4X7HJPIoUsXTJwXzhemwr8LH+TdOY/LMCPc85AGpc3uXKAeon+KtUkrcBAJt7O9m0MgThNhGmogESKIaeN+WqPLe2u59Lhi09+9p62mufzdz5frBinMM8TdsJ7pWxzfs1RdSCUlEy1SB9n0T5to5CUfRg47u6ZhpH711/y+ovXAGyvbthstjkidwZ+pnGo4FrfNbStFcgw/jQ7JsQwgz2ZH8+4mCIxJvq+p3OKTxOH/YG7Lz/n7u2dBYG0RgTdrToct2hc00ikkxesvwEl7DcCftQgxP+EiLwA/jci8h/9Jr/Lv/07wN8BkI/+uk1pxQ7LhmfZhXJ5twisw7t2ZeFvrsE1K2YywvlVfOb5KOip2Ht8Swm/Ko7QbLSQB16eNsoutlCBH7KTIm7e6a6TzQLAKShzHi72zGIAhlsYnK4YfAtb9p22Yvl5tcBNnPXEWhGsy+liXpDk0UZoVBDNxFEFEFmUdlPVb69D+Ru/YSydeB3zxKfU3c4nvZU64c6msP1e6qR+0jQnBnJZQBeGM46ZD6hEE+niX/luuVDPESoz3p5OPj9V2tKBOH3u2TIo5uzcD+a/n26z+q9WVFosRjzfWPz5z/6G/uSnnqiRH/9EQRLjAI+7iWkMJHXE2JiBUquILO/lHSXO34ha2U9KyHvK37nZ4ijV1vK5ZrBpOThKSiio+hzia9+XXSpy0W1L7RpQzVE+tKDXZjxLi0Wsepy7xvh/8vyBgCSMh2FC2OL0U1yO+FE+Aq6hADzSIuIzP5fQeGG1EtrGcXMr/PwPPR9/7PjkM8cnrzwvXjiut47GL+HM5xmL202/2ABbmq+ZHFjP+ywn429+m/uszg7potfOQ41lD11CtOe9YQFc6Nm4z+m9NX99uc0I75QzL2fTGkGRF2jNI1eTpUeciVQnm3zcuz12vsAcZWDXc/masyFUnJPTnz3TWPz5T+uZz0GQM3ejfqgLAKTqmzw+pHYJkNPojxPJFu/c/Iu42WwQF6DPubKbHzPwl09xsplRHCpzVmZYV5eqyPdV5sP5mifPntfr2kNzR6yv5VzLzxYO6fm9SQUb56gm6/LPo8OXn/08j8W884eRn86gymk6VZ0N6j3OO4ZkcGrJTVUikgswY9FzvgIzFgFgkQTFcZTa1tauKc18P8VZKK05a7Do0ebx+mkev8s5ReYfUJRU2qCeo+p2nuVTvuYMVMnC2VzCYaeG0skG39lgfi49/uU//uvqStq8N46Ftmnouo6+75mmnr5foZqYREhhIjmPxhzpm8E1qVFuZk8UnVjkotQ5pj5bvRlL89J8rgJMFJAeKSCbSYyWkoYIh8OBh4d7vG8MeA2BGAJTjDjfgFOLGveWorXebFnlaJ7NSWTPlX1eU7p6XI5aKMDOU+CbZselzkuLuTPGWMGLJYhRwGHrL8+jw6ZZ6RKAOp32siUiLjv7Zb1JWS+mJ87GhJ78+vTdySCQeXSU3ltAdusJczRGmbNKERhTrztr22I0LsEqi6yroyTPlVEyJ6aYT3M6fsq8tBy9izWhzhXk4XUK6L1j92kBf95J9Xo2PTrn1TVLgJE6H9bJrYLbp21+aqou186FIXDui53b24ufydksOTfVbBwt19f50tmHLMBATe9ysPBZC3+Pwswbs7y6YH6qm1PyUlJmX1gWXWVpCYLGwHTcMTTG5ff41a8RwLct7TqXB6dYVtVWeBYd/uyv/sfr4rG0Vuyp5gjuZavJ+TGLr8+5AZ+y6Z6eV993t0sPc7Zty2+sgIKRtadcPEQz15sN9pK9YRGFCfs+5igswxh8jpzD5vRk804KgRBLRGe205J9HkMkOWcgXZ7Hy78klso7ieWSrKcJH9oM7Ou8Dv8G+a2qeqnqWxH5N4B/Efi1iPw4I38/Bj7/Jueoe8/Vac+5zKKIRtoc0ipNR7N9CRoR3+CavqKTJZXBQuB8HVxSc4u9LXRig2zenSjvmT+H09StkgLBu4tbHU4lfB2dQ9mZDWzyM9bBb77vSQvk9qzvC0It5Ek7G0AldFadw/Wd5RRGofOOFBxEQTYtEpxlN+2M20fjBBLgjOrpOXT4tJy7gGUC1doGM/ij8whezNJSwZrsfEkBfoRlRNAM9rh6/JxaVQZjwymxrS7+nR5vu5KFDyYszrt8hhy+f5KaJfM5fkMqmL7zGe851r3n/ZNG1rfS42br+E//Zzt+9GcTyY388peBt2+UP/2TIw8PyjQ1HA4dMViZ+aTNE/c7r7sV5AGaRumahHNGCuz8EvgpbZ4rrEn59Qz8aLWechi2QgieMHlUhRiFGB0G+hxRHoAdiQeUe2AA3WDRaQ4vt3h3g0hD629p/RV1McWuozJgtGgbnP4lRH8EdKi7RdkgUlJpLQy06xNNq6xWwiefOq6vHB9/7Pnn/2MrfvKTlutr+NkfOl68FNrWsVm5dxafbz0WiyHEopcvje+TuO754jOgIfU0YHNQ4eNxcuqa1B4oZ/Fxsviu7BadXG8GbEiFXpp51zv/Yjm3nuy0FudB5vO6Mo4VCEpKxRmZr16daaiL6tmTLN5p5ucof3krOaB5R62cIy1n71meZV1cRmeU+5NT/Szu9sQEnY3vef1ZAjjZlKt9oz7/Qnml7eZIDHMgfF4jzfk1Uv/CC1IMUV9CxTVlHhEl5kor8/z+rog7/fzcXFk6+sW5Ofk73/jSOZlTE4rzU44pNsNsJy8v9211KGRnEsBZfyt2iMuAjnMNS1CnvBbSZHEe79p8rMu7u6fAj8th/1I/X6QLFQLhhUNXHSZ7xsrtUCoP1RSKuSHq/KEqdU5XFrrUlNfm09HkRGrxC83nOll1zSY1YnaFSKyVeOb1XI0a6YT7bin6zv9Pvn2GsWh7bC7398Q69FxfX9E0DudhGI/0hxXDcMA5byWip4E4OEvxyalapdqZppBb0KjYLZbHkdQvKvjM7T+Pm1LH9HzMz/PlOI3ofocfR5ovvyBE63cxE+GqGkmu79a0znF9/YLt9oamabm5fcHV1Y0BP9srVpvNgrOns/FfiE+xinLOvTuWz6NjymfL75bATwjhSRDouXQo2ZEuIMk8Fsg2tqtpoCmX/J6DEpcz6RPPCrXvL5/YuvRyJc62X15DBM1+go3bECIhWBWwJhNpF//EV+Ln+apJAzEZx4iNXeP6cAXkESFpQ3LL9Duf+5KY72STk90XpxsZUr4q56zzylzl7zRyVm0eIM9FT5Tm/tZ6dEK76U7ny8zpV8DuFIOtV2VjSMu6trgfqcNp1mL9YAk+LNYXV+yI+fOlP1jh6dpWp+OgzH+IGAeMz5WfMicM4mxt8Fapqdls8auNfd52ON/aPB0mUjAw2Hh6LKInjOVe4swVhFo575QpVDLIGMYjuzdfcHy843D3mjgcWV/f0q42XH38Kf32Gt/2rLY3NO0K0omP+iz+4rKq5imws5RzwOeJY4RFcZD32BXf9KYWx1fPMvOwOjDu4ahoDMRxJIwjYbQKiWkaQRykiMtr4zhOTFMgqVZOJe8961VD41u7ikZSCLWS1zhNdv2coq4xEY72uUuR6XBgbBrG45HhcGQ4HvN8avPaetzQbXrEO5p+ZXbkE6D8uXyTql6fAFPuAGvgvwj8D4C/D/xN4G/n13/tmzSy2Q5C2bk3185Sv2qetyiIx/m1GTSuwbV9BXmWQM4p8LMwoJomf+9ySNtZGtfiPVIGcAZb3rObUV5jjFZmUxWNESTOg744VXL+0LNhb3+dLpSSDxEBz0wEJt4bApyZpqRtEC+gHhcEiR7nWyR50pAIYzAStFw9REgM4Q5youtz6PDr5SlXRRfgD5w9/qIa1CmwUKegutIuPZXzf47CG1X/fifa5+wec8PPxucyyufsvejiFO/e67uv8JTx8K6cn+Op9wA0IvLiOcZi18FPf+ZICD/9hSI+0XaJN68npklxEplG0ORtGkwwVxebdyRU5qcs4E/jlLZNeKc4rzQ+zZaFLsmUS0iqKVdP2i0fk4EfJ5qxNwuTThk1P432GVAG0AlLS75BaHB8guMjnLS0/gVdc30KWGAl2C1lbJ1Bnx8BLSpXIGvEKU074VzCN5HVeqDtAtsrePWJ8OKl8Oknnj/6yy0//1nLeiO8eiVstpnbJq/LX3z5BTzjWCyO7VJOI32WbsKidVVOu5bMI8baprBtPQH+1EV3oTEt59DFsfO4Kwa1VGfQVQeymtpl7jxzJGaTIV9bF8+kaa5gUqcGe5Il+HEydOHMaNBMsGrflAplC1uyvl/Is43FehdPOE8i70npOvn+TL8nDbZo/8UaBqeG7OmP52PLzrlzLqdyRQNXWKyZUiI2YJlCsThbfr80pouculAnxvXZ+5NInuXniyiEZUTCSbRPie4Vc+zLzT23Dk/bxECdeaNqdhLqjjrnx5a0cFedwWVbn1yH+XxQ0hFL6oKe3I8dougiHWwel2nRuZcOYRm/9ehZWxU4LuAa9bkWN1nPK8sziWRneJ6DRC0Sq2KKeDQAAAiKSURBVNiHT7jW5aR1flvczbOOResjgvcO7x1t29D3nRnr04rVal379ziMYKY/GifbfNNUM9BNI2bXOhbRjlpYkIpuln7pPGrKEbpsW5ln1xgTTCMxJfa7HeI7RHwtSAbQ+BbvG5qmZb3Zcn3zgrbtePHyI25uX2ReH4vyEZFc3cufDNST+fyJueSp93NkQqqRPeeAT/k8hvisY7H0+eWUWtuw+A4C6nThj+RWr13tVD9LtPikZ56sLWd2oWbrsqYvlnFpQFAFqcVl8HaOfDu9c6VU40opVOBHRTJXkKvzfQWHdY4OsfVRTp7h5PyLrnUyz75jZy9uKf9usYcEzzkWRXBNTnViwTfmcwZHyjxNRGqRoHlheOJ8i3ufp8ST69UDF4Ds6YbD++dgYdHvqwOefdOSjZIpS2xNsvfON/huRbveIs7T9Ctc24MqYTySpsn4qYYDCFaJ1wVIzub53C7zhulyLCopBsbDDjnuieOAE+H4eEe/vQYnhDDSrbY0bY9zDSk+91h8ShWnwI4++fmpTyCLN08Bjd9c5o5wagKXsWLfkXnztET8hJCrIxo5thmViRrzFgPTNGZw1sAdyccUwNz4e5JFD+UUPMG4+9Q5NBpnU5omovPEyVJ247SI+slRnjElxDvGaWIKYRE9+fXyTSJ+fgz8XbGcPwf8PVX934rI/xX4eyLy3wL+GfAvf+2ZznX1bXT3HctygH/Txpx//Mw38y1lHF8D/DUR+X/zbXV4ka+V37K3fEMRMDTjX3+Wsfj7Jud2/gcqv/rVL+E5x+L70P33teVvOTd9k8NPwJ/f9jzfSOfP0zFOq3K855zvvdTSqQGeeSx+szXm92xh+UFLbctnnE///1k/547qU5/znmPec/TSz3zilLPb8AGui9+kCb8TecLR+h4kGpDxe6HDE9zzyY2Pv8gJf1uFnm53/L7LYv161rH49ObEt7zXZz/jhyUpPt9Y/Mbae8/u1jv457e5xpO//EB7w9eMG/mtQY1vISLyBbADvvzeLvq7l1f8fjzvH6rqJ9/2JFmHf8Lvz3N9H/L78qzPokO4jMXfsVzG4l9cfl+e9TIWv538PujxuXV4GYu/G7mMxb+4fKg6vIzF341cxuJfXD5UHV7G4u9G3qvH7xX4ARCR/4eq/gvf60V/h/KhPu+H+lxPyYf6rB/qc71PPtTn/VCf6yn5UJ/1Q32u98mH+rwf6nM9JR/qs36oz/WUfMjP+iE/27l8qM/6oT7XU/IhP+uH/Gzn8kN4Vvf1h1zkIhe5yEUucpGLXOQiF7nIRS5ykYtc5IcoF+DnIhe5yEUucpGLXOQiF7nIRS5ykYtc5AOV3wXw83d+B9f8XcqH+rwf6nM9JR/qs36oz/U++VCf90N9rqfkQ33WD/W53icf6vN+qM/1lHyoz/qhPtdT8iE/64f8bOfyoT7rh/pcT8mH/Kwf8rOdy+/9s37vHD8XuchFLnKRi1zkIhe5yEUucpGLXOQiF/l+5JLqdZGLXOQiF7nIRS5ykYtc5CIXuchFLvKBygX4uchFLnKRi1zkIhe5yEUucpGLXOQiF/lA5XsFfkTkXxSRfygi/1hE/tb3ee3vWkTk5yLyr4vIPxCRf09E/tv5849E5P8gIv8ov778Xd/rt5GLDn/4OoSLHj8EPV50+MPXIVz0+CHo8aLDH74O4aLHD0GPFx3+8HUIFz1+CHq86PD3U4ffG8ePiHjgPwD+S8CfAf8W8N9Q1f/P93ID37GIyI+BH6vqvyMi18C/DfxXgP8m8FpV/3bu+C9V9V/93d3pX1wuOvzh6xAuevwQ9HjR4Q9fh3DR44egx4sOf/g6hIsePwQ9XnT4w9chXPT4IejxosPfXx1+nxE//xngH6vqP1HVEfifA//S93j971RU9Zeq+u/k9w/APwB+ij3j382H/V2sY/xQ5aLDH74O4aJH+OHr8aLDH74O4aJH+OHr8aLDH74O4aJH+OHr8aLDH74O4aJH+OHr8aLD31Mdfp/Az0+BP138/Wf5sw9OROSPgL8B/JvAZ6r6S7COAnz6O7y1bysXHf7wdQgXPX4Ierzo8IevQ7jo8UPQ40WHP3wdwkWPH4IeLzr84esQLnr8EPR40eHvqQ6/T+BHnvjsg6slLyJXwP8K+O+o6v3v+n6eWS46/DDkoscfvlx0+GHIRY8/fLno8MOQix5/+HLR4YchFz3+8OWiw99T+T6Bnz8Dfr74+2fAL77H63/nIiIt1gH+Z6r6v84f/zrnApacwM9/V/f3DHLR4Q9fh3DR44egx4sOf/g6hIsePwQ9XnT4w9chXPT4IejxosMfvg7hoscPQY8XHf6e6vD7BH7+LeCvishfEpEO+K8Df/97vP53KiIiwP8E+Aeq+j9cfPX3gb+Z3/9N4F/7vu/tGeWiwx++DuGiR/jh6/Giwx++DuGiR/jh6/Giwx++DuGiR/jh6/Giwx++DuGiR/jh6/Giw99THX5vVb0AROS/DPyPAA/8T1X1v/+9Xfw7FhH5zwH/Z+DfBVL++L+L5fz9PeAPgH8G/Muq+vp3cpPPIBcd/vB1CBc98gHo8aLDH74O4aJHPgA9XnT4w9chXPTIB6DHiw5/+DqEix75APR40eHvpw6/V+DnIhe5yEUucpGLXOQiF7nIRS5ykYtc5CLfn3yfqV4XuchFLnKRi1zkIhe5yEUucpGLXOQiF/ke5QL8XOQiF7nIRS5ykYtc5CIXuchFLnKRi3ygcgF+LnKRi1zkIhe5yEUucpGLXOQiF7nIRT5QuQA/F7nIRS5ykYtc5CIXuchFLnKRi1zkIh+oXICfi1zkIhe5yEUucpGLXOQiF7nIRS5ykQ9ULsDPRS5ykYtc5CIXuchFLnKRi1zkIhe5yAcqF+DnIhe5yEUucpGLXOQiF7nIRS5ykYtc5AOV/x/lU0oBUmM6VQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7L0lEQVR4nOz9d5hlV3Xmj6+Tbqocuqq6OqujckIISUhqBBLISLbBHvgOjMMMtgXY/j4MM2ZgGBuBsRhj//gyMx5wBhwwNjbZQpaQUJZQTt1SB3UO1aHyzSf9/ri3q+p99+m63ajq3qZZn+fpR1p1zz1nn33WWXvvc6re14rjOBZFURRFURRFURRFURRFURRFUZSfcOxWN0BRFEVRFEVRFEVRFEVRFEVRFGUh0JceiqIoiqIoiqIoiqIoiqIoiqKcFehLD0VRFEVRFEVRFEVRFEVRFEVRzgr0pYeiKIqiKIqiKIqiKIqiKIqiKGcF+tJDURRFURRFURRFURRFURRFUZSzAn3poSiKoiiKoiiKoiiKoiiKoijKWYG+9FAURVEURVEURVEURVEURVEU5axAX3ooiqIoiqIoiqIoiqIoiqIoinJWoC89FEVRFEVRFEVRFEVRFEVRFEU5K9CXHoqiKMqCs3nzZtm8eXOrm6H8FKE5pyiKoiiKcvagczul2WjOKa1A827x0JceiqIoiqIoiqIoiqIoiqIoiqKcFehLj7OIMAylUqm0uhnKTxmad4qiKIqy8Oj4qrQCzTulFWjeKYqiKIqy0OhLjxbwyiuvyL//9/9eBgcHJZ1Oy8qVK+WXf/mXpVKpyLFjx+SDH/ygnHfeedLe3i4DAwNyww03yEMPPQT72LNnj1iWJZ/97Gfl05/+tKxZs0bS6bT88Ic/bNFZKWc6mnfKQnD77beLZVny7LPPyjvf+U7p7OyUrq4u+Q//4T/IsWPH5v3uJz/5Sbnyyiult7dXOjs75bLLLpO/+qu/kjiOYbvVq1fLLbfcInfddZdcdtllks1mZdOmTfLXf/3Xxj5HRkbktttuk+XLl0sqlZI1a9bIJz/5SQmCYEHPW2kdmnPKmY6Or0or0LxTWoHmnbIQ6NxOaTaac0or0LxrPW6rG/DTxvPPPy9vfOMbpb+/Xz71qU/J+vXr5fDhw/Kd73xHqtWqjI2NiYjIJz7xCRkaGpJ8Pi/f/OY3ZfPmzXLvvfcaOm//+3//b9mwYYP88R//sXR2dsr69etbcFbKmY7mnbLQvOMd75B3vetd8v73v1+2bNkiv/u7vytbt26VH/3oR+J5XuJ39uzZI7fddpusXLlSREQef/xx+e3f/m05ePCg/N7v/R5s+/zzz8t/+S//RT760Y/K4OCg/OVf/qW8733vk3Xr1sl1110nIrVB+/Wvf73Yti2/93u/J2vXrpXHHntMPv3pT8uePXvkS1/60uJ2gtJUNOeUMxEdX5VWoHmntALNO2Wh0bmd0mw055RWoHnXQmKlqdxwww1xd3d3fPTo0VPaPgiC2Pf9+M1vfnP8jne8Y+bnu3fvjkUkXrt2bVytVherucpZguadslB84hOfiEUk/s//+T/Dz//+7/8+FpH47/7u7+I4juPrr78+vv7660+6nzAMY9/340996lNxX19fHEXRzGerVq2KM5lMvHfv3pmflUqluLe3N77ttttmfnbbbbfF7e3tsF0cx/Ef//EfxyISb9my5bWcqnKGoDmnnMno+Kq0As07pRVo3ikLhc7tlGajOae0As271qPyVk2kWCzKAw88IO9617tkyZIlJ93uT//0T+Wyyy6TTCYjruuK53ly7733yssvv2xs+7M/+7MnfTOoKCKad8ri8N73vhfid73rXeK67rzSBPfdd5+85S1vka6uLnEcRzzPk9/7vd+T0dFROXr0KGx7ySWXzPxWg4hIJpORDRs2yN69e2d+9r3vfU/e9KY3yfDwsARBMPPv5ptvFhGRBx54YCFOVTlD0JxTzjR0fFVagead0go075TFQOd2SrPRnFNageZd69CXHk1kfHxcwjCU5cuXn3Sbz33uc/KBD3xArrzySvmXf/kXefzxx+XJJ5+Ut73tbVIqlYztly5duphNVs4CNO+UxWBoaAhi13Wlr69PRkdHE7d/4okn5KabbhIRkb/4i7+QRx55RJ588kn5+Mc/LiJi5FlfX5+xj3Q6DdsdOXJEvvvd74rnefDv/PPPFxGR48eP//gnqJxxaM4pZxo6viqtQPNOaQWad8pioHM7pdlozimtQPOudainRxPp7e0Vx3HkwIEDJ93m7/7u72Tz5s3yxS9+EX4+PT2duL1lWQvaRuXsQ/NOWQxGRkZk2bJlM3EQBDI6Opo44IqIfO1rXxPP8+R73/ueZDKZmZ9/61vf+rHb0N/fLxdddJH8wR/8QeLnw8PDP/a+lTMPzTnlTEPHV6UVaN4prUDzTlkMdG6nNBvNOaUVaN61Dn3p0USy2axcf/318vWvf13+4A/+QPr7+41tLMuSdDoNP3vhhRfksccekxUrVjSrqcpZhOadshj8/d//vVx++eUz8T/90z9JEASGSeUJLMsS13XFcZyZn5VKJfnbv/3bH7sNt9xyi9x5552ydu1a6enp+bH3o/xkoDmnnGno+Kq0As07pRVo3imLgc7tlGajOae0As271qHyVk3mc5/7nPi+L1deeaX8xV/8hfzwhz+Ur33ta/Ke97xHpqen5ZZbbpG7775bPvGJT8h9990nX/ziF+Wtb32rrFmzptVNV36C0bxTFppvfOMb8pGPfETuuece+fznPy+33XabXHzxxfKud70rcfu3v/3tks/n5T3veY/cc8898rWvfU2uvfZaY3F8OnzqU58Sz/Pk6quvli9+8Yty3333yZ133ilf+MIX5JZbbpn3txGVnzw055QzER1flVageae0As07ZaHRuZ3SbDTnlFagedc69C89mszFF18sTzzxhHziE5+Qj33sYzI9PS1DQ0Nyww03SCqVko9//ONSLBblr/7qr+Szn/2snHfeefKnf/qn8s1vflPuv//+Vjdf+QlF805ZaL7xjW/I7bffLl/84hfFsiy59dZb5fOf/7ykUqnE7W+44Qb567/+a/nDP/xDufXWW2XZsmXy67/+6zIwMCDve9/7fqw2LF26VJ566in5/d//ffmjP/ojOXDggHR0dMiaNWvkbW9720/VbzD8NKA5p5yJ6PiqtALNO6UVaN4pC43O7ZRmozmntALNu9ZhxXEct7oRiqIoyk8Gt99+u3zyk5+UY8eOJUobKMpCozmnKIqiKIpy9qBzO6XZaM4prUDzrvWovJWiKIqiKIqiKIqiKIqiKIqiKGcF+tJDURRFURRFURRFURRFURRFUZSzApW3UhRFURRFURRFURRFURRFURTlrED/0kNRFEVRFEVRFEVRFEVRFEVRlLMCfemhKIqiKIqiKIqiKIqiKIqiKMpZwaK99PjCF74ga9askUwmI5dffrk89NBDi3UoRRERzTmlNWjeKa1A805pNppzSivQvFNagead0mw055RWoHmnNBvNOaXZuIux03/8x3+UD33oQ/KFL3xBrrnmGvmzP/szufnmm2Xr1q2ycuXKeb8bRZEcOnRIOjo6xLKsxWie8hNEHMcyPT0tw8PDYtsnf0f3WnJORPNOmeVUc05E805ZOJqVd5pzylx0jFWajY6xSivQMVZpBTrGKs1Ga53SCrTWKc3mdGqdxIvA61//+vj9738//GzTpk3xRz/60Ybf3b9/fywi+k//wb/9+/cvWs5p3um/pH+Nck7zTv8txr/FzjvNOf2X9E/HWP3X7H86xuq/VvzTMVb/teKfjrH6r9n/tNbpv1b801qn/5r971Rq3YL/pUe1WpWnn35aPvrRj8LPb7rpJnn00UeN7SuVilQqlZk4jmMREdm/f790dnYudPOUnzCmpqZkxYoV0tHRcdJtTjfnRE6ed93d+8WyanmXScfwnUwG43Qa3yims+ZxUimMM+n5P095GHsNYofuYDvhjnZsbLdNb8XtBi/JY/y6RA3iMDT3EQUYBxT7VYwrFPs+fV6huMHnIiLlMm+DDS8Wa/+NoykZH185b86JLGzevfn6Z8R1a8d75sWH4Tsd1QMQXzrYBvHhzHnGcYLUKoi7ezIQ9/Vjh73lrZiY11yBcU8/JmpoYQfbofl23XXxItuUhyIOxfw5JyYlf0zfT8jjn6RfAJmampJVq1YteN6dLOfkxgdEvPba/3NHcWGx8Pom/jKFQ9eDNopc+tzj68fHsOljauOpXFzjK9xwzDmudQ12N9uXc7ehH8V8jIiPiQXT4s+5oAYRxpFZcK2ghJv4uI075zuxX5Dw7jc3bYz9mwf3SK69Nsb6EZ4LX+OQ+jfhVCUMuX/5GvNVw8Ell8Y61U7jOlUdKftm8leqeB4RNTQyrjlu71Jt7OzAeu05tH8eMEXEDykvYjxvzlS/ivsoVbDN5QjPvBphTQgSbr+QfhbQEuNEP5QL0/I/3nFBU8fYbz+1X9rqeUfdb9YzPrdTKDW8i0bzKi5fLu3A4ZKcUJvoEkvYoH4xKSrBbqPzTmpDo2H7NNvERHSAamR2rJH6JzlmYXpKbrps/vWEyMKNsR/4b/9H0vWFQYYm/+US1uggwPuvv78/oWV4ohMToxB3d+OauX9JL8QeJWV3VxfEvOaempw0WjBdyEOcpfNyaZznvuZaWCgUILadxnMNzlOb+iUKae7pYj31ffw8onHIdbFupXihJiKVCu6D5wJz5y/FQl7e84vNG2P/8l93S66tdi0dG6+HTYXlVKZRXC+N8Yy2512GPB7SDcvb2wkFl+cGFm3jUN7xeRnLD56o0bxAYh75RSJa5/DcQ2LKOz6k8DlQG635z1FExAp5ToR9GwS1tV2xOC2//O6NTat1v/DRPxYvk00+jwZx0m9n8/UzvsPrBQvv2Ua//W+0idcvIuJwLTLWDwQN4jblpHEvUhscXneJSDqLtSuXa5/3GEZWUV3iNVCa1mGDXfSQSkSGenCcKDpYD8tzUrA4PSX/4dL517ELWet++/97VNLZWp9US9h/hw8dg7izA/suT2OZiEgc8LoTz9Wh+lmt4oMl2+F6SzFVhYjGLhGRkNZrHj0YjGN8ftPWjm3s7MTzHB+fxu9HlDNJ8yWbHtLRRsUinTfldiqFeRTwmEuDCq+TRUQ6O3IQu9QP2VytLyulvPzf//qGhrVOZBHkrY4fPy5hGMrg4CD8fHBwUEZGRoztP/OZz8gnP/lJ4+ednZ360kOZYb4B7HRzTuTkeWdZnTMvPfghLcc8ICaMmUJz54Zxo5ccHLsUn6kvPfhhiHE5G+yT29DoOWDStTCfyfL1rR97po3zd8xC5p3rdohXf+lh21joHYsfgOHbNdfBlyC1H2Lx9zz8TipFD/5yeIyODhywOjv1pUezWOi8O1nOidcuVv2lR2y89MC+5oly4tyfbzCqjxZNzmOPFyl8jOa/9Gj0gM444im89Ghc3PilBxUzLnZ2g89FxLLoAYDwMZK+05wxNtfeKbmO+ksPfvhBC4ow4gW+eZyFfunRlpn/pYdTNZPfWeCXHm0NX3qYb/V9HgRP86WH5WGb7RDP3DmVlx7UNQG9OOF+aOYY29beKW0dC/fSw3xQR/FPwEuPNM9HfwJeelR4Mimn/tLjBM0aY9PprKQztflcml4OxHTxHPpNoEwW54E18ETT5eK838nmcG7ILz1ybfhwpK0d5438IkbEfBGdpYdy/NKD92k+MKf1CK+rztCXHjy/ne+lxwmaNsa2dc78YsFPxEsP2gGvUUVO/6UH19/FeOkRcMGN5n/pwS9zFvOlx8z2Tap1XiYrqQV96dHgO8YvSb22lx78cFpkIV56YJscfgB+Ci89Mllcu2fa+KUHnfdrfOmRazdferR34LNYi156OAnz8mbVunS2XdLZ2hhj0SNtL42/WJDKYN+l+Lm+iETGS3c6Vxp8YqvBNTauOb304OIqIoGNHZpKz//SI5XBNp7oj5nPS7xGeu0vPYIQz9t46ZHGPLKdBi89EiZtqQzOZ7w0nyc9IziFwWxRPD2SDh7HcWKDPvaxj8mHP/zhmfjEb/bzd+fbt6KInHrOiZw871Le7AI4zX/pQWMB/yUIby8iks7g8Rv9pQfVCUnzSw7anl96JD3st2m1zIvpRrcT16JGL0H4rzhEROj5idC8TPiXFWzjBQXGxtyDz8lsglnYjRcptR/whL4RC5F3Dz0QiGXVOi7wX4TvDDh3Q/zW118DcbRuuXGcLz2Mg/39T+Oir0IPRX/4Q9z+5392CuI33YiThbWbcDBaNmzOejp48WrxQMt/TUAP8oyLTNvzdUp8yvSTM1Y01KIkXvMY61izxYD7mttCccxFRBJ+U4oWAPzSw/icFzm8yDVWsad/vY3FdKNFTANiftomIsJ/vUDH5HcaEnE/4MfmM8RTKHa8YKdjzJ1TxafRBwtR62x79kFWSP0X8mQ8mn/sEhFJZ/A7PP7QOyVJWXjMrhyef1c7LYZpB9N5c3xw6SJE9EAzpIeHVXphW6brNVbANtrUZj4nEZGQ6iO/yOR5dBTSb2LRMSJagEc279/M/djChjkn+QULN+lCzsNC5J0Vicw02bgJ+YC05jiFcYR/Uy3hDxJwn/zCgr/AD+XMt6kJ/TL/NecmBfQ5n4Px4tloQe1b87dp/gekvFd+AB1SHPEvO9QOOm87Z5qQdOPMw2sdY8uV8ky9DunhJL8saGtvp8/Nlx7lEv5VBD/AMn6thO5hL+kNwhyq9CKU+75+VIjStGgxxjtjfYAFmh8S8bXMZhL+hJ7/dDzEBYVHC6NqgI3glxqcc0bOJiwJGs3X5h7D499Wm4eFqHVB4EtQ//P4mF6Yu/TLRsZ6rlFtPIVtuP/4mht1idrgJPSt8Ze/Rj/RmGnULoxdC3M9Dum3ocOEx2MWvkQ08obucX6eyWNyo/fDxppJJGEcoF9oqb/dsYy3PPPzWmtdFAazLxv5F5gazO2TRgXjBQPXFd4HvVgz284vWig2flkmYYnBfcrvFxr8lTa/wOcHNnFED0ZEpEgvaFP0EChFec3zeV4v8F+Wx/TCeNcR8wHOkWn8zsDSHoi9OeMMv3Cej4WodX2DSyRT/6u2/bvH4Tu79h2EuKsNXwbkp/CXBkREAvqlprSH93x7J453FR//4iFDLyD4LyL4LyAmp/BZi4j5QmDp0BKI3RTmUUcXtrGzG6/Pnr34IunIyBjESS8cNmxcjcd0sN3HR3EffL/GMfYtz39KZXzm5DoJY6SFf8m68fylEK9eNywiImWcFs3Lgr/06O/vF8dxjLd1R48eNd7qidQmTDxpUpTT4XRzTkTzTnntaN4prUDHWKXZaK1TWoHmndIKdIxVmo3WOqUVaK1Tmo3WOqVVvLZfc0wglUrJ5ZdfLvfccw/8/J577pGrr756oQ+nKJpzSkvQvFNagead0mw055RWoHmntALNO6XZaM4prUDzTmk2mnNKq1gUeasPf/jD8ku/9Evyute9Tq666ir58z//c9m3b5+8//3vX4zDKYrmnNISNO+UVqB5pzQbzTmlFWjeKa1A805pNppzSivQvFOajeac0goW5aXHu9/9bhkdHZVPfepTcvjwYbngggvkzjvvlFWrVv1Y+zsVPV3lp5uFyrl0ela+PpMmPw6U4DXidNbUxTO+Q/tMkzZfmj5PsZF5Cj83PD1csw0O6WeznDbr3DdSAjX0WtlXN8HhlD08fMPzmEwAHdbfnP9zUwbSPAtDX9XwA67tJGokxj2Hhcq7IE6JJTUtyNiehM+KzlMQHxLUpbx5yWpjf53v6oX489/Bz3/0dB/E+/ajJuSf/eVRiL93J/4Z6iUX90N8+eWmHuOll2DyX3wh/mHhwAA7t9LNwvKppCFv2eQBEiUNZ2zInbDJGUKSrubJWJC8sy2JTxQ71g5uYEpuuO6KmMY8bCzJn/M9zsaEfEy6eGGSOnwDg0RDQ9bYw7yHNPSvjTaKmH4B/B1h3V92CeUvkG60EZu6z7HhB8B6x3OjU9MbX6hal/JmxzU2KrfYkNZibwvzBk6l2HgQPw8qZP4rWGdsul6VMg5WfhXjqbLZ375hesq6ylibfNJV90nPlnPbZtM/y6x1AWs3G14ynDeUhxbrkVNHkpfCCQ+quThcow2x9npbT2PlsVB55ziRuHV9e84rQ3P8x1hzGArihndaI2NV/gnfG0m656enEW8cs9H2rL2f4KNk2rPM7xPC5Y3jRjU8ycqpoY9IPUwlSOSfjIXIO8uyZtoW0iQ4CNgIFM9zbBT1rGvfQR+Cnp5uiHt7MWaT45KPcybWHy+hzHaidwOberM/hu/jeeanUbPcNPxmjwm8lklm6hF5RLCxuekJgfvgNhrms/T9KDLb0Gi6Br5Zpzi3W7BaZ9kzfWDcG41MyJNMxBvcXwzrtzfyTGGD76T98z7YbyjBCptC9pUgvzAeYxP8FSIhbxLjqHQMY9HZoInx/G1M2glbX5zw0eJ1/3wsSK2Lo9nz5fNmfz7DPyPBI4aNyWnOZBk5wvvgZwR8bXh90di/yOI5EF9A2gWP2dxm/jzRJoi+U61gDfdSOJ81lySU19xI6kY3YT1RLKM/w7GjuI+OztnnB8VC3vh+EgtV6/ZvPyzpTM2PZ3oS687aYfSHzhfQ/CG3pMvYn0Vza9swKsftB9vwWUuGzLaPj04kN7xOV0e38bOA6mea1jgOraUr5BtycO9+bBOZ1fd24jMk9lYUESmS14hLDxu7OzDv+F7guaJP3jSd7bi/9nbTw6xUwvMqTOL127vjkIiIVEqnlnMii2hk/sEPflA++MEPLtbuFcVAc05pBZp3SivQvFOajeac0go075RWoHmnNBvNOaUVaN4pzUZzTmk2C+7poSiKoiiKoiiKoiiKoiiKoiiK0gr0pYeiKIqiKIqiKIqiKIqiKIqiKGcFiyZvtZAYGnSsHWZ8w/wJ68qaNNqnscMG+0/QBzT0dxu9czp1jffa1qd5DqdwzIXZ508Onjerich+Go1i9ucQEUkZnh02xfN7eqT5mGmMSU5XnIQ7mn/Gmo9JGslz4bNiKc0gJK19U+rb0PA25P25TSy32SDzDA3nhNsvonaxTO8J6eDQlO9ddGLJikhN07AqqGm5P8DO+Ntnn4PYXbLB2N/br0HNxvf9Anb4xDT258vb0aOjWl0K8e7dqK24dxd+//67zdxfvw6/84arUBf0LW9th/iya9BXpLsH2+yQPrzLYrbxqYwE9PkZZPLR9LY4tlj1G4/1kWO6IWP2xuAbWERi+hlvY3l8k2NojPKsVUyHZM+C2ndI+9QQySWfA9bYbeR3xNsnyQBHrFFOPhXGidL2rAvMfhx8Dgn9ELNPB+kXz21TbPhRLC49XY60d9bOeQolWqVcxZN3aPCKQrPOBKTPzlrNLuVyQJ5NeTomyXZLHKF2bcUy+8tvpHlOaRiyzrKF58DzLlPiPCH3GwzUPMYa1jPsmWPcC6x5bg705SL6UWXSWOPteq6zR0kzsK3ZuQ7rDSd5xZwuvAfDb4P9gRrswPAISTrm/LL1xjU2tucdNmhU0jzMXMXMv4Zo2OgG+48SvZyoBbw+q/+AveEWmziebQvnHNeIchnnS4bZiZg6/ZlsFuJsjnWxMQHCKvnxkV9GOk1+R4ki8/OTTuMipVpFH5KA/Di4xpfIU2liArXFRUSyKfxOJpc1tsFjzPuxMfdij48kbxMz57Bv5/qGsIfIYjPXS4bbxUMoZ1lSLTTnMDwWzG/UY8fzj2em70hCG2hhVilN4DEo1x0bx+mYfLPa0uiNkI5w7JqexPWKiIiXG4DYSuH45tDcwBaetHI/0QEMk6WEesteXLSTE11pGxOCRSaOZiavxpHpekbUNvYyqe3EmIDQd3juzt5u848z3IZTWfebvl3zewYaeW98nz83CxXfjuUiTppd8mtoa8OcNLxwGrUxTvAvon3kJ9FDoTA1G5dP0dNjoQj9qoRObYzJkU9EthPHhV4bx6Ykzxz28GCPKc47038I46Vt6BtizgPNsYU9pAzfM5oV8b1uWTjmdtKDw+4+zJEkD6UwpnUVNbyL+jKK51+nCvn48OdhbK4nOsh/Uej+qFZrx/T9U39op3/poSiKoiiKoiiKoiiKoiiKoijKWYG+9FAURVEURVEURVEURVEURVEU5axAX3ooiqIoiqIoiqIoiqIoiqIoinJWcMZ6euwfC6WjrjcaVVHrizUpQ0M7N0EHkfXGWC+QdbVJv5h1ZI23RRbrvBlNMHUsuY2kL8f61UHAvgXYCpI5TZKDFN/QkCSdfNJBdEmX3SetOZbEYz1tXxK01lhrmnRq5wqw5qdRd3Ox8VKzh0955LdB/ZshP45UxuzwdAa3yaaxPzLs4ZGi/qfvp+iYnsfXy2iC6Z9BcSPtT0OG1PD0wKQKEj09SEeSrjndfmI5RmJhm1ifk5I9StBDJvliCenEvLqI+Y8hY/yaqWl51jvB3gSfVWUY4u2j+yD+s7vuNPZn51DT8brXYWK89eppiI8dxc4ZG18DcWChtiKXkcliVZhnXsBjvrIdNSLvfxg1c69+E97r112Px7zqGtTnHFhC94Zl1horJk+AiLUvaXvDd4l3aBziJxbbdcU6UTBYm5aKBnt8GEVFROxGnh5UeHgXuRTGEXV2gb0WXPNipGy83o5hFoQ5wuUyoHzhrGYrglTCQG9RjvmsCUteCBbp5drk4cOa+BHNPqwE/WvWlTX0VefOh6LmTgN9PxL/xESEOtQovUb/NtZW5214bPEd0iOnnOB7IaIsMfTLRcRmf4sGdcKi+WVAnh58mqx7n+T3ZgXUl+zTw9ruZF4SGt4L83smhT4ZsojIi8/+COILLrwC4s7ObhERcZrsrSAi4lq1fyJJ2toYmzrpjQu/offNmuPsj2F+Yd79JXsVIjavUxrMZYy60GAtleSjlHBHUqPmH1OdRn44RpzQhoR7MrlNzR3A4zia8UOwyWMglcIBz6XJe6loegqkM2Tqx/c0Tb4zWTyGIxhzjWC/jSRPj5DE712XfQqxjbxPhj/ndW+1YvphpF323MDPudlJnhyn08ak/OJdzqedn6SZ3iyMutPAK5TrlojpG2bZND80KyrFNGdhXXyLJ3fm9fAreD8cO7YX4sLkKMRV8oapVtGzozS6Ez+fGoF4umTmzJIV50Pc04Nrs2yuG+JMthPiE+PfzP76l0DseOQ5kGDSyXr+bMFw4lrECf5ni0kYhhLUawPbaRh1hH0kEsdXXs/NPzbxnMrIuVN4TmhgeM/w+pGea/Cci9tgzMt5/2YT+HqHAeZ1pYBr+RyNEY6LNd+clyBJtc6iZzw8BsytfX65uc/sVm0akkxb7T6L2TeL53X0zLQ4TT5aIjJ2lHzpUvgcwqHxzvNozUj+Tbk29NnKl/B62a753KKtHY/J3l0WeVsUp6sU43mFNISGtF7xMuY479B5lwq4k5AWx+3tNLfgZ3rklcIeZ53d7N8hYjl4HhYt5qz69SwXTN+vk6F/6aEoiqIoiqIoiqIoiqIoiqIoylmBvvRQFEVRFEVRFEVRFEVRFEVRFOWsQF96KIqiKIqiKIqiKIqiKIqiKIpyVqAvPRRFURRFURRFURRFURRFURRFOSs4Y43MP/9/viSpdM28JQrR8CSI0NyETZBcCw3jREyTVY9MVDIuGfVSXPTRnKfiUxvI/MeJE4xhyJTKJlMWh0xYK2TgVi1OYBsjdJLJuGialc52G22IyACnGo1B7JPRnZfC7W0yv7TJeCtFRtx9g8uNNixdNgjx9le2Qzw9MT7bvnLJ+P6iYgW1fyJip/Bc012UVylsm+2ZRjzcf26G9klG5jnyKbRpl9TdkuImeaYTlkum4OTDZPiVMqavJBn1kmGab/oOik+mw+RpJDbHbHRqGI0ibCoYJvgWprid5B/lBrXPrSYbwImIWFYoVt2I24pWwmd2NIQb22hkvncCDfhERP7ku/8KccpBM61rll0A8a7LMbHufhDv0aCMRlps/mtacYnEgsmZ97E+vfgKGuHu3IX3yr3fx5p79TVoAPaWt3RAfM0bzftv6VK8lunU/MnOuW14urEJ3CmY4/H9c6aYo8e2K1IfkyyH70/sJx4/DZcyEbHJNNyx2bical0JjSQ7Dj4CcfdAL8TTA5di7PQZbXBKmHNlKqAZ5wjEG6PdEJccHK+OpzFnwzIWluq4WewKVMzi9h6IIzaRIxNVK8YxOLTw7qqymWKY5H5I1y/CfcxtYhwl37+LRbEailWpHdEP2IGW+o7unUS/Yoe3oXtY2GScb0hqAx+DjM+dJE9cchON2aye5nphlU1vMc6kcfsMjZ9BwhgVkWsjG9j6ZJYe2DiHtfl3oCK8l/h+Lk4dNdrwymN3QzyQxX10nV83Nq+aJs2LjW3PMTjmvmowv0gs0WzWapiezr+9aWL62ucdi/1bbEkmxwm+4vgd3p5jY58NBsyEbmpohl6n2b/l57kp8bxaPWfDU8eh8ZGMzJPOM0MmtblcG32FDKJ5rk6Tc4+PSST1I5vY+j7WulK5TJ/TGEn7DMKAPmZzdXN0KpXwGLk0z/3IYJjyo9rAuJwNiXnMTjwGmxi30LxcLHtmDuAIji1RFfsuP4EG4BG73opITAs2Ntx2KLdjKoYufc73tBPTWJOwKE2343y/bd3F1Eg+BJ7n6N4nIX5gyw8gHhvB8Wzlptcbbbj4ss0Q2zbef0K567p4XpkMrsO8FJ6Ta+P2bPYrImLR9bTY9L2ed1ajhf0C4/v+zLrApnY7dG/YNJdIXDfRop7XnHx+fEw2rebPuQ38DKG2ESWVzfMGWvPQCGPOqXiiwS70Zj2OnfmvY6WEDS8VcF3d3m6u1WD/HCd1BP+Mr82cMSEOm7maEClLVSSuPyuIeAzFtZRU8fNdLx839vejh56B+JwVqyGeymP/LlnSDfG+A/g8pq8fP48En2usWbfMaEOxHe/p4RVYZxzKiQO7sIZvfW4vxJUiXRNKqfXnLTXasGrtEoh3vXgI4oN78NnxZZdtgnj3vj3Y5gxei65erH2bLlhltCHbiQ01al99XctziPnQv/RQFEVRFEVRFEVRFEVRFEVRFOWsQF96KIqiKIqiKIqiKIqiKIqiKIpyVqAvPRRFURRFURRFURRFURRFURRFOSs4Yz09vvzP3xerru8ckf5mG4nQLe3oh3gqMjXlbNJSHO5GPfCuHow7Vq+F2KVdjh6cgnjPMdSDPDqFGmsiIqUSatKz/lwmhxrmbV2oq+9VUKNy8iBqopdJY9ljAwgRSXuo3bbmctStHDgX/QO2PfE8xCM7X4SY/VWynaiteunrrzHacP6FqOd8/w+fgPjo0dl+igLUv1ts3nhhWVJ1Dd5UDrVNc+3YllwHJsXIcfRYERHx7XaInSxec8sjLxiPPD8y+F7SI8+UNEkWcixiaumzRGRjTw/WCcb9eQHp5SZUFZc0ydkSwGG9TcNHBOOItDH5lg8TdO5Zxpf7KvBr3wmarIUqIpLOVMWyavkTFAfgM8s6F+IwwvvFdsx6t/cI6kr+3++jx8dHb0Kvghsuxft25xTWom2Pkd6iw7rMRhMkskm3nXTtLRLjL1XwguzYgTqWe3ahlua/3YkX9MLLTY35696MNfCtN3ZBvH4tJmsuR34JrE1M+48p8RKGHokdPC+ryv4ZNZ3KOMmIZhGxHUesuq44XRrD08OIE3TcHa4zFKfIDCFl4Xg4vvNhiAvP74C4ZwjH5PNXXWi0oedCHM+mcuiPsyyahPii8FWIh5bgeFYhHeFtz6H/1LdeNWtF6ty3QlwQ8gWJ8V7zaRfFDN0nfHORv5jHnhUiEpGGMvt+zPV7iFlneLGZozfOGq2mNwZ9NcFAICI/jJg9Oki12GZfnog1smm8o89DP6ENdONbNn5nagLni4cOopYw6/sPDqDebcCDVWgOshH3JY2pIQmpp7Po0xSFOH+pVtCzLCKN7OqoOcctjqDf1PMPo8dHqd4PlWZ7tYmIa1vi1vuEr2mSpjhukKTPz/fUfJ829uxI0m9HzO83OmZjTv+Yp7sPw9vA7JjT2p/h9yamf83J7BTY22GxcWx7xgsnCHA9USYtdlreGf4cIqaWt0vjMn/O/hsBeSjxlOOE/8gJogR99pDGo0kyx0tXsI60pbFW8XATUpHnuUgqbWrS8/3L19Vhvw3y02TPiIAnbrxGYiNEMXMurOI47M45Jtf3xSaOI4l58Kzj00JochrnYQF5foiIWAFe03IBv1Mo5iH2aL134ACOC4GP+1s1iLr2foRzfRGRQ8dxTRMLzuUH+nHd1N+D53/sED67mB47AHE2i+sNjw0zReTgQdTK7+/HZzRtaRxTS3ns64DWOLFP/Ub3H/vEiJjeWhynUrU1j81eH4tMEIRi1deihg0F5b/pd5PgXdLAL5H7plHMXkERGcQljQzs2WF4HxreP/O3kQlDrt9mveV5Adcd7pd4fBxjmjNzLWI/4iihbpjPgGj9P6emlMvNfWZny5xyzc9u6NxDw4/WvEcq5EEV03OK/CSeXzbl0+c8DuDn7F97eD+uSUVEYgvrYw89nw4tnD8fO4Zz8Sqdgx/QGojqs+uZDw7b2unZZQobHpDPVSaH69rBpVgbd+3bD/GhI4chXnkOedeKSK4T66k5hz79Gqd/6aEoiqIoiqIoiqIoiqIoiqIoylmBvvRQFEVRFEVRFEVRFEVRFEVRFOWsQF96KIqiKIqiKIqiKIqiKIqiKIpyVnDGenrYXlYsp6apGGdQb8xrR+2vtRvPh7hKWsUiItOZHojbelBvrKsPP8/0oYZa2xRqMPfLCxAvXYba4a9Ooq6eiMiuvejBUSmhdmYQo4ZklEKNyY5lF0CcHbgY4vEtD0GclgmjDX0rUJv/nPM3QXztWy6C+BffivELTzwL8cP34zGPkJfASz/6kdGGrY8/ALHlknZmao42XGj6ZCwmV1+fkVy2dvzjB/FcUhXU37zq8jUQ75oy9eX2jON3AvL4CAM8d7+M55tOo75imvTe0978Hh8iIi7d5W4DPw1DbpN+EJIGpE+eHnw8EZEK/4w1c4V11smzg2QmWYox4BRKkPrzyQ8lIJ1Dzz3RluYzMGDP6H/u3Im1yHKugziWb0McBaYGL0sQb9+Hmrp/9dCdEH8YbQjkXW9Afdz/sxMT69hx9AZif44a/DPSEg1JJ5RzgLRq/Rg1fA8fRd3Kw3eZyX/fD9FX5Ct/ijqS178RE/Pa69B/oX8IP1+/FhNtxXKMvYypVV8lLe+0xTqVUf2/CYYgi4jjWmLVtT1ZR5s1P/nzpF+XYNlqrgM+eUxNDKD/RvcN5GWz4y6Ij7/4XYijrX9stOHg8+jvNXzpDRBfduVVEK/qxRPZMIT6qv1ZLCTFp1+CeGkf+u2IiIz3YB76pIFeIlFXm3TTM4KasQF1ZCSYc3aC9rvN9g6sRTxH6zZ2mlvxvNgSr3581xh7sC981qWOEzSuSdOY76KQ9NoN6wTq/7iKcYH8OI6NkjebiITkp8FTmrHRCYjzpPVtU6Mq0zjfTNOg7dqonysiEpJnDms32yHG3e04zkxN4XxnbOwIxLkUHnPX1qeNNkwfR18lhzStg2Kt73zSHG4GjoicKGts+WXMP07p18HoO8Zt1EiLmzdv4J+R8LHR7tP0rODvNyJp6/g1zpgSLDrmJflobP6T/F2nUR8vMHE0x5eIDs0eH3zp0mlzHcvbNNJaj2ji3NaOXkHtbbjGbGtD78tiHtcvIiK2zbUIxzuX/N54eOHvV+L59cbb27FNIiKe8JoDb9iUoVtP9ZZMBwJaULDOfdLMzPFowsM+hP5s37MHyWITxdHMtedKa6cwrwZXroM4sYRQ/xWmJiAOyZAm61H/Bhj3d3dD3E59uXX740YTHAfXxps24vo7ruC86fBefPZw+OA2bBPNC7p7sU3Hx0zPqtEijnkZOs+UhXPcQhH7be051NfC/YRtGh5GrxMRkTTNo10bJxtDQ8MiIhIWzXnKYuI49oynEM+x2NuCx8KkpGOfHsPjg7dvEBvbG4dM8Ipifzj2lGvgdxrG86/p2GckyYfHZi/MBsMtl5pUGtek7FVjPu5J8PSgOTLnLe1g/gYuME5ki1P3m2M/v4i8MawU9uXSlbjeFxG5ajM+Z+1q74Z42Vp8hnfieeEJVp+H8+r2Thxzp/O4nogSfClSWXzW4dAQyN5cvcM4jvcOYJsdWjNWqF7nOs3rWQpw7B9eiz6v7f143m1L6Tk9PVPvXY7nVCxiG5LGedPD8bU/I9G/9FAURVEURVEURVEURVEURVEU5axAX3ooiqIoiqIoiqIoiqIoiqIoinJWoC89FEVRFEVRFEVRFEVRFEVRFEU5KzhjPT3k3HeIeDWNrzhGLTFnAHXYlrxlLcTpNlMbbKKE2m7Hj2C8Yxw10qaOoA5edewYxIUXnoS43cb9dXVjm0VEVg6hn8a6TedAvOsA6s3v3o1xtYJacDdsvgzizs3nQezlUENNRCTdhVr8Pin6HTqAOmuraRfnn4ea6G4bHtOpjGGbCweNNuzf+wrEh/OoA31oZP/M/0fii+mOsnjsn6xI5oQ2qI155pF2X7GMenOr+02d7eFO1KCbmEKdvMkQ9VWPVVFzMKLrk/Jwf9k0eXp4puCjR7qj7OlBcpsNJRlD8mKokmis4yRoYzr8fpW0qFkbk/TH2X8jRefJnh5hYLbB9/E7PlW/lFf7jt1k3WcRkXXrfPG8Wg3ZSf4ZtlwLcRhdAbEljxr7Y01/h3RBH92NnkSXP9YN8c9ehrqVW9+Muf2P30S9Rqma9c4l+UVL0F8jIv3NMEZdyjhGjV4hzwvLwQtokZ6uiEhQwcTYuRPHhv27MXm//k8YZ3NYD1euxPjWd+D+f/l96AUlIjKwlM47wopm1T0+Yqu5/kW2HYtVF1S3SOCWZLfFclh329wfa3kbXkIpvJ4+lctSx2qIe5a8E+LcOejDFexADxARka5XX4R44gnUhv6/T98H8UVrURf6jRfjmDxyHD0+7noOdZ69Fabm8ooS+n4s68B7ZTLA6xzRZfcD3H7ERg+zMRcH5Tg2894Osa+5xsOvuzT5V192vPiMZOta8p2deM9PT+McZ+vWlyF2HCr0IjK0bDnEa9auhziTw2OUSev6+AjO7cpTOPebGsMcmMib96md4k5EnV72oCpTaatSTsQx1gybhJpty5xreGms2R05HEdSVH8PTTwG8au7cEwYHUOPj54cahMfObjLaIMdTUDshPgdq1Cr4ZafYLq1yFjWrB62oedtSIw39qkwPDroc1Mz3NwDRoa6NkYJ+zN1zWlexftgX60Gnh6m9rq5zem6FbCHB8umm3A/mG1O6pskmu3XFoSxOPW5aCaD92xIfoXs+5ByTY+ytize44beO3VEynMpJj8OMtxgDxD2uhARSaWwXQ49RkhTKXTJo2Oc6utEEedcfd14jkl+GOkcjnkRaX1zHAt7dtB9wCkVkdZ+aLYhX8R66tGEp7t97nk019MjjuMZf5fI8B3AbUPu34QFYEwmR6lO9E7z2COljPPkc193PcSd5C3j+3gvXDqMz3RERBzyOutpw2M+/INvQbxtC3qospdMaOH8sXvppRBvuuhqow1eBucSefJuDX3su64OXA8so7nK9BTOdwJaTA8sWWK0gf0abbpebn1dxL6Yi00UhRKd8Elp4MfhUD6xf4eIGHnI+2AfNGPAZfsNynOy7THnyAk74TvDYo85w3dk/mtgzhnMhRX3DbeBP89ksDamPKrXlEDTE/hMiv3/RETSGfIbpno4tz6c6li8UESWI1F9HIyF20XzZvK9GxzGOiQiMrAEfxaxJyd5Ladp7u848xvYVgP8foUN5kQktOZ/DthG8/91nSsg5imSzYs8w/srwSuDmtXZRc/VDeM7HmcwD9kqxnHwmRH7kYmIROSJw/6Ns35yp550+pceiqIoiqIoiqIoiqIoiqIoiqKcFehLD0VRFEVRFEVRFEVRFEVRFEVRzgr0pYeiKIqiKIqiKIqiKIqiKIqiKGcFZ6ynRzy5S8St6ZbFfait2N3TDfEvXYG+CEMd5mkVSS4sP42aaYeOoAblVAk1wspl1NU+sga9LQ7v3QvxRGBqeBYruM99O1D7e/+e3RB3dOMx33bNRRC/9bqNEDsZPKdC2XynNXocNdIOTmK8fxT163btQf1rqeD24wdRk9KeRH1ANzB1adt7zof4otWowX35ebPHqFaK8hdPfsPYx2KxvFSRXFzLBZ9uD4/eEU4dwXMvHDfPtR9TU1ansH+nO1ArsTiOOrGhhzvwyMvCSWHs5sw2pEhkN0WiyiTfb/prkEhjEJKGIWn2sh+AiAhJFM7R4qvBmoUxSQmHAXt4kMcH9UOQIBlO8sZGzB4EzeSctb6k0ydyA2tRJOgz4Mg7IA7leWN/seB96xga81ifvvMy7uP8IfSzufV81KZ9+Tz0Bnoe5eBrRJ38A2wDi3kbko6G0DJ+SlqYsYX9JiJiO+QDYuH9UY1Qp7KMctMySfGR46hTuXU7ehgdOEz1UkR+7ddQw3PDRrzn2+p1O4qbm4COM3tfspQs67pabmNPD5Yydeiez9iYgynW2A1xB66N3hXOkgshXtteMNpwyzVvgLhSQD+Gbz9yD8Q7t+OYWy2jv8MzO3E8CzpIa3o3eoiIiJTy6PsRUUn2BceAVBveS+7ANRh3oPZ0OqScTphrlIzrx5qus5/Hjc0HFpS/+vM/Fter3QPpFI5v1SrmSJ48sJK0W9PkNXHOuk0QDw5i/xanyXesgscsFTHO5cjbK2PqAAuNgTy2dLR34z7byOvCp7lbHnPbS2HNcBJqRWUSc90mrfxSdATipx6/E+J8EfPWpRu4cgz7pVwy77+Odkx2l3TYK/XrGQQJGsKLjGVbM95FZhbRHOYUvCwa+WnYPF7R9jwH4nmXQ74EYULR9Xii1ICQdJhNzfH5fUWScE5hGzoo7+A1ff1kP0uiyaVO4tiWuK77Xinj/ch61Sm6x3u7TX+wns5uiKfzuAbhstDRhvU1qOL6okz5U63iHCrpyvLPwhJOkiqU97TslSOjWNNLNI+LKlgzBvoSvCnZHyUgD07ytMqkqGNi8nco4bUpFHF/qbTpE8r+DdUinldPx2yNPxWPoIUkjqIZDwPD0yPBIwU+TzJ1jFgDHutISLFDPgJuGvu/yoeg65PrTvCyIN+rvXuehfjZ53AREpCf1FVvvAniJcvWQdzRPQxxZxc+fxExvQyWkq2cRb6DNnmdRDTudfXgPe4YBptGE4x9primn/CtSvAEWkzm+siYXlHzF3k7wVCD7xmXFujZFK7FMi7Wz4DyvET5Y+7f9Ivzfd/42enAx2gYJ81M2MuErr+bxuuc60BPpAx50YZ0Ts/84F6IO5eY484bbn4LxFXynpk7l2EfjUXHimaMwazYo4+4f+kZRMVcr0+NoZdyQF7KaQfzqL8Xx6eO7m6IBwaxlrW14/aTBXMON06+gfkS1o0iFVDDwpbiyJj3UZy0oDf8bPh5zenN4dkCJIr53kqaZLMn3Wv/Ow39Sw9FURRFURRFURRFURRFURRFUc4K9KWHoiiKoiiKoiiKoiiKoiiKoihnBaf90uPBBx+UW2+9VYaHh8WyLPnWt74Fn8dxLLfffrsMDw9LNpuVzZs3y5YtWxaqvcpPKe9+97s155Sm8sgjj2itU5qO1jqlFWjeKc1Gx1ilFWitU1qB5p3SbHSMVVqB1jrlTOS0RcQLhYJcfPHF8h//43+UX/iFXzA+/+xnPyuf+9zn5Mtf/rJs2LBBPv3pT8uNN94o27Ztk46OBC3kk7HnvhnhcOsw+mXkltwC8UW9ayDu70zQBwxJr68H9QBlDWt2si5dN0TVK1dBvGsnarAdLaB2qojI1uOo+fnUrp0Qd3ajdnRlGvXm4vwuiPdsQy041jjs7zN1SJfkVkJ8cIK1FlkfEvdZIb3VmATLp46T7vMYieKLSH5yHOIoxn7ZeN2slmbg167DBRdcIL/+67++uDknIq8bqEpHtnYtxyZJtzDAvulrRw263aOYAyIiBRf30dGBeZWawv7aRP1pk25sQNrsBwv4eTFBBJT13TvJ+6WPPD/SpMkYkOZumfRbhU7btk1NR9bIDmgfVTqG50UU43m55G3C/WS7Zj+wx4AZ1/YZ1fVri8Vic2qdiKxa7Ukmc6JGkZY36Q97FuprRvFdxv5C+TeIbdLptck/YU8etZy//BLq5X6oH/Vt33EZitkeGkF/IRGR0aOoLRoL6W0aEo543nHEtYmHK9ZpNut+FLLuJG3DWpfu/BrpVoTXNV/Ec/qbr5g69ztfwnr37l/Gdt/8Mz0iIjI9Xft5s2qd7dgzXg/s4WF4ejS4d0REXPqZS/dglMLaFqTwC2m6Fi7VulTHaoirZdSqFRF5JIV+DeVOOsbm6yB2Dj4H8csjz0DcfjmOl+vOQR3obZPm9bYG0bNKKljLnJj6wcNxupDugbhk4bwgXcX9pS2zDb5NYz9dT5mjdRvXP2tW3rVnKuJ6tfuykMd5UoWnCz4OLkl649NlnJM88/iPIM7l0FOnpxPzpqunH+LQYQ1k3L+VIGXrUK46DrYzpLrTl8U+y5IOs09zIj6Hat6cV40few7iw9MjELs0UE+MHoc4lcG6NNCL2s6VCfIMicxr4eXQQ6BQwNzM1+fFYV0bvZljrG3N8XRooKVtjE2JthX4Q6uBtwWPTiQ3begs85gdJvT3qy/iON3Z1Q1xz1r0t4kjHN/4GKfujvGTTbNqnSXxTF4EIfZ9RwfW6EwGx4V02lye85g4O2esUa1SXSDPjrYsbt9OdSeigb5QNjXtS2WsIykax9vSWAMmpnAdW6Wa7tM8zyZ/h/6+XqMNrsPzOPyOw96HNDmxLeyHNI3RccTrYPO+IJtBCelempiYmPn/QqFWz5uVdxLGtX+1k8HP2DuI5l2JPi6N/PaoNsURDpI+1R3uTsvhA5gTTIsMa3oH0F/t9df8PMR9XbhGWX3uBRAH7CNB6/vQNwd6s1W0riLTIHP9wd4oNIbwtUmaaBt75H1YcKimjbFxPJMo7FcVkMlmTH3PvjMiImHAfYG1KKA6UvHwnmYv0pDuA4vaEDbwuql/C6KIvtPIu4e9S3h79nkyjyjikGlqis6bP+dbNT+FHhW93fiML9dpPjdMZ3IUUx7PCR27uesJK4rEql8H9uyy6PrQ8Cf9S81jLTkP11s9Hdif7TRPdumgMd3z7I2XzmB/l6uml0ypitvkaRg+OoH30/FxXKPki3Rv+Lh9QGMuz0VFEvwzTm1SfBq0Zq552i89br75Zrn55psTP4vjWD7/+c/Lxz/+cXnnO98pIiJf+cpXZHBwUL761a/Kbbfd9tpaq/zU8ru/+7vS2cnGyJpzyuJx4403Jg7YIpp3yuKhtU5pBZp3SrPRMVZpBVrrlFageac0Gx1jlVagtU45E1lQT4/du3fLyMiI3HTTTTM/S6fTcv3118ujjz6a+J1KpSJTU1PwT1FOlR8n50Q075TXhuad0mw055RWoHmntALNO6XZaM4prUDzTmkF+sxOaTZa65RWsqAvPUZGan9OPzg4CD8fHByc+Yz5zGc+I11dXTP/VqxYsZBNUs5yfpycE9G8U14bmndKs9GcU1qB5p3SCjTvlGajOae0As07pRXoMzul2WitU1rJactbnQqsUxfH8Um17j72sY/Jhz/84Zl4amqqlsx2dsbTIxp/Hr4z/Ri+4fvTL6MG89LrrzCOs24INekG06hH1pfC9nWlyEOAhJwD8hxwUvj+qD9tasW9cSnqp77himGIQwv1xitl1GedHD0C8ZH9qMn89JOvQrz95VeMNsQ2tsvtR43yjsFzIc6RRrBfJA1CQe1py0M917ZeU5PygquWQnx4P17P4fWz/VStmHrlSZxOzomcPO8yViSZuqdFXw518NIZ0qmkfRZKph5jugNvscjH/rBKqGm+kjTovQrq/ZUCzPVjIyj2NxGbGrxxF/ms5FA7uNKD+xxaim3OkcSjTZqFVgnvhYqY/RCTZ0cH6Rh69P51irSLffIHcEmj3iNNWDfhda7p4UGaoXVtxoiFIedhofJuYDAtuVztOrisXUpa0JGFPgOu/W7jOEG0FeJQDuMGnCc29sUz+49BfPeOlyC+9SqccFx7Duq/i4jcOYqTmrLgMbMuaj0HlNu+j94GErOHA2tKJmhMxizySduQhmrMQs2UlzHf9Q5+v1Qxh9QHH8bE27kPfSeO1st6uYz9cTIWKucsxxarflPYDo1nfD/xveOax3NpHy75o7i0E96n57CPDx7D9fBajEem1ve0izljeaSTvhKvT2rwQoiXVm7Fzx2sU8USXqNsgn9Ydgg9xuIAz4tuZ6kGlIOsJU3bG/LHoTnGejFqukY+aZbPud8j+9S0WRcq79ae93pJpWv3crmCbSf7DNm9C80NU1mcX4iI9C5F3wLW/s7EOMaO7MNatnIY8+iSy6+EON3eDfFUYPZX1cfaZpGGuUtTbYvUwb009cMSrK/5AnbMoQmsISIiY2M4/4vK6MHBwr3ZFNbTLHkKRJynPs/9zLxLkW9PhUxapur+K6emn11jweqdzKoIGx4ehi46+3UkNWze0DgGj08OnUN5GufBx4/jA4C+JahRLyJyYMvTEC9fjTr33Stxfu+wfHSIbWIt9p9WFirnHCcWpz53TZP2+spVuA7iOW1b2tT6TtG6M00+jtMF9GaTGOtGd2cXxP0DOG8r0/wnGDfnJJGNtazMv3Fr+IBg7NKcKapgfXYE/YvKJfM3emMLFyU+eSOkqF/Y88Mm3fuuLlqPOLiuZV12EZEMnebxMez7Q4dn799SsbnrWMeyZ7w6eMobNfD4OKUKwNNo2kdM9T0OaX5prLHIg4V9CUQkpnE9lcVcvuyq63H7ALev0LQqDvECkm2kuNxPZjMlJj+U6DR/j5g9QMwDNN4H931U/5JxnedhIZ7ZzbH0kJiOzV4WIeXDigFz/djbhdJIh6kWHZ9Ar8RKgNfTtvGe5ivDbUryFeE+aOTJ0cjTI8mTDvbP3nti2OVIIz+diPxTSj722+SxoxC30Zw63Yb1V0SkSN5sLs3z5l7PasX0tk1i4WqdK069vjs2zje7u7COrF2BOTXcS+OEiHTRcz6P1keGFxu1mSsXxwE9PwvYh0tEsrTWTbnkWUX3Ty95exWrHOM55MnDarJgPjcskFeiT8/wYj6zBrn/47Hw+1zQlx5DQzWz25GREVm6dHZCd/ToUeOt3gnS6bSk02biKcqp8OPknIjmnfLa0LxTmo3mnNIKNO+UVqB5pzQbzTmlFWjeKa1An9kpzUZrndJKFlTeas2aNTI0NCT33HPPzM+q1ao88MADcvXVVy/koRRFRDTnlNageac0G805pRVo3imtQPNOaTaac0or0LxTWoHmndJsNOeUVnLaf+mRz+dl586dM/Hu3bvlueeek97eXlm5cqV86EMfkjvuuEPWr18v69evlzvuuENyuZy85z3vWdCGKz9dvPDCC9LeXpO90pxTmkE+n5ddu3bNxJp3SjPQWqe0As07pdnoGKu0Aq11SivQvFOajY6xSivQWqeciZz2S4+nnnpK3vSmN83EJzTWfuVXfkW+/OUvy0c+8hEplUrywQ9+UMbHx+XKK6+Uu+++Wzo6TI+L+YiLUzOeHnEKdbptH/9AZddu1C5+MsNuCyJuJ/5s1RBqml2wDOPV5HswRB4fy+l0liwnD4KK+Uc0Eemk2yw7Snp+sY26pfYq1Ou1LsP4hutRg+3VHa8z2vDCc3shPrAf9eQOHUMN7YPbsW9LfjfEkaAubchaf1VTw3DNOryeK16Peo4H98z6D/h1fcJrr7125meLlXMiIqWiL27d76CzBzXrsp2oVXjwON4+rJMnIpIr4Pmn2/GadnfhPrI50mLP4OfHJlDfNo5QlzttiDaLZDLkl0Ea87tGMAcOkM76YC9qEC6nNqddTOQgyVCD/yqR9AEt0hK2SX/VJg8BhyqXS9qo7BcgkuTpQcesf27Xu+fZZ5+VW265Zebzxcy7zh5Xcm21k8pSX00XyROAyrYtm439OdbbIQ7ir+B3LKwVDmmwVqmE3rUV68bF69Ev6NpzTL3xlw/1Y3wYvZmW9qPPSHvvDRC/iKVIYh/3JxbpUFpJWqKUZzEmgc2eH6RTGQt7IWC/sUarlfDHkxHl7v4DqCv6139Vu6ejqKa92qxa5zizOc/3hmuTvwbd026CpwfvwyMfnhTds2SDZd7TdH9yWcm141gjYmokGxqxrKnrYr+l26gfQ8wpJ4u+XD0JUyjWbA3p3orJ88i1OMdY3xo/D6ifw4R665Hma2RzbP5/s/Iu271W0pnaOJi2UU+Y7UVe2fECxH1dZDAlIqs3oA9ZRNrfXoD+F9ddfz7El597HsTLB9FrTUhffNcIaiKLiBw6iseYJn+GYoX03vfth7g0jt8vlHD7ySLWukIBdfBFRPIFzFWPJpgW+by0t7HPCH4+Thr1rMPtsgi6iFQqqB89Nk7zx/p8LqrrUDdzjLXjOfnVQCvdorqfKFccN6g1vDkdk+TBZWzfNoj3v4LjZXkI59oiIrkQ+7t0bA/EE7tehLhrGP2G3BzWs58WmlXrOroyksnU5ugZ0t3u7aO+J3+xrhx7mIm0089i8prsW0L67DToZkkb3LL4nsYxldekIiIvvfwyxM89g74y552zHOILNqGvzNJBPO/BGOdDXoS1LsnXMaR53dgk1sMi1c8h8gwY6kcfp95uvLZdHdgPtmWu7cpVrK/ZHMb2nHVRsVC7Ls3Ku7kGC7bhO5CwLXye4CtA/R018OyQkA00MGRPK4uE8pO8DyKaN5lzbzokt5HqtUNzdfZxkticV3Grooi2IX8Fm8cRw0uK1qC0/6QhhT1auFUz/VI//2aNsVEUShSF9XY3uJ6UL+UieRGJSPfgEoiXru2GuFjFNacfYX4cPIaeH0eOTUDMXpmS4IHCHh42ebjYDq+L+MEDX6z5fb44Z+uNwD00iinnpmhuWZ7EfgnI7MbhfhGzHzyX1z2z+3DqC8Fm1bpIfInqvlG2j2PFOcPLIF63HMfPjHmLGyu6kHzPJqdxrAnoeVqKFsIpl3MI95/yzHVsmjbiNsQZjEtUGy26F1LsYdWGx1zSZbahWME8mChSnCc/0yqteyO6F9inyRgTTC9g4fMy7p+o/vNT9y867ZcemzdvnteMx7Isuf322+X2228/3V0rykmZnJyUzs7OxM8055TF4Nprr9VapzQdrXVKK9C8U5qNjrFKK9Bap7QCzTul2egYq7QCrXXKmciCenooiqIoiqIoiqIoiqIoiqIoiqK0Cn3poSiKoiiKoiiKoiiKoiiKoijKWYG+9FAURVEURVEURVEURVEURVEU5azgtD09moXnuWLVjcytFJqzeRsuh/jtv3EzxPvK5mk9/iIaJW3fhmZp+/agyYpPJi6pdozPW4ZtOt9Gs6DleVNDccn6IdwnmcRZ5B8UkilW1ccNyj6ZvNAhl58zaLRh3Xlo0mmReVNxCo2Adm1Dw83HHt4J8Yvb0eB4/xieU2HSNNb+hy8cgfj8a9Gg+O3vWjHz/6XitPyjsYfFo623Q9pyNTOlVAZzZpr6ezxEUySvzTQe9Fw0B3XJmMcjXx6fDIu2H8fr8ezuYxDvGcW8HSdvZxGRjiV4P1RcbOd4jOaw1TQa8nW1YyPXDuD3B9vooL5pKhSTAVhM5k2+h22M0xT7lNxVNiRml1Dz/jMMv05i8NfAj3RR8FKupOqmk7bLF5GMsMi0KRI0fBMRsax3YixoiirxQxTTNSMjrcPHsb5944mnIL7xMtMQdcVSNFndceQHeEgH9/kzb78Y4vGxHRDv34c54dA1jk7hHT4blztCrvFk5htaJYgtwWsTx2xcx7GIRWaHDiXYgb3T9X3hsRYbz47Etmv1yHXI0JQM+lKGSbm5P4fMzT0q/Sm6R3kfHLsum6zS9U24TxsZmfNXwkbmmOy9RuZsXoL3mkv7oGFc2PuySo2yaSAPyPHNpns1dMx669N3DL9NJ078/2aw9emHZwxz12y4AD7r7UaDWad8HOLyvn3G/nZNorF4JYtznIvf+CbcZw6PMVnC89/24MO4PeVltWhe9G9/506I902MQuxncSejIyMQu9NYK2OqZSGNn23ZNqMNmRTNWel+jCtYX9wimYwXsQ2VcP7a1t1tmsr7EbYhpBsocupG5i0YY2OZ453I0wXDqLjxPWGYKhr3OY81yOFtaAh98GU0HZc8Go4encY8FxGJ/SmIp8nIc/pxHHMzw+dBfNH1b8Ud8prEMOI1a03DcZdrMI3B/HlI14LXNVbCtTF/xka6LUg4EVmzapnk6mbxbgr7qbcXTVsjMvBuT5vmou05vufwfstksM6Qh6o4bDhNxe3oBJq03vVDrIUiIv/wz9+GeOM5aBa7+c3XQXzhupUQx2RyHbHpMRnDHhvFuiQiMoXNlGqMa5JCBevvkVG8Lw6P4DrqwnPXQLxqORqfO7w4FxE3xXmMnV0NZuNCxlwHLyZBGEpQ72fOfDbsNsyzecIiCWsi3oaNyynP2DTcYQNnuslj2+xvvsVNI3OuM3SeRgkgc3b+NGkNyeukANtptIE6zqFG8DSajbK530REHMN43iiQ+N8mEUaR2HUjbiOn6OI5ZPh9dAzHOhGRI6P4syzVqgvXngPxu269gY6B1+qR57ZAvOMw1ohCxcy5UgnnTGWKfboPKhVcPzpkas3X16M1jZcya/6J56AnSNHCKksLpyLNJfNjOM9zUziGWN30rCXBULq7E+ebFl2LypxnY3GIfbDY+FFVnKh2zF3b8PnkyE587rH5qg0QLx/uMvbXRs/xPH7+zNeQrjHb55SL2B9BQM9tEx848Voa+ztL43w2R3NzqmZcnqt0iQLfXNCX6B7tTuE2hXY8UTY2H53GOF/B7UOeo53CgzdjLKvXPh4/5kP/0kNRFEVRFEVRFEVRFEVRFEVRlLMCfemhKIqiKIqiKIqiKIqiKIqiKMpZgb70UBRFURRFURRFURRFURRFURTlrOCM9fSwMj1iOTXtOrsNvTDGUysgvvPrX4N4zUWXGvvbtBy/MxagTtvYLtQPnDyM2n1HOpZCPFFA/b/0ufj+aOeTzxltSL2wC+LO1aiDv2SoB+KhwU6IDb1W0lyTCLX+iiVTm69EWqgRa7U72Ka1550P8TkbUEcxrKAO7c6d2I9PPIuawyIiz72IWoqDQ3gt7vrWozP/7/vU4EWmnK6Kl64J3rEG6N4R7N/d06ib56XZH0Akm6tA7KQx9lzUSjxE8rVfeeAViLccQz8UuxNzJttt+rhUjqA3ybFR7FM7h9ewZxj1bIuCGoelNHbMSIACgWtM8VQZZglYG++vUdICnxbUtgwt0p0k7Us7S1qq1QSx/SJ7erA2avLPm4Fj2eLUtSJNvXNuN16vyNAjF7GsSyB24/dAHIR7MBaMWbM3FsyZx19B7czDRyeMNhR80p+u4n1/YATz8ujR70K8cQNe8/37foRNjNiPIUkTEvOKeyqSDvpJgWLUQxU6hnlMM3f4JyG1Io7cmU+aSdr2xbZrueSSfjF7enh0T3u26V3ikYA4x2mP6iXpx7vkQeCQB4hD3hPs31H7GcbmFpzX7L/BPjGk+xxTHUq494TyMopIXzWm62zTPlh23eZ+wM9D28wb1hqO2P9mzjEjPv4ic3TvFnHcWj/2deHYf5g0eKfHcLwLY7ofRWT0APpjbNj87yC2u9Az7OBYHj8P0Tfk7u9/H+I4xjp1/nmXGG14fhvqRRcq+J2uJTimlifQz8iu4va5NpwXFCZxHuVQm0REogjnH1W6//xpPO9uup9SWRznowC/n5+mMXvc1NrPtmMb3AyOASdu8Yi9BZpBGNf+iUjM9yTrt1NdT9JdZn1u1i3n+jd18CDE2x65H+LKFOZEdwdeD79s5v70FN4fnX3oZ1Mew3ujGOA+4wDnErZLc1gWqE7A2KKBNDOPHKFPc2LyP4jJkCiMTe11nrNxs+N6o5o9s1u2pE/a2mpzDIsM/Nq78FoYdT5heZ5y2NcMezPFvljULw5d3yO0vPrXh7H+fuMh8pkRkUkL16VveetNEF943nqIMwF7ldG8jc5pmjTPDx/BeaOISFs35nmuE3PGmpyAOJXGed70JOb9tj3oXVkKsGNWLzN989pcbHc6hX3d0T5bYyxprqdHLtsmubrvU0C+ExHP7UnwPUyozRHdc+xtYf727Pz+GhKxbw97CTX27eEafjJri5k20r1iG8dgr5OEMYrOO6ZtTM9A8mOMeA5L826+X80WmGPRSdarzfamjKNozlyXzpNOxK5gv63tx/mRiMiydfjMbXQSx78jUxh/7Xv3QrxyxXKIJ/LkmURJu2YZzhNFRLJZnL+w2+bxcZpLOlSHqB8CuiZTNKeayJu+jiHlXERzy6kCzg2PH8dncMUC7jOm9YlNa72OLD5TEhEJaX7qsMdEbs58NTJ9SRYT2/bEtmv9XqUO/tJXvw7xjx5DD4+rr9xo7G/D2lUQDw3g8+fOHM7Ns+T5YdmYA9UAc6Bcxv4vJzyrqtDPKuRpG1t4DMcln5csjvNt7eRLksLt02mz1rkZmq+QR06GpmHt5E/TmcWbfqwYUIzzvkLVNCTmnrFoTmTV6+up+LmeQP/SQ1EURVEURVEURVEURVEURVGUswJ96aEoiqIoiqIoiqIoiqIoiqIoylmBvvRQFEVRFEVRFEVRFEVRFEVRFOWs4Iz19IjTPSJOTRvOWnUDfDZlo57nd777AMSd3/uBsb/V65ZBvO6y10PcjdK40jFBGnYXXQRx33moF5gbRA21yipTo3DfU3shPrIPdUTPv3wdxOMlbEOVtPI80j7t7ETd0cFe1IwVEenIkp6qj++9JqdQV63sk9Ybiaz15FAr7vwLUTt1YI2p07b0MtSn2/byMYifv29W2z8KUfdtsZmyohmPhC7SmI9s1AMcKaP+f5uD+o4iIheuwLzo6MD+zFfwGK9MYH8dJ712pw31GdeuwP6/4nWogykiMl3F2/zbP3wZ4lJ4COKLz8c8cqnNU4LnORnjOY5Hpn7tCtK6XJFGvb81Dp7nRIg+IaUC5kGUw3470o7xsZwpaGoJ7sP3sa/duiBybJl66YuNJfaMPmHMRju8rXOIYnObyB+A2LauhdhxroSYPT4aUfVRn3HvkRFjm5B0jEMSmY3pGn/3e/8A8bKla2mPz+L3Bb/vJGjwNnLciHkItEio0ppfNzim3xuIE7SbY+MCYR0Ruz6WxGFTRcc9JxSnft+5pO/vUZNJ9lVSCb8u4ZE+Md3iknIaeHqw7i8dgyTyxXHM6Yvh82GxVjTtg/03SHvaj7FRPl9vJ8mHhfZJF5U9PVjX2aI45H6J+XMz71MRj13k6TEnkcMmexi5Uhanrlb94jOPwGejR49CXK2itrpl6MOLDPSh5u55F+JcLdWJc5JgCuv7GPlr7NqFfkVhgOPdqnM3GW2YjrBdxekJiCsTqLMchaSzzvcG3wwBjl3lgpl3toPn2dWLcwGnHeeDwSROej0bx0OriPXVovstycOsSDq9VZq/Zdtq32Ffo6YQhCJ+rd/4Po890jimWhNH5j3icK0h3fvdzzwG8c7nn4J4bBzzLqY8yxdxXpyy2G9KJJfBaxDTPCuI8ZrGlHcB+bGlecym8TFKEIr3Gvgo8Vcmjx6G+Lkf3gPxUB/60i0//xKI2wZN3zr2MOJxwKvPo1PzT60WnLTrSrquf57KYEe10SDKvlpObA6yfF4x+crYNGj6lOevHsUce+SlfRB/7xH09DicN+vMxguwvl5/Ofo+5iKaq4eUg6R5HtpYl45OoUb9kTHTF3JZG+aARWNqhvzAunLYLwPkCZLPY31+ZfsOiFM8ARKRjavxGUA6hdembU5ORkFzPT1eefEJydQ9PZYswb7q6CIfSPJdChLO1edlOHlX2HST89yNLZOMGsG7j5L8NHjyTdvQx0abjO1p3kU7YN+SxG2M77BHB88/yQOE6xYdz+WOlFOf46YSPO8WkyiKJKr7w1jGsTFOlXHcecvG84z9ve7N6M27n8bL7zzwDMT/8i/fgbi7A72Hst04Pxo7iPd41jXXE5kMPl/JteParaMHn5UsG8Y519Agfr58Kca5wV6I/QQ/ncNj6J328s4DEI+Po7dJuYJz5qlxfF4wcQxrvuPiOZ5z/hVGG8bIS3ac/FSWr519dlkqmM/BFhNbHLHr64nVa9CjY3glxo/+6D6I9+561djfuevR0+P8jRsgXrMax46BAfSC6SSf3ZTh+cHezOY9HtP94tM8bjyPfTw+juPf2Cjm0dg4zvsKRXrG5Zo+aT1LcFxeQZ43PR3o/9zRjl4nLs2pu8insI28UQq++ax4ukTriSr2S1D3BgqTvDVPgv6lh6IoiqIoiqIoiqIoiqIoiqIoZwX60kNRFEVRFEVRFEVRFEVRFEVRlLMCfemhKIqiKIqiKIqiKIqiKIqiKMpZwZnr6bHsehGvpjVpt62Gz2yLtIfP+0WIE+SO5aWxlyDe+nffhTiXR7+NoU7U2ls9thXizuKbIU5feTHEb3or6p6KiLyYRo20l/aiTt4VF6yAOHbRw8MivfldO1DX7bltqLP3xstQN1FE5LKrUQO4cByP8QRJ85dIW+6Edt4JKuQ/sGcK23j8uKmFPFbAffYMdUP8vv/6/pn/L5em5fc/+IfGPhaLcrpNnHRNqy7OYZ7ZaezPdkEd76UdpsZ1Zxp160anj0P85K7tEN+3Az8fr2B/jhxFPUcnQH1ku2Lq31YCbNfkEcwbO4V6eMd3km46nXfUhtfcWoKa6hNZU3N5m4/9cGQa97GutxviFW2oB9iWxlKVpve1ZdLeP9huFoHdbZiLoyivKePl2uflcizf+qbx9UUmlllRWtZXxOvheA9BfM5a1CoVETk+cjnEE8dRF5S9Kk4X4662T0Esm3SXhXRfx0axHhanMZc9G9scR1hP7VPQiQ+pb2ObdX6pLyPUcI0FP7cFvZtcQb1PEZE4vBBjayVuYK+s77sgYfwzie1eDFwnFqfu5eGRp0cjjw/256j9jHTUaZuUPb+nh9MgZpsD1zXHFsMfg+WPaXsnJO8L0qp2Io7x+1GCHwbnFG8TNtCB5psrYO1pOkc/wVckHZG2O1tEhLP7iFlwe5FxrFBOXNowoPuRtGuzNGcqh+bv6azdiNrP552zGuLRcALi44Kax2GAXgnHRw5C3J7DOVKbkUUiqYg0cyMcMwPS5nZTOL7ZpN9fpXHf8BJK0L+1QtTpnRhFfxTXo7lfHvVyO1N4zJCF3Mk/IE7wHHDIUyIs4lzDr/ddlKTZvsgUQ1vsev44dI9OU18d3Im+ZytWrDH2F8V4jV/d/iLELz2M3oIW9We2F+dJI4dxbleaRA3zJV3m/HIZaYRPjeOYaZNG+PFDmNvjBcz9oQ7U97d80n4OzdwfOYTehGnK7Yh06196Gn18jryC/TbpoM724RG8NutfZ2qO9y/DtdM49d30kV0iIlIomL4oi4nrOeLVB8828nzI0vhm0U3uJHkKkN9CyPcbrRmPjE5AfPeDT0D88DOY54UJ3P7S9eiFKSLyM5tfB/GawW6IY8rzkLwnY/IGiqgfDo1izZgometYOYT3ykAvztPWDON90Z7GfnJIv39/eQLiwX70xPMD81r4PDega9Oemb0Wsd9cT48//z93iF3v565unKMOLsVresGFl8wbi4gMDKLOvUs+LEJ1hqcUMeWAUP2Pae6eND7wPKmRLwiPTvz9mO6vRv4cIsaSJaENdA83+D5/7tD3DR8SEfFo3OV9nPDTCBL8lxaTOI5m+pSs8mR6DO9pnhccK5hebS+9is82XtqHXhQj5HXRnsOcrBRHIXZTWEe41pUis85UfJrHkcdtG/lPPfkonnh7Nz5H7CJ/uRVDWKecLPokiIgc3o+eHNu37YE4SmHNb+9BL5NO8jdtb0OPCRH8fkeb6QV8wSWXQFyukj/qnMQu5s3vLyZxbElcX7dl27rhs5tufifE5QLOj3a++Lixv+OHXoD4pWd2QTy4Aq/pOWtx7rFmFcbLhjFH+nvR84PzVkQkTQvubg+vUXcPjicrKa6uxjwt0XJhfArz7Mgx09PjwCG8Rx9+aDfE0+Tf5znY5qCCc8e+vp5547YufEYoItJO90uuA3PX82rX3WLv6XnQv/RQFEVRFEVRFEVRFEVRFEVRFOWsQF96KIqiKIqiKIqiKIqiKIqiKIpyVqAvPRRFURRFURRFURRFURRFURRFOSs4cz09eteJpGq6Y4Gglq2VR11a//kvQpzq22TsL7PmOojTm34W4sqLX4V4+wjqyu4e2Qlx7ulHIb7w0Q0QT2++2mhDW241xBddiLHlobZbaJFGWpn0XCPUN6uU0NNj607S4xWRvhC1Ty/uQa243gCPcZB0ISukzXn02DGIj03g949MmjptYQF1Ej3SZi8Hs22qlrF9i82rR1zJZWu3RT6D/XdsEvUAV69FTTo/ZerKPeHjNdk9grqUW0ZRL3CiE/s7X0Gtvu4LUb+8lMVbeKSz22iDR6qfSzqwne0deIxUD+mLh6iBns3g9u0W6kD74+QfISLbJ9AsZmoM9/lcO+5jw1LMm0s3oaZ2n425nxnDa3WOa5a2dQNYR4q9eB5TdZ37fNGTO4xvLzJWNOOzYdnkWeSitmKldDfEKwbNe+SNl/VD/NWvfh3ism9qWZ4OrHZbYRFXEYklwVxpLhHXM7weRdYTJ78Fi/I6SvAmiGL2l8F+EauPPkf/DUvWQ+xYqPVsRxg7gjVBRCSmY/qCuR3X/QDi2PTjWUxcOxKnblLBGvcu/ToEe36kEvSCU+QT49H45Vm8Dzombe+QTwy3ybFNXwObvBM4NsHPLU5Zm7Wq2a/DbENE3ls8Kvh03jb3A33Dp7hCd19sm3rIWb43LNJRt2dPNLZNPdfFJJV1xa0btPjksbNkCc5PMqRRz14XIiLXX4dzrTddgWPkPhpzXzmI+ziaH8djkkZyLotjU0/G1F1e1Y++Vixq3bsCP4+p9hWP4r0/NY561GnWbU7QXR5athS36ULt4Q7Sdl/Sj3HWxXnZi88+DfGRQ+g3lvFMnfooxL6tkJhwR67Wd2EYigh6NSw2OyZDyYW16xJN4hriie/8JcQ7tz4D8erV5xr7K5IPgEveMFLF+zbThrk9fhS1uvfuxzztJn3vVA6/LyJSJS+zQhHHTDfEPJyYwnnXyBTWDtvDvHv5AZxrpCzTu+vVreiXaNPY4AeYA3nyHUlTiZ4QmjMfIW33558y2rD2AvRUPHoMfUYmD+0QEZFK1azXi0k67Uq67kfnkfeS4TFg1Ghz7OJtpn3s64NH0cvk/seehPiHj+I9vX8E1280xRK3grVPRMQirfzHn30FYo98mSwfc26oB/N6aDl6nO3YhX4djz6BbRYRKY1jLbr1RvTYvPIy9NSs0to4DLB25bK4nhgYRm822zGvRSXE69fm8nxl9vMKT14Wmfz4EbHq86fxY1hn9uzYAvGzjz8A8YqVpn/RG659C8Tnnov3W08X6bPn0Fcgl6XnAGRuEZM/ip1QZwx/Nvb4iNkPg9YDho8h+dhx7ifcf4ZHB8/FuE0Wt4mOQSfF+/cSfEW8iH1D6Bj1OW01Mr+7mERRNOPFwh4tfgHr0pHDOP5+/0foUyki0rkb/YaKJRzbymWsM13kCeCXsW+rFfQg6OjCHLUSPCGzlBNhQP58dP3KZRxPowjb6KTwCk8UsTYeO2jOiaZGsd5agvM0l+aaYR6PWSY/oTT5G/kRtqGN+kVEpIN8KLI0r6jMGeNdNq5ZZCzbmvWxoXuhfwX6a/z8v/9ViB8fNP1nX3riYYhHx/HZVaGK15ifgW7bgT69fT3Yd1wrh4fwGYKIyOAAXoPuLvS2yKYxdj2cF9ge+f7Q5505fBbWtcZ8hrR+NY7TgY/tnhzHPDt8DJ9T7R/B54BHRzEeOYbzwDBIGCPJvyim+62t/vwzqGIOz4f+pYeiKIqiKIqiKIqiKIqiKIqiKGcF+tJDURRFURRFURRFURRFURRFUZSzAn3poSiKoiiKoiiKoiiKoiiKoijKWcEZ6+nhW1mxrLrOZkgeEE43xt3nQFw5bGq+lrffiT9wUNcuk0aNs3QaNdXcFMYhaaY9+MRzEN//qNmGznbs7uHVqBd/4euvgfjiK1Grur0ddUbdDLZh2TBqND/3ImrNiYjseRH1cSc2YJuuPB91g/cenYD4X773D3iMx/8VYpJdlMtu/A2jDR0dqJu/+xnULIys2fMKA9SJW2zGCyLlulxhjl4JpjZiDowOkv/JFGpGiohUyacgPYxaqJdcifHoIdRf7TuAOnirLrgE4oqLeVut4L0iIhJOo96dRVq0hTz28b49RyD2K6jtV5rE7c9dhtp+Y0d3G2145RXUyG7Lon7m1nHUsnzQwfO68i03Qtw/tBaP+eoExBscU3f9Vy/BvBsgfc2l9XfAU7GpVb7YlIvRjLZ/4JOOIWl4Soz6qLt2YN+KiFx+EfbPwABqpu47iJrXpw9p8kqCjidr6LLELOk1WkI69WSwELsUR7R/29QitqxbcJMY/Z5sQT3pyKLYxjZFEWpchzHpyMamNib3DCvHtrfXNEPjuCCFJpY7zwrFqfexw74SXPtIm9hL8PRgz47TjQ1NZeo5nqywlrGI+VscjX6rI6LzYF8Yh3IsoJyMEtoQCd+/rMGMnPB0OYEV4f3uk49IirSaS7Hp3eXTuBOS7q8bz8ZBbI4Zi0km7Ynr1XohoLmdm8P7J+VgHARmfw8Pk95tCs99qBvH7dXLlkG8bwj9Nh4+F/0btu9EPzfLMceHc9bgHLRqY3/39aEebkc7zrOWXLQE4qWk8zs0gP4cAwPkTSQi3eQr0t7RDXE6g7UsTXPeKnko7d2D4/j+Xehz98zj6GsnIrLnVdzG8fAYnW21vgv8QF7cgn5mi82RQiTZep3b/gSOmdtfQp17i+6XZ540PbBc8hRaswzn35UK6X2HmDcT4zjPCskDK/Ic+hz7UkRkYgprR6mIviIe+yz14rzgyRdRf7pI+v/P3fstiNs8s+4vacN29baT1yBprxdoPpoW7JfxCM/Bons+45hj7PgEzh/9GAfSwlRtLeT7zfUvsu1Y7BNjCunzh3TevoP9dvgYzvNERF55Fe/JF1/dC/HLe3F9t+MA9stonvz6IqwrInitJnePCnN44n6IN1CtWr8S16nLe/C8+rqw9pULeL33HUAN9X20JhIRuXj9aohzbTgPK5RwLWZRzmTbcX2Q8fDeGzmOeuPbd2JdExG59EJcv1+yDscVx59tg9vI326hiWVmvs2+ERZp7lsx3hO7dmw1dvfqqzgGdnRirevowGva14c5cfPb3g7xJRdfBnHKw3l1bNorGPcPT73YR4J3wfNHw0/D5vmmOdfgOarNs3ubZ3f0Oc0nbYod9iUxWiDCJThlXM/af6vNtfSQMArEimrn75IHIHtCHH4Fc+zeu79v7C+bZj9YPM+Q8tYPya+JE4DGdIv8+ryMOb6mc1i7psbRG4j9+JwU7mP6yATEI1RHfJ+8TxKe33AShJQjrkNeiLR4q5awvpamcWzsXYa+F+/5zzhHEBGpUt9VfWxnOCePw7DJtU6C+j+ZTf4TbaHO612KNfrGd7zb2NumC9AP6sCrODfsZI/VAo6xxQo+sxsbx+1feH4HxI6HOSYi0tmDa5Z+8vgY6sf7qb8Px/Henm6I29vwGOzLm0mba5oc5X4v1fylq7ANG8/BuEjPsQ6Th8fhI+ilODFlelMGAa2/I/Iuqf+3Wg7kh8a3k9G/9FAURVEURVEURVEURVEURVEU5axAX3ooiqIoiqIoiqIoiqIoiqIoinJWoC89FEVRFEVRFEVRFEVRFEVRFEU5KzhjPT2sKBArPKHTRtq2ZdQZtQ6gf4bdhbrsIiJWD+rUhSP4nfI0aqGWJlGXzrZJA61nFcSdS1AHOkv6ZyIiEemBj+RR+23Pd++G+O7v/xvE/YOovTc4sBriXAZ1odsc1LoWEfF6UG/1PtJ8PT5yHOLvPPLnEN/10NcgtshvIBbUbdv3nNkP2U7U+5weQf3VJd2z+p5BmCTuuYhkyyLZ2rXuW486sO5ajHdMT0DcaZttdXy85lnSjPenUUc7rGJfVGLUkCy8fC/Ex8cwb9etRc8CEZElvaj1bZGOaIn0N+00aUCSDrKH0n0y2IFt9MdN/dus7IG4jfSpgxDvhfHjqM954BXUQSwHqAErKYx3JWjo3plHLenBLGqGpoLadwpF0gZtAkcOlyWbreVXqYhl2SKtZ8tZDvG+g1g3RETuvvdf6Dusl8ja3K9VADbJ06PBV+iQtmDuxzFdw3iQYvRAsuQm4xBOtBniNPVlWxqv9UQRa2YlQO3nOOaT4t8bMGtA7NDPSPN0/Tqv/mNPXnjB+Pqi4Uogbl3Dm/WLWTU93eBzERGP+sKj7/A++HOX8oHb5NJ0JdnTgzWR58/riPRxzZjmASQ2HSbsPmbtadLDDYMqfYw5yB4g3CZWjTZ0pcXUsmWPApnrIxI1V+deorj2T0Ry5L9hs2g29f90HucnIiKVKo4dQYDn43roZcGa5j09qEf+2x/8AMTbt6Oe+cZN5xltuOL1l1M7cR7U3Y11ZckSnKt1d+KgmiV9aY+ucVJpZUcxjv0Q+6VaxTxMRXhXX3QJ6q5fsAnnuJvWoqa9iMhzz+C8upCfgNir15tyuSI/+MFjxvcXE7uwX2yp1fOrr8XrtXEdzpFGDuyDuDI1YeyvOo3znj270KPk+BR56hUxLo2iV0FvG+ZI3sYruO1V9N8QMX2P+s9ZB/HqG94M8aiNc4c7H0SvrwPbXoa4MoE1N0lr36viemzQwftxgPSiO0iUPgwptx0aRzKYl5WE5A8KWBVHRvH+O+FD12y9cUsisepzgtjC88qHGN//zCsQf/cHDxj7e3U/erGNlXDsyFMpr8Y0Wlg4n7E87FvHxh2k21BLXESkox/nUOs3YM5deAGuQXIZ3H6EkujoEaxDmRwe86orX2e04abNOPfrJ0+J6Smc64/mcU1zaAf29ROPPw2xQ56CBw8eMNowNIQ66pdtwPW5M2fschJNKhYPy7LEqntW8PzB8MIj0mlzdsfTh9LU6Lzx8cNYP48d3APxI2sxZ956E3p+XHwhjj0iSSsU8hU0PAMxTNHcPWPTHInXI8YORVwH92GzJxz3NTXC4tjw8KDYWG+IuPQzj+rKiU+b7UwZxVWJ6m2LImxj4OA4EqVxvX5sl+kx6STMdOdisWdkhLXQdmm9QP5iZZqjeTnTW8GmHPHJtNahscqhehpHeA4utYG9TobWojeciEjfsqUQdy5BP7cB8qjr7MQa/+h374L4+Ag+87v5l98L8eqNG402FIv4/CCMeB00G1f85j4/sWQ25226F8Sm+QvdO6kO0xtvw+XXQbz+4jdAHE6j19bE0T0Qjx7C51/Tz6J/nF1FL4viuOllUTiGc6iRPQch3pYjr7wuHDP7+sgThOK+XowHl7C3l8jwUnze4tBcIqjidbaoFpZpfTE9Sh52FRyTcymz1lXIN88v4v03VR/XqxXTT/lk6F96KIqiKIqiKIqiKIqiKIqiKIpyVqAvPRRFURRFURRFURRFURRFURRFOSs4rZcen/nMZ+SKK66Qjo4OGRgYkJ//+Z+Xbdu2wTZxHMvtt98uw8PDks1mZfPmzbJly5YFbbTy08fmzZs175SmojmntALNO6UVaN4pzUZzTmkFmndKM/lf//cLIiKybNkyzTmlqWitU1qB5p1yJnJanh4PPPCA/OZv/qZcccUVEgSBfPzjH5ebbrpJtm7dKm1tNX38z372s/K5z31OvvzlL8uGDRvk05/+tNx4442ybds26egwPSZOxlxNyph09U7oQZ/AH6Ob6Rjqc4qIOO2oi2dZeOpeBn0mItILDCuo/1eYRg3LfIV8D8ronSEi0tmLerptHeh3sWTZBvzcRc+B8jTqmz335Ah+fhz7wfJRU01EZOUm1KsrV1DH8B/2fA/iVBb1584//7ch3rsbReidFGoEFwqofyciEqVQ29hbgnqsU3Ok3U7IUP/6r/+6XHfddYuedyNTZUlXa2qYz/3rw/DZ6o2ow12YYG1azBERkaCCGnRl0pqdLmDeTFXZSwa3zx9BLdrdW1AX+8a33WK0YWAZ6qeGpIveP4S5ms10QzwRoHZ1JoeakcE46ZyWTG3MtIO57rM+IOk2F5wJiCPaPpzANnk2xsWQ9UBFjpZQczdv4TGDep0p1/Uqm5VzIiK7doWSTp+49lRLLKw1foxaiFGI+o4iIi+/grqSNnmoWOSTFMenq+vPArgJOsENbUKwrsc21qtzSGt/cOgXIX5q2zsgDuVi8xAh1vlNKzH3r+lHvc1vb0Hvpz3FS2iHDYSDE7DpvKIYa8Lm62vXolKx5YUXmpd3blQRN6zVupTNn5EvAl3eVIKrgBeTFjvdsymK+XOH/BtSpErskF+KHZltsFn3N0ETeS6s8RqR9rbh6RGxx4e5/4i28WguMTqG+qyHDqPW6bJzUFPXJj1kmzW5k+49m/qS/AFia871tWr52Ky8K5enxA2c+rlRO0kzm9Ns7Xocg0VE0lncx9333AnxpnMvhLh3GHWUA/J/uvzySyG+kDw8vIxZb1Okg25Rw127QR5SHQlIn7pMORUk6I37VNMDmieznwF7elTJf6xE+rnlAo47sWP2g5fBPAjGca7XXh/nI6f5Y+x9f/M58eqa2xtedxV8duFN/w7ipRdfDXHS1WNN4+FdeK5btqLHx+6tOFcuxhiXJnHMjmku6KXM+3zjhRdAvOm96Edz0EWt5geexvnj0DXYD53no2/LnpdR/3ty1NROrhTzEG/d+ijEz+7ABxkrluF884o33QhxVwfW8IkXn8PjJaxrrr4Z5wZHj2CbXn3qQRER8QNfnn/5labm3YnkqQR4Pe955EmI/+Qf74F47yjqeouIhC7Na10cI2PSsU9n8PNVbVgTlg/gXH7lSlwnX7DB9Me8dBP6WVYmcY3yoy17IB4pYpttl3zVyMdp7TAes6/bdCc4OorrykcfwTX/S3TvvXIEx9hjx3EeGJXxXr7yUhwDJqbxHEVEJqfx+sRUo+f6Nzz6ox+JiMgPfvADyWQyi55zlm3P+BGwx1gjX5tUyvT0sGn8iqkisvdBQLr+YxPY/0d/hH5Go8ewznjvMdt46UV4TRz2eCM9f5vmo+yFwR5yRpG3Eqo+zb34vPkrfAj+LWP2FyN7TcPXrrZT7BseFU74GsRWc8fYMIpmveN4Xkwd07cCfSichJScGsd1L88/+PmWR/5wHnkDZdpx3heWuyGOHL46pndFeyd+p4s8OVI57K/uJegVtnQ1enasORfn+n1LcXsRkbZuXAencuhRl7HJN4QSeeOlV0JcIU/B/iH0bihVzYvB3oW8Tgrm1L4T329W3sWSllhqfRL62K5qBf0ySiWcvxQKZl2fJv+nqQl8rpcfxXlezsZj9Obweowdx2eo7DuS5KEkDs3l6Z4vTtF5TGL9HCGv5lQGa2U2h8fs6cUcExEZGsK11tAg+RB24dyhow3zMpfD+3GKPPAO0Zh8ZAz7SURknK5Ffgr7upKvxVF46s+vTusvPe666y751V/9VTn//PPl4osvli996Uuyb98+efrp2oQjjmP5/Oc/Lx//+Mflne98p1xwwQXyla98RYrFonz1q189nUMpCvDe975X805pKppzSivQvFNagead0mw055RWoHmnNJN/+psvi4jIueeeqzmnNBWtdUor0LxTzkRek6fH5GTtzU1vb+23iXbv3i0jIyNy0003zWyTTqfl+uuvl0cffTRxH5VKRaampuCfosyH5p3SbBYi50Q075TTQ2ud0go075Rmo2Os0gq01inNRmud0gq01imtQPNOOVP4sV96xHEsH/7wh+WNb3yjXHBB7U+sR0ZqckuDg/jnUoODgzOfMZ/5zGekq6tr5t+KFSsSt1MUEc07pfksVM6JaN4pp47WOqUVaN4pzUbHWKUVaK1Tmo3WOqUVaK1TWoHmnXIm8WO/9Pit3/oteeGFF+Qf/uEfjM8s0u+L49j42Qk+9rGPyeTk5My//fv3/7hNUn4K0LxTms1C5ZyI5p1y6mitU1qB5p3SbHSMVVqB1jql2WitU1qB1jqlFWjeKWcSp2VkfoLf/u3flu985zvy4IMPyvLls+bcQ0M1E56RkRFZunTWEO3o0aPGG70TpNNpSadNQ0SATEpi3n7wEvz8+MvGLoIivT0kg6KqNb/Zmp1qp8/RCMZ2yOBKTPO1/CgamI5tw3amcmg62LP2jRAv6UGTwaGlaPhWJnP2cNI0JJrehX03VvpXiKfKD0K8NPtrEG/Y8CsQpx00+z4wshXiyqRpKJ0/it+xXTQ9E3vWwD2KZg17mpF3QTAtTlBzbXryETQJf+k5vMa9vWg6dfT4hLG/lE15QJfEIiO0kO9IB81Ep8YPQ7x6ORqCVSumMVM1RDOgPhv7OzOB98aRGE2Sjk5jrh+IcH89mTaIAzHfwPu9aGQekjFTnMbz7GhH56wjRTS2OroLv+9GaHC0NGfm3dINVdoG+/5g3YCrNMcEeCFzTuTkebd9hyOed6LNXKt+AGEcYV6KZRp7skmtGEblbRSTHd78vrtiDB1JhtEWGVOx+S5PbshI7vL1GyC+5cY3Q/yZv0VD1K170UhLRKSnB83w3vVGrMHXF3+E+5hAY9g9O/j3Atg20Jonqn8jxO8Mklfdz95Su78KhZR84Yu1nzWj1qXFF9eq1QLTQBHPm83yUrFpqsv78CLMEZeMy2MynZuaxHu4sxONCHPZHMSWY97jwubmlGM8obYpjgKaa5Dpp0fHnL1nT76PtGA87k9AfHz/ixAP92K/dXThvMCuYn32K1iPRURC7EqJ82i66s8xiLOrsxs3I++6umPxvFqytHfiPdvdjdc414Hzrs5u8x4vVXFMfPgxnFdVqtj/A+NoyLd0EM17/Q409cu101ww4VeFbDKrZyPzoIqfsxGkTbXPIYPikOpttWoaShfpZ8USjqmFPJo7T06hseDY2ATE42P4+eQEGREexH4XEdm5fRvEPW14XheuWy0iItU5936zxtj8kXFx6/269Qc4hgaCY8nwJWRe34k5I2Jes3QvbnPOJf0Q96/B+Xth4nqMA+zPgOaOac88p1x/N8TbyjhPevrex3Gf3djmQhcORk4H1txVF2E/jx+bMNrQnsXzjl7/BjxmHmUo0hnsl8qqddim8Z24v31Ygztp7SUiIlWsC9VRNInv66jl22Ll3clyLoyjGTPcEo0LU3Q/jo/g9W/LYu0TEWnrxetrWzjoXkLG49e/DuczPSmsS6kIa8bGTXgtnK5uow0/fAKN6b/+/Scg3jWO57VmA+7zzeejee+lSzEfHnz8EYgfeRLnaCIiR2itNV3AvmUvXp8mJw7du4Nd2K97duA6dnpkj9EGKV0LoUXXInZSc/6/di//zu/8jtx5552LXuuiMJTZIQbbZZhv03crFXM9IfR8xOV7kMx5vTTejzEbgLt4gfbufxXif/5n8wFplq7ZxRsugjgdY73MOGR0bhhVY78Yy5EEY2s2hY/ovAJaH8Q8/6T9GcbmtIGbMNmgrjbW0jNtk+bWuiiKjP44gU1n3tWH9/wAL4pEpFjCSWxhEucf4wcPQdy9BPcZp7F+Zj1sQ4bm8u29A0YbQpqnpVOY951dOFd00zhXHFyzHuLeIXxe001G6Oms+dwwZuP6Mj6/yUd4v8ZUhzI93RDnKMlKRfx+xOt0EYno+vEWc++LZo+x//w3fy+OV6s3fhnnvNUyro1KBRybKiVz7eTTPLpaxmdqVoDf6cxSbrfjNRw/jobdfNdX+aGgiAS0jo14XUtraYuuGZeEShE/r9DaYHLCXE/s3Y1m6J6DbciROXp7Bz5T6u7FuWQnre08znXXzH0nhcew6AFpYbx2L8RRcg1M4rT+0iOOY/mt3/ot+cY3viH33XefrFmzBj5fs2aNDA0NyT333DPzs2q1Kg888IBcffXVp3MoRQH+63/9r5p3SlPRnFNagead0go075RmozmntALNO6WZnHgo+N3vfldzTmkqWuuUVqB5p5yJnNZfevzmb/6mfPWrX5Vvf/vb0tHRMaO91tXVJdlsVizLkg996ENyxx13yPr162X9+vVyxx13SC6Xk/e85z2LcgLKTwf/9E//pHmnNBXNOaUVaN4prUDzTmk2mnNKK9C8U5rJf/v4/xARkb/8y7/UnFOaitY6pRVo3ilnIqf10uOLX6xpb2zevBl+/qUvfUl+9Vd/VUREPvKRj0ipVJIPfvCDMj4+LldeeaXcfffd0tHRIYry4zI5Oal5pzQVzTmlFWjeKa1A805pNppzSivQvFOayZf/9m9FROTtb387/FxzTllstNYprUDzTjkTsWIWKWwxU1NT0tXVJc6/e0gsr67Jx3r0pM3nFVEzzT/4jLnj3XdCGBx/CT8P2Athfo0ww7MjlabQ1AeMM6j/F1i0D45zqFHY1oZ6rdkIdYglj/u38wkas5VXIB6rfBWbIGshTlnoK3L+uZsh3rQJvRruffR/QNwRoe6piEh5HLWNvRTqyy3pm9ViDKKiPLHn3TI5OWlovC8kJ/Luz/7occnWtXS/etdf4UYkJ97R3g1xKTD1AVOkKxpRKldD1FMsR9gXrEc+eQjNm85bhRqRXo69GkQOk8Yue3CsX4H7yMf4+aEi6gcGEcblAsbT1QRfEfIJqVRQrzOo4OdxSJroIenQRqSt6qPeZ8o2y9qtb/4FiN+46TI8Rl1Du1ickl/6T/2LnnMis3l30UVbxHFqg/2zz2Ktsqy/hTi2UKdbrAQd1biHNsH70JHL6Qusk00akYaKJ17zULabbXC+QbtEjw+bPB8cC+vVeWswL3/3P/0qxM++uhniP/gS1UMRece78Ri/v/zvIc4cwnp42/bPQnzv01jfGpHk6REL3tNvuAZz/Zv/XLvfpqenZMOGxc+7Ezn3hg/9m7jp2rFdC+9HR0gnNsQ2LyVtWhGRTAb1bL0U5kyKhrdqAevlvr27Ie7vwxxeQXUqleCn4ST5fMwhIF310MdatWc3aktPT6MXxtIh9H+QhDqTn8I894u4j6kx1Eod2Yca9hnSH8+2oTZxgTR9p8oJurQl3MZhbds59TYKA9n/0mNNy7vf+fh1kq7rwWbJ8yEWbKdNOq+xw95EIrZgnkwfxTy5YTPW/RU0Zu7Yidec/TRWr8Y5UX/CoqxK+tPZduzHjm6sI+z54ZMH06GjxyE+TH4bx8YxFjFztZjHvhwdG5t3+zx5Lxw/jm0oUU5FsamOW6Bj9ndjTbhs4yoRESmXy3L77Z9q6hj7jlv+o3hebZxzaJ61p4jz/dVveCvEF9/ws8Z+AxoTXYu0oMmDY4L6a7xAusrT2IZ8AWvT0iVmP/V20P1TwmtaHcNrWKU2pzvRL8incjYxjjlTyZtzu0w77iPXhfUqTWmybzd6V3j9KH2xdC96mrU72C8ly6y5r/zbX0KcP4CeLdlc7boHYSgPP/ts02rdM1t2S3u9Xuw9hOd1133oVfGdu9DLIkyZv5PoZfF+uurK10H83p9D37M0rWsn6P7sbsN5XxBgDt/1I/RGERH50r8+CvFogP1oZXChtKQDx+Q3Lu+GeHUGE+RfH30W4gPHsC6JiFRp/W1nMOdS1AaymDC8vHooSZdYuGaaOGDOb+/4w9+H+C3XXgVxUJrt+6mpKRleubJpedfReY5YdR8OHmvYN4J9JV3XzLvA5+ch5A2Twg425oIufh6EOJYUSrh+sxI84wbJQ3PTOegN05vrhrid1rkb1p8D8cb16DXTRtvnJ8y8W9KD4/hAH/oZ8eO0gPxow5A9P3D/hudcgqcHe0mZF7T2n+nClGx864qm5dwV73mfuHXPi+E+HBNWDy+H2Ap5Hmde7+2v7oX40GGsn4VxnGd30rVhT48lbVgzhnrQY6Cj3/QVGZvC+skjT1sGa5vvY14PrMEcXX0h1ut0FucIbN0gIiKUMy6NARa5FIQNfAnZFCaU+X1qREwPOt5mrqVCKT8tv3PD+U3LO+m8UqwTfsbUf+btg+1OsO0Rl9aQfHsZz0LIT8Ki2El6PjOHMMlDxZhbUw1nDw+KTS/4+ceAJIxXA3TNeRpm+LxwmaLn9m6GPEI6zefVHV3k8diG25zI9TAI5OUH7z2lnDstTw9FURRFURRFURRFURRFURRFUZQzFX3poSiKoiiKoiiKoiiKoiiKoijKWYG+9FAURVEURVEURVEURVEURVEU5azgtIzMm4ll2TNak3GE72bSpDXWveo8iMuD6439lQPU6GTtxKCI2rXiT0AYBxhHAWr3SRX3X6VYRCSepu52UZ/MtlFT0ioewn0WUAs38lZA7FRRGzesomawiEix9C+4jwg1gFPpCyFOe+grsn3XExBX/NW4fRtei3Y532hDJY99P7QcddLLk7OahGGCvuBiEh14VaJ0TUfu8H7UmD/vqosg3r8HNSdf3YV+GyIiKQ816UIfz8cn75jQxrxKxRgP9qBOZXcfaYwODhptGJ3aCvGLO/G8tm1/GeIjpCdeIT+Ntizqs1okBJ0vodamiEgYo2a5HZKHRIg6ihGJnTrkmZNrxzZMjh+EeHholdGGpV3/AeIx8lo4VK3pspd9vCeawcjRLWLb9Vyx/wQ+i2UXbhx3Q2jFFxv7s+UW3Eauoy1Qpz4W9kJghUbShKS8dW3MIRGRIKIaaf0zxdj/Dg1HW/fjeX/nB/8E8c++CevfL16HnkYiIrfdivr7w//0HYj3DrwB4gOFRkNio34x9Tlj0p/OtGN+pbO1ul+h7lpswsKIWH4t58qlA/BZKsB7+Ogx9M0a7rrZ2J8nOFbEFdQPr9BYM0EavRP70FvBPk564wexBpRJB1pExLZZrBTjchk1eqPSBLZhHGtfgXT1D2VIg7eMXg4iIuUCjv0haepynEnhvTdJ/ikjVUyMmLy/IjPlpCuH9dElD4OgPFuPo7C5Y2y6vSyZuqdHxcccCUOas9A4MV0y51VWiNrb3VmcT+zahXrsa8/BunHZpVg/Dx05BvHWbTh+ZhLu8X/8e/RGW3fuBRB/4P/9EMQsaf3kE+hDd899D0A8Vcbxs5pwzeIA2+WTT9b4+CjERboXLBLpnZ7Cfm3vwPo6mODrs2wZanfnSCs/qI/rAYuZN4HD+YK4bq0fPdLSHlyL2ttr1mHcmTGvuU9z09EjOP/b8iqOiaklqyG20jhX2/bwgxBPHt4G8fhK8hMSkZXr0B9vMo81dpq8YqIyeYCQP1CVNMmrVaxVQcX01IlojrqkH8fQ8jGcb44fxbEkNYBa+3s78DxX9KJX1w3Xbzba0JN7N8Q7n8f5zbbtNe+uMKiKCHpGLCq2LZZdq+8PP4pebM8/h34ZbRnsN4/NUETEpznrgd3oB/Wnf47jeNrFvL36TejReCyPnz/5KPp1PL8D9yciUiIvoFQO250iv77yCI6p9z2Dc3WrSvOhbpy7L+1P8MektXOR5k6VCuZ9MIHjTEC+g+kc9vX6KzZB7K4y55ar1mLelny61+Y8I6gYHgaLi2XN1nPW32c/EyNO0rl3qY4HWBeq9KzB8zAnXBfHcZ6mOeSNxr4EIiKHj2MuHjqKeeTaOC9yHZp3P4g5s4T8ONgDJD9lzjUG+zAXr78WvRJvuPIaiPtozExnsR/4OVRI/SoJev8OdZ5DHiwntPhTDfztFpowCGaSZ2Kc/MQ88pqifMkXzb4+dAi978bpuQTPV4o09jkVPMaxMvaHF9AzCHpGISIycgjXQePT5B3q4LWo0PjYswfnBONHaQ5WpLrEzxVFZOwgPge8+G03QbxqI85fUx75usZ87+K8MDD8c8y5meHhYcSz/+/7zV1P5KzpGf+ikG6XMMZr7tJzpJhqhIhIJ9WFiy5F/9PBpeitfPwo5ulzT6JX19hRvH4x+Rl5Cd6UGQ/XbzGNH36ZPHAj9m0h/wyqEY5Lz9sS1hPsR8R/IsE+L8aTEfKOiWh9Us3T3DJhbVeiOhK7+J1Upnb9IvatmQf9Sw9FURRFURRFURRFURRFURRFUc4K9KWHoiiKoiiKoiiKoiiKoiiKoihnBfrSQ1EURVEURVEURVEURVEURVGUs4Iz1tNjLrGh/4taYmmSRHMdU5Pf8tEPw0pn8Tu5DRCHpJEWBKQtRlrgcQE9QeLA1BuXYIpi3GckGAtJDAbT5Blho9a0ZXdizAJ3IhLFrIuIGpW23Qux66BnhJfFeOf+b+Dn7XjMVB9q6ImI5Jajnuqrx7Ffxkdn+yGOmyt0v2pombRlar4ZF2xAP5KhYdQWfvkV1AaemkaPDxERNyb99Srp4FmkpWeT/judfvsS1ArfcC5qT69djzqzIiLHJjA3j4ygpvIUae62pVHrsq8dcySXQ5+Sko03oFXEfhIRcagfvJBiC/fhk7eJ5eH7WYc0Zu02zNvLz0VvGRGRd5+LOs+ui34Pjx6p5WHRar7e+OTEtFjWiWuP9cuKULPTk1+C2JGrjf0Fgr5GvtB9aLEG4umeM37fii80tnDl/dimGPMusu7Fz22sfylq4vceeRHiHg89Pn73t1DfXERkdekliKuv7IB4ZP37ID460UgHt0E/JX1s6PJSfCLfmpx35X3fF8er3etTedQd9ULU1yzncTx7+RHcXkTEo/GnQr5YpSLq2QZF0iUlP4dRmwbAkHS6A1ODl7VKWcs0jlg7mr5PtYyvXGmK6nOCxn1QwvOyBbdJk3716pWoH37wGG7PPiS2g7Uv9M02rBlCbwWu6c9snZ07hIam7+IyUShIuu7hVCnjsVMe1uT8BJ7b+LR5f3a2kccU+bdt34JeCdu3ocfH29/+MxCvIa32wX708tq5E2uIiMjWV6muTOD9csONqMM8OIy6wPtG0N+mwprJpLnrWmY/uB7W+GoB85A9OoIAtfdZW7i7HbWh28gnZqCbtKNFpJ2uhV8gf6+wfj+Sb00zWH3NdZLK1Ob9qQzOF3IdqONcjrB927c9bewvncF50Mh+1Jx//O678Pgb10Fs2+jPJiN7IFzfg2uU43tM36zHt2Mui4vfSZCEx8+pHhqOSDQmxbH5e3K2i9f8yCTm2WA/nufFF+Gc9YWnsG+3jT8H8cDmN0Ec+eY437cG+zbdj749fefWfHqq5YK88ODfGd9fLCbzRQnrfmkPP4aeHlu37oG4LYO1L50y67qbwTp+lPwz9vjkF9WG+3T70DcrbWNdefYFbFM1MB8RpGkuH9C4nqbxaAkdIz3YDfGhURzfUrS9F5nj/PQEewTQGEZjWpbWE3GMcw2XvGu6u/A+WrkS1w4iIhb5ioxSm2SOn870NJ7jYlPz9Kj9P3t08DQzitifw5wPsD47F4qIFqqFAl8fvIaehzlk7t+cC8c0GwspTyK6xlWadxXLeM2nRijvaPx0EvT+R4pY2175Oq75f/goenFtWIk+q+vWYB6ds3o1xEMD6PPUTmttERHPp5pcSvaMmy6Yz8EWk7Z0RtxUrT6FZTz2zpex9nnkO1GomgNVnjw6bA/POyKvu+IYPseoVvD6xpRTx8l3Jp0i70wR8dmPj35P3Mlifc3YuM+jh3CddIz8H5g0zdNFRErkdxJ8B70xRzdsgXjJMvREYv+j3jU4fjoprHWRbz5z40ewPK+I5swjKqXmPrMLbXfG08PLYl6l6dyq9Ey0d8D0SWvvxWecfatwvnL5NTgfKdBcP3JwPvTQPTgPLE3jeBn5Zu6H5MFoUYdHFDeyyGOPpJiuMftziJi+LUL+Nd19PRD7VONLRfIMpGPY9AzKSfgTjK52vL8mJ8hDM6jndnTqnln6lx6KoiiKoiiKoiiKoiiKoiiKopwV6EsPRVEURVEURVEURVEURVEURVHOCvSlh6IoiqIoiqIoiqIoiqIoiqIoZwVnrKeHZVkzerKGowfpAaZzqC1WPviEsT+nirprOQ+18wLSlAzaUNctIG240Ef9Mr+EevRW8ZjRhqiCmvZxCfUhrSpq98WkKyysbRoV5o1j1sms/RQix0Xdyu4e1DruyHbhIfxXIPYr2NeFPJ5DtfCC0YKUh+cxOYntbsvN9nUcRyK4y0VlsGettGdr2vQ/d83PwWcvjqCHx/HdeyDOFE3t2Z+59gaIu9OoUefQ9Qjomh86hlrfcTvm7Utb0OdgZBxzTESk5KM25sED+J3Jo6iFeeHr3wZx7zLUNC+TBuFgjrWIu402tJFe6tQoaqA/cj/qVBZLqHvIEq9WhD/oa8ca8M5rf9Vow3AnakuXS3h/dNf1sD2nuZqUIiJ+9XKxrFo/evEfwGee1Q1xKG/E78amtnrIhkAO3UQWi3Ka3jvzQ7qyUcbYIhb0+XDlgxAHFuZlaD8DsRPg9ZoU1If/6g/uhLhr0NTG/MU01q/uPvRu2ptC75f8VAP/jQbEiSLq+LPpSbyHy/laHlYKzf0dhPLuh8SpC2nG5CXkk29WB+lvFvaQVr+IuA6OkWLhfeTEmJN2iDlk0TEswe+nUjhWORlT/5a1TiPyDghD9lTCffoR64yShi/5HgSB6a0Q2XhebaQd3N+B7a5MT0BcJu3pchnPwXLoHAP25xE5dgA9zMJerI+uPdsG1lpdbI4fzkgqVeu3Kls7RNhXk3m6d8qmzvZeGiu6s1iLRkcw7+6+CzV2n3nmKYhvueVWiK+//jqIO7uwpoiI9C1BTwiX5lVbtqC30PqNqKt83fXoy7R2LWqBb9+BetMT4+QPJyLFacyb9hzmbhxjvS0UaU6cxjGAPeGKJdToPXbI9DDbNYn7zE/htXnLDZtFRKRSab6nR7WjU+K6D0fZx+OXi6S1PY33hJ+gmeymMK8cm9YIZez/V59H7W2b+nfTJTjPWr4Bx6bukX1GGx66F32xvD70srCN8kTax+TpwcNdTOO8mzBEeQHp+ZOnx5orboH4gvPRK+/wPhxLHFofZFJYu154/jmjDTatdWyLvJzq40K13FxvhUgsCet9yPrh3o6DEIclvD9LxQRNfup/rwPXqT1DqOee6UY/vmOHJyCu0notoPpaLZljS5dDdcKnOuLjem7TOdgmuw2TcqKM1z8sYZvCgnnz8WyTrLwkpnE8TfObgHyfypMY5/N4DpXQHOe37USPzZ4s9p07Z1wtFJq4iBX29KA5jEO+ZTxnYi13qa/D52BTYbFtvt/w+47Dcz2MHRvnRJmsuaap0mRhehrvD4fmRS57n1GtiyyshUE4v2+JiIidwvMska/cE9twnH9pL65zM49j5rZnccxYuxLvlRXL0ZtNRKRSRF37SfIUKFdq8wDfN59HLCYrO9OSqs8hKlTDdx3Fe/zgCM4dHNtcP0b8zM3IW7xAXorqEs3D+ZldbNEzQMf0T7HIfy/N4x/VGZ98B316VuKRN2kmi22Oqub4tGwQvRLdGMfX0n58xvbww/8G8a59uBa44b0fgPiSzW+HOEzwmIhpPcg1Yu66qWJM6heXt77r18SrezQvXYbzn4hq34FD+Dzt/EsuNfaXbcf+jqm2FUKM3Q58Znr1m/H5WT/59Ozdid5sr75ierUVp/Ea5yhPYvKwKNPz5ymqjd39OA8YGELfXS/BSyamtXJAk49lK1dD3JbDmv3yS3RedG+sX4u17dhR8qwWkaEBnPtFNK87UdL9akV+8DVcx50M/UsPRVEURVEURVEURVEURVEURVHOCvSlh6IoiqIoiqIoiqIoiqIoiqIoZwX60kNRFEVRFEVRFEVRFEVRFEVRlLOCM9bTI7KtGU2+mPTnU6QNnqFXN5UJU2uYNV+lcwjCMED9MtdFjUHHQb3OgD63yash6EKNZxGROFhPDSWdzzLGFmmdCvmExCX8PA5Qx82KknREWfMcNe7au1E7OrZQL3Lfwa9D7Ae4P8tBXbdiggZ30UeNu45uvJ5Dy2Y/D0Nfdm1BTcLFZG9+RNrCWr/lSVv24F7Mq8LEBMTndC8z9vfem94JcX9bN8RhhTSWbczDYojHeGwH6jfev+15iEus2Swiu/fshHh8DPWrcznUGl6/YTPEfSsvgLhCGs5p0rlvS+G9ICJiBaTzOITf2foC6neObUe9Y4c1ewPU61y1DjXSc1mzDU/s2ArxdIw6hrvq+sWlUnP1d0VEYqtXxKppSbqCGpsB6elWLfJOsBO0ny3Sc41JMzV2G8S8P26weUgmIuVlx7oKYlt+Db/gfxnCsoW5bZMG6wTpqX7x23cbbRhfhjX3565CP5T9U6jH6RcbDYmNOiYJvH6H9+F3Du2v3U/5QnO9ZDJRKE59bDV1nrEfPOprK8G7JEU6zbaL18uifUYW9ktI/eS4OYppDGYNZhGJfOzDiP0qWL9a8LyM7UkHmucJlimaL2nylEinsF9SWeyXAvkbsMZ2hvZXpRKfy5l+PF0dOA4fPI7eCv4cPeQwPpUcXjh2vJgXty7CHkekN07a3qyv29OJcwcRkbYe/E53Wz/EVgXHkqlJ1InduR11t//si38G8ZYXUaf74stNHeClQ0MU41xg16uvQlytoC53TxfW9BeeOwDx2HHS//cTfFjYj8bCvLJpTCjmJyCeGMFxb3oc536soZ7Pm+NkqYzn1dGN/iedT9V8moLAnKcsNtWpaYnrN49P/gk+mVVYNtUej8ZcEamWsdbE5Mm3pA/vy33bcP4RFLB/7UvWQnzRZejxcf+38fsiIpPkz5adPoRtirCNAWnQC+t3k89IzPr+CXr/EvMcFu/HsfU4Bu91cRwoFlG/eulS1Ju2Q9x/KY/eNSKmR4BleHzUPvfpvlts/CCeWSOtOmcdfPbkY+hhVqWclJg8G0UkpvEq4OvhYd76gtfCH5/AzWn/ToB9a1XNNnjs90XfWdKD49XG89GfyMrg5zsOoFfNZB49Bi3frBVhlbTzKQ4pZyIepklfvFBALf0XX8Z6fSRhSXB8CnPu3NWoUZ6ZoydfLJr9uJjYtjXj5WFZePIW6aLnyD8jyZeuWJqkbWiscTDPcln04/MoLx0H22BTnGRH6jh071I7i0V6fkI7YV38agVzIKDawLGISOTjzyyaN6cptzPtuA61qU6NU5sffPpHuP3Tpj+tkFcFe7ac6JYoau4Ye8G5qyVT9yhJp/F6rt6wGuKHnsL7q1I0fSDosYJ4NEZ75PEXhZiTo6M45508TnWFnmOUp/BZmIhZV2IfjxGzT0zEazg2yaI1D82DUo45lz+Swo5gbxuPvE98WgONHsPz/rev/AnE4+Qbe+lb3mG0gddy7Okx156Rj7/YXHXTrZJpq91nvB6j6YysvoDmN2wWK2IYyHI5jGj8C2mDbDc+U7j8+rdAfMlV10N8fMT04R05gPP/bS/hXGHfK89B7Ng4BrPfxnVv/3mIN15+DcRuypzfOlTjhfyGd+/CdVNhAudxazdivxzYswfiVevR8/Xiq6812nBwBNc9A4M4N3z+qadFRCSMzTnhydC/9FAURVEURVEURVEURVEURVEU5axAX3ooiqIoiqIoiqIoiqIoiqIoinJWoC89FEVRFEVRFEVRFEVRFEVRFEU5KzhjPT0kimf0tFljMiatxqiMWqjRGOqAiYiEJH1qk86lm0FNs8gi/XCKbXpf5JIXgyWm1rdtY3fHLur3RVnUmo5D1AiNq6QxSR4gMXuCVFBjrXYQ0hEmD4gj41twc9JVj/tRd9iLUb8uqpImYYm8BERkgHT2+wewL6cO757dX1QREVOrf7H4H194TBynlguVEHVYx0hLeNq/EuI9JdQ9FBH5L//32xA7pLMZ+KiTZ9H1SNuoKZmnNh0poF6j/dweow3FKdS2DMp4TUqkS3n3v/4L7sD5DoSRjW2M6ZysGDViRUQkxGOmXLw/SqVu3D6FfRuxXwBpbm87cA7Ev/PZx4wmeCTsa1NuB3U/mjBsru5zrTFTInV/hUrUDR9xvTN9JEw9RolMbVCEtUb5czqGofvPerGmNmZMNTCwsE223Iwxnafv/v8g9nz0ooldvE5jFdKgFJGvvIK6k0f70RNg2nucvrEa22RTLrP3CQ2hlpg1ILb7IB4fxbFi396annSxiLrSi03Rimc8Paqkge3GrGva2PchID3biGQ2XfLmcsnTIyZ95CqN2dUS7jCMkn5ng9sdz/exRDHlKKU1f597wbLMnGO968kyfqtAviAZ0iZmjeYceYB4dN7tGXOM7V+KnmKvHEE/sEIw20bW511srrziakmna+fEWuCpFNYIj+JU2pxXZUjz2KZcXbMCPauuKp8PMWsQ7yXvrmfrurEneGkLenyIiKzfuAnilctXQPziC/ido4fRe8HNYB3Z8QrOw156Ef0c8tPmGFUu4s/Gx8cgHhvDuUI+T74WJfx+SOYxxjw8wdiJNc3516pe3Fo7j2bnnIhI1sqJZ9XGfM+jNYTgPCxFvhMZy8y7iPwOxsdxfOpIYW73tXdDXCKfs5GX8Rr/6Fvon3fwJfRzExEZ7saxRSzWmMfxK5PGmLW6XY9i6gc3ZY5vrofX3CXPgDjEeP9u9HBYPYRjcora3G7UgG6jDRFPZ9ibqZ6rTbYvkuNj41Ks1OpLJ2l9DwxijZ4o43otXzB9IELyoqhOoa9j1SavSerL6ZHdEEdVnHP4EXtWmfdpmsartOD16eteBfGKjatxnw62sYfuiyOF7RBX8+YY6/vk4UE1nKXaI8prhzbI0vp/usC+JeYYWyhi0h06jGtrb059LJeaO7eL43jGn8y12cMD1z2ZDPpvVMnHQETEoToQkM8KX4+yRXO1EPvbo5qRyfA82qy3WfIJydA1S1NcqZQpxnrLvlIR+9ZZ5vjmk6eDHXKikf8Qr43JjyOiB1OWhdvbCZ5xPKg67OkRndhXwlcXkZXLl0iurZZbVfKwcSO8dkcGsS6VSuZc/vgIerleQHMsXrS+9NLLeIxtr0BcLtD8hr0nEnwq2dMqjMxahF/g9QJehDAgTxD6etFOqhM878J9eBn8TsrjMZuer41ivz70nX+AuGsZ1m8RkdXnvR5in3xFwjltrJRNf5bFxI9Ccep+LlbEfWXNHyddc465Dljzrwkj2kOV1nsO3dODtFYQEekfxDmRTWvlo/twHM9P4dgTkJlJocBrZ6rHjjm+WXQeVojtHjuC64vH7sXntKVRXHN6VKe+fWg/xD/z/7zXaMO5l26G2KH6OXy0Nv+plk99fNW/9FAURVEURVEURVEURVEURVEU5axAX3ooiqIoiqIoiqIoiqIoiqIoinJWoC89FEVRFEVRFEVRFEVRFEVRFEU5KzhjPT3sOJ7RZ4uFdQ9x27CI2mFSRq0xERHHwVNl/Ubbo52S/phHmqCsncvajFGCWBzrGIfGNqT/RzpuURtqcUqAGrEOyQ1acYKvCOnReR5paLuo18oCd9kIdaAt6id/oh/i7sj0d1jSMYw/qKAucVt69ryCsCio/La4bN31FhHpqEeokyfOOG2NeTZape1FZHQUfVbYU0VkmmL2YUE/DjE0PlEr04pMHxfX8Ngg7XzyghktP4ubx/xulD0kOijuFRP8jiXYplgwb8TupCaQ/42Fxzw2gX44x8ZJ61pEJOqiH7RTfOJzumZNIGVbYtULW5muMetUCnsZJOiNm8qU0fwfN/w+H5O1TZPawGqXWFsi8gOK7ZuoCVRj4+9hHPwQW2iZGtjTpH/6vadQK9/x/he1eCU2Iab7S9grBceF2ErIfevfQ5h2B7ANqVpfO0HDi7KgRHY0c1kN/WJOFx50E/SCYxqvbNLfdMizQ0h3vUoauz59znrjfFuIiHikPc0+MfwlJ8TPWbufFc1t6ocw4ddGSmRGQsrBUiZdXwqFpyJRwLrC+Pl42fR3eHoS50Sxw/0y5zyj5oo/r1g2JJm690PAGsesiUzzCyOHRMSivLApb7LkA5JJ4zjAadTT3Q3x0qEhiJ967hmjDXt2ocbuFZejBvLEGM4dfnjvvRD39uP49fAPH4T4hRexbpWLpm4ya1SHbFDDNk2GDwLpIRu+Prg9z6lFRByaT/oR66af+G/zPT0C3xfLrvWRT5r0jkO66DFps4fmnMCiNUQ2hXm1bADnPKuWopedkAeST7r//hhe43UrLzTaEK2+GGI7g2uENHl4WBaPV+RtyOsBWvfECUXXpvOIqV+qPHaQx4BHeRRGXAPSFNMaRUz96Zg8qvx6m5o8xEpxuiRxXQt7uA91un/h534O4v070LPlsccfMfZ3YP8eiB3qS+4b1vbmUh+Qr0zg41hiR+bYEpJHVRjTujRGL0rbRb3wyMc2pcgDq1rCNRF7ZImIuJQzqSx7Q+G9l2undWkPxkNDqKveu3wDxD0Dpu56lu4Nn3IuCGfbXfYbeAEsMGEYzqwbPBevl+vhPV8mT9RymczYRIRHyYju0ZAmJfkCPSeguTk/d8j5uN7LZMznBux1xuOR62AeujmMPQfbUCjgWtk3xkPzmgUBj1v4pcDHvivkcR7G/WZMqxv6N4p4Hp1XitbSM2Nsc3PuvrvvllTdq62cx7GsSj4PBw9hv+QL5vh66ABus+cV9PopkCdZfpo9XPi5Ia0feA5yCmMDe0LxnInXG3w1ef0gNO9IsinkObCQvzA326fnNVmqdewrw16Kx/btMdqwbP2lELMfzlxrm7l1rxlYMucuMYxs+ILN/3Hyj+afODdcPVGbuIJEMfujiljkedu7DJ9LrLvsaojX+zgP5FVnth2fY5i1LcmbkmIbx7sLrrgW4r5+XCdNHjkA8dAAPvcYI1/C3hU45oqI+B49B6R7+PzLa/1QLvJz1JOjf+mhKIqiKIqiKIqiKIqiKIqiKMpZgb70UBRFURRFURRFURRFURRFURTlrEBfeiiKoiiKoiiKoiiKoiiKoiiKclagLz0URVEURVEURVEURVEURVEURTkrOGONzAMJxaqb5VoxmrJY5PZTGd0Jcdk3DaVtl4yxyLiVDYrsFHZNzAapZNwbU08mGjWSMwybnbMpUmjNb0LnOGw+Syatrmn6mU6hgVgqjYZvHpnOsWGc66FRr+2SaWiEBtID9hKjDQe3oWlOdw6PseycWUObqp+Xp14xdrGIdIhYJ8xzqvhRhOZcQgZ+tmFRlGRyVKbPyfDN2AEaEHFahTEahHEei4j4wqanfB5sfo7b29JJMZ53LBmKk8oKmzWxvS/uw4rILD1C4/JIuvFzi43L2VxdRCwyobbwmDPXM8HAbrEZ6HHFrptS7j3E5pR4UdmrK9mHuIEROWUaG4E23B0ZtsWN7byEjcwNf7AIa4sb3YyxjcZX1ehR/L591DgiGwMWfTK8CrfSPuj+ZLN1WQqxTaadEqOZrYhIGOH9ddGVmHcbz6sZfOXzaBS22LSnUjMGvka2UL9ZbHSWcI+kyFTV4Rwzhisaiyzcp51gWj2XMOYaIuKSMW+a9kE+aIbptWsYoeM52GQ8OJ1QKvIBnhcbPpdKmMd879hsOm7jOVSrWJ8N7z4REQv3kaPr6c5pdxRGYt45i0cU1P6JiFhG3SCTQDbPjs2ccNnomJOZrrGdwb4xTBnJiHFwEA2I3/bWtxlteHX3HogP7N8P8cjhwxB/9e++CvHQUjzGc08/B3GBjMuthN9Xsmj+6FDesAkrGxUKG8UaHpA8ZzavRZWOYdlkHnriuwmG2IuNXxgXCWr13SfTd/FwbHJSNDcQ81wtGs8svm9TWM8tqi3ZDM15ugwnXQjZLFhExA/xPCJO/gZG1y7FNm2fcnMUm2NU4GNuVgNsk0v3n0/3V4lqKNdLIYPoMKB5uZhmrzEdM6r3XRSYY8aiEohYJ2pdlY5N53FsHKvw1NSosbtKCQ1/bQevRxThdwoV7LsUrVGcmIzqAxybrKppsupHeL19C78zPYXr79079kHckcG5fbWABtMWzdPTWVoLiEg6g3mZacN1Uv/AMMTnrEOj14ElWG87u3Delm3D9YObkPdcQ+KQ7rU59TOhVC4ys/a+Id0/+TxeH/68VDKNzNlE3DHmZmwaTWMFzR/LZGwdUB3zfbMNjou1KkVm6Fyjuc1sbs/jvFWhub8xkRDh86xS7fONGO9XHvcsY/LGn5vjPI8DPsVOvYbHTTYy/7d/vX+mz/PTeN6Bj23xfcy5pCksTxGOHjkOsWEiTteb+86mm9Ds+wQabML74PUCz8E8niPQM7o4ZdaZmHOA7r0U1VM+LfM0+d5EimV+XiRSpVrnV3HsmvsMwvfN8XlxASvzphzttXzBmMWdQh4uWYYm4TcP4xpkuBvzqidHdYrmPRHPCy1znOd5F02pxPEwV1MbL4G4VEJjco9yPZPB+l2tmG2Iaa5RpoddE/la9pYSa3Uy+pceiqIoiqIoiqIoiqIoiqIoiqKcFZzWS48vfvGLctFFF0lnZ6d0dnbKVVddJd///vdnPo/jWG6//XYZHh6WbDYrmzdvli1btix4o5WfPq6++mrNO6WpaM4prUDzTmkFmndKs9GcU1qB5p3STJ545N9ERGT58uWac0pT0VqntALNO+VM5LReeixfvlz+5//8n/LUU0/JU089JTfccIP83M/93Eyyfvazn5XPfe5z8id/8ify5JNPytDQkNx4440yPT3dYM+KMj+333675p3SVDTnlFageae0As07pdlozimtQPNOaSadXTX53fvvv19zTmkqWuuUVqB5p5yJWDEL450mvb298kd/9Efyn/7Tf5Lh4WH50Ic+JP/tv/03ERGpVCoyODgof/iHfyi33XbbKe1vampKurq6xP6Fe8Tyaj4cFumMtqVRj6zj2CMQVw4/Y+zXSaNmZ0Rae5aH+ro260V6qJtnW6y7TZqXtvk+ifXCPdIRNvTEPXfez1kfkI/puaa3QjqN58XtZoE/9h2JSCeSvUvaSTdzeoR0/EWkdAT7fmkK/VYKh2c1AYOwIPe+eKtMTk5KZ+est8Ri5Z3IHpEZD4vjtNUExVyg82Jg0c8s0umNOUb9f5eOEQt+HsoY7Z/bLCL0HYm53QWKWXUQ9W0tQf+MmP01pF1M2GOD98kx+oiI4P0bG23oaXA8EWnUTqv+eTwtIpsWPedEZvPuN2/bK+l07Vh/8kXUxKz63Bd8TyW9uz5d5UnWU2Q9WK4lrLmbJFrM3+FjkCY65Z1r74A4jv8c9xb/He4u6ZTjpfQDapON/jZufCt+Xc7FzWPUgrYFPT082/T0eMM1eH3+349ijXzrjbXcnZqakiX9/U2rdRdfuHzG04N11F0ae8IQczLJvyjDerW0iUVjhcVeC6RV61LskJ+GZQ5vIgFpIpNus0daprGhA4xJxLrPTDEwP6/QeebayU+MxlQ/YN+DBr+LQt+vJLTRp31USfe5Gs7uIwxDeeX5V5uWd3f8we9Kpu5nwD4RjOHpkdA3rJts+NHwV2zqf0OvmLT3qRHs6yIiks/jOP/K9l0QP/vcixAfOHgQ4nQa9XFL5OERUl6HSZ4YdD817FvuJ8r9RjHPR0XMvrEoPjHfjKNIxkfHmjrG3nrb74uXruVdlbwKPJrvu2n0DHAdU2vbdXD8Yo8T7l/Wwc+SFnfKxmOw1wzPxUVq/QjfYY8P+txtoIvv0Dk5NsfmNY9J+7nK7aY85JGDPT6ikM8J9xdEpuY457qp717L3WqlKP/4h+9tWq37s7/5gWRztfq/61WsCU88hevWl156AuL86IixX9vHtbAdkd8JDYoV8seIHV7/Ub8FOK9zI1Of3aG5YZXWhEvXbIL4urfcAnE5j3Ouxx95GOIgwPukq8f0hRxctgzi5StWQzw0jPOy3r5+iLl28b1pelaYVCqYh+zVNff+LZeK8vu/827Iu8WsdV3d58zUH5438SI/pBwKEnxv4mj+sSJibzTuP5qbc23jDTzyHhURSdEzmmwW51WWsE79/D4/xQKO2fxsw3HNcT6dIg8kB9s9OYHeXZUSrr25n7g+c93iei0iIhZ5RdHYNOPpEUcyNbmvabXOttMzeeFQvwjPA9j7ImFeF1NtYm9LY3rDfWtYZJF/Bn3dTlhAGo9Hjbyn+kmft7WR91CW5hWU0+bIluDZQv5CmRzOI6IA91IkD5/Ax/rLHqxrL3+j0Yarbv0ViL0c3ntz76VqqSB/859/sWl596mv75RMrva8x/D2omt6Kq67/B0jT+iaN3rSYszaTunRDHsbYr3szWGtWtuPub3r+acgfv5pXH8MDa+A2HbMOlOYxrzp7MA8y+SwRpfJE4nngaUS5uV5mzZC/MyT5nP7drpfVqxbCfGmi19fa2t+Wt76hrVGziXxY3t6hGEoX/va16RQKMhVV10lu3fvlpGREbnppptmtkmn03L99dfLo48+etL9VCoVmZqagn+KcjI075Rms1A5J6J5p5w6WuuUVqB5pzQbHWOVVqC1Tmk2WuuUVqC1TmkFmnfKmcRpv/R48cUXpb29XdLptLz//e+Xb37zm3LeeefJyEjtt1IGB/E3YQcHB2c+S+Izn/lM7TcT6v9WrFhx0m2Vn162bNmieac0lYXOORHNO6UxWuuUVqB5pzQbHWOVVqC1TmkFw8PDWuuUpqK1TmkFmnfKmchpv/TYuHGjPPfcc/L444/LBz7wAfmVX/kV2bp168zn/GePcRwbP5vLxz72MZmcnJz5t3///tNtkvJTwPr16zXvlKay0DknonmnNEZrndIKNO+UZqNjrNIKtNYpreChhx7SWqc0Fa11SivQvFPORJJUsecllUrJunXrRETkda97nTz55JPyv/7X/5rRZhsZGZGlS2d11I8ePWq80ZtLOp02fCZERCLLmtXPI83mEumatpFSW27Zecb+3CzqfBmanqST56Qw9tKoZ+by5+TPwbGIqXfs2vPrhrLeY6WC+qqVKmqkBaT9V07QdM6TNnQcoX5nI21cPq9MFjUJvW70UuhMm/3QtwT1AEv78Hpa8fic/6/pDzYr7+aHCzLpnCb0N+uImhvwPjAvAxYkj7kNnEMJGqAx/4zPm9vNbSadRIt1ftnfIaGsxDn6AbcbY0PX3ugHfl87/7U5lWPOfqf234XOOZGT592vfaBNOjpq90XgoufKd7+xD+IjI1jLghBrk4iIxf3J2vgWXuOuDtRfTGdIczfCehfbWHtYF7T2M57UYK3JT2HtKJYwTyM5BHEYow6+yDUQZZ0LjTZ0ta2B2LZYX3wCP49uwM+dYYgzWaxV3X34J7ZvuNq8/37j11FPeuO5dM9H+N9m1TrLtmc0ULnus+ZyUm1j2GeAvRU8F3PS4wkuy+dSHWJJXwnNNvH1jWPUPg190psnjfqINWBJb541fhOsu8TlYxYwR1ib2KU2sIYv1zbuNivBVySgcSCgvpp7WmH9eM3KuzCKJKzPbbg/edHjGLrcCWMs5y5plNs8fjXwJTN8KQyfF1PzPE3zwfZ2HO94nzyPqpAeLmt/cy1NWhyynrHxeQOPDp7rsT41e+4k6d4bXgrsO1f/yok+b+YY69jOjP9LijyLUuRFZ5NOum2Z58o+H+k0eoR5pNfNnntGrlMdsC3K04S5JF+DiP01aK0U0uccG/ujeyVO8JLhe9Sl3DZ8AXkuQr4h1Zjml/R9102at3Pd53E+qre11ufNqnWuZ4nn1Y7Z2UX61CvQd2IqPw7x4QQfmdI4/iasXUJPvyhAfz7HwutfjWkexxr1VAv9hHE/pDyO6PofO3oE4sceQe8SGoIl14WeHRs34jxu7Xr0CBERWTKIXm1uCu81HiSteP6az/Md9nni7UVEqlXM03K5fNLPK+XaOnbt2rXS2dm56LXO81Ji12ud72M7ef6RoWcbxYR73Kc60EionvOK70dzPMO6E/gJPmVVzO1yGc8rRz4DacoJHh79AL0NqlWMTS8UkTAiXXvqO5tqWcxzD8pDfgRk+JMleChFMd+zyXPUE88emlXrcr1tM3MQxyK/2hR5DRXJVyJhDmtRX5gWHmxAyyaCxg4hdGzOQfN6NxqjuS4Yc0nyBuPYoXhg+TlGG9Kd6FdaIa+F4hSOAaVpHEdsetYZlzlfsM17n0WPJRGR8jh6xa669A0QD625YOb//XJzn9lZVixWfd1nrFMpB8gmJnlVy+ur+T82fAcb7O4kB53/WzZ9iZ/fBFQLS2QIH5Swdrrky3X8GHkLi4hPc8eBfvzLGr+EnkhT45h3vCYqjOLnhXG81tMTE0YbRg6hR1L7EvJMPVHUG6x94CunvOVJiONYKpWKrFmzRoaGhuSee+6Z+axarcoDDzwgV1999Ws9jKIAmndKs9GcU1qB5p3SCjTvlGajOae0As07pdlozimtQPNOaQWad8qZwGn9pcd//+//XW6++WZZsWKFTE9Py9e+9jW5//775a677hLLsuRDH/qQ3HHHHbJ+/XpZv3693HHHHZLL5eQ973nPYrVf+Snh0UcflU2bNmneKU1Dc05pBZp3SivQvFOajeac0go075Rm8tA9/ywiInv37hUR0ZxTmobWOqUVaN4pZyKn9dLjyJEj8ku/9Ety+PBh6erqkosuukjuuusuufHGG0VE5CMf+YiUSiX54Ac/KOPj43LllVfK3XffLR0dHQ32PMvMn0H6c/4cJ2QpFZICCCi2TfmByMdtwphOPeY/r6M/Q6S/YbKE5D8ib95YRMR2+G+tTk/eKqjgeYU+9ksUsiSC+XdUFv35ehzN/52Y/ySfziugfvPLuH1QSUixCh6D/4wqDGf/9DGo//9v/MZvyJEjRxY/72Tun4XlaSuO8U/GYimKCZ6bxBRTLseC11T4T/2Fc5v+VtzIYxHOZVO+iuMGcleGzALvn9okIma78byM8xb60/6YJbS4H1kKIOneSpD+gmOcyN3adV7snBOZzbt8fjbvKhX808QoohyJ+U/HzXrH58+qMDFd0ygm2R/+c/aI/2ybr1+SvBXFdIyYcjuO+Rh4f5k5RNJ8MeeQSGTcbyx7QXkV4z0exXwtuFbh9tWqKUmRz+PPpqZI6qY+LkzX/yS1WbUunDNeNJK+YampKGlsifk7iCFPZXFdoY9ZXsc4YoK8FY9fAR+Drj//eTrLW/H4yDINCX+qHBjfwc+tiOcBNM6fpryVub1ISNcrPAV5q2blXblcMX42e27zy1vxn6eLmLJLpgQZSUzQeNVIwsyUtzLHt5D2wdIn/HkUcR41imXeuP7TpB+eMqYEyfyfJ0m+MBbd4ye68sR3mznG+tXZWh/SPcgSBTZdL5ZfETHnzhZJbsa0D0P6q4F0RkiSHz+OvJXP6x763GYJkYhlDV2KzSrM9yiXt0byVpxofO8EJMFrjBsJOzmZvJVfae56olScncOUSySnQ5J2AUsqJdQZ454z+pbPm+/p07vHk2pKo1rFbQwDllQT+hzP2yfZ5hPSUHMpk1yHw/I4jeStWD6wQYE9JXmrCrbbn/P5dF2C5nWve11Tat3c+TtLKvENGkW8njDP1fzZ/F4j5hqFc6bR/sz9m5eIx1SOk9ahJ/8+tylpjDWP0Wgf898rfJDG/ZTQt2Yz4bvNqnU1uam6bCnVaGMe3WBeXd8IQ+O48//ArGQNrkUi1NdGu+ePjfUFzwNZbjIw1/IhydNxHAXzjxumRCW3ef5zrLUL9xlQja7OqdF+ubZGbtp6oji7Ruf5iSmzR/tIqjPzlzZjrvj/b+9+fmPq/gCOf/BQItVEhFb8SHcWVoSFCFYsbOzEf0BCiJUdO/0HiETE1oaFrQQNsZOI0sQKIYjYKI9H5Kvnu/lq0qnn2zn3XJ17p69X0oiZq04+ffd2ck9nZp7Da7G041rHPx3X2P7uuLbyT+djjY6v1/fvs69jdL68bsTcx46dn/M/HR12fo7OlxHuvH++NUbMfSzQ+Rjq7/9dN/v1Zzff00tSd9/5C+bt27exefPm+Q9kUXnz5k1s2rRp/gMr0h2d/nRzEbpjLuc6ekF3LDQ/Y+kF5zp6QXcsNM3RC7pjoXXTXOM2Paanp+Pdu3cxODgYX758ic2bN8ebN29izZo18/9jfmtqaqq1c0wpxZcvX2Ljxo1zflOuTr+6SynFli1bWjmrJtFcd3RXL93NT3P10938dFcvzXVHd/XS3fw0V682Nxehu7Zqc3cL3ZxrdvXR3fyc6+q1WJrLenmrhbB06dKZnZpfT/9es2ZN674ITdTWOQ4NDf3x/+NXd1NTUxHR3lk1TVvnuBDNRejuT2nrHJ3r2q2ts9Rde7V1jn7Gtltb5+hc115tnqPu2qutc1zI5iJcs6tbW+foXNdebZ1jt8392V+xAgAAAAAAWCA2PQAAAAAAgL7Q6E2PgYGBOH/+fAwMDPR6Ka1mjt0zq3qYYx7zqoc5ds+s6mOW3TOrephjHvOqhzl2z6zqYY55zKse5pjHvOphjt0zq3osljk27o3MAQAAAAAAqmj0Mz0AAAAAAAC6ZdMDAAAAAADoCzY9AAAAAACAvmDTAwAAAAAA6AuN3fS4fPlyjI6OxsqVK2Pnzp3x4MGDXi+p0S5evBi7du2KwcHBWL9+fRw5ciRevHgx65iUUly4cCE2btwYq1atigMHDsTz5897tOJm0l33NFcPzeXRXT10l0d35TSXR3P10F0e3dVDd3l0V05zeTRXD93l0V09dNc9zUVEaqAbN26k5cuXp6tXr6bJycl0+vTptHr16vT69eteL62xDh06lK5fv56ePXuWnjx5kg4fPpy2bNmSvn79OnPM2NhYGhwcTDdv3kwTExPp6NGjaWRkJE1NTfVw5c2huzyaK6e5fLorp7t8uiujuXyaK6e7fLorp7t8uiujuXyaK6e7fLorp7s8mkupkZseu3fvTsePH59127Zt29K5c+d6tKL2+fjxY4qIND4+nlJKaXp6Og0PD6exsbGZY75//56GhobSlStXerXMRtFdGc3l01w53eXTXTnd5dFcOc3l01053eXTXTnd5dFcOc3l01053eXTXZnF2FzjXt7qx48f8fjx4zh48OCs2w8ePBiPHj3q0ara5/PnzxERsXbt2oiIePnyZXz48GHWXAcGBmL//v3mGrqrg+byaK4eusuju3rornuaq4fm8uiuHrrLo7t66K57mquH5vLorh66y6O7couxucZtenz69Cl+/vwZGzZsmHX7hg0b4sOHDz1aVbuklOLs2bOxd+/e2L59e0TEzOzM9fd0V0Zz+TRXTnf5dFdOd3k0V05z+XRXTnf5dFdOd3k0V05z+XRXTnf5dFdmsTb3V68X8G+WLFky6+8ppTm38XsnT56Mp0+fxsOHD+fcZ67/n/lUo7nqzKc63VVnPtXprhqzqU5z1ZlPdbqrznyq0101ZlOd5qozn+p0V535VLNYm2vcMz3WrVsXy5Ytm7Or9PHjxzm7T8x16tSpuH37dty7dy82bdo0c/vw8HBEhLn+C91Vp7lqNFdGd9Xorozu8mmujOaq0V0Z3VWjuzK6y6e5MpqrRndldFeN7qpbzM01btNjxYoVsXPnzrhz586s2+/cuRN79uzp0aqaL6UUJ0+ejFu3bsXdu3djdHR01v2jo6MxPDw8a64/fvyI8fFxcw3dVaG5MpqrRndldFeN7qrTXDWaK6O7anRXRnfV6K46zVWjuTK6q0Z3ZXSXT3MR8efeI726GzdupOXLl6dr166lycnJdObMmbR69er06tWrXi+tsU6cOJGGhobS/fv30/v372c+vn37NnPM2NhYGhoaSrdu3UoTExPp2LFjaWRkJE1NTfVw5c2huzyaK6e5fLorp7t8uiujuXyaK6e7fLorp7t8uiujuXyaK6e7fLorp7s8mkupkZseKaV06dKltHXr1rRixYq0Y8eOND4+3uslNVpE/Pbj+vXrM8dMT0+n8+fPp+Hh4TQwMJD27duXJiYmerfoBtJd9zRXD83l0V09dJdHd+U0l0dz9dBdHt3VQ3d5dFdOc3k0Vw/d5dFdPXTXPc2ltCSllOp5zggAAAAAAEDvNO49PQAAAAAAAKqw6QEAAAAAAPQFmx4AAAAAAEBfsOkBAAAAAAD0BZseAAAAAABAX7DpAQAAAAAA9AWbHgAAAAAAQF+w6QEAAAAAAPQFmx4AAAAAAEBfsOkBAAAAAAD0BZseAAAAAABAX7DpAQAAAAAA9IX/Ai1hbL81MVQrAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1002,19 +999,17 @@ "test example:\n", "true_class: ship\n", "predicted_class: ship\n", - "predicted_prob tensor(0.3574, grad_fn=)\n" + "predicted_prob tensor(0.3574, grad_fn=)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAdnUlEQVR4nO2dW4xk13We/1X3vvfcOBwOB6Z4EUNSsihlTChg4CiWYzCKYUkPEqwHgw+Cxw8WYAH2A6EAkfKmBJEMPQQKRhFhOlBkCZEEEYaQSKBtSE5iRUOaGlIaXjTUzHA49+7p7um6V52Vhy4iQ3r/q5vT3dUT7v8DGt29V+2z99l1Vp2q/dday9wdQoi3P6WdnoAQYjzI2YXIBDm7EJkgZxciE+TsQmSCnF2ITKhsprOZPQLgSwDKAP6zu38+evzM3G7fc+vBtDFQAIeDfrK9KArap96oU1u5XKY2g1FbiZjMeB9uiW0Ofm5lNpHomDc4x+FwQG2laB3JeNH6RnhwgdzQEYNOxZCvffRcl0r83hldqyDytwXHY7M4c+YMFhauJM037OxmVgbwHwH8CwBnAfzEzJ5095+zPntuPYjP/qcn08bgolq4fCHZ3u10aJ8777qb2ubnZqmtWuYLXKumL+5a1Cd4wirGL+DhoE1t01NVaquW05dBhbQDQLnEnfbq1UVqm5mZ4fOopudYseAFIngRGxQ9aguWmPcx3qnVbFFbpcJdptFoUFuvx+c/6HWT7RONCdrHyHP2G//sYdpnM2/jHwLwC3d/xd17AP4CwIc3cTwhxDayGWc/CODV6/4/O2oTQtyEbMbZU++5/sH7UjM7YmbHzOzY6jJ/SyiE2F424+xnARy67v/bAZx784Pc/ai7H3b3w9NzuzcxnBBiM2zG2X8C4B4ze4eZ1QD8LgCy+yaE2GlueDfe3Qdm9ikA/wNr0tvj7v6zqE+5VML0ZFoSKzmfSreZ7lP0+K5po8Z3dqcm+FiVQJIpYZhsr1f4a+ZEjdtKgbzWHabHWhuP7/rWqunxgo1uVCp8h5wpEGvHjOSw9LnVazXaJxA10Gyl5VcgvmPVyHiO4LyCxaoGu/FMgQCAfje94w4AFaIMTNS5fMyk1EjR2JTO7u7fA/C9zRxDCDEe9A06ITJBzi5EJsjZhcgEObsQmSBnFyITNrUb/1YxOCqWDnhhshYA1MppGadaCuSpEg+saZDjATyQBAC67bTUVy5ziaRR4cEM/S4P5CmBz98HvJ9b+ikdBlFjtSqfYySvwfn6G7mPDAsuobVaXEpduHyZ2vbv3cXnQaSoco1f+uVgrcrBehDVEwBQCSSxLgkCi4KX+n1yfQRPl+7sQmSCnF2ITJCzC5EJcnYhMkHOLkQmjHc33hw1soNeDHjanjLSO7jVUrCrTvoAQGnId31rVb6zbuX03KslPvdqiS9xYUGqpYIHTgw6gQpRnkq2d4K0SJOTfDc+yneHG8ir1gxSiT399DPU1idKCADsmv01aqvX0/ezYKMb5sF5FXztS1GevEC5KIr0zroHYznpE23H684uRCbI2YXIBDm7EJkgZxciE+TsQmSCnF2ITBhzIIyhRpK8eVBWp1oicsKQy1PlIJDEgn7VIDdZnwSgDIug2sosz7lmzuVBBBVQikEgDQ3T0uHqyhLtMj3Jc9qViIQG8EomAFCppi+tpSDYZXGF2yaCPH89/lSj10+vVaXGz8sD6W045M/ZIJCPe8Fa1UheOw+kzYLlKAyeL93ZhcgEObsQmSBnFyIT5OxCZIKcXYhMkLMLkQmbkt7M7BSAawCGAAbufjh6fMkcdUtLBkOSmw7g0W03nMOtCPqRHG4AUCF57aJcYWXjUo0HEmAUvTQI8rgNSbTf6rUV2udMtI6B5BVJVIdmJ5PtUS65nx4/Tm2/+sAD1FZEeQOHaTms4bxUUxHInu0Wt9UqfD0GfS4rlivpteoP+DXc7aaPVwRy3Vbo7P/c3a9swXGEENuI3sYLkQmbdXYH8H0ze9rMjmzFhIQQ28Nm38Y/7O7nzOwWAD8wsxfc/YfXP2D0InAEAPYfuG2TwwkhbpRN3dnd/dzo9yUA3wHwUOIxR939sLsfnt+1ezPDCSE2wQ07u5lNmdnM638D+C0Az2/VxIQQW8tm3sbvB/AdW4tWqwD4r+7+38MeXqBMIseKQJookWii9jKXk0CkCQDwEpeuyhN8SWpE8qpVeKSc9ZvUNgzmiGFwTBI5CABOklg2m8u0z8WLfB5Ts9N8rFIgy5FIrt4qH6sRJPu8vLREbc88zyW7qXp6He++807apxLInt3WNWqbqPB+RbdNbUMSxTjk6iDQIdd+kNjyhp3d3V8B8J4b7S+EGC+S3oTIBDm7EJkgZxciE+TsQmSCnF2ITBhrwskSgIal5QmLEuUR6a0eyAzTQRLIuSCpZGmZS2V1UnurwaeOUotLLqVOUHOuxGUoDPm59VbSazUzxY+3azf/stMvz16gtlde5baXfvFUsv3qlSXaZ7XDI8pa/Z9RWwVBokciOb773nfSPr/zrx6htoP791Bbt8Gvx06TX1e9ZnodZ30f7WNtIgEOeaSc7uxCZIKcXYhMkLMLkQlydiEyQc4uRCaMdTe+1+vh1VOnkrZ+n++oXltJ7zwO+zyH22uvvUZtV+s8wqC5yoNrbtmT3rWenuLlk8oVvkPb6/Od00ptgtpKFV5Sqkl2+DslvoMP55fBmXM849gvzy7yefTSc2zM3UL72BTPn8bDcYCpGr9nnT/9UrL93LmLtM+PfvQ/qe2+e3gAzb75WWprry5RW3NlIdnev+9e2md1+WqyvdPlPqE7uxCZIGcXIhPk7EJkgpxdiEyQswuRCXJ2ITJhrNLb6uoqfvS//i5pM+PBKQUJQGm3eXDBqQvnqC1SoYJqR9g1l5ZWphpcCqsHY1WD3HWVOg9cKVW41NciwSQVMncA8DIf68LiKrX1C75YkzPzxMLlxig/XQl8ITsdfh3MzqTP+/3/+N20T3OZS4qdDi+VdeZMWg4DgJMnT1Jbe5COpDq9wIOo2q30OS83g8ArahFCvK2QswuRCXJ2ITJBzi5EJsjZhcgEObsQmbCu9GZmjwP4bQCX3P1do7bdAL4B4A4ApwB83N257jCi1enh2ZdfSdomJ2ZoP/e0XNMdcKlmbhfPFVavcemqF8g4l1fTskvZuCw005iitsGQl6GyKn8dLpf5/K2SHq/e5JF+vT6P9Ftc5DIUgjJJbEl6Qx6VdS2QjXpt3u/QPp5Db8+uW5PtUTmsxauX+fHm+doffs8D1Hb2PI/CXG6nJdgXzqaj4QCgVEr36Q+DXI7U8v/4MwBvzsD3GICn3P0eAE+N/hdC3MSs6+yjeutvfnn/MIAnRn8/AeAjWzstIcRWc6Of2fe7+3kAGP3mGQmEEDcF2/51WTM7AuAIANQnJrd7OCEE4Ubv7BfN7AAAjH5fYg9096PuftjdD9eCjTEhxPZyo87+JIBHR38/CuC7WzMdIcR2sRHp7esAPgBgr5mdBfBZAJ8H8E0z+ySAMwA+tpHBhu5YIRE+HkVQTabTDU4EEtTth+6itn6PS16XL/CSRlcW0lLI/v18y6K+93Zqay5xaaUo8eSLc7v28/Hqu5LtHX7KaA249NaY4tFywz6PiCtbOlKxFkTYVWs8CrDf4LaH3sclr3f+ym3J9k6PS6y/PMmvq5Mv/pza/smv8Ui6Q4fS8wCAM8dPJ9sjGa0gZZ6KoIzaus7u7p8gpg+u11cIcfOgb9AJkQlydiEyQc4uRCbI2YXIBDm7EJkw1oSTViqjWk/LaPtu4dJEg9TyunLlLO3TbKbrwwEAiiB5YVB/bW5fOoLq4Dvupn1m5tJSGADM7uWS3cIiDyIcFvxp65PSclFyzlaLS2i9Po9EA7ieV6ul59io8yjAqvN6f7fMcglw3y5ua5DowX2BfDlb4xGCC2fOUNvpk6eo7dbde6lt+WI6CWt19z7ap1dOr28RJObUnV2ITJCzC5EJcnYhMkHOLkQmyNmFyAQ5uxCZMFbprVyuYNd8WoIoEykBALrddKJHC16rFheWqG1lJYjWqvKorHKRjrw6/dpF2md2hUtXc3PzfKwgoq9L6rkBgFlaOqxXg6d6iicVmfCo5lxQyM7TUXtTQQKTqnMp7/Y9XLKbDKLlmitLyfZBIDcaDxzDOwKZ9cQL6WSqAPDOd97LD0oi2M6d40kqG7vSSTZZXURAd3YhskHOLkQmyNmFyAQ5uxCZIGcXIhPGGwhjRne7W22+w1wm26PlCt+xHg7561ilkg7GAYDCeb9aPV2iau/eA7TP9PQEtTUm+Pzn6txWqdaozUndJQ/ymQ0GfBd8bpavVakU5UhLP5+VINil6PId8rk63/n3AS8NNSTlpnoDvoPfDtSOyZk5ajt9gecU/PnJ71Nbt5tWbPodHpTl5fT8i6F244XIHjm7EJkgZxciE+TsQmSCnF2ITJCzC5EJGyn/9DiA3wZwyd3fNWr7HIDfB3B59LDPuPv31h2sUsUekset6PNyR9MT6ZxgxZAHmVRLXLq6Jch3ZxWef6zWSMtotUAmazT4Epcr/LWWSWgAYOUgAIX0Kxsfq9XkkleJBLQAcXCNE1mutczlqddOvUxti1V+zvMTfB7798wn2xsNHpDT6QWSV4UHBlUmeS68y2fPUduhA+lcczM9vvYr3fQcy8F1s5E7+58BeCTR/qfu/uDoZ11HF0LsLOs6u7v/EMDiGOYihNhGNvOZ/VNmdtzMHjczni9ZCHFTcKPO/mUAdwF4EMB5AF9gDzSzI2Z2zMyOdYKEAUKI7eWGnN3dL7r70N0LAF8B8FDw2KPuftjdDzdInXUhxPZzQ85uZtdHfnwUwPNbMx0hxHaxEent6wA+AGCvmZ0F8FkAHzCzBwE4gFMA/mAjg5VKZUwSeaIfRBpNTKWlrflZXj6pGPCIrEqNR41NTKcj2wDALR1pVAry5xXOo6tK0WttYAoC8+BIyzWDAZcpB8MWta0sXKG26OKpEultdflysh0Azp/j8tT+3VzWmp/ipZVaRL4qAtlzEJxZFD148PZD1HbvPXdS24P3p20vvfIq7fP3z51Itj9d5dLxus7u7p9INH91vX5CiJsLfYNOiEyQswuRCXJ2ITJBzi5EJsjZhciEsSacLLxAs50u5TQzwSUvVhrq0mUeQbWyvMTnUfDXuLuDMj3zu0npqiqX1wzcNhjyqKZejydRbPWa1NbppmW0QW+F9rEhTzjpXT6PqRqXeebn0+WJJmrpCC8AqAR1l+aneZTa3Ay39cj8W8E10Ovy9SiR8loAsGuOy4OTdT7e2VdPJ9vLQRmqB+69J9n+l42gXBc/nBDi7YScXYhMkLMLkQlydiEyQc4uRCbI2YXIhLHXequTqJyFK5dov5NX05FXrI4XAMzv4slzDhzYT229oO5Zv5eWDQvn9bVWWlwma7d5tNkwqF9WDmqs1arp1+9IJmtM8Xp0E0FSySgZSUGi76ameU6DKFlijdQ2A4Bymd+zquS8OwMuoVkwlpHzAoB+n0dunl24Sm2t5nKyvRIkt7z1wO3JdttkwkkhxNsAObsQmSBnFyIT5OxCZIKcXYhMGOtu/HAwwNLVdPDKudd4/rGpqXSgwz+6/920z+69PD/d5CTffe60+e751avpWhn9fhC04nyHdnKSl42am+U7sVN1bpsgu8+VYJd2GATCDAZ8/v0+VyE6pfRutyHYLS7xXfBhkPutHwSMVMrpfINepJUVAOh0uW3hMs/JdyXI13ft2jVqu7q0lGyfmpyifeoze5Ltg2CddGcXIhPk7EJkgpxdiEyQswuRCXJ2ITJBzi5EJmyk/NMhAH8O4FYABYCj7v4lM9sN4BsA7sBaCaiPuzv/tj+ASqWK3fvSQSi7AqmsQgITKg0uXV1b5UEaq6s8H1u9zgNGWKBDEQTP3Laf51yrN3gZqijYxQsexNHspMs8dVa49LNEJEUAWFjk5ZragUx5333pXH7V+Xnah4tyQLnErVFQS7eZPu+zF3hppctX+Dn3elyKbDX5eiwvpYNdAKBGcixG1/BTf/VX6T7X+LW9kTv7AMAfu/t9AN4P4A/N7H4AjwF4yt3vAfDU6H8hxE3Kus7u7ufd/ZnR39cAnABwEMCHATwxetgTAD6yTXMUQmwBb+kzu5ndAeC9AH4MYL+7nwfWXhAA8PfhQogdZ8PObmbTAL4F4NPuzj8Y/MN+R8zsmJkda5PPT0KI7WdDzm5mVaw5+tfc/duj5otmdmBkPwAgmWrG3Y+6+2F3PzwxxQtBCCG2l3Wd3dby3HwVwAl3/+J1picBPDr6+1EA39366QkhtoqNRL09DOD3ADxnZs+O2j4D4PMAvmlmnwRwBsDH1juQA+h7WlJqBGVrKpW0HDZ0ng+sHJQSqgQ5ywKFBw0ilbWbXI5pL/OPLu3gU02lFsyR5JkDAB+mZagXT/yc9jl96hS1DYb83DzIvXfbgVuT7bvn5mifdovn5ItsS1eXqG2BRFm2e2mJEgCGZA0BoBXNYyWSvfj1OFlJu+H5czwS9MKFC8n2TodH7K3r7O7+t+AS6AfX6y+EuDnQN+iEyAQ5uxCZIGcXIhPk7EJkgpxdiEwYa8LJTreDl146kbQ98MD9tN8EkbwKrryhFMRQFQWXjC5e4mWomivpyKVuO5BxgoisSOK58+47qG3fLXv5McmiVIl8CQDzc7PUFkbm8fyQNGnjCy++SPusNnmUV5QEsh+scUGk3maQALIVPJ+toJxXr8tlynpQRuvMxXSU3RJJRAkAwyJ9XkHuTd3ZhcgFObsQmSBnFyIT5OxCZIKcXYhMkLMLkQljld68GKLfSUsendUl2q9EIq88EBpKJIkfAAyDBJEvv/wStV1bXkq21wJZpVbnSTFZIk0AKAZcHiwNAs2R1Pras3s3P14Q6ddqczmsHdheffXsWx7LgluPl7ix1eOyHJOvmld4Ashq8HwO+kFdvCF/zppBwskBSdw5DI4Xi2xpdGcXIhPk7EJkgpxdiEyQswuRCXJ2ITJhrLvxJQMmKunXl16ws9uopLdwrcR3s0tRnrlgt3V2dprPo5oeb3pqkvYpB7n1JoPyVdGu78svvEBty4vpUk7LQRrvYZBLrlrjaxzl8qvX0gE0FpS1apHSVQBwaTGdSw4AWkGQTJlcI7vm5mmfXpDHrRUkDhz0+ToW4c46kSiMSxcWSRcE3dmFyAQ5uxCZIGcXIhPk7EJkgpxdiEyQswuRCetKb2Z2CMCfA7gVQAHgqLt/ycw+B+D3AbyeQOsz7v69dY6GEpFChkFwh1m6TxQs0u0GUlMQCDNBSvEAQKmazuPWbvK8ZN1FXsLnTIvLjUWQV81IXjUAqJI5Vipc5qs2AgkzuEJ6PT7Ha1fTMlqnE+SZ6/DSSkH8DBpBkEy/nQ6i6oOfczvIQRfZiiApogURQAPiEz7k51WrEjk6kOQ2orMPAPyxuz9jZjMAnjazH4xsf+ru/2EDxxBC7DAbqfV2HsD50d/XzOwEgIPbPTEhxNbylj6zm9kdAN4L4Mejpk+Z2XEze9zMdm315IQQW8eGnd3MpgF8C8Cn3X0FwJcB3AXgQazd+b9A+h0xs2Nmdqzf5Z/JhBDby4ac3cyqWHP0r7n7twHA3S+6+9DdCwBfAfBQqq+7H3X3w+5+uFrn3yEXQmwv6zq7mRmArwI44e5fvK79wHUP+yiA57d+ekKIrWIju/EPA/g9AM+Z2bOjts8A+ISZPYi1ZFinAPzBegcaDgdYWbqStLWuLdF+l86lI6g6nS4fa8Bt/T4v09PvcznJScmdUpnLKtUqlwcrJAIQAMpBfroKib4DeI63/pDLje0mX49ul8uK15a5DOVkGadmuQRYDiQ073NZq7vKPx4OBulzW+7y6yOS14ZB6TCLSo55kDeQUAlKdlmRXuBIotzIbvzfkmOso6kLIW4m9A06ITJBzi5EJsjZhcgEObsQmSBnFyITxppwst/t4MKpdHklDyKGWBmcKJKoUg9ki0AqsyDJX62aTh45WeNfFoqOF0VJDYKot9VVLqP1uul+hfN5lCxKlMhluVp9itr2H7wt2b66yssgrVy9Sm2DHp+HRxGCRIxq9SK5LpBfg4jDSPeKZLkquY7L4NdHq5WO6iwCaVB3diEyQc4uRCbI2YXIBDm7EJkgZxciE+TsQmTCWKU3Q4FykY4oKoZcZmDJFyPpbRhkSiw5twVKGbrDdKTUoM8jwyLJi0mK61EJkmJWa2l5sBxEUFUCOSlKBNqo83nUJ9LzWFzg0WbNazxJaDWo61cOkiz2SHTbIIhCc/D1iKTUUhC1FyUJbVTS57a6skT7tJppCVPSmxBCzi5ELsjZhcgEObsQmSBnFyIT5OxCZMJYpTe4oyCJD6NoIifZC73gMoj3AzkpkLyihH1GpJVhkByyXE0nywSAej0tTwFAOZCaSsF47Kw9kGSG/Q63BckXe1WePLLdTsuRkbwW1rer8XPutHgEG7uuPLjNBXFtofQW9atEyTR7aXnw6sJF2qffIxK2pDchhJxdiEyQswuRCXJ2ITJBzi5EJqy7G29mDQA/BFAfPf6/uftnzWw3gG8AuANr5Z8+7u48iRiAwh0dkkssCu5wsgNaDvqUgsCPUjnoF+yash3yaHccgY3t7gNxTr4oR9qQlAXqD/gubbnDd9z7q3z3fBgoBlPdPcn2aMe9FOx0d9tcMQApyxVRRLnkAqK1r1T5NReV81q8eCnZ3g9Kb0UBW4yN3Nm7AH7D3d+DtfLMj5jZ+wE8BuApd78HwFOj/4UQNynrOruvsTr6tzr6cQAfBvDEqP0JAB/ZjgkKIbaGjdZnL48quF4C8AN3/zGA/e5+HgBGv2/ZtlkKITbNhpzd3Yfu/iCA2wE8ZGbv2ugAZnbEzI6Z2bHiBpM1CCE2z1vajXf3JQB/A+ARABfN7AAAjH4ndxnc/ai7H3b3w+FGlhBiW1nX2c1sn5nNj/6eAPCbAF4A8CSAR0cPexTAd7dpjkKILWAjgTAHADxhZmWsvTh8093/0sz+N4BvmtknAZwB8LH1DmSlEqr1dPBEKZBxqkSiimQyD/KShcEukSJDJB4WqAMAIHnrAGAYyGtFIJUN+kH5JyJttgN5bdgOSiEFgTBTwRwn5vamj9fjc+93eImnSJaLoIErUbmx4BqI8tNNlfk111zhqvQKyzUXzKNEciwa+Pqu6+zufhzAexPtCwA+uF5/IcTNgb5BJ0QmyNmFyAQ5uxCZIGcXIhPk7EJkgkW537Z8MLPLAE6P/t0L4MrYBudoHm9E83gj/7/N41fcfV/KMFZnf8PAZsfc/fCODK55aB4ZzkNv44XIBDm7EJmwk85+dAfHvh7N441oHm/kbTOPHfvMLoQYL3obL0Qm7Iizm9kjZvaimf3CzHYsd52ZnTKz58zsWTM7NsZxHzezS2b2/HVtu83sB2b28uj3rh2ax+fM7LXRmjxrZh8awzwOmdlfm9kJM/uZmf3RqH2saxLMY6xrYmYNM/s/ZvbT0Tz+7ah9c+vh7mP9AVAGcBLAnQBqAH4K4P5xz2M0l1MA9u7AuL8O4H0Anr+u7d8DeGz092MA/t0OzeNzAP5kzOtxAMD7Rn/PAHgJwP3jXpNgHmNdE6xFYU+P/q4C+DGA9292PXbizv4QgF+4+yvu3gPwF1hLXpkN7v5DAItvah57Ak8yj7Hj7ufd/ZnR39cAnABwEGNek2AeY8XX2PIkrzvh7AcBvHrd/2exAws6wgF838yeNrMjOzSH17mZEnh+ysyOj97mb/vHiesxszuwlj9hR5OavmkewJjXZDuSvO6Es6dSh+yUJPCwu78PwL8E8Idm9us7NI+biS8DuAtrNQLOA/jCuAY2s2kA3wLwaXdfGde4G5jH2NfEN5HklbETzn4WwKHr/r8dwLkdmAfc/dzo9yUA38HaR4ydYkMJPLcbd784utAKAF/BmNbEzKpYc7Cvufu3R81jX5PUPHZqTUZjL+EtJnll7ISz/wTAPWb2DjOrAfhdrCWvHCtmNmVmM6//DeC3ADwf99pWbooEnq9fTCM+ijGsia0livsqgBPu/sXrTGNdEzaPca/JtiV5HdcO45t2Gz+EtZ3OkwD+9Q7N4U6sKQE/BfCzcc4DwNex9nawj7V3Op8EsAdrZbReHv3evUPz+C8AngNwfHRxHRjDPP4p1j7KHQfw7OjnQ+Nek2AeY10TAL8K4O9H4z0P4N+M2je1HvoGnRCZoG/QCZEJcnYhMkHOLkQmyNmFyAQ5uxCZIGcXIhPk7EJkgpxdiEz4vy3hjABKxLmJAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGdCAYAAAC7EMwUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAue0lEQVR4nO3de2zcZX7v8c9cf77EniQkvm1M6l0SdklCjpawkJSFQIuFe8qBzVZiF2kV1BYty0WKsivawJGIKjVG9BCxUkrabisKKhT+KFAkWCBtSLLbNKuEwklO2GUDBOKQGBMn9thje67P+QPFqsmF55vYPLbzfkkjxTPfPH5+v+c38/VvLp+JOeecAAAIIB56AgCACxdNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQTDL0BD6vUqnoyJEjqqurUywWCz0dAICRc04DAwNqaWlRPH72c51J14SOHDmi1tbW0NMAAJynrq4uzZs376w1E9aEHn/8cf3VX/2Vjh49qkWLFumxxx7Tt7/97S/8f3V1dZKk//Pcf6i6ZobfLyuXved1/Ngn3rWSlM+PeNf+TttXTWPPrK/3rk0mbGeF6VTCv/YL/lL5vJSxPhnzT4Yql/33tyTNqPE/hK370FKfiPnvb0nq6zthqp9R53lfkJRKpkxjJw1zj8Vt+7BUKXjXGg8rk3jMNvjQ0LCpPpn034dRVGUau1jw34elon+tJFUZ5hKL+2/jwMCAlly2YPTx/GwmpAk999xzWrNmjR5//HH97u/+rv72b/9WHR0deuedd3TxxRef9f+efAquumaGqmu/eAMkSeWS99yqhga9ayXbjq/xne/J+hn+9amE7U5kakLWsSeyCZVsD6Azav3rUxPZhAzHiSSVDMesJK8780mpFE3olLGNTSiRsD00JpP+9VVVtiZUsDShQt40dnVVtXet5bFw9P94vKQyIcu+ceNG/cmf/In+9E//VN/4xjf02GOPqbW1VZs3b56IXwcAmKLGvQkVCgW9+eabam9vH3N9e3u7du7ceUp9Pp9XNpsdcwEAXBjGvQkdO3ZM5XJZjY2NY65vbGxUd3f3KfWdnZ3KZDKjF96UAAAXjgl7FvbzzwU65077/OC6devU398/eunq6pqoKQEAJplxf2PCnDlzlEgkTjnr6enpOeXsSJKiKFIUReM9DQDAFDDuZ0LpdFpXXHGFtmzZMub6LVu2aMWKFeP96wAAU9iEvEV77dq1+sEPfqBly5Zp+fLl+ru/+zsdOnRId91110T8OgDAFDUhTei2225Tb2+v/uIv/kJHjx7V4sWL9corr2j+/PkT8esAAFPUhCUm3H333br77rvP+f/X1kSqqfF7rSju/Dcjn7O9/lQpDHnXVqVtH+SrrTZ82t8YoxeXf4pElLQ9K1udttXHVfGuzRvSLyQpSvp/8C+dMs7bsM8tn5j/bC62+rjhA78xw/6WpCid9q41fq5ZuaGid631tYG0Yd5Oxv1t/FBuyvBhVeuHiYt5/w+gJo0fyq22vB5vyPIspP23kRRtAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwExbbc76SKikZK3nVWiJq0glbpEkqboi/ifvN96Qqw1xSCVuMSH7YP24okbBFGVUl/b+XXpKK+RHv2rhs+9CV/Md2MdvhXpZ/VE46ZdsnlhgeSZLzPw5jxr8tyxX/aJ2hIf/jSpJ6P/3Uu7ZxzizT2DFDtE4ibVv7hGHtJSlhWE9jepSShu3Ml233n6ThcaVY9B/bGebBmRAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgmEmbHZeOl5X2zG2rlAre4ybkn5MlSam4Id/NOHa87J/DlU7Z8t1iCf+ssVTcf/99Vm87bCox//Hjlbxp7NKIIdsvUWsae6TgP++aGlt2XMKQByZJqhgyD50t9yw34p+/9+ab/2Uau2jIMJxVf6Vp7Cjy/xvaGL2omLNlTKrifxzGjbl0MUNuYKVizF40zNsZxrbUciYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAhm0sb2pJIxpZN+WRsu5p/JkYrbIjNU9o+RScgWmREzjJ1SwjR2seQfxVKu2DJNEvVpU33MGeKMKrYIoUrJEK9StkUfDWb7vGtn1FSZxo4bo3VKBf9jJZmy3a37hvyjdY5n/WslqTrp/3duwXb3UaHov/bJtG1/O2NsT7nsf4yXDDFjklQwrH06aVt7Z4iDqpQN8UGGWs6EAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMFM2uy4KFZWFPPLHyrH/EOnUnFbJlQx75/BFjdmx7mKYeyYbamScf+5JBPG7LiYIQtOkjNk5EnGTLWK/1zKss17cCDrXXvIcJxIUtyQqSbZssxa62tMY/d++ql37f/du9c09uWLFnnXVozHYb7sn8FW5VKmsSvGDMPhIf/6dNL2GFQq+uf1JZK2tS+W/B8n8nn/eRQKw961nAkBAIIZ9ya0fv16xWKxMZempqbx/jUAgGlgQp6OW7Rokf7t3/5t9OdEwvY1BACAC8OENKFkMsnZDwDgC03Ia0IHDhxQS0uL2tra9L3vfU8ffPDBGWvz+byy2eyYCwDgwjDuTeiqq67SU089pddee00/+9nP1N3drRUrVqi3t/e09Z2dncpkMqOX1tbW8Z4SAGCSGvcm1NHRoe9+97tasmSJfv/3f18vv/yyJOnJJ588bf26devU398/eunq6hrvKQEAJqkJ/5xQbW2tlixZogMHDpz29iiKFEXRRE8DADAJTfjnhPL5vH7961+rubl5on8VAGCKGfcm9JOf/ETbt2/XwYMH9atf/Up/9Ed/pGw2q9WrV4/3rwIATHHj/nTc4cOH9f3vf1/Hjh3T3LlzdfXVV2vXrl2aP3++aZxEKa9EyS9qo2KItYiXjHEc/YZ36xliLSTJxf1jZBLVtqVKG+Js0knb57hixZypvmzZL2XjXJL+US8uZlv7XK7fu/aTT2xrX1s/w1Tv4v5/L7qk7VgpDPrPvSple+r8074+79r/+n+2SKDayP9YueSrXzWNnTTGR+WHBrxrq5O2sSt5/wiccskWCVS2pBmNGB4LRwa9S8e9CT377LPjPSQAYJoiOw4AEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEMyEf5XDuYpiTlUxv4ylmPPPYrJmx0Wu7F07o+KfYyZJGflnX8X7bXltUcV/3lW2KCvFh/yzrCQpPuKfTZaOG7/Wo+y/zwtZ29rX1frPZdbs2aaxDx7uNtV/0OVf/9v3/t009oljfd61gyO2fThU3O9dm5Rt7IIh22/JpQtNY/+v/3mTqf4rjRd51+ar/O+bkjSS87/vF3K246rezfWujQ375+PFDHPmTAgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEMykje35+NAh1dTUeNUWi/5xHwNZ/+gJSSoX8961H3/8sWnsE1HKuzY3mDWN3XCRf4zMjNoq09iJpC12pFAsedcm09WmsePJtHdtzhAfJEkjcUMMk7PdlQ4dOWaqP3j4uHdtruC/TySpKtPgXRurrZjGnmGorU3b/iY++tFvvWuPHPnENPYvfvEfpvpvLPiqd+3cmfWmsYcH+7xrc9le09jFb1zqXTvYf8J/HoZoL86EAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMFM2uy4nb/arSiKvGpjsYT3uJWKLfdseDjnXfth9xHT2JZosqTxz4VZGf98qtoqW9ZYZJi3JKWS/uuT9Fzzk+JJ/9y7oRH/jEFJShr2oUvY5t19fNBUX6z4HwA1dTNNY0v+2X6FQVv+Xlz+B8vIiP99TZLq6/zX5+orlpjGzvX7Z/VJ0sjIiHftoUP+GWyS9P7773vXDpecaeyPev0z3oaH/Ncnn/fP3ORMCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABDMpM2O2/f+h0qmUl61NdV13uM655+TJUn5kn9WVmbWRaaxo7R/7lnBmKv16aB/llUiZguDq6uqNdWXykXv2ljK9ndRIuG/D2NJ27yjnN/xJ0mFYtY09vHjtmwyyT8TzLicKpT9c74Gcv5ZY5JUGPYfu3XubNPYF81q8q7N5fpNYx8/8altLjP9j8NlSxeZxj589GPv2v5h/5xGSfrN4V7v2njcf+xCwf8+z5kQACAYcxPasWOHbr75ZrW0tCgWi+nFF18cc7tzTuvXr1dLS4uqq6u1cuVK7d+/f7zmCwCYRsxNKJfLaenSpdq0adNpb3/kkUe0ceNGbdq0Sbt371ZTU5NuvPFGDQwMnPdkAQDTi/k1oY6ODnV0dJz2NuecHnvsMT344INatWqVJOnJJ59UY2OjnnnmGf3whz88v9kCAKaVcX1N6ODBg+ru7lZ7e/vodVEU6brrrtPOnTtP+3/y+byy2eyYCwDgwjCuTai7u1uS1NjYOOb6xsbG0ds+r7OzU5lMZvTS2to6nlMCAExiE/LuuNjn3iPqnDvlupPWrVun/v7+0UtXV9dETAkAMAmN6+eEmpo+e99+d3e3mpubR6/v6ek55ezopCiKFEXReE4DADBFjOuZUFtbm5qamrRly5bR6wqFgrZv364VK1aM568CAEwD5jOhwcFBvffee6M/Hzx4UG+//bZmz56tiy++WGvWrNGGDRu0YMECLViwQBs2bFBNTY1uv/32cZ04AGDqMzehPXv26Prrrx/9ee3atZKk1atX6x//8R91//33a3h4WHfffbdOnDihq666Sq+//rrq6vyjdSRpoOSUiPlFlbiK/wldTc0M0zyqDbEw81q/Zhq7aIi2+PQMb+w4k2O9/nEcjY0NprGjOfNM9bk+/7lU4hXT2JlZp3+a93SiaJZp7BH/5dFQyfauzqraelN9uTjoXZuIlU1jpxP+T4en0rZYmGKVf/23vmmLs1k4v8W7dqRgi706+L7//V6S3n/3He/a5VcuMY3d2uq/nYf2fmQau1j2j4OqlP0jz4pF/2PQ3IRWrlwp58488VgspvXr12v9+vXWoQEAFxiy4wAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwYzrVzmMp2RUq2Qq7VU7t8E/W6kqbeu7x44d9q7N5QZMY6ty+u9YOp2Ron9ukyRl5jZ5136l7RLT2HUZWwZb/Rz/bLre4ydMY5cr/oewIc5KkjQ87J83NjTkn+0mSYXisG0y8g+yS6dtd+uqqNa7NuUKprEb6v0z8ubOsuXpVaX878tzDRmDklSfTpnqew8d8q796P0PTWM3zZ7jXdv/yS7T2KnZc71rCwnDfS3u/9jGmRAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIJhJG9szM3ORUunIqzZhiJPI50dM84gZ+vTx3j7T2Nmsf9RLIuW3L0brKwnv2o8+/sQ0dn3WFjmTycz0rk0kqkxj50f8Y2RiMVv0UZQy3D1qa0xjVzvbesaT/jEochXT2LXV/nNPOf/4IEmad5F/JFBN2v+YlaRcts+7tmSMVYo5U7naDNFXv/7NB6axFy681L+4bDvGjxz52Lu2atZs79pS0f9+yZkQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIJhJmx2XSEXeeWlDw/45RQljKFQi6Z9lVi7benoyOcO7tuJsY6ejOu/aOXOaTWPPmFFtqq+q9t+HmciWHZdMpb1rXcyQvybJlf2PlVLJlqmWqfdfe0mKx/3nUin73x8kKen86yt5WwZbJvLf566UN41dLvvXF0q2XLphQyahJNXUZbxrP+ruNY39zvuve9fm87Zcx+KIf9acS/jvw1LR//7AmRAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIJhJG9sze06D0pFfPEylWPEed0Z1yjSPStk/BiMVt0XONDS0eNfGkrZ5p6v8o3XSxqicqirbYZNI+v+tY43WiSUM9caxEzH/eQ/lbHE2ced/zEpSlPLf584Q8SNJQ/3+MTIff3jANPbxlP8+n1ltO64aL5rpXVtVVWMae6TgH2cjSS7pFzEmScmaetPYnx4+4l3b2jzXNHZdwf84zOb990nJcHrDmRAAIBiaEAAgGHMT2rFjh26++Wa1tLQoFovpxRdfHHP7HXfcoVgsNuZy9dVXj9d8AQDTiLkJ5XI5LV26VJs2bTpjzU033aSjR4+OXl555ZXzmiQAYHoyvzGho6NDHR0dZ62JokhNTU3nPCkAwIVhQl4T2rZtmxoaGrRw4ULdeeed6unpOWNtPp9XNpsdcwEAXBjGvQl1dHTo6aef1tatW/Xoo49q9+7duuGGG5TPn/5bEDs7O5XJZEYvra2t4z0lAMAkNe6fE7rttttG/7148WItW7ZM8+fP18svv6xVq1adUr9u3TqtXbt29OdsNksjAoALxIR/WLW5uVnz58/XgQOn/5BbFEWKIv8PegEApo8J/5xQb2+vurq61NzcPNG/CgAwxZjPhAYHB/Xee++N/nzw4EG9/fbbmj17tmbPnq3169fru9/9rpqbm/Xhhx/qgQce0Jw5c/Sd73xnXCcOAJj6zE1oz549uv7660d/Pvl6zurVq7V582bt27dPTz31lPr6+tTc3Kzrr79ezz33nOrq6ky/p6a6TmnPvKfiSMF73OpaW07azPoG79pKyZbZlUynvWurZ9j2n4slvGvjCdthUHH+Y0tS3HLCbTw3d4Z6J1teW6nknxtYKg+Zxs72HjPVW1YoZcyOG+z/1Lv26BH/HDNJapztn5M2s3aOaewhQ+5ZxZBfKEkl40OjK/vv86/Ms73mfemCr3rX/o/L/Gsl6bcfdHnXvrXv1961hcLp34h2OuYmtHLlSjl35h3+2muvWYcEAFygyI4DAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAAQz4V/lcK5yI3kVPYPB6qr9c9USxpy0nk97vWuz/X2msSsV/78BLll4qWnsmbP9c7gSKVsWXEy2+lLZP+PLkjklSUOFnHftSN6W71Yq+H/Lb6xcNI3tzvAlj2dSm055186cOds0dnV6rndtMmbLpZs5wy//UZIydf61klQw7MMhw33ts7Ft6xmPlbxrZ2X88/QkqSbyn/vhro9MYycMy7no0gXetcPD/rmLnAkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKZtLE9UTKldMovqqT3WI/3uO+fOGaaR7nsHw0yc9Ys09jNzY3etYWSLUakWBjxrq24smns7JB/VI4kDQ/7x+WUS7Y4m0TcP3cknbL9zWWJyqmqrTaNXZ2y3fVGhga9ayvyj0mSpNoZM7xrE7GYaex0wj/iKZGwrU/KsD4jJf9YHUmKGeYtSTHDPi8WC6axD/ee8K4dyvWbxk4mI+/apuZ53rWxhP/+5kwIABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEMykzY7r7zuuVFTlVXvk4yPe49bW1pjm8fXLlnjXzp7TYBq7psY/b2xk2JbXduLEce/aYtGW1zbkbNlXNTV+6yhJmXr/LCtJqo3866sNWWOSlDTkpJXLtmy/Usm2D4tF/3y/kbgxJ03+2xmP2zLVymX/bL+if6kkKZlIe9e6in+WoiSN5G31vZ/6Z1Ie67XlVw4MDHjXnujrM41dW1PrXRvVXeRdOzLiv/84EwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABDNpY3tmzZmrdJVfxM4sQ1xOMmGLHUlW+UfODAwOmsYeHMx610aRLXKmWPSPhamUbJEzLY1zTfVRlX+8SiJuy25xFf+ImtzIsGnskax/XEqfISZJknqPf2qqHzbENn3jG5eaxk7NnOld6x/w85lE3P9/jJRscUP5nP/6HO7uMo396THb+hQK/ve3oZwtgqu/r9+7Np2wPaRbHrP+fetW79qS4TGFMyEAQDCmJtTZ2akrr7xSdXV1amho0K233qp33313TI1zTuvXr1dLS4uqq6u1cuVK7d+/f1wnDQCYHkxNaPv27brnnnu0a9cubdmyRaVSSe3t7cr9t9PLRx55RBs3btSmTZu0e/duNTU16cYbbzQlwQIALgymJxBfffXVMT8/8cQTamho0Jtvvqlrr71Wzjk99thjevDBB7Vq1SpJ0pNPPqnGxkY988wz+uEPfzh+MwcATHnn9ZpQf/9nL5jNnj1bknTw4EF1d3ervb19tCaKIl133XXauXPnacfI5/PKZrNjLgCAC8M5NyHnnNauXatrrrlGixcvliR1d3dLkhobG8fUNjY2jt72eZ2dncpkMqOX1tbWc50SAGCKOecmdO+992rv3r3653/+51Nui33uGymdc6dcd9K6devU398/eunqsr2VEgAwdZ3T54Tuu+8+vfTSS9qxY4fmzZs3en1TU5Okz86ImpubR6/v6ek55ezopCiKFBm+ohkAMH2YzoScc7r33nv1/PPPa+vWrWpraxtze1tbm5qamrRly5bR6wqFgrZv364VK1aMz4wBANOG6Uzonnvu0TPPPKN//dd/VV1d3ejrPJlMRtXV1YrFYlqzZo02bNigBQsWaMGCBdqwYYNqamp0++23T8gGAACmLlMT2rx5syRp5cqVY65/4okndMcdd0iS7r//fg0PD+vuu+/WiRMndNVVV+n1119XXV3duEwYADB9xJxztrCuCZbNZpXJZPSD//0z7+y4qir/15SSSVsGm1zFuzQRs+3KVML/2dB00pZ5F3Nl79rhnC3zrsr6Gp7hSd9k2vZemXjKv96Vbdlk7+7d51370YcfmsYulf2zxiTJGdbzmhXLTWO3zb/Yu3Z4aMg0tqW+70SfaezeE73+8yjYcgPLxmNlyLKdxo+hxA0P0TOjatPYR48c8a490zucT6dSKav70Pvq7+9XfX39WWvJjgMABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABHNOX+XwZXjvvd8qmfaLh1m06DLvcaur0qZ5VPxTexTX6b8z6cxj+0exfNLTYxo7l+33rs0PGyNNSrZIE0sEylcv+R3T2HMb5vjPw7KYklKGiKeZmbNHk3xeZDwOE4bUppH8iGns37z7rnftoDHiyTKXovG4qhjibHIDA6axh4z3iaGhnHdtIW+LbIpS/g/Thz751DR2X1+fd2254r+/K4ZazoQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwUza7LhifkCu4pexNDLY5z1uvGzLbXIyZCAlbLuzXCp61x448FvT2AP9fd61aUM2lSSloypTfdIQfFYp+efpSVK8ZMiDK/uvpSRdNHu2/zxssYEaGrZlsA0b6ru6DpvGtsw9Zvyz1cX9/8NQwZZ5Z8k9yx3zz1KUpJTxPlEq+t+XS2XbMZ7r8597adg/w06Syqa52O4/vjgTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEM2lje6qTcSWTfj2yYIg0qUra8lVicf/ImXjC1tPjhmiQ+voZprGrUv7znlFbYxo7URWZ6muq/GN+LPEnknTgN7/xru0/ftw0dn9uwLu27GxRLKm0//pIUtJwbEXptGnsWNw/jmVoZNg0ds/xXv+x87bYnoThvjkrM9M0dmHENpehYf9jpVS0HSsVU7SOMT8q5l8fM2Q2xWKGuDPvSgAAxhlNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQzKTNjovHEop7ZkOVSxXvcWMxW2ZXpeSf25TP++dHSVK55J+TVp20LVU8lfKuHc7lTGPnjx8x1R8a8s/2q5RKprFjzj+jKmXYJ5KUTPpn3qWqbMdV3HjPKxT898vACVu+28iI//qMjAyZxrYkmVXFbX8TF4cL/rWyrc/wsG0fWuorFf/HK0mKxf33YsmQpydJruy/z9Mp/3lUKv6Pm5wJAQCCMTWhzs5OXXnllaqrq1NDQ4NuvfVWvfvuu2Nq7rjjDsVisTGXq6++elwnDQCYHkxNaPv27brnnnu0a9cubdmyRaVSSe3t7cp97umcm266SUePHh29vPLKK+M6aQDA9GB6ZvrVV18d8/MTTzyhhoYGvfnmm7r22mtHr4+iSE1NTeMzQwDAtHVerwn19/dLkmbPnj3m+m3btqmhoUELFy7UnXfeqZ6enjOOkc/nlc1mx1wAABeGc25CzjmtXbtW11xzjRYvXjx6fUdHh55++mlt3bpVjz76qHbv3q0bbrhB+Xz+tON0dnYqk8mMXlpbW891SgCAKeac36J97733au/evfrlL3855vrbbrtt9N+LFy/WsmXLNH/+fL388statWrVKeOsW7dOa9euHf05m83SiADgAnFOTei+++7TSy+9pB07dmjevHlnrW1ubtb8+fN14MCB094eRZGiKDqXaQAApjhTE3LO6b777tMLL7ygbdu2qa2t7Qv/T29vr7q6utTc3HzOkwQATE+m14Tuuece/dM//ZOeeeYZ1dXVqbu7W93d3aOfFh4cHNRPfvIT/ed//qc+/PBDbdu2TTfffLPmzJmj73znOxOyAQCAqct0JrR582ZJ0sqVK8dc/8QTT+iOO+5QIpHQvn379NRTT6mvr0/Nzc26/vrr9dxzz6murm7cJg0AmB7MT8edTXV1tV577bXzmtBJA/29SqTSXrVDA33e4/Yc8RvzpJGR07+r73TKJf9aSSoWDdlXRVummqv4Z6rFE5aELymV8s+FkqRk0v+EO5GwZV8lU/71hgguSVKx7J/tN5zzX0tJyudteX0D/f7ZZM52qKi23j8jL2HMd3NF/5y0/KAtl65U8t/n/Wd4d+6ZWLPjyoastJgpUU+qOFvWnEUy6Z+nGKv4H1iWLSQ7DgAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQzDl/n9BE++TQe4on/KbnKv6xFuWyLXImZsh6SUb+ERiSFDPE5cRitqiPdMr/6zFq0jWmsa1zqRjWp1SyZc4MDvpH6xTytrErzn874zHbcVUp22J+0lGtd23jV1pMYw8O9nvXZk+cMI1dKvhvpzOuvSX+ZqhgjQQyxmR9QaTZGMb4KMt2pozZVAn53zeHhga8ay33ec6EAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMFM2uy4RGVE8VjCq7ZS9s8pqljzqQxZTOW4bXfGnX+9Ma5N+XLeu7ZUzJnGtmSqSfa8Potk0n8fptL+eXqSlEj6ZwEmLdlhksol/2NWkqoi/+2Mqm3bebzX/1jJDfjnh0lSKu53H5akRMz2N3EhbzjGnW1/O9nW05KnGI/btjNmOLaqkv77W5IGs33etUM5/4xBZ9jfnAkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKZtLE9lXJRkl/0gzPEWjhni+1xFf84Dlc0RrcY4myMqT2KGaJByglb1EcilTbVR5F/jEzCEPMiSXHD3G2rI7mK//qUiyOmscvDw6b6QqrKu3Z42BbDZIniMcdepf3XZ2RoyDS26X5v/HPbeqxYYnusYycN92VX8I8ykqQTvZ941xYL/sesZW04EwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEM2mz40aKBcXLfrlTyaT/ZjhDxpMkJQxjx5Mp09jxhGFsQ36UZMtgs+SvfTa4rd6SY+cqfnmBJ5UMWWblii33rFjyz45LjNiy4IqD/nltklQ2rGdt/iLT2JY8uLjx/pMfNmTqVaypapahJ25syXYcJlO2x4mE4f52/JMe09jFvH/OoG3pyY4DAEwBpia0efNmXX755aqvr1d9fb2WL1+un//856O3O+e0fv16tbS0qLq6WitXrtT+/fvHfdIAgOnB1ITmzZunhx9+WHv27NGePXt0ww036JZbbhltNI888og2btyoTZs2affu3WpqatKNN96oAUNUPADgwmFqQjfffLP+4A/+QAsXLtTChQv1l3/5l5oxY4Z27dol55wee+wxPfjgg1q1apUWL16sJ598UkNDQ3rmmWcmav4AgCnsnF8TKpfLevbZZ5XL5bR8+XIdPHhQ3d3dam9vH62JokjXXXeddu7cecZx8vm8stnsmAsA4MJgbkL79u3TjBkzFEWR7rrrLr3wwgu67LLL1N3dLUlqbGwcU9/Y2Dh62+l0dnYqk8mMXlpbW61TAgBMUeYmdOmll+rtt9/Wrl279KMf/UirV6/WO++8M3r757/m1jl31q++Xbdunfr7+0cvXV1d1ikBAKYo8+eE0um0LrnkEknSsmXLtHv3bv30pz/Vn/3Zn0mSuru71dzcPFrf09NzytnRfxdFkaIosk4DADANnPfnhJxzyufzamtrU1NTk7Zs2TJ6W6FQ0Pbt27VixYrz/TUAgGnIdCb0wAMPqKOjQ62trRoYGNCzzz6rbdu26dVXX1UsFtOaNWu0YcMGLViwQAsWLNCGDRtUU1Oj22+/faLmDwCYwkxN6JNPPtEPfvADHT16VJlMRpdffrleffVV3XjjjZKk+++/X8PDw7r77rt14sQJXXXVVXr99ddVV1dnnlgqXeUdJxM3RJqkjPE3lrgcF7ONbUnBiFlTRwwRKM7Z4mxUztvKDVE8FUNUjiSVikXv2kKhYBp72BDFUx4eMo1dGrbF/NQa9kt1Zo5tLgX/fVgcse1Da8yPxdleaz6FMQ6qbLy/OUNMTW3C9jiRy57wrs1m+0xjG6ateNwQjyansvyOq5hzExyqZJTNZpXJZNS8YNGENCFrBtukaUKmkaW4YS7mx4mYrVFUaEKnMDehixq8a1su+bpp7IHeXu/afM62nZOlCZU0eZpQfU21aezhgX7v2mNHbW/scs7//pMwZF0651QsFNXf36/6+vqz1pIdBwAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACMacoj3RTgY4VMqGT85bPt1sDYgw1LuY7VPZE5mYIEt6gzkxwbadzpKYYFl3Y32lYhvbMm/njPvEeBxa5lIu2WKYJnIf2uM4LEP7j10xJiYYUq8k2RITzMe46Tg0HleWx7dzqPX5P5Mutufw4cN8sR0ATANdXV2aN2/eWWsmXROqVCo6cuSI6urqxvylk81m1draqq6uri/MIprK2M7p40LYRontnG7GYzudcxoYGFBLS8sX5m9Ouqfj4vH4WTtnfX39tD4ATmI7p48LYRsltnO6Od/tzGQyXnW8MQEAEAxNCAAQzJRpQlEU6aGHHlIURaGnMqHYzunjQthGie2cbr7s7Zx0b0wAAFw4psyZEABg+qEJAQCCoQkBAIKhCQEAgpkyTejxxx9XW1ubqqqqdMUVV+gXv/hF6CmNq/Xr1ysWi425NDU1hZ7WedmxY4duvvlmtbS0KBaL6cUXXxxzu3NO69evV0tLi6qrq7Vy5Urt378/zGTPwxdt5x133HHK2l599dVhJnuOOjs7deWVV6qurk4NDQ269dZb9e67746pmQ7r6bOd02E9N2/erMsvv3z0A6nLly/Xz3/+89Hbv8y1nBJN6LnnntOaNWv04IMP6q233tK3v/1tdXR06NChQ6GnNq4WLVqko0ePjl727dsXekrnJZfLaenSpdq0adNpb3/kkUe0ceNGbdq0Sbt371ZTU5NuvPFGDQwMfMkzPT9ftJ2SdNNNN41Z21deeeVLnOH52759u+655x7t2rVLW7ZsUalUUnt7u3K53GjNdFhPn+2Upv56zps3Tw8//LD27NmjPXv26IYbbtAtt9wy2mi+1LV0U8C3vvUtd9ddd4257utf/7r78z//80AzGn8PPfSQW7p0aehpTBhJ7oUXXhj9uVKpuKamJvfwww+PXjcyMuIymYz7m7/5mwAzHB+f307nnFu9erW75ZZbgsxnovT09DhJbvv27c656buen99O56bnejrn3KxZs9zf//3ff+lrOenPhAqFgt588021t7ePub69vV07d+4MNKuJceDAAbW0tKitrU3f+9739MEHH4Se0oQ5ePCguru7x6xrFEW67rrrpt26StK2bdvU0NCghQsX6s4771RPT0/oKZ2X/v5+SdLs2bMlTd/1/Px2njSd1rNcLuvZZ59VLpfT8uXLv/S1nPRN6NixYyqXy2psbBxzfWNjo7q7uwPNavxdddVVeuqpp/Taa6/pZz/7mbq7u7VixQr19vaGntqEOLl2031dJamjo0NPP/20tm7dqkcffVS7d+/WDTfcoHw+H3pq58Q5p7Vr1+qaa67R4sWLJU3P9TzddkrTZz337dunGTNmKIoi3XXXXXrhhRd02WWXfelrOelStM/k819g5ZwzfanVZNfR0TH67yVLlmj58uX62te+pieffFJr164NOLOJNd3XVZJuu+220X8vXrxYy5Yt0/z58/Xyyy9r1apVAWd2bu69917t3btXv/zlL0+5bTqt55m2c7qs56WXXqq3335bfX19+pd/+RetXr1a27dvH739y1rLSX8mNGfOHCUSiVM6cE9Pzymdejqpra3VkiVLdODAgdBTmRAn3/l3oa2rJDU3N2v+/PlTcm3vu+8+vfTSS3rjjTfGfOXKdFvPM23n6UzV9Uyn07rkkku0bNkydXZ2aunSpfrpT3/6pa/lpG9C6XRaV1xxhbZs2TLm+i1btmjFihWBZjXx8vm8fv3rX6u5uTn0VCZEW1ubmpqaxqxroVDQ9u3bp/W6SlJvb6+6urqm1No653Tvvffq+eef19atW9XW1jbm9umynl+0naczFdfzdJxzyufzX/5ajvtbHSbAs88+61KplPuHf/gH984777g1a9a42tpa9+GHH4ae2rj58Y9/7LZt2+Y++OADt2vXLveHf/iHrq6ubkpv48DAgHvrrbfcW2+95SS5jRs3urfeest99NFHzjnnHn74YZfJZNzzzz/v9u3b577//e+75uZml81mA8/c5mzbOTAw4H784x+7nTt3uoMHD7o33njDLV++3H3lK1+ZUtv5ox/9yGUyGbdt2zZ39OjR0cvQ0NBozXRYzy/azumynuvWrXM7duxwBw8edHv37nUPPPCAi8fj7vXXX3fOfblrOSWakHPO/fVf/7WbP3++S6fT7pvf/OaYt0xOB7fddptrbm52qVTKtbS0uFWrVrn9+/eHntZ5eeONN5ykUy6rV692zn32tt6HHnrINTU1uSiK3LXXXuv27dsXdtLn4GzbOTQ05Nrb293cuXNdKpVyF198sVu9erU7dOhQ6GmbnG77JLknnnhitGY6rOcXbed0Wc8//uM/Hn08nTt3rvu93/u90Qbk3Je7lnyVAwAgmEn/mhAAYPqiCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCC+f9VgcPu4KEGTAAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1026,14 +1021,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9S6xsW5fnB/3GnOsREXvv87iP75WZ5bSrXE7bIKRyYlviaR4C0cCyOxgEPeSWG+5h0aomdGggQMIyCIFVMsYNQ8MIurgBcpVlC6fLibOyMr/3fZx7zn5ExHrMOQeNMedcK+Kcc+8599v3q7onY9y7z44dsWKtudZ8jfEf/zGGqCoXuchFLnKRi1zkIhe5yEUucpGLXOQiF/nwxP29bsBFLnKRi1zkIhe5yEUucpGLXOQiF7nIRb4buQA/F7nIRS5ykYtc5CIXuchFLnKRi1zkIh+oXICfi1zkIhe5yEUucpGLXOQiF7nIRS5ykQ9ULsDPRS5ykYtc5CIXuchFLnKRi1zkIhe5yAcqF+DnIhe5yEUucpGLXOQiF7nIRS5ykYtc5AOVC/BzkYtc5CIXuchFLnKRi1zkIhe5yEUu8oHKBfg5ExH56yLyr3/N538kIv/V316LLvJt5NKP33+59OGHIZd+/P7LpQ8/DLn04/dfLn34YcilH7//cunDD0P+ovVj8/e6Ad83UdV//O91Gy7ym8ulH7//cunDD0Mu/fj9l0sffhhy6cfvv1z68MOQSz9+/+XShx+GfGj9eGH8XOQiF7nIRS5ykYtc5CIXuchFLnKRi3yg8hca+BGR/4mI/EJE7kXkj0Xkv54/6kTk/5jf/yMR+cPVd/5MRP4b+fVfF5F/S0T+z/nYf19E/nN/T27mL7Bc+vH7L5c+/DDk0o/ff7n04Ychl378/sulDz8MufTj918uffhhyKUf/wIDPyLyjwD/EvCfV9Ub4L8F/Fn++L8L/BvAM+D/BvyvvuZU/yzwfwE+Av4G8G+LSPvdtPoi53Lpx++/XPrww5BLP37/5dKHH4Zc+vH7L5c+/DDk0o/ff7n04Ychl340+QsL/AAR6IF/TERaVf0zVf07+bN/V1X/HVWNwP8J+Do072+p6r+lqjPwvwA2wD/9nbb8Imu59OP3Xy59+GHIpR+//3Lpww9DLv34/ZdLH34YcunH779c+vDDkEs/8hcY+FHVPwH+ZeCvA5+LyL8hIj/JH/96degB2IjI2xJh/2x1zgT8HPjJW469yCPLpR+//3Lpww9DLv34/ZdLH34YcunH779c+vDDkEs/fv/l0ocfhlz60eQvLPADoKp/Q1X/i8A/ACjwP/8Wp/m98kJEHPC7wC8fp4UXeRe59OP3Xy59+GHIpR+//3Lpww9DLv34/ZdLH34YcunH779c+vDDkEs//gUGfkTkHxGR/5qI9MAAHDEa2PvKPyEi/3xGBv9lYAT+34/X0ot8nVz68fsvlz78MOTSj99/ufThhyGXfvz+y6UPPwy59OP3Xy59+GHIpR9N/sICP1ic3/8M+BKjeP0A+J9+i/P8X4H/HvAS+B8B/3yO+7vIb0cu/fj9l0sffhhy6cfvv1z68MOQSz9+/+XShx+GXPrx+y+XPvww5NKPgKjq3+s2fG9FRP468FdU9X/497otF/n2cunH779c+vDDkEs/fv/l0ocfhlz68fsvlz78MOTSj99/ufThhyEfQj/+RWb8XOQiF7nIRS5ykYtc5CIXuchFLnKRi3zQcgF+LnKRi1zkIhe5yEUucpGLXOQiF7nIRT5QuYR6XeQiF7nIRS5ykYtc5CIXuchFLnKRi3yg8hsxfkTkvy0ifywifyIi/8pjNeoiv1259OP3Xy59+GHIpR+//3Lpww9DLv34/ZdLH34YcunH779c+vDDkEs/fv/lWzN+RMQD/z/gvwn8HPj3gP++qv7Hb/vOJ598or//+7//ra53kd9M/tbf+ltfquqn5++/bz8+/eQT/cE/8PvL91efvXUkvfcQO/+CvPGo9z3LN3/wm0k97fs29x0b+qf/wb//KH0IIE6URlaXeVsj5OTX6btyftTrd6CKoq+dXkSQ1ZfWTdDy7/o769ey+i3CciKtH3jvcM4jCM57vGvyZ+4NrT27x5N2vPGu3tCo/I6uG1denh53fPXVo/Sj907bxiHicC7/FsE5QUTs2WuEssZLeWSCE2fPTan9o2j+zumdalJi0pPzgORHf7oCvL6daO1bXb1e9TKo1r9Ov78aZXLaZ3LWh+U8b5O3fbK+99Xw+caTpKSPNhebxmvbtTYnnMvPVOocEQTJfSrIa8/Cmiz1e7z2r6zu6fTJ6dmTOflUXntx8pmNJWdtQ2gaj/cecULjPb6x+ee9xzkbb84J7qz9qkoIgRgjIqvj6+fUsSZvuPf1cUmT/U6JOQRSjMQUmcaJGGMe33bPt69ecTjs33jC9+3H58+f609+8pN6P9+JvMO4/Isof/tv/+1Hm4tPn3+kP/rJ7+Xvu68db3CyinH+8vXjvp18s471+v76Tcd9V0Omnvctc+Dk3dUxX/z6F9y9+upR5mLTeO267k3nObv0ooPUj+ohSlkdVRMppWWt1GW9Lev1ZrNlt7vCe4/3DY1v6vXk5IzrBmn9fFl3lzX89bW5tH05k61nCQVijKSUAHDO1TW06Aavi11VUTQlO48qKSWSprzv+No2PRlmUp9p0TcQ+JM//uNH1FGdOp/1lLp/OFrvcU7wKJ0knICglcXQ9Ru2Vzf4tq3PWQFSQOMMmvI9R3tfPEgD4nCuxbkWQZjmgWk8ElNkOA7s9wMpJWLC9CHyuBF7Qk7A532qcdB4e8IuN788Q3R5lpp1oZgg5TdighRPbpvlYvl9b9cTJ3gvOC+IOHzTmt7rPE3T4fI4FGmsneKsT8XlPdWtTw3AL37xC7766uWjzEXXdNp0m/xXGdGyDHPN4zk/B03LHCs6mXMO712+j6LrymtrWNl3dfUa9A37seT/pR5P/e7SlqTWHhHBFXui6CFOats1zzm7D130kKQgeS6KW+m4StHv3qTLFR1F8ngves/J8fX2NOs8q/GYZbh7s50B0LzpzXeUfxL4E1X9U7ug/BvAPwu8dSL//u//Pn/zb/7N704xushrsmxs7s/fcsh79eMP/tLv87/8d/8/yyK0+vcE+Fj18YkheXrQ6v03v67HvmWSfJ2szXMtdquetudbydr+LW/J2fVW75+351zk3NJeG6NQG/wvfNQ9Sh8C0AjNpxtQRfKmT1EA7CSnu87q+buVEepMPThTXsgLoBJjJIawLMrZiPPO0TTL8lMW65QVD7XVE5IuG0N5Tt6VHRZpPbQ+n8OevPOO6+snXO2uaJqOm+uPuNo9Q8Tj2CB0gLBgGYL4Rcmv1z/vsIwZKUrSgJJWoAWgDk3efpfj6/2lquj9h//233iUfmwbx+/+6Cld23O9u6Fre7q25fpqS9M0xDgyTfekNCP5sTkR2qZl029xzpOSZoXRfs9zICXbvGJ+Psdh5mE/nCg7IkLTetq2NfxIF8VxuWclJjO8VZWYEiE/25QBQVUlxEDIRnlKSzeLuEXBzkBVAa0qyFGnSGnwabepKiuV3bQlqIpyUXTXSrNkLe1cbV/f2/3d8Ghzse1a/qG/+nv4pqXfXtG0pry1bYvznrZp2Gx6msbjxON9WxU2a7LgnafznT0bBI+vz02kqa+d+Ho/b1oMX1MyZAUaVSW3GD1C3/f0fY/3no8+esqzZ0/oupbnHz3n+fNnNE3DkydPuLoyo2i76dh07ck1Qwh89eIFt7e3J8cDxJhISXHO0fcdTft2lSXGxGGYmELkcDzy2Rdf8PDwwN3dHT/985/y6tUrG+PTRIqR/8O/9r9967netx9/53d+wr/5b/6bpJQIq/WuPNNvlLdhB/KW12/57slX32GfOzUuV6/f6VrvuR+fWv1vOGI5n60p6+++/Wb+8A//8NHm4o9+/Hv8b/7G/x3vPV3X47x/43GlOadGxvnrNx/zTvIOz7+eM++1unq//F1/l+PrXvrGU571ynoMn7Vpte4ue/u6DZBW75f3yjpaXpd9/V/5H/+zb7lh4H33xbblL//l388qzGI4GfjsQCElAZVsOHszzJ0iPoFTIKJie/w4jRyHPSHG+uwEaNsNm35H07T8wR/8Z/gn/to/xZMnT3ny5BnPn39C27Q4wOeHNyvMWSEUH5Em2L6Mp9EMsGhLMcsSkUQEbN+uO1GaUQ0kTYR5IsSJEAK3D/c87Pc459hud/T9Bu89m35H1/WrPgAQvBgAkFJgGB8IYWSeZw6HB8ZxwLmGvrum8R1JhXmGmEARe45iz/r6ekvb2h7z3/mv/BcebS4677j65CnatrDbQdtyvdnwg+dP2PUdz1zg95qBawk0KD0RL8rv/sP/GP/4P/3P8PTTH1pf+oiKko5fEe5/QZoHQhgYxz1JI7TP0e5TcD273Q+5vv5dhIZf/uKP+bM/+w95eLjlP/qP/oS/+Tf/Yx72Rx6OibtjJCl47/CNOdyue+GmE1ovfHLt+PTK0XjhqhOuekEU5lkJs82JKUKIBiLtx8RhSsSgPNwlDg+Kc7DbCZsNIIJmfdw3wu6JsNkKbed59rxnd93S9luefvQjtldP6bfXfPyD3+f6ySc439P0T3F+S9P2bK6f0XQ2NtrW9u4KUgr8c//cP/+2Lnnvfmy6DT/6R/5J0+vJtoUTtPWoCBoTcQ6kmNCQiNOMRgNNUjCn5Xaz5enNDW3b0vU9u6srXNPYVMwAUNJUdUjTM9e6XTixzcjOKJ/X9qL/VdAzv57GiWmacc5x/eSG6yfXeV9o6boWVWUeBsIwoEkJ80wMkZgSx2FgHCebi7sd/Waz2EPFwdW2OG+AnFLuQ5nnmRgjTdOw2+3o+z7rg11tc1mDQpgZxyMhWiX5tVPtb/8///W3zcXfCPj5HeBnq79/DvxT5weJyL8I/IsAf+kv/aXvGPR5q2n9nsd/k7yfwvPblXJP79zGb+zHdR/+4Pf+EoKeghUVQT1tgqw+VsR0jgJYvmZwUMGOBRI6u0Z9993urX5DX9ef37nnFd6k8Mjpn6Zky9L++tXVPb92XT1TzktjT6zXNwAQr8t7z0U8oNnKVl3aoaWVsvrJz1yzEaNL/yWw8QALI6EogBWFzgZkWu5NE8SQVo0rTVmj/gvjQQuYWFwrzi2G6FkfSVYmNRmQlaL9OOdw3oxkO6fjPNpVgYQYin/SkaAF+NGUH11uf1FkVbNCWdpzZjR/s7zXXGy8w/7Lz0ATaDJPVpL8256Dc4IXh3MFuNPVj72nKnjnEDEAJkXNt5I9m6oL6CcYa6g8IlVS7t+1MXkKBC3PomLDK6DBfpTyWKWyQxbwsYyzem0BVUFQ1GUPTblWQRl1ZeCWvsxjNK0Mo/OO0lMok3dcOd57LrZdg2vsR7wH53BNg+868x43/sSTJ64xD9Jye4An5YXGieR5yQLKaml9WZ/KGv66qSf5n4VhYx2mAiJajScUwhwMaPKOh4c9gtI0nhDMS9o0DQ/3e66ur2i852q3Zbfd4JzQNA2N98QYMiMnIRIr8KpalDIzFqd5JubPjCGU0MzsidEUrmGcmUPkOAy8fPEVD/s9h/2BcRgJc7Bzp2WM/Sb9uO7D3/mdn3B1dUVKSspK5+rIb7zY18r7fP1bqTTrOfouJ5Cz65zvht9wtfXedn7e8m/VB5bj1mzEd/QBvfdc/MGPfocQzNiOKa0utF4XTu7mrY6kk51UFsD5DSdZn+3k8+X4MybmCeizfPPc663L1yn99iZwan2tUx3l9fWhvlrt8+WwVP4u1z8HfUobi66jvHZvb5D3mott29i1VOqYca5sB2UFzGtlAdidA0moiyCF1RHqvhYXVSm3WfBKdh7JSfuFhVdsOlH1GEGyp5CIoMF0JweIP/m+Qjk5CkSyU6LuVgJJCCEyTjMhBuZpZp7N2GyaBuccmhpSFwFdxmDpq5QAM4zneWaaJmIMhBBJ2esTQ0I0kVRISbApIbnNBnh8ExPzXfvwvB/FOYpJrJogJZwmXFL7ISGZVZE0MqeJiDKOR47DPd1hizTgWgGnaJxQTbaHFeVbM2NKI2hkmkb2+z3gOQwD4xSZZmWOkHDYVW0MpaK/J9sb56CMWX+RBJ0Teq9cd44nG9NR5kYJ3sbkHCHksVW22ckJDx5mTCeXBCGUwZRAHD4pehSCCs0MyQcOQel7j+sC6iPqEiktjLTFmcPCWpFT1vZjraknOmq3YbvpSZoZuJqIItlHVxy9eqL72++IppD36kCKM0mU4GAcjMWvIhX4sRspNsFic9if/kRH/yYph1XGjRNUkzmwU1rGoyphMiYxqohzNK1DYsQ5D7ltYQ7AAAoxGsgl4swmaTK1yzfg3GvMuxDMaeucR1PCZwZX4z0Liy8bVFB1wG+S3wT4edMVXnuqqvqvAv8qwB/+4R+u9rFF6TzdFN/cMeegwttlHU7wejMXMOJsm3sv3eXvX+CnelKkhHvIN03ob+zHdR/+1b/2T2iTwtkZpD7O9QJDNZzEJrjI4nB6w1XXusDrKugbDMivlUXheJNC867g0Yn29sa3V6M2ra5ydryefa/sO2eNWl68SSP7+laey9fORWlFNZjHqbYFQAVRMXoIvu4G9WRprUwu1pPhMeeGso0H3zSgkEjEkFF5TcRq4S+Kw1pZtEXXm5KBLnfpBHULGKCrj+vQiwkNkYQjhUicA3jBN46+7TJ9tMW75gSJN3AyoS6dKrV5Q1EhG3aTeSa0UC1NAbRNLLNTCotIMCruN6dUe6+5uO1bbaTB43FqzC1StE2SaLTmmCAra413eJ+pwaI4SeAWEEZwSFaW56BmiCuIuBwqp+bh8j4PCxvAVTmOcVnXpQyXM2ClTpyseKiizhkOmZW8Mt+cOJyzB5+S1M24MleyMaMZrExZJav9VhQ71obSsrEnNcVjmWsZ4NBFCVqm/rKm/aZ9eN6Pu+udNpsNzje4rkV8g+96NlfXNE2Ld542gz1GdbbN35TwAtqKAZaa1zZXIJ8VtJkUWRkQxYhYOHvkXij78kopdIsiVUEhhBQT0zghIhwPB16+MFpzt+npO/NQXV9fsbu6om0anj57wpOba5qm4eZ6x9XOPGHjaN5m1YYYonkAVYkhEqK1eZpt34kh8vCwZxgH5nnm/v6BYRhISZlCJEZlmkZevbrlOByZp5n7hwemaXyLdfvt+nHdh3/tr/01/fTTH1Dmw0LnfpfTv3mtf0cd7uvP/g6b5fkhKsve+cZzspocnD2or8FG13pZmaOvt+HNoYiVxaKan+k7PZz3not/5R/9z+o4TcTUgDQ0TV4B8tjXcu2yHLwB4FtCMsvcOwO0Vl9bb/nlfnU1hjStQZRFv1twnxW4AievTwbfajDp4n17rR22fqzfX62hacXUKWt//nN9vJ4cv2bEngNRijkrVuvzm+X99sXtRsvaGKP9VjWHBmkN5AmNb9lur2ialqQzc5pQImlWwmTsgTkoMQgx5RWzAOzJEZPgVOp7BVJyIngx7qXg7fOUSCGvawSiHm2MdAKdhReVRytggEIqzOlATBEBfOPxjSMlZRwDD3vz+O/3e45HY/ygSoqRtm3p+x7ZbKhrvRRD1sDyEGaO+wPDeLQQ2TkQY9YPNBCdoOpI6uwMTmgbh/MWglPCy79B3nsuNl2jPusZmhLEgI+BJgba6GnUjHDEnk+Yj5AC9/evePXq1yQX8J2n3bbW1rCnJSCS6g+SUGIG+RzTfM/9g/Xri5e33O0njofIMEFQT6QhqbF0UjKNRfJYc1FhSoQG5AZuWti2wqfX8OmNTcd5TMzTwqiOSZkTbPfCV4PjOCov74UDNkf2c6q6uXF5E87BJgjtQXAe2oeIb4XdTpll4KM08yQGPongXJPDvRxSnX5LuNQ65cIC3n1tX77XXLx++pF+9PyGOQQOx4E5BuakhGQs85QZvVpex4RGY92k2cLy4iSEyUHyxDAQpj2IQ0VImQnedB3dZotkwMV5b41yDlVzkmmMpBiXG1mtj6dhoFkvKlEJInmujYgI85TZgygaI2QGT9/3tG1PjJFxnpFR0KSMxyPDIa9zsYSACb5tkKax62x6XNvZvE3mwI1ROR4SgwwW4ti0eO9pmoar7Q7XdkgGREk5xP2Mdf82+U2An58Dv7f6+3eBX77714s3OT/o9R61OuoEj3nL/chqA3q7prMYsNW4WFu876AgLedZGQp/H8lJh6+tl6+X9+rHajCsbSUthoJZTSXc4MRsytZlYq1AnTWXclotpy6f5n+/Bp3TN727+sZJV0sFbN6pD0+06LX6e/a861FaN+9CoFnf83I6qcDLchpd3njnMfkt5qKS0eusahfFJRuOYu59TnqhICArZfPkvuV0zC2ehKwoF6Wr6HuF2SNnQ3U9tsrGVBCd/Fpyk5U8/mpH57ZnZVJTWn7Eer7J8bpt0+B9pmyWe69AQfYW5s6zTcQuESWZD688h6LgqhjTBrWDE2hVisoG+7Xj7T37UXCyxODbWDLwR6V4spax6MQYPS4za+r8yE1yGVDTpDhZAQMVcNAMmJXQOvOUFW/NeR6EbxrANieyUeWE9WgTlpDCunZruediWC3PtQLcbjFUqmhZ9fPcqsbNymCCk0H4puXzHVf7956LImKMH++R/OO8sXzarjdWl/jMcpKcd8EhbsXUY2VUkXs2P5+kC7BT7rms48uuuMjaOJMM8pRY90oxkvwMy4Eo87SsXc2+MQPFew6HI7vdgbZtCCEQ5kDXtogmJBvyIYZMsy5snwworl9nZXueA/v9gePxyDiOvHz1isPhQEpKiKYwzfPM3d0d4zgSYqyMImAZP4/YjxZesT17in9/6QfvIssY0tffBN4A/7z9Vt8y/U/VlPW+eQ77lJbYMYUJ9k6hcybfal+MKSExZbbZWdhjvlfRlS65ElkdY7+XOzo1NM6WSDnT3/Jn1ROu1LlQP657VXl9pj1p4Syun5es9m6puko5D+V8ZKCpvq/GANUyNlY/K3U6rdbXdAIUnfX1apFRPQnGfZN8K1tjubZ1Rl3Ti9qRPfpN09K2bc6tErFlwpESxGjgkdlWC9/G1lXzsKcz3VNWTz1DRHlvFnJ0uIWmpIiIknx6jbWMUkPdDcSxcBSEDOwY2BSCATUhGGsnBAtNCWGuITyqcXkOReHMDquUQ/HnMDPPc3bgGKM5id1/YT+r2v17p7kdp2yfb5iV36oPqw6iCdQZ00cVp8b2MQaqojER5oCmmWkaGIcDw/hAQwtNj08OdD4Bi6i/C8siMoeJcToQozCMI9OcmIISEgZ+Gc+o7rGaqbUixt6ZJOEUJCVa5+g97FrlZmN77YwySwbzcvdOUTgEOESIScBDAGIBfrOf3efnYYxepQkYKzoo4mGOMx8dI7sx0k/GPi95ytZL5hroeR30+UZ5P3vRCZu+xTmYZm+MHxLEJaWDKnWtSGmts0fQRFoxfjRFYrQHvgZ+DPzpMyCzGpNS7IG8dmbg522gTxFlWR/sDa0hWimtOIM5N4HPYaRN21ifOJfXeGMnpxL+HcvGYWQIidGY3k0DLuZL5ZxBKRFyCg4Rh6Z8naSkvlAQS2vte5q+e+Dn3wP+YRH5B4FfAP8C8D941y+XLUo5HZTnTV7tiyvj7vwYOT9yJacbX12i6kq7sszf1IDXzvX3r9SEV++nc75nPy4gQd30izdMqSyjemyx9ZUTJeAceqmKEIvyVJSS0k3rXi7yFpPl7C056V5Zn/S9RE72zpMr1cbp8vfZV187W1UOS+OWufDuuB3wrefi4sE6ebblsednV+55YeadeSUz8GLnyv0rpmAWz0J5Bs45A2xcoXXmzSvTNGseAgTfeJqmUCbT6spniurqeRZ8SLPHy+WwlEq4XpqCE0fjDMRwiLF89PS+ar4fjEGiZBJNbECN4TJLUcqFmA1tmybLOJR3G27v1Y/lHlymRBetMiUDm2I0plNMCRFPjK7ef0oO51I1pm3TNRaJORFyvHMqlPDyTKB63c+eVfEO18bVHmMZLyWHFLZu2KYmOFx+nX8oikk9UQ0jWAwO2z/QNe9uWQO0MrFSzTexHKX1npYdZFmbyNd6D3ZBkfeeiyKWd0lyYlBxnqbt2Gy29P3Gxm6OM7SknTlxqE2keleS1x8nzsIZDQlDZAk1qCQ71uyf1RKkS26O9a2fPoY3M/RK0ky7rHmHo8IUIjKOzCHg7+4JMdE0nnEaLTxstfa3bUNMwjDOJFWmaTaFXs0gSdEo4w/39xyHgXkO3N/fMwxDVRyTWt6geZotbCFl5tpigj96P5pOuUrymBf2om+cGuUn3zzZNsp7ZQ1ePfHl+NVC/U063vqq61Cp84PWDNjFJbc+Rk9e1zX3/IRyenzd88/3y/VnZ6e3/abMSK0Hv6s3cyXffl8sirkWJb+w3eSkb5aVRzMAkI26lKo+oIXVwrLGVFAlPwI96aPsOhCHF9v/pO5gq322Aj+rtS2vwyFG5hTynEjWnnqt0i5W/bQaG2s9rThtRGictxAGXcZ42a6XvXhp0+k512yfZTDU3IJf363fuh/L+l2cF6YjF+AEEME5W3dVFKeW5LdpIl2/wccWZGAKAdGYQ2esT9puQ9dv6drWEunWnHRnFkfWo5xYbhFRIQYslAUlxZkYZ3PiZMeVQjWAU0rM08Q4DRQg0XlHceysdZUYjbmyAD+2FsYwL2NXhZQS0zQR5mA59sJcc/GV85ZiEd470210GTNOWJg+8k78+ffvwzI+M3ubBNpGU8CimpMnM1gEj5MGdeBdi/Mt3i0/zntcDIh4JLufJZuBmhJJZ6Iqt7cDX7x4wTQlXr58wRdf/ppxHHl1uychxqBxinOvg5XmxHJVp66MrWjAlF0v4dETh7BHS8A+5HUkYuBPyvux5L3U5XZrgCZhealUwYFrlHGGEKXmYpKSzqDoUtVZVnb9dwrT+9b9mFLicDgwzTPHw5E5BIJmUGs178U5cAlpXI6TVESNKafeEbC1orLiMH0w5b1LRSA7zFzTGhsmg0NVj0xikQy6tA2KPnv6DMq6p2Uur3RRTRa9gGpl2i+6aQaMvDcWoUs4hOSczdFgjKYyv1PWTaVpbEysr5OPUc3JwTXldSszolJENdk+UfI0qZL4+sUUfgPgR1WDiPxLwP8DAyP/96r6R+/03ZXx9q5G+HqSvXGc6qJcncacvu285+/rm99+6/F/f8q5nfJNc/rb9WOmuS3WHQsyY3250k1Z9966ObL6GuWrC4Jgk74AdKsvrpjKdeFIpJLp9PT8rAGLhYJ98pzOlOw3Nvb8rTM6fFHqtL5evb9+TKsT1QWl3FRBgjKQ8q7y7eeie00BrdNAgVRYFCUxomQFzjauFCPRLEUUJa4VAFmee6WUOodvc1La4s1gqUBhWIIW3IemaWhzZYZ0kiQ4h4KgdYFGCoCUt89oVGbBEHIvOcdNVaGF1nv6xqopuTYnRivPIytTIYSVZyJauFr0OA00zhgJTTLKdFKYhUoJj2hlQUkNW3rEfhSxUCCPeb4oin4gBJjnyDjOxJDQ1NB6QdXbRpMB2pgiYY455MmSU6sKISZCXICfxZhdssesEzq/ltx5NYfKvDgxQHL7geohQcCLKVX5q/VUAkjMcylvhvbMVkDzYo2etCfpkrh5mZcL6GMK2JpPuLq+CitazTfKt5mLkpNxIh7xZnhs+y1Pnz5ju72y5xttvljFmC4DfhkoEpcNwcJoWSpQ2FptwM+S26YsnIX2rMu4T+mUWbAyDE+NxDe85vSYmE+9HyaO44wI3D4cLLGic2w3HX1n+TW6rrWcP03D02d3OV9OYjgcmaYpGz8zMefzOQ6D/Z0rdoUQ8lqagWI1+n/JO4UWcPG76UdVZRrNkNNyTaiKdlHITgEgretv3SfXBnVJpl6hh/Nnn/L9ZVnvkat2FSAhZSOyLLDluqpS9+31xnhOf6+gbfbEljaUq0kGbNZOAaCGq7z2zM7aWPY9qe3IR+WQTQOoC5j7zXPyW+2LQgUtQ7Q1vbAcixNhzZpLed2IGpljIKGM88RxGiwfVQy5uEEiZkBIVU9ZA6pLIuT87ATYdju2/c5CPZuOznfV41wrydQ5V1ZJ21sfhgcejnuiRo7TyDhP+dglH836ua89xT6DFCKWh8s7Cy+4ubpiu9mCQgrZDlGpRQDWOk8dy3V8r+9v9Xc55mu68/37MRu8dSxlwDz3oSrEmC0P8fimo2l7iOaUShoRZwZk0ogc9gyTgQO+afFth3Oe7WbD1W5H17ZsNrtaRVTyLHB1UbW55Z2nk8z2CZDCjGoiOM+c2+ZI+KxPawxoCsQUOO4fuH+4z8xYpWl9nc/FSRPDzDyPBsgIWL6/jmk8MvUtdQ9QK2xwPA5M80SKlsA6hLn2heY90XljMcSY9a78feegaZwVjKh6wWP2oY0WcmiMKqg41DuYZ/Ae8ZrzAAmOFtwGNNL4HV27pe22tG1L224s1IuES8cM5pouqIDGwByPzFH4xc++5D/8o1/w8DBye3/Py5e3Nq+jkNTjW49vwTfJDP7saKhgQu7upEIKSnKgIaKzrW0+WYpKVatPkvK0NTaP5VGMwKQQVJiTMYNAcWphhQK4YBmHEIwJI8qsgf2gjLMwBYeqN6Arg54FVLDxseRnOpk532Awvm8/xhB48eIF8xw4HAZCiKj3lrDbW84kch8i3p5NSqRGsCRakdg4BrHsSrUii5r9UZxCzTTSTRPiG7rtls3VNc55y5XoG0CQRhEsZUFJ6FzuufzUimFaqmrZ87C0EzbSY2bWCZZryudJU8BScdB1HXGb1/oQc4hXIowTYZ5JKTHOkwHKzhFRfGhznqAG733W5S1PJ86RMis+RcnMPlsLvDfWYoyRKbOpvkl+E8YPqvrvAP/Oe32n/uSNoQ60ZeN6s5hRnE3j+s7rbcqfvR+K+Q3X/v7KO+hH79+PIq+d13pvzeKRk8+WXlvePaHbnZy//KMnn72WJLkCQFrUzao0lXYul67BDvb6DIGSdRPPh8LJ33r68m3Dt6AXbzuX5gWn3NjJ67MTvsPQfP+5KPXEy20v96ZZ3yZTJWuCwkKRzV6IOqHJStxZW9cKutlAeSFVIWWgaF16VFbfsVj2nPQwakbZqQkSre22CZyGCMiizKYS0rJ44srwWoc+eedz9Y3l/lUVLy7nrrEEh6qJgNJ6j6onrlgOMUHMDoWkqwdzbsh8jbxPPwpZoV2xZKrRqGRabMxMCUfMSRElmfec7PkrCl3Wrii5ihY20MrzvrTTur4YlqufdTcsX8ur/rJA2xgq3myx/rHk0+7kOYlq9tyQDQkbBDWp5moxqCy6MibXxvTqrKdt1VWTzr2Xr6d4/iZ537koiCkn4iCHcXnf0HVWMUuT5bpJSWl8Q9t0iNgxbWuvyeCb3YcxfpbRnpkCigFIWhT1dPIMVLUaEWvgpxqHb/ip8zWPh3pcBUsVjatkxxkAEhGOQ0OXw8H6vqfrrGqXimMO5tU6HA5Mw0iK0ZKPZuBnzGDPaUU2yYDXGcCTDcCFyZX/+Ya98b36UTUzfpbndxKmiDknFpBstYYpyxitzxtT+MoavGx2J88/pXP/3nrfXfbEhREQT/buCpwW4GcF+qz357TqTwN+Sp+ugB/74tLGcu03AD/rv8ox9V0p+tvJjD1pwwng9TXybXTUNYCSk8WYq+vkuVnbrJUlAXAkamIOM8M0WvhiDIR5QjPoPaeY857JAv5oBgXtD9tPkAw6FcPF4SVXUMwG5wLGr0M2haSJaZ45TEdCjBzGI4fpmMfVApQXwB6w/BcpGdiDw2cjqG3a6oDZ9B29dnnfAI1m4JZS1K85uM72gzeBxej5Wvw4/biwjBemQ8kPp2X+5/G+5E7ziHokWa5V8xklfDPnEtgJcQ2+MeCnaTvarqdtW7wvOdhWwXUnt2Tveyc5b55aAltNpBRJMUBmo2gpmVGcFzkPj1XacrVq4DkAXysSiZijLAZidBkANyM3RQMZY7CwpnmeVkyh7FDRlR6f56KrRIkSelKKvi7r0jfJe89FJc8/h8EhKdOtDXTBFf3T9FOrWCk5LLrBu8YYOtKY00981WNPwtM051AKwv7hns8//4zbuyP39wde3j0QY6Lvd2y3O8TZOCnFMArLgpo03C3bS9JKS8nqFmhxmy/PN7tl6jNUICJEDPQJ+eAC+pRCDWXOx7zO9zkJdZ2PFcw/N3aWuVHfrTbXO3TLe/RjSsrxaIDPOFqBBSnJ1CHnDsyXds7AHskgWDL2jzohyiofY9ZVLa/TTAXSncO5gGuaHBYpFiJY7i8DOYtqU/S+N7GeVvpkeSFiuiglD0+xg3QZBxS93OMbyx/qEHCa8xfFk/LvKUYD+0JABQvx984quBnyk6+zrNdFv0oxWtEWLydg1btgH78R8PO+MofAF1++tAdXNs5sdImTU6Vz3Xgthgonm8nKjmSZN1o37EXhXysm5aTn6vz7KffvL990/ndTZL7+PGfneG/w612bUBTR9fXeHi9qRy7k7XMb2HQ8q4ZSENwlYZwg3tWyqsWorhtrnnzjODAeB5IqbWOVcEQsOVdbSublNaO25swOOAFx4A2PemWM5n+KAbya93W01Q1ghY/UM9SNR04N5NeM5e+mG8UJTbe1eZKBDfvArlk8ZEVZsp+ymRTWx6I8lbba4pNv5GyBXS5uz0Qymi5ecN7VY4unO0kiaq6woismwolhwNKBqdhJqwVYJJetbGhyRnxTpsSSG0ogiYBblVZYAYai4DN9V9QonVZFyxZlKZtRXnSbxuPUkTQhaoaAPbdYla/HEucdNzfXeK90rWIFoZSmSThR5lnp2kSM0LaezcaS7YpTfN5g7cYiiHmj4zyjKjmvQQ5fqF59Xc0/ye+XELyspK7XBF26pmyWtWS6yGoOZE/JMmBy25b+dQKSabpJJOcEFVDHCSJcvi6WoyEhiGjO27BMraJilUsVhcq+v8zUE2PvHcCCbyOqSpiCAT+5atY0jOzv9zX5YQHmvG/o2mCGR2P5qZwra2Oeu+JqHxkIsmQ10/ycahgYy42XZ+DK/WvZJVcdSRnuulyzdtOivCZNS2Las7jzsm+33ufqFFbaVLxHxTMFRYYZTYlpjsxBqw6U1HzpxnYSxOUZKZGlJ88f8JvffkyJSTnsh/yYUl6HFk+irv4DlgTK9Z/SVF30nMLOwtUqdgsIlxXHeszZflbMtNolxeBfAUPLZnTy/gKc5bCCfC/1MZaxI9Y2y5lB9SBrXjMKu6MAFevWLfebtYITIIM6/zUbwqdbyPlG/XiiKTEd7w0IyF5yn+damWd25axkZ6biYTjw8uElU5g4Hg/c3b1iDrN5pWM2TlQJWV+wajQLXFPhu9z3IsLV5pon2yd479m2W3adsUranODT5nBhcCmaAZmYAi/vvuTLuxfMcWY/HjmMx9wvtvnaZWzNpgCI0XL+ebUoGhGh9ZZQdLPp4cc/RuQ5TjyN9HhpELU8MKEusKeAetHJF7Cl/FrG8BqAehRZGQanrGOr0CNa1hNzeszZ6266qTFzu7an27RW7r3tGKaZcRzxbZdziXi6rqdtemNFZVZB1Xvqxneu+SlgwKkxLiPzfOSQAk48nU/0jUEBFsph1Y1CGJmmI84Jc9gRwiYXJ7DS7qqRGCfmech6rxmQMTpimJinEQXCbI6gmCLjeGCaJlQNtKw5F3MoXHJC0oBi1ZiUmOe1zX3bwvPo/Q72RdDK7I55hsydhf7OPhAQknekbI843+EE2nZH213Tdjc0bWNheF4QnbDqaQ7UkdMD2XwzZQE0ZUjW7jVG+/HesdluLVUBpgPFGC0keZyrXrq03HK+qBRQNy2k/jw8JcFiN0nGiPT1tW6dAEolA0hr/Tvv3yesFbfos0jWLZZ8ONXpvL7OdyCqyjxHQojEOeaKVhHmkB16CfGa7bMMtOf9ymXgRCyuMOvgag9OFVHBNbaOiTOdhwyShnmsoVAi1DBM51apHzJTeh22blculuqp2GM/fU4xMzq990zjSNuOdq6U8Dm8KzpjneME33U47wkx0pJI1QYquYQMCKak5dLTtaOYVgb4eITinLB7d29o45vktwr8jOPMf/p3rBJcVVK9M8TcOUKMjJnWDcuibTRGK+1WUW1dqFjnIMQ8T4zjYMdqRHN2rIJeL+jmu4SEcfr5t1rgVrP9jaJvfPn2U73NB72ofLb3fReIwTJ5lmuWzbU28KxF5V09m1SaF1/7K4wjh/2eGINVI+janDSrw7cWulAywCs5tjXTnoeHe168+IqUErvtlqvdjsZ72u2Ovm0RMcZDrIo3a2zipK1vHwprTtPK8Fl/ba3bZEllsYbq5TPwY1G4df2PFq9fMYrf1p5vL+IaNrtnxDAzjQc0BmBhjpQwkppQtiyOaC4ZmJFuzQps3Yi09nK1GZNWsKcalI1DGtuEXPb6I5aXxqiKxvCZdbbXFfy1J+u9GTKl/CFrpTZvqlZZw9G1HdvNJnt/xLybCnGamJKZLqmEgZWNM1M+Xc5roLkKWSpGXUXjU048mPDOGBj41kJQ4kRIpjSFONni/4jStg0/+NGn+EbpO6VpFJGE9wEnSpgd0+BJMVfe8EZFjzoT4oBqtCgKmVGBECPDaBU9LA+CedASqWgp9hzSetTmTYc5K6FnM16LsW55J2IGv2TF8oL12rH0J+U5S8kv0dgVYzF4MQWuKjflPYzFpLbxmhcst/8Na5QTC/0rrSnjrBhrVAPlvXOMvJPY+jWAuBrqJUlw8oK261btVpqmpe82OO/puw27bcDncMWi7BmNO+b3vHk6xZS/wkJxzgD1arAXD9xqf7Tnko9hCaNcnrWwzmN1ck/VGNXV3+VD++XqIrw8a0U4TJHjfLT9fg6VMaSRnDzdqtq4xvaC6EOtKBdDMWDOAYYTyOPR9dwYIl99dQeslHtnzCvnMvDj6qBmVQYTWT1PkYp5VHtRxHJqlKYvz5RTQEWWOVABlcyKMx3SQj3XRnduBIuOsjIYpLRvtXYXgy9vaBY2sKybLiu7S/9zAviegDurVeTEUbcCA0Ka65q/5uKtHS2PKTHMHF5+znqMG8ja1cSh9Vk1DXQ96hxfvPycP/v53+Hh8MD97Uu++uLXTOOQczhkL61zVo0yz0Ut5YfLDZW7zKDLdX/NzfYJrWu47q+42dzQ+IYnN9c8e/IE7x25SoIZ9UEJUZnCzM++/Bk///LnTGHmYTiwHw8r4MdADs1tQ0s4gpUldiFZpRoEj8eL4+rmhhD+AHW/S9f2PNk8p+mugUSYZsYx5gFZPNqLLgqcADtFN02qSzL3+Hh7o1DWs/V4cXXPKXZBzInij8NAiMlyCnYN3jtuntzw6Q8+pes7dp9/zjgrh+PRkvC3lkS2b1s2m47WNzTtJod6Zf5GdmDV0uGZYWmdEBFmhBnVmWE48DBFnHiutx/hdoW1aKBn0plpeuBweGlhwceO7VWb99SBpBNRR8bpwPH4kBNWC00jOGflzZvGQsPGcWKejQE0zgfmMOX+cMtaRC4YkRJJh8wgMYZSKuHETmuI+Xfh1AJ7VJajEEIOpR+dZzgOeIRtcsxNSxBH4z1N29M4R799ynb3Cbvdp7jG4TtnnqMUUXmFEk1vSIJEQaIl2ZWoOA04AkIgpcA8BWJSmrbl6bMntE1Dv+noeitUcHt7z5SroZET/BagRaXN+bxDDar2hmHYMxSbi05N2w1JLf9Ntiq0gD65X9bAveVVzdyh7DSTnOul/IgUrnvJ87PkuaoA0KP32qmkpByOMykE5jEYSyWqhZOG/Lx8AV7LemHz17W93UO1HcyWkAwOiQQ8vq5/MVniaJkn5LjHeU8XO9CY2Yu9JV9eO1GgVvSFt9vMkvdC23Rsvyu5t8JxwDurfCua257D1lMB1ZMgjdD1lm8qxoi2HhkHNOlS3CIpYZ6REAywqrkal93PCWbbNn5h9ec0GIWp+U3yWwV+Yozc3j3UvxWlaTxd11UK45CrcKw9wiknKS0KRCkJbWyhNehgZx3HgePxkJXBWA0S59ZlB4W1Z+tkk3hD23X9yXsqHGvK99tlOenbFJqT0Ki3nO7EsyrvRvt6Xzk9p7zl/bWyvVL0tAADeoa6GO1tniZiDDgU9abki1o8a/E6FnAE1XyeRJhnxuORGCOtc8S2zWyMVGOec3L3N3effHMPre9Mc5sXhXzFIjqzcRZIpCzaZVGXk2OoyuziCyzrzWOLIPjGjEqZfc6PVJLrUj2eay9nUWgg5b6O+UxvnxLnzIACeiGG5NefpoR6STV4SqhAMQy19nluTT705HmnxcAqIUSmCFm8c8kFpimRJJnCmz2nWgAub55MA4Bsgy4J5LQ2X0/YPqVdLrPTxEEkxzCnBERSCr9Bj70uzjm2uy1No/R9AX4i3lvJ0jh7Wt+R4tpgEUJ0JALGojaFTzHlLsRAiIrgl3UrG2SFSWV738rgpDAZFoWfrKgsXl2WPszP7xxEKbalPePFcDASzGrt1vV3irJa9oFCeXW1XLt5KFdfPVlH7dtNjnm3Nkpta0pLTpGFXfG4omrAAaKmjDplnmaG41ATBpdIy6Kg+Mxea7vexq2zqmuCs8TpsgJxnCl/QgLxpqwX77e5wyrQeRLvLg4vxgqy1/kZl3xf1gFLj5+sU28O82D9CLOtqMk8Z1pKuGcGopXwTStSw6qfcz6vJAUwMEUsySqTTllL80JR157y0B9RkirjONfnUNad5DV7iTXTKFiAnwr2SO2ryhAq0wky+Kl1bJfnt1RNel2W/cb22xLm89ZbX7VlaVP5oBgf+eVKd3LOvQb82DV09TtS81C9Nn/yXBN3MufKzQuyyqGxgCP2nB9/Y1RV5vG4/I3NNY2BmiQ9g6HEriYVPRwPfHX7kruHW+5fvuDLz3/FeDxgbIV8z86RrWXT3svemgG7lQqLE2Hqj8zbgda1zJsjaTsZyCCJXWdsucq6VGWalTkoU5jY399yd/uCMcw8DHsehmPN41YYP0njEpKZ5x8pwRwhmFPAYwmHp+nAw8MPGabnqEZif4Wx7BKaLKStlNwmxtfCvpaEwTZvy7O2MM1HZvwAr4d7SgW/WQGfJfzRuZgZyDa227bn6vqG7XbDw/5A329tX/SNJY6tuTiMEWV60rKXljlm97zeKw2oY80qCTPTNCI4Nu01MYV8vryfqoVtzWE0OylOxDhlfTZQ2LaW28+qetXw9BzGFYLlFZnniWmaicnOF8IEQgYKMjCA7ZkuO83tZ2H1FvelrVdan+ejSwbPLNQ51RC1GIqxmwGp3L9WutzjfU/TbPDNFucF521yqWtQViHQmYpvulyurJarfhW7ohS4cGJ56Nq2JaRAiBPzLDRNYdQWFnwR0/3s6ThKhrflkALIFFalPfXC+Cl/F/2afI8r627RRevHp/v3SXvq3296vz7ws3v4zUWhFmVIOfVCigkXLeRVijMkad7eFzDcOZ+p3steZmPN7EdxluepOIBLrtES5qiaiM6RmgDqUN+ePZ/cxrwOnYpkUPP83dNHlmKykHPnCPPMPE02lzLwZgVlpH7RNY2BT9HRzC1NshDbqKnmqC1V9Ao4V9as5adsIZLZ7zlk7A339jb5LQM/ibv7Iyub14wyPyEizCEwDAMhxppQr+Z+yDtjikrIi4ATITkAyXuqnbQscCEEDod77u9fWufESIglPjZX3+HUCF9vvlXk5BNOtN13kYqkr87zlr4pgMJrbxbFbNUeOTmlGWjnzf5uQAOqPrgGLd543Gtv2qRVXZQdWS9wWeEvibtSjj0PIdTFTLNvvlY0EqHzDduuI6ZE33Z0TWs5YnLS4PqzfmbVkHy/XauapLL6riz6/MpWrp8VFoysGiGwpPQpJxYqVS/j/I+9Fp/ciCqIeJwrlEhrXuNb2rbHu5wYLS9CpcqEquLmGRgsRj2F7L1LSB3vhYVQShuunp7aPD33OaQYSWURLiCPFgNite1lFO8EQJBikJixEHOC4jlMjPOQY72zIiaOlFxNSRjX3u8gqDi8c2y6DW3ToikS5oEYZ+YwM05HxumIAgHNzEzBxYQWY7QaK7Jesx9N+s2Gv/oHfxXvI00z41wECQgTENHUofMVmnJiRzXga5j27PcvmcPEfn/Hq1cvmOaROQ4kRmKKNkR1YSNYpGUG6cotrcpHihRjzUJvlo1zWe9kPdbPN6lil56AOmXOSk5gl8GOZlFepJazX5IWcqJAZaZRNixKqGc1ZDFQ2BJ/L0rAKfCjJz8m94/Wj845tputzcPGEvz5xthj3vmstNo6UMqElgTWKZo3UZIjyRKa6Z0tJlZFT1fPOwM8TpCQ1+AMorzWJ0lrjHkMgTQbsNF0HU1niWZdY2Xby6D4pqXqRClRyXl7NbO4FlaIYTlixnHuG9e2dckuZ9FkzoKQDU5CYNkF1+ADdc8qa/djTkfnHLvt7qRxlWUny+ZggNwaAFoM4cJgriepzXY5MXXWV7JlWRlpZ1IAartTXUCvCp7b+29i/LzRaECXPkEzw9E2jxRNyS5rtGJ6WQl/cQK+O/eyln6Rk/Ojlkz/cNznfE4zh2HPPI80TcNms6VtmjzW3j1R93tJCsT9V3m9MiMkOU/yZuyra1DfWUjiPLA/3BFU+eKLz7h78YKHhzuOd3fE+wOaw2sKmw6nNazBPAq6UkiyQl9XJSFMB47HxOQ8zS7Qh0RqOsK2g3AFeEsenXXaGJJVjQmBJga2NDgS0yz4IeHqGpavkUMhVKmVh1BFg0IoI8CSk4TjzO2Xd3y2/ZztdkeTGjyZzemg6QUNkTgf0HlCY2SaRzOo8rjIk7oqjKbXxZqY+FHlTPFdwmCEpm3YiEeTgXopKXOYkZr/w37HmAjBwPK+3xKTmEHXtCBWHMKXSkKuQUoY0SqnWlmrAVKyvkoaGMcDh+MDIU5Mw8w4TIh4uvZA3w0Z+DFgbQ4zMU3goo0hF5Fa+nkmpYmUJlSXpOveL8mXYzRWUUqJ4Tja3EqBMewJYQQRGt/UECHvO7xrUCLDKDlU0ZLKWkEIR4wTMWbj9jsyNNq25Sc//hExKVNIxKRcX235+KNnbDc91y7hfKhgf8mOFJWc2yjDMSEb0jULuVZ9zJblzPgVZdM1PLnZoCjDFNncD8zBwtyG4UCMLd7B0ydWdKEEbIYQSHMkTcEqMJH357SAniUtRFVq8zg13ThXeIK6f0keRAYBFaOiSAZBKDlmqPq7L0VOTrokrzmrveZ1+Y4MDTFHqFVCs8p45flbDhy7H9MFljBpTQkpFckcGLCqeQmxxOPmAIO28XS5UIRvPG1nuuI8B6Y5WF6sZCkMFidFKYBhKRpsvkplrcawJIBGS2L0FRiU93ffNDUEMGRAixDAezQpcwjM85yZQB6X7Nimaeg3G1IyckLwpWJicaCuIi0Uu75ozv236DYxGa5RD3wH+S3n+In8+ovbnEx1GZhFGZim2RJBxUDTNHSd5aToupar3RbvPTEq81QMTOo+0rY+J2CzSTgOR6Zx4rNf/4I/+7M/YRiOHA5HHvYP2SBUplj2otWJ3vjcCkixKGV6/nmR8++X7517IApwszZ83nD2ouStr1O8tG+axGvg6LyVjyFrlWsNWrzfur88R1s4zVhzttuiIRDUErgVL2dRUpumpW27jMB3tP0GcOzajnlnlWA22y3bvs/x8E1VmSvwiikrWsDlc4vza6Qst7ZKlXfsT8v9IusDDfGud5jZI3mx0fNnlt8/WZS/K9CHYmhJLftZkh2LCG3bs9lc0fi2JrQr9MYYLZximgZEGkIMxHnIYU1kuuMC/Eg2XgsaVsZoilaiU0QIsy1cBblfFOHTNhsFGWripKQ1VFDqf86UuZhgDgzjwP74YPlRmkjrN6g4G2PZm1XCkBIwJ8vF0PiGJ9sbtt3GFNlhT5hHQgocxnvGMABYqUYRfEo43wPmibUx4QxgLhrJI8rNzTX/5X/mvwRMKHuUCU0TMR5QnXFyTSsf49igyZNSg6rj/uElX774JeN44Isvf02UxGH/wBiUwANzKjCWbT5N42ibpjImfWZnhRCYQzBwQAx0Ot14VutmsXXz2Lbla7Wx1Y2/GKZSlzjJimnfdaa4N+3KKWBBWk4sHMxXNko5bw41yXkIoi4MkcL2EcQostj1wzzn6jtpBfzkVpbb+5PPHq0fvfM8vXmay7j3SGEF+BKTn1lsojn3FkhWoubsybXVx0Aw5xzJ5TLQK0O+5rsoe92KLfs6i1MJ48Q8DqQY2T/cs7+7A5Td9Q27Jze2N+929Nstizc9A+2ylDZm/dutnvsKfFubvCczOedqK5W/Wm9VOSSzHGKMyPGAzFYtQ+YZi+w+RVoLsLC6vZPPf+M+9J6nz57WU1ajr+7zZABOF9yi7EercV6AH+uj/Lok1y9sxZXSvDAqOX1dV86VM2ittK6OXy+y5/v4KWsrn10tt1mMkcN+zzQNla0b5hnfNFxfX7PbWU6azaZfQhb17Fzrk6tyHI7c371kf3/LOA68fPklh+Oeq90VP/rxj9n2T0zhPgvleSzRMDG9/KnldnFNzi/hCd7CxVO7IWyekHzH7eHAL17dchgn7l58yec//XOG/Z75cGC+uyXOM+IbpGlXgGuZ0y6HhuR7L+kNVrrilI6M6SsDBp88xT870HcdzzYenl1DaojTwDSOlHwkKZrTrJtnntAxqTCNe44P9nnRSbQYWcUgTQXEzyBQZjcWY3VKA7/+88+4vx24fnKFaAQ/4X1L313Rb3rSODPe3xIP98Rp5HD7kvF4IJ+J0uOx6EUxMc+zec1XLKvfWLJBthZXABrvaVrPdmdJ8UNITOOcgR9Hl4GxGGGezKEhtOx2T/HtFsShWZ9pRGidGdred4hrEdeCeEqmGFe9gYmYJqZwJMaZ/eEVt7dfEMLEOAbGcTbgX3q83+bk/Dl3TwpM8QBuMuDJz4jPFbgYSelISiMpjajOCA2Nh74zdss8HxmHIynlSl4Z+DlOd8zhaPkem9aSIXvPpt/RNj0SHPN8zLqfp/E9Thrrt7DBzyXqwvFmIOE3k+1myz/+B/8oISljiISkbPuOp0+u6LsGN+1p91+SwkB0KVeRVEIS5uiYgzHZU4ogCTdHmmhrlyaQJJAEp1aeqhXhetfzg0+esNt1xKjc3h8Zpwhp5uHuFU3b8PHHz/nBpx/jnOPmesvTmx3zHLh9ecfty1u8Wvh7jJHoCqvNohaMcFfy75XfBvzEZGH0tr6vdCbI4E+q6/oqGMx0d0oIkKNtHI2XWqW2Wm3i888S1n0u7+kDfwcRJK+dpozFBbJKVopckuXoKc5g29sEFQM68Q5HU/NwFUOubT3btsV7x9MnN3z68TPats35bxyqic+/+JJf/vLXlsuKCZUjZMdEm4GizWbDZrNdwkAzwDONE+NgObASq7DUpFW3cm1Lkx3UERinyUAg50libRjHiWm298W7ugd0mw29iBWuaLuaqDquKgmXEK6FCWuO8ZIjOSXTAedSQCBXkPwm+a0CP6rKMM454aoNzDWDYJqmnAHccryklCmICLFXyyyfVvukQKFR+hMFJU+6GDgej9y+esnhsOf+4YHb2ztCiEzRqLFlu0XeDpPI2hg/AVnWgM+bFz6p35GT78rJ3+vvnitDbzxjLn8jy/lFTmftyrP22CJSSIinbVoorWfNeONJOM1OX0CkrAAW+hosOZ4AaBWfSwDSNJlMKTTOjNOUEo33ObeCq97UZZGUiiifNv/dwZ965Bvu97wn11yvAvac3O+bTnBug30HsjYUTClVC/fIdH3nm2xgtzXfD3m+Ope9dCnh/GQxyrmKkNQbWFhCFXFbXb1eX09Mkzy5M5hzYjSWZ5FHXvXanPeBLKdJmkvo5gSbKI1rUVfqIDhSMmAxpEBIVp5+jMmAH41sQk/rGzNsopVxDPl3jHP2xPhcdSpWBbq2RbUWQntsaduWH/34hyQdiekO1YkYR0LoUJ1p5Ibef4p3O1LypNiSklh8ejxyHDr2xwe6rmecRpz3Vb0wzb9wzoxR6ZzRpn1ORJdSXgvqDRYlt1h3Z7PqxAt1bmGufp88K6nrr/c2Ntu2qeyfAjA4cZb0tMRE589UbQwUhkNISwLqwiItkImlAUjMLocNvQb8fDdiLKbW5lzXIc5TsMICGKgzr6XL1GfJc8HyKyxgwQKySV3ripKyfqL5xQIu1H/shaoyDQNTDpne391x+/IrFJtPOPBNQ8oAkrEaclLJ3B+lDZUBKCzAT/0hf746/gQVsbVevM+llNu8DGTvthPc7JGYw4zKWvMmgKO+wWvD7zcVJ0Lf9Wdj5ey6NdSLEhVyBvzk51Oe1Xo9LUA3dYus91aM8/W1X19yzgGc8u7yx/n+fb4+1520xEznq6RoOZbmeWIaR5rYkLYbwEAu723Onre9XgMyeK9MkzNldp6YppHjcc/+4R7nJNPZWcbMd2BsqibStDewscnGhliYAM6RBGLckEQY5oH7hzsehoGH+1uOD3vG/Z40DKRhMgaaxypFuTLW09Lx1YOWVsDPEuoQw0TIOVjmtiVse7xGUpggBSPjxEAK05L7ModH+qS0OFQdTRLcnAGdsiaXcVOBnyX8KacNWsBuIM6Rw8PRwpc1cTweGOcjLZFOelzT5fCwCeKAzkficMd8eMgYq9YxGbSQCRPTNOUwkMcNg35tbKzGi3M+G4gemBnHaclDtZpXsSTVx4ARJYdWlKTfaE1BUIG99XylLDXZ1M3hWBZ6NTHNg43zzEoQ8cxhsrAslzDgx8q5Jw2Qx45IQmpIq7GtF7ZPBgSyjaVqCZ1DCBlos0peMc7M88AUBopDz/tAk1piYwaxIDl3j4VRCQ5LqRJqeJ9zQqph4Y8rvvE8ffqUmJQhM376ruH6ekvXetQF0uDQUMaW/bYkyRbRoQlS0UlKaKwua1thNbvs+Gkbx3bTklTp+5a28Tnc2p6dasIJbLc9TePtuYbANAXG45EH53AZCKhV0k5aVwbF+epcg8HQkw1MFx9zObLqweU8Zb+wpaXmXVtfoDrD3tRPy97y2N1oYLexaVxmqaV1EZD1Y8i6vx1ka6KK5G1zZUnlX955mq6l8Z7dbsuTJ0+qc9A5W1/ubu9Ac+VPLcVicmESIZdN1xqmbPPGvhvmJSeYKCsW+en9rQsPxbTkG3JZh4w5D08Bb0q0UolqUucyu4klv3EGC1N1VJa1uUQTlH1fK4ZSI5rSeaXP1+W3Cvw457m5uUGEikiqplVsf+L6ytCutm3pN32tKHBzvaNpm0otXpQ528na1rPpzSt9v93QN85y/exv+eLpM7rGIwrzODPPAR0DU5htoMkZiHPatfWvxTv9Bsu8aM7nOqasN/PleyV175vOWa9Y5r+uNdWiNCzxxNWgkqX1sqxwX98p31JOdWv9moV/meAn4Tpa+ARqXhEle3WNqbNU9bIEb5o9vA6hyWaCS6DBJkoYRoa90VnjHAjTbBNSr6zSkisGiT3rcu2vezrnd1R7YW28Fk1WjcpbbP610l4SDUpepMvCXRey1YSOJUwxxXytc9DkkUSBHOOfSk4NyKVAU63EIi6DAClmVH6JVRYpYIAjxWL0pUy3NKBI3HL/kZQVlLMHuXqGBdU1j/mSCLuMcQVIUnINsx6JBca1xMQRKzvrCFGZo5CwdjlpEYSYBJeZIHOEkJWFSS2ZYCMwpICPI2giuYS0eVxGapJxo+gKJCEx48WqEazDjcqYeEwRgb5NRFXmAFHNu+LaG5RE467p3RWNbAhBmccSv57p4WFESDRtQ5tLafumwYVgin9clXctG5C61dqblc0aF79qW/6nBH6VHirGjvMFxLDxY4kxseS9aptgUWCMtuxZl562EC9jVC00/mXzJgMPZqOmVRXJPK5z+6SMn/xGGdMgiLpqJMl6vD6yqCbmecRpBOfwjea5sw7vWcIlyrOWsr6LhUyWLFkul3MvVYkq06cqg1lRlEVhXACgPLE1J7wMgSAhh8za9Qoz0BIMGhPL5r6FOhQAx5XOXoNOwnLNoubWfcH6N6WY+9hKUxug0+B8T9dbktJpmAmz5YMbp4F5HknBDKAKYOQFo/QnkHNFlTHzuOFCBZAo64L1W/lwddzypJd+LJKNAtECkpZ1kbpnav7HflVL9UThe31fO9UvipG/vLmAAkVSzj8AJd+ZeW2tEmRgnibuXr3kxYsviSEwDgPzONF2LUJCnOZqWFINnRAWMLXsM9Z2U4z3+wdefPkZL7/6imE48OLF5+z390zDga5t2O8fsg339Xv3byIW+uxqmKE0HX5zhTQtc4KH4cioR+5u7zm8umU4DEx3D4TjQBwndM5VkNSqrKScOt7m6CrfWqYcVy9yNfusI1zTsuk6vHM8efoRzz/6lL7v6DdXVqUwKHNIzDGzdXLxk5gS0xwYRgMV5qgkfA4BXLg3uv5LSqCM2nGFqVKROiHOgWkYGRrH7Zf39G3Hdtuz+WFLs3EECWjrmfsNQZXY9CQ3UsqRp1xiWctPUks8778bEO9cUn7GKRt9pZS0ZlAmxmhsGFW6YeR4HCwBdIh434I4CyPKPVXCarxzS6hXZlQoGXiICQ0RpYAus4V3TSPjaMDPHIydLMD+eETkzioO5eTPqpFhPhA1IChRZ6Ja1cMwD0zT0dgCRLw3wMdXMlnKrKIp39/IPM2EZHmFDPgxsNU5T/AzCrQhh3elhCZj2l/tAm27QYl0Q4dqScnR1AqtjylL2DV0zsZM7x0bD52DKbMpwnEktYKjp2lMr7P0At6YGsn6OM6R6ThBnNBpRoeApoi0He3mikY8Tyb4dBSujhP7AV68PHA4jJY7axgJzubAPM6IwvXVFTfXN4QQaZ1HQ4Qws91OiBtZ2z8lPYHt41L3IMl/LzkRS1rv8tW3rXRZr6ygTy7a4Cx/n+V2o671KwvyLQCPoN/FoupKCH4DqZS3MeerRa/YmmiVfhdTICbTL8UJbc6d2fgC2jquthue3lzRtS0/+sEn/P7v/YRN35OSAZ0hRobjwOefv0DEM+ZQvKSZGYPm/J9NPecC3hoo1Pe9gacZvEmaYLZS8kUTq6k5ck5UJ6U4jOmP3jc5/6ateWEO9XXyBWHPtkmy46IzPcf2+JB1IUAtOmGa55wkOhiDsjxHWbTtr5PfKvDTNA2ffPKJkTUKIz8bemh5cObJtfi33qiHm47r622Ow7NFukiZFG3bsNnYdx9uX/Hy+TPG4Qhx4vbFZ9zfbWldS5iSVQ7TI4cx5ul1PgvO/s4bVZktrz3WmsfifAOT+nEZTCfmUSmxl7+73NOiDNbQoXq+vFmt4jXXWc+X+HytCXsfXSpwsdjwbzKMFqAnV2WKNbauHukgZ6iHxjfstrvqeSnAzKwjaTJwolFHi8Pj8FFhMhBw3B95eHVHiAGf8074pgFN9BsruYlzOPF1s2f1dM71czn95/QYkdo/qbIJkuUkmi3JVjG8LElyk9kU5Z7snNUzkCw5taZEnEbu7u4YhiF7gN3rw/NRRElxzkhxphaWfEjiiD4RUoRopckdmjeu1QNyuSKXKJorRyURfNNkAM9lR3U2UhLEkE42PsCU/sJxTflHbYwb+COrDQIK2r0GkFQMoLIy6mWOgCTHFGGYHV490nUgW+u7nPcrqYE+EU9SZU4GorQiNGEkyYwX6BqlaQUNAiHjYZqYYyCmRJJIywYvrlQGtaUt5zJycko//03FO+V6G5lT4jgJc3LgO6TtwTV0smHrntJIyzQMHNM9gRmRIykcCPMBCHR9x1a39IcjTdfiYyTNoVJPl3xFzpSTlJ9vmkHzgzDoy4bGar2zNcK8VG7BffBNZg5JqZxmW5E9LxtkTkplNUFo0ZSTZeNx0lRwqAA/3vmTEDAyH5Bk9O6UAczTNTEnHM3AiYo5JVJNArqU/HSvre+PIykljscHfNsaWKbG/vG+yx5VxYBMBac10bIrwE9KZqzmsLfGNXS+q4pMSbi7Zt/Y9pEBrnNwKL9ugSFXmThkdmXShBehy1Urtl3P1WZr4Zx4rBIcZuiuvN7lnyVBqKI5lAGKcppzawQLSxEn+Ghrp1V2vGaza5mnicN+4HB8IIbAcDwwT2NdO8oWWIzs8gwKa8wo3r4y1x5DyrlRNQ9zUbhLgsjVXrJyCVQQrzyo13jHGYQrLJs1YKPlwcEqVGdhVtRriZSTL1K9q6fXK001Q8mSwoJY/oTGqPYpBEIcGYYDn/36F/z5n/1dK66QgZ/NdkOKE0qg63osf4XtMeNo5ZjNo2rAnaZEnA0YeHi452d//qe8ePGCcTzy4qvPORz2bDdbHu7u2F1dE2NinE2xf2yxfuyyw8J0BumvaJ58iu93PNzf8uXnv+J+2HP/8oHbX3zJcBgZDnvGuz1hmiDNuRKdAecOmxuu5n+xzUklG2YpOz9zPh1Lhi3srq65vnlC13Z8+qMf8Tu/87t0rbEQQhACkWm2n5pvLUVCjBzGiYf9wBQiY1CiNCRXxqVWwKlYhnVeqkKu1Kiqdb1UFaZhYg6BNM181n7BcDfx9OmW51ee/jmIV+K2ZdIbZueJ3QPJW36aYRyZx8nmdOuzYVSSCjePv65mo6uMecWcOaKaKyeugR8LBZ7DbJW7pglxnm6zo+snyCG4rQhzjEzBQi28d7Q5j2TT9Bbm5RrIXKCkYvkAg4FfMQ7EcCSEicNw4OHhnjlMJPXEZNX24t0D9w/W8KQjqiOI0rSRpk2gnpgGYjySYmIcHzge7i3PVpppGwvN9l5xkkhE5umYq+Wa7TPPs0VDTHumcIC8d5aQ/nEc8E1LipFxGgkh0HcbPnr+KdvtNfPcIyjTZOExTWVPPa6UKJDGOzZNR+Mdfeu48ULr4T5FhsOR4/2efgPIFS0wq0OlAd+abp3zx83HwHh3JM0HCANMM6KR3dMnPH3yEa7tSf0Tmt1HDNOM0vJwd+Th4cAXX95x+/KBlGD/5AnDfkSS40c//pgf/86PAbjZbWlECdPATfwKF4/GzqK4Q6iMFs3FTVxJpq0Qk1jlYY15RFZoJ6/pb4DzFYpqXEAf11hIkVawAHw1xYrTqJhxxa5ddqRHNThEcK0liBcvFmaXIZNkNBr0ZF/LaxRKnK3abNN4+tZYo9vtjpubJzRtw/OnT/jhJx+x3fT8/u/+hH/0r/5lrrYbDseBh4e9JTEPic8+f0Hb9dzdPzBO95YXMEbSqJVhaywhA5aWXJIdm00HiuXpCcHSQaQEs4WAGTM7szmbBt+0lns2s0Wdugz65ExGKTEdR0SE0ITqrOy6nrbtqkOkpNSo5lAGYaMmdBYOR6tEaKuXgjPHKC7WPv46+S0zfsTAHIEmJ+xeAz/ONbRNZx3QNHSbLqNuLVdXG5pmvbjkCZQ3sbZt6HvrMA0z0/FA4xy77ZZtv2HuR/quo21aUlScmwzQeYdBXo44n3Z1ClVDp8I1y3dPwKI16COsGTuLUrhcq1C+7Y/VhMwebS1fkHLIGpwq333cagl2+WUJWnLLw5oqXhXIajguv5ensU5CaX83viFJWo4Hgiwlm93qx0KnM9UtRMI8Z0prxEWPj4b8ljYsAFW+pi7g1XJza/DntU/rPddjCuUuLYkuBUE8WOUqzcyBzB5Y3bVgxnAqcyAb3PMwMBwOZrB8Z96wldKXlmSdqsXWsPtKmnBqVEQ9M3zLcDsN3ZBKYywJzzJu/fUzra5usHJ11H1JEWP6lI8Wa3Kl3Gn9TmFHWDlFSEmQJES1JLiqSlAhZPpvQIjZox5UCGqbalCt9FByjhtRWfR3NbUxpoBTj2rE6rhI9VzUleKR+1EEGm9AmnN5hDmPazeIb/HS00hLIy0xTFgC5oAxvQIaZ9Bk4VuNz8ybBcArY6SyTepPAQCX9+z+zueKLPMtr9PF1C6MPln9LpNPKxae53n+TGt3y2LQynLsGsRYKvDkz+piWfaM87mt9Zna9+sKXNfWmlj5kUVRQrTkoilFJGV2xcnqmB0eWtaP/Jkmlgog1PWrJLquQI+c/5wCQZx9Dkal9s6hNWR2nUiyMItcrmpjYSXWeZIZK0tC3zIP0oKC5PU9T/azSmoxRkTdUtUjU+y9d0QvJLXwzRhD/V3zrGWLb33fzi3U6sabY+C7mI9ApeZnzIZlN1xeyrJp5/d1GVurw5chsA4hW8Cf8nr9s5b1Xyd3e+ZAq8NHin2glQ0KgqamKuaWVDwSQ+B4PPBwf8c8z0zHwfL8hNlCgcYBRZnnkXnujKk1jkyTOTnmaSSEwlyYiCGw399bPqmHO8bxyGH/wOFgAF/bbpjnQAiR4zQRwuMDPyC1wl1xzFklpw2u3aDugXGeOA5HhuFo93wYiMNImq1s8SpOanm0uvIO501NVwyudNZ3gjHku7an63s22x273TVt20Iun13CkWIxnjL4F/P8mUMkBKt+ZEFJr5uPVf8sifhlYUlWhakYZinCnAjiGfYjrTvSeSHNE06t/DDekRqP+tbCv51HxROT5fQxA9AZyxtbIx47X9N5GOAyxfTk97kkTYQYcGpJxuc5IM7jW6Ftchi82j5n66A5EktS5KKjVyYAFvIRQiBprI6mmGzuhGhJZxOYg4FEijPomNszktQcgBsB39gKnHLImIWRBGKcjRlT9IAaYJB1oFztK0ZLol301BgtTAkB9QlJDudy3sc8hobhaOCvKtM8GDNCIITR1n/vsdxz3w3wE1M0VpVYTqVGymuQZBWe5zniGwsFcyXEq9hjKqb/qRJiYpojcQoWlhgMCNzgcW1P2/VsouMqOpopcLXbsdt0xHmm8S5XEyuVxSyfVtd1PH3yBBHhyc01u92W2UM7esSSDrF2gtk7nEV6LfpN0RlXO/xrgM/Jd1c6EKs9fbEDV+d6G51Hl7yjjzkPa5ucsafLLDeNJeVKywZ618bmW0pn+5nPuoYRPHq6ruP6asfTJzdsNxueP3/Gpx9/xNVuy8P+QOMbxnHk+mpH3/e0w2hjFRYdIyWzCfI8NLAUNOV1vzF7VEVy+GDWYZ07u8Hc6MKKlSXkXVbHa0qEtIRzAZa70Zf1fiGBlPL2dW1BVwCQ5sTzOQO/YzHGeDdM47cK/IgIm67JwE/OBs+SA8M7yysi2XPbtraoepdzAcVTZDDlh6AoD/uDxa6myJeffcYvf/pThuOeX/7ip3z24hXHw4H9EDISDLjBHlCdC7qGMFaNXjaKc13MXpXh/OZJVbzFi6GxUgDf8J1VEZxqyJqSqKy/Ubzo61OcKnnK29r0GFLbxzLuXxeznssm5GR9vNT7Ks83xsCU461jru6kSZnHiXEY0aR4cWxyRRnNicKSGpU4TOaRanNScA/4pLiYY6JDZGbZUIxKuBjniNCWKjWqpjRlr2KlukOlQYdgSU+PhyMhBIb9gTGjuY1rbGNsGq6ePKHfbKwyydUVXW5/yb4f5pH7ly84HMwL9LOf/Zzb21eUMuTuET3Ttf/Eqluk7NFLKWUDqfRlIkWrDhXjMigXDzJWwlUDUtGaYoxSww6SqqHUZNpuVlhrdSjK12T1bGsrzwz6UqEtZRCDnF8kb24ipLL5uQ5xPeJ6kBtUn5G0ZQo3pHGHQjUiTJlqSOpzO02p8q2wedLy9KahaxzPrjt2m4bD4UD45c8ZJkWZzegJiaSRNszgm6z4lVwlWveHx5SUItN4S1ABGpzrEbdBZIdIRwqJ/fgAKfFw+xUvfvUzhuMDty9f8vmvfsHxeOA4zaR5QDTixaojhK6FpMQ1OJINRVOkFgW65gFRzOhXkBVQW23b2tcub54e50p5zcYYPyo2T7NBWlg4DmOftFi8d5MSPlcxqOqNuFwSM5drzRVWisIXc7x0iJNR5kVovM1Bzffpy6qZShtWPZZB0FMG5uOIJmUcAyl5xEea5PBJUDzOa00KmjTgvWMem+yp8oi2+Uk19bWXUu3CZX3ALWtu3osqe6kqi7bGuKx0oEqYJ8I0GhPjfs882f573E84/0DTNIxT4mE/ZSp36bFlfa9Q7clkLz9rQvuisBgObWBk22zp2g1d0+Nli2ODU0FSD7FD1NN5wbf9kqspn88VQIuF8WMeal9zWDxaH5b1rRjgWpigC5hODvmWTOsv++ZC+l3AnwJ4C2Vu2TMx4OV1I1br/FwBQZyuOVqPX7yKxaCviX1Lwt+UGMeRcTIjtIBlqso4HpnmgcNhz5dffsGrV6+MWj/NxOx8+fzzzwkp0jQtn3/xBX2/IabEeByYpzmvXUMtMx2miRQNSPr8s19zf3/HPE/cP1iS57Y9Mo2Rvt/WOf2mimaP05dYvq3eAHTpNsy+YXaeQ0g83O95uL3leHdkHgZiBq2qA8WUtryWRJgGEEcSQTLrczG0MsiSA4ic87hcYWm72/Hk6XP6vrf7Jif7TNHKr6tVrYwKKSrDcWAc9sxz4OXLV9y+urVwhykyT/F14KMA+qsxC6vX9f1kIEfbIk1jHvN5YhhGhqPjeHfg+LIniMfJhs2uIboOPv6Irt8RhiONU+Z9BmH9CpD1eV4+tr25VkjLs5YCxkSOw4B3Bh6KWD6ZlJRxHFGFfrPDeWOz+KbN4UwWwlXKiPtaYMXmc7T0SoxT4H5/xIlwGPbshz0pRbxEnFh+nDkqSR2KJ0bHHBfwLpVweBIqinOKi+ATEKIVqzgcSNGAVJtDMTO3IzEJc5jy/LLwtTlMufT0bMyFaMy7OURbH5PDObUKWSkQnZJyKgBbLwLjcACU2O/Y9FZhz9JuxEcH0cEM5PvDkUaE0e0tmbYX7lqzCQ/3d9weZsZZkW3DzeYKv70idR2HGGingeN04OFwazmVHu45vJpI84xHaOmNKRO37PSKoD2HOLCfItOkTLEh0YBr6TYbnjy9Jial7TtCUqZoiaSVXICg7ek2W+Mkh9bAVJI5RFYW2Ul4pbNCMyVj05LnZ7Guvn6VKwmi80+2UwqjLo/8N/ys9+fH77siAvjGWTh3MntPMDa3CrlSlYXziSqSdUtJKVePhE3fc3V1Rd/3PH/2jB/+6EdsNxs+fv6Un/zwE3abnh998hFPb3ZsNz2iiRQCrXdsemOK1Upny/JMtSZCZB5HovOoD6QmZhDGIWIpK1KudGsVKz19Z46MeYaSDxM128EA4fJcl70WtTD5Uuq9OBgsjMvSfEDZv4uN1tnekRIiMzFYyo16fIUVskNGtaZJ+jr5rQI/3jmutzbZCvAj1LSOVhotVxESt2wKIpDinEMnNANA5ukIOQHby9tXfPbFFxyHgZ/+3T/lP/mjP+Lh/t4qGhxuzZiLSpTeyjFm4GetDEGeRufa0tkf54BrDSlAOUFjikHrWCmZpo6doLhVM5QTbOj8Ynry9pLh/fXz5LZ9F8BPrVKwNLN4gU/hIGtluVMRxVcbQFbJ44yto0mZp5nj8Wgo/jRnEMiynIfZqhg0zhE2W1PoxUCfGC1J4FgqwonDdy2tCo2CDwmvgXGeLZmg5uPn6aS9ToTtdstms0FVORwOHI8DCHRtZ+FiRSEXGIeRX/7857z44gumaeL2q1v29w82lsXhxNFvt/zwxz/m6bNnbHc7fvjjH7F59gznhaZr8I3jOOz54lc/48WXX/LixZf80f/3P+KzX/+Kxnu2fX/GdHukbhSh33TmWZcliV+Zb5AIYUCi5VyJsZTtXm0yLAqW5FAfw3ITmjPPxxiZM9iTciiWDaPCNCArywvkWm1rWS3P1TNos60OtwZsYBnoY1FeHnFbnFwjfgPyMUl/iMaWedqhaUMCpmDrB+pR7VHtTNkNE5pm2iurTvPDH2zYbRt+8oMnPH+64auXX3G3D7y8HUlhYJwOHMZAGwXXT6bgO4d3bTaIsVxJj0y+S2nmsP8M/BXSfULjd4jfIu4puJ5pvuPh5a+YhwMvPvsZf/7H/wEPd1+xf9jz6quXTOOI9Bvc9toqSnll03cGwERlltG4S9XytI26ZFIqm5l9LBX4sQUv55ehgF7r/BKC8y2+6Wz1l9Y2WAUryWS5DCxAwuCzDugkg0Ax0syan0E2VEUIoWXO1awSDQnbMEs5T1AiASUa+7RraBqHw0K7Imsg2sZkKXMOII9clW3pR+Wwn2g7QWWmCULTqOWG9Z45HDkOrwhxqgm2RUCT5dZSFTQ6YnCQk5Wbvm73UNZmKSBPmecF/BAq5dneXwCboijZGmz3f3d75HCwShy+vcc3LZVVk6d0UZIQaqJ9gHUcvVRvFjmMM4fG5kTXXddzvduw7Z7RtT2tu8HrFU49krZIHK0aS7NDGrte6wzMq2tZeciyrDf1OTxi6KWq5uSfBYCx+VJyS9n13QpoW9ZaV0BwWa2nUuxVXS2IK7D17PUC5CysKQMeClOMk2TlVvzC1uUwz8Qw2zqfk5WmlDgcbf9bM4NSShyGA8N4ZBwGfvrTn/Lrz35NMmsYUsL7huM08avPcuU7V74bGY9H5mmyMJLhmKs6xRr2FUNgGA6Eacq5amZjU0pD077IlbacjbkTz+vjiQLiG7rtDU3XM7Vbjm3P7FrupsDLFy959eXnzMeZYX8kTrEa37UUb3GOpJk4T9lvtwAFa++78x6X55B4yzfRtC03T57xgx/8OAM/nYUhR0uqm3J/zSESIsSgvLq75+WLz5mmia9evuTly1e5OmHOjWaDpuqqS8ig5pCL4nlfj19b48V5WrnCuw0pCMNxIEVHI4n7L265a0C2Pe2nDe1NTwot/eaGOArxcM/QJsJtdgwURlR5FFLycD2eSPXuv/7ZPAemaTJDzHuatqNrPMdhYn84EEJkd32Db1r6fmNht02XgfSIqssJWovb11gmIZpOMYeJw9Eqrd0f7rm7f0XSyLb37HoPJIYpkVJDUmWaYZhsHwjRWEeKJcN13oAfaRTf2nrysD9grF3TUed5NPA0zsQ0oyExjlatK4bIMBr7riTTLvlPxnFinGeshLtYSityJbPi9HEGSMY483C4Yxj3zNtrrrY5wbINl7eSSX4TCTHx5e0dLkX8NCIp4sjVfzPQbiAy+JsWuX5K++QpabPlLkyE4577hztefPU54zQy7W85vDqQ5pFN17Lb7Gi9R+enbPQZHT334Z7bYWYalcPckqQHF9leXfPxDy10arPdMkVgSszREaUD52i6Hburp4Smwc8deljY0gtn2hjiguEg4pRk2zZRhahLWXqlbuGnY3s1sE8cKxlIdSWnqUjdwIsbcpVhbKVxy/rMjyrihK7z2XbP64pI1Q0sUmKJOHAKZW1qMhPoanfF86fP2G63/PhHP+Iv/0P/IFdXV3z60RN+54efsN10fPzshh9+/Iyuaegbj3cwDC03uw1d42m9MzMhr2uCVHs0zTNjzq0z51AvS+qcn3DJ2ZMZ/yWBdEqR4UhdLy2XmdlTRW+y+bHYTqVACblXyHpAVEUzu7boT+I8Xe/petO/BjkCsx2flBTiqjMzUB/fbS7+lhk/Fq9XQ72ygulLgs5KG88PxLtF+SGH0yRDujRTXEO0ZJ3DceT27p7D4cAXX77kV7/+nIf7ezRZiWNIeeH22cN7Ri+tE0xfe3AWKvCGCMsTL2YGbSr4szqxlswuZZKeHS/r19QBU47XOvuXNlh8+HJ8aec5Xfi7AH/eBu7X22DVrBWmZX/qCjSA4lVKOVQqzDNhNi9FrbYQIzEnxIo1dt5l3SFnNM8hXjGYR0wSGWXO2eGxCR4mO+c8jUzTuHpeluir9Z7oSwLRgfGYy4x2kdS21TslDqbjkePdPfdfvWQcJ25fvOT+7t7QZDEvwHa75WqzpXUOYiI8H9EwmxegAZInhZnhuGf/cMv97Utefvk5Lz77NU3TsNv0tM3jT9MCvqlqVrrOlWhF1ZD4WsL9DPgpIV1VSSj9rnnMFkMkJvNkrADWZSBXHNH+XBtr5YSrrepk7J2URi7bWO4caUBaRDqgBzaotsTUEWNLQggJ5kQGfraQgR+SR1ID2tK2V2y3O7bbluubp9w82TJOgabZAA2qmcYe1NgZMRJSzOU105L4Lbf3McU8vqOVgMVySSENQgs0pAjTODIeDxwe7ri9fcH9qy8ZDkf293eEeabRlPMxWc4YC91xFZitj7v06WpiF89E6cyz9IHA2UJRjNmymdbSojk/jNh8LitfyeizOqK+L9k7IskUYMTAm5QNrIjkxI5G2w85waaF4SXUZ9A5YXtNMczswVISOqssRtrqVh9VVG38iFP7nUMJvFcMgA2WFDRMBhRkjUWTEEOmswchzJLzsBsdvXRX+acAHgUUOcn9U0u7u5oM2cuSdHupKiWkKRLClPfoiHNzBnjAZ3abK158EWNfZkXUO1eTTjvX5Jxrec5mIKjpxHJAOQU83nUZRG0xZlODqOUTEgxM8hl4Kt490ytlvT1SBmABI9+6kX2rTiwUbl0UXKjMCURqrj9bc5f1Vtdj73yA1T/z/v8W4Ef1DcBPYf4UsGcFDpWQ6JJrJ+RysCHMhNlYOMfDgcPhcHJOA4T2HMcj4ziw3+8ZBjMqnaWGIbiICgyZLRRzWEqKBfgxFtkwHPO1ogE9Jd9PYTBkgCqpIhLws+Wy8t7Tdv1rJbsfS6w7XDX4nW+I4gkizEmZs5MpjqGG72h6i8atlgg75TVKyz673guxSn4UVpovjPeOvt/Q9xuaJodCQu7HUiVmCfeasuNsmiaG45FhOOS1cWHiLddmZY5S9+ra5nJMylVofFPv0UL9bF0Kc2AeZubjiHNCR6JpbC3W3QbXdngSutngh+xYidH0MsFyYKGPOhWLMXXmB62S6hhLtHQ0rRmoZV7Ms+XsK2ukW61Zkh16xZhWCgMvO6WTZgZdJGlkGEYOw2iMAVpaD5BLRiMVRIpBiUpO9GzP3nsL0PMsFcaSOEIITJPL+39Ygb5lzudKQmEm5LAuqyaWKuBrzKBEjAXoyQBBtoFAEGcsfcvprjlMLNC1nVU0zfphjKX62eOKoswxImFGxgFiqPq86fSS55QQxSNth2t71HnmlBjDzHGa2A+WSHs8ThyHSApquSjbhiQtk7bM2iLaMmtjpeCjI6kl65ZcPWqjG2N6tU2tGlbCyhTLT+vbFo0dzq9CiWXRjdbLuZbxL2U0cXKMsnqxHsgn68xqd5MFSFiHwRe96yQUv57zuwN9ijjnMk0h37SsfkhWFVgzE6iuQVqfWdM0dG1H3/VsN1tubm64ub7myc0Tnj65ZruxsK9NZ/nPpqmhby1HVeMdlZhX7/30mWnSygInt0Ody3MlGStMQHL1OpcLW6QVkGOOloUpXlk+nO7TRfc6feZS1w8pekleu7xfnGPOeSRXRqu6qEJGy1a39c19+VsFfmDJhN80WUHLCmZVSB3UaaKpoAP2tysYkN3xPM8cjgNzCLx89ZIvvviC/cOeFy9e8PL2lv3DA6ozmiy7us8lqgHmGCrYxLq83BseWg3Xev0Da1sxfAvysQJvzr5ANWA5n9hvfl5VeS8tzCBS3dVW3z0Bl+qJH1feYM6dvF88++XddXxizDHo8zQRckLC8ThyuN8T5sjd7S0vPn9hlRVCJMwRkpoSVIyHhwN+GGmaptKQY4y8/PwL7n79uXkrdzvS1d4YOvsj4dU9IsL+sOdwPFjlrBiYo2V2rwm7ROj6jq5tTcE9HDgejyAGWDbemzGRF5JpHPnVL3/JV1++sASoD3uG44AZTZYs79j1SBy5fXHD7uqK6XDLy48+wreO/qqn7Rpub1/x65/9Xb788nNevXxFON7j0oiEgI6RFL6b+OkQ5mrMF8WnGAmuGIMrr/R6iggZ4c7KYJrDkpQ5WWU125Qz0m0QHbWamwJxARJqCMq6jSzhH6V8qW0IESHnd0hiPwjJ9STXI9Kg7iNwz1HXk3hKilfgGhw7xG2sTKS3mHHL0Nai6vECu7an88qzm5bf+/FTfvcnOxyJ4/7ALx5uefnyFa9e7tnfB6aQCJNHU0cKnnkyhanxCd9rzUddQx4fU8ShTY/6HmQDbIhjYrr/kpjg/uVnfPaz/5Tj/hWvXnzG/u6W8XgkTCNeo4ELGvFxQkTxJLrWQq7iFCzBY96og4LLbiiXN5qYrAs1if2ulfo8UmGaU6VHK+izBdliFUU8mhr7NILEnPzPKa1LOBU8TU7pLpBKjsRcsSOZ8hQ1GusLiJpIGLAZYjSvUmYrCiC5apk5dbJRXdZ4Xai29nFO9JzeAP4/ijjQK4gdce5BW1BP43tEHWmOpMlC90TEEDCEGNXCr5LpxGGiJhSPYVEE1ipnUewrs68AJPW1rYOS79tJoRPneYIgLmEJDARxVoa4AsGcAsMC2Wudqxo5t8rtFKtBpRn4cc7T7xraviVuhfl5S5q3RG05Pjh0Nnr1PHRo2OXreNMhMB1IVGrSy7LAlOo0zluIq7XnERk/aA2bPVH0qoa2gNav51vKDK6sANs3jaVT38u/1yB8XOWwM3Bzrp/HkEOBQjg5Zp7t/Xk2MFFTYpoG5nHI7881qfucw7bKHhujGYv7457jYBWJXn31FXd3dwYwpGR5gSUn9MzATNLirEmkUt1JS/6ghHPCZtMj0mUmkBBC1s9yyOKm3/Ls+cdst1f4pqHfbKx4A/D/+pv/3iP2IzkHpGN3dcX2+oa7JMSQGMNkjIkpkOZAnMszsZDzpmlyv1jlpuKQmqepJqzXkptRlZJ/UVURbwnr26bh5uqGtuvZbjY1r1hKlsQZNDN+Qgbn9hwOe+Z55uWLz/nqxReEeeJwOBDnMYfqrPI+nNh+i4mpJYFEVVzLmCsV2CIyWUlz33Q0TY/LeTS+fHELaaS72nLTeLZzRPwG6TdI30DoaLdX+GkkzhPjwfQ9cVT24qOLrHRsLXamMe5iropj/WQJW8U7pilXj3UQwszhsEfE0XY9/SYnPh5GC/XOzsh5HhEghUjfdfR9l+eKza39cODhcKTkxSJZ1cFhSMRo4WXTFDkck+1prkHcDgSSDFknU+YQGKdI9InGOxqxcTONcx5fOYw5hgziG0AZYuTh4YHD/mgMuqx7x2R5sqYw43K57bYyyzN4r8WwtfFa1rd5HpmmI+PYZsfKdwP89JsNf+UP/oA0DoSHV8R5IIbENFr0hg2gFpzj+uOP6Z9/RHN9zeg9v759iTvsORwOvLq3+UEU2DxBNCGbDXK9Q5qGqd1xNysNkSEokziib+iub/johz+yHGUxMKWsL2sHaoCw73v2w2hOVN9wffOMtNkg8RMk3tMw0e0U1xdQzaqvIUpqBGmy+tqB6xSXLP+sMFco6MR5mMf2YuW/zh51TpASUVN/1kz9NfhQulxXF3hkEZvnpYCH5cLxFY2RfC+N9/Rta3kFY6pMoOfPnlfGz8fPn/LpR895cnPN8ydXPLk2wGfbNXgpK53lEDLHfw6BnGdjs845XCo/k7o+lKa2rRX2UCoDNeUkza5EK2R7UJMjtm2ObkiEWSqAZLpPXkNrdUxLTxJyP/imsbCvnLsxE3OzjWOAWde22aFlFcb8ibMjr+CVUbsA2t8kv13GD9Bkr1zfNraosIT9qKpRnqplWAb8Ymxn7kaOxz1y++oV4zTx+We/5mc//Sl39w/8/Be/4LMvvmC/PxjwoxbS0/eGGIoIY7BYPO98Nl7WHpg3SVbe3nBPsv5svb9qeWOFAq3QvhPw543ozymSt0b0FhbQ+dfejAY/nsiSCyNfQ+p/5YhiMGW6PxAwz4PGyHgYeLi/J8yBu1d3vPj1l4zDyBeffcEv/uxnHI9HU96zEnm92/Hs5oa2bRmf3hBfPqNpvHk0Zkts99WLr3jx5QtLSLfdMux2eO+573u+7Dcoyt39HXcPd6aQOUjOFPQxzEwrEMSAKmUYzKsJGQiRpb+dGGX47tUrY5apkoIBW5a/p8nx+o6vfrWhaRu2ux1f/PzHPHn2jLZr2D3b0m87Hh7u+elP/5yXr14yHI6MDy/w4YhD0OBzrpXHFdXENI0siU/FPEJlkXLZu5V7s7AASt4K1GLlSzUyotYcBykoEVOGnXf4Npd2r0mbs5KZS5jiVuyD7GFDyPGq2QwqeSjy/K9zShwasvHodqh7hkiH+B+h7lNwHaqfksITxDd4rvFua6ElnbPyggDRWIR96/nBsw3Pr1qePen4g3/4Of/g717xcH/PH/8nf8yvfvEr7u4f+PxXt9x+NRE1MscG1Q0JYRqsrW0LTaM0TTG4v4ON1TlivwO5AneFcM083HL32S8ZDw+8+OLn/N0/+Q+4v3vBOBx4uH9FmCckRloNIIrTGRcG0EAHbPuWxreEOeHbmaQBFasUYwyrQseFGCHGvG6nXMnMoHyMdbRsw3nWoKXcrbuy/sIR1BFCZkJEQYKxpXpvxGjnBKfG9HBYklBXDOOS2BRlBiIpg8wQdTG4DcjAkq0LkJRk5dtIAl5KQmuq0b7khdFqaL8tMehvJOqR+AzFE8YNcfZobGjcBhpPmpQwHAizAbQ+x1PNU2QYgnlcA4SxeJ0N+CkKxMk2kCehMeMWdpW9x9kYXRKWUrlXGeBToCZwLuwwj1MD/Jw4q2IkOWShAD++JJ2metIQITmHiqNpG66e9myvYL52jB9tSE+umYPnYfYcXSJGYTps0UnAO7zraJxHVHEpV+6RAiYvQHRKibZtaLodbds8bpU9tfj+5WGv9Rf7W7IFahVYlvj+8mOe+oWlU8JrU1rCsubZcoqVsI3j8Zhfj4yjMWnmeWIajWUwTiPjYKEg45iPSVYGuRwzDAfG4ZBz7dieCnnt9p4SxmbVgBL744HDeMyKZk4Qq2b8lkSdhV9nkhPQizG9Czura9tcRcWz227o2pYQZvbeMQ4DTdOx2V3Ttj3Pnj3nL/+Vv8onn3xK07bsrq5oWnPi/a//d//aI3aj5e5zvuHJs6c8+egj0n4kvnjgcJwZjiPzMBEHYyZbqFrCO0/bdThxjGOuXhYszCtkxsfakWEVvGrQLL5tcSJs+p7nzz+m7zdcXd1Uj3UIMyFa+FBhlMQYuX35gq++/IJpGvji81/x5ee/qkyuyvjKoOFaDS1jtP6dQ71OTUzNVUtBnDHlY7R9wTc9zrccjoGf/mrg8y+F3fWWH4fI0/sj7dUTdr/7nP6mRzTSXz9FkjAe9+z3B47ThHeOrvU03p037DcWY5NqXQNLNIGIMM8T4zQwjYO9Px5Nf1Ahaj4mTNze3TFOgd3uGpGWpmk5Hg68fPGSaTJw7eH+jqSJ4Tjgm4btZsMcZqY5pxSYZ6ZgoX7j0DIPHc4VZ2NLjI5hGLi7jyR1bK46+t2NrYnJEVLCaWSYAyIB74wVIRk8nY4D0zCiGglxJCabu8PxiDkHIg8PB4bjkRiVcbLcPjHlUPeo+KY1wLYvISi2k/tGaDuP9xbWEuaBFAOTdxyP9zhneVfn2ZhDjy27qyv+8J/6pxmP99x/9Wvm4YFhjNzdzUxzQnxrhSxcw/WTa7Y//Jhu27MfJ375xWeMIRKmYPnzYmKz2XCz+5jWN7jdFvfkCmk8Q9vw5ajINKOzVcBTD9vnH/GTXW/zzSnqbZhOQ2I4mrHedA2vcj4n5zqeffxDJM7gZ6RRnE7smgnXzogkkk4o5mijUbRR4gzSJ/wm4TXhGmM4mglc9t8ii9VV52/ZS3MYuG8sdM8qE+a9sJR5L2ygE4ttOe/rr38zKXqXc8agLCkbLFRXaoJwQdhuep5em52XYjJnsipPbp7w6cefsO17fvyDH/CXfudHPL254XrX8dHNhrZxdI2jdea4clh+IMHWyjhNhGki5MqCcwjGPPbGGC5RJSUSxYkD74lzYGona3NyuGjt7bqWvm0NsNceL1iFPUbm4mzLdiRqQH0Mlny96KvOe/rNhjYncdasX1c9MyWrjtwYTuIzy6gAQykzMREqcyyGyDgKGsI39stvl/FTkLDiHXSCY6kkY1m2zwegDfA1qlk+M2qyea6maWIYB4bhyDCOjJMtvppmUgZ+xDmapq3UrDIql4Sd32CZnbpQz8CON94uC0JSXZAngM83gz+nl7bXar19XkUrf13Wb34H4M8JZLW+ZvGs5OPW8aRmpJVqIDPTODJPM8P+wP7+geEwcP/yFS+//MoqWmX/vhNB5shGHKltGb1j6FqaxhPmqeYLGB72TA97Yko0MdEkC1vRYSK2A0mV+/tb7u9vLdmwF/tRZZhHxnnKQEOquRDG8WjhYJS8MtkgzKyBGAIP95bc2SiCi6fcQhYN1Z6zgjGPRzZ9S4ozbd8wpyv6Xcd+/8D+/pbDwx3zOJLmEUmZMRPfkMvpEcSohSWJWSnBXDq05G0p+ZmW0AmFWsIeNcp5iimH1pWva83lg1ttL3nI1hFZplNdLPMcd8s8ESmGuAE+y+u86GUD1BK1t0CP0oNswe0gh3oprYWI0OKkM7DJe6QAP85oxH3nud52PLnZ8OS64/pqw9WuZx4tN8X9/QMP93uGYWaeStlNAXVoElIUoxJ7Tm60bgSPKgKuwRIZ208Kifl4YNzfMzzcsr97ycPtVzZXsmHoNOFVa1VFSTH3jcc7IflSYt0jrtDZlwo6lW2jpRhbAYIXgKfM/kKDtjv3KEafVoxmDY6oYgmqNaHJI2qzLZEqGJNKiVzInS55X12qpyVVIqWCx5Lkzuf4bNuo8xqVx2mpoJwc1fNUe62WGl1+3sWb8q36MbN8UjTwRKOxoDSzoTSWz4xeLgIaIYVkFUYCxFlJSXJeNFntGafhy2uA52tDgSVBrQa0fFtTWR+Adc9r2RNlWfszcCYFNCxVZwR8AeFETLF2Spgdba80LYRJSNGjyZgGMVkerxQhJZ+fmctzuqF6+qzA6mpvLiBhBG1w0uKdJU18TFly4SzgT1kzS1iIeQFPQ7KLJC3MpFx8IBc3iDVcI1VdJ6XEMAyWEy9GxnHMIVeReRoZh2PewwaGYVgdMxrjIYNAMUbG4cBw3OewrwX4abuWNiu402R7bUyRh+OR43BctJU8AQvwo6pEUgZeAUnZCYQhP03J57SAS23b0veWO2FqR1I0Q7vvN3Tdht3VNc+fPefjjz+h7Tp2VzvarnvU/lv6MeeL6lr6vqcZU/ZT5JCa3Ee6Alcoxk02rmqup5RqktxS1cumTUI1miaVliQpzlmIV9f1xjDOSmQBAGtIT9al5nlizA6qcbC8SzFGlkqJ1BQJi9H4hntOtp+/zhkv7DULX5AUkbhicCUYhkSYLHzmeBjYHga02bBRBe+QxnIY+bZjnsZ8LgsxQt2jg+mF0VCHn6x0izznUy7uIWph6Ob9t4IAlvPQ5pr3M+vKsDGmCr6Ow2DMqpQ4HI4MwwBgJdynyRh0sThNYJodkw+ZBWyrQVIhRmEOWh0oFqIuqDQYD9fA/GC0WmK0MBSSGXspMw6K4458vCo5D85YQdt5mpnnkHMSWV4ic6RDSlLbBcXBswAPdQxGq6holcKUOURj4DyyNE3Ds48+Yjg0EPeMneCOgTFO6JRwvsN1O8uLtdvi+w2ua4nzzGGaOI4jMShhtv2qUQe+h7aDbgPd1hwrDqZkz0Fy6DfO47uersFAhEagsbl7bA2EK3NqzuzETdPRNS0uNbDZIdtrXJrwfsS5AZFUE/urqNVY99an0iR8k3CNVZKrLNBTa4tzi7G8s/x7ygCqH5X9/hxHAtZsn++C02xOplXYZAb7nfc4MUDDOcdms2G329F1xvxMc0CTsttu2PS9ETd6Y0Jutxu2fUPXNrSNoykpjU5uNwO/mpafsn5n1pRCfQ+RkzU9ZQcMFhRken65jrOE1VZ8ytjG3jlCsfFl2fOXNpRw6Xzd4gCvXbrsKynGmoqj6Gul+qGiSBJcbn8OeLBTrYoQfZ381kO9CnNnjZhIYReIUb7PNwJxYghmvrmmsQe+3fY8fXrNbu4Zxk/YH/bcP+wJ08ivfvkLUgzMwZQW28Byxvw8YU8nyDKh6ob5NRvSMncWcGr5ZA3gnII5cnbUa/IW7KcsAhV2WbNAFkzp7DrfxSQ2k84MrfxmWlPb7TmTFSXNMQeH/Z5Xr14xTxP7hwN3L2+ZpomHVw/cfvEV0zBxvN2TjhM6RpwkAwVFkHFCjwNpDhxj4OVxj3NisfZZ2X142LO/uzcvZNcxdZZYt2stdEuBYRoIs+X1iU6JYpP7MBw4TMdagSrlRWIOk+WywBLcFn9dMVxSSmgccDJX8KssvM4lRGJWQGY0CdM4c3crzPMdvvHc3Xc0ndGl7159xXA8WIhUGHGEHLJwlovq0SRXr0oLsFqVwwxSpGQGlMuGcx20S1ejUc3LqytjegVVLfHGOcHkChyihM6URU8EKaASC8CkFTTM8zMzCczo24D0CC24T9HmhzjX03Q/ous+xbuGXbtj1/bGQugF30bECU3n8L3156Zr6VvYbVp+/ydP+OHH17Q+ksaX/PKnv+Lly1f8/M//Dj/7sz9nGCbuX90xDQe7aa/gDFRwqghGC/XOwlrr5vLY81Ec0lyRQsNxPKAx8PDqM178+k85vHrBy5efM9x/xXy4MyZBKoCJGOChCs7KzJqmKPhcfrdtA77p8OpISQwsLSGxGfywEr3Fo+xIeaw68TifGT/iM8snv3aNGdx+i7qtGUPeockABnUtohtUILTgGqueMreNhY+giAac5hwXYcoVbqwKScptFK+5L7DElXmdd5K92qvQO9Fs+OR9YNkPqN7ymr/hO2H8CDF0qDY5DNFADUlbRBs0JOL4QJiMMt02OYH1HEnThMZEnJUwpQpW1cV5jbKuc89J5WVS1b2vWWbW4HPRVzRDPJKBvZJ3J2/qVFo5FoqFWD6/wiMs67t1TAPO4X1L52/omie0/ipX8upwWIVD7xzaJPqmRVPEO8emt9h+J4VFtGb8SC5LPBJCoG1btltTLh+T8ZM05YpAp7l2NK3WMC1LXxlLJX9aSbgcmKZQw7XCPOf8H8Gq8pwBPwXsiQUAyGwec4gsr62ggeYqPjOaLKFzeW3l1vO+GKzMsyAETbXSSMi5dhIGmDddVxXUAsZ7b/kwnLeKVN3W8vBsNj1tZxT+vm1oG4/3jm3f07YN3nu2m56uaZhD4LDfM46jjYX+iqbtefrkKZ/+8Cc8/+hjfOPp+t6qbz6yNN7x6fNrnj654nq7ZbvZcDXDk91EpOW42dG125zjLZCiI7pI0zQ0bY/zjk4T2wLWbWJmRCmIR3ybDQzLuwJK223pNtfm4d3sQHzOQaeMIeCT5S5T14GkGrYQojJHCGp+7qa7YvfkI8u3VPLS5LG5DlOtv8ugPHu97O/L2BXnrKR90+GblrbfZIaT4L3iHeB7xkl42Ee2beJJFJrM/PPiLSTTNXStJ/aZJZidD48u1clay4tUG0Ny/iZjIKz0k2T5qFAxR/IwoCpsNzu61kBIy6/z1ByOKfGw36MhMIXAq7s93WgAS4g5/K+1cCAn5sg4jDGDvwG0hE4qxyH34a4jydaS9HpFWodgTkCrWqlMIVcs1MQ0e0LwpATjbOvA2haJMXKcZoacL3Oacgl5FebgicmOQQfGQRFnpeudtxyacxtBnDnZ55jDxWYeHh4Is4Ef8/zdAD9OHLvtBqcj026Dk0AkIEeBFEi+RV0L0jLRcIzZ+SENm90Nvt+Z7hJM59n0OzZXT2malqZvwW9IziPOqqeJQNN52qbFkfAp0OhkOkfjkNbYj04GUjxmUO3INE44EfrrKz5+9hGNgL92NB/dIGmmSUeadASNTPOBaR4QUbre03aeNsIPukR6krg/TLycf8Ht+AVziByPA+M0vXl8q/2WHD5dgZUVAP16IZbq8cmy2K9vh4Ufpy+7xuO9lWN/8uQJXdtlJouFXt9cX/Ppx5/Q972xbTJTsmvaXOTGgJ7OO1rvLOQxV2a1IIFqXNRbNEdy2Ze8Jb4mJ9TPjJ8TsCRXzNJk5UEyRGPV9YoTMofwgh0navZhqfhV+sXu29rReG97cM436b3LofEs/SEgopYTL0YiiWkQUpgtr1BOOm0RJWaTWT1I4+jZWrw48r9OfuuhXpXWTO4iwZI4O28Ic8kTwrIROWfJHo0yZp2ckuL9jr5riTHSdS3bbc/hcGSeBv7un/5dUggchsg8l2SHhlbjSolKO58WD6ouoA+5re+k6L/1mFNN+jVGDqd6+RsVb1leSB0d9mtR1vXs8DML/ZHFg+X+0FXlkFwaPVmmW/NUzjNhHIkh8urVS379q19xPBzYPxy4/eoV0zgz7kcOr/aEKbC/vSc+jDDNlQZouWaOVqrbex7ixH0wb8o4HBmOR/NAZOaXqhqVPJeUbtuGLlcAkcbjciWCmciMJeK9299xe3gwr0nmcJA3Z2M6KGjxJJd41SW0r3FFsVholGXxrSivKinCi89f1lKLVnG6hMqExZOeFF8mR02q+rhi9P0cm6yphlqVNcu8RcmM4lWOjuUE1u8p535wJTQvf2zPZoknrvG0OZeAFrpIbotoHtdOcuJHqYonBfhJJTTFY3lFPMINTm7AbVD3e9D+Azjf0119ymb7Ma0XnnRw02mOeRZEAuKFfufpekfbOT75qOPpk4abq54/+Msf83s/fs7h/o4/+U/+lL/z8z/jxYuX/PEf/Yf8nb/z56bsBPPUiXe0fYNrcp4TBa9qJbVzLjNNyRZnfWS2iHhc+4wpBA4Pt8xD5NVnf84v//T/y/2Xv+RweODh1eeM42AKUrO1QZcSGhVRS3acZESdA2c5JhwNbZfo+gASLdHhnBMjZ2XVxoclpazgnRos7HyD+B4RZ0CPMxAoucbagQO/q6FeyfvM6IFCHRMHrnNI64hOkLaws9So1ClkGu9ADCNoxMUBSVlRU6NNi+QKks5MgMIlMqm1M3J8daFFLznnioFeDfrvIomlOsK4sbLBbge0Vqo87ZDYoLMwHw9MQ/aUdZm1OgXSOBIz6ycMoYK1FcBaN1eL4rdWBO2+a9GfFTwpq2elJFTKuli86QbwLCFgrrJnS8UwA3gsrEqKAUiDqOALU0fEymZ7b5V02o/YNE/o///M/UmPdduWpgk9Yxar2IWZfeWpbuXhER5JZiCEyB+QEl0kWiBBhwZS/gWyRzd/AK1soIAOgh70kcCFhAQSIqVMZYEiwt2v33vKrzCzXay1ZkVjzLn2tu+cW/h1u6FYR/uYfWbb9t5rzTXnHOMd73hft8HKHmGDFUPvHF1nlS0kCvBYY+g7h7dWwVzbNITaZ6CCCWeWJeC9Y7sd6bzHmmcEfnLmfD5WRsCyskNSTCuQswQVWI0xKvOmJlHTWcGbZQkrIyeGyLLoc2IILGH6EfCjBggV4Ilh1exRavlyVWG8MEpKnaxPhKFpoC5rZdKI0KVI33WXmKh+tc7RG2VFLNO0Vry9tTijFPbPv/qCl69f0fU9L1++ZH+zV4Cn6+m8w1jL2Hd45xGjbp3WiNqPn88sIej6bnrEOMZxw+vXb9nudjWYh2f3AAc67/jZ2xdsX9xxd7Njs9kwZ8frPTgbmHa3jMOOY79BTKRkS86pgjZ9rWh7rOurrlhlQIpgXY/rdA3OaSGmGYpauDunbRD95gaMIxfDkjLnealizwbreqQUUsjMEWIoLEkI2RBx+M0NN35YX3Pd00u5jDsNgCxXeyqXmJsKgrfntD8QAesQq+v7MG7x3VDHvep1Wsd5NuT7SHaZEqGre7URFWf3zjH0ap6gbLby/GuqLm4r60dKW9Ora6BxWOtxrrJYW0KX8gpmzNPE6XggxsjNzS3DoJbSKlTvVwbNh4/35ALnOfLd+49Vd0r3QTGG/e0Nt+MeayxhOjKdDrVVL1Cyikg/PBYejmpI0e0HNuYGrMW6Huu2UAIlCDEmUsnIkklRY9KwOOKijJ3TWQXToVy6KFLieNJOCHXO1TWoZCFGR6rU5PPphDBr2+VmpOs9KWp+pLmTAsK5aNtUSknbQHMhxqv76BkPaw03+w2djaRli/eZKBF7rMCPdCQzUMQhxeOWwlwy4jq2txtdH4qDrMxQ5wb6bosxDuMM2dvKSE8YU0FYJ+w6wQk4Er6oJpNxDtMp+9G6B1L5SAg6h+dwxhphs/ucL3/+Ob1z9OlzhhQgZ+L5QDgfSClyPD7C6YgIbDYj49iTEexnmRdz4eHxyH34L3iYhPM088O7d8zLXOfgKhi5Fv+lAj62CsJbq1qkzUmz3QfXQtOXeXIBStZ8+89TY8aKYei0CH97c8PPvvyC3XaLNQZvHdYY7m7v+PLLrxg3o2ppHY5VQF47RCiFTe/ovaP3ls5ZnFMAyFznu0/qW3IBfJyKb6sos8NZLaCZVsDQPyAWzXtcUcDn0pKg1yznRGyt9FVwXErBWYOgWpX5qsjmva7tjYErEhTTMK1kxupylimaP8eFlIRTXBToqYCZ9x5rHX7o8c6TKCx1vcaIxu//bjJ+riuH7YJe0BBNENemksuva8W2qWqrQrmiazlrj/hupwvzZhy1l9/Zau0KtKobl03w9322pz97+twnye26oV7eh5/8/unfXv9Efs9vP33u9Ve9Vmt55qrK8STaf1bgoKUNV3KBrIFkoz9HpTbnGAnzQoqRZZo4H1Vs7Xw8MdVAPJwXfU5I5JCQXNsxMhirIJPJ1BZA7dcM82l1CDmftL0rpwrqAZG62YuQnSN7Zf+4ocNLr3dWiaSSSDkSl4UwT9riRSatC2Kqj1IFuDSRLLlmHqJUdRUobSLf1yyy+jr1b7UFo6VWbVGp1/WKml2Vr+rf/jlWYtbAP+eyapg8GeQa8Gkl0Pz4tn7y++t77FJpg0/u6NL+rFxeo/281Deov7sWR73MWQXBFBS0gEPEIfTQ2rtkg5geYzdYN2jPs094nzDruGbVF7CFzkHvhN1oud169jvP3a7jbt8hyZDjxOHxnsPjPcfDA6fjA6UYCh6wGFTkbU2qS7Osbfw8Lmh+eW7OjyDiURHXoDof04np9MB0vGeeTsQwk1JQ5pgpSlutoF0p2l6jiSHrPWyqc0lr9TK5Utyag0VprQxXQ19WOAHa/bs6d9kapKjrmKI6ThlAmPp7p69joBhtCSrOkp1FDBRnKRX4KWJ1cxQVu0yp1KpoxIoKtpt63RUAqP3uRYEMg1nvt8tt/8ka/8k+VdpU/jOAsPo5LKXoPb0+ij5K0Vavkuo1y04hrExtE0k1mSh6L9Y16HpOXlzL1ruSFeVt4OoT14+2TrUeTrnMxet9qKj3mi538sl7XHYLac6dKACk/67zVwwiHmOuHLzaQ2wFelvCVl1Ba+Bka7DjK/DqnKlVr6ajAyKWxSVyFmVm2G5NtJ/rWMWQaxtVaqydGFdx1mVeVrDndG7tVwvnaiGtrkwqYBpjWEGdEBeWRauf18BPCKGyjMrqxlVKFf9N4cI6qhP1ugL8ye1HKwY39k5jXufSWK61KlqKbn01IUzWkirIp0mH2pFvNhv2+z3DMPDixQtu7+4U+Olr8Go0EfBeQ9BWGc050fcjMQbAgOkAS98PDOOGrhv0c65r+fMeqrPj6b0mBi2R6p1n8NA5bUGz1qNi4aqnYGq7glrNO3JWEXypgLqIwfoe128RsaS0YONUY4rGSDRY6ypYpHWRVKvPYhtrDgXLCxdHIVVJxroOKott/TxcAz+XvbSgTN3VeYbLQt4KUD8Cfqool7qdudqqURMro5X1XISYhVQx9acrTl0JjGCNRvcpsd6fz3rU9a+FMm0VusRn8qQlYl0ea7imDM8qMIuy2ZxzVy2JBt91eh2i2q8vIWJyAbF139ExEuMRq+tkTCoeXnKhJHXrClGISffYXCxFPBirrFUHFENOHRlHa6+PlVUfkyFlfYSormD6eVUbL+W8unflnKs7WCZnU7+v90d1iSsFbR122rqXGzjXWK/1fQPNFbC2m/0ZCiKIMiWsqw9rsTZD1YMrYtTAAUMqEDO1aGq02GstUhwqxqxmCcb2Na65lDVESt3DStWCqkU7LA4VAjbOYbynFHBuUuOLXOd33Smts/RDz9B1jKUwFCBnZuvA6H1ik8Uk3avssMGPIxkYXaH0hSwdm+2OcRwpgLNPU/R1W38Sb19AnU9z5d99XPbxJ/nisw+jfj5TWSrOWvrOsx1H9lWHtVsZP1tu9wq2T95jQfe7eYba+tzGprmGfuJX+Mm70i7IZd9rWkfmav5frQWl/b+xHdfXuXrxuiZf5z9r5CuwtueVC15hmvlELXDIFSDX4A9pDoft/dv71BfLyanQtMhFx3BNIUs9Ffl3E/hBmnAremVyhqBK9IKpgd5PHOVyYs5qW4ARUVHOUhiHnt0wYjHsN1v22z3ztJDSwuOh7jJZN7tizLop1Cv+hz40v3tGlN/ze7n6fXv2ddfmFegj8tPvUD79x49f88e///MeljqfUOAplVJtTTNhXpiOR1IITKczh9re9fDxnh++/UZF8Ixlv9kiG2HpA2c3kWJi7AacdaQQ6bxj7DzWGobOsxk8RuDw+JH540JYMqcp8RAnpT3HSApxrVY2h5m+6+nJWGvpi11XhCVmplQrsxScM+QaRCmDp9QlpYq1lBoRyKWVgLbI1nn2pJrKZeHVBUEXoAvYWaqVaX2d9Wtrn9AfSOure+ZDF5wWsF01yLY3M5dMN0siJJAq5NtaGVo/+WXfMU/uvgbypKjXLVcB5TXGfPJEfhT8Xf4ldL7H+Q4RS9dt6LoN4EhpQ0wjRTqS80RSbQUKgAqziQV8/WRZnTWMNWyHgf3esxk9P//8js8/2+GdoaTED9+958OHd3z97Xf89ptveHg8sKQF17u6bCmLS2yua5fqFWigZEnJrAyRXMrKZHzOQxCkOML0yPsfvuFwf8/D93/P/cM7TsePhKgijmCJWbQySMKkhE1ZLdG9QFGEtQgK7tR7tdlj52yq7fYVQFfv05oLKsCDivRpi4FU9kcDgExFcm0N1HK1hBVitKpngiCuJaYG5zrGsa9tIZ6h8witvStQcmI5C8FZyBEJBTXMyEiJSNMlMqjIYQNAStNauSSPwnWAcLHQXBOmAqX8vn3gHzWQWKfCxs57nO+0mkptdyxlBa/aGOT62cWAKZXRZNrItA/96V5Qx+PqX+irrKBPuUxG1tC4FFSqtzGk2vNa+4S9pFWVudf0TLj6Sm3RFKkgghXVezEG01msc1hvsd5WAOfCrDRG6DvHOKoIrrOV/bsyDpoVdhtH1rXeOEM3eEytDlpnnq51z3CcT2f+v//5f06MkXmeiDFVoObSuhUWrfDHGJnmZdXcOJ/n6sSVWSrjIOXm2FV11HL9/kdOXtUCPV2+b0Dgk2KQSNWdM+v3trKkfNfhO9UVsZWOb0To+p6uJrl919NV9o9UIdEYm7nBAwZh7Ac63zGOI7/41S95+8Vn9F3Pi5cv2e33Sle3Ct5pYKv3VoqRw+lAmOc1oe6G7RPGj7WOmOE8h3Xv/HMdBoGUSdNEsEdsghejOsfENy/4/pc/Z7sZeXx44Ptvv2GazqrnV3FSYz3Ddls1JTt8P9bWgg7rBjCGFBdiULenFBbiMuv8EhVQhqRJOYaCo0in+iQoFuayQXxilw3iN8q8rQUwrsa3HdeFHQ1TLvv4yqr99OelVCfWuiasTDrBuw5rVVfLUG2/vWe4vcFvRsabPZ1Y3BwocyCHhVJbCud5YZ4D145QuTz35li7CkpLizSW0xjFAp61sFzdhZ1vRTDY7fe8eHFH3w/c3d1yc7Nju93SDQN+2BBTpjgHvmNeZs5L5DQFQi7a/pfV1bVPjq04nLEE8USjTpnLElkmq1X9xbNkBTmDvSH5G0zn8TthtxMgEk9b0mlLzpFwPjHNTdS9r6Dwoq5zWa3ZO7F4a0hEorFEaymSyTmQiVXjRFawPmcFpISswsmSFShfqvFHbelKOSFkjEm1CKotquXPwPhp6GdJpWrZFWLKhPqIJTGXQCqZJRlSTlhnGMaCsQPeW3IWclQh7CgFlV8wiBWsFzDgTSaahJWCTZauah1GKUSpaoWpFsBAW8nGHb6LGFvoB4cxwu7uJaYfwDmKMauOjFiD7TpIqbK4lClnxgH6ASPCWIQOwY87fv7LX3AOgcPhSMmZJVRdtlD1oq5DyXKJX4RL7CJitECXhWKuClylUFpBu+4P5Sehk+c5jDFsNls2Q8/d7Q1j3/PZ69f8xc9/xqsXt1hjVcBYDNvdjlevXtL3PeepZ3CGECLn8xlnVHR/HLpP2rp+fM/o+FrEusqW1LZO1mJGVrdU6vkLlNW1+EIMaaLPLadsRbIY0hp/laiGRQ0kz3VwUlGNSZEK3hnNI3vv6J1ZRaKbE2TTb7O2QGfw4tb1N5eCIVHCRMqBEiznrOtHFiFQV7IaV9k/oqD1b13cGWMpVVslZw3SYw4IKIXJGexVsNLQtHbnqnJ5FdBzhZJrEBEzaZfoXcfd/oYXt3ekmAjLpO4iudqlVfeCNXDld0AlvwtX+cl/lquvenNc5C2vfr7mDQ3Eai0FrOgr8hOvew3xSr0UK1glP35eQwT/DEmKUGn2mhK0pihyVLeA8/HIh+/fMU8Th/t7vv/6G6bTmfPhwMf37wnzwutXb3jzs1eM44Zlipy3at9+3B8ZN1tijIzjwG63qa4fgvfakpS+Fd4vD8wmcjhE3i1q1RjmhTBp9dMZWyvDwqZENpKw2bErHmP0+kwlcgqLivxJxnVWwUQLYi/gzGqpeF2VKu3MoVEBSilqJ33dptQSaJELLn11W5QWwH6CCaxNVXVo/zwxbhU3Nqb2wLY3u9imY8q6KIUYV12Yle3RdGtkhQFWMLAFmpp/xPUaXjN5qPP7+vamikzqjyrAYAxdv2G3u8M6z3b3kt32BQXL+WQ5nQy5WKbSM5WowmfMCBNgwXnoHZBRUYQFax03W+Gzl579buSvfvWGX/3yDWEJfPv1t/z2u4+8e/8df/O3v+Zf/e3faLAaJ/zGraLyknNNYou+TzHk5EEyKUoVZdV7ZWU5PedRBJM7ltPMt1//Le++/S2n99/w4f3XzA/vK6PGgzhCEk5LIlaBThOjrhGdisRJddtxFawRMThjlRFkLNEoIK89zcr6aVVqvVktiKvBh16LVo8RsWCMbsTOURBSKKQ4k7NWO2O0FVRVNzywdL1ju9vgnGW3GdmMvSaKYSHFKuruHcvkKSmSZ8hBoGRt+cpRwYumPF5K1c3Se6xpU7V7rAG5xrTAqT6v4b513jz3ISLYzuG8tos4pwl2ps0xTU6sq8KjpSB17qkdsoqEmiqv0xLQy350vVdUUI6L5Pba4rH+v/mz5dXCVF36ql25rvj1s7vaPndhksiTt7zsbzoWGgiLGPBWH9bo+XfKpvCdxXcG71t1Txk+w6Bi62KowE9dd1aGZT3HutW2z2GNYTTdClqu1Pc/WPD544/HwyN//dd/TYyB8/mshYiUVgeu68p4SpklKsATg7J+VPBRQdgL9KbX2NTzXcHKctmTWpKeU3PXqgLXrUhRtQ1axbM5G3nv6Qe1h93udmz3+6rHM9D3g4oM9woIOWfZ727YbndYa+iqqGYIC9/+9re8++471H1zy9gPjJsNv/yLX/H5l1/gvWd/c8O42epnrl1nMUaOh0emaSKmM/cPJ+7vPzAOI2/ffsa4vUHE4tyIWF/baxNTmOvgNiba8x6CwgOkRDwdIRWcH/h8twfb0cW3nI//nDdffME3v/0t5+lIKqlOGxU+993AsH+B8T3juGG7v8M5X5k/qvGT4kxcTuScOB/uebx/T04B0H0jF3C5KMtDHNie4jYKtNLjzIgtBbd5wX51f7toMnnvK6uNJ/vOdWx5DSBf6i6lvn+u+k+xutWBkbTGRKbU9aNkSlpUb6vv6d+8we/3bPqOXhzuPJOniTificuJeT5zniZO50kTpdRi8ucby8aCatB1Vd0DXI3DPEKnz2zVfiN0zZRDhLvbO96+ec0wjLx9/YqXL+/YbHeEBHOVCd2/esXLL75kiZHffP09/+rf/IZlmlmSMC26N3bRsZMObxzBLiymJ2fLMSQOh0CMhXPsOecRYzoW84rQvUKGnv7lhrs3G6QklodXLI8/EMPCu/COjw8fiClyns9My0TJQffUZLAGNuKUMSuR4BzROookcpnJEvQEclZ9m8pCikFbwBarwLFP6upljBBTZpo0DlzjQ6CUpEWY525jb2OZMjlmYszVRS8zh8QUE0uCUxBiNrhJmM66X+xvDEMnuGKruHMVyc8LMZV137Sd7i3eFXqvTEYWi4keZwVvDL4xLCzIokUsIx3jtgcp7G62wEuM0XvGDhstbjlLdtVwYLPBxggpY4cjbjgpjtr1iFedrLHTDpX9PHGOic1ux/39PfM8cTw+siyBh+OJNKWqqQrrRlGPC/CjLNlSFNCTtKYpdf9IGpOLuUgs1Fd47sNay83ult125M3LF2w3A7/86kv+xT//p3z+5jXOGHqnDFDnPcM4Yq3ldD7zMHQsIXA4HumcuihvNwPOCiJZ53IprAWuNf4wlZWYsc4rW8u6avChLEexeXWdLIb1Na7XolzjfGMqJmFU9yqFhRwWzV1SrE6WZS0cFiBWdp2IgPca+xrDpu+01dko8OOd0+6V+UxYAqVqPxUvKzs4piqkvwRCBeuWqQJZohIoxahxVT9utLD1B44/CPyIyP8W+B8B35VS/kX92Uvg/wj8Cvgb4H9aSvnwx94M15uMnkcFYZrlzzVe8unngdWxoNSgvZQrKqbL9F3HMAyMg1qEOmOJTS+GT+O9n77ZGxenPJ1Zv/+86jldKHbXJ3P9vLrhfBKYP92j28L66ev89Gte//wpdW/9/lci8h3PMY5r8l9TgJRWW9dYBZen85lTdew6n05MpxPz6ayClTGqFoDrkM6oI43NxJjohwWXEsNmYNxuagVSK7ylZGzfIU6ThWyFJNSUpBBKo9+1xNSs6YoWOBT9poJWqTo6IK3qU5OJlsteR00rQFGufvQ7gpWrSivrWNfXu87Brr+vryfrnfej3Ol5x5C6QIq5tJnJT9xpcgWW1o2j1HWubfaX06pNgJ8CpJkV4GrnefkQlzcrUi6xvLT0VF/TWofvNCnu+5F+2ACWGMA5iNkgSdR1BAMl6uZWauOPVGBvdRcqdF4YOss4ODaDZ7cZOIsyk06nidNp4nyeOE8TIQZyDRiKkUqxrIls/boG023zuMIKr3Db5x3HrM4dy3TmfD4wT2dCDMQcWR3SxGqyldXtipwx1SHEZLClsnOKsHI3rujCjd1XkZF1pNv90c6sMXXW+52nDJoGqujfXQDEFsAo0Nd0nDSAdVXEzzt1/mmAhEgmG6ktB06rNtEiSalLeiaZJ4J/IlcDUtf3cg0afHpTst7zlzFckflnnYumtaPVROTymSr993rt4PKZRMraYdWwjB/vGVfjd/0iv3M/+ySifPL862uoz23p1Y9en8LFCqA8fQ0RKldbmQRWqqBpO/8rGnS9D61R8UJjwDbgR+RHp7F+uquFtImVfnrazxXfxBh5//49IQSm6XcBP40pmQlVFyNGZf2kVCqI6i8L6gpcgXdyceFr53kFAK1uJaWsLa3Nwa6xfK4FIp33+K5T6v0wMowKsPbDyDCMFfjxCsZZx2a3Z7fbKwN36Oh7T1hmTo8H5vMZg7DdbtkMI+M4st/r8321Xh/HjQbNqdQWiYCxZ6SuB8qUWrSFCmo7hltFeAtqzBFTpb6bC/uMZ56LANRW9WyCikwbwXrLZujY7baEAg8PH/F9h/NOWQm57Ye1Hco6rO/qvuXR7FE1YJRJ15FzXEWGWwSoOl2t3agg5iIGXke2vlbBGqsvWdRMw1aR+h8DP1cbbf22sQlbHF5oYGLTccuIrYAijS3RxEzVEYuswrhkwXYe3/e4YcB5ZY1JypCqBX21oo8pEWMDqy5g4HPmGsq2aOfd9qWq8SPqWGmkFr5s1WCyFu9Ub6TrlO3W951W5qt0RDFqRpARsqg+XR8T/YcDGEvGkBCS0ghImGpwoHp3Yh0UIWOJ2RBzIWVHLg6KJ4s+ivGIG3DdFkMidSesP5Ozo8iRUDpiNoScWFLWJL90lNJV5oEnY8liKNLVR1KdttbaLxHkavwL65jkBFnlAOt9WDX90lX7KDUurCzDZ5+LV5+p3SOlxgl6vnrPxwQUIVDIRlSEOmSSLav+XcmVLRQTGbWqL1SWbAEnBYw6p6WksZBYg0HHtLlFIqiRgHV1bS26bxnB+u7SgmYsuYoHF9H4E5MRHxFf1wnXqbadEaz3eK/t7pvtlpubPTkntpuRoe8VrF8WbLCrEHXO+t7WXFyEV2HnVZPzx3uyjt/F5OI6Vljbv55pLgq1Fdt7+q6j7zrtztlsuNltnwA/1qlpgLpuJ5bq8hhCoPMeAOfsT8Rr5cmXT5lP12LX1098mts/1fNta+F1q7T+ou21qeqU6vcCGpCsL9AciAXVh9V92VnVKjTWVEcydZUrURnQpQjOaFyasihzl8v9myqxQI1vhNLEqNv51b3jDx1/DOPnXwL/G+B/f/Wz/wT4v5ZS/lMR+U/qv/9Xf+iFci6c57BOGE3ANLCXNWKt1NN6QSkF4yrLZ+3rv7bM1OHz3jKOHc4ZvvrqM/77/73/gPuHR/7mb+/oOuF0OlZGhlK3mh1hq3g0+nRLeIAfB8Zr7vrjYPPJ0+pr/s4btCXHV0lTezyBmz7NGttzr/rb5er3LU3+qY8O/AD8z/lHjmMMge+/+bZWG2ZiiizLwumgzJvj44H3333PdJ44fLzn+2++YT6drxyPNFGdzhNGDDnVlMEYhs2IrQJqXd8xDF1ldzUKbmb/4gWv5y+Y55l+3DJsdhpsn89MJ6W/iiihV4xhM45sx42KgA4D/dDXwCqSw3kNrnITcSavNnnXIMRK1VmTYMOqQ1WgCMqQqDQ7qQmOXP1/Rdyhsmzb/c4KouloXoCi67viucYQVANgs7upjnl1PpHIRYmDOSdtxWn2oPEKvJH6KYvQul9WnQIMpjRtiGapfb2gXp8l67VYL3RNekQE3/V0nYre3r18w93LtzjrcW7EWtVRyEXp4zFBjCdS0n5q5JGc9iTnOJs9TrZ4Z3mx7bkZ92zHjp//7BW/+OIl/eAxTvjweODxcOZvv7nnb379gcfHRx5Dgt4hDnyJqhWYE7JAipVeW6qQrVE6eSmOnB25WnBfWofW6/As45hi5PHd9xzff+D8eGI+LMRocOMrMBtUZ0cTjem4cH44cp6jXves91XnOga3x3Ye60ewnSZcErD1Hk01sTeo4S1GQbSnCUXTWxKM9RjbgTE432P7JvRswNYgMyWKjSRprUr6Wk4c1ji8dezchpsu4Fxh1yVGr2v3HANLWUgl0ZlIcSqcXqwl28rsaq11RXUaSimV6VMwpbUyXDZ4tXHVm7s0ji6/txL9bHNRaOtFJqZFHSSMxdumf8N6vTOZFNK696VWbcq5ipez6sE/nXp1rVoncF7HFZp1b1uPavXWCNl4BU78iO0cCKofE4NeyxiRmNY3kvrmrQdfpLaClHJpt3OVkmwtxl+ACOdV7Ne5Dms7rPVcdHgu7WaFtn62tfJpcHu1RK1XuI319TPrr/8lzxDfxBj5/od3arFd2Wgp57XVqwGrcKXdAut9CKh2lXMgKmRuOq1SmpJUzLxoVdpWvYC1XUvU9dTVuMg5g/Na6PLDQD8og2fstRhmjGUYB8ZRW5A22y3jZldZb3WtEiEZITewdhiZbY+zhs73SNfjbMfLt58xjtq6MPbj2hI27m4wTrVKUq1oUhR8ztVVLKagGnspssSFOcyYRau9zqt71DBYfNE2jpRjZdfUNrEL4+fZ5mJOmdPjI34JUMD5nn53oy1vFrZe+Pz1Lfv9iCVw//CB3Ys7zo8H7t+9J0wLKc0c798hYpkPH5kfP2Bqi2tZWzBCZcpk5unE+fRYbdirtpoYlunE+XivCZ3vsK6vC8W1wmKd6WtCrFUr1UZpc+ciun4lCnGVwF9eiVKqg2NZma0pVZ1DtGWmgbBGVNdk3Ax0/YAbenYbjbF6ARdmSpwhTJgcMaJsoofDxMePh7o81wq59iT/S54p1wAQY3G2Q1AB2U3X443qRXV9T0xRw7LaQuutpevUaWi323G7v6XvVQ9smWYF1zDEYuu1Ljij61nnXTWayTU3UebrOG7Zbm7oeo8d97i7V+SUedd9xOT3LCFRjoZzMKTsCQGmJVFMZJr1YUjMU2SeEjFk1QOiB3FV38lDjiiz2FNyYVkqoJYjMRRU5yZhZKJIAImk8kjJU70H2t6glvZUDbmwpLpOJUpxaytca9MspHUdrsezzcUCxGzJdIjdYBxYH+gGT0+EKARrqrW1MnhTLjw+TCznbxTYe4LyX9qVXWfoB4uxQu4MkrW12IrnbLW9PGZHLJ5VLy+BiMFmh0uF5jbtsoI3y8HwOKub69gJY0+NibX9ruRCxGP7CwGhVF2XEBdKWYgh0HWO27s91gq//OXPyCkwLwvvHx55PJ6UrJVqcdsoW8g7y4vbHW/ffM7d3UuGfmActnjfVyHzbm3hTSlQlqTujHWf0DXlidnBv+QZ5qKxhpvdnu12ZBw3DGNdK6pGmHOq+aOmDAZTWc19Z9lserpYNR7JhBjZ77YKxFbB+x+n6rpfKZOmsBkG7rZ74hJ5fHyk81ZzPWFtL71EEC1wqqz2EEgFiq1rqlcgz2sQDKUgqSjZXaDzyuAppTCFhbm6cW16x+jVefRu17PfDFWLuKfvOy0ALUMF2Fs8KIQYeTieOS8LcQkcHh6ZzzMhF44xsaRCSnAOCwFIrkMSBP8TLnCfHH8Q+Cml/LWI/OqTH/+Pgf+ofv+/A/5v/DGbaikcpqVSt7Xg55xBOk9t+17RtZITOSqF0IvDdJX2bVUgSozRiV43Kd85tjKQc+Ev/skv2N/smeaZ/+q/fkXXwcPDI8fTgYfDQ+2xnzifz6pUnxIzQmrVtGtk8JMokZ+41a6u1tV3LTG6iP4+fV5jRuj3qpEhVy9Rrh7ts1whinL5eWP4rNXR9vGeCq4dgPeffOB/8DiGZeHrX/+aaZ74+PDAtMws88zh8UAIgdPjYW31Oj488v6775mnif12x+sXLxmqVd/peCSnXB0wBtVcGUf6UQNT1YRtJ1NQemLmTsB6T4yBu8NbXn6m43k6HjkcjrVXsqwA0GazYbPZqOBVBeRSitg8k6dHcsrkeAF+pMQKdrTNrC4Jxq1jtDIgpCaMlaVQbE3uywrdPTnW6kUL+q90NZqbCtI0MXRAjXkiXvYsYwiaNOxu7zRBM61dJJLKRCmJFANhKaRck0Rb6i0okJo20VV7R62orcK5K3jWSjXUFk8+mTqfzqNq9SyGYdixv73D+57Xb7/g9dsvMdaxzJFlSZSQSHliXu61rTNkYsiAIYUt4bzB+g7LG+Alm2Fg++ZLvvzijpvdwD/7y8/4J794QwEOc+C7Dw98+Hjkv/m7d/xX/+33hPDAYY7I6LHZ0NmMDZacEnaCGHTzJRkV/KaKPhdHKV7F2KIGS2LLdUHgWcYxhcDHr3/Lw/ffc/xw4PxwBhxu8zl+0xICvd8ewz2P84HDYdYNXlREdDv0mO6ObuhJ3oNTkMaaBS/KrolcwBIrglltlK+2TLEIClSo5W9fWQMD3TAqiFCStgyVAjlAXki54ErRSjXQGU9nHN547vyWl70CP5suMnTaHnNYZihnEpliIuKKMv+8JZZON+4KyJEVzCxRK9WlZBXgLOWJ7pJW6/Uf8WruXtqXLqJ58oxj2F5QXzoT40zMsQIgjQV02YfyFYsEeFIbsBWYrnJ2F0DhCuy5rDgNRNEOf3f13JYjJuv1njCGbrej2++12jSfyfMZUqKcDpRwqNd8PR1MMVgMIlld7mpfvRHR4M6ow6L1DmssvuvpK8jrfY+zPdZ0TzX/pNSq9dpoW8FxTVT081/20GuiVrmgy6sZVAVeniW+CSHw26+/rv/Se0k1THQ/smJxVcgaEUp1FFGNyFoUEENxHRiHHTrsToEZlgmmI+SkyayxWBH6vmMcNIgcxp7NRmny/dAxbLSNa7Pbsdnvcc6xHTbsRzXAGDYjY90XfTfiu4ECTNPMeVLtu2OKnKoOVzaWyWj75+hHzDDgpLDdbnB8XrWWOpz1GGvohxHjOpDWLrRUoFI1FmJMhDiRUiCmhWmZOc8TRYTH4wGMwbseoUd6R8yJmCKxFSK4gI0841xMKXK4/0jnPWU6qwZDmNjutlgv7HvDL754RUQYNx1nEu8fDrz7+mvCfOaYg7IvP34kx6wtJVV4XJV7ZN0XGxCdS1ZXzxXG1DVV4yDlYK4izgjWdVivINAaN0CNUXz920u4KGsyT11LriYGP/p2LUIpOy1W0wxtL6UK2rreY72jH0f62y3d3Q1933Gz27LbjtgY8OcDJUyUFDE54IzGXh/uj3zz/T3Q9EWEoFoaz5ZrgLKuOj9gjWfwnv2wobNOVz8N3NTDtZ6v955h6LHG0vc92824CjpP5zPLslDEkiuDx7rKmjOWoXOMQ6+C3yuAatlu9uxvXtIPPfu+53boKKkw+u8o4Rum88KcZsrjTE6GeTGczoFYhPM5cD4HDJnpHFnODfhxFBmqWUNf2W+JQkfJexKZOS0sRF2Xcw95VpYWMyKBLJPunznU+0cLrK1NCGx1IYqEWAWOrRZlGmNEb99Yw7s1uHm2uViKsCRHLD1i93q9+0i/mQkuIdXZzqZCXiLpPJFj4vhw5PHDN4Ql4rxRDR4rWFdwPmMM9INju/VYZ0iDCkA7q4Ca2AFrrBYiSo/UQpe6Whps7DBWGZreO5zvEYR0MuSoIM9+hN1QqrNrwTvdd7zt6IZB7/y0UPJCLoUlRMKiOm790PHKv2C3HYnxL3lxt2NeAu/uH7h/rMBPtuRiMAK9tXgr7LYjP/vZl7x+9aIyLff03YixXjW5XIfGGIt2XbhubUEq6x4q9do/z1x01vHi9o5xHNjubhiGXtmlVRjde9Xt8zWmXA1uxGGM5vN97+k6T0yZoe8Y+q66612zeFg/uzGWznWQhd245eXtLeTC/f1H+t6RSyQWbcdqzzdXBSY1EsrkpRCWoOQDa/BDhzVgneIWCvyAyZpD7YeezdCTS+ZxKhznhDOGm9GzGzp67/j8bsPLvZpP7W62bMYBKJVipzmrM+rKNi+B7+4feDydOZ/OfP/byKNEziHxbQwcYmLKymI754w1njRHrPV/aGr9yRo/n5VSvgYopXwtIm9/1xNF5D8G/mOAt599SQgRYwRsDcBE8IWVJdA0DXIVLCw5Y61A0Y/a0DAjWo1qzApTqWKSM2MVkpqXhbvbG/b7fU2qCyEGbdsoarvaqNBPa4E8wWDWJF7anvlToM/VcRVEf0ove/qKuvH/FDPodzoAPbnPf/yMFbj6tJLz08cfNY7XY/jq7VuOhwPneeLx8YFpvgJ+llABmEeWaeZ0PHI+nVimmcF3K7DRPtOlXUHZEtY7ul4D1rYOXUARKFkrw10/YJ0j1cJ+SlEXZzGklEn5orUzjBuGzUZdSFK1pIw0gQiuCrHUd1MGwPrv1rfZ0OH2/x8hGJffXVXUng5ABUCejI0m6NfVt/bbhnn9gdvtT5qLru9wzteEtoJZBci2buipOiFd5phwuXOlUQvq+a6I+ZObuVwu7kq9vrobfwIAulAzLd539N2I77S9q7UglLwQ46w0W0Hp55IxotUxTQY9UmzNgBdKjkDCe2EzejZjx2bTsd30xJR5nBamOXCeA8cp8HgO2rqYK+JPxlhDbQhWem9uzkp63itQWAylPpoTlnx6af7Ecbwew8/evCRMZ8I8k2Mip+oa4PvqwJMrUyAjxpOzUpn1IypQlVCL9WI7FaCriemFbfb0oT+/TvFrSw7V3Q6lHrvmcGPNyihL1REkU7CmYKt9X5aCE52vzuTLo/7cScFKxojqJZmi1HKpFFqR9uCCfhel+6oNuTyZvZ8en67Mv4vl01p0/7Hr6afj6N2OyxqQq5aWpZ3Oup7U2af6eFfgFLLuI6W0Jryr9+J6TdH1JnPF7OHqytTKQaloVLFO+6q6DumH1dlJbYuiMqyMaW4NVVuucSKfQIO0li1EVrFqU9f+Rk9v+koXltwn60ldk9u/KApUSft5aV8/BX4uS2lp1/UfOY7XY2itZZ5bPKHvmq+sjotBzw9ta7u8hsFIoZhCsZZiHcXa6iLTKUhWEhI9khV48VYDVd/19P2grItxZLNVl5R+7BlqVXF7s2d3c4Nzjt24ZT9ucRX4GcaNFtLcgPO9VkCNI2FJOTOFBQktEdBmBxGp7SPKwPbWMNiuCm57rHE0LaF27XNOq2tQqtoHqn+WaqEmkas+Xq4/jzFixNHs6J/Q7ts+fXX//qlj+Ok4vnlxq59BhBRmJCdymCkpQI5Y2zF0jmws283AdrdjKXB62GhrnHfEJapVd4zkhFpvo3BgrPehQWNeqAWRdYW6BJ4NJAR1hyr1xnV+wFUR56fAj0dMqt9XkIdr4KeByD8Gfq6Pts5o208kN6HwokmRWAtOtN2+ZBWv9er05azB13iCHMlBbctLBdZLUTB0Ca24pp/r9zAr/8FzsRsGWlHKmmpvbR3O+Sq0WkEx0XNNRe9N7z1Dr/Om7zpl/1RrbBVWFzXtFBXDL8VqI2stCrjKYEjZaEFbbHUR9Djr6bqeYRghF/p+pPM9KQrWZEBd7ErVAEtJ2xpTUoA+p1LdwOpdYixS1P3SGIXvi+lrMTFVGUoBElI8jZ0uNOmBDJW5RLlsm23NbS37qj2mDmFiKywpF5aiVBbbT3sr/cPG8NNxfPXmbXWuU+ay3t+CsVlbfkvB1NYWsa1VVsHleVqYpwXfW5CEsYJr+j5GXc9i1JmYkgpyZ1FR7tisvZNqIOmOmtCCmXJlDdXh17DKR8QFQtDGMGdUI8iastbfjdGfI1bH42oTam2QUKqpgaNkz3azYb65YQmBJaOgY5Er4EforcZb223POIx0nTonOuuetn/V2OWy3j4R//mDae0fO47XY7jd39F3XiVXnFtb0taCmqF+vqdvrsYilmwKLju6zmNSVqZQk235HZ9XC8eXOdl7T1/ZOLZdiybR2v4n16ffrknm0plTmcttbMU80dF1RuidZeOdFjaSJWcFpwZn6K1hsIbRCaMzdN6w85ZNX+O8bDSeFYOva87Zwnly5OQwwXKwQjCQDfQCsxSiaFGWnCgYcox13v/+488u7lxK+c+A/wzgl//kn5e/+fVv8M4xjh3eWoahY5+3VYtHLU+NwHw+cfj4nhAW7u5u+fzLt4zjsN4k1jQL2UtAbozaD3ZdouuVon53e8tXX37J3e0t0zxxmk7EGPnh3Tu++e5b5nkmhMzD/UFFmqy9WsSaCHQ7metvPrm4bS9d6WPt/1cb+pMXKZdHu/s+2ZBXYeH6F0+TgN9xva8/2R+Ibv/Y43oM3/7sZ+X/8//+fzFX0a0lxNpqNRGrfft8OBFDJMwTyzRXCpvQVUvW/e0dbz/7nM22OneIB1EbVN911RLVYL2CM/M0M51O5BQhWywdIo67/YaXd28AVDBw0lavmBKhBkb90DMMg7IeHu85PNzDMiPW1QA01w1Uz1Und6OxtgRCnlaMW+pRUOegpnXzE6DPjwPW6zvg8pzWgtjwEc1dBcwVA+gZx3G42RffDZe5ZCDloBXq0txhjPqt5us6pKyyHWJVh0HQdp21naFhPQhiMqbYNZg0V5KylytRBelE2IxbNuMO5ztev/mMt599ge86djd37G/udEz7M32ndshd57i93a/OOTkltQ63PdgOYz3j/o5hu2e3GflnP3/JP/3VGzZDz6ubDZ01xJD4/t0jf/v1Bz4eFr5/LBzLtlaVOwoNdF7005uCNVAsILUBKqsdd6z9+lKazby6NnhnsO4fP47XY/iXv/yyfPv133N4PGFKx9jf0Q0jm5s7fNeT0kJcjuQcOc6ObvyIW5S9hhsQsQzbW4btLf0wYkX72BX8uHKUEsFZpwFf1drQz9KGUavaKkps8d2A78YqGq56S2o/HNWdiIyVwtBp20PuFCQTMXSDtoroWuCJVWsjnY6cqo318XRmqkLuKVdXwXyl10W10NRbC0dPbZzGxKS6E6VQolZZ9Hy1Oqrn05IU1up3q87Ln2EujsObsiwBY4vqT1gNalzVNVqsrQnBVfBfgB8BrZcdR8P89pyW9DXNIxU7zeuzjRZREErfw9Dr3N6MyHaLOIfsb+DmVtfmecLOWsnPH9+TP76DFJFlQsKEFOjF4isYaG2PNb0CSV0PziKmuni5rlpmKx3dWVcp+rXdACFnqWtw/VkRUt0uc9E1vNkSK0jQLoaeUy6F0LRlpGkEsgrhPscYet8XbfNob33Vit7uo4qDW+voN1W/zli8VaeyZD3RdmRjsUOH244YZxlE2BnBCXTW0Tuv4pB9X2MiSzcO9JXBkwRiZXG63YZuv9GYaxjZbbaqp+A7pFPWSHaeYJ1eJ+MIxhKBRQyzseRSVKwyZVwuuDmo4L4V3GgZvd5fWaswIBBjqtcgU9K0CsCGmNbCzDwvxBg5n0+kJayi6ykGFXDH6PcuVMeqSKlJeirxDwE/f9I4/rNfflW8t9rmmmNtrZyYT4+adA4b+qHHeM+r/cCvvnjN6xd77gZPJ8LhcOD+3Qe++83XTOdJ2T/Hg4JApaxW6UmgceQa42Rl/Kws2rwGfboe133YRCRdXd9SddGKQUpUQCg35x5Yq2jAE8OKT66D0ABSXes08U8q6G9E9Te6Dtd17F+9ZNzvGIaely/uuN1t8cawyZFuOpKWifP9O+LpUcGGytBa5vOqidHApU/rQf/YMdzd3hVjDJ33bDYjXTfQW8/Y9do+a9Bicg3i2r5hraPrtM2nHwZ2u50mq0bXKRF16oxNXFcKkgIZ2HnDZy/2zNuReRFOs6JLd5uBTgyuCBIzea4tm0UdfkrM9E7obDUHiWfm40dy8My7zLRNWAOkmc4V1RfcDoydJ+XCtMAUtGCepp60zJScSOFEjrPew9FQooWS1NU4KWhFNpRkoFD1UXW91oKgxjwp6hXSPckirq3FDaxTpu8fgxr8Q8fxL/7pXyleKA7fbzCuo2PBnwuuBCwZoo6h73p2fsAUYfAjLhu1AZdCMdoWakypEiMAjpK8FouDJywdORvAo263Rk1InWpbKeNOxdephSZEMDZhbYIiLIsQZgUdwk2P7HucFYYOsq+15s5BlzFSGEzBi0PNJyyKRpQahghdBzc3d1jrWULE9HvG47nG2A5QoHUzdAze03eON6/33OwqeNkPqi2GgmcKsgdCmEhphi5BP2J8gwHKVRH8ecbwi5/9qnz1xVucc3S9xnWdr45VKZGS+UnQtxEypBS8c/RdweWMc9rC2joVrvPhtq41M4hiDbtx4OXtLQbhh/t79jcvMd2ZeQ7M01Ids8BeZ2VG4z1jm7QMbD1svGpO3owDu8FDziwPDyyHGY/l843j7cstiBDlRlnoOTOdz8zTgi2B6XTgPp7pO89GNNeUUpAUkazrdciFUArneeHh/Uc+HE/Eaabc39OdTngxbHeefDvwGDN/PwXuQ2LJwnEuLCH8wTH6U4Gfb0Xki4r6fQF898f80TTP/Df/6m8rI2dP33dsNyNJDOOoyJUr6jbz+PE93/793zGdj3z11Zfc3G7pvFP0XqrNcAtW62bVevZSzvQhYYzl5auX/OqXv2KaJ0rJ1UY48m/+9m8pIhyPJ07HSbemrACAWSuNhav74XJcVQ8vP6rJ/Rp0/tQVuE52P/23bt5UFPGnXuYC/LSqLFfPKquL1OXJf/D4B4/j4fGR/8df/9+JKTMvoTJsVHE/54xkaisF2uaTsraVF6EfRsbtjruXr/jy5z9nv78hZY0VW3DcQjnfOfpR3W0eeWA6nikJpAI/1sDt3R0vX73CWscSA3PVbFpSZIlBdXe6Dt91pJT4+re/JmQo5yNYXysrmoTaitqbUvRztwW4AkClKC1YirSRqh86acAKP5EUlnWBawykJlpaf6tfiwpk59oucb2AFSs/8br/uDHU19bxMJWVYUSIeUaWRMoLOeYaGAhkwdQdobE72nnYygwpuVDiBShdIc+KjLfzafHnym4AjHhEPMZYbm5e8/r1Z/T9yFc/+wU//8WvajDmMHXDOA4HTsOBnAuvXt2tcNpFzBe08VYBJd9vcN3AbrvlP/jLN/zVP/lcg8J+YHCWU5r55tsH/ov/9hsOU+br+8JD3iEl4cqAxetGJGbVUVEWopb3RTxkS8qWnD05O8gdUgaEUZM77/Hd762K/YPHcVlmfvO3/5qcHYaB7bhlc/OCV1/+nH67JyxHzqd3xDBxmCzD9nv8DMZ1mG6DGMewv2Ozf6VV0jhDBYoKst7/glbzjdG2hJxb5eiy5l6CZkfXj/TjFhFDSEGdQIrSynNWoVBvwDtt63NO9TyMsfhhg+9HTfytJSTt3Y/TVNkCuu7MdXNr4FIpSnaXmtQbsVULRQE3Uzp1wwgBYhXCNTUQJlOyUZZbY522JLSyTtf7+XdXpv+kMaRex3lesK7QVfcJEfDe0fee+aQsvBRVJLjkBkTLFdh8YfqUCt9pcbhap9MYN63YYDAV1EbsKkAqmz28uAPvkNtbzIs78B52CvxgDCYE7BIgRtIP35C2NxAWzOEDcviIKYVeHINYDMoosa6niBDEEEWp0855vPdajfddtYi2GOOQar1MMeT6uFKZWs3/cipMi7YjKMMmkFOulWF1K0wpMy2JkLIGjFaD86or8izjWIq2NKmdvKkkqLKCp6UVEERw3rPd7VQLZxy5rSLIC8JUVBzW9B6zGRBnebXd8fnNLYN3dK6j9x3GqBBmN2ibtOl6zDBSRLifZj6cz2QK3aZj2PV4a9kOAzfjiBVDEksSDXeTUf2tnAuLDczGEhEmqxTylDNzVjcdKxkx6kI2OMPGj8igVcsctZWHUqomT6KkRFgOpGUil8wSArGCIKnqIC3zTFjmOqCZHAJhWTAYBYCsVyOGXIWySyaVSP79TkJ/0lwUEbx3Vbg4kFMhzCemwz05J0Yyuxe39L1gzYZu6Jhj5t3rF9y9es3xPPPN3/8G13sO9w88vH/PPB2IQd1fmt5YE4HVe/mpMHQzmqBGAw3kLQ3sNRaReAF+WrxgRIWKKaQSSLlqPTT2KWiSeQWY/VScuTrbFKqQacE4hx0GzNjjN1tuv/ic2zevGbznzW7D7dBhSqIPE346MZ2OnD58x/HhA8YIvvNYa1imMyUlTP0Upc2RZx5HV4Gf3W7HOGzwxjI6j5VqGuDM2nGgpCNtrbPOqzbkdsvt7R2+87qXWI8ghLCwzDO5ykzEuCClsO8dP3t9R8yFaRFOM5Ri6PcbeqNrrcREYqFkBX423mKyY/CG3mVCKpTlyPkhETvHebtw3gS8FQYivQVxhm2vBZZcYA7CHHUPidNMmhdyisynR5ZZi6VhMsTFkmurpJpPR0q26gImhq4b8a6rV0/BoFwKMeo8tc5UNp95AmRr94WCI7/n+JPGsBRUuFkc3bAHgYkT3SngsrYPa/tvpusGXmxu6Jxn2jwyWkeYZuawcJpPpJwqCNRid0tJXsW4jSMsHSkKOXlirrqMRsBoAbm9j36upoUpQAQJUIR5KsxTwYohzxt8KnhniD2kTucnfaL0FmegGyymr+9VsrrDllKtxfV6v3jh2d+8IMTEsD9ze5xqkbzHGhWEvt1t2Y491gpjb/C+Mm4r0zqnC8ie4sJyPhLDWYGG7Q5LRwO0rmrXzzKOXef5i198qa6MWQs0fe3+iDGQnKnr+BN9IQTVT9J/aNCdS1mZPLpOsuYTNOC8aJ7RWcEUw81m5LNXLxm6jh8eD9y9+Ig7nzk9HjDxUfU6c6oFfB3jIjoWnRM6p9pP2x62HXROeHu35e3tLSVF7uPM4+MHOin8fOf55Zs9zjv63R6/2XCeZ/713/2a33zzHTklzocTc0ps+o5XIthSWdJxhqj7WzjPpBA5zgsff/jAD4cjEhPmdGZYAsM48PrVju1+w4eQ2R1nflgS9+fE3y4zpxD/4Nz6U4Gf/wvwvwD+0/r1//zH/FHOmdP5TCmZvtfBd0572Yy1mKICflIy0zRxns6Kli2zJsZrQH5hUVxX1HJp1qZ5pRGLyKoITlVuTykxDmPVUdAex08bGxptvv7h5f+/j2rzo99dw0NPf3l5rXL1lGso51Pw5/L/S/fMmo5wPV3Xd/3D4M8/eBxTSjzc35OqvWqqYo3NscSUNWRHALtWpg3GOBUa8x1d39MNg9ot1oQma4kJpWNqNVSTIPPJ5VG2l7Oevhtw3mOTxyYNKF2K2GpBar3Hdp4UI853NVFUrZ7V1eJHeE2rv3HF3FHnhNZosMpu1Pvx+pD1f6z3aNMceqL8zgUwXAOtFcSgJt/libTTTxx/0lxsgY6sC6nBFLO2d7Vq+Ton5KJt1P5TAVezBqDZcAEuGzgqFyBLzAWlvwZ+RDxGVHxuGDZsNjv6fmS33bPf3eB9X92pRIP+GMhJA391AWrxW3MYgtazLEap8db1bDcd27FjO/Z4Z+mqdaugFeppicyhELMhUy0xaf3PT28SjRmvwDCjjIRVW4YLS6El6Ve71LOMYy6FaToDA4YBEaeaWX5QzY6SNOEuRcEep4K5xnr9t3XKsnBqo11KIpvaznbl9masqW5f6CYpep+2FiuQmrz7C8jlNUjMZGKqqjkrPbdqV1md297r38j6t8oATCuUp2tDTEkTxnxV5Zb2urr2UFsTjdEWGqEpFpgK6IBS4UulkWc9bxr7h8u62bRX4DLHfz/w86fNxbYGXBcarkDinwZ+r9b7su5abalVV49Sv1YBYCO5gmEFpYs3AFrvd8SA6xDfge+gG6AfwTvoB0o3UIxVMVEbIUZk3GLGDTiHjRMmTFrAweLEVuBNNZ8KkOoHvm7nWt0FRZD1K59OuSc1mFz3/FTUqS5EXU9i1FZfyTruUgwxZZZ4BfwUXbt+z1D+SeModT1U8KruWyVTTMEat7KZnHP6qPd61/d0XhPLUoSEIL1fHSzHUdkHY6dztfedvk/X4Tpt65Su1zFCkCyUoIWEbH1t1zOq51A1HS5AmjJPck301CBHqo6SrI9YINYEPeRMSCpiuibtLRmsMVpqzJ4UiUsgBmXrLcuirRStIFKqscbqRlLW19E2r6Qsn7Xlqz7WNeB5x1DHkbWYQW3ByCmSopodGHLV6zCMnce5whxH9vuA8T2H/T2b7ZYUI/P5iPMafxQSJjdAVi4tqGuMUa4rJlwtBjQGDu355So+KVpUWr+HJ9entNhUT4rrYPV6TrV45gnwU67ubWexXp3efN+pWYazeO/w1mBSxpaMyRHJgRRmlmXSFmkKxdlqqHLVZ1GuP8XzjuP6uX/k6PO0Wfnp//WkpQUvzQ2M1tJMdTXLK1BZioqud95h66m1FiXn7GpeqJh7ZRNIZXSmTOcM3pkaVBZKSdrum6Iy5TCI0fmmbZQaS5f6GaV2OsSsHOWcDCSPFK+MnWgp0SDFkORyL7X7orWqWWvrz9p9adopIvVrI0k+DXvrpvPnGMN6jqY6r5m6l0lLoOq5GDG6lvqO3CvL34m2p8USL0LetatC245a6081phABLBTdC7VVv/UEViOTulZeavw1VyjN9SyDsDJzS25f23Vrn/kCalzH1XpUOQFUqF+tyDN9VwhJ70nneoz1dN6pjuk4YAx0rlDl49bYqJRY3/uypuak7srahlnBrfb1d8/Hf/A4WmPYjgMxZSRELbRXUeby9CZ6cqxrcAMXV9mJq8eTm6R9V9bYQQu0lq7zdF1H55UE0MVEqG2pqZbJTL5+Y9W76qyhc9oR4YQqLZCxKPOHoj93Al4KnYHBKbt/6B390GHIyj6q7c6pFj68QFwW0hx0LQkzpECKieU8E5fAPC+Kf5wnTEp0IWBSxJbExsKNV3bvPjomMYSkTKffK0ZQjz/Gzv3/APxHwGsR+Xvgf40O/P9JRP6XwN8B/5M/+E6oMOXjwz3L5InLmc47PvYdD/fv6bzHVhNCQybOE/M8AUrxXZaZZZ5o1mjWWFKqrhmlcDqdeTgciTHy+Hjk/ccHQoyEJbAs2hbQ955h7FWgFHXFiSEgotROqTOmVAeeIk35u9JjS0NE5UdzY2VxPAFvZMV12nx6SqW7AoZK4Vqw+ZL86ytdI7FPQZ1r4u7FVPfHcBB/Afw///HjWKpQXNX0qGLbpq/VgFQgaGIlVP05oOs2DJs94/aGbtiC7WqVOavIHMrUCpX+IyYii25qCjBpsB9zIeRKrUyJJcYavELTS3A4XbihMgmqOwpW2c8RYkgsUyClQLaBbGuaWSr6S6nJYT3lfMVQQVZPr9a4dLVKPblaqoXDBdTJjS/UAjndQWo9ThOlWpFG+LSX9ZnGsL6XqCVlLlLbJi7JkGouNWtddUHTMVUkvX1WU0E4cSrmCtVtxnvt0/Vq8WqswXe+OszIJSBDsMZjrYoBv7h7xcuXb+m6njdvPuOzz77EOVcFMHOtFCyEtAAF762q7Vfgx6w3fysHaGuTGMfQd7x+8YrB97qY143fe8/N7Z63b17yeE58mAPuHAGLSGMeWEo22j+bzXruGhiyzvOme5QjnE+BmGashWmasH4dyGcZxxQT7z4eMDbincWaRD563If3TPNMjDPLfFagLBu2u1tysVjf4foRYx272xvu9ju6victhmAzJQV8AVeKBgdVp+gS6NSvK/uttnEOm+oUoRbGBeE8nTnXFsxUe8tB3WCaSL/3XW0TM6o3ZJQ6rloi+r59TiuwH1J1mhGqnbs6A6SorX6CWmfq/SD42ltfClpCTFocWOa5bsSB8+mRsCgrNMdQNSkSRdIlyUpXEdwzzkURg3djTcqV7UJRBoba5yrjqvOdtqYSL7onV0C5876eb8fgBt3XxoFxu8U5y+CFTafU5axGUZQMD9PCh+NCLIU4bgm7vTqk9SMFbWFcojq8iCk4kRp4dgyv37LbbzApspkeGKcHJCdKyOSg+gjODTjbU1JGDifK8Vznv0eo7B4xqy2uc+BcwXkVUrSurGyzEBUsmFIkJC08nOdECKUGthrIijEYp9oUIRVOcyLEyx5b0ETpueIb5xyvXr9WgdvbPX2vFPu2Hljj6FyPEUtGxcgL4Lwnkik5Iq5j7FVM1A09frvBOseruxe8evOaoeu087Yy8U6xsCxH3RfNRLAnMvDhPPHD6USm8GbfkWKnCXqK7I2yIZZiCcWQgSlEphhVFLzueaW23xpbhXBNIav1G3OCc4nkbDidF05WdB+MCWIDdWItvkWW85mw6BowL0tlAOoczEWLdFLAW4er2iUlqbnHPJ1prBBlK1RgqaSVbficc7GUwhSDxpm5MgBjoEszJEuMEynMpEUdDHsMzgi3nSXcjMxjx5Df0pXA6XTih+9/4ObuhvPpzPF45uH+kVgLZqECLGkJxMpIz0mFntf95CqcEGnwbobGOChaNFtjhdpqLZJ1TERBeWNbVX/tE12BogKU2HSYqPo1uqb0my2+H/F9z82bN2xv7+j7jjd3e257ixfYphk/L5Uhqy04OQUOpyPv7+9XcKsUOE8zh+oAi0i9z6Sd37PMxZIz59OJksCZ95yPZxVDrxpb1gjeNI1R1oRejMU4X9fNke39o7oNWmXaiTGUGMlx0WDUCFh9kSIOZzqcrXO9Fi+kd5gOxBZGVxidJqw294xuTwgJ11mGbceSCrPAXE1sbjeOXjJe9O+23lZgWUELRIjFkopqEKUg5GjI2RHmTFwcMSw8fJg5Pk4sc2Y+HzifP5LiTAwzKTVlQosRD+bC6I5RmBdbGfmZc1kwc0vEW9GwgKuX4Znnog5mwojDe4txFjcJJc/k5URaEmEOhJApnaPrDZvBs+12vNl6yIllCZymWduBubRXWmvwVgEFaw3O21qMUsmJBqg1tqxiW3WsWzyIgFjAUYoQQyEFjTle3w68vunxVug9DJ7a8q91FGsE73XPqxDhxVmzZNQgBFKusblkfCd0yVHQAkOjvDRre4qssbxQGYBG7TnmZWI6n0hhIhwfScsJEyNH50jTmYIhZs2+NSd+nrnYdZ5f/eIL5iXwcDixLIGb3UhnKwuOH9V3qFcB6u+MKNCyFrgaACtV13wFq/SvaohOdoLbeMa7Hclb7j7c8fblS47DiYPJDPlMjhGbCi4pmL8bRrZ9hxHQcqCur6d55v33j1hj4HxmOTwqADSd2fSezlkIM+ePH1icZZ4mbH/PcZr54Ztv+f77H1SvuBRsgeU08fdT5PTte90XpxNLmJX9HQIhJc4h8dvjiQ/zQlcKtykylowxiTFueV0Mo+8wb274ynZ8fT/xMH8gMAFw/j3j8se4ev3Pfsev/od/6G8/PVJKPHxU6uejlyp2Zek6TcCsQGcKlsLQOW42Hd4ZUoos88R07kghkELAiCHEyDxr//e7d+/5zdffcj5PfPj4wLffvyOEyHa74baKG1qzo9ttAKV5prAQw4IxKgJsvSKScRUThAsIUzfMUqGV67v1R6jlBb2VT25reQL+XG7Wy/fXP7uAOJ9ODrn6f3n6w9+F9/2bUsp/+BM//4eNY8mQZkQc1gxYcTjX0/c7rPWkEFlOMymmWh3Rj9UNO8bdHdv9C/pxh1h1L8lSA85SiKVUd4dMDpfrFEKsWh4K/CxJtTiWoFbyuRRljNnGVLDKNBJ1IhDr1WWmWEhCiYU4J+ZpIcWF7CPZR2ptE0HbUYqWQTXpTYmcq41uXXSlVu0aYv90fGQdvKdtgNcVUtUaUfCj9q1aoyKZtlGz/wxjWD+fGA80mnnRhKL+3hiD65T2nJ3azOacK9xRN8OsNpgA3nh6P2Ckak9UDYvNbsv+9ra6DGy5ubnBObu6ZYgYnO3wTrUq9rtb9jd3eOfZ72+5vblDjCGEoL2rpWCs6hAbI/SDZxiqSLUoKKcATKvWtERJqw/77cDg+5UyaozQdx0v72758ovCx0Pg6/t73P2JUrRCrzTUpO1AUSNFQxOfvbCB9JbT900RToeAnAuYgnERWcsKzzOOISW+e/+A94FxdDiXWBCK7egOBxXwSzXJypb9zQu6fovrPF11A9ruttze3uC9JyyWyaL0cNcxdL2OuVwE+Zr4tk7u2kYkQtf1Cp7XNp7mhHE4Hnk8HKqgoAIViFRmjzIXnO9wXhPlKWSWWOeIsXV+VUaP0dmTi7IARATnHdZqn3gOUcXtoDozFIwY+q7Hu6pDUDsdYowqPD/PzJO6CeXWB19Ex7sISKrzt1Z38/OOISjw0/kNYlv1Ue8rFYZVaM25jq7T1jMQck6rAKgyuix+6FVgddjidi8wznN7d8Ort6/o+o7b0fNq1+GtkEMhL1qh/PW7B/71dx84h8jZ9px8TxJDco4snpKNUv6nAMbi+h7fDzhj2N3uuR0MnRRepiMv0glS4vF45nCcoEBnB5zpyEuk/PZ7UnwHpSj7DKsPo6Lg1om6ZnQF7wvOF5wrCkBkZe7ElHg4n5mWhZhgWmBJpa6lCcgrQ0GMIabCcc4s6QIg5KKsleeKb5z3vHn7Gfv9ji++/IztdoOtrSPKXlXgx4rh4XDg2x9+UBcrCgFtTx6Hjt12xHdetbr2O5z3vHr5kjeffUbf95zOC4+HMzEmjsuJdw9HdfUowrEYYi58mGfenRUwOZ17iD0bbxlL4oVT8cilWOaiOnf3pxMP5zOlwDioiH7GgHFIEdW8swr8lFKYo4Ii0QpHJxwbyBojJuv+nWJcGT/z+USYz9oyNs+EoGtSqvOpoPtc55QxKAVKSkQC0/mobCGqD13dTzMXUWOecS7mUjiFWoXNGSmZEgNDmBEnhDAQ5zPOGi0m+A7E4AdL7zakDK93HZ+9umWJkW++f8fNZ285ns68f/eBr3/zLfM0s8S0tsqH84nl8VEd+5aZMqWLXlnd/6/jAEHb0BT3qWtTK/GbFhmmqmcidL3Hd5v6HF0XC1SgR8cgLQtp0Svb2Liu8+xf3bJ78YpuHHnzxVfcvnxNZ4SXFnYWZfeFGbOoXbuVhJFMyQsPx0e+//BBXXTP8xrHLUGBL3WAbG2d5dnmYs6Z0+lIWAJxyRpPIbha8LVS8FIqr6JxrNECUQV+XDfQbbZY6/C+Y+xrWzwZV1vyG/PJWIPvN/QbBe5H5zBuAGPJzpMdYDIbb9l2ut7v+5F825NS4eZuw6s3N4SUuZ8DD3OgUBi80JuIE2HjPftB2XoqUt3peFqPVKcyZRcrCFSiI6eRZZr41j/y3ginU+b9D4+cjt8rYzpM5NqeL1is0XO39qoLolhSFCKZPM+UooyNrvNa4LM1FLggP882FzVITlixdL3T630A4pm0PBKnRDgHlpAp24FhMGx2np0feTl2dNYSlsw8p+omKKSivHAVVy4rgLCyREx1xKvAz+rkaUAqg5hmPFAZYYi5pIZZ/3Y/WHaDxRrordC5+j6NxyzgHMp6pmCLUxfMKyqWcgEsqQjFqHN1n8MaR+Ws41ZKE+KG1FjPVPasEXKZmeYTh+M9JUzk4z1lPlHmMyZHlm4gZm0bjBldg55pLg59x1/95c84nia+/+Ej59PE0HsGZ7GU2ur0038raA6orPxLcntlcrqy6JScrb/IoqBPzmA3PbuXN8jY8+rhwOfvHzifTjyYwJgeyXGmi5k+JrwIn7+44YuXLzFieAwzj8vEtCz8/359z/df/5ZSCuePH7nf7eit48vdwNvNQGeFskycPiyICNl2FOM4zjPf/Oa3fP3tD3o9rKezDpcLc3jHtzETUuTj8cBxnsgU5gKhFBbgQ84cc2Ej8KUt3AqMNrINWz4rhtgb3n52S9y94F/9cOA3D4lj0qvz7e8Zlz+7uPP1oWOUa28+kCFIJCe9WI5Cqki8KR15aEEw62aUclKhPBEVEA6L9vBPE8fDgdN54vHxkYeHh9VBbLdVC1NKE/ZqdCitY1tjcK5eCsnkWrXSxNysE/HC6JCnJ/U7AJcnOfvV8+QJknMF/DwBkC4ln2vq1qcA0E/+Rn7yCc931N7aC6VOqnuPpSS1+xS5tN1cL5ZimmBnrq4FqVreZmKMxBguVGP0PUIMqwtIe5QCMUWtHoJSjFG65qWmpWr8BqkOG6n2rDfK+Cctg7TPfDXetHuPynlVNKe039fEt4ngXigz7f1LfalPBqJUUGm9Jy/Hes348Xg/2yHUuXXZZFb8XWT9val9x9lUsKNtKOvGYqG0xLTHGqeC2uOItY5x3LLZbPHes93u2G53KtzrNKBS4eAOX+2/N5stm3GDc55hGOn7QQG2ou1Yym6Q6nwg1Smj15+JwbbqYXXUAkiVbquWw55VvL3NRyP4TgXnp6iUbWeE3NxJ1rpE2+iptNMq830VPbSxKwVyY4iYjClJ+8Wf8SilMIdIJmJdoGAxYWGep+okcbm3cwFfkxTX+To+lmEYGLoO5x2GRIld7ftX/aZSgR9rtcLd3Jda26JUENT3HX1tO6FWynLJxJwI6YqhUlu0vO8U+DHq1Odcp3PWJlhqy5Ux+h5IBfraOSVKTe6dtwqSlkJykVKBn8bHNsZW4KeKHNb2rRRinb62Jkejuj1W6+IcQ217q64eklYdjuc+9Lra6mplq9vV0/bCBlTmYtZgVD+/9s0bq5ovzjlc39ONA8Z39JuNPvqOcevZ3vR01ijbpwI/mzniH05EYwnGqx1oreoaTTOVIVsauKJjj9V2o270dKYwFNhkS8lRhYGrCKg1HVY6xERs3+G9V52L2s5rrNUkwlVnHG9xXp1xrKuaPJdeiRVIzyVrixJt2S1P1t9ctK0ilULMSkhR4Kdp7zzfGBoxDMOo7lrjhs12i7MO7/vqDNQYP4ZYMv7Bs8Sg2jUlrcmnsVKvh+6nztRrY21tc1CWTirq0DeHyBITUxGmrC1Z+jNN6JYYCcGwkAlR2W1SiyyxFVKC0soBvOueXJcG9tJ281Jbu3MmiuokxZhUfSklbU8pTddOGXg51Tatmqy0ebRqadXrhzR9xUu8l3NUxgGsBu6qBdh8sJ730G2+FmSKxi+5vV9p51EFjyVXJ5YmvG200lw8catM5eM0c3N7g/GeZYlsdge1xQ4RrMaukjNlWWrrRSbaoKCTtOu/pjnrGtzWAO0Jaslpa6WurlN1D9f2emWgQNZ2l4ICBa0lrBa5oLW0Sy0Q9PTjQD8Oulf0PZ1AJ5GuCZMW3d+koCV4KSv4F2Ighsg8LyxL0HGsb2eM1Lj4eUeyjaHGlkHzjRqsrm8puX5/aUvHZC0YiCEVIYvD2Kjge6ktHxSSwqLVBQ9MshirrTNqoOaq8ySQRV0/i1AslNLa5OtcF+g6YRwsLglzycxZ4xxntYWsEYvaw4msbV/iRHWdJOt4Vn2e0mJxHJ23eCc4qwWUavm1MneuH7K2ql7+rfGXVAZ8XuOxK4ziWdfS60NqHtTEfDX8bnMwViF4bV2iJEQK1ol2dziHdwVndY/MxZBys2a5ankU1hyrAT9Q28WrCLhOqwbGKhuy/gEX4Up9GIGxM/SdisR3Fry75JwtDzW1YHzd6nWJ+jVJlNZfILkWt3Vdyq3A0UQnL1DIJU3l8rFyXU/Leu30moV5Vg3FBOelEJIKuj/XYYwwDj05ZYbOk2PCO6djSfvo8iRPLZ+u7NdtXTXcXtPj65OUmmfVfKxQqpC7xhKdt4zeUbwjdI7QWbJx9CYxmIg3ws3QcTcOCpidE0u25GSQnAnVXGT2M5Pz4BJp061MZW1lroU5k0liOU8L0zSzLAuC0HUGxFJy1vVwUQ3Mw+nM4zyRgAX1+AvAEWXuGNF/J6Pj07qjrAHrHWno2PaezhmcfXJlfvL4twr8dM7yxesXWAOdV7rbPE0cHu5V4K9oG49Q8Nxg7naqw2OrqCqFFAPnZdGkZ144ndRN6t333/PN199wPJ34cP/I9z+8J8bM2PcMfc9mM9J3Xis4JdNJYdcZpLewH7GCChaHxLSk1e49xLnSKAMpanB0uawXUKZApelemmBXaloDelbAp7Tdp75O+YnH9fPbu33yg/XnV/NGLkvH5UWe8ygIUSnFBKCoU1M6q2tPiuS8kEtaly1EiHHidHyozgFF7e+GnhiCsnaytu0pgydz6eNF2/XmeZ1Yy7xQgHk+8Hj8uAbGtlX1uQT1LYmKKfH9N7/l8f575ulMirO2CBmLMcpGqFWnixhxkXX8Spba5aGJZypV66RtSKCJm2jQ1ARaSxWrzDF9Mi7tWlb4sQp/5gwxhfX6aRz8/PCPGMMwbi46CtWtImFISRN3cRXMMCoAWIoyKJwow6ZzA4Pf44xjN97wYv+Kzqlyv6vubF3fBEhVvyUXD8mQYmGadD6VPFPKARHhZr9wniLedxQM47hBEL7/7nu+/u03hBhJVSTYOcuXX33Bl19+poyizchmHBCU8rpOo9KShcISm3ua4Dtbe6gNr15siNZw8zDz3Q8Tx8eJMFuO0TDNIBis32CMVzCgzECgpEJcMikqhVPZJ4ZUYEka/Iot2CfC089zxJh59+4B6yb6Pmg7UD+wuT9UUEXnhBHB9z0vX73EOse42XBze7P2Po9bBYFSDMSgIqxkFVVuYy6NSyWN/kxl+2h7rGmJab33qeyceVEgatViQ+/mpiukGkJKXS8F5iVqBQ8FMzT4VDFtUzc0ZfxoL71twVmBxqC7xtJFlHpvjNXn1KeklJjOEyEE5nni4/vPOR+PxBiYzydiWEgxMJ+UcRCXhfPxUUVoAfg3zzaOUlunnPf0mxHrtf+8q4Kozi36sxyV2eP7WuErlfED+5s9L9+8out77LjB728xzmOcoTjDUjLRGLVld45x6+ldR8mFDyWzOTzCJBjxeHFkDAuwlEIWKA7oDVhBuoK4hLOFtwO83Vl6K7zxhlduoOSM3/bYbaeV1gXSogLgL17d8sJ73R9zgZyxznJzs2GzHXHOsN2PjJteLcj3O8ZNbRXtLa4DmwWcY8yFlIUlGmKqwV6qAEOBOWY1D6gJrbYKqm7XJ9WXf/TRDz1/+U//KX3fsdtv6DrPOG64vb3TMRGrjkIYjLf88PEjS9UqUwZExlYR5ZwSxIidZqJLPB5PvHu4x3cdh+PM/cOJEBL3xxP3xxMhJoL1ROPJIgx9x8uhQwQGF7RFPsC9KXyfAt5YonRE8aQCHx8e+Xg4aNKXYetUC8+J0GGJZCShukE5M0dt44oCDxLx0WApdCXha5v0pWqtoqrWavW5K/5i9f4EYWpJUNXzQPfOsMwEqfvE1Qr6id/qsx0KpofaDlRBbiM1nsuUFAnLgjUTxjlcKWsxy9a250FAnJCsQ2732Pqa71/c8frFC6Y5cJwWHk6LMrceHzl8+EgMgfPjgePDAylGjGgxQ8+9yQ6gLcpW3TRjZf4VRBl0FeDWHvuCMYZhvKUfdjUhato/ZS3wFIpqfmQFzY3VxNR7x93Ll+z3N3jnuOk827TgKPQSsaSqe5HqfFJGYiqa1MxVpyLGpBpbMdf300RVgbRUY/LnG03dL+zKUqZEnHP0fYezFi/CYGXVqMq1AJcxRFoxx1TwUp0UQ0hq7lBUx0hQ8VzrK2DvPNb3lcXUIU6LLOKtCuUbYTt07Me+jqutMRVMUViCtus4MWw6FRDwVvBWizDaCVH1pahtMqKlONOYXJJrsAo140WyZRw6jYtK5u7mhlglM0xR4NJay9DvavFNrcSNMXjvmJcjpY7rEoSUA85Zur7DewclkvKs7Yl/psOgLqpO0DgqLUiYiKcjxw8fOJxmRjtz/3pDyUfMbsdtX7CmxxrLbuNVmqFIhezq9am5WGP8CApUNHkFtRTXwq5UV7B2gzVCwoXxLRccSerYGZUBcFojqdB5+9tWZL7IR6zamldAr+oWaoFtHATrGktfWT/WCH2nrOdrsKeJ5zctvM535HEkWwizIydDCAsfPnxkmQPTHPlwf2aaI6fj6dnGTgBvhKFz3O5Ghs7hjKH3vra7uXUX/p0r+hMttxWi06/rOV9y5xJiZZxm7PnMsJyRZeZlnvnKLcxdJN54FnsLObIxmY0knDHcbnfcbXdaIPruzLuPE3GaWOaJuXaXzDEyR21/no1j9j2Rwvn0iJm09XopEIowx8i7hwPzHOic46bvebPfQ0wsRohGmdcna/iAwpEBIYoWOub6fTZgvIK33mu3hHeq32eNFoN6Cp1kPH8+cec/6fDO8dXbl3gLQ69V+4/v3zN/+Jbp9EBKqaJqhdELRt7SdW4VSBMKMQTmaVoD98eHI0sIfP/tt/z2N7/hcDjy8fHAD+/vybnw+tVLNuPAfrdTul1FijuT2feCS0rR3Y0jKReOS+I4JWLOTNOZaT6RUmaZzywzteLZ8BW5umkhidpsruKEP9rMakD05GZtR376vDVrlSeI6PWfNufs9iqNb/DkeIIK/eMPacAPgjpLlErNhpxdFeEOFby5MAJCPHM83CNkwnxmPp9wzqkFfAV7NAmbKxhRHTCeQsFaaaw6QB+9w33vESO171kTz0sLVf28RZPFw+MDh8NDZYlN+M5gsqPksDoYkQvUvmd1cWpJZam6iGWtYgpabMt1sba2CqSu7Sm18rTEamnP03vHsDaar1yjkilJkKTj3vRwnvswYhnGrTKtgqrJExMhKYMHK4g3iC0qC+AslIw1Dm8d1li2454X+7f0fuDlzRu+evNLhm5cA/QCXOEvq+12jNq+1xD0ZdZxB+H2duY8BfquV6eGFy8pBb7+5lv+y//yv2Y6nzmfT5ymE33X8S/+u/8+3njGcYRXjr7fYsTUJI8VCJD67RKSBnHGqGOaE4wX3rzasnux4cPHM99988jp45HTyfHtQQhFr1fnNzgvQMKUM4KKsU35rNR7aqCAoSRIIbPEjLGFIk1K9fmOECPf/fBR2R7uoDovzjP0m9pK1zEM+v3bzz7jF69/xf72hpubPW/evKEf+sosaMnN6gWlbTeVDaNZR3tXBSj1W1NpOFUoPbeY88IG1HFI69+2h7VP28eaW4iCvwp6qgiuvTAKnVmZHu01W1UcQFYHvBpAcV2Z1OQtVVvvnDNhicSUWOaFh48fOZ/PxBA4HR5Z5om4LBwf71mmiWk68eHd90yn5wuK1isqBu8Gun5gv7+hG3qoQaFIUc0kbynZ0gS8RZTinYoK1b9884qvfvkzxs2IHQbcbgvWcjqfuD8cCDmRjIGuR3rPuN3y4vYGEeGHuLB9/47SCX1xpOIpRYhR2ZhFBOvBjgLGkL2yq5yzfD7C5ztL7y1vtyNvdo6cM+6+Rx46Ysgc72dOjws2GW67F+xevYSSibO2WjtnefFix83NiPOW3e2GzU7ZY8512g4i1OqmDvpgnDpRFSEmR2qaSEshx8ISMvfHhWlOGCkVKKtJ54XX/2xjOAwDf/Xv/Xc0mS0qnnRze8uXX3zFdqtrkq3V8yzw66+/5jxPzAGWsLDURGxoQHwIiMw4G8EdyF4B9ePpAvwczgsfj5O6k/WDumtZwzAM7DeD5n7nDyznE6kkPoYZfzxgjaHYgeIGUil8+PjAh3vVL9gYTxl3Vfjd01uFM0yCvCjwk0PUNmspfEwJzgknMJLoK5PC1jZa1a9QE4/GsMu5FlauRHcvJgrqCKbtqc36vYX6l/F6fhi9vm4Faby1+KGC2aYyY4vqTcZ5YkG00JS1Eo/oOmpFcGLpOwcYdt2eN7d7BdjOC9/97MwcEx+PMz88Tiwhcf/hnnc/vGeZFw4fPnL//Q+kEGt7kp5zKoVUEyC13lbDkhATITbApmqESd2/jTI6xs0tw+YWgaqBpVVp8bbqWpYrN5tLQcRby91mYDf02JLplgUfFwwZT8ARL4VMUyrLJipIsCzMy8w0K6tpCZEYU41p1PVOWbHxqgD6PEfbO9TNLCvw61Xjr+86emvYeIurwFCqBY4lF6aokgKpKGMrk1A3Sj1NKRmTmwPQJVltLLw6EPoQwfYW21uMFfZjz812wBpDV1nPIgZxA7ih3kNbNt1G9wRjcUZZQb3JOKp5SmluQEYJRoLG4ZLXJU2KQLGY4tgMHfNGi9sv7u6UTYYy1Gydg0Z8bWvXvVlEmCbPNJ8oqHsZkgkRvLfK/OodMaDtmHF61jF8Mp6i7XnOoGBjnGE5E48fefzh19w/HujsxIfXG1J6xPGS6abDucy2G7gZ+gq6c7nXjDTKTWUT6a1sRTWgBNWVca6ZDej1rS9ydacJTccNuCo2XullNqhCUO1B0Tb4klQ3E9D+pOsWLWkMy8oQs7DxnqG+cytCU8Csq2HRuVzzzKg3MjkXfNdhZEuyYM6emAyn48Rv//7XvH/3gcNx4uuv3/N4OHM8HJ5x7ARvBekccrOtGoXrlVvvtXK5WO0M17j9Oh9e+0jk+qc1LKjxfo6BdDoreH4+Ms5n3DLzukwYv5BK1LbB2zuMFHa9rW2UgrNqwrCEyPuP78nTmXA8s5wnpnkmF+iHiE+JkiyTsUzdAClxPC6cfvhISplTSkzVtXKaZ+YQcCK8GAd+8eJWySokHkqkmMLhILynriMiJFEx8YCQBGLNx7xTh8QmlYDzFGMoAoMUOkl4+XcM+BGBvnO4KnhlrdqlKSKqSXeqk6y1X6n6+oX+m2urV4yREAIhBOKPvkYV+qw3k7UW7xzWZkydvM4IvbNkb2trgtq5Z0kkVDsh50RMAZFEilYDpqJq65/uVaUUslFKmCDk1gr1pJXnGia6+n9pt/dVqbpBx7TX+FRFhkv5/OqVP30nfe3nrKYInXOIqNgaUiseFRknC8k2rs/F9UlQwCRFbc+bp4loLSnpOCrj58L+aa1fGixenBlS/R2gQnv12lib1ipY0+PQmKT26edMXCZyCpSsdR1nlclQsORSgzup50SprUP13hMNbkouNPeFSxp7WXSeXOuKelQzufX6tQ1I5LLxXFO6L19/PK7PN5Cs79lo46ZWNyW3z1a/mlZ5lFXo0BpL3/eM40jvR8bNhnHcMPabCs5dBLu1nUGvXUoKiqaoAMyF6aX23G1OG6MVt6YBkWPS3y0KEk3nqQr0LsSQiL65/q3TaZ1P2nBXAcpWECutvU+f4ZzQo5WJsbdsekOJls5ZZRwWcKJVcMFUEXANsKx1ZFtAHNZZEEdu8Nf1zvTcRwVC9U6MiOj5W7PUOSJ0XaIUrX72gzIfx82GcbNhGNQtza43p76oCOrO5dwK/DTQkxaQQAV+tHrf3P1KKay6g60C0yzEMav4aKOSQ7330bXV2YSzCuo451QAugE/1mh1+gmYVD+KiAI/5nIyjZKucXqpTJ/WblIQsdikldxlVO236BZKSlhjCdaRYqjtJ4W+H7V9789waFulasK4WtWDKlRtL5R7U0FuMSq6bNAE03cKHHXDiB16XN+DNcwxXJJraaCdtgdYX9lgncN3ji46SnHkomKVlwBEavuVukMlZ0hW27A2Tth4Q+eFodOEt5TC0HvGoSPYRDhHglMb5c5Zxs5CzgQD0am7zTh2jGOH85Zh9PSDX8U1pemWNKq/oOVfo8KWxlbL96wtTFm7HXDWYG3G5to1KFWM/PoefsbxG4ahVsar/kJlxxmr1f12LzvvLrFNTmDUYS1XADWVshY4SinYEFjCgqmgxBI1iQ5JgcuYMiZnTGl2tgpANwfFVNuTQghMRWMrnKFkQy6FsCgAl41dW6JFDOSic4rKgm2BdV0LDKrJF1QCU5My0irGaatwqRUFMLlef9fr9pTHfCUdr19LZQ3VOObSMPHnAX6oRbtSxUTXn62OOJeHaW3jImCaVoW2RLfAQNkgyvdcirDL4GMiYpmyYQ6JuETO5xnnPGkOzOOZ5IIKESNIgVgysQI/rdoLgsSIfAL8tPcVq8CPH0a6vgdEmT1JhVmMd4irIi1GK9hihK4aJviqf9fV+9SLVH0bNWCRlV1yUcppLVY5pyfXqu21T2edNtdfdE2e6bgqBqgzWx0OI7WgUVtKjVlbwEoplclz0fJsHyvnZu4BUs9HKoM419giZ523pUAxdQM0gi0GVxT46SQxmYS1huwcueoJmU7nLmIpxQGOIoZcvOYwdR1OtJY1vSeltkJjGkOlsa/02kqNLVv+k73X7odxVOCnOhtVqIzmxdti7VIywzAQ4oCxhpAmbSu3rjqL6RpTuLRvPudRR4YK17PKMJS8grApzMRlIs7nWpzvWZZJuzW8J1mHtrXlNW8TQRnJVv9hhRXsMSLVGQmcVYZFM1pZmc5X/4fK1LkCfgr1nlnTgZqD1fducX2Wy69Yz/Jy9ivDuv675QllnUiXNfnSLXmdf1w+lhFDMZZiLmB2AZYlcJ6mKj5/5PB4fNZWr3b2jT3V4sm1q6Lu7c3RUCqo87sXdz2ptp6sOXOpbhUUzQvDom3/IWBiwKZIVxKDKSRT8Ai+av2O3jF0rroU12JFyaozV80/Ut2LlaR8caFORVumKYU5Zc5BGZinGDlXJ/LYHMmb/ADtFJVNrTYiELl836C8XAEuBT8VlLTm0qJZ1ni3XZ4nBiS/8/i3CvyotduINZneJaxkbjY9X7x5wYuttnaAOrm8fv2aX/z8Z+z2O4a+I4SFwyExnydO1b1rmRfOJxU6TDFgrQaxw9Cz227IwH6/4+Zmz83tDicJL4GSIp+/uiF9+VrdwrJlyZZU4GEqPMwqIvnuwwfevf9AiFoBmirl11qDqxOnJaqtfcRU9LKU2lpQ2iZSN8aibWQ6Z68BoKakcAX+lFIzqHqblAuYtApEX0+QxiaSp0vTcx6bfuB/8Jf/Xt3YmnuWoYgmIEtInKZFbXWL6hAUYNxsIVcnnZQIS1AdkBXIqXTb/PRrKVS9l/5KVLallFWzQ6qNbk1CSRFS1GBtWUjzBDnRxRkpUXu0O8+43dUJ2VPyqBMmRyih5hYG15LHmCnVsj6mWFv6WnVSgY0YlAIvUmqLGSCWfhjXMWmLd91laiLTrK0vQIxIq0bFteL5nEcpmRBPGhw4DTAxgi9ObX+jUMjkbPHWMvSdVoTHLXc3L+h8x2685cX+LZ3v2XR7boZbnPEcjieOh0dCVEHmaaksrsqWKmgCnpIys1JSdpeIkONCCgvJCDkt5KQg0M1+y8+/+oJ5nnl4eODh8QHnLNtxVHZdSuuDJlB5NZeE6zkjZFFAKqRc7x9LZ2DjLV+92pJ/8YLDQXDxDb1oBcSLxWIpJZLjSd0lUma7WYgxkrMnpg05d5ymCO/OyDlgLLi+YJ55tTXWst3fAtCq4da4VdR22Ay8evOKcdzw5c++5Be//DkvXr5kGAZ2VTh27fnmKigRnXN9162aGy24afimxjM1wBVZA+PSnlUDEx2HvK6Fl2TqafKt2gdFk+OrjauxiErOxHBJLprDXm7rq16EK9DvkkvkdNE6SnUDzqWQorbmppiIUcUxwWHdgC+mtvUJfT/TDSNiHPP0+7wS/rRDxOC7nm4YGbd7hnFc3a2a68jx/h3LAsY5+nGjlG8zYOwWEce43YPZknOHySpmb4qhx7FxA0kSrnjCJEiCoYclaPFlHLZ89fYzpiUgaOJBC5LrV7/p6bYKFBajehXGCC9uBl7cDDhr2G9U0LJQ6OzIi40hhsxD7zlsJiQLm2IZqC5sIZCjtg68uttwux81We0c0ilDJKZCKgFrDMPg6L1Z1061QZHLHpS17TKnwhKEvrNMM5yXjHGJ46RV0PO8EKKa2D/fGKqDYUyR0+nMPE/EmBCxDMPIZhy5vbmh7zzOWV6/fk0/DHx/PPD43hCXheI8p5ixOWJKwJUzgjAsgQ1gva9ipSqSOy8LyzKTctEkLieMAZcCLij1P8wLy9RsewOnrFEWtR0lF5jOJ6aTChYfDw883m9x3iPbG4xzCiitFQ4F3LJ1xJI4LxHJZyRH7s+PyHJEUKtza011shGcBU0qK8vBNNaf7nXN4a/ltZofFJoWh4JPTxOsPw/yA1SXtZQEsJgA08mSw4IRS9otZOtIpbZuVHDPeBUsLmsnoWrgOaOg69ZmcgfRGjbi2XohpsL9aLnddtq+9/KG9y9uiSGSl4UyqyNtQAhVU8571cQTkVpUqa2x9Vq2mKIJ42sbqbaHxqBOhohqQ1jnECk4UYDOCHQCXrTFZggTLp6wpeBKwlcQz9SYq62rFC3OzJO68Z5PZ8ISqq5iuYprZGWZtGF87kNE6LwnpwbG6D3UGBzOOa2aW0uKibK6JCaWZVEXWTEkmnOTjqOOdUGKAvOqb3Qp8JRy0Z0qa9WuOmPm6oS3nNcEs4nWFusoRjWYioxkMyKoyYczmpAOXhicskG81+KAsYZuGPHVKbUbrLLYjWHoOjrvEQq3ux1j15Fi5OXdHcs06X1hFPzSD2rXzbPt08ty5uP9a06nA6fpwLff/T2Px486F40WmnSfSMpy/DMdTUdKSta4PszkZSJNJ8LDR8LHe47e8u43e6aHe9LhgE+F7WbH3W5HefGSoe/wzjF0Xu9DazBFWVli1KlW6nho4RNUO6uKQRtZ9TxbUUk/21WWVQf/ScGPCyjakMRcvcVkBRorobpcLWuNAVnnslxli09IB4Iy8oHLIl1/QVsX1GnVWiFJpmz2KtF3iizFcJwjhznweJ54PE21Nfp5Dy3etet6AVUbaFzqZ5bLH9RvGnrVrmmBeq/luBCXWQ030oKEGVIiHI/MD4867w5HusdHXIgQHrE+kCRxmmcepxMlZ06z5eFotDC8BFgC0xL4u7/7DX//2284zDOPhyMUBQ9LisTlzELi8XDkXddTcuLxtHAMpZpJRM5hUVAuJyRnDIFv333ABTWkejgdOc0TpxCZq6vmpfNDT9UKanZVhBtreOUtt33HZrOl29+QuoFJLLGyKs/TzPn8h2PUf6vAjzGG7XbAEvEsqvWy7enfviCFHcap+4BYx92LF3zx858xbraEZWI6HZnOkel04vH+sSJxStNPORPDomrz3jEOPanSum/2O25v99ze3uDKgmOGHJFXt4zpreo34AnSkYrwcYIPE8wh0fcDKcGyLHhjqmVhwTsVTCulcKzU/5zzCvzocZmdq6hwURGtkmpiVK4WBZWLq39RLn/ewJw14yo0ZRgqyPRk9zSX9/1zbK3bYeQ//Kt/X8+rvksuEKuV4BQih9NMSJk5Jk5zJOZCMY5cEssyUyplbv2cV4CHqyyDixisVv43mxHnXLVb1AU4pqIJG7pktMo8YaEEKDmxTIk8Hykp4VPAZ8VVR++52+6hZEoZq9p4UeS4qCOZa0yXolbRqerDhBzVTjZnlhgISe/FYz4yhaiLnDQKqdJinffreTbg59K6wFoG0CBYe6xjjJynMzGGZx1DgFISIR6UwdNrLzTG4IvFJE+sIGfOmXEYeHFzS+c7Xty94MvPvmIcN2yHPbfb13jXQzJIdJCF40npoufzmdN05nA8rIj5BYxpZM+LMLgxhhwXcpzJVhf2kgIijtubLb/4+ZcsIfDh/Qc+fhwREbabDWQVZM/VPljB47KKWJrrLKFujhllj0mqDBdXcGLYdZafvdmx9YaHB0ue3uDKCYpgRF2+coos84EUNSjP1YlO2RIbSvE8HCam8IFUzogF14PY552Lxlp2+1tlUFUBVWMM1ilDZNyMvHn7mpubW776+Vf88i9+xavXr1SzqbIPYmXg6d9eWgu7rmMcxjWZ0Cp2FXjMDWi5tHpdliG5IC4NpKlzWfUStEaaU1HRbVhfEwpiCtbri2nbQH1+VsZYA4GaAHzKjQEEmcosq8/PDRyqf7sCtVd/21o41fVDXcSsLYh4rEs468k5MoZA32+IYXnWMQRd/3zX0w8jm+2N2q97w9B7rBNKjvzwrUdOgvWefrPFdT3W7XD9K4zp6ccOzEgqFlcsNlu1MBbP1o1kybjiWSYhhcIwwBzBY9iMO7767HNSyjQHKhHtJe+8UqD73tIPtt4fCSOqcbYZHWOlSftOcF5D1JejJeaBGDMPY8fjVhNPg8OI03skRV2XneX13cjtrqcA51yYKyAcp4UYIsYahtGx3yi4ryygUgEETXZKLsRQKKmwRGEzWKbFcJoiYgzjOTPNGVKAlHhOzoher47zdOZ4OnE4PHKeZqY50PmOu7tbnDPAFucdr9++Zn97S/n4gW9TYj6dyBlOqUAIlBDI0ww50y8LWylY30FRJ8VSYA4LYVlIqWgyWBI2g08LLmgIOS8L5zmSo+rKlPOsoYN1iHN6DVKAtOCs5fB4z0M34LuOwXqGzebpFiVCtka1I7I6YIXpRAkz8/tvCY/vVuCnsY6GandrjAKczrraxudWfb6+7pGmMqLUObOt2zXSaMBPnbPPqQtzOTQGUP0sqtZeZqIQnTofxWVWl8C67rT11KIxLqZoi7SoNLoTADVK6DqNl257ddhLBR5uN7x6eUtIhQ+PZ75/o6184fDA8nhPTonZeGbbUWpbqHdDZXyw0olXNgOfAN91TSy5ME+esMwIguscvsooDGR6CqYU+hTxOUFOyDwhYcIIeG9q1Z7KvlPgJ8Vc2bwqv3A6HTmdTvXejDRB47WtqLb4akvK84t061z0JEkq0l8UrLLW4L3FO0vXdXhriK3dC72flmVmXiLFOIr1FDE15qysS0WdNa4ol89vaqam++CFCwSx6jsWzlPgnAMKLCqjoFCF2kuLSzpy6UEMznic1TnRe8PgTF1nO3x11Rq3O9WFs/aJNhr7PVa2WDHc3Oy11Uku7rGCAj+tsKNtcZpPxKbhFRcOx4/M84n7hw9s/sbxw7tviXFhmu8JYSJlRR5yef4YtX6wCvomNezIyubIy0w6HwkPH1k+fuBI5gfvOWy2zA+PlCUzbre8efEClwObcWAz9JTdRsWFs8UWvSbGWtSe7II6CxXoKTXuMcp2FahxegN+rvKs6xt5Xbu08LUW+0u63DOyoyuc+QABAABJREFUKj2sEWprEVtBnkrI0/e8vIG0H8ITvsATwxYMlIyIxfgOisMaocRbBfQfJpYsCvxMgcNp5vF4JqXnX1eVBSoqjVGuGHTSro96BWNaXnA5Pb1wUuP5QinVQGA5EY4P5Bgo8wTTEWIkPDyyfPhACQHmhW6aIGd8ntl0keQSv51mHs8HQszUZg5IhfR4JD8cmJaFv/n1N/zdb77hFCKPISgDVhrgpPfiw+MjRRQLeDzNnILqLh5nZVJJgQHwQIkL3/zwnuX+nkJhzolYElMqTCFeWD6lqUGBK1kB+AK31vLKe170PZudAj+L8WQxhJiZQ+Q8TRz/CI2mf8utXnKp6OZmjVvwzdrNeVynPf1968ftO+1JlpaIFlKKdXHKK/DRQAOfMzFDFxUYaUBCQ0pt5fl5Z+i9xeKw1ISuGMZimDAYm+i7Dt91lFJWF5pSCn3vV0p7syS9uFLFtQJdrsCaXPl5KyuIim9+sl6s16oBnXABPWGlxK3fr8cFGX1mk4QnhxHDbtzUxanW5IoKWeWibXU5C0tMGJvJosBPKoZQJW6b1ktB74m2VKmOcQVHahO4Fhiv2v6c0pARMLHowlFY0Xq9FEp3KwkNUo22iDTbUIo2SOT6HsrOSnXAMlLbSJypLlGlEG0iO20fdBX4SblggsFGQzSqWaPVtEs101oNMrquW8e+tVEp56+BP3UjMVfAj1WXj9CYTM98aADHChZk7P+fuT9plm3LsjShb1V7by1OcYtXmbtZuHsUKQF0ECEluvwDerRpZRsRGuRPoEs3G4hAJwUBfkFKCjShkZlCIE4UGeERHm5m771bnEqLXayKxpxrq95n5mHm+DGT3Gb3HT2VHtW9qjnHHHMMuhJIrqijj1XgZ8tuu6fvOva7G272t2w3W4Zuz2azJbiOmgzFWGoWYLRZtrd/bQ22Odt0XZo2ktf71fcdnfawek0WJGEIbDYD3nvm3cQSxQmw7zucd2t1+Tff5BcfLmutHbZX60lelyEEy6b3xCFIwLDZAgL8GBylJJwtpOQuwE+pVBylDFQCc4TQdfiQpEpo6xcH92tc1lq22y0lF2UcKfCjQd4wDGy2W7a7LZvthmHo6fte3qe9tM/mLC1XzS1NAkShkjrXXCUU4NE2x1qR1iEu4qPXDnmtqrNqdel9ant2zrp3VtT1R0Od0n5XmXXq5FZyA5wUANLHrXWrUi8thbU5PtX1zKgaeBW18q4afJRWrb5qVSsxis6KirnWkrWljqtK1CtexqjIvNCwrbY3O+/V2SqIxe6Vu5NVwWqrrbZUI2AahZyMJBvViLNLETq6UYH6aszKCC5VLe9DR3FfAj9d5+k6BX46R9+JNkcTFDUWBu/oNcFv7jMVbSUz0kCwBEfqvTKQHY2dVjNQ5CwOwRGCo9SKywWbK9W2Ims7By6B8nXM2/5VI1JkxSBU7iBBdC6WoTekbKAaugA5/2GGEljnZ87SXiW1CAGwUhJ2sHee2skeEUIgdB0lFUrMVCuU8pwzNReculcWY7A4HEGTiAv7TRJJcbgsSbAcQ10dMKsWZopqXZlaFfySpNWZ1kbQtHXa814o9ZcER/cxXVtJheBTvop/iiWnppdRqEWB/QrJ5bWVtwE/GEOhKqu3iitREXH8WrIm2pJ4t2rxH8bXqxXxoBR5x7lkfV+6z+akzFKDsUWNta7ZLwVTLRX52JJXS8Wbi8NURe7HUGFTLb5UpiWzGRLOJWwMMAdKtlTXiUWwEd0r73tthTTiJGWUabDGhqx7mylZ9IFKwXqLzZLAOgX6HeARV11LVWZFxpQkCyUnSciqap1cV+ZrC3F1LmjrfjuP1h/iKu7RS5sIv3jdr3UpL+NSaNPX0Zj3a8m1XpzmmsNsSknNfGXTEdaP033o0lrRzpA1va/6N9b/sp6FUsmQ+4qusVrUnbaKhlPlao1iqK5QXZECYhHA99JRUNazwlijcbFoweScWTrRtXHOKRteijct3pLipKxJoZXIx9Vlz8pY910HJjMsveoudlhbiclRipX1fQWEvOp1fe+uP9f3L0wPNaFImRwjaVlYpplpHAHD2Pecx1FWm6n0vafWgq/ir26taK4VIyiMbbucuZ4vrO2Ia97WJtlvvmj9luYm+qW2d1Za50b9yRPoodaK/C2fuy78mwsI1FbPugWa9RdZ28GoF4AKAWyrcdIS6gPWebCOqkzCXMTx8vWvyxswRsGyq9cLOqxX7/P6nFkF6Wul1uYcWaQ4ssyUFGGZBPzJibqM8i8mTFQmUC2YsmBKhJIVvFxYUoaCxEa5UMaJfJ60YLIwp8SS0m+yoHQ/lTM+abya1S1T7mNSdm1GgJZSRZNt0kJGJGtb93VBXJ+eS5hjkbgqWJHGCa1QrmB0hVUCZY1pf8f1xwV+rGHY9CxjFLv1+YQ3ht4roq4aDlUTmGEY2G63qvFTtTqdmZbEdJ5UvHQnga8LWN8TU2KKifMkQdB2u+Hl5YUUZ242nm4rVD+HweaCU+VzU2RT34Yb/O6GqJTw0xSZl4XNZiMOQwbub/fc3e4xBmKU/viUEofDgeNR2A3jODFNM6VkpmlimQsVizdetSquKjGaCF1aIb5kRqwfqyRdst7LBSyAywF6vUH8AS7vHW/u3+kmqNV1jIhrAnPK9LtIzIVYYCqGXGFOldNS1D5WKGk55zWxNwrSNYCkLSiAzf6W2/u3ombeeXFns4aUxH5wPRv09pB0sZdM2W8od3upXqWIyVEO3lzWg7e29juunohLYATNnrYoiJfld0phWRZSEg2Gh4dHDoeDLFYFMkII3N3estluaLTwJkBrbBO/vtbUubBfcsrMyyyiiMB//f/8F682jtZatsNA1/XsdntC12G4AXuPaIuoGCmG2/0t37z/ms2wYb+74d39e/rQQ3WYJgZdDVXFNYbtwN2buzUAXFTD6cJ4ugZ+mt6LUpSHnmHY4L3j/v6O+zf3Uu3fDty9uaGUwlfjW8ZxxBijTl4brHNsdht871ZG1WUFXRQham1rRlpWUhXx6pILtsoGGnrH9qbHdnv+QfoFd29uFFxU6m/JKhAu4s6jukOVYshZAqLty8gpBWx/IuXIaToQ0+uyRXbbHf+z//Q/JafEPM2knFXgWdop3r9/z5//+Z9zc3vL23fvuL27o++Hdc+RvaYlUlWBH3HR8i6sbRmwivasYpililX0skjb4zxHxkmd9+bEPMfVsnKZVcNriWJhWasG2BcQqDH8pCWwfT1rK+UFmAEuwvkNWFrbQy96EqUlw3qeCA2/rkHEF0mzBuKlWX4VtbtFnDyE2t76/V91CAEFG/te/w10fS8aFF4cG4Z+z/3d1wTb40JP6HdY50kFxvOBUqVVZjx6AXE6x3njBcRD0F3prZfkwBuLjZCnhE3gq2XXbQDVU2uArL+IW7pWidN10MiKFEtJIkTYbt0a8BpxJRm6Dru/6C1l1cg06prorMF5EZ4VAy7R0LBU+iACp87Jc+WoxQadg4KZyxNaC95XmvTFbmvZDLBNln6wLLEwzZm3t55xyvTd64k7A1AzFtFg6fse6xwlZ5ZaOZ1PfPr8ieOxFxe7IPvc/T7zJ++/5n5ZSEtkmWZyLozHA8/LLLouJbPMEzYnet/TB2XM1AJpoaTMRCXH5cICcU37ToBD33eEbke4FU2VmBZlr1WGMLDx8rO73QbbWYyDXCLLfBbNgWWCNCsoIEYA0g4lNuQCKnSEjZy1eZlJy4IxlXmua3LfJO7lvG/FEc9muxEXO2vpuk7EoIu08BfV4QpWmEDWOUI3iJ7aK1+lFKZ5wllLDvL65tkwIu0xqRi22y05ToRuw2b/Buc7cioUEhgFQX3R+1/WNSPvW4BTL4iMGHR4QzCGXAy+KxS3sJTE1FfGnSNXy+gGXNhQjRP3LidxUvUy1hhW0LtSqUmYb9QqgGIW/YvgCsFLIuvzgs/K8kEc2WpKnF4OLKcz1lS2wTJ4QXQLAtBVWMG4WgslJXIRNvfL8zOPD48cz2eWZdFDWEFFff/XqJFZ//uKG6sgOtL+1AlI6r0jxoWpFvLiqHHBWUtcEudR2jIPpzOfH56Zl0jBkq2nYsSxy/cY6xA28TXLVeOJVsDjUlBb4b3a9juLrR0NCLyABAKHVwVjqvEY1NxAXS2NkTGswEIlF2mBTzkyTmeMNRyOQdhyzvJpGOi7HmctfdcTguQ9XQhqp20JNqwGDgL2u3V8DGLMUMpMKYmUE/3QcXu7Z4kezMS8FDCJ7ThgTGP8vJ75QQPmLuCZfLEV2g1GnEx9RzABn8Glyvxy5If8S5wPvDx84vjyyDD03N/d8s1XX9H3HZvNlv3uRtzegmej96rzDrxfXcAaW00GWwgI7io2Xuu3XO6bDOoVUN4SkyprsjamoKmrZpNBtOpqAwELiGQBKhZ0ATEvGeHlD8rzXe6dTMcL+0ehB6yHsLnFdQP9zczm9j3buxNjciT7kTHDHwT7aXvACuy0F6utdEgMWouc5SUnalpY5TqmSfacFKnLIuDNdCKfnqgpUuMEy1lyuvGMPR2oOVGmmTROlFI4nc8czieWlPj3nw78q4/PTCkLtp2Fzc44UceRmDPfnybOxrI4h8D8eqbaiqdga6JMZxbVc4rLTEqLFluuGMXVKDgjbl9nvcEiSiH27UXnUstP5M5Abw2dhZvO8f5m4NvbDe/vtux2Pf3QkTLMc+SYE+clEjEUF37naPzRW70224E4H3k5vHB8fmA7DLy7vyP0QQ9HsWK11jBsBna7LSFcWl8OLyfmOXE6T+z3gdvbHV0I9MOO3c0dYjfaLNkrXRc4vDxzPjns2xvut3dSzQac0i1NrlLhMI7dNnD35g0Zw3lOnKbEvERO2y3n3Q5rLd9+/Z5vv34n1FWECpxi5McfP/Dp0yeWZeHh8ZHn5xepHpRMTgu1igbHuli1SlCr2EWK60FLcKR/ljZ9KpfNY4WQv9gCaM9K/XIHeM1cxbnAu/v3axIFsnkVI9pMcyoMSybmQjaOaDzFWM5z5Om0iAbQOFHsgRTTF20na8BspAXFarV0u7/l9v4NfdcxDIHNILaTKUPMegCXCk08K0Wsorwu3uDiKCyetGCS9F3WxgJA0dLakpW63j57bSFdMqU5CdW8CkbHZRanuXnmx90HHh8f9T5JJb7vOt5/9Z6bmxs9KDQJM1YYJCsAYtcErTE2SilS6V3F1v4vrzeOqrc1DBvuFBDwwbLZBJy3dD6w67d453lz94Y//e5P2W129GFgN+zxzjOeZl6ej6QoYqDGyWH4vlWA1sqE3EMJ8gXossauotKXe3Jp+bvcf3m914LB9arQsVp4g/bVt+P2urp4dZK1361oZQ2oFZM1IwW1jbZsimez61iWn63PojGliMeXyrJEnp5fGM+TfB4FGNk8jRzmgOlPnM8npo+RKb5uH/xuv+Of/bN/Rlwip9NZRLGdOHtZa3n79i2/+Ad/xs3NDf3Qs9vf4ENYq5tSeWqOWnVlqLUWRWub1kurOxhqzaQiAq/jGDmcRlJKvBxOPD8diClzOo4cDyMpFcbzxPk0kXNhGicR5VZB7xiz2o5enFVSyeSar4CfBt5oYABrq1ZtQWBj9iS1wm6gjrZvrvbvSMVId15KSSsQlEvUwxoFe9R8oBPWU98Fbm/39H33qmMIYKwV0GcY6Iaerh9WcwNrzAr8bLodlbbXCnAzng/CrqyqU1ChU7FCZy39MLDZSJssJuAHKzazsVLGTPYQOs9u6ATQURkDGXKJatfPdRkJ8CPgDyK7oAwJVke3pvttsGz6wEYZsks750CSeCvhqTflAvzUS7Lkg4POa+XLkqOAgDEWaTGBlWnhg2G7N/TqGDoMkrhXDG80iJ/mxNOTZ5oSw6sCPxVKwppKFwK5H2gOVSVHTmfREPHOcXNzx/uvvqHvB+6N5eeuY8qJZZo5n06kmHikMh2eV8ZZnEZwjrAx+G7AWXG4kbbmxLzMjBypVJaSWYqIet+/fcfbr77Ch8CuH7gZNhgq5+ML5+MzULjb9dzuRMOtd526/FVSieT5LOyjOGHyLGdsyivwk9ICOWFqwYeOjj0lReK8MM8LtWRSmik5kktlipGo7k5OhVO992x3W2FvOkevVtG1FHJcKCq2PgRpE+u6npvbW/p++J2j8ne9Sq1M06hJteyjJRdSFFZnyYWbbU9dzmx2d3T9Dmu9ti9AYxH4nEUPyzUdFNUVccI6FnacLKjeW268sH/sWEguspTIuS901pMqhDDguz3FOKW+KQgTKtVLzJKzuNFSoS5Z290rBdFgMRQ6V0Q7rFT8suCXiKmFriZ8Edby8eMHHh8epQXzzR3hZockaMLCkwRWAEDZv6U1aJlnnp+e+fjxI5MyLy57hp7vXG0k8p0/SJGyVmEyhi5gVasxLjMlzizWEmcRXJ/nhdN5JKbMy+HEp89PTHMUW+UqYJ31AesHpR86ae1Yz0SNVezFIcs5Ac0NRvsJAgYBdbxxGuMoqwbZ/0WI3awsLgF+rIovy7wTZ9gqQEzSOGc6X6FMsmm2zgqnhcWu61awZ+h7QugU5OhWdnnne2GVKljmtK3MByvaMDkx9D2VG5boqJxxc8bYzDQNWPuHafVaCzVo7lPrahRiqiG4jt4PAgpng42VaTry8PmJVAu7/Y5Pnz4Q+o6v3r/nOE2qt3bH+7fQdR3bfqAWKZ6UataW91qFlSczVoEfoOgcMKDyH3r7v8jJLl//ImDlkneUirLUzerAV7UojfmygNU0maTdkN/JsPpNppuhVhGat96DqQw3kc3dV2zvzxymSjSBMV0ER17vMl98lJelrbxqgFM1MC9I61VJC2k6iZ7O+Ux8fqbEBbMsmHGCnCnTkXx+puYIZabmM9RMjQtmGUWIfZyI55GcMi+PB378/MS4JP7qwwv/4odnzjGzZMOchO1mVSy/UHmhcDKG7B3JXOIga8GjAu/jyDxFaoVYy2pmU4tqverQlypqTnNpLCyNZY12y+g+KAW6y33qnWHr4Kb3fHUz8N3bHfd3W/a7nm7TMc6Z+bRwHDPneREXsP+hAT9tkzP2Cr1sG50Gs43GV65cFJpwsogC6j+1A17/OUSV3xh8FWHMosFjjJI8Z3WJkoThov0gFE+oRhJAW0R+67qVSoJiQdO9Fys179RezQlQMY4jy7LIP9UgEtZD63W+VLZBkF1JUtSKsW0CpiAnrOI917DOCu22zeSyuBt23H4LpLLz6iertkjprqbIs/bIWmkBsBiq8aKRYSy+GHyoFOMIKRNCt46nU7V3sahT8bVVdI5VzM55vzoKGCONW81sqF7ZGFoVWzRF9IEcAVOsLERz3Yoiv2Ou6HG1rTvzm8BPSxpNUaew2qp6Yuc6bDZs5llvkRy6fd/R9wN9P6xzuAWCXwA/uqljjFZhLLkUrLumTL/eJQKIPV3oCL4j+CC976HDewkK+q6XikroCb6TMbDq/tB6kbNU382qe3cF6mig1w6rdVxowU67F1dlJi6od8pFGuCbWLZrU0KeV8gB9cLE4rpa8VMFj3r57ypi2DAjc7V2Lj9bqmhIlXJdn0MPZHHEKVUqtbkYlHlMc3SoK6AnJ8bvwcD8O13WGPq+xxgBxY0VgfPQdcqe2tD3PZ0Ge9Y1+/RLUGCtXZk01/OzVnNh2NQL5XmJwuYppTCOM6fTSIyJ42HkcDgTU+J0nDi8jKRcGE8/AX4mcWNrwE9V4CetujtXwI+2nLAC5DII16+nuSVIi5a0xkjlqIE9ZWXoXYKuBiYl+R6FUiK1Jp2ninlYS84C/NRaGGKP9fbVt1NgZQKu7RBX86W13jkb5JU30Ksq9blkSjNzqAZLIVEomozk4DG1klNUl7JKilbEV0vGGkP2ReSatOgiJ8hVGbFc9sVqWrB2OUvbWSAvuB1RZq2SGSuOVc4Wir0wfayx1zU/fesGK3xwFdU0F2fE+uWfQv/+Cv6vQZOACs4K30/SbUPNVgCfchGYfZWrtnbCi5BtY6wJ0GlY3EJxbo0NfJAg1ztHDxhfKKEjGdEqlDbZSNV2BKhK+zbSmtVugFaGZT8S5lTOida61azknXN47zCVtTVWquZW2nPthW26akUo446ShYlVCqaoDl65COrboiL5XvSbjHPiPCejKntiEaZfsx9PChj6nLXaXda1lrMXgDpeXPYoFW89Fegbu+kPeLVzd2U5akttigspelKK0vZVssQf1q6Vd3EWNdK2p/pplEq11+0X15NYmDeOStDiU3CGroqjZHLSktX2sFrkZ9a5jzA0moZZzlmq5kXZPjmJRkXJuJqFUVcyVotYIkAqbRQ5RpZ5pmZPzqp9qHP8uvrRKvQ5N6ddMXNYloUU45ctB60YtD5VvXzjD3FpfGr1TLQIE1C3MLlHyPmSdXzXdomaydVoMVBaQKpVarkR18BLnK07ZW0tPI1fXK/2QE3rTMt9LmdZK8w29sY6ozVj/HKLusQw618vlUrWV1LWcnGyWQs4Rs5XJ/qYpVRCzDhrST5dZAXC5XEuAedFzy1kic9jmmW+l/xFDiP1gUux7pUHcQUEfhLMyR3TeNJ6v+pGydiK/XzKmXm2nM+BkCLn7ZazarKG0CtDWQoKwXvRfDRGHKAV9GsC6TIYbUwupjJXK/i3gJrtpda/7Ttc3KzWt/UlTvIFYFRpIM5P2yP/tqPs0vZl1p+RXKNinceHTnTXug4fZNxNel1Xr5+8Iv1wOavReIZaFPgpq45TzYkyT5R5pMQowM80CvAzT1T9mZpnap4V+BHxb0ohzhNxGskxM48j0zgxLolpmpnnhTkWlmxYlEBgcsao9lZyUFtvubKKW+zR5n+tmbWfQA7Kq8X95aXfVQKXWdFCWUNacKysOa01hmChc4beWXot6HWh5cDyvCkLQSBlIc38PmnGHxX4aW90GDZ8883XvLnb4awlaIU6xsQ0LuRcGF6OPHx+JEadhEqVDf3Am3dfsdnd0IWObrMRyuY0sSyRnBJLLiwprdoOtcomuB8C43xL8Y7znDiOiThHXsaF59NErgZ7KtjnmYzl+89PfPz8JK5hapvqK9qmINW792/f881XbwD4+Z/8CafTiSVGPn76zMPjI8s88+HDjzw8PJBS5OVw4HQ6i+XbODHNM8ZWqheaftvMQQK5XK70L67+KztNOwK+RFR/43rFhDPXylOcNdCU5151e4CYK1MuQuf3iGuElRatvelItQpAst//RqtX8F6chDQZbdbJ2+3AbrtRO9xCjAsGRVG1D7/koroWUoEySaqQpYK3Qo2XREIC2uY2JAET64JZVfQNUu3w8vNWbeBrrZAjNQvV2YeOUMHnxFdhYP/2K7nles+dc+x2O0LfY7i0UdACART88p1Sic3FcrkIpZ4/APDThZ6ff/cX4nQwDHLou0s7i6uWGg0lFc4vIz/kDwLKqcaEwbAsieksrQmSc7aD8EsAgXKlaWWuNGGuTqvL+VavDtPKJT40F+HyqyVw0aHQqsb6dfNbn/P6D9Yv/vD1t+p6GDXR5PXvydOtvbRxEbbLNDWhZ5lL5zHy4+cDh9PMNI9S6f49bBb/LlcplXES4GVSDZEQerGptAFj1KGpOmq12oYj6WOzyLamEoz/4l5UEHHRZda/sXA6TeSUOZ5Gnl+ElfByOPP4dCDGxOF44un5SEqZeUpMk+y/yxyZ5/Rlq1cLtHNr0WJNEuTor+vYlkuEvL7vtl+ACIs2AekSE1X3gNpYPrVQalqBHxCgR0Y5sRJuqzJ+DAIQU1XfyKn4eKXWLZjfXU35u17GCLvI2qq9UNI2mLBkDGlJyk6zlJJY4iygWMxilGALpWTRjykFsqUmYeSkGFiWHmsd49hzPu1w3jFsN+xu9PEwsN1tFBiQwMJYgwsO3zlpcwsGFy4uTUWBA+8NVXWhrGpkVgOmXgWcVlAbiyE4ad0CtdDVwEfgZFmzXitgOkHbpKU5LZdSMXhtERQwoRTRqbG6p0q93WKqvSRW+nz73tE7AYVe66q1kpZJXAiNgDlxWTgcDszLTBcC80b22ZgKtVopBviACz3eWjZ9x10XoFZ6U8jziXEaSAYWI+fCtuvYaPW+d1ZAAi7xgujIGPBy5m28Z+u9nK0GfBENnq4ksgKdO+e4HaS9MPiBLvRUDEsSY4taKm6aCLOw9SQ4TuSUOJ8OjMcDzhrudxs22y21ZHbOMWy25BSZTgeW8UzKiaVALALqzpPYLltrOZ6PeC96P8MgArW1FJI6Q7U4sQlB3x4P9MPrM36sMWyGgWsx+pyahlplnCaenp5YpjM3MdN1A0McMWGDHfYYFyhFxHqFtStaQcZKrOOyvxQ7nZyFS1yYF9kj87KwCZ7OWTYEbmslV/h8LqTDC0uujGXmnBcKFdN3mKGjYjgvSZjupZDmiTRPmFoYMgzq8u2AUIW/40uRdkGNaVJJ0q51OPLx4Zmh77i727eivDogqoZTlj03xYWX5yfG8cThcODh4RMPT4/kUolNB+mqaNsYDZI4yR5+SZpe95I2p6DtQJZdF/DOkqKw63LKkohhBZBzHt91BAzeiN2zxB0OnGjCFMQCvmJUI40VBMsar+ZU12Tf1Q5XpHXervuTMn4U4Ldr8VuSP+ukTW277bG2+0nCDiF4fBDXw5iyMOgqxFiJqSr4rOx0pN3wIqcwre3cnVfr8sYQckblCRx2FTJWSKlGlngklRlxQZsoROISqVVcUf9QV+uMyBWqsTjf47sN3WbP9v4txfVyTzZa3CqVmiZKikzHhbRMWOeI80yMmX7YcHt3z+enI13Xs9/tuL+7IfjAbrvh9mYvYHwnzqbOGpwD72WM+uApKkQfbGO6NwaP3HV53Vd5WRtDdROTPO+iUVvrRVvUGMTUQcKVNc+qpYiToNJOLmDbbz/HVoBZ84ladY4ZKc73/ZY3b98zz4mK49uf/UAFfvn9D684eFVyJb4MtVfuX87SupV1zzqrWPMyrmyeOk/U81Fs2pdIPk/ynCVpB0chT0fy6YmSI8vpxHx4IackhcfDmZQyHw8jP7ycmVLh4RRZxoVcKt54ghUHP4kIRW/Oe0fv1fszXogasVTOJUnh1YgLYgNtHUIumI3oLRoDmaY/WsUtUNd8r86CTddwowXQMUbmnNl5w9e7jneD52e3G757f8fXX92y2WxEvL7CFBMPhxM/PI98Okycl8jye+ylf1zgBxnwYbNh+803mLKQUmacBJ0tqTLOkWVe6F6OPD48sixRHE82W5yX3u77d++lTUifj1qp08yyRBFRbC0ytRJjZFlmjIG7/ZZpjuJGMWcOU2KZEp+ejnx8fCaWSn2eKZsTGcPj4czDYZSg0nucC4AhJaX+dob3b9/xT/7RX+C9J+W8atN8+PSRzw+PjOPIL//mr/nhhx+YppFff/8jnz5/ZlkipT6uVvBgqLZZwMudaq5RtbaFc40vX+P+5uqxsiiutp3XvHItPMVFGQHiBCC27WUFUGKW1KozMBi5b8Eb7OAuQMu1uLMG/8EHOqXmmnVrkAq8s/KeU5qJcRZwrG1oQEmZHBswo1S7WtV6WN1LrKr0Uy8MIRpwpZu1ghfWGmznIKg4Y54hCy26LFaEw4whOOmT7oHN7du1z14S0lbBvoA9IshqVnACRA/IdwPOeQqQirnoTql+wmtfXej5+bd/cTkI9E6gDAhTK8RCpnJaRk7PkxxuGdHZ0ApuzvI4IWJmBVQ4VsclQ04SOQpQ13I4tVqFtVomLIz2GGU1tHtl12SwsR3aJ20ca7MIrxcwj6vnh0tlDa7WU22fXdCgy/NfDqz2DJUG/EBKidNpZJkjWv8CDKkUcbzJmZhmppRIr0yiLbUwKfAzz7KXGuvBOAF+rIhRg5X7V4044xiEYdJOK32DpahDS5UWtuNxIqXE09ORjx+fmOfI4+MzP354YFkWnp5OfH54ZlmSAkICaOcs1fwGkAnAg9qmN2Dmp9O6rb9WZdFxUHD7wgQxq44BtZJSIWs1uyyREpMOms7lWil10T20gGmd1fJYLGnFatOg4JAGu84ZahXgxweDWNa+/lqEtXMDodBJy5N0eBo5I4oAdjkXlnkm5UgpIlgZHCxpoaQzOSWKgayJx2wt9iwMwmMIvPQCAvWbLZvtDdY7ttstu/0O5zxD3zFspNWs2wT6TSeV397TDQICZe8o3mMNlOCoXkEgZzBee/lb4UsDYWH+oLbdTbeiroUvmaUNEBfQBsN1UVCAnlypRUCi4gSYpUKqWkTAC+yjc72dIo0/ai3Y4SJM+lpXrUWAn5QF+LGWUjLHwwvH84mu61iWLd57pjmyLIUQOvb7G96+fUfX9/ShY7PpcdYQTCYuR87TyJQyZ22LHLrAJohga2+NKjeANPTI/uuswVkppm18EODHOQV+xFUmKNvNGsPWW276QdxK+w1dt6WUyuE4ksaRkgtuGgnTJDpYJUJJ0mJ2OvD88kwIgZubPX5/i6mVvuthmclxUbaaY1kWzkvEJGnfOo8j5/EM1LXFsAE7IXhh2CxR9NdMM0wwdAr8DCpU/5pX05ZMKTPPiwA/uWhsV5imieenyhQcJRf22wGTRtz2ltCJrtMKCCCJfC5AY1yVxl51tFR5nmcOxzM5C+NgExzGSNuN8VoEGw8cDi/UJXKcDxznFzIVt9lht3sqlpcxcpiiuuEdiPMRVytvCPSoq5N3dCtoK2081ErMouOyxImX45FPD89sNwPffftuZUGXXMgqqliVYrgsCy8vj7w8P/JyOPLw8MDD46MUs0IvzC9l3hlj2s67nvdy/ZSd+1pjKbbuIfRs+sDdbkMfPOfzyFNMxJQpSOtsMcJSc10gGC3KtXY6YynaTpUxZNWpytmIlhJIS92qU5dVUwlsybhSobaYtjE7WRmedhVIBucKzmV1KoSuc1ffv7h69X0nsea0ICFiIS6GcaorSHBhVdV2mzHaDmZNJdiMs1kBJ/ma0XlhndGzOwrry2SqiWAyzhuGjSUES05yNpk/KPBzHc85rO/x3UC3FeCndhtxiHaqx7dUYYAsE/MExyLxxul05nBa8F3Pzd09b54F+Lm7u+Ht27d0XeD2Zs+bZSYEkZTYb+Us7INlCMK0LKUDFEzzFzME7YLUM8+u8eJ6aeHZOISBWy9upraqqLppOnvmEv9qTtgKnM3IpjYdIfOTv8NPQR+Jn6GxUSUe6Lst92/eS/HcWL772XcYCz9++vy645e14tgO+7XII0FgnSZqSuTjM+OnH0jTSF1OlNMjNS/YtODijCmZOEfm8yxnklWXQSAeXlgePpPjzOnxmZePn0jLwvE48fx8JqbMxynx4xiZS+WhWubqyBh6bxjUMGishgmJWLwX8K9UMTCwKVMQQDuWLCYXTjR40DzKGyktGgpFGWLZ6GwwhmwgG4Oxjq7r2fY9tVa6lOV5cxYpkZLYecM3u57v9j3f3W359t0t37y/V3aWXzV1Hw4nfng88nmMnGMi/h6b6R8V+CmlMs0LjkioGUez3a1rIiXaHEKZbQCLtRL0mCKbn/cCwDTaSWu5aVWDtU2sNgewiDFSvZJWA888i97MkrIKEVfRpYmRZCYyhnlZxOq4VS6NVzp1XRN8a420ySg1uwIxJXbjniVGvPfc3t4yjme6vuN4OjMvC/M8M8+zisJWYro43rSg+bot4zKWV6N62WXk68b85s+89mWMUpovDgQNjV+ZMyujpTkDOaptB6lWfer6dCvlPHhPF0TrybYqEUgSR1oBMmnRyzRRwFoRx6Cycv4vc4EvkfdVcq028Ee+39gnVSur1Wirjz5fVUeGxjChSnuCl9NakhfrpaWgVnE0u2Zq1Za42vV9tYNB6KpBLHZX4EGhCNvAvNe9rg+SUpr+SaHWpPd77R1pAvZQEOegeEnc2y3PVXpcJQgSJpb8jEGKzEYBP7nPGcjaonANzDQxv6p7QW02p9VQWvvjNfDDhRV0PR9WRhpfPv9P2zu+4Bddg0m/BTW/lmRsjkg5Z5alsMSm5QBg10O90XOt2k6/5iUiyaKZEWMkxoS1nrhEDNLKMy8Lfg5SKXKW4osGkJpptXtduTgUlMJ5nFQ3KHE4nDgcTszzwos+FmDozOk0EWNiPC/MU1Ta/BXAl1nvQ6PT63nP1RBePtirr5vLD7SOuWrA5st+v9q8Xzl60dDzevXk1EvhzSBBWPtHA58VBTMC7rQqTWMOQf2DiDtDpeREzpEUF6J3DYOFqgYCKZLVTahZwhqkwlhNI8Y0oLnNUmFQCf8/YzKYqIGfc1jf4bK6hXmPcwqaGZmrxRSqkQA310SpqpnjHTUIaFCypXin7WIWn40mmOCyrIfim1uuwVVpoWV9za1sUXVwqgLj9VLPaJvlFSjcrjWeXMFr/dl2DOhzStt3a/OFL57ktcawqG4WbWnV1RHKaeuXMWZ1Pqo0c4iEs251mYTWpiZuh76IBlLGSMuWztsW+GYnbD7XTrerirBTDSWVa1p3sOZSQxW3vZSifN0GjI3CWklxtXbOOYnQci3kLK3rKUqhLUYRrV9SYs6SFrsqbWlFz0frPM5XQtfRZQFsnDKXWrIsLWt1NfMQbR2Z88YYXGuZMhKbYf4gi/ESc10VJNptrUgS4DLEJC1RIsQ+Y1ME4y/AJcpk1Fb+aqSYZzXeKEV/RlvIci5qca/aV06sxIupOCMggm2MwDgL4yd02JjkbFoW8iRJUVkWSJF1WdH03FANGUlGGstO2uuy/ruWWdB70mZ5mzPa5peantM0sSyLahIWhThaC+fVvdXX8sX1e1So/27jB8F7gg/aLukktuw6+i4QF+kxXA0O2oLVVsdSKmp3qpuLVa0wVuCm6hptCboAhHommUrWg6xBz0bjmPV+6MYnq/H6PrWYsa5xyDoGa9uJ0bPs+vPmHifPcHFN0r9Q12eV50UZgldnZjWy96ZcsNVQVhOLjAiRL1Qyvlg1kHBX7K3Xv1pMkkuT/pDJ7JwXuY2uox8GUgVDxoiolQCrpjlnCTutVEjawphrJUwj4ziKmUfn2UwjuSR88PTTRMiit+qcAM61CFOnmR94a7G24jB4o3GB1b2jsrLkoO25l3WwCp2vh9v1z15f178jP9SKk+v8aM9z7RK27ot/y7Ppjxpj1y6LYejZ7Xbc7Pdib/9KV5vfVwtNcyg5K+sykeeJGhfyPFKWkbpM8i/O1LyoeLPoxeW4sMwiHeCsJVlp4k7TTJwXimqLzeNMXCLTuDBOi7hpzZkpZuZSRVDZWGmhrpfM0Jm6tlF7K/t0NmY9c82ap7CuoUxr0dLW0C9AbXn/TcNHgGaz6pGaBoRZg9f4s/eWWiyb4Nh1nn0f2PVBWryCmGCVKpjBkrJoGqfEkgr594xt/qjAzzhO/PO//P/S2cLOJzpbwDiwXjauaumHPX1v6LstOVXmMVKrw4aID7K19ZuBroiQZ4pCbxfRKosphhIz0zyRc2aeZ8bpDLXyKzLj+QXnLOPhifH5QehgMbP4nuQqp5g4nJ/IpXI4zxzPMxXYbnaIqXMmLZP0DnorGj45YZ1Vu3FPCIH3796y3W2JMXJ/d8Mvfv5z5mXhxw8feHh4ZJomfvmrX/Hx4yfmZebTp888vxxUJG8RRytj8NXpRiETrE2qVYz4KgmuFbEXbYcBP136f//LOsfuzRtiKoxjpiahQscqrRvWi7issY7NdsP+7p7QyedG6efX58Ql6ZJkI6iwcevNNsCyzCzzqOM5MY6LVLxzE6nlKsBRDQTbRNDUxhK0P1kygpTFlQkDxndibaiHv7h3FMbjqOyiTI4TJQpzLFiHN+JGcrMPbFR8vGngYCCoBXapVYLXFgypveaK/utH6zuM85LEj2IzWCxk5yj29Q/WZZn49//+35BTZJmUKaAuKlWBoMsEUwCmfSz2CmSRdKIYkTmXyMOxesxWSy0iEizBiTyuVpOC/+gEFR6AbMvynP8xHlsD0oAVMLr+3gq2fQGQXgE/LehaQQPWw/U3fnrVEvH0fSCE9p3G+ImwnIl5oaNnGG5p4oCf/mNv+e9w5ZR4eHzgfJ55fHxhmhaGfsPtzRsVQH3icBzZbLYM2w2397fqmCMCqdJeG5mmRZ0IR15etHXr5cTD4wvLnDgczjw8HFmWzOk88fJy1op4ZpoTOVdSrkC/ila2cRJQv7l0lQsdPl+AMWmpuJrj67y7+kIFcTJExfOa0GVWhxmpsphW9btKgo1xohNjqjriNPaJBIfWQrAFyTfLqvuTc2Kaz5IUm0zwhu61naCQBPvh0w/0fc9yPtIFqeaWpEypGFnmSVpeHOLM5QEsnZF1FkzBmkE1OVAmkwq+Nn25KsUUYyzRFBYq1jrOy4nD+UVo/np+GaX8h7XVSxy+pNDh6bQ1uQuezouQfeedGjGIFXwI8rtdJ1bt1hp8J/btzTWsVTedvQRXzqitbtsy7GV11uZquep0VZyt2IC0TOdCXGR803KVANVLIpXbvMuvt6+WUpins4DTVYWvaybOC8s0ieh238kmtMxUjjjrmJfIOC94H9jtttzf3xJC4KhaFM56vINgK65UOufpvYzPbrvh/u6WmJIEgDmtgqHtDL3tAhsDnkqohVAk8F6SWOGmUvjwYeHT84OMYb+h6zeAIaeiLKssAvXTmZKlRWuZJ2JKPByOvJzPWO+YSuTHwxPOGrbWMTiHq5XBebqbW7pa2d3fYmpmnEZ2P+54en4ixoXj8cA8jVDFpaS5AqYogIg1CoQYw7yIva4Pr992CQ3QL6rRKMzyLsj5Y61hTiKiXF+OmPw9XfDs7t7wJha6YYvrNrjNHuM8tlFcMOpGJMLW1jmsipOfTyPHw4mcM7e3N2xu9irGLvM450LvKx0Luc7YOML5JHO/Oroq4tL24Yny+EwthWHwdL3DWdimhM8RZyyh39F3zXFUWjtjSjwfzzwfTpzHmTlmjcsdRnUOTRN1LpWcEqfjE/N0Zjyd+PH7X/Pw6RPjos6OxqlsgZ6zXx6zCn/U9VuvHaR2XcfPf/5znHV0IWCt42a74Zt392z7ng8fP/P58YlYCokqYvnW4LuO3Y2Vlrsi419rxQVP6Dt1D3YXYe3qoAaoRnWOlPGTIzkLk79mT8l+jZ2qFkSui1dW9zlJPB3OCsDpvFsLbKI1qYmoFqllPzRY5zEGcUO9Ki4Zs95weWwkBa3SsIYzM85EKRggYrSSpGfJN1IhpUKpIqExRzkLfbCk2BE6h/Qi/WE0YUpOHF6eSHEgBNH+whju7u9w3rG9u6O/u2OOkWk8cnj+pO3pE9PBY6vDxQxZ9nwTZ+bDM8Z5SlrIJeK7wPl8w3k+ErqO3X7Hw/ERHzybYcNuu8U7xy703HQDXvfdvUpP7IZeHlvRYOmDag2tEqX1Mg4AzSWMqq1+DdW7rJVLEbpiXRPP1FZCLdY2l+EmFC6groC7X4BJlySRVg2tVUgU3lbu9juCqQydw9bEyy/+hP/un//lK45iJVVpnjJZjZDGM9PjA3meKNOZ9PIkej5poS5nbeGa8fq4Lgtpmqg58fxy4odPj8yLsqBVNMeNZ8LxCDFxfD7w+PmFGBMvc+RxjCyl8JgMn7JjqXDAcKKKlhpJ5C0s3FjLbRDx9il4Zi/i+sY5krEUa0gVku5gS63iaqm3uhij50fFNBkSA1HBn2jlXK7WsJSCT/K3g4MhGCyOr4Ytrg7cb3r+x9+95U/u99xupe3WbHpiqTyfR2I+86vniV++nPmbw8xjrMzJAr/bgOSPC/xME3/5L/4lG294s4HBg+8GNrs7XOjY9Ftudjd0vqPznhxhLhGMw/eZUiVY7IdekvNFlORzThJEOkHOSi3Mi1Sip2nifD5RSuZ0euHHH3+NQSusrcoVemw3UCocz0c+PR+JKTOOkXFaaNhs5x1WNWaWZSIGp5VYWYTW2dX1pR967jTQ/O7bb8SKfol8fnjg+fmZ0/nM+7/6K371619zOh610lCU1i+ABhV12FCxuKuq9oXKeakIALKxaLWxoYmveVnn2NzfY+fIVCfqnMlkYooksgSmG6G0D7sd+7tbOrW29ZpQXFeBVt0blCrXnBG02okxnE8nDlRtizOM87IKCMZl0eDfrtaUXQhy4Btp4bJr9c2s1tGiNzJJAjiA7y2NdmsNpFJ4Pp04vDwJE2IeSct0ccPqekLX4TY7fa0e321wXS9WuwoCSUIgQF4TgrYqcO5UcA9jtYfckZZIjCemtAjryLU6zutey7LwH/7DX7HMI4fnJ+I8i0Djskhweh2RVdE6AUmijRHGnbRsXACzqowuYxzWBMBiTMDShLw9TjI02WWdXSsPl1a4CwpujF8tVCWAuQ4ZG/ByNZNMA3vaYw2CFFmv68+131Gxb33c1tIXbV5tja0/wfo30PnS9+7yt/T7Kc8Uk7BJLdZD4LX1D1POPD49cjic+OH7TxyPI8Ow5fbmSBd6dvsnXl7ODMPA/uaGd1+/ZxgG+r5nu93hveN8njgcDsQYeXp64ccfPzLPM09PBz5+eGSeI6fTwsvLRIyFGAvzomArHlSg3NpOLG+Vjt70K0rNKq4sAE9LunMqpObklQrFqD1wvqoO1csdb+1ZFXmOspY2xHadWrGmgFUwx1wYJc6LZoG1EHorrjZGtGqcar30KtJfaqFkYTZM80h+knY3g7jhdOH1gZ+cEk8PP+B9x/nwTHBB9TSaVX1zIKtstz3393ucCzhrlOpsWVwAWy8uaBrE12WhjFGDRm3TwbDUxFzyynhaP66aa2BdE97X9iHV8glONGOssfTrXmtXTQRrDcPQ0Q/iHjMMHX0f9Hz0dAomheBlbIwleLdaFwcFfzCSfzaNIMGBG11dQR3TXheAUbHhCyjUPjbwURIpBdRK/VtG5O9+1VKZpkn2Pt8LuF8KaVmYp1mdKgfVr1uIqYCx2HHk+XjEGMvd7S2xJvquI2ZhcTjn8QU6Uym20llHp5qI22HD3Z20Ty5JdL5qFRaHM3J/dp2nNyIa7GvFVyNAaU7kRZhkn19GDnGiAt2wJQwbHZNA57xo25yPTKOAE9PLgel0JuXM8zRzWmaqtXyeztgncd56u9tzs9kyeMc3ux27oSc4x+2mY9t7zufz2tY1jiM5iaNUzkU/qlbNyiBBgR+LdWKe8Yewc5cqrujZxFSIMeO9pQ8O7wQUmHOmJmmHnV8OOGN4czoTrGO72+H3d/Rr21eRVhiEQdFAIGO9AJXAeJ45HU+UUtjvtgybnq4LkugWaTPrHHiz4BX4qeMJSsXiCSaIy9HjA/V70ekY3t9zu7mXfa5GfJKWu2AGQpD2VTHNEJb6vCSens+MKniKavJY1TdZ5fWKMCdOhxcOL4+cjkc+fP89nz58JFWYqrRG1asEVPZy/fQqWL0uv7zmFULHn/zsZxeEBbi72fPN11+x326IKWOcE+CniitttQbXS+uFwbDEhWmaKSXTDz3b/UbPEY/t9MwzHZYetAW3Ob9Je9QiwGU2xGSUvYKefwIUtyJIa4OViKWoTojE/k0uACtzvyCJZ3MgbcAP1jLYgRp6mph+izdkD5U7XbUh1JBwjFgWJMKMQF6FkXNJMkImU2si5YXz6cw0T4TgyGkgdB5rK8GVV49tAHLJHA5P5LJj2A7K7ITbuzv6zYabUrjJiVgKz48f+fUvF86nAyX2DIPHFhH1LlHue4oCalZjWOLInEas9xzPe47zCR8Cw27L9ijA62bYSpzkPLfdjvtO3Gxv9zvubhLeO+73hZKdaLVsmtulkeKSbWYylzjVaNy4nrka2tb1f5fPpTjscFYLFVq8aUxn+RFz0SC8KqK36wvw5xoAouIN3O42bDrP7c2W+9sdS5zZ/Zf/11cbwwokMqYmXJ6xJRMPD4y//ncshxfyeCQ+fSIvk+yzneZgJeNSwtQqucn5REqZl6dHfv3D9xzHmbRkllnW3G5J3MwLLhfRnnwUt9PnXPicCkuFZzyPeCKGmcqoBcKttvw7a9j0HZtOFszoPKP30g1kHaO1YkJipeWzUpm14NJGt9Urc22FZhUQMBK9LlrAqOYC/Hhn2HSWIVh6a/nKd9w6y/1u4H/y3Xv+9N0tXefZ3/UwBOIceXw+cTjP/Ppl4deHkV+fZk7ZMWcP/O5z8Y/b6lUL07SAr3SlkBx0QwXX40vF2aCLpO1UinLT6FNyIxtLwjgV3zUeH4JU1IAuRrpOks2cZYHmDLUIbbkiNu5NUFTkY8yquN3aB4BVjNc7qWYGL5Qr6R32qxX5b7jlKF2sUb9bn/t2syGnhLGG25sbTne3eOe4vb3ldDqtWh2NbltJ0mZEq5SwPj/oeWp+Av5cX6+NGRgjFO0k6HI1V/2bUu6/2JY6+xtuNavK/NULrtoihBG9oLZJtvd4oSBfqMhrRS5pNdtaiq0r/dZZEeHj6p7lGJUhlpkXoQxiDAEZe2MsNksbRM4KGo6jMMuWiRRnBZiU5opUH/uYyQWsk15oayu1OopTy2/VNjFGWpasRbQyasaWKqh/MWAri1ZvFxVGLGsC/MpXbQml2mWqGG5zCYILPblpnhgFTaRSceWwJ1miMvcEsBFxYYM1XtzLsFgXsK6jidPh29q5tnaXjf8LYAkjYJM+bvOQ9pmutUYPMCtVoIFA1792BTpetRI1cOcC/ujXr6jWXxQuV3e2BoZdB7oQIxQTcEvCOgRsePU8pX6xFlJKLEtkmiapOFhH3x/XtpJhO0hLQRKXnByCOBDOQtFfHQmXRZmMst6KilIbbT/wTXjQeB0fWe9O2Xrt5zCsblyNaeG0fSBZg21OCiaztlbYSlXRZ4O2pGjVUsYMjC0SVAHNfUiGuLBSdm1d6d7Oswpmhs40nU6CM6ofJqCPt4ZSM0kVFZvdbpsrhmug8RVHsUoxoZaKM5bi0qq3JFb1RcegkrOjWdO3q22/zQZYblbTImr8p/a3ZN6YUtcWmut5e3HbA1dEG8oYKFbaN60xa0+vNVbGp4iTItePaWyc1sojLWPSHiLMiRiyuExdAT/WGKJRmNnokm9FTw+4uu4RxnD1uLWssAZf6+OfAD8r4+dVtdOqCE5aSfAbQ8KYS9LcGKqYKvpDpoGh8j6mWV3vqjDZ0tpa3FqY6/p+Wpu51zUnrQWSHLgV+LF4bcNr4GjJ+twpSbEmxTXJrUYqmaHKPOh9IvtALYVpmZiXWVi3yyw6UyVfOZZaSJEaheU6x0jnFyiepYssamNeCerk6RSA3mKMsBWWZSGpZbXMa7O2G0li3AA9AWZq+u0j8fcbxrrKBFy3sFxiO7OyGE2tLKXgamVZFuZpFBc53+PigjNO2MZtEgtODabqmOoZv87Nn5YXtLiA0T3Kkrww64YQyEXaAoIxZCMuXTVFKtJqF6y9tAZiFAhv68V++Z6a3EDSNtKredvmd2NXyjkzM08jyzyro0yWZKi5u14VYa7v7Xo/udrBXjm8EdDEKeOmCejWlckjbpEaS5aLRIFteYUxmGTW+Kjoz671Ho3VUJYMRs4aZ2Ud6t0WOcm2L6EhUpbPc5bPBQ+ra9nIoS1y+h6suypIKiBvGkrEZTxrvdxTQxXC1gqe1xX4kZynXM5V/Vz2wqz3KNNcbC+t01exT73eazUWNK88iCD7zjTinGWeJqy1LIvuN1rgsMoUtdausf96Iy6BnEzHWhHdPyPudbpWJC9YqBTsYnGTJ3lhaRljpaibLCF7gvPa2ulX5msfAsnL1zufpUjCxeq9vZ7r5XQZK1Zc9PL1S8D52+/rF6uHFrMa9D2aa5epq/uwFjEvccXqfOkcXd8Ju8+8MopnEKZREiZcnkfi6UA8PJOnE2k8UpeZEhwFL61MOYuxTRVB+TWOxEqe4QrVyr5XEGBnzhWXK0uRc6zpcRUj226uhoQIOCd5SXIG1+tbVNf7LrUmcdSUdWm+7DmoDbBrw6Grr16/cVb2shQYLZvg8cbQW9Xpc4beO4ZgGaxl33luveOm79h0nt471bQU9mdMmXFJnOfIGBNzEUv4JIv99xJa/6MCPzkXXk5nDmni0/QMeWbY7Lh7+xVdv+Hd2/cM/R3eb0SiMUhbgnWBapwkzVySztB1dOqCMWx6bm7FKep4PPH8LFXsl8MLj48P0tIwnjidD6qnIOBPBbJxSmmUTS04ObA732N2Ati8e/eW9+/e0fcd333znu+++YrtduD9+7dstpsVBFqrjOgCrnIQSCuQFyrvpmeJkc1m4Oc//xPO55Gf/ew7Pnz4yPF45K/+6t/xw48/Ms8znx8eOZ5OmnY3e1Rwa/VSrJHF9vg6UVn/86pjaK2l3+7Idca4SDUF48AFwFWC2kf7EHDBU0wh1Qy5YLJUEXLOpJhEm6OU1b3LcNH7Ef0CjwHO08jxdCKlxPPLgZfTREyROM/M8yTVrpYoAkPfs+kFYBAtOwmq0jwS55FSEuP5wHg+AhXfdbhOft55j/WOlBIPTw88PT99wfpw1rHbTAzDQPCB01i5eVmwztF3YnturMW7sPaLx5hWfQenlpnyhmu7qeCkihRz4TQJ+NMQf157I0aYW/u7W4ZNz2ZwpLhQUiZOs9jzqgWwWHV6nBO3NWsDzg8Yq9Uv12my6FdQxzpx0hBAJ+CdgLDWeby/PDa+tfWJDpRBE89Vi8CqC9slIGulMcOXHwWEsVdz/ir4vMRJfwvwA1db+GXjrvUnx+slJG9Qw+pYorpkTZx6HM98+LjheHrRP/aao9denrTaVbWSL1naac+nGTCE0PHhwwe89+z2N7z/8T39MHB3d8+3337HZrNhiQvjJAndNE1UDfo3Q8+7d3fkXMkJklYtyyrqLudybO1IxZBXxrdYcso9LqxtR7VIm1aVQ7iRe2KqxKhMoDmRF6Ga23pRVZKiZl3Jcc4pdqgCpQLOWxURBa8tZ9LKJQCQBOnyempj9mibGCp6m5Ihl1n0dGqWpela4G3+EMNIzpnD0wPOOibfYVeE0Fw+6H7uXGFZBt1jJLmv1oqWT9smdJwkQLdrWrHqJFSoZEoV7bsGBlVam5Csta4TANcquKkehCKkXTPVFJZSyIuwGWdrOSvrMnh3AXU6r5oQiHOTt7+R2HjntT1XQAsnk4fmeIMB44227PHFP7lHVd8j+v7MF/FuMxMQoEV02s7n5dXGUFy9ZjBRfcotJUeGruNmu6MYmMYz44jo3QRxcSwiHUfFcBpHjtOosYTEC7YVLxSEX+ys+67si/v9Vt93FXCwgndWhLaRtpCs5+w0TyzTSEqJx4ePPH7+SEyRwzJzaJoxV/uyOLA5PTtnASdzJh7PpPNIqZWlVhKVah1Vhb5zzjzlwvk8Eqxhfnrks3ds+4709VvK3Q0GeP/uHe/evWWeZ97cv+VwPDDPM4+Pj5zPct6P41mZvkXd2y5to6vj6ytepVRxMMxNU6QVJmSuxlyYlkRKGVsLc5E9Kj0+k2Oi84H92/e8XRLdsCMMW/rtnRiDWINRfSvRQouy/8VIa80rpRLnBaPAs9Xzbzv0vH97yxI3bHcD797cKYhhyMWwLJEHk0jjC9UYevMV74Y9zlkyjoy2d3UDPvTqIqVajaUKs/M8EZcFSmTwid5nnFH3rlpYTiNxnpjOZz786lc8fP7AvESO5zMRaXMw1uKNo7m1tiJO21+qgvkX0Of1AQMqq3NkUhaZOA4sdN7x6x8/8PnxkaeXF6qR+1MxhBDoux5nDEtMHI9HlmXBny3hJO/JB0c3BG2L3dKFnRa3RFgeI6wda2Vuel8JA3IPjBVgjLYnXaKJVryw1eJUmkDSTScxjrsgcVI41PumWWsFalmoRbogmogzVLBFTRKqgjkCKOco+imlJObpTIzz5WdUbysnBaqtwfuOUo3qJg14H/Ae+q61Hr/uNc8z//a//1fs9nsOz89sdlsxN1Bd1OLEaKAaQxzP1FxE6iNV5jkxTZGctEhiUAHlJM34CeoExTmyqUQP2XvyPDKfT9rqPBD6DdY6tn7LLuxwznGz34nzl/fc3+x5c7un855393e8v7sneMdu17Pb9Sq0LzFKA3qanp2xRcFw0dtSDpdAM0X1mhqBACUh2Gaa0rxPjerjan7BVaip57qhSU1XAW7zIjbpyiQGaRnrQqf5yetFOQYIzpGmE+PnD6TzkfOvfsnD//u/Yfr0AWsK3iSMqeQQKJsB6x15yeRRhf1Djxk2GDcQ7nrehnt2uXA8TTw9n8Tc5PmZc/xELZHUV+KNAupJWDWlVGqsTHNhqZVIJVEwFeZSOeVKqIYcLUkL0ab3BAe2GnpgwBAxRAWIGgNLSZzqIGqlCFNlHK0xwuRxAvj84v6Gb/Y7BX4gGNES2g6OITg23vHzm4G3Q6APnjc3PS4YKpnj80Kpledp4a8/vfDpNPNxgYdsOYUtS3FY09OX370Y/8jizoXjeWQ+vXD8+Evi+cB2f8vbgwBAOVu+/foXbLdQUPHJELDeCX20JVxWEi0fnLhAXYnVUSunk2hVpJh4ePhM33fSvvD8QCzK+sgFk8qKoqVVc0Lsv52p9N2GoZME/5uvv+brr79iGHr+5Gff8LPvvmYYOt69e8tmM+BUEOsL8S35wlqtct7Rd3sJtoGvvnpPLoVpnvnZn/xsdUTwivAdTyfGaeI8nuXZ1sSW1eFIKNF1DVKuImH+EGmKsY5+s2NJFuPOEug6iwsWUxHF8aEjhIALTtybEMe2nCTgjjExa7KZUxa0vbQNSo88a/HaSz3NM6dRNJuO4yg0vyyWnNM4CfqfEzVLP/5m6InDgDXSRlGS2Dkv45llPJNz4nh84nR4plI1GREagPPSfpBy5vPjI48vz2AMPshcdNax2cwM/QYfAuepststGgh0OBfkkHTSW96C1Frq2t7lrFs33VKzAJle6LqlGpbSmE/yuszrU0WwzrK72VNzT9kFao6UqMBPyngrekvOGJwPdJ0cgM53+H63PnZBXIKcDXjfY7TtLQQBeJz3AoYZAcN86JSuHyT5MWol2kCgtukaocFaLZtcqlbQWCXyWP4j2M+lZax+sRau5i8/BX/gGvSB3x6Lfgn6rM+kz9GAn8tYH15e+Ou/rjw9dqqtAq/s5r6+o1qbbbAES8ejiC9fqoSG3W7Px7df0Q89X3/9DVTY729EyyBLZW+eZ9V3MvRDr3bJBud0bI0FIyysWmGeE2d1kZkXCbRKqZAjZKncOytuGwI1VJKy+7KxFNMsaZUhVSpxXIhjhCqQhakFYyEEsRQ3FrpOXLasNfSDaMk4a+i6ILoyDQRqc0ck9STYzRLo5pyYxvMqXrnMUklclso4V0pNVDLGNoFH0zDHV79KTpxeHmW9qONGczFq7DjrW3uUYYm3Qu+v2o5lrDTBmSrEAnXVa4UMWsGgopVcAYGslSSh1HqpoF4xAazpCV6ApWZH3KqKRXUdcgsuK1wrWjadGRTYva5WtzVrVdzCGAHUG+B1UfZqrWfyPMa5L9Z9A25bkrK+lzUnsgp+XZlHVJnv0r70isBPKaRl1jaXSKUBPwHqhmmZeTmdWFLE+UAYBoz1pCRAQskVf+p4Pr5gnWPoe/bbLc45gg/0um8KGC72xP0wsN1u1iTbKYgWvDCooHI8nXk5nkmxMi8Tzy9PxGXh8+MDnx4+ElPilCLHFCWQNReumOSamrSnrAYHhXIeKdMs79sH8I7qHCV6irZfLdMs2gvAqWQ2tXCz3TC4Smcrw7Dh66+/5u7ujmVZeHP/ltPpxPl85vvvf83T8zMxLhwOL8yztFtOk3xsbfMxvT7lp5TCOM5XDIcr4Mdaao0sS2JeIo2RaCrM08z4+Iin8vZ4whnHZrdnuH2L9QO1M8rykpkdU2GeBVxKJa3ropZCnBcoleA9Jpg1pnn35pacM2/ubtTNsHA4nXk5nRmnSkcizUfA0FN5s5FEdSyGuaDJbL+eu43NWgrMS+R8HskpYmpk8JneKfBTCyUlxtML58ML59ORjz/8mk8//kCqlXOBCFqostqyeXHy+mLXvDpbTf3y3H3NqxbR3lhmYZHFaeR8eMJS+fD5gcenJ16OR2UPSHxSgdB12paZOJ1O2r5ZRDvTVLres9l0OGfpux2b4Q5nA8F39N0ga9RJsWCVNPRIi6pz0p5ojOyV7b40BmcFV4MASNVQi6VmTdkbi8NUZXxqYaW5VVIpZV7ZoKUWhRIq1YiVRtXEX4ymRaspzyLQfXh5YhrPaHqlqYZIFsjcF+Cn4hX42SjrxdL3lhBe/2Sc54l//1f/hv3+hvF0ZLvdrcU8YwwmeOymx3hHnM6QJJEvuTIviXGK1zUTZXFop0eu1LmANWRTiE6KoYu1FCtgknEdJgwYY+ncQO+2WOvY3+zEwfAK+OlDx3maKKmIExS3UvBwFrwwoOUOXUWROq8MKxFQxkvbuysCJrQ41iL6UrVWYZZqwbyxE9fztkFFurSklbC1nWVSnMlJzr4GPloL3gZ8K6C+0tUKCDlFpofPzE+fOPyHv+LhL/854/e/pNt07O42+M6Ru4G0E220OCXGl4WcCt3dG7Zf3+D8hnDT8ebdlmQc7vnAuHmkzgtj9Tw8HYmx4jtL57tWVcTFiM+Fcl6Y4sycq+alEmPOtTLmSiyGbBIJ0WDbusImSDzSIdbt1hhGLqzQTCVrQm+NxdYGsTWDENg6y75z3PaBf3S/5x++vZezVRnq0mImWom73vNnb/e830trowRClbgUjoeRaVx4nBb+5uMz358mnul45JazHyjVY+1AV/8HBvw01BuEbh2VXjovEWNnxmnmPI5szmeohb7z5Jxx2Yt4pXOE6jFO+horIn7lqrmiaUolsdNAqe8HNpuNLOo4M82jOOAkoUyVIlbkMbXWL90qKgz9hqHfErxnt9uy222ETbIZGIaevu+0qnnZ9H5D4d7ogtageaVmAt4YrFJQuy7Q9z2bYWC/33N7e4u1lv1+xziJpXxUVxzZEFqAK6+3uQ7I3/xDpCdXlwb4a0W1XJzZmouJ3IuyjlHNzfr7AvyUUsgpk9XSXgiyco+KtVQrbWStz780xydYD0OjQrINbTW0nlcVdDYtMVCrRCdVcOcs1ttVTyk1+03nsE6An3nWChiSRLmCCu/NUC0+Zc5+BBVy9n7RdhdpB3NW7eu1SmlUEFrGqqpuh7xH44MAPxhStRQkyPe5e1WV/Xa1pIramDRWe5KdHPpWgt3GyLHO6UevOkXy0Ssw5a3XIMGq64JfHwcV9RZASO+PBkGN9t9aFloSY2AVlgSpcDUG49obzaXdQ3/oCvjh9wN+aOdj/eLR1bm5XvWLda77xBVDohatfhuRL7IUTM3YKm489RUrKfIaRGcipiROLjqXY0xXVWRBK7z3jONZEpvzmXEcZa5e0f6dc6JbpaKBLUlxLqz6PaZRbSsYa+QAzS3wVMp4ttQk7zU4qQYaIFHwWnsqxgnwA4RkiJ3cv2gtyTlQto+tAvj5IKLGxkDQCqO0bjlCsAq8NpaJ0GqlclVXYl2rsv6UMbKCf62Ko9T+1gq0tvHSArbX319LKVgjTB1j6ioyvyaE1bIKhOq/1pYsgf51q4hp/5f1pesp6+u+tM7Ij1IKxSo7sv2evi7D1Xs3F2Ceq59pf/KCmArYUivqcFIozXOAy+3L1tLa/IoV5yODOP6tHjpa5BEALCsD8DKG8neaKyHr3xWgS4GfKta5jfmTkjBkX7fVq92PZrwg7RRW9zdx0Wu3S85KS1Ytpyx6QyliFot14pi2hIBXFzyLtuA5i0kOWws+h1Xg03AB25wR1xkBXhWw07XQmEHlWi+wNgCjrmCAoSp4ru+t/JYN8TLStIZCq/e/PU9Vqn4smWVxLPOsybSVcz3L+wshMAwbSqkMmy2bJeK9aCgaa8gaU8QkgXzKhQvpfny1MZTz+tLW3NpqKu1eXZ0UlyODXKRNO1NZYiTFmRQDaZnJizAwrXdYowWeq/auaxcY0W9UJnS5OIMCyv5p91eGZm15bK+/rcWr17eu4bbw6pd/qxRx2aEkKAlHwTppl60lC0CgjkjLNLJMk7YCF1lX2J/sVxfQ11ztOVy9T3N5eVf71iuNYb2cRU0eoNQiAFstLEtcY0pQUIeL01JrsbvshBe2hmj4JKiWZKVFqNiihQo1JSmyP1/HKCsh07Ceq22gWhumvPbWKmIo9acdBEY/v3JcrQVzDeqoFWSlMUKUwWPURUmLjSXLukxJ3PlSjOrsp9rVV0UjUPkLGlDvNCbosJ6L+PcrX0V105xzqoGlI6Qtzabz+JIw3kk+UUsbvXajaW1+couvkxYpKlFEi037bSWHaWypbCSBMBbjjEiLOM8yO+bOk7NnDI4+OBE8P505bk7EKJp2G80PSx/WeeD0Xxt9y2UdKH5wWc91PTDWq703OavNZX5cr+nGttbfkbhGVGlKlhbistKzL4GANgS/+rWeAdPIfDoTzyN5msjTTKaQOgPZYxJQpX1kmTPjlEi5UlOlsx58h+k39LtbvPNscGwTuGlhPB7JIYgLd9I2bmX2yLQ1q+6V1ZhgjQuRmAONN20FW8TRueXbtfWDNm3dqzz0i/dqrt+3zFdp5RINn11w3HRO2hO1RdRay9BJbrTtRJDee0elkopImywpMc0CZp6nyHnJnGNmMoXsjDhtt33r+kX8LdcfFfix1gpqmxO220HMLMXx/HLmeFooRURhb/Y3bLdb3r65p+87uqFnu9/ig2cYevZ7EQ/uu47dVtg2nRd3nSauNQxCgfa+Y7ffk3PiPJ44nA5a2ZV/0ooTWZZFKK9qtQ4wdAL8eO95++4Nb9++oesCb9/e8/btnQiAbTbA1cLjIqp8STCv2De1baKizJ6ruMdYI20LN/sd/+Qf/yO++eZrjscTX339NR8+fuR0PvPr73/g8elZ++wjMUubgnetGnWxmtc/dRWMv84llPZCWjJxSUSlPU+LiFxP55Hj4UAT2c5FaKWSNAoRMWcJdhvL5xK4SpJiQSudTb9AKNLOemxwuM5RMwRTMU4WYbCWTls9tn3HbhDE93Q8cHpJ1ArbzR5nb6i1cD5vOZ/viMvMhx9/4NOHH5WtoRWuUpmWxBzld6uZwLTWhSNOQY5P/Ue8D7p/Nt0XAX6sbULWlyBIkm3Vs2kMFmulCqcifdiOakUzJQwDzr3+MpVNSxhGMVVKKuRUScmKBbdtLiaWUjwUh8NRq6La1UC1uGoxtRnDyhibtSPWXAJokKoDmuAZCVhMLVfWwnIUmnoFqLR7d3WgG0X01rmzAj8tXls9pTRov1wyGl9ujNef1d94cPVzpqxHY0U3WGOkp9YYSk6UaRTdjMMjp8cfefn8UVrfup04t/3/P2S/ccUY+fWvf2CeFk6ns4iNzjPjKFphiudhMCqEHvE+kOJCCJ7dfs/9/T1ff/MNwyDtQ7axTFZUgDWta3dLQAgYp5nN2cr6nwzjqAdlqtQkSXzfOXGMsNIrLb9qqM5TbRNwCUCQORkLJbVkVw5GqFe6Pu1xq2w2e3O1GNbWLQHAslaro9qgFxmjKiKWMUZykf1LzAAi0zxxOgvzQKqjVUDKxlh5xfFbrwo1V4opOoeNBKb6WBI+B8ZRCdQ6UMqGJVaWXBGf9oK0sQl46620CHjrGbzXxOAiCtmSf2pd9S6ug0eDoVPdAqn2OhV0ljnwBehz/bglm0Z/ShOdSwJ4Zf9rElrGoJSEWbPBC4Al/7uItP/GjWvPqY9Xt0udp5UrJl6tpJyYppGUIynHVxk+eWmGLnhJhHMhFxEY74K0vNZaGcJysfLOiZSNClRGUhbAwM4LxlqmbmKel/UcDEFabbu+o9dC1n6ZyTUTvGfoelwvTn3GgkOApuAcQy8MhaNzmhIiYL0yMTcYXJXgNpWswq6oQHo7twLWe2opzNkQFXjMVnIjtNJsSmtcEQCcUilpYY4zpkR+/PEHltML282WnDKn05ngPdvtjjdvdmy3O6z13N+/Fbev04FlEabPqIDDPM88Pz0zTRMAx3/z8mrj2OIzETN3a+tojHm1z6WizpxoizksuTBGSQzsaeLu+ZG8TMRlJqeICz1ht6O/vcO6QC5tfkpLQlGXppzk74A4H8akbbKpSkyBJbP8hu5hylXOZHX5S7kwLzPee3ItYIUtV3VvBFbwc44TZTlg50dszfQBYY2FSh4PPH4wxHnm4YdfcXj4zLxEDsczUxEhZ+MCQd2HjHW/BbSuK8gEl5BUEqqmN/KKQ1gqs7atnU9S6M0pEdXp9+V0YJpnYlqwruKsk+21yt5prSf4nmHYi0mFKRibBMVGtGEKiRQL83nGIICAc9IW64NbmafGG5UmbDICgQuTscWL1xCTE2ZH27+q06PY0vTsrgGMpmsnQGsDflDajmyozcmr1kKKs7iOpcx4GFkmYbqez0eWZdYkWf8pwGOtp+KoZkM1HdZv2Ny8Y7vbYUzG2RljXr/tMqXIhx8/0IWOx4cngg+XaWLAeo8fpDWo63u2N3thjvuA7Tps35NjIs7zqvVUS7tvjQVTsKngUsaUuuYmpaLsTZFayGEgBdl387Ihzmecd4yHnsPTgHee54cHPv7wI10IfPX+K7569xVdCNzf33F/d4tzlqFzdJ2TfM8hLblGC4Va5HS24mqTDlgxPmEMVhlTUy8wjbTmXfTCms5lYw7nkhinUUDKkojziZwWnPf0/bAKvK979itepWSW88jp8YmP/+5vOHz/K+L3v2L6/Ew+jCznmXIYsdaw4BhNIGFZrOfkerJxvNm957vdWzb392zfvufNz/4U3w+8nyPfnieWJfKX//y/469fnnh5fGB+fGJ6eaTGyDY4bjoPDroA297hSxF5gSTLqBgYNV4Zq8EVg60Q50SuM7VWJiUBRNXASqXwhdJiyzNWbF0AOOct99vAd/uBN0PHn7/p+Sdve7wTB1XvpaAe+g0udFgLXQfRC0Hi5TgxnmfGaeHjpyOH48xjTPzVYeTHObJ0jmlnIQTI7Sz53XHNHxf4cZbNdkuKC7bbwByJRXqHa5G+zHmK9H3Pbrfj7bu39H3HZrfl7s0toevYbjbc3d4QQmA7DNzsdxL49BcQaLfZcrPbi+Xfbs9b3gGVJc3MiyDD87QwTwulFJZ5UgaKuFPFKDdOgJ8Nznvu7m65vbvFe6H67ffbtYf5wvIRdFGYeNeJ6gXdb61gRQ/gXBIlS9DrncXvNvzFX/wZGMvxeOTm5oYffvzA4+Mji9JxRYg1aVuGqP87RHQw5bx+vX181atAXor+yxK4xsg8jsQsVZSkTJZlmTlPZ1JKejB22v7Eyif3/uJS4qyo47f2n66xRvpOqPHG4oLDJod1EFzFedkAG9jjrWXbB3ZDp9WQSJyOlArb7YbtToC6adoyTSPTOPLp8weeXx5FOG6W6gcVYTYgm2LMhqTNnNZZjNP2ieae0wA9rUo4KyJbonnjtYVCfq85HzW3IWMdvutxXmzvbb+RVigfGLbbP5htrVSVDDFLYFkSCvyI2JuxXhKV4rDFiu1ptcJg0cOlKODDKoV2YV5dPkoSIflBURe3giXL96uIzRojiUNr/zBGnk+An8ZO0le+JpYNGEIDz6uJ+pPqYnv803sArLv2WiX5jZ9rjAR9zqpMM9Mqw5YSE3kS97fl+Mz49InTw4/4fsP2Fqx93fUYowRGKRWWOZNzZZ4XxmlkmmZhaOj9mOeJ8TxijQjeh86z2+2wFv70T3/Gfr9V95K9VBuuqrNJGXGtjUbwgsowGrquqhV8peuEJVNioUQJWHebju1WklbjNMIxRkTBXADjhDYexEJagptWDbtYoZaaqDVJGFsjtSZKyUzTyLLI3j2NE8ssbI4cJ+IiGj5xnkTIsVYV9S8aKMt7TCmxxJl5WZjmifN05jyeNCBTdqC1X7BdXvNqoAymrky1gliuCiuv4kwTOu8opafWgZQTscxUCtYWgpfWNO+QfdKoPpf1MrMvhWUZ0yT7dL4eXxVANSAMKn3v3rnVhv2aMffFilpBG1bAtz1unxR1VaxXCQlVj4N1fjUxawVX22K8dERcztxrtsT6P6Ryrk1jUqUXYGuJM6fz4UpI+HUuawydd8ScSUmidWMqnffq7ljpw4wBUsnMUe53ikkZCEUAIWT8Q/DMs7QQe+/xnRS1ur5nWGacc+SScc7KOVkKGyuC+baI3ohBBIF7dbh07cyqVYsNQffcSpdlPJKKTcvL0CopluB6QuippXDKhbEIcyjWTFRdMF/B1TZUhjbKMYmRQo0zn/LM+ckrwOOYl4X9bs/N/o77uzfEGOm6gXleiGnhdD6yxImUsiYvkfM4MgwbTiexvP+3/+Zfv9o4wmWNOGdXJy9hh1ex+G77PhckONbEMUGOhW6cOR6eYRFNnLQsOB/Y3L/DhoDregqeQqCxOJrDU8piYS+4ZwGT173QGadtlwtVQe5csjBvimhUYiReyUWAxKLJrrHCyhHdFmVPKeAb40JdTtjlGWsqu2Fgu+kwppLHIy9zZJ5GPn3/PU8ffyQVOBaYqxGQ2XlcK361g54v94l6xV66biVpDLTXLE/WWlhGSQjH08gSI8ssxZEUI+flzDSLXIAzBluzJtTarmE83vX0/VYYWg34oZDSyDJP0qafZ7VwbwUodSUMgb4PCu4g2mRa9Gst7aJvJmtUMJpWJGsAj4w6+thei7aWxtKDVbq/VlDtHowRrS4tGMoeq6Lu86hstMTp5ch0nsglSeEjLzJ0Kkrd3Dqt9RjX4/utsnw2DPs37G7vqHWh5AO1vF7bbLtSSnz+9EnvkdyHSgP6ERmBfsA6x9uv3vPzv/gLdl2PdQHTdZjYU3MlZdEqMlU0uddyVnP/zAUbM9ZV4hxJ07y2BkudxJD7gdyPYusdNyzLiHWWow8EL+z+x37Dj/2WEALfPBx5eD/T9z3ffpNZojA6druO3VaYel1n6XT8O2fobBt1iUNrhRKbdptp7QtrTC3/FVHuShKWGYVaNGY2HoOjlsw0jkzTSMmRuJzJeRF2t5c52QoCr13aqqUSp5Hx+ZmHv/k1j3/91/DwEfN0wJzEhGTOYqZxSvCwwFxg3mw5370hdT3zd7Df3FHv3rP/9ue8+8f/lO1+L3tHFhboxziT/uVfckyR5+cDn48n8jTzzX5g028JTuQBtsUQimUyRQwuisRcE2qQUA21SCYDGZNnTK1McSHGhVRFriC3AlNrQ29ngYYr1UgMYL3lZuP45qbn3abjF3cdf34fCM4zbDZ0XY+xHtfvMWEg1cwhnxnLwhQzT6eZ56cjp/PCrz688PQy8ZQLf7MkPqSMGXrYWrBBtRfL7+VW+juBH2PMz4H/E/AtMsv+i1rr/94Y8xb4PwN/Bvx74H9Za338Hc+mbSABH0TvY3WuMkJZTjljY2ReZsZpFIV5AzY4uk4qHVYDoxylz9p7T0o9xlQVifT0XSRUVX33unlahw8ShNUOqEYp9uoCVQopXSiPXRjoO2UUdd0q4OzsxcGn0X9RNsN66NmqE0Iokl+wCq4rHJqApBhZlhmj7WnCaOrZ3+y5nwWsur254ebmhnlepMVD3Xp+Osxr/7Z+LNLG9E+MMf/i7zuGElToYaeivL5WZb0YUk6kIkFtVuFpuZ/iBmStBOJFD6uSC7FKL24XOhHWbol8lXtVUhZdJiDGRSv1+YLao20qIYjifpDNjFoIIRA6AYFC1xFCBwZ1LpCkx4VOHacq2eoWaAzWdhgXdEPVw9UgQpYavJQ1vG30YgEwHALoOCvjGbxo/1jn1mrPxWZagB/rvWwC3QbjZZ30m8018BOMMf/311mL6CaR1jlfk9FKpCEXiEpPLrlSY8EWCFWdyxyEYqhESTqdoZYo78XJIWKNwfn22F49NlgnulpG157Ttj5rmpWzwdksbW7GrIFro62vx9/KDOISeOrINOG8n17mb/tM3SrKF7/XnDouVSI0GKiq2WC0KpxiZprVWWsW9sg0j3QYQpwwzvLy9BleaS1SUc2Lok6AQkOXNgKpALWgVFhsItSY4sI0jVhjmKZRXHqWBR9EF6QxTVqyXk2lGoutFWFHV6gi4Nt14phYiqdkL2vAVYqTe9b1QUWCFYVaPdad/DOixWOv+7H0UC1XlHZq0aqWIk+U9T3lnDSBEYeiomyelOLaypmVHSl0eK1v1QbEt4RE3vdFZ6oxHtrtvlRaeeW1eJmLZn28El9aKamBx+aigpOz7LPOiu2uMYXq0dZCYWY54xvqujolOiqtFUremYxvuQz7BfBaBZavvvlbwR8Bvc1Pv9we1yo6RL+Brl6NPV+OSXv/VR9fWElX4A91fdxSyAZwNP2f69aPFJNQwkVb5ZXHsL2kiwucAN+iO1Wqg2xIShu/dqPJtbWJSWKQcsbpmUPS1otssdHhyqVtqniPN5bBeXJyWKSIZFQHQv6+XZlB1hjislFB/0RynmxF3ysuhmQUHGr7rBHr784HSi2E1JFyAxUi1AzWEqzDKRMm1yINKIbVLru5rzUmwtrqfSXavMZp3lMpeO8pVVolOgWqupzpup6UVpbBq67FBnhd1v1FFLzU5ipnv5iPK9Bhxao3F0kQTM7ERfYkv0zEeZJ56XqqE1HhtUVW46FcCraUtZDR2JatgPHFv3pZC9exYJvrjU2NuZyb61rJuncmGUNryro9G/25FCO5FGnxWhZiyqQK+UqJ6/Lc65348li9AmvNSuv78hTW773eGF6P5ZoqX0pBF/HpK03BqwKtxCWO4jwroxI9G5QSU00r5LS2RilkFZvJyWJsoTqNWSzr65D4vIWTsjbaPTf63PJa9DFGEYt6GfTS7qK0p8hr0PPSGKSIoAXg2oCfcgUYXRj2oEWCq3Fr+y1V5r79Iu5hZY+urYkXAcPXW4tVYs/mfqh3emU8NfkE66TVqqpxhIiY93QKKMRplntdq7joaky0vsXWWokAlOjnXxxDOVFKEhHmFMnJUYoUZUwtFGNZEGHunDOn85nj6SDi+cftagBU6kCpvWhEZU/KyoYu6pqJupTpMqlFtOramLWM8svcUgok61rXA7PkRDWZGGem+cz5fKKWRIqjah1m+q6Tfc4YUOb6EpdXW4u11iu32ZlxnLDTgo0Zoy1ZJcq8HFPlnGDJMHeFMRdSKZxj5mWcKKeJzXnkPE3gtZiFVVdJMM5hfcB1Hb4fMBh8P2C7XnCAYvBJik1BtZyKUZ2eNfZQgwgjX8tVWqCv26LXLV9/oW1ptnU06LeMgd7AYC0b5xico3NONU2dxlcGrDZMl0wq0j0zxoXztHCaIscpcZoTx5g5pMKp1NXJy1REmkENK1Zdr//owvr9GD8J+N/UWv9bY8wN8N8YY/4r4H8F/Ne11v+dMeY/B/5z4H/7H3si5yy3+z0WmMav6IatOGstYrHdaMUpZ07jyJyTCtJ5uo8dzjr6vmO32eCdZ7sduLsR9s/NfsfbN3d0XcfdzS3v376nC4Fh6NnuNiK+bLTS5cANjqEfdIcrmlgINW3tf1TGgYAxAvwYa8mlMM/zJfbVjy2waYj+6lTUtDG4ipfXExvisvDw8JkffviBrut4//5rbm/v2Aw9f/Hnf84/+MUveHx6pusGvv3uZzw9PfEv/9W/5ocffiSVohbwUcEKCSSr2oW0wwX4Za31f/T3HUOxWFzItbLd7gjdIKwp7Zkex5GnlyexS18Sy5KZ50jfbXn79i2bYWCZF8bzRE6JaRx5ejxQcubtmze8ublh6Ht9/bIJj8cTp8+fyaVwTjOnRRxIhqFntxlwyvi6u7uTyrSzBC+g182biu96ai0q/irodhg29MtMGCfu333H/VdH5mXhfJwYzxMYS9fvCP1AKXCeI2ZJcthaEVlbD1u0Uh5nSkoE57jd79gOogf1s+++4c3dHdZZui4I4GMMLojlvdXqq9VWL6siyc45Qt8LiAX8V/8HeK21WGthjke5/y8PzOOENR3eCL25FgV8DNQaqXWhggiNdmKtGVygD70yAoK44FlpTei6bq1WhxAUgPWrU411TcjWrGwvg9EAhMvXndMzSR2+jFnXpK669fFFWwBZ69cZqFkffbFov8AbuGz8rQWFBlisG7okyaU6OZCNAHzGOFIcOR2eWeYTz58/8R++/4HPH35FP2y4Wc4Mmw3n4+HV1mKpYncaY+Z8XkhRrZaXWVl2Vplnbd+RiuD5fOCH738pgKLJ3N7tORzuuX9zj3XQDz3eB4K2znojFP4Ly0IOdG87etXmSSkT405ZNSKoDq1lQu5c4dKGivUYI4lPygtpXpT1ObPMCt6khRQXMBCC6PdgZJ+1VkCvl5eX1QHofDozjZMCPE0PrNIcu2TUtbf7i7xDtFAEbK/c7Hd0wVFykeRYReNLFkbo1fUqa1EC/nA5KzQxKIp5WWdXTQUfOnzo8WFgGQunU2aJC7VM1HIGEn0X2G0HvHOqcYfqcQU9wwy2WkJoVuuOUrweSZfKvAQnKtTqrAYobS21BOnyuCUll6CjfvHfKvGp2Bw3/Kfqk+jvNa2Z9TdrpfHPr5+N67/SEh++fC0tSMutrS8npnnicDxo9bO82hg24L/qoLV51t5P8Jb9biuvJWe6RRLqMC2UYonaLj1P06rBUEpRZo7HF9E3cikyzjPGGsbzmcPhBW8dN5sNz9sdwTn2ux23ytxzvTjTdNbx7u4Nu2FLLpl5HJmns7D1jgem43Ft+RjPJwEOFOwQ4GdLCAO1Vvp5yxTFQXVZJpY4Y4wh+AHngzCrShIWGY7YdyRbCc5ys92w6zo6ddFcloXZz5zPI8fjsQ2oAj9VCnU1q26fVK+7IE6uu932egheZRyttQzDoNoLMrI5Z6ZZQA9nLcHLeZZSIs7qPKO/V2vF9T1n40nF4ueFMD9hjWE7yz4Xug63uyPcv8e4IEnRuFAqK3s9BS96eqvpQUu6KwUr8YeER8rIzBcmne6jp+NRtJP6nr4b1qKIaC0WlvHMPJ1Z5jMmT2x8298NS7bklHl+/sTpeCamyPPhyDkVijEU56itNV3by9rW0ECjfKVjtGoa0XTCZM1egJnXG0NjDCHIeSXzTACqLmYwXm2gE10WBrr1AWOcCKIrqGGtYxi2+JCpNdKEk60RjZZSpRi5EC+gcsoUEPZeFRa/8w4fJIapNlGUEte0y+TxJW4x5hLnrD+jhcTG+DGXmF7AeuB6h8QIa6Hmdu/TCiw61LzGO/zeU4Y9MSWOp8A0jZKol6wsLEPNCvBVS82GaiEtmdPxqPpiEWtGDK9/LuqbuRRAuD4XoKprm7GWOEv8k1MmDBve/+xnpJw4Pb/wHHoRm0+JukTRtNOiUUXiiDqOYMzq9mz0LGtRpsmLtKEbQ6oLJU2SC/pA0pbZFCYmf8Y6xzTPPL48EHzgh09vuPvVG0II3N3dc3srGjW7/Q07FfDfDR2bvhPL7+DpgrRVd8o6NEb0EoXE9SXIakuHr05fb8EiJhan8UxaZk7nI7/+1S95fnpU0DBhSqHre463dwzDgAuBQYvMVYwbXmUMc848vbzw+fGJ73/8zKdffcQeX3CHGXtOpFKZciLXyrkYnrNlqYZYYJIUlsPHRz79f/4l3f6XfPfrH/n0fGS339N1gc0wAJWHTx8ZXOB2d8PmG7jrNpAye2+48RZLJb48Ex+fROPPFbIXFuc5J845kmtlqYZUhe0VS2GqIhi+1Cr28EZnYQtja0Vq1pW+QLAyZwZT6Yzhxlh+ETp+MQzcDj03mx1+s8NaS3SeiKHkzDQ+ExNMMfLD0zNPp5FxifzwcOLpOHGKmV8dF56WxIjhswmcvMUZTzctuHLUUrcWV3/H9TuBn1rr98D3+vigleo/Af4XwP9cf+z/CPw/ftckcNauh/U0vyH0G8iJuszULBvpPI2iYTNFltNRELe1CtESz06ea7vl/u5m7aM8fP2evu95e38mp0Lf9dzc7DVx8PjgCb2/oq5rT663hNCM8OoaSEol/ZrK2e5JYVku1MaKvMZrZ421D1cP7TYWrZp0qWoK9fb56Ykff/iBzWbDfn/D7e0tfd/z9bdv2O32PD09U6vhzZu3/PDjj3z8+JnHxydhR6lDVhPKtdZSYA0ErOwW59cYw1Ir0xwBw7DZMNDol/Lx5fDCOM9CFzeOGDPLEjHWcXd3x+3NDefTSRbTIqJch6cnlnlmPwwMIbAbBunNLSIAvZzPPD58JsbIWCLnHKkG7u9u2fYBg7i77fZiqyjq/XJ/nfMMG5lzl7bniu8XwhJxYeLmzdfcvj0yzQvFjUQ7Yoxj2N0ybPcSAJ9H8jRL4mPdastpVF+k5oydz5Q4MXSB+7f33N/suLvd80//k3/Ez777Bu8dm6EjdEr3DVZbvSzWq0WvsULTVScRHzwXe2dirfW/fY1xrLUQ05lpPvFyfOZ8OhP8jm0vNp2pitp9rhLgTstCyUWSyTBLAOy8thFIYhq8gD3NFlXsT4M47xlhOHl/JeKsAtxOmVHa0EVrE2nBfgN+moXxRS8KrYg14MeuARSGKwcgwzW9vF2CD7X5e2GApCrzHGNABajhOuW0pBKker+OlyMtE6eXI8t04PDwxPcfP/H44UeG7YalLgzbTfvTr7IWqwLQyxI5nUbR28pxdaoy2p9utDrU+ivH6cTpLO4vITjevX/LOJ4oNXJ7t9fqZqHrPcZWLiPzRWoNwVKLv5QH2z3UNoRaWXV3RF8la5W+AtLyWKpogORZXvPpdOJ0Oqkm25lpGjHWsNkM9L1UboKK36WUeH5+5OXlRVxYDicBfmjizm1+KZ0ecZpprBcJtAV0sNbgcZgOdtstXfCkFBmPhaXkFfjJl/agV1uL+srWeaqnkFZwoFYrLVsu4FyH9z3e95Q6M54z4xTJaWKZn6k1shk60rIQvGO7K1jX4bWNtNPzwZqmu1ap1a1twReR6HZW6dy/qui3xyvosxYzUGRHgZgVJ7ysnNqQVoNKcLWfvzxF+/bly1eoLG2t1vXxb7uu7dxLLsqME32Y81la+UTu4ZXGsLKCjdcgY3scrMVvBiqGmBM+iDiuMY4lVpwVodWcRJi9FNH/M9bgSsDVsppXtD3uZBrLxnAzbDhttwTnub+5Id7dS0Hs7g1d2OC9Y9jf4t4EjBG3y6zaV4fnBw5Pj6QUeX554uXlWbQZYhJNGwxdtyN0G0mmY88QtwKknY8s0xmDIdiAN14A6VRZaqGYSuwCyVU1ydix3wyiq2JQpvPCPGkrqrUCjDhHrQXvPMVLIS4EAd9DCEBlsxna3X+1tWiMoe87qJK8U5sOjrTX950UE4N3mAqxLtRSxP2y7yXe6zyjccRqsTHi5glTCmmeMPMo5+O7hNnusJ0yMGfRmOy7wDxL3OND1XPMqquTsowrqCgNFXGlzfki1l1qJcaFcTyTkraiaIs5mJUNtEwj0+mFtEzYvNC7on/DkLJjniOPD088fPpALpURbe+yDufFmVPmop6/XGJkAa7Ll6wQGSCNlxsbVX9PJBNeZwwRxlv1IpRqsNRiCCFTcWCh2ERX4hdMB6+FWmGNOLp+INRCzo4YodaMs4ZiDbVmIgs1TxeGqeqX5VooWcYulHZfDMUWbK5Xr1P30Wvgx1qMtkM722IeKMZidfzl0QXqWcEJLXyJ8o92BtVKTKJx5KzEnM3UYeNFMyrGBXLBFiPsrrQQc0aY380ZUe4hRXSoxpO441qb6fyMs3+Ic1HukhwnF3ZVu2q5tLXkmIQ9mAuh63lzuwdn6YcH8pKZzyNlXsh2FMAoLSxRWRb5ypBmPcyMMITa6VUKNUYFhxZyFBfg7Huc78BYFhdkTVjL8XzAPwVxh/p8w2Z7Q/Adb958zf39e0LouL97z83tG7zz3O627DYSX+8Gw6YXwGe3sWx6L4LbXjRN5dg1iB6msEkpDkPB1gVTIZfEND5zPh14eXnm+1//Oz5+/IAFgrK7+q5nOr0wbDb0fc/d/T39ZkC6y19nDEspHI5Hnp5f+PTpkR8+POCmM+G0YOfCXAunnIm1MmF5wRIxpGJYtPj8+fGZX/7rf4sNHR8+P3GeZvb7Pbvdhvu7G5yzvDw+0LnAzWaL6Qbs/TvJ80oiJBGtj9USzxPJRtGGdbJX+mWiLJVYCymbtfAVa2XRDSHVIlrfVeZIW30WAX9chd5mNsXgDdwa2AE31vKtD3zXD+z7nn0/4PqtnH1UEpBy4vl0ZjxPnKaF//D9I5+eT5xj4YfTwvOUOdXCr2LmqRSSdczek2zA42COhFiFQdp7YdL/juvvpPFjjPkz4H8K/L+AbxQUotb6vTHm67/ld/4z4D8D2N/es900jZVJDv+cKCFAEUqss0Ldijlj4nJVNSjt+daDRESaxUL4PI5iYxwj3gmlue96aQmyUkkJfaAfBDTqOklOnbWU6teAamV7VliTTCnFfsnW+Wn98SooBakaSEuEHAANHDJGNu0mctnor0Fbu7quw6vzkzAh7Mqc2GwG9vsdN8c9Nzd7bm9umDTxyzkryHShk1pjL6fCK43h+6+/JeefBKHo/aEFBQHnRUg2dD25VELQ9+VEtFgqeRWvrVhS5QsrU4pSKVaCK+e8BIClEiz0VpKPLnTSHuaDPPfaCqFtd4C1FSXMsMYotSLNU5ZSIHQbQr8l47CuUE2iGkvGk6oXpoIJFA20MF5EDZGkzFCErmu9tIx5eU9939P1PaHrVqZPCP4i/OfMldq8JqRXlHjTOmOuDrvXGsft7Q2g7letTqeJnrVWtVYUVCmiH5VrgWKwKkreNkFrDK5UUhH6cMyiFWGtJaREzAlx8rKXCuaamGurl1a2RC1I5tS1O5tx6qxgGgjhdD2uUNEKcqD38bJur2qKVwnspXLWrJ41kNbg+TeBn8t2n0qgKN29AXUpjoznkTiPjMpaMcLVV9DgS9G1v+8Ydl3Qil5ddVqaiC0I0N6FTkDtq6pZKQLCoG9R2mFUnydnEUAunlKyfv+KqdOAcU10S2uhqlUo0lohb9TrvGrJXKiyUs2UltxaKzmqs0jOpGVZgauUIiknTDGry5a4niykZFXoVdpeW7tIm83rOOvrr+29Z74UMDSs9y/r+2mJSUtIGiW3sTp+y5j8vcbRslmD9sZ6bc5Q1KrgTBujREoz1jqdT6Ilc0FFLomG0bYEq+xBY1UwUtey0cS2NobUT840Ywym6cUZs06htucbrpIWecNXcXkrbHx5taIKtcpz6+80x8b2M+scu3pr7U98+VzXT94+GAV8tOdd10ZKaXX4KT/53b/vGN7d3lyKPTrX1uabtpdUaBRDKRTJPuicwRXdH61RIfFWhBLw1GQrIvgKaBsgG3EgqcaI7l9M1FKZVKsq54zvR8J4Fj2M3BOqtNSLi5MwlAzSgl+BrusZhkHajXwW0VNj8GFDCIPcN1cxTgSqUackU8EbjzNOWuZru88GYwrOS4wzDD39MOCto/c9nQ90qkHE1fi3gZet/ApNqKxf+22Fzb/vON7f7mkn7spWWfcu1vUj211zMi3KqGtt3E40IErBacuIBVIpqwW9W2bSPGJrJccMRVgGVdk77RwzVlqGrLE4nTu5MRbqT9ttrt3I7Lr+L0WPuq6nNf7U32s8tVIlsS9Z2n/FATcjhuBWWkERDYw1Vr48u2jlWLOug0tBhTXWva6Y6/1/1TG8ubm9Yt9zeZ36uVXhbmOlVaaaS/xTZMHp3JPkujGPa9X24+J0H3Q0XZ9WsrpsKy2yuLo/5dJS0gCv9TedgXppo7rOLyS2Kdpyfnn+37wJLXURn6/CZW/XPyX7QHBYrKxXLTgEH4SNre2MGAF8rBEDEOO8sodte6dQM6ZmVoHp3xyTv9c4Qou5fvO5r+6q3vdLO2+wgV5Fn+N2y3a3l30pLGTrZI2lDrdMWpjSNvhaKeViviPvUvMIbzCqcdf0y6joHiot9CIGbSXu0dY8UyzLIgBQzolxOtGNG0KKdP0GF3rRcHPqDKwM20pr15U/45zELbntf7btixWqlXNF9wOj8g3TeOZ8PgiLczwxTWcskDHYKvt38I6i7Z4heEpJ1HyJcf6+Y/jdt9/qPubEmjUESgpE6zE2sRTDbAV0mXEs1RKNxXSBfruDYaD6IOxCY4gxcng5kFIkxxlLwXtHjomh76Wl2RhCyy1ywuUIKVGWmfH5Udqql0RJEWoV6RjNeWKFoMtPpdQBKZlKJ4Aspbajdga8AY9h5w07K27dd96yt5b9ENj3gY33QkrASiMLwnRaipiQHMaZ8zhzmhYO08JxioxJ2tzOuTDWSsSQVXDcOC8O0eYyX9Z1Yn7r7vDF9XsDP8aYPfB/A/7XtdaXn27Wf9tVa/0vgP8C4Bd/9g/rP/3H/5BxnHj86lkqGzlTYtT+8oVx1BagZeZ4OuvBE5nnSZ1Z6kqnrtVwOJ4wwPF04tPDA85ZdpsNt/sbrTBtuLu5wQfHbrtlf7PDe8/N/oa7uzuCD+x2G/b7HdZpL3tQPRbrcVa0ayQoa8l+1kAZWgUDNKbTykaqQi1fh6Mqi8GKU4R8XWZYcJ5vvv6GPvSEELh/85bdZituTgXSvOCAr9+9ZzsM3O33nI8vvLu/4/n5hf/+3/4VHz9/vliKlorD4cIF9Xl5pTH8s3/8n9TjOGGdJ3RgrdcDVRP30LHZ3eC6HhcGrO9YYuT+7pbN7obQ9TQ74pSS2IAbR4qR9+/es9tLq1f2ieCCJJdG9F1SzmQrTiJG2WM3Nzd479nvdnjbYbQu0g57bztMB6BWfnpL1IuNaV549/XIw3PiNM68zJ+YXyylwhJ7LJ5SYU6WBa0wVofwICqGJCLFJuM7hw89/abn7u073r29Zb/bsNn1uCB/HyuJZdb2mAYOuDVotKst+t92vcY4vvvu24oNWNfjuw1dgq7bMmw3BL8hGGFAFCznEcZlUvp/YZ6T3E9j141H/if6Ds5cmDqi+dP63C+MhpWFYwTosY32vIZDF0kYAQpY++SvWT40W3UFHRvtvK7teO1vmS8eX3CBBvxcgInSwA1jpPrm1lcERjWQaIwfRRONpZaFurxQ00idjxRj2d/cYS3kGJnKBfh5jTHc7bYVBACfp5FxmldQzXvHbrflm2++ZrvdrMCTtGUlFf4s3NxsCEHaX2uNzMsZayu15jVAlq5LbZtJiZSkLUs0Rka1hr1Y5M7zxKhfn+aZaRKXxO12y3a7wzvHdrtnt91DhdP5zPk0kXLicDpyHKXVJGZpFxEWWU/wIlB5PJ44jyM5Jc7ns9pDQ+c922Ejc0oDfrESFWBIHL7SyswQIEkAzLy6XEFr3zRUus4TnGjKUaT16/p6jXEM9k31rol+anC5AqsFYzI5nqh14qx6Dd71xFxwpjB0lWwMrgZKMWz6nu2wFXvQ7Z79XtqhC5I0plyJ88gyHtbAd3Uws06d3aCFD1WX2SWnMSu45jQpknVvvkzSv7xP7Y1fvl/UQpwLiNOS/ksh5XI/67rW5fcvwM/ldapEAzkXpimJJkmKjNORFBeWOP+GqPNrjOHPvv22ptKAgAaialJQxc4+aSJcMDhNQPugLFAvzixLGlhiWlvCqj5figoYOCctwkYtXF1Z97OCtCyOKXIczzjrGJ4eGT78KG3ywyBtTCoIHVQnodaMcV5axu7esN3fNIyFZhFrrcdaKdYsy0RMi6y/04HxfEKzYtDX241nxlnWpTBbZQ29vb1hv93grWXje3or7b/bzUBngFogJ3LN1JLxCOh/ASkyriZcTdj6+uP4p99+VWUeVWIUx9UlFhTfVtHkTCkwL4lRrcH3O8/dnbQfTHPkOErL3v+PuT9ZtiTL1jWhbxZarGJXZua1h8fJFEhS7k1o0aMHz0ATocFb8AS0eAOadGggQj4BIgnkzQZCCkmSV25x4kTl7lbtahVazYLGGFNV93b3iDg3tjmpLua2bO2119KlOosx/vGP/69MZmNFL4aUyOczzlrabBhDwFU12be4agvWEQfH8SgMP+89XnWNfCmIwZzgxhSZRnFrnKaJnGS/NUDTbNjv9lJY0/Y7YLX2iTB0JBFyZkqWPnlCiJxO93TdxBQCd4cjxxAl2XWWZIvGTSky6phO6H4pkUBGdY5ien6x9ef557GLF7iHX331VfaVaHbOdvemwHmIxmi7AyvzdQpR9aqM7m1SqLJWWVJZiydIa9GIJUVtP7QIAGKsgl3l+xqFDhZwSHKZUZJNu7TRVnWFV9ZR0JYxeYs0x0jOqFWGgp5Os7tFD0bXnSxM2ymJGYmxlqauqVTm4Or6gquLHQ6LzzUeTz9Ie7QzjsSiZSXj3ZLUHTHZhmyE7dXYiEf3HxNEo/GF76MxNmultvxUr6w+nvFDtSkfR6ZhYHex54vPv2Cz23G+fMXr/TXTMJKmidT35JgYxp6uP4mwdd/Tnc8aRw30XSfFbYOANxjqtqLZSHtq14+cu0EBoklcSDGqHxjAiGlKjALcpjwwTEec80yx59Q/4n3NoX9gf77F+4qL/TW77QXOerbNjla1ZTdtQ1tXOGfZbhxNI/H0pvU0lRczm0ocjVMcmLqBOB45Hu/54x/+PR/ef8/pfOL77//E/f0dJoGPBpvAe8/HpsFXFU0rjJ9209L33Yvdw//sP/uXuWm3NBdXNJ99SXscGA+PHJNhOp0YcuQYRgV+4JgNAcObL77gH/7F/5jd9TXdMHI4d2KcMI38m3/935FT4vJix6tX19R1xfXVDf/Rt99RNw2XFxfc3NzI/pYTNklh8d/+v/9r/r85cTocePxwy8PxJK2B1vC6aUjANia2Qd2xYyRHUXGVDggVFSez07l3XRkuvaG2hjet56Zx1M7yZrvlumlp65pv3rzms6tLnBen5PvTxBgC7x4fuT+fGabAx8czx66nGyNv70/cn0aGDHcBTskQrKWrarITZ8DN9gJTNZiUYYqYWMgHBen+y8ffBPwYYyodAP/HnPP/WZ9+a4z5SpG/r4B3f+19mrrmP/rNt/TDyOPNgUFF7+IkCcM0TnRdRwiR87nj/uF+pgEfj4dZsLNQYcdppOu62R1riuLcUleeVtvBtpuWi90W7x2Xlxe8uhYK9OvXb/jss89FE+j6kpvhWu3iW7bbFmsdTWMwdT1XTb1SR1I0ZBSEWlf15orKiuIKmlzkeQP3tiTFVivKjjc3r7naX2KMpWpEY6O0IYRpwhrDq5srbq4u2W+3dKcjVxd73r3/wMPjo7R8TIF07ohpetJ2Vm7jS9zDlDLnYcT7TLYe52VzsrrhG1fRbPf4GPD1Bt+0xBjZblqadouvBPU0RjbPynkqV5FC4OLignazpa4qkoskBX6wDus9MUVs5TFVhXGGtmnZbDZabfM44zHr/wpgpwLBzollojHKIvKOdhi5fn3i6nbEnjrch8BkekLKpKkhRa8VlJo4Q6nKS8kJmycsAUcSHRJbU28b9pfXXL++ZtvWNG2D9QX4kcp6zJFhGJhCYcO42XmlqmShzzkr02FJol5qLgosLAwlXzX4OlPVLXXbUlcNyYg+TDaGkAMcM2kSsbUxCHA1gy6lspeKTgeUWo0xC5DzNNIz899m/v/C35HHxUkLZT+Vjd8uv18yUmPAVGArYSeYSl3ZCghYgiZprTPz83Kuaw2CYg9tjCQdij4tAA+GlL0yfmShzcZgifjcY/NEayI3zrLd7klpIk4nwjgDPy8yF8uRkmj79F0nOjWttNxtNhvevHnN5eWFtFQoeF5sy1NKbLctlbcz2DONvYImKpTvRLw5BFnbxnGYQfjT6cTx8KhaHwNj3xNT4nQ6cjgepf3q3HE6nTHA69dveP3qDXVd8+p6Il/LfDodT5xPZwF+zgr8KLshG6PsFkm+pilyd/fI7e0tMabZqtd7x831BU3TaCIsVcgUI722tKQo3y9Msk8IA0TuddEfEuC1CPhLe4rRfwuItCSbLzkXZ4anJgM2R2ENZFl9YugE1IiS5FmrbV/1Fl85AgaTHCkbmrqmrVuqumLTbgRsqyrZL7UtuOs6jvcPhDiRi/g1WcTwNdlch9sZbRScAVOZ2151u2RvE3r6cpTqtlnvQ8sqkPKssfUEKHrycA322J++YH1kFcnMMl6HYWIYJkIYOXdnxqlX6/onFc0XuocKOGlSXsA05nahTAxaTbcO6yqwYpvdNp7oLSlHhqmhqhzDMAqYqu0yIUrLua8rcpbCQHJWKs9GKtBTFqOK89BzOAmz2Ctb1lrLdrNhq5oS281Gi0uOtpU2SmctbbWVMT+3jSu4nRUKzYlpHGZW3vGwmTWBQgiSgIWgjEvRctvsWuq2pq48N1cXEo8Zy87VtHYVgmYpholAvewp1qBMNb2uJGxOWC24fIr7CCIvOGmr/xQKCKuAUEgz8DOMApDs91v2uw27bcvtw5EPD9I63tYO13q8NQK2jCMWmKZA6juc89QX1zTXn2N9RRwtnTFgHc6W1mgpDFW+FNmU8ZXUPGOaiJOwKo2VRqC6bthspMhZnGezsllmwfuUiFlYBFM2jMkxToH7hyOP9w+ElDiFiT6mFaiziA+XmSn1zoWbUYCflBeGZFkDnjB/8lPw56XuoQG8t8S4cgEtQJNRaYdtjfPClDPDKHvJKOt7jAv73K4KwMbAgCVNEr+J/J8UD4QBowzKJ9GOVeBHnNuGfiTnJOCTL/uNaAxhRJuzyEssXAMxw3R6za018+NkpZVZWvdHcdbNmTFkppgFKPaX1K7C15b95Y5Xr25wxlGlGp8ruq6jP3fESTRvNKSTsmay85o6RZkX1kFlo4jIm0RtE95+mjWVOeY2M2g470xmqSOUAo+0OHtev3rD5c01w8U1N/srwhTI00QaxRGv6ztOnTBHTscDD/f3hGnkeDySjchvmFJAsobtrmV3sZU17eHAOA3EkHU/kXZYWYWVrZc0RsYwxR4zylo6hIFjf8D7ii6eOY4HfFVzHM5s+xuc9bT1BU21E+C+aalrsf/e7Ro2TUVVOa73lt1G3MC88dTOkXJgHEbG84nDwwNvf/gTf/rzP9L3He8/vON4PGAiuAlsYM5HrTU0bcPjjQA/4zC83Fw0lqrZUG33NK/e0Bx7Jt9wOnZ0yTGkiWMYmHJkzJlTFi2dL1+/5tv/5D/hzedfcH9/z9sf39J1He9+/J7f/+M/0p1PXF5e8Pr1DZu25V/8i3/JN//yf8L1zQ2ff/EF33z3G5qm0fkjexZp4sc//h5XV5yPJ4ZpIk4Tu7bhoqox1tCESO1kbTyPiS5Kjh9IjDrYagOVgdrCm8ryeW1pveXrfcXn24qm8nx5dcWb/YWAehfXbHd7MoYuw7ELnIaBP7174Ie7B/op8P544rEbGELi42niOAYmLAcrbcPGG0xbi1B1VdNs91TthjRNTKeOlMY5z/k5QP358be4ehng/wD8dznn//3qR/858L8G/nf69//lb3gv6kqqD23bYJ1arVZSjZ2qMCu0S8tXZBxHKidtB5P2gxuMtHCZQvETKrcJkix7FXPJiD3mMEprgFO6oojNSgWrriuhjcWArzzbzZZh0IBos2W7iVhFzWNdycKjrjKwBMAzrRRJVorloFRLVf3dGKXerm5OoX4qRdjY9WuMVj8XGi8GvHOqBbTj3PVcXOy50LavfpIqp/xqAaMywG+B/+Il7qEAE34RsDaLVk0FxFQRo7YWaPLVto1qc/i5UpRSUnqzvGaz2Yp7mvdk60hW+vyzMSSjr/cOW3utZDSq+2HndrD5PiirajlHBQ+sfAe3SrSqqqbdtEwx69hws8BoKjobxVozo3/PndXC5nKWuq7ZqrDqfr/j8mJP21S0m1bFjlFnM7DRSaJZxFOtm5O/uqqWuWHVfno5XmQuSgDU4FzCuRrnomiIWKeVLgPWkoyhdpbGe3KVsEZosQaplqW4jM8n1fo1E6585i/ka+vin0EMLOTxCvgx6iwxw0Qr4KeEoAr2iA5TRVbB6Bn4AW1RLIwFeV+h7UcFrrIGb1mxHqsSBgX4KUGtF5HNZ8BPZhAAyCZiFYlOtCKklSW98FxEneLsnIAXfSXnRQi/aURI1VkRuEspKs1dtB6aul50yVSrYEnSBfwLIROC3O/C8okxcj6fOB2PcztXUEetYZjUoro49oj7RmFs5GwYp8D5LJWl7twJ4B+lgl3AGKfaFNYKzT6EOL9nCJq8hDi718yCuAbIQsiOqh0nFfFyPnJOoj2UlKywgH5kq+utrBWWBcB8drzMXKSs02l1jUr1uLSYSJtlRlpRU5KgiqTJb06sZgJz+1aJjI1RgLmskaqvFNVJSCkNpUWk7K1Zk/Gkf2A1V8s11+ufvZPWyNWL1nNufro8zvP2pz97yuApj56tIk+eLdevtN7EZIgRHSPljzDHRAC3uL8kZXa90D3MC2vp5w717ViSbxPBWBmDK1Fo0RAR8LGqKmwSx77y/dD7Kom2rlc6RnPRgrGQk+yZUVlD1hoGazWR1XuUswK7co2stsAX4K/s16AtR0bFwDVhlwKKU0FQYaKFnNWpUtx2rLPa3u20VWTJ1tYdivORlrG2XoPRNcSq+6tO1vVvvsh9FBCjsFiWVqr5LmZhk+VUrsPiDLUMUTPHb/Naqqcckfeeooh5OxuhHvBDR44RaR2uwMl9lUud5/MpDARjRLtKrkGJFVkVI3VvmNetZR2R8SNMuGkamcaRcRhnvbgxTFJdV9viub2k7NN5uW1Zx1HmJ6oCP722BfBZ/U7Z/PUav9A9FPAwBGHYTFNgChNhCoQpYJyjfqKppvGEFtpCKGCVtso6AxpD5hn9NsraqTAmEX3C+0XbTpiasC5SzSxnRVfKf8U12BhhLRurJiIlaCWLCY5qzTmrgr8oIFSAPZPBCitNAKCIyVYYgwruB2XRYjKVrSmux3VT024auX6an6RsVPPEEGIijdJA5hzqngveGSqf8U9lRV5oX2TeK/QfrBeM9fTPSdx/C6NXRLgNtffkzUZyzBCIlSdHsdnGZckbDXN+aa0BdQqVj5cC4Gbbst1uBPwbRuqqIhBAnamywn1LjdBSio0C6vl5rJU1NEYZlxkYpwE/9tq+UwMSixvrycaLjEIfidlQh4x3wjwO3rL1mcY6YpnLavDR973auPeMw8Q0BkyCPBlMlHMtrtYYS9f1el7xRe+hFOA9vmmoNxuqYcBvtriQcHHETYaUAjaJCyK6rpa4oa5q9irm3J+PXFxe4J2lbTcSGyKi3L26XA7jSIhRDRFUPF3bPeZ2PJY1XlzdZK7YLDIgzhiiFldizkxZonvIbJyhtcLyuWo9142j8dLWtW08jVc2lsavMSf6aSICxyBg0mkYeexHDsPIMEVOY+Q0JcaY6LOITE9GW7usJVunPSarGZDnFXTRYMwLi/ovHX8L4+d/BvyvgP/GGPNf63P/W735/ydjzP8G+APwv/xrb2St5WK3Zbtp2W02xCRIafkTQhAWUEz0/cDxeGSaAsfjgduPtwyadBxPR60uJXGOyDKBpzCp0JoMfkHPJx4OYqF5e38E3mKATduw3bQ477i42HN1tcdXnsvLC64uL/FVxc31Ddc3osZ+ub/gcr8XQKiuaGtZNJumoakrHdxi0SbXPzPLkc3VU9U20ZAthjBX8jB2tvouf+b3CbIRlEC+8p4vv/icy/2e6+sb+mHi1as33N7fk//dPxLiRxFnHKUqNw1ngNfA//zvvYfeez578wazPl+jQn/WkBLsdSFMc9Cacc5Se0GXCyU2Z9nQomoTFOHuOThMACUxCbpfavsNxammJDK6qfJ0ryhAmsRGqodhmMWFwfLq5oZhhMfjmR/ePbL74ZZhjJwG6McAWGGPlLY2CniglccMra/46otLPn+95fpiy7/8H/2G7755Q+Utm8ZS18tGbTXQiXFl/26LHsfCOEjKSljpiux5obnobMXVxZdU9sR0trh8pq4ammpL5WvBOJQd1exafLpimgL9MHE4DUwhMYwTp6kvG0WJimatmAIESYW9gEKqGUIkoYu8ZDVyv1KenzPqtie3MyngWsCfwtpZCz17DZQMxnr5Y54m7Zpi6z/Kv1bOF2RQQEDGD6tod7XQrllHRqpj1mQqm3AmE2tPs9+QG7mWVk/t4e4WXmguGmNo25qcM9fXl3Pl/uJiT1VVvHp1w5s3r9lf7MmlpTZLu17UedluWjaNOEBN48jtxw/KiFIXkWyYxsjQyXp77mT9FX21kX4YBGyvKioFxvuhp+t7DeYtTbPDOkfb7mnaC5y1PDycePfujhQjw9CLowiolpOsLZvtht3+AoBxnDgcTkxT4HweGPpJW2CE8RN9out6nOqqpRTIScRyu/OZcejnezgnUjMQJ0kyel+LJoIxBq+AvJ3B4nlxebG5KHNkFCBl9lNPMwBprcEkWcOSBYImBFHaerNz5JQxSUyWUwiM/UAMkboVEWGbMlXd0Gy2AqINA3cRwrTYm5MzboyMLmCM6CrJuls0kMSpLWuCaQBfeW1NNWyamrapKUxLuwLfS+uqtbIHSPJq52LGXOhgae+cE9r138/gt7LHJG1h67rINImWyunUC+Mnjpz7E1MYEJWOqN8j8mL3cD6eMk6LbltKiOh5FNvgOI1kDGOIDKO0duWUaSpP5R1tU7Pf7kgZ+kHa3kOQ9pxJ3XfyClzITY1rN1LZqCpsLbbuMQitnAxdd+bhUVgQoishTKDK6z00AvzUVS1MnXajrWFaeW5qBQ/VzpxM3YhZgbDIzuR+IEeDb2qqJO0wdV3TVAIw55CYuoFsLZNLAkRSHIzM3OI5pYh1jqqtRX/IOmHMJkdIaQ729Xi5uYiAZVNMjEH0F5LGZ8ZJu/lw7qRoYxD9PlPjq0rZQIFExntHnSu8L3s74gik4/c8TORDBxkuzyPX5150Hi9vaG/eYKsK2+5wdTUDXyGFBSxhEU923uGjtOmM0zQDdKVtMxVWgsaSSVsfDo8P3N9+YBh63r/9kbuPHwghcOwGujBJu3tKBMGbqCjy0ov20VxYzAI82qRuaJl5DixnDKWQuZou8rTs/y9yD2OMHA53nM8jt7cH+m5iGAPH08g0RfaXWza7etaNtKaApOJqN45hpRdpZ2c0a624ZSWDwVNXFU29JQNDM9DUUhAZS/6h4uwK5eNsTV3JnlOcTJ137PdXvHn9WoreGTVGEU0sV1WkGHm4v+Xx/g6AbVvTNhJveyeGBZlMyIGYImMIhI8PnMaJFAPnvhd9qWlku6khR5qq5rMLx2ZT024q3nx+zeWVtEnPwE+EfpR1dRgm7u4fOXc9Te25vGpp2wpnI5UbsHZm373cXJSFCvU015wBLfY9TW5jmOhP0nIazh0+JJps2G62VBfXWqSQcZ+TsKPGsROHw77jfDqIBs/5xPnwqKzDoACQtHyLpmLixx/eYbJhGEbOXc/pJICJcUbdZw2+anFVI2PISSyKNRhfSZyaLeM4kc8nrHPibjV2OFfRtj1N0+NsTRsy9SR5CgfJRbwzXG0tu8aybSzDK89w4UlTR3f/lul8x+3tB97+8I4f/vyOcZx4PBzp+x6boUoGl5j3J2MMtps4dQPWOzXveZl7aIzBGU+z2XL95Zck66mvrplsxeZ4oht77PmRMYy4YaA/HsUR1jqmcWIcRi4u9nz15ec45/jw/hu++vJzOm3xPx5PpBQ5dQP/7nf/yGaz4dCdsLVju93Sbhq2243c2ynQJeiyYUjivhdDYBoMo7aFVs5RO7lXF6YiVlKg73OgT9J5c916rlpP4yxf7zd8vm3w1rCvLRsvZIJtu8O3G2KCd92Z08ORMSY+nAce+pF+CvzweOL23DPGzP0QOAVZa7tkmZwjW0usW3CVFOGtSJCQMjFErBWGbSITS44S45xL/aXjb3H1+r/xPNpajv/FX/2E1eGsZbdpJXHaokGttPEYY2fqvlSWR87nbrbsbZuWvu85n0+0Dy3TJG0ThVY5RQleY0qczyceHx+kNex45NSdVOyq53ySgSJOWxJU7/cbLi5EE+Hm5pqbV9c0dcNnn3/OF198QVPXvHn1mr6AQLsdeb9TZzCLNRL4Vl4tIRHMQnIKo1U4BSX0WoizgloKavJhVqyPpeK6akPRP947sT6/vma723E892z3e358+44f3r3n7uGBaZJgfZrG0vLy/8w5/0//7nvoHNfX15If63PGWqwK3KJVC/3JU3RSAm0RZtQNUey7NXgtST8lxDdL1X1Gcxb9h/mFT8pPq8T++WESEOdEQzZly+XFnpAEQb662EsyzcR5CEp/zTgPhhXIpP8Vh4Xae16/uuY337zm5nrPf/wff8c//OYLAZryiPSBr+ECM+MJM+PHLBbmVoPgECQp0OOY16IXT49/5n307HevManh3E7kKFoAtW+1xQcqLyybmoYaQwiJUzfgkmWYAqckqvwpCgNovtsxkFXQNykro4A+kmxlEhMxizhtjknEOTIS9ZTHOeof2fTnxyuwWJJyp9dTaejleXWOKYLnGXWZKlouaNU/Z2IKKvCXBPhJ6j5lVoMrL7bgT8eV/NxaQyiBWLuhi28wmx2uctTbBld7Lm+u4IXmYqnK52yI+0zTBNq25fr6irquubm55ur6iv1+J9e0VFNgFrctulIYAd67/kxMmRQS0yhsgbGb6E8jMSSOpxMPjw+zhXBQUfntfs/F5QXWOqYwMer63DQNjTrF1c2WuhaHvePpgXdv34kl8jQwqSX0Zr9js9tSYal8y8X+Stp6hzvOp17a1PqRcQxapRNwJ6XE0A94J2MlTIPS9ifOpxPj0GOQ1ho3i3Wz/F1YopKhI5psOh8V8BHR3fnyv9hczGRSDs9jWZlTWnk1mqCI8Dxzkpww6uKggDSGHKUFJKUFOE5ZgPXNdocxhsPdHTlBmJI4Lw5aKbUR52SdLiwuaYsbCUGAw5SLzh4Li9Na4nZD3rZzm7HzVtYx52Zmo3cOnJfZa7VwgFbkyrqs85VS8Z5BoafAz9IyUphd4gbaD0HbxXthnsWRbuiZQi8grCu325HSy9zD53cOdN+yqCKkrB8FeB217WsKcq9iymAdtbbzWCu9/GA4qhbBZCe6XtqFYozKTlEmcUo01mGcAyegjzUwhcAw9OqAo/N1HnfMoIszhW2qDEHn2O/37Hd7KY7tL9juSmtYQ92og2MtWkEhREKKoktkFBCMFcXlsaoqYSXFNFvER2+IToXUncMU4dVpYAwBX1X4tpHEqXiXZ7G0L99dj5ebi1laNGJMTNouI4fVuRjohpEQAk1Ts9/WUtn1BfhJWuhy+CxTsxg0ZKSKmzIM40T/eBaHoWGgGjoV/8y0mw02C6W/SDaUc5JzfBoPOgWnS/uqMcK0tqpLmVKcCzExBlKcGCexe7+/u2MYOm4/fuTjhw/ElOmztH5llKEE2GzwUianMIsKE7kIRGfA51V8ZtbzNc/X98k6p9u5tZaXuocpRU7nA6fTwOPjA+ezAD6n88Q0JVxlyPla9TbjXBgSN+GOvh/XdR6apiXFncZlHo8AoL7y1LW0Fld+wLtamLDdmRiz5hnLLuOsp/L1vG5J3OfZbnZcX78S5hwq3moMjRZygorQdqczkNlstux2rWj5ORGHx2gpLWf6YeD+eFYB4kw/DqqXN/FwEIbStt1wvbvUeqbjurkA9staa1AgXTSuzueOrj8zjlDXlotdy27fisyBsVgzt0C/2FwUmllhSAn4iZHt2eSn+E+KkbHrMDkT+x4XE1WGbdNycS15W4xRyAE5iaBxFIZymAaG4Swt8/2Z7iTad0HjEpnPEteVePb0eKLX4tbQS95pnbZDGktdNdTNXoGfSpg7GKLNWmQyoj/XdxhrCSkwhDPOVYwR2pixrmHMLXXckJJhmCamSYrHD5vEts7sW0NLhU8C/PT3d0znO+7vbrn9cMfHd3ei29UPjGPAAXU2eAobqRRWMvlYrm98sbkot1HavfavXhOtx262dDFTHc9U/Zn42DCMA/F0xE+BYEYwVli748ju5pp/+O1v2W43fP7Za26ur+i7jrfv3vOHP/yRruvpx4k/fv+9EAG84/r1NXuNSXGQU6IPkSEbBrWLjzGJhEAWhqOzqo+o8Yx4t3gyWVphMXgLX1y0vNnVtN7x1eWezy+2s9mAlYQDU7UYXxOmwN3jibePR7ox8P3DiQ/HnjEmPvYThzEyZThEwzkJVhCdFxc/63GV7AOgOEJW8xllWscokgBzVhLTKmf55eOf5er1dx9GgAPZP1QPxNoZdcy2VJLS7IBkraFuajabdgZDpkLdz8v7+BiEVqX99dM0UVWBXHq1pwljnFJ1VYk+R11bVLE/iU276AwF2sOBupZASIgAkcp7hr5jGHq8c8pCGnDO0qxo0oUJgzEYrwHZarLltDA+lp1wubGF3RNL4p/z4nCWpKKZYpypbaJ/FBYB7DnR/uuD4J99pALgFDBL7dMpigxZN/11s08JCJQSycLEmOmRRn9DAbN55Xk2kAVMkcd52VdXnzE/8STGMBTmCcJbFr9LnDXU3ok2VFuxVRG3U5ewTEo8kvGiJRGttCaczXj9/W1Ts9+17DYiyFZXYrGYk5sr5OVqyHWU72aQhDMiYyxMEwYReJ2U2fbSR0qJvutFZ2gcRbQ2iWpNdE5YKy5hreiqSAIl4oZxGkhTIE8jhBFC0JxMx0BKi9tLSpgUmFtXcgklAyZPEg5nAXsKQ4iiC1CAlsIUUuDQ5GXAWOxK+ycjLkcLxd3o62WsZb3oAuiIxkAunB8oTQY5iuMRUFhBBfhZQMXn0atUAoXdZ0hRtEWm4EnGY6JREcCXO6y1tG2Ls7rOTdJS2bbSWihtiwsBf66+LtNT1jVtIYghKmAgG2KY4uyeiOoYOIu41xgWITkjzzl17Vuz8pqmpW02s3bNFERfZwpSnYypuP/IfYspzrpXYsEdZgBUNHmCFgKdsGNyxpg8a/KsXcbkTiwCxNaI6LV3hmU26h20BUhcGHcF9JHfRdpWzNPfe6njOVhtVs8WzSzJkfL8WHRPor6y3FAJPMI0KWA20vdakTRWNJD0Ws0OfrLwzmt1nu1jCotSCzRWLH5JaWZIldcX0l4s7kImYdRBLecsNG7JnHFJBqATR+oZTLNaJDEwq/Cv8P5l5s3FECmejOMkWichiXWx6pdYI86AGU2ArdX1dklUX/JYM33m4kCpqGpMYHOWNctK5WRxH5K1T9hmBqPtFNZKG0irGjwpRgZrn7bxASTVn0qJYCyTfu40DnOVOyr4k+Vky/9wSejva2akc5a+lwDYl0JETlgn9s/1KIznqhK78Jik9bPr+rlFf5omnLNMo6zRFhkPEfDG4mIiWWn99soKCynRTyNjDEQydpzIVpw6nbbPpFzG/wvfQD3K2Jhb8yjzoTgAJkKMNBltrRVNvhClDVOEYQvTp+wfuvvk0pKYmVIWkFYfmyxx6zh0xJyofY0ZW4zzZBylbaiwwYsmmSkOlggYY/ICsGS0NTAlZYEPTGMvLbvdmb7vpMUrBIK6TqX8rKXg+fFsCVyDUE/avllp+ZT5Vv6XV++Tf7r+/T1HAezLNcm6vyznxVxks0bWhrwutipQLq10ss+Oo7Ydk0imtC4nBa2NyEWk0uqVy4koo85gLDgn+09pCwIzsyFTYeFKpVNEgaMIxKeUMZQ23Uzbtuz3e5wVvSLnZG72YWQMEy4mvK+pqlpC3TnHsipOHvB2out7TvV5Llo7J+C789pxYDM+QrYJHzyuEmFnAbxqmrrBGLkmP9sI/SI3U+ljej3LpH8+WopphZvECOh8PHJqW8jQbDbMLZCmuGFZwONsIifJHQ1ZC++ypxntChCGVjFeEK3a7XYzz/kwqSOoMSLrYawCcqvahStzyqxapiV+LULiTuVHnFvFHur6aIzBRYgu44z6tuVIijD0E+cz5Kln6M+EoWccR42XMiFmYpC6H8j6W5b/knuhQFo2L7svGiM6gFVd0W42EpfExP5CioSu8SQrer3Ge/ppwvc9ddPoPjLNrrDzXqodMeJQV6s0QJpfezgc+PD+w2z8MSlwejgcZgkCg8jOpJypTMaRcYAn48nYnGSse4kZoq1Iasx02Vbs60olMBzerNiqOZGjIcSJZAVseuhHHvuJfgocxsBxCkwx00cYVcw6Oy8dKMZiVOrEOI+ra6zOY1mXhVgh3SDFkS5r6/diDvLXjl8V+LFGBAaLxWrKy4ZYpkRpx/Hest215CQMl8p7pmni3HU8Pl4KxT8qzTsvTjWxgDd9R4pRFrfTmaCClqfTSaoekySwAo4EcpqATNePdP17jDG8/3ArehnOst/u2O22eOe5urzgUt2kLvZ79vs93jku9nt2u62Icm1amkZo0pvdlqZtZ8HEUnEuoSKanBirAfgwkUkKRE1KO0yzHe00TRwOB/q+5/Fw5I9//CMf7u64vb3jdDoJCDRpALyq8L3IkSKhO2Ct9PaLHo6VFp0CdGVh1WQMC0ajCf6cdOrgnBdLKNFciQ3KmRuFbGQfL4hPAYmebQSrJIknzwlgVJgpJbfJGRoHV/sabxNff37F/XefcTz1xPCO0/GR0qlE0g1O389a2O0M28bz6rLhN19e8z/47gsudi1vrrdctGL3LU6RYqUsj40GI0EDycA4DnNy253PynxLz1u9XuwYh4E//u53jH3H4eGBcRgkUZqpyQldkrT6GeeK5jBIcDsMI/F0JodQ9K71eidsXEBKEwILa0cupiVgCAK4JM0ayavHPAVdZnBGRdHV2ct5VFC2JFB6r9VpTR4XynkW/Yuy8WowlHIiTEYEjFMm5kDORYhZzTvzelMs9rdlYOU5gy1MPxMyh/M9fehwtaPKLa5+2eW2qiq++upLYsxMo4jWerVMdk40fqwVrTST8sykmoNz8mIJTGacRs69COCmkATcyxmPZVN5qAxNtWW3rVVAMjFoG2q73bHZ70XXwxbNL0NTtzR1Axj6fuTj3a1Q8c8HxjSRiEQbyZWcQz91jHEUhlBb47wlpczj4z2Hw0HOx1uurvca7E0quJwgjQzFSciUFiODs1s2rSTOde3VMlVGxpzQlZFiJBkvLDGnj6W6+qTV6wWPTEaBxp9s2rr2aSJnTMIaCVwChpx7rfDr98HA6KCTSuIwTXTjRFXX3Lx6hTFo9TNQ1xWkVthSZlgA7cLC8RbnKlmLY6DyQRkRpXUEBejlc2O0jCNYI0LcM/0/ixk0piQYogtXVTXel9awhRWUZgDRan++JEsimIw6C/ZzseN87hiHURk0EugKYFKx2dRMk8XYkVG1BMZpmFtfXuzQ8SYYmiQIJsk6X3RNmpyJyeNTwjqp1Nmp7AGGKcb5e1TOcbHdUNU1m7Zhv90SYuT29o40jQyDGmOUQs840o8jYBic5eRExydqwQjd8+Ztd24nN4hHowJF00DRGjydTyL0bIrej7SXVJUYIwjjR4AfaV2P8/mUApy1hlPl8V7cNisjQac1htZ6vLHaRilzNWUYlbng65rdNFG3LZVzbDee2jtCTMKA+QTAT87CdAgxEVImzIU5uXDjFDn3ooWz3Wx4dX3BxX5LPwwczmfVV5TkpLFe9w4935RnUHIIkWNZs0Nmk6FOMByPdGHCOc/26ob90OGqmnp7Sb27xFiH8x6rWpnJwBAnTVClMIOxCkQEiEjrUd8TwsTdx/c83H9kHAbev/uR24/vmULgcO7okkbhRsBSYG6vXnDeBa2RcE3ApqJzMmlr6BpkQeduYWjN4PknAu6sNWx3jRYQIOei5SYJYlkDG9XVSTkRgqM6nckpEMJACJFpHEkp0/ee7nTWIrXHGWmL9Jp4mqKxo/uouAZKy1vbNlxebtRkRPdFWFiTBipfcTicBGSfW9QNQxNo6qBOXYbtdov3nm+++YZvvv5CdcAkOR2niR/ev+f93S3Z1FxcTUy5ooii5yTs0X5MxHDi5HvCEPjw8SNNU/P69bU4HhtxlaqaBpeANlNHoLZsTzumlNjvN9y8fsXV5Z6cJ3I8kfP4l2/Kf8ihRXOS3EPtuVxyBZbhGOPE+Xhg7M+8/f57/s1/+99yeXXJzZvP+Pq3v2Wz3dFuNuwu9jgvDoalXZUUiaMlKqsoahw+A3swC62TPa9evcIbpzIkJ46HIyFGjt2Zo7aBGufACsvfOId1mZwNfUikkAGLtxXeb7DesWm3NJsNznnazQV1s8W5mu22pWkbcoZhEqF5Q6BhpDI9OU7cfrhn+HiGOJH6A4wd9/cPHA8DfZeZAvS9YRhFFDxYiY+sMVgnsU3GiEYUixzDSxzWWvb7Hc5YiImue0V3PHNzdU3fDUxxpBs6Qgzc3t/xxz//mfO5o6pq+q4nTB/YbFq6sxiXDINodoUY8d5zdXXJZrPh8fDA7e0HkQI4HfnjH39P5T1X11e8fv0aYyw//OFPfHx/y9j1VNbx5ZvXEAK2P2O7MyYnNkQ2acBZy2XTcLUXIK7ZNzRblXcBGiM6QDtfU2dHSonHLvDYj0wpcTdEHsfIEBNvTz233cgQE++7kYchEDEMOCbjxVFzs+eibsA5XN1IS6C14EWrNCNxTQGkx2Ei9qc5nieLPm2zqSWuA97+hfvy6wI/VhxHUkpMdlIGC6tNYfnjvcEYWZh95anqWvvIe9pmo0Ff0bGRCswwTnMwJHo/mWEc6YZxdjI5nUSMdBw6pu4k4FB3oDtLj+e5O3I6Hyk2t0mBk0aZP945Lq+uuLwQu/jLiwsu9nvVBLrm6vKSynsuLi8FEKo8l1dX7FQfaHFBsVS+mh9jLDbLBlIq2ymp81Op3iqK2/c9Hz9+5Hg8cjieePf+HXcPjzw8PNL3vbY4hFm89CWPnBNxOGN8hXUGZzU4yLKYleRBAKA1ILPUkGR90QW8VHmfJzyrimzOqyJTXlkAPxFeZH7R+rn1jy3Sl//8fOrZFazmzc2Or7645nA48/7DLd6Mus9of3fWqkMG6y2ta7hoPVfbis9v9nzzxQ3btuZ637BpLORMjE6c4DIEDCmiLIcISYRI+06qcMPQc3d3R9d1T/QrXvoI08T7H35gmkaG80kYPzlBlsBN2p0miiNNUi0qIecIs2oaxR6TGIUx4Qqot9wjI5ZQ+lxh1SgwQ/msPF9TCuuH9T3XMNOUwFHbt4yIClZe2RqmBAJ6b5+8j1m9ITPTT3SpLKO+fTYZExPRREyWykoZJ3L2hbSvm6TJixo1S1fHlDLnAVzsccFT2REbX3a59d7z5s3rpYsrMbfZFJaBNUbFY/PsorR2WxE9C0no+3GYK/ZFE4iccXVDXYswfm4qsKprECJ9EA2MerOh2YqWT13X1Oos1tSNuMSlzI8/vuPxIO6Mw9gTUiCRyCYJHVfBpxgEwNoct1K1zJnT6UTXnTDWsttuaTctAGEatX0h0J1Hxn6U711JBcUYaSUWBxZL24itrYwBMyflabXeLIpsULhBpf/70wA/CiXOoOVyBmUNnb1idIxikHZKVV6V0ShvkDBqwWsYpkA/TTgvrjSXlxfkthGrbO/JdcKNIkAlacuibSEtuKqnFqO2QkoLWLSRWRxRW+NStIQgCUaMGWe12p5GYpwk4fJ2Bg1S3JCqJI+9xyWvVXdhWct8l0pszmj7RFZwvKfve63wiX6BXAcpPlRVzXbT0DQ1o4eYaqxJTEHAjfwJ1tSS8NtZ+B9sFuDSOSeikdrqla0R5lOG4EXHLIRAGEdCSrDLYuXbbmibxG67E4bwFHi8uwUV5Ba9G1nPh3EUoH0+IaSYVNhTqp+FQUA2BdrmsGv1PVZvsf6GAqoW8eYC/FRLC7RVMKkwGYxBdbJk3fZGGfTGUGFxCpIV9kU2kJyIVFd1zYShHidl1WylnXYWXX7xWwjo+qhje5FLkAdTjPTDxDBIonux3/Lq+pKP94+8u33g3PWqzyS6aTkZciwt+7J3io5RoguJEBNtzJy1/WDszgynA85AigFnDVXdiJnG/lJYI3WFb4XF0E/TfK1LK5eAsIGYIyabWcR5HAYe7m959+P3DMPAx4/vub+7lfauBGMu99gq00K/d9lHV4OhgD5F66cAGVbj5edM8/Weg/10zEk5T0PT1FTVoF9DApdSrjFm0YeUhKqaW+xzFl2zMImbsBgHOIzpkBjD42yNQdYxX1WI7tXiyCjsBGEo1HXNbrenqnRfVA20UpTNOdP3PV3XS5yrbUHCeM2EaWGpN01L09S8efOG3/zmO6rKU9WWqnJ0fc95itwfO1L2bLaBi+xIKp8RQiCnyDR29NOAs4ax66m9Zbvd4DcOv/U0HqgsfiMt5EbFnaPJNLuWZhxpd1v2l5dcXV+R4kiYHCkNn+ZeFtkIazWXeTZuFASKMTB0Z0ZjuP/wgT81DdvtlvO5o95s2F1ccHl9Tbvb4o3oflZa5IxuZDCy5pgsALbkfUXku7R8y/29vLhg2zSieXg6S7E9BD7e3WHvb8VEAInxMRnrEtbJHAgpM+ncEDeuFus8bb2jbbc452majbgsuppNW9NuPDmD94EpgskGGyZs6sih4/D4I6fhFpMiNozYGDg8nui7kXGEKcAwwDhJjJyctIsZi16L4rYHq7r2ixzFXdarlMU0TvTdwG63ZxxGYo7CjsmJDx8/UjUNx+OJ87nj8eHA6XTm5uZEPww0Y6OgjxAgnHPs9jvqKXA6Hzifz3Rdx4f37+i7MwDX19e8efMG7z3d44nz/RFi4Mo6rq+ucCkSHzJx7CFlWhJNynhjuKkaPt856tpz+WrH5c2FAMVDIE/Smu+i5O1jNHR94PYw0IfInw9n3p1Ev+fjGHgIkTFl7sbEY8gSb9UVuIrK1dTbPZvtHus9VbvBVeJOHK0lGatFdykaTMPI+dzTd4PEprr3eu+pvWfTNH/1vvy6rV56PIkzNDixWZLr0uoFKwtKmFsWKi8iW+JOIZtMjMIqmEEk76VfNmdc5cUKPEZSjvS9EzosMtDFmcHoxikofl3XKoiXSPoZzleyCBW6ZAikDOd+AOvwfsRaR0oZ7z1jjPTDiK88wxQ4d732u3up2BhLVTUz8OPVASOnzDQNIlodI/3QM00ieD2OIyEG+n7g9vaW0+nI6dxxd3/Pw+OB4+k0vybGQgV/2QAphsDdx49qG70RFNxYvTYl8zZzMrJeqNc2jOXZEjA+P/TMWf2KPn4KEuQ8/2AF/Mhzz793IaUsZ6YJvXUk4xjGifPpkWk4E6YOYo9l0mqzVNWNZIlaBNS+45RIoWfoRBguTZ4HP5KnRiuhhWoNYcqiv5WkohRjYJomTqeDWGX3A3d3t5y7szAa4lM795c6ck6M41ksMENPjALy5GJJqn3QRYRb3LvkUpciqLAUAqKdtOA2CxdGUlZh3ijVlqT4TXFCyEsF5wlSWHBBo73c5X4qqFhaEwrIiPJWNZHJc6Cn51HAusKsU0qllR0ZG5N8DWMxbhIVXXX8MjnNZIplpK6CYWP0ZyvzaSPfOGmLms2RnH46zv/eoyz82UC26+Bc74AmHKIouzB+kgolFvZGcXNYrKgX/SN5HFd4mlznlMQZJgFmcpjJY6OsY1WuQKsT0YqobQGki2OG8x5HVpcFZS6kcQY7x2mg686Qs6yBKl5slXUg51Mq0nluz7LWaDVUXN0Kg8dpa4qv/Dy2fg74me8tULg01hicd7hPkbCUBH3972yWOSE3kjL888x/tPJYaRwF/MnrwZpVG8RExmHgdDoyhZHz+cQw9Op4NkjwFZdAV5hFtmAGeloyzqzVq5IzxmZyVl0tX1g7op83MyxNeU8BDZY2Oo/T6rY1bgacjHFQWlv0OTlmVbkCx1ES1dJWXfYfa83sJuWzw/uKmKXNyftK2mjjy93LhVUo52M14RQQSBJPq5M0ZWFFZZNn56XSjiE6AZBVuHxS1xIr9iQiGuwrUhWJmrhkbZVNVnialLgpZwEetHIi3DGrLIiswLYeOoZ+bj9+AgPpRlza7UpibWDlmGiICg7J4xKcLsCPMcJYs6aYHpR7iIiVG0PICdudCSmSYs2mltapSYt9n6IgIkBA1JbFsm0srfdJWxaX9pml2DADIHm9jy3Ayfx+y1NzHGGcE6ehmKUghACBU9+RU6Q6n5g2R5Kv5U44L+vWqrV/vu8gRbGYiATGYeB8OjKOgyRHfS8tX1NQ167MaueS99c9Oa+ezXkBe0ps+ZPrl4voM6vvvZybAI0/007ygiGOsVZNVwbqSoDJlAzWlo6ChaFDlk6EbPPqfuZlvy/jXa/QolOYlKmHMuc0b9HvJ+choNs4DqTk5+fW+p1lTAkIJG+RTWmRE1F4OYeke1uRqwj6vNEC8cgwToxjYJyCsAOSkfaQXNZKWatB2OchZQgJpyy25tQzhoStGoLmYzk5MpZ+DKI154ShYF2F9RXGZjA1n2Aqro7VhPmZcTKPVd0rQwwMfY8xhtPpyMPD/axF2G42TG1LU3lM3UghJyOOwBl1K/bSGhvT3GYUQ2QaRIIhhomkLfHFUCiv4hBDXlz/MOTsyFnE0uMUCWME47CulsJU9Ey9tNEl53FWGGXZRVLdkX0lXztIv1ZOI3E4EKcDJvbE7oQdTupIVWQ3Zl/EJ38EkJJ/2CSt2XNYqvH3S2cbxizOsyDgd7tpcU5y8aiut/0wcnlxKQVZLOdTr3Mscj5LS+LhIASHYShAo1GW+4arqyvatuV0PKqRQsQ7ac9yxtDWFX6/wcTIRRjYTRmbDKmtiJsKkmVTWdpKXPPapta2f4kjyzomeoIir5CC/Blj4r6fuB8m+hh5HAOHKUoBOCb6mJmyaKclCfgk5nGi5VdVooXpvKfd7qjaRuJiJ4KEKTPngn3fk0LQom6e94Cyrvwt++KvCvzkrMJEedlU0YAaAzaJ7oDo+AjAEWPEWqeU40psBH2lOj6BYRjmlqiul8eFIWSMYZwmhkmYMj/8+COn05EQpX2qH4Qdk3PGVzWuqqiamt1+rzlF0R3RaaS7YDaGUx/ABA7dgLm9F0eM6h2Vl+rBRgUQnbVst624nViL92KFbq2laVqquqH0CRtEiG8YexXTDJzPZ904FsbPNE08Pkqr1ziN8ngYmELk3PWM0zQPgJeuih2PB/7Vf/F/lQHabHDFVas0tOay/DFvVBIoLX3Xa8FqeL7QLM+tY6clQC0V5qcgg3nyDj8DduUC/Cwhjuyboi2VjTh2fLh75O7hSDeMTMf3VOFWF0hPTLLp5qiCxN6Smg3RNPT2ge//CXx4j/eWTWNoKtVsCiVISPRdYJw0sR0Hiu3o+XxmmkQv6u7ulu581jH4sj235Yhx5OHhj+QYiJpUz22POS16HXrtCnFsvm4ZIhHcKAAJaRZ7RBM9AJwEW2iikfNyb8zqHs4JrlludqkCA8Rk5wXNWC+VMWPE+tZWMvasA1NokUIHzTmTlf1mrKXxldKzHa7d4qtGAq/qjBsHAbuU6i7JUZT+PIMEjQLn6CYqlsxWSthybbICisaQTLFUdcQA1nyK5TZr4qSADBlhbUHMkGJJBGTMFnC86IVFFWhOqhsWVCCfGMlhkgqYgWglwM3Wkp0nZei6nsfTmZASrm5wZ9nMr66uEY1ZTxhH+iz37nh4pDsfiSlRNw2b3YWsexaMk3N5uLtn6HumKXB3+4HH+7uZvWSMwdTiaHJ9eUHOma47Mw7SZpRjgyHgnGW33cwOU94VzR51SnEFNFz6oZ8AP6vFY4YYNHj5FJXqwmotn11AlbL3mNUEXGsEyGa0CFWXgM7YSlrujCGTCNNIipGPHz/Q9UesNYxDz9AL43WahMGQU8b5isppFdtXeJ1nVnUIQKvl83Uw8zpagmaDgHPOFHgqqg4EWKsaBcZqy9CyfxQLXHGILK1eHoyTb26SgMzGYGyNdQKsuCriNXot8l++bmjalnazwccKrKGZNoxhxHovGjTHpx7Ef99NRNttDJWVeZhSxEapVMcUMepAaoKwMUDskOvK4ZwhR8foRZg5jSP3Hz/gvIi/7i+vqCvHvm24vrpgbGtpRwmi39N3HWerQG5Q95oMMQVhEM1JQF7W59kFc3lsbWHqrBk85TV6t5NYzhuDCAUraLkGPNbgkV1hcrMsmAGHnR3cXJmLcywhzn7N3R3OeXbbluHNKy72W03C+hlAfskjpcy56+fWrIwhxMio7I8YoyYDzMxBYYaLjkYIEH0WcCAx68VkZSnFlAkR1SfTdtLKU203VJUnTwNhAJMTp/5EfNdhrWV4PDDe3+Oqmvb157SvvwDnVMNCmF9JKEWyN0+jOBlmeP/2B9798GfGYeDdh3fc3n4gxkg/BcYkiUjMzEotS2xUEkEzf8/CUrE2UtzD1uyeIjw6rw7GPAXEYLEelkHz4vew8p7PP/8M52oeHnusrTh3A1M6YoxYdocwMYySPHrv8IimqFNtFufAe7VTzswxJ0irq2gwGoK6LS4uYMgYngHUkWk6S+u16u8556hURB3EHrzvJcmdYiYEEPDaKXhtubrccnG5paoqxnHg/v5etWikwNX1I29//MD79/dMIdGNgX4q7fZ2Hm8gbSApJ86jmFicp4Ehf+CHjwd8VbG/vBOrbOfx1Qbna/W8cJhmj2svqLaX1LsryAHyBnj5uagnOhdXTVKpgNWQWUbSAlr0fceHj+9xvuLQnbk/Hmjalldv3vDNt79hs91yc33Dl2rc46xht9nPAO/YD4x24PHhgfu7A2GaGMeJcVCntjnDkbXNWbRdcIAcMDkSp4lhEBF6Y3owFSnB4ThwOoujY1U/4CrJoYarSzb7C2n12u1pWmE7m/GA3YmzaQyTMrF7uvu3jMc7TBpwwx12OlFVjsuLPdWmgSyFhWQhmUw0mYAyvlX/15iMzWCCAv7q4vuSU1JAH4fHsN0bUkxstontbiddBOS5xezy+oZ2u+N87tT4I3M4HBmGkX/897/Decvt7S3ff/8nhmHgzZs3fPPNt7Rty2++/ZbvfvMtOSfe/vADf/j97xmHnu12y4UaMe1vrrjwDpcz/vEW//ABE0byNsKF3NPtpmW33eCMwWuhQoBFy9BJ6+fpeOZ07Jhi5u4UeegiQ8r8OIx8GANjTNz2Iw/DRMyZLhmGJD0OY/YEjWuqektVi3PmzfVrbq5vqJuGV28+Y3dxgfWOqmnxVT1rf2XgcDjy+9//nts7cTp/uL+n7zqcc9IR1P31G/irM35yXqi0ivvMVXhrBbUSOndUimqgrmpJLLSCV+j/IuAsINAwDLNIWrtp2e72IkQYFuDndDrivQgFiiOM6EOI0YgEoM4ZETczZg5kchaGzxRLJVpo1SlnprEITeeibYsxUHknlHZjaGovQr/aF2yd141gSz3TsgQ0SSnSDx3TJC4qx+ORYehXjJ+4AoRGPZ9RKanqrmUX+vRTSOTvP/qu41//f/6bmfHj1hb0ZqEM5lzotMrOclZFYY3aSYcZBFja/Ep4qmPlycBZBtBaLLAEE89jiZ8TtbYsXTniJqavtwL+pJwZpsAwRcYpELt7fDqKPkq05ChjIk6aGCdHHrYk3zDaE7fvMi4+SGCbJ0SATVsUYhZXrJOo64vtpzC7YgiSwE4jwzBwd3vL+Xz+SeX1JY+UAufTe9kg0orlkyKZRMyGkEoFuUj3yTVzRv6diGRbLJ6jVipFZKxU3jGasJWBUfSS5iqUHgoIrskK1kjLAKDAkr5Uhc+MMYgthYKOtiJbr4CGYdKALSZDjBmbMw6P9w24Ctvs8O2WlBIOh7WeHCYI09w7laNYaMr3iPJdJOyT72mZLTxNGV86NqNWXcgJk4wELp/kUOG7cqVmYHSpiqeYSOo4E1cBvLR6yeOiMZVTErBLW8CSRdsTLSk7eV9gHMQGdYoJU/XYoRcL5sqz223nqnOOWdsZz+IwlDPtdsNmuxXnGW+xToLx8/Ek9ywG+u5MGMWeeLvdsGk3VN6JkPqm1aA2irCtNcTKk1MlzkOblu2mlZYS72cavi9MBFOA6EUodSlU5zIk5wCvgNefak7O4zyvig0r0DebrHmY1vFm0w0Zj9JKoe+FVbk1ieJSiCQTGceOh8eP8hlJdO1yXkBpAB9rohedkqpUMY1o/RjrdI9xc/XOrph3xlZYK/bcziyMiMpAVRgwBQQyqDCpLUEAs0aczmkBAjyzwKeJihqAMR5jo8QNrsL5rFuo/Ocrj69rqqbGRjGU8FXATTUxg3Uj5vSCwA+skj0BfqyK7orgriVb5uqw2HszC7TaZAjeUakAdQoTp8OjXHustJC7YvO+Yaq86BpqDGBIxDCKzhJJ5qu24aU4za04Mzi/PqydWyqKQHvRXcorEAhTEgMzt7PNBuOlmJOWfy9782pdt/nJ+r6IX6/GkSvsL4M3ss5f7LbUDmIYFWBftbS94JFzYhgn3aokfkoxM6huokHAOuMriSVRcGfW8NHrru18hTErTJiVaWWJFdHEqGnwTUUw0q6VUyQPPVPfCRu+G+Asej/JWGi34CvGKT5hajKv95FpnMgp8nh/y7sfvmcYej7e33H/+CDjwXrVj1i4dHnF6tKbt2L8LMVE55LGnE/vQk5pBnYKSP609X5h/vxcjPYShxQfrgghc3GxJ4RENpb61Iuwq2Wu2jsnrnNm1nDThNiCVRMAAT0KcBpmgCGvLxzL3mCKNpkxpDQyTsL2b9uWzUZi5t1uN4Oqxawmxkg/RIZR2T8KMVSVZ7MRLS3vPVMIHI9HjGEWs+/7kbu7Rx4eTiIcHg1h3iN0J0uQs8cY1PY9MoWMmSZO46OA9ZVn+3Cmbhucr9lsL6nqDZXz7NotdbXB1Btcs8U1W6xJONNQ9BRf9JhjxrwkFWtw+ScvF4iy5EkYw6nveDwd8VXF4+MjKQroEMeJq/0FJosOU9NstCAyUFciCp0inA4ifn46Hjk8HkgxqUi33N/NpmKzrYFMDBPFwCSFkWno9XQnwBFjpj92nI8dORucP+N8g3WeGAbC2OO8J0w902ZLXXk2dqSlk4JjmCAG4tDRf/gzp/sPmDThwxEXB5q2Ztd4aCspD5k867oV0jeINloxjNA6iqz3qLD1C99Go+QOp4YfZNhuyw9LzcHQbrY4V9F3ojf444/vmSZxpv7xx7fEGPjw4T1//NMfNI6Er7/+hrquub665PXrV3jn2LYt/enE+XymbSo2TYN3ls8vtnx9uacyEN9nIieYLKaJsJHVfn+xZ39xKaSRbmDsBl2zEtMghiTHU8/94cQwJf70MPLjIdCnzLuY+JgSIWcOY+Ck+pchO9GPQgunRto5rW+p6g1Ns2G/u+Tq8prNdsuXX3zJ9c0NvqrY7vbUTSP5hebad/f35BhpmprT8SiGO6pntrQp/uXj12X8IG1Z0lagG5URy1GMJCdTiOSUGIaJvheRNWMsLWWzUMAmJrqu4/HxMCcsk4qRpiyuYNY5hqHn1ItY7vHwwOn4yPl85nw+cj4fiCEqwq9UdC+JiFkvK1l6u4Nu8FOYtNKWZy0d8mozN0VBPSt9OyN23lI9sjZgrSMkGCdBysvvxhQZRgF+xBqyU8ZPnr+3VJ7SDKABc0C8nLY++Bus3f45R4qJ4+GI845hGCVhKZXBFfADUj0Uq99iU76on8+ilOh3yMyB+/Mx8+SpAvroD+bYwTx9zU9+j9IYsH5crpkR0d8MY5ANMYTI2J2IU68aN0Zp8wjoExMZSxgzo5swueLw4PBm0s8IM/CToiRlIUS6blqsqMOkrS/S0hfCxDiMQmUvTlmf9NB2KDOjMTMyVtx2JMjO5WotlUBk9zDowq3XJpffK8FjXtGktdosn6U92wXwKZ8PlC08I/MdtLJVWA8z3broVWi1TStkKWdsDMrOEQhmdgQzxR2g6OFIwmPWnYoksniszRvo3JK2XIQlaXEKfCKXz7AoGSXyoq2x7pt5kSPP92Zp61xR8fNC+yzOWWUTK49T+XfKy8/1vhUgKZf5mhLSPCDMhXEcmIK4vc3AoHPCPjiehDIdMzlKy9c0jpQ+fWctlZck03qL9Zos6DUqoE6KQR1ORHuhCC8KQJWJU3H+kvVVNNTcHCSLG4ef2YZGdZ0EqFiAH9Hn1mJE+ZunwE9xoPwUh5nngT7WzyxzQoecgj+mYAuahCzzpvxttNWKGV8tNGBl9qUo4M+coGedrpGUxFUtxolgzJPKvjwWLYynCbsw33Jx0LOSAJmsoL+KDbuZ8SPBs1WnlGzcPD+yEcaH4MNW14I8L0rGSuu1zxljI3USe3DJwxTAqqpZIBqLFFsQS+qqaoCXF+p+AnQ8m4tlPrIaT1Kx1zYnRNBZ2tjFATSh19VoQq1g9JP1Vf9YK247RlkAc7umKaC5tH6YWPbUZzutgu4yNuQDkn7G3MZmFnCrCNMuv19+dwF+lh+t9KlW62hC1suiWTWDSxlKSw5G7m1Q4CWESaqxn2gu5oxa3q8bwrMWIawCySpI7bzqTAb9nXJfVt88sxoDus6WNpBVvJZZM2L0OSNCyxgIOTPFiWRg7M+40wHjKqYkop9hGKUFRZmcQ9/THUWrsjt3DOMgBVBt6539E+Y4EebteXWUZaaAGkW/5udkBHLZ/PPiMbi+rk+v89Nx8pJRakbAt6Kx07YtIWa22y3GyBwrDHprLUHbpoZheKqNOcfWeZ5zy/f4uTNeIxIlfimxbtIcZSRGdcC00hYrbXfTzMRdWjXsHB8V169ojTi/jSPGlPYPcce0xlFVDSYmbY9cte7CHCOV97ZWgF5Jvo3Q8XDEXBGiOMlNQdfQbAlBxv0UMv0Y6IYRZzOVS7iXDm3mS7qOC/XiGtTZ9dk11/wDs/xGccnNOdN3HYfDIyEEtu2Gu9tbhr5nv99ijZgI5ZxpGmkB2+12XF1dMQwDBiNtWiGQksQcxmT6PpGSaFV2fUffDQKqDYGohbbSrlz2AFNymBRJUUyF4jQQBk+OnslZDBFCxdRWhMphciZNIzlOTIPISgznMyZHLeAEFZ/Oc+uwdyL8nbPY0YuWtZljvPUVlHh4YXi+5DGvBfNiwmxk9CTNzigzUmJE7zxVVc16fKVoOY7TzJI7n89479ltN3jnqKuK3XbL9fU1bdOIU3PthdXVeBqT8GRijsQcIEds5bBOgL9mt6XaCPA3DoEpyPkEAlMOhJi46ybu+8gQEvdT4iEkxpw5p8SQs6zVBhXJV11QlUcosVtholfqkLfbbri42LPZbLnc77lUfeDNVskhGscaZ0kxcH11yTgNeGd5fHhgHIfZ2e6/f61eKTOMovEwTqNMkGnkdD4JmDIFBgV7ZiAFuLq6YrfbYaxhGAfu7u4Yh4Ef377ld7/7HefzmbpaaJQXl5e8en2D9477+3vef3zHMAz8+c9/5p/+6Xd0XcfxcODwcK+tZILuY4TxYxWgcNZhNSMsDUKyqayspzHzTr1KjWXhFZ09ppE5yHzSaGRL8xEzEJZzErZPksp7UEQfmMFu2QjyHCy7ymDnoNOssoSXv4fDMPBPv/vHufI7Mw3K564CCtHVsEsiMGsSLBojS4DM33a+K0Rn/v1nv/pzoA+r1zz/u9DoyMXOtIzViWlS8AYz70GlPzwaOEyOTh0bHj7U1LUvo4Ql8JOTTVnAH6kelSRMEuugwUGxMPwUNPanRwY3SVibVjopGrCIsGsJ+0vgZxCGkCwsNmfFjAw2G1x0TxMdSh99mq9B0d3JKc6g5RL0Lqw5AJIjZQlUiq0pQA4yfqx1VE1D1VQKMoognlQ/5d6RIzGP5NxDdlizoVIad1N7mqYmpsAYxFUnEch2IGXRlpk1oQqqoxVB5yzZSmImYrVF20RA40JhzWRwFlOroh7Qv9AdLCuJWNDL4rC0caV5Ey0AT6HWJu1fn1u9QpidFmMSQMUWSrOBECdO04DJmX4KdONETJlunDgpnTVbR7ayHo3njsfbBwkiEgIK6m3NmjA1dc2FOiMWYGwaB2pfQRJgIoaJMPUYDINBno+R0+HAQcVNz+czQz9gLTStZ7dt8N6x229p20aXJblSpbK1bmMpwI/Ny3qS0jIISwFA3MGKE9KnOPKczM/rmV3OYFnfimZDCZTKqSowol9GqtZZ2+gElI9jJsRRAtUUyGmkAD6F1ScFBdUyiI5p9GBEg8dqr/vswIVRzR5haDjfYH0rbcy+palqsI7Kbdg2G5y1tFVFU2n7mDdYj+4dVnvZM1NxbUqZIUzqFATGOZwHmxPWV3OS1GiRpASGiYSzDlfXZCsWyL6pcDnjmoRrtsQU+eF99XJ3T+dSAWKMkbkY1JFTtAzivM55J9fUmYwzjpygcp62blXbTRxccobaO+I0znPCKiMBEjEFYkq4yrG73CNM6JF2WNrDx2EQYVFlOMu5inHFHE+UPTiLtiAGUlhaIRdAY818M/r8Ah6sx+nMBlkBVfO+YGQtKIFwUhbY8727mATYNHE+ttQ201QV7X5HU718+JpS4twNCuj7GXxtGw9ZQIPddoP3jqaqOJ1H+iFw6qRtqPLSVqrdsjoGorogRoZRkgexfker8cUZKy5sTQzRVcTGqBZTJnUnrLX0OXM+HsE5Jt8w+ZZhCnSHB/pJ2OEf373FqXXyj2//zIe7j0xB1u5J2VpmdY9MAaLWR1kvWdpJSzGhFO+et8zOSRpmrnM8Z/Y8bw9jefcXOXLKDIOwLK6urmiaLRf9wGZzoTFdoOt7uvOZlKLM0Rx5uL/neHxkGLq5WCfX3ogNEiWG/+m55rloIpCtXCtDCFH0ExHApu87ivZMafWahZ6BlMVsQtKDkn9EpmngfD4xTQ5nEykMklPoPIwpUzctNzeVaPzcPXJSgdviKGaQtjZnMikbrLdMSW+SWUxWYnKkUboHIhucq6m8IyVHUxkSkR8+HDgPE3XluNjVNPXLsicpVzplDaUL61MBizlQlP1rjuHLd9F3CDGSzmcpZEyB7njGV54PP/zIx7fv2Gw2fPHF53z33W9oNy2bTcub12+w1nBzdc0Xn3/BNE18ePeOH3/4gaEf+PjxA+/ev1OmVs849jLPCyGgnBMChHovXSQlFrbqDpviQIgCPvaIbo+1lqGu8FVFXVe042fUw7Ws631PGAbGYeD+7TsO9/c4k9lVmcblWUjee09dSSx0edHKmpMknotFJDjmuS3aGBH7r2oxGzr30/Mb8ffeReacrTy5yheLSU8IoovbdQM5w3a7IyU4uaM6cSbCJGy30+nE27fv2O9/x36/p3KO//gf/oGL/Z5vv/6WXdMSpglnM95kLInmdMfm8BEzDcTxKK5YMVDf7Klfv8F4T+U3+GpDjImHc+L+9Mg4Tnzoz3zsOqYY+diN3Kp718chcjdGAtABvVE5TeNIvuiwQdS23lJ0dE5Y61eXey4vr/juN9/w3W9+w2az5auvv+Lm+hrnHU3Tqnu2xVXCXD8cb9jUjtu7L/l4+xGbE01d0fc9t7f3nMe/fv9+ZcaPDLoQxIErpsjpfOb27pZ+6BmHifPpzDQFHbwN1lrqupkRfGl/OtB1Z3788Xv+zb/51zw+Hri42HN9/Yq6rhnGDmMiVeV59/4tf/rzH+n7jh9//IG3P/6Rvu85HY8cHx9k83LS3whPgR/vKtUskEXQOqnErRNhEah0S2Ks0UtJcUurR1YQoFR7pLKkfeQ66MMcvMq1kYtWEG1NVJRZMFefrSTpy5T6uU315Y4QJt79uBjFPdvSeRL6GQF/MGZJnk35TmvWzjPw5pcqefmn//glkOfnzm45fuH9V4Hrc42DJz/U6xszxGG53rcFyf8LJ/W33ZtCqf909xGTwWprVhEx1s2zAHnG6h01ZhXYSeta1qreTChLBoKZk9GiIYPJ0iqnYBlWBYON/slQhOhKDipXgFkYGZhdVvTqzHffWPC1l55ZX1H5WixyeysCqkQME+QRshdqskXpupa6doSYcR6MS5gUwUxkVDxuntcoxmvmZFpwV9FCKe1Dy1ogFyeTpZJWOXhhhsF85AVcK6LcpUr4BPhJaQauo7IUYxKwR1oV4gxGGr13FHBoFCekcz/weDoTY2JMmSEWTpUl6rUaTj0Hd5CNTrMbYy2b7ZZ2t8N4qKuKrboXGCvAjzMO76RqJSBPIAZh0IXRzvTkvus4nwSY6zuhYvvKsd3t2W43OO/YbFraVtpoU1raC8ohc3u5VzNAC2DST19vF6D70x15Ac816SLnOUaaz+UJCK2/B/NkNEYBH/3jnAArxmRSDMQ0aXunVBs1JJEkPCdSET2Ohfkqyd/s8GUXoNNr27KxFl9FXBIrdWesuKAZi7eetpKK3K7dsmlauf6VocheZW31SjnTj5PoTcXIlBDWGIjUj2x5uKrct0wdwrzeBHXj1E1aroyVfR3AkfG1tAla97LJSkoLc9KYIpyuLbTFUlp/bnUdsUZszrOF2leYRqDmcQoMvTifOudIQQCZpExGq0BKzFEZzmotbQx+9PjKkWOaKfYpJSZnmQZ1DjVB/AoVLJuF3PPTfefnxvtz7Z+ZNWfMXNwpYttPf78MWE2dTX6i91L2vJIICJgdIWdqB0PfMdYiCO/YUfuXTzaFyTjJup51fTcC6FgDm03D1eWeuq6IIdEP4h47BrkvhdVcYj2xnU8zADSFpLGeggNWwZ81IxMdRdaRK6UiTxMpCPg+jRPD4SDJ7OaCtLlgCJGxOysDM3J4uMP2AgLd3X/k8XggpkTIojWBFndmGLvs+/OdWlq25ybiFWBTRK4Lc23+vXnsZERI2LAaTs9eUz76ZdfUEk8bI6yNts1shglfbZimwMPDI4fjgfNZmPX90BGjSEEMw5lpGpndEuaCQQFIyrd78onzfrsKw2UMZKOmDgL8zGuoylbMxYgyn6wHbW8sJhQgFuPD0BOjw7sMWceo5iUZS+Vr9ruKYRy5f+iIQUFToXPM7WzeGWnZtg0mqeYP2taPin3HjEmOmGusrQjeqpSGAZO4f5SxtmnFzj6t2/Zf+F6WATSP0Hm8lM0yK3BVnlEQC+bCFsDY9xweDhhjOD4cOB9PNG2rWjAbLi52NPXnXF5c0DQNlxeXvH79mhACbV2TwuIMPY2iQXs4HHg83C8dDLpfe+/xlTCNyVFiUf0ucxlMO0gSQBpJ4xmMYXQWpw7YXQW9FbZ1fz6L/lA/8PjxI4f7R7wFs63IjaPyFTkLg9R7R1N7tpsKa6HrHSFEbEyEyCrRKZdU2NLFofGF7yLLmr/6UP2JtMaqgPYobDZhXrXSKRHDHKuJTqowfR4e7nn79i3H45Fvv/5anGA3G2rvudrvxeEyT/InBvLbER5/gNARQ0ecekiJdlPRfv4KW9dAA6YhjIFkbzkN0qXx42PPHx+PDDHyYYrcqnDzY0ock/CMozVEK+PTWT+vrkXjLWPFHMQI0aRpKrablsv9ls9ev+Lrr75ks9nw9ZdfcH19JbI2CsaJMVSN847TfosxiZvrK/bbDe/evWPoew7OcXf/OLft/6Xj1xd3joKwS2An1uSHw5FzdxKx0HtB2KrKi8q1c0Biu2s5n7fc3d3y/v1buq7j9vYjj48PHA8HsjIA6rpC2kDE7u3jx/fc3X6Ulq/jgWHomaaBGBWZ1QBKz5CcraL3RiydkYWutCRpfWSuJGeblJqO3ugZHZhRibwa+MWGNLPu986r3vsSvJerpotb2SDM8vnrTcisPvan8/YlAQTt/Yc5+V+dxeqcy0PzZK6vISrNa57/Bj+JFH7h+A8HRn7h9/JPf7IOZH7u155Ur1aP/z7QJv+tl+DvOKRa/5PvVLBLTbCyjvNyH5N9BkrNwE+WeaJBu8sL+6cwKIqVrTwW1gmZuR0IlEGUyiwrbhnqPpBkjBlbYY1oZVW1F40Ma7WyIufnK/CVwTqDMUUk0VHVBu8zzqlAJQFLwNmEd5I7N7WDTQ0ZXFbwwoDxkqxJ6UxBVysA8ZoluK50A3Ihvf1EwM8aKitrh3zOum2K9bi0kkxkxF46qZNizou1pzHatmZE/wq1gTbaHpcxOJPxFA6Xmf9Yg1bqs7BTZOETdkKcsNEQ4ySVUKPnE8VmO6Wo1uvq3JUkma2qmqoqVuyZlERrwVgV5/RORJydUJztKpEprmfrm/I8uClgJ3mtl/T8Uv/s4vp3HxL85xnENqv23LkivzrTnFfP24zJRqYfuqAa3XWUtbUEx5kFqV3/vdLxWI0n82RNz8t7z2xNoy12qAj4CMaSjWUyBpczyXk666kQkEjE5EVg1VZW5pQxoqZqZM0YgrIikgTtMcTl/q3m0AwUzONbwegniUH5W/fMLEncSysZCIsmyCdpcXrZi9WVK8v1tUaty8miH2LMfD0LDcTbLDbvqYAn+ck8noPpAnRFKK1wWZNyrATzOZWxIABeiZWCFYDYxIjRxOWJ7Tbl4356rWT9N8uLShyl7L4i2vxEZmSOg/T1q7Xmyafo9/TWUnsxyLjYbbjYbdjvNjS1UPjdJ+gvMTwHhMV5zXuPL+Lw6koXUWaaMnpEjFxEMyTpL05f81diZjfDz4Iq8766mnYYWX9zrhC5dkNUql+cBmK2TDER1CwihshoJnoU8AuRmThR1mmzMB/LB80fvQ7fWL0mL36Cf+koY6OMnSUW0nG8fDF55oVjnUxWZ8hlPzSaDGegqivqWsTRITGO6ndX5ktOT4AfWTvKXirt8c+b2VLSz5mj/dV1egZ+Li28sufKW+mVzUWNZbW2Ik6//WDxQRg/5KAxT4XznoxlSpGQgjA8SvszRtt6BdhPJksLitI9DLKXl7GYyTPLzhgHWZhuOQvoE6MUrMcxCABF5tz5men14kcBrYzT9i6Nw58AyMuevoA/erXnJbPEqzI/wzTSdWdSjDw+PPDx4wf6/oyzlt2u2KlLrGONoW1baR9qW47HI4fDkb7v53hkCtMCWujdTzFTxKjLXKtrYbumrJqKMc0xh1VQwBthFztdy5O278QpyB91PZX12sxF0ZRZzWFDXXvapsZayxQy3gsbLOaONCgr5GdStl/nWGZIib1KQcGphqC4a2c2U8tutxUm924nGk0pUtcNss7ItRz6nr7vCeNI6HtyTrgccASIAc5n8vEA3Zl87sjjCDkx9iP51MMYmVJgSgPTFHl3PPOh6+mGkbtxUkv2xDnBmK3osfF8dyytymZmSFetU9dSg/c1znoZTzfXvHp1w/XNNZfXl1xc7mnblnbT0Oh987rPSdxtVBPQsWlbQoyc9lsuLy64urwkpSx6ZX9DjPqrAj8pJ7qhZxy1vWsaef/hPf/u3/177h/uebi/5/vvv+d8OtG0Dfv9Du89r1694g9/+obtdsv93S0//vgDXdfx4f17/vD739N1HdvtjovLS7yv8JVT5BJOh0ce7m8JYaIfB7q+myvexiZsEeUoQZOJYluIIcQ0t9zM1rJQcBh9fkl4ePIc83NPkg6ztttdgKIMqiGrwpj6G2WbXNPElqWtzPI8v658l5We4ose1lo2m+0CVuV1ssCcUK6eWP1dkkH9Zj8DkvwcLfj/X8dC318dzytjPzm/sgn98z/r1zysMdT1BlDqPmYeLAL8CJCzDOXlXi2J3yqP1Mp82eRKorXedOffnRMWSTxmj8mMBlxonrn4J8RigwgYvIA5xtG2W9q2FmaBc3gnQVjKWqHKHmjIWdxqmsZTVwnrApXvxWLZRNpaWihScmzqHTGIJoldBb7GrsAbC1k3a6eWj8DM/JFgswjUFuBEfveP/NsXuYcl/lmGztMe7fX8Wir70tqXnCTZQRmEKSWiWVoxRcRbw1sVP88p0WCIRgTap5jxQR3gci5u8XLvVMFUWsgk2LIjGJuIsaLrHunOjzjvCNqeNk0j03jGObDGsW12WLMTQM0tbojeZQZ1p6p8xaZtNSho2G4aDYjdE5Bc2DPPN2m5ePIyO48uicu1Xa8EwSUp+0QBroAFeT7n+Xnz7JxLf4g+dtpHbnLCqguRmEoFxNjVIgLJGVS3SnRTlu8us2z+9qzKG+sPxqh1fCbO7UA5WWJUztA0YIcjBstoPZ0TW9qu2nLnW5x1tPWGtmolEavFSVNozDXOVaJrkrUCnTNTCoQsn4Uz4J7vac8gHMPsBPhkl9aiieTR5bu/3O6Yc6LvOwnY1dThCRCsLKynpy7JQRJSizBEggLn1mGsm1s3pxiVESLacZZEjpNoQ5RWcH1P5zzeVxjvqHzNdqumBEEEbVNOYkoxTvJ4GsUJVNt3CvM4RZ27FFCifFfmib6OO5ZIZimMrcEeMwdPudyo+bWrSyJrKrBtKr787IbL/Zb9bse3X3/F9dWlfpx9wbu3HOLIupFroe32vqrYbzc0tWhO1HWD845pSgxBNPuMlX3AGI/JiSkmCLLfRb12MeV5rcswM84MhhQi0ei6WSAaTXoB8C206lg5jcLAzInxMDAOHxmnwOn2I/35KMlkPzAYT8qZ4zQwIWLVc5JvjBqqLFfx50IQqyAXWXSGJL5b4GRghkHKui/AtGpKzZjREhcuMW2GT8AUySnTnXvUeQGQ/WCzaWm0CDWOI9vNluPpwDT15Bxo6oqL/Y4YJaEswI+I32sRK2s79FzYkO8ihSwtdLDMkVzeJz9dp4wpPQGQ5+tkmNdnjBhsRLlXKfWczwecNbSNtPJYa6mbhrqqyRjG6AnJEWLieOwJ06gxh7ROC8BuSNaAqcnWYU2rd6/43WpdyJTop8JkDykTJr3/KXBnRs7nTOUdp+Pxk7DvMAbjRTrBIi27AoSIKcGT9Qdmls8CXmlwVBjngEGuw/l0Ikwj1jpOpwO3H99TNw3ffPM17z+8Y7vd8tlnn/HNN19T1zVv3rzhzavXpBT5+uuv+Yd/+C193/OnP/2ZP/zhD/R9z4cPH3j//oOss0nWBYk5DVVV4axlf7HDV2JA0g8Dgzo2h3EijkGKXNZTFUZYCPSnEykm+nMnUihTIARtDQTGmDFTpg4i3JwRcOD6ck9TO2KCN68FsDucOv7pjz9ye38gk2c2dGGQPo+QXvBmrt77CSw651TS2lSkGjIxiJHS/mLL/mLLNEmh8OFwz8Pjw6wRGWPidD7z/v17hr5n7HuG04mUIq3NbGzCpkD+/e/J/+7fQn/Gn05UxyOQeXSOMSSCc3zsEh+6xDBF/vzjB/7840eGEPg4TNyOo8xJUxFNRQKC1b24/KcAsDfiiOq95+r6mov9Husc7WZDXTdsNhu+++47PvvsM64ur/hP/8X/kO++/Q1V5dnv97RNM18XA5T2MGsNxjV8aW94dXPBdlPz+Hhgv9vx/Y/vePfhjofH01+9G78y4yczBdH36XsBgB4fDrx9+5YPHz7w4cMHfve7f8/hcKDdNFxdXVLXFTe315zOj2w2G+7v73j7w4/0fcfD/T3v371lHEbazYbj+YBzXnqldXEeujP9+SCBqiv0SQVRNOn52eQWTRRyXI3XJQo388K+ZBNPN85VlcAUkEdQdKNuW0ap8LIRa2KoSYqwHWSCZIogrV1tpPp5a1GUtZBzCcReeB4bY6hqcVUrApLlmBfhzLIxzpvjslGWAPDnAJ+f7/9++pr1ufzc8y9x/OJ7lg3kryI764Xurx9CD/8VwR9Npq21sw7Tk0ja5rkVTI71JltavcpgRIEfeWxtUfB/GtQv7yHBQ8rjAvzoEDHFggAFe5JsZNEYFUszWCwmi65I45vFMc8asdZM0LaGpFoG1tazI5FokmSsTTg7YjBYk6hd1BlnoKnJrAAcY57O0eV0Z+exJ4CPVhhFI6LM6+V3P81RxptRcdifAqilqp/V/XAOWt3TCrcwBlTWoPw+ksT4DFUGlxImJoxVsf6UCRpEpCjAuvyOrMVgCMFgJshEprFjHM+46BhDYJxU6DyMIoVkLW1T09SVJtFuAbVyJoQeax1NU9G2lVCbm2quqLm5FaWsp3KJMqu5vapEP8Hmy5qr4IOuTD+fGb3gsV7bC16op7SEZIIhICLKeu4FJDWFDbRKKlTAXV4qDntmnnBLcWA9Ms3q/0+PedOb971IXF29hQE6YRkFNmWwDZUVcLapNtrC7cQtpm4w1lHXLb6uZZ4o6JHJRDKpiP96g0k/Pa+1VhPWsmzqZr6fa62auS7/gtMxZ9HQSSpWbVxxyXKUdpgiZL1ulUqldVad1QLCVDCaiKWUGGczCdEsK5ovOUdSEN2epMAuGJp2Q13XontWQCBT9EbiSvtHHMHc6DFW3PamacKoDlAgsLBUVokU69VFH6WnSVi51vJ7T1vg5mVw5QSK3jLByKXCWTvLq8s9n726Yr/f8dVnr7i6uhQtiH5kml5eB88YAZNTiqRR2vOstTR1zaatcbNovOxvU0iMIWhrhxYborirzEUO3S+jVuZjiSHsMkbFQCLBM9e1ee/xNfhattqcSFNPTlHi24eTuJGeDoShZ4qZlCeGLKyygUwog321Bz25F6s5vP7sMlZzzjr31kCRriErUKcYdeRcXHo1Vn3+7pmZnfHSR0pZwTg3FwCsddSNUwAust/t9D4HHr1nGoXNRduQkoc12zgmpilq657BhMLQX7O0RHttiWN1jS7vs9pynrDI9e+8XEAwmWSM4PR6xGmgSPp03lFVoiXVNC113ZCxTNExJUdKmX4S0NYYQzQg2jLi9FW0Ca23GFuv8o0lN5LTsYj9u9X1SVqDc0oYBkYfcdYw9NI+9vKH0TViWdZz0cGa07ISOJp5fyfL2rjIAJUBWO5NYhzENRTgfD5yf3+L956uO4PJ7PZ7rLV88cXnNE3D/uKCq4sLjDFcXl7y6tUNfd9T160AD6cz0xR5uD8yZhFRjyHJ3oW0R/vKsd/t2O5Fn/DUn+l6T4qR/tQzakzdOEdldY2JkalXvbZB1uwYosZX6HiGKUr8Veqn1jm2m4a6lvGXjIh1394/8u7jHY+nkzLiksqofILbt7qNv5gK6ZjOoAU7AdfbNhP2O5oQaNuazaYWZ+7zgTdv3lDVFVENnVIWV29xbYsM5zPnw4EcIzsPsTK4FEgfPpDf/ojpzjTTBNoCeHIVj8kyGMufDiN/PAz0IfLD/SM/PBwYY+IxJQ5RokLvK5EkwJCNxRip3JhcoHWDNR5nRa7m6lJaBr33bPc72s2G7XbDd7/9li+++IKLiwu+/uZLvvjqM5wKVDvnYJVjCyNM5oJznrraz/DZV198jjGWKSTadqPx/18+flXgJ4TAhw/vGIaRw+HAOA7c3d3y+Pg46/aIAOFEnCxD35HixKnyPNzd0XdnDo+PnM9HhmFgUt0JGbyRMI0iWJjTDPwUvQtgFbdkTTKXRboMzgV5z/PEer5rmXUOoO/303Gtm8A86NOCvmsEb+YqQAm1y+xbAqVlcTOrv1kWs5y1AFzeab0cmpc29ZLPKEG0/KN8XQmoSzAwAxnqLjODPuXxU+BmDXz8rSDIrwH4/Nxn/PL5rVfPf/65/TUw6SW/75p2OgM/sCRNJqlN+noClIRPK7irOZBni5YC/Li5yv6ETl7A1eTIWQGKzJLQqVg0+SmLJBqjGjJImxcCmlauonLyPbwV5k1OlkyDcVvISZl9yjox0rNujMU7ZRnkhPOZmLTlCUcmLt+3XBezaJ6UcS998wuAO2taGau2xG7+3U8T5paTW1PIy3OrI+cn92G+3aZUfQ05CwiYjDgRLqzDhFQtUft1h0mWLH15czXbarU3WmnXKiBvaV1yXpIBa8T6dOg7nLPilhhlDXfa+2xAgJ+mVpcKtwDppUplJQD26sT4E60JXR+NXQF2c9Wa2YEIlCVjlkJASVjKJS1w36cCZ8u+oyUH+fcvYC/5yT2eNy19uE4mklpNC9MnJ2HOGGX4Ca+iaPwUUE0TGFjG+l8ZtwtbaHnlWh1Iz4ZMqZgLKGjjhAlWbdktyWSdN2LnDplkWIAf3TOfXjdDTivL8WxXF888eV25XDmvCxIvexSQqSTM5Y8xi335k0B4tbyux175U9oexXXUkpKMeRuhrSs2bUMVvLbP63U1Cjzoemz0TUVkuhQu7KLNlCI51zqnJPhOOeOdVpYzcxW2rNesruHabfFpYJR1LJWAyYAplXdY4gDUYQ+8c2zUjWW/37LbbthuWppaEtSiWxaUmfSpjgUb1phkvo9m9fOneyMUsARdQMz8HfPq0ukLZzbpMkeYr+28RiHsBZOz2oDIS5KRmZuMaEtkZRy1TYWPmRQgB/T6p/n9ypw0TxaYsn/I4yftaL90fZ49NqtrVdZ9KQ6uX/c0jngyl194KuascXrKYMtYLa2F0tKVUqZtG3a7nepgBaZQU6QeCnsnhMQ0CuAQQmAK0yzGXQTdRUtGmXJzW7pc/4JwLWPmlzLhknesx9VqT9P/pZxIItBFCEHbRmUfjTlKsUzbO8lGuo1MYfRY+c9CVRl8pQ6KKq6fmRUXZyBL7mfCanUv56Ai8YFsDWM2pE8B/Biw3mn4pIzNCCb5Zc8r12odv5ZW15wRmQ6YbexW119AZwVldS3p+o6HhwemaeLjx4+8eyfsn/HqCoOsTyFEvK9omszFxQWvX71hsxFHr74bGMeR4/HA8XQAspARYtSW3jzHXJtGjChijOSQCcMkcW/K5Kj3NRuCOksN48Q4RTXhEFasfpPlT2b5U/ZAa/Guwjhpn6rqiqoSe/nF9VU0Hk34FAXo5+PdPPuJwZiMdZaqrjRvNiqYHQnBU9WOGAM3Nzd88cUXbHdbxnGk73oyIgRd8rJClJD3iEyjOMLmcSQNE2YU0MdMgWwMx37kzvUMGO7PE/fdyBASpykypEwAsA6vBaam2VBX4kcfxpEQJshZoynRDtztdmw20jL4+tVr3rx+g68W4Gez2XB9dc3FxQX73Y6mqbUoLXFscfy0BajFSO2YkgNJoa+wpDablt12y9XVFa9ubgB4yy8fvyrwczod+a/+q/9SJ8aRaZq4vbvl9//0Tzw+PtJ1Z7rTI3Ec6ONAGE5YazjcfeT23Q9Y55imiaHv5YZOgaAodJgGzsegF2axfk5J3BMELodSUcnRzIszsNAEy8ZNWWhLBLAM3pyXG/DkMOudPS1vUpK+rMGRbrqJqMmMma2Fn2gyzMGpLlZ2oeGvj1yCKfPT7eR5oPz3HqUXNYNsFOuEchVYy1dfn80KzJqrJM++R0E4809f80uMoOePfw3WzC9/xl//7J8Dd54/t37/9c9e8rs557i62mkQiIAVJSAsycmcRC4V88IImQEgHZ/iWCBJgveOqloEj+2aWWdKglMI42jaqVWxUvTMmSklJq1sBJsIaqta2VrAHgwOh1fVV2cczsjyG0JDjFdIUJAwRqrhOS+JogBI0qOdS8hjMsnE2WllDCNTafcsffHG4K2weaSSv7R2zNePlbru35hA/3MPuW1lXVr+npMVyn0VbSaXZRlLRU4A6UDLzsomYiWAk/VNbwayVkar7+sceC+BRcqqUbYkhqXfOkwSHEtCWvTUrF6WxNA9cvshzZpB1nsBe2rH7vUN1poZ+JHrvDB+wiTCv9YaGqW6S8IqAW1G9FZyXBhZrgS16/UlFd22RddjTamVkW0ErCxr96dYX4y6SvLTt19D/+XfEtSVe74WlCnzsQhJqpZAkmaMmCbZBp2w/fzcMgalfSxFCTzlA9eQztPVfB7JZoGHLKxajLUZxxjVCsskk5iyiOGabAk54GIvIMTUyRgwFusrZcwo8qHrkXFGibNrBo9ZJeRmnm9Zz618vzXYU0R004sCB2YGaIpwq3N2XgfX16okh3OCvbqw1khSby3StmoNtbVYKwFxXVmaWirwbe3YNBUxRvp+4HzuxO42Jsa+Q6arZ1B3qtnOWYGWqm0BqJtaxNSRtb2wNqJWrSUxWpwAU1xpTMSgQvFJ2URF5DTO1zknQ1I6aPoZcMgYK25YTtpxvvjsDZf7PRe7lm+/fMPN5U61NhAqf4icu4HxEzB+MpIjplUsYYys8c5XkkxkIKcn8WMB9iwSQ1prBZyJek1TuefyGaU4UtYnQcyVLRmi7q2GnCMYQ4XDWgnXIxCMJdnM6B2j9wRj2F5s+LJyTDHxeAw8noIkkSnM8bDs8XYFOK3Bn3WCJn8LG2A1VlcXSsABMPNrCuCAmgMUpuG6APSUGVaYlS9+JKu7V9SxPUfkWAPb7Ya2aWmbit2mIUQBMmKSprgY88zEm6ZEP4SZfTeMIylFtZXuhakXxGJabNsjk1qI53LfQceBfutVnIxeo2WNjavnWN0W+XeMSQAQY0TPyQ1II64jGmE1TckQU7nmlpyU2e2l2FVViavLit2uxVjZf63zsn6ESUXyYRyLhlUkhIGUAilOdEMHeRTfik8kX2iMxbXtCjRHzDeKDtPqii2HtnlFnUMxksMkYyCrqCoZshUzDwyJxDCKk9+7d2/pujNVVfHhwwfevX3LZrvh26+/4R+++60ChXv2uz3bzQ7325o3rz5nnEZ+8+13/Pa77+n7nh9+/J4ff/ieKYh4eN93ODex3W1wRrRbrq+v2Ow2TOPEn+33TEMkToH+3DN243wNrFrBhyAFspwzKSSy8kuicOCJWR7HbFT7R9Yybx3b/Zam2RAzXF7tOfUd4xAIITEqs5E8MZrwZF17kSM/X1ue5c/6sKkrrq4vZmbqNE4Up+vy983ra958/pqu7zkeT9zfPxCmwKapcc7PjuDeW7LJhL7nsTvCNJDvH8gPB+jPVCFTRZEp+NMh8Ad7osuGH4bI90NkTJkuRroIGUvVbrhqNzjvubq84WJ/Rc6Zx4cDx+ORUjQx1tI0NV999SVv3rxhs9nwzbff8Pnnn+Mrz+5iLwLUdc3rVzdcXF7Q1A03V1e0daXxsBYxM8riXswT9IHgBsay2TQC9FjR+foX/+kjNwr8/Hf/6j//xVvyqwI/wzDwj//47xjHkfP5zDRNPD4+8u7dW07aczkOPSkGUkhMw0JJv1+/0XqRMSVgDaRp1CdX0ZQ1C+jD6sfkpwsvRluynr3/6vVPXvuTDSsv5/aT16tYXEnSSh+wUu3keceiqaLnvyoVyVuumBnrb6rnPH+d8jE/uVgvd6yFAZ+IBJoFgHl6rgLIlbP6udc8B3fys+DrlwCf9e/89/4o5/gzAFA5ynf9W0S6/kMPaw2bTfPsc+2TJKWMnZI0gCYtsbQJSYAvSaboT4A4GkjCvoi1ASuNKvn8WS7HWCxKT1xpBY0pMKZAJjOZSLDCWGh8Q+NrqZgmsZIXbSy1PwVE16dca9VNyMwBXQGbTF6xBYzMpWiEohtT5Dx0uDAuEy0zM41Eh8Os2E3rSqoEYnPVpSAtn+CYA+q8/LtUTcoIshihj+e8ALcIO8BZFbfEkRXMXYNISRP3nLNyrt0MLMxLVVqS2SmMTM6Qc2KKBqu6JcvsT0xTTzyERaegEW2edrth0zY452ibZh5HAsbI547jSAjaD19JH3Vp40OvdtLErOgwFfegvAJ+SiJr9N7Ywgx63qaoGMtyXV74/rGK8Vfr3PNtpDz7bOVb/a2PVxXrAjLIK0TbxxiDw+KNn7ebOR/XZOXnzvL5alTmTBnhLutWm83q1UvQl5HWsOLQmXLEpklmYpqwwYG1uFjPVtrCmlNh8Yi2xzAnr1B0SNbtCXa5RqZcg5Xm1Err6qWOcg/nti67AEBPdbf0fwqSP8uzUaxMwxa5bsbZeex7Z/DOzI9rrxoHTtsCYiR2gwCvKYsGgZW54nyFqxTc9A6nYKsx1fqKzYdYvidyQoNxYZCFGGbwJwZp0RSNk0ndbRIx2tnJLMY8a2TlX2gJc050WNqm5vrqktevbthvGl5dX3G134jeUxCx72kKDNPIOH0axk/myWwCjIhzKoW+JO3rrfwphGIohRSMgiFlzIFEjsbMItFWK3ZlrkZ1uVl/hnWS/BgFnqIRrZZoLcFZooGamktvCTHRTyO5y+QiILy62OU/Wd9XCYWe/XwdNIZc2Cvy81njR7YYllan5Xyz/kL5e4kr1tf5E4E+5W4kYa8UDcx5ththO5ONOh81CiREMoFMIoalvWucIn0fxMlymuj6npgSfd9zPgvwOo4jxogml7Vi317YaZQW67IO/mRNL4+eJseQdX0t+YvckAIgAqSY5pbBbNzM7IkKCkhLsJXcQddG0UPMbDeWywstmtT1DPx0Q2YMMv+dSUyTxEI5BnISU4ZpGkhxxJAJpE/jW2EMpvLK+NUPSAKWFudG8+wqkqXlhmJgYY0A0KZ0WGhOVa6rgt3FAe3weOB0OmGtZRgG+r6nbVviGGgbYVU467m5eUXlK9p2y+tXnxFjZLvZsdvu6TplMqukycfbDxyPB1I08xx2znFxccHNq2vGceT+9hHv70kxMwVxT11j5HMqWGIVmOdwWv/JwgRas4CMtTR1w2a7YTuMbDbN7Hgq8YaCielp58WL386fzZvLGiIaP5ttq+1NeXZKm1mUwHa/ZX+xZxwnHh4eeffuA+M4EseBOPRzMae0p04pMnUdeexF0LnroRsYY8ZHcWb+ECe+D4Zzhh9D4odJWD7RWpK1WCcmA5vNjqqquLq84ubmlcxD3RtzzngvDqdt2/L5Z1/w7bdfs91u+fY3v+GLL7/Ae8/+Ys92K0LV+/2ezUb0KbebjbalquaqBhSFxfXkelkzx6p1XbHbbQkJpiny1Vdf4qv6r96LXxX4IWdtwdKhaZhF1wyZGCqm2unNe6pF8JOjBPJzVS+vhDdX23aJogwziDK/Rfm/Wf1rFVA+CVCenMYzdGhOEH4asJv5XJ9+jvxQFmJjWIRgQb87unGWGb9OLJ8ea73P+StlWIff/f3tT37vP+SYWTksCUKZzPNCug5mf3ZDWECaQgsuj6Hc2qfgR3lcAgmMmS/0ck3KxrkkJOsEbhYqfPb8Lz9+GhT9MhBTxs7z93j+PEul7Wde+/w6PD9ub1/mHpbzKFXkrBUxCQwKiGFnVXrRrHE6hTLJ5nls5pWWS1brXV95cbrS6+1U2Fjoiss1KZfIajBS3LNKskaKmBSk+coq8APUvqZWxo+xRvFSsVB0Rs65BNkyGBchQAE6VsAPBU0vehOZaOSPTZE6WjLVk2zAWkvt6lm4tTh6lTkKGtwXwcR5w/4U0dHPHz8FiJe1rwB1JZpYhtsy/346BMucynLNFfQpjMJswSpTRMAFmeM2gvXL/Uh6j63zWO1jr+qaupbxUqmGhitMoLV20nIm87kuN2bNKGRJ7K0AUDmVZCXNTJ9cAnMdbzlZ1Wayz+Ysymj7dODyonXydNE0lLar1d5i5kfzq7ImBZLkmPnxEm493X5kTmvwmOVLCrEpUTp6nmW/T893PrtlrBlUFWOdXBokCC/3Uati87oy72vAHPBkZrZhTtoequeZl88qCfTsjjOv/5pi6T9FHFT+bTEzU/VTHiWgXh9PkuKyW662ggWAFiFoq9/3CRBoBKjNGZItDnbQVBVh01LFCMaSjFWmwRKrZBBhVGPEgWwUQK2ATAYUnF9aKlMqJ57ncyxMlZwzzhlSdAqkemX8CDgUo8R6IRhilNfbJImYMQtgZ62jbRttn2jUnhpCTJz7HovM1xAFzB1DpOuHTwP85CXhsAayXQJxA+rGE+fWiHJNSrxSwOHScrmeJzkzO/DgmCu7pS22gD3M40TXZiNrWFLttZTTar4brHcQpXGzMgZMoqoiVeUwUZjlUVt1zWosaP47h1Nl/pQkU3HH9crD8stlPOcnv7dcxufzaxn85f0Myqb8pUXm7zqsLhklVikf/ywoNav7V54v66GuS2IoIAC07GEQU6KwMWJKjMOAL4yZYcBaJ/ITIRDCxNxOFOQDkrZiPV0TnkGi87mVi/YzsT8ZU0zISlvTvC4L09qaLC3W2mZtjGocuoR3Aec9dZ3xlTBFrHc0MROjpakdIWRidAwjhFiT4sQ4GmKYMGR8YXa99GHAVv5J3EhW4CSn1fWZw0Y5UsLEADmLI5a16mwWpQVyjn+UFWSWeCiXuagFpvPpTAyRu/t73r97x3Gz1RbzmrpuqGv5O6uj0sXFnrqueP36NV13Yhh6adO1cmfaphUnx1ja2+XmbTZbrm9uGIeRELK0JxUnLxVyLmuM3Hf9t66NMxhrFq2/mDJTlBgsYcBIW1+JyWembNlef4X49JeAXplrpQ3OIjCtFhhXe6QUlUUjcJoCV1eXwgwKE3Ec5D6HQA4jOUX62nHOgdhXjJstva9JLhBzFOdQYMQwApMxZKeW64hANs5r69aei/0FVV1zcXHB5eWFClAve8Bms6FtG9p2w7fffs0333xN07a8enXDfr+bi5niQuuX9X+1v2gWwdKq+PPXa72KGStFhLquuNht/ybtu19d3DlMPTmK5kbl4WLXUPs3stkWPYKyef6lyLO855PHz5MBPX7m2i3hUElo5oj4ycufgz8llF4i6J9+x/XrzU9eY5abZpaEWMuF8oonyMnqN/U1z7/O86uUJXZ84nvx7o+/5yWOnDPDODx90jALT0nyu/xt1iN0Tjzl8QL+LO89v6VuuPPzqyA+66SQzykCvssGXt7AoJokRSyyqqjqWmmji/bCTH0u36P0VJrVn1VAvCT5y7nC05aDEtTOry/n8zN6OhJwF1WMBbDIPK36/av/8v/xz7lVf/EwWCq3k2pVFJFPnMPbZhYFraoWZ70wcrQCzxzsMQejcp6BlEVPyzvRiTAqHC2VZfNko855ERd2WKmoUuAYFVXUnvVMJtlIVOCnaPlI0poVbDB4K0r6YITgI7v43HKgl3W+9MI0WrViGUvOEpvFDClHvOtog1p0ztoylqZq9LOYv5ecipxPojiRyeUyiRdvu5TgvXyvp+y4+TUzeJyWqnMqrRrarrASsF/9prR8lKPMP2vxSuu35mkCX9yUUqqISTRDYhaa+JIG6Vywbm6vqqoaX9WIhXtN5St5XFdUVVW+iH5HYW+ZHOW9ihi4MZCUsZOV4h0F8IkZsk2r+SRJVghBBXGXNV1YQ4ms1Rc3awst1/DFD2PEeIAyZssPSrIm98PoPTFzsLpa79DgP6OL/9O1dE739FesVQkvA8V1hmwgGNFu0lhYxUTk156MX02T1gkShjKL1yxB4/4y8IMGe0WfWdoy1TWs3GM98awgb57XS8PadvlJTrdKllxpGWO5vPYXgfx//lES6bz6TJ489/Tnxaghl3vJql3GyLWe1xS1UZZlTdhaOWc8jsrKPGuqiv1uS8qZbgic+5GY8ko4PXE6dxzVIWac5Hlgti02RgRuK21pEjaKtoah7azWUNtawFEkhLFl3GmLYUqJcRLWUUyBvu8Yp0F/JmCQuN00qyrphlrne1XXxJQ5DyPfv+tx6+sLhJQYNDF66SNnEbi2Fm0dtfiqOASKTuW5G8QiPUmrfuU8xhrRl0ylTWcJ6aR9Ty5SjIkQE3XtqSuHd1YMCaIwW1NKRB0vpeUMBZuMGTGGmWGVyVjv8Y2ct4kZn+T996OhmwQs6wZgUOZbVOBJ18G185aZkz+50DkbcewyRcNpGdvSrllYF08LXeUo7YCFGWjnhWiBOWZ890XBH9lfZibyvLmt4urne9u8zuhTRvY6azKVcVjbCHCXMtsnrVvyHfthoOs6Yoycz2dOpyMxRIahoxs6UpT2r2kaKWzTpG1Ha+2tkvJqULMCEM3qnNfriwL1Za20ZT31GCtxlxMiJc6BcwnnIt4H2npgu+moqor9ZUW7kfeIqSbjydkQkyUlS8owTQIEhxDpu54wBSwZtwJ+/l//9xe8i9bit1vdv3TsrOKcwiaXtn2D130oi7o65KSAwEjOkTiNhElkQlKYSGGU/TwkZTTLXidC65HD4cg4jHgnzmUf3r2nqRu+/fZbvvvut2w2G7744gu+/PIrqqpit99xeXlJTJHXr2/47W+/ZRgGvv/zn/j+h+8Zp5HT+cipO5FzYBwCYx8wxvL5F1/w6vXn9P3A7xJgJVYAADahSURBVP7x92A80zRxfDgwTecV4CO7XkSa+4TdZQgZNUIwZOuIKdNP0A+RZLKIflORbY3zovMzTYkiNUJx0M2G0kb3ax9SVJAYXDQI0O+sGW6GjdkIMy0m1Vd6reBZZLbHFGSNlCL3797y8fs/MpyOvD/c8/BPv2NMjtgPpHEgpMxdNpyMZcBAW7P1Ndlaqqahqlu897x+/YZXr15T1RVvXr/h1asbAA6fHTieTnjv+eKLz3nz+jXtpuW7777jy6++nK3pS9dDAaGdteIS6Z1q+5h5v5iXyWfxyfOOl/LPyjmaynO13/EP337DF2/e/NVr/esyfihiy0mQZwu+qWgboSYt3/N5neovvGO5AE/XbZ7AIetsT48SNsrnrhb8Z5vXekNahdJ/8ZxWJ7d69bJoy/5ZqpVLMvTLv7uABz/36T8BfvR7vLxRplzvEBdEca7E24V5UwCVcl/Ms99/3sb1S8cCepYrWJKdPL9gfX2egiqGUp30XpgDbdvSNu28YTzRoCmvX4k4rp8v/Zvrdh5jlnOT1zzXCXnaRlTef30v5999xjTLc2CW/up1+g87LNbUJIIAARFtk6qwxuFsQ+13wqKxDqcCyk9BhbRoOhCJWU1jn+kXuAIarQbCzLaQM8EZeY2l6PSAsA8kcEsmku1S5ZmTtlUwVPmaytVIgmgU/OFnr2G55naeg5achaHjcqnqRaDFu1HvhYDTzjmaul2AH5Z1orQ7JSTOjFmCW2tYRAZe+PhLc6mMpTVwUv5e6938pfcuxxzbG9FvsVrxNEZsxYulfcaSsptBp4Qyyoxc5wIKlPnkq3p2HnJO3BBKEup1w0xqZ23QhKMADzmRc8RgyU/ALe3pz4pdzAK05T4VTZKl6io/L8Ekq++XV7/7KeYiP13UlY223jXmup4CM/Makp/89ez95PVrsFlYaohLVlnLlBGQsVjV2dI4m7IrWsku5vctU2de85RDN9/fAgo5q2yeFfDzbP1b1khYrOcLsFOugJm/d2kvAbOco7F6wmm5Nmjz1/wZq330BYGfnx7Pg7ZV4lwqebnsn8v8sOpKWECVAnaUtcwYZuHHhLB9MlDXhoKcNWOgbicJ/vuBc9+rE1ZHnMQNq+t7zp04eXnv5z2yrmuaupF56at57XZO2p2sMbOGm7xGqsfr2C2lxDBUTJO0ZBYGk6w50g4jTG/ROvDes9lsxPJYQaiUpZp67jtSmPSSCrAbk7J/PsFUzBkVejXYShhVIqxtlu82TXNV1YK6tEJhcDyJC1Z/ZmAnyTrmvaVyFsNS8CwrTBkvz9er5XNk3TbW4ioVRHVgE9gYaZqJtvFMMRKSYwoKLqTFqTPP/ytnWi7Ceo9nAW9YXjuvhSvh4vX3lt99yuwurU6gU7AUJT7JYRHNsxlG+cmx7G1yXnPMqs8VMEsSMwFC1hpi63iz73vObUcIgaoSB8MQJqwzEhvFqMBunJlbIkOj1yfFktvqGs8MVJnVdZszlPJUucZ59RyqF6rrvrAK0urvhLOJygfqaqKuDbttYrtD5xiI9IS4emWNjUJwpGQJIdGdR6ZRgR9tLnrpw1iDVQOS+bnVY+cclV8MSirNO0iRHAXUSTHMTJAweRhUlywAQ9S1NkvRKKVZX5KcGfqeoev5/7X3LbGWJdlVa8f53c/7VWbWr6u6q9s2QkggbGgxYoAQSBYT85ERjIyE5CnMbDFhhGQLgZgwsQRSD5DA4iNbSAwQsgVIyBhbBoQtg4XA3erq6ur6ZL58ee8950RsBnvviDj33vfyVeXNl/kusUqv8r7zzj0nInZ8dqzYHyLCZr3B5eNLtG0bx/5isURd17i4EBLg7OwMZ2dnICKcLBd4+OACm80GbVujqius1it898Pv4vLppeyjRomhVtcOp6fnmM0XWK3W+OzzS3z2+SU26w1WV6vpAVwcMWnsBGb9Ua2IHAIchsDoR0blGZ4dAiqAKrhIRgzZHhTA1pp1OOT9N7sa1/H0u12LWTqtrtrPW2rgXB37PJ/ZIWRy8DaDEQ4es7ZC8BusLud4fHaBoZtjs+4x9AEDBgzMeAbJ6NWTA5oWzWwOqirMZwvMZgs0TYM3Lh7g4cNHaNsWjx49jMTPYrHA2WqFtm3xwQdfw3vvvYv5fI73338fb739FgCg3/QYhkHXxY2EKbCkMG5r37qv9ayd4v4QabzDkj84zGYdHr4hrr7Pw50SP13X4od/+BvIzVptcrXJLCdJrm+KpOlyfiVXdvOOtkP8JJuduDxP9qX2KVsgp2++sXT5O/P6JCRyImlMFJXB/W/Zf6pyXflUnd/hk14UdVPj0ZvCKEbZEWBmpVPCZDpRxwHJFnNhSqxN6pRtMJj15AuWMWG6WQNyN67svUb8KAnTdV1G/OhG1RZGy8rkUtq8FAQREmfBLLQy4if2IL3fymCmlEAqi20mbZMzkZW2n7ZQVAItNsWhIVmtlgCPaOoajkZUVY26minZ06ByM9RVrURQyqpksg2B4ciUUA+HFuJO5aIbVOUq1M6yMHBcA4KT1MQA64ZCbAVcjNMjJw9x001BLBGyzabANsQEhwZAk8a0DmpHIS6eqTsmay55l9aPddxA0rzXjgDIQsMkmXKcc6hcJ8qgTkKxHzvpr8QSGwcM9Vxh0KGZWE7K9X7yZov0SdsKbYt8AywriXVpGW5KBqhrBvN09nFmNQdRvBLxE3VWBAQ420iQutbFsZVII9uYO2t9oigHIMnE5hcLGJ5IA7szl7NuWDj1u7jZiBuXbC1hsSbkEMRiSDerkhklRGLpZYCogm2NpKw2x9iWEYmI0WCP+eIXNIbcNjeV93Eg/QMS2VgLm+UNqSWQHH6mScqxg7MggwAkODvifEhkBK65D7noh06O4uZYiJ9UHs7fnclxogjlnW7veqbbJTYXG+vA2nY7i2CmNR0Q+aYxyS5di+ov6aEM2YbY1gD5QI4Qj/HtfmfEXFob0jqqdVSLxaZmtF7Su3MrWQt9HTAs5hiHAeM4RqLHLEes1MF79BrodBx9PFGv3KCumYRxbDAMRghlsbUiQRoi6WNkeVofpa9UlZBHeRIAQNaUcZTNcdBMScF7aT216rUNzsugDIycsfhMdW1rGbLyjRiGIbqj2hxj1jIy/6VNmaVxN90lqGu1JAZwsj5YGm/W4LREYKQDC7b+YeMmkjOcXU8BpJ1zaJpaZSxtz4HR1yOGIaWCNvIs76o2hcSpItdR87bKJnqCxe+Q3yan07ZGkhyCpMfRSyF/8vkjpikXycYKRiIqro3aHnbLZEOR9zWdseI8JX+vKglQ7ojguxZ+PsfoG7G0cXKItNk0mk0sqPXPIJan3oOUBPJsh12piXabZ8/8RVt/Z4awGGIlyZBg4+M4YnAQN6bVFbrLDt2sRTdvY4yRqq6ErGcA5OPjK3JwjkEVwK1D7SoJDpBlAD0sJKg6sn4PJNm6qoKrxXK4zjbS8F6zngWEUYn1UIluhgEhVHCDWFNx8BhJ4qGxV7fw7QZncc0aNf3306dP8YMffIL5/Bnm84W4+Mzn6PsNAEZVVWA/oq4lccjp6RkePXqE9XotQcR1hM3mM9haUVUVmrZFYODi4gJvv70SC7Khx7CRdO4W3BnEMXts7SrM5h1mbYPFcoH5fIFuNge5Hq5qwNRDXLwqwNUAxHrL+2lw+qgvx5/Dy3LvVSMztgig6+6Vgw+d/+Kca6W2uVBnMAKabobl6Zkks3nrLTz86gfYXDzB+skV1o8vMXiPZ55wNYrL16apsa4bwDks5kvM50L8nJ6d4fzsDK26ep2enoCIMJ/PMI4DmqbFw4dv4Pz8DF0nY8rWxaqu5NCD5XDSOdGJ6kbCGph3SDwoywiwSZtkuoLQBFLfKrqiBoS6urb9ctwp8fPGG2/gJ//SX4gKCzNvj+mo6G9d3iFEdn6LczRPLuyc9Oefs06z755tz4wb3n4jkstarnybUk36nunLdtKw09aH7O+TrJjZQm6uGADw9/7uz9+6vDdhsVjgx/74j07KlW0dpsFuoUq/3aryzomfncpo4fPNbEqPyWqJkW1c42QgmXtg76RkwVOpf3bXtmhbDWYXU46bQpqCD06tvjjVIxI+Lmov0/6VlH1LTyvXdv9lNt/cZLKXTvzShnRPtz8IHDWYt+/AVx616xF8UGVczPibqkbXzJLib8SYkmNRRpalAslHPlo/QRbnytninU7gQhgQIBn5psRP7vZFU1nErm//AeyS4khwmhY+ZRQCROFMoZ12iQ+RSaXkD6FisVxgYtTNGBVwhmY/0PpJGtUp8WJKpFn8SPPIhpReAmcQ03HuIyQyFoBZg0xq37KYJxb8Lym0+QPS5oK3rgD55h4ZGUOqYIvCKG526k6lZI88x0haitdJx5bNWw6VBv1m3RBD0ltaFhxd9KLLmZJcMs+wBpxkgL2e5KUFM/r5w9yalGAGNCaDnIrKflpP1NQd+eAgArkmunBRlEXatIB8HF8ROoeAxWUj+NT/TGCkxEvc/Bh5QEL8gNU7wNxba6BWApRHySoFBhzXqFgIWXP5iRusSGob6Q9UTk4WSTrKRBmxetgppUyLlvkvG/GTxTr7nayeKTB3tgJNNsjpnRzbTFbkl2BtwASw03FRab+uENcF2lWrRSEU2cg6lk73WKKqy+eMdDeXGbbdKiSIrXYFzWI3IDBj3rUYF3MEDjhZzPHg4hzj6PHk8hKPL5+K69KzZ7h69kxctDZrDOMowysShhI/zSxaLWNZsiZQsaQpF0n5JrhK5/VKMp4YIWGuXgbTCfu+R4zFpeQRkdPsibr2mo/ZocHiytLUDl3bYN61aJtG1hMlfVbrDVbrDWZtg3YxR1NXaslja3ly4/F+lBTMgbEZLBOtxsKra7RtLWyDxkCi4KV3ss6iShLV4EiQeS9pno2cMMItBI/Ry5hq6ganSyF2TpeJdFqte6w2gwbxHbHeqIsZc9afMrLp2may8aQXiDV4rvWBXEFN5I8RvBYj6qZ3fGlQIpqrqH0HzT6n6zMn61eLaRaY1QqHtMymcFhbs7pgSplTbCwC1Q2quWQKnrUtThZLMIvLY9+Le9Fq9QxXV1eZO9gzJVp79IO424/Ba4Yx03MQ57tpg2d7p7wB44Q6qukggR3BE4E9YR1GjEOFftODQHj65Anm8zlCGOGHjVjfLRaS6U+JHpBY1LYVQKiAmrBoa4Al8LLEGXsJY9ERnHqDJCIs6d9ClnRi7VNXmLetxD8LHsHLHOLHAaNa/HjfYRga+Tz0GPsVOHhsrtYAruBHj4ARfrC9SdrZDMOIEJ6BiGKq96Zp8OH3PsS3v/P7mM/n+MY3vo4f/qEfwmw2w4OLC7xxcQGiBWazDu++8zaGYcD3P34PH3/6CYa+x6effYbHjz8HuELXznF6coaTBaOtO7z33nu4unyK3+5aEIv76dXlFVbPVkhZEGVP8/DhBc5OTnB2doKHb72FiwePsFqt8eTZAF6NYNcB1QyoZgiuhfeMYZBg5bL+m7uXxpzFcHhZvjCkf9nBwXRbv8sjQOfQ0wcPUXctxr7HvKpxenqO/uoKl598isff/wT9MGC58ThZj+gD43LocTkOABEW8yUWiyXatsU777yDt99+B23b4OLiHGfnp5KMYCYJSCxL29nZaQzw3DRVLDO3cng8zlpZz5Big9qaOvEQQb4/2aqX6YSqV7RNDSiZVxOJXJ+D5xI/RDQD8O8BdHr/P2fmv01EDwD8MwBfB/B/APxlZv7spmct5nP86B/9I7rx3z6lnkb7pq3lYPteLVxW0Oz6Nd/dIZV4390ZDk78YFpmZAEgiaalv8XjeX91o9JmG7H1eg0Af4iI/iteUIZt2+C999+bvDNv19zv1spgRXSqWOQWX1mpt9oGcUOdUqGKMmTZhmM8Hn1Plbla7bveNi26VrIE1a5SlpR2XA9iudis0jLF3ZROJOIn5KezQLw3ft4Dhih1gdPGPZ3u6Xt3eyYR0X/GAcaiWPycwlEAYYR3XomfWoMZ1miqNrm96eYuz54EQK0iCNDA0KC0wc8nNUGIyha5ARJSjTW4s/pqb3+eOmXaU6ARWxAot2Sxu2jyHdu/mPIGsMbVQPZcyQwlWTAqpKDPAcLYMIJ4UWNb2wqaBh6MGBzQFiKCcU3yjFEyDx5kLEYZbBFP2V+kDqrkplNALZsOOaZpfdJp6XTDPplu4zhzcbylwOlOf7Sto884RYInbtWzODXpfTT5T8gGBkNS9LqsD8agtFa2mLaYY9BUa4pJ2xjpE8uo9wQ5VTNCofaaKSUkN7LUBIcZizo7an+Rnh0VXPuzUJE6BnXuAYPU+pECAD3VB9LaYJtzud8IdRtDWXwjssx72pa62ZGur2ORJWbEtnmylclOsojk9DVaQ2SI2xZj2bbWuW0rmesW57iRtGchQMij3JJYnhHdYqCHLEasyNx+IBmm95FZsCH15en4mlRYPPd4mzixtkh/sPGR5tOsPewggdNsGEJA2+h6yUDXtFjMZxi9j8SNmKB7rDdrWFDm9Xo9yRwEQIluyzqSn1Ai+xdxrrXAlVUlBE/V1DEAZacZ/Nq2ldNx5uh2adYQEvMxWTQRMSrYoQOETEpterCxaBY/ADTOXR0tIezAahgG9MOAOiO/AAmMGy3xOKUhHoPEdPGaqt3cusytTdamlE2RWV26gEjIMNKcu92XiCiTufQDVzl0TjbNlsIgMItVRCXuAF4zVhlhOFlJp0vuc8DGp8oY2yEpEMkfysdFtoE7+FgkI4D14ICFILN1MOlt6eAmBOFKODZA3tam4/HkL0Z4SH8Xl7u2qcEzySo6+hnGcY4QPJ51LZq6xjiOkmVz9Bo2gWNf4ZERgpvIYmo9lddxVw7amEr62DwnYyYEwsBCRvrR45KeoN+s0fcLnJ2dYNZJ7JembbTPKzFHDuQqVBQiuW8W4JWTbHwZ8XM4HRUEqrO5jiFzvOmkVY2qaVBXFZq6QjsTEojZI3in2boqkBNS1AUH18hnP1aoavkcPKNfbaSth5C9P+1tclfLzWaDzz9/DOcc1ps1Vqtn6rZa4+L8DMvlEifLhbRlXWOxnMM5B+89uvkMy5MTrNT99vHjJwAT6qrBrJuBiDCbz/EwBFw+ucRH3/sefvDR97HZbNCvN9joHGtxNNu2xclyifOLM5yenuDk5BSL5Ylo1XUrVj6uBkh/UGk/T5aHFPuIxPrTawcbi7tEzb57phYu1/UIe96E88/3bpO7Gd1igaZrxWp09KjgMKxW+Oyjj1GffA99P4Cf9eCrDXof0K6uUD27AgNYLk+wXJygbVs8ePAQDx8+RNu2OD8/wenZiZA956fyua6xWMwxn893Si0ZOWUeqkO1U898Xt/WlyYWUTq/ZqpP1AfqSqzAKAT4W8zZt7H42QD408z8lIgaAP+RiP4NgL8I4N8x888R0c8C+FkAP3Pjk0hcPxjmImJ/mIpri57Zc4/9PmEfdp4Tr/D21ekjd7fX+4v/4sSPKbI5yZCU20mNbv/4vSWy03MisdIB8LvM/MdeVIZEoshhWo34iywMRsAglgEMONVghPgJWXn3yU20EdGhUkriEFsznTwDthglVyyXXbdNSlVXE2ug+ObthTXfRGcny6LUACD1B9d7OH0Tphzo7HnjZBa/OXl/tonXHkH5Vw40FokcmkZSJzonlixC2hnxU0n638ylBkDc9EU5xaI78I4Vh05qsKC7lBQyjslNU5BlAgh6Uq5ltODdE2UXHE3pHQn5M73D+n9WRlP8Yu/Jv0BgVAAksxizg5x+sCgaKmu5Mi0PQ9xgxE1I62V9w+5ilucRoxF3qIOMRWR9xRbXfUQjEakFYbZi5L3WTl7jd+1Uk+L3t5orPdcsfmJQ9PwmCxSYuQhm7Uds8QSkwfINAdG0fpHc2h5OezZD23VPJZKMQmm3Adiuh5AeLUq49AofFXOzUo2K4cHGIrR/gpLtmlZN6gfOhkHWxtI9Y8EdU1aHVP8Uc42jdQmyDWWcp4hBcLHtxdxfxq0QP7KFjG611kcm/cGuOaR4EVmdkOooFlw8+fu2zEBIrlq0e88+YkmGIWf3yl+CBgSPOoHccjAZJlceWa+cMyLGepf15VQAkUmyxLO2sz0r2ZjVH3Obs16Qxm/q16YYk6PoysNgVM6Cl7NYs8w6NHWFcbTsWx51be4ojHEYNVVt1rhKInOQ7DFkombrr9bnpAI2r6S09omISzFrpsRPjD2GNOZJ9Qqnz6mbJifADrguEprGobHAy1VG+mRJAghp/ZpYfXLaxIMlFtE4Bs1IFnS+Socpoqc4sBN3AMl4O3Wbsj4TAsdxnK5n1jp6OwETi3FH6qajpERgxhgCvGcwEwIz+mHEoGmJrQ9f1z456XrtPbGMKbjzDqmrf8vG6mHGohRC2ieuc6mNOL/H1h0S/UAs9ORwJ64rsSqq29j3GWIBSlMLdVvSCKTkYA1mh+BniUDQPu29l7Thm7VY3A0DhnGIWeO8joUwZjGeQsgIfp0YjPQ19y5k80ym7ETin4MQwKNH349YrTa4ulqhHT3atosWzer1ArBkhxMlKABB4rCwI3CYWPwcbl0kOUhOPWnLvVzjb1XqMmm6qZD8FdjJtwI3cMEhBNL1MsBXNYK5uo7AuBrgqwG9B8J6kLVi0sd561/5PAyDZP7yHp9+8im++90PsVgsUJF4FbRti/lijtl8BmbRdefzBVxV4eLiDWw2G5BzODs7w3w2Qx7bhhh489EjXH7lK+g3PZbzJZ6eXsI5Qtd1aOoas1mHt99+ExcXZ1gs5jg7v8B8vsQYgLbrUDctqroGnIPljbDMghKgPTY18tFyMBnutF925YY5JN0zbe/r9LzdN2S6FDmQY9Rdh9npGeq2w3ozYL7eoOoHLNoNltUajffwTQ1uajCA09NTnJycom1anJ+f4eT0BE1TYzafoW1lnaxqiYGar23APj18t7K78+EtQYj6vCMhAVFXCBLMMjuAvR7PJX5YavJUf230hwH8BIA/pde/BeBX8ZxO4IjQNk1UcqJQafIPvlAjpJLuuWbdeWvjctNXbvX6W/TYnftyBXdX4Lxz5Yu8b7/ya5sohe1YXkiGVVXh/PwiK1FaTU3JM9IHSJYX5oYB6OITst+vq1++P4v1IV2JaPouSotPTvxIMeRfyVKSrse3m5LCpiBki2o2kE1BgKYd3F4K4glt/IOqhqzPypUGmNIIIG4qlZawxdyUo/w7zAcZi+QqzJcXO2RJbuFTOXO/AdJmlPJFPpOcnStip55pgCcfXEYrmxUkUs2ektyBJv03PY0T/cJkLj3bY1yfaeLINkDxF8q/YWSWnn6A0oZK38aoEdNlIz03Kv5IC1WurIABVBNl+SBjcatVYluZog0gEmQEJUmzzeHuI+JojaRdaiEbM9lYlT2L/M3ceWTXrX2BlURLc1+yfqBJlig7ZZ0shoER1NrKNkXZTBCV67y3pSUlPcvmCXF3y+JosB7xTsYsEDzLxtZJGlhTPndUiwONRQAIQRkcZwGcKVrfkCNQ5UCUtb5t9nSKYsvOE9uUYnu6WH91awDDBQZpdhpkqYUrVbZlSiU4zcjn0MBxB+gGXOI50aTPUzZvUeVAeyxTUsm0X3F+dReTJGfXnIalPmPvN6s8jmU0Kw7rPdrdDiZDZiFKiJxmYHKoKoAoaHI2BpTgkc2Xj/O89S2RlaxRrnKoNci5WEfl446y6uq8o7EjZHNEaCoXSQFL90tqTRlqB4cFukbijZydnWLdP4T3HpdPn+Hp0yuM3uPp5ZW6pgT0G41JwpqK2Iqi/F4sFrHGsauFgHJy4NK0TSQgc4LHNmo54WPp1GN/ZbXy05hAjbqjNE1SXw8lx8oRTk46LGYtZl2LrpGsaWPwQIBYaHCIKwJndQneiBNJ4x2Yseklw9roA8ZBSB2LySBpfStASTQb0MGPMjfqj1mnjBrrKFkVCZE9qtUf60aAEdUUAEDtHFodi3VdYbkUAmI5m2G1Edezy6tnuFJLr74fMYzBOHHYaXPUryYrwZbuRtB1hCLxmR+0pfnfbk4HRAebTwkx1VysQ0z0ADAn2i4ScanwyDXo+Eiejjn5zHvdKoggKaEdoXEtnFpeLWZznJ+dIXDAZtNjsxayZ73ZpM/9Bpte3L42fY8+ft6g30iSiXHUFN9KDsV+573EqYGRgVY2JeDJLOYJIQCOe/ghYBwZn3zyGTabEbNZh+AJp31AVdfislI3cM4DNUeydbKLoWlrHUxHJUJVyyJo5L8RKkSEpq7QtTVqJxY/dZPCPZjeEZoRVV2pZX3WJsEDmmFw1T5BQw3GvscVPca42qQ512f9m7J/dPG6unqKfrNBVddYr9b43vc+wmw2w9c/+Dq+/oFk/vrKV97FO+++IxY6XYtHj96U8bdY4t2vvAswyyFrrVZUlWSB2mw2qKnCe+98BX3f4/PPPsfTp09ROYf5fIaubdF1HR49eiAuRnWFbt6hbhs0l5f4+LNLXK0HtF0HV1fqgM8YPWMYhPgFzHpG5i1iGaOBw8F0m+db8nwR7I5Nu5o+c5qdCIBapy0uHqCdLRDGEdXZBejsAn0/oHryDPXnVxhGj/P1Fa42z0AEvHHxBi4u3kDTNDg/P8f52TlcVaFtta9VIod8bZMg7oDFs5P6p7KlvTH21uMmUDZL2XRUVw5oazRVhRAYbdNcS9rnuFWMHxIa/DcA/AiAf8jMv0ZEbzPzhwDAzB8S0VvXfPenAfw0AHzta1/L2KjMvvnmt9+ihNdVlLb+fc5Xv5gcbnjvTffcokxf6F23fw4R/RZeUIbnFxfoZrNUqqxX2yKfSrZVNiN74unE9LvXFDo9TS0MyCUXglypgBFBwKQc8u2tz7zVoltl2i6fMaxxcyuje1LOXbY3NynGZAbIy8f5z+S9toul/HsHGYtnF2+iaWbRdNfKFAkYmpjST8q8I9dIpl3TF3PmRTWGJNWsTTKKYS/how+LRnLZc3J6bKJc5vdw3Krqxm+6SZ6WAqp0JyV3e3uZT8CUE3zYOl00nXG6APwWXlSGpyfZ9fSiieUNkW7ISawAsL8P0tY4s2fmi01sFltYTZbZmKBYGBnnRDbm7SkZ+WM6ti4DnAkrtnrcsNu4nJY3l7qVbnI1ksO6yYCPr50wJ/kTNKCzV7LJBTd5Vvbsg4zFqlogBinMih8tJ5xk4YpNphsaAswLUa/TtJ0pET/SMmL5ZSSlsw0CZUGrSeNRkaRmr2K4bYm3RBq/xrk6yiP2+8yailyKg7a3/taztm6ZLAOTvjBpvLwdt57MWz0AkRwB0ti1px5KhieL5Y7FirlLBW0bjq6uAT6MW7XSedip0khZNkSGxDLbXi/j+GFEM31dgyvN/EX6w8bqaSp46pKbVTsLWKgrUl1Lhr1hGCXw7DDCe8k+M/RDWiezVpTxy2mec4yaJRMQgJjd0WQlWY3E2sGsGCIxl63D6dxF5nxzI68bcRdr25RV8VByXC7maFtxea4r2UgGDhh8Srsdl/+4vlsGQSOCJLC2BGT1GEYvRErguLaJdUKy+DHZObN2zforQDG2YZ7nz9aZkLUZZWPG/nVEqHU81hKYBoEBRxXq2mMYRwx+wDD2GEPAOFomw8wqcGdQ0WQt2W1UW8dv0k+NkI663EFkeH5xEdsu9iUg6095C6bWShu1PTpJrkQExDGwHfMtX2/E0s3FWB85htmAYbGAZfrZbDbw3gsJtNnAB4/Veo31eg0fAqqVWOAYWTq6UeQ9SDQ9DqwHJSqwiWVr6jNsQcQJGEYNggyHq6sVmCWg+3K5RtO0qOsgGTbhUDmGJwLYUrdPx+tWGxxmXZzP5bDK9H7IeKmcJBGoK7HKqytL1pIOfOP8rmcAnLVBWg21jcYAv15hrCr0z1ZwlYO3IIhb9GbenRkSj2yz7kFEGIcRT59eoWvbmOBksVig7Tqcnp2hm3WYzedYLpcAJGzG6dkpmBnDaJnfJCRFXTcYZgPCMGIxm2MYBjy+eByJn8Vijlkn8WUePHyA09MTMISgDmAMntHN5mi6DnXTgCqLR2mWqenMy1zi89oecs9/eEwno13SJ99yUJyLmtkc7WwO5oANAytmNJsBQ32FgToM44hm06HbSFbLhw8f4sGDB6jrGifLEyyXJzGmHTlZjyxV+/ba5pztAaaas7bQVn225phbwG41ix819oFzfDjih8Xp+EeJ6ALAvyKiP3zbAjLzLwD4BQD45je/mSfjxm4D7AFd11jxDZPPk+0A76xWu8+67rETee1ryOc37vZzrv8GZX/fDuH5vPdkddxz64RgYH5hGb73/vs8jn5P8RJJkW/K4oY07hDSoNyrzE/EHRUCxF3PHoFNCKeMTLxO6eCdBXH66rhNoC1FgZKM7I9Me26cfE5KApCsZ3IlLcfNitLhxuK77/8Im8kslPBJVk1aJ6RlMi9fuie7nqmrOQmRNig6Aeca6e7HtCGME3a22dE2dPk12i4l7TzJ+pscqoZ0F00LlLqyCpom0p7MLpMtG+uJ+ta0M1Het6aiQ4zFd995M0tYJO1PqvxQ7Kwy0MQ97mZl3caZic9I1Im449CQi6xMxURmuZbEDCCo+HOlDHKKSsiGPE3njygelYPKMAYRjd/Kn2MfKH3HlIGtk3kEIzxskeb4vGjVFSQejikPW/PpQcZi2z5gNpIsNjLplEkwbko2STZ/pc1xnLGywOU3rjbarjFYNiQ+SZzWtM8wCVkhrkeaVQ+QQMPO5lCdO6KFgkohZu/K3mv/18u5O0oi9LbaKRVrb42m82U+/2x9a2szl4jEw8jwzQcPeRhHkHMYBgmOWak1ixDrGitMZZTmyDTvigudUG3OZWnvA5BbMfFEr+E0fzsSeZq1GqdA5/KVEDfAgYFKg5bXIMA5VFXAfD6TvdA4gkOAg8PoRzR1g9YyEo0jBnWBDDtZcOSzub0ZueNHr1aBmJiim0VTtGzKronLsWjZTdNg1naS/r2pUTs3tTw9lBwfXnBtm0glTS0Y6qh1qSqHthGFn7NxaHUzFx3vg7pUJdcvi01kdWQji7xaOym5lJM5bEKLsoaMSWYJ2B924ztF8l2bKLAFjU9ugtK+DKDCrG0wzlr4wCAM0RJL3NSM7MrHWr6xSe+xK6kn3NjyUd6qEx1Ehu+9/z7rtdinbjrUy56RlWdan6hLTJWJ6X1bhyfpoMA+T59tWfWcc6jqGhwCmq7FrJ/Bh4ButlYSKGCxWGCj2Z1iRjBmDH2PcRjF8msY4AchhPqhlyDt0MDvqZASbB8Sx7F2dbTi8V4s1VarVcy6Z9eryoGDxCgC1JX0GlX1YOvixQVbZkj7MYtIO9CwLLnyk7Lwmrts1remMmIhUZkDmqZD281RkUPbdqjrBuzF2jv4MXVv0zWnelz8bLIBgMdPnuDjjz/GfD7HfDGX+WvWoe97eD/GGGumZ9VVFTN1uRg/qULXdVgul5JRjBGT08y6Dm3ToGlqdN1MygwWQybvY58yl9jAjNGPGP0Y441FLwMjMTl16UPu+W/7vX3I14V4beuXXDegyW/pipYMcf10miygYVRtLVY7VQVXA+1MsleenC4xX8xQ1zW6WYu2bWIcQ+mWIquk00of3FfSKQnEO3PMVq32tkNCtv9hS1QhMWP7YcTon9/kXyirFzN/TkS/CuDHAXxERO8q8/cugO/f6hnbH7Y2RNN7c2Xt1k+++aEHwQv15ec+UdX+L/iu/fXdtsJ5URmGELBebXbemy9s058sCAVndeLpd+Xq1oCNk7gx/thZbSanM1+AMs3NAdO1aSlMicp09Oy6boJCIgS2y7V7EgLNCiEPc1mZc2uCfUrJnue/2FgkglNXgrydc1e4rMpp+pzcb5thJJGyiWi3TeJCh/hlpDvzqTv9gSZSeV60+hR7yEgEIGtPBhhuqgTEezLJR0XbXFlSCWPOJU7jVMPG5jWNz4TeI6ndt/rbAeZTq6aReKTBFuO4s/0Cs3VWpM1jLEdss6SopqGWhtX2CNmqctYv0hrHALvYN6YF10+c+he57DoxiLKTRTICRAiLTMRWeiC6mCVSJNiIDQFhGOG9KMdBN7c2FyQSy8W6+Pjs/B1THESOFtQ5myuVm9JNhmSsi6QMzBXGgnbL+IgWVlHJ0flpi3ElJxlvwEAgrTM4WYdA072TZBmC83BuhMQjIXClcxjViJmrGBP3vV3VJt8MsbqYpdk2kT/ZeqUdal/P2zdPTpeA7O/5XEO7ZTvIurhea/wOydjk1J2HnINzQFWLwlg5h7qR1MOS7arWttFsYDASSC1+iMHBqZinLo82+ZJzGmssVS4/5WYwfGDUXogFy4THAGqIKwUDmHdzjGeyKXh2cYHVao1xHPH48RNcXl5iHEdcPXuGq9VKMhINPfoxtwSSoknMHh8tGiQGhwNzG1208jVPlOjk9mWnqbNujrqu0TQNloulnKY7QlXX0ULjkHIkIszaGq26jQjxE3B1tca6H+AI6NoWs7aNe39x7UOMhzeMFjNnxGYzYjMM8D6gqTUbj6OUfWgUK4uxH4Us8ymwtVkNmdyNjrZ4hsyMjcZhEuLH7tBVSZsncID3iJtlIoYDoa0lRkoIDuTmmHUVvA94tpZy+xCwWg/YbAZZfYNZzjC8zzdYE1+/rC1vp73uHHW+oAxl3kzWd0AWzJaTlVYu8xs/Z4sXETK3PEzutR8jcGVdTtl6YjDvrffkJF9ezl6DiAcWQsHI2L7vNSh7wHq1joRQv9lg6Ht47/H06krSgQePda9j1MabEiZt06J2DUgzCdozAeDq6gpN0+Dk5ETdvWosl4s4/loN1j4luLbl8OJjUbL+6fpFaolOlbrDSgKBWjP6WuII5ySDoJEAXKd5KR3e6UhhRuWBKjDC0MOvR1wtLuFojXHTYxg07pbbT/jY/AwAfd9jHL0Gcg749JPP0LYtPvr4+/j2t7+N+XyOD77xAb721ffRzTo8fPAAF2+cw2lWspQtmAAmuIZwdnaO+VwyxI0PR3X31GDiJId8Fozbh4CwIQQMqOoG3Wxm8V3hvcdqvcJ6vZYscv0IP1ig+TDp44eU4SEwPRS45p7JZ9qZU4CkMzEYrnao5x24rjAbGaMGA2/aczStrM2LxQyzeScEXDtD285SRtO4D0pznsRHTDEs0xSxqwmlva+W7do9X65P7dFnCDEGbj+MePJ0hU3//Kxst8nq9SaAQTvAHMCfAfDzAH4ZwE8B+Dn995ee+7brsMXT7NtY2Pbq+gdc99Ck/Nz2/TfjtkSMPfT5Zdhf2y1B3/p9u/j4448BSW+AF5WhKToJ8k7npgufdWjnvogFU57ZTNtOF6rrFuedwt2C/OHsZ/r1bDNsvdCUl7x/kilA2YaEp8/ZuykBYhpTUYpEgdg5Ybqe3KqJ6OJQYzFl3krvTP7u2nt5t91zsiiWlZRcyDbieZvF72K/kiD3pO9ub+DiGf2NEyTpd7cVUPnMsgvOykyTrxNsgZF+JOavFBX8OMIY0d2MNWg04neNCEuKt7mLgQjPLj8DDjQWrQpThdNNTE8jicVAtAfFdh+dEj958+wTVW4xsfOXnTVO6571jVyElPWT+O6sP6YNbpJoTthN1wTa+ldJEpWpWPz4lKErBFi2NdbU5jLeVcDZs7MWsksHHYuJ1OT4f+lOogSykWdIfXnbGoASG4mYvQ17VgbKKDISG4A8mE5srzgLqpsSBWkfJ1nsSB9iCjep9c9kct0i5u20VsoVNONcNm72lDO2R1Ll4/P2K0w3LOiU/s4ccCgZMiQGCwDU6kJFfoQPtW5ECA1koy3dt9KYc24SHJIsc5YGMY36Q7TmSvNtrCq21kgdRG5rPNg85ViDT3vpU+Jipu9qUpDKtmkxn80lCxGJq6hYGkhq7NGP8Ozh/JhmA9aeo8kbPHmMaklQVVXc2OZz8jYBlM9nTdOgbSWlup1y53OU4mBjkUgz5tiprpaxH0Zs+gFN7dDWjZjXs8R4CUDMOGbl8l7cvCR7lqRzr5ligG1ZUzhaII6jkGScbfwtmPSki+vcaCQZQDGTV5wbsnutjZmDziUu/s056SPBEWZoUFWWClj6pVg4qXWAzgkh24CZ/jNZRreGXa79Stl0TlFVLYbIln5wsPl0Ys2QrXXbv6dy36Bfkv5vot/sVnb30JOyNZUma3OedGRvwwHox0GsdpjhxzEGQDfix3uP1WqF9UriA23Wa/SbjViHKLz3EtcnrqMyV1SukkDuSjrL/CXvWq1W6PserWbA9d5LMNuqAlgzwxGArbooDrcuEiUyxPq9jrMYC82CPdsapBllLQPhlhAjv0H5lXYG6ubwVY1WrWdC4xEGP1GCpiIy/RBRVwzBx5hP3ns8fXqFuq7hg0ff91gs5ujmLZYLsQJaLhcAziFxfcS1F0iZ5ZgJXTdD123tTeLBDkAZwUvBww0ViCTGXF2LJYtZaQYv/1qg+TyTcL5oy5g+5D4j07+/JOJhkdb6ufdfc51NF3UEqis4AHXboO2k0ReLDoulWFW1XY22lWy/bdOiqW3tSeM2BNZ4tYjrbtL7t+eS7fliu37bbUR7Pu1WzlRA7yU4/HrT39g2wO0sft4F8C2SYz0H4BeZ+V8T0X8C8ItE9NcB/D6An7zFsw6Gm4mg5355awI/RIm28dJfcGt8+OGHAPAHiei/4VAyvEG3foFbb8S1hM9d4iUV4ZoTk+2/NQB+5RBj8SYCZlLJF6jvbcbnFxYpXTMZ3inyN99ERO3e81SIn8OOxee8Pcftlt5r6nebal97U65Y36oQXwi3KtoBkK07BxuLL7XA9oo7eMd+vAZzNoDdVYihabMPI8M7R0YA5eTal3vKzi8v2l/uqrvpGna4sfj/Eybk4ZfH7bdj+7+XffO1lOGBmun578kWxhfZJH8pvGgfSAeYhx2LL6AsTNsz/0Ne8C/9+Gtw/W7nUK+a9seXtr4efCx+mf3b7jjYJuG22puva/u7HE+3qef+TnibNqIDdGC6ywmGiD4GcAXgB3f20lePR3g96vsBM7/5og9RGf5fvD71ugu8LnU9iAyBMhZfMcpY/PJ4XepaxuKL4XWQ46FlWMbiq0EZi18exyrDMhZfDcpY/PI4VhmWsfhqcK0c75T4AQAi+i/M/M07fekrxLHW91jrtQ/HWtdjrdd1ONb6Hmu99uFY63qs9boOx1rfY63XPhxrXY+1XvtwzHU95rpt41jreqz12odjrusx120b96Gu7vm3FBQUFBQUFBQUFBQUFBQUFBTcRxTip6CgoKCgoKCgoKCgoKCgoOBI8SqIn194Be98lTjW+h5rvfbhWOt6rPW6Dsda32Ot1z4ca12PtV7X4Vjre6z12odjreux1msfjrmux1y3bRxrXY+1XvtwzHU95rpt47Wv653H+CkoKCgoKCgoKCgoKCgoKCgouBsUV6+CgoKCgoKCgoKCgoKCgoKCI0UhfgoKCgoKCgoKCgoKCgoKCgqOFHdK/BDRjxPR7xLR7xHRz97lu182iOirRPQrRPQ7RPQ/iOhv6PUHRPRvieh/6b9vvOqyvgiKDO+/DIEix2OQY5Hh/ZchUOR4DHIsMrz/MgSKHI9BjkWG91+GQJHjMcixyPD1lOGdxfghogrA/wTwZwF8B8CvA/irzPzbd1KAlwwiehfAu8z8m0R0CuA3APx5AH8NwKfM/HPa8d9g5p95dSX98igyvP8yBIocj0GORYb3X4ZAkeMxyLHI8P7LEChyPAY5FhnefxkCRY7HIMciw9dXhndp8fMnAPweM/9vZu4B/FMAP3GH73+pYOYPmfk39fMlgN8B8B6kjt/S274F6Rj3FUWG91+GQJEjcP/lWGR4/2UIFDkC91+ORYb3X4ZAkSNw/+VYZHj/ZQgUOQL3X45Fhq+pDO+S+HkPwLez37+j144ORPR1AD8G4NcAvM3MHwLSUQC89QqL9qIoMrz/MgSKHI9BjkWG91+GQJHjMcixyPD+yxAocjwGORYZ3n8ZAkWOxyDHIsPXVIZ3SfzQnmtHl0ueiE4A/AsAf5OZn7zq8hwYRYbHgSLH+48iw+NAkeP9R5HhcaDI8f6jyPA4UOR4/1Fk+JriLomf7wD4avb7+wC+e4fvf+kgogbSAf4JM/9LvfyR+gKaT+D3X1X5DoAiw/svQ6DI8RjkWGR4/2UIFDkegxyLDO+/DIEix2OQY5Hh/ZchUOR4DHIsMnxNZXiXxM+vA/gDRPQNImoB/BUAv3yH73+pICIC8I8A/A4z//3sT78M4Kf0808B+KW7LtsBUWR4/2UIFDkC91+ORYb3X4ZAkSNw/+VYZHj/ZQgUOQL3X45FhvdfhkCRI3D/5Vhk+JrK8M6yegEAEf05AP8AQAXgHzPz37mzl79kENGfBPAfAPx3AEEv/y2Iz98vAvgagN8H8JPM/OkrKeQBUGR4/2UIFDniCORYZHj/ZQgUOeII5FhkeP9lCBQ54gjkWGR4/2UIFDniCORYZPh6yvBOiZ+CgoKCgoKCgoKCgoKCgoKCgrvDXbp6FRQUFBQUFBQUFBQUFBQUFBTcIQrxU1BQUFBQUFBQUFBQUFBQUHCkKMRPQUFBQUFBQUFBQUFBQUFBwZGiED8FBQUFBQUFBQUFBQUFBQUFR4pC/BQUFBQUFBQUFBQUFBQUFBQcKQrxU1BQUFBQUFBQUFBQUFBQUHCkKMRPQUFBQUFBQUFBQUFBQUFBwZHi/wGWHVpuFrhP3wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDbElEQVR4nOz9d5hc13XmC68TKlfniEaOBEkw50wFUqKCJdOyZEtWsMdBI8vzaTTjoNH1mJ6rkTyaGV1NsDX21R1RHkuyZJtKtgJJBQYxgwQDAJJIjW4AnburqivXCd8fVWjgfXcRDUjoKgpePz14xNVVdWqffdZee+9zut/XCsMwFEVRFEVRFEVRFEVRFEVRFEVRlJ9z7HY3QFEURVEURVEURVEURVEURVEU5WygDz0URVEURVEURVEURVEURVEURTkn0IceiqIoiqIoiqIoiqIoiqIoiqKcE+hDD0VRFEVRFEVRFEVRFEVRFEVRzgn0oYeiKIqiKIqiKIqiKIqiKIqiKOcE+tBDURRFURRFURRFURRFURRFUZRzAn3ooSiKoiiKoiiKoiiKoiiKoijKOYE+9FAURVEURVEURVEURVEURVEU5ZxAH3ooiqIoiqIoiqIoiqIoiqIoinJOoA892sytt94qO3bsWPZ9o6OjYlmW3H333SvfKOWcRnNOaQead0o70LxTWo3mnNIONO+UdqB5p7QazTmlHWjeKa1Gc+7s4ba7AcrpsWrVKnn00Udl8+bN7W6K8s8EzTmlHWjeKe1A805pNZpzSjvQvFPagead0mo055R2oHmntBrNueXRhx4/J8RiMbn22mvb3QzlnxGac0o70LxT2oHmndJqNOeUdqB5p7QDzTul1WjOKe1A805pNZpzy6PyVivMzMyM/PZv/7asXbtWYrGYDAwMyA033CD3338/vO/JJ5+Um266SZLJpGzatEn+7M/+TIIgWHq92Z8t3XXXXWJZljzzzDNy5513Smdnp3R1dcmv/dqvyczMTKtOUXmVoTmntAPNO6UdaN4prUZzTmkHmndKO9C8U1qN5pzSDjTvlFajOdc69C89Vpj3vve98vTTT8t//I//UbZt2yaZTEaefvppmZubW3rP5OSkvOc975F/82/+jfzJn/yJfP3rX5ePfexjMjIyIu973/uW/Y5f/MVflHe+853ywQ9+UHbv3i1//Md/LHv27JHHH39cIpHISp6e8ipEc05pB5p3SjvQvFNajeac0g4075R2oHmntBrNOaUdaN4prUZzroWEyoqSTqfDj3zkI6/4+i233BKKSPj444/Dzy+44ILwDW94w1J86NChUETCL3zhC0s/+5M/+ZNQRMJ//a//NXz2S1/6Uigi4d/8zd+cnZNQfq7QnFPagead0g4075RWozmntAPNO6UdaN4prUZzTmkHmndKq9Gcax0qb7XCXH311XL33XfLJz7xCXnsscekVqsZ7xkeHparr74afnbxxRfL4cOHT+s73vOe90D8zne+U1zXlR/96Ec/fcOVn1s055R2oHmntAPNO6XVaM4p7UDzTmkHmndKq9GcU9qB5p3SajTnWoc+9FhhvvrVr8r73/9++fznPy/XXXed9Pb2yvve9z6ZnJxcek9fX5/xuVgsJqVS6bS+Y3h4GGLXdaWvrw/+NEr554PmnNIONO+UdqB5p7QazTmlHWjeKe1A805pNZpzSjvQvFNajeZc69CHHitMf3+/fPazn5XR0VE5fPiwfOpTn5J77rlHPvCBD5y17zh5YIiIeJ4nc3NzTQeJcu6jOae0A807pR1o3imtRnNOaQead0o70LxTWo3mnNIONO+UVqM51zr0oUcLWbdunXz4wx+W2267TZ5++umzdtwvfelLEH/ta18Tz/Pk1ltvPWvfofx8ojmntAPNO6UdaN4prUZzTmkHmndKO9C8U1qN5pzSDjTvlFajObeyuO1uwLlMNpuV17zmNfLud79btm/fLh0dHfLkk0/K9773PbnzzjvP2vfcc8894rqu3HbbbbJ792754z/+Y7nkkkvkne9851n7DuXnA805pR1o3intQPNOaTWac0o70LxT2oHmndJqNOeUdqB5p7QazbnWog89VpB4PC7XXHON/J//839kdHRUarWarFu3Tv7wD/9Q/uAP/uCsfc8999wjd911l3zuc58Ty7LkrW99q3z2s5+VaDR61r5D+flAc05pB5p3SjvQvFNajeac0g4075R2oHmntBrNOaUdaN4prUZzrrVYYRiG7W6E8tNx1113yZ/+6Z/KzMyM9Pf3t7s5yj8DNOeUdqB5p7QDzTul1WjOKe1A805pB5p3SqvRnFPagead0mo05xD19FAURVEURVEURVEURVEURVEU5ZxAH3ooiqIoiqIoiqIoiqIoiqIoinJOoPJWiqIoiqIoiqIoiqIoiqIoiqKcE+hfeiiKoiiKoiiKoiiKoiiKoiiKck6gDz0URVEURVEURVEURVEURVEURTknWLGHHn/xF38hGzdulHg8LldccYU89NBDK/VViiIimnNKe9C8U9qB5p3SajTnlHageae0A807pdVozintQPNOaTWac0qrcVfioF/96lflIx/5iPzFX/yF3HDDDfKXf/mXcscdd8iePXtk3bp1p/xsEARy7Ngx6ejoEMuyVqJ5ys8RYRjK4uKijIyMiG2/8jO6nyXnRDTvlBOcbs6JaN4pZ49W5Z3mnHIyOscqrUbnWKUd6ByrtAOdY5VWo7VOaQda65RWcya1TsIV4Oqrrw4/+MEPws+2b98e/tEf/dGynx0fHw9FRP/pP/g3Pj6+Yjmneaf/mv1bLuc07/TfSvxb6bzTnNN/zf7pHKv/Wv1P51j9145/Osfqv3b80zlW/7X6n9Y6/deOf1rr9F+r/51OrTvrf+lRrVZl586d8kd/9Efw89tvv10eeeQR4/2VSkUqlcpSHIahiIiMj49LZ2fn2W6e8nNGLpeTtWvXSkdHxyu+50xzTuSV8+6v9x+WZEcj74ynxxyHFFIsImFoLfOWkF4/dSy2Q0362Z9wB/QVgY9xk9P6mVmu1QG9IaDXqVv5SojVpNGWcbkCiutvKC3m5Hd3bDxlzomc3byzB2Ni2Y2T8mrwmcDHCxK6lANNnmw7Dv7MtfAzDikbhgH2Rblcatr+48SjMWxjk/6ueR5+h0fnQXkmUWyTnaLvEPzAyPAaiFet2ma0wbW6IPZ8TBwnglOgT202EsvFz3tBBV9vMlYCL4o/oMt3/Lz8Wk1evPcbZz3vXinn1q3qEruRc4N9q+AzQwN9EBcWj0EcccwR3NXZQ+3EviwWMKf4WkzM5iA+3rbjJFNxiAOfrpWIhHQBKjW8PmUaWz7lfalSxjZ6eDzHxnyxHXMJ5Tp4ganMSFijGk+f9+gDFo3lWg3PoVKlHBQRm9rAVys46bzDMJRiodayOXbz9vVL9amjF/MsmUhD3N2NbYpFEsb3+JRHyWgK4ogVgdhxcDy6FHNh4jmY+1ZExKJ5OaSS7NDrnV24tt26dT3G27ZAvGb1aoh7u09dI0RE9u/bh8dYg/WSx2dn1/LHPJm5TN742e6XXoT40Uceg7hUqH+mUqnIX/z3z7R0jv3BD34g6XRq6T0ns/xvCjZ7nRcUFC63fFwOOl7Tj5/h2ozro7EoWvYAzVqxzLp4uUMusybm4ze7VHwMY93coFAoyJvf/OaWzbF/+/2nJJmq17RU+tTfyU1utqbi68fnyWv5V+qHV4T6tum4WOY7eC3JbeI51+c2+rzaX7YJTTIGf2LRWiKkRgVn2Ob6d576GCcfpFTIywfvvKFlc+y2bZuW5liH5is3gvOhX8PJKhrD10VErCit5R1cy80tzOAHaG3f2dEP8W/91r+CePOm7dgGy9zTFGhT6MSwhscDnMctSUJcC/H9Lu2bfA/PqVheNNowfuwoxL29eF7d3bie4ZSI2Ni3ucVpiGdmJiHuSA8abSiWKJdpbTE4WF+HF4sFed87frFltS7Z17U0zsK+XvjM+evXQnxNPANxp1SN77nzw38McRjFdW954mmI89SXQccFEK8aug7iH/3obog/9xdfM9owPoftisXx+o10Yt9fvApfH+rC10t5TIhCBWvIdA7PUURkYhzH3kA/5a2Le5DBEfzOtZtwrblm08UQb77gJojjabxWIiJdg/izVOqVcyqfz8vNN9/Sslo3fP4NS/swj9buQRxrQq2IY7yWx/2eiIhXxmu+ZtUIxD2DA/gdVKsqHn6+TPu1Gq09gyYru1gc731UK3jMWg3jfA7X4iMbcK3f2YH7qsLCArY5b97vmc9kIO7tx/Mu0145lsB9l0/9UiwVIR4YwOMlk/h5ETEm4uwitttp1Bvfq8mBB+5ZttaJrIC81ezsrPi+L0NDQ/DzoaEhmZycNN7/qU99Sv70T//U+HlnZ6c+9FCWONWm9ExzTuSV8y7Z0SnJRt6Z30mLDX3o8VPzan7osfT+Zfr2bOadZVsnNma0QTPuS9DrRizmJo/PxTKuwKnfv+zxm+QIv8fIVf4QH5NjaqPt0oOdiLlZcy26oUnH5IcewputZR568Aa/2f0ei9vAQ1hwUXu28+6Vcs62raUHC3yjPkILaZcetDV76BGlvuQbCxF+WEfn6dAmlB96cBt9oyqYNdkJ7FPG/H7+Tn6eaL5u9gP/ea1xg8YOTvm6HS4zDpYZ281+Zoz20/jMyZzNWuc49tINGZfzjHIoQmM6EqWxJCI2PfSI0nvMhx64oTjThx58E0lExOIHXcs89IjH8QFeMok3aNJp3KR00Fq4s3P5xT0fg9fTxkOP0zgmfD4wb0ylUvidfJ6Bt7K1TuSV8y6dTi31CeeVPvQ43QP8fD/0OHGM1syxyVR66WFHquPU+9nTeuixzP7g1fnQA18/04cezc7gVfHQg/v+FA89ltrR0jnWafw3/cITz1+8Rmoyv9kunSu9x3ZOLSni0NovkcBfXkil8IZXtJlEiU/tjONaIR7gvG4+9MCabz70wNhy+LeyRBJJbHcyhd/B52E89KC1hhfgzcpEgY5P6wIRkZByiB96JKkNrap1sIc1HrThtYpF8PUYb4pEJE19G8bw5rGbxOsd+ti3QRLXHsd/4eE4Cboh3mwtb6yjjT0LxrwvitF+0afXa3TabpM2OPSd/B6ubUYbIpjXcXqomaJ+iqfMnOO1JK/zmqVYq2qd7bhLDz147yS0v7Dol9T4l5Wa/cx2qG64mDc+1RE+osNzifFQv8ke0sXvtH3ap9LcwuflUBudCMV8fNf8BUI+ptEm+iVWfj2keyncj0abIjieRcSYQ7ndfM/gdGTOVsTTo9mXh2HYtEEf+9jH5KMf/ehSfPw3+08moLuwxrFPY5FtfPOyH1nm5jOltnF8q8lvqxh3XZdrw8+6a/r54NS/SXn6i/bTzTmRV867qF+RmG/+5myz4/Pi0GqyUKvyOniZQRlQcTNzmxfnP01OUMHke8/Gu89+3plDwdjx0Qfo5WWaZJnr1SY7pVe4YX0av2kG33UW8i6olJfut7t0x8wKKM/opl6zzXFAiVcJ8DcDjIUTtTdGN6sqBRwTxSw+5eebfiLm5jdKv71gxSjXaeMUUA641Eb+jYxq0fytjf5BXJwlE3hjr1jA3z7wHZz8eSMb0mkuLOJvg1X4L0VExKO/1LH5Rm6sPg2HTZP2lflZ59iYHV9aNNj0VxNeCf/qIqzitUj1mgsUx8ZNSSxKORbghi67iO+PRmnxTfniUw5XKuZvh3FhMUYGPy/khz1RvDaxKF5/vknveWZ/uzaOz5DGs0cPuTxa3wT01yV8g8bjnXST34o0SgJv3k5e2J/BjbGzUeviXV1LN0Fs+u2e3mH8i4aYjTnAf6UhIiKUm1WeO+jhqE9zJt/8d+jXVB3q35pn/jaebeMx+CZQQA+6piemKZ6A+MnH8bcYV60ahngb/SWIiMiWjfjbXfwXQF4N21gu4+t5+m2vsbFxiA8eOoSfr5j16uhR/E3YHNXH4/UmbDJuTsXZyLvt288/6cHPqW+s/3MhMPY5+HqT20DmT5brymXKy3IPLMzDm20IaV3s+833jLkczmvL8bPOsblCUbzGitqi2mXsF/ihf5OH+rw654epkWXWdcs9FPHpga9XNce4xw8ljIca/CDm1POVxX91zL8o1uThwXIPJQI+jxq3gR5s08t+yPm0/EMPI4+DE/W2VDDXpq/E2ah1vh/K8ZHD909s+mtVi/4KfGgI52ARkXwlA/HUHK17K6eeYxM+X3OE89YO48L4tN5fzM9DPNKLf63Mf20SUi5n6S85Umm82TsxMWe0YX4O521+uNbb0wMx35TLL2YgnprE41UrmGc53/wN7ECwjqQ6sa+O/0LJcg+imJ+11kXtcGloh7T2SFJsUW2byU4Z33Pg4JMQdw50YUxrLqG4VsO93XN7dkE8MUv7RzFzrkZjh/4YSCYr+IM1W/H1azZinM9iG7m8Pj1h7qOfPYzrzcksxhGqdRNFvGYvHMO+f51bgPiCy/G87Sa/0Mb3uvgB0cl50uzh0StxNmrd5g3D4jZuoB+bxjE7XaK/7KB5oFYx1/JeCetCmf6C6FgRv8OjhwM9tIdx+X4N7SH5r09Eln/Yxvd84nHcW+cyWYgLOYwtuk8xQA+fRETms/iZicOHIQ6pL116eJbsw7+CC2ksTRxF9Yhk3Pwr/hH6Kxuh+xTlUv36BU32ZK/EWX/o0d/fL47jGE/rpqenjad6IiKxWExisSZPeBTlNDnTnBPRvFN+djTvlHagc6zSarTWKe1A805pBzrHKq1Ga53SDrTWKa1Ga53SLs7sUfBpEI1G5YorrpD77rsPfn7ffffJ9ddff7a/TlE055S2oHmntAPNO6XVaM4p7UDzTmkHmndKq9GcU9qB5p3SajTnlHaxIvJWH/3oR+W9732vXHnllXLdddfJX/3VX8nY2Jh88IMfXImvUxTNOaUtaN4p7UDzTmk1mnNKO9C8U9qB5p3SajTnlHageae0Gs05pR2syEOPd73rXTI3Nyf/4T/8B5mYmJAdO3bId77zHVm/fv1pH+OEIqWIz2ajhubb8n+wwp4BhqcuvZ/NnB3nTLvqNP6I5p+njLDBqbvh9DrpbOSciEgoroSNYWEYWxvGEqfzh1Koe8fGV4Z+IWmABqwlS29nSw/W0xUR8UjvjnuUNctDyl3WBjX8bX4KeWxjvBn+mqQLzO/nfqDXWau/fkw2qea+rR80cE1D7Ffi7OWds3QxfT4ZNtIlPXQ27hURCchTqFwlbUuhnDAMmrGvYinUa2RdZzaGFTH9MNjkr0x6qKUy+YRQcrtRvKbVEr4/2sSUjEdoZxx1ewfTqBPLqV0iTVCP/H7cENuQr5l+QHmSc66E2PfOcY3PM/AcPRt5F48mlvR/LcF2VyrY6MwC6uPGY2btYy3YYgH7LvTJJ6aC+pxhyFrhOAn7pOfpB6Z/ChOS4HytxnlPeR7FP5+ORlgY+tR+SCIivodawYFPnjw8jdB5cI5x7eN+cpo0gt/TTAf/pDe/8msncbZqXW9P/wljSzIV37QJRZGrZbxeybhptp1IoG9PQHkScbk+4lrOr3He1SgmHeCamXeGea/PuUu+LewVRHGVNHcPjqMMwKEjptnjY2nUxO3u7ob4xQPotzE3PQNxgfw3cjnWbafa55pSA7zOZhP542sHYy4+BWcr7/KLZbGtei5wLbFoDeRR7WHvCxHTc4q18wMPr6lN2vmcIx77QRnehSY+fWe1irWH/RHMWkRrPaqH3KbQM+e3MCQ/G2o3t9H3Tu1dZbjYsT9HU8NZ7Gtu93FPhkIBjYNPxdnIO8txxWoYeBbJgyoRx/VQ6BmrXON4i1Uck5MLOIYrRTy/Yg2/06MVEftDcR1aM7DOaENPqhePYdRDul70nfsnD0I8lZ2lNrC3m5kvPs3jcfKpSJFX1KZ1eM080r2v+DTWeH/xUxiZn+xFUi6enub42ap1tu2I3VgP8xonQoaxVNYlnjDnWN/Gc121CufUxYP7IE53orfF8DBK1jhUCx1egzTZW3eQqXdmCsdCsYDryxitefwarmkPH9wP8dbzt+P7m/i4FAuocx8hv7BCfgFi9pKZnUM/gHIF19Wc+/GEOcfmFvE84jHcw1iNucsKT11nT+as3LOr1kQatdnPoneSVcIks8nfKB7FmiIikkriz5LxbjyGh31NnuEyl8G68p//ny9AfOAw+qj19jaT8iIPDrqevkWm1mVaB5JfQ5LaGOXbP6G5j85TMSqSh51DOTNP+6raAtaeq4o85y/jNSWmd9TpGEYvx9mqdfv27V8yMl+Yx/Hp0BrYJt9Ip8s0bfdpzzdH+wGL7lOUFtEjJUf3DPrX4PkkyBTebjLGKzRe2GvSqpC/sMum4xjnF3E8xgyfJ/PeSXdvH8RBqhPiQiYD8ewCeixVaf2S6sDPe+Tz47tmG0q0nulI47yea5yX38TX8pVYMSPzD33oQ/KhD31opQ6vKAaac0o70LxT2oHmndJqNOeUdqB5p7QDzTul1WjOKe1A805pNZpzSqs5654eiqIoiqIoiqIoiqIoiqIoiqIo7UAfeiiKoiiKoiiKoiiKoiiKoiiKck6wYvJWPyv3/fBxSTY04FknOE26Xpkc6Qc20aSrkLZepUyaaS5r1uF3zs2hdqrn4/Fc0na0LFOfjJ8xLaeKFxoGDst84DRgDd/lwS9dTv6btf5OR/qPtVFP1hVmTf2VxnEj4hz3dGD99mVOplnXOEb/kc4zaesdPTIGcV8P6nV29KLOZYn0Gx3f1PF87plnIF63Zg3GqzEu10ibmq0wzkIeGnrFnAP8MsU+axOTznPgmnnOecY6vce18V13ea+As01333qxGv4K2XnUa3epM+JR1qE089KjvLJCrHeGL4vF2t+kTWrh8dw0eR800aUsk/Zl0UftS49yNRLBmulVUEvTpza7SXx/X0+30QafNK0LGdT8rFGdjpCnQyqOOvmVgPQ92SOiif70QN8AxJkytiFfmm+09fR0n88WF1y8XaINL5auLr4WWHeLGZxzRcz5bbE4BXFA1396BjV2bRv71rJJP5e8MQzddh/1kBtHpfdgXlcpH1zyoonEMDb05CkHO1LcLyLVKtV4IT1WGms1D9tcqrK++Kl9oGJN9FjZs8DzXtkfJQhCWVzEfllJMlMLSxq0dgRzYPezL+Cb6dQ6O7uN4w0NrsaPkIeH6+C5RVzS9SUPJzeGNSASwWVyoolfVNTBY7C/kEWfYc14XlqY/jbL+GiJCEkPS5nWuIeOoeZuyJ465PeQ6kBddjeC47lcXH5txue5ZIJzdhYRZ8TBA0clna7vFWxaL8TomocOLTg4FlMH2WHvM5oKXNLODskTxCczL/auYB8zEZGAFmchaYKzz4DQ+t8iLwT+Tt7GOE3aEHWxBrK/F7eBfZU413k9w344XNtERMpV9urg/djx/2/t7/nNju6VRMOLgDM+Hk/TT6hGdPcI8837/x7ivU8/BnGNky5GfkZU64zrTeNyfa/p6bGhD3+2Y/t5+AZaI+WL2Kbv7PwuxEfmcd0QBpiTnm/OTT7VNiuPtShC4+C9H/oAxFtXXQjxzDT6Q4TkaWbUMTG9Rhy671CtnuiHSqnZWmXlsN1IU19DERGHxmc1j22bm0evBBGRjh7UY7/x+tdAXPS+D7GbxNzu6sAaYVl4jXm/YdtN/CgCvCa24H5i/wH0aNi0+lL8vIV1Y3oGvWWG1uJe2w/x+CIic3P4HYkE9uX8HObywgKv9dHTIxLB8WlbOA/VfHN96dP4ikYHIfa8+ljwvdbeO6kUy0tr02IF+25hEPuhTLWvt2vEOF5f/w6I3RTtD/PjENs18qWsYr44Fvkv5rGGXHXNBqMNiTRenxd2ow+M0Jwe2Hi9qiFegzhZdkRo/i375h4w4P09+76SP1pA8whbYLEHKHu4im36ijS7p/pqYX6hKFZjLVYhv5uY0L3hKNX1JnunRBd5VnHtr2IdidP+rkxeFRmqGaGPx+/qxvErIpKg+w7FItZo9mg0PatPvWecmcI6FY/i94mIJOl+yiL5pPVvXAuxn8C8KuTJc2kxA3GU1txWk01NMo7vKRbwGMnGXOY3mZ9fiVdvJiuKoiiKoiiKoiiKoiiKoiiKopwB+tBDURRFURRFURRFURRFURRFUZRzAn3ooSiKoiiKoiiKoiiKoiiKoijKOcGr1tPj+ZfGJR6va6HGWOudNGHn5lCruKsbtRlFRFaPDEFcLJAWu426od1dqPu8QJ4e3/j6lyAePYxeDLmSqQFs6McZusakSUg6eobHx0/h+WEZGnak/cbfydL/7FERnPocLNfUzDO/g/ToTtL4Zd+Flca1QnEbutPL6W6fHnyNSAea3h1UUA8wR/qqsxPo99DVibq/fX39RgvWDWLu96RRn9Wma+o4fA3PhrcMfqhG+vw25UAkxNJkyD7zxWHhyqbXis6LtNqPv1yLmZqWK43v+0t6yrE46oJGSYO3r3cVxJEo1ioRkSrl0cw06koWMscgtkm82yJdfBYor9Dxq5UmngDkI2BcInrkbtVIh5vGvk1tKpaxhk8tHDWa0JPC3C+HqEs5W0HN1WwNX9/Yj7qVi6Q/PZvHfgxd09vEjeB4czi3a/XzDL3W1rrf//i/lY50XVu36h2B18plrDOd0YshrlXZV0bkuRcehvi73/8HiA8dQU8PiwZ1VxceM04CuLk86gKLhTkoImIJ6YRSXjv2MnOsobOPx4+Qbn9XB+uyi6TpZw7p9qZovLKufi0gbxPSsHdo4ESb6NSXSAO25pGOfnDya74cmd5tHGOlWDuybkn3P5bCscH6uQH5K9muqfVdKKJ2rB1inYiSbrZln1oflwuVOe+bk0tuFteHo/tehHjtli0Q946ghrVlka8I5QTnqdNkXcWeEg7ppjv0HRFaB3R34brZIu3whdlpiIvNdOqpZofscdToOvZzagXr1q2Xzo76OQfGupUgDw+ryU6Julsc8hGz2T8jwGvGS1v2vvApNrS9RWQ5zz3Tu4u1n0/dBoMmfhpHx3Dvk13ANeuGjRshXr0a52T+ylPtB0REHn/8EaMNL774HMQ33nQLxE7Dx8diL7kVpnDoUfEbutSxGNb9Mulol/o3QfzjJ35oHO/lhx+FuDaJ6zo3SWsN8jMSXtexbxZp1B/Yg54hIiLx89CX4OJ15Fk2j/O8V8Xv2GBhG+eP4NojCPD97OkiIuLTfMZS+D552P3jV+6F+O3vxmMODqFPSfYZ9JYa37fHaANXkAqlViF/wteAfWxWGicSEecVPD1c0vTfuBnH49QUXl8RkXR3N8SLi3g+a1Zvhth3sGDGeb/nYO77Id+HMOvMYg7nn9HDuGbJZHAtn4yjVn5I/gpWFOcvh+Jq1eyHkHxFOjtwvTlxbBTiedq/z5MPRSKBe73eHrpPVcJ7WyIiqWQfvqeA8/bxtVWl3FofmV/8hbct7VWzJcyPkWG8T+GNPgVxpYnHV7GMecoefkn2gSFvvDhNbldcsh7iI5O4nzh8aJ/RhltvvRbi4QHs6+d2Yl2okJ8D+0+FFt9rwXOoNPH04N9Nd8j7yxcaKzTW2IcrGaPFDHc9zQEiy/vZthM7mlzaQ8VpW+rRPBFzyV+sYtaZgPz5IjRGQ6qrA2tw/rv6MvKioftn3/3efRDPz9K+VkTSnThHjqxG30L2tZ6fyUBc5fOi65egep5dRO8TEZGA9k2ZLH6HQ35hw6txT5PP4DHL5M9cpnsvtSb3kNjvbZF8Qo57ZQVN1qWvhP6lh6IoiqIoiqIoiqIoiqIoiqIo5wT60ENRFEVRFEVRFEVRFEVRFEVRlHMCfeihKIqiKIqiKIqiKIqiKIqiKMo5gT70UBRFURRFURRFURRFURRFURTlnOBVa2S+bds2SabqhqBx9hUmg9xEvAPiji6MRUSGyEiJ3XsCMlJiU9WDG9Do7Mj+57FJJWzTC6Omqa5pgHlq8+XAMDInQjJKtPkZVhPzITK0YXN0NlU13IapFbbh9o3vDwzjdJGADmmYyZ5kSmMYYa4wlh2KZR8/RzrXJoaxJ9PMcI/NeexljOOHB9Gkmo3cF6bQMDVNQzhYRHMgEZFjBw9DPH0MzQ8vu/pKiKMxNGcLyMSarSANg+ompleGVxa9x6MxncuigVs8giaQkSSOT74ybhOj0nKhAPG+gwcgdiL1XC3l88ZnVxq/WlzKhVoZzfI4Zyo1Mnps4ixv0UWJxtF0qkzjsrOzG2KPrnKeTPFsyju/hG0WEZEamdraWMhtMgyzeKzTOdQCzO2QjOsyRdOA3unEuj9F17Yc4mdKPn5nrIjG5X3dZEZbwb7PV0zzw6SN5ndeBb/DbfRLq73ihnqq0tlRN96bzpPZ9vAVEPe7WJemxw4ax6sUsDb19KPhYixJxq0ZNCULaT4LfDI2C9AkkA36RMy6YlMes/lwLIHn7bpYZzwPY4fGjeeZ85tr82doLEaxvto0Lnh9U/HQ6O7E/NQ4fpPEiZNZYSyC7XRPMsKu1k7fBO5ssJCZFNett6+bziXRgWOlQjkQ4fWJiGGuHHFwbuig9SEbvJoxGVLbp36/iEiM+nCMzOjTccyJoV4cG2FAORGy6TWZVwam6Z8fYG0LyIi8UMQ8iiaxTRs34xh/eS+a+WbJoNhtMgAdl0wgIxinO+pr+nLZXKesNNGII9FovV99D68Pm4Yb5qFNfj+Ma4tFx+A5OCDjVb6mbODtk/kx71FEzNw0jMl5TcqHoPcXaH7sJEPNfNE0vPzeP30d4hyZ997+5juwCRb2fWYBj1nMkwFmAdv00I/vN9pw4OBeiKeOojn2Qq5+jGrVHDcrSSSalGi0Mc4iOMbTmy6H+KHH8LyOPv6ScbziNK4vQqozocQpxvEX0ObLq+KaOAwx5zZvRVNWEZFrb3oNxLlFnJcXS9jHAZmlH5vG/Kg5ZBRLRrwci4gEgu0MyczX8rBNc0dxHffwN3dC/P7fxvXxkSE0ZfXGcM8kIjI3PgZxLIXXN5lML/13tdbavLNsR6xGbeCaUCpj33R1Y074obkemJxCE/GO8WMQd3ejmW+2iPU9lcC+sRzMUz/EeX1mDr9PRKRWxryZnMI2eCHO+08+h/NXzcfP9/bTvqqKe865WawhIiKpJK0XbayvM9P4mcVFHF/zi5P4eTILzi3iHJ3JmPuJ87ZeDLFN4yORrI+nUrM92QpSKOSl2pjvRzpw3lhF3thPjOP1DdfiekhExIrQfqGM+4Ujo7gesYq4Rz3vCtzDvCG9BuKJY3i8HzyApuQiItkZfM8H3vurEH/N/Rq2YeFpiB1ex9E6MRrFfGq2FK8Jjle+Zydy6jnecXF8uzGcEzwqr9Em9074Hg/fexTr5PM09+EriROPiOXU+9GN4lq/amHf+FWaJ0JzbikW8JqvH+yHeOOmTRBfdcmFEL/3HW+F+PAY3gve+xLunV98eb/RhtlprBPRKPZpiu5/DY+QiTjd6zo2gXXJp/uOqRSOVxHz/kxHRzfEiwu8TsN609PXC3EsifO8N4Pjt1TBOV1EZGoa3yMuFRLnzOdV/UsPRVEURVEURVEURVEURVEURVHOCfShh6IoiqIoiqIoiqIoiqIoiqIo5wT60ENRFEVRFEVRFEVRFEVRFEVRlHOCV62nx1Bvh6TSdX22eBQF5SIWNjsaQ+0/O2JqLpeLqAtbraC2W6mK2m9f//b3If7rz38e4oB0tu046r4FIepNiqBXhYiIxR4RJKVn0Q8MXwTStw58eocpzSe2c+pLzv4NYuFBDPlw8vQI2Sul2ZdwM0kL2Tn5DU10jFcSyw7Esuvt4VO1LT436psm+oBRSsWIi/1fKaJe4yxp2GVJN69KOp09pJ3pkfeCiKmxvHoEtbujZdTSm59Evc2FXIaOiOc9NDQE8bFjpv5tRwfrqmPv/vg+1DM+8CLqHLqke3/19ddDfO1NN0Cc7ELNWBGRe7//DYi/+P/hmO7v7hYRU0u7FXR0dYjd0JIv5Mn3hQZdkbwTKhXMIRFTdz5K2ur8tNujYxQpDkjnNyJcY83n5yG/xWJtfGyT4+J3uAl8f5XqvuOgRqvvXWq0YWwOdSXz1FWhT1qyZRxvb78Rv+OGq9ZD/F//23+DeHp2t9EGN52BOBFDbculS9W0WK4cczMvSLVUnzvj3ejrY7sbIX7huQcg/v7f/U/jeEdHxyHuWLcV4r4e9Gs4lsE5mf2b2GsiZK3ZwNSOtWh+c1yq0ZSn0RjWT9vCaxPxUBs1Qfq5Xc38NEiD3vOwnmSohtcE9a5zpAPtW5i03VTbfMuc0405leqBVznxes1rrW/WzHRhqT2+oPZ3Rw37c2YO5wEnYvZ3rYznVilQ3aD5jespe4o5lEO2c+rXRUSiDmnNknb+ridfhvj553CsxChP2S8jGsXjR1wz99mPRqi+xkm395LLz8fvCHEetyqoRTzUjWvcVMzsB/bUMX3r6ufpWOY6ZaUplQpLXjY+rcUDw49jeR8Xl7Sybbpmhg42wd/JMdcNzzMFv9mbpEprlzL5g5XIL6NUxFozNYXeB+xTNz2Hr4uIPPvcsxA7VE6+8pW/xTaS30JuHnXrsxSzxna1yRq3Que9+zkcb8nGXtJr4ru3kgSWJX5jTAwMb4DXjpFm/ctPo09kYd70Twl4D0m1qTA3CnFIay6hHItSTejqG4T4kkuuNtpQrGJOVUs435Wohu966imIX3rpRYhti2pZyPssc2EU0nXktQPnbbp/NcQTx3ANffQp9Pdbde0FEHd1vclow+Bj38UfsAePfaLdlUprb7U4ritOY6/JW2jeUY8eRo35rh7TX+HgQfQvueIa3G9FaE0bkEeHRdewSF54ew/gfHhw3NS5Xz2YhtgPcfzMzrMPIa4tojHMiWga33/wEPZDsYh1R0SkWsNjzsyh9n5uEffa+TzW11wWPx+L4fgt5vHzbtTM/dHD6D3R19i3HqcwU6+f5bK5L1xJXho/ujRPvpwlLxIeG7QO33zzecbx9s3jXPPCHpxn5g7jPbiRARzjHSHuYQ7P4ZwQOHhPYscVuF8REZnPY731bMzBgVW4Hwzmn8CYztOj/YMXoVrKXhliOHY0va93MnzfkH1j3RitVem+ltPkCwzvXtr/n+wzYnqOrCzJdHzpvmatRmOc1m0+eXo5Te4vsj/feZsxL9721jdDfN1lmLvbN9D9NfItTPJNQb5vKyJRWn8uTOJYKMWx9oVUbyN0jQcHcO0+O4P3+EoFs9ZZdM15fZpKoa9IQNe9WKa+prVK/9AwxHPk8SEiUqBjiEP3xBserIF/+jmnf+mhKIqiKIqiKIqiKIqiKIqiKMo5gT70UBRFURRFURRFURRFURRFURTlnEAfeiiKoiiKoiiKoiiKoiiKoiiKck7wqvX0iLm2xBuauV1p1C+LkKZyhTTYpIm3AuvvlgP8zP59qPf34x//COLnXkQdUt9HDbSB/gFsI2kwi4hUa2XjZycThuwRga/zEyrb0O5jDbYmOmesXcz61Cwvx42QU+u8hezxwb4lIiwHKBafdxs9PVzLlkijzUHIWoes2Ywx55iIyEIWdXlHD6E26vNPPAfxj7/3Q4gjNES3b0Kdytp5myAu5k1tvpd374U4N4C5evShJyE+cBj1bQPSHV0o4DnVfNTrXMjOG21wSNPVobyaGD8CMWtIRqOoV/7yUw9C/Pwjl0M8tBHPUUTksScexWOWUEOwWs6IiIjfYo17EZFCIbukvcn67cUC6sLGo6iBnGiirc6axrkF1Fi1qUTms5g38TTqNVoejcMyeXxEzTa4CbxmNdJd9qr4nT7lSFDB8wxTqLPsxq7F45fRf0NEJN05AnFXP/ZtWEXd22u2b4P4l96yGeK/+tz/hvjwPtSzDsIeow0L06hLGV+D89mS70STeWsl8dL9UuuoX+e4hfqa+374bYi//49/BXE2Q5q9ItJl4/V1yHtmoLcb4plJzOtCBbXa2Y+jQlrhNTHnWF8wb30ylgkc9M8IXdQBzudJ/7aM2qc9Ccp70pUWEamV8HoHHmlNF/E8yzXMoYiLbSYbKKkukt+OY3oQ8VoikcR2Visn2thqTw+7tl7shh9Lfg41kuNON8Rl0vePRMw5dn4O86i8iOdeZR8fY5zh+VsWxcY3mhja+YK1y/fwGlv0uhPg9XFJ5951MaciTXzrIi5qXPvk+7F6M+r3X7gVa+OBF0h3u4D1NNGF18pu4n3FvhaFAub68Kq6Z0DEwv5oBdVqWarV433Ca072eeExaM5v7PNRIb3oagXX+2XSmF9cxPlvdhbXIwsLuI7KZcx11TyNj3nyb8ssYDw/ixr0xTxeh1QatfkXc7jWOzaL9VCkiT8Y1b8yrQ+FxldHAvO0twvzdMtm1E2fOIJeMyIiA8P4nl96x69A3D9Uz7tCoSBvuvPtxudXinLJEwnr57/9Ily/PLvrEMSVBfLGoHwREenuRo+yY8dw31rK4PX26eqEAV6b3ugWiM8/bwfE7C0kIrIwj/N64OExn33yMYyffgRiw1+K5p/T2fGxpwePX59qvE/1OZZAf7GvfhvbeH0JJ43Vr3+70YaBNajl/tKzj0PclT6x/g2b6LavJLYTXdK5D2jdHYvjuvzIUczD+ZxZZywX11X7D+AeceNG7IsXac95mPwyHKqvOfIaKlTMeyXFHM4loeB8dPgI1s+htevw81Xce8/OYy2LUs4szmeMNpRr+DMeC1OTGGez2OZCBcfj0BDuF0LB9WU/7cNERIp5rPnTM6P4eqFeb6qV1npT/ubv/StJJOrrmLGX0Nvi0BitcdPoMdBxAdZvEZGvPfgDiEsFzONN666A2F2Le5hnp3FdKOShdNNb3gaxlTDXljMTWINfGsO557wd6IVoOVh/nRiOJS/ENVolQWOzu8maStAf2LynRj4HfN+K/eFi7FlH73fNtaXpP8wGxCePnRbvJxxrad3ZmUKfllgSx088ivu/TVQjRERqRaw952/BewK3XIt5t2EI61CEzt8hP9Qy3aMr0hpLRCQWw3aWyWPV7SEvL/KRdKt4jfto7235GGfmMS9FRCzyd66QL3Y+i7neO4B+YOwTW6B4eBWO19WrcT8iIlIjXzuf0jCzkGm8cPq1Tv/SQ1EURVEURVEURVEURVEURVGUcwJ96KEoiqIoiqIoiqIoiqIoiqIoyjmBPvRQFEVRFEVRFEVRFEVRFEVRFOWc4FXr6eE4tjhOw1uBNOucOGp5x1zSaQ9MTblYHHXqbPK/uOzi7RBHY++A+MnHUKf06CTqmdXIr+N420/G8vA7LWsZtWj2uqA2sz+H6b7R5JkWeSXwO4yeO7Wlh9Emiww7mtmKsKY2HyM86bxM/e2VJRpaEm30UY3616/iNa6VMJ4jPWURkccfQx+J0ZcPQ7wwjpqP4QxqgMZIX9E/OgHxE3vQE2RuespoQ5W0pifomqaTqEmY7EVN5VyA5/nyUdRnrVrkqSMkoi4iVoCae9EoZl6MdSYNTW1sQ7WM5/TYg6MQhw+beWPTmIxS+QsbgoGh39qcExEpFvNL48D3UXOXddIrpDecSqEOt4iITzWwRv0VpYHpUC1ybOyrKvkShDWKA1NTsUa6y6w1GtAxbBv1NyMW6k2HqbdC3Lsa9ae3dpk6wJagJmv3AOqHX3oRer+86y3oDfP5//FfIb7nK3djmwT7PtWDY0lEJBLg/MQeLJVavY3N5q2VxEmtEzdVb++BvbvgtUe+9ecQZ46h7rOVHDKOF5IOcyWHOqHpFPZ1qhP1yRcLmA+lCl67cpnmjdD09EgmUavbieD18V28Pn6EdEjZh6YTfQ0iXfidbhLzSUREquQxkUWt6WgVdZ+j5MmRoNrokiZsSLHHnmYiEolgu2pV8tOpnYhb7WFUzneLbdf70XUxJ+waxvkpnB87Os1aV8uyRi7mjcN+G4a8Oq0NaZHjkf8Ur0frn8FrEFjk68LrLos9PfCa2zTvR23Uo4428ZKJ2pjbThzraU9qK74e9kHc143HTAyg301nCsdGPG7mPuv1T01h7g8O1sd8oWjqGK808/OzUm2s4RbJy6JMa7ncIr4+10TffXaG/DTm8D050mpezOPr7OmRI/+3Imko18jzSEQkoDnWtpf5PTab9b+xpvZUUGOe9b07u7C+iohk53GMdnXi+vHNr70F4gt24LzdS8fs7kRd7gitfzKZjNEGsbEubNyEOtxhw8Qs38TzbiW5escGSTX8lEYGca7ZQRZkD3XinBoGps52qhv7Zk3kEoitzagFnujC7yyXMhBHyKvGozXxTM7sr2QKcyQ7hZrzRR+Psf78a/A7IziHsi8keyl6TbyDjLUkjYMgoBpN82G6B88hQT55o2NYD86zzFrnOlhfB/uw70vFE3NC4Jtz9IriOmI1xq4d4Bh2bDyXWMKcU5lsBmvRxARe8+uuvQlivg9wbAL3pU+9gF40FnmtnU/+NyIih4+MQhzQPZejU3hefZvXQpzuwbFTzGLOTM1jnpUK5hw7NY173yh5a03N4j2AchH3auUy5szCHHpZDg+j14UbMddmNQ/Pe8/e3RBXyvXz8Gqt3ceuGe6XZGMvWitg3Tk4jzVhkbzbjuXM8bFx+8UQWz5ev2QC14rVGOc5rgPXbcQ2pYR80tLmOAjClyA+8PJTEL/5Da+FuP+mqyDOTIxDPH4EfWVWrcI2/fIl5vXel/0LiJ9+7gWIDb8NWu/yXiBGnqG8Zmt6X5LWwCH5b568jgjD1u4nJLBEGm0e6MG1x63XXQdxKoZr2GuuQV9QEZHJY3iPbXYavX86E6fezwvtBbg3XfLriKZM354YtdOha1Yir4ukRXtj2vKUi7gntWnPl07i94mI8G2wdBJzdYH8w1y+T09eMcUSrm+PHsK1RW8v7kdERPr68WeLHvZtquF5FHg1MV1Gm6N/6aEoiqIoiqIoiqIoiqIoiqIoyjmBPvRQFEVRFEVRFEVRFEVRFEVRFOWcQB96KIqiKIqiKIqiKIqiKIqiKIpyTvCq9fSw3KhYDa+OCumPVUlntCOJOm6sTy8iEpLmZzqFumop8gnZuAr1jLduRH35o+MHIParqDVmL+fX0QTDsyM0taNPJjD8LvD9TdvAX0F6qq6D+n8BfYD1rEPWTiVtObGapBh7lfAh4DtO3Qdnm7htSbxxHRzSSpxbRE26l55DLc3nn0C9RxGRowdQA/QNt78F4vlB1Ert70PdvNVrhrF9cbweD/zouxDv3od6hCIii6RHnYhi7g/3oTbm+iHUWJ4irepkB36+M4Zjx7JMLVTOM/aAYD+DShW1UFn3N+ZgXlmkWxnYpp4pawU7lNvHh0uLFSlFRMSNxJfGv03nElqkaexgCxcWTS+ZwKcxRvqKroXXzKf+LeZRN5Y1lIVqC39f/UPkRUDP2NdtRG3vtesvgvjYEXz/bA01zS2h8yYtcBERyaPS4+VbRyB+/ztQb/wH9z4E8Xd/+AOI0wOY2+USjl9LzLwrl1Czs0ZzhRyvoc36cAVxvbS4Xt0H4IH7/xZeGxvfC7EdQQ3sySlTX96p4JiNkMZ1KoVCo0nS0S6X8f1VOl7MRd1RyzJ1SIX0q13Sio4n8frNku9IuYznFenA96+idcHqYaydIiLlAs4T81PYzkoG329X8f2WjePd9nAceBUc/45reps4NI97HvuC2Cf9d2vzLpaKiePU29zR3Q2vVcifJEJ6uTXP1H6OxskDBaWcJSQ/IstY9pK/Bo3hqkUzQmhqzDvssxKSpwfp/MZsymXyYggMDWXy/IjgmldEJOzA80h0Yd1JpvB1l37ladUweuyQ9LDhddIsayzyjBhajcc8flpk2dUSPvmpTy3pW8/N4bxQJM3jagWvV5E8sURE8ouYaBZd05D6Ikl5arEvAc3BtTJ500iz3Mf61El+GqyJvHbjRnod15vpLpxDN6zH9/c08ax64qEHIV41iGvW197+eoiHR7CGVqt43kfG0Pfu8Ucfhviqq9AjQkQklsA8m5gjz5jGmqlQwPl6pYlajkQbAtu5cdRzf+15myCef//7IP7KX3/BOF5Avlarz7sM43Wb8QPkBVQuoMfO2L7nIS6Rt01Hk7W8JNB7JDmEOXP10HkQV6mmp1jDfBnfSPanEzHX8tUajs9iAedxx8bXHQ9jv4z50nkRrkUTnE8iklnEvpyaw7WEVzvRxmoTX5KVJHRcCRp7JN8jrwPBa2oJXj87ZvqXrF2Pn7n8Uly7b96yHuKhDZiHq7afD/Hffv0+iOfnsTYOu+ZavhDBfenhg1izMz56eBQ70af1oqvx9cxB9Lh6ZuezEM9k8PqKiHi0dh/uxFwuxdGrxAszENsermkLOcyLzDzmZTxlru3m5nFeCAKsaYFX7xe/xfuJoOpLEKn3T6mA55Ut4XlN5nHvNp8xx9elF+PcVMrj9Z4q4zFiKcyh7hTWyij5qaTJJ8EumL8DPrwWc2TtJpzbrE7cF3kpHCexATyHOHkE2knM8x1dpr/D7/wO5sx//vR/gfgQ+bz6xnqX/DodPG+vxp66Zt4EAeac6R3Wvt+fX71qjTgNn6jLL8T7tL/zbvRm7qT1UiJtrmfG+nEN9fIBrIc27weMe6DYnxHy1otS7PlN/FDp/kxI3kEBzSeVMs7bMfLqWlhAT6WQ/Iktx1yQl2iv1Unev5tWY253pvG85mfRCyXdj5/PkqddcRb9jURECtRuP4bXr6+x1vTD07/frn/poSiKoiiKoiiKoiiKoiiKoijKOYE+9FAURVEURVEURVEURVEURVEU5ZzgjB96PPjgg/LWt75VRkZGxLIs+cY3vgGvh2Eod911l4yMjEgikZBbb71Vdu/e3fxginKavOtd79KcU1rKT37yE611SsvRWqe0A807pdXoHKu0A611SjvQvFNajc6xSjvQWqe8GjljT49CoSCXXHKJ/Pqv/7r80i/9kvH6pz/9afnMZz4jd999t2zbtk0+8YlPyG233SYvvfSSdHQ00Vx/BaYW8pJvyADGSWKyuzOFP2A/gJKp29rTh98dj7F+OGqkjaxBLdz/+um7IP7Mf0N9yf2H0ONjembSaMP4OGkAk6hyYLNWHOuUkSYwvcyawEFoaqHapDPMet4+6dPZNvaTxd/BGvaGtJrZBof0qtl75GRNwePt27Fjh/zWb/3WiuaciMjOnzwiiVQ9vw6MjcJrk8dQO/HQXtTv3P/CHuN4l190CcTHjhyFOJnGPLvmpushDl3WfUZtzOteczvE689DrVURkaNH8TtZX3ZoCDV6vRpqSB4uzODrJXzd8lAfsNmzVNtFvT/2juG0Yd1Dw7+GZBRrpBvMmugiIn6A72Ed9Zhb1zW0Gr40xWKxJbVORGTV2o1iN77fjWC7qrUMxPlF1COvlfF6iJjjlM+V+1/o/awzyRrK5iU2r7lDfj4btqDG7mVX3wzx7AzquuZyOJ7Ki6i5Wy1hHLcuN9rwK2+6FeM7r4P42X2oH/6X30SNa3sAdSj74ljPFucxc/2yqY3p+zhf1cqo/R6LN2psw8uhVbXu8K6nJNXwuJgbQ33cnq1YV8THuvPwnkeM44UOjtmtdL07otgPSQv1OrM0j3fE2cODtKmb6I3Hkzgvd/aj50aFtGnDKp53lHVMI3hO27pQ07e/w/RWOLo4D3GQwLE1VcF+cMinqZjFtUOcfSyoFHoVUxO2TDWBNXhd0Hytf3+r8s51RY5LyObyqJvd34vzYUiFPpvNNDki9l/cwXOt1WjNw75kgjlRsTDX6fI19XwqUx90b7gY2zBH2rTHRiG2qE2xAOtzhNZyTrepux5Psb8D6k3HYzg2eM4N6Lw9eoNlkddUaNb8wCevp5DGbOMj5cZYbuUc++TOZ5bGgUMeV+UyjqGkS3uMmKmtHtL63O/A/k2NoOZxOHsM4g7yVhsa6Id41Qiuy/qG0LdCRGRkwwaI1w6sgrh/CNuQSGFOTEzh+BsvoM7yvOD1G+g2PYze+g7UzU5Eub5hDV2YR61n9vEp11C7fS6L9XTsqKn9vGYVeVfQmtRveDgUKnWvh1bVusmxUUk25rFaBuea7T14rF94/dUQL4a8rha592+/CvGBneincvg59CSr0LLN5f0eeTBapI19eN8uow0e5X2iA/OS19mOi2som/Y0lpAnIPvxnYY1AXtN1kizXCjHEj04b192C+67zhvEecg/esj4zpiL7XziuVF8w0nrX9+vf3+r8i60LAkbnpTs27OmB8fwxk3oLVMNzPVED3lv9fZgPHEEx6RP/mudXVh3+rppLrJxblm7FteOIiJbr7wJ4vu++SjEDzyFdWVqDuvI7Bz6vGRmcY0UOnjNhTxERESCAl6HyWO4Z3F9zKuYgz4vBe9JiG2+5xPiWJidNu9lxRLYlz751R7Xt6/7C5ZbNsfmazEJqvXrHk1ugNd6V2HflgvY5vIU1ngRkS9/4VsQd/djjU914jGGh7HOhMN4LdwItiFFc6FPfkkiIpEyHiOV7ob4xZ2YQ+toeuygZURvH/pZBeRLMjtnerKefwH6VPzeh/8FxHsOjkNc8zCHOqK4D7/gfFybdnZgvyQSps9FJotjq4fOIwxPujZha/cTW9aul0isnnf9g+jZGaU95MDA8sdev5bXTHiMVILuiRpHwHVxJ/u2bMR6u+v5XcYRCnSPLubid9o+zmeFKdxfjJBn9WAX+RaSRd16mu9ERA7PYi5uGsSxcNVW3AuvWYex7eN5JqPYj88dQo+zXT/ZabRhJ9XXl+YwD6vZek0PA9Pv7pU444ced9xxh9xxxx1NXwvDUD772c/Kxz/+cbnzzjtFROSLX/yiDA0NyZe//GX5nd/5nTP9OkUREZE//uM/NkwaRTTnlJXjtttuazphi2jeKSuH1jqlHWjeKa1G51ilHWitU9qB5p3SanSOVdqB1jrl1chZ9fQ4dOiQTE5Oyu23n/gt0VgsJrfccos88oj5m6EiIpVKRXK5HPxTlNPlp8k5Ec075WdD805pNZpzSjvQvFPagead0mo055R2oHmntAO9Z6e0Gq11Sjs5qw89JifrsgwslzM0NLT0GvOpT31Kurq6lv6tXbv2bDZJOcf5aXJORPNO+dnQvFNajeac0g4075R2oHmntBrNOaUdaN4p7UDv2SmtRmud0k7OWN7qdLDYoyEMjZ8d52Mf+5h89KMfXYpzuZysXbtWvn3vjyQaq+vEbd6AyX3BBVshnp5Cna+nf/Ij43t+7X2/CnF3F/7ZlU3Pf6Kk4dvdjRqhb77jTRCHpEP6lb/7e6MNhw6g9p4bQd21kDTN2ZaA/TeYkPw4LNt8P2tHhxbrp7LGJLcJ389PzSyHNJ2bXPZQ+D0YW85JOsKvkDfMmeScyCvn3Sfv+vdiN/TO8yUUvquQ7nOc9I4jTS5P3xBqDN78+tsgLpWwf6uk397dh3n60gt7sQ1WN8Rvf/OtRhtyFdQsz5ZR2zTegRqOD/7wexCXK6RxTp4TDvk/1DyzI6pV8nGht1h0DNagZ2HfSgW1NB0XSxnrtouI1KqkWU7i+EHjvHz/NESEG5ytvOvo7hcnUj+HWAz1FxdJ/zQ3izqgrpg+Eg5pQEZjqCvplbEvuM2OjXHEJf1y0pR0HVMH9LLLUCf59tvfgt/pYrsnelAX+MILUcvUtbAfQpq+EmlT8/w3fvEqiFnf9Iv/8ATERwLUKk0JirJG7QzE8RjmqW2b/ZDL4zFsQe327q7667Wq6c3SjLOVc48/eL/EG7k21HsBfGb7da+BeHYK607qCdTjFBGJdKAW6sAa1GX2s6gRylrEadKSrXjYH7Uavr+7BzV5RUR6BlBXNJvH3wbyaqiRPNSD8/ymNXgO6V483iJ5ZUy8hP0iIpLJo5b0cb3Z41g0lqKkf90RR13+II/12y+yXj1+n4iIRfNIheYA7yTNWM83tYybcbbyLpdbFNuu93tHL/Z/ZyflQJm8mvwmflE0V9is706xRX5GEZsEbn3UjvYcvD72ebj+FBFxzt+GP1iHerbpAs65lWdQj9wdwzzqt/E74wmsbYtN+j1J2sEc2+TJ4flYf0PB10skkzufxRwql/CcREQitG6eX8RcjUbr31kqoXfEqThbeVcuV8Rq6NzHEzgP+DQGfFrHbli/0fiezevXQzxHfiZufzfE1225E+KuNHmAkG6+3YXXfPck6jaLiPSswmu8vg/nlmKI55l38JrnaA8y52J9m89ibbGncO0hIjK4Cb+zRPVqYQ4/U8igt8liAb+DPeds2heVFs3f8Kx0Y133auTT0/D4qBTNWtmMs5VzqVRcUomGp0cpA5+ZGdsH8Zar0W/svW9CzzMRkc0bMQ+/9ZWvQLzrIfT04HVehWqf57H/BuaH1cy3hzZ1Dvn1BaSvHdCaq1LA6xcG+Lpl4eebrcYNPyKP1vK0VujdgvX4kte/DuIdNFZTc7hXf+EFrNciIh20b3IpP0on9S2vl1+Js5V3UTcibqR+rTesXwef6SZt9USMrrlrXvNIDOfE9Zs2Q8xrmNwCejQUCxmIX3fF+RDPZPEck01uHJTncc4Y7MS864xhH88eRmPkuVVYEwaS+B3DO3BsZYpmP5QWcG22MI15kptD/8xiFttUq2CuD/Tj+pI9sRazpteFQ3stn+bxiFOfE+r3atD/8ZU4G/fsqlVLnMbatncV5kdyAf1PA1oPXXIZ7tNERPppzzoxj/NfQDcR/DLmw2KWvBR98uVysTaGtjmveD75vpD/W2YO68wtF+P9ngG2hekhDxDyKbEds06EtOa96hqcF/rW4DWOJ/BLN63BnE2RSZ1Ne/3MQsZoQ3YG9+ZDvTjny0njv+qc3v2Ts1XrXnvTlZJI1q91roj9WyqRh2OIOdXs2+K0hu3vxf50aA0V8s0sukfaEcX3X7njQogf3rPfaMPEQfSQssmjLHAxT7rIw4OWhXLtBejjsu8BvEf+jksvNdrQtx49lP7uO/dC/CJ5kWyy0L/YKqKf0dxcBuLde9EHuztr7gl+/xr0KP7GFI7R779QX1vyvfNTcVYfegwP1wv45OSkrFp1YqBNT08bT/WOE4vFJEam4opyuvw0OSeieaf8bGjeKa1Gc05pB5p3SjvQvFNajeac0g4075R2oPfslFajtU5pJ2dV3mrjxo0yPDws991339LPqtWqPPDAA3L99def4pOK8tOhOae0A807pdVozintQPNOaQead0qr0ZxT2oHmndIONO+UVqM5p7STM/5Lj3w+L/v3n/hznEOHDsmuXbukt7dX1q1bJx/5yEfkk5/8pGzdulW2bt0qn/zkJyWZTMq73/3us9pw5Z8Xzz33nKTT9T/r1JxTWkE+n5eDBw8uxZp3SivQWqe0A807pdXoHKu0A611SjvQvFNajc6xSjvQWqe8Gjnjhx5PPfWUvOY1J/S+j2usvf/975e7775b/uAP/kBKpZJ86EMfkoWFBbnmmmvk3nvvlY6Ojlc6ZFPGDh1Y8ryYHEft06efeBjiDhc11TavIb05EcnMz0LslcnnIIdarw89glrvzzyHmsvnbUNd5wvOR83QYhPd2b4h1G8skt6qH6AWnMU6oKx3F7I/B3ljhKZiHfuEmG/ANoTs6UE+CNwm/kbHMv+YyCeVVlYUP1nX7/g53XTTCX25lco5EZGwlpUwqGvwJWKoqTyyCq95bjoDsR2YnTu0Bj8TuKjhWA1Rxy5fRu2+MIM9WqPOypHfRjaP2sYiItEE6q32pLshdqLYphCbIJk5bKOXxjfYQm32TI14n/w0YqQtHCUtYc5t28E8CkiDO/RJn9MzNf7iEfxO1jw/nnZ1fe8FeeaZZ+QtbznhQ7GSeee4CXHcevuqtVNrGqe6UGPSdUvCuKTPLjUs9UP96IfQP4x/VrphM9az9Rs3QJxOoa5sKtFttGHN6k0UowZ6bhHzKp7EHOjrx36McK0hLegaDw4R6U6grqtLesXXXoM6lM9OoJamVUB9T6+MbYza1M9NREK5nYcPoE7v+JG6DnDQ8LVpVa17Yd+YRBo+Mv39pHH/7E6MaS46/6IrjON19nRDvH4t6tsuJLBzuuKowRuLYB1yabxaLsad3aanB/vEjB1FLVrDRySNnknJFPbj3CL5PVAbRujyi4j4IXkgJfFPsmukZyxUy7o6uul1zNmZKdQ23v/ic0YbSosZiIMK6uR7lRNtOO7p0aq8SycHxHHqfeLYOL7Yw6OT+iJvmfNbiXT6u4fQl2WE5uCLLkdN3QvXYA7Ucpgj9zyxB+KJKL5fRKQY4DU+Oo9tSvUNQHz1O9FjboeHvnSHxvEapyPdEB9+4CmjDa7gPB8hLf1kGvMsTtrO+RLqIY/N4Jp5gbreFhobIuLG8XpOU1+WavXvqFbqB2vlHHvhxZeI2xi/11xzObyWID+hdByv8RO7njGON1/FcbyBdO4HRrD+XXzllRCPjs9A/MjLhyGeqKFe/O45U9/9ju3dEK/ejtc042NO7J9Ao9DhQdT7dqOkg+7i8SYWTB+XyUn07IiQfxD7CWXnMNezOVwH1MjTo4PmCZ/83EREpiaw79jHx2vsY0oNH5pW1bq5YkFKDY8L9q1Ll1CLvZLFeChpft9rz0fPsfM++i8h/s7VmNePP4x1Yp72ublxzLHsPOakbdrFiUN+N+Lh9eO1gkNrrgjlVGcf1mv2mfQ9s86UM6gX7juYE1tuxN8YvugqjDdZ+H53AX1moqSZ/vy+l4w2zJC/TZW2HFHI23o+tirvZqanlrTnqwWq+7RITdnYcL+Jd6gdw7rw9C6cE3u7ca+cFDxmB+ni9w6hT+vgRpwfK3Fz/zbciXm09lb0/FtDx9g3iznSYWEdWtuL/cpzgE17BxGRIMQFX1DB+vrUo1hff/C9ZyH2K3heURfbEEvhGnh2Hj1CRETGx3CMsrdMZ/q4N2U9btUca/lVsfz6mqOH9pPVHJ7H4izOI0NXoHa/iMhrL70d4hz5o1R8Xnzj6xbd7HLIS8+NYHFzmnhR2A7v7+iWKW05V3XRHiXO9+zIizSKr8dD0xNS6L5gmc67qxtzxvAupaFUpc/HY3hOE5OjRhP8KfzZaA3PI3PStFJs+Gi0qta99Q03SGdnfb32/G70iYiSv4ZFta+Z9yv7Hifj2F823wIlD1uf3lCNY91aswPvi1z34kVGGw6GuBboKeDa4ZaLboH4QAbX6nd/G3155w5iv7xuC9bfyRefN9owvg+9Rh5/AtcS/Qm8Vl/Zib49+2awFvIdcXYFvY4sd0RE/oWP88r2O9AT+UDmcRGprzleNJfHTTnjhx633nrrKQ21LcuSu+66S+66664zPbSivCLZbHapsDGac8pKcNNNN2mtU1qO1jqlHWjeKa1G51ilHWitU9qB5p3SanSOVdqB1jrl1chZ9fRQFEVRFEVRFEVRFEVRFEVRFEVpF/rQQ1EURVEURVEURVEURVEURVGUcwJ96KEoiqIoiqIoiqIoiqIoiqIoyjnBGXt6tIprL94m8XjdoKenA5/N/Oj734d4bBHN2S7d/mbjeA6ZGh0bR+O7o0fQdOXhBx6EeM8+fP9tr70V4rCCbdjQYzqcdpFZ05F5NICemUPzyuw8Gv45bORLcYlMsL0qmt/UG4r9wKY9ppE5myqzWbB9isj4uvpXGOdBn4IPLee8fnZxwrLYYb09URuvaa2EZnc1H43RIo7pxDN+CM19flBAc7VCAd1Bczm0+6mQaeNxc7ql18n0cd9B05AoFkOzNWGjQTJ7mpxC8980GWV5VewXqeLnE7ZZVmwyma6QibVP5ojRKBrD2jbmSDWPbbApp+yI+TzXp2bli9jXrlt/g+9zjq88vX3D4kbr+XPcbPM4lewExHYaTyQWM2tNKo6GaOetQ4PL6y96LcS1AMdZNSAD2jLm4TSZOM7PHTTacN55mNv9A8MQf/4v74Z4cgrH1+/93gchvvBiNCBmU2qrSamYWcA86R1Ac8JfeP12iF/cjTX4icfweB19aFYbCbEf5qbRUExEJEFGaJMZrBuJrvp5hL5p3riSPLvnkDiNcRWL4fzX1bkX4v5+NCb8xXe+0zjeRRfj/BbhMUhzS4LqUkiGcCHPC2QqWK2Z/WW7fAzKEcH6GYlwncGxlV/EOTWZwFoYi5tjz/PRSJBKkzhkMG1Z2CavRmORHFKLRWzTkcNoRisiMjOBxpFTR3D9sv/FF04cv1aTp/ZjzV9JEolucZ36tV+zeT2+yCbwKbw+Xb1oVioi4pGJ+A2vvwHi2BAZnI4egtju6YH4kis3QPzwJPZNr28anJYKeE3ifXiNKwl8/Zq1/RBfthZrW+wgGr8e3Ycufbe/GY0MRUQK2QzEW7eiSfXIRvxON4q5LDbm3Y4hbEPZw34uL5rz5OgxMqVmE+LGdRe79b9v9fY73yGJRN1cuFTGdl5zzXUQR6kO7DmIpo4iIuNkyN1Vw3O1Z/Ga7XwZzZAPj+NcMTqVgdglg+crL9xqtGH2GBrlPpnHY4TJPohf2j8K8arrb4W4i8x8RxexjZMFWvuJyO4ymm4O2LgmZaPUOJndOy6aVR5fhx0nICPXStU0Mp+fpzUS1Xm/YWBaKuPcu9Jk83mpevX+GOhGffOQjM0X57EfUzVz/5aI4nyztQtr0e+8FY0+b7j6aohfGMOc3PM85uShZ1+AOM7GvSJSpnanktiGfJH2RVRn7Chem4EhXFN5VVz/Oknav4hIEME9TLoD37OxF/s6tYB9G7coj2ndsJjH+jC/wDasIvkSjvdIBPuqWjnRD7xWXWnisZg4jXFUoZzfuI5MxFPYd5Um9w3mS9jf+Txeo4V5XOs7VAs9MjYv156AOIxgTUj2mHvp9cM4T3dS3kU6cJ4f6VqNx4zQ2i2kPA1woRazaeEmIg7liUX71FUDWG8vvhDXxOk4rTcFY9fF8Z0vYt6KiMwu4Hqkr78b4rmZ+vomCFp778SScOl+UoL7KY/nceCpH0K8b2PSON66nhsh3rYW1zO85w+pzkTpnkLMwTWHYVDtNBujdK8qxNolIb5ew2EifP8q4mCN8Ko0H9Xo+CLiRHB8xlw8j3XrsO9Cuu4W1euA7ukVqV4PDuJeT0Qku4j7h3/42y9B/MSTJ+YRL2jt/ZN01JF0Y07ZsW0dvEZbTmMt0fTX/qn/bLrn6dN+LaA8c9h4fgLvKQxlZyB+QwfWThGRrpvPh3htP15jl/bCn/4yztsLdH9tvow5sNCJa65nH33EaMMk3U8uFnHOfNdll0H8PK1v9+JpStWme5dUX1Od5lojnUSz9CR9Jm3Xc9cLT39+1b/0UBRFURRFURRFURRFURRFURTlnEAfeiiKoiiKoiiKoiiKoiiKoiiKck6gDz0URVEURVEURVEURVEURVEURTkneNV6eqwa7F3S300I+iC88UbUp092ofbtpdegjqmIyNHxMYiPjaEuYoE0KtNp1NFbtxb1ITdtQu24RJCB+J2vvcJoQ9FCfbKX5lGf7N4HfgLxJGmEdqZR121iEnVsHdJJtlLmMy2vilqbpQqedy0wRAnxmM2E808iJD270G7yfp9+xpp4cLxTft1Z5yNvf7ckGrqbPhmSlHxs57E51M2bypl6wYuksz03h5q67NGRIM149pdYS3kYS6L2aaFkats5pEEYkq9IZgx9R0YC1PIbWIO666GPmo9WgDkVd0xdykoJdZiLHvZVroB9eWwCcztKOvir12yAmPtRXFOPVUgPMBbHMT43V9cd9fxAREwt1ZUkX54U16/rNHZ1dsNrFUHtWh6DW9ZdbBzv2iuuh3jd0HkQ+4vYXz9+4AGIj06iv0ZIA5G9DxJxU3e5Wszgd5Lv0RtvvxXiF19ETUiPfERqVczLwMY2uSzgKSIB1cRiBetbZwLb/Z43osdHrHwVfoeN4zOfRS+MDevM+ukHqJ/5w5/sgzjamBYCr0oz3cqyes1Gcd16HpSpryOkHX7tjddA/Ka33mEcz6YxmCdd7EgEX+/twX5xbPxOz6PrSTqmQdhkjFPN9kgXvUZ61RXyy/DIJ6Qrhde7TDqnWfJyEBHxPTxGlYR+qzTH1shjiT/veXQO1C+eb+pfpzqwRq/bhDWks/uEv0OpXBL5+3uMY6wU6Y4ucd16vw6vRT33nh5c44wf3ANx/2rUIxcRSXbhmK366EXRRWZOq5O4XpybxpzJjWBeveGGmyCORsxa19WJ7e7pxmvi2pgnfT14jGgKv/O8gU0Qjw6gRr1tkR+HiITkdXDBBtQXn65gHk3Po0799vWomW6RBi97R1VJ015EZJi0h5MH8D0HxuoeSBXb1DFeaZKp9NKe4oU9z8Fri4u4Hrnxeqx3N96E+uIiImNPoC79WBbX0gcOoq/OII1jl7xoFnNY/dd0d0OcWDTXJOPz2O57X8R5243jPset4Rw8uh/n3MEdqNNs09q8EjVz/8Ax1Pve+eKTECcpb3q6MEfSaRyvvAbuon5INvF4sARrqE3r5uM1M6iYfiArSlATaXgFFEo43maOYt0ZHsZ1dqGJJn88jZ4rdhTfk4pjnb+0B8fwph7Uxb9wI84TL1x0AcTZUdPLZiGK+9h0Er2CrCj569EekC3zaqQ5n5tHn7RU2qx1fXS9O8m3IpxAj7lUmrwUyDuhUsL6PHEUx1G1Ys7z0Qgeg/0Y/JPmecM7c4VJp1NL7cktYK1N0p6xswuvZzaD6zYRkflx9C/yyTMwnsD5yYrjMdmvLkr7CT+kdVnBnB9e2oPa+B6N5RLdV6gF2KZEFNvcm8br1dGJbe5fhWNFRGR4DfqGbFiL94GuIw+d1918M8Qx8v0MAxyfpRLm8fQMfl5E5Dv3fQ3iGfJTnJysz0Ot9/QIxGr4Hzjka1dbxDGd34eegU9+7zvG8XzK2+rVeN9v3Qiu42I0b0RjNObJIzD08fqHUdOrzaU1kHE7i29Q0Z7UDzCvPfK6idD8Wm2yp6mQHyptg8Smfa9Fx2RTQYt8mjhNOrqwnouIyBr0EzuW+QbEY5Mn1iYtTjsgGcfrVfNwnvDIqzTKnSki4pAvJO0pQw/XebmJUXx9Fu8J5F/G/X5PFtcBl/aa6+h7X8R12wGybawcxPvZ9z+Ma1G+sV8kH5FnXsSacaxo3juZnMEx20t59I8/xHtGBarhfCfED3D8pWgffGEa67WISOe6jRCPkzfJ1FR9XjK8Wk6B/qWHoiiKoiiKoiiKoiiKoiiKoijnBPrQQ1EURVEURVEURVEURVEURVGUcwJ96KEoiqIoiqIoiqIoiqIoiqIoyjnBq9bTo2+gR5LJusbeI/ehdtj5m1HnyyP9wOFh1CkVEYmQP8ZTTz4L8fat50P8mr5hiBcKqB/5/HOoCXzjZah5F62YOm3FSgbiKy9CneDJedTbHRzE87juqksgjlioifbkk09BvGcv6vWKiBw5gvq7UdJnZUeIAmmW+6Q/Hoakk0iaec1k11lb0RABPFk7rsWmHudtPl9SybrmcBCSHiDp/w3mSVPURa1iEZGDk6jTfHgcdZ4jUdT47OpEXbt8HnNi83mouTvQh+8vVswOD0gTMlJETcH4ZtRJt0l7OCA91irFJNUnbqyJlwyNUYe0LouL+J3PPLML20z6uRdcgOOVPSZcx9QBtklPNRLBuNTQ6y+Vy/Los//e+PxKMtzbJ5FYvT3r16Oee18/apkOdaOu7HXk3yEi0t+BeqeHD2DeOeTZcNmVl+Lr1J/R6Kn1i1n/XUTEIg3IkOrVlgs2QPz6t6B2fo30Tz2qEyHXkSa6ySTHKWUSlK4Usb6NbOiG+Dd+8zcg5mpUJU+IQ4dIfFNECgU8j3kfvSyeee7p+rHZ62iF+bd/8AeSStVr1vQUan7GE1jLbrwJtYV7etEvQESkQhrLrB0bo1pn26i5K/T+Mnm4jJHO9v4DqGsqIjJ+GM9j8hjq4M/NYJzPo4ZymTxfyh62oUI56Te5Zh7lmE8+IR55IfgexQH2Y8haqT62qeaZ+tdknyIdHaiDv2HDCW8oHmcrTbK7WyKRen51kK9LLIo5cfGFN0DcrKUHR1+EeGI/1oWeDszlwSFcV40k0cuiPIOavRv6UNu7iWWVCEsDU6GIujgfVfErxOM5OornsHkd1vzFvOkfFnPRG6Faw/c4lKur+3HtV8ljGwp5znXMu8HVZkds2YB5tmnDGohHD2fqxy7k5H99wvj4ihJ6ZQm9er/2dGPeLRZw/fH4E49DfNHFVxrHu+NqnHdnJlFz/oknH4N4YRZf3zy8AeKxfAbil19ATeUseWKJiFx8ObbrvE0XQjwxhnrSm1ejb4QTwTxbmEc9aruMbZKS6YmRJz+FzkG85jOj2IZj47gHmaM1Lns/DQ1h7neRB4GISLWIx+hO4VhYs65+3uUWe3rML8xJvOFpUiTN+fEx7OveTvQcWHue6U2ZJd+YeIzmCtrAuTGcc3ttnEt6e7HehkdxvzKxxtS5T3bg9RX2skhhHSmRj5a/SF5tOTynIdpGJSgnRURSpKv+1M5dEF+0HdfQYTfWpRp5eFQoh5/dhfcHjIWfiNgu7X3Z9+4kL8Vm++CVJPADCax6Mgz241ptdgb7s5RBn8mpaYxFRJ5/CTXgS7Tpc5M43gKH1nY0QUZpLRiP49ovGZp5F3dxrxul2hWnezwp2ocmE7S+LKF3Cc+XMwu4lhQR2b0Xr3HUxWN2pHAMd3dhv3Qk2A+HYlqrpNKmX9v69Tj+7AiO2Vy2Prf5XiAz4+bYWSl8vyb+cX8ew1sP19UdiW6Io008Be775jch3rt7F8S33Iz7xR3bL4J4pB+9KQa6KUdDnGeCgBZlIpJwsf/Jrkgc2uMadz5oz1qpYj9YAX4+EjPvIXl0L7FM3m3xOO+ryMPVOCISofsiAd/QEZHuNbiuGNqC3l8z9z9z2t939rHleM9bFnu7Yki3J8WrmeuBygKu0/KjhyB2yJe3OjMKcVjDPWaEvE3zU7MQP/XCAaMNdz+O35kpU70lj6k58q9xyPc1QTunzEH8znITL2f2ivHJf2iC9iwBjwX2EqbEGCb/lWu3mx5KXbRHeewA9l01Vp8nAr6wp0D/0kNRFEVRFEVRFEVRFEVRFEVRlHMCfeihKIqiKIqiKIqiKIqiKIqiKMo5gT70UBRFURRFURRFURRFURRFURTlnOBV6+khliPS0KZ73etfCy/NzKGG4aH9qBH7wrO7jcP1kD/GJVddh19HOtxHJlALMU9asMeOZCC+kHwRxmZNzeWnX0QdtdoBPMbLR1GvLEH6j6Ui6rL9+m/8KsTvesc7IN71/AtGGx748Q8gfvTxJyF+6WXU302nUFszJA3CfAl1ED0WP2UhNxHhZ23sB4Df0FpPjwPFRUk0vDw8D4cHa9OWPTy3vlWo5ykisn4Takev2bABYtfGvmBNUId08WwL27CYRf1AYU1DMX0LSlXS6o6RfippKgc26uXVWAuTtPx6OlnPVcSt4Jj1FlGHvrcfPXReu34bxJUKnjdniUt+K2wTIyKS6OiGuOzhMaxyfYxbJVPbc6W55ao3SaLhJWOTKmYQ4PWr5rAvfvj9B43jVQp0zaj7iuTL4tWwL6pljGvUVxUSj/Z9U1ORf+aTVqgXsKYqeXaQRnJA/kEefWUQmLXC8BWRU39H2OQY8B2Udx7p5E/PoA57vQ2Ym1nyqig2/G3Yu2GlmZuflVK5rjOepfHY0Yk66mGIuq81UwJU3Cjq0boRyikawwcP4Rz73HP7IX5mF3o17H0R5/nRsWmjDdUq5W2NNHXLWPtMKVDS6XbZlwaP5zjm740kk6gfXib9cG+RtPkD8q7x6XULP2/ZuBZxLbNelS3yXfJJG9o+yfPHbnIxV5BozJZIQ487JHOLxQLGIWmBZ+bQm0hEJB3DazKfwbyoFXBML8zhGufoGGqF9w6thnh4BLVm+/twThcR6R7AtVpHD2nIU06kk3g9EqRv6/g0v9GU2t9lap47NvZDhHK5i3yaqJxKpUy+IrQuW1zEPHQFz0lExKGaHqN6u3k42ThWa3NORKS0OC/i1dflCdKU3/X8MxAPkB54vmC29/ztqHN9wQ70GQvLqP08TT4s/Qm8qAnSUPZoju1Jmtd8iHwi4jUcPz0+1ooNfajv39mF3l9jY6hnnZrDsWTVzFqzi/Shr7v6Kog3dXVDPHkAvQYXDmPd3z+Kxzs4hn4CXV04XkVEytS37EG2dk1dB9/zWpt3fb29kmhormcW0DemWMbxtGc37tfSSVPfPbUOdeuLRZxTaYsiccqPaBJzbuwoaoev6cE6tmmVWevu/8nLED+/gNcnNoh74dEZnM8K8+jFdYGFe54OamMiwYZJIoUy5uGu3ZgzOy7cDHGFvClDDzvq+WdxH7znJVx7xDvQD0DE9HMolclf5aS1YrP18UpihaFYjb13b083vLZxGGvb/n2YA+xdKSKSojHXEcFr5NFcURGKyzgPlEq43sxlcfxGaqZnnE23q3jt5ZLHSiyG66pNW3CP6dAc0NeH13hmFseriMjsJF7jgHyuwpDqo41r3GSE5lAHa36MvE24n+ofonlkEOdht+GnYrXYDzVs/E9EhKwOJdGBOTdy4cUQRxxz7+Mfw7lo92Po6Tc9nYH46QtHIT5/O/rsbt2CPj+rBjHH+lLm7dB+8o/qTmI9ZauegHwJLbq/45L3QpVqhhOYrnUxWhsGJar5tKeJkY8Tt4FbbdPrYWj2Q4T8aq+4Cv3Mbtyzd+m/Pc+Thx7BerqS+JWq+Md9T8hwz6X7YTXyMzq2Z6dxPG8G55IYedzOUl1I0DXNvfw8xIefxXl9dBTXVDvnzXvFJQvH9Oo01t9pMonq6SB/vgUcgJN5rDuraT+RcEzTqTnaQ1ao3lZoP7FhAO+xd1JuH55Dj6TbNuO+6spLzzPaUKV7Qo/TPfR84779cvdtTkb/0kNRFEVRFEVRFEVRFEVRFEVRlHMCfeihKIqiKIqiKIqiKIqiKIqiKMo5gT70UBRFURRFURRFURRFURRFURTlnOBV6+nxhS/9rUQidW26zb34bKZv1XqI16/dDnFmljSxRcRNoG7a4CrUH8stoBa7G0MtuNljqEc2M4N6g//rf/+/EPs11FATEYl2oa7hM3v34HfMLkK8ZSNqEC5mUSO4TD4j/QN4/JtvvtFow7Wkt/vSy6jP+k/f/S7E//hPGB87NgFxMoHac9UANXMrbCYgpr6pTRqDln0iZg3+lWZwy2ZJNnxMxsYwJxYXMK/6R1APed0W1JEVEYmTJ4rFXhSkORglTcJEDPt3fBz1cPcdQD3kfM7UIY1HUcCvM40aum4ENSArZTzPxRzmfqoXtTDdOB7/0Wd2GW0oZNCvZrgfPQO2bcXc7e3BuDuBbc5mcKxESZ81Gjf1xiWCPzs6jmPYT9R1K0vkX9AKfvCDf5RI4xyOHkaN5BJfUxJjt8Rsr+Ng3tkunntImryui+93bdSIjETJryaGur+uY04lrLlrO6SHapFGOflvsB+HRWPFMvRTTV1K8xjk4UGeQYavCGlFGsrM1KbhIVMDmzVUrewoxCPDde1Zr1qWx55u8vEV4uX9L0m8MXaf3rkXXls9gnPPvv1HID7/oguM4w2Sb9b4OPov7NqFWqfPk4fH2Bj6/uTJl8ZxMQfjCawRIiKJNOZEzcM5slrDY5bLOD8VyTcrrOL1t0hnP2gyvxU9XGtYlDWRKMVkwxRLoH5uivRa00n8QFfCHHtV0t5/aT+uNTrTJ8ZvtdraOfbl3U+J09CdniI9f74evo/XY8sW9NsQEemh2hRxcX7ySZt2dhZ9sAoFnJuyE/idoxOjELsRs7+jUZrHI1j70nG8pl3k3dVN17i3j3xGejHu6sZaKiKSTOHPUjQHJki72SYvFCuOMWukp1N4jsUcji0RkXwGj8EeCl7DBy1faL1vVmZhVsrFep9E4tifmVlcW3d04PUZPYp+QiIiR6dxXXQheXrEong9Okm/vYs8OrZvxZqbyaOee9Qy57duqi1J8iacymUg/j/f+DrEHb24DutKYh7OTqOO+uxh01NnLIvf8eIc7hG2jayB+Kq1GyD+pSsugfihh9Gj7JlnUHd7ahLHq4hImfwxIuS3kCvUa3Iz36+VpOYH4jauSZ58JXq78fpPLOK88eN77zeOd80NeIzOrZdBHJB/X5X2oXYRv/MozdE33nQNHs8z57eUZPA9k5gjnYJ5X/vJoxBvv4zGCXkwdQ6jFn8qZXrZ7HwYtb0tF9fAkSiOFb+G1/2l3ZhTj/4Ic8538HhhaI49Ng60aXye/HKTT68oN99wg8Qa9T8g87vrLt0B8bN78B6AHzX3E+vJD2FhHvfGgyO4FoumcL6L2N0Ql2mdVS7jfq5QMnusUiF/NjKwcchvLUqeUzVay0XIVytfwTZF46anzpoR9KtxaZ6ntBE/xDkyKrj2sATHfKmE/bCYN+fJI+PjEOfz6EWSbMzjvt/add2R8YNLOZdMYUdcfBnWqZGL0A/riYe/bxwvd4yMB6rYNzMH0RsqX8KcnJjHfnp+DH16hgfQU2BzF85TIiIb1+J6c9s6jFcP4H7PpbW9ZeH6x6E9a4z8c/wmPiw++eLG6J5bqYQ5VCQPwVgM6zGvX302QDWNDiUs41rk4u1bIP7YH/6bpf8uFIvy0CPvM46xUpSkIhGpj7NoAfeQRx/AObQwivvcri7TfzZVxTGbmcJ13nd/8hTEiwvY3+tzeD32HcT58cUKXuOXLXMtv0DruhEb7wFd0YtjfpquccnB65Wl+fAI5Yw0md9sus9UsLHdcfJNy5AX7pperAFvWI337X/1JqwJVj+uPUVEHt6L8/yPyUvbChufCc2cfSX0Lz0URVEURVEURVEURVEURVEURTkn0IceiqIoiqIoiqIoiqIoiqIoiqKcE+hDD0VRFEVRFEVRFEVRFEVRFEVRzgletZ4e4xOz4rh1zbBH7v0JvLb1gssh/vX3oL7cqo4e43ge6+C7qEe2dtMGiDdt2QjxkTHUZXtmF4qv73nxOYgLJVOHNFdADcoO0mHbcME6iK+6Cs/zphuuhLi3D8/TJy2+MDQ1HVnr9vJLL4L4ootRa/G2214H8Z//+ecg/uEDqIXqkm5/PGHqYmazqM1oavmfdK1aLIba1Te8pKE+ehR18RKdqAOdJl29cmBqXOem0R8js4Cag6U8vu7QCcfJb2OatFSPzqLWX2bO1Dv2y6i1N9yLeVMtYRtys5P4HeOou86aklGK9+zfZ7Qh0dkN8UDfMMTjk9h3CfLwYH3sWg21MmPkfVKtkWahiFj0nqJPOuwNDddq2fzsSjOybs2SD8nwIJ57aQHHS5o8WtJN6l2iA7W646lufD1OOrBJ/E7u/2QC9RZjFMebeKhEqMY6pCtpR1Aj0mYPEJu9frB2hfbyz+xZZ5ll0dnTo0nJBAIan6Fwm80ptVbFXH3wx1gzj8uRV0oFeewrp/7+s0kQuBIE9fbWyNfh4YcfhvjRRx+BeOtW1OUWEbn9DXdAzH5O3PeXkrb3ddd3Q2w7mFMzc1iP5+YxFhEJK1jLElG8vqUQr0XNJl1nklDOz+DYc0k7NNlh5mC6gzw3yH+hswPnxHgMc8YW8sWq4HnOz6HG7GITH6exMdSOjpFH2cn616yFvdIcG9235MczRSLY7M3kxDEeXmV65tjkgyVYdsSr4usheSBVqqjl7fmLFJMus03fJyKDA1iDIzRfVUlneaaAc8zMBF5T28K8ciN4UlwbRURsF9sVYZ17er9L9dmO8ndgXgQ0dgwtaBHxA2xDjTwmjvc1e860gnIuK2Gsfh18WnetJY+/0UOHIE51m3PsQhbXLKOT6I8wMoieb10pXD/ORXCMbiC98Chdj46kqbV/aBz3JXv3oT7/c8/jPuUYrfWqgrroUSpnQYU8dmbQ+0RERJJYz2qk575zz26IjzyLbbrzNddD/La3vR3iiy9Cz48nn3rSaMLRo+h1t0AejfONdXOzPdFKMjOTkVjjOlpUNyK0jjs8gWv3uSb+I9mv3wPxNa/B6zl8wdUQ2yF5m5DfZYRybHE+A3Eqbe5jL9uB3oXnb0Gt7oNHMCd/PI1jacfg7RDPBtjGOI0T3zf7YYJ8XfpTOBYDqtkHX0I/sUfuJ613qreJGHvemTU/CNnvi/zgTno9NN3gVhTf88Rv7JEytGe89777ID5weBRiK2Zqqw8P4X5tdBSv6eFxrCO9fZg3/T14P6W7A+fxjjjOZx3mNC8R2pOIUG7S/Y9ogHXJq5J/Au8FQlqvhrguEBHxfcxtnz7jW5iHvo/x/AyuA46OYz+6tEdKJMzxl+7op/dgZ/X21etv3U8L6+JK8p1v3yNOYy12aP+l8JpNno/RPtx/OnwxRGSW1veOQ36oHq4hfPKSykdwPC5MoMfHPtoDPxvDPbOIyJr1OCeftx59P266FH0JdmzfAHE6hXXEIn85J0KeSU2mpwr5otnkIxmP0FqTcrJM69so31SjuhW1zVqVI19X/kx39wkfPTfSxE91BUnFYpJq1OtDP/oxvPb8f/kPEA9twmtcGRgxjjd3BNf/A5eiD/Llb/8NiHfuxvtjP/kh1teOjRuwvbT2nDmWMdpQo1o2QX5D5SyOp6EBrNk9NJ/NUQ5VaTPuNPGFDWm9v6ULr+tvXYn7d4f2rT0d+P7XbMO+9mgs7N2JXrYiIl/fi2N2Molrja5IfV0e+DXJHTk9Q1T9Sw9FURRFURRFURRFURRFURRFUc4J9KGHoiiKoiiKoiiKoiiKoiiKoijnBPrQQ1EURVEURVEURVEURVEURVGUc4JXrafHwNCwuA0/gyOHUBt3z4sHIP7zv/oriLeehx4fIiLrNqFfxvq1qM23Zhg1fYcGUCdx3Qh+fvWatRDf/NpbIc7Mmzrb2QXUwy0UULOwtxv15jZsQv2ykdXYRt8n7T3S5nYd8/JagnqAnoe6pGXWRI+jDubH/90fQnz5Feg78r+/+DcQT06bHhPpFOpUlkhzMDjpvMImurYrSXnRE6ehiVjMof7m7Dxev8OjqEE3MzdtHC8eJ33UgLRLqS8S7NeQQL3GVB/mZaQD398b7RNmpHcTxMM9qI2699ldEG/ZhjqVG+ZxrHzxr9DXpUQeLbZr6pBOHMK+GY2ilumjgh4CtSrmdsTB84xGUS/QIe+TWALfLyIST3fjMTqxL7v66lqpfs3Ucl1pAsuVoKFznyugNmK5hOcSWqSZ6Zl6jDZpq0dD9g2IUsya/3g8h3Q+nRDHhuWZ49QK+ZhRep005Eln0iYNbFNKH69TM7VuUymWPD5CjFnNlI/pWnhtQvKKchzzWmSnUZdyfPejEA+sO6/+H15rde6fenKnuA2Pp/wi6sBOTaM+LtsmsE60iIjrYl/+yrvfDfGVV6M2O2tiFyvoc+B72PtTk9iI6WlTe9ajsbNqEHV7LfLPkBh52aRwreEE5K1gY5s93/T/qfk4hy4s4Bw4P4fzSDaDtbGQy0DM9Yj7bT6L3gAiIkcnjkAcj/F4b/7frcD3fLEa49Dy8dxIilZcuxtir2bOb2OTuNZKJvGYHeRX1EveCdSdUiJPJ45rVdJhFpEEeZGkkqzlzJWIYvLHML2IsGNqNdM/zKOaXKvh+tIjXV+h3A598vAIXlmjXkTEF7PmByH2Q408ISZn6r4XrHXeCjqScYk3tJ/nSVe5t6sb4lwe+y6bN/2DsgvkMZTJQLxA/giJNGrM9/ZhLm+jsbBxaBXEsSS7soj0dqH/wUt0jRJpfH0dlcxyAdduDu0ZOjqxHk42WRoVyMuuh/TZazSmsxnUB7/v3nshLhYwj2+95bUQd3Whpr2IyDTpuS9kcH7au2eviNTHwJOPoz/VSuJ5gTiNOaO7E6//fAZzkPdrFi/CRGTPTAbitftfgLi4iJ6Bqy5Gj4/AwrV5lcZngfq+UGpW6/AYuRx6AJbpmOLgeWdy2Eab9jyVEtbbYtWsFdEsekhsWYNjad+uXRA/+9APsQ0+9nWiA8eJ5XL9Na9FuYSDgdertZM8zYIW72NzswsSbfTrJPlFTU7ieqNYxjxMRsy9U5S8Ovv7cE9ou5g3uSyuP+anduL7yfuusxPnaCdmrkpicWxDlDwaXcMTkOol+bfxnjKs4TVyeGEgIiHNWzZ5boTk+Vaktd3EONapXAHrFOed67KPiUiiG+9vrTsPx3itUp9j7Zo5dleS53c9tzROnnsGPW4D8ihIdOK6/JY3vdE4nktzcvbYFMQOXR6XPAKiBbxW2Xm8Fp6PHlzlHnNtWVzE2nbkwF6IX3j6WYivuvRGiK+9Gv0gRkawznR24DjoSpl1JhXF91QLeJ6Wx/4MGFdC3Fd6lBdx8uAYO3zYaEMxjzVkhO5/nrwWbLYuXEkW52bFaswRj3/t2/CaewT3RqP7cPzty+0yjje9AT2r3vTLeI/zdXf+MsTX0Zrqbb/0Joh3f+u7EL9mI66pRnrNdd18hvbjNP8cq2Ktq07jnrKYxz1RlWsZ1cqgyZMA9vS4YSOOjzvPwzHc24vrMrcT169jZcyhXY/vgfjxXThniIjcm8d5xd2O9bBSqOc2e3idCv1LD0VRFEVRFEVRFEVRFEVRFEVRzgn0oYeiKIqiKIqiKIqiKIqiKIqiKOcEZ/TQ41Of+pRcddVV0tHRIYODg/L2t79dXnoJ/8w0DEO56667ZGRkRBKJhNx6662ye/fus9po5Z8ft956q+ad0lI055R2oHmntAPNO6XVaM4p7UDzTmkl2WxGRERWr16tOae0FK11SjvQvFNejZyRp8cDDzwgv/u7vytXXXWVeJ4nH//4x+X222+XPXv2SKrhTfDpT39aPvOZz8jdd98t27Ztk0984hNy2223yUsvvSQdHR3LfMMJRoaHljQb8xddAa8Fi6hXlplHzeyfPPWUcbxHdj4JcVcKtcE2rkeNuosvugDiy3egHvmWLRshTnehbumG9egBIiKSumArxKyRXCyijhvLiC4sZPDzpDgfJe2/BPlBiIi4pHPpkLabkPboww8+APHrXn87xB/+3Q9B3D8wDPF//NR/MtpwbBK1GeNJ7Lty6YSO23HJ/d/6rd+Sm2++ecXzbj6zKOVavV83bkJtv3UbUUvzmed24Wf3oceHiMhb33IzxIcPjkL89KOPQ3zn294OcTGDuf70Q+h9MVNFXent27cZbdi4CT09HHIuuOSa6/F10u9P96EG4ZZLXgfxwUOo1dc/gl40IiJHplBbMXRRR9LyMferWTzmZefjePvlX0TdxF7yKYkkTJ3ESAK/0yYty3hjvBTyefmFb/xVy3JORGSxOCURv645+8I+nPgHus+H+HAJx2j20JhxvM4k9ncnac+myGumsxO1RtNp7M849V0kgrUm5ppeFi5pi8ZiVHvIX8Fmzw+LXifNZNa/5debYbOHB+nWV6j+WeSFELJeqo+1y46YNXfmyH6If0Ka4huzdd3YWsPbqFV5t7AwL05jsE9MYL6Uy6gD29XJ2sWotSki8uMffR/ikTXoUfW6214Pcf8Q1pU0+fKwum13GueW8zYPCeOR/0WV9MBLZfKisTAnp2dwLB05hrq/07M4d/X3oy+QiEgqhTnx8ssvQzxF2sRRHksRnJOjVJAtG3smSWNTRGTzxg0Qz0yilm2peELHu9rwqGhV3jkSX+p3h8ZstYJzU08Cj5tI9RjH2/MsXqN8DufhtSN4jdaux/mwrx+1aJMpvB6Bj2Pab6LPbtM1CgxPDq5VGIc++WXQ2jAkneSwycrd8bi2US0LyaODdLbpZWN9GvIbmvzOlE/eTjlaqx8eO9w4VmtzTqSuZe3ZdqPl2E6b+mLjWvR9YQ8QERHPwzXKvjGsHVUPa1Gshu2dyaKe+zhpaW8awPp43kbMWxGRjefhPuUtr0Nt9NoNtP7c/yLEh0b3QZwroJ9CugNrbG8B2yQiMj91DOIUeTgslDIQF/pxDG9YPQJxfhF9RiYnUFc9mTZ17pO0h0glccwe1/uvVqvy5OOPtCzvuru7lvyUAvJ/miHfx1WDWKdmp0w/xKEhvB5jAc5fky+i5nyZvE0GrnkNfscstoE9YlKd5rn65Mcg5I1Qqpzag2qC5tQN63BtX6mgPvfsGK6fRET6UnjMfBnXDk89gjrq8+RZF+/ohpg9k2xafZTKppmNOQ+Qtv5Jc0KlsQ65//77JR6Pr3itS8ajEmvkXRf5JxSK2L8jLnmmNPGlY+/PgUEcs6USasrHyI8ms4B5uEhjPLuA9TWVNtfRHnmPFAXXqDZ7etD9kEgUx0qE9hcu5Uizm2O2zd5a+HqphG3qpbXghZt3QHzoMOZ2rojnWC2brQiq2LejB/AY6WR9TPsND6+WzbGhs7Q/4rUFU8qirw/744iIXPOGN0D8/EOPQVydxZzLF/CYc9Po4WHReoU9W/w8zjMiItlKBuJSAsdSdgZr9OFj6FX6wE68f7Z9G/pDbNqE+bB2yNzTrOrD7xzux5zq7qJ1Hm2cYjX8vBvgPaMD+56A+N7v/5PRhqSFY2PtOrzHs+6k/UaxWJ/nWpV3o+Pjkk7Xj/mTR9FLJjmDtW2SvPCOirl3yldxnbvzv/4viHe9PArxxg24Vlw3gLVx8/s+AHGc6tiGJzGvRUQ2xvCavZzDXJ+gfdI8eeBWOAlo6R6l/caQmPv5dXR/5dZe9PSI9eJ+fIbuK469gH43D+7EOvXMNNbKxytmDcgncE3UcwzXmnLcJ81eIU+P733ve/KBD3xALrzwQrnkkkvkC1/4goyNjcnOnXWTqjAM5bOf/ax8/OMflzvvvFN27NghX/ziF6VYLMqXv/zlM/kqRQHe8573aN4pLUVzTmkHmndKO9C8U1qN5pzSDjTvlFayarhu6nr++edrziktRWud0g4075RXIz+Tp0e28bS2t7f+NObQoUMyOTkpt99+4q8BYrGY3HLLLfLII480PUalUpFcLgf/FOVUaN4preZs5JyI5p1yZmitU9qB5p3SanSOVdqB1jql1WitU9qB1jqlHWjeKa8WfuqHHmEYykc/+lG58cYbZceO+p9oTU7W/zyM/wR3aGho6TXmU5/6lHR1dS39W7t2bdP3KYqI5p3Ses5Wzolo3imnj9Y6pR1o3imtRudYpR1orVNajdY6pR1orVPagead8mrip37o8eEPf1iee+45+cpXvmK8xvrFYRgaPzvOxz72Mclms0v/xsfHf9omKf8M0LxTWs3ZyjkRzTvl9NFap7QDzTul1egcq7QDrXVKq9Fap7QDrXVKO9C8U15NnJGR+XF+7/d+T771rW/Jgw8+KGvWrFn6+fBw3dhkcnJSVq1atfTz6elp44necWKxmMRiMePnd95xuyQbZuPjR9GEs1JC05X5OTTJGh1FQ0ARkYkJNE87/udWxzlwED/z3B40E/72P30H4jXDaNK6dTOaDF5yyWVGG7ZuQ2PsgQE00OzuJkNNMij1qnjeARtRktnYYtb88y+PPpOIYt9HImhY9PY3/wK+P4UGQ8UcGpK96fWvhbiSN9vw53/1vyE+NoMmPd1dJ0x8At+XQsMvshV5NzWflXi5borT2Y0mOm4UzdVG1qOxebzTNLVNdqBp4/pN2L/JKJlS9WIOpONo2ngJmf26Hfj5vj40GxIRcULMIzav7+7D74xEcdJZvR4/f95lON52HkJz9elp04SuapG5eUAmcyGaO/X14zEuuOQiiKNJPAffQpPI2Sk0CxYRiVLfseHwTMNIulQ8YbB0NnNO5JXzznKTYrn1n6e7sLb0DuI1TZJp+OxeHD8iIqNzaLAWBvge38M6wCa3zjJGWPy8nI0fRUQcNna08DtdBw9qkZGgBLQgctFMO4iQibhttsF12QwdX/d8NMAKQmyjHaU22WiGWKOxFTYxU0+EONdsW41jYWGqPr95J7kitqLWhRIsGQ/OTON46epGQ9NbbrkJ4nw2YxwvQ6ap0She34V5/A0el8wuy2V8fzaDOXv0CC5yc/R9IiLjR49AfGwCz+viHZdAfP42NAKeOIZrjbFpXDeEVDs70qax9qOP/ATik+uJiMjWTWsgtmlcZObRVH4hl4G4XMZaVwtNY+1EHPOyn8wQS4UTZoa12okx0Iq8i0ZjYjeMzKNRrGU1H/uqkEVz6Oefvc84Xk8HmitHQ5wzB3vx9ZHV+Btic2SyevQgmj3XaN2VbmKkHFB99Cz8gU31NJnA+S0Rx7rCBZcNVJttCy2fizQ7k3PIv/PEtYvqM5n9VitmKyancMzOzuN4DOn/RVo3x1a9QCynPlZqVTRNDMlkms1+EzGca0REhgdoLVzFeXpmDvsiM4FrnGQn5pEXx7Hw8gzWy2M0p4uIPPY8GncOD2KurxrEfuL14eVX3QhxLIZ1IwjxGhfyOJeJiEwcxbpcLmFfHiXj6t6hCyHesh6NQIei2C8hDa5KEfccIiJpMimulfE9kaDUONaJ696KWheE1lIfZnJoourT+ia7iHVmNmee563XoxHuY8+hEf2qHqwrByZwPlv8Ee5jezZfDPHYERyv8Zi5lk+QSTzXtuIi5nkkijm1ahjnP9/H+a9Ww36oNpnfMjU85t6dtAepoMO0k8L3p2mtWKP1cMzFa1mpkmO1NKnJZGwO5bLxdb//+78v3/nOd1a81iVTEYnF6mPCnuc6ju9dtx7Xo5kcGh2LiCzM4hyZ7sD1RGcHmtrOTdH+ju40hWSkGxom8DwfmmvUZPLUe9/sIq4lQsFrGKX1Z5TWdjHXnN8KVFdyJcybtetwbXHplbhvTfm4rvYor0LKqYpn3qIrVPB6Jiy8Xr2Reo3zrNau68R2TyQX1WybTI55vZTPmvPK29/+VogvWLcNYm8Rr8XkLM4zowewNo4dPAixQ8udVWtw7hQR2bdvFOJyEcdBEGBNr9I9uEJ5BuL5RZzTxzJofL56Ne5HRER60lgve7rwPtPwIObUxhEcB1sH8PWpI3sh/ubX74Z474t7jDbEqCQ8SwN63eYTNaRaO3GtW5F3Hd39S8bnPdfgPvW5Ko7hyQrm2Yxvzi2//29/H+JdTz8D8V/+9/8G8fnbt0L8sT/8OMTX33oLfQOO+X/3/l8z2vDwt78L8cX9eE37yph3U1Szs3Sfd5iW+tf14Frz2tXmnuaKjXi/etXqjRAfnMR5/vs70bh89zHM/ZdnsR4fc3EdERlcJczqEZybitN4zOP3Mq0z+PuNM/pLjzAM5cMf/rDcc8898sMf/lA2bsRO2LhxowwPD8t9953YmFarVXnggQfk+uuvP5OvUhTg3/7bf6t5p7QUzTmlHWjeKe1A805pNZpzSjvQvFNaSdj4paJvf/vbmnNKS9Fap7QDzTvl1cgZ/aXH7/7u78qXv/xl+eY3vykdHR1L2mtdXV2SSCTEsiz5yEc+Ip/85Cdl69atsnXrVvnkJz8pyWRS3v3ud6/ICSj/PPja176meae0FM05pR1o3intQPNOaTWac0o70LxTWsncXP2vNz//+c9rziktRWud0g4075RXI2f00ONzn/uciIjceuut8PMvfOEL8oEPfEBERP7gD/5ASqWSfOhDH5KFhQW55ppr5N5771368yNF+WnIZrOad0pL0ZxT2oHmndIONO+UVqM5p7QDzTulleRydZnnN7/5zfBzzTllpdFap7QDzTvl1YgVhiELAbeVXC4nXV1d8pNHn5d0up78rLoWIZ3RYhE1QOdmTY375557HuKxMfTwYE3JfAn1ysbGRiE+dBC1+KYnSa/cRk01EZG1a1Ez8PwLzoP4yiuvgvji81Hfb8PqEYhXj6AGWiqJuqWGxLOIBKRxz6qVuQx6cISkUxonLeoqaSOzPivHIiJf/6fvQ/zZv/hLiKdP0u4Mg0DyM2OSzWalsxO1Cc8mx/PuW4/vlVQj77j/XNKmtV3UHeUcEhEJfdIRdVFIMkIeAAFpyzqko+2S5ufpDF/WRA5NgwbEwjbbLn7n3v2orfonn/o8xAfGUNNZRMRNYO47dN5RQR379/3yNRD/+q+8DuLQRw1DkmcVOzSvRZSuV4z05Evleh3JLy7KtZdcuOI5J3Ii7z76X78osURdo3bPs6jT3duJvgHJOI7J+SzWKhGRA+Oo/31gFPVObQuPwTrcVdKMZO3SWkgin000j6WKuujiVynGY0qIeea4ON4sekYfiaC+p8OGHSJS87BdQYBtqtUoV0lPWqifJKBzYCxzbCVimOtbt5wPcXqwW0REPM+TJ37wg5bVute85polz5OpSdSq3bABtTSvueYKiK2aeb0DqkU2zTW5EuZMaRH7cmESNXoP0Rxdorlm7YYNRhvyRRwLPT2ohbrjAvT0eOqJJ/HzixmIB9fgnHvJZaip/vLLqBssIrJvP2oHlwrYpg1ruyEuF3HOnZlCHfZUjOcZJGBxYhHpoLVAmvSvYyd5d1VrnvztN+5vWd51W68XyzI1u0VEbBo/UYc8eRxT0zfdyT5W+JlUF+qP77ga11n9g6hHft83/gHiRfKviZA3lIhIqUi5XcJc9jysO6xHPjKEvlpx8viIk5Yxey+IiDjk9eSS7jL7Gwn1rViYR7y2WCTd4GOTpvb79EwG4rlF9Hs43nVhWJNy7XstnWN//0O/u6QJXa6gvnClSp5gtA7OV8x6lyng/OWQ51skhh5U+w+OQjxFGvU+9feqYczLwSZ+bQtzuG4qV7FNXCuipJXfSdr8a9egfvjqNei30dPbbbQhTd5oR47iWmNyCvdGg/24nknTmB8mH7s4+Q5ONfEV6aW9kZA30N69L4hIfb/yxS99rWW17o/+5a9JLFZP+mnyRWCPnNnZaYiHB9HbTURk01qsE4cmcK/bE6MxW8J8mB/HnLtkCPXh112B0iKJtehbKCJSqeCaiL0lZ8lL8n//zVchfu+vvBfiYgFrZbWM8+WTjzxgtOHpJx+DOBtgX3q0F+siH6Z0Gq89e9x10o23xYK5xg7Ya4SNCk5qQhAEMjo+2rK8e8977pRow+dm9270xZqZxVp37c1X4utUU0REnn8W1zkBbY4HBrBWxWzs744uPOf5WfyOiUmsGcm0qbVfpvUje6rcdPPN2EYb58PuHqw7D/34fojXk6dDPG7uJyqC8/iDjzwFMXsOXLQdZX1uufg6iC3eX5CvyNwC7UdE5OmnX4D4wgvRRyRqZ0REpFqtyRe+/N2W5ZwkOk94evC+ivd+dNobNpt15qP/7t9BvJY8BoplrPHVCo7RxRzugednjkFcKGQgjkXM6/3db6GH3P4DOJacBM7xnT14LewIvl5xyPeH1+nd5nXqG8D9Yk83+jAtkPXT2h7M0TdfhvNz5hDm7Of/Ej0qZvmAItJBe3Mee8FJ9zv9IJR9c2HL8m73C7uXHpQ89IMH4T27nkA/joNHDkD8/Evo3yci8pv/4rchvv12vPf09E7svx/9CL8zkcQa8L73vwfiTVvR//n/+r1/bbRh19/fA/FwDNfqQ71Yyyy6R5cnj9wr1nRDfPUGXC/x/TMRESuJn3lgD97zfvwQrutezmCtOlrDNtXo/mm8B9cyvmXuY3v6sCYXyR/zuHFW4PuycGDnaeXcGXl6KIqiKIqiKIqiKIqiKIqiKIqivFrRhx6KoiiKoiiKoiiKoiiKoiiKopwT6EMPRVEURVEURVEURVEURVEURVHOCc7IyLyV9PX0SEdHXZurWEF9wBrpb9rkn7FqxNRCTaXRI2DdunUQLy6SHmABtcNYh33+CtQtZd3axTnUThURmZ5EjfInnnwa4ocffhRi1hXdtBH1IdevRf3ArZtR85DPUURk3cYNELO2dDJBerpx1GHLzaGGbC6H+rr5POpuvviiqZn3+JOoiVckvdRa7YT+Y8i6qStMef6Y2JV6H3R1o96tRXknAflxNLPK4Pb7KJ7XTI/9ZGqk8+yxbCx5rgR+k/4ivT7W6mZbkAhpLLN27cZVmJdvvHUHxF/40r1GE/wqNYI0YbdsRm3pN99yKcQjPajPWq1gnlbKeHzWCRYRGR/H8XfwIOo7lhs+Fuxv0Qoe+dGPxG0InmdJ2/mAj1qJQQ3Hi1c1fXNIQl6ChQz+IIr95VIeeWXSkg3xgFGh15vlnUf6pfRyQHq2ERe1MJNJHBsOP6IPsUZbTTx1hOT3XdLjX8xhHpZJC9wOUcvds/E7akJ975j9UKG3HDyGNTHpd4vIK4zdFeTyyy9b0iCu0fiMkB9Ajfw0rJrZVo/8m0oVHIPT86jj7NM4G+lCzfrByy+EeJ68uzoHhow2dPVgHenq6Ib4EdJgLgbYhjCF+XD4yCjErE197Bhq/IqIbNqEOvhl8gebnz4CcWcK59iN69FPpasTdYFZT9dr4utkkZq/Q3HiJJ+QSjM/nhXEt6pLWtaWxZMT6cB6XKfMtuYWMK8CqgMzlHfzebwet77uVoi7e7ohzpJGve2Ynh6dXag9m0zgMcpUTz1aSyzm2WOJ9KqruL5MJpq0gbxN4nH0mIiR/nQkTnrT5OPEa9qJCYxD29w+rBlBTwhnGvt6ZqF+jJC00VuBG4lIJFLP+yDE/gtofuvuxjWOWza9nHxawxybwjX/1dfeCPHwAObIj3/4I4h53TF9AL2BZg7gekVExKI6bZP2s0sa80Uq29kc+kyMH0HdZp61o1Hzmqc7MI/YOyZKWs5Hx3GM0zQvCYu8u+h4fsRswxDtITauwT1gzcf/bxUVzxdp7E8rHs+ZGE9MZyB+8+tvMI730FPoTTkygHuUWgXrTIXm7SOLWD97B/BaLDyCObl5B+aHiMjIhVdDnOzBvM6VMY+LefLs8LDOZDP4HY8/hF4Le/bgOYuIZH3SmCc/I5s9BGieYf+xKnm/Faj+8jQlIlKt4He4vJc76SuCoLVru77+riUvmSDAusG1roP8TjzfrM2VMl7DzBxes9lp3LNEHawJCfYUo7rEXbd5k+nx0EV+B5UK5tHoKK6r2E9hMYfvHxxCT9Rf+qVfhDiVNufYe76Le9vN2y+FuFjA+x8HRnHOnJ/6R4hvuuVaiDdsRr1/tw+1+0VE+skL6vwLL4K4XKx7V5Spf1YaKxZb8ikK2PuQ6i6Pp2OHed4R+fL/+1cQv/7teH0uuAT9+XrSuPavkD9fmfwA2C81QeshEZE3vfH1EE/SGujZl/ZAXA2w/kZoDTY1j2Ork7xOhwbJm0pEusn7YHAI1ybd3fSdZRwHD96P/kdR8kzKLGAtnJ8370mVaSjEEnTv66QLWq+trdtTDA8PLfk4vPb1r4HXtm3ZBnHZw7nphw+gH4eIyN49uD+/+mr0PCrRWn7rtq14zB9gjfiXv/1BiHfswPtls4fQw1FE5LpL0belvB/b1FvDPcmV52HebCQ/6FoWcz9Sw+v3E/LnEBF5ZHwvxC/msZ7sL9A8keqGcC359CTJX7NK67piyVxjHzk0CjF7Gm/ZtEFERHyvJgvm8rgp+pceiqIoiqIoiqIoiqIoiqIoiqKcE+hDD0VRFEVRFEVRFEVRFEVRFEVRzgn0oYeiKIqiKIqiKIqiKIqiKIqiKOcEr1pPj5ofSK2hce6TWUIihTp5TiQC8dGjpkZaXy/q4iW3osZkNoualXPkXTG4ahjiHHkGfO3v/h7i+QVTCzXdiZqDFw1dDnFI55kjjd+j8/idLx1+AuJ7H3gc4ma6z11p7Lt4Avuhm/pJQhRfzGRRH3ty8hjEedLLnpvD94uIFIv4HjeGbXLdk/XmmhllrBz/89OfWtIk7uzqhtc4z1iCP5HA8xARicXxGrAOqU9aryGdr3H29IOQdPRZq1bE1M8MmpqPnMCll13Ww3XxWWmmgBqH6RpqUYuIFCujENdIv6/agRrM3/gSahB+K8SxUK1gv01Po8ZhvoCxiMjc/CzEB0kj+7i+PHuetIIjY4+K3RC2DT3Sf/cxZ0o+6jFaofnsOkreE1aMtJ7pmA6J6joJzCuLzGRCH6eOpn1GzYqRtnepgrqfDmuqRnA8hRGsVTnSz62UMRYRGRhE3d7UAGrOl+OoZVmcwn4La9hvroN56wvmKWuoi4g4NN5KAbe7/nrotzbvrDAUq+HXE6Ux7ZOPTLGK+p21sqnZyvrhJap17FMgZfItwPIqfgTzZfQQ+mc4s+Y8f+nFl0G8OIvz8Dx5ba3fgrqjEdKqffpx1MN9+EHUGx8aNH1FNqzFNkxNYo4FVdTkXT2Cx0iSj1Ysih3jujwPmXnD49GmiePkObZcbq32czwZF9tqeCsEWGd8MiMKyVOnGjYR5Sf9aI/GUSKJuvfFRVxHfeOer2Ibauwxht+ZiOP1ExFJp3BtF4+hTnpXP66rHBvzzCX98Si9nqaVuium/m08zm/CPLGo/loO1Sobj+lE8DwTaXydPZlERHr6sa9t8oBwYvUaHgRVOYoy8CuOG3HFbfhBcH9HojT/VXG9UfHM/u5MY38uLmB/7312F8SXXIrr/W2b0LuH187Hjo5DnMtmjDbk8/gzP7uMVwrlRDSG5xCNkjcCGWkFnqn3XSriePJq2Ab2M7BsHJ8WLThZt9l1KIci5r4m+hJqXl93OercO415rlZrrX/R7EJWosd9ZAT7bmYa56/eHqwZXAtFRMplXofReoQ2JWQ7ITbt59LDqClfnMNB+fJTDxttKB45CvHQDbdhG9kjivwyFjMZiO//p69D/OKBfRAHUXNfxZXHZR9C0uvnfZdLHiDsLVWmtYxjm2tszuuA3nPyHNxqT48LLti+tB8dH8c1ULGC+7PFHI7fTvL4EBGJRLB/owkckx5d86qH31kh7yCLrg/7AD2zK2O0oZ/m0FUj6J22sID3bBayOL5C2pBcfx16Qhw4sB/iIq9XRWT3C6P4HqMeYq5aFvqQjM3hvvRr//QTiPuGMPd7B01f1uFu2tPQe3qcej+VWu1N6fkix8ch1S4anqa/Y5N13TO70PN2lO413XTrayF+4+1vhHjNCM6vObon99gj2Pfjo6Y/X5z2A4ODeD3tgPyJpvF+Vyj4nUfGZiCOHsKxmJtCTxcRkT7K83gJ629IHh0v73oE4kSZPGAuQU8JTuGKUV1FqlXaT9D1jZ7kJdbq+yduJCJuY44dXoNjY2gVxpaLmdc3gK+LiPz1X38Z4q/+7d9B/PBP0AfkN3/zNyH+vz7+f+Hnv/Q3+J3kF/euay812lDZ+QDE9jDW1zXrMLez05hnC7PotfzyfvR5eegQ3oPYVTPXGkfpvl4lxLVj4OJYGOxGX5GLL7gU4suuugri/iG8p+7EzHXd17/9LYh3PoWenAvz9ZofNPGheiX0Lz0URVEURVEURVEURVEURVEURTkn0IceiqIoiqIoiqIoiqIoiqIoiqKcE+hDD0VRFEVRFEVRFEVRFEVRFEVRzgletZ4euXxZAok0/hv1yfYdfBnimSnU0UunTM3lW25B3exdz6Je4N133w3x5s1bIb7oogsgfuSxhyB+6CHUYDs2dthogxXFZ0wR0jtOxFBn2CUtU5t0R2MRfh3F+fI51GQTEcllUfey5qF+X7m6F+IS6X1Xa6QTydrhkVPrj4uIJDpQCy4MWUMwPPlF4/MryYM/+qGYipPH4bbg+2zLfIbI+sV8robeMRtwnCHt8KPgNrM+a+NNGFM7X5zHftj91PfOStt+XrAiJbGO+yq42BdRmzStHcq7JnrDtSqO2xj5fkQrOC4NrWvS7AwsjL0Q9W6babKyjmtQxXrEWvkBaYn2DZN2bYK0+YtY98u+6R+UjKHOZDfpZmeL5AcQou9LhMZ0GKEaTD4+8bipPx2hGhiyFn6iofntBzInqK+8ktgSLnk91DzMF9bA5vyo+eb15veUK+TDQ/4ocaqNE1Oo2Ts+idciV8N+q06ZpgBTh/EYVoDXb2AE82HtavR4sck/Y6eH83w5Tx4hTcr1EdIGnidfq01b8DsHh/ogZl12s76StmoTuXCfrg8fI3aSdn/omOuElcSyArEaY4DnRyeC18s2pg3TU8CrGUZXeEyqp5E49l9mBteXYYBj0CEt/kLJ7K9iCfPCpqV1lHwI4uSlEE+jp9VAF65XhwY2Qzzcg+8XEXGS5EdEXgiZPNbsKfJni5BHxeoO9CnpG1kLMXv4iIj4NDd19pMvSHf9vDyv1HJPj2qlsrRis6gGlyvko0U+McmYuY6N2nhNe88/D+JMFrW28xlce0domVQmL5mRjdjfXTlzX5NdyEBcIH3+MuVqhWp0lbwJa8VTrz/Z+0tExCb/GYd8QBzKQ14mBx6O1yoN+ppFvhWeOUeGPp7X3EQPxNu31MdPtdraLe/cQk4ijfVwjLyaBvtwfK1fh9rtL+7HuUxEJBHndRv5hdVIY34R5+CQNM1r5FUT0p6m0EUejyIyPoua8vPfQc3zWj96DGRLeL0e/CZ6eLx0CL0UylQ7eQ0mImLzvoo9q9h/kebDWg3P25hTeX3jmHnDc6rHPgYnvd5qT49crrSUGxdfjP42/YO4/nhq5y6IM1lcd4mIZLPoRSAB9kcsxmtcXh/i9fFovRmwN0K2yb2LHM7TR8nzyKbaZLu4Fo/R2nx6Cr0OXAu/k98vIrJtK/ohPPLkcxCnUngPp7sL9zBuYjvEHv3ecbaA/VY6hjVCRMSr4Xk+8sxLEG/dWNfKLzfx3VtJQi+Q8Pimz6KaT8PHuA/CCz0xx9fMBHq0fONv0Yvt5edegPgd7/wliG+88TqIL9h+PsQ/vv8HRhu+/e1vQ/zE4+gpwP6oyRTW+I5OqmU2rTsWMQenXja9gBdGn4V4oIyegfNTODb3PYf5sLYP23T51ejltmYEc4z9jEREFnI4PtlGtKv7xD29IAilWDbPY+XwG/9EAqozFt2LqlVxfM3PZ4yjrV3DXmvowzM2hnXnu9/9LsSvv/UWiP/lb/0OxLaPfhrhw+hbISJSyaAPZN8dN+EbrG4Id/71dyC+/xDef34+j9dvjPfzEXOOdRN4r8QjH12X1vob1uLe+q1vuh3iKy7HvE2lsVYmqXaKiAz34pr3L+ge0iNP1O/jh4F5P+KV0L/0UBRFURRFURRFURRFURRFURTlnEAfeiiKoiiKoiiKoiiKoiiKoiiKck6gDz0URVEURVEURVEURVEURVEURTkneNV6emQWc1Jr6GAeO4Yaon//d/dAfP/990K8dh1qi4mIPPwo6vXtenonxHufR23GF3ajvurf/wNqiWWmSW81Srq2cbNrWefSJ53PXIG09BYzELIUfBiwXwS+blmm/m5I+ru2g1qcTiRGr5N2J72ftVRZ8zdoorUW0IkYut7hCa24VjtU9PT0idXQkPVI947Plfu/ma9BSD9jLUv24GDtV359Oc+Odnh68Hca/hBNWM67xDJ0fH/282pH35wuqY5ucdz62ImSHrFhMeNyXpp6wWGI+ohWSHrvVGoipDlvWLAI5rHnof64oJxx/Rg+HqTqUUy1xQmwDZ2k8Uhy1uIF5B8UGTbaEIthX7kh6sIO92FODPVtwjZRPbOozdzzJ3slvNIxIuTVdFwv2qt68vAzR4zPrxRBEC5p0vJ4i5P+OMfNxjhrWvMI5phlRAOarvop8eNF/M5Szay31TImdok0QBfm8XrPz6L/xmIRfQ+ScWzk2ktQB9h1zeudzeDaYGQE87KvFz2tWM6Yvb4CngMC7GfXNv0GHJr7WdM8OOlaBV6TwbuC2I6I3dB+Zt8f9icy3L4Cc96Ich3x8aB+gDkQsXD8WTblLc3rvIqym3h+mT9hDXmsl14N86yQR3+N3CTq3E/ufx7i7hT6wIiIpDrxZ+lO9DWwaG1XofWoEz/170CxN4PDphQiwqOcr6cdqfemw4vZFpDNLizV51QqCa8lSL+9M4p6xs28LKqkcVyi9btD43JhETXpHZo0y/kMxLkMauv39qPPi4jIhk1b8Bjk4ZHLoh51Nota20Wqd6UieZt4XDeMJogvpA8dsicRvj8MabzR+t/ivqbPJ5rk3R23Xg3xNVddCfHCQt1XolIx9cpXku7OnqX1XKGA12IdebYk4piTY0dM05vOTtS4zhXIW43WyZUa9nUkTjWAPBvZ68Zu4s8XrtoA8cIsapzPP47+lrl51Jx/YQZzsERzlUU1w3XNurTcvihK67ASjQueU33KWd/jtYXZBpomzL3wycL34an3O2eb+bmcxOP1axuLYy0bGkaflvO3b4P46adNPf71a/meCuZFkbzxShWc7/g+QLXK+148eoT3QGL6JwQh1p3AozUp7b0rNdTSf2E35uXhQ5gz3d3oISgikq/i+CmX8Dstqm1SoVyOb8DX2a+Rcz0wfUUWc+jTs/dlXMNOHK2vP71aa2udxGNL+4iog/uFSjFPb6b7HE08PYzrSZ5+oeD5Pfs0+m2MHtoH8d69b4H4V3/1VyB+//vfZ7ThmmtwXvn7v0c/ovvuvR/iDHnmDpMv5dYbNkI8OYs1PjNp+lJ2RnFeWJjEz8zP4HfyyipbIv8UmlAv24F73osvQt8aEZGvfgvvn1armOcn39dq/X0WS5YWCbSh4Jpsk99Yd7fpmbP9fKyHq0awXh4+cgjiIs3Bu555BuLZo3j/eg157/nfNj09emld9sK9T0L8w8O4lnxkP3p4HCbvkmQcz8ElD6Vme8BUB641rrzxCogHVuF69LWveQ3Eb3zLa/F4Scxjn+4huE3W2Ddfiz4gE5M4hnc++6KIiAT+6e9h9S89FEVRFEVRFEVRFEVRFEVRFEU5J9CHHoqiKIqiKIqiKIqiKIqiKIqinBPoQw9FURRFURRFURRFURRFURRFUc4JXrWeHn/5l/9jSWd+ega1F5/eiX4c1TxqUB7YbWqhHti9C3/AEoKkIzpDum2GUl6E9MdIM5s1tOvfid/B2rWGFp4hjUfPqAwZRNY5NXWTLfoZa7mFAeqsOS5qa1qkVR2yZ4dt6rIxAT9qMzR/T/L0aLE+oG3ZJ3SoSc/W0BtnIdKmsq3Yv/wZ9rZgrXzOI+4Pfr1Z3hntfBWw/HU9s+tudH0TzxC+ftyG49ciDMOW593aNYMSiZo6tiKmljrXEbvJmPNqnHekf+ujpmNHB+r+sqYua2G6Dvava5ltD0m3d7GGWrRFF9vQnUB9TdfD74zaqKe7bTvqVIpl6jqy7rob8nmhVnHVwfEzm0ONVYuKV5L0VptdQ74+vtB7GtrPtRbrjdv2SbWONXbZa4HHk9Ok2JHmciKG5xmL8HyH16sawWP2RPF695BHjNfE06NQRN30fAm1hGt0Yi++8ATEnd3og7DjAtTM7yEN2Ci1UUQkn8fvTJE3DZUhKbGPSAJ1nHlOqLFOexNfkXgCNZUtqpC+dyLXAn95D6azietaS3lneFqxVjvNA34zUwFORdKl93zyY8uiV0I0ihckFUdvDP7KStnMO+5fbje/bpOGdZSmaJvWeoGNb8jWMkYbSguYR5kinWcCa7zNNd7lNuJ4dV0av022D6HFeUZjvKHT7ZOmcCtwXXvJHyAWwzHDY5TrX7XSZIzQe1iSOBbFvujvwe/oSGL/9aSxloyNoxb0EdoHiYgsRrDexZJ4jTt6UJe+pxfrG8PnWS7hnFQp4xxefw/q95fLmIfVGo6/Gq0Dah7Pezi+OjvQA+nWG68z2nDFBaiVnsui5vXUfD2uVltb67wgXPIIMnwnyMOjSvNZM9s7h37IvjrVAvatT3UnTbraoUe+NGXef5j95URwfirRHnExiXPPldvXQLxzH16bsILzpUs+B2ETPwz2IGPPCM/jPQ8ew/DjYO8aeoNfNddmZj2kueskfXl+bcUJXAn9ej+Wyzj+fGrL6hH0HRjsv908nNDanfyLFjL4+jyNv+lp8i7IZCBeXFyEuNqkv9lj09jr8txDng8Wr1kpr/J5fD/7I4mI+A7OG7UQc9WiuCfJ60mM4yms1/Pk+7SQMefJbC4D8RR5/2QaXl1nonN/Noh2d4rVWDO4tF8MaT1qmLk12W9b5EniFbBOBDSvOJTXWcrBr331qxDve/lliN/1jl822nDdtddD/OEP/SuIr7z8Goj/6R+/AfELe9EreMNGrIV33P56iL95z/eMNhw8gD6PYTAFcUA+dy6ty6rkSlelPaxH8YYt64w2rF4zAPHLL6Fv4dzcib5uvaeHLcfvjbJ3Kd9fC8k/bPO29cbR1m3AewK8Vt+yfTPEL7ywF+JyBj1WEglc1x0++BLEwRj6jIqITFewnfcceBbiR0vkGUhz8IZ1uG+98IKLIN79wosQs2eniMgdd+A8cOPNN0G8iuaNVeTx0ZnGdQJ7cwV8X6sJMfKavWjHhRB/4L3vEZH6uvSzn3h02eOJ6F96KIqiKIqiKIqiKIqiKIqiKIpyjqAPPRRFURRFURRFURRFURRFURRFOSfQhx6KoiiKoiiKoiiKoiiKoiiKopwTvGo9PcrFrPgNzeFUHDXVbrnxaogt0ge0fwr9TNbwDI3HQaQRyrp1LHnexOCB9eWW04FuonJo/OSUNNNJNL6D2sT+AKSdysc05LRJsLxZi1ltlVt5ct/VajX5x299vclRVobFwuLSdeLr5ZJos0Mxa//VIc3y4NQeHYZ0Pn1HQJ4sPvl1NPN3YN15vkbxOL7e14ua5tEo6uq55HUSJW1wfl1ExGX9cNLtddgjgjQKuQ3sMRHh72wiiOyShiD3pdfQH6/VavJP//ht4/MrSSI6IJHGObLebVcX6sD2dA5CHIuidqKImbse6WbXAtTdjlH/xuN0TOpO1tdlvw0RkWgH5RX5ingutonHV0i5nYqjtndQI21Sz9Sw5X6IOKwXjXlWJt+IRAz1OX0Pz6Ez3Y3Ha1K1fZ90s2mucRqHrFqmhvBKEgTBkt8P+/6w/41PdauZXrBHGrwhmSGwL4jHwtr0eow8QSIOeYQ08bLwAtTN98hTybKo7lCdSZAmPo+tZIr8Nqqm5rIVYo6E5CkRetgGn45RZt8tujYl0pouNlvuhDhWeDzXTtJqb7WnhxWxl+Ygth1jTWyHVgtB2ESnOlwmr8inh6YOcWnedhJUMwLMkXDRbENQofnLMC6j8UWNiLo8H5KfWJRej5jeQVzrbNYwtzDP2OcpJA8li9oUUj808xxgTeUYtTsZr49Zz1/e++1sEwThSet8y3gNY8oJp4lXk8M+AFj/klRDa1QqojHsm7iNtWegF/WL12VxzhYRmZlHP8M9e1EvenqW9aVRu7mrEz2K4uQzwfWvexDXHvVjcl5gX2ZI43p6dhJiz8OO6evroxh9Saq+6VF374PozcTegsWq3/iuJl6LK0ixUJRaw3ejq5N9lrCfjk2hZ0siZupss6eKQzrZ7PlRKmNOrh7CviyXMKc8rqVN5vkCaev79J5kbzfEbg1zbFUOr8HELPYD+8g0s8fk/UJI47Vm+H3RWKzS2oTGKsfsqyUixpqY8/7kuarVvoqWHRXbqa+/PfZPIl179v7k/aGIGJt2l7xk+vtQ87+vfxji7dsugHhmFv2mxsbGIJ6aGjeakM1mIGZ/niqvP8kbyOL9Oa312SfG44ItImLhd8RiuN6kbZREo/j+/h6shRs2d+AHbNzrhZa5t6tUzoN4fhbHY7Sx5q1UyvK/9txvfH6liPf1Lq0ZeC0SpTiRwHkmETHvGQQV9Iqq5tGjI59FL5PyIs6F/iKuk70KjvknH3sS4vFDmIMiIm984x6I3/a2t0P8+tteB/HFF22H+P4f3AfxTx57GOJ8Ftv4rve8x2jDV79yD8QHaI7n2lalvK/QWjSgfdN0FnN0jYU5LSKSStPPaJ7wT1rP1e9ptXaePcGp75FyXrK3m4h5P4zv2W3Zgp4emzZugti1+B4pfv6JH34f4m9TLCKSP4q5PWXjGmtwHfqZ9vehn8all10O8Y4dWH8vumgHxK973a1GG2648QaIc1n0j2MfpkSc7vHRpTB8Qdkjucn9ao/Weh3kF/aLd9Q9cQr5RfnsJ4yPN0X/0kNRFEVRFEVRFEVRFEVRFEVRlHMCfeihKIqiKIqiKIqiKIqiKIqiKMo5gT70UBRFURRFURRFURRFURRFURTlnEAfeiiKoiiKoiiKoiiKoiiKoiiKck7wqjUyv/v/+5x0dtbNOE3zOTaKObVBuIhpGG3YZ7PJisXvJ+M0w9Cb2tDEXHRZG3J6g3mIMzdoN7+CnUP5vChm8/UzbEITbxrzPOk9JxtO53I5GWmhkfl7P/BrEj1ubsQpQT9gc202HRcRccgg018ml/l6sAEeG/TV6HI6bhMj80j0lO/h1zvTaK6WICN0hw1O6QKyAbWIadxqkZE5mz1z57MJHRtSMdUmBow+OSKykfnx61sul1puZN6duliiDePKuINmlYkEmtl1ktmy08R4MELGcHxJQuHcxfdHyCiXTW9rFppYRWzTEIx/FrHI8JTNJUO8Pl6EjAhp6ETovF23Sd1nQzXjLZjbMQvbPNy5HmJf0PSNf2+ADb9FRAKHjMvpdcuuf8YJTaPalcT3/aUxwWPDnN9ojHumsScbQtuUgzxm41Q/+XUe4lx32EyzDo6VgM3Uqe5YoUMxGZqS8bkrlMOOOcEl42i25pKprlCbXDIWDcjY11i7kJl3UDPbUCpgLrls0lk9kcdsQL/S2E5S7IYxn0Vm0Db3lYV5lkiZhtJstsv+o2xS7dL851NxrJDxa5zMghOd5hzrF9j8HI0fuR7bNFbcCB4zHsO6xGOjmelf1aMxa4wnY0FzyphrmcXm3nytRITrIc+xYeNaNKuTK00Y2BI2TD1dh2sPjXPn1LVIRMSjmulGeO1M6ywbzVt5jl32+K75/oEeNIleM4xG4y/vP4jxgQMQj42NQmyuxTEPOY9FTFNpTosomdl3deH6cmRkHcTpNK5vymU0ez16bMJog1/DGhAlE3C3sYbl/c1KU66Uxffr579lA16bkNa8U7NzEG9es6rJ8bA2+TXsm1wJ62WR5oF0GnMwqNC6vIprz0LRnOc7O/D6eR5ecN4HlfJ4zDXDaMK6cQT75ehMBuLxSYxFRKq0j+LLutz+gOsSJ/7p7HN5bxal8ez7J1+rn33vfibYrit2Y70UoTpUpQmy5uHY8QOzrZR2YtFans3QXa59tP8b7u+DeKCnG+JSeaPRhmPHjkI8emgU4oUMGlnnS5j7PrUx4HshtFewm+wnhMZsWMHvqHp4nlMejs+fPPxjiC1Bs+CRNashdiPmPNkdx3YNbuyEONG4f1Eq4bhbadyujqWc4xTi/WW6A9vcT3OCiIhXRSPzYh7nhWQZa1k5h8ecPnAE4soU7lltWhNPTk4Zbbj77rsh3vXsMxD/+gfeD/Frbr6ZXv8AxFdefRXE996HRuerV60x2vCv/n+/C/Gf/z//HeJD+3CO76D7N1dcjqbVG7eeD/HoJBpUS7TbaEOxiHlsrP3CE+upUEIJwtbm3nGWKftN3r/8vWKL8iQeoz0jf944JB7v6tvvgLgnhnksIrL38afwPXSN9k3jGmjVMNaN6667DuINGzGvNm5aC/Hg4IDRBiYW68E29WKecV/yXs58ne5b8ZwsIj5di55OrAHxxrwSt09/P6F/6aEoiqIoiqIoiqIoiqIoiqIoyjnBGT30+NznPicXX3yxdHZ2Smdnp1x33XXy3e9+d+n1MAzlrrvukpGREUkkEnLrrbfK7t27z3qjlX9+XH/99Zp3SkvRnFPagead0g4075RWozmntAPNO6WVHP9rpTVr1mjOKS1Fa53SDjTvlFcjZ/TQY82aNfJnf/Zn8tRTT8lTTz0lr33ta+Vtb3vbUrJ++tOfls985jPyP//n/5Qnn3xShoeH5bbbbpPFxcVljqwop+auu+7SvFNaiuac0g4075R2oHmntBrNOaUdaN4preS4lMePf/xjzTmlpWitU9qB5p3yasQKTbOLM6K3t1f+83/+z/Ibv/EbMjIyIh/5yEfkD//wD0VEpFKpyNDQkPyn//Sf5Hd+53dO63i5XE66urokm80ueXpIyLrsP40u63KfWcbzw/j8Ms+LTqdXz/g0zvRSNXs//4zPg3SJT/nqT9Om5kd5JZrmg6xc3v37T/zfEm9oshteFYbW3/JeMqwBGiyjnb8spC/okB+HoZMnIhb9rJkHBLyfYxLo5Bazti3HIqZ+pkUan4Z3zDJjnD1AltUrFxGPtGu5ncePUS6X5f/+93+04jknciLvPvKnX5JYvK7t6JImMvcd6/M3gz9jjHqrmR77Se+na258JYkeN7taNtUW85KeuuZyThg+L3T8ZkMp5LnDyH3WlWRPHdaOptfpaM209jnPDFefxkcq5YJ85uO/2LJa969/79cl1tD/5WYbHjz0Bof7VZrYYhljmvwy2AOErq+hu812D06TWmd4CJAvgZzaw8OQFbVRu9ohXf0gNL2DPB8FsHk8hzwu6POsiV4poz4uazWzZ4WIWfNdhz0lTrxeqVTl0//j7pbl3eqhX17y9LAd7KtYAtvpxJefW3zy9AiqXJuwP/l6sIZ5iYyy/Cp6niSjprdCzEIPD1e6IY5E0GPA96nW0TlEm3zHcvD6Y7mlBVl0mGu9ZeZk9sc53opTNSJovO77Fdm1/7+0dI79jXe+a8m/bHBoCN7DvllByLr3qGnd7Fxj5H2WjJN/AuvBG15oGBdLqGnuN2lDjdaT5SrmUbGMuZuvoEfD6Bjq5O8nffDZmXmIvSZ137DhIY+ijjSOjbXrUF+afUI4z9hvitdx9fdgPDSM13e4EddqNfn7r93Tslr3nne8YcnrYeMI6m6Xqng9Dxwag3hkyNTZrpYxL4tlzJEjk3jTyKvgd9xwPeq7h1XsuMUsXu+5nKnN3pEiDXLyqMrTd1bL9B0VfH9vEsdeSPkwt2B6ne0bR73+hSx+p0f+RhHyceJ1Hees6+JY5rEpYuapa3gdnjjPIAhkZnYa8m4la93H/+Q/LO1jebxUaT7j8dWM5d7Da7fQO/WY5b7jGpBImh6BTKGAub+wgJ4e8+TxMTNPuT07e8rjlZt4YlRLlNvkbWex5xGtURMujp3169Ez8JJLLoG4vx/9b0RE0glcS/D9seNrpHK5LH/2Z3/Wslo3fMcbxT7ua0NrrKSL17Ob5oQuihtnAlG5gtfD2E/QWnxi7/MQ739qFx6+zP62Zgt4T8NWZEO0jviFt7wV4rf+wlsg3rxlE8SZLOZoieq7iEg6hd4Je/fsgZi9bQbJL2fbeVsgLvs4/v/hW//4/2/v/kLjqvs8jn9n0mT6x2Sep9bmz9NUgk+w26frgq2KpVhvrIg3LuwiCuKdtFKxeCHqTb1qe+uFIituYdkHcmMFr4oFbagUQYRi2kJXdms3PjZJ+2ybSVozk8z89qKZNL/v7yRnfuecnDOTvF8Q6Mn8O/nN5/zOmTk936+1vK3f7rElIvLXf/83a3l8dMJanlvUV9AYI7NSSy13i18n5tfZgcL6N4f1Yq7qbwnUdwxtAd+hXvrporX8X1fs47Sbt8es5Z07d1rLfb26N5D9/A8+aPfnCPq8oedkd2jDvh1Oon+a/Rq6/WSlcm9sS6WSbOvf4mQuSOSeHtVqVYaGhuTOnTvy9NNPy9WrV2VsbEwOHDiwcJ9CoSD79++X8+fPL/k85XJZSqWS9QMshdwhbUllToTcoXHMdcgCuUPa2MciC8x1SBtzHbLAXIcskDs0E++THiMjI/LAAw9IoVCQgwcPypdffik7d+6UsbF7Z570mc/u7u6F24IcP35cisXiwk9/f/+S98XadenSJXKHVCWdORFyh3DMdcgCuUPa2MciC8x1yEJfXx9zHVLFXIcskDs0I++THo8++qhcuHBBvv/+ezl06JC8/vrrcnnR5Vb6skVjzLKlat5//32ZnJxc+BkdHfVdJawBg4OD5A6pSjpzIuQO4ZjrkAVyh7Sxj0UWmOuQhXPnzjHXIVXMdcgCuUMzCirKu6yOjg7585/v1Yjbs2eP/PDDD/LRRx8t1GYbGxuT3t7ehftPTEw4Z/QWKxQKUigUlrxdxK0lpjcL49SCD6i/6VlfLBfWq8IpcJZE/bKw1/Dt/xD+y7BnDKhQH3qPMGG1+IMmvrRyd/vWlBQK9cJxqvaeqs+pa7i2tQVsTiE1BvN5XWtW1c5XtTHXrVu+F0NQzfO2kAPnoJ3PYnNOoXub3v50rXARcU6vVp06pOo51bC5/Tfs29vUOK4L6Fuix1Iv1//u+vucdOZEls5de3thoe677nWg/7a8Mx+6A657Mug+LsYZTzVe6imdnixOpoJqHuvHqJyoGqzhM6jqx6D7ljTQT0P3OtA9OPS45I2q/2/0tmK/Xj5wW9G9KtQ6zs+p9X4hac11ufz9Xi31uuN19XrQS670nFvjOay3j5NjHTmVD2e/7vRUCupfZC+bnK6j7zzEXqe23LLLuZyqBR7UR6ame3boXjQqU6pedm3WrutbuWvXNK9V7NuruaD+Kva+SJXxtfbB5cq9utRp5c6Y2UXvg9rXVNX2VVW11QPewDnVDyOft+tsS81e1r1idI4KBXt5To9lQH3zuTZ7gHMddu3vtnb7Pe9YZ9ewbqvZtb6dnkrq9XRfEhGRmqqbHtaDzO1PtPz25j5fAz3j9H46Z98vzX3s7cmStLcH90rpWK/6cWyy3/OuLrfmeKHD7kWQV/1/1rXbz1lT2+msLlCs5i69ru3r3H3LBpXdjorud2HfvrHTrg++dctWa3lwwK45/vPPP1vLV//X7jshIvL3W3atfL196Fr5k5OT1nKxaNdg1n3p9HF2kD/19VjL3Vvsfhj1Y6p8dWVyt1TmujYWpDBfL7td/V1X/nbDWu59yK7FPlNW+RCRjQU7E7/dmLaWp9S+4qE/2PPKbNned0yX7PvPzdpzZVD/lJzap65X/XBu3FZlR9T8qdvJ6R4THeozzmb1N4iI/ENHn7U8cdPO2NgNO2PlWTuT9VrgdUYfq+oXzLtHp2Hzo3UwMv/wRx55RLq6ulZ8rqvOzS28d/o9DOuRE9QXUv/OOf7XYxHymdP9XKt6pwV8lt6geln88Y92Xfr+7W4vgsWmf7ezXp6x99G6ifLNG3bPDxGRSdU35Jdr16zliVt/t5Zz6u/s3GjPddPT9vZ74cIFa3nbNrv/kYjIn3rtua7YqfqJzc+X9fc5rbmuUFh/v6eH2l7a2+z3t6D2jfmc+37r19iw3t531UJ6I3QM2PPKjf+2+wBNjtnz77p1bmb19zH6mGd8fNxa/o///Ku1fPHyJWv5X/71n63lffv2WssPPej2cNH9iXbtesxa/stf/tF+gDq+1ZuzzuiDD9mv+X+37f25iMidO/a2onslLp776v/K4rvisJPESQh7Cf15T3+HoM3V3P38+s32PNGzzX5P/2nPDmu5s8veBz+wsWgt6/l0Tu0P9bGriPudnNNT1enxZ987vL+K/lwc8N2Jeo1Zta/6n9F7VwZNT9tz93Ii9/SoM8ZIuVyWgYEB6enpkTNnzizcVqlUZHh4WPbu3bvMMwD+yB3SRuaQBXKHLJA7pI3MIQvkDmkjc8gCuUMWyB2agdeVHh988IG88MIL0t/fL1NTUzI0NCRnz56V06dPSy6XkyNHjsixY8dkcHBQBgcH5dixY7Jx40Z59dVXV2r9sUacP39eduzYQe6QGjKHLJA7ZIHcIW1kDlkgd0hT/X+iXpu/MoDMIS3MdcgCuUMz8jrpMT4+Lq+99ppcv35disWiPPbYY3L69Gl57rnnRETk3Xffld9//13efPNNuXXrljz11FPy9ddfS6e6pHo59UtiSqX7l8jqS6mcy/RTKW+lL+fUF8lEuKwq7CErUt5KP6O+0/Llr9xLkFa2vFU9B2+88YaMj4+veO7K1uXfuryVvVydi1LeSl0u6ZQdsm/Pe5a3CuKWdVr+UmV9WVq1GlLeSt1flwwSccsrVUNK/viXt1IlEQIu0Q5T/ztm5i97XunMLX7N8sz9S691eau8qgfgzjwB5a3U3095q/nHeJa3crYFdUl11cmtu6245eLs26vzj6lnIL257v5ltfoybufd0LcHlPhxy1upUn1q7MPLW9mc8joBJSecVDolKJyHqMfrS3aXz33QXBdeLsIeO6dckjreKasyJ7OqBElweSsdTHV7QHmrtHJXW1RuKqeP7XRtRL3vCXj/alVdgsUen5wqb2WcGVTNCXq5puapgBKSVT1Hq3pi1bx9bKDLOZiaKrUYUt5Kz4Ui7jjELW/llCwJeb6GzD+mWr13nJXmPnZ27n4OKqq0lNElJVUpqZmye2yny9jl83q7Vvs7VRJQlxLS0Z5VZe7EqGVx94EzFTV3qNJB7gRo/5261JCey4LKp4aW+dHlT9Vz6PkvLGeB5eXUelYq9tjWj6nqc2dac93i9dDlqvQ8XlbrXJl1S0vpEi663MOcGht9u/saqpyVek39+KD10p/nZnXpSzVN6Ntn1b4qp56/FjD76edwSkSGlNp0jtPUcZ1zf2cNAj73qLJfi2tf1ub3c3v27Enn88Siz7G6/OOsGt9GylvpbTCsvFVtdvm5Lmybl8BjGntZP0fY/mhGlbOqqOWyKv2m50KRgGOvkNyFzV36eLPqvFeqVGfAepXLweU3639Pasd1i9dV7U/1Ydyc3s8EvHdhn+B1eSt9/DKn5rqwz3ZBnw18Pz84n/XUtqUzOD1tl+Wbm3X3r7q8lTuXLX/cpjfnu3dUmTed+7J7nKE/yznjEvDvtHK3+LvileAej4Q9Qs+N+gntxaDyVtOq1N6dO6qM5ZT+8Kz2mXP6u8vly1tVZgPKXzt/ZxblrezF6ek5tXxvnOrjE/6aIjnTyL1S9Ouvv0p/f3/Wq4EmMzo6GljfMinkDtpKZ06E3MHFXIcskDukjX0sssBchyyQO6SNzCEL5A5payRzTXfSo1aryW+//SadnZ0yNTUl/f39Mjo6Kl1dXeEPRqBSqdSy42iMkampKenr6wv8HyhJqefOGCPbt29vybFqJmSuMeQuWeQuHJlLHrkLR+6SReYaQ+6SRe7CkblktXLmRMhdq2rl3KWdOb6zSw65C8dcl6y1kjmv8lZpyOfzC2dq6pfPdHV1tdyb0IxadRyLxeKKv0Y9d/VL5Vp1rJpNq45jGpkTIXcrpVXHkbmutbXqWJK71tWq48g+trW16jgy17WuVh5Hcte6WnUc08ycCN/ZJa1Vx5G5rnW16jg2mrmV/S9WAAAAAAAAAAAAKeGkBwAAAAAAAAAAWBWa+qRHoVCQo0ePSqHgdpZH4xjHxjFWyWAc/TBeyWAcG8dYJYexbBxjlQzG0Q/jlQzGsXGMVTIYRz+MVzIYRz+MVzIYx8YxVslYK+PYdI3MAQAAAAAAAAAAomjqKz0AAAAAAAAAAAAaxUkPAAAAAAAAAACwKnDSAwAAAAAAAAAArAqc9AAAAAAAAAAAAKtC0570+OSTT2RgYEDWr18vu3fvlnPnzmW9Sk3t+PHj8sQTT0hnZ6ds3bpVXnrpJbly5Yp1H2OMfPjhh9LX1ycbNmyQZ599Vi5dupTRGjcnctc4MpcMMueH3CWD3Pkhd/GROT9kLhnkzg+5Swa580Pu4iNzfshcMsidH3KXDHLXODInIqYJDQ0Nmfb2dvPZZ5+Zy5cvm7ffftts2rTJXLt2LetVa1rPP/+8OXnypLl48aK5cOGCefHFF8327dvN9PT0wn1OnDhhOjs7zRdffGFGRkbMyy+/bHp7e02pVMpwzZsHufND5uIjc/7IXXzkzh+5i4fM+SNz8ZE7f+QuPnLnj9zFQ+b8kbn4yJ0/chcfufND5oxpypMeTz75pDl48KD1ux07dpj33nsvozVqPRMTE0ZEzPDwsDHGmFqtZnp6esyJEycW7jMzM2OKxaL59NNPs1rNpkLu4iFz/shcfOTOH7mLj9z5IXPxkTl/5C4+cueP3MVH7vyQufjInD9yFx+580fu4lmLmWu68laVSkV+/PFHOXDggPX7AwcOyPnz5zNaq9YzOTkpIiKbN28WEZGrV6/K2NiYNa6FQkH279/PuAq5SwKZ80PmkkHu/JC7ZJC7xpG5ZJA5P+QuGeTOD7lLBrlrHJlLBpnzQ+6SQe78kLv41mLmmu6kx82bN6VarUp3d7f1++7ubhkbG8torVqLMUbeeecd2bdvn+zatUtEZGHsGNdg5C4eMuePzMVH7vyRu/jInR8yFx+Z80fu4iN3/shdfOTOD5mLj8z5I3fxkTt/5C6etZq5dVmvwFJyuZy1bIxxfodghw8flp9++km+++475zbGdXmMTzRkLjrGJzpyFx3jEx25i4axiY7MRcf4REfuomN8oiN30TA20ZG56Bif6MhddIxPNGs1c013pceWLVukra3NOas0MTHhnH2C66233pKvvvpKvv32W9m2bdvC73t6ekREGNclkLvoyFw0ZC4echcNuYuH3Pkjc/GQuWjIXTzkLhpyFw+580fm4iFz0ZC7eMhdNOQuurWcuaY76dHR0SG7d++WM2fOWL8/c+aM7N27N6O1an7GGDl8+LCcOnVKvvnmGxkYGLBuHxgYkJ6eHmtcK5WKDA8PM65C7qIgc/GQuWjIXTzkLhpyFx2Zi4bMxUPuoiF38ZC7aMhddGQuGjIXD7mLhtzFQ+78kTkRWbke6dENDQ2Z9vZ28/nnn5vLly+bI0eOmE2bNplffvkl61VrWocOHTLFYtGcPXvWXL9+feHn7t27C/c5ceKEKRaL5tSpU2ZkZMS88sorpre315RKpQzXvHmQOz9kLj4y54/cxUfu/JG7eMicPzIXH7nzR+7iI3f+yF08ZM4fmYuP3Pkjd/GROz9kzpimPOlhjDEff/yxefjhh01HR4d5/PHHzfDwcNar1NREJPDn5MmTC/ep1Wrm6NGjpqenxxQKBfPMM8+YkZGR7Fa6CZG7xpG5ZJA5P+QuGeTOD7mLj8z5IXPJIHd+yF0yyJ0fchcfmfND5pJB7vyQu2SQu8aROWNyxhiTzDUjAAAAAAAAAAAA2Wm6nh4AAAAAAAAAAABRcNIDAAAAAAAAAACsCpz0AAAAAAAAAAAAqwInPQAAAAAAAAAAwKrASQ8AAAAAAAAAALAqcNIDAAAAAAAAAACsCpz0AAAAAAAAAAAAqwInPQAAAAAAAAAAwKrASQ8AAAAAAAAAALAqcNIDAAAAAAAAAACsCpz0AAAAAAAAAAAAqwInPQAAAAAAAAAAwKrw/1oxCQVZxiSqAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1045,14 +1038,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9aaxsSbbfh/1WxB4y85xzp7pV1V3V3a9JPhKiOQiWHywblCEalk1bsiB5Nj0IMiUIhiQYggBbA/TBhglQMCwDNvRJNiV4lgyDMGCbgARD+kLJskmCsiTS5hP52K9fv55quPeee05m7iFi+cOK2Dt2Zp47VJ1b/ao610XeE7kzduzYMaxY6x9rrRBV5UxnOtOZznSmM53pTGc605nOdKYznelM3zxyv+gKnOlMZzrTmc50pjOd6UxnOtOZznSmM53p3dAZ+DnTmc50pjOd6UxnOtOZznSmM53pTGf6htIZ+DnTmc50pjOd6UxnOtOZznSmM53pTGf6htIZ+DnTmc50pjOd6UxnOtOZznSmM53pTGf6htIZ+DnTmc50pjOd6UxnOtOZznSmM53pTGf6htIZ+DnTmc50pjOd6UxnOtOZznSmM53pTGf6htIZ+DnTmc70O4ZE5I+KyI9+0fU40xencx+eqSQRURH51V90Pc50pl92Os/Fbwad+/FMZzrTF6Uz8HOmM53pTGc60y8xicgPROTv+EXX40xn+mWn81z8ZtC5H890pjP9TqQz8HNPJCLVL7oOZ/rydO7HM53pTGea6cwTz3QeA78z6NwP3ww69+MvN537/5tBX9d+PAM/iUTkuyLyZ0TkExH5TET+eRH5PSLyr6fvn4rI/15EHhX3/EBE/gkR+XeB26/rIPgm0bkfvx6U2vyfEpG/IiLPRORfEpHViXz/pIj8dRF5mfL+F4rf/n4R+XMi8j9NZfwNEfnPFb8/FJE/LSI/EZHfFpE/KSL+q3rHbzqd+/CbQSLyvwW+B/xfReRGRP4HyZXgHxCRHwL/+in3vXJHW0S8iPzTRT//RRH57oln/W0i8lsi8p/8Sl7uTMB5Xfy60HkufjPo3I/fbDrz028G/bL24xn4wRgs8H8DfhP4PvAx8C8DAvwp4CPg9wPfBf6HB7f/ceDvAh6p6vjV1PhMp+jcj187+m8Cfwz4PcDvA/6ZE3n+OvCfAB4C/yPgfyci3y5+/1uBvwo8Bf4nwJ8WEUm//a+BEfhV4D8M/GeAf/D+X+OXms59+DUnVf1vAz8E/m5VvQT+T+mnvx3jl3/sDYr5xzEe+ncCD4A/AWzLDCLyx4D/I/BfUtV/435qf6bX0Xld/PrQeS5+M+jcj99cOvPTbwb9Uvejqv7Sf4D/OPAJUL0m398L/KXi+w+AP/GLrv/5c+7Hr9sntfl/t/j+d2IAwR8FfvSK+/4d4O9J6b8f+GvFbxtAgW8BHwIdsC5+/+PAv/GLfvdvyufch9+cT+rLvyOlv5/64HcXvx/16cE9fzX36YmyFfinMAHrD/2i3/WX7XNeF79en/Nc/GZ8zv34zfyc+ek34/PL3I9fOxOld0TfBX5TD5A7EfkA+F9gu9VXmIXUs4N7f+srqeGZ3oTO/fj1orLNfxND2BckIn8ftvP1/XTpErMMyfTTnFDVbTIUuQSeADXwk9l4BMe5n++bzn34zaW3aefvYqDfXfSPAf8bVf33vlSNzvRF6Lwufv3pPBe/GXTux68/nfnpN4N+afvx7Opl9FvA90746v0pDFn/w6r6APhvYWZgJelXUL8zvRmd+/HrRaW/+veAH5c/isivAP9L4B8F3lPVR8C/z3HfnaLfwqxFnqrqo/R5oKp/4F5qfqZM5z78ZtAp/ldeu8WssYDJTPr94vffwtz97qL/CvD3isg/9iXqeKYvRud18etF57n4zaBzP34z6cxPvxn0S9uPZ+DH6P8N/AT4Z0XkQkRWIvJHMLTvBnguIh8D//1fZCXP9Fo69+PXi/4REfmOiDwB/mngXzn4/QJjsJ8AiMh/B/iDb1Kwqv4E+NeAf05EHoiIS0Hb/vb7q/6ZOPfhN4V+BvzuV/z+68BKRP4uEamxWE5t8fv/Cvgfi8jvFaM/LCLvFb//GPhPAf89EfmH77vyZ3olndfFrxed5+I3g879+M2kMz/9ZtAvbT+egR9AVQPwd2MBRH8I/Aj4r2GBSP8W4AXwfwf+zC+qjmd6PZ378WtH/wdMsf+N9PmT5Y+q+leAfw74f2JC1B8C/s23KP/vAxrgr2Cmmv9n4NuvvONMb0vnPvxm0J8C/hkReQ78lw9/VNUXwD+MKSO/je1WlyfS/M+wAKb/GnAN/GlgfVDGDzFF5Z8QkXOA7q+Izuvi147Oc/GbQed+/AbSmZ9+M+iXuR8lBSs605nOdKavjETkB8A/qKr/j190Xc70xejch2c605nOdKYznelMZzrT14POFj9nOtOZznSmM53pTGc605nOdKYznelM31A6Az9nOtOZznSmM53pTGc605nOdKYznelM31A6u3qd6UxnOtOZznSmM53pTGc605nOdKYzfUPpS1n8iMh/VkT+qoj8NRH5J++rUmf6auncj19/OvfhN4PO/fj1p3MffjPo3I9ffzr34TeDzv349adzH34z6NyPX3/6whY/IuKx4wj/01g07D8P/PF0istJevr0qX7/+9//Qs8705ejv/gX/+Knqvr+4fW37Ufnnqpz30cERFIZ6b/pe/lX0u+H10/8vSt91+/54YeX7sx7itTOmn7Fz8sMB/lVl9em6fSKa1r+rnOe6Xp5rXjYON5PHwI0zXu6WX+HEALD2BNCQIiIBgTFO6id4ERQ8QQqVBzgUPGAQwSck2ksOKeIQF0L7Qq8E6oKmkZwAuIE5yg6rHg5ze9yXNdT11RPXZeDYuXkz79ouq+5KO1jZf1xWUD568nkwQNPXCtukKMf7vj6+oa9M/vxEHjDEpekdxV0OLv1xPXD/Kcmcfqe66XP/8q9zcXNw6f68MPvH9VH76in/TloIT1og8X1w0unmZ4uHzAn75AR9PD/Oxmpnmz2k5cOnrW871X1eG0ljorvXvyYcfvs5FB72358+OSpfvDxr0z1OMmC3mAovqLmRd2s2KM1uMharjHLJtVl6nB8FwU5ESQ/bPEMmyN31f/odYq8mtM6z6Y8ng+W2SPS8i2LDD/8q//Ovc3F+sFTbd//landtKhZ/uvyoi8C4t5Q0Ciq/rbM7Q3yvzLLWzzvTdm6vEmmNyJr4d1Pf0D//NN7mYsXD5/qk29970vWa67d/OVdeEcc8s+3aU89kbozy1dCP/nr/597m4tV3WjbrBEEFwX7pzgiImpN5SJgXROiTnM25Nm6mKMOJy7lj2gMqCpoRInGpzQSY7TraFori0ZMSo2cYOyTLn2yzRP3Srxi0pk4vmUxDAq52IlHnEu8P7WHWDo/P4RA1JgKMHldxOFdgxOPElEdQMP8fiiqSlT7G2Ikxngvc/HRk6f67e9+//glvwDbeKNbTq2Hb3Dv66ZJXm/fpMx3MuVKffINH/ZX/t3TegZA9SWq8h8F/pqq/gaAiPzLwN+DHbt7kr7//e/zF/7CX+AQbJK3XDjP9PYkIr95x09v1Y/OfZ9Hj/48zkFVgXc6pZ0jpWVK+3q+7v1BWua0pHTlZ4G2vO7czMNzmoKnnxKET6Vhyce1nFCH6fIT00chxvl6CHY9pnT+LadjTHnSfWOwvPl6zjOOx+kQYBiUaGsbn/zc30sfAmzW3+Fv+4/9q7y8ec6Pf/YDbm5f4HVPO76g0p4Hrefblw2bxtO5K15WHzC4Neo2RP8YXENde1brCu+Fto2sN4G6hm9/5Pg9v7fi8tLx4VPHdz+uWK+EduVYbTzOYwsQY2psEJXUT4pzaWFf9Gnq8DtpXuhMspbje14FIH6F5P099eP6Y+SPzidNap4UzhZ7I5n4q5TN4U5MHBHUiZUjAr5Uaspy5jSF4DE/5ATJnLhrLt5Jiwm7+KHIMk/eLLRlBXWBpObJpGoTUQ+vB4jDNKk1ximP0zi9xvB/+YP3Nhcffvh9/oF//v81VylXN87CZPkaxmNmpXnmU3qQX1OZOincZT7VOEEyypx//h00lvfO5U/CIvNvZftP5erp+3P5p9Oauu4w/4GAfbLM03ko86Trf/lP/zfu6hJ4y3784OPv8z//M/82CsRYgCKFTXXUoj/jYX/myp7icxEwQd07pa4iTqD20FQGzjvUHqVCiDAGScoQjCG3ix60UTlXANQAeow9tE1F0/ikdNhvoGgMkJSmGHUxZud3yCWaMqIxEqMyBCWke8boiQhRhaCOiKAIMdVIBbL6oQhRHYocbYj8I3/k8b3Nxfb9X+EP/bP/FkGhHyGo2kYII04jFZFWBzwRrSpoVuCzGL3su7JLS7BHxcZHFEBOMUAp2W6x/rk717DyyUfsuCjrLjrcrMvpu8qcr7/ZQipHiYlDA/Bv/4m/9VW3v1U/PvnW9/jH/4U/V4yR1y8yS35x1/Uj9fw1eWYq2+lU/mlM63Fn3VVmycv0jeuTJ9RpeeoukHjZW8s6lPQn/4sf3t9cbNf8/j/wR6iD52Lf0ARPJSMrt6NyI1IH3KaHKtD1cHMbGQbYAzfqGBC0btHVBnyFdy1NtUHEM+5v6W+vieNAjFvCeIPqyH6/Zbu7IYSRGAdiHBZtC+BcjXd1aj8FDCiKYyCOIcmz6XPQds5LEr0EnzZWEWaehxKdEjNfSMtq5SouVpesmjXeOZqqofYVzjnqyuOdYxgHnl8/Z7vfAhW4S1RWNNUFDzffYdU8QuOWofsJMVwTdWTUHaojQwhs+54hjDy7fnFXl7x1P377u9/nX/qzf4HDzaZSV7MLpx9WzoaTmxyc5k1O5vQd2gAw90yWjU7WIYnCPpU57V2/AfJzJ+d5E7m3yBbTWh6ZRVdO1bn4/jd/2901F78U8PMx8FvF9x8BR9xbRP4h4B8C+N73vneSianqGfz5xdFr+7HsQ+e+lwTBeXJlYMa9Qfqu/IcAz1HazwKppLQ4+1gdTThN9V0ILKdGlk7/LSd9mZ4Eci0Zs5V5+JsUwmgpmIqkpSGm97V1wvCJXGB618O0JlDtDZTjt56LTfMxz54p293Ifrdj6G8QvUXipzjdsWpbHjWXPGhr+rrmYjUQfMV2DFwPgSEEhiD0nQJC1UDTCr5SxghIZLNRbl4oYYis18LlpefBYzXAsFKqZmaqVeprP62WcrA4lKZCh0LIAWvP0qsWP09t8Nq2/EXSW81F1h+li9N/BytS0YCLJipXxcMV0tpdy5Uz73BJSpVWAHdpB4tKz4kln08WBkuZ4MRtkubAnKuQi6Z6ZQEti2PTZAVE1coRsQk11VuLdsrpNOkyk8lpFU7XdEFvPRcffPC96YWnEa7L7/l3q7pML6kc5JnfHkGIaadRkkI935H+TmXosg1y3jxGdOatGaiZ+KzO905JZLGun07P5SzSagLwq+7Voj535kkvZ2l7H2F+1mvorebiBx99b26+qZ2xMZObr1hkpmmqid+nvKoy1y2vIcxTq3JQJ15Ze6H2MoM1+R1DCY7otM6o5iEsEzingj1z6ncxwAUYVZCQ19a8vioa5jJDUV/NkzHVQ9M7xfRRhIASMlgozq6L7eMbxMIE+tjLH6hdmkGRO5jGkt5+XXz6PcQJBHsDRfAodVqn1k55WEEjILUgrUwyyCnSw48wvWcUK3+MMGgCw1To42z9NANAeW1LX9MgStxtetpJDP4ujangl8YC5cSjdHl78cw3XUvz0nII+hRc5kTdFvRWc/Hxh9+d3uMN5nm+v+ApqV6neNPEO8o2P82DyrLvftbp596Vf6bl2lmynmP+eMjvyoVm0Qt31mG672DSlXz2NfQFZNQ1uA1ohfqWqBXBDQyuIsqIqyJVO+JqBa94FA1QR6ijrSPRt8TqAhWPSI3GBsThnLJaB1RHwHaYlZF2X1FvHTEEYjTwp9w0Aah8S+WbaYCpGvAz9h1j31nbh4gGY7ox2ie3l7hkreNmWWoWRRSRvPGpRI1oVHCedrXm6uIK7ys2qzVt3RqAJA4Roes7dn1PN46oegJC1GgbP4i9Jx4Rj+ARbNdadbB3iKNtdH3Jfiz78Fsffw/QhX60nPgcDN67H5zFsMM8C12rlAuPhSOrS/6/qMcrh69iGzXOMkZJa+1UfsGFy+eXL7V451dKu8cbW+kds2wwce1jlvDG9GWAn1NddPRoVf0XgH8B4Nd+7dfeompn+orotf1Y9mFd/5pWPlv26GzlU1jzVF5xTnBel1Y+lczoafUKi58ECi0sfgqwp0xPQopooctmAb8Qfk5RMeFfBfxonvhp8z+G+XpwTBY/4marnQU4lNNxLjcmJhbTb5mhlGlJ97yBgPXWc7Gp/2b9wd+IjOOervuccfw5Is9w/JBKXnK1ecB3N9/i6cWauIbx4UO0Fn56XfPrnwyMg+NmKzx7WTEMgBPU20J2daX8tf8g0LbKdz6CX/09ysUFPP2g4qPv1KxaYXPluHzgqSphvVLW6zgZmPhpMZQCxHOgGeULzFCczIMgW/wcMsVJ8ryrqX7H0FvNRXn8B9M2vxSDJGlpZbukP5pAnRnsSR9X3JfuFScJ/GGaSxSPmK6XUv1dbTzdXioLi055fa/kFS8vnIVSPAkOWYFVMUEjXZ8UcgXJSKpqAl+ztODmctUZQqvYBHQpv7yRgPvWc/Gj3/drmqt1JHbluqfmVTUAR1KTuOI9iVn4kUkxnLT4dENEEFErJ85KQgGJJEAgXZc488DcDKVCpabACmkXKveLUmgRCfBm5qG5UbLeka1Pyq7ImSQJPAvBrhQkD5ssKSOigh4ihBn9mLdj76K3mou/7w/9mrrc1EnKzQp+qfmXhc5rmM3DvI7kvPn9koMtIkrtoa1t17iuhLamAH6s/cbRelPVrEazkHq8tiVBFrO4AQjmSGHvF4RRQdKzJ1hmslCSZDRXuGlNiqbkNkLVo9GlIRqNcwsonigGCKm6ohyba2UanV0bSM88bS3zdn142I+Xv/ofSbstTPPdi7KplFqUJyv4lUu4bEyGqdcgftm3izHK3Kdmt5XeF5uLqnAzKi8GGCJcj8Kz3qV2L9m6TMqKXS+UjUnWmV/tCAA6KURk95O0FBT8XPLvBepTcuwM7h7SXVPq8PGZZU11eDW91Vz87t/0t+gMtrwRyJvquARYlmuVTunyXU6VfSh63PWsu+86TUfgDXq6W4vfc3pujqNFvLg+zbgT5RYL0UGtp7X21fTWc/Hi8n0V/x5QE+sNwVVEGYiyR2SkaoX2SvCtQID6SqkUZFTGXqkiBG0ZdEPUCqISR3tq26xZPVjjXaBq91SrW0QC/X7PbntLDOYKFsOIJlA2Bnv/ul5RV5u0STG7h+13L9ltr4khEPqeMAxoVPou0veaePosx4pzODevkdN8kIBINCtJ7YlxRFzNgweP+PCDD2jqhocPHnK5uQSFMBrgdbu7ZT8EujEyBmXsYYwDLgaiCqbu1zipEddADEgc0bhHQ0RDIIZ4elC/RT+Wffj7//CvZW8yRPXECDq4/c6BpPPPp6q3HO5pMyOLt3qULqTaaa2anlLyAGY5Zd5EK2ZCwVvluCXsquhyo1LneXZceSYetLCWBrN4zXLM69e+V9KXAX5+BHy3+P4d4MdfqjZn+kXQW/XjBMQcWu8cfXRp0eNMMMlp+00s36Flj9guZgYCSveuRXr66Cy8TALK0orsrsX6MK0H1yeFhySsFkJ5+VspqJf3Z0sfXDL0yXnixP+BYte3SKum972rM2Z667kYArx4oagGYtiD3hLlJbjPcXJNo5EH1RWPWoF1h14OaBPY9oGaACEydpHba9j1Ogu1otzcwM3LSF0rMSirNnB5aS4n642w2jgCZiVU1SZAt0nQzUqBpA6VidVKKQWnP6UoyvK3MiknfvudSW/Zj7Ic2GV7lNu0J9PlZJknj8js6nWoMJx07zpILyXG0+39Rq5hBalm5SAtkItVN+XJ1n7IwdKe8ycwJKXznJ2HVCpUc5s6W4CnNn0zBJYvsi6mRx7VKf2YXzdXJwMgi3tI76VZGZCp3WS6nlonCQ9Wzukd6+X2WimuzWlNeaR4Vha6sk5xtLNd5CeBuoe709N7q87KKPOuuyY0Pde/LH+uv42JqW75HdP/h1EaTtBb96OICbczDFIAIFMuza9HBjJcAlvVYevC1AKW32F7tXnTpEqx0mpn7l5Zd8iCp0ZzwY7RrHd8HidIWsPUDNmyFyNWhmpeORMIpEoMM5tYvEJeE5Hpb/6tVOVngM76IeKmdXRyTU1WP/Mb5wZKLoMLkKMcga+dj19ARrV6zHPQ5lPloHEGAD1aw6NW8LV5ejk/bzRNQn0hH5grnBARRvKubbL6UaUehAD0ETrNFlzHPPJwuTuWb3I+fUWe4jWLViyXhXkJKe+de3Vx/RWtePjljtWA05rcgt5ORp14Q/r+hmvMqbxvcv2IB9mXnJOD3jwqZ+a/ub6HecrrR5wktWCpyOpiPCxuOFWRYj3VxeyVU5mOKqfyWl4KX2hddCBrcLWFGNAKkREVZ+BI5Yi1RxpjcD5hFn5UKhfNOza2hHED0Sd3U7NycU5oW6jqQL12tBcgPtDvPVVjFj8ao/1VTaEXrA2aek1TXxTAjxJjoKpAZCDGwLAXxl4MQEIJGtPmsUOjbU7KFLNi5rHJBhAnkSgmVasGBE/TrthcXNC2LQ8fPuLq8gqNMPbRwB9xNM0K72uD12U0iyGNid/YFoIkq5+ILTjmuhtRDcni55Xz8e3XRcqxqsuBCwdDSw9miy6zzCLcksrrmtpxIf7pwb2l5d7Msw9Jc52x9fIYcLExIDBhVgecgvKV56t6mGX+WgA/sVxPiraYMKVyrT2u/p30ZYCfPw/8XhH5XcBvA/914JVO82f6HUlv3Y8ZpPGHLl2HH88E7DgnkwWPn6x8ZoshkTkGUM5zCC5xmBZmVy83M88Z/GFSQA5pOdHmi7H4LlIIxzJb4wivdvVaCh3pWXF5PT9XdX4n1dnoQos2foMZ/YXmok6QUkAZUToiNwReMIqn4yUdSiMrNvUW33ieXlZ8/H7P1ZWwbmE/VtQ7TzcI294RoiMEpescY4Dnz0d+/JPAeq3s+0A39LQr4eGjyJOn0DSOqyvl0UOLE7VZCZuNwztoG1ilwNA2fgrpVFzRLklYX/R0sYBNyrxSjIzfifQFeWp+P5iQgTK9mBTpWrYKcsxIYxp8kiaXpntKNy971Oz6tQCVFvU5+D5V4ZVawOm3E5kV4tyN5ZwQJtwGPciTV+QEFmTrHUnpaYd3moDJaizqrFFHtWuinLDJOaQv1odFcy5gFp35RvkXlvmmK6WwMxeNSHolTOHWmK1/suJiBU9KzKLkUnSjSMuiya2+8y50Bmrm64sfjq4vXb7njixVp9k26bDMuRKHytQMkJ12xbiDvtC6OANzM9BWDsgST8ubEyWYl+ucAZycX8QVcXySMKlpTcqWaEkJGYMwBiGqElQIunxns7CZVbyITPF1LMaO8YPJtQuZfi1FVs1lMUNdM6ia59YMxKqkAKKSrzsWoI/aHJt6PfGLDP7IQT/Ptbi/PkSZlDyN5mYhMlLpQK0jEOkkcCuKI1CpIuqTSuXmqs2aXGqP3LZ5/bF54tKc9FHwEVxwOOeRmMd5KkRI7VSy3cOAsTq1jUz/HQIRM0m+h7R6yvHvuZ7z91zm6fIW31/L499YVXnnukbJmpbXT/OLu91WD8t4NShyUlY8qkOu20EdiqyL9B3vMjPpA96eJ5YW8+24pscVSw+bNxNeSW/dh6owjMnCfoj4EEECzkUgEkabL1Vy68pvFZXkXmqATcI1EhBk7y/qcFLhxOFdxPuI8xGtPbqq0tyfzfxjtjrFUVdr6nqDxVE0a46ogbqpaVYNMQb6XUff9YSg+JsI3kD0MDrCmPmruYkKCTxOm+PiR8QFVCPDsGMce9brFRdXj1hfPKSua6RaE2kJMbLdD3T7ke1OGMYW5cL6ygWcD4i/IFKZ6y6C+BwDUoiDWW0GnT0RXtOXb78uQpKdClfwYgi+jk8cSiKLe1+ZMdMdsossLy3n7rzQlHLUYalTCIETv5+qs6YJvpxNd99dbmi5g5w6TfSi/tNDXt2oXxj4UdVRRP5R4F/FNqT+RVX9y6+7727GcqZfBL1tP4rkoM45iPOp4M4z8OMrkpWOLoI+l65hC0CodAE7sgRisvhBCuAnp9NYz6bvub7lFDg18srFNjM+hYXpfXbhQueAzqoQZAaBTrl6HbqAwTJt+bJCIESZlZXs+vU6xvhF5qKpsN7SbgDtiPKS0f2cQT5hL3tuaXjJFU8qeLx6zMVmZL1SLh6v2caRH/xsZHTw/Nbz/Lqm+7QljI6+E8bB/PG6PXz2+UDllasHA48f7WkaePy45f33laZ1vPdEeP8DoWmEx4887z2BpoFHD4XHj4TKQ7sSVjmegiR/wAOa1VDzk4YwrzJTMMM0YPI9rxVOvzr6Qjw1v1/591TEc6EAe+QoLcAUeCuVKyk9x36Q9IgC+MnqwSIWxzzppphA0+VSfTh8lxOL67SoZXPZYoIet99UsubAzVnz0oMJDqbUFelJ4ybtYqrtopliHa1ypw+7KOvwxdbFtKrnxV1tgp5QJPINHAgsWXBnAg2Q4pVIr5FMoCPCzPOyCk8ChOJUvgke2K5hvj9VbgFSJXAtt6cxsZyWORkxUNHaahJesllzFg616I6jbp9+twrotJuXylgATMUNRWO+zgrgi6yLeb1SxdwImaH17EI3Y7IyTU/vZWrnfL+tPZo4lqNKgqrTFA1Hra/CGG3NiLbrrAr9KPSjJAUoxdGZBk2uj0u1KoAfEQKemE++gQIYSPCOgiZQPQ+tyTWs5AfpX07nflCXriugbrpHNe9+K0ica5stTYqxPn3V5Tt92T7MRQ4jdrJNsJgXjp7Wb9kw4FBeukDn1cZx9IBQiVCLSyehJaUu9bNPEIv95hAEL1Ali7SqcjTOQxDqWOF77B6dra8mFp/eeHrrkme+ytVrzr5Iz+PxtMvVUn66I8+S8y8Kn5SU6T/QU/lfQV+Yp07jMY3DBR89rRyVbVXmfz2/yGXOw/h1z5rKPvhydOtBvYrLrwWV5roVD5japXxZWfDrUzraog0Sv02SwTuRUWOEbSfIqLg+IMFAWOdHRAJt49HBUSedwadXGhTGCCEKYYSxT3J0ADfamHTqqaSldkrta5qmxVVKVQXaxmI5iJhrkL17hXMVgqPya6pqjeCS14K1Rdff0A83hBjZbQd224FxVF58HqmeK2GEbu8YOpd4vQFYzkGzijSN4rzStgN1E0AD47glhI62aXn6rY94+N5TnPN4WTFoQz+OPLu+4fpFT9c7tt0DggpRFFdFvFPErRhlRReNBzWVw4tHek9UxxglbRYo4/jqja0vsi46l12WluvfIt8rn3oXv7vjvruuF/zriIfOQ//kunJX/e6a2Yd65/zDUnbVRergmQc7fZLqN31LdV0cHKAcM4sT9GUsflDVPwv82S9TxlTWnYvBmwBFciLFQQO/rozlzafMzV5Fyxx31OeOO07d+yYL4n3R2/bj7LrFxPhOuXqVQM3k/nVXfjkAe+TY4kcSQu4yMi5MMRLK3dY8qRc7VXdMhmUgLSZFIysZWVnK5ZRWPlNMipw/CfxTWTDpHGXbHadlcgcrr6vKIv+r6K3noiZh27RZkBFkIMqOKLcEVgzcMuBR2bKq9myqFm06oh/oqHm591xdjvQKu87bCQUIMTrGYGWPo2O3t/66uY3cvBypa+XmxtPtR9rW0+8dMTjaFnRUKgdtI9QeNmvQ2o6F14aCKZfS1RJONoU0qyVFp9iLYwtAUlD0zqHxC6G36sdykE8AixwM/nJSnEoff+TEJJoAHEkLUinUT4LkQfVKwOeEJvImzS7TpJPFAr3ofpIQOoEITEDKpGwkICeZvMyWKXKYjuDcpFgjyVczBSx/kwn5RdbFSUg/EGwW5ZavvcA3llY2ubyi2ZbjXOdhcGiVY/kP3KYWQsncAVnwP3SvO+0CduiKNVdo6SpRtscy9tBUftE8OZZPKQTJ9C5y9O4L8er14M9brouSLEQOu04PHmytd7huLao0XZOpjV1uDbWYO+gMksVobrWqdvpHiGnXm4XtoxVc7AgugB8kBVqeX0CRGRydRp+BoVqUvXDvmp43W+uk9mTa+c11Ia2v5YvnPs9jqFAY0DnOwpswkLftQ1Xb/baNnQgaEA14HakYAGWQMAVmDgQ0Qu0crTiz4BGxOHWAF4dPQLkXwYmbcXdnLyHRTrr04sgnWpYujou5VzCHssUXQ/mY1aY8ssiyWCKO8i+LWriP5bqcfuTymRS74bKUt0o+97qufLt+1In/nWA3HPOzPKKWANGr2MOcp3Svvevew4IOZM6CV073FkwuA+Im19xd4rJ3c/mvigN0ePOSd58iyfV5RZ47H/O2cxEDYSWAjBFGcC7iVMFFJDgGQ7fNMj7JB5HsRpmCykcLSL84oUVd0jOyTpI2sUVTEF/b0PbpPZ2r8b7GjkZfUXmL8eOcS5boSt3W9KEhxoirBqQaGQel65TdXnEjySI+r2FmgiReqZpIs1a8j6zXI207AoFxbIhhT9M0rDaXtOsLwEGoiaEiRGHfC9sdDINjDA3KGlAkvY9IQ8QzKlSlQjVtwKRNgqjLEybvqR9L3lH27pIf5UF/95g6zWMOZMs7n3uKf8n8PfOLwwcdPPukRKTLdznNfylkoYJPLGpmpS7lMXnFe5+qx3HdT9GXAn6+CL2ttc8vq3XQq6fAL5ZOATNZeJ0OA1rwl9ndS4r0ZPGTQKJ8TUSLdOHyVJSJMMUKIj+38FjJE2wSEgs6zYbsPzPbtGu2k5remeTkUSqbBagz7UbnzfI8sZMQSRL0joAfnd9LtWy/uQ1U39VocGAH1AIbRm3p1BEVroeRn95u2SuEasPDmxs6PNrWNPUttY88vgx89H7F5iJSOeHlyx5feYahYt8bAASOGFtEIsMwstt7hkHxrkHUU9eObi/sboWmgRfPlBfPIm0Lz57C9Qtz+Xr40PPokcdXQrsWmrUsxpgBE1lBWQq2qSfmv7+TJ9cXoRLhzC8+TYAc5E7m66cQUsnZT1xPVArw5fPKxXCuTlpUZV7IysXxLq6+6LM8pzJoo8yrXV6lpwU0B3ZOwviyxgfdnRSSNFFFUnwVzdczU4H0g03MHITlnqnkUS4LBYlfHDbUyaGb2iE3D4nnTDtGZIF9vmWyRJHMu5ZQac6agaGYni6SghBTtGyy3JkCQ08VyhY9RXwecqDFdN8JMEgWz13mKWNQTMNB5y9zAMnyuQlcyPXPz7pHEsF2nu2MbkI+CKC0SjqhmmWAa2742amtnGaKKTSCTmb55Wi0YN0uARfmrhUlnag17VunZ6U5lC1x7Eh1Eq/IrljFs3P8rEky5mhclgLsSeH4RB4tbrZ+y7PY3hZVoo6o2ps78WXLneyHL03TvFMcESXiJVK7SO3MknQfzfoghOSKIlCJo/EJ5Jk+BgI5MRcwV4JAzpQwEdiPyjbCGB09SSF1Oll+kfpp5p+zhUXZCofgjyzScnR9ATieuH+ZJ82fwwxwcL0oM/N9CpY9MSiWXfkOunMCKab0qbofD+hDXnl32XZfmf8QAHqzOqbnC7NBQLm2SWphPXQRWb7Fyetv8C6HE/OuMwxKoPCe2edJMrfVAR0GtOtgFEQGnNshMoL31Dc1IVhogCZZ/oTREQcHUZDY4iQizoMG0BFUGfqR25cD+yri9wG/HZEcgDPL/E6TFZHg0xHuIg7nVni3RkTwzuG8AeEhdozaWaDnTun2yjjCdgtdBzFZ1cQc3DnzmvSMae2UHP8HKmnRSqjrBqWiH2xzZOyUMAS6fWS3r+j6lhArsx5q1in8hBJUceJxrgWpwY1I5XHeIaFCfYVSYfacI/oO5Bs4sSbIKdjwNBM4mq0HPCyTHuTJf+TU9YL3HW2WLWs6P/tOHlVyxczzjq0j71wjbZE9mnOH8RYX3PfEXHybefmVAz8zlTV8R4v4a59/qg6/iLp8fUhkjtGT4/DY9xmosLS5Z1VOp5O4vLdF0nuhqjQxTjV3MCGlJV0vrH/87A62AJoKwGmRllmQOZQp7gR9sEkzuXoloWvaUXXzdxfS96QPTq5eIYFFiZnn078gna6ShlyQBFipYf4iiiYXEpVs4m/CnbmEvYsxKUBNZEXkCuUhPRdorHAIuu/h089YN9d8Hhz+4ilP+oHHDwMfPWhYrzeoXBJbz83QcnURuNnB82vPzW3L+MIxKKh6YtwAsN8Hhn5EUF5eOz75uZnGr1dm2VN5ePxIefJkpGnggw8C3/p2YLWCb39U8dHHNW0rPH6/4vH7diJY08h0vPGiv0th9/Dv1JzfAAQox+QpBr9Oq9rcKCrJdeskQlukvSybKzXmQmaWoo2LCbZo9wLscVIWONNy33++dykkZKVYFum0Es5wRZKWJ0E/pnY4RDGmTy5bp0k6HfW+UMQzE5Dpvnun1AUq6XGJN0TJVUkncKVXiLHY/VVrM1Wmg8hMt7cvs2tWvncWEHJ52XJxesVYpHPf5rJyv6R6SQnKxCQ2Tqdapeei6RSn+Vmo5Z1doWbKFieawaOp/glYWiDueRyQjEmKmBM5zfx38Yx7JOdgvXKMUXE9hGgnwYSQ+HkBgOZ3mYZfjFPbSv6LTJsaWSjMQzOGtLNXuAHbaTGWL6hjFGdgkFjQ/cVzYTEVY9E/dv3Nhf88hqZ0cf2VSvAEwOXvuUcUUQNciJEYemIMiDjE1abAseQx904eRBUnARipZaT1gVUV6CRwMw6MEulV2cZIUMU7R+3zKT0y7aabhY8pcY7k6iXJKijn1cqOmVZHpw58jRdPHOMCMMn/7NVnPi3l/0WTvC79OuBnwePTRSkzLLMfl7+Yb0wAYg7+Pj/4qAfuiU6DMod5ygrMeV8ft+ZQ0Tp+1qvli6WSmQthOYlefXlx99H1O977pHJb/HkTqejuMu+PVCNdvyV0geG2J/YBocfJFmGgGz3RVTQroa5g3dqJwiFWRG2I6hDW1G4PriLqQKRDNbDf7tnvtiiBwMDAQCQiZJfTvEmd4qu42o5wx+GkxUlrIJB3eG/zG6eos8UzxIoxVmgQdlvPfuvQKMRQEZN7qPeaLP/EXOWznOY9rnIGPLka5zZ4VxFYcbsXYhBurwP7XWTslevrhu2uNvGtekzVGu+xiGSgBDQOaBwRH3FNg6tqRGvwLdENqAwEBqK+m42t/N+0usnbTfuFBFmyj7zGcFDeclgflbO4dnIsL90X36yuMyeW6V1fn/9kJcocklutsHv+kjzzFwj8MJkyZcmtFPhPNfWx9c98x/LeUw8r/xzkykxa54F5t6XRXdel+PUN6rMoT4qULn75nUgLC59srSPJskfm3zIgk125Mmhj5odmWjm7jFG4cRXXctmFe5e7C/DJaYprqc6l2d9CySjHXdb5Zt1wUozyfdPucv6tcO2aNgzKk7zi/C4xMp3SFZmvozK9Z5S8GKjt2jvKkJH3SDl+gEdpUFoCNaQQlbsx8Hy/ZxdGLnY7Xux3VM2KzbincntW3nG5anjiBlaj57Pnjs16ZN9DNwTEaRKePKo+LYaOEYv30XWzzLet4KY2YHC/g/1OaRolhAAMrFZQN7C5cKzWQnvpuBy8CdZVOvGGwqFL8hJzt3A6j4JXiTknxNx3JqR+MZrdqVKckLwoZMVqmgzpmsy/H39gUirSvXeerinlZ17wyhU6xzFZlEk55w7650AYmPPMom35exljYGHtkx5Q3klR1mRWLPne8te8JrmscaWGiKlN39D38i0pL4Nlvaf21KmJ57zMmUqDQCluXFjHFErAnSN+ocHPnXGXi1ZOO+a13B0+6zB/esGyDkt3sOX75TY4dC84XKWX0M4sU2RtLJ88U54Idp8k2OYEIgQ/gxpRFZcmUWntqbEIehwLQAbIyJ9ZRcnUxyLzQQJFIzB3lLWfHcnuUJHpsIKp9IV2ygTk2adY3KR4hE7FF66WczlTP8+3FWMnf9VFfIIJeFzM+TnOk1kApSONw4hzHhWf3PpsTr5esP4CNPHAzBnMXsqLuSD3KEOM9DHSxcguBMYE/FTqzd0PipMRYwJ7EmwjcQIBXfrrETwBUWVMsbPySaVm5aFIkgJm3r3kqQu+eYpXnEgvAKDpuizzy/Le09PmtDtCvj2PqgxQHwFMcle5X5xK4ObVcz3xk0Oe9Zr7Di2Jyr+HZR/fu3xW5sncUd85/3JFK9etxSxa1H+57h6Xv5xDx+9wOt+ry7wfUoUQA2MYGIY9Yz9gNnG3iAy4vaffJ+mvgkZAPEQqlBFDcAUnDRbvsSeyQzUQwo5xfEmMI30Y2Ic+xbqzQmadIuscNZVvbR5Kg1AAP5VLtwmSAg0pDZrAp75ThqEywDPm43yzdU9614IX5/VJRPCVpBhwHsVZLJ4B9p2y20XGQegGxzia21lVN1RVNfHVAKiOjOHW4HxnO/aSPhYvs0IlkqLH3TtXXc6NebQux/PrnyrF3yMeMn3R4xuWyeWsLHjVXWN/wTePqikHfw9/08X3SbQpn7uYwXdNpNnt/WT9CnHnTegrBX6iwm6AaRcv7woeMCijhWh48FdO5Dm89y5aqP3Ft+MugLkhl4JZ+X35/FP+hvqKb3N2Wfbga0iL/8tmWYgC74AZCxRxe46BmOmUL2EK/Jwtflw6etZ4jyLOLH6qZM3jnAU9nMqfrqc0B65ektO6iJB/pMueaIeD7pwXMC2CMAtHrl56UIamdUd1Bh6mhTzd6HSZVp3fI49gF+f0FOmf2RLg3ZBgLGCDcglcoKyJrBgUtmNg0MDntzf86LPPeLnvGXTg6qplO+wYfGTlV1TNyON1y9NHUPkK0cjtjUO0IsSaEDw6vZG3Y5bVnq+YcjTGSFRhtwf/0gKHi7NYQW0D/QjbXWC1Fp5dC8+ulaYVrh44rq4clRfWa1itDFCsvH1sGV4uMIfs862UwTu15l8EyTS4S3eq8jQuzQGaE/K6BH1yETL9LeMEHc6hvHDPbjf2Q+rKaZzmIKa5Pq5sWEm9fsDjJoiiyDqz2GRZkuWyPGElx4QpJO8iOQEmeeIKk1I9axuH68zcphbKxNkq8Q5dvdIrzq+QqjFZ8GDWlLk9slsoxatMQHUx1CcQTDFLEk3B5lFyYOT5mXYt/wWzWLHmlUkoNlcvTcC1gRexKMeskSStkWXdkjuYpvwUgq4kV6M0LiYlSIRciSnINMwDMoNBmhUogVjE3Cixu2LIHYpj90F5SGosLQVm1ww5zLwQUFO+HEtOFDvtas43t1VMoEDu5FRkPrlLUrwePZZuptLKMbLgi5qCtJ9qnWxtMssc2apsEuGmJ811nh0Ac7qYiov8WfJKFj8aCEPP9vaarttTVw3rzSVNbQqX98C7AGE1osMOiQM1HY6RtRu5rIWrxtHUFU0Fg4+MDjofzXLNOSrvZv5LWmkEzIogtaDLAFDiiyI49QgVqOPWO26c7dZ3YSDse2JUXOWRqjIAs6pxtTtmW0UPLNjpQfowXykjLfIf/C1+OqKj5xz8nbzaZTn33gVgUJb9ppYoZd677yvG6Rvlf5tnZesk4bCVlyeLzZ0u0/+H5c9Wnnc99y5B5su8y32TjZt8Vl462jwfzaWKaoTRoYNQecemqmhqAVeDW4F4gjaM0QCN/TgwjDeEYUB1T4w7VEc0BjQMBjKTDjtQps1LBJxUDK7CgrPXCA0gOG/xgcj6xwT8VKjWqArjUBEGj6qkeV6ZbBYcOhqP0KCMe8V5CD3stqbTVJXgKzuFq/JrvG8Io7B9CfsdhCB0W0/fuQSON1ShQsURxRPFoxqImo6ln8aYhWEQ5ya5713NxYk3lEtesba90f1F+pC/vPomPZ3/xMuekguOeN/hgE98/fCGk5tQi/LlIPVqwG2xfh/SF5h/XynwEyK82KVJG+LEnGIWWiiV3HmFEkAKE7SsNJZCus4/TIKLshwohy00CTiFf91ikMks3CwsP5KAC1nAnS02XPHAXGbUA3UhCXrlyR55V8gE7ln4KhFG0cxU1Myzy/fJusz0/IPK3BfJfOz69NcVbl/edsYOT/Xy3k77krRzVlVm+eO9uX5lwKjyiYE6u3d6XgkCFZZAObjzlGZuh0m3k+NW0HIiTvKrTid5ZQUsn+QVHcSYdlTTs1Qx5TAHRJPZBQxRc+lKzwlRDNzR+fmqpIOnlJj8OhbouBggVGzj3zM5lAaVh5jB/ycEHiBcsY8d4/4WJwN9/Jxu9KzrNZ/dPsU3kScPLrm62vH0qaduNmwfrfhd3+558bCidhuuXypCxTBc0MU2nSwzx5ooFdQxRuJg7TBcCzdb69vPn0V++8eOqoJHP4w8fi/StsK3vhP41seO1Qo+/FbFhx962lZ4/wPP06eeqlJWK2ZrMuJkNVWsB0fcYMGM36FAem8kmC84zANGsn/4wSSYJkzOc5yW4p6F91fhdpkfrFgQ1DHPlQJIIp9uwzLehTGpWd0rRVhVGxuR0sWJqZPsNCMmDTvvHk98MAFDk+VPMcEFyd5HswaioAlMkfydOUbMPEFT2UemE/dHknjctM6kR+VYY5ZOqrPqBExPVTyRP5MmwCe3pyTX0XzvfH++lpUGwaX2tfaUfLJtAm51AhcykDSBL4oJ5cpcZ+a6zX0zgzmCyQH2V6d+kbzGQkLiodSNZOp7+5tY78zTZW5P0m8JL7rfOa52BHgsTofLRhtTdbVMzJ2UWeHCvaRYu2y9z/JKbpj8Qkn+UUGjS+my9OUebilezeLPDM4gyc2K+Xeri5sB3FiUrjOsk4HhfHNeE5WY8rH4uAm4LZpRI8QR4sjQbXn+2Se8vLlmtdrw3nsgF+Cdx7sW96YnH7wFaRwJ3XO8BlbaU0vgQSW8t3I8bmu0VmLTgFcD1VMsDnEOn5Sokm+V6QUvLABxc9Oz09d+Hj0/rmAfFIY9++trYoh2zGXbIs7hNhukrSfgdSqf5Zg+IUrPMlG+LofX0xw+un5QJsuLsxR+7GCtB98PC7z3uTg95O5gp6fAiteDOfKK/HcvDK971uH1u553qsxiGh+Uc+C1UL5XefHEruKr+uL1db5HEqGSCpUBi80zACOqASHACNpbheq24lG7YbOqcFVN1a4R59mPjtvOM0QY9x1d9xl9ZzGCvPSAEkNEh4BGZQwj/djbGiiR6YRByU7ogqnN1fzupZ4xrUse8qm56sg7xE4qRAz4cVIjRdwyhaT3SAp/YaCPS8ev+6rBu5oYhaFzjIND1RGHmhgrnHj6oaWqKpAKdRvUNVbrFGbDARodqlY/EY/3HhfdYt7fWxcyi1zzQrd8jBYM7LRNy908aJnW44vHX19b3+UNelxGMeBPHVqSuWBpj3ya+ZW3FtZA5aJxkMzfv6wY+pUCP6pKP+ocZT0JAzEDKkCcGnJpXi750NAsDE4jyGaeFkqFCRZzh81NrdOXpXC8bMZ5kSyi9aedvAwAzcK3TMwzK0i5DklmTceqHtfBJQULMqCRhWSd2kS0qL/KNKDCLKpN0kV5SshC8btnKt2rXHa/kgN3rnyql7C0CHKSos2XAM7ytC8RJvAng28WGHoJ/ByVLXP+qS1ynYtmmIAVkuCa8qkacOOKPrbddUkMLCs4czlzWie3r9PuXWrBOcvrMu/ei+gMXOW/Wnbhl53qh52YPnjsuKwV0KI0QE1Q8/cVAq7veHZzw7YaeHDV8nx7g6+EZrWhEnP72tTC1aYmEtmsKppqoPIQQ1iCkbmRmNs971CLWlDUIR252ffCbic4rwwjdIO5gOEVfGS9th2RtoXVWri4FPrBAIQ6mGWBy+/6KkaaL+vMc0w5LESk5Up13JwnlJjp0Se/3BNNA9sGyhycOTmtTryAeTCldAn0HKeL+SsJ2GWpuE3BzosqIFk8mpWcBRtKY8H2m2wFi8h0SvrRmjuxerF1YFqZdRrCpWPtsolnhfSw6fPaOgvChbPQYjFPFmKpkLsEky9H6TSRVLbNiVznUplKNb2jCkfvOPG5wg0q85uTd8+7ztm1yqVNEUcG5ArmuVDpyoEwW9VN5TDvQpcBrPPudLaOUC3uPZABFsJTmU7nuEzj/aBm6PL6u+jB/K6TBKKLGhSZll9zy+WETONAD27L670eCAXzTNDMg6ZuKIXW08xJixKQHF5Up/zTiCwA21mG0vneqc/n58xAlnL8/Dzhs/I5y25gFj8xjPTdnt32FkEYx4EYQgJM3oVTAqBKHHuQgJeBmkAtntY5Wm8guckwGAhTmcJk11wBfOby5nJxMxBu7WPynGGFFoh76xyNsxhRTgM69OgYDFj3KdhhjFM/lG1+StZZgH6FcnGksBZ55ut6VKYU/5cvOD/zzRwXyh/eBXAwrxPHdPr0m9lSsAR/7qIlQFS2gRR5TvPrQ3Dp9HPkRP4ihl0B7Jxc20hjo2BDi/zT9TebQ2/SJvdNAikwelqbNbA4p9B2fiCCV6FxFauqxtc1dVMjvgKBPggEcBIIoWMcd3Z6nrd4k7bbG5NeOhDGzgBoZuBnWasZ1DGadc8s+6TapzlnLgp2iESdwB9BqRFqwDaVY1oIxDPxCp8DMYvDVzXOmctYGDwxGPBDbNFY45xD3IhqDVKBdyZjO8HjEJc3WvJGW+JHafO8FA/vtR/LZeFg3h+vx8Waf1hOMVTLHIv04kvB+0681dGzFzzuVOmZn56QnhagzyFHPkGvmEiTzLZAd2d+encYmjfvua8U+Nl3Pb/+H/wN2zmMMc1dnU7uyMqKCXAzwirlAsS8pJilh00qLUZsLMuc/sJp5U8Wf+eJy0JhiTEBVpgyG0Pag9NZJvVp1weSEOBsck0WJIDmkFsyvwMkk8H0sKiR7NE3n4wg08ItziHem5+mOOra45wjhkA/DMQwoqqEeJfZ9pelbAJpLy4OpErATVLKye6j044YRRwfmRFoT3r3OWi0iN3rTDs0UKiw+JlO+JID65/pMwfGFE7PsSXwNyuCBtLptCBnoE9EkpnkLKgfpSdl5kQ6kS/Wi+kkr2QdlRUscalp3Zx+d+SAFlgjrMkAkDCmBQtCjOzHnqDK5zcv+a1PPuHF9pYuKJv1FVfrnqHruaqFal3z8lJ48rClqiI3ty3DOKKDJMu+QzZfMkrICyZgR1BGAwh2XYCbSF2B/7kwRgvsvNsq1y8iq1Z48Wzg2WeBpoXHj4SHD+0Y+Iu1Y70y4bzOgcKZq/IqIfGoonf9rKczvEtF02ge5PYa8+otaWLoieuzexcTDyr5ndMRrwNCpBo7Gt0iRJz3xntEGFzDUK2I4uzjqnSvw1NMgMnta7QPkZaBhgERCDREahRhkBSYFpPHMmIuUZFQWA0kVxizlHSzAK7GW2WakGq/T0vm7HYyWefl0Zc7ayGczArBuxJ6M48yRVmyjggTH0rKcfqTfpoCMOfrFOmSf8GxQpM3NHVxXYr8s7tQDjqdKxozwFHmIa/d5tJFdl2VhYGIUQoWM6+JueLWAYIWY3Pmf0K2LoqEMBI0ogpjOrrchNi0aMAclxtbuw04nC3E7pOUfIS6naRSrvn5d5nSWR3P7ThnWA5HnZpr6txCyThmLKmTFotbeT5vKUgui4h5IMns0JxPx5SU9hOoMZevlMroXHj+N9snZwUqy1ZCdmuRbNGqgiMSwoCOHaHbsr3+nJvPP0G7HfvNmlqUWLfUeeG/Z9JxYPjkJ1ReiK1DvTBGx9ZXVDtH1EDQASVS1Z5mVZti5izGxtQGaZOurivatsV7R1V5qsabpROgxW6CJpV2LXCR5KBQO4ZVzRg8WldobabP4ovd+WJgHa6ueZSVoPvEa4obip+nebfIvyiTo4ce/75MF6zpgLfe3Q/vku52hSqsFuFknlNlZEv9w+yvuj5Zpt5Rl2V+Un0O0un3w7sX14svd11/EzqUY78KEqASs7CfEJ50tiEYeBGCWb6MQ2WWL0ONaEOUBnEVY6fst0ofIvudo+89/VjR1GqWLs620WMc8UGJMeASCGuNPdmrzLVayLFa/F6C0XaftZmb+F1UBRmTvDYi9ICtX5OrL2InkomAOmKwdBx9Op0MQnB2aq4KaA1ape81wXmQBvxDcGsDi6oN3rcEDYxeqSLEwWTryinRK1VlG9IhvIO+TExg4hwFz8qtWF5f3Ht4jxY/lMmyzFcoTYePOORxuT4n8y+D0p0s68uSFv8vCtY7vy6e/SbT9CsFfm5ubvlz/9ZftAEwCWVx8j80wWcWDFyBlEoyjTHLkmSBIR7vvE0U51DxqAghRsZoNjExRkJKl5JYNv+fyp+Unww4gchs3hxCJCT3tDj2hNHMBFUj+bjRqjzyzzc4XyfhOIuskagdkQHIYQNNgPFpN0nSL6QFSBJaIiIJFBF8VbFaX1A1LXVdsbnY0DQ1Xdfx4vlzdrs9IQSGriOE8Z57Ua1+ooiPBuTUgm9ceoeI+GA+Ss5N4I8BPG6yBnKVWf14zxTjp/JCleIApZhjIEyneiGzS5kcpEtXrwkEsu59I+An/42F0B7jfGJXmRZnQj4pPV2X4iQvAQlM7hGEIjYHzK5iKV0eIZ/dw1SSq9c7o4iFlrwEHKIPEL0CLq3CqUHHGLjpdwgd4dlIFztWTc3nL7c0vuHx5QO8f8D7bYBVS9gHnn9Y8WLX8PNPa263l2YhFz0x+FngPemaaYutCcY1IXpEYbgduNmPiMCza+G3f2TmsA8fKA8eBJpW+egj5VvfiqzWwnc+rvnWtytWrfDhh8LTp46qEjYbzA0sKTKv8hY4EnQOLty1M3F3gdzPyjDXYHI1mAZ8gYJm4Ge2WJmvH8b1MWCZFHcCfOipwzWiA/XwOU33U5z21G1Ds2oR7xnaR/TNe0RXM0rD4FYoggsOCSagRPFJcAPvOrzscQQe6A0P9AYHjLIhyAURx97XdK62/g+gwZT2OEZ0sJEyIgYOiUDdTmaWFp/GdsNdjNMR8CY3GoJqeTJgP7sU2fJgrl6SwbLk3jU17aEMeI/d6P0MUpjrsc7uaZir2xzHZV7KMr6lMMUPUygsUnXB3yjTkso4dEHN6t3UTokXpec6LfPPViaxuD6B5KlNoxogZEfBz/N9fg+L3ZB5tkuWVrXYkboOpXWBSizYb7e7ZRj3jOrYhoouesRX+OYCqZqljKEKIabTszQ9634no6opF6pKCLpox7wATepB2X7pfXNWa8sMhZWS3qxcLIRazddmuYmoRRadP5qcxpSZJ6i5bDJtEln5gm3I+CST+LTeZjEq6rJ0kBR42dIx/bOTnEL6pHzpZR15LZg3amIMMOyJ/Zb+9jkvfv4jPv3Jj+iuHnLReNzYsVpfsK69VeqeKXZ7dr/x67hVS3x4CW1D3zie7zx9LfS7PTfX1wxDz2rdcPVoTd0YEO58liMdDg84Hjy4pH36mKqtWa0dF22F954QlTHLDZCkQ9g64YmHvUC1qnBXK8ag9K6i8zVRHFRuOjkUYYEDzi0yj5EStC7w//l+5vtzolzaylZe5DmRYa5DYhrFD3qQXw7T90V3yHxHmSZaqnlLQCfleAVQlO9bHCBSvOypg0VKVxA53cJvT3e9UvnbF1i/5jp/tSQIjXMWWkEjqum4cQeCWbsMvcmUQ1czdi3BteAb3LBBnKfbBW5uBvaD8PKmYrur6cfG9I7GTgPzbsBhx7DHMNIh6WAVR96EWCoM5UybF05zac0Ce5jyqBSzQigg8Hw9cwD7K2EewIvYOylrZvmTHJ0DjSL0JH1YWpx/D3GXOL+hrT+kqgA/MGjEJZDHE5HKFJVVbTp3199jT0ueR3msp8vFI8qV+E6eUi6FR5nz1/QcOfrpdVU8yn/n/a8Iu/H2rTaXpUfXj3MePueuKf0m9fhKgZ9xDHzyyefkjVmQBPoEmzQwD3gEJ3kQJ1BEZAH8ePFULpnNOY86QwrGGBnjaLtvMRDiyHx8ahqAaUdGgOnUhQn8ccV1Z8LRBPxE4tgRxs4me6o/CJVr8WLAT1WvcL4ByRPa2U4lO6L2CT7xRCyC/BQkDBAC2aRMvKG8IjmmjuCrms0gNG2kbmqiVLQR9rueZ9dbtrdbwjjS7XeE8Z6BnzQLJX+c7ag7Z4HJLMBZMpFMW4aSfJYmoaNw5yL9dTK7QeUTsSyfLmL5zCd/lenZ3Sw/w+WhVAo5BZ0GfrIWcvr3nM7HEGclCJKSkQTjhasXs7tYeT0fxSvOmipfV4rrWrTTO6BsYWAB58zFi8n8tLJxq2L7tWFExLHrOp7dCk1X8d7VDTfbLa2v2KwaLtoe74RN27NZD4w42mbE+4BznqjuBJc6ZHlpDpKVQgt+EoLLWz+Mo7BProFDr9MpYN6ZKfB6Laxbz6pV1mu4uoTuyvqlaeYAtO5gTCzrcUpYy99SqtgdLHPq4rVkOsZ2Udh9kDGpZboAd/K1qY6l1C9ZqMigj8xFgMVF0gEXO/x4ix9e4OKeyrXU9crMlbUGuSQmHqAuoDib+mniGUBj7enMhgsvIw0da7YJ+PEEqYm4yWc0koIIJ8vCoJEQowUGdg5RM5MTNOuv0ytmyw7jvEX7aKFoF4LIrDuXvV4I7MVK+66E38UwmuWXxU7rlJY5PQVZntI68ZnFYCvllUVaJwa5vHzC5DqVmWxyps0aScqSgymAs0wvNUWAmZ61cEEgjzlhPs1qHofeQZXAn9YptdMEKPSgHUSHxAixmutXjndynWdwZJYx7pdiCTYtG22ihf54wAvy2FxmOQX+FDcLU7sdKiiZX80WTgfuUROWVCA5RRAk0ZknOJndZm3902neHL/l8vl5oyhX0eqU+jplnO83Ny8NI3HoGfZbutuXNFXFsN8ydjuC98QwzujmPZLGyHhzTYxrdGUbd1GF3jn8IOxud9w8u6HvOsaLBi+BpqlmFzABEQvWLOJYVzUMAbzHBagxq3CnxVqReZhCg9CkjaDGC23l8U6J4hmS4KRH81LIUiaw7GOWw35eFuRINppKvev6lJZFuRzknViPnK7HYaFvu3/yOiot5U9RaTkz9wDT3Dlc0y3/4Twu884SQsmrF9en1PLew9MK76pvLnORLspc5E8Xj65rcf0N0JxFlmlxeFcr4AmStDmXKpCB6bxJBWJHtkezftHg7aOmVznxxEEZe2EYhHEQQjArIcW8RfJGtHejyT0uu5bJJH/PrbAQIChGu9WqYIiLka/ZhTzfX+Y5LKu0hCzixEh538S45/v04K+scNqam5dCdEOG4oljguHV1oMcosQ8LuT+52Neo07wg1LmmK4fCgfluJ3ylF9Or7Zv+x5vlv2uXMd1mOSek9nnPnzlybnHxS/kl0nWekv6SoGfru/5jR/+mAzA2G6rAmYm4Z2bgBzIUX0S6JN8gCrnaHyFc0LlKuqqMYuSukEaMxeJOlthjEOk70c0RoYQzO1E1ZSIECehaGZyQlJbcK7CJTAJSdY5qujYo+MAGgnDPoFASVBSyIG4nK+tPKkRqSwAYOvxjTMwp61xdU2MyrjrGMcBjYHQ75JFEQV4IlS1wzmhaVsePg6s1he0bcMQYTW0bG+3/Pyz57y8vmEcR/a7PeNwv8BP7eH9hxHvlboJOK9UldK0FqhZfMRXEXFxlidVzNonWyx5xVUyuTLl87jFq1n6CObqla6X7l2lO1i+PgmmrmiyQng5xQBOAj+IuZRk2VfmxVYkL9Qzs1puAsgEHJULNLA4kefI1QurpHM2H6b3UFA3p++fFJeOEouxThVeY9Y+V0AHFBFnk1nEGAP7zsbqZy+v+c1Pfs7z2y1Pr0Yq1qzqQC0VT65uaduRfdfy6csdbhfY71pisMV3EaB0od7EOb2QIu2CADE6g0YV9nubk1WlVJVj6ANtC/ud8PlnymqlfPLJwPsfjjSN8OQ9x8OHjqoWHlx5LjZpTjVQ11nROYwBcNgBxcK74Nqz+D3JvfOW7ruhaWeI6TlzugCAkMVvcuIzxelCcRJxjDgGdNwy3H6OhC26B71Vc2NdP4bNpzjf0NYXtM0VuArv11T1BsQzuobBtQjQyJ5G9lSMPIlbHuutneJXmSuniqPzezrniVHpth19PzAG5cU+cnNrChDtFa65IEokUBMmgcjMv+1tk6m1YJsC+QjVWCjCxpzszmKeTaJ8QpCzm/9SyL/HLiz6T6aDBmRWrrGRP/GdxOd0rv6yVlMwJpnEZaQAJAoZNPOqyQolf8/8LAnZMQfMyvF/okwNFRODtKpkIdcqKJKEjGSJJTLPkmwHK6JUEizWm5jpuXcG+TbewB4nSiORygW6fc/Pd9e86F+g/cj+2Y7n2x5XNdSbR/hmg/ga314ivgXxiG8RZ+CQusSE71vCTW07D6DcQYlKef3E5WWG479yqkyYDr6YZUmZt5XzaQXAFBsDTRasZv3W94FhGCclNMsbTe2p6+RW5D2aFixz1SelC1eW7BsGk5KRF0Rz/pwW2pQppnszRCsWZLUfiH1P7DvCfkfYb+mriptnnyEx0G2u8K5m2O1PdsGXohiJuz3R+2TWa679/b4Dibx88Zyf/+S32d3e0qwqnn1aU1Xm6jUFyadCpMaJ58OPPqSuKy4uNzgvPKouaBpHDFD5bBlmlooxtUQMYQK8nXfZLpxZlZjb9ZQyJCz5VJZdoOiiUi46VKruus7y++GaJicuz7z0oHwp8r7L9fEELeUzq6FgPG92wpx/X4RJ1rmM+atM8/34+pSars8g0qz2znPjuCGmMnVegya8vqxr0aYnDJQW69ebrGJlTZbv+dWQIKaDSYOd0hXng2Kc6WfeW8DzMbZc7x1jBC9K5Sy25Mte2XVCNwpjaJIFTA0K42AvFoeBGGo0RkRbvG+ZvBpkBpyWq3FuHTttzDaJxvSB7AkytXexCXLE30+2qSz6eKY8xsrFv8yVd4ktGLbqgMaR6bAFhTkurUuhUgyMrrwzIO0e5+I0tQ9FJ7l7ysthQmZV4eieE+XIyYyvflYhtacrZfoNCnht7jcs767cB5N9qvckp70dfaXAz3bX8Zf+8l810CfZhTugTqhV62s2zYrKVQSUXtOxsc6OskQcq7rmollReU9VNbTtGuc91WZDfdUglTNz/TTnul1kf9sTQmDbddzsd4wx0g0d+74j5ngBYZiEENRQX1+1+MqOD63qFb5e2ZQPIxJGCCP99pp+d4OGQBz2FhgQcL7COw/i8W6DkxVV3XD59CmbR4/wtWf1uKXxG8Zx4MWzW25fvrQjTF98Rrd9mVhNQDUiXqibClc51usNH3yr4+rhY9brhpth5PJyzcuXN/zwt37G82fPGYbAdtvRD/frsNlUyvc+HA3wqQPi1AL9NpJcspSqiTiv9ENktw+MAXPDczXgEC+42k3gjYE9KbhxPiLez5Ht7fh36xrvZ7CnTJfAT/6e0yfnW6EslfMmRrPMUcxtK0yuXrJw6crXJcxuDYKk2FJzmSePYU71iikkgwDRJQEkXbcqi3mo3E/XLUgEfBWQKERtCdQIDxB5DPoS6FFN7EHyTnFkGCNj6JMw6QgqrNsVv/r+jof+ArcZWDnl4/c8g7YE8Xw6rKm3LS8/DwxbD2MKspNiRGX9e1pgJcyK99QSs6VBVIcGGxDjKGy3DifK9YuBuh6pPFxewcVFpGmUD74VePJ+YLUSPvqO54NvOdZrx3e/0/DhBzV1LTx84Li4IJ0sp5Nr4SI45lSb3MGz+03WojUtpKm55ii97lRAyfvoR5mF+KRZH5/YZbVf7vzK/De5czhnQpOI4mPAS4/QE/vnDC9+G+1f0sdbuvASIVKvH9JcPMZVNavNY9aXT3BVQ/PwPdrN+4hv6KsL+uoSEWGjHRs6ah15qi94T59RibJe9axWPYgwCvYJgRf9C16Gl+x75Qc3wvgCRtfiH3+HsHKTi9lITBCCqUiaZKHcBcEbUAjMOwLThkO0YRiTM65ADuYOpJMUrcBJ3rr3Tkwg90Hg+JhPvSrGTT6GfeIjWZ7TOS3KdBS8nfY0W2eU5WdhflLiizz53jgxR0sLxgs1xR0yq6xUZtZzUkPlIWkWOxHHEshZ+UDrIl6UizqyqhQvyqZSWp+sfCqoK4v94mXEEXlxveevfPoJ2v2UcH3DzW/8Jj/72ae4umX14Cn16hK/umT15HvUF49w9Ybm8gN8dQniEF+T3afvvSNJjTj32PynkPeXcvD8w1I1KGHknKW02plduiaLZjBP8ey+N411ZQLbVQljYOhHQoxsbzu22/1k5ZWDFa/XDeuVbbJF76lS/EIDluYYFvOu9CyFTyqPWIBScTm/VU4VQggTKJWVEe17wn5P3O0Yt1vG25cMt9fsx4HPnWP74nPWF1eMXc/m4uHbdc8bkIZAuH5pLlVjtAMHhoHt/iW9dnz6s5/yg7/2/+X62XO8U6oq4rJpgMvB42rErRDn+V2/91epVysePXlEvfJ8XD1htTY3WA327iFGhghBFa+B2AcDzZzivQkALgoS8npk8ycPpFOj2Kwi0gyXgvfDwTow3cAUa4llmXLwdy4oNxqLzfyseOUsS6u1vFbJQkG796XxNQWWPy+sz4r/F+N6YrhLebFUUsuYTVLcWypmy2rJ0SbhkYL8ljRx6zvff5Yz30ZfnGNyfXUkIlS+xfkA7hIVi2/VNDW1F9MLU2iNPjo+e+l44c19qVKLJbiLcBOEUR3DuEbcE6p0MljfBUKvBkCHMfHWkboa8V6JavC1xZXTJJhP6AnWjhGRABJx0iMyAJEYezQOxtE14/BZvk3pvPAmF/QSwZumlublVKf5bOksXKYiClDKLgmqHRpqlMbcnF16ZHSgHklWUSIedZG68swxlO6Psi6W5YuSZx3xlDsoY5aH+U/yvrt0vjseJUepexTyjhCcN6PDW+Tg4iEfeds6f7XHuYfA8+ubBPyYZOLVHEw80FcNNErtK0ag00hQzN2pMmEtNBEJntpH6toiozuv1JWiIR1DrIJLR7+OozL0ShgjXRfY7UaGOLLve277PTFGxrFnzEf4aQqYhcPXI1UVEOepG6FuzfXMhYALAY2BfjvQ3+yJMTB2t4R+B5ACh9nk8j7g3UjVrHCbEbe2hvfR4aVm1Eg3wK4LDN3Ize2e/c3WdoF0JGowC6e2wleeflTWVztcvSaost51uMqx3e252e54ebtjGAK3256hH+9VV3EOLlaK8xFfRwN+vFBn4KdS6kYTWKOEEG3RECHkU0OKI9snqx8RU44nN7B8kpeaG9gBwJNdwI5Ors4fZgZwl8VPyVynazIDNOqyS5cs7ps2v0tFKuZhYwCRE7t/PhnMFKYJlEp/Td7N7g1y+l0OZ/099qXV3+IR2KhsQVrQmrycTLE3k1YRooGJ277j+e0Nu2Hg5cWWvu8Y6xZpe9bNQCPCZm1Kfa+OfW07I9lvegr1w6ESdMjhZyVVSMpsKsAC2hniN/TRLFUcdJ1y81JpGgga2Q+B1Rp8A1IpFxvlwYPI5aXlWa2Uti3GU9Kcs4XCqebXQlO2pAnpmkGqLPtlpe+eo3QvTNoLgZp8fRr/xdK2GFeymCvLv9kaI0IciWOHDjsYb6F/jhDwcUAZwdd4RpoafGhoQ0XLBnGDBbz3BtpvtOeSgVpHLnXgSntqgYu6Z9P0SOIRQSLjGPDuBokvqKOyGgXXC96vIdruu4hZFUwGLpNaJGbKnAauktwjlKRwCJOvZRb0U1yTyb0Smfpr2inN1++dsln3Uu3I4+/0HdPrkHekCyOcCW+M0zsv1K+ZSsGkDFxYuCBMwa2ZXRNyHfK4y1OhrG+27PFOqcXi9jReaXzEC2yqyMpHKqdc1ZGL2oCfi0oTCASr2uIwTLCeKNJH1q6jClvccEO4/ZT9i5/i6xYhEPtb6mFHtXmAqyqrWOwRHUEqE6AL65T7oTyuDk2vSyCHZGklU5rcdgt3UD2637KcTqM6WxeiaJQJ68lxr6yG6XdNsQ9DIITIOAwMfY9GnU6mck5oKiFUoMk1KWZz1TkqOjmIsz1gbtOY1w6RpGTM0v8ESKWTdGxqpViIMbl5jSM6Dug4EIee4Bz9/ja1r7C/vcFJebLOPZEqOgwW4VR1GvNjGNDQ03U7bm9ecnP9wnhgUvTM79xb7aQGt8K5ivc+eMF2u2O1WTOOY7JYcEl5S7Myyhwb0IFma6kDeSbzhLK5rV85GsuS277slnlJYDq1cco8Xz8sTsoySYDI/CU9o1BcdX7m8VyQiWdNfOQd7Ii8ssxy3pWAT8EL8xoOULq9zieCLWVCe2Yu3H4/FSvoqCpleUvd/WT5ZSD1Eqq649YTLz7X7c2bvbA+eUey6F3PdS6HuqggHX/ufJMAUQ/OXCojSjcqQ7RDX6sEkHcKo9rGT1SPSGMBkrFTAxE1i8no03yvEbFQG06S1Y6mFTVbE2hOY3ldik8nFhMtc7+gObLrvCbodLBPHmyRfAjRdNpCnjkTi58H7Az+LEagrQdJ9jRuanVXcqDRZdy5bGE5/RM7XMjf+7qYx+3x0Llz/C2uz3xlKVssZdpThchhOSdzFWvqgtPdN71pmXflm+d9/jq16xeo7lcK/ORdkXxIiV1zuDR562bN5uIBbd0wAq2kk5RcRawacJ62bmlWG7z3VE1DvVrjfEW12VBdPUCqCh9H/DhAjDh3QxUccRyp6oaqaQkxctvvqXsLgrzvd+z3O2KMyYzZJo/zdfIrSot6ctdy1YpavDEFt8LVD4hhYLh5xuCuQaMFHhbFiadu19T1BVW74uLhJZcPH1CvGh4/fczVew+IYeTJVU23fUTf7XnxyZrb6+eMw8DNzTX7/d7EK0mnfY2B3cuXEJRtUzHuX7Ja1ez2HS8//5zudmeubGO2yb4/qmr44FsWryhGQ869UypnCvdq5XlwVVM3jl2vvFxDH5QxKvsYiBptZ6yy8eBgCqDtBHxS37yX4hSw7HuqCz/UhduXMB+DLjO4kr9nWkz/LLxm3qIm0y4se2Re+EVMkfJY2YugqDDF+Mn58rMywIMksCXO7zUBTEX4m8VpX4WV0H2S9RX0g2MYXXrGBSJPgD0qt6BroJnaKIsZ2Y0mjJHb/Z5+CHxy/Zzf/OxnvNjecvGg47GvaOsVj+uWjx9tebiJVHvH7bphT0VQT1CLI2TrXu6wrLGkRi4lzAywIMkSo8wDms6Sigr9YHNlCIp7Bt3oaBql74VPP4P1Svnsk4EfPg20rfDB+47Hj4S6Fh48cGw25v9d1TnIKaxaU0KdmFtY1oNkQnZi6ndz+czB6U2ALyT2eyQpmmgCOh3TwF/sfhTzYfFxadFzZnlm2dfQPkJ0g159F/f+DvobXPc5bvtTJPZEjfRdwBFw4ye43XO89wy7n9Hd/hipG9g8gc17eF+xWtU8Wtc0TnnoOq7ETLavVpGr1ZDiZERElGEY0OqWnmsEZV2tWLcNo48MjTDWQnTO5muKzRPiPOknV6YJGNJyqJgA5MROz5gakmlnydKycPXKAMq99yEpTq2AxjyWSQHgp5C76XoKTp1EN+cyCDobeWtxg0gZ6Hn+LeYplVAbnTcPJ7DIrHcS71PFTwXbDVZlE5DtHWKyGEtWPs54eeMjjYs4gdYrTbL4sbR1w6qSlBazChLFOai9s91dPA6HaKSuGpxvkWqFb0ZWl0+4fKwgzg57CD1hd83+Z79B//mPcc2a7vK38e0lrm6p1g9x9Qod7tdVyNojt8oSvNHp/3xpXpRckYfi/7Ln5ymsc0dmACUBOXG0QzLGURmHHMh6BmayC6uidF1Ptx+IMdLtOoauT2tetviBPQENBsjW3uF9Oh1PPVLUeophJjMQPZ1QI45YB6qqwk5j64lhJMbIMPQGhiDTsc1Dt+Pm88/Y317z8vkz9ttbxr5DgG63nSzFXz7/hKHbfflOOyQFRosfJL5GqhZhQAeX1LlZUbKuSEphoajl0wVV42RZ1fejHUWPWQE7TfJNmlNDmoN9DNyMA7djpO+h6yAEoVdzY1VxOLVjQTJ4IpmxT2NkKfcUeFyxkcRibViki+Y4tcpSPk+YxqKBWEzCwhxDTgurF8WlE5OmOsoXi1Pxhang8Ysvi2QRfFmWIM6ha0Vuz0M57c1O7CryFErdqfLLTDm2Rwn4vH5lmnOVJ4u9/p673/Eg272Sc7DZeII2rC82RFfRuIq6XlM520ySFBrE+YhWgejMCntMFoRRHF4s+Dqjh94RY8ATMLcsA8Yl2SgKkcqN6WTfiBCmsZw9CuIU19U2wJ0zF7Smtg8o49gTghkThBjTCZTKMA4MIT83r6X2LNVg+oNGA6OEtDBnGD1b+uStrQKUyutCkjNVa1Ts2HnF+MZ8Ek6ywNTk2pX+Frvw99qPZWl6ovQTw/s4g95x3wHfmxKveYVTPO519Lp8x1PjzUp+m9aWg8TMk9+OvlrgB0F8nUVWNJldu3qDdzXt5pKrx++xaVdE5wmVJ4oj+DodG+ypm5ZmdYHzFU3b0K7N1cuvWurNBeIc1dhT9zskBGieg3p0GLjSyEMdCaq87DtedHvGEHh5e831zTUhBGIIhNEsGkyRNOBHfYX6GnUVvr2kWV2ACvVmIPQjcRzoqh/j5eegAU+PZ8B5z+ryinZzRd2uefj0CQ+evsdq0/LRdz/g6bce2U5m+ACJI91+zyc/eZ/rz5+z2235yY9+zLNnnzOOgd1+yzD00AdefvY5L5+/wInyibcAZTEqY4gmBKYjlu97EjeN8L3vV4xDYH/bMw4dTiM+DjiNPLxY8a33r9hsPLsBnnVKH2A3RK67gSGCSpUsXYz5TO4LUc38WdVcyRLAY25fkhD1+ThuXxzNnUESOHb7yoFrlxuphYCtc5yCEM0yB2zTL4XBIQQlRMElYEeCATYiart1SdmMklwhEqOKMitVkxLmTZmMWVPL11NXlSdNvasYP87BxYXgdo79zqPRgTxA5SOECtihcgV6jRKRfDJeAusQ6IfA8PLG5hyO2lVcrtb8rg9ueX9Tcek2fGvl0Q8v2IUe3yuff+LB1XTdiqHzqa2FQm0tainzp1R2plwzcmFrgyNQgULoI/veQISbrcd/EnBO+c0fBuom0NSRJ48GHlxF1ivhOx87PngqrNaOjz5qeO+9iqoSVhuhac2i7dEDx8XGwKHLC2hXDhFza3QuJqU5JIswh1AhhT3KvZPM6/QE+qSmXHwvP7AERmWWB9QJ6hxRIFSXjG4FROrqkvriKS50yMsfIy9+AMOOcP1Thuc/gnFPjC+I4ZlZXF1ucFeXSFWzevJt1u99jGtaLp4+5cP1+7Te8bAOPKihdvDoIvBw0xm4lixC+r4nNi/Y6ydUKlxVj7hceYYq0q1hWHuCOIvnpjEpRRCyj1eygsguipkLRucm+cgEIhtbpn+kXbz0e+Yd2TTjHWxMT/1R53BaSchRNdePpak4xts17eJJOt5Vknubk+nerIvPgZ5ZBB6WdGStpjyxcLuMxTjJAX6dqJ0AIlAR8BIMsPGBNrm7rKvI2qfrFbTeXAfbyix9nJirV5PGW5XHYVKmM5POUIXxe59AAcVphVOlrQeqeoPUF1Qrz8WTj3gkD4hjT799Qeh2hNGAnzDskarBrx/gmpZ6dcn60cdU6ytCd3Ov/Zi6kNQNucdSm5vrQMLSmBW4WYkuheKcn+Ka2A0zkleslzoMhK632FjdwG4/mPJCAfxMGwlKt+/Y73tiNPC26wNTTyS+MHZCV+V+EHwOfCreTq2SBLqm+eFcYYEYnVleO0fbrKir2iyk+y3DuCeGJM/0HU4sXqN3jm6/5fmnP2F384LrF5+zvX5Bv90ShgERYez39Pstsd9TN+299p81fExoSzTLgnaNMBLFTiCL6dQJSScumOV6YAaFc6DgSJRA6Ef6rqfb94yDzY3KCZUIdW6qQdmlQxR2Gvi873g5BMIOxq0VH6QiSgXOISFOLrkTj099l6fRBKowu1wCU9/m9PxFp3uL0oqxV7odZgsY453TKX0JgNSY3fV9mgtZsdVkWeAmmWzafLjHLrR3e3WJJcg6yRcpOZXxBrVauHFJeX2ux+kTwRbflnV5BUlR1fQksuVxuS1x9+sXgNZr4aKlenxKaX+DKn9h8l548MDCd2xHwbUjlbS0XOHJpye7pJ+NxKYnOttcHmMgqnmPNHVLLY6qH/D7FTFEGAPahwX4YuN6pJIBxPivV+OLVV1R1xbsPcSBkNy4qlrxNTjnuNisuNhsEIF+GBh648FjAntijGx3W9jvpg2dDJjGOKIxuZ7HDqd9+nE0BoCChARQRbNexa7nEzEtPZpyQYNSo1SoGEiWDRjE2QmYxIowVBA9IUagslOZ77EPs2SfxTKOptmbWZ6dyiN3/f4m5b1d9jfOU3CDt5L4364OX16X+IqBH0xYFZfQSEF8A9UKcTWuWVOvLmhWa6L3hKpCnWN0NVQroqvwdYtLwI80DbJZ2QLTtNCuEe+Q3tuiEkYkBVmeBUpPUKUHWsCFQD10VJUxkpA0KdMdDpDQ9BFfIVWK9yMNzkXiOBDaC2K9hjhiWCu4qqJuGuq2pV41NG1L3bY07Yr1uuVis8IL1FJTEen2DeNui4vmc/lis2Z3u2JwA+PQE8eRCIyjmUOjkR5jDpLQ3KwMqx0Ddq8T2TlYb4ShgzgYUu6ShZXTSONrLlq4aMXi/AjUEcQrPYoLFh8iYgKjRp2OPI+BhLTnV0i7zRNYbe5fLu1cTsFoi7/5tKalVcPS9YZipyMrVvljJ4rpZHEDJpzbgVQ6yd05GKydyGUVnk/i0uLZd7lv6YlrcnydWYC7TxKBqrLF1Vizw5wuV8Am/c1OmGawOikexW7nGANIYNt3XO9uU/DnLYQ9VaxoXc9VO1DHik0zUNWjgXhjaYlWqDYLZL8QPaeV4zRNQFDaaZ7i9qKMQS1WtUTc3izT6gqGfeT2OrBeQ+0cOjo2G2XVBgt2Vwub0dGu7DSwtjLLjBCUthGqiskqLe2zTEJY/psFaqve/YM/UjSdpEFz7AJWiGxZ8D8xJgFiGnTqvPEPQJuASEBij4x72D8HqVH/wsCDEAlDx9hf43QEdohucXVN1dbEzQriGje01PGSRis7Ny4pQbULNM5ROVj5yKqK+DDSSI/XDqeCF/O7Vw+jg+Csq10ERzanTsIbEwdP381NyGL32PjNuvck/Eq6oMWc+8pcvWawIHdVeXLSZCqegKy8O2nm5565SjqpZ6WiN9E8BIojZZnGQh4lxdCZyvGiySHUgi/XKRDzqoqs65hi8wQ2lVm7ritYJXfftmICflqv1IXbbm7PbCmnCuMEdAl+shoQXLR+lCTAWtDmiqpZUa8ioRfGnTPAJAyE3TXD7gapKuKwQ+oG7R9QVS1EC3p5r5QBxWnK67wznyxAcsDs2c+1mMCUwmPu80OFPCspqdGSeaoGs/iJMRKGkXEYLHgzs2I+WZBiFnVDb0DROKaDLnS5XpGeL5Cs62xEOPE4MdExulPAjyDRrDK9cwQ8Pgoxjgxdxzh0jGGk3+0Y+j0iQvQVlfMM+x39bke329Lvd4ShJ8YRCUIYh+lE177zFpfjXVBGSMWBZCZfCPK5gRJKm+eN6mwJlC/GWJ4Iq5MiVJ5OO8dhM7fkPgb6ECzG4AgaBHXRmB1YDEvyp1D383wSsq3pNHbyeJz7VhY8rlyCc144WL4mHputJOf1bF7uZuseyUpdIXdlh8hc9/vfmmReC09RVrjze55ESvTwlmkNmNI6g9PL/DKJSMs8JytTPLqQb17RIKcAJZluPYhTdFDOovg7EaLTMsrsqiOn872DZVHENtnq2lE3NXVweFpcbHE0BfAjaOWJFeDMGidE2xCqqgpXp3irCnE0C9WokSDjBPjMpw46nBg45lLgZgDvGrxv0pzxKZajps1nsXAX9SVNe5nksAEYiRoRN8A4EkKYQoBoTKHv0zgRGUECFija5HGbawMZ4IERkeTFIQ7RYGEiMD0wy+hKYArfkMpKK6d1VI5DmWfiZG2fZuQ973DlKaIsi164Wb3BI+/KsnT7Ksblwn369WXKKfm8dH9/RR3KubWcxm/wYkdg2GGp5fPL93uz4k/RVwv8+BYe/go2IBv7WzXIamMuWg8uab79lHazslMk6hqcnS3TSW0Gb1LZveIYpWIb6mRmITAGEMX1I27fIWFAn9+gz56hQ4cSiRKJqvQa6aKlHcK63aBEKl9R1eYy0g+RfrAd/BCrKbaJ6kiMA955Li5a1k0DMRAvlfj0AnP1imbq7jzt5UOa9SW+btg8esLq6iFNU4Fs2G1N4RHvTb6INevVA3hY0dSX7PaCbx4Tx5Fuf8s4pIDUcSCo+amO/dZMqFUZ1QIDBlUTHnS41y6MCrdDJIzQqydQ48XhvJhg62pCdIRoE3LdeGpVqhSIeUxBDMdoQauDWiR+VbPEHFyKoZNxtsm9y5jD0uJHqBL/ykKtCVJzCIeFEMu8cM4X7FoOYhqimKutzveqqlkGSHL10qKsFAtGxRRLjXNdLL6PgVVqmtzk6pXTdu+8Ezu5felsufQaa+EvRN5bjBsQnj/PkmoNPLbK8Snoe8AWdI/wEhiS4DabIbkk6PTjyOfbl2yHHT9/seLnnz2k3+6Q1vNwfcGlbPhgpXz4fsPmsuHzZ56uXxHHKoE6yzgQM9Mr/2bxJi9c6ZKUIFLmosV9ImkxNQlJoxBGZb9zEAJ9Bz9xsL2FthGevxAePlB8pazWSt0Y8PP48cDlBlZr4cNvCQ8fCquV8N77cHHlbKxWFvcKiahae6nIK4S/L09SLADTeC/+ZklPpgDi2Ww5AanZOs6pKReCAZ3JlU2dJ/oNqg2e9/CuQ8Y90jp8G2HY4ncX6NYTY28uP0RccOh2z/j5M6hv+GTo4OYZdeV5tK55tKlpvOPm4ZrdAwPARQOOka4b+PUff84PPrlhFzzP9JJBB1Q66nBLFV4QpaJ2PYO0RGCIZuKtgIbJboSojmgH1DNIzagVUYQgOehzmmiL04+KtrxzYb6n/sMsn6IyBYe30WoCqKgi45hMz+0GnZjbjCGcquFsMSgsg0gWliDpuymlFmdHSMDclI7UzgI0Vy5SS5zdtSZQR2i8BVpvnFkxOYQqncIiYsCpFFM3g1U5MLTJWcugxaqBGJWhHxnHyIttRzeMBI0E1bRZoOA89WqDd47YrHAoYX0JroJmBb7C+ZrQ703wDvd38EEcR66ffWaAlrPNhxgtHprGyDAMbHe7ybUpm+pll3XnHL6uqJvWjhQuEdkQk3uBPWccBtswGWf3rqEbGPYdMUb23ciuM+BngTG5HCBUZ/ejaK5hw6AwjYgMFFnMtGmThQzC+RRfR6bTFUQsdo1LG01ObdyOwCgv2YkwjgPb7XP23S1hHNntbuj7zuIJ+ZrKe/pux/XnP2d3+5Lt9iVjfws6JCu8EVFveGfoyErZvZPYbAjqGJMrhJtcIjxIZR+XAcuA+AZXr+y6b8BvUFcxrh6xC566j+yGSD9GhhANJHJ2wEUfIvtxpAuRfgyEGIgxEAYl7EGDrde1x06G7Xt8X1vYgXSamFllmSI8sX3Ja/QsA+VNsQn4KJWHac20C7bJFcxCYlIdbf3wdYXLyjTz3A2kWGMi08EbihLTZp9INNf+NM/LkxXvuQsL0qMri4yve3RSzi2dNdjMoBZ/LEsus9R4X1HHac5NzP2uisyumsX+GxnuX2xsnpA3pKzpHfjN4fOWGU+34buK+ew9PH4gVLWni456BRpXjP0FGlsQMQBGBF9H2vUGVykhjoxq1jbeebw3dzCpAlSjgdxDwNejuY4m6x9UiaEijp6FCxWgVESatCbXqDSAhbAIo+Ki4PaNhQMRRxgr4mjrUgjBNhlixMWGSlezlZzYuhwkoC7H4+mBIU2qsahHTicXNEJxKnZ2VxtAAyo1jiuUNc5tEB6gcUOMg83pqKBmFYRUOAeNM736Xcmqx6AIs5z6mvuWaTn528zQTruO6mHWIn1nFe78YTkfXve81xX9Zi2ux1+/FsBPvYL3/0MoFejKHt9UyGaF1J7qvQvW33/CxdUK8R5fW0ydISr7YGDG0MN+p4QAwwhdb+45YxSGMZiA1HXE/RbCwPjsOeMnP0H7PV4ClVisAV/VVLWhxt55rjZXOOe4fHDB1cMrRISX2x03tzvGELi56bi52Ru4EXti6PCu5uHDB3z49ImZ74anVNGOEfRVbce5O0+1usS3FzahzMximgQ3L7Hja1uoKhOqri5qLteRrh9xzfs8eK+zyTzYO2kcCMMNMXYMfcfL68/pui1jHLkdtgxhoB8Gbnc39EN3r10YVHmxH02x0hoVh0rES2U7765mjI5hBOcdl42A6dc8XEVitIDbXT8QIgzq7fQ2dXQRdkEIeTFNg9o7LYCf2QXMp8DSggnbOeaKc9mF4A2AH1iceOuSSxeYZUeO90Ow+Cd24pYtwGZxX6SjgJ8DOvuU9o6le1dO+5lXxXmNyQemgL47Vy/v4ckTE5w/+SQJ8awQPkR4CFyDfoQtNi8wk5kRwU1xCWC2Ltn1PT+7/gznhY2Db1UNL1cbPngU+N7ThrresLsY+ew7Ddf9CvEVz15uGCIpsJ7HTtPTAqg3S5OspM57q3kHA/JCOAuPmoTKeecim+UDaLRjhTUoN2NgmxTYF8+VpjJroLaFuglmGdTYUfF1rTx6GNhsIlcPhN/9q44PPnQ8fuz5m/5Ay7eloqoj64tA7TUt4GOqs1k45rgY90kLkCd9X7p/ZeArATsp7XLslhRLRSSBjt52kdSnbhFQqRjdFYLi1jX+waWZIt8+Qp4+hGEHL3+IPl/DuENuX1DdPkfGiF5v6W57ehF+62fwo8pOqnnvwSXvXV3S1BUfPX3Ai/eucAL7fc++H+j6wG/89IYf/nzLKBVhc0lYX+JEWI3PacYGXEV0K2LVWnDHGBkSsKFgrjDqibRErRip2HJBJy0Bx941qM7Ao+GZNuFFi93xSTG69+4DjFe1FQSFYdT5lLsE2GiMhHFvQW/TQQea0LqYOj6LfTPpVPZiR0wBtV3PHLVkYcHjlZWPeMztbu0N7KmLeDy1mNVOtrj0GXAXmZS6rGweCmplerJGOdCNREiHfyehWQP9GHhx07PdD1zfbLntB8YUOyEmdxNxnvbiAW5zhYaBsLlEx56II0hyGx96+u01YficGO5vU2Qcez772Y/x6dQZ7x0hjPS9nSh6e7vl888/p+v2gAEkILSrFZuLS6q6Yr254MHDR9R1be7rVW3WMGEkjBaPp9937Lc7c0sfAmNvysvQ9XT7jhgi3WCuW1ETL/C5FyLTqV5RicEUyBAsrI25HMTkkpZ2ktPxxKLTfjF2XLm5GDpfIa6y2Ey1p/LJLY8RR4AYGPsdYewZho7nzz9hu33BGAz46fo9XhyrurFDPfqOm+vP6fZbhqGj3z9HdG9xL2JrIEwMMKQF9F2Q2FI+4OjU46Knig5RT8CjUoNrUa0JNKiCr1tYX4KvkeYCXT8G3zBcPORlqNB95KYL7IdANwZiOqZUBLoxsO0H9iHQDQPjOBDGyNhFxq3CCHUVaeuYAEKHa+yEI+8drvI4EeraU/sqzUWmv3meAskqa/5tno4F5CfGEmNU+s5cVkrgx3lHW1vcJyW5ikbbLAgixGBrsEtGB6rKiAG08zqUQN0xnVp7j7tbJiGUbyVHv+vhhZT7SGVUk/d0sggp0wWoeuezXoMspTKX/ZAhmpIxzmXkmFoZ9ClC0M3y7RtYF9+1nOnhN81uzjMoNeV5B1bMmeoKPngPNnuPNg2XnWffr3lx+4hubIH5pLF65Xh45ahrIWogaG8by5jNjAIhKm5MAHo/ovvB9JhuQHd9slzuGenRGIlRkXzqIBUxHXgSsNO+IAOjFgdoCC27rrV1kAqXTsWVmIIva8SFPbV2aZPXFkrF4uPFJMdGQurVBD7pDPxM17N1EKS/qfw4JDewiqgbLEZnCzwihA1ebD0KjsTfG5CWqvI0rZ306/07klPhCKy4C/RZyCwH5bxODLtrzh0DTzrlnkW8JTxUfluWeCzZnHrOq+tZPPe1N8yWiqfr83b0FQd3dlBfADXK2tDGpkLaFqk9brWhurikvmxN8GlqnHO4hNAGVXCRIQQYlVHzToKBP0OwxSqOkTBGdAwMw8jQD+jQU0mgwYCZhuSD7BQvFZX3eO9pm5b1eo2IMIRIN4zI6PCuZz65wFiuE2hqz2bTUHlHi1BjiqavWqSyCPK+vcDXG1tMSbu6UW33bozglOBTbAURnKsRB1FrmpWwii3EgGtqCH0CfgQda3pfEfodTgN99IyM5JMhql64x01NwBaWMWiOAAqSFHCZIhxM7lDeYab6Lu0kI6hTegW8ElAcztqCSEDwOk/JzHLFFS5QTnD5yPfJ7Stfk0nQKQM9G3OZd0kO3wenZriTBGUHaKn4kS11dLLksefrlLbPXIfTn9NuXIs0p6/fNzkHTaNU1dw+9uZtqsEaYY3qGthRGI9b3iQ1Tq4aUenGEYnKru/Y7ne0CKHfU8c9rXpWvudiNTBWnrYdU1C8ScNNdMBQVbO2mhjq0Z7BIs/MDpMYNjXekmOqilkLpFLjGOlSm1eVJqut5MPtlbqOdPvAeh3Z7oQHj5SqNuuY7U7pB3tiWwB4mkzHrAruSzHqU3Q4Nk6m07jLg2keg8fj1Ao0q4CYy0i7yerTUuFWSBUQbRC9QvQhjA0arqC7hMHh+s6AYEnHNccBJfm9y4BzQi2RWpS2rrhZO27XHhG43XZs9z37IfL8ds/1fiAI+HrEtQHiiMQBH/YIlW2KTSJT2jGbuxmLTEM6ilzxjHipJtP1vGs6Dw+Z3K3y59QQum8Sl4ytJIsbs+gTsZNHVIPF3En9N507I1PXTemJdzIrepN+Idl1y4Cf2pnljkNZV8rGm+vW2tvHyxybx4lZJ9WpXVyqy1TwiWbKDiLoLEhNU17LQMiF6iSSMDg7GXIcbS3ediP7PjAGAyfm4MUZ1DQlWEWQJpi1GkJ2WbUYJJE49gd858tRjJH9bktVedAR7z1hHOn6zg6Q2N1ye/OS/X6f5p4FHA3jiDihHhu884ybflp/XNrNtriDBvyMQ8+QwKTQjwb8BKXve/rOgJ9hjAy9AWLiBQm5fzJIPuGbtlYHSRscmqyJc+yIEWU00EfnvrGNDzNbdR6cN8DPweSGRAKNzL1rx9DvGIY9++0129trQhjY7m7p+z3eEHaCrxiHnm5/S7ffEtImlyRYU0hBTxVE56Pg752SufHsJGofyZBCivGjmCWpCuAbpGpxvkbrNbQXSNVA3RJUzNI5Gh/Kn9ljzzY1Q0xxnZKSaDEPo5nRiAWR9YCLERdnSywfrf0rddQkGYRCdmE+kCK7mUEpGy2ViBQXd7IcD2n3y2wmTe6t1Pi3YgewxGTJLGIbZJlvSpJ5NQdwljx+zFUpaEaN7rcvc/lHLFuOdM/81un6AbIhWrg5HaTJvPZQZim+KKmRi/dbiDsnri+es7xheqcs0+Y6FG5f5bveSanII3n48D1yHQuE6+j1XvesL0gi0DYwqKNtKkY8IxXS10BtoE8OIu8dvqqoKocy4tUOoBnSGI6qyeKxsrGsDg0O9RGNQhwUEbOEEWfSRHZtVABnsXLMWnOWNS0cSFqxgyGdIg5PZXGIMJ5oe0ox8dJF6HAD8nJQZsmu3JHs6D25oxGwYNOWziBQGZhaZMDpiKrHpcNZlBrVBqVK7sYe1exOll0rPM57quqeA61nWeXk+JRTyYPbizzFPJimVJ4f2SWrmE5LMOXQ7XKOWfYq8a4s8lXtUv6mecOZXLcTNysnn3v6GcrhnIO72+xN6KsFfmKA/hrc2ty+nCDeUdU1TVPx4KLmO4897z/yVJWjbcyUdYxCF5y5aPWw35o1xr6L3O7M7WgI0A0QoxCHmrFbocHTXz6ga98jDnt06M3lS6PtVKUj4kWcgQsO4tCxe/kCBW5vbti+fMkYImEIVC4i4nl0teLhw0es2oaPP3zEdz58QOU9tSTXI9zEKMARpbYprNBHO2koogyjTkdQhz5wnY4RzAN2GAIvXvRstwPEgAwDEkaIwWJ+RUcINaG/RLSilsDlas1GRkIcuFo/ZIy2q/mDe+pCp8pFOuo0H6td4VI0GMVFCF1g0EjwQhhS2zLbaTRR8RpRUQaEunIEzEVg0JBONXTTBHIuhXQg7S4nYw7xYh9JIJCfgZ+Fq1f5AkfrrCSLnzS5gqSTvJLwko9ZTYVlYdmUDgv2nJUOLYM6Fy5a7jXp7NK1cHErrk9xIe6RzNVL2W4D3mcfYgHWGPjzBPg4PbUCPgXMXVKLRXFqy3xkZFRuu46fvHzBTdfR1C0fXl2xCVsq5/lwc8VVHNhetfzs4Z62UfY72G/ddDT7ZBkzLbDpGUnYmrxV5l+Kv1rw2uJkomlfLC2yef3O+cTsHwTbTBYFiTCq4pzSj+b1vd0FtnsQH/n0s8B77wm+Hnn+XLi4gI++Izx86Km8sl4JtY9IClLlvgynPkVZcJcinefG4fVDULJwi8zXXNlO04KaylBzC7Rw1RYPTfwG1z6EqqUK71Nxgw97Hl1e8uTJI7yam4umgMTPd9c831qw8DhGbl7e0lWeVaUIxqde3PRc3/b0AT69FbajBZB1+x3Cc3zVgHOEsQfv0Lq2wPsog0bGVE+kRvAgDeofgbtApUFcQJJ1i48GPk+rcJrXJGXFgAQDneeGfBfK5jzOncwA5/QkielExwgOU5R9ipFXjH3nJ442efR7MZctS2ewx3YYK7Hg55UY+OMEGpdP3TKAp0ljxotQJcA9K5GmBMwMdimYFP/r/K38vgh6WqTz0B1C5JPnA89uerb7kR/+7IZPn3eMw57udmAYLX5XHAM6mMtTnwJkEoO5A8URFUdwNVHMbLRuV2YpWkbR/5K03+/49f/fv4f33ix+nCOEwDAMhBjZ7Xa8eP6Cvu8TUGZAQt22rDcXeF9xeXnFoyfvWUzAuqFtVzjnCONgLt4xMPQD3a5LIFBg7INtnKQNL1WzHAsxjYwk18wKdx5nHslxFp1QpQDhQUPSNZQYA+mgmWkNz66+OTqL7YwPU2B1CSBEonY4rN4vX3zC9vaFpW+fsdvd2LuMPWEcUBG6oWJM7zp0N4RhT9SIc8FOUqwK/qTm4vYuXBJc07L57u9h9eAJfmVugs5X1JUpcm3bsF6tCOu1CSWVBU6tVhtWVw+NP62ucJdPkLrh0UXNw8uWdeNZNxWVCF4tXpZPSlEU6FTZJ96zSZ7MuxgYux4dFOrGDpbwDjcGfAZ+nOCSYulJc32SgWxu5piImd/ndSgDRHAwZ50pLzFCreZSKCguBjvIQ2GF0iSPmChpTXbmPptdDPNDowoBuy4i4B3iTJ4fohLD/QaUzVTG4llcB5ZXtbheZsrKahG3qEwzS02LZxxoi0e7+ZJ535LnlY0gOY/mGpaK83x9Ul6lXEXuJjlIvNLS4E2Xu3fRedg4vVg1BGrqeo0PNVKtGeoNHQ1QRPLzAqNQx1L4sWg3gzCFiFSfWzLZAkXFVQHf2qZlFUY0udLGmIKVp5fUJJeahSmY5WRgzLHGdI6XE6KNb9Gk9+Rjfp3H1zWQjBYky9FpIwOxCUhWFHT+Kw4RA2/MvSukus0W7yIVdhy9B1kDNVErYvC2LJLrHHAS8S7x8+TS+3Yhid+CjlCL45+Os8vi9/Jvni9Znph36+xCKRflOVK+XdZHT9WhrOq0ucbpqXC67gcv+Yr5cTjvj+n4qQJv4F756n78aoEfDdA9gyqAf2jKUDqda9XWvHfV8ns/qPnu04qmclw0jsoJAaFXU4zHwdF3kRCV/T7y8nZkDGpuX6OkYHo1YdgQY2D/7AnbRz2h79jf3rK9eUkIgVGtTAVCdIzRMNjQb7npbwgxcP3yJdcvrwkx2hHu1Yq69rz/6IKPP3qf9arl+995ync/ekLlve18eVOJxyCM0RGjHRLR9xbfRjuzVCIq+yGy3Zmpqw4DGpLZQLKoCUNge93R7wzska5HhgGL/A4S7Zm+fojzV9R15HIzmiWCi+BD2pmDP3dPXVihPBzDxPySzQ7myKL4URl3A/SafNBtZ7N2FvDTJ6XLOTNTHD10lScIuD6yH00ZUedRV6Fi1jw+ITnOKc6ndKW4yvzkXQqwNu2CSWmabpTXzGk4pnRMsXkUCE7sJC8FCQWAEwwIiCkfSTDSVLCkzVRJglB23RKWINB8BHh2FbN0CHPsID+5eqX4QO/Aidp7ePwkcHsLVTWSg8Epl9i+4IcIvxu4xE63+03gFtvJzUARE1AgaBL4lOv9jt989hkrX9N4+Oiq4eG4ob4SfuXqktFt6G5qfv70iutd5NmzSNeBqsNs5mxRX/hYSw5SWloIlKRHf2ergpg6KCk+U9DehLIhafPYVhItrORkzOMncrv1iESqKvDJp3uaNvDkiZ0a9vF3lPfec/R9xUcfOVYt8DjCRi2I5zvync4yTuneNR/nfnhdE5jBAvDJHy9MR3A7dAY1E29EsEO1pTElsn5gVluxZ10rlxul0Y7vuJ5fcR01ZlkRRnNf+OHPf0z4OfRDz9jveXH7EucgjFtud9dEVT55MfDZ9UBQR+8uGdwFZo53A92A9xXDsKO7eQZOTODziXdrJBAR53HVhR357dfIWpHGEX0Ed4lzJrx7F6m0HDe6jCGehwdZs7n37isogSqJV5j1ReJDYicERQnm6lpZUGMTXpK7FkqT3JgnIAfMmieDOqK0zlwbK1Fqr5MFQD6G3b4filo5WbhMFqnchAvRS5fzdEqVmQsFpgR+kgU84xj50Sc9f+OnW57fDPz7f/0FP/zZLW018PGDjsdr6AclDgGGwYCWriOMAyIRL+ZuZDGqQJ3NxWZ9gdM1zt+f+LO9veEv/YV/E+e8BRR13sCZHINnGNnv9oTJBNdayld1iuvjubh8wKMn79E0LW27YnNxYZZDQ8/Q79EYzPppyMe2x3RsO3hX4b25homrEG9uCSXwkzcSRISqaqgr40vOO8TVVqvoINhueRwHYsjCqUzuaS6B86pKHEZiMJ4x+Ig6WyxFt4ju6bstn/7sb/Ds858R4kDf3zIM3TQiJCnGIVkVaQwMQ0cYRxBb0y2IvuJdQBjTOhxZAIf3RH615ur3/SHaeoVfP0B8ja8a2qal9iPdasXFxQU6jvhmRbW5sNMLN5dcPn6Pqmnx60uqB09wdcPGBR76gdbDZdPQiJ2ZWQN1YrwK7FC2agLElRcaL2gc2e52xF6RNpoS6R1+aAz4ceCis6DnzsptxPrbuxxsGwPrpjVPUqy3GZsBigkq6XRH20TVGJHRLK18GPEx4FVZa6R1WUyZD84ITiZWOdni6WwVlIEfxBGixdkMw4i7d4uf+bVOAS8zHQNAC73trvTBXXdhJNnY9vDHhEkt6npYaglQSSnPpDpkhXZp4/pqOqVQH/4+KdPlhWKcLJpC3uSpX4y8Fx5etgRZ0dxe4ccWdMXQXrL3DTm6goqwj5HtEAwEFY+XOm2ECbEyYSjrCQKIj7hqnOCcJlssEnHpFK0Y5qD3Ycy83F7e9AUljIFxTO62OWB+AksNMLXNch/zO3mzCgVGTVaRyfovb/BqjlkLWRgAyRZLxiejmk44z7IE3KRY9HbiZwuuQoIj4qcN6zEGJGSLe4f3Fbh3CPwkHjSP5vKn08dlHAIxS9DncDLZn3nIloDOHBQiAzlKknMmUOgVFWd2/3wb6X0Gm97qhnvM/uocr5V8RORfBP7zwM9V9Q+ma0+AfwX4PmZM8l9V1WevrYsqGnrUDajmgFSaBBKh9sJF47hqHW0lXLZC7YQRZVRTMccaei/EKOycUqswhmTxMwE/KbhWFPZDQ7tbM3aeLREfBsZxpI+GwkZgDA4ZTfkbE4JrvpsDYbSJ7Hxtu8TO3LvWbcW6re1vU5kwXs3AzzAKPiT/56DYASJaBLY088OQwIRxUAsGFjVt2SlhjHSdmW0TIrKPMJi5oEsgg/MuobwGFnmc7cx6xdfzLjDwfRH5+ZftR1Go1c6Zme1EZAq3K9g7mB90JMZ07kQOIyMg3hSVrITHBAZVohYYVphO/YJkkJgUkywpLiwa8sOnnc1CIZ6z2aKV/aOTy4Sq3RbTsTql+bOTGVnNaQvAPcdMsVO9ZFauT35m9xo4/i0vSlLWN78jSiEY3Esf5jrUNVS1WbSQzhEyaM9cvoQLkEvIbpnqU77sjJJIM5hibTuGyHYYCFHZDR3dsKerhEb3rHxH9BXremDVBvowUlcV4sLcSSxNG0vK+MxreeoCLNPkupfruGjT3CLkHZ28QOYHWrUcIdgSMIwWB8rvbD5//nlkvYk4J9y+hN2tDax+EOrRhPDKyWTBxj334zQPihVyOoZcjvPc9SGBpVnx9kv1PrVS3iFSxFVAgzjBs6KSDbVWtHXDpmppiYSxN/eUcaBZbfBVi1eI/ZBiaCldH9h1PUFh2w3c7gcintiQThYzJZNoMZPGsWccKgN+ArY5JoqFtY8m/aTYPUJlMUFKk+lip1sS+DDxov8/c3/SY8229ftBvzHnjIhVZD7V3vvsU773tbnX8sVgjDB9S3wAWjSgQwPJXwH36PoD0HLL0EGiB30koINkgYSwZMDXvve957yn2MVTZeZaKyJmMdwYc0bEyid3cc7JfSAe5ZMr14oV1azG+I//+I82B7Q+VIGy9nrTK5+tDZc2qs9+7aX25BsbSxvjpgq6NnBOMI2e3pmR0wmVtWPpWYMzwebeKTtXwSG3snyW9I/N/EM9f3lsRm3xr8ZE3IxHre9v3JX1Pjcg25VzceXRrK9LUcY5c3fJ3J0zH06J9/eJQ5/5fK+UnRnLutAwi4ni5lwjmPZbsRRjrXRM5zxefHWIn8e+KSVzf//BnA5vAp+qtoYXNQeh6f20JyyA8wEfZmNAFMX7jq7v2e1mSi4E762/z+Miyrk6I0qM5lH40NGFGmzx4LUiuxsk0zkLLlhqdAVONoBA+y11sWujxObcOhY2PUSqInfJCQEKmVxMeFR0RphJcWKezkzjA7kkYryQy2zX7No1WmRd6u+SE1qrlIr4Kna99o8m+L3pN883Fp0nHG/xrrOSx6zCyV7NSeq6jr7vCbue7rDHhY7d8cD+eKDrB/zhQHezR0LPnsgAdK5U7Yx2/SzXb0U5lFRvJ0iVC1Q14zAXyBkphcZiEdbA1gbnr3/X1LuNTbHaGBsbZHvfsvy3DGna3FBBOV8Ul+23Z00ZW+cqO26p88GqO7ZNP9telCwp9rXNnsnXWOekNnU/sQfXiNCj9Krlhr4rvev6WIu98hRg0sCfdqan0l54vA/Levxd+6+z7PXrH9q21/nJMZ98Btevt7bZ8vqnsFERk+BwzccxUfXiAtkFYxm6yvqRXAOvujLf6sKquDrviwHhYOBOReSkgqROBE/B12D5CvwoEjPU8u9azWVVEJeQCvJnBcnGcG42icEGBnwK0FLngZq2Wm2pJp1R511LLW3tuq6mpgelSCmbz7YtUu0VcVa23YXal+qzECqbsyy+UOsI0vqDPOdYXKb45fW2hbdtvf6hT+zxdN++7odtwLfPngZ2rP+3ieeJC/tkYH7/NfxF2595oGc7b91+TMjrPwX+18D/dvPefwT8n1T1PxaR/6j+/b/8wSOVGe5/j4Q7ZMpoOCL5Fn/8kuCP7FR5GW55XYGf42BMkYJVWFCFEpQU7HUcHOPeU4pWgeeaslM8uXRoKcwvHeOrnhITp/uRuw9n0wsomUsu1TlVTtFyrE/ThYfxbFS4rsMFG9TO2cQTgqeTCOkBjZHpHDjdGZLrgqvGDIh4M8JU6OggBHyGsIQiqlFWl2sToDWdHC3ZEOXsULUfYwCBTtUYiBmtBu753koBel8IQ8KHQtg59i8D3W6J0n4L/M/+2nYMDr7Yl6qp1IRIGzvAHI5DgOCtLO+cDfwpKMmZaKyo5dE6senNJRuiQ4LbYgaQAovQiIoZmVgbL59jVM5SJ/NWitqc7Gq0uKozREN4G/CzTka52r/aRJjyBmC4si/t9cLgUalpWXVidiwVkh6ndJXqoFkVSGGpkypUJL/OzY+YGI+qej1LG4Ixfm5vHfu9mAhjW0bUbkR0B3yBxSY/IvysPu0HlHesrB9dnGSp9NQkcE6FuSS+vlz4lx/f82K68Hk48IvjW3w38sIP/PrlC+53OyQmHh6E0XtKslRNljauxnJbpOvieB07kPWZLlNkQwK3+7SFWJf7XPbRBbZ8eqIXsYoylRmVcqGo53QW/vAHx2WEd28LXiJ/+kPm9gX85u+UV69hv3O8eWPP+rnbkWbMS1u0W5WX+nrTzxbnftu/Wv+jOnwVoFLXIrR1LquMJUuTan25x3GDI4FPqC8kIic/822YCRSyz+RgYPr59QEpb/AxoqePcP4Imol+5i7MFIV4dJanL4H+8Ipu/wJFmNR+nPP4wyvY35qB9NhIUK0pGHvUD6gfKMPnaP+SIh0p7C3tRx1SapRPFKvvVUyctMWCtgBzY+Gt27O1oRMLeCz4hWKMi8pqEA/4gBTBB0+/U7yvAQDNiBpjpxODabyYoynYfN1JY/VAcK4CPbpW+GF1HLQZjvX1ajrpxpHR62dx/VyuLb1P3KTHO3+6NVmTKRXenyJffxiZU+Hnn/W8unEEmbn1M4ObycERghWCQIQQmiZNrjowm4NqMUHN4Ndc4GeybwQleAtmabGqTQb4mKNfclkqu2yfRNnMReeTsTuDD/T9wGl/h/O+OghWeliqQQ81yFVTurR4YwVXlyG10uKN8YMxZ3OdL7TS2ZyY8HwXrHGbYLBqoagBsKB4H0y4ubJjKVA0k9KJOJ1BM7POiFZGMiOiM/N0YbycmKdaGEMLqDlaXbBKXqiiKVr1MgR8sLRbJ5aS72t8Vgs5J6QUE1Rd9byebSyKc5YKiDOboBgA5YeBTpVXb17Rl1+Rx9cMxyPHN68Jw4D0A3I8QghIN+D2B/CBXgM7DQRRuAm8T5FpFIJ3dNEi/1/PEx/izFgs/f1FH8jiGL3wTq1gCSWgOaE1+Dj0ZptK8LUirM2bLZ0XHvkvm3G+pkBfu15PjU0nYoBVNudUsgFRmk38luVb16CwbqaAjdW1Ar4VQDCge3H7/lOey9fYXMeTU84TntR3TVsrq6Vqs+gqH7v+ltVm3NyjVLvv8Xngu5zh7cXUAz3+wic3sT7Bp9nQ22/I1TllaaMnru3Rvax3un37kwf8fLYNmE2Jp2RHTkLWgLodhL2hO4M3xm9dL6XO8XkJNOviZgWxQgYW3sx0JAuUONiFyniu+whYALvSbnMs5Fg2gfkKoKRSU2yVyxgZx4FclDgl5goUuVQDxGpBG19LwZPnqn+okCNSbP+axVXbp9rYAqFz2HRZmGclxRoUasy+Op7NznNmMzi/6IAt9l7TE6qBEhG7fhcCoacBU/8pzzgWa6/bAJTy6LOn9l9f/xAT6aoXNldgOStsoCFj4I4X0uWMajHf3Vn6qe8HfD/QNBS3M9zVVSlPXvh3vP2d24/b/4f3+nPP+4PAj6r+X0Xk7x+9/T8G/oP6+n8D/J/5MR0gz/DhH8AfoLsDv8flzwkvoPMvOWThs/4LfrZz9J0BP8FVh3yzqrTUFzOc7FVr0M1129gab0nnLyhZub/LfHyfiKkwpsw5RlJRPk6Jd5fInAtv7+/45u4jc4oM+x273UDJiZIyOSW8cwwyQ/xIoWO8z3z0M967BZ12TtgNHf3ggcAgN3TBM4sYEq3Nk2hNVf+uAsktX9+otmYYlaykSckXK0ObLpkSE1oScZ7IOWKzywxk9rcdr399YP+ib4/kAXj317Zj55RfHjMpKZe5kHNDwG2h6j0cOvABxqh8nJWSzcBNvlCoLCSnJgyZCi5lpAj7Ijj1Ne1mRcFVVifknJWTNnzGoIjmnUmlEmudBS2ybdW+HDXNrLoyJrBo1yxqlcQUzOOoYEtzclsUxGGssFLPj1pGXWmGgFPDD9BPgB9X+6yBQDVa53TFf5w13yJMrY2Wv0zEz9aGUGm0rxzHI4RNfXpdPN0jIr9E9BVwRvlVff8blDvQiZUEac9CXGW7ZaOTOin8/uFEeCcc+45/ywe+uDnSD0deh8C/+fmRczpQYuLbO4cbO+YxMOZSq2+1ccKjWW2jbVIneOsyG0/2CvjZeO66qqfoArzWYy7hjvIE6C+0ymNKIVVHq9wX/uEfEr//feH2pvD+m8TrV8pnnwv/9r/jrOz7K0/RjtevFyDqedpRWEr5LpfuluHACgptgMX645567cQYNlIZcC11EjNWzKhYgSXnxCLjKJI7ctoDiTs3oX7EiZIVY2sWZfQX5DDiU0RO3+If3lLyzDi+5TK9tSn+xQ1BDvgQePHiNTe3LygIH+Yq5OYC7vgZsn9lrZJ18f+k0QrFob6vqaKBHA4Uv0MlEOVAlmEZ06Eo27SgJI5MMIfX0Qhuazdat+cbiwK3u2vgx1gQClroVNjTE7QQgmfoatqLamUz1ZStqt/TNIyaiKqlGm46xeOb0bW6lkVI7fPWt2yfsoAWsnhvW+fu0XblRT3evt+IS2qi+edY+PZ+4h/fXtj1wr/x5cDPXh5JceT+3YnxdCYnR9cHQi0EQUm2JhSHxoSWiuKroq5YRc2wgifPZd+IQBcSJUOKsTJ9N5Uha9ngpbPWR5BzxmoeCfM4cbo/AY4QDPxxztF5Yei8pfN0Pf2wR5wp5hUxVkqRRHHeQK8CbMDcBgw70WWNrNgN3nkIHQFq5NsqjqkWCoFMMFArdHTBzMUSraIYJZPiHeP5nRWcmM+UNAIFR0IoxHni/PCR6XIBsTRtcYIXz9ANDL0F6Ax2TRQxQDOLaTC5EBBvaQopFRMazi01fsnJfbax6MRZKmDOMCU0ZSRAtzsw+I4Xh4F/8vmejsTx5S2f/fJnDPs9Fwf3TkhiAajiLMHAmDIGznLo+CZN+LMJ3PvaLu9y4tsciarc4Hg9dOCVh+AImsglQfZotFp3QYT90OH6AM6AHwRCcFdO4No5n77Xp0ehXHkRNscLqDN7LGbwzljsDfjZnGyjpPfpcVltdxuTtq621NJn9TWooM93AFrftcl2d9m+bE7rU6BPO+H2QFe/nryEJwGfqx1+8A0eXe4Pbo9n/+3v739K3/fp1befbSwa9yVA8eTkSNGR6dBwBA7oLsBND52Vyc3e0vlbRdKqqLywAwOZoYI9TjJOEl4KvVeOXSE4JTjzGarZVFmNWOrWXFmjUdHYtCG06q3CaUycLomcldPFXjegSLMiamPeN9ZempAcUS24NONawYHK8ENZ1nHnhGEIdJ2n5MT5VBglm6h75wneG8O0Fjgy4KcD73HFePwlV4awKs17yiWjmugChC7Q7xa26vOsi/VnixZes3t+oN/aJLrZvVkn37W7LOfbxDyXQ6EG5k3nEw9vv6GUTNf19H2P857+9hVDW1837ABZj7De2HeMxz9n++H9ryGd7wJ4Pn3v+0fzX5rk/qWq/hFAVf8oIj/7rh1F5D8E/kPABJ3zWGfkk3XuaCWAyTukzEgpC4XdorEt93IjsrmZVRcNhuVmrx9NcY7shJLBFasOlqLSp0SIyUrC+sTsZuaUueTILk646MlpR4k7q6ARZ/JskaoQTBzTkdGSTGi0OFucK/CTXCFIAMmoG1CX0OKM/dIMQd1cMttsx3qPet3NK5vdgJSs9acaRMk+LDUc57pCimZr/rXtuG3DX775lVWAUSWLkqSJqdptdBXc8tWhtIFGpUg2obTlpu1OS0ELOPV0apWWluog1X9ojyuopbkVsAm1gi1iAV3EWWl41e1Z1kf6CRSwTPC289ZoMl/JjmCVYqox3Rzlzf7bTJDHTjZPvt4442zO1y51Ozd+/+zwF43F169/TQiCD9fHbz6d4DGRZ8UEn/eImPCz4jYT+CbGtAVkVU20MmdO84yiXOJMThPqPUEm9t2MuMCuS3QhE4IjuarxtJnsl1F/ZUVZA68RPbm6hvXv9fXy0VWnYGkY1R961m3uqSw8lJThMgrzbP3hwwfrrOKUjx9hf7CI6ThCnL/v2H/+WJTbX6+OubABrlYgqL3/uE+ufVCW10tnbA976ZyyfbkwfxZRfBS0s3mOQHTC6KjAj5AwBlHqOtjtkJyQnHE5QZopZSKniz3/cMSFG5zvCPtb+v0tGQgu4lyynPXhBhluDBhM9XlbaR2oKS7qOnAmvGrMn87y3PGro7KMwQaSrMDwUsGxPY/vWnH/gjZ83I5f/vrvcJppEaY2R7qqS9U72GECvJ0XhqqVZiXnr9M+2hHcksLT+vQK027H6zI86v09Xm+W7Sk74jvD6ctdsgVo1/M+OuxmDmy6RlmVnK0AwhQzXfDsBsfr2455Ssz3wtR0iSpIIK7UPunM4H/cYD/e//uzx+LusKsO8rY/taewuc/2OOqby2cKSiFXcKjpPTgRCA5HqCl+zsAsgJYCJVXPZQF5NoBdu4BlAl1XYPutyz7tWGb0soBAgpXwdt5VJsCalls0UfJEyZGURnK82P4NykkzuabOi9RrxoStXQWaFAMPlBWkXBmGdg0WYDJna2HDbdhTf2kbPm7H/s0v7RqQK6dRnCDe03UdB39gkMzNiyMvXt4wHHZ4lEhmRhtpeAF+JFfYwAuTFlw2G8bVNJWxZGIVmheBzjnEGbPH5lZd+4SuUX4TeXcLcv+UhtxTAJClPT+aC9ofmzVytUtk/bqutqtuBvRT7pFyPYcsLBLdWg0bw+jp7c8ei5/94u+up6bvOLQ8/kvXsbB+9ZqlsGVKXT2uOu6vtq2f+InQ0KdXoI//agVGNvfxyT5PXOMPba0d25SwfUxXaWVXH6xffFrz5HvP+xeNxTev3izvLz64QAuSi/NWoKcCP4Riz8ipZXo7KvBvbVuQpbqn+Y7FGG2h4DtLf/ZOCL6umypLwFajVQCjYL99fXBWOZ1SlKhCLMYGD0VwWYw1lNSAeMXmNaQ+55pIrQXRjCPYAkhqd70UxHHemK2h82Sp83EtGOKdryzNGlRWpUUAtXZWEQtGixnn9Tw17bT2Hptrv9cG/rPH4q9+83dcdaXNwa+npu9YnJ8Afb5v27oIWr/eWP7LHmqp13GeLU1ZLStEtWbbLEdqC7Q+dYb1RD9izP3Y7dOjydWnP2Z8f/q9T7efXNxZVf8T4D8BcMMLBW8LeLwDzpRTIb3tieNbPtye+Ff/ck86nxgOO45vjoSho3PCLjgblKIE2VDXq1hX04hpRu66fpUldQHXFnAIeAYnVrUgeMLOk1U53jjevNmRS2YcXzFNF9MNiJEcLZd96ANDF0wo0gf6AFoK4ykyT7nmqUdKSYBD5YjKjoznPu+45J6iwpx7crEmcBituYhSIhSXG/K1DEzE1wiP4HvFOY9zhWPocK6Qc2GerHzs/kXg8PLA4cVf38TbNvx3//6/px5QUQZfjMLMmsPtvSy2CNV4T5VFU5q/3nQHGgCWTbCxE+it1AVO/TLmC45cyyampJxnQ22zh+wrSNABg7W/Bkeu0S8NjtIJzsFgioq24DlZ9DS81glCbYJu6V1CrWFVMMFDretLm1TFFtqmfJNEyKLgZCn/jth5WrGBRTeoOc9cv9/0hpsf7uTHTHd/fjv+k7//9/Rw8OyGWr5cWsZw+99hgE8APkP4O2CHxQ6+rfskYIblO41/xwLcjCnz7jJxjomv7h/4w90HbnYTYX/Di+N7jt3EF0fHl7d7jqHwvszEMZk/T2GpqSC5OsKg6tCWh6SeolUxe/FweMKi/b6n+NgTfbw1RlE7ThOdtp2LKQwyTsK7d3A5K6eLVYv4458KX3xeyNnxs599Pwr7Y7ZtG4Yv/z1tIM+noKIt+E+ld1m/aqCPAQwrmCOb99e+Wacie10r7Lma2miGTCD6gaQFdZ7srJSpOqHUikFlVyhN+CzsYfcSKYl+/Bk6fbRe5/c4Z9WM/DCQhsHmDZfxXQEfCMc3hP1LW86rEL4JjLololzEGGMqDi8BFvl5d23Q1usXv/YdS/ZiU2YVFsr4Mw3GbTv+s//2f0ff/sO/sLnCB0SELgQOu84YPt6x6wOds7k1NGbPYtBs3PhqpOTmuLWwV/18m8uwVM9j3aVp5qgqZY6UeQYFFwKuM6H+TcMvoMV6HK3H2d7s9vVTBsnG1CpwHjPnKXN3TsRsRu7Qe97c9vzisz2nU+bDNyammbJVzVrKutf7VdFNJTSP7zu87w1UJlNy4q9tzG0bvv7ic33x+kvLwo41OFMgW4YWcZ4ZxxMpJRtfTSjZ97huj7haYremnJoDUluoRLRMCIW+8xz2PSF0DPsD++ML0wnqOnw3gFjR7aINDtRNJeYVkAo+ELxV5+u6ga7vWYWezeZI/Z6YDOBuYE0phTlGckmUEk1ofbozVnS8VMaPLoGblKxgRXDmTYXqsHjnEHUVSGANiDX7oA7OBj6BVvDH2jkX0994jm3bjje//ueq928hZ9Jk6WdxB2nnSA50FxhuO/Y9+MOOywBzyLxLkd/FkbMWvDg6bxpSAaGrwUuvip9r6lhlFiBCFBjqBH7jPC/oEFF2zpkTp8byLhLNjtBC5wUfzNBSbw28MoSvh/wWzGmgxRWCsfy9eX95KUtaZGOtaXBV/2SDHmxAgas5oTpgKxtfa1CuOlrP0oLXbfj3/87/YEXCv4N1eCVvsryoAMp2ylz2aM7xY6Bk+eqnp5I2H/64u7zGWtZr+S4fbpt0tYHYf/Acje7aHtH1fWzS6K8vaOkbsgF/nnu7slF//XcaUyRncOoIOhPU0ZcHBqB0A0V7FG92hncW97HBZniPM0a+NWpNYxdFfDGtLqfsusJhqGlgDlyVXrCUaLGCLbFUliNoLMb4KUAyYMcVCLtCt/NIVkIf8CHZGlD1W9e5ztZhDaDJghSueAuIqSJ18RBaIKpq8XWmIysh4HMyP9gJXdfRBZM80SmZ4L9QA1zNVm0cz8Y6rWt8qlb24Ai+o++syvVzteG/+9//97/Don769eYoV5//8P4rqKS5pQIrKUdjh2Lpyi50oIV4fuD84a0VMDgckHw0nbz9Ac3FbKM2rbXus1zXj7max7dTHbof2L5/j+cbc38pKvCViPyion6/AL7+cV8TkICVI/+IlkzhRJQLftjxzt/x/3mz5+039wxvXnLzm5/THfcces/rY6ALjsHBwVt6Z+9gV8HXrjI/zElpkdAqMOeM2qw1m8qp0HmPq/KlO1FeOpsokhxNiwbIlUFjFLpETgkthTRbSdmSC9N5ZrrMxJi5PJx59/ZCjImP7z/wcH9nTosMqPTgAjq8gu4G8R1h/xrf3yLOE/oBF4LpFXksSlTZTBVaqQZ3h5OCEwddoe+FF689u70Q58zD/cQ8JXa3nts3A/uX39vEf3Y7Cub6i1MkaNU/Ah9kAS9WZoXWimsGhnRq6SKWwVAXqlyQlKEoXYBdZ7oDrihN7zerkEogI8S5cH9a88szxcQE+wKDgoMUHDF4xAlpgDiYIV0OglQQKPhNha1K/2tRG6mCfrlOmrqkG9bJtIArznSEhBrbrOPaiVUdaTY8Njm7Soxy0hzKlUW0dcyfTMH5/vH+F41F74TjTWB/KIRQltQ0K2tfMGnfI5Y38DMc/xT4zJYi/R0WlZiqkZCwFVHY6uyowCVG8kMiOMdxuOPN7Vtudzt+4Xf83Ztbgj/w8Sbw9uUt90NG4467+2SLWBPrRREX8c5KfmvxVXvCkctQrS4BDVzr+sAjr/N7noiu/y+22uMlB5aFtCVtY0LPGUcZ4etZ8ALDt4m37yP7Y+LnX2bmCL/8xfOORWAxupuWj9TKRTzuQw1QbO+7Nd3QxFO1pnq0/RUnbgGJXBNFdGtOeXuNQCGQ2Nmi6gbGJvrlnCFFCC4IbmeGozt+gUszopk+XfBpBMCLt0qAgJREKtn0sYYa0HOBcHyFP7yozbGmepXK+gPIpVbFQpudY3ZrcVeCoktuQkXIhFYe2UC6Rai+rik/UGDvL2rDOF746r/8z41qPOxwznNzPHD7+Wt2ux27YeCwO9J3tfLSo2p3jzqtvSrbLtycurJ84ERwVUDySnCyFEqtUpLuH5g/3oMq4XAgHA+I90jfIb1bHYPqFDhY9M6ozt1yQW1bLqq5UtBcGKnP++GSeHc/8/4UibnggwE/X7za8U9+duD9x8RvA8Q4E2Mil1plUq+HbZs/xIEfely3M4HwdCan2QJQz9SOIXS8+eJX5CKkJDVNuzL2C1wuD8iHt8zzaDo6tQx4N9ywO77Gh6FedGXDkAnGlWO63HG5f0sphaH33B53dH3Pq9dv+OJnP6fre3zX47udAQkKzS8ppSwliaUOBAEcts4ag9VhOl5UZo81bC6eXHqWCmKpWEXUaUQ1UXIkzg9cxg+mP5MmNM9rOysVnFFCBTRDZQ4Zk0iWLtk0jFWlxsEb28fjvYVWmiB1EawkcUpPtsVf2oaAIXUfvjKx1pRNJ1J6Zo4E38GhY/jZgePRk73j3EN2kT/lkX8R7/iYIvvQ8UIHgnMM4jm4gEcqcGJ9PjihrxVJhxDYdx1ehBcu8Nr3SFIOziGUGoVOZK36XFrogyMEs2111au6Xq2Wsbl+cCWDt6HgXIMWTUuv/lnXEy0FUqYkR0mW5t/WnGak6OZkK9ajy7G0zcla7cDqjD97O0p7AN/zMY+eF2xsmOt9HwMdV3hI/evqUW93eOLsj2/5STDpiTv4vif11P5P7fPUvRtw1e5jPZI+/nK71808/iO2v6gNVZWYIiVnvGYCnl5hSLdkVUpfKOWI0pHFkSrLpzhdgJ+CBX8UBedRX8xP7JVhpwwe9oNy3Cudx4IFziYvA2ftWsqcKXM2e6ACPya9ViBa2mN/hnQxTZ8wFEJvGrJ5Vspc+3wstbyzItnjcmdrpyZEq24fGVfXJqdtNtRarQskW2W9rmrTDH1H1wUrJMBEIaEUSxFdREqtwIXxr/NiC6RcQDMlG/Cz6/tNVc/naUdoPUUq23D7vj7a57u++937yKMPSsmUOKOlEKeReTxDKfS7Hbv93ub000ce3n1FjpEy3eJyJHQD/fGFLdriFpt52f4alPpHgD4/uP0Y8Oh7gOLt9pcCP/9H4H8O/Mf19//hz/u6glpuoZYZjSOKEqeR03lk9zAxDzM6ZrpQKDi6HgZVsjfDvGn/eJRSG8cvrIWmoFP/bmBEi467NdZplZos5QUxjZriGzLc7Bclp0TOBvxMozCPaqhiKlVrp2xSmwopJaZxtsEOKBlxHaIjoh3OKy4knLey5pRMRRjqoNTNIrlZFgxdWBw9F4RuCAx7h3hHH0s1KB2hCzj/vejtX9CO9kQMDddF0NhXtLxNMY2aaQryLSJf56D1wWLCzbo4Dq2ktJVlbCkcG/+sVJ87y9U1qceMKmd/ZzGtg+yV5EF9ddDrNTyW72DjOBuxZE3FggYIiU3YGLhYceGlj20ZFfadNUXmmnGxmhJXVTbqwtr2b6u0PJ7Z/uo2tBN4v1YzsEiWrA0n7S4FoQcOGLvH0r2Q3sYw64WuV7galCYLYH15SonzHPHek8qMl5ngAr2P7EIihUDvcwU2hbKQ5gsiESfR2rqWHrbjl/V8ixO8vY76+wljbrVGP/3G08/s8fG23zcaccyCcQmE08kqgB32hfu7wt3xeyPUf0E7bgzI1rfan1e6PrLpg4/65NW+1yKBV6lgXKeFybJTbenFgPeULcukCkMjBqqsjBuHVd8y4XxCD2qVfpzYPKhpxhTt7WKdYIKFYVjLVYuB0KoVVHWt+5Y6r5jDK7WPbC67Npuub7Rwbg0aaBuP0hyja6PledoQSs6c7+8IIVBSJoRACoKmG6QERMNGsaquSJsIevvd3mt+lm4+VjCNjlLB7IUKjs2x7b7a+C8FTcmiZaVQ+s40VQRsst1YGHVO1Pp7HUQbh2/7+pMx2s5va0TKyhQLc7L1u7Ff+iAMnaMPzliUqrUU7rKwrMfczJ+0vu0cqNRgzvOORRFH6Ha4YilXpdi9uMb4SdHEeJOBGc4HxDlC39ENe0L3GPhJBI2IFkrqiF2gZKXrPX3f0fcd+93A8bAzLaAK/IgT5gJTNtgr50JedI5WZLSdxdpr7dRWcKE+RbGFUotgBHj7fku1sipj9qPtpyGO9ac955VJ2LhDsvSFVilnwQe+E11dD9yCFM/ZhnaKAsmcBs2VvV1cZZ8WszWDg85THESxFK2JzKj249WTKmOyNNsTubrX1n9dnZuD1FROcYQ6zxrbYDPedR3jzXZo59g+oyvGT92uAZ/V7mDLurke0rQTLbZBvQ7ZtNfyvS3gs1lFt3ORVrui2bV8sveT21/UjsucfT0hXd3n9hlV0/3J+V2v9mqv1uO371LXSbbHubqGT95cdmy7aG2/9Xjfx+RpfeEqkeW7N722OR/bP80uXe5Qn1rvFJb1YntP37v9RW249Bms2m/wELKJMgeNFM0WnG9BW908qw3LZ7mfGrhZ1v2aBbL+rvu7alM2nSCAUNfOwvJmU7lQilX67UFSZQ31gvSmQdjGrVZgGwSKsXnsCSoUEEplSkoF6am/21pVqq+h1enyNBFnXK2M67xdf2V1aanz9vbHHuzy03wyq9bqvq9N/7KxCNf9s/W3q5G1ef0dp79KZd3M/Z/0wuqDW2XuRK4gUAgezV1Nv4uUGMlxNtZPSqbLVlItzlD+XHDz2bdP7uuJB3O1z48ejj+unPv/DvgPgM9F5B+B/xXW8P97EflfAL8F/ic/6myqkKI1TE1bQjqkVljJc+F8SvT9zINPfPimICdlGArHu0IIjn2n3A6Gzh46eDlYiufOC0cvlf0DfV14PZYaJs7So4ajpQcUFXLL32yivGI27bb0eFu0S+coGoz9szvUcvFKfHFgniI5FV6/Grn7xUScE+/fveLjh3tyLpzPmXEqFHVEHcgVkip6poxW3nU6G65bCsxzjRpmSCOUiF0zgjqHljVnUZxjf+i4fRFIpbB70RFLwQXFD2VrHP0bwP/tr21HVcjJ2A6+ib96JfQ24cUMMUkVdVViVmIBl5WU6jTnBFFn86oTus4O3HWOoTOnHyeIVzPEKkhuVe5lMSaa6bqkqdSJuohUgTOYo1WXEidMFM6lpn31MHQtp94YQG2ge6kYu6hFDwxLs4WgMn6WxW9DAKGlaFH3rwtDE27eOtVWbtWil1cU7VqFxfQ7Nlotz9iGYIZnPwhd70yzyitS6fatnVeh5z3CF8AB4Q7hN8CAylvQafMQ7Lu1Jy8TfAFSUe6nmT9+fODjGNnv7/ny8oFdNxNkzxfHG276PQ+Xjm/vD4zRc45nUjwDmS6M7Luxalm8RPwLtHjOFzifoaiD0rOu1BvvQ7aL53a7Nv1WQOCxgdaWrpZ0WfullM1+9Xh1ZcvquIyBmIS37+Af/qFw93ER+XmedpS132xTutxGi2rL+GkA38IAohJyluOoVcCrn9cMAmNRuuZsrMdp34MKnldx+u3xaZortPFamwQHLthr7/Bqka/FaVG19aF0iEJQMaPJecSHWkVwTUvauhxLSkttF1cBwYVdV5tVpaXQQpVssvtqNhEsKYvtuxt749nG4uVy4T//f/0XDIcjLz77gmF34PMxcTwcq4vsSPtcmQ+rkWSVl6rxljOl6sOIt2dUSwjSCh2kcSSdz2guhGGg2+0ttSdg4JsYQ6NMJpxbpkiZzGjKVWRXvMdVHT6RVma7Pn0Rq6xYtytwSh+/1z7RZcwJEBXePUR+/+7CZS50QfjyVc9nt4F97wzQW4xYM2q1ZEpu4MMKPDgxtpmIX/rU4tCnqt3yXPaN84ThpQn9q18ZojXgmoqiH74lV2c/dB7nPbv9jpsXL+j6gz2JShP1mvBq6V03tz3yxQ1C4fWLl3zx2WcM/cDLl6/47M3nhK7DVRq7IlyiAey5FOaYmOZoIFlOlNycdjXmdY2qxzkZSFNWXZtUsolPq+ksxZTJuXA5n5kuIymOjONIivW5l/X6lz6KAXcSbJ32ooiYY5KikhqLOqcFxF/03aRQNEE2ptEcZ1LMpJSJOZFX8O7ZxiJa0PlMKZmYZrIWpjgzZkG05y4l/jQpdz6QnTBXe+MhRToVjhJ4EwZ+tb9hHwI78Rx9R0DIuRBjYzc7E+wWYQieXQh4cRxV6CycidXAUFxlv6ac7MnmXCvXFZrW3JV7tQENtr6vLO+zTmQLAMT17wV8kDXXV6kVvYzpTanAQAsEXIE/LE6lsmp3qeoycrWUysxsaVTP6GvUS98Cztv3t+/Jdv/vBxOfOE61w2UDxotudHm2bKqNZybredsnn3jIP+JSrp/6D++8dbx/cPfWNa6uf7XzGrjySHfkGW1Uoe96bvbCL944Xs+O+7nQn86cUmZ0ysdxYI6RGDxx7CnOUZyJO6tUX8BbEL8ZMkmUUwfhZBW9xk4ZBxN3FlcQn0GULih9Z20rFfAEDORRWy/Ft7XYbATfAQXCoPSHYjK2FyWPpsmqVRhaVAkpQx3LJBPLt+wDA5xRNfZtKwpgFE4D4nMw4BhBk2cu5hdGlepfiumv6WRrXgXm0XmpBGpgT4fQI3SoBkrxP81Y3PSgx331z2X9fOc56mDIaWY+35FjZDzdc77/YAWR9gfK8WC20OkjPk/mXMcLefSQe+LpI/P9O1zXE/oeX1OgZaHM/9g7frw9cec/MHB/1D0/+ccPD/AfU9Xrf/odH/2PfvDonxysQJxRg0SrN9GZsVAgzcr9/QxuIpaZKWTyruA7wQ8F5+GwU14eLS3oxQ6+uFGGAIcgvAze9ICccrQqf+yDcNMZbc8NxldQlSqQ3CZcqfQ+wGMAQvP3FsKMN7AKtWvm0J6PDdCiTJfEPGZizHx4f+Lu44V5Tnz7zQMfahn5h4fC5WIUu/P0wBgfSKUwTTNTTKg6Uh7IOaAEih5QHdCiFNxSNaoZR84HDjc9L1/3qIc82KQXY+T0cCLOsd3Av1LVf/+vbUdViLEQAnQ9OG9sqTAUnFd0Fi5ZSGoEnFiM9eAcdNGMD3WCK7UCmhRCbwKSIShdV6phKDZhIehcSDkTM6TiUbVZ3QxJS7nyXvHBDJSoSlSLqE2TkR9VhJAFHw34OQzKfmf94qYXDria/mCiiapGGXWlMsqajIyDFpGUIlBkNag26+J2nmivjSXFUl5SKvhDta3K1lHfOumrM/UsbUi9pn7v6AfF9PGUhFUlWZgDS+c/AL8AJuCCyD+CHoFAkW9BJ2uzahiYLbg6ypaCIXy8TPzu/T1DN3FzPPCb0y03u5HgBn5+e2DOe+4vPV/f33CaPeX8jkv+lqKRrjtz3J+tet7wK7o+kEuHvodxwqrfIbUKnoCs5ebt9WPgR5YfawLZfHId9Vh5hPU4W+bPcqz6TkVHUnHkSwd4UipoiRz2i8bPs7XjVSoXG+Cnvu/dCuRcA4wb4MeZ4d60QputvwV+tt/bgkALUOOElhu+9Nn2WYtqbtcjZxUP7dl3q7uw5GvVXHfNOKDD4apwc8GtRnZjeqiyUZioYI9ejTVF13RUajpmoYpAGiDtoDpadsEtSmhz7jL0n7UNT6cL//f/7P/J8dUbvvz7mcPLV1zmzOevXtI5Y4jElPBdWJYkwbQCcknmOMVEGc3I832PP9h8ZuuTlaFN5wuXb99TYqK/vYXXHh86A0iCjYCSC2WsEbDLRL7YManPT7wnaLFn6gRXGV1qnW2pCnfFwFnaiOW9zad1fJnodszKt/cz//DNGRS6zvPLzwZeHj2HQSoHsQIEWGTOgJxUwYdKowcT/0ShChTbczDQp8TYQMNnsW9EPN3uNa3S1iqAbzc6pQjOdASDswoqoQvsDwduX72i391gFQNtDLky43RENHPcvebl0dEFx2cvX/Ll55+z63uO+yMvbl8QqkK/iKMAD5eRj+cLKWfOl4nTxZFLIUaIs4GFOReSWFnueT5xPp0oOZOniTxPFDVQJqYG/BTmZKnv8xyJc6Tkmcv5zDzbvOjqc6CCEg11cH6tCthAO1VISWt6l6WkGcOgppGLOVKlRBQhpsw0jcyzgVcxZ3JZJpRnG4taCjo9kEtiTiOpJPxuzyULqgMlTZQx0REoImRnTMdYZ7EggS/6Hf/G8Zbbvmcnnlvf4RFizAbCFaUPnn1vOpHBeTpv41VSQZIla3gq8FMreqSWxlrzB5uOkrR57gnQojlD1+DPxl345DvbSU7WxUCa+KmNsVzUtDDqYrAcv52ssRwq4NOqpi4gENicVKqcAs83FtulN1vk6g7rHLRe7xYMWW2WHzr04rNtnK3G9rkCRx45YdcWw9bmWF+oPn5z++1P3cEFJ/2ea7465NYLv7rWzf5bYKytf3WdtXt16/oO24Xx+WxUEfq+pw/C7QAU4e5c2PsHTuOFDzmh545TGc25C0eKCybt4cxXKt6hwTSAskBy9gDUFZJTvMCdV96HghfFh4zvIs4pfa/sBpNBCMHRddXnqBWcTRvQsi4Ays6YlCj0k7KbLfB9PinphBXjiZb2JQrEjKQK/LSqpWrplGQTr49lJhFBCyWqpZap4EqwNlBhjjVVuyhSzNlQMkUjpYw12JEqIzPiS25IFY6AMOAIaAmUHMz3esaxuIyvJ8bVYvfxXf33x8sZU4+V48R4/4E0T5w/vuf+/TeUlJgPe/LxBgHiw3t8tvVVoli17Ngx3+8ZhwEfevR4i+htrS7ZIS3v7y/Ztqzq9dYeXfkPj2H5Ufv+8BP7ycWdP93a5Ni8D0fLMV+iw2IGUCpCypCa8V51eHxQOqsqySEqSRUtnqBKJ2bQS7BBLUBfRTEXuutmVlsm8bYQSNPWwRgc9YO18nP9vLExNratwxF8sahUNGR2nhPjJRHreyUn0FyNHkN2HYUoiaSRUtlPLf1JtDqbdcJdGQebX2W9JecdrjcGhPdW0ewn2aozZc21SYuS1f0vrBGfJSavrdM2UW4DW9zisOoSqdEaLTHGSLEqhwVL2SqC4S6G5hu7USuTUS0HGEhFiGrsnRwN1HEevC+4aEZ4dI7sbf9lQNQ1rrRrbvexMWCaI7itCi6bv5dn8sT7jz+/Np54BPz8NO3ntpouWyd+fQT1bw/09a89whGVI6iJPduAMHdUtgDLZqJXgZwLYzK9gikmpjTTpwA6EfwMeDo/E8JMlz3ejSBnhIiTE86dcM7ThYlhl8jZEUJGXMKpYmLTqT6wxshRlMzKzqlLibZX62Qui/FSndMGWNCc01R7ddutPSFZDSppR6hGMkqMhcslrdV4nmlrQq3ttI+rdLUxtrx+1M5Pvi+b4/D4/e25WECINhdc9WtYOu6WFfL4DraWqChrZHk7wQFNkUaR2k5tItH1ZT1qmyMXp6fe62r96mrvtvWg3dhm/0UUV9b59enqLH/dVrRwGWf8HBnnjI+FOVpwoGSt+mNbZlN7Ouv7jdqsuSAl44uB3SuV2xy1EpP9pISmQpGMZGfGoVTHN9efNUxf05pNfLKkiEvB0sVcwUkrgxJYhAjaRV61o27e32yb3YsqcyqMs6VOD4Nn1zt2ncO77Ze3kwvLdTZWgUVoeXKfDRr9rFtZ8n0NDGszgzHz6zzT1nU22g2wFBpoD8RYcOZcdH1gtzfhzd1hz36/Z+h7hmGgCwHvq+i2CEVbgQVBSxViLdnAsZxqha1CKhZMySUT48w8j5Sq35MmA/tiyqRs+kkN+FGtotopU3Ik189FK3v1qkE3UfLaCNoAODXgstR1u4EENAe6zcGt7xbrj2t637LH8zZivb4FfK72SEsJUTF7U7Sgi4i2zZddtWcH59j5wN4b42fnPR7BF8BZwYLBeQZnwS/vHMG5ZT4yAHtdV2yKamN804c325MJQaLLMeqh13v85JUsf8v1B+uE3k5bHs9Jm+tpk+Uj4GexVbXNWyvYt7D0nnFb03O5stO3YMX2Pj/Z/9Fmz0W3h9n8frS2bN5T1jXDWnW7UlHHx/rsl2vUlY163bb66cvN9crjN9BHZ1yXPN202+OKcPJo8mxj8/pcyhIE/QnWRTB7XaSKDqgSu8IhZLRTRk2EEnHJ1zTebHo+LWpVWfcKdexin6FkgVxtcucVlxXvCr4UOi2mcYgSXV7WHdNCNJClbASgrZ1k6VtCXQrVbGwJIEHZRp20Bpe0AjbNh5OWekI2Bq33FCmVTdsCA4riLWADqMrS7RwekYwu4v7bmVexdLEWJKOuU1b4woLtcN1bnmHbdI2rbvK4L129/R2DsH20Ncpg7Z9qPnZOlsaVowUyck7k2ZG6gEMoaQbNiObKsEqQoaSZPE+gSo4DJSVjOrvGGn482L6j3z816K62T+9va9t91823w35/C8l3Xlbb/rbAj9SBIA68RyXg+z3u5g1u2HH88uf84p/+mjeff8bYH3nYH0ihY0zCaVJiUeKk3GdDYeczTGdL0+ko7MQAhN4rQ1C8U24Hx+uDp3PKUAr7nE0jKAldsmUxDIGwD7U0sSzipVgW1rKt5kibTlk0BlQhJ6UkKEUIfc/xhbDLhdAHXn92Qy7KNGbibMJ4lzExzUZdvrs/cT5PxFj4+DFzPmdSVk6XC9McycCkVr5dc638lZSHu8jv/yHy/itH2Dv2bzrC0dN18OLY073qn7cJndDtOnwA3xnLB+dIFKTArI5ZPbMKCQeh6vX4xi5ozOFVK6cxiWFdkKZUuMRELnB3ybx7iMxZuRsdHy6emIUZYcIYP+EC3WgHSgixGsEjnlHr2XoHnZUs3A1qlTk8vNx5bnaW5jI4pXO2WuSsCzW+aK06ApRi5bxVIYszgUUge1mywGiSTWC4ydYwWFaHZmlw7SQvE8p2Knjeybj181Wgty3qstmjndeh9AgBeA38BrgByYj+ESUAD0CsN765t+UGlZgTl3Ei+cy3d3f862/ectyduNkFXuz3qOzwHRz3GfGOU/wT/vxHCjMiF5Azzne8fLXn8599TikZGJlGISZhHnvmqVvOvzgQost4XRYVoQIIzbh2GxPZnrlddWFlkmS0VlSyPbameXN22rHbbKGUkhnPE3l+XuAH6jgSaKLka4BWcK0ksEgVa2YBaJp/7lwVbhZj5XnZsH+aH1vHLawMIWig79pntyDnVdnOLaKp62O6cjtan1k9Ohpa2vyu1ZBmwdy02Z4bf6j59aUszbEculXpa21U6snLhtmTq2YQV5oArKlhz7x1/Y5f/Jv/jP74gt2rn+EOt7jhFhHTMbJ7qvoqmESjgIEzNWWpxLSkaNHSMJyz1KxgdMVSmTElRfLlwuw/mlET6j4CGjPMCUvJKMiuswh/SswfTIDb3QVcF1jKbYsgztO9fkn/6oWVA1+UEdu4eDyfbdbSAkVNK+YyRe5PkXd3M/ve8/PXO375euAwOHadr0zd2oatsWt/UzCQI6XKBEpQEqKChISI/zFlwP+iLaXIu69/j+8Ghv0NPvR45+mCsTqcRlwekXyBeSafTeR50sg9StfvKdJRnFXm2u0Gbm4PhNAhXWe6VsGh0hGzIFGJ8cz9/alO26YtpKqMU+Q8zqSU+ebtW776+i0xRi7zxGWeKFrIYBKgpXB+eOB8ejBgcJrQeUKLWhpOFYaOWUmVYbM48poo88VAQaq2xdKgZTGsXZpxJVqblFQd/iWwvRxTqanfmP6cltU5zWWR+f8k2PKsmwi4jq7r6fobxAs3r3Z8+dlLDrc93dCxPw6EvoJ7wS2gm1QA9LNhzwvfc5Bgej1tvkEIzllKiFvFtc3tWQMQKopWQKjzQucwMeVK+WnPe0lpXdD3jZO/sSm2YMd2ztVPfsvV59S1pRWpKCWT54gI5HFCzsEAyqHDhXB1tAYKNQAoZ13SvXK1l0tKpHFa2XrPvMl2unnkr0kD0TfrQ3utT0zyTyTU0QrILNtmzb9eKZolde28rVezWhLLoapJ9r3rzeZihOvf3/cVu9RiznG2KnOhCgVf7bmx4dqzXB1PW3gb4CP6Q2f+87fghJf7Dplnc/ZSxMsALxxj6QkPkXfTPSmPpHSA4lHtTfOm72u5d7XUbccq/Fyp+SIZhxJCZCAStBBcpNcZp4WuFPqULO0dwVf9NhcF8ZVlU8XVzQayucCpEJLSJwtI7xHmIOTiSASy76A4fDLNNymKhILkqktYkrGdsyIhQZeoGiBorZJYUq2qp9C4AVIyngsuR0Rms2ndgJaIlge0TFWpzPqad47e7+gk0HlHnh3zBX6CofjEZtf+VwGGG/AnzxNxGik5cX7/ntP7t+R5YjrdU+aLVWnUzJgmRCBe7tFkbKhMQTUhzsPHQEwZFzq64yu64xkfOg6v3nDwne1z5Sc9cV/t2v5/tukPnv9vCvyYs+lQ58EF1AXccMC9+Ay3v+H4y1/yq3/+9/zil59zKZ6P2hFVeH9fiN9mclRSLIzZIgX3XngXzIHVSj1FBd8VQqc4p7w8wOc3nt7DS0m8YaancIhwjEpA2L3Ys3OdsWVETDPr0XO7jlRUwWIaE0VXVEjNCPVDx82uA4HXn90gTpZFkGpQxSmSYibOkffv7jndn7lcIn/4/QfevZ2Z5sw37zL3xSp1JBVjA2YhzY4chXgpPLw1Y39/E/jsNwcOLzteven4xc9uef35TwD87HucK/gu45xNJVEdqoW5OMbimdURBZt4qai6yyYeWYEf44noIp0Day74JRU+jIU5wbvTxFcfLswpcz85Pl6ElIVJYaxgTLd39GebmLPzJLHUgVEDE8FK3AZHqdHRoYe+g+CF+73yYh8IDg5dYRfqsG4OBs3Mqhcq3nShMP5HaaWNK8BUhI3+qRqAuLDIdH29AYFkOfbmWS/O9E8wiQh473C+rGlphatJTZY7dyi7ekNvgL8HPgciIr8FrRED7jDwR6+tp2qgpJTIacK7yFcf7tgNwmHo+cUbRz/0BL/D9xPH4xnXwcfxH/Hut1BmkBF1Iy4MvH7zGf/k7/8JWhLTPHP3cWKa4CE74tRylB8LE14/wxXysd+y3AMsKV00FlGuxkLTF4E14WZ9vU0Z2x5fc+Zynhj5CYCfCvis6V16pcGzgDeypnE1MKcBPE+mem1Tup58bQ6H88LjLnrNZLs2aJdxzgqewybaan/Wt6uuDyBFaNm4uvlvixO1qNkC/NTdMg34WV0bVYUq5K5OkVq9S0QtMl8vZmH1AT+BbQtAv9vxq3/2z6HbobvX4He43Q5x3XJy1aq9sgEatRjwo6WgcyRPE1rTmPIcq67dQNjvwDk050XUMKmitbS4btvKORMebm/tegN+Ptwxvv9IybWG4cLkMAPYdYGb8ivC3qpTqg+1M7E+QLZtvo4TLcqcTEPmfJn58DDz9sPMy2PHTe/5zWcDfRD2nWyqP60gYfNxRTBWREqoZkqKaAV+fEgI3p7BxkF7ri3FmW/++Dt2+yMv33zBsNsjoUNkh/ceX2Ykj0gyyzpnm1Om8R493+N8T/E7crhBXeDlm8853h5wXY/reqTbIcFTpGfOtu5M5xOXh3tyzgtzE7AKXLGQYuL3v/1H/uW/+gfGaeJhmniYLsaG9WLroRYupxPj+YyWjMzRHK2lvWQBG5t7GhrLCPCScJJtftEaRFCFnNFi4tQuRiRPtejFbFpDWpm7uvZnKuAj0hmIghrgiRr7TdfreZR2+YybA9fT7wYOr27odh0vXw786me33Bw7QucZdj3eV2CmqzajyMLa2Xc9L3xPEEs1bKC1A4K3aJCv7AG7b8ci+mp/QgXkOy/0Xpg0k6NVFSo50VLmRBrwBFskQDa2xJVZYZPfE6DPdmstbWnNUpERzZkcLV9fLyPaCy54OlHCAviUBazThdFT26+K8KZUGV8xkcaxFkd5vrVx26OWN64+r0Et3ewn69N73K0ezxYr8MMWrkOl0UssDRXZ2I31iyvr5/EVfwoHfYLDfdfNbvy8p4aEwPX6iq3fKUXiPBuTpe8RCXUufeIoS2CwPrMNk+/PTcb5sZt3wut9BzpT8gmmM/vuyOHlnhQ6xE38/m1hTI4pzTB2llHRD8hg64/r6yO0vEm0lXmn4Mh4Cp1Gdm4kaKH3MzsdcZrxJeFTQlzBZVlsHefWCltWjaaya1ohC4SQoc+CV9irJ3lPdp7oD8TSoeog9mgyDUNRDABCEU2mw5MNEKKrQZ8YIUfD1edCSZgvOYEmS43v9IxnxrlIcAHvD5Q8WoXCXGi1isHA56HbsQsQvFLmxKSrz/Oc22qz2SZt8H3nOvzUSNwcC9a+qkqaJs4fPpDjzOndtzy8+9ZSlucLOl1ACyleKJc6N+UJzRNooZRITpZxFOOM3N+BC4Sbe8LxhO934Dt2Ny+r/MG1n3YNYOnm/x87LuTRy0ew8SeP56nn9eeNwb95qtcaHaneh/PgOwg9EjpccPjg8Cp0FdHsnOKrc1PXLTMAYXnoJRdysoiXy6bN0ioJD53SByEIHCpQ4aLSTWo++Zzxc8FVW7X4lv6wTmlL99SmrVCJc6UhpEqLTqMVGfZ2DO+rQbM5khalC0KKidQJceqRkvACx31g2hu1fb8zoWfvYI71viNWubrqfaWpUGIm9M7SySoafB1HesbNVa+yrpqqxq4pKpaKpSbu3Kjv9iwLiwgzgKwRFxtHsrStilV2GaMyJeUyJy4xMsXCJQpjdKQCs1oFE0XQVNBktNDkjMZZEGacafyglbWjS/lRRYyF1cGUlORMfLLN6VLMIbwa6GKOYjOezChug932NcNUryOTV+we3RxvPb40avbiODcj7qdoxEcL/NU5NgbkZppVMTE4U8oqoHtgj8gO1ISVVa/7OZVn3VxurSJ1MScuVX9qnEfmNJr2ROnrsUB4QDiBzsCE6ohqwbmRrptRFbowEcJEznUxvhqx6/1cm1ubRUXbd7al4BvwU1hYTLWl7b6vnZW1E7djbg1xUM2oGrX0OTdb+NY0yx9M9eI79vmu1099dzkvS0WaFeSpv5ZHIcvfXO9y3RrbhVNXwK65H2tzbT/Ytq9u3qv9th2zdsGrS2xRyva6HV90xWI37B7Zjt1nBAvaJuLohoHiB5J4qnQyW6r21b0+8giW6HrRJXKuJHMKvQEdskmX0VIMwImRpn3UjuZCZ8+8lXivKKCqVrZQwvRFSn0krU2sCpil8fwYb+X6zkqx1LaUS61EZffkPQydMR+crCyCFfHbID/L82H5TKn3vky5W8Ps+TYthTiPtTLbjObOAgAlUESNSq6mWWWAXUSlkMWT3BnnIiUoRTsrRVzy+uwrxd8EO6v9gTLHxGUcySlVMLfeW9UvTCkzjiPn05lxGjlPE6fpYsGKYIEQVeUyXhjHC1oKbo642IAfqeukrbEF66vGPgvLOZfzStOUYmV7lNpXVCvjpyyMn1JZs7YuVBdSal9r4Fwxr0ir02wn1fX3T+J02nWErqPrB7p+YOh6hr7De0cnHmdJFQQ2wA8VBKUGBytAuqRn2a1uLrneT33vkz4pshHQr4LKUpY0q7bG2lwltZXapsu0uD2ltrYAmtCyfVDTaLfnL2rAck6mi1WFZlUwjazJo9njvasWFlWX0QAQrXptpZh93lL7ltcpkcepAj/POCI3SzE80UPadC7rG9tlAHm0I7LMH8q6HrT5ZHkfWKilm5Ppxr79xIlbpvLHF7ytqnU931/d1TqxbabB67X1+l7b2lvHpz6aUx/No+3061rI5vlVY53HQbbn2QSrdqcmAIvOI146OiJOOjpxdECnDl8SkhPkYJVguqrFWApSNeqcKJ6CitJJoicRpDCExC5kgs/0ITEEC2g7bz+NTd1UM2w2bhHhmkMmBpSKehQDfEK1nIKDTo0JVBQTX1ZQJ3Vur+O0ppQttpFgwE+ounVaWcmlja3qZzhjLDsRVAJa79FkGDzb8mTLGqjG+3HO4Z3gnNm1Wsqj/vvXb1ej4aqLPTrPp136020x5GTps6pmz+Q4k6aJNM/kGMmxMqArYGAzcrXlSwOb61qLyYGQEpTJKqRNExomW/tSqvNmm2OfmmAeP7d17++8jcfPabFFN4e7OsQju3fr76h8ssd3bX/jVC8HYQeug+4ArkPDgehvEH/Dx0vmD//4e+bze+gH2N1C6HDRc7vrGDpz+KfkTCwuFfKcIJloVh5rzngX0NiBMxHnnNXEa3dKdxB6Ec7nC/fvT7isdPcPDO92iHd0B084emO2dJ6usxSwEBwh+Br9uAaElrVbqAuo2SspAaLkvKZKLIaqYgrqIhA8+xvw3Y79TcL3ez7/2UhK8JuTMo7KPCsfPibOl8I8KR/eFy5nZZ4z9x8npjExHAI3LwL7Q0DIfPvVe+7vntnEFci+oFIWXYI5w2l2pKKco+NuVOZs+kxZBLyY5lKwSqg+qE2oHpy4+mMVXeYMSQvf3E/8119fOM2Z9+eRr+9OzLkwa2AslcHjAsUZq0qS4i7mWM+5MGczlJMrZGc5sm4ANxgol1RIVPrmLERnE/RYlF0xFtKgSoUz6HHrYHEZFSs2HhcfRMjFk4uxFLKuUdJS6aBQ52EwvWFvXxaoQlb8NHbs081YDYXVK16reDWHrpmFbSZWlA54hbAH+RXCfwv0FcgOLR+xOnozMNr+V9HFApooCKfxwjcflT4EchamKRN8x4fLgXfnIzHD5fyWkr5FS2KeZ05EUu45Xf7A5fwPIAMhZF6+zExjZhrP3Mt5NWSWsfYY9Ln2Ga0FOnTJyUs0kMfuJbGa0Et29OZJ2u9lHZNmKK53vupGPOdmhoyBMC1nuzF+WnpXjVKJ1NdmALnaH1dmT0sNq+wf0ZrbLpsIl73f0rsaq+gTQ3vz93cZ4EtufHMYtjtVQ1hlY7iuMmeLI9i+vaRlbf41C9scnPV5LfaC6DJvG0hbXRexdLeWmbRW/lqz5J97U5SUlTnOPOQTUUdehhtKOS4Y+wJGU8vaNydNq9OSMynO5kQtz1JMiLm3ilwxzszTSJ4mnHO4WiXMWDJWqr0/HhF/Y7o9zhhAVBZNvpwpKeFqepjQ5o7WCYw6KBU0Wta8TXu1NmlOigCzKqdL5MPDzIeHSMmZQycce+FmcNzsfdXryxUcVnKxMuWlWpIuGH/UebfMtbpEhsB5jw/BqO5OeG7yXSmZy/07pMxM+wFHIiJMDxaMuHv3NePpnnm8UCSBzDgpuGlmPk+IC4TjG4bdDb5zhD4g/YD0O7IIlzkzpwI643F4Ed69fc/Xf/xH4myVFVtwZeh37IYDpSgf7j/y9uN7xnHkEmcucaaguL7D9R2KmqBz1fUx/aYEYGXnq45EzlbRS0QQ7ezHPLNlrBSVKihe0JjQbIyfrhR83Um8w4lVPXO11rmqpVRbWpkyzZByXoNnzhwmnLEyxVm6rVzXMX+eTRWNCVHouz373YHjrud2f+DFviOnTDrPxFyYPZyrkKR6KKHNH44g3rQLp4w7J1xR9vsdt7cHQvD0fYd3Hu+EooVSc96atmNpJYXF1pFSMvM84XwixYkSZ0oymq76StXVNY1RVZb5spS85G80x05VySkZE0BZADuK4nLGVWbcogc2RuIf35PfPVC8kB8+UHYB8cLYWcDWALu8aINpFZE1xk+ujB8TFi9qoFKeZmMSXS7P1oSCpQkt9/X4802K1gLErGbQpi+sa9QK7qzH28Lzi6bggu7Ub4qrlQ5be8jy7U9EH+vHupx1CyJ9V19fF0m9/u/KLby6qXYFsin+IJt7a9754tS0aX61URfGlDQdr+cfi6LKLs5M9/ec/vEfmd+/Qw8v0Ncjujvi7wdezgdUO3JRhrRnSsnmeB9QbxZ45xTx0O1nhv0F3xVe7zO/uMkMQTkOhZeHTPBVkqKzcZzVEwnVvs8LaCrkpe3NpmgGtIkqo8KsQiyOrMKuOA7Fit08zMI5OVJ2nDPMcwtK1OcsQue99V9AhyoNVBRiZ0zKrHY9FMtKcMZKt+C25bRpEXwCyTbO/Dzj4oToSNALTs/0eHZdz34XzN6r89ezN2UdDkvRmO9CdpqtJzbiHjPJmqkhdX0vKZHnmZIz54/v+fjVH5nHC9PDHeP9va1lFHw9mjEQTSg7p5GcRlDFdQO+s7WolNkqSYonS4/TQI6RNI1r8YimV/L4wp++nc1fcvXXCgksD6hOB7KOt41hrFfjeuNbbNCI7wKaHm9/Y+BHIAyIH5DuAL5HuxvmcENxt3y8FP7xt7/j/ltlf/uCF198WUvO7nixu6VIx6yesXiyCvNpZpwSJWfilEnnTM5K6nbEGFDnGGc4zUrwir5QdjsYHMh5RL55h8wZHwI+9Ihz9LeB/oUtZLv9wP4w4L3jsO/YH3qL7gRTdheo5berMN8m8TxXVhBcj6UFIMZywp0ECLC/GTgcQbXw+rNXlGxRkFzZO/OUefd+5HSKnM+FP3w18fEuc7kkvvpauH+I9L3n5mXHbhfIeeTrP70nl/FZm1BRks9XDKy5CKfRMUXlnIS7GabcmAUO8YLzVgksePDBKrRJZUQ5Z1GzkoQxQ8zC13eZ//KPD3y8zLwfR749nZhLgdAbKCge3+/wQ4eI2HOKFkkaJxhHU2ORkCFY9Yn+6Og14HzTAXK4LCQvXGqay14Lu1IIAi+AWxEDgSj06syJEeP4ZAykamyiiCdRK4I1FSMRinireCMYCN+YT3mzsD8Rvdw60D/F1qbWK8d7Azcv0aONRg7SYzo/BWFEeA98URfH32M95IQyrUetUaHKkUMVTmMh5hkvwuk88f7jHd555twxpZ6scJ7OaDqDZuYpE1Mipp7T6R85X97g3UAIwsuXwjQk7u6+QuRbVoaOLvPpupXlulY8QDCIL9R3G8snY5XMWmW8apzp+prrI30yDbc3VR3PvRmmak7QqvXDCvwIS3n2BfiRJqTenPNNapijAj9cl3CvOlCW3qWLQ7/V/tmyfB7326fX+M0zuwJyVttYWVO9wBwI65p6dZT2f6kRGZuGq/PRbOvaME20Wev1a0310prqBZBF8dWAXlh7qj+Zxk9Lfxjnwvtz4hLhs51Q8mv8orW0sqva60YsawKpaW5RLhN6RqEIyH6HC4U4z8zjhTxNS/8QIMdEmVK9GiEc9og3IEddVRJJiXy+oCkiO0s7ugZ92o+BP0tf4np0bJ9fA7VSLpwuka/fjzxcjF1w6KjAj+d2Z4DsHDMplQr62E8pxdaXYPs476x8b230Bua54PFdBxigUJ7ZwC05cb771oCfww6v0SpnRQOyTg/vuZzviNOZQkJ1tKixOkMNEI7iOX72c/rO0fUdbthBvydp4jQnHEbDl2JA79dv3/IPv/0t4+VMm69E4NXLN7x58zkgvL/7wLfv33IZR2K2OVQF+t1AXyx9N4/TYthKzkhJ5jx3ndknCiVbJS/rMxlXGWXQ0qdN21CcGFAY42J4Sw0SAUgFO1RBSzO2TY8pl1KZw1r154TQewPzqGmITqCY48VPBPyUOSFFGLo9+/0tx0PPi8Oel4eOy8OFj+cT8ziTnDK6QnEQvTL2heJ1YVxRFH8f6d7NuFj4/PNX/OpXn7PfDwhC33dmQxVjaRvb0ebp3FKmKkCdc2KeJ8Q74jyR00yJRmmXBupkKw+tCiVb0BNV07xK0abNsgJL8TKSxnmZP7QKo/lpws/R7M+YyDmjUyK/faB8vFAEUrCqSAtmITYPpZzq3KN2XTXdK6W8sKBKA2xLQeeE5vITAT+Vma/b9aipKm1mJm1cbdiyoK+BlNWWb9uW+SGySQOXdb9WgMRO0xaTutNiEziaG2hBiKeAn+/YdNnT0gDR7YV/Osdpcw91sQlsbb86IAuau3jbsnk2evVcnhQWf4bNqTLEmXh3x/jb33H64x+R21f4L2fkcIOPR15Nb+h0YMrKLh64pERSJbue4gtBE53MeJ+52Z95c/jAMCR++Ub5pz9Xjju42Tte3jiCF7IL9l0cl9hxij1ZhZQSKc+oFlzJuFzF+QvWyIrpy1XsL6onqqPgOJbAqUAsJgAv9bNLFqapmEC8w4LTDnbem/ioA3YO11W9s1iQWi5ZSjRhYingplWfEI+qQ4sjR0WSIqng44zMIyIXAiccJ3o6dr3jsPNsQmbPu7Who9u+vK7L1yeUR6/lCf/H+iyCFSYYL+QYOb9/x4c//p7pciZPI2k8o1rog8N3pt1iRQ5mVDNxvhDnM4qVrXHeitSUlMi5AijFQxLCPNv62BgcTxZM+qEn9/RatYyoVs1WKp4g6zyxDXI+fa5rKOjHbH/jVC+p3r4H1yGuQ11HkUCRQMqRy2Wi0wwuMBzPZpB3SqEDb1Q6h6LqcJpwOaE1QuFSpGQQF+pi6KrTZZN/EWNflObQlgI5k1WQPCPiyF0hd2oRROdwnccXR+gcXcqmUcSa7y4KroqjrIg5XFV9hgXl1JopYpTgSp8GWhhdcARRAwpU0WCLZ/COec7m5LnCzamQsiAO9seOWKDrHKEzQykXiNGMheduwuYAmf8rC/CR1dK8UjG2ZXMeF1aAawwDeboSmFrZz1RgzsqYMpdYmGJmyplYCuJyNSYt/c0FqwpnhIoloYhUK4BYFDQbXqqNtilXBotlvlrDJTV+B2rpYk2ep6UwNUpwW78dxnERqYaAWgn65jRa064UQW0aCGpOqHMbw6Q6pp84zj+BfbvCPtUoeXIfe15bBoVtHkuI6xEOIBFL++oBK2F+PRE9PrpFOVM2o2iKkdFNOOdJJRNL1YDII6pzNYCMmpmLI6WReT7hfaIUiyA7l0DOmMh0pXAuDBvZXEZL4dpurl53Vz9LII31M9n9bY/zyTHri8dvLX+5J57J82yfpHotwEt7vdKw29/I433gkxQwWfdviXINKGj52Uvv2YARWwzg+kltV/l1nC6PaBt6hXWAGbJhuzS6DqwDsfZNreOpGaV2vbo0S/uqbL4rm+O3Y8p2/3YJC+vnp2jBers1/UVLNfJqylQzxtaqR+25CQtNn5Wur5Up0FIntIoZa5Gr6Leypjcsx6nroiwPhmVi1uWttYGXVDAM7FGRq+sty3y8PSvrO/UZp2xVo8YpM0WbiXtv+ibBN92Y7UxVmYSLnsj1s5Sra6Ouq5v3t9fwXJuqCRfnSE4zKc3klJmniZxzddbNiYaM0xqxXUpymnHgnMMHb6wqV6ucFksHKPWZ5mLR3Rgj0zQxjSMWaU6IE+bDbIwZEVLOy0+uVb0QKDkYfR0TC279ZBFmFln6lt1eWebTZV+nlVlS99nMAbo857XVmqbNYinJugbpZj9r34ZR1LZun9UT2Nz0kyyMm/UZC1whJsQsduWajSGXnZK9laRPYumJWSp7KRmY7GNC54iLSozJ0hhTMR2mZKwaTabfY8CPXUJOhTjH2meS6SLlhKgzUG2KFO+AYKl0ggm912OWYsCPqqIxorGmKlQGjpZCulyI47RoTmoxsEbHiTLPULTq8mV0TuTzmTyO1vdcJrsGdFir2ZqevxP4yS3dYgv8pLrPMyrKKpY62rYNUWVdN2SzIq1L97L/siTUnXT5/nYN0PVnGcfKdkpqdu3VGVo1ApTroFh71eY4lmM+OVu1eXnDpFjn+EdOc72pJhq92gzXP1fbYiusH2g7dntoy1T+U6yL1dMqmTJHyjTh+hEdLyAOyY6QRroCIZuAvCsdoibqjzicRjqZCC6zDyO3w8huH3mxh9s9HHfCYefY9QHvLQtgpqVB1ZlGZa0oqcaE9lXuQYosccYirKVAVJdqhyYDJBSxdC9pAOBm+i80e0OqfIgsT6AZXqbnpSwValVt7Jf86U97BlYFCKcZR8ZpITirJB2k1AC+XXWu9/f8zbixALZsn6XvPLKrl8FW/96OJtVFfLqkVNO6ZlL7mWcrXlFZjsVVJip1DWv20bKurCOuWS+WrmpMZ92ujZtxKJ9cmTwxBj4xgq/vsa4zjX1ZSq5+ZK1SJ4JUv+H6ONdW1aOD/6jtb8/48QPa38LxS+hu0OGW5F9ROHB3+cDv/3jHWzkzDO+5+cPXdF0gDHv6m1tc1+OHA+H40oQTz5nuLhGi4qeMPxvwo9ySdxlCR7/vGF4OhM7x6lYZjo4goDcd5XYHfWS+JNJ5tME6O8qD4Lzj9tWRF6kQgmdKmSllM0Kdo4l4NazegIge742B0jkhVK2gIDVKXhcAa28DJxZjfllDzOJRre5iTYVS5zncOHb7wnEquGHH60vhdMkMryN3J0Obc82fnu4n7h7OPNy9f9YmrK4wnSida/fuQIxQl1UZc+aSjREUSrKyvEEJQeg7T98pfQedB1RqzqtwLvBxLoyxcJ8LZ5RRCtEXCAmnhWHn2B0zPsDNreflqz3OB1JRYjam1bfvLhTOpKQUN6Mu4rzjeAi8erM3xlYPobeHbKwgG3TqYXaN6+HoMXDugLW5A3rfco+VgyjZsvmZ1FK/ilJ1ljDD2FublwJTkHqdJngdE+SooNa3rChPaXMCzotpJf1kW/NwrQ2W6UQSyAUksyBeAOpQtWpDcED5GcIR5D3ifo6JTzmKNqHnp7Zq2BcDyaZ55qEY8JDVk9XotQYApTpJJyiZCLx79w3/+l//V/jQo3mHlr0Z1ekrVL9hrb7VdEj06tyfOn2CTYU11Usa20cx0Cdf7duAjA1h/InfwpJbLfXY6r+vIf6irYk6r7/ZVO/SRYrL3i80DQpfL3MVgK7pXdKizlX0mZYy9pShWPPeF8CoPpmNsbj9f12wtiD5ysChGUB110Uzvxo+TTBzGz16bDI3va1G518iS3Ur7VzY8yrAdVUvex7LvLxh+TzVc55lKxkd7/Hacdvv2HWBQ+dIWbnMGTdldmMmk6rzWalYKVXht0xOsTpcVc+gWysUlGlCo1UP6Xc7o8Gz6qhIr+jevhduDviuxwVPyYU0Tyb6Gzz965f2ujnBIrYOh4B0HeodMRvTKBVH1vRJtEpZ17xGlT9dMr/96sS/+tOZUmyd+NXP9rw8dhx2Lf1SF/BB6/2mORoDKGVKbmDEmk7kS0BQfAgGpMhPCBagCIk0X7h7/y3n0z0pRsaLafDM04XTwx0pTiYqWiaEgncdXahlvfsdL1+95vDyDcOLl+x2O3zf1ynYHPeshWmeEc2cz2fu7j5yOZ9AE1qBn2G/50WJOOeJJGZNRE3EHIlxtqvNmTxZUChGc/R1cWANNHJOyK0oRXMoxNg/SUqNvCqI1tTBQNd1oIXggM5ACV9Gc0CogRgKTrHoddElNbA5meJ8rTRp62Sp1exyC6pUdLaloT1zM9aAYCJHcyxShGmemWdlnGbOlwvTeaR0jrwLqHc4dQx1bilYSWEypgUUQi1HLUznhCbH5ZT48PYMCvN0YTqfyTkvpYhTyvzut9/wh3/9R6ZxZr6fifcTXjzj7/7Ew2Fg3vWId4g341InA5mAWpLA2k7miNRKd3POJDWmXBpH0jSZ01cKRTNSFBcjLkaKWvppTNHmgocLaZzMTiZRanqJsuoGJWr1taKQ0+JopRRX4KeOY8HGqYgQ0/xsTZhT4v27d3RdYLfbE2rFsS0Wuci2tcXx0bZdz8zO13qPugBolEzOtZhFGx+bzxULYsbqqHrfmX9AVd+sjB/LvqtgAYWsuboCVS9N6xgo9WmX69el1ECo9/hanWu32zEMQ70XWW8KuzYR8MFXmMIyGNzmOWhlnzX2wSdrX13KRZol9FOsjFJ1cARHMcHj8wn94+9R3+O4YeABZc8+X9inI5di88ssHvU9N4czv35zx2EX+eWvLvxb/9ZHbm4Tx73n1U0gBGFOPeM8UIrnYcrcXYqlYo2F08Xs4tvbiZcvR0IoDD6z8wUHpBRIsUOLMGfTJFU1eZGYbQxO2TPFnpgDl0vH5RSYkzBdhDhKZfwIOLNP5iSUVmAGm18pWmOQCjHhHu6Rh7Pp6p0fKOMEJeLmBySP+DwR5veEeKLTiSNv6f2J4GZ2faHzDt/DzkcChaxK0kzaWFTPti3VIJsNAFQbplnKn7a8sdLXv4xKFacL8/hAzonL3R0P79+Spon79+94OD2Q5omSIyXVkuxq1SMFQCekjIDZELJk7VjJaa3QzwrxVKBJbc4qJeNKtiqhV8VdVh289ncLkl7d0xZArVX1Soqkeeb+wzvGhweccwzDQAgBFzqGww2h3xnbtabss1zf9mmxOecPt9/fmPHjwO+gf4Ecf4EOryhhRwwvQAby+Y7Lx4/4+T1BIjs34aWwP+548eoF/dBxfPmaV1/+gm7YI6PSPwBZ6efMbkxm93ajPQQ/MBz27F47fO/ZHyzdx4sj3/Rwu6N0njg+cDqP5Ji5SOGC0cdfx8yMI/SeKSWmlGq+uadUJ85pwRVFxNH3hb4D54w+tx+8rSlBCbL6LCAUNac/1XLhqVYKAxbvx4mwq8KW3sPxdqDztu/hVWFKhfOk7N4rdxcYx8i7dxcu50gZ77m7P/Pum+cFfhSY2aaVmBaASgfiSGQuRTmlgpdC74yWfYOxkYZB6IPS90rwkLOrEySci/JhLpznwsdkwM9FLLpEsEoWw97z4ibRd/D5554vvzzQdR1ztpzamIwLf385M8VMVvvx3nFz3PP5GyF0guvA9YqKMlOILWqFJ1fhxkmFvlXqqmCfF9h7x34pgW4/BWUsmbku+klqWegKqKCW43sqwlQZUeLBZSFHi8I5gZSUlMoCiphB/VM5K23adSxR52W6yhX4mZegvjnnA5obSHIAvsRWpPcIP7eb0hn0D997Zl2Qe2WcZ1I1WBVPqQb9lpujmml51m/ffs00j3gfOB5ecti/MO2F/DXwDSuHqwE2azz58ZPU5TnUOnOi65mlXcVTmbOLgAmV8wXIRifJEgSX9DHZ1ff4MfPyj9qEBtRsgJklNcheL4KEDeCBWlmv6f2s+9vrRwASK3MPWMu3s+4D7ft271fRw0eOdqPYixqV2wAdmwNrEMwMIWyhXDQ/FwBmXZC3321jsAkgSmXvaHUS11SvBibVli9AFahtVb+8LFjopnqQXqWkPetWgZ8Q9twOOzQE9r0jlcJ5trlvGBOJWv5ZzGBxORJSREoipypWWIoZB11YGrCMNoZdUYbdHu0tTSpqrXDVmCVOCLs9frCU5jJP5EtNAQqB/rNXtApizcF0u94qkIVACZ45ZYoo5wnOUwtqbUCf0gzAxtpRHi6Jf/jTmf/q9w8MnePvf3Hk55/tuNkHDntvbV+rO1Grm+WcSHEmJzXgJ9V9RCwNrYAvwfpoCDjnFyfmp5hNBcVpIsUzHz/MKEKcZy6ns6V7lWQVrYqVOKdERJW+h8O+pxMh9Dtevn7Nizef425eEnY7A9RSQYuzVI6SmeeI5sTp9MD93UcrxV4ipdQAx4sXzCXinBroQ2LWSMozMRrDwyTmKjBY8hrRrKkm2xRsMKCIyjQqKFmTrYlN7wsDr0LX2UzY+SUarbOi0drfScGJBaek5IWtYgfSWlXOnFfT/skr8FNTWZyrzOYnKfd/7VaZKtlKl6d5Jk4wz4FpVsZp4nw5M54vyK63+3QG8HQYcKWaDAPIICq1Sp6xA8ZzJk0z0xi5XIwVdnq44/7jO3KKTOPIdLmQU+Lduzu++foDMWb8VPBjQcUx/dbzkAt96NYVuyg6zugYUVWih1QRbD9HfEwUVc555lIMkFm0gtTAhlwpCC5nJGeyFi5xZEyRoplYQSDTEjImgYEVti6rWEXVImJ9NVmao2om5XlhqpU67zgf6PoDLoQFkHyOLeXE+7ffcjgc6EMtNf/YEdsAF4/XKG2AxtX7dc4qFWRGKcUcTGMEZDTHCvrUCmYocyyMqaAq9P2OoTpxpgdjug85F0svUUglEkta5sZWGS3nXME5XZiDLbWulWTf7Xf0fU/XdXjv2e2GlWUn1zeuBYK3qnNtrF87plTgRxbgJ5dN0IQN6LPo/DzvpmIZGrZ+W4oVpwf03QdLdwo37LoHvN9zcJG9/5y9CKrZHHMfuA33/P3rb3n9YuSf/f3I//C/+8DrV4lET2RHUcc37/d8fFAuk+fdx8Cf3mXm2TGe4XxvjItf/3rks5sT+65w0wsv9va8pskxToNpe0ZlriBN1kzMmaTClAPjbMDPeO443wdiEqYzxLHaFBUHFOx3avcdCuIVV8DPip9B5oi/v0fv3puO2vkDZT7bmpLuoFxwZcbP7+jSiUESL92Zo4/0IXNzKAy9ozhI3vhNYABH0rbWPlcj2vNozNwlkOdrv2QLWLAAyNcKP2voLY0X7t9+Q5xGHj684/3XfyROE+PlwqWC5zY3zaCFmAqT5gq1RhwRETWt2Qp2ijfGMrhFxsNii2ZvNHC1FAOAZMOEvYY9G5N11WWsfy5bG2IFqwSapgvj+czbP/wjH7/9Gu88N/sjQz/QDTtuP/+S3e0Ls2H8saY9swDLdswV+HGVrfZD29+c8aOuB9eD7xE/gOvQivoXHKk4SrZKFpJrUkkoTJMtaGGYmC+1AsUIbjStFI3FlIEVSDtcGhFfcNkTNOFVcRpwmNHsvSFoRRVfjYhSKeWlakk0X7iuEQsrp+WhA2g2aq+lFNlk7b3lFuagS+v7VvmiIvsGAtUqB2q5yE1QfclYcDbZeifViak9Sk2szClWiawDn8FnrTTxYmKWXcCH7tmbsUXNWyR+Hb11EOi1b7syBJrOyOpMFVVSKRYZyXlhVsVqeDQt9oIZ/Dapmwq7kHCSauTIVfZVY3rkzU8CnO1PWha7Vr5bqsHTHMKCCZcWTJzajqL1WmSpYLHetg21UNumlOqA14ewsHcUA5gqoyIFM4ZzsWIEVM2f4BX15rzmpmvyE2/rut3urCASEZnNmaoAtxZfna+ma+UwUWQPEmiMnx9z0TYOqgD2YlKUBT1fpntp19WiKYm5Aj99GEhdX5luW22eVpmLR0dbx/PyWnh0zWWzxyODps3sgFRQ0PpWfa2+LiIN+OmAAUuJG5464l+1fZrqxcL22WIvSz99KqXru96npoZtj9PufuNAX7+/nm/94tUvYPu0delyNieux2uvl12uGk4/ed3OvxgPn6R6rakU6/7aMKQVHWr7t+tua0E75jNvCsYQcBYxbtcak6VA+VgYY0ZdnfdqanGnBSmmR6RQwRsTKxNv4syWolJNLOeQEGgisL7UVOP2HbGy7AtA0sSdASe1YLOqrX9NjDYEXBfAB1ScpbugXKbC/VnXdbKNb63gD7pUJzqNifOUmWJZtF12vWPorOLI9ZNq6/AKHF1VpmHb71eL8ipS34DDZ25Kkeb0JUt9To29EVHNlcnZ2AJmJiqCiMe5gK+Mma7rKvhh47GtZhWmWRgTpWTTnqjHX6uUXBvu18+psjOqHcNi4Op2amtfrP1eNz/1aSq1Wtr62TU3bp0IlDWlfXsUtq+vHG1Z9l6OuL0HaW390yyMTbh2SYtazm2fu+YoO7f8Bio9CcqcyGOkpIxMipsKUsC7mTmMZO+5nGdOp6kCP2dOpwspRebLhfF8IqfM+XRmGi811UqRqBTxpGlkPp3RBigpTwM/Nebg4wr8THlmytHAnmhpEopW4KemaOWMFAPcxjgxZQOHYppJ2ZhD5IhqMnu4WkYqjuIDxfmlf7Z+n8qm39bze1UkJFxxm5Z+hk0rm7iCmU+S/Nq81NYYWBgJm4/XA9brMwcwL2BMqoC7VT6b6/zY2IkwR5vXbI2Rmpb+GPjRCvwosSRSqbyLzXxh4uoN7GmvLV0w5YRzjpTSwvhprPH1+m1ra+QyK+t6XwZa2nmLGhPPqSLLOG7pJ5s1f1lfn39dBFBnOnNFpAIUGIUjZdCIyGjgqptwMuMkVvH5hKgYgaCfOQwzx2Hmdj9zs8uMWUgxUIonlcKclDliDPxk7RFjYZ5M7KFVS865ULIBm1JFAmVxts1oUKx6cMpKKo6UhBiFmIUU6/GTUEwbg20zWXDJquMaEG4OoRZFcjFd0JwgT0geIc2QRyRf7HnoiDDimS3FTSZ6Vxg6Ze+hC0YmGDpPriB/qfN/47A/+6yq669lPi96Zdev4inYFYiaPiHUsWSat3GemC9nY0lezszjhdgqeZW8jHvN5rG5YnOZUPCS8VX2w4kF95u/asWbawCymgZLBdQlPaxVLH3KJ1jtxWXteLzfxn5trOUYZ9I8EaeR+XIheM8sDlcaw2kiDBNOFZ8SLoRHT2yzSlZm0qI19j3b3xb4cT3c/gb6l9C/QbpbE6eTWviuv4GXfwfpcwqZpNHcQJ8pOeIn5f5d5uP9HwhOcXMkjBOSMwFHpwYA9OMrdvN7fD/gxjfk8iUyDPDygNNbgncchoGbX71Bcubj0PPBeWLM3E0TYZzBCZ+9OvLlZzeELtD3gX7oKiAkS8eYLpl5zhQVHi6JmCa8d3z+qlDUM3TC7UF4eVNBpQg5OVI2nGqeKvpXLE0KoIWbXQHFEYsZgOdkmjApw3m0iWqK8DDCOBm93vcdA45X+op/89/+p/zi118A8P/+fzxPEypC8r2xWRqwlQXxBbziXa6lEgudwD4IwQn74BlCoPcGwMRodPHTFPlwmplz4ZuHmd++HznPha/vR07xzJgy43zhcnmgaMYx4jnTBWfcHE0EH0jF2ySblft3J6bTA3MqFcHNSHbEk3D5mAjBmchyVe9PDrJXK60YBuislld0A7N0FBwPGhD1eGDMjp0K3gn7zjMEc5R659jVwS3OZhPLETaQJCOMxSqKxaI8BEzMOikPTpmiZW+cdxAj5AxjNHbQT7cZ7LKCJAb6ICdEvkbcia53DAdvOdDxhnkSShkoyUQmtbTKV40k+eONgDWLTa5/P2lI2GcpJabxYlHhosR5Nlr6dKr6T8oimLhZ0K6P9NR1Nisw0Bbxlq5lRwigrgKGHVaw0yMN4NEO5QYYsOpnN0BfAZ8XCDsAMv+XH/18vm9rOLD93rLwVhBnm6K1MH1EF9Hn7f7bVC+RVZxX3FqhqTGJ7H2uBaCrJdh0gyoyaMv5pgEWY7G2BLIutlLNqGaQF2UxEHSLilN7WgOGRJEaWWqgT4PvFhFkVkhP64XY5yvTQbFnQ/1eEwFWtzCWn33TkpnP95QekntJKUr3kPjdt2c+njPDLnO8F0LfG8xYn/nrvfCLW88+WJrQ8NIbi8o7CGGNBDVga9PfSylVb0YXwKilC4QaIacLyH6gldRugtnpdCGfTIw13Bzpbg6oc5xLx/1FGWPiX/z+zL/804WYW7SvPuvaCPbaDNqYlXf3Mw+jVVU5DoEvXw3ses++8zTa1RKFq8dRtSCNVg2SFqFb0pVa5FILOU4WXIkjOZoOwLM6m1TAgBapZwlUUF0W72pUsZiOA6p03YHbF28YdntevfqMNy9f8vLlC3I3kJ05gIkZJVZmRUI1oiUR48R4OTGeTzS9OFEPpRDUZq6gVvnPV+eeRTvK+vYKtrgVuIUVsGlVoGrepVjnoc2g9pzNEUrRBP1bOqmI9e0UTcPGoXSu1Kp5ZTHUy8ICe+x2iDlXgDR9hurQljY5/ASbAT/m4OdajUrqvL8bdnz++RtyjFapYrDqsefTmY9/+kCcJx4+nHj31Qfmcbas4WQd/rgfeHF7IHjH+TRzf38hpcIcI+M8k0thPt8zPtxRUuT8cOLh7o6SC0MRBjW2+ttvLuj0EV/XvwXMiwmNxqoxxrHNkT5bikKhcEmRMccKwFjlNWNxmdMAVI0QYwDEvAIRuSTbRxUtFQASB6EzO957ZHdEul1rPVsvtEAVVc1xIj+8p8wXCB1+OEC3B/d8adAiQt8FQvC23i2OZ11k2iqh9ZVuxu0CZm7nmrKMG0sxHU0ce7ownU/knOz15WTsSFlZMpcp8TBGVIXj4Ybj8QXeW6BMKlO4yWoBJM2LsHcrwKC1LVpVtFJWEDnXz2z8JcQZI2CeZ6Yq4t/ur6VvOpGlSlxK0dhfOVOqFtjlcmGeZ5xzdP1ACB1d33P78jW7/R5QS9WkMiz1etQ+16bek26OjIcb7gf7cTrT1SyCWGZK/ICmB/A7QnlL5yBoJLgepXDsR758c+Jnn4188frCy/09t0Pm7t2e3/7J8TAG3t7v+cO7nin2lGygSOeE+b4QzxdKhrt3M18fE8NQOO0y532ubJER584UHHO8YZ5vicVxd6+8fYCYhLtTz93ZsjvuTpn7UyQXISZFU3XhpSy2k5eAl2BM5FiQoLiSCeOFbpqQ+Uy4/A53+coA2PgRzWccmS5MeBcJJA6HEz0zh87xi9sdLwePd4WhiwSfucyRbx/OxGnGO8+uG+g3lRyfpQ0R4rZAB8YwzRVYznEmXs6UnOhCxzDsjJ272HnKPI9czg/kFLl/9w1v//hb5vHMfD5zebijJKsU3JjiMU7M08kA2RTRCsh2XumDaTQNfcdeOpxCIuN0BoSSrTS8IsQ8EmfoUuE8jowx0omD4PFtMaxi+dJKqVcbJc6TAcGwjOPtluaZj++/4Xz/kfly5uM3X3F6/y1eHKl/4OI7wrBjnCPDh1vCbsftZ58xHI+I94R+wIVgmn85VsArkueLMQ9/YPvbAj++h5vfQHdEhtcQDuaUSTXH+yPS/wawygRZa45evOcyvYV5xM0fcKc/QR4J6UyY7nCa2IWeYz8QnOd4fgnje0I/EKafkxXcbg/xNb4bCEPPqxc9v/jZLR54FwI7FeYp0T1c4P4MYsDPz97cEjpveYC+1eI2RfeclTLDWAoxwof7zMeTaRQ4yXQhoDsrz/fy6BEV4kVJWM2jDwUm09CrOdlQl0ugVXcwgEGprBNVUlLOF2WeDfg+zYZUF3X4rmMIgd3uFa9e7Wpu/fNtKkLynQElXaaOHCQY88q5TCDTkRmc49B5Oi8cOs/gO3pvollzMgbP3Xnkq493XObIV/cTv31/5jwXPkyZ85yZs3KJZ87jiZIj5Crq5gXSjM4XvPe1lLonF7i/mxlPMykr4g01lyzEU2L8OOK9QMjgjWaunVBCjYjvj8AedZ4oBya3J+G4Lx1JA16FSxb6LHTO84oBEU9wsPfCLhjzqPMWiXcVGnDVoU1V0ygW4S4UxgoAfghwTtaelx3MyezFMf0tgJ/2U7CeKIicEPc14j7Q9YHb256u98xT4vKwI6VCFJvcVBvTpiyo+Y85K2yd/+8yHTbRKrMiyTkyjqZ3EueZ0Z8ASHOpQnVYRE3b0b8rB90ilcCS+mObx6ZGx5KupR5q5S/FI5iYtRAQbir4s0f1ZzTAR3kJsgMdQF5CBX6ec1sBnQbKbECfDTBjoE7bX67AnvZd30Agtqleq1YQyCfpY1evXYVupEVZG8W8OXVrxNEptRyzrkAMlctnyA254XAtArONmKArcFPfWZmIdaeyAoulva6sypYC1l6Xang5DDehiAFGG8BHfqJULy2Z6XJPzoEppMryS/hvL+z7ROgT3R58sCpAzlmVpF+/2XE73OBDYNd3DP3BWIeu6n6IQCtBqmol2LvOnPoaFbP7ktVZWSJVitsN+Fyj5ovQsBJ3D8TuAYD+5S39y1sKwv37mbuPM/fnxH/xuxP/2f/3PVMq185Uy9iqr1XBOWHoHH1w7Ho47AJfvtrRB2HXeyputLa9biJzuZacnts6t6aEyXLObLn/LqNxIqe4pGU857awL7QJdVcBZ0odj77C6rIIYXf9gZsXbzgcjrx69YbXL1/y6sULZuBCImsCIpFojlYFfUqJpDgxXc5czidCcPTBW6S+FAIGSweobOdiDrhWVlC1MVQs+rmwVirg3YZtqSzUlpHVGk9bUKPkio4W0ixLyfeWWqclE2MmzRknapV2qjDqKipdz2udcbm2NpeAsdYoVgGqaJ213fM5KGsbrvdZSiFVzUSzxzz73Y6bXWcFRmpsQFG+fTjz7VcfOH184Juv3vOv/+s/cn64rBUGgZtjx5sXO0IQHh4mPn404Ke4QHKdMUROH5nu3pr2w3gmXh7QUth5T/KdicSOH7h8sDSeXHJ1VCrLpLJcElWsFXCSEbFxOCZj/BibqwGTAGUZo0VLWxUXwINlvq1t18a0D3h/Y+yn4OiGA353izhnWmHeGMJSLEVMzvfM8UKJI/hA6Y/IcAPynMAP9MHTebekK0MFL6nzR73Dpt3R5qgtKy/XuU/LKlgd54l5NEd1PJ843X0kp8jldM/D/QdySvjgF12hh3Pk7jRTgBe3r3j18g3e12B3DXhbxU+7yozpzYGlYvmNpscicl5W8Lati8UpLiUbE2rAzzyb49nuSUQsYOqdAT/TSIwzOWcuF3s9zzPv37/ndDrhQ8d+f6Tre443t+wONxyON2bJaqnzhLHXnxlDt8050s2R6XjkbnfkY39Dl88cZCTUuTHHDzbn+T0hv6Nz0KkSwi1FhGM38sXrE7/44sLPXl94ebjnZsjEqfC7P3S8vVfen+GbU0/MA7eD8GrvcAHuScTLRJyVu/eZvst0feFhN3PaT3iv7I+Ow9GDC8xzxzy/Zs6B+3vPt+8ccxQ+3Ds+3hvwM06ZcTYgsCwBV0UkYZ6Bw9HjpTezuLOqxK4kwuUj3XSPnx8YLr8jXH6PaIR0B/ls1xOUrit0Xjn2kV0oHHc9v/n8ltc3B9NKwiqC3T1cuDtfrGJk59gNPdL1zwz8mO7pAgJjemLzNJJLZjo/8PD+LXGa2O32vHjxiq7rUFoxgcLp4Y4P779hnkY+fvsVX//uXzFfzma/JJvLfD/gdwcQxxRnThWQzbNVrEQLu96xHywluQC+CxYoU6v2BWI2Q9XYHTNcSqbLBvxMMVKcJ5RcLdoK+jR2XZX00JyZzyem8xlBKwtvBYYA5vHC+6++4uP7b0njhYdvvuLy8QNOhMn1BPH4fuB0GekONwzHA1kzx/iK0PXsb2/p2VFyYp5G01CLE/PpAzn+cIXEvynwowjqB8T1IFY+7SoGWwqKabkoBmTYnNJSJwJFPa44yIImhZSQEvEKUaA4TzdfmKcTpSS6ywPz6YGSMt2hJ54PSInkYY9mVytRKM4LzgshOLrOaPIheLy3iRJn6Wdr8Loszk1L38rFNFrAfsdUSEnI2Vk6mD0ES9FaQV6MHtiMsdVNKlCj2BVFrDT6lGCKxvixc0LKUhfzdgCHDx3yzGWkFavclYuSipDEKmFlLTU6rzXbwHSJnLPnihOK6CIeVmpe9JgTlxS5ZItETTkxl0zSmlolxYwnZwukOpseBSEpxFIoYtTWXCuLFaozU1M3rXS8eaxVCYQWZtHq5K1iHrVMY40eG3WOWm2qOqNJKFnIrjAlT+/t/cErXY1mB1nzqoU1taWRFlSU3lm7isJg/g1JQDtzwlNlev1kwM8CduhK1W2R/QpPChdEAt5nQvBo2ZOHhPemUzHLBMzAhJJAG4T5Iy0BXebLJWq0XpV+8pdUNkh7v5RCrmDV6rSuIJJcvagnWsaZ2JhuZxDFOkRL0fIYWNMhV5o9AdgjtYqZAT87YA+8BL1BpUd4ieoOpAdu6/efd5OmYSP2ellgm4YN7bNG0f7u9C7Y7MMK+iz51t/5euMwtWPW19fgz6Y9GqjD2vjG8qkqQLo5PpsvUd3Wp1K9lhxZlvtYX9dztjcev5Z2T5v9V1/UFvjlnp53s/mdWrWpapnUZ+FrhLYuQabD5FYwztrPLdooS3qWf5Rhroo4vwBCIpvHdxWRas4eBva0fRYdIEV8sJQxMDDJOxM8dCuAtKwBrlUf2/SABvzUNvdiwM+uN128PjRdO3elu9rWweX1uhhv9rjelops9Rk0FOnZW3EzBtdzG8ha2jOR2qOVWs1RCSHQ9z3DYGKsu75n6DtQM5CTmUXM9UE047kZnWua23ohtlzWwhP1vL6dv7HAxNIAEUxgt7b1YsDW57lNf9kef51Dajno2gdbH3DeVe0/KMGqJTqU4Audq4wfoKRstiHM1wABAABJREFUzKO67Cz9uWr+oI6WQt8WVHliZnjWbQEBqnhuNl2XkjJIwZEXdmCpa06eZ+bLxHQemc4m1jyeRwNL6hwdpOMSMsE7xvPEdKnAj+8o3mzeFGdSSrWscC2NXkp17gEqW7zOj1lbCtXKYNUK+pS6TorYmqyqxBxJOdZ+U4M1jfHS1tTNkVaDcn3dKhZpnSukzY1grGlxda4JiLfUUidVeyV0iAvGEHKWFq3P6GiC9Y+mWbMCsVoFkTG2kz4N/LS0x6JagVvdMM0qu2qZfWwOLiJsBg8LKt3WVidm7wvLORZ2IHZ9iyaErN+92jbm2TJvX91z228FsFIyQfiYVh2g1JlPo6UwTbM5jCkxTaOxhOaZcRwZx4kQMs4ZmNz1w1KVTupYXiWfvyuw9tdtCiR1JPXM2jNqTyERpEPFUhOLFivMgIImS/EiX13jdr5YQF2FOSrzrPZ7gpgh+dqM1ZZoVbRKMU1WRIhemIIQiuIjhGT7z1GZJmXOloExTcIcxY49m+Bzjkqpmk8qeTlPY92vRAgrNoMriBSkJFye8WXC60THTO+jlXUPGXGF4GE/QN87givsO0cflKF3DINn2NUKgNnGrK2vbT43tq/bMIWfpQ3VfFTEgg9glQLnaSKlmfF85nx6IE4jWjJd15GTsbUMmC5czicu5xNxMv2zeRqZpwnRYoEHMG3DYtGJloKZq/5VbgzGsrKGl8ARXM2dFK0pzJimVk2rzMWqNvqqxdtSOUtKti6gaD1+zpk4jszjGTCmr69BinbuebowjZaqlqbRdABzQrF1WqVYAuE0UpzhEdP5gu96uj5VLT0hZct+SCmS55HpciLP/38G/OAC7F6jvkd9D+It/y5PoAmd3qOn30I8Ib7HhyO4KswYeqS/wTmPC711+PM3ZI1IvDCWRLyccCineOH+co/znt3Ht+y//ZrQ9bz47BVv/vg5/dBz+eIl8edv6EJgOsN0NqO77z2fvblBvOd4s7eB4HwFfZqwEmix3NxS82FLjWCZyKZwf7IF/jI4bkLBz4FOHHuEAYdkoYuwKyb6W0QWd1nrf6qFqaRK7azsj2zsntPFM0ejjMe5YMFbm6QW41aF564klIvw4eQYnZI7ZXDKOBbuxsQUTTRyd+Pp1cojht4AmKlTviUSCszzhct0T8qRD+cTf7p8ZIqRjzlx1yVmUS4YEyZm4LCj6z8nUPCdo/RCco55v+O8P64UenUWQfaFXZ/Jauwr35kjsrvtCTcd4kAloZLNsQ3OfpzDuwFPj+BwCTTN5CKc0sgl1cc7FYiF4Bzvhp5D39F5ixTc9JXhddjx3zD3L7+ybdm6H/Rr/THGiIj5WI/9zMyT5xxjX5ANWJaoISRk/wGUoIZAQnIZyQUs/gKXkKheiQJIFEACCaoIgQRIULg2FrItGx+fR57Mnfux1pqPiBiP/mgUWh8jYq2982QecubVHVtzz1gxY8YcMfrovbf2ta9936HvcAi9eAINTU4KxcCevQiDYZgcnDcArcLUVXI1tttU5E8E/Fxt2FJBVqt7bXo+T9Tya7R+hxPPvg/s9h53OBPe7IBb3r9/x2/Srxnrmar/Bap/j+ojyiPGHPoDz0J107D4GAC9JGhbS8/6j7UyXDHtE4tBtwXdjpWhd50XdVgblqCbk5e7PJYAegcc2uNbYGdrFatlfUB0j9BjjB97bD97Za/XiMq+PedAe5SXnYtw3eJ11erFSjdfW710SwANhFxJ5vaf35LFtamtJYvra9rvtkvZ3HyuGD+ynsdFG2gNei/AzzYU7cTZXEmBC/iiegFcaAwKaamMNkZZS1auxZa1/e51+rP+rZXXpaxJjb2mXP0bMlXMbci3tpcWhrESEjZm6osfjuz2JDqmrGTNfHY38Bdf7vn8fk/fDxxub9tmb4GhoNzvI6/vBnbRGJASDNRZW9vsIsrGVFXn2jVvCZCs84xPxDlboCwmpNue2tAa30W4OQDgY9w2rV3veHMb2Q+Of/1fuuPVITTnyku1ekN8gLVQ4Rwb4+ew8/zyi4G+WzVu5BKcrfvseq6WVTWwa0XqWhvSFtVhemve4VygarZE7YUPAXwwRlTA2g4FBxqp1dqEfBNLXi29VeH16zu+/vor7u7u+bOffcWfff0l969eM6WF4zyRauU0OzpXSdlRKKSkZK0EUYJ3BO/bVyCGQBcivY+EEDl0PXfDnqg2z9c5ErqO2EdWu3LbFJWSKjU1S/CcNst3cdLWQAje4b2BO7v9jn7X4ZzHxx4XYhNf7vEtifDbWqFEXwii5Jw4Pj4yjmdqrkxTIidbt4L3F1Hppq1geknW0uKdI4RoBbkXPhqMQymJZRqpIpxC5vG9oktE8wzTs7GuSiFna7v54bfv+Lu/+juOTyce3j/y4d13TOPMZhYgkM6R5dThnCMtiWlcLInwHnWNiVeyuShGh2jAExu4Usg6m8FP8SzVRGdNyN0AFPHR2q5swNqYVvJyoi5nVCu50JhAVythQ/I2IWB37fCkDYswbZ5VR0rWfk0wllEDxaxIb9U253p87Oyeq00AukDcvTZAz3eI7/gEvf2jD+eEm6HH+4CWRJ6bmH22tr1SC6mkxuRawc3mTLe6WF3ZPl/WXNNI6XwPGjkMgfubAa2F03HP86Gj5IzzptcFwlJgzlYcjrEjhr7NubWYDdbGatdg3ZMQ8M5v6++aZ6AXJy+FJnyuW5HAC0hLltOykFPi3fv3PD89gwg+xiY2ju3BCDknzsdHlmk0t6RxJC0JHwL9bibGjvOY6PavWLJrAIPQecE7Ncfel5+K5Cq8P3Z8d7rhV/MXvFuUvozc+AMxzqZjwxnRzCJ7nCSCnIlyQxSbc3WJPD3eMHSRuzvHcVmgT4w5sBRhLsr5VHj4fmZJIHeOQT0xGCOnv1F8FoiBcxJ8hUwkMeAcxCLExVHV8eEp8P5hIeXC+6fAh6dILsI0O6bZUVVM4L8xba84W1ggW4wJKgpiJXJxpv0ndSbm7+nLO3od+ezwzP0+4aXSx4Hoe3xw7PeRvg/2XuWM1sSui9y9umG/39l8GDM1WYE+BkcXA3Ho2d/fEfeHja32EkdR5f2sUDOUCWphfP7A+9/+LfP5mfPxiccfvmWeR/a7G+7v39B1PVULpWmL5XlkGq39dT6dOD8/U3JqMa3N15wSs55R4Hw68nR8trmo2nSqQMXjfGf7tA8GDTYSQ2nMR1HdyBZLKkzJIvxxXjgtiSQegrOQvhROD+8ZHx9a4mFxU8mZ54f3nJ+eUIxR61b94Lam5JR4enjPeDwayD+eKPOMICRJthYvAZcWJEZC7Hh8+kA37OiGgbs3nzHsDzZ3xyMpzQb8HN+T/8UDfjwMr1C5tFKoghQTqOL0HeW7/ximH3DxBt29RUKP7t4Q7n+BxD0Sd/jdPUJFxVPHd1AracmU+QQ14c4Xi+LgB7qwx3nP6zf3PP/2Df3QMX/9BeXpZ3Rdj/cHgr9FXKDb33BzOOBCYLcfcD627OkK4y7WC1iKUtVvQWmpuVlyKqezbaJjcBwAPwm9Vz7vg7WFK8QEfbVu30XZguvaqGa1VuZ5bqJ6cG4IciqO0xSZkzf3hFTQvNLJWxVCbeF8aSvwUuDhLPROSEHpnLIshdO8kJIhtsN+MHaIU6oHFWWWyoQJdJ3zxMN4IqWFx/OR76Yn5rSwVDgHKA4mdSzJUUSg7+n8rQUnwVGjUeXnrsf1QxN2tnYqRZCo9INtjDE6YucN+BkEP1gFsTT7WwDX6K/ihOgjUWxaaNYW7Ch5SpTFgrxlyqQ540XYd5EhBqJ3vL2J3O48Q9eRdq26gmMvnk5ACoRU2mIk7BDC2jsTLWkrCqm6rc1xrsao+pMdsoqBNfDHNR0IntDyDfBrHEaRvNk5dkPh7uYzYlCi+4533/0V8/SI8mu0foPyDHrkYwv0nz7WW94KAluNkU9ZFRewx75fW6EW6iY02365/ZbdDddUe4MCIqo7LOjaAX0Lkgd7TAfyOeir9vi1gT8SgGuw5wC6Ph6QFRDigNJhsvTr9/XkXnYgL5V33Vg6W8sXH7eAXZy82ObKCvC4FdyhbqwAh3z8+ArMWS3cL8CPbn8D1qq9/Ojxj87efXJJlAttfGPfNBAb0+u6PLbEfmWNWIava9p/xfRolVks0LoGgS6vqAYCNxtrYydYa2aVVd/Jgv8fESBe4FAc2Q0kOpaspJKJQfjlFwf+/Mtb9sPAq/s7uq5j0+NSS3DiZlNut/H2nit+Jnykn7G17Kw3z3ot2gdb4ROA1bad7eeWKLquM6ccDBBYWYu7zpg6pXr2vecvv9q1qtoVc0TlanqvVVUIzbkyeMftvqPrLmyj9ZV1ddhQbUYHziqiLVFt6Vu7Idb1ogGV3lq1S/WkPwXwI1gLsVhrlYGhDuciWgPeCUE8srJTG5r/6v6Or778nNev3/Dzr7/i5198zqtXrznPZx6PT6SceAogNZkFcHGc2z3gxaqJG/gTAsEHOh/pQySGyC4O3Ay75uClm7NSf7NjOOytHatpCmpV8riQJ7PvTqosDfjZRMJFiNEbGzp4drsdu/0O5z2x3xFae0/X74hdj/eO3W5H33U4UYIrBKlM08T33Tc8PT42bZKReV4sZnO+McUMcEArSRLLYuCPd54YIsG/PJBuh+nfLNNEQTj7xNNDoi6BPB5JT99Tl4mcMstkidwP3z/w93/9DafjyPH4zOP79yzLqnlke+HkA6fY25ypFS3GyKDJCBhTKuLjCg54xBnwU1Mhp7lpLRlQICL4sMPHwbawPuL6PSIGcjoXTET0WEhlQqvp/tQr0GddA90ah4gYeOf9NoUEDPCZV9D1ApYILdgsFXUV04cW0DXJGmydXlvGKsTh3nShXAO8Xhz4ceyHweLynMiayKUwLbkBQJlpmcilXvYzMPZdjA1s0a1tzjlbPkQgBKELnTEvZUcQAOX0vOMwBErJSLv2IoJKR3UGbpVcyXkFzGSLYVamgK1x2rQ+ZQOiFFpecXH4Wtu3qhaqlrYfW/eC1sJ0PlNVGceRv/2bv+W3v/0WRXCxR4K5fvXDjtBFSlo4Pb5jHo8NpLN91vlAt1sIsWecC/3hgVQ8fed4fROpvck4dFf7xEsepTg+HDu+P+/5zfQZ3y6OoU7cuT1dnBkYuZUnIguL7hDNBD0T3Exsm0xJkeenAzF0vHmrnNIZnx1TCVZYzsp4Kjy9W5hniMVz00e6aH0n3Y0pQiieMUUkC0lhafsvi8AolCp8+23g2+8W0iKcx47xDLU6c4GuVtC0eSBXcc+Gnl4eu4LKpbUXzThGIj8w6G/Z+4UvDke+GBIxOG72A8MQCSFwuD3QDz05J07HJ+Zpou8Ct7cH9ruOsnjGNFKT3fchOLroGYaO+/tbdrd3hPBy62pReJgVLRmdR8gLj99/x2/+6j/l9PA9p+cnPnz/DfN0Zre/4dWrz+m6nlISqcy27tSMFGP4aKmm6afgvQEi4i5GClWV0/nI8/FIyZnoA30IpocmRhpxwYEL1jmiQq5KWtve1Vy6VWFZYFmUgmNcFs5LJkvGeWNc17Tw/rtvefjtr9Fa8M06KufEww8/8PzwgdVQpPHYKXUVuK/M40SaF4tPVXFXmUKr0VCOz1RtYPz33+K8p9/tef3Fl+xvbklp4XR+YlkmyjIyPb+jzP+iAT+AulZh3/Q31iC1fVK1gdaa0DwBiuYRTectqK+ibYFLWyVhqwSuSYC2hIhCIuFaX+E0mlbM6Xjk6emJruuJoRIjOBcpIqgP+BBwQXDR4XzrF3INEKibplOLMYWtxaElV6XYTSNVGafKyReKV2a1gKoAUi1ttM+vG+iTU2o2jZlxPJoI2wb8QK6BOe9ItbMcoNmBC1xRWK0l66WBH22fLdPazDCAojpQL2bqFIFglefiLbSowqbBsQgk50jeUYJHu2DJeQVf7burgo8WjLgYkW4w+ncw8EdELMjsrCfVaUtO1SypY0v8YnRm324Fy9ZWZKlgbRuv1BbwqKCunShqegLZJqmpr1tAvCyZnDJFBEemFkcMjj5EhECumZulp0txA3aK80hRfC5Iqjbu1VOoeHHEVg1ee9KtbU1BhPAnA36uWzCuR7hVIDB9CbvP12BzJIaZGBdinPD+jHMjWs36nc1Z6w876Su88/JcS/wvR7uHP7qXL49/fP6yYkTtaEI3eFQ7Ltbqe6yVq4FA0oOaEDPSWrP0DuSALZUHkA67yQ/t9Zd2MNP/WR87lIixfNSuyUcUlxc4VtCHNY+/Bl50e27deIQLK+jj17SfcfW6q8frH7t+fg36N5CASyvUBh5cJQ4/yuL59Em2zW5t0dINav/912EFOj56xwY2ONjovIoJUxq5vq25rJTwNZkxnYQVeFrhkQ2IeulDxPaWhtxoA6qiF/pg7lZ9dPTdJUlHr/ab37HEX7fHwDqlLiyp7WJtoMw/8NmuJ+kKunzyvD1tg9535va3AT/rnqw/vhGEhss4+32/AoJXoN76+59Q+i7nsH7OlVl09TdWDuG1a5S+8L4IbGOxfiHW7qYbCNSo9eK2+9tay808YgVUQvCEbBolqGn3DDEagBUjOQaolRgCIRi7wG1teev/hZVlFH0gt9d571FMd8CHlVFgSaiq4grm9la1AUs2wKv+l3MmnBujvdfh9vAJ8NPjvLsCfjz73UDf9UgDfrxUQuw4n06UUskpo+pxfr6sZWCOKqWgKuZU6py1I3hvbIg/BfDTmNa1mqEIyVNSJS3C4gt5mphOZ8o8NuBnppbKeDqzzDNpWSgpUWtGtXw0N9dVxhydlNXC3j6sfU4DaRvr0nuC60ErmYLWgLqWOFYwlo/HhWitVbG3xF6cjbWLaM2UEI0ZxGU9+HjPlaYLZuCTj52959YGQhOCLk0XbHWAgjVeuLQEXsfga9uEWivGOndFLm1erGvzy45hLflqX1w16CyOcY7GYv14zq5ubd45Axwbi9A5bb+ztm2s7bfSgB+IIRC7Dpdbm5szZUd14QrcyrZ8reDddvmvYhbWpq8rBq2uDM32crnaX/VaIKJdcz7et0oppLSgOJyYIUVVQXJFnVKysaFSMp20iyyBWoHbGWC1LIlpTlAdc1QcDg2O7K3A+dJHVTOvmbNn1oFZDNScfKY6a8XvKKhEch2o1aO45jasINbeMy+eaVLGKTBOgdBVUjKGt3O+sZubg3QLfbXaePjGOi2bFMQqei8tB3TUKpQiLIuQlmbMkleN9HUetDHlktjLNlfWx+t4X7o2pJqUiZBwsuBlxmsiSCa6appGAbogBkp6+5IqV5qN7UM1eQ1rXc3m5KZwaRV3jQ32cnujNTm0XGox57t5npmmkWkcmaeRZZlZlhnvI9N4puRCqYmcJ1QrTguebNelgpY1zjV5EamW965tryswuumQtSvcAmb7rrKFEbW1bwGbxIfFLdJY0cYKSqmAy0zOWPUlLZzPZ06nI1oqXoxVm3NmGs/M8wR6aclfWzDXr7TMVvRgc7e/Wg+tQFmaRKM4Zzp9zhDoeTzjnCfnhXk8k9JEXibT+5mn3zsu/5yBH6G2P6nbIiU4Mbcswh7X3VnyqJU6P8Ck1PE95enXiPhtgRaA9Iwb30FdoBZEfLOldU1I0QJq9YEqjudpYf7+Pd4J75+e+fU33+G9J8aeLvY4F9jd3rG/vcfHjrvXr7l784YQI/vbe/a3dy1463ASURWqVivYqGMYIjfFU4syL4njKRNcYXmaeRcXhuA53wmnvekXdEPgpncsVTmlQs2FeZ747fe/5eHpA2me+PD+G86nB0qxRTBlwXcHhrtfEndvEIl4OSB0lFSZjwt5Npex1R3nJQ9Vc5rSCl0LzIt3yG00bkPvWQ6OFISkylQqWVcCtS2auduR92b52eeFt8tbSi0sKTFOC6VUxrEyHM3xo9vfMNy9wvlg9o6tGrUG0wIGLWdbMEsxy0T76FYxVMyRYUqpVU0ctca2vjZ7YxFudgXf2/K8TCN5mcg5c3x65Hx6ZqUtr31FT5qRajbE3/eBrlVB341f8/rtG4IP7PsbutCjSanPC3UsRIRbAgOeQ9fx87tb7ocBAXpnc8UE4C7isi89jjlp26DaRrY6hFBAM+gMTOZU8mQIenAQP/uM3e7Ebvf37Pe/JqUn5uU78vRA4Qwk/jDg5xKyXGWhP8IDtgr+9rrVPp6r31l3UG2/sgJYjc0jK5vnK+AzICJ6DxioI3KDgT8d8AblFrN+22NMIAN4VjBHGEAjiEd01QNyrNpARoZ3LdgyTSTnrHpefj8Z6g88rEogopvvmMil1evSukU7k5Xx017Dyv6xS7nqgvz4scM1C3F7bgV9aqtxXALNj4NOuXp8fVyC3ovjlgESXtrG1wKglfZ+zRq5hoOueT0rswfWzbNVV3UVCjTqsaINGG+6OlSy5uaaZJU+VQv2gqpVp1sl1vHyk1GcJ+7uUPV4dQQ1HZTeweCE3ov16UdLGGvdEJErORZtoIdeAtQ1AWuWMdv4rB9hwyHXNqz1Wl8dH20gl7n5MXZ3GW3v2t3fWUB6/avbt6tfvoRlq75BS5FK2cAaa724ahlra7DWDNoYPyGgzanMrF+LCTjXbOfV6YbIrPjRix4iRiEvtXkGaMvg7I504vDiWdtIarBx2u08h0PkcOjYDZEueIJz9MGz7ztycHRd5Ga/p6pyPp153u9ZloWndz/w2ds39DE2MdfZ3HkUAwWcox8Gbu/uiH0PwVHFAuJhNzDshtbebKCQIHh1ePVb0uObbk8fPV20yukwdPS9MXv2hxv6nQE/XTdYMcY5M9YIBkj1vT22K18QCvM88/7n3/P8/ExaEsenJ8bzSE4Lx6enpn+TGc9n0rLgvSXPKSW8d/RdIPwJxJ0VJZcFmSv6mBEfCFPkoQ7MQ+D8+J733/wd89l0I9NsjJ/zeeb54URaEnmZ8VLAYxXmbkBaK1zodqw20KiJf9c0U+YzTeXawBUHu5tb7u5ucU6Yz0/Mp8cmiG2i2yKOsLsh7G9xPuC6G3x/QJxrgKBHS+YsjrGao9ZcMvMyti21NfY6T+h3+H7AhUh/+5pub4LNJkzqKcvE6ftfMT3+QK3mYkXTxpGNBbS2R2Wr/SxnaPGRzcUKpcUGrSVN6yow/XITMufMww/fMwwdr+5v6btIVs9QO2NU58Iw95RaG5jTWp693ePSKPOqzd7eaTMu0MacXffU1qylSt/33N7eby51ZcOpXYsDDAgorSimqsaSYgWC2B6vgL1U1wrlIFWbEO3lmokqoubYhmCuRg6c8+yGHaHrCA664Ax4cw4fB3x/C85RfcdMMGZ5FpZU8c7Wmy4E68yQjlID06x8/+7I8yj0QXneVXZR2fWB5X7Hfnj5VDJl5TfvKr89Dnwvv+B99wXRLZz9megyvZ458YGoM+cCz0lYqrD4HRoq4hbOo/LNbweenpXqlO6Qub1NvD8FBtfxeueot3vyq8gyB3ZDJJYOj7Oor18L1rIVjXMS8mTujFN2jMlTinA+ejQ1GQ/1iJcLwNf2VpG67XHrPWQAm32pWrxfK6brMz/jlxNRRnbhB279O3Yxs9eZnSwE8XTVEYoSyLgEIguSEsxHdBopyTPXBDGQ5pnT+/fMp5EpV0pWnIs419oum/nDSx1V4ZyU5Txz+uE9aTxy/OF7vv/+B84PP5AWE00uVTmPI2n5wVhuWozYQaUPwr7zNF8g2rTEeyhq+nQpJ5Y8U2thXibT58G00dSZNqyKo+KpOHIRdLG8IedKztYAe2HeCNUNuH6A2HOaM9++fzBAXTNOC2WZ+P7v/or3v/47tBaCMy09aqUuEzUtCBC9sXJVMTmYZhO/zAt5WYEfA40qStJCYTWIoLGGDMx34raWzG7oKTUzpzOlmLjzPD5Rlvn3jss/d3FnA34UrhZ7ldZr7nZId4toQpdnyukDWiZzb0q20Vi7wZr4i2kbsFZHjF4pLlr/sFjvvzqHinJaJh6enwzpbCutiPU59p2BRYfbew53r4hdx5svvuLtVz+j63s++/Jr3tavzNowHojh0D6PIN4SqH6IVBVSqjyfCu8fjBr0RKLTyj569HWg3HmGzvP1Z56bTphU8UtB54X5eOLbX/2KX//2V0znZ7799X/O44ffmpZPtqRxd/uWL/9i5O7tn+H8jr77Au9vmM+Zx29HpufEVl16uTkM2ESe2t7drwW3TpBDxEXQ3rEcHBpNk+h5rqSiVISiNqWcG/D+gIiBR7smcDaPE2Oj6J3Pie55oRQ4vHrD/Wdf4LtIEU9xLbGurc1HzdlFl7wlQNbPoWYbnxOlVI7PyjQmM7opjlrMDjUvibJUq+DkylBsdVnOI/P0TEoLD+++5enxHaDEUDGzisI8GdpqN6RHxLM7HHhk5k0aCbFjf3hNPxwoS2H8MJNOiR7HW9dxEM/b3Y77oedu6PFAJ85aFbf/Xv5QXUXBlSsci62VhAzMoBM5PXE6fktOI7f7QPBfsRsmdsM37HbfsCxPKO8Z50f7nX/0cfUJ5eNa5I9fdxVyKVu1zH68JqaX6pdVf3rgFmSH8HPgFwg9Im9A7xEiQtP1IaLcA+YQoHIBdVQjosEELLXbnjcqmbv6JGuQsFZ3Kj4UvG/OQ78fkP+DjhXQkRaQsv5bGhiztnpx0dgwHoBe2ruugSLAiT32V49dA3hYK6esf8t+l/aeF2juwhS6PL6+iy8VzE2s8qoCpk3gssrVOF5BPNt1Xa/11d/66FVbta0pJ6iBEqt4qQnI0wTcTSxSkQYGOSMhNtBxZR+9cG3azttZAlcKhAS1VIJUOmcgcO+FPghdJ+gG0DbtIl3bzy6tCbq2QyJXAOh6v7Q79CN89fKpPiqQ/T4G0BVwA2z3E9i+fGEXXNYw3f7ayrFqbRWltITG1qSc16SstTvomlja56xXgqsizoJsMden1a2o1oKWjBOrR8uKjMIn99Aff1irl32WYB0vjQG1tkiZFffKlKiNMjzsPPu9AT/DEIjBW5AYArUzfSDnAy52CMLpdOZx2DHPMz989hlvX78hOM/T8zPzPLf2c/vj4jx9P3B7e0fXzVRRlpqoWg34GXqc83SxI0bT6dnFgSHu8M5x2FsbV/CO/W5gv2sMnv2OYRjw3jPsD3TDHufcBvyIk6bBY0DXCgBBswSvlbQsPDx84Hw6sSwzTx8+MDahz29//WueHj4wzzMOYRRHCMUA0pLx3oAof638/VKHNuCnLJT5aHNm6ngsO6Yu8vjuO37z13/L6fmRmgs5JatmV3OBqi0x99IKgn1H2N8jPuK6oQEzzemq6Zbl8yOUmZrb7KgVQRj2N7z++ueEEBifPnB6HExMtCg1G+Mv7l8RD/c4F/H9Db67bRpLnhA9NS/4NOHmI3mJ6HQmc1kRKtYWFvoD8XBL6Hr2n/2M4f6tPd91hBBJ4zM1TZTlREkLOS0oCxsMv1XKVzHqDMtkQE8tkCbT+ViPEFsbR1qpES82hCVnHt//APc3dK/33OwGCo4kkYqQcmVYekqx1mbvZWP7rBbwJujc4klRa4FHW0KatxhTWlWu73pi6FCFJRfmnFkNX2pVtJqWo6MlpA241pbpbwKz9XIp1HloICxq+zNqIrm6gW5WpNMVOCqKhMjQ3bC/2SNUM6tpLBIXBsJwi4oj4yk03bBiwE8XHMFH+r6nqmPRQK2eaVaWDyfkKdP7wrGbGULmZtfh5luWQ/di47ceqcBv31e+Ow2854b3nSPGwnmX8KHS65FzfUdkIqWZaTqRcybLrunkJM5z4Lff9XSdIyP4XjncZHznGYbAsBM49Oh9IM0elYCWDqqj64SulxboVNTZ/nR6dsyTI2fhdA48ngKlCCk7NHukQsQs4S+Ce60d3le8a3sbTZCgQkqVJKYzO+dKqoqUhJue8OMjwZ3Z9e84dO/ZS2WvlUEqHk9swI/H4ZaKEJCU0PlEnUaKc8xppjhPmmaO7x6YT2cSgcqAc/GiDxZeFvgpCucE5/PC+/cPjM8fOL37gXc/vGd8fG84QLWEcpkmnudjW/8qTgzQPAyReDNAMNfmkm0PdUHwWM6/LBPzdKbUQq6Jqk2YXTDQpwE/arwu01BtGl85Z1vHVfGtiIo46rDD9T2EntOSWd4/gQh5PFGmM2me+O5v/5p3v/4btGaiE4IzEGcIzhyeRdh1wYBUbXtEsfhlmRMlF0TBiylLVlVGXUiYbqk0UFiwFmgnZuIxzicrdlEoOjdNpESaT5T8L5qd+08drfymaKNyFask1JXutlYJL4G8tpYJdS1wFGmWvC1RVrMRRUyjwbWFtGpDxdVoems+IhVcsUV5yYWwJKrCOE2cTydSzgzHZ/rdHh8iXVfpOmsWyNk19oiQFkfJjpIrNaeth7uoUqjkIsy5MCZDIuelsMyOpRbmcWQcR8bTM+fjI6fnB6bxyHh+YhqP1GpOYaUqPnak+UheThZckNBQKM02NS+lVTfXFpc/wbC1bFK8GDGiE4hQorV7qW+VDM82jtIyPHPaWhNPNZQUmlaBQHUEJwRngsjB2SLgcBtdDthEu0DxroJfdz82/ZDVLcQDYUta232lLfVo99+ayDqpLTDLoKkFJwtaF6AJGMpadV5MB0gBsUXFx8CyzMzLTFHwfYImTrmUQmqVpqmxjKZamVWZazU3MAwoWyGOP4GREGAuA7W0tsUqLWG8ZtasotlWRXMukdJMSiNLOpHLBCREMnKxqPtHnsXvAH2u8Z9PsCC5/i29ZLDXnBNj3ljrnbLHLNZ3wA2yOWzdIHJowM8OaW1aFWv5svcz+3bbouN2l4D1DLeJYInWJ59+eyxq+iV/gtV2bddaH8NKz7+ifG8VprW9Sy4/g59s9eLq8Za4q270f66f315/ARgu7WCXx5+c+Sf/vgA2cvV+8tNX9CcvtFztEddfawsX62fQ6/Pk6vP8xPW9et/1+59iOtq+pUgtuFYhX5aZaZ6Q4JjmuYlZy0oM+ASGugJ42uW2/F+unheux7hhNKheQ2b8xJ6hHz+v18//jg3mgvt89IqffLVydedcwD62kWv//2jMtQE/F9hKr5+//rqypF6ZY6Yd89On/scc1+0xlzaSta3EvuxULnLjm0aX/MR7XbWfmKaLJwZPLYGh7zkcDqZvUCvLsqDA0PfEGIkx0g8Dh8OeGAOZYsw2rQz7gWHfN8Cmp+t6nDh23Y5dt8M7z+GwY7e7AD+7YdXsGRiGwfQGhj2xH3DOE7ueEKK5GPlgunli1u4b8FOcAa0iDLsdq7NZSWkTvz7e3JCTicvO08SqayLeUUrBO7Pr9v7lgxtj1BmbwrX7UIuzYL2U5vJStwC+5NKASN0AWduTGuDX3K1MN8ckBFbgx7KSSvXBdGG8orqCnNrmkLUOudC0f5zHFWMvmHNr2AROHdL0A9m+DIT1xNghWu313lOlXnxA4HJzysbz/Pi56/7Frdfo4yu3fvsYdLc/0sK09qtXv68rYP2Sg6ibW9XqimZLSzGTljXPWBeU6hpzUtFixSITom7AjLR+Cyzmqxvwo1tiZnGpfc+lkFNuLo2rg60aYJYXu19yMeH0KxYjGCO1rLbzzthWlwDHVun1XrQ2omKfCyvXFezlNZtLUC3FdEsa8r2uQ5cxW9fa9autle3+1FJNQ0gdmkyGw9VCdpmkmRwdKWdy+hOoOytNeBeyeIrY3MnBo1HxWlmYUA1kieaG6TOqA6oexVPUM2dzjjtPnqdjIFfodp6dBsQLNXtEDfyriIFvIq0tWbZ9snXoEpx9iYPghOiaTmID51TFSPMfzZHWOhYMaBRLmxrDeS3MrY6e2sgJhaALoY5ERmKdiWUmuIqsQkPe7mmtleodlUIt3tpNp5GyTCCOJWWK8+R5Js2LMRNFzWTJbaf4oqDPOoirILxz1ukSQiD2PWXYGzuwWveHuIzqQm3OcSKtR8RHqhhTx5jarfBVQUtBxNmcay5edb2H4Wq/N5euUsoWE66xZSm1GXiIaa15Y8tqN6DdAL4zaZO2v6ZpIo0jaZ44zwtjMoZxdubm7AS7/9RyW9vz7TxqqWjRrSWtNGaznas0N8bVdVC3NVrEujJoWKK231MKWY3lXHIhpfYZf8/xzx/4WaPWq4+rdYGyUJdnOH2PjN/b5iHB7GLDDrpbe22e0OUZmr7PatUmIuQV+HHexNUwMTMfd2ZFSyAMrwALTJy3j28OFTbuxQfOJeCqsPzwxMNxxnvPN998y+FwwPnAMNzQDzeIeLzfEUIP6qi1o2pn9qujErIlRyF0OB+orvIhTZSjMHhhSTOPD55xGfmrH/6Wbx6/5fn0yH/21/8Rv/n278hp5vz8nnk6otTWN15RPXF8d4/UCe9fM/XmoJGmwvS0sJyzBXTRmz7RSx6iEDN+UPo7Ydd7ZBB4JUgnzFLJrpCx/uEgFWm8V20bmhcl+LYU1oo00Tqa4n2oGa2ZrDNFFT89UD7MVOdYSmbJCUXp+4Gh31mlxpmjyaoVJW0zzu18Sq74mHDB2D+lXmzSNRZwFe/grs/cdLNd6+UJdQ+IW4jySOARUAKOiNgiqxOqi6H2ra83UxkfHomhw8eBUiNLK2yVCqUxpY5i9vZQ+VXOTCmb85tCdM6CT5UNuHzJoxbl9JwZz0qahZxcAzU2GhfIAZFbcjlzGhPTMtK9f8evfv3XHD78wMPDIymfzXlA1sXmeuP4h0780w1Gfvzwp/ACO3usZQB0E7sVRCLatHbMXesetEP4GuQL0B2Ov0T4GUjEc0Bkh+AILuLEQJ5U9hTtUXUUXXV6BNPzWQNjfwUVfIJKXYEMACFUbm6E3WBz8eHDP3BZ/pGHay0y1y1Yze+ljeY1LX19fOXkxVVL1/a7Hz8W2OxoRa+ZQ3L1n34cP/zE4+vD7DovsNGnG7X9o24gzaqptr7m8kbr660SWpsw5SoKewlqr0Nbe3AN/LgreGgLC9oawprMXWhxL3sokCs+LXTjEZcT87uFv/nryvnDnsPNnrefvaUf+laVDsZ2jZG+M02VEAN9bz9HBNfm8WqtfgEE19FSVkRZ6uUaXo/F9ZXWq39/lDdwfX2vgOP6cUPej1EjbePf/mbVS5vDR+Dc1e/Ken9Us2pNmVKuWlWL9d2XZTJtkzwb4weQvID31LKgJaH1D21H/QOPdhkEGkizXnsL1jawTUA1k5p+QUoTuczkslBKag6erTXPWRVQVmtqsSS+762d6uuvv+K//l/91zifRx6fnvjw4QO1Kj/72c/5+quviLHj/u6Wr7/+klIK5+nMaTyhqvRDT7/rrG2q3zH0xv7ZdQN9N+Bbi1bfxRZLGBvJiZiwcmgW8CGabfcaNDt/lUB8POYKOG/Ajw/m1npzc0spmdf396TF7H3vb245Pj0yjiPff/cdp+MzpRQTsCyliURfZKZe8tBaWabTthM6oATQavsBIviuI/QDxSUDg8CYF2sVxQVcHEA8vr8h7u5woaPros1h7y7OTFVx7XdryZR5Ik8jWiolJ1JKZo8edwz3kVUguTbAwVgnFWrC1RN+znavdBHpAk4r+66j/+xzcpqhTpQyUnJmmheWeUGqAVkuG8ixTDMSjjjvKakjh0CerivJn6zquvZfGDBgzB6PV785JK4aZo6mD4kipaB5MS3PLS/4449SCs+Pj0SnjMdbOm+mGXNr37V7KW/M/+sCiGm60LRQzIyksrpoNY2OYsyPa+DHkkpbv1LOzHlpYFBrZdOm3ZlMJ0FL++KqVQ4oWi4OQ85t3Q1bqUaNEVpqvSy97Vaw62rdD7kmztORcZwoeWTorA3MS8bVBUUIOGvVrjOhLpSacKVQF2egThWmHFiKOca5HiT04CuLZlyozALn44grf5iL6z/mUJRcM1kdyQeW2FEHBzcR3zuyuyeHVwTJaFlgOdu6PyvprGhWziIss+AWOP1WeZyVrqvc7Bz3N4EQBKog5kKzyWNo0zNzwQrVIQhdb+tYPMBOrWPgbucYb1rhvzQGvSolCyWt42X7kyDETojR4QSGCF3QRjIQpqmScuXxqfJ8SoiMDHxHl/+eQUbe6G94m94RfSWUSn6q5lDpA8U5nIPaHD6XUjjNI+dkJIa8ykbkSp4XSipoGKh7T40CWkyw3P8UqPvHDGJB0iODz3z22T36amB6NXB/E1jOz+S0sEzWqlRTJs2zzYuarT20AbA5J7JWUsnMNdncrRXJJqCfl5FlPKG12Li1eVySkqRQRDnpSG1uYGtMjIDvOnzX44MnvHrF4dUrxAeWcEcKd2SEh7ny8P4HSi6cnx6Ynp8oKXH88Mx5Aq2useGb4IMkopgBw95XBr+WkWUTu5F6iW9F1wjeSCKrxIGTi3ZfbTGEDWiG5lA4pYVcMjVn0rz8i8j4uYreAVqSrqur13JEz+/h/AOEAfpb8CZct1HQpgcoI6qpBXdT23RaEqitStL66V13IKgBPbHrif0t4iIh9oTeBIN1tQgGckmknFCtPI9HSrb2nuCNgeKcY9jfstvd4H1gt7tjt7u1Pmm/Jzh7T0ckiJ27lxtc3FGpPKbAMUGHkE7C0Qmn6ZH/4u//c/7+3V9xPD3w13/3H/PN939nN33TO7KtcjYbch05Pdzh6oLzR0L/JT7cUhZlPmbyVInB0rLw0iKWohAyrofu1jHsBNk73GsPg6A5c1ySAXLOrG19C05WUogXJbTNTPWywVKsSlFKoWomkygUZJ4o6QEVZZlHxsmC13h3T7x/QwyRod+xi3tzp2iJgwJZIItSXEVjpvpEUSW7Sm7MMRfal1MOXWEfC7Umsn8muyfULQR5wvPcJq8n4KgohRlVswbNS6UmY3iNT8+40BG6BfU7Um1ifxqhOTWcUBZLgfmmFMaU6ZzjgKPzIKr4qn8S4KdU5XwuTGdIC+TcShoNARU6TN/mQKmR85gQmfD+ga77FcOwY54TuSwG+ry0cPF6rODPRyCQNVlu31WbnXdA2KF0oJ8DXyDsgT/H2rt2CH+O8DWiHifRRlKU6I1ZVtVZkE9s4t/m1mXry/VcuoY51rOyZHpLZ1tAF7xyOAi3Ny+bqTSJ8ivgZ+MibdCUv3r+8lg30Oai97MKHNYr0Ght46qsjWyuOV7B6vbVNEyurk4LUbkKVz+6TnatLrjBxlxZq58tkpU2N9aEurbXrIHuxupp17pqtQrzxgap22t+AppYSYGfnNm1zDNX+9VVlP3Sh5WjkLQQpyfcMrI8nPn1ryYe33fc3Nzw+PzMMOyIMTAMHd6bjsPtze3mpBi7bhMP9i0rdqtOC9i8vhKQ3hroWs/5dv1FWAVXhQvTZp3hyooZXa6J/XO909bf0e3jXX3YK+Bo+wtbVW4b0k9m20d5ZquclZwbQdhbha1UakrWX18LJRuA70RwOUGIlJKpNW308pc+VuDHgFK5ECiuPrNqJpfFtFLyTNlAn7zZvSpY0udki2UQayfrOhv/zz//jBACaUk8Pj7x/v0Haq28ev2Gt28/I0Zj34i3/SYtM/Ni7Tl939EPHd6Z69Zut8M538CewYDFEAzgwejrbpvPbJXhAua8uT5uV3X7HHrlQgS2vrbLPgy7lmQrmiyem6eZu5tbzscj5/OJw+HA8+OjaQAuk1n0SuWinPKyhwE/5ya22djk2W3zQ5xZYoe+ByAvyzZ/t8qOi4jfId7ar+Jwg4sdfefZ7yLeCaWaYG5tAKklZQXVB3Q8slrYp5RRFwixp9+/slbBlalTlXJ6Jp+OVkCrBaez3Xe5gxxNjLvv8DdvKHlhGR+ZpkdSSsylUGeFBlq4YsBPmmfEnxHnKHnBh0BZRuqPkntp07+B7K1nfG1VE1W8tiKB94gaGO1afCayWCtYelngp9bC6Xikj47pfGaInqzKVNTae4u16FmR4ML+WfFKae9Rs7V/5FrJpW4MntwAHqlYLwtKKUrOhapqeiNpbvd/AlLLc4wxttEVVkHZjdKtFE3k1oy3iu7a8XGbqNZ1zb3s+FnFnIqcZykLYXw2pkeZ6LsmVOuKsddFQNuMrgteE14TrjjqAqkkchXm2TEXwfkOVz0uFCRAEiVUZRFlPDuk/v5k8x97KGaznVGS96QQqV2HHm5wu4gPlWUoOFfxNRHyZNorx4kiz9QlMS+VMll+8TAK3773eKnc7z1f3Hq6CDcH5f5OCUEv69Na58sCHmIDapxTBm1un9U6PlK230kVltbWtzSRZ61WVM3JigF97+g606c5DMquN+DneILT2AyBSkWXjNSZPe8Yyq8ZdORV+Y5X8sGA77GQpa4lHLI2N2df8aIkrZxLZqyFVJXnXJnbvHQS7N7qD4RwwPnOABMxg4UXzRi1QjrSe+HuzS3B35LmG169uiUtC8s0cnx+JC2JmhNlngxMz4m6mGbPeDrx+PBISguzzIxVG3Mngy6g1cT2pzNaC10IDNFMf4pUUjJWbc2ZZV61LdmKKsPtLcNuD7EnvHrD/hd/hsQOJ7cgN2guHH/zDb/58APLMnP88J7jwwdr9R1nyiwfk+ZQfMm4mvBSOUhiJ8lcoL2j9xY1d55NHL6uzkcbPd8KPeoV5x2r7tdWkMyF6qwT4zgaGaLmRJrt++87fi/wIyJ/BvyvgK+w2O+fqur/XETeAP8b4C+AvwH+e6r64R98Lz65qTZa2RrxNaCjzPazHI3KpgFp1FYb7JUmvb6rs0i09VNu9SXFGDK1UEUsGKzWNmQq4FdVybbAqrjWCyio+GY9ryaWrBgLoNkA1lpxLiMsiFhvvncVweEl4iUiLlCJBAJCpeiCU0PnnzDtifP8xPF8ZBzPTPNMKYKTHtXSwt9in1NSu37mOlHKgpJw1agmZhmoGylhDcnn5TuAfyIi/8kfO4aqRrVLRZlSRrzigiMsAXGOpd18qRZqVspiYneiihRj4jiE0tLHmitlyWhRlnlhPi+UUpgmq0YZba2AmBDiNJ04n59RrUTn2Hc9GiJeIYrbgJ9V0LRUW3y1qNFUMVvozcK83YZmX70CCXUDj9bE9aK2syYkV4jEBh5aNdrkhdrmXFtlpwW+0qo5rbmRsm5uWkmNXhu3qjcbdbsdUUT+L7zAXERN3DmvrV5cJ+w/bttaE7JcrKVAxJFSuQT1qwL1dZ/J7zw+yoTaNfwHz/bHJ89VoCYC4hHXIW6H0lPLDaXeYc5dd1h7186+tDO2njMhVS/KEBLRZ0p1lBIoxXZAuwxXkMZHn+vTz7E+3S5Wsx93Tuk6GAZhnn8NLzQX7U+trVy6yR1tj69Ak0u7F9udLO0ek09fo5eleX18rYl2mQeXtjC7Gp+8Zjs3+TT7/2Q4r3+2Zf5cqqHXYMP6/Prs5Uvqqn3Q2jJqvQAeV7N2A+a4viYfQ3hsr1/n+9XfsRe94FxUJE34siBSUK8ELZaoh4r3jufnI8uSCCEwz5b4z9NMSpkYArtpRyqFGI1JERsLw+y+fevYMOODj26G9e9fDcHHzWyXsViXvMuvrjfJ+tr1SskGvNvll22If9c0X9lVG+PnH/i5tidUKxvMqtdtXD++1zYm2Vpdb+Dgi40hWPyibf38aF5cnUXD1/3a6uzXdjCr3i3zzBSntj+0ZNjVDWDd3lXExn3YEUMkN1eeWiqH/Z5haOLK3uOCxTApeGKMgNL10SzW3VXrlnN0safroolRexP3XQPlT1s7tT3nuICC0sZGrs/18vF/9OQ2VDZR7Z71Hh8CIUTTCgoRij2PGvDs5aO15+Xm4nairu3rVmldbbZL1eZwlVrBqmxrzkoOFBGLJ5u7k/P+6jN5a4FrOoLVKSVbS4963ZhdJkdgmhCSC84b+/ej9n1pfoTtvq4r+I1ALUhd57tvehBK6Hu6foc4T7dkUi4g5ixnLC6BmilpsuRQM1o8dZmaW9kqw4C9tmm/bU2ZDUjRdY1pcfV1K9pa6Zarz2JaXS8zhgrU1taRlplljmRVlmJj+FPAz9r2v7LyVucj0+kx16uqptmzMntEaSrOdl/kbO+TSiKnpbVrZMtZqJsrmoUGa1EC1mIRKFkTBnWoGdRs1+8C/JirsOU7ioOmnVlUyAqIo05CKoXUbK6NFV2oeaFq06RsAAA149QAA3PuM8Fry3eKEblwkBOKt6ylQHFCLdJaH7ei1ovNRQG6ADEqMRRiyOY850qbm5av1cawNBZxhahInBF1iBY0W/xf1IFazD0Xxzk5ioKLlS5Vwma5bqPhBbxXnBf8ooSl4rxaq8BaLGnSEIrgnRJETYKkUZRVDZbzbQ50XonO3jtIbYU2+73orEsiSiFKRiTTkeh1ptOZri5EsRzG18Jq0LG2pToBV2wciyq+mgixUwOTmj0U6tfV/Kr4g8WrIsayerG5WAvz6YkaPYEOia0FKnbgPCpCX6wbo5ZEiZ2tMTlTltnmoQS6pLAkqp9YqonWa03URvyorlDFiBEV3/RkBbOTbkxbsTVSBLyY4LI4j3SDieT3PTIcqN0eCZGskaU6ZiC7gEYPGiBGpOsQV6zRofqm08U27kAroBUWCq42Zr1ai7ATqNXReVvTnQsXdl9zklsB4TXq3JYL53Cxs33RF0KBKsH0b1M2favfc/whjJ8M/Duq+u+LyC3wz0Tk/wT8D4H/s6r+eyLy7wL/LvA/+QPez46tf3j7ZGhZ0PkJGd+jzsHY2Ae+Q+LO2AhlgXRGqoEh4of2hlvdmE1gDgNnUpohJ3KFpVREAr7b4fPS3BY6658WQSTgYjD0Uw50K8XaecLaSy0BJFBUOB7h+WG088/PhlFoC4hUcD6yv/+S4fAamnCY1ojUhb+dfsAtD6Qy8XT+Daf5HaUqsf+at2+/ppTMdH5kWUaQCZEfwD0To4FCKU24OoEfcZxtE+g8zug05ADVwWK2p3+vqv/qHzuGVZXjnDmnkQ+nDzg30+0D+7c9YfAsqXKcM7kY0jqPiVIMiNFSVqElyK0amCtpKWhVUi7Mc2602YudX8kjZTmiNXN6/sDz4w+oFr744ivGn/2CrhvY7W/Y7811TUuChnr62BFChyKkpPiWMCYSpYkNOvHNyhTISp1aX+oiSApIrjjt8LJr95nVGytKdZ7qM5VKdgup+cZXHNqqBzVldJrtfpVL3bSoR1VYKIzplph6vFMyfmNq/cQcfpG5mDN8+KAcn5Wc14g8I0wIGZioJNCEUljbwOa58PB4JITRNv8mDD0n0zm6hOP/iAqeZQu/B/y5Ss8t4gKBYbU6dpGu+4rY/4xa9zyd/5Lj+Reo7lD5OfAF5uR1B/UG5+Gmzxz6Quczb/pH7uKJOXu+ebrhve5IteNUIkWH33E+nx4GHEprzFU1JlTfK198rnz5hTCOgf/gP3iZuYgqTs0VYG3FstbAtbLTKhtqScN1G9fF4ctYO+tjr+7qfVrLikoTj5bWAnYBfdaEdAWM7PE10HJ5/Mmpc2n1ujBErgMRackM7b03xsmFFsIqbl21UtJIWWZKrczTxLIknPcMuwOx6+2+lAtrYQO0aOhXC37WnjYTx7YFfU3EPwZFXmhfzAvu3d/SBbjtIO4c6jPz6ZFpgg8fHN988w20pDiG2KjMstGWd/s99/d3xv7pB24OB+ulj4F+6M2GOARiiCYmHSOx6xDniCHSR3vsgwnDWgLu8O4CGrm2Z1/rdGzAqw3fdnWuAZjL9zbGa7av7c5RqJq33nR39d5Xd4y1XZRKzbXZ0eZGo7e/Ueta0Gl/S6SJK5sDS5MPbEWAbRxfZAxVKznNdj9dgeYfAWTtUYxK13eIdNzcdsRe8KEyTs/8+je/ou/e0Q0D+/3BrN27SNdaD4quRHBl2O8YBtPJeXV/z+dv36JVGXY7dnsTXHbNth1o7UV2jYP3hGDxTGi28AYUGlCxjW9jYhjz7joQbQk2wtrkW1iLCG2sPmX8rOBEYyvUchHrLimhpRilvyhIAPHWYhK6BvbZZxChuaR9NAQvMxfbe+MCNQ7gAtkHxizkuXA+j4xP75meHyk5s0xrccoScHNTC7jQIaEn9D39vid0Hfuh4/Zmh/fOdJmWhVorJzFNmpyEGiKLD4C1p4+nEb8UYnF02uE23SS755OWVjCqFCC1plVze2qtAr6jH/aI9tx99hWxj5SSuHl+YjwfbTV3HeICpVbG8Ynx+Tu7HGvyUTPp9ECZT4DpkfT9sK3dqqbJoXkk43Fdj8oeWiug7wd8CNRcCPNsbZo141xolskvOIZq4Nw8nvnh++84Hx8oWknVir1aCyUnS9xbsWAr9rEm7A2owTR7llIasKbkemH8uDV30boVXkvTG1GtrdBnLB9dY+CWwW1FjdV1UpUshUKGNi99iC0vaUXNFSJq+jNVDVao1Qqxcy4UVaZUmPNa2PQWk5aZ0/PIuNg+stvdmLZXWeh0xnsrMux3HV3XM86Z4/lMmmdwM6SC+o4aHH3p0M4jOTJ3fmMuvOQ4dhF+/rngu8wPp0e8E3LsmZmoJaKuo+rBknEX8aFv+8ZCZIekTJozjDM1W/E1N8DtiUpaKn5R+pLZLwuuAexre2LoIPaKc5XdIXG4mfFO6ah0qyGGRMStAL1pOaqAD4WhaSNJ7ZDi7d4qBSkZQYnzjFsWRKFPAZcDqRRmPaN6wukTt/UDe31HXyfe1Cde6zNtIdwAdhMoMBb34MwwZ0ERKfRSmbF2RecaKBU96iN0DvWVKpnqMkJCWNbd6kXGcD4f+ev/8P/JsN9x/+YN/TAQdwd2d2/ob3ZEVXZv69Wcy61gXgzEqJXTaeTw4ZllSZxOZx4enlhSYhlPnI+PtnfEJzLvjCmkiVxmi8WrIMViFucU7wz42R8GDocDoesYfvEXvP7lXxL6Hdy95nz7moLj3THx7pzIVRl3N+y+/pquFPyrVwznk7V9PU5Mx5lalJwqJbU9Lc/mtFUS+fSe4/SIlIKbT7g0EZxjP/QMfUfsAnevP2N/Yw6OoelAaU7k05EyWSHI1h/o+x2vvvgFu9tXpFw4niaWVEjjieP775jPp39weYQ/APhR1W+Ab9rj51ap/jnw3wH+2+1l/0vg//r7boLtkOuobl3I1GifyzM6P1rSpCamK2FA4o0pjwOrN4m4iHN9q4JcU9czqvMWVGieAWeoXDbbd1cSTgviAp0e6Jy1ZcXQRAmdI3QDMTZdBYlEZ/bfJVVK0kZDOzMeR6OejzNlmm1hb6JqPvTcvYHDKwBPKZFSPCWfOT3+FePp10DG+TPiZ7zfs9v9ksPN5wZY6XfU+oTICfEL4jIhdFSt5DzjdIIy4d0EeLMObSleXgu7w2cA55cYw6rKaSmkfOY8fkfOzwyHjlfnPf0ukBMsU6UWmOfM6TSTUxNALNloxbmQZ5vUOStzsk0zV2XOtaGyGbMFr+TpkeX8npoXnh++4/GH3xiS/Isn3JLphx27wx37m9cG/KQJTSMCDPsDw94sTqvvcb5rAe1M1cWiV29Bj2A0al3MMUyTQPFICTjtjIXVqoF1tX12gjpvCYdTkiiyAj/r++VMXZa1qNnATnM5qwrJCXNaGEvBK2RnlQAFqsh1YJRU9d9/iXEsFZ6elNPZHHRW4MexICR0+5656LE4lqXwVE+WBOIafVsMRDOFtA3L/YOOj0Cf3/Wb7fNfZYIqFeeEPjpu+4j3A/v95+z2f06pN9TyrzBOf0mtA8oXKG+x4NycMhyFXVe5PyR2PvHz/TOf9+85LYF5qUxzZZHCXO6Y1V+dyvX5fXyutqxZFUikOZtopevh7Vvhq68E+BpeaC7a6dQG7lxwdNEGCug1IGRgjqxgEGur1+rIJXi9PF4BnhW6cWpv5C/qMe092mv0CgzQBqiItOD2x8CPuXlJC5rX9i790eMVTdANJLis83YHNit7zZAnynI2G+jjiXGcCNHYMT6Gdv9chLilWYrJSntaT/UKBBJZIV5FmxV2O15sLkpZkIdfMxwGPjvccdj3PKfEt+PEuWTmZeF0Mntra+Nq63tOzJO1NR32e+7v7+li5PbmhrevX9PFjn7o2d/szaq46+iHpt8y7Nntb3DBsxv2HPYHfPDGBNlFnHfEEAwQEtOEcisIJPLRl9vaET4Ge2q9PNbVqlo3MuY6nO150+0RBHxLcqTNML1U07RoE9O9uICprnpMlti17ovWH2/3M00Ue7VHxRgGvNQYglJL2gDDLWFuc+4y2BCiWaL74NjvIzGC88o8n/j2u29w0nN7d8fbt1/Q950lGZ3g8Q34UVSUoR/YDzu8eNtTm6ulC8YuWdkzbi1qtBMQaCKvV5DsNfu6HVVrW/sbiLNCsqobp6nibI9S2msuoN8maFkvwE+pq+CtkpOBfVorOZkYryVnWEznVtHj2H4fi+ecrVDuT7AvrldIXDANDN+RnTBlyFqZppn5+ZH5+Z0VrVrsIj7i44C4AN60j1yMhK6jGzpLMPY79jcG5tW0kGe3tf+Mo7UTZx9wLlBVyKUyjTMuVQod+GyFyiD4IKCWyOYGHGQuQKNoRkoliGfnPdLvcKIcnLK/2VFLZn/3yHh+tpaxJlqd5pnp+Xvmh+/bPMsXRlNjODnv6PqBEOM2b2upIAUtM6qOauQKNEQkdvjDDaEbqCkROJFZ0LKYVXxbR+oLzkVzXB15+DBzejIvraK2fpt+T7qAPmV1g71uD14fQ6qFpeQL66uxu0TB1S2DYS1cbPpN2lqx2/vY320t6ut+qVzWMlbgp4ATuq43UW4nePHN2l0urE0EVU9V34odM+d5IeXC+6dnnk9nvA/c37/mcLilpsr5ceTpOBNDR3j1mu5wg6uFThfT5Ayw7wP9rrc1VBNlGVE8RTJVAsTAxAFJEa/Ksu/o/BYjvdhcjF746o1QJfPZhzNVC5P0PEpmKR3VH0g6oATERWo3IN7hXCa4Ha5UZF7QbrL1sSglWQfCsmSO0wKlEpaZeFacVAJCbHFUF5UuVrxT9sfM4bgQvLKPlUNX8c4ZiB+1sfwU51s7qFO8V8REP4i2WJLHQhlN8FPSCckjokKvO6L2pFq40YnCCc+Re5446AN9nbnPz9yVcwPTtbWJmo2Jx4SE9+JMRsQp6gvBKZ0os1fUQXVKjkIJHo2O6pUqxWJVSQgJb61FLzKGaRr59X/6H7K/vWP+2S/Y3dxy8+ZLdm+/Jt68smJUb0YBW7GkAfxWGKicTjP9hzPLknl6OqLfPzDPC8enB2b/HXWZUflAXjqqX8jpmSU/gJoOzhrPOW/se+cF53uGm3vCMNB99Qvu/qV/lTDsOLmBk9+xFOXd6QO/mR4oqgzDnv7VAbQS51fsZstr5d0ZfRgppcJYqLOByTUtVpxaJtJcyHUxMOhYqOczwXvubj37Ghkk0A+v2b/+EvFC6IQYoUwTJUNdrJunqBW2+jBw+/YrXn3+NSkVdqeFZS5Mx0fIQpCHf2hIgH+kxo+I/AXwbwD/L+DLBgqhqt+IyBe/43f+beDfBmD/9adlvG2wW1kRXEBdaOBJo4jX2iinsNL2tyac1UpZ9NKRsbWCbXC8/bwFfGvl1vKKpqJdiwn55bIpvFtlqTmDeaE2Fx9t9FY754ipj5ftrHTVmqgVakfNnrLYyeWcyDVR8siynFnSCZFKEMVLBN8R/IEY74GJGM/E2OyIpQPxdp1WlqrU1tM3I+JRUQN+xCOEBgK93Bjevfp5Y+EU5nlmWUZUMt2g5BKoWcgLG/Azj7NRYFu1Q1WpqZCXhLZ+6dyCp7QuaIA0quPa657TYjTVVZW9gXrmXJBba0fGAD4ThwZsUy/JEv6meqK6UoHt3sul6aSIWoJjMVUDZoIxe6QD10MDe2h0TnUOvFF58YoEh/ieKrFtyJ5cBJft3qiy6rE02jOyfSbXKJteFC+XhoFPWAYvM453v2BZzCnOkrJGS2YGFmAy8NSIjts8XcHUumIx7T/dEvyV+O+23/ko8f8xBvATT/40WPDRy9uPvXd0MRJ9x2HoudkfyHXP42kg+o4iHVkjtQbABNikIf99rBz6ws5nbuLCbZiQGhl8IXrafXj9R5UmJvSj874Ef5fvaz4cI+wGOBw+/kx/7Bj291/zkZPWNfjzyaWSj14jlzZGXYGaa+Cofe61zE6jP0sLbQVWvs+Gk6z3w/a4gT7tfX5yhPXqX7qllQ0NsK8VQProvdt5WQJrc8borU2voekzlLw02n6CalVU00txLWk10GyrzKqt/aJWvbeAPa9oQWufePm5uOt6BBOX74ee3X5HToGdY9OZOHE2YVvXgAxxlFxY0kLJmeAcc4zUGOmcY+l6pMtQMlIL3jty7MjThPdm65qXBecDqZ9I7flu19HPVuyIIdLF2MQSjTmyMYEaK8R5s1u/ZgBd7rxPR7w92rb8NXnRq39fgKVrdtan77Wt/VVMT3bV5CiZWhKmTdRaLGqBkgyQL2YKsQIJLzWGfR8M8FlFh6XpK3nZHHVo8yZ2jq63AlOIDmvZaWyXOgKZGCPLMtuH9+CTbwDK6mppE0FEzEWrWVGjXMZE5COhyxX0WR/9lBv6TwL2G6NLt9estHOrRNqzdQVxVbfEV9XscmutTfTUhGm1KinlLTZISwuUiz0uOTNOE9M0W/t7Wkg5k3I2jbz1Iv94TP6ocQzDzSaQvoLSdQ3lhEs7/XbzrGsVfLTSrvFs+77ptTjfYrgmhK0Ym+6KUXf9uda/JW2RvhhsrXuMzUFjtwW8M4DbBdN28sET+47QRRtvt4PYwAapm9C0CQ+bHlZo7X3a5k4tTaNma2mzc5TGQBEpBqJia6k2QeNV52mtVF+u1KWlSpwzk5WrvOCPHcPD3WtzXxOx5KxakW5lyhn7fF3XL18roLyu9ysIVBsAtn2e1rbvqt0b18AP7RqstsHaQCRpaxarO9h1IWMTdF/RJDFHqfUtq6U4hp2viezl/rBrrpuu3dZ+WKzlrpb279os6muGKiZynxNoE6BuSUUt2RhpJV/mMRVd3cMESk5kEdIipCWxhJefi2/ffsEwePZD5WZfOedMwJNY8KLkEBCZKUiL7ANOvQE43nI3rY7aeZwXyEoWhWr3Y82KukqVSnEFlbLFKhbXVETFnJSLxyePL/acU1s/uwK52Hx0xeQscBB8JYRVG7GxvirGdGsuUJLsy9x0C4o5M2tOSElINXKCF8W7NtfXIkdd47D16+q/VvBwYmCWE8E7a1sT7yitY0Uxe/TarM1rG+frXeCPjm32B/Iyk+aZNE54F1h2E8u0EAbrEnCxsrawytbCJ5ZnqUNctdYm9fguE4adtX8tiW5vhBAtrTUsz1awj7XFfC02FEwLyjd3scM9fn+HGwboDgbwSyRVc95eSmVJBqzb+mUSMLbfBiQojoLvCqE3A6NSM14tx3XeG6jvPexvkDyjacaVTBFj3Pr9LW63w+33sL9Dd7eNkaWob/iH7y3vdyYMIqo43yFNP/gS768tbNam+fuOPxj4EZEb4H8H/I9V9Unk9795u0H+KfBPAdzbf63dUdcbJ6Z0pR66HezeQBkhT+j8CDWhgvXyfZpEiKdIbEGi226ej9KetVdurcK5tSIHa7275kzSk/1WGSGPCIqPAyEOOBfo9q/p9q9xEghuT/A7RIR+2OG1osWYGsU1vZNU0WRtZcx3pIcDlcyS37GUR0o5MY2/Yln+Huc6vP8a598Q3T03h/8yd/e/JC0TXl4zdO8p5T1TeiTnIyIdmgNZBSGTpx9AmqBeC/issm1Y8EuO4Ve/+K9prTPTdOTdd99xPP1A7BzvfwiE6BAJeNcheOYlcT4Z8ANYIrguWnkNChprEasYmjikghRzi9JKyieW+UTNC14qt4c9gtJ3oWkdJUq1L8URNRMa5yaWmTCr3SsukyRTVBhn5bxYEHOWYgE7wuA8XausLGkgaaBQSDFSd7e2Ca5xMM0+MhSkVoIvdLngfSS7O05pjyueqfiG/puDh2DAzuAcwUGniS5nbrQQEPYeYhAyyliVT6W6XmIcP/v839B374WnJyXlFdx5Av0GOAJ/C/r3KN8CD8AE2CZVamkpRAM4W/KmGvgoWtlO+KfO5lN4Yj1WptenKcjV6xsy4bzjZrfni1f3DN2Br7/8GV98/ucseY/3n7PkW+bUcZx6TlMwIDdkgs/s+8zPPzvxl1+c2cvIL933fMFveVx2PM13HGvgnALP1ZnA33YOPwalruGflaXivdJ1VkF7/Vr45S89/8q//FFw+0eP4e3P/lX1XMTqVhBmZfN4miirWIV/dfW6fr3D4XVl9Vy3d12GoDQaO2rWy8RozBPvgNCW2atkXbkE8h+tx5fnL/9vwXG9An10BX3WhLWN95qMiQXOwkpxNocHrwtSZzTPLOMD49MTses4DAKxGItzdVhU63svtba+a6sA1wo1C1LFaPkpmZBerdTcKtvXY/8C4/jq5lZdB7v7A5//xZ/x9rM3jHnhfhyZS+b779+RUjIrax+MhSrOkptcSEtiqopPieg84XRmmSZcjMzAY4PUnGuAjQguBEJn40iISOgQ74j7A93tDc57azNqYM86tk4c+/2O/WFv+kGxuSk6YwiFBhSZRbi9/yYSvLYV+WBVUW86W3a7yOXcfHOM4pLjOPhIqDinmXk8sZTKNCtzUkpJpOnZ3ItQNitp3+FSQkJPTQtpOlHSwspCeokxvLsftB/AeSFEc1gxIWazHZfWaifOXF36IRKC4/YugJvJ5ch4OvH88J6chDdvPqdUZRh2DIee3bQjRE/wsbX6eaL31NY2ICKEaOGcE0F8SwIcrU3zk1WrARrXgP4G2H4UPrkmn2gtzmuhbGU95MayMpJz2UCdnFeThkpKaQN/5tkeG0NhMdvrWlnmmZyysfXOI8uyME0j777/ntPxaKBsXUAzQxfxNwekj9ef6EXGcXf/pYbYUXF2zlkhOBYCxQkpg+KN2aN1W3TXdpoV0HEffYXW0hTJ0oMECN5W6FpwcyHE0RKGZvygDUxzjUXgoyP2ptnkxdpPRCHsAkOwWHS3v2U4GHDlgydEj3OO/f5grX8ieK8E1wC5NFtBrRbG05FpGhmPz5zPR46P78lZqGmmpqVh7WtLizOL+rjjorOVURVqTahmaoK0TExxNuZoSlQf7JqWBLqYqcKwx3vH2W0uhH/0GL798hc6TSPFVUjGenBO8MGZ2DrmAGkYytqaDUXNCXBl5axyEaoF3Rx1m+MQjXFRVmee9tXA3e28K1uxwDTo6oac1vV7XYtvggtxE9/1GnHVTG20WCO+fdjtfyjFir+1Qi5NP6kS1IxVXK1omkmjJ+eKyxOxLviS0cmTdEGoiCbQbPpERZHjmWnJLHMz0tEGFFUhJc8pJ2YfWc4BKRPH4eXn4j/5J/8V/cXPDgw3Z1J45qvjxKks/LCMjFU4lz0f0sRSO9Adku5AOjrn2O0CXhylCvmup6oyJuE4CbkIeSnMY0ZLRSSBWENUyZWaDPBLFAxWqpxnz+PicFQiZvkhGCspNjDWRfDR8ssYKzGYoO/gMoObbR2dkn3VCssEySQgrCBpIOv4/EAZ3+PSEa+JLng6DUTf4aux0zRbsduW9kavE2cn4Twi9rmcZLwXhs6jwZFcJPtbcD0Fx2kRlpTRIfN6SfSt0PRSY/jq1RtdjhOaBCnfErtHxucC/p7d/Ui337F//YrQt66L0F0EzRtYnNQh3YD3ykDkXgZSrgx3r9jdvyHnTBqPzKcHK/iVEyU/gWYDPhs64l1z7XPC7ubA/u4WHyPl9ed80FtIng8fTrx/eG8tVGmmpBkVIceOVCyHUBeQaHpPu/sdvlsoRZnHhWVKVnyRgMOjNVM+/4w6HW3MxmfqPOKcZ+gPxG4g9gPhi68o96+BQq5nqAs1nqhPis7R1vq2N8fhBuf2ZjeZM3U+U8YzLCc6n5HuJ8s3Hx1/EPAjIrHdAP9rVf3ft6e/FZGvG/L3NfDdH3hXrA8uKZT5yEHoYXi1OXxREuQJdEHLzNYrq2utqYE9SNtwm1iZC4hvQW0Tfv4I/FkXZwTUnKhyQ77L9EAdP4BWs4IPA85H+lzppcP7jl2/wwezP3V9IEq0hVkdRcXAXWnoqQq6BNIcqHVkyieW8i2lHpnzb1nKt3h/Q19/ieNzgn/Dfv/n3N39y6Q0orUj+jtS2qGnv6bWASGY4F4RVDMlf0DVqpzi1sZjB9JxBfzIy4yhopqY5zMPH97z8OE7G7rOUOkQe4bhQAjRgJ/zRM4Fh9H3RaRRWdqslssmqWKaRBZMFVRzW4xH0nKm5kSk0u96vAhdDFuFwioy2QTdKHTSgJ+64BfT7VCMFp3VsSyOKVmrlVHoLHgegtA38TPr5O2pVFLoqV1u2/ulmqmuebirLfqxGqCYXU8tEXLDKYy6ZmJrFIJAjY7eC9lnYinstRJRbp2J2i1q4Iq7xlBeaC6WAo+PwulUKXkBFtBnkG+BR1R/i+q37a1G+3kLkLYqlzYh7Q1O8OsP2FCD37lXtLl5+WRXv3dhGP3oWIEEsUR2Pwy8vbtjP9zyyy8/489/8TVz2vHh+Q3ffjgwLpE59ygeVHGhEruFYZf5/PXEX3xx5kZO/DJ94MvyHe/nW/7m9Eu+WTxu8cTxurL8+xfU9SVOlL6Droe7O/j6K+GXf7Z93heZiwbcXIAfuLRxrbC2Z9XxaS1RrOBQew9V1qattXVLWiVyrUzW0txlVFHtmgCkwxGsOvlJ3elqoLY5fn3W10CZJeiX6uoF+PkYTNpKG4hVhOp6xxn4I67gyJYclok8PTGf3qN5oEw92je9E7cjuK6JY1rrqTRNsdraFVcCH6VCmg0AKgW3mH3zdvYvNBcNkIT+ZuDNz7/ky599zZITr6YzKWeC9/zmN7/leDwRQ2iuToG5OWCklJCUcONIAnbTRM4LKQSmZeE0mu7RyhzUBpxquwkSjqWZGoTbO7q710gToV31YdZ7wTnHq1f3vHp1T2jn0vVdax8zkWDvPYfDgcPBdGaGYaBrQsLDMGyiwl3XGW7YxnkFfqS1Wlshxu4HWe8HZ8WdnBeW+UxKhWVMzIsFzXk5UfK8nrFdXxdwOVk7QC3kNDdLZn2xMXTO5roP0PUO74UQPMMQCd7hGvPCOdeAn4Dzjv0uILKQi3A6J779bmaeKkvKdN2O3W7PMA8c8h4fzcnt5mCOoqVEA+HFtHm8dxtYujF8xABSWNsy22iuBZj2j+1aibUWSwN91rXWbpmVk2dmF2vLQW6sgJQyubVuLc262sCemZQNuBxH094qpTCN8/bYhMrNvvz5+cg8zUzTyPsffuB8OuE9DFEIDspu4DD0dPGSbL5YjNrAyVxAsyXUuRq7rXgz9rAJa4CYuLZeXQE/K/gjromHtthUJVIa8OOcx0WH1IoLMz54avUb8NO6phGniFd8EELX1jCKtfACzgdcb+N/++YVt6/ftrZO0/cSMeZeCHbv9YPNV4EGZCglZ56fPnA+PnF8euC7X/8toetAm+vo6hJjk9A+rgu40F+YJCta1bSaivekPCN5seJDzmgulJJRNe1A55TY7awdzPkXG0PVyjJPVCmwLHgphOjp+2DgD+uaY3PDtZilUj5ila+dA1WLgR/ohTFDM+3IedPqWUWajcHVFPUqxq5RA4DkumWxzT9twrCImJak6zFn4IBUS9HqFVC7bpVQaS7QxtYoBvy4WnFaCQ381rSQxUSYyQuhJhyOOkOpc4uljCFSsrBMiaKelE0Hh5VRlKuJJOMZ54yIJ3UB6sy5v6SSLzWOMTi+/HxHv0+UUPjsPPO8KDenwikpT9MZeVw4L6b1U3JF6Rm6jkN3IIZAdULxpiMVZ0cdA6kI81LIQ6EURVqxUanUuVCnFhfkbGKYWiFJU54ouFyQbKBLEEdoS0IIio92Hbuu0HUFL8LBJ/Yh2HoxJ2Rpc2Ze0JQQhOAV70zepIzP1OUDWkYciRg8UStBIwGT+RCnSOsikBpAzcma0Bv4g+0LDgM8u75Do8cRGWUPDOY+nJRzrfi5MOdMaoLmLzYXayWNM2WplFGN8TMJfnjL8Jzo725ICHE/4EKPKbeEtv9IW28ECR0+CJ3rOcQDpcKwJHb3BtTmZWSZTAc21zNLPTZQ1DSwVLA90nnT0Rl64n4w50Lf80xPTZUfHj7w/a/ekUumdFA7i0dK6chlXdMd4k1KoXOFuLMWzniemKcFwRHDjhAG21vTF8asq8Xa0rKxj33Y4XxvOMOrN9T9DdREnt5DOlHlmTqcIdpiH5zHiSP0O5wMUL0Jry8jdX6CPBNdtuH/Pccf4uolwP8C+E9U9X929aP/I/A/AP699v3/8Pv/3CeJk7Zwo22MhAG6O6RM1sJVFvCdAUEFaNbmWldnr8t7iLQFCjWaZHWN/i+NPmZuWxRnjbl1sfcX3xgcykr33MKbhsYj1sdcsiHf2S9kvyAampO1g7qq4PutYqONrlnVqJZVJ2odKfVE1dGAoSaaq+qMtl5M9LAWE6gOTZsBOryLFkQQEe0QBtAepz21dsZkUhNQNhcAe31DcP8c+L/9sWMoKFHsy2/JZHM4UNtoVmcsE7q9UA59o+6z4gUKFz0NacDc+pyRcy+23fYS7xzRO7zI5kIhYpo8OSeqc/iSSbVY0iuO4Ow+2DRDroGJNdFdk6JqpEukObmxbrpN46BVPLfHaz93u4U2wb5aqKtA88ripaKaqFoQJ2QxlkXKyWjsJSPetaR0/R3ZKrbteJG5qNWsI82JYsZavM4oJ0SPwAlr+Ups6NUG1a4pRAA6m1cETDzZbUnET4E+Hyf9ro3AGmStFdTWpqfbRViH6pP3sYAq1+ZmIsa6KloYusJhZ0Do42l9byVGZRhgt1MOXeImTuyZ6etCrIXgillaen/p2fgdn+B3Xltb1PBBWg+40PXCMMiLzkW269aAkM1RwoZLnTnSWALRvrdkEJVtTtmU03b/rp9wrUJqY5ZYJciLUJ0lPipt7WsJuWyjcnn06Xh9vAXYP2q2lo+VTbC2snjfAmiLpjcASUumVmPOoeb2l1MiLyMlTValybOZBWQo85k0BaoP1jIcO2stzSZCX7Sy5ESumVot1ivNukSXGZoOR16SBc+X44X2RRsIBbN5rpVSjGW1CorWVZ9CV+efdj3l02ts86m0toW60f+3Rchum9b6vCbyitHey5KY5wnJvrVhtGu+/m23jou0BDMSYzQgp+83q/Fpmpgmq2x1XWdOUc4xtNeswE8MkRXEtbXc4eNFYNhjdYxSK+dxYkmJaRzJy0LN2Rxlcqbktse2dhQ75/XKrKKqcmmBuLzuRcZQROh7Y/fEzkCYEBwxWruXD0IItqT4YB0/zrfYoiakutaq3Pa7theurVrOObyz9tmcLThfloU5zBRfjImnBta49nttmrOBrXIFzKpcnTzbvGw7pQG+9XIds15EbZeSSQ04S7kYHb7W5iBkLJ9lXsjZ5su8zBtjbRwne5yvQSADh3JKpGSW7vO8sCxpe38QM0+RNc6SS83BjpcZR4ypVdfEet3KxBIrFyKx3yM1tfVgRilWCdbWaqpXMWTVZk+cG0Ci23Xe+JeyPgZx3lhzIsSuo+97fIz0fW/Oa95DTUixopBf206820S6nQ+bqLm067WuJ25ZlYBaa1C12HaeFrvm87rG2dpiLWp+vQj2tG/AltGkTYAbWyM8DvHVDFNC3BzNVhafc3YNA4pWb+0czajlpcZwO9WWPLqV9bpW/JFN48paRsvGUktLIn/UBgaFQtZsEWktlGoFSSlts9C1Jfka+Lnsy83Ilc2GfdtjL8URc0Js+YLVKbcYE66BnxUoalFWi0urtj2jXPSF1qC0tjWyFm1xefvLq66atPdxNPdi12Lc9TawGLSusT6XIo22uV+uCiIvNo4NhI3B0wVHHx2LVvY94Exr6XYoeJ8p1QR9q0J01poFbaHVJiBeQxNvttYn01b7OKKrKhbTFGHjFVRFsT0DVy1+r3mLz9f/q1qc4EQ30rpxGsRAGgVZQJZ27RLWloQYQ8u3VruqaBVQYcEzY6yvWTITxkBbnJC8Q1SsBQqHFwdECpEsjonKLELCMRNZ1LOIuVVlAllXUNNIFKtuWrvlXmguWnv9pgepxpyexzPqOzQI8XxDBXwvRD/ggra1B7a8bMvdaPEsxmptTGI0ICWi1dk41bV90aRaAPDB4npxjeHc2EVyydmNFWk5ufNQvQE/0XnCCua31l2Lhxrzz4H3vrXJWrtsWHWvRCE4W2+9M7dycYj0IBEXgq2xzrf5GRD1Jv0SBlx/aLmvb2zeSEqFaZxYppF5HJmnkZoXY3CWF7BzB/6bwH8f+P+IyP+7Pfc/xQb/fysi/yPg74D/7h/wXu24JCw4D3EH9HD7NU7/dSQdqfMT9fgtpBHmD3D+BvIZTaMJQDcQ6JL4VFQWu2FqBrfYdBSruIBrA29uES5NuDCB+DUKa+h7Rl1nCzBhA2R0nsjPH+yiT4WpSwgeX3b4soPqqHNAc2xNsNKQ/oqWM1omih5Z6t+w1L8x+igVJ28Q9uTUMVdDn09PT0T3Hd4r+z5wu3/FOM1Myy3TcoMwEPVLPHdUdhT9jFpurBeSgriKd56uCZue5v8vwFvg3/xjxzAIfNGBdPBdJ6TOaOUu2GQMQeg8eKf23AC12ubr22bcyC+N9LNuYtaDXVb9JeqWtARXiAGqc+z7yN2uJ3hHN+zoO3OpyWnm6cEAg16EQcyy72bnTHeniVCum6ETs080xo8J34JQS2bJjcZeV0HAylIKua72nhbcomoVrNJ6n7fbUSjt3rG1yxYs030yunoSwyCDA9GZH55f47vIvt8RuwHvO6qamG53CXBvXmoullJ5fJg4HZ/J+bfAM/Atqv8ZRd6jfIvKD8AjBvwYC0dxiEabT9y226oHDgivgNi2Qfejv/mxVpFg5SoFGVHO2G75LaYln0CsMrj+tlGSG1eveiiOcSl8OM8kDczlCe/fMcieL9/2TGnH8xiZlsi7R4f38Ppt4YsvhNdD5S/fPvJfOvyGvo7c88iujgx+wHUe7Xeo9sZE/IMPQRuNIvjK4aDc3MCr1443bz1vP/P8s3/2/4AXmouqTZOsCRCvdpym82WwchHTF4gx4tbEoW3wrgWbTluSCU13qq2nzWEhTyPj6WTgR9+hw2DsgmGg2+9aa0PTEkGumDqfnu8lkEWb4LtW5vOZcTw3rYlMLtnYd70xRS6sH3uPnBZKaet/MR2bUjLj8Yl5PJGWhfT8PXp+pMyeY3kkPXTWHtP1+BAtgc0maFq0MufF2Aqq5NQA/1qQtCCthSU1oKEdLzYXVUC9ZymFx6dnfN+TS2ZJM6UUno9HxtH0TsAx7LRpe7SWntCCWcQ2dGcBslazrjWSjDRQwK5jUShtRnoRYrOuHvPC89NTE+xtqhhtzSvFWjzfDT+w2w0fA1CwjZNzjpvDgf3hYIGKWzXzhBAjwfsL8LOCRu2x957dfmcJr/fs+4G+s/Fa24fevfvAh+9/YDqeSLkwTYkpNSCn2j17FTOiUtAybQWCUjLlAvy8yBjG6Pjiy9sG/LjW3tUEPps+g0mZqCXGYWnJnTAvjpQjuXpis1Lf7SKHw8B+v2N32HF7Y+LbOWVOz8+oKqdw5Ll7Mkv2Yc9+fzAwzge6FhCviRmA9wYKiAg+BLyPl7Hb5ugFYJyXhaW1aI0pM7e2rGlZmFOiqhpLJ+em2ZPI2cC3aZpZmmvVCvzUUpnnaQOBzq2lq9bKshhoVGolLcYcyikzzpklK9ULoZqAUtbVVXPbY15sLjonDH2HSGWaF7Sae4/vTMw4+s/YR4U8MT4/8Pj9NyzT2ZhPeaEquNy3xKNS0sx8fCbHiBPP/nDbskkrLKFCqfZV1WKa+zdvAeXu1T2v3741R7BXb7h5/RniPGk8sYwntBZcLebg5Ty73cHcu5zZC+dswEXOi2lf6EVPxlzoFrNoL5nz6YlpPLKMJ56fRot9neI6c94BNhaT8wEfd41VL81QhK0AgAg+7Ohu3hKGW1zoCLsbfDegWun2uw2I3gDl/8i92FyUxgYPIvRBCc4Ro2e/s/ZKodncA/M0czydySlxPp94fPhASovJNWxJsa2V0ACYVaB5dWhqSenaMrYC6WDaKaWsAOIF9On7gb4fzJ3Om4A5OHJZbZt1yxEMjW1FqAbI1rK6FieqmvB01kJWm0NltjamqlDSxMzcIApvFtKqlGUi61psbW8vAQ2CuohixVWctT1LY9aDR1Y9vAo1JROkfvG5aG2KWTN3uwOOytAnhv3MUjPnpHz2amIuC8uSOZ8LJQemKXB67sjJmPeLN00YlYFeDkQ8XVB2g1JFyZJZSLbXLY46BQNeMtbmX6GmA3VujlNLQRfT7EmlWmscitQZV611zi0ZV60N90krcW07ztYeaIiigxpBlBDBByuy+uxwtSNWRbljdIWOwhhm7lyyfMQt5JKsnrmAFCty93REAkUrk5tJUigIc/FkHJnAyJ6FjkxlqevYdcTQM8SBnPOLzUVj+R6siCMmu5KmZ7779V+jsWN3/4a7eaLb37C/e839lwPdLtj93zaltRApqK39rX2rBqWKddmU0JG8AbNL6VjSzqRDihXSFOhDZNcKUNp7pLmXilU5EJTdvuPtZ3c2xzxUb3Mv7HaEYWjzkGbVriRdSHVBMQfvGO31sQHfxmTucc7AdluvK7Uo01RYloKEFse1mLzLgW7pLTa//wVueGurSYvdahr5/sN31N/+hjwfGR//njQ9XjQpKT8eiE+OP8TV6//Oj0L47fi3fu9f+Ok35YLeOfBDQ/GcOXjVhJse0P4Nms5w/s5evzyDPKKluTFRWmLYKiwNoW/FmnbSns282Hl0FZLLi7lkiUdDB75v7klNG0dAxey2qVCWBeoz4gI5qg0YgaALQTOoh9Rh/DCHVI9UbxTR+ojWR6oeSeU3pPprrAXrHnPL21FyxMT8C9P5xBge6HrP7X7Hzc2OGE68e9jj/A6nB4K+IegbVHYk/YyqN6ZzIRnRSsSz9x1d9NzFz/nr7/hnqvrf+GPHMAi8DrAEuIkwxpYxmnauAT9ON+qoc1ZxMuBHNuBH1zZqXV0STLVcyBuTZq2cOalWNRVhGDpub26IwSpHPnpUhGVeOM0mFrb4QPLRWhViR6+mTVGRTRDNieJXXSSqgUJVyFXJydDcpSajPtIU1bFAoLREU9WqeVZNZmN4qWJiYCvOoWsVtaJ1grYhZNf4Xh4ezkfi7kBWuE+FnWGPza55m35HVX2RuVircnxOjOOZUt4BH1B+Q+XvEH5A+YCBPic+EnxBUAmIBpAb4AvQA8JrhK+AgZXF9lEp2X7TLsdaSlp/ro/292XVGvqwnqUBTrpWmtZWJQveqI45KU/TgrpAqieceyT4xJu7e6rOPJ6UX307G0jrhLt7x5dfC2/6ys9un/nF8AOhToR0JPiZzidc8BAHQ+bd6jbwuy771aEr4KUtGavc3gq3t477e8/9K8e/+W/9t4CXmYugDXQsIJlVwpImNK9ruVEr0g9oCFvVf7MD56pNTE14nJYgaLJe9DyNzMdnu+dThy+L2YpTobUfODUreKTds5ve2naqVkVcxSIbZV5LYTk+cn56pBQTK05LsnXjcAO7vbGVbBKx0vhTMgX5kpemvZNZxhPLMlFSIp/fw/RMEThPMIsFISF2uBA2tkIpxo6ZiwE/tSo123epBckJaclSLoVyEXd+sbm4VtdzLTyfzrju0RgUxVplzueRqTEgYoxYkkEDFIx948RsaAMWIKRWjQVj6QjGlvTOhFvzWrHF2KHOGbtxzJlxTiRVcjEx3RV0yW3NC963qljTdWl23TkXcs4451qr1wFoiUprSbqIDjv6j8CePcMwEELg7u6W/X5PjJHXt7cc9vu2VFiS+Pj4zPPDA+k8spTCMpuN8VqNdi3BulRkKyr287U6XVvlu77QGPrgefPm0NqebX4hZrBt69gq8kyL0tfyBiwZIFDqQIihtc0FhsFYHvvdwGG3w3vPczoyns+klMxlrQkD39zcUrQSQmSIEe06nIhV+i2Qx8fO7n9npWwf1jbryyXQsgJ9yrwkTuNEqZXTOHGeF2NeTRNTe7wsC6mtE6kJBJsl+MiyzJRyeY0BPHNjAhXO5zPzPFMbSFFKbZVX2RhHy5JZyQS5GrvFGAnrbgC84FwUEfouUmtusYoCDh8ioRsIXaC/Gaxd+91vmU7PVmFeFtI8N3ZPsmqzKiUllvGMXzx9v0NzhhC3IoiysiyMnRn6nq4z1tart294+8VnplP26i03bz5DxHF+ipycxR5SjH0gztP3A11nyUle8qXVbkzMU6LWwjyOLO08l2m0c66ZaXxmmc+UNHM+TlT1IIoLPV6bdbUPF/2i2IG3opuPcWMZhdaG6kJPGF7h494YQcMOCX1bt9wGemoDNMJwYD6+e6ExhOAd0UMXlOAqXecZ+kgMrRlamjPiYu2F0zRxPJ14eHxknmc263VbIaEZAqBtS1VwteCKFcTkip1etFC0rZu12rr5yT12c3Nr7Ma1EO3tfi4tBlXF9qZmQOIaw0oVY+A2x6NSFnJZQNW0fpreT8llm8s5GYvLOcfQDcQQqbR2zNbGpyItfIk4IhKMJeO9Mxa6GCOoSG1xTttbahODXlkVLzgXnXP0/Y5dXjgMlhfuxLF3mUJlrsqrtJAqTGPm+SGxLJ6HIsxnz3IWqtuT/R1FIsRM7D34CD2sTvATJuxcUDQJtY8N+AloDlbIX0BntYL1XKhTNSZQKpCsNYw0IuVsj6eMzpaLSU5IWdr1anFwA/MMMFV8yfiYESl0VQgaiaoIB5IUolRyyIyhsT0xRiVVreWwGmenI+I1UKWSSNiVglwdBUfFszBQiKZdimB+gB3BR7oQGfqel1tPHTHubF9Wi+Wn5czj+cxSYXc6sriO7nDHXXb0918igW1vtMi74Nb9Wxzqg60dwRg5FWvnyw5KK9wlqZTaQL3U3C59Z90z3kEUA1xEIa8kErU14tXBOj9EW8utAf++G0DWLhCLZ12uSC5UEVxQjKxkens+Nu3DPhJiK7g0c5+cC/pwpOgEq7A/RkAIxdMl0wjqbnrCjZ1HFtPAnZ5+4OGbv+b0w2+oy5Hl6TeU+QFx0nTdfn+u8o9y9Xq5Y6XH6cfPOo+PPaKeqgdId6iPaBkhHmyDLQvi+xbYtZaQdTXebhXdWBZsr9Cr14klHZIwC8r2GjElDFvk18CtUVqLVTJUMyqRKhHBUzE7RbTZAKlV0VW9tb1ootYTWp+oeqLqjLbzNoeZHqFHxJATVbPpXZYRkUhKnpSElAuKR6RDpMOtLV7aIRJaFUOwDhW1BVvMyepFD1UkL5BTo9pnSzqcb6gljW6v5JpZ8kytq7K80eAs8VsBkiYUidEOcwN+tOpWmaptAzbKqelO+BDsq/X5+1RabmAo71ITrjjGeW7VT8dSFxb1VIVzFsbsmttEG28VShJKFqtmlkSq1uJSKEaLpLW+tD7wWi6CfXZPrhWb5oTESlawe6fmCa3pIsApgharEmzAGAaGVRGKYlRF/Z0j8v/nMCo5z5RyRnnCBJyfsHaviYvA8pqtrN93CDeYieQbhLfAHngNvOEC/DiubPau//JVjVm2v2EslRnlDjhwuW9b4vQJ8CKNoZVrYcmZOS1M88h5POJdBR0ZusSShH2fOQyVrnfc7ZVXt8J9UPZ+JuYjvi64TQjOAMKsQlnbCX70GX58fApxGfjTknNvOg3i15+90NEAFON1LKiWBv5YpdCqu0Zbzw607iyIETXwrJr7w2rtpe3eQ9SE6PJsVcM0WwtVzhSpFK/gPTk0CTbvcQLFXZgfK7Pkcq4rANAYfSWh1RLA5fzEcn6i1mJsnZQQESIZX2ebI+t51UpaJtJi4rx1BX6qJTJ5mSk5UZczmifA9NYQpTpncy97q5Dm2twsKiUnSrVFSVfBzlqbu4ZVaSjWRvvyhyUI85I4Ho/ghKp1A1rG89TWG2PqpWTBuiXZrcIrVudZ10AbBxrI57CW29XJyVqo1t2SBgKulbXrtrJtP22H3dkX7t5HLK6PnquNIcTWdnZ9iAilFGIDMGoDDkID5ZYl0YUAubDM83YrCXB8PpLni/aSNstp+/laBOJSBKIB77IKqZZW0f9jxuzjQzAA3zoSrVXLwrW1ZXn9c+v+V1pK2QJvVWqNrBqE1oZhiVktHbDS0D0xxgtg08azNl2d0jSrpNrfnKeJaTyDQux7un7A+cDhRnHRRKLXREQVY/AsidyYZs/HM7kUTvPM2MCecV6YGlMnLRfh5nz1eBzHBuo04CenNsZLa5svTNPEshi7opTVHWwFjS2RdI1x6YMJk7umsYA04OeFp+PGSitCjJlSha4L9F0kdpHgHINzOKmk855u6Kmpb8ygFWxv60gTA7a21OaElGw9WwkccHFAq9Wq9s6twbtQizans8Q8Tog45nFiHmcT9i7FCkniwJ+oYiyunPImnD1P1sJVi4Hmy2LrelrM2U8bm8/YLYKLPXF3g9aMj4GaewMufWgaF4HQ7SxWF2f3UWvlCtGAH/EdvtvhQm9C0KFDgsVqK/AjDfjRldH5gmMYYyC6SggQXMU6yowRY6lXwdh2C/OSmJdESsVaf+smorO+IwYWsTUqrGsluE2jrtSmQdo01KzAaKLuq2xEvWpDra0925LIVo+ulVRz+3lr2xbBh85APdjmXCmFlEbbC9Et7KotfkZpcXRjKSmUnHFIYy41NzGhXRP7THq99gsbs3Nr82oqgmsBYr3XX/6QTRw9SIdftfmyMUKoim/OakGVzhubMjrXNA0x5l1NVAHHjPMjosmw9zUS9RX11dREcE2g3pnjlzOwJ2Mxp1Yo1RnnoFoxUvEWV2kAjVArGqW5Ul/dR1fyJOvctyWvFcidw4mnys6iuNqx1IVJK0UqZ5dxrgE/fiFrAyZ9QUvFISzO4/GoVJIEqjTgpzELFUeWaIw+EcRF/MYA9ZvO3ksdqgbGCHafC5bPGAu4aZT5lst514qGbafUbcc09jlqakx5oWLahFnM3sTs7RuBIGXSZILLKS0siwGjoXZErFvEF0/AXLE0J7SZPZTGglRtJVS1wljRBb92c2iLnaqZEizLbHtYSpRUDBwqwv+PuT/ZlSXL0jSxb+29RURVT3Pvtc7dwzMisrKpYhHggOQLEHwBAhzwEeoVWDNO+QJ8AA4JcMYBgQIIEAQHbAESBTZJJDIyo3H3cDO7955zVFWa3SwO1t4iosfMm0g/FlFiUFO9elRFRXa71r/+9S+XDGzVktAqDJ0141BSTCzXM8tlBN8ZPSVnNGXmZURStNC5N1AWJ7jOxP3LMtAfj8TTHdkXynLCMiTM5Sp/RPf9IwM/uwW+OcVsLqUPPf3xgHdCiY+k03s0R8rTI6XM6PiZMt3Zh+NoEzrNWBneZBpAVLqTWglKM2jq5NNUWVBCkYzmuW4+wdQ1pW1EFg2QWvYOxESzQm+oe7iQw4sBK/JAkbuq93MP6WT3lhTNCjqT8r8np1+jOpP0O0qZEDkicgL5GpEB5x4JcgIC1/GFmGb6vqPoA9fxyJJeiHnAd1/huafjazq+IMdADgOlCD54DqeerndrycHb1Ns3OEpGnz+Snj8xvnzi8vyZ4e7Aw/0j3WEgxcQ0W+nheZ55uVyIKeHEhLVEHNTFGrW84Qb8mLyeLWZoqxgFnkInJsLXdYHhcKDvOvphYDge7bI4M86RpJlpnniazZh+fn7mu842tXFOTEumKCxFWLJBj75GsaBGc7KlOSxpJua2CBizQrUOsbJeZt34ZOdoiM3Y6gD7YIZcKYlYxUeDN6FOuh4ZHAeXuT8Eht6TnTKSSQqj7qo5vOGRS+R8+S3j9NeU8l+D/ArkM/C3wBmrJeaAA+gB4RGrZfAB4c+AE6JfA3+BpXk9Al/Vz+x5JO3YXLDbfxdEPuPkIzChWAUG0xj6DavG0A7UbcLsqjBOM1lN4O+vf/PX3PeZQ3/H433H1w933PcH/sXPPfPcMxw9/51/GfjX/1p4yAu//Pbvefz8b1FVZndk6Q7M5cCldLwsjmt0xD9mFd3dmdbVTASLAHQZ32EG6BuvtqoFXc4UXdB8BY1G+9cZp5mY4ioArI8feBgE5ITTzhIlnFWVqYI2qBRybes0zyzX0URYLy/MT59N56cPyNXYdHruKC/Dtrk1Z3Y1FHdMArDIYK4lgfNia3utKDOOlxXUiCkhCNeh3wRctZUJVtJieiBmTBulXRt4U8VlS16sZC/N2La1pNT9R1WqwW2mW65pZ4IQagRGNBtdW43pU5Lprr31kUvhZbwwpsjT9UII3ao7p8B4nRivBmIt88ynjx9xIlynkevlSkyRxocLCJ2AGwYCni44BvGrBodW2nOun1UgO0duee5lJpdEqlXczP8UCK4GJ0wDxdWSz8V7o7+ja6oOQN/1m85M3eWb0K8ZYqzOkQnQhtWxb7pB3jvuDgcOlb3SiSM4R1wiT5+fYR6rDlPr6+avaU3hrakVq9PCyiZV/WFw6E86RPF9HW8kSxXUQqFGE5tWighZLW24aDHmpJogpCh4d49zSswzzy9PzHO0FNUPj3jnuDsdGYa+VstKTEtcAdVPnz8ZwOOE3pumwG9+/Rt+/bd/R8qJu/tH7h4fGYYDf/HP/zl/+c//hYn4Vj83l8LT5yeePj+zLAu/+e23/Pbb70g5My6JOdl9xZwsEFWDLC34kVslr5wZJwMYGtiTUquEZPPTqnqNBmKKlSJvDIh+OBKClafvu6EGtIShc5bi3Zt2x0/hanofeHz8wHCIuNCzLInheOLh/SP9cKDrPIchELzj8zGQ549c7wZePn1kunwmlRktVV8sBwpKQsnimF6eeHYVWOp7uqNFkI3BaCwOHxw+mA2cs3A5zzgfeTlH3G+fbK+6nJleXkzDK5n2JIDvTCgUoWq91D5KVv2vBa1amjor9boGoarjd3/8BXfyC1gd/cq09WEF5Zy3KjyIVM2fVrI+bILWoX7GedPqdDunsq3DdQ1qqVdv04eeD+8e8FLoXcSLCbpfXp5rOp4Qq+Dy5XLl48dPVd9oZloKORljL/gmMtuSaO1amz/hJFdB3sI0XbherUJaf+g4HDvEO4bO4zpbW6d5ZpomA3VwLEXxtbx4AxWu08hlOhuk5I1J1XUdX3/xDT/75ucg8PJy5nK5sswT58tnvv/4CVTpD1ZJUcH2q2LbVV4SyxIRILmId6bDaJX6KiM01GI4laVENhaZD8H8MQElI+TqtGUsZdzAdn4nQeQ//nBijJ+YCofuC0o8wHTl/OyYl4ksCXELgYwUE1fOTomdcnCQxADQPF9IxdH3Z/rlo1W5EsfdvaVIx65nPg0U54mpZ4lWvjulQIyFUhzL4pnnQCmwTI44OgsiLI6y+Mr+cVXqQ9HZ0sGkKLJEJDaR6AXSYntD1aERgdIL7iCoKMl/SXGJVCJ5+sh5ecZR+OQjB1+11bytF+Ri5AVfcKoEzVaxjoK6SmygylPYTMNjgZ4uFE7HA32Xubu/5+504u44/FGMkT/2KKqc52VNdxYRNPT0pzs633H34SveffiSw/0jdw8PHHtP783yyVqf40JczpaSOk88Xy/EktEwoP0JXKAQyHQUFa6fn/j83fcWRJwvLOMLWgqnuwPT/QkfPKe7O+4f7k1rNUZSBX5iZcFp5YiUCvZUnrzZsWULjlklSuuTkrLZiBhQI5WNfTh6ht6DZnS5omkmpcT15cw0TsaIPH3ADXd4hGMJdGq2zl1/YAgdh8PAF48P3N/fs9wHejkzffWeZTzz8t17pssTMUWu1zNLXP5gv/zTMH5e+X4N+Am+oz8e8SFQcsEdP5hRA6TLtxTXGxsnXVE/GPvHTVXMaYEy1WjLYhB6i74UfbXRQcFQXzNMa6gOWfV+QFDpViYOeaqpHw7NMyWN9jc/o27CxKWylU9UzEkpGS1XYv4VKf8H0EjRGYio9og7IPIOZMC5kyl1o0zzhXF+scies/SHwkguPS68w3NP4B2B96CY1oNYVKw/DBwOgZKVPFku4ZseOcPlhXx9Yb6cGa9nXGd6E/0QKCWx1Ij85Try+fMz87zgnGkKNIe90VDV4JS6EZnzaRi6VSZwAoc+0B0sOul9EwvtOR6PnGo6wXVaqrGkzDHyfLnaGNKMx3Jzr+PI9TpVNpIxOkSqgFx1ZBqPzzRAJlKaaWyklm8tlc1lVkBltjSWTx3gzreyrkLorZxxzpF5eiYuE13X0+VHwnCEeE8vmWPnCcFRXGEhs6CcFeafgGSgJTNOn5iX35L1r0D+PTCifESYMMaNCTYbA+crjO3zc4R/DTwibMCPpXZ/YCt0uWf0/OgV2EMK8Bnhe6x62ITwhPKClZD/djuHNEE9EKz9p7gw5sQcJ3778be86zN3h3vuDj/n/enPOPWJn39xx2VKHI/Kv/yF4z/9pXKcE19//MTp5e/I4plPf0Y8PLCkjkk91+yYsqH7f+iQH/mXiDF9XCjmKAe1ZeUtQ9Ra0DRS8kxJz2iZEU34MqKaiMvCeDmTcqJ3ifLFO6QXrOKDM6eTBFLTZTWiahtgmkaWy4UcE8vlheX8iZwS0jn8YuNag6dcLGpi7IQZrWkBW9CoAf2Qc6qbakHTDGmhaGaeRpZ5NKey6oSApc94b/2s2RSXTZsiWlSGygysKb6lpozaXmIltQ2Ute8V1S1dS6SCdK18svWLdw7pLPokavRkwfYQ1yKkb3yUoozzTL6OzN99R85lTeFhL8AA5uyPl5XhMc2mA9TWHY9w39k6G0ToneMUTF8t50xMBoZ4ZyCYIkRnwY6iFl1qumYWsa4XudKRTUh2ZWJY4wGQQ2X51BSBlb5c89IUJS6R8TpaOkLTn1FWzSlgFex3znHobG324jj6QF9TxYzoIgZcphlqOkVjWVrqsNZoI1W6khuGkr7hXBRRfCioZnJZdmyPClpLTX8VIWVjKNq4DaZJiKfzB3woOKfksnC9nolL4uH+BKp4J3TdgK8pm9dpQi4jKSUulyvn8ws553XlzjnxV//+3/Fv/j//X+Ky8O7DF7z/4iuOpxPD6cQ3f/ZLDiKrqZRS4vPTM7/97beM08R/+Ju/5W//7lfElFlSZsm5AkTWrmBRbwOO1KprZhsD02SpXkXLmtq1rX26pn21lLW+HwihI3SFbgV7bK8PPuAcVtTBQegMWPgJtkXTFbm7J/QREUdMkeF44vHdnQE/Q8/p/g4fAsLM5dMX5nAuI85ptUPjmsq6CbI75vFc09Y9/emE8oB4b45HtrTTPni87/FeKEUYxwURIcUrcTE7ZhmvLNeLsXaisams6ITxy6jg5ypyvkaoWNlSlg5VK8E5R3880gXTgOvv7+mOR2PzeI/zdc61dKM1lbum8zbhfZE6xs2W3pg8LaDawJ0d17+Br28J/DjH/d0JR6ZzAUfmkiPjODKNF1KBOZnPfB0nPj+fTWQ8JWIqaLFqTVQ9LCvNbEwqVYzRo7fAj+aReYzknAzAPnUE5wl9T3/Xr0HlJVaNJRxVgglXwBfru2mZOV9HVKEbDnT9gAvC6eHIz/7sG3PYv+9xwTFeTYT55fkFgDutdpFQg2dmZ+eYSXNliWJOoYggna3lorWf215YzA53iJWEr9uPk1LBH6FVLHG1LX6KyWipKwN9KPThgew7lhLIl4XlIqhfkD7hXME7GIKiQbkE6F2F6rJV6coJiJmQE51X7o6eDyXQIeRwRzq+Q0NgzsqUPFkdc1LmCLkI0wKu9+TijAvgayGezlFCtUOyR1NnU60vyGJ2g8wJWZL5ofMMla2sabGUUgfaddCbnlLp7KE5MskJdQb8PLtEJ8YGS676dkWN0CDGSvZ5wmVLGXMScVK1xtSCbB6ll0IQ5SjKQ585HAuHw4lhGBj6bt233+IoqowpGcMnBMQLwXcMJ9P8Oj284+7hkeP9I8fTib6zFE3FpAfMR0yUOJHiwnR55unTd8xxwQ33+NM7xHfgD4i/o6gwvzxx/vbXLNPEcn2y6q4lEe9P5Md7fAjkdx+Q+AXiPUs01p9WLdfY5AiSoLmySpOBbJYGvQmoG9NI6/5XVmadVqavd3A6OQ6DBUfT9TNlOpNzYrpcWKbJGD93H3CHO5wLXPsHQhjofUfUB456QAdHdxp4eP9IOno6+SXLu3vm6xkJHeHlmXEaueh3RL3+wX75J0r1grb4b65yq3Eg6x7iVjpQy93PWEqCo4hnK9teBcgKFaar9FEqZCc1KbcUMxTbSqWNagdU8KE58U2t3d5ytdCUoto2MGN1FLXfNgPOV4ql7CqHjKhOqEY20aVGZa6REanSnGJ6Ipb2Yp9NebLNgpnEbNFEiRRZUJlMH9eDdIBzZCKxeEpWYs6U9LYrsohFQroaieg7i8pbyVDL8wZLMSklkXMkl0gr12yCkxX4ofF8ttcq2XR4GmgnQBAEW5CC93QV+LFKFwMgDENP1wWKqjlvUPvYrkXLpnnRHI1moPhWMWXnYxUtOPXVOVacOrSJC6/Aj2wPdvufyEp9lpqa5rxHUYvihIwPHV03MPQHjv3A3dDz0Fsu6OC90RFVWco+seLtDtVW6SNjjJo2L1qlrgE4gXY0kEc4AV8hfIEJO7e0rCrOTocV2P59wE/bVEqldEr93qG+/wC8R/AoD3YNCFZ1LG/pSGu8t87josxL4jxOqAau44VxeiGXzKH/wJfvC4eD8HiInFzmwETIMywzOIsUZDeQpSepJ2db6//ozJ4fxbgauNWM2z0H5g0OLZR4RvNMTme0LLgSQSdUEyUulHRFUyLHM3F6ZnGKdz0Ec7gsHr1gwE+CYlVq4jgzXy6mnTNdSLNFXKI6nDq8ExOBTA34WUhpqXOcH0R2G/DTtLE0W+TLUkRmcpwr/TytJdObjhOApsooapTa6uzsaemNxdHEa4P3dZybASLrul8jlPvO0DauhOCErpbG9moRzZQLMeetdO+bHi2CVCtw0YAsLKVRNi0WSynYVexq6bAq1FozzClxnmdSzgxeiMlo1Vr1bRQzqmml0YtnqfnjuQUulBrN3YZ2aauqsgJsrYsbe/2GJv56TtRxIbv7eQ2bbk2iFTgpZBEQJYlsK0t9nXRj72zXs425/aXs400/RS+2inS5Ve+p9kRLI9ZqXqRsj5plUQXrjaJdimmFxJgYx5HoCy/nM09PT5b+NgwcT0fEGaPHmAme0AX6vjfgrVhZZzIr83aeZ7pxpLteTcupMnJsv7axnquO1ZJM2yk18fOa/lKqBk+pTCpePWzL3tK0N/Zd3uZ0TWVroIQTWR8tRdQ7V4Fbi3oG31IV285io1H1jddTQMQR+gEVR58LLgX6YVgrVIk467diLF+RbmW/rClqFaguKVrtEBdWZ7xUsehc9bCkqKWmJlv3kmQWYq1C5TYtrVRI0bQ8bL1cKthT9+06t/wawNzAd1n/V+e9WNqS995sJefoDgdCP1gVrs5KK0u1YxoAbYy1Vr1xD/zsAJ4923e3B7S0vNeQ61qd6g2PpsOoZMjGgo0xVT2yQq5Zu7lQ+8H6ojltbRw4Z+1DC/LVPcbWXQUyrmnoSSGExqQwMekQbF52obNy4p0xGUvRdSyZSOzGTsytapiCLwnVQNHEPI9cLs8G+I4vTNOFaRotkNJatQHp2PkKWzrXTVUkVSR4s9v7DvGe7nDAdT0FYdFAVgP7zLaqvkzONeUGTFPQ+GCiPwkRtvaDBQC6zpP7QN+H2o6ZLErMFuTGudXvS7numbW6mlUUVvoQuesn+lC464Q7J3QixJKZF0/JHSUnE2tWj5aA0Ftqks9Ir5QihCK4LOZOSrWcixV4S1LdTDXAiAJSHK74Sr+y85phqWv1MFwHEjZvuPkUMqAyWGaEGKCjVP0Zy2UDl5FgwI8Th7qIFREw4Mds/BmSWQhFY9Uspbqi9RpWb+wN+8+ZMHLTAhNn5ci7w8l0c7rB9jJMIiSlhRrTXW3vFBfiYvblPE2MlwtLnPEZuoYBuAzeUlXLfKUsIxonpBgjTKXgSkKjaZrF8crUWVWvtt9ZYLAYm0gx0Kel6+UCeZv/ZqtV9k+rsldBILT5bNZHORr7rGlaUj0k721c40wSRpfJWGfFUXyCrid3HSWYRMEK8ImafdsP5JzpT/fG8PMdhymif0Q9938yjZ9bXYA63MUikUGguIJz0fKPGUEvlHw2xkxFD1UDpTtW36+Wb9NaMrsYnY6c0LUCTFxpdpYO1so2Zjahn2STEUASLfdVS6sEIOQYQCo1UgZEekxE+ggcrZRyqauhRnL5DtVLvdcADAgHRA415WtA5ISTo+3ZviBOQWau02+5zi8gGQ0juIXgJlzfg7+iQXGnTDcYqHFJhUtScirMYyLFt12RvfN8uH/kkka+/vAVycHh8cS7x0f6u4Olc2hkSVeWeGFenk2jQXwtpCircdicrRXakEITEi5q+btOBHX3dKcDfaW6f/jiA8fjkfuHex7fPQLWZeNslW9Silyv5gjllEjzZDn4Remct8XOD1bOTywfPASj8ua6makqLiYkGX2f1cgUXPFVYBjcWqiwAlgVzBDfKly01AhnOfn9gF8WTsPAVx++5PHujl9+/Qv+06++4l9//YXlM/d3eN9xSYXfaOScfgKWgZbaVovNFWa7bv1gz3yB8JcIDwjvEf0lwh3Ke5RfACeUI4UHLAQSUFq1r9UF4/cBP81jMM2ggNS0LouunVEChbG+/h74DsgUKfWz5pR7Bc2F7z+fyfPCcTgT5N/hsmPoH/nmywP/4l98wSE4fvlu5BsWQvqO4fxb9Pvvyd0d013PefiKc37PpRy4TI55ceS2Fvy+4/fd7k94aJ5IT/8/cp5ZlhdKWYzxozOimZQicRot9YInPsmF63DESUfwBwPXNJF1rgDpQs6TgQtLJM2LOSNpIc4jqgXvFCv0YZFAV0GtUkxguaV6NY2fVlIY9oZp08Yy3ZqW/rHpINg516ZXtXSultIVKzi05l1uDqFD8V3g1D1wPPXkokyzskSL1ORs4psGwlmHCZXBUEwb7W7oOR0GnECouejTPJOenskpve6GP70fsfSZVh7UKqiXNTRi+5vdYUmRuBjLx5yVKqxbIFb2zJIiT+OIryyd4Izt4sVYQCJwCIFTH/DiyGLaVhk450JKVnEoOOhWg9DgYa39qNUq83WdMxxdcHW/vKnq5qSu64IL3pzooiBblbQgJt5vXdK8L2uFqAZKFVVCA/vqNZhGnAFyLSXIOdPdyJhxVkMsOBoRWNE3nqdF1XRvtJBTqUCjpYuLiNmNxVgZMTmmxQAEAzk8TrzFOUrCycL18sTHZQb1fPr0me+/+55h6Pnyyy/5+S9+wTAMhFrmWzqrYvRwd6KUwjReGS8myj/HhY9Pn7mOI5dl4fl65Xg88c3Pf853337L8XiiHw70w5GUMpdx5Pl8ZppnxmUhVdbUatxiQJWzTkZwiLc9vVRdMS0mKLvMcwUqLQgksFZ4Q6Fzjq7vq2NnOg99FzgOHYdDZ5VJ+0DwweyzEkEzrgQrufwTrLUuBE5ffEPJhWMFpl0TMK6stXmO6LwwL4r6O1xXcN2zpWj5EbQQry+In3DDHeHY4QikDHPMuKxEZpZijtF8vTJfzpSUSHnkGq+sueTrTTamTdM9qWCM73C9aT6F/oDvB6teOBwIw8EcrgbwtGBXA2qqc2z2ipU6FrHXW53rDdRhp71k1XL3G9+Kjayv2xzTwmpTKRvT24AU1vfe6iglc7lY5d+yXNGSWKaRy2UmxmT9kJRU4DrOvLyYHpV3ji6YNqb3PcNwJHhvwFBNqUw5EpeJUgqBQl8LKfgQeXi0Vebu4cDj+6MJvA5HwvGEInjf4Vxf04pN0BuEVASNloI3x4k5vtg86xKewpIWfvP3/55x/ISqcjlfa0W8xPPLxzWwlEo2zSwg5mzpPaWQl83h1BoACX3gqy+/4MMX7/Fdz+nhkeF4ZIqJ7z6deblOlno9LaQ5U+LCMp7J02j2nksgnRVlVofzbw3B2iFA13se3x05njpC75ljYTjMXMaR8bMwLQtZYTGsm5eLp0iHGxxdmTn2C51LfP3wwn/y9UdO/cLxELnvJ7xTztN7nq5fE7WnK0dcuafgkWFAjkfwnnzsyd2BguM6wXk04CctHXnpyMXxMne8TD0pC9MMcRa0CG4WZHAmGdt3yFyqfmCq7BzAm+4OCiU3/yhZTDkMgJKlsEgNCkkjOiiejMutsuuMJ+KdMvRKFyxV6vr8TJlGSlmI8ZmcJzopaBCkVyQomUgqC2+5Ofq+58Nf/ic1bXBAXMB3A/3xAR96usMAwZM0MS5X0ueI+JY2akHFabxyeXkiLZHvv/97fv03f8U0jRzu77l7/8GqZ7ke3AFUGJ8+oy/fIjFykEzo69gvI+X5SkaIL888ffstVMZrrnZWqfvdGsxQaZGuG5+1tZHq7Tq3Nl21e4soU8wkb4BN74pVGfSO0yHg5Z6UMi8vV8brk6Wq5UAunsPxyOFnv2Bw78mxUPILmo+Iy/R3R7pDT3d3jxvuWOaZeV44fPnMPJksAP+b390v/4SMn3bsvSUz3J1QIzwJlYRINF2cMiFE1AlFPSoecZ19q0YIbfNJSKVbkyMSZwOF0gxMFZBZampESw3L3IhvsbssoKWxVnOX1cEVU+U3NMGEl6mDRVZA6mq/2yqG0RlwRE9jV5ho82BFzrydspTMFD8T068Rp7jeSqQXn+j7A14i+ILzZhDllJnGpQr7ZcYpkuLbivw457g7nrhf7nm8f+RaIsP9gdPpju7Yc72+oCRSnol5IqUrMc1GJ20gSdGqf1Qn0cqIqI6cGP2VjDG3DgMeMxQPw8D9wz2n04nHd4+8//AOEeF8ufDx0xHnhPM50Hn7fmnMBy2AJ7SKJn1H6A6Y6ryxlRRIzRFSpcSCpsY+2IE9xePaa7G7UraqCkhD0WV1iETEoi8SkLBwOBx4fPyCL+4f+OrdF/zy3SN/8XhvAJkbEPG8OCv391OoGagqcUnGxipNR8fKstuY/AWO/wzhS0S/wPHnwB3KPYUvUAaM3dNy3/fh3z/GCGjzXlEOdS5YtNtIulfgE8Lfohww/Z+PtJzlIiaY6bSeKRdeLiPjdeTYT3w4/j2P3cDD/Xv+/C//kv/sXyYGJ7zLZx7yM+TvKeNnyssLZXDEEpi6Ryb/wKQ9UxRipYP/A1v2d7x+e8NISyRffmVzbXkh5wb8RAQDBvIymfCxXrgwMYfBqOsyIHiKLqRs66OxdkYDYnKmxCaCawK6xtIqa4WFDTTHUiFrpERqaXdzUtz6msYUwPQHVqFM2dKCtkgwWFS/Ogcr8KN2XWvkxAASAdNLEHCuZwhwd+hMrDNHi74BrTqcDVPTt9DGBlVzrYYucHewXPfeWzU4J2IO8Zv3IjXSWx09qYwp2KKCzQ5R0wlrqTNNT6WVGE61fS7LwvflavclBk8DDN5zCJ4gwsPQ8+HQE5wJ26sYzDRhej+ldkaTWF9Bn2oUrSlUVTgabPluzuDG+KonECt6YOm6VnXE1f1RAO8MoKL+hpqqKRb5swSDolaNzITp7d4FNY5hZYM4qWNPBaeNQbNXHTNw/61RA1VlyaaBk5IaiNNKNYuQsrLEYumMSZhmE9sM3jH0pn+HgquVLedr5PJ8ISd4eXnm6fNn+r5jHEeG4cDd3anug0dCCBycMTRUlWcnFiVNiVQSL9cLl8uFOSXGeeF4vPLp00een55IKXEqatVKc2Zellq1a2ZJaWUOKLdg2ap6IM4AZCm09FstpitjOlyFosnsL8CrozhL63POrWLGXRX37IJn6DyHmm7Z12ctth+Xkm3N18BPoSsizjPcv69rVXOWjbVkejmJeZpNcDkpyAEJBReOONfhXDCAexlBFrwE3AB4IauxsJ0qaV6I2cZsnK7E0diVZfxMPn9v+mdN14ym92Iak93hSH84It4T/Iku9MbaOA4MpzucDxzuHjncPeC8NzZ2FQRvbHWtLBwVQHerqNaUsQrslhWcqcBPBYJeV4Oj7cM772dlYkJlnVDHQ6GBEDvuz5v1YdHCPF/JDaxIkRwX5hrIiFlZkgGx85yYpplpmum7Du8HgvNVW2eoduFMXCwtOeeFJV1tPIixSZyA94Wh9zgH9/cd9/cDvgvGajicaBpsWZ0VH4lm21VlAUrK5KYrmUYU6IpVsEvZ8enzzNPzd8Zsntq9KONkRTgEoZRsVRhRlrhVYdRU1v2t2VxehHcPD3zz9dd0w8DjF19wvLvncp1I+htSUWNZjCNlmcnLTJ4n0jKZc+IUXMQVwTX/5yc6gnec7gZKMVvzfE043xOLJ8WF+epYsjKmTCrKmAIqARccPiz0IeFZeHe88Iv33/N4nOjdlaN/tnTA8UvSZWbJA6InSnmgEOgej/SHOxwe+gPcH1BxnHt47iFnIcUDKR5JxcP1yOwDkh2Tl1pQo2rbeGdx7Rp4EVVcqsAPAlqBnxYUk4xqZW74jm0mafVDzY+x4hzVTpOMuBlxCVcveeiFOE3MMRDzGc0jOY1kZtsHndTUtZpSpXE3J//0w3Udd9/8zKQ+wtGAH9/TDXc4360Z0AUL6M3pChgjLtSqgdP1yvV8IS4Lz58+8/G3f894vXD3+IDmma6rBY6kRxGWyxm9foac6PrA6WBaXfO0ME5WRXLOjqnYukfT+OUWvN4fukey2a98G7OyBedAVq0zKOgykyTa/nbsViHr0yFwGIKxmF6eKNcnUlauU00xvL9jeTySTx0lBTSPaJmMrHAYAEc4FNxwb2vKHAl3V5b5v4EaP804uT1cBQDcWi6ylAglQV4qXdNENgWtaWBSq/BUoVexZDDBBDuNCq6rULNxET2qrkaPPFKkhiOalkLTA9pVBvkdG5O2/7fcaYMN6hK8/0yBVVZrawPBVSpvMOHjlm8tIC5bPq1E0Bkto11PtusSzaQ4EMXO7aiOXo3Op2QlVZVUnZu3OyzVq2foDtwd7nhIC6G3fGanAlkpMZGiVdshV6aNdwxhMAO33F6WNquBjfFDVkjFotNdZ/noTiy6vUSWsDDPE9NkFSdi0w6hVOdoIaal5sDPFvkNzvJMnbdNvT+uETHnTTeBaowWBXzBZ+s5V/+r62ylehdKjJVWXCt/VfE7o1S3tMVW7ayYLlVJeHpOfcfD6cj98cDQdTW9xK2pEB6Lgvs3zH/fGt2hegC9x6pxXRF6jOHTGeDDB4T3wAPKCeGIYuy2po2C6DYXbsbaP8QoF7seQNa0L8XSvj5Ux+IJSykLIEZ5tPkntcKXGZUZJZbCOM88XV4o4ni5fOJ8+Y7khEN+4VCuyHQx1oDrKa4nuYEoB6IM5OJXYcQ/Jvhh130L+Jixa1GZ9qz6uo7hn3hopixnExJNI5ptHbC00gIlIZqMjl4iJU5VqyqYkSCupkFOKFVwOVWdtMaHV1vjRGvZWi2INNClrX+KawLt0ra+CrIoNLbcfvOUfVtoYUsP/OG+K7LBivbGHl6U1en3zrRsvK9Q5I5JtD5Xqi7ikGJjdksZ26oI5pTAuW1/adf9lv23O1ok1n7AnK36sm5Dsu59lv6xAURFtTJkS00n0dXRalCXVfcyQ0/F6sDNpViKAcZyRMxYXdM5xIB3cypq6o7W6lIrY2rfb2Vtp1J2mj0o/uaT612vRub+bA2sUiqNXv9wu7es0dW1qU7O/grXMfkP7Js/5lCFFC0KnGt1XyemEWAVzCDWv8dkFWRzTXmWknEOssvgE06EeVbmqZATVT8iE0LgeDzy7t13jOOp6uMYa6brOitVa1ezpgk552u6zsbQMOAsMc+zgUaH05pi1fUdx9MR5z13d1Z1K+XMUgVi0cbeABALhqizFIjs0GLGbhcs1cXAysaAYgWCLS3Jryle+zTMkk2wWIuDslVGyctoDLe+N4Hl4t4YvrPUuJdPn+qaYYxwrdfUSmO3cujT5YXx5Yk4TyyTMSI3ppuBykJBtFbe0mCpomogmVRw04npmTlRtO/xx1P97c0Fc6G3yljiCMOB7nCyPh6OhOFo4NnxjtAfrUpO11fmjkOdrxVrKwTaQJ+2a9V0ozYT9+lXqrLOUW2Lbn1hVcz2k4DtPCu7pwG53J63/tbmzr7hoaZXFZeFy+VKXKwiZZxHS+UpwlJTLed5NgHglChVT666bmzwJisgb+h2uX2g6/uKFc6IaaaQrThEspDWOM5M40QuhRgLS7TPmyxAWDXqtuBIBRxLYzVa3yxLrBXbrJ1bYKXZmVvQpK3H9lqsq+s8lPqohQyoa6MYKNR5QZ3YGC0ZJ2rMeAZjYZaaZthSWH+qXK/dyi3icMEzDB2lwHHJnO5PIB4fC3mOuKQkHH2yHac4x1IZyJ2Dviv0XWbwiUNYcCQOeaSfz4CJcxvYHfA606UFwUM8wHxEnaNLjiE7cnF4Nbgm4TkABxW8OmYVumKMH1kV5sSCwM6kQ5zfZqEUS/tsNpaWXYXWlf23mzel2gy62VUi4LylxgYPIQjBg/oqwl0fKm08G8NYqpyKzdftt96q/9QbSaOs/hBV3y7b9Wcrc2/6rs2eNHBLipJymxNtrBkwnVMmTotVYZWAWO01Soo2tsUTuo5usKBIUVfN2kLUhMZo6fSuLmyViXp76Pa0W+z29ucNHNRS81VrcSLL+ikacVhQv+t6QnAcjgeOQ1fJB5ZOrBSCV3JRvAuYFIztczFasZbGJLaCGVoLAyg5Rwuy/BFEgX8Sxs8GjFgjqXOGPPoBFw74LiB5Is8vEC/I/ISkESkzThOdONTbwCgtT1YCxQUQM9bX6i0lWV6qFjRFSmwpYBOSjJarZYI80lLDyLWUdbEN27p5C1Hf5svWqDeC5eDNP7hLaqFApeayOyt/3vUDfX/AuYE+HOjcASQhaiK38Izqb8n5V5BLzecteN9R4rdM3aEu1AmRQkqZeVqIMW8bV+vhPwwC/lGHd4H745d8KYF/XhIf5jMLC1cuVoZ5SswvZ65PT8RpQeZISJl3h3t+/uXPOQ5HvDg6CTtj33ZbA26M0bEsC3OlineHgWEwUcu0LHz8+B3dpec8nnm5Wvnjz58/MaeRmBfG6YWXl29Z5oXlemW+XhFxPLz7muPDPd539KcP9Mf32KpnRlGjOTtfWSwGhWNCqTUqWzJpuZDjRFxmPn33K66X7ymaSXkml7iuIW0ICJsBEaqxezx5/tmXj/yLX/4Z37z7kq8f7nkYelBHyQ5VYRDHwQXmN1TZ346OnH8JGnC6IHyHo8dhleXga+BfAY8gR4o+AL3NuRqZUFG0gT2ymxPUvPg/ysXau2OKcm8bLTPwr0zXixcKBwMyGVGeKPKMqOLxiBovIZWIipVU/Nvvv+N6vXJ/OhFOAXVP3HnPX9YNzo8jYU74wweWwwcu3Vc8+a94ljvGPLBYSvQfl7tePdN9pEQLpOhYZk+cHWlxpOVt+1HTQvr0HyhktKa2WsJF3by10FUHws2RnCaKWFpJrqmqZlik6rRnpFharBSQqsNlujZNo6Mg62uq40alhqzQ9u4qy+qNrwCLuUO72a+V9t4MU9nmjqubscPAwaJVBN5+JzjwlTF06KyakfPeKnEts6V3xQ0MT1W7BKkaU1WTYysFGpmvIz5ngveUYSAET1oSrNHNn+BoTpH+uKHRNK2CF07HvgJCq7dmxkxKNf3JwKDVEdsBoy3aPmOlTlfgqFjj+74nHMzIxnuKt7kel2QlpFUZhoGutzTZlc2FVraLgYKuAU5iQpu9s3SnWdeLst9VC9eIKqGJ7YtpSBWUqRSWYn3Vkl0UqnB3HUE7YCiXsrIUKMYq2svRorsx9oZHKcL1JVTgp5WurUA+QszKvNg4i9kxR08p5qWJms3QeRhCwEnHPBauL4WclJRmYhxRVf7u7/6OX/3qVxyPR372s5/x53/x5xwORz58eM9XX31FCIGc0qolcjgeOR6PlFLwocMHjzhhHEe+//47xmlkOBzpukAvwldffsCHQEyJ9+/f8fzyQoqJl/OF8+VaDU1jFFslE7WS46XQB4hDIKUILHhfanrMTM6pBo2qnh5YoKiNHVXIkUJhHoWS5hXwasBLXEZKitzf39GHnxP82wdEpsuF//f/9f9mqatxoVUrzGlGSzbgIM7mIMaZVJk6y/hMXqa6JhYsOFHwOuPziEg2RlDA2M9q9y8IvvP0/ojNmyNOP1SAt9uVTB/w/QGcw4ce1xkIJLXyk1XasgIaiJVepwazspiTithvt3QtretsA0o3wEHXVM49J6eBWcAKhNyQ4+u609albb1vNnM7X12PhN2MfrujlMz1euHl+TO/+pu/4fxiVX00VyAPR6lQ9DwvnM9nUkzmmh9PK4vb7ew2C8iqVbNytWpwK0YiikqupZphmhP5ySLzY3SMs7NUpJiZlzpv1NmeJ47D4chwPAFWipqqD5bmyFS38hit3Dy6Z8sKXmrlS6mggihSTK8vl1rkpn1BTJ8zeL9pEHlba0UTJc1IiRyCcj84pgKjRuY00jnHu/ePdN4zLQsfn54Z55FShJz/WFvvH3iooLkFGAEKw8HxxTeemAqnd5Hu7oFpTJwvC99/vDLPictYcC4zx8KYIs4HkmYeB3h3n3l3Fzn2Iw/HZ7xE/PNM4oV58SzpwBxPllGSA3ruDDSdDpTrybJM9EhXjhQCxoB/JOMJesCXI0txhOhxi6+l3w+AsYUINeND1WytlloVC5rU+j4VJDXtuohWe6vtgJZ+5M0eQqEWnpGgHDrH/dARPJwGGALMxTEGiK6Og2AVikNX8CFbQQGfURJZ/c2M/5MPJ+R+qJLgZke6spAyuNI4uHVtkCaXQQ1Y1OBkSmR1qz+m2aFJmC8TJaWV4StVl2o4DJxOR7z3nO7vuX98xHnHMl6ZrxdLkf/+Iy9PT6aJ1x9xPVjAi91QXsNIFWD7sXbZwCKhsbkquFqqzZVmcor4YeDQv+fd+/cMfc+HD+94uL/jer4wnSPLlElJEV/olsLxeGLoTgR/QLPj+enZdOEqCCoVCDMA2AIsMVatsj9w/Dci1Uudr6kxoVJaTUG/pBGdz0i8InlBSqxRkjoJakep1HMEE+UTHxAX7P2ylQEuKSJd1ftJE8SroY55RHNvAE6KlhLWNIGklYXPILl2vgE51bpcAaHX99WG9D7OYai8CeqFEGqOe08fOoLv7NM5o2XElSvoE1o+UjRT8kLRRHYBLS/E2Bnw4zLOFVIqzPNCStnK4nZdFW98w94Sx6G/58E5fiaZ+zTyMj/z20ukLBFiJo4jy+VKrho5PhdOvuObh/c83D3QucAhDHhp7kFtHc3GSNDCdR45jxerBtJ5tLMxUlLi5fyCnwJzXJjSbBvseCVVIeklXpnGZxO1HEeWccQ5z937L+kPB0J3YLh/ZLj7gIg3tLQ6PobGmmC4dwO+6QC5QOeMIbGMn1imZ6YJPn+/MM+fyDkS00jO89r92/ohtVSv59gf8aFj4JGvHo788qsv+fL+PY/HA8cQbCNVR87QiZUw7n6KPVUDWr4A9ZVJ9wscHY5DBV6+oPAXmMCyR6WvG42BcyayrhjzBtZ0PTs7+wXx9x/N+G/G6BGlQ0gIv8DKub8g+hmVXwMXkIhyqb8dELV504qRp1L4/uWZy8szd8cDX3w58HA38xA6HnzPo+/pYmJImb6/J/UPTOGRi3vHVQ7MpbOIfMu13uH7P9KSr15u0dGchZQcKTlyEsOQ3/IoiXL57aYt1aI2tNiuVccTwYSUlxGQCv50lQGwRS0tKtiYVCBlL8BfUxjVcjBb9N5XrQlH00DbWmSN8K6Mmu09rab1trW2b5kjKBWIbVb3CqS2XVXq50Twztg+ffAMna2tjkJOi1Ugyrnq+5QqaF4dGNcipMYIQqmR4ZmlFHIIVY+kM0CjOvM/1XFjWFTgRtYWrRE9J3S+W5mErrZ5zgZqlfKqnWuEzGzLxJwshSSmbCW5a4Wmku3HTt5xR7exg7yzsVws0qyqdKFbS5Vu08Ki0bnqNtlv20rig6fHgJ9WBWylra/jtTrDQO8cnXOWGlPHch3e647qoBZVYBPcVllTVMwi2ms/NcDn7UEfsDaeR7cyfiw21ABwiKkwL5belbKwJNP4KNnKoGtROu8ZuhEviWUqjOdMSoXL9Zmnp+/IOfL09Jnn5ycOhwPPz88AnE4nSk6cjkeGwRiwPgQ6Vbq+ox8GYkxrpTgRYVkWnp+frdLbN0ZDDyHw8HCP73tyyhyPBx4e7okx8enTZ/r+mZwL8zSzVM2TuGRyrVTknRKSpaakNKC1kswSlVQFxrsQVuBHKmOhVCZNVhOQjjOUms64TFPVskosy2hCyDnx5RfvuTsd37wfl3nmr//tv0VTrAwj04jMaUKrjllOlhormq0iW1s3NdYxpkjVK3QkC1hmRTxI6arkVbZ0cTH9P99bmn8Ipmsk4ugGSzUR5y1laDiZJk8VNN0Wxep4K6s1VVYG46YWZmh5E2fe5oCtF20PaOvFa/fv1Wau2hQNbtf7de7rDdjzw7O8noNvNyeLKssycT6f+fvffsunjx+tlRpr03mcs8BHSol5Ms2eoe9B1dIXK6Oxpa+K5aUirlTgp7LpK/tVxRzngrLESEwTCjyfM5+fM6namKkyfxFj+ThnBWF8BelMYNp+K8e0pjdPo6Wjqao5xZUJcOgDoa98SrEgijFka0XB6hkaU9fhXSAEZw/fWIFigFg2hnDv4NA5dAFPQvJC8AP3d0dOxxPn64XnyzM6LbaGlU3H780P3WxDROh6jx86VKA/ZaQ/scyFp6eJXDrGa8S5SFxGOjIueKJ3pOw5BeHukLk7Ze4OC+/uR7ybiWXicnmhd460DCx6QIsnFiGOlklS4pE8nyyFzD3QuUdUOvAT+EgmkPVA1ANLccQcmGMwIEUfamEEbzIlna/90nTLlFIlF1TVSsDHUtfGljEiqNVYYxUbrwQEK4hTEIXeew6DIzg4dtAHheToHARXGT3efCzvC64+xFnQUH/Ul/0Tug+hhI59Or1Ue8OJW/dpqLkx1W0Q501mrDKzDbAGVY9WBn2cI3EeacCMlGoPfvGB7t0DXT9wuLvn+O4D3psYcvCeHBdenp7QOBk7SBzqe8T5rebHGsgua1tLa/IfHLugpWJBKjXNJS3FCpfEiHroO8/d3T2HYeD9+y959+4dff/C3f13DMOLBUvUMn6G/kQXDnjXoypcryMx7qryNWtmFdz/XeDUD49/fOCnLRBrK2qlRW3IupO6EeWI5AglbwCBCOpCdQ+2ihRaKyg18bqWLlPEUXljOF+jGo2ChbF1tAoAiBZUFpBgn/HRwB9Vmhi0qGLVbyoTqGR7ALcuTBs43DybWkECEuIizkdzLtwMLqBlJpdncv5Mys+UEtcqGpsZa3oHLWfUtFa8US+l0bw9vusJ/m0j1KpKLIlY0lqJphQrsdweueovUJQgHvGOY3/g8e6Bdw/v6G+An81wVxrwoxyHA0Pfk0smiRJblN85E3ctBd95wtKBk5UhtMSlloQ2+q4qRpdzHSEc6Ps7Qn9gGO4YhnsQZ85hbctQq5OJOII7GPCD0DmHF4cWh+QexwAaCZ3H+2pYpWwpim14t0WkbvZeIDjog7fIi6vlqgWWHBmXmVKElE1UeEyFOWWWf7jQzB9x2EZi6V33dYP1mM6PWwGYJihp6XiNillWx62OileD5I8xAnafaZ/X7W8GDPQgFglDHrGUtB50RDgDma1WUwVnKiBQgKQmeHueZr5/PrOEwMfuyLuQ6bLygEOHgbkbWKSznPHiKcXVzeUGlvy9d3O73tp8zUmIixAXiFGJb8S62/+OidpaLKglnbYrbk5utVnbV+o6uyWlrne48oDr3Tbq6y4MYmwcbz0kJoRp52trsR0m0CwV9Gnf33kJsmvX/dv1b1tqlXATda5c4ba+O6eVPl0p1HUf2DsfFhXT3ddvHR+7J4s8t1QU56x1cimQEimX7Z7e/NDbDXvfXutt7/69c8qU/TVt+eYtHG97o3214Oi8pzS1NW1gjZKdndE3YUVMiy03XaU1bWBLtTax27IK/67l2anaZzWlx5xVh4GHtf/q4rhGyVaAT1adHlUIxQSpEVs/ndT57qRhkdY2FcsTWNkKe4BHtyYClRUEequjFJinghZL6zL7uax9mQuULJTiQQ0EAXMknfeog84P9FWDq/iM93XfqIBNKY5SyprDfz6f+fjxI9M40fc9p9OJYTiYqGzf1T0w42vVL+/Dbn8TYowsy1L3SetfE8h2FcxQtuqcqb42ZqAV0tAbW6qlimxJRPWhpQZ1jA2l1eDXWv6mRSpTznZdtdpYzpllnkm1op8VIrAqZdM0cb3+4bK1/9DDAoSLVeUqdp/aQO8mXi4BVYdowFX2q1BwMtQ+raxDEVx/RzjcI64z1s5wrE6Nx4VuZc25mubvg8eFWhG0O4DvwXnUdVWfpz3aWr2tZetepSt2sPVCXTAsPWu/ttQ1un5pE2BeT3XbPj+yD+4/u/+t7bhdy5DXKc9vvKaqkuJCzhZpca46yqIbkLOmN+1uoqVatWqJuVYRzaVKQNi1OmfVdx2lroO6S39VW8ecAebOKY0ha+euabxObn4r17FPUVyVvrB0QJsrTjzehfUaRKWusQ3MrZeoWn0A08Zp/5bi1nXVVaM0LjPTeMWHgHOKaibWipmWmpgteCSsFfXaKPNe6sMqE/mfgH23dguto2Q/avHi6DsHKhwPgfs706xDlfFioF0M1k+CpcPMi2ecAt71HNKB4O2vvhNCa9Pqf4YMPtsanL0jO2cpSz6QfQ+SKOIpYgyyk5t49AMLjtx3cOhIxRMzxGyfySi5Joi4bsaJkQzULWhIaFaillqt0qpW2t4rxjBq1YSLMX4ExbtkHDYniFQmkEKMBbISlwktJgPgXMEFs5e6zvquCwY4+5oS/NbzsVTAR6tPKDUVarUv2zYhrNpjtDS3ymCTpr2A7YveizFNc60YXernRKxirGas0p7jcDjgQ0DjRFxBUQPzc4ym7+NbVUZbI+uVozvg58fcHa3/Ewy0avu6owI/LagRk42hqpeVREhLrVa2VLmQCr575+g6A2dXO0WpqZ87u6n6O83O/4cwtf5xgZ/Nr9hNYMWRK3SRCShBAI3k5UyePyO1yoEgFu0IARW3OjSKIM4EmkRcZRDZADZJmWCf8x0S2uJ+RLWCOiWZwK0WJEe0liVu+kLG/lkqLa8gaYE8b+/nqqmhCZpB1Epk6+o22wagVmEK7/Dhif7wCZEO5xaQF3K6cI3/jnn8e3IZmeNncqPdiq/AlifnWkpeHOK66oAVXJcIXSF0gdPdka43gbBP3//bN+nCrIXPywtjnhjjxJIWpnnk/PLCeXrh8vLCPF5ZpoleAnfdgc55/uzD1/y3/uJf8dWHLxlCxzEcLPK3VviqrIUKKsQ8M8WRrJnn6cL31xdiTjzNVz5eL2Q1Mc1FC+KE8/mZl5dnEwB7fmIcz8QlItrhw4nQDdzdf8OHL/6Crj9xePiSw/1XBiQVK1criBnJ1fkJfiC4Dos5KK6CfuXOUdLA9drx6fsTz58DcUlmpEaLwt44FhXGDnLi2L/n8e6ex7sTh+FAFyxn+tP5hRgLRR1LcWQVrln5dilc0x8/of/4w9E0c4SBlh+rNe2tcKBwtKgGVS8KWzQb44faMjaxYbvjV6le+8vf7yn6+g377qpFwLv61wlhrPyQM+g9aECYKfpCkgtQKALGMbAi5YqVwf2r337P0zxyHwKX4yMfD3ecQsc/u3vkmy++Ygof+BweeFqOvMwD89KRozlaf0S67KvDdrGcldEK63B+gpenwsvz2wqtCxC0UDBnuezbUluKS+Wo7HC6jcZeARu319gwlKCxRtrOZmKC9qMt89CtQItgWhBV3LVuxPsqLlCXxZ2X0AC7Dbgz47WBUgY2tu9uG573HpVaqcobmOqdpUz44Op5jOmTWrnN2mDOm7ixBZq2dCRfwY4uWFnsoesoqsxLJOtCKoWYC2/bg6ztUiw3qG3ndqxBEq3GiDlQubKTRGQdntZKrgIoDfhowJ+dp8OjakKRpYI0DfhJxfQmfE11FcTSx+KIVqHPJtDrnFVCdCImUhor+yNGlhgNPDgcCENfmUMm6FtKgcUZSIfDFwvKmEPi17EUgmNwvqaNgCt1MfWuOkyWMqtiEcyyH2e5jimjR1Vn2donS2VCOL1dk97gSFH5/u8XmwfFrtFALbNDzKgMdb8W+mBGmxOrtiYCnT9w6O9w4rn6GfJoWh55YZ6PpOjRXHh+ejLq+jTz9OkzXd/z85/9jL//zW84HA7cPz7w7v17AC6XC8fDAe88h8OBw+GId2bkPz89sSwL1+uFVHURvIeDCyRnUehxfGFZIuP4zHh9MRHxlMlpc5LXSC4JR8LVssMiGTSR00JaJkwA2xjSJRczeJOBSctiTGXT4MpVp6o6otUp9sHGR0qR4TBw+UmAn0Kcz9gASYgrVnAjBETCCk7SAEpfwUrvLI1OrOJsCMFS+sNA6E9WocYb+NO0LKXOs0rlA1hZWQYe+CpfYIz2UvwKmm7BMthSsDYQeB9+vL3B9vntpdb7XtfiHXLzAzx6fU9/8P4Pf+8VwLR+pm4kstlJb8kYyTlzPlt1G+8d/XBgZRaoGvOliVznvOrYaM7GNPNCXoQYPJo8qURKZYo68XTdCdVMJ1bVy4kSnBJ8qVoqpp2jqszzleAr8JkKpQYjnbfUFJyBVHEaV7C+k351KCsex+CtUpuVqjfmqhNH73uGauMvlQ0nKH3nCaGva6IJGglC8MaQ1RJ5/vw9KU2ELnD/cM/hOFgq55IgZyTNdJI5dBA8iJi4ukhhGDx3pacLnuOxp+vMlfzNm/Wi3X4rLl5Uqg2g66DpvPBwcpSDcjd47g+BFDPff/+CLyOXS8TFzIvM5Dwxjcpvvz/xcvU8PjiSOLoukTRxuIsMx2p5KohaO8TF2JipTKTyAjhcd8X1IyqBpfQsZSAX4X7wfKWeXITrMHB96Eml49P1az5fvybnjmt8ZCwPiFOOd1cOpxGhIGmGHMlJuTwXxkuxCpBZScXA2pwcOVsRAM3ONjSx6tfOZdP2kQ6KJ0flPCc0ZitusVwIMuP9wvEgdL7n7qg83nvu7wp3p4Hj4cChP6yFNt6kD7WQ5xmKzS2t4EypYKVZoxVscubbmo9byLX4hpQMFeCRsnDoBXJgHkeu1xcDKnNCU0QQ0l0A/QIngdPdwFfffEnoBz7qwvXpt1bEZHphfvmOuMz4/kyYTtWwNQDYrj3TWJO2fqw3tbOnK5BbR6zU96TJLaCbVuh4x/T+PePhSBkOvDiHpsT1cmW8XohxBhz9MHBwHV0/mO5rMfZoiaatJRUEtaeN+cM/IJj1T5Lqtfp7tZEcLeu2ostYdQvSBMsVSbMxbUTAeQiW96zKShMzVoeJ2DXmz4Yeyq6fGnumRjFhpULuWUZqIh0b8JOmDexxI1R9IGQC6vtlwVJTWvpXTZtgJyipptMDPc5fCd0FqnMNMyrPzOnXXOe/NUHDPLVbZEul8Kh6AxTwoANIh3PK4DLeF7qhYzje0Q9N8PFtjkLhmifmNBNzJFfjbJ5GpuuVeRxJ80KOEQmeQ98xhJ73p0f+7Kuf8fOvfsYQOk6dGaOaS6W3wsrnB5IuxDKRNfPt80fkk2dcZsYcic8Lc04UB9qZkXS5XjlfzizLwjhe10hhcB2dH/DhyDA8cnf3Ff1w4vDwFYeHLxFxpFr2ErHyur5Gqjs/0DlLI5KV2VWfi+Bd5ngc6HsTsUQNRQaLuFjkAFugVSAE+uA4HQYO/UAXOrwPqArnaSLGQkZY1JNwTEV5icrYBsCbHgL0ID2ip3Xhahut1mKlWw6+VXUyTZ82rhu4s3vo69evjh/cirz68+quAif7DYkIL8CI6gWr+PXZ/k0kczbHuG4k7T4KJgz37dOZ5/HMyQeGh4ScEveHA4e79xzvH5j9A1d3ZIw9U+qIyVNyNTT+QdGPnTFcYFlsDEwjTKMyjW/fj42PtZfSbVeySQreCto6wDejW5rR3TYSXa39LRGHFYQxBsfGuDGAvW51TbBZZRVTbu1yS0HdztzW4pu/bf6LrdfrndWdrUa2HLYdGKFELMruDR5shnpjo6z37hq4SdOlttHmTHsrVFHaEDwxF2KcWZIJPia9vdK3PJqh/+M2l6yMHwOJmiXRwLu28dd2kg08cmIi8e11O38DSrTeV1qr7lisygLgiVRBndwMrwpWGDgu6IJV2CqmMZRSqo4ruC5UcFBq5NyMOxs3LRJfZ/xaBdEc3+AcBaVH18BgqedBqli6Ay2OxFYdZwuy7B3MLVJsZIfGUnm7o2Tl/FTT3LTNp8ZmsnLHofMrQODF0rBDjZg7EfowcOhOFnXNgXnMOBx9ZzoexsDJjKNVbJvGkc+fn/Dec71cWRarFvnl11+xxIj3nmWe6fve9A5Od9yd7qtTCuM4UkphrmLFWsrKPrHGTcRlMq28eWSZ7fNaqMyF6kyvhq45hQZBl/peMTumGv05RkpKlJyZx9mioTlX4Md0uGJ9XaomVy7GWrI07QCifH76vDI63vTQQk6zsSgrC06cgc0G8ARj6lRWj18Bno4wDIjzawq/1OIdoenxuA58twI/1OCkigU6zC7e1ifY1oUGOEsrZlDXitsVqRrVsn7z5rj5/LbMG9i2rse/A/TZYaU/mk7wO7bJH7mK3Yfld6x3f9qhWpinkZQWC+CFUP25gpYKNNf9Mjf2gS2sxvLJmZIjOQXQbEBkK6yCI4QetBCkEBrw4y2txglVw9Mqw3ZdwrvRqr2iW5EB8YgYQ7CkRFqWylj1eAkgrGm7whZkUVWimqPrMGZ/1wVbx4spxouYsK9lLiiapQrgsrGSNHO9vhCjAT9aFlK01Elp61eOBFE6byLBUv0aEaULVo2w7wN3p4G+/+lcyf3Y29uU3gnHwV4fe8/dEChFcRp5+eTwwPW54CUiuhAXeDr3TNGhTuhPMJRMkJnuMOLIBJfpnYFnaS7EcUFLIUUlLgVUCH2hGxTEMybHGD1Z4BRg6Q2kSsOByIFUOn5NoYuO6Hq6bOLZ4uDxcOb+sep/5RnJMykpTyhnKcYiTUoyogwpelJylWNgTF6hID6CSwTn8DJACZRUmK4LcbRUVKcRR6ZzieNBGDrP6QjHg3AYlEPf0a8yF284KVXRmqpb0mKi1QJaK6WCh6o3SXEVSG/9bdSoUos8abF02i4I2jvSVNA4kZep6vfOiECO76BWth36wMO7B/r+wOXzgO1HkRxH0vhMnGdjCJWpYgpG1zX70OY+DWdoJkPZBqTqzUK6e91sDFnBLF8Sy+WFeH6BFBkPB5xzjONInGcLvvjAEDxdb33haxomxf1Au2frJ1lf/7Eg+j8q8LOCL/Ufe5p6+5uVgzQEnmzAi3X4fvbDSnFao6JurUCicru5tM+uyFz7SnNq16pJAq5SnrVsgqUt71EcaL55bSycmhpW+k2sSxdETSR6vac6CEQ8VBX/lCeQasBIJpXZrt93ZhiIM9Bhd8+W2mXVlUQ6XLhDXI/3SjdkgldC8Ij0BhC94RFj4VffXljywnkZiTnydJn5/Jw5j4XL6Ij5QNZjzXkdkNJxnuHbz1dUnul94BBGvHNo1i2veQV+lKyRrDNFM9+fn/n4dGZKC8/nkct1ZsmZhBBrlPtyHrmeJ1KMxCVVPTtzFFp50nmeOJ+f6ZbIUoQ5ZizVq4memhPpndToSG8IOhjqqrZhil5AJ8brC+OYSMmTc6BwANl0B9bh2qJLnIj5wBx7rpPnu8+R0+lKcIGTz/SuoyBEMyeYCzxnNYG/tz5adQqtDpK0yh7VwaQ6a3tQZ51XDQxyPw7uwA4A+n1HWyhff66xPWqkHIeVdH+o0YH3tEpkMKLyDJWxZM/QUtKEumkWJQqcl8RHP7MgfD/PnJaZ6GZe8sgYribMmOuyqBallyroe2vv3l5z26wanq0USlZSgpSUGJVlefuONA6WVKCr/vqarrVR9veehGkz2NU2vLX9UfZf2AM3+4WT7U9r5Flr4J+9I1HX+FeAyT5gshLIXzkTP/AtViCoPXSd27m+iEWRbF+sWST7PZomime09urbNoFVb9X8vDfHLXSBQkKxdK+s2/NPcbQ0m+b83Yyutl+JAMUA89pAq+bQfs/bf1maTpPUghMr8nPz8X359UaIaVVfwFJQuhqtE4FcjIVRKmheboA+1qi3q1HsgrFFS6mizqWlkBm0bIxLUFGWLDWlGpaSDZRqbbMK3dc1S6g07ZpeVPOsVISKLtXb/fFx9laHc47T6cSqSaFUZ9+KA7gKADhnwE83hLXyVhcM7OqcGd9OvGndLEdin3AuAwspRXJNu7IqcDW/v0ZPp6pV0j8/0/U93juu1+taityJo6u6fyllq2ZUK9ilGI2B6y1NJSVLA5uniXmZmaaRaTRx55JtbVO11zmbjZNqhcuUE5fzmet4IefEeL0yz9Mt8FMKyzwbBb6yxRr7x55zZeq1FH97KLoyhMZpevN+FOfojnfmJHtsXImrKZAGdBvwU1/7YClgPiDBwB68pWbRUkPwKwS/EvMtr6FuHLIx4Tdc5ofX1mxm2T7wg1TkzWu6OcttNV1Z1+TG3lnZmfuLAFR382072e0C/WpvoAURXFVnaeZDA+6rPYSwpYO+KctATci5lDVVqazsNK0As6zrqdZUxFyrwTpn0Fv0juIdpbGc1SogNYc1iKV3OUxHeysMW9MzVemHA8dTJMSM+Ii4xeZi1TK1ij79JpbvLSVToYqopxX8u901zZ/YeNU1xVLNbuo628NQKqOpgfbbI3Rd3e8qyx29+YwGW5tSMPC+lGQVckuiDw4RYxvdHQ/0Q/dm/bfrSZS6lr8ebrr/RwPH2icSMY3My4V5OdfHSLdEphkUxzgGrtcjKWX6EDh0Hd4VxGcKViwHmfG+R50xF1GzLUNNj0LU6viqifl7lCCmx5NFyA5iLjxPC4cuVoZWpnMF50x8+eFkQWKvilclJyVI4tAXclHmpMSkpmmzOFKUNdHELkcr8JNxYomnngLOqq9KZQt7qIEt69MuODqvBO8JXk0apDJB31avyYK4jq00Q10B135bTQ/Zjee2LqHGFsqp4gDGqrMqlDbP1HmKy9t1Z2MZxdAxXy+Mz8+kfmY+vxDHkThNaM4E51Hv8eJqCR+2tQlFnZh/b06SVQFv13YLZKz3sje011aswM9wOBF8ZzO1YFXJaqq1E+iDsa3bfAwVQPZVc8zSEF/587Jvya0t/9Dxj8v42RvttYE2498AFs0RTUpZRnQ6o9MLulzNENDNeDcmgOBCi5SY6rc5sY3i3YaYtYaTdSjtNlBFvanso1orjFWR5TWvUG3QNXX8HNHKBJK01NSwlg6Wdq+N/SMaUTUUuQ10dQNzmdHpWwSPuh6VzhbX4NDTB0BwJWCiuoJRXOwhuYNiVOLh9J6uPxACHI9VOL4kNE1WJeANj+fLwn/1f/oPZE3MaSZrYlzOfD5PLDFxGTtexq9Z8p2BXGkgqOPffVeI//Vfc3f81hYgMY6CVcrI1f9vMoSKCcha+13jxMt8JZXE83Th0/hCLgXXeUJvglzzeGUeL+SSmK4TaTGdllz7tZTEd99+yxL/Dd53uO6A7yxcUOoG0yZtSzUROpx01VOu1FwsNdFJJsaFp88XLpfBBHzLV+BPNq531mrLu81y5GX6hqzvuC4HYnni3/zV35hBTrD0Beo4Fk9GmPEk/SnypxVkQqkVnrQx5BogsOeJCBCqsaewtlUDgV6f+kdWnw0F273xo+bt+rxV3wD4EugRJqzS2hE4V+2DEVhwZaoVcgqIibEXgUWN+RMz/Id05eNl5jQcOB9PfOsD2Wee3W+4+AdezgPj9AJ6V++tY03X2INgN49W/8Oh0tf+VpZZKalwvSjPz/D0+S03VGs9myFK1goe1Ctt+9Ee2Gm/3qopSQOGyvb3PUdyq7bQ+qM+752FXKMjKmtlLtVbB/u1r72ZrlW/p6zEze0Drw7ZV42rTJVSHaBcDIyIihlv0tgtxtoqsLGbqONcwatUP0BW0dlDZ+WsT4ceppl8HZlSMqHhKoT8UxytoL3bjf+V0rsOtcpMCu3eagS5ttktwLWBf+3/0BgzrACFAK4UfNWV2B9OvMU3VOmLp1T2qA/CskyowrwsxLjQSsi3bTU4x1BTX2JKq4bLUnXgGlhUiqXPNeDHCYyyrCylAhs2XDvR0sEC3nnEe9zQ2eucyYsJNlYPzGwBYNUqK6Yj19LI3uro+4E//+VfVkOs2ibicC5Uh87jfWWHeIcPrjqIZow3zSQvVX/n4Y4P7x5qut3MNP2MXCOQuQI58zwzjhOlZFLKfPzuO1Th08eP/Po3v8Y5K2drDl6g7zoeHx5wzvPy/MJ4uaJFGa9XLucXUlwQ7xBfxZ8/f+Tj998yTRPff/eRT58+W2W8mNeqXjll0/QrhWWZa2pW4nq9ME0juWTmaapjpFBiqka8GsDTNKRy07LYQEEqUOn8pmOCQEyJz09PnC+XN+xBO3w38P7P/tJAz7ClJa7pVw1Q3LPs1tdV5FaE7G1HKE7IbVarh1L3CreDStopqDO1RpxvjHjdf35bG9rvtvdv997dwr8D6Ne/6rYyrFpor766rfvcONm4fVLqdgPt/w0AaQzRUEWEjR21MQF9MN2ZEN4wQKmFskyQFuMtO1tf5hQpOSPeI31l0UimlIWcF5ZZOZ8LwQeGviPGA8Gbfk3ofWV+Bfq+MwafQFe14EIQurou+1q1F0DdHd3wzkTR54VxrgK+4lY9FecrQCxC31u5Z1Xl5eXMy8uZUrXWSs5YTTITYV4zJcR6zmvBaSF4z/vHex4eHqxt/cZi9w3UobG76s5QK4I5J3TBQIAuQEk9ISgpF67ThZgyXed5vB/o+xPDMPD+3QOHYXi7/tt3peQdQFr3tt0wdS1gK4oLZs/kcuH55Vd8//kT33/+ju8+/R2X88iUDxT/QN8HxqlnnB/pg/BwEj7ce/oAw5CRY8a7gnMj3fEMmpHhAuUFNBM6IQTzUfpU6FMjC0SEZIBmP+CGniX1iL9niY9MS0L0DrKd4xdfFH7xS+iCMoRC7y2V7jrNjLOtl1PMLClTMsxXiJPFNpZrJs61cEdNR03JcXk+ME2BhCN6T/Ee75QhODovdAHuj4FDB8dBuTvA3aCc+oFDf+BQqwi+1WFeVIdW7UStzDdZn13ViqyBN2k89bwCPSnO5PlqaYxxoRNBvKeEjtgPlosgkOrndVm4fvxIvFz56Do6bB/8+Ntf8/SbX7PMEzpOnPqe7GweSl3TTQNrB7S4CthL83VqZe7aRpteWGPCN52gqpUoINjc9qHneHoH6ilJuV5GlmQVKzvneXd/b4GHbsCHHu87htDRBSOL+NDjnEE2v8tcfq2e9ruOf5qqXq99vmrUKdRcWwxcSRO6jGiKq2DjFrRoG+2maL+mnshax2PdiNYA57oJVr6PNFBIq+NkYQpVRdyW8ywNsFIgJ6RUMab046lhkirwowV0Wtk/TQgR50klocuLGaeuqywgyF7AnVgdXO1NiDMHKA5Vh3Wdw4UD/eFL+uFE1wnHO6HrIS8T8/kzJY9v2nXjnPh//TurMpZ1sQoxeWScI6lkYgpM8Z6svVH3sscjlBdlSh8J3iOqdcHWlU5nbb/lRXopeDFR76iRpVip1zHOXOJojqvZ9ShKWibSMlYBrEhJLeWnOhBaOL+8sCzUyem3aLC0FCZu2FlWLcoqzFECqLkjvi1iWohxMrZPEYo+IK5tgG3MORMPU09hYFoeKHpiXDqmeaQzVi9endG4GyVcLG2xSF9R57c+FCXZdKDbTcnmMMr6egN3dPfv37HA/M515/eBHvrDz6xgQwNw7xEOQKzgTwQ5o/JbVGyuqCiieTufgIpWQT3T/fluWXgqhWNMdOcz6XQC51ncE9F94nLtWWIBjdAEptsyKRV4XdugKeV4+3d12pQqmlsjNcusTGNmHN8e+Kn1BcmVASPaVJKqAPyPtnKNpDdwSLf3HQ34rOeRNhZYWReNsVPUgJCVwfOa5aU/Phx096wVfHkNFu2Pnd/SvgUVtErarlfIWlZR5uD9GgE0J6ruBDunLa/V9twK/PRdoB96+qFnzpZCFItF9ZZSbgGqtz7WTWp/5/bcmDaWHuQr8FOq+HJbu+wcW8UHm+V5l9ZkUkmy2wyx9Ksd0LfKpQeLeK37YkWYcimkZA5MSpWpUQfBCoWKWwsLRLXIp2lTZGOsNOZPBfE27aRb40BoFWNkAwKcQ72nYNpMvrPy1poT2vbldl+rLWDsxLIbz295eO/58OGLW4eupvqs7Kf1ddOrMXZp8M1A3JyaclDyqYIrORNre+8Bs8vlwtPTEzFGPn9+4vPLmZQSL2eP+2QCwu/evef9hw8GAvnA8XDAOc/1fCHXSnVxmZmnCVQN7KjATwOEpmni5eWJ5+fP5FRM+yIa6yjFtDJ1pmliWWZyzkzT1VLIVv2emuqVkqXTNND4VSrmHnwwYzlsxnXttpQT13F848i0Hc57Tu+/NLAphNWYlzWQ2K6Tdcbobv1qgNUKt0oj/FdQptR7KS0VsDq0q65ZO/t+Xd5+U+ofNvaetAVuu4nXzbIDfda1dwd8/n4W3A8WpR3w1Cxse+z7w/SibP41AWBXU+a6vlvBvNA1APQNg1uqqJXlrCyM2heljj3R6oyBMX5s3UgJ5gmSd5RslUW99xXoGfD1vz74mq5pmjlOTOjY9hypa7TZDCc3ELoTqso0LxxnA8mlgYT7VhYToh2GQ2W+mYRCzsY20lxqIZyMhU1MWNrTAgeWqeAlcHcYeP94X68/VOfRgGaTINAVpG2vS8k4B12QKizrWYZg6+mykNPMPM04GTgOd9zfHTkcDnx498DxcHi7/rvtTDNqVs3IfXjjds9yngpozYzzZ87X7zhfv+d8/Zbz9Yr6D3THe/roybmnlANd8GjsOLoD2jmcZPrerCrnL/jwYrplPJn2DwnvF4KvQX2fcM4UJYPMBLcgDrpjJJwM+Pn4fOV+mAkizHNi8oUuCO/vlG8+KF2n3A3Kobe9fIqROc5kLUxLZE6JkmF6UeYRclSmc2KebNc0HoQwz840fWIP3uP9sAYX+t505foAh8ExBMehh6GDPhjbpAuB4LsdoPunHwabe9tzHQbmVEEJlXID/HgRwu7XVS39uOSEpsUCOjnha1AneE/vAy4UYyB7Z65bSiyXC2VZOPcHhs7EnV8+fsf49ERaZjRGBh8obPagAaN+3bO9t/ZAml/m6z7k1+qYbt0fqtTAmsoeNrZv1Y/EOaQ/mh1SYJkXUjI8wItwHKyymA8drrKvOm9gmHMe7zrTMubWbgd9tYb/YSP1HxX4ETAK9/rOq01FS2XWKFqSpXvVnDvZ72/rXbeoUDXmVnu2Gr6y25TYNrhGqS+w0mdVKwikWjcGMbHhuimjGwCkePutphEkUimWztKzVK2DWuUv7c2RlK1GkhOHD0e8sxL0OBOsXqPzCuZcDkhVc9fUodkj6hAJSPZ03UAfevrQG7KPw9UyZUGWN0VvAYp6xulxBX6UTModMUEui2kSFYeWaChs1UpZ8IzOVPeFYg66ap3cqfZNpukCODGKLlgqR1RL3FmSlcguCuI25LhkMcEzBS0etKXnVIpzKSbqFcdd1K6xxajC0qz9vDr1K3W/Mq2wKJ6rGlM5d+TsLFpZAmgDfmpIT401Ah7VnlweiOlEcR2THMnlACp49bVk4Qb8gKe43sbbT3C4ZqDunUDagrKL5q3zdLfx/lhk8fWhr/+xBwaULXRza9quX5Pt80LTklGQI8IjBrh8CfwMmICn+l5GGe09bfBIBSswIChq4bpEnq4TuEByn0jyW8apJ+UF5G7Xd6FeR0Ma9yBzA2FbRbRqkDfUv/7bbuXtUYN13N5019ZPP16VzIymm+Iu2592z3vnoK6T7FOdm07MBuIoe2dgvcof/ITq+hMbjCjCaydkNQP228QOJNpo4Ea31n3ViBUj2iNQm2tl1y5Vw8bWo5iEaZ5wmPZJLvnG1PxjNtX/6GO3X21XK+s9g6xOZnuvzY42c9q0bDo/BdiqxLRz/s4LoO2p7KpsvjYDnVhwpKjShVC34pZWqBUYN5FVsOdSmZ1gQJtV62iphbqOL7SxDptBf/vrzbkuamL7Raswf42Ia2UebTpHuzPs7uWte1Gc0Pc9KyNZtuh/q2zWGBBr1TjZ+ul1zzfGhDWPAV2qSnFuZcT0fc/xeKTrOhPWnmdismqbuYJfpRidXJCqm2MBltxAGFWm0UpfL8uyCqTPy8LlfOb8YsDP+eXM+eVsINSSSNFSsXKydDGtWkGN2bPMy6YPtTJ7Su2fZk/txjVtjsq2MKyAj7Vn20EUG3tvD/u0azHDnNJ+o0bWb4CmFT7frSV23aq7j9bXjbXW1j6zH3V3T/b/Nuq3L+9+cl2I9msCzYhdbd+2Hu6v9cfvtNnU2/l+iKVtgJe4jWm0jl82YEykMi3rOA+NqeVkBX6cc4S+svUqOOTW877N4Zzn/v6OuCS8eGJMxJjpQkfOphfVDZby2AWPEyXGhS4EhsH0sPoucDwMFbTqOAw9zjv6vmM42GvvxOxZqcUFfHMGN8aPDwUfbF1qVfUa42djZbb+ELq+p+s6SlGOh4H5eLA5FxKxs/PkvjNxZ+c4ng4Mh3bOYsyjrmPoTXi5XWclrFXtSdtnrYy72a7e7cG7Kk+BVrDOGFnD0KEow9BvLCLUNIrevmTp7vghFLG3DNdJJrZ/+BAYhoHj8cjpeOB0MlHs0+nA8TCsbeycpWAWdbTECFkENzu8hxw6VI+IJLxmfK3I7HWh6AIUckkUsSyPQiBrLT9eOsiBlDtKsSC96dk0drhQorDMJncR1CPF9tKYPbm4GhBzq6aXpTcp4iEERwnV/62CoiV7utARfEC9Af3JByuAEaDrTITc2KV1PNQ566RqQv7Yhv+nHs0+aOt+7Ta5yW+tqaY16L4VCLHPOyxt1vtAF3r7d39CT1aFLg8Hcj+gWugPR4bDnYns+87OkxUvnr4b8DgkF1zBsnp2KeHeB7zbgJ/2etVlowZxrNb8ls5eX4trjM5KSpEtH8BQ1cFScpwgISC+VgjUqoknDud7Y3a7gHNdZQ1vzKO2vO+X+u1121F+//GPzvhpzJnW0TfCo5rRNNqAj1dIV0gjUqK5Xa5V/NHV6r21lesbLReu/nFvIuzLVbr9e82RoOU7tz9uT2uamO7SXkpBc93+S0Hq4G6CcQ1iavVX2kCxvPHu5jqbMZE1oZrr+wHBocVTlgOaOpw6utIRiin33x3f0XcHRDyeAZcDlJkgR/Bvmwcf08Dff/+vgIQyYyXYFwpXVKO9LheUWNHaiIgyiXIdWypXMgaU1mpRdRE1B32p7RXts5JrSoiVDs7qyaXDuDxpbVeKg9zVsSEY8GOpEFmN2VJyIi4vdajsI3iVsYFgIIs5+qKHel0NSGqbo0fq1Cl6qA6v1HTBHSAgLa/VWCO5GBtK4oBI4DrfWQlY9Yh2iNYNQvp6TR6VAeTtp6lgAr8FIa/XuXeQhRuh5m2S/o7nf+ixOXdtab+9uvUqsZlXc23pgW9QBmCqZ7gHHVH9O1R/Dcyo/haV75EmRC0ZwZgxGXNYfv35hee5gLygrqDuN6TUcR3fYcLSnlvgZwcArY8G+ASQR5B/CXxZowIHvAS8s2iU89s69DaHUm6AH22WPKtH8dpzqO9pc4xlM6uaEXBrju6YGVhPNHZGY/y0n103aWkpEvYDN3fdLldhE7bYRXl24M9epLhJYqgas2erFLYHp2T9nhVOdDuHukEjJuKuyipGXbC1wSHERcjLSOeFJVt6wIpMiWzGyhsf7gfphOYMSr15Y5HZZ4u0yg6s3zHQxz7f0obaSG2p6UWbnkVrr9tnaE6g1K1UcU13Te3fgFWFqd5s3yvHWsK9WSEtsry0Sk7zQoypVsVR+i7snGU75yrCrVZlrGmubfvwpj+iCiVnU/VSRWUhZ7X1PbUqUI5ODIDaAypZ3lrWmdomnnePD/VSb0GMFoSSNh6rA9xsbMGaeNXooK4u3gZ9qakwa5vVdmgl3EvOPNzf8+7xkZgSzy8vfH5+sjSxJfL8/EwXOj68/0CKEfWeWEuiC8K3337LcBjouq6y3TqWZeFv//pv+Ou/+g9M08S3333Px4+fyLmQYlpTvUrOFYgqlvZVAdRc8gpQtWd7lB+yt2lz1+Zo258tyhpMbNrZXM1ajP0sP1hZ3uRQIGbrECl5XS/3Qpq7hRNd/71baVdApK5F60q4jWdX6trd0sqlra+7T726vfV+tdo4bT3fzbtbAGUHK71GVmS7JvvnzpXe/61Fq6uD2e6ppW65Kp7sK9ullfZu6Vt71k8DhLxvBVi2a2laYm9xDEPPf/IXf86yRC6XydaeXEipjj2HVQgUA6VjnClaTOtlqGBPCBwqOOR9K60sa5rmXgsH2faqBow1Jlculu5tQcKapkn7fB1DK2jY+swE/EMQjkcDeZYYiTEZAOBCTU9hXVfsHHeUUvDe8/Bw4njqVwBZ6nruvYF2Wsx+KU4pRRDMEQbqXC71XEI/BHwwBmHKhb7z3B17hmBB3Gk8s8w/gRyBYnY9rG3VXu9HrzTQp/bF8XDgqy+/NGYsnmlcuFyunE6PPLz7QBd6szmq3ZGy5+liaeL9Ilyi3evQBY7DvYl3y0xw3yBkvJ8JbgIpOJ9wPmIVz56I+QnINm5wxNwxpxOFAaVHCHjxiArjNfD5u0wIjqlXhs4hklCfwCfzd+q+KMU0x4YeilcoVhiAlk7sPJ33XI5H4mLAXF46BE/nlbtDYeiUIMLgoZNC56Bzrj4LoT7eclVd94hayVG1sBYJWbvQrDDFytjbFzeZFdThXY+TgNNAOHXmWx4fKY9f1T0lm0yMNh1CGyWh62EBlUwvB97f2+fzQ2UeU0kavjHiupXxI9JYO9DkY4TbCqQG0LSxL/slzWzOzTgFEYq3TA6bmHYeqLZ3PYeuII/D+QHXqkm6ANKupwYNFNaS8+wFS37/8U+S6mVb0W3ERlo1mVJlQVuZ9FxLqEOt2LWnw7YNcmP4aOt0t2vA3S/9gI5bO2Q1TKiitq316n64gj7s+hJMTiToqktsj/alFhWxT9tACStNzKKBuwWzntDpgmpit5NACWR3osSeoJ6DdgT1dL7n0J/o/YA5qUcoHaIznQDubXNvSwm8XL7GRHRnTJg6gRvr6wiMQKJgVcmoZV3tb6bMjs72mkR1T+rfV1dsa/zat9YW1dlWwfSTmsFslMKtd1oUMdq1iEKZ7feaUb6Oi0AD2AxY6CqA0wChdk3te1aC0MASm4wG2NQ+qICdiQM3Ie6A4snpWM8fMHChM1CpHJCVOWLAjxKAnwb4ed0C2zv7f21E2h8CCftZ8KeAP+2c6w/sLkVuHo0MrzxiFclmrKIemNCzonX8KWfQz3WdkRWcaO5k0cLTdeI8KyITzhfEPVFKx7w8Aqfar731lQi3AGAbGx442uf4Avga5Y6mD+XEb9WU3t5PsbvZle+2ptz3R23Xnd+yxambJaXr+nkb8KlrMltKTtuiTcC5sX62X7LnUtlrux/dHSvoo01La9sybWreOiV1KbXflm0m3tylbk7xOlKqEdB6zDZLc5oM+NnAo7baJJS8GECRgbgyu36y7qONb7kZJG3O7SM87botDc8+tc0d2y5kdUrYsUlaWyW91fLYg2w/uCphrXDaBtfqbLxyMm/GDFg1phQrKySu7BIBAzHWtrfvNLFge7869y1I0654319q1aUc2LkLq/6NAUy1zao/cJOs+hN0pHPC8TBUE+ZW6LoJd7dFoDlj66XoXlT9dttHTBqTdS3e7sOYCMPK/un7fk0Ju1wvFojJmSllUkgsy2IaJ1RhyRhB4fzywsfvvid0gcNx4HA8MM8znz5+5OP3H5mmiY/ffc/3Hz9Zpa1ouj6rxlQDdl7dN3s7Cn7QJu1DN6LDwKafsFVobdOhWWJWcOvtnU0Dl5rB/mpfa50iOyBo7df2Umx9k/1+Zn3ebnN7ve1oqu38O9BnbZa2Nq5QMOukbAHItn7WNW9/R00P7Helxm1Cx7J7zQZOtPdb6XpnaU1NXLXv+xXkGYZgmlWupnftWDBr++xAnqL83mv7jzmC93z5xQeWJXEYRpYlWku0+hzSdB21TUBA6Suzx1cm0NB3KzuvXfKuu2/aam3tmzHOTQW8/WP/3QYUqyopm3h7q9wYvNSqd5ElJoSdDhBKSqadtl4bFlweDh1935jiNche1x1XScteBUulLai6Oi4ttbTt985hWQTeBP6LWkXHvvOVJaSkZbnZU9762Ptve2+ugWzrXKv333U9d3d3Nf104f170/U5HB64fzjhfUdOVrVLFXKBabY+iWp7vvNC7ANZQ2V2ZTpnFdx8nvBuRKTQ95HOR0QyqlJZrRlJtmyl3JFKb2QBDIgyUFBIs2O8eLwXShdIHcaCGwKuM0JAqYl8qAVqXbDAT+mpIuOC9x0iAUqg7wf6rkfU5l/pTcR56AtDV/CUKhJi1cW8cPO4TWh9m2PbG8oa3NlpKFeWdpsvuX1pN2EtMKY4JDi8eGNj1rRFO8r6+ZITJab190qy8R+koz/0dS+xiawiiA/GvqlkDO9N3sP2oU1KRmnrn1/Tvm6An7aWQc1oWZHUCnhtOS1r8Yl6zibgDPs1sUqStHR3WS1Zmndm+L81pLa95I/ok38C4GcHobRKV80rUyujaIK/M6UyX1ahv7Yf753NvW9RN5YNANr9YX/sd+Gbt2VzAl59ZXX7Zft1UczfbwW7yuZ87d2ZZiQ3sKfRxLzzRptvRioWkbbzu/WaEKAElB4NPQHPQXs6gjEKdoNjlZkNnuB63JtHqBsrRuvA3T30NROisWWoLdYmdamfbw7Lj12jsKZLUXkGq7FX+7Q5nBX80eqotmLedo2ZVpHBfr/xFTbdB2m/9YOHcDt+9ObRkhKag2ZhyNYO3ibqqse0e2hHY/QYkGAUUNUfuYaa8vXWh4jlcudiWicW9al/q3dnr6tx8rqL5NU/fmy1ef0dff23tmn/zqvcnWT3ugJq1o4nkHfGmOI9wieogNmmD2TjYO27BmbUlENB0DIjWOUKXcvY+zqOuirsXRllFfiz+971kTaBXGMcDEOm7wrHk3A8eY7Ht5+LrlK0tW4CpvHDagS5rQfX5hO4AQba2mOO/m42NlFFTHOriSJLPVdBq+bNRsmlnts1dsPeOK7NL+vz5mC46uzpNqGqISvVUG+S4pUlul6krP5PM1aFKmLpNgbMNoPr/qAG1pfmdNTfdWyWvZnFG4DldtvOWx+3o3xrl/2xD1KUm6CC7D5j97G5lM0grvuCNAZsBcnqXnjjeu8dkvqXNob2TuGrn2YNyag5HzhFRK2cMu26G7OnWgJ7xk91kHwpKwOorJ/ZOU2ICbTuUkxYeaHUvdXRN80CEYuaIaQcSTlSJN9c+59+yKt/rbvD1ma7v7Xn9VUDb/XVmdZ10rWVbLVd9k6mc8a8EBGOpyOPlf2TUiamvDIy4q58elwMJDq/nPHBqtkdjwcOxwPLsvDy9MLlcmGeZ5Z5MYcw1wpuRbf++xFbaneZq3nHdgdsI0pXo2obtdUWY2fpKWyLzKpC9Xt75D/qUK1m6Y+APrrZhbrHdbStR7LOUeF1szRb5/aqNzBHmiHz6mjvN4j35odZV4x1Ov7YRn0L5rS9YX1fWAVNkSZwKus8amlJTZB8BX68rJXi2vjqe7+ye5qOD7s2M1y3rG2QWzrH7xhD/zGHc47j8UgICRFHjHn9fZQN+Fn7eAOkhy5UjZ6aBlb3kL1+9jqafwfos+5hak56+51SyqqF1s7V/Ait+6KvdoeI0PWBUnpKUXwIVhlMoAtW6llhBYr29yEOY16FNYl6vd6WbtfWYGMwWP82wNrXtFLVxr60s5QaMPFOGIIjuLamlzftv9tGbesB1R7Z2s5e1P/tuiKEwN3dPQDLkrh8NTKOE31/4nh8xLlAXBKTi3UtqzoyCimrxbELmOKMgX9BlFT3M+9YdfZSVvoMIo4UD+R4ArIlLgRIxYSkY/bEYrp01DERM0yTzZMSAzFUrZv5gAsFlYxlOlT7v+EgxXTWcsw0MoGIZ54dOQpqQnZ4geAUv3s4zSbDoQulmE1rQMY2Pt62/7S2bUEr88fG/a7Pmiu4fqd17c7mr7qT5ttjxphIdRGbx9JsQwPYqGN41R+UjaGnQKtaLN4b+6aBKyvLsQlNs3uvvt9S9lp2EdulrrZt07FVrb7BdrT1VxGoBUjabNX1b6x7jjYgbLPmm7VFS8ukrqN/zFz8Ry7nbs4W+8faA4KmiZJfSCzk+YmUrpQyA7VKlxjl98ZKbkeLJLR8vabG/QrDXJf6fQO1Bbu+724+bFvtbUWw7ZRSQNb6t6z+VctNN5S95jojtaJBE3n0VjkF2HJ+FXGZVsWmIaOiHp9PSOkJEjhxpKcjR2E5e/JijJfOe4tY+J7TEOjCWy/IgjFbTEtl29Ub20bZHOU2ISsABGwQWqpn22Q9d81aG7NWV6MZhq2CUPrBp0tN/bLPJ7TWO0IXkH0qmZX9lpXhI7ZI0NXfbABNS39qi4/urr2sr62Qtq/9XsEIcfXZUH5LS2opQ40dsksRar+/IsyNRRQwZtDbl8r0Trg/OuboakUyV8f55pSsi4zcmuy33u/OAVzRod+hv7A62PULu937x78hvE4Bs683RlaP058hcocwGetLBHgh6/cov8IoeQrS2GR2WhWlaDI2KdFSD8sLaEfWCHKP9cWBjaHV+i7snjvQnrUvNaPMdKHw/n3g4UH55meBr74OfPn12wJ4TmDwflvTaAyaDezZWna/pbQIw+oWrBvM6jhoY0xWZ3zdAFn7bbNvmxPYKmxsQM6adiTbJZjtrKtvteZJt+1wNe5kdQCj2WMUVVLxpNKAC7cC9o1Kb05Sc3D2Uezm6FSDtUY27bZ09/smduyw6oOWxmm2xk8m7lzbpWnC1Itar3VlMxX7cAPq2LXt3lCQlg5WnTpoYJ+/cUzaj6/ueNu3alsrm9F06+fc7p3ba1ujvQil6lz0Xbel95h1su61qxBzMwVUSamQasS7aFv12SKGmA2k9SdTLmuBgOCs57qu4/544tAPiHic9IgEpmWszlL+ESf5Tzua/bVBbjvwZ/c5s1ur9g+s7X37uZ3D5oSWs7ZnDcDmbLYy7aUUuqHn3fv35Jy5XEerfqXmEF3OZxR4eXlZNXteXl74u7/7u6oZcuR4OpBS4m/+5m/5za9+Q4yR6zgzT0uN3rL1+96Rpc3X28+04bY6aeuKtM05C1pqTVe0zyjOxOOrSr2sjvpeS+ztj1JTF7ft6Qc8m/Ufm8aasGce6M0cbvdVI7Q7huW6Rq0f3v3Aek5qu7Zg4I75c9MEsnvV9tfqnKwaLts6vwlXW6piY+eE4Gq6lrOy4KGBOsHEmMXSuJzfUh9aFcVVO79e/zqns1ZWnom8lyrunrPWioBvt7D6EPjyqy+NnZZK1bVq464FSXQXzNJ1W/O1rVtwwZbWzfbb5t7t/GspjesZm+9QGtuBVZRd6/tlZQTsrF4VQrXFQhc4Ho+0VDCtaKNVW7S9udQqhebg1kpIqxOy2/vr2JTmzKqlDG2khK3994zFG/nkdR+BIFUqQNs1vP3GqNiaugJkayPZ9bye/u2fp9Mdv/j5nxGXhS+/+Iavv/wZS4zVzreA3eV85enzCzEmrtcr55eJVKpofVpACsF1dL4zPdYaZBeE4KHzPeKUvuvpOvMH5lmYpw7VQvFC9qaJ+jy94zwN5NIRFTQkFOE8KlOqfiGmWyMURHqcnLCg9QwSK+CkVZjb9EpLMSZbs29SckxXj0aHZOh9wfcQvHLoMn2naI6U5UpOF7ILIHemA+XBB9bUzDfrQy2UOJrkRiviI2IaN9JAyJ3cyU2BkNUQZCuDWGigzsoeFGolvcpaK1rTxFgBTrNjt+sqWrYx62Qr8uQ86yLWMjnavGnrqXOVsCF42fnzUu1YNfYxbV42wHddwe2azJTT1b6svL0VjDdSgtlIWttyPda9dB8Y269Pv//4g8CPiByA/wObl/q/VtX/mYh8AfyvgH8O/Hvgf6Kqn/7Q+VZTQG/1bwwhS5QyUnQip5FSFoomECtndrOrmPdQjf/676ZYtRr6P0z1av5HcxZahAaoAs3bZtUadwN8xDaMffs46rXvDaDNULZ86KYC3kpZWrTSO7uvNmjad5zX1XAXZ4u2I9DpgNOeTjpOcqSnJ85QpkJeFKEJzgl95zmeHEMv5DwD/Oci8v/80/tQ6imUjdWzY/isKVKKVcEKrDorBIx5URlKO2Dlh0vNdh7rgcJeVFd3BmQ7tH1uZfaoPWuqHlOlYdLAnvbrO0pfvTbdXd8t4NEe2yTcPtFYRDvQRhqo1ICf+np932/fowKXe9bUyhqynxKR/wtvMBdFoO8a02e34K5Nur1uc+b3nG37iu7+fTtTbp5ev2+/8fqPrb9fn6e12abFJEw4PiE8YWl7J6RVE2hjYqXf26OsLDKgbqK69o/Ufiys6X80kb42bt3uOqxym42/ZKkfp8TDg+fh0XH/AHf3wjxP8GZz0RzsdjQq6q0b0bJ+rR3abPPS2IHbHrLZwdV5AbTSiJzbHJwfMwyUsvafwe2yRlj8znFabdDdDG4RR9l9bgVr6nV4NfCnKLjicA2w2QE/SUzD5Wbfq0BGu+62ea+UY923D7tGqNfPDhIq7IkAbzYXt1/cRhU1sqXt9WqIK6Uaww65Eei+ZVj80DVu/aI7B/WGuiCt3auBv5163cvaD6x75x4AEPuWqqItPUKpAoavD12BnJvrVog512pltymGykYVz9lSvXKp+f11nDtAndA5x6HrOPamp+bcARHTFvJVLLEaoW/Th9ra/faQV59pIN3qfCPV4N99QbcvrDNqB/xswMR2du/9Gqnvh4F7zLjtnl8QEXIpeOeY5xktyjxNzPNMSskYPcsCAnd3J46nIzlnPn7/keenZ2MIRSsZv7+r30XW3AAvuTVCd+vK/jzrv1fbzq1zzgKdWqPCuq4ddrz9vviafbIx4uQWYN1vcbI55fvP2Lq03ekGArb2qW3ElvK6nVPWObWeR3R3zh1TUfYXVGf9DuhutrCtx9tc3q+7oZZYbzo9LV3rcOjoumBpXIewijQbGLTfQXZrQ4NKSmONCFRHKxclpkLJugEzFTx4qz70znF3d7K2rWvKCnjUpio17Xe/e9Ki6u1L1XFrQY0NdN2//uFjG0t74Me0dHKpQQcprFSa3SIhOPC2NnnvzfRYR9DrtgZjs1d9lByNsaxKXqsbbj9g/9+0Kt0qCHK7p9/4RXuqU41COwFfGZb2W2UPer35vrhzxX5suP/Apuy7gXeP78g5czrdczrem7B9VlIyUfo+BHIy5mPKM5wLRRO5zKQyohScdATpDDjVobaco/O+VkmDroO+M6d8nArjKDbOHSSBgmMuB2YNFPXm3DtLC1sizLFmHZTOBKHrGifNn5KAVOAnBMV782mKVsCkeaYCJQtpcWsAwoviAnSuEHwhOJtnuURymslV6N98TRPyFkcrjvBGfVjBpl1KsNkzrmpT2a4ttznl9Zs7S7ZuBi1w19ZF2hrmTZepBa6r8XoziPbAiGipxZl0/fhmCDd70ez7LRi2vV53b6nkDdll8FDX7FJtIfKN5m8Np9br29s3du0NPGrLe/vMDbha1+3XILT+kQD6H8P4mYH/oaqeRaQD/o8i8r8F/sfA/05V/+ci8l8C/yXwP/3Dp9uzfaozXwrqxKo7pZlSZivhrq3zXznE4nbv76I/q5W6PW8vNyND9h/7Xejmq/c3I/z272tqRdvg68BeN1aqUngV4rLISlMHbwPllSZDpRTa4DZPqWLO9p+KGb1q5q41i03aRukTDAyKReoCwb9R1f/e2/Th2iq7l/rq7dsJvBpFu9bfXL+myiEV5NilcqyG3u7R3muaHSsQUz0zffXeOslur1p4PWR2mjavru+Hx/79/cU2Ot7+d9fBwUpS1/bZG/dqNY5vrYHdCvBGczEE+PJLz8tZuEyFJTb21o4hp7un9Zr01fPuWKs6/djio+tnbprs5huvz7lru5sv7TwsadpQEWXG9KVGwCrO2RJbwRmFjWHVUhZ3TDRRrALfPeh7DEC6w1g/AbgHDggdVlXsiNABd8CA9ye64YTzPR8+BH72s8BXXzm+/sZxf+84HBzDcIQ3m4sbs2X9l7A67ptXcmv6teoNK+NAdyN5+0orkrF+rzkzLXr8g+6v42LPOnINYKpDpjkre46XVJFQXg0N813aOqvr6HRiFZ3atYhz1WByeHm954utjbT1VWhAipNdxHN/H3vboc1YXZem7XbfdF/c3zk/mEFtk98DZKsRtP9Wcxp3S9N+xlq37UbD6/1vB+z9rsjR6szujay2RFUH2BydbTVdzRq5dY61vbcadwby2TnANTHqlleNGXDFmZGTS8GJkHLeGXbQhVCXTQN9VbIxHFyh6x2DBsZRUNU37MOtLRt7d92+ZNfqLVK1W+726i3WrLte+x0myo/1z747HRZ06msVIMDKNufMEhdijMQUmZeZeZ7X7xe1KnfLvKwshdUZvvn9dp3t/W3DaDvzqyum2QE/uou0dqpGvch+3t6uZa/A5zedi1u7vt7v2nu7e13f3dbIbRHVrUPqW9Labb+937QO25q3zuMG4GxOxYqRrTpI9roxJzfgfNOhMOfEqjSJSAUL7f0umICvObObQPPG+HG7AOZmJ6xrbXNeVqBEV2HaUiBnE6ptFd3qxdvavxkYb9KHBo6bc70N2UIDqZTbogirvbIDfqyqUF4dxVLyel9lxyZor1c2z+s5uTpjFSDJpV5fWase7vfm/czZQMjmZLZ9vba/mA25SRnUh2yaKWxDyM6zn6ptHWpjbXes/25fvtlrGguhMpfWdlrP/KZr6v6n6+iu17hrvd1nWjobGMux761SW8lKCMYAW5bE6TQRgmeeJ0LXGQMrZ4pa8RgvnZXQFmeVlCvbtmgmprLuyQ3gXJZMTOagJxGymJVjxSgsG0HKglPPLjGp3qOaLSsFKRHUyp5Ly+9qvkRr5FJTumpfKUCRlQxleYMFFSV4pQ9KHyzfxg2e7DqOQ0ffB/q+o+taqhMVhHmjPlTYwNQKdlZ7baVRr4DpLUVjXefawrgf1PW+t/LpfmXerKO67k+6e9bS9uQK/Kygi65jvY19I2XsUrpaFtEu1WtdW3fvt++2i7BmrZUh2/pYX7c0NCPI6moLrS7fK/Bq37C6vdxabW2j33/8QeBHrUfO9Z+NuqDA/wj4H9T3/5fA/54/OJEVSgLNSLESeCBoNgCoxJE0PaH5Qp4uRgHFV1TN2BMqsqpi6xpxaEDQjx+yHyitU2HXwbIihbIrz7a+L9DSzOxliyJvTlT7lTbw9tGUBvysyOEK8mzG4K0/sRlTDRl04uhdj5eAZkcZlTlmGzBBcL2BPp0v9K5AVqYXZcq7ne9N+pDaby1csPLbt8tfp94OPJGNqnzLbGmMFkO4W1SmOXp7vtX22P92Y/LsniVhYtL7tMK94fZDUGdzUVpOrfuRh/zOh6xNnOrZ2jls0usK8mxpYls7tvO4V8/b9a1Nr/omc/FwEP7z/3bg738L52tknhOqjlJ6VFdC4u6HV7fkph1/7NB6z9u/XhvNsm0E6G5cvP78D/vNXm5mtrAgXDBB50/AtyjPFM4oCybmHVCOWNj4iAE5FTiuBpQZTxnhiOifI3yDBTw+YIBPQLgHBoQe4QEDfgJODAA6HAJffXPk7r7jm595/rv//Z4/+3PPz77p+OWfBz58WJfbN5mLbS/cG/oNcLado6zG4zZKtbJwNlrqD4DrtRO3EbBuaG6rGLV30prBuX6+2aC7cxoItEVdb4zOHRqwGs+yXYqX6lSsxp19xQdzYEDRzq0RD6tEtl48N5pVbQNWt278t8wSo/62c7S/U24TD99qLq77Rd0Hmm7S6gCubb3fk/Zt39pOtq/tLOV2X3vGkwjcptdJuycatbiddrvf11fdzklt87IaWbkUYso7Y7VqL1WHcuv/di91f6x2YVjHYY3QSTPopTpTzfEygdNcUyhy2e7VOSXpbDn4TsBlXJ84PQT604HzxTNP+W1sG+vE2mSv5sHWFfV5t5bVbtvAkN0aWQ3HPZrzY8yC1xfiav8rynHoQe/IJXO9TlwuZ2KMnF9eOF9eiDFyuV65Xq4oStcZw0NVuV5HA4qq5tLeuW/Xvt+X94bo6gPK7V2vKSe7W5RdAzVjvtldbazIfqyultNNu7yZjVpqGfdV4my9tu319tOy3kdjuCGg7pbF04aBbl/ZXf1+b9tSLTbwhlcAz7YGuJ1DspcUuEnj8sGY5mIaPH1vnxuq09fSuJrzt9fmkZsbZ38XqwhpS91S5fZ1yevrLWJdbV1nc92Lsz3IdGfepA/NCZ93fnJj97e+2P5r65dF6AutkpAWS5tqoE9KOxBoNwf3letSE7Df7W1utz+2NLfXr5vPUDt9fyMbyO42LZG9g4kURJo5kavshElENObo7nK26SqYHMOPaIDegEBt3u2XLNUqqG9tkvIPxOzfaF/cAJxmIoiw6tHsm+v22a1rmPeeELp1HJZs19/3B4K36oUgnM9XnHhiCshizMlQS4cLYr5oMps15kzJNW1p54/EVIhZa9qOkDHgsUhCmVAEJ5GOa12freALIqj4CogAUsFCVcx+NUH+5iqogmah5LbfbCtiD4grRh7wVvU4eOU0KH3A+ns4QIHTsefduxMPdwOHoSd02/ryluspJVm16/wqgNDGU5M1aWtpXXfcOsZvV0v8bn1cyRUeH6qe3/pd4baKZF2L2O+hbU5XMHfdvBoj8rZ61x7gsXXYr5W/3B74wWFp9YpIMdsI8y7btll2r/NuT98CKtWmos7pdt3tGn+wl8qt7fd7jj9K40dEPPB/B/4V8L9Q1f+ziPxMrXYyqvprEfnmd3z3vwD+CwBOPwMtSF1ghYIUWf1hzZESJ4gjJS0V3DN9H5sYm8J2Gwytilf9NXu6HVftOtb39hHTvbPUnvegzfrauZu8xM0Ib+XZbyOxP0ajlZtr3R2rocQPBmQbDE6Ezge8OEoS5hlyVbbBCS7YJuO9CbGWrMQ5U5a98yb/jz+5D/ln7I299bH+jKxdsEZY1p2nGbNy+xChpRrtzaXNxIAf/03FYPht8V1fS2WU3by/s8J3/7pNGxN+HOz5Xcf+e3sgp72uDCZesZPWHI32md35bi/z9tfeaC4+PPwzvvnGsUSlH5qmlIFvGxDz+kL+8ILSjs3Ea4/9OV47C/ojf9uf6fa3WzqZbRAZU9Izto9yRvWCsX9y/QVhFdTWI1ZNrQGR7Tdj/fwJxzuELzGA6CvQR34I/DyCHhDxOKwi2/+/vXP5lSw5yvgv8jyq7u3u6cdMjz3T3TM2EkJIgDySQSxYgmSxgY0lWBmJPwB2IPZIZoNYWwLJCyRkCZAtdiyMxAIhgxcgsAALyfbI45fGHrdnuu+tOidYZEZmnqq6Mz3d1XVvHeKTuuvcqvPK/DIyIyIjI/tWeOG6cPMW3H0pcO9By2sfC9y+3XDzZmC5rMqwB1nsu7IFeFkqWkXPSEhGzJhrMA+MIZSl8rrBspYvorhuOJbyMfkzkVEoU3J4K2pSVQyWLY0tPS0PzhuGbQpqRDWmO7Ruo0sz2JMSqKaB1B5f+qT6WfZldBjEgXlUUhB7OiPloohJkZmE2+5LFi358U752hi3gDzLVRejVgC2qnWj3LLBJ9W9425ZkhSN2DhKkUt/oNU1+c7JUo6TedEgrB0/pSCWKNHeO2vzZQy1h6Rr49hmuUpIOYGigrxum7yO3hSoEU05BdIsJ2tGAWlH+hBoxtba8V44vH37Zq4boeT2ycWs66jiYmdXXw8pG04f+8y6gU7HyWynJUWwbRuWi571MPDovcecn59xfh6jfM7PY9TP48ePee/Re9lQaprY/69XaftpLZFxJs9qx7kHn0oXxl/2fGlVFp20nU07s16OVJp5Kpia/rbR9vbEY3Nys1JnqnefdG5M/ja+VeuZWibE5O/Z4Ks+rp1kk/5Vtvpg2xo9On6mO8xM+2ih7bqkgwrLZcti0aQEyH3esnyxaOn7phhTuT8g98eWjyc7cdQcPGPO0xNz6sRlXrZcc9qXa85XlcuWft8Xh3fu3E7tttiYdQRi7B/GTEDuU5JnIDu/U1LaYYhOndFy9exw/AzDkB0/xrfxYPevo4JyJF1+/2l7t9cxhLFhFNuquiS1l2AOrCKLUfY1q5XlnvXNKf3LDtHduHBjfI/1MybHntVLxcVeeLx//7Wqbqxvk3Jc/Ta9R8xZo6pJJrrcVWn1b71ac37e8/DhT+i6Pjr3RmWQaGy3oaMN0ZkwsEZlhUWTrdZp+ZLaEiYYFNYqqAqDwpDTJ8SodBGBMBLCCgioxPQBauMfkjbQqPuRlLLC3t/MmUFgtCWxZjdBI3FHyyDRDhQG2gYWLXRt0sPaFtEFpycdy2XPYtHR9W1qp/uVxZMbt1KF2wofgBHGkKN9bEyJ40LWCChO52pQi0/Y0mFC06Son0Ag7fxFknUZsclPpdItsxyX6B+q32vHTxOa3M/Wjp/NJWDZdg1A3plUoJpkBNCcf6uMpXlcr/qpom2NaL2uv1yYZXinb+ECPJHjR1UH4BMicgv4WxH5uSd9gKp+DvgcgNz52fiqNoYnpcW8bcFmGiGS2C3RIEhoCe0yK4f1pzQpz0faYg2JxzRdVijNECrkpE7ZEt7ZLLaQHT8kI8W2npRQGt5EYU6aXRKXWGaJghgqZSVYw95QCCZ1Rf191t4iQoCUHwgRmj4tF2sEGRu0FVoVRBtUA2oOES3Jk1X12TmUNy4aJigvG8udxxYle3V3aro5oVc9k1ecQFlYJs8xPqpptvzPZjKqqKKJE8J+s7+iYNlTdEcS53JteYfJ7OzkvapjzPAsA+w0l83GtfncjU7P3mJPsvjg/hv66r2GQQdeeVVBRs7P4Cfvrlidrxk1MAwtmmaFtpe9bZFYfhElhGg+Wwhr/C0UbcZ2W0v3Ks6mWjhsSSioNknZjL+rDSBp0+24tOsM1RTlQwd6A2EE6YgRqw0h3CDm/0n9RxqYlRUqK4RrBH2ZkCJ+lDvADTAHj3SINCk/l9A2wnIpdG3ghZvCg9cbXnwxcPcjgbsvNdy6FbhxLdA2tTtzP7J47XRRrcSqBhUzRnSzzTKRv3KY2qyWgbdqtZMxd1s6y/fTh6TrdEPu0/JeNY1Na4NwmliyvptWDgRB033jjA7jwCYkKxOk87ZbbHlAmU2JzwvZ5zA1tjcv248snpwsNRuz+SUlKwS7jeRpX5Q/Uj1fNMxYPUZdQapxMbGqxSAps18pCql6dn43yIFeRQnWFLkjWdm2ctikSCnMdDLE2u70SXEXM8aU6NkGSiMpL4sWRKMBHkRouhJdG4eYIa7tR7HVinvrTx/cy1W96QTJOk3dAjWVVSRfkx1Gabmv2MUynamcQACVSbvIzzF+KgM0GkJDcgykW0jNQTJ6NfGJyURVqtzOJHNhz5yUPXGSe5nUmeRPu1f9nZRJs813My6jbpZvaFzshcf+5j1NOS6sOjeefqQAABDjSURBVEBqV16pJ7FC5T5sk+nyd/5eilFTl7nopZVRL1LpriHNbkveMUuwNAJNTrjctinfRHLgBRHabhrx03VlGZedAyTHiE6E3ZIwR59IiXaZOD+GsqyrdvSIlGg9a+/xvvXEV6mnfXH42uv39ezsceqvS06kiRPI9DnrN6CMJQqqQ0rQWhw/tkxkrO6z618IteOuGjtz861sAzbbeDlfK4ETs2Mww7OSqUots/E8zqWXlAlFUkLq9wUs4kfY6ldKv5QruK7rajyGWkdPv++Fxzc+8cmpSaSkcfrCkTyJY/2u5Q613h1lpKVtlb7vOTlZIsC66+j7HlWla1v6Ljp+VqsVq/MzRh05P4vbvY9p6Z45Gck7U5JUV03DU2V3jOus/yhrVLrUhUvJ8jCE6PwxB6QtJ1SNdpRq/C7175ZjJjaDMWYoFehSXp+mgUUvdK0kp0hLgJS/q8nJ28v4onvj8PZHHqj1kyKWxqOpnCrT5VSyJRPpOpsYyn+XSUggO2ZiVHmTZcT6cskTWKU/MsVlHEu+H7W6hYl+m0dBjf1a/tb0rUrXlnJBbpR5rLB7VCOEWT9jemZxVMUyqulOZeSYPKCeMLhYyZ3iQ+3qpao/EpF/AD4FfFdEXkmev1eA7z3JPfLcczbaYwRQEEV0oNPYcKXtaa/dBh2QpiW0cXcOTHG0wTJUsxRNm35vCE0LabAs0TZ2TPkepku3pAyEmx60TLeFPmOeexOWWvGpjKJo+05qINVnPhYxZa/M5ghlFkdDICz66K0dhL4JjOsAgyCnHbIOcXXTuzG3jw4rkDXRKN4vh7shOz5LA506f7SyFsq5kp01yfgSc/wIdURQcfaEfH5ZWiVEt3jLNLGtVv+m50fvq+WDWVf3rctga23rpVlS7vE+S8F06zsuODdccLwtzc/K4+m1wC/+cs9H31wxhnPeemvNj36ofOsbj3n4UFmtWh496hnWcZv5UeuohPJO2Y+D5g6xTeuJQ4hJgUNTO36sztMOa2JXF8dP5BvM8aMK63XDetWgKgyDMAyB6PR5jPIQeJeRhyg/Bs5AT4nRaYFGbtKEFxBp6ZqbdM11SIp3Um9ROSPuBHdK0I8j+lGgR8NNlFNE4q4HIcTtPPvFSNspy6Vw9+XAjeuBF19s+PlfWPLqqx03bsD91wO3bgtdFzhdhi0r/JllMSmReRwjKbVmuNS7AFQPLw4NybeBZGikegli7g8m59hOIeWa6resCNbPy5Z/nOixX5Pj3q6o+9ap4paGXCn3DSbHCqw1bUtqCnPdd8e6McNloyTVkcYQ/9wlxdSVcXMIU/Zj1ENdo9U7PmOfKmmdyOaYU8J6s7PEvs/GR/w7T2RIbtG5i7U7xmieVN5qrLLogNzXFaHeUurt3hZtUhsAaFEcBeia2E/HxI6SlO2QluZN1KRyL4iROeldcrvQMUa9J+4l5UvL43obsKgLVGm6hpPTJV3XsR7WnJ09ZjWskHGMs/1m5Ob770G3qeshfVcmiKbQ6jtFES2uheJisLpJ+gUlysAglQBa+y+zhrF+mqTndG1LH+P9ado26kxp+VzTNHkGe72O42Y05k0udmuUsrH9r2ycVyul5syY/J1evFb0zXDGdKF8jul9TAzkSb3ug8cqebY5m/IyK8jpVXal4yv1UGqjNvzrSJyQy2JOHbKOilS7xJhOG2LeiChDKTdPF43TIMJy2bFcxqVbi0VHv2iT46eJUYVSy7qNA+Tj8/PoQB+HsTh7UiSPpnqxZahjlvViUE+d4ymRaRkcUquu+qD0t/2+Lw6HYeCdd96ZMBHbWz0ylQjsbLSZkZ0N7qgTRuPe8oFYw6vHGSt7KUPIEVm5a8+8azwBW1IvtaOISo4BW4o1Wd5VN7gq0mdyXPbhJI+VgFQ6s6Vesb53y6lcwaIrrT+vx3oJgbDj0n3IYnkncxsKMupEpup+IDp+sE2dchu3yQeru6ZpWCxi7p/r169z5/Ydzq6dT4Siaxv6PuaKe/z4MY8ev8cwDDx69Jj3Hj1iGEZWq4HzsxgltlqvCOsVqsqwkhh9iiK6TpNTimITnsKoHSMdCIwyMMqQ3jlxpEkfSssPV8OaUdcIQtuE7DxpQkuTdoduGGlQWglcW3Qs++gAPlkG+i5e0zdNTAvSNZye9vR9cvzoyHpYs6F/PROHQrSpY5uP/YPZ5yE5dEJoqZ069pkdWqGhCV06N0Y4mjybrR4kpLHCvjcnaVxqZfpOcUqXiQ9z9lg0l+XzqsdxKr06RmRZL1KNjzomm3WqZQaRvCmUpntNrFFNY0PSqQaG5GS2M6IeFVcCmu27Cd36//3wJLt63QVWqQGcAL8K/AnwJeAzwGfT5xc/8Gn2SiKYxz+adnHpV17PJgrSEJqTSFxoCd0iO3lqR87U8VM1lLbNA2poynX10q08sySlUxZKY5q8tw1yGsM6xQaCYQAp63+zAiubhZ5o6pVKm+o5nSISu+zo9IllUgnQNNC2SNcijYA2hLUgQ0NoOmRsGM9G1ufrmEAuhe0JI2frdyBlsd0Hhx+MXWquVs4fttpm2Q2q/lcZWmbdTrTczX8ByxuV/96K9tl4x1TxRcjqKJ+NY9HqFtvvuv1ZlKL3x+Y9dh0D0IrIrX3IYt/DvfuBEeHetxVpRrp+5Idvr1itlCADq3PQsYmdzQhldzFzSpleUvIxiShtULpujNtPNkrbjEVj1jqZ8lAZfzqpK1MSzfETRJPvLe4IEHWPGEJbon3OUM5AV8RlyS8gtATuErhDkI6uuUXf3pg6LEjbZnIOnCSnz0eBDpXrICdIUNpuRQgjTTuwPDmj69dcuw4v3RVu3RZevtvwsZ/qeHC/4+RUeOkl4fRaym2T+uvv/+D7sEdZNKOoxjTSx9ahT86orJZyI5OYWDeWbUvrU6p7Wv9SbhnvUZvzRe4szFXyoBfyQJkNXus7N5TQbETbs7Uqk47okAbk3DXEkkwiH2rRZdNA1bTLQ/zFdijLSmN+t0kl7k0WyztTcbmtiE9p3jG4S5j8vMW6Wh6eaR2PE8O76nWSslQ/ONZFNeNf1oJM3qmxXb1KzwATo376XpsoTpDy3CE7BWNEIUQDq42x7fFZGpltmkC/6Fkse1brwHo8Y9Do9Alpe3DiTNreOAS2OLPZumJybJ8vlQxUFRBhRJgMVXoIsFWX5eJyrjkNQwgpEmSIPFDpPWaUauxXJ8+i5sMM0fp5eXDeeqfN4xKpUE2MJX3MjkN1XJ9vHEtlTCfsURZ3GMAKhBKRFaO2JfV5xmxheKIF1AYq0/oOG3U/nZwsUR5ijp/GonkCTRu/77uOvu9ognBy0nN60tM0wvKkz06gNs3q57IQ/Z7r1cg6RfHYtuc6KuthYBw06bobUT4kQ6lurzVHVaWJVVPSh5PIUbYlNn0LxmG9N1nUUXOy8vJexXmXeU4t25ITxw6yHKvt6pWWrWVW62WpO+WvcuSIPT/Ja8pRRjYQ07mhnJ+fk9tTHpmn5aQ+t+owUsWXohZ7RGrdTYts537oIuePjc0oZb2RPVqyOLDncdFeNIucVuXcferW8cbQBMS+0KLjFouek5MT2rZNjorISdcVx0/XN4Q27goW1eHoDJQwoLpOztGY+Fl1JPl2YhsbR9CY01Y1bUSiQoxMX8c+RdaIrJNaFh0/Gge9WP4xbeEe5YRAFyNbQiDQE5Kjr0lTa4009G1g0QXaVln2QtfFvmPRNTQBujbkRO7G35hyGO2bw60+LkX9UH0XWS12+PTctji6mmTbV/edPIdyP7Bl+pa3TSfvYw1Eq+VgRV8dqwY1dWrX/X2+d25sJtlUcle1V/NOsjFyiKTUDEU3F43OY02/l2ne+l3inXK01tY523iSiJ9XgM+L5E3tv6Cqfyci/wR8QUR+F/gm8OkPvNOmrO6W3SuBujG9nyd898V7fplnxPn52wA/IyL/xrNy6PhAfMjW8oQQiN6ML+9FFq8aPrivmgW+8523YJ+yuFPx5OK6/JB905OcPnH+fNj7PBHn+2kYk+2nL9qL+sJHVY6oeHiJsvicBKUe5y5qVxddWh0/3fD3/gr980Aq7t44fDI94YopB0eNPGjMd1zcO4pj+SphHNYwSw635X0zKm7XuRf3EvU51Zi0p27lqeyeqXG7Z1m8Wu30w2LqCj3gw57yYlUY1gPslcP/z2PeRS3gojrZ3Uq25lns7B23lM2Tdt3vQzs1ngEi8n3gXeAHB3vo5eMlrkZ5X1fVu896k8ThN7g65ToErkpZ98IhuCxeMlwWnx5Xpawui8+Gq8Djvjl0WbwcuCw+PebKocvi5cBl8ekxVw5dFi8HF/J4UMcPgIj8i6p+8qAPvUTMtbxzLdcuzLWscy3XRZhreedarl2Ya1nnWq6LMNfyzrVcuzDXss61XLsw57LOuWybmGtZ51quXZhzWedctk0cQ1nDB5/icDgcDofD4XA4HA6Hw+E4Rrjjx+FwOBwOh8PhcDgcDodjprgMx8/nLuGZl4m5lneu5dqFuZZ1ruW6CHMt71zLtQtzLetcy3UR5lreuZZrF+Za1rmWaxfmXNY5l20Tcy3rXMu1C3Mu65zLtokrX9aD5/hxOBwOh8PhcDgcDofD4XAcBr7Uy+FwOBwOh8PhcDgcDodjpnDHj8PhcDgcDofD4XA4HA7HTHFQx4+IfEpE/ktEvi4if3jIZz9viMgDEfmyiHxNRP5DRH4vfX9HRP5eRP4nfd6+7Hd9FjiHx88hOI9z4NE5PH4OwXmcA4/O4fFzCM7jHHh0Do+fQ3Ae58Cjc3g1OTxYjh8RaYD/Bn4NeBP4CvDbqvqfB3mB5wwReQV4RVW/KiI3gH8FfhP4HeBtVf1savi3VfUPLu9Nnx7O4fFzCM7jHHh0Do+fQ3Ae58Cjc3j8HILzOAcencPj5xCcxznw6BxeXQ4PGfHzS8DXVfV/VfUc+CvgNw74/OcKVX1LVb+ajh8CXwPuEcv4+XTa54kN41jhHB4/h+A8wvHz6BweP4fgPMLx8+gcHj+H4DzC8fPoHB4/h+A8wvHz6BxeUQ4P6fi5B3yr+vvN9N3sICIfA94A/hn4iKq+BbGhAC9f4qs9K5zD4+cQnMc58OgcHj+H4DzOgUfn8Pg5BOdxDjw6h8fPITiPc+DRObyiHB7S8SM7vpvdXvIich34a+D3VfXHl/0+e4ZzOA84j8cP53AecB6PH87hPOA8Hj+cw3nAeTx+OIdXFId0/LwJPKj+vg98+4DPf+4QkY7YAP5SVf8mff3dtBbQ1gR+77Lebw9wDo+fQ3Ae58Cjc3j8HILzOAcencPj5xCcxznw6BweP4fgPM6BR+fwinJ4SMfPV4CfFpGPi0gP/BbwpQM+/7lCRAT4c+Brqvqn1U9fAj6Tjj8DfPHQ77ZHOIfHzyE4j3D8PDqHx88hOI9w/Dw6h8fPITiPcPw8OofHzyE4j3D8PDqHV5TDg+3qBSAivw78GdAAf6Gqf3ywhz9niMivAP8I/Dswpq//iLjm7wvAa8A3gU+r6tuX8pJ7gHN4/ByC88gMeHQOj59DcB6ZAY/O4fFzCM4jM+DROTx+DsF5ZAY8OodXk8ODOn4cDofD4XA4HA6Hw+FwOByHwyGXejkcDofD4XA4HA6Hw+FwOA4Id/w4HA6Hw+FwOBwOh8PhcMwU7vhxOBwOh8PhcDgcDofD4Zgp3PHjcDgcDofD4XA4HA6HwzFTuOPH4XA4HA6Hw+FwOBwOh2OmcMePw+FwOBwOh8PhcDgcDsdM4Y4fh8PhcDgcDofD4XA4HI6Z4v8AYdtkXJn8MnYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/ZElEQVR4nOy9eZRdV3Xnv+/0pqpXs1SleZbnGc/YEgabySQNSWCFJA2dkJiQpBdNhg6LEAxNoEPyo0knDSEJUwcIIR3CFENsDDaDbTzKsjVa81gqqcY3vzv9/nhPJX2/56qeCqteCbE/a2nZu95995577j77nHtv1fdrxXEci6IoiqIoiqIoiqIoiqIoiqIoyk859nw3QFEURVEURVEURVEURVEURVEU5VygLz0URVEURVEURVEURVEURVEURbkg0JceiqIoiqIoiqIoiqIoiqIoiqJcEOhLD0VRFEVRFEVRFEVRFEVRFEVRLgj0pYeiKIqiKIqiKIqiKIqiKIqiKBcE+tJDURRFURRFURRFURRFURRFUZQLAn3poSiKoiiKoiiKoiiKoiiKoijKBYG+9FAURVEURVEURVEURVEURVEU5YJAX3ooiqIoiqIoiqIoiqIoiqIoinJBoC89FEVRlHPOxo0bZePGjfPdDOVnCM05ZS545JFH5N5775WJiYl5Of5nP/tZsSxLnnzyyXk5vqIoPxtorVPmA807RVEUZS7Rlx6KoiiKoiiKksAjjzwi73//++ftgYyiKEo70FqnzAead4qiKMpcoi89LiDCMJRarTbfzVB+xtC8UxRFURSRSqUy301QlBeNruuUVmitU+YDzTvlQkDnWGU++FnOO33pMQ9s375dfvmXf1kGBwclnU7L8uXL5T//5/8stVpNjh8/Lu94xzvk0ksvlc7OTlm4cKHccccd8oMf/AD2sW/fPrEsSz7ykY/IBz/4QVm1apWk02n53ve+N09npZzvaN4p54J7771XLMuSZ555Rt7whjdIV1eXdHd3y6/+6q/K8ePHZ/zu+9//frnxxhulr69Purq65Nprr5VPfepTEscxbLdy5Uq5++675dvf/rZce+21ks1m5eKLL5ZPf/rTxj6Hh4flnnvukaVLl0oqlZJVq1bJ+9//fgmC4JyetzJ/aM4p88W9994rf/iHfygiIqtWrRLLssSyLHnooYemc+YrX/mKXHPNNZLJZOT973//9Dz52c9+1tifZVly7733ws9mmpvPxNGjR+W6666TdevWyQsvvHAuT1n5KULXdcq5QmudMh9o3innMzrHKvOB5t25x53vBvys8eyzz8pLX/pSGRgYkA984AOybt06OXr0qHz961+Xer0uY2NjIiLyvve9T4aGhqRYLMq//du/ycaNG+XBBx809Mr/9//+37J+/Xr5y7/8S+nq6pJ169bNw1kp5zuad8q55vWvf7288Y1vlLe//e2yZcsWee973ytbt26VH//4x+J5XuJ39u3bJ/fcc48sX75cREQee+wx+b3f+z05fPiw/Omf/ils++yzz8rv//7vyx//8R/L4OCg/MM//IP8xm/8hqxdu1Zuv/12EWk8fL7hhhvEtm350z/9U1mzZo08+uij8sEPflD27dsnn/nMZ+a2E5S2ojmntJu3ve1tMjY2Jn/9138tX/nKV2TRokUiInLppZeKiMjTTz8t27Ztkz/5kz+RVatWSUdHx6z232puTqfTxneef/55ec1rXiNLly6VRx99VAYGBl78iSo/dei6TjmXaK1T5gPNO+V8RedYZT7QvJsjYqWt3HHHHXFPT088MjJyVtsHQRD7vh+//OUvj1//+tdP/3zv3r2xiMRr1qyJ6/X6XDVXuUDQvFPOFe973/tiEYn/23/7b/DzL3zhC7GIxJ///OfjOI7jDRs2xBs2bDjjfsIwjH3fjz/wgQ/E/f39cRRF05+tWLEizmQy8f79+6d/VqlU4r6+vviee+6Z/tk999wTd3Z2wnZxHMd/+Zd/GYtIvGXLlhdzqsp5guacMp/8xV/8RSwi8d69e+HnK1asiB3HiXfs2AE/PzlPfuYznzH2JSLx+973vun4bObmz3zmM7GIxE888UT8wAMPxF1dXfEv/uIvxpVK5cWclvJTjq7rlHON1jplPtC8U85HdI5V5gPNu7lB5a3aSLlclocfflje+MY3yoIFC8643d/+7d/KtddeK5lMRlzXFc/z5MEHH5Rt27YZ2/7cz/3cGX/DVVFENO+UueFXfuVXIH7jG98oruvO+GeT3/3ud+UVr3iFdHd3i+M44nme/Omf/qmMjo7KyMgIbHv11VdP/3a+iEgmk5H169fL/v37p3/2zW9+U172spfJ4sWLJQiC6X+vfvWrRUTk4YcfPhenqpwnaM4p5xtXXnmlrF+//if67tnOzSf53Oc+J695zWvkbW97m3z5y1+WTCbzEx1X+elH13VKu9Fap8wHmnfKfKBzrDIfaN7NHfrSo42Mj49LGIaydOnSM27z0Y9+VH77t39bbrzxRvnXf/1Xeeyxx+SJJ56QV73qVYnmXSf/DFRRzoTmnTIXDA0NQey6rvT398vo6Gji9o8//rjcddddIiLy93//9/KjH/1InnjiCXnPe94jIqY5YX9/v7GPdDoN2x07dky+8Y1viOd58O+yyy4TEZETJ0785CeonHdozinnGy9mLjybufl0vvSlL0k2m5W3ve1tYlnWT3xc5acfXdcp7UZrnTIfaN4p84HOscp8oHk3d6inRxvp6+sTx3Hk0KFDZ9zm85//vGzcuFE+8YlPwM8LhULi9jopK63QvFPmguHhYVmyZMl0HASBjI6OJj44FmncTHieJ9/85jfht6e++tWv/sRtGBgYkCuvvFL+7M/+LPHzxYsX/8T7Vs4/NOeU842kufBkrrFJKr+cO5u5+XS+8IUvyHvf+17ZsGGD3H///XL11Vf/ZI1WfurRdZ3SbrTWKfOB5p0yH+gcq8wHmndzh/6lRxvJZrOyYcMG+Zd/+Zcz/jaoZVmGqdbmzZvl0UcfbUcTlQsQzTtlLvjCF74A8Ze//GUJgsAw0DqJZVniuq44jjP9s0qlIv/4j//4E7fh7rvvlueff17WrFkjL3nJS4x/+gD6wkJzTpkPTs6NSb9BlcTg4KBkMhnZvHkz/PxrX/saxGczN59OX1+ffOc735FLLrlEXvayl8ljjz12lmegXGjouk6ZC7TWKfOB5p1yvqFzrDIfaN7NHfrSo8189KMfFd/35cYbb5S///u/l+9973vypS99Sd785jdLoVCQu+++W+6//3553/veJ9/97nflE5/4hLzyla+UVatWzXfTlZ9iNO+Uc81XvvIV+aM/+iN54IEH5GMf+5jcc889ctVVV8kb3/jGxO1f+9rXSrFYlDe/+c3ywAMPyJe+9CW57bbbjIl7NnzgAx8Qz/PklltukU984hPy3e9+V+677z75+Mc/LnffffdZ/3aX8tOB5pwyH1xxxRUiIvJXf/VX8uijj8qTTz55xt+oEmnckPzqr/6qfPrTn5aPfvSj8uCDD8qHP/xh+V//638Z27aam5l8Pi/f/va35aabbpI777xzRj8b5cJG13XKuUZrnTIfaN4p5yM6xyrzgebdHDHfTuo/i2zdujX+pV/6pbi/vz9OpVLx8uXL47e+9a1xtVqNa7Va/Ad/8AfxkiVL4kwmE1977bXxV7/61fgtb3lLvGLFiul97N27NxaR+C/+4i/m70SUnyo075Rzwfve975YROKnnnoqft3rXhd3dnbG+Xw+/uVf/uX42LFj09tt2LAh3rBhA3z305/+dHzRRRfF6XQ6Xr16dfzhD384/tSnPhWLSLx3797p7VasWBG/9rWvNY6dtM/jx4/H//W//td41apVsed5cV9fX3zdddfF73nPe+JisXguT12ZJzTnlPnm3e9+d7x48eLYtu1YROLvfe97Z8yZOI7jycnJ+G1ve1s8ODgYd3R0xK973eviffv2xSISv+9974NtZ5qb4ziOP/OZz8QiEj/xxBPT36nVavEv/MIvxJlMJv73f//3OTtv5fxG13XKuUZrnTIfaN4p5yM6xyrzgebduceK4zhu94sWRVEU5aeTe++9V97//vfL8ePHZWBgYL6bo/wMoDmnKIqiKIqiKIqiKMpsUHkrRVEURVEURVEURVEURVEURVEuCPSlh6IoiqIoiqIoiqIoiqIoiqIoFwQqb6UoiqIoiqIoiqIoiqIoiqIoygWB/qWHoiiKoiiKoiiKoiiKoiiKoigXBPrSQ1EURVEURVEURVEURVEURVGUC4I5e+nx8Y9/XFatWiWZTEauu+46+cEPfjBXh1IUEdGcU+YHzTtlPtC8U9qN5pwyH2jeKfOB5p3SbjTnlPlA805pN5pzSrtx52Kn//zP/yzvfOc75eMf/7jceuut8slPflJe/epXy9atW2X58uUzfjeKIjly5Ijk83mxLGsumqf8FBHHsRQKBVm8eLHY9pnf0b2YnBPRvFNOcbY5J6J5p5w72pV3mnPK6egcq7QbnWOV+UDnWGU+0DlWaTda65T5QGud0m5mU+skngNuuOGG+O1vfzv87OKLL47/+I//uOV3Dx48GIuI/tN/8O/gwYNzlnOad/ov6V+rnNO8039z8W+u805zTv8l/dM5Vv+1+5/OsfpvPv7pHKv/5uOfzrH6r93/tNbpv/n4p7VO/7X739nUunP+lx71el2eeuop+eM//mP4+V133SWPPPKIsX2tVpNarTYdx3EsIiIHDx6Urq6uc9085aeMqakpWbZsmeTz+TNuM9ucEzlz3vX0HBTLauRdJh3DdzIZjNNpfKOYzprHSaUwzqRn/jzlYey1iB0awXbCiHZsbLdNb8XtFi/JY/y6RC3iMDT3EQUYBxT7dYxrFPs+fV6juMXnIiLVKm+DDS+XG/+NoykZH18+Y86JnNu8e/mGp8V1G8d7+rkfwnfy9UMQXzPYAfHRzKXGcYLUCoh7ejMQ9w9gh73ilZiYt16Pce8AJmpoYQfbofl23XXxItuUhyIOxfw5JyYlf0zfT8jjn6ZfAJmampIVK1ac87w7U87JnQ+LeJ2N/+eO4sJi4fVN/GUKh64HbRS59LnH14+PYdPH1MazubjGV7jhmHNc61rs7lRfnr4N/SjmY0R8TCyYFn/OBTWIMI7MgmsFFdzEx23c074T+yUJ73952+bY3/v8fknnGnNsyKdC585xGJrXPIrxZxHtlPcR0OchH4Mmq4iuH+9fRCQMZt5nHOPnAcWcExF9Hhrbm21o1Xdmv7RqM++Pvh+bbTDGg/GdxudhrSSb//qVbZ1j/+/390mus5F3PrWLa0vI556wpglDHtdcWzhXcVGTS2OeddJ6kmY7qfpm0a3V+ZqGFM+chy7NyV15XCd4Du2fF2oi4vN4oPHIFdKv4z4qNWxzNcIzr0c4FwUJZZ/LQkC3tif7oVoqyJ+8/vK2zbHX/O1ucbKNYxVpTZoS/EFXTDW7szuhZTPnWETXM+Z+MdZgGPP8aPFkJiJiuTNuw5en5bRt3IC0mIRFxKFu4Gm91TH5HugnodUuTh8VQWlKvv/6lW2bY//0X3ZKJpdv/oy/1bp/jW/EXEdafT5znrXa/mx+c9ucn3ifM//Gb9LaDfaX8LnZla3Om9rAA3KW689my2b89GQbauWC/O/fuqZtte7yqzeK07xvWDCJx+zxJiB2BgoQj4yY53SU5tOwewHEHdkBiIvH8D7Zrx+B+MToMH7uFyFO6vrUyfujk9vEOGf7FazhjrE+xbnNS9EcT/dEYUIrfJcWHxEeY2HPEMT5DD4fyNJDpwNHDuD+3EEIl/Rfb7ShWtwEcS2agHi0WJr+/ziOZWJqom217mtPHpSO5rqOl6TGfSpfnrOYBngXrZ6XcelyaQcO32onJB6XiXCWJTtFt9Zuq/NOakOrxzGzn0YArq/1yOxYY2l5hmOWClNy17UzPyc+yTl/6XHixAkJw1AGB3EgDQ4OyvDwsLH9hz/8YXn/+99v/Lyrq0tfeijTzLQImm3OiZw57yyra/qlBz+k5dihlTc/8xMRcd3Zxa1ecnDsUny+vvTgtYBxOVvsk9vQ6jlg0rUwn8ny9W0ee7qNM3fMucw7182L13zpYds5bLfFDyLw7Zrr4CKn8UMs/p6H30ml6AFMDo+Rz+NCqatLX3q0i3Odd2fKOfE6xWou6mPjpQf2tfEw5GxeelB9tGiBH3v88ISP0f6XHq0WcsYRz+KlR+vixi89qJhxsbNbfC4iloV9bQkfI+k77Zlj07kuSXec4aUHre5/kpceYYuXHnarlx7hzC89eP8iIjZNQDZdQ37YbM3ypQfvj19ANH724l56cN61fOmR0AbjYRYfY5YPt85l3uU6uySXb770oL6w6E6Uc6IdLz06MjO/9HDqZtF1zvFLj46WLz3M3ybxefE1y5celodttkM8c+dsXnpQ1wT04oT7oV1zrJPNi9t8wWtMj/TSw6XzjHJJ978v7qWHzPalh7G96EuPMxyDW530aLpdc2wml5dMc479mX3pYdTjmb/PJL/0mN15mC89ZvtLN0ltPLuXHidpW61zXHGa9w0e3T949EtULj34cB1zgnUsfnJL84KL96QOHSO0aQ1M/XA2OWZuM/M+Zrs916Gzqhm8D5ufQ+F5uxTbXLhs3p5+E1dEHNrGobw+/TzO5vnJuax1HZ1d0pE/dy89jOmJ45+Clx5pfs74U/DSo5Zwb3e2Lz1OcjZjek48PZIOHsdxYoPe/e53y7ve9a7p+ORv9vN3Z9q3ooicfc6JnDnvUt6pQpnmv/Sgv9LgvwTh7UVE0hk8fqu/9EjT52l+yUHb80uPpIf9NlVVLrqthpO5wMWYn+HxX3GIiNB9rAT0lxn8S+D2zL80bj505XMym2AWaeNFSuMHvHhuxbnIux88HIhlNTou8J+D7yx07of4lTfcCnG0dqlxnM/8EH9r8KGn8GFGjRaU3/sebv+ffm4K4pfdib/xsuZifDGzZLG5aM3zS0FexPIfGtKLFPMi0/Z8nRJXIz89c0VLLUriRc+xjnWqGBhPDWaOYy4iImJx8aHVHr/0MD7nGwh75vgnud7Gw47EtzdnT5zwAJx/u53Py3hWHHE/4MfmWvMsil1MBZeOcfqaKp5FH5yLWuc4sTjNOalVpT2rF13GJWj1Up8nE94B3Szz+jOhw41rxr+cZyze6UUKPTi0+eHIWVxy4+GjcV58Az5z3vGDf/N4SS+g6MUJd36zI2J+atmCc5F3tn3qYSm/uAojqk3RzGsmEZF0Br/D6x56lykpuh7dOeyD7k7KW9pBoWheD5cfevMLwAD3UadfFKhSnRgr0cs2ajOfk4hISPMyv0A3Hk6GuMgN6BgRPbyKbN5/wss2GnDOGX6xx026kDPwYudYy/XEai7S4xq2e1EW49euwv129ia0h9fexl+x4ec1ut78F0zbprANmyboAVnCufKYNks01xn+pauZtzdrnZn3/OCOp7CWx2yxTjA+PYuHY0a7T+vraBb17tzUOnt6PWm+nH7xa2JujvkwauYaYNQEY449mzbwVlSrzG/g1i3mt6TlJa+9Wp23+dZx5jdl/FIluSdmzqWTfWnP0Rx7xpzz1ortNmp7vQP/KuOEPQ5x7zKcA7oXme2pTuKEWqziPusFvF9cfVk3xF1D+BcQEyMrIA7o5Tv/1aSISHcnPpSP6BeMjh7aDnF5YgLi8VE8h9DnFzf0Ajnpl6jovrhUwmNcfd11EK9fvR7iSgHbMPrgv0M8MlGGOBZTsiTl4P1/pboX4vC0vmz1MvF0zkWts6LTlvAJv4iDB2y9lmd4TCb8QQLu01hHGxPDzLEk9cvM9ZSbFHC95V9u4F8oNFrQ+NbMbeJjMFxvec3NfwWe8PCS1xLcwpMHTVqYnoFz/tJjYGBAHMcx3taNjIwYb/VERNLptKT5Sa+izILZ5pyI5p3y4tG8U+YDnWOVdqO1TpkPNO+U+UDnWKXdaK1T5gOtdUq70VqnzBcv7tccE0ilUnLdddfJAw88AD9/4IEH5JZbbjnXh1MUzTllXtC8U+YDzTul3WjOKfOB5p0yH2jeKe1Gc06ZDzTvlHajOafMF3Mib/Wud71Lfu3Xfk1e8pKXyM033yx/93d/JwcOHJC3v/3tc3E4RdGcU+YFzTtlPtC8U9qN5pwyH2jeKfOB5p3SbjTnlPlA805pN5pzynwwJy893vSmN8no6Kh84AMfkKNHj8rll18u9913n6xYsaL1lxM4G9015Webc5Vz6fQp+fpMmvw40BbBiNNZU9XO+A7tM51iXxD8PMVG5in83PD0cM02OKRjzLLGrNvbSpGRtfzYxzJMcJpkDw/f8DwmDV5qpGE6Tp+bMpAJJnSsq274ATd2ErUSbTyNc5V3QZwSSxqGLbE9CZ+VnSchPiJoUv7qBSuN/XW9sQ/ij30dP//xU/0QHziIZuif/IcRiL95H/4Z6tVXDUB83XVsuypyzdWY/FddgX9YuHAhO3zRYGHpS9LytmzyAImSpjM25E7Y5DxhNlqo5yTvbEvik8WO/VZamJIb7mwipjEPxTZ/zmOchLkNTWK6eGGSimgLkz9Dl9TYw4yHNDScE3WTDQMH+g6bVxpu3vwF9kng2NRCjQ3dWDIyh/Myx24S56rWWa7ISZl+1t63DCNz/K6peS2mlrrF/Tvz9jb5nfiUh6ExUSQ0gTXmqb/Za56Vh+OQ9XLZF4bGRsKamPX6TW19agObO1Oj2JeEvV8C7hcRw6jVPA+ruVmCfu8ZOFd5l/JOrafYr8SiKxJZ7G1h9ncqRdeEzbTJwyEtOL+xOX2tioskv47xVNXsM5+9e+iP92O6xfPJr8Ynw1muqTZ7tFjmHBuwzr3hYcT1is22MdEMA+KYDWlN0ziH1wZc/5q7CGZxx3su8q5SjafXtlEdtdP7U7jGeiHF1x918EVEukgD3vOwr9Jp7KsU+aF00Pl3Oqjfni7iOjBM0tmmWsdbmB4dXJdm3p5HWpLVmZ2ggz5DExN8QfiYLdqYYPBgehue2UeEvXHOxDmbY61T58D+J7NZZ57a38xeFq18Vk3TcRzz50JyxDCFNjzD6fpwHaLNE63SjJ+06tvZeXqcjZ1kK219p3kMvkeeiXORd6NT9vR6eGwKPSLdFN6rhRUsRJmEulwL8AJWC3ieXg0/z7o9EHd2ou9kRwa9Lz0qXCkPfStERDIpvM9NpfBLhSuugnh4GGv8js2Y5+PH2ccSfUX6F5hz28AA7rNaPQ7x8vXXQlypYw1/Zst+iP34UojTndjGycAcjT15XLtUJ+ja1E7t42zry7mqdY4Ties06iuv28y5ZfYPAIwR3MqTqsX2hldGkmdVKy+LGY94FtvzvULC/GaWj5l9Qrh2cdzq3jzJQ6mlj0gzTJ397cTcGZm/4x3vkHe84x1ztXtFMdCcU+YDzTtlPtC8U9qN5pwyH2jeKfOB5p3SbjTnlPlA805pN5pzSrs5554eiqIoiqIoiqIoiqIoiqIoiqIo84G+9FAURVEURVEURVEURVEURVEU5YJgzuStziWxoYA8s95Z0k8StaBntU9jhy32n6Dhaei0tXrnNDvtzXi253AWxzw3+/zpwfNOydezn0armP05RERShmcHa/DO7OmR5mOmMSaJX3ESRjT/jGXok7T0TofPiiUbA9IjD01ZSkNL2ZD35zaxnH+LzDO0/hKGX0TtIllZCZox66+3g1iyItLQIK0LaloeJI3Nf3xmE8TugvXG/l57K/p+/MYvYIdPFLA/t+1E7dJ6fRHEe/dWId6/B7//0P1m7q9bi9+56WbUJn3FK1FD9dpbUYu0pxfb7JCOs2ux9vfZzAT0+Xlk8tH2tji2WM2BZ9GAi2lAxuyNwQNYRGL6GW9jeTzIMTRmebZ8oUOydnzjO/glxxAEJ91nwweBmthCUzRRqjvChrKvAftUsJ8K1y72h+BaGCX0Q8w+HTN4LcSGL8Dc4tqnLGHY3ySkySikuUXY/0TMPDHEvEm7m31DwnBmfVv+PGl6CKn2GP40nFd0PdhLIabJKaTax3GzoXgM+tjw5OC8MhqJn0fUr26CALnhXULnGTVz15qFp8e5orfbkc6uxnGnSvhZtY555dCiKQrNcw189GCw6FxdqqEBeYUV6ZhC65M4Qh3tmmWOU79FfeIkCIU9OvAceL1vynMn1NwWC0Re2xk+PezVZNRgajMv5ESkWkYftEwa1xZ2s8ayR8mck7Ya/0QkXcH1UG8G+353sQjxsTrqvYuI5NIpiEObcw7z1qFx5tIkmqakS6VRB79aNtvA+7DIF8bUQGdfLf585jjZ06PFPlreP8zO0yPRQ8nwv6F9nt6GJA+0ucSKT/O1mfnczgZTp3/2viAzteFctIl9zIxrbgjdz5wDXAsTd9HCR8usnyx0jyHn0Nn085mO2e77ianSmFh2oz4VjrwAn7lyDOLQwwcZC3oS1hLSDXFnehnE1coYxJufPAzx+A8LEFs21inHJc+tVJfRBsfqgTiVwX3Y9DwnjHEfU2PomRQH5KGU5bnPvGZuBr+zoHclxMcnsB4f3ov32SOjQxAPLFwLcY0OWa2h15SIiNeNbQiP9EDsR6fmtsaYSHgINEfY1qn5gNewSV5ss8XwmGrhlddqydTC5Sdxn6YfX4vteYctGpX0fM2csVrUx1kWdeO2LdGjk1rAz92bP2B/ptkcV1EURVEURVEURVEURVEURVEU5acSfemhKIqiKIqiKIqiKIqiKIqiKMoFgb70UBRFURRFURRFURRFURRFURTlguC89fQ4OBZKvimyH9VRH47ldVkHL0nL0I5Jv5i1E1lXm3RkWW/MeFtEepKmlqP5M0MrjnTJWEc4CFj3GVuRoquZIHEvvqEnTjr5pInnki67T1rTLKXGusZ+kgI2a/461NDTNGOLhZr5/TnES506fMojvw3q3wz5caQyZoenM7hNNo39kWEPjxT1P30/Rcf0PL5eRhNM/wyK7SR98NPgvGUp74B01oNETw/SWqRrTsNPLMdILGwTjfGIkj1K0BsPKBVDOjGvKSadpCE818TiiEizE+yL4bO6LIZ45+gBiD/57fuM/dk51GK+/SWYGK+8BfVOj49g54yNr4I4sFBfnMvIZIL289Ob8Zjbd6KG9UM/RO3RW16GY/32DXjMm29FXdGFC2hsWGatsWLSZqe8MGUoW3gYnT8WIC8a23XFOlkwWHebigZ7fBhFRUTsVp4eDuuL4/dzKFc+rf9/khJr3rvmxUjZpGlumAVhjnC5DChfOKtZEj6VMNFblGM+a0eTJr1FAq02efiwdmpEqw8rSkrKFvrWp6+HovYuA1PeKT+siNoeUN9xLU6qzaxva7NnAM8NlBO8PXs9OTQXcZtFRMKI12p0DDoIewsYmrTGXIXbh9xIMcdonc6bvUlsWk+GIXUumZY5lLexn1BvqWt8tphonoY9D3cevh+Jf3IBzP3PGxvjOsFLxkgD3IbXNL5D3hRUi7gGR1Sd4oQ1jc3+Fi3mJ4vuawLy9ODTZG+TJI15K+BcZv8g9sSh+zlDG3pmr67QJ0MWEXnumR9DfPkV10Pc1dUjIiLOLLSfzwX1yQPi1Bv+asttbPel/eifcWUHxm6f6eHiepwTQjGNca51dG14zD9Yxe/v2LbbaIPd2wdxeskSagPlg6E33spHi7ZP9PSYwT8j8ZhMi3WgcJyQ9y1+APtss4WRZZ06fitvB9OvYy6YeV7nzvtJ2mSxp4eRODMf4yfqh1YWHHxv3eIQZ2NB0KqdJ/fR6r7+XJO2M2I3PT2mIqrRMa6k4ylc7F+yDu9xRURyVGcOjuP1fHz3sxBnPPRMiso4z0yW0PdJbJr7kibPmExUrVa1zaXPMfZc8kyy0MfyxAGzDXu20nO+DPZdKo37qJWxzXGAPiPFMsaxh54fHj/oEpGoE/fp0doQhlosiZbGc4VrNf6dPPTpmH4btEY7iwFnzAXs48P+GOYXZtxf69nJ9D5s9YzK9DOa+Rl5kj9mwoqXGjXzsxKnld+cESe0IWHNm9yms38wo3/poSiKoiiKoiiKoiiKoiiKoijKBYG+9FAURVEURVEURVEURVEURVEU5YJAX3ooiqIoiqIoiqIoiqIoiqIoinJBoC89FEVRFEVRFEVRFEVRFEVRFEW5IDhvjcw/9tefkVS6YVwbhWx2iYZFbMLiWqYBHJusemTCknHJqJfiso8muzWf2kCGK05svk9iU0CbnA4dcnes1dBoqV6ewDZGaA6VcdGgKJ3tMdoQkaNaPRqD2Bc0SfJSuL1NJoS2hwZHKTLi7h9carRh0ZJBiHdu3wlxYWL8VPuqFeP7c4oVNP6JiJ3Cc013U16lsG22hzkjYvafm6F9kpF5jnyzbNoldTd7jUrKMw19XDJidSk1k4wCT8f0HyKjXjJI9dkfTER8Mh0mfy/D2NQwdjUMqRA2sw0TjLRS3E7yEXWbxq5W2F4DOBERywrFahpxW9Fy+MyO0GhMbDQy3z8xbOzvb77x7xCnHDRQu3XJ5RDvuQ4T6/7v4xgNqmgiziaspqWtSCyYnEUf69Nz29HsbtceHCsPfgtr7i23ovn6K16Rh/jWl5rjb9EivJbp1MzJzrlt+GixiVkLg7CEr5w35uix7Yo05yTL4fFJBqjsOm4nGJmTaapjs3E51brKLojzh38Ecc9CNDIsLLwGY6ffaINTwZyrUgHNOMcgvijaC3HFwfnqRBpzNqxiYamPm8WuRMUs7uyFOCLzYS8gY/MY5+DQwtFVZ2O8MCGBqKjbZHx9ehPjKHn8zhWeG4vnNc6Bx5dNP+C6nuDfLSEZi3PtD0LeJxmYshkwlYiQ+jdKMNxzqKGU6sYaNorIUJiuacBztHGNzfFX574h81DPxTb20lqil4xAx0cOQXy03glxugcNjEVEDF/tGrYharbJNJmde8r1UKxao5N8Mt/mBQjX7EQ/RYe3oTwT7gyeCDjxeP/RTGHzO3jRY7oAFt1jhHU28sQ4k8btM7Ru47EkYo4HNtH0ySw9sDHPbP7duwhrOM8j5akRow3bH70f4oVZ3Ef3ZU1j83rZ+O5cMv7wt6fvC5atXQWfbZ/ANh58YQ/Ey9cuMPbnejTHWji/XXPNpRAvWY77KJNRuUPXf22G5pYlOAeLiJxwcC0Ycq2iNRCbsJqm1ri9wwapCaXC8IrlNrBR+SzNZu1WNxyJjaDwtNhqs5G5bVtGv56J2JjPEsY41R7DCHeWJuCGwTCXxiRP6RY/MOpIiz209NVNuugt2m0cscX9QysS0y5h/ZHE2V7/c0Wn44jjNBJ9OKJnI/TsqzCFdcufxDWyiEi9iuv7g4eKEI9NooH3RWu68ZgyAXFxagpih54TJuWwRYvBmFbKERu0C613KJGrPpqpG4bTCes6qdMzO/aIpxpu5G2M3y9O0X1Z+hKIuztvMppQpPGfz+Cc3pM/tc8ojmWMPOPnEts+zdib1yItynjiCGG/7la1yTCz5+1f/POkuV4tszm7SKKvOH6Ht+fYLH6z24GchRl6k9n0j/6lh6IoiqIoiqIoiqIoiqIoiqIoFwT60kNRFEVRFEVRFEVRFEVRFEVRlAsCfemhKIqiKIqiKIqiKIqiKIqiKMoFwXnr6fHZ//ctsZo6uxFpXneQrNei/ADEUwnCz3YGNe0X96BeYHcvxvmVayB2aZejh1EfcN9x1JkdmRo12lCpoCa9RNj9mRzqp3Z0o66+V0Mt3MnDqIleJa1bjw0gRCTtLYJ41XU3QLzwEvQP2PH4sxAP73oOYvZXyXaRxuwNtxptuOwK1NV96HuPQzwycqqfogB1/eeal15RlZTX0FRP5VC3MNeJbcnlMSmGT6Ceo4iIb6MOtpPFa255pLHrkedHBt9LeuSZkkb5dyMWMbX0nVl7erAWKu7PCzCuJ1QVl7Sh2RKAdXxZR9HQ2CYddx7yrMMuIkJlxOirwG98J5gHvfF0pi6W1cifoLwQPrMs1NwMIxwvtmPWu/3H0Ofj/3wLPT7++C70KrjjGhy3u6awFu14dAUegHxiggSt/cgm/WwSNrZIv7RSwwvywguo2bpvD4qZ/sd9eEGvuM7U+r795VgDX3kn6r6uW4PJmsuRFjQlIqd2TImX5DkQO3heVp39MxqCqXGSEc0cYjuOWE0NXtacZk8PI07Q+3S4zlCcIlH6lIXz4fiuH0JcevYFiHuHcE6+bMUVRht6r8D5bCqH/jhLIhSbvTLcDfHQApzPauRds2MT+k99dbdZK1KXvBLikpAvSEx6xrSLcobGCQ8u8hfz2DtARCKbrhfVw9O1hOOohXjrOcbxLHGb3lN8bG4nyRFLzGYZIhKSz0BI3cVzC3/OHh/s3+BQX7K+uYhIwH1IOr4RtSHwcScRa8rTWOklL7CetFloFmQwL5Z24ncGs/idnhyel2vh9z/9f38A8X3//DVs04rLjDYMXHEXHmP59RBbHY2x4CesU+Ycy55e7FjCfhrsjUFfTRA4jlhLmz062LuA/aAokVhXOabPQz+hDTThWDZ+Z2oC71OOHD4B8UkN9pMMLkSfrIAXSaG5uIu4L3m8kXhzOoueEFGI6+Z6DfXg2f+mPmreW5WH0efs2R+ix0el2Q+1NnsE+oeOiuU21iD2apy/jhzE+e2b//x5iD3bbGvsoA695aAW/u+85/chvuwa9KjqDTDHSj71fQXXWJlMwkCt4fX2KO8tw0uA1vasmc5rf+NzswmmhwfH7CuCsG8TD10ei0ltYO18m33RwNOjvT6BlmUlXIczbGt4WZgY2uot/TFm9lThe0j2YEmSbjfPhu4Bz+ZEZjiGcZ+bcETDE2CWS6fZep8knXUcnd39qZ2UtHNIJp0Xx2nUupi88bq78V7OcnEOeHKPuajKRHj/eIKel6UzuP6YHMW1u+Xjs66ODqy/foTPd3geEhGRGNdQjkNrbwfvJ3zy7Ajoeoe8ZoixDXw/KSJi8dqS1gU2e/yRh5YV0zM0i9eiE7j7pHvYEOedtIvzQj57Ko6iWMYm2+ed5dqWuPbJ+wn2LGtlTNHarKmFhUdLz47WdTjBS6ZF3JrZH3O2+zBqmdkxs9qf4eMrSfPGGb47i0Ksf+mhKIqiKIqiKIqiKIqiKIqiKMoFgb70UBRFURRFURRFURRFURRFURTlgkBfeiiKoiiKoiiKoiiKoiiKoiiKckFw3np62F5WrKZ+aUy6ol4n+k6suQi1/eqkGSsiUsig9mlHL/pldPfj55l+9PjomEIt3AHZDPGiJagdvnty3GjDnv3owVGroAZhEKNuXpRCHcT8ksshzi68CuLxLajBnJYJow39y1Cbf/VlF0N82yuuhPgXX4nx5sefgfiHD+Exj5GXwPM//rHRhq2PPQyx5eJ5S+o0zfMkncU55JYNGcllG8c/cRjPJVUrQnzzdasg3jNlaqvvG8fvBOTxEQZ47n4VzzedRo3CNOm9p72ZPT5ERFwa5W4LPw1DN491KUn03CdPDz6eiEiNf2Zo8rLeNem1kuRnSF0dcAqZl0J88kMJSN/Yc0+2pf0sXGhPa7Du2oW1yHJuhzgW1FaPAqwjIiJkwSA7D6Dm9ad+cB/E70IbAnnjTegr8te7MLGOn0C9VPbnaMA/wzgOWUOX/TRwez9GP46jI6hdevTbZvJ/93uoLfq5vz0K8YaXYmLedjv6LwwM4efr1mCiLVuKsZcxdbjrAbYzbeH8ZDV1Xi0rQUx1DnFcS6ym1w57etjkwcOfJ/26BMnDG3XAJ4+piYXov9FzB3nZvPBtiE889w2Io61/abTh8LPo77X4mjsgvvbGmyFe0Ycnsn4INXkHslhIyk89D/GifvTbEREZ78U89MmTo2Jjx9hkMpER1OANqCMjwZyzE/RZbZbZZ73x0zS1k3wy5pKcJ5JtnkJMHh6+jf1NJVr8qlnr7BSOJ4fmDvZ3Mjw92DIlwkSuU/8mTC2GpmyXi/N4B2lBL8jh50MUD9AStieLF7QrZV5zl31DIsyTGp2X5+B49EI8qJ3D8bjq2ldAPLl/q9GG3V96D+6zF/ex4KKXiohI6LfXq01ExIst8Zp5z30Vk6eHT1rehgmAmDr3XL1DSixD2pkSMa5jXCI/juOj5AkoIiH5afBSemx0AuJiEc+L/RRqBbzPSdNi0bXRj0hEJCT/GfYJsUOMezpxfTM1hevssbFjEOdSeMw9W58y2lA4gX5e7MMTlBt95/s4F881cbEo4jTGtkfek/XSPogdB+t86Jv3PlaMc0tUx3E0MY45kqHr15HGfikU8RjbpvC+tW7apEnsoj9magFpzFNOWWTAwdONLfx9/DxRE530v1t5ePAxuE0h+an5NcwTL0MDS0RCMgl0bdzmdB9D9jCca2zbPmtPh4j9N1rL3CdorbMnx8wx6+Czx8fZ0FLGfZb75HvMiI2dEtvQQveet5+1tUtrX5EzfaXdObd0aU48r/nspLoaPuuIlkDserQ26cS5TkRkPMB7t/6OHoi9Ubwf9CexFlp0/Tpc9CsKyNOjsw/9rEREKj7W02wnXo9lS/G8JifxGCXySDp6DO8/2T8u8M37RycgD6sIt7HIi82iz2Py9AiFPLMsnF9jx3yAY9McXC3hPGS7p60lk0zv5hBHRE6WWrZyNZ4rnVVJ5FrFn5/ZHzFx+1aDPtG/iNswu1rG329F0tZJnkazIcGiY0aSj8ZmW8nfdWZRWPUvPRRFURRFURRFURRFURRFURRFuSDQlx6KoiiKoiiKoiiKoiiKoiiKolwQ6EsPRVEURVEURVEURVEURVEURVEuCM5bTw+55PUiXkM7NI774CNnIequL3jFGojTHag5KiIyUUHt0hPHMH5hHLXDpo6h7l197DjEpc1PQNxp4/66e7DNIiLLh9BPY+3FqHu45xDq/e3di3G9hrqHd2y8FuKujZdC7OVQ81BEJN2NWvw+qbkdOYSa2StpF5ddiprobgce06mNYZtLh402HNy/HeKjRRSOPTJ8cPr/I/HFdEeZOw5O1iRTa2og2phnXhZ1DctVFJhbOWDqHS/uQp3miSn0+JgkHe3jdRTijOj6pDzcXzZNnh6eKXrnefhukz09WPrV8PQgQvJiqJNMsuOYO7Acfr/KOrKk8Uo60Oy/kaLzZE+PkMXgRcT3ST+eql/Ka3zHnr3w6otm7VpfPK9RQ3aRf4Ytt0EcRtdDbMkjxv5Y098hU4ZH9qIn0XWP9kD8c9ei98zWl2Nu//O/oS631M1655LIuSWo0RpZ2MgwRg8j1iIV8rywSHvUslCjXkQkqGFi7NqFc8PBvZi8//JljLM5rIfLl2P8utfj/v/zb6AXlIjIwkV03hFWNKvp8RFb7fUvsu1YrKbwJutmsx6wRWPaTlg5uLSN4SWUwuvpU7ms5FdC3LvgDRDnVqMPV/AC+gWIiHTvfg7iiccfg/j/PPVdiK9cg75ML70K5+ThE+jx8e1NqK/rLUNNXxGRZRX0/ViSx7EyGeB1juiy+wFuP2yjh9mYi5NyHJt5b4fY14a8t32G/28D+bQluUwj30o1HNNuhI2pj5NWf4epuxyS3q1vCL9inUmR4ZFFGsQpC3WYu2jOXZgxXT0WpnEb9tzoNHy1WHwY64hxBuQpESXolfukYR3TPEbLAKnVsC49f2gC4mqItTCk/S9YhWs/EZG+AczVCvnPjO3eJCIiEZtytYEXnntash2NOaarC+eaQgHX1lu3boPYcUxN/6ElSyFetWYdxJkcHqNaRn3wE8N4T1GdwnuOqTGsPRNFc36wUzx4sV+5m6s0pdapFsUx5oRNY8O2zDWul8a1Qj6H65cUzftHJh6FePceXIuMjqHHR28Ox/yxw3uMNtjRBMROiN+xSo3xafltzjsnbvwTkUKIdToTUk65eL9RF8wfEZFM/2KI44XrId4/juc3VaELnsE2jBSx1tVrmIPlY2Z/LerAWueNY06kyYOzK09eQVS6PPYCo3uFJGsK9n+LaKcTJyZwn+S40zOIc6xPbajRnGJ75j1BlfZpU7v98ml9X8Z+nmtcyxK3eQ7sp8EYlikJuunGHvh+jeZYI6Z9Gnrx5gatofnIYRF5Dk2zSozo+0FCI4xdzPJesbW8/8zn0NiJTZskz/u21V5vhcvXiaSb5SXuwHXxC0dxnR3SOu/iZea84kc4ZibJI8sdwDgcw3kmOI7zZ2Uc5/gwwP6pR+Zzw9BGH6bRAt7/lffg3Je2cP3j0vzZEeGaIabnGH7K9HUMLHrAQn5jsfB9Ms7pDq0JMgH2axThvbtfxzaKiNTr5AXm4Pw6tOC09oah7D2cYAY1R1jWKR+NVrXsbLwxDI8O+jzJYmqmg5r+GlR3EvZnHJOfl/E+2C+1RQHlc0yq+bOtHlx+W5cf7oeEenuWtiKzcR/Rv/RQFEVRFEVRFEVRFEVRFEVRFOWCQF96KIqiKIqiKIqiKIqiKIqiKIpyQaAvPRRFURRFURRFURRFURRFURRFuSA4bz094sk9Im5D5y/uvwU+6+ntgfjXrkfN0KG8eVplkgsrFlAD7cgx1OqbqqBKWLWKWn3HVqG3xdH9+yGeCExBs3IN93ngBdT+PrhvL8T5Hjzmq269EuJX3n4RxE4Gz6lUNd9pjZ5AzcDDkxgfHEX9wD37UIdYSIN7/DDqJNqT6FnhBqjvKiLS2XsZxFeuRC3k6y49dYx6rSx//8RXjH3MFUsrNcnFjVzwaXh49I5w6hiee+mEea4DmJqyMoX9W8ijrm95HHUpQw934JEGpJPC2M2ZbUilsd0pEt8jOVvTX4OE9YIQ9+e4M/sBiIiQpYSh6creJSRbKWHAHh7k8UH9ECRIN3vuzDF7ELST1Wt8SadP5gbWokjQZ8CR10McyrPG/mLBccu6nqxn+vVtuI/LhlBf+nWXoVfFtkvRG+hZlOVuEHXxD7ANLPpoCgfP+P04xGseW9hvIiK2Qz4gFo4P1nGtoqS1TFJ87ARqYm/diR5Gh45SvRSRt70NtbnXX4RjvqNZt6O4vQnoOKfGpUWHtslzwHJbe3qQxYo4NOYzNuZgivRuoxB34NroXeEsuALiNZ2mTvbdt94Eca2Eur5f+9EDEO/aiXNuvYo6+0/vwvksyKN/mOxFDxERkUoRfT8iKsm+4ByQ6sCx5C68FeM8epekQ8rphLVGxbh+bNx06vO4tUjtucUKp/15MpQzfojnEtioV5zLmj4uHk0WXQ7GeRf32eNh3Ovh9h30OXth2Am6wEHMmrq4DdlgSUhzLMvZRoZmOmt9JwjmRoaIOYRs//D3D5yA+FPf2A3xqy6jNpRwbTI8brqtZTyswWEGtfMHljS0vUO/Lgdx+TvnfOrv/lJcr1F70ylcV7FmdZG815JUg9PkNbF67cUQDw7iuC4XyO+uhseslDHO5chTLmP62QitvXhNk+/swX2SJ45FZgYl8njwUjhXOQlzVG0Sa6xdxvpWiY5B/ORj90FcLGO9dGniqB3HfqlWzLqf78Qi65LOea15PYPA1EyfSxa99s3iZBrzv53CdUBfF17foUV4v5cbMv2ilqzBHMstWwvxYsFrkaEakCODjGOkk7+KPAKfO441QkTEDVADPk0eVB7N4500F6WoELGHHntjJE5PdE8S0TiIKpiDGfIq6V+GbY5ofgw8zKcgwRcjsHEbi8bK5Nip+8Napd1+bZbYzY6LeV4gTC31JC+LFvtooc8etVJdp92zJ2HSRnxMc1qm7Wm9aZyTYStinjPfp7bC8AcwROr5XvusdjrDHk4NDbYNm2uWLuyWbKYxr+4YXQafjfXgXEjWpTIxRr4UIpJxcY6OabGYyuKY9YZwHz3L8CALLZxH/BrWiHLRbENM00W1hOubyYkJiAtl3EeKvEWzXT24v4j8HnmhKCJSJ69LymPHw88DH2tdSN5DGVqT2Smch4rmLayU6MY434EeLI41cap9VnvnWMu2pj0pzZSnZ1Nn4WXRyk/DNvyLhGIe8/y8jbxoEm6m+Z6mFSH5/BieHS18RZJwZlnrjEMmPAeczdfP9LMkZnMLq3/poSiKoiiKoiiKoiiKoiiKoijKBYG+9FAURVEURVEURVEURVEURVEU5YJg1i89vv/978vrXvc6Wbx4sViWJV/96lfh8ziO5d5775XFixdLNpuVjRs3ypYtW85Ve5WfUd70pjdpzilt5Uc/+pHWOqXtaK1T5gPNO6Xd6ByrzAda65T5QPNOaTc6xyrzgdY65Xxk1iLipVJJrrrqKvkv/+W/yC/8wi8Yn3/kIx+Rj370o/LZz35W1q9fLx/84AflzjvvlB07dkg+n6BJeyb2fXdaONw6in4ZuQV3Q3xl3yqIB7rMdzlWiHqb0ova7LIKtd1ZP16kB6L6jSsg3rMLNTtHSP9YRGTrCdQJfnLPLoi7elBbr1ZAcb24uAfifTtQ9y2bwnMa6OdzElmQWw7x4QkWXiNtOAv3WauhZmFMguVTJ0h/d4xE8UWkOIla0FGM/XLR7ae0bQO/cR0uv/xy+c3f/M25zTkRecnCuuSzjWs5Nomaj3GAfdPfiUJye0dN3daSi/vI5zGvUlPYXxdTf9o+6uoFpD17uISflxN0+FjfvYu8X/rJ8yNNXgsBeSdUIxpfdNp2giAraykGtI86HcNjXXXy8HDJ24T7yXbNfmCPATNu7DNqauCWy+X21DoRWbHSk0zmZI0izUfSi/esV0Acxd829hfKf0Bsk66kTbrL+4qoVfrZ55+B+J0DqDf9+mtRW//IMPoLiYiMjnRCHAvWYFODF887jrg28XRFcWzW/ShkfVHahrUw3Zm1NK0Ir2uxjOf0fz9n6o3veh7r3Zv+M7b71a9paKwWCo2ft6vW2Y497fXAHh6Gp0eLsSMi4tLPXBqDUYp0slP4hTRdC5dqXSq/EuJ6FXVlRUR+lELd/GoXHWPj7RA7hzdBvG34aYg7r8P5cu1q1FDfMWleb2sQPaukRhq8MfWDh/N0KY2auxUL1wXpOu4vbZlt8G2a+1ngOTrN06P5Wbvybkm3Jx1djXFDFh4S+bhuWtiLvi7dOXOOdQKcYx1auzk21gCbTKciqksx1ZGAdO9jy6wzNid/iG2yyUsgYk36Fpq0hs+WsT4VYQVcrq8FypsfbkP/mvf9OnpH7diMXguZPGlL++a1CAu4PvQj6ofexpwQN+twO+fYzkxNXK9xHUpFzLMaL1Pp3JI07QtVPNenH/sxxLkc9ldvF9ar7t4BiEMHPw993H+SVLZDNdJxsJ0hzXf9WeyzbB7naJ/W4nwO9aK5nh8/vgnio4VhiF1aIE6Mok9EirTaF/ahf1htgjxDEjwKvBzqv5dKWBOLzfuxMGzv/URn34C4zT4PxvF+ros8O97+W2+A+JIb0MNRRGQv6dLXWG/cx7njkeMjELtjWBR2+Ljuu6IP55ptAfr8iIiEFczTgT7qE5rnbZvvKWmH7FFAYy1K8FBqZWyQTmFOWeNYh3yfdNktrsfkF2d4MZyqYdPfobz0TptnwmYftCvvYuuUt4Pp2UVeGGexP2MPxpf4euB8yDOmUU5Zav8szC2sxLw47Rj8A+oH9tcwm2S2gfX9W2H4A7DtlnCezezL1dgpewok98NJT5d2zbGOlRan+byoUsLxF3dirbOW0rOulHnfVcywzyfOh10xzkVDDsaLOnDM58j306FnEFHJnGDjIrWLbCOPnBiE+OAIriviKq/VcVxYZZzbnAr6xDaOieft0vXv6cG579jRIxB3kI9XldokGfx+ThL6gdbYtRp2RP40n2W/aajatvtY67ShTTXB8NRpZXWR8MOkOgDHp5jX8hZtwc9iwoT1zO7n8PlLV3cPxL3k7RVHmKd8jLN3x7jwmfVLj1e/+tXy6le/OvGzOI7lYx/7mLznPe+RN7yhsYD73Oc+J4ODg/LFL35R7rnnnhfXWuVnlve+973SRcZ/Ippzytxx5513Jk7YIpp3ytyhtU6ZDzTvlHajc6wyH2itU+YDzTul3egcq8wHWuuU85Fz6umxd+9eGR4elrvuumv6Z+l0WjZs2CCPPPJI4ndqtZpMTU3BP0U5W36SnBPRvFNeHJp3SrvRnFPmA807ZT7QvFPajeacMh9o3inzgT6zU9qN1jplPjmnLz2Ghxt/1jw4iH/yNTg4OP0Z8+EPf1i6u7un/y1btuxcNkm5wPlJck5E8055cWjeKe1Gc06ZDzTvlPlA805pN5pzynygeafMB/rMTmk3WuuU+WTW8lZnA2stxnF8Rv3Fd7/73fKud71rOp6ammoks52d9vSIxp+F7xQexTd8f/tZ1BhdtOF64zhrh1DjejCNmmf9pPfXnSIPARLUDchzwEnh+6OBtKlL99JFqJ970/WLIQ4t1BuvVVGjcHL0GMTHDqI27lNPoP7qzm3bjTbENrbLHUCN8vzgJRDnSEvOL5P2qaAGsOWhPmBHnyn+fvnNiyA+ehCv5+J1p/qpXjP1ypOYTc6JnDnvMlYkmaZmYn8OdfLSGfKloH2WKqYWYjqPQyzySdOxghqQy0mD3quh3nglwFw/PoxaixMxxiIicTf5rORQc7fWi/scWoRtzpE8vE0+CVYFx0ItSROSPDvydTwvj96/TpFWtU/+AC5p1HukZe0mvM41PTzwO05TGDIyNHDPzLnKu4WDacnlGtfBdfAaBiFev8hCnwHXfpNxnCDaCnEoR3EDzhMSm336IOq93//C8xC/7mZccNy2GnW4RUTuG8VFTVXwmFkXNa4Dym2f9KklZg8H1q1M0N5k8WGLNXNJrz8wVHjpCDTqHfx+pWZOqd//ISbergPoOzHSLOvVKvbHmThXOWc5tljNQWE7NJ/xeOKx45rHc2kfLvmjuLQT3qdH3/fIt8f18FqMR31GGwou5ozlYa1LL8frkxq8AuJFtdfh5w7WqXIFr1E2wT8sO4QeY3GA50XDWerk9xD7VD9pe0OuNTTnWC9GHf2INcxPG+8RC02fgXOVd89+8wuSzTbWCZ1dPfCdqy9HrdrBxagFHceobywiEtOYjmOaj6jUxeTxYYWoT+xZmCMOJWq9bPq1TezaB3HHUmy33UPrwYjGCsXs+WFc89i85uzz4VLt2rJvAuI0eSnccTX6ND35KOZ6SG1MaIKEFnZ25wKcF+rFxk1tGJjrlDNxrvJuzaU3SCrdmEOqNWw82WfI3j1oqpnK4rpWRKRvEeaqFWN/ZmLMk+EDOIcuX4z16+rrboQ43dkD8VRgjtO6j/1okbazS7d4ltD6Mk39sADn9WIJO+bIBM5dIiJjY3jfEVVRp5xFrrMpnMezGazREddHn+85zMRLkY9EjUxappq66JzDZ+Jc5Zzs2yySbiygCzWsyaUFeP83eNN6iPemTf+ULxw9APHKjh6IF7qYpyF5KnaSn9/iTrwnXZfCOhWHpm9PnfxSurKYYwHN04Ymeovpxtg+4ZJFMeuu0z7oBiCsYB7XyWeLtzfKbdLSkrXZaZ6PTvMyiRJ8oJI4Z3nnxI1/Z2r8afD0zzr4Z7ELiYTHaIsd0BzNy3Jxkg7I+vwzXzPjB9HMH5tXyGzD7Bw9TG19w1KgRccmf8wnwi1vHIXvkWfiXDyzK5VLEjb9z3KCdaq3gPeCvqDvXYWeSYiIWPSMrZbF2hWm0W+2rx/93xYN0LrbwYklQza/9Sky7BCRkDw9ohLG+RF8OJLuwno6NYVtqJdwvnY78LyzEZ6DiIhH9+pOjG2wyOMjR2Orm9oUDuP8XA+wnluWucbmdUW5iPNCT/7UMz3fP7u13Tm7j5VT48rw8GB/jhbjMemHpgXVzMYgDp1DtYDPN0+cwBc7/Qtw3S0icmjLUxAvXbkG4p7l+NyWblNFQvYAVE+Pk5zTlx5DQw2z2+HhYVm06NQgGBkZMd7qnSSdTkuaipeinC0/Sc6JaN4pLw7NO6XdaM4p84HmnTIfaN4p7UZzTpkPNO+U+UCf2SntRmudMp+cU3mrVatWydDQkDzwwAPTP6vX6/Lwww/LLbfcci4PpSgiojmnzA+ad0q70ZxT5gPNO2U+0LxT2o3mnDIfaN4p84HmndJuNOeU+WTWf+lRLBZl165d0/HevXtl06ZN0tfXJ8uXL5d3vvOd8qEPfUjWrVsn69atkw996EOSy+XkzW9+8zltuPKzxebNm6Wz+afYmnNKOygWi7Jnz57pWPNOaQda65T5QPNOaTc6xyrzgdY6ZT7QvFPajc6xynygtU45H5n1S48nn3xSXvayl03HJzXW3vKWt8hnP/tZ+aM/+iOpVCryjne8Q8bHx+XGG2+U+++/X/J50+NiJuLy1LSnR5xCnW7bxz9Q2bMXNeqeyLDbgojbhT9bMYS6d5cvwXglaQwOkcfHUjqdBUvJg6Bm/hFNRDqVNv2llkUajLGNeoH2CtR1s67F+I4NqMW3+4WXGG3YvGk/xIcOoubrkeOoZXx4J/Ztxe+BOBL05whJWzesm6KUq9bi9Vx2A+o+H953yn/ADxrX7bbbbpv+2VzlnIhIpeyL29RQ7OpFDclsF+oYHj6Bw6dYM8VncyU8/3QnXtOebtxHNkda7KS7fXwC9QHjCPWR04a4n0gmQ34ZpD27Zxhz4BDpXQ/2oQb6Umpz2sVEDpIMNfivEsnjwyIvBZJdF5s8BByqXC75cLBfgEiSpwcds/m53eyeZ555Ru6+++7pz+cy77p6Xcl1NE4qS31VKJM2KZVtWzYa+3Os10IcxJ/D75Bup0M6oHUqod/einXjqnXoF3TbalOXctuRAYyPojfTogH0GensuwPi57AUSezj/oT048Uy9acNHWASorfZ84P0wlknP7ax31iT10r448mIcvfgoS6IP/2pxpiOooaGfrtqneOcynkeG66N5+3RmHYTPD14Hx758KRozJINljmmaXxyWcl1mjrANtUBQyOWRZJd7Ld0B/UjaZo7WdTH7U1YQgXkeRTS2IrJ88i1OMeo1tG1CKifw4R664WsL86x+f/tyrv/81efEruZLNfceTd8tmhgAcQLSO82acFaI0MGfxzXLFnylYjr2P/HN2+DuG/9OojTfThe/VHTe8cfw2OWaALK8jV3MHf9DBV98hpiDfQksW9DwpyO8cCzIxDfcmkPxA6Zx3CeBhXyGAjN9U46Tb5LZGDjFyvNHzdqdzvn2GzPGklnGuuvtI3eB6xrv/2FzRD3d5OxmYisXI/+dxF5engB+l/cvgF1zK+75FKIlw6ix8N0cW6yZxivn4jIkRE8RoH0o8s11Ck/cuAgxJVx/H6pgttPlnGOLZVMP5tiCWukRzc2FvkLdXawzwh+Pj6GbQgpz1zPzP1aDcfkGNWASvM+Iooa321XrYumhiVMNXJtsjoOn43QeT04guPLd81qt9TBvP1PS9E/ahF5Kk5M4vXq68TPsx7eL0Tk4eLRXCYiUq7iPu2IPJLYY4DXSDQnm44Epta7CW1DvjHi4diJaEFbI98sm8YaLxuihFpHNlnClju102pfrdlH7co7y47FOlnUDD8N2pbOlX0oRESilm4WrKVP+2TTDvbWMXy5kuY3PgZdM/o8ZO8LSrRWKvfmvUHr78TsIcC+BRHn3czeXZZhdiIS0dqALShPjj+n+d12zbH5fF6ymUZ9ed312KjFO9H36Qd7cY7Ylx4y9ufTDUOYw+9M0P3B5j04V+1Pk4dkB9bX3l7y5+g0n51kszjve92YROlebEPPYsy5Y4cx9gsY58t0z1owfZx88iMqjuIcH0zi3OfF6AtSnMQ2Ozb2qx/gvBTWzTbw/UTK6sF91E+t+/ymb227ap0dn7Z+a+kXRV5CSQM6bnEPyZvTMW2qM2MHdkB8cDs+B6kO4TNUEZFciNe0cnwfxBN7noO4ezGuA9wc3qcqp5j1S4+NGzfOaL5kWZbce++9cu+9976YdikKMDk5KV1dXYmfac4pc8Ftt92mtU5pO1rrlPlA805pNzrHKvOB1jplPtC8U9qNzrHKfKC1TjkfOaeeHoqiKIqiKIqiKIqiKIqiKIqiKPOFvvRQFEVRFEVRFEVRFEVRFEVRFOWCQF96KIqiKIqiKIqiKIqiKIqiKIpyQTBrT4924XmuWE3DHSuF5mve+usgfu1vvRriA1XztB57Ds3xdu5Ak6MD+9AUy6+hyVGqE+NLl2CbLrPREHBp0dRQXLAOzZpSZMRkkXlwGOE+6j5uUPXZQA6/v3T1oNGGtZeiWaJFBpnlqRLEe3ag8eGjP9wF8XM70eD44BieU2nSNIf6p48fg/iy29Cg+LVvXDb9/5VyQf7Z2MPc0dGXl45cw0wplcGcKVB/j4do2ul1kImniHguGlW5ZA7qkUeSH+JF3HkCr8cze49DvG8U83acvJ1FRPILcDzUXGzneIxmXfU0GoZ1d2Ij1yzE7w920EHZ4U9EYgvfr8YeGbl62MY4TbFPyV1nQ2J2kzLHn0UOU2xQdTJs4Vs1J3gpV1JN4zbb5YtoU0SmxILmvyIilvUGjAXNsyT+AcVs+oedcPQE1revPP4kxHdeaxpnLVuEZlwvHPsOHtLBfb7mtVdBPD72AsQHD2BOOHSNo7N4h8/mhI6QgTCZqoYWmrpZgtcmJmN0NkIXEbEiMpKjBDu0v9Dcl2kgN5d4diS23ahHrkNmsQ62OWWYlJv7c8jcnDxSJUVjlPfBseuygW1rJ8pWRub8lZDqsWFMT+cdR/gDz/R5FZf2EbGHJ51GnY1EaSIPyJ3PprEaOgkmq/QdPmbkxIn/3w5u/vk3SqppeF3vWIYfUv9GZCQfJoyvqIzzdJ1MjIMyjqvsggH6HOfYiR1oPMgmrl7WNLV2F/RAfPx5NEeXTVh/bZoPl73yZRDHGaqndAFjNmkV08h1tID1d8sejH/5NlwL1nlOJfNKm2pCrWzWq6CGJsdeCq/N9DzD800b2PrUD8VtrjtWrb8cPuvr6YPYqZ6AuHrggLG/PZNoLF7LYn9e9VK8pk4OjzFZwf7e8f0f4vZUD+tls9h87ev3QXxgYhRiP4s7GR0ehtilHIlpDg0pTzuyHUYbMim6V6J5IK5hnrhlMhkvYxtq4cxzak+POf78CNsQUuGOnKaReZvXdpaXF6tpLn7FpWh8f9OVeD+Yz+N5dWYTjHUdPK+FDvVFgOOqI43rbJv6JYx50sWczKfNNdXYWBFii+ZQx8VjGrMLzdFsxMxmz0mVIo55TUxzJJ1WrYA1vnwM76M6F/TiMSmfooBuzkWkRs8IajVsd3VsYvr/62Xss7nGtuLpdUQrI16bTMX5eogk3k4B/BU29Hb4Gse87sI4ZDdgSTCr56NyTvDH5h5n3l/CN+xZmhpbtI+xSTSN7iLjZpvPO+lwVB6N69e8x+H7o7lmTX+HdDTXRuEOXO/0XoXz7Y77cY2164i5rnP68PlVhENU6mk8by/GtUZ/N/Z1XxbjFK37XF6Ii4hD9yBRGtvp2Hj/2EP7WJTFZyWFFK4Roiyeo91jXjOXzks6sO7EFawt5SK2OZjEOCe4Rsg5OKeX6luNNtSpCq/oxfOYPHpqjg8S7onmklhOG6n8GMji2aP1mOB1NH8losLCmXt0B679D29D03EpYh6OFHAdKSIS+2hWX/AxVwuP4bOUzOJLIb5ywytxh/ysmQ3dE2bZls9T+N6anq3w5yFdC35ezbUy+We0tuRjngX6lx6KoiiKoiiKoiiKoiiKoiiKolwQ6EsPRVEURVEURVEURVEURVEURVEuCPSlh6IoiqIoiqIoiqIoiqIoiqIoFwTnraeHlekVy2lomtodqH06nkId6Pv+5UsQr7ryGmN/Fy/F74wF6Mkxtgd11k7XqBMROZZfBPFECXX10pfg+6NdT2wy2pDavAfirpWo27xgCEULhwa7IM5k8HK5LqnJRagBW66Y4noVlFxmCW3xHGzTmksvg3j1+tUQhzXUuN+1C/vx8WdQm05EZNNzqCk4OITX4ttffWT6/32fGjzHVNN18dINHXHWBN0/jP27t0Cakmn2BxDJ5moQO2mMPRf1FI+gvLF87uHtEG85jn4odhfmTLbH9HGpHUNNyOOj2Kd2Dq9h7+J+iMuCupSVNHbMcIC666sSRGEXs1y4jeNrlDR0C4K6wKFFHh8p0irOkr5gPUFYssyeHqTfbyX/vB04li1OUz/b1J3mduP1igzdShHLuhpiN34zxEG4D2PBmI0IYsGceWw7evscHZkw2lDySW+6juP+0DDm5cjINyC+aD1e84MHfoxNjFgXOEnfkbSZ6dNI8vSTEsWoPy5xK03J1srBIbUijtzpT9pJ2vbFthu55JL+L3t6eDSmPdvU4PVce8Y47VG9JJ1Rl7TgHdIXd8h7gv07Gj/D2NyC85r9N9gnxqLPqQ4ljD1hTXLSXA5Jv1ps2geFrM1Msu4S2mbe+DR+I/a/Oe2YER9/jqlWAwnjxrh8fh+uiVK34jqL/W/chGvO51qewjVHUMP5Ke7A9cbUGPo3OHSM+iTWhKGrUZ9aRMT2sNbVyDshuxB9RIzfNyIDh6w7c54mzVA8hr/3NNbbIfLmWjaA65VJ0r2v+dhvXhbn3HrarAF10rVP57Bfik35afaYaQcj+7eI4zb6ub8bc+DoLtQgL4zhOiuMaR4QkdFDeI3Xb/wliO1uvOaHyQvBDjHv7v/WtyCOScv7skuvNtrw7I4tEJdq+J3uBbiWq06gj5Zdx+1zHaTvPYljyWF9cRGJIsyjOtV9v4Dn3UN1PEW651GA3y8WaK04TotkEcl2YhvcDObdyaklCttb64JiReLmsFkwgPegqxfitdm7BWvhQc/0kRjP48/8Cum1b8c8ve029ElbvARzslLEa+PQBMpzrojI+CTmkE+eLFaKfM+qeM9Tr2EdKpew7sR0jYrH8XgiIiH5W6bJx6nGPk87cDyXn0VPOhYYr9K4sH3TLLFK84pP/lNR+dR5+wH2wVyT8RzJek7z2NhX7PHBPhVxaK4nHFoP8pqGfVjICsjwsrRtbhNuHyR6etDP2I+GHmfxuiaerY8UG3SISBDwPcfMXogx9VOKaiNr6fP2tms+onPYsCbGvrTj5vMLSTD4nEN6SgXpbN7HP/0vX4HP0tfgXHlVeBHEm4r4rEtEpOCQt6iNvlo3XbMX4p+7Aa/XysW4Xqk43RAfKSyEuFQx5xWvjnXFproT+lgnShEec5CeM247gZ9vOUJeNvxMT0T6unAu8xbRPUipB/cR4716NEW1McTnWN4UtqGDPCdERNLWUYgH+3GdHpw2VpK8GeaUMG78E3P8hOxrQ/frSX5H7LfH58P3tVOHD0O840cPQVybwvmrJ4/rHb9qri0LUzhfdfWjh0p1DMdTOcB9xgGOfdulZ5MJtY0xtmhhn8GZG/r0rDODecf1PIzN9Q4/i+Nmx81GzSbj9C89FEVRFEVRFEVRFEVRFEVRFEW5INCXHoqiKIqiKIqiKIqiKIqiKIqiXBDoSw9FURRFURRFURRFURRFURRFUS4IzltPjzjdK+I09O+sFXfAZ1M26pt9/RsPQ9z1ze8Y+1u5dgnEa6+9AeIelFCT/ARq9TlXXglx/6VLIc4NomZabQXqtYqIHHhyP8THDhyE+LLr1kI8XiFdUtIL9EhfsqtrAcSDfajzJiKSz5ImpY/vvSanUAuu6pNmJcl99uZQs/CyK1Ajf+EqU1dy0bWowLZj23GIn/3uKW3/KGyvFuqUFU17JHSTxnxkoybkcBW1aDsc1McVEbliGeZFPk96taRvu30C++sE6bU7HahvvGYZ9v/1L0GtRRGRQh2H+de+tw3iSngE4qsuwzxyqc1Tguc5GeM5jpO3jIjIMgd/toz0wFc5eJ4TpI9bKWEeRDnst2OkV348ZwoQWoL78Emn1001+im2TN3qucYSW6zmO+iYjXZ4W+cIxeY2kY96pbZ1G8SOcyPE7PHRijppm+4/NmxsEwpe89DQDsZr/I1v/hPESxatoT0+g98X/L5jOHaYMpSs/RjzFGiRriR5NrDdS0y/NxCLmfuxcYGwjojdnEvicHbilC8SzwnFaY47l7S7PWoySTpLKuHXJTzST2XJ/5TTwtODtmdZZ5dtEBxz+WL4fFDOcT447L9BoqF+jI3y+Xo7ST4stE+6qOzpYVO/WRSH3C8xf27mfSriuYs8PU5L5LDNHkbh2CGxU4054+JBXPOMTGGNzo/ifGclFLtsFbWYWc/WJU3k+gh6XfQN4ZxZJo+q1BD6ZKXJ90BEpHgU/Rm6r7oY4mAcvRG8flwfTpXxPLcfQl1m9vQIE7wJItJi/7cf4jxxN/mlxIaeOPZbpYj96lexNjoZXI+KiGRC7BuHNMmtZu5aZ6EpfK5xpSpOU3n4uad/BJ+NjoxAXK9j/1sBXh8RkYX96DV46RV4j5DqwrVwMIXrijHy19izB32ywgDXWSsuwZwSESlE2K5yYQLi2gTqc0cheVxxTeYiTF4E1ZJZ72wHz7O7j3x5OvE+JJjEmy3Pxryzyjj+LKrzSd555TL5RtB9Q7aj8R3205pr7MAXu+lHV5nC8TRRwPMYpjWUuxjX4SIiC2xc74dV8uTowFo3cgg/f/7JQxAf3LsD4vHjOA62btlntCE3gTlw8O/Ri42no/AE1r5yBuemdAHH2rE6trlWMDXPqzF5JdYxHilPQFysYhviOt67BRHmXN3D2uazGaaIVKmdAdXPXNcp/xT2n5trXti+TTK5hj/nRRdh3UiQscfPefEnIjHVa9fwmsCLHtSxLtWKeA0jqq8B+Y6Ml8znBj3kkRTHuNauVbGPS+QHGtIxqjWqbVWsz5WqWfP7+vsgXrt2HcSmzxyuF3M5rIXsy8r97CRci1pI14LXxVajH5wEr7e5JPAcCZrt9WjeCL6FNWIwj/5FA1mz1k1Ror7pFehf9d9+F+vlRID+pg89jfPQk1uxTccPYce97nXmPezKZZjno+O4FjxcxD4uFDGHxqfQq2TkINbv8hh5FiQ8kT0xRT5LWaxV2Qm679r9HMT26D6IrRrOAbkirjsuSU8YbVi8EMdaMcY19LHTxlYQmt4Mc0oQiviN68D3b7GH7U6zLVBkrkPZ0489c/Y+/SjEu8gfamwc13UxreOKZXzembLYR1Qkl8G1QUzPz4KYfLOozwO6h0nzsxj2P0qYFLwW/pj8lckR9H3Z9L0HIB7qx7Gz9LKrIe4YNP2I2a+R66vXrHGpmR+Z4T7OflNFURRFURRFURRFURRFURRFUZTzF33poSiKoiiKoiiKoiiKoiiKoijKBYG+9FAURVEURVEURVEURVEURVEU5YLg/PX0WLJBxGvok9odK+Ez2yIN2Et/EeIE2Vl5fux5iLd+HjUGc0X02xjqQu3GlWNbIe4qvxzi9I1XQfyyV6K+r4jIc2nUc3x+P2rbXn/5MohjF3VFLdKb3/MCasVt2oG6mS+9FnXdRESuvQW14kon8BiPk6xhhZTcbEHxtBr5D+ybwjaeOGFq5o2VcJ+9Qz0Q/8YfvH36/6uVgvyPd/y5sY+5opruECfd0EKNc5hndhr7s1NQ83NR3tQa7kqjxvVoAbW/n9izE+LvvoCfj9ewP4dHUI/RCVBHz66hdq2ISC3Adk0ew7yxU6jHemIXaZnSeUcdeM2tBahtPZE1tfl2+NgPxwq4j7V9PRAv60ANwo40lqo0va+tkvb+4U6zCOztwFwcJRnR8Wrj82o1lq/+m/H1OSaWU4YOrImJ18PxfgDx6jWoqS0icmL4OognTqCeNHtVzBZjVNtnIapIXgZC+oxjo1gPywXSwbdZgx7rqX0Wet0h9W1M+5SY+jJC/41Y8HNbUJvfFfSbEhGJwyswtpbjBvby5r5LEsavSWz3XOA6sThNLw+PPD1aeXywP0fjZ6S3Sduk7Jk9PZwWMcvNu645txj+GGzxQds7IXlfxNSGiGP8fpTgh8E5xduENHoMfwMKA/qcPT/8BF+RdGTTNrTP03ShY9s8h7lk6vghcZtau5POKvjsmz9GH4rcC5RDrnmuv/pS9GtbdClpmKdwLonr5AXUiTr4UR3nfcfBzgsjU7PYHejB75CWcHEvztvda7EGPLVtAuI//DSuN0PShI9DU4OXLD1ksBfr443rUfM6ptxmPXHeX1DAdYPFBm8i4lCuF8ZRvzho+qCF7dZ9lobW+cmSwvruMWkkZ2mtXg3N3w9bc9E1EF+6eiXEo+EExCeENeZRy/nE8GGIO3O4Nu8wqpdIinKxRN4EARkjuTQW7Bg/r9N60/Cw8k2tfStEHfOJUfSFcD265yiitnpXCo8Z+uTjZ5GPUmxeC4c0r8My5qrf7LsoarOnh8TTXmPVGl4bV/D63nTz1RAneS09+M//AfF3/v1xiCOat9etQE35vXtRi91P4+eTB8jvbxTrsYjIQBbr5YPfQk34mo/5EFGO1mgd6DiYUxPkUxJH5n1sTPsIYl7HUW2i9W5A9dTrxXVbxxB6NaQ7Oo02OOTzc+J59BYN+lee1pxAZOwFYx9zRT6bkUzTP8JhP6iA1ifUV35g9jd7brAfIo9ZrvvHDu6D+MgBzJlsFr0O9g+b97FrVuO87pC/DRsi+LQOy5AXUEQ5E9KEFxn+HCKFItbsyUl85sL9lMviGJ+cwPE3Nob6/7t2Yb/0DZj30rfc/jKIbdK9d+LG9bOd9q7rqouGpj2FXujCNdmC0d0Qh5ObIO6ovcTYX8bD2nTrtTg/rujF+O8/h+u0Lccug/iiQZw3dtJa84lHzbw/MoCeWENL8QFZoXALxE8/jw8Vdu3HazA+Rb6v5GfliuknmrbwHtTqwO/kRzFnuk/gs0328Ojvw7wfWoFj99bLsfaJiDghrl2+8yN8nrp44SmPYz8w1whzSTm0xW6uzxwa8wVaixzehfPbsmV4/yEiEsWYB7t3okfK8z9Ez2iLal+2D8fs8FHs/8okjvkF3eZzwyWLMI+myBPQJk+/E0dwLIyXsE4N5XHOtmiOloT7ieEj6DmdprVjRHXn+afQJ+/Yduy3SQdrwNFhvDbrXnK90YaBJfhMfJz6rnCs4Q1UKpm+KGdC/9JDURRFURRFURRFURRFURRFUZQLAn3poSiKoiiKoiiKoiiKoiiKoijKBYG+9FAURVEURVEURVEURVEURVEU5YLg/PX06FsrkmroaAaCmmdWEfXL/Gc/AXGqH7UfRUQyq26HOH3xz0Fce+6LEO8cRv2xvcOom5d76hGIr3hkPcSFjaj1JyLSkVsJ8ZVXYGx5qCMcWqhRGFTxHVUYoaZlrYL6klt3mfqA/SHqA17Vi5qTfQEe4zCJotcC1L0cOY7anccn8PvHJtHLQUQkLKFmnkfa7NXgVJvqVWzfXLP7mCu5bGNYFDPYf8cnUVdv5RrUyPZTpl7w4z5ek73DByDeMroH4oku7O9iDXX0eq5AHelKFofwcFeP0QaPfFgW5LGdnXk8RqqXdJ5JzzGbwe07LdQL9MfJP0JEdk6gFubUGO5zE+mqr1+EeXPNxai92E96rpkxvFarXbO0rV2IdaTch+cx1dS5L5Y9+ZDx7TnGiqZ1hy3S+bRc1AGtVe6HeNmgOUZeeu0AxF/84r9AXPUf+4mbKmJ6etQiU989TtB8ByKuZ3g9yqw7SX4LFuV1lOBNEMWsiYv9IlY/fY7+G5agvqljLYTYjjB2BGuCiEhMx/QFcztual7HsaljPJe4diRO06SCtVBd+nUI9vxIsVmGiKRIN9uj+cuzeB90TNreIZ8YbpNjm9qxNmnYc2yCn1ucstQvdsx+HWYbIvLe4lnBp/O2uR/oGz7FNRp9sU0eTCKS5bFhYT2M7FMnGtvt9VcoewPieo2aNTaFbX/LW7DOr1q+FOI4TvDTcPDcDMl/0p6VDM4dcZ28gsjDwycfACfhd4U8WrtFVA87l6FmfOTjeVy6EmvCZ38fPeJYf9yKzPHHmZZJ4TZ58smKyMPDJz1yoTnUIWMf9r9ptAv3mc1iv9SnfSmS2j+3pLKuuE1jIJ+8nRYswHVxhvz02OtCRGTD7bjGf9n1uDY7QGu97YdxHyNF1AvPpPCYOfJO6M2YvgIrBtBPTSjv+pbh5zHNueURnHOmxlFzPk1t6uzA6ykiMrRkEW7TjX6I+R6cYxcMYJx18X7guWeegvjYEfS5y5BfjohIRB4xtQrpnucafdfQ7Uct6bkkjusSNQvS2DH0LNu5BWtfcf8WjCfMdfRDDz4D8YHdO2kLPO/Rg+hBFgeoP255eH3TnXjtegZMv7hiAftvqkR53I965G4v6vunPMzryYPoX+RXMYfDBK82h/TFUzRWbJoja1PYRptqX1TFHIwDrHXpDlo3ikhEHhD5wUsgDk/zGYzZc2SOGeztkVxn49pVyEdiooh5N17Ae1Qnwcsi34m1JyafFioTsnQxjvH1yzEnDizugdj1cE6+zsN6LCJSLpHXD/mJRqRLX6d523UxZ2rksVMnry8/pOOJ6Vm1a+cOiB944EHcPofn0dOP/TJyAL9vUZs7e/HaiYiku3BNtHox5v6insZ5OmF7vRV2HOmUbLaxjvmPqdvgs2Ud6GG21EIP3VyItVFEpJOWWdu3r4T42MtRx79Qw2uz80kc873XYT8tWI37PzJh3ruVYrxeO6Yw5378OHoMnDiOPiRhSD4yEV1Pw88v4T7axTy0h/G8+wS9FF5+DX6+eGgNxAsX4T3xUfJuGFxCZqciMrYfn1N1deB4XXPZRdP/X61XRdB2dE55YTKUXLMWR5P4bPjxr/8DxLu2Pg3xypVYs0VEytUJiF3yXhO6X8h04BgfH0GvmP0HcR3Yk8VamsqZta5OHrWlMj4LcWnumZjC52nDdF9le5h32x7GZ0gpuvcWEdm9FX1bbLrnZ++WIvmOpGn8Tgg9Cz2GfsTPP/uk0YY1l+N90MhxzNXJIw2frFr97Gud/qWHoiiKoiiKoiiKoiiKoiiKoigXBPrSQ1EURVEURVEURVEURVEURVGUCwJ96aEoiqIoiqIoiqIoiqIoiqIoygXBeevp4VtZsaymblxIHhBOD8Y9KM5XO2pqg1V33oc/cFDfMZNG7b10GrX53BRp9Xn4vuj7j2+C+KFHzDZ0dWJ3L16JevFX3HArxFfdiJrBnZ2oC+1msA1LSEdz03PotyEisu851FGbWI9tuvEy1JfbPzIB8b9+85/wGI/9O8QVkuG/9s7fMtqQz6Nu/t6nUW8usk6dVxign8FcM14SOSkpm6NXgqmLMAdGB8n/ZMrUAK2TT0F6MWrUXX0jxqNHUA+w/xDq+q64/GqIay7mbZ10SkVEwgLq/Vkh6kiWitjHB/ahvqZfQw3CyiRuf8kS1NMbG9lrtGH7dtRS7MiiLuLWcdQJ/r6D53XjK+6EeIB0Ksd2T0C83jH1r996NebdwhTqGC5qvgOeik3N6LmmWo6mtf0DH/MqFrqmMeqI7nkB+1ZE5LorScdzIYpsHjiM2oizB/Ud4ySNdvIqMIxASHzfEtILJ4OF2KWY9G/FRj8AERHLuhs3idHvyRbUmo0sim3W6kdd2DBGLX4/Nv1VuGdY3bmzs+F3E8clKbWx3HlWKE6zjx32leDaR1rGXoKnB3t2zDZ2aZcu9RwvVhwjoczf4mj1Wx0RnQf7wjiUYwHlZJTQhkh4/NI+aXvWx7Yi0pYmPfAU+SZUYtO7y6d5JyStf/c07eAgNueMuaSjf6m4qca4ypRw7uildVV3Hq964Jvasz71X+TjPoOYPD9i/JzzjOxrJKDrFyTZUbDnBm0TO/wljNMexssHMbZp++S8w/MM67geKVcwTnnk80I6waGP27vkhVIpmnrjQZX8v7rYt6l5rPZK3IuISCbtidv0JQnonsLNYd1OORgHgdnfixej30GWfAaGenC9uHIJehscGEK/jR9egvrSO3ehj6DlmOuS1avw3qdu4zXs70ed8nwnru8XXIn63YuG0KNqaCF6PCxcaHob9JCvSGe+B+J0BufQNN1r1cm7a/8+XD8e3IP+ik8/hn6KIiL7duM2jofH6Gr62QR+IM9tQX3yuaRSK4jTrOf17T+Gz7aXsC9//B28l6qVSEtczDzMpTHOLMQcSnWjfrtFtb54EHW7wxqO+evueK3RhqO70HskIA+OzkVrsU1dyyDu6MRrc6CO53l0CuuKb+P2IiJdS/AYg5fdCHG2E8feru98DuKJY4cgdkhLPyI/B2sUteJFRKSMGuWSxbVgdJrHJs/xc82e7Zsl02zPbbdcC58NLOyBeLKANSLtmXNsJo31MKK5wXJwTg191JS3fCz4K1eiB+okadbXfXOCqJXwXtiv4TF4/oroPjeie2WPPKnCAMeGE5rrqhqNvzVrL4L4AZpXcv14TzIpWMMLtP5ZtQjrb8E3PZS+/+h2iPd2TkB8wyWNeaZawbl4rnl8uy+pdON8tnW9AT47shqv1YEQvUwmx/C5lIiIZeH1fuAhnGecTrze6xZiXwXr8HoHBawJS/sxz2PPfH5zcA9er91H8P7PquLnC1J0T0v3Vak0HiNN67pC0fT0mCzjzzJHsf4u68G4n9YA2Rq2yZmk9fEY1rYR8mgSETmyDedXz8N1QZw79bwldtr7WPlYKZJss593Po7PQnY+j31j0X3Q00+Y3qYueUWuWoLPVWs1vGbVEHNgYhyfn4XkbRpRfQ3FnN8mpnC+qJRxjvTYP7MPn/c88Rx6fZWP43PFTQ9+FeIOz7ypWdCB7errJA/pKvZTiZ4zpqnWjUd4DhbV0oxjPjsZn8Dngn6MD0hKU41n3L5/9vOr/qWHoiiKoiiKoiiKoiiKoiiKoigXBPrSQ1EURVEURVEURVEURVEURVGUCwJ96aEoiqIoiqIoiqIoiqIoiqIoygXBeevpYUWBWGFTp8siDbQqan5ah9A/w+5GXXYREasXNc/CYfxOtYCagpVJ1GGzbfIA6V0BcdcC1FLNdqEOnIhIRHrgw0XULNz3jfshvv9b/wHxwCBqow4uXAlxLoP6vB0Oag6LiHi96Avy3UOomXZi+ATEX//R30H87R98CWKL/AZimYL4wCazH7JdpFs5jDqHC3pO6SYGYZvFn7NVkWzjWvevQ405dw3GLxQmIO6yzbY6Pukrkma8X0DdUNbhrsWoG1va9iDEJ0gLc+0a9CwQEVnQh1qYFglqV0jE3E6j9l6F9PI8lICVwTy20R9H/UcRkazsg7iDdAyDEMfC+AnUCzy0/QWIqwFqa0oK4z1iamPeV0TNwUHS4E0Fje+UynjsdnDsaFWy2UZ+VcpYli0nS/FSiA8cxrohInL/g/9K36nQFqzhaGqWz44kT48WX6FD2oK5H5POssSDFKMHkiV3GYdwoo0Qp6kvO9J4rSfKWDNrAXrDxDGfFP/egFkDYod+RtrD69Z6zR97snmz8fU5w5VAXPGb/48Xg9U10y0+FxHxqC88+g7vgz93KR+4TS4tV5I9PeIZYyaK4xYxrQPIuyFM2H1M+xDSkWXt6CjEHGQPEG4TK26z34OISEjXgrVs5XSN8TbrjVtVX6yocRbdx1Cf+vP/MgHxJeRz0NuLuswiIksXYz1ctBy9E9LkhZBysQctmzV2yf+E5r8wwZAiov4NqA7YXMroGEFM+tK07uG6YyXlNecmeb/YnAMWeZ3QPmslnC+DgLwYJtBbSkSkVsW1gN2Na9LIb8zzUdjenGscNG78E5Ec+W/YbChE475QxHWxiEitjmuWIMBzcj3UGLdsPEZvL/pr/N47fhvinTvR0+Oiiy812nD9DddRO3H93dOD89mCBXg9erpwMZfNkO69cN6ZsBI6xz5d63od618qwtnkyqvRg+Dyi7EGXLwGvRBFRDY9jfdzpeIExF5znqtWa/Kd7zxqfH+uKIwPi+02zq+DtM6jqAfibA9eC79uei3FJRxfbg/e63YuxPvShX2Yg5UqjbsI+3ZyH3p8TBVNX4CBi27ANlFZqRzaD3FqirxpujEnL7kKr3e1hPc0Bw+afhq1Kta6iaOoWV6lexIzcykmL4aYPCvSsemt4GbwPEo0L9SKp+6DYq69c8yRAwcl1fRgGluzCD6bqGNbqmW8xnFg5p1D/mvsp1Gu4RqmViePK/LoqJAefKGMdUti08+G/WYkoLUZtbFK+7Bp/Fn0XCnwec41PZSqNE9PlPBZVF83PVILKA/JXywTYhuLo+gHcKJgzjupXmxnH60VDh9q7KNe5Xu+uaUa1iQKGv1TyGHOheRfW+rGupOrTRj7q+xE351njuKzku3/gM/DrlyG88jqVbxuo3sY8sQdXGCu6wZWYg5cPITXr0jPdwpT2IZKEbfv6cH9DfbTtTtmjr1NmzGHBvfg/f7FdbxpLJ/AfYS0Lqy62C/HyFPrmYrZBs/F++bMSqzZ6dO8TOK4vb9Lb5cOii2N+/RbbsP10EVr8dnX8KEDENemJoz91QvY3/v2oAfYiSnySi5jXBnFuaivA+eJoo11bMdu9N8QMX0GB1ajh9XKO14O8aiN90D3fR89XA/t2AZxbYLW/gmPWb061rZBB9e7C9OYy3nyBQlDWjs69Hwgg2OllrC4DEpYb4dHcZ446S8chmc/v+pfeiiKoiiKoiiKoiiKoiiKoiiKckGgLz0URVEURVEURVEURVEURVEURbkgmNVLjw9/+MNy/fXXSz6fl4ULF8p/+k//SXbs2AHbxHEs9957ryxevFiy2axs3LhRtmzZck4brfzssXHjRs07pa1ozinzgeadMh9o3intRnNOmQ8075R24lcaUoBLlizRnFPaitY6ZT7QvFPOR2bl6fHwww/L7/zO78j1118vQRDIe97zHrnrrrtk69at0tHR0Mf/yEc+Ih/96Efls5/9rKxfv14++MEPyp133ik7duyQfN70mDgTlmWJZTVEvmKb3s2QNp8/RoPp+FPG/pxO1Bi0SM/Yy6DPRGSRPnINtcRKBdQ7K9bI96CK3hkiIl19qLvWkUe/iwVL1uPnLnoOVAuog7npiWH8/AT2g+Wb2nzLL74dv1NDrb5/2vdNiFPZcYgvu+z3IN6/F/UEnRRqyZVKpu5zlEINPG8BahtPnabtdlIO+Dd/8zfl9ttvn/O8G56qSrre0Krb9O8/hM9WXoR6yKUJzJGRY6RLKiJBDfUSq1Oon1ooYd5Mkd6qbeP2RdJA37sF9YnvfNXdRhsWLkE9wJD0qQeGMFezmR6IJ0iXNJNDn4NgHMX47ArmlIhI2sFc90kbNSB9v5IzAXFE24cT2CbPxrgcsvK9yEgFNUCLFh4zaNaZalObt105JyKyZ08o6fTJa0+1xMJa45NWbRSiDreIyLbt6Ktik4cK69nG8Ww11tmQI0EUsqVNCNb12MZ6tZo0zweHfhHiJ3e8HuJQrjIPEWKdv3g55v6tA09D/LUt6P20r3w17ZBPqrUXik3nFcVYEzZuaFyLWs2WzZvbl3duVBM3bNS6lM2fkT49Xd5Ugrq7R1quHo3ZFMX8uUPi4ClBzVCHfRIisw02e1kYHiwIeyVEJG5qeHqQNredsH/2d/BoLTE6hhrlR46ijvOS1RfhMUiL2mZPiaSxRyYSKdKRja3Trq/VyMd25Z2z43viNs/p5Zevgs+e3rkV4oe//xDErmO6yUySt8SqFahrf9EanP8WDJGvQU8PxP0LcT4cGsS1Y/cAzn8iIl0d+LN0BjXgnTTmpeuSpi77cZBON+cUf97YB8alQhHilId9x94zAa1hAx81wVk2t5ZgaOO6OGZZHj5u6rCf9Cxp5xxbrU6J29Qctx0aHw6NYwrXrMOcERFJZ3Ef9z9wH8QXX3IFxH2L0bMhIF+X6667BuIryMPDy5jzfCqN19Sihrt2i/pH81cQ4T1Glb1qOMlExGdtfLo/Y71l9vSoky56pUxr5hKud2LH7AeP/BWCcbzH6GyuLyOnvXnn2q7YdmOs+3msI8OT2A9juzdBXE7wlvNyfRCnOnCN1LsQ42XLUNO8Non3c7UK3V+kcO1+jDwfRUR6Yqp1WaxtRfKoKtPawiYvnIv70Yfwupe9BuJlw/uMNtQqOJ9teQK9DoM61q4owO27enEs1mvYD7Up9BWJh9AnSkQktwjv5zNHcB6vOqfGRRw02vOd73xHMpnMnNe6wK+K3Rz7TzyK9+Q1GuMhnXtcx/EnIhKz7xj59BToOzUa864huY7zlx/g/p0En7GQ6gavvQLyYanSujvfhWPDc7GOnByn022KzDpzdGwC4h0/wLxbtRqf4Wx/DH1Z16xGb4uBNJ7n0CIc3wcOmnr/k5NYDzurODctyjfa7Tc9UNpV62661JZstpHzO06gN9CBGq7RKhGucVP9q4399VyCz+Ss41i7CmVMqh8cx/XOU5N439xhYb50dWDOLT4wYbRhcRduk+/EON2Jedzdg9ezMx6AuDJCnmeH8Rne4gi3FxEpxuhtsiLENfKaInpIsJ9Olub4Acpzl3wtg7S5tqx0Y176Do53xyqc9v/tvZ/47v/9qHjNte36l9wMn11x1y9BvOiqWyBOWh0FdcqLPbiW2LIVPT72biVPlRjjyiQ+i4npGZ+XMvv7oisuh/jiX0G/t8MuXo+Hn8LngkO3Yj90XYYeOvu24bw+OcpObCK1Mo6nrVsfgfiZF/AF1bIleN90/cvuhLg7jwuBiec24fESnlff8mp85jNyDNu0+8nvi0hj/nh2G/bBmZjVX3p8+9vflre+9a1y2WWXyVVXXSWf+cxn5MCBA/LUU42XDHEcy8c+9jF5z3veI294wxvk8ssvl8997nNSLpfli1/84mwOpSjAr/zKr2jeKW1Fc06ZDzTvlPlA805pN5pzynygeae0k0zTcP6SSy7RnFPaitY6ZT7QvFPOR16Up8fkZOOtZV9f463T3r17ZXh4WO66667pbdLptGzYsEEeeeSRxH3UajWZmpqCf4oyE5p3Srs5FzknonmnzA6tdcp8oHmntBudY5X5QGud0m601inzgdY6ZT7QvFPOF37ilx5xHMu73vUueelLXyqXX974U5zh4cafag0ODsK2g4OD058xH/7wh6W7u3v637JlyxK3UxQRzTul/ZyrnBPRvFPOHq11ynygeae0G51jlflAa53SbrTWKfOB1jplPtC8U84nfuKXHr/7u78rmzdvln/6p38yPrNIOy+OY+NnJ3n3u98tk5OT0/8OHjz4kzZJ+RlA805pN+cq50Q075SzR2udMh9o3intRudYZT7QWqe0G611ynygtU6ZDzTvlPOJWRmZn+T3fu/35Otf/7p8//vfl6VLT5l5DQ01TNOGh4dl0aJTpm0jIyPGG72TpNNpSadNwyiATLNi3n7wavz8xDZjF0GZ3h6SGWidzPhsFw3d7FQnfY4GgrZDJqtkwioiUhxFA9OxHdjOFJnU9a55KcQLetGMZmjRcoirZM4eThruYVLYg303Vvl3iKeq34d4UfZtEK9f/xaI0w6afR8aRpOl2qRpKF0cwe/YLhn22acM3KPolMFOO/IuCAriBA3jpyd+hCbhz2/Ca9zXhyaBIycmjP2lbMoDuiSWje8dQx6RZBg1NY4GeyuXosEeG/KJiNRDND7rt7G/MxM4No7FaGo0UsBcPxTh/nozHRAHYr6B9/vQyDwkg+A4jeeZ70TzrWNlNLYa2UNGeREaFy7KmXm3aH2dtsG+P9w0mKqcZgJ8LnNO5Mx5t/MFRzzvZJu5Vn0HwjjCvBTLNIBis1AxjMo7KCYzrZn9T8WYOpIMo61x2oZMUHlx4+D1uG4dmgLefefLIf7wP6Jx1tb9aB4sItLbi2Z2b3wp1uAN5R/jPibQQGzfC/x7AWw6Zs0QNb9BpsODWDbk5+5ujK9SKSUf/0TjZ+2odWnxxbUatcChS+PS70NkbDYlN83XeB9eRIZ5ZFwe+7iPqUkcw11dXRDnsjmILccc48Lm5pRjvKC2KY4CWmuQIadHxzw1Zs+8j7RgPO5PQHzi4HMQL+7DfsuTiaBdx/rs17Aei4iE2JUSF9E81i+e+o59mulrO/LO67DEcxv9fssv/Tx8tn4Cx+snPvk5iLt7TKPHwwcPYPwcmmguG8N9/pjMSCMa0xFd0kmqdflVaEYqIpLK4Dwf0fpy/Xo0U+/uxtzu68f5cfFiND1ms/U+MuIVEensxDVqhs3UU9hGiwykbQ/Pc+IErjXGT6CJYKWIxr0iImxz7RZRgqDaNEeMT+ufds2x3T2xeF6jhZ1d2Dc9PVhbcnnsy64ec26p1LF/fvgorudrdRz3C8fJcHYQr7GfR6PdXCfdgyT8ipptYZ6xkXlApqYR1W2b5lyHjOhDyv163TS8LNPPyhVcy5WKmDeTU2jmOkbjcXwMP5+cwPjIYex3EZFdO3dA3NuB53XF2pUiIlL35ybvzpRz2VyHOF7j55NTWIMnI1yD2R5+33ISVhM2buN4uDZ36L61bGOd8Lpw+2zuBMS0VBE3wWS1g8aCR/cLPSvRgHjFJVdAnKe8zmZwrPX03QhxHJn3sYf274J433Y0jz1xkAzYbexLNoSPYsyXOj0vmChiDoqISBlrthXi9e0ePGXOHIW+lEa2yR/+4R/KfffdN+e1bnJ8TLxU4+fRFI6/rh7sf4/6xuGFnIhMTKIRtZDReET3X1GA96F+FXPEorqVotyPfTP3I5qvAorDENvdkcd+c3w871qFaiMlf+yY99I2Ga7naO1QGsU5MRdgTpSH0ZjcdfH727fi85OIDORFRMIy7nM/1ZWg1BjTYXDqHrAdte6mlyw8tQbp3gefbTqG4+mpA2gOXSuYa6pFQ1hH/BU4ZveMYhtOjOE9byzY/okxzNHJCl7fA7vNx6FOCeeyLKVlpgNzsDuP9XRRBseeTfc44SR+ns2Ytc4fQ8PofA7rbybbg9tTflghXas0rjNcawLiBb38bEBkv4X32vuOY7+sqZ66n6jW2vvMrnhsXNzmumXrd/DZSCDY7sVXXwqx14VrMhFzTZTuw21WX433IAOr8LlsaWIDxgGuVwJ6Jpj2zHPKDfRAvKOKz7+eevAx3GcPtrnUjQ8ZnDzeb6y4Evt4/PiE0YbOLJ53dMNNeExa26cz2C+1FXjPUxrHOTs6gLneRc/URUSkjrleH8V5vj/fqJ9131ynnIlZ/aVHHMfyu7/7u/KVr3xFvvvd78qqVavg81WrVsnQ0JA88MADpxpZr8vDDz8st9xyy2wOpSjAH/zBH2jeKW1Fc06ZDzTvlPlA805pN5pzynygeae0k7j5Cz/f+MY3NOeUtqK1TpkPNO+U85FZ/aXH7/zO78gXv/hF+drXvib5fH5ae627u1uy2axYliXvfOc75UMf+pCsW7dO1q1bJx/60Ickl8vJm9/85jk5AeVngy9/+cuad0pb0ZxT5gPNO2U+0LxT2o3mnDIfaN4p7WTqaOM3+P/hH/5Bc05pK1rrlPlA8045H5nVS49PfKKhvbFx40b4+Wc+8xl561vfKiIif/RHfySVSkXe8Y53yPj4uNx4441y//33Sz6fF0X5SZmcnNS8U9qK5pwyH2jeKfOB5p3SbjTnlPlA805pJ+WxhgTja1/7Wvi55pwy12itU+YDzTvlfMSKYxZan1+mpqaku7tbnF/6gVheUx+Q9eg90ucso46if/hpc8d774MwOIG6zxKwfqOprXc6hmdHKk0h6hGKiMQZ1NILLNoHxznUSOvoQA+PbIR6dVLE/dtFUysurG2HeKz2RWyCrIE4ZaGvyGWXbIT44otR1/TBR/4E4nx0m9GG6jhq4Hkp1Adc0H9K4zWIyvL4vjfJ5OSkofF+LjmZd5/8i8ckm20c/4vf/hRuRLLO+c4eiCuBqa2ecvC9IkmhSj1EHcpqhH3ButCTR9C86dIV6Onh5Uw9xqPjqBvJHhzrluE+ijF+fqSMIucBiZ5XSxgX6gm+IqT7W6uhtmVQw8/jkLSpQ1TisyIsW5GPmrsp2yxrr3v5L0D80ouvxWM0tRbL5Sn5tV8fmPOcEzmVd1deuUUcpzHZP/MM1irL+keIYwv1HMVK0DOMe2kTHIeOXEdfYD3FmCLuT7zmoewUA+crtEv0+LDJ88GxsF5dugrz8r2//laIn9m9EeI/+wzVQxF5/ZvwGP9j6RcgzhzBenjPzo9A/OBTWN9akeTpEQuO6ZtuxVz/t//XGG+FwpSsXz/3eXcy525653+Im24c27VwPDpC+rghtnnREF4bEZFMhrSiU5gzZCkg9RLWywP790I80I85vIzqVCrBT8NJ8vk4jYD8NkIfa9W+vbshLhRQH3fREOrwS0KdKU5hnrPG7tQY6o0PH0Ct0wxpamc7UPO8VEWd56mqOe/4FdzGoW0qp9XbKAzk4POPti3vXrPxdvHcxrjc+Cr06anQvPCFf/o3iNeuxfWJiMizm5+FeIi8zZZ1kRdMFcdjmrRky+Tj4riYU5ur7I8kUq5iu8ukF52m5K9SG8pl8qRaRH4PPo5H1zV/X6mLbhYXLMQ16LJlSyFevQy9t2Lye/inL2LfHy5gG10x+8EiTx3Lwr6sNP0f4jiW8tR4W+fYP3zP7ZLONPotS54PseD4sMnbInbMc7UF61NhBOvTHRtxvbGM1mov7MJaw34aK1dirg8kPAyoV/CaZDuxL/M95DtAM5RP3l9HRlCT/Cj5bRwfx1jErJHlIvbl6Bj6AfD2RdKGPnEC21ChWsb+CyIiJTrmAPkWXHvRChFpjLt77/1A22rdLW96t7ipxo3Drn04LwyuIp8fG/vl+Ydw/ImITJxAf6KedTdD3Em+MBe/BKVCYhqz+7ajXnwqxn68/Cr0OBMRWXwRenQc3Y1rP9vHtcLgatRRL03hMcZP4PWfGMXrP0WeTCIik2PozTa85xmIa0WcY09eg5Nku7E2pnI4x2Y7caxle1cabXC7yTOC5onIPlWjw3pFnv7HP2xb3r359/5UUunGOfdlca5ZOID3d5aF89+2raYn6rat+Lwkovkotuk+l6wo3Dq2wbZwg1pI82GCdxCzYvlKiDs70fOhSvdAtRrOb46D512v4TlVKhPGMQOaByYKeG9dreA+evI0R5A3TMR+Kl04RwSW+QynfAL9MMTHMd/V0zivKKzLwU1fblvO7di+c/qB9eZt6K1QdGnNW8HzPrwfx5+IyOOP4nw45uF6xepZCXFMS/NjNq7Bgkk8Rlwmj5cE2x5/nPK8iHlqTeF5xeN4TLuKNd2OyG+DPAVTefPZSWe4H+J1pRcgXtOJa4BiCXMymsCx1uHierjk4jErKXNtWZYeiAuCnfUrbz31fKFSrcof/s//0ba8e/3d/0W8preVQ8/P9pVx/bnypldCfNUdP2fsN6BnHa6FtahOHhwTtB4ZJx+YyQK2oVjC/l60wOyjvjytTyuYN/UxnCPr1OZ0F9ZCn25TJ8ZxTVYrmnmXoXqa68bxk6Zl2IG96F3iDaCk2aL96OvT6dC9gWXeS2//j3+AuHgI60o217juQRjKD5955qxyblaeHoqiKIqiKIqiKIqiKIqiKIqiKOcr+tJDURRFURRFURRFURRFURRFUZQLAn3poSiKoiiKoiiKoiiKoiiKoijKBcGsjMzbiWXZYtmNdzJxhO9m0mRD0rMCNUOrg+uM/VUD1LljLb2gjBpn4k9AGAcYRwGJVtZx/3WKRUTiAnW3i9pwtk1am+UjuM8SaqZFpHHo1FFDLSQdTRGRcuVfcR+kMZhKo15r2kNfkZ17Hoe45q/E7TvwWnTKZUYbakXs+6GlKMZYnTylmxlGCX4Fc0h0aLdE6Ybm4dGDqDF/6c1XQnxwH2ot7t6DfhsiIikP9RNDH8/HJ++Y0Ma8SsUYD/airl5PP2o2LxxEnVkRkdGprRA/twvPa8dO1HA9RrrONfLT6MiiPq5FgoHFCmoXi4iEMWpj2iF5SISkhxuT1il55uQ6sQ2T46jxu3hohdGGRd2/CvEYeS0cqTe0Mas+jol2MDyyRWy7mSv238BnsezBjeMeCK34KmN/ttyN28jttAXqhcfCXgisr0ha7ZS3rm3qAAcs7Gv9P4qx/x2ajrYexPP++ne+DPHPvQzr3y/ejtq2IiL3vA61mRd/+esQ7194E8SHSq2mxFb9YupSxuT/lOnE/EpnG3W/Rt0114SlYbH8Rs5VK4fgs1SAY3jkOPpmLe5+tbE/T3CuiGuo3V2juWbiKGp8ThxAjXv7BNaI4DDWgGrFFOG1bXZVwbhaRe3SiHSbJ8ax9pVIf/VIBtsQkZeDiEiVNHVD8ojgOJPCsTdJ/inDdUyMmLy/IjPlpDuH9dElrdugeqoeR2F759ijo8envVc+8bfom+V4eG42aYU/T/4dIiITE6STTb/Ls74b68LCXryGFfLXyGYw7wqk/V0toI6ziEjKxTyzczjve2ncRy6Ln3d24jV2HdL0Jf+jw4dwvhMR2euj3jhXdNvGfXbnUNO6j3TvXfLHicqovR/GpoMR+6F4NP6i5npuPqwE051VyTQ9PWo+1qaQNOWF1ieFirmet0Lsj54srmP37EGvgzWrcb669hqct48cQ632rTtw3ZZJmFv++Qvoybf2EvRg+O3/+k6IQ7ImeeJx9D984LsPQzxVxXVbPaFWxAG2yyd/tvFx9GQoUw22SMu5MIX9yj4Vgwl+UkuWoF9NjgSng2auBgk5O5csXbZKvHRjnGVyOLcsWYkejf1D6DPhF2jdJyKPfRN9PqI65nFpCq/Pvs3o/9ZD/VQmf6LuPryfOHTQ9NPYufXbEBeO4dqgVMJ53o8egjiOwxljm7wxMmn2mxPJD+BaY/0d6J+TSmONd8i3KWYPO/YCI5+LyDZ/PzSyyfeHa93pNa5maqbPJSuXLZZMtpF3WRtzZMeWpyCeotK3dz+uBUVEKmSxke/EMeladJ8b4pjOeLiD3XvQI2TZKqydQ8t7jDbsP4DtKtTJo4N8IHcfwPrb2YMa9b/8pjdDvH07bv//vvBPRhuGFqFvIK+9imOY+6UxrGVuFudxj7xj6jW8GJ15nKNFRMIY15yWh8+N4tCH/7aLznyf5Jt6+v1ZfA50aBM9w+vANdTaHtNDd6uNY/jwIXy+sqSA12vdEK5fqsvwGcDYAsyXsTLWvuOTpmfW+HHcpz+JYz6o4OfRFK3BJvFaxbRWrddwXZHqx3EkIlLsuBriJ0fwvLe5eIxamvrSxpxKkXmJ52B98KtmrcrbeF6XrsKxtKDvVD0oV8x6PZccLZbEdRvrFC+LOTO45iKIV63FuCtjrql8euY4egzzbstufNaRWrASYiuNz+B2/PD7EE8e3QHx+HIyoxGR5WvR93iyiHWlQF5sUZXuF8j3se5TXMccCWqmZ11Ezx4XDGDtqh7H54jjI7gOSC1cDfH+PJ7nsj6spXds2Gi0oTf3Joh3PYvPrXbsbHiyhkFdRNDX60zoX3ooiqIoiqIoiqIoiqIoiqIoinJBoC89FEVRFEVRFEVRFEVRFEVRFEW5INCXHoqiKIqiKIqiKIqiKIqiKIqiXBCct54epxMbOqyouZYmOU7XMTX5LR/9MKw0aiW6ufUQhxFpngWoexeTFnhcQk+QODD1xiWYohj3GQnGgrJtEhTIM8JGzV/L7sI4NPXqohh1ZS0LdWRtG7X6XAc1Xr0sxrsOfgU/78RjpvpRY09EJLcUNQN3n8B+GR891Q9x3F5dyhVDS6Qj0/DNuHw9+pEMLUYNum3bUUNuqoAeHyIibkz666RDGlukkWyT/judfucC1GxefwlqFK5Zhzp6IiLHJzA3jw2j9t7UMOZEB2no9ndijuRIr7xi4wC0ythPIiIO9YMXUmzhPnzyNrE8fD/ruBjbHZi3112CmqIiIm+6BPUAXRc1PB851sjDstVe3WcRkcmJgljWyWuP9cuKUPvbk1+D2JFbjP0Fgr5GvtA4tFhDdbbnjN+34iuMLVx5O7YpxryLrAfxc9IeTlETv/mj5yDu9dDj472/izqYIiIrK6gdXN/+AsTD634D4pEJVsJnWvRT0seGfj3FJ/OtzXlXPfAtcbzGWJ8qon+UF6LWbLWI89m2H+H2IiIezT818sWqlFEfPCijznNMuvqjNk2AIcZBQJ+LiEN64K6LS5yYRJhZ496hWsZXrjJF9TlBCzUgAWxbcJu0jXtdufxiiA8fx+3Zh8Qmv4fQN9uwagi127mmP7311NohjNvr6VGu18RpnoOXxr6w6BqH5J1WKJjrKvYuO0rmOP/3afQtEJpresmnZW0v5nFkYX/7lqlZ3JXC8yCHOIko17M5nP8c1pTnX0fysDZksh3CxORRlfPIk4PWtGXyZ2At41qR6jHNGWnyjRERIalhnnWk3Fz/tN/RQ2SiVJJ00zusVsVzTXm4FihO4JgaL5jzQlcHeZuRb+DOLajlvHMHanG/9rWvgXjVGly7DQ6gh9yuXTh3iYhs3U3zGWmG33HnXbjPxegjcWAYfZVqlAPs9+NaZj+4Hl7leglznT06ggA1yD3K055OzO0OyrOFPWbud9K18EvkKxc25wHyS5pr+ldfKuls435iYDXWpcDHwTJyDNvsdaBHo4hIKo2efsVh9MHKLcG14mQJa0LpAHoBFY9h/PwzeE+ZNMe61IZ8P2qY5/qHIF44iB4s/YtRa7+jA/cXk49TaJm/mxnG5NkSYJ4GtOaKLdynTfM8F6QgYh8uc470a7QNedhFp82rYd30/ppLTpw4LKl0Y0wUx3DdXSSfgckKnvzhQ6ZnVX9vD8S9vXjNx0bRj2hiCp+3dDlYT1evwmu+fO0CiFM9ps695eAzm4kCjuUJyvXJMuZ2uhuv1z99+eP4ffLjsBOejhVIW79YIY848l+zyK/mrlehF97StXif9tCPN0E8vB/7UUSkOIo1Wzy8nh1RY30S8eJ2jrEtS+zmPczai7EGFCvYD48+huN3tGI+5/HyWOcHpvD5yi/c8ATEfR4+H3vu6esgdgOsQ2vXYg5bF+OzLRGRA5iWUi6il9DmY/hs5OAY1hWnE/PcyeI6w6vhtQsi09MjKGENjnPkrUDPQyNK3IyLfdvh4Xy8sA/Xlod3oOeEiMjUBM4LTh73WT3t2WaN/dHmmJW33i6pTKM2pDL4HCiXxwtYjbBm7NyB/kYiIukMXoPhg+gl9Nj96Gm18qK1ENs2XnMZ3gfhul6sYyf2mX6oj+3EtaK4+J1Wlnh8n2s4XdKzhjg251jbxTXVsUnMm8EBPM+rrsRnkZufxL7dMb4J4oUbXwZx5JvPb/pXYd+mB9AXr/+SxrxTr5Zk8/c/b3w/Cf1LD0VRFEVRFEVRFEVRFEVRFEVRLgj0pYeiKIqiKIqiKIqiKIqiKIqiKBcE+tJDURRFURRFURRFURRFURRFUZQLgvPW08OyrGndMcPRw0Otv3SuF+Lq4ceN/Tl11LrNeajLHJBuaNCB+n5BCjXVQtJj9Suof2yVUeNSRCSqobZmXEGNNKuOmsAx6c9JRPqqUWnGOE7QQmXxUsdFbemeXtTEy2e78RD+doj9GvZ1qYjnUC9tNlqQ8vA8Jiex3R25U30dx5EI7nJOGexdI53Zhqb3z9/68/DZc8Po4XFi7z6IM2VT//Y1t90BcU8aNR0duh4BXfMjx1G/M+7EvH1+C/ocDI9jjomIVHzUIT18CL8zOYKeHlfc8CqI+5agtnTVxzYP5vCc0qkeow0dpPs8NYpa1D966P9BXK6g/j/bHVgR/qC/E2vAG257q9GGxV2oQVit4Pjoaeomek57fWRERPz6dWJZjX704j+DzzyrB+JQXorfjU2N65ANgRwaRBaJQkam987MkCZkZOq7x4I+H668A+LAwrwMbdTedwK8XpOCmtdf/M59EHcPmkKXv5jG+tXTj95N+1Po/VKcauG/0YI4UWwTf1aYxDFcLTbysFZq7+8gVPf+YNpbISYvIZ90YvOk51/aR5rpIuKS5rJYOI6cGHPSDjGHLDqGJfj9VIp8EDKmt0JE/R+Rhjtrc8cW7tMnLW/HJi8h0p8PAlPjPrLxvDo8XGYN5LHdtcIExNVqlWI8B8uhcwzYn0fk+CHUgg77sD669qk2WG329IijSE7atPH1slmLljyvFg3ieYiYPiwV8lQJW/i4TNVw/bGVfEPqPrVhiISeRcQnnftx0s4fGkL9aKZKbfAqmEODlOsnIvOaBTF5x0TYL10p0iomPWmX6lTIvlnkEVepm/OkS+PLo3nGbo6n5Do5t5w4mpFUqtEndbZ2iHCMThapZlexToiI7Kc1Sk8W58DRYax3938btaCffvpJiO+++3UQb9hwO8Rd3TiXiYj0L8BcdGk9v2ULelqtuwh1k2/fgH5ga9agj8TOF/ZAPDFOvoQiUi5gverMYd7EMc7zpTLdi6Vx7cFehGXSzT9+xPTO2zOJ+yxO4bV5xR0bRUSkVmuvp8dXPvn3YjuNsVsvoNNPvYJzqF/Fc7ATtNHJzkk8m/xRqriWdzOoQe+FuIPBpViXOi9Gv418L2rzi4iku3GfVop16MlHizw5gxDnqyleB9BYTPI6iyKsdQHNgWZ1oaJvYUxThDFnRAn1NqajxOR3E5/W7thu79pudHREvFRjXN339W/AZw7VXtfD68cePCIiQ/14zR3SgLdd6p8UPYsgf7Z6jHm7ew/m/u4DjxltqNJ0wx4fS5atxA0CPM9x8q4cPYHjz3Vwju3tMnOfPTjrPt5XWWTC2dOFNTuTxvocVrGvF3fh5yM0x4iIvOTaqyH+8SbUzq/XGuMnjsx14VwS+a5EfuPYloM5deWNqM2fH0J/jU1P4XpJRMTdTddnBOeJleQNu2JoH8TVGNfAiyfxmV7xII7X+pi5Rkt7K+kH6Atq+fi8TKbwvENBD4Kwqwe3J5/fYMr0cIlGsVb55B0UCt17h9hPkY1z3qLF2MaF5MM75ppeMHEW95HK0vPP0+Yqv82+WfV8l8RNH46qj8eulsmfqEA+dgk2mm4Kz82x6dlvFWvf7me3QMzr5IuvxudnS9fjM4ee4QNGG37wIPqdev2YR2xJZcxvPKEZIZ64mzA9eeSnWCJPj1XX3w3x5ZehB/LRAzh+HXrum0nhvdzmZzcZbbDpGbZt8dqicWJ18r2cCf1LD0VRFEVRFEVRFEVRFEVRFEVRLgj0pYeiKIqiKIqiKIqiKIqiKIqiKBcE+tJDURRFURRFURRFURRFURRFUZQLgvPW0yOyLbGa2tgx6QKnSBs8Q69uahOm5itrgwnpNYYBar25LurkOQ5qLQb0uU1eDUG3qfscB+uooaSzXyV9yCrpppNPSEyasHGA2rlWlGSGwZrn6BnR2YMavrGFWpsHDv8LxD7pZloO+guUE7SQyz5qJ+Z78HoOLTn1eRj6smeLqXM4V+wvDktH2Oi3YgX77/B+zKvSxATEq3tQp1JE5FfuegPEAx09EIc10uKzMQ/LIR7j0RfQI+WhHc9CXGFtPxHZu28XxONjqHOYyy2CeN36jRD3L78c4hpp/aVJ574jhWNBRMQKSOdxCL+zdTPqJo7tRI1PhzQM4wA1CVesRa3qXNZsw+MvbIW4EKOG655KQwO1UmmjiUyT2OoTsRpeMq68Fj4LSHO/bpF3go3jXkRELPL0iEn3M3ZbxLw/brB5SCYirVHHuhliW96GX/A/C2HVwty2LbxeE6RZ+4mv3W+0YXwJ1tyfvxn9UA5OoSarX241JbbqmCTw+h09gN85crAxnoql9nrJZKJQnObc6tAAiykfPOprK0GTP0Xa27aL18uifUakjxxSPzlujmKag0PzdzYiH/swYr8K9vwQPC9je8MPAj+3THFVSZO2fzqF/ZLKYr+USGee/Q4ytL86lfhczvTj6c7jPHz4BGpD+6fprIfx2eTwuSMIo+lRxJ4p/Gs4DonY16qmbxbrvNo25gl7oORSeM16OkmztxdzohKQfnxkrmnGx7B/I9Jd7szhNRyh61Es4ZyzZMliPCb7a4ybeZeh8WGlsF/yacy7iNbV7OGRo3pbLaEOu9RNzfAohbnoU02wTq5P5sHT44XniuK6jX6LI/LqsfFcs51dEPd2mXrfHb34nZ4O8jqo4RpmahI1jHftRF+zT37ikxBveQ79OK667hqjDYuGhijGNeie3bshrpOPS2835v7mTYcgHjuB5xD6Cf4/7INkYT2zaS1SLk5APDGMuV8Yx3uOQgHXN8WiuT6rVPG88j2opd/1ZMNzJwjM9fFcUikcE6tZj1zyPejswxzzsrgOT+VonScimTyeV64TvYQyWYztFMaWi+MzJB+KiOJ6wjD1jVsW8ragOVUMb0n2baJ1Q4zfZ38NEZGAtuFywj4i7B1leAoZUyCbCCbNkeRrR5OX45xWf9lIao4ZGT4srtfIuzz5SkQ+9p1H17wQmOtQn+6JyuRLF9JckM8vxJhqQGcO+99zsQ2Hj+w12lAsYBu8NM5vhXGcUztdHF9BHcffUA/q5BcL6EPSlTe9EicK+MxlwQDeZ0a0lvNsPM9nHv8hxEtXYL22ySulN2vmXUCeCQsHsJ1DQ417miAI5KmDeO8/l4RxJGFz/RySnxhbSK5eiv22uBc9P0REvhOiX+zhrdj3TzyPa6Qq5fHQcs4HnCPKY+jxUi7gszARkY4enIuOl/EZwgp6zPfyBXg/+eM96Jm1fxw9JVdcjsd06hNGG/buwdpRqJK3WgnXfVGZ6mmavH997Pudm3FcZWzTH2HJKsyxRQtxHunOnzpvzzW9qOaS+lRB4uZNkV/BtYJPa1rLpntKz5xj62QeFJPX8oJ+PPcDOzAnghJ5c12NPjBXXoseHw99Db8vIjJJvrvZwhFsE91fBAHdF5HvrpDPSMweVQmeVRLzRI81f2wdPlvZ72I9LpfRA2TRIhyvNs2JlaKZN7w2sAyPj8bnPq1rZ0L/0kNRFEVRFEVRFEVRFEVRFEVRlAsCfemhKIqiKIqiKIqiKIqiKIqiKMoFgb70UBRFURRFURRFURRFURRFURTlguC89fSQKJ7W02b9zZh0vaIq6rhFY6hDKyISkmSZTfp/bga13SKL9MMptul9kUteDJaYmsu2jd0dk75qlEXN3zhcinGddMvIAyRmT5Aaaqo1DkJ6c+QBcWx8C25OuurxAOrTeTFqGEZ10hevkJeAiCwknf2BhdiXU0dP6XlGUU1ETK3+ueJPPv6oOE4jF2ohaiGOkeZcwb8R4n0V1LwTEfn9//M1iJ2I9MF91Oe06HqkbdTqK1KbjpVQl9LetM9oQ3kKtS2DKl6TCmnm3v/v/4o7cL4OYWRjG2M6Jys2tVAlxGOmSMO1UunB7VPYtxHr/pI2445DqyH+w488ajTBI51Rm3I7aPrRhOHZ6wOeM+ypaeHTWtQDH3G9MwWITV1KiUydf4RFkPlzOoah+88axab2bEw1MLCwTba8GmM6T9/9/yD2fPSiiUmjdaxmasx/bjvqpo8MoDZ7wXuMvrES22RTLrP3CU2hlpg1ILb7IR4fxbniwP6Ghmq5bGqpziVlK5729KiTvqZL15s1spMISGc0IolOl4R9XfL0iMlXhCSYpV7BHYZR0u9scLtn1u6OYspRSmv+PveCZZk5F5Pe+GQVv1UiX5BMitYW5HORIw8Qj867M2POsQOLUGx4+zH0AysFp9oYJem5ziGRRNP1htdJfO4WxV3dqFEvIuL7OEdGNJ85tNbzSav2pHfcdOxQf9P305bZX1wnuvJYkycmcQ4ul3EeZ83rPPm4jE3iWq6aUCv8EPNupI79MlLEfbAXCvdDZydqP3cuWQ5xZfSY0QaLdH39GHM7DCZEJGFctoEbr79F0k1fE4eucYq8SDyKU+kEDxXyhrGpRq5ahh4NN1cvg9gn/6H95Bn3zJNPQfz8FvT4EBFZd9HFEC9fijr1z23G74wcRW1oN4PX64XtuP5//jnUmy4WzLVRtYw/Gx8fg3iMtNOLRdLdruD3QzItMu7/EgzF0lwDaWp4bmvjPNpd65Zfe6s4XqNtXpbWP+Q9xGeV5LUU0o1sjQoHS3lbPvlMxLyOZq8L8u7iwiRmrbJs9vDgukJ+YcaZks8W+24l1IrW9YM8Bai2sVcUz0OsJZ5OmY9KcjmsIblOvJ/IZE9d33qlJJtmbvA5xS9OSNysxXlq+ugEzgPZHqzzft18bnD4EHpDVEvoE9Lbh/GChfhcIEu+j9kM5n6a6u0NN6P+u4jI+ATWDdvIK6S3F9fdW7duh7hcwvWkE2Octs0cc0Os2dddiz5LefIHS5GnQKVSnjHOk49IUMN+FRHZvW8nxNdejn4Yq1etFBGRWq0uT30fPUTmksiuS9R8XmHxvXZE4498f9wOs6937vs+xNv2/AjiIHUtxFOFqyG+ek0PtmERPmvJ96N/VV8v9quISCaNOZcr4/Oz7CKMOxbiPep4EZ+XBdWVEL/qJjzvhd2mn85YCdfu4yVcO44fwX2MHcU8tjzs+63P90BcTmG8sMd8drCoF/N6AdrlSPdpXrWu3d7nJ1krJ57VqL2eR8+GBa95itanGctc10V16t9xvKb5FNb9/s4eiCvkXzu8DddQP/4q+iIffh59ekVEFvdg7RK+B8lgncikMWY/TdejmPrBTZnPLVwP11QuzetxiPHBvQcgXjmEz1pS1OZOY43dY7SB7bxi9txsVv3Z2FLqX3ooiqIoiqIoiqIoiqIoiqIoinJBoC89FEVRFEVRFEVRFEVRFEVRFEW5INCXHoqiKIqiKIqiKIqiKIqiKIqiXBCct54edhyLddLTQ8gvg/S7wjJq3kkVNWVFRBwHTzWKUFPQJt07IS1pjzTRWGMtIq3VJB1S1pMNjW2wDSFpR0cdqBkqAepmOiytGif4ipAgq+eRlrGLWpsslJmNUOOQNbf9iQGIeyLT32FBnvQ6a6hf15E+dV5BWJaDxh7mjq17XiEiJzVOUa9RnHHaGvNstE7bi8joKPqssKeKSIFi1lNFLXCx+ZqixrkVmXqsruGxQdr55AUzWn0GN4/53Sh7SOQp7hMT/I4l2KZYMG/ERtHI2Cb/GwuPeXwC/XCOj5MmoohIxPqorA9/8nO6Zm0gZVvTOsJVusYWCxuyl0GCLqWpcBvN/HHL7/Mx2csgqQ0stIi1JSI/oNi+i5pANTb+JsbB97CFFmpxiogUSDv2m0+iZrnj/RW1GHXr45jGl7DeKc4LsZWQ+9YvQ5h2F2IbUo2+doL26txHdjR9WQ3tbk4XnnQTNDRjmq9sQ0ebcoT0Oeukce/T537Ec6zZBo+0Stknhr/khPg5a7yygqhN/RAm/NpIhcxIWKW3GmBOUii8FInIA4T9ycarpobuU5O4Jood7pfTzjOahSDqOcC2PHGa6waL6gp7x4Qhxr6f4Kdh+ILg5x7lnUv+bLUAvS9iyhHWd2fN+sYxyBeE6mc6jfq43V04f/H2U5O4tigXsLaxdriIqXMf+JhYNR+9EkLS74/IE6RaR23oiHxFajXULhYR6SSfAuoWqTfj9jt6iCxbMiSZpvdDQIPO8O6hJDJql4hYVI9sqldZ8gHJpHH9YWjQ9/RAvGhoCOInNz1ttGHfnr0QX3/dDRBPjOGa9XsPPghx3wCum374PdRR3/wczpfVsnnNQ6rbIRsjsT2YodPMvhLsy4Tb872ciIhD9zE++cydvFTt9vQo+6etjHwyubLIz48LF8eSMKcacyx7jBGU9+yVZ2hj2+bcYPFeDVsr7Hv2DWHYx4lv8I3PxfRz4G0Mz072lEhjncp3kidTF9brbM7UuXfJl9CmGhGeNo/Uyu191LLh5hslnWm0+dgxnEvo0YcE7FG14SZjf700X3XR/OO6fM2EYp7neczj9mHCPB/S/MT75Gcw1Rqui3JZvD5TxpyK9bmcsK66yEaf1e4evo/FNqZS7B1D/m3kc1irYps686Zf26WXon9lnnyZjh7aJyKmZ9RcY4WOWGGjj3nNxHWL71mNxxoictUVV0A8fgLXH0OLVkJcKWDd2XMEr8Vx8jId6LkS4g7vIqMNaQ+fv+S7yO+hgvPjFD16jOjZiEfro73byfut07x/TNExOcfyndTXC7EzPQ/vYY+R1029gDk42GvmTZaedeXoOWHmNI+kMKFezyWB74tlN9rs0xqXvZti8vOrhOazHosKZDaFdWHJQrxmKxahR7GQt6VPvj3+GM77a5djnouIRCuvgtjO4LPfNHl4WBY/h+D5j57z0vNsvucREbHpPGLqlzrfF5FntUdrkZDvq+iZnkVjQ8S8L4rJe9Rvtmk2j070Lz0URVEURVEURVEURVEURVEURbkg0JceiqIoiqIoiqIoiqIoiqIoiqJcEOhLD0VRFEVRFEVRFEVRFEVRFEVRLgj0pYeiKIqiKIqiKIqiKIqiKIqiKBcE562ReSChWE2zXCtGQxWLjHxro7sgrvqmobTtkpkzGbeygZudwq6J2SCVzDNj6slEwzxy62Kzczb3CqmN7DfqOGw+SyatrukOlU6heUwqjaY8notmTy6Z0bgeGi3ZLpk3RmiStNBeYLTh8A40xOnJ4TGWrF4//f91vyhPbjd2MYfkRayTJtpocCoRGhJJjOZCtmF7m+T3W6XPyRje2AGaUHFahTGaIhlGhCLiC5tP8nmw+Tlub0sXxXjesWQoTiorZG5p2PviPqyIjFojNASLpAc/t9i4nM3VRYRM48Qik7iT1zM2nBnnnIW9rthNI6j9R8iMkkzg2D8q2Ye4hRG5zGy823J3ZBAdJzlbG5BRFRucRlhb3OjVGNtoLFiPHsHv2yPGES1qZ9nH8SbhVtoHjU82W5dFENsxGhtKjKZnIiJhhOPryhsx7y66tGFsXiyiudhc05lKTRu9GdlisQEjjYmEMZIiIzOHc8yYrmgussioMsE8+HTC2DTcc8nALU37YM9ONh92DSN0MgkkY7xCQqkoBnhebC5bqWAe89ix2XScXB7rdTLATRp6ZLado+vpntbuKIzEHDlzSBxPr1XSZDAbUa0LQjbjNutUmq5ZxIZ5fI093D7t0rjjdRmNjiQjZV7LsYFixO6xNJHHNJ48B+f97k6Mk6zAQzL548VAuYrrmYDaEJHJo1/DNhXKuG7Ieabx4MpBrI+u2wPx1r2bG02TWHxeX80xUdD4J5JgxiycM/ipE5u1yGUjRr4klHc2Gc4GZPjNRr2Dg4MQv+qVrzLasHvvPogPHTwI8fDRoxB/8fNfhHhoER5j01ObIC6RcbmV8HtyFuc+1asg4FynHbDJMa8L2MzSMq9FnY5h2ZTbJ7+bYNg5l4R+IHFz7ctmvlaSe+9pxHHSPSTNyxRz51o25lRI/WLz9bS4jQlG5mwizh7FNq8dZj5vx8E64jq4veea9TadxrHX0YE1vLsb7/e7e/B+IpPB7S2+n6d7OT80r0WpjOO3PIH1sVo7tT7xq6Zh7lyydv1ayeUa57xuPa0vaG3AOZF4L0BzSxzi2iuMuJbNXNs4Np59+Hy/KFInY27fx/mDr2Eqg3FnJ5v/8vijOTs256daHU2l/YDXYjT+6J4nS89bDDN2vsFPqhG0zuZ188l+qtXaPL9GlkRhI9cML2sewsb9hcltt26AeP3ayyCuVjAftm/D54A7duKDo4lhNCUfOY5rqlTcY7ShI4PPPjo78LnC8RN4faounsl4QOu2DK79t71AxvY+3U+KiB1R3tr4fDObxesfhPi5RTc9YQXb3N+JedKVNfOmeAzXEV4K25lKn9qnH7b3d+n90rhI0Lhv96lGCK1RnRQ98xFzfPGYtfh+LEVzB81P2Qw9y+qmesq1LmFu8am+Rry4tPkZEc2hFNtcM9wcxeazh8DH2lYPsE1uzHMk5mGFbnmM+yaeIwIz73gtwWuiqNl3UWA+CzgT+pceiqIoiqIoiqIoiqIoiqIoiqJcEMzqpccnPvEJufLKK6Wrq0u6urrk5ptvlm9961vTn8dxLPfee68sXrxYstmsbNy4UbZs2XLOG6387HHLLbdo3iltRXNOmQ8075T5QPNOaTeac8p8oHmntJPdj31dRESWLl2qOae0Fa11ynygeaecj8zqpcfSpUvlf/7P/ylPPvmkPPnkk3LHHXfIz//8z08n60c+8hH56Ec/Kn/zN38jTzzxhAwNDcmdd94phUKhxZ4VZWbuvfdezTulrWjOKfOB5p0yH2jeKe1Gc06ZDzTvlHaS7RoQEZGHHnpIc05pK1rrlPlA8045H7FiFlOcJX19ffIXf/EX8uu//uuyePFieec73yn//b//dxERqdVqMjg4KH/+538u99xzz1ntb2pqSrq7u8X+hQfE8hpadlaAOngdadQGyx//EcS1o08b+3XSqLUekVai5aEOm+2R/r9HWowW627j+yPHEDU09cI90psz9MRJe9r4Pmmk8THPRguV281ynqxVzdrUrEHZmcJ+Kgybus+VY9j3i1KoWVg6ekrbLQhL8uBzr5PJyUnp6jqlrzhXeSeyT2Taw+IEbTVBMRfoBN1Wi35moa6kxByj/r9Lx4gFPw9ljPbPbRYR+o7E3O4SxawxiDqWlqB/Rsz+GsL64+Y+zH1yjFqaIjh+Y6MNvS2OJyKt2mk1P48LInLxnOecyKm8+5179ks63TjW33wCtQ3rPvcFj6mkd9dn47FxOqyhy2YFXEuqFCfpU/N3+BiknUl559ovQBzHf4d7iz+Pu0s65XgR/YDaZKMOsxu/Dr8ul+DmMWqg24Lapp5tenrcdCten//6x1gjX3lnI3enpqZkwcBA22rdVVcsnfYeYL1N9j0IQ8zJJP+iDGuf0iYWzRXstcAeHq7D2t+kA5xoHUSayqQz6pG2acz646RpztrTTDkwP6/ReeZIS5o1Xf2A9edb/C4Kfb+W0Eaf9lEn3dh6eGofYRjK9md3ty3v1q1dI07z2rLvi7gzXw8nweeFtfJZt99j0Xn2IKB1Eucdr5H8BP3YyNDfZ6F7DB3OM9rnZIF8t2jdxZr0IqZWvuuSnjGbJfA+aV0dhdhP1Rpp/Cb41tVJlzfdgXNXJWjoTYdhJC9sO9TWOfZDf/ZeyTT1ltkngjE8PRLGJHtXGD5I/BWbxj1r1Ncpr6gR7CckIlIs4vpy+849ED+z6TmIDx0+DHE6jXlUIQ+PkOppmOSJQbnfsm+5n9hHokXM90EiZt9YFJ8cw3EUyfjoWNtq3dK73it2897S8GZjvf4Wc5GIWf/4PDknjX4gvwybfA0c9uVKyDn2nGLvSI/0wVMexlxfsznUF+/txXvx/j5zLd/djWsoruEB1a56nXXvSX+8imOvWiWfBB6bYvpQWNQPp3vd1CtF+fw7b4O8m8ta97G//nPJZht9ZPhA0logJD8pxzWveUzzU+jj+r9SwTigY7B/Efua8RzuJfiRGvWSYt4Hx+z15TqYl+wtY7sJaz+L82jmNsQh5wQe08ghHvNJhm10jGoRPRzqfqONtVpdPvnJL7at1h3YOzF9HH6s5Lh8bVqfZkBra5/83E76h5xk/75DEH/nO9/Ddk5iP3Xm8P6/WqE1l5jzK6/TquRfUQvJ54trPNXCyMZ7g9g257aoTr4GlHOpFPZDvUpji+7Ns+TzlKJ74H5+3CAiboTPmS6/aAjiwYWnnr+UymV5+a/8Vtvy7nX3/A/x0o05o17HOuPRc1w3jXMN14DGz7AOsIcYr194Ts5mcG5K2XgMroX8jFWksU6B77DHB33Oa/0UnTfXNsfm2My7mDw36txuWufx3QB7fEQ8J9D+g4i9h821JN+LnayX9VpZ/vnPf8XIuSR+Yk+PMAzlS1/6kpRKJbn55ptl7969Mjw8LHfdddf0Nul0WjZs2CCPPPLIGfdTq9VkamoK/inKmdC8U9rNuco5Ec075ezRWqfMB5p3SrvROVaZD7TWKe1Ga50yH2itU+YDzTvlfGLWLz2ee+456ezslHQ6LW9/+9vl3/7t3+TSSy+V4eFhEREZHMTfhB0cHJz+LIkPf/jD0t3dPf1v2bJls22S8jPAli1bNO+UtnKuc05E805pjdY6ZT7QvFPajc6xynygtU6ZDxYvXqy1TmkrWuuU+UDzTjkfmfVLj4suukg2bdokjz32mPz2b/+2vOUtb5GtW7dOf85/nhfHceKf6Z7k3e9+t0xOTk7/O3jw4GybpPwMsG7dOs07pa2c65wT0bxTWqO1TpkPNO+UdqNzrDIfaK1T5oMf/OAHWuuUtqK1TpkPNO+U85EkVewZSaVSsnbtWhEReclLXiJPPPGE/NVf/dW0Ntvw8LAsWnRKR31kZMR4o3c66XTa8JkQEYks65TQH+niVXzy+CA1sdySS439uVnU+WJdWId0SJ0Uxl4addpc/pz8OTgWMXVnXdb7I1i3rVZDveRaHTXQWEezmqCtWySN3jhCrbhWGmp8Xpks6q96Pai/2pU2+6F/AeoYVg7g9bTi8dP+v6E32K68mxkuyKQvl9DfsaH1zRvwPkibloWhWZfb8FIw+1ti/hmfN7eb20yakladPmd/h4SyEufoB9xujA1de6Mf+H3tzNfmbI556juN/57rnBM5c9697bc7JJ9vjIvARc+Vb3zlAMTHhrGWBSHWJhERi/uTNcotvMbdedRXTGfIfyMiLVoba0+ccM1j4UUN1priFNaOcgXzNJIjEIcx6pGL3ApR1rnCaEN3xyqIbYt1KCfw8+gO/NxZDHEmi7Wqpx//xPamW8zx91u/OQDxRZfQmI/wv+2qdZZti3VS65xqAOuOJtU2hvXeWeOedZo9XuDSIdjjha0ZJDTbxNc3Jr3q0CddUtIyjShnI9IlZQ3mBOsucfmYJcwR1nZ3qQ1+OLM/hCH7nOArEtA8wBrnp5/WSY3vtuWd44jV1MG1qAPDCK8P9405N4mEdG4urVGCiPOINJBpHcXXnDV7Ex2U+AaOYtaQj/ia0Tohl6F1AOlZp2j9KWLWeNbQ5WRlTd5yEWub47CPCOkEJ/g7rFm2HOLhY1jDveZ5nvQEauccG0aRhM1caKWl7lDtSrI+NGom5a7N66YWfniGL4XhL2T6CqQpDzo7cZ3F++T1e62Gazf2puE5POmhBI9h4/MWHh18j8Hjk72ekn192NODvSka/z3Z5+2qdX7gT2uq///t3c1vG9Uax/HHThP3RY65vb2tWzVFESq3C8SC8iJVCNhQhNiwQyCxRYBaUbFAiE1ZlfwDICRUdZsNXbC4qogEjUDdIVUEKrGCqoWmveiWJiH1S+znLtK4Oc+Zxj4zE8/Y+X4kBGNP7PGZn8/MeDjP8T6nnV/DfKzCSNQPQOZvuhwb7PwZo7Yt7XxGpja4rW8uIjI25n7O0nZ3nUrZvb7bt9e9JvznHreW/o6d7uvZS6blu3YuOJG//zbXwjV3XsK1eQ3W2GOAzXm3DG8rRl3bmWNq054T398GXVn9nj3yyCMyPj6+6X3d779f7zzuf9/MvGbmWiCqn7FzerRbdj4is4+8uWHc3Nm2s7/HREzb410D2nr9dm4Zb5faa20zKZzXxXuTMomoua7aZuaCtbX47bysraY9D9t4zrioev8tM5eJP0fZ6vdx5N55Ud9+s9N2p3+1x0ZdCZ/Tw85FY+dksX3hQw+58yn++9FHneVt5k3LZXffzd9yz1VERG7M/9dZ/uu2e7xc+vsvZ3l0yezPhnvu3667c4Q01e0LmyP+vCJqzuXtNcyd/7mvucvMkbSz5PbHY+b6ZOJf7nyou//h/55Q3unOjVked9uu1qit++/VfrBfuRspjnTmshoz37cxM8dw0czhYee0EvHn+SiV3H00ar7zdi5l71zS9IVFMy+QPx+g31+27fwa5jfwlnneLnuvZ85F7TyIIv45sL2u8uZ7tr8xmXlDGmp+N/SOAVG/x9rrefv7TfvetvY+h23sOT3Wb0S9XpfJyUmpVqsyMzPTea7RaMjs7KwcO3Ys6dsADnKHfiNzyAK5QxbIHfqNzCEL5A79RuaQBXKHLJA75EHQSI+PPvpIXn75ZZmYmJDFxUWZnp6WixcvyoULF6RQKMipU6fkzJkzcvjwYTl8+LCcOXNGdu7cKW+88cZmbT+2iEuXLsmRI0fIHfqGzCEL5A5ZIHfoNzKHLJA79NPl/5wVEZGrV6+KiJA59A19HbJA7pBHQTc9bt68KW+++abcuHFDKpWKPP7443LhwgV58cUXRUTkgw8+kLt378q7774rt2/flmeeeUa+/vprKZfLXV75vs7wlea64aotO2zUDMleMctFf3hmu+mu01Lz0dUOM3SXbdmMgpjyH+3RDZdF/OHM3nhmww5/X6m7n8sOp7XlDOwQQxHplJXorNPe+G/UDt0yn2vFtFuz5q6/Uo+IWN19j6Y3VOv+EL+Ve//91ltvyc2bNzc/d7K+tNCSWcsuu0OqVfyhiSLuZxM1yybLKu4+FTskTGy2zbBiL8ciNst+iRC73KXclTccz76+Pxzd3273c3mfW0z5DrUltGw72nIfUd+tiNJfznusZXd1P2925kTu525p6X7u6nW3vFW7bTKiG5eNWmWHk5v3FTvc35T9McMfxXzv1dt/UeWtzLJ5DzXZVrXv4X6//AyZ0nxqMyTS9r5vdnikyZW63/G22n1h+yp3/UbDLzuztOQ+trBghunfOy4sLq6+V7/6uta640W3EiS21JQtjSMiUlD7Ny6vPFXB9ivmaVuWwXvHiPJW3rB6+x5m/9uyF7a8lT0+qh1u622CV0rDrlNo2/MAc5wPLG/lry/SEluyont5q/7lrrX+QXe7TL9T8ErkPfh1O39TtGWFNi7ZY0tM2PJW3vtFPNatvFXX97DtULT7y+5Pfxvt8HJ7mPaGhpu29l/T5tKsb48RItI0pRdaK3a7286/+3mMrdXq3mNrupW3iqhu45Vd8kvfmRzKxhnotk22ZMHqY+5rNBqNDZ+3JUL8/mzj/i3q+xf9jeid955dnrd9cpSCObasNeXa3/arr2uvrDsnsTVdvHMs+3xEKTE157Vtez3nLhfMOZfNrLTNeZspdyzFiOtYtdfG7jpN8yf1u+7nqJnLpII9DzS7t1bzc183j9XNtXEz5fJWGlFK0ytvtUH/ufzXapmcJ598si993fpS2PYYWiyafqeX8lam7+le3sp9zW7lreyxJqKr65QmvP8i5i1XTJ/dtbyV7X/N+vb8VPzrpm7nGraUjS1v5V1nGZHlrczfrJiy5617135rx4J+9XWLi/dLORUK9liYvLxV0zuXd19kccm9Vltedq8fbXmrYtEN2fKy//tNreZe79VMOUhbHrLeMPvLlE7VtrvcNNe8zRH/GtY7lzelh5tNd/83GqYEmy3jZs5D7Ge6a39qEb980PbSg8v8Lt9dbbN+5a65rrRWyxwzC7aPMH10IaK8lf0OF0zO1LyGV1qzS3mrliltG6e8VdP+nm2eLxbteYEtV73NLPvHP3sObE9HupW3sv2zPTddsecaEf1tr+WtmvXlyOejFLSXtfro+vXrMjExkfVmIGeuXbsmBw8e3LTXJ3ewNjtzIuQOPvo6ZIHcod84xiIL9HXIArlDv5E5ZIHcod96yVzubnq02235448/pFwuy+LiokxMTMi1a9dkfHy8+x8j0sLCwsC2o6rK4uKiHDhwwLujmqa13KmqHDp0aCDbKk/IXG/IXbrIXXdkLn3krjtyly4y1xtyly5y1x2ZS9cgZ06E3A2qQc5dvzPHb3bpIXfd0dela6tkLqi8VT8Ui8XOnZq1YULj4+MDtxPyaFDbsVKpbPp7rOVuYWF1iOagtlXeDGo79iNzIuRuswxqO9LXDbZBbUtyN7gGtR05xg62QW1H+rrBNcjtSO4G16C2Yz8zJ8Jvdmkb1Hakrxtcg9qOvWZuc/8XKwAAAAAAAAAAgD7hpgcAAAAAAAAAABgKub7pUSqV5PTp01IqlbLelIFGO/aOtkoH7RiG9koH7dg72io9tGXvaKt00I5haK900I69o63SQTuGob3SQTuGob3SQTv2jrZKx1Zpx9xNZA4AAAAAAAAAABBHrkd6AAAAAAAAAAAA9IqbHgAAAAAAAAAAYChw0wMAAAAAAAAAAAwFbnoAAAAAAAAAAIChkNubHp999plMTk7K9u3b5ejRo/Ldd99lvUm59sknn8hTTz0l5XJZ9u7dK6+++qr88ssvzjqqKh9//LEcOHBAduzYIS+88IL8/PPPGW1xPpG73pG5dJC5MOQuHeQuDLlLjsyFIXPpIHdhyF06yF0YcpccmQtD5tJB7sKQu3SQu96RORHRHJqentbR0VH94osv9MqVK/ree+/prl279OrVq1lvWm699NJLeu7cOf3pp5/08uXL+sorr+ihQ4d0aWmps87U1JSWy2X98ssvdW5uTl977TXdv3+/LiwsZLjl+UHuwpC55MhcOHKXHLkLR+6SIXPhyFxy5C4cuUuO3IUjd8mQuXBkLjlyF47cJUfuwpA51Vze9Hj66af17bffdh47cuSIfvjhhxlt0eC5deuWiojOzs6qqmq73dZqtapTU1OddWq1mlYqFf3888+z2sxcIXfJkLlwZC45cheO3CVH7sKQueTIXDhylxy5C0fukiN3YchccmQuHLlLjtyFI3fJbMXM5a68VaPRkB9++EGOHz/uPH78+HG5dOlSRls1eO7cuSMiIrt37xYRkV9//VXm5+eddi2VSvL888/TrkLu0kDmwpC5dJC7MOQuHeSud2QuHWQuDLlLB7kLQ+7SQe56R+bSQebCkLt0kLsw5C65rZi53N30+PPPP6XVasm+ffucx/ft2yfz8/MZbdVgUVV5//335dlnn5XHHntMRKTTdrRrNHKXDJkLR+aSI3fhyF1y5C4MmUuOzIUjd8mRu3DkLjlyF4bMJUfmwpG75MhdOHKXzFbN3LasN+BBCoWCs6yq3mOIduLECfnxxx/l+++/956jXTdG+8RD5uKjfeIjd/HRPvGRu3hom/jIXHy0T3zkLj7aJz5yFw9tEx+Zi4/2iY/cxUf7xLNVM5e7kR579uyRkZER767SrVu3vLtP8J08eVK++uor+fbbb+XgwYOdx6vVqogI7foA5C4+MhcPmUuG3MVD7pIhd+HIXDJkLh5ylwy5i4fcJUPuwpG5ZMhcPOQuGXIXD7mLbytnLnc3PcbGxuTo0aMyMzPjPD4zMyPHjh3LaKvyT1XlxIkTcv78efnmm29kcnLSeX5yclKq1arTro1GQ2ZnZ2lXIXdxkLlkyFw85C4ZchcPuYuPzMVD5pIhd/GQu2TIXTzkLj4yFw+ZS4bcxUPukiF34ciciGzeHOnxTU9P6+joqJ49e1avXLmip06d0l27dulvv/2W9abl1jvvvKOVSkUvXryoN27c6PyzvLzcWWdqakorlYqeP39e5+bm9PXXX9f9+/frwsJChlueH+QuDJlLjsyFI3fJkbtw5C4ZMheOzCVH7sKRu+TIXThylwyZC0fmkiN34chdcuQuDJlTzeVND1XVTz/9VB9++GEdGxvTJ554QmdnZ7PepFwTkch/zp0711mn3W7r6dOntVqtaqlU0ueee07n5uay2+gcIne9I3PpIHNhyF06yF0YcpccmQtD5tJB7sKQu3SQuzDkLjkyF4bMpYPchSF36SB3vSNzqgVV1XTGjAAAAAAAAAAAAGQnd3N6AAAAAAAAAAAAxMFNDwAAAAAAAAAAMBS46QEAAAAAAAAAAIYCNz0AAAAAAAAAAMBQ4KYHAAAAAAAAAAAYCtz0AAAAAAAAAAAAQ4GbHgAAAAAAAAAAYChw0wMAAAAAAAAAAAwFbnoAAAAAAAAAAIChwE0PAAAAAAAAAAAwFLjpAQAAAAAAAAAAhgI3PQAAAAAAAAAAwFD4Pzc/qejOJGWlAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1062,19 +1053,17 @@ "test example:\n", "true_class: plane\n", "predicted_class: ship\n", - "predicted_prob tensor(0.6398, grad_fn=)\n" + "predicted_prob tensor(0.6398, grad_fn=)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcmklEQVR4nO2dW4xc13Wm/3VOVXU3+8JLkyIpiTYpiVSkSDbtdAQD1gSacSZQjAC2H2zED4EejDAPMWYMZIARPBd73jyDsQM/DAzQYyHKwOPYGNuwMDBmYghJFAO2LEqWKCmULVmSLYrNi8Rbk+zuqnPOmocqIZRm/6ubfalmvP8PINi9V+9z1tlVq07V/mutZe4OIcSvP8VGOyCEGA4KdiEyQcEuRCYo2IXIBAW7EJmgYBciE1qrmWxm9wP4MoASwH939y9Efz85OeHT09NJW9EaofMKS78mlQV/raoDSbGpa2oz4/OYxegM7nt/XjAz8GNFrPBwvsKJZtGq0FkrO1fkIznkSiXn6LpCW/wsYZMoTb2QHD956gwuXLiYnLniYDezEsB/A/AvARwH8ISZPeLu/8DmTE9P49//h3+btE1sP0DPNVZ2kuNTkxN0ztwiD+jLF9+ktqJoqK0hT6pW8KIzFryIjZbB8hfX/gQGQIO6bvh6RLHSBPPYegBAq5W+tqIo6ZyVvUDEL9BGHs/ouuJzcR9HRvhj3Sm4DZ62WYev1ZU3jyXHD/2rdHwBq3sbfw+Al9z9ZXfvAvgrAB9ZxfGEEOvIaoL9JgCvXfX78cGYEOI6ZDXBnno/8/+9nzKzQ2Z2xMyOzM1dWsXphBCrYTXBfhzAnqt+vxnAiXf+kbsfdvcZd5+ZDD5jCyHWl9UE+xMA9pvZPjPrAPhDAI+sjVtCiLVmxbvx7l6Z2acB/F/0pbeH3P35cA4MjY8mbVW5lc7rtceT43XJ3ykU7WA3fp5/nPD6MrW12+nxRefn6gW7+wst/lobbOKj20vLLgBQlOkd3Pkr83ROSeYAQJtdNIBut8f9KNI2b7p8TsnXo9NJKzIAUFV8/Z0sf19MSsOUBADYupU/T0fGJqmtCNSVhthshK99fYk896PropZl4O7fB/D91RxDCDEc9A06ITJBwS5EJijYhcgEBbsQmaBgFyITVrUbf60YHIVXSVsdyFe1pfWT2rgENTrJL2363TuprbhwjtomrqQlu+7CIp1TT6SlRgBoNm+htskOT7hgawgABUnK6S5yyatuuDw4Oso1wCgxj2WVrTRrjF0XAFQ9vh700oKcm06LS15jY2PUFmXfGbhM2SD93G+ie/EKkoZ0ZxciExTsQmSCgl2ITFCwC5EJCnYhMmGou/GOEhXSyQIFeKJDU6a3VBedf+m/DGzjQZbJ1Ca+E9s89URyvPsGT6zZfdft1GZn+E79oqWTfwBgouQ7sXPz6USe0WCneMT5NRfTQbJRkAjDcloWN/FrbvW4j2UvuOZxrjSMXLiQPteeO+mcK1s2U1tTcQWoLriPow1/fhtRLoqazynra79P684uRCYo2IXIBAW7EJmgYBciExTsQmSCgl2ITBiq9NYnLU9YlNzhaYmnroJCbUE9MwukpgXjdcTaTVoOs+030DlX5rgs1Hvl59RWGU+4aLh6hcus9l6Q7NLp8XXsvsYlTPT4MQ1p20KQGFQu8OO1+DJicRd/POdPnk2OT9oOOsc2b6e2KGmoF9SZaweyXEMK5ZUFTw5rsbp1dIbu7EJkg4JdiExQsAuRCQp2ITJBwS5EJijYhciEVUlvZvYqgDkANYDK3Weiv3cH6prU26q5pOHsNanhUkc3kPLqFj/X5jmeyeU70rXrxm54N51TeTrrCgDQ4cvv23dR23ybX3fr5JtpQ9Di6fIol/l85zS1tRt+r1ho0o/z+CTP5uvOXaG2xSDTrzUWZIddTmeptaa5XGpt/vyoncuUk4HuVRIpEgAqS0uHVnBJsd9xLTmLzlgLnf2fu/sba3AcIcQ6orfxQmTCaoPdAfy1mT1pZofWwiEhxPqw2rfxH3T3E2Z2A4AfmNkL7v7Y1X8weBE4BABbt/HPf0KI9WVVd3Z3PzH4/zSA7wK4J/E3h919xt1nJiamVnM6IcQqWHGwm9m4WT9rxMzGAfwegOfWyjEhxNqymrfxOwF8d9CypwXgf7r7/1lyFlEGaiLVAEDDJLbgpYpJfADQNm4beelFalt48u+T49Vv8/ZPKLhU476J2jqBBLgALlFNzJ5Pjpcj3I9mnK+HOZe16h73cXJ6S3K8/TqRBgHgEi/c2d7JsxHxGj9maypdMHPhzFE6p9zEi2w2B3ihyoUOX6uCtDADgE6VDopWxSVWkigXsuJgd/eXAbx3pfOFEMNF0psQmaBgFyITFOxCZIKCXYhMULALkQlDLThpZmiX6Uyegmbx8Iy4Jijw1wpexybOpfuhAUB1/AS1TbXT8tXciZN0TneU9w1z8OKLdvI0tY3fGGSOTaXXxMF7lI1d4tJh5/wctS2AS2/VG7Pp4y3wypHVRZ4hOHKWfyGrN88zvXzsluT4+Vdeo3M6Y1x6m9zNMxzLoBCoB8UjF0kfvsp4eHZJ4UsnfeMA3dmFyAYFuxCZoGAXIhMU7EJkgoJdiEwY6m58YYaRTnrL0skuPQCgIbvFDd+FLQLbpTZ/jbs0w7/uP9X6reT4lTm+Y90r+e6ojQTL3w0Secb4tu/lOr3bXRhfj17N16NdcJVkvsPnsVnzQYLSlUt8HceDa14I/BiZSO+sb5vcSufULf5cvDQWPE+D2oBjPe5jRR6b4CmMHtl15x7ozi5ENijYhcgEBbsQmaBgFyITFOxCZIKCXYhMGK70VhQYH0+3GqpGef2uXj2fNgS15CqSKAAA1uHtjsZ28sSVi5fTtd/OXOC10yxou9S9whNJOlESxHleg64ixclGOlwyuhi00RptB0+RgtsaUlNw8UpQr6/ha3Vhnrfz6gaH3ERafU3evIfOKaP6bkHylUX3zsBkTDALkloa8jhLehNCKNiFyAUFuxCZoGAXIhMU7EJkgoJdiExYUnozs4cA/AGA0+5+12BsG4BvAtgL4FUAn3D3c8s4Flok42xskrdCunQlLW21Wvy1qo7q0wWteArnNdIapG1WclmoFWSNcQvQ63J5bazNZbQWkcPaLX62KLOtrgLJa4FrXhXSa9we46lcTc1tnSBTsd0Etip9bV3n5zLiOwCM1oG4VfO1Ym3PAKAhxuhObGROcJpl3dn/AsD97xh7EMCj7r4fwKOD34UQ1zFLBvug3/rZdwx/BMDDg58fBvDRtXVLCLHWrPQz+053nwWAwf83rJ1LQoj1YN036MzskJkdMbMjFy+eX+/TCSEIKw32U2a2GwAG/9OOBu5+2N1n3H1mamrLCk8nhFgtKw32RwA8MPj5AQDfWxt3hBDrxXKkt28AuA/AdjM7DuBzAL4A4Ftm9ikAvwLw8eWczAqg00lLIZ3RIIPK022Xxtq8CGFlXAaZu8jltTrIUhvdvC05vnN8ks4ByU4CgmwncGkFAMrgNbq0tK3TWvsERydtuQAuvdVBAU4P1qoIbJ1IxCTrsVjw5weZAgBoBdmUNXgWpgUFP61JPzZloKOV5bXfp5d8Brj7J4npQ9d8NiHEhqFv0AmRCQp2ITJBwS5EJijYhcgEBbsQmTDUgpMGoFWk5YnSuBw2SvrAnT/9zq/s/yNnL81S25nZ49S2dXKa2u668+7keHuUF7BcDOS1XpAlVQRFICPprShIBlXB50SykAdFD+swe5AcM7iuKGerKIIea6H/aR9bgR+FcSkv8qNdpiViAGhH6WjElSKQgWv2OAfn0Z1diExQsAuRCQp2ITJBwS5EJijYhcgEBbsQmTBU6Q3gMk8rkBkaIhvNzc3ROWfOnKS28+dep7afH/0Jtb3wzI+S47fddieds/e2O6ht6/ad1BZpKHUTFDb09FpFyk8ZFJyMZraCIpbscW6CrLGm5lljkR9l4AcT2CJJMbJFhFmA0fnIuAWZmwvdtC1SNnVnFyITFOxCZIKCXYhMULALkQkKdiEyYei78YxoR3V0NF1r7jdu/w0657Y7bqK2K3N8p/75p56itp8e+XFy/O8f+yWdc+wfnqO2A3ccpLb9t/Nd/C1bt1Bbp0PqmQVqR7xXz3eY43npbeFew3fcm6oXHI8TtY2qSUJOE9b/W3ss2o0niTcFaeUFABXZdo+UBN3ZhcgEBbsQmaBgFyITFOxCZIKCXYhMULALkQnLaf/0EIA/AHDa3e8ajH0ewB8DODP4s8+6+/eXPp3TRIgiSMbwgs0JkiNI3ToA2DK9h9ruvY93n77ttn3J8R/+3d/SOa+8wpNuLv90kdqijrd3v+e91LZnT/raWiV/qOuKy2F1lLgSJOQ4k7YCacgsslETLKqvR+5nYcJIcLywJl+wVtF1O/Xx2iXFsI4ftfwjfwHg/sT4n7v7wcG/ZQS6EGIjWTLY3f0xALyMqxDinwSr+cz+aTM7amYPmdnWNfNICLEurDTYvwLgVgAHAcwC+CL7QzM7ZGZHzOzIhQsXVng6IcRqWVGwu/spd6+9X4H/qwDuCf72sLvPuPvM5s2bV+qnEGKVrCjYzWz3Vb9+DADP9hBCXBcsR3r7BoD7AGw3s+MAPgfgPjM7iH5q06sA/mR5pzMYkdgK464UrbRE1S6j1kRBfbQgk6tod6ht/4H3JMebir9mzs5+m9rOvXGC2l5c5B95Tr3+M2q7dX86E/CO30z7DgA37NxNba0Wb2lU9fha9aq0LFc7l/lY9hcAWNTXKIK0f7IV5rZ5NC+QjyP3nemAgd7I21AFNQO5CwNH3D+ZGP7aUvOEENcX+gadEJmgYBciExTsQmSCgl2ITFCwC5EJQy84WRA5oQxkhpJkQ3UCOaOJWhoFKU8sAwkAut10QcSb9+ylc/bu5bYnTs1SW1VxH8+cPs9tRM47duwonbNv323Uduut+6lt505e1HNyknyByng24kI3yL7r8vVod7gEyLLUooKTUfcnt6gAZ0SQ0Ucy2MKWXcQazdGdXYhMULALkQkKdiEyQcEuRCYo2IXIBAW7EJkwVOnNDCiJdMHGAQAkgwoW9AYLC/ytsH8ZOSbrRQcAk5NT/ExRKlQgRUZFD83TazV37jSd89M3gt53zzxBbdumeYGiXbvShS937d5L54yO8noH09M8M2/Hzl3UZiXp9RZk31VBP7qKZNEBSxScjB7qJn3P9Zofz8m5aKFP6M4uRDYo2IXIBAW7EJmgYBciExTsQmTCcBNh3GFkN5NsmvankZ16C3ZULcpmCHsJcRtLuJi/NEfnnDzJk11OnOC2C5t4cke75Ek+UxPjyfHxQDHY1OLnqmu+xq/PHqe2F199OTk+P/8onVPV/Lq277iR2u6++05q239bWhXYsYO3+ZravJ3aRsa4uuLga4xgp55237IgKYsmwqyu/ZMQ4tcABbsQmaBgFyITFOxCZIKCXYhMULALkQnLaf+0B8BfAtgFoAFw2N2/bGbbAHwTwF70W0B9wt3PxQcDYOlEjSaqC1elWxBFSQkkt6DvRhnULAskkpIk0Dzz1JN0zqVzZ6htenITtb02y+dNbebyT6c1lhxvqnl+vImg/l+by2GdFve/PZKWAMviMp3z5rnz1PbqK89T2/lzr1HbU0fSNe86HS6T7dlzC7XduPtd1Lb7xrTMBwA37uTzxifSCUU2xp/EVrC2XKuT3ioAf+budwD4AIA/NbM7ATwI4FF33w/g0cHvQojrlCWD3d1n3f2pwc9zAI4BuAnARwA8PPizhwF8dJ18FEKsAdf0md3M9gJ4H4DHAex091mg/4IAgH8lSQix4Sw72M1sAsC3AXzG3S9ew7xDZnbEzI5cOM/bEAsh1pdlBbuZtdEP9K+7+3cGw6fMbPfAvhtAshSKux929xl3n9m8hVciEUKsL0sGu5kZ+v3Yj7n7l64yPQLggcHPDwD43tq7J4RYK5aT9fZBAH8E4Fkze3ow9lkAXwDwLTP7FIBfAfj4Ugdyb9CrFpM21loJAKxKu1kQGQ9AWGXOwedF2XeXSHbbwnz6mgDg9gN3UNv7D85Q25NHn6O2Hz/xE2o7fyktbdVVl865YTfPKLv33nuprTXK5B/g1V/+Mjn+4x//iM65687fpLapzfxd4amTvIbeqVOnkuO9Hl+PXTt5vbt9+/ZSWx3UjLs8xz/Csrpx7VZavgSABRIvUX3CJYPd3X8ILt59aKn5QojrA32DTohMULALkQkKdiEyQcEuRCYo2IXIhOEWnASXBqK2NcwUtU8qg5exJpDsojY9Y5vSWV7/7D4uSljwetoq+fIfOHgPtd31W79NbQVZqyK4sO3T09R2yy23UltrlGcP7t3/nuT4je+6nc4ZG0tn7AHA5kB6i+Sms2ffTI5HMtkNO3g7qclJ7kfZ4o9nEaRh1k1auu0Fz+/GWBxxdGcXIhMU7EJkgoJdiExQsAuRCQp2ITJBwS5EJgxVemuaBvPz6cKH5UXeL63l6aKHXeeZSxV4j7Kq4rJL1NusIcUoo7ZyVc1lPiuCXl4N9+PGd+3jJ2xIDzAyDgCFcz9e+dVZapvv8nVk1za5mfvO1hcAzl3g69gKJK/xqb1pg/P1OHuBF+c8cYqvR1Q0daTgMiVpIQib4Ne1cG4hOR49t3VnFyITFOxCZIKCXYhMULALkQkKdiEyYai78Zfm5vDYY3+TtF2ojtJ546TNUL14hc7pBTu7vZrv4tc1r4XHEi56FZ9TB7vqUeLEwiKfV9d819eIctFu8Xpx27Zsp7aJiS3U1qv5vYJtTPfrl167rQiUCzNuK8gueKvFd8eL4HjRuSJVxoKiiGbpx9o2Bde1kG4P1u3yeoi6swuRCQp2ITJBwS5EJijYhcgEBbsQmaBgFyITlpTezGwPgL8EsAv9rkqH3f3LZvZ5AH8M4C0N4LPu/v34WAVG22kZrVemxwGgbNJujoxM0TmN8UurA1muCOp+sTp5TRMku4RSTZB040E7rKCenJMED7O0JAcAgTqIAlymbJX8uhcX0xJQlPwT1f+rKq5r9XpBOy9SjLAo+HqsVAKM6JLWYQDgxP8F7iJGynRtvV6Py9HL0dkrAH/m7k+Z2SSAJ83sBwPbn7v7f13GMYQQG8xyer3NApgd/DxnZscA3LTejgkh1pZrek9iZnsBvA/A44OhT5vZUTN7yMy2rrVzQoi1Y9nBbmYTAL4N4DPufhHAVwDcCuAg+nf+L5J5h8zsiJkduUIKVwgh1p9lBbuZtdEP9K+7+3cAwN1PuXvt7g2ArwJIdjVw98PuPuPuM5uCJgBCiPVlyWC3/tbk1wAcc/cvXTV+dcf6jwF4bu3dE0KsFcvZjf8ggD8C8KyZPT0Y+yyAT5rZQfQ7zrwK4E+WPJI7miotyVy6fI5O21SmM7aCMmKog9exXsWlmm4gXVRVuu4XCn48DyS0Xo/LWk3FH5oqyHqrK5JBFUiATZCuFSlN7jzDanEh/ZEtrPEX+OFBfTcP6g2C2KJ2Y2FmXnCmyP+yGz0P0s+fK1sn6Zzde9K2HoJafdQywN1/iPQ1hpq6EOL6Qt+gEyITFOxCZIKCXYhMULALkQkKdiEyYagFJ7u9ebz2WlqOf3GWy1DjpD9Oy7nMUIciSZtaonZNTZOWTzojgaxF5gCxBBjUvQQCaYhleZlF8lqwVoGtVfKnD2vltLgYyI111E4qyEQLMhz73wdLnCuS8pz7ERaV5KZQEqu3pTM+b7r7Tjpn83h6vGwHhTSpRQjxa4WCXYhMULALkQkKdiEyQcEuRCYo2IXIhKFKb3BD4aNJUzuSNOq0fMJ6rwFxlhfKoOBkIOeVZboCYBlIP0FNSRQezAsKREbSm7PqkcFyMJkMAFrkmgGgCta4R9axKbns6UUkh1ETPJIOyQNgYdZbUCS0xW1Vm9umbtxFbTfffSA53jLen+/8z59NjjdBJqXu7EJkgoJdiExQsAuRCQp2ITJBwS5EJijYhciEIUtvjooUnKy7vKZ8t0hLQ1XFZQaQ/nAAUARX3QRaWUH0n27QLK0JpLwoy6tp+Otwp80lGaYaRX5EGWWRgtkERRRBrs0CDS2S+SK50QIpFSxTMZINg4y43jjPKtt2+63UdtPePdS2cOpUcvwXLxyhc8Z6l5LjdVfSmxDZo2AXIhMU7EJkgoJdiExQsAuRCUvuxpvZKIDHAIwM/v5/ufvnzGwbgG8C2It++6dPuDvv4QT0i3SRDdeyHdQY66R3R9tB4gHqqG8Rt5XMQfAaY258N96CHlWjHX6urVPbqK0Iqp3VpIZe3UQJPvx4IyN897mqgmQS4mOUdFMHqsbcxTlqi5KNmlY68eaCBck/2/nav/tAOmkFALZu3U5tr7/wErW98dLLaT+Cx2yUxEsRPN+Wc2dfBPAv3P296Ldnvt/MPgDgQQCPuvt+AI8OfhdCXKcsGeze5y1Rrz345wA+AuDhwfjDAD66Hg4KIdaG5fZnLwcdXE8D+IG7Pw5gp7vPAsDg/xvWzUshxKpZVrC7e+3uBwHcDOAeM7truScws0NmdsTMjiwsRsXQhRDryTXtxrv7eQB/C+B+AKfMbDcADP4/TeYcdvcZd58ZHeFVSoQQ68uSwW5mO8xsy+DnMQC/C+AFAI8AeGDwZw8A+N46+SiEWAOWkwizG8DDZlai/+LwLXf/32b2IwDfMrNPAfgVgI8veSQHyorITd0gKQTp5BkH/1hQBi2eWoHNgoSLhkghUWulyNZU3P8rrYv8mEWQMIK0DhW1NGp6XLta6EVSJL9XGKuhF/VICurM1cFjjWCNa5JcM3UDl9d2HNhHbQX4Ov7sicepbeH0G9RWVun1b5FWXgDQkIQiDxZxyWB396MA3pcYfxPAh5aaL4S4PtA36ITIBAW7EJmgYBciExTsQmSCgl2ITLCohdKan8zsDIBfDn7dDoDrEcNDfrwd+fF2/qn58W5335EyDDXY33ZisyPuPrMhJ5cf8iNDP/Q2XohMULALkQkbGeyHN/DcVyM/3o78eDu/Nn5s2Gd2IcRw0dt4ITJhQ4LdzO43s5+Z2UtmtmG168zsVTN71syeNjPea2ftz/uQmZ02s+euGttmZj8wsxcH/2/dID8+b2avD9bkaTP78BD82GNmf2Nmx8zseTP714Pxoa5J4MdQ18TMRs3sJ2b2zMCP/zQYX916uPtQ/6FfX/YXAG4B0AHwDIA7h+3HwJdXAWzfgPP+DoD3A3juqrH/AuDBwc8PAvjPG+TH5wH8myGvx24A7x/8PAng5wDuHPaaBH4MdU3QTwSeGPzcBvA4gA+sdj024s5+D4CX3P1ld+8C+Cv0i1dmg7s/BuDsO4aHXsCT+DF03H3W3Z8a/DwH4BiAmzDkNQn8GCreZ82LvG5EsN8E4LWrfj+ODVjQAQ7gr83sSTM7tEE+vMX1VMDz02Z2dPA2f90/TlyNme1Fv37ChhY1fYcfwJDXZD2KvG5EsKdqlWyUJPBBd38/gN8H8Kdm9jsb5Mf1xFcA3Ip+j4BZAF8c1onNbALAtwF8xt15qZ7h+zH0NfFVFHllbESwHwdwdbPqmwGc2AA/4O4nBv+fBvBd9D9ibBTLKuC53rj7qcETrQHwVQxpTcysjX6Afd3dvzMYHvqapPzYqDUZnPs8rrHIK2Mjgv0JAPvNbJ+ZdQD8IfrFK4eKmY2b2eRbPwP4PQDPxbPWleuigOdbT6YBH8MQ1sT6hf++BuCYu3/pKtNQ14T5Mew1Wbcir8PaYXzHbuOH0d/p/AWAf7dBPtyCvhLwDIDnh+kHgG+g/3awh/47nU8BmEa/jdaLg/+3bZAf/wPAswCODp5cu4fgx73of5Q7CuDpwb8PD3tNAj+GuiYA3gPgp4PzPQfgPw7GV7Ue+gadEJmgb9AJkQkKdiEyQcEuRCYo2IXIBAW7EJmgYBciExTsQmSCgl2ITPh/B3SiO3il43EAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGdCAYAAAC7EMwUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAs8klEQVR4nO3df3CV5Z338c99fiaBQwQhv0rEVMCqIDsVq7BWkS4Zs7OMlu4ztM70wdldp1ZwhqEdd9E/zOw8S3zckbEzrOxut8PirCz+UXWd0ap0kdAupQtWFxZdFx9jTSUxipCEkJyTc+7r+cOSbeSH1xcSryS8XzNnRs75euW67+u+z/fcOed8EjnnnAAACCARegIAgIsXTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEEwq9AQ+LY5jHTlyRLlcTlEUhZ4OAMDIOafe3l7V1dUpkTj3tc6Ya0JHjhxRfX196GkAAC5Qe3u7Zs6cec6aUWtCjz/+uP76r/9aHR0duuaaa/TYY4/pq1/96mf+f7lcTpL0fx/5PyovL/P6WZMune09r/JkxrtWknKTJ3nXnsiXTGP39X7sXZtI2NKVYvnXpz7jlcqnlads+zCbNBxmkTFFynKxbBy65AzraRzbxbZjxbKeScv+lpRIJL1rR/O3E5Fx7aNE7F0bG/e3lWW/ZLNZ09jphOF8c7axo7T/2vd//JZ37cmT/fpf//ueoefzcxmVJvTUU09p7dq1evzxx/X7v//7+ru/+zs1NTXpjTfe0GWXXXbO//fUYpaXl6m8vNzr51VU+DcKaxOaNGmyd22csh3orpT3rk0YTjhptJuQ7UAvszwpGpvtqDYhyxOXcWzrk6JpPVM0oU8bz00okzDUW5tQxn/tE/kK09iS334ZlQ8mbNy4UX/6p3+qP/uzP9NVV12lxx57TPX19dq8efNo/DgAwDg14k2oUCjo1VdfVWNj47D7GxsbtWfPntPq8/m8enp6ht0AABeHEW9CH330kUqlkqqrq4fdX11drc7OztPqW1paVFlZOXTjQwkAcPEYte8Jffp3gc65M/5+cP369eru7h66tbe3j9aUAABjzIh/MGH69OlKJpOnXfV0dXWddnUkffImnfWNOgDAxDDiV0KZTEbXXXedduzYMez+HTt2aPHixSP94wAA49iofER73bp1+va3v62FCxdq0aJF+vu//3u99957uueee0bjxwEAxqlRaUIrV67U0aNH9Zd/+Zfq6OjQvHnz9MILL2jWrFmj8eMAAOPUqCUm3Hvvvbr33nvP+/+PXZli55eYUExO9R53MO3/xVZJKiX9v6yaSBsTE/pPeNe6Up9p7HTavzZvSQaQNGj84uxAyv+3vsbvwaowOOBdm0j6fzFPkvpP9nvXJo1jpy0LJKlQGPSuTST8ayXJxQX/sZO23+BnMv5fDi8WjV/2NhyGUWRbH+sXfqdO9X8OypZ/dorA77KkpcTGL3tHWf/jsHTC/7mwVPT/8i4p2gCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYEYttudCJVxRCVf0qi0ZYmdKkS1yphT5x8KU5Wy789JZp/9pi7NJdB8zjT35pH8kUGEgbxq7NNkvTumUuPIS79pcxj/uQ5L3MSJJiYTtNVch7x9nU4ptx1VZmS2fKDKksThnjG45w9/5GolaybbPi4P+aylJpl1um7YyKVusUnl5uWEqxvWRfwxTLFv0UWy5DrGsvaGWKyEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMGM2O66oySqqwqs2oYz3uHHSlvGVd0nv2qShVpImpfzzw6ZU2LKs4l/t864tfOSfMydJtfOuNNVHH/pnzeWjSaaxJyf9M6p6+/tMY5cZMr6yzrY+iUsn2+oL/vlhSeNLy3yF//qkBm25Z8lBw/pM8s/qk6Rsd7d3bar+atPYJy+pNNXHRf+MyVLCFmRXFvs/v0XG3MBEyX/sZMn/wLLUciUEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAhmzMb2SNFvbx6Vrug9asL5x59IUqnoH61jzUuJDFEvA1HONHY69o+/iaZXmcY+2WuLVxls+2/v2mJUbho79k+cUV+6ZBpbsX/EU2bQcJxIKrTbIp406D+XSLZoqoHJ/jsxOWAbO2U4VPI1tuij/s6PvWtz0QzT2FHldFN9yXCsDCZs0TppQ8xP7Gzrk0z4nxMpw7wttVwJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIIZs9lxpVJJpZJfrlFc8s9Lcta+G/tnIBUMGXaSVEr5z7uy15Z552ZUe9eWV80yjV103aZ6ZfwPMze9xjR0f9qQZ9V51DS2kv75bn1ltsw7V32pqT4d+x+3A7EtI29Szj9nsNB70jR2Pumfe5Yqz5jGTvYN+I99qS0fMUrbMthKzj87MOe/SyRJSUMWYDGy5e9FCUu9Je/Qv5YrIQBAMCPehJqbmxVF0bBbTY3t1S0A4OIwKr+Ou+aaa/TTn/506N9Jw681AAAXj1FpQqlUiqsfAMBnGpX3hA4fPqy6ujo1NDTom9/8pt55552z1ubzefX09Ay7AQAuDiPehG644QY98cQTeumll/TDH/5QnZ2dWrx4sY4ePfMnk1paWlRZWTl0q6+vH+kpAQDGqBFvQk1NTfrGN76h+fPn6w/+4A/0/PPPS5K2bt16xvr169eru7t76Nbe3j7SUwIAjFGj/j2hSZMmaf78+Tp8+PAZH89ms8pm/T9jDwCYOEb9e0L5fF5vvvmmamtrR/tHAQDGmRFvQt///vfV2tqqtrY2/fKXv9Qf//Efq6enR6tWrRrpHwUAGOdG/Ndxv/nNb/Stb31LH330kWbMmKEbb7xRe/fu1axZtmgYRb+9eSgZYkpiQwyPJFOb9o0ZOiUd+ddn3z7zrzPPZuDVn3nXFq/Pm8ZWwvbrU+cqvGszxniiAfnHyEzuOG4aO2n4NXE8ybb2kbNF1JQG/fdL7tJLTGOn3zfEGZ04YRu7Oudf3G6LVUpNmexdO/DhAdPYyQr/sSUpnnu1/1wytrVPRP6xPZmiLRMoVfR/PnSGJCNL7Yg3oe3bt4/0kACACYrsOABAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMKP+pxzOVzqZVjqZ9qpNKOk9blwyhBpJihP+2UopY0+ffKzPu7b4myOmsaek/XPPeo90msYulFWa6p3KvGujzi7T2JPqJnnXFqbYcgOdBrxry0/Y8vcyx3tN9QPyz44rftRhm8tAwX/snm7T2NmPp3jXDvbbcs9c+Re9a4+32f5OWabclh2Xq/XPxkz6nw6SJJfwzyXMy3aMFyP/FlCI/Z87LbVcCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAghmzsT3ZTJmyGb98C+cZ7yNJim3xKor9o0QShlpJOpH2fw1wYuEC09hTUtd5157stUXIDCZt0SBR1nCYFfwjSiQpXe6fgdJX8o+nkaRE5L+egyXb67l0wj9qSpL6M/7j20aW+kv++/zkCduxMsmwPgOGbZSk7GT/aJ1puammsUspw3OKpBPlhvq07fwpH/TfL0XDMSuZnt406PznbanlSggAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQzJjNjquoKFNFRblXbbEs4z3uYKnfNpHIP1erGMe2oTN+2ydJ5dWVprF7+k56137YfcI0dpS0pZMVTg5612Yi2yFZOO6/nUVnW59sxj8PrCe25YGVpY2nXsK/Po5t+Xv5k4Y8xdi29t39Re/agjHWsSLlv565mfWmsZO2Q0VK+K9/ZH3tbyiPZDsOZch4iw3njzPUciUEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACGbMZsel0gml0n49sjxX4T3uiZO2nLRUyr9Plwz5UZKUigz5Sq5gGjuWf32U9M/3kqRUwpYfZqkeLPhnwUlSedo/3y1lyF+TpHTKf+Zp4z4pFW37vDDgH6xWlC34LF0eedfGJf9aScp4nsOSlI5tr4nTRf99XnC2eUfGfVhWMpz7JdvayzD12FIs21VIZBrbv5YrIQBAMOYmtHv3bi1fvlx1dXWKokjPPvvssMedc2publZdXZ3Ky8u1ZMkSHTp0aKTmCwCYQMxNqK+vTwsWLNCmTZvO+PgjjzyijRs3atOmTdq3b59qamq0bNky9fb2XvBkAQATi/k9oaamJjU1NZ3xMeecHnvsMT344INasWKFJGnr1q2qrq7Wtm3b9J3vfOfCZgsAmFBG9D2htrY2dXZ2qrGxcei+bDarW265RXv27Dnj/5PP59XT0zPsBgC4OIxoE+rs7JQkVVdXD7u/urp66LFPa2lpUWVl5dCtvt72FxABAOPXqHw6LoqGfzzPOXfafaesX79e3d3dQ7f29vbRmBIAYAwa0e8J1dTUSPrkiqi2tnbo/q6urtOujk7JZrPKZrMjOQ0AwDgxoldCDQ0Nqqmp0Y4dO4buKxQKam1t1eLFi0fyRwEAJgDzldCJEyf09ttvD/27ra1Nr7/+uqZNm6bLLrtMa9eu1YYNGzRnzhzNmTNHGzZsUEVFhe68884RnTgAYPwzN6H9+/fr1ltvHfr3unXrJEmrVq3SP/7jP+r+++9Xf3+/7r33Xh07dkw33HCDXn75ZeVyOdPPyaSTymT8YjkyZf6bETvbr/7K02XetcXIFsfR2+MfrVNK2mJhyiqneddWT7KtjZwt0iSSf6SJLRpEShou5pOR7cI/kxo7qVau5L/PrbE9paT/+jjj2icM9RlTwJMkw3rmE7Zz03ioKBX7b2dJJdtczvJ++hlrY9sxmzScbsmk4Vwz1JrPsiVLlsi5sx+0URSpublZzc3N1qEBABcZsuMAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMGMnXCsT0kmSkol/DKWkpF/BltZMm2ax/Guj71rPz7RYRr7w47feNdOzV1qGnve1fO9a9Nl5aax84YsOEkaLPnndiVi29iW7LhEwpZLl0j4j23J95J0zuirMylF/tlkCWebi0z73LoPDeebeR/675OU8bhKRLYcO8t2ppO2/Mq0ZbfYNlMJQyZlyXD+FA21XAkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIIZs7E9URR5R6GkDNETsSGKRZJ6e3u9az/8sNM09vFj73vX/veBfzeN/V//8Qvv2tmzrzaNffnsq0z1U6dX+xcbo3VKsX8kkJxt7S0zSSZsMS/W+JtUyn98a4RQHPvH38Qlvyit35mNd2XSsI2SLaHGGpNkrTeNXfLf35JUNMzFOuso8j9/BgqjU8uVEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACCYMZsdZ2HJnCorKzON/aUrv+RdO/uqL5jGPtnrnzV36Fe/Mo392v693rU/2/1r09hvvvGfpvq5V/2ed+2cK225dJdMvcS7NpOxHe5JQyahNQtOsuWH2ca3JYgNxv55cHFx0DS2RVwy5gY6//rYuE+sqzmaIkt2XGTL30sk/M+JYuw/j5Jhd3MlBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIZszG9sRxrDj2izZJJPyjKlzCFpeSSPgHeCSTadPYl1xa711705Iq09izZzd41/68dZdp7La29031fa/lvWt7eo6bxp5/7QLv2vp6//0tSamk/+lRKvpH30hSyfPYPiWOi961zhhRI0MsTBQZ428M+TdRwvaaODK8hjYkzkiSEsa5OMM+tK69ZX2c8boiNkQfWWKSiO0BAIwLNCEAQDDmJrR7924tX75cdXV1iqJIzz777LDH77rrLkVRNOx24403jtR8AQATiLkJ9fX1acGCBdq0adNZa2677TZ1dHQM3V544YULmiQAYGIyfzChqalJTU1N56zJZrOqqak570kBAC4Oo/Ke0K5du1RVVaW5c+fq7rvvVldX11lr8/m8enp6ht0AABeHEW9CTU1NevLJJ7Vz5049+uij2rdvn5YuXap8/swf021paVFlZeXQzfoxWgDA+DXi3xNauXLl0H/PmzdPCxcu1KxZs/T8889rxYoVp9WvX79e69atG/p3T08PjQgALhKj/mXV2tpazZo1S4cPHz7j49lsVtlsdrSnAQAYg0b9e0JHjx5Ve3u7amtrR/tHAQDGGfOV0IkTJ/T2228P/butrU2vv/66pk2bpmnTpqm5uVnf+MY3VFtbq3fffVcPPPCApk+frq9//esjOnEAwPhnbkL79+/XrbfeOvTvU+/nrFq1Sps3b9bBgwf1xBNP6Pjx46qtrdWtt96qp556SrlczvRzokRSkWcmXCLy34xEyj/HTJLSSUMmVOSfYSdJkfwzpBLpjGnsOXOv9a6Ni7YL4o6OH5vqj310xLv2cL7bNPYH77/lXXvFnC+Zxr7qGv99WFVtu9JPpWy/gi4O+q//YNE/Z06SSs4/985Zj3FD9qKZ8z9/Io3iPCQ5y/iGrEtJsuxCZw3JM4T7JRL+2ZiWWnMTWrJkyTnD+l566SXrkACAixTZcQCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYEb9Tzmcr0QUKeGZa5Q05B8lI1u2UsaQ2xQbM6FkyHlyxtcLhcKgd+3M+stNY19+ua1+3wcd3rXFom19Puw67l9ryLCTpDffPOBd29Aw2zT2FVfMMdVXV3/BuzaXqzSNrcg/52ug4J8zJ0mlgv96pjO2fMRzxYd9WizbcWUY+pP6yD/Hzs5/MpGzZeRZqpOG6oSpFgCAQGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYMZsbE8yipX0jMLwrZMkFYu2iUT+8TfWrA8nS9SHLY7DMpeysjLT0LncFFN9lDDM3RDBJNmiWyJnW/veY13eta991Gka+9B/7DPVT7t0qndtTU29aeya2su9a8vKbJFAl15a6107o7rGNHaU9D9WYmeLGyrGxnrnfy6XYmPEj+X0iW3XFa7kPxdnmbehlishAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDBjNjsucrEizzwmQ4SUnCVnTlJkyJyKjNlxppw0Y6ZaOpPxru0/0Wsau7Ozw1R/5Ih/fXeF/7wlKZ1MetdOmTzJNPYkQ6ZeRco271LJlk32fsdvvGsPv/uOaez+/n/1ri2W/Pe3JE2fUeddO3/+1aax58z2z8ibMaPKNPaUyumm+my5f56iky2r0ZLDVrQdVlLkfx1SMITYJUy1AAAEQhMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEM2ZjexQVP7l5iGP/uBxXzJqmUfSMDpKk2NjSo6R/1IszRHdIUlL+9f/xq1dNY5849qGp/tJchXdte4dt7CmV/nEpmVS5aey42O8/j8m2WKVk2hZ/k0n578N01hZPlEz0edcePXbcNPa7bYe8a48fazeN/av9ae/aTMYWlVNf/0VTfV3tZd61tXX+cUOSVFftP/akyVNNY0fl/k9aUcL/uTNK+D13S1wJAQACMjWhlpYWXX/99crlcqqqqtIdd9yht956a1iNc07Nzc2qq6tTeXm5lixZokOH/F8NAQAuHqYm1NraqtWrV2vv3r3asWOHisWiGhsb1df3P5fzjzzyiDZu3KhNmzZp3759qqmp0bJly9Tba0tqBgBMfKb3hF588cVh/96yZYuqqqr06quv6uabb5ZzTo899pgefPBBrVixQpK0detWVVdXa9u2bfrOd74zcjMHAIx7F/SeUHd3tyRp2rRpkqS2tjZ1dnaqsbFxqCabzeqWW27Rnj17zjhGPp9XT0/PsBsA4OJw3k3IOad169bppptu0rx58yRJnZ2dkqTq6uphtdXV1UOPfVpLS4sqKyuHbvX1tk+OAADGr/NuQmvWrNGBAwf0z//8z6c9Fn3qr4A6506775T169eru7t76NbebvuYJgBg/Dqv7wndd999eu6557R7927NnDlz6P6amhpJn1wR1dbWDt3f1dV12tXRKdlsVtms7bs7AICJwXQl5JzTmjVr9PTTT2vnzp1qaGgY9nhDQ4Nqamq0Y8eOofsKhYJaW1u1ePHikZkxAGDCMF0JrV69Wtu2bdO//Mu/KJfLDb3PU1lZqfLyckVRpLVr12rDhg2aM2eO5syZow0bNqiiokJ33nnnqGwAAGD8MjWhzZs3S5KWLFky7P4tW7borrvukiTdf//96u/v17333qtjx47phhtu0Msvv6xcLjciEwYATBymJuTcZ2e0RVGk5uZmNTc3n++cJEmDxYIGi37TKxQGvceNPMc8JeGZXyfJkNb2CSf/sZO2aDKdOOH/5eCB/rxp7CvnXmWq//LvLfSuffXAf5rG3rvv371rj5/wz0iTpFKx4F1bVVtnGvumm24y1afK/N83fffXvzaNvXfvL7xr5119jWnsKZWV3rUfnOUTtGet/+AD79rBQf+1lKSa6trPLvodDQ2Xe9eWSrZnir7ebu9aJ/8cTUlKp/xzBgcMz7N5Qy3ZcQCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYM7rTzl8HpxzXjFBkjGqwpZqoSjhn5eTNLb02BAJJGNsT3lFhXftV5d8zTR2ZHztkkr6H2Zzf+8rprHnXXe9d23CuPYJw06ffumlprG/+MUrTPWpsox37eVzrjWNXXfZld615eXlprErDbE9vuf7KR9/fNS71hqVUzWjxlSfy/lvZzJljA6L/c+3UmyL4Bo0PL/Fkf/6WGq5EgIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEM2az4wYG+pXwzDVK9vR6j5tySdM8Cq7gXVtUyTR2seifZ1Uq2caOY/+xjZFdKpYMmXeSooT/a51CbNvOussa/ItjWwBfZKhPONvrubb3PjbV9xf819OyvyUpV+m/Dy3HlSQd6/Y/VlLGTLVJUy73L3a2tf+4u99Uf+QD//WMY9sJl0345wZm/EslSdFk/30+cGzAu7a/3z/DjishAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwYza259/+7WfKZv0yKLqLB7zHnZSqMM2jlD/pXTtojDQZLPlHApVKg6axnSGLZ7BoG7tkjNZJGuJYBvK2sUsl/+2MjJFN6VTWu3baJdNNY0+efImpfrDk/3rRmAqjKPKPtLHUSlLCECEURbbXxAlDnE0qZcuzSRjnYpm7NSYrMjytRJHt/Ikq/OedGPjQuzaf94894koIABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEMyYzY4rS5crm/bL7hpM+ufBJWPbJmezU7xr48g2dsmQNZdI2DK7nPwDquK4aBrbmvHlnH+eVexsOXaR/PeLc7Z9GEX+WXPGOD0l5J8bKEmppP8a5fN509iRId/NsLslScWiIcNw0HYcJpOG3LOELTdwNDPyrAoner1rnXEfDhh2SzZ51Lu2UPA/vrkSAgAEY2pCLS0tuv7665XL5VRVVaU77rhDb7311rCau+66S1EUDbvdeOONIzppAMDEYGpCra2tWr16tfbu3asdO3aoWCyqsbFRfX19w+puu+02dXR0DN1eeOGFEZ00AGBiML2J8eKLLw7795YtW1RVVaVXX31VN99889D92WxWNTU1IzNDAMCEdUHvCXV3d0uSpk2bNuz+Xbt2qaqqSnPnztXdd9+trq6us46Rz+fV09Mz7AYAuDicdxNyzmndunW66aabNG/evKH7m5qa9OSTT2rnzp169NFHtW/fPi1duvSsn9hpaWlRZWXl0K2+vv58pwQAGGfO+yPaa9as0YEDB/Tzn/982P0rV64c+u958+Zp4cKFmjVrlp5//nmtWLHitHHWr1+vdevWDf27p6eHRgQAF4nzakL33XefnnvuOe3evVszZ848Z21tba1mzZqlw4cPn/HxbDarbNbv+0AAgInF1IScc7rvvvv0zDPPaNeuXWpoaPjM/+fo0aNqb29XbW3teU8SADAxmd4TWr16tf7pn/5J27ZtUy6XU2dnpzo7O9Xf3y9JOnHihL7//e/rF7/4hd59913t2rVLy5cv1/Tp0/X1r399VDYAADB+ma6ENm/eLElasmTJsPu3bNmiu+66S8lkUgcPHtQTTzyh48ePq7a2Vrfeequeeuop5XK5EZs0AGBiMP867lzKy8v10ksvXdCETomLBcWeuUYn+o55j1uRtL3/ZIkbKxk/bDhY9M95KgyeNI1dLA74FydseVPOmO82OOifIxUXbW9TFkv+2WSloi3gzZKRF3/GufFp1qgx5/zz4PID/aaxSyVLtp9tO13sX+9kDOAz1FuyFCV7dpyl2roPkwX/882av3dyqv/FQW29f+2g4TmC7DgAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDDn/feERtv777+hdNpveoc7/GNhJmUypnmknH8MRskU3iFJae/KYskWxxHH/rEZmazttYhlbMkWT1SyDS0Z4lWSSdt2RpF/vEoiYVx7Y30q6X+qxnFsGjufN8QqlWxjR4btTES2p6Mo8j9/YkN8kCQ5Z9tOSxKP9VliUIbzZ1qFaewvzL/au7Zykv+4hQH/Y4orIQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwYzY7LnJlSji/6aUtuU0l/7wpSXKGUKgoMvb0pH8+VcKQYSdJyWTSv9aY2eVKpnLvdZQkF/nPW5IpO87F1on7l1rz2lKG9ZGkouHYGjQeK3HS/5xwCWsGm6HWmr9nOBAj2eZtPZddyr++mLaNPaWuxrt25vy5prFTUda79vh/H/SuHSz4h0ByJQQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACGbMxvaUinkVI79YjlKh33vcQsIWr1IsFvyLY9vuTBjKY2NWTsKQl1IwxtnE1liYkv8+j2Pb66JM2j92xJqqZNnOyBg5Y56LIQZFhv0tSZHhWLHGDVlilSJDjJUkKfbfJxnjDh+MbTE/g5My3rXTrrzCNPYXLq/3rh344APT2P/vv/Z715YPnvCuLQ76P6dwJQQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIZsxmxyn525tPado/nyqRsWVCpdOGPl0y9nTnX5/03Rm/ZUkyc54ZfUNjO1tOWlnGf+5Tp0wzjZ0wbGmpZMu8K8X+9cmkbZ9ks/5ZY5JULPoft5Fp9aU49s9sKxlzBnt7er1rjfGIilNp79ruyJZLl5puOw5nzZ3rXTt16nTT2O//19vetR+9/Y5p7JThGC8zPM8OFg3Pyd6VAACMMFMT2rx5s6699lpNmTJFU6ZM0aJFi/STn/xk6HHnnJqbm1VXV6fy8nItWbJEhw4dGvFJAwAmBlMTmjlzph5++GHt379f+/fv19KlS3X77bcPNZpHHnlEGzdu1KZNm7Rv3z7V1NRo2bJl6u31vyQHAFw8TE1o+fLl+sM//EPNnTtXc+fO1V/91V9p8uTJ2rt3r5xzeuyxx/Tggw9qxYoVmjdvnrZu3aqTJ09q27ZtozV/AMA4dt7vCZVKJW3fvl19fX1atGiR2tra1NnZqcbGxqGabDarW265RXv27DnrOPl8Xj09PcNuAICLg7kJHTx4UJMnT1Y2m9U999yjZ555RldffbU6OzslSdXV1cPqq6urhx47k5aWFlVWVg7d6uv9/4ogAGB8MzehK6+8Uq+//rr27t2r7373u1q1apXeeOONocejT/05X+fcaff9rvXr16u7u3vo1t7ebp0SAGCcMn9PKJPJaPbs2ZKkhQsXat++ffrBD36gP//zP5ckdXZ2qra2dqi+q6vrtKuj35XNZpXNZq3TAABMABf8PSHnnPL5vBoaGlRTU6MdO3YMPVYoFNTa2qrFixdf6I8BAExApiuhBx54QE1NTaqvr1dvb6+2b9+uXbt26cUXX1QURVq7dq02bNigOXPmaM6cOdqwYYMqKip05513jtb8AQDjmKkJffDBB/r2t7+tjo4OVVZW6tprr9WLL76oZcuWSZLuv/9+9ff3695779WxY8d0ww036OWXX1YulzNPLFFMKhl5xr0U/CM5YuVN83Aa9K5Nyj9GRJJShvpzva92JrEhjiOKbFFG1vq46L8PT6Zsn46MEpY4I1sujHOG42rQNvbAoDWGyf+XFpHvefM/g/uzLb1KhvNHxuOqlPTfzilVthieGXMbTPUJ+R8rb+37pWnsga6PvGuTRdtxmEr6H1ex818fS62pCf3oRz865+NRFKm5uVnNzc2WYQEAFymy4wAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMGYU7RHm/tt3MPgoH/sTLHkH1UR+Q/7yXwMUS/O3NP981LssT2GfTLasT2GCI9k0bhACctcbJEmssT2ONvYln0iGWN7rNk6oxjbUzTFyBhjeyynm+H5RJIGBwqm+oRhfYrGuVj2oTPG9kSG43DQcD6cmrPzGH/MNaHe3l5J0jM/3Rt4JgCAC9Hb26vKyspz1kTOp1V9juI41pEjR5TL5Ya9+u/p6VF9fb3a29s1ZcqUgDMcXWznxHExbKPEdk40I7Gdzjn19vaqrq5OicS5rxLH3JVQIpHQzJkzz/r4lClTJvQBcArbOXFcDNsosZ0TzYVu52ddAZ3CBxMAAMHQhAAAwYybJpTNZvXQQw8pm82GnsqoYjsnjothGyW2c6L5vLdzzH0wAQBw8Rg3V0IAgImHJgQACIYmBAAIhiYEAAhm3DShxx9/XA0NDSorK9N1112nn/3sZ6GnNKKam5sVRdGwW01NTehpXZDdu3dr+fLlqqurUxRFevbZZ4c97pxTc3Oz6urqVF5eriVLlujQoUNhJnsBPms777rrrtPW9sYbbwwz2fPU0tKi66+/XrlcTlVVVbrjjjv01ltvDauZCOvps50TYT03b96sa6+9dugLqYsWLdJPfvKTocc/z7UcF03oqaee0tq1a/Xggw/qtdde01e/+lU1NTXpvffeCz21EXXNNdeoo6Nj6Hbw4MHQU7ogfX19WrBggTZt2nTGxx955BFt3LhRmzZt0r59+1RTU6Nly5YN5QeOF5+1nZJ02223DVvbF1544XOc4YVrbW3V6tWrtXfvXu3YsUPFYlGNjY3q6+sbqpkI6+mzndL4X8+ZM2fq4Ycf1v79+7V//34tXbpUt99++1Cj+VzX0o0DX/nKV9w999wz7L4vfelL7i/+4i8CzWjkPfTQQ27BggWhpzFqJLlnnnlm6N9xHLuamhr38MMPD903MDDgKisr3d/+7d8GmOHI+PR2OufcqlWr3O233x5kPqOlq6vLSXKtra3OuYm7np/eTucm5no659zUqVPdP/zDP3zuaznmr4QKhYJeffVVNTY2Dru/sbFRe/bsCTSr0XH48GHV1dWpoaFB3/zmN/XOO++EntKoaWtrU2dn57B1zWazuuWWWybcukrSrl27VFVVpblz5+ruu+9WV1dX6CldkO7ubknStGnTJE3c9fz0dp4ykdazVCpp+/bt6uvr06JFiz73tRzzTeijjz5SqVRSdXX1sPurq6vV2dkZaFYj74YbbtATTzyhl156ST/84Q/V2dmpxYsX6+jRo6GnNipOrd1EX1dJampq0pNPPqmdO3fq0Ucf1b59+7R06VLl8/nQUzsvzjmtW7dON910k+bNmydpYq7nmbZTmjjrefDgQU2ePFnZbFb33HOPnnnmGV199dWf+1qOuRTts/n0H3Vzzpn/0NtY1tTUNPTf8+fP16JFi3TFFVdo69atWrduXcCZja6Jvq6StHLlyqH/njdvnhYuXKhZs2bp+eef14oVKwLO7PysWbNGBw4c0M9//vPTHptI63m27Zwo63nllVfq9ddf1/Hjx/XjH/9Yq1atUmtr69Djn9dajvkroenTpyuZTJ7Wgbu6uk7r1BPJpEmTNH/+fB0+fDj0VEbFqU/+XWzrKkm1tbWaNWvWuFzb++67T88995xeeeWVYX9yZaKt59m280zG63pmMhnNnj1bCxcuVEtLixYsWKAf/OAHn/tajvkmlMlkdN1112nHjh3D7t+xY4cWL14caFajL5/P680331RtbW3oqYyKhoYG1dTUDFvXQqGg1tbWCb2uknT06FG1t7ePq7V1zmnNmjV6+umntXPnTjU0NAx7fKKs52dt55mMx/U8E+ec8vn857+WI/5Rh1Gwfft2l06n3Y9+9CP3xhtvuLVr17pJkya5d999N/TURsz3vvc9t2vXLvfOO++4vXv3uj/6oz9yuVxuXG9jb2+ve+2119xrr73mJLmNGze61157zf361792zjn38MMPu8rKSvf000+7gwcPum9961uutrbW9fT0BJ65zbm2s7e3133ve99ze/bscW1tbe6VV15xixYtcl/4whfG1XZ+97vfdZWVlW7Xrl2uo6Nj6Hby5Mmhmomwnp+1nRNlPdevX+92797t2tra3IEDB9wDDzzgEomEe/nll51zn+9ajosm5Jxzf/M3f+NmzZrlMpmM+/KXvzzsI5MTwcqVK11tba1Lp9Ourq7OrVixwh06dCj0tC7IK6+84iSddlu1apVz7pOP9T700EOupqbGZbNZd/PNN7uDBw+GnfR5ONd2njx50jU2NroZM2a4dDrtLrvsMrdq1Sr33nvvhZ62yZm2T5LbsmXLUM1EWM/P2s6Jsp5/8id/MvR8OmPGDPe1r31tqAE59/muJX/KAQAQzJh/TwgAMHHRhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB/H+G+rSTMQYKYAAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1086,14 +1075,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9W6ht297gB/3+rbXe+xhjzrlue+3L2Wef7/uqvotlUiEVBeODl0IxGiMUvoiJEBINhWg9iC+WIkIgYgjJiwSEkiSVQsSgiPgQiEQUUSKEwsRLQSqVyvlu53xn39ZtzjnG6L239vehXfsYY67L3nOd8+11xn/vsWYffbTeerv+b+1/EVXlDGc4wxnOcIYznOEMZzjDGc5whjOc4QwfHphfdQPOcIYznOEMZzjDGc5whjOc4QxnOMMZzvB+4Kz4OcMZznCGM5zhDGc4wxnOcIYznOEMZ/hA4az4OcMZznCGM5zhDGc4wxnOcIYznOEMZ/hA4az4OcMZznCGM5zhDGc4wxnOcIYznOEMZ/hA4az4OcMZznCGM5zhDGc4wxnOcIYznOEMZ/hA4az4OcMZznCGM5zhDGc4wxnOcIYznOEMZ/hA4az4AUTkL4rIH/2q23GG7w7nOfww4DyPP3w4z+GHAed5/OHDeQ4/DDjP4w8fznP4YcB5Hn/48Os+h2fFzxnOcIYznOEMZzjDGc5whjOc4QxnOMMHCmfFzxnOcIYznOEMZzjDGc5whjOc4QxnOMMHCr9Wih8R+amI/A9F5G+JyDMR+VdEZHWi3F8Vkf9ARF6lsv/V5rd/QkT+7yLyz6c6/kMR+Yeb3x+KyL8kIj8XkT8WkX9GROwvq48fOpzn8MOA8zz+8OE8hx8GnOfxhw/nOfww4DyPP3w4z+GHAed5/OHDeQ5Pw6+V4ifBfwP4LwK/Dfwe8D8+UeY/AP7TwEPgnwb+VyLyo+b3fxD494CnwD8H/EsiIum3fxWYgd8B/gHgHwL+qfvvxq81nOfww4DzPP7w4TyHHwac5/GHD+c5/DDgPI8/fDjP4YcB53n84cN5Dg9BVX9tPsBPgf928/2/TJzwvwj80Wue+3eAv5Su/wng7zS/bQAFPgM+BfbAuvn9HwX+L7/qvn8on/Mcfhif8zz+8D/nOfwwPud5/OF/znP4YXzO8/jD/5zn8MP4nOfxh/85z+Hpj+PXD/6wuf594PPDAiLyjwP/feC30q1LoqYvw5/kC1W9TYq/S+AJ0AE/r8pAzME7z/D94TyHHwac5/GHD+c5/DDgPI8/fDjP4YcB53n84cN5Dj8MOM/jDx/Oc3gAv46Kn580178B/Kz9UUR+E/hfAv954N9SVS8i/w4gvBn+kKj9e6qq8/009wwn4DyHHwac5/GHD+c5/DDgPI8/fDjP4YcB53n84cN5Dj8MOM/jDx/Oc3gAv44xfv67IvKFiDwB/kfAv3bw+wXRjOsrABH5J4E//zYVq+rPgf8T8C+IyAMRMSLy2yLyn72/5p+B8xx+KHCexx8+nOfww4DzPP7w4TyHHwac5/GHD+c5/DDgPI8/fDjP4QH8Oip+/tfEifq76fPPtD+q6t8C/gXg3wJ+Afx9wP/jHer/x4Ee+FvAM+B/B/zotU+c4V3hPIcfBpzn8YcP5zn8MOA8jz98OM/hhwHnefzhw3kOPww4z+MPH85zeACSghH9WoCI/BT4p1T13/xVt+UM3w3Oc/hhwHkef/hwnsMPA87z+MOH8xx+GHCexx8+nOfww4DzPP7w4TyHp+HX0eLnDGc4wxnOcIYznOEMZzjDGc5whjOc4dcCzoqfM5zhDGc4wxnOcIYznOEMZzjDGc5whg8Ufq1cvc5whjOc4QxnOMMZznCGM5zhDGc4wxl+neB7WfyIyH9JRP49Efk7IvJX76tRZ/jlwnkef/hwnsMPA87z+MOH8xx+GHCexx8+nOfww4DzPP7w4TyHHwac5/GHD9/Z4kdELPC3gf8C8EfAvw38oylC9kno+490s/4C7z3TPOK9RwiIegTFGuiMYERQsXgcKgYwqFjAIALGCCKka0UEuk4YVmCN4Bz0vWAExAjGAJJb0fRXc19O9e/4nuqp+3JQrZz8+VcNf/Nv/s2vVfXjw/vvOo8yPFbWP24raH89eXnwwhP3mgfk6Ic7vr55YO8sfrwE3rLGJehdFaGHBV//YjQurnK9/C23S5//rXuZQ4DN1RN9+PSL+joFVcX7gKoiCGIESU3VEE50I8+ZHAxv259U7uTSOHpqWb9ArbnWJwYkrSMRwRgBhaBKCG+Lz5blVJVDVCip3bkNpYWLaWzaJZI+6Wmp99sh+JPf///cyzw+fPRIP/vRZ7WtxHeIcHLx1zFbtq/+3tbEcl4Xc9xcndrP9ZG74WDNnCjw2l/haJcd3avrSev3ZpEtyt4xpy19bMv/rX/33723vbi6uNLLxx+1tZwuuECRb4H/Wrz6VrBcpwcVvb6mEzj85Aw3+6nuC0nXzXteu3gOq6zttok3MCIYMRgBFUlzF//mefzFH/6UF998ffJF7zqPDx491U8+/83jfr9tN94SbTUr+a2fgcPhXDbqjU2UU+88fmqJP0837l2odvvaw/3avuzf/9v/r3vbiw8ePNSPP/60rtNEADURSkVZ8sx6QA/ugvr8aZBmCx3snDcNWkMv2+IZN0fadkjc3m5hljEo102d6d3ajEGlf+mJQ1wgqcxBp37xi5/z4sXze9mLF1eP9cnHkUe9k797TfcXK/AudpWMY5Is0hTXxIvk9+ud6+MtkcMdvOs7ixZyYu3payq6Y6ke3654+6d/5/99b3tR5FSDz/DLAFW9l7348NFH+snnPzlV0x3XbwenWBs52K+n9/tp6eO+6fSp+o5w8IkhXtD3t6n66Evd0P/e//e0zA/gXvuG18N/Avg7qvp3AUTkfwP8JWJKs5OwWX/Bf+o/+W/w6vo5P/vFT7m+eYHVHcP8AqcjDwbLjy57Nr1lb6545T5hMmvUbAj2MZierrOs1g5rhWEIrDeeroMffW747d91XF4aPn1q+MmPHeuVMKwMq43FWFACyhwboyAqSVBSjAlkPFN50CMJ6gCEaDRl0iTK8TPt5buv73sDa+3v3/HTu83j+sfIX/zfl6+apUxjEMkGZLIUMgulNBQqmQdZBDUS6xEBa5qBauup15l5KHDXwJ5gQOCQQb0D7qTWB0KhNtdZrNBG8aEKITTXWrmBct9DmEADBEVDKGWMhtKN6f/w5+9nDoGHT7/gv/VP/x8JXvCzIXjY70devrxhGmecswxDjzUG7z3jOOJ9bJeGPKkGEVuYvTz9IQTmeQa0UYbE+W3nsWX+MkOtoSpvjDVYm9dUSB/oekvXGYwR+r5nGHpUld1uZLcb49Cn/Xg01xKi+NfwFCEEpsnjZ08av9g6Y7DWYkxsQ0hKscj0JhSdGTwFaw3D0OGcwRiDcXFsrBVcF/8C/M/+m795L/P42Y8+43/xr/xLGAGLSYwodC4pwwBMHvPal9imei3prxGDNTYxs4KV5bORYa9znseq7stUnhaHQiMvpPuxziNC3SCLQ9E0qz91sWYqqIInbxuN15IElFDnLQQtZepWVHxSbAZVPKGWCaEw8nH5x7f+/Z9+fG978eLxR/wjf+V/AmXsGubkxPVizO8qU3BnGus7cOTRs80erXPV1FkKx3/USBXmEn6Xw09Tf26LGINzrqzDruuxzi3ruYP2tivEiGCtSevecLmyDM7QO8fVesXQOYIYJmOJx0wwRzTLX/mH/sG7pgTecR4/+fw3+ef/xv+z7KMyZi05uwsOyMXrDuMKnky0R1taQ8Wpi3UkS1xb5iUfoJVn7+J2lLi7Er1qeB5VKe0P2rRfA6CIalO/LN61aM9B+0uZ/Mq0j+NlSPsy0tt/+D93dW978eOPP+Wf/ef+RUQEl9ajqjLPMyHE907zRAg+PRHqfGlViFR+oI6hasB7fzS/7V4xxhS83P5+COVeo9SpLJVgUz0A8zzjvT+sgDILUnHFIRQaIQZjHWIMqjD7QAgRP3rvCSEgInRdV2lMoSvpGrDWljJtP/7Kf+efvGtK4B3n8cnHP+a/9z/938Y1mbsL8SB4wUMejsdy38hiXEzaH4pNVGjVWy6HDmsN1oAzseTkA/spRJqhMIV4qKRAKLQs/V3MMyf3wVLxoydv3w2tpugdn21Z4PYA5Ag9ZXwN/+Q/8uN724tn+FMJ7zSPn37+E/7nf+PfbA5cijBYcdARkXzzocEhf3LIbxg5LpMeTK+qfGrehg1qWIAe7IOT5Flqs4sq4KgeRUMVD6tubSkH1f6/3Ti011kZD8p/5ve6u/bi91L8/Bj4w+b7HwFHnJSI/GXgLwP0/Y959ky53c7stlum8RrRGyR8jdEtq2HgUX/Jg6Fj7DouVhPeOm5nz8vJM3nP5IVxH7Varod+EKxT5gBIYLNRrl8ofgqs18LlpeXBY8U5sE5xfZzggqgFrGhhZBcCC62p0CEhl+Unr6CD05c4Bt9jlN8/vHEe2zlk/Xm6Wf5ZXnOwg8on767Da8pmjEKE1LlIgmE9ES7taV53x+BKvVgyTtFC7OCg7sRjWWnQEMvK35V2aYPOSvHMOCQTMRWhmItJKURpSEZ+mtZhe63CXQiggXfeiw+f/piu7/AzBB/f5UNgv5/Y7/Y45whBsdbgZ8+4HxOzLaiX1GqLMRYQjI0CGAIhePw8o0nxkxnBdjirEBjfG4KPyDAoQQOC4DpH17k0nAoSEAGnpoyZsRbrXGJMJnxiSL0P+LmdsPjOrjfYziCYxdoKfmackuInWRaKBLzRKIgWJUBSIGhk5NtVY4zgfYiMoDMMqx7XWQwG10Vl1fedx3YOP/n0U7xqYiQTc2kEk+UuIV4DRqqiqj0JThdxP5hIkWKNpiw9kfbEWMuqF6nvLVus+dLer9eSLMpSA7Xu5UXbyqiWRlB33OKXOr/5RUTMHRQErcx/wjdBtbQrn8yadN+krZpUP+TWSBrDtzAoe+e9ePHoyeLUvJSpXaNFIU03i2AqqVC21kPa8dRF+Raq0FjrkfyyRA9p57c8CCpa8F1WQCxnqG2/LIXhEAjexz4GxVqPCTbhv9SHwxcvtnNsnxLxBcS9t5+EEGAOM2ImRq9gDNqBGoMiReH3Brz6Tnvx489+oyqBiXgyjiOc5AKbzrxO6VP3QS4TBUoSA9oqHdJML9dC3nPkMc21msLSaMKDh++rCvKMUPKhmW0abVA1pQNxijNnW61Ec9uoM1vvp4Vd23/Qlgb3HH9eC++8F58+/STdq2Pb4n3NCq3m9wzVmucAXy5w4PFaOCW85PunoC0TEi0CTaqJ+CIt+61pX4Nf0SpiSGnb8btCUraJxDpNqifS6WYOCtvXvFMyryZFAXRXn94A77QXHz/9vKynBfeUb3AwtqeuF4JAo0TPG1ZA1UQlMkoIgtpYevb5EEIIeVUISdBLa3uheKPZm5yeiMVv7fHH+wJZMLwFlZXrjETzOL2xRe+8F8/wpxLejUf97IsG56SVm2hS1bocvuK0zLOkGe19LVtbGhyXr42puLdIXHIHwrvjnU3nKs3KjTksWxqaeZTaL23wQSx72Ia721Rqyv1r2lReW3ib1/ft+yh+XsPNNDdU/xrw1wD67u/Xn/6HgXnesd9/yzx/icgzDH+Ak1dcbR7wk81nPL1YE9YwP3yIdsKfvOz4219NzJPh+lZ49soxTYAR1EakfHWl/J1/3zMMyhefw+/8tnJxAU8/cXz+RcdqEDZXhssHFueE9UpZr0MxMLFJKM+CYOycgczUSD7xSqSyILt0+oUse7/Ahe8fTX8PeOM8tnMoj/+8xshQS8KIETjczBIJXLwly49pnkvPimlOkBuiWP7m+2Vs5e4xLo8vTY/bcm+clXxMs9xR5dXxtyQGqyCJiS7ySno2Kw5QjUsqmiIQByG/w1QpXUO6Toz3m4XNd96LX/zuP6CbqwvGfXS7DN4zzp5XNzfcXG+jxU8/RIuf2TPup2TxIgQvqY8WazsEg3MG11vERMXP7CPrY0y02hERfAj4OZ54GmOTNY8wTRPTNDXMdRzA9XpgvV5F106jRMu8qBASMRhj6bqeYbUieOWaHeM4MfvAbrtnt5sKg4uCdYYHDy656NaJebaIGEKYGacd29upKDTq+jOF0AQNaIjt835umOJ8Kirl8GJYdTx6vGFlelzXsVo7Vuvue89jO4e/++f+nI4BDIpNW8oC6iOxMwI2b5dGSFxYqkG0MkvEM9BYb6khKxCKZYEkVYrmfZyY4SKoZwa3dulkp1rKvShQ92sRASW3JRO8Y0ZTYqULcTCXMKLkLSem2Vpo2oHRQihfQ7RUiGMS7UQlLQJ582Z857340Y9/S6M1QxrTqqUpQkZFOIVj4GDkl7yEsqxrUXLZ1IXcg0SFdR7l4+J3904VSFaBh/i+lA2RJgAaAmGeIy4wJlnKGCykI7tctyxeU8cwxHlFCEbwIZ62Z2uDm73inMU6y7BRXO8SPTAn6zuAd9qLv/0f/Y9rCMk6M/mWRzJnFoNYSMmJY8NDlxw9fAiixZqG5V5OPxdSmfBXprtx+VRboDglGi2eW74n/54GXiRgkqJDdQKd4gtCVvYIkYW0cdeUfkXFQF57+VytLsvKuC5XdL42DQ5I7HJEVHVU3s4L5J334m//zu9ptpbMVizZqiUr/NsqjuaB3O0T7lW5UQeKnXw4Aq2FjSzqPVQItYrUbH2Ut7wclG/X1XJ9RUV2tQw8Hq78rIhggmJsKHMd8roUilIntYgSPlRq/2xjydQqoRYHeafhnfbiT377z2uU9k7UcsQv1ndLc93irXgQZMrOyMPkFXZzJoOKnTOekmTZE2lhFvaiy6k09TcHQXcpok4ORitKvmZQju681Z5patZmU2rlb4m4QwtdMndQ+aMKX9e4eKOVNc6uXn8a4Z324u/9Pf+AmmQlGKRZJYlRjg+aFqNSFER3rNfC3y1IQZQPgBQqhoKXgi4tKtEcLub0mj1664lii2cLO63lIPE1DzYvkKO9nmn1cUtaSsnptmtUQt9BdhbwfRQ/fwS0zntfAD973QPew4sXiqon+B3oDUFegfkWIy/pNfDAXfFoEFjv0csJ7T23o6fDgw/M+8DNS9iOkbx4BBXl+hquXwW6TgleWQ2ey8t4IrLeCKuNwROthFwH1sGQGJIA9dSrCH3p0yo3gNPabTm+PCIwf2rhHefxYLEuTi4KBb3jOgsC7XViGMo1i/qXprmnr5eb5/R433nCcweUU/QjAlif1ewaSGv505bPJ0RUJKftkkqVZiEaU5QeZWW+RVv5DntRRHBdh/cCEhUePgTGcWI/jnhvIURE6WfPtJ/wPiKVqPgRjASsja4N3psoKBshZJN2FGurRcg8e+Z5jvovE7A2op9xnBjHsShSsqWQtSaZhUeFSnTXTIx1Xi/GYK1DJD7rQ2CePeM4s9vtF4yu8zaZvOe1ZsonBJjm0MxhnuvsXlCZ4OjKNqX2ZoumpMTLyg+U2Q+JKXdYZ+g6e6/zqFAsfvJSIiS5M3XbpLFv9DZF8MyWHVkYyy5swuFpcfNwKZ/vk9b2cr/kE5alRUl8Jm+jpWCbd1Z9lnZXSVI2NWJiuyWLfiRBMxuFt4+vT0qgzGBIXlPxftCqkw4QlY0kayD0lFv2IbzzXqzjW8cCaSw2kvBwNJ6JGc84os5ppme1nwvrrFbUbuelKIqkoOmCr46QV9v8vDbq3i3tqW+qeFLzzEWFGza5UQYFUdRkxVu1/dDmvbm9+TpbIIAwp/ExRvEIdg50vSJDBz5Ed0jTjsGd8I7zqGVvVEub1PZmKxU9zQlrjNfdz9fV/fC40jzGdaPX67q0lgwkNPMiZbQjWdUssgZQDxqtMuOgZ+E+fw77kD6p/II66l1svaT/l1aEtd35ibwHjio4hO+wF1tIrqHNuLdtqHi1maPUzlOKoNjmg7GXE64Kp/ifE9+XyqG8sCi443BNnbImq+1r8EcDZa2JgPgyjxUPVteJMgIKrcwuwlHfWjz2FvDOPGqxMKbhyRasuyxxwEn+MPNlQrECrr9E+SOxaAEIxXOAQhMVmhhjEbRtyF1z3d4/0b/DJhcl61HZ7w6ysMal0tHmug7qfePTRUveus13wzG2OcN3gu8ga0RuLK+XyJPlfXU4M1WWghOhGkqdlZ8rnKPmvVipTUAXGayOcJy0v93VgTu+a/Ndl9SpsMeyfDDzo0WGOXivHJQ/qJHCp93VTj3G86fg+yh+/m3gd0XkzwB/DPzXgX/sTQ/VafAoM8qewDWeF8xi2fOKPUovKzbdLba3PL10/PjjkasrYT3AbnZ0W8t+Em5Hgw8G75X93jB7eP585mc/96zXym707KeRYSU8fBR48hT63nB1pTx6CM7BZiVsNtFPd+hhlQJDG1PjchQNfRnTvHDbSWgYgyLMK2+JGH9V8J3msRJFMmVfXgsHf6VaBRmSdEqx+BHiX5XM/B38zQq5XF9qwrI9B99LE06Vf0PvEjXPG3XBd+bXafNbW0agmBggxcRA0nXZmNkSyCTmOWgaI9JxWj4tDrwB3nkONQR2N3vG/cy0n/FjtE/uu571EGK8FxvjvWCBLipxUCGEiHWNia5eBsE6g+tMQsgG10XUYq3BWYsITJMwSrScibEM8oRYjLhyoppFvs5ZrJGq+MlBnVUJPrqDzePEfreL8Qa8jwojIzhr6IoLWGRGrbHp2RkNghrFiCV4jxFwzhQheUGkiPOa472oMRhxhOAp8W+yO1g6IXfWoMnCaZ5m9ttxca5xb/OYPoGE8CWeRAaN0yaNjBZUY0GjGM0uT8cicF62hTlPi70y9O1Cb9Y5lbBmBURVIJx+12FfYLmljn44ZucLT09TLKSLzKhqEtSQ5ALWNF1luV2zbBsVQI1SS3gbV6/viE/TSw9pfctkL+h/y4nny9T47Cq1kJ5z3S2rFa8LC6aLCVuUqRJAvSyeAM1EVOURzXUWDg/djeqayYJ13EZ2WUQOhiUzOFTFUu1LLakhROHMe6ZpQohumy7jtdczSN9pHo9d6ZZT8LrnTjFsRSHbCO+HyqBStqzz5V4s5bICqL2fnz3aQXkO84viPyLtO7MjSxU676JU+VT2ddoayZxyWb8crMXavLyv3wDfjUc9UJREvJ/6emRtVfv/OiHlBFYrc/A65cehguRw7kPyW2zkiPjbXX1qGlqtTzKLduyKnNdfaX3CI1L4W8q6KvWUd0S+J7vIqca6DmMYvQV8N5yacKImmk5zUFd5wsM+NH8lHwELktZkQkd1DZYby+tCYI5wVNqDhWfOVkTH64KmuqOuNT/k9p4W+Fp8n2FBUE/Xf1S+IoL2EOcd4LvLGWf40wTfYR4bnHWwlg7x4hJPvabG9FtRADU1ZXyoGl33gyG5fRk02rQnXETiVTN+OFhtp/iuUz3TZVPl6KKWjQcF9UYrX9R+tQxtW3PCX4WWLxusSuPG/nr4zoofVZ1F5K8A/wZRxviXVfX/99pngBANuVEzge4J8orZfMkkX7GTHTf0vOKKJw4erx5zsZlZr5SLx2tuw8xPfzEzG3h+Y3n+smP/9YCfDeNemKcYI2C/g2++nXBWuXow8fjRjr6Hx48HPv5Y6QfDR0+Ejz8R+l54/Mjy0RPoe3j0UHj8SHAWhpWwGqLQiVg4RRjLcoum0eAbqSIj/0Vasbc5qfqlwXeZx9K/9m/2cREyF5G6nso0Ll1V2QPFJyXVK2bJDJUNuVjoCUmINou8boJIqBumphn7o01xuNlpkYpWhlVP76jWl1/LrtO6y6FGvQQ0aHKloDGHjx+V6GahkhQ+GhI3/foF813m0E+BF1+9ZJ6U7dYzTwFmuBw2rGyf4uR4VANODOosFQMmVwaiewZE5Yyxyb0hxfsRE10unLMIsB8nttt9ieGTN8LQOXRlCrIOMTgLnXN0LjFgJn0kWrf42aM+sEWZxxFFmcYRJ4JYQ9+5qLjTKiyZFMBl2u+JZp8WI4YQAlaUVe/SkjhmwhQleEnxNUDVoBqtkbouBngMqvg5Brq0TlAfmPYTooFXRtnfvh7dfpd5DCngcLZYDJqsU4IQmu3W6hotICaWKcq01PM8xVXAzFYMkohsjs8D0Q1WK8XNxxutBTsNL0wrBLEsdGo87vypFTaXTHJhAqSy3Gqyu58uXL0WHpimEs7KnMctmC2BhDfH+PlO+DT1SVIba29yp1ohoullPojIZfIjjZCdBbUybCcHtL1Zx7Z+X5aTth5dPp0M76rcA3HAQ21cWW/V1IDgPcFXN1CMXQxBne/0iOiyb3lsCr5XfJjxQQjqQZTJRffSrq/79S5413kUYgyTLDDWlivRYuuO504wA3e5geW/pxQ/0vy7YIQP6zpS+Nzdo7hhM29T3Rw1Wd/FEffUw7y3YGz0YBG2a7P9RZrymfterAfhTZ4g32kvanSd0kzP0RLEOLt5aXF/O7QCarqVcG57JkbLl3DA45xu/2Lej5WKuV3JvTK7R6Z+nFoz9bryaqIgTTDotv7WDS0fbER2z5b13sbuyVajQAyqLzlgfuJ9skKlUWjqHbxV0453nkdjIj8RsqKKzEO2/GHLY9brSKIaxY9kjkcLPY0ghWRCQnHlmXZHZhRdD5QqH1stpippXD7bwiH5PIE9TjyVrQ71RJnjGhqUypJoKNWNO12/xZaH70MX72zdm9747lWf4Y3wneexZc5iRWRlZcIWhc88tUrvrLLIanW5ljhcJLZI835KPJEQ3cpTRnBjKo4riqD0gnYfH6LpLOLlvaUtM9TwPwW96UIUTHgve4LUkBRNRgM4QeMEUsZlqW1MB5Qlptgb4PtY/KCq/zrwr7/9A0L1DQ8gM8hEkC1BbvCsmLhhwqJyy8rt2LgB7fcEO7Gn49XOcnU5Myps94n4IIRgmH2se54N2x2IKNc3getXM12nXF9b9ruZYbCMO0PwhmEAnRVnYOiFzsJmDdrFtPDakyajMt8RioF0/CZl6abPwsCMyrRXhuBPC7zTPC52QENA2/ut4ufk9fGn+Hk39RQC3SzuQnYOKWBuUavwWRyL3E1Mj+ugMqjS7L0D5LU8XYXW2ye2MQlehrT2s9XB4XX0z4m6HgUJKdos6fqNQYHfeS8GDey3I96DH0MM8ByUzjmcsczzzKgaE4+ZOlVxEEyZdyHHJKhloluTixZzxmCT4idoYJ5NtBhqRhGbs8QkZjphRpusgorip2UwQyCIME8zmmMchJCQelI4Wdswl6l9Wi2DokwWym/O1nFurcQyk+oBUxjnqMA2xtD3MY6IBmUSCCEpizVaJs0TjPu5ZKW5t3nURDzSCZwmJ/womEd8k3RoySKIeioQi1bCeXJnxD2gR/eKtoEs2Gbsl8cV8j5qrnPZ9lVS49Tkwqn59bps+lNmrtr8mwl2JfRapzEbExQmIVr+VIJb9FbpparRfD+PTRDBvNn67t3pIhRlcO5L7TN1qBfkR44JycHXysA3PyyeaRRJ2uJLPdGAU7dP3V8qdrKiFhqLr0PhPy3MEEIKHrsUN3Jf2hHKQthy0Jb9CZmJEmWeI55VtRh7gKjvgHedx5MCvOadUZv52vKvb8/JazJjmelRyw2nsvl+3qMLRUIZ7IPF0+ydxdJAk+ItufeytL1aVlLbWXlYXaydgzeXNXJ6eHSx9N4E7zqHES/U7GGVfrTudVUpXq+PYcl+yNH169y47ujL8fc3KE0Oy7eCVmtVdehidtim2N3U3xi5Kv7O8tlsHZT3dDxhNzEYtERL39yOpZXb/e3FzIdoWiiZguW25pZXXlEWc7K8zlshr0clC48tlsoiQkP+jvhPaa6P2nBQfjETp3D6YZnm7oIkNKigoa6HTxw/cPQWLXVnxWHb17eJufVd6OJhWxYjdOd2SX08oKlnuB/4XvNYmLulhVpWKCoHrtF3rvJjVqhdEoVd0kz/EuVI8X5UIq/R8jxyzLC+hg7lVtT3tbdbV9hTZRYKI61LtdKV9ERl0BdvNdn9P3d6MZZ3tbfC91L8fDcwgCMwABtmHdirISi8nGb+5OaWnYJ3Gx5eX7PHokNH393Q2cDjS8/nHzs2FwFnhFevRqyzTJNjN0YFEBhCGBAJTNPMdmeZJsWaHtGYXWe/E7Y3Qt/Di2fKi2eBYYBnT+Hli+jy9fCh5dEji3XCsBb6ddIWZrcT6qlTXmjLRVIR/Al8+8OGRsFSlTrpRhbm7lQAsbg+Uvq0dIgDnjQ/0/xem3OaeHNQ9q6u5EKabkqRQNL85dPHshdzzIrETC9bfDDdKXZK2qQikgwm8v3UsRxUF02mGoa3cPV6d8j90WTtkJkQiYyZ6RymI1nnUIzd4nhmix9JDE3sqUk+7sYYXLLUicqf+GzXGYK6YtGzHJvUpJxBBWpqW0DEFGswa8G4hACtJsMHxVhwKU6SiMO66NrVKn6sE6xLxt7Z5FxjfdmFbQGSmR0IwaRT4PZnwTmLscl01JjiSmRsVADllPRvg5DfGZJgGddVjHeWlTtCE4CT6AKW6YpXYqDqlP6qWu4nImniWIgqJsVcyVsUtJjOGqmuea16suzHUzhvuWkXzFyOW/O90OVC0ZH+keZP7otUwip5XxIDYpf7pbkxje972Imnu5DxBVTLFq0iditytDiyCDtFwGvwFFShP35J10J15WvW6QGSXeoUFl9O1Fmvs9DTCgzLviY84z1RATQTQkoJbU2zsl4vJGaFZ5m1vDeSGyiqZf8aYyIeep+gWgNZn/45truldwcKnXKv6XrdNZVJjntzSSRVmyksiotmHSSaIyLJcjM1RgyCYo0nJ7UwOiI6gsYskMFnTjsq1hRBJWZ4zFxvG3yz4o6DfhwRcg4ujkcu9fzo/v2ANhkm424P2sZVqp+qEDquY3nvIMNao/RY8CcH39tsYqesfXLbkhhFocm5halMa1lTLGySkHNkfXfHc7kflNpP4+eCm45w+7LtOXB2tai9XxCSZU5DS4phefqntQCAyqKevAayYrnR2yzetywvR9eLw8pCGit+pMzhcf2HX0/SxhPktqLp03G1juppp7h59rDOdly/O6F+F7hL6XPXy1sO4j3j+TO8Gdp1lPjUTKMyf6XUmD6vm7GMgaW9IZnPidDSiCy+ZXu/XCZkPiWkSkSj9WKWyyRaMxb8USs+amOR7Q5aXqiF5iOSei/+XteolsYuObzjOqXIGKogzZe3ZWl+yYofAToCKwJXKA8ZuUCDwyDoboSvv2Hdv+Rbb7AXT3kyTjx+6Pn8Qc96vUHlkjBYrqeBqwvP9Raev7Rc3wzMLwyTgqolhA0Au51nGmcE5dVLw1dfGowI61W07HEWHj9SnjyZ6Xv45BPPZz/yrFbwo88dn/+4YxiExx87Hn8cM4L1vdA1VhCFqZEWPR38PVylP2QoZmb10/os50FRiZYapdxd1zn1ECwGs6zhXC21+sWw5nFvlD3mFHWmQQZN3dLMWmGiFFBZXMdO5ToyxmoCroY0Doudrc0n162F0Sqp3st7IPqXKMUk4z3RrRh4OCpCTEJtLrMgqiiOGhulCnNSXBfrGJdxolkGDfMDIJ3BrYaGCW4hM5uBU5Hxq4UR0V0nIVkRrXvQgEvxQXSVkHwrPBH7UXz9pRVCbZ3SEh6uvD0NWJ62Q+ZME5OU+5DNRs1iHLy/X7WBEt0QRLKZuWaHZkwgzZlJ+sO4lkxISgDfuD2lOY5GZvHaFsZOSrarXEbFx/vZZ4q833IQv/rUMT58E5xiT992QE4LifmnagIc/5oswEksEAUWorKLOH7ZUiqk7r2/PCN69DVTCj0qkyl+6l0THD5+b7iCjDjzrabOJcsR74YU0L1184gsi6kChNR9JW0DpWnSMqLiwewftyB4j4YU/8NmC0LBSJc0cdS5a2tKnZJ2ojOWT3g2qDKFaOUnwLiPscjCPe/HQ8htKC6Huc3pn3JU0OCogqcyndHaj/ysFrpUB//IYq/Fe4mG+DAR5pnMbkpivqMCNyt+DCpxfDo7o8YTgy3vsTqiqkzjzDzFPHjGrRG7Ski5A2PL/q+OLXLcvtxGreNxNEjKgXd9dSN6XxyUqi4yTOZ5CKFl2bWUVX0bC8Bli99k8ZP/hhBKwoP2/lIZo82/qRwSlZ1JTd3WE1SjQisdyojkE+c3uYaVRixWszRrM/eyfJruZUV2zYS57OtdVlPfFazJaFBLwP6iwKGu/YZdrdfC0f0c7635c+d1qxzKVutLfqFel7E8UP4cl1ncOoK790PdM+XO4Z47vG6acJcb3qKV72szFljymkuu7NTLc5+P6cUZfvmgCYdW0qZRxKnSVvrb0MrXiD0tiSg8zQFxLVRRjp/L9UviFYIxMXulpOyEKcGqMRIzkaX7auTgPSyWZiuDqqZDQlVCcotGF1GAabmiIjceXN8FWsSYvJmXvMSbNuUvXfGjKemw0qMMeDpi0lNhO3ue73Zs/czFdsuL3RbXr9jMO5zZsbKGy1XPEzOxmi3fPDds1jO7EfaTLymfVS2qFlTwwTATJ2y/r/N06+C6A2uV3RZ2W6XvNWX9mVitoOthc2FYrYXh0nA5xbSlxqU4GTQOXZII7gkWt0JLrO+aGDm+eu+I9d3g0ERW8waTGrW8SuNyd0r3RmvWumjdmTnnBFexIGCpHmmuM9TTz0Nm6xT9qww1ByxrRU0H1j7pBe2TNHWVc98FYsq/ZsmlcCtpIEIa0ze7er07aBHIsnJOIfntp98X13nIW8VP08eFYHIaawkpVfPiZt0T2SKgmKMvkH8rRuSxblCoUNoVma2abab0WLMXbMOsp/WS+1Zn+ODNCsvojaklpc4FOUrXpvYnHJ4C3xcomgOiFoufxPZIJaZBtegSYxygrPSJ1j/FdD+1MemNUnyg2rtySiJZHtUq/Eur6GlNZzMX2QzRXUhN8255E9nnteNZ4mg1r8x3qkVRZQzjGmgtKGqfMxuZlUHvAw73zEnXnPhDYzGQy7K4zvXl8deCo1KfG+ZE3ua6GY3WPaO2YVm+cGP5ftOPWCY3oc5OjAcS50NDIARfFFBLutmMUft38VPmoLR88o4XIaYXPTHm3xuOtdmlPS02WTCqTYlW2E43l20shwfNfB/xG5IfrXKPxgfUB4KfycqxHKVHkrInItGq+DE6Y2xU/IjOqM5RMT9P+Gkm8nEOgwPJip5M0CGneT6an0WfqOvlDoZn4VJ/MJr3DaokHpDXKEDqmjxUjCyXwOsZt1OWPPn+qbqPrxse5cSrDtdTUQLmjmpj5XdX+eNKY7/SmuJwfzdKDgGWPFi1dLrL6uk+QGg85RMNS9zVcpzSwlwoaqSWkba8LJ99u+tmRyx+OFW+HYeWjnK0jOTk7dN7ouJaKo92ONwl6DWVfyfj/vr7cZ3NrrzfKWwb17S34SNOxheq/Ebr5v0e0cUZ3gKO8VbiS8ttac4wqoQFr5+6TONaPcliB8mbn4/LOPIHQswCJvlas+RVPTUqg3UKl9zRxsp5NvdPXEszVnJI9Y4qrX077OQxQ3QEvwJXL0mv3aBcAhcoawIrJoXb2TOp59uba/7om294tRuZdOLqauB22jLZwMqucP3M4/XA00fgrEM0cHNtEHX40OG9TQOaFE0lUG9kvIIqcwgEFbY7sK+I7ikmxgoaehhnuN16Vmvh2Uvh2UulH4SrB4arK4OzwnoNq1U8/XY2fvLCaRnWQwbtLrP3k7Bgin7VUClge2rTZuPSHKA5KRSWSp9chZS/bZygRbHyqgOT4EbBVOJySBb2Y53mgNC2FikZ2g1X7pW9Ft0lysFQw+joAuPo4rIghKzaFShYrVWkNChqwVUYSuyE9+nqZYxhc7VK81YVJEvdRkZYURhTSG4TiWEsbL1UV7D8aNO9IiiaNEdCFCDKaalW5qNlvJq2VRYq1ReU7Mah2qRfKx1o1yll3JVUZ1aEHOFHiQYGTRvq8jBlwRVFkWgMwZTnVQJVaVEVZDXw9/sApQSwyfnJ823NfFIU8zKBizgw9VG1SSJXSZLRvPKkuD2atDGzK5GqpjhWJqY7V8VIDtRdx2/J4LfELV1SL+R4Uij75LW48CQFPBin+FeKoJ32b2ZElDp/uW+AIVsIvR84YlxOKGI0t6kITPHJlhG/Sxm0rO+uMm9oZGZ+DnBXrr/g8Kaew9L1XQ3ty4IjCS94TzACalGXzOykYesb3L5AV807Gtm8coil7xWv/bKgjkHLHxyUEWnGoXnwJP/X/FA5WLJlRVrICTfGoNmzH5nGLaoBDT7GRitjVOlrPi037DA6Ah7jd0jYoyEwjp5x8ohYutUVrr9AxGK7Fcb2iBiMcRixib7HIPrRStAgEt34nLVJuZetIirxl4OFlFXYvww4dHHKeKKunbqwDpUj7dfTwacPFafH14ftqPXJ0f1jIb48Xd510tUr9+uEkukuV6/2cKQojvIrE881DANd59LP+XkSz3A8HnfFFvq+UPjHNBStAqf5E2lZVtA0bVleN8+1bGVes6nCVDq9t6knP754dtnYg68HFyf6dnfXl2UzO5Bw6IINbseivS40khQ3sNanue2LuX/LxnwHOFL6LPhAjsbuFML8ZeL5MxxCcxBJsxabWcv3lsEE8go8rK1C3m+JCynXx3Tx7iXa1pe3SK4p5TAgWg1KykJcXXYlJao4paQNUBLB1IDOsZ64B0+MQX5e5eD3+1+/v5IYP0qPykOiY8FXeB4gXLELe+bdDUYmxvAt+9my7tZ8c/MU2weePLjk6mrL06eWrt9w+2jFn/nRyIuHjs5sePlKERzTdME+DMnEqrLrjWV0VPpMcVKnl8L1bRRqvn0W+OOfGZyDR38QePxRYBiEz77wfPZjw2oFn37m+PRTyzAIH39iefrU4pyyShbPImAIyX1mSYsPSHv769spgX7VIMTU1VApokSFWdXaSKW8jUuXnLiW5pmF95eJnxbxK9E6Yc58R6NIQqILXzGtzQqnVqlAu5UE1ZT5geTKUeVCIAbyNfm7ppNvzUlsNQmGaRMrVWDViIhKCJEmlqiadPKev1OF6KqJSHWXiLz3PYlgO8vDj6/qPEE9IZEomOW+eB+Yp+iKMY0z+92I+oCIwWbTfpGa2E1qqnZVxcfUU1hncS4G5/F+ZvJTEkgVTAzMHMvE9O/WOqy1cZ3k2VOY54CfYhyGefIxw5dqTNGeE05pNRwVK5hkoieGrPfBTwHvU4r2pKgTianprTXt8k7DUl3c8m/GGLohuoDGCmai8ic/KGltyHuZxyVX1jLl6ZckTMZ1W1V1vvCBGuPflppiCkwM+JAYRxMVbIISjGCzKSxgQqgsWbtfNfpFiTbxQ3K5Fued6sfr4AhH6h3X9fsiZpA2Kag1UBcMZT/nvax54AoLEqIT4H3Po6aYF9AcZGYmozK5p9mANBkLxrg+f8wIH34/vI6TX1y9JLl6iZAzUNQ2ZRybmbW4ujLTEi3lFG2yAmFMxcvJRa0wfhoQFfwcM+GptaizqE2WI2Kqcj/Xx8GSOMSlGZ+GjLPjms+37xPa0Txq18G91qJt+Yw0cYFOzV8r7bQLO5TKldAER58JYU4Km1u2t68IYWYeR+ZpDxoD+4cQGfQQJkKYUPWE/UvC+CpejzfotCWoMk6BaVaMdawuP2LYPMQYxzBc0PVrjBicGzC2wxiDtT3GOowY+r7HuQ5rLavVir7rEw8Qs6bG6xCvaXGFFhr6PkE1W31XpUXBjEVx0bpfnaqD9HwpRZ6ot+HxWsXLoWvUsh0tLCuue0oX9ZRYRUnTKznDZhCW1R72mbrWNFnlZSW0tUgIuM7x8MEVFxcXhBAYx4l5nvE+sN3umed5oYDOrqQxjt/9Mr+mqU7T8OSkshm/lr0oLPnGdLMojspplBzwA8t5KVi4ebZhr0qhg69HiEKOLu547hBO7o2lwnQhcTSVLOorBLPiF001FbySD9LLwdj9zt8SpPkcdLNFgYsxOsTGZ/hVgGrCObTou2ysZm1mirekkCcxXVmTp/ietq62bLx/et9UhVGpMZNZCeW5grdMxRPGGHISZslBgDQepCaxp0buSANySqF10JzS8bvKavPvYmzyHn3DdvzlKn7KqFpiuqwVMKD0QIfXKQWT9Zhxz7Pra27dxIOrgee311gn9KsNTqLb16YTrjYdgcBm5ejdhLOkrD1UbFACDmhhrANZABd8gGmOEzmOwnYrGKtMM+yn6AKGVbCB9VpwThgGWK2Fi0thnKICofPVn7iunvLqk3B4ErtgCNvJO/F8a+5/OMynv9wTtMcnRXlDYeIlU7vyt163ip7jay3FjUTFT5t/RalxuBb7vZyqVIVPodWlTBJUE6UISM0w3Pat5bUzc1Soc0UMbVCuY5arYRoOfiHzXOnNkpHd4igpndqmSu6bKSJ1rV+58o7MHC1WoMb1ZeaI/IIPKU6NNKctWekjxU2sMHPSIH2N8Tusi6fAkYnwoCEpY0xS/BhcZ2NQaOdwzmW0mxuIjJ6cKSTL7uVkUfJYN5YCpkHWUb5IBCk+kKc78sOSFFdmwe/FOTW502XPxvTQDudMUmAl7CJAMRQVeE+Kn3LCXwQUoUyO1j7lec3WPu0y1+Yxbe4VMUeT5UvaDyHNe3EBk0zANa0NjYxhZtQaHJdbebzpEtFK9b2O3N01Eiev06XkfqZ3VKVO7WxWwErzW44LlEfwfVj95P1BRIEVh5JdvCojk+egwjGWWVoS1DVweHJfrYYO3ceyoietr8Wzx3Xn+3BIz46fzQLxqaCycRJIGftS/SE0Lznu8cl1kucrKX7K+DbXC7eXe4QTy3rB3h6VOdQEFNqTvuR9B4trqQiYpYIosYRpkWtSqAUNeD8z+5HgPdO0Zx63MVW59/g5JAXBHu/3aPDM22fMuxdomPHjDWG8JQRlnJXJg7EdUxAmr1jr8LOnnyaMsbhuwtouXrsZax3GWqI7ZUDVoaFDNcYKqvhdk4JPmyGR96KouxvSYUCjgKmwbIiWuTpuX7GCy/vpYO0f7pXDZ+9y81qWO15CaeMeDdeh2+Chxc+JJ+58obYvKEpioe86VqshKZhyX2eMOe3W9V6sfTLrpHkb1b1S4lot/q08rDRtSqxlrnWxcRcKnwYvtWqQU2WOrhcNf4v7d5XRwxvpdhmDvN4OChyiH20uFmu74uDqAlZf/B6m8QiO5R1dXGXeodz5peGLM7wNLGbrKLtrLaANj3pqUbePtjztQTX1usW51D26aFdlbxP/pQ3/XA+TRCSeS2QZQLVkga08OIU3PuSp8xv1rs1eGl/5pmPlz+n7VX315rX/K7D4gUjoB2CNsCYrgISZnMHDh8BuHvGqfHv9ij/86ite3N6w98pmfcXVemTaj1x1glt3vLoUnjwccC5wfTMwzTM6STStOjHR7QKJ3+J7A5Y5RAXBdu/hOtA5sF8Kc4iBnbe3yssXgdUgvHg28ewbTz/A40fCw4cxDfzF2rBeRfOwzsZMRBVZVub7tXAHMi8/6+kCb3jsHqBQyIpsM+FMWhs9cb+6d+WNWJU0EGMKWJ0QAm7e0+stQogMo40Kg8n0TG5FEBM/xqVnDTb3XITiIiRz/BAYmOiZEAFPT6BDESYxzNk9JdroxWeDIr4xU1RJh9TZXD0LFPG0tQY6TMxrEdgya64EUwXQxWQdMBWZSL9PghrISpw0n42mUVXidxXmybO9mdLfLS+evWIaZzrXsepXWJNde2LfrbN0nYvzNc2M40hQpes6+qFDjCQhZEJRut7SDxYxQphBZxAj9H1MG2uSJjUrG+Z9YLcd40nizZ7tzVhc0EKy3Mlxd8QIq3UX67dCPzi63qI+sL+d2W9HQlCmvWeeAtZaLi9WrNY9qso0j/EEWKRkARMRjIvKqa6ziKyQVQeiMduYieMnZdarJcn9Q2sUmgVEFutJVavyJuGMHNQZpGQj0ChFxrkUCJpONaTGLitMMlJc9ySPTVKWmaQ4Q1KI11aB2TLSB/04/OW1Cs92D52o4zUPsRDeNL+xshmtYXK1X8nsyPuBrLgsCuPyJbdNCqMRG5oZg5AYn7oC2rnKLEZVH6V9LdqUbdzHaDLQtUx/YZwahR6NIKe1jZUupfbmo3YkambNQSyzIkAQA6hLxkwSlRI+Bma2mBhQ/O5BPBBkm/snyrx/iO+KLqkxbhENjYglkps0UMZIDpm61vLkeN/IietMl8UYjHMRP67WsVTw+GHDPI8QYharEDwaAvN4zTReE+aR611gt9/i/cS8u2Xeb2ML7Arnelw3cHHxkMtHTzHG0fcbum6FSLLyMS5euy4qfoyh64Zi8RMtgjpad7CqaV/0pF4mRej7dt/IPEpVXuR1lWhjfv8dKKquv4Q9TihEl+Vo9s6p9ryeEYg4HggHyhWtGckOXbeO94uWvt/xFiqGyafgMQiqMYJzjtV64PJiE617QmBPVPTFNVzfneN3hRBTvN8nCDDYlI1Nc3wvTe7Oy/5EfJv7nS15tfTtYEM1KEsL/5uLlKxhDa0rmPhgGS+/yMH9A0XKUZkTa6Tg6oPbUknlQjY9mOMlWdajMnkL6OH1UYfeD+Q1bYzBmshbGhstyFvrclDmeWYcdyU73xn+dMCCy8rK1bShsrxYDzGz9fDpemjLp31WFbZVMZk41cVePKxMFheHytEDpytd3s+sYrb4qbzRCW6z7Js3b5g8Tifp3GvoxNvCr0DxExAswiVgEH2A6BVwCfg8eszBcz1uEfb4ZzP7sGfVd3z76pbe9jy+fIC1D/h48LAa8DvP808dL7Y9X37dcXN7GYXAYAneUlxXSvr1/DdPVhZeO3ywiMJ0M3G9mxGBZy+FP/4jwTp4+EB58MDTD8rnnyuffRZYrYUvftzx2Y8cq0H49FPh6dOY1nqzIbqBCVgRXkfnjubz4MY7n5DcuxZIci77KqUkZQ9ZuXMi69dS8ZNN5SQ9Gu9bP9L5l4hOdNO39Ps/wehIN/T0qwGxlml4xNh/RDAds/RMZoUiGG8QHzMzBbH41Gdr9ljZYfA80Gse6DUGmGWDlwsChp3t2Jsuzr8H9dG1JcwBneJKmZGoHBKBboCSoju5KJDcXpKKV6BkWGp93YuAl7CBqsS4KllZlty7ytBmk6d7BkWZ8ZSMQBr3QI6Royrg4/f9beDltzv2u4kXz17yJ3/8JbvtjvVqw8PLK5zr8N4zTRNBlWHoWK0HjDFstzuur2/xIdAPHavVKqU+9wSdQeDics3Vw020nukCrvMYa+DC4gxxPaV1pAF2txMvX2yZR8/zb6958e013it+DoRZq9Aq0SLnweMNVw9XWGe5eiA44/AT3L7Y8fL5LfPsuX25Z3c70vcdTz9+zMOHwuxnXl2/YrvbQmI0sII1hn7V4zrLsIoxLRCDMeCEAxfPhMJLHKL7ncVAdI9R7DFTmBU+kOJVRQEUY1LeMmksWCTVt0QX2TmsxsOK6yTqVi3WRossW6y8pCh+ivWdkSyzVbxbhICoUKkn/Ienhy1H25DSRva6a2xOXbfe0w0NX7hbSgoAXi1/krDyvsRNje4lRdgA2jhlGV9mGnakAMr3JIUmTIKHNoJK66Z1eL/cyz3VhHTynkvvyQUys4Ym3G2WfvaxT3k1poyBAprWBqop4L9UvVYeivQSDQHVwDQlJt8YDAvf3xPDuBRqi0XDwed9WftUFjLvFkVDdG/ReWIedzF7mVZhOJY2iUaa4jKdlam5Wm0yEZ4SlHMWrSKQ5xZYBzYeibiuY72+KmOQ05WjM+AJfmZ/8zX7a8O4v2X3PLC/fcE8jexubhm3W4y1bB6sWW+u6Ic1j5/8iCeffBFj+tghZmEToQTaF4m/JfzgkhLIWotzA9bG8iYrfshrOfdLm7/LbIvvU6jLip9D5kk1JLe45l7hJfPaK/+0NTYWF8eKoPbvu0J+LgStgnn9cZnVq6SlF4SwFJhES59P8Zl5tcbH63q01uCcZRg6Hlxd8OTxQ8ZxAnQRazErcEWkpHPP7b9PzGoELrpAUPCp3TFEgJbQi8UdtS61in/zvZQBNMsHUSiUMofSWLUWVretB8o7yrf2fr27WGbt/Xdm90+Uz6H/jq5P17D4UQ5+KtS4uX7XNn43iCPrrGNYrXHW0fcDFxcXOOcIGgPXqwZub294/mJmHNscSmf4VUDFoMtNULw9aHmPhJEyDjp87qhuqYtvsenqId0Cv7Esc7KewmdKvdZDbjLJeKKQsp2KaDrkXNZyCG+VsSvzQKXVevB76oeeuM/rRqzCL13xE019BcER3b06oEPoAEc+kQwowc+IGLb7Pc9uhH7v+OjqmuvbWwbr2Kx6LoYRa4TNMLJZT8wYhn7GWo8xlqDmBA0+HLC60KJwYgHFe0PWIMyzsDNRaTONWrKAWeMRogvYerCsBmW9hqtL2F9FP7++J6VdloXv8SEc+uJCKzxWIrkkyo0CqzwuhVFcVHYfsJBOaCheVeyUa9rfY/ml0qeeGkXSGjA6YcIeO99gpxeYsMOZga5bYcQh2oFcEky0qlHjUQwSKAJGVNDE8TTRhgsrMz171twmxY/FS0cg5QY3EeloUEIi+F4DPkQGQoxB1KR0tUq7fyUtnMgIVGYg71nN14dbOSGMBQrK89ZwI++LrlZGNQt1zXdNgmaISXCm0TPuZ3bbkZtXW7a3O3QSejPQOWWePfsxpvv1U4AgGGu4vdlz/WqH955h8PiZdEITUGbECJ1zzOsALjKjACYoflY0+3zkNmsMFDmPnnGc2d2O3F7v8T7gp/RMw6FE5UzHsOro0rMoaFDmKTDtJ6bRs73ds70e8UNguprxmxD7tJ3Y3u7jmnbRKsk6S1DofBRK5znGyQCi21lOk5unUaugcO9z2WgvFGl8miOHlxm9yLBHYV6TcrLI6ByTFy2LVlgWl7qP66ZOnxr7SxbXlahW89UqsBThf0HHK8twxH1Cfa7tSGm7nix/av+1PS/kVlvSW4X497cPKSmWD+9XSKxRc9pz2kIgW0TkGhoxIvEKmQYv7jVPHrp3tUzG0fsLE9S2pRnThj85ZGeO+1jLl/ghRWiVqCy5g9lZ3DtU/txxfd8iQR7tSrMz4xiVWMHP+HlO7/dpPxYHZMRYjEkxzYxgNAdNoyp+7nCZiSiv5OajTVcN2bLWpfOKlvlUBA/MaJhh7tHRQbAIAT9P+GnETyPTNGJDBwrWOJzr6foVq9UFxjpEIg+XRyHjixzQOcb7cZjUT2ni+mQ3Wmn4iwbrn+B/7zoP/n6wYG+SkK+H780Ki0OJgAPco4vHCoktwsFbKHped9C3tBai8hqHe+SkYimuzeVvd7enFWjiqbyWPolkSwxD5xx93wGKsxZrU7w/pRw6nHRhu8epFAFnouF2IS0aefH8qkC6WVZpxXWFrkh7+t+qxmV5Xyq1Wip5lrj35P2WqiwuTz+7hNfJC+l+gwba65bmvYkrOV63x22SZizvFZpqszLcWYdzHX3fs1qt6bqOEDzeT4QQmKaJbImc23uGXxGkTdFyWUtFS+U9yjep13cmUV3srWVdrTL2VJlME+u/x/cXO0obXL8Idr7kebQwlZUyFRVUS0eEpAM5hgajc5w7Phdq+LKjh1+PxzP8khU/ijHx5DuELnVgTbT2uQL2kJQurVnEHDy7/Z55nvjm1Ut+/6sveX5zy9OrGceaVefpxPHk6oZhmNntB75+tcVsPbvtQPASlTiizWC2jF9o55JWSM/LKASDT5O728VTS+cU5wzT6BkG2G2Fb79RVivlq68mPv50pu+FJx8ZHj40uE54cGW52ERi2PfQdVn5cWxidjh25e9Crd+eL1JPqRu56d5Bmo2VPvW6UQAVIbGWOfwknQuCYiRgmDFM6HzLdPMt4m/RHeiNIsag68ew+Rpje4bugqG/AuOwdo3rNiCW2fRMZkCAXnb0ssMx8yTc8lhvsALiYsBfFcPe7tgbSwjK/nYfgxJ65cUucH2jBLEwXGH6C4IEPB2+iFaCao7lEk+FVECNTfej9VAWKKM9dhIoG2ueghhFYnalkIf6iON9D/PZXjSLppjOaDWbDvFvVohpshAKIVnchIA1lnkKmADzFBUs3se978aAsaYoZ0SUcR/YbSes9VgbreqMNTjbsV6FymgIBB8Yx5H9fmQa5xg8MoTSrhxJP4eNiF1IFgNiMNZinUNDfEd0UUrG4EkYFJPMiFH6occHT9DAFDzz7PHB48OM2Qner3nwaIP3A0hW+51ip97XHGYnpPi2Q4udTIYKYdVq8h6HKir4cuDnyO9mxaZHiGb82XLIGI/zue6Y6woEZwzO2LSfa4yk6AaQrOPyHihtjO/pnaGzKdubEV4n7JSdUhhCWTCH7zRy0sS2SYtFJLnelPuZ0L/ffXhKCNST32pnTyoAFvelKf82g5Q3ji7rbjj9haVCWu3mqC2t4FEtew7/LpWCEeLten+eZ4AUH6ZmyTul+NADQba1ADp0dXl/Vj9LoSu/y/vANPuk+Gncvsh/DrFFYwXR8MI+eLyfm77Fee2Mo3fJ+rAonCLvNPs57feY4RQkWtwYhwgR7xqP6szu1ZdsX33FtL+N1j7jLfMUgz1bE4PeR7wZafs8jWx3txjjkgVPDNZcrbOEkA7PVAxoOpDzBkOAEH1jbQ7cLXVu0xJpBqX2933EhmmhXfpLaOYkCwRwMB80y2CJd4W79+33gSrUn17TJ/FL2tatm+nbta1xc0DpOscwDPRDH61iG/oS0rgEDSmAfTpmTQGdNWln7lMNawUuh8hqzSEeJc1BMXO0/AkonuwClrJwJlqSD96WVmcVpOzFbJUdF0K2XofldamreT6XiTeWwl0tmfijO3H2qfE6vlcVl1W+OFS+nwI5upbyZD4eaMu9z+1ojKXrouvo5cUlH3/8Kev1htWw4vLqiq7r8H5mHPeE4Pn6m694df2SeZ5iHEc5PjA4wy8XllxfxlPS/Fa/t/bDd87aAb8htHvlwOW5hZPrtCGwtPuxEc5y9uCsTS6lLWIsihLUlL2hifYVitCShdcsxeVBw+kRaPffMbzdOv+lKn5EwDqPBCHogKdDeIDIY9BXwIhqapJkXVlgmgOzHxPSNXgV1sOK3/l4y0N7gdlMrIzy448skw54sXw9reluB15965luLcwpyE6K+Jbl73yqq+Kr4N0swHyuFNSgPjKe8yzc3hqMKC9fTHTdjLNweQUXF4G+Vz75zPPkY89qJXz+heWTzwzrteEnX/R8+klH1wkPHxguLqLnlLOKzZmHmsmrrcmMaj2tJQm1mk4N03BV6c8cKpPuax6l7pXMwB9l7Iqtr6dnB4x/cv8wBqxEaxkbPFZGhJEwPmd68cfo+Iox3LD3rxAC3foh/cVjjOtYbR6zvnyCcT39w48YNh8jtmd0F4zuEhFho3s27Ol05qm+4CN9hhNlvRpZrUYQYRbix3tejC945V+xG5WfXgvzC5jNgH38BX5liovZTEgCd0r0nPRxeQq8jYpCIIV3z/OXAhorMYYQMVhuqwGWkp0p3XtPNEsWV2n+MoJq5MwcIyZoiFZQ3ifFj5YxCAGmMeBnj+BxNmAMjHvPuA/4OUZhNhJinA5TYxjtrMfIGE8GTQAJWGuwtmOzucAFUAIq0SVmu91ze7uNGcbGCe99VDx5ihl+ZC6TyiOdFBlrcV0XM8lgsM4hSfkTjZuii4+xKcC0FdbrNcYZpmlmurlmHGMA+tnPhOC5Gi94+OSSzcUaxdCFeOK9IFuR2/8uuonXQ9Qw5mlaBL0Tsu4rEdFWV5LntAglkgR4Sdm7BAgL5WNkcJNVnkTl/eiV3RRjSzhj6UyMw2VSoG8RkrBYn89tsyI4E12FLtYDZtVjEk6gyvdvB99hYI+FmyZA4IIGNET2ffGOSaGalf8RdQphoRjJyklY7NyihF/ea+8fXkchLzEmuhSkl0JOMw6mmb+8cVM97bgdKXKO3h+zAdbDgKWIIQfPKVH5Y6wFrS4ii3dpFWwPlT91iOu9NubJ/cJBfVlRHiK+GMeReZ7Q4JPLV3YNjvQhWwRpCPjgmeaY9dBIjnMG292Wm5trvPfFGkoENsOaq/VFip0yE4jKoe1+y+1+m9yAooW1iGE1rFgNK4wRVoMy9Ao6c3v9Nbvrr5nGHdcvv2R/+5LgPRAzF+aMh9bGzIv7ccerVy+w1rFabRiGGOOnMxZjbRT+fXY5FYK3ybLJQBjxNsb4MfbY1atYBUu2qMh8R8om+Trz6e8BrXB/ivmuis+8rjJfFngdVOvLO6y2vi9kwre4tdwDh1Y/h4rRfP2mtqmmw1KxDMPAxcWG9XqFc7atvbiZBR8PTCQIaqNF78LCPdyj4sfA4w34IMxe8BoDkN9qYA5R+TNqdvuKvEgWTAvOE0PJ4tnQ1bj+qkKnWrrUMVvw780wFkURqY6lVrO5luZZPVFEOcI1d0LrRr2s73iKU7+a4tKULbGtBHLqoazkej87MYI1lvVqTdcNfPz0Y373d36PR48eMwwDl5dR8TMlBbT3M8PQ8/XXX7Lf7yJPqOdYP78qiCtVlitWqqJ6qWiBZVTCev8USIPvpCn55rV4uGDrl8UubJRBqp7gp4VgFH+P9Ct7KVWBt1Z7ZGj5Fs1bDNZrlT8H/NZbVA+/AlevHNcxnjyZ1IQBZADtKKJK6lMsGxkhgNtxz/Oba7bTxKuLW8Zxz9wNyDCy7id6ETbrKNSPath1nuyCg7Dwb23IDgWhNVCIARHpFTe0YIrANY1ZmIX9Xrl+pfQ9eA3sJs9qDbYHccrFRnnwIHB5GcusVsowpJA5AhIjriZEetweyOMRlQjxMp2UZyVVljXzTrvTVu67QWbG0hfyyW0hmicY+sxILZQ/+f7ib473ESDMhHmPTluYb2B8juCxYUKZwXZYZvoOrO8ZvGNgg5gpCZvxJHGjI5dMdDpzqRNXOtIJXHQjm35ERPCieImuPdZcI+EFXVBWs2BGwdo1hD1IQCSqB+q5qpS/vgx8ssLIipQsOBPKWFH6Gx9pT4/ib5XI3n3q8z3n8hhvAFWBkNhZGpEq/m0QtjRzrSHHjkgZs0SPs26F2FkJ5Hjq0XVr9jHzBwHEE6xJFkQp1TAag776qHiaEyOZs4Y1/6Q+tRxXXncmKiRMPLHOmb5q6BDNhYuVinUWpy5aEiHJlzwwTxOzn5mmnuBz3IeWiNXBlcW9+4MoeFCF78Kw55lK5FOJriJJUUfJUkBNNqZRtWCap6UxKc1rUMt5qTKOge0YiuJnbhQ/No2tNYKz1ew6/+1M3B/WCN7nLDpt75r5a4jg9zsZPma021lZKuve5FJ1/1D4GFkKX207atvrb3e5f73tdWRs8jrKq+Ytn9UcV6TW82aodmmqzel3wzipRgvPqHSI4IPHBPvWip927Mp1tvgJrxfSvwvogXK3xZ9FeR5CdCdOMYzQgCTrHz/PzNM+BlmeZ6Z5TMFvs4u4sr+94fbVS7yfU11xfGQ90oeoMPc6E3QkaOB2e8v19pagAWUABkQMYb1G5ykqZb0iXkFnxt01+90187RnHnd4P6EhJLzp6rinjpbYbkHpuhnv56h8qgQkCf/VVcZEf1i8ydbO0Y1PTVX8LD6tAkilSZt7v0GB21mjXZPN/JJe3Qrhp9y7KlNeucgUU50jV8oWTihcZNGe17U7/jnEka/FXdnUBz3COQvlz0IiWr7BWEPXuaQMzM9nmq9l7Zc9GpQgJeQy9x3jRwQ6K9gUbNWkczdXZA8wiZ6rZNfW3MkUvzILngd87PI61lHvH1ohyOn7i+tFy8v90x3jzt/fhkM8ZelzqHgvLFDznij/1PtlyTTvvm8dZgsiyULROYZhxeXVJQ8fPiyKH+cc0zTiOsc8T6zXmxg83hhCeI8NO8Nbgd5x3Wh/aC3fMr6r/94FEW8V/lr1YF3eMffLDXDQtroHl1g3Kfazoj9vAmMjXpOMZ5vNcdj0U12RZR9bEaIN3bKspqEpi04d7++74Jeq+DEmBjkeJ8M0m9TJC0SeADtUbkDXQA80jDDFoBw/B252O8bJ89XL5/z+N7/gxe0NFw/2PLaOoVvxuBv48aNbHm4Cbme4WffscHi1eI1xhOIcZS1Fnsz4rvrJwlJqQ3GxqsK7plxSQWGcYiahySvmGexnQ98r4yh8/Q2sV8o3X038wVPPMAiffGx4/EjoOuHBA8NmkwLEdmAS4VoNQueiO1TXSbQKgqTFVyC53BBP9U17SvGeUglJM0TNAUmhAI1uoxCLpfKHGgHdQMgn/axheIToBr36CebjLYzXmP23mNs/QUJkZse9x+Ax81eY7XOstUzbX7C/+RnS9bB5ApuP0ilkx6N1R2+Uh2bPlUQG4GoVuFpN0a3HBESUaZpQd8PISwRl7Vash57ZBqZemDshGEMwEBLz44OUTlarCq0CdDMWisSJTCnEM4LIOp54LQtXryh0vx+hsyXouYXlI1KCKtsOhrUDCUwPVjx5+oDdxcBmveHyck3nOrqV4IaY8r3vY0pXY4Rhbeg3hhACXd8zpPtKIGgMveg6S9ebFChWEeMiM7lyMUuWpQhPWLC9oV9ZrIsKNte5qmAKWRiN/zlnWV90uF6wPagJeJ1RPF1vWF/2uCm2z/aGoe9ZX3W4tSGoMDiHmcHNhmAuGS56QvCM04SfZy4uN6zWq8T41tPpwuW/Z4iWiw3Bkyy4x3+r2q76IAeNWb1AS1Ds+G2pfWmVz9XiJ2M85cX1lm9f3uB9iLEdXIcxhs1mxeXFJgXkjaXR5PaVrD2y24g1ghhL3jWq1U0g7hGa9rRXrxnbrHDN6zhfvxVIeaYoY8v1O1TzLiAFFTR/DyxlltxKvcplmocP0O8brxfvLXdaoabhRhpBMSsSk/7nDsgIRpprUwVLactQKxKBEPBS3Ri99xjjk3LxMIZDWuetEKnHiqj3Y+nT1E9Va2kijGIE2/UM6w2u65PiKYWdjSYxRMXPxDzuCSGmXu/mCdWodHEm1WhctICeJoxI+ayHgU2y4NmPN2z3nhBmVD0i0fZ06B39sMGIpe86epcyU/ot+9stIcxsb56zvXnBPE9M075Ydoi1OBfdLYJqtF4KSrh5xRSiK964v44uGWJwxuESUzzPydXXGlZDjMkR4/10WGPTdEeB2xpL13VFiWCMTbH7Eu4gCoH9MGCtvWsavt8calZ8JGreKg8Ln5hpZV7/p9ZUXdfVtTDuhTYGY2sN2UrVkr4rmW863J35kbxnTrRBdfn3HeCU5U9pWdrSxlmGoWe9XtF1HeM48urVK3a7PS+fv+T6+pr9OMUsX6XtunjHfUNQ2PpoaD3nv0EIWHLcnj4flkhIvGu2Xq4t1IK3aDLvlVtky8fyS6skSvXUEdNaNgeFXg5tKS/LSpY/3/XbnVBWSam5FRybn0vxU5RG0nPaXBf29lRX7hFixrguZoXt+2KtmPGIkXjQO/Q9zlr6fqDve5zrUA3I/H7I9hneDvTgb1xEdSUdly7Uk+MFugRp91ezdzLfIoeMTStz3bVqJb1d48GKamDc3TJubwDFmpjMREwM2SISD0RCTv6T6y4KIC31LsK0nNg3hbUq5U80rz18oxmpUv+bV/svXfFzcSGYrWG3tWgwIA9Q+RzBAVtUrkBfosSTME0IMx/yjJNnenUdg3xh6IzjcrXmz3xyw8cbx6XZ8NnKop9esPUjdlS+/cqC6djvV0x7m7TAkQGNcIhR0ycTa21LpQkVkwbd4HGg4MfAboxKhOtbi/3KY4zy+3/g6XpP3wWePJp4cBVYr4Qvfmz45KmwWhs+/7zno48czgmrjdAPQtcLjx4YLjZROXR5AcPKIBIwNsZMiUonT0hKH8EhjT3KvUPsel3X+a85+N5+IOsRyu/ZykmNoMYQBLy7ZDYrINC5S7qLpxi/R179DHnxU5i2+Jd/wvT8j2DeEcILgn8WLa4uN5irS8R1rJ78iPVHP8b0AxdPn/Lp+mMGa3jYeR500Bl4dOF5uNlH5ZpVehtjx4T+BTv9CqfClXvE5coyucB+DdPa4sUQlHiCqvFk02ezCdXkSRjZ/7ypg0mR3zWulxJDBGK2JyjhpwqDJ63g9X5AckafImU3QpOJylZVcD1sLjv6QbBOMVaZxpm+G9is1lhj8b5nngY0RGVL38W07fPsGccLVBXXdzEOgAiTn5mmsTLYKU2zcdE1yBjD+rLD9ikWU0h7URQ3GFaXHSEoq81AeATRXckUxBrdvzxihGHt6AeDdYDxzGEkEOg3lkuzwvtAv3Fc7tc457h4tKK7iLHG7DzQ+yjsrB/EsjGA4Iz3nn7oubza0PcdxlDcFYCqvXhPXIcSYxcgDSbTQIyrQsShmrJ9ZVei1K7oWhTHyc8+xUgKJetQIV4sGbvsoqVB+frrb/mjn3/JOE4MQ89qiIzXxx8/ZRh6us6hObi+xLFxSaBz1tK5HHfJoRKVP4EsvyytJ47p9OmNsWCaT457g8yLvKSF2C4EGyJOVZSM7e/zZLptdXFnaYSKqtQ5xYpTlYwshcLTwtoCHR/VuHwi4567+roQOwuzsVQip1+19qXG+8n1R4VWFGy11Nz2QzUq2UMwWBuTPUTXoLh22qc0vbDMUQiLw6P3DSVGWHvTOATFicW4vhF08zpMGmsUP01M+xinIviYZQsNcc/ZOMbWDfg5HlL0Xceq72OWQWvonUVUefFq5OZ2Yp5HQhgR8VgjXFz0PHzwMCpVVJEQTdh3tzfcbL/GzyM3199ye/MMP8/sdlt8iNG/srJFxOFDYLvbgRnZTgG5uYnCmTXRug/BisOKRYNGRdWsdF3Hw4cP2WwuiFY8TUyEpGxxruPy4oJ+GKJAl9zChKw0lqhc0ktM39//HFKVEaFxPzoKpEzEBi2aWbiF1gfrVGuKJtkI2fm5KqDIYi/IonbTPFPbsMBpRdZo2vFOypWl5c8BVqwNz9k2nWW1WXH14AJV2O123Nzestvu+Pqrr7l+eY1XZfSh1BYybtfyz71CULgeIajgfTzoUE2CmY2+BkNC8fHgz0d3rzQ/isSMYCHHz0vcnGSBrNnnsrATPQFV4dK6dx0FQ8606HVBkhte+q7f30AV32q0T1EblaroiZlqa40tHXofIEkZPPQDq9WKzfqCi4vLmCXQOkQMzjms3RA0sNlEl9NhGIDAfv/+cf8Z7oZj29rKMwCLdZvx3eGeWuBVrc+cWqvSMFILl8pF4UNGJf016bdkFRzCRPAz25uX3Lz4FjQw9B1D18XQEc5ghj7qA0STEepB3eXwcfnao33clmlohJ4s07jpl9vVKvZN8EuP8eMcWJs0BRhiVq8VsEl/O3IAwhKFIp+CJOZgDh7Eczvuebm9ScGfb8HvcMExmJGrYaILjk0/4boZ6wSZ2yXYsMDaTlWznPRw1JdQlmga6BK3F2X2GmNVS8DsoitY52DaBW5eetZr6IxBZ8Nmo6yGGDzRdcJmNgyrmA1scDFYnffK0AvOJaWJybJLRsL1b45jFJt3/4RVmqGrpx6HLmANAZO8GZMQ2XwAQpIs1Vg0neJpn04qw4jMO9g9B+lQ+yISch/w0555fInRGdgieovpOtzQETYrCGvMNNCFS3p1MW+cgDNCZzy9MTgDKxtYuYD1M72MWN1jVLAyY62iFmZTsptjQrR8yFF+spBaPVlr9J8YuyeuX81jkbdqlmbTZRyjtKqklnk/ZFXquyUjVqnrRWtbjImxHcDSD471esA5S+c6+j5mabEhrs3IvFs6F7Xgzgu2i4pI10XFj4jgJsG65CKVYusgMf26dRaxgulMjvwdUUU6SjdWcJ2JjLm1EKLaw2CRJKj7ecaHeKLdddE6yJSTvQCiqR4bg02rIjYqJFxvMS6OjxWNFkeqWBtjGYUQsM5GhVHvcM5FzX+2XGsI03sFrenaizipNSBxDOLcXNdC9b5qcrXSFDjWNyfIleGve14QNWgIjOPEdruNcY/8jAYfza7n6UgAinVEHGFEivVPFupavFsVT5T1mZq9pJbNK6ow1v4gJ69bpnVh4XQkILUktTL67w3eUPVCJjg6Xc63T1KykwzS617Zxq5YTIDQMG1pvmgszo7kljqni2pSFUpmYo66FddB0CiUheoqJSYyN1pcFhc2BHX96nI1HPTwjp5/N8guK4cMa+ZbJJ0StuOQn8wxfkQMQRUTAuo9wVvQeMLoTKQjXT/guh6QcvptjKEzQm+jy1S0hEl0KNNaIyXltrUOnWfUe9QrGmbmaYefx+jiNY3JlcyXPRdPN2MWLhVqevB5TgcI0XI3um8JVmxUmmq0hPZe8T5ahvRd1+z5pBBJcZdC55n6DmtNjF1oAxqSgkii0tiaGCSaN8TU+c5z2Vr4nFCaxG3Q4I3075ELV4tnCk/ZVrSo4Ljs0crVuO4PiktupxzreLTdG29UADV7+i7lj0pid6Wsi+yGExJNmKYYz2rcj+x3+6hIMSliZsEBpwbifkA1WfhoCuYcWoIcV56RFFsyJmqNJ/ZKSffuA4VnC+XZvKuWeOrNJOE1bl8Nj1zqa3HuSTi0xDxsS/tsXWRZUXmieUfocLm+tSmjjTVuFTzvas/3hsz+GZM+FmttceXKBwGSTp4NpvxuU0KAo3hVi+H57nTgbViBX4aL+J9myAr9DHV9HuK5Jd9S7kiz3hpF0ZI3O7GfFvvsYK6aL6VlsuQWo2gUUlB6n6xxd6CKEyWYtC+Cr3LfKWbrJI4/YONKmSgv5vsLm6emnoXbfVtf4aHevDB/qYofa2OMGxCeP88otAMeEyW7r0E/Am5BdwivgInIStQUSIbIKI7zzLe3r7idtnz5YsWX3zxkvN0ig+Xh+oJL2fDJSvn0457NZc+3zyz7cUWYXdzwautC0fLPwd/MPGZFVbolLdORR7x5TuKJVlpBaBD8rOy2Brxn3MPPDdzewNALz18IDx8o1imrtdL1UfHz+PHE5QZWa+HTz4SHD4XVSvjoY7i4ilpG60KMDyQB1SkxSfJWC+C7QrHqSdcnrX3QFIAxbsLowq8p00961mgK6AtqQJP1thpLsBtUeywfYc0emXfIYLBDgOkWu71Aby0hjFgJWALGG/R2x/ztM+iu+Wraw/UzOmd5tO54tOnoreH64Zrtg1XM8KUew8x+P/G3f/YtP/3qmq23PNNLJp1Q2dP5G5x/QRBHZ0YmGQjAFIQ5u6f4agwb1BBiKFwm6ZjVEUTwkoM+S9TglVPFsBzLFse9N5AF3TuyZ5AYSNU6GFaW4KOroTWCnz3WWJx1GJFk2ZHi4lhD52LwzxBsOTm1zsWAysSgi9NsataPjMSNSQGXhWHoMS4qVKyaaDGlhtVmwNgkLAYhByeO4YnjfvPBpxTZRKWPjfX0vcN1tjDpXRdTsw9Dh/cBYwyrdU/fR/+yEGJcn3hNiWPkg0ODYp2lX0VFkRGq6c37YIIOQIE5BXfNwZRDUJxJJCPEaDxGYruLxU+IT6eDjTjmGveqs3FsjLRxNsAk3NZZS2cNGpTb7QVPHl6yH8foupWYsovVikdXl/TJGsFlK41URgRcSv+bA7tmItfG+CwMpVIDV5/SzdAoE/JNPWUq3EhGFbWn60Ocrwum5Q76fU9Q35dPkKEKX7pgaCoc3lnyNofIOV8fvFkPY+w0TaoNKXUsx/lQYjg1Oi1zlgSF5uTgdTSquHQl4TKvMcp6j/Ppw0HMnqw854Cx4nj53DccCuWFf0jXmnnEVsGeWcfWKsgFbAhpSpJVpCr9+oqrx1GxPfQ9q2HAikmCLKgGLozBu47Zz/gwMYcYy+7q8iEPrh5iEG5fveB2d8M8j2xvb3j14ho/52yJKYtp6FAxMRhzd0W3foS1Hd36EW51hYhFXIfYLvXFF+WpaFXoZtrQdR2PHj3mYnOBogRfg2wHH2ModF3H5eUVwzAkBbFJLl7JjV2IqZy7AZff+z7m8TUCW8vf19WdBA1tf1iud7FRcBVSv+wJobR5t2pI67rGyklIiRwzb+GeK3Xfx9fnNVb3Q/lt+UZYbvj2sXJgnU+SBYkRlJ3Bdo5+6Fit+mgN66OF2Mie/fWW629eIJ3DbtaYvqO4yr1HxkaByUcFnNccvyzEMySJdLozGqOMWsXFcJAEJIVNiHR/TiE9PBQeL2gTFJpWQVJ5qbswohz8cGoIikx76v7RswczehKXtqv0FH46rqaKnPVmxKMtU1prersYVN8dVEN0PZ2nlKnLl/2wiPeW2tW5jtWwYr1eE/zMbeIzTu/oo1E5wy8RpBDpuvaP+JpG2XF4vygcRY72SK0/laEqTFuuZAmRDqkGxv2OcXuNnydub16yvXmFCPT2ArNyWBMzUQselBi7rlhrNsjggKdd9L2UyfsstvPg7HNRT8bHmV3Tpr63sfaBX7riB548icEIv/oqpbBihfApwkPgJejnwAy8IJrMzFGgyxwT1bpkO4784uU3GCtsDHzmel6tNnzyyPMbT3u6bsP2YuabL3pejivEOp692jAFINioZVATiXaZnGhpksXgatSZsjcBNXVWFRLigjV1ETcuHxqiMKVeuZ49txIworx4rvQuWgMNA3S9j5ZBfUwV33XKo4eezSZw9UD4s79j+ORTw+PHlj/39w78SByuC6wvPJ1V4snhnNps4glZlUTvDRZKnvR96f6VNqKQFFJVeMym/tHVK5rGGevj6a1N0yKg4pjNFYJi1h32wSVGR7h5hDx9CNMWXv0B+nwN8xa5eYG7eY7MAX15y/5mZBThD38Bf+SitcZHDy756OqSvnN8/vQBLz66wgjsdiO7cWI/ev7un1zzB1/eMovDby7x60uMCKv5Of3cg3EEsyK4gYCyD4EpmXMrpLR/lsBAUMeM45YL9jLgMexMj2pVPEZ9Zjrx1XpCu+Au3xNk5FTjwLQYqgqErgNru9hH33N1uUoCTGU6jSjWJCWEEZxrrMAyUi6nL4IPUdGixFO5aAkeFZY5FWIOwJwHwkqMztj1Fg2r3Inc3CJo1Pu66J1ACuic3jUATUyZ9JooaCQ9c7GMAQi5ttyf9MaUujw+HsooLhH7u83N24CqMnpPDqIspOw/Ie+3aJNmJCtuNM0PZGtKkZTWnmTZJTkNu8GVlOwRd4tExc/QdUlwG5nHLfv9yDx75tFjreXh5YZPnjyKptZlXqjrAaiuTVVQycJKFDJS22hkqYYStjxrPUWuY71U6DdjhqR12/xW3DEyvk/rJgtbzbveF7yNoJk1dSeVJY1Gph2T1+KSExYx0l60Wp6WE0FYauJaFmX5kkMhqDZHTumh8i+p7Tl9uG1OcdPJbsINwWvMGDT5hv7EdWWzYC0cZA16f8z+YaBfbe4vrC8ONZxIdAvrXUlql40dNVkAqSorO9CvH6AovYvuD8ZINEvXqEixl49ZPf4MTfwAxFPJ9eBY9y6eYI5bnn9zy7jf8vLFC779+tuYUSzF9FE1eG8JCCIONzxhdfEJXT/w8KMf8eDRx4ixWNch1qGqzOOeeYqZT3IczBhPaMC5GHPjwYMHbNbRJWMaI96Iih+f3IRddPXqB0SiMqu6PEY+zaTkDeY9HWy12a3KFLXCSQPSXJWY0xm9SMZ5EY+6Ml/RNaXrOyRlO8mKwZwFC9XkhjsnwdfHjHBonD/vC4kr4RDS53XQ/lp2f2GtD/dEcwKd/hUisyfOIYPFDR2r9cDFxSpm9AxgZWInN2xfvOLZz7+mWw9cfGYZ+qioCycsK+9zN6rCfs50PVoTWyMYEy18rEBnoROwLh6wmmSR5IviB+bkJjYrjGk9zxrdq+v5QasMyWO0RLl36WPk1PVdZQ7qWdZ5/PRd47mwZitocFl6ORsHxDb93tTyXukiKEE90zRixDBNY0nskZNz5AyDWeSKWeYuGMcdwc+8fGWZZ2nl69KhrADgsM9vDXf1/v3Qlw8DtOED693FGdXRE8cQyyeeo5FXkKMl27yr8u9a5PZaKtLQGYJnf3vNqxff4qeRm+ffcPPyW6wIm97gZI3LxgY6R9qERciHmM3aapdX29+2d6/bRKc6c3hbG/76LZbeLz3GT98nDXuZBAMMxOavEdaoroEty7y+mQmVMlEhKPt5RoKyHffc7rYMCH7c0YUdg1pWduRiNTE7yzDMMZCv0QMMcEDUVVkGST0x8k2Zhr2LpRYSX/1JVfCaRS4lzIF9WuzORWWIMYrrFGuVrgvsd571OnC7FR48UlwXrRhut8o4xTcOoTZBJZuNA0VRdX9wSMhOXucNmZjukqY4K4OaT6wwnmiGXEdC6GrT8jQrxHlEe0SvEH0Ic4/6K9hfwmQw4x4rDiM+MtVhQoFxmphkwhihk0AnytA5rteGm3UkGDe3e253I7sp8Pxmx8vdhBew3YwZPIQZCRPW7xBcYuxCUv0tTc7jarBRNajR5csyY8UV2anszZZZyDJTEVyaAX9PsFAOH8tsxPUf59DY1OgUkymu55RVRuMBYBS0UvAzW916JLvzNFJoCILX6AoQFT/VaS4slAGt4J05IQF7gNS1qheWXcjC+8FOyPUctGs5ILlMYvRMfcaY5TM16Ofhs5y4vh9Q4hozxCUft1JVVmRXr5CYepPaqEpxETNIo7SVcgrtkvVPVCppVfw4R9dFs7y+dwy9i/hGIZgciNbQd46+c+V9C2UMLY5MfUl1tF5EkVGT5sR5uR7yKGRLGVjKLgtdRYOiF0u9mbPKAy9t394mvfH3Am3e0SgHWqXY4dvvao00Px4Gfpbm3nIY86m4UF2RcjktY5sbclTmQPlzeI52qhcLpc+JsW0VgzmQcz3ZTde55hAz/bU0Jmora5+OePv3MJ93ZxNLfw/ul7HNsmPpV+53bmOKVaSKxWBNpIud6+j66DobQoqJqEqHQHYrwyN4DErvoO8E76f4jJ+Z54l5mhjHmeDn+H6TY6Vl94oO6wZst8J1K4bVBevNVQy87DqMjW4+k3HMdoz00Ue8Y8UwDGs6N+Bcx2p1wbBax/ZiMWZOip9o3eKco+sGun4gsQLRklJrqN1sMfO+9uThPJ5WtB7fWrh50eK7ur9ssvpxnUtx8MzincH74vYW14ISQqw3hJiEoN3XbYbtu0AO+tR0Ljecw/1Z+x3vt/Qtr89snWvTB00B/COSIEwz836P2OgavMSpNHvwfrnUSBdb/qE5/EnkPlvIGkmowkg2hC2qDJtYfNUYgjBnvcyor8Z4EorVS8sPN206tYTksOybyjSFXrf073LpOqnHb/GiUL5ILpS+tHXWeuqaeV8JSPLeCRozO2fldha7Wmuf3LesWHUuxmFZWpjWPgCLNZ7fB41bPIe07jScSjRwhtfDcm3LyfuwXLfNXU7thcIrAm0A6XaepY3RxfH8Z0vL4CfmKbk/zxN+mpJZbUAyLkFTWvksvZRaCj9XXlMaefKy9LX0o1gB3VUmM8xNN9IDb6KMvwJXL+X21mNtymqBAGui8ucJ8OPUaAd8DezREnJNFwgmp1fToNzs9/z81Quu93v6buDTqys2/hZnLJ9urrgKE7dXA794uGPold0WdrempGYvljEHmbByHIFyKFx/af5qI1AkpCGKlLBWaWFIFUyiO5aJJ2rAlKzEJMCsijHKOCuK4Xbrud2B2MDX33g++kiw3czz58LFBXz+hfDwocVZZb0SOhsQMWDM/Z+KZQQrzXVOR394v1j4UDTyQvpbCHAzTpmYZBqq0S0whqvuEDGI3WCGh+AGnP8YxzXW73h0ecmTJ4+wGl184gmo5/n2Jc9vY7DwMAeuX92wd5aVU4QJgBfXIy9vRkYPX98It3MMKGp2W4TnWNeDMfh5BGvQrkOtQ1EmDcypnUiHYEF61D4Cc4FKjxiPiEarmOR+U7i1LMxK8sApAo42A/m+CUlCgU38gMWqUUU1Zp6Jp+tTGWMN8YTXiGJttGRzziKdjYGOrcWmGDjWxHg4MYNL9M9WhDlozL6hUQmUT9S8anSvKsQ/s29t2+rFaYcYFsJVI20eFLprjJv7hUa0hOOUMqI++X5Ekwo+pLVaZMg4iNGLMCqBTL6fiFWMURUFCINGNzpiv2JmwBiw3GTmUCUJXvGez901FtMNWDWEvWe/nxHxjNPMPHucizFCNFQCbQqxrtY/xWybZOVQpqueYBRCe7AfdPGPtJNCmZn8T/mrdzLHpXhuV3P9NgT1e8FpDucITgVybhUjVVlCCYgrB6s1p1hOtRTmNj8LlfF4F+xzlzCeLf3qv/V96ZI8f7EPJsUWi+6hxpr01y6EJD/NXH/7nJtX19FVsUsZAYeeq8cPcd2QhOalQjQ16h169pZwuGagWXoNz1AL1UcPqwr1lzx+UeGdMmFZW/gHlaSQRxF1WFlFBlUDoh4h4P2em2nLPO15+fIl3z57zn635XY7EoIFLOuLSzYXF1GpY1eIHbDOcfXwYy6vnuC6gQePPmZz8SQK/sYgMQgavdvEgNRoCsYPYgyd67E2pvt2XQqEaQTX9SmjH9GlSePhgXFdYSZytyPuoKyfFn+8LzilAIro/w58f2AhpKox2PHNNd4Hnjx+zOXlBathYBgG1ut1ChAag9eKSIllhcYA3tM4xtg5U4yZoxrwPpRYbPM8x4xZmqyFkluyTwokqPGYchu1NpKmwXWNLXfo4jtEpcnQ9fTDwEW/orc9Vhze79m+uuH6xTU3z14w3t7ixxHbu5LFTheEs7pccMeYflfIQlkhVRJj+ljiIdscIlnzc7SHqzEzs6VQlTZ8I4BJQ0+1KAg0hlag0vys2K7jWL+016e+311e7ix/9CzH+GQhhxbek6XQePj+O6dl+cP7pYshWcL56ua1eH+VMQCcs8XV6+a2PyED5bl6EwfwNiDvhYx8KNDugcKeNQccNLxJUeAd1nEXeshyZVt3fmkBRZqFvNiP6X7rWjvtt+z2t/h5Znv9kvH2FX6eCNM+hgTRmKfWGcGJYtRDmJIyKMozIgYxKY5dohmt/PG61dXuy9ft4wUvURBFVgS9ef3+0l29Hj/x3NyAczMxiLNBuSSS9U8R/ixwSUwa/PvADdH1KyuKKIqCeBoSlSovd1t+/9k3rGxHb+Hzq56H84buSvjNq0tms2F/3fHl0ytebgPPngX2e1A1CB0xhbxQXbii0iclM71DuNOjv3U+AjEOUPLPL0F7U2RmJFl7x5WgvtYqc57KwM2tRSTgnOerr3f0g+fJk5g17MdfKB99ZBhHx+efG1YD8DjAJsfoeD+nYoUZa9y7ajr3w/tJYEr3ixIofayANTUYck4zTZCiELEYjPRR+OseRKutMLLulMuN0uueL8zIb5o9HYEwjzEY1zzxB1/+DP8ljNPIPO54cfMKY8DPt9xsXxJU+erFxDcvJ7waRnPJZC7iEY9ew37CWsc0bdlfP4sWLzY2XFG8BjwhxkFwFxg7IHaNrBXpDcEGMJcYExGMNQG32LS6jCGel0dmht6jzqeG+6uxqDJCrIGqgVAzzPhxz7i7IfiZEGaC34MGjASciZrwoe+wqx61Btv1ODNgMQx9ZHatAessLgX5HGdlnAMhwH4O7KdA0GhqPc3xtHtOClFoT/M4GB+pQh2tsAvFDjj9FuFw/77VoCUIzVPtHtPjW+8JVGGas/tWnElvIqkzwcSsf8lixmggaLXCMvm+keK1kwORZ4bIaGMena6NSsxiJwq2ww1rgjjCqz23u6gE3O1G5ilaWYYQs6uAYKU9aTXFoiGEFLQXKUf8ooKmoEnlZKXEwUqnNpqM+zQLmWngy77JBL0K4K35RTEE0eVKyBZi2j5LZPrf43YsyoGKslvyn9rQCLyHCqBsBWFNzZ5mJcVSIlt/xR74EJibU/hcVxsws7idfAc4rZzK/6TdWbaqlN9EJMVCiR/Xd7iuw4ih6xw2WYFqiH74fhx5/uWXfPOLLzHWMKzX2L7j4uqSy4cP6Iao+MmCcsv+3SttTGvrSFl4Ulmty+fyr9owihItH8sQ5bTnJCvKNH5ldoSSNtNIh7jommvUY1JK2t24Y3t9zbjf8s033/KLL79k3O+Z9yPexxTql1ef8vFnn+O6ntXmIcPmKqZKXj9gWF1iTMdqfcWwuihUIv9jCubQ8ok4Jq6p3P7UPVxv6IogWgUB0yh9WisoI9Vx/X0rfVooSp9D6eMNygoR4fb2hj/+45+x3+8xRvjJT37MxeWG9XrN5eUlzrlybW21cFeFcdyz3+0J3rPf79nt9kXxk/fmbrdjt9vhQ2Ac9zEzaQhJaTQVpXqMWxGFm5C0L5JSq1YhKOPaVsGwEN2AyFte9AMX6wsuVmtWbsCZjv285+bbF3z7i694+fwlu1ev8PstoTeEMKNptWohOPA+MGpcK3UNAjiJMX1s4rlnH6UKRNJF01fJ+JRGUMt4UrFNBrAsieRyGcWVddqMXqucKK870Xg5eS1tEU5/OQV6gG4awbB59s6l3BRtLQ0WFjFv15DvDNEicMYbk7KOhtqucthRx9d1HZuLDbOfuL5+WazqYivToYbkf0rvDt96oiXHfVzioffJHfxAoVnz7Wgfuvwflo1fXyd7x3V47DK2TLDQzk6lTUvpIDTGAvvbV7x6+Qw/T9y8es72+nmUdfZbjM5YdThRuhjiLCYWmsciX8S+pcO2fIB29HbK9XdbMa9fq29zPPlGxY+I/MvAfwX4UlX/fLr3BPjXgN8Cfgr811T12Zvrgq4D10WLlmo86dDk8iVcgFwCa5SOGO03WlQs2ODGvApg9oHbacIHZTvt2U879k7odcfK7gnWse4mVoNn9HPMOmR8qrAy+qeGLOtn3jhLB74zJVV1wwQdjEjqdxY+qlASm2XwPi7kaVZ8EOw2+il/+21gvQkYI9y8gu1NFHjGSehmSiaQKgjzWyLyJfc0j0XJ01C2qLHV5f0GIZ/6IPWkP+aNqoOsi00a3YjEOKCPAX9Z4WRDp46h69m4gYGQspOMTPNEv9pEM3WFME4xvWdQ9qNnux/xCrf7iZvdRMASelJmsWgqT4gxk+Z5ZJ5cVPx4iJnDFV8yUjlIsXsEhwmeGBQmzX/LxJME1aQQDErVXCfmX6ReN6vy3uYwj7AUzqblAtKoS52F6kIUQD2qM+iMaIxBIAQIaT+pINhoTYLHiscKOKN0NroxOgddl5WTcX+HJDQFjT72aIwBFdLeKBndpQrtx11qd7GW1ZN7+11huXfvQLwnqr8Dp9zLPMax0oLC4nbSGj5E4/e8rsq1tCMUoxIZ2px0VRkizT1KGU24ThBjEROVYLOPbn+z98w+nUw3ih8VUiwiQU1J6hvjtIQsFBisGowoRmx1ZTgYxNymEBQf4vqxQM54rFmzk8svuN8mutWC4609bV0bTmZruu+92CzorKwr705fXudytrSAkPqfVEVB3hpxD1Xhq1rdpDk9ekfb8zfvoVNKn9eWL22GLHQVa5Lk9lv+5rFI/4SgzOPIuN1iXcrQR7SEAMXYmP1PkhImdnnRvnvjb+529aps6GIdVa1J2mx6Aq/VzVotXUz5qVSRBw+FFFMmnzcJFFLkvWeePdPsmaZoLRICiDiM6ej6Nav1FV03sL54yOriAcY6+uGSrt9gjKPvVzg31L6lRljJjG/8LuWwq/ZBMxIv/alrtxUMat9bAeGQyS/P3DNdPIZids8JNvA1FkDz7Nntduz3W+Z5inyLNcnKJ2bD6vuO1WpIsUoqvbc2Brb23ifLqqyM1eQOFsp7vI8Wuaohuc0pwdbg2ZoCj2pYigUL98LSw/Irh6sxHwtYY+ici8kdsiu3KvM4MW53TLs96n202k57L1tNcqiMSHT/PvfiKTTV9qYobDTTuop/yEqfI+mxYo68v1paWvdpvd+u6QWabf4etVMOr9uKT3TvNSi2NSKt18tVfKehacO81DK6uK6rplzf+16M/Ehe85rmLK+humpzH4xIyTRnG1evI7z6ur7nUu/AMpYzpTfJiT8AuG+5/yR2uYNPOFL+lKV1mg853C+HPLcs1ml7L0N27/KEeWIeR/w84qeRME9o8CmkRSPLZ15RNco9Jgktxpf6K6eSkUX7xrYXtbXZglDgZLD4XOYQ5ywqPfnUEt7G4uevA/8i8Deae38V+D+r6j8rIn81ff8fvKkia+HqyrBeC/EAq7pRIQbRFfAxMdPXC4RPUDxwjfIt1eqnEWaIwfFmgds5MIaZL7db/u6LZzzYb3nqNvzo4htst+OBHfji4QNerVbINHN9LeysJcxCmFLwWiCHFFXJbKKAHmoe471ljt0m81cpU4xCSz9rdrB4pJAtW5qn0oUgGk2wwTD7QFDLza3ws58Ztjv49puAlYk/+Znn6gH85DeUR49hvTI8eRLHOsHXwD92H/OYmfPClxXGPF1nblPKIeRC2WMExMRxlXTCH03VY2buWK6mYoxuUmkzmR7DJYYZ7IzawMzEjR352o04At56vPPMfub28QYJT7DThN68gNsXoJ7Jjrx0I0FhujA4Z1Bx9JtHdOsHKMJe48cYi908gvVVFKCaTRzXocacoG6N2gG1A2F4ivYPCdIxuzXedAQ1SIhnDiJKzO8V8CKEfF6a4iEhZRm2cH9zWOBAHVJ0GPGEDEnp052L86rApYD6mLNMYh9iko84T52zKc17tDzoXAzE2fVdzNZiDM51uC4S5WkWxjln6guMk4nz4pUpxYrYT9H1MShMc2D26dQtxKw+cRrSCVyScJc9y8zOKYR4kp1/n3Bv85hj/ORT1FZpEzQFDM+KRii4zBTHicZBrjDBGl1cNRCI7l0xhlAUHEKwhZgasRgJjHPg1e0e7wO/eH7DT796ybDaM3phTNaMgzMMzqQ4QODSKfrtborWQkDfGXpnccbw5GrDw80qxY+KGeVUlcl75hAVSy+3I7f7GWuEB+uOzdBhBYYuZh/Lyp2iyMn4WEEIhQFoFfRFaSQNM9f8e99zWGDBaEcFdSRBmqw/ouB3yMaoJouvlIVPjYLG62AMoVj81PnNqdE1adUibxbxT3aaLPEUqEwIB4qo+FiODfT6+6Wx+cRYml0pRB4AidZgWWElprirlf6GmNUq+GiJaC0MvcVkYbpz0ToouYbF2HlmYfGTBE24R/5modHJGhk9wK9l3irrV8brED1pupm0n1nhWjIgHgqIme5qrheMKtFtxWDtQD9cIdLx4OHHPP3kN5inKaZAxmBdx8effc7TTz/HuY5utcENa0Qszg1YO0SabFxVZjWMatvwI0V5GZK8z+pY6GKM5E086yks/h7o4t3vpn3/CSlvmqZoheM9r1694vb2hv1+xziNkf+xhqCB/X7PPM84Z5mmEVVX0lVDVPz0fYeqi9ddM+6pLZeXI/txH618xpFxmool0H63TynWkyVQUkRl67eQcEysK+2vLFST3W/rfGRKIQLrfuDBasMwrHBiUQ/zfubVt8/59ue/YNzv6Qw8fHiB2axxLrn0VbOR5fcIf5372IuS8ZWARkVwoMm+WvqURbMqDhblYto7mYuQ5pEc7lBSNtFKOSjLt4QD1PqWcqCXVnC9rm1phmbx5cStk/3OFJ3cM8kyCFnntkBTsb5WtpGCs9pkClGg1nrdzNt734uJVmUXRx/ix4aGPuV/JFr8XFxcAMr19RWXl5dFCTuNU3T7zfIYUGPW5XsHct7pRuWmvdXhxg8Q/jr3RRcrhxm/yXI/LRT6kp9oH0jxH2l/q/sph8VozrKWZdP9ev6Qf430edxv2W23zPPM7asXbK9fRCufcRdDh6hHw4yfJ7x6xt0ttzevsNbhhgnbDTHsQT8jboWxMZxFjMWXjS/M4ZubdlYr+2bL3bnyTi63w46/Ad6o+FHV/5uI/NbB7b8E/MV0/a8C/1feSvEjPHxkuLgAZ8uuK1l84AKRzxF9BNyi/Djd/wrlJei+GSLi3Kdo/JNX5uAxEvjj6xvct8JF3/F71vHx5QX9cMFj5/izTy+4nTeEaebrlwaz6xh3jp0PKftWnaSD1VeEhMJYAdUqA5aKn0Zyz4IHSUBrCU3uu4SjCY1Cmk3EKzAHG91uXgV++tOZP/7jwNVl4NlXM48fKR89Ff7c32ti2vdHlqAdjx8XRdQ18O3BlLz7PArN6Wv+3mxaSYiwBHSuH3Pq2ki0sBEIKSetSIwFYnMa10axFGPFdJEg+w4/r4GZl2aP2h1GNMaJUSEEZWe3yGaHnSfk5mvs9TcEP7LbfcN2/00UhB5c4mSDdY4HDx5zefWAgPB8nGHyYBzm4iNk/SjOitcSfyEq5uIgqO1R41BxeLch2BUqjkk2eBmKptaFKKRZmTF4ZjF4HIGU5SsslkgL9zOHQBVKstCXiHpa4kbApXnqnGHdd1gLvetY9WusjZkxhk6i0scKfUqZbqRmmWqbb5sU3tbZmto9aFLkxL9TUupMAUYfFRjbvbIdowXJbu/Zj54QoivYNGsSlKM/fsR/Jlm+JIxx0tXrVwb3Mo+ReY+LRRJOCiEqT4HoaUqoTJtoVLSKaaxK6jxF3qe6OJWAoxr/ESEqEkIlU9a4GI9sCjx/tWWcJvqvX6I/f4brB24nuJkiGbtcWa4GizXQC/REhu7rF1u+fblFUdZDx7q3DL3jtz97gvn4Ec4a+s7QOYNX5Wa7ZztO7CbPz5/f8PWrHYMz/PjxBR9freic5dGmxw0d0aIuFKY1npInLJ+VYiRsLsQNUFIop3HO472kqve4F9s5zYx1emNSnMRY+Wm/hlo2Z6tq4/t4I4RQs7PlPReHQNKcplMuMr5OLJHkDJqHDeMuYe0k3MUM590ZG9Nmw5NCD4zJmVqq0kdKdCgosU3G6NLrLKxXFrExtbTtHX0fg3vmlN/t3GXFqBi5V/6mVfaUG81QtUzosUF6s9gkNbJIX9USaKHEbJhnCgMMi6QYKUizqGC7NauN0vUbHn+0Z56j68TQrxm6Fc45Hn30MQ8/eopYC8ai2cVMLeUATOsaWOCOA66zWhq092s/G5FtYQ3SWjQth/cwilthj9/LXjxue23WXaKhqrLf73nx4gXjOPL8+TNevXrJNI2M+z1ItPgJIVoCSYpjtd6sCRroXBcz1ongnMUlJdBqNZS2xKxmcYxqvB/wPltweW5vt2xvt3jvud3est1uCSGw349MSTk0jjPTPMfDE+/xc8STPuQ08lX4l8TXqURrmIth4PHFA1zX0UmHzjBtJ158+TVf/v4fYKxlWA1snjxAhx7f2aWQfnqs72UvKomXVCFnJZsVCIJP0l89vKsHRJkXL2taYxoWSxKUJOEpE3FRSFgpYrNlfETTLIqyhHLCE7L0IKV8o4WpD56+bATYJSz0623NQsHp5ayaglpSyfpFmvsndi4Fm2rs04Fryb3vxWLRhqTsdnGdW3uogI7QdzF7YN933G5vePDgISKG7e2WeYrW6nrQs+U+lzuua3veWsL+gcJ90kXhYFlLsz+atVwtQ5ux1bhXsndorSYaBGT3/rbOyL/Wd+VnTFNHtByLcaOm7Q2vnj9jmkauXz7n5tUz1HuMeCwexeN9jPPjvbC9uea6iwp6N6xx/YBYSzdM2CGuS2tcilVnQGzlnSAdxCQ81YxR6XX5cscak3Y8ZTG296b4uQM+VdWfA6jqz0Xkk7sKishfBv4ywOPHX+CcYB3HSEohGusP6c4aWCMSAz8rJpVJjFB5uA5oUCUI7L3nZhxRlO004uc9ai1O9qy7ETGOVTfTOY9zhtkERHRhyZHRcm1nZlZbhCmLNtTv9brVmi/KJCLzJlPDulQNqlGRNHvY7oRxjEj8+XONgplRXryA9SYyF7sdTOPr6n67eWznUK6+qEy9VGJZTjOk3j9U/GTtbP1N687Mg92oghdaYUkbPQWGjFYMHWoGFMdkhJ0hKX6EmWhBNHcdrFaInxHvMT76ZIawx8/bOP7uAuMuMbbDra/o11d4wJkJY+aYZne4RIbLyCTMabw1sQUaNV9qOjCOqAQaUNsRsCi2CSiqdRyI5vA5NkKxqCnYqS6X7zuHh/P46OMvFgzHcgVHyx2blDjOQOcEZ2HoYL2K170TVn1U8jgrdC6f1Kf5io0qTKSRmg0rZgLJDFdGxjn1eHT7khDxZlDBB8UH4t85CbdCtEAxJAYvKuQyLshMGVKFhpOsp97x5XVHayfhezED77wXHz79uFgxFP5HGguX9n4O3K319yzAhRCJYjDJQkhBCHikWNplAu1DdstKSqa4FZi9Ms4z+8lzu595tZ2wXrid4Doa8xDUgjqsiRi9l2it9XK759nNDoD97NnPjvXsudlN7MY5WuNho1NlULaT52Y/s5vie17cjgyd4dGm53JwUSE4OHzISq8qZLYuYIsgkWnvpZEpVhXayvHwpv34nfbi+urRgg6ciilSlUFST7g4VCCkPmnMglISCYgkxr/WmdfMof+8tkdrywaXgThl4dO29/D6EOqzjXt1JSlVOGoYnCUZjjglJAFVSNmEbMQvOT5Qq9BaOFkth+wUvPNefPrpT4q+BlicUC7weNOE5U9Lhqiezuvho2UMColQSOxRqqkVQfMjyXrKONRC169YrS8IPrAa1qz6Dc45hvUl/bApgaNj/DmBQIy7FZErbZyN5ateM7BvUBgekrtTWy1a68ni+x3wnfbikycf3d0+PVbXwXGPQwjM88w0TUlgze/Jn7g/vHpEJQWtja5bWTEdy2deZ4kLsqtYfFcNXO69w/s51RWrmdP3Nl5XdhkrDgvZ/E59UfgvLYsSvpHsOmqwJiqlnLVkN9LgA9M4sd/u6PqO9WZF33d451CRGKOvIrlmAk6NYoHvsBc/TzSfBm+1UeLSS6V9qxytv9r/yj8UQVVqWaGJtZXKVZ6m7V9aPZm/Xby9/lsb0byswQOZPTzV2CN0WxarLq5V76ij0Iy2zN3XpeX3MIexnjqPbZNUKet8uUaP3ykpq1fXdfRdT9/HzzTNGGswIVtf6MFb0t87SGBtY4Pn7+QHTjHw34s//NMA77wXP/nsi+ZAIo9XXjOH66cp065Vjpfpgmdo92Jm+A62UnE7LvcSDQsBP09M455piiFC/DSh6hETIPHExRUMU7JhBg3RjckIEhzGToib4sxn17CS7aux6pG6xtqdvej2osOH6+Z4z8UxawbiDWvtvQd3VtW/Bvw1gN/8rb+gm41lNaT05TljVvnXEBU+DvgI4TeAFTEG0NepzAyMVHScTiagKG52s+fb7Z7baeYXr6752cvnXK72uPUlDy6ecdHt+fjC8OnVmgsXeBZGpt0c5XlCY0odLYhiPwya/ZDURiEmlqKM9mKsTyOl5e/HlxWqoBYLZIYgFg5BQIXdXvj2W9jeKjdbxTjPz/8k8PHTgPeGTz7xpyp/J2jn0H36FzQreRqdT1HoIKfdu6JGNit9FJPcEqoiqHHpkhrzp1yn9N3RbD+RTXVMdmDWgBqLN13cPEYIElOFh1UgWB9P8d0aVg+RMNPvPkH3L+Kqs2uMWcWTtGFgHoZo5WA8tgtgHe7iCW79MG5hr4n5lbguEiMaJFqMqRisOMASI70vuPIUh0QQW9dOdPZKa7hIbPq2QdrfeR5/8rt/QfPZlpF4mmJsClgm0DvDZmVwVhg64WJlorKnE9Y9OAvOCL1LQpchWRakHdGebGkN7GmSQihacKWOad11MQ5MzlIVBbkQQJ0iya3LIQzWEFSZ5ugqphqzgfkUUmAOMeOVQlIYRWzhQ42Bk0/+f0jQzuGP/+zvaNAYCNuHbIZv8FbJWZE6FwVgk0zUxEg64U1mZepBk2YGgWJlZ3BJeHZW6Dsb59ZMiImRuK5v97y83jGOM3/47JafPduyHye265dcD99i+569GvYaFZ9rZ1h1UZnUacTyISjPbnc8v9mjRAVjZ4Whs7zy8OXNHmcF5wzOmqgout1zsx0ZfeDr6x3Pbyd6J3z58paPLns2fcdvPLnikwdrOme4Wvds+uxqQMGrGnzax1EI05Bc3AgRjxHXdF6zOT7Rfc/jo8++KKj+UPkTv1Thy1mJwdONKQKYiJRgzdmFK7tpabpXGa5s+aYL5jW/KqRsb8hxT9+k6Dl09crXWQmjSWKQBRtU56MISHmSlGjRZKLVlp9nVALez0z7PeN+xzyOCOCcw1hXsoCJMUUAF4jM2ULQ5Xtv/nYOf/vP/ceSd0mWJrMwrVU5c0pQuwsHNeXj0Gi5LuMjzeuSkpzcBvJalYp/xWFczKR1cfUoPhACzg50tscYSzesIyUKFCVybGd8kZT3HzLS+d2pac0J513QCrILTvcuCbz8nN99/3vxN3/rz5yejgNrlZNiXRJG53lOcX32XFxc8Hv/kd/DGsNPfuM3WK0GRKpyCGCaRqYp8rSCROFUDNaCNS7tncoILJXCSbCQaFEvEq0gVqu474L3dM4xrHqy5YT3ETdMs8fPPln/TExjVBLtx2gVpCEwzTOznzEi9H1H11k2q03MTrZaIcbgQ2C337Pd77i9ueH2+pr15YZhM/Dwo0dMYnhpHXPe2wup5v7n8Hf+3N+Xjki1WY+H723e3giJRdEspMOrBpcVnJWtXCpeXSRFkGixLpIOo8va0fquRnlf+SWlOpexeFPTzIWg295vbxbcKtXVW1M8zeraxAmZMiPeVkDVpOzI669a/EgRbO9/HiUziKqEEHlU72emKSpVne0WtCbLJZ3r2Gwu6LqOJ08+4osf/4Sb2xtub2558eIl0zTFuU0u0NFjIbZ/msboFpks5a6vr2PiCanJE6rFXdqHaYz8HMNL/LpDO4e/+/f8BYVT6/VY6dMGay68AAcKkbaevEelXuf7hbdp6yemkkID437HfnvLPM+8ePY1z77+Mirq5z3qR8j8BjGT3H53y267RYww9A5nDcZa7G7EdB3GWPr1SLfbY7seTIe1HWItrhswXcRIQZe2ftm5I0v2dypuD24uFWh5QN6eofmuip9fiMiPktbvR8CXb/OQNcLFpWO9CTgXMDE8TwrqGoihfS+ItuyfYPgd4CMUg+ofEsPv7xPhn0ncyYKrUoHtNOGvZ5wxXAwveXL1DVerFT+yK37jyRXObnhx6fjm4RWvBo9OK16+mpPvZ47Vr4iZsCYKRRpsdMXB4MOQVpeAOpZxfWA5W29W/hQ+sWyRw9lPSh8JBTH7IHgMYQdfjjFjzvD1zDfPJtYXM5996hkn+PxHr53i7zSPmfLkWD5iYqaHzIhWNy6WqdtT5iExWRjQZNqfy2sy7Y9KIpPchaKyJ7t6xWsEAo6ZmLZ2MgM7k8bamKgpQjBOMKtImM3Fx5h5RNTTz1vsHK0MrFiMiWmCJczMwceYJgO4AGIc7uIRdvMgTUd19QqBcp2VCkr6PfPHwcQkYXkp5OMhUxl0ozHmD1AE0LjBdRkz/L7mMI5OQrYxOLMzwtBH4XK9Mjy6sgydZdULl2tHZ4XOwspF966cIlXKkq0cSRtQLzMeRiqzXk5tiMKpl7mcjkX3TbBqcMRxMxrz/AUF72Duo2JvCtHaJFqd1FTwo88p4mPGsDG5g02zMvuQVKnSHDw27hFH8AZJ5I7RfUd453lUksJCQZN7nIhgJQoL1llUXVQSxEBASVCMajZVmOdo8h9CxHopq3Jy14uMztA51kOHEWEGJmJGk1c3E8+v9+zHmT/46pY/+OqW/TjyjTzn52GN6TqC6wku4ksjWkbZhOi+pAo388ztlM2vI/7tjfDHL7d8+uVzrGRLDmH2ysubPde7iTkot6NnOwc6Kzy5sDxYWR6sev7850/5zacPuBg6fuPpFe7BOo5ZElqDBqbZE7zHB2UcJ2bvIx6y0YTYGWHdOXqbrUjswoT/Puawnc3YvuXdEn8h3bfGsBl6ehfj2Kz6HmMM+2nmZj8x+8A4T+z2O3yyysg8VFTo2BOChDT7NTLErXVPW/a7QAihpIiPaGIpROfuLc/cswKoWgz6EPCAnybG7Zb9bkuYouKncw7jHLbrsF2HsTYK19MU156NmaWyRdTC2usY3nkeW1VLYeJKH1+vaJI7fioxVhoLDI0MU/PShFENMXBvYXJzlPN48BDprotXNnD10HFxdZWUOZGvgUhgfZaWC18WY1eWdaStY0ttSuFd5BTLfqLTzbjV+811sxx0+ZWDFXQKvsdeTO9oxvwwpkn75mJBk8pN08R2u2W/3/OjH33G7/zub3N5ecHFxYb1epUUP55p2qOqjOOqKn6EZLlmCs6rVnONQqBdD2Qey5I8w7DWsloNhBBYb9ZM05TqNyneVXw2qBJ8jAk07sfoGna7Zbfbp+vbmJHMGjYXa/pVz7ofuHp4xWazjm7YKe38zXbLzfU1r16+5P/P3p80yZZl+Z7QbzenUVXrbucebcbLeu9ViTDmA5QIH4ARiDACET4CA2rGtKZMmcEEgVkxRRBgVEyoEpggJVS+l5HhHh7ufhvrVPU0u2Gwdqdqdj08I+1G1kthu9u1Y0ePnrPPbtZe67/X+i/TGzYXW17/4i1H5zkeZqY1GcUNPYLoBj8JG/xF/ahV4/VKlnENZ1Grp5TjUyOxgDpnBlX+OyWdPP2MnJhSbiSbMqkeKhbVTylK8GrOdJklYM722xq7rVXQQkNPsaxsD+WS2yGmY/is3GsNEVW/W0PDYrmmDQHkBKp6tvyT5mIkEzs74elJGes66wqoVvRPMsfPBSH4FDasWZaZ/f7A7d298JoZgzW2AXIMEDkc9tzf37GuKz++/5HjUcIlM1m0Uqp4ECmlCDnDXuLs8ind/L/Q8heui6f6g2qAwibQstoKaQy33zmVt/m3KvqYAHlPv3Ayb2JEIVnhlmnPw91HlmXh449/4sc//RHnHL019J3YoN7NrH4hBM/xsOd4eJSNUC1rstYaZYxkdNaGYXOkHyX0y9qerusxtsNqjelsesdYPGl184Zt7tSTufTZnSF5ySqzZFX6uSPvLwV+/k/A/xT4z9Pv/+JnfUspTHbHTsIuJsWm7gToNCx6YIt490i4F6qH6InNcGqWQvLLZ2LYGGF2jsOyYozBhQWjFqy29GZltA5nLb0Rzx6tFIGAkEgHlFrRShbMqLvynFDccdUzHRPr7/MFo/08Pv3G8212fr/2+xISs3oxyCKK/V4ygG03gYf7wP3uJ9Px/gX92MQUpkFXF6GW1yd7IORFty6m6uTaBrEt5/P1p2FhZZFOv6LKxFmGkIktQYybhDglyCe1l0aybwW0tmB7iJTdc2IkugX8mrUFESzGouyAMh1FKKWUnlpB1Hn4hpQ9hhQfHkt75REbc5+WIZy05LwbkxfSTIBKszvzYn1Y+09+xfIco4VEN3v39L0Swt1O0RlNp6GzYJJdYdJOFepMeJ0p9rkNsmwu1+ZplNpFxcZNujEHjZYfHWLlRi+WQA2ZVL6meweKN0xOweo1DQgnSmdWD6uxkn/FYpS2Hz1bIs/2kzq/6PPlH9+PUTgeYoj4DPyg8BqU0tgonjvBCNASo4CmIYKPihAVq/PMi0ugZSzAj8rADwof5E201qxElhjxMfI4rzzOjmV1HFfPnAA2vXjUvKIDxCBhWqcLO+gAKoj8OjrP0TsxRBLws2jF3XGlT2tFBn5diNzvF/aTZHCcXGD2EWsURnm8l0yIt8eZV0chND0uEoKmQFx2EWVtWT3Oy473NItSqRRoG9EaOpMyhUWNMQmIVvoznfEX9mHuyrM15MS7pkiSbHAkHhyt6azEmocI1omnkg9iNGZPxOJNo56ORkU1HosAOvPkOS+f9/ap4GOp+3PHjeLXfvfZyhEpITbpmRK2IqBdDOLip/J/aTGp9Yln9+PZdzorf7lMfa6NTl7q6WueXBNPz5yoctnTp1yXZW9dQ3K2PVmmzgVS1hI12nSFRJggnqvEtMVUHvO0Tyo7wfOlaeYndVdnF51rcCfGQXMj1bTL6f1/svxlfXg2Ns6919qR+jkPuGxIGmMYhoHLywsuLy/pe1H+hajWJz6ekDx+1nLP/H2tNdbb4mnwXNikfKf+ztcYU70TzsPEtK7eCjHKfFJQMojlkDDnHd5L1k5tDP3QMwxi9For9YoJ8HLBF+LdkIxfYw1d37EqhdJLo+NzevzS62LSF+tjmmCKz4aXfO7855/RDujqAVSeVC9TZ9pFowvnZ2QDNpRmaUd6vlcrT54Df87k6FlI14k+2YqZE/CkvlP97k+Hesm7vHAfnpUKdIYa5tvKw6byOauX1oqu69lshFw8IvqOcw6jhWNSJyA0c2aBeP0YY+i7vszjHDqmtabve4ZhQClVPegaD766nqnS5ud1/Ik3/cc2zV+z/EX9eDKf+Mzxk7lYz5/PhHYOyTX1j6bpT+uQ+iGGtNHsHOuySIjXMrPMM947DB3RWFACznsvSSREtglG4L3ojToEVAigvCSRsOLhg9I4t+K9k7olrrAsJ9r1UTb2iuSBMsebsf2Tc+tUhqrm+KfKz0nn/r8H/lPgrVLqG+B/hXT8/1Ep9T8H/gH4H/3ZJ5FCSAZF12usBWOiKP8tWaXKEnWD4h2wRXGP4rfAQFQfIM5UL5j8+imCN71zQIyEh3nhu7tH7qaVzeaBr4+3jN2CVRve7S646Dc8HjveP2yZVsNhPeDWA+Dp7MSmm0Th19coc0UMhsMRDgcIUUPoad3ny48KnJrCpUVPjvPbnjq+17MyPNI9Y6Awe7bCJC0UPmqOk2V1ig8f4e//PnB/V0h+/hb4L//J/aiygnEa0qUz8ag69fjJAF/+W5Eccsp9IiZfoyVjAqRdE10XyHyf/D1IRM9KkPr2/ihJBZxbWKfmUmjh4ImgjMbEjuwFUZRLbSB0qAg2kwNqIQ7VWXjEaoy08ET+kfrHhCvEE30jZjdZBckfWd4rVoU7hyzm7zZ628v0YS5RxmiMDvH4MezGjr437DaWq51l6DW9UWz6ROKsajhYugkAPpGrl7W4MQyz27PmnPQwlt9a6eSKXGlcYyESRTjOQyRo0F4CPmPMfVZBj9SkEp4UBVjorcJ5XTOCJQ6E1Yu3UES8hQTgiIW3hjSCTstzi3c8O53lgDr7u5QX6cdldXz77a14eawe7xNQmrzdrBVlPXOeSHpgAX1yhpPVB6bFJZf0CpplowEUm8GyHXuM1rgYcVF2Lg/Tyv644lbP/eSh36G1I5ieyUvGN2OEtlwphVUam4GT6FFRjAQ37XHHvUj0YYShR6HZL44ckZbbMMTItAYWlwlNg/A+Rfh0VOxneJg8Rn/k/cORXW/5/tMj7y7STnsaUC4EpmVJ7RaYjivr6tE60lsJNxw7w5vLge1gGfuO68sNw5A3AF5yLv45YzqW/YUYgigiSoG1WK3pjMEMir6zKfzRMS1DydqVeaCcD6xOgEKX0nrXOShViDqgQjaAqrBtIyVOXLLTdYUHpLzP8/OkmEhnHkUVrGkAnHx/ROGXTF4Sk++WGb/MxJTdK6Y017rhgchFq8xNkvYXdeJAkee8mH5zUt/PtMDnrq0t1BzlP4oQpP5O15wAJznGP69T5f6x3rO5f3MbMs/Lye2b/lRk/VPVeuQXAFovjjyWql3fPLetyjMGwXlIXP5b8ZPt+bLrIvA5cLBd21rwwlrLZrNBa8Vut+Prr78GIq9fv+KXv/oF4zBwOFZvgsfHB+7u7nDOcXFxwdXV99hO7rHb7rDGst1u2e3q8cXFRQGEWjConUvtvNGJ+85ak4Bg8fg5DSEVoGrcjHRdRwiBYehxzuFDYJ5mlmVFG0U/dtje0hnLMA4oqwmr5zBPPBwOPE5HglbYzUC3lZ9+N7JMC3p/rA/MltvZGHqpuaiombckwyFpDMUkZ2Kpw8lxC6ZIheq4az6IpfGynKySLYezhpgpKGQy5Hvk30ZJ8hKSbps9hHwUD6FqSaS+JRaC5s8Z0ifzu4rVVNfs7ctT4XQuhE5fL+kDQIzNkD89buTQF5iLqS5R+Kycd6xuxQdf9JTG9pdNLyshj9vtVtb94Li6crx69Zrgg2TPS2HSsj6GMvZjlEx4MUasFd6s3e6Cy8sLjLUMw8A4jKDgeDhyOB5Y15U/ffcnvlu/w7m1WYOqFP4Pqbzkulj7pdz7DKx+/rja9k/q9pPfbZu7zuko4V3TAe8ctx/f8/6H71mWmYfbTyzHPcF7lDNEJzal8P5MxCiew0FS27I6zzIvdb0DlJas28uy0vUz/bjDmJ6uH+hsx9APEm6uDCbrIY3FGMvcTJU/Nx+eKWnFfubsnx9rPyer1//kMx/9D/7s3c+K0tBvNP0QsR10JuJQONUYgQVE2QK/BGbgiFLfQNwBlqDeQ5xRqvLeiGISy3oiBozi7jjzh08PDN3MxW7Lb/eXXIwTVg/84nLL4jc8HHt+eLhgvxjC4SNH/54QV7ruwG5zEDK94dd0vcWHjvgJphliEAMrBpMUn5puXo7PgR9VflSEE6XtLNSkiv50n9bzp9wrnVGAUrig8ccOMDgXiGFluykcP/8+xvjff6Zb/tH9eBLKBRX4SeeNrkBOCeNqrpdwrZiEdvIeUTl06OwZ7X1ozqWL8g582e0qi2sSDu0c0JKfQdq+q0ZKideKqOCRVOXQodGJuDnQ7JwVKym5wp6APbFuuiaDKCWYICIZl2JAvISCImrpeR0yIJR4RvLiquoC/JJ9KCNMvNtUXCEGrJKQru2mY7cxvLoU4Mco6HTlXEp5zKo9EiM+eAkZSgteSAhC8dYg9XUr9FNNKshA7WRSO6X7x4hEdsaII6Y0xYhnVWpzrbRk8wCi0vITszJFAntCCg2LzGtg8eLlMq+B1QkwkFPFSyuda0jPmR/nplssV5+eK9e9SD8us+Pvf/+BNREhry6kiSQ9ZKyhGwYJc0keIiiFR7Fm4CcEJucF+EHC36TyaW4pAX52GwF+AimcMUbW1TEvK8FHmDwMF9guJuBH3GrHLtAR0Eq8xQYjoUbRO2JcCX7FHW9xdx8ISsH1GxhfEVXkfnL86L2M1JRWE4VsDiiRoToEdBRDfj8LZ5DVCx8fj2w6xbYz/Ppyy5uxh6LkCQjycFyYV4dbPcf9yrp4rIqMnYz3y43lN293XG87druRX351w+XF+KJ9mMtJKMmZMUeU0FFpt4BzIp8IHb3WDNagdYexkjXBB8/ikgdVzFnN4DgvPB5nnJfsPgfvC/dVgQFC1aCehIC159N0La7WJ1rKc3OkvGg9PgN3ToT7iREbk/K14JZVyBinCTdPRO8Jqyc4CVkNSZaHBGTkd8jGsvAeCTwsMuwF9RvOVmfVKHHPXAvPmwUFXCh7PGmNOrmgvUs6ivVce98My9W16lQ+FfuELPfkm1XaqbJjev7c/CDx3D7r9/Sdp8ppGi+xrtetzv4To6ep8El50bn4/CNj/X3mfaQQ4OfiYkff91xeXvL27VuGoafrLMPQoxR88+03/MPvP/K4f+Tjx4/86U9/Yl1XyX613WKM4fLikuura7qu4/LyipvrG/q+5927d5Wwtu9T1rs6H89LO3e17ooXz7kHQp63fdeRRA0FLI6VEwgF2qpCNm2jRqMJLvI4Hfj0cMfDcU8w0O9G+u3IcLFhuBhZtELf6mag6aqn5erEl52LRpE4qijjsB1krZFYAjTVc+Mwb1zKNaKGVA8fqX8zm5NidKL5NzotyL2srhx6WtfQsDVnlCR73+VaNPPoz06QJ48uB5/9anmdVk+JtQ2pQPLJsToFn/kic1E8NVCiZ2aOH++9bBabvN2X5JpWWNUBka6zbLcS5p3DHGUt08V2cG5lWSW0cRh6vHfM88x2u+PNGyF7f/36DV999Y6u6xnHkXEUPeDT7Sc+ffqUsuZF3n/4UIjUYzy3/376Hf+7VF5yLuo6mYAzG66Zi9kG5Oz8SVF1tJ0CP2drU53S6KQ/LPORh7tPrMvChx9/4PvvvmVdZo6HPdP+QTyBrGKdRVZN85F5PhJBPMS0JmrN6hzHeUEp2XgMwaOUFtCnm+j6AduPoDTDMLLdbIi7LRqDSrp4Xl0T86ZEr6Q3qHkTPgfixJNf9fQTO+Oz5YuTO58UVYlgS+erU2FUhYsB+vTXBsWOqHYQhexZNE8BS1qu/vadY+qYyXkijnl1zG6hdxbijDULYOjMgrULnTcYPYE6oFjRao/WeyE9tDPD6PBeY61HaSfGJw5waQRmj5xIxFO9c7Kik4+qW6FqFw0o2Z/qMiPeGOW1YlU38sTJDZj5UiCyroHj0QmB6QsWCb+qjz3P0pVViXJ81s/PnlfNfTg/3z4rT2SSYFAFGa6CJCtDuXGevgHNZyrpISeLXllfdcoMpVI/pc/OWNnlm/LdrOvnd606Vqy6R1IOyos117ex02VD7B9B2vVzSzYEZBcloKLEvkq2FuHOUgkGaN0Tz3dk21AKMapyyFBjyGYe4SDAl4onXZDesf5xKg/k4uwBljNQZRoSHZvQrRQqBhTwLaJQQRSrvKutqCFgIUJQEecVXsv3M7BRdUb1pGbnumS9rDWqnkjm5zvjLywhRqZpYXGB43Fl9aKSoj0ohbaWLii0MYlLSxRND6ykUK8YmL1PPGuqUMirhLYqleyzlIUthgzqiWfJsizEELFRjB8ArCXoRPClT41vo3UB6hKdNzo4lFvEMyM4hOxb+nr1WqRpDGUXVfhaTttYwg0i3gv4s1eR1cvuzE4blJOxnENZVh94nBamxeFd4Pi4JOAHNl2k0+Cc5WI0ECXD2e4wE7XmxUsab58NkWovzXMs5LmWUi83shOl6IwpYE67c+t8wHlP9IHFyNqSCUhleary8an0rHCC7PbWEMtST5U9CyjX1rpTwPBGohThXmX+KeiTGih59fgUXlJQ4eYJLXlzbNYIdXLPZxXKFyjPhsXRmtmcLBrtG560VOt207yjau/fZPA4CYtqbhapoUm5O1oni9PaxmJktmugjIPmDUrdmjucLoQn96x3qRfluqhc37Pz+akna04+/gJr4Xn5rLfPZ/oXxGsmgzKbzVjJj1WeH5lQWWRm/pnnhRDFW80YMUqNNnSdhOIN/YD3nnmeT8LBTn9qTU498Vod4ny0yXdU873WkMpXem/KTjcalJbv67yvqWScCbgcJb37ONANvYTSGCPe1+dzrgW6y9Nepjyre51NEHVyXBWS84x4NUzstG1zjVX555l53NbpXOFpAMSTLsn1irmWWZ+Iz4999dk/nl4Wn7vsqY6aj1v9M5Ymehrqla/5axRpthrqJX1dw/WBxr7IvyUxhdaZ1yd7y8laviyJeUUprO2K55sxmr7vUEpxdXXJ1dV1CfMax7HM53meUUoV3h+5b6sHnh49eaeTEXOq/f6HXs5lSrHPyGOmnWdP1+fPrdWn1zyzADXrZwayg/esy8KyzOVnXWbJ4uXF/gle4dMWqHeuhu/ZpD+Tx6Csl3ksKoV4YmvJHO2dw68r3liCd6KzqKdehYqqn5XZnmXOs/O1lentRTRz4M+Pm78q8CO7/qoh6D23ALPglVUm0qOwwCvgt8AFKI+K3xGxwCNCNeobKVyfBpHVO47TjDOe9/f3/P7HD+zGPRej5WqzIaoR08Fu41FGs1//hDl8R2BBqSOoA9p0XN9sePvV28QuPzFPkk1omXqWuSvPLztqDblcGeqKZJhmF1J9pl5nRS1Qd+e8CKVyRf12abe8c9YgfiF4psOMX14W+IHEwqTSZE2ePjmFt9YxefCoRNZcBbAu/JGZLyMmL5DG+ycr/8nLB6qHECTQMAGHNEKl7srkv89n06lhDs2i3SraydJVCKCQ18WiRGXdNyvXzU+IyXmoUWpl41Z27HMfhfTw0Hj2+BSulDN5ZX24hIZ9gRII+HVhPTzi3cJyNPjjPUOvub7sCdOO7aajs5qxt1iT0rsnw1teSDopeBm7mcC59QSQV8x8ArkzilkqV6h0ZenCNKbLGI+SXl6nMWblfjYq+uwaXUCbtD+W+i4EATlCVDincFoM3U5pFiNZsQYTWZP3z+Ji4QhbXPUW8jFtwrf2V3nLczOq1efiqVL1QsX7wKe7Pd7D7AIuAEoRU3Y5bUCviOKtVVLAZXchKC1tkzyoBGBTBTArfGJK8tL1KeNbWGb8YS8hNvMRM+2JwMX1O65/+QuM7Zn7gbkfiVrTWeGh0Upg/F6BihJeGP0sz48rqzsQAbuMmMXitcWzxdtR+i1ImFlu7Sf6gMqeZTIOfYAlSn9+Hxbujy7N15A81ALz7FhdIPjIOjn8KgkHji5gdeTgHUF53j8Y+r7jm097xr47f/KLlAhlRc8iq10aszwLMTCvC86lrFXeY43sRtnMa2CF9NkYzeXFjlevLumsZfWeZV3xIXD3sOfD7b1wPK2O45oJvrNHF8ljKKR2y5sKrWqRvQKSidIQ0bYeQpmkViZ0IG98VMNVJ64F8WIwWovXaEQ8nLwnOM86L6zzklKlKpS2cq8Ogq67aaT1qbOGoRdFPxugMUaUlzn/kghQbq9nPygdTDl+1l47MQabdSnGwh3XXl6p4tKCFPODIrIJVRct+SjzzrW7981XzsCZU6Ol0UKfkWWK+Pz7n7x83dxJouVck0lzO2s4T/2g/1q20M8haK1cIprdbsdXX71ju90WA3BdHccmvOvDx/fM85yMSsvFxQXDIMbFdJyIRNbFcTwcsdayzAsKzTD0QGSe5xS2lYjmtSreBxl46mwnHg/GFq8gY0wCy09DwYoUzcvuM9Mh62V1TYA8v1BgrGK7G1njJYPR6P/k3/Du7Q3bix3Xb99g+gGzyI543bSMJ/f/EkUr8qqWAOfT8auaSVTb4TyENWnbWSfNOkmrc362Bs1kbSaaAggwrxPHRZg5jTXYlH1TGYuytrRSyTDc3Ka1KuRI1fq0+lN5bA01Ox3WWbmNdf3JFWx149QWWUS0x+ckvF+y5DXIOSehNz5tcGl9Ap6IrXG2KaxIgExaRxueoONx4uHxvnBuXV5esdsF+r5nHMW77uJCgJ/MHaSUZEfdbWfW5QprJEyz6zpc8raNodmw/0nBpX7GNf/hlidTXJ2eqzZ/O0efX55PQNonY6810ER/924tY+X+7pYPH96zzDP3d7dMhz1uXfFuKWtj8J7gZWNpWRfW1cl4MpIpVGkjhM1dj0IlPkWfQEMrOphSuHXheNgTgudweGTcbzC2Y9gqjLEnbyQboaer7cnB+Vqrzk5lUZNA2Z8ziv7qHj/GaLQJNeNT4XCoCocISE1kRF7jNfCvgLfAilL/ANEkteAeAX/iqVRL48g5h3czRq98f3vPOCi2Q88vX2v6oceaEdPP7HYHdAd30zcY/Q8QFlATUU9oO/Dq9Rt+969+RwyOeVm4v5uZZ3j0mnU2CRw4J+I9HZZZmSH9VuUdoIR0kb2IfFpoJeOSlFYNSt5Osb1nPY4+ZVLgCwA/CfCp4V3xhIOngDeqhnFlMKe4tj4X6tWGdD17HOXYqHbIyLu3gkKpk5bP56sTLXLUKtLldCVFVUGRE4XF5p+TDdm68SzAT7rMk9fNuusak4uKChB1RKXsXUpFTEn3QAnvilKdL1QkfGZZFx7uH1imI486cP/eYXXg9c0Olldc7gbGsePyYqCzQjrZdSYZc0YEYjPySr/oKp1y28WYszPk4wqPPNkRI4M8KQ7e6ERYme6XFLnQGBzVYBUALiQ8OHhFiJoYwKmI0/L8RUdcSNw/XWQNAoTMS2Rxkvr9qOQ4pE7N3rvnwvVUPYvPXvPSXelc4OOnRyIKHwXsiYkrKXOZYGSnAS1hhSiVFrA8MakKkgZlVBqDYmwqrdAEBg2dAbceJSxrnQnHe/zjJ1Bw9eqCX/36Nd32goPdsO92BKVJLjgQA310dGGVcEo/E1cBAlcW1nUPRIalo581wXS4zuDsRuZS0IK8nbV63hWVnXJACeDnQmD1QIzsj0uqQ0weI8IPFBLfDQGCi+BlLnbaY3TETpH744He0BikLz8hs2w4McbJfjFpbqVlwsfANAtv22GeuXvcAwqjFF1KPX+52/H2+pqx79i+GvjdV1+z245iyCjx8Pnx0x3f/vCeeVl5OM7c7ifxBgohgZ7CA+SdhG965xOBeAJwycBQ5bPQsfKHKNW2lSo/krUxngw6lTjZcha5HAYRYpTQLu8JzgnwM6WsnhG06RJLuBaSxewKeAL8dGTON6VUSm2vmxT3L9eLOcNMtfPOTbTUGmdqinybBoBJvxuQPB+3a7zk60pnS+YgdXKTYsul+zyrFLbrYEZknlzS3re9pNZRUde7U52EsiYritiRTGHqGb2oWUsqt9Rfx8As6/TPKFoLl4gxhsvLC77++hdcXV2yrivzLITNnz7d8vvf/z3H44FlmZmmCR9CCeXy3nN/f8/9/T3r6njkMelCGre64kW03+95//6DkPMnjzetNdfX19zcvMJa4QHabrYYoxmGgX4Y0FqAo16L97yAqz/fa7EAtrQBoWlQaTBWs7vYoq0lXGx5c7EhzDPKKOxo0dZg5rVwLlY9/Ux5e8miKFm9ioahzgyqRjS1IVSqyKVmbWkAM9V8t8yXJyMzUwCcF5FbMUTmw4H9wyMxBPq+o+87tNEMmw2D2VRZFXMwSKvznuZFKnNKV66gtk4qo19QNixpevP8uNY/e0uk+zSbkIrT45fXbprqqLoahijATwn1UpKxUWSdvNxJNrzGJhPPIFEgfYiytoXI/nDg9lbA2WHoub6+wRjDzc01b968puss1vb0vSR3WdeVZVlSGKSX8HLbsd3s6Lset4qHx6nl9XPb518e+HM+vaunyil4o5pr2yn69LtZ52vLGejjBdRb5pnpeMCtK7efPvL+h++Zp4n9wx2H/SPBO3RMNnaMOL/i/EoMQbLHrStKKbo+SvYuI6TgXTeInPGaaKSnrbVYK971bl047h/xznF4fGAcRmzXC2A0DPLuyfFD8NOYPIKaxvipNj178zpsft74+esCP8AJwn/yclWxaN0tpTE6JLNXgLgBNig1QhRi5VjSQSYxr/JClX7HAAHx/lnEXXZaJhY3iVIb+nQvUDyi2ENcgJkYp7TITnTdQoyKzs5YO+N9TF4pJ+pbqfupH0AjHGP+TpsKPgM/geLFJNofJW09z/zk9iyu36kloifGBeJLh3pRAK4M+vxkqBefueZzx899tzw3EXXSCJMi1FuhcCps6qVNb0TqLlBjBCRx1HRX+0Hbv7E5l8Ztvmej0JY7qHh6nO+vYt25bRfW/KwiJL9Myfw8znkiKzHOaByDhcN+xKhADI7ORkJnsNYAnSyuJmKiKkaezj3VGjCp+hFqiEqMBfiJSWq1O1W5aULUJY1wBHTmBjhpk8YYaR5ZxkjqCx1JPEAKo8SHzmhpb+F/FCXBB4U3KbsG4uXiE0DtVeJraup0+vCqahaJpOqweWkQLyaDPCpNSHIkJk+yWhvZ+Re3VF3HW9KG8+5YHaxRvIOSgh5TzJXsXinwjrjOsMzEZSIuRxnrfsUo8fYzRmOtEeBHQfQKopIsCCl4MmpJg1l+UjpVrYVTCpUyzCXDw8QghMbpvcqgqo1/3hUVYEyZzyQjSM4EBdEn7oBkZMco0tgn5RwiSwKH5Kfozy9e2pCuIoOKwks+U68o1U6zRcnOUc46ERLZMemc0ToB6xICNlhLby0hRDrrsDnDU5o0qbdFIYkx5do0BezJbo8q1vDKYiAVGS19J6fOrikddXpY1vGya5d24XImr1CR12J81C35In7q+qTO1oKsbL7wZHy2PJESpyULuvNBFRsBerLL0N650Sdal3kScHH+6HKP5zSS5hlpHLX3+3zl8+Orx0DxPsrjNve7LLh5yXuu6idj4Lnj5nZftPw54KfUTamS9af9cU6yYa2rS+Fcc0qPXtNP5x1ilTzdqt4WiyfC6lbWdSFzfnkvHGch8Uq02cMyCa33krFoXVeGVbLZynmf6pvCr1A8ATSaN3y6gZnXknAyHiOyJkriAIvdjJISVEE0pPCwM2+j8+Z9YaHahkWdhp02elU91ah5GVzJEjg2g09RPIBOrnnuhU51vvZcbknvHWvy/orBE4KTvuwsQxxAZZKB9p2eDv4TXfizwG4s9VQxr5917ldVt9XHnoZ6PXdc5cSX01EbczAtDXWO1KKa+pyO7fYauZ060Q/aH6XEc85mEudxTNm8TAllL4CT1mX+Zk+g85Xs/1/OZcvTOQRp/Kh6XuWrnmnG1nuvzd6XQ7yjjynhQ0wePwtuFVm6LgLIi3dXChunRupkT60QhFrgJPlFeWbaSAJi8V5pdBxUcx/ZPHPrKhtOTdhXXaTVk/Vanf7xmdLqwI3t+DPk6V851CsLqtqhtQHycGiyVhVjqgNuUGxA/RrFv4Z4A2okhjvAEFmAidJ55S4BoiOg2E9HfryL9NbivWKePdZ03B63fDzsWD0cDx8I7j0xyKK9Z8X5nv3xjxwPfw9qwFrP9bVnnjzzdOBBHaikf1npOgd90r9FJ1NAh6Q6joAjgzzyLo5qQWf1/1yoqDog0053QxEFma/lRUvEEBIIk2Nss8ePSuFd0pM5W4FCoVVMgrH17MmhYcn7JxmOpPM67eBrFUt4V3JeINk6pajm789hizXytu4ElYvEgmizGYuOky9sFryyC1J2lXKoTO3n2ExIpbKdlI4hETiH9D0Jd8v6ds381e6yfYkiXmMhhUgd9gfu3v+RZdpzczXy6eMVu03H5eXIu7dXjEPHOPRcXGyEaNJ2DMOYMiRorM4KpYRuFNMhvbSEwoXkkRMlDWaaNlkhDlGM7qqapLtojTI1RETACYRsspBH51APVd6tzLbsBqlAGfnUhuR1FUElnpoQxWOtN8IBZI1iSB4/0xpZE4fR6iWleSXQrXOV3L+cgr9fRhWQXUGNAEDEKNBKHnQlP2ySrQqImpi8MyIRn2p4GkapBZxRitkt3B/3GCLh7kfC+z8Sl4llemA53IGCuz/+geHyDf32An3zBvvqHdhOjAxjQSuC1vjQS5ttDd7sCM7h6VCbawERxh6GDqUMo94Q9QYfI8uKgDARFh9xyaWu3TyOKSYvJpcvFWIFY7XI3KC0eD7FpkliBCNjQauIUaARgFA3fepSKOCXKqcKeRY7STh5CfftjGHsOqxS2N7Sjz3aSNhXSO/fW8viHX6JvL+7599/8x3j0NP3QjSrleJuf+AwSaibdxGLeHcNKZTkfLT6EPBJ2V5cYHVNBr9iVNVd6WpqIApQWpNDSMBRGmOQ2j8EIWoGXPDi5xo80yTcJsEH5uOMW9dmrc0NlRSvqDFWmNliVKJgBU9GfrMfiTY50+DLzcjMD1HGX355Yl2X899nn5UVu32vZ4T+sybFufdErAbi6Sfx9Hc8vU+5dyQp4LlnTzXSrCCXJxSvpqyn0BisCRhU6T7ZAFX1/Pk1RUfMP3lNR3FuSP+1yhMgKI3zvu+5urqk73u6ruPx8RG3rjzu93z6dMuyLDw+PgiPT1rTjLaizSmDMZ2sdVeglEmcEmKgyGMUd3e3ybNWY3QCVPJ8ipE//OEfUmhJ3nGWNOubzYbNZsQYwzhuGMcRYw0Xu4tCJL3bbdmkMDFjTQJvBBwyRsCo7DkhnhUUIDWHuGXPCRW8dI9VoCUcNs95oyWl9sVuTenr17T2Z2Pr5fsse8lrledfnu+qVSvq0kgeb9kQa41LUCk04SnY8VSGqGYzsP24PCoGHh/u+eMfv2Fd1gJoW2v5zd/8lt/87rfYBD70toKCdQNJndw4G70uGbSRmMBB4a3prAATihQCpVvvoTp383H+L2+wtZuk5Thmq6SdtV+6xOrx4xzOOzKBsvRRox+Wktd6Uf7KGEg/SinGYcPNzStiCGw2I7uLHdaaROAsHnbeh8Kx5ZzDOZ/SfeefgPexbLjExHnV6oSlPie//2UXBZjzJEeq9lHe+M9zS6m6ufu55bmer4tY9qYMPjBPE9PhiPeeZZqYjpLJ69PHDxwe7wUAmo8VhMlWVgLXVyeAkM9JXsoGVg1JzyBgjAHnk4wgheAqhWDeAeUd82HPg9F0nXhgEsV7yPQjuutRKvnuFk/M6ln5+VESm2vz3DzFPn6q/PU9fhpVolUnqoGGfKIak1f1CM9PQDGh+AS8S0rTt8jL74nM9a5JYU7qJjHCfgqsfsEoxf4w8+nuHqMNi++YXY+PcJgPRHeA6Flmz+ocq+vZ77/hcHyN0QPWKq6vFfPguL//HqXeUz10YqsPpRJKvSoeoIj0SBdEqpePRzKZrU3b5Pu1wyCeHFVjoSp2Mb48EalSYFRIpnX1/CnAj6qZmwrwo4TzpRzrJjRMk4Cf6qmfbYLC2ZFBoHK+1qUKjVNB8dyEaadEPAFyaAhQa6gXJI8ARdOhWZzLv6LcxOSQJR1fsnplHULFErqlNCmrV/IiSAuqVxGTjQGVh2/8ghw/Ki2UmhAUPsD9w4F/9/d/4O7Tey53Hd/9cWQzWl7d7PjNr96w2w7sdlte31zR9x3jMJZ0s9ZYhq5DK534RhKJHgqUeBMIobK0u/dRMs+lcz55AvkQi8AVbzzpIEHW5T55p0Up1cTHa2xn6FJmI21iSfNptEabBFJqhTIUQMAkbiUbaqhYp1Uhfu6tYvVSx85GyQoWYHKB1YsCvvhQsu6cmkiNRvkFYvbkCTlWVqUxqhEZolFRJYBRpaGZOXwE+IlKJS+YHAQZS1Y98cixRGCKKz7MEqJ1/z18+Ia4TqzznnV6ABSm34HZ0G12XP/6N9wYsMOA2eywdkfUmgnL0RghlTYXrKMVL7DNDerVr+VdlAPl0MAYwAYx4Oc5sCwOHyKHBaY0jkJ+bZKy5QWQUKlPFCrxG0nfBK2L4a20EmAlRkyQ7HCKiEGhlRCemyBtl8euc19iNmaw4PTexcaIFI6Xzhiuuo7eGMbdyMXNDtvblGlCdpCdg2V1ROf48dMt0zxjjWG73XJ1KSmhp3XlOLkEGAljnlEwdpZxHNCFJ8SCSlsSaU5Oy8o0r0kpqtlRWpAhqEq0vKyOdfUpk55jWcULNavGQFHAIOJW2bDwPnA8TizzQgiSKtU734AryVjJa4mxqGiST1m6p3dEpSQ7Y+K50qYTL7MXnJJiYHVPdqNjRnZyfZNi1n5e1+wGVHliDav6Wfore9EkyzYtMBWoOfc5bkGp58LNsjEosrE1bmnu2fxux2zbH2f3VDErxvW5LbAjukQ+V71927r9te2kFuyJTbvlqmQy1+vra8ZR0rg/PjxImvbbO77/4Yfk5eNLemcBT4S/BZPvFOm6ns12RwyBaZqYpoN8b124vb0txm0esLk+zjlJIf3ddwKmhGrsb7dbdgng2Wy3hX/k3bt3vH79SjKFvX3D61fCWzIMA33fYbSm7we6vms4jCR8oetMAXy6PmURhKL2KhTKGhSSSjv6SPQSkrkZt6wXYrQfDgdilDbx3p3OgRcqKm1OlhDa4gGingzQ6vVUw7sqMpK81TNQUCfa6fNO/nwqy/PdtBIg4eH+jj9+842kAz8cOBwO9J3wsr179xY1Rjoj+kwGTcstz7hqIrIJ5ZaF6TgJuOYkFEorxTgO9H0vMt0arNGyAaZUtTVP6twcn3u5t58nOfHXAX6kzbPnWw71qutATV5xWtf261nSQAZ9YtSJJ2tAKQSgvJR5k+8toE7yii/yXQAe53z5PIM+IW0OxpjtvrYuuQ6x+fv58fIvo0SMeh74KetNA8KpvEHzLPATy/TN95GzEb9OHB5uWdeVx/t77j7e4taVZZmZp4ngPfv9I/uHe7zPHFEie1S+S5T+XFdH5oGMUTW8vKLrmEQSDojHfUwE0Ephkl2iARMjKjjmwwPBLdh+kMy6IWC6js1FZEg8J1rbMhTa0dC+6+dmWJafsRz/+fJXBn5OhcTzFQxiKIu225w3SER7j2ILakXCvnpAUpi3asrTu6f4UA9BKeZ1ZdIzWhtc8KzBiXLvJ2Jc5PlRsmL5oHFuYln2GOMIQaOVQWsH6oCQTAvwU1P4qaYaOYSrLTrVu0uficEjx7O8X3ufJ/dMB+enyl/6mTZ5mfIk1KsAL/m4iatNf6POr8n3aY/r9VlpLQpjM+mLwGiFx7PAT1WCs9LcAmPtro6caw31qjAUJTyHaKWxWXdC0iJILLshWanNOjnN+Xz/fE/VXp+rULx+vkQP5tdUSehoVCIEdk7Ssk8mst9HnNNYq3h8HJOAi4x9JwpbAGMsnfUE41ExSspvbZJSkAEaWZgL+TVp5//E+yd5z+RjJEOTT+4BVbSl8ZQWCBMi3huUCvgglDKygOgK/BiFScRTxlB2vGIxyCCGSgZNzEFrMga1EsDEaAhR6mIy5UwE0whrHc/nIu00fflSDJJAVSjkR/7TuQpU7wAJHRXRJJ1SFo42Li1KmFjwHu8dBAfrCk5+gnfiZaIUfnWs0wTK4OYJP09ijFsLfS98ZomUFKWS/OySd84IMQifQVwIcZH5F3wigo5ognilEDBE8T4iLXQ5VVcI7QBDpRSwKnk35blXpp6igD3ivRgTb0qkQuapLWP9+TLd2IZ6nYYnFPkSwSAZuwZrGbuO7TjQDZZ5kb533qNUSEqqZDU7HCe0SsFaxmKskexCq0u7mUKACBGvFcEJuh6oYH0uEiYYTwx4nYRvlmGQho9KLs9pSGalOO9QZ0+5ItNzG6fQQu99GntJqfayy1qIptP4rCFmEENfxnpW0pVKeTFTSLh5BmT7p/cfqW4IANnaSLmhivGRBEIl3DitT9O2qNMBm9eK9trPA1jyvez6HTkFldQzz2r74gn4ku+X5kQ5X+6fn6Xqc/M9Y63oZ4+zfOf0Hc838L90OQd9npQCFJA2smScr8kbTTJ2CQ/Ic6ARqGZ+q5Q1Voz4rvM4J5mEvK/eIK1Cn78roOrC4XAQ3pGGk2JZZuZ5xhjNdp44HjclhEVrxTAMbMaezShgQ/AOt3ZorVnXFTvbwuNnEjG07SzWaLTRkrK4s8nIydxdGm17ybgZZHMnh8eqFJYWY0z3zOS6hhgTQP9yPcjTkKTc7k1/pnZsCWM5kb3tZKvfPQV/6jXn86TRNpsHxrQGxdS3nmVeOOwPrN3K8XBkmqa0qWXpUlapU2wgPTsZpz4EvPPMx4nj4VCBH+eF1JsIMaKNgtiltVi4cWqYblrnklAQsvam/WIWXz+jXV+6NEOjBdZPQ7TOx48q8+50LU2fJhBQNp9zKCJpjNviRZuByaqvxubvSM7qlL3XddI7JXS6S4M/ycdmDXzyYv9CS7Hd2hONbVckYrH56jpQP22/W6dq8ahKALJk6lqYjkcO+wfh6JkX5lmAn+l4kOPgS/h4jLHQkZ6PqVzEhmt0oDOdKF+T9RrRNWvd8jhSTrMuM/M8YYOnG0bs2ote3GmhsnjSeqfrX7OvI889uTI2LffT5a/u8SMlW7iJe6KcdqCOoHwaMdkI0cQoxFqwJfIVih2oTyj9C4jClRNiJnp+rqQd4sRVMS8Lj0E6yUeDj1YU5eAIMe1CRAfBswIfP/7I73//32JsT/QjMWxYV4d33xPjj9TsW5mMLZ48+6miqZDmT6FeKnv7RAT08SfXVtXoXB1rf6t0Pw0q3Tuan+qIv6hkUuf6u2b1UokHRQwCZOc8I6CpmpUAOoV3qRzqlUifUU1GsPOfmEK9MmCUJ0edjKcioy7SpU9i9cAhNv5YKnl9IEaLCJccHhMbBbe64kVizbygGnCpmX0hPysJu6dZvaQ9sqxpvXxe3kRpi+xSb3eXdLZnOuzZXb5iWVYIM59uHyE69o8HluOecey42G15+/qWoe/ZbbfcXF8n75+Bi+0GYwx91zEMQ/K0sVjbUTIqpN/ZPpd2o6RnhzQjoqTYFPJmAXWcl3bxXuG91D94RQjZu6DKkyyESfdWRsad7TW206L8dh2dzZmEUohLAiWUFkPZl3sqDEpIK41GG8UQZKdt9R6fjFiXXX2Rjs42ZswD7QVLjJGwzg1ckcidsWJ0o6pbuCKRO1O9p5JhXsa1yhnn0k9ah0JKT0nwsIaa3kwP6FHuE7RlWWa8Unz68IFJaUzXsbu8ZHd9ibEd4/UrLm9eobRlVYFVRUJUTHZg7kxSgg8c5iCGyOORdf+Ijp5BL+yUeJl0EWYloODD0XGcTsGA4mkfkQw3VkIlaOQICLCEDwnMCNSsiLm/AqtfEwdDBSdfvKQBm2XQ2doOEbSPmBjZGcsvLq643Ixc3Fzw9levGTYD07LwOE2s3nP3cOSHDw9Mi+Ow3/Pj93e41TGOY/ECiKp6S63LgfX4SIye3nYMvRXPPStKsIRTZh4mRUA4pcTrIe8ma/rO0nXi6df3FtulMdZ3ZT6uOUtXiMxO3KpDEMLqZREgSjJtyPG8rKyrI3jPshxlpy543DIR/EI2nFGaru/LYrSuC/N0ZD52yXNQPI5s1zPsdti+TzxOL1O8W/n4/k+J8LcrBoA2NhnFNbNZ9rwTHUM9yx1VvV4qeJJBnifH56peLP805+IJyWu5dXmenFANkHSm2sq5dO9zT6BToCime8sAKxs6BThKin/SUgV8FdkrYV+NEXCu5vyVyufAn8rtofA+sN8fCmfEsiwEH5jmqYSFpG+Vo9AmWytFi65jxNtGMgaJLriuM3iHWx2rWwHFxcUFV1eXhBA47Pc83D8wzROfPt5y2B8l898089jtS7avHDp0d3fHDz9csd1s8G7GGvGsds6VHXDhKEpeoM1YyokujDWM25Fu7OmM5Wq3Y9uPmK5nc/WKfrNDAi57NAaX+DZyinqtTeLXiIVLw9iX1VOzppw9u7PuWARsHuMFST0zRltQg0gJ9XpiWj07A2nnS93ME55Co5XoUW/fctgfeLzfc/vxDoB//3d/jzEd42bk7VdvefP2jXD/KINO7jk+hXEF79kfDhyOB9Zl5ePHj9zd3Td8aB5rLVfXV1xc7Og6y/XNFRcXW6y1XFzukqeLOmmWssWWqQbKK8cid2IyauV7JUPPyxd1ehBjSOTpcwqTa7JO5rqVHTxK38p3s2Eu87jrJCTRlMQhkhEzgwDi/bGK/pm8eloQKITA4XDk/v6eaZrQWnF9fcN2u8Va8UBXZWwJN9Dt7R1393dNH/7czF//IZfT96penTLaynqjQjObEnegOp1fCmqiC+9Z1wUfPLefPvDNH37P8XDgw48/8qdv/8gyS2j4uojH8LqsrIskhxj6njGR33edlUgBUvRB8uTPNc/jxSRKC6JwCAH4RDSuSJmMo2x+G6WwxqAIRL8KOuAcP8wr/PgjXd9z+eoN24sr+n7g1Zu3XFxdJRtUNXOuvnidCtV4zbpiXll1A8z+VPlnAH4aq6K8XX4ljwA/i/S3zu83EH0GSbbA14hXzCcUvxAjJi4Q//iTT5ZJCxCZlgWXiJ4jiYiUU9+cGD0RT4yBDx9+YF4mjLHsttdsN1d453H+B+DH9K0M3shd1cnvph6lHXJsX6xPVrkWz8X3VTdF8YBKimQ27jDAQAkfU2M6x4vJFEUGahpgRp+lYU8VLwAPAhJVvp96vRyfAUg0CVqg8o5Qr4H8fXn3atDRHOQ6Z0ECOi1WeUGLKocxpCVdKSogXwEemoWuLoaJBDUBSSp578SkTNRQrwwmpZ4PiMeKjmWn3yhKiFgJ9SKehKS9dFEorOnZ7a4Ig+e4P3Jx+Yp1duwfP/Lxw/dMx0c2g+Huk6XvNBe7LR9eXzMOPVcXF7x985phGNhtR26uL+lSqMg2gUBd19P3Y0lBK6kMZaCorJ4l0C+2i7RAbsXjI3gvAEuILLNk3goepjmyTJK+e54D8xLT7qvH+QSk6gg6SPrbjaEfhaT68mLDdiPCf+w7usSP0CclWcazAENKC5BhJXUUnSIBQ5E1JK6DEFicx4UgO55BFZqtEGv/v1iJkbAuxGSMR1L4Fj4dU2REAX4K+mHSPKnyV8ZdqqMOxKzpO4fKwI8LiYdeYXWP7TZorQnKMi8SDnYIkU+HA9pYbl5d8np/zTD0XPaRr9/tMB2spmPR4FE8dAMPy4jzgTkE9tOCd4H58cD64T0Wz7iJXIxiNY3R4NAsMTAfJ/b3S5lHZKUiAYxaa2wCIZQCY+RHwsIWondinKY4vwg4xNulgBApfCwTk3+JUnYnoQiMsjpGMD6ggwA/v7y65vXFBTfvrvnlb37B5mLksCw8TEcW5/nu/S2H2cNh4uOHD/z+D99w2EsoQVZ2TG+xfQ8KlsM90+MnMRRSRi2lUqiXtWm3XzJSaGWww0jXj2hjuNhtRdE1BrXdYJHzvbZse0mBao3BGsl8GRJYGkLkcVo4zivr6vGr47iKd880icdEjAHnVpx3hOCY5yNumfBuZT7e4+YDKJ3cpA3DuKUbRoztWJdFYv17i/OeaZlxztGPG660oo+td+4/vTi38uHHP9J1Pdvtjs5KKEw/jChjUkaQrpDDZ+UuhojPxHJiqdLMWsralp6Tx8OpIpjXuGY81YF1djaeXZAlgGqO8+fNmGyAngr+nN5INfdudR99cv96T5WU+3Kczuuya9rYbeWgrdMXKM/s+LZFUT0EfAjs93umSTPPC/v9HufcZ75Vu+LUY0JeTgieQfcC1IixuTJNku0wZxJSSkJ33rx5C8Dj4yO3d3ccDgdub+/ZHw4455IMTG2efhuj+fFyx2635WK3YxgMV5cbAO7vb9k/PuLcysPDA/v9IYWyrMm7NxIWT3Qe01k21zuG7cBmGPjN23e8vryi3+y4/uVv2F6/wWjLaHdYLWGjprf0vSRQ2Wxye8RipFvzcqZI1qyzV3a1oZ6OnZPjxhQ5P3+qyz+9w/M6fv1DQB/JYovR7C52vPvqLfvHA3/4+2/49OET6+owxrI/HNlsNvzNv/ot8zQXPsXOdEBkXdYCBH54/4FPt7fM88SfvvsT79+/L+FfMUb6vuPtV2+5ublm3Iz86ldf8/rNK8ZxxFrF0FvQAkg9DZNKnj/puEqPer4CYV9sRp6UEMTLbZ5nlnVJqbdTJ8fqTZpfIXu155IBIklAkdY2a9KGRQ59U2mjJ4G5yTOkeqhnLx/P8Xjg/v6eeZ5RSvPq1StC8FxcXHB5uSte5yjFuqz8/ve/Z5oXnFtZljUlYICzEfMvrISzGaNOLNk8Q2XdSV68MX/abgBUyhAAFxzrMuHcyu3H9/zhH/6eh4d7/vTtH/n93/07puko2UhXl3hDQ9qI0Lx6dcPr16+x1jImnrMs010aU4WLOJKAHwnzUiBeyTEm4uYU6oVsPhqj6TsjWmRURC9E0s4H7h4PPB5mur7n1dt7Lq5u2F1csN2OXF9fpPdVdQO2rqqfWeHz3BPZFJo18qfKP5PHj5S6tmbhEVBqRalFOj85CcRgIAZiCsEgaoQU2YCyZI+fnyN8xECQxgxFjIUk1Jp9rKL9iKAQISDAT28HXNcn1Lbl5smZuTi7GyfdUfS7kzqH5oqzjiuTAFTURZ1SaZefKDueFfjpgAEJiRueu+M/qTwN9aJ4+xQFtXyeQ7/OQro+d55Tt9E897JBpJ49X59Xv3jyC2hbu2oDCuqOUHNcLjnpuPjkuOqjdZckn8+7D+16qtJ3Y3Nc+lZxsjt0qiC+dElCNSHZygg5ad8P9MPIPPWAIUaF95F5XgleUOzjQUjUrLYcxgnvRNz0naXrrYRvJINPgNYM+oTUvsKEr5RJ75nU/hL6kBW0Gn5TjsuYq9cU1STm2GsK8R7ExKUkwI8yAm44H7FWmPa11kQPrstZkaCzsgBpXTM42ADayrNC8g6ScJVQQAFJD54QxcbOynV92SLGa22dILIxx1SXAZzaN2RgJ6W8fmZFyeEgMSrJdJXnQqz3U9pAtERjwHaJrd0Kj3RIWZjWFR0kHbdbF4xWxAQeqeDROmCV5CLrtKIzOmF0gegcwa34ecIdD4DH60jQ4hmgVIdRHSYETAyYWIHY3MY61t8mBnSQ9UQHCeOKwRO8gwT8UIAfRc5pVcKLEvATQxPC86K9SFU0aGRGzHHbMq6zFWOSEpJBmrwTJeSDgUpgmcCrnFWCarja6AlJZi7LwjLPMmeUwieydJdSlyqlsKvDdh6lNX0iaDbGMBupg7cmKUbCC9JZw2pSuGVnSwhQ2UnzgegkTbt3DresrPOMD0EybyyJAyQ48dbxvoZ6pZ8QPEqJn63Ikcz5ANnDRmmNjk3ygdQIZ3sD/+QSguewf6TvehQRZ8XLIsSASRxohIBO2dNKCGaaWKchxafhTo1TwhMT6+lxWodO8J74/O/yverJoFq5cHZt6+WjTs7XBz41sFXz3bzOVUW/ns/eRs9cf1ZbuQdfrpx5RT3zePkoxOIFIF4yvmT8eZoxq4aetI8p+gM1/Esl4Ll4jel2rMg1xsjaaW1H3/WsnWTm05lXD5n79VmREDTLvKQsYKZkG4OYuIWOrKvjcDgm4Mcnb6ZV3nV2BfhZlWdwA24c2Y9bRmPxKIbjhB4nrO5QviNohbaaXgvfnKJ6TBVt7gv0ZQ1JajwKKiLZtHsaiW0Y15OQrnzPz1T3mTWhqHyqvb6gEck47Fm7FW20bA755Kn1+Ihzjof7Rx4eHgT0ST9EamaideXh/oGHOwEeHh4eeHx4JBLFi0VrCd31TmRj8GUtaflnysZo8yoV8GmP4zN6aTtfv2zJ62QJu2oyxKoUgv+5auTMeM2Zk3l6Gr5zGvJTf+TTDPpk3h8he3ZorRmGgRijgKsXF00YmWKeZ4ZxxFrhwNLap5qcvuNLlJ+TuOBLbWKdPUX0mDwPypBRjbHVXNucP3+Dc2+7mMA5t64CBk4T0/EoP9OB6TgJ8OPciUzXWqesXqchg8CTv082RNKjM7h4fq3YAcJrW8Zl/oISPk0BioS8f54mbHfAWJM4h3zZsMy8iT/ZQyfrdDNjf0bf/zMBPwK7VJBEybHao9QPKL2n6zXD1mCMwq0XLLMihIHgZrxbiCFnvqrEpD/76aVd1OnvZw1s+cw5xzwdxUgMUdzHYmSZ98LeXQyqxNrNU48d9Ww98+BPnhBRkcO15A4W4RzJnEAWCTpJAE/siFwAA5L97ALoEcDnCsUIgOf//rPb56dK9syR3xUA0g2I04ZoFU8fFQvpc3t9G+qlVCJ6BolBbkmcT0ifm2NFMviqUl8Ws6YDCo9O6oksX7IKGlBFDmW7PS8ANXYkjbRsDCvxFGhdY8tyqrI6WyG9mCoin8f6g7QN6XshVTRqqvfRlypKY2yH1nBxec0vf/U3XF7e8OnDBW6deLwfCX5mXh6Yjo51PrJOHmsMnzaP3H58pLOW7W7k6mqH7Qzb3YarywtsZ9mMGyGAtoa+7xmHEW2E/LnrhEBSpTArWQ+q0WNIIWCARYjQYoys1uAGIZpdV1hdTDtBmtXJrtC8GpZVgJjFBQkTi8nbYIWwBj7NR27VnEZEXfw7a8WlM/U4EbSRRd12yYuhF7d1GbR1wMeSlSCR3pYFLKMnL1hihNVRuX1kosi4C3USkhSfgsbmMS1/FyWhfA4qBhmHuTd0L55T47VcGzxYC6YjakU0ipiIk0PQ+NUTAkyL43FyLEHz6WHP8OEjXd/Tbxb6jcNozQUDYz+wsjLtf+Tu+2/wxwPum3/P8bs/oPF8HCKujxI+dv2GzcUNRMOV7tC7Mc1lL8BVjJgQU2iCh7ii1hSbn5VgH1jnVXaDYgqyjXm+po2BIB4nOVtW3uV5+ZKkQ6O3eh+SwgLGe1gdJgTm5chxXTmuDjstDA9HBh94nCY+Pj4yu5UfPz3wcJw5TCurDwISdVbcgP1MCOB1h3aZn2liXWYJ6QNcFp1N/2ceMKU13bChG7fiJm2rp9w4bhhGySS02YwMo4R7bsaBse9lDKbUcd4HHvdHjseZZV35+PGeu/s9IQppuk+k+jlrH4n/KQYH0aEVdJ2smQIgC9DcWUPfGcZx4PrmhldvXuODZ1lXnPfihbPZYLquGNQvUQ6HPf+v/+q/FKLezRZrO7peSHut7RjHDZeX1/R9T98PbHcXWCvk2dambB9pM6csW0VxrOtXGaTngEyjlMr8P9EKG9XmHPRptaAKyJSbnX1HNYP0THs60Xfac/rs73ysnzlWpR75u8+EuT3zvJcuiufFdYxioCulWIOEHSoUPgjgc+K50ljStWWf3rQ1KlTSEhUKYzqGYYMxlnlaCTmTYdoOVkpzsbvk3Vdfc3E8ctgfeXzcJ7DGp2xfsRDhgsiVeZ7RSvHjDx/Ybv6AUjDPE8sihtLD4yPHwxEfPNM0lVAJNzvC4jGdYbMsDJuB7WZkZ0dUUPSTx/Uf2a4RYzo23URnBrTR9GOP6VJYtTFlrTXJo7YFqf7pRTjhip4lyhl5wxE4cZ6v46oOsNbgO5kTZ+efPvn0qIR6xQSupiySYz9wc3VFbyzXl5dcXOw4HjWPD488PD5irOHu0y3fffvHBKSLnCXCui64VcCG27s7Hu4fcN6xf3zkeDzQDx2/+tXXvH37mnEz8ItffcXrN6/oh46bV1dcXGzo+56h01gtldRlzqmyDqms/+bPsh6ssnzJITv6mZb4MkWywjUeP603Tkq8YBKflKTcTvqNUpUighzeZcuGQPEUIpE3xFjCsWLatDBJ/3TO8fj4yLqu3N/fF6But9txdXWF1pqbm2uur68kU14Cb6dpYlnEo26aJu7u7lIombR8RUX+GoDMX6dEUsbe2Mq49InKPv+Keqq2QeHKab+X7hUjzNOB248fmeaJj+/f8/79jzzc33N3d8vxcGCeZ8lu53wCQ8XzWCkJb80hfiCejRK+6xIwmuuRQrPLYhCSE4gqY0HCcsG5WFK4L4vB6uxxrrAl3FueGYLn48cPfLy95erqiuvrawEFu45xe0k/bNr9SE5X9Fg3Ysv5zCr085CQf0bgJ/8kYmMUSu1R+geUvqXrLZeXPV1vWGbH8XHEucCqZoJbiDF72gRKWt+f8VRohfznxFWj6CRDSdxunSz4y8Jk9gC4JaBV8h2KkkZW7n7q8VNLIDFpnIV+GKQ7NCVcKxpImb8k14yQWSssiosE/myI8Ssy4BO5BjVCHEBdQwJ+XrJUQCctmroBfRpgJqdGluvVCdiTv2syCEQb6iVAkU6Gx3n42MmxTiqVqvHZKmuK7fKsxG5VoarFecIkfUqMoCygsn59oryJBt7CQJm/p/RlqMBiyMd5sz5p7/k4qJAWXSEOJgj3g2oAH/Uzx/ZfWpQyKKNRBnYX1/ziV79lmSfGceDx/hatOw6Pd9w+PLJMK0e98nh/QBMZuo734yeM1ozbgYurDbYz7C623Ly6ouuEE+j66pKu69huRi5Sqsyh79mMoxilVgw2pVXxZlAKEZbJBV4QIAFDw1CJmH3MadXBpUgkARwi8yIhYIdjYJoE/HncrxyPDucDh+PKtDgBjZy4YipIz5eOCl52yrIx2/e9pPrcjPRdJ0SXQ4dJPDJd38txynyirS7z4ufswvyjSkRemkAmcs+KGY3CI3pFGlhKgQoUd0olXhHF+kjnS5a63PbJU4HRQL8R2WYE+EEpol8IfgIq2SQhMs0OfXRYD8P9nm7zib7ruL52DCpgrGXsA12vmMPMx8N7zPd/j94/4v7hv+Hwzb9DBU/oAgcbGYYR+9v/iAsVMabn0ryi74akYHhCFJLxzjlM8gxx64J3YqTN0yQpwV3EHR3r4vHAqhS+UUAAWcT9WomEg3958O6kO2PpvuBlpyrGiPGOuC6YEJiWqQA/alowDwe6xXF3PPDj3T3zunD7eOTxMDEtK6sT1+POGmJwiRcnorQnrAL8uHXCLbOkZSaiYsq6FQK+EBaTMhwqumFLN25A6eThJmOnzyFgWjMMPX0vxLGXuy27TXKnth3KWAF+Hh457g8si+PTx1vu7/fC6aWNZKIzmn7osV2HUtBbsEZksFYKk4CfvFEioaWGvrNsxoHrm2vevH0r3Fve4RPBStACgqoXBH6Oh0f+3//1/wNre8ZxU7wntxeXdF3PxeUV7959nbLGXPHu3VeM44Z+2NAlMlHx2DLJ+MqNnqZmwWCSV2H+XAZOGT+tV06Ep545zx5X5bso5e2aRwVjpD4VmPn8PU/vXUCdRolvz7WgT7k+Cnhbwr6eGA9fsBQA7fx8IgxHFP91SZyOSqW069lIyJtG9XskAOCpan7akrkvrLEM/YjRFmMOok/ERFcQZazsdpe8exuZ55nHh0fu7+9ZFjGM53lJoZMT8zxXY3ZeiCHyw4/vRS/KwCriwXQ4HJnnCec8h8OBaZqIIbBOK27xGKvZzDP92LPbbrgctpho6CaHsyP72WNNx9gf6cyAsUZA4M6U1PHZGO474Qd7SeCngIeqzpE29K1lSG/2Rppv53t8DuT53OgrnU1L6KfKLqApjx/7DnN5RW96ri6Fg4cY+eH9e358/54YI3/69jt2u53oFdbSJVBxXZfiYbbfHzgcjjL3kw58ebHjP/pXv+aXv3jDdrfh17/9irdfvcIYy7jZ0HUD1lqGzmAqolyqHgvnQGunRdEbSGB00UvVSVu9dKlOIaLP+xBY1hW7zCmTXeL3i4ESuWstNgH7re9kHnMCPlZenzJXSTpEqHMhAz/GmEJOvq4C3hQvq8dHYox8/fXXfP311/R9z6tXN7x6dZMMffnu4XDg48dPfP/99+wPe5mzj4+NPPiXBfrkUmyZZJJle0xRxWJ1tsrezqchzrkUMDJG5unI7e0nDvs9H96/5+P7H7m/v+fuVoCfZV2JPhRgJusjWeZZawrwI4CPRPbkBBJKC+FyiDXle0S8kGPaSBS9wqeqy2ZpCJp1TR7Pjde01gptZOwtq4C2+8PE9c0Nb7/6iovLS4Zxg+03jBst7ebDk83/ClKShku2aZ9bW54vf33gp2owlBCWsgPtiMwojihlMcZjrSGGDX5wGOMhrCxqBhZgJiI7gDWd+s8okZpeu55Kv+OTv2SRr1eFEPAJrJJsC+2dmqM8wmM9K4SrTc4YFSFmsCdnJxuBDnXC2WOBDSplMRPgZwQ2wDXEC6LqUVwT4wiqBy7T91+2ZEI8WTSrt03NepA/y/GZnw/vKgtHDhnLIE5eSj573KhL+Z7pGFrwp+mPsojUzo+NYpnDAE+FTYZ40ngtMjo2CHWjoJ+FehVF+bljld+pub5RSMqO7xcJ9aI8LLeJNhrb9UCkHzYM45Zxc8SvM9b2eLOiCISQdhKVx8ziqqyMwk4a42WRO44TzrmUHrYT3gEFxoq3TwySbtVoTectMcruS9CaaDJYYtBJ2z8Nm6wrQt6pKmTdCoKu6dm1l5TsvpMx0VnFaqWhTSJ8RmfAsc5vpRSEkEhmhYzWmLw4iIdB8BFtND5GjJX3DkFhrJwPEYyrmcVeGvdpe1E14zQrZ8Xu+IkH1+8+vUadXSUnNEpbFBGluwT8IF40QSddO5ZMW8EJCKSUEp6KeYWYeApSmmNtVqJfwa8QHCqFYElITxDwxknIloQLSogYStEZhbLS1qtzuEzSHL2keAs5pEhCg4Lz+FVSsAbn8c4TlEr+p2liNsBPTMAfMQEiL8gL05bKUVQlDjGUOgTvIcgu/rquzG5FLwv9NOOITNPMNM/Mq3AHuPRuMSZyfaXqHJEHpme2xlF9ujRDHk3JW0oQawkJCwI4Bh+LB4R4uNVseiDhYEu30CVgQ/kIRkLo5mlmnmbWVbgU1mWR55kAWqOixpu8U4Z4luV1Q8fTIVtkrqo7a9aKZ08MoBU6yAaNVwjw84ITMobAfDzirACFxlqcW2WMJs/G/XZD8CtaK467bRrfkc4O2BiFP8kkIvxIA9qcmp6q/SfG5MmXQzWq8XBy/fl34+nnKitF1FD4YuTxdHyc3DPdtMhopUrd1ck1p/VRT45PQZ8K+OQw8Ly8fykz87R+z0vF9EGeGQ2wdhouEJ6cq9/ltCNyH0IBYDJPic7zqc0zGGXOhQTSWytA6jAMydvMytqpTTFec8YxiIlUOaYMnmsiHU9BrilE2vs2c1FMyRhUUVKy8RGCEKK6EFEhFE8josIbj1EBFRCPqJBAMaXK+3nty71esiiV2zXWpiYWnevJ9Z+7z8+4Ru7cXtPaD+pEJ8330EpJWKxOBmH2PAkBvzpCFDBPa41WGmcNawoRyrxL3geWZSm6lbUSamutAO/b7YbtdmSzGdiMg3CvdR22M4lk+3ldt7yDQtagEzkQn1z7XHTDlyvZqyKF6ZTxmTJwpfnUdSkbmso2RbYznsp9mc55nlJsupiu5+x77RrThmJ2KalJ3/cMw0DX9QlgkvZ2ziWPz551XRNfjDqtR1NefKOwfecnU0A1cu9l52IOXW9M6Drfi9xr/i7gT1sPkRch60UxCM/VvBTdIZPshxR+27jFlKJ1E9anahs/F9qnkvwoz896UIgoVcPE8ud5MzrL17zR1F6nVZ3vJVTNOeEknGeUNqn+NeNxzQIXT+raNGaj/T995+fKXxn4yUZJRHadQwICYtpovif4b4nhB7QybAfLZmvQuwP29Qa45OPHD/xx/ZZjOBDivyPGb4jxjsgd4jn0M2sRo3h6kJsri7Y67EtIT/5DNVwZ2mfd/GTzrZApt0q26pEwLEUsmbx0PVYW4hWwS8eXwAZU9fIBi4pbFAPi8SPH8tmNXB87otqmcxriQMz1ecFSQ7yaUC+y8p9DvWLy8hGBolGJjlr+yyJPqxzUJteWa9J3U1OmlMGNx4/K9ajcQKhsXJ8a2eVQqGVqyeBLszNXOA5UJBN7y3EoikTR4dJ365ipC2D264rpOF/jm7/BEVRARzDJXTakZTSTeynVcj+9cFG5rulPaxl2Wzo/8Mo7/mb9txz3v+T+03s2mw3H/QPLdOD48Am/LsQYmFeHWmU33UWPMUJ0Oc0Txho2m4HbOyF/HceB3U6yClWPH8Mw9GxSWEjfW4ZBQKDO2kTAp5Mi21UgI4VUZbCnShYxP4zS9FZCkIyGcZBMYhdbzbp2Eg62dKxOjNd5CawpPGl1Huck3GSaVpbFpft71lXcO+dF4nElJDFlPlLJfTjtKom3j0ZrsLaO5xftP6vIaarlVCPBFFTPHg06eQWpHJKWlNHE6UIx3nNYWILVtErE0JBnMkQxrkvcp8HrDmLAr+AXjyLi/Mw8gessjwFMCNjeMk8L+0nGyDhsGYYNbnXs5wn6DuVH9MUN+vorAX6CcCkxjKjNG4aLa6ztuNlssH3Hsjp+/DBz+3gguiChEUvNDJU9PpYUBhFCZF1zpq6Q5msS5JmRmyjgUUzBX/HLefzEMyVHQKpFQtPWRbiOvONT3/GHH77j0/6R4W5k93iL6TqOy8zD8YhznuOysj9MMoaXGWs1DB3RK4KkzJM+TUBIznASjJHsZmm0hyjedFIfUhYshbLioQJKMmD6xIlEKAoLCpQRb00fAnMivXXzIvzg3jPtD0xHIWB064Iicx5EiFq8M10k4oha4aMAzEpB1DGFgWZ57PF9EK+fYaAbevphoB+Fc8EEydQh635KI/+C8zGEwDLtUdqwzikds7HiNWkMwzDy8f2f6Lqe3cUFb16/ZRhGLq5uePvulwzjhnHYsNtdYW2H0YYu7RQaJYaDrJEZCEileYWqWDfmRLOGngJ89etPAaIWPoon152QLpNCtLJRnc/Wbfr6Peo1+bjdj29/CicT4vGT3zb5InL2hi9etPozfCEnx1IjCaFaypzKynhO90wab9XjoO4Ez0npjyGgEzeL2D8RrS0WJdnhtGyYLPPK3f0D1ljhkNId46D5xS9+xXa7wznPPIuXz7IsfPPNN/zxj98V0FiAg5AIqY/IHkeeuwlUCkJArk1P18sCO8ieUPFytZ1lGEaC7lmiJnrFvDjUcSb2sBkiwruuJewm8eJFkhdACMR1RSvPiwI/KoJayZyAZftWZY2/9qLsYWblT7WfNGMVqm73OSionRXV+JJlVEaw1QqbY9fXgI8rKi7ouKKVQyuHNdB1RkiLnWc+HAFYEkCUx5RsRCrGsUs6lWa7E4Dn6vqCf/Nvf8d//J/8jnEz8O7da65vLpN+bhGePNFVjMqN4JNNBllDlf8z/2k1bAFi0GXGf0ngp4roaqALt46QWzu3sK4L+8dHPnz8wDLPXF9f8/VXXzNuxuR5KUkJSjRCkle+5cDKJnP01eMDyXoLidA9ATy73S4BpwLkjKMQpL9584abmxu6rmsIgzNRLUho5gXv3r1js9lwe3tb36v596fbQ52pIJ/5TrZRvpTt8DNLAdJKNSKFb6m120iyP12laXzmVG2l1a3M84T3jg/vf+DHH/7Efr/n9tMHjoc983TE+xVtFDYKR2kMIk+HoWezGYWnt+8SCCR97hOAmD1+IG0cJ5VQAJo1AX2eEHQ5X/mysndTYF1nNMLvJ9EA4i3WWcN2s8Hahf3RMi8Ghef+7hN/+uM3bHcX4vXTdUQUq8/hXg0oBdQQxCSZks36c50E/nlCvVROe57AHy3KdeSe6L8DvkWj2QyGi41mM3quLt7S2Uinf+DDD3/HPN0R+ZYYviPyAPGR0xToz5ekk6aMQc10O2uwCvbI74iEmgB4JA1f8+X0LS2Gl6r3E5HYEeMGAXw2wJAM11GO6UG9g3iTjl8J+KMs0II9O4j5eERlQIgdkUTGW37nyr3sxBflL4M+NUQr72a0YVw1k1dlL8gAjyaBO4Sy26FRp8fFGM1gj2qAn1ieATyLyD9b+0yHkktM90sTJy9korgFIcotx2kxVFmHlokW0neUagGgRCKbls7K85OvCETlUdGnugY0wjUUVOZ3ysjyy/Xfc02Sb686Q2+2QBRCxt6yrjOf3v+A0Zr94z0Ptx957xwzB8IqimUMjtV7lrSbfThO7Pd7tFH0Q8dmIzsfQy+CV2vD0A+MwygKy2bDRVJeNpuebbk+Ldpaso9Z0yFE0SoZngJaoDOAIUAMiNu9pIhVDJ0mKiN9F7X8AMFrQhDPnXkKLIuk7Xw8rEyzY/WBh0c4TEJwfZgcy+oIEZybEeoXVX6KYhibCYEobF2X0zm/bN8lza2loarGUQFCkXmUeERQiWslX1O4tKpykyedAoJSWfSlRVqAH7RGpX7w2hB0J7txzhMmIETWeQHj0EbzGAMB4Yg4LAsPy4Q2ls04Mg4jMQQO8wSdRYcBvbtGX6/JSyewrhHT96jNK4bdFUNnub4YudhajsfA/sPCx8cH3OqZ9ivrccWFyLQ6FieG/xIkFE0UEpUItVIYFzmkS7jjVIwpzXve9fyCICxZ+UwzPziCm4luxc8z7vhIXBduteHbYcv4+EA3DIx3W7SVlMnL6tLOZ0hp0iXrW2c0RncEr/AOiGlnPxl7OgE/hWg4KzHEnB8ybXAk5T+h/RngCYTk6ZWNxwooopV4YTkJqTzOKbzSe5bjkWWaicGnVNW+AhQqSIiEl/sFpQjBCPG0UmBFixcjUjzxgvdobej6XsCfcaAfhhNFKRAl614CF16s72JgmY7VQIpQSLaVcJlImnfFZrPj+uYmpXF9x69+c8t2d8nl5TVv3nxVdovHYUx8FULgq1TiKNDJK6iiM1RBHuvf5d90RqUvxBaI4cl19Y7Vl7lw8Kj6N835bD7Lpp4q4EfrnVM+R53e8+wnB62qWLOCqth4xsa8Ufjy5mZ5RgJ/nl976zvkrWzvvICYiQg+F/GgSSGbmVdEK+nfpCgt88TD/T3ee0kt3KU1z9rkuaAl3EsbfFQsixD/GmMYhkG452zHL77+Jb/85a+IMRbg55jA4Nvbu5KhaF0X2fiYVw6HCSBxVYgXew1r0WjdlYxH1kodVCJwl3Dmnqh7lmAS8ONRekESj0S0kfAGZcQbsDVcfUqTDRTS95cpEVhlqTuZD+c/6Xxar1XW5fOYK/+e69Hq7J712vz8PG+Ex0h+d1rRGxkvQUfWuKLiisKh8CgVMBp6a3AogvMCJpbnJ2M58Z5Za9jttlxdSVj9zatLri63XN9c8R/969/yr//N3zAMPdfXF1zstmKoupgilmPx6hJdOmUlVhGlZP3Lnp7yW0KhZYnQCQRKOsQXBxfqPBdjW4Afn5IWuHXh4eGOb//wDzw+PvD1179gt9nIhvIQUV0n7Kt5I1rJeAshlJbN3r4heRjHGOmMrp5DUOTNdrul63pCCIzjyGazBeD6+oqrq6tEni5ed5nEXPZaNNvdjjdv3tL3A+P4bfWEqW/4fAs0su7USaaOufPyzw365JK9sMrfzUY7NHYbAvorpH9U9qpQ9Z2PxyMPj/es6yq8Pj/+wH6/5+72E9NhzzIdCd5htHiCy1gVsGkYesZRwhy73qbkDzIncuZCn5JGACk1ekyeN74BfqqXVwbM83sqIjEolnUhBi/PWrqygd1Zi+1UtW86Sfn+cPeJ4B2XV9fcvHrDdndBROGCwqfw4JJVLo3d7AhUx0Es+7x/rvwzAD+nyHE+l6efeO2sRTEXJfJIZ2e6bqHrJow5oPWRGCT1OyWz1s8b6Fkon9j/GTErJc8u9fTckydVRaBenhQzDDH21NTqWySUK4FAaoAoRMyoFJoVr0DtkO7ZgeqRzGW7dH0NBxP+n3ysiXTEbJiRUPyXLBn0IS9srZEZy7nshSOASFIYT65Jn9Fc1xznh7XnRVE99W4Q5avWpy7atN11qiCfvY/opwnUaQyfP9cOWX6d3DG79EFdNJGdy0AKTYrQ5mKS99JFIa87KA0Q9SVKqXgsv1QCJ7Qx2ETIOowbxu1OhN88M252ABKGET3BG4xV4tWihThPpV1LMWIDQclOzbo6tA7S1kF2UkhGkiibAgJro3FejFOtNNYGrAlpp0onTgxRgHQiksq7MiopcRXQMHXMpA5LLQ4aghYAQKPxXuG8GPjWK1ZniYDzUYAefHK9jOKNEMUdUxa3RvFLwlgMINl1+FkS+S/owvhEoLYrQlo48+Kb52u7+GaBmK4pOkZsv5vlYSayT+fSIqlizRiSGqUEd0u2JU1YF/w8EYPBTZZlsGjrMAnozeFEyhjxKukHzLhFOU9Qnkgg2p5oOvFe0hKj3RnFolXZDfReQg4ySbDzScmlCV9ApS2l3HapfXKbpeMK+kR+tmz4x5YIJdRLVYUtE3LLoi/hXqtbmeYJ2Q3yeBXRxuKDT55MoYRx5LAA59YmQ5lkuPChhmwGJ22Wx0cJ9FH1bbOLcz4uLZIyxYAqdSRKmlPvHFFpcZlOKVKXeWVdhDB7XZaUMUjc9IP3ZRyqmHh4kGyeWsmGSw7RCkEXIDVL0hACKnOIGFO811JjlrY+X/tfrBuzAhjy7nHqUJRkyIsxkUqaBBI4hv2G/f6xeCANw8i6jHRdh1/XRKDds3ZD4UQZhlhCQHIa8BP7ljqdm1Mn7/9M7Z9cG8/+Vs29VRqsdf07W6cjJXzpHJ85M7tPzpW/s0dWrOth1Tny+53X8J9eIhQi5JM6Ny9Rd7Bz2ACJ0FPCDdrrXco6k4GfnEI6xpDWScWyLEyTADTOd4QQkmEh3CJkLSLJCecc0zQVzhEZV0Lg3nW2nMtpp3OoRfM2pY65ntYK0FPP5xDlSsRsbVf+7joxbLtONmdsJ1nsMiDUcqfEGFI4aDh5fmrM0qYvW5Jcf3YHXORLO1lUM38KAERa+9J6V3hnWwvi7D5tUeQQ8mbcZvmmIlpHjI70nWaz6fC+Z7cbmeeNjIXV4ZK3MWTZTPKklLF0cbHl8uqCvrNcXe24vNxxebllHAf6XkA7a0R+RpXCfYvOngGftKmhkrdn2piPJA93Uv8ElQASkcOnwMPL6zbn9y1jCur4Th513nnWVUJ+3CqesjlkRlE9fQrVRGpSSEs9VWZXU6FKtKbzkg6a5oHtGPqBSCzzo8yBU+kJCG9XDveSjQCD1uFEpjy3OmXw4s+1laqHxZLKtle9V3vj04Oyof1CJSLy6rkHF6s5rSU6zTHpm4AqnpKUYbAsM8s0s64S4uWSB2NIMjtz6Rhr0CEDlfIkm+gYct9JlZJ8Khm+Gm+3xssmy9L6HXmXKmNTu6WNNPEtlGty1jelFMrYlBU3VLuYBGauK2vzAwovrhFF/5LNK86AnzRmFGLu/4yp+FcFfmIEt0a8g+AVIaj0Mgltjg7iDEiWkcf7R7xzWA3d27dsNns2m2/Ybr9lXe+Zlx9w0y2eA7Dy8wZsVlPq8bPa0IlSoaCkj6f5Ttas2sUrIqDPiGTW6kH9AngLdKh4DQioo9QFAv70wGsil4AFtUU8gQTgyWCOYoTYgTKomPmAcrYvk8S3JqLRSjiRtJZJ94wu8xeWlF5b5TTbMnhzqFcN3SLVpO7u6bRs5Ih1WRg/dyypiSnXZtAnoJPz96lCWF1xn3c9bYwYlcWrCFuj0mRWSDajNB7yjoe8dfN96rns2QPZIBJQI8ehghAQRyQFso8JsSXgoiPgiTEts1HQXRuT4RMl1ELzc8b1P7ZEkt8bxQ2q2Y3T1jJstoTBc52AvGWe2N/fcv3qFct0ZJ72KexrxZpAZ0Mi6vaoNB+Vlh9pcCW7NBEO+4l1vYMIXd8z9GLYDGPHmDx+xqFn3Aj549D3jOkaUTZlJ6bru7S7kt3nTVFYZcclcQXl8CudQ7E0VvcY3YFWDNrAKCnJLy8szgt3wXEOzGvAJU+geRZi6OO0suTQsLXZuSyOgMkTiDQn9BcI9RKBKoc5NrCMyDQzlEG8Cz1K+bTSaGqavKzQpN+6OS4WFgXgJXrh4UnjpTCt+4BKRn9cFwizLNrBo2NAB/D390yrRVuD31+yPF6grWXZXjBtd7IgKovdXaA3kZ0didfv8M7zeD9zeJwJvcFtrpn0KN5Jtk+x9JHjEvn44IS7YvK4VRZH5yM+YTmhBXdO5H/OMpk/g0JgWQC0NhD4RTtSZIWqUkoZhe07sIbZrazOs84L3t8xTy5lg+rohgGtTVFO5B2zV5MARs6L4Sl8SY2Ck92Fc6pfkodmjoNPAG6EtLvahGRkgyCldgfws2NRM0oppsdHrO0qQKBEeVkWx+pciW8PyRsi+KpYleernJI9SfYMKhJL3ZXW2GHE2A7bD3R9z9WrG3aXF+jOJOL3aiRkcDHEL7QfGquhV+YRyeBIzP/rMvPwcIvWhmma2e8P2L5ns9lxeXmNtb2ECwziHSlgj2R3url5xbt374Q4erPl4uISY2wyZjIp/TOVan61fxQPMzhZM9X5j6LIr+Q3WI4bMdG8d/0rNUABcYCk4Kf1uxzntVuX52qV6JxU9gRS5ftfwtZ0buX9+x8kZLDvMVo2Gay1wrXivQCXIQpB7iAhHYfDnm+++Qf2+33a8e9QWjEdjzw8PuCdw1gBSozWXF5d8frVK4y1fPz4kR++/551XemHnnEcscZyc3PD6zev0VqzLDM+OJx3fLr9yI/vfwBiWdu00ux2W7Y7CTvZ7/fs9weWZebDh/cl+4ysjWK4Suj1Dmstu92WcRzx3vPw8JDew3J9fcVud1HmY/b82e12KZxF3smmzH7ifSSgEFExz+L9g/ay5sRm5DXGlXcvpqDKGpS52EIG7tO6V66p2mLhTypAWPX1kbGcARLKRCnjPN9HNYGLGTiDmoVWRaz2mBQ70neOOIq8/e1vXzFNf8s0zdw/7Ll/OOB9YDrOTJN4/Oi0yYFSKG0K8JPDi6w1XFxu2G5Gxs3A11+/pusMRiuCcyyTeHaVKGYiOvoK/OgVpSU8W5sWpKsl+MztpFLigRy292U01OeKrBW+hN4s88w8H5nnA/PxwHzcsxwPuOMB13XQWTqj6DvTdFcCHbSCtBYsLnmBarDaJJlXoJO0ySgguzGyDCml2Ww2WCtm9DAOdLYXj7jsFaKKxEJrw3a74/Xrt/TdwM3NDRcXVwnEOLK6+QR8+HNg6PnHRddNFAQZgNJaJ2JjQwwR15BWh0ZPWJY1hbm9XH9557j9+IEMApP1E98C0skzPUZUEEsreE90EkbVeq4fpyOPD/esbuXTp4/s95IhLUbPZuwxGnzfsRmHFJpO2VTL3pECwJsU1qVKCOwTgAedMArPNB0LP1AN4ZN3yTxT3q9459FKMfRdmn+GeVno94/SD8NI1/eJi2gVx2UCbp2YjgGt4fbTeyEnNwbbb9C2L4Bk/h1i64eYVtIE9v13E/hxooiHxJMpgywr3Q6YIU649Z794/e49cjl1mLNL9iME5vxOzab71iWeyIfOc538p1/dDlTSj4ruooKApgk+But44QVX4S6uMIPwCWoDYpfA79BMaDUa4jXKDoUideHjsg1sAWliaqCOjF2qGiJShNjX86jDDn+IguWTN4pwHHAWI8xYhgy/QVN9JnW0AkGyWFWAgSlhS6HepH5eGJaWmMN72qBIkArOTbNsU4AD6ryAEEFkEj3rApn9RSqx+0MSIaKrONkcF1ldDeRAQbV9GMD8TTmoLR186yTq4qnQGLziQLJJRwZlxHbGFB4PJ6ISmCQkOOGBDq2ngZfptS3Kuq/ktVRGUO32UiGpL5nt7sgBMfx8YGbV69Z54nD4z0Pt+9xy4RVnsEsaALBz/j1QAwuKasLIQaWxTHPwi/w+Hjk7n6Pc0H4C4wAOf3QMYwC9oybvoSJbTYj21GE9mYcGVNGsGEYGIcepTV9Z+lSylhrDMbKTpcxJi3EorRmJbXrA52OaKXpBgmjkHlkQRkhDPYKF8D5wMN+lhAw53ncT8zzivOBOZ2LJO+f5FESYhsH/wXslBjBrynMRiWlugF+lJBaKTKnTzIMC/AjSmpMczdpDnLv1pprIE8lBD71XAGEYkpjl4R8SMBfXNEsKCL+PuAfxCtjPVyh95do2zFfXtFdXGG6js3NGzZXV0Rt2F28xgTD6gLLjw8cPh2IBtZNx6KthL0U4McxrXC7X3EuCL9NQnsKztNO4njyBwXIV7EEl5/MDFUB45cuCcog726JwaDRfY8ishwPrM4zLwvH40z4eCdyRRus7dFJCSl+grEwFiXAwxelq2AAMWYLgLzLixJPP512xIQcWVSEZV4kLCvG4vGlQLyzkkK8+oWUEKy41EMmKASSgRe8L/K3yNYGiMkgrbSDKuncfdrZiyHglgXvPMZ2jJeX9OOG7eUVfd9zeX3FZrdDGyNeXjE02V/iybO+RBHw5XSnUjWgnlsXlnkixsjD/R0//vijyKxuYBw3aG0TuC2g3jCMbEZJEf+rX/0Kt/5rttsdr169Zhw6tOpRCdAmtWtV3p8BfWI8+SyvlPl3+5NJ1E88F6iAT+vHWF632R2vnzQPyeM8i5A8lqggEEqVrF5aKeHBK22ovsg8BHBO0ux2fZdAkeymDxiDW5cSPjWOY9qAEODnj3/8lk+fPgm56zhijOH+/p4PH35kWRasFW4JYwxv3rxhXWe6ruP773/gD3/4B5ZlYRxHtlshaF7dwjAKCCjhWWLw3t7ecnv7Ce/EI9Z7j9aaV69uuL6+BuD+/p6HhweccxwO+0SkHwrwY62Mq91uxzD0vHv3Fa9fv2JZFr799lvWdWUYBr766ivevXuHeNnJ3Om6ntevX3N5efnEWMpzt5BHzwsxKlxYCInc+XQnXX67l9uZlJLBn0yWjSpr4enkr6O6gENlI0Q+VzEU+ajSvYuRlUAjnbczlSp8MpA3fWQ8GxWSfhvprEeNgc4qfv3ra4bhb1hXx3FaOE4Lznv2+yP7x4kI2C5nN1QoZVHKYLuON2/f8OrVTQLyOoahS/rSkMJIILiV1a+pPnnuxAT0hOR9lIAfBcYEqTNVjseIkOunZcMhNpxosTVz05cpjSCN1fvVu5VlnVmWiWWeWKaDrJXHA+t0xPU9bEY6oxjSJoBPOrlWYjwTlXifevHk7q1BWZM2oSM5Ja9CwnUzehS1rFl2tCXUK2fwysenof1iI223O17dvKazPVdXN1xcXDLPkg1VPHBD4Zs5Lz8NBKn0XAEbdKJWMEnf3W639H1PSNxeLmUM9d4RopC/+yYD1ksV7x13nz6m+of0THle2ehRFfjJOqR3Dr9IOnalK03CNB15fLzHOcfj/oHj/pF1XSB4hqHDGp02uSrok9c7aztJtKCz17DoBGvii8rfy6BxCALyhKBSHyVvscSzjfZlhgAAvqZJREFUV3UJkYHrLHxTSinGoWfoOpTWHKdJwmQTYD6MYwIwV0wCF/0yMbkVBdzffkRrg+16thc39OOGvErmlTJk3R2VPGvzWPt5kQV/9VAvn0CfECGGuisuJQtSnewHh9Yr6zqzrkeWdY/zE7CilBNUuiW3+NnlM6BPi/+cYUEnhluMVQ6dqEMdknHLEtkiKdY3wAWqZNi6QKldAn42qBSmFZCQL7mfpG8X35guGXKpXZRJsHVFk090ulLhiDFgv0AP53CtfJyXwBoC1hgw5PCuygEg1z4f3lV3/bI7ZuOa2Z5vsE75nWtx6nJ+VvOzvytgo5r7qedb9NmGVlmwnP2cxIXHeJLlpI6l5zyTsgIc6/e+kKFyMtxbY0FR21kptDFgO3TUdP3AMG7R2hCCINWu67FqpVcC/HhncRpiAn1wKnGPKLJVHaNKsiCWUI+WEyNnBsqKqkLCt4zRIjOiLK6ZsFUEtMd78f7x1mCDRiuFtUEyhWWDMs35HKYir515x3QBADSitGkkI5DRAa09Jv1o7VOmKS/Ew1GIY4UAXBTGEOs4/iIlAxvZ0YxGQUjvESHJSpU80wPNBEUpCTwUYyyUXZg0USl3jpT03apOgGq4t3WgMQiTkSdeJoL4+3UhzrPwsnQ9ynZE72WxdwtoiYk2piNGsJ2AEMYAxuDRwjmQeYky+FHwjQrcns+xKiXOgJ8TZOikkWnv+iVKjnuvgHJeY1Tpq4iAwqsTQmWvLSFQgJ/8di3wE5P3T+6/5oF1TCoZQCrVI0ZQmUg0NV4J3UrAT6laTJzhKNnMSXqjjDk5DhVjkiroDOro1G1pNKX3NMVDL5NqKmLwLJPCsxDIoSgSEtr1A/1mQz/KbppNCq9kyYnlncrv3N4vXPKaU97luZIAx6I0hkAMrhibi9Jo7QrApbUhSkolrLUcDnv2+wdiCPR9x2G3xa0DtuvpOwmLlbTwyYCNqdWf6DZ1Tp+9RJov1euhXbPqTw19yevEiY7U3vC5U+362egGWd602bskLDXVKv9Or/XsAvpPKCEEDscDvZcNh66TNUUpCbta5pVpmkr4Qt/3KbvSXH7EE03WsJZkOaT1xhgj/DuThPvN85FlmZmXhezlZm3H8XjgcDjQdZZpOpYMTiXMIaX09imr3vF4pO+FjHaajkzTlMKrV/EALN5+GXSRz7TWJyEG+b55J3xZFumdWA3SHL6QQ8+8983aSiLPd2lnX+GDToZ2kqLpPjUs8oXnY5F5OYRVSXiXUnWvlrNRnsdWbEd6LDaGauWlTHLyIKxDMWl2Ue4q5LKqTMVKBSFhVVpF+s4UoMZYje0M3ofE72XS+iehQeLxk4Afa7nYjWw3vRj6g3CGlKQLRb+t7Rvb90qyPJI9P9M1qZ9PNOhY9fugErdmWnbil9oRadqz6B+pcctYTHWuYbCSVcsa26wjqtgQmrRBHtreq6qOyrpvtk+yDFKnY6TULumquQ75XOvJErOMU6p4yGWPzu1WuC29X3BurrxDoQrXIo/TfXP9yH9nmZ/awBqLMYZ+GCTUz1q2m22SVZ6uk0yawXvmZS78NkX/fsESQuB4PKThliIgEuVDCAlMzfZdRhUjhAT8xBDq5g8UWeoSv5NPsieEnHgj6yZt7+a+AmizZEnxjSxrx5SAQ6H0cev1qIq+WZNGLIuEoAmXlLxLBoi89xjnBBhUIkvX1eGS3NTRorRnXTvmaWKajnQ+YPsJZXJSFlP0hNjqvIXYJ8urP98vf1XgJ/jI/sFxPETWWeFWnUCNnHmqB7VDqUucP7A/rkzLkf7jB/7w7b9n9+k9t7d3rO6A0g5URifbN/2pBeQ5E+Ds8ETandSeTD4Zs4dSVCjVERPXjmTXuobYo/glqK8gbtD8LYpfgeow7FBqg0JjdYdWAvKsfouPAzFqfMw8PQrh88kdaxqooKmkav4u6Gbg4kKxGWVw3H76iWb5RxadFy2SAogqbti6qeXpcZPJiyakq3z39FhRXbxVbD2HVPNfDbNqRdbnxJcscGlhpl0MG4Q9p4Mms6lTrqk3ytdHdJO1o+wwZaU6P4dKJ9KqFJoKD2U0NxsoqYLN/b5MqYtZXmGeIsZKK3RngMCgLNoOeO+5XCZu3n5N8A4VVrSfUDHglgPLdE/wjmU5Mh8f8d6hHx5Y5ltiWFHRo/2U3C0hJIsxzJ71uKAUTJ3B9pJ2tOs7+qETT6BBFnhtNOMwMI598v6Ra3J2sL6z9freoo1hM44Mg7i9qiiu51ppSb9oXGoHEaoxRlYv4XbOJTLaeRFle52J3kGIGBXAJINZpYUgCKhFTNmR0sLyoiVGosuKdRqh2QW0ifvNI06pPKEyuJXmgqoKS1Vsnio5ZVEtQPQpWJJhkRhJ3jERjKSsVUi2r7iKm7G/3xP2R9CaZftAt92gu45wuCfsP6Jtj716y/biFV4rlq0ispEkZoPmMfkQejOg+w7TSyiFsfL+3rcgSh7nIF6SSajkeO6m9qqZu43OX6756fXlLy2RkpggTf2gcp9J/0Rticbi15lpnvCLQyvdpIStUi9WiSMyLxtBqrREUhrT9UG4fyIRbSULBUlJzSTqbllx65qMhTw05BqVMnzFoErIoYSfyIXa2ALEDF0nKda1xo4C0iitMF2HsbZkwOrS+a6zGKNZ55lP3//A4+0d3nnm45F1WRgvLvjF737H9du3vPn6K776zW+4fv1ajCSt005eJXeWkNtq4Lx4aRD0bKQ8VwTAlrYqVwSRK0Fpgltwq2QHm03Hcf+AMQa/TkyHB4Z+4Pr6hj8motBXN695++YdXd+z3V5wsbvAqBTecAL4tLU4rZusuSppYxGjVNHMGnEhK0TSqduwr3bdrXc+hUrbTZXTzZaqxhQjjLz257VePbM6vWyZ54m/+7v/lmHouby6SlwcJoUICPCz3x9wzrEZN1xdXdN1lu+++46Pnz5yf3+PNQa7l53l/f7A4+M96+qw1mDTmhSiZ3UL1lju7u64u7tjdSuHwx57L2P+cNjz6dMnjJUsTzk1++PjIw8P9wmcSenTURyPBz6l3fUKNkXJaJjWn+yd473n48ePHA5HrLXc3t6y223x3nN3d8fjo4SsHQ4H/vjHP9L2bvYEur6+JoTAPM9PuI2yx0/wEaUNxoonWzaidPI+NSmE7qVDvdSyUhLIxFDkXVndEvpzIjtV0lrzQC+elDkkpQF+aKe2fDfL7Ng+q1GttFa49BidkgZoFbm8GBj6G2IMOC/k85l8e56F40cyh9r0HqYY+sOY9CKVNqmMePFISJkv9awZjDOUG5ObTiQn2FGJ48en0DQB3kPJ0mu0AFVaR1QnhrZ4/KiiV3+Zkg34mDYyPNq7xIsmPGeXl1f8q7/9W9yy8urmhrfvvmK72bC92GGsBSVgmDapns7jFlnPrIaxk4Q4knlNPLWMNti86ajlOREZ4y0IegoInP7I55A5eoZBskxaa/nd735HjJHjdODbb//A999/h3Mrx+nIPE8oKi+NhAn1dLZLoVtDWhst47gRwMcaNpstQz+kjLpb+qTrjsOYPAcdjw+Phfj9hx++5/HxkcNxzzTNLMvKS0rYeZr4u//vf5MXQ+nNRKKc8fwCmDU/YhTUZBoZ+FmXmeN0kKyg04H9Xrwal2VmnacmU5t6oqoJ0L0AJMC8evy47PETq7dQBtZAyJi1Nk3LtLpWTECOAFFZz+k72bxsoww2mw39MEh98iabUhJWbCzD8EhE8/j4QN+PXL16y2Z3KR5A/SBh3dqgbS8b8kohqRN1lQ0/o//+qsCPD5HDwTMdYF3AuWSEaHkBRY/w2+zwoeNwXFFqwphb+v4PjOMmhVcslPSDX6K0YGGj9OesLqqk9gaiRbEh0kN8B3yFYgv8Dgnv2qD4HYpfoqJBqw6DRatIZyJWBwkJCQORjhA1OX27GAFtJ7YqVq6VWCcqHyfDxZrIbqe4vGh3g1+iaeIZ8FN8kcjQlGnO1+NYQJvK96MSc1Io500J4wpkcaBTxis5FhJemmfmFmndwJ+GejVmW6xGatk9SBaXIqd1lm+HdE02yOpOeTbqQ+GeiJnh/cRLpzroQTWXz6AVTnyEikZxalh/qVKG+wlyrGoVjC4L5tCNjNvL9PqemNJdR7cQl6Nk6Jn2TPs7gl+YD48cHz9JClnX83i/4t2MZoFgUZ6UtSntHhYvPoRSy4hg1F3i79GKfuhTzLJmHHvGoTlOINC4qee3m5HNOAiBZVJ2JJWpkfGUQJ6QgJ8s7LMLug8B5x3LvGedZmH+X1cBfrJhorMh6VFROJyUl+wYIYSUQveF3dkBfN69FbBHhl7JM8eJR2UB+EIK6VKJwDecfl5GxVMIVWmSvM6DI8nEc5xIJaBJS1p7jYwVn+bJepyYlxUUdJseO/YCOCyPxPkOO4xcWcVmNxC0xW066Aayb+A+yQFnOnTXo7sVYw02pZ5XDWJTvQSzJGpDKCtoVcGf2gIV+c1K8peai6F4o+TMNznzWtCaaAzRWFycxdCaZmkBVd+u9leuK2L0xEp8qFK/Z0UWpfCrEGISI9oadNdVQykBGcF5gktGiKKAhOKR07jAx3w+cWxpRV+UFcOw2zFuN2hrGS92DNuNgD3bDd0wYqxle3nBuNmWXezOdhz3e74d/44P/fd45zg87pnnmcubG37zb/4tX/32N1zd3PDml7/g8uZGukypQnKdw7uyrP+yEvVpaY0EqMpuXrJleIknXCnFcKiG8nH/wP2nDxhjuby84tWrV/T9wK9/9RsIjs1mi46By81Y3OMzBlzumRagc0yqrtOUtdk2nxW7NwM18XMcP6erVllfmgeeAkDt92OdrbHuuJeQr6YNv0RZloXf/8PfMwwD19fXDEMvXD69bDQsy8phf2BdHZvNhuvra7qu4/3799zdfWK/35MTFYAASfv9XsKxjMYai9KKdVk4Hg9orTkejzw+PtYUvalp7u7u+OHH7wtHx9CLwTBNRw6HYzJkHGtaOx8eVJHBAnaeCLLyjrkblmVFqXuUUnz40JfMfi0Z6cePH9M4yl52inEceXh44ObmRjykDgfJ7hlPn+FdSFxIPeN4SdeNhaMvk6wOw4i19mXXxhhhzcCPJH1RJI6qgu9kWd4gMzFv+KRGaz0py5Br1ozWmKWCPSLD67qS20UrJaEdSnhkOqMxSjFsOuxVn6pS12vnI87lJ2pilHU3e/VBJMQ1bZoJKBKLy2WS+7EyOcprtOtFo2eq2k6V/i9K2FcCe3TnwaRwNSMRFxGFj+2G9AuXoixXoSUZKRNxc/K+uLi45ObyCg3stlteXd/Qdz3d0FcOtJQ0QmlFiDOwQAwCcHd18yuvbzk7V1kH03g48Q7h3NMnAz7NxkrBESrXTt/3/PrXv2YYBiH3D47jlOYRJDJ0lTI8dimDm/BqSejWroA511fXbLc7uq7j8vKScZTzu4sLAay1SQC2ZZ4Xbm/vOB6O3N3dIqDGe7TWfPp0++Ldtywz//Dv/y791YyRNHdU4iBSuc2TPqMU6bjVKwXEXpY5Ac5Hjod98thZUziseO2feC8VMLry8azrypKuz96NrTfkeamOAdVuLK+RPs+eRwrou44uJZhowbvcn6jE+ZmS1QypL2034AI8PjzQjxuW1bG7EHB+3O7o+gFtLLYXXkO0QRkvvF/JC1qpP2/z/1ngRyn1W+B/B/wCkSH/mxjj/1op9Rr4PwD/Cvh74H8cY/z0kzeLQu7scqgXrcH+NGwrK0TOB5ZlQSnNuvqy89Eic9Uy/+ybnFYkC/ufXaRueSCKIDAo3aP0hshA8Bf4cIVk7rpCwrs28hMlHavRBqs1RkVGu9IZhw8a7y3ei8SVZmhUqZP3On+PfDo1Vko/rnWk72EcFfP8LcB/rJT6//BP7UOyQpaUtNKU2WCqoEnZtaMaX5IimeJu2+7slY2WSLk/5Vil9s+mX26Ns2tK3Z7RbE+6s/0sNhO5uvRGqp0X2/drflRJ/5iy5gQJmaAxyKo5Fk/+PjWrywpHXfqb58hFnVLq/8pLzMWTt081ibUOorDQDLFc9/oOMURiAh6ijwQnv1cnGbBCzgKhDCoRdbdOUZ9DpmNq+OSUIfxLPkF5WqO1RymH9zVmvRhSRHJGlBjErT4/xxqTlAAtxOckjx+t8SFgTXVXzwqcpHeUXQHvVrxfEhAk7qYhJrLuSAWK0s7qklw5cwYj7wOHhwd4obl46h129lOuqeZXu1QVI6x2+elx7eXmT1WVmNaQbO4v/+oiy6MyZCaZgCWqjqBCyiySfFOCluRgWuHXgF884HCzZAELysq8ChXQCmi80qyrYZ4lxbH34bkm+MlSGbp+ZqnK/ovOxUx0GBsZlqSOyBKt0aZmpQhWNgZKP8S2fxOMXBCF1C95B0uR3Kd1vXdySc7hkDTzoH0+1PCrTHipTeuzKfc0tku7U5phs6HfCOfJ5uKCcbeVXcjLiwL89JsN3Sg7WtuLHeNmUwzerhMy0931NfNxxq8O3XX088LFzTXbqys2FxcMu60oQycKt8ixkI+px6uE1rxYH+ad4PN+zZ/Vflb1+vzdXN92ypV7BTHeosJ7CfXxwTPPRw6HHudW9odH9vsHQvBsN5u0sxlr5i8lY6QdJdULLtUh5k0cGSfV47bqSqeh1bXuNCDNSd3VqVhpxcu59D9ZF8v9sqJYTOr6uwIaLzYXxWVfQq7meSKHZmUenWVZOaaMbEBJuX6cjqwJ3G/HQSYxzSEEeYNJsvA5WXuegB7yftkoyUaFD160n6zjKAkLy+tdaRKVdajSaQ0gVFs9axvZeG5ByUxY23ouCDeGLu/X1q94T5ffNN/P/Ce6/M4/OvF3CPH0S83FiC6AT85U1fCO1XFDkbFRkVOY51EYk0vCUy2l9mP+u3oO5XvHp8dlEyY9L+ZeOIXuk1qCiYjDf3pUzvwnfZ/uGyKZhyYUrlRO+6CVMrHVnmv9RSHL95TnaZXuqeW8hL2kH3KYGAVUT+XlddTSfE2IbAPmg8yBzlqM0tiupyb0qHEJqbLEgHBjPQlRVJItNumMup0XZf6cyvP296mXz/O6bfF4S3Os73ucG9hstux2O/quB6LwFyrNOA50yZtnt9ux2YwYY9ltdwUsuLq8YrPZ0nWW3e6ipCzfjBv6Qdqi7wRwIirGYYQI0zwz9Pn+4klU7KyXkqchCj9OPJf3tZ1KVl5qApQMkpYrVZanEo4aovCHiV7tauhpCKCyHtJYTmTgRzbYJDzViae/dydy7CeBn2IXtdo05NDZHBoWQiAo2YAsCV8SqJ7ncEgk3DEajBZOzAjM0xFSFMLxsC98P3JOOFEjwqOmtEZ1sfCIaR0pZPU/UX6Ox48D/hcxxv9KKXUJ/D+VUv9n4H8G/F9ijP+5Uuo/A/4z4H/5kzdy8OlT5PEh4lwWiA7FhMIBE4EV4oqwZYgPyDx7bu8esfZI8MmNP8C8rsWAlA74R3gAZeH//PxsLsqackTSo8NoDWPXoXVH3/+CbvgVIWy5P/wtj4ffEOOGqH4NfIVk8rqCcIE2cDE4doOnN47Xwx1X3Z7ZGb67v+Bj3LCGnr3v8HH8XKXPSlrcEjt/jOIJNQyRr95Fvv5KcTxa/uv/mm9ijP+9f2ofEiM6OlHzk2KooxLXVTJxM+gYi9t4NQnaUC9djk3UzX10UTZ1QpUkBKyCPtnjRxTE3DIt0NLuapxUnRrqFathkBdyBPTJoQANz2tR3CB7GiXS0PWIX2Z8CMzTxLKsaGMYN4LOytreOBSrvBA3C23hXJHFVCtPziBUaaFLeZG5KFLRprWwGkqZ8EzcMQMxZBZ+OR98TMeSQtOtKR3zMuOmg8Ta+hmceP+osKBCJAbFunqmaWaep7JLmZVXY0xVujI3jUqiUEmYaPQytv0aWKYVpRSTnROJs6LrhdxZp1CvrrcYLUSH4ygL3263Y7sVI3S33bIZUzaxvqdL2cGsMUnJTQu6FtfQw/HAsi445zlMR+ZFuBPmZU3kgIHFOVwIifchEeb5gEvHy3QEXmguEolhlf4LKg2p5DsXZabk3cuokrKZNd8UklNB1azsZmOh8U07n0pFj9RlxskwVycXRCJrDByiKIpRj4RuJ2NHOTCSWjxYWBWooFDHHh8jxq748IHjwywhO8bitJWZbQei7jlaw49uxN4NPO4n7u/3uFU4LzLfUFbndalWnsfnynmjuBcrHGmvzwPILzQXG8WisZJDTDvVRjPstgX4wQfcvBC8pPyNKXwj5EwZTXio7GAmknxtULZLylaH6XpRUtyAT2FcGF1Dt5oKZWVVKZVIEm0CgxIxu1aYbhCyaWMYNluGjQA8u+srthcXGGvZXOwYt1u0NYmXZxAi+aGXcK8C9nTCz5WI2Zd55vL6NY+39/iUOts5x7jZ8O7Xv+Ly1Q39MNBvtjiftIHYjMTG4yfEE6+fF+lDhTpR9k+9H07Hz2k4QJK/8Xw0tmORslZ5vzLNwiHj3MLhuE+cMRPT4cC42bD/zd+gY2Qzjux2F1xeXBaPIRV1uWc1NussLuFUUXZcT9mj2qM2PCsZyA2oxdn3GtPzRJzky3Wsn2dKfF1An9wqNXvQM495kX70wfP4+JA4co4NACJ6ifdiMIYQMMlw01ozHSceHh9wq5PQ6ASeBu8rYJJ2tkGMkEwEGmPAWlsBnSRzTcrklNs0byppYxjHkezhnceG0tVbVf5txtBJm2cgx9SQq5QFMz+nejOo8u6ZSySTxVprCxA9ZsLS8t0UBoqi6wYuLq4Zhk3hOMkplbNMSR5SLzQXA506Jk+VRF6sVAF+Slg9Mqp8yOHR4DJViJKRmBqMuoue9MSnDyV7KlD08Wy05s81OioBUqMnBJ288VJYiyIB8mks5gQ4KGLUxDx3k8Eo671LiURE5z5dy+p6XL3+sqzJIFBBNKpEjDnERtpPfkfWxaf2BKMDSofSRmct8mLr4nnJIKjCJTJi2XTTxorO3Vn6rkd3HdFYotY1BC8E/CLj87Dfc3/7Cbc6tIok7IHNZkd/cYkxIv9sChPLRn3WWbN3XF4Xocr1J0Mjnc/fzaTGLZH7b3/7W7bbTQJTXQGaN5tN4iwybLYbxmGQ+T+MSfak0Oi0rlubAC+t6WydZxIeqBK1iGW7dSjd8er1R3ziExpSKJF3KxBfRp56x8OnD0k2yDoscyLrjI3emIE5aHi4ZOBmr3TpB7E/lmVhno+Fv6wksVDZCznZNFlGxuQVB0IO3mQ0awH654Af1dSXtl7xdH3PxNGqmYIxPVfCXxPJfr4FIlfXZUpjybLfHzG2p+sH7u/v2Wwv6PqBy+sbxnGL6TrG7SVdP6KtpR93Ej6vRB/7HOjYlj8L/MQYvwO+S8cPaaf618D/EPhP02X/W+D/xp9dVOH+PrI/RJzLwsWlrC8rsfx2VD4WzbJ47sM+oYEaFQVO8MFVA4aqXPzZkhWJ0vrPfbP0Sm0LFdBaMXSay6HDmJHt9h2b7e/w4YLg/y3H6W8JYSTyFZE3CHxvIBo0nk0fuN6tbMzKr7cPvBs+sl8s8xKY5sCiPLO/Yo6mqUpbv3MlkrTIyGITlYMY6Ad480bxi18o4JcAB/in96FUJyRwJwMZyeBUkn2jAkIC5ijV7CSSw7USN1BUjaInAE+GbnRSKA06cQ1k8ChdE6uSdJ4N5Km1SuLkSwtf2X2LT46zFp6N5rwopr2h5A4fUdGBm/CLxPwfH/ccjxM2oeums1WByOBPIgZU2e2prNMVBFIqoBPgExNnTCprjPG/epl+VGRurRz+FIJk3ZHFNaQUsLLQLomF37mc9lGY+ZdplmuXmfWwJwSPwdMpcbXuTWC00k/OibBephmfyDEViZzWJAGqVWmLQO0b4SrIMJw7MQDyjoyxuijKXacxVjhKxrEXl31j2O62bDZj2kHZshnHkjq+6wQo6juTFlCFtRprZVd2XmbcurK6lYf9nmmeWZ1nPx1ZFocLnmlZxevHB5a5BX6EkDeVF5qLEXL6zSCKnDrxFMwhoHK+sP/nHXylColqXqkUeXcsVt3xbDrlndAyhkofNM9OCqEjk+lFkVNWdmKD8mDScXREvDgrHhVuiWjtWZc7jvcPEg3ca3QvC7rqd2C3TMbwcR6J/cBxWnl4POK8ZMU4zYxXAQBpk9Mwr6fzogV9nhzm8oJzMUmXmE3b5DeV+kAbQ5+yBBmtUS4Uzp15OqYMJw6f5qgKqmSm16YqI9padCdZiEw3YLtRFFLvCU44OiTRiS4KS95ltp2EV6rkrtwPApjqrsfYdH6zpd9sZUfy6prt5RW267h+85rLm2tMZ9nsLhi3G5Qx9OPQcPwkHiBIHrG6jCKFpA++fvsV8zSJLAhCqG6tZXd1ST+OZQ2RrCgV2ivynfxOovxZUd5fqA/zODn1+jn3hDjfIYYM/lRDPZ58LvI5p9n1KVMiSMiPKNKKeRK393EYMURuLi4kK5WCq90GQ5fCpCLEHDIlHZ5nPlTgByhr/DNLKXWepPfKoE+RDc9/o5UQ+RZJFBUvldOA46YtT+ZyrTMvOBeDD+z3e7TWJWwrr4elD5vrTzSz+P9j709idVu2PT/oNyLmnF+xir33qW/1Xma+fDZpYSDBSEgICdkdekhIuIdoIGWbHhYdum7Ro5MSDRo0QBSCDi0kC0zDSCkZLIHzGdtZvvtucYq9V/F9s4gYNMaImDG/tfY5+9yzzslr68U5a3/VLGJGMWKMf4zxH0XOycYYDMFHZmM85Jx885NqsAHVS6E1iOxVi1eMkU53ncmGEIjRWsoc+C7H17a0oGOM7pUHtB4/6oaS+PVb8tpyXNcYlcMw1PMWB8XMo6GEtex4dfPGM9YF57OIFSjKWekN+HqRPhSUnjNBoIvOS+P9EMR8gJJakojs8y6rUVGQPGwfgRL63mbB1HXMt4OhjGFTR9eN2HZdrAyVHpKdiwdeTmheENSiqAtZfqE5wYCfAtSIhzNbozvVAKsuvL73/vRNRJPpPqO0XDNsN0TVNo+1gj/lORSRZCBagBiL11kBgCtE/ILrYqt6+LroYyaRPGOl/xI6doeDgRchINE8P1V8m1ZhyVo36B4fTty/fcc8TUTJdGLZiDtVwvFgme9EnFspNO2iLVC5mWfPeftcvm89Pne7nQM7PSH+jNceomzcPQaoHg4H9nvL7njY7yvQbF46zpklbSa9pQJLtQ21UAHgCX/29fOrV2+YpplxmiyMqGblyy8kTxP3776xTJwpVdLqCo7UvvXsn2kNdy1rOE2yCjRXObt4Vjd10NQa2WQZFcRWB7ZW+Vw3/Ju1ubRZbrJ6tdO8ykFZ+/wSKNoSQK8XaI9Ly2IJTpr6AEzFkEaAO1QifTdwf3fPbn9k2O158/EnHI7XdMPA8frEsNvTDTsO1zP9bm9eUh7R8F3le3H8iMjfAP4u8O8BnzsohKr+WkQ+e885fw/4ewC3t79kmmBZSuNmagp3JuCM6ogy+vdNw+VMboRacXldjYyCPq9qwVqJZ2t28fm9Gs56uP8cY/AYvoGr/Y7r4xVLPvL2YU8fB5IMLNqTcwdYSmkJRo626zNXu8QhLlz3EzfdGck9+5joo8fjSntTU9See65VIK6vJeKl7+Gwh6ur7TP90D7cvfpZVcaEoqw9Veo2f67Qia7cAO8N9dK1L0q2AANAoPj7lOPrIlffO+jTKJRt0XJs+aSNAdh4ARQAaXNtr5dgLrAB9XCVjKWpM+MpLUZMnNMMnq2lkPHZ0QaaqWbbqdFkoJkvwrZbb+CdaQcJeSZX5g/tx1ef/ILHhwdXQJxfJJsXT1YDK4x5X52Ff3oe+Clkx9PIfD6R00In5tERRNFOCb1lzJqbTCSWNrKY46tiAuuILu/NePPP7XB3PUydiDAna+G6kw6ErMzRQ8NiJnZTXbiDBDQpIQbSstA78eau7yrw0/eRrjMXy3nxbAJpYVmS7ziVXafsIV/lu9ULIydv17RdkH9oH0oYDMjw+bSKghLVH+p7dQBytcu0tuGTRof1gn6MeGNrWZzKPCvyqcyRIrJMRbW+qwtakdWuhNpEqNLE5rlUzsmUbK0QgSDZvAqDQp6hnyAEzgQeFhinhWXehh3QLOxlIEld8Ldyc337dPS18u5pQ72ATL26rgqher2Ftm1AYiSoEruezkEXU0g9nXNn4VCaM6Tk/FNmSBgYCqHrCf3OgJ9uoPNU1JoSGku/BH/Pupsl0PcDvSudw27Pbr9Dgl0ndL3tPB6ODEcj09xdXbG7uqLre3bHI8PhYB4S+x39zs7tek+V7WFkIUQ3JgqjWzGY8Hv1dIPzquVcgZ/gyo6UOru8rNSQWqR8UcBAL/rxh/ZhCL232dPx8Vyp/X2xSdGONL8J5gm6TjBthGABtZZkXlCCcD6feHh8AOD6eMU8TdBDJ9GJ1l2H8vlQfXHFN2v8/pf8PatieqmLNLX+gN3G0qvlck90gWf0ifq865mbNWNtrh/Wj/75/XV3WViBYG2+b0jyWwOgBYFg9cpZuXPWYwtpr9S2tlI4IgqoVM4toV4FKHq6M/3kWZtPRQda+7TM+dVA3YYOiayGa5vC3dt4A/yoQs62STtOZ/C6p5xqaGn1JNb1Pj+0D3/2+cdoo9NYDgehACeVC48Sei5VbpjngFLClRUDBAwQl0ZPXKeDUNa4oi8a16Nga5xlZi1tWTjm/KQSSaArt2HLMWc9I4j7rdbzcqj9V5UioW78lLFW1zBRWs/usp6vukJ5LLfNvD8qAFS8sMv6qSAeVhLIXM7Dl+jHWqnLwdwY0vWP1ftC7UIgHhauqwd7KpyNS/IsdhNLXpizpdLe7/akJRGjJ0XQ9Xlb3eJ9AOu3fd+CPkUH7T3RwT7nyslmZMC2Hh4OewYHs4zQufcNyc7BpxLdIBR+l8ov1dhStR61bubx13d9vW6VMS/Yh30/VI/ktKQqM2o71H/UgZ/S3muIVB1/9fqrXmebIuq4rNTnK/yF1iart+8K6tStoJULTRWCkrPPutp/hcuwldVFBpZrNrIY96Ysx1M2IKWOUyu5qtFa4ispMkpJEiwcrfnTvJBTIC0TiwNRyzTWOqWwbMbd+8oHAz8icg3874H/saq++5CLW1vq3wf+PsAnn/5d/fIr4d07ZV4KuPMO9NfAPfCPQf8Zym+Ab4AzkLCsNckHeEG4C+LWUbX6NtTr2eo9r05YPWaesX7W4xyZCDFwfTjy2etX7Icrfvb5z/ns0z9lWo7E+CnTcsM4D9yfdzycO1e4F7q4cNwt/OKTB/7mZ48c5cSfhN/xGX/F2+nAu/GW+9zxOHfc5QBLW8/t5N3WviiCSozKMChdB2/eCH/yJ5E//9sb4fOD+/Dm5/+KRk/9W3fmdPXmibiLuJjzRqF9a48PBKIWr542vGvtguSucagx4FN2qmMAbLerTkBpPBdq41woz/Uba081xIPt4qlVqSsLTnANz+KLbVpGnOA6Z6JOSB7RZWQ6fcPp3Tv6YeBqL9AnM3C6gRA72z1Pll5ZNDs4lG1nZxEk2+4784y6kMzL8hxg8IP78aOf/7n+f/7f/4EJ5RrGlUnJQ7eShXHl9r02RGgeI10AIV1m8jyimuiDMvhO29AJ+96E9f3btzzefW1pGFNy5NvcOEtAW124ccPNkYO8IghUILS12dWPz3avnDJhtl2qec50cUaC8HA/VoLN3WCkeUHEQsO6UMPEuq4jBmHYWVgLQrPpl1lyInmq7KwCLvAlBCQ6GOPB+pqUNCnLvFFuf3Afxv6o5KVopawoyxrqVWedSs3eZa/+MKxzCApARNFYS2VXRLlcX6yxqwma2zADv5Z/rKGT9XwnlQ7Fq7Ga6AbuCySxsIrp5HwCjwvCgshCDJkQzwQRTt2O33cdS1LePYwGKrrC36KFlQ+ucWNf77vO/6oM6+Xv6y5uW16iH68/+UyLstMquWrb0ea2Peyg7xn6gcPhYDtoy2Ix7jmT5pllGm0OTxPz+YSmTNd3DLsBiQGJHdJZrHglrsQ9Lr2tYj8Qh8GU5gb4KZkpxBXQnYM3obNQrxAjh+tb9te3RtB8fcP++obYdVxdX3NwXp9+N9DvSrhZE/6SFfXcM4lMappCcLkQI3G/Iyp0tMapkThTu1vr+GsgkioyWkPhpfqw6w9qqakbQ4ytoS3reRUw9oXMfw81e8n6vVTeparHFyBLjX9DgGWZub9/x7nr+Mtf/3OiCMfDkfPpgU6E/W7H9fGam4NlCLEw7OD9746WvvaFZr1sdN/1pe5o1gd6ojlt8+U1j9SIlIrbSCs1qITlItv7F0VdWcO92/IiMjUGHYa+GmaX1yg77MgKXBWlP3qIcDlu1d2acxvjIRSi9caQaD1srG7l3FDDj9+j3G76ZA25asfaVo8MkhCZN/exOZ+rMVQApXV3vDxveNI2BcipKZC9/brYcTgc6LvBrrd6FVjmLyeI9jb6wX34r/xLf6rTOBOCkmMmBPP46cp9Pb28IqRs4V05Y9k7UwGG3cvHx2GqfWTUCng31H5r3hcvGPDwuyhPxnmd3qoQEgH3pgGnOKBea8sNtPaBLUtSjcfqWe66SijKeQVtzFANVTCu3Ddl+ckKJPcQgUIf5LJ0laizrAZ8aGTYWu8f3o8iolUXr/PdvXl9gy15WP28mLd1VmG3E/ohIJ3xC56nGRTmtDD6puX93T3v3r5lOp8Z79/y+Pb3aE786m/8La6urtF8bVu0/QGJxgm0zqHNcz4L9jz3vC34U8K4Sohn9lAlcXlvCUPEU7NvwzHNc0Qtyyab5aZ+WL8qndf2s73vuoHb29eICPM81ZTv41SB6h/ch8fjlYJRJYzOg4bLmFJKWKzZIF7/4rWtWNIOp2Gw933VwydPhlBCUEvGs/3h6Bth5TrqfZiqXCzjeZkX5nle5ZdzroWw8uOVUN26Hjdgt/pGXQvgx2DE7Yoa92sqVCzNWum6qM2ztd/MsyyQRSFNSO6RHJE8I3lG58z4CPN4InY9y3Qm9uZ1eent9b7yQcCPiPTYAPhfq+r/wb/+jYj8zJG/nwG//a7rpARv3woPD5m0TBir+h3Ib4C3qP4Vqr/xS53sdykuWMVwCD64iwhtM8yUVfJ9NSiGUH2y5rzVw+hpA/g/YoPhuN/z8e0tx/0Nf/L5J/zpL3/GOB/4+u4jfvP1FaepZ1x2qMWvELpMP0zsDwufvjnzNz575Foe+JP5az5Pv+Wr8YZ/9PAn/HqKhCnSnwpEwvvr1BY/JIiyG2DYwe0t/OwL4U9+VZ9XeIE+NLNvBX5gDeNy1ZVIcRn3kCioxJGAe/4UpbMEl0g1vlQhpzVbherg8dqBQAdhRbldXW07yvWbdhA0TuHe51LQX9X1j0Z41z87R8XmqY04A38kJAILkidIZ5bzO8aHr9BlTzrv0J0TsoYDXRhcAC3gRLUpzWQPV4yWAMpcjefRAKCUCNNcBZHX70Xm4nge+U/+4V9UAEddKKZlRnNysGdypXGpXD45JweKfPekxKzmxTwxyPQRdp25ng9dYDeY11sJR7DnWcGBAvxU5+KihFIWqTIHQvO+KeX4hGNDPqeLsTKljbFSdgaCp+0MQeg7c5m3haOn642IfX8YfDckMOw7ut5jpTvjQslOqVhSYUgwry0z4Ky+miDNyjJWofwic9Ee2jW0gpjU9hJWL8jyW0GuMkp0Y9K0xGpYVmurBSKkvhctO6F+nXKMYmlsy+OVnY5VKy2wqvW7hBVMqvPMHsUdYT3Tgnm/yTLD4txizHWhvQsdiAFzWRxQcuPY9GrXZn2OawPm1DCSuotb5I9zElU3emeFUGW78/Qyc7F2Za2LN38oCoWFRwCEvVgYlOCeeItzjc3M57N5pp1OnO7uyCkx7HbsDgcLrYg9xJ6S2raPJhljKNlmhH53oN8fEFcwC7QXoyUlEOfgGXY7U0673r11Oo6vXnO8fU3sOvZX1+yO15axYn9gt7fjYx+JXVkJ1h0vVCFR+Xdq15R57EBRDN0KPnj/piWRl7wBc1ZtQOrn0tctIPFifahUhbItRcPYqCQOste5VeaLqG+CtGsbq2ypp/v6hfg6ZtlOHk5LNXB1WYwHoot8dHNrXBIEbnZH6wcNdVMmCnReh9aAXVuJrey8AH5al/nSd0X6tFcpalTTpa2Y3l6fRhT5eUozN6QQ6tbzXqQfRaR6fq78GCvQUXaTSxuU72z3vmv6rm2f1UiOsbRfWHfsN20bKiBUvNNK+5d+aT0Pimfp02WxEJZSvXbLuWu9Sof4zrUbtubJmprj7Jw23A3WcIe2TsWDh/XStqZ6+EoBk9UBqXm2ja1xPL9YH6oq87wQJKNdrqFeGs2gztmBHzXgZ17UkzTAUoGOLfAT6vzzkGXK9LXfs6wcQmUNFHzq5jJWso9bkKBlDwRIiCQf81qBH1E14w9oSZlzVVsFUoDsAcI1JA1CLISvdl+CzcvimXxpVpQlUrI45ZDpEpqsnTbLqK+NBmIUferl5+Kzfcs61nID/ixLYpoXFPH07YKE6DQFtkbO88LZPdQfHx95uL9nPD3y9ve/4ct//o9Jy8R+t+eXv/pTm/vdjrgYGFNDkKo8/HbA5zmQpPXyDCGw3+85HA7AJeD7VP6W820+Z6ZlYpnNq7f10Cuk1tvzmo9lkxCIsef6+oYYLX34fr9yBb10H+aUGMeRaRod4ClZ2QqgXTaaqGtp4QSy8DahpCrvXD4vTrCvGF1EIaje7w/+XLFey2TTwryYnV/0QFVlGkfGYJ5haZnxyxK7rmaEs/TCHvIaY8Mh1OiDrKpsCSvVnJnUs42Zgoc2DyoXn22euVdiwKJG8mK0Iv5eNTGfE4oQYscynwld70D6spHd7ysfktVLgP8l8P9V1f9589P/GfgfAv+2v/6fvutammGa1FOsjliI1yPKA6L3wAMW8jUDC6sLyGokWpUHbJ+qw8iTw6oUPJ1vF0Z/ISNTq1BxUxTv7TLyqpZ1eZ01XjT7LnAXE0kT+yFxdVAkZN4+lGsrfa/s93A4KFfDzHV/5sjILk/0OdGFRAwgMboxdPkQzzzUZdv6Ih47oe+VoReGnbDf18X5T4H/+w/tQ2q7Ub0rNEj1VNVQMjlhxq/YEmhKnmwmh/gCtBJ5Fbc5dd4KQ2GjCNksdPOOzb6zUVnoaeCfbW+7xritP5CXxXeJ1wUExDNNOJhYXDwATTahBAVNKJllnlmmE2k+k2bz+tE0oQuk8ZH53JFjh+iC9gMlO9SSMkkz0zKz5IWcjfg8JSzeexrBkedCCtyUF5mLOSVOD3erx48TpBWPn5wtRWL233OaXcG00CXbcbEUz7b4FOBH1ySqQVjUibwF291L625i7ZFqNOFARFngyz+129beVVnnfPmlWFkILX9SMS7rpcqOnP+g2QwociAHd8nMSorO0O/hYFnVFAHfeZDoiD6ZLLoS7GatIGFwoyHEQOzCC8/F5qGaNtLNe61NQmNQUzzY/HvDilbDoryX5j0N8CGqjXeQ1ravlyleWbL2rX1Tvr/sv6fPVX91JVeIq3Hp17JkcX6f0Dx7UW6rMVo1CsqC22hDT3434KgBfPxZ2pTUvNBcLM8r1Xgwr4Kucb0uf0HEOAwE5qXwj4A6KGNcK9ssXZZW3dcWd4Eu2XSC2O5UF+yevWcpkhBqCCO4YtoQspYdyQrs07RXU8/V5Znt+HrSzy2SsBXZNry0kQer83TRmcpO2ipH1rGm9Zq6ub7a7tiL9eH6XNtxvQE2ilBaBVnzsrqNG5chFUyVRr6JlCuZ7Cme0OZxBEtaGKcRgIfHB97evWWeZzrpGGJPFzs6IpHo2VMCnYMZxi2xhhTFxoNFHOCtVW/Xdv8iYJskYX0olwlSn7Ftkwp6NG21DhXZHLN1F6r2Sykv1o8t301r1K1FuRjCiGT3dLk0ugpIU4y+Ah6V77fPuAI/VNBmrcfFNdWA0qfAz5pa2OSDr/HP1L0ACiXNsdbrlWtqvWfOWvWktk1aIOo54EdzZoZazxX48dCwVPSvF7IzFJbFPH3Q1eNHs8mlrFLBk2SRsRX4qfZZefKymVF0Bmk2DIQm9blUxXazFanFG910ZcuIZTqI7cMoeDYuESV6uIvpJY1MyWX+SAP8KJrE5ZglQzF+IV+nooV4mSBZ/+ra1yywoX4sm7dlU0hZeYHUOZF8XSjjtyaNqOXl1sVq/22/W41524Ccl4Xz+cyyNNn2PNPTVPRYb7Mi27rYkbuOPka6GBCPPMiuexdP+Is1/1mg5/L79rd2flxepz1vPX5zFI3SVt9n5+Cs66ev+yu/y3rs9t36GmRNWV+8ZUKotvSL9GEFyl3vgJYbx8f/Bb9YaYPngLYQQw1JM90imox0Ko2ijZhTQVg3CEQxTtPSF76B6SBUSrb5LRorZ1YXo/EOinnPF45Mqc/zpLOqbAjFOeEJ71rxqF31pUvgRxz4idFpYlxGWJjXDCJkkus/tskcnXzcMpV9t9fPh3j8/DeB/wHwH4jIv+/f/U+xzv/fisj/CPgnwH//uy6UUubtN2ce7u9Ylr8C7oDfoPoXJPkK5Teo/B54iwE/BZ0LiPaYOnEDfAzsgCuE10Dvovap++8T41ALl8EJ5REDmX6D8VfPIJZVrJwtZM+UI0iOkAKnKfH148isHWN6R4xfspcjn3+84zwfuDv1nKeeL98GYoQ3Hyc++0x4s8/8zY/f8mdXf8kun3jFWw75xD7uCUNEdwdUd8bA9cHFSdqALmaurpTra3j9JvDRx5GPP4n8g3/w/8Ab7V//oX2oCmlJFAJiSgylL4gZSJ7use97wn7v6X7NWAgIokbcLFIIJF1FzxlNC5qV5Xzi9GDeIctuQJ2EV/Z7hqPtSBfjRWgEp1zWtxG6mjyGOzM+PnI6PRpKOhtvi4hUtvx2IVdVlnkipdlW47RAsnSAp/t3jKcH5mlivvsd+viWNEbu01vmb4x1vx92xM6yAEzODZM0My6TEZ6psswea5oTMk+IxyLPy9ICP9e80FxcpjO//Uf/sFEii4GcDCzIamnqKXHOTehMNVZMU3InYorr4pJBk/XpJDD6tLQ41UYx9M4ybpziYl3EYduJzV/zXWMbbKrVXns1lC6L1TqBj1+xcSvCHHKN543d5CEpYtnDohu8nbtwC0j7vmwUuoJvWcaEEHakped89xZeaC5SnmDdOqRwGBRTnLqQNqFbG1+9ohZUaOHiHq6BZqwhs7u6l93e0gnKeg2B4qnZ6m2tq7i5cMrmNu1TeaVrnSQMCBbWa+NEL0/zcKECSrsmq0WbL/VxQL5evyjBxeVOnWfLPYM0VU8fcU8gLy82F0uJIbAfemKIDH3P1eFgYYlQwadiZAjK6Txypw/MIpASc7EhRGqKdSOnjLZbJhEV4wLqojB0pljs+si+t9DGfn9gOBxAAnNKzEtyBW2VsZ1AxLjJNCU0TeQQydOOPO0RTYheVZ6CIA6skj2G3wGZaoiIpdCtYU7rGCwGhgJ46l1Kz/vQzZWXoxiVpXubUMQWEHJj+mzhJS/Uh4pq8WTcFtn+Y99J8VhaFVxrj4wiroAXzxKXO/6+7LBn33U3d/KFpDOKchpP6NtEFzuQzP39Hbthx5tXb/j41ceWRjj0DLEnENzw6YghcjweuDqah9jxeOR4PFQDIQbzYDa+MuuLoetXF/veMiPWdnbjspD0N+LoaRvJ9n0FQgIr6FXaT1hBZysvNhdFCtGyVIfEInNg6z0D6/OEIIxjCQ1beSNa4Gf7nMXQk83122NMbLU/lHvqarc/Y1SWMV48jXKzxl8eV95o/UJ5zlC9NMQux/ml5097iCDM87ICV+WeFWSq93qRPsxZub+fjReuEBIXUL3oF0oFNOpnsE1LxdY3l0Mmc9f1xjggt/1Z5rOjOmsbOf8gFODHzg0o0TcsLHTZDcbiqUNzCaBkZdqsterjIxWihVx5uWLMxGD3C9H4RaF4KykrWXOudQPTg7rQkcQ4mpInhVAsz3J2+VozI6qQNTbP/PLropWic5r+HhAWB3seH088PDzy1ZdfocB+t+Pq6pq+61jcy0NVubm+4aOPP6bve47HI7x5wzId6HVCpjvSNHHY75imkdPjI/QHurQQHcy95OSq/V5AiYvwx6133VPB137XzoOctZErhc+rzC3PMPt4MvL5coxYMpMCiqzXL8DQOibLGhJjz85JgQ/7I/v9gb0nSXipPpQQ2F/doBKID48wG69pxkE1gpPMB99QXlDKnFlBlL43cGrvmSpDNH/V8ziBzLZRpRGyefSRbRGJhfxewChCBu83n4uqnPvAuaNGP6TF5H/XD/T9DhAWNW9Aq1C3tdF9IVe1zfMCPQXv1xSNl0eAvo/m9QlEd3ov6z6e0KrIphg7dr3QhUTQmWW845wttM3mpOsGXVdDANdQtm8vH5LV69/lOW3Gyr/xnXdoSs7K/d3M6fRISl8CX6P8JZl/gvB7lK8x0OeBLVupoNIh2oFcA5+BXiG8QfgC2GPKYkkevj54UdS1NUxQ0Ld2fylcQ1+XWhrgpNsdTFHPd5ED46y8O09o6JjzAyG8pYszH92+IuvI2wfln/5mRDAyxdtXgc9/Jny0y/z85o5f7n9Pl8908z1dHBniTOgi9HtYemckbyymbyuFcwNzHzzsMzc3ws1N4NWryKvXgX/93/hvAfwDVf3XnrnC9+pDUFP2SSALUoN0EiU8wmJuMrLbo8XtkjW+vQ24C1pSLTvQ4CFFy/nEeH9nSOw8ENNk7tRkGJwMVM1lHUdRpWy/rFU15diFqhZXuZSY7t/y+O6tu4JOzNNMCEK+uobD0Y2QoqxmpvHMPE+QE2mZnHtnYTo9ME1n49h4/ArOdySBxzOMYkK56weCx/LOSyIlizcdkwE/OSt5sVfJCVlmxBHcJaXKSg/cq+qLzMVlnvjq1//YPlwo3RShq6tyYxhY8UpY09Juh6gvXKrkZTWu16wTrnA8c3xroK2sUE8u3U7t7edLDKGdPvrM8QU8KAqfanN4Wi/U/nmqVREhdCBRCFHoh0jojX9q2LXE0B3Bj+k6A0qON5/xl//wpeZieaBtIyglVKB41dhYltq2UAiZ6w6JyKociIM9jXG9bbhVCTZsZiuryq7aRtOvP2tzzS3a83S5cuUKj6luDZ9clBojDkcL6qHr7+oV1FQsl3rMCvrACgaV66TaXjXUSwvgVSv3YnOxlCDC0PcMXcdht+f1za2B0CXdb2kor3cMgek8QTYiQPG2ETBgnKKMlh2qdectBDP4YxD2feRqb8pXv98xHPaIBMZ54cy8girY2I8C0ckIS6gJIaLzSJ7HSn7fuadbaJS4vOkXf3WZYnp1UZvKsGu4hqqCBDY2nSyxtEpjdG48wzbfr12/Oxx5yT7cGPiXAqnOgTV0pJ7X7NBVAtYSwi4Bom+YiCv4wfQcVa3gz6LZPL9UGacz02QcWNM08s0339B1Ha9vXvPRq49Mge527Lude3n19LGji5HXr1/x+vUtfd/z0evXZHll4yL29F2PZnONX6bZDYYD+2FHjJFd19Ft+Glsrmf1cFhdAy3rMXwL6COshtR7QGIvLzoXS1rzy5qqrgba6h1T1sh2x34NU2iBn3Zs1quWYV2PWe+7hl9V862e84ywvCgXnj3/GSgv1Yc5K6eT6abCUvWW4ju3KXXD0PtO2mNWXhmp83oFgepaVi7VvFsfZZVD1dikJAjJm+9t40jXOSBlXDkgFD30jMa/PVGDFgoxu4gSQ7aU66J0USEq+PcSbMM2hAUJya4fCgluIIaerBaWl0JZSpWlcDEqa2i+BpYcyVrn/YvORVseGjvQbQx14GeaJs7nkWmaeHiw7LrDMHA8GqdcCX9RVb744gvefPQxXddz2O/pbm/I844wP5IfXrHMI/th8GyZZ7rjRErWXsaZ9BTsufy8BV22a8/7n7F4vxTZYV7xK4i03YxLKXMezw78CL0TPfe5Rw9a61A87Kpq5zqXXTcQY8fQWwj2brdjGIZK8jwv04v0YQiB3f5oHnixB5koXmRZzdu0ZDATGi8rWdvDuI6MCHsYBvb7PbHrmOeFrh+MY9MfL7m3jPhfxL1ZA8QgvoFigIsEE75dUKJ7bOYlkJYC0uzphz0gjCkzJfcyDhENnfc9VREuNBiGF/ifZGKIpp+JkXIPvSWx6KI4flTs5uyqqYDaOtR1EEURXVjGR4sqoRH/Ig0o/KwS/Wz5Xlm9fmhRVZZlJKVHlHcYgfM7LNzrzEqwXHaiy+sB4RrogY8QPgaOwBvgI1bgJ6zGy8WiXUyIVQsrbmAjyi1wRUlvbfUoLtdrEd9JX3JiWhbGeeI8nng83RNDBj2xH2amWTjuFq72mWEXuD0qr2+EV51yjCP9ck/ME0EXy2IjxpqzqPjAXev9bUU2R9in4B4HIaqRzMby2wsVB1CEhDKhmhz8Me8Qzcl4azSzBNB8cPRVDTzLgbpjIuqcY/5+WcjLiKZMnkcLoVoWkmRSVIiRpYPlDBojQSA1rujh0uOnMUwURdOMZiMWnh7fMT2+I+dk3jrzjIjQsxCzsaTXeuXMPJ2ZpwnVTC7AT05M5xPLNJKWmTw9ossZwGKzRckhoHkmLJGsyrKUdNPZ4klL5oCUPdwoI8mAH9HGD/nFixvE5S0uaGnt+Pa+zSLnu88xREuZ7lJaQjE+cyUzy8tSQ/ZwULAYaZfXtnWpdZQuhpDvABjKUAGbCkxs6lzq+b6nbkCSDaBR3jX/tvqLN4wWR5XsNVFbTAAzwEMR2u6DWHdrnuNh+IGlGM7lLUXSNUq/bk/wX6nu3/UXhRKmUJuoXUjKm9xqEeugaUrxSCnGbm3mVjTbqr6Zrlt5Rtu9F+K8Wfp0ffJqNK1IgIeTNtZ+BX+2516CQmsoWHNuHYMvX6qRmEtIhVbDbwWyileeebJYZrnmb8k1bKJ1p7adKB+0OYEEKpakJW2wyWX1zBFI8CyFc/UYyK6QaQxosp4xjoVECJF4OhH6HWlZGE+PDKdHA+jjmgq19pz6BkLORl69PxB3A8Z9Unawmua/6Hb/BqUFjtcxUHCl+r79/rs9of/QXqQ85LprWb6V7TG4HKkKf3uNdTxsxp8DKe8tRWb7OMkqLGlhmidyTmYsnB6IITJ3M1M3reF9vutKBBUjBVdRFk3EYOBQF3tQA37mcXa+wzOH3Y4udiwpMadkWWfcg2h9JvUqCluerFpx2ndbMOiDwJ8XKQruYXs52FZQR4s+odAabW2oRuF0sOO28qkVIescXQV2NRrz+vt2dbqo2l+XTVHFeQQ9CYdPsu8P/JQx277XrW6x8QSqXzZnNeNI1uMV9aywfm3XhSU7+AM1m7wtt3ldggrwY8LPdEachweXJyEZR5w0G9hiwi+URAWaCOr0BVGrIaw0/FJJKFk2JNtfqzapZjvmxxqPzaVXTr51XpW1b55nxnE0D3lf/2I079a4SbPtdkK0hDEaYLffc7y6Is0du/3e1p9oYVNr31ufbsDobykfAvi894GR5+WflxKmVtK5WyIS18XDGuYdgtT9oqrb17FZAJA1G1UBVz7g8T64FFl44dlX51sNKY7Oh+sp9LLPM6GQlMNTmVzOXzeHbKqsYXAQEVFCFqSzzdm6xvg6KYHKvRY0ENTWrS7a2FGw81vbobx4HbXWtcxQ/1nWOgYxAKsklInR7usTzQEfqUt9EAtBDFGcMkJqm7h66/fy8Numat9VflLgJ+WZ+4ffcjr/E3L+D0D+EuQb4J8B9ygzBuDsQfcIt8AAvEH4OXBE9FPgT7Awr1vgEz/mkrgZuOyoxngR+YYgXwFnlJ3vaj4Af0XlGNoQgUoVrqfzSNKJx2ngn/zVP+F6SOyHK26vez69ueJ62PO3voiM48DuEPlX/6zjz/9cuEkTv/jdb7j95v+HqjKGA1O/Z8x7HnLP3RR4nANz/vCZ53APdSJ3StcnYg9dZ38vWVQzOt2TdULTI+iMaCLoSNDEvMyM49mQ29s33OwE5EjQnkC23bScCqENKpnkbb2MI9PjiZQS54c7xrffGGgwdMijKaZ635PvLJ2x5sXDkbTujGxAAyy8KDmRmKYJTTM5J04P95xOD5YRYJ6ZlwVBeNwNDH3vFzAgS1VZptEIjlXJeUGTxcGnpWSoyuQ0WRplCjeGu1pXhVA8ltxdZz3sTDBCTguJSIS8IGqePrmknHjhIig9F+ixushy5SdULwupYRih64zYNQSOV1fc3r6iHwa6fmC3PxBCZJknptEyLD3e3/HuG8vktcwT83T2He7WoLbrm6A0D4VqZBdlOeU15esq9bbP9F5uBldiVD3bzHrftbR7qk2btNK0YMGieKit7ZKlArgKaVzqroLE4iFEHZ8vW8qCAZX8sWbzwkGz4Apj2J6nmJapa3+71unvC1eFOLOlfx+a7zfarnvc2TsngbY6rFxAK5JzGTe/XoXVMCxdVPpbL84tYE01jPN6nObqFVQ8EOsxpf9rHTLivF3iC+nK7bOGiW1HyAsW3+VLKTOOM3kxkPwUJ/Jsu0HFhTfnxOLhsI+nE+/uHpgnk7mnx8eVqN0NnyUthGm2nd2wIGkBEaYlwOJKcIqEbKFeBtonCMLpNPHwODl55sLsKeJjEDqXByWrikhgf33H/uobur7n8eGRh3d3hBBWzhBs/chuPM8nA9O7vufV559x9dFHxK7neP2K3eHoinfhLZDat3XXV8tMLmEHmya1/irHaPP+RwN+YDNKLkRMATnq7r5PT5svWyNf3YOnhGKYQu/zqaR1Fm34Q2yaFs+a0t7zMpI1EUQYp5G3d29NyQ8dXehWAN9JQff7HYf9nhgjN1fXXF1dNcBPhyrM48QyTQ78HNnv9uyGHZ9/9hlvXr9hNwx8/PoNr25uKrBkHEIOiBceiqZxngtFKm1U2y20XjXewC9ccso8PDyWWrW1KRVdgZnNP6tsYwPklHG4XmIF+rRccnOvLWi/XTTkmTfbda69jtb7fbBFsN54W5eL8r6Qlu0xzfvvuNVLTknVzDiO2Exx7018slVT/mJi1r5pa7q1G+Tp4ZvzpH2txzbnNpc2yh5da9OQPtdzynILqCSyNNptXfLEQf31HoKFixm3kbIb1Ij8RQkhVe+eEBbEQ+FiLKTSgmqHFsK8EsbVOMWaaraGpKSUSfkpzcbLlnXNV9+0SmlhPJ85PT5w//DIl19+xTiOIJ4xUoTXr17zxRdfmGfi/kDf954K/UC3C6CZqyHy6tCT00zcHekPN0jsnPKB2ratDvc+jqtSngAdz5Q2bLmE8V0CS+ECtAIYhoGbm5tKJl9kd4iB/W5H33cOimVCyA4ilDXRwIXSdzFaSPGwG7i6vub29tZJ51+maM6cHh8Yx7NFb7j+FVw/7rvIfmeeRssskBeSKKrBQiExz5hQ9LCcyGnx+ZLpYkCzeXbhqeCXeeTxPvvaExmcbmG3H+jCzjNyFeBV6UShj6gGpI8VSA2hJ4TOtOy8MLW6ZgNCis+5hnFhBX6CPaOo2a9Xxz2HvZFVl1Cvopfqxr4pfR6rXVP4EuuGQ1k/qudgicb4bln/03r85MTp/DXj9FuS/qcg/wg4oXyFcMY8boyw2TxwPsG8fb5A+HPgFmEFfiyc9A0G/Ejz974JVwy+DHyD8CWWPeyM8BblDksh/7v1GrK44eTGk8J5njilhXE+89uvfsurIXG1v+Zq/wWvjz/nOCx88dEVD+eFw0H5s58F/qVfKIdx4dOvvuZ4989JEhmPP2fe3zAtPWeNPKbAOQnpA/SZ59QBEXcJ7bIRQ3VqUWMvqSBpRpcTOY3k5R2aR0QXYj6haumFTw/3LGlhCAv5o1fIIFjmgmDheiwg5lWlOqNqnjTL+cT08ECaF6aHO6b7r0nLgvSBOPmg7yL5wZTIlGaWZcTY4VvDuihpkJKRFKtmdBlhmchqqQWn8WSEy/NsRM/gcbLB7UVjXFY1Iuc0G4eCFtJTpbraC4YQm0xRLCWfGTk1XEuKUR5WYwQL2ZDe0zZqJqi5KZOV4OlRX7oISsS4rFb3+2ryEiihFw7+GMuYpVPcDXSx43hzw0eff85+f2C3P3J9fUuMHeM48vjwwLIsfP3l7xnnhIxnMgGdFycmK5rESmhrAFBcd4rLgqpOKphXYVdL+SirC7TIpZFQBLXFwRc9fNXG9bkM8U+1NT+lGmf+RU6rIZcm54YQRYOaceZk0MX752VLqUV5lcZgUHfakcba9TagBLFCBX8KMNO6IIhUjz17X2So36dqwXZODRmrLljFum0b+H3tsC6oG5anYhTqRQdVY1Evjmn/CnCzDeNaF3D8d/eZp+yg2PVlk9L9W6r+A0qRBSllFpLhLkSmbvaYdScfVG08ODLn04nHxzPLPDONZ6bT2flHVsNBUmIR886QEMyTUIQlWcaWIBA00OMEl6LODSFMjyOn+7GGw56niaK0FSc3I9e043ePJ3bHe2I3kJZMmmZEgstXi93POVVg6nR/z/TwSL/fM84jbzTR7/ZI6AjdYOFfcXBuDqhzVZ3/xOVDmzocP+5J2Fd9vw7tP2hD9oN6c/vO9gp986gx/ssTBVmJzldjoXhtlR3NkhHJ24DmOlU/cbJIN4xUYV5mS6ELPOqJMoCDBIKHkwVxAnCM36bwRBwPBw77wyYcTBXzkJ1sTF0drtjv9hz2e371eMcXn33O8XBAYmDYDU5QblwLxSCr8r4pOectIKdFcjS6zYoCFXHz4kVVOZ/HWocXLVKALOE5o1A2z3QpaJ4KnnaTo/2ujPf19+9f0bqb/Ew7X/bdc89zCfq8twrfpq7/gUVVmafZgZ/Cy+brECuvz8ZKq/Xegj1tNcurNGOwbeMSTmZZxBqLpNVLpciDcpd1zlZvIgeBgig5uFHJGm5W+OuUsry5ntN40oVgHjwh2PHau87nwA+iBFlDvSw0DFu7daFYsUE7hOB7LL62KxhXqhFm50V/FB31uaJo5dxLKTFNo+mbjw+8ffeW0+ls3vQOvIQQ+fnPf8Fuv7cNys5CWocY2MeeiJKGwO2hQ9NCkshCh0qg6/uNvLkEZZ7UTdd2+FCPnxXQWcfjc5uXLYdQCIHj8cAw2AZ18fIx3h7zJln5guw+uc7jwoHj3j4xEAn0fcfhsOd4dayhYi9RsoOw8+SZrXwMh2CAZReDhbcPPUJmmUIdY+o8UzGUtc03kLLpSKi6t5ABOZbMytLcn2fL/Lr0kbR0zvWjaLaQd82ZEnUSROk7u0ZEaoZqy09tkRoxlFXc7rHVT9e1l0IhbE1NzKDR7N6uCxx2O47HvSfVWIEfrZuTrHOswTS2G9lbHqjCjxrEqIc+xMz4iUO9aFJFLlQlvGbq2gFH0J4C8ghH4BOEjzBi5xKWdcAInnuoiUnL3+WEKy2RHU0XP2/v398ArxEiyo3VAcGyjqU1HKnuS7hilZVxWrg/nVHteDw9cDrfkXJiP7zh49eZ/V643c8cQ2LPmS6NMI0QerIKKexIMrBoJCUjkPrgyJ5nF81imK2G24vaKprJ8z2aRtJyj+aJkGfQM6oLeZ7IyyO6LKT5nvn8jikoMQzQzebCz4IyYcrtAnlEScynkfHhwbhzzg8s472ldddAUMswop2gSwF+JpZlcoOzXZCLQWvATzGaNE0G/ORs4VnzaHw0TjpsTWo8TgC6uEdRVtI815ClJ3H7rmRFX1RsnBfemGI0Fu+KbVepKyVdEPpoJH1RMSGYMnNK7/WO+MHFpVM1qkQcXcZ2ZQtZnUQkGldT6Hqip3CO/UDX7+j6HcP+wP54Tdf3hG4ACZV8b3c4ggTzDDifKVOpdYFfjbFmwSy79NqGbtSmWx+B1XiumuoGN2jDXtS9+3RzJfEtcynHX7aVtkbZ+uUqi60fgxRDzo9f7bgVaHnJUtuqqYZrhUXBlIvftAVhNoru5fe6bWgFT6Nl923mWTmm/XoFSi46z3942hqtOtyAP8qFxd4eX75fx0r9Ttcd1c0xZZFud2/audpcuyia+uxzvEwpxoT4PQwYWZjnERpPH3UQeSkp3Ev2EZdR26o1oShOfiw5u+eeeCZGu2dHZJRECmuOLhFhHCfmaTSS+SL/UIIE1LWLmqVPAsnrpgqTk/OLGBfDktrUsxaSNo9nS+8aYHx84HxvBJu74eBx+ZGu2xFj/2yjNVPrybOX+doCKhdi5cWLiH7ndQt/QX19Uncf/S1HSGmzbOPEskfJun6UOU+Z841BuxmyFx4hghF0g4ewCmQD0oIGpnn2rHDBvL5iAsW8N5fFlO55NKJJgbvHe3Z3BuLdHK8sdCBGjvsD+34wXqkmRW70EMC6/rAxfwDjEilTr3jHVuD9R1oWf4w5vrl8A0JCI0a1fdVnJeRaZCtrm/Mu70MDOH6PWr7/lwZUqrV5D5hV7v+h136JUuwMM9Ra4Mfq0kAoF9VrIZmn9SzGXNWYHNVp5XcBcdY9FK2+tsZv2YxukVob49dRBzhdagVd1fjG81Rcltm8MDBmXfbthKwKWdEASSyWQlCyewEh7qXsgEYOQqpm0jrnPEcvqkLK7vSjsKiSVMlZmJdM+h5RCj+8uFwvwL+vf6W7ggSks1YfhoH9wdKm74bBNlkL12iwtg+xg25Ag/PESkRxHlFp5dIWmLksl8Y5PD9X2uPtGN4zP1sZpzUfRssfZjpXyZQrFjotgqqluC+eR+tGCeQkPkcWptk8ccZptLW9DIqXKopHTZQtZX8G1vayjYGyAbyVh5V0XIuXrwM//oz1mvixqq6DO3QTDFyK5S+s6eM37rIOvpWMdnZFy/Rm12w9+cr4Y1Pfwl9blRMFJZs9IGuG387HYAwG/pRrFWosaV2HGi/FFpRu5W2hM5BQMoF9N3D3kwI/WTPn88iyTOQ8YcCKIPrGXvkI4U8RbhBeI/oLhCuU1yg/A44oBzI3IB3QoZRsX6tgf7qwrMBP6RHjDOoQD+sK9Fi4WUfm5O+/BH4PJLJkP9aEYVTQlPnym3vSOHHY3dPJf0JIgd1wy2cf7/lbf+sj9l3gF69OfMZEt/ye3f1v0S+/JPVXnK8G7nefcJ9e85D3PJwD4xRI6QMm3rc97o9YNJ1Z3v4FKY1M0x05T+bxoyOiiWWZmc8n29HlLV/LA4+7A0F6urg3cE0Xko6giZwnUjqjajvEyzhZJq9lYh5PqFp2gi5Sd1KCr4Y5G8Gy+kQoHD9tyI8W8lHUU22b8lp2ngsRYyEwrU2vauFcJaRrdnDItj6qUWm7SkrsO479DYfjQMrKeVSmWT0UQkmafKG3DhNs4SSruQDuBo77HUHw1MpwHkeWt+9InqLyxfvSU1BJjCYsnGgNaWnNIfYD/e5AiJFuGNgdjsTYsb95w+HVR+wPR169/ojPPv85w27PPI6MJ1tQDtevIHScHh/N+2ecydOILrMvYKbam06jBM2eMpSNhVa8p+yo5hna927cAhuKrk2YRwssuXwVMSLm6HGRLUdK2nhcNUBCoz6WnboYLItX56SCs2dwIwTIcfXbfsFSSOSCuldUMeS2+MXaDq7cqjS7C+1Coa2srHexXUXBQdGicDRyV1aFQZuFtCi35TrNJZ8CR+WDrP28Tse8PlQF1FrwhiaEEErYl6o6QXPyMWDeP+rzeAVmyyZEa4rbMUpuaUlevIgIQ+yc48tA6imNvDvfmSIhpoSAeKY/mwvTNLkLtXkEIcbpprm0kZGsL+7xYSCQcWxVoFyEcxQeCiG5p3NHYJ4T07yQVUlZWXweGG9PR1GFRQWRhJ7PLPOChMg0zbz75htwoMJ22KhyOmtmPluoVzx1SMic7r6mH3Y8fvQ7rm9fE7uO3eGaYWcEi0hAPYtFf7gm7nYVmC6hiVq5kKz/ak+ullEdPn8YB8N39eX7P5dU7WW3btXjVqnSjj1178TkO5kiQkqRENKqNPual5sseaI+B4t1WIASWa+eRSlhZMjq5RaSGA+fCLMu9MvoII2Fa5ksKPUXHtNMd36kix1304l/+ttfsxsG/ulf/jPe3L6i7zpeXd1wdTjSdx3XV9dGrNp1XB2P7HY7YojshoGu650fyNYjAYJnSQEsyau3zAZUf+ki7Ys14PuGyoe41a9Ft3K5vN0Ius3Rm/uUkMetN4FSQwTaO7UA3/cc5x9y+Pe5plJE+re11ct1pmblfCoeP+s6natBJc16dVGn5zZ9yrrvk7aMi3azcQ3HMTLWKKsGFYqe0GzCFq83Wwaz1dPPrbZowLNxgeQFd2nwceGGvss+xTIPZQ/jyZpJbgSnzgmewYGcXA3W4GH1sSzZZb0sGQpFgcJBaq9ZYcqZpHj0zRpu9lOUMl2yZqcPmEge/hOD0A8D++OBruv54ovP+dUvf8HrV6/dg3FnoafReVCBToDOwr6UQBLXgeNg37vBXqgPLj1xVnmxtkG7QdwefzkvNxvI5So+LosHUeGHrOHNDnblvOo4rb6qainKp2lmSQs5q4NAZuukOXtoeWKcTqS0cHf3lrQs7Mqa+mJ9paRlgjwTgzIYlU/Nnjd0gd0Q2Q0dmmdWhx8Fz/xF9syhRNIcmKfOsoguRjMSce+dAIjQBegdSNrvB64OlhH6cNhxPPQWfk5CXeerslWMDDqKbcCrBlQDOSvneaELQlIlaa5e/iEWDinoY+feR3hWZNt0GzVBFroo7Iae42GPiH22PE5qtCVaIiBKeDtoxTZaed+MnfK+2MAhflD//eTkzvO0kLKR7JrXj6VlN4+fnxH4lxE+RvQjAr8CrlCuyXyEssO8e0zpXAVgu3J+WykNqCh7hAGKIKQDHoGvEf4Zyh7j//kKxHhkshhjdyj6VMrcPZw4PZ44DGfeHH7Dbb/j5vo1v/rTP+Vf/rOFXRBepXtu0jtIX5JP35Dv7si7wJw7zv0t53jDWQfOszAvkJ6u49/Vsu95//LCWPNMevhLljQyT3ekVICfGSGxLAtpOhvxsT7wwJmx2xGkI8gOIZJ1Ykkjqsm9dk4GxKREngt6n4xkFCOiC+IkdDVrGGRNjiZjKbZ9N3tNgSguGK1d2qzOliGlVbiLwlOEKw3wo1avVOLFV6S5LNQhDOw6uNr3LCmT0lx3Qeoek0LxmDCBZoI7ALu+42q/IwRh8Gw7QYR39/ecX7wXV+hCQkBib69h9exRxRZ2VUI3GPlq19MNA/3+SOw6+sMVw/GG3fGKq1cf8frTL9jvDxZ6ch5Jy0JW4eHxxPDwwDjNhN9/iSS13Shma02tOlVNQ1uVEHgC3BTg4VJDMwWzNfx8AXkO9LGOsUU9CsRIHHq39ZNzClkfrQbZetXWO6Ss/SFgu9xdJCUhzWYwiwro6kn20kVUjZ4HWIEQqVUuNu9qA5Y2bEGeVTbWx8WNyUYpKe25yt/Cv5LRouCoNu/l4l4tT8GlfHpO5fb6tgpSCwCxHSNUy778meIkVblqw76aMK7N+1Ic9KF4IP14JYZg8sDj4JdlZp7PaFoQiYRoxMcpw5wM5JuXhXmeHVhJqwLqhPSmUCjJwe6UFnJyr0U7EIAxrKSHMRrJI+CAj/OUNUCwdAOhs/M7CURXVnOeSW6dj+fTE6CzuKLHaOSTyzyxLLORcOrCdP+ObhjIp0fmu7fG93Pziv3xyoybYEZOHHYcEAb3SgzOpWUyuwB85aZbQ7b1/PmxgIOKuawDndayt6G5TU0vLnN9MJfKAlRvL1Pssu1UuzGirnRujH+R7bN5fZR1ylWvNxHM89rOMYzJDprzwrjMCGIenh6CGyQ6TwKWgdLr//bxzrLLxI4vv/qS2+MVQ9fz0avX3Byv2A0Db16/4frqmmEYePP6NVfHI13Xcc0VezFPIw1mjBVu+VDXS62GTs6Xc/Vliy0N0nx6Cv5chlhdlqfgyMVg3Bz8vpqUH57nsKyA5neUHwHj/PBiwqb54pnF+yVvp8o8JdZQL6jDp2xGOHdGW6f3hufodqxVo7++X0EgESFKphMHVyr4VO5i7ypZK2VD09NAh4bMtuUAyTOkxe+vHtYlSOgsoyKCZNMzzDM0syTfYIxqYVx17S6hZGuK+BKaBgX48fVWQEU9PxokAkmVKcFS1IgkFkv0Exd18CItS82mFIIwDD0319cMux1v3rzm048/5s2bN85V1lViXYmuvUQh5ujPGxzg9melAD8rfcCGc0cu5n4V3duxdMkJBNsNxu0F1qy5BeBRVZZlqZvYLWCU/PvsnrnLYrym4zi6fqDM81LBn3laSJ4YYpxOLMvM5J69hTD65TpJzdbXZLaShxNmbLO3ixbp0HeBFAPRPdS20RKpcrnmZSbNExqj6UZq9nso18Y2zvvO7Lv9ruNwGOi6yG7XMwydk14bgFP6JjjXXgyRTsoGh5A1kJM6jYeYR6zTfKCWgDv6Wtx3gaH3zeNUsrMJyyykgGf6jQyDha93nXh4pZJzIHsYvnnEFsBn1bsK8AfFTtI6nirAGMIH9d9PCvyYUNqDXmPZuB4RBszDpzfAhzcIr4EblCPCAWXA+H8cOy+ukKgb0qV8nwHrQhKQGvalWNjXG4SIylsspKwDWbDciQqeKg6sMxLKnDOnceTtwx1ZAncPX3P/8HuWIOzTHfv8iJwfzMskDOQwsIQds+yZZUfK0bOrfNgiXUyv9hsFcva4W39V3R71g4sm8nRvRMnLCU0G+Kh6JrS8ILoQNEGeyfPZABo6EOP5yXlB8xnFCZeXM2g2xKt41WhG1IiSRTMiBXSx38C8Q5TGrdbbRFzDrTq0N6i0baHFiXwL/pQissKK9kWrvjtBJ+bl4biBGYiNJ5HmFqHPIAExspoGpTfDNPsCRghO4te48r1k/3mJsePq1RtC7OiHHSGaUVWAn5SVOSWyWtaDq5tXdH1P7AeG/YEQO65vX7M/XjPs93T9DiSuXkQhEiJ0w47D8QpEuLq+5eb2FcMwME9nprPF2qoTtkEZ04XosDGXclF21naDrSFXifBgIwA3s6RdaCvwE9gdDuz2u/Veapwr03hmnmcKECIuYLu4cvkUILDrIvv9QN93xnsSFnonvg1PFM0XKq0V27xd45FLAzSAjvjDq7b2KDRtX9unsVmLYfpUUdkeI+3x9TrVql2/lHrBZ2VUoyrRKq3rxbXepPAgVCLmRnldQZ+nf9pcY/PsTY108/3LlyDCEC3LpDqRZhIDbKrCk+wpk1o4sCrkJdVQ1E0oU/sk0rS7yEq0vXlC/yBCSbNasQMp5OBQdshXAwGT4QV1wXfVvWvFXfcEF9Aldt+N9iBa51EQI9iWvKDLSJ7OkGbGIOR5QhESBhJ3uwMaejLB5NdeiP1AQTeqQtQ8m9bXZsfshY3PFiMtzfx+N//t58sd31o3rc3+bXeuf3bdQgS9jm8D5rR+Z/0rzpfxpDJ4x1m9nGyz7EgWDiG79dqGBpSb8jrOEw/nwNwt9H2PogxTDyEwLfbdkhMP50f6ruc8juz37v2z2zkhJvVPVT0LnNX/Q8hT/9DyIXP9Q5RrEU/fOww1085zpVXgn4aK2KutbW6QaK6hnRaZsTUAtM6B54Gh0uVPPBeeebZiUF4arsXAfF9bbIxeNsuI/f4jgj+qsDgqUVh9DPhZ5aDIajsUL2zd1Fs3L3W9KV47LtfEhWPxoBEUDeqcPSvws7aFtUTlSZPWQ4i6j2IZa2GJRZY6sFPuXSpRr2sZ2/H+F8r1TT8tXvKl8kWS14QMrRqRQ90caNMdWC5fSFmYsxoXaZbVWfYnLLWf/GXoO25ublhS4nA8cnt7Sz8MHA4HQgzNeZmMIMlZ/QTEvcmLJ7RdWpyJ0uyEEFZPSGjGfH0pm2J+nwIQvKfuG7ug+Q5WPdbAnlS9eFJNVEO1G8r3JZvnPE/1nHE8M88GCk3TUr3X5ymRU/YQr7MBP/PEw8M90zS+MF9T0dUtY5fEiDpYo+IbTV2k7zpm55aLwbgHs0RUla7r6HvL9Dn0HUPfEaL9FoJlw7IxboBd30V2QySGwG43sNtZivp+6J0QG+cMxeu1ysMokSgW7JVzIORAkmxZ1GIkidQsp6t87wgS2A1WTxQWSR65Y3IjpVS5YwtAGUOg62yuSSqJD4QQHPgRKBiFjZHVJjRdcSv3qWDkHxvwQ09KvwDtCDoh/J7AQODoVfkU+NvALciBrDfAgOH2HaAeP7u6KK8SJ0AbevCtpUXSFOUaI3Iagb/tmQDuyOxRFoyA+i1Z3iGqRCLiKd+WPKMyk+bEP/vy9zw+PnJ9PNIdOzS85SpG/tTjd+PpRDcuxP0bpv0bHvpPeBs/4Z1ccUo7phGWZSXk+tbi0r1VXjXDMgemMTKPgWUKLNPLmiy6TCxf/2NzlcsTBqBkck2FnOmz8TmEcSYtZ7JEgkSS9IgElITqYkaDJiTPoNm8FpIrpqr4/iMi2ZccG9MlFpRNqvr2OVdEtgpZX7yk9r26IlAWbFmFuKfkNnQ6OOiQfSPUXAmjewztezPaQoyWicuR8zRPhrx7RpxlSSDOMeXGVFFe0zwzPp6IKVmY0G5H10WWaYEsVaC9ZNkdjvz5v/qv0fUDx6srum4ww8+l4DTPPJ7OLEvieH3Nm08+Nbf8rqff7QkxMuz27I9XxNizOxzJcWDKAaRHhkDMmZs3H4MI8zxxfXPL1fU103jm9HDHw91b0jJzenzk8eHO+ErSQl4WFJyQrYBg5q5ltsViRrHvgqTFjI3g2cVCCAy7vWdlcBTc+7T1GMliMiB2kavrG/bHo+/E2QK0zDNvv3nL48OjDyYDJfsucn11YLfryXlhnk6kZaLrIsfjnmHoUYXknhmtYQbwT//ipXrRVLP1Paxb+oLJxAbcrCElsmri5bj2GkUtrJm5KJNkJXoGKpNd0UTLVmU59uK51+/YHvM+g2hjKZhsqe+9rtIAQOJAsM19R0dUUZqsXu7x84yp8q3v7Sl/HO02ivBq1xlgH2xXbsrKQ57I88iyKOOYjSAeQdUMwIx75UFNvAJYppeq55tHDI1ioKUtHQRQCRYygIUOZCf6bQ38sJGPK9CDZnIjm+2erB6YIh5XX9LTUPlkdkMgxt53vzKdjERd0LMw5xOq8G5OLIvxnT2cJsZ5Zn91yxd/9nd4/fnPGfZHXn/2c463b+x5slI25IqWtYJixQBUWiX9JcvWgIbCmQbUOqzvS2lBn/quAem212y5OTahJhQrcb1Om0pXScZb10zZ0q1tHde2WhUR1WR6iSOCFt7q62nJ8IbtcKY88dVd4u3DHTFEvrp/y9D3dDGy3+0ZeiN9Ph4ORuzZD7y6ueV42NN1PddX5h3Ugj05JebJMmgWfiv9YDLEP6x8H1zpErQp729vb/niiy/Y7/f1+7XP7FgjSE/NNaz/WgLPkg1NsDBJdVC17z00E1iW2b0C1HUO2zhrx367OzwMfd3hb+vVeVronI2aYZomr4MZpNM08bvf/Y67u7snYNZ7wa0n0M+PV1KGu4c2M2ORBrbei7gu5oPfe+NpfVvQrG4wrMZVe16di2Lb0yE04WF+rfYOQcQJY6ETyywkQB/sLwC7KOzKMQQivQE6DtyykQVq54UyYPD4LWokbBuoboLRN9MV0lI84pV5DlV3mZKyZCUhTGobD0lhzPY+Kyzp+82VH1a0uZmH2wCvX73iT968YRh2DLsdh6sjXd/x+vYVQ9dbNEFOzO4YuwiMoV3Tn8rlVrtqf2s9Dot8rVXz6xj/nm9M6/avBXvW661Znco4Mq/YhcWzBhtXnvHlFH4/8w42youcM9M81xT349k8flLKTNPkwI+SFuMEMo6fkbRYSNjp/OjeP9NLdhho8uxynQMqmbSYTn/YD1xfHdjvdwQy02kwL73GC6cfenb7g4M3O/YHyx58//ho3IFkYjTuuCDC8bDj9urg683AwUO9ui7Q9+blljWRddVbijoaJBJwOZuFnI3fbsowZfPgn3NmydlJtvdG0REc+OkM2DqdRs7TzDzBXU6cz0ZnknNyviHb4NgNvY2jtDiHHRZ5UbgYq86udeOmynRtwOoC1D7heny+/MShXh2aPwI1I9lCu3oCewdePiLzJxjBckRlMMObbMp7cXEU67At8YIvLB8kgIoxUuLoDii9Y9o/w9K53yH6DSq/Bh5AZpQHv3eHqHeYJyNfcubLu3c83L3j6rDno4933FyN3HQ9N3HgNg7088JuSQzDNctww7m75SG84lH2jLlnmc1YLDui718oL6RTI7RSEpYlsCyBtAj5pelh8kJ++K1lUvHtuPKftagSPYaYZSJPlknEwJ/elYuMwa3q6G/xpALJZU/Exa5QOToEKiKMWOapNRbSm8MnABe7X9ailh64tO46RQwAXBd1VuVZcGUa19RMaTJiLmHoIrveMuYEMmmZSNkQ3pLqOKWyOJiSLMUYyc7hsCzM42hx0+6KivYGFqkZby9d+t2On/3pnzHs9tzc3NIPO4pHgGL8Qu/u7pnnhZvbV3z6xRe2e9L15iEUjG/D3V4s7WHoSJgbdYgBIuyvb+n6jpyWmlVhHkfu333Du2+OLNPEu7ffVBBnmSZmMcJu2wkoGb5yFXrLMiOLhbgkVTRZSJJ0Pd1uR4gd+6trDsdjjc0OHr5SOECgCfLsOq5vX3G8ujaXzd5cQ8dxgnggdO9srGQDEHZDz5s3t1xf7VnmmcfHd0zjib6PXF0dXJgLuXAy8GMqRltvDzAwRMGBkAIA2bEVaGlBGM11bG8FqBGS2y9F65FqXDZ3tL9sK6hhDI1lWY5Rf5X287eIbIXqRqHrrK2qa/u9gxnVu6f9+86Qrsubftf7ly1B4KoP5BxJBHLKEOExL2iaWaaF0+PEMntmRGxHSENAY4dx3wi5KozNxUtbt/JM1XZqs4X4qHgYiYiDQI1aUHeuL7ocKGBa9b9tblwzYwgQIoUyscjlEISu27HfxbpuCOYpqlMmJeMLunv3wOPDiWle+PrdPQ+PZ46v3tDtj0gIHK5fcXX7EVy7Mu3GcvXXbIxdMNAna76Q/y9VZNNGhbhy/dz2jX6LTGgN0suftmEl5fDVAC3yztYMywhXdoxzM/TXta+dpZdDXksGQLXtHQPh13rWULNWGVXlPFk2uCDCu8fOSSeFLna2aRJCBYOGvufN7WvjARp6Xt3ectjvnY/C5PyyLIznsYY7LGnhZXemm8e+FG8ffN5T8Od4PPLZZ59xfX1NCc97Cvwk5nm5AH7EjUpr7LIb3AI/ImLGw954OcbRQJqccw3zuDQ6i5EZQmC/31VOj7Zufd8RYySlxP39A6fTqf4eQuDx8ZH7+3vu7+83z/6d7dO8/7FA9FKX82iyX1rwcjM3VyRmC6B67RqZ4QLFfy8cHPWq/kOZhu4NLiDNnKjX8RJdNgQsrLF3EuglmKdPgBLk4OSwod7DeN+KV3RJ2w59p3Qug2KsqhnaUcHZlpkwZ+MwUYUZZVELOVkWYDHxPs+ZORmfz6gW3mXADxUEmjPGV/ljl2riOfF5VcuFq6srfvmLX3B9c0PsO4b93ozrzmQMFXDJVZ/JUq5XNYoaIr3e0NeNrHUuFmBFXXcv8hUa4Kf11MkrCFS4dYBGVmi9pn1PBX4sqYJ76iyWfbhmGXYPnmWZHAg34GdZDBQ6j2fmaSHnxDhOfq5WuZKzZUVLvpE6OVfSMs8v22maXfYbWXbO2cK5cmIYOgNn9jvSPDH0kZxi9QQSEQPyDkcDfnY79vsDEiJLSnTxgZzt2sPOyLuvr468ur2uYVX7nadPj4HY+TzQ7B5ZWoEfs7QskZD1eUBVWFJmNy0Mk23kh5yJOROCcHU4cH11IIbA0Fvq+JTyusHkESDzPHl2TrcfPZvZbrfzsdnVUC9pCLa1WW83ICOrzG1l+5LWNePbyk/s8SOYaBoQrl0SR4znJ1QApnHQBMlUQs6Nwn7xcE/4Ip6//5PjWyWGgDCAHO0HucVC0gbQE8I9kKrwrLsYbjRlTDDOOXN/Hvny3T1T1/FVf+BVl+iTckNAdzvGfsckPXOOLDnaIMsWV7gGFnx7B17uGpogEuZJmCeYZ2V+YfAW1MNdzIW1dZa1d/Yp6FZ+moBWtvskOAllsxPhO4obZRYBidZDYi7Pdj0zWMq1ctnKrIawG7NVx23atf3af1tDq2rgyHpesytmqTI95rekSZY1RXvrYr+evlGv/ZnMY6JwEpWY75QzLItNYtXNeS9VQui4unltRHhX1/T9YOPa211iT9LAvCwcrq4YdnviMBiq3nUG/NRnkMr5sDZoaTqpRLDDsOPg97JiqRfFjdelAGDjSGXsd8M+LTMpzZa1oPwnxhnS9yAhcjhecby5IXYd1zevOF7fUGJmg7tZFsMECgRgCu3+cGTY7RAnuI4h0GWlH3YM+73Fky8TmpKFl/Q7hp3xHhFg2O1MmO96YmfjQTxW17IirZnjXrJsuD0qkNKOb3UDvSx4a/9Y24Y6TZ4DRMz92eehNmJWYcsNVK6zGj9Sb9YOiHKRxrrSWuuLYsdV6aB5fV9f1zFS5pz46ya8S5WyUbAxOvQPmV0vq+SGYCSEmjO5N0AmBJinM13fEbqZKQUIyeWne+SEAIWTy/9WoMw4CwTPcKGQckLS4pkMy9jZ7gOj2YgG/asqExsASC+Pr4NtlXc5rASmmgKpZm+y66RgELwkSycs7tEXJJC6jt4Vu9PpzPk8Gp/RaESe0/nM47u33H39Jcu8cP36Y7p+sPDSbjAQWrb9tMplHMR4+VJxmGpENuBXBWbW+lizrTvA6/mX82YFecx7KlIIKdtEBuUCtpaEep8QzGgphvs6L6BZbDf15OItzRyr4kQElbQaTVURteuuGyfeFmWNFJMcycMYEeFxPKMo/WzE4udpNH6qwl+RMtM0VuNlScuP6vGjzXh+/vf1t28L+yqG3rIslmq5CePYAKWFM6nRE6yPC7GrGUr13lrC99bkAy0HxOrFQ901NgMz1/sZ31asx5bvQ4jE2DWfwwY0+r5hds0s/EDN9oeVnJXzOFPkvmVlbPRqKXPMPzpgXjVTX8daT8GyjBSP4KfTpLmGrPLSTi+ycr1nFKmZggrwI8AQYBKT2XMQRk/00YvQSwGKnOVULER2BX6gj7jOAzG6PhcVDUXnKRtR4txhwTlglOT8ouMkLIuFFJ+WzOTeP6NqBX7mjJNJO/Dzo/bopqFrMTDb5tY8z4zTSHfuiakzAz0G5tiRptnJ4n29UwN9ck0iUXKX4etfsWpWOVmAnzIHVjDdARtd9ZfWE70AP8n5QddN4FXeruCQb4D7Ml4894wr0zY8F/d0XJbZr298gNlJnOelhHQVsMfCwObZz1V/jqwOJk3VW6iGkr1ol60p5msWx7SgniQkhkjsIl3X0XUdsfPPMTIMvXvv7ywMOHbEvicWL8Xgdpqujgd1Lodim1DncTaX6hX4K+ugrjphVg/NrJnyQrUlgyOpRdeKIVh93V4o8l1ZgXp8I73IzZyzjc1kHty5hC77uLBbFW7N4p1soqOVu9L8E5r7GM3Gd/fgTwz8BApnjrDD6MJW+rPMnswBlR4DetxVtfH4sactUDas0uAi1Kt99o0Cc/mFnVt3xnnlv54RTu4fcg96DdohjGS9Y5EHINsmN6ZkL268pCXzn/72S96OJ667jofDLV/trzh2Pb+8uuWzjz7h3L3hm+6Gt9OBu3HHOPWkOZBz4PtrpW4cJ+X0YM10/xbu3mbu3r2ssSlA53GyQRqB6dUIFL+aWi0A/05WwCbIKljVhEBRcFZDMFTFsWychgq0mBucujeDajbCYBcCGyW0LrylSlpfweM9HZQyRbScWxZzE17qC2+MRvYfgxD7SPTUkbksRHVCe91jpBNx4VPcjans8b3zAOz6nqzKOM0knViy77a8aA9aGfZ7/uTP/wtWt96QcmUNgkkp8crjg7t+YHew8C4R955pEGkrRespCoYLqC7ShR2qyk0X2V9dk3NicQMu58Tj/T33d3ekZeH8+Mjp8ZG0LJwe7ni8f0dKC6f7t5zu35FZEM9qE8XqToh0fc+nP/8lH3/+M4Zhx6tPPuP2zSfONRTdWKIqgta/BijnnBmn0bl81LlTMrHfcbtk+n7HssycHh6YxjPD7sD17RtevXllIS3RFpqcE/Niuyax69jtj3Rdz/l85puvvuZ8Or1wLyolHLJOtRoH7HJVSx+V+VK7yGajlPnX/LBCa+Wo1T7UEoLSwgBCTfMONFsobMLNqqiQmoFhc9/nZPaqTVEncGO0FpDHFLoS3gU11AsLcalGQOsl+sz6KPWZ2kpcfv+ypes6Pv/0Td0lFlFO55FXH71imibe3Z+Jv33H43n2sBetzb7JNOKhVatHCGt7oMyTKcc2/2ZmTPkTCvBiYZS6FO+Z1o3dtfzyHpefWkKC1j6BBsSoT2nyNThQEUR47CNd56Sa7rZu/Fk9MUTnJpidmHLh/v6R8/nMNE6E+B/y9e9+w/HmFeeHe15/9jOGwxWvP/sFh5vX3ibNzlkD/NQtpBfcpRah8e4pHgGFQ0PcUzX6BoH6UFb3yJkbAHdrkIobmjF063sHlFfwp/S7z9ei+AIhlB3pXGezal4NDQdEK7AUV96P4llibZd8HjWbAyKEbErv2uluBtcUvYFu6OkcoCxgIApTTpAS4zzzeD7VdLd939OFWPuoAFVGYl5c2jMv2H0/Wpnnmfv7e1JK7Pd7rq+vASoRa+GwKGHJVqQeU5T90+nE6fRoAJ7PdREh5cSSEquH0LqLXTLMhFA8o0sIWHKi0b56/KzGqH3f9z3LEuh8k6cYu6XezxPT/nGUecn85st3QGlJLSuF62RFCjRAjX+SjbzIddkxOVdSTz+TOUfqSummydN2qb2rPrexKRNRIzPHQKDyvnfAR7AsRb2E6iHU+RLbiWW9FbGMSb1jUn0MRGdszkHJwVfCDMm9IlPhFM3KvCgp2edxCczZ0refS6iXqoM99mSLqdsk3AvoBfrt+5aUE+P5RBci7/qO3//2t9wf7mxuGOkmgUAnRZvJ60aiGFhlI8G81xWxxB62K0IU46ETLBJjKYlemnlZ59wF8DNNE9Ns6/XqzdMCP3X0+ffmddPK/xZYasGhlu8Hf39ZnwI+VTqJlCspcVGhCphcPF/qnH5BT0oJgcPxYB4/wTKHpmVmCkJKC8Nu4Hg8cDweTUYeDiCwG3ZcXR3oYmcco9fXdF1nY04NuIoxeshaous623tsN+ODkDGuUskgWQhr2ubNulL7RMX4tEQIoSfG3tSeEBmGHVkNdM3YRsphv+ew35s87QJdFJaUiF1H6CIyC0kzU1qQJXCeZs6jRYX0/WxcRZWbafF+NlBIKR487qHsa3HZ8JZgHrR7z5JZ9OrVDeP95Sf3+IEBZED0WIXymjenIzunjw1Pi98zTp8yKVa26/qnl+8vyhMZLBc/F5UoAEe7h8wId8AJ1Qcs49c39pmZxD2ru2ioz5FRlqT87u097073HGPH7mZBjgvX+z37q9ccrm8Y4w2P4cBpHjgvPfMSLS1iw8nxYaURFBmmyUCS8wnOJ+V8evmFufhjSfW2KT1JBX1av6VyTkkZ2XrA2MJbjLcCyjTAjBS28tXjRpx1XxEHUjCDdLMTdamUrFdWvVyYfWenygSttS9x4BaiFS23hrvRhmDZTiQ6aJIKqnu5m7dS/BUbSXAuGRG6Lta/OWXmeWRaEkm1LrQvXbq+5+Mvfr4xGApGVnWdNl60IspPx+aKq+m2XRXLuuO7/f2w43h9Yz+lXBex8+OJ08MDKS083j/wcHfHssx88+XvkNixTKPzID24AbMaO30/WKax3Z43H3/C5z//JbvDgY8+/wWvPv2CEDpC7OouXdAGLFCTL/M88/abr7i/N56h6TyS5gUJCwdPT71MM8tsuzixH9gdrjhevyJ2kf3Vnn7omeaJu/s7zuOZvh+4ur5hGHaE+3vu7s/o+aXjLr3Vq0ZbXsqHXMex1jEt64GtC48IxYNnDf4oMrVAPP7vBvxhfc2rUbcagY3MrniKrM5C7xN1m+nZPGBrGK9aufdn+1eycSlreNdant72Emlqvld9fz1foMQYeHV7Vd2RQxDO08Rw3DPNC/HtI3dzRB9GI2WczQAL4hwPFC+PYuw755hQvQNUlbEbQXRVGBfbFZem3TQnsqcWNU8LCzfVnCvwswHndeUm2LRdAd0K4OKhrjE4eaKsHF5FwS2uzjZfu40im5bE6fGRaRxZ5hlFuX/7FcfbV3S7HfM8crx5ze7qhv5wNEAkWPap1kAto+HH6s+tx4Z7pAqIRGLsaQneVZUkCyVr1yp5V9CnhNgUA9yuY0peNejrscVr5OnzqZZ2yKgGWLQS6vsRlNC0yseUXDdrQDO4mCGafW0s4JOHYTvIVcZiKLu07bMvxt1jhKPTGurQqq6tN0bjmfJHiDdsShlvKRm/A2CbR/59CV/LbsCU3eK2GMdEAXQsS09KqXrrPMcp1JZyvXL9NiSgjKnCD9SSOMcY3ZBoEiY4OFS4g57z+vljAYFSzry9tzYvzaKbvxJFYJ/alqu6kF5wt/jbFcBdQZ56bqMH6/ai9tIsI+0UjagRMWMGmVPzEP2zAT+BvuhRAQczlC5kOjGPnyGoe/zY8V3ZzCvAjypzyiwlecWiDgI1wI8KYw4s2bJ3jUnds0crobMq9TVjxBg/TtDltxSxMNZ5toxU59Mj7+7eMU6jPXPZ4MlrZRstnISFt9mxgWzMSZAXyyasBsZ1ztW0pMyyXIIrbMcJZRlVxmlkHEdv5zbcNm2OB9ObDfhp5HEjP8zwvwCcfL0s4E0Ba54L7VQu52YDfjzRi+TJdz+kBJE1i1WVJZDyYuO0903v3Y5pNzIMPTkndvsdx+MVfd+xPxy4vrk1mohlYRzNeylIqO1fw2SLbekAkCoVGJfswJCU5tUGXFtWAeEKQt8LvY8LESF2PaHYpq6/DMNA3/cWuh49Sxem05WokKxqYFBKzGlhXmwDZV4SvYfxTdOaoXVybticM7NThqz9SZXdFu1gG/PmoOkK4QeUnxb4KUz66uLWvSBWkmXxxB+N0VG1mAIGBZ4Fd6ABgL6tFJDh8rji7VEUqICldL/BPHpeUzKRwQmVd+AeS/YKJSRNcNKzrMwC99PCV3FkQvhyHDlOI3MYuUsnTt0j53EhJe8KDSAd4oS+27V0W+dqY7EuaDmpuWku5r45TS8vks0HS2qyY2tTqb812Et91WKEOMCwbryvHhhr3/iVZPvM5afVY8N3LLBrr8GArqy2dW4BjcYY5uKYTWltQUdFVMpaYm/mrJaeHKtLVjxtaLmEuALsgFMAVVNtjfcgVEWr6zsyFmaRssVVl9cfrWhjp198XwdW++PF1FFtf7gYoRenta9VQGOKaTcMhBQZ9slTdM6cT0f2DwfmEDgNAyFG250QhxWbPi11sYWwkSFlV9zBQsR3fURBIzblzd05LeY2fH48MZ5PpHnhdP/AeDbgaT6fWKaROQYe7u/ou0i/Gwhd8CwDQjfs2YeOru/phwP9MND3M12/oxtemjSP7aBt+mKdRk32Ol/sKPOqDtIy7wLrTmiRudR2xBfXy/lbDrGPLkPLb1rktl9VoAKrwqbO3y651zm9Spot+FMAjAJxKVrrWYZxI03svT/Mk9WgPtaFYiTKS5dCtFqBHLEUp0Nn3AS7LrDrInMfyAHzLM34gDdjuQsWXx58pys498qyGH8IOaPLbCDqspDGiTRNDugUUMd3AH3Hsxicqtj5jcdPBXvda66OrVrWHbU29ajRRvk4CkYGDFpJey1M2LzoUPc6UV0NNe+07DJiHkdO93f0+69RhPPjA/vxRAiRbtgbP0ajBENZi168GzdlDZ2xuVc8VY2ov9RlDVltPQ3ativfmYKLe1+YR4eFb61bFPZ//eRjfg3ViSGisVuvp12d02tY0LoubgwH1u+rrBdZgaSimxVOoOyu+IrzHIRmDnqflKx1dQe8DR3dzsg1SPxH7rgXKqVN2xCpeZ55fHwkxujzcm76Nm9AFuDJuQVwKd43BYxpOUMuz4Ut8FNSPZcQrjZjVwGE2uPO5zPjOLpxMtWwmnLPDwN79Jl3P17JOfNwevRPUvXkFZ5ugB9d1xPcMwTXVUsGuUZxRArHJJvFpJl11KVVtz8+BX58mAeoniWBEshrgFAhM+iCe66IgT5lE7WT7BnBDPTpy/chEJ0XKIuFNpkHgXkUKJ58wr1/Fn+fVZhzYMkWGDVl33xUmLNW3bbo3WVL/qcGfgrgMc6jhdVEobvrOY/D2vainsshez+vfl9JqREamWB8jCqoJnDgJwYLqwMjYF+cI61u7gI1vLLZWFBVC0meJ6q3jXMC5QugyB/GvHl0y5Jd5n6VA1r4Wxz4ca9m84RcgR+rR5HdxRj50Jn3sjNUWcOVSMb9uqRUCe3nxTw+O/eQWlJ2jxfzSg0psCyJaXJQZF7MYyYlRs9gtqRkgNA00cWO8zjy+NgbRxDUta16RZcWquDa6j1VBrWI0M9K15tcWLJaNlVMf1EsXP18DpWMuoviHj+Z8zgyTTOTk3NnVZacGSdLmtM3npQ5Z6ZxdJ63bJv+2c4pwA+6yvQYI8OgdJ2CBOOUVV/DWdeAbys/scePgpxRPMOTBo+9NQlYWPetiFWvKkCte9wzqNa3evpcWvCXZb2nZRArWZQ+BgaEMyaOD8A9GnpUTsBEyGdER6ufJJBEFpjUhOyc4B8vj3z1MHLc7bk/HPld7Egx8S78FQ/xhrv7HafzHeiVP1tPSd35ZPe9/gX/NaAy2PGqTKOSl8zjg/LuHbz95rsHwfcpSkH4C/q/+ku1a+QmeyQrqWYlvMvr76XXV8FMBX209IsLL1VFk7u+eeph2Cqs5fNlvUssr7rhtKEIeGZYSJs1rghf10tTNmEyK8RgAq1yWqgtmtW7CR/nClEtJXEQC/GKIbDvew7HA8f9AOeR9HjivCzuXqs/DnGeOpeQCKIFYC0LF2xM3mKo+xGVM0CK+d1c9Plb1X/Ks5jSE0CU3rOFqSr7w4Gb21vSshjJZAhM44k0jzy+ewsE0ryQ8wh47LWa+/KyJKZ5QeLiBGtNOKBYGscK+qCWtUojYCkuTw8nxtOJ3//Vr3n71Vfmkvr4yHI+2wI+G8fQdN8xn+75zX7P1c0Nv/ibf4s3n3xC7Aeubz+l3+0cle/N3T4M3DyckfDS4lZB85rcUFejqoLgdUI2ctX7t36uBpc7bOs6Iyvo03haBmm9Lv2UVv5qoxRr2Jxbvy82IrQoUlOni+e0m9RPdURqAxxrmeXU13bklstsP2vR+eu9g17w3pTrPQMQvUTpYuD1qyvQjCYjEO9CT9CFuQ8wz9xf9eyk8IVYau40T0znmZwTx/7A61f7uoNfnufh4ZG357NlRHq45/Grb8xwmxdmJ4IlayW1bENrDLApYV/N+02zPL+mtt6XugqA1UOFVT6avmWeQ9XjJ/r65gpbzhlELUOZKMt8JqeJlGZ+80//Y7756rfcfvQpw9UNGoR+t+fq1Sfs9lfVSGhDvaxeLydXy5g049C+CyHQxc6NxY6uGypwsyr02RMDFG+ctb1UbWcQbA0Rye5pSvUEUo3+nmro4WcIUDIUmsJogDSqzEtPtzjwkHM1IoqhotXAecofU57YFMx1Ma/AgwgWapkQ9xzQNONLegVEclrbwJ41PwHCVqt5DRPUMl9/hGXxJUrpm/IMy7IQQjDP0rdvqbvTzfHlr2wCtd8BjOPI6XSqxuAlQWy5Z8vtVEpbl8t6lvP6vq9eZcX7KKXE46OFVxbgx4iof4TMPy9Ypnnmn/zVr2lhUEV9Uxlao88+loXBNyYM+fHloVFq6zHPBVNIHd9VFjxTpDXC6zXXlwKMFmBIfKxEVlLpdVw4SYZkB4qczw0LcQqyhreVZ6mcIa6Hl/e56s/i7+3c1BybapvAutH7/mf98YrpK+N05uu3X3IfO+Lbjt9++RsPfZZt0xadEyiuW1k9AFzLJnbpuExxyw+ytmfOK2BGK6Ob61N+w0N4fQNls+mgz7SWAzRP1qPSV82560/N8RfA01qV99i78uzbzTO8VFFVJuc6ongopYV5Gskp0fWPfP3NO87nidPpkUfPRIYEYnem7xbGxf5CiIzTxOPpTEqJr9++4/7xkXGamZaF8zwTQuDh8ZG7u/uqQwSfWAUEKvIAH9e5Id/2KFADfvqBrtvZ+tz3hK63saUl0QHcO+2HRW4IXQxkVR7GidM0M44TD6cz47ywZOWrb94yz8b3Zhkuew/1mlcuJwe+yvvsE7X0d9/3XF1dsdsN7A+Z4XBNGAzUspxk3+3185MDP8riCnnfDMtWVW8tA1hHYeC9I/K9A/Xb1HR9ekwFG4qhco2wB2YHf2aQe1R+i8oRyzymiDaxmQIqSsI4dxaU308Tb3PmMC/09/csxyOEyBTeMoeveXgcmOYMOkMhmC5dI4W7qLRBYcpxyn/pfBfeXeYXAzWmUTmfEqfTywM/BeFPqjXJj0XI2qIhF8eXVi0TawUXmtauOx7qOzQ+Jsri5edlNfCgLlqXXl76/HDQ5lW1LG7vV/6lqeO6dPruiJb6WvxmIWXuYqyedmZrF6WscE2IIbNqboIF+Bn6jmE3MOwGxpTMfTZbxqop5y1A9UKlVQa0PG/z9LrpOTvjkpqxts97vCDao+sVdfu7SCB0ka63o4fdDnUyvGUemc5nxvPA2/2R2PWm8EpoxsO67pVUlSnlupOl4ABTaCrVGvCCaiAtmXmcOZ/OvP36a7787W8szeXjI2kabWzKSqR2Oj0iIXL75iNef/I5x5vX7OOO3eGG481tBQLBvO/2hytPr/vSxY1NXfuzyouiyLgia4/bGlTe69q8b9ulqKDletLOtQIGeXhYUTyKRfZE52iAqOZWWiveXPryQwMubBSbRuGRdh43x0vzb61XvX85Zv2+3ZV9pvY/SglBOB6M3DnNEzmZoc/Q0QeYdh1Xuw7SQs7CPJvxNwF5XEi6sIt7bvY9u93QXFnJI9zniSVNpPGR6eHeDLglOYDqxnchHt80o26U0mdl5ZPv3GiqfGuXP6cnVnvjUwIixJyRHNwQDtVrB9GaGSOnGaOIWVhyJt69Iy0Ln3zzJYdXr9kt1+yuXtEXwL48Jw2x849krxQF00CsWL06o3OkFa+xnHVNDNByZJVWKYZYFrJYRrcCBq0hY8UY1MsaVCNyi3Sax8/Kk2dhBhTizxJaoCuZaQsGPjEtVMl5BShUi4eFktWeLQHqYXwt8KOtQqu5brS04XDleYpRDOvw+ZG670VKC9oUoGaaJk6nEzlnz1pjulvZ/QYqv05LvgxUT5sSbtVm7CrgXEvW3M7Vti4tCFT4Q0IIHA6HTYYvq5d5/JRMYcXTpxDq/rGWJSW+evsWqCPHxmNZgrQZPBeDqIzRi2F+uTS+/1xwTfd5WVlPbeqgQrNv3QQ66uqxakCOg3oFXMWtVL9QaNYu0cq0ub1XK3ebRU1ZT27XwDXzla6iXquEqff+sdbGtlTA1++5LDOPj/eVUHctUoVFKzdafSFrIfddvfTrTXyFcMo8A350zepV78Fal6dvn4aXv0x5vqW3qlOrYLV1atvvp+gxu9PiIeO5cNh45jDNmfM48fB4IuXMOJ6ZFpMx07LQz3MFPxbPYjhOdvyyJB4fT5ynyTgAs/GhigjTNHEex7oRvwK1l561VsMN4Xadcw789LZZMxyODIc9INUL2ebzQlALW+u6SBctGOw8J8ZkYPk4zyzuwfPweCKl7Pafef6oy/TUeAaV8ZmacVr6chh6VKJFgoSuhmCKmiPIc7D0ZfmJgR+bTArvCeNpjYoyODdWQnOl90wqvfzQquzaGKmXZmn5ej1eKFwyCnJAuMUAl4+Bz4Ez8Na/Sygn+06VlnTVqKmVWTOP08zbxzOEjiV8zSK/5XQeWNIEcuVGVs8a3etGqxZDS9yI7VgzotEoVaFRPHmvUf5Dil668wjUTD20ZvVWUFqGIJ52XXudZmmy9ars0lrJVRH1caSVlg94//gQv16RexVGvFCSSk039Sp1aY1bNxyzUlOrSrs71CoXjdFqdW9ctFWZF+E8nglYGlbLdtLW5cdXcS/1nOfev788reMHLSvStsx6lvpqLbEjDj1dTvT7A7vDlWcAM4NQgW6wXexuGOg9HEzqro/Wfrqw+DEYy9WXEOiHHfvjNSDc3L5mHifyMjPvdiy+iHTO3q9YRiWVwPXtK4bD0cJK+gGJHSrGJ6S+4ISuZ9gfOOSXp0BsAY8asdUuFB4+U8Wr1iWwuYisx2/6osyt2LSfUMJQab6v3ppPBkzeXK+WJzKg9NVlSIf1WZl7l5CBvTR9uulvey8Xn8tzrnufq1x4ahGUNUNpJdtLlpQSd+/eWfjSPNtrWhjdpfnh/pHx8YHpNJGc1yDnzHg+c358ZFkWuhC4GwbGvncl3ZSTd+/uub+7ZxpnxtPZ0sAuibysRJFbEuemYk92Ki867Vm5+YzcffKNv3qj1/FJWce2Y6UGM4XYmkX2XZ3vdp+0zCzTRNdNjUeJVvm99vjlw/7woqtlUp+0rMX2u+825zXDxxrmtLmSrWtlnKrtNgvqGwsCkgkaiLpev/D8lFC/NTlBraDLRHUjylZBEduw0Gb9Kv2ek9YLFCBqMwP9kS/XUM3ZF9lsIdgN8F6voFqfsazrJqJaD5UCUBX+otKWzzTbH0FpvXls17jszu6YpskISnN2fp0C/CQn9qTy7hTvnQL8tJmE5nmuwE/LzVNAo1KPlrC5BX6KV1C5TgiB4/HIfr/fAD855w3wU1LEl7CzeZ43nkQv6UH3Q4sZ6cULZzvvn6yRTamrQaviNmPtiXnBepzWU58ZnPX8dm1+8vby4Lo25VJxKd9frm+r3y5aVuQmpOiZpfnSSfdpadqrLesEfu6kly2bW0iti4iD+JrXSONN/Ro5LE3/NLpCa0dUtcDlYyvlVtBLn7bF00r+yOX5e63aEc90WPv50ja77PiXXxPnZUFTrlnIsod6WTKUhfN4JqvxvE2Teb4oxWN2sQQ0s20cjPPM+TyyJAubKqFhRh2QVtnL09AnkwVbHdRU5OxgTgF+bFHLBJL6WhonNFoUjnlzOYl+npEK/Bi5syqcU2ZKls13XhLJQ9znlIjLQhJbn1MyT9sluT5GofewGZ6q3tV6LzpvXjT+UsRsEfH5kS+wlefKTwr8CEZclhF78GJ+a3NES9S8aizvef2+5cIA2LhEteiDx+FXw2YAPkPZAWe/wjXoCdV/juqvgRHV36LyJVKIqCUhWOclLDXpr7+5492YQe7QkNHwVyxLz+PpFUYsHdkCPw0AVP8K4NOB3IL8GfCxK3B7onTEoEZCHL99APwhbZg3wE9ZnWRdpS4BGP+uGMLWta6ICDWtZds3BfEsC3YxmQsKWietvwZXeJ8xa9dFXFkXBF2P0Qb82RBQ+nBUNc+e59w1S4iLKUrmybOOYPV/sw1tLVm9PPQ4LQSEeRLSdKKPwpQy4zKvyJR4KNaPWTZu4B9+r60JsH76kCs8Y+rYt+LzMkK327O/viUOe24//pTTOJHmmTSfyctoC3SwMIfQdVy/ekO/29F5GkhKS9esQ5fqlYBEQr/j5s0nDPsrpvHMbn/k489+Rl5mxoc7lvFEDJHD3lwzsyqTZ7vYHY+8+fwXHF69oRt2yHBFjruqcAoQd1e8+uRzruc3H9y2H1JKYGrGFiwt41u1ylGpwOgzPfDEjtNnlAZQIiKda1BF/ljbCZ5OvDISXN7J1NZ10Wrv12ijUl6eH4s1RHRT5aIgr6DE6pfWhmtdyv3ympsrrTJIacAiKdwyzyjzL1TGceQ//o/+I3KybFuFVHmeZzRlHk4jX319xzjOHhdvhtj5NHJ/98AyL7zb7fjm919apouULMVrzpzPE48PJ5aUmMaZ02lavV9ceVm9L7bWzeVsWWVeO+tXpar1CSzfwQrmqH+58olL0+9N58rag1lL+JC5W8cKDK3HSuyQEFEy4+mRx7ffoFm5mcbGe+WZUK8/qLfeU9zQDiJVrRAn3A7RZFFyMuXitWG8DSsxZwHaKkhV3+NpuItR3mYKM/Agdj19Gvye3TZNd2v4FEmrAZHOmrDrDJRSSGEhBOMaWJbZRYK5tpfzvbJ1uGx3wp1/iNTsLmu977bRdfuurHdlTElJXV+Ioq2f3yOm/mhKG3Z1fX3NL37xC66urizltPPl7HYD+/2eEALjOHH2cOLLUK9LgmbAMgY5GNMCP8fjkaurK4BKwtzqNUAlBc05czqdOJ/PtZ6Hw6HWuwA/4zhWbp/7+3vPLnaqoNB7PQH/BRZVMP7URh4J64YlWxm2WYOaDYb1d9fofL1svQXataxdQbb29dP22axsjbyVZ4+uWuST+0qzhrUytF31RS68AGSt3EZ/K5svz4BEl3VvVcYfWTt9b1HNpKQk+e4aPGlX1W99RjvkfUAPl1d7cq8f0ig/7XT6cW+Wc+bh8Vw5+VSzbzQtkI1cfF4SMQbXeYx3sIuR+/6xJjAoHqrLkhid62ysGbIyIpmwpCozz1JAadnMtXWul20qWdddoGSDFSDGhdjZ2jPMiWGy9XtZZpetGfJsf0AXIQa7xZTFst3lzOPjybyREPQ8MU2elTh4Rkyl8Uhm1T69usbEYceHIKjzF+6OV/T7PaEb0BApeTs1f/fg+8k9fopRvP2m/bTyujwFElql/Q8dsBspv71/vVdrurunCrdYRrIRGP0yj5jwnLFsX/eg31C9CXQ1L8DQ6bePZ+5HReRMiBkJb8m5Z5xugSNItPuoG1pEjIekAFLF8DrYcXwEfIpyhdATpCdIdDe3J837YqUsorXJNtLK27Vq/sUoaNrbQ6WQ4pLenOvbebmZkNkNlEzx+lnvZK/ZOFukuWlTKuijNYCFDdzUosKlzj4Es7TEgM1TFgWdZqQ4T0XpMaTssjoa24BHZYdmQUlTJkjJNrCSB/60i+q33+05oOdyQf3O+jYnlHZ7MpN9UMW+o98fkBDZXd1ydWveDVKErZbZlQkxsD8cqmJrJG6tl8I69hqVCIAQOvbHa4bdgWWeiBK4uromLTPj/Tum8UQXI9dXV+x3O1JWTuPMtCT63Z7jzWv6/RWxHyAOZOcTAovBD71wiLceEvrSRbdeP2jdHV/npPdV1Rdbpbdt/ZXwcturZlS7/xKoGSZ1B7JYuvrcgG3r0H5d5LvUw1bOkPL9dpK3Y01q3df5tz7dOi63LAeXMkqbZ1jPqjulkjfnXhI9v1RZ5oXf/fa3BtiMBfjJtvOlyvk8cX/3aC7Nybh5Uk6cTxN3dw8sc+LURR7vze19mWcjlsyZeU5M00J28s5laduhabO69fm0bFvtPQdVReqipwtQ4y91iFwCONVIWe9ZekPVQZSucyCgXVsEGlf/ZZoYT4/Efmcx8xfcRfWJfwzBqlA8bKvS2WQRMZCncLQsXp8y51aQRzfvzcDZGgMrKJCDrTdlFpiXCBsvD3mPIiCW+9WbPzbfsyro4lwyWvjrtg9c6igXRrWQKS6IqgvFA+3SqFlttpbXp3wOhNATQkY83XKgTvs/mnLJ2QPU/tnv97x+/Zrb21uWZamZfvb7Pcfj0YyU85nHx8dK8FwyarX9VzLfgAE/BUAqWX9EhNvbW25ubijhDtM0bUFaEUsi4V5H9/f3PDw8EGPk5uam1qclfm69fN6+fcvDwwN3d3f87ne/a7yv/og6w0uuY0S3a5W8r77bda+uM7o5ovnn6Q8bqoona+iTu/kNmi/kfSvMGm4vF9+2puL23Mbbq+i7T+TApV0lFO+oDw0U+Gn100aHq21+sW49QXi+R2ke5v2X+IAn/oGNUtfAF5lW/2LnpqoaMbNvRtUsoL7plHJmXhYL5/ZkEqiFdMcpVrqEokCkbCTblikrV/4gEUVK5EXDFbeZaBdrKHKxpqn6BkgJnc2E2WThgrB4uMo0TQZQaUbT5MCPkYF7LgdmhITx+c3LQnKBpPPCLAlBiBI8M9k6hhUKiZ+/b2zkqmAFQtfT9TtiN0DwTdeiZ3zA+PtpPX4E+k5I2bhOcl7RuNWMbAzyyweQiw/PjenLc55YpfIdUq0Vjq0gD6YcaY8BNK8Q7RFeI3yNNeWOdddbQQr3j1ZtJZMRtY7XPCIIOS9oTWMfXRk08mvz/lGM28fhhFIXImhJMGccALtdYugzh6NwOEYOh5cWzSVt8EqYZxw/VCVy3V/Q2nwClR9F6k82oFePH9wysPaLkispsvi1MurxuI2bpl+7pA3fkEN680t9XZWpGjNdF+mVF0GlQAplSdeNklonmRYXdSGKVL6f9pnUhYyqGd+5KIp+31CsIquBkXMV1+wfScm9VAF04wL5njHT2Ftar7KqJc/d49lPmwX20hJoZl+MdL2BKMerI/PrV+S0EElE5woTyQQxxXc4HOn3B2LfcXs1cLULhBjoOohdqfGlgWsdmQLGpREj8WbHvkvktDAOyjz2dDFyPBw83aRyXGwBiv3A/mZHv+/MJXUHsW/uVRorvd+w/iFF3NulEEFaxrgMugLoq4JY1aa1Xg0IsKq87e9QGe/K3NTECp823GvFst9UsBx3+fBFUjRKpzZz7ELrKXN0e6U2tOui7ptnvZxErUwuGT8qzFCFxbOg0Y8QOptS4puv31rmkHGqwI/xrZji9PBwMpfh4s2jynSemCeLDddcwnekxtCbYViuswWdn90kfY/SXL8usvGibzZEtc139ftClgBoYcssMq++Xy+wxuULNJmOQogE93pY9UH3JG2M0CKT17Bgf+/knDWr148wH7fgTUuOrOTkdfGMJTXMy8dbCQXbdsRz86Z47ZiiLCKkHAh5oQ2JuiQIbqX+Zf8XXhhbk8s11oxgClWx1qbxyroM2+8Vrcq97WauWaDK8Cn2+Hr/rVEqxfsT7L2kC5H105qd31Zaz5rSxyLC+Xzmm2++qfw4JURrGAZOp5N7/IyVQLn1uCmlAD/DYPxdxXPoMtSrXB/YAD8tgFQ8hy49fkrGsQJYleco3j6tx8/j42O9zx9/2VoY75/zzwi/1ivkYqx9iOnxXoH67BkX9swzArrozescKzqGVvlMe0yjY9bJJo199WRNLG+fWy/9Bo1aLZRL/pTz8DuE9g+R6R907o+waLxY+e66/YsAadt7Vl43sFcpPJ0Xmx0W27iCGD74LRJk5fYsPxaP7Yu9Tr/pOj7btWdTt0uV2KeLa4hm6+VtqHbLU2c/YA4RIm47Fv1jXXcVqcl0yqbW+yyoFqgtGwJ91zH0PbthYOep5GOQSkIu4KFq39YjPzHwE4NwfQiMc2BZAslTfBZUr+VpKTuDrZK/lgZNqJ36Hv6FS9SvUYKeP6MYMzTHAfQY/85A0M8RuUI4I+qEr9yR9EuUv4Sy2yXzWm+xQZF1MX2IGdEZ8h1oT9IZ5Brz5tn7/TpWz56uee1BB2q4lyaUkb7LvH7dcXOjfPZ5xyefdnz86bqT9xIlCOxi3JiLUv+zb9aWbRVEQzilDlCp61FdOFScC8AmTKw+86yGg/+j5T8tRGwrkFPeV4S0zANtyPJC8H7bKsJFUVYsY9cCTrgVWTyFo0hLjJmccNhbwJ9nVbiLu30hJU3VAHvqjmsgUOdCIasBPz8GufNaXnrRXp/p2474tiqU1ul3PSFeoVk57Hs++fgVgrLvYN9bCtQhKn10Q9ZT3ogE+t2eOPTWrgFCcKOqbAVe2lUiQEQ1oG9eo/nWYpDHkWWZLQtb39HFkhbed8slWLauEOu9JCyUzG7ZF4zZ+FNfvAQ8pSfmXVTGTfGczHWUtWpeq9itrxt524bcVs8qf6AynjEX29J2BnRL/Z0iF5psQ7W5awroVvZ7v2yUk6aedVVef5f2OHlmCZWL16rUFu1Cm0OsDjXzm0Lx+jHb9seZiOfzyH/0H/6nRmo4TpV7JzlHTVoy0zw72W6uaYZzMo+eJ/wqupIZA358+W2Vtd8J/sh7vt4APbKVnS7vQvOe0MjAsG6L6Xpi/RMxDzwLj/J7ObAQyu7XRZXLdYKElfzWQbKUbYcxp7QFfrg0fF6ulNTrAPM8Ir6rV7yPUs4s82L8FDxr45UrPfN+1VBtXVgA4x0oIFCMPSkt1h9lnfM1MZRU1HZnv38DDjk4oBrW8aOKpIW0tSyb+aBen7QCXVlRdU6HPLvXD7TGdJn5rTpH850Q0Kjk7LJVjY+ojquf1OD88FL0gpwzX331FX/xF39B3/frGIDqedMCNs95DpVSuH+ADblymeeFoPlwOABPgZ+W46cFp0pa+JZPCNgcU15bbp+Hh4eVF+yPslzSOLTr3HY1fB64aEGf8k+jUD4pq/F5+f37y3dDJhczrvm0zs1tPZsTff4GyTV1fPHce/6a9iqauQSF1pBR2Uii9TZ/nHPxr8sfQWk2YNQXYHWHBc2mrxY1U9NqFYWkFE/SVX9ZVcRcMvYCsGZ43tqjT0GfcsHNiNX2GGmnA6IWsiUpgcLs2YOrd1AF/Ve7N2OeNwZk2Xa+FfNctSVTyA0oX0rVl4vcDtB3HVfOw3Y8Hrm9ueH2+prYRXZdR6x29YeV7wR+RGQP/N+oKAP/O1X9n4nIR8D/BvgbwD8C/k1V/frbrwVDXzx9ZDUuam23SsC3q2XrgbIRPO8BiJ4519X8Z367zCDmhg2FVFkQ3SOcCXyN8BboEI4I0a+ZgUSVuP6XSeulPTZQ6QFLFVfSSxvIU7h+2pTIoalHB1o8hBZCEA7HhZubyM1t4PoGrq6FcTwD/B0R+X/xA/sQMJ4FL0qzO1tbtoRIWDsUEzDKyjnuuvza+o702aS2Tg2hKJiXbuDl3rn2n02t1eiIrYGgVM+Acu/Q7CRXNbjcx+sR1cCfrBByINQJvipPi0CSC6EixdjdAkCVCV7b9qFpBK8/DSSUN/amiMj/kxeYiz9e+TbR8wwo9L7DxXh7QoyIKnHfE/WaIHC9E652gRhg1yu7zvo1FZI2cADRDcpWmhRB3eA/AkYS6/0W41CzB1k8r/FVxLCGWHRdSZOMe1Ws5LiFCHdRSCqkrJyxgNB5esm5aA9RiByLZ9wTuVbc8uo567nb74oitzUMK0giwtbbp51R5ZQi18uudQF9nizDTz9vgJ1mQukaZqX1/XZ1kKaLN9W5+FzbQbf3WZ+mHRjPt1G95QvNRQv1+pJlWYy7w7PSGVDQ7jBtn2tVglZPktJGFxXdeH0UYHtjeGzcL56v5+Wa/JzsXEHvsGbVqOlRBGK00KzGcK9ZahyoiNHn/cWwelrWvlOKsUrN0tGmTd/E0BdF0zwlXlyeFtdz46AAkVy9f0pdlrTlX3nqnXPxjLLt1xLiUMEZFF1Wg908VAOSA7kY+yHW+1FbTpo6S5MJxcDyELYE2dsR0MwPUdSzqqzHl+dODgLp5vTSZ9RnKKWMUQUWoxUTJRBqckbb2KnG/R/Vuth6/Dw8PNR07k1ln6ReL1m9nuyOeyncP7DKg/YYEWG327Hf7wEqN0/57dKDqP1+7S/dXLM9vj0mpcQ4js8e+0PKy/ehbN83O+HPQy7P2BCbx3upZ/1u8+w5q8Rq8Pz4aMt2mhZKAQ/VLs2wkTPb510DYlv5upLwP3fmRlT/Ec3Fvy5/WHnxPmxkf9Fa6/uicmkbokm17i5XnO3lwsWYbHgkWzt1M1WaNY/LY9Y7KlT+zJLVrci/xRPzrHPk6drmvvj2e9WLpT3DbFOR7XFFPrPK7RgiwzCw3+047Hbs/c94/sKz7JrfVj7E42cE/nVVvReRHvh3ReT/Avz3gP+rqv7bIvJvAf8W8D/51pt18PHHkbt74eGcmWbfIW6r3QyOVWvXi9emVPLS54Sg1mOo1yvfS9O9l6Jso96u31cpl8HMOJQROPnfhDqxsxZwRmHNwGUkqFB2Vkoc/AB6DfoaA5CuMK+fDrgG9gg9llXsgNADV8COGI/0uyMhDrx50/H55x2ffBL49LPA9XVgvw/sdgeAf6iq/9Uf2ocUo69ZQG2sFsWmaNVbUy/QKJWwSRkp6ynWHI21VpTDEl72pPurmbuivKEATD5kbNKtRjFgnBGNJ8JqwJR/bMKX0RlECUU5DmagGIgTiNIIsHK1UNppfVVVgmgJId0KtGb4V/NToTpGrD+/yFy8HOXbeXA5l0pfPD2mCq/Nke8r36ZsPXPfYuR7t4dg5PAxmiyJougy+W6p8RGMk4GpoeuM9BUBsdSmiqK+82/dXLwVPO2yexkEB3iyAz8ppXo8mBK+3+3o+85S3p5G5nnxp7FwQ6ts5/wjQicdXR/Ydzt4sbkIRYaYoad1vIsWhU8ocfttG0vbaZsFa503uv2WzRgpXjEkKrDkFrVIqJNBiEXTvKi3ethlu2T7dZ8wahWjpPAUbTMhtfO7nrYBf6SpdjnGeUiKkdzWQVq1pL3UJkTqxeZiVmUcJ+f1SZ6NykOzdOsC/ewMqrv5UpX6NrTvOUO/4C6F3HD9kq1jk7x3NVyXw8aQtHDbYthGu2MIa+atEFGXjUXWlfliSk/YhHSta/g6Bmw8bKhOgZKeevZU77OFUGffvZZ13NpOY50TL9KHbdvabbS+FiC4fb2UwJc2XGuI1zs0fVG9FhpN2NpEKsgkokhQCxemKJ7Fk0eeXltXGd+GEWmj9NqxZbys678qDtJ7yJZK9XAU1rHbrBr1PjTfbQzSZs7a01q46eqxUcfAi83FlyylD1vg58lcEXkWyGmv0V6rvG89+sr12rYr3jmXHj/t8e3r9wF+2nFxWc8fWF64D8tYtvft5sDG40daqebvWjuEqpTydAMFtivEhxhg61HPLo1Q++3bS/NA3/Zt0a8bMf+0v5rnan6qMqeeu6VYeCbnwR/lXPwpywtiof8iy4v0oYhw2O0MKBGpYenmibsaX3WemRK4rqb6FPyh6qjrOnRx1zqpqhb0/FRZ5YDK9jNsxnmuG2uNnKy3LrV9KhOKdeqNcXH8hf7bgvN2uOtRllF4Nwwc9nt2w0AXjejZQry00dneE/l0Ub4T+FF7ynv/6K4pKPDfBf7b/v3/Cvh3+I5BsN8Lf+df6fjNb+H+cWYcLSY954ESm74VWJfm5LahNocCsjEYtDnHX1Up7v26cQVtj88X5152miJMCA8YofPXwO9Q3pG5R5mABbRDOWBkqAcMyCkuX8GNsQSaEA6I/grhMwxkfYMBPh3CNbBDGBBuMOCnI4gBQPt9xyefHbi67vns88jf/a8N/PxXkc8/6/nFrzrevKldXBrnB/VhGZA2+da/4IRUOBGlapm8NvTNC8fdztUdccu8bVfZjXuLK0sO0kjpBymTRLfHezdKc00DgZqQsWr4FOFgs1svhIhiIIOq1mFYHjF24m7RivYB9VisEn/qN6hTsBqeqhQXeqVJTY+NKnWwIbvAyaqQt07Lqvoic7G5Yqkwl2qLbt7Jk/ftXF2x7Q+534cduZqGShctrCsGOOzgaqegidO7dzzcfcMyz3z91Te8/eYdAPvDFbv9oXof4OEWaZ5Ii6df7COde/rELhK74AZ34UxRlpyqkpuShdkMQ8/r1685Hg+M55Evf/8l93cPlvK964gS6Iae480V/W5g2B24fv0xu/2xPPuLzEU7zYBmM/Bs4Eih46k7DB72Vb1dtj3Qvq9TcZ0az/R2OdjkV1lYV6AzIBJtsjgX2YZDCrG6XXJ0aGma0jwr2bTgBnwFhuqSvhox2jxNK7orr4zfpD5krmtG2DzeaqVKfTY3cjdt9TJzMafM3dsHCihBlTnPz5O2TqWuVrM1VGMVZ9tZvO1G//XSwGhAkubQpj6t5u/XEUFiJMaSZWrNLBVCtGxMQBKp4Yeqa6YaqaGSlqEqdLGu19VzZJktM5aqgTpl7PkYl3hiOj/Qn/b0ux3LdGaZJ5MB0cCknDPqGc8EeWF5utVPzEhePTmy6x72WsIppPIZtAa61rFAs95ddJVinAIKSkbz4r/b9UWEoBHVkiXKucBEoPG9bT38UgOMLml2Qk4aMMmPrGBj8E0Zr5BAzomJGXUQqMHoqCq+z/XW8C0eWwV4X4/3PGw5oeKbLwRaTqCXXxd/WCn6xLIsNZyqLZefvws4eTI2njn+0ovouVCsbwMTPhS8eQ54eonysn14WbcWcL3Q995jQG4xyVZH/fb72SHfpeM0x19Ute3n5/vru/UnW75KZS8IbDen65P37+NsLHNVL9qj1be93n9Uc/Gvy/cvL9WHXdfxyUcfMU4Td/cPjPNUQ9RT4czZANhmG9uYwsx2bEyaeXgRKuzHlo0xuwY8O4qrTnshA6rtA9t5bJ4+Au6RacdV2aflZu/Vpi++uQw/KxqcbNb3+qsIQ2ecbMf9ntc3N7y6vWUYeg67nj5YbIjoGkX0vrl7WT6I40dEIvAPgL8N/C9U9d8Tkc/V8pijqr8Wkc/ec+7fA/4ewM3NL/nss8A0K8Mu+c6RhTatQMylZP0wI3E9swj3tgGk+a52+zO/tVfa3rsYFdYxCZjAvX2Ue1QfMO+ftApc7e359IClai8xieWesx9/JPAK4WMMIPoE9JanwM8t6B6RSGCP0DF0wu218Oo1fPpJ4Be/6viTvxF48yby6lVgv2+eQeTf5wf24dCb55JQeHRKeFWJSzQm82JQFcMs4LvA/mXr8WPtu35h8/YCWKrvqa+bWeJdKHV73H4qnkZUoIcL7bnsZj1VfMzTx74PxcAS6IMQ48WEV0szv97+OXO5GFQ2CpNzTmRtuVjsi6wGltnvrWB8mbn4+tNfPncI1dJ4Ij/aeXkJ83wfBXD1HfnWoxqtq3izxAhdMG+fvlPIyuMycn54xzxOvPvq93z1u68AuLq+5Xi88jSQK/AzT2M1BndDR98bch77jhjtmCUtK9iTc0X7lyWRUma32zEEJeaZ0+OJt7//LW+/eUuQwNAbEfSwHwi8QtOBThKDvObQN8/3AnPR7C11g65komIVL6IUT6fNaC3ToBKdsxF5lYxO2OwkNCunR2Y2knQzn+OT458sfw3XTC0V1Nlm0yrfS1XeW3BIqABNc4dSMXu29t6rYVvus5VFlwr+Wle5WORfai6CMJ4tLMPAZb9HQ4os3m5PVseNpnDRArXdrQ1LU7Rkg9uJeLHWvtdIlM2h1bwQI1MXcRJZ5zCpabjZnpN13akqwE8IwUCa4MC6O8UWjxOtnD0G/NjptqamZSHNM8s8VoA3p8XDxgoQKRtZ/1J9KOFSlSrKZblXCX1aPX+2HbB6VaxXWH8rQ/GyG8r0spGRKtiSPYGErYnF+GvdR03nqhK9GnOl3nnj2bE+A1VgrN6+69pc1siVS2at/3Z5bT1MoHiVbJdmqco+qIE+3nZWjU341AvNxR9WWmP9fQDNf57Kc8DEH/rML9eHrazZ6vVP6tbab1X06+b39Y08efvkYlXve57x50PK5Riq7zf1qov8ZUVrKevFZQ2fIE3NUS370QryrEvBEz35mb7+Y5mLf13+8PJSfbjb7TgeDpa90FOvJzJL0gbE8YEmRTcsg259qZt+UtaS9fgn68a3PhjvsW0u3sp2rlxu4qynPFW+2lV741m41R3rsduqb/XkEILZE13HYbfjeNjTdx19jKz7LbY+Xur331Y+CPhR21r7r4jIa+D/KCL/xQ85z8/9+8DfB/jVL/+u/vwXkaSJn/1cQTLTCPcPM/O0kDWQUmcKihaPiVbZvnyixkVf1NJ+uiGEZP8tNAMpYaFYdq2WGKpViEqmF9Xo7vY+9LT8bkm3LbRrRNW9fOhBbwz0kB7zkouEcIPx/wgWdiIgGWVGZUa4IuhnBPf4UT4CbqAAPNIjEomeyraLwn4v9F3g9pXwqz+NfPxx4NPPA59+Enn9OnBzFejiFmFU1R/ch1fHXbMZ3aqvWifhk5n17JrpxoNP2gIH1N5ebZ5mFLTsIpejYRUWRVFcbU/PclTAn3abEZ7dvVLKBC+TyklfMVd68lOmXrkQCA2W9bSoNoYsOLS0WVgLILU97WXm4i///L9cG6hVVbzmF7tCzfeb9+vPl7y3zz23Pvf7e3XErdpS+r+co1nBCU2zE2xrzmh2ZL7G05nAztjvyb0GbJc6+u4yoNnpfzJ5Wcw1lZIZCEs1uSwWihOCGZXLYsam/2URS6Et5p9ymGfi0punEOui5X3xg/uwj0ElNLvm0ox5KYCIElRQUWcu8z5veH9aGQFr35roK8e4DHyywhbi47bryg5G+UurN06zOj3rNb8BdXwei1r/FNmu6zEia4jnc2OpPFut/8bA9bldZcaTE+3cFnBun/yF5mIIUUPXcI55/229Etexv/YGF8tji8Y0wqfKwfa45sTmtKY1WUeL37ExRi6bScTDXwvQWsO7ghGfBwNeCn+PwsrD1d5dMA/PsIYB5ax2nSq/uaiHj9e0MJ8fGH2X7P7L3yBA7Hv6wxWxH/zosj2kL9aHXbfXlsdlO5xcE5HgwFtZb8zdvawAbFp+o4M+ebcZ7LVJ1nFRlFMLkFo9o9bx3CRakG0WqaaBG7DK+NPKWCjzIYkBdNb/0tTA61MyZ9b6N8Z3OdSrJrVurfxonlsL+PMk1OvF+lHkciX7/uU/72BPW17yWV9Onu50+9uHnM/zSksznLcXfV6za6F55emN29nx5LdmDl6CP0/q+37FqT2oefk2GKqp1WYNkXbqXRxfrvz0if6Y5uJflz+svFQfvnr1Sne7HYhwNS90Xce8LEgItpHqG6ol+mG1JLejjMZkew4Y3XihwcV6tp5Xfnuv3HrPJGk9KC/P3d6raprrp0vVsnr3XKzs7XXEPF/7vme/2zHsBvqhtyxe7kn9XHWrHvz+yQ58z6xeqvqNiPw7wH8H+I2I/MyRv58Bv/2u849Xgf/6f2Pgi382k8PEr3+98M3Xyj/9x2fu7pR57jidBtISUA1k7WgVlipQq96wsn53nTJ0mRCMFDjEFvgxBVMlAUtp5Q3wo7WD3A1bYVkiyxxRFVISUgoY6HNGuQMeyNyhvANG0CPwSyAQ5RUx3CLS0cdX9PGaqthi91EZMcrXI0H/JqJfAAMaXqEcESk0IRbiMuwyXa/s98KnnwVurgMffxz5V/9Le37+856bG/jlnwZevxH6PnDchyeD7of2YTEqW52tTAqRxuC2uzX3LRNmO2CLN5CI8+hcGPv2Zuux0G5yl8FQltp63wL+5EIvjQM/oU7JevR74tXXda/CMnaLRcm5xOyvdy/KqkAFDC6epHmnlu62Ls6RjHgWqCYULLfq7Vp+cD+W+tS1teDTzwmUS8DnmWOEhkD7fUrR9ytCnZkE57EJADmjSdG0kKaJZZpYppE0TeR5MiMxJ894BdM0M88LWbVygMQYOew7utjbXTSRl6Vm8prm2e7vWXE0ZZazfR9yYj6dmLqO6XxmPJ0Zz2dU10xMh+nIcNwhMdDt9gYgXyxGP3wuKiEkVC2DwEqzY6BKBkJZUKXxMiggqLdyu8uy8oas7uGbGSYtI85T5Ea8XqsCnEEbkLTI7gqSXmjVbbzm5lkzhdtHKzhU5OlzI26ttV1S6nUvvS0Etd2TxggtFyzgiwjE94zsH9qPEoT+OLjhaxsD4jxiIs4BkhYDOwsYrWvd1gttm7TKqwJzSHOgv0oosmv9fquQuBImjRHfeDLY5W1sS+yQ6Jn0nGMLCYTYEaJlvuuOV8T90b7vB0LsrUeXmbwk0Oxz1Dx6lqnUJa1cQSgkl58I6sDGMp15+Pp3nO/fcnr7FWk8c7h5Rb8/cv3xZ+yuboj9jv3VLV2/h7wBDn5YHzqoVUCSVcnEQQ0PiRI8w9ga5qZ15/P5gFkbvk89JW0YPB246muIYNw8OKCyLCUblIekxo7iZRUr8fN616wLKRt/mmUNMx6zUEAeEbJ2ZN+Qiu6ppb7RIhK9wq5/sd3IkPJTuaYDgSsQtcqaOto0Uxn9njG+X2pd/LHLpWHyXQDKhxz/nLHzXaU1hr7P8T9meZk+bJ/nA+v8AeDPD7vQd13mEkD5lkMvl+DvPPD7HNeQC7g+8Xwpm7b6bEX+szIX/7q8v/zQPowx8urV7f+/vfN5kSMt4/jnqeqemU4nkizJakiiqyCeBfHkUUG86GVBTxH8A/SmeBfWi3gWFHIQJKCwwZuHPXgQWd2DokFdBNewWTcxi/srM1Pd9Xqot6rf6qme6czUVPf78v3AMD091VX11Kfet9/3qbfeopjN2N2bMJvP2d8/4N333q+ePFgUfPh0v5mPrL7Y3TrjmoJQFcTwUnVYEJYTp8uECZ/lU/q4sla16+fN59vrXjQW26u0zpdd+9TaoaDtmec50+kFLk4vcmGyx3Q6ZTKZVHcoLD0soNXmW6PIr/NUr2tA4U+ACfBF4IfAPeA28JL//fJJ69rZgRs3M0qMG286LC8Z75S886SgKByZzSkOwZV51cUr8UkbCCeAdj6t1TQNzDHKHONxSZ45stwxystFy8KFkynXw8OrkyhsaLl6GZ/4yXzvyfnHz5V+REB7tM8BjgNwBdWtkB/BGJFxjYznyGzMOL/MzuhSO2FB9Qj26paxiU/6fAwY4+wi2ATLHKNxQZaV5KM5e5MDxjszphfh6jXj8hXj+Ws5L3xqzK2bYyYXjKtXjQtTP7eNbyM/evwI/PjXszqsj1xHJ5bF2Vd3/FpLhJmUZkWGN+s7cMszPYV2wlFBzWLNF0+Y/PEdHde+L9SRVQ1HW4xXaRJSSwU6rGrA+Yme605quXiCSdhBbOZNqFZcD8BYxNJujJgrm5EQ9RPKgn5d8zpgZGaX+yiL1T53vLeU2HGd77fLTdif7GqMr09QiS/t02J/feO/dLh6xM9sRjmf+85xPWG6vzUIKOcziuLQd2Bm/rHH1TL1/BTV/D3VY5/rW0aMqvJ1WYabV3OMlEXBPMuZFwXzYlb91KN+5tUjb+dlieUZh0VB4ed4qM+td548hh7LIuYbX6UvIXWupakf/TGD5ng0t4CFrqz1q3HggnWE77jWckF59QmExQiR6jiHJ1tzOyZLBWRFK7aul62+BcyW5vjxW1ycPu36Y5HbdM33orNwmaVRS+F3sd/vxYwoTRz9lUUzspG/1Yms6fhmeXX7rPlJBct6Iu2yDKa/6yzEiwO3qI5a22sWDBocFrzfSv7Uo6rqOdcIkj+L4WY+MVON7DHLq5E+ZpBVr7N8RL6zx3gyxbKc0e4e2XgXnGN2uE9ZFNVw6oOnVYKkNCybQZlVvuqnKbJo6ISjfsr5jMOnH2D7HzI/PCAzY//9/7E7vQSZMZsdsrM3ZTTeJctGlFVjrsf61I4ca5928cekGmXjMn/Mwgklw3O0kUZzbOs/m/W2io61fxw+yVKX17r+rBJBzQUKyzCrr5guzydSf4fO/YWdWZP4cT6x3Dx2Flfd9p2Zn9x5kUxoRtkeaY0uGqgWnHvt0T5Ln3OLzy2N0Oj1e/G86UqyHHcVep3lT5P0Oc3njr1afka2wmHrvApaQGFj6ISPV4uvTv6st+322lZu6JjvzOUW2vLqO9fugu+EI/XQqp1oXZqMqiyKbvpyaFY9bXA0GpNlI2bzOXmeUxSzpp4/ODhk7uv9egLlBhd+rzYdvqp/5V93jY5bVU8t3q/aymEiqHVRomO03dGkT7D8ir9XVRmL77muOriqbCwzxuMd9vZ22d3bZWdnzHg8ardVm0LsA1izyllnxM914I5V9/xlwF3n3K/N7HfAXTP7FvAG8OJ6m9wi1qzMY+ettx4CfMbM/kQfDlc1Flae5c+2v+ss3ixzjL+V61nLeT8nRvsJOSvWuXJTYaUDVJnFV/ooi2srWdF+OdJHOMs2Oj+ZZsH87+O3oc+yeC6005X9rHKVz74897X+k2Jv/t9bWYTTd9yOI80S1B/lfAY9OjwL7X5cO6Vz+hU+azk+pqO5hQSN8F7LotgY8Tg8oXJdmSs5aZWd6w17pItfJ10zccHyRxY7rmpYuxoI96J5rbKYBv30M86hXZM+J1QuKw7psxxqG/J+ZDN7BHwAPB5so5vnKtsR7yecc9fOuhLv8F9sT1xDsC2x9uIQVBY3jMri6dmWWFUWz8Y2eOzbocriZlBZPD2pOlRZ3Awqi6cnVYcqi5thpcdBEz8AZvYH59znBt3oBkk13lTj6iLVWFONaxWpxptqXF2kGmuqca0i1XhTjauLVGNNNa4uUo415diWSTXWVOPqIuVYU45tmRhizU5eRAghhBBCCCGEEELEiBI/QgghhBBCCCGEEImyicTPTzawzU2SarypxtVFqrGmGtcqUo031bi6SDXWVONaRarxphpXF6nGmmpcXaQca8qxLZNqrKnG1UXKsaYc2zJbH+vgc/wIIYQQQgghhBBCiGHQrV5CCCGEEEIIIYQQiaLEjxBCCCGEEEIIIUSiDJr4MbMvm9nfzOx1M/vekNs+b8zslpm9Ymb3zewvZvZt//5zZvYbM/uH/31l0/t6FuQwfocgjyl4lMP4HYI8puBRDuN3CPKYgkc5jN8hyGMKHuVwOx0ONsePmeXA34EvAQ+AV4FvOOf+OsgOnDNmdh247px7zcwuAX8EvgZ8E3jinHvJn/hXnHPf3dyenh45jN8hyGMKHuUwfocgjyl4lMP4HYI8puBRDuN3CPKYgkc53F6HQ474+TzwunPun865Q+AXwFcH3P654px76Jx7zb9+D7gP3KCK8Y5f7A7ViRErchi/Q5BHiN+jHMbvEOQR4vcoh/E7BHmE+D3KYfwOQR4hfo9yuKUOh0z83AD+Hfz9wL+XHGb2AvBZ4PfAR51zD6E6UYDnN7hrZ0UO43cI8piCRzmM3yHIYwoe5TB+hyCPKXiUw/gdgjym4FEOt9ThkIkf63gvuWfJm9lF4JfAd5xz7256f3pGDtNAHuNHDtNAHuNHDtNAHuNHDtNAHuNHDreUIRM/D4Bbwd83gTcH3P65Y2ZjqhPg5865X/m3/+PvBazvCXx7U/vXA3IYv0OQxxQ8ymH8DkEeU/Aoh/E7BHlMwaMcxu8Q5DEFj3K4pQ6HTPy8CnzazD5pZjvA14F7A27/XDEzA34K3HfO/Sj41z3gtn99G3h56H3rETmM3yHII8TvUQ7jdwjyCPF7lMP4HYI8Qvwe5TB+hyCPEL9HOdxSh4M91QvAzL4C/BjIgZ85534w2MbPGTP7AvBb4M9A6d/+PtU9f3eBjwNvAC86555sZCd7QA7jdwjySAIe5TB+hyCPJOBRDuN3CPJIAh7lMH6HII8k4FEOt9PhoIkfIYQQQgghhBBCCDEcQ97qJYQQQgghhBBCCCEGRIkfIYQQQgghhBBCiERR4kcIIYQQQgghhBAiUZT4EUIIIYQQQgghhEgUJX6EEEIIIYQQQgghEkWJHyGEEEIIIYQQQohEUeJHCCGEEEIIIYQQIlH+DyImKrIJpFBZAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACo3klEQVR4nO39eZgdZ3nmjz9VdbbeW62WWmotlizLMt4XwBu2xWKDAySE5Ae/QDLJhBATQubrITMZCBeJySRASL78mGsSSCYLMEkYQhKGADGOzWYMZrPxKnnXakmt1tL76T7n1PL7o0+3+r7f0jnd6u5z5Pb9uS5d9tOnTtVbbz3v875V1X3fXpIkiQkhhBBCCCGEEEIIIYQQQrzA8ZvdACGEEEIIIYQQQgghhBBCiKVALz2EEEIIIYQQQgghhBBCCLEi0EsPIYQQQgghhBBCCCGEEEKsCPTSQwghhBBCCCGEEEIIIYQQKwK99BBCCCGEEEIIIYQQQgghxIpALz2EEEIIIYQQQgghhBBCCLEi0EsPIYQQQgghhBBCCCGEEEKsCPTSQwghhBBCCCGEEEIIIYQQKwK99BBCCCGEEEIIIYQQQgghxIpALz0ayM6dO23nzp3NboZ4kaG8E81AeScajXJONAPlnWgGyjvRaJRzohko70SjUc6JZqC8Wz700kMIIYQQQgghhBBCCCGEECsCvfQQQgghhBBCCCGEEEIIIcSKQC89loA77rjDPM+zhx56yN785jdbZ2endXV12S/+4i/asWPHan73Qx/6kF199dXW09NjnZ2dduWVV9rf/M3fWJIksN2WLVvsDW94g91111125ZVXWktLi11wwQX2t3/7t84+BwYG7LbbbrONGzdaLpezrVu32oc+9CELw3BJz1s0F+WdaAbKO9FolHOiGSjvRDNQ3olGo5wTzUB5JxqNck40A+Vd88k0uwEriZ/92Z+1t7zlLfaud73Ldu3aZR/84Adt9+7d9sMf/tCy2Wzqd/bt22e33Xabbd682czMfvCDH9hv/dZv2aFDh+z3fu/3YNtHHnnEfvu3f9ve9773WV9fn/31X/+1veMd77DzzjvPbrzxRjObTuKXv/zl5vu+/d7v/Z5t27bNvv/979sf/uEf2r59++zTn/708naCaDjKO9EMlHei0SjnRDNQ3olmoLwTjUY5J5qB8k40GuWcaAbKuyaSiEXz+7//+4mZJf/5P/9n+Pk//MM/JGaW/P3f/32SJEly0003JTfddNNp9xNFUVKpVJI/+IM/SFavXp3EcTz72TnnnJMUCoVk//79sz+bnJxMenp6kttuu232Z7fddlvS3t4O2yVJkvzpn/5pYmbJrl27FnOq4ixCeSeagfJONBrlnGgGyjvRDJR3otEo50QzUN6JRqOcE81Aedd8JG+1hLz97W+H+C1veYtlMhn71re+ddrvfPOb37TXvOY11tXVZUEQWDabtd/7vd+zEydO2ODgIGx7+eWXz77lMzMrFAp2/vnn2/79+2d/9tWvftVe+cpXWn9/v4VhOPvv1ltvNTOze++9dylOVZxFKO9EM1DeiUajnBPNQHknmoHyTjQa5ZxoBso70WiUc6IZKO+ah156LCHr1q2DOJPJ2OrVq+3EiROp2//oRz+yW265xczM/uqv/sq+973v2Y9//GP7wAc+YGZmk5OTsP3q1audfeTzedju6NGj9pWvfMWy2Sz8u+iii8zM7Pjx42d+guKsRHknmoHyTjQa5ZxoBso70QyUd6LRKOdEM1DeiUajnBPNQHnXPOTpsYQMDAzYhg0bZuMwDO3EiROpCWhm9vnPf96y2ax99atftUKhMPvzL33pS2fcht7eXrv00kvtj/7oj1I/7+/vP+N9i7MT5Z1oBso70WiUc6IZKO9EM1DeiUajnBPNQHknGo1yTjQD5V3z0EuPJeQf/uEf7KqrrpqNv/CFL1gYhrZz587U7T3Ps0wmY0EQzP5scnLS/u7v/u6M2/CGN7zB7rzzTtu2bZutWrXqjPcjXjgo70QzUN6JRqOcE81AeSeagfJONBrlnGgGyjvRaJRzohko75qHXnosIV/84hctk8nYzTffbLt27bIPfvCDdtlll9lb3vKW1O1f//rX28c//nF729veZr/+679uJ06csD/90z+1fD5/xm34gz/4A7vnnnvsuuuus//0n/6T7dixw6ampmzfvn1255132l/8xV/Yxo0bz3j/4uxDeSeagfJONBrlnGgGyjvRDJR3otEo50QzUN6JRqOcE81Aedc89NJjCfniF79od9xxh33qU58yz/PsjW98o33iE5+wXC6Xuv2rXvUq+9u//Vv74z/+Y3vjG99oGzZssHe+8522du1ae8c73nFGbVi/fr098MAD9t//+3+3P/mTP7Hnn3/eOjo6bOvWrfa6173uRfVG78WC8k40A+WdaDTKOdEMlHeiGSjvRKNRzolmoLwTjUY5J5qB8q55eEmSJM1uxAudO+64wz70oQ/ZsWPHrLe3t9nNES8SlHeiGSjvRKNRzolmoLwTzUB5JxqNck40A+WdaDTKOdEMlHfNx292A4QQQgghhBBCCCGEEEIIIZYCvfQQQgghhBBCCCGEEEIIIcSKQPJWQgghhBBCCCGEEEIIIYRYEegvPYQQQgghhBBCCCGEEEIIsSLQSw8hhBBCCCGEEEIIIYQQQqwIlu2lxyc/+UnbunWrFQoFu+qqq+y+++5brkMJYWbKOdEclHeiGSjvRKNRzolmoLwTzUB5JxqNck40A+WdaDTKOdFoMsux03/8x3+022+/3T75yU/a9ddfb3/5l39pt956q+3evds2b95c87txHNvhw4eto6PDPM9bjuaJFxBJktjY2Jj19/eb75/+Hd1ics5MeSdOMd+cM1PeiaWjUXmnnBNz0RwrGo3mWNEMNMeKZqA5VjQa1TrRDFTrRKNZSK2zZBl4+ctfnrzrXe+Cn11wwQXJ+973vrrfPXjwYGJm+qd/8O/gwYPLlnPKO/1L+1cv55R3+rcc/5Y775Rz+pf2T3Os/jX6n+ZY/WvGP82x+teMf5pj9a/R/1Tr9K8Z/1Tr9K/R/+ZT65b8Lz3K5bI9+OCD9r73vQ9+fsstt9j999/vbF8qlaxUKs3GSZKYmdmrb/qJZTIdZmb2k8e+C9/pKD8P8RV9bRAfKVzoHCfMnQNx96oCxKt7KxC/5rV5iK9/GcarenMQR14JYj9y3zZlMiFu4ye0RUAxf85vM7O0OX0/5eXnC+2F6OjoqJ1zzjnW0dFx2m0WmnNmp887u/les2z79P9zZwU0XDy8xqkvGAO6JrRRnKHPs3wN+Rg+fUxtnM8Fdr7CDce8SzgNa+/uVF/O3YZ+lPAxYj5mhN/nzyP83MIY45g+NzMvnMRNKrhNpvqdpDJh0d2vrplzZkubd7/1/7vf8i3TeVeexDw7cvgYxJ0d7RCPT4w7x0lCzhOsV0GAV61cnoLYp7x1YlJGjI3638wi6t9sDutVkmDNbWvHNnZ24nkODY3h92MaK2l56odWa6Nikc7bx33mclj3wwruL07wvDmvzcw6O1ohzlA/tLRO92Vpctz+/L9cs+R5d7qc+8cvf9Fa26bnzhzNPYU85ocX4PXmfjEzy2Xx+vlU2/IZ/DxLOZWhzwMf+8mtfW7BDageejTH+vR54HNNp5BqI9e6OEUhNKGtuBxW6AcVypkoxByLIsyxkGphhWuhmZWpfka0TXlOODE2ZrdccWnD5tife9+fWrbQYmZmPs1X/BtbHKf9Fg9Pec53eA718JrX+y0xp008p5tZEPAx6vy2UYa2p7ESUB3ifgp4LWJm+RZc07a2Yv3kYzjZTHnJuZ+ntUlfl1sD1q3qgrgY4JiequZdcWzUfvGK2us6s6XNu7/+t73W2tZpZin9G3De1WzW9H55ycFrFNqedxnRGiWmcc7b+ykLel7/ebRNQNecz8u5BeGFmpUxTOiew8xiuteJIl7s0X0PH9L4HKiNPP7S+oGOGVO9C8PptUaxOGb/4a07GjbHfuov/95aWqbn/3w+73xnLlNTuD5NzK3rvE6OYsoZun6VCq6xeG3OdSubxes7n9+g5VoXU17znMzHKJVwDcbHTFLmWF6nOeeVwfqYyXHfYxtLZbwWher8NNtmp3aa5WgemLnOaRSLE/aLb/uZhs2xH/yf37RC9X4ipOGYcdZItNOUa+6MQd4HzalZWn+s7cK+KWTx+2OTmKdTkXs/ESaUZ16d2pb2AKQGXuoNRL3vILz+X/g+3T0ynOu8vvSq/TJZHLff/uWXNqzWCTGXRtW6//3VR6y1bfpYfO/lFDef1/4pB6r7wIvX4j7FdF/L95y0vfv8zcx5rMePEWsv3d045rU9fe60wJyFGu8zooklTmrf8yTOMyKulS7OvddpavrE+Kj93I1b6tY6s2WQtzp+/LhFUWR9fX3w876+PhsYGHC2/8hHPmIf+tCH3IZlOixbfenh+zhhBh7e3GUDXKBkAnwJMv1D7IxsFr+Ty+HivrUVj9HRgYumzk699GgktRbfC805s9PnnWXbzau+9Eiclx58Q8AP4VIOxA9IuODRYjrJclGu/aCvES896q3bnCPO46WHs9OYj8kvPahg8oM+v87ndmoxOBsbH4PiOn25lHmXb2m3fEtHtV10A5HHm+FcAR9m5fi5vpnF/BCOX3pk6MaSblp44nZeevCNLj8BMrPQx/7M5Wu/9MgVsI0z/TH7+SS/KFv8S48wwvN2XnrQgwo/qPPSIyX3cwWcv7J5Pk9eBC1t3p0u51rb2qxt5qUHjY2WPLVpPi89cpxj2Lf1Xnpks/zSg16ivEhfeoRL8NIjDPmlR0qNbtAcmy20WG5JX3rU+Y7ziwOLe+nBtdBsKV561Km/83jpUWjBNW2hjV960Hkv8qVHa7tbA9o7OnEf9NIjoFRt5Bzb2tZpre0voJcetAPOAbOFv/Tg5eJyvPQIubbEtV968MPJ5XzpMbt9g+bYlpZWa22dnmP5pQePYb6W/Is/Zgt/6ZHJ4PVzX3rwHHwGLz34F7mo7/kXbHLZOr/MwC890h4K1XnpkXFeeuD9PK/juKa3tPBLD7fe8kuP1tbTv/SYoVFzbKGl3Qqty/fSw71mtV96tLZh37TQS4/Ip/HJv8RmS/DSo04qe2fw8N55RUHjb9EvPVLaNN+XHqfixtQ6IebSqFrX2tZhbe3TzwpiZ8zz24LFv/Tg81r0S4+UexpnnbbIlx68Nl2Wlx5xA156LPBeLY1l8fRIO3iSJKkNev/732/vfe97Z+PR0VHbtGmT3XdvaJ43vTAJK4/Bd9YGd0P82pdfD3F83kbnOJ/+Lj44/PaDuAgq0eD41rdw+zf99CjEr7wZbyi3XYCT+oZ+d8HawYODByT/4Q29SHFXJ7Q9PzjmkTG9k5Sfnb3U1Webw3xzzuz0eWeBN/3PLOUtce04CdxjOb8VSg87+KWH83m937BxquPCr7lzM13vgU0dkpTf0jHn5syr9bFZzP2AH7u/DzOPBS7fsNMxZhaTaTdZtViKvFvdt8YK1d9CPbh3CL6z58AhiLva8GXA+GjROU5Y5gdW+CK4vZN+862Cv21XoBcQ/BcR/NB7ZBTro5n7QmD9ujUQZ3JYrzq6sI2d3asg3rcfF0NHB05CnPbC4fwdW/CYAbb7+AncBz+sTBLsW/6N+Un67cxM4D4UMu8EhDsuWg/xlvP6zcxsasL9ai0WO8dOhIkl1YVLnhYkMdW2Au024wzYlAcy9KA98vBBAy8G+WGJxy8+eZHkuW2IY7o55xcQxnWH5ljCrY1cf90H4B6tFjkrM85NKsb8Li+gPXDspy3SnXpLfTUnznnuWuV0LEWti6PQ4qiaC/xSqc58l7Y8d14w8NzC+6j7cpsf8FCcsrh3mslPk/kmo85fLsZ8TWkdkcT4kMjMrEh/hZajl4w5zkuudc7Luog+xxzac9R92350jH7Ddz3W8Gz1Qe/s9Z8nS5F3YVixsPqb70mA55IxfoiK+4xT6h1Tbxuen0J6ucmf8/uHIO3muN4DY5qDne0pJzIePSSP6K8ro5RbRg/nbe4Hzm1+WcS/XFRvxDv3TWYpL2tojFfHI78Er8di59gg8GcfcvBfXXDMLyz4QYWZ+5vk/FcVzoPfOvnBLwf4gU3amor3yTH/5Qb/0TXnsfsQl9YRKb9Qw/MZnxf/FU2WHqLzw7GA7rtiXnv47rqOf8mD835u3/IcUosluY/NZKb/mZmX1H7TyTUg9Umgm1gQBh69LKOvDxXxmGP8QI32F6W0wbkv8+s83K9TV5h695hm9f+qwX3JscB6M4+XHnWfcM78MqyXci9S69iLrHVCLJSlqHWZTMYymelcd36Xi2oE/5Ja2niuO2J5bUgHDWltG9FzwQzdP/AcbGbmZ2s/mk9ZGtAOKKxTVvi5RirOLyPUnhOcJtX75eqUnq/3EiOszuv8Yr8WS/7So7e314IgcN7WDQ4OOm/1zKZ/+4V/A0aIhbDQnDNT3onFo7wTzUBzrGg0qnWiGSjvRDPQHCsajWqdaAaqdaLRqNaJZrG4X+lOIZfL2VVXXWX33HMP/Pyee+6x6667bqkPJ4RyTjQF5Z1oBso70WiUc6IZKO9EM1DeiUajnBPNQHknGo1yTjSLZZG3eu9732u/9Eu/ZC996Uvt2muvtf/1v/6XHThwwN71rnctx+GEUM6JpqC8E81AeScajXJONAPlnWgGyjvRaJRzohko70SjUc6JZrAsLz3e+ta32okTJ+wP/uAP7MiRI3bxxRfbnXfeaeecc8689xEmOfNsWjMz8Ufgs2LwAMSHDTXub12zxdlf51t6IP7El/HzHz64GuIDB1Gn9i//ehDir96Jf5Z1+WW9EF91launeMXl6CNy2SX4hzZr19If3gS4PUueObqmPumTx2mXl43qUjY5i6inoTnDUuScmZn53il9UdYOrmNKzn4c0z9jzw4yluTPSf/PMWHlY9IFjOahi1dXB9rZQ81DOvqAThvNXNMO/g79wPEFcfxqSDfaiV3dZzaZM+90esjz10Jdqrw7+PQRyxem9bPHRrBd2/pRL3V8As0fWtd0OftjY0HfMSrH7fvasD4WyGz7+Inh9IZX6erodn4Wkk5kPkc6wJT7JfINObT/ILaJjHR7OrHuRyleMkXyGpnR/pyhuwNrLGvqsqdAhXTzO9txf+3trpnl5CSe18QIXr/9zxw2M7PS5Ljz3dOxJHNslMyazvLYYB1uIwsB1h83M/MD/FneMWbF7VmP3B2zpPtPnldJmKJxz4bS7H/BtY51SJ3axvrJdLzU+am2ZwTrqwaOBwV7eCA8q6cv4lg3lvphjj9DeZ5/77tUtc5LYvNmdNpZr509qxz/jBTfBDYnpB5zDUp5H7XN8ryEcyTNu4G/Q23gxGKLFfarYX8HzuO0a0bfKbOuPZn5utM0zaHcSMcQ151ji1PogXRsEPfR0Tm9ri5ONLbWmZkFnj/rJ+CseeqZkKeZiKfoUdeCdZMd74uEx2j9/fM+2BTTTZN6HkVUe2h8pnnJxFSnE+eoPDZq55XTxKR2G9N2wvLRMzWWTbVrsRR5VwkrVgmnfVIcc/WIPV04P+r73riy2lzLaB24AI/E6TakeHfV8aaJaR3m030Rf5+Pwebsvu/OcNkcrrvq+oKQkX2WPOlYV90Zq6Gb9yVK1EIB6+vcfaStTdNYsloX+LP+LE5dcdYjNFfNwzuI44zH1wy/z1r6vHRz7k/mYabu1fMDq+PzWNvJK516z0vYQ4nnUKdNzg6cHdbdyMn96to8U5m/0P2SPT+Z5Ux6l1mcP4o4u1my+wlvzrisMw/wHBux35EtPMucx0p8g8feljS3lCuun0aGfpbN8vOb2r6D/HzHcTzj6ShtWUD75O84j+hintf53pnOM/U+CmGPMb6/D6vXN5znc2KzZTQyf/e7323vfve7l2v3Qjgo50QzUN6JZqC8E41GOSeagfJONAPlnWg0yjnRDJR3otEo50SjWXJPDyGEEEIIIYQQQgghhBBCiGaglx5CCCGEEEIIIYQQQgghhFgRLJu81WJJrMXMpvXRy4YabwdJEPLvHnoY4sya8539vf561H9/x8+hVtjwGOqXPfE0enSUy+sh3rsXddr378Hvf/tuV2Ns+3n4nWuuRf3j17y2HeIrr0dfke5V2OaAxOQyLGSboldXT1kxTbu4mTS8PYFvXlU3jrVNE9KTYz14j/05zCyhn/E2XpbFTTF01MdZq5i1+9K0p6mdgaPZSpryrCfOusF1tKxTpfpibChrnzrSwaQzyzLQHvtx8Dmk9EPCXh0Jaw3H1f/O39NjqYgqZYuCae3nVvKJaOlsgbjHRz3iNI1r1shNWBe7jvYlq0Cub0PfEMfXJUVrnz0bWOLRo2T3Pc67MsSdpMPcvRrrZZrmeZSgFjPXky7qyzipnVdGHgP8eZS4OtwdRt5M5DlQLk8fs5Ki7bmcRGFsUVjNefLj8CJs4xTrIac1tULa3JQTOR7zzpilz+naZcmXIpei9c1yqk5BdVKk9vzCKXVG01GdseZqUSM+9ZtT+1L8VfhnIe90zvUuBwtVsV0kSTxb0J0jx5wT7HWRcgH4Z6xr7/Q365PX9jngNkTzGKaOonUd/XGfzqGep0TiOL24uTlVRO+gDHkitbVh/XT8Ieq1kTV6zSyhfYyPoHfHxOh0PLUAT4+lwvO82XNyNP9rW/c4a57pffAahv0v2MSItPWd/nTbi/tLaQMlY2lyGI9BNTjwyQshwLgtjz4w+Rj9FMdG8J7FzCzbuhZiL4d5FXh4DJ9z1zF7ogPwaafUAJ/WQI6WfvUrvMZYbiYnJ2wmmzg/XL8M/rx+oeG0jJ0cqeNXVCdmv460bdy6wS2ovU/WOOfYy7q1rl5fum2i+stzMm3PnhJp0z7XkBJ5KM3tp1IJ7/2Xm2xglqt2m0d1J+NcoPp+UWzfxNs41mi1p9S695QB3+iapdgR1b5Pda5ZnR+w/9uZUM8Dro6lkutBwHNI6jH5GNM/CFK9j5abmRPi+6Ta6580eH2RWGPvj8QLgzhOZv0jnHUd+0ZSHqY+qkq7x4B9IHz7wOs6j55l8fZpo7TMPiC0EXt6ZMg3K1NnvHlB7TaamVXYa4vaELHnHMfOPcvC61HsHJRrwPQx5mmZZWb6Sw8hhBBCCCGEEEIIIYQQQqwQ9NJDCCGEEEIIIYQQQgghhBArAr30EEIIIYQQQgghhBBCCCHEiuAs9vQIbFb73L8APitbP8RPnzgA8V/edaezP78V9eFvfCme+muvG4P42CBqh50c2gpx6KFOO0uKjRTLxvzkUTzmk0+jZvm3v4t6ude9EjVCb7wJj3nt9aj1v3YNaZ6nCK97CbYhjuvoYtbTNj27LEAWjZ/JmJep9hHrwJIfB3t8WIqnh1/P04NMOXgXrTmMWQd/giR3k4x7QVj7PuB2+5gnXBRCyhnObPbbyKV4K7CubIV1D+OQYtypTz4+rB8Ys4Zhiv41qyc6fg0zGqJx48viORess0Jb53QzfNZGxG0T8pUojrl6wScHUYu7kMPaEZAGZDZL17iCtam1rRXi8Umsl37GrTVt7XjMQgvWK4+0vYtjZYrxvCJskkWUM9mC+w4/oPOenMCdRJTM7e044FjL2COvFI+uVWc3+3eYeQGeB+tnetXrOTUx6nx3WfHiUwY8lFMWkkY2dUSY8vsSFZ4EQ9bVptjJc9IxpRyNSAvcT7PeYe1T+tgZ806ZqK1PniIwn9II2qKOXw6HLDvvsbZxTD41KbrPGZ7X2W9gjj5yucFayVEUWVjVZnX0cFkcnH0PUrWg03VeZyNHt54TtY7+7XyMXBw/htq+LXyerDXsOXMV799tAutmRyHmSWkCa3ZrAf2MggzWPscLhY7Ha0czM4/EdVmff0ZrvzKFa9tGw3WA+9vZPmVNw75hHtVIV8PYceupeYzE48Wd669QKeE9w7Fj+yGeGDkBcXkKc6JcxnXC5Iln8fPRAYjHJl3x5DWbLoJ41Sq8P2tp7Ya40NIJcWcnfr6mdw3EQZY8zAJ3fca5z3YzM9ciYY3oZaZSKVumej/heL44OcVeTfXrjjsGuXYtrLY5mugpBkZO7arjmeTYorFWeB1PD/PdvLcKrz/q+GbR5xGtb3lvF12COT087K7Njh076bZrDtnsqQVKNtNYn8CMP/3PLEWDnv052NsixU+DfSAdHyxajPEu2LODj8D7c73ZFu7ZUffzetunkTIP4Mech9yG2nOqc7VSfDnYc5PnmZl7FMfjtYHwPY5jdVKvZkz/kL60FC0TK40ojGZ9opzZivPQ4/Hp5h17VTi7pJifPTlbOON14fcX/IyN/TIr5F3iVcgjiZ4zZsknyw/cNlQiXgtQm+r5YzrDl9ca9etTmk/rXHxvxhty/qYe+ksPIYQQQgghhBBCCCGEEEKsCPTSQwghhBBCCCGEEEIIIYQQKwK99BBCCCGEEEIIIYQQQgghxIpALz2EEEIIIYQQQgghhBBCCLEiOGuNzD0vMq9qbOrFm+EzP16HG/toZL5/GM33zMz+7Cv/BnEuQGPe6zdcDPGeq9A87+7v9EEcTqEpb0Jm0GnWoImh2dd4BQ39HntyAuJn96DZzDe+huaP112PxpSveU0HxNe/wjXVXb8ejWHyudrvvdhIxvHNcwyp6pv0sDfN2WSOnvgZs6pRokfmPh4Z67JJueMQZ2Y+mYYHPhuX4zFaJ9FIsuPQ9yDuXtsD8djaKzAOVjttCCYx76Z8MpgOjkK8I94L8WSwEeLjeczbaApNhMpD5DhtZhNkpp60r4I4ZlNqMi32EjRZjcj0uMwGcVGaEx5dPzJ/mmliEqeP3+VkyspmSXV8s5E6nbuV8fM9Txx39vfD+34C8bmbtkA8Oo61Zs2abogPPI81dHUvfh4b1qKt521w2lBsx2vYv6kN4oDGxvN70HR198NoyloqssElhtsvXO+04ZxtaIq657HDEB/ah2aUV155AcR7D+zDNhfwWnT1YM294OJznDa0dLJJMZllV/MwjFIMO5eRKAktqprj+gkZbdLwich8tJxicJqh65lh81Cq+yEZmQXGZplkvpbHOTeTYg7KhqEBm6HHbKyMcUAm19wG9/dE0mf6udTzqatndO6YLJO5t8cud2ZmCRm10jZzr02GXX+XmUqlMjtXsoGpa5iK/Z+6nmCDYJ8NgWubsCZx7c+5DXGaZx4bjvq8DqqT65xXMbsAsougu3RPgtpruRKZUE9O4BzQ3u6uX2D/HKd1BP+Mr021biQp9WPZ8fzZNUBANTguT0E8PoxzURy5a5rEw2vAhttBltY8lCMZ+pxrbkA1OUgxe8234/zTdt5l1Eg+BJ7nif0/hvjeXV+H+OTAIMSbL3i504bLrtwJse/jPG9U57luFwp4L5bN4TllHJNktwY4cyqbvldrbKph7jLieWZedW2ay9W+3a5UahsUm7km4K6baG2D77r7I+Zjslpvn+Uy1WPavp6ReeKlrYtqG7UyCc1/Hn2/pQXXdeedi88cnntun7PPQ4dwjZzL4T4qc8zSK6FbP5aTNS2xtbZO92OZUmCCDWp5fkzJGZqWzSNzec/IGJfnca5tjnF5/ecGrvF4bWdy3kP9XK7vlF13i3rPRxZ4hLTtPV4Oco2vbhBkmuf8zXW2d/VaiPv78X6xVCo6+3j6mScgruNpLF6keJ43Wz8ck3CaFxKaHxNLeWa3wL8F4Fzn9YlPa5P51Dr3HpLbROtqug/lW8KY7h94KGVSTMVjNh6vY0xerzg6RubzWFrUG/Kz984LKA76Sw8hhBBCCCGEEEIIIYQQQqwI9NJDCCGEEEIIIYQQQgghhBArAr30EEIIIYQQQgghhBBCCCHEiuCs9fTIF8rmeWUzMwuLqAfoeS+BOIp/BLEfuHrB+4+i/uaffw09Pt53C/oUvOoK9D14dhS9FJ76Pmm3B6gpFqZIFsc+6RZ6pFdN+nKTJdQIfeYZ1Mrdtwc1mf/9TtTZvOQq1OM1M7vx1ag7/NqbuyDevg1TorWVtOVYl5j2n7Bmeko/JAGel1dm74xTgnRJVFtzdqnxg2BWB5Auj+Pp4cQpGnVBwNqzGOcCPL+chz4tQ89+F+KJR56BeNW6bRBfdM4lThtWXYI6zKOtqFe7IR6B+NLoOYjXrUEd6BJppj/18NMQf+k5911q7iWvhXjCyBckwfFWoV0UCzRWeIBV0GMia64OcEw6s+z7MaMRm7CeegPwbc4baNZvJPHDiPQLKyleEKUKagizduX4CPZXS65Cn+M+MwF5BNDAP3IQc8jMLKnW7xlWrUK/mcibhPjYMdRRL9M5VEI8bz+D/ZLJkveJmbW1t0MckK52SF4yhVbMw7716OW058BBiA8fPQLx5nPJb8rMWjvRi8JjUd6UXG0IcWbWPyZ0Ur6er4SrocmluhKTFwJdv3KIdaU4xZ4gmD+DY9hPraShb2aWpZpcoOvN+qmttP3GPpznMznWX+Uj1tdjXSzcZtbLjlOO5yWsXUvbOOZcjSMMI/OqazTHhoI1eJ08S9P6rq2R6+iL14kT6rs4nofONuv6sh8YX7O4dhuZKCJPkJQ1LmsJs+Y590syNIRxwmsVuhbUD3GKlwxfL47DqlfX1BTOP40gSWJH23+GCnmIjYzhOiwkzw8zMy/E+jQ1gd+ZKI5DnKX56vnn0YswrOD+zulD3fNKjOt9M7PDx/G+JjFcz6/txXun3lV4/scOPwbx2MnnIW5pwXuObM71UTp0CL23entxzmwjL6bJcezrkO5zkgr1G83raWOFvfI4zuWm5wqfvT6WGd+f64dQe2yw/1+Y4gPBHlR1j79Qg0Se4M5ASL+eR5Vre7Bw3xH+GeeEq5PO9+fYt3196P3G/RCmeBCVy1jDuD5OJqfWt5NF17NgOdnaa9bePn0OxRKOhWOjOAbG6NziIMV/hJ9VeHmKaXO/3vWh7dmTJ+Vm2tHCd8pA7bUCr7vdtKv/rKHeaHKO4Wjz196Dx35tKdvw0o3PY2bpwZajjaRvLd4HveX/8zaI161D/8UTJ485+/jkp9BbtFgsO9sIkXiexdViUH9u4fGY4l/k3OvWPr7HPpA8hut5OqbZz3p8/+bVjH3avjI5SgehNragb9qUues6vmdx+rK2jaGD47dyBregzj5mGyFPDyGEEEIIIYQQQgghhBBCvMjQSw8hhBBCCCGEEEIIIYQQQqwI9NJDCCGEEEIIIYQQQgghhBArgrPW02PtWn9WB/LZZ1fBZ15wI8SJ/SvEcejq75J0tz19APV0/+a+OyF+L1oQ2FuuQW3c//ks6sweO44ahezPMQ3/jDSTozp6kKRTW0lQv/fIIGpxHrnL1bj/5rdQW/Szf4Ga9De9AlPihhvRe6F3HX6+fRtqwW3aiHG2gLr9ZmZl0qrNe6x5H8/5/4Vp2C6WIOOZV9VeZk8P9hDgz9NeIZIstmVoxFVIl354LfpvdL+K/GyeuQvi4499BeJ49586bTj0SC/E/Ve8CuIrr74W4nN68ETOX4d+Db0tqAlbfPBxiNevRs8dM7OhVZiLFfLkmCSTCJ90ZguG+rkhdWRMmoSOLqOZkcys+ay7XhVXTIIF6iAvAUHsWxBXdSlJIzImbwwvh0m1fjOOUTOza3deDHFXezfEG7ah10VrC3pZbLkQa257J2pAjo2jZmSc4kuRa8H6FLTi52GI59nTj/rhPWuxzQFd41IJ63xrpzsAJ0PUB+/fhp4N7b143m3rMU+zq7EfejbiORWL2Ib2djpJc3V6zRpb005HKYzNr14D9lZI6Ad+THGK11JAA2x0dBiPRxrYLHbKmqAtVDy/9d0fQNyzCq+Fmdn1118DcT7BOtGSx3rbWsCY6wilqKvfmmrwUPt3SVyN19oizexD4NHnadqovFZwj3iqEZk62y41QeBbUM0v7j9H+5tVreej9c0xb18ndravd73MzQtHqNe5puzTVLsmsM9ImjeF7+iu19ylsVR+Lo9rNfZvcPWSUzw9aN72Tvd7VWfgFbBY4iSe9QJg1Xo/h2vQvs3nQZzal+QHNUH1LqL5qSXLng0Y93Z3Q9yexeu5+2msf2ZmQYBrgwt2bIU4KWHNPbL/hxgfegrbRJ4R3T3YpuMn0XfLzOxE8UGIC3SeOdL/nyhiv207l/rauJ+wTf396HViZpandXTGx9xdt67fzMyiIvquLDdRFFtUnSsTGuOske34HKQkHddDx1eHBnUlxQ9jLk69dXyB3HGaoXm5Xpvq6qyfUS2o7Y/i9CXV2ySP57BhI3oQPP0Meic+8cgTbgto3gy5hs9pU5r/0XIyUPSsrdoJpQr1VRbXvGvz5NOZc/2WKtS/pZDOnTo89tijgzXqmXn4ZtFUUse2pe785y4t6uwwdRumjpcaw22u56VnZjGvJcjkY2YIN/421rOZTu3qxLU5e3wEdL+/dg36QJmZdXbyvdaos40QYZJYeLo5hO+dyJM4zfPKrQK1x7Bvte9ZnDmVbyjSagr773ET6P68NInrmuefQa+2ni58frN2y/kQlwP3WTH7Z3DP1D0N9ixjXxLHP8xpQgrUBpu5j5z/32/oLz2EEEIIIYQQQgghhBBCCLEi0EsPIYQQQgghhBBCCCGEEEKsCPTSQwghhBBCCCGEEEIIIYQQK4Kz1tPjvPMqls1O69U+S/4Zvt0AcRS/DGLP7nf2x3r+Aekf37/3UYiv+n43xD99JWrg73416mL+4/9F7Xcro3a8mVmGJD89Q38N1sGMEtS4TxLWRCf95AAvp0daumZmYQm1bp99FjXoD+5FteN/+gLGLa2oU7x5M8Zv/Fnc/394x2qnDWvX03nHQxB7czw+EvIzWG58P5nV/WPtPZY+9wLSrEsZTRnahj09WD+1gmllkx1bIF615s0Qt56LWpjhM+gBYmbW9Rzq+w3/CLWh//zBb0J86TbUhX7FZedCPHAcPT7uehh1nrObXM3lTZPo+7GhA8fLSIjXOabLXglx+wEfNUJPZlD/M0nc3Pcj7Gv/dOLuTXgVHHuBxdWalBhpIrOPQIBxXz/qNZqZrV2DP4vZRyfXRjGedBBwMuPn5RC/X4pcXcqIamxMoo1tHib7eZ2bIGavAtbOZM3IOE7RxadmdXaR54ajBcla0ZhHLM0cBFjnHb1qM4tJ6zlgvc7ZRjZWhHe8UrGoPD3QsqQRWvBZm5hj1wciTjDHcgWctzs7MGdayDMgl8O+62zDazUyhHVpdBjnETOzy3Zsw3Y6c25t/4eIrl+ZPAoyNCfEKbXC0Vh2tqF5hfTGWcc5IV12j/bvmDOYWUy+MTFtMzcHOR+XmziOTo3VOn4cAY1P9u8wM6cO8D58xziExWhpd9RX3N3u9XR3wlXAS2oLkjveJTX3buZ77mKD+4bbwJ8XyM8ml8XxGpAR3tgw+iOxJ5aZWb6AYzqOeC6b8a1yvrrsJEkyW58dXXTqrIjHVEpdTyg3c53oncY1NZzCtfJLXnoTxJ3tOGdXKrgIuqIfa5uZWUBeZ6va8Jjf/fqXIH5q17MQ+7SojTxcP3avvwLiCy69zmlDtoB1fXwE1/MReQp0deA9wYYNGyEeG0Xt9rCM88raNWucNrBno0/XK1Ndz3hxo2vdKR8ZXhs4fhpcx9L0xvl60fwWkA9MV2c3xB3kzcbzQqWMOTc16c6xExMTuM0UegHxSGEPEMatbXV8S1KOwn4pMV3njNEzhA5cW6wl/zi2ktzzwG6nBRtejr557Iczt8aH8xMsXzJGJwMLq7kSU41ob8X+7CQ5944Od4KrUMGeKuP5jFXwO0X2EeH1CM/rdfTi03A9cBa6Pa89nG/UbUM9bxIe88404oz5+n43jhS+x/uYvr4eP/RadhKbOf/RsWH4pEL3ny0tOP6CjNvX/ev7IR4cPIRHc7qqnifL4sdgPU+XNJ8zsbwkyalxxpeH1/7uvcF89u+s5mkfte8/OC09Hq8ppoyunzM2tBLinHtwz5MQDxxAT6oNV1wGcSZm32t68GhujXaofRvlPMDh8VmnW6fbwJ5HjgfS9BznOQbLp0d/6SGEEEIIIYQQQgghhBBCiBWBXnoIIYQQQgghhBBCCCGEEGJFoJceQgghhBBCCCGEEEIIIYRYEZy1nh7nbqtYPj+jA4j6Y7Ghx0BgPwtxZI84+0tsjL4T4ndC1OL78hO4j4vWdUL8xotQl/aJC9dD/AhahEwTd/IPsA0e6wjzDvgHpJccsZYc67aZ+QH5gHgo6FmOUWuR5FpthOKjx1EXevfTJyF+/gj2u5nZr/0aagCfvwN1oNsKp/TZ4qSxKRoEZjPycCybzRrWXqa+pwdbI7C8bcHHPMyxnniEO8j46F0RrLkE4m3tqLdrZvaG66+BuDSBnhz/+r17IH726b0Ql6eOQfyTZ1HbO+wgrem96CFiZjY5jr4fMenIVoz8ANpwPGXWXo9xB2pP50nc2Atdbc1J5/qxR8T058l8BGWXGi+e/mdmXpKlj1j/nepGyR1joyePQByWUCc7H6B2c28P5lVHdzfEa/tQR7utHbcfmcA8NjMbGsdjjE/iNSqSLnBYR4KVNSY9emfvpQ1AR2ufa2yKD0gNWOaSfSxShSlZ2/Is+V2DyVJsSdUfJkM+MTF5doRkXhEm7vXOkp5tnnQ2Oa8DyuuE4hJdqpZuzMGnn3En2alJnKAqEenuk85+NkPnWcF8yGfZJwvjwNz84TQs0z4DaoPrIVFH17l2OL2POvucqx/P2y43c70VWLvWUrxi5sI6+Gauhm6GjLNacrhGKWQwD0M6/0nyl3L3j983M6tUuA4sDFdfvE6cpvfPesWUZ5k8TrqtHehTV2hBXd+IzuknX/8GxJ1rXL+2a259DcRl8mOY8S9in6pGkMTx7FhzPD3qjIE0ryYWHI6pRkYUB+SZksljnpb5EDn8vLU7xcuCcnX/vocgfuhhrJFhhJ4O177iFojXbDgP4o5u1FXv7EIvNTPXt2U92cp5ZJDAeRmH+HnXKsyrgMd8yqXgfeZ4rVAdGn6GFp4NhHOI664zotNyjuB6+K1voT/fbbe9E+ING9Bvb+NG9FPxqN+GTqI/y/TP8B6vUsG1wODgIG4/jPsYG8X1aqmE96khreX9lHrLGt6uV1ftOfbcXszjQoD3vU//6FsQl0fwnM3MYloDJbzWnFMfonhx88NCyQTxnDUd5lGB1sCjJezL4VKalwzNJTnub7xmOfKyrHAu0yECWiOzx4eZq79fz4OjnoeH66tVu43p1PbsqOczUXeIp3zu+oSk+4IEQf36sVyUSuTz4/jcYc6l2f709+Pc89DDtA9ai0fsjed4CvBanervPHwBOIcavXYWLoFvFlSf2Tj+UFQ02C8qzbaC6wD7SvCgdH1DeGue52s/z5luJ91vV3COPPjsLoiHDuMzuyyZ4rZlqVFT+DzI8Us1s1wL+ujG7MlB27tnwR4eNB7n49vkzBtcYBduxHt2PH0RQgghhBBCCCGEEEIIIYRYJHrpIYQQQgghhBBCCCGEEEKIFcGCX3p85zvfsTe+8Y3W399vnufZl770Jfg8SRK74447rL+/31paWmznzp22a9eu9J0JMU/e+ta3KudEQ/ne976nWicajmqdaAbKO9FoNMeKZqBaJ5qB8k40Gs2xohmo1omzkQUbJkxMTNhll11m//E//kf7uZ/7Oefzj33sY/bxj3/cPvOZz9j5559vf/iHf2g333yzPfXUU9bR0ZGyx3TO2ZK1QmFGyxO1+KIEtfeyHuoIx8ldzv4i+3eIfdIK88k7Yd84aqh95nHUyr2dNEF/9koUsj08sMNpw4lB1FBOjLT7HY0zPO8kZs1BvnwUJ+47rThiXUMWyiQt3Iyr3Q6fx3hNx4t4Tv/7s67HxLOPo8brW/8DtvvWnzqlJTc2Nv3ZxRdfbO985zuXNefMprWBZ7we2MPD8fSgy5GmS0mS8ZYhH5A4hxrDYQ6/kKfrkSEfilzHFojLU6jLbWb2vRzq0U510jF23ghxcOhhiJ8Y+AnE7Vdthvi8c1EH+qkR95p7fRfhD0iwP0ioH7KosTuRR33BSQ/9cfJl9hNw21DxcZ9G19OqngJJ9efFYrEhtc7MzItj86r6oGwp4pFuaAtJHPeud4+15kLsn1UdeM3bC+wVQ/qLVCcylNz5AurkT5Vd3eXJMm4zTrLGg8NYW44PlXD7IupSlkg7OqR6GKdoRDr+GU6RXazu7dL7vzSq1lWi0IJouk9ZzzbkacKji5eiF5wxHMM+zUesfxvF5MMTkcdLhcZ0tgXipw4cddrw+e8/A/HhcdznltVYH7t8PMZDzwxAvHYV1oyfvw7rWGe7qxH//HH0TPre0+ivs/MC9Cs6bx3647BfSkL9xN4padrNEa0dYprG53pphFWt40blnSXJrJg166CHIZ07afI6fidmFpEZUBBgroYVqiNZrFWsux1R/7KeeTQvHefa2s+OvjjBWsSOlnSKFxHvMSDd7BydN3/OpXB8FHV/e7qxnrd20nxqZvlCK8Xp+sgzGsyNnGMtSqb/mZnRNWZx9YA9AVJ256Yim1CxbwheswoNSkdy3hnX7gLTI8+7nrXor/by698E8eouvE/Z8pKLIQ5ZOD+k3K+4eee2qrbmtXsPwl4Xp/cfMjML0hbazh55Hx4cqmG1rgb1PD3ms7J45hma7w4fgjiXxzF/7Dj6bXSvIi+3drxHXb0a191mZj093RAXCjgHVihH2LPj6AC2YeAozrkjI1h3RkbRQ9DMbLKIa8VSCWPuPPZ8Oa8PvUwisr985JvfgXjHjk1OG4p0/ZIaNX1Gz7xReRdmfAur94pJSOtwGtMJ3ZOmec6x5nsQ4RzbQkOSvdAy9H2uABlnfksz7sHQHS+s/1577e/o/9eZk1N24fq40Lxc3+OD9u/4dbjbONr4XC+rh5h5VNDQObbK1BSOxymqAa5Hltsv27bhXLZp0zkQHzhwkL7BfcfrNPZewKRN9e1i39yUZ2oinYY9s/NOPTPh8Rk4JaC+pwevDX3ykWBPDp/WaXxM9sLg5zuZtOcWEY6fPc/shvjo/qchbs1i3Rki395D+5/D7bvwGWxbD96Tmpn1rMf7bcvgPMLnxZ6sTm1kP455PHvxMjxm03dRcR8/nZYFv/S49dZb7dZbb039LEkS+8QnPmEf+MAH7M1vfrOZmX32s5+1vr4++9znPme33XbbQg8nhJmZffCDH7TOTjaCV86J5ePmm29OnbDNlHdi+VCtE81AeScajeZY0QxU60QzUN6JRqM5VjQD1TpxNrKkry337t1rAwMDdsstt8z+LJ/P20033WT3339/6ndKpZKNjo7CPyHmy5nknJnyTiwO5Z1oNMo50QyUd6IZKO9Eo1HOiWagvBPNQM/sRKNRrRPNZElfegwMTP+Zal9fH/y8r69v9jPmIx/5iHV1dc3+27TJ/TNSIU7HmeScmfJOLA7lnWg0yjnRDJR3ohko70SjUc6JZqC8E81Az+xEo1GtE81kwfJW84F105IkOa2G8fvf/35773vfOxuPjo7apk2bbG1f3lpbp/W3M6zRHKEWbuyhx0DGf6tznDBGTbTIUGfbEtIs91Fv7CcHj0F89zOPQ/zGa3EA3nDuaqcNd57AQT5lpIuZGcM2h6g/XqmQvmrC/g3z0ExjTUnWWWNNytBRvqQjkFh4gN+fLLkp9p3vopbiswfQc2JwjlT71BT2yelYSM6ZnT7vvMA3r6oZ7Ae1tdPZryNIEefL0D4y5JGSoZ3wPrP0/WwWj5HJ4vUYinucNoxlMG+8LGrw5jfjNcr1XQLx+tIb8fMABfSKk3iNWjrdd6kt67ZCnISk709pVCZTgYS1pFmjnlM9cnWfswlqu8fkGZBUx3zs19canGGp8i7wMhZ409ch8CfhO91deC7bNuGfjPb3oNaimVlXAduQpXNi/wtuM/cexyHpcoflSWNaKDdzGcyzIML+7ylQXpU5xnMYJ1+YkQmq4WY2QdqylYiuF5/ZPHR9F87S7nOpcq4SlWe9rIqTVKdozu1sR63+OMVAZXQC+3pkdBjiMnl2ZAPMhzVdqCc+mpyAeM9hrDPf3uV6euzOPQJx1N4Nsc9+GKRvfYy0waP4MMT3H8A2BSzgamb7juJvIJ2cwrHypZ+gHuuvkE/IzZeidjFrv09M4lgbHSs6bcjksa/XtGONaG85FQcsMnsalirv5lh6OLrL7GURUY3YtNZdV/V0YT08MoR5cnwY9WtLIea272Od4SvKbUrTG+d+qOfJUc/TI11fes7+2Y/KHAsJq+cxEZN/ymQF+23kGGrvt7Wgxm++rc1pQ3ECvbQy5Fk2cz3LJZyLa7F0c6w/69XBy964jsfHvEaIo9/O2uu03qDcdschzcnswWJmCXl65FrQo+HKa2/C7UPcvkTLqoS0+rN0ThlHJ91ppiUklB0v8Hfr2APEPUD9fXDfx9UvOdf5NCxVztVsUx1PjzSPAfY8GhzEMfo7/+2/QhxQnRgawnutiQkc8+wZ2N3Z7bSBiWgt6NHgamvDtcPmc7BfetfgPUuW7k/Y48XM7OQJrOmDg3h/fvQo9sua9Thv9PZifGwI93fowH6Ib3rTq502/OTICfoJ9t3c6+dbY/Mu68eWrfqVxewNROOL8yxN556tfnzH84hzgO5bqXTlKNuzPtalsuP7YxZRXgXU7gzVx5CedcRcT+ma+OwDlNrttZ+f8HrGnVesdkz9xnPG9FfomHRvN3M9s/78cs5saZ7ZzaVcJn/GMfLlwUdh5qUk3ebNWyD+mZ9+E8T79qOnRyFP65M81pF9+/ZA/N3v3QtxS4vrUdbVhfNppYzz44mTXAOW2jNy5bJkz+y8U74b9Xx+2J8j7dbHo/HkDFHHN6S29y/vgOuMH7vPLZ59Bk3dH/3x9yBe3Y1r7+GRYYiPDeLLo0IO66ufweffXb2cx2a5AnqrrF7bD3GFnyVT/XVsQfkAde5xqhvhIdh7tlrDg8CdL07Hkr70WLdu2tx7YGDA1q8/ZYwyODjovNWbIZ/PWz7vPrQTYj6cSc6ZKe/E4lDeiUajnBPNQHknmoHyTjQa5ZxoBso70Qz0zE40GtU60UyWVN5q69attm7dOrvnnntmf1Yul+3ee++16667bikPJYSZKedEc1DeiUajnBPNQHknmoHyTjQa5ZxoBso70QyUd6LRKOdEM1nwX3qMj4/bs88+Oxvv3bvXHn74Yevp6bHNmzfb7bffbh/+8Idt+/bttn37dvvwhz9sra2t9ra3vW1JGy5eXDz66KPW3j4tf6KcE41gfHzc9uw59SexyjvRCFTrRDNQ3olGozlWNAPVOtEMlHei0WiOFc1AtU6cjSz4pccDDzxgr3zlK2fjGY21X/7lX7bPfOYz9ju/8zs2OTlp7373u21oaMiuvvpqu/vuu62jo+N0u0ylc1XGWtumm9dCf9E0ViQ/ADoN33Y6+wu810McJp/F73ioQRiQFmOZPATu2o2an5dtfxLiG85d67ThicO9GB9B/fH1vaiz1t7zKogfQ5k3Syq4P/NIG85L000m/c4Eddh81mkjzfuEdDATH/uNdWu9lD8misn74uDzqMn9t39zShM9jqc1Z2+44YbZny1XzpmZBcEpabqAdEgzpJGZJf3bTIqnB+8jm8H+Iak9y1F3key9ZQLWMcXPW9tRx9LM1cFzdBNZWy+D/ZZvo36MMK+CFtTiX5VSVtgDIqLxxZqwGdY2pXMI6FqE1M8Rd4yZZUlDO/Y5xv8+9NBD9oY3vGH28+XMu9gqFlc9fvwK6qKf278B4vM2opdPIeXv9fgKROSnMEI+ACF5rOQocXMZ1ivG/eeybt7laSNuQ1LAeJJ1gWOMc6QZ2dWGx1zT5bahWMLCPVykeJw8iMqUpzElFuuq09DxHCVLM1a39Bx1y7j68+n/NqrWffPepyyTm86lo0OYDwkVntZO3H8m647xYoI5MlLGOhHy3EPH6FuNdSQiLe/xcWxjYQ36BJmZHSvifLS2A+fE1QXU7Y3I76H43EO4w+2XQvitPcMQV+Ippw0B9U2eDIvu34Pj++mB70L85fvJf4xy7NBJ1GE/eRT3Z2a2ugW/9IoLcT3yssu3zf7/jA9Do/IujiOLq2M7TdcXoJo9VXT7u7tvDcTrt3VDXCzjuVeorhw6hjlw9NgwxOwhZym+AOzhwZrnfsBrBfZncJSDa36epvXNwutevZjWcqOk9z81gv0SkgFEwP1ibj9kM85MNP3d6vzSyDl2rpmMo2PvdDfru6d4qNA1Yo8G9uww1ql35g7MCS+uMzbMLKa5xV1/0yG5jbTeD2i97vExE3exwa2KY9qG6jj7G/B8yDEfMU32mz1anPEycx5xY+fYJElO689Tz+MjSTnRrVu3QPzzP/9miHM5zKHP/+PnIH7ggQcg7lmNfhrnbjkX4vO2bXfawL+N29nZ6WxTiyzNj9yvrtdJmt4/rok3n4NxmW7YPVoaBmXs26d37YW4vQ/7pavf9ZKyQ+gb4tgSzL28Dc67nJ9YvurlEfPgoHsrr979oaVp4/PcQmt9R7ee6ynGFbqnTPMVyVK72sgviu+/JygHIqp17O+2FNZ7fF8UOM9THOOnmrFz7cwsiU9T26rM9G1Q9SZo6Bxbhb3YxifQ0yOXQx+1JHHvm9ra8H7g0ksvh/jlL7sWYp98YUbHhulz3P/69esgvvLKq5w2rF6N437XbnwI98lPfhLiSoWfuS3U02P+PixnO42qdRl/znMw9iala851JcWS0allzueOfx9/Xvua87Pl55550tnmwR/gPeHYMfToqIzhQU8OHYeY/WlODqPPJHvujI6595CFtm6IV69Cb+B8Accnr9vYcynm9fA8PD2ctZPjiVStGym+KKdjwS89du7cWdNk0fM8u+OOO+yOO+5Y6K6FOC0jIyOnXVwr58RycMMNN6jWiYajWieagfJONBrNsaIZqNaJZqC8E41Gc6xoBqp14mxkST09hBBCCCGEEEIIIYQQQgghmoVeegghhBBCCCGEEEIIIYQQYkWglx5CCCGEEEIIIYQQQgghhFgRLNjTo1FkcxnLVV2e/QyblJBJJJn/xIbGlmZmnoeGb56hibgl91FMpitkbnPkOJo+fvFHaBB385Vo8mJmtmk9GpA+c/TreMgA9/lTr78M4qGTz0B88ABevhnjqhniebzTYuPywMg13tCYKfImIfYMr02SsEEnx2YeGR2y4c3z+0/1U5Lg8ZabrB+b70+b42QCzIEMuR7lHJNyd38Bmatl0b/LcmRszvvgOJOhNmXZRcltQz0jc/5KVM8ck72cyew5m+LlnGGDNpIYZe9L8hk0n8yhQjbKo/EaBa4hWIW+4/htzhj/BQs1H1s8lbhsQTw91vY89Sx8NvAs1qqd154P8cb+Lmd/bW1odp7NtWBMjl5ZMi5nCdipIplSh2TOneYuapz7mMwtBYpbsQ3dVNfZB5Z8si2suANwkgyDu3O4zUQ7nigbm58Yw3i8hNtHdI5p5qMMbzFjfJbUMUBbap559oh5mWkzyMjDuh/5aBIZj2A/xFm3rgdU3Lj2+XmKqZatos+Ljz0McfnwUxDvfPfvOm043IrmhPEUGl+3V3AOTqbQrHl84jDEPSNtEE91vgTisTIV9Om9UoTn1ZLHHByaxL79yhNokBpV8BziEhnelty8OZTBwfH8MK4tPvedU+Z5cQVN7ZabKI7Nrxq7OibF1HcBjd/Bk3i9zMyOnsCftQTYv5dsQ3Pet7zxVXQM7M/vPYxmlc8cOQHxRMk18J6cxHXKFMUVmvBKJbw+AdVfNorN0jyfJRNXMzOPjDxzNB5bqP4Wx3AsjJ8cgTiTQzNErxu/n5g70Xd34njx6FqUKtPfSSI2/Fx+wiiysDqJODWYJjwnL3nBYimG2rwNT1hk5Mim4QHXDZoPEt/NO9cXl43Maa3H5+lMV2Q+yZ/6Kf3A90ohmUhzGxyzUYx5FuexwP1mZhacxsx3TiPwvw0ijmPHmPt0cNPa2tqcbW644RUQHzuGBqb/+q93Q8x1Ztu28yB+7LHHIT64/yAeMGVJcuQIzpFs3nvBBRdAvH7deohXkSFq96puiDMZt7a5cMOw93K0zovpPtWo5p+3fQvE2373t/FoaU3iRTKNd2+Owy2Pu+UmGySWrd4DOabinGiOEa+7v7nnMr0N9p/v4/zFhsE8rzMJm6untYHq67O78T6pswufuaxe34c7iPH6+Gy0m9BzJXYoNrNMhqsT1TYa60my0JhyKKV2JFSD3ZpfXVt58zf3XWq4TRPjaGSedYzM3b7OZjmn+BkC3S+MoxnzU0/h87ILL7wY4ksuuQjiQgHvkc3MhoeHId66BdeSrWQYPVrhPq894aTY1M9rK3GKIDALgvR+5nUAPytOe25Rx8c85fkZL8LoeXQFx/SxwaMQP/ITfHZsZnaSjMuztNYeGRqGeGKiCHF7ZzfEre34jChXxvuTQt6d4I4dOQTxwKEDEG/atgNiL6ndcY5p/BmkdRJzDZiO/QXsTH/pIYQQQgghhBBCCCGEEEKIFYFeegghhBBCCCGEEEIIIYQQYkWglx5CCCGEEEIIIYQQQgghhFgRnLWeHoHnW1AVhowdqTDWl0QdvdhzdRA973KIM8nbIA6jfRgbxqzXmxhqqP3gSdSXPDI47LRhooL6f1ZGrejnB1C7e3DwKxDvOB8v18EDP8QmxuzFkKaxhnq73FOxddBPJihG3WejY7jHrK9aGFErkjgDnzaSvF8x35/OpwxpSLKnR5bE/7K+q3Ofzfg143wWzz1L2oQZ0sUPyAMkIP8J9u+Y/hnG7hac2+m6ebMx6z4npPWdMv5YT5V1jiPSMjWf9kEh+9eQJLpFvps3rKses0Zo9ZgxH7sB+H7WfH9a57QcYv9++nP/BPEPv4/6jNddjdqKZmbnbzsH4nVr0eugsxX1olvI88PzUXO1HGJfTU1h/06V3f4u0c9KFdYsZw8I0qBvQZ+JtnbyJSFd2HzevW6ZAvZlO2k5F0gmvZ208ztbMLFOFkOK0Q9houzq6HLPeDTtetX5bD4eTEuJl4Tmz2jpOnWbdEvLpIWaMrfEMfZNOIFa3znSV40z6Dvz9PP7cIdP3Qvh+BBqif/oC59z2nDhza+FuGXdRoiPZnHsjJ13A8SZ3u20R/Q92Er9MDyM+qxmZkdHyQeLanI4ifN8UMZ+y5JZVJjFceCzv0OLq/WfY9+zEDWVxyZPfScJU7wClpEEdO5p/qI67pN/ybbe1c7+NpyHmvEnRnCNcnQU489/9RsQb96EOTI8jmO4nYbl1g29ThtaSNuZq8DxIex/P8DaxbrANAXY6Bhq8A6Pu15nEWsJlzDPRidGsU3H0QulOIH7TFgDndY/HS2ozW9mFpUpt9nHaWbeieej27+0tLa0WWvL9PFDyvmY1/ekzx9F7twSJ+RdQf3vVvPa/hoW166xabr4/LPE2UetFrha/K42cm1N7OpB6RvUD45vINWmmNewtO6mk3BX2Sna3Kfxx5qH5daSkiTJrL4969xzHNBC/YIL3HXdrsfRb+ihh9HvLYowJwt5WucV8P7umqtxPjx+HOezXbseddrAPctr+Y997I8hniRfrXXr0Guhrw/Xppdfjl6Wl1+K2vtmZqu6sd1dXRjn8zhntpLHXVsH+j84OdqF/VaecvN+44YNEA8OHsPvlE+tDfm6LDeBV7Gg+lzE0bV3JlkMvbR7SL6no4HEnoteHaMQdxxyDXHJ0Je+9XX0rzl86AjE7/1v6MvS24der0nEPkC07mJPJjMbOIxa+8UiPh/p6emGuJXuYdjnjs/beXaV4qHk1BEaf371PIKUe+DGQZ4eRXxexl4muRSPMvc8ea1Inh90/S65+FKI1/evhZi9iHj8mplFlAOlEq7sKuTXkFi9ce662InFkfdDy/vp/jWuny35gwXuI3D2L+JcZj8jvoR7nkUvmT1PPg3x6DCuu9k7w8wsJJ9FfiY3USSfx5jrMZ4Xe88MT+H+s4HrTZmj9e3+p3HtwV7MazZugTiTxTmXLe+cJVvaUHC8gLFNUXWnwTx908z0lx5CCCGEEEIIIYQQQgghhFgh6KWHEEIIIYQQQgghhBBCCCFWBHrpIYQQQgghhBBCCCGEEEKIFcFZ6+nhmT+rC5nEaSquc7YNDlPsbhNXUM/P91DLOwiuhpg9PupRrpD+2dEBZ5vIUDctIhGzJEKNwa989f9AvGH9NtrjQ/h9w+8HKfq79Rw3Ek4JjzQKvdqawQm9R0vM1YpLnAuEeqzmz9HYTqJ0gc9lIhtEFgTTOo0Z8svIUrNJ4tpyKa8Qs6TJmad95II6nh4sv0rHIIuQVI1Cx+eD9VVp+4D9N0hXr5Jgoyp8zYM0LVHaJ11U9vRgXWeP4oj7JeHP3dzPke6h4+lRTeboNHrQy4lvgflVteotW1HLuX8zxvf/8JsQ79/znLO/l2xHT4+LdpwP8dYt/RCvXYs69Z2dqNeeczw/MM8ynIhmllBmVRLU3RwaR537oSHMgZMn8BqeHMJaxLqWlnH1VFetQV3JTaTHv4q0nTvaUcs5k8X61dWGn7eRN8pExdUWHZtE/cxymTweqr4FUZoXzjISFkfNq2p5hs7chFrEscdjPKXY+aTLS98p0XhLyF9lskg+BdSVbb04/508Meg04dt3fQ3iiy7YAvFNr7sF4vE8apzva98M8RP79kA88vD9EF/V516zXh/77sGnT0LM+tcBedu0deJYK+DuLCqhz4gXuvV2ipTvR0hTOQpPtTsJcd2w3MRxbHFVK9nVD8c4N4Vte82OC539vfTVV0B8cAj7+8v3/gTif/mXL0Pc3dEJcUs35sTJQ6jR25Jx59hCAa9ZazuuaTpWoZ74hn70IVlHeuMb12Pc2tcDcSXFY+LIScyLJ559HuKhIfQ2mSphToySZ87wsQMQBxk8x3MvepnThpPH0BNgiPxUNm47z8zMJiew9jeCJx/7kRWqnh5r1qCvQEcXznctBdRADlPqHckuO75IPuve0y5Yrr32SHC126d/yAtw2oY+dtrkbM/a/BTz9mnbON9hjw5ef5ImPWu30/Eyjub2/Ne4uRS/guVkrn8Ra9QzWdK137dvv7PN0aM4voI6uvYhebGxv0OOdLfXr0d/o2KRPBzNbHAQ590bb7wR4gMHsG78+11fh/jwIb43Rl+Shx7Cev2ed7/DacO+veihuX8/9tXEBHotVMZwrbhmC47/6y9C/f+tL8PnA6sK6DtiZtbehWtH9hWJ59Robs9yk/Eiy3jTc2zMfht1/DUcfxxz52nPuNZxDajjEec8N6gdm5llyPPvqpdeCfFdX0YvmT/7xCchfu1P4dqvvQWv38QYzkmPP/6404Yf/vBH2E6qh5dcjv4zV197FcSXXX4xxOzfxrXTqc/m3o+zh9LMPnx+dtNIKIeGhoYhjmn9wr5AZq6HR0DrrpDWvR0duG5ra8P1CvtyjYygxxnvz8ysQvdze/bg/cCFF+L13roV7x98mqv+7c47IR4f53VQ4/1EX+h4SWhe1euBS1dgPD/y2iRlfzF5jlHtY2/f4ydwTv7av30J4m/8G17zEj+3SKl2F1+MdWLNGrwfmCJvGc6zfBbXEmEZ76OKE7j2T1vXtRdwH+UJXAt89Uv/DPF5F+IcestPvR7iCj3HT+j5QOrKzFmP8mQ1/R/2F6mF/tJDCCGEEEIIIYQQQgghhBArAr30EEIIIYQQQgghhBBCCCHEikAvPYQQQgghhBBCCCGEEEIIsSI4az09pnXOZvS8WJsQtb+D7H0Qn7sNtf3MzI4PoLbi8HHUP2avioXiqLL5tX1Ipr9EGoKkHXeStOKKY6hBmPWxzUmM+qz+PPQBI+rbxGeNX+rLGHVLE8PPfVsNccbQO8DMLIkuwdhDHUTzT8WJTViU/JSzj+UiEyQWVL08suTpUc/jg/05pn+G1zRL2+Sov9nTI6gTs+dHJuPqAzr+GOmyeKeOEZH3BWlVBzHH+H3WkDVz84q3ieroQPMAC1nrj86xkuIrkietxgr1XRgl1bY23tMjSTxLqv3c0tYNn91y65shnprAOvDsYz9w9nf88KMQP/4T1CLt24Qa8edu2wTx1nMw3tCPGsi9PaiB3t6KtcfMLE8DpJt0JrtXoUbvZorLW8jzgTwehkZRk/foMVfD9vnDqJn63fv2QjxWRGH2LGlkhyXU31y9elXNuK0LPT7MzNo7sUa2dqDWbDY7fd29SoP1XItTZrPjBMeLx95NPnt6pCwdfNxH4BgSsSYvVZ58N26+DXW1kxbs27B4wmnC1DiuDfYfR+3SR3fthnjHuVshvnIVanc/+330fxi86wsQ/6DFrTPXvPoNEF+8Hj15KjHmVOsUtrk4ht4KI/uHMD6B35/wUn53hUpYVCK/lDk+HkncWO3nJIlntbDJPsrGTuJ4jYoYH5ug8zCzx587gjFpyg+Q1wXXqhLlUSaH+rcTw8MQT8auB0qpgj8LaSy3rcb6+eP78cTbu7Eed1HN2LQONX0D0iM3MztyEPPm6af2QRyTZ0D7KvQy6WzF8dhOmthm+P2ONrfmX3z55RBPlbG+Vqpr3OK4+93l5n/9zw+bX61bXd24Tu1bvwHiiy+5vGZsZra2D32zMj6dE2mI87IiYQ1x0jVnrfY03XNeJ9XzBeFKwd9njfp6/hxmzm1LShtIm73O9/nzYB4699kEz4z3MeNJEC5A+3lJSJJTfVZnWVkhne5jxWPONoU8jsmYCij7hjjLaPaRYX8UyrGeVeiFaWZ28ADWW0twXn/ZS6+h7Q9BzPr+J05g/R06idrhd34NPUHMzHxanxw/jvtg35HiMM4bPSfR96knh/e1oxmMV7XjvbiZWccqrNF5Mt+a6/dWJE+t5SbjhZapejqwV5xjiUP3tSmWOcaj2mePDkdrnWLndo6/z+uolHFK/jQ7zj0P4g39+KzhS//0JYi//x30Y2trwbFULKLvytGj7vjLkXHne/7Tf4T4mhsuh7iDvBHzAXcErhsSukdN+BmRmfkBrtfYmzJTfayX8Zvn6cF1aHgE17BRhOdVLLpt7ezE9YlHs1chj/eLeYrZoyMkz9wwxGOyL5uZ2VNPPQXxoUNYy37u534O4h07tlObsCbs2YP3nw888ADEPC5mfrqcpHn4OC2o40fVTCpRPOtx55Qdujfy+VlWyjPSrFMAaV0WYd7sfgyftTz2yMMQnzxxHOKQfGLYC8rMrEB+GkW6DwrJh5H9bvh59ig9O67Q98fHU7xIW7ANq1bjmjmfw2N+8+t3Q7zl3HMhPv8i9F4slri2uTkWx1wv8drEVd+qaAHLOv2lhxBCCCGEEEIIIYQQQgghVgR66SGEEEIIIYQQQgghhBBCiBWBXnoIIYQQQgghhBBCCCGEEGJFcPZ6enjxrC6Z56PemJdBfbPSJGqJbepDLTIzs1dc2Qvx5z73TxBPVVxd/IXAamQlFqs2s8TRrSRIzzGKUaOwWEEtb0tYFxOVbFnr0cwsTvroJ9gv5q2mz9F/wzPULAw81Hz1Y4wDQ01LM7OEjlkx1GqfqzGeJKhFt9xk/NiCqklFQD4UGXpFyJ4fuRRtxBxp62W9gGLeBx2Ttg/IK4bbFPiuNp9PGoUcu+DnHqetz1rV7NfhtiH2SIeUPq+w7iz3A32jQnGJRmDiu9rvLTw+PCx/cdWTIGmCFqrne6d0p+lcejehv8abfuFXIP5BH49ps8d/9F2ITwwNQDxRxv4ZPIb6tU898zTEq1fhOF7VhXH/Olf7uW8tarJ2d6EGckse40wWr4efJZ1u+ryzFfVSu7a6dX/7FtS+DyvY7pEhzNUjx3BuOTiAfgCDJzAeOIb1KQrT/BVIp5fqRFvL9HmF5cbqPlshMKt6mAQx667joPfJj8MLsO/NzBLyQ/HJf8gPeB+4fZSh+czDY3jkETOZdX0NwiOo7T18Ev0ddpN/xQD5NaxZhfNf0IU5nNn2MohPjLm1YlU/+oS8tB+1gr90J+oED5DvzMkJ9EGYIO3hJOL6nJI39LOAzjuY6+WVohu9nMRxPOtPwL4FlQnUWj96BDWUv/ZD9G8zM+vc+wTExUlcJ01NsYYurjcqU5h35RL2f0cXa0u7OsAtNPVHpD8e0ZifIh+XOMY2BjnM9WHShD92CDXrzcxGSRvfM9TtzdCaNCId36lKbY3sSoxtaKN+MTPrIK+nFtLuLoXTx8ywkUMDGB86al51/TR0DP1P9j2zC+KHfnAvxJs245g2M7vmhtdA/JKXXAYxz5FtrdhfreRRxOYWCXmn+Z7rE+j4s7HHR8J+GGzqwLlM+vC0/0zK2tHx6OC1GLfJ4zbRMTzW3UayKfriWWf+omNU17Rl1oheZjK+P9tnaZ4sCLU55XoPHEE/De6KchlrX4F8Jrq7uyHeu+dZiDs6cE5tb3fn2GwGvWuee3YfxD096E/0a792G8TDw6jv/1d/9VcQsx/HkSOoiW7m1k/W42/vwHvMNWtbIc7lsLaNRrh2bDuBviJre9c7bfAz5CEQ4cUYGT21VpycdO9HlhPPL87eTwTsI8EjitanXpxWZ9jTg77j1JF6bkK0Jqbcz2axb83MOvK4fiyTL2vGw9zvIO+ukwOYVyfIz5Tn3IsvvsBpw/bz8V7s59/yWog3b0JPuKki3aeSb4/nY5u9DMZRin9Rhe4x4ojWydW+z0SNXddBGyhfOP+LE3jt7rn7Lmcfb/gp9MZb24d9m6XJif3DIsrBsIKfd3bQ+iXl+c0ll1wKcU8P3h9s2YK+XnyfxJfviiuuhPjH5OkxH/8O7luO3emxtj/qUvh1zPX04bG83ERxZNHM2pbOJST/DY88PjIp517m71DpOnToIMQPP/hjiIePY51pIW+MhNbVa9bgfGlmFmR4/KDfEHt6sKctb1+h3I/pfrCSsjY5OYT3E4VWnGPXrcWxMHAMz/uH38M19Oq1OIdO0X1shT3uzKwcsmcZ5X61ZBfHyaO7BvpLDyGEEEIIIYQQQgghhBBCrAj00kMIIYQQQgghhBBCCCGEECsCvfQQQgghhBBCCCGEEEIIIcSK4Kz19JgqxrO6/mGF9R9Rz8wS1IHe88xPnP1ddek2iNeuRW3oA6TTtnBIV8/RtDRXP5fl5Fhb01CTks0VkgzFrMvmuzrEnoc6iX6CupW+bYY49ij2sU1xjFqpUUJ62Ymrs889w2py7e2n/AeSZMImxq1hZL3Igmo/B+wrQa8Ic6RNnE3RhGTPjoXGjqYy9R4PYNYyNqunpuoS03mwN0xAeRZSXsYpbYjraLiyimxCmoNejGO+QmKZOdJqnkzI/8bMKuSRE5HGeaaqbR8mVF8aQlj9Z2aUAxH1Xc/6DRDf/LNvdfZ2wcWoRfr8c6hZ3sm+SBOox1gsoUbiySHc/tFHnoE4yKLeo5lZ5yrUTO0lj491vah53rsatS17VnVD3N6Gx2gp4PUs5F0d4FbSoezpRB3K9edgG3aci3GR5p4j5OFx5CjqUw+PutrNYUjjJSbvkup/y1Ohfcv59vLhTRXNq/psxBGNea4sPo4JP3DHlwXY/wn5Dxl5eCQ+60RjP3mUgyz+7qVogLKXRTbC63Xy+zgOxg/jHDlE2v3rdqCn1bYNOF/ufux5pwnDGcy5jnbM+ycPot7q1BT5gtBpeY7eKm0QuL4iXIFjmsuSOb5MzrphmYnicFY3PEN64+wJceTJ3RB/4+6vOftryZM3As2RUUL6tRF5TvHp07zgkYdVtuD62eSpzowOoSY8e1QFOdzH2NFhiAeefQ7iSoW8T0opcxRN7BHpFWdo/AW0oCmTDvDkGNb8ng2oZ/62/4xrajOzMvVduYLtjKq5FjVDbzyx2YHBvhEe1SKPcmbPM5iHZmbPPUd+CDS3dHR0Qbx6Nfpe3fq610N8+WWo953L4to6Rd7dFfB2QvJbo6/z+tHx0/B5vemu7XiN6vMKn+cB/pzqj09xwL4kTgvMsrTLnHM9p/9bbqzcuD3x5OOWy03fA61di9e/qwvz49ggamhv2LDR2d9XvvIliHtWY87t3v04xO3tWBuvueYaiO+9F3W316xZA/ErX/lKpw2VEPXB/+3OL0Ncotq0Ywf6QO7duw/3R3rj7CXU39/vtOHKK6+A+Dvf+Q7EN9xwA8QhrRXOP38HtRnbwL6HI8Out+TRQayPXNPmHpP3v9zEUWhxVZs+Ib8oj7xi2FOHvUHNzDz2dCOhe89n7Xxaq9E+A1orZjJ5it2Bmgtwfurtxf6+/fafhvj4EK4fDx1C38JWWpf5AT7buPCilzht6O7G8dTagucxdgL9ZwLqp1xAPls5vF/I5fCcuP6amcUV8rKgebtU1b0PM/jzxpDu1VUu4f3CyAh57w2iV5GZ2eQJvF7d29A/o0TPCCLq65N0L7aqne5R6fu5Aq8jnaWgnbcNa1kmk6GY7nFo7rroQrwv39CPz9cGB93nkFxveZ8L9eTg9XJHJ3prrunFOcDMbHQUx1KZ/FMGwc8hMXelsXzsefopa2mdXivFdMEmJvB+0OfxFLr3TlNjWOsDuqYDA+gzOHQc/VLX9eGcvLYXn2skEfZNWxuu88xcT46xcYxjmmsq5PFxhLwQA/LT5GdfoyN4v2Jm1kMerIPHcTyuXYceOy20CDs5iPfGux55EOI1/VsgjlPmnZjWjrHjczYdT/I9dA30lx5CCCGEEEIIIYQQQgghhFgR6KWHEEIIIYQQQgghhBBCCCFWBHrpIYQQQgghhBBCCCGEEEKIFcFZ6+lx9MiUtbRMa6FOFklPMmihGLVPDxy629nf3d/4F/oOa6+zFuFixV/TPD3qfIUO6Rtr+ZHAYNJH8fV0uFucQwTxTojz1JdtedT/HC6irlspbKc28UnxezRX2y8J6GekT7f9vOycj7L26KPOLpaNjIWWsUr1//GCsDtJvs7nZmZZ6o8sfYf3wZ+ztCm3KUNDON3TgzWRa+d2TBqRbozXyyex6Shl947uJGkKRqRJGJPuOnuAcJtY6c/RlTbXG8Njwc4Zjc94/vqAS4Vnp8qDT9qkRnq6POZyHb3O/s6/6kaIt1+GWs7RGPogDQ/ug/jEYdSUH3sIfZL8MnpZFIdcL4uJY6gDOrAPdSafakUd384u1NhdvZo8QShe3YNx3xrUzjQz61+PNTJIMFPCMusdk15uGfNy7MRRiKMSam225ty8K/l4jEoR9W1Hq3qd5UbrPpcq5lUFncsh5lxMHjnOmPZSNPnJWyLmPOY4RcMTNs+Sp5Xh/n3f9XCxAPs/34LHKJ5E7eCBBx+CeHQfetVEx/dCvOWaV0NcOt8dewdjbEOWtP0LeeyHySnsyyz1U+LhzBInJYrda+HodMd8Aed8h+vgMhMnZYurNSymvgpJezbOo97tsT2u5nGQUv3n4rGXGmmc+6TLHGSxLk2No8ZvttX1L2IN+MokjvEgwM+DLF7TJMZzyFAb2Otk3bZznTas3rAe4s41mJtrN6AXVGcnruXu/8pdEB8fQJ+nW//D2yHesgN18c3MikWcB6KY1wbTcalCvioNwPO82frO64d6vjb5vLu642EzOXqiZnz8yAGIjx3aB/H3tp0H8WtvQc+Pyy5Bzw+ztLsU8hZ0fAMxzNFaokB57PE9SYp+eIZqrs+ecNzX1AiPY8fDg2LnnsMsQz/jGjrzacqMsazc+bWvztaGzZvRE6ezE9cvg0dRM3vzZtSwNzPbf2APxIcOU04dwzGbJ/+hsa+jdvfgIG5/4MB+iJ959imnDau6sRYdJ63viQmsAXv34lrSSaE6t97f+979ThsefvhhiNkz44knnoSYNc2vuAI9QY4fRy8Gplxy58ieHryera04V3V3d8/+f6XB9c4fn5gdqx55oLJPhJeh2ues08wSj+5BSFud7SwdLyGuAXSMiOboyRQDoymqTe15zO1rXno+foE8rKZKvKbFasA5Ug5dM9Eownk9iXBNyp5BvvM8hDaYwrygZYLlsu69aHsbXs+OTmxToXpenod+Bg2Frl+pjG3MZHA+fctbfsHZxZaN6HfBvjLt7bh+mTqB8+2aDswPzvvWFqy/nuM9ZTYxgfd3eco5Xvf5tA/2+dm4EZ9VvuNX3wHx57/w904bnj+INZ69oNatw3vcdX24Djxn8xaIN9A6sI+8Gdrb8Jmfmdm+vTgv3Pm1f4P42LG59TNxxv9yctdXv2jZ6nraq/OQNZPFHMqmXPNcwPcPOGYnivhc49gxfCYwQfcLHtVOLpYTE+RdaWZj4/izyUmcU+M661X+nNe3PAWzR4uZWUcL3udw7vP6JaD7qG5aJ0wU8RjnveRyiFf10vNsM2vtxGc6Pt0PBsF0m8pF9/nT6dBfegghhBBCCCGEEEIIIYQQYkWglx5CCCGEEEIIIYQQQgghhFgRLOilx0c+8hF72cteZh0dHbZ27Vp705veZE89hX/+miSJ3XHHHdbf328tLS22c+dO27Vr15I2Wrz42Llzp/JONBTlnGgGyjvRDJR3otEo50QzUN6JRrJnzxNmNi0to5wTjUS1TjQD5Z04G1mQp8e9995rv/mbv2kve9nLLAxD+8AHPmC33HKL7d6929ra2szM7GMf+5h9/OMft8985jN2/vnn2x/+4R/azTffbE899ZR1dLhacadjz57I8vkZPTzUNcx6qN1XSVB3L45Qe8zM7IknUVfUN9zGI43KJFmorj+LOaZortW1CSEtbx+1G89dhVp+fet+HuIHnvpZiCO7zD1EhJf8gs2oZXp9L2r3/+uubRDvK15OO6wjGpyCT+cVJ6j3uPOmU9eiVPLt0UfN3vnOd9qNN9647HmXiUuWiaY1MXM+fxZSjJ/nUvQEswl5epCnQI5i/jwgvfYcqRIHpJ3ox24bWFfUS9FEngt7RsQJ67OSp0fMHh/u/uOYdetxnydOot/D4SOok7jhXNQP90l/1WeNw7Tx51Nf+uSZ41Wvrzedj43KOTOzxPKW2LSHQVTBtpdLqFc4OYntnphwtVvHxrEmjg6jzuT4CdRhbvXxGD2tmIcnj6OHB/uOpGmes6ZuSHlTHKXzGEF96YHnMc4V8Jq3tOIxV/VgfTQzW7duDcZ9GHd3oS5sRxv6SLS24ngbHUNN7MNHMU+PnsR+MjMbomsxPop9XRqfjuOqPnCj8i6uTM3q2Hrk6ZEhvWP25IlStFBZ7z1DercJey/Q50aau+wr4jteXina0wnqjB4NcSx57WsxzlIOxnhtDj2FOTt28usQZ7vcJZTXgZq63ziOuqRTUziPJDRvRFRvHe8hZ45N+d0VFuOv5ydmjcu7KI5PnRPPFaR3u3oT6g8HKfYjo0O4HpwiHWavguuNbA5zO9uKOVNoRy3aaKob4jgl79i7or0Tv9NFnhy5Vuyv7jWoq7x+C3p2bH0Jzn+r1+P2ZmZt3Vj/cq1Yywo0ZjOUFDuuuBriEvls9ZJ29GTZvRjs/cNrh7B63We+28g51vP9WQ1up55FKYk1h1zOnd98qlc8jlnvOyRd/5PDOHcM/vAwxCfInyH7NreNV1yK3gQBe7zRPO0nXOc9iukAXDdYvN/MjHKfz9vV+0d4NHnUr0EdX7vpnWLf8OpvZr2SVNedjcq7I0eOzJ7/4CBe73KZPKqon37yEPpNmbl9yV5B+QLWNt5+bAzXge3tbRBnSJebPc7MzMoVnDNX966GeH0/5SC1kfOD4c8LpOM9vQ3WMl4rZLPcBowLBVxLbNmyBWLWUG9L0bnftGErxK1t2JdzfTwefnh63fj1r3/dCoXCste6Nv+EtfvT9wWFPI6GXAb7rhxj30xV3Gte5DUL6dT7AbnlUN3n3HaXflgbMxk3R3xqZ2UCnxtMhHjNyDbCwpDqNe3Pp34JUrwdAxoPHtXXmO47IzpmHGE/sadZKcI5t2huG8ZGsK9yOfK3rK79xsant2vkHDsD+zaVpvBa0bLc1vajP46ZWUK+ZiHNFCND6Huwh3x8Wnzsu/MvvBTifAHHa7Hoeri00Zh257Y6HhJUT/n7fX24pvqlX/xlZx+t5CHX24tebavmeAeZmbW14T2tT882ubbxWigM3fl1xw7su2efQ6/DBx78EeyvVAkblnfPP/eUBdVnDaUSjh93rsFzq5Td8RXTIjamZ8HsrTwxQR4ebGVJhahcwe8nKf5F9danznqV10jZ2nnH3+c8NTPnHjIi/6JxehbC5zEyhM+Y9pIvzLNPPwvxuedf4DShdz36mq1ej3Uil5uuEVOT8/cvWtBfetx11132K7/yK3bRRRfZZZddZp/+9KftwIED9uCDD5rZ9IX6xCc+YR/4wAfszW9+s1188cX22c9+1orFon3uc59byKGEAN7+9rcr70RDUc6JZqC8E81AeScajXJONAPlnWgkr3vdG83M7CUveYlyTjQU1TrRDJR34mxkUZ4eIyPTb3p6eqZ/k3Hv3r02MDBgt9xyy+w2+XzebrrpJrv//vtT91EqlWx0dBT+CVEL5Z1oNEuRc2bKO7EwVOtEM1DeiUajOVY0A9U60WhU60QzUK0TzUB5J84WzvilR5Ik9t73vtde8YpX2MUXX2xmZgMDA2bm/slWX1/f7GfMRz7yEevq6pr9t2mT+2duQsygvBONZqlyzkx5J+aPap1oBso70Wg0x4pmoFonGo1qnWgGqnWiGSjvxNnEGb/0eM973mOPPvqo/Z//83+cz1jnLkmS02rfvf/977eRkZHZfwcPHjzTJokXAco70WiWKufMlHdi/qjWiWagvBONRnOsaAaqdaLRqNaJZqBaJ5qB8k6cTSzIyHyG3/qt37Ivf/nL9p3vfMc2btw4+/N166bNFQcGBmz9+lNmnoODg84bvRny+bzl867x+NPPBJbNzhjw0Ju/GM1Ek/j7+LmHZjZmZuUy/cwxKm+jmMxl6hqBUlemmUV7ZHKbsNkou9ThO6mrtp8P8RtufjXEH/m7foh370cjSzOzVavQ9PMtr0AD6ZuKP8R9DF8M8b5n+D0Zm/B4NaLqNyL8Th95cv70G04Z/0xM5OyTn5r+/0bkXd4qlqmaqrkGimSw57MpuWtIxPvIknlahozLEzKxHh1B06nOTjRdbW1Bkz8vcA2Gjc3NHTM2MuCkOA7JyIlMkLJ0zFPj9vT7yJNB21BlGOLjBx+DuL8H+62jC82B/TKaK1ZKaGZrZhZhV1oyjkZolarhtF8+teFS5pzZ6fPun//3P1iQnR6vFTJ9K0/huUxOoOFaadI91wr1R3kKjZ68EL/T2YLXvKsdDfeGjqMJJ78vL5trshpS3rFpn1Hue1QPyS/MSkUyx5vEfhoZxnM2M9u/l8xgA2xDK5mjt3fgPNDdg+OtsxvHW7aFDBwzFJtZkCNz0AjjiaHpepPMMaxuRK3zwtIpI/OITMdjNtuu0Ofu0iH20LDN93GbhE3lyKDbZxNVH/syIpNHj/PJzDwy7QvJlM4jM/UkR4Z5Pl5vzDCz4gkaRwdd4/qMPQPxvgwaEcZkmOmRCWscskkdGd7ynMsDxcySmPqKtvHnjNfEotmr24i8i+PY4tidK6fbRXVoNZo2ruXFgpkVyZhxYgQN9oYOoUF09xrcZ5JH48eWLLahQPNbe89apw1sPp8n4+vOLjQZz+QxJ/q2boe4Zx0auHeTEXqe6465BovxFI7ZccqJhIwKC6u6IW6ldcBkEb8f8/rVzGK6frzFjEFjec46p1FzbBxFc/x1sWWOQSl9lw0ypzciY3h2ziVHy2we1+MJG4Bn8PrtP/gcxP/8z+5Dgxa6R7jsfDJrTTBPCkFtk2nul3rG2Wau6SaP7ZDqVcLrT9qfY2xOG2RSjLDZPDRKqYlmZrEtT96dLuc6Olpn19c5qglsHpqhtUNaX7OpLfdeTHMqr8WzWWwDr/25DVHkjnHf52Pi9a1UXHPYuZRKUxTjuo3zaXycFu5mFoV8TKpttA9uk2NA7ZwD1s60G9nWFrxXjmgfk8VT5znTnv/6X/+r3Xnnncte68bHJiyp3mdXcnguBTK5LVcwLpbca16iS5p4mCfsO+55tN6gdXeGze2pg4Oc2+G+z+tFNvDGHMiSqbhPcULrx5AWe3E5ZS1Pa9ocmcR7AbYxrGM4zB8XS9gvlYq7zi7Rd8ZorR740ycyPrE897Gny7lppk+Qx1dIJsilMubkyVHXRHzzxm6Ijw/hum6EvnNg7x6Id92Pzwl/47d/F2KvFZ8hOObQ5q4LAloL1jM25zrE25933nkQZ7MvcdrAxYcNo2O6fxgZxucaMT+voTmAkzKJU+Z4+tlFF14CcUf7qfuoOImtNDT9fKEReZckyWw/HxvEZ8UhzQs858Ypy4SQ7r9W0dq7axWu5cfGUWaroxXvKTdsQDNunmsmp9znNwk9TxkZHoaYjbsL9BzQ6N45oGvu5GXK/JalGj0+hufp3I/z/UfMtRALrB+OU+z2w7Hn8V56fATN0SenpmscP++qxYL+0iNJEnvPe95jX/ziF+2b3/ymbd26FT7funWrrVu3zu65557Zn5XLZbv33nvtuuuuW8ihhAD+y3/5L8o70VCUc6IZKO9EM1DeiUajnBPNQHknGsnMQ6avfOUryjnRUFTrRDNQ3omzkQX9pcdv/uZv2uc+9zn713/9V+vo6JjVXuvq6rKWlhbzPM9uv/12+/CHP2zbt2+37du324c//GFrbW21t73tbctyAuLFwRe+8AXlnWgoyjnRDJR3ohko70SjUc6JZqC8E40krP6l+1//9V8r50RDUa0TzUB5J85GFvTS41OfmtYZ2rlzJ/z805/+tP3Kr/yKmZn9zu/8jk1OTtq73/1uGxoasquvvtruvvtu6+ggGQkhFsDIyIjyTjQU5ZxoBso70QyUd6LRKOdEM1DeiUYyI53z+te/Hn6unBPLjWqdaAbKO3E24iUs7tVkRkdHrauryy69dJcFwXTyP/TQnbCN5/0dxIn3A9yJl6IXnayiTW6AOLCr6At1dO8ctWLU+ovsabcNwRdpl6gH7pNOeuChft2FW1Hn+YO/+isQP/TcToj/6NPo8WFm9rNvxWP8943/AHHh8JMQ3/b0xyD+xoOrnX3WIs3TIyGl9GuuRz22//vPp3T1x8ZG7fzze21kZMTxs1hKZvLumtv/3TL56eNnPNSSDYx0YyNs93rS4TYzKxRQgzebw7zJkWxoeQJ17Q7s3wtx72rM402b8Ji5FD8N1qFkQvLbiCqoF7hvL2pLj42hZuT6deshNt8tKeOjmOuVIu5j9CR6LwwceBbiApmjtLShDvsE6ZePpugkViZxm4C9MqrawnEU2sHHv7/sOWd2Ku+s82rzvOrYpEHjSlhjfUuRfrYMXXPWxXbqF+kvehQHaTV1DlGavnviqHNjxB4eSW09cef7dX2W3H0a6WmSrL2rQc9axaT3nymQR0hniq53F+pttrbhNlF1/EVhaE985xsNq3Xtq86f9fSokL5xFNF8xt5DKb8vkdB85XPdIZ1RI11on/Tm2R8ldK63W9dYM9eZgJy4dhJxPrBWsZ/i3cWeVV7CfmLkj0L65BaRnjh7erCmb8LOI2Y+HSMbY+zP0dxOksiKI082LO9e9rZ3WKaqb9+/GnWVt/RvhNiLWB/erUNPP7cf4sNHUNd3Ygjnns5VuIZhT481bZh361bh+O3odX1FTo7inMl501bAXGXN+LVbd0C85ZKXQpxvwbGVYmdjRnmXacG1h0dqtlEdry42SojorNJ8WWJHb5ri6iEmx8fsv77qoobOsR2d5856/nh15hKP6ghrQZuZhRUWhMad5HLo4eGsBTP4eUjjfmISNcy9FM+4vh7MxQvOxTzqae2GuL2AnlXnbz8X4h3bUWO8jbYfH0ZdZzOzNTSe1q5eAzHPwazvHkXs+YH7dzznUjw9fF4EORd0+j9jE6O247WbGlbretesmtPe2v6Hzjo8cq83nzvrj7OONo8/Xg45fU85xt4ZZm5tc38gTkej8u7v/+eHrLVlur4Ehvepvlf7fjDNFzJh0xyaSzzKbZ8X1hTz9JXQQjtJmefZkyPDviH0eUCeH+wrkiV/AJ/PKcVPI0vFKZ/Fmt2SZ/8EWodl8ZlCJovbVxJca5TdpZ2VprBOVGhQl8Lp8xovTtkNb/lww3IOob7O4Hm9/e2/BvHgIGr1m5mtXo3zyhR5Xb72ta+DeHIQ14FP/+gbEO+48nqIN11yDcQpdoxOveU4m2UPJPIxCGv7GzF8f2Hm+hGxrwXPr7t37Ya4ldYdmzZvgpjb7Cy5p48K0Qh5K/z3P3r/7P/HcWR79j/TsLy76dWvn/WieuyRh2GbIvlt9JAfx+SE+5yI/Z83bd4M8cZz0KNj9xNPQUwWK3ZuP36/rRWfLefy7jXPUO06cQLvaUpFvN/o6MD7qOEpWgdk6V6ADhmmFJqASvDwSbzmXZ24z0KevGfonjOJ6FlJC77ccnxJzF0xOc8IqrlfCUO7+xvfnlfOLcjTQwghhBBCCCGEEEIIIYQQ4mxFLz2EEEIIIYQQQgghhBBCCLEi0EsPIYQQQgghhBBCCCGEEEKsCBZkZN5IBgZ3me9XNb78P4PPEtuDGyfdEHrJZc7+fHsDbmM30hbb6Bisa+moe1OEGmoZ/wmnDSFpnJn3zxSjrlpAl2f3QTzvL3/9CxD/9CtRq+/nb2SdRbPb3og6av1f+DLE+9eizuHzE/VSpF6/uIKviaEOYqEd/R3yLad0hEvUZctNNDFgXmU676Ymn4fPciFqgw8eOwpxf9etzv6y1gtxUkINwVKM5z5MeuTDB9BPwz+OeoDhIdRanCIdaDMz368tbD81hfqA8eQwtmHoOMQTE7j94QLpjU+hbqmZ2dTEOMSOjiTFhRyOvxHyTxkok14g+QOwrqKZWVcramhnYhxv4dS0liNr8jeCVm9sVm88Yt1l8lPI5EjTM3DFSDtJV/vSK9CzqG896kweH0RPlYd//EOITw4exmNGrFXr6gAXstjfCYmFVqbwmiYxa8qTfwbpqgcZPGbadWP9cH7Nzxr09Twc4hC3KI+Thusk5rmZ2eQQjvkkg9/JFaavX8ya+stMYqFZ9fx5vCQJ9rXneKGk1HUuMzF1ts/Xl65XTNcqoe2pjqVpU/s0VkKf5y/ah9XWmvaojR5rVadcM8fSiHXW+TsR++lgXUoS9vjga4HjyMzMp/UI+4LEc84j4X5eZqIwnDUqGqaxcSKL82GZtGbHi+74OnwYa9fQIM5XfM2K43iMoITHODaFOZQNyd+NPVrMbOAwrg2GxnAezpGeeKmE12PVvoP4/cET2OYi9lMYugujk4ewRl/2ulsgPmcHrotzWfRrYAOjMMS8Ch1PiRQ/G/bwcOLp/1YqjZ9jPe9ULnC7fPaNcHwk3P1lMrX9FTh3s1msRZkM5hUv0wIqJOzBYmZ25DiuUQ8PHsJjkI9ShtYKhe/gWmINrRvYA2R81B1/favXQnzTDeiX+KqrUUt9dQfel+RbsB/YwyMKuZa5c09AnRfQWmFG9zxXx99uqTl+bKj+RssIa3dz1zleb/x52u9FOt5rtT1X2CfEGXvO/cnCYV37ek6l3OZ61qZp1l91f2M0wf9tZMUbGxm1sOpRmDGuGzg2Yj6TlHPl/uKVMn/K9dPj8cneCFTrgrSUoGTmGdAnj4+IPUDIFzIyvE9NIq63biMSWksEGTzGqg7y7MzgWiHI4JyQz7KfG3oQBInrEeiFdE8SY02b8fwoT7rrwmVnpstoPLHX0Inj6A/w6GOPObsqVbDvfv7NPw9xSwHvLzds3w7x5h78fNK4L8nzxXfnBs57rl2uDxOt5evUGfZb9VLuaQLyMeD6yvfFO3acX/PzHPmQsIdFlPLIj8dCgebszeecep4QhqHt2f+Mu5Nl4sTxY7N9FNM9JHvcriZPjxOh62WRJ3MXj+6/whLWjZYC9sVkEfd55Hn05e1ow7zctNn1CIzpnqybvEKznezXh/scnWTvNcpLysN8yrKIS35nO3pubN7QBzH7Eycx1R9+HkDP2NO82pznhPQMPV/1hqxU5v/3G/pLDyGEEEIIIYQQQgghhBBCrAj00kMIIYQQQgghhBBCCCGEECsCvfQQQgghhBBCCCGEEEIIIcSK4Kz19BgZHjNvVqMRNZi9GLWJs/ZLEAd2nbO/0FDvr8L6fh7rWi9UZ5Q10y5xtsjYu7BNCXpCxN438HMfdZxz1MSvfg91EFdl0ePjg+95idOGLZOPQ1x+ErX3Bra/A+LB4XoauHX6Ke1jRz+1htBsmpjqMjJ14GsWZKd14kbHUSM7G6Ge8dQ46nY/8T3c3sws63dCXKoMQzxZRO3usEg+BxHqA57wSU88wjgMXb1x9j5gjcckZi1T+j5pXfLVmxwl3b2Sqz0dkr6oTzqzedJ03bL5AogPHcPt2YfED/D9bVRx27B13UaI2/KoxfiT3bunv+toly8/kZ+Z1fPMtqCOdj6H+o1l0p7tWbve2V97z2qIV5+zA+Krrn8lxBPDmMtxgBqR991zF8STY5i3ccXVRI7Im4B1JGPWYa4z1FnTPKmgviP7c5i5GqwsFty9ehXEFdI3nSxinnkJa8Fj7gcpv0bQ1Y4+SiPD5HkTVuci9rRYZvw4mdW4D8irxLlWcX0N7MRnnx3Sq2VNTw/7OqbJIuE5mcRmEz/lepNvCF8fx3PK5/PizWtrfTs+NGaWOP4n5BvD32GPD9ItTchDIkk4T9KMr+j60TZQbhtc79ryBctUtVijKVzbPfvEDyDOku/ERNm9HuPk0eFnSYeZ/J+KJ9Hzo1zCMZ7QmuM4eTHkc+QpZ2YV1p6l3ycKWrAGFMhrZvAwrh2OkccSk6e5y8xskvxOwi+jZ9yJ83dBvGbDORAnGVwT92zF9WNA81BccfOOaziPp7i61ihNNtiszWY8Pab/n+WDeZnJGuTlsjtG2O+J17ox+V5NTLBfDY7rLGltu/tP0Zincc469jHV5DKtu4pTOEePDuBYyGUxJ4IU/7CBIupHP/lP+yH+1v33Qnz+5q0Qn7cV/RTP3bIF4nVrUTu6vRW1pc3MshWq45PpnnFjdA0aCXtXxGnGc3NwfRQW7kXBa3vn8zreF0mKE4XvY+3hsRLxDUQd6vXDclCv39zt035K3iUp/pXz+Ww5GBkqWik/fV0y9GwipLWcH/BcUt+ryYF9xhyPJJoPaaFcCDBnMil551G7suSHkPVxH630dKuVS1eZ5n2qndkszndmZhMhHnOM7nUnT1K7SZs/Q2MnYO+TmPw1U9a4k4b7GCPvC6883bfFKfdZQLPg/C+OYR3OZtwbp/POvxDiG1+Bz/Va8jQ3URp3rt8CcTvNXSWr7Y1h5npu8HMGHtbsQeD6G+EXKnwPy76/5np6TE5ijpRK9MyIcq5Mn09M4HPFkZER+tz1uSiO0zphDL2qOjpOrW/5nJabytSYxdXr1JYjPzCqO93tmDNjJ926XCa/vHAK19UTI/jsI8ueSZSHHXnMu439+GymZ5W7nimH+IyAc7MQ4HlEIX0+jONrooL7a2vD73e243NKM7OwQj48Fcy73lXdeMw8edxV2NOOvGjJ04PXEWauTyvPQzPebeXy/HNOf+khhBBCCCGEEEIIIYQQQogVgV56CCGEEEIIIYQQQgghhBBiRaCXHkIIIYQQQgghhBBCCCGEWBGctZ4elfJV5nnTOnHZ5I/gs6zXDXFkr8DvJqgDPb0N6RsGqNPmaHfH5PlRF9JajQvOFomhz0fG3g1x6KEOW+T/BOIgbId4xFBX73NfvxPirj5Xr+7n810Qd68+H+L9OdRRHB+t479Rh3TtVPzZ2AiK4E2Nn3oXV5po7Hu5qb33zeqNJqQPXyGd0Q7Si5/Yh9fDzCwTkC6oh9pzAem1+xFpfNIxPNJmz+VQLzAouFrf7J0QR6jxGJFuXuLhPisx+xaQPmsWtfnC0PWBiUnPuI100ns7sN2lsWGIp0h7emoKz8EL6BxDVx/w2PNHII560M9hRm+VNfgbwWvf8muWzU/nyvoNm+CzmPr7+cMDEF90+RXO/lpIozEhDfkJ8kfIdPRAfN2rXwdxL+lq73/2CYifexJjM7PiGGp9t7aQpiN5WExNotboKOm+dveuhXjtun6Isyk69wnldkjv+Tds3gJxWyvOHU88TudFHjrbt6FPzLHBg04b1q3FPIs97PsZSetKuWRf//wDzveXi2lvCH8mgM88HgIJa4mnGLAkrE/MOyGdZ6qnLO3N2rRmWJeSwF2+eCzWz7/XwTrpdTR3GfZ78FJ0SD06L2cb0u2NSQc4SfBzz2ON9PnMyeSXU8tHq8H1bnNn3nJVPeZSFsfTnkGcQw8NoD9A4Lvrqpi8JiLSYeZczeawDrGvS0Qa2YmHdSUMXA1ejzyp8pyGlAMVqiMV8kTKZknznGpnTHrkZmYb+rDmZxKsv5MHH4X4u9/9d4j3HMD58VVv/w2IL9/5eoijFB8n9gBgDd6ZtUSpjPN3I0BPD9aY55xhTyN3jCTs70TeZz7NuTwEg4DXehgHpP9eaHHva8rUj2M0Zwa0Lsqw9xkV3ZhqTRjV9i0xM/NzpDlOvnI/egp9BB/fjz6ChR/gmG5vwfG8bTN6z2zaiHOumVmpiJrVI+RRNlWaXj9WKs3TuV+od8V8fCc4j9/whjdAzFrg7CtSpH7jHA5T1tEZ8giMaJtVtK5mzXiOeWyF5N22ejWuTc3c8draijlz+DDWslwOx9K3v/1tiOcz3pmI5thalnSNdi0ZOBZZPjfdj7z+SEjn3vM5B+p7yTj9E3Odqf1oiefcgOZP9kWb/iFuk6McaCP/iw5qwlQOt2/3cR5voWdA2Yyb+6ta8Ge5Vlo/0mOjmB6xRRHmYXEC2zwy2g3xyaLrj0MWmjZGm0xU/fnOIksP53oGdP1/7R2/6nynvRufVbGHWLGMeTtGOeR4BLJ3nnHdcXOuVMJOLNFzCPYqKdFziXKF13m8tsc28nxuZsbWXsUJXPsVyeODfSj5vnqCPh8eGoZ4bIyejZpZhfwdJiZwbTk+xytroX5JiyWJSrP+EKtXoXdeibxf+9evgXj0pOudV+jFvFvd2wtxVw/Gjz/xNMS95Kd63pYNEK/qxjbm8u7zsojuEfm2NpPgvTA/cxuaIn8jyrvNG9ZB3NnmPu8+NHAM4meffgriLD3DW0P9FFbIxzfDzz0w93neN6s/L5fK099J2Ou4BvpLDyGEEEIIIYQQQgghhBBCrAj00kMIIYQQQgghhBBCCCGEECsCvfQQQgghhBBCCCGEEEIIIcSK4Kz19Ei8HjNvWqM4Y6glHJKWbtkj3wQfdW3NzMwjza+EtKGTTJ2Y98cNdg/JxIbHDLxrIfbt1/ALlc9AOOU9gtuT1vQwaXd+6l/vdtowtGE7xD9zLfqhHBxF/dRKsV6K1OuYNPD6HTmA3zl88JT+3PgEatEtN4U4sqCq7enqPGNfZKm/vRQtwxxpNvoZvGYe7TMmMf2I+irItFJM2n6swWyuFmbMGu6sm2d4Xs72pN8akRam57sahfkWzP18Dvsl14L9MlFCPUDW9ivQ/sokB9ja6moUdnWgJvah4ycgrlQ1BqM0v4Jl5tpb3miFtmmtR+6/iNJqy8Wkf8s+BWaOdwGnZkx5FdEGLd1YB6666TUQX37tTRAfHzjqNGHg+echfupx9Cg68OTDEAc+6qWy38aNr38TxDuuuh7iDGn7m5kF7AsRY17t3YP64hPDqFW6bQf2y/P79kF8znb0abrsuhucNhwaOATx2j70InnkgQfNzCxK8PyXmyQp28zvPbh+GlQTOH8St86wD4jn1dF1NtLAZ98Qxy+D61bK3EDipx5pnzqeHsEZTOSweZqnB2l90zYeawuTt01srPtbu4msCzy9DeuN0zbsYdZALn7JFitUdfvzecyRLedvgfi+B56DuFR0NY/JUsqyGcyBLPlesYfKiRM4D4wcPw6xF+L1mBpFTyUzs0qZfEBIAzlh74SYc5cHINVn0rvNBe78dpQ0y1kfOkv1kfWlTxzD8/73z/4ZxEPH8LyveM3POm3g9Q1r8M5YlvGxG4Hve7MeCJ6HfcW1qpX8M9J0qouTI7QNeZ8F2BetLejJl83SWo508H2KWdt7+juoa87jvlhEfW6PdsI+W2XSMA9LkzVjM7O4gj/zaN2cL+BardCOmtY+1a8havN3Hvwhbv/gj5w2GGnEs9fFTLfEsasb/UKG8/LgQfQUO/fccyEepvVNby/qjzNp43TPnj0Qs19GGNXWrc+T91o+jzk4MYEa9J2d6FWU1q52yqlsFmvZ6Cie93w8O+qT1Iiay+PPHLZs9d6QlwfuqoquV8qZsFcaz0e8DMplyV/PsQYijxBewqSsaciywfmN3RytafK0C3YDayON+VZaC7YEbq3oyOExWknXvpKh+ks3pqUSdtTkFObhWAXXKqNlN0+LdL9NSw2bqcY8DpsKXYvjx/B+8ZGH8d7QzCziNWqZ5lfK5EnK2wo9H0tonmohv6vJKbe/KhXyuOK8pyYOj6AnHXt81Fv3lCru/MoH4X1UaH1aoXVfSL4izpqM1sNxaiXj8VjLr7GxlbBndc+sd1WBxuPIMG67Zi16ehw90u3sb+NG9OBY14/xyBjOT2Va+/t0/+FTm8Yn8T4/qLgLO/aLK5Xo2QCVprY29NFq70BfErIeslXkl1PIuW3I5LEWjU9hbg6N4jqtrQ3Xt6Pk3TVBfjjFUm1vYTOzFvJ3W78OvUj8qg+ub+4zx9Ohv/QQQgghhBBCCCGEEEIIIcSKQC89hBBCCCGEEEIIIYQQQgixItBLDyGEEEIIIYQQQgghhBBCrAjOWk8P80dndadLcTd8lDjitqw352q7W+xqICOsqcyf0zEc3X/Wf3Q1KRPSHQs9bJNvt2JM51nJ/L8QZyuDuP8Maq6dLLl64599EjXsB3v7IB7L/oC+sQXb5KPWseN9QinlGWl7mlnio47s0AnUcjuwvzj7/8Vi0RpJ0UtmPT3KEV7TDGvOz8P7ISTt7pik+TKkW5khYfyE9JFZ4rNM+oBRnPYek9vNovAYxgnlKaU2f9+VY3XzjvWuR6bwWxOkU1ogHXbWaG4lD5AsnXd7gRVczXrXo57jk0ePURum27g0er8LoxJHFlS1Nb2YtYK92nGKhCb/KGF9VK/2NWRdzzJdn4B8R/o2bnLa0NuHtcWn3B48sBfi8VHUgAzJzGRignMdW50N3Gvu+CtE2O6TR09C/P1voA/S5AnMkSzl4b8eRg3tn/r/vt1pw0uu2AlxQPrj/YPTOrDlqcbWOi8OZzXe2Y+DPQgcU49UHwkWbiZfA/IsiWk+9Hwc06xxz4meOELQ5tp+UN3hOdXRr3XGRe0az9qrKU2wgOqJT+cRUBsCnlccwxXyUEppY8AFgM7LnxMnDdbg3bxxjbW2TfsZlIuoj5uJURf2aB+uNyYn3fnt+MARiC/ecQFtgef3+ONP4DGeehLiqQlcR0Wsw5xWb1kn2fGj4S/UzrMopLFDXy/6abWC5w3cR7aA38mR1nCGdH1HT2C/3vfl/wNx14ZznBZsufDlELO+dFRtI2tdN4IkSWb9yTI+e3igv0ahgHnIus1mZgFpwoek/10hLe0pj+aviOavLHlfFHgt7eoWt5BPSKGA9z55ilkbukS6yqxZHrNvXYoXUIVE5f2I6xfuc5Jij+bDmLSdPQ+391M84/j39wL29Ihn9pXy1RcwGcrByUmsXffddx/EhQLecz7+OHtjYD6x34aZ67nB92icQ7wPvn/gtT2f05NPYn02M1u9Gu8heR9DQ6it3+j7yGbzg8cePrW2o7ER+byOqvfswx2jzja1JP5TtmefF/YYTIM9Mx2fLMc3hPzdaPsM+TglPq8tXE8PXlf59PyD28RrK14i830Z+5ak3c7HPH5ovThzz5O2Nl12TrOUTBLsy93PPArxLorNzDGxclKQ1lyhE3MjcJ4i6wULUzwFFm7e24Q+XzAL9zF0fQNPv480/7PlZLxUtqC6Xj45jM8Qporo7/zUc/jMYXjCnRdyJ/GZwNgUruOOHkMPwGNDwxCP0jO5gUF8hsBrE/ZZM3P7kH1cfKozrW3oe9W1Zi1+n55lPr8PvRJbW8n70sxOFvG8x2jN/sAjj0P85NPYt1O0FpmidUGJvS1T0mbTpo0Qd65BP9RC1UMwXIBHpf7SQwghhBBCCCGEEEIIIYQQKwK99BBCCCGEEEIIIYQQQgghxIpALz2EEEIIIYQQQgghhBBCCLEiOGs9PXK+N6sjN0UarqzN6Io5pmm+1hGhrCsJxhvU1i+3FP1dVwcPddTipAeP6N9CTcB9xslXMQ6/hS30UHvVzGyMdJ6/+sAuiIPs/6AWb8YmJO30OWu+oi574vWYg/cLEOYzqD8X5E71dRA2Vh8w9uPZS+voF3PKsM5hmsw9ieX7JEwZkGcH67WXScuvQp9XSMeSh4aZWZY0clnXnr8URPh5gcYTq1b61A9RyqvUSTIjIZV0myINcwot68hEs4Y6fj40hXqCZmYPjqC2YhJwv1TPM80rYJnxbE761NPPdPT60/dXex+1PT3cr7MGLxInrv6tl8G86dmAteS8K6+DeHvlMtoDZkkL6U2zX4NZmpcMxeQbcfHLboB4de86iEeOPg/xurVYq06OYZ71bDrfaUMli3qbXBMuumq6H1h/dLkJksi86pUMuXCwrjpdXz9NQ9PRcuWYPT5YIBk17X2aWzwfdfcrievhwniky+zUx5D1Vb2acb1xlAZrK0c0enzqJ5/zmI4Rs9Z0mrcUr0dIF9+DNjRWh/ibd99tufz0OJwaR03dMunGHjqMNXt8YtzZ3+HncZt9Tz4N8cQ4jqvxMfY1YA8BmlPZ42keSxK+JI6OPetV0/d5TrWAvGhS5liPNck9XF9ysyskMN6yqpf2R95RtFY5dmCf04YN26+AmPX9Z+weQtbzbQBRFM3eO2QzeG6ZLJ7b1NQYxWTGZmbcozEVl4hq6PgE7tOj9Xk2i/WutYLzRqFAfnrmehlwOcoEWDMzrRhnA2zDxMQoxBWeP5051yx0xdPx8wr23cQ4jlfuN2dZXdfD0SybpfPKYV/NlGD2KHmhwXWE/S927twJ8dgY5tyaNehrd+wYXgv233DnP7Ouri6Ih4eHIWb/m3POQe+f0VHMMaalBX1oDh8+7GyzcSNqfWezWOtGRlDbff/+/RB/9at47xw1oR4tJ1PlZPb+leczNo6YlwY/rwf5c3o2kThrCmchjrFjEbBwn4FUjzf8AoQhtdFj/6KU+4kKe775uE0QYB5y7arnn+Zci5R+4HnZXaFWfzIPz9HGgecxVXbvzxsNP2NYCpbDM2rpLTIWvkO3RjT2uVwtjp0Ynl0HlcgXM4nwGcJDj+HzzqjierUNkGcHe8tMkXfbeBHvWYISfj4ySrnu3Bw4TTCPnnk7ZYHOK5fD8+4o4ufj4zjnxmVcF+QybiMm6Rl2sYwD5vmj2E9ZH+dcx9+I7h8SuqdpSfHh7aLnMXGA65MZ2+ryAsay/tJDCCGEEEIIIYQQQgghhBArAr30EEIIIYQQQgghhBBCCCHEikAvPYQQQgghhBBCCCGEEEIIsSLQSw8hhBBCCCGEEEIIIYQQQqwIzloj87WrMub7083bfxib6Rg5sclxqplQHSNyY3OoOkY9jpkwG1bNx9EITa8cj9QYTcAz8a0Y+2iQU47vx+/7g84R2VirWCHz3Gg37QNNCD02W7f1EPsJGsxZgqZ3ZmZRjKY6l16NBjY7LjxlFjw+jsbDy017LmdB1WDHyRjqO8foLMXkMedj7gacZ+yVnqBRT44MaX02PieihC3CzTJkRJ6nfbg+d/gDNktkk1WfDInGUkyFxkM8r4BMxCcnMZd5/PhsOk5GT+UymkmlGop5uI9Wup6ZarvjKDZ35Cw3YGXekKMt5guO9fE8HNzWbEBTqlv7Xwdxfzden1WteJRyiLkd09jyPNdM3SL8GaW2BVmsL7kdl0M8OYnG5FkyZy8UMK/LJbcNSYy5OUUT1PD4dBGYTDMHX0b8JDS/emEDrl1ktsbjMc380uOs4M529kHLjxhN5RIyQTYyjTTfNaHzKCf8TG0zZy+mHGKTOcf4lk1AXRNwNvt1zdGpFTx0Au4nMtyknE7/zZXa5tw48TTWyPzf/+3bs8aD42NoTB5WsO8qFTZgd2Fz+sGjxyF2TMTJ/JnXRD7Nl2lmvg51PVRpPqM4oPksy/Md1Z0k566LEjZ8pnk+V0CDYNcw2tljjcisSKbzZmblCtboCpkaz5S+SoqB5PJzao6NaAyNj6MJI38+OekamXMeBc7ajMcg9yfm+hT1Z0hmlZWK24aA6luOzNCNzCi5zbkc5gQbOnslWv+nzlE0T1fwPCpOjGOeDS/d8cafuxWPTeMrFAfVeSF5gRuZM1NTeH0+97nPQcx9yYbfFRqvXCvT5vkCGY7W28eqVasgZiNztx57NT83c/OUj8n74O3juLFzXqPxvGDOOOF7ztpjYD7zXczjiPOk3lqW10R1Pj/NTiCq9xu8Hq8/nbUc5cg8HKTZsD32aW3m175fdw3ecSyl1Vt+DhFx11cn2bS1qVhelt50XNRlTi3nsh7TPSb5e1sUulWDjcpdC3deOOOcGtH9feLUMr6/c5pgHt/U8P14wjUdN58q4fp6vIjP1zw66FTFbURE94w+nWeccB2ieZzmbZ7H+bnhpg0bnDZsWo/Pl/N0uWbOg2t5LfSXHkIIIYQQQgghhBBCCCGEWBEs6KXHpz71Kbv00kuts7PTOjs77dprr7Wvfe1rs58nSWJ33HGH9ff3W0tLi+3cudN27dq15I0WLz6uu+465Z1oKMo50QyUd6IZKO9Eo1HOiWagvBPNYOPGjco50VBU60QzUN6Js5EFvfTYuHGjffSjH7UHHnjAHnjgAXvVq15lP/MzPzObrB/72Mfs4x//uP3Zn/2Z/fjHP7Z169bZzTffbGNjY3X2LERt7rjjDuWdaCjKOdEMlHeiGSjvRKNRzolmoLwTzeDb3/62ck40FNU60QyUd+JsxEvSRDsXQE9Pj/3Jn/yJ/eqv/qr19/fb7bffbv/tv/03MzMrlUrW19dnf/zHf2y33XbbvPY3OjpqXV1d9pu37bd8vtPMzP7sU6hPVq500rfIGyP1Xc5CVexZm511MNkOhfV207Qc+Tt8DDwP1kjP+M9AnCT/C/eW/D3uLu2Uk/X0A2qTX8RPkzfi1+0luHnSh7Ghp0fWdz09rrker89/eh/qCr/25lMasKOjo7amt9dGRkass/PUdV+uvLvsko2znh7sO5HJYhxFmJd+ijZ6gbW5WVqdRAg90uFkD48MxQHp4nlpLj0h6d2Svm2WdPCTOhq7rI/LFEP38xKdZ2t7G25AZagSklZqvfez9P1SShsrtI8y6T6Xq+KoURTZk488t+w5Z3Yq7/7gn561QmuHmblaiKwh6WaZO9AdDwb63GcN5DrtdCaJeZVTOkaC9a6nFa/Rtl7M7T2PPADxIw8+BvG6/k0Q+wHPA2YTY6jV3tmBtabQihroU6RhXg5Z2x31yS+8YAfEP/nxT5w2tLe0QrzpvM0QX3DZy6fbOj5mr71mW8Nq3arW3Ky3gKN5TcOnnOC1iVK0htkPw3f8ilgDlLwTHK1UHvOkwZySg76P1zPJoP64oyUd0zEcaWr2SGItcdfDJabvBOwFxQ1nndIMjX/29KBjBikruIQ6n2tKMOcYSZLY2Ohww/LO9/Ozc0pA/iVG85njfZEyD7jnyuZo/AWaW1g+l/LSdYNLqbeOpjnVbPYVoc/b2rBGFKhmZLKYx66bRoqPQQZ9PwqtWPviEPdSJF+LsIJrwYTWituueoXThmvf+MsQZ1txni9OTPs5lCcn7H//559v6Bzb1X3urM49r5v4KkcxjrEwdL3Skrj2OilmbzT2/KA0CtnDiDbI5tivwyxHedHSgv3tGfte1a4tM9dnBtbuDzLu+MvncN71aUyPDB+BuDSJng7cT+y3wFrQmYw7z5uHue4FGM96eiSxjY4caFitE2Iuc/NuOWtdJrfxtJ4e7hqG/VBSdsxTKvtF8Jqm7v0Be3osvZ+h66VW+xiuLvw8PD2cx2fs+1nbR4S9Y9l7bT7WJo5n2YzOfRLbVGlQtU40hUbl3Q033DjrO7vnwEHYZmwc17AhLfbZT8zMfXrM65N6vldxXY8yJO0RvOs5VdvnjP3kcuT5x565Pt8jpT5D4hsj+kad+ho4nh74eXdXB8TXXv0ypw29q9FD2mL2PJr+b7lctr/8q087OZfGGXt6RFFkn//8521iYsKuvfZa27t3rw0MDNgtt9wyu00+n7ebbrrJ7r///tPup1Qq2ejoKPwT4nQo70SjWaqcM1PeifmjWieagfJONBrNsaIZqNaJRqNaJ5qBap1oBso7cTax4Jcejz32mLW3t1s+n7d3vetd9n//7/+1Cy+80AYGBszMrK8Pf/O/r69v9rM0PvKRj0z/Flb136ZNm067rXjxsmvXLuWdaChLnXNmyjtRH9U60QyUd6LRaI4VzUC1TjSD/v5+1TrRUFTrRDNQ3omzkQW/9NixY4c9/PDD9oMf/MB+4zd+w375l3/Zdu/ePfs5/4lLkiQ1/7zn/e9/v42MjMz+O3jw4Gm3FS9etm/frrwTDWWpc85MeSfqo1onmoHyTjQazbGiGajWiWZw3333qdaJhqJaJ5qB8k6cjaQ5ANQkl8vZeeedZ2ZmL33pS+3HP/6x/Y//8T9mtdkGBgZs/fpTvhGDg4POG7255PN5y+ddrdpf+4026+iY1qcNM2hu85UvHoD46ABqeIURahebmXnkscFSbgFpKXZ1oL5uvkB6uzFqpiU+6iOz/vH0z3iQoz7Z+Cjq8xYnUbs2tsMQR8khOsL1ELUElzht6GrbCrFP2uyxDePn8avw86Af4kILasV1r8Y/ObvmOld/99ff2QvxjpeQDmbs/n+j8s7z/Vn9c9a0Y81l1uNMI4pZyxvPNZvBvMxy0WcdPXJ0cKT5ohSNQo81CFHTNargecXk8RGzp0RUWxPWT3mVmuFjTmCesA57htrAeuWOJixLyqb4ioTkmRNSX82cVlQ91lLnnFmNvPMS86rXyckrtgCoLbWY+p16Co4pFg01t59H6jvf8lmHkmpuOIUeOZNkahZOTkCcIW3i48dOOC2oVLA+re3F3w6pTKKG+ejQEMR50sacOIGfTwzh9R4bHnbaMHAYNc3b15D+7cyAqf63UbUuyJZPeQvQ+GMPiCxp3GdSnGXYC4F9rQKqARnSi0/YO8hVV8U2piQh1zrWAGU8Ni9xzW9qttE8d/8xe26w9qnTbKqf3CT+AsVB2mBknxC+nnPGZlz9fqPyrrWnbbY9gYc1OZPDul8qkq9ESl33/NoeHI5uL+vlOsWQ/E94bDheM2l6tjSHxnV8C/KtNeOA4rUbz3XakO9cBXGJ/IyKoychnhzDWuZnyNtriud5bPP+h77rtGFq6DjE51xxDcTrtl5sZmaVqenr2sg5NpvNmV/NlUoF5xpefxTyeA9RTNF+rtSrHbzeT7nJx69znmFeh5UUn7IyzolTNIe2kqdKPof3GLxWq4Q43spljF0vFLMoJp8s6jvfxzGeUHHi9SgNZwvoB77v3lvF5CnAXiTJHJ17s8bVurONtAdNy72Peg/u65G2/4Xuc5HWpUvGtm3brLOzswH3E/7sPLXQ65O2ues9UdszMNVwrcY3+PuLzRkzd75K6rWptmz+/L5Uty9rb28J17aUNvN6kq/NzALyRV7rRHNpVN5t2NA/62HRtQo9IPbsw2fFhweOQpzqT8tjNnYMjfBjxxOptufHfGD/i3p1hI8xNcUe0/Rt9plM2YbXo/Vsl9h7zX0oh+E5W86BeDX7d1RbAcdw7r3c5xD1OGNPjxmSJLFSqWRbt261devW2T333DP7Wblctnvvvdeuu+66xR5GCEB5JxqNck40A+WdaAbKO9FolHOiGSjvRKNRzolmoLwTzUB5J84GFvSXHr/7u79rt956q23atMnGxsbs85//vH3729+2u+66yzzPs9tvv90+/OEP2/bt22379u324Q9/2FpbW+1tb3vbcrVfvEi4//777YILLlDeiYahnBPNQHknmoHyTjQa5ZxoBso70Qz2799vZqacEw1DtU40A+WdOBtZ0EuPo0eP2i/90i/ZkSNHrKuryy699FK766677OabbzYzs9/5nd+xyclJe/e7321DQ0N29dVX2913320dHR3zPsbMn+mMj5+SNimVUOYkjqfoO7Vlo6YhCQRHIobkB0iigv9c2mL+k+0yxWnyVhTTMZKE9pHwMfBP2c34PDFOkpIxcTJJP2F5K/qzqATlX+KErwXuL4pw+3IZ5WHMzMbH8WejoyS9EZy6nmNViZtf//Vft6NHjy573kVzZJT4T2ydmHMm5e9hvYS/gzjyVCT54ygdURvcP9VKkXzhPyUO+RiUAyzFwfJWMf/ZMP85n9MEC53v4Oce/wmhT9JHC5S3crc3i+h6RXXkrZY758xO9d1U8dS48lj+oc6fTDt/hmj1/7rcUcyp086lwKf6NGlY/yaoHk5OstQG1rOpKaw9pZL7J52VCv6M9xmSzAnvI6G6z5/Xa6OZWYXbTd+ZqM51M/9tVK2bVmyZ+//uNqeNU+qM+2e8zk5rhe78mPKT2vF8vsMf12tEbRmG1J/U+06dHyy0H1L/fLrOecy93jN/nt2ovJuWm5qusYlXW/YpqTPXVDfC0Dlu7R/U6+/5/Xk61Win3bVjZ86lP7uPI6yNUeiucSOqZRzH9B3epyMJ5JxD7XOcbhfuM6TaV67KWlWqtbuRc+zc82NJJZYwiGOec9Pk/GqvSdzt68hb1d1fyjzvlFjKm5hjkul19ldb0ixtKLjHqLePOuOr3tyTei3qyO3QdxtV6842lqJdC93HcvTF2dq/9XjpS1/akFo3d4y4fVVbEiS9a+utQfjjhclbzafWLZx6x1jg15eiCQsmrc215XZmnmW92GudaC6NyrtK5dS6du7/m7nyVfXuL6Z/aLW3qXMvXHd9w4dL+Xw+6y6k3tqy9v5T21V3C95nnTbRIdkuoFzG+5XpPZB0mNPuGL47n1rkJWdZxXr++edt06ZN9TcULyoOHjxoGzduXLb9K+8Es9w5Z6a8Ey6qdaIZKO9Eo9EcK5qBap1oBso70WiUc6IZKO9Eo5lPzp11Lz3iOLbDhw9bR0eHjY2N2aZNm+zgwYPW2dlZ/8sildHR0RdsPyZJYmNjY9bf3+8a5SwhM3mXJIlt3rz5BdlXZxPKufmhvFtalHf1Uc4tPcq7+ijvlhbl3PxQ3i0tyrv6KOeWlhdyzpkp716ovJDzrtE5p2d2S4fyrj6qdUvLiyXnFiRv1Qh83599UzMj5dPZ2fmCuwhnIy/Ufuzq6lr2Y8zk3ejoqJm9cPvqbOOF2o+NyDkz5d1y8ULtR9W6FzYv1L5U3r1weaH2o+bYFzYv1H5UrXvh8kLuR+XdC5cXaj82MufM9MxuqXmh9qNq3QuXF2o/zjfnlvdXrIQQQgghhBBCCCGEEEIIIRqEXnoIIYQQQgghhBBCCCGEEGJFcFa/9Mjn8/b7v//7ls/nm92UFzTqx/mjvloa1I8LQ/21NKgf54/6aulQX84f9dXSoH5cGOqvpUH9OH/UV0uD+nFhqL+WBvXjwlB/LQ3qx/mjvloaXiz9eNYZmQshhBBCCCGEEEIIIYQQQpwJZ/VfegghhBBCCCGEEEIIIYQQQswXvfQQQgghhBBCCCGEEEIIIcSKQC89hBBCCCGEEEIIIYQQQgixItBLDyGEEEIIIYQQQgghhBBCrAjO2pcen/zkJ23r1q1WKBTsqquusvvuu6/ZTTqr+chHPmIve9nLrKOjw9auXWtvetOb7KmnnoJtkiSxO+64w/r7+62lpcV27txpu3btalKLz06Ud/NHObc0KOcWhvJuaVDeLQzl3eJRzi0M5dzSoLxbGMq7pUF5tzCUd4tHObcwlHNLg/JuYSjvlgbl3fxRzplZchby+c9/Pslms8lf/dVfJbt3707+n//n/0na2tqS/fv3N7tpZy2vfe1rk09/+tPJ448/njz88MPJ61//+mTz5s3J+Pj47DYf/ehHk46OjuRf/uVfksceeyx561vfmqxfvz4ZHR1tYsvPHpR3C0M5t3iUcwtHebd4lHcLR3m3OJRzC0c5t3iUdwtHebd4lHcLR3m3OJRzC0c5t3iUdwtHebd4lHcLQzmXJGflS4+Xv/zlybve9S742QUXXJC8733va1KLXngMDg4mZpbce++9SZIkSRzHybp165KPfvSjs9tMTU0lXV1dyV/8xV80q5lnFcq7xaGcWzjKucWjvFs4yrvFo7xbGMq5xaOcWzjKu8WjvFs4yrvFo7xbGMq5xaOcWzjKu8WjvFs4yrvF8WLMubNO3qpcLtuDDz5ot9xyC/z8lltusfvvv79JrXrhMTIyYmZmPT09Zma2d+9eGxgYgH7N5/N20003qV9NebcUKOcWhnJuaVDeLQzl3dKgvJs/yrmlQTm3MJR3S4PybmEo75YG5d38Uc4tDcq5haG8WxqUdwtDebd4Xow5d9a99Dh+/LhFUWR9fX3w876+PhsYGGhSq15YJEli733ve+0Vr3iFXXzxxWZms32nfk1Hebc4lHMLRzm3eJR3C0d5t3iUdwtDObd4lHMLR3m3eJR3C0d5t3iUdwtDObd4lHMLR3m3eJR3C0d5tzherDmXaXYDTofneRAnSeL8TKTznve8xx599FH77ne/63ymfq2N+ufMUM6dOeqfM0d5d+aof84c5d2Zob45c5RzZ47658xR3p056p8zR3l3Zqhvzhzl3Jmj/jlzlHdnjvrnzHix5txZ95cevb29FgSB81ZpcHDQefskXH7rt37LvvzlL9u3vvUt27hx4+zP161bZ2amfj0NyrszRzl3ZijnFofy7sxQ3i0O5d3CUc4tDuXcmaG8WxzKuzNDebc4lHcLRzm3OJRzZ4bybnEo784M5d2Z82LOubPupUcul7OrrrrK7rnnHvj5PffcY9ddd12TWnX2kySJvec977EvfvGL9s1vftO2bt0Kn2/dutXWrVsH/Voul+3ee+9Vv5ry7kxQzi0O5dyZobxbHMq7M0N5d+Yo584M5dziUN6dGcq7xaG8OzOUd2eOcu7MUM4tDuXdmaG8WxzKu4WjnDOz5fNIP3M+//nPJ9lsNvmbv/mbZPfu3cntt9+etLW1Jfv27Wt2085afuM3fiPp6upKvv3tbydHjhyZ/VcsFme3+ehHP5p0dXUlX/ziF5PHHnss+YVf+IVk/fr1yejoaBNbfvagvFsYyrnFo5xbOMq7xaO8WzjKu8WhnFs4yrnFo7xbOMq7xaO8WzjKu8WhnFs4yrnFo7xbOMq7xaO8WxjKuSQ5K196JEmS/Pmf/3lyzjnnJLlcLrnyyiuTe++9t9lNOqsxs9R/n/70p2e3ieM4+f3f//1k3bp1ST6fT2688cbksccea16jz0KUd/NHObc0KOcWhvJuaVDeLQzl3eJRzi0M5dzSoLxbGMq7pUF5tzCUd4tHObcwlHNLg/JuYSjvlgbl3fxRziWJlyRJsjR/MyKEEEIIIYQQQgghhBBCCNE8zjpPDyGEEEIIIYQQQgghhBBCiDNBLz2EEEIIIYQQQgghhBBCCLEi0EsPIYQQQgghhBBCCCGEEEKsCPTSQwghhBBCCCGEEEIIIYQQKwK99BBCCCGEEEIIIYQQQgghxIpALz2EEEIIIYQQQgghhBBCCLEi0EsPIYQQQgghhBBCCCGEEEKsCPTSQwghhBBCCCGEEEIIIYQQKwK99BBCCCGEEEIIIYQQQgghxIpALz2EEEIIIYQQQgghhBBCCLEi0EsPIYQQQgghhBBCCCGEEEKsCPTSQwghhBBCCCGEEEIIIYQQK4L/P1iTBJShierxAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1105,20 +1092,18 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9S6wszbIehn2RWdXda639+p/ncc8591C8FCldUTLpa9kwDIEwLdgwBBMQYMsSbBgwAY40EDwwCQ8sDmkDtjXQiAOCkg2alDSwNCAsAxZkQYYEC5I9MAnRuiLvJc/zP/9r77XXWt1VlRkeRERmZHX1euzd6//v3qfj/9fu6uqqfEVmvDIikpgZJzjBCU5wghOc4AQnOMEJTnCCE5zgBCd4/yB82w04wQlOcIITnOAEJzjBCU5wghOc4AQnOMHjwMnwc4ITnOAEJzjBCU5wghOc4AQnOMEJTvCewsnwc4ITnOAEJzjBCU5wghOc4AQnOMEJTvCewsnwc4ITnOAEJzjBCU5wghOc4AQnOMEJTvCewsnwc4ITnOAEJzjBCU5wghOc4AQnOMEJTvCewsnwc4ITnOAEJzjBCU5wghOc4AQnOMEJTvCewsnwMwMi+otE9H+65fe/RUR/6ptr0QneBE54fPfhhMP3A054fPfhhMP3A054fPfhhMP3A054fPfhhMP3A37d8Nh92w1414CZf/vbbsMJ3h5OeHz34YTD9wNOeHz34YTD9wNOeHz34YTD9wNOeHz34YTD9wPeNzyePH5OcIITnOAEJzjBCU5wghOc4AQnOMEJ3lP4tTb8ENGfJ6KfEtElEf0dIvrT+tOKiP51vf+3iOh33Du/R0T/Hb3+i0T0bxHR39Bn/zMi+ie+lc78GsMJj+8+nHD4fsAJj+8+nHD4fsAJj+8+nHD4fsAJj+8+nHD4fsAJj7/Ghh8i+qMA/kUA/zVmfgrgvwvg9/Tn/wGAvw7gBYB/B8C/ektRfwbAvwngQwB/DcD/hYj6x2n1CeZwwuO7Dyccvh9wwuO7Dyccvh9wwuO7Dyccvh9wwuO7Dyccvh9wwqPAr63hB0ACsAbwjxJRz8y/x8z/pf72HzLz32TmBOD/COA2a95/ysz/FjOPAP73ADYA/huP2vITeDjh8d2HEw7fDzjh8d2HEw7fDzjh8d2HEw7fDzjh8d2HEw7fDzjhEb/Ghh9m/l0A/xKAvwjgMyL660T0ff35F+7RawAbIjqUCPsfuDIzgJ8A+P6BZ09wZDjh8d2HEw7fDzjh8d2HEw7fDzjh8d2HEw7fDzjh8d2HEw7fDzjhUeDX1vADAMz815j5vwXgNwEwgP/NGxTzQ7sgogDgBwB+dpwWnuA+cMLjuw8nHL4fcMLjuw8nHL4fcMLjuw8nHL4fcMLjuw8nHL4fcMLjr7Hhh4j+KBH9t4loDWAL4AbiBvZQ+K8S0T+rlsF/CcAOwH98vJae4DY44fHdhxMO3w844fHdhxMO3w844fHdhxMO3w844fHdhxMO3w844VHg19bwA4nz+0sAPoe4eH0K4H/1BuX82wD+OQBfAfifAvhnNe7vBN8MnPD47sMJh+8HnPD47sMJh+8HnPD47sMJh+8HnPD47sMJh+8HnPAIgJj5227DOwtE9BcB/BYz/0++7bac4M3hhMd3H044fD/ghMd3H044fD/ghMd3H044fD/ghMd3H044fD/gfcDjr7PHzwlOcIITnOAEJzjBCU5wghOc4AQnOMF7DSfDzwlOcIITnOAEJzjBCU5wghOc4AQnOMF7CqdQrxOc4AQnOMEJTnCCE5zgBCc4wQlOcIL3FN7K44eI/ntE9HeI6HeJ6C8cq1En+GbhhMd3H044fD/ghMd3H044fD/ghMd3H044fD/ghMd3H044fD/ghMd3H97Y44eIIoD/H4B/GsBPAPwnAP55Zv7bh95ZP/uYzz/50UJhdnFXW+iO35fBSqW9Om4vj/0zzO7pes0LZRzuBc8u798fnn9rbszLqW02ePX7/+/PmfmTebkPxePzjz7mT3/wm3ttOtCC5R+Xb7kfln5tR4AWC3iz+fHgt+jNa6PF2XG/kv72f/afHgWHgKzFi09/s97gezfjBG8FhK/+y+Pg8emLD/jj7/5GnVHLi2JW+wnuC/srtd75/f/8bx1tLT776GP+5Ic/XqzT4+sgX3F03j9v19TQq7ZELlfL9bC7MX92iffttfM+4sWhSXng3WP5KH/5k9/D1ZefL3OSB+Jx1W/4fPPEFWAftXg6wNvIr1uqvNtks8wZnNlhy4HeokAIFEAEEAWEEI+22A+LiLw3N9qfllbQ/gs8q6S5ap5bruzy6oujrcVw9py7p5/utUQKXLy8BZaeonu+/G544u/LMx5Hty9s/+v46leYbl4dZS2++OAj/s73Tc+odfl1VvQe5jr/yu+tpmA0cI/+Meu0XZbpWH9htk9G1sczM7K2QdpFsnb1u3wCgaiURq5ku46BEEJ93t5twa0ozyvI0ad7MZp9DWoOf/v/+/852lrs+nPu1y9ubcutcJcSomO++OJR1no70+nO9szu7z3ibizSy7upxiGe7WG8/hXScJy1+OTFR/zB93642JLm2wEysnjzXnLB/bB2P/MHLVwdruL+Is8d8tMtSvLt+rPAz/7Oss4PAN1dDbwF/kkAv8vMfxcAiOivA/gzAA4u5PNPfoQ//b/9D/YHhgAmI5PZ3SYQL4myOKjkeKGUico1GCBkBKSmvGYhcL2QlkQkHaLICZETiLl5KyOAEfRV/ZcZS+hnZl+F6w+5v9nzXK/rxOcyTHI36G2COHGR/pBLif/X//nF7+81SOBBePz0B7+Jf+Xf/X+CEaTv7FpPMi4BFT3BE1eSZ4B99BXlhKid1s4oaO825ZSXXd/rK4sgDLIWX96g+sKhpWXvlv6W6+W6PGEhqjOleaa0fWGtcy3jT2zCUXAIABef/hj/9P/uP5Y5ljMerKG5DjcyQ0NJl02DdGiwDtV6CKWHmkz19wdWdS+4v2JrPxIQQmnLv/Fn+qPg8ePv/gb+5b/yb4KVsrGtAwqz+W3tyEvF1Db+mgId+GYCe/mCuk7+7H/zjx1tLX7ywx/jL/17/y8h63kuvrj2uM9mnemmhOGaAERUitipAhEI6JRgZQAZYlzIDEzKa3LpJdVrf5+BBCAxgbk+Mx+3vUa3l+11gwCvpCwOV1Go7BlPte8LRMD/4b//T972yIPweL55gn/qd/4ZVz6BiBBCQCCh7SGEQvuI7JrKNVFAiBEAkHLCNA3IOWMYd9hub5CTl124GYjVeo3N5gwhBGw25zg/uwBRqMrnncQSaMZ+hgenJzsxhMt3kW2q/JP1O6sBi8vzMruYucx1uc63XPPe/TI3GPj3/qO/erS12D39FB//c/8KTBb1ho0q0xyQHxqggl9QKLKoCi8Hap+P/5IceYDvvoWh6ICEDdAS9UEzCahQCrkOXjB1cmnFlzxvdCqQ/P3uX/vztzXxQXj87vd/hL/8N/59MOci2wQi9J2uOWbknMA5I+eMcUpCT4lAIQIIqK0EEgNTEjqZAUy6HlJKmKakc7qOEVOQPwC7DOySGHq2k/xlZmyHCTfjCGYgxoiu60BEWHcRqy4gEGHTB2y6gACgR0KHDGJGRJa/QHh61uPJpkMI8vyqC0UmLW3iBDMkc5a+EoAuxkKTQqjKqF/r9brOdObZ/HWL4B/7rQ+Othb79Qv84X/iz5ZKqtwY0BrxqubYrAKlwZ7Wtu+So8F6TfU9bWdT10HZ1ZXJeytK9ZJSx4wGFJ2nfta69q9NTjA6mFAphY1BIx40s6G9LnTJjcPv/z/+l8t9FHgQHj/43g/xv/jX/m8AiYwKAMSMkCeY0TWBkFl0VnYdCDk3HTGZx3hKvW/9sesARizz9Fb+Nydr0kIc0lfm9HG5yGr0nT9+aF755hiOeDZH3BddtwtvE5dG/q//qWeH1uJbGX5+A8A/cN9/AuC/Pn+IiP4cgD8HAGcf/xAmypYJSACIy13Blf7KboGwe95dzMUWgg1YaJ7zyuBcVKzTo5Zki4JKPWqEIpKl7az1pfVmlyAjjjMhXm+xVeyIKTVGC9a+UL2m2cQkKcgIBeuiZQQdN54ZzQ7CnXj0OPzkN36IKTMYuSgIpRdcmbkYyNpekZuUlfbNx8jG2PXVJrSWQXYbvgzP7Zy4xnXRz3dfC523ts1W6pLxR97xBp96LYRTq23Kcl+IXV1UfqIye9tu36aqO3jwWjz/5Eel3Uzz9h4CP868MD7s+j8vUJ/3+LoDluhqs6qaNb1f5GMYfRbbsDd2exPpgLi+Bw9aix995/soM5jcp6NJRstk/MNSY+9q03sPc+pg343msFq3F8jVEjx4LX78gx+pEMDlc4m/lanGxncgwpMJE1y5hiMsbiEobTUapv+xcA0Yy6rcGGXNEivPI4CY6v0FKjBflkv3S1/IXc+eWlxai/Dw+evk6EPwoLV4tr5oy561rN6b0z4R15kJKSfkcQdmxjgN2A1b5JSq4SentixmcJbS1uMZUpoQYwdCQN+tEWKUZ8NSR2nxmyelDzIlPPgFA7712ss9RLTAV26FB6/F+PQTJ3/IJCE4uUX/jDw0o+ieqRPMlEpTCOiWeefn/m042x+DW/aA3wBsbc/rrrKXyXtGATw9ofp4ebjgEISAUOS4WFjW8fjid7/3Q6wCAQjgIPQ7EBUjhxiDqBhnoLIsQI2yaLJXYlFOmYDMpjADTKwb1jY2pmJWemtmAFuGUceui4Q1RzAz+i6i6yICEVadGW8I60jog2gyEUAU2xQCyz3TcMRAo4YpZhCLob/KYl7AIxsvgAIohDrX52SpTLc6f8GV/pQS76alwBusxX793Cm4vhKfoUTalktEhjT8EJVY0qVva/9dRp/GANW00fNcV4lX+I2HFzpjuPHvt21u70nZwekJvnavA9mY1PtO3iFf753woLX44rs/wI6DGH9JDKqBMwJHgDMYJGurYM9moxiRybS3YvTxRpx9j2X5lBVj6u9BXczNea+Tt44H+3Op0vf9JWMj7I2QRc9q5gLUvrDcMl//vPZCL5eY9j3ZwNsYfpaq2FeBmP8ygL8MAB/+1p9kCtUjpQw22aumOFaGUqryTHVhURjbscFnmhl+pDFgUhLPGbZTETghIhWOzjbdqJZDmSGXIgATWRuDX0Lt55KQQuz64JcpwW99EpwRTCe7CEFe2jBFPDRlMFER0u8hjN2JR4/Df+gf/5N8MyUwCJmqiBJgSoHZtxkBhOCaSw7XreGnztxlQusMP/pP+TT8E8lyMwblOzJjetYWk4cDccNK2oGh2T3BfXkXtQ3k2lwH0F9xERiIAVLqQABCITiCPzWAI5P83QEPXosf/ZHf4U7rsLruB9zgxV/X6b5sXycvNTTvHq5rmWjP1r8n3geJ/DFgub2F1MzYrjcE+7n6wAoOrsUf/yN/nJmiCqJBGYvSA792Gnp0MvwcgmrM83PaDCusQu+dc+rBa/G3/sTvcAgioBcB4ZaCmh1ZFR6EJ9Xr8oCbeGTb64TCtUxpKN6oTvGx7rAuLG9A9yEFi7OHl9ZjOxi30R1TMg4UUWZ16/Fzf/By06FHDlRbvzgcvnj6MVu5hwooMkMj86AYM4bdFlc315jShO32Gq+vXiGlCcOww253g5ST8i2q7+kGy9nZEzx58hxdt8KUEmK3Qtf1iF1A7CKKB5LnT0viyfLttwCTek1+WXqG77z2Rp8HGIAevBZX3/mHOQQxkHspouXxFX2+AnL/VMWMYHLN3YYfa55VNpcn53LmDB5MxmkZH0sKLqDGmvpXZHYORSYOCLUZ7N7Vu4GAGIJ6+hBikLGKi8bJW3t2cC3+9h//k/x0pd5ubMadqlxmEFIWj8dMBCZG5ozMJN48qH9QLUG8KtT4o73P5k5prjFcvZ3sfUIhuegIyEHkgtgHrNQKtO46rPpODT+EPorhJ4IRdcwDA0GNvMSidQSlwVldMlPKSKRyZNS1zjaTbR4qHs0QpvpYUSSdDAfFWyN1efncLsJ9AogevhYvnv0Gr1ZdebV6GqmcbHyJVbZkLjPTt7J6WfjmewPMgQbPdBGhCwudmC0iG6davprpCDAPJOt8aZvX/Q4OZuUfQgOp/UnrtnDCQj1Uf3QCTv3cs37dickHrcXv/bE/wZdTrzpNBJMafvIEM/xk9bADq3MFA4EZgcXDzetwLUXk/coJEOkm7P3WjEEhw+0coBI1Y/eWaWF9bT9cUOiOk5ecEbb14tov2dNV39NapeMtRlUdOs2+cRe8jeHnJwB88N4PAPzs9ldk0hd5tP3JXdTJeDDkxt8nLzDbX3DP1ucYzigCMeIEkolmIMqweasYknSgC1Wpo01KhKqF3RPJttzSboZ7QdvczAQnJWkxhVA4jdKJ4kXxKxOaPNk+CA/CIwMYtf7MGab1BkB3wNRDiYWxRi8cKdMpQ+MEG/Ij1Bh8as1z4at+UbWEqCppwELP66q36olYiIyV5Ypd+iZMWCy6REJkrT1+ntUaW9KTAwrDCmr4CaxKn86JrAwmEyGFe3n9vMFalHmvMsN9rf3l3QZHCsUweWt5c8PRgafqFF/0HpLfFrC0+PyxwFabq9HzDWcUqPTA2uq9OQ7Cg/FoBh9eCPUqs73RGw4h5kET4NcGzDhha/MeM+sN1qJSJHUhOIQJL9B6fgNGa/SxaeaJ0oKQa9MhQMIawLNX4K/JWGbdweL2Gd/OpX54BWLPgXfpGd9Obp/ZY8OzZw7CgXoX4GF4nLFvL0fv3XdQOBUzUp6wG24wjiNubq5wdfUK4zRiHMXwk3NulReRMAGVP2Ls0XUTzjZPME0TiAIoAJHDrMPmxdI2ZiZu3B8OvlB/MLGlNf60vHH5GrcbfW5H5JutRQowzt7KLrVK8f7eb4KXS2g2CZbkgxbcCq+CZm0FmTxxe6fvE0ptBlPhEweeb8px0rWnEaZ0G/2x32cyftB2EQFdCGLwAdAFDTM6Ih4DgFUklW1I+0rircPyRCaWzd9ikAvFwGPRtl4Fs+A0hshlYnS3deUUNU9/i0eU/GYeP1nHwnLzrLuAdS/hXasY0Efvx1/YguznFJprCqAZ7WVd5CxjGUpf3YQ0xcvedUbJZnKXieEJwj6CCv01PeMR1mKMsYl0sD61tKRqVvurQ9fQAYW7za+23AYflrOUJ4p0Pjhq59iuH9vW26eW5GmJb+dSg1oc2maRyfIELPh1szxHfnycQa8lWsuDUOGB+iJhyGLwkd0t0XNCDiAmZLIQMG0VB5njzIhlZ2hfn2tCkd39SjFDc5P9XPbPz4x7RYZuBKUGU61cYk3046ZGn9JGJZjFSxuOKiwMN5VYmkNc2OPJfx7yFN2HtzH8/CcA/ggR/SEAPwXwPwbwL9zrzT1BYc7IdSG7RT1/vRoJ5Jpn0zkg6zBY2a2CGpAROYOI0XFCxASCxhtq3p4E8wpyy9HxZWuZ0UkxzlR32EVLsLVkPoMOjAdZ71z57XOOYC8N5d3wBni00agLdk9sU+ZfIt6oChnV6FM7bovHe23VtcRlgRVbGWqZ0HdrvKoXZng2tguEnvwMQqnLE/DaEnIC02yM/QRB3R8v75KYxSQST/pefLVYvKMYNm53MyQHD8ZhIW920VCz+8EejzB831Hvfeqpyg0fLLMZ7ge0YYmmvBn48LVZ24wuqYByT8Pam6/FGR/wLKBF7RIzOcZYvN9gdOweI/WGfNHRqQNrkbCgnDeEd6ax6Dxn0vw9JDRmWdioFK/5md1FKd947ewR3+w52TXB2PHPSmcXgA/00dVRhmle123Aj7kWfT2+g65St+nEIOSckKYRmTNubq5xdXWJYRwwDDcYpwEpTeCcKr1GS0MVw8h5wjBskfOEq+uX6F526LoeZ2dnODs/1zwiPUK30s2jBbx5A0uRPGZNb7r04NCrw/XdZtx5c3gjHNbZrVdLJHaf5MLLLNUV378s11XhWq65MfoUq32pYUEN2q//TigLqCrMS+XUPkqOMO9Hb/IDwTx+7Bkn+Rj/Q1VQuxBKTplAfvwOwhvg0XJMoYRBTZoyJGfGlDIyM8acMTEjccbEkr8n6biYErjv5xRqDY0hQFTuzIyUNX+Jkk3z9AoxVtqn8m7fBXQxaDiajZdOg5nsaps3pHUnBEzmAZRF0CASOhttDWdZT6RvEgGUpX9RF3QwGYWd3qL123xrqb6Xou61Vt+YnjY2KMLM6DN7dq818w03t1rfUuyZG43EodoX6n93K8kZf2qrKjOkRrBdKq+lTeVdW0tNVIg8b8agOhLVWaIaO8wr6dZuPxiPgUXLyVldKRgIOYKQJWycqsdP7ZvztMZclyblfewnYZmr3shX5q8KCXUu15lLpbwaddHU5eAA1Z3f0IfZ/Uqure55d69t0W06ipVF8DXUyu9ej29s+GHmiYj+RQD/LiQE9a8w89+6x5ul78UA3Ui89bougGVtjppdEb+EajnEkn7SJrl5qPSUsKIJBEbPA/o8gMAYEDEgImvy4gQJpWh2e1CvpQ7XptL6w4NP/qLI0l4Sq/s6FhbUjJ3er55FVQCEsz7fB94Mj2IYqyFm1rr6r7SxMjzS7/bZDprhaza6pWiuz88RYOvbbUPt7WAtDUZ5Vy2zlGvLC66X4zuZlpdlJTotoSozWmmr4T1k8R4iaPx2ZnCw3SR9yUtbB+BN16KFeoXg595Cx24B/+h9Uko9jNceNvos1n/vCg49dBuxfWhpXNujzPQuQePheFR6RrWSSuPmwk4r+NzLd+XXHHzWhoLEO4btjfmikrhGvjkg2BYBZyaYN2y03LWkzUJUMtdQjOrFU3fz2QlFTQ4Tdo1jFBfsRsia9WcJaN7Mvc6hHYRDBgBnfNoXfu6AeyzzN5dv5hW560byFoRP04Drm9eYphGvLl/i8y9+gd2w1cSzCeBcQhnacBiVb/TWlHa4vskIFLDdXePlqy8QY4cPPvgYH330CfpuhfPzJ1h1KwQEzU3i+wstzxtdaK8e3xW7f5sC5mTyg3C4zlsMQPeQb98Eh0SAhXq5khz9nmfyaHfuFw0/JhO4pvtnF/uG+rprRlPOUuMPT+sWEzYF99eihQ+oCmSeDgAiZQ0VZJifqfjKyPwkqh484CpiNX8kCeZtLJEtiOowPByPDGACwEipGmKGJB4xmbkkax6ZMaSMxIwxMXaJkdSyQKoIi6zrGbnxA4CU/+Zc9/gnTphyLl5VdsQKhYBOvYRCCCUHVx+AlXr/qGSNOZbZrdlAUiYRZLs6y3UGaR4gQsdAVDd2zpAoNBIDgOX/6Skgar6lAEZwRkYvehv+i45hs8TP0zvgbelp45XSlNs8BJtL3lBUOISTwd7E6HNbYt6K66Zi2MynMl9Iw+tmjzUehHSgvy3lMWwENl1LpmZ29IZd21pSKs9kM7ro7Ks7wcvwUDwSE/rcCaVgjbhBQGSJvGHSJOoqu2aTYcEyljT37anjJCKNm7Ol2VTmMLvJ0Fy3rSxUnPfG+8A4oMFsebqMPGXQkuLm8OzLr+YhgjiblAxey/UbcpUmVRsZ39bsAm/j8QNm/psA/uZD3mmttwcctshf6qzey63gsO+Yk5/dkuug5vIpdk+CxM+qb0+PjJ4kxVRm8foRJLanOjTChrtuDMooKp8jOgvgfN2rAcflBYEJ4fZMDYeqQlc5R0PH1QhTbeN9FLyH4ZEA9gSiEhkvWvgpXS2TslALefanaBVi5RehFUS1j+V5zJ5Bef8+XWhWq420n3fkMTcrkw5itd4vBqB5+2btsOYwux0eJVwNc7m9Xw9diwTJbWSK4T3p3cGy7qFLPaj4fX+p45T7WCXM32zHQ/If3M8F/4E0VediDfPya9LogdBQL7jd3yn0m4OHzKFHBxUS6iy8/7i9EV/EMk3xdR0yCpH/oUoE5blCUljXFVcKO2dn1Ly0X5ewT/eWfW92vvfb7ospdZnM5lm5lwgOGn3kH+Mj+xzoOPAgPM4la3KdskXaeLnKGOecME0jxnHAMGyx3V1jt7upQmXhEW3f5vpOttN6iDClCbthhxgj1psNng7PAEBOBWPSjV2VMJwM0xh/nIK39wzZ8rhdtjg0p5tn3sTo84AKHr4Wl5WuRml0vxie6nNUP/2aOGCUaXlCHYeaS4yayqocuC+TuB4c7p79xl4Wm7P/2gevKJdwUqr7V4QaxhUAxEjqxeP3zrl5PrrIQwbA+a5Z8lA8itwPllPkchaDT0oZKVfvnwwgZTEKJZa/KecS6gXKih9NaUC1/NYrQ+iQpaLNTGJgcq2RAdRkykSI0XJvyQacpPvhGjrnSLAPdRK5tCIlQ7yKCOJJwdlEABfrYIcjMRBJQt5CMA+hlhZUtbuZ/eVfzyNKXhqGy3N4C1beQLbx3m9e35o7gPhL8whqiqLl6wfLuu7lxWTPS++Uz+WQsfbFqv/sy/+0f83OgKxDZWbrvXXdVFm9RaqBgu6FyIfgkQDETKqFhxqqyAGh6B5mRhZKYZyHdSdsruPZV571W1hsFT4qW3G8ZK6sw5ky7yWfu2sna8+agmIY9d5zhnt/vfdvbddBr5+luV8MSveb0G9l+HkTKGPFNQyixsIxfJ4DMozvSYiASol+vZQKRInO+moGsRh1JLmUPNaFjHVgRDDWYJzZtMuMnDISgA6MwYn+xvRqXDNmmj2r8GVfb2Fork9iwCG3UtkRr9k16lRta/bPq+BwdyLSB0OZ6n4+6w824cn90vYL5WI+PdktGXZPlbJUGG0NMrUtrD/UZe1GxvikYyC2Q2Xvzg1kdcz3F9LeuLs667UjQO5ZY+iUWTh2ZnBipDGBUgaHAO4jEIMqaffgqG8IQdt2v8PfDsOclN7n+cPgRYv7lmcj/pYdeQvYn8/+R2qE6Meo2+fWYmpnZVWUH0oPlmb6m75/N3x72FuAunzrqC2c1HhMKKwRBwRIX31zbQKFEK3KO7kWqu8syQyOdZY5VNiuY81tWx2tm03sQ6O0d9+xhjlr9/2dl1Xvt94W94ZvYqI5XAAm9yie1ChgVC6nhJRSMd7M0IoWifLOoVFm3eyy8LCcEnLKyCnXsFMEsG2GFQGZ3LU3p7VJmRulqzDjatQ245O54TfvYnn63vbrEcO+7g9FKK+rUVCm11WkKMYQu55/FhEWS/N4PhFJ/3cUYLbwFseD/OX9JvehtWW/FSNPcMYeIgSyPfuSqrpekyRpDuppIuMkFZHzKiwSElt+GkdojgC6ApBmf5lQDs4whIjBShMuE6NjMYwUng0NhaG91mtluci4zHbql8kimntH5cgyB/Q5yrJWkh4WYjXU5Pw0UyFK4YIniBHLjEY5UDGqZUhfGAzOXIxrlt8/ZIApo9Nk3ExZcWs0ohruvBi8R2/npOnRoa5HoOWJOtP25Sy3nqscRo5m3ZJNxa3l+V9pUdEV2vGpaS30eWrLPLRuqTyzx6H37xmfLkSm9iSUtvkYmPqu+ZjJu/X6PgaQhwCx92ITuhCVJrBjEGIc4uJV2OhNDW+Y0VNPKnUYSki7Nxw53lphTpfu13dZx+qmoDhwLB71XHprIhchx/L0Vm/KWm9bO2GpxceAb9TwQ8QIQcl8hrqnMYqESQw78pvKYqpEcMmQUeM3q/uoZA23dGwJgcXtk6lD1tmxiRlPuoyOGBch40mUifhyZPCYMTKQOCHmBG4WBOtEdsxLCTJzbeL+6VsL4OaZ2Y9sQtWj6KohSXZ75l5BvnwGWFw3wQyqGd6OByyJuQDnlucnfvkj7Q/V/BieV1DDCstA1G/KdMu1XFl/3bqW55sT0RwQ1WlD1P5mgx4OhRTti1E8a6sIGfXppdEuOGITzFnowpSBxOApY7rZgccE6iKw6UF9Jxw9Hp8QA1AhrTRrhoWHwP2J5T1b9gZ1f6OSx73B60fNQVtHrcHTR61P6Ue7oubXwN3jRgeu52049NsfBLy87fw0mt+IGkcHM8KasCbg2+6kGmMthV9oS/1upP5bPQeWxKdajt81LHTN8TO4a2+Kvs1ovEgLqf6WyWPG9XXOFpYKormo/HB49NlpMoD+mdJRFQdBoHn8TGkCF4Gxql6tSFg4314PTEgsIWJBvImmcUSgqMmhA0KQkD9RWjEz7FBbl0vK1Bh/0HxpWojSai6PWHMtqpiVL3PTH8wMGy3yvykjUHuql7VLBXU22aW2yV/PP4vSAVtXVS4su8KoD7Ue5of6uk/ZHzqXS5tnVRAxyBlvgtu0cIcCiiyvrSCuRqAY7LRUO3VKcVYyK9soiNEncwbnjGNilQFMnDFxxpCrl08iAgdNnVpO61VjCUM244ImSA6E4Jh2mQ2ckbJIfJkZSWNsOBOSGo0y12TQfrSZaxoGMcSYzuNkY+YGl0Ut5Sr/cs7l+PJAEm9jY98pfekzIUZZP1kNP6QlEIAQgBUDXRTP7z6ILlQMfJD5HoP3B6mUyPfssX2Hvf+hjUrhy65q46FN66h+r4YfbbV+Gir2PN9R13IIQY+WXzb82Cf5774MDdOlMPP6cfV5bYfIeeHA12dzyY+EhVFZSLeuMke+LT3FnEoHuNNgXc7WY4Hk85HQJd3KRgBrAhULQ4dzAtHk6mS9k89KH5bzajbzkZWOMYrXEIAm1Gv+9izb0q3AC18cm9d+10gjz7PMmAzY6Zxz/q46MxxuD9TOgORIcuNxX+x98x4/yvmbUDcvVRJQc/coEbwj1Msn7zLiFigrEc2ar5+R1aZIRIiU0QdGHxjrCJxFKe0mM7okhNLiXj1bEqZXmy1jPvPE8V4/hxSvMgDOQ0cfYSuTrS675oUyZVnInPaCPiBWxeMLSoH1iHEmHGQGlVfZUq2iaiFGC5S2vFPLKph17s/lmD/UxeHbMHu5CG3QtplExq7MJUnKFt8c5ovSVTUroD7Bxl2MuqnXD6cMnjLylAAAIXV6dmdQm+jjMNZgO7MzOvowRj5/9lhtfZtyHlcQuQ/MZ7a5wx8bqKz+VkAqM5PLP/rLvJULjX0wHInGvHU7DpXz0Pa1jfBGn8cQcgvdIszoPDBve+EJ7OlpbRO5WBwXYAvQXICYt6FKDqQVVRbmeUptMzshZq9D2Eclz56xflvISemU/t54Z++Lfm1lfwDgUEvMaFDR5MdNj5LOCZzbXcJW4LefTC6ST+/HVwwpDPWmUCUxi3JdNRv17nE8b06aWi8gnl3DMXg0Bhm7buazuy4GuzvDu9r78srxZZk5mGGuXe8t/vZlHSrtXAwFIT/HZ7Sled7/fjcxfDsOWXHk+wKgJhimmvSXiNy1nAQoO92sSo69W71GQplrBEZWu081IJrx5zF2tYthCfanClXptGJRPWSI9RBo5trfEKvxDlBDleZgtHmt8hzbZRHxZpy27N6ibISa8SZzNYJXbt4qeIYdS1Sdla8HrifLmqIfAkm+SOUjnGy5uWwurLkdwbK/CK6eR3qSrGxCkOojB6nbQ1HzQKgj0oZ9OU/EvTWk7WqImhlUnNHdrchZMVoW7X0uGX60OYc39qz5jl82HkDuHwLaZ9wasnv7ZJAKPQ42xz2f1oGZh45VCteGeh1XTGWVSfSPKu1p8kXBwhzFq7CSv7o1UG8eoqUoDiPk5juUb5VxbgZwn9bvl+x743/z8jMVOlL7xq0cVbqk/MTa6vokFota/BIX8Py+WRo6D+6Dvm8n1AtCXKRXDgmkXip2XVyjjFp6YNfJuups8C3blfdEYeVI5XQlFtfqgIQ+iGt0H4FOCV/MGUTG1Kr133Y4/CQyol3bawjyCpgfiCrgUNlNI+13qwCwlsnKZIi8lVQtp1oO2MRCrttrxwbtekBlYpWMlsGQBafPl8TOfgiWiy7l+RPBbEDLQm6qMkIyIwTuIfKUmY2oVoPZPNmlCdmNkc9dLqsevv59ARaMgrg8Jey2IzAkBGZEELquB0eqHWTs2zuPBIY/vx6WiOkJKtw1d9tnW+4b7kmQ3wQIjgZo7YUGlPVZxNfylivgDwb4tfY2bTpaf0yyPHKxt9Z4mxrkTXwHhmsuCOgcqCKTvFHCE/Q+ufe8ODwnwftjwPCza7lP9dNEQPtOrhFtGS4Ud/ZLS5LfdrI8HhR2wwBzxpRS4d+2o5tSRtd1YF6hH1bouhVSXuBnS0gGQ1yn661q8pWbmTNSSpjShMxZ5IuZccbauNd2Q40qFSrfNjzaloi/vzcxvYjnvx6Qn+rL3waYgmRJ0G2HmYutwId6haKQ+XfhPlEU5zZ4YWYIvHUKH28svIeSJWWWFlR8Lhl+UK5VwbGwICu3KDFezKpyTw1hpLrxZpU8ysZWUOONUjsmgINTrKoCXfIPEUAxgFn5tXlnFBpEyJmQQMUA05EYYaIsLc0RCt2Y5CLyEavolyW8JZCUZQp58QaET+vKzZzxBjPj7RH1tLUuyCldYqQLZW4iEOzEMdK2Wd/Ilc1UvTwjeY+ldgYafZHly4+Ev/uBjZlFHrD/QS5QOJqOu1/jQFVDqxFJnvdePoc8fopBzdPFVmyoGCwGELk2HBQebO0t64wACjCPjmoQgpsLJv3JuxZqOF9zmTwurSZCyb5VxsOv6rcHBpCJwZTdCXiW8UcMsllP4FY/utIy3+Ia5TJTDhu5RXvLYhA1BlbpUMthbO7XkZ1rdof6tESPLezVZqOXdCx/ltarTQ+l7ToDyOjGHAeVa3pZzNdLTb13wzdr+CEgRHiPzxruBYYP9WqEzD2Bs2LbbKie9hATKKtFjYUwgoWQ2+lPcirWBM4ZHU046yQP0DpF9FGs5R0SAsupAyUuGFQ8ibQJaKwaNrm4Imoum7aykBECvctoTvhqmKc3KGk4B4M0Sa8sGL8TQbb9cEQQl1gU+uActRpB0gMv9N2Pgf28x1xM8HQMsFhzZ/UQ/MKf/1YfpllbACon3swXlwgDoTSmCMtsZELnVqH6qONN1HbS5vzEQM7Iw4Tt5TWm7Q6r2OHp2QVWqx6ZRHDIiYHACPNN4CNCZ6FeYQFpM/i2xPA/aLAw9W55tgocJuM+Tovq3DeojIzdvX3xbf+dpUYuYH9hIB4yR24dircYp/lO631h/pYJg+X67Zp1r/oJdff2tge9EHEgAroppCFBbO9UQ6EoAzDZowoo+pL/5NnvcxregHvY0/j6V70DuHnGdUg3QuYF26zfq+hbAhIZHZ7beM+RaUoYxgEpZafkETJPWK3W6PsO4zRhtTrTkBAG51R5feF/TunQk4Mqo/RykUBOGeM4gIiQUyrjHSAJN1uup+CR6q6r8D37fTbXTASFzjB/RLwPESsnwzUYv51GfRMQ3alehY4W+l3FchO4y7A7pdHw5EO7RErjgqdWLplJQTQb/D24deXtPVPnpG1CqEd7NYOUZ7zhx/+Bal9NwQGTGlWcfGarmy1PoRo9ZmPGILA74ehoQAQKEQQup1YxCEENP4nlVC+bdVHl+47Eywcw4wkVI6mEYAI5y7HUDE0YrXbXIUnIVWZgooyRMxiSOHrSkErOjGSnfdVBFaUoyuHrIVAJQxMvKQsXqYJgCFRyL8UQ5CQ1EDqqhp8YQtlsohjr4oWG5pHlBhLIDCBrOB+LoSA0s8J5XrB8K+ks2vCNR4A5Qdo3sLJ82bvW2SZzAgSiUNapX69NWJ773f5CCIgxljrru1yc+I0Mi9pVjRVZvwNi5LDxCjkUKx+Ra2OoBiqZg6H81oyKdLS0vfDVeTugxxotGH/qCc3m+XPcDUomYIwJoFAcLyRNSlJ6SEjsEjozCU0Boysyx4wPaL/rv9LZgkGW05LtPjfvzWgiuevyyx19cv968L5TSt20CVUOrylJxEYBlQMKOVUKmcmoaMuhbf2V+rka4q3t98HfN5vjB20Day8Y3oJQ56d36m6vK8IYRPtdLbsPsIFld8MWrB31nvWoSjmyMhJJqJgZouBDpmpbzZ1sLiC1kjkvYqIRuVyIVlE4nJAhV1x/LLIDl9/MCuyFTXnuEYQn9r4FfrJ5gR0Am2st1wdLf2o/9xdSKwTteZdT+4RXaBsHsiJxuXBAnwVfceCbWGq3fzzaXQdqd9pnmpaV+1S8tcAiAOTMmKYJwzAi9PJYUMaSTEziMg2OzlfNdbt4hsxG1MP+nceAN5mnj98qgyUx+7ba52NWdk4foc1VHGoFpDqid5tDmpnd5Mu6BS/cTnlPBu9X1/HB+67d/53lew3OnfTwGO0v9Pu2xrHHs1u1iw3a9x0S8iO73zNRoj6wVzkvIrXOuYVyltq+d7sq0A31cUaLuVfKvJl0qN5vEZZaY4pjmhKmlIrhBxC8S04ZQowRMUSEEOV5ZtRjelBf8C8v1Fq9fgTf2cK9/CaQCpx1jKmZ8M1O9pz/+muTWWf3rUxL9izTSF4g90Ir1pYROzS8jw4iHtZxLXPMDzvqiO897xRST+8trH0+n/c3paySQ3N7iRPNv+8/Y7JKE7oFCQ0htxatHcuGn0pvrLzqsWeylOc6lU45UcjJTVaor/3tQUrSY8pJ1o8cfx5MfIZFEZjPA0MMYjHoc1AcaptZjVvZcgQxIYc69zMxUpBTwpjke2bZQA4s1+AMZDPk1H4ziUFJwj8q3S7GlWL4bal2zb1EzR8Zng2XUEPCzHI7H3XWvvhPu19VCrvwfKGVGY4L7TpY5NXFkIp9Wgkz+Og17V/Xlen+mnXc/vk6S4uaWC/HGdmvB/8PlY38Rn+lShOoINC8s4zY1t992wvuCMXbx3L7VD8aq8YFWrn653mH3h4YWUMKEYQxmCdbhnmamQey6TwuJHFPiqnl2odvbk0izw2P2S+k9H52reUcqrUZnvYZP4P86tnbcJ2ldvEqu6G48djGAQlLGW19Ho3n023wrYV61T0VtIzQrz1/PLl2aC7KlpAdsyjKzCrDTRzAubrNgUS5ZgoQK6TGAucko8YBYtgICJQR1fDDxJV5M0pyZ5uvBXksTIUdIpfx4IR3ZUJ7tMM/SaieQM4jaM6whVnoxHLPHRtKfLabtdQ+oPU7LsOzCWxc02+tz6AIGo7OtguAF65md1yFZQ5ZQ/xOiHtW2UV1l0VVKauN0kiuLfUZ0pSwGePmlDHuBqRxQhonTFNCynKCHAcCx+BZBsh2wx4FhxLb7ZqKZgBcPxoB4LHhvkznG2lMrWqfpS/82vJvd+2Z6/EbXoVCcndawrPIOJoy7Pf5UwcJ2N7794PbWnL7SN+v9McSQB8fCvvyvGP2gAkE3tPn0Ngv0SUvRphy70WTzLJLzQw9BtmrHE7IpHaX7HAbDt8stN2V0Vw7nuFrqv2aCd/fIjDLbr5vLJEdmUwYxxE3u2tM06SGmAnMjK6L6PseIcgx7ERiAEoJAKamrIVaUXgvAeSO4iXdKQ6azDlYaAe14+oNNU1uiBm/lqnSbkQ1Ymn5gd0LLZis5vXPRgbUV5s2HR7yxwGTPWe36n2vMnm8LBt9ZFwtXEye9EG5wAy3PgXAIg3UMWyUFTqkGQBw+XggoU/V4ycgNioh1z6R7SSb7OUnhhuXhRqX8FZxSuUJm6NHxzH7P6nLQj/E8wfoQMgkhq+syggRQbUDVbSr4dM8tyIAjqIjZAayOoRHPVErM2PKwBiFJkzMmLLQ2inLcfE20rZRa+vUvIxM5pSEvUpvOcNyh4aooUcErGJAH8V810FCtAh6XLujs+THxu6ZZxdQjFwylaqxLqt1V1tRKe9MKFwkT0cGmk0sP0+hsnrJR+RlfkvkjSDXto6dYaj0zhkh97yKDkRP7M/1ynet9HZ5SvuKManerT87Q1Mo/aRimCmGedQ5YoYg8yizawDqvSWFs6vIvH3sqToeRwYfH9vcl37YF5uPgfcDz/bG+cB3h8HyFi88BzfnsdfrZe6z9Izh1mhss9bINM5DUozX+ysdp1JAbVsjxZV17AP3AFpo8xJ886FeQV0deUab7REi2G5HQSDr8WxA2T0zocUWMhslU8gSg4OQGaCogx8B6hRf0VI9S3LFNALEYiTigMABAT1iFDKYwXoiGKormTGzMjMrQTSLq7S/drCKDPaN3LtFMmhsNlWtU4Zf1pBMFB8TLAxMBpgeIcePWGqzMCUShmR48gY6GRvae7dsZAU/Bl5dq9yqLGRCw1jY/qG6oDyvt/JkjrREuF26Ojg5l3dqXLcyYR1dN7XK5G1oFhzp0B0e1vwLbG6/44Sb6y2Gmx1yzkjDiJQTOs5IkZB7m6dBQ8i03JxxbAggrCzUy9MlP86Kq32y9chwF99ZFHIfB+aRdvtVzxpCi3edPPFYDb8bQy3z2+9Jq474H/xeUXO7oVEeDvbSG4L32jC/fhiiD+UkuLU9d5T4TYHPlwagoX8N2A6lrc0D8tQSXtqIZC64sF03QHLOjFMSRYUZkx4DjBiqIXqhwnuPb8Pr7/Henvw15xT3FXUeF5gZ4zgCXBOvEgVEzQux3W1x+folhmGHcRqw3d4g54TNeoMnT56i63oM44AQAvquB5gxabllp7lhXSb5KQF3STklnEFyUsSuQ4ziRSQ8rHJKz1+rl06tIuvjxrcbwdPeRfVPaGZdkQVaflumt/L0EmLo573JUITH3Ls6CEvT3Oi3fNDedemp3S/IsJdrgVXkX2AWTmsg9jJwFeuZlCsRq6xKMAWjehZxqTYSFeNPJPVqgYV6WbVOmaDamEbumstgc+B2FrRdqmWFsu3LmvphJuAdAzI05QOXVJemQwRG8Xb2ciq5NvrxY5MzZZkVOmhyKANILIe0iuE8YFQDT8pCQ+2ZpOsps4SJAVa/yJyNwbCMnoSVsSobMQbEKKFcqy6gjxEBYpQyZbl4dgGllNJoz1a1Pnb12mPWRtsaEMlUWhX8HHl0GuwaTHVtFUWbNIVHoILTMuuIYBpSG+ZlvbW/UOeD0xMqjTReyc2nGWTma7u8qzSs0jf3u9F1915pkeIvkBjxADMEBVe/lRWKXCC/aVs9XsjTDy8nhToHGGVsjgol2oaxZ71zuKVcTw20+ewjOA7NsXlzqbl3wAecWkwtkuDbBsLmgaP7AX6D13tXzbbeuFzV9eYiUSySqI7U4dVV7GmFH91vJX5LHj/cdLr+wO3CRiUrMm/UPQyav4bsHEZHesxtTItTB56yyEtsprPsmiDMGn9Z5ihY8+f4yaTLyZqr/WkUZ+eCVaV0r1jVqUjgaiChavwpTGc+Tn7ISkmmBdS67OVmt+ZIUFx4mecOPYcnaxkf9xTPXrRH7ghPK1grj2mNtD9uPjfCUqzo3kJxwo8nIC0OZsSL3TNGgJn1yE6U3ZqcMqZpwjhO5bSVzHriBJlsZwNqdRxydXx7iCYs7o2/KYPSqyVh7nhwoORDk/7ggjg2t5KRryLqfi0Ha1zaFXV07ZiwP3rtKkTBY/1Zfp3P6EoLG0Z4m+uiIzuuoFoO792ePX/XeDxkvNr2z2FZGXG/lXm1NNvngspxoRi2jST6tbjQElq49oU1tG82cdt33JMmLJqXjxmvNRlpOWbY0fu28rvHpanb840ZDynXjhb7AuSD/K220Hl7Hkhi3hSy5e9goan1hCOSBMvTiGHcYRwHbHc3SGkCCFiPG3lf3HwahaD0cLGxOlcb2q27xME8CerOcTUeOaV2Jm+Ukvd2t1UQbUK0HONbIBPOv1b4rxNSG9wu3ueWxX+D0K4/L5f6Z+jOaxMidB+pyml75dsX31unlhaiUKWRYuAhX4bDr17b/LNTJWOwcC8X6sW1rEPj4RWXWdKFGWtoJwOBisHZ/1YkdpZ5enzOKFWVkImZrBh0cPZkH6CRP+ddq7l/6n1mjWLR8lKQ/C2ZGSnI5jOjJn5mViOQZuK1k8L8KMFdmapja7UjNQiQJHTuLN8PZoafpizPjK1XigMfVljoAsr41JSemkm0rFM3Dt9wgue90C1BXKN41zVD7fNlbdTf29Gihbr2aSLpQCyeeqb3bBypfbGppdLl/TFsjFyH6My8XDJqPTcnAfVYd8Cfysm3rP+3hbKG9oeo4d9UcvYS7Dj2pp9zodKVc7hULjRo6flmTOeEYBEc4+JlvDZryXuG6GQo3tozec87ShjnvA0l3khMxpcdL70NvrUcPz7Ui1CVzGKXQbsMQ3Ezlph1M/4QYiU+YTYpCGLx1/KMaNW22CSDxhmqU5YKcBIjTA3hB3Rw57GbNt9mkrl3qytu+uVxqru8jkERU00aXVplc804jC1yvXaMp4zroRX3lmDGN3ZGsTI2hcjNBO8yJtzcI4iQ2nJYEaJTklPXbIfDz49aCDe1VRdoPw5q9bVPWN3aDK5Th7SNmTPGNIj7PmyHg9QKXxlI0N1VIiCqyy3AyClhmiZM04Tr62vsdjukKeHmaotxNzohjBBSwk1KIHP172Ih9I+SowmCJ/VYhrct29jU++2c2i/ozhsHYK4p0Oz+bfVReewxQ3u8y/O9YYG57c/bbxAW6txnKG3st+Ff6DLVNevEBAAu4T3q9+Uq5/aHRwE+cH2oPS3TXrrpSjLPikeCKvzg1gnn968OPbrY35lAwLDTZsS4k5MYp69vdri6vkHKGRSj/BGh36zQh1DfJ2usr+T2hszbS+7Pz7A2jGWmU7pi9xTQbxFSmvDq8msNG2flWxFd1yOEgO32GuM4IKUJOU+AnmeSphHb7RXGsUPKCdMkPG9KkyR3tqSueTZS3CoiIUT0XQ+igFW/xmq1RogRz568wJMnz9D3PdardVVanfwK7E9tyTeCwjflGcvXw0VgNVm8eQYmtxjvXaigwP6qvWMJ3PuZN4XW8FMFA78nU9drXYteofM6QN2QooU10U5qL80QSVhSlffEQCLRg3a4SFAPGjEGZT15I4BLOyXpr5TXkWz4QEsrzbptMJ2s5GUCa3brZVGfslSn5AvS7pXHH0vbBADicnrw3FCjzWguvJrcNJdbGdzn6CqPEhA1v4/xEWZCZEmizFDDD9s1l5OWMhPMsdJ7X/v2Zg6l3ZIHTIy6Uf9kdjDmgXO8cLV/d2k11XXOzdiYIl1p7yOZ7WpLnEFDZClvyLHWzrZw/Rou12517QkI9puXhfQtrjTQQ/HGLM8TQHXOmwpHQMGvpwEUAlrDjvzkTw+DzjdjlJ7jsS9zBvfhi5VKz9p2RHQSgD6rR5YSUUtEHoASdVOSOqtQuUSPGlH0tgqdINpsfumFBbcCaMOsPHgCN6+A99dYMTC7sqoxl/eu5xpPazh0upj77ttQpmwxltXm3gd930KoF5pQL8Apb8YIbP5pokdKknlfBKAM5AlghrnulVhhTeTGbjoHcDEaRdQ6I1k8rWRWL+mmMoSzMoNiLqc2eR5FWQUCHf0lBbmk41FUCLExTkL+o7kHJjmRLIvSXwgG1T9SdwwGVQ+hMpbwM/HoJJlR87Ebixe5pLbD5WhHcV/lWSnW7kDFHV52SmVyTNOE3U5Covq+w2q1UgMRlU80mGYsBUTtCXGGS1SGFezahGn1zrm+usL1zQ0ALrkSiAhd16mrbUDf9+hiJ2711CP2QEqMNI4YdjvcbLf4xS8+w9dfvxSPnzHLEb59hydPn2C9XiGlhH4aMI4duhiw6SxuW3bkHiEKXghypCbMoxAUsrlMZT7d2oK5pHTvFvAd18vATYzR47gZu+LffDOraEXGvB9HQNrvv2crwBJe5k/Yc40sUVBSmZ1nUrL+9b4rbLns/bbeezRuKXBZnL3f63vsdM7750/cPTXfGGzd+b2Lxaoqgb9XmaZw7BXDKPRymhKG3YA8ZXz99Ut88cVXSCljfbbB5myD0EWc4wL9qkdAMB20tKPyb88Ayz+LbSpFLPb1sMhT75NnI/d4/nFhShM+/+IX4MyYcgJnRtf1WG82iDFiGkfs1MsnpQngBELGNO1weTkW/ld4mAlJsD46gX/eISJ0scN6dY4YIy4unuLJ0+foYocnF0/x5MkzdF2HzeZcE0nfToq8UagJwVp6ZqkAwuLuZRXKK89uP92zs/uz4h8Nn55Me7bWbEh6mcJZgarwTf7LvuJ2cOwJRBm2ESMbgGqeYQJYwzwClzJDDojc6f1cFMlAjAgx/nT6R4AafrQ2d8JMAwvaFUOUNBN7fQg0+cHRpwnVy6gpk9VbSWVyDirdHJs3Ks6oyY0u8p/vXjFo7E9F0zgAQKVd6MZflSMZtk40bA1AZPXigS1juc7ZUgAA3kSTuXr9mBe46RKmN8gzESAx/JAafno91Qvwm+OuI+z4GLd9akec9v5lyAloSm2R2OYWFcMTAbDcQ8cGW2tmbJP14Yw+EL1PHpb5V+gM6m0PvEc8GSUDzoywCG51LA4Yf5r2EoF8jgZUGTqoPG18kbRz1fBTN6TtJK/iXWanRXqDo7MwHqKFDb2e3efZ3cJijozIwIR1IoACmCUkLSCgI/OmJyQEWD4r+xTD9b4wZHxyGSohLsvZhA3mPaz7t6rhcKaHLNa1P0YmFxcTjOEbs7rd9f6KM2nK5dLaa63db/nrvm/X7fAthHrJgBZ8YNb1MvnMkmU7F4YErkIR6+RQCYV8r3WBe0tqw+YcM7cXPHKMMdX3nVXNnzwCFVaUA+gcK0x+No1ghpBCBHwC5Gag6rPWOutHNWga06KyIMoCdsLbscHCgDyv9MkeGcIIZVegzXVU3X71ro2zlaLGn5wz8jTJzohZCzNqcLF3OXcEYu51YIvZdh5tx9xm4d7w2BTLEpY17HZg5sLoAhFyn9F1sutii13aHWGxhXaSSpombG+2uHp9Jcd5JonX7nPG+jyhY5bjRXPGmBMQzKOq9O5xvGjJ4tznigXKWPm0j7c24Y3b5znt/PoA+OXSzKfjDNJea+jN1lA56tRaV8o5MjIPFHdoZB9Sv8kWssbqKM8Z5NL8NIF4ueDm4+6WHfjhECNfer7SIOwJeHvP+HLmzz/GWlwodnHNcXv/rnU5F27mN4vikRlpEg/L3TDi5maLNCWACF0XEZnBqap6RUQqc4IPjA8335v5yH4+7TnK39q/cn+2nu58fu/u8SDnjN1uq946STYs8gQKQIydGHxy0nCwOpacE1JObYvc5gSpq8JdAb+S0ycixk4MTqs1uq7Xo+JXcmJYDLN3qlwr1+SuFddO0G6v/fPsyrFkldq/QkRx69ozIZf3rmf9dPe91/UxwWRUqa8SwdbgUxvUhgvMnqmIrA/cQhgr3aTmPyuonftVNpUvAUQZ0KTFxYOAas4X2eTSkmh/7VkemYWmab1OzmwGwkM7UNSUycrD6W4C9hZgc3uveXN+zg4lC7RRQnlsPtYQujo/ZrxO+X6wtUVVXaEAkMv/XugvyPaakVCf8X9A1QXM47wc1w7XB2tDec/Jxm0XD7C0ZYSUTe2i26g4Dl2tj7oW5W//ujy0dDmbhhbO7OQWwyfzTC9xL+skKsv9gOHBU4DWuFvXfcWWNLQYchxp2KMPxTC0NJfpTjZGcPJy08o6P7WjTT+PCdHPHSY1SotxxzLEmnqXyyjVfle+Ub1ID/e7DmY1+swebyy/LhyP3fsHpOeDUAyEroxSL5W2e0Z4SD53rGX2S9OJajSs1d/OXhx8Szl+qBzTpqad+qMuBNJnQBY/K5bPwG6giJTZEUqKelCJcwXEy8dcWyXUyyQUFgqLXLK9ERMQAihKcmcK4uYuIT3WA9Y0YFnL9AnFRBgq85JNbDBiJfeMIRGZcmUcwmogde2WmUMsVlI3UsjaCiKUuLlClKyLb4+uZfA4mNUj6OXS9iWiwyy7E2DGuN3hanuFnBLSNGEaR2RmSUYZI4gCYk6SrDtIglHOgpcixbDkempZ3KxWY/CO/JZ4aKefMCypHePq9TW+/OIrzc0zIk2pLKwQCBQCVmsRrLuuw7OnT3B2doZAEkYVSU6P2PQR5+sVUs7YjRlTyohdRB8IfSSEnLG7ukEaRmzWa2xiD+o6t/CPz1QJFupFlXE7fsXkwjHnhHNekMGC4HT3HFyaSQdqszWWLTZdvz9SfHnJuTir//aX7Fk1eapUSOFxmKo1604l6cAz9yl8SVh8ixIfBe7dmoci4dGI6H41hOqFcx+cYv4M7T97W1m24BMzppQxjgnbmx1ev7rCNCXErsPFk3PddawnznCAy1lSyynC3UJb/C1TlEzQOrTqHzqvHzYjj41YRkqjbABIJlakBAwDyfHsOSGlCcyyIVB4qN/FnbXu7pxgJvgRcs6Y0ojMGTfba/GkjR12uy2ub67QxQ7Pnr1AfB4RNXzPQpSBVklu3d+dduAeKrv87J6YCdulibZhdwsvq1tEVY6RHf1leWYhY9+RwJRK8wdWvljkUjc2VHHUYMorUOS8AEzeu2Xu2WElAMTbh6N85VCO+iYSOYjACEyS3BkqBqkMHeESpSovN/Ha43TPeDa3gMzGpvmcKVDzpwwsR5jVbOHDxfhzbCAnX7Nr5sJ6MlOaT3NT5XBNasx66i8zcuSij+yByZGs7zYKrxjPJX0BWq8eCvJnRNSYQdN2J4SVTW6vQHKtHx41Sytl1nb2F6zzl3QE/HPyu7U/QL1JidGalI8JreFzT9topqT70hiDFMfeQA3DIVcDjDwMwPlQlLVcDU/saZIacMyQA9Q5Zbyt5tUhV4fNUSrloNQaap/ZlBzRPL0BtcjApTnL3HI2YpibILjp5/E5Y5nOOiyStJ61pzVqwwzSGkzodO4K8x4ukg/PkxjVUM3tjLZ7fhrds4aW9pVKqZkvrZ7MdQzq5KlV0Kws3J7jxycFL6vC6N6Bdzx8Czl+YBJPZQZzcxXJBAjuVtQOpfkiVS2bYH8aVwvzGMolC3/WsiVPTgYjAUhq+FEX6NghdB2IIwJ1EgoG2dUOatAgziDWGGsEJBIEiHunluOIdmPp9S7QFoMMwLK0F0+BrKVn1MOruOzVIBMVJYH9BLpbxnprKAeJmCDjhEb5MavS7JM/E+ywTIBBWcbx9auX+OLn/wDDzQ2G3Q7bm2vknPH02Qu8+OgT9KsV0nSGBALHCIodqGMx1MUA6mOZVHs21JnAGNDm8glu/QWCEPQs4XXTlPD1y1f4+c9+iXEYcfXqEtdXV+CckbLkaQghYHV2jm69xnq1xicff4wXz55js+7x6Ucv8OLpOVZEuFj1SBdrTCkD2wkYE7o+YtVFrGNAzgnbl5dIOWN6coGnZ2cIm7UOrA32kXFIQKexj0xurrp6yvzCAp0rBbmHHPDs5ztaMyvgwFuGVtfeJuzr/hXeG3hOSW8rf8aAbYeJAJC3Rj8CzEdw6f7tJ+TwwpV+L0PcdqB4ZD64tUeGPeb9bgFBw5C5xVeREZxWsoc/ug2n9khdMFUfoBJ3nTNjN0wYhxGvL2/w1ZcvMY0T1us1PvwQCBQQKSBE+cumEKGlF4fm4CEIjmJ74APXXhI69MzS9UHh6T6NvCcwM4Zxp+VKzWlKSGmE5cXxLbP15PWVu9uzv/7sKueE3bADBcKYRlxvr0BE6EKPPvboug7f/94PcHF+BmCFqOHJ+x2ZVyfyloULmmhCC0SF29dgamnjOeieMWNPY/TxT5GrBwt5IR9BwCGCekZ5AUqUxiKmFp4wC7+opTQyqhnYTME6jOhWmCJEEEcrsRw4UiR8UA0FA4FDhimgAVw8Qizpr8BtY3bLilGFzdY8+7j6ZueZHKJnc0ONPXtr9BHk1BiE81ZF68CgLwo3yrf19GDmhJwmMBiBYgm9qXhAO13YG31UfmMgpRHjIMbhlDOSnvyF0AOxA9Rrj6IeKp+5VRR1EYnBwHb8uQ6z60fbI887lsaBFaFunMpct2gG6Qer8SfLOTi6DB4n3F6aUQ0rKNc1vKsJcqkLtL5fLrl+ZzWKBiu/BhJIf+pZd9V7pzoWyHjXsaqeSL7dVre0q56k5cxCZjAqdRmosYfrNatTQkv5bNT9Ypxj2WRQmj1jZk0qjTUHhWOCaMROYYTSJjZ6zgBlRxfqyFItxIjnAn83Wdvdbx7yQm/9oemle15Qxvs/uIctHcjstiuVGjLPs39r6OVyXqo5X5tjpMkrRfU7zbB8G3w7oV5OyyzLZ2b8UVZWToCzBVuHtj5bGY/+x5Ybxcr1ZUMtwO6PaoGScCuKhw2FQhjk90o8KspqGJFVsX9ShhJepZRuHsu1L9+0LJM9GkswFYbCQJt42sCIdHPjiMAorrtSVZXofHeJq9HHk6LaNBWOxwG7qytsr6+wu7nB9dUVcs7oQoenT5/JyVNdD6SkBDSBs2K3nIGMIljV8r0hCCo0OQGlPMXuuuHdmKaE3W7AMAy4vr7G1eUVck6YpkEE+hDQ70Z067V46qw26EKHnNaYnl0AmUHMiCSx2MyQfEaBS5LNAFEapnHENE6YVivdMa6NfKy9TQv1KrzNxkFPxrN9BoaF88yZxzLUpjeYv6M1fvRvf6zIWBrq1dRyXL7l1qaXDJYFSZ92t8a913Ydu20Abk2rwoeeWSrHP+9nXNN310P/wH3cvOnA9VtMbdq7sDIPCcB3FeRY05s3642gCAmVnNahXwwFlifqvwsww/vyrHX5J5LkVhsGoUUppcoeqQoWXujYK22+jJfmI+bjTM0ztHDtHzv0TGGXqON4oKSjg4T6zrPMcbM0iiwxgz270D3Ai3ik9WfOoExgHpFzAhEh0YQpjOhij3EcaqgZtxShtMFkklnYl8loi2FfsBEmJQfclHkIV9aPhm7OFBcp2wyNVWZbFL6PBDXUq7a29QqwZ4yuL8+t6gngnrHFtAiuTlv8RM2x7jZO++FoWiwRfMJPr4AQWv5UX9rnDl5ZkUtyc8O1r3a2LULpVvVoRzPR2U24u7ygHgqeRt0uVvDsd8fnytxycy7redMc6rg19HoWBjQz9kJpREkDkLK+F4AQQcjghVTJpiz6JAXN71xl2Kb6xZGZ3+H2VwttasI3rVxGfcRJeXx3/pu3gwajUqeb1z4Mvd2JoPbST3PyfM0vSyqf+2XKeiy0rtyrz/sWl1epllNHjaoCT3V9t8aXuuq9N1gJhPVEu0rF2ty2lbW82Zwkatv1qHhsW7JHYwsd037Ml6d7s/neLDm3EcmuBuamtvK2CbL1QV3Ts3HyV15JbNrFe5e+xXNPK8Okm8jul4qKtt2+B7T3794jB+AbT+5cmJNa4rzRxK9Evxh9qBexus7qPQtelmAoMdQE4hq+Q1BrIgMkSjcDYhzijEAZfSRsVj0igBRXQL/GmAOQOkxJ/IIy2CW08wxa3DQB2X1hzbfjhW75TbsNa7sXZvyyBRAymENreGRIwmd7hDxLcu0qBiOUMT466Owv+3Xs+b6mM/O0qExgZ1Bgad/26gq/+tnPcPXqa1y/vsSrr75CSgnf+d5voAfj7PwCTz/4AGfrHoFcUmkiAF2dJBGLXhWVdNYfHMty7UIdKwJCF/Ds2VN897vfwTSOuD4/x82zK6Q04ebmCrvdDTIDIwgTA2nKuLq6BmXCzapDnHa4/upzMDPGNJY8Dn0XgNgjhoA0DNgmUbQuX11hu91h3O3w/NlTdLFD7AirTUSMs04dAQiW5JElqtBuulFaSi12cDo5YrcnNN7+5hsBa51+it+XZy0xgEWgWk/z/dDblcIrMzUah7qJ9Aiwzxz379/2TCtumJiJhqfuZzXTuwsMzp5qvz10Dr/JO/MinOT6BrV/k2C8ynJDNPjyQ98AH/SaMRB3/AVlhGSDhIFyAuE4jhinCeM4YZoSppSbUzdkZjizoOOxy+3b76OtHwIaz72jwEz24aUfHgm8uD6//zi1edDceDkBkMSrxmm7VY/VaoW+X6Ff9ehiLIcRVGVDS/V6hP5QPHuV2JqyUpW9Nl9jlenkZU9Tatul0L08HTrxqzeneEZklpx50zSK4Sqz5kt6nFXqc4lY02a6H4CZQaf0zZMbVe6C3Sf/2FLNtQ4nuYAIEeYBT4ggRGUoiUNJJGxGH5DP5dP+VUwZ7u43hia7FX7YkOcl2Ypm/ax4L0zb8cjHANI5uCyPuAa7L35zsPBCN/dENoxYUP+VHpKGcVlohzNYqoc/gXQOTxoqFYCUQCEgBsl/AqjOUcKrxGgkG9tq1mMU3UPF6Sak7paONgaP+fdydorRAH3APKiKl4EZLGhuYDgu1Jm38G+DAL9Ia7/8z9bW4A6VIUj+ThsBj9UmDYnNCu9M4CvR1sotR98cAfH+0XNbsD1R1jLUU4jUt3oPaU7g1sGoQWW+LwSLFqmDobw8lFedFPgI2JwV2ZIPx0Gorqvyx15OYMw8CpprWXP+vqcv/gcqa7a+qJe3evy0ddQnXLtZ6IiJ/G26E27qrHqnTYDakP3aafGzmIM9n7oDvnGPnxAVF1yFhgJuznnGJYsUeuy2euVwllCfECXUiwMCYhnwqEQwUQCHXA9F0BDqmBldzuiQsekCnqzX6AKhxwZnfI6RA+iGMdwwJmZMDEwmKJMZgWwxaks1DhtAgzVyO7btTrl/UNkDSaI3S/GDRDC3hgBCyEbwJOkcQ07ZsjqpSk2Px1ALodHv5Kdiu2ja3tWmIQtDff31S/zk7/4uvvrVZ3j15Rf44hc/xzSOeP2HfwsrTnj67DlCGvHBs6cIAcg5IKv3D3IvFQQCZapHVzhCK27PDuZjors7rUGJ0PURH3/8EZ5cXCBPE4bL1xivbjCOA75++RUuLy8xTBO+eHWNl9dbjEPCq69e4frlFboAvP6McRYZ3arHsxdPsbnYgGKH9dkF1v0aPCVMN1sMmkz188++wNXrK9xcfohnz54hhg6rTYcQzxFjf3RcEgG9rcVmh8sNVUOIWuGuXC+1iw+Jk7fNyQcwG3L1HiiykQPQ0v6yC02Hny+Pk3uXHogGC/Wy3eJHlI5K0UWgrvfn19S8x7O1mwsTsffM4D1nh2R8GnXZLcGbBYM98J0911turw/sBP5BAC/kiGjvaKcibAmfgq1DqZHtmar8NHPBSS45JQy7HXbDgN1uwHaQfGZTysgs+Mswni2taMta7tNye+ovi6cwYrmv93lmXueCXOgWwJFDFAmtEeCRvFGWQOZJBidRkcTzJyAERogRm/MzrPoV1uuN5KOLHcybWf539IIqfcxuHs7H2Rs37IOcPNN49ppMT6YCV0OF0ZW84EEhhp+ElDJSmrAddkjThJzFMy0/whgTkW60tIFlZNvPqHhuDT80IzFVODr0zHIDgHJSEWxTEYigchLOiiJW2rYhB+xczjtbojUziMrRc/I4+7wLWvpP7fAsPGvzSvpUCZg/Gl3K9CUfD+rMuq1s2v9WFE9JR8DMyGnCOA5IKYvctOrgldO5YGD3216KB7CcSMvIU8aYRqWvAUAEMqMPXZG75JCPXL0J1fBEQU4qBpGK+ZYvopIdL8/NoxPs2RrqZPlWoG200Ceyg+TkFQ0NbvLaaA2PxVGFpCgeiwBj9THKsfIzmX9fN+GSo45IPO+7risGn+DCu8qpy3qtFM2Fa6m+59Z1xXUubfDrvrUc+85pTVTH3Ais6ZdGA+yEWQKDQ7MaS1mGT8kva3EvhJorSPPakumy1eOuCf06JngBB3VVir6lG8wzY0uZj36YQKp7yhptNn25Gc5aDrd5nSpFn3mplXdmNGOGK4J5mx4oU9dCpb/aTh1WedXl+yFfiVa1wCSMKkl9VK6t1vou381j8K3k+LlNVLPb1j3rrBMeYIuZymSyBMw2MciVQwRdPPYstCCZ5gESMhUDxPBDERkRgQP6mNAFFiMF6mlLXNpojaFZGFdhB03fq9CJZuIY+7N4eLuuVEtfJPdRiMO+X8YhN7XjABfi790/G/B5aUwKaIqoiytNE3Y3N9heX+H69SVev/wa4zDg6tVLbK9eo48R4/YGeRrAUwcOERwhXCtEIKuqFMKiAiLt0YawLRq4cZM+7MmQRHp8MSFPE7opYWJgHCN2uxuMww4UArq4K7vu05SQOCERIwwjJkpYb1bYnPVYrYXJBEDyZOSMSU/9SuOIYbvD9maL3XaLcRgwjiNCBzDno2PQQLzGGJn2laADNKmdwuzW0+IzC9Lm3vM0//FO8Hr8bW/Zzmyt1ucl4eaZ+XV9YhbKubeQmxpnjWzLPra9gaCMzY+hCT+eEfr2NgKh/10+veurk9dLmSIAtf0vV7Oy/Ql7jR2GFt69FfyMcnUs8GdpxqE+1jFY2jRqn7+lZY+wII1U7q0GOnDfvXdb46owtD/f7QnOXEIPzKPCjh6WY4SrwFLtRY6HGz9e6FPTFvb9IOw1Ze+ZZePM3ngsPNQ+48o58ho8BMvtmhnEjziP2JVufNm8ckIMiDHWkyktn6H+a2NV5BZya6gsZOP5No/2r5fmqKebngbchgaGeTio4s0ZibMcspDE08dOTnsMWAr1Mlmyfebtr/fqtlrJextAFUPJjxEBdFpGYmpP53Q0t3ya+FjWrklAt0AVmdoCjSDd0Q/X2VK/V8x8CFiRzx8J5vyn3m9pWANOEWRwCZE0Y2NDg4ucW8f2UEuK7gJ3tDvXjbdsbTWc2p/JzOyvXZ6W0uZ59bMQl1lYFrn54h1K/H2Qk7mccaWRnR6ZsO5LXO6Ok0f212ilUbaOzCgT/Pf6Vpn77u1a654Rd97v+QJsGlR/Y79+VFlvdtEqHShrh1DlM/88t0XvpbTgtt02EAWdRb5tQ7kfFzwzmMuTbtS59sfy4OqXSp09q3LyQxPexa1MVcvw+HFN895UvtWMOje4fW1/3CpdscT85Xp/6gK8TwcdhdLv1DRz+Zm7BYtvJdTLjAZ2coPfAbIZ7A7KVgumxqVz0usM4ihJnwmaMCrDTnuyMnNgPYVEFlck2b9cIWNDwAqMPieEMSEQYRVlxyeB8CwShhVhzMBNYmw18e9AYs/LEGtsJvE0gpsULZdzCLZ+EyMiI5R4+0r4J6inEkOsvWK9kj4FFyCmzLwyd64W0dv4z9uCKQFGcbgK1wzZKQHBzgNHy8LsSibwarPG8w8/BHLCuL3BrwjIacTly6/w09//uzg7v8DV9Wtcb6+xOTvD2dPnePLiA8S+x/riCTZPniLEiBLrZYY4JWaCH3VL1RPg6lqT9gSy7PJ6tDEDnHWuISHnEa9ffYVXn38uu+PjiABGHwOeP32KfvME0zTh6tUlttc3SHlCmq5wk3ZYrXtQYAzDDt16g3P0WFEEMbBarbDuehmLLiKBMeaE6+0Wr69eI+MMT6ZzrB6BFBMkASLYQjn2J8u+0LcgvNn1rPCl8g4R071K7oJidEQVLG8pb96PeR4J+7KsqLXEeOHNA21sv9rBLseGsqJmwt5+Z9iTmfJzniZM4yBu5MwgSEhi7CK6XpPblz9ZO0ETHUqydPZVaOGVd94l0DPhsMG2wHIhc2GwDDG1uHfdvhPmtOEBzXkrWJitB5/zT9yy8S5zOjveCduF5GrcyYxpGDBsB4y7AcxAv1ohRCHeu90gOO8j0Ely59jJHxFJSOrsmPD9Pi23/a7+HXq+uX/PpfhYrHAJWIWAfWXl8cCL+nbqU7ATT+dJJMEgCmWXe09kYOj6ptoXlhAWECHnwv1FUbWQq7K76oV6KgI4A5LUNiUwM6ackLJ4M6RkR90zUprEEJkZ4zRKuJfyXXs3cVrmMccYS5+816726Hcb6tVuIDglpmze1bCY/Qqd8mAKGfSIb51FfQA2UYw/FyHiQo13r0dGHlVmITQKxUzVq7ySuYarLFtErDHyWRQuKvdlrsxVELQL0+pwLFpkWK5tEEVgvw1HhDuLP0BQZM5yDTVMCZ1txJHgiMzbP6CmYqAIlMNfRIdhVg99ks1KMcaSGNaDeW6acUkyJ/t8XPIpOdfGYcQ0CE660CGGTmlxjxjksJNANuMA2zi3eWz3i+FDn7Hfgz88qvS1paHlpKxHpXI1TLKsEdK6yRwCuLRnlkGnfJa+uTQcgJNRObsFbkpL0WYAmD6h5ZOGn/g1ocBurL1F0P4tiarnwmfJTcKQ06blOaIJoFD6XoSloH23yei8ceu/8AvPVecwbgaxb4xTLYxaM4X0CzuexFy9jc19BpVvlTd9H3VcFj1+eAEF5R3/4HLbra596ucD7Ag1Qbd/u+pABLi0PooHtjnEzbjc1jT/PbPbvL0FvvFQrxir0ccmXxNsoLNCwrV0OmYAnCrx06MVAzIi2bGVjECWFJfk+G9jnhGqsGRETghgbCjjnBgrZqzThLjdIhDQrxJCSGBEcNeBqMeUCa/GjFej5Psh9MgkbnSZOpANIyvx0dnlvddI3cPEZVN6vOKEzlwDNat+ZsKOMkYdlxwCMsn5uRwDUuN7qaPGrOVXJlpoyLERyLYQoTv/s8YouzS6WCa3jwtx2ufZ+QU++c53cbZe4eb1SxAxpmnAl5//EsP2Cl3X4cVP/z5+9pO/j/Vmg+/94If40T/0W9icn+PZhx/hvA+IfQ9GB6ZODWPVPRIkSbpBhBA7xK7udgp59a7HjMQZKdkOTAJRRk4Dvvril/j57/89EAhnF0+w3pxh3XVYXzzHR/0Zbm62+Ml2h8uvvkaednh9+SXS9hKr1QrjOODiyQU2FxfgbgPSU1Yuzs6w7nsxTK0iJmLs8oTL6yvEVz0SZTyfnuPsEbbDiIC+I3BWd899l6dWYbYJxfU3+FuoD3t3bnv3IJG9vZWLd827Tr7cslvIC18PHW1lcurs5iHPkHtU54qpu0tHh7Kk9tdi5SkqYLsNcmtKGgdsr14jTaOeVjiBwFitN4gXZwgxIoYOIfbyFsUiDBVBUmlC0f/g1v1D5MK3lCHNo67pIOS48qw0eXmUvn3w5wiV8dPffAurGFnvLvXARCNGBucEzowQSMOhIWFcY0LKWbwNr2+w241AZmw2G82fQri+2WGcEiZmDGlCiAGbzRpnZytRXtaEoMeDyxDvr4J5+33/ltbMEldZemY+TvM6efb9m4D5btu9yNxRQIPcCWrwCZLHxzZAVKA0E0wgaEgTqWKrq8HLm0GEV3lf8iaaj0HOoqqCk5AVEz3YjYAZCMz4wxKiNU4TMmfsxglTTqpUT8WoM45jSYA7pQk5iUEo51TDu+Y85njDiBBb5RHQcBhyD5X7ZF11Rh0f5lHpvimD5H6YXxOAqC9kiEGHiLHugPOeEInwoo940YtSEW5GDHlCYkaimq/Pi1v+5Esu//jGzcZxgVH5LHBVuXRye5HprDhjeCZHKEUilf1tnmSvdB8b9lWz2x+t7WBSD/9i9Jmql1lhfFRkS8r1XTmYXSi6RBXoXM1i/KFM6LogBvPifaqeRWoEBZHS7STtV72HOWMaBkzj4Iw9PUKIONucI6yFvodi+DUtqzQZPryLdMHX4F3aN/wAgEv23IwpPaLJgACytdisJ7aqYUYSb9qu0glM/QagzgRG3LJ5urvQNetPMYhXoa3qqQSijJLewzkreCiyJpQnFItsqEbiukTqgiVAQrG0D5R18037rc8Q1VPYmDuUcD/DBtc1ZzpbldsJoFBlw0KfuPl+LDDVAbSwErXKJbmm1RZ9+63frpiZ0NBKRwsyCbdoW5raB/uz+LtFG/lgr7jwHM/far4J1hIa7rbAdzxUU6XO0nsY0u80/BDRXwHwzwD4jJn/Mb33IYC/AeDHAH4PwP+Imb+6syz4wd6jLIJOWwi6FeyngY8Qb/70FIPG/asUy8VAQcya+DkjgtFB0sJEzqCcQcQInBDzBA4ZPQjr0IlBKDE6yiZeVUt5YRgN29AJbUpmG0IBkp1yc9uV36ETlu0AP1iMJ1Gd7l5xNX2O6q+19/tr+MdE9BmOgMdy5Dy4bAaZpbKOf1191c3NCQcKIUasNmusz87Qr1ZlR3qaRtxcX0ksbt+jX2+w2mzw9NkzbK9eg8CYzs+Rh0FYbAA4W8hdqPQv1HC420RFU1JrSAPDDHnMGdM4YHtzLV5hqzWwWgMB6LsecbNBTowYgggKSUK4xmEAETCNo4Z0TeCUC2GKMaLre8QugiywmiAnh6WkgjCqtfuIOATsCHsoQW7X45LSWQl3G6Pqr5fALZE74NBDt9+f/1qEW2rv3trOwmj9G/yAth9iMfpbkQ8YOCIeyw4BHC0o2pstAt5vmLnZ54w8TUjTBOIE5BEEoIsRSCt9OKiwoyGVJj445aL0X2mwxY3fNTeaJpV/9ufdvaD4o6MIeHUeVy/JBva4+EwaOFz38XDoqrEqF6v2vPO+kgpD8Z8BxDpGuovMqf7lJN5eEgoktD1Nem8cEXYSMtTFgKQJwnKXD/AgJ/C5PpVrRzvmzZ2PxVKXajl3h4MdpEt0XPlmibss0lH77bZ5zbNPHBZUW9FR53+jjCjn07nQhEKSCcHO+D8jeg1ds/lk5apSIYZf9WxwL7K7l5nFCKtHWSflc5lz4XfmWVG8giZRdk0BL41oSdpx16I34Gh9+8e2U/loAkVo/75/z5c/lx1BJSOHylSmoHNNR0BAHwmrGJROkx56wW4+UV1b7ApUAsvF2HOQ0szmw+IMg6OqKB7vbmikEfVdVhm9lOnotdZ5tLV4CHyVzWr1BgyvUEJWj5/bpoX4Y8Y9Ea+zZrY2ybzEZqWrNxA4l/Xi9Z3q8ZMl0XQaMY4DAAJHIEcgxoycZc1Y+eoUJgYPu1fql7BBPwfLXCTMcI6iTzR0oEiNzbNHlVE9XpaMqfW6YKXeR/VIWprBNhl8yKqUZOFwDaeZNUyFn7LB3DRaP0znoyqQeGZPUI8mHdxQ67A+SXJ47RuxVmf6pEnjNlfIfe6HBC0yE5rximJUO67ev8QHvYzWimE1RIud0OZDvTwPW9jzLOWXN/y1G5jDFHAZarjW/uyv82reUw9So8+15QmSj6Ko7WzppP9577FbREEP9/H4+asA/lUA/7q79xcA/N+Z+S8R0V/Q73/+zpIcnSwUdPY7gJKdWrzf6mIhEsIVg1i1usDoScK7CFzCDiRPgRLBQIhZyuiR0CMjIuMCA57GhBUSNjwi5i0CMni3wzRFMbjEc6zjBToQRkie5ckx/IyArazednERigcO6ewtx56TXAdm9AHos/RRjD16oCMzRsiOw0hAQgYTIRGjJnLTSccQoV4JsR/XJt8R8DmAf+EYeGQT+EzYYDfXzesJqB4GNCedrK6tjNVmgw8+/gRnZxt88atf4OkHL5A5oY8R615OHwkxYLe9wTSN+OXPfopxHLFar/HRJ5/ik88/Q7/e4PzFc5x/9CFC16Ffb9BvNiAKYEqSrpYIUT2VjAGHYMbG4pCLxAnTJB5lEbpLThJ+Ng1bVTQCdrsB/XqDF5tnuFhtkKeMVb/Cqu+ROIFWPeK0wsX5Ob7/3e/i408/wWpzhuff+S7Onj1HCBHdqkeIEWfn5/jgow+RA2Gz2eDs/Ax9H9F1cSbAHw+HBDnVyxzI9o3EbnfAC9nUXgN16hXslh3GA1SIMNN62gRli+DLL5OJm2IKc1mg5IWJzLihF3n2BELthncwWu7Ofj9bZmuhhqWUo+GxMH/NQ1YFRyWYbjd1HvtNYCBPmIYtpnGHNA5IwxacE6azM/C0Q4wdKHZAXCkBFs866ZOGi5CckBG7zjEoqmgu6395IB/CeJdAGLt4E3CSnbCi6AZC6DrQXjjSHUgtBR+EI+KwCid+Pi6tnkOsc++5wqYYnGsYDetpTmlMyIN4U2BKoJx0QwToYkAmxjgMePnypeQyu4roVkKPnz49x9Nn54gx4uLiHNP5gBDEKBSjeJnEGDUEt7a7tJ1NRDVBezYOcPIQ7/fVj8Fd43QP+Ks4lnxzC8zn+D3b9uBamBnIjAQxFkzjiHEYAQZ2uy1utteYUo9OvU5BhBAiQoiV3qlMMSY9cpoZUxJjjYRiueucxCMHIndlZ9Ez44HNvZwzhmHANI7I6kFWQrf0lC4f9qUNKb2rxog97B51LYZimKmfrfu8LS7b3TVSu3zf3mjvuR+ckmb7xAQgkSRiJchBDOsoIV8Xq4AXaxHdr6eEl4OkIyAWj3RjvVYNIxR+y9nJbmUUl1cQuQVY6XfDMbWCA0b18gwqv28UakarnR1nLTLQeqHZfa6f7Qa00SF3TQFQjzk5uZc0La7lPpNwLNtjLLzN6vDF6wfnhDRJuOKwvcHN9WukzJgQMUESrvfrM/TrM01EjGLUG4Ytht0OKY14+fXXuHz1EmCg69fo4wpdv8JHH36MFy8YMXa4ONsgriQFBZHzB6GF3pKE0lSjwTLrW5olC5s6R12LBRqDqusL+UecfGNGNhAsWszC30SPlETPpbw9o5Ip51Tpoq0Yso0wHZWiP1jtJvMFV15d+0EbHiiAAlURrexXV2phRjhxcMiulrp6M1XTT02bYoZK0r47jy1y/JWcVGjdPeJa9GPqqm83DL3Bw8CTfm5DvdxG+K1GH/n0oV62OB3esT/Xb+PNhvKlNeLTL90ppdVdWrQjA7UVWMQQN7/XUEVypJQcHu8nWdxp+GHm/4CIfjy7/WcA/Cm9/tcA/Pu47wQwQpmrQtUIcZ5R6oTXZBIAM0JgdFGIbx8y+pAQiCVMQc+fmfKAadxJ4t8Q1BUdWBPjjDI6YjzrEl50E3rKWA8DYrpByAlpmJB4AogQN89xfpYg/kGSFHFiQlRCOmkmIlbnzkzGpgGiXAxRJRQL5gYqHj8rFsNPIKCngI4kLKHLSRL/AtixhH1lIowkuX8EL5atHSWMbL6zPzP8vAbw5dvi0bxhjBBadZlQJqr3/EFuCYq5+mYlYuvzc3z8ve9jGrb48vPP8OLjjwEwuqC7WgSkxNhevwYz4/Ll1/gHv/f3QCHik+98B9/9/m9gfXaGT3/0Q3z3xz/GarPBk+cv0AUCxYjMwKRUztzVLeGlZZLioLmakJESMIwJBEYMhOgMP+P2Gikl7G52ADpsLp7i+ce/gfOzDcCMs/Uam75HQka3XiPlNZ4/fYof/+g38Zt/6DfRrdZYP3uO/uwciRm7JHjOAD75zqfYXJwjdhGbzRpd16nhpwptx8IhZDjQBUncSrCp46ghqAqLNq2cp1f9V591N2by+qzi5duVxtPevfZLK1llNwflthJA5wlA7t/sloiFScuv6pztGJRdz8KnMRMR9af9Djc7ppZ/SuBoeLQmNDuSxpiIQCEWoxNp+KvkQxOaydOEaXeNYbvFsL3G9vUr5DRh2GyQbp4gdh0o9vIXApg6ZOoACghRQsAoBKzXa2zOziS8pB4L0gpVdHhavC0wq1K526kXgiihMQasz8/Qh7W2wTGYt4Oj4tCaE9z8vE349nxzqbA6VTM4JeSUQESFP+UxIQ9JvH2mUQw/WUKnVzFiooxht8Pl1WvN7QIwMUIMePHiCT744Cn6vsPu6VNMz54ixoj1aoXVeoUQAtbrFTpTnJY6MOvfXH6jhet5MbxwPRuGO+GY8o0X4Rbrukd77l3YLaVnzuApicww7jDsenBOuNle4+r6NfreDD+ydlerDdarmsPLPBx244jtbhAjzThiHCc1AomnDjPa3DyaENxoTaDgDD8SujWOo74ryZozZ5SNJPN0YKexO/rc9pb9EB1vLRLJyUsAJCcgq+xyINTLLTaf8LZRQvffKHXVLsp1BNAxu3dld38VAjY9YxUIz9YBH52LN+bracLZjhATY2DCkFVBZaj1g2Dh7syyhiWsj+18nzKii8PBVJL5S9igY4ZE1eN0zp+h3tfWCxXuG8nBBA+y54+3FrWLCxtaVhec4mXyC7lLkR/BDMRQhjOxyOhVnkfla+RrqBfWzZwTpnHQA02ucHX5EillMfywnFB8di4h1yEErPqI2HXInDDubnB9+Qq7YYdf/Oxn+OUvfwFmYNVv0HVrbDYbcM7oug6r1Qpnmw5dtxZZF+TmYcW4D0KQBP7U8OtD5Gd+f2b8Oa5sA8FFNca6tUTu+8wzqBp9LN+R1yll0zeEGuBWPDkIKCe7qdhmfS6pLSg5WY5K4mQq2h2aASHL0QPLnyRrKYQajosQinxGbj3VDLis3oAJcPhkYiRkDfEkZK5vlNNYSUPdybyxrb1U9DJpJ+u48dH1fmvzQ1iaTSt235rrudBgNTm5vq2QmmduFbCWv5abS68299jPqgN1LYIa9zT1ixmBijdMKc5xFLdjTTznlMvwpjl+vsPMPwcAZv45EX166EEi+nMA/hwAPPveD+uuDaGZCH4HsFncHkGkiXj1d0vKW8hynmTA0wiedsg5I8YIIj1RiTK6wOjA6JHRUUZPGZEygibyBU/gNCpTmyQnEAGSyUeEmg7yHgGIkCTNGc69jo3IsF7XUC9Ce1S9GcKsXyCgUzyDGZGoHKsaSBf4QkbUPWRzO45vg0ePw4+++4OCP1EyFZdF2ZS6mwnvtJXi+aS3Qwzo12uEAKw2G6zWa6zWa0QSjxQCkPMkISmZMU4ThlEMc5uzDS4uLjAMO1xcvsD2+hqcM1abDdI4SgJTiJrOFEApg2IW6muWYOsHZFwbV1vj5szIKSFNGufNDOaE0K8kHrvgW4i67SawekKs+g7r1RrdaoVVJzutlDNG8woLAf2qx+ZsgxAIXRfF4BR0J4HnbuYPx+Ecj598/0eocd6GqPKg07gcQv1uXbMwjTBVlPsrP1OX+lF/vyd1LHirPgPVtdULza5ebSO5Jte+u/WIVhBoFrRrIlmZ5ZObxwDoUZXuvdv9MB++Fr/zfRVu1c3bTh+0fB2BShhHCCKUCGrFbVw0gVxyCeQ0IU0j8jRi6iKmSegpZWWmJJ4gdgRniIzQQTxCuq6EYpiABWY7Os6klNnOjiMMvo/Nr9xOIL0359tsa1SV06xJMjl3WJn3QJnX5EpydR5AzyEZYQHeaC1+94c/aoRwTyPfGhiFprHbGMhqDMpJjwnWuSC8SuluShiHUcYSjIyMEAi7TY9huwKnhHG9xjgM4K4TT6EkOSYsj50YYFs6MO/ajJIsXjfPO6HYyw9vMjYH4MFrMahXwP2awe7fUtbsEU9/6lvl6+x+ueJ6LSgVw0sJP57GUnzWdsfYIXEviosdYa1eOOUUrSlhnNTwM5nhh0uyZkBzaWUu9IZIjTqar8eMRublY6EpTXgYm7eeG51DY7qs1Ru80Vpcf/i9arShGvJxKNRLWKSTW6m9bzzFiekzHLZ4t42pquLIeoxB5KEuAH0g9FHK6YOEgEUGgqXLMaHG8awmBK1MU2vNYQpnnLU8T02hiisbm1oOFzprlVnFXMeLGUtHF8/gwWvxe9//oRqddAzn7gSFwFB7jfJKkQlZ+5IdHbXTDoOft5hP0/kvMqfZGUELDWZGRgDljJwmcJ7AiOBMwqdzBqcJ0zRiGkcMOzn9lTMjJ0bfC98dxxHTNCHGAOb2xLuCH3bySvNXW0qYtd7wt9C3e1LdN1qLq7MX899KjcajvAzXrjkqRh6TR4qMjvb+fP57g0hd3zMZ0E0XS3TtNFg3OtS2kaqeJzqfVCT0pebp8f5DpIpKwH4TGCg5VGVp2Vxza5Krx2LVsRdoFgF3JAZ+8Fr84NMfut60s8g1bzbn5jPwAeBem4d6tRXbvf16CIvsF3t37miipw7eONr0k9yccdaqKgNyKw8WusqNClbmPHDYqOXg0ZM7M/NfBvCXAeC7v/0n2RZeXhLoNVeP2TXKJCeSPCiZ0IGwskUWxDjDCRiuLnHz6ivkccS0u8Z0cwnkjPOLCzx5+gxdjDjrCBcrQk+E88jYEKMnRt+N6I0oThBmRIQYGaGzZG6SdC+zHPm+IcLEEVHdAhITBkSMiGBSzx7OdYFrXyLqNRJj4uwIACDGnoygifoigAQgEWMLxoSETAEJEmomEroSKqYyY20iHBuHP/5H/yuyXFgnNpHzMEAR4go9LSd7iRBqk7kQgtChW28QYsSzDz7Cd3/4Y5w/kTw+169eIk0T4rpHtzkHGBjGEd1uBDNjHBM+++xXiLHD9W7Al1+/lBCw73wHn3z3e+hXK2yePMXmyRPE2AHnWRInUgR3UQ9eIKQQJJkfM8ZdxrBLRQFiYlxf7/Dq5Wt88cVXcmR7AlIibC5ucPbsZ8h0hnEccHX5GjmLgWh7c4Px6jWIgN//vd/D9maLbr3G+QcfYH1+gUyEFDtkDcRe9x3Wq6cIJIafEALWmzPJtXIk8Hj8rT/+OxyBYuUv2RNMWCNUYQi66+eoaMGgw70JeWTzGVXFKUud6kUlc8KQ2JUn7XVt97xA1wlBPH6kuZbAV3d0yEKm2RFDrv1j+T1keZeAcopNUuWDGeVEQJQ+2triWnbZW6m9qqsQqKfNLZ9+9BBo1uIf/W0exy122xu8evkSw3YH1jwA4IwYO/SrtYZhSZ6sECOCKQ4ETMM1Ak/oKIMjgfseOQRsVmusVmvx+AkRCL2s9SQhQLLmt7LDD8K0PcO0OxeFL0ZQ0DCSLiB0UbsfJeSKJCFwiB0qxpSGOZrljbBi2LITThKYEwhCkyOANE64efkVri8vG8+C1XqDQN9B30Ux+MZuGQ8HmPgbih93gsfjP/InfkdmLmtOMa34oE50R1ubxIU5lRxj4zhi3A3IOYMSgyYGZ8Zw9Rp5t0UeJ0zbAcN2iyll7HY7bLdbPcVJDGkhEK4iEJHQ950YjXJG13dAfoo+RhAzct+BU3ansixwIyf0Gewt88Mj6NXMg0/dBm/LHT0O+9jXJX9nc+7z0C3P3NZw9xqReBmM04CcE756+SXGaUAMEbHrEWOPEALOz5/i7Pyp7kB3CDGCmbHdDdgO48zYgxqWBS7hWeakY16OyeXjKd6IqjRXVbMqHCjyhO92Xf9FAwdQBI4jgcfjs9/8bT1IlWBhIQAhlFN36uD730W5c9qdymbk3vBGn7oRaLxHXuuJsFI6ODEwsmwwXvQBzzYRqxjwdBPxdCNywdNdxLNtxJAINykjToKLTIyCAmN5DPUX0LXDjNY84PpH5hXj1xk5wiLXZJtlupiLeml8Vt8MICdPGP58fpU70XQreBz+9j/+J2S/3LvvWr1o5YqZzl8eH8cJu2GHlDJeX13h5eWVnDBHAf35OTJFZATxXKcgxhkNo5NNJpm3klPHeJienMlAHwLOVrJxODFhyjKeHSfQuAWIMAyQFBM54erVJW5eX2IcRwRmnK/X4ozUrxBjj77vQMTIeUJKhGHYYrfrRBYr6r56+jrJi9UQx3ZyJ8Rou0ivC3ii7Wf424PH45MXP1C+CGfoIbdh6Yw7pOtP7wX3WyQq75tcGkL93U++Gnql8ojuzLM+x9bl8tmYaLCXZBm2xoWwaWwIwITApKk6TEGqWyRU3pOctPJugp7BK1Eu2q4A3eCm6tHOxBqWCD1Nzpv7qPTH060yrm+MPe2Gw+EP/+E/WYbM8/Ulnt8aiObBc4S9cmi2lmdlWjmteXbWEP/9vnDn8259NZ9zvcCtI5tvbEqz5YLNyh+VUBGc0GQjE5ri7qP3v6nh55dE9D21+n0PwGf3ecmsnTJZK8214CCi2icCClZDIPRdRMhBdpmjELQpjSLUpITd5Zf46qe/h+HmCvnmEtPrr0A5gT76GC+++32s1f3xKXdYdYSLRDhDQE9A7EZ0na6YgYpy2HeMVZcANRBtiJFBOCfCDowREZTE6j4h4Aorc9Syw94BQE8eUyIEHQOWHTIz/JRFTMCKGFEtX5nEEDYx0CFjx7KgB4LGc7vJAKirly2jWz1F3hiPPtQLaBcj9oQ3QzQDmiAWatQiAkLo0K3PgNUKzz/+FD/8w38EV69e4Vc//xlutgNS3koYyWaDEALG3YDddoucMq6uXuPLL36OnDN+/otfoP8vfhdd3+P7P/oRfvCbP8bm/Ayffu/7+PT7vyFHFDOAoIps7vS0NwIoIpHkKBh2CcNWPB0yMkbOuLrc4qsvX+FXn32BcRgxjBnTmLE+fwJaPcf1QABnDLsb5EniuLfX17h59Qq77Rb/RWb87Kc/w2qzwfNPPsHZ02cIfY/u4gnieoOz8w2+8+lHePr0AkRUQiRiv0bfdcDtC/nN1iKAjoRhpGAhJiIAeAWyLlIqQqD9YEJDUTQYhemae3EN/Kt5AIrIS5URmQCaTWZS4XDP+GMTimul9m7gameUUwH12oQx67h0BTHXdSmGWmnlxBmpeLVVwdfkAYBVSZea61qvAp8JxjK/zPBzK0oejEfmjHG4xutXX+MX/+D38frVK1HEpxHISVy+zy7Qad6rzdNn6Loe3SpitekRYkAadsXwQ5EQ+hU4ZqzWG6w3Z4hdJ3OCOjAI07RDGgYRWMcdht0WDMZqc4bt+YWG1kpeIKKAbtWhX9l1j66Xa1pLDq6yk+5O4SsEpCQ3Z6RRvJEkIfEA1iTUKxXgpt0OV1/9El9/8QXSlHCz3WEYR5xfPMH5+RoXT87FGBU6ONN7mU5m+qT5fdq7PCoODYrw4wz3cqOt1eyv7N6ZCz/BT7Ukp8CMw4Cb62tcvrpEmhI6ACs5Lxq7qy2mm2vkKWHabjFcbzGmhO1WDD9Jd6mZJZ8ekuSC6rqIPI7I04TVqkcXCOebFYg78NRLHDOTuLEDRdC8S24qzyywEvndK6x8rzIfCG+Mx1YpUjjYuKUfqPmYI/eufGPlXX0t5YRh2IGIsN1e4/MvfgUAauCRo6CfPPsAT59+gBA7rFYb9Ks1GKL8DuMkNDCj8YTNvu1cJQFrrnn4SC8rvS62G6WP1mCC5SmsxoDKBywUDO3927H+ZjgkIHRmipatANvIKKzOFCWYlKV9KKJYVaKLgE4ztVD5h/Bh4cUBwDoCGw1xHxNjSLJ5+GRNeHEWse4inp91eHbWgRh4MUR8OETsEmE1iKyZWU7tmyYdR5WrTUmcFCc1JMJPKpN/62luZa15BdldZ48KwxNZGJypcA7XbOEMKH+3zOmH45GBSTvM7h5m1+UWzX9m3AwTXl1eYxxHvL56ja9fXmKcRnDssXmakEPWEBvJvZKzhFcKDZeNF4LlJJUFmdME86pcxYiL9UpCvXLGlMwYNwGDGO+GccAwjMg54fXVNa6vJdVAAOPi7EwaG3tQMB7LSHnAlBjDcIObrc5PzoZNTVrBrv8MUADFNSgIbw4RoFDDk4px0+18+VCTe1CkN6enKmK24WrVq6d4ahOVsCk50VDmXgBBDy/cy+vjQ8J8Pq/QxIbVQbClAsCdaGxezLLIlnJVUpE/lc6JtqsqkdzPrFEJUmL5kwOALOwnIXACkZzIGAlgJiTK0K1qMfiqHJuR5URoEt+AIm+zBBQ1/Qbu8vZ5ezwC7QYu9vl7MffYHHMego3tw8R5qvdnIn5TKpo5X9tUC57ffBtgnR8+JUqdL9ZwMoOIuw1isVsg6W3L9eMfgo6JrQI72e6eqxFvbvj5dwD8zwD8Jf38t+/7YuEXQuVQLXlOtFYmac8Qa3hUkMXb6W41M2GCHPGepwHj9hrjzRXyzRXy9gqUEzBcIEw7xI7QZUbPQMeEjgmBbaHlMo622wMIAYjCA6tLMgOssQ+BM1aU0akYJApgLv2x08YMvwUxusUllthi3yv5bwA3H6jO9o7lyE49bL5Mp6Jrwk2U+wiIb4JHVcSkcN5bjNUKq7s+RUiTh/wOTxEQghxN2q/W2JxfIKeMfnMmSWVDBOkOZQgBOTPilEAke1eyEzlh4ozdOKLrOrx+9QqvX71CmibcPLvCcHMDzhn9eoM8jUBgZRoRulUgOX4yI00J05gAO0UBGeMwyd+of0PCOGZQHLDdbnFzfQMCxE1X3XhTShIqA+D66go5Z6yGAWG9QQIhrlZYUUSXWY/VlXwkgQhdiMKkolOMD2PzrdaiMKXZZFG8SbV1HTaupDOtrMxrrt4zVJ6sXmCsz7GvC2U6NfSh8cT2I9CSikY3Jm2yy+BUGKh/BjDvO5sL1h3z9jHlgwuzqmuYAeTioUHe8GOSr+36SiH1t8PwYDzKjrsYGnfbG2yvr4CcgHGQHchpjY4I6HoQgLReS5upQ+4AcACnqQjiQmPlKpAltlQXZH96ha2NlJCTeATkqZMj4fVkOyprW3enQoCdUEPqgWRH+ZaTwgoRcYhWjY9Lwv4krvBp0qFVA2IakcYB07BDShOmYYdpHDGtejmtiusuirxYMeZ3lhq4Dwd9SxxaNWbwYbu2dTFX/O0dp9TYOqNSQOM3peEFQtvGQXJMAMr/mJGn0YX7JSQ9QruEIswMP3kSLyJwljGeRoRA5dhto/nMtvPv1rEXALUffl0s9m9hDEgLc+L3PUZ6DgffeQM8Lotcvq/71dL+Lb1f5iQt96wVmGdCJVDG3Yf5JcUtIIYfCp0eMnCGrt8iRjkWmEm8SUYNbfYhgl6EbbpUcG7f1RNIm9e8dSuqlGNUC1HzLi89swxvzhcBp3xVHjNnw42gTQxTlQtu7AWTLZ2sa9yBIHylUxmxU2/MoO9mJQV90N+ChHtFIc3FaJSJ5cSvACTd/bDcPMXwozzVNl/bMfV9q4y3Bmq2A1TGgtvregOujGqcrfzTat33OZrBG+GRXafqPCH/Q7NxxW5mAeKxNo6j5rYaMQyjhloZbczIJEnOA5GjkzpvLNQqAIFNsqj9DwGIzrjCekCLpXjIzEKT01QOq7GQ3EgBfddJW0MEQpSyHJE1GVR4i9BuYxCmW5QQS2KE4OUZ8zxtcV9H8cGM8S3WYvVWmodozdemiiv1DyKvtsYNLZdm76EtY7EtNm5uLc+jBfde1Snm+VzRzzgXSm8yZWmbk1tbQ5DUEQFEW9uQtW4JusuJ0IBeV0cLMQ7VrS/ptzTQj8EBeDAerUzP1/3Y2IC1/Ow+oKP2Jmx/gRcJenxhNH/S3V360tKPllPOOJinn54Wk8k6Jo/OzYjcTjKyeWP3uODyLrjPce7/ZwB/CsDHRPQTAP8yBPH/BhH9WQB/H8D/8M6aUCcsQ40eZTHYImJU11JGICF0PckJXpEZIZKcHBIIacrgcYs8Dsivv8b01S8xvr5Enwds8k6SONOEF13Gpkt42hGedMJYe5bkllOAnGykxiQKsexKyylNHRAIXQxYqXV2TQETGCNn7HYTdgkYmMQ9PqtQHaNaoFGSeAEoiZiZAMQou0OQXZUJEjfccVKXTKCDHPneQbyAziEeCdc5Y2BCzoxhTJgS1yTSzKKsxQgX1vCHAPxHx8AjoEKETWiGJMODm+KOx5qRx5/IYZeSME8kk/7sAh9++n1cPLvBdkj47POvgNUV+hiBvtM6IiI6hJxwhgCOothNkyh+BMLrr17iJ/nvoe9XeP3qEl9/8RVWmzU++vQ7+OjT76BbrXD+5BnOLp6K909cgeIKY0r46vOv8MWXX4JzRsxiYb95/Rqvr3agsAHFCA4jMk1IHHCzHXH5+koYORICZYzjDjc3V3j9+hJEAdc3NxJqs1rh66srrC+eIK5W2Dx7gf7sHC+eP8XTdcSKE1Z9h/78HKtVDyAXl85j45BIXGADAZS5mCuzozTFAzWLECJfkvyBoWdG1P9YCU9Wxd8rs4Ds/GvoGkO82bxAyKSeR4cEU22j5UBQ8b8RI21edVk8eghAyGKkFTqr7rIMUGIN9bKTbSQB5sgZSRWLNEl+E1nHlmRQBDsj0sacawPcIIPEYp3F4HFUPDKAnDFst3j15Rf48lefIaQJYdqBcsKTJ09wETLiZoOuA7q0QQwADSNS3iEHAk8JGEbZeZoyOMkO7pgy8jCCckZULyEJuSVsVhE5AT0iOo5gzuhXEf0qagLooHOHweMOw3DT4IooYPPkKc6ePJVx73oJKSOhm1HHiUfJN4ScwcMWGHaye5knhKz71mnCmCRpJl+9RBiuQcw474FN1+Fs02HdSS42MRSww5Znqw8WPY5KTwHo+jHc8qIEpsPqZaZ6bfe5bhwI4RXFYRx2uH79GuM4os/AiqXO7TBh2o7iJbCTJN9TykjjBGTlRYobIt0MSXLSJGcxAHLShPi620paN6ti5OZ+aaPf+DnYP+Y9rNh9uz5kjLgPHFu+0ebf8SC3D5G/IHdbac3So0ChgUstMWM+OcmSIDl9YCtAF/uwu8JrkpPYJIedaD/sm0lwYz5vhShY3ljuKHIzItWgo+vRXHlY9qjlcQ2dZZGMjIs0YjQ3WD8eXwQjYqeylO3OS0gwyHL91FCYooByGXUAEUy9lEYBbElbSY3gACIyOs4IAM4i8KQTz5CLdcTTsxUiEbYjcLOTzacX64DnMYuH+rTFcD3IuO1usJmuEbOod10IyASMYIw6dhmMRHKOaoIkKGYAUwJSOeXLed2immMSmXLFzS+2CSIbl7YhimJg8piX/Gu54FlkCL3OynDydNS1aC1oDdH+/mydkhiILJfP9dU1vvj8c9zc3OD66gqXL19iShN6AC8uzoDdBlOMkq+RSE66SwkMRhcjuk428ShGcBeKoh8IktOx64B1rwZZC5k03iRtWUXC2EWkzFj3HXbn58g5YzeM2I2TYiQgM6Hre5ydnWG96hECYRp3uLocZO4i69HthL6TOQLUvlLo0FFE7M08YKEjjsvMWNEtNO6IaxHQVVTC1YSGVe+66oTEKtupKYU1uoCLOqykhVyXLL1AMXnIXQ61cKdk23dPrqv5abn9QuvraJHLJUUIAE/SjjBCwkNJjMBBUkXHIIZdAhCJ1eAreIwhIDHjJmUMKUs3Sl5Trv+yGIZlfsmmMsP4gGsPVRno2GtxT7panEDOv54ZjfGfpRQjG3tr2rEZOdHP6aNcS5+3qb56Pwli6SnSf+fGY9Fj2rsWoSM80xmA3DuRhJDyXslVbrV5Z2lpCOp5Fg7Nxhbuc6rXP3/gpz99j/L3IAJFKWiBVBA05SBrTCOLWzqZ109A7CMoEKYdg4ct8nCD6fIrDL/6KcbXL7FeRTxZd1h1ES/ChA+7hE2X8KQnPOuBLhLAW0y7LYgyuO8BrBBIYtz79QZEEavVCqtVV5k7mTAidtQxA0MahRCDsE0TrocOmQK61RoxrlRgNoXXiLweZh4DEGVhTmwJ4zJi1sTRJAafFRggxoUu6RFAxxO2CRinhHy9RRomEVYsUWeIQLeSrIACf4+Zf+cYeKyhXq14Zxc+JMc8sxhcjv5i94KdGAMirC+e4uPv/whpGnG9S3j62ZfA+lLzSOjOY1ih6+RUkIv1OTZPniPnhJtXL3H99VfI04SXX36Jz37xCxAFfPbzX+D5hx9ivdngh7/5Y2x/8xLrzRk+/PQ7CJ9o2ODqHNQDwzDi819+gb//k58gT5O43KWEcbfFq8sdEDcIuQNCQCbCxAHX2x3o8hViCNj0QN8RdsMOV1dXuHz1CjlnTEkSU8e+x/rzL9CfbdCt1jh//iFWZ+f45KMP8MmTNS4CI59t8LQPWK0CgFR50pFxSJAdxMwABapCh/EBghMEJdGneXoQi9IdiNCRmH8CCAHiucXm9szVoAQA1PXliOdsO9JoCVVxBaUZhfC7NqjKhzC28jZMYYgMxMwgJsTMCDmDOCOyZOICs8RPJonRj/0KsevBYAwseX4yM8Y0YcoisMUozBamFBRjUiuA1PZrmymAYvbK75HwyOCUMNxc46vPfolf/eyniGlEN94g5An00Yf46KxHF56I4Wc6QxcYeWJMW8VM1jxHinDJU0AYpoQ07IAUsSbgnFaIkdD1Af0mAokwhQ5rRDAHdOsox8eGiMSSn4KZMex2EgKZk+SMGXYgCnj6wYcYBzkuvt+s0K9XcsJQ34G6DmBGHnbgYZDcPtsbYLcFqWG8QwanjGF7g2nYSuLZq1cIuytQCNhsNuhWPVZnHTaRirv0VGZJu5/iY8r9bLoFjrYWpX5pVZMwtPF+OtSoKrjZWiLMPG2y5H0adju8fvUKw26HPjNWWQygU2aMSZKCD9tr7K6vxPDDVaHtnJITiERhS4w8TcUziFh2saO6rHPWRPqoO4ymPpYvt/Xv0HaeNywclsQOvDsv6njyTfXoqIIkz3ffuDzs+u+1i1qaKA37qoUXUvcEapgLf93TFc8rVNzZWzyBmbC9eY3dbguKHVIGmMQTSE7ti47SWnN9i4xQc/EKc77IgLuumz9c+IThki3ZPOozzebS3pWXPo7JFzM67IS262EhTaBSkA01ChYiTGVHv3iNklNXiZFJ8z4SIwbBRc+MtUqSz1eED9cBq0B4/qTHh882iCHgegu8vs5gTjgPAU8iy8Hf44TdbgTnDNrucDbusGLGCmucx5XQb2KMQU4MHZExaS9yCMi6wTGMjHGScU6AnggEkUWVIgWuvBolBEE2I82DV8xBggvzXAcDicUDRsKgRjEQcxZPfE1ajDR5+e6IuoZqiLlVgAHMNi0JUA+3nO1kOsnr89kvfonXl5fY3lzj+tVL5JSwZsZHF+fA+ZnIAyrPTDljTBLqJSdcbmSDuu8QQ68h5axhX0BYRfRhXbzxUOxi1lZgXHWYphUyGFO+QGJp480wYjuOEtWdGVNixC7i4uIcm/UKzIxxd42bYVsMBgGMEAib9Qq57wQ/egpf6HogdqAYEYL6klA86PnRkmVP0AAcWUbtdeOTLDiJ6kld7cPVdGmeNFYKuyZaigkQZCOZCP70OXAAh1jpnBUTamQCeYGvXHozArlXZR6WZNuepZsRgzQHVknYHtDHAApAHwmdnizcx6DXhFUf0cWIMWXwdULOkiQc6AqCCOpRrfJ7JlmpRLG003MSvx12XL7o+qu0cv67iTqFxhcLj13raDJQhpJnhh+tKaCmfLjDK1RfffONI8+ZC3ci6AEorOyxlm5emNBoHx8+aR9MlX+bs4TRBAsrJIplfhKRvsMaenp3qx89ufMcjEk6PJUFUtanhnfZ+grKVO3kq5q4S8MsshiJeolqxCpEbPqIVRexiiQJnInRISPCIrclREwEjg5FsCHZ/ScKGp5gO5hcjm4EqkjTEaMnSPgOZ4nDVIYerC/6VwSkMhpV8hUepXlGWJiP5F3J4OKGJ2WnzKCRZetmmiQx5yDKLNnOSojgPokB6IjAUMuxN+hQdac1YUBuu90itSbbRjYDxeXRHgkhSjLaGNGvN/I3SA6JpKEFRbjW4+yJSE6X6Xphwppkb9wNAICb62t0fS/Jl19f4vr1a6RpwvmTpxi2N4jdCgEdAnqkcZLQhUGSoXKagDRh2g16WkmnoYCTLjxpQ2XYVQwPQcNmWPIdTFMSYjTskAgS4rXegili2O4w7naYtlukGICUqgGv4RTHhbJrMlfAlDLb/o8J5jlnOTkvCy5AQVyEHdMkQEI+NESgOKgSQBzbehf6ZXl2gLlSU3cnTLltlUQUbzcw9LhyuRfU8BOQ5ZQ+nqpQmMUgEzkickAGShglIJ5CgWUnqSSCZgCcYNn2Qx2ytj1aCgUx6N7t1f5QqAoY6ykhmEZgHBDSiGkYkKcBeZI1xGkC56geXCKUi7EulJJ83LcYqC1fRxKU6y61yiklaWAIcoKdGBEDIpMIlWIBAPTEkjQMQAiScHgUmhUmQogSo2+nhok2MqpikIA0gpKoL0FzFmROQJpEqZgmwEK6WFycgypbcuJjlhDdva1euLl/mxXiMUE8NQv/8wafmVzdtsiIp6wU46PV86CIDCJ86hxJ0yQ8MwkuJRe44ItT1lOYEtjNL0LluwCArF67djqNGpdKaJHuYFc65ltdhZkaxtUKUHuhb81o1XGq19gfs4NAj4Natg8u1cx+2Ht2ibjXEdk368yf8oL7vg7mnmY0c6Xcg3pz6pSTMD89MpjEcLdXU5mfVHHL9RmjhTUkovL9Uq8qYLaTW304Hbjul1/8xT2E+gcDMziNIJYwm6JllIYEEHVg9Qoo+T3gm0OgIGE2GYAloTV6ZMp4hOzgdwSsArCK+hmALgIpAmNH4BywItkEDGAEDQHiLPJmhNSFIDRP6qzyl4Q9Sw9y1HwfDPF0F2dUEFvOSMfzob8BSleTeuZw2Vk2pS0oWS316NpnZsnVNu3UOJyRs4QXSziy0nc+LnN0s7zgtcKyoscw+RbgrKGR0yTG7WkS/jVKfrMUxZMrayLkKWeMyi+7GIDcl8EhN99tbQYKoBhQPJKoeiFVA2ldIwGEpDx1guxZCb1mMGVE9VgOIWjYrpziRxA6HSCpBHIWw0Dtq60j87CweitBnbNHP5TtpttxQaI+nNGVTXZsqJ4Db/CpeuUiWM5KNm5pAVIy4O1hIlQ92Mt6Z6CcnLVXuOOcbRuo0MRW/qWOILo8YdUT+k5oRh9k717CQNWIF8SAHIM4C8SAYtDXvXUA5EI6Le1IBlT79YS1sIX95h4FmqHkA/d9tY73o5lrVXabLWd3UaWL21a8r48Xn7mP0rXPoZtrOnxtK6sZe5tWoDL/rHzW97g8SK0iVa6xoIzswzdq+CGrkFqkVnmNmxN0LAK2C4wegJ1CFFSDWlHGRWSknnHx0TN8/4/9IWB3g4t1j2fnawnPWvVYdxnEW+QpYNgFCcuJGV0gcXOMK2z6cw07OEPszkAkRxSXXXqyaYWyu8MANoFxEUVZPKcRZzwhI6BDh0gRACElEa4yGDxJfLB2uBAUHicVuhNuhh1244DAGbs8oNOQo5hHBE7YTQlfXO9wpXlnLl/fYNAdICkngUNE7nrkIxt+ABRLqx3rXJYMOUGhGIOoMsByvwrqRfAjANQJAQwdnjz/CN/9wY/x/Poary9f4eXXX8lR09kJZNOENAVQTFg/uUAkOdK5v7pCv16JoYKAq8tXuLmO+CkRri9fYbVe45Nf/QpffPYZ+tUaFx98iosXH4tXDjM+fP4c0zTh+vVr3FxPAAK69RnOnjyXHAn9GmE3oF+t8fzDj/D0ww8lmTAGBExYd4TNj36E73/0HMM44OuvX+Hq6kY8hfoOHDt0/QrrfoU+9qCUcf3lV/gaCenZE3x01onLCmeEi6f3suC+CdTEeGY5N3xWQgMAaRpw8/oVxnHA7uYKV6++wjTu0FHEKkYECugooKdOGBBXJh37NbrNGShErM4v0K96BERkArJu25T4ZzZhJJd5Zm0xo4kolTVXRcndon2xEMmQCDHpvTQhqnBJ+QaUd7WNDBBHxD6jC6nsAkWS3TXiCYE1aWOCCFo6djAma4RXGljGt+4wiqGZjozIQAGb9RM8OX+Bjz/6LjAxdq+/xuUvr7G72eH15Wt89cWX2N3cYPNki5EJ/XoDIJRwhVW3QtfLDnPoO6y6FUCELUv+npQZ6XrEzXAjO00MbMCSMDtNZU1HndMUIvquR+h6MAO7VYd1H5GmSQyhWcYycEYad7KW84Q8DKK0RMKkhnYLtQzM6HISrykAkQIixGAxdhE8RaGhQXY+MjO2ux1oGjEkRv/yJXJYIfRrdM96xCCemKB63sld8EhLsK1jSeCZGw8IZWE68a19xpRihuRhGifkYUQeR0mSPYrhZ1QvncwSbpuy5inTfBJEsRw3Gygg6C5wShOmNIKIcBUJnEas1is8Oz/D86dP0Pc98mYDTkk8/MxrQneyzKW8FZqqIFo4Ci+Pe8lNYWNg352gvmcw0LGbC57HAmZG2jMSHJKh3U6lb4Q3IkC9YX15UhEaEdXkkiJB6ox2imMlTXOvGtRnghrpNPSTQwLHCXmKe89bElVrWfVsjOKmDgKoc0KpE7RZjeqsniCWGZir4ikGZ/kt6VHwIsjnMi8WJv9RIE873PzydwFOYpQoYWfKY2JEWPUStkykpwOpTKjtWW2e4OzJB4jdChR7hLAGKKqMIM+vA+EsBHQEPO0YZyQJ12m4xvBqi0RS3hOYh1DGWk+FYjXuA4xNAPrzteCg2wDdBgzCxOKRnsEYMmPMMmcmSEBMyoybkHFDesBDllQDzIwxkzrDMrZJEnznPGHaXiKN1+J90AVQ9BrLDDiLsSRLHrCbqyuMw05oQZogRiQz/GSkcXtUPJKOcybzeLP5qmGr5cHQKk3MoMA423T4+PlTXPQB28uA12mHNA5YDde4/Onfx1ZPvrM8VjmKvE0h4KNPPsHz8zVWIWLVEdZ9KEa4YlzpCBZXTypskbaHSDxLzOuYmTGwefdIIt9dEo9XTpOcoKcWIlL5KU8jpt1W1nyW8Py+73G2XqPvVyqrq5IcguYbEsNJJE1IzS2tNRNJG84nBrKcj78YiRjrMFZayACy89Ah9cIh0hCquhlcozTMy9HUbC6Nz8loZERQL70MCc+k4pqi40qoYVrScWmCuZYYFSxWb8ByvMZIiL2E/vVdxKrrQIGwXslpbCEQ+k1AvxIng/W6w6qX+ZWmAWkakVLCzdU1hpstMggTeoAjMhH6dcR51yNzwDD2mJLkf8pQjzsABEnSnzkh51HxFdRTTz2AgmH0+NAYOlAphi65owtYVqQ34PHC73a93+v7Nao+5WUSCRg2j59St7s2PaMw59lz5bRiazvZe0rLYhQvNIJLPiq06z5j+Q0bfuQodRHWKkbEc4ecRcsEFnV9Yz3pSjQGEGSHCiHLcesAnn/6Ap98/Eew4oTNusf5mQj3l5ev8NXXX2KaRuRJcvGEAKxWHfp1h4CAPq6wWZ1LfonuDKE7F+IrdhuFOj0CiYEAJIafJ514/byiCWdgZER06BGpQwZhyAmjUC/wlDTeGUCW/COcGXk3II/iDru7uUIetqA8IQ5XCNOAkCcJ4UgjboYRn319iVc3O4zjhNeX1xh2g5wotR2E4YaIKfZILrfCUYDNE4DEBVjR6GlioYVF3PO5XEwwBeqSkWsJiekRIuPpBx/jN34MDLsdPvvlL7Cdkrijpwk5iccJj4McF8wZmy4gnm3AOWN9dob1ZoVpmnD56iUuX36NnBmvX36Fn/39iK7r8en3fgOffPd7WG/O8ekP/hA+/t5Wjrjt1/jogxeSxG8ccf36CgxCvz4HnpEkzFvt0A0D+vUaH3z8MV58/AnACXn3Gnm8Rne+xtMPz3EWMrY3N/jpz36OL7/8GhMzblLCwIwYe6z7tSjJiXH9+ef48upr8IcvMHxwDl5LfqiYJxwbhTbyFnZpu3UFwaiWaAawnUZcX36N7c0NXn71OX7x09/H9voKfYjYdD0iEVaxw6ZbiVIeArog+V42T57i4vkH6PoVugjEpxfoKCAHaO4D1NxUALJ64ZlyIPy+7sIxM8ZxJ0YDZhAmkB7tTSReKGAg5oCQZacm5IRghp/pCphuxLAcxGhFiOiQ0QURoGIXxSVecw8EdaOdJnGpJZC5dKlSo4qQE+zaXTsCkCqRPxYOQ8Rm/QxPnn6ITz79PlZxha9+2eHlz3+K65sdQniNz3/1K2zWK5w/vcGUCavNGULs0HcbOV79DDjrN4gholutsLq4EOXm5grb19dI04QpSw4tEVh7bFZrpc0mXAU1/KzlZKCzM6zPzkAg7DY9dqsO0zSCIMaepN5XabdFJkIeNJk0gBGT5MoCsOkIm4giMPWduGCL4hmREiF0ERzVi4kkBDNnyVUzpYR+mBA2X2PkgH5zgSfrJ4jrCxhNAunJPQfEndY48Xhgud/mlZlB1lssuDH+1DlVhClmPS2EJTnoMMpJbMOINExIw1QSORMzMovAmxmS+Dnl4gkXFM+yri3p74BhtxOhfxqwu77EarXC8ycXuHr2FP1qJTl/cpZcd5AwgxA0h5OGVoAPiJlO2Tg0+GWoGOWI8PkD+6+22WmODakYCZxRZRarK03j9roYS8z2Q/C778VYUq5dWU5uLIke3bj65KZQT6zyrsqIEnGu9Y0TeCfhmDlQodFGhwkSoh5j3TdmCA0I3RohrlQhk7BPkIS6B80r4vMA5SyeYnLDjoTPSFl4QE4ZGCcACQxLHG4el80wHw3yuMX1z/9z8WSbRjEAMUsoEhjUdwibNUjzXQXNsix8Rsbz4tmHOO8GdOszdNhg1T8Rr2IKkP8Im9DhYtWjI8J5YJyHjAhG2I0YrgcQGGfrDS42Z2KUTxlBN7ymccQ07gAAZ5sVVmdrUAjoVht0qw1AQQw3EI+A3TRhmISHjRkYWbzGXwXCaxLD78SMSZ1ShyljzMCEhDxdY9pukccdpsvPsbt+iRgIYR0Ru1iNe3CKFiAensOAlCaMux2uv/4a25trMfaYF6cL9UrDMQ0/pHlMUOc+tb8XVux3y0FAFO/gi02PTz98hvF8hesOeDVcY9wR0s01Lr/8BfI0YZomDOMgcsjmHDi/QOxXOO8I3Xc/wSausIoB614iCDKSRp4xiDIIQgfrrJCk61HXjRGEzMAuZexSxjgl3KQE2u10vsrJfUIzxEBKnJHGAcNODjVJ4w55mrDerPHBixdYrSSsmtXIYePAavgJxOgkol02rZVOBKUlZd0zABbPosk2s48IgRjrKEaKKWdNeK2qEwMUA4BeIzNMoiXtg4YYB9KDKqA0JqtcqR7szAhhpTle9agP67Dp0LaZWegr13sWmgLVbRyfDrr7GaNsfsUYcHG2xvnZGjEGPH16gYuLM3RdwMWTDmcX8sxm02O17pBSwuvLS9xcX2O72+GXP7/CdnslfeQeDDmltN88RRc2yDkg7FYYxwhGRsqTGHpgIeQZKTGGNCInOyKoqmJmgDk2WV0y+jg7q9+nOQrMDTxFRz3w3DwGp31iWWLwmiu7p8svpPl3gGXPHwKKbza5d6mV6fwBtBZCBiJQF6rBxxl+8AfR8AMoITaOXRaME8gaQQaFEAUWNzcB+Yy6MpmAdRdwEVZYU8Z61ePsbA0iYNh1iEGM63ZsurVDXCNj+Yt6ykUIAdAkiNXc46avU0Yt8Zjkh7bjEkWxCSq8keXOyIw0jkiTHFOMlIEEcM6YdjvkQcIxJjX8IE0IuytN1qqGn2nAzTDi5vUlbm62mMYJu6ub1vAzTsghYOxWj+LxU2HfhdufJlKYqVsSQlzUEMQWj0j1vioaIXZY65HP/WqN0HWgMaqRQMNOQtBThABClLCSnNGtOnQrEUBDsGTCGdOYMI1A1424vnqNq8tL8ey5usTN9RW6foUVBfS95maigBADwBFdL6cQhZQkISKAfrVCt1qJopMnTFMAUkAMwGbT4clKhN7z83PcbHfCvFSxirFH10Vx0QWQxxFTSEjDoLtgZtC4X8zmmwAd0mq5MnihJ6whdJJEd3dzg5vrK0whIIeISAFT7MD9CpEkOW8XRdhBCHKaWkpYnZ1JAm4CwHJQpaxwLoovaT3kdoaLlGGf3vjHE4jF8ySTxnAD4BwBDiolWG6iJM+aoYhlmUvMuLgVi188W9i/0I4AVZjU8KOCfmQl0lQZQDFY2bWOomcKR8MfxHjVxR7r1QabzZmsFT0tJOeMcRgQwOhWWwy7G+lTtwJnWRtT14k3DhFCloTiUrKNmQjq4mWnA2a5WwjqOeT6Rk7wsjWkO4pBDQlyipfnhuUfxakeZWm76UGPZUU95U5TLdXdvaB/ZHH7plxmpDRJH6cRrEaN2v49MWGP3+9h7REUznYpHliY7jbv/SB3baaVeWjhXZqHhy0kyzwpmNXoE1DyTZTZutxRG1cwIwUGjaJoTYOcgENEGIcBXYy6mRIROuGrnRPKtbDl8VhAy/wrwYwR8wa2zyyWQ3u/vjUsefTtZ+gxisfuHaekkiVWdUOjJIb1h4pj3w3JslZroFJ+nR2ylgyKQhdCUZDKD2B1cuFyy05BEk/f0CavdMmdbSPP2kGuPWUOk/6qHWUEXYsBRBnMtiNa+RTZ/PR/RwaRxeR0xJJYHhoOhwzKPZimmufHaE6RuQl5PAOlHUKOCBzR8aRsRbzmAgfZaEBGRBAP9iyBVpxkw4nAQNfr6T0oYcti+MolPougJ3wFyQXSqRsvscikmZV/aViIjZvkzsyIeqQ8Q5QVYnFGEQVFQqNJk+lTGuSPCZRila1UyRHsqYdBSsC4kzDjYYe0u0bameFn1Lw+LsfPMUO9CK02OV+WiwTdtEOZY7bZQH2HqevQdwGYpHdpHJDGUQ1wavihCOp7ANDNIZvf7tMpueTWsckiRf5VY1T5hOYshHgBVToj9D2lDFLZJKeElMV4KiG4crpsmkbEKRZDKzOqYspAVsMrGHr6n+go0/+fuT9Zki1L1vSwb3V7W+Pup4kTkZn3VrEKKAKgQMB34BtwxjHfgQPiETjllDNyxhfghEIhhxyQJUIIBUShULj3ZhvdadzdzHazGuVAdW0zj8isulLlkcA+4sfNzc2t2WvttVR//f9fSzObg26BYfYFdvnVVllzpv4CwI9e84XNrNni7tY66zpYhyqNJTUU0bhjy0tetNoS6NbH1vBAb5vlB9tC0weJ7QTRrw+5Pv/N7nNNdfpjr3vTFsN4bUwUoifGwDAExjERo2e3j+z3kRAcwxhJQ6QWCNEpG9M1mlSKNQ8SZ7ChM0nuTa667eA3S64CoRYXYSA7jrb9xfUMvXZ8c53pP9+Pt+tBbt7zzeb3Ai5wtm/Ky/v/0jb+Iqx0N/fd3nA/ecyfja9uP0t/7O2uevOa/Zri6gz3Z0OZm/klcvu4LivUeXv7Ga92Io5tkPuHvLn7HxPW/HUZP84cq52JtbZAwT64Y5uEeilrYKrygkIyZkBoiqw2FmrQitCRSqRcNzI7sTEJh8NIrYFhSOyGAe89KUWGpKZr4+7AbjzgXACfrJ2pU8eg1t8P2wVfi3ppVIGSBangmmqzj0OnaWWoF6oI82WlLBoUf/n0hefnZ22JOy/URVk+ZV6Vjt8KZZmoedVgoEzqdSEFl2doK2tpPF0W5lVbS+alUNWdk7ZociMxIuMBib/8EPf51wPxHvb9jMK3LcZipvs/SS0EmkX8MSaOd3eMpfB8euJwOOCcY11N1uYczilYJyK46pDqQBpe9ozekWqB6Ei7SK2FdbqwThMgXM5f+P5PKyENTMvC58+ficPIw1ffcPfug4JKIfDV11/pBZerAmu1crlcmKeZkBIPb9+yPxxodWVan6lSCSFy/3DHh/sd65qJaeCrD1+TW+OUM0sttOaoq6NVxygZt5wp80IbAm6+EPKML3sC7Rdj/PSn/XNbtm62V1r6MUVCTTxLZTl94fz4WRkEy4zUSgqJfRo25oYGOY793QP3794Th5G3H77mw+M/YRhHxsOB/fEOHwKD9wwGVpScyeuysXu2ZMIrK0QQ8nxhXS7WynyiFR3T5ITkTQKV9oxxhzcGkjdmhw8F77TTUEqemNTAdDhG4j6Bc1Rj/NQq4MFHT14zl2nhMk3alWMYCCEaqBHxRpdVl7G+4evk9wYm+Z85Ev6HDqLDhcDusOfDN19z3I/EtvL4h3f4POOlkp+fKTTW05n1dCGkhI8DYdQOdYfDkcc370hDYnc4cnzzQIyJbP45YUsU9PNEA3IUHA9qWm+fs+QMViGsFmCW5UKeJ5UQ1UIMjiCONCTiuNNKdRyIKWlQVWZcnvAIO18YXcU7YaCQzOMruoT3WtGug8O1SA5QDnuVerVGXBZlGcUBWmNdZsR58jqT1kVZTWnA+z+zPv67hum1hxHbA911H7/CLn3RtODObVkZcFXsu5svWqU19QCZLxeevnzhcr7w9OWJ8+nEuqwk5xjMoFYThUITMW+z7l/lFUy3KKuZb1fN6h8lol3gJAAl8/zlC5++3xNiJKZEsGtrfzyyO+j993f3HI5HgveklIghXpOdnx7/iAC0n7frmbwGknr7p5vQKw+eHd577g67Fy9xTQk6u+wnAEi/4fx2xzWg7MmwbCDJ7WfoYMsW9KnNsL2O/9lrbglonyU3z6lqWb0/MAB+SwKvePtVDuyqUJwlkFzXZ3WJqTjnCa43dhBKvVqqb+wlSzbbbcJvv5MNbGmbdLfRqHVVENp+9+oZCir1mn/8rc3tG6lX7zgWPQxpa5rR34F3noAySA8uE98eGUNmYGXnNSYIZivgnCdKIFSVRtdWmNqKGtcr2BKcyofCfkd0AVH7ZU3a9GzYuc2s2eGqp9SCM+ZMkysTrpSqDSa4dpBqrdGmFZlWy0EC0RgPwQVGPJlKbhdqvdBkJflCSeoxsouOwYojrech0shNgYd1XTg/KUt4XRfWx0fyPBvKYF29WqPlvPm/ve7htlj02oykgx4vI55uL1FLJi+zASgzKWoP2boPjPuE9xWpifUSEFeJccAPKquRcQ+7Pd72V/GB5jxVHLlefX564lZu/OiUffky43SAj9HMox3VeZrzWwfbnFdl+59O1lXW0+rKPF/ULuL0xHK50GphnibysrDbL+zvn/BptMKHPXdrzPNCXgshBva7A8MwUKvdX1Qz3yWe0pp2/7N5lHOh9a6vr3iIFMr8UeeTAVDFuhi31pRVGNSOI8SBtN8rw9QFQmfkGdjSNQd9VtRcyHmltUZIe0JCGYo+2ViZBHAzs3I3Phb9d9yssVhcqY+J3hG8btVNNZ66TybwA/gIYXSknSNGTxoDaVT/pfPlQn5aWJaV777/nk+fPrMuKz/++Jkvj88gDu+Txi4u4tOEj3tEIrXuERm0OKZ9aAjRMR4UTFrmxrSurHVFJFoTDrU4UNtUdyMxfvUR7Wfs52iIu+6U10f1MbuCKNsDRV7c/Om+vuWjfwnMeQH42A/bNXr7fH8hXnC3v9c/7H8nsLGokS1yAwww3S7y/nfN7rdlUdz283b/tvLbSublhfzrevsvleteHn99jx8zvNXWyT+H7PobD9KIogDQSGUvlUQlSCU1Td6EmRYKuMau2f3Wrrm3Bo1ROBxHRAYOuz3H4x3BK9MihqiJRByIaQT76yL+OghNjQ63+KxByY0yZ6qoHlr3EcfgPXdDN2BbVRZUKnI6kU9n5mnm029/xw/ffUddM/PjM/l8UZR+WqiretjkvFBKUTqirIgURCq1zkjL1Aa5KmEIUT8T12dJUWTcpQF/d48bxl9oNGW7+LaZ1ivtlqz82Qn4U6RHtiveAna9GGJSRkxrjbune/bHo1G2GmuZAZMixAQIUhxSFPgJ0RN2A0hj2A8c7/e0Unj69CNPbaWWwuX0hS8fv8f5wOcvn9jf/YE07vjmn/5HfPWbM8Nuz4df/w3vvv6grAXRzaOUyunpxOVywfvA7u7AuNtRciCfPas0QnA8PNzx9ddvqbXx8OYty5rJtfG8rqqbnwtPn87Mp1VZXV8+US6PtF3CzWfCOuHrgeB+GeAHNmXvtilqDnFd9rzdvTPgJ0niB6nMp0eeP//I5fmJx08/UpaFFBK7pFKvVpsliXC4f+D+7XvSMPDh17/hdPrCuNvz5t173n/4mpQGZEiEYcADZZ5ZLhdlJIhq3B0KBMaUEGmU6cQyPdNaYZmfWOcnoJG8Aj8xBLh7Szw+qLl52uHiYMBzJoSK955x5xmGSIiR4S5twE8Jt8CPw8eGuMraFk7TMz4ERrcnMuDFk0L3/BLrZGJa+c0HAlyQqwnEqx0OFwO7w4Gvv/mG9vaBUGZ+fPcO5jPL6ZnTl4+UecKFyPMPPyhDZxhwux0uRvbHI/dv3xGHgePdHW/fvScNiTSMjDuVgHmnyYCaDarsR9lwAYkJcY4q2hUPpxXGZVVz9ZZnWp7NN6aQrLXxOA6MFqgNuwPDuNfEb36mLeCkMjZhaAXvYHDFWruqXDgGT3VCSw4ngRwdRfYQE7VWYozkddV2yq2S5wlwKgFbZ3xMyiJ85RH59zuUZg78pPGBBQa9VGyPlRd/h1bguQFypVFz1qD/fObx02dOpzPPnx+5PJ3JOdNSxI8J7z2lVnIpGlhvZqvgg5lzW3SlTNVGyStlWXR/co3gGy1Gnj9/IgVlSVbRNNV5z+Fe1+9hGPjw9Te8f6/jczwc8bt+jfg/D/78xTPWz9MLPskLEoi8ePRPDnndkQ/Bc3d3sERA/3PbD72S77f7rp/V032PdAvv7/raQenaQrw/n7/OD9cscb+eBW9NKeyV6EygYMxmJRIYkC4az+RVGcl5hrJ2qWo/h6KkjM4EEgNC7C0IYs9b6A0QvG84r89ZSjeMtie15Osq0bvJduV2hl9Z00iDutLM2+a268trHq2sXH74e/vwV7tjBc4ECY5mxr4isrF/g4ukkAg+UJKQvnnHLlVGFva+qBQ2DAyofyTVw6rjUvJKXmeQRvKO0RiSMg6EVonOKUi29c9qKivsoFqGTouSDTy7svc0QdfB7J5JUoU2zbRpQXD4mHAhgnW4dCGRXWGVC7WdkFZoISODGlIPsZLitV28oH5MS13ItSDrhfL4LZenR0rOrM/PrMvC1hwBQWqzpgNVWUCveEhnODi2mLTdoJnbzJOeK6iEfJnPtKodXVMCYqAukd0hEUKj5ogfDVzofjw4WtpRx73uK2lAXKDhqc3hOn7rr9d9a9riXtfTSs5F51MpmjegjPKUkgKpw4CPg7JxDHhfl8zp9Mynz1/wVhQ9X/bQGmWdVVZdCufnE9M0sZ/37O8f8Wk0bxxtdZNz5vHLictlIoTAfq/AT86Z59OZxWRl3c9Kgb3VWEGNVupLAPe1xrBlyuUHahNyUab9WiqXJVOKsXZ9BOcYxj2H9pYYEz5EovktBa/Xawe+e+0trwvTPCnwUwsJh/Pqrelib9ziubK53XYbYzxCX901D+qGy86BmPcQ3iFetH9QAGfAT0gQd4609wb8RIYhUWrh9OXMl8fPXC4T//Db3/Gn774jr4Wn54nzZdFXdUlZZj4S0hkfdzgXCf4B77Xj3G6fGFJgjIHxsOdwl/CnlU+PE7ksVCnkZt330Pcsjl9kLF8O7MtN+s+S8za2Fdsev7G4uCEX3P7Nz5/6GkvJ9TW248UfOhtX95MH/Jk44WdxSpc/OpC+jyvoq0CObPt67ZLm7T3Kto9UK66s5rEmqK9XRffeYoUSQSgUA/+vpvwNR5V/nG/l/yBdvTTLl5tA5vb79adrd6xGMNAnSlXqrDSayTa0w47JMKRSq4EhHqM2WjLrrvKu7oLv8FatcgpWNP0bNbxTyiToRuJFdbSlVHI23w/DWioOkYATNQbbTJtrpeWFtizUeSZfziynE3VdWZ6fWM9npFbqpB4MTRo5r5RaDAnMNFEQqLaF1jIijtKsFTdO/Ux6LFYV+Lmaav4Ch1HOxPVg8Fqd3lg8IhZby02Q/WcCtW0+vHgBDWS9V4p0UKPtEAPeFvHr3DFsuPsRiHl2uIA0R0gR1waqNzAp2ZTPCrIhQl4X3HSmtso8nZmmMw3RikCtVhgxyQpCTHHTSceoVW1f+xagH0QlDgnnG2nQ8+WbkIPH1UpwhbyrUBxI1rWp1k3m5K542LbYvfYhG7rZf2CrhulibPVhEYJz25cTI4m2QlkX1nVGfMHVineOVhs1FxsXrwyAYWD3fOT09EjOKzFG9rsdZRjweSDWEY9jnSfWabJOUgb8OJA04MxnoQc1rRZt5b1MqGGWgistBMq4p5YModFCRCTaNDP/oJuAvn/3um5v369mgLrgdk1/aBGf1OAzELSbnwW/t8TZ2xH7M1Yf/+GHs9jC2BNCY9yN7Hc79rsdLi8sIWgQIgKlamcrpz4dtEqJgXXWymAMnnk3UsuAtKZeDkG9KcQ3vPNUHyixqszW+5uOS9eAWmnUVufYuj1Zt63bStntR+mbaU+QEZPguU1K+1JSq/M0uF5M0Mqet88avKd6jzi/bZzI9b31VtK3uPXPw4i/8nEbENwsmy/pvlx/sL/Zgs9+r1zZcq2qB0M1T4pa9Xv0jlq1+NKp/ZogmseW2FogogGRKI/ttgvMlsSLjnMphXVR37UiTWUJ3ltCqaD5PM8sy0Jrjd0wauc3ejjgNpDp5XEdpR7IbY/42ZD1X8pPfr65Z1tPX29N9c6xH0ebv/q6uk8ZA3IDftwVrLKNzFn74L4U34RxYL4afqtAX0FC6e70fb+0BWF7LW6AH+dMbhltrbuayK5LZY1aUV9cZe1+Ov38wcaa6NfQlhzYudaOnLq/Ou8JSavu4nWvqL1pBzdzBmMRvRi/2/XEqZm+CA5PixFvnfm61PDVDxFaWewCbGx7hLNdQ5ya4hrw0wxg8d6kIoJ6MxpzR/3lirVyD3qfxU39HHdfOzVUt7VaZOu+2LzGtt37qLZ+/rXQ4KTRu8H289rXAN2++s9sEitp2lbdiXVw60bDXkEp5/RzeCnb4/oa4511rN3iS91VnVTz7ilIzdZRUsGHVrPeb4ucAzX6r+Xq8/SKxyZx3NYolfZcpazXeKc2lTErALdSa8bbHHNiBuPYtWlMcBe15bleTw56IxXnaQK5NHypWkju16Q381WglUwtK2KMmZyzgqQmSwYYamUoVeNMgYg39lal1katlZwz67pqUWYxM34adV1oWT2W5nVlWVacD0zTzGWaDUjWXTXnwul84XKZCT5QK6SUDfg5aaMEOnClxfB1XSmlg7m/4LVoRsTX9aLSpVmbX5lz5hdWqKK+Hk08rum6YUvui8JCk7Z5jDlpdh31z3Ijd9cX2OaKBqPtBVBxtWPQv9f1VeMXkUapjlIcIp5cPLk4cJFSinknNnLxrNmRS2aaZ87nM5dp5ny5cLlM5FKZ10wuN902nQ5hIBMk4JwQQsH7QhBPKOBcw1e29UJMkqtsS2We1ea2phg/S8X+Q4+ewGx78E9y0j+DAVzlv9e/vd62DcPp/uBgY/XIzVPJzev1X/zFHV9u1oPbx/zswfbaG3bxctrfAjpFmhqFizbfbrb+NjHWjrDtfwqa61cD1oZ18LsCP01E5ZuifM9C1X0DNi6oiEczpH83U+CvzvhJNgc2Z3h3i91dByqR2dWZIJW9LNzXEwMFXwuxrDga6zoxTydqLUx55mLa7DhEhp0m5ro4Fj1BFbxPxBhJMZnUS6uTvukgTUvhPGdqa5RaWPsinCIpRWiN6XxmPp1pTZhrY246ndc4kkNCDHlr4lnXwuWHH3j6+IXpfOHzb3/L5z/8QasgpxNluugCVurWAru0ZjpWQVwneCnOZ3VUXdAwbbnd45xsGv40JA5396TjHQB/eqUxFBFy0UndNnCgV4bt9ouWR3K9v88Dx1X2sgXKt7OkP0ZfL0T9LCGqZOt0foTqMA9+QDR4HpTD0gMK1xfhEAi1chQhpKRVEGvt3prQxJOXiVozP373R87zRBpGnp8f+fGH70gp8ebhLffHe5wPhJC4u9spEDQmfAo4lPahYKGoaV6IpsuFtQDeczjec4gBqcJXD19Rc2P+9CM/nL/n9PyJZtWdcbfDDYMm36+7FOs4NmGZNPCgB9G9ymkLYfcUqHVlEAUC7sfEhzd3hLYQ6sLzRzOBbJV5WXGiUsiyZkSEebnwfP6CD4HHx4/8+OOfSMPAw5s3vHv3FSklHvYH3hzvCM6rB9aquvnbJGa/37Pf73HOkctKrlpxmqcvTNMjIhWPMv5ijLSsyWuMibYXRLTa06QQpVCtc4OUSohRgzl00rWghsE1Vy5PZ07nhfP5wvfffcuPP35SGeLDA7vdgTQM3L8J7FxfSpX705M6tnvd1qXwVY8AYQyM7oBvA1//6mv+xX/yn/Drr95yefzMl7f3LOczJRfWaaGWSkXXGBGQZaV+/kz1jvL8yOXxMz4G0rhjPBwIIeBD0g413rPfHzje3RFCZL8/cDjeKTg07Alj3JLNazccDdScGToH6yCXl5m1VO0CljND1jbBsS6EVlWy6x3RB4ITkmsMNO0oQyNKoQElaHC3esclN2IQqnPE2NvWeqqPiHlPUdVHSz/8ju6TcU10//rgj4iQa9ZE11bzJp1N0PeBnnSxeTipiXOn2DdcX2/NJ6u3bu/JwTzPnE9n1nUlR88avQXy1plFIFel1QsQqprl9+owJqsNNMYUkI1frOvEdLlQm163uVaKmY6Oh2eG3Y6UBqZp5unpxG4c+c1vfqMVyxAYBkdK3Y/N4gBsLtmtLTRrPwnQ3M/H7Nbt6Pq/BuK5FPM4er11db/b81/8Z/+5gjRBvay89yo58Nef3Yv7DQCy77csGO8dwRItNUc2po73KknQj7MVQXxnBdFPRd9H/QYaBX/zPBvjRzifZy6nhVIrz08XTs8TIqJSvKSJbeyyE4FSsjLD7MRerxwztBTtCLXJ5Let3jrc+P5Zm4E6bEBYa20z0c+5cDmfWNaVGDz74VekGCi1sCzL9h7+9Q//1auNo0gjLwvbDOrAWzDD4M69t5DVW244DAP3w44U9fvRRQ4EYmvEZVZwfoRdiupVaUwFcBAGSMbKchCd7VU0ni4nvHeUqkmiJglFwQpQKXirVzDPQL4bUd8Wh22Qh2jUFr1jtJbipa5aTAGyRVa1Vup5wudF14GaNfmtun9Yn1qqsZFKLczLxJpXpmlimi7MVsTpCfENN0+LhK+daKJ2EneDI5fGtMza2KVm1mVWNk0HAoC1ZC7LSqmVaZr48vREzllrSCg7qSwz63QxFnNA7t7iRUhpYBhUrjwVYV7VL+2HS2b5w3caV5gPZY9nvaHc63LRgouxZ1aTHZWq4LwDhpQY0kCIgfuHd9w/vKGJ8Pg8cTorgP7lyzMfP35GRPj8JRKihybUvKq/Uq1Ml5l1WUhx4Mtz5u53P+i5FwV+Si6cThfmacV7p68Z9Dqb54k1ZztnmvC2WsnrQq2FcUg83B8Zh+GVR1HBivN61tg+DQQfSEnNskMTMyU3hkXyLNbx2dOIPfZHk1yHu8a5CEUq2et+mwHfGkilSaE1ZS5vyApg8I5+l6v0qO/YIAQKQXvjKfvH6XuIXuOeEBz3x5HjYSClyPt3b3jz5p7gPUMMxBjIeeVP3/6JH3/8gTVnPj8+8Xw6K9jsEsKg+WUNVDHwvjVcWcE1HBecU3A5XrT50/6QqPGeqexY5sK8zlTJLLmoZUjWRj3NK0ut1NeV7VXX9wUDPFxn7IhJzPwmcd6QgJukULGCDr5ZbCkd8DGVieu+jrrSdWhO+u/teWsH52HLb0RDJpsXQhcma7dTex6bO3q/ozejrDYPtT5283z2nIIjizLi9f62sX/EQEbN+a9gXL5hCxXpflod+DHJrlRjgGqJSD+Wp/l4M2f/8vFX9/hR4Ec2LxduFuFt5BAGyRzbRGqZfZt4aI8kyXjJeFm1ujDPTOcztRSWeeJ8fqbWShoHxt0e771RW+0iFs8QR1KKtKFtQZhroibLIjw9T3x5ulBqZcmZJSsbY7cb2e9GpAnnxyfOT0+qgS2VpRbEefz+iB/VZ0KaAT/LyuW773n67nsupzOff/v3fPzt77QCO521m4FcrRl78NSMzt11ly8cu42e4Jy7tq/uD7P7h2Hg/v6e/cPbVx1DAUsMnGkX3Q2aLjegznV8sfd3GwB24Mf1z7bVjvS79xpUCYKPA3f39wzjwLyoxMph1GBRTycf4ibdaLXQigY0PgR8SpqwDIn93ZFWKunxC2ncUUrm/HTi8nymLXBZZtrH7wkx8fHjDxzfvGO32/G3f/NP+OabXzMOI++++pqH+7suoIUQ1EzYGfAjjYZHfES8IzfHWoQ4Ru6P9+yOe4IP7EIiusinP+55/u1/w2eE5p12V9rtceNACM7O9OserTXmy6KLqHkZXFt/GivC2tmGACkKY/A87Ea+fvvA4Ap1fub7CIuzBHPN1kWikpdVzcytQikCYRhI44gPgbvjHQ8P6ifz/u6Brx7ekkJUmWLTikvwKifywXN/d8/9/T0+2CZhVZ7z+QuXiwI/0hakrUqPJmj3qkElnM4kS806HXjnoAotZkKM6sFgZtSSEoRAWTKnxye+PJ54Pp34/k/f8u33P5CGkXfLyuF4z26/ZxgPDIP5e3SZxbZvGUzr/MZ2ebXDAREikf14QMOCbziU/5R8+jXnzx/59HDH8vzMfL7w9PEz67KQl3VbN6d54fT8SJZG8Y41amesOI6k/UGvqzQQxr16At3dc//mLTEl3j284QMaAO+cYxh22rK9t94AulmzSLua8SNMy8xcLojzpJyJORO8Y++FnW+acAVHsq5QAzAYwDxQibZJijczcS+MMRCKJhQtJQsiHNEp8OO8M+BHK5jSOnCMVvRfH1/9Rx0Kpq+o7Ec3bqW3NwNSrkBICJ4h6jqv5qgK1LrbVp5NiwitGgtn1S5c8zRxPp9Y54XZqyeWnqNeUdXqVG2Ac8TeCc97nI/qp4DTrmspIOJpVYMfRLicLzyfLjQR1lrIpSjgMAza1S9FTqcLnz8/cTgeSMOOw/Fer9eQCJb8NjOfhA4I8BJg2AI8+1mDh5eP346XkuPaGjlnkym8LvDzP/+f/ReEoMad6i0RGIbBABe3+U6E4BmGZNIJ2wsddIajAtbaZc877VwXYvesUKPsbnLe/ZG8u21kcA18vQFFjmt3LQWbvK2HwuOXJx4fn1lz4ePHz3z8/BkE9oc9+4N2ldrtduzGARFYloV1Xa/XiyhgMy/zJgGZp5l1XrZYJNk6PgyRGDVV6uwyjV/0/dRaN1+RaZr54YfI6XzhuN/z66+/5v54ZFlXnk7Pm5z0//L/fLVhVLnbshjgAzhRxrHT9rnKMuhsQadd28QxDp77Ycc47LhPO44+ciTgquDyjAOSd+xkR+wAnt7AE/DOuqHJNZGsrfJ0eUa260mBH+edNR9wxiZSQDGGgRgUFA4mydVHGavOdTaQ7q/Je4heEwpju7TWWHMhl7pJP12thh01egvzXJUx3aRRpVClUmphms8seWWeJubLmWWejHl0I1kXnTO3ptCvufR6D3ejY5bGWifKOtPWheX8TLHmEhpXwWVZ+fR80ST4dOH7j1+Y19XmpMWiBiA4tAX3/v5A8IFhK3wE8vNMfjyTS+VyXvn2/J2tU1eZR9DTrQWx8zOX0yO1VpY8M6+Lnsua1avJwRgTQ0yklPjVr37Dh6+/wftALrrsz8vC5y9P/PDjJ2UASaVKRZpogxcDuNelULLOk/SnT4SgommpCmLo9aqeQQ62dam1Rq7Kejd3cZwTmnVqqzXzcH/kf/K3v+bNw90rjqAeVRrn9UQaRnaD7h9OQKojirIhxPbIFjyryR4cVRkwoqbYsTNDWt1YX9IazRlzDwWzxEFtjtK5xVvx7jY36fIdmxsGNCGCbwuhqWRTGXJm15Enap7xznF3GDjsFfh59+4tb988WFwCNGFdV/7wxz/www/fa+wsGv2HkNjfv2fcjzRxrBVyseunVsT3OAtEVA6LZKByOAxIyix1T8nCtBZKayy58eW8cpoqzXmKSzTn1dPplQ4BijewRa5gutj5FGsQ0zft3uFXwZ/+HEoy0B/Enss+ohUa1FPH9hUDorsvnWL1jip9bBXoc520WmXrXrcgLHRQsW0F0m6UjkBpqrjRuE3Ihuq41jR3EaFVUfUQkCWQxb8EfkTAlDzSWYVNgeMiQYEf3AYqbcBPaxanGSu34wHOQMo4/I8P+IErhqE/9GBN/7dLEBBCq/jeRaAtUGeQFSggaixJWZGSEaOwK/2x4UrD5YLz6jdSqzqhL0tmzdkqaoFUCyJ+q4W0Bsu6MM0zpTSWvLLmvAVlnTJ7mWYul1mlQbmylKKyD/FWAfKIOFpT4GeZLqwXlbCUedHWurUoIm9VK+fMDArUXPoKfV7XnpuA9kXXk34St/OqC3eIqnV9zaPT1fQC0+993tErOpsJ2p8/HOgwu5djf01D9Pfi0Q/lHN5HfKhbZwGc1+4W8pPn7SfKWcXLefABJw0fIsQB5yrROnLhPSHO2r3LzOpqzroILxPhMoBJwJbLCamFdbkjrwethKeGI6o5oTQ6lb+r7lR5Z9wksffltdtNSgNDjAzjoKa7KeFiwkVLsnp19tVrYjqflzW/AH70SxPJTXffhBi1mqgIu+Cddu0K3pv8y4Zz6xhUt+cTu/50vdbOBN57k+goI2cU2DltAe9tUVcwLxjjxBOdVih98FvprLXGMms1q7Ur8NNaY1lm5nmhNiGlmRBHAhgdWIGfGislqMePT4NKoryHol1b5mVlvlyYLhemy8Q0T8zzrJKIZSWmTDBPmWZMh96do1cHEN20mvwCFj/96IkEEFJi3O+JUpG8sN4/kJwaUJclE2NiDQs0lQBJ9qxUY44IudkqlAvNr0iwQBJNLNcYWXYjtRaWYdDAvlZlBaUFH5Q95c1UvldKOigcvLcuIVf/jN55SpOB/pn0WlGjfXnxT7tQGfB8XXhuNsBbnshL82OtyAibjOnFeRSub+Cvd4g0o+trRyMFflQu0Jq8lAlKoDlNOKVWKEUDpateapNJbnIv8/VQBpBKBagNbSl8ldzomq7gj65TUcfTeVwQ81vp7+VW1nd9nVI1sCml6Os4EJM/iGhgu64KztZSDOjoYeD16V+MzJ+5bq6yFgwYszG+6jRfPMFV9tLsHJRXBX6cc4zDSAjKjvHeaeeWNGwSxBAsQY+BYYhXBlCwhILrmIUYSdaIwgdv7AGTqocO/PwU/OmGw3Jt876xfLrM3d/8ra6h8zQrmxkYd4nDfocAx+Oe/UF9vsZxYBiSAvjRMQyJm7NOrZUQIUZHLSoN8qg8dBgSKUbzVUukQdl4pWSVWnC1pq5N97xU1KtxHBLLEhhSZLcb2O93OO+Y1nmT4b/q4UyO2gPVHtNYEvFS6mhAo+j7V/PmRPRaRAhmCtkLm33PC05ZXlq889vY9VmwdbgSt8lcukSgR0mdI9avK13lKpgXYfOOZplNr0Qj1lW2KiCQy0ou68bgWE2COa9ZrQyamBSk3aybul6Vms0QXoGfJo3SlF1YsjLCeqLyF0+0699fec3ta16t1tExU/NKWRdyVlaLNGXhrOvKMi/Ma95kUNOSjS2i7yt4R+gdrZzHRSEiuCZEU/8sVVhKI+dGNjPiDchtV+An2Do9nS5Mp0n30bww59mAH2VzOWCNhSFmUkoczhd2+ws+BJoVlZcls66FnHWt1bEyOWAutKJdHPOqzV+cc2iqUm1uGYhRG8uSKV2eb3NepFGaWSIgxvgRk9ib1H43AqIS61/gaN7TvEeMhS2mxXfiVMrlGq6JFlmjmh3jA826yjoDFm7b0CPKyN+Eij7QfNB9Cr/pCK7AzxX0wUKEbVaL/aeIFDSLpVuGpgy5us7UdTL2T8FJJqfIOERi0LVY1BSPdV05n0+cL2e93nzQWFcglUJsFWmOal/6mbwBUc5YlCZMNBsU9fDTr1qusU9fUZrJkpRD8trxj7KJ9FK/7rcCCrxx/ULEllyN7Toht8sst1NtrMu+Hm9xy03Xt2rr3ZV5IxRxyuaRDvwYY6Y289sSZoRFVHJVWiN32XvvivoC+OEnwE815phJgKspgURt2H4O/OgYdY+fZlIvZfl0n+Fu9Kyy/R4vNa42GFtw622G/yMSjb8q8OOBkabyJVevIytsw+9FPU78+oh8+SN1PbPkE8/rR0JdNtTcAVNpzGujNKFUQfyIOGEucF7UrHJdF+bpgohwvqzk3BiGxOGw2+Q6OVfWtVJK49PnMz9+fCZXpYRnS1pDN9xrwnQ6MZ3O1NpY1sycMzhH2B0Iw04T/+aQ5lhz5sdvv+fzx0+sy8Lp8xfamumdDVy4WVhcP0tdf+96bmT7o6LQ4lEtq+u1Ib1QegAhOFwaGA9H9vcPrzqGIsK6FEVQu8jMuRufpOtk1Pipv8OrsVqnvbMFrlct7fZx+zorQiHgxwMpJNJ4ZBgOIF6NY42VoqBC296jNLclcZtrewr4oF1+dgRcUtPncTxyd1C22HlemGY1UJPLiXmdKTHy3Xpm+uGPxGHgx3cfOD4o62H/8IbxeIdUNT3d7fakNDItwsenVedgCRRGkMCcBZkz4wD7ncOPiXR/4PCbX3OfFw6/+oB7+4F6fEvY7fE+En8BKsKyZv7ut3+wxdY29m0E2ORySCMlz34fCN7xeJq10tAiicRdGHBhYC2Ni2igFaVRXKN5IYoQGipVkaqrGlClclkX7Ubx9MT6+ZMmJqiPENwmOZ79fsduv9fkxoAxXXhnSplts1PPrxAjc018es7qJXS4Y78/4oGhFVKr1q41bi2n94ejsqx8f/7AsmY+fnrk6XThMi38/tsf+PTliWF3YK2O41y4u8uM9+/wowLNMXhrK9q9kDTYq00Ir93VS8zDxTuyAXN+3HP48A2+vOXu3Xvevf+Ktq5MxvjJy8o6T0zPz9SSmeeJ8+WZUjKX05nHL58pOSuDa8pIW8hhJscz4hzr5YnPF5XuXT4defz+nhgT+7u3HB/eE2PicPfA3cODgnZOWwZ7pyyGFEcEiGshrVUBUqCui4ENBoJ6RwsDJZlVv1QWiiVZbasKVR+peDJCDk67Z6Da594daOvQ0W48KFrYKoDwPwjesx3LMvP3/+Zf4VzEhx3eB6MTK1jsvVeWh3cMMXIYEyF4Ws7UVbvqxRQYzKx5SxRNRrBMM/M0axV+urDOC6sUfFNRR+sMP0QZP72aGQdCVHDce2NUOgUivHVz27wXwAwKdf2tW6XbIVRc3w9nTbRiiCq7MH+sgCbGYHHMlU5yA+jroX5bmVJ60KSfIYTAbhgJMV6jRNjA/GreFOfTmWVdNy+N1zy2YLRBq0LzRkv3mjT3HFeBmCubZGsL3j1BDfD21jK8z89m17w+xzUtqVUlUoJYV7Vo7KKAD90n6EYOZn9XSuXT5098++131FrxMfL2nTIrD/s9+/0OQZjnmafnM8F77o53vHt7j/fGQPLqPfL09Mj5dKbWymGfyOsKuG2NTTFwf39kf9hRSuF0emaeZwus9fwElzjeade307P6XNRaOB733B2P3N8dEYRcMqfL+dXHL4bI2zfvUQPl7qlTlflQenHEpEvWxUvP88Dh8MDxcOR4uGc/HNilHd4pSOAd7A5H7o5HQkw0F2k+sVmyG860sSVFDDzsHdYSXsYtUeuV4pLrVqhqbbWu8NqBr3fhK0XnuvrJLGp6L83uVznQ1XursqxWIL2pRIsYoNzs+mvZgDfZvPX0n/rI5Zy35/v5RaKzVlnRQc/BK4I/pRY+fvrINF34/Pkjy6xr39PTF9ZlISYFMkPwfH668PvvP3OeFp4uM99/PjGvWijWYdE5HqJ2YPMh6Hz2nmHcsT884nzgdJn5/HxR/89SWYoWTDrQgI100EFmnc+sl7NKGqtK1zuQ3tBzFqzYFXzg0ynzhx+etClNHAlhpJTCDz9+4fFJz3O+AduqdaFVw+imXcNE2UvOnn9TY4uuA7VtpeebgoCyElQS3QGFZnGNY78b+ebrr/nNr75+tfHrh8REfvcrJA2wPxLSoOCMi9rhTMCJKSVcQvwITn2WxKvAq5nXnzM23Qbadma5gLY50ccjatuwCSU7ONnfk/3nrTzhWtZif6swZdp6Uu/EdaKuE9IqddHbDiGfHGcD8B9/2DEOI5vXG9rh7/n0yPlyUpA3BAjBWFqVWmZEHGuOlKpglcSBFqJ+djXfsiKbwwU9V+vauFys62pRUD4GGPeBGgKZQGPQnfgV49QGXFCv1oApQuj2JFoUL60DP2wITxXINlxVxLqPicZsJRu4sqXRBoR5A4CaSdfFZOwK3mTxrM2MM0rB1XKNoduV8bMiBjw1jSR18TMrFkchUCWaB4+jK+NCKwQptn7rddKcJ7uh61MUkLaYx3WPYkwaJpbLt6scrM/DK+iu925Sdiv8aLHZrt5/hEDkr+zxIwyYi75ZEm3QHYKXRqSqcfPyRP3yB8rlibY8Ui7f4cqs/jzmzTMTmVtSZ48wIHEPeJZl5fQ8k0vjcj7x/PyF1irTnKlVGMbE/f2epRzw3nE5z5xOEzkXfvzxme+/fyaXqjrmHhCXSi0aIC/TxHpR7fI0q3GaUtp3hDRa1dXRGpRSePz0mefHJ23FOF0Q23ida5snj1a39Sw5PE6M9WMStM2w0TvdfN3V+aX16dGZMDhcSgyHu18E+FnWamCTyi2c97Z3+5vSuoI+3ht+7m5059bq8Fp5vKl4bsj8jfRCImE44EK9AX7UmCy3yTYwsSSuGyz3LcwCi5vXCwhj2jEcHtRYe39HPd5TSiZ9+oSr2l50mU9M64LDsXz+nk9RDZv3b94yHu8Zxh3vf/UbHt5/IIbIfn/PbrcnpsS0wqcnnRdOdNlr4glZqC7rgh3UIyjeHTn8+jfcO8f+q3f4t19TD2/wSbuE/BIX6bKu/N3v/vAiyXKu+0o4RNQsDxrjEDkeEzF6ltNEKTomicidT4QwMLsVaVUDQoTiNfGronrnzVCuZF2o14WzPOPEMfvAsw8qd/TK/OlAp7NqTUy9U4PDxdG6dPWqrK0fRkX2IfA4VYZPJ7wPDOPIkEYcMLZMEq1+JW+MIu8Zxx1pULq9D9qmPOfC49OZ82ViyZUfH888Twvj/khxieMKcxbuvlpIh0IIgRTjRiOnaQXDeygVujXHax6tNqp4ipmb78Y9x8NIchClMraCF2G+TDx/fiKvK+t0YX5+pOaV9XJhfvpCWVeevv+eH//uH1guZ6anZ07ThbxmJld5plAdzKfA9BRpwRPCQIwj3kcO9++4f/s1MY18/c2voP2GlBLjEAmDneM4cjjsda1MhZg02JzmlXmZVSY3aNvj4D0SIyWaKXfTzoZ6natcT+es9iytNHIQJEiP6yxBdqoZdU4DvQ72dNp3az+pPF/Xjr/WsSwLf/dv/jXeJ1I64H3SddxFQNkeKpH07FKi7kdiDJR1Zr2ox90wjuyP2jK9JyoiQl4y87yY9EI75i3zAnWBsqC+BpVmbbK71Euwdd2pF0kIUTv/OE80yWZnL+L9Foh0+W9Dq+MYaCdGAlyWVRkmMdKMreRFzPxWz4erVjywdan/fxsE1Zw3aUqxTjgpJQbv8LEXTGwnKYW6TJSSWeeF05cnJgMUXvvQQp4g3r0IOps4ArZH66fEeyECIVh3OecJ0dg7wePtdk+K9XmE3pbacWXTzfPCZZ4REcbdjv1+p4zJ1ojN5r/rbY0VYFAfncynzx/507d/RET45le/4qsP70gxKthu7L55PnF6/kJMkffvH/j667e63qWkfiAlMw6OITlarazrSMmZ63WlMpmvvnrH/f0d67rw/Q+6Xtcm5Kxs7TEl3j48cNjt+LJ/4vOXLyzzzOGw53g8cHd3ZMkrOWfO0+XVxy+EwNs37zewp7bKss6sl0w24MeZGbA3DZDfgJ977u7ecDw8sB/27NKoPjrWVnl3PHJ3OBBSoogmW90wfStaWZfYHvOFGwZj6IWwYrKv1qhzZZm1a9oyZ5ZZWVTrMrOuixYnlwvLMutjlollVc8eZZzr4+dZ2663evWcAQUvO5Bcq/mOiVCaggzOQ0gOH9SLathHYtJurGtZN1bWT5MTMEjX9vrXXHNLqfz46ZMCP58+Mk8Tl+nCl0+fWJaFcRw4Hg/EFPj+0zP/8PvveDpPPF0yPzzNzKtZQ9iaFkLUTmfmidXbQ6RkXozeM80rp2nWjle5sKzZmD7Xz+XprMlGXWYF7ZtatTZRZxHx14q9M/9F7xy7j2d240eCDxz2d+zHA60J5/OZ6TJv/kClFjWJzkXzlU4s6JQJaVeZDNz816NmW8Wl2aXb/1A5Id1X06Pzc7/b8auvP/BP/8nfvtr49UNCpLz9hhYTbdwrY99HSIPNG+3qpWz0gDDYnqOlBE2MnbGh9Rramkt0KgionY8Bz04c3tgWP5uWP5NZCK44XFGkQrsyn5GykucT6+VZAdhloi5anJSqXTM1iXdWDHAb0K9wW6Ghcj+XrAAQEiKFsk4IgVwGak2ID0g6InEEH3HJq++j9yqfDoFGYFkb4aKxYJKifos+sNsnZIwECaxtRxFbrF7paMCEV29GJ5tbSQd+Co7cvO5oRlJCtFv2UhUAKgJrZ7uUZsSJRq1CybIBP6WaIXKt5GzAeNUus01gbZ6lBd0y8wp5UTZ7E4ptpStCRoxzcc0tXFWGkOAoDBQ3GBvHq9cSQpJMkGKwjIKk4jw5uE3u1qRuFgNBMtp6xNn81fizF0F0vl737O2idQYTOpX6uV4BMhbSP8Lb+X8AqVdHkzc62m2HlYZH0UipGSkrLS9IXmjrgqszIklN9ry2Xtd6iq5T6oqt3gjzoh4D85KZ52zAz8p5mim1qj1LUD3r+TxxOl0ouXI6XzhfFLkvTTbgp2SlybfWyNPMOs2ma9e2iuIgFCEkHchmEh/1H1KKqWxUzOtCu7UL3ECfm0N+8v3mLP4MiXY3D7VNVunlrz/EvoMzZph7fZt9N9lKkUhfQV/sgTfMno6e91id699tH3sDvYQQAjEl9fEJmhjJC7dPufm72+8WQNnC733QJNE5ZXgklcSllBiGRC2OWjPV9YuxkC3Y8dNFW1jXwnw5M4xqXBpDIloQv64rIVgrTq/JGCaFcFWDk1o7sGj+N/s9cdzhYtKKhWlff4k0dJN6baPRmVhKtZcbbxbxELInipBrM+MxBSiDCyQXKM5vi4kD7YJnY9fBvGqDukkaGnTfgGaLqpi5k+YKHuerAVHm1eU8vupCvDHGvFPAxxnYWIV1XhE/K3uiCiVVbRffigE/EH1Uho7zrLkQU1Jw0AxZS6mcTxemaWYtTTt+lEqpjWJBcGl6TtZaCeLAXZlnXYrozc/gtaVeYuPYSbtOnOnWtfLjCHgiAWVdxX3RPqLOqz9Dzlqxl6by08vEdDwScbhcqcOZZNuz0mQb4hxZegUxK43Wl6sBZqks04V5ulBLgpbwktSHJ0VK0XPcat2MxdWIuOh5qkXb6RJoLajsyIKk67ph8ty+LnQZoq17L9ZCOrCplPuty9gmh1JwqHuU/bVBH2ArJvhQaNXjfQEXcM7WDwNlvA/4Vlm8UIsCP8s8b6CNj55QKyFEusC3ti7F6hUzsfMum5+XdjepluBhjQUcNG/AqlPATexa65JLk4Bpr1quLZThpmp43SBu5WfX99G9xa6BeK+wQV/S5Wa/07Wgm1c3kyyWWnQvqgWpka2gJN3zTeUeNa861/O6AUuvNo50y8rrZ232WTyeZsC060wpuXaF0vX0ZdQmTew6lq2g8mI3uGlnUmtjXbQrqA+BcRzBNWWA2Znr51HnwnXdzWtmmiadL+Yv4nzfw/UzrMvK+XImpaQdiLb3r2tprZVSMrlkk9fX61jbS6tJscZA2hk1s6zLDfCjnXAQbmRp3m67zXsEd5XFvfbRPYlqLQgqVVTvpD+zLsjLv/M3hYQrBx+bA2xSSPFVTUQtxmm2DmmS3r0khOYcvZdWc71tr1CydlxqVWV6y2Wilco8ryzzVeq8LosCV/PEskx62wAhlddmbcXdKss833j8LDbGbDJOETYZpxrPF2pT354gnhDBN2+e1VdW0hW2vflP/PW+jQL3emNYW+N0mZguE8/niXmemKeZ87SwLAu5NcR7Yo6cp4XLvDLNmXnNLGtlLb2AaLGiqK+Zc41uug9QmqeScd4xL2qWW2tjLYXVuv4azLAV2LofTCsKdNLaJtvYEJl+dmxNdM7jS8G5jPcN71ccaWPqtNqBuXYF6hobU0vZ7/TJhmwb5M1r2bUufd3cYnmTeG05i5kme2UQxqhrzX6/e70BtMM5j0+Dyo1j0u6QXm8Tou0/+l0I4AY6pND56945Ymf80BNpOw/dL6UKzkCyhjJTt9hhm5fXPG3binRDZMstosMFZeqGoF8eRwt6/9YR0NKV2uMo18+s8Yh8BafvzRlbXpyjVe0EB95UXIJIVEm+FbicSeOdBP1cLlB9oBZHyWIdUevWMMa7pHmwqNm/l3D7of+Dj4bKIIPFHwr8XNUFRRxZTF4usknesghzUVPk0oTV5rgCPxo/tNoo1sSlVjb5VSlXqaXuS8q+WyWwVFuPS4Ws62y35BBBmeP9OrD9GlCfsw78uGbds9iYzapW0utkU7k4QZxQnZZqOmNHms3Qfp1xHWO2OK2DO3JdG3uBvufLt2HRdvzjxu6v3tVroCEtU/OkVdxaFNyxwM15Devz5Qvz6Qvl/Kjsn/MTlJlx2HGQQAyR4hMSI84F1tJ4mi/kCp8+PfPtt59ZlpVlmZmmE9IaT6czHz9/IUbPMAR2O2WozJeF6TJTa+N0Wjk9L1rduDF3qrXS+mRaCtW6FimyrsZgzitTwNZXm0xNDVXX1ZLcgnEDaVRad4+nB2gNL81MAy3hEV1wtH7KluQ4M1G+Qh1u84NwIZB2I7vD/lXHMHjP27uBJpCb4ZoNcyW3yev7m3BmdmvvrrN+nLIT7M6rTwc339ymwAVjPwXv2d898P7Dr8jrwuPHwDpNSNFAuicLCgD0LdfOjesXG/YYwQVlAvlhoLWqiX/wHO7vaLVyOT1bAluYLmfmedLbz8/Ml4v6u8wLzz/+QEwDdw/v2B/uSMPIw9uvOBzvtCPZ4Y5h1MrQkrXzwrQbCd4xzwulZPZ3b/km7bm/PzAc7yGNkNSTiPj6l2lpwufTdBO7ui14xZg0StsWUm0MtWqHsSkTV4erEc/AfdxzGCpjUb+bQqMIFEyvWhoZq9LXRnFW7XDQvNy89s2bc0ZFlr45q5FzqWax6Fet/ADBdcNSNgNl5z11FpbnRWUqKW3G394s4JzNp2AsNX8DCvbvGkBn7QroPDnstQNLiDCMMO7JPvFlypQv2n0ihsXMx68svO7r4V5bB28bZQWyg+oFCXouk3dEB7MPBAcl7liPjrarsD8wHA5Irexqxq8LtMrDN7/i4e178jQxf/7M5bvvKMvCWlamotXMp/XCx/lEroWlNKbV2DftiTxncoj8cHnm+dMP+BgZdwO7/UgIgfuHN9y/eaMyIR9wXqsv6zKzLrOBHBfIRzXM3B8Yd/ttXjozLlV5STRwW8+rSAXWFwn3S38Jo7EvMx6PSGPMC5TB1iiVMd2G3u7m9i951FJ4+viDdbjaK9PHBTVUdiqriinhvCcFz5iUEVXKSl5mpDbiODDu94QYGHd7Mx31nM+a0KtUWZmWwXE1ekXb2Yp53jSrpClgr7VdB7QQzO+nB6DZDGoHDcotCHdWaHB4vAvXRgVizMeqGaxYhTTPM65Vcgiszhha0hOQFzD+dpRSWS8nlnkxM+CZnDPDkIhSIO/0OayglNeF0/MTyzKzLCvPTyf1/3plqZfu+w1KozpdjxQY6ebOXRbkFaDxniRRO0ZJIOI3v5+cC23RTz+MA/v9gA9+ey6c20DT2hrTNPGnP31LzpkPX3/FMKgnD8Gz4RBcA0WpICjo9/nxC7/93e8AGPd73r17TxkqJWfmKTDPM//tv/43/Kt/9d8yDAMlN2XlhWD+ZsoS+e777/n86ROgbIgYI602pnlhWTPDMPDh4yfu7++Ypok//OEPfPr8ecP5RODt/T3+X0AMgdWAiA31ujmu7ahf90gx8euvP7DkhefzM2te8a4xT4FWLCIxkLjnfOLBBU8cEnEYcDHQaJRWWXOmZWV2hPOF+HTGhUB1geritrd1oEzbfCtbRO0GFEDIrVrVu6mHzmrAz+nC/HxWps6ysqzWIrxk9VCSRs4zuSjLfM3r5m/Vqsm4moJJ1dgitSmDCHQPpoN3rbOwRYtCNHzwJAKIR5qnhIZKZzRx6glm22RPXJkO3hN82tb11zrOl5n/5//nv2GaJj5//mRspszlciEXbeagstjA6bLww+cT81JYinBe2uYVsh2l4la1c7jtthhCI84VDNDM1dQBFRrBOjHezt0bD5XYNJ4XwVMwqgNWCbUT1ak6juYCa0WTz2llXfQdbl4+W9IsRrt0ODpzGrqVxBYDC7zwXHGdx2Sva+9UGT6m0mjK6g4pctztGYbE+7dv+PWvvuFv/+Y3rziCeoQQePvwFtcZV933Mo0Qghnd674YXSD5iKd3vATQBiGpm+o766YIBnxqPpergn3NgJ/WGZbb/x38tHii5xcilKVS5oxUobk9NT5oTruM1FVjrLYutEXZmDUXHTMR1lW7RivgZL40CFUWpHX4oQJFfYzmZ0pegIDIgBc1Y2ZNNB9VBhcGxOKGNeocH4aEn4/k3UAKnsPgGYKnhZE0BD2/zlFIRAY+v6LUay3C3/+4qJpH2gaOYKyXIo61aWdttbzRc52bZ65qclwb5Gp+ZiWrYqY1qNWsPkzSZSC1sn8MZKndsgKKeIqZLLtWcbXanh0oonT8Zr5loJ1kQwdxWt2azuAb3mle4kXBnw7q9kY8LaBFbKf+SxIAUVUTTUkuwXJ9jZHcdX20NRlQT7HO6OlzcsuZrRAnYXuM//lW+WePv7rUK9GU1lhmWmf0zCeVgHisbSbI9IXl/Mh6fiTPz6znZ1qZOewFwo4UHQxYt5ZEXlaeTzNzrnz/42d++/tvmaaFWjI5LwhC+uwYBmfAQMV5nR3r0islSh0rq1U4WjP3bNPr9wGpijzqrDHWErz4qjYh+sLbgQzvGt7bBrH50vSR8ltlzlu1UmwBQ6T7IdPvuoGedXPeNg2j3Y4Du93rIvEhON4eR4ooClubVoKmtWjCsFXf0QlqrfrcTWKNbUQODaKu5l/0T9d/q7f6BirC/nBHQCh5Ja8LXz59RKoBas0uUn/1E7oy5Xstuo+DtZUVj0+RJiMAu+NBW6nWyvnpkel8Yl0XPn5fFQSqlWWaKaXgvWd+etIgNw3cvX3P/k4lYNP5mcP9G4Zx5M37rzge7xWEWBSoHEft2DIvKylGjndvePMusd8PpMM9pB3EgAvaYeq1j9oaXy6zLXz9ZFnyZouIGC/TByGsWunZ58xDdqQS8aLAj6TGkGZ8TGSpGxChrjuV1RYzI7DqJtqDEa6bnnBjYik9MbHHdLR8WwF1kkUX1CMDh3eB4BS4WsNqC69Douqke5DesyDvrEWviC745tovXThsIAICPo3s3v2KeNwraybuIO0pLvFlzpy5GEARN2qxsqdUnhnMq+jVj6bnL5sxcRU1P1YvNMfYu4mFgBySfhapxKrMysHBwaTh65cvvH//gTrPrJ8+Mf/xj0pJX2byfKHWzMfPH/n2hz+xrAuP54nPeSHXymXJXOSZ6hynzx8pwwDBM+x3DIcdIUXevH3P2/dfEWNkt9+z2x1wQM0TdZ11jagTbb0QYqTmB+1G4gNxGIlp0M4kQ9pACGeAkJe8UfF7kNastKbxlN5uy2wG3ELLK1KLbpwWEDo2AfJf7ai18PT5RxwR50cL2LV9ejeo3Mx90WqrQ1lTxZLEkBJpt8PHwPHunrfvMjElzpcJBIJ/acauFcabTn5Nkz65KXCoDAWujEu9nkIp+EE9rXyq+EGr0iFBcGED+DemhJnbI047aVSQIrQ1U5YZ3yo5eqIzFt/NudFgSG5uQy6ZdTqzTjO5FC7ns0o4hoHRN3zdGyhawdgPz59V+rGu2Tx+shryv+ZhAXwz80zn1HcAG7MN+ImBhhqiihN88QQRnIuEJioNzZVlyWqETuC492oaHDwx6XmVVqk14Ethnma++/Y7lmUhxshX798Rg0ckWEHNkpmtSmhJRqs8Pj7y+z/8ARH46sPXzLOa/C6WKJ5OZ/7Nv/k7/uW//K/Y7Ubu7h54+/Y9wXumedKOccvCn779Ex8/fiR4z/2D+t3kUvjy5ZnTeWJIiY+f3nN/f+RyufD3//AP/Pjjj+ger2vmN19/4Ouv3vP24YG8ZmNCwLVOrLf5hYCfGAPffPiKy3zBucY0e6QVUvAU27M6gWKrVzkFfkJKhGFQYEeEYgyby/OzNvPwgRYeNUbyEbHuSlurdmnUNatxrhUdZmPwzDkzrasCP0tWWUltTM9n5qcTtVZy78wlKq9s3ThUMrX1VvBqYQBmR9ALi8YM3OKkLj2z/3sy3VNiZ10YQvA4r100pXmKr4jYnheVpSVckT3ZCqKiEqoujX5F5Oc8z/y//r//mmme+Pz5C/Myb0yc1hr4q8dkqcK8NmPoe6rYtdUTfhxCQyRbuC8biOV8xfmssaq/KWYCQmc1dRtumzCdMhIGm/OCSLoCP1gc3zMJp/tWbSq1cyKUdcG1bIWsrgyz3MQ2LycWb28TtYfkNr7OYuwei7neCVCLAUgvlFbzKqy0mqEVfPIcdgPHw553bx741Tcf+M1vfv16A2hH8IE392+0GUpKW2HdpcEapETtfOgDo/fc+UC0/SPYXI4hMsS4NSSJIW7dA2tRAHSthTkXzfW6mbTjBuwxs3BFy7f8QkRYLpk5BaRCjXvaaD6CZY+rKsdsqypWpAll1Q5rrTUu88q8GEOvFNaqfkqlOGpVZmstyp6kKcjRjGnv3Yh3vXMpdKiuOAWVQa9LnHaW9PmBst8zxEA47nBDguFA3N0Rxz3eOYpPBDe+qlH3Whr/8GlW4KepjYuYXw6iwM9SrVmHKPtKGuQWmGuiNvXLvQI5GTGpFy3j6mrrSt3i9toCpVkBqlV8U29IbbBjXb24gtKVQDVpoK8NV1WuFb3gXbXroFkDFAdB/UsFBWKVpNHlXXptSXTUiOYfV8TbpO0KEHlRK/EujcdyI+sIxHXRvWFRW75CB4Oa5tg9arrmu//246/O+Oknkc72qZmWVwWBvDqVO6dV0NaaJTKoutSpvKuKMxP1hpSKOKcmy/PClIsZ1Wn1o1a90HoSaXJ3oIBTtDAvmXXRanEt2uQIUVbEBvw02YzzDNXZksMtSbSAWpNpwyGcSSZd30aatrKXbjzaUwxbdDt920CP7Xcdhe6BhgErL1KULS5y5qOjXg+veXgHQ9LuZeKadTGTaxXZ9Y2EHvO/COSdBXHu+sP26V/O1w4A3Xw4x5YECUKMiRgHc2XXSlX/S8vtXoBJek3K9nSaEIqdL6+AW9DKgHPaVj3lAYA0jgzjqOyupuaJTqCVQhHddPMyb94ayzwRUkKksi4HM9sMhKiVCx/U+DutalK8q42WdD2rVVQS5hy53vhAveYh3S/CbSaswI2p6pZvaQxo9k3dgGxjnfVxsWqKWFeWbg9IM9DURlhxlK22pF/bonl9b7cdlq6QXZ8n2wVws9LdfMdZVfF6ewtZpetiMZDSbdeg2QTqxmeADwZChWEkGMAXUlLTPe8Ra73dqwHeAAbnlObrnFLFK+6XyFO20LRXZvsGqpuMo4hZ3MA2iA6sKGv0j2BSuXEk7A/KxFlW5OFBK1fLSBq0c91cVu4uz9qVSRxrqeSqYuzamlJ2UR8KaY4WPMWDlMg6TkznMzHGLdFwDlpeaGVR1lVQo1tfIviEOK3spR74mnmxdAp8bLjmLXlSr5cuAeoSBQV9nOnCC5SMWyN5WYjLbBRyBUXE5pGyf3QOyDYDf6FD1ENODSjr9ZoSlVo5A0WvdHUDZm8kNc17NW0USFllzoK7MQLe7Crp+YCdHPoc52YecbMO6IOt0EGXWlliaJKhnx76ejbf7Ppzlrzr02uFrpZK8Z5cCjGXbV+71bVvz94Tx3LtTlaLavhrKRTvTQYTVUJRCzRl3K6rsm6145CyKvgz7/vfewhv3+lPnnYz7+wFkJ/e/snOB5jkJlNrI8yB8yURY9Q27ymY159eB7VWlnlhmtSgd1kWci6EWIgpqiQHtvHQvF6sC6pKrtZVpT39Gqo12NiaQfiysiwLANNl4ny+EIJXqdG6KvgzzczzrK2ux5UYEsUkSNO0Ukpjd5lwznOZJi6XmcukHnpdIpVzUfnDi9P4ci5IT8ReMPpe77i+igEhDqLXxFH3D9EEwl1lEXo+NZnMOTMvi8leZy7GFK4muxDrNKrAj/+LwM+6KvBTW2PJmSmrH09bC2XNSNWulsui3jw5r2op0IEfc6MRyTQKVyP0avujdodCOmjQwZ7NEOZ6TuRGhNjZ03b7Zie37dgkNiFs7DYFL8wBzMkW0npnJrR/5hr49z9uYgDkhgTTfcd0P8aSQevGoDFMlwrdXMpif4+YzcFNTHuNUHpccv2pP+LlYw0G6iG9vPzdNV7tcYk+qMeqYnmFa3VbOfparoysti3rf355s/1AFwGU8Wlj7m7/8HYO3Mj2RCX1KUWGYWAcEmkYGIbh32Oc/u2H947dMKj/zQ3w42+An5S08+HoPccQSN7hRAhNRyGGQIrJvCP9Bvy05qhFY99cPSnqbe0ipmOs66DtORaT6+j2vUxoTmheY2ltSKFzLPhEaDY6KcA46PWXqxpvt8YwrkyLgrlzzgpMSqPkRK2zAT8DUlcd99KQKijwk/BEGrCKGMPekVF5lBhoIA6GICQP0avfpneCd03VDmaVJF6NxKt7XRC2CSxFiQylGcPFOl4hbWP8dIl5NU/b0jxraQrGNgwIAylAVbmca6gfoEm/pWniXg3EFdF4vLdY34AVsMKWgS5O10pwGlcaG8lR8d6An2bM6B7j0+jSPfciZ992DWTLX9gKLh0D4ebnv3jc5q/boPxkbbjJuzdm0P/YgB8QghRaWSjTibJM5PnC8vyZus5ED8XrZjBfnpmqkF2ipT318BaRwhoGzgz4FljPmcunj5QGH59P/OHTZ+Y18/nxwsfHE3nt7RzrFrz7bXHrHkNiMi6l3N3iMI0bX5LbHn6NTYqF9GRZB39jl7ir/424trXWbGZq7dwV54Or9hHMOK1PRDPOxIOEpkmaNy11BHBbYH1NfiGlwOG44+Hh8KojmELg1+8O5NaYcqVUYVq0deGam2rRXaUT33rKdH2H/TzdzM7tYuzUVvu9/3m65WMi7Q6EWjm+ec+7bybWZeby/IXT4yc1JDaJnXPWSWHznG50/aVUpWLrviYbK6nZdwmB3d0dw36nxqH7PW8/fCCvK08fP3J5fNKgeZ7J00QLKyepTOdn0jCQ14nd8x1pGLhcHtkfj8Q0cDi+YxgPrMOAl8Y87UkpMS8rw6DtaosIh2lHioHDfiDFXwAx0F1Rb0o/z1q16rRgHRQLiHzULuqtadAqKmcooh4BLQbS3R1Rdhac6HOua9mqGqUJsVTDTttGzZSaWYtVJBGaXUNNrhTIbSF1Dh+iGaI69elxelvpzTrSfmP5eEhJ5XLOQacLO+2QpB06HGPSpEoDVu3gh7P3B0iIyHiPpB1+2DMc3yBxR/WRtWmFfptwBhz4IBtLwstP5vyrjaNYcN9sfXKsVZkV2alcYAvEbW4HjOkGZhSvXMOW9rR3H6AW4v0bhq++0upHWfHrDLVy//kjb77/VuUzpxPPT0/kXDhNE4/nC7lUHs9nPj+fKa2q/GteEByn5wvn739Q8HYcibuB3snIez1X427PsFMjx3F3ZBgPxvjZEdO4dVPpAd8wjur5JdUo/SqrqOuCmLmsGBLdKKzLSkW9A56nM3F3YNjtePPV1+yPd/gYGXYH7WZFr/z245cBf5rAvFTt8GRVcnBqQOmU2dGy9YVwGy8UzN8IPK6qht/VBnMhnGZiLMxrwTkNeFMIJAtsMxqIdZmJAkgd0OnJwU28YUG/w6HmlJUuXO82QLfBjDcgGEuiWpceSG96IFymhS/PZ1KMzEtmGCZjzen1g2PrmiTI5stUSuVyubAsC6UUpmlhXVbWrFXz8/mibKh1UWA+r1zOz+R1USBiUabQn+049BpHB+i8t9bu3sY22H1Gv7fbKcWrb5Kdr9Plwp++/Z55UT+Wakl5Z/Eq8ydqi/Um/Pd/9/f8w+9+z7qupGHg4eGBw+HA3f0dD0UIUROglLQN+zQvXC4XzuczT08nnp5PgONymawbkxr+LvPE6Xzm+fmZec3UJvz+j39idzgQfNBCQINSMp8+feb56RkfAqXAPGlb8E9fzjyf1G/t+Vn3uWVZ+OHHR56fJ2LwHPcD4xChagt4NXgP21xXsEeBi5wz58uFp+fnVx+62gpfTj8yLzOX+YllXUAyD4eRuyHc4CGOJVfOc6ZUIU8LH3/4kct5JrnAtyERcKzLwmRM4YpTxivQGX3A5lOl8qsei2qiWUzq1dt1a9VbTSlEGmVWMLMDeVfM9io1jkMiJitI5cK6FvsYQb9EtIDawfKKXt8ddNCn22oszntiujJ64qDxaAjqjzSMg7GYDwxjopTCZTpt0r2c1R8oJc9+p/P/NVXQ45D4j//Z33I6XzjsBy7TRX2kzI7ghhhDrdqCvTN5irGRNmZPB1vs/o6L3KQJenQwj27z0FnLtw/ueYcAVY1JUIag7x5PN0CaJqa2RtWq4y5sctntHSjyo8mv1A0cunb3ubIOnHSFwk0OBDTX7LXZ3qMYO4Ft7c0glSF5vnr/hg8fvuJXv/qad2/fcH9//3oDaMcYI//pr7/WPXncbU03Qho0BwphW19H77gLjuQ11upWucHW4C71ir21+4aOqS1BEU39NX9RIOd0OvH49ETJmctl5nQ+bWbl/dSHVhl9QVxjjY0cHeC52+057kZiCNwf9tztD9cCgCjItKyFJatU97Iuxuir1HWmlAUn5nlrzReW84V1nqCJyvu69LMVqhSqwFSEtQlNPJlEFS3+jzvNP7x3pKjsXz8kwn7A7xKrU+nu4sLWZOE1jtKEHy86v4OozQLSgR8ldBQzSd4uNPT6yVbga83Tqrc4LuBIaOWyGiOtQFtxZbK5OyIcAE+UTGorjpu1UcR8/4qORdjj/AFwBFlIsuBp7KgcXDHsxQpczlOd6BxxN75N278OJiWa2WboS3bgtNKd2zrrSDP9Kyzc8wgHlk+Ac6KMwh6P2W3xIAGqE5xXNuM/hijw12X8iAI/payU6cw6ncjTifnLj5Rlwjth9UqSXEtmaVBcQqKjRfVlWMXRmga6p8vE508nliXzw+MXfvf990zrwmVunC5VzZ7rVcsptS+ObOh5B4GcrZLdB0F/c6UXu55UGtvIEB2rxnYyp6WoTlk+vTJQ0dag3TcFzFwWnb66VAjekMPNacKh7CClDSAqpcaFho9B/c0AZ67iHTISYEjBWta/LvATg+Obd3vWUrkshbU2TkFYF0VFK1CdM5mPNwmPjf82ua+Vkuv/dnEYaos3T4gXfGoFfrwxBo4Pb9VQcl1oUnl+ftQEZqtQ6Dn2HSF1vauCUKpWfhFMnqMgiErPsCR0JBmD5+7NG2rOrPPMDyHyRSCvK4/zrN4/wLpM2qkrJdZ8YTgdiGngMj0yHg6M44F37zOHu7esSSsA47RoF7Alk4aB3X5PdZ7jUonRs58S6ReQeikIohTBa2XoBe/mZsS0nXMIDt+qyoZMtjWLtrsNMTAMd1pJEKc7qDiWdcVH7S5SWiMW2QLZXCutCTnPFmgpcLjhq+4GGrUEF+cIw0gaRqXvOu0C5TDTPANhXUy4qEwONwy4NGiiHAa816RrPw6MKRFj4P7uyGG/I3jPbkykZEG5ad8LnosEVvE0n2jjPS2OajIvqFmcczfXqzcatv7s2i8E/GAholXpWlNGpCafsjFCY/AMQQNsPVvaaaEK6h3gwKc9ftzh0A4MB9cIQKqZsWRcq7z58pn3P3xHXVfm0zOXx0dKzjx9+cKXj59Z15Vvv/2OYcqs68rzMvE0TZTWOLfCRbSFuwwRGTThTbuBNKrXwzDuSKO2NE/jnjTsdZw34CcwjDuGQQPB/X7PuNsBQq2Z1nSj9iJXQN6A8dIa5zkz9xZrX75ATOzv7gHVfqdhJMSRqyf+dY36ZUZPg8x5reYDhW7qvbDgtFKeq+naO3zuwIdETKOyoJrT/qeuIT7jwkwMgbZko7kryJmCtbh1XA2Sb1o/d18c/tzn1czE0EI1fb8tK3dg/zbIVg+THqd4ZRlYC9RpWnl6vhBD4DIv+vmdySK9325vLeprM6ZHZbaGCbXY7XVl8Y6cV2Lw1FJYpwslr7RayMusratb1TbW1vb4lzi2BgKWmISgpr9piBvY09tJuxsJWAeJBbhME99+/x2n85nT84nPXx7JubDf77m7PxJjZH/Yc39/BAe//Yff87s//JGcC4fDka/ef+B4nClFcF7Xs/2+GxXDPKnX0fl85vn5zPPzBZzjYgyeVitPj088Pz1yvlx4fj6zrIVcKn/69ntqE+tiuNP25LVyOj0xX7STYskwz4WcKx+/TDyftEuUd884lFl0Op+Y55lhCETnSd4jVfDofA2+ywb1aCbfzKVwmSZOp9dv515b4cv5I3nNXJYzOWcSjvv9QGDE4/GiK+jzZaEsz0gr5Gnl88dPnJ7PatyblRmcszb3aK1RRMEHjRg9mCyy1abs9Z4Umb/DVfKsR7/UvHTw1wCb0ttzt5+wPLT4OI6B3V6vIT8ZW15AXNQvEZorG+DUpNHqFfTpwE9PQnxwpDGoP4jHChwQolO55bhjHEfevnnL4bBnXRe8E2bzwnE0SmkM0bEfA8MYDOx+nWNMiX/2T/6G59OJGB2n81nbQ5uCokpvUiHGlCrGNtCW6Mqia5spbF97+rl1Vsnv7aKVuR+UAWb7TC7WhUiwvbmf9C55623bTQXQPT3kKvVSHyVrBmOeJgjWharPic64vAF+EDUo/kmdQkEsKzxbEkpnhTlugJ8rKCIb8CPQMqCA3fv3b/jNr7/hm2++4s2bB47H46uN33UcI//xrz4QU2K3v3as7F6c3nmC7Rk7D3fREb22DY89D3PWpdWKX8HMnbXAYEUF564sH4RizLgff4Q/1WfmRfg8zeT1i6pHDDwEVDplwcIchSko4P/u4Y4P794yDgO//uYbfvXNN4SgnWljiIgomz9bg5enaeK8LFqIWWfquqi6wguD1y6Wz59/ZHp6pNXCOp0p64xIpdaF1jK5NU5LYc6VIp65RdYWjCm1w/m4zdkmQhgS6RAJY2KxHGgxL8DXOkqDjxeVNMWendo10DHLYnmrB4IVj3o+IOIt3LDcuwW8OM1UZNnUQ77OUE763E4IXsGhKJlBFgNWLW4RoawqixUBF4u9sCcwMzATaOwo7F3Zyn9a59L2U8UrsaE2ZVnBtSYgzivw427M9TrOQP+6Ej9sWdUcxvX4wWL36y+VmdXT4XC9v5klh6qf2z9KqvdXBX5EhHVWhka+oV7XqvRicQoeeBSJV6mUYmNg1fte2Ba00lKqfuXCmjNrNq8ZuanWX9/BC6R+q4yIY/Oc4SdBvuv/uSuSs3miWJL5ksd180r9GW+fUK7fbq+v7Q3d3LlVWLi2bfMYTdx+Jy+rrf0PnPeE4F9d6uWcI5lDfYr6WkN0pOgp0azVxM6l6Pzsb0uDf33DWtQ2f5Ut0bihV2+gw80YSqch6of3IRKTUkxjGogp6aPNpBCuG68TpRgr48c2yz4/+sYJ23h7YTuPAEG0aiCtMYyjms56rXAtSTssVMeWPFWrNIOQl0WNpHEsy0SMI1IbKY0gqjf2QRdl5z3LshJiJJaAQ6jxFwB+bCz/QooH2wiY/8KN/KKJgritb5J2LnsYgwELAA1Pc16RaXE039sbm0zXC81H/aJtnYHsDcLNe5D+XtKISzt6O0/noz6umXGhewn8+GHcgB/vB21z6T1xHIlDIsXIeLhjd9gTggJCQ1I5YZVGoxEEcvXUim6gnbK/rcw3AXq/x2K9PmV/Goi9xiHb0Mn2Wtod4HbVu55rJ2bV2JemvobQsQYNkJoX8+e6YhCIxw0qByNGkghjbcRSWKuwXytxXTmeJ+7vzyzrQvOe0tTvoq5otxPQJL4UXRSyR4KD5mk+U52n+aBzqGmA1kwW5H3YOjr4oNdHZ240a/neN9NtZNTYidKaMUOKavlLVSNEH1iXmZLXDWS4peG/ADd+AfTH4fBh0K844KNKQPrckuYJDvucbgMWQkiEqBR4vNdubs4pOB6iMkhC2AwCnfk96Zc3EKB3ZtLa05Zo22TawMoXc/eaGLz4+rOf7JY67l58NbRaVkWT2W0e9p/tpXR5VkBTcFQxi3YXdGh9hNC2WEGZgva9swatIg+osTg3n+1VDpPJ2cfUzyEvfn97jvpLXwV4/WEWOThHStHYQH7rguW8JioheAXObcwukxrY5lKYZmXjtabXiI+RmKJKstYVQXh+euL5+cT5cmFeFmrT51nXlekykWNgmib7Uk87TVgdpRTdo0KgVUesqHdMLpRSCV6BnZwzOTe7P28xinPXrpY9Oe7xWq2NZV24TBPTrCBUzpk1q3R/mmfmZWHN+llf+xAxKWG9MmD0uvFE5/GEDfgJvmCCXvXvKAWcp+ZGWct232oSLe1Q0yzO8DgzM5faO9uyxSU2Y7YiiGz/bTNoW9i3+OUGBNjaEDsIwavRtwg5V4IvG+ulX7y9SLCNkVzjob4NO38FKmPUtu0KQAvei4KcMRrIbF8x0Zp2GvQhEqSb88sG7r6uzEsT7+N+pLXCvXk2/jngp3fCylklNtXyCAW+dN42A+JaNxns552b5BRugB/MlLttsW3v8qldFLsRy1fT5gAAzNpJREFUc6YVZTl0k22EG9N9EKr5yoj6uwRjqFdR8EcU5OgsitoKrWlMXZqyLX46ebw4KzBrPGYROc6xmRr3aMYB3orKNDGgvzGkpDKvcSClxC/iXdjHcTcSY2QckgI/Idh360IVlKU9BBgDRK9F9Lh5qvbugGwFCbb73QvgBwdFNCH3TXOaIal9wW6I7IeB4v22XuFQnypr6NP1Dd45Dvsdh/2O0Vj8u92owE9IhJAQ1E8mmES+OJDgdZ2Inpa0GckuqFKs5hVZZ0JTWfMQhLJoU4vWAq0p89DHwlC08+7Q0hX4iTucT1p0NVDSpwNxtyeMI8ElsjWVeG1nCV3HuoYFttzCdd+dDoPIdg6vWV/nw1wzla3TlkYDODUNhLpo/Ocj3ivhIUghSN6Ybv1LZKW2RWONNuCDAtKBjBdlCDnJ6qXldN/T9xzAFZyrGp96f7Mudy+emy+2D/0CDuh36Ge1mM55wxKcxtoooO56rmy5v+jE3tQF3ftHdbPuRpP7l4+/KvCzLDN/99/9K+o6s54elY5fVuo8Q80gDS9Kg9KEw9lE7DRK2YywWm1cVjjNlWUpnOfCPFeWtVLFqmgBRey9+TU0tmoKhuTrmtkp7gYOGM3Kd3Rl22TZ/tY12QAOrWTqRG3bJmyMIgMbotPn6BO96/wa14B3w4hcB3fUCNIF7Y5CUimO+vfcVMLsszivQT8+ksYdu8OBw+F1kXjv4W6EkjxDjJQGYxCQyrxqAnjJjVohi2MxBsK2xTis85J+vu4z0Lpu0t94HxmwppZKxqny3kz0HMNux8Pbd6qfL1n19evC5fzE5fS0VbJd0TkVXCM4o9y1Rtdg1lpoUuheA8FayUbRFos4NffVhk6J97/6NYfDgbwsjLs9+7sjpRTO04V5nQFnsoKMj5GSM/E0kNKOfMns9p9JaeBw/4ZxtycNI8eHtwy7PeNuzzwv7A8HYgzsdkqb/kWOrkV0PZjpSaUmicFp8q3Yl1aQSoUpZ1xZWdbM2bw2QmvE1nBOzc6csQNyg8UFmlOvl2zVkiKNNegGtDKw+INeC6bjBoez9rj0BdcCRb/b4cadUhp9QoICP9duFUpj9VE7NoVhUHqw8wSXCNbG/X6/Z78bGVLiw/s3vLm/M+AnMcRAE01CcimstSKXDKu2Nq8SKaILf/eIcdsC3pNsbwCYstd+KcbP7aHEH9mWrF7Eq1RKNVmBU0LWth9tOJt0Bik5OGr0ROfwVYil6ZgOO9z7r6FVwrvKPqvXRDyfOTw9U3PmzY+f+PU//5GyLjx++sSXjx9Z15UfP/3Ij59+pJTK0jKrmF9WEdpcLCMUmBUQKmGmhKtET2V6Np4GeKRh2MBfMaN9lQCqZ4+CzFo0KLXyPC1Ma6bhWFHpxcPbdwyHAwTP/njH/u4Bx+EaL9+eyA3Ve73Dx4G7D/+UGAfG3ZEQEhvi7xwildLU+PHWOyr4SIyjMUW8SRsdQ0rsdwPBe9bTE0upVOcYh8RuGHCt4N2O4NXzaFm1+10zD6RqXWJefM5OPTBwEOkBmCVE9vtt2ab7IOh3b+PgXVTTSZ9ofkcJeyQECBExw+5rK29H9WGrYIm3PTM08DucrTvDsBJNNrEJjEvBScTFVSnmoxpCanfARZlh4fXWVZWgZQtMr50si/k2NLEkWZRpJ0aDklvAqBdBHDw83PEf/Uf/nDWv/P73f+R0vtAQns8Tf/juI7U2hkG75jkHp+czj08npAn/8Ps/cJlmZfkc9uyPB0JQltFuN+IcLPNirb0zv/vdH8lrwTnHt99+z3/9X/83eO+5nM9cLhfWdeXx8VlHUhzLnHl+Opucb9GiRWvkZaLkBe+8AjjzQqmV82liuqg/kKPPaY27YgjW/UwlfM+nE//d3/09T6cT87Ly6dMnzpcL4zByulzYjTs+fv7C9z/+yJfHx1cbv360JsyXrNKsVcFoNY/dMbioQI9PODzJO4Jf8F7NWC/nCefVb6eszQCDtl1PmzeeDjabpLKh8aTd36dDu5ZAuDKBerHK7jaAis4+6QbNzvxbgufh7o5vvnlARPj06ZlHOsCmPlLI1XB0Y0sbWNGBRh88u/2ONCZi9ByOA+Mualtv3ZqJIXLYHxnSjjQMHA537HZ7vE/sDwXnVfaFT8rMixHnB2QrX7/OMQ6Rf/FPvmFZFv7mwxvWdTVJiQF7cu1CW2sz2WdTFrIZ77ba1KfOzns/r1eQ2zzKupqAG+DHitGtM3t6EVqqyWRF2Ydl3YoY1bzYbnHgzaDbfMryoo+X0pCi+1wK3kzcm0pYs7IZL9OiHd56fmNrtHrIddaRyXthY7zcsiwdEGy/UbCqgjS+/vCBb775mq8+fOD+4R4BZvP/es1jTJF/8TffbCxJNVX2+HhlSIYeEzr1seldjfzWFdhtxYxehHBgMZrtUW5zpCTYHoE0jmPkw5t7ctnzsN/z4d1bmwduA7uuBAMhm3+cc463D2948/Bgkscjh8PeZMsB5wwoCoHQ1/zkSftB50PWbmAe2EXPEBytZO6HgeX+jtYKdT3TyqwTumlXuCaOuSjAqYyfRG4BHwfi7o4w7JRhX4RWRQ3m0xHxial5fsiec/Ok1yw0O2eNM/qF0796Mw0P0uP3oqyyzoyRAibvwguKPFpnMNcIfiFyxrHQ8kfK6U+4uhJ2H/B78D6R6oUhn/FSraOvAqlzmfHLTANSyLSoMVQqT6T6iKcQ6oww6+cIA3jNrXE6XrgIkoDE5l1ogBbR6ky9eOa8xkYNxQ9sbXcm1w8+4bwSF8TWCAV+FD944auqxmgK8jinpALnNVy0TtX/ruOvCvysy8Lv/v6/V/fk3sJdGlGqUbbMoElUypTGdGUbGKpVy8paGzULUxbOS2WZC5elMi8K/LgQ8FGrmwr8XIP2TtOUzX1ZK6mtU21N2uGQLQDtj5fakZkeA1+zAIdT9N9YbGqcq1Ucf4Paua3DCWyME655hYNrFyyvVEYfg0qfog0212Styzw29lKI+DgSB2Wl7A6vK/UKDo4DVPEMSY23hqjvZM6VORfiJbPWRmmOWBzbaevfLUfBQXHaqrRJUy+kXodyN94uKGVQsHUADaKHcWQckgVXuujmZVF97vlCRbRFqdGLg2sEjBHgruewm4TiHEk0AfFogNCsQq7dJzwMAykGHt48kJdF25mOiXVdaJ8+Up9U+pTzSqkV7xzrMiugFAeWy8Iw7olp5HD/pMDPuOd+nhkPdwzDjmktjLsO/GjF49UPm49X0IcNsBDQDlkW4Hpvm6iIsjdKQfLKXAqnWs2IuuJb3VI9b/NRW7sHmoPiIHu97ArCioFAwbGa236IPan3uJAUyHQKAmmF0OP3O9xupwlvtISxb+2ia4UfRvygYE80cMDhGFzU1p8hcHd35LjfsRsHvvr6K96/fSAGz36IDDFQa+F80Y5Bcy7MX07ky4xr2glEimzv7QXwY4GBJ2zJkrthBr32sSUCztIC6QN85R22puCPelipjv2nb8dhzDigRpXpBA+uCM6An5RGdoejdcXzjF59L/bzQrvMUAvlyxPl8xfquvLl22/5/Mc/ss4Tf/zdbzlkNYu9LBcuy0SVxpKFpVbV1+dKdSvinFoZWEWuekd13tbBDgI5fFB2C6B5lEnqhniVinjzdSq18nSZmdaV0oSpVJYmvDudeP/Nr9gdDpbAl+0SeXGSfyHczsfE4d3fEGNitzsSbM5fuzg0M2dtV68msJba6nWE9zYPHSkExhTxDiYR2vmEk0ZKSX1UWiJ4IQQFAp33asxdjfkj6wswop8Aud2ktvNyDeauwR3X65EemBtbzwecM+NuP1D8ToEfA3A34Mf2fd2Dw4uXFREIKs92IqRWN+aD1Iy0ii8Z1zwuLDhEu2ah3ftCUeCnP++rHJbMOQO4OshbvMOLyWw8BPHU4F+cX9kuXgUDHI7j3ZH7tw+IaCL529//gXldOE8zv/vDt0zzorL02JMZByjgdJlnvv3+B50jKViC7RiGxDgOujKIGBCmXbtyVnPxH35QmZNzjmVeWM3v53yZ6NyMvFy7GKpcqTMXVj2vzisrKKmn0uV8YZ61IOKcCtz1ukzq42Msu1Ibp/PE3//293z/40c1NV6UbRRi5POzmso/PT/z8fNnnk6n1xu/PowG/Ig0U53repMY2TntkoPTblzRN2WQOmhVWIp1yexSr9s8B7Zreuu2RGfXcS0q0hNT/YUYEORa2/wv+pwROvCjTJDOTtGXqlqEIXI8DHz9QYGfVgplWci5aizdsnlW9uS3XavjDpRpr3KZcTeyP+5JKXB/v2O/T4bJayHS+8BuOBDDoLL13ZFxVInJLhfwkZyzFgK9yh5VYv+6jJEhRf7Zr7+itsZqMq4G9OikinqIqBdPtW5fKvVSdpayIKuBNwq6tetGa9euysGaFXu7Y4cy4vpzNgN+FNStW1JX80rJy+bN1Epn+inYhkA14Ke1ynyZmC+TglJmEOwcjMNASpEmjfPlxDRNlFJ4fH7mfL7omLdqUjIDfgwIas2AH8fWycr7wJCSMrScNojxNl+1IUPjw4cPvP/wnvdfveN4d2fAz/qqYwjq8fPPvvmg+8rGYHPWLMfR/eA0u5atsQz0E8lNcHS9225d7xMM8FQwzBs4th8i7uFOfWbedCzUGWNN945SinpsmQy1tYrzjvvjHXfH4zbHvdfivZjpsD5TbycCfkiMFruJNQ/yzrGPgSF6pBSWMZGnI7SClAvStEOp2oSo1UeWSCNQO/AjgZBGdnfvSLsjtQmrFearCKv25eCUK8Ml85wr6TVNfgBCULCRgC42XIug4nGiIjCa9bYyeeHW+twnjYWaB999qoToFhITnomcP1Mvf0TyQqAxjnu8G0ntRCpPeClE14hOgR9fJiRftEy0C0jYg/OE+oXQPuJbxrczyEWX6rTHpT24AecHiHtwEQkecUk/Sg+9cbpNBJtlRtZw4nAZekLsrMrqnYekIDgWo3SJpXNtS5wVG0BjvRSsKYvDxXAD/LjXAX6cc/8U+D8Bv9ZR4/8gIv9759x74P8M/HPg74H/lYh8/rc9l0gjLwr4UFawlsJNqk7cG+AnAsGCVxGlNopTquqyrJSsdOPV3NC7sR3bKbpFdl98Hnsv1mlI2BBbevXNbT9tAdqVTgtXczRQNInrZnyzyNjL427eQ3BmWNj/FtVrBxf1d86TQjIzXU8aB5VreYdL3iRD12C8iaieuAkuJOLuiI8Du91e24yHwKcfvgP4T51z/7//0DHU96vnxjudZNErLVJprYEhKu3eN7aNluvH1YTNAiAvDoJZwtAtr+RGCcnmEdFzrytm4fAW7KaU2O12eO/UA2QcKd5Rc6O2gogzZpSaPgeHbho3QVS/3SwBbpYMifd4RBkEWPISI75WwjAQxxFx+rpplwm1bvtND/Jaa7haFaDqm0ZerLLtKetKiAsOWC1IrjFureXtSM65/zuvcC3CX8hjO9XQ5vd2U3oQ2rYAoIrQrcoc1hq2Az82UhVnbXChepWmN+ld+vpiaZUQHC4O+C7LihEXDPztQaJz+DSq3Mt565CmrBB/C/zEER/UBNDFwZ5HEw/ngiLmMeGiGj+7YGbQ3hurzCPNb52/FHF3LwFJm4M/7Vy3TfYblkRfnC6fv4dXvBZ/8or/lp/EAg69/0q7vR162a5tvZadLW89iQePp2At4p3RiHFIqEhKuintdvjjAVIi3h1J93dIDAzHI8PxCClSvHWi2Awmm4GDCvgICk55sPO7Id3XYK5hQH21wLTL3ay629uDB+0AVlrTjk61WHc68wDwV5aJN7ZGP1O3323n6Pvwq12L3nmG8aD6/2GvQK/NNd0qGo2gAYvTKqyC14FobYHxWlnDqvNdBud9UDq890o1T4OyIC3oUHPIxloLvlb1C+JlhVtsLvc2ouIVeMOeMxgTS03XkzH1ogJYqFQNUQAnRO2KF2Iypty1db1W05xWBnz//CZVs3nwAiDpVRbnwTdcs33bZKEhDTZ23exTcE330tY0ZnjN9VQPC8acVadv5HXXOWzXV7tK67a9zMZFpUQqKxhSYr8/sKxZgRurNjfR6j9gc1dft6G+EQ7wrW0dIqt5l/Q1vbOecwcpgJwL86xJXF5Xbaluz9EfU1szWZOzwLQDP5rYemsj2Lh2DmvmT+VctTxNx9l73ZdLBV80lrpMk/qvtEYuK7VWQqk0gbhmpmlWg+DOknjlfRHC1dNRozMQ9acyeJye6Dsf8UFZMs485pzXol0vLF5zTbdlns72hA34+ekh/ZW2SJTOEu+RkrYo7kGVbN3/tt9jHZhiYBxVjj6koM0iRAjWXVbzarm+j55LW/GREGztUHPwGIMVwsw0N2gyHozNgOudsbR7ksYFWiF3vuF8/65zQIzx9Vpj6Jwa2Pqm4LECP9q4Q1Bj3d4xubZGCmHzHRxi2CRcvWPiBvzAFfiRfh20rdK/AT/GHNr8km4YPxvwUxIlp58xfvraoZdnB34ac4zMSb0ta640A2qHIW3AT0rqT5hLwQfHMMSNdda6oqEzuzrw067AT7sBfmIfW2+KCzsH0mQzjh/HnbYKf+kp8mrXoqBAvs7FPs/1vx7/Q2ftYDI5+9ttE5cX19dL3KfngleJpHYEvTY66DlkAJWjc40V9I89NGvH09jkOLeeVSKymfPrXNDfVTtBQo+AZPtB5516yNSiBIZm8wyn8SnWgnyLh/A4Ik6C+b7a7Ztr0k4Om9rFxpTW1Ord0QsYr3Qtap7VV9Ptex8/6V5Uxo0XbO3tTSNsvex102bPIOCb06K0CN5rYV98JbiKv/mKvuJaIzht3A6N4CsxmNG7b4ir4IVAIZBxZJysUBcb5qAFKgciCqrjTR3kr5/MdX9ND9pO1+vc9bpuKBhkG3CfI95Z/GbZk52XPs9xP6kK2HKqX24Dlrojzp9P7F4e/xgqQQH+NyLyL51z98D/2zn3fwX+18D/TUT+d865/xL4L4H/7b/tiWqpPH/+hNRKzYsyMUTwUtm0d0215Pv9jgeni1c1GmaTxtPjie9/+Mgyr1wuM0/PZ0ouXObZclZLOUW2c+T8TXDlNLXJrVLqui2KqtU1nbPNzK1RDlzpnr2qcmMMeZtOdYr8FfBR2Vk3cEwpXM0ct98HDrsD47Ajxsjd/o79uCOEwO6wJw2DyrsG1bbqpqBBb6mNZc3kotpGl/a4kPjwq9/wqw8feHv/gCgN8/ci8p//h46hQ/BSAE9yXnXBySH7RBkja66MMWhHiuZY24tT9fPJVSAPClxtnsCof9NS9cJcmxCK3lbsRcP5HugijjdvH9jtBmop7HZqLriuC4+ff+Tx0w/UkslFu/2AEIO2LwSTSqLVhCZqoietMc/KBvIhcHDgu8mySe+ac8Q3b9iHwFAy7nDgeJkoOXN+emK5aDePdZmpa0ZqYeVMXRdNfGiUdSIvO5yHvF4IcWCeJ+KwI6XE8XgkvWyV+SrXogZ7urm6zc9VLGkS88TQxLm5Su2tEteVnBdkXVhbYw2JmkZq85QqxkrwJq+xgMJMXiuOLBYUumgSLU8IAyGOOKe01BAHA3XCBuooU8BYACHgogIOwbwXcHq7V9tdGnDJwJ4U8WYCiFc/GQkBGXe0YaTGyOIcU22aKFFJRQO487ywzKt2cFkKl7UqVVxkk2l66Vs3dPmn7VJsi0EHrfREv8q1+BePP7fwC+oHsqEY13fZMzqNkxS4qyg7KzStUjXRbkBrc8zV4aoaKaZqlWIxQMB5/P0dbj8itSC7QDiOxGVmf0w83I+UZWX3/Mzh9KxBb86baWIRTVobQpZGtsB5lUa2NKcFZ/JdY+WZr0G2lqtNhCJqhrzhRDYaq6iazIfI3d2RMIy8e/+Od+/e8O7tG3aHOwbT1/c87Qr6/Ox4lWsxppEPv/7n5l9wDaS7kZ+mc0WvVbH0Qm7AAnujXQLrNy8zwaWBOO5xOPb3b3jz1TfWLrpQW0ZEuEwXjueTyr7mmWm6GHtVE5eNnNKn0kZ59oRhjx/2KrvbHYjjAecjcXfU286jVpsKru4Odwz7A2kcGI5v8MNRr+VhwCcFiroMGPR67d0dXb+WEDNr7G+sXZNeo+nHVkm7A62a2Tf2GGm0lpHWCCoRfJ311DkzwNfESYG2q6Gzd2xeE+AoeQOeLD5xxBQYwqCeg61RVgX8H+7v+c/+k/+pybd2fPz0RHwKahy8ZEswO1DWg1A9fdryVoGYNQuTV0lXZzwLGpeVon/z9LQwTQoOtVrMYFPjr5681DZrhb+DdM4ZMKjn3mHgo79KuK4gTQOUUeRqpsvi1lWxeB8Cn5+fVeIr1zhH4yQ9lzkXLpeJ3DvdveK16Agkd4942RJCR6TUgaXpvl/RYsDKQNjfMwyaLIamlX8pDcnmiWTGzXSGTn8hEQOG+kYsdo317x346WvYdY+5Lt/GcvD6PqtrNG9AoFMAbkiBt/cDv/n6jc6TZaatM8uSWaaJ57rY+/B4aysSvNtktXGvHiAxJe7fvNU1M3j2u8gw2F7bGe04GkkLJtUzLcIq1WT/gxZNfMQnR3DZYrkuYfCvN4bOMVjzjN5d6wqku+uph6sHj9htY/4rvtP39Ov6f/Vg6l3m+ni5LaG/5hNsxeBeRO6WEq3dGurLZu7s+oYDG4tEmqjUa836c1EpGg7zVTJZ+rKwZgVKzxdl2W2vf7tW2nN3g3sBK7Y4k1UlNdjv4DU3VhkiHA4HvvnmG+7v7hnHHYfDgZjS7RC8Tr6YM5+//4N2jovBCjTadVX3CLPj0CFSRpe4zavwxbX281mygQpbZ1QUJCuWC7baDYb18Z1K0aoBBXY+gwFO3vZq54SyzpxrQa8JY/oAsmUbFrtwLTZv5d2mYJIDTsYbRxpSZpXb9bhSNB/xTcESEUcl0Qi0BnOF3ATnCz6fcSFTa2Ndde9prVHyqs0jnDYtSa6vAq8zht459snyrH66ucZVeh6cFewCTpI29RHZ2rC7GnElKqpmyyUCYYkk73HFEbNjOALFEXaVGBecF0ZWdl5ZXMriWW0UKkNUYXjeNdZBix0hTATOIBmXH2F5QhBqmal5D2mHO77Dh4YLQkx6vQjqw8g2p7SHo+CpPtGcxZQJvISX8aQPytQJzmZGB+osWHd+W0OaGGAU9GGKpzv9e6V/vQ7jR0T+BPzJbj9bpfpvgf8l8L+wh/0fgf8H/45J0Grl/PREq4WyrkpTNYmXrrRNaaso+r7bj3jvyDkzL7qgff78hW//9B2XaWZdC9O8bjRNaWLAjyGG6EIabFMKvWWqCHVtRk22RKOjE95kGRtabAt7bRuNVm5pt1wXap3MllC5KzARg990s/udGn45py2nnfeklHjz8Ibj8Y4hDbx/85b74x0xRo53d4wma0lj2hb51lv5lcp5WlhzARcgjOAjb959xVdv33F/PHKvjvuX1xhDLBjxQLQKSoiqtW1ALoEhBkoVNdSrP193W68eIJQCJUeTevmtKjOXakm2gj6gZt/irmCc5gS6II/DPQ8Pb2itqTzOe6OJrzw9fkZqZS3KFkMaKXhSNLZQUL1+H9uNgyDCWgoxRlJKDKMOt2xmqo54f89uSEitDIejAiPLSkoDl/SszvG5Uk2CUNpEcRBSwjuh5oU6zoTgqWXB+8g0T/igbVHL+oZxHPupyyLyL19nHG3O9opIjwukgxVtW2GlNYoUhEYuarRZS1amgI+0MLKKY7EKlcMTusDVR8QnA34CxSkI5NOITztlB6QDcTzinCW+cbSA8tbvp9PCMeNXvb6jOKIlwdoC2ICibu7sHESPRNvoIwb8eFoaacNADYEVx1zrZgQZnJoJn+fMPGfWUplyZS7NPIpuhC0ieEXRNn8T/aWeS3EO53XB3h/fwKtdi//4Q8Fi2Za1DQGSjcFCV8Q61Ki8VgUTqngq0YAHoOj5Tg3SJgN0Zi7sibtkVeVG20XCcUTWld0YuNslyrIwfHli9/lRA5nLAtOymaGWqqaaS80sJgOda2ZtRSn7Tqz7m7DWpm16myjwWHQtX/O6PU+plSrGTEgJrLX5fr/ncH/P27cPvHl44OH+jmF3IJp0zL34usL7drzatRhi4u3Xf2uFAGs3S6/egzj13rASHa5dF1W/JYwgHSCRarp/wcdEGHY4HLvjPfJ2oeaM9i/RxGM/XdgdDtRamc5nhtOzepzY3tilSGLAi7gAzkC+YYcfdgb83BF3R1wIxN2dXtPeK4XZJ60m74+k3Z6QEulwjxsOuGCG7UNik0u6Dl7coG83wE8P691Pb0s/TwoC9Z+10m0JkHX4SOOe1xpDh0oAQojqOxW0wJMGNZKnv7a911J6d093TfbcQGoavGmhSVOB+8Mdu3+2J9fK6Tzxr/+7v9NY6rKwLiovkGv2zW1MonOjz9ts58amz+Yrs3GRzBdEiyN66mUDGXD6GVYpG/vr+pr2Sgb80D8X3ZPKbb+Xbbyuf7t1D5I+utdi3caVcv2v3CYF7B/s9fZFT3B3+l4MUPF4atWEreLIzhl8lQijZ8AkhHXVz1EqLqp3TiuVljO0qyS/AwDi6nXf3ayWr6PVO8BsRRn7jcb2GuiLkw0act66xyJ41wi+kULj/jjw4b1+pun5meW04xIdn6NAVd8Y35mwaNwqQRm3w25H2h8YhoG7uwfuH+6VVZ3UW0bBp234zVAdWvW0VZM3Eagt6rrhKy46fHcnts/lfHjVazHFq/wCuLKXbubr9Tzzs1v0WN5xM//M68YAoZv0gD53b49t/Zbr9xcSz+1a7OsSN9cNG/AoiALF3StKjOEP2t3KpKPZ9s5a2+bfdX1fL9+cSivLFfjphSx3BX46ONKv0758hRDZjbvtccM42uOBV7wWa808fvxWuyAOw5ZnpBQst7puDQ1HaZ3XSXd6u57nm1Ogp9ltHq7S1zbXmc43K9TGBPB0GW5v2W1T4mqG7DQ/QYSSV9ZFzYNL77SKAT8GPtbOBrNnVMaPQz1vAtZmDKn6qt4XvDMfTYchTVqEoynjrElAboGfKgiVNk00WWi1sq7ZOtYV9dmtGRkG2vFeFQwhvt616GCM3MzrnpdfgZ/NNx1l5OsGKJZjy/+fuX/5sWVb/v2gT4wxMnPOqlqP/TiP3+M+fK+NsRGW77WhQweZPwAJCXqIBtJt08OiQ9ctenQs0aBBAwRI0KGFhIw7BhkZ0bDcwVcG3d/5nd957r1W1ZyZY4ygEREjc9aqtfc+v1P78Mu9a9WsOXNmjhyPGBHfiPgG0jKpFaLSiPjnORdKN9AjbSBnQSrI3JC8GvCTKufskT6tQt3c/gNVoUviMnXStFoy2vVC1idEV1r9QLv+zuRa3ajTCm2ltAsldzRDnqyKs4q1w+JK1KKFdENJbKJUnyO2Fzq/UaxLSSNFS2JChTIe820A1GodF/xBCWQ209+cf3ojxj53/EHkISLyD4F/AvxHwM8cFEJV/0pEfvqZ7/wz4J8BPLx9y8PdHb01tlIc+DEFLQxM7ebZPJ33UEJJlhdZW2NZFpbTidYhJQM7Rmimeycl+SCwh/Ib8BMhemqkYDDyX3d2fg+bsgfbgZ/u7VOMTyCAH9kFwB7FY5UUBkJdioXH5sT5dLZw7ZRIDlBM08S7d++5v7tnnmfev3vPm7sHcinc398znxZD4ueJVDIRpmkM7Y2yWM62ktzIztzf3VnI5jOK9j92DP/e3/97bjOG6PPUHr9NlkMkjc/Bg37pfYkDPLYQkgrdI0FaioimRC3GKWPVo8I7s5f4jpBKwcY8e7jqHGlfAnfnsxExlwx9o2/O/C4Rau8h6erh+ckw+djkh5dYu6VciRw88TDIfUW8zLySmzLNC/NipZTX5WQVhFC6AyjmJO2ecpDNu1orFCH1DtnmWG8bdfsUwv1jx/H09muf3wzj32EBezupDVwYnarD+IzhVDcCNSVI2cjigs/G+VVUihmJIfDcYBSvYETKXoVocqCn3Eb5uLImQe6Mt9dBCDMU4/ducOwGlQMvB/M9XsX3Ig0j1m5c2zttXGPvSIYSEQDUSx9a1ypC8j48eKFeYQy/+vmfv3TKoR0xUPtdA5d6pgfuf+96qXkXugR1zjDG4kh4FczDegjIPXzTmjNMk+1VpzPzwxvyvFhVkg5aK5QrzBahk2olVwNsqBvSjRxX2kZuBvz0AH5UmXqndqsslzcj4Q7gZ3Ni3doaNch08wQ5M59O3N/fc/fwwN3dPaeT7TVlKiMiE0yupChh/rzP9jH5h/wR4/jFT//SOQMOTocxSEok1+69borqqCYZGN5xCP2rERqO8+ukPPl0yIAZ8KVMTNOMpEaZNqbJqlykrqQAfkaouAM/EfEz7cBPWU6U5WRlzJcT+XQyR8wB+CnzQpkWS+P2qIKRynkADMLQikcZkWowXkQc0P7UbgmMl8kNNx1KlgVXiJOtv94Yvn/zfveu905PgnSxPcPX3wBQ9u8fH2c/1M3h0EnADCuB07Lw5s0DtTVKmUhi0bVjEfqNhsEix0l7jJLCPSg6ikOYEXo4hwAcQXbW7mMzXSENM+m5cRnjRFhEgO7XHArBnqLk6tVueIXMDhk+ZPYB+Dnwyv6x42jVOssA6WSAnqaDjnRDcWPMPbOW3oXpFk44S3dnFjJ0xyNnjHbneuodjfLpGkAOI9199FEP4MdrZiqeruM91xnWeU6ezVzS+AFlKmn85BzVVS0dI4Ujz1PaImotokpS9tTeJCOd8kbuiAE/ZlhbYQgZDhKPJEYxXqgx2owF+0pj+Jd/+fecN+ogDg76Oc/uKPJ8AR4i5uyEfa4KqHN2jWcfutPz4xYMugF+2F/bHHD//gFMVTXnSewAzbmwIkrIRLu4fWRzMHeLsjP6w/JJG45tsYgfS/OMwu4iiZKtbHo893PgJ6XMNM3uzLZiKDm9vo76s598TWsV6CRRek9GQt2zU0UwACDVRNPnwM/+rD5Iz/WvGAnjFpUQi6HcjZXmpmDIM9+nYVBW2DnWnxCRyHa9AH4C1I4IjgH8qN0/2GUtEML0AW2CNpdAyVOM6JA2LBnHgR+3n7o2VDNd4VrVgR+hdZNfrXe260ZtRjROXaEbNUWfrjfA5muMYf7iLxmUQb6HCA5chzxQ3fXrofswEDUrFsONgiPISLMa6dGyE4RE1HOQ1svYyzypLgA+TaAVi+ME6RVtK1pX6NUjizFnWmtIbmQ6xbqcKUFzp65kHSl+YWOESO4aqc5HvdzPjK1aYk1DCHgNq8yff4/Y3/tzdI5fQw+3+Nzxg4EfEXkA/nfA/0hVv/lUWL58qOq/D/z7AP/wH/1j/bf+jX+T1hp1W03ooEQFgd4r22YGwLJMPNyfKSUbn896pbXGu/dfcvfwnsvlylYb1+s2wiTjgS21alcgQwREaT9UeXp64vHjo+d09hvg5yjQd+DHwyv9NeOeodSJgz32M3nubUpWSrNMRjZ6d3dmCSBnshKFU5l4++YNd3d3TGXi3cMb7k5nUk4sJ0v5IQnZS7vCrkC0rofQPVirCZxpOXH35g3zgRj4Ncbwn/5b/3S3ajFvoJVPNKUhZZA5+WTHlUr2TZRQFsUVF6uIYcLPquwocGmd05ZpLsBGpEWzUpyxqR8vrJgAef/mjqV8Tds2Hk6Zr97dsa1XfvXLX/Crv/kF27by9PFbnj5+sHHVxuoVc+bZS1SmZPwvqUAXtuvKE2ILvBgfjKrSc0aWBXonOWlhLjNZCm8e3lsb7t9yfXqi1pXHx99zXZ9cwa1cL5XWG2VaUO1M82JGaAGhsj19oF4fb8bjNcbx3c//kWq1TWoQnrtC0dVIxVrGSrHT6GkbglNKRrRAmdHpZMIzVZKTk+WUmAbwk+kygYeS5jyjkoyDZzo5N4indzlPSDpWNUqe3Cs7v0KS7tn0SuoW9WAbwcEL5Pm3x+pwlqYo5A5FYNLEjDCTOKXMXbZwTCMAt5S1ay6UGZpUUtmQ3EZ6l/UTzsEbnoxdwWgBrCFeFvVGuf2jx/Bf+tf+qy+odHa/zx277TnU3uO+MWy73o37Q5x7J8KQNbEDnzmefTfGFANr22obcKeQTg/I1Hn4+cTy7it6a1w/fOD68aOB/9eVfl2hd1o1ALSrGsdIXYd3sgXXlS/53fC031cHeLpaZFp4NK/bxtYqiqV6NYX5dOLLn/yU+zdvuX/zlj//i7/ki69+YsDjckKKk5yH4ucg7K64v944/r1/9d9UPMB6GOCYET5AAIbI9Rz46ApPteOltORupc/TRM8CcyPfdaRVU3bUUlNIE5InWm9M04lpPrkjxUEBcLBnj+ILADfPi3Fu5Uw5v6HcPSC5kE/35NO9Kc9pdl6PRJkWyjRbpaT7O3fsuFPGlfjdUgkt5+CBjU1+5L1HQPTwrx8HB9zgFE/xvtnTfWxfYwz/4md/rpfrSqkG9OSSdpkE5JKZJ0vVzu7sMcDrwHeXdjCj1ca6WjRzngrTYn328599xT/5N/51Pj49cb1ceXy6eDrCDrYmr4YY14zKN113h1VUyFFVPn585NGJYCM6WVW5XK5WrUddYfcI23lZmL2owtPj06jok/3ZLPrAqj2q6yd1s6IKIzBJd0PYiieYo8zWevNIM9Bm+kP0WU7ZeE5aG3rfLz/85682jm+/+Fo5vTPAZ7ii94IcfTgXTPbNSeliETZJmu9JjVwt4oda6Wsl+JQCJOutmaddFW2NXoMTxo1xG0orZANhPQyDIoCf1qpzGCpb39j6hqKUZBE/d3cLDw8z92eLyHjzMPP45sSU4eE8c16ycyhmUjIHTRMjiM2l2Bq9vzdddT6hebYKnZLcVArQw/rFeFBskBsJ0eBsbK6fJc+tj/RMB37k9dbiP/kn/1TLiPgZCRMDUPmDjxvHid78fVRBdT9p//zGzjsowYYgjdNHARpCU/G7ubyLdRX7QWwGum/oB5JZpevdWB+jnTwDOw52T9Ndxu6g6sFQfQH4EF/MR7m1P/cfP47/5X/5X9K6PrHRuTxalKY58t2hn8WqAiZbEeLz10T8/pz7PrrPh95cPjkAVt0WzV4ufgfObd2v68a62nqNsuwRRZaSce1stVnmBUKeF0slFqF2+zGdf2/DnmpnbWgODvSeHRQWA3G6PUunGjykjdqv9L76GBnIqopxV7l5utU+Uh2DnUR7p24bvTVKEk7F0qVayqwfv6U5AftrjeHpH/wTvZvHSKAOZcdMUlVP0esWcSV7/G6clbIgDn7p4AQCaYm0eNGXpNBX6BcyV+a0kjJMeiXpxSKg+4a6zrOuV9b1OmRXmRfrv+vv2b75NdSVuV9Y1GVxXenN4OsH2XiYFSblaW5cpmoZObNQJvHAcktP3Dr86tL53bWafauF5il6XYO1xNLxXGx65NBRqwtbJyJ+HKiEITcDSnOV53uPHwT8iMiETYD/lar+7/3tvxaRP3Pk78+AX37fdU7LiX/9v/SvWtWjug7CMbsJ1LpxvV5ovZGTMHteZ60b19VSvR7ePHK6f8PqvDbrugUx3PC0FE/jCUUigCUL7zPg5xLAT6R6uVFhSm4IOx3NC4AI2AmxcCEsdm2L6rGf0+k0AJ55mZlnC4u8u7vjdD45cfNiZHm58ObhgfP5TMmZh7s7TvMRHHL0PYch7B0GXhVA0W7h40+XSq1W2q/1Pe/Yv/BHj+HxYjE1zVj2CJ4kDgIFShkmi+wbpCt94NwE3ZQD406xqb60xDzZe2tTLlUd2Gpc1zqEZ7Sm6e7wmu7OPJwXVBtv7ma+en/Ptl5ZJkHbyvV6oW9XPn7TrOpXXdG6efWCPvgYckqIZlQtFxZVSFYqXCZHnnI2cuDencw6kyY4z3fkbpVe7k53rJcL1+sT6bcKHy018XK5sNWNrso8PzpSbcDDks2bt13Xwa3gc/hV1qJpjd1HxqNquvMTqCmzTQ0s1dRQqldNsD6g2HNTZudYmZC8kFxJL/kI/BQUA3t0OoFz+aTpBA7GJg8tTnlP7wriR2ttsLvFOnZhmJTkCvEAYAZqrkNJN+Tcqo3l7t5QFYpzVS0ps+RihnQPDhUrUVtUqCpWljJlpPcB9CT2EuhHj7hFd3UPCrYc7wPw86pr8XjRzyBBn/+O7s0+OvS1KVUbYFxWYfB0hR46UTIAzfjl9qfrrXvpVyyFYLYqeXf3b0YFn+vlicvlyQCV9UrfDODpW0WjvO71Sl1t3WlrptVgm1ZysCkit1Rh62YwWnrXZspU71zWK2vdaL3z5FFBy+nElz/5GQ9v3nI63/HVT3/G/dt3lvNNttBskZ1DoDeritZ+jLUoA4TY0wh23ocAt/azj4o84/l7GAPBGdEtktGAn4RMnXRSpDekb0hfASNbtZLcjVKsAl7v3UnY3WAJ8mVXsCUVRBJpMgVXcqbcvyHfvTHw7HRPOkWql5Vvt725kJKVgS7TRJ6CJ0SeGUk3/+xvhqGjMXF3/eHmlGi3d9Ju/PlbsSW90hhqh3Wt9GyyIbeDd16VeZ7g7kTRAqUwuVE1nFHCcOoAXg7dSjOfODGfZnJOfP3VF+YMq5Vt27iuF4tYDsVeoOSJqRiwNJXC5CmvZuiZnpNdV+m985vf/Jbf/ua3qHbmaWaebfy/+eYD3354NJLTZLI158zDwwN3nhr4+9/9jm+/+RZEmKZCKVba/XpduW4brTYeP164XNbhHMuul3VPn085nGPZ9rxtc6NIqZs53EopnBdzgrVqhT2i+h7/71dci5JhfgCNaF+bU92RmCipiwg5KckzEEpS5gJJlNwbpW2WZlgbutYBuKlf0yJ8vRpQq7RqvFO9W7qOC88Dcag66Bvr3xZ9a5uXHe9c+8ra8gB+igM/d+eJ08nSC+7PE2/uZ5J07k6F05xpzUngnQS2y2RcPGXidHdiuTt7yuiC5tkrLkY1LjnszeKRvj6fIypcA8DoWFR6gB7OYeTg2muNoeniZTf0b8B6ffHl8Q998RT99MPn933+4tmpIjdn3aBCzx0KcaF4/xittF/CwRt3WiZP+wL2qLP4rn9Rhj6EA8ZuXt70k59wbKu/F+shCilEH98+5yvJVFVqvdh6Xy90Xxcxr4xPzSJ0rdBBGRyusXVEBIvqDj2oYrLzenX+WKvCpijzNLEsi8tiGWPw9PRkVdJ6Z5oWI7UW3wtzoStc1srTtaFiadWnuwckgB/vu9aDdyqqrRn4VLs5gFWhtWwROgjqVboM2K1UbbTeuG5PbO1q+o9HaHU1egIrdKSDx0f1MNba6ZsR9i+l8P7ugdM0UxGepFBJUZL+ldYinMuuD+/wog1Q70LShnYr9tLEorWGQo+p8Skz5l+kzVGFNHlUVlboG7SVrBtzqmbDyYb0q0U39TqAn7o9cXn8gALTfGLSN3bJ9QPrh98idWPJylysvU1XNscl7qi8mxSZlGXqXKaGpM7plJkXIWdYzsJ8SlwrbN8oTzTTxXqmRUSrPw9e513EwZ8SEdDqUWAB/OgAfiXW63CADeD8ExD2peOHVPUS4H8B/Keq+j87fPR/BP4HwL/nv/8P33etlITT6WQKZrVNfsgYlNbMI9Z7N8MsWzh2qaGYdjrC29pZN8tTXDcDZKxsXgA/QilpVAQLYR1pHarKMs/MoeAGx48eEUdCqtnLAw9QhGb6RW0gDsBPSsmiNpZ5AD/TVEjOK7G4926aZ/JUKLlwOp9ZPFc2IoFS2qOITAnIB+DHbh4RRyq2uZZskyN4AztDMP8D4P/6x47hsWvA5uxwwh4AHtQ2/n2hH8GfEfRrBf4OmQwqds2SjDw2DcVL7DwUehqes2hH02RA1xgyoffEaSlIP7HlxNuHB754/5brZaatT9Trk5E+XxLbdU9Z0zB6WkPEBIi6pzHmAt3C60fo9+DCYDybNUOQUsjTRNHGdDqxdFPWmiqajLRS3SPberOy9NvqAlufKxCvshZRfw4x8QK7MhYm085io+O1xCYfijCJiMYROQjscO1KfB4eouPPIS3LNMXdqD0oNzGhlN3QPeokMf9GJIpwILi1a0i4mfGLD6XAw+41Qun9d2++Se8cYHpQlEZfPNfFgODC2Ek7QwH7cdbiza2/74TDXLpN3NJj7xzCRQ8r+LlyeisGx9I/mCYOjtmLnLJzrEErViVGu/mCCdA1ZXoptslJMmDVx0ObeYuyiBEeSuRM23imETrdHfQxfqC8XplrpfVO3ipba0zLwvnuntP5zHw6GedWtrz6pB5HI/uc7uog0G1I++usxdHpe4+H7NAxx8ZGOXrWcv0Te7lPD5lWi3DRhLU3zvGUTBujTvAIREqlgEXclcmJFaM9AfxMvmaLgTki5DLZ+dnSyHKxlM3klfKCpB33IotHxIYB8vJ8VW4nIwcjSZ/9/sQ8ufnjsEQ/uaTP51caQ5cd7GDP0ejUw080IrlhH2TWz58jSL6Tp42HjnFaFmop7mRKBjB3jwJGLHXPgZ/iqTpE67w95tk24GdzzjZVdaBoGo6tiP4JQD3lxP39Pefz2aJunDxbgHIEfpZ1VN5a5oXrdXM/yR4V1GvztBQDjXJJ3p7NPPBNqVujNaXkzLIsTDlbmlsuO/Bjx6uMo9FIxBPt+7iGQQJOoo5XeIxF6YpLsu+JZpMjGSTb2juKz56MP82Anx0Maz2TWhjvYtwPwAHZhc4ApYyYtpt8askjFC1ya8rqVbgKJXtVwEOKTFQzBNyIjehak33DoWHKAoz5LGMjHqmkLi/NWSOfrOsbQyfkyqE/XncturjQZ6LjpjHxcEep4PJidPkLCVyh2372pnzHjV8+win18oPse+pLqaGWinww+rwdQ086XHkAcRiQeGxugoPD+3nbj0mcYhVvD60PIOlwvM44urxQlVHVNwATXG9DjSctp0RNxXl7Pr1UTNuQxq1Xmpp+YOlRUcHNq2Hi6yvkeWv0ZkEGOQmtYk7J3IdO3Hv0/TFFLt3s7YcO3n/ERuRmfP071j6bIwGbmD1kDn973G6Vk1VHYQyr1tn2KGlwvdSSyro2A5RMoSKqax3sxVcZQ9vHMOA3bOv9H7PHRQ8yNdSdXVCMzCc5aqmQpWNxhzYPVBuijUk6S4acFV0bvV6N34fu53ZP1zLH95yUkyMhmqE5yLTMiTsnptaGRfxk4w1aZPX0duX+bDrO6ZRYTlZWvSydPCk5KVO2+3YMzLm1GWwu2Nrs+2PrMZrPBGcEBgwLRPBo6TCpxCq+vlLEz38D+O8D/y8R+U/8vf8JNvj/GxH5HwL/BfDf/b4LTaXws6+/slB8r9IVD2CIoFoExnjI3RBrjoxe142ny9Wqt3RDNRXPUU6WO5w8v9n6LXYbbnafbdvYrtuOBoeiRvBZcDNBbwym8AT77hIvI81LBq+PhQymyI8WcQ4Jfz8f3vdIoQSDHdwqR0Wbd9R+b48QufMW1h2C0tFBMU/g/+M//r8DfAX8O3/sGJqYuY06iupQ9s5xE1MrqRyTe7/EgRAwFGSPnvAxyM7er8DWha2bUKots9XIwR9Ciq3hVaUYirAicLqHdwu9d75+u/CP/vInrOvKL//qr/jlX/8V1+uVX//yr/nNr/6GWhuX65Xr5WLXXNcxRnd3SjoL0hNNzGtOjE8I9tpGeHivFjmiqjBb1NbpvPDV/cz7trKuK9988zsulyebx7UbP8n1gvzuN3z8+IFSCqfT3VDcgQdeaS0qnVYPlVkIziUX1tKdE6u7Yum/e6dXpVVL0+tSrIQlkHIIatkZ7w5EsHvp5jy4PUiR7hD3jTkURpRHQriSKcrgUxAHI9oQpE7pJyYAk6+jlDLB65gInqDuJPOJ5HLlaoxv9LrR+0ZtnQ/XlaetenTh6l5am7fJFcOse7RCbM3xLHiQXgC4v/rn/ym82lr8/Oh+zqTej0MOfPTfjSJ8AByQZyLUvtClW5a54FUJLDKxkBll0XUHC4sUSjLegTwpmYRqZysz2+xy3zd+7cq2rdRtc5Edm5/LWVdyrZKbgxYDQITIJbe9pjoIpFwd+Mm5sJzvmKaFXCZOdw+UsozsjoEZhkKShC6K6iCxfLW1GP2qoZgqe2SBa6shF21+h6K/g5uR261gEXpuXKeqSKkIlm5C6e79Sh665dGwavnwWRJz8jTW4FMTgTQZP5IkCK4uEmmaSZOlaU53D5TznQFJywmZ7XxJxb5DlMJ15XhE+dxsuERKQ8w/4bDPRocdjZ+jIrX/c9gj9msfv7w+feTVxjD2Acyrq0Mv8D3ygFaLpAG8WBWdCFeXAfannDnfnVGFaZlG2WRJmZJnL5CwpwqELgQwTbNVAj2Ca27oZxeE2Utyg/L1V+95enoaDq1wcNTWbtMr/XmKg069NT5+fOTy+ATgz5MdwOjD82yONXeOBRltt5Lw1mYdjsvWuwFGtTkIZB5sITQIodXGdbVoIgD+g9fcF2Ej7/NLlIRFPEZ0YUwxc7pZ+61cuPVzDt4q1Kq/WCiw73NRfKTjdYjQ3qwCor/uTp6dsoxosFa9ClTvBpg50e+6XkmrF/zYhF6tjXenwt2SPdXrgfP5hKqVc0+etTnNhdN5cR+Wp29iZP5djXBU+kbfLqhOpLZCnxDJtqY9AnDs795PYbxFSrbx2+FRInuUih2WPm7RHK8nT2+NKx/b2MRusIFboGCoc7p/O6JEfDrYuD/bYsNx9bnGfCK3QmdW0xb2yJ5n57/wTMc3Bsn3eCtspmO6mN/wk3buMjF0mv2zZ7/DjNLDuboDSWk/9dXWYk6JN/d3bNtKprPVxLauPD0+UT2Ct9ZtcHUO/piUyF7F1RzpHp2ak9tbLmc8ir1LR5Kl8JcCi1debs1kWNKO9JW+WjbK1jJaPR0sz+4EyUg5cz7dQcrMyx3FI9o9oMP0a68cC1ExzKN8PNVLFXKD1oXelcvaaFsFOdi4DWRzLtSu9L4NCyucBAps7cq6buRswQelFKNZUauPqpOQ7mbK+UTvgmwCXSy74ZXGUATmYrp787kec8d0HosXDNs71prQkB5gjZJDn5NMw1Iaszwx6RPSn5D2iGwfkO0j7+UtX587pSi///gtv/ntX9G2leU0czqfrE1p5TRVEOHNnfL2ncnlbz5kvvlQkAZfPSx8db8Ayu+fnvjm8YJMlfenb3mbfsk83fPVz9/xxV88uK2WWZZER/lQrzy1jW+ujd8+XvgbvSKaWF1/ImwZQNQArNCTte2ZOv0AFAXmsOtOPsddjxAxTrfQOf76O8blh1T1+g/5vBXx3/q+7x+PnDNfvH/vaKQLf9np3ZCDKPJqX0eiKcBD8/rwboUTxIjowpOowZhwA/yYYuPKSOuDePHoeWiqjGj+wwfHEKp8AGxCEdjBHxeFKTwo7EQYHE60k/Bt5hB10C31qO3RUEOA+2T5ZDgOymVyo9cJ0BGU/9q//V8H+I9V9d9+YVj+oDHczVrZiaZ0/PK+iH5zIi2OZuax+b5p+UaiKNkXfhFhdmO/qlDVqoaN6j0wdiJVy2ddq4OHHS+zKczTxFRc2H/5ht5+zrZt/OKLN/zi/QNPT0/8F1MiNQv9/PVvNj6uTnLmkSm5FOYyofNsEjzGy58uniwWsgYg6cqucRNYBNpdeSBluF4vyDwzffzAtm18+OYb6uVK24znJKXEaTkx5WwVkuz4oIfcvT9mHFGlt83GIPh4CPYAS6VKqQ/eFpwfQpw/xDacZGXZfQEE1hPJWWaEOtgzCJ9vo35iXVm6EL52+2HGNFeMXCWT8E6GcXcw7PQwz3xhirk3iZLJElVnsJSkWitJoG7V8rPVKjK0asDP0/XK42qvIzf6qPN5rNOAQmM+hFFuighGpJmEn/3jfx1eaS2+1rEDQHr46/jpQQns9p4AvVr5dREoFHdumTI6pdjYzMMiCpNkpiCNVBvHrh3JTjQoGNCabM7ldWOr9bYNIjvwI0KR5OCPMKVMcfDfDMzwYoVnT1k3N2YNrbKRi5BtsWikPHKpQ7gD6p6pPe3y9dYiu5wP9fxGxIcxMJq0Gwmyl2Iz8AeMeFXMmJDSIHs+Su5Irs7XExuveSwtwseAH5zcVr1sNZiCq3n2vSZ7Za9kxOzFU72WM9NyNjB3nq2CGqagxFpPhzW/A42+ewTAd+yU0R2e7oIc9pdbW0vk+MZuTH2aRmFyebl74DXH0K4cKXp7hEx61i7xSN7sfDpmmISRae2NNG9zFmXnnbPo0GU6HZ7DXnUHWsCAn3kx4Efdo23vFyOETgfgx0GFqIq6raulV+LpYGWPJuBwL/WCGNfLle1q50tElx2OSO8SSX7f5OmenW3daK3Sm1LXOiKA1q3SqoFFdk5zzrFKd2MseA39eMW1KIO7ZjyvBGBjb4Wb5CgvDfhxytLgHEE9yM7mthElR5lsI2A2TrgO6uXfMc81uKHnqTt122z/6Z26btSrUyVkQZONSUlKFfMKn04L9/cLd3ez8UouC9qblcUW25Omkj2tTwfwY8ap0Lpv0dqM6BTTF6RVyBZxGesaMcM3YDAjCQ5J1n3/tq6KEuiR6h/af7JKQq+6FkO+hH4g8gzb4NnrIxy04x2Eg2lEXwbuc9BjbzGf59fZ9fM4zLkdVBR689kOFt8+z3MxFvJuyACNUvTKMWVYR39/ev2Ilt1v4u29ubnsQxUN6WOnugG1ecW1mFLi/rywZqHXzbasammR6/XKuq58fHr0VMdGx8BT41ObSNl4wU7Ol1qmYgVykmUMtECbk9mFIua7miePIHL7sfv67PVqzsKe6M0N7LwhaUFSZi5n5vlEyoU8nyhlsX70vlNAUiN5sIJqQ7s5klrfixOlbE7s1juyGRAMQkpe3MfHTVVG8YqmlvUy52lUrq69stYLkxSWPFOWBLVDde7VArIU0nkhNcyAqTCdzq+2FkWwClqYQzgyUTS4jtJOXiwBKGJyR3Q1aSxKcadul0ITkylZVopeEb2S+gVpT6T6xDvZ+MnSmSal9Sd+/e2vqNcLJ33DabH9qKbKnM3O+uIEX9/beJ4eMuW+IB1++sWZn72/R1DOv2/M+QnJlTfzR96k33IulX/l68Y//Id3TPPEacmclszWG7/4AL9+7PzmsfN2qhS90DUjcmLnVsD4Gj2QQGiHvnFd4GDHJCcbTxIp8xZBbST9Xkgqp0FP8F3HH1TV648+hPHQ4sqcCdBQKvTmZAu1T+OrdobxdARiGKlAEbY6gJ+RX+z/KGa8im1CSZrxVqjenBLoLC5Ad2l7GIADAVjwW4SsHDreSHU5glrxnAej1W/c3dV89EqE8A1fL6q7d/4FLG4AMuF1cULG1z5uAlMP8uE2IHR/7jGuevz05g1iV47uiUxdwTlE/K7ib8QmrNE1SdCkqApNrOwqAlMSphzRARlNFlF1dz5b+eZS+OL9ey4fP3L18osgtNbYmkWmJS8j3mo1wEGVyCvS2y5gjBMjYWMI9FAi7HtWBSxPM4owOblYLJHoh9abRT38CMceYbFv4tHnJoA6XfowHqwKWfNUqMPaiPkfa+RwPb9U9NRQlmXshuEBPXbh/k3dZ9JuIqqN8/7J8aHGVNqX7vjDvqcaRHvVycWhtmqVDjSIQ20jjoo3N2lh0QZ/SAsL9qolh/Qy4rlD8fzbDNJrH886zebv/saRLPK4sseGzDPZ41/twTUmgSmMQOcB0g2ZJrBXy7KIqxRSLkgjUefZymMdRQsiZcjek6GPdjXgXlzo5u6G+OE8q0QXgLunKihIVLBT3COtB4GOrenjnH/lwwAWn+EDUT+sIT388ZnfQ96Kp124dWJ96pFCLsuk71wciHFXmbdADUxSU9V8M0OTnaMO/AzQLMIHojKXeT9u/BxHO8JxWFs3vp/eyInjnnx4xMPqH+8c19OtMRcGFWO8nhs+4/NXO2RURjpG/u5K2YFzw/85gil7m3wdpCNAJrfnW17GATzbDyVSw5Jf89gv6aCP7HqCyUIzFuOzaJNIjKWM7rdfDs7vNqDvW/ZHyM149uIh2CZejvI0rhn3cmdD4sbpN/rmqCP9SMetFhrTyOUB+9y8AQL8pwtE9S+N77reErLH1ogyGJoFrIqP3vCsWaqX67+9I705qW0nlQxdSC2TW4HeydoobsAm5/0QsUpHweESa+wTh8gzYTI0T7U0CnqyirvdUvu0VKt0gwIGpN+sVVVEDskphz14/M3x58c4bvfifd58bicO+bu/46LfXsvta/t92CW/d4M/CnH7ewBMn1z3028fQaTxffY5On6H3RCAUkQoHS4c9tf+kPvLZ8rY3mp//iGPfE08T1N9tUPD0aKWydCNr2yapkHPYZV8rZpv1I0TksmkplTpXNeNlBJbbeStImJwZBuLFoI4nS6Iegptc11QLSJ8a80jgNSj242fxgp+CNkDErQr0rpzc3pNqVgCw6jXm9dd1bMU9iqLvXdq2ywCx6kvJAHdSeS9myxi5uiETAT0HPaGrfnsgGzE1Dt/IxatqGIg8muvxgRBJrE7SOUw7UJHUM9UQSlJmYpxxybBbTgD15srFaklytVSyjkV5GTg9f2SuJ+FMsHdItwviYnEeRaW0s0Rq924IpNyLo0lb4gID3cZvrhDtPH2zcLd3QQob/QEpULKPLw9cX8/cbrP3C/C3dQppTElJWMUA2194vL0kfXSaG3Dajsms2PDIayuA2nYt45puK4aulPo1DmFjpEoySLYIs1xAD9J/g4CP8pYSDuLPAOMORpUu4Eht9LIy0tbKLpSm4c6e7lT6wgZXAxWRGCXrjtPS6anNmb5CK1SJfsibaO6xG70IZBKcv4CDyWMzXlsZoctTZXaQwgwOBfU297cu6zucQ2ENBscb7mbsWr8woIrhq7FRZWx3t2oEZCkPjFef1MND05sOjE6Y9O6OXf/HSDX83P2/SegQFyAexoCac/xTZH+xq4/oCwCvXiqjopVDcPTQvK+gpREnzLzT7/mq4c7aq38xU+/5pt//I9Z1yt/9Ytf8su/+RXX9covf/Vrfv3b39GasfU/fvywXzMqseRDbnxy4sIwKEVGqolWm5ul+6bSlbycOZcJbY3z/T1ajWx6u1wsvBN4uly4PF3+mOH6zKGgFUjDC99D0cMU9/Ua0U0mvFSNeNO8jY3ebJP1qcqeQ64eWWNHiv6gIsbq5JWxXNnHOEPELxS8SQMY5bieIA3D3N88KEDxl3RFqpEeNgXcsyABsCbhyoa2TC2ZuSiCc0b0qPZgedLdN+Hm3iZbu84tJkIrxk0mYOHx3pAAhJMGI/+PMIw/8DgsmbC+wLeaLt7Pop6aefsdG0sDYyxqyj/ogx2KTdWNAqHmRDM+Waa8eyE0J7QEl5ZQPC1Ek0Dzle/rSlUgWxSOGZcGwtmySqN1lt5pc+1KI8Dh4LKIjTOOUK5M5zOZa/3g5P6KV86I6JnRa0NdevVDgJLGXL5xNnD7nq0BBz3HuvP3I+RfXHKKQpqQMpPEQspzB+3NiRATaHd1BHudGiSvMDTWrUCeIM/2WgoW9eOVD8uEZHudShnRrpJivG6j3yJkOaU0DNt4XlOInzlAUEY5cH/YXbc5gB++/+/DPZQKB699/h6Aqdc6RGCaLNVpKla63jzO2VOsZIRhp7xXxJFDBNTQf9wgMaq0MKz8udJux4nsRl7OmaTG32Slt+36SRI7TYxFyyJqpWd9Wl2ulj6h3c2BMAqD3VtgjyDYI35a6zw9bTz6/hRgV+/K9ck88lMpvH//loeHO1BlvVQnNbUInlrbGGLR4K6INP7G5bqyXleLRqrVimwoBjL/GACQqnnF4SAA9zSuUM5t/YVypiCJ1NQre0LG+j0R6cvmeCLlUZlIk0eF0ce8FTLHAgXJOYOSK/3aje9ISrF1UowsvGsnbSeK8x4tsxGfplKoTbhcjDy6dZA8GXiUrZqfiKUGmZg5WKdd0AZKRfpGu2ag2V4NZoCmDLkhOpnRMnQ5H1D8er1hF7PoQg3Eb4/3f+XjoLe7XN2nS0TYuB4b6+Mw5DdyBQboE2Dq8Xu35z8XLHqzdj533F7rVv5/l6y60bllL7ICMvYuRXbnTqzt59e9AcZvqRyGLnZQ5ndnUeyzryxQsbm4Xa8ocJoXmBfmUsiS2OrG4+MjIFxXi0iLNpnTttKasq4b33zz5HLF3lfnzQkbVGBU75ynhdOyDKdTLuYoWVcvCuM6n3huW5k6pYDkRk0rLa22tloi1dBn816kZID76qm6ti9vLbJgdNidW9348O3v+fbjB1JK3N3fOUduJ/eNJRmlRcaiFJMmJrKl2lO4kNkoTEyUtFDyQm+Jriu1K7UXVs1cyFSBOiXjt3nFsRSg6CGbAz2A4t4/plpStLPIRtbOwwJf3xeWApOTLGdReir05JHEH0/kdw+wZtrpHVW+gOvMF1/e89OfJEoW7taZ8/rAerVCEnlaXdZuiDZSEh7efOTN/GtKKfy9f+nM8q/8y5bx0CtJN99335pMzoX57ReUh3fMy4k/+2nmJ/dPSErmPL5U6nXjb37xN/znv/gN327Cx28WCjNdhEkak+upOXmqplrfmPNRRuXc4URzsGfyyuDJqWTCuZNd3zKd2jJ+vu/4kwI/SnD1HAy5QyOVIChkIF8uog6TUYcQ6gfuHzhE/eChqGGcH2B1NaYpKyntAEwINnBd2a9veYnV79lobmsa70G2AXEuH8CtCjPw2th0Oq1ZeVPAnKWJEdK8eflX3AjJSUhL8hDrUAY5KMLO56N7+eTunlprcxryOuV+481/nWPPP9wNolsAKKTpsMvZjXb7Y/c8cfheODTDAPJCvDjThAsKPcyZMVBmMHpLzLvl0mRc9DiHMvfLO3j/FlXl+pOv2a7Gu/P//fpf8Iu//iWPj08s8z+3z9eV3/z291yfnmyRJiNjHHwHHr6t2cu8I4PvpKOsrVK7KXeFidw9HWWeKbIgKFmNM2ZbVx6//Zb1cqFuG48fH9k89P5VD8XmnCuzIuE58AiJfqw60mh1RSOstFYvGd0PXuFRl8i7W/fXAx5oGPgTvggr9xrg0bBiQ3nxCXQL/YhzEuxqWhi+cvixCDpvn1oUgxBhux3twoZ5MnvLXKbkhNB7JEKQO8c6NrDLAJ+6WQpCSsZXEeWTs6YBOgyvPcpeu/HvxjGwG4EevACi/tqOY38m+iilffyXbqZQlP4e184+yp5vrwkDeJLtA6Y82QovYukUe563TwMnB1ZwrpEwyLxV6rnxXibhKGNkL39DlM22VptBvIfAhzIWoiQi9fTwn/eB8IO8KX/4IcNiGuH/ccRCCGPMBasOy99Pk0iqVZOcTqyvKSN5AhKpKNq6hZd3V7rU4R2N9dIQMQA9QD4VQYLjJzg9cGQvFyiTKSi5DCA8+HsGIBxrK+2Zz0FsHA8Ru4mRTx4Gc3w6rK9jzx1ev+x5Vt29qHYJ/cyZf/sjnEA5F6bZgJ+SE/McClrIrP25A+g+7oO3BpgQJe6fG3jjOg4KDYNOhJyyAXHi93EnWK2VulVELBU6ex9va+Xx8YKqMpVIRwLp0KJ4hO5rpXu6b63dKtlcrIR4RDq12vjw7QcujxeWeeJ8OnF3PqNe7atuqwM/jergfEmRAubVX9Qqm23rxtXTmqpX+9uN0B9hLZoSuv8ZCknC1kvMUgmdzJyB0t2ZqULqQnNA0ynUfawTItmik4WxJzGUdTVgKJwUh8w5r11j9/S1pr3vJNFdSaWTm7Vvyo2cO5Ksisx1bdC7cXk4R09UJIo8lN3RYk43VaApkX4mW0akmzzJxUM7s+/n3k7nGhPYix90HaDPCPF68ee1B3IHB48ydd8j9r9vwR8Zr47n7cdRs7W/n4NEt/fSW1F2c57ctOPTZ/j0+se2Hd87WEuxPQIRCa+3bXzxkY4pZ8fdnyF6ddxaXL2WFy72OoeqUtfNqndF4RtPBW+tkVPmcr0OED0e8LqubPWJ1iqXa+PDR0sHu65XHp8eD8EHoWskj46zVNpIh51n44SJgkDBSxWgpogwNWGefc2WDSnVfPt9M5J23yON5w7rM/aIHnWwZ6ud1cHs1iutV7Zt5enpAx8//M6fvTMla0OOvSzsQQy8mklkMkqnOAiUJZNlIomn/1LoWqmaWEkUhCqJlt1x/crAj0FnR3Jq3YnxD7daVLmjUrTz9ZL5+28L94swFzjPRpSskunZuMjkfkFOd7AlVn3gcnmDXhLv3p/4+p2lQJVrIV/uWK+ZpkboDZ2SGiV1JAnnuwt30zdM08RPfvYTfvrTn5KS8PjhGx4/fAPAw8Md9/f3zl94RqYzeZr44n3i3bKiwIf6RF2vtMuV3//mF/yLf/FLHnvm0n9C4j1Wn61RPEIyi5Hxi5j9Z2qtCaMgbk7ZdehkFexi/ttvxzdSpNELk1OKfN/xpwV+lBH5EmSt4zO33sKnYrLlIITkVlUzncVKfXbtTox4CCHGiI33MLNbySzCXrVFd+GVnESYMNwCKOrhMWRwFCWEojdbBHvMStwrDYUMFXN+aBBZW74zqiNaKDh8AnW3fcMEcChfEoaaYxs3SlAoGBi4Ja9sbGo059llVfaxs9bsRlz8dbtV3mxru3Gvt1fZzzh+8/jeLjzEGyLDCAoL47b947sufCYvyY4q93eWAjZNha++/MLIntfVFHmvWNJrNULG2NSbpw3CrkUIkJx0sRmyLzjBmXjIdolooYO56YqR7WPi3FU/1jI1RUzVJr1xKPkYu1du/NbdE00YyzESQ2nSsanh8xk5jLz9ufeT3hrYYb3roS9jLXOcIxyA2jCCCaPcZpalXo3b2jUOz2AeF3HgYy91HJ53JIjz+p76c3wuDjPxuPQ+6d/j69dWbn/YcTQWj8dxlen4d5e/LxrR8Gw09t/BQWM8WwYi5S5WbU9NOWnPTG5VGfceCF5cNWThM2ET8nRX2mAHvg8PfExhC4A/5tiz4dTD8Bxl1Rhtn2f9ueB7heMovv2hotEEUGHnDG1+7Ie30jb20aNh4CMph9++Rwz+nmFhxgqOxMxD9B0eXO77tsrhWsihz9kBHg/P3vnx5HD18eTx0Ld7Qhhsh34YzzMWf3wkw3AhgJB9Vu0zLiaV6quPoqqDzTTWbUOkmSJNkORb2peIULfK5XIdnC/oPKrd3ehEbhxIN8PehtLBHJ6tT91lXEPQ6pxZadcBeutjnTTnN4t7jN49KJJBRjzmoPr+LIomBcnM80StMzfAT2m0ekLAy7QXUhbnyolKUgbGB+l+gIUo9rxuhNr+F8UAIoXsdr2++nGYX4ylZJNtX5r6bADsnJv5Ls8M9oOBGkGLQU0wsi6T3oDWOx+EA3hdSUndQWrh/jlnk7UjkcIihJAGJAPoLubE2Wr3SD5b80bGbVFae/zmeJzxrGITHG0W1am9QtssakkrEqT3gvNWWDuOhT+ih/ZLy+HVD7BWfvCxAz7x91FPOAKp8fdLr7/rkBdOfCnt6yU9ZW+DfHLOp9e09t9OthfufXh12PUOG9hBjErs9M++OxQFGfvLuKYeznlh3b3UH3/0oe6cSWZ/qSkX/kwmH0rOTKXAYc2hSm+Nmi0CsrdGbZWSbf9prVG72XDBZXechyFjau2s64ZIGvqhS1JiTMoE0wopZba2cN0mUirk+UxZNkQyeZ7J00ykMe/AT3Myd+MoNe5SpWs18Dsi4wIwHcoKvoItWluCp28U+rEnCt7bALUGn6YXCUASraulsKGDIuO1xapTnI25rNGDY87YHZM2UttIWpGWRtTUlIVzzkxFGNWPRJBukVVsme3dwvXLt+g68ebhDfcPZ1LOvL2+Yb2+p24rtVdq30A7SSo5bSQRlvs7TncnylQ4nWampVia9jqRZyOSTtOMTLOlu6dilNOaeLo20scrHfh42fh43fjwVLlU2DRRNVvYgit5O22J/U7OR5w9qgfBglNivByDyJFG7iCfyO5AO/6On+87/sTAT+eyXZGUrQzscP2FUoiBFbiqOfTJ8GyZwLKKEY1tq1yuV7p2Zi8FnOL8Ft5791ziKTojx3pkgx0EmQm4hIMsklAxIrCtdTb3GjaprIpXb8iUbGkqKRQj4BgBkRIktevU2tiqkY2OiB8gOy+RJXIWUinWFt3pVGo1D7d5sPtov00G8XQWGcqC6PMN8FVGcTCN7+HJx068gXHYMxcJColPtrBd5Hp2Y1Qw0/2T4dkc34oZk27+wu8ZhuFty3d+uuORS2FOiT5PTD//OV+//4KtVv7iz/6M3334wPW68su/+Rt+/dvfGQH03/yS3/32t6zbxu9+/zs+fPiAAk2ye8cTeVnIDhTV9UrdTMk2fhyr8nRanHgaG38R26ToRjhcSubu7m5EUrz2IShoo24BOh33VbWUEN+AIiKNKGXvG9Ho8wBHUeMCcLJKSXlIpiTZUrBiUrfupRw7LXW8ZNeYvwE4hdZxo8odgaf4ndIAfyKdIokrub7hJrUqDYgZ8VUFtDu4FzJmNw439+Q2B+9iVhtlhZOpO8FapJmGYeYNtd/9SAP+Jz6+YyO4WYte0vO5BirKiPYBDqG6R00WwmztvVE3S1utvbM1C4+ec6ZmHd6JLMZr0aJ8OjpAcYCILDR9R3Z54HIcgTylMVafzBVhpAOPvHlVd+j7PQ+PsAM/u8UXz/ncgHnVY3+0oViHvj6iVOKhninecviielqIgTqM17jzYlTVkwivNoVSk9JTQ3uiSXCS6cFANC+hkhkRP6n4dTIMRWVXPJYpMS+ZgHpC0rem9F73h45k/4N8lwNlvgRIM5455kY8nxyU/qPRKWPfx/fibi8dRHndvVG1c1lXB1QsKrCUxDwVq6oyT5zPZ3ceXKjtd6gq59OJt2/fME0T8zxxOi3kZGnr1XWD3m3eBtFzSZMToDMAn1HVSxUlOOFkhIkfeYJULPrn6TEMnGrrKVlJ9mmZbX2W7JGM8NLU76rM54m3273dzeVtV6Wuq103iYE/XjpekpK3bITCq5E4AyPsvatV8lJpZM2czidKmcIWNcPM5bH+SPviQRAMASkxT8cH/js+d3mWxMrVp1xsL4BhVqaS3NkTFVgZRMslhbOzM1LcR0VUtUqw3rQe0WIuG5Knw6oK9HBUrmgzg+T3315RNZNuvWysrVAVUjkxL2eLrJINxff7UblQ972wQ9+u5vDKmxmT2pFU3NAwNugsmZ2Xc9fuAlgGJYkZQ7ZO4/0f5whZsL/mAES/dO7x0BdfvwzQyIufPwecjufv7eHFfejzQNBLzZKb5h5T3PrBaR0A6uiWF1GvtJ8QG2lMvmdttE8P4/zaR7OMjqrQknFvtm2j90ZGuD+dWYKwPlsWRm1GSaBq4Pa6rW5vbVwvV1pvXNeVp+uV1hrXzSIXW7fiD5ergzHbxsdHi2Zct4113ehq9Bzdq3EZ151Vt8vlr8n5jpQy92/ecvfmLaVMvHn3ljdv3w2QF19TEUGuCltTNrdZc7FIj1qr2QJON5/UUi4RowIpWbx8e6W1ChSSZkv3y53TUkj5hJRiDgYx/rcyLyySkZJ5XFeetKOpwHSCXF5Vz0kKi+PJEfnbCYApAgKMcmVqj5Trb8jtSpYKZYO5c//Fmb84v+XubNWRy1zM5m0beSvmKPj5n9H/wQnaRkkzJc8Iwvr3f8p6+Qf03ti2K9f1ye2KFe2raTjFq72lxPn+ntP9HQA1KVt25qTTPf10j5JYe2LdMroJf/PxI+1fPNEUnpry1JXHrfFXHzMf0luuZLZqKXYqVoJ+kQ0heSETqxo5SaFIgOdpBKWIK1RJvDKwmCgtTuI/nGyud01J/+5x/HS1tBdTH8tB8OwSUBx02RFnHYZ/HDvxlS3w1huShKl3SLYYJFnWZtdQ8YWMGimeC90bICGE7VBUvVIDhiyqJGoYD7U5wVdmmfqILDoGW4bcDG9OUkGdLGzdvHpFNQ+MAJqtBH3qQFSZwZQ+6WZ4WLizgnSSh6mJYEh2gGeDmNOf50dwi8VeEN2n8czPDHS9ef08RiBsmF1BVxVL/VHzPO8Oe0tt06MXIuyF0eMcXh3aeGhDP5h04zIiiFdpwzcSXHn92c9/xmXbWNeVv/rrX/I3v/41j4+P/PM5k0V5enri44dvLHRdlUpyr2ZmciOs905br75ZdepqpVhLyeS2kBxRjnx/A4ZsTljVF0+vePVDBzA40i8VZzphGIWAKXsj8mePABoeiLGRGSDUPRLP7iG2ikQsNWy4ax1AEhkhrxZd1xmgXUQjHUbxGNU3xjB+qxH9GV+RCdXum20iykYaRxiKpwTavK21sm2Rh71zvEQ4cPM2BiwQ4EXwdyQJD/lRVvXRl/ZYP5Jy9Lc6dqtmz5o7yF8/Aj84/GWb9c3aulWQzTCzv4wfyTYjLRh5oljVreDD6ph8NbCh8ak9J9yucC+XPOS433lwR8iQPdYWr/qhxg3SNUya9Ikm/bKq71N27Ayvfxwlk8jedvvs8zL8YJv6ERFr3gci7sDYHRl7+kpGNaHSLIRahE4zIE7BUsYi5diCyfFIgQCQbqIYXD4HGeMyeQpsLHnF1rS5+8b63gGamG/hFY0niod1EOyZlSQBghyNHx2z+fb9uM4rH11h3UwfeXx8ZKuVkhPLbMDP+XRGJDPPcL1e+fj4kdoqDw8PpJxYlgWA0+lkz+PghjXXZuvw1s5h+PvcUIvmabUOgDMqXg0+OhzImUzlW7eNzZ0REaljxlNx/gAZVb1sbGT/LbssO52nAcAMgImIItKRotVa7CHqMt/3+OR8Bz72vbsxo2bIzfNMzuq8Bhbebqm27SZS6fWPA/jDUcj471iusmt8A/RJmZT34h/DiZmN0yo5d0/KrtAnx2QBvMy7W5VEdIHhcoVwtpi+pGZyOvCTyIhaRb66QfX0qo+PlW27DH0pSTbqpjwxzTOpdnqzCHQ6poQGuk8s3maUgOq8JGUyXSdP0CZIeUTHJwmzIkpyRNfF3Em76j869ceQrHukzy0AJM/F/vde56Vjv8bnrxdr5Tm5/Oeutbf1pfv8wCbeqmV7gQpsRI7IzycA0NEei3k/loL98VyU/mh6jW2CVpXQge/WG+qRigk4zTO9mIwNuWVp+c79Gq9VqXXjulra6NPlwrcfP1Br4+Nl5ZsPV7bW0b7ypBdaNfty9fTSp+uVx8vV7c7K5oBUFAcx/tCCqpGqv//yS9598SXzPPN1rUQ5eeiI7BE/AfzUptQGkoRlmZjmTG8VtJHo7t5uoHXIGtsDukfcbRb14zyaWWCeLOWXnHeSeK8W2ZwQ++IVHaV0cpo8AvD1hlCAybZtkgbwA83pji3O0HTy0lfy9i25PiH5ijx9hFo5vXnHV0vi7XlhmjPLyUD1DBQyopnUvyC1d9CVVpW2mv6QkjkVQLleH7leP5pjsq60djVdv9dROY1inIi9w9SV4sVgZH6gz/cowvWiPFXjy/v9txe+/bjSFC6SuZK5duW3l8xF7lglUZmcc1bIak9vBajcASCZOWcm5y5CPCZI9uVoIBBDv4r90l6rOx6ULHt15e86/rTkzpgBJeIItOKSQ4fBESi1qnFPjP1VjzLIoioiDBhhkB5Fmd/wApvws41FcFAoNqBnsMERVNhRd4/g8JBadUUzDI9P96v9DX3h79qbkRSqjnL2htp5OFeQNh+uZzqepU8YmbXQdUOxcnRTVPE4GCauiz+71iscwsFS1LGx7xvbAXiKyI34R2+3+D3vONTz/fxBYKns3nDVkVL2WV1Bbs2zT2WYfvLX6CPnDxp7oHsRciksp4X7+3tSSrz/4gvWdeXp8sR120CE2juX2lib88qUYtEuNFBPJWqdXhutNkSVraShFPawQWOj7q4geXnq1z5MObzSOwPQPKZ4MHpRXTi2Ae7Y38eULu/JoUxYu9WNy2MJ95gLclyXEU3kivTOGRDh5wfdRA5GpD/HDdAJoMEihAFPEWrGMYlnN1bVBW3QUUfVr10W6c20GarRUNb8nI6RIw/Je5QAx3v/KY/P3/NGnuqxZ16ecMdnvrm+3P451rl3ewAYrSuVfsO5Bvi2b1+Mcr/HW8U1+pgvNuaiET10aGMYYgFIdCtzGtUiukSkmjzHCT7bO8fXP56Jsj+zTbvbOa2fvDiO07EDTI46RrLP1Wdn3txt1y7GN+w2Mn4kRYhsOpQYZfS/jUEzzicRWhXaZtdW3cGfWnHnhZcm9etZlNzB+38D7hye7WiPa1zfZZVinAf+2Vi3fi2J9fz8+q9wqBr5cHX+iGhj/BhZpxHvbgOgcVk2JATDQIODQXUwHGMfUd3ljqpxYNUaxsievqW9o65T6FhnUDfj+1HUdCjFjJebWrI61vKNnA+24nhb5HbeHtoWkUjNo6BqNV4fK8m+sW1G7px9X+9qoE5zAun+bJx+FJ3m2WFy67j+xyfsKzWe+ygjQqN0Z9bRWfmShPFNTYTB5XS7QR6+GXsV+7oDZaRw4HvdmHHWJtMbYav2vSygYsUvJBWmaSGl5iXWrf9ls8qoY88MLkCP7EtezELG597mozTVg6NP5fiJP8NREr3+eA69cuiY8b68+Pp4PI8EjBZ+Xg/7/md4fq8jeGr3jOscf4+zD/f4dB7dNPc4bzW+LfszjHn53Pn96SMc5/kLyvg+jt/dOa936D6vj3N/pMC4463rPjftdycA1BSkzCWxzJM5oIDWhda68aOlTGtWwGNzTsfTdWE5BfBjWRvmNDXgx6KHM92Bn4eHe+7OJ6Z5MiBnymPdmONRaRzSvtSAkYgANLAiUUpmmiYDidNhbIURHC8RyDvSRKM6ozqvpIFn2k0HUyK6XkYRAMlWdCbW+GuOmQa/5UFXV/a9W9H9t8Nc69b45sMja145TZ1f3Ckf72bOdzNv3txZv6TMkovp+r0j1WyIuil1xYoVhFqjyro2rqvvSVXZauydtkep4lyUtu98eLzy4fGKqtFy5GJpsk8rXFbry8dL5+na6AhbztScqAqd5Bk4FsSRU6FHau0hQpoY0dBXwOwrdh1r6Fq67yki3Z0gvgZSVK/9YXrNnzjVywiNbdNpvrl6jE1MgqFsuOYaC9xDrrpapA1JmDGFUbtSpsJcJl9cgDIiD2xQlZILUytj04wjSRqAS5DV4q9LMQ/Kspy8+piOqmTm3U8jfehWqY5nxsvkWXnAp3Xl9x8/gAhTKWRn517midNUBnFThMCn5Iqhdq618XitbLXz4XFj3YxcdpqLhTnC8GbkvIeZ/wgjSWzoMdV2KqF9cRMLWuJt5ZOpqaDSx/hHJKQJ7TDEh7pwUJHlZr8xMXls30tMEs+8Ff7dYxKORggnoElIU2bOwpdffcndmzfUuvH111/y+PiRy/XKX/3ir/n1b3/L9bry17/+Lb/71r0Ij09crlbZ5PHDI9vVkPXt6UJdN1IS6vVi5X6TMJW08zz4uki5MM1B9P26R6uV3/3mV4coCDWgKVsKR5JIl8KFkomVIzcEB+Ul1rB9IZPybDcKT6DvVM0p623sbFxTb6S2Qr+tkhfeT8HSKku+VVgUIxi1Muyx+bqk7BnzCQhCA3UUPWUjvLVF4nGSiUpGetz3sJKDlBLzMFlykn1mqSPO+RR90UOG+EYd4kh/TO/0dx0vK4svffqaqtswxJ0guyNo26hiHn5LkfPVfEAndk4n4g0gorPstaW7GmievZ9tjsiQyblYBYSmCqxIql4VrFmKoVpE56f2/1HBfqYUv2gMvsIRyhGRhqZ+Sxn3HbqY3EZCEs9w6EPie3HKuN7hLeSG40dSNsUiUrfUNEoZa6VYBS+PGsK99iVZeLGIIq3Rrhf3JCbqk90pqiwqwtaE1s1xMp3umZazG5NeiWpv7v7iYMAMY2lHfgknT+yTUSU0PL2DowQYnDbPAOM/9ui98+23H4YSOzYn76utNn7/zYexP+8jEWCBRW20bv1o8jc7CBHE6R02j1z1Z4x9ddsspSEA+YjCMcNo5ISPPa+1ZnITmMpkxkUyQ0Ongrq83Kud9gEmHUm5s5NNWkGA3SHQmlfvap3rZWNdq71eV6sMWRsfPzxyvV4d+HGwXmTM+2i7JLFI4OFs08Ej9uqHYB5y2J0KY1/zE270x1DEkxd9yG48ensPRqfvUP4t+y/h5e5LceXeI35QT5n2dkRcvyotomVJZvDZ5meOhxaTYt8PrxtcV/t6yTZm2hPT6YG3aaG3znK5sjqJ9nq9sm0rEQ3celQui8fPTnMQTx+VdnftzsD6Q7+O5eprws/dAY/X3X2GPjlA06PR9Ide7fuPT9NG929ZFMrz+x4Mvz9ADt0ARDcKruw/z0SbSBqxVyJh5+zadFzk5VYcN5Z9Xxlni8vdH/E4tjPh6fTdZZB6Ck1OTMX2/9aVTY3MXHulbqvJJowgOAuUc+Z8ukfVIm02V/O2qlw3BwRUqd3G57JVTwfr1NZZ3aZsbecwrD3Rusn7ZVmYl5mcM/cPD9w/3GERS5XeDHBvHm3TtVNWCwgQEZY5MS0mg4U7ljmDmL2p4iBsTki2iJHSzVaRBJQa2Z6+H0Kjs9ZKU3NuVrV9IBXjtLGqnAWZTlbx7xWBH8VTiVOF0kja6FhKuTog1bD+kI6TUHd+/e1v+OVv/wW6fcPbpfGfPVSWovz0J1/xD/7+n3N3d+LudMeb+7eUXNDa0dWiibdNWK9WBKZWy7AJPbQ126O2zfckLzhwuRqot7bK1i3t7+LpgKpQu/ebQtXM5rrS7DqM5EK5Xyh3CxWhp0SZbH7O6UTLk2cjREAABzPDAzqGvBeTnUfdLUX1Ls8yyGkAnaqQko4oqL0q3+ePPzm5c222sZXcd8MPduBnVIZ5gUvGlR1JycpmTvHgVuKyeGWd7pujbVx9hDSrszaHMhWdmlPkspuikeKeHrYLMDmAoWpkWLQ2DF0lFtpuG9wKUTuvo1y3jY/Xi3l48pmSjPhwmiaWed69pyHMDwDs1jqXrXG9Vn777SMfH1cDeJaZHIqDEzNOJXM+KdP04w3xEP7H5w2knTDi4u2XFe3jNeLru1f3uUJwCP8XP5cdfLilJjzcm9vx0Bu5dtvGm5oTAQjmzMM8c4/Nta+//oreG+u68tVPfspvfvc7Pj4+cf7//Av++le/5nJZkV//GuXDSGuo1aphbdeNuq6IQF0DdxDmuVDKYAPAcoaVVJYjR+2rHb03Hj986xwoHiHg3FsRTVfcS6HDa2KkoM3DXEVMADEUKk/HcwFnofyeFhJ96vPaInFcae0deh3ItWUp40qzAT9TMhLu8I4mMQG5qrI66V4PYx6G5ikiSDciNgm+E4K7xMrrkhJdXJiLt89bPOKAjrYcB1VV1cBCwh7Y071ErGrZrTfv78Zxa7q8XizScWmJBmeUGTy9C+1AtT8idSI9zv8OYP6oEO8v3VMWaz5FhUMzSMJ4HCkr3aoqKniVtp03jQ4Wdv19T+SjPbzgP8KhEb2xX39UIjt6qTlMwOfA1PNL3rxtY3Ac93FFByhs6geoowMUjXRYKVZNQ/eB2vlJBKRvdC9/utVOlej3NICf2hNNrew5UVkoJcjqa/Q2UuLFh+LQBao3c6PrbvSNqJfjmClW2Uy/b9z/sCPSByJFKkrWm34g1Nap123oKvM8WaRNgD8xn3un91Dq7f0gmFcUbY2m4SgBi9IxRfZ6vd44z6yfdg9/96B6wEum+3UmOz/nRK+zG0ncFODordG6528mGXrGsWJe72rRSIf0rtY6l6eN9Vpp3cqzb9vGtm188+1Hnh6fDEB0fqCUkjnEvGrJNBWy5E+M4+dr5fUO2ckfI5VM9oiJfUEd1yQO4iTXHw8glRtf3moYBvg+NpYi5gSsocW47jRIl2PCq6IpjUysUR1x6Lf7Xh1GRK1iaSQCUxGKr5EynSiTlYdOZaZMq6V95Iysxk8otZLaTmqr6CAcvXmqA+Aa+uBhGo5+sr8jsk9+pDH0+8l+/R9my75mW26lb/rO/IvY776vDW4bDdA7vvtcS5abr0Q8XoCq8d8LV37h7uPbzxSffY6+Ik7w2eNGr8AzO4ZdZWBQHlExBnY0GqqV3tYh66xKkgxifdv7MlapUuia6LpHgHePVrvWzmVtzvdqNB0G1AvVgZ+tCVvf5XnI7+U0My/mCK01UZvNy5qF1mR3RLhcmKbEPCVUBZGFMtn6rn0zfjzBokmyzavsUbYIkNugzjNuS98fqhpHLUJPBSQjGaa5kOYFSVGds3z3/vsHHoNKgmZROclTu9TjsDR2pU5TaBRUlA9PlV//4tdcP/yahQ/8F/pbimz8/b/359S68fbNA28f3vHlF51pmulbp10N+FnXxOWa6R0ul43Hp5XeFCUbUAisV7OjW1MenzY+flxpvfG0Xnhan8y+qxtrNV6ny1q5bAbM9FxQsbTpL776Ce++mMizcFcS52Wip0RPpuNkTRRZmNJswJtnF5iY9D1d8Ypx4v0VsnO3XEWEXsweMzXUspC6eZytcppGAYXvl2N/8lQvicKUKh6KdSukUN/UxX4OVvnwfuzKjXfKEH4HcRafv6BQ74LWrLmufRiizmQKPEfPDmlUn/zsJtRRcu5Nj8pAMckVdcGQS6JkI4fNztlziKS+uWzHjJetd65b42m1VK9NhVy8L9wzVEqmKkxb41WP3Xoff94CEzpC6qPt6MHgeD4nx7MezNBPrZPj6d4f+9z5JE3ieXNvXvuckuOoRTg1QyDFdYOADN0BIw1DKWWmZeZ8d4emzNt377k2uF5XVBLzcsf18oR25XQ6UbfK07ffsl2unmd6pTUrr4tYxa99G/dyf7n8aFW9Yv4mcdAsEI7oqb4bCr4wb3r0Zq1FyzUiNjylsoPkw2oJwsvsVc18rs6TeUnnYmULw/uZHHiZSmb285Oj3xZBWFi34gbmzsmjZHQATuFxcwVBzOAfJcq7og26t3l/NkV6RdS8Mq3VAXr13g6k2zo8ejlb+KUR12cjkn4mF/4uHs8Vwe8/PhV0uxT+/Nk7Aw+7V0O5/c6xr1Q/ecvu4XPQjR0VIYkRSiuQPdojyMpH61JCuvqc16CUunEEjKcZqaoyIkZ+NC33GTghN/2i+31DQSRk2Ut+W/XvqsvevQ+PxuvRC338vaeU2F4ih58BEPllsgTniCJqxPSK0tR4lcxzapF+qkKj0NU4UErdyK2SNA1AdzTq8Lx7u9M+UW6cCgwgGtW9stkLjoc9BSkg/tc5BJzUN7kDyn5nj2TqdHI2x1bOERlifalerKLVNooAoGWQOSJGyqmoO4wcvA5jX/CSx/Nwng2Dd0h5l4sSa8+iiARG1I6M/vXzu5dWxyKEoiJrknxz3RiD8Xc4zXyulskKVeTuhOzFIotq3VzO61C7IvolHHEBKqm3Wfoedbq9tm7z0nFY70NfGO/dzh9TjT6JKx4GvT7rr1D6VQ3gMSzlcJbrBeLFCUJyRuSGLXJLCxA4RE6aUmXrONZT6LGernl8NAfwSNlTRwqSOykpRRK9xNppQ++SPFk0YC4WmZaLAVLZImrxNna93VGf94tI/1Gw9FvQR27eHy345L4vj+v3HvrSt3Yn0nd+9WDTPG9XfH+X03v7dvoK2wNi+QWouIMyR9DyIMdffIyQubfvHgg3bj96tjZ+nJ1xt7BuI7aS21Hg4daIZI8OVOOekmxcYbUj0m7kvvE44t9TS5PCHII7i1Ya9l8SpeTuOovTM6gBRaXbd0pPTN10zig0IiKUeXIHvCLiVCc92mCRe6Y3hvz11CyN32Y7quuhgnEd0SL7pNHxCMDoMiIiypysXrQYJA3gJ02TydpiuWIaLMGvPJC9O5tP797WhBVVt+er2lA6WhWpQmqJrU1UPdE4s9YrH1cla+N3v7/yy19+w+PHyscH5XIpTNNskfbdIglrS2zVomau18rTZfNo74IwoQjXtXK52p72tDY+bp3WlWuFa0tG7q1KdT2x54yRVEIuE5TJospPZ9K8kCZ7T1Omi4GHAzjs/sOeiKv+/JZaLUN4j/3gqA6qehC27noOodPsTi5zEsmwX7/r+JMCPyJCybOR0XXbyJPIHtWioG1XyDTpAQSwxxnltP27Vg3CyJNHFcze3avX0dbsmqqj6lWYDT0MejVvlnX9HnI8TbOT9JqYyV6aWl1LEWIL3TfrHTSIwQmSMPNy1d5oNGPmXhLn+4kpZc6lsHiFJzmU7os5oWKVxZ5q4+O18utvnvjt7x/NI5uLc6rsEQ+lJM5nqxr1uocOT9i+WX0qKXbjYAT/vryfPjf6YGxinzl9XH8oIf5e/yQ0Rm/HmX18bncqGRtknBO/u6foWCh7bIzuEc2Z+3fvme/fsNXG6e1X/PzxyrZV82Y+XVivK7/99a/4+O0H1uuV3//6Vzx++MDj40d+8Yt/wTff/M4Y5+vqIFCkHWamPDOd7jmf717oiT/uEIQpmXBM4amzyWdP221DuVEm2NUAs83csAx9n1iqzcq9AilniljVu1w8CkOSpWbOMykJ52Xm7jyTU+I0T5wXq9JQkqWSJBHmklgCKDqkg63VuC2MON68MaqwOQjUu4Xpro7W12bgKRrEf5sZp3XnNRnpBkS4fXixNyfj8/SlSN9yJT6FRyk811N2D9Tudf/RjqM1/gff56UV+N3v7beTZ+ccznhBj3yubA+Q+AAe3sbq3d5Rnr1fXeKJCC0LJVnakCe97yliYmWtS7EQ3d4tegIMIApenOfHsSU/4ug58fgQ+/6sR5m5Ny6M7h2oxbtQGX0ZhJhe6tWyzm3f0rjsCBM2TxHIIPoVVY/EcQM8Z/sR2dc/MKXGlDqindYu9Gressv1icv1ydacZqpmU6rTjMpMLpMBs2KesWmeKUUP8uZoVOh4b1d69r6L53k+PkcF6Qj4tFrHOn6tI6XE3fk80qWSp/0UT9/WKAesxqkzeYp3SYm6mazsHhWaUuJ0XkjpzuRlTkzztHuRk+kJrZluYanoy4j67b2bYaAO3jjCmnIilai0tvdd3TZqrabPuNGuXaguxxXju7CiGcIsaRTJUE3smXNhLJnXmsn6vEyTRQKx6wy1Vj5+uLcopdbZriutWopbzhMpZ3rrrKuD7UDdOk2U67ry7bePXK/rq43f8+P75sZuiN9OxN03ot4/Ls9iacpuALRu+p001z1FyF7kw27gnBBgaVwOckvKpGzrvNGQ7mvEK4P1boan5OQpMbpzZKaCOvnycGSljmZFilWLNS+1VVLLEd2jnd42eqsuDzxSLxVkvkPKbPI2z6hkjIcyjOjoq+i7fV2GI2VQNLzaEVFFRzPopdTeG/zilY5PJNGz++5O7Hi9//5c20J/UNSNPQN3AgxxPpH4Qk575PxhUxkRozetud13Pn0U1+D12dvRwB9rczSBNEAfHe9lW0Ht4Jglk/LiIHYn55PJnrqR0sWK6lyvPD49erEHB15QcrZiBIGPpuTGtQObIBQs8h/xnTT4KklYxcuEyoyyOGBtBWMMlzJgqquy1cxai6cYCderA9pJScWeRbGK1V07W92o3t7WqxFdY6lpCO5YCZAvk3PxSrbWhuwRiClNnLyEO9nJ2PNEXs6kMqNYJK6SSK84mGON90rvG+Ia26rJAxkaa1+dW0zJ14xU4Xp9w5U/o6Z7ni6J3/zqb9C18vvf/YZf/mJlnibu7t/y5u1XlLJwOp+4v7u38S9KnixKcts662aAXc5ncr4DEo9PlY8fLaXreu1cLs1BtETXEwEqOtZDn91hnBLz3Zn5fCKXzP3bNyxeoEGWE7XMNGDbYK1CU2FrmdoM7KoiluamStVGV5P9SS3GzPosshJi7/BoaMdJdDfBrTCNNiR1i/ZR9aIp3338iSN+rKJAEnESSHYyRiM8P2yQu4Kq6IDAwjOmqpSUjNU7yfAYDTl1IKG11zjIEEadL7IbZTlsXxlhx6V7OCDd0ksYtU2GYzK6+QiEHOAOi+5oldrrQGdVEnlKLEuhSGLKmSmloawNoicJ2apUtZLyl9r49rLyu49XEyqpeNl5nFjKgZ9L+RGAnxij404xUAN/elyBP2jku31yc9h46R+8++7pWsqtnNLDKx3zZ49DeXaqD6A1UTxE0gUqnvqle8rKbpQBKXO6mzmnTOuwPHzBdTMl+fHxyvW6sa0rv//tb3n6+Mjl6Ylf//Vf8e3vf8/vf/87nq4Xrh72vrZGcyGAellyyZRpYVpOf1Df/JDDPOy2oVpKjiuqxFLoN8Sat9WqOIzX7QBLrD3njxBRslo4+ySJxfOw5zmzLIWcEg93M2/vz5ScuFsmB4GEKScWr4KylMxS0qjuMnkUVG3dCPgUrrWx1k7vcG2dtRqK//HpyuNl9bzdylrVN2HjSgjv9yAVdkJqMxQN+OkvAD+fpOaIeeYj9za89rCnRvydPoYC91I7f0jbv/ucUNw+UXBvFNTPf9uadriHqltDQegr9CTkpJTWSFEVyb9neqSv9xTpwFZh6EWl9098xN6lHAAxue2w4xANnFui+Tt3jegOaEXkz+gnl5nDFy87MBlRFqKYUyFSeg6vEyE7lCJKcf9d7xu6Xei9sj5+y+PjB/ecFao6GJfPkCp5mphPd0zLieTpXiOyiOeyJkS1DJA6zJhbAOh2EFOsOdU9fal3env9ilAiwjxNxkU2Tbv+UCx0XrOiPe3Aj5ceTiKjelc/pF+lJLS7haRWItvApOzAnHuVpQ4wZVkWlvOJlJLxsrixYByH1i+lFMo0ESlaeFTE0+MjT49Po89iHQcps6UZGPCTUqLMEKlMirB3ZUSiWORjBJmUqQ9PZQCLrTVOp4nVAZ/Lx0fW64qIVbKUlC09uj95KgTO16VsW+Pp6crlcn3VMXzpeMmmfVGMH0TI0Ft3BXZcKy4Qn5vx0wfdQYCvtsa9Eg/q1fWcYylIQtUioDzsMbAi08Q88tsyN1OcAmQULxgRwA8JUvdCfZ1U8LLslmpnPJedvl1pEaWVzYiUlJFphhzAz0QXAw/D4/0c9LkFfsTn/A8ekh98WNRP6Cafv8HfQv38rrt+5vXt/W4yF77jWta2Yx8G+HNzRQYPnMRZt/Lzb81PdwAwX+rHH1+jkV3+j7/9WTwzw9LQEikVUvKojOxgSNpQzcavuUGtj2ybpR/Vaqm3U1Fa6UaqnJVSus/xQmJ2uTV5FJFYWtSokmV6uvHhzUg6gSQDYLJHordOdQB+zUaPYOT1O8ePkiGZY2Ktm6d1WQWxAfxEZIzuEUEK7kBxLrTRbeJp2pY1UOYFXK5aSldGUiFNluYVHEVeaPdVD1WL9NFeESpNoXpEzNYr12rAD5sglwwtsdUTm76nSeGy/Z5vvxHqY+eb33/kV7/8QE7Ccn7L/Zsncpl5++4NX3z1JdM8MZ8ap/tKykqt6vxNwjRVpsnmyoenxrePG63B6hxo5ns0mgrEOU6z6zxTJhWL3l3e3HN+YyDTcn9mOp+ckTvTU7KUNTUKjaYyeKA6loLXxWkpPALKitFUEnvqd+jJUdyGqDQcUMXxB+cwdFBJ9O8Yx4/g4dxjx9mNzU95TA7GJLvIei4C7Tqm0g5hOIzz8E6+PJNjmQyIRjgwZ4eAVUfcbn/GzaJEaVwoCI/3EIlxr0RiyoV5mplKpqQ8GOn3FupQTi1XU9Gs9OYeXIzEdC6Z01zowKYRmaJDyKhmpgLytxH233PEPrJn4t2CPgGGjbzggwFzhAuiXw7SahhoP6jVIuNedt99ewgv8Rinm83r0AaNzWP/Vh/DuaeKqLradWiYYBElopaXWbulG/UeucHGI1PKwryYkXn38Bb8Hvdv3nLvpX9Tyazb1dF5i4o5ne84ne9YTucf0ht/8JGdlNPGRYhNNLySiT3N4sjBcnvoGF4vmOC5x+b5XSYjkEspsywzp9OJnIzj4rScSDlxf154c3ei5MRpLtwtRjQ6Z2HykrdzFuZia8UifqyNLTNypqecWLOtz6WpRf30zpSEpWRat1zdq5cC3mofZTm3ZqR9Mc6xzhsWOZQwpCxKXdsYmsIV88iM1oOy7+HEErJJX+zAvztHrNUfos4dnuUoY46PeEv6+GzhvIS1fNfCl+fXi2a6XImN0jfHQeSHg7auJHXdzyN+/104DgaibeIAsldbOyrewkGu4Z1+9Jrc7lvPkTa5FYs375kzYw+tv/nB91S5BZSUBr3R6sq2Wvrqtl7ZrlfjEGOiMoE06AU8WqRulW3bTNnOmZ6PBRZk7A3PdscxyYZzZPxzeMbD5zz/Ha9fc+gPoEZOabyO6B87ZQJs/44qpDnnQaxsVUq9/HpKoyJWym2vOnLjXNrHSNnJrHuQLKO3jzk8VYf0Zb0FsI9dlFIyj6eqhdJr31OxnB8j0gENXNObMZFRzel279jvdxjrA6BVW0Nrd/LTOkrTB3gZ4NiRZ+Y1jxsw/8XPnxlHGusu5IwedNv9711Z90gFX8dG5qke9WdAtPXL2EgOSr616iaSJtZK8lQA2Hl4urJ7RAGJNMFoGw5Ayc6RN8oF7UYt7PI3SGP9jxvZpc+2j2PEirhMC0DWwNe8z6Ef7ZBnrz+/8K2JcrMQXjr7ZvjHJZ/f5/bY19jRlvielt/I6oNN5PrsDoa8cMuDsh20GS/uyJ++2G9uDWZECd40ODaNT7/6OsftvBg6uq+xqLDVWgNJ5OtGzuHIcz6edeNyeaK1xuPjR7799iNb3QwQ79WBn06dlCR6A/ykXEjFy+GlYj+eEolHz4hMkGYgIWmFdMX4OSeSF0oZXJK+9pOIU30YL62lQlvJ9kir6+6QDPkMOugDrA9cO4+2OQhb5plkyDyaParWwR7N0f5kZNBy4IzHKv6lI3j0KsdRJ7FgDCuq4b97yE0/22VVF6AI0hJpzkyniawzpzlxf7KI/9PdO+7evKOUhfPDHfPdmTxl8lyRCTjITxSaQFQPrtppAk2UngSKEFEWIxIyq8lUsWuJR5c0nGBfA8yxvuyqaDOuIvcpm77Zx21RCR7ZSPcLh+anc19ctxtWmM+fPrgp94wXEZAUqV7f79T600b8iJeps92GEBxHozryK0OxPCq+hmxFJqN4UJpvZF2c9DOCg6JDMmmMadrl1vEcIMrvpOTXdcFat81PPwjrXi2iQYTeMr060bPahioSCnIyHiMVMiYw3pzOlvufMw/LiTkVq2jhQj3C+9pW6Shta3RRrpvNpCkJpynzxVu7zlob3z5djHF+a1yennhaK9NUUD0x/wjkzvtmswMveYwKniq3T/To8ABenpkhh4kv7LnoN/rEs2O3WmLS28zZd7oQoHpQcgOpCmVnGH9WJwULttuV5arq5Q9heOliAWLXbZuRbVrEiVCrGZ1rFbZm4Z/L3Tvm0wP3tXL/8Ja2Xfnd737LtXeW+ze0Wrlcntjq5gqfRZxM08T9wwPTPP8tR+rzh3nzcphvu0Ipu8f3NmTwqLSEEdJHtZmMyc4kwrkkHpZCSYmH+zvevX1LKYW7uzNvHh6M02eeLT0hJU7Lwt1pGYDmXIzboggUz6fOdLIY388ofQuoFiLmo6o4lwhUDKTpCtetslbP571eua6rp4BZOeHWO5frynUzI+PpunHdqn23C1s3I6zmQmuWPmRVa7zveqjQMbudK0gFbR7OfxP2/iMezxTvP/yLz7/8t77g+PaLfx+BxKNC+gfdKlCL5L1u/yiKrEbcN9ygw8tuX7GS121Egvz/9RiNH5YhsQeGfBzRA7IrCwG+j4s4+I+nJlr9VnvGyMeJdZNCPh6M7yRWjSKiCdIhvStIns3GUIRmAJWu9H5F28blwzd8/ObXtLrx7ccPfPSIn5YWWppBCjI1ZGrkMpHLgmKVM+mWkibhafOIkngdxkU8rgeB7P33fOKEM+Uo/1WdT0ZJrzzqRpZrET/zZKlKUzGwuziR6HyajcTXmys+LwMYCuDHjI5kES+tW1ppV/88jyiilDNlMi+0qnK5XKI1Y5wD6ISDzXYwPCP1rY3ouDD4HZTytkXly5SE+WQVaw5oK6qduvYRNdmdugACa3B9ytPutZlWnHzPL3mCSdi2yuOHRy4XryrVnEttACdKrc349abX3xfH8R0WeQBqpnvoOL3TSSqe1hdh+7vhFpXITC8KHRHjLcL7WEBaIsoyjxjlriPVXLocOjcPbiATDzauSZWsBgYmTUi0x3ZSFEa6cldLHal+3S7FUjydRoBcoDc6m1fltAcYgRepI3QPgw8WNzNSY64nr0gjsleCGyClG8OvfeiQCzGW8ux3/KXj3dEMOXAEHa7w2SPAt8PZ+xTa5+6uO9lr++rLqeDHKXgE0Kzv4pz9JNfadl06/g5gkp324IVuePmx9ifgJbBcRYwn8ccC7sS5fKIVGumBnXVbeXp6otZGyisfnzaSJNZt43K5WCTh9cLHDx+otfL09Mi3335LrbtNB8pclNPsnFapM90APy5fJWG8kQBR2VIgTUiagEQn0igd+Cnm8Hx4+467h3cWsVkmS2VNiT6rA/wd2UA3kF65rMrWNrRbpGXXhiQrAFSmMvZFA4ISqcyWeilpRPBYmvYEuXglr0TzmV5xCnlJt7p0Fizb4HWHMIWtUCvaNxqmpzfE5c++PppXa20TcE5IySz9xLy9gzXxxdt7fv6Td1YF+/4L7t79hDwtNh6eigdPwEfAHAh1tbTnrSee+op24YJyTU6CXTJCMY1LdTj+mygiRnfRkyLZxktY6TVRKCROTO6E3mpjq53WhcuWWbdsqV5djH8Uqza3YVxpKpVOs6qbKR+ccGZFm/2628NROAGB3g56W3b8IInVR/u7FvEDIZPkRoBEdMZufN4K3F3xDaUtFNAAiex6vTM04V1ttgluv8NoZ3xvN0T2c9MgsFTPld8ba8BPJFyL/x0ixL5DpIq5oLRoH1ukp2nxMEBhLtOoZhHPGIKt1kqnU2k06dRql84Jppy5O82AcFk3LtuVrdqS3rYr1+tK78XC2n4ks2YIC+/X2PYCiotzBvDivb17KfbvxsmhCHP4/OXW70bjvl3K4Rt71JD9tjkVTqxQImMvizSusL/CQGxdR/4sh+cN0KersFa1ME6FrYohva5ENbV5NM3TAPbu7u9BG2U58dWvf2OARGtcrxcnu4xweePEmZfFq7+87iHCSEMa9K8ucBQshPVYuePgGQ6kuvd980wE8KOcp8T7U2EuiXdvFr56f888Tzw83PPu3VumYlFvy8mAn2WaDAQSoQRPC5CkU+L6aiTL5n3SfXBJoyx1l0zzcMkmOVhN2Fpj8zSKp+uF63o1gGfdWLdqqXlPySrO1Ma3VB6xUp7ShdSdsFksR1dVqdIxW0lt8zgCCpgCTu9EfqjpRj8i8DP64297zuc+eB3Q52YdP+8HGZjGH36EwhxeQDAvUjMjdKQpydFLbuMUFSRj8G6k5Y2Q+lu0629zhOAZbZLY/PaGHZV23RViAvgJg8L5ZNTdTTpS4nZ5FhGR4YnHZc9tFEYAPjLAlOGUwe/TNnrb2K5PXB5Nsb58/MDl8aNFEZRGT83JYzOihdyV6/VCLjOtFOZpYnZAA83j3oQOdBiE5yk0e4fsr8M4R9Kz/jv0wSsfAczkYimsUyks80RxAOju3jh7GIbfYfTUK7R4CoGiI9IlxstSz/u4l6TkJd/FK2U59+HoO9m/f9B17H5BUN/HD7jXEpNVeRB/hnJk952WiWm26KXQhXqDlva7HfWs4zFKvjsQGV7unDIU4/G5XjceP1rqWagExlVk17V1nUn5T7Uwnx2+NMMRaY+o/n9EWpkTL+QSOKG2z1vBXlvBd0vZEhGkqxkZsBvsx/k+tj4TmgHKhqsLcHLbboZKVF0TJ8KWTHfDwPQb039aN0dJnGPrLnk0Qfbn9SoycR/sy6lDAD7Dyy6782+kjzrIGcAP7FFqP34atGuJh7368O7REtg/+8Hgjxx+OPz29X1Y76E7Hde/DaF8si3Gdz99/+Vzx5x83lr/M+blfvHvuNbhKcYlXgJDVeHgLHzt43nv21y1NKlaG1fnJ2NLWAXYxOVy5cOHjwPs+eabb6h14+npiQ8fPoyCKrHPzaVznhspQcmNKTerrlyKgSpiEfxOxOCsgq4bp8lSpcQrgrn+mYtF3pQyoShlWiilMKVMmUzmTcUicFpvVK1krWhNLvv3/TvGNJc9OrRMToCfMnlaSGWytR78PSkjxYEfhavzX5pzzHWjJIPLedcBfqSRdLBfezNSbBRzvwRA7pyqGPitGZhtjyu1UN6dSVvni6/e8/O//Cnn88mAn/c/I08L19q4bButK70l6mYV3SQ1hGrl3Dejg+gdrgpb8kCNJJa6ioz9bN+b3WD1ctsWDGlFLHr34ADXQdfWPZtAWGuiNicA98gf+/G0NxRSB1FU7DcxJw9yRA7ayiAkBy9KEmt3r1bc2g8bvz99qpeXEIp0CohBP4InOwhkS/6osh+MfjHukBAMQyEcp+2pXnHtnbdkBwiet3K0YZTZOzzA0Jrd2OzG6WLPYREGQUArqexKVBJEE9n5fZKIBaA4aNSlA4nerPz8uq50lCrNfncQzWSx9JfzUvy68HQtrsRlpixkUXKKufraKq5HMgFBcH0YEAIY2WGY0Ix8FGU/X/ZLfnKPz34EHDc1Gdc6WkRH0IfRon1rFkT6UNoE8djC2w3+uJWryvjQSMBs/taO55Aam3yE+DXnjInUCPu6Dq4q1fDYzkhqLoize8TKriQ5OeiPc0TYbITx4oLYnjzJIZQwHYVSGuIovJlzEpaSyCK8PU98eb+wlMybhwfev71nmizi5/40G0dPKcyTpTpOJTmJs/+gbmvs2u7QryXy3r0fJZ4kxsz6+khkm914bGLpYmimZxOpJVm56YQyZTHvkSjzlGkKpwZrt3W+OZig2mmtWJUbVU/DcNBWD9xI6TiDjq9f7zhe8flK3+fu4TwHFGL9vnylH3jjYePJ/t5nT3+lpNPveuDjih/z2qM88FkUbQ7Q5KjYy3GbfeF+P+YxjDyXlHtIW5xwI5ji7Ztejfd0H/PnuvpIQd4tSEweBjAmrsiPD8erPQJpN0jVnTEaBQmGsyN+ZKRJ4tFEKVs6VPbKJ0m8oMJh54g0MjkCvfH4A7jfZenQHOSwtwT46q/3XShqt7ze3mi6jYEtUZ63JuPvEYFtq1yvK7UeK1EpI1UU041as4gfSbuxrKq0asTGgpCz9X9rHdmMbLdulW01zgoDn3YSZ3UZ3lPy68se7eZGd1TRSu5hjGgMqj1cygYgaO9WeezQr2Mf6TqWoMJIM9I2BsSV/0hJU3+9l7UVgZLTqIIzwKtukT69+bP3tqeAvfYROt5Rzzism12nePa1g3Hf1QGRZ/IknjPWoY7FJeMaBmzFPYaQ3XWXkW5sfx9bEjCTHt/31EH7SnL9zZK5RdUxGxn4UlwtQMAAfW3tPjMZQhdU3BsdY7IDr7FeJaUBtkfUyg9NefpDjxt8wxsYUfwvnP0iwHIEOp6DHmPXkP2v5/eN7z3/7nOQa4Drz44wxr8PE7uJ+nF58fL15IXzv/vaP+R+/uYffqHvOXrvXC4X711P2+6NulmJ7ev1ytPTE1utJke9utb1uvL4+EitjcvliXW9Umul1o3WqznzrdG2yntDm+l9OTWKNNMvU0bySpCZJ0+VsmjV4NUpgwA6orxFjIx/Xk6Uaeb+/p43b96Qy0SZT5T5BCqsrTkPTCOtE6XO1FaRlJjmhajm1bWPa0a0Zy57JcZUDHwyBLF4Gprt42oimIRQxAAX40Pi4OSBH0vRERGmkumtkEpBW/doY6u4llBUmkFAzbJtehfQM7rcQ0lM/R1z/ZJcF+4e3nG++4Lz+cR0eksqd5AmOhtbM7LoXmdaW9BeHEBrQwbgj2pOFtc40oRkC6RIGgTaO+hm39nT+2yPTEBGNdGbaztadqcZ2QNOPHpZDWRL6rE88ZWAEggdCnRAjC8Ni+8NB+4ycV3osI187/Enr+o15UynjxzMYBIR9hxjW0TdlUF7PeJ3XCkCjDndjeXWTSkIAR6ho4IRJVrfCJsrC5IiZcQVTdn7WJ2IqbWoxMHI27eT0rjmVhvXzSZKazqqJJ1PZ2QxJS4nIaWCqlK6WH4g5uVpq7Gcd/e2btvGNx8eeXp8RDHvj02SjKQTp2liKYnTMtEVnq4rJTe+fRS+fYTHp0TdYCpwKjC9crCIKbiZ4V3nYEj6GXsu+LADTCjK8To7kHJUpW7S0Y+z+GD0hLfrpbbFqcdNLpI5ItnG2pMGWXfTPdLneIQKpeyIraqN+dY7rcOlwTqAH6V1QTtsm9Kr9UYLIAKrfgONqpDnM6f7t7TeyfNGa42cM6dloZTsoeH11YlIR7/0vcRl7NsRBFFyImM8FFPOnOZMzsnSF2arwFVK8uo0wmmauD/NTDnx5rzw5cOZacqcT2ce7u8pOTPNE4tX8hJJlvYZhp97CkUi6RIjqHUDEAbN2QByGWMW//raJnRVY6rLomi2y5xyoc0e8upRQF2NMHRrjd46T9eVdTMSuqtzBXVVqgM/aORgdzdIqhO1qW3mUQIZkzmhzOuPZKfgzzuU0cOalNE3evP6VTb6TxQGPX7wmUNfXLuvcYTBY8pcgOkCvb0APH3ajltT7/a9Hxf/0QGiDE4e4RDporsghVslJr5vlpf97t0qW8Z7w3sFY6M7XsNBGVH3aKVDtMyAcMaND/fyErMeOaJ9TysTVTIRghyEkoU8TeRlIeXCabJKljknixZUiyJKkTXiaZ7HvTlaLcEnoxDgiW3NaewtQXh4NEpEO0kPKTSvdESql/bOum6odmq1GrrG83Pl8fHJIzCc/Hjsb6HPWCUwEWE5zdzdnck5U1tnXT31aZlddloq2HW1tIVtXbl6etQ8T8zLQqTmxbgPTgFxgzT2xWxyGoFcinPMmNcZNyLLPDGVQke5PD2Zlx32KnBipPvZnRSmO7ncVtcWAhzwdrStOgDlexCKJDifF3L2eRd7dG08PV6oVEulXi0198c4drVDeG5Ah0zVZ+cOoAwDK5s4uCOM7HUj9FQ0gahFEZgO4ieJRwV53wruuPM9MTkgq14iOM6BNPSo7uPaNHn1IYUkpCm07CFYyNoRzbTWLfJYd6Pe0sUSuQjZlGXKciJ7XejBQYLp7C3I06PSkggqVnREXAZEyuaR4DmO19ZxnvPpHN+7IZge+sXnr/Gd9xgOhFsA7nPHAKYPzx9Ovuf3PaZ//RCDLp71c/f4PgDqpet97pxPUsx+hA2y1spf/+pXNt8Gh2mj1tVIkNeVjx8/sNVKq51tM5mzbZXrZfVzN9b1apyO2/46Cu6odqRv0FfwCFaCGB+GI//u/p77N28opfDw9h1v3t6Ti0V3plJAoGmnOg/am3dvefPuC+b5xM///O/x8z//++Q8QZ6RPLv+iWcLdK71wtZWWu9c1yvbZiD+ngplYPdIIfX/bPoGaBtxuK7fqnGO2l6a6G6z9uT1oyQil8I+tuu95lBmSdydTtASWjr0mYZwdflU6WzS6Si9Z2qd0J6Q00I6z9CvnN+85eH9HaU/8eX7t/z0519zWhZaWqj5TCexrU98vH7LVhtaC7pNu4Mh5JSjYCJQZkEmc9QYeOeGsqwoV9fHKl294qZ6pKQkUl5IsoAWep2oV+dO6lH5y0ClrOI0L0ao37XTUkI1gXSTkV7O1SKhXF/VDBoOoEh7ZzjfTeDYfipJSOoZEkSk9veP4J881SsbKuN/7WGxIhHqZZPQsTIOKp0jXbvg3h/SNrM9XxhGDBtHEICRg54RiLHmNvInAIvele3oofOIh6NAbr3aZFP1fHwLtZ6mCcVRxLTfIQkUNwZrKMxAF4ui2Grjcl35+ORIt4OLKRXm00Jx783Zy2kuk3C5zkCj98oyCVOGKSslaZDPv94RmrhbD7cBRXsv7iaC3Pz9Cbocf99sSj7eL+27+rlNUG5fjZDk8OLvas8Aq2S3p8I0CrVI1eNahLEJhOLaWkR/GOizAz9O7NwxELAz7icwyioLBhClMjMtZ3LriEy01kZkzDRNtFa5rJeRk/zqh3OBhIA85rcqCclKlsQkcCqZqQjLnHm4mz1ix4ibS86cl5m3d2emknlzPvHFmztmL9l+Pp1IORup6fO0taGUPVO09NaYDVBDDq+f+1IZaqiM32H8jLNyRksa14zIj9aMDLirsq6Lly/2EvFdfXyNb8O6bidS3TYD7Zoql26gYMfJvlUdHApD6Ec4Pivnb2HZT4CPP2qLf+m73309lxiftOS1juezYS8V//zTvT324nlq6P8fj4ORIkcG/dGo2zUyxnesl+c/jHkO7KJ234K5IVd13gAT8RGDI6MNxyg82yTdMxbh0f5j9qr/F8CS89PkYmVnS86UiPyBEZklvu73iIT+zADZ76HKiCIYjyXR5tgsjn3WeQ4BvsrhxptV82ijGENJ6RMeqZSEMjlHg32ZSPGN1K2UBeRsBltX1rU6z0+m1Q7ZpZ2akbJeV66X65DjKeVBfqx2C5IIVeRIo2dgTyoj4scy40zeWfWz5oapoCnRtbNersYnJFByMdmeE0lOlJDvpkD5ntKcCF+H9+RYXW2kz3vfTHMmiROUevtrql7y3fqsNit5/OMdL0daxA50TKc5OpnsEbt5rcObLnvkVizTMEbCWNPjNXpwv7CnCI8luuuy+PejLcdCFOO6YBE/wHAz+zdEzcOuGDnuDfG9XXy00eakVwXSbpFsDv60kb5kHvf4Tk8KXuGLpNxMvKMK+AIo8RrHS9E28f6zJvj749UPunZ8J4D45w6Vo8y6BXO4Oec5EPZD096+7/meX+vHSKdTxSszv/61W+98++EDUVWVZ8DP9Xrl8dFSuratcbkYaXOtjW3dBo+f8THuYI9VaDVajN47va607WLGd220bTM9v5uzDxHefaGozEyzspwhyUxO0+BcQ0C0ApWUMue7E2/evmFZznzx5Zd89fXX5DKhTKhMJtO6O51V2dqVra+2nqpFJQ1Z4nrm5Xph82gnI6f2c5y/0tbfnlKqba/8JSJ7WflRil4GuAUy5MdrjqQIlsKdFdIMXWgkRBNNhSJKlm4VlPtEyQu9J1LP5ElIunHXC+8qzHrl/bs3vHn/Fcs8ce2ZjzWDWprqta4W9VoFtkzQsYT6Yk4M24tv0qFdN7EsAo+WotN7GqBa64nWHV5JBZiAjPZMqwYIqWSrzCXDlwYKSb2SOYkcoHjYlphYtqwBj0hUxbwDYhCFc5Qkxwjs0KHjCuqy/IeP3Z8c+IF9cwkks6t5gYwN2ybg5GyxefB97Lw7xOYksY3dmv3h+RA1MKmpdVP1hawo02ShezebqjrhnRuAViq6+0YtlpLnm3lAUq1B9RFspOFlXlsnrxYmmCQikHaPrrqCWEOxyqY4dkzBCrKn2KslGSH05NU0UrGJW2tinjLLnDktE/fnE+vWKaWwnBbKj0DuzHgWnNxtt03EO1NinGOCSozNgHV8NI9G/W54Hc+BfVP+/N513AD3GXF7df9bQhFijH2MKYQv2L3NGt8OqZgYqRD+kKHPNgd8jFPVAKJobhpghEKUShcD8czT3n1953EPSTuR52sfgiJ9I7NnJBmybF65uRTuzhbBs8wTb+4XppI5zTP35xNTKUxT5rRY9M9ptoifkhPLXChR1jw6WjuqRuj4qcJ1DPXWg6F+8Kz6P7ff/rRfPvXQHtMRQ0vbhedueu1rNFl1W/Nyxn3VPu/dN83uLey2ebVulRlyF6rLtjrsHKU3/ZGAn8NqOUYQCAT4eWsz63jjoB7+4beV2xX32ZO+6x19+c3ngK9+cs4LX5NPG/Rd7bu9pX5nF7z+6vv0+IT3wd+Lhxigyv6N+OAT8OfwNZ73woiuPKy5W+PBheEBHToqg0fZfLuKxPcoI7qc5m58ICIwn5H5jKRCnhfStAyFOWeLEpHjnuI1ZbtEWPNBZouvp77zpcTzmgEpo++irSFJIi3VIpJeivH82x+CRQVr71a1xduTshE2h/EP5g2cpnzwzO39fIPZ9Xh0i6bRfkiR6ftYgsmmnL3EN5ZillQ9Zczuv4MKBsYl53jbwXHn0TnMkTgGIKA4R4+D4dqQpvScyGnzy3haVg09qo602Bis3jvb9UrdjLg0uz7TW1zbfjdPm9qciN9SNnZuoh/jCEOeF8Gfo9T8ZCfz796gGjffCr00ufPPEvxlX1i+D4MRHo8SzXIw8scWKYyUZw6RpRrk5zcwLRA693iA0UQzVBJRsKE7oNsdoLMpYk5Vq8rDiCAboice19d9kjSKRVj7DlLksPRU9BVXol/zZu7eXn0ATUPO6d72z1zjuw4Zw3e7np/f83jN19DpXkrden68JqC29xtj/IamfdArXutIKXF/f++y2+THAHK0s60ry2mm1Uqtnc3B8eZ0GXoEfvy7tVkkjQE/qwHQAfyoE917KmvrSnWnw7v37/niyy+Z5pkvvvyKL7/6enCgpWKAZtVm8jAn3r77gvuHN0zzwjQvTuPgFcHE0nCTmBwXlE53IEDJkr1qlIM4RCXDTMkWTdpc/qkq2uK1BTZ0b3daN69aa9HnPSJjdY+et1n7HE54vcNoTxLSsxFQJ6VqQjUbybMoYJxKvWWLhMSCPpLaT5HClBYmEnlaIE1omoxTSax8upFv7xxLRE3iUBpQVLrx6WjEv8v+/H6qAUITiI1775H2nokoDMkLKS2W+iozSZZ9bFM2/IJuFbwUA9xachAvjQpfzee12R55WKqw6wvZufxELHPouFcL2N6ZLHsiiVihqB9ADfInB366G0XNlbeqjUvrVLVUmadqC+5umXh/vzBLpiQo2atztUb3MDhB3JOwGz6mPKlH9ihV1TzwCmutXLYNUO7vzkzLRFQrkWSbQN06l+vmnvzGVqsZj9L2SJ/Db/G0FRsFBUlWAnpdedxWBNyradvC5K9710Eum3JiPiWmpdBIaJmR2TwnAXeVUljmhdMyI0mGYV1k4nI9kZMZ67XBm4d744cp06uXPFWgi6flyS7v941/Z2pAInUvPnvpigeOg/HO7e9PGvDpJThsQc9OkcOND9uzb17xOjhABZtSJiDt766Y4T7KGBdvrQnl5vNt3axEuBGJWQRJwrhlcixW2YBuG0oq5LIgqVs1KmmGPCdLi0gps5T8mYf+Iw/tpO2RnK3CVspWWnKe55Fu9u7NHfM0cXdeeP/mnnkuLNPE3dk8u1NOzFMhJ6GkxFTSKLc+lWIpXL67ReUrpxPgU6X6U4P0RinbR47hSR3HQQW/RTmGjhn+VRP6z/pTR6CDKeQ5PKFK6RbFBfvGefjH2zsNALtqG+UUB0dCKL0/xjB6G2LxROTA6KpDW59r6J+sk6OyHNfdP7357Pa13Jxz/Py4lgdHVCiOx4p/40rP1+vhDL1975OWhVx+/t0XnuPmKodLhP0VkuL1TZIXDmWPuusRnYhHCPopnwF9xlxUC/LeLxjzfT8/wI8AQAaxIqFGQAABOvryAP54G4LuDPF0ErWKJ7mcWM5v0N6YljvOrdqimu5gOplMm+9J8x2SMst8Yp4WggNPfc9uAyAVWmoGyB7WvCm4fUQnDmeDJMi6z+2+RxT3w3MnDULJ1zWKppItzScntCcndZ52Qs5ilVdKScxzIeXgObEfq0YTqQhK6x1pljpwPp1sn8LAkd66V+Z1BTEX5nkHLbZtA4FpmpijMltX6laRJMzLzDTN4311wKc1M5SAvRKTr4PRrmoVvLQrTa36TEpCXTfmxcira+0Odncu1yvruqcvCbBtGx+//cDl6co0F969f8vd/Wlw+Wjr1Na5XNYB+Dw9mcd73RrrWmk3fEmvc+wAof910Gv2wT78fkF2xPnjOxL7ByPiyZR9T63s7mzAQJ8Uld2GkxE3RD3CqUNwPMgAOmGrsLUAfnajJdK/FKitUmt1MLE40bLt2XMx3o1t63RtVil321i1kySRpmxubN2jIVQZ0dAB9iBihlgqIMWdr4lIydy5LEI+8ap74/O9a7wf8kuD7+dW8tlxjAr/9LtwOxd2TrHjvmXvPP/e5777xx4vRRb9KIf4vXyiDxDoRzrmeeIv/vLP/a+doy0KFbRuqVwBemhzfc/lPRrnWEqXRcpYhGRr1dOprNpUret43aqfoy6DJfH2nQM/08Sbt+94++49KQfpuf1UT/VChGm5Y5rvyKXw8Pa9lVhPmVQWJC2AOcyTgwC5z2iQ/o4n9l3an6l69UVFB/Bj0R7Os+eys/XOVisfPj5yuV6tau22WSSqWraCpRUlNNkzdLXo9K4/JGHxhx8iwnmaSCpkVZIWGpmrWvGVjc6VZiXSm7CJcfxIz4hkRDuncuahfMmSOst5Qad7ai6GGQhsolQmGjNdTJFX2TMLok8blS7VgGbppqe7TDaZoCx5smqR4pHMzgfVWqY1A35yPpPyCZHMUt4wpQdL054mUsluN2zMfTNi7U1ZK3Rt5FYpXhn4Wju1b3ZND/Ywiz8T3ECWJp734AT/MYDKNocghn9OnP9dx/cCPyJyAv4DYPHz/7eq+j8VkS+B/zXwD4F/Dvz3VPW333e9EMqqzpvRjWl767DWzuPaqE4SeH+eyVi4UzCQDy/PjdDWfRMeOrE6AGRGdldlrZXruqJg5UiRUfHFAIvwLsXiaaxbG2oz4AqxB1WJGLt6kWHYWIM6W6v0VgfYUxyR01KYUtpzUddKypk0K0k9DC9lKGWEy6NCysWiLErwrojtwZo4z4WuM0Li7UM3wMdmAiBs6xXgXxOR/+erjaFEXuke0bNH1RzOg7E5HBWj43n4OT9kzwo75nN75gvm0WFa3KZ0HPYwkowptaeAyeF+Ee0Vm114UA+hmKYMRYlc44sR7OLmBFOgI7JH/KRcUKyUpCoWRhgkYglf9OOpRET+b7zGWlSP+EnKnCZKFuY5cz7P5FK4Py988faeZZm5Py98+f4tyzwxT4W704mSkpFwlnwgZR6NJAzIEfEDo7+4GYV9tL7LS7ePWazVH6Y43WykByDp+VniSk3v6iCtzW+vcDk8uZ+26vbvTvVNdb+/DDI44bqu8Ipr8XgMPNq5YRxf+w6l+qAwjgswDJMbRPfZt17uxZff22GhozHk/4QH9LY5z9qnB2Xzu57lBcX7KCxUP5UJIp+M6s3ntxLj+JSvtxb9ERnrY98nP02DGBuc/Y6wFwIw2v/mZr77OQcABG7X2ZDVIRiPvRFDIJgBJ6GGy/iRXCjzgvZOHuCSGPBTThbFOt3BdCalxFzmm4hGPQIy8Zi9O/+dOPBh+7Tx6dlJyfe55Hx4XfaKQbgyG97RvZ/s2q85hke+m5ScnL/skU3TFKkBBgilFGHku050ZR26UURUWOp4GfKpVXsOI822gTPlz3gEq3NbAKN/o49776P8cvbo4V47RJlp37vsy1i1LWI6+X7X1KJ5nN+stub3V1StdG5rFuXYWuPp6cL1usVMQkRY15Xf//4Djx8fOZ0WltPCvEyge6Wn1hrrdWNdDay4Xq2Cz+aVMA8RlK+7Fv2Bn8uaW6P95oOhJ/Ds/QMS5DZG8Fk6AfRBhwqHWYB5Af7APj+OjQppFO+0DrX6uX7GUUfrYQg3A35SThQ3kKKinDifNy4nem9GFpKSp0jLuG7ve7u9y4i0UXHjSyVZ5TI9kkCD8YPtss14pV57DD9/fArI4I4/3VkCXjgv3vsUwHkO/Pj1Xgnc+dzxXZFEz9v5t732+NtlrzkGPr8Rv9Y45lx49+7dMHbt4viackei81QKMpzkx6M78NM9Hbn3OmRLrdVTTo342WRb89c6UqZEhLfv3vP+iy+drPmBhzdvLUJRzfmr6kEGsfZkwip+ZZbT2VOJMikVq7aFcYHiuqVRIESK5y43YskrmMwbdq0/t6rHotj7RjvgPHPVbMraKtq6ccp6SnbrBn6EXnpICraI2Fcaw7B/M4VCJ6nQyAgTTYWMc57SaQDZopMEQbIgKkxlYj4nlqyUeULzQpdEF6WJ+u+MSnY+1wIycYwwVBSVirLh7npUDQSKqqcWnJg9E8j1keA7dDDmCPykVMj5TE4nJGWmPJGnYtJWL/as3R1sopaG5/KzdaiizvcboL/LfSe6SSlZwItH/IjPewN40l4J0B8zimb8kDX/QyJ+rsC/o6ofRGQC/kMR+T8B/x3g/6yq/56I/LvAvwv8j7/rQqbkuJ8xCUJGtVO7lZq71sbjurFV83I9rdUVx8Qy5T3sKR3Ks/tuG38nj6Y55tCZx8EUotXR3Ou68XS9UmpmngqTL8amwd/SnXFddqPIcyNbN1IuUFKvpM0Mx5zdc8me2pGAlq1i0AjdFUsLWSusWydpYmrmrBxha1FSs/tG6ws0xllEPbQLppKZW6F1WKZCba6BuAE75zPAf6aq//SPH0PlUquNpZPYykE6jfYNE+RTn7kc/mWM46AzMuUHRpn7z7al6zCyVV8wYnyexUUizDnaFcZMH+RoO4Gz4qmBGjm4Xg5RladNuVTzCDz6696Vy9rYNiOrbO61FGBDB7mzqVXdSee2AwmmGMI9mPbTmFNH3j9eaS2WnPj63T3TNHE+3zFNhVImzucTORfOp5k3dwvzNHFeJuYsFnknWJpEjPnYvGKdgKFcaYxL9yolBm59qqAclezjOL7kZTt+/+b1p7PjxeuPdz6j0B3vNRQ69AYk/OQO0XY8jF9uPxA0uDspywyvuBa3dTNj16nLTQbmW8U0JnoY+8/6ZEADyjAA5aBtHUHdSLEIgyMgrmH03oBJ6tEEbqDntBuShzYNfhjZNz9v+ACEYl1wxCTk+CL6+jgX9jUeD3JUBY6vXhzX8YaMax2e79XWoqLOAxPtPTzBzSDp7XPvj/DJW0P6xlfEo87kkIb7gvFj8yf5Z7Kvm+eYmsi+zn1MJU+kPKMpZofavjUtaJlB9hKzyVNZ5UjG7JfvA8zaOVLG48suww+NOciHMOJ0GK+3xzGKS+CVxjCulpI4GG7pWSN+QHU4rQzw6Vh57Khu5SBPTkYFGbw5Hv3RmqnDlnpju2pS0wti3MKJlbRb2hfWD6224dhCQZIYv07rPi92jrcY/5gzx/GWZJGQZcrMy2T6TUnkZtefpnzgcOuIWKrZoot5xwOA64pq4XRa0K4sp4lpKuTsYfC+TxhYZiqqVWBRak3k6lUwZXD8vNpaRBkA5BAeclxdsoMEQyyoz1GfmzGe9E/k1Q5gJgvc6WZOdGmjjzs78BP37qEnBGh7u2GaLD5w7dzufrcyJd6NORlrJMZ98F88v8bY4Pf39r1v/+gW+3I5MT5x0PUWXYlXr7YWj8en4PntXn8EFW6AE26Bk88CPv5ot+fu0+Zlnefzx+eii77vvO/63kt98Pzz7zzGY8rNPjiAvh9hX7TrP399G5EyokG9bbdqpY4xMpoBI+lFlZatIrKtAaE0wSLZGr1ZymyP/VOE5WQO/pwVpNH6ustvuxUNeaYH4zIvIjQFeic74mOO0fRMQOzzMNZcyHFf5L6cTG4LOHWwkxcrJKcbOZ9OiFil2q6QkpFHC1YMyaoMFHAAS6qSVSMF+VXGMGAMwezEyKIQPfJC7UJE1J4H66Hxn3ahCaxV6ZeGpM6lKo+rBXZc12rFWsI5oY2o9hnwdNNKU8vg6TRUmuudHfWiErVZAah00CEg+I9cFqOmJ/fm/HUV0U5Tey4LIKkWLeTy2opVdZIEBzGU7Ps3mVSKkUyTSFIQsmf2lFvgx38bp94+X4CR9pWS3C6cF47vBX7UpMUH/3PyHwX+28B/09//XwL/F36Agrs1BwtyIWXobeOpdh63xsfLxq++eeKyNd5vjZQTd8vG27uZ8+mOkhJSMhNlbHbWvO6dkYfR3rt5VSqwdQOXnrbKt09PBupop7ZKyZk3D/e8fTDP2Fo7j1czyBvJUnAQPPyCrvC4Vh6vG8e09STCMluJagGfeLYwl5KYCuQED2QaRuT74Xrl8bGTS0NOinShaaJKoRf1kN5kXEVqsEjCF7pASYoW8RLZhalU1qoUV8SfBe2FNvNHjWHtnd9+fHJEfFcYte1gwCDbdONimAEBDrkhZ9iUDJKtI/CTxfMbsQmd/HUg8Shs1cM1nQugNVeCDgahRDgKFv3VWngK3MDQAH58Uast7K6wNq/0pEa6bYIFrk7oHK83n2urp3epIZzeAR2tq1ULoKO6EeUFY/6Igz45B5I7kVImexSOVTjxNaT6KmvxvEz8V/7RnzPPM3d39w78FJbF0rhyyZ7GZeGD8TqJkvtqXmMVVDNd3OB2yWTgbNmNTR8L2CMYjsbFjT4Sxpqv46GUPnP7BBnm5xSaG8jw896pY7/upx+Mn30Nheocbdu/MwwqPF1l5O16yo64N3VXFF9lLbbe+PDxA9oZUY3JCWLTC4L/+CRj3Wo8h478eNzwLGUHIqM/tnXlsl4ddA2PGEzTzOIVh2TcLbg5NlAoDrDvY2brtTmJLBg4NEJbUwJf+/OyMM3zbgw9U9A53PW7js/NBHnh9dGwCaXk5lqvtBbRPcph75d9Xt029GAUPnuu0W49RA654mLf08Mc7DfrzoxZGV6k2Nf2dXHsb9dcRCDZY0tq5BlELDVV3BhQEbSc0Dy7ormg2VKMcjp4s9gNaUm3MmDXC3Xkx482jecJBX8HWEbkQxgqfgNTzm3ivtoYAtApOVHuzkCk6sieiqA4obNSJqtkZtVoqnMWdauM5RFBy2Lle61KzXXwrgT/Q0rODSjCNM8s0+KAmiDZQs7pyvVyGf0lDi7kkilTcY65fXRTEspcno243SdPpl+dOFnxCg09R30O6VCY+xTjINw9nJFkz3p5urBdN1qzKmFv3lRKydzdxzXVSvpKH/xPFk3bOVfTy67XjZzziCLysX61cQw+kbEWJfhqHGB04mbfvF0XtfSmLmYI1lZJPebZ6Maw7ehZUN8TtGXopuB3J9HenQ+4fGj0VgmZGZxeA4hX9yg3Xx8HYaXPf8RkQmttnGZpBZP1dZDCjn2hD6M7HuRAwz4MXzvlIIvFHFiDx8jPbx6mZuTszjn1imtR4ABePx/bF3SFg0yVAMa5JSwO0OclQGUf2Hj98i7z0vf3649XBxD7u/WWl9vy3ed/HwD0ufvu4LzN6ejfEaFwC5C90lrc05ePS8gFugEDoStg8mf/3uGVlmH8q+bxjKqxBzbUGFf8PdNFVPa7Gp8PSOpounDdLGrOHG5muXQmmhjHXexjopZ+JbIhqVOYSKmBKDlPRuZP7M1xu2NfWud1VWoy+wXCia078BMOkWLRm613TvNCrY11Wzl/+JbL5UJtjafLha1uIAmZjO7EqCrMxskpv6o8zRh9Ru6ekqbd09O6j6+NTWpQHDRP6hxnYjZvdduursrWL3TgujUet0rralUtN3Nm1KaD22iMqYMxUQxBxe0xsRQvxHR23aw6b5Kwy4xQWUyhx6I1G7TVdO2WkawICe0T2rKRNfeNUdSgQ3KcYkrmEFG19Oym6rbfgiTTn5NMJMluN+Rh+45q5nJUgWOPgiQWYfxqHD9i2tx/DPzLwP9cVf8jEfmZqv4VgKr+lYj89DPf/WfAPwP487/4y53sKAz5lNi6Rfs8bZUPl42ntZJz4u11BYFlLqP8HCm598jJrFogep5KJSAqI13HAslsaW+tcd08NFksDSV4TboLsdYNnKqtW5n1UHAdcmkolwYfVs9395BmEeGuwbnvQlt9wjRVZjWEb2pCKYnalWuFy9opJDaPqO0qdMnuNQVa+G7TyOeO1giWijKXjKSMqpXV7v1glN4o9/Kf/LFj+PO//EsuwSzvCrYx47uy1M17bTrnnp9q54WCKOMneaWn2HBvgB83YCMMOfo1PFvrunG9rs7Sb5WTbrYswcktbUxqa56XrqPqlinkAh710/EfVa7bxjqAnzqAn7UZI39XYVOhqlXyqnUv9y2hNPZGWy9o81DSvgENkUTOsxGEpUzJLuRSdiJzGTmbuewL+bXW4hfv3/GzL98yzzP39xb5Y8DPYh4/ufX8BpAQs9FkpRCM8yPdY4AzEUa6R/xYVZod/HmuhMQmx43BGZ/tc0f95OdRPzfn+0x4pq++eLyk6KSUbo1pIpZEDgDmof2CE/X591FymMhi0VLHJr7GWnz/k5+xedSYhTOrbxblReG/P4veAA3xsyv9liIyz9NIXYlIncv1wtPT/6+96/mR7bjK36m63T3+EbCDHfNivwQUooAUwEkQK5YgRWxgEwlWRuIPgB2IPVLYINaWQPICCVkCFIsdiyCxQCiQBQgsIEIiWEQx9nMS+72ZvvdWHRbnnKq6PT0zz56enrmX8z2NXk9P971V96s6derU+XFaPmfhNicnJ1Iq28aM3m273WK7lWpD6/Uaeb22RkhLWKtYaF6R2MVS2YiieHeGGCUsYdWh7JxKj3bGyaSn+/tfP7f/M3zVh+yzB5qLP/z8i3WjVTZcFyv+cop+/n2bO7onBMxzoWxSqSju5TvnrlM3QTIm6mdaQ4BlXLAk9MwE6nI5raseWgEc1/JDARzEBR5k3q9UFXe9SWgNkrqOmpHS2sxtg3borgbZ5rlQ+6KyfCgOn/mhZ+pc3wlfqwa0rApfrQhocy5reHtQY0BUA1DsAsYRkrthlM2JOsUjZELIpJ/vilEnaPltZsaYJDxKRJetuUFz+aSiYBvvCE3IBNfZJMYk+csKK3SxKzqOzWM74ayeJFrmfdUhdFFCyNSoEjOLUSdJfqD1unr8SGEUPSCIcrKdmRHHgJQzQgwSytAM3kPxuH7iaeh2AcXzhwEO3AyhZhYxl7kiGzHxOM+U0Tq1TKzGBIAJpM8+AMgaa04cNA9e82V9trmdjGb4SbmRxTuHKHqv+g0uc9/mVFKvLxsXomJHhJCUx1T43fPktB3WTDXmqN5bvELKP1tHSw9wE3Px/v1P2Xu1XZcZPBqDTFFfUL/bXqu5X30GE+Ozfpsu++7+ZvBEqD2+AejD4pyutHP93fuWZ9MY9NrP0qTvB9wvvvCc3vf8qi6GHjQFRHQzXLQ2M6RM5X2JjbW+E0NCg5LOUZXT9l17FvbDDGBAyhqNgghGV5ILM61KQzXdj8zRkCSsM2tYEaTdFppTnDTOcYNi+AGLEYKZax5S1TMthTqizu+c0cVODqT7HnlMCCDJWZuzVNcmmhh+wIRA2QygB+HwY8/dr54+LNsCAkB5Z0yzJb3X/RNkD2jVvTMTxgRsx4zTfhQvnzHhtJfCAZySFtaRSI0+W45N8eYR+ZyQeRAZyLrT01MPM7yFRCBowSWSTJ9EJHmbbeSwRG4wAhIPSCxJqQMzEkfd+0peKdsTyN5WPH46U8cQ0EFSe4jOLjkAI61AFEvBhrJfLnk82xFZX1to2FUGYOAxDT8sJtCXiegZAH9JRJ9/nO/pd18F8CoA/PTPfoFNSOr2sRha+pQxJAmtGVmS1G2HhBAGPDl0YozJXLxd5OSlWknF+qrCKdXkV5JLRRSXuIpYb9aIKSF26s5nOVqYEfTEexyzlHOGJOaVzZ4EYyYWL49t0s3+IDH3RkbKNnEAK4ubs1gsY8gASwxpGhMeno047TNWSNiOCWt1YT7rB2yHAZQJIUVJjEUSzlETt1bixUqoyZ3MTfecsg4w87U5/KmXX2axhIsrmp2MiIKmShDVY1lTBJhRkoNWJYNKm2WwcpkkMtA1UWCQH22LJOdiBroMSp1Yj4kRQlWyi7N2EaYSD5rAYKISG2rjEGosNNfNajA0x6sIU2Fi0ESFajAKHNS4MYKSxhKPo5RT1DKSnJIKIPkJxXpbw3PEuhtrki4yd892o3aYufjp+y/xE+sOXRfQkeTDpzwiD5CyvZO2BcC8SEjc/UH2d1twqYz3mvCcyqn3ZaddBtvQWnnQ9tTNxsROfy5UjoriNpkAe5/J3td7Pjm5QLOXRlE0gioCbJtY/XwgDd1sYvYOMBdf+omfZLBUKOKctBqShJHWpOokG0pQTdTalN+2kqc2b6yUsGRul0WMEAArMaxGzQDxjCuFQTnrZ7jII9kIaAUlZnAakUeq+wXb2KdUkujJPkM3DiwGH/Fc0E0jCMStDDS1UBSjylXp/V6YOmdqYvkc17Gjz7v0WxSSw8/FT372ZzhXK3TpATe/20JHANo8WaV9RZJVQ57eCDV/y9TQZyf6098nYxRm5LQ27fQCptLIOIsAqUphpVIpAKEDNIyVS1VEGVetDAm2nbZQL1s8oeu7cUDtSiEnXZfJFpujdc7K2JZneRgOX3zhk3x6doZOK4VKyFO7YZb8bwQgRJLE/7ouidxnOVHUfEWiwFn7tTIKdC0lC8mhsnZKRTHRZ4ZxRK95Kkrssl5zpV4+Xded29wy8+SgRGSDGAbSMGKMuslTF48iMzRJpo0vQA1YIEC9i4KGgK3WK622w0ghlRCI2MkBz5glP0XfDw13NT+NhcXFIDmTGi4OwuNTz36CLfnwdMRzkesyJ+SUvuwpTaaZNLIpCpgSVH/XX6XKjIQxZKnDDIoMO75qxzRbiJwafKBz1ypwAQzO09DMYpCyf2pYIA0vYQasmZHk/TI/6uAr46d9GnJIFfREuzF6Nd0EWVgjEJiKn2tty1SiHIrDL37xS9y8P/n/gi8LPQQwT402l9xPOkg89QTdMTDtu07VG4CyEk0+dv77E5k+ud3VetXF7X+8v+0YWHfWF5xbZA/F4+c/9xmWnJrtvdrFSPVFVh7Aqu/ZOljX+d09k619om+Kl4wZfsr+heygRPtsbVSPnnJN4knuz/JATF9QwwQzwGkEpxEUGMgRxAnmjTrxUrfXKlcscEG2HFRkr/hbtekFdL5G8ZQBM2LXYb1Zg8Ho0giQJNcXy1NXDD+xE08h9fg5CIc/+pkvcRR6mjAvkSZB2y4ly2X/JWFQouPFLH+lTLDkAqJmRtmPW3UhFq/acRC9dkiMIev6pPwY82zmG5V3gKZhUO98KVihhx+6B5VDSIJlX7FDHNnrDhKayxo+l7syPOu8ocJxJGOMEIihJsB6H1QjIKmqXCsjl+cLFE+puuaA5XohtONoPz5UVS9m/h4R/Q2ALwP4LhHdU8vfPQBvX30FAoUODPHAyQD6zHjYi6fPB9uE0xE4ywHdkPHeoy1OhwFdF/Aj/YAQCZsAdEEeoEbJ67qk7rgAeGD0lsU8CGkRhJMnNuAY1ENlQBoG5MQYcxKlgiQB9Om2F+MPZWhNL+RIyFFCvb6/JbzfB6TE6LcZw1Ym+DqOWElEGLp1RKdhX5HEAyBQwjqcYRUInDPG7Rbj0GO96RCeGoC1tPn9h6d4tN0icsCGVlihA+eIlMwzxk7YRPpEDUNbZWC96jCogmkeQofmkENnLwGo90cyhQTlRwb/+Q2DJb0kNQyYkminUEAd+IZksrTdvAQtEZjFjRAaUplyBpK591lCM2DMhEGTqeWg1mCGKEyyhhRvnwxgC0LPusnoonqpBaxJqlUwE05YKtvklHG27dEPA1IasR1H9EmMP2kckMdeJ6iZkmwjJ+NWQvVWiDGo940kdWZOGn5zWB67QPj40yeq5GUg90BiDL0plco1pDLMZnMCRDVOrVZiDScrMWi5t9Q4ZiUrVXDWqjxTJaU13JTRRTXuuRVouEC52XcNAGiNRhdhV0E7rwxVRaH9f3I6SJVHZjVScodiD4Is1CmcV9CuyyEBCDmD8wiMA/KYyhwypcA2vVJVSDff6gosJ75WGUPDxELdjIcUECxC2zabaURkiVcWg7mMzZgTQh4QOJQcEQxG4ARKg24UpZwqTLFWAdE++zwSctB50UVkHXN53QFppfLPEu21eicByJha+i42/BQOms8U3bAZOdwsuIHz3utdW6YykMfRLlbuO1EcSE/MRdvQtEP6/LkqLmYYsnAVmOIJMepxal3aq/FPcshMn4gYElCHftP7qmATRI3QORplzRPDTxMOFlfaD8lIQKbgWVUqK34AiLHcjIJNyAY146RVk6vxtyr0RWSYAt9MSBs7mMqia3E4jgnvvvd9nGykStnJZj3Z3OZSBUk24Zt1J8pvDNicrIoMjTECRGWuglE8YkzWyYGInBaHaKHl4jmXmfHw0Sk+ePgQOWecbDY42WwQY8TmZI2nnn5S5niTx8W8d4kkmbM9z5wTxn7QxybVvszIFIMozVZuHWwyVNq7WW2wWlcvJCJCzB0CAk42Ur0radLRzFxLNA8j3v/gA3zwg0diEDLvRarrATN0jVzt0nAA/QayCWxkv8l2G05IcvhklSBhBxbqtZXBWgxCr9cMN3uPWUO9SWT4mMUQyE0IGGhXDln/czH25KRGf5OlpipQaZaWS+faG03obAY4uRUhUNS5EvUzGpag6xxzzXURopxWZ2bkMQEpFS97QPwgQhC1SYwpmqcj52Lcn66vh+XwKoPJ9LOo7WBuUrqZLnrRKqLj3iSvyeYLDCft+zWB92T1mbSl/bx5BxqqDjL9/3Fx1TPZ/awZfOz/8jdAs1Xt0cEOMRex43K6c+9cPNZYIzDNM6966BG4kR/TAw/hW7xCqiGn8ZQthhxdCwGR1ba26X6s6oUS9iUiUdueRpk7Ich6RpC9i4YZUQgIiKBopcip6I8Mqv/HyrNEPZAaBpowsebphCh97rqIEAnjMCJlCf1KSTyWMln2UdLsFFTyqh2CQ4LEidlrs4F3hRcxViRRbiBih8QIjhXAAZST6IXQvLujyp2UwCnIXrpPODtNSHlEzxlblXhUDlOgz9WS2WvYNVlItslLqfYltrOIsNLqxFF+5MnaPEzIYcTAZyAQcooiQyHhWkQrgOWgXA5TSA1teihEnSbYJmTuwKyRHlSNP0Fz+dqhrMgzy2FU/TcBTYcRk+yfrsDjVPV6HsCgA+AJAL8I4A8AvAHgFQBf1f+/duXd5ILSVLZTHKBPGdshidcPAyMT+sQ4G0YwB5wNI/qUMOaMrjGFUYBWqEAzCWWwmyuzfEiydMdVhw1pPpYzxtj3ojw3FT9SzhjHJB5GAAaIxTexhPkkhoRoJUJKwHYA+q0ImYEYHSXJScHA2iKbVZEIYHSQRFzISa2/GYmk/9sxYRyT5BA6GxAhBh0mwrpr3XibRUIHLmzAqLsXWM9hGfjeg3eBYli9JockD55trQPKmlnKD4u2AcAOeaj5eq12UkrRlnwqtfRoRWNpV+t/XcxVSKqsJqt8nmriLskPoIkhKWCU/PfaRH0t67WMSUDL1Ut+KCtCG0LUzPwSoiU5zwhgmegpSXIva9WWULx97EeXKukTVYutPYMQxMOhlOTTk4fmeXRE9Mwh5mIIhCd0M1G843JGHoYSkle2nZw0YSlDnC26WsmLqCQTaz19zKJuG5VWMblUSSEUI2A5kb6iL9cx/tj3L1eEdhVU21UWUaSvCVk9Cdpvth968N57wKHmIlg9bdRrxkqV5ibvhhoNOAQE1Pw6Vg0jp4Sx79WQGsSQGgKQA8SbyLRgm9sS1Z7ZvH3sPhmUs8rkusiHicdPRrFh1kl97kkjmfjINQ48J1DOzbEXJhsjNPJgnxJ6Eayd7e91E4DJ9adn3oebi60SKrey+VcekhgrSIRUNUZx9dDS7rceAeWaXBWGksgXradPbsa/qsrtvqzp9oS28qjtRAv16FFzooj20onBpyjGKreLwtWcrEEkZGjaT/pMQjNP91VwITKF2FR1lDWq3SAVuZITDsVhZsbp2RmIgJSebCtO1XVolLDhcRRjfowSthS7WGR+1PlnIoNZizhoqLMZh8o6qp40wzDodROGbY/TR6fIakzYaHhl7MT4I/k5ajJglDEABA46zGRsmUGQdNMVAoE6U3Dtc2xDTseIGgZWq7pvgirbIHBn147lHn0vHlHMjO22x6PTU1CQQxBLVm8nmYHCxECFA8/F9ocm76uSULeT8mzsz40aPpkfuUxdtQ/o89K/i86BYjggNOtZMVrWsWTjqWwGSkUKns5VrnqNbnXl+lR1oFq+uc5JFINEqI1v7i/NCuLlnTNIE1MXUcHVg2Zi7CLoZvX8WqsV9g7EYSNDL1jXp/pCI/PK7+evNTm0mn5i35uXGp9yRlu048L2t9/ffe+jePp8GOzeb/991QBR37qhuQhMnrOpJe1aHbQ9mK7jzaws616RebpeWuUluZAtIDQZ+7uou832YzqpG3mALImGiQM4jUAaAc5A6kBdJ2FPUeYb7d6B6lUlRYpyEGy8Wp6l0ulJ6wAUw/lqtULOCaux02gYPYbWhTIjiIEq88HmokkRoYBKuwhiOI+Qrpv+UCJarBKuCi9OrGuWPLrMDFYDEXJGToRhkOTcAzIGDbWVZMn14IwaGQfbl5gOAgAY1aEEmlam8fipHYGNEyaJApLlMUrOH4oaMq0H4VR5lQNy6BgTZTkDSCmUvbLVIzJ1StYD2adBZX7WkMHJXpnEMI/AO+PoPB7H4+cegNeI1JQFvM7Mf0VEfwfgdSL6TQDfBvCVK690Q3Lq3EZrz9/3i/+F4LLnSsCDd94GgM8R0T/huhwCpZTv+Sd7GIKv4vOwOO7drsaeZ1hXshWArx9kLs4I5UQfAC5Q5C5CfXS3DwbwzrsPgAPORcd53DTfev3DzsUPOa7vDuxp3077dz0IJ3+7YiRoXqn/d/L0uLjZ9VX5P+hcLMo07b7f3PexWneXVp+7Dc2ndKNzca4S9lq4qSG4c93GIHRgHfXus3ZTM/zxJGddfyfrHTXmryt0i2KU1tfjMAAH5HBvPy55aHdtRzbBHMQ586UGSwCgD+Pyd10Q0f8CeAjgnaPd9PbxHO5Gfz/NzM9f9yLK4X/h7vTrGLgrfT0Ih4DPxVuGz8WPjrvSV5+L18Nd4PHQHPpcvB34XPzoWCqHPhdvBz4XPzqWyqHPxdvBhTwe1fADAET0D8z8c0e96S1iqf1dar/2Yal9XWq/LsJS+7vUfu3DUvu61H5dhKX2d6n92oel9nWp/dqHJfd1yX3bxVL7utR+7cOS+7rkvu1iDn29OguQw+FwOBwOh8PhcDgcDodjlnDDj8PhcDgcDofD4XA4HA7HQnEbhp9Xb+Get4ml9nep/dqHpfZ1qf26CEvt71L7tQ9L7etS+3URltrfpfZrH5ba16X2ax+W3Ncl920XS+3rUvu1D0vu65L7tos739ej5/hxOBwOh8PhcDgcDofD4XAcBx7q5XA4HA6Hw+FwOBwOh8OxULjhx+FwOBwOh8PhcDgcDodjoTiq4YeIvkxE/0ZE3yKi3z3mvW8aRHSfiL5ORG8S0b8Q0W/p+x8nor8mov/Q/5+97bZeB87h/DkEnMcl8Ogczp9DwHlcAo/O4fw5BJzHJfDoHM6fQ8B5XAKPzuHd5PBoOX6IKAL4dwC/BOAtAN8A8OvM/K9HacANg4juAbjHzN8koo8B+EcAvwrgNwA8YOav6sB/lpl/5/Za+tHhHM6fQ8B5XAKPzuH8OQScxyXw6BzOn0PAeVwCj87h/DkEnMcl8Ogc3l0Oj+nx8/MAvsXM/8nMPYA/A/ArR7z/jYKZv8PM39TX7wN4E8CLkD6+ph97DTIw5grncP4cAs4jMH8encP5cwg4j8D8eXQO588h4DwC8+fROZw/h4DzCMyfR+fwjnJ4TMPPiwD+u/n9LX1vcSCiHwPwBQB/D+AFZv4OIAMFwCdusWnXhXM4fw4B53EJPDqH8+cQcB6XwKNzOH8OAedxCTw6h/PnEHAel8Cjc3hHOTym4Yf2vLe4WvJE9DSAPwfw28z8g9tuz4HhHC4DzuP84RwuA87j/OEcLgPO4/zhHC4DzuP84RzeURzT8PMWgPvN7y8B+J8j3v/GQUQryAD4U2b+C337uxoLaDGBb99W+w4A53D+HALO4xJ4dA7nzyHgPC6BR+dw/hwCzuMSeHQO588h4DwugUfn8I5yeEzDzzcAfJaIfpyI1gB+DcAbR7z/jYKICMAfA3iTmf+w+dMbAF7R168A+Nqx23ZAOIfz5xBwHoH58+gczp9DwHkE5s+jczh/DgHnEZg/j87h/DkEnEdg/jw6h3eUw6NV9QIAIvplAH8EIAL4E2b+/aPd/IZBRL8A4G8B/DOArG//HiTm73UAnwLwbQBfYeYHt9LIA8A5nD+HgPOIBfDoHM6fQ8B5xAJ4dA7nzyHgPGIBPDqH8+cQcB6xAB6dw7vJ4VENPw6Hw+FwOBwOh8PhcDgcjuPhmKFeDofD4XA4HA6Hw+FwOByOI8INPw6Hw+FwOBwOh8PhcDgcC4UbfhwOh8PhcDgcDofD4XA4Fgo3/DgcDofD4XA4HA6Hw+FwLBRu+HE4HA6Hw+FwOBwOh8PhWCjc8ONwOBwOh8PhcDgcDofDsVC44cfhcDgcDofD4XA4HA6HY6H4P4GWb53oZnltAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACu90lEQVR4nO39eZxlV3nei797OkPNXT2PUktqzUhYAoHEJMASIYTYJg7cQMBksMEYJ4Q42NjxBznXBuL8fvzIL4lxEvuCrydwrvFAjDFiEoMMFkhCE5p7UndXD9U1nnkP949zurqeZ+2uU9VddU6reL58+oPeOvvsvfba73rX2ntXPY+XZVlmQgghhBBCCCGEEEIIIYQQz3P8fjdACCGEEEIIIYQQQgghhBBiNdBLDyGEEEIIIYQQQgghhBBCrAv00kMIIYQQQgghhBBCCCGEEOsCvfQQQgghhBBCCCGEEEIIIcS6QC89hBBCCCGEEEIIIYQQQgixLtBLDyGEEEIIIYQQQgghhBBCrAv00kMIIYQQQgghhBBCCCGEEOsCvfQQQgghhBBCCCGEEEIIIcS6QC89hBBCCCGEEEIIIYQQQgixLtBLjz5z++232/XXX991uwMHDpjnefapT31q7Rsl1jXKOdEPlHeiHyjvRK9Rzol+oLwT/UB5J3qNck70A+Wd6DXKudUj7HcDxPLYvn27/e3f/q1dfvnl/W6K+CFBOSf6gfJO9APlneg1yjnRD5R3oh8o70SvUc6JfqC8E71GOdcdvfR4nlAsFu2lL31pv5shfohQzol+oLwT/UB5J3qNck70A+Wd6AfKO9FrlHOiHyjvRK9RznVH8lZrzMmTJ+1nfuZnbPfu3VYsFm3z5s32spe9zL70pS/Bdvfdd5+94hWvsIGBAbvsssvsox/9qKVpuvB53p8t3XXXXeZ5nj3wwAP2pje9yUZGRmx0dNT+6T/9p3by5MlenaK4yFDOiX6gvBP9QHkneo1yTvQD5Z3oB8o70WuUc6IfKO9Er1HO9Q79pcca8/a3v93uv/9++43f+A278sorbXp62u6//36bnJxc2GZiYsLe9ra32b/9t//WPvShD9mf/dmf2Qc/+EHbsWOHveMd7+h6jJ/4iZ+wN7/5zfbud7/bHn30UfvVX/1Ve+yxx+w73/mORVG0lqcnLkKUc6IfKO9EP1DeiV6jnBP9QHkn+oHyTvQa5ZzoB8o70WuUcz0kE2vK0NBQ9r73ve+cn7/qVa/KzCz7zne+Az+/9tprs9e97nUL8f79+zMzyz75yU8u/OxDH/pQZmbZv/k3/wa++4d/+IeZmWV/8Ad/sDonIZ5XKOdEP1DeiX6gvBO9Rjkn+oHyTvQD5Z3oNco50Q+Ud6LXKOd6h+St1phbbrnFPvWpT9mv//qv27e//W1rtVrONtu2bbNbbrkFfnbDDTfYwYMHl3WMt73tbRC/+c1vtjAM7atf/er5N1w8b1HOiX6gvBP9QHkneo1yTvQD5Z3oB8o70WuUc6IfKO9Er1HO9Q699FhjPvOZz9hP/dRP2e/8zu/YrbfeauPj4/aOd7zDJiYmFrbZuHGj871isWi1Wm1Zx9i2bRvEYRjaxo0b4U+jxA8PyjnRD5R3oh8o70SvUc6JfqC8E/1AeSd6jXJO9APlneg1yrneoZcea8ymTZvs4x//uB04cMAOHjxoH/nIR+yzn/2svfOd71y1YyweGGZmcRzb5ORk7iAR6x/lnOgHyjvRD5R3otco50Q/UN6JfqC8E71GOSf6gfJO9BrlXO/QS48esmfPHnvve99rd9xxh91///2rtt8//MM/hPhP/uRPLI5ju/3221ftGOL5iXJO9APlnegHyjvRa5Rzoh8o70Q/UN6JXqOcE/1AeSd6jXJubQn73YD1zMzMjL361a+2t771rXb11Vfb8PCw3XffffaFL3zB3vSmN63acT772c9aGIZ2xx132KOPPmq/+qu/ajfeeKO9+c1vXrVjiOcHyjnRD5R3oh8o70SvUc6JfqC8E/1AeSd6jXJO9APlneg1yrneopcea0ipVLKXvOQl9vu///t24MABa7VatmfPHvvFX/xF+8AHPrBqx/nsZz9rd911l33iE58wz/PsjW98o3384x+3QqGwascQzw+Uc6IfKO9EP1DeiV6jnBP9QHkn+oHyTvQa5ZzoB8o70WuUc73Fy7Is63cjxPlx11132a/92q/ZyZMnbdOmTf1ujvghQDkn+oHyTvQD5Z3oNco50Q+Ud6IfKO9Er1HOiX6gvBO9RjmHyNNDCCGEEEIIIYQQQgghhBDrAr30EEIIIYQQQgghhBBCCCHEukDyVkIIIYQQQgghhBBCCCGEWBfoLz2EEEIIIYQQQgghhBBCCLEu0EsPIYQQQgghhBBCCCGEEEKsC9bspcdv/dZv2d69e61UKtnNN99s3/jGN9bqUEKYmXJO9AflnegHyjvRa5Rzoh8o70Q/UN6JXqOcE/1AeSd6jXJO9JpwLXb6mc98xt73vvfZb/3Wb9nLXvYy++///b/b61//envsscdsz549S343TVM7evSoDQ8Pm+d5a9E88TwiyzKbm5uzHTt2mO+f+x3dheScmfJOnGW5OWemvBOrR6/yTjknFqM5VvQazbGiH2iOFf1Ac6zoNap1oh+o1oles5JaZ9kacMstt2Tvfve74WdXX3119ku/9Etdv3v48OHMzPRP/+Df4cOH1yznlHf6l/evW84p7/RvLf6tdd4p5/Qv75/mWP3r9T/NsfrXj3+aY/WvH/80x+pfr/+p1ulfP/6p1ulfr/8tp9at+l96NJtN+973vme/9Eu/BD+/88477d5773W2bzQa1mg0FuIsy8zM7PX//XGLysPtnxm9xfMzCDMvpo9z3vRktA96M8jvCTOKUw/3mZIyWJg16ftuG5zzyFIIm14J4mLSgDig7WMvwt3R5xznkWZ0ptR3ngX4MfVMmtK14GOm3JNmGe+T0tBLk4X/jmtz9rVfuNKGh4fdxndYac6ZnTvvfu/+Z2ygc6yY2uXTuQcex+419yhXfeeFNH3uc/9z3mL/dt+/mXk0zGks8DXlY/KLU+4Hp4nOaHLxqd0BxfzmntOU+y2gfnHGWnsraiftsbOLytysve6y3UvmnNnq5t0/+N0DFg2MmJlZGse5310RTn1busJlbgfT7vj73Sqmu023X8ZwLzHn2dI1ux90bfMy8IJ2Xraqs/a//8Wlq55358q5j/3ZV6w8OGRmZjHXCB/HCo95z7rPLaI35NVbrn88z3vZ2Tm2Vpm3X/jx23s2x37ioUNWHm7XuiSl+azLqM7LOq5dAcUR5W6JJskCTXAtOkqT2tjitaSZtajdMbWhkdIxcvaxGKeM8DIt7ztdCyLX/KW35r5Oux+gK2dKeH1+1v7PWy7p6Rz7oy/9SQvDqNMOPJcoxLV0EFD98zA2M/OpRgZRAeJ6vQrx9PRpiD2+HrRWHt2wAeKN41udNiRd5/Gl52De3l3f0/Y5AzBN6Du0UbJoPd+O8fM0jZf8PEk4xv2ZuWsm3ubMfUqctOze+/9Xz+bYTe/8lPmFATMz8wzb5PH9A+1zOdrTHt9z+DiPZyv+DVjOh7yKu7J1GOfUSsm9peG463ny/Ifn5dO14TjL3PHPY8HLMAejRZcmadbsqd99d8/m2P/nS4/awGD7WGmC7SoXMUeSVgviWh2fO5iZ+SHWtpiytd7CzmjQXFGv1SHm9WMSYP2dabo5M1XHa3J6rgZxsVSEeLiMbR4v4zEG6JlNIcN+2Llx0GnD6AA9E6AxnCVch3CfJZojwoDWafz4JGf4ZfSMxumpzi4r83P22ldc37Nad8VN/8qCoH0NuC45darLesnMrV1BQM+JqNbxMXh+9gL+vNs9sovzXML4WvDDEMoXWlfwOfrOLOAe0+1LjOMYx0mLupafLmTO86Du9xMZPxRa1Ka0VbMDX/qZntW6D33uASt1al1C67QwwTHepLGTxu65BrSW4DVSmvJzVl7/GMWFJT9fzrMTZw7lZ9xdno10y+28a86lh6dYj8YPP7t0+oXztuszJbMg5GfF1A9+u5WNypz9f3/ymq61zmwN5K1OnTplSZLY1q24QN+6datNTEw423/kIx+xX/u1X3N+HpWHFx4C/rC89MjopUfU5aWH93x46ZG4AzpdwUuPhZ8tsahdac6ZnTvvBoaHbaDzQKbbS4/wfF56OJv8cL704JccF9NLj3O1gVnNvIsGRvTSw/nBD9dLj4V4lfPuXDlXHhxa4qXH0rWPH+DkczFcofXP+b30cGtMr+bY8vCIDYx0XnrQA81+vPQoBku/9Aipjct56dGiNvgprxfX/qVH3q+bLHkMYi1fepyNezfHhmFkUefh3Ypfevh5Lz2wRob0QCuhB2AhHcN56UFr5YgeNBYifKhndpG89KC1G7/0iGk97zsvPaivabz5XrJkbGaWGD9ky3/pcfbz3syxfmFg2S89eO2+Oi89VmrbyfmQN8+v/5cewTJeevDY8GlODXK6vmf3sYPDNjjUuZ+gB+/lItahpIXPLvgFR97P+KWHTy89gpRyxOfat/RLj0bk5kzRx2tSSLANxRI+PynRS4/yAB6jTM9sivTSY3DIfekxNIj7cF964D6SmF56FFb60iNnbccvPbirnGeLval1QVC0IDzXSw8eP3x/34+XHtzGi/WlR7cXSNQGnvu6rB3P56VH6vRdzrOvHtW60uCwlYbOvPSgNVmMz1D52fDz5qVHl+e0XV96dMntvGvOMz/vgsfPSl96uL+Q4bYhXOZLj7Nt7D6G18TTI+/gWZblNuiDH/ygvf/971+IZ2dnbffu3eYHkfmdidC52erygNTLe+nRZaHG++CXGhkNJv5+mtFNE02oZmbFFH/bIaWinDoPmmhh5izUaIHLLz1y/srCWfw5zy6p75zFHn+fbmB4APs5baC+TPlFy+LrzQ/jlmC5OWd27rybqjetHrWvXeK81MB9hPxwJeeG0LkncfqDB22XidjjG8Klj2dmlvhUxHP6ifYCES/eIy/v0dPiby+j8NA+uG99Z3HB4E/igK4V/3qDmUX04CmhBUizE1aaOE67sRp5V/DNCp3mJXljZoW4D5cwdh52dH3psXScz9LH4Nip4z7369KLjV7gvoSkMPetI8LtPrNWWOnziQudY1M/stRvL8hSrrMB112qUzkPAXJauIxtxJpAXc8PIv1FOej81tZSu12FWheGnoVh+zvOb9B3SZm833zkZQ6/9DD+JQq+YQsxjmjtl3pLz49m7oOHNOH5jX+ZYWm6vvTI2UHO85El99mtfPJNT+5ycoWcSZUwXFmxW42887yzx+82n/ED6bwLlqa4xn/62achfu7osxDPzExCHNCiJ6Oc2bnjCohfcP2A04aBIXzQF/JDlRW+qDqvS9z19x9W9ssPOY9luh3AmXc9ZzCcX/Je6BwbBKH5Z/66iPuBf/GHP8+7deqy3uCHi85vV3bD4zVZ3i8QcrjSX5hZGXkvW90UW/r+PuQXZ/yXHTSvhM4zBbddAW1TisoYL6pxcd2zx91d5LIatW7bQLTwgD6hZxMxjQ36Awqby7m/q9LvSPAW/EszMa8pitSf9EKYn1VEOR0+GOLPimPY3xuGMB6iv2gJ+KUUnXdA94dx4vZDo4n7KBb4F09xHwG9zPHpxbf7W5D8y0Uu3e6vvc69cBitzRx7rpwbHCpZEJY63+V90ZqKHxzn9LWz6nJ+s3zp9ndbZPH2/IsOebj3sF32wX8x7y/90sPLqXUrfaEbRUv/kqvX5SF9kqvO0m3B5C/6qLf3E0ebZSs22mujlMZbGGN/c53yU/eaR+nSLz3c1cjS8x//csxynr24f93D8xvfN3WpCU6bus/J/Be6QcD3RV2OyS/0qP7yi+/cusYvMjlfOi/C+QXoUqz6S49NmzZZEATO27oTJ044b/XMzIrFohWL7m8wCbFcVppzZso7ceEo70Q/0Bwreo1qnegHyjvRDzTHil6jWif6gWqd6DWqdaJfrPRvX7tSKBTs5ptvtrvvvht+fvfdd9ttt9222ocTQjkn+oLyTvQD5Z3oNco50Q+Ud6IfKO9Er1HOiX6gvBO9Rjkn+sWayFu9//3vt7e//e32ohe9yG699Vb7H//jf9ihQ4fs3e9+91ocTgjlnOgLyjvRD5R3otco50Q/UN6JfqC8E71GOSf6gfJO9BrlnOgHa/LS4y1veYtNTk7af/gP/8GOHTtm119/vX3+85+3Sy65ZNn7AP1d0v5yNNQcQ7gcjbUukq6OSQt9oUgeHT6ZXmVk1DXiu74AwzYD8XSGerwNw9gxu+9ml+EYx1y4CHPGfc969KwBu4w2sF6y66+SnXPbc7EaOWdmlllkmXWuJXuP8LbUtjTHuY6l89j00TEmdwwZl/b0cEzL8iR42Ruhqwjz0h46iUcCr47cY3e9QJ8a7jjHdPEdcVKf9LHD2NUIjehnKfdLR2c+W4He+GrlXdHPrNDpZ0dmchWsERzT1BV/n1l5bVmpoeWFtnlt6GIUu4xWcj/4HQ1eL1j+Ga5G3mVeaFlHCzNztGYD3hjCvDG+nHMX/cHVX/UXfba8erdatc5LF01jjsF6l+/m6dw7E/PS5hVsrEwerI62fkB5neS1wbHqonmddJL9Ln3ezW8j73PHyJzn5ZX6ONEO/NX06FmBH9Nq5d2Sx3didvB2DZ2PThyG+LHH74OYfcoKtD505kMquSdOHoD4a99wDT5vvullEO/ZiT4gqcfr95VqP2Oc7+vSJY+W/DRn+y4Gl+flEeHR/y+D1ci7MAgc89ozsL8f33PmjTdHJ5vNQy/Q0NT1slnGeobHjiOtvzLt727GsGZuxnE9Zc3yAsUhtSmk9U6J/BDylmY8LxTYlHqRia7PBhLnYNVqndcwz2sfv9HA+7U5MvGox3ge8zwhmtl0nfTYffYuIM/TgA2cMa4n2L9V8lHMW5OUB9BYvFhCg+BB9nWkeZ79wBLWgQ9wf3M5JsetOvm4kD8KWZVYRMcYoH6L6F6azzpv+Dk21ucY8ytZj6/6MztnTOO2fC08nixzvuQ8N+piM7Hie9yc2sj1lYub6/tC9ZnrEs8FzqOYnDY4Y+Hca/m82CnP7OHB387tOMpzfnS86FmZn7NWymO1at1Aq2TFVvvZadyk8cXjk8Zfk+uYmbX8pZ95dpuvuk2hvO7Ley7SbX7LMx5fCt5fYOyV4bahi92QdVuXOR5mzjOF7vedrh0je053rtUKvOvWzMj8Pe95j73nPe9Zq90L4aCcE/1AeSf6gfJO9BrlnOgHyjvRD5R3otco50Q/UN6JXqOcE71m1T09hBBCCCGEEEIIIYQQQggh+oFeegghhBBCCCGEEEIIIYQQYl2wZvJWF0oYpRZGbb2uhHS9Ug9/4AWoweYvR/CYcPTISOOskKCnRxjXIG75AxDvGCRxRzPbU8R2PjaDviDzMcasgRaQzrBHcUZi07n90E3p0JE6Jp3SLrrQmc9tzDvI0tss9nBJA1dfdC0Jk8CipN3vccq6d7gtvzFMeAMzI0lBR+eZdfEcLT9He4+1FUlPMKe7/DRf83MhdnKfxTHJCyNcWjyT25i3DfuMsE66qwO8tA5i1qQiUXV1JedOoadOuHEEYj8qtv9/eZKUq0oxMCt0qjHnTDdN5NXh+XiMXrR59XH0NTvjyc/TtV1DPEsXaq3n6Gs6Rgn4Xda87+xRXCQ4fg5LGD6sQA91NQj89r/2sVf23bxayNOuM585Njw0n3H7aPuItdpzUr/ZWlrXN2Qd4G4C1F0uCc8R7X2urgdSN2+FC4H7oxd4Web4mix8RuXPJ/+NIEf7uVqdg5j97zwPff6c/uMaSo1I6fO4XnHaUK/gfUhA2vlZ6t6HYBtZI5n8FJzFXY5HX5d1csa+Im4j6JjdPDy6e11cLARhaH7YviauXwrfr9Hny9CYd/TF2YOF5+1ua32nGi7n/mt1+55rvJ/TBj5iGJFHB2nnhzQuIvYBpXES0XAPPPdRSRrjd9IU799bydk4TvCztaaRxhZ12jNPx26xr0CEdaoYuddzhO7DwxC/w2O62cLnJY0Y42aCbUjY0Cgn9x2bRrrnY7l3fv7BPnX87KJF1zPKmUFLtBYYKNN5kB+KT44Jwwl+fyjCa8O+T8XQzbtgmb49Tm1fa7zs7MLH8UHATfla8Tm1v7S0uSXPyfy8LM4zX4M2YCPCvL6msZKSwRB727D/kEfX06nfPl/LHG8FOi+OuYazzQj7xPK44EdsqWPm0N4LbLOEp0eSUyvXkrAVW9Rqj13OowLNHTGNv1yPM5/X0XTNne1pvnL6l9c/XTyq2z+kY7L37wo9PRxTHQzzxp/jW81+zpQnPFa4jTEtTnidl3fH4vrR5K9fcp85ngP9pYcQQgghhBBCCCGEEEIIIdYFeukhhBBCCCGEEEIIIYQQQoh1gV56CCGEEEIIIYQQQgghhBBiXXDRenoEYWZh1Bb0Ymm/lDRiPcdHIkfzlX9GGmCuDi3Gfkz6f/SFBmn3JXHVacPG0QbEgzUULAsz1L3M/CK2ISMNS9a4ZE3nHP1iRyONP2evBOqIjEULaXvWPIzzNJRZh5bbtMizJQ17a7DgJ5n5cbtBfI19R98YwyRPHpBi55J1kXlOHI1l0gxdhiZk6OjxcxtoH7xPRzOSfUhI68/R4jTLWNeQfUZIH5D9abhNjnhmHcfO4QPPOW24fMduiKst1HAtdNrUyhNMX2OKgWfFjl5stkIt1gvVbhfLZ4XS++fYB2nTntEJ7qOnh6ubvbTWd16d6ZaJ3XVIV5bJq5H3/VCC5+t/oeTtLSP9VPYy8M/x373Ah2N2WZAQ+XZtXb7keAYgPMeGjo0BaSLnHYI1rGkfPLTz1mZL0U15v/2zpT092PMjfwyfe3+riZ9v9ram+IG34JvEtSijhdfJk9P43Ry/tk0bN0N87MQGiFstXO+ntAYKAtTFj5u4hmGdYi/HsG2+gr4i3M7A2CeEzdV4j93Wdk4TnAHhziR0HsnS60s3L7vFFy9hGFqw4OnBa16uyaQFnlPXWKefdbV5jCd8r9zNL+W8fHxWuiriOsR+HKzL7vrS8HolZA8Otohw7uUIykmffEPjHG8cvjMNHKOCMP+/e4AfFMwP2s8PSkU8dphhXGviuRVzZpfhoRLEfK5pSv1FF4QOYdOUp5UMN6jFbn9X66gxH/N9ZgHbWCCPhiRljXpsc1TA/Q1EBacNZfJwiFjXvojPbIyf2VDutyiJuF9zV9k0VyU0rySdZzYt7vQ1JsuyhXUNe+LyA7UwXNqXov0VHpPkbeGHFNO14VHufJ/8Uwru9eZt+PkW24Yk9IOYrk1MeR5QP3C/mJmF7C9G6waf5gR3iqdnk/R5zOeUU7/5niUj3w5vURwbe5mtLfVCy7JCe2xnTveRlxDVPo8No82slPI6eulcdqbQbp4eXddgeWuipX18uq2J3Efi1Macuxr2EeG646W8tmBPO+4Y8r/p4mfcOSiE7JdyZgnVxb4Hv7P8TYUQQgghhBBCCCGEEEIIIS5e9NJDCCGEEEIIIYQQQgghhBDrAr30EEIIIYQQQgghhBBCCCHEukAvPYQQQgghhBBCCCGEEEIIsS64aI3MwzCxsGNizf597DPsmpS5Ni8BG2wnaGrlk/NZSvtkY66ohWY9no8mWonrqGOtZoXahEaHpWgMt6cTdwxx2KeJztExLTRzHG0cgyLenvqevWnY8iwNyLgr11Se24nfWWxkmAa9NS1MssSSTnuSlAykuhgWWeq+Q3RMkBxzHzImJ1MqNgRjo0pn/zkmdGzVxPtkwyHHsJ1NWmM2EaSxkWNk7rFBFxuRc55RXrLJZ0rGgsefOwFxK8bxbWYWD+CYDTwy3IoT/P8eMhSanfEbJE9Ad8zRmMozte09Oa1YqV+zUyv6YTONJF3MgZfVQseUjD7uDPmcKWNNyWzx+SxtZO6aIrv7c72Jl76evL3vfJ/mbCqvuW1YehfO572ZXbrMuc68spK9nescuuwEanpv51jfWzSXOj66S4+oPNNyZ5nDpuH0A67ujgE4DQU2Oq/WcN1mZtZIaB4voilmV7P1FZK3OzaZvlA7aMfsexXrMZt094JatW6tzj0FG44WIlwLHDzyFMSTp3F9YWa2Z9elEJdLZYgbjRrEbFrqJC6ZJ/s+timK8B6j/TO6D3HWk3QIZ8BRkyiPeY3rmoybW7B4fUkHcYxX+bypTU5e56TOxbEGcglCz4Kw3WB33ud+WTo2y1mrU5w5NylLG6J2mzCDvEUJ/Sz2ca0dpWQg7eQkxkUyCy6FGOfZ4jr3Xvw55WBKcTcv2aTL/YiZWdDNHD06a2qdJb01lbbYa/8zs4BM2h2jXTbPjtz7WN+5Z8Qxm9E1Dcs0/9H+NgzgT2ox5lQ9dkd0kwZ+g7ZJErp37jJfxTQHFMnwfaTsGlsXqO9CfgbDX6CHVVy7UjKEZkPeRsvth5SqXXCOMZ7kFco1Be8oFuNTXQrIdNyZG83O3hidCR0jctoHbZ/S483UOD8QNoTP+xkbm/N58PMYnru4HvP+8q4YP/NhY3M2dHeMsqnfQjqKa/jujv+U5xnHPP3s57Hf48fKftr+Z2bW5Xkhr1/CnM0LztxA585roi4LaX4e3fU22ZZhZN4lrxyozXxOPAe0v8J5wXNoN0N2OgbdWC3nLy74rPgZwRlj85Rv2pZAf+khhBBCCCGEEEIIIYQQQoh1gV56CCGEEEIIIYQQQgghhBBiXaCXHkIIIYQQQgghhBBCCCGEWBdcxJ4e7X9mrldFxu9qWC8wR2QtqqPuaKtZx+8UUS/XD1gfkPZHemas2Mk+B2ZmCalJZy2MC+WlddsCEhplLWq2SfByNB0dfTryoWDddI80KYMW6xKTHwdp6nmp2w+sMZpRw0EusMev5ZqWWNC5TqxjyBquAes35unKOaYnuI8S6YYm5CcxOTkJ8ejoCMRhxJqSbhtiVywfcPQDaXvWgCxSzqQNzP6nn97vHCMKsdQMDKD+9fDQMMSjo0MQT52ahvjee/8O4mYDz3vX3t1OGw5V5yDeNDYKcaFzPTNHiHPtKRd8KxXa/ZqyrjZdH9Zq7SJv3NlJ1x+skOW4W6zMKyBj/duea9K6Lc6x6bnwY9AFOzPXZCwQvMZkXr4+eudTilmXNKet3WRFWZe06xFZR5bWActJuS4+B930WFeD7n4o3XTW6fuOT0neSSyts4+f99bTI1jk6cFrHEcnlsg/0y4d5vgWLP05u0FN0tzz8Pcfcw6xZcdWiHddsQdiXgY548e5qCuvfSHPC84A66ItzJt38/U5x7cgOsdBgmVNWqvL409/3/yOvnWDPMLGxsYhrlXnIfY9V5P/4EH0/WDfFtZaT5z5belrPja6GeK9l17ptGHHDlzncNqwVDPPqdwExyOCPeT4JiPnO9wIx8+ma9Fd2kckv97RIc4R93pFEfhmZ24FnTbRvRL3o5ejs91Nyttz9N5XdsaZT94MSY6jBnl2pCGOjUJShDjmz8n/YZBqY8mpW93NzrrNGzHlPfs0eQE/CsE4zPNXYW9KGt+L1+1pmOdMsob42YIAesin5ow/8hlYhmkOP3tI2GeC8pCPWKJ7zIjWvkM5C+8WeXhk5MHRov5vtjDv+L4pTvHeO4wwLgVuG/wM95nRPT/7qLpOed18R+gc2FzGzJqktV+IsB/OPJuKWZN/jfF8b6HesFcF+2+wrxP79LZ3SCH7obDHLc8T7FXjpP25x+vZ7/DcgwRUNwJ6FsnPTtgvg58zsieXmesbwv4ojs8rj9UuvoY8ReS5IzglmRbRiz2R/R778I40Ayt1noNlCfZVieazVobXK86bW+g77nKluxveYtgfmtdQuXNXl3WZa0rVzdNi6XVAltMP7lpx6Xa7PiRImLXo8+4+HK7fcL6P1krsUPWXHkIIIYQQQgghhBBCCCGEWBfopYcQQgghhBBCCCGEEEIIIdYFeukhhBBCCCGEEEIIIYQQQoh1wUXr6REE3oI+niNnRrp47OkRGos2m0UB6/fxBqSLSF1TTki/LMS4FrC+YMNpAx8jLA1C7Gj3kbZc4KEmWtNDndAsI93QHMk01pRk3TY/wL7jXSTc1zG2OUpQF7OVoynLGndGfbv4oGmPM9RP2v/McmS2WRzRx76Kc9rqG16TQoyaoPf91V9DfOr4cYivv+kWiFvsJVMegDgYRG8aM1cD2eeYzitkHxc6JtvVNClJ7vvOA04bDpPPR62O/hrDm1C/+kdecCPEt910DcS7N49B/NxUFeLRgqvyd/DhJyDe9jLs26xzPbOc+rHWlCKzM/Yuabx0rXJsYs5HqZolIR3dbGZp7dl8Vqa1n1K3uxrJyzjkKuP4u5xPVztamPj5mbLv9bjWebbKGucZXy8+b9I/5uvvzBVch/BTP0cLdaVqsixfvRYeH91HDnuWrXCHefTeMmHZRJ1/Zu7U363ZeSqwyQp/dYd1YR2fghDnjtk59H978gfPOvvcuWsHxBGt9Zo0p3Cqu6nczdvETQL29HBr/EqO0N2LJtdfZZl5148bj2p11rzOvQP3/6lTRyBmzXGP7znMXQd1xbHwWFrffWZ+GuJHHr/f2eVTT6G/zOvu/AcQl+geo6sUNOvY0+f515e8Ch1vCtLIZg8/2hv3A8eOvrXl+Djy3NI5Ua+r9vXqEkWBBQu1gNbd5GvgUVKyLn4ejuY1JeWK/el4f2HR2YRuda3k4TE9akOB7pUjynu3FnDS5TV0OZ5yiz51DY7wcz7vZXjZZOQpkLKHwOIFjrfSYnFhRKFnUdg+fuqcexc3NZ6Uc76T0WK91azh1gHehzq1ji6xc2+duuO0Oo/3jPUmacSX0AcyKqJvZEoeqtwIHo/sGWFmOXNql751ahX3NT4P8GjtkbcgTRLq+zjfG6oV9/Y+1rdgwTPL43yn6+/METnzq+u5QfMIbR5R3WGLRG6Tc8ycGzDXB2RpLzb26IjomR7ni+N9kuNOkJEPhdEztoS+k/HgYt9dznvHJyGnlpKXTcrzzKLnirl+j2tImKUWnpnXyccm5FpGz+zCnPmRW++smZxnqEvf37PPj+PpkTPBOV4/vGZyvF+WXnin/HCFSdzP2ceK28m+Ts5Yob7l7bmf89Z1/DP2yTvzeZBXP86B/tJDCCGEEEIIIYQQQgghhBDrAr30EEIIIYQQQgghhBBCCCHEukAvPYQQQgghhBBCCCGEEEIIsS64aD09wtCzMOpoUpJ8maO0SNpheScVkcCfH5G+X4TeC1GGunkRHbRB3/cj1Csrkt6kmdn2DaMQl8e34j4nmhBXSMetSXqBmY9t9lPS2cuReXO0TWmbiDo7I03JZpF03kiTsNDE3mc9XzOzFl1Bz3dE8M7+Z7S0Vt1q4yeZ+R0dQNbeY4ldj84jr78dpbwEv3P3n/4JxI9+528hfsfP/CzEr/6xn4C4EWPOWDbitCEcIJ1IOpHA0aKlHVAOJCnqO7K49Z13vtZpQ+X6CYiffOpxiB98+jmIH7r/EYiPPXwfxPuuuwLi7Vt3Qjxx4KDThkceRP3r7du2QbxnX3s85mksrjUDUWblTq4njl4j4ngadXUJcHUnne27ibF31cK+cHcI1nnt1iTWYc7VmHe0MJfeB8O+E4488rJYuuYueHqQJdNa42Vnh7ajPNzNQCVvbmHNTta79cgvig7RpN/BSKhVIaVgnlz5+fgQrDVOM3mOzThHl9aFXs459cH+ZtkEnX9mOWOY9W/pu+xHZXYe58r9z/ujz2dnZyGemUP/KDOzmLSEWUfd8SVwTmNl/kV5nh5Jt++s0D/lfMbOcn1D+vHbVr7vL3h1cJ4Fzrl20Ss+D1wXgqX13ptN9AWMc3SXd1y6G+KBEnq88THY48G5xinrpnPe5iUZrx+X1rDm9aTHC2s2S2EvqBzPgVodfXemZqYhrtfbfemsXdeYMAosXLhXXPq+p5uvRN42Tswa8Ss0QvNJgz7N8aIYoHaPeej7MdWiWkiXl+/PuRayzyRrgefiDCXKQe4n9q4heLXLXilmZhnr9dO9XbpoL6nfW08Pz1Lzzxx/FdbufMvBtWh+HufIjWV8fuL4BDjzJc/JbpvDAn6nMlfBfXh4zEHyM4ozvFdO6d45ZEvUFPfX/hnGztqN18CsSc+eqJQWEadJjlY9WzzwmD1Ts9lXbK1JLVvwL2DvJJ9nfA5zzpM9jti3KaIxPFDCOuRz7eKco8KU5vqKcB/yPSd5tTkPiRxjEWoThkHO8zJ+XpNwjaYCmpH5IT/zc7wUOKHYG9jMjO7dYsev4Wyb0qS3tS7zF11axwqD+ob9xfLqDD9v5jWP8zm1x1nuUG1zPD1cnKnfvUmheOntHZuXLv4aZmYh7ZTHB58X389zo9iz072/yHuOxb53FHeuZ+beUJ0T/aWHEEIIIYQQQgghhBBCCCHWBXrpIYQQQgghhBBCCCGEEEKIdYFeegghhBBCCCGEEEIIIYQQYl1w8Xp6RL5FUfudTEoaaClryJJWWJTl6CBWaxB7Ceo5lkiGLkjRk6NFGyQkezeYoqbs1hyNsXBqEuLdY6iT1xxHP4Zn51B/9rg3jG3yS9Rm3B9rU7d/httkMcbDdN4eaXfO+Ph5s4C6ly3yRvFypNbChEXxSP9x0XeyVjc90tUlTVJLO+1LWf+PNeoz1gd0yXzqb9J0vPnW2yB+4Ot3Q/y/PvXbED/4wN9B/IY3/WOIr7npRU4bYh91nlukddkK8JoVyrh9Qvp/BYobTRxbvkc+I2b2zS9/DuJdl1wO8StuexnEX/7rv4H42OFHIa7Mz0B87cuGIN6991KnDfc9hD4h+w+j78fOy3eYmVmS9laT0sysXPRtoNiuW6yXyTgjIs/boIvOJGvRpqzl3U3m19H2Xo529NLbsJZzNwMNV2fdLTbsSeRo53d57b8anhDdXAjOyEX3PO2ybEGQNMto7mDtWvZe4Bpuri7+yaOHIfYTnCO3bENPq3IRNZizAOc3n72FcjTuWT/ctU5YWlc0b75aKayXyvsskEYvj7Vmem5t8Pb+l6HBfRG7eoR2duHJc0u37nd1Y7tfM499yVrolVCgNUxldh7iqROnId64aZNzjInjuLZr0DXbsnUD7mN8DOJunkp82qwjnLcN4/ptLH1MHuHn4+lxrosTrsZAWyFZli2cs+PZwZr/znfP64D0gy7zGcUBrdNCFp23vDzAq1Ys0vo8Zn1pOiYdI6EDtMz1xGjSXMBzA/tMsG/IXAW1+Weq6JlTreP6slbD2Mys0cC5xZ0b2ueR9tzTw1/wIvCMfCCde0TSXs9ZnLDPh8c625Ri7CnQzRMkoriZ4wexZQiPedUQelU+cHwO4hbL2lMRzyh2PFuW4UvC58Fa7vz7newx4NRCDnO8TVJH85zH1tk4C3r9qMWzs/m0tG8Wz4+OeWX7hxAllBc1Gn9Gfgs+3WM6eUuPogIvb22HPysU8ZrUyF+h2SIPD3rmYwmuA44dQd/JchGft5iZbd6EPpAlqq/sOxE4vhQsro+xax2Tc0/TpeZ7HR+KPE+gtSSIAgs6piRuneE5Ab/LtdHMLKCfBY5nIB4jbmFt9/n5TUDjk/I8dR1YzQ8S/gHug7ZPu3jU+T7lOfv08vHMzKPnKRFt4wfct+SdmOJ9VEb9yvnEc76ZWeaxV++5/VaW5cG0ivjZ2WeG3VZc7rLTbWs3j46Vxpyn3XwLzdy/Ruje7KX73PHNcrza8mq+62m01DFd/zD2faF6zI3Kmee7+g52nmfHqTtuzoX+0kMIIYQQQgghhBBCCCGEEOsCvfQQQgghhBBCCCGEEEIIIcS6YMUvPb7+9a/bG9/4RtuxY4d5nmd//ud/Dp9nWWZ33XWX7dixw8rlst1+++326KOP5u9MiGXylre8RTknesq3vvUt1TrRc1TrRD9Q3oleozlW9APVOtEPlHei12iOFf1AtU5cjKxYaLJSqdiNN95o/+yf/TP7R//oHzmf/+Zv/qZ97GMfs0996lN25ZVX2q//+q/bHXfcYU888YQND7saieciCNv/zMxYBtHRN6YfBHnauaR7N1DAeChAfUc/Rf2xyhzqOpcKRYi3BKgneNmQ62sQzZyEeP7wfoi3btkHcRKwziXu75ixNwO+wwr8HI1C0tMNQ1RNG07wIEOkxTnQxH6azvC8KwHqwGWZm2Iea7amrNW46PutdnD99dfbT//0T69pzpmZJWliSUcfLuE8cvTf2dMj5x1iQJrIdE1uftXtEN/955+GeDDCfR4/hDnzn3/j1yC+5WUvd5rw8h/7MYgvvfoaiKs0vljTscC6pRFpoFdRA3284Opzzk+dgPiRSfTkeP1bXwzx2BB6dJTGUDf4bW/5PyAe2r4T4lOkC21m9tJX3ArxwABpXXYMAbKOvmG1Wu1JrTMzKwWZlTpjsdXFT8FIf5E9j8zMKZqODwBrOLLULO+uizws6xubuR4d3XSTWd+W9f75GAFrE+e0IaE2BKxh7ugyk2+EozuJoc/+Da7jSo4eP+2zU2PjoLe1zsvOapy2YqzjSRO9m3jM5+nLh+QHNT+JGsmTRw5AXJ/cjsco4ZhPAvQWisr4+aYtW5w2+OQp5YekRe2kyNL6ql0sYZYFj53J41gL4wT7fnzrZvxCwALIjuD4yhuVQ6/yzs8WTYsr7N+8UudoCPM8TXHM+v8NXNPEcxiHMa7lhsq49jMze/Thx3AfD+M1vfrqSyC+bC/GGzaMLRk7XkQ5JhOsH+5oDfMU4BpwQMR1ajW1ms+sCns5xy6WufeoM7r7l+TNsUv7gFxod7HPUqNecbaZm5mCeOLEUYjLVDM3bEA/moTO/MQk7m92Ho9Zq+HYMDOrN3F8tBK+x8B7gDjGeaJKazX+3Jkvc3wmeO5nP4z0jOZzZ1e9qnWFMLAwbK+H2SrBD5Yufux70N7H0tvwytvvUgx5XVhiDXpz72M3DuAce+0WzLH9c3g/MBNTG+i21IuwnsYt3CDfhaWLBxLrprMnh5MfruMRfJ659zQZr6Edb4xFcdjux17lXZyanbHDdIdLFz++XKM7Gl9Fuma0dYM8dfyI8s7xdEDy7Chq87MQT9Dzk1qGa9Qt23dDPDKE68kDh5+F+BtfvwfioaFxpw2vfe3fg/iaq9CbMuT7A6rhPOm2yITO8c7LM5PibSh3z9xnxZ3v9mqOzTxvof0+FTv24wv5+ufcYAa0j8jxkSA/Ilon83rFo3s5nx6opTk+Mka+IBmNDd+puOxzgHNfSCceUe3zI6ylZnlestjOgGo035M2QxydMQ2+2DGhcCtuyudN12Kxf8qZZ4w9u4/1vNz8MXNLsnPrlPMdx3NjhR4evFOfn60sY13Y1Z9vGecB++tyj5j3Ka8/uzaqi6dHQH5qHu8/x0vK9QaiPOzUTz/P7PEcrPilx+tf/3p7/etfn/tZlmX28Y9/3H7lV37F3vSmN5mZ2e/93u/Z1q1b7Y/+6I/sXe9610oPJ4SZmf3qr/6qjYyMOD9Xzom14o477sidsM2Ud2LtUK0T/UB5J3qN5ljRD1TrRD9Q3oleozlW9APVOnExsqqeHvv377eJiQm78847F35WLBbtVa96ld17772532k0GjY7Owv/hFgu55NzZso7cWEo70SvUc6JfqC8E/1AeSd6jXJO9APlnegHemYneo1qnegnq/rSY2KiLWexdetW+PnWrVsXPmM+8pGP2Ojo6MK/3bt3524nRB7nk3NmyjtxYSjvRK9Rzol+oLwT/UB5J3qNck70A+Wd6Ad6Zid6jWqd6CcrlrdaDqzDlWXZOTXXPvjBD9r73//+hXh2dtZ2795tYeBZ2NHcY213j3XzWACSPSPMbJj0+zeNo5bebGUa4oe/9tcQN48+CfGtL3kZxHu2DEK8ccTt2iJJRGazqAc4WkZtvkG/BvEW0jx7AKWp7ZihFl7AmmlmViDRyQJdl0od9XS5a8dJFH8swHM4kaLm71zOZc987BuWzV+sx+vHrpZqHivJObNz512aZpZ2NAlT0jt2rBUcjw/3OKyLl9DpDG/aBvGdP/lWiL/8uc9BvOuqSyGeOT0N8de+/DWnDfd+++8gfu0b/gHEt77mtRBvvRQbmTQxtys+jZ0pTMSYtP3NzB68HzXP5+ZIK3hwD+6DvGOOHDoE8W//l/8K8aXXvwDioZ3uhPiSl9wIcSHgMerT/3dntfKu5KdW6og/+jRGE9IjZo+jvOZmpE+akeahTxrF3Bec+yyZmNI5xnl+Gqw128U3xNmgi3dBieIwzdNkxc4ptug7dMwaeVukBWwD2yv4pFMZ5ClQc7uo/p0xa6oG+erVzGrl3PzcpCVpe+z+7Ve+jF+qoZb75k3onzG+E8ermdnIRtSjHfBpLhkZw+03bIQ4obpy8hh6X8zufwLimZO4aDYzC4qo2zw0grVrYBjbODiGGvdeQH4NNPaaTax19Qp6E5mZJQ38DaShEPfx9P3fhniSavhrfgylCDzSlnYkeHPmeWY13BhWK+/8LDO/cxKZ44vVRXs2T+KaYi4jIWk3V2bwmh0+cBDiYaqNrelJiGdOYmxmdmoSPd+SBHP/yRaOp5R8RV74Qpy/MvK0CsgXIV+DN+eHS3ze1bfC8UxaPU8P9mNaitXKu8Wa444fR7e+y/FqcrYhvWHP8dUy+pyP4R4Vts+56rNz0xB//ot/CXEYlSHec+l1EI9S/Zur4j0H68Uvx9eFvbwqNdpnFyMfz8fx59P8yeuKdjt5vcMbJPj/XVitnAuLvoXFdl7wnQxNC46ef543pc/t8iPegPZB6xfyYBwkj8HxEtaZ2Ya7lr98E95nXrIR7633zaC3wpFZ8nCp0xqL1lQ1vr/PG3o01jLSznd06h1tcFpjk9cle3wEvnsf6tPC25mHFz2HaC1vabdqeddIfYsWPAqXNnNyNOzz7tnpmhw8fATiZ/c/B/HAJlybtTzyFWjg/Z9H6+gim2OYWwe2kc9jtYH7yGbRQ/XQYZz3T5C32s7N5KVGtdPMrNFEv5rJ0/iQlnXrI5oD2J8oKOE5ROQVy+PdzMxjvwxa35zxFuXtlmI1ntl5aWZeZ9x0898IOY7c8RVSgeR9hnQzxs8BA/Y7YiMRCrOcMZ55PDa4n5Z+PuXzGioj/w2qCwkXQzMLaO1RoHvMgJ65lQq4jwaNvZbhnNHy+BmVe91j8uZlzyx/0T6a/EDvHKxWrVvsTdnF3s+dUXOOx888+VlHzk4w5PszW/LjfN+eLjXaZeWeHdimnDWVj7maOM9n6JkSL2jooOyNyGMjt5UBr6nxGMHC/3dfny+0Y9lbLoNt29oPcCcmJmz79rMmpSdOnHDe6p2hWCxakUyxhFgu55NzZso7cWEo70SvUc6JfqC8E/1AeSd6jXJO9APlnegHemYneo1qnegnqypvtXfvXtu2bZvdfffdCz9rNpt2zz332G233baahxLCzJRzoj8o70SvUc6JfqC8E/1AeSd6jXJO9APlnegHyjvRa5Rzop+s+C895ufn7emnn16I9+/fbw8++KCNj4/bnj177H3ve599+MMftn379tm+ffvswx/+sA0MDNhb3/rWJfYqxNI89NBDNtSRfFDOiV4wPz9vzz777EKsvBO9QLVO9APlneg1mmNFP1CtE/1AeSd6jeZY0Q9U68TFyIpfenz3u9+1V7/61QvxGY21n/qpn7JPfepT9oEPfMBqtZq95z3vsampKXvJS15iX/ziF214ePhcu8yl4GVW7Ai1ZT7rPuMfqKQeaoYGpEVmZjZEcmOFQdT+Pn0EtRnnHrwH4is3j0B89QAeY/cAtqlyGvUkzcyyYdzH0Cj+KdfIEGpIjg/jee8kTbXpCdSWnppB7dzS6AanDWEZj9Fokg7mAH5eSUhPMMFjbCZ9wU2kS3+4RsYjZnbsxBTEfovbcFbPOqu2NTRf8YpXLPxsrXLOzCxN0wVPj4Q0WllvkOUXvRxhaNaCTki2rk46di9+zRsgfuQp1EqNSQu8HOE5XjtGuqRmduzxRyH+89//Q4i//3ffg/h1b3wjxC948a0QB8OYt3f/1Vcg9pvuNQ/L2K64gjnw7KHDEG8cxgF7+NB+iB9//HGIhx95BOLNl+xz2rBnGMvdC66/GuK0c8ioc10feOAB+wf/4Kz/yVrmXTEMrNTRRAzIk4j9NNgXplHHMWlm5qeUJwHqLIekRRrXUBe0ScK+BapdLUd/2iVjzdQuusoB13UeTlyLmrhBsenqTxdT1PHNSE+6NIjnVSHd4MoM9mOpgHqoHmn358ihup4DFAeF9j5KlTkz62GtazUtbbbP5/vf+jp8NlDFuWX3a18DcbmB/WZmVjmIc15EiZrE2BOHp6ch3rqNjO02oFb4iOGfNpdG8HMzsxrJap8+9AzET57G87rk6ushHhpHjeWRIVwnJOQHYadPOW0YId302UnUjg5nca1xxTb0NinSnFqnsZixlniOnun5uC/0Ku/8LDX/zFrG0XXtaq6Qt0fchPbJ+tFZjGP28KIHAmZmw7QeqVPeTp90zRYDKnajA5g3WQPra0xxMcS6kpK3UDHCz3N9Dbp4JTja7V1NQFiPfMndL4/OPvzOzno5xwaZv6DDz32VsnHAcgYQ+wpQh7DuNc+RXX1CMtYsd2/X2HMjIm+uLMH568D+hyHesecGiItlzFs2Owm8nDZQfWoldP/F3iY0x6bkp5DF7M9B9weOYYfr+5gZHaOzlj/z/72qdcVsxqLOfOC18Fr47F1B0h0hi4ubWchpGoxB3ApxnVegL4zS3HTNGF7Pay5Fj5cjJ1wPlK0B1s/JI+i1taU6DfFwEe9D58hHpELzXTyM5zBXca93I8XRVKda1qT1rZegF0NEuvO8ckxo7dqiemxmVq/gPi3Gmp4tWpdn9aqZ9S7vLEsX6neW8FjAc08ckzDyiTGzBs2J3/nmtyA+dQTv3y4do3U1rZvnm1gjNm3GNVA0ip5WZmbFCC/Klo24VstiOi+qjRuHcL24a8d2iE/Nou9WpeHm/oZRvBZHDuD6skDzCG/fjGk8bsYxXyxh7i/lcXAGdy2Qwc97NccO+6mFZ3wpaUxHAecU+1U1jPHIG5SmCce61wv4/pG9obBv2bzB8SQwM4/9UtjU0Zkf8eOUar5jUxljzoWFaacNQwPYd4NFbMNQET8fKmOe7z8xhztMMOcC8vxoJu61KNL1477FPG3/d69qnWdn7wDOMRSoZYvOg5PKXH+njB70sUUn+z+5pkhLr8PzcNrp+O11+8bSH7M/HHvAmpklvG6jOZNPM2UvF/qc16/cbzlW3ObRXMQ+RVnYbnccLv+Od8UvPW6//fYlL5rneXbXXXfZXXfdtdJdC3FOZmZmbGTEfdBmppwTa8MrXvEK1TrRc1TrRD9Q3oleozlW9APVOtEPlHei12iOFf1AtU5cjKyqp4cQQgghhBBCCCGEEEIIIUS/0EsPIYQQQgghhBBCCCGEEEKsC/TSQwghhBBCCCGEEEIIIYQQ64IVe3r0igHft1LHtCQlQ2k2gEvZTCjHkGiEjVoyNiJH05af+FfvgHjjOGrTPfzIgxBPoz+qjW9wjbg2jmyDuDCA5s5sFJOS0WGRzPl2lfDzQ1OncXsfTcnNzGYqaKzUqmE/hC1sQ2MGTZAOTaKJ57HZ4xCXKtgR399/xGnDxDE0f22cnoW4WjprppjGrjnxWhInscUd07qEjK489rBy3IFcMyHO1YBcqVN67xgMjEP8o//wzRB/7StfxPY20AirXiGjXTPb98IXQjxy+BDETz3+GMS/83E0Cb/p1ldAfMtr/iHEN16NhuAP3P+A04Yte9BYPByZhvgFN90EcWMKjfF+5l0/DfG37v07iE/UMa9HS+74e+JrX4X4ui1o2lnacYmZmSV9qIoFr/3PzCxgtzMiI7e0p59+zNnmu9/8MsQbSlgLxstoGFYuoLnZ9suvgviS626EOAmxk4LENcKKyayQTcMSMiafn0Nzez/DazpA4y9qhRSTgaqZeTWsT4UIzewGRrG+FErYD/4UtqE2j20skMGwH7rJw+fN8ZnzzJpkOLfGbBjdZQOD7Ty49dbXwmdf+sz/gPiB+3C87a26dXlgAA1LL9l9KcSbd6NR+eOH0UB64mEc85eMjEEc+DivDwzh52ZmO7fgMaZHMO9TMhut0cTdmp2GuJrWIN40gG3YPOjOsUGIRoLTc5hTCZmxPffccxD7Yz+AeNcNOCf4oWs02o3z8ZxeK/w0Nf/MGGB/PtaeDshML+f3dFKaU9nY3UswV5tzaEDbnMdrPNvAMR+TaaO13NwvRJgHhRCv+eQk1qEnv/8gxJfv2gHxlm24VgzI6LVYxBwzcw2inc+5b7t4/7HFo2OYmrPecc3OaQ3VuX6BY/a49jSTlnlnFnFkhu1lS//+l2sSb5bRPO1RfUroGGzA7RjLs/Ejm03mzLE+GedmCR8Dty9F9Pn0NMTNeZyDeK4qFN3awybiRVrD+gVca0S0D+6XFs3jGbWh2XKNVmuVKsQx1W2v45LpOQm6tpz47mctKLTXHEkd25iS4Xu4AY2Zg8i9jw0oBa5+wUsh3roB60hkuN7ZNoLr4k0+1rrJxx+C+LItWIfMzIIankd1Du85rtuJtWpgFOMGXYLpKl6r+RZe74On3HVdlcbCXAPNeA8ewfvUU4cehnjTKNZPNkjl0sbjwszs8LNoYp018Dxs0TyS5MwZa0noBxZ26lHMRYDqls8ny2bNZmb0DObWF+D9waEE++fRv/hjiOfm8PNg206If/Idb4d4dBDnTzMzSgsLPFr/G9aVYoHWZnSNp+p4TU4//jTEDVoXmJkFNCvOT9GzjAo+y7jkZS+HOGUz3wzbUIrwWjSbbs0PQzwPKvk2O99e31Sr+GxgrRktVCyK2uOwRuMxpudKhRLee3semYybu96P6Llexuu6OtaJqDAGcZph3/Ocnzs30KTM2/gezVU0tsbHBiHesRXvkfbs2Y6f73bvJzaMY80+fAif33zn3vsgrqZ4zG27dkM8PYN930iwnkepmzezs1jjE8PnoYuXyM3W0uvQ1cY3b2GtxFeQK9kyPMSXQZedsMF3l2/nrS1d3/JsqY+74jyrtGXcV/k4R/L6lGOPHpBmNK8kPK/QoxLHCN3MvCJtRGEWts+jHi8/5/SXHkIIIYQQQgghhBBCCCGEWBfopYcQQgghhBBCCCGEEEIIIdYFeukhhBBCCCGEEEIIIYQQQoh1wUXr6VEMAit1NPwSR/6XfBFIO6ycuBqgmzPUlBxsoY5dUsbvFPhz0kveuWsTxDu2okZlMXQ1KYsl1MGrpfjOqdlErdowQA3Dk5Ooq5dSx+wcQU3LWv2E04ajT6Nu+r1fRp+D0/tRL7BBx5yvomZli/T/mk3cvh6779UKMWnVkv5jtG3Xwn+nOTrGa4lnZ7PL1WCmvGPdvTyZatrojLbw2S9hX6Qk0Lnn0ksh3rwNNeuPHN0PcTnHS6ZVw2uw6cq9EA9vxu88+xB6cvztV/83xE88iZ4fN7/2DRi//DVOG0LSWz1y6CjEo6RZfngS9XJfeNOLIN6z9zKIj86jTvuBx445bag9+bcQF+dRj/WM1HRr5ZL5F0y0yNMjZR1RysOQtGl3j7rX/C+eQm3mrz+K8Rh5ejRrWHt2XX4lxLfc/qMQX3vDj0C8fRRrm5nZ1AmsPzGN5cFBbPf0Saw905Po+TBEeuSX7MY2DgyhlriZWWkQdV/Hx8cgHt6ObWiwR0cBx+fT9z0J8cg46VdHbj80U/INId+PcrF9PVn3dq0JikULOh4mr3jVK+Gz575zN8SHvv9diI899oSzP28c9Wp3XnY5xHuvQF+fjZu3QFwIUNc3JO+KQdIBnp3BucjMrFrHPI4r6HM1TBqhY5vRV2t0HOtra/Igft5CD5Ch1G3DYAG12ZMx1EZtZbsgnplCn5i501iXarP4+eBG7DfHq8HMLi4XDyTwQws62tbuHMo+B7g24DnYzCwkLdmAvM/qc3iNnnoEPZBOkP77pjGsjRXWxo7d9WWRcrNRQ6386sw07mIez+uh+1CXuZ7g51t2Yc688EfQA8vMbPtW1N8PA9Kwdr5BnhGkFOzRuprXoymLFefsw7lefUzLHds2LeiEe+zXxjnEfceGbmbm+1ifEhqHnmEO8D7NI41yn7wLu7TJzMw33EcxwlrDOTA3g3k1N0na642lfbdqeTrxfN4ezqmlANs0e2qavo/nzV4ojnVejqJ10cPv1Knun/G7YX/ItebUw18y/4yWNa0DfNKwjot4LZs5OtWD5I9y216cvzYGeH2GBnB9ktbwGEdpbhktYE6XN7prqpaRln6K9XB2Hu8Bp2ZwzuR7uiTGaxe3KCdPYhvNzMol1K0fHcR1V7WJ9xebhvEYwyXybSKN82k6h2cfRk8zM7P5Yzhv+DQOWou8Svi+bq1J/cDSTq1LaC7hmO9z04Y7v82cRk+qsQ34fGNuK+bl3CSu5TZtQO+C5hDmZUyeDpWG218+eTrUaui5UZmfhrhOnw8PYxuLw2P4/VlcJzz+BHqrmZnNzuDarEnHnDiCeTeyFedtz8fzPPAs+rmN0/3EkaPufWwQYkGcp3vfuPMcqUneZGtN7dQjFnfW7LM1rBEnprGNRr53W3Ze6uyvVMYxXiyQjyTN4acn8dqUx/dA7JV4IsH9ZZ7roZTRNuzRWqR70qEB2idZr4V0ezi0EbcfGsVzNjO774H7Ib77K/dAfOQY1kfPx7VocQhzslhAj4+NG/GYV16Hc4qZ2XfuPQBxhe5Vk0VjM27is9O1xvO8s2vVLr51bJfq+zkLUse8l7xfaN7u5hvS3dMjrw1Lf8n9DrWRv57jv7eYNMfTrkHPaVs0h7XomXhK80iD1i/zMbahRs9CG4nre1XPsIY3qXMbWbvexLXl+6HqLz2EEEIIIYQQQgghhBBCCLEu0EsPIYQQQgghhBBCCCGEEEKsC/TSQwghhBBCCCGEEEIIIYQQ64KL1tNjMDArdyTFWCvX0WEjLbCtDVcHcU8L9eLDCuo3HphAzcrvTZA24zhqm7ZaeMzQL0O8kbTjzcxI5tCeeBY1QafnUZdsM+mpHnkG/RumSDe6sAk1nZPEvbwHvo6+Bo/+1ecgrk+dhDgiPbuEdIyzkN6bRXitghA1LM3MQtLfDUir8Yorr17477jVtFNPfs/Zx1pRqbUs8dsXKral8y4IWCMStVLNzEh+04KA9QHJN4TU+Ej+3/bsRZ38Y8cO4P5SVwd4YAy19lt11FwcLuI1unYINZkPP40+Bs89g8f8wp/9IcQPP4KeIGZmr3r57RBfcz1qkqdF1Iit0/hKC6TnX8Pxe82110P88ptvc9rwf//7b0E8uhF9ecLO9WMd+V4wdXLWmmfkC1uoY5jF6FOQ1vHzzYOuFumLrrkC4kM/QM34EydRZ7k2i1rQz+x/FOK//dsvQrx7F+qCvuBS9NcwMwtIs7FA1/iSSy7BL1CyT0w8DXHSmoY4ewWOpT173DYMx1gjM/IPCiPM/WwA8+ypR5+C+N5vfhPiy/ZdA/F1N6LXiZmZT14VLPoZdbSXI7+3v4Pgldr/zMx2Xob6t//iXT8N8dPfxL499APsFzOzyWM47x56EOv2/kdRm3ZgI2rHFsZwPO4i354brrwW4k078HMzs4x00zPy9yrRUDm0H3NsoILjYEsR6/P2ARTpHTFXN3kowX2kQ5j3E1WMhwZRUzfx8fPGLOqLD2/CfkpzNO7zvC8uFqqNefPq7Vz3fOzPSh3HZ0oivMNl1yvNa+B85oekEd/EHJgj7e4jz6Gu9umj1AYar83U7dsh8vkICrgeHB/GuEFt/v6D6Lk0SzW+SB46hw/j2tHM7Cf+0T+CeMsW9KeJScudPSPYGyYhw5WM1m1+jga2kXYw73Omk8vVedcLZ6355295h5WL7XwrUx4ND+EYLJC3wdAQXj8zs4DWvuxZNUDrqCIdM6L5kNeGEXkaxTl+FDx/ReRJxT4gTz91AOKHHkXd+q3b0C9oE92DTE9hLTJza83p07i2mDyBWusj1C/DI9i3MY2liPJsatrNnYcfwfHxohteD/Gho0fMzKzRbNjHfx/Xs2tJZXpqwdPDC3EslMq09iCfn0Lqjq/Lt+M8vM3DHPIm8T528xCuZ/yBMYijUfRa8CnHnnwO7znNzObqOL+F5EUStnBOHCiSlwL5XQakkZ6lWBs3lt372FOn8f588hDO4yH5UmRkQHT6JJ5DPcF6e2oK/eimTuF9sZlZyDd3NC8ki2oh+46uNduHAxsZaV+XgweoryZwvitEWHeeOuKe6/efwDwI6HyKtHbfsu9GiLduR2+Lh5/GNv3eX38d4jjHz6YU4TFPUG6enkMfnxp5C4wNYI1/8YtvhbjZwjx+8CHX0+Nvv4f3tq15zJvqHMbf+A7fw2Bfz5DXBftU1Juuh5JH3k+1uWmIb3952/8ybrneLGvJxNwxCzq+X5t24P3E+AasQzNVXKefMlfPP6K1fInHVwPvi5MIc/A0fV5r0rzBnlo5vgYJHTM08p9tYs55CeZcfRbH0vYtaOpx1ZX4PCfN8bK599v3YjvpmdqWPVdDPDuPbY4b+FwxSXD8pwcxx6rhpU4b6jFei4fo2WU9ODuHpzGOgbWmEQbmdTxF/JjW7nRPndB6yc8xpkto2o3pOZ9H6+g0xbxrJuyFgX0XkxdzLXPnt5DOo9XAfUyRf0YlZm82yn2qO3M1rCFhTq2Im3iMuRT7rsV+ywnO+w3y5qrT92MaW82cNrBviEdrZCu2a3rWIM+gJdBfegghhBBCCCGEEEIIIYQQYl2glx5CCCGEEEIIIYQQQgghhFgX6KWHEEIIIYQQQgghhBBCCCHWBRetp8ew17IBr61jlrFuNuk9ljPUL6s//DfO/p498X2IhwZRZ3Qqw9gGUG/80SdQu+/woWcgnp7FNuzdi9q4ZmZHnkOd0PsfOAhxnXTZ6lU871nS4Z88jfq6pRHybohdHdGDT6HGZDpHmpIF9vDAOMhQly1tkYeHhymVsAabmbVY95l0iLfs3nt22yb261ozO9ewRtJuTytDbT4vIj1xOrUwcL0gWDc7It1J1rNNqG/Yz2ZgfCfEIyOYZ/PHMafMzGLStc8Mzyv2UW8zHMexcMmNGyHetgX9HJ56DP0fTj78HacN//tJ1PO/dzfq8V/7opfiMbZdCvGj+1GPM/DHID5+GnUpt1+PWsVmZnv+3t+HuLENfS9GOvqOSY7O41rzN1+71wql9nXwSaM/Ir3chPSHt25BjWwzsyxBnezLiqgleqSJ2s+1CM+5TH4czcoUfv8RrIenKQfMzIqsn0ka5aUytjEYGKXtcX9hgG18+jjWhuFh9NswMxsmfdFygbTcR/CYAemsH34O++mJ57AGT9VwfI/tRn1VM7MhOi+PtDCrjXZfVyuuN8NaEjda1orac+w8eVVcdtvtEN9028shProfdWHNzKaOYO2ZPoSay4/+zZcgfu6xxzA+dBjiRw7j5098B3Wfd112g9OGF730ZRBvHMXadskOrAvlWcyPE5N4fYu7sd5WBnFdMJu4nh5xE/fpU85lNI3Ek6QLTDr8GWmkJ6x9yr5aZmY89fc2tZbkbz73WSt2xn6Z1ll+gDVhcATr1o6NOJbMzGZPoZfMxq24z2IZc2CS1lGnyc/N6ng9WuSx1HDlxs3It6dQQv3wgVFcm3mUEzFdsISK3zzV/KlJrMdmZgHp37J/TYs9OjJcr3i0Vjk1hf1UrWEbdu5ADzkzM6O5c5r2ceCZtrdevepqla81WXbWTimJsZ2NOnmIUV9x35iZDY3gNS4NYA6w1wGnTauO49ij63HiFObhpi3o5WNmViph3WafFfbH+Oa990B868tQ137TRszT+777XYh/9DWvdtowQD5YP3gMtfAr28fwC9SX11yN67CHH3kEv1/Ba3Pr1Tc7bTh5En1Ddu3EOv/tjr9Us+Vqx68ll192lYWdNf98HbXVj5C3gkfebcWI7knNbPdu9PQYH0TPlZES1pGt23GMVkhXO6GawXNLuezW25DW3pUK3kNOHsVr8fQk+jdMT9Ha8TTeF09PY81o1dxaMU2+MbNzeH/A47vexPOs05xaHMScHNmIY7vZcu9DPfZgY2324qJxkfT2nuKxJx+3wcH2fcEzT6Pfzf5n8BnA1m04X37+G/isxMzskUP4rCGjm9/iAN6DNBM8xvAo+ugcPz0N8cwseiF4zgLGLCS/meYs5lGS4T7YX9Qot+99+AjEWzfjWu/UcWyjmVmV/DDrFcyLjJ+5kBcC+/kZeZZZRnOC7y42fMNjFkKs+T/66le221av2df/5o+d768V1X03WdC55zs+TOudAVzHRRHOW4mH483MLKbHk82AvINoHgnouWCT/DHChPxUOcX4Wpg562i/ijnXeBrvWWaO4j1Qcxpr4fHHcQ1135fpXr/ketZZiNc7JC+ouIX1t9bAvk4G0dvNH8KTGh7Gvj9xnMaRmQ3SM9Ytu/EYz8VjZ4Om+/215KQXWdFrP1sYoOdpAd34VJrk45JjezPdxP6Zb5JfBnkv16vksdPEPJuv4UFq5MU83XJ9j20e622DnrPOGc0n5A3s0zqn5uE83krxWcxA6s6xvof7qBZwrZHQ2rKQkRetz8+KMYfOeJme/YLTBPNpH+x7d8ZvMWsu/wZXf+khhBBCCCGEEEIIIYQQQoh1gV56CCGEEEIIIYQQQgghhBBiXaCXHkIIIYQQQgghhBBCCCGEWBdctJ4eg9ayQWtritXnJuCz6mnUcB4p4rubQ0fQb8PMbPb4IYj37EAdWX8MtU+f2o96j3ff/T2IazXUEH3oB6hZ6Xmob2ZmNjuFWnANkr5jT49Wk3Tb6qTvSNrwiT2L+09dnbMwQr26KMJjNh2RO9R+ixLcPkux7zPWQMzRG09JuzglPezxzWe1i5t1tx/Xksu2j1i54/cyR/0/NYdafGlYpBi1jc3MfNJ9TVlI0medSbxmIQndeXSM629CL4xv3o0akmZmWQv1+koRaun5pIPopai9Vy5imSiMo7bfra++HeJjhw44bXjkARw/Bx5+AOJT+zF3d1x2FcSXXnM9xHuvvAbiE1OoBZ/l+HK88FbSox4k3dGOp4bXdL1Z1pqnJyYtLLYLQpJhTvjkJZORVu0TFdRENjO7pI6aqfuGycughHrSVUrLOfJ9qTUwTgv4hWbmas82U6wlLdKZnKYCmJ1GvdSyj+dd8PGcZo+ilmlacrUx0xDbGdJ4azZIh5I1eKmGju+7CT8fQT3k+57BucnMLAjxvMIQ2xkV2nEjR7t6LUlbqaWdGjdDmqAJ/T7EcAnHl+2+3Nnf2A70+tn38ldi/IIfgXj6vvsgrp1Gb4XvPvBtiB8/jHPyke/e67ThT3+AetQjW9GPaB/Vkc1bUO+2OYda4X4N21TdegnEA6RdbGY2PIQ/Cwo4h6YpeUbwnEqauPEkju8NO3ZAHA252u8JS0U7W/SPg088YoVOzvs+agN7IeZZVMSx8pjvan03SCO3PDYG8WX7UAefvYZo+WgxrU8a5NHSrLlCwCktfJrhNO6jjmM7Gsa8LA1hmwvksdMkPeq04V7RKunczxV4bUFeahl7fGA8PYFa/CeO41goJ269SsmD7eCzT0F8bKK9Pun1us7MLLPM0s5IqNZwjDWo3YUCrnlaiesF4UfYv2EBtbEnjuD12Hv5pRCXSJu71cC8+l9f/QuI3/hjr3faMDxM6x4e96Rz/oUv3g3x1ddcC/H0FHrFfPjDH4N4aHDMacPkKVxz3vc9rOuX7MGa+fSzuPa46kqcS776ta9BHNL9wb/7uXc5bWCfEB4dXtCuwV7OPdFactMLrrdip4Y9uR/vEU+fxPEVUw0hS0EzMyuTx1GNfEAOPoEa8997FuOUcrRGa47aLGqJnz6N97lmZifnSNN8Btdhpw7gPD0/j/to0bqwSXWkQWMtTnIeU8S83uSYtN3psvsBbj9q2C8V0tEvlt2L0WzQ/XqMBxkeOXuflPT4luI//e6fWtjxjXpmP3qrVanOeOQJUam5YyQxugeh/o0pJ1rkqeKfwjnao3vQjNb6Xs7v4/K8HA7jfaiXoq9I5lFOlDGepetX2Y/jsZDjK2J0jX0Pa1MW4HcC0t5n36bYZ88P/DxI3XknpmdPl125D+KXd3ya2Gtnrbls916Liu11S1jG8RSQ50uZPHW3Fdx7t4h8cIbIm22giGukRh1zbIrm+Jj8VJOUrkXsruvYQ+D0BNaqVhm9Sf0r0WO1RfW0NofrnuOT+PlMzj1grYbriEZtGuLKUfTTLAQ4R9Sn0COrRjk7HdBzK5qvzcwu2Yb3NJt3oa9WKzrrGZE0QsMWry13PzZtQWdsF2N6RtfEazrXwrrTzPGCmG5gfzTI4yOlceU3sfalNCc3YszTiNqYsBeUmYVUN5oeXtOggcccD/E8fcplv4C1r0F1zHPmT7N6mbwlaXFZpEktyrBW1amGp/RcLSOPnizH/zklTyOfnrlGnXqb5dwXngv9pYcQQgghhBBCCCGEEEIIIdYFeukhhBBCCCGEEEIIIYQQQoh1gV56CCGEEEIIIYQQQgghhBBiXXDRenoUk7oVk7YO68mjqEk5uR817OYC1D+bCVBP0Mws3oEeAM+RtttT30TPga8/9CDEx0+TfifpQSZN1DNLWVTbzHzSayySv0ZK76B8EnX1U/6cdDNJpzQsuO+0GhnqydU98m+grxRIV9E3Ou8i6pXHBfx8YAA/NzMLSMMuIe3MPXvO+qvUSZdxrbnpik021NHNPTGL+ouPPE1atqQjPJe6unI+nZtPutppitcsTfD6BKRDmXqYE8Ob0Kvh2ptvddrwwLe/ivugXB0gf4Yi6ehV5qYhDiPUkW6Rnt5lL7jBacPOy1G3+SHSbT7wgx9A/NQs6t5PnUYd6OeO4Pb7rnwxxHED+9HMbOIk6lXPNfE8x0fbWo7VebzOvcArReZ1tJ890nZmOWAvxRwoFV0vmbSAuq8nW9gf45ejFulGqoeTU6g1WqF6N1/HujE366p4xqyVT/Ut8zC3h0dQN7RM/jUp6VAWSePVHx5z2hAUUDt20xhqY+7egZ4OG0ZRezYmXeATMdazehmPebqK/WJmlnBdLlFN7Xg5teq9rXWZn1rW8fKIyctkuob5MFvH6z9cQp1SM7OUtGIPk0Ru4QWoA3vpj6A/ymgD9WyvePQhiE8dwHXA04897rThW1//FsTP/gC/863v49ohGcbzGNqI+TE0hrrRw6Po4VIecj09RkbRr2HjZvxOHOO8EjlC/Nj3E0fR/+iJZ9Gz7OZXvMZpw5Y9OL6THI+jfjE107Co0D7nkVHSSm9hX0zN4zyQp/VdGhyFeH4Oc9V/7iTE5SLOX4OkL36K/B2arIGe41/EXkGW4HfSmPeBm/M6oRRhXtIyzFotd63xzEH0E5o4hfNdRLrZBYpbtC6YmcE5YJrnhArOwWZmc6exr2u0dqg32nrIrYZbJ9eaLDvreeGTnvDQENb9gUHMkZER954iIt8P9nX58jfugfjJ3/m/IN6+E9duO3ejr+CXvvYNiHfv2uO04arr8L5myxasPfvJ0+HgYcwRvsb7n3kaP5/HWvWp//uPnTYMUg08fhSPyePxiWdwTD/yCGrpHz+JOXT1pZsgLhXIX8rMUd9v0nx26FB7/Rj32FzhmaOPLuTJqVk8rxsu3QlxlOGYf/gZ9MYwM/vu3/0dxN+c/TrEs7O4dq2S94Xv4/olYZ3tlL29XHi6inhdR/WSpx6+B9q9C+fYkydx7Zr67vVuVTEvW3SfmHKBpXvt0Y043sMCNnLTBsy5K/bhfGpmtv/gExDzWNq++ez1jFuJ4chaW1736tus1Fkff/f7OD9WaQhUWviDatW9d6pSf9drWL/jFmYK38O0KA+zALXZKzXycUlzMo/GbkL3yjEdI/UolzNsc0J5ajQlZalbK/iYSbK0lrxP/pgZeaamPq/9aLDk9UOKbXj5y14E8a5du8zMbG7O9eNZS/7hzS+w8kB7nhwj38/iAN6r8dpjm3s7YSW6flFE/rI+zuFRSM+VaF1Xo3Xbd76DtfThh9z7iYQWXpfReZwq4/W/8SZ8DnHrLbdAXC5h3eH76sOn3fvoxiyu40YLmDNHnsR7mvlJ9EBuNqchPjqDY/l0C+urV8B7IDOzBs0Tg1twPVRe5JPXqrfMXRmuHY+daplXbNePIs9Y9By2SY+8C46HsVkc87Nd7J/Q8JmCn6DnYlDFZ1VZiOu20QSvp+MjamYVmkusjH6ZI4ZrqC0e+ddQWamTt2mTHs7k3E5YK6B7W6qHgWHfOf7D9Hw0IH9nL6RG5ryNyGjeboZ0fTue1FlenTwH+ksPIYQQQgghhBBCCCGEEEKsC/TSQwghhBBCCCGEEEIIIYQQ6wK99BBCCCGEEEIIIYQQQgghxLrgovX0+PLn/8yKpY6WWg11SkspaomdbqJG3cCoq79bLKCu9uT0NMRHTuM+pqbI64K0/IoF1Bf0Uvw8i10N7VYL25155PFBmoRpC/eRkW6mT5evSdqcSezqJpcifM8VJxSTACtLoxZD1EkcHEIxRq+MbfJ4B2ZWp/MqjY1BvGnrWW3jWhV13tea7aOejYy0deRGBzGPIh81l5+bxLbNNHLeIZJGJ+tAz8/PQ5xQTiTUf/Mt1P/zi6iNuvdK1Hg2M2vUsJ0PPYhalrU5HF9FD/M0CvC8ZmdRb3CQvBUGRlxNyKFNWyC+9XWvg3hkHPUDn3ziMYhPHkGd6Nkp1L48Tbrtm3de6rRh52VXQ3z8JOoijnX8Hho99pExM/PCwLwzY4u8YXzSLi2RZxHrMJuZTdA1PUoa6iHVIvbZqQWoY1kha575DNtQoetrZlYcwDwolFHP1A9R19XfjDqwaQnzKsgwD6MR1CouD7l5N+xjfbp0O7bzphdgToxTPTtx8jjEzQOoiX5kDsdjQFq1ZmYF8uEJM+xMv9P3Xub6H/WKjIS6U9KyTUmvs1p3dZ8bgfMjwK/hPpuD2NdHalj7NpAHyLabXwbxllehNqqZ2c13/ATET34LPT6+8Td/BfHEaby+p2kdUJvF6z3po15uPXRP2iuTBix5SLBJz2AR+yEkzfrnJrFOnarh2N2wDb0BzMy2XUIa5CnprS4aSkurUq8+269+uRU6Y3t0DNdlRv0ZkwdZkb0zzKxUwLri0RgcGcA58thD90G8kdaLhRD1c4+dwByoVnDONjNH6J41ZlMWwu+yzvKMagbNAX7ornFrBdShz4q0fqH1ZRRhP3mknxsUsVaOj18KcdJw58nAw2uxYSP2Q73eXjs0e+xfZGZWr80v6BKHAdbaaoDt8UlrfXjY9RVgvW8LcGC/+c1Yi/5////fhvgzf/43EBfIWy2i+fEjH/8vThuKZcr1Eex/NoOJyTPn//rkH0A8O41ruwL106ED6L9hZub5uPZKmtiX1QrW1FPHcXuf5uhSAfO2Wsd6919+55NOG3gd/eTBgxA/ffCAmZmlPfY2On2yYmGnpmVNHH/j5A9lPq53wtD1lnvuEOqFN6u4/mAvBY/nJ/KVZIlsngwyc/sr5ftM9gGhtWVC98KBj21+6YteAPF3/w7X/kcnXG+CArWrlVA/FHFc7NyzA+NdYxCXijivjAxiLd2wwZ1j58nnzAKcJxIrLPrv5WuOrwZ/76XX2/BwW3v+tS++Fj5r0u+6NkgAvpKztquQp0eD7icy8tPg+a1WJ89Tw7oyzx4tOd47/DyjNo950aTr4dN9ayvB7586jlr8zXk8b6eWmtkErQUO0Hhs8f05PauK6RximpPZW6oYuvcTPP6uewFe39OdGj7fY2/Kv/fiG2xk+IzfAeZDQJ4CAXlqJb5bZzLyCnXWsM7Cle6byYMgpry+4cq9EL9gH/qOmplF5K3Ga7+YvNt2bsc649H8mZAfZ1DG/V8x5q7rssYuiMfLuJ69dBPdNzdwfi3Q2rOe4VpmOsZjbtjh9sN8Fa/nXAPj+06e7Zd6Zc4+7+xh7fALBfM6z8H4aWPgY195KcbWdJ8vFlOsRV7IfkUYDxquieYO3g3x5r2vhXiogmuTAd/1FZmYwWs4Mo51ojj9MMTpHNYlb5iex9C9dkb3XZyXZmZ0e2A+1Sqj+3k/wM/LZXwew/Xb88knO+dGNBigZ0Q0r3tn1sx1tw/Phf7SQwghhBBCCCGEEEIIIYQQ6wK99BBCCCGEEEIIIYQQQgghxLpgRS89PvKRj9iLX/xiGx4eti1bttiP//iP2xNPPAHbZFlmd911l+3YscPK5bLdfvvt9uijj65qo8UPH7fffrvyTvQU5ZzoB8o70Q+Ud6LXKOdEP1DeiV5y5Jm2/MjOnTuVc6KnqNaJfqC8ExcjK/L0uOeee+znfu7n7MUvfrHFcWy/8iu/Ynfeeac99thjNtjxP/jN3/xN+9jHPmaf+tSn7Morr7Rf//VftzvuuMOeeOKJBY3J5XD02WesUGjrr9VJmzCLyRuDdPWuu/YKZ3/TR1H/8evf/A5+PoM6tIFPuuuk0VyMUAOtEOH2J46h9reZWStGDTPWW201UEsuJQ+PjL7PooY+aSBGkavTVi6hpt3GcdQgDEkzbe+lqA1+5aWo97dlG/pclIdRl7bZcrXWTp7Ga5FFmBeX7TyrYVjpXPuf/umftle+8pVrnndh2rAwbWvPDYXYV1dsR4061v+voZxnLjFdwyppJcaki3dyHnXwJqtLe36EgTukb33FqyAeGkbd0G989QsQHz2OOveDJdIdLWJcb6JWJn/fzGzPnj0Qp4PYhs033gDxyG7c/uCjpPP7zLMQTx3djwdMXF1aj8T0T5I+646dbS33VrPd573KOTMzL83MP6NZGi/tp+BFmDPzTVdjfmYetbnny+iZMl0hr5kIcz0lD6O6h59Hw6gjumHE1TwulNFzwyeRSPb0CEgHuEzeJsUItUgD8pLJym7upyXcR2sY23SygfWpEmPeHJ/EuedUhTR6+fcGUrcIsLZs1qBtzswd9Xb972XenRPW1yStcJ7LzMyaCemJkwZvRIKr1ZC0pQ21Zclew4aa5JPAXhlmNnjLjRCXtmCduZTi8SexjtiJaQhrNWzENPkYTOWMvQb5Acw28XqfrmKOHTmJ/kQ1mjO9AWzzNdehBvoVl13qtIF/myVgfWTQ+W3/d6/y7uofeY2VBtvbsw5sSlrtqUda7bG7nvBZU57Plcb0wAbUs73ievSOyQyPsf04avYeO4I63mZmjSZrluMVyAJcK0QjGyEe3IjrsDKty3xaIw1v3Oq0wR/Gn4XkreWTH0pGsUdxSNfC5zhzdeqHt+yibaj2dbTa65XeruvM2vrcZzS6x0axbwYHsZZkdG6zM+44Z834jZtxjq3PYe345+94O8Q/eOIAxIefOwVxQn57OSLmVmlg/06S11lGev0++Us9+DC2IfDZ+wev+exR19PD2GeH+s47tbQ/TZpN4/Y1XLtMTuE5PvzU004TeJ9MobPWyDoee73KuwF/14J/TELrttkK1r6qR74SOdrqpSauR7wKzkcx+afE7M3FvpLkhcHeQz4bUJnr8xFSvU0C8vExvIcphHjMW16I2vrVU3j/8NwB1EA3MyuQ51yR7mtHd2AduuyKKyEepLViRvdRtRjP6dikO+8kAdbwwjDp9y/yNZiZesbMzL70pS9ZqVRa81o3PDhkw505dgiXyRaQNjvr4Hs5dcbxS6Br7lPupo6nFe6NPeSYvM/Zjycjv0z2oeP5jNtUr+G6ICFfkqDg3k9U6zi+ZmawVnU7r0YTx0KTti+RjyHXazPHJtSGBnEuK3U85c48a+hVrXvm4W/bYOe+cXQE1/ID5D1FU6c1EtfPkO+t+HpzV7NPSEpzV4vnJY/8Z3Mehzbo/rAYYN4XaPQcfQ5rVT2mc6BjNsm7ppXj/eOlWOsONKgNIbbRD6kvm+SfQp4eM3U85v5JepZiZvNz6H3RqkxDXN62aL3auSfqVd5tGPTNL7X7mcqQBXwrQM8UPM/17TG6JkGDfIsz8lidoHl7O9XGInpPbh2nuaQ+7TRhaC+Ol5ODuE1xCp8vN079AOL5Km4/cPlNEJfIr2ggcmu+l6CXZMXHOhOOYL/wgAzIoy6kZ0wZ+RYmSc4DVErlYJBqetge41lt6bq7mBX9pccXvvAFe+c732nXXXed3XjjjfbJT37SDh06ZN/73vfaB84y+/jHP26/8iu/Ym9605vs+uuvt9/7vd+zarVqf/RHf7SSQwkBvO1tb1PeiZ6inBP9QHkn+oHyTvQa5ZzoB8o70Uuuemn7xfo111yjnBM9RbVO9APlnbgYuSBPjzNvucfH27/1u3//fpuYmLA777xzYZtisWivetWr7N57783dR6PRsNnZWfgnxFIo70SvWY2cM1PeiZWhWif6gfJO9BrNsaIfqNaJXqNaJ/qBap3oB8o7cbFw3i89siyz97///fbyl7/crr/+ejMzm5ho/8nN1q34Z/Zbt25d+Iz5yEc+YqOjowv/du/efb5NEj8EKO9Er1mtnDNT3onlo1on+oHyTvQazbGiH6jWiV6jWif6gWqd6AfKO3Excd4vPd773vfaQw89ZH/8x3/sfMaakFmWnUMn0uyDH/ygzczMLPw7fPjw+TZJ/BCgvBO9ZrVyzkx5J5aPap3oB8o70Ws0x4p+oFoneo1qnegHqnWiHyjvxMXEiozMz/DzP//z9pd/+Zf29a9/3XbtOmsYtq1jaj0xMWHbt581tj1x4oTzRu8MxWLRisWi8/N3/dN32uBQ22ylWkcTHSPTsdm5aYgHiu5pzZEZ+o49V9DnaFDFZl+DZXRUycgUi430Th4/4bSh1SLTOB7c5PYV8/ZktMXma+UyGsuMb0SzYTOzkVE0CNq8BU09h8j8csc2NCjetnETxKUBNEXyCmxI5RawVgMNpqam0Yyv3jz7nflFJvW9yDsvO5tebNRZpmu8bQTNhjIyWjNzi3qasnkPxjXaxfgItnG6jhvMzKMZW56dT5Py6tYXodnvFTvHIP7K3Z+H+OEHvwtx5SSOpY2bMScGySzazGzyBI6HgIyU/FFsQzHD8ffCl7wC4kt2o8njk0/dD/HU9EmnDUUyvr6S2n3qSNtsMG6tTc6ZnTvvsnrL0qx93IDM6+oNNL9rkCN0WnBN232qBckgmi6GRbxGgwXM5dgno8gBrCXhwBjGZFJuZhYUyLjKZ9NiPM/IRwOxKCFjQTJZ9akfspzsL5Ih5RBNeZvIDNsn0+PZITIDjtDQNiAD48jPGYFUp6tkAh4m7Ta1krN1sBe1bik818l8ydDMzCezc59N4+g7c1S7YjIijMnDMSBvu0KOyePMLO4z2oiGpjf+5D+FeOo0mge35vFPpuMqrgtqbFzZcA1Oi1TzA3LXq8WYM7UmHmNqDo9xmtqw71o0Mt933fVOGyop5nnBx+vfrJ2t4fEit7+e5J0XmnntdUJMa5qExjx5k5qf83s6PhlWJmR4mTRxn3EBa19pK84lfozz2/YCzhsDQ2hYbWbWpHZmEX4nCDEuDFEbtu2BONqI6y4/QmPQYgHrlplZaRBrPpvX8/rEMQZN2Th76fWmu9oxM67xbBbaGbJp6+y3ezXHzsxWrF5o1940xRp88hSe66ZNeI1HR9w1TegY3WJ/nzqBtWXzDlxrf+DfvAviWRr3LfI0HSi7ppuDtKZpUW1hg+cfPIaGl6PDOL8dOHgEYj/Aa75z5w5jnn36WWzTILZpagZr6okJNPYs0v1aTObsw6O4v0qV7gfNrF7F8964Aa/fzHS7Da2kZV+6/5iZ9eh+Ymy3eR0Dz4CKWZPnS3L3HSu6k+xQie75mnjvlNJ9bEpr/xbdSzdrGDcaGPsFd471EjIspfOo0zGmm3j9yxFe3y0bsd/27sJrt3HE7dcwoPVtiPVxw06sn2kR83za6N6N1oVeiYyX2YnbzLIM536PnztkZ8/T89rb/rt/9+/s85///JrXunJ50AYG2n2SOPel3dZyeefKMa296V6Zv+DM2jQ3OQfIe/Dpcy5inIXdzNFx+4ESGfGy6XGOse7GTTgPXHopri99ardPZuoxrW9ivjYZn7fbDxmtq+OYDN07fRn5Z4/Vi1pXnZ80L23Xo+NHn4LPfA/bODSI65dyznqGc8xZG9L6ZYbmmfk61sbRUZ7D8dpMTBx32jBCzzL8CNt5cgbvNzZux78+qNH9Z4Mm9VYL7+3rLfdevtHEZ2pxhnlboXvWmcokxGEBt6/XsW416R42pvtTM7O4jvPKpZswN04fPnB2f42z7elF3m0ezCwot3MlzrDtPHqa2N3WcGqKmRXxZ2ER86xF91ZRheaS5jTEGwqYh94sGoS3UvzczOzEMVyHDV+FeXjq2Ych3lWmZ8ez+Ncy147g56eG8HqOb+TntmZjm7Cvv3oQvzMd43qU79WCAM8rLGG/JYZjIeIdmFkrrdFPcJtC2B7DaZhjgn4OVvSXHlmW2Xvf+1777Gc/a1/5ylds79698PnevXtt27Ztdvfddy/8rNls2j333GO33XbbSg4lBPALv/ALyjvRU5Rzoh8o70Q/UN6JXqOcE/1AeSd6yZkHuJ/73OeUc6KnqNaJfqC8ExcjK/pLj5/7uZ+zP/qjP7K/+Iu/sOHh4QXttdHRUSuXy+Z5nr3vfe+zD3/4w7Zv3z7bt2+fffjDH7aBgQF761vfuiYnIH44+JM/+RPlnegpyjnRD5R3oh8o70SvUc6JfqC8E73kwIPtv0T/nd/5HeWc6CmqdaIfKO/ExciKXnp84hOfMDOz22+/HX7+yU9+0t75zneamdkHPvABq9Vq9p73vMempqbsJS95iX3xi1+04WHSphBiBczMzCjvRE9Rzol+oLwT/UB5J3qNck70A+Wd6CUnnm1L577hDW+AnyvnxFqjWif6gfJOXIx4GQvn9ZnZ2VkbHR214ydO20jHX6JOOrUJy0FyHJNwWw71Fmq/pbSTAnlTBKRvbKTFmJIOXpyj9c093UwcoUwIWQ+yQHp2JAFrQUB6kmHOOy36UsbamaSTnlDfxzXUtA+pnzzSPHQ1Ks1I3tEqs6j91qie7cv5uTl70U1X28zMzEI+rAVn8u7w5KmF47A+J18/ujyWmauF6Jw975PyKCZt1JaPeoE10hNstJbW6TYzm6tiuxotzM3hIdR8jEln8tvf/AbEd/81en48+viT2Abfzbs9l+CfNxrlTctYJxg3T+p4DgNFbHO5jP361FNPOG04dgiNrwoBtvPyy9o+P3GrZd/+qz9f85wzO5t3r/yX/8nCjq6pF5B/EOmiD5TJf8PRPTQ7ceIoxNMnUV/cI03dkPo/Ic3krDSG2w9gv5QjVykxJI+GlNQUU/I6iEjz0Uh33SNd5dIAtrFE2qVmZmXy0NkyhguqfXtQP7ReQV3YI9MYn5xBvX+ePIs5GtisXdkibdpyR5e9Va/a//Pv39azWveJLz9g5cF2f8SUYznFDT/OqTMeaSanbOLBcyiTsSY2z8mYD+ODrg7wILXBo/lraBi1v+dI93eGal9UxLFWqbC/mDu/hTTvlmg8D0U4j7OmfSvDNldqtJ7xcH9+4Orc1sgrw2htkC46z+r8nP2TF+3rWd79n587aKXB9nFS8kZz+pPzjnPKXN+BjHx1Erqms8dQu7k+hRq77OnRrKAHQbPu1lv2rsiKWGcyD69ROICfD27dBrFHXkIerQPCwPVQihyPCYSX+gHVZ5/mBI/62om5RpirB83HPLOmqldm7Tf+/t6ezrEf+Be/YMWOz1SBPKgiqtvjG1BDedtW9P8yMyuRb1ZK5xqRT9bACNarlPS+uTtZa3s4p5/iBNdy7KdRpDmySfclFdJBLw1gnvI6IW65a9zZKfQice87lr63KpYwrlKNrc+hZnml4t7fVSs1ivE78x3/qFqjbv/uN3+pZ7Xu5n/88xZGbn02c9dHERW71HN1qkcG8TtjNKeGdE9ZIk+XAvsepNiXKcV5NaU6j/eAVVoTTU9jvZycxXjvTvTs+Jc/dTvEX/r81yD+m6884rTBJ8+5RovGEnnwlLajb1M0hPU2C3Bd0KBrUcy5FmkD+6Hp6PGfHStJq2X3f+6zPcu7o8cmF47DcyzXZI/W4Xl2GuzxxrNwys9D6JjsbcnH5D26n+f5Y/IxMebnJ87SosuTrzy5/zgln1U6ZhIvfd48x3JH8nlnOZ4evGRKk/zznpubtcv27uxZzn3vr//Ahjrzz/Hj6ClwYP8zEJ84hZ6bceZ6WQwO4Vw2Rj5NA7SWb3HHNDDevRX9qKrklffUk/gcw8ytfx75wY1uvRbi0ij6dtWpSU326SXfmGbizq+1JibJxKlpbCPN+c9N4L1/jda/fA905OhzEG/b4XpqnDqFPiHXX4U+gkdnz7axWa/Z7//av+pZ3r34dw4tPI9oZliTU35+GeN6yEvce9IgxvVMMcBr0vTRy6K0/5sQh1//nxDf9sofh/hLf/4ZiPfuw7nJzKw2j89rrnvZHRA//rW/gviWq9Bb6Af7MZf33PqjEL/pX74b4vExd43yvaN4n/Tv//cBiI8Gl0BcoPv1kLxmYirpKdXCQuT6ipTId6lAPrGlzvhMqnP22L+8flk5tyJPDyGEEEIIIYQQQgghhBBCiIsVvfQQQgghhBBCCCGEEEIIIcS6QC89hBBCCCGEEEIIIYQQQgixLliRkXkvqTfrVmi2NXFjtr4gzVjWEQ5Yn9xcfce0gd+pNkinmV4HDZSW1gDOSBsuCl3N5Yw0zyKSk6vUsA118l4oDqOe2eAAaZpTPzRz9Opm51DD3CNt47kKauIZaQ6Oj+D2Dbo4rBca5ejZJqRraKRPXSid7duo5XqjrCWJBZZY+/jstxGy/Qmda5rzCjEhvU1H25R17SjXQ8O+CkivfLDIQnmu1v4m0lBOyOfAWGd0ADUif/INr4P4dS+7FeJv3vttiP/3F+922vCDp56FuBhiG8qsj03+NRnl6bF51JgstXAsbNqFeoNmZjt27ob4xHOoZXngwP72sXPGzVqTJU3Lkva1LJCOaJPG4PTUNH5eJ58BM2tWUU8xoDHGHkWeo6nKyYx1I6Ac8kPUOjVzPTscDV4aP8066/ri/gL6QZN8XoLE1dr3qe9Op9hXR4vYDwFrmFMuNGvYD9UqxuWy6zNRIM+GQkS+E5166HFdvIhwvYncbRLS/I990jv2sS85w0IadlFC/lJNPOhk7OoAN4ewboyNUF2JsI0DNE8ndcpZ2v/QAOq51pvu/OSRL9YM6ctPpRh7VNN9qo28v4Q8y9LE7YeUfGQSOpNoUZ5XK5jDa04xbP8z1weGNa5ZGzzJ8QjLaMwmZBrG83JYRj+NAvtiNXG8BpTsYej2d4valRUwTzKP6kIZ59iItPcD8ikJArp+vBgxs4DmDdYDd/02KLuzpTXQWW+cPc/MzIx8l1pU0wqdtXvGfnY9oFwuWqnjBTY4iDkwNIh1wqfa5QWuwDvfU8R0rmGwdH+RNY/5dIzBIvkK5vgrFCJsd4V0ysMS5t3h51BrfZA8PzzSD09o/otb7troyPFpPGaE7ZygY970I9dBfPoE6ldXKnTfQ1rPPCebmZ08ib489TqO0TTteMk03LG7pjRiyzprJR4urQDPgz2wshwPrFoLc6rI3jTOpErebBHmdYF9RULMlyDnCUFEeT1I/nop3yuPoh9OVMRxMnka12RhAWujX8TYzCyhPPXIiySuYj40T9N50rWIShtx/z6bLeTUK1pbeinr8cdLfLa2ZFlsWdY+Jq+7HZ8lPtc8uPZ38cvI8+RYyfZJjrcB39qyP4ZrMcWrN9yePVDZ48NznEvMIjL6yChOfV67LdUCM8v4+QDPM24/Os8ZaIyeeabQbLga+WtJZWZ24R5m+2b0hSgX+DnQ4xjm+IOdnMR7/O8/+DR9fgLiJq09Qlrbl0roZbFhfAxix1/OzDxaSw4P05qqgM/LggZ7gGA99eh6s3/qbN3N+0YL1+cH9j8K8Z7d6OcwSmvFAq1nBw3r9WmKi9GY24YYa/SUkSfr0Nm4FeSsC9eQgTS1sFMcinS9YjY+prGypUnPO83sldfh2n18iO5jybc4uASfK03ZPoivvhr7Y/R23L6RoIeImVk5wjzYPPgYxG/9tZ+EeOLwfoh/7P94IcTeMM7BV2zENdcR8mwxM/vC5++FeMC7nmLMXfbIjSjXM7qvDckvc3gQx6eZWYm2Yb/Mgc4+Y69g2EPnRn/pIYQQQgghhBBCCCGEEEKIdYFeegghhBBCCCGEEEIIIYQQYl2glx5CCCGEEEIIIYQQQgghhFgXXLSeHtO1eUs6usVDw6QX7+hLor6cn6O/6ZO2W5P0d6empyEOyAfBb6EeWZN0oMvkQRCWXC8LI93nkN45JT5ejtMnjkNcn57FY5JGYZSRBnDg+oqEJGZ6anoO4rkq6rSVSBYyLJLuWoz9MD1HHhSRq4VcIm1iv0Dv3hbprgdxb3XuEy+1uKMLyDnDWqgsAprmCN2nrONMn/vGvgfUNynljMdaqqRrmudnw82mPGOZ9Ji1vomtYzge//Eb3wDxa19zu/Od+x54EOK7v/DXEH/rO9+BuEHapkMbNkBcm56CeGoOtay3bBpz2hCSTnpIHbOt4/mRtFp29OEHnO+vJUHHTcbMbH52Gj5jTyMj7dEsR/+Wf8Y1sUVeBKwtGhQwKYoR697j9xuFnHFKuuhpwtssrR/OYyUIsRg1U6xvnrkatlGKx6zXsF9mZrH+sZZwi/s+wzYWqb5xbGYWkZZlRtcv7fgWpT32L1p9yIeACoufLL3c4Gk7pvHJmueOAYSZNcmfot7C6zlGGvflAuYQ1+smXROPf08kc39vJKJ5tzSCa4GUcoznjdkK1rIGrVVSR/c5x+eCfsbx4rHWiHvrYZT47X9mZh77TlANcCw8cuTHPZojjccb5VEWRBTj9coi1JCPA6yNNaeOmaW0Bs2M1n+krR+R/i3PRZs3UM7QOVaqrjdBRh447BHhUe1y+pJE0xPy3Qhof37k1tuA1+bs0dLxFUnj3mrcm5lNz1Wt2Gj3wVP7D8FnI0N4fXbvQt3lx55ETzIzs6uvuoK+sxPiKl0jzu2xjWMQs//bPPlFtU7j+t/MLCKN4yJ5dByk8yyQB8TQCOpXF8v4OfuQ8JrYzGzTNlwPBqxz/8IrIa6RL5YXUp4Vsd8iasPcvOtBtGUrasiX6MalXmuP4WrN9f1aU9LUvM64ymjA8Vo94/ktRxu9EGBdiGg+C2gfYYn8xMgDkO/vLOM1iFvrSuRH1PKX9nsYH8WcrM6dhPibf/cMxKGH+x/dgH4bZmbTNBZ47cjr39Ysapi3aC3JPiVF8hHJspy1C91HsQ+Tt9i0h72r1pzMzhR4tktg3wj2xljW3p17RPYJoftex8Nj6WPyfJe3j27tTlO+HjzhLe0JknsbTOs99n9s0bzGGvQB5ZnnXBxuRN7abmkf1TPPCLr5qqw2WaNlWWddUyHfyZi8lHZv3QZxuew+L7tsJ24TJziPzM2jH8PR4+gddWgCvRIOHcM2PfX0UYiPT+IzBTOzKrW7Sb6CaYp+pvuuuRbiG154I8Qe+TS1mrS2bLgL3JEx8n+jmuwlOB8O0vO1+izWysjDvt6yGZ+tsM+smdnwONbgZ4+jn0phw5aF/27lPI9YS0YSz6K43eaQjJIbPq5n4gzn/+Jp9EcxM7PD+Nz11Xe8AOLRMZzPylfh+id8xbshrs9hm+74hy+DeGoK89bMrF6fhjiOsd1eCT3p5mioN0d2QHx8CovZPX96P7bBd8ff8WgPtqGC88ZogG2KyNtrZHgM4ozWO3wbyx5LZmZFeoZUoLViuRO3wpwbw3Ogv/QQQgghhBBCCCGEEEIIIcS6QC89hBBCCCGEEEIIIYQQQgixLtBLDyGEEEIIIYQQQgghhBBCrAsuWk+P+WrdrKO9HISoaRd4rBVPWsSeK8YYRKRtSlqoWzdvgZg9OpqkUzc7j3pmzTJpirJ+spkVC6THStrSpTK2afPmzRBXG6j/lzhajqTjnSNzlpEu84HjxyDesgm1+7ZsGMcd0GmFpB94fAb1A586gJrCZq6OcEAa3Bs3nNWrq+To964lnqXmWTt/EtK4Zg1sj0Q/05wOz2gfjio9a14vLZXqeAo4nh45eozd1GSdQ3pLxy0675h0TKMBVx/w1pffBvGLX3IzxA8+jNqKX/7m30H8g8efhPjYIdTjnDs5CXFlCmMzs6EhbheOv9FN283MLEmXrw+4Whx69knzw7b+ZKOJ/RuRhnKJ9E/zak2jgdrMEdU/n7RmoyLWGo9qU4NkOgPSWiw20BvDzGyQ2ukZtmmY9MND0rudma9A3EpIx95DDcksczXmM/Ig8opYY+fIZ8KjKTFISbfSGV6YK41qhTewtIXnVShiO5OOb1FCvirPN7p0jePfsHJIozmvDVSs6nXUvz1Zx7HCMqJeuLRnEmtZ582xtRbmaYH2OVjCvB8ZQn3WlCp2WiFdYfJayJt3HAFs5/dbFp/HhV6XlZHGiaUdH5GUJjz2jfAcDewcjWueoChkeXCP9cdpfwn7UoTkjRbkeFlEWOuCAaw77NsySB5JzRlchx2bew4/J7+OeuL6tW3Ygj4UEa1hWWufk9cnLwbWCk+aOJayHC8Y1tZnT49mvV3jWvXe17pjE8ct6nhaFGkMss/ZU88ehHh4iLzszNXGb1D/DND81yD97snJ09gGStRZ0uLOctYlAbWhRQv0FnkajQyPQDw6jPNhSqOhRm32Qnc1WR7EvqmSL2CdPDxOn0Qt9mk6z+cOH4G4SHk5QPdJZmYDg7gWYJ/HVidXW0lv/Yu8YsG8Ts5ljl8RFybyWsgxMCoE7NtIXkIpzhUere4D0tUul3Bt6WXs9eauZ5y5Jcbv+HRPmNTJw4p8ESZoqT44gOd0yeVXO00Y2TAN8RSt92s17IeMxgVPI0kWU4yf59leOesZD9sdL3ouwX49a43v+wv1nufYbn4ay2PpeyQ+BM8ljj8m9SV7X7T3uXS73T5e+hiupyD1U45fm7Na4Gcw5CHA9ZlzJvWWXk86HnJmTvKyx8eZaYT96dYar/O/9n8jBVrXGd2PDpTdeWW+gveUtco0xKUCfue6K9FT67qrL4c4TmlOoHX2VMX1VJyn2lUnb99KE2PO29ENON9Wazj31evYptlZ/NzMbJQ8AaO9uM6rN7FGB2Xq23FsUxxiv2aUo6dmcS1qZpaSJ93mrdgGr3T2PJuF3j5WrtXrFndqb5n8TviKNjNcmxSCMWd/v/3HfwDxZ//wtyD+J//4H0J85eXo49KcxZyZnsGacPIU9X/mruVnpnH+OnYc14qnZp+AeJbyanIOvWaSCK/fldehT8mWK9ATzcysRM/LRkP0LpmltQTPoVWag1tkTpvR2qRQdPuhRZ5kZVoDR53vxK3lr+v0lx5CCCGEEEIIIYQQQgghhFgX6KWHEEIIIYQQQgghhBBCCCHWBXrpIYQQQgghhBBCCCGEEEKIdcFF6+lRioasFLW9H+I6adyTHmBKel5x6OpNtjLUemtUUat9iPTEApKHTJtNilG/LBggzeXU1Qds1VDLLSAN37GxDRAXSBA58VjTnLxMMtZ6dDUd56uo/db0sF82bkF93tEC9gv3Q0IdNUUa6g8+c9xpQxpOQ0yX18bHzmr25mnkrylxsiDgyvrt/I6QdWE9z827bvYQHm2QkZ4465G78PfzDsJaepRX7NHRRW/VI43lmA7aTMkAwsxi+hl31XU3ocfHtn0vhPjkqRmIDz+7H+LHv/8AxH/1+b9w2nDq1ATEhQhze+PWtiZo3HTH7lpTCn0LOtr/ISVWSnrEdRrDefq3AScnXeOArmlcnYZ4kHS6R0ZQm3TDKMZ7tpH3j5ltHUevghHSZxwj7ebBMupOVhtYS6arGM+S3uoxyhEzs6l51PCsNqYhrlRQC9onjew4xu/XSJ+8RX42rlaxWUTas+x14gftfmk1yLOklzh1Y2n9434QOBrLeW2isUNfYf+LJu+ixd5cS7cpX2cav1Qlf50m1RePPSNYw57GYkprl2YLx0Ue/b96Zwmy9j8zM7Zf4zUNjyffc2udT9eAfSW8BPsnyFhbn3qH6inXV15/mpn5tE4KKI5oLTfgYx2pzuDcdPDYYfw8JR+DInqvtduAeTI8ghq8Tt9R6gbk+ZHyerKbIZm5niwxXYtGrdb5/97XuvGxsQVfvXIJ55oi+Z8kZcwZ9vgzM5ubwfV8k3xKLtmLGuNjG/B6hDTuK1XMiSt3XgVxo+n2WZPMtrhW8Frt5PETuAOqqTNTeE71FtaqjVvR+9DMjKZA80jreWRsDOKhEVwXXB7tgXjvZdshnjqBc3RUQB8KM7OTpHk9R/P+wYNtD7h6j+fYLMty1wRnPluMu47LuZ/g+wXah/M5jfkmmVNUKjiXlEkPPiAtcDOzhCbNqEC+MAnuMyhgTffZXy6m73tU6/JsDcrYhhL5uW3ciTnSrOLa0Ke1vz+A69c4wu/HWZ4zIvspUl8v8sPp9T2F5wWO59CiTyHinMlb0jj2M/R5t/UFb89zi7uOchvB7eR5/lzj7Azsd+nR2HDWDTlnFUX0DMCZM8kXhL7fxaLTIcvxp2UPM17/LBykx4u+LAgt69zL8HMLHm8JjYdCEZ99mZltKI5BHIQ4hg8exGcAR4+dgnh4ADu3VMI4LOFcuaHs+naNj2It8gKsC360CeKIPCNr9Jxwtkr+DuTr5YXu9Z6v4TYVvgelZ41zk9MQp+RvxT5OUQFr/I7N7rXwqK/CMq5lGou8ThqJ63m3lrSaDcuCdr8mTVy/zKdYA2fJe/TEjHvNqyH6z977jUcgfvT7n4F48w70nNp3zT6IN2zFNUe1jgNzcAjXP2Zmzx3FOXSaLFO9AOercAA9OUqbcL26dQ+uqUa2Yt7WC66fxvw0PXdq4rzdpHm5HmObQy5uHj1Lps/DyG0Dry0rVezLsFOz4+ry13X6Sw8hhBBCCCGEEEIIIYQQQqwL9NJDCCGEEEIIIYQQQgghhBDrAr30EEIIIYQQQgghhBBCCCHEuuCi9fSIAs8KHY3TLCEtR0e3FHXbAnM9BRLSMi3Qd7wMu6LRIB1Sw+0j0uNNSYqPt28fBMNCAbXvauRfwRqVWQt1amPSvG+SPm/ku5e3QJf8yp2oJzcUohYc+1rMzaG4XI20c8shtuH6faglZ2b25GHUr95/EOM0Pas31yT9wrXG87yzGpmkhxxRzoSOfrwroplRYjhuGaTHyRrMrsIj7d9Y89zVQnV00vk79O4zS3GstGjsxCQhH1M/1GJXqDQj7dOEcnV+HvUAKw38vNrCsbLz0msx3r0X4pmGq3M/OzsNsU/jY6jjW9Gs1+wbzrfXloFycUHTMOXrwbUqpBxJ3f6O6SKxj8AQlYarL0Gd7av3XQHxpZfshnhsFDU9N5Dnh5nZAOnfFj3yQUpQh9GjWpP5qLfZ8ooUkyZ6073mk9Ooh3p6FmvsCdI/fe4Ebj9JOpZV0nquNzBvk8QdsXGC551SHc86n6etPnp6LG3jc3HgFs+um7DMc8bfYZ3nFeogL2dz1rhvUo6cJsFWP8Tt+RxS1p7O7YeLycWDSLL2PzNn4eQ5cxGv9XJEsPmikX9UGmPty2g80tRkAWtm0wZ52rMhaeJ6lFeBYRvYQ+nIMz/A+NgRiFtF1PANRtw6Uyw/h22izyNqI/tY8DSSJN2Kgpt3PuUde5YFnRofOH5pa0+pXF7w9Bgm74uN4zh/bd6CmsdpTl1nv7YoIv1ommtiyvXBAZxLBmkOnSS97yhytbJTugaORRHNT7wO4HXZ6GbMs9EA9z80OuS2gdYa89PoOcaWQz6tC2qs00w1YGAA1yZP/OBZpw1sV5O0sCfKg+19eGGPb3mz7JzGUFy3E8qPIGcySmiQxiR6zZ4CzZjvY7GjGnSv7Ac8pt17aUuoPpLfRRCR/02BPECoTfUWXpM4wzpVa+B6ycysGuN5eEXMEYtQW7+ZYE567KcSkucgzTN+4N7Ph3T/XiKfoCQ5G7dyzmEtwbRbum4796A5awfHIjDvgEvFHvtQYH/ys47cdTTlOntwhF3GtvOMhk4qiviZTo6fBt1L8zyfUbt5TOd7wJ3787ytE1rfOLP0mfvaboZ0q40fLDwzSaif6nWch45Pok/TiUnXu3ViAv2njhw5TJ8fhZg9kTYM4cQzWMS5LyIPj5bjGWiW0CrKo/u/FnkJFco4h19zw4shHhrbDPH4Bpxvkzk3505MYT/EKZ7X+DjuozyAta8wSN5u5Inll3FOn224bajSM52QnnUNFs+O53rS29+lDyyzoDMKmhV8Xtik68Nn1gjc+c3fgnVg382XQ3z7S2+AePPeF0J8mnyyGrVDENfncL1zdG7WacNMge45tmNetWjN1TCcX5q0VDxRRz+cwQg9QE5P4fxoZjZXxfFB9jRWTeh5dYhtKhTIu5RrPi3a8nz+Wg2sgIUiPY/pXNG4ufz5VX/pIYQQQgghhBBCCCGEEEKIdYFeegghhBBCCCGEEEIIIYQQYl2glx5CCCGEEEIIIYQQQgghhFgXXLSeHgOFyAY6mpmzpJGWkk5bi/wzSjmalBGpufmkjxuQnmOFdGYLIes6o15ZpY56gcWCqwEakF8DWx9Uyb+iRJrLQYSaoSdOT0HcING1ndu2OW0YGcB9lEkbtTGP590i34NnDqHWNFmh2IYxPObma3c6bShGqL92/OQxiIeLZ69fk4WT15ggLFjQ8WthPxNuSkqadOw1Y+Z6dLDnRpqxBjZ+P6TtWaaT9ci7moC0GwVhTOdZoPHkHMPR+kYKnltWGjF+Z7qKY/o0yfk1yEuhUcPvNwz1A70M47Etu5w2FIdQp3vTJtTCnJmb6hyrtz4yZmZp3LCko+HcIhFszqsNQziGt427OtvbNqGXzvgYah7vIu3uK3Zuwe03bICY/Yc4EfN8RSwjvWnS0nc8GSgvefx5HvZLkXRFS2VXAXdDCbUw063YD41LMCfmaK6Za5I2bZPPCc+7WnVzZ7qFc0ONxk+j3t5nvVazLzvfXjs8W3QJnDrjuGNQmONf5HT/BRqDcJscPeS8OrS0JrLjdcE1m4/RTRc55xS9Lued0O+a1Fs0djgmeA7J+80V3sPFZNGSpemC1xVrYDstJU3sNOeasz67ZeR5QgstxyuNtKAdn5EwojhP6xv34bMeONXCmH1GSK+8SPsrl1CnuTRCGvZmNlzENWxINTlIsH4GrIvPXU/a+1Tq8jXUnXkA+7rQyczMydC1p1QqWbHYnjtPT03jh9TuU6dwbV0qu+fqeXxPgP1/yaW4BjlxHHWVt2/Dfc5XULt7Zgq3H9+Ic7aZWcoDmz3kyBdi4/hGiGMaG1PkIzI6ivPnsz94ymlDkbwMNmxADfFGFdf7tSqbwmEbmnXcPqXxvHMHztlmZikl74ljJyF+bmK63ZZmr32zPDtT01hznuHzzNP/57UhSV5bQH4pLaqvEXtTBJSD7K/ieHyYFchTjr0WfA/rZUyFI6bHDuEAjy3cfzF1vWym53GdxevP0iDuc2Qc17dN8tiotfAcWqSBngTkU2JmFpC3k4fa7IuvX0xeOmtNmqYLnhR53hSLYc8qXnfn4a4Pu7Qn4XvplXldmLntDCiXOeY28jG6nUPe5+wjwsd0+3Jlbei2fR58ff0zNb/Hnh6PPfGElUvtcZLQWqNWQ/3/kydprpt275sq8+xHhTH7hFQq6I13oIJzOPs9VOle7qprrnLacN2NN0FconvvWoptuPp69Ht4xavvgDghn8o63RLPN7HumJnVqVbFVOumZ6YhbtL9ZrNO/p50/zlH/qcbQtezboSeZ8Z0s7fYgydcqTHiBbJpbNSijpeKV8YOnaO5o+Lj5/WG60Va3IDX6JLduO669gVXQnyygXPD0cP7Ic4qmDOOj2SOr8iGTdhu3/EMRE+cOMbxVScP3MDD86zOYJsLQU4/RHgd2R9lkDw6ElpatOo43rKEPHXonNgTz8wso7VhRF4nfmdN5XdZW8F3lr2lEEIIIYQQQgghhBBCCCHERYxeegghhBBCCCGEEEIIIYQQYl2glx5CCCGEEEIIIYQQQgghhFgX6KWHEEIIIYQQQgghhBBCCCHWBRetkXmcphZ3DJrYjO3EHJr9nJxHg5Rr9qBpmZnZxjKasDTm0PSIjck9MqRqNNHsZ44M5U7NoonZFXt3O21g06tjE6cgZhO5zGtQjJerRKbkfoSfP3H0qNOGQdpmhMzST07PQzy+DfvSG0KTwiDDc9o0iqbK5aL7Xm1mGxoDvfzm6/AYi8z1ahVsz1qT+L7FnWvfIj83tt5kI3PHVNJcc1AmI+PWAm3PvecYn/FBc4/HBm/0FTJb512E3AiKA/a9y/GxajVoI+qYJplcT8/jWGhUcCwMhGzCitsXyq7Rayuhchfi+Nm0ZZuZmdWraArVC8L6pIVxu0ZtG8fxMU7xZZfshPiKS3Y4+9s0huN0qIT1L+S04Vwm06m4hRd1OeaHKZlEs4m0T8fkfXYz8cuMzBHZlPoc7VpMgTpiqIRjoRyR8eAgT5l8zAHnGHFGddzYrLB9bSqVin10ydauLqlllnaKAV0Kx6TYNYvOM3PmeGlT8JRNG7vsL3FKnTu3cH30ub6ScSu3iQ2WeVxwq5Ick1An53gfFHM+OGaWtP/uPZ9nmOlsscQR1pY0Ti3tGNQlVPfTZGnT8dzJhdaHHl9Dp8f4GvIxyQza2Hgwx3CPtsm49lFtizPMw9GNWMOHN2zF7w+gebM/5K5xhwZwzkupb+tkptsiw2iPDBabLTZtpbFTcM19EzI1blEcdK5Fo+Yal6415VLRSp31bqOC13B0DPtuYADNLEdG3LreivEaH5tAc9YmGaVu2YzzeK2KnxeK2KYRMqufncN7DDN3bVCroLHqpu2bIY7J1HR+FtfXxTJeUzapbsyTCbmZTZ3Ee6lGFa9ts04m8ZPTEPtUqw4+exDi629Eg9lW023DieO4z6lpvEds1Nu5z/dxa00GhtJLr6F4/OWVZWd+43UYr6tpDIdk+BmlOKaLxfKS25uZNcmg1CNT25TiWcqZlGpfYphj8/PTEI8Mu2v5QcrTWbr/rtBYGRvG+9J6A9f4Ga0lCiGul9PQHf+1mIxceS5btDaIe5t2YGSe99lSMaehmZnH81u3NQvloWNC7i99T5pnIr4cU++V0G1/3GazCzcePx+jcqddAd979dY4+lzc/KKbbGiwPU646zwf2xiT0XmwjN+/rjdwbotjXL/Ua/h5o16hGD/n54qX77vaOeaOXXvwO7RWrNJ61UJcN3gFrKel8gaI/Rivfzlzax1fb/Iht+Y27MsWFZsijdVqFfvh0HNHID5FxuhmZpU6Pl+xAj47qS/qlyzlJ2Vry4Zy2QoD7X4ul3E9NJ9h/08b5sw8Ll3MzMz3sfZv334txI3CGMRVmmNbHuZA5uNanZ9bJIH7vKmVYX+ntHbfsnEbfk5zT6GBJuGFIt4/DET4DKk8gm02Mysl0xjP4zEiWsNP0dqzWKBnxR7mTKlEz699t46Vingt+Fa6ELU/b5Fx+1LoLz2EEEIIIYQQQgghhBBCCLEuWNFLj0984hN2ww032MjIiI2MjNitt95qf/3Xf73weZZldtddd9mOHTusXC7b7bffbo8++uiqN1r88HHbbbcp70RPUc6JfqC8E/1AeSd6jXJO9APlneglJ/b/wMzMdu3apZwTPUW1TvQD5Z24GFnRS49du3bZRz/6Ufvud79r3/3ud+01r3mN/diP/dhCsv7mb/6mfexjH7P/+l//q9133322bds2u+OOO2xuLudviIRYAXfddZfyTvQU5ZzoB8o70Q+Ud6LXKOdEP1DeiV5SKLflQ772ta8p50RPUa0T/UB5Jy5GvOwCBQHHx8ftP/2n/2T//J//c9uxY4e9733vs1/8xV80M7NGo2Fbt261//gf/6O9613vWtb+ZmdnbXR01O7/wX4bHh4xM7OM9MW/d+AkxA/tx/iWq1CvzMzsliu3Qxy1UDOtRQYOiaFG2GwVtW8nST/wqYOHIN42jnpmZmbX7NsH8WNPonZtyyONZPLbODCBOrXNBmrJbR5D3dIkRf06M7NR8gHZtXEM4kMHUN9v7zXoTTI9h/3g1fC92b7tqCU3NOCm1yTJOT9xGL1NFmdkdX7e3vbqm2xmZsZGRkYWfr5WeffVZ/bbUEdDNiadvLhB2rSk5RfneAokpBvJvi6FAnkt0PdLEX5eKOAWcYxtmJlxJ41aDc+DJHctiLBNtQbqBzabpAGb4PYtKiEzNDbMzCqkHz7fxEZUaJ+1OrbZJ53IVmUa4iTBpCoWcSyYmZWKS+t0j25oj416Zd5+8Y23rnnOmZ3Nu/94179f0DjcsgU1IIdJ0zikHApytGc90vEskJeP59E+SHuUPR2KVIv487xpJKHcTEkrn9vNPkrd9G5ZZ9i87lNZN01e1jdmjWzW+2edbj5HMzNrYc0s+LjNGR3t+UrFXvTaH+tZrfu1P/6ilTra9TUan4Ucvf7FsA67mVsvE9K7bVBdGRrC8RiRjvapSZwXYqqlGzduzGkX5tD09DTEPJYyut6s+1soYT8EVK83bkHNfDMzLyS9asfbxPWEgO8v+WmON07ePjLOW/xOsKie1ipz9nM/emPP8u6X/+RxK3X8J7j/z6VDvtDuMMeGjsacl1HdSWgdRMdIWuRfFHOMec0eWe1tSMc4o1oWUN2JsSakNdSgZ/+MpDgCcRrlzG+UdwElEq9FeHw6Wu9UTkNqU57muVM/M/683ZeNWsU+8fOv7ekc+x/+9YesVGzPsWf+/2y7lvYv2bTZXc/Pz9E6h7S3d+1G3eWTE1MQxxmuJyO6fpu34jqgxfrhZlabRT1on9YGW3biPkLS0mcBfx6Po5sw75K624aUxxtpivP4KQ3iWuP4EfRCaVTx+0MjeK0aFdcgIc3wGNUGjvlDB46bmVm9Ubdf/v/8cs9q3Qvf+DMWRO17IvYr4hzzqbb5nlsLy7RWL1Gc8RqI4jLdP4wMkeY8zW95c1HcIi8gqr9N6vs44XUerZkMr2elgvcwBR/vKc3c+6gZ0qGPKQc3jqGW/vQ01lu+dwtoLRKUxpw21Jt4Xs2Y6uuimhK3mnbf5/4H5N1a1rqjx04tHIfn/m51n+8VzMyCYOn1RDccbzSPPT2WXpeb5Xn+4efu0mHpfXY7h9X2EFnOMZfTr9wPridL+/rNzs7a9u0belbrvvu531vw9OAxzpc/4lrnu7WOvdg85/6Ovdfocx9rQObROo7mQvbK6GyERyRfgsRHDwkvwHpaHsR7lKEx9GorDeD8GvKizcxJ9IRqVY2eA/LnRY/Xxxiz19uhw/gs08zs1OlJiP0ynufMIs/VaqVib/+Jv9+zvHvv752wYqcfiy2s67MJXq/Thuea1Ny8K2SnIR4v4HdOkd/s5Dx5xZDn1Uyd6i+t++LEfV6WebiNT8a5w/Q8pkA+JBF5c2UZfj46inlZHsbtzcwadN/Eti6NDNeeLaN75yIeIwrwfr9Azzb9nNz3nDUQPztp90OzOmefeeu1Ts7lcd6eHkmS2Kc//WmrVCp266232v79+21iYsLuvPNOaNCrXvUqu/fee8+5n0ajYbOzs/BPiHOhvBO9ZrVyzkx5J5aPap3oB8o70Ws0x4p+oFoneo1qnegHqnWiHyjvxMXEil96PPzwwzY0NGTFYtHe/e5325/92Z/ZtddeaxMTE2ZmtnUrvsncunXrwmd5fOQjH7HR0dGFf7t37z7ntuKHl0cffVR5J3rKauecmfJOdEe1TvQD5Z3oNZpjRT9QrRP9YMeOHap1oqeo1ol+oLwTFyMrfulx1VVX2YMPPmjf/va37Wd/9mftp37qp+yxxx5b+Jz/JDDLsiX/TPCDH/ygzczMLPw7fPjwSpskfgjYt2+f8k70lNXOOTPlneiOap3oB8o70Ws0x4p+oFon+sE3vvEN1TrRU1TrRD9Q3omLkRyB5KUpFAp2xRVXmJnZi170IrvvvvvsP//n/7ygzTYxMWHbt5/1zzhx4oTzRm8xxWLR0Ys3M/OjovlR++dV0iw8No2aadMxavM9PYGabGZm+3ajpuf2MutuI6ybP3MCNZjDQWzz7kt34fanUI/czKxJOqOnZ1ATrWqozdcsoubZ4Xm8XDOnUGvuyAnUVBsZR88CMzP/FOoaPnMI9XQT0qMrbsM2HjyK228KUT/tqp2klZy4+rtl0psbIn3AcJEeeaGjP9qrvEvDoqVR+xzYYqVQIJ1KkptL2CzD3MJeLKE+LWtbxqQtzZq8TfYgYJ3g0NW/LbSwDazfX22Rpi5dsiQkzUgaLC0an7M52pjh6BjE4xFq629Isd2TU6h/feII6kw2ajgejfQ6yyX3fe7gAOqgDwxg3jWbtc7/t8fVauec2bnz7rKtozbQGQfNFo65uWNYS1hrfXyT6yswNIzjskjaz2dq6xm8APuftfPzFihLfd7eBx0zW/od+4rtpfiQOV/nZnXz8HBhPX/WfsZzijxX7z+hGsk+Ic2Ornqzo2vbq1oXJi0LO/U5IR3tmWnScCVR3nLZ1QBtxazNjXnMOvpBiZYfNFcUSSs+IN32oOlqoUakSR60cJvaNAqTZjyYKD/qdZr3yePD2+B6KwQejiVOS6+Lp8dKybOyYb8bx9Njka5v0PFZ6FXexY2Gtc7UGx6Pju8P6y674zUhLxmyVrCM5siM8ow9PZIU99dq8Romx9eAJ0Wqdfy57+NY8Aq0HiW9fy+itZyHeW7m1iLWZmdvhYC9TXgtwULchOt14nr9+NQmv9PuMx5dvZxjnzl42Aodf4WrL98Ln/HUMzuH6+ChIXd/45vQ56NA9Y1ry+goXsOogHWiQPEs+ec9ewA9AM3Mdu3cAfEll2Ick89As4lrv/Igtnl2Fo+ZpZj7AwNuPzRb7BGAn2/aitrOnFa79+C9U6uBNXpuHuemhx543GlDeQD1ogMqAps2trXXax3Ppl7VuixtWZa2xwTrU2cptjGhfgwid02V0PVknxdefrDtTotqX53uN7Ii1Z0c3x6e0bgOJFwvyUuIfWQSmsCCAPux3nDr7RD5wvgB1UOubTQWS7R+maviOqFJ248Vcta3NDc1Z5daK7b/+/LLL7eRkZE1r3Vpmi6sbbutcXntnrs9T2/Wff2P2/M+l17r57WB1zAh3V+wb0g3Dw+e1/kc8jyrek3ePVHXexYv6WzX22cnlsXtf+2GU6OpZrRwrISBe54+5wjViZTWYSmtA1PHw4NqJY3fNKevg4B9B+g+mb3XuBZWUIIpZa+gkHKu7D6z88hDjtd57BGY0FqT6xTfNw/RPc1ll1/mtGH7TvQna9KzriQ72w9zc+1z7lXeDXhmxTPNSbFdJZpzh2lM+5G7jrY6XoP6HH6n1cQ2ZE3yoqRnvzPkLRPSOi/gB41mViT/2ZDWM80M56tBWsdFNF+lhmuqaoovjFo1tw2FEP1qCjQvl6mNWUDeay3Mu4h9fcj3p0Vr0/Y+8GeOb0/HJ7TFzwOX4IKrepZl1mg0bO/evbZt2za7++67Fz5rNpt2zz332G233XahhxECUN6JXqOcE/1AeSf6gfJO9BrlnOgHyjvRa5Rzoh8o70Q/UN6Ji4EV/aXHL//yL9vrX/962717t83NzdmnP/1p+9rXvmZf+MIXzPM8e9/73mcf/vCHbd++fbZv3z778Ic/bAMDA/bWt751rdovfki499577eqrr1beiZ6hnBP9QHkn+oHyTvQa5ZzoB8o70Uue+8F9ZmZ28GD7r7WUc6JXqNaJfqC8ExcjK3rpcfz4cXv7299ux44ds9HRUbvhhhvsC1/4gt1xxx1mZvaBD3zAarWavec977GpqSl7yUteYl/84hdteHi4y57PcubP+ebnzv5Jc43+nK9ewT9ladbwT3fqVVfiZ34O/8xslv70hv+02OjP2Cr0J9aWoiRCpYlxteL+uQ23oUbb1EhKpRXjH+I0+E9waxhH1OZG1f2zYJ+kGzz6s9OE5DyqdN7c9zX687y5OUypVuhKINSNZFDoGIvlrc7048/8zM/Y8ePH1zzvKovyzvk7qJj+pNf5C87u8lat5oXJWznyPPTn7Y0G5qGZWZPkrep13KZOsjQ1yiv+k3r6K1JH3qpeQWkIM7OQ2pnQXxVmKecuj3GUymmSDBvLWzVC3N7MrFHAP2mPAvrTfq993vVq+7trnXNmZ69ndVENa9Kf/tapvvEfNxepLpiZefRnty2WV4moDgQsk4bf5z/1ZhmTvD9vd/+83NkEP+c/mXf0q5Auf1Gfu01Kf2bNcjpOmzzKEUfWa+l+MTNL+DvGf0bfjs/IQfWq1tWrZ8dQo4bjqUmSPyxv5eXIE8RUR3ifHteJAuUYHYO/H1PhqYfu8iWJsbA4bSBpjW7yVpyCCdVnnsPNzIJmF3mrC/8DW9zfeclbnY1rPZ5jQZpwhfJWfP3MliNvFVNM8lYxy1uRzGiT5a3c69dN3iqji8QSPx61yaf6nZFETJIjbxUmdMwu8lYsk7FieSteCJg5ye7TxfA7fdeo9X6OXVzT6iShxMO+3sA/qz8ji7SYsMZrN85dlkXAPIsSXu9jXKXaxW3O22aeJAUTypsWS7mRREilivtL6Z4kzdxr3uoib1WaJ+kESqukTv1AfV+p4jnl9QPrOLG8VdyRaD1zHXtV61A6DzvGqWQ03uKc9Q/XP5/rCt0+OAo9LCnB3zeWgOkub8X190LlrRJKoFbTvY9tUW3jvI6pDTz2WrTG5u1T6sg86Y04xm1iZ2ydPY9mZ8570Yte1JNaN7foPrabHJKzNsiZY/lHK5e3YpaW+JS8VZs8eatufe13NO7O5ECvat38ovtQz+f84HU1nsNy5K2ce7leyFv5Mf8A9xHRfEvySiFJg2c+3Rv4LMfrzq9eF83CZovrMY9n3qFzCKCes9apN+jZoyNvdbaN8/O9zbtGbdEzO3p+2aBH3GckpM/gN3PqUB2fR6YksdSi/o7pWVTSpDUUyVs5a6i8ZwbUbs+5qcHrEdf5YSTLW1HuO9r8OXlHUvl838TPUjIaXy26F7eAHxxi37M8tplZq4u8VRi323hG3mo5EuletmIh9bXlueees927d/e7GeIi4/Dhw7Zr167uG54nyjvBrHXOmSnvhItqnegHyjvRazTHin6gWif6gfJO9BrlnOgHyjvRa5aTcxfdS480Te3o0aM2PDxsc3Nztnv3bjt8+LCNjIx0/7LIZXZ29nnbj1mW2dzcnO3YsWNNf/PiTN5lWWZ79ux5XvbVxYRybnko71YX5V13lHOrj/KuO8q71UU5tzyUd6uL8q47yrnV5fmcc2bKu+crz+e863XO6Znd6qG8645q3eryw5JzK5K36gW+7y+8qTnzZ3wjIyPPu4twMfJ87cfR0dE1P8aZvJudbUuQPV/76mLj+dqPvcg5M+XdWvF87UfVuuc3z9e+VN49f3m+9qPm2Oc3z9d+VK17/vJ87kfl3fOX52s/9jLnzPTMbrV5vvajat3zl+drPy435/ovWiiEEEIIIYQQQgghhBBCCLEK6KWHEEIIIYQQQgghhBBCCCHWBRf1S49isWgf+tCHrFgs9rspz2vUj8tHfbU6qB9XhvprdVA/Lh/11eqhvlw+6qvVQf24MtRfq4P6cfmor1YH9ePKUH+tDurHlaH+Wh3Uj8tHfbU6/LD040VnZC6EEEIIIYQQQgghhBBCCHE+XNR/6SGEEEIIIYQQQgghhBBCCLFc9NJDCCGEEEIIIYQQQgghhBDrAr30EEIIIYQQQgghhBBCCCHEukAvPYQQQgghhBBCCCGEEEIIsS64aF96/NZv/Zbt3bvXSqWS3XzzzfaNb3yj3026qPnIRz5iL37xi214eNi2bNliP/7jP25PPPEEbJNlmd111122Y8cOK5fLdvvtt9ujjz7apxZfnCjvlo9ybnVQzq0M5d3qoLxbGcq7C0c5tzKUc6uD8m5lKO9WB+XdylDeXTjKuZWhnFsdlHcrQ3m3Oijvlo9yzsyyi5BPf/rTWRRF2f/8n/8ze+yxx7J//a//dTY4OJgdPHiw3027aHnd616XffKTn8weeeSR7MEHH8ze8IY3ZHv27Mnm5+cXtvnoRz+aDQ8PZ3/6p3+aPfzww9lb3vKWbPv27dns7GwfW37xoLxbGcq5C0c5t3KUdxeO8m7lKO8uDOXcylHOXTjKu5WjvLtwlHcrR3l3YSjnVo5y7sJR3q0c5d2Fo7xbGcq5LLsoX3rccsst2bvf/W742dVXX5390i/9Up9a9PzjxIkTmZll99xzT5ZlWZamabZt27bsox/96MI29Xo9Gx0dzX77t3+7X828qFDeXRjKuZWjnLtwlHcrR3l34SjvVoZy7sJRzq0c5d2Fo7xbOcq7C0d5tzKUcxeOcm7lKO8uHOXdylHeXRg/jDl30clbNZtN+973vmd33nkn/PzOO++0e++9t0+tev4xMzNjZmbj4+NmZrZ//36bmJiAfi0Wi/aqV71K/WrKu9VAObcylHOrg/JuZSjvVgfl3fJRzq0OyrmVobxbHZR3K0N5tzoo75aPcm51UM6tDOXd6qC8WxnKuwvnhzHnLrqXHqdOnbIkSWzr1q3w861bt9rExESfWvX8Issye//7328vf/nL7frrrzczW+g79Ws+yrsLQzm3cpRzF47ybuUo7y4c5d3KUM5dOMq5laO8u3CUdytHeXfhKO9WhnLuwlHOrRzl3YWjvFs5yrsL44c158J+N+BceJ4HcZZlzs9EPu9973vtoYcesm9+85vOZ+rXpVH/nB/KufNH/XP+KO/OH/XP+aO8Oz/UN+ePcu78Uf+cP8q780f9c/4o784P9c35o5w7f9Q/54/y7vxR/5wfP6w5d9H9pcemTZssCALnrdKJEyect0/C5ed//uftL//yL+2rX/2q7dq1a+Hn27ZtMzNTv54D5d35o5w7P5RzF4by7vxQ3l0YyruVo5y7MJRz54fy7sJQ3p0fyrsLQ3m3cpRzF4Zy7vxQ3l0YyrvzQ3l3/vww59xF99KjUCjYzTffbHfffTf8/O6777bbbrutT626+MmyzN773vfaZz/7WfvKV75ie/fuhc/37t1r27Ztg35tNpt2zz33qF9NeXc+KOcuDOXc+aG8uzCUd+eH8u78Uc6dH8q5C0N5d34o7y4M5d35obw7f5Rz54dy7sJQ3p0fyrsLQ3m3cpRzZrZ2Hunnz6c//eksiqLsd3/3d7PHHnsse9/73pcNDg5mBw4c6HfTLlp+9md/NhsdHc2+9rWvZceOHVv4V61WF7b56Ec/mo2Ojmaf/exns4cffjj7J//kn2Tbt2/PZmdn+9jyiwfl3cpQzl04yrmVo7y7cJR3K0d5d2Eo51aOcu7CUd6tHOXdhaO8WznKuwtDObdylHMXjvJu5SjvLhzl3cpQzmXZRfnSI8uy7L/9t/+WXXLJJVmhUMhuuumm7J577ul3ky5qzCz33yc/+cmFbdI0zT70oQ9l27Zty4rFYvbKV74ye/jhh/vX6IsQ5d3yUc6tDsq5laG8Wx2UdytDeXfhKOdWhnJudVDerQzl3eqgvFsZyrsLRzm3MpRzq4PybmUo71YH5d3yUc5lmZdlWbY6fzMihBBCCCGEEEIIIYQQQgjRPy46Tw8hhBBCCCGEEEIIIYQQQojzQS89hBBCCCGEEEIIIYQQQgixLtBLDyGEEEIIIYQQQgghhBBCrAv00kMIIYQQQgghhBBCCCGEEOsCvfQQQgghhBBCCCGEEEIIIcS6QC89hBBCCCGEEEIIIYQQQgixLtBLDyGEEEIIIYQQQgghhBBCrAv00kMIIYQQQgghhBBCCCGEEOsCvfQQQgghhBBCCCGEEEIIIcS6QC89hBBCCCGEEEIIIYQQQgixLtBLDyGEEEIIIYQQQgghhBBCrAv00kMIIYQQQgghhBBCCCGEEOuC/xcjGsag3EbK0AAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "display_proponents_and_opponents(\n", - " test_examples_batch,\n", + " test_examples_features,\n", " proponents_indices,\n", " opponents_indices,\n", " test_examples_true_labels,\n", @@ -1176,7 +1161,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Performed pre-processing of a dataset of 50000 examples in 5.92 minutes\n" + "Performed pre-processing of a dataset of 50000 examples in 4.98 minutes\n" ] } ], @@ -1186,7 +1171,7 @@ "tracin_cp_fast_rand_proj = TracInCPFastRandProj(\n", " model=net,\n", " final_fc_layer=list(net.children())[-1],\n", - " influence_src_dataset=correct_dataset,\n", + " train_dataset=correct_dataset,\n", " checkpoints=correct_dataset_checkpoint_paths,\n", " checkpoints_load_func=checkpoints_load_func,\n", " loss_fn=nn.CrossEntropyLoss(reduction=\"sum\"),\n", @@ -1238,10 +1223,10 @@ "k = 10\n", "start_time = datetime.datetime.now()\n", "proponents_indices, proponents_influence_scores = tracin_cp_fast_rand_proj.influence(\n", - " test_examples_batch, test_examples_true_labels, k=k, proponents=True\n", + " (test_examples_features, test_examples_true_labels), k=k, proponents=True\n", ")\n", "opponents_indices, opponents_influence_scores = tracin_cp_fast_rand_proj.influence(\n", - " test_examples_batch, test_examples_true_labels, k=k, proponents=False\n", + " (test_examples_features, test_examples_true_labels), k=k, proponents=False\n", ")\n", "total_minutes = (datetime.datetime.now() - start_time).total_seconds() / 60.0\n", "print(\n", @@ -1265,7 +1250,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 20, "metadata": { "code_folding": [], "executionStopTime": 1645988498035, @@ -1282,19 +1267,17 @@ "test example:\n", "true_class: cat\n", "predicted_class: cat\n", - "predicted_prob tensor(0.4126, grad_fn=)\n" + "predicted_prob tensor(0.4126, grad_fn=)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAev0lEQVR4nO2da4yd13We33W+c87crxxyZngnJUqKrMSUQit27Kp2nASKmsI2ULt2gUAojCg/IqAG0h+CC9TuP7eoHfhHYYCuVSuGY1uILUhIhNS23NhwrciiZOpKXShepOEMOSSHc59zX/0xRykl73fPaC5nGO33AQYzs9fs71tnn2+d78x+z1rL3B1CiHc/ua12QAjRGhTsQiSCgl2IRFCwC5EICnYhEkHBLkQi5Ncz2czuBPBVABmA/+nuX4r9fU9H3rf1FsPHip/nHfsWkxQd3BY9FzlmTLyMeh4zeux1OOZ/2LZWP6LruCbVlp8sdri1KsRsWmw9GrGT+Tu/FuOecEsj4gbzcWahhqVyPejkmoPdzDIA/wPAHwAYA/CkmT3i7i+yOdt6i/jCv7sxfDxv0HMVC2E3LccDolIpU1utXuXnKoZfjACg3gj76JFnxXJ1astl1ASvdvFjgh+zUCwFx7PIU2057n+9UaO2ao0/Z40GCQrjftTC1ygAoMyOh5UCN+xj7EW9UuHXR70eWcfINZyLPGcVcl0t8KXHYiV8vG/9eDziw9q5HcBJdz/l7hUA3wXwsXUcTwixiawn2HcBeOOq38eaY0KIa5D1BHvofdCvvR80s3vM7JiZHZtfirwvEUJsKusJ9jEAe676fTeAX/uHwd2PuvsRdz/S3bGu/UAhxDpYT7A/CeCQmR0wsyKATwN4ZGPcEkJsNGu+1bp7zczuBfC/sSy93e/uL0TnwFAhry/uS3wi2a1sA9+xzoFvdefzkR3yNSheVuCTypUKtdUaER8j0lsW2cXPk2nW4DvMqHHlIraL3Ij4X7H24Hg9a+NzYser8/WwBvfRiJrQHnnO8sZtuXxEuahG1tj4v7BO1tgjOkOWhX2MKRPrel/t7o8CeHQ9xxBCtAZ9gk6IRFCwC5EICnYhEkHBLkQiKNiFSIQWf8rF4Syxwrn84/XwHKtzqaZR5ZJX1hGRccCTGZjk1YhIP8VCgdpqzm2NauSxRc5Xq4VtFsnkykVkPst4YpBnYXkNAJbqYYnt/GUuTy1UuI/z83xe5nw9etrD61g0/jz3dnZQW0cbl9AaOX7N5aIyWthHfnUAVZZ8FdHedGcXIhEU7EIkgoJdiERQsAuRCAp2IRKhpbvx5g3k62TXPYvsFpMkjrYskh+fj21LRhIdSIIBAJoIU4sVC8txPwpFvus7sj9cvgsAZqcvUduly4vhc+X5rnoOkeSUGr9ElryT2k6cvRgc97ZtdE4144lNlW6+8z8/M0Vt5y5cCY53t/PHVZ+Ypra9I3wdt/XwdWzPx8pZha/jYuQSrhMFIlZuS3d2IRJBwS5EIijYhUgEBbsQiaBgFyIRFOxCJEKLE2EM7JP6lu/ns4icUIt14MhxWa5S4wkLxUiNtHqd1AqLJKYgIoUUI3XQfuf3/4DanvrF49Q2TmS5hYiEVqt3U9vZsUlqOz12jtraBkaD47uHD9A53tZDbZU8f14K3duprVaaD45fnuSdUzoHuDw4Nn+e2kqkViIADPfwtJbOQjgRpl4Ny6gAwJr4kO5fy3O4SQjxbkLBLkQiKNiFSAQFuxCJoGAXIhEU7EIkwrqkNzM7A2AOQB1Azd2PxP6+YTmUc2F5ZWaRZzzVa6Xg+EA3l9d6My6H5SP12BoRWY7JGrSuHuJZdIuL4YwsAPjJ3z5MbRemeb2+C/Ph8509x891dvwNasvauSxXz3qpras3LIcVOvnx8u08C7At0pKpPcevnUuVcFux0d176ZzS0gK1nTrFpbep6fB1CgDZLv64928P2wp1LuUZq8sYyZTbCJ39I+7Ocy6FENcEehsvRCKsN9gdwA/N7Ckzu2cjHBJCbA7rfRv/QXcfN7MdAH5kZi+5+8+u/oPmi8A9ADDQw6t8CCE2l3Xd2d19vPl9EsBDAG4P/M1Rdz/i7ke6O1r8UXwhxD+x5mA3sy4z63nzZwB/COD5jXJMCLGxrOdWOwzgoWZGWh7AX7v738cm1BqGi0vhDJ+paj+d99P/+w/B8Ztv4JLLR94zRG0DkeKWDZLZBgA50qYnl+MZTXXnbYsiahJOnz1FbVNLPAPMOweD41k3zyjLDc5SW0d/P7VVSlxqqpD2Sr0D/Dnr7ea2yfNc8pq9wgtO9hTDl3h7B5f5Xr/CxaVC7zC1TU6cpbbu83PUNtIb9qXDIpmKpAgrK4oKrCPY3f0UgPeudb4QorVIehMiERTsQiSCgl2IRFCwC5EICnYhEqG1vd6yNuT7DgZti5f56061GM6gmloMS2EAsFjhvcF6izyzrUH6bjWNweEs4z3PShUu8VzkyWu4NMclwM5+XhBxYHs4m2uhweW1IXAfs0gmWqXA17G0EJaaSvPcj33D/HEtEgkNACZJZhsAWCEsU85M8WKOiBQQXZoPF7AEgKzIr4MLszzrcGImLGHuG+LXd44lxMVaHHKTEOLdhIJdiERQsAuRCAp2IRJBwS5EIrR0N769ows3/tavZcECAMb+8WU6r7svvBt/+wd+h87pzHhSQoXsFANALs+TWqwQ3pmu+wCd07NjD7Udf/ZVauvu54k8u/a9h9o8F959LkR2zhvly9RWqURabEXWKiNJHC888wyd09sWaZHUxZNkuiJ17cbPXwiO14iyAgAZ2cEHgMFevuM+fYUnPV2Z4rbTEzPB8Z3DI3ROnilKkSJ0urMLkQgKdiESQcEuRCIo2IVIBAW7EImgYBciEVoqveWyPDr7wskO+w7eQOctEdVi74Hr6ZyhKpdWpk+fobZqJBGmXgvLLrff8XE6Z+9B3hHrwG9yP576FZeoBrq5JDM+Ga6flndexrutwCWvWE2z+QXeJml6KiznDXbzc0VOhXpEKhvaHpZmAaBcDT+fl66E5S4AsEjLrp5Inbx8xsOpUuKJN6+9MRYc3z7Ak5AO7Q7XFHREkmeoRQjxrkLBLkQiKNiFSAQFuxCJoGAXIhEU7EIkworSm5ndD+CPAUy6+y3NsUEA3wOwH8AZAJ9yd15k681j5XLI2sIZSuMXTtB5h3/7fcHxrj6egZTNnaO2eo3LOPlIrbNTb4Sz5T40cIDOQeduaurp4nJMe55ncnVEap21F0nGVqSu2q6do9T24muvUVuxyOv8zc6F1+rAHi6x3nDTzdQ2NcUvr+7efmobPz8ZHLccl6j6B8IttABgJlJLLotIdh2d/dS2NBe+Dl59nWdndhTD56rWIlmK1PL/+SaAO982dh+Ax9z9EIDHmr8LIa5hVgz2Zr/1t3fO+xiAB5o/PwDg4xvrlhBio1nr/+zD7j4BAM3vOzbOJSHEZrDpG3Rmdo+ZHTOzYzMzvGa4EGJzWWuwXzCzUQBofg/vggBw96PufsTdj/T19a7xdEKI9bLWYH8EwN3Nn+8G8PDGuCOE2CxWI719B8CHAQyZ2RiALwD4EoAHzeyzAF4H8MnVnMwsQ6E9fHcvlXhBxHI5nPZWiEhQnV38XURXpKVRW8az3rrz4X5N3zz6DTrnX//be6mtsHCe2opt/HU4l+M+Hji4Kzg+OTVO55TmefbayA5e+HJqlkuH5Ur4+Tx4Pc9UvO56LsvN/OppaluY4y2ZZhfCPtbqXKJaWgq3YwKA/v4+aqs7l8r6Bni2X60Sfj6zHO8PNjYefjNdIVl+wCqC3d0/Q0wfXWmuEOLaQZ+gEyIRFOxCJIKCXYhEULALkQgKdiESoaUFJ2EGy8ISxGJE/iktLgXHC5GeXHOXeZYXMi7ZFTBNbaP94UypV0/wnm3jYye5H4tcDjs7dobabh0J98sDgF37wsUod04O0zkLJ3lfvMG2fmrrifSje+2108Hx0Z1haRAApmf5JyyrEanswkXeq67h4d5nFikOuRiR3izHryveZQ3oihSqRCNchLVo4eseACqXwrKtO8/o1J1diERQsAuRCAp2IRJBwS5EIijYhUgEBbsQidBa6c0BkJ5dmXNpZXQoLE10tnPp7SfP8kKJA5GifIcGeXZSe1tYdinmuVRzcfIMtTXKvHjh3ut4Ecss8rg7eweC40PDvPDl5SmeNTYTyWyrR9TNHTvCxYvyEbm0RLK/gHg211KJZ4fViJNsHABKZZ6BWavx++O2IV6wyYxfV0ULXz9tFuk76GH5uJDn15Tu7EIkgoJdiERQsAuRCAp2IRJBwS5EIrR0N94MKOTDySR93bwuXH9P2GYNvls56zzx4NIVnrIw1MOXpKsY3lGt58I18gDgzPgZahse4PXM9l3PWyGV+Onwy6fCbbTOTfBd2p7u8A4+ABQKvMXTCydf546Q+0gjcn8pR3bj5xd4Ukj/IG/XVCOJMBMXaEFkdPXw5yWf8USTzk6eYFVkbbkAoBpO5Kkv8OdseEdPcDxf4G2tdGcXIhEU7EIkgoJdiERQsAuRCAp2IRJBwS5EIqym/dP9AP4YwKS739Ic+yKAPwVwsflnn3f3R1dzwszCUsjIjnDttGUniYwTSYAY3c0TSY5F5LBp205tnoXr5PUN8aSKvl6eAFFoD8snALA/Ir1194UTgwDgf93/reD4YmStZpemqG1xidcGLESunhHS7qg0xevdLZBEIwDo6+VS6ksv8xqAFy5cDI7PRlpG9ffzB9bb1U1tmXNNtFDh65gtnguOb+/ix+trD8dRPnL7Xs2d/ZsA7gyM/6W7H25+rSrQhRBbx4rB7u4/A8Bf+oUQ/yxYz//s95rZs2Z2v5nxj2AJIa4J1hrsXwNwHYDDACYAfJn9oZndY2bHzOzY9PT0Gk8nhFgvawp2d7/g7nV3bwD4OgDatcDdj7r7EXc/0t/fv0Y3hRDrZU3BbmajV/36CQDPb4w7QojNYjXS23cAfBjAkJmNAfgCgA+b2WEsV5U7A+DPVnOyXC5Hs396B7j0VquH3WzL80yiGw7spbZjT3HJa7ZwPbU1bC44PryLy2svnnic2n73X/57anv8F/9IbQsLkTZJlUvB8cnzb9A5sdf8+Sq35cGloYFceE93Vwf3feYil9BqGd8WGt7BbfV6OJNuKdLiqbTE6+4tRGro1RpczquWxqhtRyGc0bezm2fRlWvhObG794rB7u6fCQx/Y6V5QohrC32CTohEULALkQgKdiESQcEuRCIo2IVIhJYWnMzlcujqDmcvDQwN0Xk1C7tZyhXpnPbuXmrr7+cFBV9/4zy1feh97wn7Mc/bSXX28MKGE+e4HHPylVeorVbn7YlypN7gwuwMndOzbZTaZma4DNXXzYtR3njDbwbHn3zmJTrn6ROnqe1DH7mL2gpFLlGdOhmW86Yjba1iRTFLS1xe2zfMJd2OLu7j4GD4WvU8L8BZq4QLXzrJKgV0ZxciGRTsQiSCgl2IRFCwC5EICnYhEkHBLkQitFR6c2+gUQtLHn2DvJDfwlK4EOFinffdyjL+OrZ3z25qe+UFnnk1sxiW2Lq7eIbdnuuoCWdf4cUXz42PU9sHPkDLB2BxMSwN9ezcRecM7uTFOV+f4lLZUplLjsWucP+13u176Jxbe/jzcvFiuB8aAJw5e5zaFhbDMuX0DJfQdmznRUf7nD8v+7p5IdAdvbwHW8HCxSgrVd7frotIbDnwmNCdXYhEULALkQgKdiESQcEuRCIo2IVIhJbuxjdqVcxdngjaOiK1vcql8I6qNbj7ZnxXcmiQ75q+kjtFbZNT4V3Tyxnfle7r5rX1brqFJ+ScOvM6tVV5lySa4HHo0CE659ABLhmcneAJNC+88By1Xb4UTvwotnHVZaCbJ5KMvcBVgYlLvK6dkWSpLNJ6a3TPQWrbx/NMsLeng9raczyppVwKXz+NBq9tWK2R4/HLXnd2IVJBwS5EIijYhUgEBbsQiaBgFyIRFOxCJMJq2j/tAfBXAEYANAAcdfevmtkggO8B2I/lFlCfcvcrsWOVy2WcOhmWtvYe+g06rz0Xlt4aFZ4okG/n9dHaI7aeHi4NdfeGa4XddNONdM6Pf/gotS3O8Hp3nduGqe3kGK9rt2d3OCnnwI230TltRX4ZHNzLk3ymp/jT/eKJcEJRw7kENXaF19abJclQAFCqc9l2djosRe4Y4Qk5Zy/z+nSDe/qp7XIb9wMN/timiYzmeS7llRvl4HgFPOFmNXf2GoC/cPffAPB+AH9uZjcDuA/AY+5+CMBjzd+FENcoKwa7u0+4+9PNn+cAnACwC8DHADzQ/LMHAHx8k3wUQmwA7+h/djPbD+BWAE8AGHb3CWD5BQHAjg33TgixYaw62M2sG8D3AXzO3fnnE3993j1mdszMjs3N8YIBQojNZVXBbmYFLAf6t939B83hC2Y22rSPAgjuGrn7UXc/4u5HYptfQojNZcVgNzPDcj/2E+7+latMjwC4u/nz3QAe3nj3hBAbxWqy3j4I4E8APGdmx5tjnwfwJQAPmtlnAbwO4JMrHWixXMPxk2HZaO8tvK5aA+FsM2OZPwDQ4Ok/s3Nz1DY9fYnatg0eDo7fdedH6JzD772J2h78wUPUZsYllL6+AWrbtTNcx627t5/OyWrh9QWAwRF+iYweqFLbTEdY3nz6+HE6Z2Kep5R5gWcI9o3yLMah68PzsjyXX+vO/XjZw+3LAODkeS4PFjN+zKVSKTi+ELm8a43w9TFbf5nOWTHY3f3nAJinH11pvhDi2kCfoBMiERTsQiSCgl2IRFCwC5EICnYhEqGlBSdLdcMrM+FMnkt1XgDQC2FpIlfhxRCdSBMAkMtx285R/qnff/G74cyx9gKXXA7s422X/tW/+TS1/c1Df0dtl87zxz0xEy5eWCqdpHOK4BrP1BK3nTzLs/ZQCctyvp1LkQPD4SKVANCIVFJc/swXmdcePmbDwoUoAaAaaSs2U+fnai/wY7bnufS2YOEsu2qBn8sb4fVtRCRb3dmFSAQFuxCJoGAXIhEU7EIkgoJdiERQsAuRCC2V3sp1w8vT4deXh3/O+4Yd3jcUHB8p8gykzkIkW2uE918bHQoXlQSA6w6GM8rgvJjgxMXL1Hb/d7m89tTxF6mN9b4DAJoI6Px13ev8ePU2vh71HJeG8ghLrLWINFTLRXqlxa7USJZaqRJ+3J7jc/KRjLiswfv6eYnLlDXweYVG2MfM+HNWqRL/1etNCKFgFyIRFOxCJIKCXYhEULALkQgt3Y2vwzCfCycL/PjpV+i8V14Lt4z6o9++mc65bievWXb6VLg1EQDc8b5bqK2dJCbMVfgO84N//yS1Pf3iOLUt1iKthCK7xblC+PW7EanJlzO+ixzbta43eAJQmewwV+t8jhmvaVdGJCnE+WPL58lOd8bvc52dPKGlCO5/nW+4o2481OpkYq3Kn5diT39wPJfj59GdXYhEULALkQgKdiESQcEuRCIo2IVIBAW7EImwovRmZnsA/BWAEQANAEfd/atm9kUAfwrgYvNPP+/uj0ZPls9j29D2oG3qCpdPJq5MB8d/8cxLdE69ui/iCZdWto+QZBcAloXlsF8ee57O+bufPE5t5QavuYY8l95yuXf+Gl0v82QXj8hyjYi8FpO8WAulQp5fcpZxCRMZf87ykXlZFj5frMloFlnfzLk8WI8kGzUi0iHT7EZHuHzc0xu2nWqLrBP34J+oAfgLd3/azHoAPGVmP2ra/tLd//sqjiGE2GJW0+ttAsBE8+c5MzsBgJdMFUJck7yj94Nmth/ArQCeaA7da2bPmtn9ZsZbiwohtpxVB7uZdQP4PoDPufssgK8BuA7AYSzf+b9M5t1jZsfM7FhtibdKFkJsLqsKdluuwv99AN929x8AgLtfcPe6uzcAfB1AsMG6ux919yPufiTfwRtBCCE2lxWD3cwMwDcAnHD3r1w1PnrVn30CAN+SFkJsOavZjf8ggD8B8JyZHW+OfR7AZ8zsMJarXp0B8GcrHcjMqExSKHCpqVYKywmnL8zSOeWFE9R2x203UFtH/yi1zZTCEslPnzhG5yw5z1yq1riM09bGM9sakTpoi4vhVkIxskhGlvGkt2i9szYieVkkKwsRm7VxmbKjg9euyxOprxrJKJtbWKC2ekSmLNf489I3EK6jCAAjo2Fbd6Tw3tJc+F9ij1wbq9mN/zmA0FMe1dSFENcW+gSdEImgYBciERTsQiSCgl2IRFCwC5EILS046e5o1EgWVSxjKAvLUBXwbKcL82Vqe/plXujxrkUurcx5WO44d4V/MrC9m2dX1Ra5/6Uy97+zMyI1kbZXseNZjvuRi7RrimWwOZHRPHJ/KUTkxvkqz76r1LhUxmS5WMZeTEJbiLTe6u7n8trAdt5yrFILH/Oll3hWZ4FkI1Yr3D/d2YVIBAW7EImgYBciERTsQiSCgl2IRFCwC5EILZXe4ABY1pBzuSPLwsX6Gs5loXqOF/g7Pcmlsvsf5Pk9v/fhI+HjjV8MjgPAQj1WhDAiQ7XzwoFZkds6SQ+zYgeXtZbmuHQVyw7ziERVIBlbWZ4/Z7FzZZGikrE+dkuL8+94Tuxc/QOD1LZtmGdMXrw8RW3Tl86Hx8/ynoTXHzwQNkQkRd3ZhUgEBbsQiaBgFyIRFOxCJIKCXYhEULALkQgtld7y+Qzb+vuDtlKJy2ELS+FMnmLGs79qEVkoFylu+dNfPkttp8fD2XLTC7xw5NT8ErWRZCcAQFdXJFsuUlSwrS382PIRua69g2eUZZGMuHyBH7NO7iO1iORlEZs797Fe5etfqYYXuaOdS5FD27ZR2+AQl9cqkczNcjFSPJL0Z2sUuHy8UApfV/WIhK07uxCJoGAXIhEU7EIkgoJdiERQsAuRCCvuxptZO4CfAWhr/v3fuPsXzGwQwPcA7Mdy+6dPufuV2LG84SiRXcS2yMtOuR7ebS1kfDe4xjeR4Tl+slwH3wU/QxJecpHkjlqV7zDHFINSqURtC5H2RDny2NguPQB0Ffmub0ckgSaXi6gC7eHzdXTy9a1UeCLMxSmeSNIAn5cvhNdjoLeLzhkZ7Oe2EZ4IM73A6/zNTvPQmJ+ZDo73D/JzXbp4KTheiyQTrebOXgbwe+7+Xiy3Z77TzN4P4D4Aj7n7IQCPNX8XQlyjrBjsvsybeYKF5pcD+BiAB5rjDwD4+GY4KITYGFbbnz1rdnCdBPAjd38CwLC7TwBA8/uOTfNSCLFuVhXs7l5398MAdgO43cxuWe0JzOweMztmZseqi7zFshBic3lHu/HuPg3gHwDcCeCCmY0CQPP7JJlz1N2PuPuRQmfv+rwVQqyZFYPdzLabWX/z5w4Avw/gJQCPALi7+Wd3A3h4k3wUQmwAq0mEGQXwgJllWH5xeNDd/9bMHgfwoJl9FsDrAD650oEajQbKS2FJqS0zOq+TeNmo8iSTSNciNMAlo0YkkaBB2k3VKpEEjjp/XLEWRDFbI5IIw6S3K1Nc+pmKrGNvD5eo+iL12HpJLbx2cCmv3uDSVd4iyTpt/Mkul8LHbM/z5yV2rtriTMTG/Z+fvkxtDZKs097GJdESqZNnFnlc1NLE3Z8FcGtg/DKAj640XwhxbaBP0AmRCAp2IRJBwS5EIijYhUgEBbsQiWAxiWfDT2Z2EcDZ5q9DAMKpO61FfrwV+fFW/rn5sc/dt4cMLQ32t5zY7Ji7h5unyQ/5IT823A+9jRciERTsQiTCVgb70S0899XIj7ciP97Ku8aPLfufXQjRWvQ2XohE2JJgN7M7zexlMztpZltWu87MzpjZc2Z23MyOtfC895vZpJk9f9XYoJn9yMxebX4f2CI/vmhm55prctzM7mqBH3vM7P+Y2Qkze8HM/kNzvKVrEvGjpWtiZu1m9ksze6bpx39pjq9vPdy9pV8AMgCvATgIoAjgGQA3t9qPpi9nAAxtwXnvAHAbgOevGvtvAO5r/nwfgP+6RX58EcB/bPF6jAK4rflzD4BXANzc6jWJ+NHSNQFgALqbPxcAPAHg/etdj624s98O4KS7n3L3CoDvYrl4ZTK4+88AvL02cssLeBI/Wo67T7j7082f5wCcALALLV6TiB8txZfZ8CKvWxHsuwC8cdXvY9iCBW3iAH5oZk+Z2T1b5MObXEsFPO81s2ebb/M3/d+JqzGz/Viun7ClRU3f5gfQ4jXZjCKvWxHsoVIaWyUJfNDdbwPwRwD+3Mzu2CI/riW+BuA6LPcImADw5Vad2My6AXwfwOfcfcuqkwb8aPma+DqKvDK2ItjHAOy56vfdAMKNzzcZdx9vfp8E8BCW/8XYKlZVwHOzcfcLzQutAeDraNGamFkBywH2bXf/QXO45WsS8mOr1qR57mm8wyKvjK0I9icBHDKzA2ZWBPBpLBevbClm1mVmPW/+DOAPATwfn7WpXBMFPN+8mJp8Ai1YE1sunPYNACfc/StXmVq6JsyPVq/JphV5bdUO49t2G+/C8k7nawD+0xb5cBDLSsAzAF5opR8AvoPlt4NVLL/T+SyAbVhuo/Vq8/vgFvnxLQDPAXi2eXGNtsCPD2H5X7lnARxvft3V6jWJ+NHSNQHwWwB+1Tzf8wD+c3N8XeuhT9AJkQj6BJ0QiaBgFyIRFOxCJIKCXYhEULALkQgKdiESQcEuRCIo2IVIhP8HWBc41yo3FHQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGdCAYAAAC7EMwUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvRUlEQVR4nO3dbXDc5Xnv8d/uanf1tJItZGklLKtKsEnAQE8wMXYJGFo0KKcMxOkMCTMZc9oyITzMeJwMreEFms7UYujBQ2Zc3DRNKZxCoXMKhDkQwBljuzmOU9vBwccQYmLZyFhCWLaepV3t7n1eUKsRtvF92RK3JH8/MzuDVxeX7v/D7qW/tPvbiHPOCQCAAKKhFwAAOH8xhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwRSFXsAnFQoFHTlyRKlUSpFIJPRyAABGzjkNDAyovr5e0einX+tMuyF05MgRNTQ0hF4GAOAcdXR0aP78+Z9aM2VD6PHHH9ff/M3fqLOzU5deeqkee+wxfeUrXznj/5dKpSRJ//PPLlFJIub1vSKu4L2ueNy2yZEzTPHfNZbNmHrnCmPetYl4wtQ7X/DfJ65gS26KRPOm+qjfYfx4LWNltrXIfy1FiVFT75jh4RGJ2vZhvpAz1edy/sezUDD+BiHiv505Y++Mod76e4+C4XFv/a3KWNb/sSlJ+bzhXDGsW5KihnM8a3wsDxseysNZwzrGCvrBy4fHn88/zZQMoeeee06rV6/W448/rj/4gz/QD37wA7W0tOjtt9/WggULPvX/PXGylCRiKkn6DiH/EywRNzwjyjaEshFb71ze/2RMeA7kE/KGB799CJnKbUPIUizbE1fcuA9j8q+3DyFb/VjMf0vtQ8h/O3N5W+/olA4hQ2/jEIrJNijyecO5Yli3ZPvDfdTww6ck5Q0/C+XPImbUZ79PyQsT1q9frz/7sz/Tn//5n+uLX/yiHnvsMTU0NGjjxo1T8e0AADPUpA+hbDar3bt3q7m5ecL9zc3N2r59+0n1mUxG/f39E24AgPPDpA+ho0ePKp/Pq7a2dsL9tbW16urqOqm+ra1NlZWV4zdelAAA548pe5/QJ38X6Jw75e8H165dq76+vvFbR0fHVC0JADDNTPoLE6qrqxWLxU666unu7j7p6kiSksmkksnkZC8DADADTPqVUCKR0JVXXqlNmzZNuH/Tpk1avnz5ZH87AMAMNiUv0V6zZo2+9a1vacmSJVq2bJn+/u//Xu+//77uuuuuqfh2AIAZakqG0G233aaenh791V/9lTo7O7V48WK98soramxsnIpvBwCYoaYsMeHuu+/W3Xfffdb/f1ZRxTx/W+jciH9j45u5kvJ/B3/U8OZGSSoq8n8HsuE9sx8zvK8sErc1z2SzpvpcwX+/FDnbWmKGXV5k3IcRQ6KFcra0DMu74CWpYNiH2UixqXc+5v832axhHZKUzfvv9EjBtk8ihtSJYuM5XmR8R3a0yP8Blx+zpTEo4r+dznheOcNbhGMx/30SM7xJmRRtAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwUxbbc65cISdX8IzCcP6RKc7yoeqSIobPji+M2eJsYiWGSBPjZ95b4mwKxriURDxuqs85//rCmC0WxrL2XM4YC+P8o1iixrihSCxhqncx/yiekbzto1G6evxjZIayhjwoSYOD/r1jznZ8UsX+50oiYnv8VJSWmOpLkv7PK4Wo7XkiaorWsT1+LI/kMd/nY0mRiOGxY1gDAACTiiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAhm2mbHFRUyKvLNbYsZcooK/llWkpSMGbLmivwznj5ejP/PANGY8ecFQ8RXzpAJ9fFibNsZT/jncKV/72JT7/7eo961R3uGTb3jRf75blHZ8tqyOdtDb8SVete+c+gjU2+XvMC7dixWZuqdLffPvBvsO2bq/cGHx71ry4tt+zvf2WuqX5D2P1cuSNnOleIi/7VHnC0bM2F4KOct2X7OvzFXQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYKZtbI8U+c+bR2XRHP+uEVvkTM4VvGujUVtkRjaX9a5NxGxRH/m8f8SGKxjiOCTJuA8Tcf+fdZb+0Y2m3ru3/9y79ogh4keShgzROrl8uan3ocPdpvr2wx941ybn1pl6z69t8q51yZSpd7bI/7yNl88z9c6NDnrX9nQfMfUunesfZSRJhwe7vGtHC/7PKZJUm4p715bGPaPO/lN+zD/KKmpI94oYarkSAgAEwxACAATDEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAAQzbbPjMtGUolG/HKS+4TLvvvncqGkdc8v98+AqYrYMtiLnH7BUMOTMSbbsJlewZd5FY7afXYaHj3vXbv4/Pzb1/rA34187aFv3oQ/8133oSIepd6zYljWXj1V415ZV2DLY4qX+aykqLjH1Tkb893lx1P9xLElHsyPetXXzF5h6j44MmeoPHPDPjjvWa3sOil3of3x+b57tvIrn/XPsInn/54l81P+5kCshAEAwkz6EWltbFYlEJtzS6fRkfxsAwCwwJb+Ou/TSS/XTn/50/N+xmC1eHABwfpiSIVRUVMTVDwDgjKbkb0L79+9XfX29mpqa9I1vfEMHDhw4bW0mk1F/f/+EGwDg/DDpQ2jp0qV66qmn9Nprr+mHP/yhurq6tHz5cvX09Jyyvq2tTZWVleO3hoaGyV4SAGCamvQh1NLSoq9//eu67LLL9Ed/9Ed6+eWXJUlPPvnkKevXrl2rvr6+8VtHh+2lrgCAmWvK3ydUVlamyy67TPv37z/l15PJpJJJ/8+hBwDMHlP+PqFMJqN33nlHdXV1U/2tAAAzzKQPoe9973vaunWr2tvb9Ytf/EJ/8id/ov7+fq1atWqyvxUAYIab9F/HHT58WN/85jd19OhRzZs3T1dffbV27NihxsZGU5+ekaiSeb/3Fx0bm+Pdd+v/3WJaxyWL/KNErr+02tR7bswQ25O3RQJFDe/Nikbjpt55N2aqNyS3qP3Q6V9JeSrHRvx/letKq0y9Y+Up79pole1VnSVz5pjqs6P+US/ZiH8UiyRVzPU/xyvKbdE63V3+cTb9x4+ZeqcS/k9fxSW2uKH3jx811ccrar1ruzsPmXqXdw1416YrbNtZEvHfh7mC4XFf8H9um/Qh9Oyzz052SwDALEV2HAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgmCn/KIezFatoUlHSL9NsuMd/lo4l5pnWcWzYP4NtOFts6l2RyHrXFlzO1NuS3RSLlZpaj2Zt+VQfZfxrjw7YMvJK51zgXTt33gJT76GCfx5ctWz7JFZsq8/G/c+V0SH/rDFJGh30387GWv/9LUnDhny37uyIqXck7p8b2Hds2NRbBdt5ODI46F0bS9gebx/2H/eu7ezzzxiUpMZqQ8akIZLQVOtfCgDA5GIIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgpm2sT0LF1+p0hK/GJzDO9717lteaYvt+fKypd61pbFDpt5ZQ7xKtMgvwuiESNw/Fibv5pp6p2oaTPV73trvXVs+p9rU+8LGS71rXdQ/5kWS4oaonEKmx9Q7mzXkmsh2/GMR28N6369+5V1b4RmldUJpWZl3bVlpuan3ka4PvWtzhhgrSYoZIoEkqarCP4qn9/iYqffxY/717Z19pt71tWnv2iJDzFhE/rFHXAkBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgpm22XGlFVUqLfXLP2v83CLvviO22CYtaLrIu7Z6zJZP1dt+0Lt2zOVMvfM5/yyrL197q6n3gs8tMdU3XXbQu3b3m/45ZpI0t9w/++pI91FT7yKX8K5Nxm2ZarKdKhocGvKu7T1my7GrKvdfu3HZyhsy26rn2XIdM2P+j4mjx22ZapGY7efzVLl/Rl5RzPa0mx0d9q79bcdhU+95c/0zJhfOT3nXjsn/2HAlBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAhm2mbHRRNliiX98s+OfPiOd9/fv/Iq0zrKKv0z2GIDH5h653P+uVpFCduhOtAx4F17zdwmU2+VzjeVp8r8s6+Ki8pNvUsS/senOJE09VYh7116YX2dqfXbv/2tqT6RKPau7R/wP/aS1NTgn7246AuXmHofO3bcu7a8Yo6p95Gubu/aSDRm6j1nbpWpvq/ffztjxly6ktI53rUjA/6PNUna/77/uVKS8F93dsz/scOVEAAgGPMQ2rZtm26++WbV19crEonoxRdfnPB155xaW1tVX1+vkpISrVixQvv27Zus9QIAZhHzEBoaGtIVV1yhDRs2nPLrjzzyiNavX68NGzZo586dSqfTuvHGGzVg/BUBAGD2M/9NqKWlRS0tLaf8mnNOjz32mB588EGtXLlSkvTkk0+qtrZWzzzzjL797W+f22oBALPKpP5NqL29XV1dXWpubh6/L5lM6rrrrtP27dtP+f9kMhn19/dPuAEAzg+TOoS6urokSbW1tRPur62tHf/aJ7W1tamysnL81tDQMJlLAgBMY1Py6rhIJDLh3865k+47Ye3aterr6xu/dXR0TMWSAADT0KS+TyidTkv6+Iqoru6/3jfR3d190tXRCclkUsmk8f0bAIBZYVKvhJqampROp7Vp06bx+7LZrLZu3arly5dP5rcCAMwC5iuhwcFBvffee+P/bm9v1549e1RVVaUFCxZo9erVWrdunRYuXKiFCxdq3bp1Ki0t1e233z6pCwcAzHzmIbRr1y5df/314/9es2aNJGnVqlX6p3/6J91///0aGRnR3XffrePHj2vp0qV6/fXXlUqlTN8nXpxSvLjMq3Z0NOvdN5MZs63DEAtTWlZh6l1WXOJdm4zlTL3LizLetf/09z8y9b75tntN9fGhU78o5VQSSdvFeTTqv1+aPnehqXf3sSPetaODQ6be6ZpqU/2xfv84lkzW//EgSZ+76CLv2s9f5B/xI0l9b/7Su3ZoYNDUu3/If5/k8gVT75GRUVP9nDmV3rV5Z3vPZOXcuHdtLmt7nohF/Z8nDh/xj0kay/nvb/MQWrFihZw7feZZJBJRa2urWltbra0BAOcZsuMAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMFM6kc5TKZILK5IzC8zadiQ2zU6PGJaRzzu/zETAz15U2/F/HPp4uo1ta6bE/Ou3f/OflPvI4ffO3PR7xr2z2A7dPigqfV/S3/Zu/bCxrSpd333qT9+5FSG3jtk6l2VnGOqT83xz5r77W/bTb3r6v0z9XqNn3w8Zshs+/CjHlPvgjv1Z5SdSiRme6obNmbHRaL+j33/VX+srNwvQ1OSVLjA1DsR8X8+zB71z4DMy/+4cyUEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAhm2sb2qOA+vnmIOf+IiLpqW6xFabF/bM/mt35r6j0357/uhVV+EUYnFCf9Y0QSRbaIko+6D5rqC5nj3rULPt9k6h0zHJ/Sirmm3tW1871re44Nmnr39Q+b6vOGRKiamhpT7yJDNNVoNmfqnR3zrx8ZzZh65ww7xVIrSaOZrG0tOf+f5y+oth2fSMT/sZ+I2B7LyYj/8ck7/5ix7BixPQCAGYAhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIZtpmx8WLYooXxbxqK8tLvPvOSfnXSlKk4J+t1O/KTL2PHo9411anbIeqLOGfN5WPjpl6Hzxy0FRfO7fSu7bxoktMvUcNS/+P3e+Yen/Q6Z95lyq35dLF48Wm+n3vvW+otv1sWTDUZ4zZcYNDI961c6qqTL1zzv/x0/lht6l3Wcr/nJWkophfzqUklZb6Z7BJUiLhn+2nsR5T7/yQ/zleW5Pyrs1k/bP6uBICAATDEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAAQzbWN7YpGIYhG/WI50Tdq7b5E10mQ0411bN7/J1HuXIf6mNzLP1NvFhrxrK6v9IzYkqbLCPxJIkuLF/nEfv2eM7SmvvMC79ol//F+m3sOGY98/cszWe8T/+EhS3PBITc+1HZ/RY4e8a4eS1nPFP8rq1+/uN/X+8MOPvGv7BwZNvefMsT01VpSVe9fGnC0mK571P1diwx+Yes8r819LZbF/TNJozL+WKyEAQDAMIQBAMOYhtG3bNt18882qr69XJBLRiy++OOHrd9xxhyKRyITb1VdfPVnrBQDMIuYhNDQ0pCuuuEIbNmw4bc1NN92kzs7O8dsrr7xyTosEAMxO5hcmtLS0qKWl5VNrksmk0mn/FwsAAM5PU/I3oS1btqimpkaLFi3SnXfeqe7u03+gVCaTUX9//4QbAOD8MOlDqKWlRU8//bQ2b96sRx99VDt37tQNN9ygTObUL3dta2tTZWXl+K2hoWGylwQAmKYm/X1Ct9122/h/L168WEuWLFFjY6NefvllrVy58qT6tWvXas2aNeP/7u/vZxABwHliyt+sWldXp8bGRu3ff+o3oiWTSSWThs9QBwDMGlP+PqGenh51dHSorq5uqr8VAGCGMV8JDQ4O6r333hv/d3t7u/bs2aOqqipVVVWptbVVX//611VXV6eDBw/qgQceUHV1tb72ta9N6sIBADOfeQjt2rVL119//fi/T/w9Z9WqVdq4caP27t2rp556Sr29vaqrq9P111+v5557TqmUf36YJMXjCSUSfr+mq5jr/3LwXN62ycki/18VLmpaYOq9a7f/PumPX2TqXYgMeNfWXmjLGnv7nZ+b6pdf9z+8a3++fYep99CQ/6spx7JHTb27uzoM1bZfKgyO2eqL5J/xNTdqy7G7sMR/H/Z9ZMt3y8XmetfW1vjXSlI+n/OuHRkZNfUeHRk21Q/F/Z8ncgVbjt3Y6GHv2pr4iKl3fXmpd20mZ+ld8K40D6EVK1bIOXfar7/22mvWlgCA8xTZcQCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYKb8oxzOVll5mcrKy7xq51ZXe/fNRWybPBpNeNcWl1eYes+ZU+ld+35Hl6n3NVdd6l07Ouif8yRJpanTf1LuqXR+4J999d5vfmPqnctnvWujMVNrDfX3edemLrClxPf12bLJKsuLvWsvXnSZqffOX/3au/aX77Sbel9z/Ve9a+MJ/xwzSTrwnn+OXW+/bX8XjD+fj47458E11tpyNEvK/PdLVZXtOcgV+efv5bKnj2s7qdblvWu5EgIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAATDEAIABDNtY3sKuWEVcn4zsrKq3Lvv0Ih/nIQkDef9oypiMdtMX9Aw37v2N/v8I0okqW/YP4qnvGyBqXfD503lOvSbQ961Hxw5Yuq9bNmXvWuHh/2jVSQpVX+hd21VfZOp9/vH/KNyJGkk4388E2VVpt4V8xq8a/9byv+claSPPurxrj14aI+p99Cwf2RTb5/t2NfMm2eqr3T+521j+QW2tVT4503FI0Om3tmxEe/askjEuzYaIbYHADADMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMFM2+y4wWMfymUGvGpL4knvvplR/7wpSYoU/HdRJOKfMydJ1VX+GVK/iR4w9e4+5p8h1RPzzyWTpMrytKn+C4srvWsPHHzf1HvMEAXY2z9s6r1w4UL/2iZboN6hzj5T/b59e71re46Wmnonkv7Zi3PLU6beh/f5Z+R1Hu039Y5EE961sWLbuusaPmeqb/SPVdOCVImpd3E0512bGbU9lguFuHftWM5/HQXD45IrIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMNM2tqf9QLtKS/ziLRYs/KJ33+KoLbankB3xri0qLjb1LjbUp1L+0SqSVF5R4V37hS9cbOr909dfMdUP93V515ZeUGvq/d7hbu/ahvkLTL2bLv6Sd20yYXsofW6BbS29x4571779zn5T74Lzj2M5fNz2+Okf8c9vGc37x29JUn+vfwxTTbrB1PtQjy3iqaphjndtT9K2nSr47/NeQ7SOJLki/wihTCFjqPVfB1dCAIBgTEOora1NV111lVKplGpqanTrrbfq3XffnVDjnFNra6vq6+tVUlKiFStWaN++fZO6aADA7GAaQlu3btU999yjHTt2aNOmTcrlcmpubtbQ0H8lNj/yyCNav369NmzYoJ07dyqdTuvGG2/UwIBfIjYA4Pxh+kX2q6++OuHfTzzxhGpqarR7925de+21cs7pscce04MPPqiVK1dKkp588knV1tbqmWee0be//e3JWzkAYMY7p78J9fV9/JkoVVVVkqT29nZ1dXWpubl5vCaZTOq6667T9u3bT9kjk8mov79/wg0AcH446yHknNOaNWt0zTXXaPHixZKkrq6PXwVVWzvxFU61tbXjX/uktrY2VVZWjt8aGmyvYgEAzFxnPYTuvfdevfXWW/qXf/mXk74WiUz8mEHn3En3nbB27Vr19fWN3zo6Os52SQCAGeas3id033336aWXXtK2bds0f/788fvT6Y8/9rmrq0t1dXXj93d3d590dXRCMplU0vq6eQDArGC6EnLO6d5779Xzzz+vzZs3q6mpacLXm5qalE6ntWnTpvH7stmstm7dquXLl0/OigEAs4bpSuiee+7RM888ox//+MdKpVLjf+eprKxUSUmJIpGIVq9erXXr1mnhwoVauHCh1q1bp9LSUt1+++1TsgEAgJnLNIQ2btwoSVqxYsWE+5944gndcccdkqT7779fIyMjuvvuu3X8+HEtXbpUr7/+ulKp1KQsGAAwe5iGkHPujDWRSEStra1qbW092zVJkvYeOOr9t6IFi7/s3begoTMX/Y6IJYupcOb987v6DW/g7e09aup9QdXve9d+9abrTb1//4ovmOr/9fkXvGsjkZipd2XlXO/aC+vnn7nod5RXzPGujeVs51VV2vbn2LqmMe/avhJbhuEv9+zxru0cPPULjE7HxSu9ayvrLjD1rr7Iv3esyLZP8s62ne+6Mu/a97r88/QkKRHzX8vI6Kip95Dh6S1X8H9s5scykk79tpxPIjsOABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABDMWX2Uw2fhvf5ixRN+URtH8/65dC5ui7WIZvv8extiLSQpGvWvr6+rMfX+yvIvedcWx20xIk2NF5rq//uffMO79n+/8LKp99Eu/+PT2Vcw9R4dfc+7NiFD/omkYyO2+vcOnfpDIU8p6x/xI0lunn8M09zaUlPvgvyjrCKRuK13sf9aCpGEqfdY3hbB1Zf3X3tx3LaW4iL/2J6hyLCp91jcf92u4H9e5Z3/8yxXQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgpm123P6+qGJxvxn545/t9e77+43VpnWkE2XetaVx2+6sS6f9a6srTL0//7n5/sUua+rd+VGPqf4fn/XPg9u9521T78yo/9pztrg2yfn/jObytn2YT9qOZz7qn/FVpBJT71zEP8MwF7X1LrY8JJx/RpokjWYNxydq611U5JdbeUKs4J9L6EZtJ2JO/r3jBdt1RSziX58dM+zDnH8tV0IAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGCmbWzPUDShaDThVfvTX/7Gu+9vfnvAtI6WKy/xrv18faWpd/uB/d6111612NS7OO4f8zKQ9Y9tkaR/fXWnqf6Xbx/xrh3OJU29ZYhXiXrGQJ1QKDj/3hFbFIs1RiZfyHvXZozRLWN5/96RyJipd0b+56Fz/vtbkoqK/LczFrPtk9JSv+eeExLy34d5/xSej+sj/k/TeWPz3Jj/eZtIzfFfR3bEu5YrIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAw0zY7rqqqWrFkiVftseP+mVOdx3tN69j+q1971+bHGk29Jf98qnnp+abOkZh/Btt/7Pp/pt4vb/65qT5TKPUvLrJlx0WjU/dzVD6T9a51hpw5SSoYsuAkW65a3tly6eJF/k8DkZgtZ1Ax/3O8yNg7FvNfdypVbuttPK9izj9TL++MGYaG/D1rMF1d2j/vMlXhXzs2OqxfedZyJQQACMY0hNra2nTVVVcplUqppqZGt956q959990JNXfccYcikciE29VXXz2piwYAzA6mIbR161bdc8892rFjhzZt2qRcLqfm5mYNDQ1NqLvpppvU2dk5fnvllVcmddEAgNnB9DehV199dcK/n3jiCdXU1Gj37t269tprx+9PJpNKp9OTs0IAwKx1Tn8T6uvrkyRVVVVNuH/Lli2qqanRokWLdOedd6q7u/u0PTKZjPr7+yfcAADnh7MeQs45rVmzRtdcc40WL/6vT/1saWnR008/rc2bN+vRRx/Vzp07dcMNNyiTyZyyT1tbmyorK8dvDQ0NZ7skAMAMc9Yv0b733nv11ltv6Wc/+9mE+2+77bbx/168eLGWLFmixsZGvfzyy1q5cuVJfdauXas1a9aM/7u/v59BBADnibMaQvfdd59eeuklbdu2TfPnf/r7V+rq6tTY2Kj9+/ef8uvJZFLJpO29IQCA2cE0hJxzuu+++/TCCy9oy5YtampqOuP/09PTo46ODtXV1Z31IgEAs5Ppb0L33HOP/vmf/1nPPPOMUqmUurq61NXVpZGREUnS4OCgvve97+nnP/+5Dh48qC1btujmm29WdXW1vva1r03JBgAAZi7TldDGjRslSStWrJhw/xNPPKE77rhDsVhMe/fu1VNPPaXe3l7V1dXp+uuv13PPPadUKjVpiwYAzA7mX8d9mpKSEr322mvntKATimJRxTyzpOJx/78p5Ub9s6wkqf1D/5eMZ4beMfW+9kuLvGtL5th+ndk36p8htfUXu0y9R1zOVD+W88/VSiaLTb0LBf/tHB4eNvW2iEVsf16N2OLdJEM0XdKQqSZJkaih3lIrKZL0zw0sKfHLijyhyJB5NzZmO2cHPvEG/DPJG7IDMzlbvlvl3Grv2nSdf60klRf778ORgQHv2rGM/2ON7DgAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDBn/XlCU62QKygSy/sVO/9ZWojZYmGy8osOkqQPB0/9wX2n88t3j3jXfnXYkNsiacD5R2x8cNy/VpKKy8tN9blh/304epoPPzyd0lL/qJeiuO10t6wlEvXfRkmKRmz1cUNEjTNG6zjDz6JxY6zS4JjnY1hSNmeLyrHE/JwpcuyTrNE6Q6NZ79ryObZonbnz0t612Zz/OiTp17/+tXdtvOB/LPPZUe9aroQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwUzb7Dg5JxU8856cf85TLBY3LaPg/DO+8lFb7/Zu/8y2f/zXV0y9b1ixxH8dRz4y9R7K2352KViyyYoTpt6xhH99acy27kSJf07ayIAt92xsLGeqd4Yss3ix7WEdK/I/x63rjsX8exd8H+//aWR4cMp6W9YtSXPmVnnXXlBbZ+r9Uc8x79reo12m3r2H9nvXXvS5Jv/Gef+cOa6EAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBTNvYnqrKShUlS71qR0f942+GRrKmdSRiJd61OUO0iiRF40nv2q3/8Zapd/uRI961vUNjpt7HBkdM9TnDLi8rK7f1Lvjv82TSf39LUpEhEqi4xD+mRJJiUVssTFHcfy1548+WOUOkTcQYf+Oc/37Jj9nOw+yY/4lVUuwfwSRJ1RdcYKqvqvaP4sk62/HJJPyfpkeSttirQtw/amxo1P9xnx/LeNdyJQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIZtpmx42OjqjIRbxqk4ZRmsnb8qniMf8sppwtDkwu6r/waIktU+3gkY/8exfZFp4bs+WHWTL1RkdHTb2Hhoa8a6OG/S3ZsubKEv4ZXJJUUmLLMotGDRl5xbaMvJJS/3Mrm82Zen907Jh3bUG23kVx/+M5t6LM1DtdNcdWn67yru0d8s9Vk6T+3uPetYN9vabec6r81330o6PetQVDYCRXQgCAYExDaOPGjbr88stVUVGhiooKLVu2TD/5yU/Gv+6cU2trq+rr61VSUqIVK1Zo3759k75oAMDsYBpC8+fP18MPP6xdu3Zp165duuGGG3TLLbeMD5pHHnlE69ev14YNG7Rz506l02ndeOONGhjw/6gFAMD5wzSEbr75Zn31q1/VokWLtGjRIv31X/+1ysvLtWPHDjnn9Nhjj+nBBx/UypUrtXjxYj355JMaHh7WM888M1XrBwDMYGf9N6F8Pq9nn31WQ0NDWrZsmdrb29XV1aXm5ubxmmQyqeuuu07bt28/bZ9MJqP+/v4JNwDA+cE8hPbu3avy8nIlk0ndddddeuGFF3TJJZeoq6tLklRbWzuhvra2dvxrp9LW1qbKysrxW0NDg3VJAIAZyjyELr74Yu3Zs0c7duzQd77zHa1atUpvv/32+NcjkYkvq3bOnXTf71q7dq36+vrGbx0dHdYlAQBmKPP7hBKJhC666CJJ0pIlS7Rz5059//vf11/8xV9Ikrq6ulRX91+ft97d3X3S1dHvSiaTpvdjAABmj3N+n5BzTplMRk1NTUqn09q0adP417LZrLZu3arly5ef67cBAMxCpiuhBx54QC0tLWpoaNDAwICeffZZbdmyRa+++qoikYhWr16tdevWaeHChVq4cKHWrVun0tJS3X777VO1fgDADGYaQh9++KG+9a1vqbOzU5WVlbr88sv16quv6sYbb5Qk3X///RoZGdHdd9+t48ePa+nSpXr99deVSqXMC8uOZpQv+F2oJWN+8T6SVGr8BWRhbMS7NmKM7SnIP4ql4PxrP+7tv5hc1hbD4/L++1v6+Gp5KmolqVDw3y/W2J7jx/zjUo4ZzhNJqkjZYmQq5/rHq1TEbNtZLP8IoXzBFjlTFMl718aStgdQZtR/LcVFtnPWsm5Jyg33GWpt+3Cwt8e7tjDmH5cjScVJ/7ip0Zj/8Yk4/3PQ9JT8ox/96NO/cSSi1tZWtba2WtoCAM5TZMcBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCMadoT7UTsS35rH8MSqHgX5sfGzWtp5D3n9N5W7KO7X/I2aI+CmP+9a5gjMrJ2aJBCvmcf23UFq9i6m2MPnKG7XS5MVNv6z7MG45nLms7x8cyCf/eGeO6DWuxRjblDRE15n0yOmyqzyb842/GDHFDkm0fWh73klSI+scTFQzPQSceOz7HNOKsR36KHT58mA+2A4BZoKOjQ/Pnz//Ummk3hAqFgo4cOaJUKjXhw/D6+/vV0NCgjo4OVVRUBFzh1GI7Z4/zYRsltnO2mYztdM5pYGBA9fX1ZwwOnna/jotGo586OSsqKmb1CXAC2zl7nA/bKLGds825bmdlZaVXHS9MAAAEwxACAAQzY4ZQMpnUQw89pGQyGXopU4rtnD3Oh22U2M7Z5rPezmn3wgQAwPljxlwJAQBmH4YQACAYhhAAIBiGEAAgmBkzhB5//HE1NTWpuLhYV155pf793/899JImVWtrqyKRyIRbOp0Ovaxzsm3bNt18882qr69XJBLRiy++OOHrzjm1traqvr5eJSUlWrFihfbt2xdmsefgTNt5xx13nHRsr7766jCLPUttbW266qqrlEqlVFNTo1tvvVXvvvvuhJrZcDx9tnM2HM+NGzfq8ssvH39D6rJly/STn/xk/Ouf5bGcEUPoueee0+rVq/Xggw/qzTff1Fe+8hW1tLTo/fffD720SXXppZeqs7Nz/LZ3797QSzonQ0NDuuKKK7Rhw4ZTfv2RRx7R+vXrtWHDBu3cuVPpdFo33nijBgYGPuOVnpszback3XTTTROO7SuvvPIZrvDcbd26Vffcc4927NihTZs2KZfLqbm5WUNDQ+M1s+F4+mynNPOP5/z58/Xwww9r165d2rVrl2644Qbdcsst44PmMz2Wbgb48pe/7O66664J933hC19wf/mXfxloRZPvoYcecldccUXoZUwZSe6FF14Y/3ehUHDpdNo9/PDD4/eNjo66yspK93d/93cBVjg5Prmdzjm3atUqd8sttwRZz1Tp7u52ktzWrVudc7P3eH5yO52bncfTOefmzp3r/uEf/uEzP5bT/koom81q9+7dam5unnB/c3Oztm/fHmhVU2P//v2qr69XU1OTvvGNb+jAgQOhlzRl2tvb1dXVNeG4JpNJXXfddbPuuErSli1bVFNTo0WLFunOO+9Ud3d36CWdk76+PklSVVWVpNl7PD+5nSfMpuOZz+f17LPPamhoSMuWLfvMj+W0H0JHjx5VPp9XbW3thPtra2vV1dUVaFWTb+nSpXrqqaf02muv6Yc//KG6urq0fPly9fT0hF7alDhx7Gb7cZWklpYWPf3009q8ebMeffRR7dy5UzfccIMyGdtnv0wXzjmtWbNG11xzjRYvXixpdh7PU22nNHuO5969e1VeXq5kMqm77rpLL7zwgi655JLP/FhOuxTt0/ndj3WQPj5BPnnfTNbS0jL+35dddpmWLVumz3/+83ryySe1Zs2agCubWrP9uErSbbfdNv7fixcv1pIlS9TY2KiXX35ZK1euDLiys3Pvvffqrbfe0s9+9rOTvjabjufptnO2HM+LL75Ye/bsUW9vr/7t3/5Nq1at0tatW8e//lkdy2l/JVRdXa1YLHbSBO7u7j5pUs8mZWVluuyyy7R///7QS5kSJ175d74dV0mqq6tTY2PjjDy29913n1566SW98cYbEz5yZbYdz9Nt56nM1OOZSCR00UUXacmSJWpra9MVV1yh73//+5/5sZz2QyiRSOjKK6/Upk2bJty/adMmLV++PNCqpl4mk9E777yjurq60EuZEk1NTUqn0xOOazab1datW2f1cZWknp4edXR0zKhj65zTvffeq+eff16bN29WU1PThK/PluN5pu08lZl4PE/FOadMJvPZH8tJf6nDFHj22WddPB53P/rRj9zbb7/tVq9e7crKytzBgwdDL23SfPe733VbtmxxBw4ccDt27HB//Md/7FKp1IzexoGBAffmm2+6N99800ly69evd2+++aY7dOiQc865hx9+2FVWVrrnn3/e7d27133zm990dXV1rr+/P/DKbT5tOwcGBtx3v/tdt337dtfe3u7eeOMNt2zZMnfhhRfOqO38zne+4yorK92WLVtcZ2fn+G14eHi8ZjYczzNt52w5nmvXrnXbtm1z7e3t7q233nIPPPCAi0aj7vXXX3fOfbbHckYMIeec+9u//VvX2NjoEomE+9KXvjThJZOzwW233ebq6upcPB539fX1buXKlW7fvn2hl3VO3njjDSfppNuqVauccx+/rPehhx5y6XTaJZNJd+2117q9e/eGXfRZ+LTtHB4eds3NzW7evHkuHo+7BQsWuFWrVrn3338/9LJNTrV9ktwTTzwxXjMbjueZtnO2HM8//dM/HX8+nTdvnvvDP/zD8QHk3Gd7LPkoBwBAMNP+b0IAgNmLIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAI5v8D42Je2+I6LqQAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1306,14 +1289,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9WaxlWbfnB/3GnHM1uztNnIjsv/ZW1a17y7KrcUehskG0RkL4DYN4AET5BSSDZGNbMsK82DxYGIxByEh+QVgGCSNhYQnJrgcwEi7jQja2i6q6qrrd12QT3TlnN2ut2fAw5lxr7RMnMjIyIzIz8u4R2rH32c1qZjOa/+gkpcSJTnSiE53oRCc60YlOdKITnehEJzrRiX54ZL7rCzjRiU50ohOd6EQnOtGJTnSiE53oRCc60duhE/BzohOd6EQnOtGJTnSiE53oRCc60YlO9AOlE/BzohOd6EQnOtGJTnSiE53oRCc60YlO9AOlE/BzohOd6EQnOtGJTnSiE53oRCc60YlO9AOlE/BzohOd6EQnOtGJTnSiE53oRCc60YlO9AOlE/BzohOd6EQnOtGJTnSiE53oRCc60YlO9AOlE/BzohOd6EQnem0Skd8Vkf/sd30dJzrRiU70rtOJn57oRCc60YneNp2An29AJ0H9w6DTPL77dJrDE53o+0GnvfjDoNM8nuhE3w867cV3n05z+MOgH8I8noCfE53oRCc60XdCIuK+62s40YlOdKIfAp346YlOdKITnejL6AT8ZBKRH4nIvyYin4vIYxH5F0XkN0TkL+W/vxCR/72IXOTv/++AHwP/uojcisj/8Du9gRMBp3n8IdBpDt8p+tMi8h+IyHMR+T+ISAsgIn9RRH5HRJ6IyP9FRD4qPxCRJCL/XRH5G8DfEKV/XkQ+y8f5D0Tkb8vfbUTknxOR3xeRT0XkfyMii+/oXv/I0Wkv/jDoNI/vDJ346Q+cTnvx3afTHP4w6I/qPEpK6bu+hu+cRMQCfwX4S8A/BQTg7wR+DfwM+L8DZ8D/CfgrKaX/fv7d7wL/nZTSv/ntX/WJ7tJpHt99Os3hu0N5zD8D/kHgAPw/gf8F8NeB/yPwnwf+I+CfA/6OlNLfl3+XgH8T+K8Ce+DvA/4Z4D8DPAf+JPAspfQrEfmfAz8H/pvAAPwrwH+YUvonv4Vb/CNNp734w6DTPL4bdOKnP3w67cV3n05z+MOgP8rzeAoLVfq7gY+Afyyl5PN7/3Z+/p38/LmI/M+A//G3fXEn+sp0msd3n05z+G7Rv5BS+iWAiPzrwJ8G/i7gX04p/ZX8/j8JPBWRn6aUfjf/7p9NKT3Jnw/ABjVQ/nJK6a/m9wX4i8DfPvvuP4MaKydD5e3TaS/+MOg0j+8OnfjpD5tOe/Hdp9Mc/jDoj+w8noAfpR8BvzebfABE5D3gXwD+AipIDfD027+8E31FOs3ju0+nOXy36Nez1ztUkF6hnhQAUkq3IvIY+Bj43fz2H8w+/0si8i8C/yvgxyLyfwb+UaAFlsC/pzYLAALYt3InJ7pLp734w6DTPL47dOKnP2w67cV3n05z+MOgP7LzeKrxo/QHqIC8C4T9s0BCPSRnwH8DFZSFTnly3y86zeO7T6c5fPfpl8BPyh8iskKNl1/MvnM0XymlfyGl9OeAPwX8CeAfA75AUxf+VErpIj/OU0rrt30DJwJOe/GHQqd5fLfpxE9/OHTai+8+nebwh0F/ZOfxBPwo/WXgV8D/VERWItKKyH8SRftugWci8jEqPOf0KZovfaLvB53m8d2n0xy++/SvAP8tEfnTItKg9Sb+nVlawhGJyN8lIn+PiFTAFq1vEVJKEfjfAv989sIgIh+LyH/hW7mLE5324g+DTvP4btOJn/5w6LQX3306zeEPg/7IzuMJ+AFSSgH4LwN/DPh94A/RQnn/E+DPogXy/q/Av3bnp/8s8E+JyDMR+Ue/vSs+0X10msd3n05z+O5TSunfAv5HaFG8XwG/AfxDX/KTM9QgeQr8HvAYLWAK8I+j+db/LxG5RouY/ubbufITzem0F38YdJrHd5tO/PSHQ6e9+O7TaQ5/GPRHeR5PXb1OdKITnehEJzrRiU50ohOd6EQnOtGJfqB0ivg50YlOdKITnehEJzrRiU50ohOd6EQn+oHSCfg50YlOdKITnehEJzrRiU50ohOd6EQn+oHSCfg50YlOdKITnehEJzrRiU50ohOd6EQn+oHSNwJ+ROS/KCJ/TUR+R0T+iTd1USf6duk0j+8+nebwh0GneXz36TSHPww6zeO7T6c5/GHQaR7ffTrN4Q+DTvP47tPXLu4sIhb468B/Dq2G/e8C/7WU0n/8st+0dZ1Wi4X+Pr+XUiKmSEqJu1ci45em7yYgxAhATIkYE+UWUj6w6H/jWYSXUTmj5HMJVWWpnUUEUorEmIBEiJEQ4nhh4zFFEJF7jjjdg4joNVGuVx8x5r85vo/7L3X6cP41kenanbO0bYtzDjEGa/UZ4Fe/+MUXKaVHdw/7uvNY1U1qlsvpSuZjP7/cu6/yPZMSKUZSjPmeEnLnGOPznQEp41ye9eOU3zMYHWz9e3aschyZL4T82wSkmNBOpxytQ7kzt+NP75mo8t6L1wymzP/R2pyuUoxgrJ3N5Z2ByFe6vd29kTkEqKsqNW0DKRFjfPH6x3VbxsFMa1lm93J0uXfG5eiY6WgudOnMV8l0rPv3qxyd3xxdjynjMDv1dL4YEzFfQ9l/43fS8eIre2l6Pj7v3WuLKRFDIOZjhRDzuWbfHMdP3xu6/RuZRxF5cSH+UOllTPy7G4E3thetkeSsYWJneX3Ov5Re/FufCm8TzMhaJj4SE3ltzn+Wf3PnOtIbGuT7jvKCJJbj76XZizTnDHfv+w1TSunem37deWzrKm3aFsSQbAXmDk9KEYkBSQlJERu8vi58RYQIBET5lnVE60hZdpTjOGNwRmVFVTnqqkKMKJ9D5WvXD3T9QJwdf7yW/NqHQIieFBPeD3g/6PFthbMOEcFaizWWRGLwPYMfSERCCIQYEAFrHNY4jBgq11C5SvWZFIgp5LmMJImQQLBIymOT9N6MMVR1hXUOawx1U2OdJfhAd+gYBk+MEe89MaZJz6ksAH/9r/3/3txedDZVjZuOka/PWYsxhhgjIYYsR/R1yuNc9I/KVbRNk3+nc2SMIfiA9wFSQoxgjRn3gYiu8xgCPgSKrAoxj9sod0V1qLJ+Y5Y3Ke+aI+VQ/zMiox44SgwBawymvF+Oh+rXMUZiihy6jn4YpuNlWWjNJM8S0/njXKbOaP6ezNa0tRYxhsOuZ+j8G9mLq2WbHpyvRh2lyPJJNxQQk+UyWX9Q/fxYz36R+ajOEPN1lfHLv80DGILH+2H8bsr2yjSI+ehp4t1lbq11GOemwZ5dTfn5nJdOe/vuN+++kdfMKAjyfdxndNzHmAUQk5eUIGLzSdN4fIDf+4NfvbG9eH5+md7/4KOXffyNKBU7hJT33KD7UgSrSwNrLc65vH/K/s7386VWZWIYBoZhIITIdrdjt9tnHhYIPpA41ldfeqQvE35FR73zG72/r/D7LzvzG5KL67ZOV6v27iXfPebx31/1Gl+85pd8Sdd+7wP9EAgp4UNiCHFm6714XDPaGlA5S2WV51XOUjkzs40mGV/2w8QnJOMFMtlUMn/v7t3OFaM0bq8YEz4EYsEg0rG29oL1JPAHT27u3YsA7r43vyL93cDvpJT+JjoA/yrwXwFeupFXiwX/wN/792KEUUkdgmfb7Rm81xvMk2SAymS4pBhUMdF5z23X40OkGzzbQ4ePiYQQMrMUYzBZeXlhcqCoVqQUMz8zGGNx1vDho3M+ef8C54S+O9D1e0IIXG/3XG/3pJQwWWCKCNZVGKvDmJjAJ2t0wRgjNM5RO0uMkcOho+t6vA/cbDt2+54QIoduoB/C0UZN4wGPF/XsbYwx1JXFGsODBw/4E3/yT/DovUc07ZLNxRV1u0BE+Kf/iX/8997EPDbLJX/7X/hPjdd014hOqLFR3o9Z9Ut+IPQHYvDEwwF/e0MaBiQlTF7MEfB5dkIIuibujLcxBmtV4YsRYtDzNE1D07RH3yMfxwcPTHMCkGLIwF6k63r6vielhPeeEEJWrCtcVYEcg1EFKJnf/6SY6h2XNWaNYVHXVFlxdNZistKR8iZwTc36/Iy6bWaKCiNIVk7+b/8//p03MocAbdvw5/7M3473nv1+nxWVOCosxhiqymGtwTlH2zRZEFrqusZmJihWx1mVvqxIpKRMMCVC9IQwEFMk5DEqYIwPMa93IWFmitmL5PK5jTG0TavXI3otdV3nOVclMgGDDww+EGJkf+g59L3uv66n73Wehn4gZEW8jLERxvMYY6jrCmct1hqa/BpQBpygHwaub2+zguy5vt1z6AdSEiKWhGBcRd0sRj7xq9/599/YPL5aeTge0K+qB7xw1K/xw5f+RO7/8IhHi7yoGN/5zl3+8yq61zD6uqhCTG9sDp01fHCxGAX8yFOKAjF/ne5+R58rKywqm3mcYLPsPPjEtgsqIxOEmVB5YY7vcWAoeDp7N935+mSPTO/nz+Tu62JolfdmOk4sCk6CISZCvt/y/t3pvWtIfh0HVjwyyF6g15rHTdPyD/6dfw6aJfHiETRLVe6yHmKGA9XhGut7mm7L5uYxle+prKOtG6yx7MVyLY5BDN3qnN3Fe4RKP3POYYzhcrHk0WpNU1W8/+iKTz75kKau6KOnCx4fPL/7i1/zO7/7h3T9gHM1rqrVSK0qbF0RU+TpzTOe3jxl6Hu++PxXPP78Vwjw8OJ9ri7eo3IV52fnbNZn+Oj55Re/x2dPfknve55vH3Oze44xlovVI84Wl7T1kk/e+xnvXX5EJHA7PGUfbggM9HLDIDskOSp/hg0LTDJUscIky3K55MMffcTFgwvWmzU//uknXF5d8PzZNX/jr/4NPv/0C/a7A1988ZTdds+Dq0v+5G/9cR4+egDAf/rv/3ve2F6sGsePfusDBXySwYhhtVzy8MEVbduyP+x5dv2cru84dAeut9cMfqByjkVb46zlw0cf8Md++nM2qzVXl1d88v7HtE3LzfNrnn7xBD8MLNqG1brFWYMxYK2u6Zvba549f4r3nt2+53bXEWOiqmrqSuVczMBMSolD19F1nQJSWXcB1WmLHtQ0DU1d675L+rDGsFmtWC2XRw6NECPX+y3bbs92v+Ov/e7f5A9+/SvVaSoDVqicY7NasGhrUkoMoSekQAieQ39gCBkoyspWigk/BGKMGSCsMGJp2obN+Tl12/BX/tLvvLG9+OB8xf/gv/0PYIzgnOowiMGYSsfFVJiqRazDWEdVtRixQESih6RgWgH1IIPRKRG9x/cdpERVt9TNWkG1rPfEGLl+/pinjz/FDz19t6ff77OtIUhOsgixAHwogFvrtawfPGL14BHGWMAyJWUEfQiI2NGR5KxT8OyO3FUNNGuhc4dr8BADMQRCvyf6YXIezFHIcqwZyGWrBjEW4ypcs8LYSu85+JFB/8V/5J9+Y3vx/Q8+4n/5v/5XXxDRxRF3fMfleu+XA3Ik6xWY6boDMQZur5/y7OmneD+waA2rhcE5w4OLMx49fEBdVTRNxaKpsn0x10kyiDgbee89v/zVL/nVr37F7e2Wv/z//vf59/4//192uwNfPH7G06fXxJSwdrJr5pTSZF+EMAVFyOxmRvDgyOFTZFoGjUOY2Snl2C+O2V16hSh9rXm8WrX8k/+lv3OmC+jFzu/bmEm/u5uCNI7NPYhRWdtTIMXkwC7giypMCqD//uMb/tbnz9j1nk+v9/zy+R4fE8aovlSOGTOo0tYVTV1RO8tHVxs+eLCmrR0fXm14/3KFs4Y62/aQSKEnhUFtwa7D9z0gGFcjxmGs8mJXa0CGcRViXF7QCiDPnf+JRIiqA+0PPV88vuZ2e0BixAxen+FoTeoI6gH+kX/133rZXvxGwM/HwB/M/v5D4O+5+yUR+YeBfxigrWue3t4iZOBH1PN0GDo1AknkuAs1wLJAGiNjUqIPkcMQCDHRh0RMMmNbBcU34xIZPSvjcOgWKpuhbCjJ/xlTHgZrjRrsKPoHk00bSTrYIUK+6iGEMRqpcgokWSMkY2fnLxit5M2pkUQ+KBrM0Te5q2vP39bv5ZuQ2bsT6jdFQ3wJvXIe53NY54itNAN3XoicmAnLEYE+ur5jkuzFmns27/vOMcMXFdB5vHUcldE5V2VhqB6ligogA44qAQrok1LEGIu1lhgTgx/w3iOgHkjnJvtQCggZRnCoMJsj4zT/J9lTMHoOsgfQZnAiij7Ml8yRzt8rjZrX3otNU9/xFskEwsw4fzE4Y0pIjMSoXs9yf0bmhtc8qqvMuJCMy5/5HN0XlaHFItCK5NI1UMajKFsK/kZi0OcQPMFbkknYaIkxjF47I8oPjKjwtill8MXhfcD7SJeGI2EBWSEu13tnuEcBXxD6PN+vMjbH1T8TvK+g19qLb5ReYsTf9/k3plcc5z4eMAdzx8PcFfave943dT/H9Np70Y5o9Mv5pcwmZ1IMdN1OSuEE6JQoQylyqoDXL7vnLGutsxopKjJ6/lPKCkgooDbTBdx7rC9/6z4WX8RGuu/13e/eme+vG7X8CnqtvbhummkuEnmc5l49NcQCgo+Jw+DxQ0906hxIJuJNIubIr1FpTcWM0yMkP5C6LdFbhq1j/6wm1BVDinQp4mNkOKhBk+7ujRTV4REjQ3dgf3tL33fst7cc9jsMgl/12SniJuC1nF/yNYx8U9Rb7gPBhmwk5usV1cd0BUZSGnJ00YHoweKwYrE4EuCDpx96+qHjMHQc+o5+6NWZoBcxGtZjJMWr5/2196KrLcYayD6MECM+BLqhR0To+p5+0OgnH7KjJz+CD0gCPwwMXU/veqIPo8OnaRrW6xV+8KQU2G33WQ/xhKD32nUHdocdMUZc1fDgwQZjLIvFgsViiREZo41ijOz3e3b7PTEEuhkI1PXqzCKpk0J1GslQgkaXee/p+16B4uyYAjVIq8pR+Yqmrmmbhpgi0UISNZQke28loaBJ0s/Em6wOzyKUSBirc2VkMkyyxsD9u/z15nE+h5dnJSK96Oxp1FOKTmaM2gqmROKKjNFQRa9BVG8PUT3taoCnmTEqox40ajtZx9Q9bXJUlRCj7geD7m+RhEjWPcpYlke+RlIBioorsQAz5dyzexnvWL8bM88RyJEtaBRilHx+xrEp98yd9yadDoydZLCZAYV5pkfw6JvM4d15fO+9D8ej6+jeB/rAJF2muZl41+zj8SglEssTg8f7nmHo8EOvEZTSqA1o1Qa02Y57Ifp7VPTLSSY9z4g6qMeHmZyJRYcsNtQ0B3O7aubUmtt1ZQmM1yMKHovJfFn5u0gkxi/TUb+2Qvdae/HBqhlHXWbPozJyVzF5AQSbzWOx3WefjZH9hQ+X38Q8blFtkZAzTAr2YI1QWQMSX1j7eZcTMvA2ALtDz/X2QNdbmtpiLVTWslk0rNpG9z0678aos9cl3aPGNRhb5fcdkiN2YYryLktonK6ZLSmSsEaonZ4bL0Tv9X5F8RHJv9Hv329Dz+mbAD/3Hf2FlZRS+peAfwlg0bTpb/36M5DxljOqNUv1KjyVhMkKR0KjOxIQIvgkpKTMJo6M1GBHN2IGPEQ9G5UzeRzTCKSEIOMxCzctIaxVAXwqh6PGh4CzB11MEQIRYlarY8AENYz3h559NyACi6amqR3OGWprkVqFiCnAlGgE0zAEfIj0nafrNTJFEdDxcl8c+MJ4dBnrRWVteUr+kHuNpa8zj/M5XF9cpolh5Rk88rwzbUZmQfvpftEwZ6bH+19GT4rJwnNiuHrJMYMwoEqMyZFbVVVR17UqXM6NIFARzNM1R1JM9FmZizHS5+gfmJjrfJRSSuPn5Z7LNcxuapxDZx1VVdPk66nz9cSUGJKGHer1vThPRQF49TZ+/b14ttkkXYdFEcumRV5zMemeE3TPhRIWGQImGEzK4eqjsE26DiGHqOc1YS0U8CwIPgVi0ONFdetnIVtAn2nNppTj/7K3ykePiDAUIzWvC5NDro1VHxlisK6ishWI0GTgahgG+n7g9narHq+csgCqDBe4OGXgah4hMg3wbKhlWqflURh2AXzG43018Oe19qK8yVSvtwOCvDEqkX53I378zMv9tehNAlrTEe/Sl+7FurKjunEMoOcDHi2cVHAE/bzgwvNlKSpDDGjY+vxrWbkoX5/rriJCWzcsV0uMGHqv+yXGSN8PdDnK7aswpPsGRLi7jyaFPqH2YsxYx5fG4tx3jq8AxL7uIe9576V78dFmM1NfilZR5IfyhZDUmIs+4g8dctizqD0QqayltzUBIRhHigFiQiKalVJke7cjdjdESezDlmfDNc5ZBqOPAOyut4Qsz1KqZvMeiWEgBM/u5jlPP/s1Xdfx7OnnPH/6BGssZ6sLQvA5qjZSWMwEXaUxutVIoh8GetPhxBGCV/BHlJdbsSQMpIGYDqRg8H2Afo8zDa6qqVxLTIlD32H3W5KD6+0NprHsDjuNisgiKmbgR9OtJqfPN5nDu/O42LSpqiuijwydJ4ZI13dst1v6rufQH9jtdgx+YPA6ljGqM2LoE1EMh/2e7e0tEhP92QXOWupGI7cWdUMMkS+++Jxf/fJzuu7A7faG65un+BDUyHTqKPrRj3/Kz3/+x1kslpydnXNxcaHzMnNa3NzccHNzw+A918+fc319TT8MfPH553zxxRdjeknM3mFnDDbryp0xEKPqJU1NXSkIVzk3Mo7Nes35bkOIgS70DFHXhrFF3iWcVCQc4g0H30PMjtbs1U8kxAnJFKNvVKay7vrN53E+hz/68CoV7Xh+iOLQNdZinEVMNsJK9EHM+zXrnNYqcNn7QdMsssGgEdtpAo0oYl8BHGsNrnK6V/yAN5YS7SNisl6fMMno2FiDOKPPGWgQYxSmSxpNMHeLT8ax6h7WWQpAUrhqQIhFlBTdOkZNv0wmO+A0QmSuV6fZHjsavZLhUK5tblzKFMn0Tebw7jz+id/821IBI6co+llE/EtPkQrk9cLpimEfgwLv3g/03Y7d9prB9zT1GmNbnLNUzlJXjrqy6kS0cxvETHM+gk3k9QHOaYR4X1fUVaVAao6gHx0xScGZfN/3DccRoCaZr5KBCylR6VWNc06dokOf9dqYs2TuGfRvJiZfay/+5OosRZlmYwR9JP9VlJFR7bnfsXR0G6IzPHfcztdszGDPqMfHNAL0VoTKCLUzNJXFxgzwxMlmzfARQw4ksF54cq12X+Usu0PHs9sddeX48MEZjy4FZ4RFZWirChLUpiLVSXGJqsW4Js+7ylQ114UxG6wMjpD3UnHaRZxAcobVosKZhO88u75jyNklxUlUcIWvEOzxjYCfPwR+NPv7E+CXX/aDECPPttsClDOf2WPQR8nMplsVQiGJIWLHbx3lzOUUmnEAR0R8nj6jmyzOl2/5LjOl2QjOmJzKkkZPxaSYl2gFFQYxJobe0x/UM+REF4OgaOS0tqcQwWIgzyN/9NAvMre7Bo+ZC9V0ZzeOxuqEGn4JvfY8TvM2M1SYAz4cvz/t6vupWCPMFPjiVRjn9jgMLp8we/7Iylcc77YYigUEGoG/cp2Z0cYYR6O9eDFfuMwZJ0oZqCmexyI4x/sta7gAWlkRUNQ/A1HGEkmEHMEygjt3jaoR4HslfY05nK+p6bn4lss4CNkQS8qcYgZRSAmT99Io8QrrzPtB+bsg4pRZSyAmIaQJWHrhrDNgL3P4cT2lFADJNRa0DkIIQb3CUZlqFIMxCSMW56qRNyDkyC4zA2LurF+yDL/z/jhEIwgoo3FzP8p+tEinV6+WuK89jy9F92draX5WYf5+Ov7+y85xB+z6Mjo612sCBPqb+39UQOy7fPCreDe+lN484PX6e/HuOkwvm5cZj0mFbZb0qeNxMIysc1q2HD/f/aNESBaQGinRtvNo1KyrfdVhf+l8TqBPeS6K1/heOv78y+gtRP18rXl86UezzRhiIniPeI814INFJBHEjBGRxTspkIG/PBjBk8KBmCLeJQ4uYp3FW4d3NSEJvuuIIYzK73R5ynhjCPi+o9vtOHQHuv2e/nDAGksYhvH8c0+0Gh3lQDFH4mjET8wAeprJAQW9DJIkH8uTohCCkEKAJKRqkrchBno/UA0D/TDQ5aiaSJzt8WP5HV8NGLw+P0V1h2SKLFPdrB8UAB0GBXyGYdB7ztZ1jImIgl7e+7HGRwwa8WONwVYVtXEKwhjDfr9nu93y/Po5Xzx5jPcDbduyWC6omxpjHBcXl6xWax48eMDV1cMxzZ2sezx//pzFYskwDLk2k6HrOm6ub7IBkKORouItJuXAD2MI3jNATue2JGeznDRUYhiCy2kuNT54/BAIPo61L4pMlKxfm6zLHMlJMmiQB3f0xse5vvAW5nFEx6eJncuQUp9n1Pvn15s/tyaPR5AjXWHkt3f46siXc5ZBGlN5TM56U/dSuRbycYrjc4z6kVxPpoAKGcaSVM45Re2MIARFBiTGGJmiVs8N71EgzOQoxwbEXb1IwbD5+Y6ExleVwV9LRy0DW2KKvtqpVD+7X2hkfTVH2sXgCX5g8D1+6AixPbIBjdXIH2PMVOengE93LkbKeYXRGWlzmQCNlDIvjN/cFrmX7tFD53LdGMG6vH+TQMxpR7wB3eh+eq15VF+HjM6ruyaOvjlbf3en7T5VKDECHvc+ZhlCKSZSyMBOzJF/CFYEZ7MrI0KQNI51OU/MvD+JcOg1BdRZBQCTQFM7zlYLzodAcoamMoy1PE3hJRZXNxjX5AvPKZtJYdxx6gvvmN9n5gNCjlByBqJDQsyHnxwAGuWVozG/glL7TYCffxf44yLyM+AXwD8E/Ne/7AfTZOlfM3tfaZQZevsp35y+mJiejJtv2kQTQyu/1/MZgcqWyIA8HwkOgx8Xh7m7QZKyVmMEsVaVgcz88hWMRp8Rkz0AGsHTD1r0sK4cIaiQHAu8qQXLyHxm4zKe+D7LKnO8yjlMDh2s6xpnXQaolAEsF0uquh7BhQlg+1J67Xl8NU0bKI2v07HxXDb4OCYTlXk1OSXKWot12Wsym/NoE9bGbIjkNZNDoF8AZAoIJqqIuHxMEgxDzzB4Qgy5ILbNylJ4IbT8XqE4u+YC+JQopUnRmK9PZfgxBHzUwsBm6DV90AhuLPQ8Ra69gl5/DvM4mFxcUce6pDBNs3g3JQqRsYCxTQqKjhE/48PkvHqhbRsWyyXWqkJ6aBtCCOwPe7a7HSGEKQqOmXIGmlJpdKGoYl3WTsrAD8SYi+WZpPnnont2tV6z2ZyDSA7LDxhzwBo3Mcu8VgTJKXdkkKukl00COd2zTucMes6X4Cvtu/voze3Fl13Aa17Y64A+3+Q8Rz+9w4+11lJN0+Sw4VQMsjCmd36P6GvP4atu40i6yQTApHvERioGwEynTDOOPK7U2WcpxVzLSovrVpVjsWiJIXJtbjWlJ4RJjs9Oe/R6DgzlD+7iovNbLVurFKF+Yat9N9P7WvOY0OKLhICUKIY8OVKUymyNqUPKqW4hRgv0BtXZk7Ek68CqrBdrMSbPVoIYPEO3gxg4GI+xHmMNg6vpK40Y2vUxF28GGzWqNaRIPxzouj2D73n+7Bnb22v6vsMPHSbrSgVQiDHckXt6n6oLqVFsxI7yoqQZhAzIp7IoE3gf6UMgefA9xM5SW0uoAslO4ErZz/MaejMlQdONMugfs2x+k3N4NJ9lHea5jTESsz5hjSW5hERNY4spaq1CMr+MiTD4sYZcAYf6fuCw2+MHz7Nn1zx9ds1ut2XwnrbV9KSrhw94/4P3aRcLfvKzn/Po/Q9ZLJas1yvadoGxForTKSVWqwAYvPcg2tCj6zoOXU/X9VrL5LCn6/aQcspDifLIY2yDoaoqHc8cSWBzLZ+2bVktlwzBkw6MwNA8knx0ot3Ri0YAI0GSaQ2VufU+cNgfNCIpfOlcfr15lLIu1XNe5L61CnYZayHXy6FcJxpdbARNz8q8yuTocy3IrgtkTHsyGnWfsgFbQMkYQ9apYCqVm0Z91eWoKucczlV5bhND3yNiCb4bnYM+9PiotZOsUd5gxNBVGtksQk5JUiemqxtsVavhnVIuTSEghij3O8Pv6rLzudRlnR2dRI345j5m/YbnsIxZefWVnD3H9tVo0I/6e47Qy+ldXbfnsN/lmkwtwQ8EZ7JBPdP5i8yby7YZADjnWTq/VqP96lrlaIzUdaW6MczKRBzXRT26u3x4Y4Sm1noyYoSqdpqWbSx1s8S5RiM5t1u6AwoCUUoafLVR/or0+na/yAhylFTE0RxEo3kmzfnuj/W/o+nMXyzrkUTeb3Hc7yGUgIw4Aj8x1/QtJT+sEWIyhJRlVr7Gyf5Jef/kGq5BbfntYSABde1YL3ZUztFUFtJCIyqNNlpy1mHEYqsGWzUq57ym4iZyg4Vc59SHSAhpdL5Jvr66AmdF67cNgz78QPB+rJeaxnWkWMlbjfhJKXkR+e8B/zc0w+JfTin9R6/6XUnrmh1pVE6NKYWK1PCKdzMZijGsCafZSBw/5BjFVvDVGcOidric8tU4BXKudwdi0FojmZPrEVJCiEjSiB3jHMFnJp2AWASfzUicTvQQwQ+B/a5HMthUWRUWKvxDXsMltLWoFHPQZ7zy8WXZuJU1LBZLmralrmvOzy5YLBYZVBpIKbDebFgulhpa6NyX1o75pvP4Amh3dNDx4OMdpsIkZ3dOGYFRq5wEzpgLi4YeV1U1KcDTVeRNqRumKILF4xZjxLlZh44sqI0xrNZr1qsViODzJgohcHNzw/Z2SwiBQ7en6zpK0ePi/Z7GYAZQZUWgACGlIHBRMI4ELYzew84PiDUEIsYpqNc0TS4CLWCK4v9y+jpzKCK4SsNDrbPqaQ4gIYyWW0o5xDImJEQkTsqdMUIwgotmvK9iWFau0s4sxnJ1fs6Hj65oqkrvt+8IIfDpk6f84rPP6YeBFEr3PLDiqHLBs2QCKSogFULSnDPIglsjffpBqxZYY5BcP8lWNQ8fvccnH/8YgOuba263t2y3W6qqGg0MTTfL81nWW1bkJEYVyDPBf6S4ztag5mLoY0oNvMe6fQV93b34XdFdz9W93zn+wRFQcN+xXlA4UcV4uVyy2WwAGIZh3LPe+/H8b8nD9Vr0decwjbw+zf6+/7syf1GAFe6MdVmjOYKkrN/52p3PhXri1dhbr5fUVa0dLiuNUPjlp5/n+iZeuxMFzwje34cNvgBGFc/29IVUDK00RQB+T0Cf157HmBL7ocNUNS4ETAaUjckpWzlCRt+z2KrGpIARNRBD8oSqIbiKWDVQN7imgarWucyGvu8OdDfP8KGn7yy7ziHW0FUN+6bVVCNfsfcVCYv4GhdVuXzy5Amff/4ruu7A4y9+zZMvfkXIRf0dEScJUsB7r1GpwR934MyRBzZ3qhJKbYlS40bTJzBk9d6QktD3gd2hJ4bEsO0JndC6yKrqaV1EQmAYBkwn1HVF8D5HEuXop9GhE3KzAI8fVMa/yTmErOLN9JYytz4DzDGBqypcZQkx4ILKTkIgea+gTIz0XYdF8H2v4xcTu+2Ozz79nMP+wB/84S/4/T/4Bbv9nrPzDQ8ePKBtW/7kb/0mf/rP/Bk2mw2XVw95+N4HWrPQCLbI2Tgp+4vFmosHGnV1cXvF7c0Nfd/TtivadknXHfj017/i888/1cLE3jP4ARHBZ8PU5RqEzmkBUldVuFrTpC/ONiSJ9H7A3ljMPjui7J3xylFgo54nus4LYBJzCqAaY4EYEn3s6fsBhJGPv4l5lALGUCKyAYmYHNFtRXCuwlVN5j1mAvny2Oq9ZZmStA6XyWCZFAMyF1ZGjN73qBtqKpE6JTKYhox7WMEzcBk4rZqaum2zwzFx2O5JCXa7A/u9Ru91/Z6u3yMIdd1S1w0alaS2iBGhaWrquqKqai4eXtEuFEwMMeai/tmRXSIK7zoi8/UX59nRmCLEEBmS15R6G0b74sgh8YbmsIxjsZGOomJmAiK9TPaM35kCDdIoCyPD0LHf3dL3B25un3N9/ZSh71guLV230UhMP+R9FknJHMlmyV6TMeVrBL/TaAtUOVpuvV5yeXlGVTue39xS11WuN1nWSJbLcS6bdb6s1bVcVYbzswWbdYO1wmJRaUFwU+HqM6xb0nU9X3z+mJRuEDMg+27Uq7+RJ24+I689j0I0xXbWsMOSdq7goZZ9GetrlSu9I/fHsR8/Kt16VWnQ1LYwruPSOCZmHT/GNNZgM2g2j3bvVqcIfgYMlsZZosBPlMQwmUUchsCTmwOVs/Q+cb0fWDSOEC+zrSqsm4ZqscQYi6tbrGsUCO4g9BpU0PWaQu9D4HZ7YN8NGBFq53BW8YqzdUXbaIfLoTswdD1DN9B3B/qun605tZmdSWMHxy+jbxLxQ0rp3wD+ja/+g9ngTgfJSGCpKZLIabBKI6Cal4SUcEgzUySPAZ/5axGdZGcV9GkrrTdycDYX2Y2z3+VllRmF/lbAHkcF5WxdNfqLMge5eKFG/ASveeg2yqh43w/03PNXmrTmuRLsnKOua/XCrFasVusc8dARo6dpWlzlcqG+kj70as359ebxq2niZY5Ho+L+L028/M5HU7jrffU9lNOqYjEV154bT3cjfo5SAjNTbhfa8aww4JAV0GHIRmXI4dpjB710dH3zYxfkfozUMSXN0Iz3IeOcZi9nZlaSEliPyeukck6L8xmtpfPqSOivsRfzuI7dP8QQS7HBOwZ0YS5aEqAoCNlrIfEO8JOZes49b5ua89WStq61mOSgNbO2hwN1VWmtBrRWFnBc4wdDMnm8RI7SM2OKSDRZiczRP3rxiLEsFkvOzy+A3NnNe4ZB60CVdLW7bewTkLKidxfomY/FeJMzOor2mUVNHQ/kl05HOf5rz+OraM4i09H7c76Z7v7iy495Z42Me+D4zZH/vPD9+XfuOeYcCJqUqObe6/iyiJ/vIhro68zh8Ro7+gQ4wniOgJtZ9P/c+TgeaJQ6M8XpnpOPe6yMdV1XLNqaRVsTY2Lx/FojL0NUPpGOfn4c+XP0R7m4e0+c/z+O9Jn23fE1ftv0WvOYlc8UQy4or04knYOYHUp5miSnD1iboy7iFO0kRptBlGK7xmRjNIeHR08YOvAdEYMX7bR0CAN7AkEsPraEmBsIpMkL2h0OXF9f03V7trc3HHZbYsx1ZWxxTKTcInwqZlt0IlEGmb2lpa4IR3rdFBk68cQQIoOPWjdngDCAxR9F9sRY2sTHsUbDyDsYT8IYTZHiq6JEXn8Op99Mf+Qb1KieoneYKUqEqcFICCE7TBIxF7wuRYFJWvR5t9ux3+25vd1yc7tlv9+zXK2om5bFcsXlg4d88qMfc35+znJzxubsEmMtKXgt7F0MxDvRTjHlehLG0vc919c3nN/est/vefb0qcp3RAG60vkrFbQ1zSK8Jp5bIsvbtsUMlrrbUw2ORCJKXhszkGxU5/K8vxiRP+11ioFW6jW9Yn9/fbk4A7xndkeJWkqJ0oD0aO7LnJVIjzElTECSyVEYU2HoslbKuQoYlkjHqHwxcLPTWozOmc1pejFBGDwh79f9dpcjpLccDntEoG09oQn5mqbubcG3RF8TG90bJl/bXLcp3y3Fn+8lmYzz6b1pLGJKmDt60FcpSPC15nAG4BzZCi/IGCaeO51v/NI82kd174D3Q4727+j7A33fMQz92B2vtHsvi3sO+JR9op/P7z1RnFClqHNVOZqmYvDqkC/lBkK4o2fP7lfvMQFq52rUs2WxqHDOsFrWNI3FmBpbL7B2OZa2sFazTd6WH+y15lE3So561AuK5DIRmX+O5m62u+f6xHTO2d5k0mmmWj7zRhRx7IYWc1OKmCYdqGxZU/YgZR4Lr+DoPCC5y19uJJS7jjobWOw6qsrS+5pd5xlyXT7EYl2tNqqrMa7S2me9Vi6OSQi5s3E/BPaHnu2+w4jgK0dlLbG2+EaITiN9o9fUxAIqKx9PaBBnGbeI+Qqq0jcCfr4uFRR9rtKqh2gCO0ZeWhbFzHguQmQytMqakfFo47mYwrpq51g1WmSp85G28xq+npK2dROtuzN4j2BzGDIjKluKvTVVRVPV41otm3+KsJkt26w3jQs6cfSdV6PlGc2zhjYX+VssllxdPWKzOSMET9fv8KFnuViwXK5o2haTU1q+zJPyTehFg2rS1tP8vZH3znbUPb+UPOkv89rfLUJXFIupEPDcWz4poMXot9ZSu4a60VS49XrD2fmFRq7kMHMFeyLD4BmyZ8z2AyKBmEpnKj1HifIp59C/cwHv3Mlr3q6xpEOVjlih1EYIAVIk9lrkr+T/xxg1isVVWiD5DVNJV9RURYsYBVLKfb04D5PilJJkT4J2jxgFYKbaWi6WLU1VcdHWrK2hsUI0jlgZbbG+WXNzec6hG9jt9tze7sZ7H+tXpVyjICW0ymkZ/6n+kDEOV9c4V3NxecXlg0e07YIHlw/YLJfqqY2R3XarYfVDn73Ykxdd8poZlaSZ5Tl/fSQRmG3t+e6ddMA7UXHfvuE60htSAKZM+5d8LqOJ9sI57wVg8gDN19q8E8ZisaBpGqqq4vLykvPzc0IIPHnyhGEYjufqjxDd1XnTnfemL5b6FYIRjVaQUdGaeO1xNNA0pm3b8ODiDEjsdjtub7Ycup6b7Y6bm6mD5fy8IxAwglCjpXMMWKXSwj1H/MBYjPRdptEAymOQihYruWmDNZpC07QaxZE8dbRaz7CqGJwlWZNTbhj725okkAxJDP2YQpwgBYjQR4uPA9FEQnJEStMDTfUJKbHb79hu1csdgsdZSyr1WSSfKk1h83GmWOebG5XmkoGs+IeGmZeoD4layLcAAEYqrNQg2t1LU6hLbQKN6tTuUGYssm/yjaeSdhYnj30MkaHXwuNvmlLS6J7opzFwxtI0LVVV1GXl/N4PHPoIQUFTxICBpqpZrdYs2wV1VeMHz+Fw4Ob2liePn7Ddbtnt9ljraNoFVw8f8Ru/8cfZnJ3x0cc/YrU+o2mXOFfnMSjA6Fy4zLy6IkiKVHVDG8FVNQ+uHhITHA4HjeqKgb7ruHn+lNvr52qICaNBo+2tO003cnofPqftOaudMytrqawlkEjJk5M+M3CjXuyR9wtj7b0CGJRlpDqGkIpTdAbyvXmaoPJRyiQmQxGt81EAHGvNWHB1RNLTxMPItolOgUwFrKMhGu3ZNYEDaeKp+fcmh20ZiRhJkKJ290tqAQ1e6L06jvygrddJGk0Wc1ORPgqpV5skeDVyxQhtW9PU6tBsWn2IMRrlY0p6kZYY0CLsjPWXjhqZ5BE7cnYbqx1urcUYh82pqCMg/D0gnTK5M19TtFApwp5S1G6Ghx3dYcd+v2O/3zMMHbvdju1uCyly2Kzx3ufo/Slif3LyHYObRaaWwuAKxDgWbcN6tUIQFsuWpqkxZsg2h1652rX5LqQ4CaYgB2sN6/WCBw82VJXhbO1YLCxQEWiJ1IjEsdbP9JiG4rsiETQKNGlEh4x7ZHptit5xp6kKlOmcOWKZ7LzShCXOgJ8YilOXkYfrY9LZUyLX152A+fuWscx0qAnEVns1Af3g2e57UoRd59n3ChYGNAPhqHg8es7BB4bBs9t37HYH+sFzsz2w3XdU1uZoJEcRuCIKFoWY6Ieojz7QDTnqOl+/MUmdE68O+PmWgR+BuwZlQdr09YSwUVC/8b88CGO7wxfDDEfgNZVMQt2EzmpnrVXTcLleY3JuXzcEBh/ovKcbPCK6UA6d5mZbm3C2hJQlaudIFs4WCzaLpQJIg6f3AcMwesHmd8dsQY/DUJSnVwxXERqRhLWO84tL3nvvfdarNT/65CdcXj5g8D03u2u6YU9T15xvVrRNox6DIeB997qz9JXpKFqibE59g/I0jwIpCsBcyM+/D4zM82gUM4A1oujWzBisekbHsFpyPmbu8qWdnHpNF1mtWK831HXD1cNHvP/B+xrSnoGiYRgQMbmYYz9LGctRXEaBAa2gf5z2VSJ+UtJrq5zWEDJ5zZZ7DSEQkqZKlCKRCMRB169zjhAClXM460htpHLVm5y2kYxYjEQdA5NIBozxR8j4dH+alyoa1Y4xpX7I8UIWEZa14+PLM9Zty8VywcPaUTuDqRy2diSB2llcVbPve379+WO6XiOtrHO4qspKx7S+bDD4YEbF3AetuWCrmmah9Q8+/tFP+enP/jht0/DexSVX52ccDnt+3w88efKY7XbLfrcj+DCmEsRY8n7lznpOI0Mtj5TIbSKh9JhIMyVgNKZnoLV+MjvIO0wvA33upmndjTC5vxaHjBrjHBwttXzquub999/n0aNHVFXFxcUFZ2dnasiEwPPnz2cpKMf84/6L5Hs//Hdtn2Pg8M5nsxcvFPfPHxTw0QhawypBSMe/n4yhpIBumtIRzjcrfvrJB9reOXfw2+8P/OGvv2C3P5A8Y6H3o/uYHbewiBGkKnuJnN41fz37zcvoVRFe3yUZdC7GIUk5FD3q2FlrsGJZNA1n6YwqDkgYkHBAYoB2SV/XJOey8a1KnJSjp0S0loN1EAMJTwo9RAi2dFK02uk0VSQSXb/XzqE+8vzZE548+Zyh7zF46qpC9ZMIKeR6LKV2VlQeWaJ/YFRc1LFB5pu5LbVox6AQPGIMKXvsJFmsNFizIokaXd57vNHvhuCxMUdQ3PknaYpQ0e5ZIf/tOewPbG93b3wOU0p0XQfFixrBOsd6s2GxaEchkFLicNhrrZAYtc25tZAMq8WSh1dXbJZrlssl3aEjhcTnn33O7/7e73J9fUNMKFCzWPGzn/8x/vxf+Pu5urri4vKCq0ePcJWm6qcISbKjIoe8CiYXUYYJ1LC0C0fTLokpsVhteP/Dj+i6jrPNmvOzM/a7Lb//u38T36tuE/0wpkfsD1ow3FpLzHOpkR3QOO1Q1VQVfV3jY65NEeNoyPjo8zrJqQappBgFNZpi4UelaxXgPakfvlLk1mvNIUU3nfSYsT5k/kaIAYLPyKWaQcYI4twIFoTR6SQjMxaTgcmif2rYjqpByRCl8KgMUjIV/VbARDeOjQmTjc5uP3AY1M7Y7jy7vTprF4uWxaJBYiR1PX53UD01F1sKIXJ7u2e3OyBA3Tiq2rJcr7WddK1Ok8V6RbNYZJ1VHZwx6rxYY0a9uuippRxH0bE1QjEXqbUOMQ5T1YipioB/a7L1CKw7kixf9qO57jjpcyF4+lxqYLe95fnzpxwOW549f8rz588Zho5FW/Pk8ZLDsmW9WmrKphGcy/bmCPSUv6d6VxoHr+ct2RkpJc7ONjx6eMVi0fLF42d8vta0LB8iXT/ksc5Qt+QCxEWlzFH5VV1xdXXGj3/8kLYxPLiwbFaGEC3XuyX7rua6En75y0qvIr18nL5Mr3gbpOzAaHe5ohPL9GxF66OVSJZRX0xz3DXNrjnPbUxjU4EQopZUSRpFU1K9xqifLIt1P5KDPSJDLvcyqzU/040mQE5kqp1TOnORErv9gPeRfeN5dNnxfOfpo+M8OUy1YOwiaDU1ePCR/WGg6waePrvl+fNbBh94frtnu+9pm4qmqlg2pUZaWV+GbkjsukB/8Gz3A7tdn+WmAoXWGHAQ7av56XcS8QNMjJQ5zyhwzbTBxzigETS6g7LODwmThy3J+J7JyoqzWrPAGUPjHLV1kMDHqbNSWUSTb7sUkMqdvQRq51jUaowX5LDkAOefvEBp9p9wDGzcvZO74AkoIq9FwpYsV2vWmzPOzi4YfE+yCdc7KjfzTPlA6j3hTUf8FISx/Dm+Ti95/1gIvyxSqLwrhRvMQKPyu5TSyGT1u3dCiWdUIoQKEqx/G6qq1vDlHB1lrR0ZRN/3tIsFVV2TSFjnxro9xhrAjteQsoI87zQ0j5YZU6hmn0POhx+vaYo6CaWJYFIPW0bNCKHCyDdoV/0lNDG2WccBCoM7Bn8mw20GiiDZ8Jt5W9C6Wqu6Zt02rKqK1gp1KXjW1CDCZuE5W3uqruL59S3WGHzxmMwiucrZExGTdPwl6t/qEbHaur1uWK83XD54SNs0bJYLFk1DClqNv+sOdF1H8FPdirtRYvNIp6N1On+Z73sG4+ba8wUAyoofzKXWiwd6B+lLa+hMtz9ytxf2+vzPXIjuLvObd+Jbr9dcXFxoTbPzc87OztjtdtR1/cLhXknf86Gfj9Wx03KeUjrfhzMZ8qXTIpOTQe5+Njt/+TtNf9d1xXq11FzzzYrz9RJnhbapcnRrmOT3DOg75hkvXlyRhSOuOsOOXqWQfl9BH+CYT5DXd5rSHwtvs9ZSVxV1qSgv2mK5ODHEKOij4EmasxaigSBCMpIB1tLS1WirZiCVWIwUSdETEngf6PoDh8MBP/Q0TutGFBZVAHBG/j5vZlDuquhec8X9WEZrvb0ysUXGWIwoeECS8XvTeeIoQ+YRU0XXOCr2jMpPn9Oy3/gUZrk+opXZyK/qKvOdRCnk6/0w1t8zJeKHhHMVbdOyWCxw1ml9BgaN+snt113VUDUtVV1zdnbOBx9+xMOHD8dojaJLlOhUZnOQZvMw38XGTbqGqyqWq1WO8nnG9uaGpq75fLHMOk8k5m5VEcY095gilfdY78d9bU1uAZ+BjkQpbJ0l8xghlhttoGu3RPKklCixXJCBfgQptXTSq/f9N6NpjEoa9hTJlqa1TInaj1pwNh1t6ZGJTobg3eyD6e8yNkf6rUFbtlPAer3x4D195wkhsd913N7mzsBWWLSVRhfEQBw0PTIGclmJyO7mlpubLaDAj6sM3gd2t1u6w4GUInVox1so+uY8cn3UU022vEZ5MwN+jEbhajMQizG2WPR63LcQrjl3Toz208hv7rOgZtcwCtFZ5FUGvmL02sa97+i6jr7rxjSvvuvoDget25pbo89LAtxN6Z+n+o2lJOZRP055fZubmtSNtnYPMWQdV44uuTyPPV1mtkXbVmw2LW1jOD+znG+EwVsCFUkch0PpWqvX+H0Af/Resj13x6mvWyWNjZdSTk8uQA93+MKx7C8pXmnik3NZEcs6n9ksx78+tmXu4UGTulsspfLXpAv7vD5EhG4I9D7hQrZOSrTPaMtopoQCU4GuH9gfegYf2B8GDrnGTwG+hAkBVBmttU59SAwZ3BIUNBujdU3k5bM+0XcH/MwURX3OEE/SV0h+J5Xnr6a7j4pyAYDG8+UFEGJG9xRZtSIsai2KJkBbVyq4kkxer5QIsSxUGVE2Pa4W7psW0HTesq1lvqrGhXg8FMXoZ7SFZsZlNjaNsVjj9JELy8VkqVxFTAFnJ8HvB8/tzQ37/eErT8nr0F1gZ664z8GgCcCaMd8UR6+CiblTQkpZcbqzbNMUeg6M3glFtdMoFYoSCRwpis7ZHEFQsdmoIdm2DednZ2w2m9yaXb/bdR1N02QF3FIijUrYYGH0c8CgCMOU80pjBhFLMbgxasTImJsfc157GZtJ4dXvlhx8UqIz5s2Dd3OaKTFj3vtsV06Gx/GCVU/k9J41hir/vnGWZeVYVY4m19KaaiIo1c5x1jTUxvI4R3hEtJC3dbOuZuUqRB8kcHXDUsDaivfe+5BHjz6gXSx59PARZ6slldNC4MPQ0/cdu/2em9tbdvs9XddPYGCaPHrjHY9z8uI6ZL6uy/4s88u0b8f/09GPX3tq3ilKjOtmrhTffYzesdkeKmSt5fz8nKurK9q25cc//jE/+tGPcLm4eynU7qydOgB9n4GAb0AvBX+YwJVUjOP8XoxpxNKC0QieMPLmIltn8uauwZLX9Jh5IUYLmDrH2XrFB48u2e8X3N7uePz0mq7r2XU9h76nVP0aVfA0/4PRGGL21ngujnfIuzijicQQIzZqPR97ZKRkQCE3dhiCpxs6UtCIH+N7SIGAxbtOIxqxdFKRrEOS5AiYRNofiF51Dk27aHTgjQMq5bPJ5rWR6PqO7rDX+mp9hzGasl5qOAmJQ3dgCB5mRmE62p/H76kSrYU6E0kjUmaFU4lF2S9GNqSgbXNjyDUXbAHf4xihW2rgfPbrT7m5veGw2/PFp59xe3PL0A8j0KMe++3bm8u5IVDGpERBwMjDTDZ8JUHlKtp2iTWGs7Mz1qs1y+WKlBJPnz4lpcSzp8/Y7w/0fc96c84HH37MYrXi0Xvv5RT9Bc4de+xLt8tEHNtOzo3PSV/M383RDiZHnztXsd5sePjoEbvVkufPnnLY7+i7juvnz7i5uUFvQlQnCcLgPaZEIksa5bw1BmcdGKEiEg34YPBBO6IWmRnTfDdnsFO0C5WOlyBJo02sNcRoNGrsDZHA1PY+O9SK1710xTW54462c9aUL5J2i5MUlY/mNuwxeki5O5spAJ/u+ZgbwcRc4Hzs1EReK6KtmBXYjKQwkEj4vid0HSlGuiHhvRp1KU5NZuLg8Rm8CV1HHDQ6agj63RJ1ZWZgU0gwDJ6b59c8/vWnNG0Lo87M+P0kCjrHXLA9W7MIaaxBM2fguk8zqJvrO0n+rLST/u5phIhmf09Uop28H+i6A7vdlt3ult1+pxE4vudwUH0xodGtXd/jKkftqxGgPMo4ETOmy5VqsYKuN+cqjb5bLjk7U1tjs1mzWS9x1rLbdlknSjir5UgUO0pjjaUhCL7YVBIR0Y5zlbM0dc4wiQO+Dwz9IYNYPX1ubvN9oFH/yymeVsDlgudWElYKa0vQT8D/aDtxD+hDtgtnIE88eo6TngMKOlmLrRR8MTYgMuT1XJxjmb+Ws6Rs42TdtnwiufaqjPdW7AVNxS452gWAYwRwNEjE+9zBCzM28TlfL1kuWtrasV42tI3FOYEcIat1THUMrXM0dT0Ll9YGCGamv72KvhPg564ZNDe6pnSteZu36dtz4+pI6h2dYK4RT0UViZHoA2ISxIQVAWtZ1jVNW2dDU9sVphkyF1PE+4h2sUDDtlNQZh4VHErzYmD5mrVFaq5YPgdAImPe9gRl69IakdE7IyVoG0fnGpyrqVxFVVWIgTYucvqThl6nmOi6A08+/5xnz59/nSl6KaVyD/c8xrEfQb3jiIqQFcNS1DgGLYRJ0jEyJpUASv1tXsHBayG2onhZ63J+dEHFOUJ7rS1pX1qodL1e0TQNVw+v+OijD2nblkfvvcfDhw9H0CZGDd3+7LMVVVXlVnlRu07FiLW5oOWkbxFCwJUCxdkLGWNWBEwWsCSSnUbPR+1+Ekqrz3w01Q1UcA3DgB8GvDGEXJD4bVAByqwRkrWUKCfCCLcwrc047qtxvoVxjqq6oqkslXVsmprzVh+Vq7StYQZ/JDPDZVXzaG0ZQuDZ82uWi0WO3rHH7eyLkh0cEipEhGXbsGgamqbhZz//E/z0p3+cpm15cPmAy4sHCOC7HV2/Y7ff8uz6GV88ecx+f2C72zFkMO++4s4w500vIMej8Vw+PuaxBeAo4Nlc8kz74l2nF9J1Z2NY5q0UY6+qzKfya+cqEMaOXMXDHkKgaRo++ugjfvazn7FarfjN3/xNfv7znyMiuS7GTo+RO8QNfT8W9n4zN8b3BHUoRh9z+2n6Y9KHKJw2JvCRHIFhkKDcxEe0qCuzZZg5T0ySo4iyYiJqroSkxQsRh6laqqbm0dUVD1a1tojuB66vb9nuD3z+7IZ9l+tmFQ/o7LJJmmY2x4D0IYSkIdd3gZ9vPHozoOzbopjg4AMuBGyKWrNnVMWESGKI2UAeOtxuS+87bAzUcUBSpA/QJ8NgHdtDz7PtnkEMzlgqcVmH6cAPSEpUxtHaVj2muZCoiBBwpKSK8W675enTG4bBs99tNZqysiyWC842ayARnid2hz0xy6cYw1hAefSM5rSnSamOeQ0FEoGUgqZ6xaCh51EjPFJIlKya4LW1u/eBYEIuoBq0RX3fIQZ2+z1fPP6MkAJ9P3D97JrD/oAzlrZucdbh/cDTp8+4ubl98xOZcmpqkrH5aoxh5FEa9eJymo9V3S5G2uWSR5cPNM346j0ePLhitVjw9MkzfvGrX3A4HPjss8+5fn5N3w9sfrrht3/7t7m4fMDPf+M3OL98wHK9oWi7KZEbiBSQN5uCZe/n5X0cdTJRwSfEOK4evsdquaQ77DEkFm3NbrfjD37v9+iH3EEtan3DmBKm7zPwIYgzGKv6qLNqcLgUSc5gosMHj8/rmjJeubCsKWC/KGBkjc2Gioy1f0oau7zBqOaSMqxORk3/0BTyGmv12dkKY7WF/eBVX9TuaxohbJwdU85TDKSgOoPBZJBVSGhdI40sz2s56l7Q7kHaqKbU9VGdVzst7bcHdtt9djo6Ii7X3ymFkxOxP9An7bo37Hb4/Z6QgaJuKPVMApXVVLMIDCFBN/DZrz6l3+1ZrJYk0XRFYw21UwddkoSPucOXMKYOFrBLnd9p1G0FmYxPDOJKbURNvXyjcvgFuiPwXrD57n1z9mka52oYDgxDz3Z7y5OnT9jeXnP9/Dnb7Y7gB27aW54+azl0Hdc3N2x3W0TQbrAxz6fJkWEiY/ST2iFh3DeuqqhiRKzl7PyMwQdWqx2PPn/M48dP2O723Gz3mGfXJAyLhbBosg1HsS8SN/vE0BcwMWBlwFnHoqlZLxxGIil2dPtAt1d9d7vb5TTaaU7m0ezfLmndLGVkClQZox2vjajd4/I9J4BDp/IEpmjH2T2Mr2FsCKApX9nxntdsyM76UnstIRhnqK3BxITrIsZ0SEwYydkDTNF/KTPZXApN+SKAaNyindtkSfcNxoKxJLHZ+hdmEDAJwftE10f8EDEITc4quTyvcZXDWWGzdLS1roUUPX03MAy5I6GtkMqwXi1ZVPXoNCkZJNErMPwq+taBnyPAZ0Q+yqOgfUmVyDve+ONlO/11VJSsIHZH3vnxsKPRKgUhE603smgaLfTrB0Iorbt188UM1uhZc65ykb7FGDy6lxfudHp62ZwcDwx3o/TmKTmalmPy3xZnLMlaVJ1Wr2IMga47sN+9nTz48vxC5A8TOHT0/azNTFE/OfoFrT0x2TgvGpVzUCdqCXNS7shw33fnr40xY8RA27Qsl0vaVsOwtQj2LKQ6afv3qbgwhKDjaTLzmocqlo5d80LP82t6YXzye2O0Q8pIsZSExhKaGGdjOHU3e9M0XltGrZURC8kUNqzMpoTiT9tT908xIsvlle55ldGaWrW1Yw55SSPTSRacGBaV0bTLqsI5iw02tyed/aYAP4DNwEpdNywXOo/nZxdcXT2kaRo2qzVtre2PQ4+2/Q1a4+nQdXR9hw/zbjLjQEz3de9YTzc/RQjd0cBHEDpf9xF/YLK6v6d07wqTl35y/LWZoT0Hf0oNrqqqVNjX9QgCDcMw7ptSv6u0bT8/P2ez2XB1dcXDhw8BxoLndV3r7+4Ad2+EvkfTI7MXZfWNodsl/DUzzeKcLUNRChmOhZy5K3rmEW6zE03iV79fFFtrqdoG5yJ97disFizbOhd8NePxpzPJdOzJgTe7jgyIj6+ZXWf6Civuy+nbBn3yWQlJjbZRx0hFoumdzqNdffAwDKQUsNFjSETjs1NADbi9TwwIzjiCdVn38LMOYYYgDkxJo8kmQyoND7S48+Gwz50qh9E7abNMBDDG5tSWEs1zR44yY1935mkEhu48T/KesWvS6PCade0qkbox12jwYeBmd8OhP+So5S3doaOpG5zVuncxxpya8eZTvcbZLPeAjHrj2HBhBDQmXcBZy6JdsGwXLNo2F6VvSCmx3W3Z3mpB52FQg6yqai4uLri6esBmc0ZdNxohMHbNJK+d/CzjaB/vj4IMvbBp9NqsEdq2xRkF3s/Ozjk/v9B0tMVCHT2gwF2udRFixISAGMEmKEVZtUmKvrZicaJXZGbyfdzHidHLXZwh43cELV4uZux8+lXkzFel4nhQXVEjlsaIZjulX4iozkzRKwv4Q5rq88mcKSogCGns/jnpbLqOp3UzabNFnYqUYuYxR+CpnTEaxamsu7y3QtB6SzESvVfncogEH/E+Td+d1ZBUwzdw2O/ZioKWh/2eYRhw0ZBMlVu1Z1DRjCvsaPxEPQJIzB3jRj08YUzWXaVEhx6v2bdDL+fpx9HZcxfDnSOkODZyGfygaV2dRuB5r7xXa4KqbtIPA4P3o0P36Ih3IpnH6xDRbrxZ90kpUVc1i0VLTJFF29A2Dd6H0cEJGvFT15mv5LXnTcJ0YQQhyoSIJKwB53LX6RgJvlfbNTvUxgLeR/f/7cvFaY3JuOfVUaFpo4YMUnOnDfloWt+xI6ePj6N9ZnbVaDPqFYzzonWULEbSkY0x6j7FHpvZNMrHJhko+aZKlNc8Q6BE/Yw/Lhc6KkFTmrNGz5WoR8uirWmaGmeFpgbnMm+JMWMQCtBqp0/t/GyRsbOXdoiLBOL3N+JH6UVDeXo3KyGZuU7j+OId3U3JECk50NM3EpKVWB1kZzX9Z5U0vufy8oIHV1dYa/G5rV+MgcNhz/6w0/bTuz2knQpTa3KERlkvaWTa8/spMnlcV4pIzQTE/MvT9c+ZSTGOjCZBEsNA8D2+29HvG1IKEDpM8vlOdbk7A8u2wq9ebIH8JugFwOdI4pfPZlEilMJaKXuUc9HqpMBPQpUMFSg5nSrOhFsZUJiAiPmjmBF5jFWhEM2xbWqatmGxaFmtFDBYrZasV4tcGDqOnhrntFuKyKip5vMZxtD1fH8qtI2GVSdVoFXBKQVtE8SEN6qsF3Q2eE+Y5cWPC0nGknH5fzlqT/lG54+pq0oZt5LLXb5BMdBS8YLmsZ0dpRg01ght5WjqitrZnHOaQQBrQSxinbY1FMElkJhy7aqKpqm1D00xFgBrLM45RISFtVinXtaLszWXmw1N03J1fsaqUUDBGZCoQm+3u+X5s6c8u77m+c01t7e3dF1P12ne9qSbzTbpfNylhHBOfHyciWzRltSz8a27UzUhS7PHu0P3qVPzN1WRLsXMK6paAZ7lcslyuRw7c5XXTdNQNw0iQt/3DH2vHd522lWjqiqurq5YrVYsFgvatqVt2xHAnUdpjfL07WCi3yl92S0VAzxRDOpieGS+JKVosuZ6+5gYsqIRJnscmCJxItP6jankkkeGIbDvegShlUCVDarNsuW9yw3LtmJ76Hhys81e84lnz/dPnfmClM0kGm6taWJ+vKDvR2D61yUZ720EQcrEZHkWNGSGGDx+6JGhpyaxlIgFupgYYsADfYh0MdKjfHDIXmUjaewclEQ97zYmTAiYwYPA4Hv6QQgh8fz5c25ur1XuhF5lmdE6AkPQFvE+BPVmy1QXofD1wreK0R+ThdLVMYEhQPIY43M7e00Bkqh8NISBvj9wOGzxQ08IHTENJHzWBgogFogpA/XDXjuVDp6+P2jR/7z/YTI034o/RBTEiZIjlKPWBekHbd4RvSdFjfxJIbJoF9TO8eDyAR99+BHr1Yq2arUFd04xfvrkKbe3t/S9Z71ZIyI8fHg1Rh1vNpuZ3IX7b0xljhSwd6YvfpmxC4wdmarUsLm44FHfsdptub6+Zrvd5fbvz9je3iB570sImCSINZRLK+3iUwJ81gGjdpIZJWjmAXqdaQJ/mOvq48XPnJhfa7ZeSmNacQannNOUVesc1laYHLWV4qRxpaMXueNnjoALYSCGgBA16iMKYjVNp+zvmPXIWKL/QyT4AT8cSFGbhww5BafvIik51XuNRh+lBKYbIA6acRATDJmX+B6TQrY1ZvUhS2ci0dpfXoQUEn4YGDo1rq+fPqNqtZvU1YNz2npFYir6DwWwLT4FGTscT8V2J0CijG/h8TFHOr09Kqsrzf7+apSKvRUVWC7p/33XcegOHA4dh8OB/eFA8J5djgoPUW2+3W6PNZblcqnza1KuSDHxeykFeWIeQJKmSNsEGNp2wWrwiBjW6zWbzRoRw2LRUFVqM2zWjovzCkGjNlKIDD5xGBL9kKisaBRp8KSAduE7WPZ7z/Z2x/X1gdubvdaxLIXwvxMHyItUgN+iK1pjqJzVYuqAzXqCsfqdaA0phclOZrI30+x1KZlR9kFxqiv4qWvaWAs546B2Na5qCQluh8hi32EGT4yJfvAKEKf7VtdxqYKmqqgrNwYBCELb1KwWC9qmoakbrM1duUZIyGLE0tQty8WSWAdqa/Ftox27m4qqdggRKwOSIxULSBQjeQyzgx6Uv4QIrkKCdt0ZxJP897S4c5opF3ODKGWkHZnZ8sWQnwmRkWT+1hyxnp1LIIoQUbS/risq60iuwrYrxBg++fGP+clPf0pVVXT7LYftlhA8z6+fcX39jH7o+eLJ0xFFrazBGqZ7GNH+AgpIvrYZiFMEdjG4Z+CPpLmx+SLwI0JuM+kJvsN3lm77nL1VZc2YiDN5k+dWgI1JXK5bGvPmGfKXpXpNgFaxRhRYiCkq2JEiPkWGAnwguYYBmgaUDJKMRvWEWWSM5FC8lBSsGHtulsWSgRbI4ZgaYls3FYuVGp+b8zUXl+csFi2Xl+c8uDxHjNG0Ku+xBppa08gUQMsemmLQmGJwTe0CNU+zJkjAGo+1qkzH4Ik+EMVAioTsgfKDovIxK9xqoAlY7Rahcz5Tk+K0P97wJKoyMwMgjdFuZGN9IvK9JAiYEXBLTCBQ8So4a1gvG5Z1zbKplJkn7VaArRDjkMphak2pdHl9+BBZLVoF4Zyl7we6XmsaWetomhZrLWerBefrJVXleO/BA967vKSqa84fvMf5eoUxVpvghB7f9zx/+oQ//PUveX59zaeffcYXT56o1zt3uCkgV9lfR0qpzB/T2yPQBZOxPQN7XyzbPhuj8ngHSVnRHO7TG7bOZiFn2Ww2nJ2fjeDNw0ePqKuKs7Mzzs/Pcc6xWCxYLJcAY1FF7z1Pnjzh6dOniAhXDx9ycXmp+/XsjPVmoykWzo0hvMd1fWZC4K1Ygt89FXAGdM3F2doLcb7+CiUgqBsgfwemLlp6zDRaOgVIMkygj/eR/aHn+nav+6URlq22Ir+6WPPzj99juz+wO3R89vSGrh/oB0+fa8WUaEjEsFy0nK8X6unLYKH3gS+e3zL4mEGpt9cZ5tui4kUsXndE08JHmZFTwgc/cOgOhG7PwghnzlIZIZSOOyZyGBLbPtLFbPAXJTlHvRhj6JMhGE1DTtHrI0UOh4H9vsf7wPXNNc+eP9douUrbC1u0LkvX95ASnfcMISCGvJ4m0KrIXyOGylaZlwkhkKPuvLaaxzF4BX9UTgcwMPQdu/01t7dPtAOWPxAZiKka03A0CmrAhMTg9+wPz9nurvFDYr/39J3qNGEmL1N4O6kLRgx1XROGQPTa0dMPnsN+T/RaR3HoHFY0heFis8Eaw48+/hG/9Zu/xcX5OTfXtzz5/DG3+y1ffPGYP/zDX3Bzc835+SUPH73HYrHgxz/5CT//jZ9z9fARq80Z1mVAJeuBk0acdeK5IDJzeXWHF94lEa1nYw2mqnjvgw+1w9d+h/eRlITdbkv4/cDNzY3Otw/E4hW3mn4Nmupe2QRRMGkgBdXRJGk0rqoEiWylvGivv3CNghiHlp95c3OpxqXuPJPr8biqpqq1TIKxmuolxo01dcYrGJ2LGu0tolFzfuiJYSBFR0LT+C1Gy0aYNAILMXqi10fwnm63Z7+9IYRA3w30h075t23BLEAsxtTUVU2KiYEdDB0pBvrg6aLqYBICVQqYhDoTS3RWbueeBLwYolHApjt0VCEQBs9nv/wVN9sd6/WSZf1TLs9WChQZxi6EpZYpMHZg0zTsUosLrcdpgDQZwYFSO6d/Y/N3/6SS7cHXWyclHS5GBX0O+z1dt2eXo/Bub7fc3G65ubnVTsAWqsrStg1Pnz3j2bPnhBBZLlcMPuheokSwqdNXjJktX4GUcA5E7GgnWOdo2wVXD654dPWUtrnl159+zqKtsDbx8GrBh+81CIlu3+ta6SODBobSVoIVTwodYQgc9patg5ubgSePn/P5p7fcbHt22y1D32V77EVw/FvHgrKzyBgtdG1M5iNjZgWFc2C9xTiDCSaDiekohbA4/Mo6LdFbRQ/yeaxLiZYEOKcNfcQ6mtWaen1GRDhEuDmoIziGqOnqmsk4Yg9pvDLVY0rgyHKx4CwHDWiGgtDUNRfnZ2zWK9q6pq4qTAF9kkWwWFOxXKx0KccIYU2KHpGkTTwNxDDQ7weGftB7ieBj7oZmLU7UAWTrenTsyaDpXeIDB9cThlfb/N8q8FOU1fzXSxDJEe2ZXr9ktc7R5/k5yqdTd7Cp847kMDxnhNqqUFwtl1ycn1PVNYe6orE2h8t5/NBphFB1q6F7seQuT8DPFLaejq7+6FrnYBb339JdRUaZ6wwISmlUtrzvCUOnG8eVSJHxdjFA5QxN/ean+MtSvfKrEfyZQr9nIFH2ppQ0rzm0MdnXkg+TgZ/x0wI2HNe9UZAhg4fzcciV9a0r3YK0O0dT62s1UHR+qsrlWknp6B5g8qoDI7o8KWocpd8lNMRYI4JyGDvFUJtQ6gIoYcjKc/aU3wMfvGlKMIavHqmOea0pMKmaQRq9qzIqosX4L89GoLJW29jnMMhJFipXK4XwjDE5XUF/65wKApfbtIt4ZXTGZEPH0jYNq+WCpqo4W60436ypqppl21A5pwBTyoUZY6AfOnb7Hbv9TtO8utzCdoySMJj5pvmKA17S7+6uiSPgeeRZOfohj/Hb8MB8lSPKS15/lePMWdLE8zJvEk2jLNE8q9WKuq45Oz/nwYMH1LWmM1xeXGiXmQz8iAjdQbuseX9cw2q5XFLnlLB5QefjouqZIfxAgZ6XzcbIXWeA41ymjoAk03rLdsKdtZd5651zFcdFGeeQ618MQyBWBsGCCE1VsV42GEm0dYVzBh8M4uWFaylOi7qqtE6a1c4jvfE51J0pEuhL98d8rr+fCNGUFsIoPlIiR20WuRfxMXIIAR8CgqHJ+f8RcpFYyYBDUK//jJm6qBCdSYIPCR+0fG0MkZRz/Q+Hnt1uTwiBw+FA12kbaCPqYS6yOM68pTGhaWrjxR/rK3PHFDDWKCwp2wWQnVJd0JboucW79/0sMqDE/s71ptJCXKMrfOjxuYhtjAqkxZkH+O1NokZYRTPfF0nT0MRD1MKeyRisqairmqrSFFUFuS/wvdadUK+8yqHtbs96fUbTNCxXK5arFev1hvV6Td202ro9n/9Y3+EVsulVPLCkUAhWhKZdqOPSOdbrNav1GkS7gBWeEWfgzdyxIWTgtjgwZlNRCjbfc/p7LzFlI/44YunN0tzpqo0r7MzZM6WATBd0B/wZZfyUohVNIMasz5T29SM/zqll40MNU997BT07NehTAqkbTFV0RquP0pEnTbWvolcg3aapaki53DJXpYB/NBoZENE6S1E8QYTDbk+06hjzg5+bs5ntzvT0fPBRfsx11aMJnyJ+7toBb3YSmXjQkby/f80ci5FsdxSZNkZvBbwvhZ71MXhP8APD4OmHHjFC3w+a7pUdw+mIv5W1Na0hmb02ZgJynauoK7UDmlybsu97qsrhrMHaRFNblguN+JEYMEk7ZlZOxsLPhoRmIARilsvD4Om6gcOhpzso2F+yDe467L4LualrLHeGy9E+81SviUGko/06lb445sPjuhxl2Dz44PizcZUbq6CJq6ibhoSC+7VzxBDH+rhaokHdt/exsnJ9zlnqus7F7vU+mrqiqSu1Y5zN0YbFkhMULFV9ua60O6QkgyQHJAwBkaRpnB2qDSS009loZ5QUY21KZYAU1bkUjBaLxqlt8yr6jlK9vgzIefH/4j2YmeEzUOf4CDqBBjG5PgmSw9cFH6EPCYgMCD4ZjChaGGLCJVis1qzXa2KMVIuGqnEcuo7d4cDTp08JGbQ4+BwilhU4n5FHKdcwuwNl5vO0nSMs8cVRGMPKJC8kQ+WE4Pccds9IvuaxDOxvnyJGGYPJ6EXKjGcYera7LX3fve7kvCWaFdnOQh/KZtJmnyUXdMxnn3cKmQullIBAyq2eyrooHmaZgWXW2rEVa1VrOkpVubFltMnnUpS+vN/QNp7lcsFqtRpRe2AMrQ3BH9kpMXdL0HB4LWRZahgNSXMw1YOSQ4GZuo+RO2QdGQ5vHfnJXuk7Cn6pJ5RyBw5ln3aai5hyJ4g04WJovazKCLU1WCAFCD6BjRivwso6h1AUHS18nkRYLJY8uLhk0Q/suoHtYSAhrFcbztYbnHNcbpZcbhZUzrHZbGgWKy0YaV0GApMWKsw1roZ+yGG7CvqEXFshpcI55gqt/l+UwVK3qQC806RMYNdoYM8EzlzJuG+8v9yw/Q7pnssqglBfT/uyaWraRYuzVgGeSwV4Li8vePjwIXVd8+DqikePHlJVFavVivVqPe3DSluxD22rkXYhR3e57B1D6PoBxLDb77ndbkcDth/6sR5QVWlhTmPfTuHz75LuTscI6KR5tM/xcpoAntlKna1R0vEKnuZ0AoUmxTrXifM9odszEOhE2KasfBJYLVusNTy4OOO9q0v2Xc/T57cMXj3HpWNP5RzrRcvl2Urb22bFrxs8t7uO7e6AD5E0BI36gdfBYb83ZERondXUmBnPmM+VFnzVSIHKOMRU1M7R1g211Tp9yVZEMewl0IagTSic7h0xJjd1aDBiiElr3aSU8ENH3x2IMdB1PYd9R4hR27fnRgXDYMaoq5S0xTskjfyBGZCajbxRiZ46as6Nm7LoUkg5+kMNK4NBrIzp1q4SqkayDMyyOjekmdbkNI51XbGIDYNNJB8QtKaBQUYgXfI6etOk/F/blxsxJFHZEkJQeWAsSfQ+Fk3LB+9p4eT3Hz5itVzS1DUpRW5ub7l+fs12t8N7BYIWiwXvv/+e1vZ5cEm7aKlqrW9X1vx9EuKbqQPzo+r1G1fhqsjm4pL3PviQ29sbHj95zLPnz7XNte9yK+uYU6PCaAgZMbnDHFDm3HvCMOQCz1ONzeDV8xyNtnNXxUBIUSc+5oLZ4Q3XhynyeKoTmNNx8kikmIgSEQljFH9Z42M9RZHJgUiJlkwZ3MpdewKEPigPjWl0YkYf6A+aUtTte7rDoODnkIhROwbbqECZRAjDQBdyh7uhx6VARFM+Y5HBTGkoDqhFHaditeNfAoIRogjOGKpKHZ1iDTEE+v2ezhq2N9dcP1+prm3JETxMevVoMI9LRm0aM3NHzvhzMWa/1Wjml2yGSV9J2dCGZHQfY7TAd1U3pARtu2S5XBNyLVRrLFE0yqTvNS1rvz9wc7sFEa66biwenChgxrw2VZGnGv1j0O5OptiWMeF8yHXKtLNc6XZrJOKy09QI2HVLXDiGIRKkp24HFq3jbO2oK+2Ktd31dH3k+qbn6fMDz2869odBo3NLHZIXuMnLOMzbpJk9m/eUEUZnu4yLaYoGNtYQJNcqLOm9WYEZa/mg4GZxoodc4DkljVrVtHahdhX1YomtKharNcvVGkS4PD9jf+g4dB0J6PqBwQf6wdP5MMqpmDQTonGORdNQV46r8zPev7rUjtE5uqdyjqvLMzarFVWW6c65WWF7R4yWpl1q+hkJUkDI/McfSGHQiFbj9AFod3HJdqQQsuN6KugMXQSfNNLpEMF/BWnxHQA/d7xCGckq4m3C/+eegFy355XHnjHtMTHZEGagz8FHfNLUlQBYIoPX0PaqgvMHl1w9eogIXHxxydMvNCx2u73l81//ir5PhDiw7T0hJvZDn0OlNX2nLObRo3D0OLrKybsgx98vz8YYFq0iiXVl8P01N9c9O2O4fT4VzjXWjV4dRFvKxVxA8ttv6TezSEbrZLRAIE0AUAF9rLFYcthkAR7ypo+5Bk3JnU1JuwuIqFMq5rVUwvBKDqlITl2qnNYKWbS0bUPb1PrcNizahlJgUIBmqFi0GlkiJM7OznJNGM9upxEKoJtuGFRZLvdA0no1zjliUKGthaETKQ2M6x5eeBYjGvEzL946AmBvaZZSwvthPM+4Zktha1XPAVVWIGZvUkLzb+dzrS0ZG2tpncWJEActNIZExHrEJlxVZ6aW07IMSEqcb875KFq6ELjpI9ddIIlwdf6Aq8srbf2+rDlf1VMtIedyhxpHSp5ScEeIpOTZHzqeXW95fnPLbneg7wYthJZDc0WmDnyQFX6m4unmyLCYgTt5LR8BP8XDl2aA0AxYutdS/77Ql17SxKlK5OF6vebho4e0TcNHH3/MT37yE5aLBQ+urnjvvfc04ufsjIuLc5zVzihVrtNUvG4wK8wXA5vNhgcPLumHgU8//4IvHj9hCJ7n19c8ffaMGCO32y2HrsveOEPTNiDkPTm7l3cNMch0n0o2Xz5hXEJTHRZ9rd/RoqzHv0n5xciO75xwZC+jkVPSaSOkQBw6+v0NJji2A8hBi0pW1nJxtmLwLR+9f2A7RLaHDviU6+0eQtQoPmtpm4rLsxUfPrrMtfFUIe/6ge3uwHa3p/eBEEpaE2OHmbdJb9pDbUVY1xWxcoTsbCqdi0pxVJOjWCuxNKbG2cSyblgvVzTOacMCq379wUVWeExMtIsFq81qdEw0tdbJevrsGZ9/8bkWr9/v2e1u1Zs9+FxLJGlNiyyrSLrfRITD/jArupnU8WAk169IIJqWHUPmk6JGpsTi2Mo8Luri1O5dQY19C6aE9TuhboU2GnyYueycIGaKIijTYY1h0TZYF/F9xASPM4HaVdnAjiRr1ANu7YsT8QbIWQsx4ayBpKH1YdDUJpwlimAsbJYrfuNnP+PqgRZovjg7p24aYkw8efKMx1885tmza/pedcP1ZsPPfvYzHj16xMeffMx6vaZtW4yt7m3gMME1bwr8UV0RY6jF8uj9D2jaltubG57fXHOzveVwOPD48Wfc3N5ijcwMVDQNwxiiGKQwHB8I/cDQ9bleoTqBYky5zbsWxDYJUql7keslhhC0K1h40/VI1KllxFIZq8Zk0Y9T1mGCB1EHXogKPhlTQKLi/CpHI9emLHNgIBliUJAHIpaIEwV1whDYbfd0hz377Z7d7UH3URISFsFANFoHS9RJ60OAGJB+j0u5/pUkfImISqUhDVSSaHPZASeCN9nBLZBEUxDb3Kk4ofVg+q5HQuDp48c0jcFVjuVmSbtQICSVQtjkPZbXjTVGwWyjEdIj7jtGtmgqzVGXozdNkxr2lTZBcb6DkGSyC+qqYdGusLZivdHoPGsNfd/hKjeu1/2hw4fA85tbHj99Sj8MPLx6yOADVeZhMuqRWW9XNHoCM4yMQHWxeGJEHdDOUVmHMzZ3CVQHf1PVOCfUVU1dqSG/Oeu43Q1UzvDwQc2yMYSQePb8wP4Qubkd+NVnWz77YsvgI/0Qcz1YGR2i37XaOa8HpaBPiVrhyP41VhtJWGfxuQ5d6UwW58BPXqfaJEFtkRDimPbuU8JHdA6qhnZzTtU0bM7OOLu4yMXdtaxF1/dYY+n7nq4fuN13xP0hnydDvGJYNjVnywWLtuaT9x/y008+pK4r1qsVy8Ui1xBSnccaTW/XwALNWrBGO23auiIm7aaJqKM6BE+/fc7Q7fR8rsa4XvlLFK3dlWAXk3b+HDzX255DP1CCPUrCakqS0dwvp28Z+Dn27+S4gfGv8v8xxDN7/aWG8AxYKcwSRkWjIIE+h7CWYGMxaVpMCU0fWa8xRhi6Hf1hixjJXSUswQhDRNtyZzQ3ljBnSsTPMQo8jxu77w5eBLqm8TE5nMwYyalnBy3+mAp4YibgRwwpt8xTtPIthmC+io7c0XPwJ783bvg5YzhW+OfFJVMG1cp7oy1dLJ+MzBbvzrwYl8sFve0MaS+vC1BkZu855yYlu6kZBsHafrymlOsTQa6yPtaP12tIsWgM85D6l4epyxiFkm/kW7JeR+Bp5sIpgn3u3UmznO5UaiyUz9N0xVYkhyDKODelOJmRIoAmIVCEc5XTgFyIBBsZbCSJYbnesN6cUbuK9cKxXFQqJI3g8rohg26JXJAbNUhC0DDYYfA59z63JRVzb72wYzD2eAaK97C8Ll2JJq/KtCaPrewcAVR+9xb24h3/3EjH1/9q0PzoGzL+d7Q3tTNXxXK5ZLFYcHZ2xtXVFcvlcuzAVdc1m82G87PNmNtdUrlCCIQcMl1I2+mqwuX6Hvf0mXqOveQOG/30newdLpF8Zf/eGZB3kl522VN484uP6TvHQGQ53nFE0PwMcucvxkjRo1/EXOfEaCnegUQ0QmW1OKOIZKC8hVykvUSTmBzxY42hrrT9bGmKUOasdhZnzdjh4kU6WsUvH7zXoLeZkmCz0ahe+okXkbK3vjzI7WCNxRpHZSsqV6kCZ5W3uhhwFpwk6rpm0S5wlYaJN402bLi5zUCP1/SEw6Eb2/h677XN7VicFTWGQ9EzVKEWEUxlsNW8TsUIHxbuBcV8uTsleaEd1/vLqdiZxxsjGCdYZjJ65iwf12ZSPmSNxVkHLmJtxJpcbyYbUhQ58ibnL5PI1IZ8Sm2bQOsUs5MHNJptteb87IzFQuvPWWNIMdH3PfvDgX4YRqC2qirW6xVnZxsWi8WYJssIdN7dlflZpj398nt+2Scz/boU0BSLsdA0Lev1RqOXlkvaxUJByrGQtkxy05TivuVfPnQuHFa6oo4KAUy/zUBQlFyXMQFJFFiMmv74pnfllBKcLYqZ/NYVF7MhWfSyUj6gOL4mcFN/V2oYybQbNJVA38u1fjQCLmp3pax7BF/0xRzmlnUqZQ2apumHAVLAxYDNaZAyXsMxlRbYEYhGxmuTAvyIYK1oU42USH7Q6xi0k9XhcKCKFc2yGZ1Vs4Eb5cjMjJrGkWNLpegFurvfLN2973n6zctMwSM5ktLRPhajKY4uJU37qevcTc+NNkNKpU246hxd11PX/RjJOpokHEeRTfFQGXQSM9q3cpRiWNKesm7FTMfK0Zh1LbSNjMWLjdUI2qbS2rIhQN8HtjvPdjewPwwcujBGJI2O2zt6wndKM7k/rqSZw0mfctZHMQ6KPCFLojz+xa4ttsULaV/kfsQJMAZbVbiqznW+tCtsKR3hnGXZaukPUqIbBqyRkR3EXNrFGUPtHLWrWLYNm9WSpq7YbNasVyumNLH8fTvN99j0x4BgchWTSSGQoWdwDhlyS3hRW55cRDxlvMInGGKij7DzkV0fxnVdxrfIyVfRd5LqdR8zK+8X9O+Fz+/q9/kLeX2MAIJ+MWKz4pFSpPcahnqzS6TocdbQNi1tu9Qis7ldYszKUin86pyjritiqDnbbLh6cMWhO3C7vWG72+oOZMDnvFGB3BWq3ENB+QOkwIxrTPd6D+Azv0fvI70JxJDYIfhZxe5yDGM85CgF69ws2umlh36rNFcbR4ukCMmYvZ/5AkvdFylittSdSdq2UIXtHOyJ+KAAm0YN6HHqqqJpGi3gnSN66qbJ0QcXrFYrzs7OWK/X2l2oro4M2gL4bDYbHj58yG63o8tCsus67Qp10LoJQ99rrrQAVpl6ytcec9iwgkCGsej3V2bA3+6EiRw/JgRI/9MxiqNBl5IhFEGVFPRSOaedQ5yrEDGqzBAwZiCaTj+va0XwC/SfT9TWDVeuJSCcScVDqcBY1oslm9U6t3w31JUajiYGLR5KwqQByUqqiCEZTRnq/MDucGDfdQxhAhtM3tvqqcngVPaejWkMCY4VovmcHM/PfUJnElbjt2YQ0LtCReGFxUINhKqu+OSTT/iN3/gNVqsVH3zwAT/60Y9o21bBnlzEeblYjC3cIY/rEQhajp1GRaWqtE2zc1q8VoywPxx4+uwZKaesxAza103DerPBuYrddocYc2zQv0vDDHfWyvTmBBq+/Heveuf+b8ziZwsPLI+xPpfKyug7ggRVZCuNiwsh0PVD7gQFi6ZCgIcXm9xVJOKM4ERoasfl2VqLt4uMhfGDi+pFW9R01nPoB/bdPXJ/pJdpDd8TShkoi6WN7jztM/MeI5ikNecWdQWSWNaO1joqo5EkQdRzXzlD2zokwdWDSz76+GPavK+aRtMlEfjii88J3mvUbI5QIQlY1BhlksNGzHg9o0wSqCxoC/j5SpyiyqY6QHm/IhixkFN1J2+jdueSpCnR2gpcEFGAS+ssDuNxYykOHW0GdLIRGw0pGKJPY+c6LQAdsDGn1txT5+/NkIyKe1PVuFx3xWSrc9G2PHxwxaJteHj1kLP1htViiYhht90De25ubrjdbtnt94QYaNtWQZ9cAP/s/IzFcqHGeREnKRUEdnYlc5n8Tdf+sdwSMbi6oUkayfLovffZ7rbc3txwu73l6bNnqkmnXOQ4KdheHJvOVjSuzrqcaKofiXlqvhVN+TMzA1mLnPspZb50qnqDe7tEMyfSGBUmUdPUp+GdAM25U6akQgIZDE9YW+VoZV3L0SeSBDUOg+pFh37PcLglhIGnT56w2+4Z+o4YE3VdaQv3kFM0kpD6fS5Aqw6OoR+AyFI8TQYCvTbgG9XnLrdltNawys1l+qTZDBHlHSEDDt5rV7mUShHcyND3bG9uedY4mkVDmx9lzYvN/CEENZxH0Kyog2kCa2f6kTHmreo2X+XIU8bEZPaIGJKk0fCu64bFYkVVDazXGzabc4wRdtsbzs42uVMTY8DE0A/c3u50fvcq1470wkRuUT4HcDKALkbTQmMEtICw957Dfsft9XNub27p+x4yT+66yM2tp6kNbVtTNQ5SUlnQ2BFP3e08hy7w+eM9j5927PaB263XemhxYiNfddzeNiU0+k7QwuNizZ3rmmCKwguL/R+ZWrSXwIoYS8cuXdc+TKle3ofciAaGKGA0KJGSdjc6/w1t27BeL2mGiqsH5+y7A10/sLzZ0jZ1Bv605qgxhsuzFQ8u1iyalouzNWebFVXlWLSa/iUwOgdMCTxAciHwqRRLiQkQNMqWDAwijmQcyUSCOAYcQQRyvSAjkTT0hOS1I3bOhtHzpAk3yaDkq+i7qfGTGYkCNjIquUhp73gs6u5GIMypgD6z7T7mdJbJOPQ9InA47Hlyra2nH11e8kHdAE4jaboOby0paIiosZaqrlksWoyBBw8e8NFHH3E4HPjs8ecMMcLQk2SvBcJy+pGmNeRWiSlq3YXoVZlBRlBgxIhHRiH33FtiGMJYULofItZqe92jas7ZfeacpWnq3CJQQ3Nfhoy/LZrzxJlsnXIRct2CsiGsyRE3eR2EDJClFKd1AjmyJynWNkb5qKIoRvOMl8sl1jmWqyXL1YqmaXj08BHvvfceq9WKq6srLi4uqeuatl0cAT8K8tU8ePCATz75hN1up8UZu47tdsvnn33G9vZWw4JDIIaSS1uhfehLW8tESloPwFqjWFf88kl40Qv97U2aFKGfQQ8VevOIHHKr2aLUgYimYo1ga8pe2qqiqmvEWC3SHAPEHkLMwE/FYvB64Ci54DNslmsuV2eIc8jyDFlfgNHMdVPGZuyCF6E/kIYDkiIm9th0AIRgG6I0+BjYdx3Pd1tudju6fpgpdhoBVgCeECImaf0BkcmrHLOwmubmDopaLPJUxuW4/SQzdVaBoDgaSN8FZRvv9X6TvX6r1YqPPv6I5XLJb/7mb/Jn/+yfZbPZcHGhdX1KEea6dGyzduSDc49uqXF1HB2gwE9dqzFb5xpcKSW22y3eaw0gPwxj2O9yueTy8gG7Zsf19Q3GPCeOPcnfTRqX+fTO9N4MPz82ke4YhC+7//y1Y7NebUxVdM0sEjKDqymRwoDv9thoSbbGpBpDzPJOi4oagc2ypq0tKV6ybmv18seIpEjlLB9cnXN5tkEE+m5g6D2CcL5s6DcL9t3A9tBzm6N/3sWpTCSC70m2Io0dJqfaIZBwosZz4xyrRY2rBFc12gHEOLxAL0IQqI1hVWtKzkcffsif+lN/is3mjKp2tG2dDWfP7/7u36LvDloL0Dq0tkUB6lP2OE6F0WO+nhgiIej+NlawZYFNN5QV7fKcC0jnCAcrVqOl0foDJHLhVK/3Gq3K7ARGHM40JGMQuqwHQYyeEHskOlKs9ZxRiN4SBkf0WV0IGi0SgicUo/wtFXoWtLiz1vlRPqR1bLROz2a15pOPP+b87IwP33+Pq8tLzjdn7Pf7nNY18OTxU549v+bZ9Q0pBpbrFcYIlw8uuXp4xdXDKzabNbayGrBKiUARspt3upijK/u69yuz58wFxFI3C6q6oapbPvnxz2iXS549fcoXj7/gl7/8JSnrr4P32RGqUsSIoXEV0mhdG5uEYnXGXIS7FEGVUuRUFCAJMdL3GoGSRI2fNw0axJToup4qRo2oApCIjYmSxiii+uU8GnucezvPaYJYByrfYkNF9IGQdXJiQnKD2edPn/LF579k6A/strfc3twQY6BxlkVTg8B+340RrF3qCXGr49t7hi5gJFEvBLdQfSxYTVuJKdElofdqV6wqYVnpPuiD0AeF8nuxeAwhad2u3U5lpxn7CyWePXlG7w+s1ivWZyvWZ+uR/xtjx/opKWSjcrZ0puU4A8sSYyHbt0kvWyFTFMkMQMg6LZSI/IqUEk2jjvEYA/vDlquHD1ksGoah4+b2Gfvdln7o6Q4HIHE49Dx58pzDoefmVmt1FfAno9j5XNnBZUwGxNUmEVuAHwjeZ+DthiePP+f2dsfh0AG6L7b7yJOnPYuF5eJSATkRaJaVdgAeAtdP91zf9NxuB/7wFzf84a+2DD6x3WuKVwGl5lFP31nGx+z83g9gLc7llM8Es4IfMHs1ZX2oflFAjnnb9tKqPQTtCqwdkhWoSSnhk9Bnh8MQE0ksYhxmzOawrFYL6lrTTY1JtI2mez15dsOTp9f4ENgfeg5djzGGh1fnXF1e0rYN7z+85OryXGVu5aicpnFFHwghF7EutdAy6KM8JYNaIhkkV94vJoGtSLYmBuilpqPWOqtVhRNH6AfiweOj3qtG9vrJAS9lD5ZYwS+nbxn4uWM83VFhC36TbbIXLn+ewvWy4xcQqGApZKUFcru3qEb54BWoMbloWWnkVC6mbGhrNey4aWqWyyXGCPVNg7UOk5lj8eaXSZ4v3tGrkL1u093eNx7HlMjtdYljKH6MRVufDVi+8ETCVRYT83WklPP4v106im4YDWSOhIVe+pxdlx+XyIm7DKuMIy9aSdl4tPMUrboZK+i3bUvbtjR1M3YMKp0d9DImAKiuaxaLRRYUzayzUBrD6IuyQCwRPUUZzdeYF+8UKj7Rccgx9342DcXbZdoyW0fzc88vY0rLynW2SrQPE/MWSeN+KWGHo5EhMhYfKdEeJSKmoLbWWtqmxlY1drXCbc7AWlIYSH4YAYMQAikKabamJQUkZjApVePaCTk/OMzalMJMuDCLLnhhnCem/HKa9vM8JXFUisbvUMoPfatCeH6m1+YAM+ar0Tia3lWi5h48eMDZ2RlnZ2dsNlp8u6R0jdEjY7RPLJkKR+N1DPww/r48Yowj6KO/mdIBrNWuCn4YNMrhjlH0bkVWTVTA8vs535wKIn5sqcvs+/lbX2kk1FFRCk3KTKyk3M0GpjQOlXeapqG/razWQVm2dW6dm4rFjsuGT12pqhF91BbkIlTW0jirEUK5/g8G9cx/5VF7NX0r+y4xpbvM5JfkSS18xyRNCatzTQBjDLbw1Ky0CDlVzjiStbRty9nmjLPzc+q6omm1sPlyuRxDys2Y4pzTWbP+oXtJIzOn8P9ZNA95GR2hivlF4YH5eTQsxn9wbA4y8t9jWZ99n7P8Lj3DLAU6TdehaTCG0ryBfI0lSsiYAoq+nXkda95ZVUQjAYkK8Fc5orHUdqgrrdmxR0ZHUd/39L12AzIZAJmaTOjD5UKuL+7uHI13JIPHV69/M2keRVeYi4IAYi1gqVJiuVyy2ZzjvdcuY9ZmMJ2cijkrIFZ0YzPVmZz0PPV6q+Mme7rna2T0VmsNm5xd9WYpO2Pi2F2rvDcbhhf4JxSvuZk5YxNQ0jVKSpiCoEnrXeVzDMPAfrej7w4cDgcG70kxUuditZM9kos4h8SQO9b5QbtMWSA12uGrZP8ZyfsBRoDVGKGy+b08pTFpIeiU81NS1OgiAchAZgza0rw7CK5yYwq8Lev9KHJlrg/erxve9/mbp1dLsaPru7NH5vVlwODEEaMWya+rmqGqc02dilCr06LPkRMhKEhprRtTZ+EedbGcBzOuIclpPuVytDFK1OLpnRb+1lblkkEM6IeIcybLVcEYMGJHHhwT9EOg6wO7/cB2O+BjovdTY4dXjuZXmKs3LS9jjFq/bq77M3K6e7lacQ7ojmOMqB+LO5fXcfacS66EpA12MLkGYnFqixntcwWEqzH6Z7VsqSqt+XM41GPjA4g5Naxi0da0TU3TVNSVG1N1jcmNcEzExBLQMbfxGflJsd3HdZrm72t93iSGiD5jHMY4xKjjOM7k62hrZr50lIb6CvqOunq9mubb/W7tl+M/7gJJ8qIhSwEGKirT4JzlvUfv85Of/JzVcsXHH3/Exz/6EW3TcrE5o+oGzBCoE1AvqG3F+x9+TL1c0R06qtUSW1n2+z0hRA77Pb3xDIO2V0USzk4TOzYbKvNTHIKjxnXnbsZ1k73lOf0sogUiNeKnMOc0Vki3pmKzWrFcLXDO0LQ1rlKPx7/Hf/z1J+MVdFS/ZOY5HPPiy7MPpBDUKEiZk0nxQspkIJKNkRx9MoJduWBZGTUdYXMUsVPXNecXFzx89IhF2/Le++/z8OFDloslm82auq6n3PrxXDKmepW0lfJeqUviB0Xsp2LZCUQ7U4yFGVPJ8VQhPBegd5npXdBp+vuNTMmraWag25L6NGknd65PDQqDme7LlHodavRVVmgk0aaIjQGPJ5ZiyUbDLLGWUiEwoTW3TIraEaTrSCEi9QGGDokW4gBh0LapvicOAyQNeYyhhxQIoYfQ5W2v9bAqPI0zLJoFvg/UVa2enpQw1uUIplFPRYyuqxA8yQgmaQeZso5HhaiMSzFUykFmhs64F2I62tozLOWdoNKevaoqfvzjH/Pbv/3bnJ2d8eMf/5jLy0uWyyVN0xytk1Jzp6QNwfG6L+AqzDraQe58ANGq96SuHN4HhmHgsN+DaCpY2bPWVdRNq8qy0/pmUozYb72Y/ZuhMR1ueoeygO4qR2UJHv3+ntdJFHhIzPYz099HEY85BLpyjqrWOTBGchRHrteRyrEFcsRH4yw0lhiFpW25WlajIa9GimW1XtPWWvR2wEPQmje1tayaGiuGy/WSkLSg5e2+Z9/7Y2Die04xJbY+ICFgU8qOpJmSm4HwMFPaSJEQBoYOEGEQy8FYohh843D1AlvVNIs17VIfdW1pGk0dWS5XrNdrLQ7rAyLbPKfHe87aDKLE2bXEkP+4eydz+R2PCr2KMZikRrC16gyJRmX4HOyXmGvDBAXf+8PA/qAd+YY+1z1Ba5+EHGGtERe60kcj9Ejvy8Z8jq58W6CPsZb1apXrI6lRLwg5yWmsZfbg4oL1akXwnsNuryk0T5+x3e15+uwZ1zc33Nzesly0tOsVTa1RH7v9ntvbW9rlCh88LlbZKMlG5agAvAgAfS16wW7WN6ZkT001aBdLznLa1YcffsTTJ4/pugPPnz1he3szNjqIMYyGh80daxZNy5DvJ+wjQ/T5fnJrZJj0Coqukx1KlqMgpzdBhacVWTMaSPMhyM9FbhnDrA6kyWCK/sj7oB2ThoH9dsfNsxvC4NksN1ysL1WfzCmyJTrO57o+3pXagvn+jXZE84Nn32vKm4SpflaIia6PY4qXEy2oT4VG2aGpmWoNaDefQ1DwwBMI6D60VtNs9fZzFzIR/BDpDgPODRz2PYd9j3WOduGonaasjGAeHMmIUiTb2ClCSPX4N12c+8vp5eDFTHctDox0/P3SVXe/3/H06RNub6+5ublhGDQKbezyFrUrXd8NWOO0VmSYIn5Gp9W4eCdwQde6yTabRvv0XUfXHei6nq7vteB7jGPFg36IbPeCj55PP9tpCqxRldmaRN9HPvtsx7NnB3Z7z8020IdcYmrUUyeA5OvOh6YLvcG5nAO9Ra4wsaRjW051cS3ybDCVw8SkZVhSGKN9QgF4QmLI8zGESO+1i7L6DVwuFF2NXZ1dpV2AnSt1WXPR75zZUzlHGDxkp3E/LOgHjxjD+dkZ52crBQlzB9oS3VpA5eA90Yfs5gATc8OE4tUoRq05Bmi0UzKaAorBuBpXL3JtnyoDQIEQE4MPDD6MXcuKmVLYfPyKU/c9AX7migpHINn04lhw3DWY5yT5QCPIln+3qBs2iwVNXfOTT37Mb/+pv4PN5owPPv6Aj3/0kbYM3R0w2z2kxMIa2nZNMnD+4CE/qhz90LO5PGfR1Gxvb/F9z/b5czrbE6NWkU8pYSQHQRcdL2MdKQM/k25cln6ayyMdlZS02j+6IUMpDgajd11EcEbBn8paLi/OeHB5Qd1UnJ2vaNr6zUzRHbrLHOZ1O0avX4zjI/pAHLwy1hCQnK+cYlRPhWir25JGLKLCSxWEpOFsSVuJx9L9JXsqtLNAxWKxoGlb3nv0Hj/52U9ZLpf85Cc/4ZOPP6ZpWy7Oz1m06s2aO5nm0QrrtbZ4tDldJQwDQ98zdB1D12WPY+74JDFvTp20coxENnzveLvmVIRp8UYoEl2E1NuHCQRGtNpZmwXWLFJlZm6q0qd53CZqwVYtnCbg9LpbZ1mRWCWtR9WFRMJQW0djHNjyMDmaJ2rRQ8B2PYPZYl2FrRpod5rbmgagV0Hc7zD9XgWIT0SPbiS/J/kdImhdkSTU0rOsLZvlmhShbdWAMrG0p1W2N08XiCnn8yaDtRpVNJndTKj8fF7ugD2p1BGIU+elt04vKPav8dM7vLN4Y0WE5WLJ++9/wHK55Ld+67f58/+JP8/lg0vOzs64vLzMBREn/lvA11FRnB2v0HyfAUcF0g2G5LQeggJKPdvdLdfXN+O+XK5WCgLVNYvVipgSVVWPaS0p88q3St9gvL/skGMUWkEjIa+3NBtPmGzBid+Ox7nv2iZMWnlSfhRwTuWHparcmCqsbUst1ohGORLxoSKMYI7WLxBgUUcWVtOX22pB42w2WB0YR0pCnyxDMngf6CQDvCGxdA6zaBlqTR1dLGoOvefXT27ofcndP+6+932lkBLP+oHKBZYhUuWxKjtMM0Nyt7QURkXAB8/B7wkpMdiKg2sJYpFqQb3YYJoFy/UFq8056805dWVpGkdKgbPzcy4vL4FE3w88ffoU7yfgAFKWK07HsGA9ORVnNP8TWVumoNkjbyutttUgtKTksLbC2hqRSBwCwej8xTR1YQneY0TUwN32bG87QhzoB6+AbQoMQ2BwuaVt1thL5Gh5zD34Rdm2Vusnvg0R6azl8vw8e/u1c2vtHMtmgbOOjz/4gB99/AkPLi8wKRH6gduu59mTp3z66afc3G759NPPePzkCc+eX2OMcHV1yWK5AIGbm2uNglutNH21qtQWwMw2cA7Xl0kP+EYawYwvHMm0/MpYy2qzoV0taBcLfvYbfwxIXF8/56/+R/8hn376a4wIwQeGpsr6lsM6S20rNosV1giHrmPfHXIkgxoXqn/PDJ0iQ6WkQCj480anUhijUJWnlveL/J4ANWM0+oWUQe9KfxeKsRo1hWS77ei6nidfPOPTX/yKoev55MOPeLB+QFNVOX1cRzjESDdoNE3tDD5EbNYnTAaVhpi4PQyEGGmNoc1p7z4kdl1Qfd5B7ZIWzrdCrJXn2uSRHNE0RGEXGKOCygxrAf6alGCIEHK5gb4PDCEg4tje7Lm93lE1ufBto2OkEe7zo5FT/RQYM86pruYqUu6I9l2A88cO01n2gExcoziiIMsy7/F+4Pbmhs8+/ZTnz5+y3V7THToGP+SocgUWhmFgv+9ISegOQ0710jIPo9cwlevIET5mqoNVFlmJBtPHnv2u43DoR6dxArpeu+DZHfRdx2efKeDX1kJdaZmPX3924PGznsFHrm893TDNz+iPnOlcrwPgvMyW/qakqV5+dK4m7OTQGXUYxm1prMXEhK0crq4UOEuJkHqt6RO1A7emdyngE1Ni8JEu1/gxlcVWDpzD1jVNqx2dm7o+ciCC2umLtkWdyIHaGVatmyKMABHDol3QtAuctbS1lochiq4Vk9PQhgz8CFp31HrlQbngu4gUJE9PX5zgUVOqQ1Tgx1YtNZaE4KMQkyBG7ZNDN+DDDPhBxr2v/uavpi19t8DPXCAlXhLyOS3Gr7KOS82I6adyhOzXrqapGpbtis3mXAv+bs5YbTY4a4lDIIYtKcbcsk8nyiyXyGrBMPRsNhvW6xWkSNvUVM4Sg80tbEtqSQEnKHrU9Ez++Cvc0LQ5kipGWWkjexVz5z5V4YSx+GPTKIrZts2rB+21aLrmu8jyfENP3tpiGOcQ+JmnfxJVGQSCmYf62KA5smlmYB7MPBIZxKhzWt5qtWK5VGWmpG3NOwGN/GZmvFprx/QuI3J0/VM+uBxffe50Va6VVOyrSSi9jCav5jHjPVrHb4nmob1mBDruqpgyKmxShFy5VkG9wEYVKEsp6FlaLsaREU2ezCOzdQT/UggKAOYUEYKglkou5Bw9hF5bTcfM7GbAolrGUVO/UEXLOTtLhTAjE5c71wL5mnPE1le3M2eb+s56PzpGmj3eML2uV/iF1Mq7n+exKUWaS3rX5YNLHjx4oOBq00xgS9nLM88goPxJSoj1i8e/728xZqozYxTgHYZhTP3S65/2qbHzGhIv3td9wNbLPrtLL1Wa3oqCKy/1tI0ec74MczrmleP3Z8twsnnuRlIwdhMpD2v1MfHJAkQxAkfqydLrM2j036J2rOoqd+aowVTEBLtBg/fGYsNZqTKiHcIA2sqxzKBj5dQDn2u2T2DE95jUmItaGynzwGNTbMYfmPhEATN8jPgkeAkEoz1ynLEaoXj0UOMrRsmyymUjN3cMmlMZuxmflyJryoXJJIuPeUPhY+nOAWdOt7khP/1qBoSnMfLH+zDVCUrH30lxDpLf5Q+MPCRlWTvtkze/JkQkp4LnVMYQqZyC0bWrxrTxtmlJfsAfDqQQxjSvw+FA33dasHcYRkdRMTYG7+n7PqeOxNFJNtqsjFM23eM3UQNmzGPucZ/Wpr6yzmExDE3DcrVic3Y2FtuPIZEkp1t7QzJJ6/dArmXoqFyFL9HP98m6ojcwMzIFbV5jjm74G5PqJ+ZFPgfH7xUnXb6Q0p77rhEcs6e9H7TL026313SdboDMx8poqh4xtZ2Oqex1RjsEyV16Yk4bm819TElBmrwvNao6oWkgOSo+ijpOKW3mJfOb8shjbBT0MhnzTZKjmHwieN2T3gdMtllS+V1+njtzj+ZsPkZFRrwt3eZln831hpe8nvbUi3q89/P92mfAZ8ZfZvw5hhJpOHNqc5cvlme5y7Ry9GCOdAxxAhWz/VZq2vmga21/0O9aA74R2krohsh2N7DdaX29wec0JmQ83V1b7IXxeMn4fZX3vy4l8pqbyb3pGmfDlP7/zP05kyRZlu+J/c5ddDEz32LJiMzK7q6qrn7dM/Ie9SADGW5EwIADBQLUEBCZrwBwYPEZhoA8UBABB7CQEYGAwRcAB2IG/fp1dVflEhHutqjqXUCce1XVzD0iI7M8qt5NsXQLc3Mz1bue8z/n/P95sU8qYXYlWpeVSnVar63lZ+UD0o+p69mW7FS1FWd1LamULKqcpX6jwwhE70hNyVqufo9IqSbxSyZhTmRUwTFR+c0WwuUsNRiSSUbVNLOReXrok7VlwOwnibEYm+cMaykS7fO+kqu/LGd9Wbfd9BmL8T+TjB9tC+fDuQFSnUPEaMfGOiAGo95oQXbRSZJLZ6GkSt5pLfLN1R1vX71h0/e8evk117uX7DY7GtuTJ1ESwSGRhkBOEZGsqagZVS+wgs2G7dWWF69e0LaeVy9u+aGomRh3xNoS+UqBlKpChNYApvV9sjYIFxWQAhXMdz8/kwuzLK8mS9aMmZwNgkPEg3hScsT0/DKLl23tAC78AcxM9jlG4qRoew5xBoGo702pXP8CkBVO99k4lbVk+gyoqIykEpNWB185EW6ur9nudlxdXbHZbGla5fb5qSZmKU2SlSqRNZamKA/ZkvKq2UarkgnRaGU2CVOIp9eZWZfNrDY4a8zMx/RnSZuth3f53nrgn9vfZtl4WMhCq+xB4w1dZ3FW2HaNyqxTHJiiMpCGkWRPWBdo+o4pRK3/T+XTRYi5OE0xYmPAhYDJCUknJB0hR9J4IA8HPbijUCsVjAjSbErZmqYqGzLOZFqXaFymcRrNSynjbMn4yVUFYckSWWqIl0P+oxbNysGrf7c2Gsqb5r78whjeT7bHjt3jVkslrbX86le/4r/4L/9Lbm5v+M1vfsPd3R1XV1dnwOk6g6dGWOeSpWogrfqvOkDrzKIzMAYFnPquxQiFA6UYNjXbsarHeY9zXg/zlUO6AB1/Woc/e8rzT30fi4LL/MLq6Rr8OQcUVq9/HBla2iVQJ6qIuNv2eO+43m243vU03nHVGnatxVvDbrtht91oSawpRMJkrWmP+lnbrmPTtSVY0iKmVTLCh4FTGCBrBsjpeCKloKWbKWHJ3PaOXW85DhPHkypshBh5OE2cYijX/Et798u3jBKx2pSIOeEqkFzsmZQzU0pITMg0YY5HfBjJFIMVCCkyBgV+XOEQIQnDEHj/4UDG0TaWsXPknDgeB6ZQ5NvjyBQGpuk0X5NQTtFC1nI+n1fZeuV8q5wtKrleSldmg73ep2Yhj1P9Xo3422xLOn5aAib1m0R5jRTDMJAMJLW3YkxEm2Z+pJkkv5z/ebXPUoIuFSyL4flVvYwx7PoN0xQgQSCy7Xpe3t0VRZdr5bTK5dqLXVOBnjAFVcEqIHgGBfbCxDCc2D884KzhdDwSwkQKQfvEZtYZPpfxlz916q9Bn/XpJBc7i3eeF3cvSCGw2+74T//xH/nuj38kholxPPHwsC9nQC7OZqLxHuu0hKFpWrzziC0wT7kPU+x1nOCTRvaRjNgIJv3J9/dUEyOz07c4f4bKpVEgojMHasmWqMTAwjBMfPf9O/YPBz78+J7D/kCYJsbhpMTqRpjGgXGcGKdJS97yCh4o5T9GtHzW5gQSiQRSToSoGUBJwCMks/D4bJqSGVXWZQZCsIQAOcI0ZvZBx7AxBi8Lx6KkXAAmCEp2QsW9pimy3594/+6ebtOxudqRS3+INVgxBYTSkttUQFdm8HUh2/3S56TM4/R53/OxuRRDUB6mceDh4Z4PH97x4cM7huHIqSj2quJcyUQWzQbzTckSuQBzsiTyzDd28b1l3uecS8n6idPpyBSmmSuobT1Xude31hKgnAjTkcPphJA5npT0O4TM/SEVPh8th2pkDWhljFESfFjsnyeDSU/4I5fZU8/aKkBTgc4ZIKFAlRUrM/jGY6whhITzg2a7DKogGqo6XVjKu6ao52xIBQBFQZrN1Q7ftGyvdmy3mxKw9FirgkI5Ky1ESmpzRudISfA+EENDFbKp/WFKMNIUI6vyninWUDi1xoE4ThpwM5ZY1r3YorRtDOI9UrIKXdPgvC/BkPI9xqoysrG6toIqYVdp+ArtRpgzsCEX/zkrFvAZQ/KXA35WRuraT1Jn4fyNuZLEshA71fS6XCJdxmgkQrcIO2cPOetomxbvHC9evOFv/urv2G13fPP2N7y4/Zq+7+mcJ43l80+RdJwgRv0II4hXZ9I6QYzj+vaK+PUbDldb3v/x9+y/u+N4Omn9fYMaRsEwFcPEGjsbT3MGRM7Mqh8rxGOBcx5Hy+dWjSEU9Eq19AYD4hHpAEdMnik8P/CTV4/zyzovfYklEpZCII0jcVQQSDmXlsGf08nLBkFWg6IqfBkjOLsg25UwsLLoG6Npx9ZarLNst1tevHyhykN3d1xfX+G8x8pPG4rGmFIOZOdSCFOi0K1Xnhh7Vj++bJbG6KaSshJq6qGQz+rN16UvmoVmqNloxphCmlqjml/uQBWKM72K9J+P7JKuKkl/5pxJJmHQtObWN9xe9bTect15WiM4MiRVGQgRpqyqE8Y6mr5nmCLZWlwWPGqkxJQZghJommnCTSMmGWQ6INMD5ECeDqTpqKmVSUo2gCG3W6S9KiBWxKBR98YmOp8Ym0zbWBqvSjjWuJmocY4gk+doz3yo14N9NZ+XVk26smZXhtASFTrv63N8/i/RPhIVYzEOmqbh9vaWtm357d/+Lf/z/+q/4tXr17z+6jVv3ryh6zp19oIagzU7bp0tIoLWylfD8AL4qYDKmrx5nuuSaRvPbrPBW8u7xs/Et6bUflvAOU/TdPhGiRc1irOK0HzprvwCTavOhXWmY23VB8zrF2DmkantLPsrw+X+Mc/KEhgx5dzs24bb6y1t43lxu+Pl7Y7GO7aNYds4nDXcXG+5ub7CWUNjDY2xarJFC1H3ys1mR7/ZqpHjNojrmUJkiO94OAYgMI4T+/2enCKWiCHirXC3beh7x36YOA4j4xQ4jYEpRI7DAlb959pyzowxYwoHQSwiEqas+5jVcCVEpmFkOOwx4wlvDZ1T8tWQDaccCAJNSJgEJOFwCvzw4wPDmOk6x6b3CJmH/ZFxmpjCpKSt44FhHGa+OhAtxYjr86RG9PW669njXCnlKEEyW6KTC6feAgBNIXAsZc85pMK9YIlJy9hiltlOo3yXEcimggHKOZSiSvBaE/Vv6yMHcg4KAlWFtBlI0/MxhkD4AivdGsv17ppxGCHCyMj1dsvXX32l0u2bDa1zmr4fItM4FhBgYCz8HTEEBTuMrtqa5XM4HHj//h05RR5e3TONI7GdVPY558f23gX4c/6Ldft4P1Rbcw32zM7W6tVSZIf3LW/efM3dzS0//PA9//xP/8QP33/H4XDg9//8n3j//n3htFnAiK7tME65X/qu43BqCie3qPJVDWxZ5eww1amRSJKBLM9ftqd2opYf21Ka5Kw+1z4wc9B0LnOEmT9EShARgeNp5Pe//yM/vvvAuH/g9OGeHCPH/QPjaY+XpOBB4XAZp7CoEFEClCWjyFlHVRaLBGKOTCliUsBKxhtL9Lo3e2fZ9RZnwDvBOyFl2I/CcTKkKTPuE+8n5RW58gbnqgJrJGctfZkKkTQsCl/DEPjw/oGMsN1tuXn5gl2mcKyo/SupKJjNNs5i61Tlxjmb6Uu3cgB+Mnv+J34zhYn9/gOn45H3737gh+//yI8//qA8a0EpBdTHyDP/ZdN4mrYpGW6LHawlPoVbMC+r6Rz8yZAy4ziyP+w5HA6q6lYUi/tOiYIpWR5iLSEEvvshcX8YlNNljDOxdA2mUgJtzuu+EULQrKQSTPsc0OesRO7i+VpU4zna3F8xEUXPxcpvlMQgJetXrMW3LS4r2bVvVQFS3EhMi7z6FDRDbYp65qasSl5Tsf9s23F1e6cJAHe3XN9c03Vavu6cKl47DJKtkk4nT2rizEWkQMzaD1OlWlWfVl87x8J9Z1IJYiTG04npcFQOL5R2IkOxchRQNX2HNMo5ut3taEtfVIDYCPjG4LP6RUkmckhlLyqgNYmYpZR7VeyA+Xz+nOX4k56wiPyfROQPIvL/Wb32QkT+HyLy/y0/7z5zClw8Ln5VfuazxwIQPC67OQcauPx3vcnCyt/4hr7fsul3dG2Pdy3ONog4VQuKkGPWQU1poUqvnDJo3zvnaLtWH01D23i6xtN4S+MMjbd4p4iis6ZERta3fB5FW9/+476q0ezL36wTDvPq3TUjwygfTnkAv36OcVyib4/7u5a4nKVEzrXSxbGubGS5bJJ1pq7GcDYzc00/rY9VmrlZyImXrBtTlNicqm14jy8Hv7Ou8PKsJtkTva5GcXEepW71zGmH9uIxp8+vfK7lM+TRRousEdnltXnzpSZEr36/tGcZw9XfPu7X9b+RmTh8uaIFELLW0DhH6x2+yECvxzRTVOlC1MfKUFh2gVUaZ/1ZgZQUF2WvGCAGLfmaH5X/ykLdGMu8skYJp71V0HDOCKvKRfN46I+1U7zOVHl6XS7Pl412tWmtNmNZlVKs9r1nHcenmqwfdQDlacOpjnclN+/7nqvdjtu7O8302V3NpOgL4FnBziXrp84LWPaAy+9Yg6CLwVGvWQrIa+dyr2VtrTLrTCXhrKVeKzWNi/v6k/rwicjYqj3bGFZHfD1eslp089qT8785e77eI+fXLoy8iy1vXuOlLNI7R+M0s7Ep//Zey4m8d/j6mivnnFNlqvrQ9/nyaPBNg/etZk+Wa6hOewyxSIPrtTbOsG0sm8bReUvr7ZzxVdsvdTA+NY7PZd/M+9mZ/bGcznVvSyhB5RSVa6PK0c7ZhqmkradUiCwVHBmniWGcilqUZtyEWWEyz2XIhT56vqp6XufVOfupPprXWf2ENWIwv1ZU3XJaytqrY/jE2bqe38uGK/M++8iGYGUL1P242gPV7pgjxwmecy0KKtNbyoRd4frrmpa+62i8L+BVnvt9iWTnmQx7OScLeJYSKUZCyQyKIShR8nqfLN1WleCW03HVzg/PlbX/kcfZXFgHFqutdnb3GFFl081mw3azZbPZ0Pcb2rZTzqZC2J1SnEvVZoClAAbWrtS+Vn1hZMlesetzo86MZ/Q1zubynMUmZ3vres5ftmr2q2MdOZ0GjsdSFhSUqzIV4Y8YJ80UKRkJczBp1dtqwxtEarlJJVxel3As4yEU/qECmrlix3gL1soctMsIMQuhXi+VT+xiXXG+x1Q1sXFYShLP+q6CVes+eTRhnsz2eV4bdXUFZ3v42WXkjzw/f19OiRgiIUzzOpymkSlodmndT2fbzdQs5WKzPAJm88V1PP5d9YFmVdrZLlQ+sabxtE2h52hUYcwYS8yGmIQxZE5DYpgU+FnmSF1Lj4GbdT+d2/br9z0N+qz+7tnW4pI1uszFeS8/s5VXJee1qqJUVqzLnB6reZWEEIrysLWaEV4fzq4y0h/bWbICsWcxmgu7tvbZfHzVe0mrs7fuCTEQJ51jcVw4YlXNbWIKgRAC8WL/l+LoGlkqTpaS1cWiryHkyiO6+E2rgPRPGEufkyv7H4D/5cVr/3vgf8g5/x3wP5R//6y2nHU/bc0pj0ckp0gKk6oATRNh0miLLuSxqFvoI4aJGMaZpZ2ccc7T9zs2myt8s0HEA44wwXEf2O8DpzErGSWWiCyOaPn+HCPGGHzT0rQtvmlxTssOGueUfHE2iCvwU5zbYvTFuEjPnZdJ1T457yN9/hlOjAjZGBBLwhCCssGPYwL4jmccx6dhk/VvsnKwFDLnnDSjYzZumCGt2TK0xuCcwTvDbtPx6sUNb17d8erVHXev77h7dcf1y1u2d9dsb67or7a0fUPbN3R9R7/p6DfKQeK8EtZZ6xaJ4rO++qmulHljbppGpeELebTvW1zXYFuvWWClFC2noNlNq/p98oWDvIIAYtI661r7m3IGUfLarn5Xs9wLzzyGQAHK7Mpwc4vhtqpJFSlczs7Qdp5+07LrO263LXfbjl3XaPq2MfimYbvZsNtuaduGbIQomSRSCM2Ub2dKiSlGogjiG31YAxIhB2IcGMcD43hgCuMSjUNLB6xh7vecAhkhGQ+u4eb6mm/fvuJXb17y+sUNN9dbrncbuq6Z748yBqmQiSz8P9Vgv+ytfDZvcjXQn3Jazoz2tRGev8g4/lSb19pF896z2+24vb3l22+/5d/9u3/Hv//3/55/8/d/z5s3b3jx4gWb7UZLGHNRR5zni33ikDw3NozI2fvWANB6XVSHoRJseu/0wC9ki2IUmPJNw+5qx93dC25vtfxss93Q9f1cRnYJOP3Jfff0Zzz7GC59d/76ehqubI+yJmUe2+rCzI7Uxd/PxtcqaAIa3XQlq9JZgytlBl3j2W56dpuOvm3oGkfnDa0VvEl4k4t6XkPXtXRdT9tvafsdTb/DddfYboe4joQlZaOp2sUoSlH5uIxA5wy71nPdeW53LS+vOm53La13P7VV/4z+ffKT/gPPMI6zoy/L/l6DVOTKx1ccP2sw1iHWgVHHL2ZNXT9OE4dh5H5/zw8//Avfffef+OHHP3D/4R0P9+85HA6chpFhDJxOE6eT8lRkIm3r6HtP01qME4wVkExM6nTU/fOMz2MG5JY9rHKT6Nk1d97q7MpoLkNCTEJs1odosOy8lLu6vSCSMSZhbMKYSEaze7REbBVxTcvrc7kXec6Gre+d+d2ecS0aMWyajl234W53xcvrG15cXXO73XK92dJ7DzEShoFQuHpqBqT3jqZtZz6IpmQZq5BBZBqVV2Q4qeR7mMIcrV8WeXWMPudqP6fluQ8rLFDL6OYzavkVZC1JstbT9hu+/uZX/Ju//wd+97u/483br7m5vmG73SFimUYlvCUL1miwbbvZcrW74mp3xW67ZbvZzIo5NeAyUz3nR8DWf+A51qKgwR4rs2KYVM6/ouxjSqlXPZrzxRF92B/5/T//gX/8x9/z+9//gR++f8f7Hz8wHE44oLWGHAYO9z9w/+479vfvNeNnHFQcxOheWrPTC00HxpWAWWPZ9A2bYjcNEYao9kXrhNbp2Vkj+1MWRmDIwikKx1DUvDJ4ERwwxcTDMLEfJvZD5GFI7MdSDpO0RGgqwhunKXI4KV/R8TgQxqnY6mm2WStotqYDWM+r2teajavOOl/ItlmfafOWRAVJl596aR9bPKuMpVkhUHnHajAizcFEzYC+vtpxc33Fpu8VEC6VAOdgNSugenW+1j1qtQ82jWe33XC92/Hy5R1fv33D12/fzj/fvvmKVy9fcHd7zc31Fbvthq5vaUvWUQ3ExqhZhNNY1MjSKkNlBS6d9aE8fm3xPR8lTPwHnmMcCziihNlpdZ2rSpfiApoyl2YqjVKemY1oxmzJeppCKo/MlLKSl2PIxoH1OF/8ta4rGeky3/t8+2d+jZRAfsl8LTQCVe1YhJKhHst+P509dO4okB+LwMHpeGL/4Z6HDx94eP+e+/fvefjwgdPhoGfAOM4PLQ9NMxcSdd3Vs7meyzXhpfosq0oDnd2f336y1Cvn/P8SkV9fvPy/Av6b8vz/DPw/gf/d537pRSDi8fM1K2X5g2qI5PocCvlyPN+kRMjWQo4YMUTr5sXnXMN2d8Pu6pa222JMA3jGYSSEiZwibsjYbGeFKZtUxjZFBZ2yoBt31ysLeNvSNC0pJtoSrYyW2TBKKTOEVGoQNZIXYkFvq4wby141940s/16c0ScMV7l8GDCOhDCENJPAAQ/ADxd//cvGcb3JPQKv6u8ULEsxkIKWzpH0sNdYhyzXjwAZawRvDFZgt9twd3ul6YzWkJ0hC0W2T4ki8xRJk47zZtex3ZUI1aZXUM636nQ+6fJ+uomoo9m0Le000fU9/WajaZoGslFAMpwSeRh1blZ5RVibVYiooZ/mLDLtolAY4E2p/7SixklTNqxKQreKxjzfGEKJ9hsWeftitLPOqjs/MJwz+KZDBK6vOl5fbdg0lj5nXAG6Gttgu54khodBCRFjzpr+XVJaU9CItU5Zg29bxDnEW7SCNRPDkfF0DylgALtyQuZsKyI5jZAN0TaINIhzvLy7o/GO9/d7/vn33/PP//I9wxg4HCdOpzCrz6QyYLaQvUk5JNbI+fowLR1H3aweR9UqX9e6l89An2cfx89uKyRgMURW5V2//S3/9X/9X/Py5Uu+/vpr/uqvvmWz2ZS/lTmVuKp3zVk3Z8DqBfhgCkkai4R7BZCWaJOZQQ/vPW3TzDXgKUXdM0Ql3bUOvGN3DU3bcnN7x3Z3xTgMxHFgPOX5er9we/4xLM4Bs0rDGsBapqDodln+ZDGI8/pzuOQoUgO1KiLWMhQFfpizU71VBZnGGvqu4Wq7oXGWq75h2zgV5csRW1K1rbU4q1xL7WZLt70G44juimR3pHEC956EI2bDFJKW0eSEFzXurGQ23nLTe1pneH3dMcbE+/3I73/Yl5u/sOfXRtyf0J7NvinOZQ3yzNksaXUaGEEohM3OIymCUCTeYYyRfRw4ZUPOiTidEOdoGsPrV68ULEthjl4eTwP7w5H98UTKiW7j8QFighjL+I+acZlzLlmyCnhnmAm6K0iVSlAqxoy1BYAojvqZCSK5kFemeb8UU/fLBHlxjJRwfyGeNSZiXcRIACZSmojJLGVeKRDzVB6xgD+58CYKWVRZUt87xy2fbS1aY9h1Pcm3XPmOnBK3Nze8vL7marsjhMAwDIwxMo7DQtQMGrBJma7VTPCx8VhjSCESJDANI6fjCWesqggVANT5uDb5VhP9T5jkuf6vnGGFI3F9LlVUZM4EzPq6McpJsdlkfv3r33J9fc0P33/H+w/v+HD/QR2daWAYJhr9BJz1ND5xtb0CUzmt6hhmhkkj3JJYXUlmPa2eay3qGWUwVpbglTU4r9xwMWbSpMqyeQ7uVvBAIAv39wf+8f/3n3jYH/mP//R7/vCv3/HwsOemdWw3jtZaGE/c//AHTt5y//5eS3lCUODJLAGOVIexZPCIgb71XG2UNPo+TBxTKT4T6L3uv9ZIUfqBXACgCBwi7IMwBn29MZCSME2RY7FrCiuPnqmm8JlkLfuKWaXf3eGkJTfWMQ4TKcSVXS7KSWJMIe83qyN1FqLWZNvz/IFnPxfPrYvV67OvqLtYLmOvU/+cK1bPz6z7RsnMqA60UlIEtNTL4Z3aln3Xcnd7w2635Wq3pWk0e0TJfZlFCup6rWCPVGAISoC/8MWI0LUNV9dbyHB9c8PV1XUBOXTNnQYt8Uo5Mw4jldw4xshwWgAazTRbsrQq+JSrr3BhOyxd8URgae27La89y1rUPii+bkwkiVpdk7Kyjs9nQ7EHC1BqncU4i4kOxJQs2USIiSFURTsYs7pUYgzGesQ6bNPR9cUPbJqzTJ81YCmF3cJYwSbNLk7JL8AKK5s1JULW4uJsMrHykhWfIaU0Z4ylGJgOe6b7AzllxqSglWk8vRFNCIkR1/jCbA95RjDXYGvJYsoLoXVMsWQKlYQWltW4tJ8+NH4px8+bnPPvAXLOvxeRrz72RhH574D/DjRtbm28PZEmWH6xmLFLGuwaXS3vS8r9k3NJ1yqvp6wya6oAvqCgIsoTURm+kUXuMcZMTiCFdLY67Xk9Yebo1TpqfZ4OZkwh9S3R7lrrvErCmg2t+e4fdUM+A3yq8639+bGeXoyF9Zn/E+2zxnE9hr7rLtDus81i/rlO76uDdpm2LFRJWb0xEeXIUcJRS9+p/F60huhK1CQksi0KIRKUF4NS81o5Csr41vH5uW3BF5ZyMlW6sUgWnVemzA1TxzxDzKv5LUvkbjU/Fgu6zgOQApjM32kWh1oX9ycX8i9ai2u1tzqXz79r7ZhXTqY894UYJU33hfPDpaweh+gmbJ3FiMWGNE/a2jXzlJjXhBQQtxATolwOmmlXidbL8VCvqX5iPezKJp7FIEYzWfquZZqCZiS0aqKOo0abU7HGcq7b5pqz6eda24uBXcZh/gxhtXg/tt9p+9lr8ePt3GF4dDcz5qrgTdu2dF03Z/5UIueqhJdynoEyqKSXnO17czszOIpBVvbzahCt/7Y+N0aRjbkcoIBJebHIy75r5lprXyIzzjliCDMZ+1+w/aK1aGtJW3U8igNAns3Z8jf6t/U8WPq1bDPLNvKoPf16fvTb2REr4Gote9EonEbHTAYjJfNOZN5vK4EqxpHLQ0xGRM/atREj8/m3ZPA5K7gkNIVPrfFBuWbWV7xeTvz8lfqZ7WevxaaAoQu4mmcHJOc8O5W1b2cDL1eYqJZo6JxXZ2REciyZzBMxhpLBvMrMqRk2KJiXi1y0vn4OQun+eDET6t48n+V1Dzt7E/XqpTgOxaxhTjwX6jedgw6czz299bqmF8dp5hCpgNmqXEbPA5n79Cnb45eO4eU43t1eK8l1ZWfKmcZ7vNVo/+wwrsrs5sw5U9UGl1ImxVfz7EzUv7ukKnh6gWbO3d6Pr++z9+TVO+vzupfUvWL1+Y8/SwfYWkfX91xdXTGOA5tS8hXMyClOxSEqfyEyl9l759XZTTpuqvaloMV8Uet9/dOL+GevxZd3u7Ny7tnSns+r2qvLeZ1SQtSEQ0SYRs2GeXg4cDqeGEcl7k5OEFwREY2ESYNOYRrnTDRra38w9/e6p9UPkQLGVPL3s3uZ+6QGvOsjlWsMSYhJN0O7AvHX5R+Zohola5uLWQUpFLW9cFa6VzIUWc6B5ay+mIn1a9eRiD9hDC/H8as3X5//7qyPlstgZWPVoNLynPPrXu0bM1hytg7zDJRoZpYvZe5L1vLjJVNHd23/sXq++IvWOdqmIWfou45N3+s5UIAfEaOqgU0DqB3riiJgBTDq557vf8tFXe63q749e/7p7fPJ9rPX4u22XfmDdX+vV1ntunImcG4TSinhpwZTci3vYkmayCr7Y+rNln6ue/AcmFifzZfXO4Nhxe40RiHxC9s2F7whpUQN54qhAFnn51csWWSpgD4hKVdtrPt/jku1wfq6qjFXe+hifs5n9Py82Nj1b+e//HT74uTOOef/HvjvAZxz8xU9fvLk365+rt9YDYo8gz8kVdOq0ecomZQMIUyM44AA0zQSJy0DyzlpcowVJFrEOJCEaVqsTYgkbJ+xfUacIL6ic2XyhUCcAmEKTGNJ900o+i0Agfl4LRt2yoXzJCXNgJjTq/WuFpd2+bvPC1zrBMiZwg2QMNbTuA5jf1rJ6ic/fTWGm+ubRyN2mfGTyyFCleZOSuhsjFwcJpQdVhdl4y3bxuGt5dXdDd++fU3XNRxJHCQSgZBgynpg5mEkHQcMws3Njs22o++03Guz3dJvNnjvZ0P13AxdUtfP2oUzWrl8vPe0XUsigxeyE0iRvoU8GnLMhFMkjrrID1Plb9DvokgH6mZWF281xgzWe3xJEd9st7RtS0oaiajpp885jjfXV1nTXQGpvCuVJFczLeKscKBka4ASDm57/dkZvMnYkqET0I3YOYfvN4hxjOLokhBTQrJw2J+Ypjj3r+gJWwgYnRJ8TycyiRzGAoqVKHIFf0wZRxEIJ+X+MRZcgxgPZNqm0whaFn719Wve7w/sDwP/+J++Y5zekckFHLTnm9EKmHhq8a3Bi2UXqgdbMZyoAFp9XJp+zzOG8hQT8Hxlj7+rXrc1NeXd8urVK/7u7/6O6+trfve73/Htt99yd3fHdrvFGrMyhtYHcoHKzrh9llYJw5e9TQ/FdVlEjHE2xF0BVeMquqWlKbEcsqgjHAJiElksGUOICWMNTduSc1qUN36BRfPnbutxbL3NSuyuSiyP7bllPIX5GFrAzrWPx+PXLiN6sxGVMhA5DSP39w+MQ8N159WhAJyzdH2n/D0mQ0xzIMSILaonDW2rvATee6zVMUwG3eckr7gSLN5b2sZBjjgLRhJWMtYadRixbLuWm61y3HTe4YyoocfiwHzeufhl23oMd5s++7bBebeoTs6gRsl2QZ0KU8B9lZeFOnK+abkyW1qxTMYwWAvW0G+29F1H1zZstz0316qud319xXa707L2OHI6tZBlLluIhX/gYzbWfAavQCTN+klYm+bsMGThunAYutax3WhWXpgSMaRCr6brWks0E6l8RoqZFOreXXhLBJBIJpCzVaAnVQCovr54vBk9q0xR9aqR9Ocex7/561/lvus1K7n4tn3bkUJkOJ2YxkkzxKMqeYU5c1VoW1W067pOOTsGLSuuWQX6KDwwqcpu13zkahOsnLPnuDlBeShWwFoFG5zo2kJkcarn+ahztet61OZNfPvXf8MwnDgcDvzLP/8TP37/vZZiZOZSdWuVSzPmSAw1mFoy3aegRKyF7w8ptvUvCM5dtvUY/vavvso1U0J/x5xxEE1SefqyF47DwIcP7xRcHSeG45EQIt99/57/+E//yv544sOHPVagbdQJV/AkMYwjH/YJa4TTOCIkzYgsIh8iWqp8GsZZ3ddbS0bwBjadwwfDofFkq2DZmOA0RqJRW36cIsYITbQ0WcVFhjFzHBMpQdcIr7wlJjgOwjBqZs84ajlMtUGmWIhmU8381JJbyYn2eOKwP7B/eFBag8YhjcFk8BiseEBUSluSnlHnvf8nj99T4/j3f/9vVwjKT/wdZb+t5/9HDoinwJ75UYA0DWI4uq7n5vqGq6srdtsdbdPgC0n4nJVRvnzJ8EyzyZfL97Vty/XNLW3X8fUwKPF+hu12S99v1KYstu1pHHk4nog5czoNUEDYaZpmF79mFVXS/rlMV3mGy/0vkPEMfFzsKJeg2HOdqesx/PbV1WKJnDn99WxZBraejYiWDlrvcClrhQBGuaySKuDFpB52yOi5UrKHjVtU/KxbuCJ1O5DanbNdO+91pW/VttF+NFIVwCj8pEn7mEipVViqjHJWfymrnRIFghEFXcs8Ee+Kr6v7cEx6hlA4hsQIxERMEwRhmgL745HjaeDhcOQ0DKUsLBLSwq+30MB8vmH0S4GffxWRrwvq9zXwh5/zx2sc5/F6rpDmx1DkaggARXGi3u8ykUv9uQjTaBmdQ0hM44mpcAClrBuqWJ0wUiSejQVbZOLtJmL7hFgwrQdrlbcmFRnPcSKME9M4MY2hGEq2TAlVrsh5KeXSpIjCzl7YyPO6zkt+fknSuj9zzrPsnbeC8Rt8033qT3/ROH4s4lY3vsrpo4S8BfjJxeC1KwQWwErhdRG6puF629F6y9tXd/ztX39N37e8jyPfx4EpJ6LxRNPoEj0cyYcDkjKb/kYVN1ot+drudrOMezWul7yrZVO8bDqFasRG5lrtpm1oN71uDr2FxiA54kfBTpYUMqf7wHRUSd4hDsSppN3WCG9CvbbqEFT021h8U8jC247tbkff98pkP03KAfDcYwiElHAU1THrtHSjGCwxBiZRACiEKt2aaRvHi+sNXduwMYHWTlgSZEMo6hjWepp+i3UNQRxDVMedDPuHA8Y6fNfQdB3WWbLxWF+UE/JAGlXCXYEfBQ3JmTznTGeQosAVVD4R66G/RqxHROjIdM7SuIZff/s11lve3x84joHv3z2QyHOmQi7gUs55FREvB2WdpxeHZF79LOa0HgxoGqbOMOUzks/h5/oT99RPtXmV1jIfb+j7Huccb9++5d/+23/Lq1ev+PXf/A2/+fWvub6+nldKTXl9CuxZ8/ZAOUxFkJRm4EcjiTp+IQSG02l2POrDOSUFjiEUkGfhvqiR2KqMI8aQxJLFMIWAKVFpyFhbjrO/HCrwi8ZQBOVHSFXhcJlVdezmxBfRqV+PufWZn5any/y8BIHK6zWLK2fD8Tjw7t09beO5u+rnEk/nPdttT+MsNgwwDkBWud/C29R4raU31mKbBfiJklGdslT2fc0C9N7Rtg6S4K0qOlmTlVzaN2ATV5vIlFW5r28c3kgB/TPPA4H/ZPvZ4yjG4Dvl+zOmls+UbJyMBpoK+KO8Vw7JiRr7QKBprrjeviTaloHMAUgibLbX9H3Hpm+52m15cXeDc47bm1uudjfEmAhhYP/wodgThTsupnJ2rGzvXBWcKNtb4R9cgT7pQglM0HPQOw2QbTpPoCXEyPE4csoJTCnHisr5Er2CGykmUoA46Vw1TeE5ASRHMqPyP1WOn5wWVS9y2UtLFkNOGuGVWhb2yXX+i9aiMYbtZoMVQ2vtLAaQQuQUj0yT7mExRqYYmEoJE0boug7XJDabDV3bMrQDQiX/zAsgV0rVhSWzcVmo+np+7Kf9olZLPlOMxfFXxUVBMF6oRfeL7bw4Q8aYwp/W4hvPb3/7t/Rty7t37xhPJx4+3GOsZvGHorRjraNpWkKKhJK1FUXvWUmEtWQjpYS4YmuvQJon2s8fR1ExhyzFBi8ZAjEmRApNQAFAhtOJH7//juPxwP37D3z3r3/kdDrx/v7Av353zzBOgGCx9I3HOV1DIWWOw6mUP+eSKaTcQqYSMEsNWCgw2DUO06p94p1lZzwhJt63Ddlpaf+YIodB90Q7ygwibVPLFohZOJ4yh5NmOe82lk2vGUMPR8NhsISY2e8Tx2Mq6kfMql51dFPMjINypfrG8XD/wP379/R9x9WuwWQH2eDEAZZIZiwcJkjC56Wvzxy65xrDVfusOE7OZJFVJumyt9WQSd1D5ozCC9Anlb3RWodznu1my4sXL7i5vub66oq27c5ELmpwsAIG+plqA9fMzZwTXddzd/eSECbapuXFixfkrCTy1WaJWbOwhnFUu7xpOB6PMyfbOI5LaVqxr0Ip4dW9Pmq4ceUqLJljl5nZq2SDiyygn2i/cBxrFlqZg/PeVsq8pO6FzMFgWwiaUxaMU+qSiBCyMNaSZBECCpqZCvwU8Mf6VfXHLMV+uaU+Bn8UfKLsIUobk2deOVWZjoWmRShBzgJcp5iqJ0AUmIxAVt5dMYI4C1bLlTOJEAMyjap66DwGDYDEchYP08T9w5798cT+cOB4OqlqZCEpr4GZs+SRz7R9fynU/n8H/tvy/L8F/m+f+4frRXy+oJ+wTuEMXHhCD2keuOXmL5HchVAq5Uq2VYwhoSikyfKoQJBTLhLKv2tZ2JyKVQ/qvPru/NSVsoCdebm9+hHrVtkxzu/wHBH9WMvzB9bsgxJNkpLN9HT7BeN4Dvg8lSrJ+t+r958jz2UzYgFZ1iVV3jlVS2tV8tA3Dt+4WV6xaRvarpCK9i1N43DOLIpAdcHPygQV8Dlf/JflKnl1X/P7ZeHCcV6l453Xh28cbetpGkdTlG+ctXN2U/mWVQbJZclX+X5jFrWiqkTm9ACq/36+MeRijFb98BFG+9qq6pJ3FmfMAsqQZ1WJLJXsr6Lvazn7PDuWVZ6Qyq8jBXfPyxpdeqled/nfaq6V3E99XfSzjLE4q33Ydy277Ybdtqdt/HwQrOfiU+3Rq/PSvPjNJyyTNb/PUkD6ZPvFe+rPbUZ0LjdNowpeV1dcX1+z3e3ousW4OTMKWA6V9byoGZZc/H5uebVHFKOlylcun2HmEq8aPVnPy2JVzdmMNWqun7PiC1o8mJ/V5COP8/ec//eR9gvHcN2fPJqX6/6tt6g/H1d3n2VJfOQcvXx/rU8PVWkLmSWY6xoSMQV8XUPnUkpdS2ntGQ8EVG4bhLn0uSqRzISLZ0aX7tfOGHzhHLLVYHt0o5/Xs7+w/aJxXCvW1c7XYzk/ut7FVJBlz7IW5xt8o/x0y6OZyfd9AUm1BGFRg3GuCBmYOlZr0G8NXjM/vzQS1yUQl20u8RItgaicUKZwlqhZVImjLwJDeiiwzPPl/bMTxoUNgZJXnllMa5vi8jset180hur4FZLP0t/WmFmO+KxUq5Kp1v4pZ/gl4X29p8t0/fMrP58jZyOzOus+Z69aPmH5TZ2H67KL5fuq15CXf5f7MmUP8M7T9xt2V1dst1vlzqiUCfNnUxy4c+XM5fLX38/q+z+5Z//yc/HiHHo0seveFwLTODIOA8fjgcN+z/FwZBhODMNALFyMl+pOKS+cGxrMWBzHuo9n8srmWfY6zQAqRLbVDhK1EGo5Sw0Sh5SLM1j6sdyOArKL1LtzSmhd6RJ0f63ltYtIce2QmTcklj6oZOOp8oes5nZ+4kz8/LP2WfzFn/vmT+wNc1sAz+X/UsBI6xyNr6Ve/pFN/Oj+V3N8dgizcni6onTZdT2bzY7tdkvXb2i7TgGlQgrfNg1d29H3HV2vmYN1r3feq+/hFlXT82ta7qLe27lNMf/msQ139vhodz2Tjbrs4csVLf6WXnv1R6T89nwez/O5fFo9Q2f/RczKxviJHeaJVtdytXsFVnv4iiA8LY/13ppF/aBsUP+mZIjVC6n7Yf2MuHqEoNnt01QfRQlsJYDw5H5+8dqn2k9m/IjI/wX4b4BXIvJPwP8B+D8C/1cR+d8C/wj8r39mv64GfR661f/VAXzKuBNBeVae+OVTE1Yjm4EQzFI+kCNiMr4VmlY0AtWoYeuwOFEOA9taTBN18lXwJ4NYh3GNPqwrQIPOktlpzdXVg1yil+vN92KaqzMxX//Pd15qz61l7i4G/zfA/5tnGsen0yXrYViIndNCopZFEOzZRiSiKKj1rqCeSuSV0dT+ECJhCkDGF2LMbAxZ88Tpdxs2u21BLxvIKuHeOqNp9bMTVJf+Khrwkf4L08TpVA/8ACV99/pqg7GJRGIykWASVhI7HL1EUsgcuonhEDkOE6dsGJL2Ryigo5TNqKbmabBEI2tt29JvNrRtS9OompfWf1rsUur1bGOoc6Wmf9dOWaRWIWNT4RkCXHG0vXO03tA5waVMDpGYAySLJAuYxZCXrOVtVh1C13ravsU4T7fZ0F/ttOa57VZ4aqaE6Ap5n1kN2Ap4mK+ZmYRQAJM1gmCcx+DwtuHmNpBdQ9c/cHf7r2w3f8AY4WF/IMYAWeXfHx3q1V+qgF09MNcOzVmPnu9J6/1I6jR85nH87Fb3nJzZbrd8++237HY7fvOb3/DrX/+aV69ecXd3hxhDWMmOAnM66+LoG86i1aVP1iVF9WALRX0iJU2Nn8IEoLxQzs0glLWuOA4apRUxNG3HbnetmSxiOA0DGWEMWkZ5OGh6+ul0ZBwGJaqUSqj+6T30fDh+UXu2MRQR2q7VKE4GiPPczznPwLgIcxZFdZwqqDA7V5yfMWvOh4tvnZ/NUqRWS1pvbq643m24ublld32Ld4ZTjBzDB12XIjir5zDiMMYvnHkpowyuo15bCHiT6FsHydI2lsZbLbcIiTFOOKO8NFIAc+8srTcq6W5VYUxQRyg+vpE/qT2XfSOyZMNBBTUKeCGGlJWYUnJEYoSoP70x9K5mTzU0mx00PRvXsmt6MI7XX73hxYuv2G033NzccHO9wTnL2zev+Nu//S0fPtzz+99vgMzpdMCYdwxDQmQiJ1lKW872I5lB07UdoiV7TSnbsytgSnNDnDH0ncc0PSEGtAQrYbJFUFtLnc3FcXROVYwSmZBEy74ymJQgB4xEndOV162qTgmsmYdTFi3pT1Vldb6h51uLRku21F7XfS6GoDQBUVVdhlGf5wJqSrEt1g7AXO6aKH2U5/PVWAtIKQGrIFJe7nUOx/4pO5TucAW+UVXGep7lepbV9+k1LjLy+lNYQCprLTfXN2ojW8fdi5fcfPddydCKmpGgdwqoHTqN07znV9LZGkQTCtax2pyezdfIlQGiZNYZVxx35VABveZUAEYjGWug8Y7dZoO3jpQMDw8DkjTzsWtbXRsknAlYwDdGs3jMyu4FqkiEXouuPxGV726bVgmfsyFkizEJb03hA62ZdQZXXaAsJWO4jJ8IV71mTWYymMw0QYiZwzHycArEAIcxcQp5JsENWWeDlVyFzubZlWLm/n7gu+8e2F0lrm9H+k1UOyoLgtrvGM2ksqt9rp7/q/bnt20+1VYHfZ17pgC0CqA4nEvE6Mg503Ud2+2Ormu5vrrm5uaWm5trNpuNBmGt03lUbKAlWFnW0Cqzql6A8ih2JB8x1tB2ne69ir6jZUKRkDQrbpgmjDUcj6c5y3kYBqxTECqEUIDJgRgTp0IUfy7ccG4DrV3BdYBufWbV+yjA0PP6/RV8KnbkjItVw0XmQVr6JMXCQZWYYioKXpkpa4aU+oJqd7imKWTOnr7vSjBeybhradVsgxcfIzNfxPyaZinn+Ww0VjMGjTXYpBk5VZUsl/2jVkTPHxOVX9g0WhYqRbxHrFXi+7JPTNOk95Fhige1b1LiNCjQM06BD/sDp2HgNIzsD0eGSbnVqk+5Prs/7d2et89R9frffORX/4uf/PSPf+bHflOXwxkUVCMdi4MKZDl7TVaLe/3IBdEXMYQYZoRebKLphLYz+JxpsoWclcE+a+29cQlxcXZeZyPIOKxrsL7RbIwqf00m50L+lzO5qFukLKRUeAoKGVXtAl0MawPi/F7WffPxAZX5HfUAsrkKds7tf8w5/8+e+OOfN47zOvkI8FPT4uL5wxqL2EqeVdRFRAkEXWFet66k56LEdWEKBGfBZhqnal+iDKMYY3ix2fDVboc1huMxcjgmjHEL8ENaYflnM+gj95aZponj8cjpdFSlt6xkfbc3O25uOmJOPIQDx3DCG+FlZ7lpDHHK7DcTx0Pk4XDi/RB4GIMaA9NEjmCMgj+VKFkkUdMa267T0rSmoe06mrZTR9ZWnp1nHMNyrzV6WSejSDnYrQI/LntyVj6eGrVqnEo6994gUybFiRSD9nUCTXuOJEkYSVrK5y0mGVwpl3Pe019dsbu5KVFs3RDnDTklpBKWzsCPzPUuSh1SF5AhG9EsPVEjxSAY6zHO43PmzrXsbu7Ybj/w8sV/5Opqg5Ra/Bi0lMBIqdueydqXvaR+fYH/58NL+/FRx87vX6IXj3r/+cbx57TSZ7vdjl//+te8fPmSf/Nv/g2/+93vePXq1RxB0v1S5sO6ZuOpY7hkNTyVKVe/o+4J0xQ4nU6kFBmniWkcQYS2aWi8nyPKM/AjtgCjhq7bcHVzqyWPKXE4nYgpcTieOJ4GTscT9/cqkTmNo8qDf34U8k9tzzaGxmjp3ThOqtRRUsZr2rqIYMt4JDSCkOZ+XgNtFTxdRcNyLQF7ol/q8ZpyCYoY2rbh7vaW2+sdt3cvuL59gTXCuN9zmgIpBIyxNF738YxDrHKbCLZ8YSKnEzkOEBKNjWx6h+DpW0fbOOKUlIdimPBGy0WMs5ANjbd00ap0vFPVGskwymfs4T+zPZ99o1mO2ifn56LkPJ+LzEqXgTxNbLynEy0dcE1Ds7vCdDtMf425eo3xLV9/9YJXr9+y7Vtevrji9naLd5Zvf/WWYfgH9vsDm03POAb2+wdStDzcHxCMZg6sCKFncHa2tGY4fT6Lmqah8c2i2CcKiJik63/btWxcr1HIGAkxQDJI0HJO0BJhNZ4zzhod85SJwRAmJQhXgHnC4Ao/QsnKJkJVJWLJkkyplO1E5U7JC/H3861FMXRtq7ZgWVAhZE7DoNLJZR9LSRXNTM0CiYtCUA3m2EI6r3GbYuOVPRZhxf2zIole2YF/WlvOJx1DpSDAyFxiaKScuZw7QvO3V8wNFOy5vWO72dI2La9ffcX3f/yOcRr4cP+O4TTqV1oFrnJMTOPE6XgqXG1qv4po5oz6l/oFC3j9PGsxo8CTtYKzDcZ5rGuWbDhZJJFzTrNiaOs917sdoVXw5H1zgARt27DpOwVCc8CU8Wxaw2ZrsBZiiITilEHhbMllby1BK+ccXadKszEJMYELCe80IJhyoRVwGSeqzJeiGh4ZIYlmSt70Cp7HlPnxMPH+GJhCYn8M3B8mQsycRhgnPRdi1lKwakJV4tpa+hJD4v27IzE5TkPixeuB7bX6TMqmV8hybSlzWme0V0Nn2Za/gG2zmohP/u7xeqkBk3qJUKkm7JLRV4QLcnazeEXX9VxdXdP3Pbe3d7y4e8HNzTW77Q5fgR9bhEh0sRa7JZdysXIBNVCTs/K+mR5ypttsZjBVTe9cAmTTXOJurGGz6TmeTiQyTdtyPJ5wztO2LdM48f7De/b7w7zfqo2eEIEQzKO+WEp3lwCFSqe7GShal/U/r98vCIttXaO8FfSZBa3q/0R95Bg1E3mKkTEmxqgKWVMJAGkgUitzfNuw3W1om4bNptdKkLbQR2gvlHOZ1Xevy/5WEvNUBUrI2ZAlY7MhJQ1KKk9l4VeKiRyXLOjZPzaCNK6cnQX4MZYsyg9GyqRphKjk6vf7E8dhJITI/f7IaRgJMXIYBsZJz9njMDCW8a45PjUY+3Mtoy9O7nzZzsqEVpd6DnHk9T9WbXmXSE0X/TTKlWE1uGXUy9xTcuf6pvIpWTBZLU3RosPi9M2eHzWlbP5ZysSWs3Z90Rdizk/cmnD55Lyd+zIXb5Ly2Y/80BlZevpDf2Fb+vMJp2M5wM+MzPO/rqhWNUjKzxl5rumuWjMZC3qqGQbMG5YRobGW1nucUWPSmmlVwqMXdT7fHi+Ps98XA30xxtLs+Fqnm33MkQHLlA3OqvpY0ziiJEafCU5JUa2pRvMKhMy1VGM9j3UyGlnSw2u6OCwKSl+mnWdp6PUsDr2RAqNILindxfEXJUs7/xzmdbJkzMgCllSCV2cxFSy1bu7XC/iA2QCtIMtZZDqfLR5ZA3u5cPyLHgqQcXjEypxO672m8M9qbKv28dUin/zt2btWbzvLTvoo4P1naAU0FVTCfbvdclXS9vu+p+u6connDsi67Ohy3n50a1nw+tnoWJfbLgD3Zdp03cT0ubFqnElKSnKew5wWOwPMqxTb5VZldSl5fUmPrvEnuuyj7TlHUp0hW0QFlmyzOQGgLiWRhdNnvoglo6cCPcvzVV5tXvbeeRxX+28lsnfWzkomqprmZsLFpd8XdY26/1POWFIBPmIu1ToRySWqXh0PWUgol3kxx9+Kg7IoYxojmJRX8y0vP37m+TYDlV9gLc57Hk/1/fnPhKaDJ5bzE1kyLq31ON9imk4zcFwpO3JWy6ycoWk9262Sg242ShQaY6RplGsoxoi1ofCYXahIleuoe2udd7WEwBbnZp4q5ZFFAXOsJZMLMbshsygynmWRUp1MDcMo50pVZKlk5kuG4GK3rP++zuvz932JMazXqx3E/D2678TVGkglKLECv9PjTOu6rUktdaufn9dlz+cg4XKYri5j/sfFPVfn9uzFx/1SnLnzfba8d4l8LyxhUr8qLzwp1jkapOwNuj+kpCT9VZ2mSiTn9do+65MnrvQLDOMcF5LFZln6dLEjBErpqSk8Yx4RQ+MrdYCZBT6MESSVDSxTHGdbsh8zpMJrlxe+tbP1U9fZbLEsdtZMantWpnV5tXouW4HGQijvKQnSxKKnElPNjqxZ+GWrzMs6nq+h+A8hJMYxMI5R+VNSVuVGyVRSObe26y7G8UsEXJYTofw7L2fA+TK4VPKS+e/PQNSVTTPbuKuyTKAIEHh9uOXnAoJfjkr5ptkHWn67zPiimkvGrn5bz9GlVEf/wpfyspTzrLhKVpLotlHOUr0u/TTrLGZa/AVr86p/8pz9VvtmeZi5D+rvnn1PzTCTD8t6nlzs349cxaVEMs3zOK93q9lvNGYh5J7Vnauy4qMJc/mzPn/qdZA541SW/qmLc7Zzz23MXO+1Gm611EsWdTKdKwoATSEyDKNmboXI8aQgUIyaJT8WYYAqFw8sduDZsvt82+bPDvxoy48H+tFb1pP36dKu8kmLrSBr0EE3K03NiqSkWTzOF34Sb3CNYBtNpawErEIxuKWAOabIiJv6Ghjf4NoeHyJN19P1SvprD3ZGDSuamXOe0/NjNZhzjdiujKS8DNjTm+hHNtZ8/p7L/75Uq6ns6/7WxZlmoshLI7Mi0otDWReJLpCMELMgCU7DxLsPe07DhN01WN/hjME5j3eqItNbh8+qvmGzRugkJ3IMxDASgtOU8LMDYPney97JWUnUDvsDx+MREei7lpwdTSM4L0xxIj1MJEa8ERrnaJxVAr0wsj+cOB4HjYI+0f1nWSQsw7ewGdTNoqSS2sxzqF58rAl5nrPMzmHdSEufGlvUOzJtp8CJs5ZsDckIOakqmfVbxDj8dovvOqxv8BncGJGkkYu+32pk2zfaPSkjRE0lLsZnJXvTDdOWXa4SQGZIAXIhzl6BQilG4jiQXcI0PcZ3ugGnBpcj3SZzfXPDq5d3NN7zhz/+oNlNuQI0y4AtoCRn4/XI5JGLp+v3roGSJ2fcl2uXm3/jG/q+wzvP27dv+d3vfsfbt2/51a9+Rd/3s/rM4oDIHJleG6ZnQNZqj1myHDj7OU2BYdCob85FyaXuo4XrJVNUYVJZqcZgjaNpOza7nWYVHA4MMSJWVXOqM7zdbnnY9Jr192CRT5wV/7k2ax23t7ccj5plqHDAuXFr6j+SEM4A9rpuWBki5+P/lCGgmVZqHF3tNrx+ccWm63j75hVvXr/i+nrHbrdV5zZrJsdxOKl8MZpq7ZxTomcxc7ZLLXEYY2ZKSYkQxwETRySekDxBVvL/KQRO44S1huPpxOFw1M+OESvgDDRO6L0qiB1jXG5yuTv+nOvqc9p8ReXslyK3LE4gC9IYcmfI0TAm4T5EXMh0w4SMI86ONGmikYyTjCVh4oREQeKoTMkms2kbvnr9kmEYi9rSnv3DA84awnTieDqy3z9wf39fMrqWjBQlGQ4gQtu0pcRYyxte3L3AeY+zmpFHAflSmXdGTCnLhq71bPqGHAwxG3JYzN9qpJMgRyFHiGNiGqNmZZqISAX+Smn42l0SQUxRDMu58OxkUpHFtV/A2awtpUQswgpzSj7M9lqx1DR6bgwxDRyOR4YiAz6MI9M0YUT3XiOiGY5Wy41ijByOR6xzZLG4psO6pCIL5cw3xpQy6T/tPk1FY4SSUaUtp0gs5NnkqOsyZy1VKLaAsPBbGqPkxE3b0/UbNpudngnvDTGk+YgWVHFoHDTjJwN1ZDN5AXlFyzmypCf3qD+1CWYm6hXjloADFMnmTNM07K6uaBpPDIndNpCCZo4fDicO+2MZ94kcKEEwvce28ey2Ld4ZUgzESTPET8PEcRiV7Fq0VBUxpJSKwpfm0SQ0a8d7x82uI6fEphnxPmPJWjaUlBiapMTcIKRgyGJ0XU0QgxCjIWen3CJkYp6YShaLEcGhgVOLPgSwUl7LiTgMnDC03nE6BYYpY00qmZ3mzPj5M2bVAgUAmv2IM0x0ec8F4FNB1ryy/qXsW9Z5nGtmgKdyiwJcX1/x4u6OzUa5D7sSLLQXnId1j08r4qRa6QHndv4ZgDUjesUGQsEEi1W7V6Qo+iaMtdzcKHn/sT9xKuXs46hl1Nao8hNo5k5KkXFQpcHZBioAQwgVNFiCbI8Cbl+8rfpvbausXlO3XYOF0zQxjpNyT6VESJmEKNWKyfimoe07TFEavtqq6My279kUZUXv3SKMkRclSK12iAtAXc7FWqGir8eZR1LFonTtO2cBr+foFImi3lsqJPIIWFblnqUMPpfgWRwnQsrsTwPDqCVd7x4O7I8nHeuTZvaoGFQiFt96VvKqLg+i1zQriS/+20+1vwDwcwn6PG3I1YOVeQovbnKNAF3+Xc51U1oAh5QSUSImRZCiHtI4fGNxjeAareqLa+Bn5czMu0wBfsBgXQOdTs62L8BPTlhnociRUgYrF+SyMnVXBLOimPpFC/gDzJK5eq8y3/NPNlkcWClEm19iSS9O3hOPVURsloNlAX6gpI4WeXO9t4Km1nFIwuE08eO7B9rGsTNXymtgPK1r6JsWayy9tfgMkjI2ZUyV/Y6BMI1Y6/SwnC3xT/dGzplhGNnv9wwndUI2fYdIpt9YutYyhZEpnZjCEWeg9Y7WOVLITOPI/nDP4RSKA3f+lRUM0Ogny0QuZ0eNzNS0QCRjMqwlD5+9zQ6kKnMt0V9D3R4sQKNroetUktk5owaIMWAMpmnw2x3GNvjdFr/pcc4zJnBDRGKiaTo22y2+UeDOwBLhTPVwTPNQaUadln9QuF/0goMqxoFyb5XfpRAJ4wmTEn4r2KYv8yqDZPoo3N7e8dXrl3jv2fS/V/WPnKk5R2tQcrF0ZmxpbkskbwUYyZJ7NGdt1Od/oVb3QeVuuaXvOr799lv+4R/+gW+//Zarqys2m42msbOUhcCyLi/Lu+CJ46Uc2mvQJ6XMFCZNWU5BozBuAZBm4KdGKKOWOBmxGJtpu56tiH5GiHAaEBH6jc6fpvFcXe14eL/BGsP9xwnQ//T29KHzLM06y92LF/iHe46nAymF5Ze5fG8sAYWqZpfOo4zzA5ZzhEvQZwFJjAjeOZw13Fxt+Oarl1xtN/zq7Wvevn3D1W6LtxYjlpQCU5jYnw6ESVVHhhhx1mEAl4saYOEoBVWWjEnr39MYMTFj4kmBixTJ5TNPo2ZpHo4n9oc9IoaSs4cTaL2hbzVoY8ePqRv+fPDn2aObutALNp1VuWMV+JlFJETUacuWHC3jCNNe98fdMOHHgcZ6XJgwJJzJWAKSRiSCxJEcJ7CZTd/SNK8JVdY3Rvb7PdbCOBw4HA78+OOPiGh6elgpK43jyFT6rG1bNpstbdtyc3vLy5cvcc4xTZEwLcavKplk5eWy6gh1XaOZMEE4TYZR63BnG0HBLyBCmiCcIuMQ1eH0EePUAI+xfk9SwF9doiK4oedEVQ0zAilE4hfaVzNaLj+MU1HiCjN/yxr8YY44W2JMHPYHDqcj+8OBoUjvtt7TtK0KIhS7pSry7PeHcsY5mrYv5K0J55QjyFqn2VWrKbZc5GrufqofChAzl0xnKdxIlah6LOfvRM6BXErsY4wIBmMaxChpeNP1uKal6bb0mx3b3U7datH7mYMECCFExkHLcYtcqPJbFOAnoSBUyIFEnB3mZ2l1oKRkzrmGmYG8dIotc6xpW66ur4mh171WhXsw1nLcP7DvvJYUP+wVKLUG423hZfRcbXvaxpJjIMVATokP93uG4aTcV2JLZobSThxPo9pWxiNGM9u9c9xebSBFdgYaCQr0i5aUSMrkFAmpKPBNUrIpDWlqiMGreG4CMGQSIQWGmDACXVEGs6IWnSvhEVcJcHNiOg2EMRXgZ2IYEs4ZrM9Yk8mlhK/aNSt3ff7/l/Q1Lsf3k+BPsZmXosUSdjNGQR/vcSWrtWkaTQ7Iup/d3Fzx8uULtpsNNzfXi9iFdTMAqmfsAvZU/qo072HMlBZAES+pftxsOM4+GjkjWJUQN6ZwXgree4abCWMsx9OpAD6JYdCfM/AjWpGQYuLkB8I0zYaA7lclYzoVUZUFq5qzdr90q2pnIMWmYT4f1/ZK3QdiTIzjxDCMjFNgigr8ZATjNCjetA2bbYdznqvdhuvdlq5tuNpt2GxUyKVtXPGJS3JCUeZSOpJyrsVCaF6yyGMK5T1p9lnJefanvVNql5wzQSLBBH0e9PwSMtmY4t7qea8KgzCGREiRYQx898N73t3vGaeJH+/3PBx1z5iCVrog5V5rBNpU/4yZPF/nU5pJsOHz1uGfHfiRNe6zjkoWXDZfvD4DPpd40bqdwcA1CsrZ5K+fOTtw60d9/azLzrey9b+qQzqrOKxVi/KKff8sMrsyGFb3fP59T371mSOqBuv65s/TQs8+Iy/vec52uVGcZfaU/z+5mdT7yst4X15fvexYUuCMEUJMywalSQM6j6JGLgWZN10lh10dSmv7CFaHwdOHlZamrLhv6poTVWBIuSqPFc6hev8rRvYYnzBkLsb+8YisU+TLl2ZmMOFLtPMpP3/zPMfOQMfCyWRWPDiIKUaMlFpbh3GuRC3t8tNYMjLLp8/keB9bbsKcdTejJ3nVJ5cLt7yvbuy5kGFL2SwNKIhmVRGnpsw6Z4uhkD++RD5lU68P8dUbPw6OfPkD9mPNWuWu6LqOvu/ZbDZsNhtVZ/lEOeGjssSL155qy35HKX/Q9WSKvCUsCihqSC3vL980A07W2ln+va4FJaBV+XdV2vO4EJ4g173o7/V1/9yh+IJjZ0Tm0iotsSlgYl0TKc/4z+qCntzfdf9cshM+1kSKxLq1tI1n03ds+k4jnEWd0CCQVkpGeaU8EdWb18yRqYDVeeZir+qZqv6bkKwxbinlA3Uocl4yYFWmlhkYFKPZRM5UpZrH97HcYv7JefklW90361jknFmSsZTHoMSN9GHLX0nJ/i3g56w+mmdpCDVIw6Sy6EH5gZIVREoppEl0rXIb5JxL6WZPSqlk8jTztaWUMZKI1hLLenGzUpjybrVtWzIAR8K0ZFnls0UqBVDQc5E0+0WsF9dyFK92yFzBoTJXZfn8XA3EEsCrm2i14WpZxJPr+1naksFcAam4LseiXNuqHyjnZYhR5d1DmJ0GvZXzcqOMvncYBu37pmUYB2JK+ELGIqmUYeRSHCJ/Ws5o6c35Z9kglnUaFYxVB2YqwhbV1lk5FVXxyFqs9UWOegWi1imyCgYqkpvnL8552Z+V1+lLjGPZQ+cgVl2X5z1Yy7WK/zSXcflZodWUDJ9U3rCc7YpnadZkxmCyEjCvFQtrz6lTm8ih7IHOlq/SueGt1XJ4Krige6RhsUEXO7/4OFk/3xrBZko5GiVYuD63tTysbj1y8RNAsmbLK8fieRnS2plYruHyLP0yebaXmavLubG8R5gv6tE1nI12mQuzCmWZxzlLyUBUsKVtGtq2VTqAlXJW/fz6mUvPLH7eXIpjzPzmZUv7yOqtZu5ZQMzM5YeulPmqoqMjpTQre6WU53McdA6k2Z7T3kiJOaOprs/qj8rCeExNmnjudjZW8zaxJD6U7WLh8WfxKde+pQbNDU5UdMB7VV1zvpxf3s3VCHVdnmeoc7Yv6eemx9919u+L8tfib1eaCGMSxhgdB1M4nlZ7zDxHcp4zeEJITEUk4FR4e07jyDCORYxKq4PECFaqr3QekD73tpe9oO4dP9X+IqVej6fX2lGXi9X6+P3LIbMYImunAUp0SjKS1GBMmZJ5c1lz/LlXK/NFaOmLpgxa3+CaDjMGpmTYH5WMaoqZKWqdbVUPqKtumVSLk7ScxvU7n7qO8uyRE1A7ptaN58IQroHiZ2/nXto8KXPOT1755fvOymrysii0bEfDxlOEwykwhkT6cCK3D7jGsWkmpjZgjXAfE9/FiJCZsmXCYH3D62kqkuuquPazrCWpRlZmGEceHh6Ul8J0WKtj2fiWq+0NxMA0Hnm3P3A8jny4P3C/HxhCJMQacZCzxV8faT13OZ8LeTkJSs38l3I6l63i0W9EHYv5udUNzzmLdR5xBuMjtB05Oly3wW+usK7Fb69pttc45+lNQzQtKWa63RWu7fTvV5LOhogh6l3Ph0Ex2IyjgmbaDaLRsrJziWsw1hfjOzINB2wKpDhSEkMVkLIW30Zu7255++YrvPNs+h4jmUhWg6dEy2aQuD5WoMOjvpP6nrXzdw76fELC/Yu2ytkhItzc3vLbv/0td7d3/PrXv+bFixdcX1/PJV5KWJfneu+1HPFZeeLZAbTsxakAPOo4qARljJphEIJGkJU3zepWmouDIxopm6Y0k+apkaIZPckIZhqLgabZBl3Xsum3NN7z4sVLwjiyf9jz/scfse9+XFJ39QL//B3/M5tznlevXuOc4/2Hd4Q4aUZPJX0tDj9ZSc/LLC18ORpFn+daBRjSx+5bX29bz+3Vjq5t+Pbrt/zD737L9dWGr1+/oBUwIRCGgel0IkwTw/09KejZGWPSqGKKjMOBk9Hoo6nZGVSuGsEAHlX7yRLpvbDbeAabOR4sR2+wXsFj5YmxeO+wztEHuOobbnrlcXt/jFgJKzfkP58mYvBtQ85myXyrGSxiSFLFBhJiM02rYEHMmemkczWbQEyBGCZinIhhxAbL8X7kh/ADD15IwysaG2j7Dtf2qgImSg7++vVLrq93DMOe4+Gew+FA23lEEuM0zTwCKSXGYWQYRowRbm9vub29pet63n79hq/evEbE8P13P3I6Diq0EFLJ6kjIkEmmLi2Ldx7JVe5auUEqgAJgxeKdA4n4TpXadG/KiE2IU0LnFLXsJ5lMNgUMZCKIptNPeSKUDIgYPe4LAH05QwiqRHg4HJlKWUVOi50pRjn8bFEj1FKvxP5w4P7+nv1hrwb9ONIUPjvnPZTMmHGc+MMf/sjpNOK85+b2jpevXuObhuubW83+8w273Y6r66uZdL9Kp19Yw3UG8mhV5MVZmUHIlAvHUmKaRsJwIKXIcHpgHA6kmBhOA+MwYoyj769p2g3et3q2Nz1GLH2vCnOZhHVu5vgx2S5krQUkysAUAnPRhDCTnMYcy5n7fGNojNC2Hc43WHEsMMfj+WKspel6yIkYItO4ZAIIut8YiRgJGAnlnC+qZDlhcsRUVN6oiIsC1egaiUkzgTJMcWIsZM3dztHvGkQsbecQ0ygf2hg4DEdMViXbtlXF4HbT4DeN7vkpMZbvu75u2JqGKWb6+0h/SJymSIqGadQsn60Ttk5tbivMPDNSQFpnM9tNpm1hu000eSCdjuRooem05nbtlkn92zrNvkyp3uobVgAyT9vzn0BFq61hjYqoiMCm37DZbglhxFiZucpev3rF69ev2Gw2XF3tZmXDLFzsAwXgKUI25CKQUDLRrbWYomJMORvrtQhl7yyIUC7gfgVhK95tRHBO7aCcIl3X0neaxe69x1mrmXm5kOnnNIMStUvIpazbOYwpdBwrGg6ZfWGLUHmCHv604XrU/+W+zvx8HbA1oK4gsb4nRs0aDjHNNh8ITdvRbbc45+g3PburHc47rnZb7m5u8N5zvdvQFo4uO3d22fuq/xUTsdibIeiZW9VN45wVtMr4KfuHJtaojzqXwxqjmZLRYKLVPs6LH348jRyLcMfDYeQ4TAxT4Pv393zYHwgh8nAaOI2j+vDVt9C0yJmE3eSaHHORMjK/rn37OcfiX4jj57LVxXQO+izIqqze8+iv5n+cd0bl+Fkc6lqDV8GfjzkFj/eQ9S4nc8qgdQ22abFNj/G6qd+flJk9IjOBYZwnzxKpWuJdXAzjR65A1iC+zODPeY2mbkwxZUzKhATm2YGf1abx1AyT+X/Lhc83cPnWkrqalUtGwVJNi5ti5uE4YY0QzJHJKvp9ajtCF7AijIcDw8MDOWdc3+P6LU3XMRbgxzdOuSd+BvJTLz9nVfK4v3/AGPAevNcDsPUd1jaESX9/eHfP8TTy/sORD/sTU8yMQVP1Khq7BnzSarOrLeWF8DLXWExFlr+Em3Ph0M83Pw/XUv9rjGDdEh02zmsKYkpI6skp4PodfnON9R3N9oq2AD/4CWm0vKDtt/i20yiK1MhYVjWwwjOk+3SdGYZs7GywVl4sYzwYp71UCE8zEIKCDCkpx5Mqkql8rnUtTZu5u33BN1+/xTnHdtuXdZXLikvquJ31t8z/faQjz0GR2o2X0z3nnwdA/gltHSGpTsPd7R1/97u/4+3bt7N8+/X19QzOTNN0RnR4Cfp8CvhZIuRV2aYCPyqDrOUlEWNUNldYEY0KRSlnVIW1AvyIQGsajYyWyFe1iLq24/r6mnHsOLx8IKdE133gX//ln5V7pGbspfTRlfNnGorPas45Xr9+g4jwx+/+wDgOaphM05xJmEo2myryqCSvRpf1Sc5qKNTo40+1tmm4u7lm03f81a++5r/4N3/LzfWOu21PK2DDxOnhnod3PzKNI6eHB2JIpAhRIoEAURgkcUqjRppLdoCIoW0afOPRVaWAASawaRT4cTZz/2CxjdG9xRbeCmPwTUvbNowxc9W33PQNRiZap45LJU/9zwn8ERF80xAjhJH5jE+FJBWTNJtFNDJovP7NlCDsVfUoSQF+ohqiKUzEyXI4PfDdDz/iiORpT9M6us2G7c0dpumxTthsepx7XYzYgWk8cjgctCQ3TgzDwPE4cDgcSSkVXqARYwyvv3rN69ev6Lqer79+y9u3b8gpczyc+P77dwr0hcQ0JZBEHpKC5QKU7DspDqQxNYqcqba+NRZvPZhEiyE26ohbUWVLrAJkKSYFfipAkBOBwCQTkQL8pISJmRQ96YsAP5kwTYzDyKGUbIko6flMhlrK3EwRKjCinDb7/Z4P9/c8POw5DSeGcaDvuoWkXoQQFfi5v/9X/qf/6R/JGW7v7nj11Ve0Xcfbr7/mr/76b+j7npwifdcivtFAR1USgnOcpzqR53dy/ryYuzPdQIpM48BwOhDCxP3779k/vCeGwGF/5HRU+eib69fsdje0bU+/vWaTlf9vs9lyc3tLSJp1mQr5ek5ZlTxz4YIylpA0M3BKUR3owpuZWYCf57RxRIxmrXktCZZCPnSZ7a32lcWVcpDxNDKGIzFp5plILEGpAvoQUGtSyxBNTpiUMEmDjyKQCujjDCSjGemaMQmHU+ThGMliuG12dLbFWEdjE22TyTFwTEcOB0GScG0MXZdxVtd3v9uSgeMYGMaAMcLNruFq45lipmkDzX3kcAocj5b9XvfLnTdc+4XhqPrCNSjd2MyLLVzvwPeZNo+k44GUPEwe8Z51MkgNcNVgb8pLudPzt/MgfQUzPje7cw4SZM347tpOaSI2W7bbHTFONI2j7zQD/PXrV3z11Ws2vXL8WOdmBa+UlXxd0pIdkyrYUwJeFfgBZht7Xa6pl5Lna8plYc7KUoXyoGa8OudoGw850Xcd201feMNcITDW68glK1GBH7N8T+HLVDBIs6dTqUhQAGTx5aytwi3PxymaKfNjpZhVTZS1T1QpH3LJqgtR+QFj1LLXvmuwxnJ9fc2r16+0zGvTc1WAn7bt2GyVq1J5mVzJ+FkFIUr/VoBHVZtLhuM0ruxYrRjQTPXKk7WQe2uFj/ocxhhidBqULCXBKWcN/MdMDoHDMPHufs80BX74sOd+f2IKgff7I/vTQMp5LmdTXEl541R10cx+ESWriAzZLBhBTrkoXNbZ/tNr4y8A/Cw7yMfr7JfDTUHpfHY7Mzr4WYdFnjcLNcTSvEjq6+uvnP/qbGNZIKZ58yxIrtRyl1LDpxJ0epQVwO6cvb1mejzCnZ6+l0/tb7J0k/5/XlAL2JXPbvIZWubJMTsrRyv/nvvwUbZE+aj6OavrnSdzAX8lV/4P/UeMulkhFRXWTU+Vw2VGY6WkS14eED+5JGT5uypznJJGrKZpghJhT+h1hKhpeyFE3azyOtguFz/rfX8Uc1zeOyN7tUefv51z2dSLO7+WteO/1JXako1jwVg1ekwt7VI+AOrmZR3WgeS8KHiVMi+pnIHFErnMjMlCIV1fH5QsB4WgaznohaeVLO4cYagdXe+hpqkX1TX92Dx396fXyiUYK6vnfPT5bJ9/oajY451KW430WGuVx2O7ZbfbsdlsSgTIzKnJy/XKk4/6u4+1y3TZtZrL47Td/OhvU1yVRpgFbjOYYrTIaiiXcoNZgcOfK29cXuk5CPeR1y//5qPn0/O2CqjWsbJWo+a5ZF9ls9yTsKhinYGMyzT/yBQ+/4WVKh1sab2jbxv6psFbQ+Wnq7LjlbuilvYIzOtPB0W51dR404tZu1mVHLx+p3MWFy22qG8oMXTdG2wpEy2yu9bgreBt4aNY3aMGPj6vf7/4OAq656XF0NTjrBjW87m5lDnOMZvCuFp5gZbAgJZepBSYxoFEYBxOjMNJMxWmkRRDcUwopavQNJ6ubUgp0HUNbdsAzNlaqZDEghr7fdex2WzmMtCu64gxaTZL6d+qdokkCIlsNKokVvfi2a6vbb3GpJQv5GI0ryMM62BYcYTWwbFEUg6Y8q9cZMfXJQDP2+oYqIpXiBFrMklMAbVWe/7qrM5ZbYVQyryWzYrVmbfcdwiR4/GkZRtNQ3t/zzCOXF1fczoeFYgosvHqFM6MEauOrRbpE2BvNQTrRTy+zSUQlRIhTIzjQAiBYRg4nU44l5j6iRAizlentE71Wr62OJl1skjpk+pEVmL6JbLPufH6BYZxzio/C4yuny4O78yHOY+TZhlUdS0tG7Ekm8seVALKq3mojrpgsmaliihx7+J46o2nYtTOehoUGgEDuXBfqvqmlkY7i8rSO0vjPRlhisJoNRtcFQDV5lyJCK1sNpWGd2XvrCptNQPMZPBWaJzQecE5MCRIEZJVu+wjrpbuq/KlhvCRr7EONtcshzKSy3zK588vbTQxi+1Qz9ymlLl6Z+eS6zN74iPXw5lPd64u+iSQKeVD6mex5G58zDaqvlQloF6rLtpyTs4cjCmR1oE5WX1lXZvl+qR8nyky9GKkgNvn2VzP0eZ1f/7q2bal+8cqs2vVjFE+QrLQtq6caa1KtnetjmHraUppXgWw5pU/j0n9/9Lzsz8+X8flt6/6craHdY3WaSeSynWa2U+RImQEMp+7U1SupXGamIKKW4QCwsUVJmHKZ+TVXF/35U+Cnp9xLv6FMn6WQ79uHtqLy690A6sLmJKSBsWC4tFW85G+mFG8HJmmgePxwOHQaU11JXUqnAOPuqueq5dXX5xfYyzGeaxvMa5hjPBwnHRA8yKnOBVQIJOZIspOXlPsftGO+fSFZaRkNUFKMiOmz9nmxcL5hKyT0VpL9h5jFCGncnRUcAeN5Ekurl2JPokU4zIlMJaEIYsji5CkIUmLiENsj212OGOxpqdtrwDornZ019e0Xcv13UvaQkRorPsMtGe5h8Z7+r5XZ4fM8TQoW/408OOPurBTyRBJIXD68IFpPzBOkTEasml1SzEBMZqGWQ8bUPLcJ75YN2+74ouaN/CnN8M/tS1O4znosz6MqgFhjCmbqnKRuLbDeauKXjmSY8S2G3y7xXpV08rGEsVgGkvrNU3TNy2+bRVYo0SGc4YQljTXkuhYDSKtpQUKeWJVNZjGUQ3WcSKMI2IMu5trNldXIFZBu6LwJdYjVh2XcThx2j9wOjwwjQOhcDhIBXNnMpUlK++jHXjecXPU73Jffpyc+XztKYCjlqb1fc+rV6/ou46//uu/4re/+Q3ffPMNL1++pGma879bAWPrn58CgJZU2MUxTEkPt2kaiwRl0DlSooIaRZEZmMsZwjRxOh211CNFnNMISk4KQsSc5prqmvmlPogUafodMUYlYmybQk66IgD/yAbwU9vCnwP0AUCKLLBTfpWu7UguEI3KJEcDEkaS0bTflDRbIkR15qXgLUYKC0WdhE8YMUrOC60Vbryw83BlMxtJ9BIxU2RIA+TMNCrZYBYFFfqiNuLIOFSefeMtfd8pz0Q1REUKP4buvdZBkzONs9zdXBFS5DiMnIaRYZpomobN1TXd1R3OWbpNR981BHFcXfXc7lrECJvG0loh5swQS9bPmZ3/tFH0ZxvHVSZDBW5yUkcyp0iOur+llBELiJCsIfWe1GRiZxmN/l0gkPNIzoYpDoRpQFLAfviA/dd/pel77qaJ7KzKt3uHbzwimbb1XF/vaBrHMBwJ04lxmjidBk7HoZCuR0KIWGt5+/XXvH37NV3X8fbt17x58xXTGPjDH77XstwQOZ4GfvjxHTlHsCNiJ8SAaxLWZ3IW4smSkkVMiWCXTAjXCMY7TEo0Q0MInQZTBiEELfWKLpJsJBtNtc82MuXAkAZOaSAnCDmRQLNEHiFNz9dq6atyMJx0HjeCxRVgWs/nmjSesnL2nE4nDscjIUblTisKhG2jimm+afG+UZUpOZWS2MD333/Pj+8/YJ2SuGZgu90hAjc318rV1LUaOJkVPvPFz4t25oRCZXNR0lmDUGXKhZA1W+n7778jTIH9w4HT4UTTdLTtlr7bEfxUAEM9yzQLTDmQKtG85FqkLjhjabuWRGIME2OaCCXjJ5V1YkQwVhVvRKZnHcNYs80WP/sc9FkDaupYaLZA15F84rjp6bsOwohzDc7vNFNuHDmcTsSUmKIwjGojdJ2n7ZVL6ziNNHsVeokhYQpY6a3Qt1ryZyTp/hodjTWYAtruesuGFpMdOzNwJcrncnN7xc3Lr8gifDgGHk6TrsWw5/7DkSEkfvwQ+P5DZJgi46TcI85A6yxbb+Z+Sbk4052qG/et4c3LlrsrB86TXSbHERMNJuUC6jOXCeYCgKr0vCHhVHTgS7W8sp5WG35mzRO69omW5+dgTHXaLW3bcXNzg7XCpm+4uurxzvHi7pbtZlO47vwM/uWk5c2mBi3LN6k9E6iB6woimjXY+zFHfRWgTLGcEXmZm+RUeKQ0YNJ3HdNui3eWw+0tZDgNJ2LlQi1S4OOoypsFd0CzjlYqU6tWXxExM2DyT//0L79gkD7VdI1cmsw1cFQDuSlnVfgr8LaWuTmuTK+gZ0pcXV/z6tUNbdvQdj2b3U5J8J3DeVfuQyjyOQuYljO5ZGdVTEAK5mCMAaslWkYiqZBPa4BRP8daN5f9zSWsWUGfWkJnrMUWQQskglmUvMcxMIwTh2Fkf1S/Y5gCU4h6hlRlnzN3bAkgzQDWPJcqyL6yy3/GiPz5gR956h+yoJIr4EcKSj0L/lB/rv7xk3Bz1jrMZJimkcNxT9u2KjFcCYGrutTZX11e6+qSqyNkbeH56TD2xBTh4TgqopcqC7mCLzEtmw8oKFIjKB+//qc3s8vLWb89ZwV/YiwZMeGTnfOL2lPRtiXSbhDnyNao/Jy1pSQoz3KHBkOSpO8vxK8iEJOSlYFKtibxiBiStDPwg9vgmiu8c9huiSptb67Y3l3TdC03d69ou42qaFj79E080UTUkdz0fZHmhONp0HKVd4OmBsL8ICdkPEEYCRHGaMnWomUNIJIRk8+c6KfHUM4i3WLNHMXVxf4LB+oz7ncpY1oflEqSXV+zxhTSNKMRkbbHeUcsEqU5RmyzxbdXKkvrPdlYUimJ9L5FjFVlE+dLP+jBphKLQpqK9EuJ9MrZNWZiVoLTGCOH/QMP+z0hBA7v7zm8v8c6xze/+TX99S0Y5RwI06h1sS4gXlH1cThxfLjntN8zDmMh74wYSrlJLvlcVeVsNeBPwkByNiMK8LMqDZuX+EIM+cVajU6Vg2Cz2fD2zRuur6/5m7/5G37729/yq1/9alaq0LcuKduXwM9ayetjWT/rDJ+6n2r0uPRtBfVSlWxmBfygAMM0cjoeCk9Exns9hKtzF5PuFan8rOSTCvx0bLcK9HRdT9O0Gi0fh3msHhkcl6/9gn5+ziaga8O7mYA7x0AwQo6RIBmmgWgKC1U0xJJVEwqPXBYhFmJSzQa6yJ+TxSkzIrQWrj3cNHDtMluT2BCJ08RwDIUDJMzyz945Nm1HShEbJ1ycsAK9d2z7rpR5admlfgez3HY1gKcmchcCYoXDaeDheGQ/nGiatgA/t3jn6Lctm84TxXB9teH2qgHJbBpDY4WQYKqoDxf20F+qqbWvJV3VSRLNjMmIlh3GsueZRCz+QDKGvNGxitYymUzOCnoo8CNMcWAaB3KciB/eE4zBNw1jDLjO03Ydm+0O564xRugK8NN1DTlPWBNnadzTSdPb1QHMOOf51a++5ZtvvqVtW25v7ri9ueN0Gtjt/lmVZcaRw7GWfQUSIzlPiBHajeBbzVTwpsMZlclW5yUikvGNQazDxsSJliATYUqcQmQ8JoyPhDaRfSFUNoGUA1OeOOWBYzrpcZENGcFlq3vDFygvWWfuVPJN71TeW7V3lGvB1EBW2fqnEDieThwOBzIqE96I6J7UKvDTFOBHz0AzE3zu3x34sH8gZzgNA2IMV1dX9H3HN19/jaBllE3bVg+gXOzq+Xoe5gq8peW1UvKhJsga+FGp98P+ge+/+yPTOLF/OHA8nOj7DdfXL7m+GnGTP9uzU0pF8SwumZ0sAQJrbSlzE+w4cBiPjGHUKLboHmWswTYle0gCz9UyGlwlaYBAI+iLb6HBy+Joi84rdY4ttnOQ4dD39H0PYaRtG7bblpyFdx/ecxj/QIwTU4TTpPZK0zvazVZFFE4HGmcgCcGAyerQe+vZtJ4sBktmOp2I1uK6BtsomO97R9N0mBzZkOhlwjvHqxdXvPzqKzKW9jDRHiemaeT99yP3H37kOEV+eB/47oPySw4hlSwRofOWXaOlKWNQCgjnDdc3Hf3W07fC1y89d1eWQMN9SpziiCRbwDwNiOUEKRabtoAJZC075hnLg85G8jIjo/ycM38q+FPXgpw/z5QM8foBFfjpOm5ubmkax27bcXu7pfGOm+sbtpsNjVeie1t80JwiYZrUNipBFlDgp1J56DlXbf0awGW+jgvLaV6jaj+dy4jXOlkjyp2Ws6XvWnJONI3uycYYTqcT06TcU+M0afDxwhatpNVa9l9tu1qGtvgm9bmq0H2BcazXdf4b5sxDEjGXOxBw3tLgtQzvRgNKu6srXry4LX5IR9vvMNaWfaVmH2rGWiZDLaHLS+lWBdeq3a5ZfK6MpyCFGLcCtojyMFrnZ/u60hUYowpcGaVVyZSkDgnkKapCV8oMk5ZnHk8jD0W2/RQK8LPqjyV/Tub+mfupvCplzmtG47l9vnTsp/3+Pzvw87HLOV8Y+q81tlU7PBcPrCRDPAHQPP6k+qw6J7N06ArAqIfik87CRZOzJzJH+et1Lmnu9QLXk/5j6gyXr3wM9Hn6rymfuxgjXy4deinRKmhkMTZm67uMzQwsFNS8TuqzyZzLK5fXWUroxFisdSXq4jUK1Sk678TgCkjSbbb0mw2+bfFNc7YJf/xGeNSVtTymMsX74iDHFCGUiFfNOMjV76/psyt0Xz6P0nfhY1kDBjL3aRb55Fz8U9qjNNb5mjgHYGXJvpn71dTyDOXgWZdqIKakKcp80M4RkCptmZfVMicozOtaDVWdw1FVjVLULKy4yP9WfpphHHG5lDFkzSDMs2G+GoW8ELZVMrz86MZ/us1vf2Jglsyhpf/mT/3SmQc5q4pZOcAb7+k3G7bb7VzK0bbtXOY1X/NHMno+9fzjl5AfPZZfnv/+qWyhyiUlApJWpT3lA+ZykLr3lEwTa2r6syHG1bovc/kx+LO6rp+JGnzJPbWCbjlrxkwWgRSV8LjMVR9iCYgknFXDJCWFatX5yjMIuOy2UtYxxcgrhJYrEuYKDFGfSylfYJUNRsbmUrYjMqefG2tK6ZZbw8jqtIruGzbnlUpJXMrbykO5wxzWN0U0YcQ3nsZ7vI+q1iGiwNYFp8lnpUB/8XY572U5I2F2YnKmVsep0keGyMIHKKRViY8+avlXjMqHlclM48A4KlDQtCMxTgqOpEryqU6D97VkSwA7X1sWwVk/7w9No6Cj954Yk4L93hV+LeY9NxYDWrn3DcpbBNblestQTdN6fsylXkUdM4FImh2jaq88OuwErUcpWSL6Wp739y/RljLVtZrXsu+oCltVcSn8hDViPdtEhaPvbG9dfuZcs2bCnI2Vc+Z4VG4m62yRhB9ppmYmkJ3Xc774Sd3Wcnl5NQerPXqxZma7tQD/mnEdZ3J+Z6e5dC2vHhX0qaUKS8nUco/rDNKqaGbq2jUyZ1LoHsOnDe6f2+o5s9zpyp75uOVdHfacWZRbC0lvyo6c9d+VBFedyYo/SlE2NXMAb82Xl3PWfdQsNnEFENYPa8BmBRgdghMtv3JWHXNds6LcXalm8cRSwlnWRbmnamvJqq+dt0gWvDc0jaNtHI0XrC2E1LmWbi7A6jo8uPx71Zefaev+orae36s9/qOlXiujfj3SC2BUSvmMZth6p2VdehaV8qlZtXZFPlwC15Q5XD885Zq1w1J5Wb/83HhZ3Uqe//2knbT6COo6kkWF05US96ZpNBuw1dInYwxDO6ivAvO4G2MKJ5AqhtqVHW5Xc8SIWa3jL9Cqe3Q2MBfn5ewHSMmgyRpwLqBV46zO/7IeKpCVWVGL1D2avJwrsNiNq75el8Xpv1UZT8+iwq8j9fWVzTzPsZrwABhIWVTdtJQG16y42rcL0LUAXuvPK5dPBeqXF1b9tbbJLzbO+V8/MYZ/gVKvZdLPr6wdLz01yztXN1+Mg9rR8zzJ60+tk0ZTj4sZPFdvhClwPB5pmwPDaSglAVFJ6OyjGfkTt6GTyhBxRLyJbBu47Q2jswwxMyZDypkpClMpuUq5otD6POXF+a3t56y7PN+l/iMXRZtKEGnM+Pkf9rnfWBDUJzesHMlhScW21mBwFEvvbLykoN4pJpWgdHXBWKz3+L7DO8ftixe8+fYb2q7jqxcv+NVXX9F6j7OOxirg0PQtzbbDOsft3S2Nb0uNbpXHfMr542yYBY3QXd/c0DQNv/7t7zDWMo4j9x8+sN8/EEJgfzhyHE7az6cDcRwIMWNzQFKEHOb+qWSK1YisB7A6CcvFCEVuU5iVF3I9eJ51/M7bshHVTXHdLWUFGsF5g3d64Ghpo4dKmpgSrtthmg7jG4x3iIby1Bgqh+j6QDGmcj0YUvKYRlUtiGi6WhbSeCIOe3KKTIcD0/GoKdZTZgKCCAPCMWdcyhyjMARDdpY2u5Ix5kHszCtRnadYAKQ8A0DCnPr3yc66fPGxsSsFBZYZ3FrKcZ57MC8/zjvHdrvFe8/X33zDP/z93/P6q6/49d/8mru7O7bb7Rn3VY3OfozUub7nY5k+axCnzvMKrKVUFFtKN6RcSl5z5jScOB735Az7wwP7g0a8d7sNbbsBgTiOhCmU71NwqO7jVWbaGkfbdXTjQNd3dH2PGOF4ONTJzWPk5/n6+zlayplhUPUsgZl/oNloCVWaRuKVlp8Op4GHQhQ4TIHDcSLExHFK3A+xnDNCSAllcllk0J1TTh9rVQWq32zoNx2+6cE2YDUboet7IDOOA/500tKbNBInBZi8czgMzhj63Za+qMNVmVzIpDCRQwByeV3XV9v1bLNBXEO/+UDX7fFtR7O5xu9uaRrP5vaaq90Gs7nn7o8/8HAcoduz++NI350wIXFKUfeJs1FZQK4/d9MS1BMpaFRcSyJQO6QogOTiIKYEMagTf5oy+yFqxqg/EdsHnB1pvGcYjohkBXTIZMmM04n9h1D4rYS20/k/HK+YxhPWWg6HB44HPatyijSNxznLpt8o2a0ITdvTFIXFly9f8+LFa1Vh7Hq6tsc6x4sXd7x9+5oPHzr+5V9+r2BjSoRSyolkpiBYpxxVsm00C9dp9pdvGg2DugAmYqyh8w6TPdOYVHPRGRpjMVYjskhSG0AczmW6RlXJ0ikzjYXsUyCzkHA+Z4sxcdgfNCO8OL4l85+MyvGmcQICLjpiUlBrGsPsvIiinerEiMw8jwsQIwzjxLv37zkejjwcD3y4vyfnzB/+8EearmW33XF7c8O3v/qG0/UREXTvvtiHY1xnCizS6Lbu5UgpTat/UR2NPAe5VCba0/iGFCLjMPDh/XvCGDju9wzHA9YYhuOB4bjn8HDP999/x+9//3seHu4JMdC2rZb+2epsKi9NFkvMKrTRJK9gpzXKW2Yy4rJyuj2js5lZOVQrZbEs9bWqfKS8Y7YEphSp00CW8w1NLflPlpwcOUFjDT4LKQoStcTPGIhZwHrEOVzb0212WN+AiWQJhJg5DonppLZG1zZsr7dY62gaQ+sthoQfBZ8jlkTvMlfe4Jxg7UBI78likeJvZDOS85EpqPKe95arrdf4pATyEPEGxBqiVRGBu5s7+u0Wa4Vtn+gasBIxnDjuByYSxzQwZKNlXxQSc1tBeq8gfbEZ1K6VL3MwzuO5gLxn/sajY/0x+LN+VcEeDXr1fc/V9TVNY2kbPctmrAY9N3NMpGnSc8ZGcpgWMKV+U3W8RMBpMIXin84Zyo/sJ7WzY4ykUFQqV6XvOmcFSFgXcVn9orZVv8I5T4yZtmlVOdA33N3eMk0THz584Hg8UrlrMspX5ZzF2JoRXi9jAbfP++mZs7cqoEQV2nlsS6acZ2e+Bi2vr3aklLGScaXMvW0NVoLWeSdLTi1Vg6/mOuUikKB4ASuQoGRmSQVFq74d8/ytwHa9rup9aWCqwCWlLCtXpK+AxYLa/CZnkjdIKRvbbbfcXAf86cSPDweMOWByJJaSazgPEGiQpM71Ty+sCmbVftOfPz0kfzFVr3P08xwBXfyjJ+5gnrkrxPfsbxbwZ/778hVTCBwOJxp/4DQokV2IEW8XPPunfLP11qLAT8JKwEtk6zO3nTA6wynCKWVSglNIKkue15E9CFGw6dxx/Bk9eH5/Bdyana4YtTTGPHPaXnWmcp7TFBWvK6BdLgZ5AX5MlVNPpuTCLeh53dDzimVeCteN856m09To2xcv+Pav/prNdss3b97w62+/pWsbGqfRYBE1IDX6KFivG7xGvT8B+lw8FzF0nYJHm82G38S/5ebmhmEc+f6773j37h3DOPLd99/z7v0HYpgYfMt4PCIhYqcjEgbNUEHmSNniFC+GR51ptf9MNULKo1RtFGDwS0I/lSvjEsRb+k2M4J2haarUcot1HmMcYj3kjOu22Ea5rsTp6zMB9HpuF9TfFMBByKTsSbnR9ExJpDRBToRpYNq/I4eJcX9g2j8QM0y2J9iOCcMAHDO4DKckDNFAMIRsSXhMkXOtqPw66y+npdxs7uMnlmC+eJRAwtJTa4BkJuKV1WYiGkV7pvF6qtWxc86VMoGer7/+mr//h3/gm2++4auvvuLu7o7NZjODXzWCNkulX5R3feq7nnqcR8pXEp56Imo6b0gkExmGE4fjgZwz+8Oeh/2DlmxuOyWjR7CFtQABAABJREFUFRhTQoICPzpuiZyUM22awswR4WzH2I50XU/Xd4AqCc0s6/Us+Olz9C/SckoMg5aSgjptbeO52W5ovIMUkHCCFDkcDrxvHOM4chomWn9S8tVTYIwjqHC61vOnXCLtgAiNW9RLNhsFfrpNj2+7AtR6fOPoOodIxh8POIMGEaYjoxNShMY6Gqflaf3Vlv76ZgbZjWgp3nQ6EvIRKFmU1iA50+WOZDxYT99v6foNrlUlQL+9oek6Ni9ecnV7g93cc/vH7zmcTmR/z+7qHX33ARkjD2Mt8zkf0Jx/XuDkuVrOmXEaIECKWuahzqYpEfSs3kIJpA+lRO94itzfB6aQGduB2D8o+NZ1DOMJY4E4KYeGZKbpxHSadA+1CeeFpm0ZTjeEMGKdBiqGcShnTtQ5JELf9fS9Ervvrm64ur4t6oY3bHc3M3BnjWZg3d3d8vbNa/quYbPti42RNMvyNOiZfwIEBQ7MltYrGa0xBfiRSLQjuUgad42jcQ3jkAgJstHSLc2a0awWKeIMzma6rsG6TLCJvA/kUbPdNAvq+Uu9Ukqq5jWOpLh8fq7OWlV9yVmJOZNe7zQF5supgY4qq1yDP5QQj8AwjLx//4GHhweOpxP3h73uwdaScqLf9Lx+9ZI//OY3jOPIpuuJLwOu8AvpNUGKcZacr/aswExSq2tyLZywnGRKHlwIbostNY0T42ng/v0H4hQ57PcMpyPWWobjgfF44Lh/4Pvvvueff//7mRBa9+xF1S2b6gRbYrI03hGSZjBmZ8mlLBKjXBjPjdVWM7Vm8VTnL5PnDApE5nI3U0RB1F6h2J8dKal6IUFJWhtrcFmIUSBCDIkgakNhmxn46bc73DQp8GMiIWRCPiEnXTBd03B7vdVsx6p2mSMuCy4krEQ2DVx1mk3p7EBI9zWUjTeZJBM5HxnjiZiExm+4sirtHpIQouAM4DLRQNN67t684NVXX2El0coJLyM5DIwPR07HExOREy0nDNI0ysVURQdKhqaxqihljJCTIX3pgzVf7vGVG3bl8FbP+2MZEBTeHefJOWuA9+qasXEYE7ASEKmVGmor5FSUNUWKEt0iay/154rLxxRfSwqSMJeY5cfZqDmr4lsMQbtuDX5WniARbPLqH5hEjC0ihhg1+3W33RJCYLfdlpKvCvyoXZWilmqLKE9Q5UnUvUhLykLhYqzlTznnRypkf3qTGfxRSG3JU8kl+F/t5OorNE1D23aAYIhYCZgCVhsJRQXYkdOkfY3M5l6KVZ49zyVtOkUU9NH+VuEQqMGxulcvJPZpBfwYazGuKAyL+nOSKwJY3o8gWfvYYzBGfY/tdsvNlJTDsXmvWenl/AohQAV7ah9lQWpm7keWVfXN5vfoP5YaxJ9of3bgx1pT6t+X9bzOtpqfy5LmPzvuNdNnuVOWv3yirT3+MvDVEV9Ai1V67vozz3zgCjSVX+V89o21tGsm4pIlZVOMkmCa1eTLLKmXTwCgZ/f06RT2C0jj/KJmJ/vZWwF+5ke9lHmiLk606A52vtQLOfLjeztPEbYlDbNpG1UcKY+ua+naFl8MFjHFyCogUyVflEej9FRXL9evY6jplDm5WQnJec/ppA6WHwYOxxPDOBEmRxxHJjsiyqp69rkfc5C5uPc6Fyrqq6/pApHVJT53W4CMBYBa/6xNYMkGmUvoqty8bo6a2bNOFS2G1OUEL2stny/sOTKi353mzLVU5FApoKCSZUt5rllkc0Q2KUmeMuTXyV+uIVM22LX62Crd/CLe87E9Repqv/j1vJZZgVzF8FxHVL407mCMKYdmO6v0bLdburZV/qjV9Ty6/s9oH0tL/si7559SnMYaYZomlZiuDsv8ueUQzGefsABLVMLjGMm1Vr2kLhtbVMycPb+fj2N68z1dXvGfuy0ZgYvynHO2qFmAEQ/ZEkOJrpe5HUJispFTAGOCOnmryFmNIIlQjPXi6FiLlHUgq8fMMybMylqQSyq8JxuzpFpbVe3T/Xa9N+Ty+bUMVOb9eEmBXvYTU0tGy08VTGiwvqXpetpuQ9sHfOO13MvlJ4kql778S5R9ZajRb1Z7aZm7sl786/mWq8R2VdxKi8LdKlhQwpQgcXFi88INEWMgxIlMIqbATJQvzFl8zlm811KBpvG0TTOfsda6YlTbeQ5675SrpmnwJVJes0hqNDKXPTzN114kgqlnv65JXKPrtR2ILpKJWB+xLmGSOtE5rbndKGWcQvYGXMZaiFb0rL04o56zpXQZGa5Ay7IP6bUmokmYWiJTzpI5oJWW8qnKX1jXwDJ+el7V4FDl/bHOMI7jLGQQSgS7ntdlQ12VLqc5+2e5h3mWXdxhPY8uy0jcrGR0DuaXQGKdZ2FinEaGQfkPc07z+SdSyr7yYtfMe1BRwc3GkK3uCbkcz19ktZ7ZwDI7cZc9on6G1AvWSnOjhMvWuZl/RO2xtGRmG1HgxqtNoXufLSVfHpPAOoN1hkzG2DCrAc17vLWYGfhZQIO6RxTzGV1rkUwpP8kadDaijnrK4ASawknjjJbx2IoTimZW2ZK1bSRik8xaOSlmQkhESWSTZ5tqQTjObdtLN+lLnZtnZ/NqX798Xq/vrNzqiVb/xtTScOdKX1eOqZWtHiOpSqVloZam1izaShtV508ufHh1ncrqOi/3qpqRs3TcctHL2XWefW3K+aolvJUPVUH3ml3Uts1MYxCjmXm+Kl5cz4ycNECUy1mv+5U568vnaecJDSvTWLex2WXMi78oatNZ4+a9xCq0U85RzWSaecyknrurvXfu5yduR5a9r1zhGehGISqfz+xyPdXnUf+/7Herz5fZ56j73rL/yWqTm13l9b1nUZGpS39+2ZbKOpbSp6z6Sz/o59CC/FmBH2stV7sdISbGMRBTSdASZvBkvc/M6U8pLQd9rmldT6Bh+fx5TcWaU9CzMp+HKWh0JERiiNhLMqunHKMLty1nlsyVElmzkmmslnXEqI5slffOFLbvVB510GYEVM6+7enLebyr1QlQP89WDgXvaBsFTZ69XYACdRbr2l0BGsZivL6mcr7FaEyJGJb05FjUAgRRPh/v2Wy3vHh5R9f1vP7qNW/fvGa73fLixS3bnZKv2VqvukyY2hGlzOYje9hHPHBBnaNaB3t7e1ukbSM3t3ccTyeGYeD2X//ADz/8wPFw5J/+4z8yhAR5IAmEFIhJjfAYlYx4ChPTWJDpVcq3KU5P4xvaplESSO9xRkuT1LT+MuolmZIdVrJfqlEfY0Iq8XbpP+dsAduUUM26BmMbcpHyhYz1HWKdOm/WY1xDVUBYHPdILKpdWAtZD50SLiOTCdPEuH8ghZGwf2DcHyAnXLOh3b3SNRVzMZI1A8K3HmMsMUyc7h/IUyK9jBjTIMaRscQEgmW7u+HVV29J4tjurmmbhhDTXAJxBl6tF9dqjdZ66Cx5HkNjrBp6xpAK6WHFQNeg55dq9Ru6ruP169fc3t7yzTff8PXXX/P2zRu2261e2yr77CnH6dzQKp8t50ZWfc/HPmvOfMpmPrByzpqJMGga8sPDHmv+CKUvK9DhqqGc9XuVzykUctoRMBz2B4yU8pWuoyvjv9lsubm9xTnPu+aHT67zS8P/LwX4gDqUVdmwaTwptfRdy3bb0zUekyMuN5icmDY91ztVMTueBh4eDkxT4F++/8CH03eENGrUuHDM+6KMofXxbi77afoNfneD223w1y9obl/SbHqcyVijiheepDwmKWIaT7vbFXL+4gCJ4NqGkFQC2DuPNI06Hs4hXadOSghICkryHxJCUMfJWVyjfD6V38f4hqbf0l3dIr7l1Td/jXEN/rsfePUfv+f2hw/448i7Y4DjeNmRZ8bVF3EmPzGKkgM5CzlZJYkkKw/HTACf0GyIjPNa0juGDKKGekpawijZEkMmRuWrsuKwvkVIWPFYGoxAt+3wjcV6AQLTdCBFVdE0ooa0MxYxDUaU9LlrNJunazxt22Ct8lzYyqm3Mlw3m54XL+6w1nJ7e8PN9RXHoyOGkWE4kHI1tYGctQxRHlQx52oiZbQM4fUNV7ct0Ywc3R8ZzAeOx5EQ3xHzARMs5gB5UDvPigYUrIf22sMGxjYix4QlYyfgmIjTl1MSMsbgm7ak95uizhKUl2fSTB9nU5HR1nPTFO6NYVIy7JgiMSQkGxrf0PcaRGraDuebBfCklP8l3SP3hz0xBd5/+MC7H98hwFdfvSnlELKytzLTOHI4HM4yWRXkKxnPBfStapnUcI/UjB8VXNhtdtzd3OGtZ7vZ0bUd3nlyUrUyI4bD4YH9fsPD/Xt+/OF7/vjdH4pjGWbwRs/ORd1SCkDinKVJTkEfZ8EKiUjMsWSMPF8TEQWJnSslpsz9lSnB36iAllF5PXXqjAo8IIJvG7rdDrGG0/7A8fCeME6kdKD1A46J29tbXn/zDU3b0W87bLMBKxi/w3YRfKBxieQSMWbG9J7TqOdl12tgRjm0tJwrx8gw/MhxCpg8sW0ysTjHEjNMui+bkLAx4VLgqrGE65aQ4BQtp5gYA+Qo5OSwkmmbiPMZ6wXvBd8IxMx4OBGPamsdPxyZTieSg7ABaR1i3BJUFS1zzCFgEUwIZLHFrvs5waCf36ozDxeg/qVX/4lNf7ZnjUrUe9/QtJrFGCcI0wmKoEEYBoiRJJlwrCCfmeXOrTHFZ5RSoVB5LzUDWWppoX7x05dU7UOtc1Q70p4r9qWkZ3E2et5aG3GOs6wUY0zh9xGaRjN1u66hipvUzPYYp5naYCoKYgZonAM0aFuzdt3PEMT5nPa4mmUZqBkEQasexFrEOKxxONcqUBoHND0UPSdDVQC0YBokRhAtK0VqcojMPnFVWjv3BZdrMqvnWdLMobOGik0JipW/VOAJFuRqOQZ1jmYgK3FzCIHTqCqmx3HgOIxF6TuWgMEq0Ckl+WAOii3BTQ3claBc4U07b2v6kE+3PyvwY4xht9syTRERvXlBM2IeId0sWUsCsyKUiCwp/J8w2SsqJxX4EY0+xqDGVZhiSbUrNX2f2jTOnuV5tqrDo6APOWEl0VidC0lKGmRmlh/WciaZ5cAXpFFmFPLym5ezvvzFJ6zZSnSqddsa0Wu/BPADyvZ/gWzDykWWUuddFp0zWiZkxCjYEHRDmsaJ02mcEWtbIsv9dsPtCy1Nef3qJW9ev2K323J9dcV2u8E5O0MjrL4ZYEWtff5rPjLMK9TdGostb2i85/r6mpw1LT/lzDCOXN3c8sc/fs/9/T0fHvZ89+49EjVKoiz/YY6MxahqANOkm1XtJ434+MLVoCTSbaME1rbUG4MqiDy3YVQuZIkWxkgqgMUSQdS5bkRLOtq2pes7nO+wrlVwZzV3jW81a8Doxm2sOuNCJKNcHykz83LknMEW4zCDZuZYpilw2j+QwsC03zMdjoCw3b6kffUrMIZ42pNPB6Yw0XYNvvWAkEJgeNgjJQXbGI8xHlBHDLFsdte8eP2GKQnb3U5ld0MgY+aowZwlVOH2CvrMYO1ymBmpvDirTIbyN4maxcKXRxfKdXVty6tXr/jqq6/4+u1b3rx5w5s3bwrxsf0k6FPH5TJCVUGY+vs18LP+9xLloKQVL9kmkJmmgf3+gRgjwzAxDiPGWF7cveTu7uVMsOismcn5arQ5hMA4jGSEw+EIKLjtraNr1YnqeuXnMqKqR8J5lJe8rP0vD8X9jJYLvwkZ7z0AXd+w3XT0rceRaSSpWlKu5Z9wPJ64//CgKpLZ8p/+8IHTEAgWrHrlNN6x6Vs1XJ0SWjpr8V2P3V1jd1vc9S3++gV+s8HlERMHhIQ3WQ3NnGjYsS3fm2JQAsmckTgRYuEmMlaBHzHYFmzJesinA3k4QYyIhHk5rEn7rXOIcxjv8f2WdneNa3tevp1o+ytM/wdefvU/cvsv/4JxR/yPD0905PnO/ucHfwJkJS7OSde/JHUoc8qQFfjBZFxTzushA0Gj+akpQEEihExMQkqmkF+3GJPwNtM6Bd26TYdrlLMpSyRMJ6IUUkzr5kCQ9zomXdfQNhbrLG3jNOPHVgfZsj5DKw/G3d0t1hpub264vrrCFQ4hjcTOp78CP8NAipkYNHMlZ+WjePXqDW9/9ZJoTrwXz15a9g8nHh7UGGa0yMDsAcwZFV5orxz+xnDyE+FD4dsYBAZVevxSTYzuIQ7lFZqmoNmkITKOkz53ytBdAybGaIn6aRw5Ho+M00QKeQZ+Xty9xFo/q3uZIoigwI9+zzBOmMOeGAL39/e8e/8OEZll3ueWFcCYponj8TiT46ekak5d389ADNW2pv7UrEBrRNU2nWPTb7m5vsWIckG1TYt3nhQjw+mIEeF43HPY3/Pw8IEf3/3A9999hxhhu21pmgI0yZL9XjEXY5RU2OO0ZMZZsEaV5SIl8POMYydFxcjZVWZg9S0yKWsWVooJa9MSlV8BP65taLdbxBnGaWQMJ4bh+P9n7k9+bNu2NE/oN4tV7b2tOueW7/lz90iPjIwIWkj06CD4A2hBD4GElG0kGqT4C7KVEt2QaIBEAySQoIsQSNCAlDJIiSKJVERGPE93f7c651i1917FLGiMMeda28659133Z/eFryu7Zsds27a1ZjHmGN/4xjeI6UzXzGAjNzc7vvzqT+h2By1bU7WRJuGGDDHSNEArTORpSXTniZwSvTLXfSPltb5x5BiYHzzjErA5sETVh8pgY5bgF4OJERsiTY4cWou96ogJxmCYQ2YMMM2WeTFYk2nbjPMJ30DTGNrGaJnpxPh4JC4z5+cz83nGdA7TGQF9nNPSBe06mLSDG7YCP9uV9YtdL/5A9VHkH6ylXj9t7Y2xUgJuxC41bS+7IS3ECe3cFaR0MkZCCixJfNfGORon8YtvJDldy7zKhxdtUlO6TK00m8v7qM9BBX7MBlgoa9WYREquxkbeSdlXSgmvrERpJd7ivZSAOWcJoSfFyDxPxLAQY2A6Z5ZFmp9EpMOqNXK2FPZZ2/XCmH5l4Kf6z9tLj46s61tOEaPyER7nW5q2x1pHWiAmLb1NmRwXHTwHdsYItQ7jDKsgc/HTlanD6p+Wr+tZp348QDaRVKk+K3hn7SXwIwqK+hab7txJQXmTyhrNLDEwLRPTPDPNC+M0E1ISvUtQEHDDIqqd1wroI350aV6yrQ6R9buJEHO+EH/+seuPCvyInoQnZaWq6V51FCq0GGZZE3mNl7Jqv4AwQ2xWRsdKo/44jllRo5KBrsF/+TslaNn+bsUS8orWVg/y95u47X1LULthMun7vGQPfXqa1u9e0hrlb2yNnCnPuP27m4/XvfLlYG+DyBoAruBPyTgZraO2hQ1hZalbl6quyFZg1jthwrRtS9O20mFEjVKp27wcqRX0KSDsOt514MoTYC6nYPOPzftuStTKy1PO2v1EhNW80uSdLyUPL4frsrxr+7nQNy/KHvQgKIu6lCf+ElcRg1yFnUudb0JopmU9bZXpLxkxhlL3vAFKPrHmsu6psrcvfsbm97cfRthDGIttRD8I5/Ax4lMkG4tvpFzBqAN+uTxfBIJZkfMiUFjL06xA7S/u/eVjrPdYQNj19dusRjH4RhfaCqL8MujPys4ytTynZJ4KwGeLwGyl8ay38rLDV7lWxs/vv4e1lPFHX1Gz0iEE5nnmfBYx2hBLFwpWQLJ81i5C0k1IHN/SVSjFIi4p68oq6H3p8Nc/vz7j9tngk93Z/thXgc2LGKk1ayecotNT3A4piTR4LR2oCQT9EPspAbRvpFyslHmVkmMwm4SE2E0pvzbC2sOIM2VaMiq4K5LzIpwYJNkhlPhQ8yHF4Brdv5gkwIeWgFGCLM3EWRWF3j5HzdJZcUy9AuJeu684r2UVXO6m7debcO+PBP5kEe/JQDZI6/FcbbhYBHEuLMKANU676XiDC2s5DPr86gWyUv5lDE35dvVJipacrocsZQdljIzZBOLW1M8XNHQu9z6sIuPlo9EOX/Zib61nmuzvkvSQrk8xJpx1dG1PsNDbHclOpMXStb0ICidZH0qEvgBrK3tQnV9r19LeX+ZSYKSOhwG24snrmSkfSYGLjY+G/ixJl7YYI9HGjeCw7lFN0BXfweZSyiDvsWWmFOH84iNf3vKnRmODcl8kyPTrF75aYa6u3RFdPReylnuVeS1zHFMUZvLmvdbPxW+qVuHCRhUfzBrRT3nVTbqxMcWXr/8Vf387HKxn9wVzVTPtwsYQu5MbT2obSFZYRW2HbzpiXghp2qwPUxu5VD/BrOz0nLWDX0oC0tfbkQgiUdpaq7bMxqJJmZc8hFfWljWZJSK2BeqZYUxhaGbI2o1tnonzUisfYpCuYDFJwOqqn7od1B+ztD/1vT/syh/dw4+/zvzkNzZXjU1sLfcyet5l1WdJUVloMYiGTJbOfS5DtlakoKypoH4BfpIyOOzL5NpHD6FesJ67pn7vEzerazNrXdl6Pq5fW2tIabOHnbyXs1pWmS9Lxmp55wZgKHveOfeqQeO678tQrLHrdpoKwFKesRxypmhv6fmXddxW4oXashrHX5we61fb99afbf31ang3fvz2d8uH3P4KuhQ2fIlvyv9TSoTSeThE5iUwh6WyfC4Sr9uQh8t5lTNYAMum8ZWNVXz+nDOR1W793F34R2f87HZ7lpiwbpGyEsRYSZxb2DeqcK6oZtIWkzmLoJ4NkdItSerZ5ZAlrwyUVbxNGCTee5xVdUXiRXvKi8CsQJAAJq+0o5xZ22HmNcY1QhUrjpW1QlO2WTpVZbPqjV8s8k+Eui/Bh4vFlKn07e21PXRlESaMiVLDazPO/gIGeQNgvPw6bw640tmhCldpOY0cSioo6xzWenJGWk53PW3XcTgcuHtzx9XhwM3NDbv9nmEYaNpGHb+NEFu9CqS2cWwupnZjgNZfESpt3syt7sCcS1C4/g1rLbthINzcYIzl7vaWu7s7Tscjjw8PPPsnUkwfGY/t2JUxaxqh23d9T9v1NK0ISwvYIZT9eVmIy/LJ9/pDrpQz8zRBzrTeU9hT3jsyScXgbNX28I04OFLm1UhZVzmYAGNcDVJk+JNqGkhtbgl4UskIFvDSGAFykSyJbXpcf4UJPa7dk28+wxjDcP2G7voNWIvb3dCnyBICc+yZp5acMn23F0ZS09bxk7JLGe+UwJgG6zus7+WZtHNFisooZA2Mf8p7uAhe9fDMqTB+JOhLlHao8IuFKkYAD9HrkA4/xgrIM44j3//wAyAdYd7cvan6MCXzVUC9l0ymolGRWfd3+fxzPspVvkoJ5nnheDwyzwuPj088Pj7hXcPhcF1ZU/Oy8PT8TEqJx8dHHh+feD6dOR2PjGdhf7VNT+M6cpL9sSwLMUUaLRENIdA00lWOKhy4ng1lTn654PHvdpX9ZoyWSmngIgmTBq+2FWUJHM8jx9PE+XzmPM6SSLGWvm0Y2hZjRe9pN0ir11DL5WBeZh6fhH319PzM6XwWpmFj6dpOy10HjLaLx3r5QLqtxWUSYdmn94RlQTQFpOOTtVa7+zXCCo0ixigC+DNmcVjv8X1Hu9vh2w7XeOk6YkrgLBoEtmlo+p5u2LHb79lfHViyoW286CzkdR4vQpNNsuSPcqVMOi+kZEmR2vI7WYtNWSnkos9jTWLoLK4Rpscce6YlYvMgH6aj6Qd82+N9p+UqiYx0yStxa4yBeRmx0RKzI+GxxijDp6XYYpPl7LUmi/CyK21wDRcx5eYqrIn9bkeMkaurAzc3sk9/eNdU7Zey3w2i8xOsI6XIhw/vgMwS7sjp3+GwuwWfuOp3xObMc//M8r7HTwfmY+Dh8cyZmZy1N8QCKMHHRglspIzGkIMh2a1H9bqX+DFFa8yQCUxqZ3IqHbpWwflkRJ+pBjVZdZtyJihDKCdYllDbbnf9wNvPPmfY7XBNw7RMzMsiLMbWqzCzEbBlWQjLzDJNLArqu6LDZYXVZZIhJwEcrd12KSqjlNQluvSvcwE+VIzUuZa+33M4XAuDzxjmecJYOB6f8I3j+fmRZZl0LRq0PQQA3lmcA5MycwCynP9W9ZqSQXRk5M8K2wX3qnvVQG1dnXKUsqeS4KJ8Li+u0ZbYsCD3FqIUpWfjaHcH7r76mrgE4vmZ5fmGHCM3n31Ne7jFdzvG53sen46EsDAtUtIh5TgWg127Bak4+PF0Irz7gPOeq8OOw9UOkyNLNmTfY/BEb1m8BBbOOrGhSBcuY4NUDmiZ8xIS4zSyjDMhSBMFmdWESxEfI4wT97/7junhJIyW6Zk0S3faaYqERY4WFxJ2CfgYCSlWdog1fmU429II4pct8/q5109hPZ96tfcNw3AQPyEF5vMTgvVETscnHGBTwKaAyZnoG6L3ypJxzI1KA1gHWqaVLdi2EZDQmMr42SZvL33BAmisQE59jdlAGCXQzKxAR/226nPhsMmQs9cY1JCjU7A4ic2PEpe1uSWpplvbthXkrV+/5rlpNvdPgWC39IiS2LD1a4XmJHFpneoPtqDJy6TnRM5AEvbiGsNt/HaDCnJvx/kSQKu3WP5vWUu9KgBFBaBMVqWWrHzyLDE3BukClxMhRJ5PJ/FbzxPffP+ev/72B87TzPPxXJsCkLP2OTM446SE0Fka52g10XJ1tRdmoHfsh4G2LWV8sYJL4zgqw1bA5PQz9uMfHfgZhh1NyvgmSmtOBE0F1HkMFBHQpIJ2MUVcEySwihHmRamxgbyUjHZa9UPYBGXOVeBHhAkTaGlWVm2ZegqBwnXlhlHAR39Qv9Zrs4AkawLOZKLJCgSlmu371FYqy/6npmkFf0rgYkscQ6E4VvDIIMAPotNiTaplS699fQr0KVfZXNYJ9dFpNrcYFIsIlAH4lGm8/O4w7Oj6jrbt2O/33N3ecnV1xc31FbvdUGuiy4jAdjpefvViVNUm5O1rBTKtL9gOVQF9BCxajxVnbe0cZIzh5uaG25sbnHX0XY93nuTijxrPS+BHBKTbrqNpO3zX66HqFbgQbZNlGj/5Xn/IlVNinmcMsLRtBfl9I8BP23icsbXrh/et1Nx6OdgopQFZMxZGHJyChKcUtdwnYYjqHuZL8LIaXycC4DlhfIdr91ifcI3HtZIN7fo97bDHWEendNBlCZzPlvPRkEKkc2I8re/Auhp8yeaQ0gmMx3opV7O+xflWSmeytD7eZiv1Jj85fvWgMCUTr1npFyDKuj9flB294uWcpRsG2qapwE7OmXGaePfuHTFG3ty94epwRdu21Vkomefi4G8/fkwAv2S+y2dY1/TL7nXlyuqwzPPC6XRmmibu7+959+49jW/5+utfVfBsXhbSUdg9T8/PPD09cTyfOZ1OjOOIMZZpmmj8DIhI9BKkDMM3DcNuxzzPuEb0CdCSxb93KM8nLmNN1aXwTlk3FODH17pvYwvF3nIaJ56ez5ynRbpKWEfXd+yur/GNp22kQ5S1htPxSIxB9LGWmafnZ2IIPD8fOZ9HGudp3ABNJ8KmbYPrWqWxNxjfinMxjYRxJIWZNE/MTw+QRdQ3LkEEI1uDbVqZ/CilTMYG7OQxToRTfdfR7XZYLfcqPloBfjLgGk/T9zRDT7/bsT8cmJZE00hJbqJ2V0UHZbNl/3bhwB90pUweFzJOMsc4WfcpkS2kHDEmYkzCGUPXWJpezphgka6foScvAyTRUvPFThnALCVDQeEPxRRZlkkDXEvOysYxEecz4CTbiwD7VoWInVsZ0JX+/mKYjJGWumkYBPg5HLi6uiJnKUfMWcGOyhCFIpAa48L9/XtCWDCS/WLf3+A7S3v1GX4wPLaPPN8l8slzdGfG9jtORtrWE3U+A8RgsFEYFMYarDdkZ5WO/8texfHPZJZFytKMBikGS0qaiDRG9E/098ROoj5qlFbvBfhRsKXrOt6+ect+vyekxMPzA3bSckztSmqMllXGQFxmwjITFo+nWbUInXTMSwbplJUzRcC9wFbrlVfft2bLyxnucMbjXUPfDRz2VzoGsCwTmMzp9Ix1luPpiSXMZIQZXJhscq4YvLfkmKooMYiwcClgL6o+IjYsgO+rtpA2wnxF54Uc6rwA1G6T6y8A2m1XM/LS6ciAsXS7Pf1wkFhkPBKOV+QYGa6+oD3cYl1LeH7k8fnEPI8sITJpm27vHI12Pt12uzyezzzNaxc31wgwGxT4yURSYwhOmIGNcdWX8CbibBCP1UhJ2zRHHvJCmBJLyORSiZIzLkealMjTzP3pB96nD1ibcT7jnJzbYY4CsrosXcViolW2bc5JW5JzwRIxCvyYFH/R8/Wn/Ka/q4X33tP3O2JsCfOId5I8TGFmHE+YnLAp4mPAoMBP026E0JW95TSh7RymafHDHueznIHFPyqgH+gcahRiVwZ9eglMlNRUsdGbB65grSZNbVZmnlURcQX1Y/BSQp7FL45WfG2rfqnbJAytNauA/2vb1hpab+JF/XY2hd26NoMRtnDpsmcl4VSAnygt0nM2FW82SWPfteFhgY7kr5RubKasWTbaZ2t4L66/q/OzrnGJDguuVOP2TAVj88YnjjFyPJ+5f3ji+TTy/bsP/O7798xL4Pk8SonXBryzRoTYvfrijZePrm24Puw5HPa0TcPN1YGh7wkhcj6PLEtgXqTM3s6z2LoQqpzGT11//HbupjAERBODrF1IdFQrvTavmecSXGETNlmtR0/ktKqcV5Gk+votpU0GdNXiWIOz9XphQn7M1mwBjh97xPo5v/zGxy/6qTf6kRspSG8N3Jyg0G5D5Rf7sUWxXunKPw76lIxXrVdEN6ACY8WRsnklUmE0gY1ZS7ncyqJYO0ld0tK38/VCC51K6d28ou7YbQCeNz/PnzhejOGjdYGWpGnWTSjwpTOKrrHSCWB7Ty/HiUvQcLVCpgJUGXFAYgj8ElfJgqW8dgZZP9bxKNTY0rnrp9frOj+Ck2aNu/PFkGT1jkWJXpklJWPqvACYTtvCK/JfDgarAtI+W9puoB8OpBhpjKExRhgElZG0Pmt5f6s0X69C4iUjk2L8+NnyxacKbJUDWWzWOpflNWXc6rK7hBxf5zKrnofogMhYRdV+GKeJ5+MR6xxt23I6n7X9uaPJzcpUsvnCnpTxSurQ5Vxo8us63gJAH2sGreOyvQRwCHJgzYtkwrPRr2cdJRXjjlo2sgWTyn2UTjnREoIyfuJCDKGu3zpXJVP2Enyvzsh6/a1Kvl7Z0b0c/0zpTKg/pJQkCqgqzxdDZFliDSjXbmBegFu1S8K6tLVkJ6VUWWGlpC7GSNBOH2iHLRRgNcX5sk4w8FKaVTpxOadpMNmfa65iZVuV50B/z9hM6bBXSvNkH6nlEwMBhVG3LTtqvJ7nOrdV/36zWc1qh/4Y4I/MSykoKX9yLS8x5d85k0uDB23QVRw/6ywpebCbLlvWVbBh7Qqx+Zs5ayv00omp/J3NeNQR2IDUG3u1PsPlWBWxUmul+0095zbncS5HZP2bSnMPmrRYpLHBsiyiY0FP6xv6ZmHX79nvrmBxdO0jTXOWjp9GhV/q+kSSdHl7n/wsLYO/y/WRP5OyiDsnZagbEfc0tjBJdLx0/279FTCfPF+ttbRdSyZr44QeY7TzmjJ++r6XrmrqW2zvbXttbXbxm+sayXmTtypgT+Lybcq6EC1Mp8menDX40d8VrTXRDMkK9Kwlg5d+6XZtib9fAth1bM0vuC+LP1FAKbmRjY+1/dvlBtVFKOVgNXlslCELmBRg6ckxYpyXsmOCAupaglyApYIA5lTtmZh3g/WO3LS1i2K5nPP4rscRsY0Bj+giWTnLElkF9lWvJSWWaAkx14+o9rBawEzdQyGI0LTdVJKWct+U5d4uNDLrV2vXuk9N2x8Bh/351++Np2T+rdWqg8JgUkZJjFHBLClvrCOScwV+YkmcNR7XGAVfitcur/1kYjxv1uPm68syfDGqxZ7Lcvz0QxWAY00ybhN4m/1oS9y8/r0Sq1izgrKv7ti8uNYYEXJJGmMubPknGWQV2ZGPjICRF+OShchhNnFeaa8uf+Nn3KBhtUs/tqirnZB/lPtNmgwJMTLPgfM0M04T07IwL1r6/EK2o1QY1JL+KrivSbuuY9f3tG3DbhgY+o4QxC/3bqnJUkDB6p83f39U4CdnWGJRgX8ZlBXx45JdXrPMFcFH6yudl2xLCJLtSlK7ioG8cYCNsbRNx9DtaXxD3+20rrynaQTpXNtXgknqlBXA7CIJkTcf5ctcN690rpLSqmQzNiO6I6Zszg0zp3y8iIRXsOJj4yqMItnEzhVantTcd720Nt/t97Sdx3sjJV4mkPOLzid/4CWP/eMlHinpljPiNJQnKvW0BVH2pjAOJAA3xqqA8F4CF2UmoGNVQaANMHJ5V5uDLiWylgDKWBdjU8okygvVKKREjrkG8wXlJa8Mlu1fcc7TdZLBu7o6cHt7q2WMhYoXK8sJTA2S4WOjtnWS8sagZEQN/nR85vT89AfO2sdXzrp/jGGaRlIKxBwwzuBjpGm8dCZLjmS0BKvbbQxvDfF0VNb/C3NPDLCUcco8iF9RgrVywKrCY9Z2tcbi+p0cYkKhA2NJiHNjbcYah/ctzsHbr75md3Un4xozJGGa9de3GNuCMWpvhBrpbUPf7tj1B26u7/js7WeM48jD/QfCvGy2+JovXadMAQ2gdAqoeixW6NzS1cuIHdHPWVbeqx+pzjlubm9o2o5hfyW0Zd/y4fGJ0zzzeDrx+PhI33d89dVXHE8nKZscBm5ubmjaRjsIrIyfAhzXwFH9pAtHXr8uAKEcfqV19Fo7nrMErWQpfzkdJ96/e2AcRz58eOTx4RnvPd99+z1/ef1XdF3Lfr9j2O/IOXM8SVYjBMk6itOcWOaJE0/M3kFemEZhsjw/3nM+PnN8fiaGWEGOtIRKf70Aejb//rep8yMBX0POko3LKdF4W8sVjPXCtLNOOgadToQQeHf/wPfvpcRgipl+N9AMA8Nu4PpWGD/WCuNVyvtsbf3ad53OUWYOkokyztPvBvA9pm2wbSNMH2OqVoCcyErBthnfDTT7a0hRt6omYEIgnc/yfGGptBzb9Lidwy2RboIhGqz3tK3DW2GpQiQl0Q1yzmHajq4fOFxdcXt3R8yGw2FgGFpizIxzIIUXu6v88480rzll5jGIz9CUqEv2RSqeovoAcUosjwm8ENIaY7A4jO+hucaYgd3uiq7f0bY9wlKeqw+wMn+KwLpkfl0SeFMCv5fddvSs9W3VN2MboG8jRYqf4WnbTNd3XF0duLu7w1rLfr+nbWX9LLMIVeqbaOAUOJ+PpLTQto5vfvfX/OW/ecvV9RX/zuHPuenu6Nmx/Drxdv8FD/ePmHNHa3csYeb5/Mg4j4CwZZZzIEyROUSCAkCrN/XK86j3n9E1bwyzlkhO06xAgHbBsZEUJRhMWToFdSnRTTNN29bS4RDkddM8M40TUzvRNi1ffPEFKSWarsE4y7xM9H3PsBto24Z/+A/+AX/6m99w0HL34quWSD6zNl6oILwKwVpjqyjsxtMmhUWF5MEhz2Jtomla+m4gJ9jvDhwO19XmFrHReR6JT4HT6RmQdeGsoW0badyhbB/npOm5dQYTxb45LK6Al0n3RYIcDUZBidecwyUsGKNCZ6Z0Y5Ly2Zyk1FEYkmsysfiKJmecsTSuwSK22bfSpTS0PYvfkWJiiYn7x++JKXF8/sCynElV6F7e0xIhRUzKtC6x7z1kGN58zv7tr6QNfA6QA4bE1ZvPuH1zhzWZvolYLyBoCCfO4YzNUUqxwkRMmQ8ny8NoWZbM++eFx9EQMoSsHW+zlIWMUQDKJWZCkqaqQ6PAJDBnwxINPkn3XVzRXUN8sVyC1JVLoUuK4gn+Uqb2p9jS2wTzp75/eRUwUPy2pmnVxvW0rYihL8vINI3ksOBSoElSpnyOmVyYFFJLhbWWw+0NV3d3a4mQ0k4K+A1cyonkVaLCqM8kMU1cWVXJKqhMLUsscfDWZtfw06wsGdF4y9WvS1oS2qeexjuNMwUZXAGHjCEKmyZtNSlf6cqXMaMAl5LGsHmNjBOG0qI+pbxqvhlNPGHBBpJtydmRTMNaSpkRmlva5EZEI6dRENc5/b4x2CIwLC+rq6V6+OV71UHM6g4X7UkRchcNNvkYx4nTeeQ8Tfzuu3f89bc/cBonvnv/wMPziZgSc1h90QLOOSvlXaUT95vrA4fDwH6348/+5GvevrmTRkOHA70CP8/HkXlZmOaF+8dHEWqfZ+4fHjlP0++dkj8u8AOEmDfe97qAy+eC0RfhSXnZmomWWmH59rIsoNmUxQidOhnpLmKdEwV239K1A23T0reDAD+taHs4bcNcDtMMyh3XMDVBdtsAd3vvrDuvALVUmyAi/4aqGVsi35oZqY9mPjJSlTGz2YDFQBTBp64T4WPvHcNu0AzRQNt6nBPKJgQyrwv8yGOvGf/tv+XrpK2zwTmtAVcwxfumsq8aL/PT+IZOS5yapqFte1GYV+An66DVbPgWGdbjpoAKegPiVMTIFqyT33JgSvcS0Fouqb9NxagX8Szq5F28v2bljDEaqO5r569+kHmIIVxQlz/Nitig8dsM1GaJhRA4nY48Pz3+3Sbq91zS+hXmxZByIGVpSRtTpFtaggo4Zgym6XCtBORRRUwvwZ+NK65ro0yV1R/kgtipo1z+fk5RemqiIu7dUN9TwCAB7aJm1Btjld3iuNtf8+Yr6VwXlkRcos74yj7IedWjcNbTN5ah23F1dc3t3RtOpxPn04lnntfOy5sP2eYrZPsys2kUzMxWtTOMIVsgSQc/W37nlc9T5yyH62t809HvD3jfgoGH4xFzPPL+wwe++eZ3OGv5k3fvsM7z5u6Om5sbvlxmKQEylm0pZlm3tQQEFTLcAl2aLvwos7sBTguoIMCP6E+M54n7+yfO5zOP9888PR5xzvHDD+/Y7Q90Xcft3S3XCkiOKkAZg3SQcrpulmUiRNljMUycz9J95vT8xHg61i43zntMjOSYaqBUwWH+foA+UIAfT85SBpRzonElyBfgR3S1HHGaOZ7OjOPI/cMT7x+eeHh8xnc9/W6P9Q273Y7rqwNN4ykCiRlTz4gCiItGTmYJgdM4Yr3nJmZoWunSV/XG9JxGWRdFdNE5bNvTDFfkFLBpgSQALiGSQmBlnaqt9i3OdngfaaZIF0obbIdzCWulFFva2yvjxHnarmN/OHB9fc28RHa7nqFvmZfIHJMKw2zG9PeM92s7tzlnlilgvMG5rCVrUNzX2u0DiHMiPAWwmdxYmsHjncW4FtdeYdyeYTior9KScyCnBkoiyQplaAXYhd4fnZPCmySgjykJEjVdxjoVtm+wGgRTbfPHmnlFR6ZtBZC9ubkGMsNuR9uKzY0xYGKxkZmi9TSOJ5ZlpGkc3333DX/912/4bHzLP/jzP+equ2XnI81XA9PtyPv3H3h+PxIXOI8nwg+ReYnkDPOSSWMgzlEYDZWa8AsFmhkVd9VyV2OqGP00zwrye0qHoOyoTIGmaUg5aTOKRtiKQTQfDNLBdJpn5nlhGAZuD3vxhxoP1rCEWf2JK9q24c9+8xu+/tWv2A0D19fXF90+y/otfhPofYuQXU2IFpZNYdUWZqTsrbYyARrf0rU9OWV2w47D/iBnJpGcI5nMvEyk+cz5fAIybddKhrrxCjKrWLmTzoMlUWlRZrqxYj9UDDvlXJOsP1XO87eewprUyhhntGJkbdteWVk5rXtAr9Kt1hpD4zwOYRB3ux3GOUKTsC6SQmJ6fMfD0zcsy8h8PhPCKL6McTjVQzMpqm1KeJsYWok53n72hs//7M8xvuH54T1PD+/IObM/XHO13wkTJ82SuE2BcH5HPAfRys8RGyeWkHh/Mnz/aFhC5vmUOE8yvEErHEiGEAxxlm0zp8ySwHvwycqZCszJMEdIydCVBKmuNylnWUvWP66W+Ht4feIWxRcszCWJDWXfdjRNR86JBSPdCZcJnwIpLZicmMeJ+TwKEGOk1NR6D41nf3uroM8KzKS8AkVb4KcCCwgbRUiyRtaIjqtzIoeRlcGyhpmyfrPZgBb1UWUdWyPsGVOqEpI2wwFy8vpGEhvVBLlq6YqPVDfoq181zkc71RnlsOoWzMW0a+y/smoMGA82kW1Dti05RzANCWlmIMfCx/ddQJ+yz8tYCOh0MYwFFdLvbTzFzb3U6oBNaVcpex6nmefTieNp5Lt3H/ir333PeZp5d//I0+lcsY3yR63GlkULt/WOvm24udpxd3PF9dWBP/3Vl3z1+Wc0TcPV4UDfdSxL5Pk01g5hV/s9p3Hk+XSCDO54/L1z8XuBH2PMb4D/JfCVjtc/yzn/z4wxb4D/NfDnwL8B/rs55w+/7/0+Nu9rmcdKbcsXrzf6vRX5NXURvdSmWDPXttLbu1Z0Y7qup+t7+q6naRrRudgg/pf3s7EdH910Qf9+6rkkWFwPNPPCGL34jY9WYNZfuVwclcrfNsLucUIJk64npeOVPkeWQ/tJgIN/ZIz5z/iD5/ASwPjoaw1wc90wK0VbjGIRlnRKm3SVoVU+qh7Ti+5dlf7/YhjXgG5FEC87YOhkZlud71xeXoGftTxE3uIC7pHn0HX3EQOkrLvtfX1iTX5qvIrxSKoAnzOYIDpXMQTpvLCKOzfGmP8zr7QXNzdSnfZKR98aUT0ojZEuSjJ0STvrXQJx677UvbzBL8vRlzd/TxzBtWNJKcfcvqcp47YB0LI6aIUBlzE4ETpAUHmV98l5bau++TAYurbjsN8DmcY365NsJvKjPb6JprbZr+38bwPLmjXQtRbFGXidvaiAgfOuOrPiUKt4Z4QcI9bA+Xzm+elJ9pazHA4HkjKUnHa12AI/RZC9HpYb4OdTgGXZpjmL7s40i/jvvMy15GNegpR9zEsVZU4pSSZ8msBAiGGTCFi746SkB27OmJSq8yRdwkyl2ddxN4V1lH90Pj91XfzcvPzGxfWqe9FYi0mQTMlzrY6kbJFcRWSXICyooitSuopIVx67sf+qL6dnnPUN3kuQmFMkFfAsJsZpwjnHOM/MSxAavLUYlypLstjMCyC7GN+6Fso5t7GHRgCEnKlrRoIxW4WGi623hs26WteYNXJGNL50d5ROZS6tIs6m7s0XE/oiCNja4Necw9XGUI3e+rdqgZI4uEkFoL1q8BiHsy2uabGuw7lmLaPBVpHKolNg0DHTXIgp52UJam3Rj9h+XNprLvytrPOzDthlsknKj3zTaJc4KRldatn8+pzFxpcSwnmaGc8nxnEvIG4S+9s4D21P3/fsdnsOhwPOW57Pz4QUiO3M7GaClQ5lySZwBuNFT8O0tUTm1fZiZhX/TTp/pctg1rOEnEUDRIGMmoAqfowmFJ2VIK3sk6jM9NKopJS2d20r+oXBMQxDZQ73XUe7KSM3JbjcXIU1LWUNm8KHrAFnAX7M9vwUG7P1TWug6KRk2PtGhMpzEbPOXGgDmfKb6y29WF31TEmUxMdLX674VZBiftW9uAZ7L3z7vPoCFx5bfd3qy5nN+wjTy2oDlyw5RAtkaRRjEE2jpAHm5u2QAq11/FPOYETnzHqncYgwNZyXTmHGQEzK3kuWhCclC9HAAsyJeUk8j/A8irTHec5MIQtoaRPJAiljk4x9xghY763kNwuxXV5GTEY6V9XZZPVjt9+jmLjyyos1+Wp7sYz/7wPpP83ueXGtjqnMRT2j8sVkVbuVEiZFbFRxZ/XPU87Skdgqe0aCs1qaXSpValzBChbUZyqjaU1t+52MwSj4sy7Zy/W6PdvKfMi5utrfzXFTHhdyEapX3nl5PwOpanSB0XK1ENKr7cUKluT1eUoCtCSgsh45ZU1dEAm4eGyNwdSmZPS99Ez9xDqJKWGjlOXaZDQhkhUg247nlkZQxsnoT9iclZf3WNZKjFH83klYOFPxcUMgaOMYDRsubIuUkVoa72iV8TN00pBj17f0bUPbSOl+4yyNkxina3xd9cPQgYKNfd+xvJLGTwD+xznnf26MuQL+E2PM/xH4HwD/p5zzf2iM+Q+A/wD4n/z+t5NFWoK+nIViVgWdi/NeBiqLKGwOqf67BPvC6ljZIK6CCF5oms5xe33Nr7/+FUM/8Kuvv+ZP//RP2e93vP3iM/pdT9M1OF/Sc4qwahcgEpikzrd5CRhQ0dhErvuyLI6YDCFBzOayiwDr5t8arOJgXYyUKUJqEuBdHXZ0nbQ2P1zthWrrnDKYpPtS31mlzAdyOhOWmRTPAH+Vc/6nrzOHl9cl4weKzGFMmRCFum+tx1jp5uKcp2lbnLVVZ8VaR9v17HeSqR52O9Wn8DWAkzViWbfOJ29GQBRlg5WuEgawTYvLksE2SQ1mzqTaOctId5lGX6MBb5nXlDeOoH7EGAmbj6g13ta62pmjlFfknC/qMJdlEcFa61Q40VUgwxjL89MDT4/3PD0+bJ/w1fZiCeLLwSRClBMpBsIyyPOqto91wjpIeSHGWRgVuteMGtEK5GycQ3GUlQJmLUk7eKSkEo/VBgQg6zpWp62IYWR5fykjFJZHmF0VcBQHT+7TNU5WX0gK6Mk+TTrueQmkJeESfP3lF/zTf/qPub+/5/T8zLv3P1RQZ2vct05OuUpW4AIEqUFQWZ3bU1g/5AevshettQy7XZ0frFltU4aYogApKfHDDz/wL/7z/5zdbuDNm7c8PT6y2+/xztE2La6UXuqzeO9om6aymYoGy8uztRzosNqBoMGN0F9HzucT0zTz/t17Pny45zyeebh/4P7+Aecc+8MVw7Bj2Ek5j9OOVmmcmKeZeZ5Y5ol5ngXUMkGe2VjIiRRdXcMl8BL2YEsMgbgshOrO/gwnsT7c733Fq+xFYwyNb7QEI8l2UUctAyFlTtOMNYan05nH5xPn88i0RJp+YMDhm5amV80IMuPxiLWGthsY9qIZs9vvub6WkpHj8ZmnxwdSipzPJ377l39J17XEnGn7gWEY2O/37A97AVg0MIRiLyehhodAisWRNBinWWLnV+DCeXDS4cssERMiZlnw7ZHWy7nXaDcL7zzOtsJG0MjEAM43DMPA1dWBcV44HHbs9wNuWjhPkWnWLOYn52wFM36pOcwZQkq4LMCrVbsh2fINKAyEBMuSSQa8b2ntG5xvaXdfMtx+jWsO7AbVdrEGYxyGFiiAgmigSWl5wpiMbxxtI/5P00mSyzpXu0UW5tR6liVtxw3SVVNtU95qsZnqTw3DjpubGwCub264vr6RkoiciGEhJaNnIoB8TgnGceLdux/4q7/aEZaFh4d7xnHEarl63w9Ya/mLv/gL6Y55OvH227c8PN4z5jMf8receCb6wJxHYhuwvcc3PXZx2yl4vXkMUSSYsrAhFmUdxhAxRuatJAC89aB+WtsIS7nre3aDCKpPTCyTdB2cponHpydyhq7vBNjpOjJSUhVT5HDYc3NzTds0fP72LVeHK+n82fXCUlfNrQLxWOeFxJwh2kBUUEnOcAkAjM3KAJemC9LEwGqnOWFztG0He9lnV9c3zMtMjIFlPrOEiZQicZY1U8qhTCnGyJvzrexZY2oSj2QweUHKvATkSVHOisiq3/Zac2itpe97AUBUCLacSwZDrjEGGkuswLGzGlgaU9m/Jhn5UB/dd7K2mxO0Lov2qDeYVlibVb43Z+kqhujFLMvM6TxjrOMmBJICY86Xpgww7A8M1zdSWhdm5jATw8zz45nj6Zk4w/N7OD3MzEvim4fM90+qgxWQZE+G0sTdGuiMwZsG33h2N1d0+wGTIzYcSWki5sgUDedFxNT32QpYr/IMjfOq7wgVjEhpBTOsrfP+mntRJwX9sytMeYkuXn7W114cBNvk8cVLV7+laN0tMTDOkwg+x4UlTFIuNxfAFmzrpGul97i2x/cDrpOGIiFEBfZMlYxYG17kC9Z3TYJsEuDGmCpBst5h8a1SBSwLyLwCEPocMdYGDiVJa6zBW4dBDIXBialPiRwlmWugdjbW5N+rzWEu/+XLDyhM2IRJAJFoorCBVEbA2BJTCnAZE0wRYkCYr3GhxIPFFa3+ugEfIrOP2u3SaTdQg3eGRpNkdkWQKgC1LipNvOU16S/6kgLmTNMiGj5z4Pt3H/ju3T2nceLd/SMPz2fmEJhDuHxP9bEb72icpWsbPru74uYwsN8N/PmvP+fzt7fshoHPb3fc7kTMv/MJz4LzhubQkXLPEhOHw545RJ6PJ5qm4fH5FRg/OeffAb/Tr580U/1r4L8N/Df0Zf8L4P/C3wI00HBKaVNb4Eez1VvEL6/tMqvB1u+XAMxuNoL3XrNSnqvDFV98/jmH/RVff/01v/qTX7Hb7bh9c0vbt/hW2sLKgskblTO05EuuNZxbDwwq+qeLuwaNRhF0lR0pnaHyBu2rH2ums2aoKX60URaMpesaDoeBw15aml9dX9Frm17vW9UacQoaCI4rY2kYegNwes053II9n5pZWMWuwNDkvGalvcc3G+BHS8DatpP69qYVVpa/BH5Ski4Ev+fOJJsdpJMMKWKyiPY2GGWT6O5O4rTkeSHO85qp0cwpVbBtC+qtDIQt2huVZl2MvLUWrxRs75sLwEdZH5INnWes80znE74AGcgtHp8e5eP4XB5uyTn/81eZR1P0WNb5TDESlkVFHNVY2eIEeAEXYtDnDYBHNJSLuGQRjRRDL0nGRNIWE9Y5soITKScpwSnzlWJFwZ0VbZMLhzIpPZNEigsxTOTkKuhhjMV4i/Fusy+l1Kq0UM0pk5ZIngMuwRdv3mI9/PD+Hf/6X/9rnPeqkVD28wbQKIMG6vSrLdD1Uuftx1clIPW8vNJetEYc3GwsyToKNF1uLabEMs+kGHl/LwGX957PP/+cGAOHw6EKyG1ZP8YYurZlGEqXuRWULuv+ZWYmpZJJpu6HnIX9M88z8zxzf//A46OUej1oO3drLVf39+z3e6Z55qtpXsHEzIU47LLM6gwksLGCgzkW4U3J5DhnRRyvbVk2LKbL+fiDr1fci0bL0iAntzYqMOLshCQlGuTMcRx5Op45n8/MIUqJl2vlmZtGSn5iZB7PYoeMw+5FMPDq6oqvvv6Ktm15/+4HYpxZ5plxGjn97qRAwcDN3Wfs9ztiTDivAvbe0epeTHEhLQs5BZI6mWQpN0Izn0az2ViLaaRTmMlgpgkzzcJwaTxNAX68VdBH7Iw1ReNNvC3nGvqul5bu55Fh1zPsejAW7yfJaGaEBv+3mNxXm0M045gE9DFqu3IW57LGJxkiWbQOybiuobHXeL9n6N9yff05vjvQ+oz3Au5Y67C2wRTgx3nJWtqE01ayTWPxjbCcm7aj6aRkuml71SdRcLhA0moT5b4TVsLQMiYrmI0wSvq+53C4IqbM4XDFfr/HOcc0nRlHAfOjgvfljAR039/TdXLePz8/MU0jbdvS7Xs6ZV8bY/nss884nY7srwbuH+55np/xD5aH8Z7kAnMaiU3ARU/X9/hU3dfX24vkmqEN6gqGZT3fxeZL0GKN1ZOOWspurKVrJ/quAyAuEomnJF00j8cjBsObt29ou5bdbsA5aBvxcQ6HPbc31zRNw+3NDXtNgHWq6Vi0mSRuWv1eNNCpiak5sUwzmbwp/V/9bmMug3fvG+wge293ODDNEyEsjGcwkySs5rBgzMIaiSdlCaSCNuhnOQuLf5cN2FD0YlT3Lqp/WNjFkoB6lTk01tB2HTFllpCIWjcSY9g6cqtPvwU61ebaEpRXF0TOfGvAN3Lv3me8FQaIcQbTePV3ytkoyc+IMLiXEDhNAvzMJZFtpDFL2yloOOwYDtfiU8xqZ+eZKT/wcG6Zx8j37zPvvg9Mc+Dbx8QPz1J631hLU0AOzZk5a9kPHX3X0PmWm5sbrj+7IS0zy0MiHAMxwxwN5wBEiLkwDCWJIn5pAX5k/MraMTpeG5b2K+7FMi2m/t0t6GO2/3hxFRtWfu8lU259Ez3T1HcPISobWQC3sJwxORGDlG1mDA1GfE4tiXZtj2s7srXEFEjZ1sQxKPBTdNA28Wu9v5rgF+DHJ0/yYqsL22zLGgLx/bBix2NUm15iEiVSFPDLGmozBPGxFZrMiRQlo1p8bwO0rX/Vc7HMR+m+WWJlo/YqpwxWmeopyhmZkur2FDYP5GwIybBECBGI6QVrx2z+ljx7cAkXIsYaopa6WWPI3mJ90YxNoMQOmeFS1bCVizAV/Ika96WUmKaJ0zgxTjPv7x/59ocPnKeJD4/PPJ3PhJhYdN1s57wkV7vGMfQNd9d7Pru94mo/8Osv3/LlZ3d0bcubq4H94FWLSeJ64zyuaTGuJQHXyRKz5el4JGPY718B+Nlexpg/B/6rwP8D+FJBIXLOvzPGfPEjv/PvA/8+QNv1F1njimbW45OKrQiAIhNQ0NgC+mS2n1cjWxZVeSMZXE/fCZ14GCST2Q+ikn3R3atgM2ZzDxe2YvNNQzUmlXptCtVPMYW8/VhLT4Q6W7UuN6PwsrawAD9WHW8J0IZh0DbgrWSYCtOpcr4zIK0oUxThx9ecQ6dgRrm/EviVr83mIN2yIQros+2GVejivmlUj0lK10pnr58y7D8VZK/TpYFwTmrf9bDCrGSSYlBL2+/qEGwvWRgvKYtlXVbABz1sXj63kzkq3TzgshNHSgK4LLO0qC5DuMzCrEmfoO79ofPYeC+tx1/8t76WOmdmc6+bTbsOdNkzlANX9yUVh9df0cVvTAV8yYXJtTquJYMhoqap7hODML6itrjNOeM0g4nV97ZpA/zofaTVUUlhIc0zKcy4nGitZsSKIHF5+Lw+z8U6uHz4C/D2I+ciU++hfv2KcyjOYvlb6/jJ2K9U1CJ+P+t6ki5YJZCh7js5XGTfNW2jQEJpVS9/RhwLc/HeBYAvJQFRgcNyME7TVMGfEMKmDbS+PkQFeOQ10zhirK2/tywLKaZ6HwVgKF0QjM6Z2EFX9X1kz8WP7MjHO/wPg4H+0Hm8u73ZBNrrdEpGHNEf01r8FUA2GKsZdaNaFQWU3gBvgLR1b1s6/WjaFqdCj9sOTNY55mUmhEW+FxYpM82SP45WqPFyrohjVgHRsv5LqbFzIhAqPZulO1/OYAJsO0uVMi8tj7Hld8r75fXtrbXS8lSTIaVUrDjYeids3Kw/2hw2qodTYw2KXXj5S/J9ax0OLe1oeppmoPFS4iUBvrb8MlkTQ5qdlGEV4MdYrN2KqrtaluX0HHWaAKtahpu1tbWR5aYLs/nyOeUsL23ChSUoyYxyXut4XPxeee+kiZhic14m8CrDsG2JMTAMO5awgM9cLddStrIEZlriHLDR4l2Di46X1x86j9dXB6rJLn7l1m5vALFt4HZx5mvXyMJAz2zOed1XKUbNGRQftSPnTN+2NN4r+81VIN6w/g3BIS7Lb/LG95RjVsVl1SbYwmKvmW1DCiOTETAkBhEsneeFcZyYl0W7Km58XrP1EyoiUn5U/YCyXspYiC+vTJ9UzuONp/5i3fyhc/jFZ3esU2ZWM1L/jD5TXnVrCjq7ZSaUc7Q+4zrc9cyv7c3165RMFa6l/k0FALIAvqTEEmQtWC0ZciXBUuyZkfgnKWN1nmbO55l5nDlNkfOcmJbMHLIEwTLKUvqJ6CoZK93D2qFj2A90XUu/62n7jmQhGCvnRZZOYClnTVTnF3vUrOPEOr/rSHzs+rzKPH7x9Ucxxvq67S9tvi5x2afe/OIXVAMtm3V/KmgXdc+EJNUoJidt0qGjUGIuFcCuOyEXbTXt+KfEgZy2Y7nxobd3U8bbmNXmlLWzsT9rEnJ75U9+v27JGn/Jc1v9Xk4rgASqg/5i4P7QObzZdxv7uY3V5WuzPYPqUbQdo01wUcdZX7cBUeSVl35A+WLbCCCXGB/5fgnlV+RAYo71O1vGj64VBaUk8S/7eFv1EWJpevLxfEhiUsq7utbTtw1D1zF0LUPf0nctrTKBvPpbJBH+RpmeRisojBEtKOekiUrjvZQNd7+/C/TPBn6MMQfgfwv8j3LOjz8VlG+vnPM/A/4ZwOHquvqJGwsKpZ27AWvkMI8pEhcJCktgUAKV+nt5M11Kv6KiidKecr8/8OWXX3Fzc8uvf/Mr/uTPfs2w69kddvimtJFVZycbqSEvhsZtDjQZhPWwtQZrBXlr2gHfzmAbYnaEnAg5MScROp6C1t4mWIKglTGzqf3LAg7g2W4O7z373Y6u6znsB3799de8fXOLccImqdR7RXdTiixhJqUgANOS2JqD15jDbrdbt6T+vt14vAbqwdV4j29bcRTblq7vaZuGoR+4vrpSvYaGTtk/XdexG3YVrCvdRypL56Mb+9S/N+wvI1iAZHoyLhsp48tGqMaqB5qjMIMK/cW4VUS6BFk5r+BP0EN7mWfmaWIcR2lHnVEwy9M0oolgjSF2naDML4LlEiTP08TD/XtOxydW65eZponz6ZmwXAp0v8Y87ndDFjaVUA6dtesQ54x1nm440O+vadpeMp9BA0pFLYuDawsNWEGanIV1oiO4zlxKxMoKEe0iYUeZCjDEEFnyrGsrKfiTySpmWjLLMUZhEBWH2DqMS1gVoxZHVgPbZWKZZlIILA/3LE9PxLjgxydu5hPLMnFlLbuuV7ZKUir6esiIof84GMg6XpfH02VwdeFIveYcHg7Z1LERhpNkgARQq63Og4z1PE0YY7hSfR9jDPv9nl//6tcMw7AKPRtD03jaRsQ706YEt6x9+TpUu1yYPSWzXTpPPT098fj4yDzPfPjwoe6VIuwNSAnEg7zmm2++oWmlRPLpeOR4Oou46jTTNiIo65sW5xsxwzru1lqGTspjxnHkdDwyzxPT6DkfT6ut+PlYwM+6XmMe//RPfpVLMFntQkok9ehjWFimMylGpmkhGYtpWloH1+1AAqbzmePTk5bZyXmZgds3n/Hm7VsOhyvu3rzhzZs3eO95fLhnXmbOZxGKPp1OWGt5/PyB0/MzJme8BWey2mNlgBnIYSaHADlJAkMdDzZZNNM00DRiU9sBml6McUiYZQEr4L5XB7rtBtrdFb7tcW2PVS0iUhBNGKOlQcPA0PcMnYg7p5TxzuFsYdmu+/LnTvWr7MW+za234Gxd1+KrOWUPrBosjfPsfEdjLfvrt9y+/Q3t7ppmuKHbHbBNh2XBmBEA66QDjbXCePU+V62RAgJ5byp7al/0crSMs3TgKkFUUhsRw0K2CetaXHEm2Z579TkpTSW89+z3B27v7ujPZ+Z5ZFZ2SBFB3vjxVcRfdKnEFsWwEKwhhBm3SDZbGlVIQst5yzi9ZVxG3j6+5TgdiSGwnEfiEghzYHoYCdOlg/sa8/j1l1/klEvzgdIZDbWNXoM+0V8qZVcVFHEWQxagtRPdhfE81XN+HCceHh9YlkUEklXMvR92dDdX2uxCyxGspXMeZxwO1Wi6RFZkfFn1LpOWUcUYGc8jzw+PUtZEBIT1XLSgYkw8Ph05Hs9qv6N2H0vM05llnjAGWm/wXrLdxti1JAUodUXCKJAyKa/gLICzHm+FQRXmyDQuLDESFgmOjJMyJ+MMxjy/2hz+u3/xmyyMZQGpilZdLVdOmRzkPCvBu7FWgLkowX6IgZijsJWNiM47Z4VIo3o5IkrfVs0q0UAyCqZoMit6oo2QDOcZ3j/N5Gy5vn/m7fv3dH1H11iGvtNuvQ7rJO5Zzs+c3n9gPI989ze/47e//SsmFYv98BQIMXOeBajIiDDzksA5oywfsdl/+me/5quvPsM3jv2+pesbxuOR+cMPPE0L05IYQ+IcgZCZ5sg8BcIcawBrNGAtY+U2ujafQn1eYx7/0T/6r9Rz8VJw+OckalawqoDmNZEpixfRdUnqy6gOYZiZwiLA8zSTz2dMSlKS6zqsc/h+R391hW9abNuwpEQOgewc2S4VJK8J0y3jp95duR+xf7W2IBdtys3rFJ1IeWWyVM2xkuzZlHaV9Z4R/17AZVuTZNbo38tJGfjl3gqIWwGVP3gOf/32KksyKtVKCUjSzbdCAJJ4F2BKQbMsZ741lkSqzyh7S1aDKza4AFs6zyllolYf1ISaMWAcuUh3bNk8Jb4jk1PAxIXCSlrPMa3cQUrvk8bv59OJ5+cz47RwPJ05jRPTvBBzlmRWNhirUiPWMLSi49O1ni/e3HJ7vWPXd/zJF3e8vT3Qtw23+5begTORtIxMeRFihJ4LNrfYJoIT8NILpZNd7vnszZ3qlv709bOAH2NMowvgf5Vz/t/pt781xnytyN/XwHc/a1XUN0WBmxptyuG5ppbrog5R6HeS9dWFaS63v5SLFDEtANnkw7DjzdvPePPmDV98+QVf/uoLKZFygq7LrZQVqDWYXv9d5WReRA0l82Ed1jU43+F8i7ENEaFdLSmxJKGZzlG7U+QV+CkOWHnnUqIgjy7GyHvH0A/SpeX6wBeff86XX3wGxmyMfWJZJmIKhDBrpn2S1nFLkA5M682/7hyybixbjIVdu295L/o9zlqaVrqQtW0rWh6HK1rNbvVtV4U7u7boFrWV/lgEq1fq5o/djPxMnDIRVkyL1LsLMCbAT86GHDKp1EPXqH1j+KyKf+U157NlURQdk3lZmKZJAq2cKzXWOREhNcbQpliBny3gM02T6urMPIeldtnJ6lCFGJnGqZaG6Xi/2l4UPRRLo2wPOQYFPBXNpYFuOOCbnpypoEiuh5LRdrBORydeCHtvtovOW6oHVFCgIOcsgqHKJCtMBZmShCHqmAdi0hp9PfAkoypZbWMttoAtGCFJJGWoLItoXc0z4/M98/07SBEfZ9q0MIWZwRqGtmMJgSkvJBUZzhlqh5y8ljDUK9fH/CjQ3GYPqyO4vvT19mIuLKeVVpxzriV7MQSt55Z1NI5jtZXDsOPzL77g+upKGBW6Fkq5lDFmBXhyqkLNBeCZpomi5VPAoPLveZ55eHjg3bt3Au48PjKOo7J+otoOagnEsiy8++EHvBfE/TxOjNOkLMkk92MtbdfjFQTKScQ1vXPsdnt2g4DL9/s9p9MJg6mMhNe+Xm0vGupYUNZLjKS4kJO0rx9Pz1KGmaVVsnGWpnW0TjRGcoo8vF+YxrGelwUEv7m55eb2ltvb29oWum0bwhKYppHT6cjj4xPGGJ6fnzifjxLEuRX4SaEXQVtrMClqC2Jdz9oJEecxjQD1pm2haaXteztA22NixIwTmJHSXcc5K6W/bUfT7/FNpzTmUrIpAWvpHtR3HV3Xie5J27IsCa/sH1Ii6hnw0QD/wnNoDHhvpQW4XQ1fEUyXZJKwPLzz9H1P5xz7/S03t1/S7u6w3YDt96KJlIAkbVmNtfjG4CwC8DSyVlxl/4B30HgZp37Ysd9dyZnaNDSNMANDXIH7tSQAfJKuQzJMn94rxqzs42E3cH11TeMbnp+fFGS1WHtezzidBFnLSQEf/YgRG6J87QMYU/XE+l7KvXNOzMvMm+e3ek4GlnEkhsB4PvPh+3ecT+dXn0egBtGrqHzerFfxaUrQZtRPKHqAxmZtES32SeQHpDxgnmeej88KAo1SFmhg3/fc3VzhnZMAMcs6EeBHRYUFuaCWVRcAiHUbCnNDyuunceL0/EyKcm6mJA0irHcY51iWhb/+3bd8+/0PWnIeWEJZn1b2v3fcXu3Z7/qNT12YwllKRCxYMs6AM9pUxVickQ6ayWYMgbgk5jEQUiJo+ZXNRrv5ueJHvs4cqq8iun+eUsJcwc+YVDQ5qf+yBumS9ClCvrE2SrA246wmvAqgZJ2I5acSNDph/Fj1NXMmuYixjmwk+ftwlKTs49OJ58cHwtLTXO/p9nt842kah3GQYyKMJ8737zkdT7z/7nt+9zffMc4L788TD2OsJHU9NmpM0FjDvmtprwb2Vwe++vNf8Rd/8ac4a7AEDJHnxvK9cyxzZF4Sc8hMEVyU8riwBEIQpktxkIVhqYwXuwbU6UUs9rrx4loJsfpPnzTySh4wkohTwEhceYkXrSmsF1ND/vJ7IQowvYTAHCNLjMR5IY4TpMSu1851zuO6jm63x7cN1jcy7jFJYGdDBX4KQJrzZZnWRcJc73VlsaxAQ0mclv/X1u7VxnLhW4rfXJiIFqNK3dZKqXeJo1wlOiTpd7MtQ6O+x6vMoTz7ClAV391oeRfF3qleo7EaaW1BG9akTsq59giVMkmvZ9OqkRSTNACpLKiMAj9W4zj9MKVLolZr5EyOQRJb5NpMRMbe1CqdmEwlbkzjmdPpxDgtnMdRm2NElSRw0rnNhLoOu8az61t2fccXb2744u0NQ9/yq89veXOzp3GWq6Glc8Icy8vEErQrYW5wWgIo5wRgpbuvcY7BdBgjOlO/7/o5Xb0M8D8H/rOc83+0+dH/AfjvA/+hfv7f/96/Rt2XlPmogE/ZkBfdYyzGrPXmBfDBrK5ceY9qBjb7uRisQpW92JAV1dT70mB126joEuCU0Lb8uBg9o6KyWEfMhhAFEQyS3BSdn6So/KbE68JsqdNfA8gVca0ghlMWi/faJhIN9EwkZQcxk5IivVkyBqtzlwH+DPi/vsYcFobDOjLreH0UBKtFW+mOYt3KPHjvadpGABPtUOSsu5ij9a1yhcVz+SubwHt7RwLeWEWNHaUOPYWIUWAgx1wNgrESTF1mMVbBMCqj4rK8q7RQLQwKqxls7101SjH4GoxvQZwyTxkwsQBMYgwzG0HiehPAq+7FdV8JJX3dTc4W8KqpIsrbOa5brK5m3T8oSKL/LtT0y6N6s8koYys/TWSIWsstbakAbUOrQm4iNL2QUqYt7J+cwYSK5IvjZYSdVO4tZ9ISCJM63WnBZjnwU4yV6vuSnbM+6eap8/rcefsMFXxa3+fi+6+6F/UIM4JNF2cmb9Zn+bpkjMhrKVbQ7nHbrnqN87VsxHlX500Ea1etnC37cstgCyHQdV0NfIpG12VpY7oY4wKkWmuU5XbGWCsdGfQ8cM7T6FotTMBM6ZAi+mFSAtsJSKSdcNxHJaM/DgL8Ha5X24uwngtbcLiUd9XOOmo7DWsXEbI4b9vOgE51r0QvraPv+03pHnUdrK8XW1nEscu4yf0U1t1HtghFrSR5Yi1YaSGP9QIIWadMSquL1JRf4eOuU6iDsLX16znr7Nr50WnWuTDUTLmXn7h+JGP5KnMoLLmGbD3JebJ19UyzVrtJajMB7xt809XP1rdY34huxCagyqYwFtDAtZR0WawV0Mdru2rvBBQSwLZVIWBXS8eg+NmpjtPWPlV7vTlQK2idio5dIKUg4IB2Vysi6iCJqm1yJlMo6WvQXdhG1gbmZVZQz0ELzuh9WkPOtnYslbXqsDkTnSOnTNcP1Y98zXnU2aRoMtbggRf+p1kTEBSb9mJf1EyzXknZ6wJ8h6oTYYyUXjfeC7NSXQSnpV5ruZeeo9v3LV+rbdgmyEqiQspsz/ISBaqWJfD49MTz8zMhRMZpYppDBX68FTCudcJCQm1t8aOr75LWYm5ZQ9szrzj6KyuhZu2TdAXNZYwlofIqc6juWsnlqZ00Fz+vZ7ee+eh9id+sRR5G9tnWbqzn+ssVsyZAE6teZy3RNMKIarwlJaPgWvHrL8tXi09W2LvF/heBW+kCJELtNicJWFEx8iTMnKHvOFztOVzt2e1F3sKSSSGrdEAJaKlMkvKxsh22PoyuVWWIlFio+D4XqsWvtRc3+wzKPOT1hz/2a8VX1Xkp74MCSPV9yvK8WBFcfF3cx5BE+DkbBdBTwkTV+EzSjSsp+WC7XgzFP0rVH673WM7CXPYwIjej75E3/rncSwGQcv26ANPVp7rwsksMtC1DLWMEl1Hc+vQ63q9mT9PFOlptRMpKtLCyvjAZ+3JfbW1f8QM0ked9OV/LmSjnj00Jk6z6LOWpZM959WvWvQYm26pVJuO+XQirDWP7pQLH69pcNc1SEj1TawxZQbfkJTnZdwL67PqOoW8Z+o6ha2i8kzJ21TbNyh7EGpWU2wJWpdz35S4oHTh/f6Lz5zB+/uvAfw/4fxlj/lP93v8Umfz/jTHmfwj8JfDf+RnvpQeTTnRO1akHV4N0mWDJuEfVaEg5VYNVjpoiDiePrOKKuWANlpwNMRmWIEyblEsZUKHnwoUTKxjAJXpRnNFqHIw63Qr4NC20PbnpOSfHh3NmmuFpzhyV5TMtmSWIMU15s4asGPGctTZXN4RR8EYEO52okbeermvo+1bwagUmYoq0iyWkyDTBeTRkhKo6jiPzEri/fwZ4C/w3/+A5LKdqGZbtMBUgpmzuGEnLAtYSlpkwz0IxTJGmcXRdw24YuLm6FoDBKJXUGJquvQhSCl2y6vGUGFTpdxfmzjqMb2V3NhETk4Ap54lwPlcnCaxohewH7NBhnMN2rXQ/MeqURKrjkqOWFKoeyaKMh/F8ljIaLVcr2iLee0KQz7Oye6ZpZFkWYK35RzusVMqlggpJA7rN0x14pb0oTooEU41vJNtokPazQD/s2e1v2B9u6YdhpVQWkEwtatKyItGcKGtXndOyXMy6oWo9vdazZ/XQpFuIqUGmzPlMijM5J8I8sSySAe+GA90wKwhqMLZRynbA2rl+D+Mp2RZrsnRWeXri6bvvSSlSRN3ePz/zdDxxniZiTBdC8mnjnKeYhLYNoHmHqllQD7N1nZaAaasFpWj8q+zFAk0awBkqfXeaZ0IMLEtgCUEAxLJ3cmacJh4eHjDG8NnbzxBh9ZbGi4joJdNOSuuaxl+MyTYg3LJ/Yozsdjv6vpcW7VBFpWU/hKoxVN5vnicgM44e4yzTPIm46d0brm9uJIPe9bRdR0qZcZ6Z5oWcMkuWWnzvHNfXN3z+2VuOxyMf3r/n8fGRFNMvxfh5tb1YA8y6ZhIhCHsnhiK2HqUm33u6bsBYR1gWxvFMjIH5fOJ8krKtfthxfXND07Z89vkXfPXV19ze3YmjZK2WPy6cTydOpxPOWq6vb2gaz83NNYfDnv1+R9P4auNXqbjNqlPwBhpxUNoe03ViI5pWyr2MAdcKEJRh1fcR9oDzrQIeTt67AJPzIk6MihL7JtL1O4bdgWE30g89fdeyhEijLZEhES6Cg/X6EdCH15pD5zy3t2/IxhFtS1YmgdCzjQI/YjR3/Z7D1VvapqO/+YrmcIcfroUdpQyuUqoO4Dx4LyUcbevoO4910pnENxJstq2jbz3WWSn12l+tIJmTEvJpmjYBnSHEiM3go+i7WAvZulLxXIPOZZk4n488Pj1wPo/yDLsdzjnevHmDc5bxfK7sMel6ouvVGNrWM/QdbdsQQ+CkHeeOxyeMhabpuLm9ZTfsNdnlqvbNfr9jGHrZA7OU4s47KfucxqkM/+vtRYNmardZ6uIG6ryog1hKXCtQm1abJkBd0V6UNw4hcDqfCDFyPJ44n04MfY+5ueZwuKLvWtF0CVLa7dtOhK9dYcWURJbZdPZag9aSSIO1Y2dMiXfv3vP9998SwsJ5EhblEgIfHh55eHpmCYGHxyeetRuMAI2wHwb+4V/8Ob/+1dc03rEberquAeNIKddnL2XAOUlQnLSzaT0nYmKZF6ZpJqTEHIX5k3LCeEvGSWfAV4wzio9dunHVYM5kZfwUFqyBacQ6J37dElV/yUgZF0jTB6hC1KmI5yYt4TBSdpKtJ5uk+1cBi5iIkyRwr/qWL272ZAxvrw/cHA50fc9+Jx0trXM0bYd3DSHDEjLH88R5nFmMxfY7Gh+56yPXWfxFGydsnIlJ4o1zgGHf8ud/9jV/+g/+hP1+4M/+7Nd88eVbYlh4fP+O0yjabXNIzCmzJFii6g7FWJMpmUSIC8syYaIl5YyNDucTxnUYW9Z93hZivd5eZGu315LGFzP9idduAIMtcGoKMFrWh2rVXQCVpsZ20VhmY0lklnnmvESsdcTGY/qepmuhabBdh/OeLgscVjqhlmSXAOaxAj8F9Ck6bBeEBGtwqVGfZQM2w3qPGSlBzALiLctcYwpF4rRbnKulXs4VPcSsnSbL++SPxuAsdvVV5jDnLMxOI+dJMFKinAGblIFjEmClpNUjkhxs5syamnzuOmlkkXNW0fuujtuaXMgVvJWbkDF0Cr4a1tJUQ8akBZIDZfilKCrnWfV+TB13OQtiSCwhE1KCHPAOknfs9wN3yTDNi5ROTmIf+8aT6enahq/e3nJ3c2DoO371xRve3l7ReMv10NA3wqTMcWFOqu2njW48hoTD2RZsSzYeSXJbDRcl9mqcw33cy+Sj6+d09fq/8ePw6n/r9/+JH7tEXddgMK50lBFnsFIIUxTkjkxKjmhhg+wonUtR2fqjglYbMoKuxyjsm7IphdZ5iY7WqwJCl0+dt98wihBZK21rm5bsWsbkeJpgmjPHBc6LCrqFTIibv7VBfQuVTeLI9TVFCNhfgD8NXautxhUgiyninARnOS3ivCGaHPM8M04Lfd8A/Cc55//aJybi7zCHhSpItaIryp5Vk8FIFiUEsJakOiPWGFBdhrZptFvIgbZta4YKEIenZD9hBX60+5up7ANzcVfCgLAY1wiQ4iPGS5nLEkfCeZTNbJ0CRA5jd/i+FTHSppGSBSgt2WRNRQ3wlbZexJhLwLuEoICV1AGnJAGntBAVQywsi5mg0gQ5RSkpSokcF9EZ2jxRBtJlm8zn/FKt+w+Yx2JYvAI/GIT6CbTtQD8cGHZXdG0jgZXZOL+a4UkxVaOjcUpp8qoo9eY8LWBbmSOzyiDmlLWWN4q2SU7EMJHCKGt5OjNPQu0Pup+8b/FNT9vvFO0PSNcRi/OpVqAUgJmcmE9HTu8/EHMiObH3D8cTp/HMNEvXKDKUkrICcFTwOZccQqGkbkTnNyDQVstp+7WWc77iXlxF+TIQsrRXXpZFNJm09GpbZ15Kq6y1TNNYgyxpr9yrM7I6UilJZuUy86ZDq98rGj8xxspyKNoxHz58ACSDvRV+Lr87z4uyAIR1Nk0TXddxdXXNftjRtC2HwxXDfk+MiQ8Pj6T0rDolEohZ6zjs97x584a2bdnvD3Rtx9IuOPuKwM8aa73qXmSz1lIWLaVpmkTfK2ftgCdZpbbrcb7hnI+ksBDmmWWamMeRaZzohz37/RXDbuDu7o63b95ye3cnuloKJMUgZV7TOLLf7zkc9rRty2G/Z7cTHZ1CDV9NrNriDeBPCWytBd9imkHOV9+AF9YRVrrCiFCxXbPj2q1KzvxNc4Sk+jPKWJFy6kDT9nT9QNf1dG1L2za081IZQIXq/rcb9teZQ+ccV1fXJCzBNGSU0aot1qEAPzAMNww3n9O2A93VZ7jdFbbbo4ZHX2tqSY1zBue1BW3jabtWS3EsbSsAbde27IYW5xxDv2O32+v4Fh0JtMvRqpWYiv9UWIFImYqODMI4WKS703TmdDoyjhMYNMFhCeEaZy2n7sS79z9UkDUnZbIa0frrupbGO2IMjOMZyIS4kHKk7we6rqFVRppXpq634vsYY2rJbgFbmqZlnpcy/K+4Fzc+WV6DLVP/4yIQe6k9WRghW5ZTyewH1fmJMUlZgArfg2E3DOyGQfSPZukOZX2DLWXMm/cyVvaU0XuonCQrGjwuJfVxZdweHh75m7/5G6Zp4v7xgcenJwGfzhMnLVP/4d17Ptw/yL1nOduur64Y+o7dIMLA3nv6oa9szFDY0+XMI0MU+5CUOUOWUukQIsu8iP5ljISctdtXEDKgM6+2F2Ueyv/Wb0SdClnvkZwjRGCxmOjERw2SJClljdZI0FmSOpVFm1dNFZB17rSzZmEfZDJpnlkUcNi3njeHHrDc7gcOw0Db9wy9JDWcs1hlqpaOseM8M86BiMW0Pd4nOptpbcbkiFkMdkmElHFjhDlzGBq+/uotf/EXf8aw6/nqi7e8eXPDNI6cHj9oWVOUsrsESxLRafl3koDXiPdZzowiYmyTI2eDbxOOzZm1jvTrnos6tnlF7rYzTDmQL6okfs9HXRIV+Mj1/AV0f1mSsSxIic8cFnIYMcbgdz3deKZNEd/3NPOET7HuvwLOFtZXaUYi97cycJxP+OQUBHIvgIs1NH+ZtCgMLHLRdRUbDVSQKyuAXVmDTpijJT4rsWYu/+k8kjND373qXiysqBijAKTFTlhJQGh9A1hNLpYgXO2dNStj3FpbZSHapqHr+5X1awvgusEEoPoEAt5Tv7Ylex2sJPiTA7eQrVXdLkTYO2eU4qNgW5JOj5KZVyafYdd3LNnRzAv981mYkjkLm8c7hq7ly8/u+PLtDX3X8sVnt9xe73EGOpvxRs/juFTCi/Memx3YRGss2TZk4zXYKqVrKONf5Tt+xpz8rbp6vea1UtmUosWGTVC+rptVMx3qlBQHCqNhcS7UyxWYkaBSD79cqKbr5r54eS6BHJuffQr9yR99qyDExUPOF/tqNUa18cgGwa2/A4jAdBG12tDyLv68HD6GNfCu72BYP9i+/y9w5RUyMzmT1TErlESzeV1EnMBSWmKtrUJqRXj2olRqS00EdRxWyquzluzXsoc1DpNxqF9vg5WXjpwyhgq7S5aKqYFHeb5CQX5JYd4KjQFr2VrT0Gi3uKhMnvLzGkS/AALyBkiow3Yxhpf+y6teZS2WIF9ZOFhTGRoliC/Gc+tQlXvPueJ/8rabp8looJg3wOCLN0pqWDNouYqUIKXSvSut3WAMRWuJi/kQUTirGQ2dt9Lhq4C8RrJ3vmsxMTIRWNTZqfXTrPtwW460Asq5Pke5D1hfV7/WKd2WUqyvea35k2V74eRmBIxSplh1dkoaX8dmrm3WF3UcgrC+Lp5Zn7Pa1/IWHz/HJS38Y4CovCbGdLH+YS0bk58LMOS9aDNIxzFHyaAW+nsBj0D2VxGbXO3GxqGTm7kA1v8+XRkNRuL6bIVJVZ7RqF6A1MLrcylAEpZZNS20NXrjGYa+Mq+aRsYwRdFYCWHRzLwGqcoUKAK7bsv4cqZ2e5MboVLTDUaPvk1CpQa6GyfbbOy0Omg1eVLPTXmebJ3u83p6KnhkawC8BTSKn6CvfHE2/5GvUrKmd1+TFgWQ0mc1zmN9h20GrGspzB55rTI8X+y51WVY9UpKiYhVPZaSQZbgY2WIlDK7y+BnzaCvju1G5HJrVDSoldIuYdd5L/PktUFD6dK5lrgYkmZYt2ur6tsAS5xqd8bzONJ2I9Y6mlRKFeU8snYVpa5AO7+MeyMYZsm+W2zOFZSs61k97Qubtz2/LyauwkWbK1/4RFvfJ5X9kW21C4a1nJaUZJ2xArAVL9R7TEYDziQgyzzPnM5n5mlmmmYR2tYONFvQz1WNoZJQFXbo0/OREAK73UDXtwrUF6HV7bl26Y2x+df2XNye3Tn/AuciK1iQtFZH1pLcVwXjWEtoTNqcS0m0zMr7mOokGvHTzYZwXgCgEkMUv99Qe9YUH0UCOSfzp2L0SZ0nqzodJXAV91bZ67oeRcBe70FH2FKY25m2sQwGhr6j7ztpptJ2yvh7Gcd8XIGwjSjWs1vPiJdruth83eu/xNlaEgQlJir3U376cq39BKtzvYqz+sLnlt+n2kYoNlb8kAiSfDGiIbMsCxgjXUdVq9KVzpQvGD+lBIwMxmrcomMYNc4ru8UYg4kXQdwnn6HYwZSi6gHGYrywSKns6mrnGkdI0lz2eKrvkX+R+Vtv9zIharGi/aWsHNG6NZWlc7EWN/FJaSJUfLyS8KmMnyJqnbejZraNDMu7iu+sfyW7iMmObKRhU7ZeABWbMFYF7PWINGQpuXYCXDtl3mIs3mcaL3a3bRytlj73bUPbSIOM3aB7s21qUx2rIGvxb4svaK1FCYTrs1SfqR5DdT2g0dHPORj/6MBPyoCxWNdo+b/DqWAcUBerzUnpXbJYvfekVBw/oUPHGHGawVrMTApJmTLSPtb6lpQd85yZpsSyZGKAGNTn3EBjK5i0OdxfIilqjC+K64wF48F4UrbEZElaXwgSmAnitxEO1t9VQonq/miwZrQVo1lFjUE2aYgSpBkjjp61VjdN6dqQC+9Uuouok/yaVyZX9PrScG7GTU8SYwyuOCMx4hAdhNZ7Hg4HlmnCZNjvdqSUatcWqY+U98xkliVwOp1Z5oU09HinGa8Cc+ohoOEjdmM6cjaQpUY9Z2orYm9U6NA78JasnbxiVpZSRiRmlOodtVNDDCLGPI0TyyLdp9q2xTqhhHZ9TwgLp65lPI/M08Q0jjBOZCAsUoInmZSggrvrYfBisD8a5Ve9qlG1KiDa0A49rnEcrq7Z7w+SOTZgiqO7cfZKoF6clWJzhL4pf8JJ/cB6uKk3JBmtTGnrXsqrQpiIy6yaJRMpTKtzVdA6UxgElpSk25i1iHq+LUFmwNa+jeKYG2fZ3V3D/DXzPPHt/Qeenp54XiJTLIAeGFJ12tZyUqHN25gVdBWsvQCAK7MnX7R6jDESFfAoHYdeb/rUWS9/O8uiFcBM9JCk3bepGjAgZXUP9w9M48S7d+/48OGetmnZ7/fakU47Kl2gSdTgZuuor6wd6RBVRMsrsLsJLpYlSKetab4ENXSaSrCVi6NuLbvdDu8bcs6MpzNLCDw/PfGopWp91zH0gzCVNOhMKWmpm4g15pxqYPQHX7/AZswpaev6kePpyKJdkoqorXdSgldKd3KOpJCZzyeeH+4ZzyfmcaHxDmN67u5u+c1vfsPV9TVfffklh8OBvu+YpjNPT4+Mo7A3StDdtg3X19cMw8D+sKcpLd+dxXlxYn1b9IGMCrrK2WTdKs7qfavBi4Jw9vL8rNRl30pAbWUPZ4QOP88jLmXaXoNbI2VexrdYH/BNR9N2NNq9rW28nK0FHEh/W77Pa14WXIfsSgkSMyLQD2hZm4gvmuaKZv8F3XCF73YYK26Y7ImFnBPWLGQixkQypRxAtJjaRvS3utbTd8LG7LpOWVpWg72mCtbWGMkoy7UCbaVcNZJSALJm9LXsDiiti3f7HXd3t8pCi7VzXFQRfMj03UDbdsSoYpZBmEE311d8/uaO/WHP+Xzim2+/JaXEOJ9Zwsxu2LGExPPTs5Z1Djgn673rO9UOAi85CQFLwlzF6l/zMsZULaychaVjjNH25lHWaoqYvHaXLGWrJZAqryuBZNFQK626jbEsYeH5+EzTeMZp1ODfYZPDJaf+XmIJ8jO8x2njiyK+f5GMqUkzLwybmDidzzwfT/zw7h1//Te/Y55nQopasiSCttIJ14idbZpaBhqjgO/fv3vPNM3sdj3jNDFOM8fTM8fTWcSgrVX/dV0vxiDBZalcZyPsWvyoFCFp6Xz8dDLhD5lD5ztCSMxTJISFpmm0qYsT8XUTydqiOQZh/8QlsEyTgl/SeEQ0Ulzt5GaTwRrxEyzCQlumWQIudYIs2jXJGFJMTHMgikIrw76niHKdYyAGx84afNfjvBNt0CWxLAljG7phT8bRd88MjSWajI1ZgpgsAtneigj42/3AXdtxuL7ii88/583dZzStp2la6XCqrPWSFEmqRRqz1l8Y0SRZhctlDwgwqRpw1oveXtvSdl0Fzn4pH7UkwDekOl4CPtvXrr/zokwKBNDEsCbk5CcraKrAvZYXt/2AsSIGPk8jkz3LWR0W7h/ucd4TyWQrzIy+G+j7s4pfu7pHJadqKoBREh8xOlxwFGaHK5UvdlHwlxVUzuUZ1AdLK1BQWLxiu7xULmRLTlbjHynHqwz1KGdMLudNShVkqwzeV7pyzqJrZqiiw9YmXBZ/PWVDyBqn2YY2KchyMa8ynoIb2No0p2jMWbOWelWwiBpVXcpPVfxwA/w5C05YlkntaE4Ju5yJs1MwJmCz6uXajHHS0dS6TNOKvY0sYGa6xnO+OpBCxDnHzfUVV/sdbdvw5Wc33F4f8M6y6wX8kcqYmRQFy4hhVga8ozUNWIfNnmwacEXCAjn/bFa2kjKmjftEouHj648O/BQku9TsSRekFqtZirKgC3K6io96jIkiVtiIjkCMAWNdDbiMnYSmWhxGK3VwS4BlyYSwtui0K5jIBfpbTuyLm4b66oufl41iycaRs5SWpSRlZkaRZVe7Uq0fGViiAAomiyK/qXBlMWAqiCpHJ1FpfYJylmBcqZlkVvHMjRF77bTYZo5WcGU1/HlFssoIyRjnTOM8i5fOLM9PT6QYaduOSdtM+8YLI8N7BY8k8xRjFL0Lzf7HLmG8lgso+LPm3NZdbopBQcv+8iZzZpD30Ba8WY2xHIaqmK542jarV4Rol2UhLEHvWwWQrRXgZ1ko5SdSd99UcKR2SFKUPldnoYxWHWjKcvjFLsNa0K+HTz/0NG3LsNsxDAN9P2jnpEU+V9CndLsSx1G168T46FyUc7eAeAV8g604Xaotwkvr9TCPEtzGmRRE/0VKuYp4qNa26pzGmGsmw2YLRsBQq+Cj7iaMNXSHHS694Xw+w+nIOSbOMbEk1VTarOuVnSVgTwF05Llkv73MXG4/UtEESLl2JHjt+XNWM4SpkD5TzQIZ63CNlNHklDQTLBoyx+ORaZp4enri6emJ/W6HtZbDfl+z9lVzqjgsxlwwdbafS6lX3RuhBEVrG0/pHrNc6GJs32fL+Gu8BF9D32OdZxwnpnliVm2a4/Mzzjl6FZKWdtcK/OSVORS1bS+/UFbyNa6MtJOVstGRaRoFYNYyEmM91jc438heSolEJMwj5+MT5+ORmFWw0DkOB+kAeXN7y5u7O3a9lEaRM+fzUbpQjGfRJCGrlspeGUIDTdMok8PVUiXnHKUdsnTuKRnsRh0xq2Up7sK5fXmWFjp8ShJUFdZPilHK2pA1KonXkvH2Wu7V4Ju2MkwK86ToGKR/e6iPPKcVwFTOOwWOY1R76LB4jG0wfocfbvG7W+nSYaTzUymtyjmRTQAbKYy7sgdLtyXvnYqZt9qlraNt+6rpY2uWvxzEiZqlh1qKBSXLKIFkdn7d9xsAtu87rq4OtG3D8fnE6XTGOVvLO2MMNG27Oesi4Gkbz2E3cHN9Rdt1zNPE+/fviSlyOh+Zl5lhGPC+YVkCzjX0/U7LeBt2ux1t2+KcoW8t3kmgnlIkp9cHftCAwhg5W2wsHVo2SYSUyMaoHtwKbBeNn9IJamVnafmPsXUPhRg5n8+0bSsd+HRurJPEoU2Q1CZkRO9HWpSDT2ml85fzLWvnMWOwVsCdaZ45jyP3j098/8M7lrBIl1XvFGxNlXHS9VJGmVJimkbVXYOHh0ce7h/Y73dSVuE943jmPE6EmHDl3EQD7zXDUx3d6hvq+XqhEZcSJm3W6etMIs55Yggsy8w8S4evDu3ylTPg1bfM9YwKWsJfyvQLr6ZWJVhhzlkTScq6iWEhhkX9HA2e1e+ggCsKlBpraftWJQYMc5TW8ckYnAL7YZYzK8aMMZ6m7YlJylpaL92Ecsxa+lsURz3WObrDnubqiv3VFbc3t1xdXUvJmivJunUOcl6FnQvwI6Kx4g8W9izoereFMWiV/dfgNUF0KRL8utcK5lyCPS+Bwm0Z18XXbJqLZP2fgcKszBrbFabPtsLEN60mWkSkPqhe4hIjUUvlrfc4PS8X9W1EokOau1hjtMvvphxJbUn2npgEyBU/UQF+fYYtUFqfuYSpm4qBpHpVYmPKFsxsmd8x61mSSrfQosulXXSNqeymV71yYTMbBdEhZav+uSUmCLoWXdF9rJNa5lYSyBkVwVdgvjQ7KudaYVhtAb+XwM8aJSoACpCMdErIiVjGXsdNpD5EcsbmQMqZxoCxYveMBRcyIWXmaAlZRKSvdhIHeu/54u0tt7c3tK3nzc0VV4dBnskoGIfEnElJLEGlD5wHnyBnhZKNA1P8hZKIL6x3XeVWMYnfc/3RgR9TDr9KC9/cZC6LdVNPuxWekjdQNFqyImWTF62SbB1t1zMMB9q2p+sG0QmwIiANGyrlJ65Kny1nUfWBNuCG2WgJbBaddYV+bXEGvAbFhZ2lvmwN6E0BasjVP75YtNV3LuRx/fvVWVtrVEsbbmMKVbm0X319YdNtKUgxnp/C/Lf3DJfdf1aGhHYYqt0LSk2l0maNZIWWRbLTS1gIUbOTpZoPrRPV+0qadTFyslNaWackhxwKlSUUHNKfZ5O0K5se3skUDV9hAm0CyhLkklkz3nLiV0O6PutmLfMxvbkuObM6QOuPdWRfO2a9mJwVpbOlLrig5+UefqQ0ra4BXorvyeSllIhlXbK+Ze1IUACg0lVLa+9L/fxa26sB4Kakp+zlyhxBAB9zuckUQ8vkEIhFeBJZCyLjVsrNtvOy7kl5zpdAhXysjpQeyj8CAsHlnL/WJeusCGKnyt0u5TLF0Sl+eDFsMUVMNKtW1TQTlnAhVF33oU7ep5ytSxr2Olbls+yXlf3zkt7/8j1rQKDMoePxhHOOeVkZPCmmWvddnSwr4pMFdEpxzYjJvb5wUP8egUA5Z8IidfqxlnnFF+O0vrYA/TLHKu5tLdZLdkho/tLJy3lHTFGBpYnzeeR8PitLzl2U6mzLdbadMkqpVy3DtlQ2qnVeGLalnbU+k7rRrAtPgiYqG6iUIakTXO3i2lmPvDrmsApg2gtK/S+Q3Pg7XDkLuyez6dyZEkHn0ZNx2WIQ501smQA+i+ozhDAyT0ekMUCm8SK43Hq/JpQqSFoCnG1J/PZ+VswtVzvFZRQuP1zZgLYEFOq3mBWMbZuWYRiw1rHb7djtpEnBMi+V/dM0BfgBsshRNt5rm2qP0yTdMs+EGJnGiXEeyRken54k2PINyxJpmk5Z3sIE9s6Se0/TWOISGc+jnL+vfBX/SZKPq65EKdXLOnZlrb70Z0qCqJQdvixfL0BITLGW2241z16yKaMCdLUDWEqsibdLwKSATjFGzucTDw8PPCrDr3SGkucRJn3nPK0Gu85L97ecRWy/sLnOxyPTOGKMZVkWTqcz0zwKk+1i3/34Hixsghr4Fv9qc9+v7d8U1tOySLJBknPKfkmQwwxJJBOsk/KpHBNRy5fWhFF5NE181PN+1fwom608R7ZFL4Vqz9LmHMaIvxFSxGiHqKRs//N55OlZ2O3394/cPzwyjZPYbA0Is/q0FvDWSmcHJ1UOUu4pNrnYSGOS+MNG7GXRoSkukty22uHqIxSb6/BOgKXC9pFGGmKLY0yiGxbTyyn4wy9TfAw2Nj6/+PeLX3kBAH3iBfpJ9CULaFCezdiS4NATTDsMWisltOJzCmCZc66JrpwzzvkqZ2HK37dGWSRiO6za4G18kABb7Yjco6jC6RhQGJqrDs+2U1gpEyo+aXXtN35nTSC8uF5GIWup2+tcGdaSUE0AWjJJxcNTks7XSV/38hbXOLs8z3aON2Bdeb3Gz9X+6niKpdzE7Zm1cMeU0VZtLufBRKxryH4hK5tGWH6acjZgckb6RYvtcF4APp8cXdswKFu161q6rqHRrtVlfWAu90yxLbXKIAmrKLH6FOXmiw2StVGkViyFLPH7rj8q8GOMFSV0iTCpTl8SRDLFQFjmql2wLKOK3+ZVRLZxNG1f29UGpRV3XU/rpePV3d1XfPHFn9F1O7788jcc9nf0/YHG9+QkrbxtqeUoMeLWZS0HvHZyko0mCxdjMK0pGJIYxLbFty3d0LE7dPjZ0MTAkkJ9T9mIxXFfN0PKRVTRUrWrSbUjhrMGXxTIbSkzYQVJEMpuUkVy50UE2hhDDElbcb7udRkYqmOpHs1aiylPbc26eQtbZvsxTRPH01HRYEvf78h57ZRgMlLysEiXlxQjzljdRB7vWoxRYEadJBEn1JraEDBBDstlWViSlH2IEC8Yk0jTTDYnMlQhboPBGY8TCbtKj57nmcfHRz58uJdxT4m+78k50+ohP44jj/f3ElRvPi4C0mKg1SjZF+Mrn18f77m4jMxdyomYpUbYty1tP+C1o0XSoCCGorWzspQksAcB4QzkYoRX0CTmxJKKMK2g4QaqaGBOiXmZmKdRqPJxIUXpUOCcxbeDOs+NZOuMxTd9LROJKTEvszgiJlD0MmotrAJLBdyL5yNpnjgvM8cUOSY4aVeLGEIFMqxRgUoFozBZS720s2DJ+MVUadSlNjdtdGxiisTEL1TqJZ0KALLqIaW4aBevSDaFuVMcfmUQZljmmWgDz8cjHz58qEH/2zdvaJTyX7somjVLtW3NXhyrl+DPCvgEzucT9/cPHI/PnE6nygL6sVhd6MATBvj2m2/pWumYYQqzMmeWmJTl4xn6nmE3aMZtltK9pyfGSQLDuMlo1Yf/e3alGHl8+qBaHM8rI6oQD8taiglLhKz6YWnBGmnl3fQ9/eEG33R88eUXfPHll9zc3NL1PefxxDid+eHd9/z13/wVx+dnno/PDIOU5lxfXXN9dc2w27Hb7UQ4uWlxml2TwFDKiyQzqIxaU7RlnAJQCRR4NcbLXhR0CPRr5xtSI0L+RlmSGbQ8Rhg/cZmJCoaUANcYi/MNTdsru6Wla1qaZlZxxxUM+dT1KYDyVecwJZ6Pz+QspRMZYYTMQQDuftdw03a0Zk92e2yzw7U7pvHI88MHQpg4nx55eviBJUzshp6rK+mslm52DO0NufPE2Cg4IR1BnbeqLbECaNSMlalJtJLdvWgtrKB9DDNzjhWgsK5RQMkrqOp58+Ytu92eZVkY+h031zdM08z333/P+/f3DH3H7+5uuXp/LSyIpSHFiZvrAzdXe64Oe8AwTRPn08i8zHx4uOd4PuF9w4f3H8SHa1uurm4Zhh3ee4bdnrZp6buGu5s9Q98yTxOPj0/brl6vdhnWMnqjelNFeF5iD8nOStC3Yfuof1EAI+eFcu+8o2katXlWS6yE7XN/f0+MgafnJ6Z5Zg5LrWnJCCtomiZSzviuo1URWZzFhkb0QsrCB+Ii3ZpOxyO//e1f8s//n/8pz8/P/M3vfsc4CXOo20kJS9N4rm9uOVxd45uG27s7rq5uxCfQdXI6HvkX/79/wX/5l38JZO4fn3k+nkg5Ms3nFcgpgbKhrj6JtxRUciLI2nUtNgbmHAk5/WL7MaXMOM6cThP3D0+M5xnrGob+wPXtNfN04nhMhDDRWEvbCLA3+zMmB2IwNI0TUfXSDaloQKZMWKQsI4ZF7LAmxko5UknECBM2SreskDCNre81xsByOuND5Oo8cZoXyAv/5rd/zb/513/F+Tzy3Tff8t233xGXhTieieOo72shy/43ux7fd8I86Q80/V4+mh5vO+le5DLOSgzVtp3usxFj3Cc1fnJWLSHr6dqB3e4g5V3dTliXbS/v7zvm+cT77z9wOp5+kblcS73Mxfc+BWJsS7y2a6tyvrVUqACmmYSxiabt6Hc7jDOcztI4IcYIJIzqnjVdR6/+3Tiemc7SaMSdThgtPwpBmTfOEduWLncCFqomqbHaacuIMHvRFjZACOIfGiMMIUpXLyuyFykm5unEMk0qOSHAbBE7Fs21tbJEQL1ELqLSJdVdxm0DgGW2zVZ+Rkuov8UlyXqJLZagJbCq72OMIaq4eMrgfNzISFzO65qI2Cak2b5o1QC6eL7NS9iuIaj61c5ALk1njPglOUlSyzcC3saFHAOZjEsZryCVixkftRlHMiwp0zYerGG/H3Dec3dzw9XhgHOWvmtlfgEFF0gmSYyQpCJpWiJhCbhscTFBErBcmlPLhk2mdDg3InFhoJTH/71j/JTMggArKq2UVKMmS2u6uMxa9zsTw6yUXrWv8ph438rmVHpbzhnXOJrOY43j9vYtX3z+K4bhwN3t5/T9gbbdYW1LTka0W1yFnVCU4qMrZ4RWmTNZgztMFj2YrMCGdZItaRrputU1GCtaID5u2Bq6kGNUwMcYbIrSbpKVFixCuBZs0qyr1PZbW6Sq10y5GGgt7VBt9OJ0AKI98zMWwd/2Wmlmm3vZQhTWKOhT9IrWMhFjTK2LF2cpMI7SZrZtO9EwstLRo9z7sgRmpQl65xj6juAle5MbcX5iTIRU22XVVIaNCaudGkIIhJyr0bVK+YlLIDIK8LNkliD32bgWr/oLUWnJ0zRxOp15fn6uDnXRRMnF8dEgQ0pNgpa9aGBeGU2IkTJbNpesxV+CGfKjlyLv0slByr2E4ur1WVbHVmihxamR+62dLbKRHn0F+NHnKSAuWTq5ZS+HXkpRy3BKF6qZnCM5BQlsyTS+o2k6zS410kHPWIwVZgPWCrAUAyYZLBZjoh7rels5k2pL80iaRnKYmcLClBITMGWEaqmMFNFrMpqF0bazutdEbZ+qol/KuXIutNwNm22T7Us/E4n/215Ws4c5RXIMCpQXtkgRxNap3mTNgnahG8eR5+Mzfd9zdbj6qHSBkv3Ml07VNqu2zY7XMdf3mOeZ0+nI8XjUspA1W/0pvz+lSFgkaL3/8KGWHTVtR9O0GGvr141vBADQFvQxBk6nE+fzWcuk4soGM+rs/f3DfUgpcj4dpVxuKkwGA6Z0NMqbNSaADzlCCliklLjvGq6vr2j7gdvbW25vb7m+uZU5mCZiijw+PvDu3Q88Pz+zLFJmC4Zh2MlHP9B3HV7H3PkGr1oxztsK/Fjf4gog5KTzJGSIM6TiaBp1ROQ5UJaBKeLD5UPP71zOf7vaSlOAywL82MJOavDO13Ivu83O61//Y18pSUCQMgTVDgkxM82qZWYj+9TgTUc2HdZ1WN8R0zPH4yPTeOTp8R3vv/9r5vnM1fU1Kb6l6zraBuZ5h3PrGWo0i+ysMIwFmFVAvnxWxkFlaxY2oKYPjXbKSTGypEVEYn1HE6NQ2L1RYVg4HKTleAgBaxxd2zGOU93nxsJ+f2AYBmL0skSDZT/07PQjxMRpPHI6jUzzzMP9A4/PT1hr+fDhvpas3d0JyOR9w24n3eaGviPONxx2A+M48v79e04afL3qZYrWGBX48Vp2CmrbtESqPPtWzy0l0aN0rCWSwqaLMh+atZfOis8Yg9irIGwOU/TIUKZzWDuZhbBoJyxhiVhY2a9ZwNNlnhnHM99+9x3/8r/4LzgdjxyPz8yFiWAtTdvSdR1v3n7GF198QdcPfPWrX/HZZ58r+Cc76P7+nufnI+/ff2BZZo5HYQ8ZA21rcJ41YHzByIBNIG5tLU9MBqzqVP4o+v8HXjln5iUyjgvH48jpOHJ1fUPT9uz311hrGKejlFM4R+NUJ4TEMnuMJp2KsPh6r8r2CHLOJhEnkix7yqUlvSSEiGsCJIpek/MZI5KHWvY84XNmnGemRZKC337/jn/5L/81x+OJb7/5ju++/Y6cEjsHOy9+NbbBWGH39MaTmx00HtsO+KbHNz3Otcr6sTibcDbjnJTKNo2UaYl9ZS1BN6VYXIAfsDRNS98NWOfxbYd1Db6RlvPWelKEp8dn7j/cv/o8FqaY3Fqxbx+vmeJvvwQSX5Z8SYylyYjia2PwvqHpejIZ37SVKVXmkpxpfEPukmo2TQJi5IQbR9GdUd/Uu1Wrx5Wy5/KRjXaClvtLUIGfrD5mZXHakkQvXRllfczzpPZgIoalivs7V4CLggXLukwqSJxNSbYVB0j+lhwBRUH4R0CVP/CShKkhJAF8hHmhMVLKLFEYLd2GlVjHvt4rL+Z4e5+mJtHZfObiFR9/R80m2/hfOkJrubMp4L+UYYk2UsZmAX8SYELCxoTzkXZeaOeF5DPOe3a7jHOO66srlVIwtSwdqOezqIWZCv6Itlskm0iI4IoOl8YYKKOwruICopuk4/r3DPiBgjCWcRZjmlCHhDXDXstAquNn6udCszSG2nVo6Aaudgca3/D555/x2edvGPo9V4eD1ARqjWWhmxXmjdiANZC9OIzyWspRsvm8QJtLqUGjmghN48hJBThVWCuXFZYVWExIuZgRimkN/I3ZqOevcMDWeJTM3nYEJUtzST8WXY018Hmtq4xHsR9ZLVdxvWtZQHHGC8tJD0HgIrjcUpyLeHKwQQIEFXOMSyAskt1rVNug0U4hXVvai0bN7ssfLeNotQ6dlATgKYKQIZCXBaLRFqMiUhk2jJ/kM8kpq0rbXxax5mma5L4tMr9s8L2stdebsqQthXJb/lPHlXIAbCPTlfnzS1wX5VJax+x8Q6PZ/kKzrfeSyz4tgYUGFWSwhpjEaSxN0kApqaWm34jNlwxOrGtV7gVBzkyh9m6E9vTz2qnG1HVVtGOMMZq5UINYgaksRjso8KOCtrF+/LQ4YXn+lyVK689zvZcyRuv3ys+3r3ndawWYSonM5b2XgNoYFW5kvSfZk4FlLiUHy2Y/rllLKL5BXvV/uDxot+OzLX0ozJ+SHb+8PoW2r+BpAYWbJgrYr0LCXdvSdH1tt5vUnoQg93weRVS9dg3M6aP5/dFmpf8WrpxRttZaarcyJ7frXc69tbRvPRuscyK42XY0bVO7O4UYOI/jRixaxso6S2/FdnZdtwFRLsu16nlYHFIN5NYSI+12g9rBkpGr9c1r567tx0tKeW3/beO6Pl/OWnWKpVzBblrgUu/ip8b5F0T9jJbQZDBx0062PGcpcatgnujiLGFmnkem6UxOka5r8A72Q89+P9B1HX3bXjB6ik2toIsBE82mTMWqY2guztjKSNRANdeORxlr9CzbJCQuHs9A1sDEN56u6wDo+55h2DEvgb7vaNoWGyDlhURQjQxh8pXyCHk/ESLtu04SDk78uMZ7Cbb1aSVBEAjBSlcqa5mmWezJL1FeUq5cAqiiy6Ndt/Ss+Mje6XiWc6AwI4seStOolp12rCxJr3lemDesYGelfMeormXTNAo+rd2CQPZLQv0tpNxgHCeeHh54fHzk+fmZ8+kkjSSUhdB4z+Fwxdu3b+n6njdv33D35g1d10lwst9XoEMSV5Hb2zvefvYZ4/kkJV7HZ/HJkq3JkG1nL1l3eV2ndSyV1Z7XsSnPU9hCrzd3BXAJ0ohjku6VQdmm8xw4nUbG8YR3nr6RBHJYhGksJixfnH/rW2t7bhXU3bZ0375G9pyWr6QVMGSJWu8jgV0kMk8zp+OZlBLTOAv7I0pit4D/2SAl85TyVrWD3uMa0Zlp+57hsKPfDfjWV/+53BO5JIa9CuPK+krGYJY1boiqubiEwDzLGjU2sQQwNsC48DwljGt4fHjkhx/e8XD/8IoTuF7FBzUl0GEFerZfv0xGXTB+tj/Xz5mVWWKMUTHmbYmc2+xpAXZL101hb8s5uoTIPAeSzzTzzDRNuMLWURC5SFqUREbO0oHWpYxz8nBmc69l3VljyE7Ag60Mxk+dYzUGTEbP4/LGrEDBduzkj8q/S7zxB8/a5f2Ij2opWo+SMRU7qaGZft762FsAWR/gxb1/+jIffb09ysqX+ROvpmACIFwajTvIBmtVD43CVsraoEKTolk6UXrfkHLGWBGpdqpDKHIgrLauxuhJteIEHE6xNIJJmCJ5o7HxZYz/I6y3T/lNn7j+uMCPUQo4BakqjJhMzrFqEYi6dRTB0rIxFVF1FkgzKUa8NfjdAWsMv/7Vr/lH//Df5XA48PbNl3z11W9o254wOebRA4LgLyFiZ4PxhuZi2vOLz2iGXzZ/mANhkiy5bQx+kMC461oOhwM5Ba4Pe673OyZvOY8ZM5fM+xpgS9tIWTw+Z2KWuuGYwUb969XXvgR8vLc0fktVhJgMS14P2hCKgKoETcu8vPIkboLBgpeayzp2Z522FMzaISHX0i4QZ7EYyFLuk5N0kzidzzTLQts2kFuMMZyOTzw93BNj5F3b0GvHmf1uz+FwhXNS8hM3IIJknGWOfRYWiqp8Ywy4GHDzSMYwk5l1LRYjZIyh9S2tb0k5CxV7EW2f777/ng8fPohY8DBo+SKV8RNixDpL23W1O8YqVp5rZ7FKluHSAF1s6Et86NUu2VOSLY/KGMNaht2Bw/Ud/bCvgUwJMlf0Upkw6pRnRZxjFX+VEiRDYfEJ4ydZCLag88UgS/2x124bOQr/yIB2dpFONcY1GNdQ9pFqG5JzkIDfrAwzyMIcUsZKnidyWKCAPDkzx8gcI1OMzCkSyBvG1joPle2kzqQ43itYewFevtDHeflxgcq8wpVTliAoCrBSRCrReyMnlmUGzT41XrRYqqZHhvE8cv9wjzGGm+trpnmm1zkVoCYrmz3XRVo0rco62jr9L8GeaZo5nU6cTicRKv1Jp4XqoKSUeH5+JqYkHYt2e66urmjahsPVNbvdAYCYAufzmRQjp/OJaZ4Yz2fev3/P09OTCC7Oyy8y/q91pZw4n0/CdgpFXFT0TqwTQEaCxYBJQjkmixaWdeLID8PAzc0tw/7A1fUN/bCjbTuenp745pvfcT6f+eGHH1QbJbI/XHFzc0vTtNze3rBXEd1S2iV7VPZU6Q4pDRMs3jU4366JCy0/Ntpt02AwrsVYLeumgEMSuKwf8l/OWbSNUsRnQwqL7N1UqL6SyXTOKRup3YBcrXaB/JhBtjpxm9r+X+iy1jEMV8whESYF8Aqo4jLOtTReSugMME1nMIbnp3vev/+O8+mJ/dDw1Zef0zaOm5trvvjiM9quFTDAa4qslMGbjLMwe8n2OutEZNZYUtNCmyhssQK8z7MIpGd1NpOKIxc9SGc9XZ8UnCrdQWQUVyfcChvHeSltAvph4Or+nv/yr37Lt99eE5aZ5WxYZgEVQ4g8H6WUupRNtU3D3c0Nh/1esbFSZiagknfCDI3LTA6BHBc+5MixlTKMaZ6I4fXFnQWETXXNS+mFrxpYEq8sF3audBEsjN7Ge8n8e0c/9FxdXdF1HcfjkfE8Vmbi49MTMUYeHh+5f3jAOmFIXR12OOsY9jtsI8zbRsvgpFNbFrtuLa1phUkTEt98+zv+1b/8lzw+PPAv/9W/4m+++YZlWdjtB3bDwG6/5x/9e/8e/+Sf/hOGYeDN28+4vbtTcfcDw26gChkby93dkfM4cnN7y/v37/iP/+P/O99+9y3GZLJ1JNXEKKBePXezzEsujTdyUjZXCyHQxiiMWmdw3mI2Hcpe40o5cx4nno8nPtw/8PhwZLc/8Px0Yrcfef/+gd/+9m94enqg71qudlJW2PhM12acK0xaQXBNVoqGgRAWzqcjYZmYpnNlEpcyd1lDuQbqMURiSMQgjSvSWTu4dRbbe6ILvHfvWGbpdPn+h3umMRIWMLalG670/SNzlgRO61qcb7GNp9kN9Fd7+qHjs199wedffkY/9Fzf7mkaMEZL3PV+mrZlf7himSLXNzfc3d5wnGbu5wfCuLCEyPF0pn1sscbw/v09nReh8yVIomycA++fRk6TlBX+8M13nJ6fX23+tlepgkipqt5QOszK158AewqQYthoGqHacmuCNWvSTDohytrv+4GuHSBn5unMHEZSjMzTJFpZIXI6nzmdlXkTM9MccNYxjgun0yglPX1P33cKZjcqSGxoO0nM2A1zuWYq81rqVZoptG0nYIJKGsRUBJtZY64yWMpMiTlJpzG8AoXbZE39U+QsBWBSo2g2QO3r+UkZmEMkG4OPcU2SazIuZcFCM4YlxBVYq8xwOX+s3SaMfuRvZerzfeplW5Drk/GWMRhs/X3r5LzLZLJrsEosqD5/yiQTSCbgbKLrEzGXntLyF6y1dG23VoVo0k70KLUzZlg4jwvzuKi2ZSAsAZ8tzRKwfhE7q2dMTpqcU59cZGKsTpsGRr/n+rfC+IEV9LnInmhbUXm4VOudBUxQhNtAToFskjiAjWyML7/8kn/8j/8xd3d33N295YvPv6JpWt7/MPLd706EIIKgMSSCizRRlLI/Wh+CSMmXBbmPWdt4S5u9NrY1i+F9Q993hLlnGDp2fYczmRRnQhDKd0aokwUuiRo1uig1xCRqlzF54DJWK0IoY2CUVl9CcAlWEY3hKj4co9QISqed1wZ+qGNTL0NlVFljcUYO8pxEJf1lAD3P80ftnnMWVs2sWWnINE66l53PZx4eHkQxX4EFay3XV1fc3t7inKslNZlC1RbHsbGOVlvYupQEpQVMDNhFWrCPITBpx4y1k4OhazvapiWnzOk8Cfgzzzzc3/P4+CitQY3BaCv4AtqlJGut8dLFzG0z03mz3i826Kc36y8Zqlo9BVPOBe2i7Xv63Z6262unPTJUcbgNkCFzWoAfqcOWNUBdw1k7vkgWbqWibteyoXSnsqSsXGhM7eZjrdsAP9QSsWKEs4qkydrQjEmcIapmwjzBMgnE5DzZOEKKLCmx5EQoWUuz7iugouqVVqlr2JhVqLqIoa4AT5m3crrqOfoLgA6ZzFLLCFex7ApKaXYyY8BlvBWbVzTTyl48HU80vlHR36Xq4lzOtTjzpX38R/eyWRNrFkMOtmmSTFj4WYGa0s2TMHeWEBiGgZwzw9BLdvr6mqura2KMPD4+MmqpxOPjI8fjM+M48vT0zPk8imhy6Z739xP3ISt1uzAycs7g2GQhDZlVpwUFNXPOtZykaVvpzHU4MAw76bDUNCwh8OHDPc/PTzw+PtW21G3Tcnd3R9f17Hc7uq4XAV63tgMt4I8A+5IFLWybmtVU7QBxqhxQEgAe6UBR3qm+4+V/6ohFBf6NcTXQKaBPmTir4+G8ls80vjJ+a5LkjzZrl5cxlqbpSUTMbADRNZDMX8bapgqIAoRlxhjDeH7m+emB0/GBXfeGu7vPOewGbm+v+fLLz2nbhmWZGEcRfUbZItZAdEY1ES1JhZPLGBQx7q0of9x0LSqduGRclcnji8u1lu+83OrGWC0/a1RDS0ubnOXm+prDfscyO0YWnBEQJKbEOE2gfpA1BquMg+Kgl56EkmX1dV2kEMSVjYHnFAQE5ZfdyjkLY7iCnq60Y3fYIuC9ZVEVJlUJCBCxde+8imJLt7VpmrUza2CaZ07nMwY4nU4cTye6vqNpBHSxztFZS9M2Apd6j/GyvxKi62iSJXmv95z48OGe3/72t9zf3/O7b77h/YcPpJRoO2m9vd/v+fWvf8U/+Sf/hH4YuLmVzk/SedRrhzmjrAfPbn/gfD7R9x3ffPMN/5//7/+bJWhjDW0a532sZfDkXEuNUTDRWElsljbMCSnX9ylhXWFF1yzQq1wpZ+ZlYRwnnp9PPD0983w8ch4npmnh6fnE99+/48OH9+yGnvnmirZp2O88bdOpnctqc7e+rqklWst0Fq0fTS6Vn5f1sz0HU8ykkIlJdQ2NwcUOnweMSzyZzLhMpJR5ejqxzIkYwBgvNiVLi+clLgoMNBjfYLwX7addT7fruX5zw9uvPqNtW3b7HmmOW0AoFZn3DW030A8Tu92O/X5HshZrnymC2NO0cD6PtN7x/HTiqe+0THNmXiKPxzP/5q+/4/3jM9N55PHd+6p586pXiX9YP//oS18AP/V7di3Xqw2FYPXDU1bbLVqhje/wTatM6Ek7rIWNEHtkWmameZEzK2WWRRlj2kXOWss8T8xzVzV4SpfSru9F68o6uj4Su3gBRJUEh3OreHbTyBrbisCX51zZciVxHbWCxpAsWCMJVbHpOqjr8IIR8enVpr2ubc25aGMmqaSwxU9cE+0hSYwcVedofcb1TrYVP5/+Ox//+4Lp8xPr5yWLqDCzjALgGci2sK3BxKgEjoTNwvixJuGbRKdU8m2lh3dr6WCM1DMixsSyCCFiXgLTIt145yBdALONmtBV4FY/Z5uxScvfsrLXrMaTiZ9lS//IwE+hhmsOzoDJq5hdmVhj7KoxlUuHJGrHmvJebdNxdXVD23bcXN9wuDpwOOwZho62c3hnaVtH22m9tbeU7kOCbJYB0iCHsocUNtS2iTlqmZC27y5aIJWS7xxWu6OIkF+obIqMuMVWnyFZI6V42hnFagbHmiSgFtvSE3Nh/Mp4YMxKPybjVOuk0MFLAFipdb/ETG7u6eWmqoygnC8cz23AuLKZbC3hsNZWIybsJTnoCnsgFIFhdVgL3b2g4+hmkzrmVufGkBTgK+JfxaQIBVGdBGUjxCiGyhjD5Ee8E6r1WenCy7IwThMhBBwr0PYS+KlI7KbrjKnrWwwxJl2MyUdfb2zf6+MG24MSBe8cvmlp2x7vm82BsmZX5D7KzazUQynTynUMYi0rekmFLuBIOZz1Vz+VuSlZGQyi3bMKwQqIsILHmFJiVoCfRYCfnERLq2xu6zC+xSQJNpJ21diSPPU2KXTgOgrbdb0+TXUOyyt/7Hr1bEpmA/iwGVdzAdqttOZLMAdkrVYB8tqCPa5/AKq+TH32je2Dy4Oz0sU3Ol6ltfuF0/KTo7SZ/819l78RlrVsaRzPFfgZzyfOpzPTNIl4tf7dkiH7twGu/txr2xFIro2tpJTQIvppBWBV0Kc49L5phAFjbQXd5nlmmicViU1Sxuk8fd/Rdz1d39M0zdputjBnjNrTbbnqpsQLXjBstrHP1uHagD6VPl1LFVawprDQCiARY8TYUBmjij6/+P0141n/yvZceqW5+TlXzqINF1TEPeYshKW82siYogAZqv1WmHN930MOXB0O3N3ecrXfcX1zJZpNbcM0eayVtr1N4yXAVpbJEqTbl7W+Jhy2rA02e786kCnpnpSkkFNGS5YBrvO7ebqLZy0BwxZok4BFghxyEtZRDKolYoT+fvH+K+AEaCZYbdfW4daSGwnaLL9k6+jyrEkz4CuIbir4U4KylFwFXre2cB2k1TaWfXrxvLmUIwkQtGw6H0ppqlM/TzsE2SKqr7y5Uhat9ls0g458+HDPw8O9sCDVV+x7Acuvr6/Z7ff0XUfXdbWsrvhFwKb1ca4Mhd1+L6LvXU/TtvVMF22jVTqBvD2HUP+lnNCr71N/nC+s/ateOaO6jtq1chxF7+jpkXmacK6h6wftHCfiurWBzMbfqZkq1gergPj/v703ibE1W9aDvljr73aXmaet5t7r9969fvhZNAJkM2KAEEgWEyMkIxgZCclTmNliwgjJTBATJpZAegMksGhkC4kBQrYACdnGlsE2lhvx/O577zZVdZrM3M3frLWCQUSsf+08p27VvZXnVJ3UH1X75M6de++/idVEfBHxhdr1qXBKGYDQJapt6wiVA+A1+06dxxgC0jiCfAJqBwqV8HsEaRcuwQrVOwOoPJyT8bberLBdrdG0NS6vLnB1dYFu1anv06GuhOwXtjaSg3PCJeKcdR4WyoSmbVCHiMo7ydLmosTae7y8voVzhBCTZCWEiP2xx83+iMOxR1DOmXchdp/B5+v6XafedHUX+LGNYf7bPODOfRHbRyu1f1utQBhyp7vMlUpqx7uZv9QMdSvhFBslYFLQSZ3AzPFC4FymPHMj6joHUh+HMvCQj5Abq9zxJWye5Z8C/Mjls/qzc3mQ0TPIHDkP5N7BW+5F5kZGfPacmZGYsls/d8w7f6hJf/bzTbF1tcD28vO5XPBtAFCZPWb+TblOmffG1gaMbB+bu5OSQ94f9Mt0v4NeJ+taLYHaECJOfY/+NCDECcej2mgpSnAmRCCXl+l5Fs+yP0KFfX/nXb9I3jO5sziXDCixoJUJOIkSQEhc4bUtGWnKKEv7YQAg71Czg4PHo8vH+NGP/gi22x1+44e/hl//9V/DxcUWXdtivVLul4kRBuFuaVuJmMRI4DQbN1x075JzkzKcNExIvZJqHY443h6FHG9doZs6WQS8lzTcacR6vcFueyGZHtOAfjhKdN2mIAPkpHVfSkALB3Is5WSIIEqKugNIrIbCbJAbpwp5rYlXAroEhgsk3ZCYkbSLwBQYU3h3wE/5kBupTiKk5jEp4eF5K/DZGKqqCk1TS1rkaiXlfDompknIvcGMw+GA0+mIaZqkI83tNWKMqL1HXUkUuluv0K3X8FWF3cUlLi6vUPkKqelAjZOMscrDKfH1FKUDRowR17d73O73iDHiqHXxbIaqDIvcmQGYyfB85eGbWjJ+gFxTG0IAgXJUOrcetvrqutaUfQUczgCet030d6A/SFRSEBNZyJp2he3uES4fPRGjkHRMWQRPnUJzZKREL+ZsEKtdIwCpsJm8PeGk8xxgZ04cFLBUA5qdfDgbbqNMmhAAJzxMAlSENxxlKSCBAj8jOE4gMBrn0JBspK7dwK128O6EiM8x9APGfkSKMt84zWSzDsgcGoDWasc5jd0c1sxVdAZqFMb0O9Ihs6QZy/kaYb6V5QAcE8BBuhMCSC7OYJoaa+M4Yq9p2of9Hv0gmW3Z6AKyrgHZ3ErC5HODjDOQNAzSNvx0OuF4lMc0fVX24QyilRtv+d0hBNze3OB4OGAKQQhIb28xTROub6R72DRNuLm+wfF4zNkN32WRbIwJsosX99OyaUhKfL0jbRklrdGbulIy3YjNVkq8NrsL+LrG8XTEOMn9efHiBfb7PeqmxuXVFXzl8fTpczx7/lyIsclwHjGAoXxaVlrlnIOvG1RVo87oWzpFkv1TOkvzH82Fds4DlTiPXtsPy7wKUjrBCUN/xNAfkFJCFwawdjGT8xA+C2s/7bxl/HDOBvVuzq59X6BejAk3+xNCEkLnkOaMRIAxTQOG01H2FOfQng5IMaJ2Hp88/wjMT/BrP/gY/+w//SNcXeyw3qxwdbVDVVc4Hve4ublGCCOmUVq+x3FAjIRpPCno4pXzyqFpWskoctaGXNa0fui1tbdkmI2jZB2tVlv4qgNQAcajZnvDHfNXnlJhRLPoBsCqbXGx3SBMNfqKMDZCEu58jSkwnGP4ai6hcl4bOBTBEHOYLTP83GZ4D2tqkixIX4l9ZedmROjOeYSU4H1QAvm5wUg+32IvEDtHSpR9VWWwMsQoWVAEHA4H3N7eSpfCVYOQIhx7tRUqGMmozDvl9NEM8mmacDz12snrd/F3/u7fxe3NDT777DOEFNE0DZ599BH+yG/9Fi4vL/CD738fj588QdM0YpuYGcxpzthNktXkHeHq6lLK7gE8efYMV1dPMIURw3DAOPVw3he2UbEHmr2XkEE/p+PRQC8HAqJq8ysDAr+8hBBw3N/g9volXnze4A9+/DvoD9cIibHe7tCtt9IJrT9hGkY0FZBCAioh4KXKshypsG04g3DO+8yFiPxXeatTTpOm9li1HsEzODLGMEoScjhi7AlwHh0nrJxkre+PI/bHXrOaWYBeWPZBQlPX+P6nH+OTj56hbRt8/PFTPHv2CE1T48mzJ7h8dHnOsQkCwSvwRECq4RDRtS22uy0uH10AVYXN56/ROQdKjMPNAafjgNf1Hq+u92i7RhqbjEGByojb04BxCvDE6ADUOkZwGO9Rg8arlXKww4CA7I7TnXVJf0JtcacBDMAcZG0WxJYlLn4I2hXqusF2d4nHj59hGE7wnhBCj3EcEMKk9X+AqxzqpoK0Jre1MGmWkJbYBmnUQEQCxNW6NrfSBMg5j/VmjdW4hlW0zIF7yaJ3zmHspGSbXEkcLX6wIy3jgmQCMygnTKjlpj+FM8roU6wkVW6VfECyw42v6/6APGaeS72CBMhTUp9X7daoGf5nQZPiIftLuR8ZWDb78HKsrwMOzX9463ucreF6NAPWMI+j/Lvy/FQgBdMkCSQnXahfEGMCB2lscjiehIJlmvDq9TX2+yOmMOFw2GMYegCMSrm5VpGwuUxY27rC2gWcjcNvBkalrFbO6evsju8940cm50z4KO2X54Uz84rAgXWiI8WcSiodKQgOHpv1Dp98/D1cXT3Cp598imfPnmK7le4XlZdFYFrX2GyBMFnnGS2/YjWyzeku+hpyEviRQ0KaAlJImPoBw+kkKX3jRuvAFdWvhS2/aTusujWIpdOTd6RNVWe0kFkIGCMBFROYGC4K2JMSIdFM5jQ7VjOwwpxA8HN9dAKqJIa493LvkpZyyAR7R5qkmdfnTHhGH81RvpvtA8xtoY3AsFYHwxDSEKUFO3NC3/cYtcxqv7/FixcvxIlUgmAiwvbiArurS9R1g8RSE1/XNSpXIVYMEMNLqxIwGDFOGEPCFAKOpxNub9VhvLnB/vb2jK8EgLbSk/PuVis0bYOKa4kmSTF1RoMNHKiqKrfalYj5HP1LAJgCYhmJyLfw/bgr5oRA062rqkG32mC13qkzKIuuQZech6JFroyrqChDgZg/bKCPd8rPZfawTTir2dYx7gQs5FQi5bKZgrTUhcSZGpWMeP4uNbLZTo/BYQDHCY4Ivq7BtRnfDVy7AUXJBLNUS1YWf1DKa4EYCgRN4BLARJ0eixzN2TD6fuDu/iLnbzfgHoWZMxhpGoV2gXBJuZKMPY9IjYM5uwQQ47jve3jv0SshsnX8sm5JqdDtTCj7puFVZhZYdpzNW+noFX/h2L77l7sgaPndBjBdv36N29sbeX59jcPhkAHcTMD+nubTry6swJrob+7KIOOKqCyNdELcqMBy3TTwKaHtOnTrFVbrNZyWlYxTwOF4wP4g7dsvqkusN5tcLndxsUPbtIhBOgYRkCNYBvD4au5OJFwJZQefUqjYxu8CP2ayKfjqPSgqYKMErxbpIiKEaUCYBpBz2Qhmc7h8NXcF09KzvPRiBggsmqhHfRdKOxPJCp20K4ctISkb0TFKGYBk1/SYhh4EQl0RtheXqCrCxx99hD/0g+/j0dUFulWrtozD/rBC03iM44jbm1cY+lut90+YtIuh99LwgIiyUS/7s89A3aTzMCXpTjmYY1KvIKCLV9vsbd1d7s6hQt86v+q6wnrVYao8CEk6c2rZdVTw2RsAQMJLNKfElx1wzjlfzuF0fqdZP2IbRL2PAlaBZC+3yG09GXcVMphttuVdIaIcBbYuPyBSjocJzhGGccCpP6HvO4yjlNomTvAEKfHKc9LKKwEHOb8hjjidTtgfDvj8iy/we7/3e9jvbwX0ZulQeXF5gU++9ykuLy7w+MkT7HY7yXAogiYWEJDJ5MSucoT1eo2mbXE8nbDbXWC92WIYThinkzhqSkQaU1J4l2e4sADDyJxwmveJlABKCZyzHu5Rjyxg7ND3OB0PONxe49UXn4HDiGa1wfrqMaqmRX/Y4+Z4wjQEhMkXGYaabWXZ5ApwEooSQOWBwt19iqD2vpByt7WDB2EkBmIUAIgHHJjArgI3DVy3QmKgHyf0wyQlPpVDVcn65isPXwFd2+LJs0f43g8+Rte1+OTjp3j+7BHqusZ2t8NqswYAjIPs42CWQLojsQkqD6QKTV2jW7VYb9aYQkJbV2jIISbGcBoQeAAT8Pn1DVjnwhQCQkyWwAIGsKo9mnWXOwm/C5kD35ZZp+v6HdCnfD+MS7L0UdgqIDjrGGCZl3WDlBJW3QqbzQ51XWMcT9jvWzBz7mhZZvBZIxEAygUuDSYIUqI6TeqDVnUuSQ6hwjRWM9kvDBz22uZbg95xyqCXVZCgXWWfy1HZIaqwHzJDv2Wu6RxMs08mJYryfivftrLEMpv9PoQhnaqcgj0uWbaqlVGSFYqftXI/z/55G5hDX/Jcj1uAQMC5nXrXfCmzMA1UtAoAvbsw7ALMOrbkPjvv4QGwc6hhZN5SiouovEksgKnZ2ofDCcM44vX1La6vbzHFgP3hgH7opUNrU6OuPeADQpyrGsrM/fya6toC3pnE6ivkW+D4mTvAQCNikjlgw02yYOQGA8QS93RmRBEVkbS5lto5I3ikbDTY1JaJWiwaFpTQI5pDyomBEMFByYaHEaEXhyWMA8I4wnknaZrJCojmSGlb11h3HYgj1m2Hvu0EwVQARqIBRloJeC/OGcCovGyEkQguzQj3WVbN3YGvRkR+j/2p2M/vP5JyHuWX+3eGWuTjlq+XPAzVHd4bMxIk44Pna3JCWFUpW7qUNMxRs8gsxMEAhqFHfWoQQlAj6iRZQa5GW01ILBs4KaI7ThMGbZHaD0NuAX08HKRVe06Hj8gAJUlL47ptziIq9m9pkFqGQkkCmdO4LYrpCN4yNc7KvgrGdkVcZH2/R13SvKG6qgI0G8mbsW5LjekTd5ZaG3uwOV1kvVjJF0PAW2ftIuWa50yqYoPKz9XvYIA5IgaZxUwV4Cw9Vcq8DIDKZJLlhLbvUuCnajvA1wggpGlCP05nJUhgNaaLTai84hnamQ9k0+sNcGHebxWRfzeuihi3MQOKRARKSblQBACegTozes6z75KWBN19eOcALUUpu6/ZuDYH8zxletbrXOZV1Cj/kinhjJm37HQ6Ca+W1r2LkRVwPB7Q9/3MGaa8I/yWY31n4R8WXdEZqDqXCDmSzMa68mBiMFe5NKbW1GmvhiVUL6NyyAioKbqpvEerZR5NK8SSVVXDIobAXH5DzkqxXGE8z2udnirOBrv9kc2I4nxsFJ83Il8il7loRGbelBgDvJXpGdePTGiUHcXKvZHyw86T8b7at9lcnLuUyH2xjJ8UI2IYEaYKMTeviFJ2t2rQ1A6dkhp7P4OuADJPBADtUOpB0SPFKBmRzPA+IOreaEu2dJWSrCgAGKcxZ6mM44i+H0Dk0HYTQoggMoL4GdidxeyM89KAaZow9D2mcQRHWT0dCZl88n7mhip0NV+ZAg4AIK1OJWCAOb0/2wb6/nKPfJcT2ozqDKIpgGMP+5s9tzboKD5XAnDzeyjP86QE+tM0oe97nE49hlHKyKuqgmfbw5DHuBxghlf6vsd17uR1QN8PGEdp87zZbrHZrLHbXWC322G73aKqKuV2mvcwApRvZ3aKZgxXGqp4X6FtpYMbiOEOHtaVJpd6lTL72vnn+VvUsXoriPzNhCAd49q2xnq9wma7Rl1XWg53RCKPJkS4ivM65UjsEM5ZyUnBbw3YFU6/8x4+eSRbI5PpxgIlUN5OG8dFtrsj6fZDHjXVgKvQrVpstiswA7vtCoftCjFF7WArmSDdqkbb1WibBo8fX2G326Jta7RtI9nsNPMRguc9xLxoC9BZZyrmJPtB16DpG9R1JSCT8vzMQAGQaC7R0auQ7FMiDSLssFtLlz98cXO/uiSZ5+fjZLbN3gr+0NvHFet+NZdLQf1J3ZtIgJCqbsEMtO0aq9UWla8QLJgVJkj2d9GxNgc8i1wU0tJsaHmXbYGmm0Ra8jMpJYSAB3Mws1j7OIF5Jreer1Eyf7OtQPM9sT3cSsnufq+VCUk2VdkF+o2J+s1EbZtc4pW0kxcjjzGzq224cvYfMY/hrDcq9gPkazsHb77q+ZvgDyCzN49werNrVv69sPnPH3pNLKTuQp0g/HbjMGIKAbf7I/aHI8Zxwu3hiP2pFzu2l0x7r8kPCYwmWqdTK9subKhiTWFwLus990K/XN5zVy8haIxqBKUopGXSylacOec8AEGPKRtPEcFJZxNyQszKQVzTphGugqZuckkNiHOLeHKEuvZCuJygJV7QchJVVkyIkxiZ4TggHITJfTj1GI7C3L/fH3A4HOB8hfWjDcZhhNcSn6qSWtmry0t8+vwZ+tMGNSV0Xmtjhwn9JFlL/TRgiNplxjN8MqPfo6qEACsBSCworxB8FuTA9nBOaMcBQSA1z71EoIm5qNm+JxUSzhaT8iEv4myXz2CPdnXw3mO1WqFtGv3dZdJcpwcgCEF01Uiaa4oBKYpjN5xOaJsGYMY49NgfhPSyn0bs+xOqqkJIEu1tmhbhMgAsx69G4TIAIGnvgziMn794iReffYZhHPHiiy/w6uVLySxQQ9k5h67boOtWaJoWjRKpltFmUYPohjEbdOM0ou9POB6PmKYRYZrAmhFkEU/mhDDZRsuQxp22TN8F/O5Jjxp59XWDZr2Br2us1lshhfVewBRZyVAyxUttsWxClsVEsoMI6bqWRklcVhYi5wDHsgHWXghfiVlLE6EGJ6nBz0J4zgnDOGCcJLOHfAfnJd0+FoARp0k5nww4RHY+nINE3LYX2Fw+QmDCi1PE61dSBnRzOGEYRul8x0DlHRKAqQA0ys0ppgRohD3b4JzEONJ5XIJkJTR49pl70qEBmJX38K1FkeRI4nRI3bARrMs6W4JuwKClXiGE3AbY+B+attHa9nk+W3c+c2TMuSlLMiyycToJANv3JyV3Dm86CIXk1cuWaAVfewA/+9nPcDwezzbklOZsQMtimCbpEhi+IrvouyQMFACzGDeOtL07ETw12K46rNpGunYMUho9xYQmSFvn1WYDX9Ug5zGFCcde7snxdABIIsar9RqPHj3CarXGo6tH2G01sjn0YqQyo65qAYC9h68kk1XSyj3mzhp21vqT5/UhW1WWTQsCSLpqSoahB7gC+Vq/v5ZSUQWsjFRzHE4AOcQwKdmzOKHOyru8BQ+KrBFH2gFNMipCjGc18uVZ37ckZuGJg9wOi84ZODoMJxyPNwhhBHnCbrpUDsIWz589wWbd4enTR+hWjTh7HmDWco+qwm67k+yKMOL2dgUGsL854tWr14hBSI+ta1+jHc+kc0yDpm5BhDnzLok9s9/vdS2vUVVrNE3Cdiv8WMnIjAuOGeNAMOdxHAbsb27w8sULHI8HjMMgzR2cR9O0muEiXW1ydk9eEzlzTYhe+I5yxDaL6oxkMEVubja0718oX7NlKHLimficCDHKuuR1/TPSVeMBSYk1K5HVRq3BXKNuanXSxcGTzEpgv9/js88/xziO0p3p6RNZXysPcusM6KJYHx0TYkr4/PPP8Q//4T/C6+tr/O4/+Sf4/IsvME0TPv74OT56/hwXFxf44Y9+hB/+8EdYrTqsVyv0p5NmrcwOYtPSXEZiXfogQTf2hFW3xqPHT/Dxp5/g9vYGN7evMIUAH7xEs6MS04oZWsx9tbHNvWMN7sFM2Zm76L7Ee4fdboMwXuL7P/gYu+0KMSVcX1/j1avXuHzyFNX6AnDSIc47BtUM7yI4joghwifpwuS8R+WURJ5kbnVti0AAhYDQzxk/5lg6hnQoTWIjxRS1yYIAaHDAqlmhbndwdYPnnz7D8+99DABYdw3WK1kT26ZC03jUdY1nz57gydMnqOsKV5cXuNht4L1DW3vUlXCMpDBhPIllJKU9AHgm3E4xYOgHTIOQFq82HR4/uZKssF2HzbrGFCKmUwJi0k5egMGErLyIlXfoWukm9/TxJX7rN3+I508eAQD++j/43XvTo4iC+rrvFJBNfpZBHiref5ZFNu9V5pqQBRHKz4NQNx22u0eIYYKvKjRNg2masL19je3mElOYsL+9xs3NK7GFpgHTKNQQ0lX2ziHPTwuAkH0zR4wDgTnCOw+sVhmMyLyszFlvsl62ogQNmEiFh3bySgGcvHY81jJtLTFjlsBDsn1agRfxf4Mec17H7tNuYmZMWuIl3XeNzsSyizRDiaBjVtZb8dX1uQKPRAnOAczKe2SRgTvg6l0pAZ/z19/67rtXoK9xBpzeCvoocBaDdCc/HntpTjIFvL65xn5/wDhNePHyGje3eynDv9njcDwhpoTTOGAME2rvsduu0LUN2NcIEB/NVTXm8mfj8bVKjCT7qgZmQA5fJd9KqRcAJXIMGfSRlGgr/cKZQw1yCtxo2zmxPgBoinNdZebskpfCvsd7AinZlTWWKdFFQyI5JoRhwnjokULAcDxiOB4RY9TnB7iqwjj2iFMAIFwaTuvrN6sVLnc7dHWFqT8iTYO0j3cDQGJwRSRESDlX7TQFjmUwO5fgQsIwOSEGo4KR/i6KnUGgux1N3kdiu91Dzj9n4MdWFREHmXjWzrOqJM20qlRnOaNAUHCpoxSnsjJDq24Q207Ao1a+w5xIaesaMKWIPkwyHtoVWm1n3NYtVqu11MfGCF/J5/qhxzAIsLDf73F9c4NhGPDq1Uu8ePEFQgiSDj9Kev7FxYjNJqBbBUxnpTCFc18Ac3OmT9TSJKkTttI3ApTjQMDI5CIipy9ZjN6NEKAdgVpUTYu6abWLkFOD4e3ov0SxqLhe6OI7891ksCNJCSOcOo+a4spRSihtYfXOohUaJUsApwnjcFQjmOEryKKmUVPJfgjgNOpkNsAJkM4k4qzWXYdmewEExni4xu2xx/F4Qj+MCFPQtsBK4FdmSuY1Qkq+ymwXuz4jx7P3z3e2nI3vxt20soSc/usMiJ438jnNOQlV050BFhWkYZbosZSASImUl1Dv2Rgoyx+/LOMng57jTIhumQZfKWbD0cwFwcy4vr7OwM/dv9t7YmG4lGvTd17UcIC5wbp+GH+Ud0DbVAL8eEKAGIOeAYrSPKBpWjgvhJ4hJunQFiPGUTgXpGWtdv5aC1lr1ymJu3aNAfMcZNBMDacAQIYyz4bPHWC4vNfsxEArjRBBEDCTM9v3myGXMvgTpgnea2aM8cbRnJqey8SKTFJLf7dOmZRsrXqXypvvxV2wcc76YIQwYhxPYE5oxxVimJBSQO0dLnZbXFxIY4qmlg5ZjmbwyDmHtu3AzGjbDlVdw4cJISYcDkeM4yjATy3OaV3XaBoplevaFl0n64AQuE+5FHK/P4DIYb3psR1GQEtfS04scVrObYrE897Wn3oc93ucTifEEGZODS9lzgAUMDlvdABA9wkFdcoAUkEebOCdrTtzN627QNH9izQWEJG9RGzFWgmruXhuoBCBciALMNuwnu/DWXZGRIyEfuhxu7+FI+H7GccBdV2h0xpjcsU9ExdY9MGM/e0tfvLTn+L169f4Qrm8UkpomgZPnz3D5eUlnj17jmfPnimfl5SSyB4pc8h7D67TnJVgR7KyU/Ko6wabzRaXl1eyN1QVrHOjlHopx5bTczRw+I6O7NdsHxQ21H0JOULbNdhs13j0+BJ15XB7e8DPfvYFjsceVHd4MkxoOwn2OsfC6UOSPWxReyNJz13dNIBZVxWIE4KulblUTT18ggDfSQG0xCk73eQcHAh126Bed/Bti8urHZ4+vRJbdxqRwoAUE9quQtfWaNoGP/jB9/Dp976HqqrQNjUaI3mPEzjOzvs0Clec8P2RcrpoS/cg3X7DJHZo09TY7tYYpwld16BtvICKwwTovIxJgB+7QNGZQ1NXaOoKF9sNPv7kOb7/yUf3qsMzfeo/ig8AUKuxXJeyHXoXzEG+lnNwoPCnaM6g81WNrlvnYIRzpBl4NRw5hDBqwCsghgnD4DC4pCAfchWIgRKWtQu2UK4EColJgsC659Z1VbT8nicNK/jDZhRrGNIyXgWIEEqNZMCjnreVIto5kBJvcnGOeT2N8cx+ui9hvFnqZVUwchi9L6zk56mwuYtgkvjzLr8ucwzzc72eMjB4N9vn7utvE1KE7iyzFEWQoQQOiof4r7pPBc2oPfUYpgk3N3u8vr7BMIz4/MUrvL65xTRF3ByOOPZCjj6oD1tXHvAOkYFuFaQLpq9AXrje7DwS80yWwTLjActQ/Gr9vV/ghy2dLOZUZ5hS8kQsJ3OJ6CoRrKK/TsvAOE6IkzzCOCFUFeCSRi0YMZJm9xStSS0agfl3M7KkFl+AnXE4YjjdCvBzOmLoT/B1hTAOiHESomY/cyDUTYtutYEjp7XQvXQfcjVcNUpdPrEAP0mQ+Gh1w57gIYr1Xog8nXc51VQyegDyFqlRH9gASU11sLQvWTBQlNDdpx7tphWlL3eem96cZoRYLaqNgWkcMVZe2ltaaQa5+bvnISDlfEqQ2LUdNpstfFVh0myaEILyz4hOwzgK+es4oa1qVAVHhVNHdhgHDKNkCNze3kjEsuBAYLDy3lSZOLOqa02JrbT9aREVLReTlASMGkeEcRSwR8sZ2VIpxdORzdkWJFhnMC2HtAlQdp+7R7ESoaZphBNJOwJZZNfmBVijdHc2TbKfxfOMcxg6njgb0CkSkks6FqARYNvEiks0I4lIM8LkZFKcMrBmaa0oAF6iudOCdLao4asGTA5TZIwh4HTqcXt7i/50xDgM2TmTzB7OG4ulwiKf1hwtKvWQUzw5X7Z+x9mdnqGg+/REuXQubb7NXWayU6zncLaBqRhA5L0/4+QR4u/2zUMW4FfJ93NurMzljamI2H8tg6KI4Nj9smOaMzWDWZKFVYI9c/rrhyXzeWvJC3OeW945NJUY2hEJPDmAHRyEtN5BjANbS6TbztyuW8gkKWcrCgBfn3UW8e5udyIzVM/Ocja+ief3mDFGAM0b0i906GxvmNvEF6OUhexZxk6a51wBrM6ALJdfqgCQlM6S7jlzpHj+/H0LM9S5QzG/53tofGVEwmE0jj18VWEYFWztK5xOHsfjHpwaNG0NopXYAHpNcv9ncD2EgP40YBh7VN4jTFV2VAwQZjWwDfgZRwF+DgcBfkAOq/Ueq9UNxnHEZrPDdnPIe5yRktZNDaprdTZjLlOQTKYD+tMJg2bQGnl84rnUxcYys+pb1aCrUtan3TfCebmtgBBCwA/WrJJ3IGdOY54Ls5OYR7WNtcz14t7yOWj2U63OcpPtCQPDLEPyeDzCeydZksOAqq7FQU9JSv/J54zuGISPw4j5X718idfX19qtyqOqK+wuLhT4ucB2t1WSbSfZAcrn5bw4hsl76daVtLypKCGZL0kAxa7rJBPU+TO92Z6XdN1mZsBZuWcZHMBcPpWDm/7eA15EgK8cVusOYAGn2q7LzU6ORxn7lHr4dALxBE4NACUep9mmeGMlyxv9vN+TDWjY6+U+r+uhlokROTTrFZpHl6jbDrvdButVC3KEq8stkuq9rp08qhqrroH3BO8AK0nLa6/OE2JWU9H0YUCAAzsP+ARraS77ithXdVNhs13h8mqHfpjQJ2DiHk4zM1IsV09CXXls1ius1x0uL3a4vLjA5eXF/Spwvm0wcslyHS8Bn3zr78w/s0vOt4hfUMIDKNhX6XhvEJsVvBewbNqMCNOIcRzQnw4IYQRzRIyy5plvmndQs4M1oCEvpLxXyvyzUrBijVFAx5VBEqLZPs1+tINlheaxkBJSisJheWYb6c00G13Pz95jjXhSuv9M6bKjV9TSUCv9EqiMcZYZaLZQYdOZDVD6JTMWMwM6eS7Qm6+/rewri2FMOF+v3gDhinO0gIX52yFGTJMkBvT9gP1RSrr2BynvGsYJx35AP4ySWaecWYlTJrRmaLmh0aF43V/eADJxdv0yB4Q/mL5GgPW9Aj/MCdNwknamkzjEAvzIBcqb5Ee5AUsQSW6uJ0blpHW54wnhtMd0qDHsO5yu98AYBb3XIGUKHil69SXFYIahhbpoJ5gCE4b+gP31FwjjiMPNKxyuXyLGgONpwLEf4JsG2+dXuDo9R0otqnqDqmngHGF39Rjp+ScI44CmaXGx2SGEgP3pJDV804ifvfwc7tpjigGpP2FKgywyDaFiidZOBTlwVanyKwdXO1BDSuxMEM5A2VxBEnk1kq4YWX/eM7szQ7oF5Ylnk9FmDkNzQuG8Q6XcS15aJCEhYOx73N5cYxx6NFWF+HgEV8JbQUmjYsyZx72uarj1zCnifYVxmrDdbGUznyYcT0ccjgckTtjvb3FSIu7XX3yGn683OZ2YFXCZtEV8jGEmdI4Rfd8jxAkMRlUreWpVYbPbYrvdoVt12Gw2WK2lFWjXtWibRpFtXURjxOlwwM3r1zgeDxj6k0R4QwBSyNlqKVmcQWaxkHAmcPLCjQNdbAxMuUchkjTmpm2xu7jCarPDbnepJZNOsnQYGaiyqEV28EBIygHiiMHmPJJk89lGl8CYoGBPVYnBqUS1Vd3kEhMgieHCAdLFh1E5Qlc3SMwYp4hxHOStToAfAxSdgsLee83881itN+hWa8BVSL7GzTDi1A/42Wef4cc//gOMw4Db61eYxkG6uymhZuZg0vGcdIV1VsoF6+5hTqq1s1XqLluQS2MCyKA1II2Z7kOYhSDUWnFbxo/9NK4I2dDn6E45BoxfQpzBA25ubnLkabNZq/M4f67kvjJSQgGBZoNB2sH2mkE0ZsLot264X3F9YAYTCYgaBMgoAbQMsunPDyLD544wNHUXnB31uvLwTozstqmxW3fYbdYYB4dDnDAFgncVvGvB5FG3Qg4a4sy7EkKAI4eL3QUYjKurK1zsLrFar5XkuZNofwqIQRw/rx01c+gNMAu28GM4vwaOII7I1rcaluY0zSa6GWEAm+NXVaiaBilFLd+SdLtoHVF8hRjCTFwJQNpuIKeLRxubCh5XlZeATBRjygw162z3LrUYk0Tbz65Y1+6YAvr+kLOoupsXGMYTuhZ4+eIC0zgghgMc36JrK2x3Gzx+fIWmEQC7bhoJDCTJkE4h4Lg/4vPPv8DpdEJV+dyJsWlqtK2UerWNcDoREcZxwjCMCDHi5etrvHz1GiDC8TBif3tE23aYRiGfFY6UFq2WdGx3O2y2GzBDOpT1A07HPV6+/AI//envYxgGvH71Csf9bZ6TM0hIeTwIkOXyHpKDfUUZoTk88uH5/Y4qHUOSGf7LrCW/rOQsMuds5ObXs2Op3EvWoVQAIAMN5PNN02C3u0BVVdgfDliv12DmbBORczieTvjZz3+Gm5sVLnY7fPrpxwghoGlqXFxewAFwFcFRBYZwNR2PJxz2B/zej3+Mv/f3/i5urm/w+vpa2q53HX74oz+MP/bH/zh2ux1+8IPvYb2R3jA3hz32t6/BLHNFsg1qVN6hNf5EAIRKL1mu3nuPzWaLR4+fIKYkTTTUgYtRutg5qOOpWbvWaKbkACJSUnpOQnReN0Jg/TXKE7627gCQS+hWNT76+DFiuMD6xQ1OQ4Kvj2A4/PQnPwGDsGkTHu8imooR2zU8eVSO4D1LwFCBaZDLez64CITZHsWQzjp5/qtrKkgX4DxcTajhQFWFjz59jk9++E+hWa2wu9xgd7WFI8LTqy3Cr32qAbMATkEymFYrNI2UchAFcNSW3Cnm9TGhXG9NAeJHEFWIwWHqTwjOgb1H3VQAauzSCt//wcdYb1a4PZzgfu8z+JfXGEOCOw3ox6DAtqz5F5sOP/j+x3jy+AqffPwcv/mbv4HvffruMn5yMBEFyGN/ykAG3XlefsGbAQLgjsuiOnTOo2mEZLmqGrTtCpwSVqsdNttLhDChaTs4IozTgONeALmUotqj8p0GaoIlmSCGAIbSVmh5lXNeOTXP6TzsOhxZ4NnlgF4IQYPpxnObsqPPnDCFETQwfBWEtFlBf+dIuGIYAiJTAkMALck+TZiU9Pl+u3qJTUIuSXcvSAbQpB3ECNb8Bghp7uoVM++QVQLNHIjJSTc1sb0NHzD7XN9bDJK3ZaV/mZlYmP4Z3Cmfs9oeZneYjx1jxKkfcDz2GMYRP//8C3zx4iWGYcRnL17h9fUNphBxsz/g0A/SJW+Scn1L1pC+VYS6abBaraSJkAYLJJtbOZlYrtEaxhgoRsTS4OZr7IvvGfiRtrUpRq07NYOuTAlXFuRyhpN2nKAERwzvGd4RCBFp6hHHHlPfYzz28HAgT3AVzc5BEgRe1i0zKDjH49j+Y2kf3fcHhL7H6fAax9sXSr404jiMqJoWw+mQiZ4BJdYkoF2tsb24QhgHUEponEcMAW13xHrocRoG7IcTDkMPN004TSMs6pUnvQPq2iNEaX3qy6wfXz7MuMbZpJgR4ZRT5+5ZixkAKBRr3u7ZzDEn36sxYYBQDBOG/oQUA8ZhpwBgyp4z8dwdgoAcIRNdskbJJjAnjEE7PEF4eziwOj3C23La3+JGDd8ypTwqQJaSlEUMfT8veupIVN4JD0VVo2lbtJ0RozbChaNZQF47fmSDNyVM44Bes8QstdYyf4y7yhZYuVsy/sk6S2XzYf73vkWMsBpdt8JqvUHbrrTOn/L9gjqkKEAPG7Q5ikuWleaAVKRV8txFgUtDmgUkypw0HAvHzIDDpBw9VS4dimEoSMxk8Ne+BvkaBPtOQcqbrkO73oDJ4ZQ8+hBxHKRr28svvkAIE8b+pOmtIQMXluFkwxpmFJCBPOcLa2n/JXMys8YsWjjzHd2vWORnzvgpz+3cmJgNnFLs3jIzhmHI3DyrVTefrX0Yc6kXEeUyq7Kdsbwn5uwhqxsvz/FrXNaZcccpSdffsgTlF33PO3QI36VwAc4ZSOa9y+DPqq1BHDFUlXbsqUF1B7gKvqoz+GzZVsYh0nUdnHNYr1boVh26rhOHvpZySOP0YbLMkrcBaMVuaYaGAraMpJmnuobluCfd0cUM/oBIDd4Krio57AxcnFAFm5eS5j0b9Gb0FYSjBCVOnY/nghi8yZyyd4j88Nl6rvMwA2VS/hOCEG4PwxGn0x6JI47HFQ6HveyTNKCteym5QMRm3YDQQpwQ2fAzSWtKGMcB+/0Bx8Mhl3oREdqmwdhKScLYjBhbO+4k5a0h4PWra7x8+VpOD8KL1HUdNustdtrVZr3uEEMn5SVtA05dtuEmjXwfD3vcXL/GMAwS5Bj64q7QG0+dEuICBcADnGXOShYYQzoUzgCRBW+sG+i7BH6yI4nSlb9zSQXYbu2YS2AIUG6tTsrzuq5D0zQYxzF/I5EAOVZqfnN7g8PxiKqqpIxdo/DE8/VG5Wo5nU549eoVfvoHP8HN7S3GEFA3DdbrNZ49e4Zf+/Vfx267xeOrHdqm0fVasovAnAOLMdQImw1SDHDwYFY+TbtoEoCqbVtsNlscDnt4X2UwwErxBGtIYLKyFxRR+BkMdt7BJ+kY6LUxy/2LtFJv6w0I0mlvvb3FMAHHU4/Xr19LGfKOsKk9fEfg6EAIAqgTn2Vy2UgAo0h2NO8hHxJ3LQDJ2pZOeeQIrpZmExeXF/jk04/QrlZC3LySrMzKCacQM2Mae+WPkXLezKTGDMv0mLuQMZhd7uBp4LzTAJ8nyQia5xhJJy726LpGSuKaGt3NAS+vxTn1Y8A4RaQ46zgx0DUVHl1d4PnzJ3j+/AmePX+KZ8+fvgMdzpLH0VtAnzLT7i4wJLerCBDpfUBxL4sfkoGmXfiqqkbTSFevqhbetBACprHH6XiLeuyVe/SElIKuU3I+XkFDAAjTqP4KI0QnVShAporI46wo2c/As9fXnVPQIQJwwhml1BDeuu5CsjEDyfMQAyjYd9ewrEkB4i2AYpQrMQNAX4qK/ArCELs4Kljikpt9Lza/Va7XiJ9nIG4O5lkmT7a3C3s2VyhAl161wy1LCgUYcl72dQ4Qvi27B8Xxz86reFh7+mkK2qFxwO3tAS9fXWMYR7x8dY3XNzcIIWHf9+jHSTgIs88wmwoMErqSppHO4NWclZ3PsXAlWH1ikQTmeU/6RfKeOX4UodYBywbQzvHzebm0mnD9u7VUbGvCqiWpjd+ssG4rdDWhpgQOI+IoPB2Y7JAezBWkhrBCSrUCBxVSqrIh6RQFd9pCkWsnqZVelOtcUkxd0tAn6/BlzggRXN3AdyvAeVTNEVV9AjmPNkVAN8N112HdSVs+HA4IQZi7jeA2RC4ACHWoCucy4yqsk1cbxnMxYebIvnmu96nBeYLYpDJnWcbkOQhUrsHGWxHChGkcAXDOBghBFk6uZPCmmBBCzKViNkGtNElIotfYbneZsHIKk3Lz9Oj7k2x8TohQGYrUctIFVNBlTikDbwJSNbk+tmk6BXhqXOx22Ox2uSOOpeKdgwDnnbyi1lXHEBRgKEpVTF+Y7+W8yEEyfvKmdP+ggaVu15rV1DTiCGaiVJ0TiZ0ac+V5zOOK9LvmUi/ZXCSTYC65lPEhHRASJyQHxKglgBw1C2p2nubzNPCQZF4m1npPcRqaukFdt1qOIJ2KyHlUTQfna4QEHI4nvD5OOBxPQrKmRMNhkm42MRRdBfOCavb7bBicbxqzzu+mpM5/5qxXu5b7FBnTljp7DhjM98/AtpmE+ReN2dzpLH65AVBm/9hxDUS16IfN6zIT6C4w9bbrKQ7y5Rf+lu/42p/NX/HVynif2UMlYM86V6yzns2BOTigDrPz0rHJSf23dHFLWccWXa+qWohA205LICvc7bTkiJQjQNZEVgDGyHTL1rBinswg6dz8FLB3Iv/+xpXORpqWM88EzS6DGxYcMmBTlkyfvzWb7oWKZuOP8ro0nwfpef/Ck/uVhUAZNJf/Kf/F/j6XjTBCnOAmh9PpiNvbGwhnRAVHdQZ+uq7CMLRo6gZDJ63Xb2+ucVBOnb4XfrsUBRgliIPuaMp7GlvzCADDOKHvJePneOxxPAm3V9PsUfkafT/g8uI1drtXaOoaw9Ch71s1QB2qSiDs/jRg6EeM/aDz3Mo5AW2bmceW6Rl27dYpjjTIYc6S6l/MMeWHAiQGoB2XjDOFEmXw+d6Fyg6k6nDi3BEgLZGxw7OCKBnEotmZ85rhNTfqUE4dlg5LCVCy6IhQRYyagdk2DcZBHEbvHcjX+TykxOsWt7e3OBwOOGlmZdu12O522O12uLi40Mzkte6JTkvGZK4zOJeZWAe53I79zG6b1+5KyW7rus5ZpmUEPennHRv4oAAE5uk2Z/EXXajuXY8GyHBejYT0vEbXtYgxovKESIxaCZK71qGpJctS+qTYvTlvB573SyP+tg3/zp5rIJFxWzrn4JlRMcPXNdquyfaXcCoC0G6AIQVxynPLa7yJoUPWlDn3fr6vsOPn2yHnN1sj5/uaNC+RxhkMwuMnVwgMDMOEqm5wOAnnnwVNH11d4Opyh4uLHdbrFZxDLit+l3I2379syLzxOr/51AJZXIwTsvtsa9X8u6ylstd6Bqq6Qd10AJD9g5iUtkAPkfl1IC2/nWaSe54zakrgx+ZSzoAsngO2/iSNjVvvWW3j7ef3S2MgKfcxjkcjkzd/dRpH9Um0C2osuH3u3eZhlKVewexEtVtlP5i53s4e0MCxY60Amefb3feeiaF/zHk/LoGe0gYubfX5Ps92ztuAnmyrqd0bgrZqH0YhdR4GHHv5OYxjLukKWv6cs3v0p+05IGuCVKNrW7RNPa8N5lvYSeuAncEoeSlxsibHv1DeP8dPHPQkSTNmKHeeYsxounOEirQrhCM0Xpy/i02LZ49X6NoKnzx/io+uWmzWFVZVQDq+xjjWiClJ5y8GAA/pKkJgtGB0QmjXrNFtN0AtkTTf1HCVQ9M1aNcNvE8IJ4dQMwIlTGPC4CIcAsJ4wvH2GiFM6HZbSadzHvVmB4aTMjYrjYkBbdcgBant68MEdg774xGfv77B8TjKwuNm1DNMUVM4KUf3OAnRWtQ27zLl5cFMSGrgxRARp4AUJIuGkN6ui19Zh6JHBs8dj1idBb3L/g4q7xxJ2+gw16MKCWWFw3aH0/EA7wjcrlD5GuQl7S+pcSfGktXdSvYNIKVYq/UKU5hweX2J3W6HECbc3Fzj5uZaeHaGAeMw5E4/wVLrFF22i2p0km03W6zXa22HuhNi6KrCZnuB1Vpq5be7HbrVCsbtZEaMObzjOEr2xOkkDy17gS5eVk4RA/S+kVB+azeaGVp5s0b5vsR5h+12he12g91uh83uEuvVBpUXA9Z5B89CaMlJwBFiyTCxbiy2AUk3Ngd2FRja3cRrmmuakDQ7K4WEkCbZjJIHca2psUnKRQA4GFikraWd3IOm9SCSLm8gJXglj9V6h9V6B+cqNN0aTbcGyCHCI6FC7Af85Gc/wT/+3d9Hfxrw2c9/jtcvX+mcknmWkizcnJ3uYrgzpAQNyuGh0ylD1WYQFZ/NjzwJoBG4+9WhpP7O2R3zRj9nbFkqPxAwTXNXLdv4rHTLHArL+LFuanb6oNkAMacrhAnjKGu4EDgb78eA4/GIo9Y4vy3V1r7r60gZ0XvLTfil7tl3UniOnFur3ZSMcFyBTy9k976q4KoaLhFQt/BtB/gaTA4hRkDJVp33qImwWkk757qucXX1COv1NmctCgBEiF4cUgN3YpzALHwgKUyAN04WGw8MziWPxlkgwQfKKwLlh6ioJIDW+e09qloyESrNrLR7EGMP8jXCOCJOo6SpewF8AQMszRk5B31ABGKXwTK5n3w+H+9ZnHNYtasMFshhbC7OwLGcI6M/7TEOPZACOE1o2xbrlcPVzqNpHJ4+eYTD/hVWqw513aBtWhA5vL5+jS8+fyGlVS9eYjwNmIYR0TkEzawdi33JOy/ZQoDwdwwTQgz44uVrfKHr4P72iJcvXqFpGvT9iP3+iLqpsVl3WK86NE2NT28/wvH4DI4IYUoIgXE8HnHYHzAMBvICRF6BkUodGj0X6xjlymCJgWSzUrJdwawJwmbHFaAo5vX2viUDeET5/GPhqDBzbiQCELpOznsYhgyoOiUAFqBEWnBXtZD0CsfWpB0+RzAnAXuGAQzG7e0tXrx8gWkasdmu8fQgpVUrV6Hu5PjX19f48Y9/jNevr/GTn/wEn3/+BcZxxA+f/Qi/8aMf4fLyCr/xwx/ik08+Rde1qB1QOyCApcTaS/ZArWtKXUnzFAcGFQSyb4zv9QoXFzscj7doWiGTt3KSlBSo5oQEDdg5B58zmfV+ppRBUdYoOcrAyz2I2KRKEK7ZiFXlsbvYwlVSmnPcXwOBsWkdHl20uNhW2K4btLVDpaXotXYetAWGWfmtlE80hZAXHgNdMf8GOKBtW2wvLmTsauddX9e4fHSFzXaTbVlS+3mK00ylkPnNIG4MzVlUtr8HAqICbc4RSLNVmGcAnm29NqCD5Xd7R93UePL0MUAOfT9gtdnh+vaA02nA51+8wu3+CGZoeQtw9fgKP/rhH8Kz58+wXndwntAPp3vT39s1+jXfeeet5heJsz8D8gzOPhoUsJbKibm0FAwQOzBJY5EGhFhFrNc77HaPME2DdqHsM8+PcS8561bHmjnmhWQ5eA8XtGGGrn2SlVVlsNz2rfKaxLacckCDfUByTu2CVv0judaJowTgkmRxiw/l4UhIqaeh16ZKAdM0SFdc3aPvHfZhyfZBZAwhwmvmTwgCggiuIYBr1EBTYgnQRy3lBgCipPxVpIGMmWcy4wkFV5LhJU6UDQv8cPF8Psd5vZvt/zezemwcGTl1SgnDKPbuOE549foan794iVM/4OdfvMTnL6Tz4e3xhH4KiClhjAmTHiOq/SL2nUdVe6y6Fpe7DR5fXWK3XqGpKrFf2DibZG1xVPgfuZSWlEfiq5GfrwR+iKgD8L9BmD4rAP8dM//HRPQYwH8L4NcB/BMA/zYzv/rF3yYZPzLi59aeGs47i8Y5gna38Ki9w6r2qJzD5WaFZ48use5qPLnYYLeqse6ctGKcesQgxEmDOTkkwI+UpHSAiyBfYRorpLhC8g7OE1wl0TFfS+0rsUddE6oKADO8YziSlnIxTBj7XoyCIG0aiRxc06IGwU0j6sMGoTuAY0RdERCEsGm72eA4jlp76TFO2uXJyeLNrK1934YyajVUcrNRPRvW2mrVeGYKjgYts/ijRPR/f3MdZlVmw8vAqfyn3J5bAXSYwxg0RZ0kxThWGJVgeZomVL6WxVNLR+ZW0QpGOGnna5wFpOmqVm4CAqZJutMEbcWegnSGSZrNIODTuWPuK2t/WKlxcyFZPheX2Gy3+voO7Wqt0ZEud/MoHVmLBOVjaReVMMmDyDp5nRf/ZMAA5cKTb3MpRER/HfcwF40Lomkb5XJoldzZuuoZv4H+Rw6Jo/reXKQY5xObN0wqkuND1O1EM62UDiQhIRIL5RYsmw4ACWZULg1EYohRbUakzx2BVsq55H2NZr1F223AIJwmYAhAQsD17R4//cnP0Q8Dbl9f43Q6njmgXJRLlUavbQjMGslhEkOS8tXl9yke+ubGmUNH83txX3OxnO9pJlouS69m8tFzwOXuuBUgJ+S5GENB8pcjYOXmOEc75LNR04bltZlI9ssjgXezp36hfFlUuIjG/iJ5B07ivc1FG3HGM2dE8JYlSmUE2jkFQRjwFaiqAV/n6JNFZR0RWLMj1+sNmqbBarXOEXvjDrB1VLoxqXGUZM7O2TaUs3Nzpo86DsXIzmB1mT+QJ3Ix3+Yb6DLhvpX6wAggWQAo6/opkdGZbLbEkMqzENBnXjecI8Rkm9BblXgvOiSCdPuhIjuVZgNeDMaZqHqaBkhasvA01HWNVUvojw51RYhxwKrzWK+l85oAP4Tb2z2uX7/GOI44HY4Ik2T8pJhm0Bcl6DSfQz8q8BMC9rcH3N7uYa3HT8eTdgMTJ6Ix4GfdoW0adJ1H22oUOxE4EU7HXrMnpcOXGOBzuZaBP16JxOV87mTJFvcwryssQSvGDLZIlDjocwXq5+zQe5uL0Llmgbh8bgZGQTOCgBnU0oBULqPR1/OjKhtCSFOIEGby1RiF6JOcdPg6Hg9C9NyfpKto5dGkkPfiU3/Cq9ev8OrVa1xfSwZYiBFt2+H584/w6NEjPHnyFLuLC7RtA8QRiBNcsjWEALYMZ834IZuxc9YCFdqxa1ytOrSa8VzeI+HrYDFQ8/6J8z1EbX5bFRKzZLUgNwy4Hx0W48n2b+cIXdeA4TD2J9SVQ+2BpiasuwqbVY2urVApgbLPXZGkfCoHuxJnG28mnrfrK9Y7vYO+rtB2UiKJyoEqaVSyWq/QqM2VYkAKOvZDQpwmG4r21TDKKwF/LG/Qtr9zPWXNFfZIBkzBZ38wm7RbrVA3LcYpgLyUoh2PJwl63uzPgParR1d49uSxcJDVQnMRwlScwv3q8VeVUv/y+7kZYVk0etIACGeZinbDmcUurgBKDnXToe3WcM5LFm3TgoJUFiS1d1zpG5DZOrll1XkAxL0t62cOIJR+FmxX5QQ4B1IXnvI+I3Zbzvwhy1iSsZwUqLJs2hgm9cm1oTJlIuR706GwRGgLd0iG46Tt3D0SfBJ+mrKzIzPy74nPM36YGcQ0N8txs35n3eo9h9zm0ky0QMw5+POmfVuOn7dl+yQWQudxChimCcdTj9vbg1C6HA64PR4RYsQwTpiK7oc52wesWZLC22vl2l3bYrPq0HVtbrpheEBKRbMKKptczHP868jXyfgZAPyrzLwnohrA/0FE/zOAfwvA/8rMf56I/hyAPwfgz/7ir1IOAdKoYF4oXbFcSuSxchVa38CTR1d77LpGyru2a1xuN1ivGmzXKyU/VAZsZ8YepP07i4EKjgAT4LT1MyI4drqAW72j3E0zWLiqUdcd2naNytcI3CBRC/IV2rpRLuUEDhFpDMYuleOdnuYaT05eeBh8ROUriQZpBIyTIs+JMolvjNYeUMuEJikt648nHPcSqeUkLTulHbOkBI/DhDBJeVEKUq7BUYk6gX/AzP/iN9fh3Ylx/vpZeizR+WTJDqoZbsjZAbJAEdqme2PoGmJdHltel02USOrP1+s1pqnGOPTo+w2maUScJoz9gEjS3nJuiUd5s64LZ+hid4mLi0vUdYXtdof1ZqucMbJR27mcpZ3i3LHk4jyzwcgywTkJ2HE3wnX2mQIEspXL1iTc01wUR0XIkM1AdQYj23tgFsfcJeqMLLwwduz0uPit1J/Na8o8GAnSil0NTssm0FIAmDGqzqj0vKv1PcL55TR1nqx+npxugARG0sw/BSis7C7FrBPrHnbWAtzGRj7vNwETQ9cNDClR93JTyPos7rk+v6e5WLTjVAfirgExR65nh/Tu2LVrs58GHFv5lpVa3uXyAWbQyECfkl8mhK/Zwt3uD97qm+uY+vpyXyDPV2Qn3dtcBFjHZSruf7GZM9QlcwB5kK/h2AFVBWiZVIqyrpqxV9cNiIC27bBardA0jTpsc6cIGxPlMC/LPQxdYU45LV0GsRG9I8/bPGcw/5qNLfsDl4uLGdnyEF6XCsBM2DwDO1Didzmf3LUsSVli6ZTb3JzvHb99UM1yT+spoW1qWKDDwFJy8zoRk2aGJtv3I2IY0feEcXSIgcBJgJ+69thuOqwOEmRomxbOEQ6HE/a3eyFlH4ZsK5xbtvaUc8YT699Iz7WqPLq2RUqMVjNR6roGgSRTFsDgCY6EkPT2do/1uhObhj3ADv0wYApR11/hYLSCH+F2m41dI2/Og80cUdObrhO2jrGWiEalBpCM56DrrHRIszJE3OtcnDPR5xs5r4slfGlr4vka+5Z1txgjc0cvyuM4aIc05yhn/9R1rZHkAVXl0U6TloszTqcTbq6vcXN9jVEpByrnsNls8PjxY1xdXWGlGcl5ziogVdWSgcQs5MW51Ivm1Zc524x5HSAIz1RTy1jxVi6a91sZXynvqwSfBECzjHXbV0zHQkYfsyN0fzoUPRIRiAlQXtC2bQDyGLoKbeMQaqCtHZrKo1YeHFtfSrtttuW0+1EwvkZ+Q/fIy+O8ftnc9N7DNzWqutHyWyn/s6zv2a6dIXXSfyj/V0gJIKjzMO9T8/hNKYIhnC8xBIQY8vw6G+f6rPIeTe2Ruga7TQdSOgm7ju3FDuu1lKJUlT8LKuFe56J93du0e/fZl9vjZrPluUgWLOf80bMkhGLOsn7eFefhfY26bgAGqrpFVTUACDGMc+a3nATMdrdZZPueZICXIOkMNKRUBpT1k8X+bP5V5nDMHDAMThnVUNtL/A4hn5a5nYruXVSA3F75hPRg96bD0i5GnMudODGcOw+acv7bvGYIbiClvo7O7WpWUAkOKCkxyudnNjvNdvzd87v7PI+jwpYobe0YE4ZxxOkkhM7HU49j36MfRoxTmImfsz+gPd3s3EsN8/m5zOuNlsSRBXZnniZDsOy7wZqH/TXM368Efljuwl5/rfXBAP4kgH9FX/9tAH8VX8M4skliXYvIUFYA1laWiND5GptmhdpV2K0aPL1YoW0qPHm0wfc/fYR112C9WuNiu9P6aikLAyBEsS5JpoHyijCUyAojQB48VgjDGkgR1ErUlJhQ+Rptt0blPGj3CJVmcawD4ypI5oPrdnCRQWNEOg4Ybw9Sx+2AypOk3VcVUtMCMYCJwdLCAau2w6ZdYRxGeDikKaqDKgNEbzokeJIwHHth8A8BX1QV+sMJVV1hs96gaRuklDCpg7XfH3A6DBhPE0JImEaJ3KuYB/aNdHjX2dQxcrZp2YLkiDKhsXGHRK2NjjHBOYfXr17js5//HKvVGo8ePUblmwyw2PeZAeu9FzBLDcnKV6CVOKPee3RthxgD2qZGU9cYxxGV80i62YWQMOn98L6Sml3vsN5ssF6vUdc1nj55ikePHmmWzxqrbiXIuqu061bBbaJeyVkkRfUnHEXKl2L3ixkxr/fyWUeaVZMXRP0+nu/32d1nvqe56LDqGqy6Gp2mo9fadYuN1yO3kQTgJeVQjO7ZyZNSLJdL/RiFMaL6q7yQh0oHIDNUokS5oETtXuudUWVDynspOSMwUHmgaezk84YlRqhmDGgZTGJC5BHDlDBMUnvb9z1G7TA1xaAL60yQGLTzFYpxfA766CUl08rctta4opJ2JEh3HsysHT90T433MxdlTUsZaLE5ck4O6OEBuKgOGs2ZAfO13d3QIsIUpK27li1IS+I3+Y1sPk+T8HZN44ih73E8HnE6nTJx9K8shRP7NsDq25T7movMnEmwo66XmS8pyZoR2CHAgX2DqvNSGuBreTgH2HqTErq2lbLNqsLl5RWePHmKpmkzsbPL3e+sW5J2IyFkcJZ0jsoDALs5qignjbw2qY1loEJ2VO7MIfNimNWJ0QxO7ytUVYO67mTsxRHJnHypIxHHKEYQE2IMuZx2mAZxZDJAJhxx1vL8zLp6hzr0zuNqt8n30A5qQ7bsBDJMQXgzkjQWuL19hcQJdSUZCN4BL16+wOtXLwWUUWJg7xzCJCWbKSXhgJnkPolPUWZr2PUlNYLlORHgPWG97sQBAtDU0jXMCIpPpwO8cxgHj2MtpWIcA477PZzzqHwD7xqEEHA6DiBXwTMhOlaKH+mamSO2yuvGui8mDXaJ868R6rxPpjPOiVz6yGkG+ZDye+9bj0TSUIAZBfg6r4sajdD7PXfzmoOPLmcPe28doXSMeI+2aRE64SGclGeucoRTJYStt7e3ePXqFaZpxOPXj3Bzc4MQA3xVo1utEUPEi88/x+/8zu/g9evX2oVRSsk++fRT/NZv/RYury7x9NkzIal1UvZIzgGVx3q1Al1eaRa0lHtIGUi+k7IvBgKcg6egjiWw6jpcXOxwc7tF13baDUxqkPLeGSM4BdnTHYPhBKTNGQYx7xUhMk5DVN4PvkcdkoDIjNwGuW1rXF01iJHh0gn7FxVq9rhYe+xWDXYrzXaOCZGVkzFGkGVxT0GbdkyS5TYMSIhi26BIx4ER7M82H6uT1nQrrHbSBXi12aJtVvBVDUmeDjMw4BV4UGdOAAsHBy/rLAvACk6yVjMDpFlJFCHVFEZBoN2a4pQb1/T9Qe4NDPAQAvzICeQIq1WNunZYrxqsW49pmoQ3sa7hnARBd48fo11vADDOcZ/7m4tfruCs6C/DfXB3wTfQ59yGMFBFeebO3jP7HwAA5+AUdO66NWK4xNSMGEYh6g/TiGE4zgAxxwy4Fca8lD9WlQKMIfumsqbFfB3GeZOUioAIumeL3+O8zPnKewERq1reD2TgUciapRzRuHXBxnulnQW9l/VbuaisM+692TZQAuPEQJCqFsnmVSAoAXUGcazpjqwJlkkqzT7nTpDemSFOSGbPamCZSRKXJTPffBiGGSmiivI5zp5zoS5WcCo/ZwnwTpNm8UwB19e3ePnqNfp+xGdfvMDnL15hGEfcHI7oxwkxic9p5WHWtWweoTLWcsAvSfZutsOVyiEloXWxLcg7J1XvGTBTvzGXff1i+VocP0TkAfxNAH8YwH/BzH+NiD5i5p/qTfkpET3/ks/+GQB/BgC6bqWlJBlDlkWa5qhJrRtp4xusmg6Nr7BdtbjabbBqazy+3OLx5QXWqwZ1Ja20JVIoN5EhpSJey7JMkXZjwLIwchjBISARgWufDVdHDpWv4WoG2hVotZXsmkSILPHQCTWCUJUjjQGxH4HKwzfSdo1VMbIpAMzC1xB9Ql3VaKoata8kXU2j6iFG+c48FETiJNE3YsZxf5TSsbpGCkDTSNtxW2CGfkQYg6SLhjkdtdDF3/6mOrRa1bsoafFuWdzUSUhan3ZOBDujzadeCHdDkFTlcRozq745qN77IrNgru0nJ+3i9aiovEdKEj2bphHjIF1H6qYBBQeiCBnKQtBW1RJ12W132G53aBrhwXj8+LEASasV2rbT8UrqaAsXSkaCyw2G5x/M59ds7zUOHyLr42W6Ps/2efO+Zl3cy1y82G1Q117aRldeIzfODqzvFy4ikJSDIFEmXDfeG5Sbpa5AdtaUUXbL6DOeDzFa2FjIyIlxahkI1ibeCR+BfNaLU1pMDnIelZ+jlplQj2WzCSnNG8gU3gTiYspgVrIFfr5Xs1o523RnAIRtVllv9tz+Vjzeoou//U11CJqPadd1F5wx0t6SyLf4rrPvLiMNtgHHGIWTyiKoNGfxATib0/NmVZSMxfjWcfy1xfZsfDn487W/fw4C3Yvc11xsGz+vFRkknveuxFJYFZnA5OFqGeNMDsnNhMdWakogKd2sa6xWK6zXm/x7pSUpc/nfHAnNdjQrkFBunm/cxjvrHnHx93PQx/7NUWwi7fJn2XqS7WOdgoS3DnlOQTsDSgtaKykMmKLN53LtvGvU4Y3zfxc6XK1W6Nq6uCF89lyMWu1ckiIICZwCwjTicDppth6jEl8d0zggxQlNXUtHt06ybe5GIG3dMp3luaJPrcWtvSr7DqGpaxhMVNdNLl12BGnxS4QQCOMoDketZP0CBHeoqlaN4KA6BEidTmYFLBXACWHSbB0LhqTi9agg51QAniHvn1HB+QyK2nUX0fL71OOjq8uc2Zjim2u7fIDVEaFiLr35uwW/7P47ctpBT0rXU8728VIKDsmAPvUnOC316oce3vucvSzE3Ae8evUSr15fox964RSqpQHFs2fPcHl5ic1mkzN+SNBdEDvUTQ1eSbb7NPYInDI3BshsZNZmCwoWKhBcV1Jm3zYt6qrWLD3N+NEJm5LyEUAyfsTBm0v2OJfDJ4QpSmetkHk67kWHz54+Qt6vIGQflRdyXmZGv2rQtR6hIXSNkDs3VaXXy9kmN5JcLtbm3LAjBlkjnTmWNsPMJi55xdSOrSo0bacZ5q34Ga7STooCiIutVS5ZMwBB2WI8Lxki2NpnazXrGNV3p4iglAPSAMW4YixYbsCwrCFVJXYV1x5tI9mk3ns0bSfjt25Qb1ZwtYINMZbZd/emx48//h6+dNMu7YAvCQiVweg3Po75a6WMuLy/xWeKn5IUJ8kLddNBmot0qGshxg5hgtEdGNj9VgBK1xdiykmwtqbJUDIgJGnWtHI3IgHwSDkwamXSCuwyA0myiYy70gLvsr5K1k9umOPPy3LrWjL5NAPoXnTYeCtBU64fHatR50bOVtH3zHu5NS1RYn/LDsr2dmmHkiR7aBt3C8jLvLtrvyO/pq+8MV7seenflvaI7F1K6NwPOByO6PtRsnEPR0whCKlzlAzssrzrzCfIzsb5MefOnbbvyfroXNSfuiaYI1mcs9mNXyVfC/hh8dD+eSK6AvA/EtE/83U+p5/9CwD+AgBcXD6S1vMwBZ2nxBra6Ehqj2Wi6WARtxnZUNWoS5lamqONTlJaDbGz+ReZhBSTnKSMTQqcOIbhrnGU1tscZXBBDWsiB89WLlTBUaXR9ASECcwRTBHMXmomQ5jbdmNWaJwmTEOPMA5AitpBAPBEc9cKGAgFSAv7BEIEpVFKwmJCnBwCpO476AAbh9OZc2sTp9DFN9ZhVTd8ZgThfGGdU14pD2AUjqk5p4BkeIUQMwHZMEpGhkSAq7PsBT2PMwMQxWItTiEAOI1K1uA6oW1brFZrRU31fpCUQtSKcG+3O2w2G9S1dH2oKtGttTbWuyDj4WwxmI3QFFPuyDH0vaZpy/WAlbWduYjWIANAJdhjz8rJe2dBupe5+MnHT9nT3NHDyjds05mDKgIrm3GfclqpxwyYzG5g/my+Pjo3DpMXHSHBWL6qyktraSL4qoavpXzPDBABleb0c13TdZOduxOZEFv2oMfcMeguWJPOdGjO2dtRmnwDdVyX+pgX3LImOX+vGR/iSesV873MReekuLmcFwaO2s905zwAnM0n+930ZJwULgM8lv2FGRh885zO5qm9ZhvmryLlx85idN8URLpHua+5uF03bGtaKu6bGEYGYgKBhbvPTPpM/q6ojVcjq24adN0KbSs/GyWX9dWbJap6LuqcRYs/gXgG2UujR6aiRcI4OypWKp3Vw1oultc33YTLskoA1ur4/HEHkLRzjMJnM42jrK3KDyeZLPOYFmLTYi7iy1V/Xzq8urzimc/q7cDPzFdj0VfZCywCK3u+EjcaGKffkjWe/RCSj2vUj4zYUv44A3l5/QUosWRhMITrUANmXp1i+W7pqAkCUhQHMjqH/eEATklsK3+C9zVSSjj1oouUZP8z7p2g3WKYpYOZZe4Edfrl9bnrX9LSrXx/jEiT5+cluTPs5z3r8Qff/5Rt3ZzXzzu8NVpC4bSMiXQTN7vnzBgHzvZWCwhaK3uiOaAk3IAThr5H5R3GYUCcJuGUHAb0fY9pCjjsD7i92WN/K5kb280G3WqFzWaD9XolhOAGZMCYttTuVYCVQIiktm2JFmK2tonnwAhYyvhrbQGfuwUaP1gxTkvwg+GyzszxsfuUx+zs+NyLDv/wj36NZz4hDVaA4ViWqbqusNuu4HnCet0qsb2tM/N32nxMhW+R75CWl5ReHNO8F1u2YrlO+qpC27WoGym5Ne6SElBEMmJ/iDPLyppGHpbRJ2NQPiOZKrJ6JCegQAa9yA5t+7v5WDrvnYeDtQynYhzbPqvrEmnn4NxDrAjuAaJLdqUDey96/KN/9J/js1LxQgVn6zmfTTlZGwpbNts5xefOx6Suidn/UhuPqFS5fq+tqQKWVHWLppGEhhBGuLECIJmMSAXaYPdM91HYvsQAkXG3WDq5VRPc4dljXwBR1gXT2ryLH5w7zhWZIwaiM7OWdRpfqoezksOqgq+0s6/Yfveiw01bcQZQUmEPsI4m1nCw7tVJqRmMniGECLlsBcuIMlceA6AozWDyHqfj3rGNZxs6xXpTDiRTbjb9i+Btmu3fOQM7CafPOAo3Xj/geBo0+1iAeSm/1hHHM8CVwZ/zyaPfP1/7OAp9CxGhH0Z0zQjnPBID3stYkIyfeb+3cfGlPswd+aW6ejHzayL6qwD+BICfE9Enivx9AuCzr/o8kRgeMrHk/Ly3LB9x8jovm0lFHlY9LKm+QYxeAshLSYd0MklAYm2VqcUi2qKa7tyImDSKA4J3CXw6IA4O6D1S5QEwUn9C7AUd5USAa0HE8IaOE4nBRIKMNkhAvwccIY0O0SmJ19iLk8/zYh5DwHjao795heF2D4QBjbOuSARKWqep5+wdo6KIihgVIigCGAek6DGmI2LlERNjDBJh64cJw+kkWT9JmNPPOFnuQYdAJos+k7PyHJ180qFMU3yjpaylOaKWEvq+x/XNNU79CW3b4Xg8AiB0nZQlWE28vX8KASiZ6quq2KgkJbmuGqy6FeqqxsVulOwnNVqtjXHbdtKZwnk1lmTxXmk5hEVo5t0MeUPhwnkxQGuaJhwOe9zeSIvV65sb3NzcCPk3C3knpyRk03F2ClIGL/MKNRfl2fh9i3zjuQhCUznUnqT9ajIurJRPoOxu4HUeVmAw1+DkEeOk2WZAud5w8a9TQ1fmohCDAkrqRpKO2Sr/iNN7Lg6qQ1151FWtYy5IaqwtngrgWa28UyOGkqwvlfPaQUXAPfWmsoNbZlfAvo/v3O/S8zIT2v7OagIZd4HN8SI6aO8VJ6z8MoumfvO5qN+DEILep5TnhmXg2KZvTuBd0NYAHyF3FV34qtLxLUbI3Uj2XZBnHEfZiJz2fMrZbt+wq+CbOMV3Tr6pHpkZ4xTODFZJCzbQhzBEximwOFLkwTS3bjVARnjKgO12i8dPnmDVrbDebLGxcmgA1jYzq4/FQYtR2rtalISIUMcgTQgKgyUHU7TzDDknSdaCa+bmdWSGLCMTVue9zYxaFs4i6dJXwfkajtXI0wi4dDoUZ3sIEkXb7/c47G+xv73F6XhAStJFKGmQJ5PmJgMLyrutxuCdcfXNdZgwjsesz/lo2ZycjcA4geOo6fcBhAiHJHaPM9Jdl+0fSfJm7eRhRiuBiXOM2oBuEM0dZczY1cwPW6OZoZHIlHVq4yhqZoABNkZWentzo/yMeg/VEJ+sHbB+di7lnnkkylKvkgNjLpcunK/ZAldHqXAzuVDdXdv93vTIGPX6o4FPSkoKEo6+GJRLC0Cq62xnlkHMHABjzYhQeKX2lZTWWQcwkmzzGALACafjAdfXLzGNJ+xvn+N0OMATsPc1CBXGccLPf/YZfv/3/wC3+wOatsVHH3+E7XaHjz/+CM+ePsVmt0XXrYTfJgHKOgkiQlU3IOX5iCGAhlFuJrs8TyILTQIlBpN0spVSxAqrrsO6W2HVdVh1K3G6vI3CjIIAMO5KK2FPSEgS/PAOrvIQfnq5l6BU6uAb74tO1yWn4SWGXAsA7LYruE+fIQwbdBWja2QeWZm9XYaHMAsSMdjJTBS7VpuZ6HoHQh7TMoeSdNYtnDwioOtaXFxeoW5aNG0nf48RkROYLNMzIiZZhzlCAQGCBTRl3nDmF5JynxYMQmBCYCvHndc56wpJkFbRlFoAgDeaaKddczU4yQY8kHRPYq3PkPIlkuCd7eu63vBbYkLfeC5ippOQY833cgZA5j/M8bnCni4kwV43Hie1WwlCx0HnwKWAfXeCv2Ate2vVX9hhdyEd+hKztEp3ExJYyejVxrTsL7YOdhYIMCBE+Cfl/IvmPvodzjn1UQ3ccKCcOcgZcI+TtWePkrkZJshA0NJAX8FVTQ6s102byeeb1RpVXRfd6e5hLiqoMcOFCnTrNIsGeJCss1OIWkol4ApIStuYoV3JAJkLDj7J79mG1T3POeQsRu8cfJJy27wuq71SoogzKFgCPyln0Ej5mdjTh+MJN7d7DOOIl6+v8eLVKwzjhNv9Qfh2tXW7WlrIbex5vu5yQDOQ981+GHGzP6D2FdbDiFXdAklwEuvEmoEf5Tb12p31bN/5Cvk6Xb2eAZh0AKwA/GsA/lMAfxnAnwbw5/XnX/rKo2Up2MZJWOW9l65dlfeoyMGDzuuOMwe2Zh9oyU7kBFJ0z0HQb+ekfKXAawEwfGKkkLKCMY1gUlJF7UHO4wCORrRJaphC01qtzWeV25J6TkAYhbMokoC8MlJsu8kgQUoRcRwx9SeEoQdi1GwfwANgT3khAAvhraMENYOBNIKjQ2KHiAkpEmICxikhJGAco9Z1plxLzywEepBD4P50aK7wPNiyQzivwBn0KcueyqyfEAKGYUBKCcMwd/hq7xApmzGdYkQgi+IAlfJUAGoUQ6MaVQMiyqTPKaVcC+ucAD9t18E5n0EmImkxb5OL6C27Gcx45rNHjJK2LK3bTxh6QYFTlPQ87z1mSMU2l8KZkgso7d63gT4VEV3dx1wkgpRJkeEbBaGrWQx6Y8sNkJwQEgq3uWXyvP0eGeBhUSkwg0kIXB25DPxU2k1GohAuZyZYWSQAxOgQotXCsnLmUE6nz6VMEGPMO1LianWCCJk8/ZzMeQZa796f+UoAy1EUveSX3xgH8+P8K8+MknucizY3yg4xOXvEwK1kzvz5Z8rvMEBnzrRTE8hIPu+850zX/PUzfsxB+jJA8w15i5P+lruANxT4Dd72NeXe5qI5weXNMgOBQXPGj9VHO0vPt6CIWC5WIls3wn+3WglHmXRq8jDegTeOn8FQBX75vKzWwIIcueNiXDBDOHtgeA4or236fuU8KHU+R7klaklirWHO+CksMwUqcgnhKNmUllFp+4kMvzSf77zK6q0tBlJ2yO5Hh2DOGS53D1KS3ZsdwFbqmoE2zlFJWdPmO2CdlvJuVK7LegQDb229NVsl31vM77UzszkaQlSOs4SIMGfnTFIyXQY4MkhUXIuBOrHI4CnLskz3pUNWZg28KXevr/yLGO3K/Gbvube5CJhjf06yPsv8ermPsOolG945Cqtgl5PGH14BOu/mrB87JhGEK+R0gidgHHqEaUSYGgz9gKo6YRxH7Pd73FzfYn844PHTFrvtFruLHba7LdabNdYr4Y4pThlQHhrnpBNghGSRwBqb2H3P6446uQreMEu2Ul1VaiPVCiZLFkG54VmgXcYHxG7Pepc3CCmttb1mW3Pux7aB5BSLPWDcIFArmtE0FfxuA+48PAI894CVnfM8ay0XishKpvUtXKxtutiUa2TO+Cn3WDCqSjp8Nc0cWDGfRu6L/p4sS4O10p7OSjjKfdU5yZZmSHWeSxC/ZUYxYNk+zEo/USn/kV2jZXHTvFKZvWZ3DdCSeBaQurzbd6bpvc7Ft9kJZyZB8QtnhRQ/73zyzUzv2f4uzYN8+YXdlK9YM+cAQlW3aFsJGtdVK+WEYFA4J4if11s7j3n9Mx8R5gtYV8P8/E3j1MqkUdh/UmIbs/9nJbVqYQBQXifl1nOaQOG8l0z7qoGvasTI97cv2pHZiI2L11A0/wHymhrvUA0QCNF56RZ91oEXMM5Ku385y6fI+LE1mVFkZZqS72AEpT7K9X3OQkqZgH8YRpz6HsdTj3GULraW8WMl1gzOgM+8l5wPKLt2VnBpGCSTiIjQ9yP6ZhD7DSTcuFSUFnuPirVbdNmJ8Cvk62T8fALgt0mQFgfgLzLz/0RE/yeAv0hE/z6AHwP4U1/ju76efDVg9fW+prTzirlzT1//3ZMvsaSCEBr/ESL6f/CNdXi+oT3cm/mO5Zd0QPWe1wD+ynudi4tk+bpYhb77F33HPc3Fb0/ugjy/jPxS7/9a68svASLdn9zrXDx3EhZ5j/JOdPhLLha/gvxyo+TLbKH7k192QyufnoPQ+XV+83ULNt15zzubi9+a3OcpFJHt9ye/0ni4P9vmO7SI0pc8f3dHuf+3f9WXFdN2sVE/cImSKHAvOswZdIu8N7Hg6i8Sep+bHBF9DuAA4Iv3dtBvX57iu3G9v8bMz77pl6gOfxffnet6H/JdudZ70SGwzMVvWZa5+KvLd+Val7n4zeS7oMf71uEyF78dWebiry4PVYfLXPx2ZJmLv7o8VB0uc/HbkS/V43sFfgCAiP4vZv5j7/Wg36I81Ot9qNf1Nnmo1/pQr+vL5KFe70O9rrfJQ73Wh3pdXyYP9Xof6nW9TR7qtT7U63qbPORrfcjXdlce6rU+1Ot6mzzka33I13ZXPoRr/episEUWWWSRRRZZZJFFFllkkUUWWWSRRT5IWYCfRRZZZJFFFllkkUUWWeqlc5QAAASMSURBVGSRRRZZZJEHKt8G8PMXvoVjfpvyUK/3oV7X2+ShXutDva4vk4d6vQ/1ut4mD/VaH+p1fZk81Ot9qNf1Nnmo1/pQr+tt8pCv9SFf2115qNf6UK/rbfKQr/UhX9td+c5f63vn+FlkkUUWWWSRRRZZZJFFFllkkUUWWeT9yFLqtcgiiyyyyCKLLLLIIossssgiiyzyQGUBfhZZZJFFFllkkUUWWWSRRRZZZJFFHqi8V+CHiP4EEf0DIvrHRPTn3uex37UQ0Q+I6K8Q0d8nor9HRP+Bvv6YiP4XIvpH+vPRt32u30QWHX74OgQWPT4EPS46/PB1CCx6fAh6XHT44esQWPT4EPS46PDD1yGw6PEh6HHR4XdTh++N44eIPIB/COBfB/D7AP4GgH+Xmf/f93IC71iI6BMAnzDz3yKiHYC/CeDfBPDvAXjJzH9eB/4jZv6z396Z/uqy6PDD1yGw6PEh6HHR4YevQ2DR40PQ46LDD1+HwKLHh6DHRYcfvg6BRY8PQY+LDr+7OnyfGT//EoB/zMz/HzOPAP4bAH/yPR7/nQoz/5SZ/5Y+vwXw9wF8D3KNv61v+23IwPhQZdHhh69DYNEj8OHrcdHhh69DYNEj8OHrcdHhh69DYNEj8OHrcdHhh69DYNEj8OHrcdHhd1SH7xP4+R6A3yt+/3197cEJEf06gH8BwF8D8BEz/xSQgQLg+bd4at9UFh1++DoEFj0+BD0uOvzwdQgsenwIelx0+OHrEFj0+BD0uOjww9chsOjxIehx0eF3VIfvE/iht7z24HrJE9EWwH8P4D9k5ptv+3zuWRYdPgxZ9Pjhy6LDhyGLHj98WXT4MGTR44cviw4fhix6/PBl0eF3VN4n8PP7AH5Q/P59AD95j8d/50JENWQA/NfM/D/oyz/XWkCrCfzs2zq/e5BFhx++DoFFjw9Bj4sOP3wdAoseH4IeFx1++DoEFj0+BD0uOvzwdQgsenwIelx0+B3V4fsEfv4GgN8kot8gogbAvwPgL7/H479TISIC8F8C+PvM/J8Vf/rLAP60Pv/TAP7S+z63e5RFhx++DoFFj8CHr8dFhx++DoFFj8CHr8dFhx++DoFFj8CHr8dFhx++DoFFj8CHr8dFh99RHb63rl4AQET/BoD/HIAH8F8x83/y3g7+joWI/mUA/zuAvwMg6cv/EaTm7y8C+EMAfgzgTzHzy2/lJO9BFh1++DoEFj3iAehx0eGHr0Ng0SMegB4XHX74OgQWPeIB6HHR4YevQ2DRIx6AHhcdfjd1+F6Bn0UWWWSRRRZZZJFFFllkkUUWWWSRRd6fvM9Sr0UWWWSRRRZZZJFFFllkkUUWWWSRRd6jLMDPIossssgiiyyyyCKLLLLIIossssgDlQX4WWSRRRZZZJFFFllkkUUWWWSRRRZ5oLIAP4ssssgiiyyyyCKLLLLIIossssgiD1QW4GeRRRZZZJFFFllkkUUWWWSRRRZZ5IHKAvwsssgiiyyyyCKLLLLIIossssgiizxQWYCfRRZZZJFFFllkkUUWWWSRRRZZZJEHKv8/ndKpS9NlYbYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtYElEQVR4nO39eZwkV3nmi7+Re2btS9fWe6tbvajVWlutDUlGSCDAZrOtAQ+GscdjNs/IGGNkZizh8SCGO5ef/bke42WG5TNzMTYD2NjXxgiwFiMJJCGhfWmpW71W175XrhG/P7qqup7nRFdWVldlVhfP15+2eHOJOHHiPe85EVH5PF4QBIEJIYQQQgghhBBCCCGEEEKc50Rq3QAhhBBCCCGEEEIIIYQQQojlQA89hBBCCCGEEEIIIYQQQgixJtBDDyGEEEIIIYQQQgghhBBCrAn00EMIIYQQQgghhBBCCCGEEGsCPfQQQgghhBBCCCGEEEIIIcSaQA89hBBCCCGEEEIIIYQQQgixJtBDDyGEEEIIIYQQQgghhBBCrAn00EMIIYQQQgghhBBCCCGEEGsCPfQQQgghhBBCCCGEEEIIIcSaQA89loG7777bPM+zgYGBWjdFiBVlamrK7r77brvvvvtq3RRRI1TvxE8DqnWiFijvRLVRzolaoLwT1UY5J2qB8k7UAuUdooceQohFMzU1ZZ/61KdUQIUQaxrVOlELlHei2ijnRC1Q3olqo5wTtUB5J2qB8g7RQ4/zhOnp6Vo3QQghqoLqnRBCCCGEEEIIIYRYKnrosYycOnXK3v3ud1tTU5N1dnbar/zKr9jo6Ojc+9ls1u68807bunWrJRIJW79+vX34wx+2kZER2M6WLVvsrW99q33jG9+wyy67zFKplH3qU58yM7Ovfe1rduDAAWtqarJMJmPbtm2zX/mVX4Hvj42N2cc+9jHYzx133GGTk5Mr3gdi9fLCCy/Yu9/9buvs7LRkMmmbNm2yX/7lX7ZcLmf9/f32oQ99yPbs2WP19fXW0dFhr3/96+3BBx+c+/7hw4dt3bp1Zmb2qU99yjzPM8/z7P3vf3+NjkjUEtU7sVpRrRO1QHknqo1yTtQC5Z2oNso5UQuUd6IWKO+Wn1itG7CWeNe73mW33367/eqv/qo9/fTTduedd5qZ2Re+8AULgsDe/va32/e+9z2788477XWve5099dRTdtddd9nDDz9sDz/8sCWTyblt/fjHP7bnn3/e/uN//I+2detWq6urs4cffthuv/12u/322+3uu++2VCplr732mn3/+9+f+97U1JTdeOONduzYMfvd3/1d27dvnz377LP2e7/3e/b000/bd7/7XfM8r+p9I2rLT37yE7v++uutvb3dfv/3f9927NhhJ0+etG9961uWz+dtaGjIzMzuuusu6+rqsomJCfvmN79pN910k33ve9+zm266ybq7u+3b3/62velNb7Jf/dVftX/7b/+tmdlcURU/XajeidWIap2oBco7UW2Uc6IWKO9EtVHOiVqgvBO1QHm3QgTinLnrrrsCMws++9nPwusf+tCHglQqFfi+H3z7298O/cxf/dVfBWYW/Pmf//nca5s3bw6i0Wjw4osvwmf/23/7b4GZBSMjI2dtyz333BNEIpHg0Ucfhdf/z//5P4GZBf/wD/+w1MMU5zGvf/3rg+bm5qCvr29Rny8Wi0GhUAhuvvnm4B3veMfc6/39/YGZBXfdddcKtVSsdlTvxGpGtU7UAuWdqDbKOVELlHei2ijnRC1Q3olaoLxbGSRvtYz83M/9HMT79u2zbDZrfX19c3+dzD8r+oVf+AWrq6uz733ve853L7zwQnht//79Zmb2i7/4i/bXf/3Xdvz4cacNf//3f2979+61Sy+91IrF4ty/N77xjeZ5nsxsfgqZmpqy+++/337xF39xwSe8f/qnf2qXX365pVIpi8ViFo/H7Xvf+549//zzVWytOF9QvROrDdU6UQuUd6LaKOdELVDeiWqjnBO1QHknaoHybuXQQ49lpK2tDeJZ+Zbp6WkbHBy0WCzmJLDnedbV1WWDg4Pwend3t7P9G264wf7mb/7GisWi/fIv/7Jt2LDB9u7da3/5l38595lTp07ZU089ZfF4HP41NDRYEAQ2MDCwXIcrzhOGh4etVCrZhg0bzvqZz33uc/bBD37QDhw4YF//+tftkUcesUcffdTe9KY3yVRahKJ6J1YbqnWiFijvRLVRzolaoLwT1UY5J2qB8k7UAuXdyiFPjyrR1tZmxWLR+vv74UZgEATW29s791fNs5xNh/5tb3ubve1tb7NcLmePPPKI3XPPPfae97zHtmzZYtdcc421t7dbOp22L3zhC6Hfb29vX76DEucFra2tFo1G7dixY2f9zP/+3//bbrrpJvv85z8Pr4+Pj69088QaRPVO1ALVOlELlHei2ijnRC1Q3olqo5wTtUB5J2qB8m7l0C89qsTNN99sZqcTdT5f//rXbXJycu79xZJMJu3GG2+0//pf/6uZmT3xxBNmZvbWt77VXnnlFWtra7Mrr7zS+bdly5ZzPxhxXpFOp+3GG2+0r33ta2f9y3fP88BY2szsqaeesocffhhem//X/EKcDdU7UQtU60QtUN6JaqOcE7VAeSeqjXJO1ALlnagFyruVQ7/0qBK33HKLvfGNb7Tf+Z3fsbGxMbvuuuvsqaeesrvuussuu+wye+9731t2G7/3e79nx44ds5tvvtk2bNhgIyMj9kd/9EcWj8ftxhtvNDOzO+64w77+9a/bDTfcYL/5m79p+/btM9/37ciRI/ad73zHfuu3fssOHDiw0ocrVhmf+9zn7Prrr7cDBw7YJz7xCdu+fbudOnXKvvWtb9mf/dmf2Vvf+lb7z//5P9tdd91lN954o7344ov2+7//+7Z161YrFotz22loaLDNmzfb3/7t39rNN99sra2t1t7erpvLAlC9E7VCtU7UAuWdqDbKOVELlHei2ijnRC1Q3olaoLxbIWrro742uOuuuwIzC/r7++H1L37xi4GZBYcOHQqCIAimp6eD3/md3wk2b94cxOPxoLu7O/jgBz8YDA8Pw/c2b94cvOUtb3H28/d///fBbbfdFqxfvz5IJBJBR0dH8OY3vzl48MEH4XMTExPBf/yP/zHYuXNnkEgkgqampuDiiy8OfvM3fzPo7e1d1mMX5w/PPfdc8Au/8AtBW1tbkEgkgk2bNgXvf//7g2w2G+RyueBjH/tYsH79+iCVSgWXX3558Dd/8zfB+973vmDz5s2wne9+97vBZZddFiSTycDMgve97301OR5RG1TvxGpHtU7UAuWdqDbKOVELlHei2ijnRC1Q3olaoLxbfrwgCILaPG4RQgghhBBCCCGEEEIIIYRYPuTpIYQQQgghhBBCCCGEEEKINYEeegghhBBCCCGEEEIIIYQQYk2ghx5CCCGEEEIIIYQQQgghhFgT6KGHEEIIIYQQQgghhBBCCCHWBHroIYQQQgghhBBCCCGEEEKINcGKPfT4kz/5E9u6daulUim74oor7MEHH1ypXQlhZso5URuUd6IWKO9EtVHOiVqgvBO1QHknqo1yTtQC5Z2oNso5UW1iK7HRv/qrv7I77rjD/uRP/sSuu+46+7M/+zO77bbb7LnnnrNNmzYt+F3f9+3EiRPW0NBgnuetRPPEeUQQBDY+Pm49PT0WiZz9Gd255JyZ8k6cYbE5Z6a8E8tHtfJOOSfmozlWVBvNsaIWaI4VtUBzrKg2qnWiFqjWiWpTSa2zYAW46qqrgg984APw2q5du4JPfOITZb979OjRwMz0T//g39GjR1cs55R3+hf2r1zOKe/0byX+rXTeKef0L+yf5lj9q/Y/zbH6V4t/mmP1rxb/NMfqX7X/qdbpXy3+qdbpX7X/LabWLfsvPfL5vD3++OP2iU98Al6/9dZb7aGHHnI+n8vlLJfLzcVBEJiZWSbdPPf0bualFSWgnXDMTxLLPVnk78+8SnEJQ4/a4OP7jQ2tEBeKRYinJsZwe5GwNkZxl2WOq1y/LIWyT+Jof9ncuDU0NJz1M5XmnNnZ8y5p8/qAui/CanDl3jf3WPmMOH3B2/Tw/VgUz1+EznEsEXfa4Pk+foa26TuNitL7+IEovR+JYhmJUhvNzHi4OHnmfID6zYm50ZTHYbnvUbvO0qZSqWQvvPjMgjlntrx553ne3P752Jwc4mP3sQ6YmfmUiz6N27oY5sR1110N8ctH+yA+8spRiBNxPn+4PTOzkk+1wsPcLOSxvl20az3E/+U/fRjiidE8xP/t//kyxM+8/LLThkQMz3lAzSxRv5Tofa52vu8eZzkq/c5y593Zcu6CCy6YG6vxOJ6bsTGcS0ZHRyHOZrPOfkolPJ983Msxd5Tj9ttvh/hjH/sYxJ///Och/sIXvgBxuflvLVOtOdbMnQ/ORhDgBzMJ94vbN6+DuL21GeJXDvdCfPwU5nKxzNwS9TiP3Tb4tvAY92iyCZzKcu5EPZyHfd4HrSc3rGuC+IZrLsbPJ7EmfOsffwTx2PiU0wYvsvBxzaXAzH+rOcd+6M37LRmf6aMY9hWvF8ZHxyF+7IWXnP0MDU9C3Nm9FeJT2RzGA8O4AZofuabyOi2dTDltKBTyzmvzaWlugbitpRlirtkcJ2hemJqedndCNTJG3+EaGqO+53kiTu/n8niM+ZA2lKYnIOb6MruG8oPAjo5PVW2OjUTOfq1YrgTy8un0dst8qUxdCZy9BguGYU2PJ2js0Pu5HK5Hy82pyWQCtx/D/JmYxHFmZralG2vX+35mN8QXbt8A8e/9b5RNeeXVUxBHaY1dWsI6bzFUa469/A1vtOhMPzrrMIqLvAYOmcvyY1i7cqdwTo0V8JznqHZx3eD1ZiKBOVDIu21oamrGfVKdyOawfiZidE6LWEfGxrDGz+9HM7NMXZ3TBp5Ti3QPhvuat2ke1teWDO4jmUhCHMTcewrrNnZDzJ/wC/5M20r2+GNPVq3WJe1MLeA7ANxG57oqpF38mTKVq2I8alWB7w+Y2f4rroT4DTdcB3FLHZ4v3y9zvjtxrfrcS7iuGBwcdNqwa8eFED/w4P0QF7KY129/xzshPjqIYzdRjzmXTqUhzpcKThvyfK9xCtd+8+eqXC5nn/+/P1+1WhePxs5674RxrudCJtlohdsodw/VC7k3UhYn2WmbPs3BfE/P+Focz2ksxvdv3EcBJWcUV4Z77bzwiA07d+XvP/tzr+eLhbK1zmwF5K0GBgasVCpZZ2cnvN7Z2Wm9vb3O5++55x771Kc+5bx++ibg7Ims/Y2HSh96LHKrC4a84uSbn3xD3GlTaBvLDdCV/5nYUvax0HcqzTmzcnkX/tCDb1yUfT+k3e4p5v7H9yOcA+XikAdKzjMNb+EHLeY8iFl4H3zBwPHpTZR5uOZepdLnq/fQ4+z7QFYq78pPouXHOediubzjGw384GpJbShTz5ybi1E8x3UZXIz5ecqzMm0Mb+eCYdmbsctRu8rdSF/uvDtbzkWj0bk+5L4s96BtMX29tD8MODuL6Ue+eK6vr1/w/Uof+i+F8+VBSvXm2MU/9Ci3XjFz60YstvAfBpR7AF8+j8Pq7cKErQ2QSnOi8rWG8wcV1C+JOF0OxPnCahH94C3uOIKZ/1fNOTYZjy36oUcujjkUDVlP8NorRnlY9o8VKpxrFjW/cRt5bcZ/kMK1iGL+fNjajusZf6bc+3wE5fYZtsbl9WO5dXS15li4nuD3FmxB+feXRmVbDWt65dc0C89/lddft3al6EFMJoU31cPydsF9LOLarhLm/3HT2VjOWheNxecePvKNePchSPlb0FGql869iDL3Jsp+3omdJrh1oWxMGwkqW+OG/3FmsIjPnH2blV5L+yHb54c9zkOPAG94Vq3W2ZnD42XActS6cx2DfO4WU2e4r1NJfMiRTuEfIjjPSumhRyaNn+cHvomQP1pNpXCffK1uMdxHmvbB309Qm1P0+UjRvdkdoYceJfoDmrAH9LW4Z1fx9fki5reym1jC/FV+owu/UHafld7nXcQ9pJVmafeeK+/rFfH0CNt5EAShDbrzzjvtox/96Fw8NjZmGzduXKlmnZXlvvm/mF96OH+wXeJfduAT2ZtffwPE99+Hf73S1NhBe3OL1/ET9BcuIX+Vf76y2JwzO3vexSLzzwstUMrkhBdy4yJCC0i+uOa/IvWcxSNuL0Z/ScmL0dve+nanDcN9+Ff7j/7LfbRPbEOJDoP/Yr/AE/sSfg3E54X/2oh/meA+M174IiUSCZm4o3H6TPiit9K/zF+OvKtof3SwpZi7L/71TryAteX6i3dC/Hu/9SsQf+N790P8x//9NWwDPUBy/4LQzOe/kKaxUDL8C5XODvzrvXRhCOIdW9ohfs87boT4hc+94raheO7ncqH3l2ObS+Vc51jf9+c+n07jAybnworGCv+lz+x258N/NczHXe6XIOXilpYWpw0///M/D3FPTw/E5S62l/JLnnKshoccy5WDy1HrKtk1/6gizz/FMrMp+gv5dArP6Z7tlAOU231DoxDnqFbGovRwgG+mmPvAIE4XryWqQ1yXuEsm6VcCRfpAJGzpTh+K07y+aUMbxNdciX8dvaEH33/82YPYpkka8yG/6nB+3He2c11h+i1H3pVKJSvNLKh43ZSkX1GUDHNiPO/+ss2nByOJevqLSaqRfGOeb04xRbqxEPIDI2eB6PxBS+ivvc/Af3HN/VIs4F8I8vrULOR6mceHz2u5hf9amueNgYEBiHM591xQqrsPVmb6YTketK/YdazzACq0RWU2wjdRqf28S8qxiPPgLuxGIM+ZZZpE8BaddQC1si6FNwbNzG68ENeCB/Z0QbxtN64NNnU3Q/zSwZO0Ra6d/EtppwnONcpysRy1zvcD82caXe6hh++Mz8rXQM4fIPF8Re/zHybw8Tm/kDB3/tmwAX8Zvn49xvzwxqdc5/XqyMgIfj30hijG4+ML/1qEt8H1trERr3nq0xncfsGtdc4gpjGanBkv0aKrALAQ51rrYnbmcMv9ssN5zBaW3s6DE3rgFPKVSuA/0Ag71hQ/IKBfRcT5F0r0iyennjp/XIZxKu7WOqO1YoRu0NRlMGeS1MYorUWT9MeE0Tg/aHHHP08DEf4DmXlficQWXtfMZ7nvnZSb3/n9xeQQ18vK7wEs4R6rcxwLP6QISO1j964LIG5qwD/+e/ypn0Acdl1V7sG/M48X8bzzQ2ePfsHJ67ylMHs+K1nXLftDj/b2dotGo87Tur6+PuepnplZMpm0JD09FaISKs05M+WdOHeUd6IWaI4V1Ua1TtQC5Z2oBZpjRbVRrRO1QLVOVBvVOlErzvVhqUMikbArrrjC7r33Xnj93nvvtWuvvXa5dyeEck7UBOWdqAXKO1FtlHOiFijvRC1Q3olqo5wTtUB5J6qNck7UihWRt/roRz9q733ve+3KK6+0a665xv78z//cjhw5Yh/4wAdWYndCKOdETVDeiVqgvBPVRjknaoHyTtQC5Z2oNso5UQuUd6LaKOdELViRhx633367DQ4O2u///u/byZMnbe/evfYP//APtnnz5kVvw/fna+6dmw7raqGceQzrPf6rX3wXxMk4/rQrYqiJ9r5//UsQ/xPp8puZHT2GWqasxVlOR321shw5dxrPZtXqXJ+XhQ0aWYvWLEQdkfuTU4L1Vkl3knWeL73kcohv+dlfdNowRlqlT/7kSYinxtA7gY+bi4TPks0kyBmqCcuardOoVRohnWD2TwmChc33uFtLgduGorn6kfPxZ75TSc4vX94tHs4zL+QHe453DPXv3j3bIF6XQe3ut1y3C+IfP74P4gceeoq2704lCdJibmpppO9gG/ftRY35kb5+iIcOPwvx5RddCvHOrW6fP/ci+nywV4Vr4miVvV+j+rgceVdXVzdX/9nwO0s+CXycjY14LsM+Mzk5ueD7HLPGZ7l4927MFzOzXbswb1lzOZ9HHxme/1bC02O5qY7/mEstah2v/Qoh43FiCnOVPTg6OhrwfTKXHOzA3B8eQa3vBtJA7mhCDWUzs67OVojTpLPc34e+BAnyl2ogbe/DR/Fn/4MT0xCPjE44bfDJi6SjHY/7ol2oeb7rQtRDni5gvx07PghxkXV/oyF5twLlcLnyLpFIznmvuDrW2PDp7DS9G3KspPtfR7rJMcqjgKfpMn4b3JWlkNoUI01xx4yX5rt8AetfKoHXFNwirrleiJ9NqYxXIS9PckVca+RpruF9TpeZi07vk4zp6bgTM1rpfhCYFdGv5WxUu94tZug4Otr0pWQCO7s9g/kRieP7kznUAp/Osg9AiE8hm1RHeT5yvoKw70zA63J8e3s76uqbmV25cwPE3Ttw3q/vxOPIJFhXfWFPQC5tsZCDylNXlVgvnr6ymGl2uXLO8xZxHubaReuwkGsnR0O+jD9bJEoG0OSN0EDrTaYUYkdRpLrBvnJNTTiHRmOY+9u24TUPr3EPH0bfwr4+11B5chJrOtdbXk+y6XQ6jfWWde+5X9l3xMwsF2DntDQ34wdmah17JS3EcuRdxM54ucTYD7XMeAtbdfO9Dx5AzjTD/kVlzNTZY6sUMscnaH7N0LounWafUMzRRJJ8v2h77G1TR34cZmYRWnfFaULNpNH7N0nG5SwJlWHPD/bjCSkcObpuKjreI2e+41X5emK+kXm5axn32inkQ+foN8f3Ccv5KYa3mRu2cJwkf7nrr7oC4lvfeCvEX/rLv4b4W9/+J6cFxSKecx7DUWp2TwfKkl2092KIXzh0COLXjhzB7Yf6xS18vvy5m5E19PSY5UMf+pB96EMfWqnNC+GgnBO1QHknaoHyTlQb5ZyoBco7UQuUd6LaKOdELVDeiWqjnBPVZtk9PYQQQgghhBBCCCGEEEIIIWqBHnoIIYQQQgghhBBCCCGEEGJNsGLyVufO6vaSYB22MD0yhjUWfdJm/EXy8Lj1ltdD/Jf/+y8hfvvb3gpxQz1q9Q0PoSazWZhe38LeCD9tRObpAzp6ciT0ynr/LEF5ehvOKwvHju8LhvEkakq+/uY3Qbx5wxanDfku1C7dvnsPxI/9AL1foqTHGqHj8slLxiOx6lKA75uZBfSZm970ZoiPHkLvhYOvvIQbcLppYa2/iCOgbRaU8UuZ1SoOgsCM9ctXMdGQY40GqLlZpJM4kkNd66nBoxBnplEv96P//sMQx+u+BvHEBH7ezOySyy6BeOee7RB3rUNfiPV1WL+GXkbfkCeeeQDimzZeBPHluy902vDyy4chjpB+aYnVZOm8l9PjZM4XDySz0/q0sx4nrIfMOrCsyRwGa7H39qImMmsos79KoYB6uA0N6EnQ3d0NMWs0m7k+IuxV0tXVBfG6desgPnXqFMSsVb0aPD8Ws/Yo5/MxfxtBEKyK4wrD4/VJSDOns5h3OdKljzXhl1IRzMPGKGrXtnVh3m3agFq1W7s7nDZs3oh5FU+g1vPLL+H81kx5uYl0jAdGMY8PHjkOcd/giNOGHPk1ZJKYAxvWo+/I5k14HM8cRA+l3lPDzj6QkFoXLLy+rCWJRNKSidM1h1covDbPTecgjoX4b6SpPjU34HzmGfrnBTxOwxaM8D7NPSFjOkn63KxrHiXN8GIRjzyaXtjroK4O348k2QvFbHQS/WXKeXLkJnGtECmRbw/NA3xREnallSTPhjTNV7MeOyXft77JxXl6LDesde6xxxx/PswyxxlfSJq0vddlsLfi5PmRpzp0fBi9bNgvyczVpef5Z3oKx06JjUd4LU/fb8lgjl2/G+doM7M9ey6AeN0G/IwX61u4DdQIPhe+8bWB0wSjoWU+WSi457d6tTAIgrk53tWQ953PLhSbuddOYfubD6+zecxOT2OeZTLkS0DrTzOzbDZHMebm+DjWoT1790J8xf4DEJdorZ8jT6zxCfSDMzOL0HUUezwMDaE/Jtdj9vTgddoUXXdxP5mZjU7jcRbIb6G95fQ8z3V4pTnjhmqWoNxPeFHns/MJ85Hh1rN3FGdptMwYdvLaMf1w28DruDT5u6XIs6NUws8nEnSLlc53gc5RIuHmPS8T+Dgb63Edwtc8dSOYx/VJ8g1x/ItCrieofvrkLzzfp8mrbtqBp0fFhC1hKRd5fqt0TzxnBz5PgO533NuGC983ZB/D+hTm3Ua6ZvkgmcV3bER/PzOzwSG8HijlsM6kyTPphquvhTigPHrlz/4M36f9Le4c8n2/yq9b9UsPIYQQQgghhBBCCCGEEEKsCfTQQwghhBBCCCGEEEIIIYQQawI99BBCCCGEEEIIIYQQQgghxJpg1Xp6zNdpWw066dwE1nlj/cQwPUXWTb/pptdBfMd/+PcQP/3jhyG+6sAVEO/bdynEX/jCX0DMGpdmZp6j17d6NZhrgbeQpwf7RpT16wjbRmUxb7JnI2p/X3ox5kTUD/HTID3W3XsvhfjhB76Ln6cUiUVQt9Iv4vY416MJV/f53b/0fohvJE+Pe+7+JLbBGfML6x8vRmiRv7OUbawKOEfChixpcBbpQ6/1DkA8PoHasa88+UOIL3/n1RD/0R/9XxAPjLieHinSlczlsR6lI6gR6Q+jhuS6HtRpTjS2QTw2iRq/01NuG7woJnNAuWylhetdOU+PxehQrob5K4zNmzfP6XOzv8bwMOr5p9OoA8sa+GZmuVxuwc8cPYq+MfE41gnWcd5Lmsx79qAXEWvXmpkdPHhwwTZsJO3Sa665BuL77rsP4sFB1xfrfCAaZa1+5Pzx9EDCRlKWPD1OnkJd7fZm1J6Nkabx1MAIxB3t+PmWOszLtmbUHzczMx9rGev3t7Zgrnavw1pWn2GtZzx/m7ubIU5hE83MrH+A9MRJXLmpAdef0QQex6tHnoF4aBTHs7N2DDNYcThbfax+TfS8wLwZgWxeE7H2uuOTU3SPtWUdammnSN+d+4f13KeL6NsSiZH/QhxrcjLlrqsaGvEcso8A934L+Y50trdDPDiIOcRa69G424YU1e0p8lWaGB2DuEja0Amek2lO5e3zXGRm1kCvJWkNOhtXW+d+IcqvHNxPsC8ELz+i9H6Brgf8HM6HKfL92Uw+a0dwSXZ6G46uNuYt+980NuC52UAeSQkyx9gQw7XodRdvcNqwgfy8EgVcW46OYc4NT/N55/FPngPUsWHTI1cwriHO2atiyQt8f25Od33J2CeLPT7cgy2UMG+y5CPB1xvxFOYEr8MmyQcoEccJLWxZXSDPqhK1qacHfbWuumo/xDt37cLvU5t+9CO85hmfcO+fZNLs2YDtTlEdGqF1dKJIt9xo/LH/USSkI2LkjzE2ih5F+enT26j2mm5+Bng0vqKOnxHCNcXdovsX2uWOzmevmjJ2qiHWmBajeSRBc1Gc5uQG8lbINOKaIN2A8/WGTXju/JD7Nxk68mQat9lAnh7s8xVjf8Y0toE9WIOoe20X4/HN90PnXW9U/0rijJtMxdfrIbXOvXYq5+u58L0qHsNBOS83W4QnI+2TLauKVCN88undsXMLxJ/Yd6ezj3wB8yA/hes6P4e1aqwfFwvfvw+9gkepTkUX4YNdjjNrj8VPrvqlhxBCCCGEEEIIIYQQQggh1gR66CGEEEIIIYQQQgghhBBCiDWBHnoIIYQQQgghhBBCCCGEEGJNoIceQgghhBBCCCGEEEIIIYRYE6xaI/PT3jThZi6OkcxSzGU5dkyN6HkQ+d2w2df6Dd0Qv+udb3f2+brXoXH5/isuxW0W0cDtJWrC5degMdeRI8cgHhkZh3hsHI1nzFyztfImu/T+Ikx4ysH+WmXNvKvIfCPzCBn0sUlkuPnWucEGmnx+Lt+HxuWd3T0Qewn3/Iz0osHQBdt3Q/yGN6Kp+BAZEh05cgTbSObQGzdtgviq66532nDTG98C8ROP/hjio4cOQeyV6YdyXR+WpZXZT61eXBO4MOuwAkRRGlNPP4em0i+dQBPw9u6tEPe99iLEV15yHcSZNjRENTM7eQzPqQVojFVfh8a68TiZH9ZhfOMbfg7fj+L3e4f/yWmDxdBoMGBTMqc3uRbRu0swNl+tRuapVGrOiHGCTBvZzC3MuJxhU8d169CI/tSpUwvuY+tWzLltZFba3NwMcXu7m3Nslvbss89CzPX1DW94A8Rsxv5P/4Q5VSjguFoN5zYs5yo1MufjWi1w94YZe+YKWP+yeTKD9NDI0ffw820daKzb3op1pbkFTcebQmpdOp2CeDqPJn8xMjhtaGmiuBXibAkNpdsob8em3LVdSxOaEEdohqtPo5n6wACuF3/8k5chLpA7omPuvQgj89qPjjMEQcmCmYV+LE5Gj5RoJc67kO1FE/hqXTP2f5oMRYfJXDlOpqecE3w+GxvxfTOzJBkAR6jdGTIxvfzSyyBuJWPzZ597HuL+0UGIR6bwGsXMLE+mxmxcbgUcjzFaV3OtKrcGzpCRq5nZui68/mqqw75PzZjCF4pFe/yVV53vrxjz2+6sHcp8NeQ1NqFO0JrJ6PquaDQPxPCSvxhDI97WZjTFbV/n5pzR+Wtux3l+dHQE4jSNk3bK88lBXBdce+FmiHdehOsAM7N0C9YyGxvAbeJy1obHcV5nnHUdXaSGXZIGdNOAjaMT82pMEARWCjEpXin8wDfvrEbmfDODjIxLZFJuZnmfjMjJRNwLMM+SPsalPPZ/jMZ4qYDzpXHemplH83Y0jv3f1onz9LYLMI+2b9sI8eQkzqERD4/JL7r94Jew3uZo3ZRKokl0PI71cnoC9+mVsO+npzBxiyHrsijNXVEyKQ5mDIgDdjdeYfJ25uqJbyx6dN+I59NiSFN5dcH3XyKOE/mCoXOTj5cvvAYwM0skcP7s6ML7LZvWY9xCtS0wPL99fVjrDlyG677mdRibmWXH8drs0EG8H5PO4NrT4tj78QQbmePn83xNE2IwHaXPxAMcB7F58wjPUSvPGSPz8h+le3qhXyt3P3Lh4+M89coan4dsw7nfVcYMndaB7ZtwzuzetgPiunpcQwVRyiEzm85h7pZoPTs9Ngzx4VfwHtFPnnkS4pGREYjL3UtZDMHMNir5pn7pIYQQQgghhBBCCCGEEEKINYEeegghhBBCCCGEEEIIIYQQYk2ghx5CCCGEEEIIIYQQQgghhFgTrFpPD8+LmDenv4bie46OOmvQLcITwvlEBHUSeZu+j/qO+6+6FOJP/PZHIb7mwFXOPjOkpZedRO3bh3/4I4hfegk1llOkmT6dRR3MYdLSnc66OqbRaIJeqVRHbfn1+haji18Tyuj5L0rrj7/jvL3wsSZSmDMXkSZzjHShI56rsz09jjr3Xd3rIf6duz8N8cggenqMT6D2d3tbC8QBadUeeg29ZszMhgZQ/++JHz4EcSmPWqas6+zo0pbR/wv19ChzuoLwl6tOpdqGrN1+ehuk0xvBcd8/jvq1X/jmfRDf/hb07LiiCXXsx8g7IRdBvUczs6Y61LeNNKAOc0tzF8SJgM55HveRbsX6NjaFx5BsQW1pM7NI9BWIuW8dnXqC866cDuVq8HhYLLlcbq69WZpLuF/Y0yNJWvFmZo2NqA/P22xoQL1w9s9gz440+SCMj2Md2kReQmZm+/btgzhF9ZPP33PPPQfxu971LoiPHz8O8VNPPQXxYrxOGG5DjHTWS6Tz7GhwE2E5x/tYSCd/Vecs12jP1fpmT6OJKVyrjQxj3hQLqLPd3IR1KZVEnXvWyZ9kzxAzK5LGbpbSIhrHbUai+PkU+RtlMrQ98k2ob3R9DZJxHJNF8lJIkOHDq8d6IX7tGM777rp7Yf+j8wvsi2IJNavzRY7dcc5H39rSDHFjPdbDE6ewf+vrsR7Wk1fF5s1bIN7Qhd4zZmYl1tqm8bG+BzXHb3vTbRDnSGM+Rvrwr55A76/HnvqJ0wbWxmd/IO4n9n5iTw+eF7g+TdB61MysWMT1SbqO4uTp42L98pXnjN44y3AHtvBaxPUbc+cGnjt4ppimWhiL4z7jGczBVCPGF2zZ4LThkh3onbBnJ/qpPPkszpnf+v8egPjoGNbfyy7A64lrDlwI8fqd2502WBLn9WgMtfDHpzGnJifIY4mWfXQZZSWK2QvTzIxKhCVISz+VOFPzgyCwfMH1w1kVsAZ/iFeT5y98zyURw7mH1x/FAvljeKUF3y8U3DakaM3J56SlFfOoqQlzmeszn9J17ZjX27df4LThxAmcM7kW8XhM0/pzeGIE4sEQb65yRMlTk5dEZ85NLTw9ZmodFTseT3zjMWyFyz4fvrP8KHd87N+In+d7CLv37HW2cPPP3AzxRfsugbiVci4ew5MxSP6ofSfRI2s6izWhZHx/zqy7C6+Td+65FOL+4ZMQZ2ksJVM4bnj+de6fFtxr4nic5mQ6F/F53pl+sbzX23JSKpXm6k3Ze4eOn5GbQ5wX5bZZ7v6lc6/K2ae7fd4Gj3n+TqYOa93uPRdBXEdrzeeeQ6/LeMq9nti8BefdXvLkPHYEvdHqaL3b2t6BLS7jm7W069CZbVbwVf3SQwghhBBCCCGEEEIIIYQQawI99BBCCCGEEEIIIYQQQgghxJpADz2EEEIIIYQQQgghhBBCCLEmWMWeHvPtEBbWp3a8FkK2V06nLWKoxVcqoubklk2oq/dffv93Ib7+dTdAnJtAPXozs8lh1EQ7cewIxAMDfbjPC3dBfMmV6BMyTl4NE1N/AXG41rfRZ5yPLDPnme7zvMQrUd9wzMfGurBn3T6EC+tkt5Eu3uYtWyCenkCvjI51qEtqZtZCWqalJHotsARjz+bNEHd2YhuOHT4M8Y9//DjEp/rc3O9Yh+PruZ/8GOKIx3rGCKtElhvzYaqSrJHs8bdWianHcnjaeOw14WP/RxKo4fjQ0+h9MV1EDc+rrn89xH6JNXldveIUa4WSb5JPYrSlOGqNJutQwzzZgnmYyqFO8yX7L3fa8MNHH8N9FFCbvbxPjy34fjmPj9WM53lz7Wf/jOnphfWnWbvYzKyOPFzKabOzPvngIOrdbqFaFydfhLA2sm8It6mtDetjby9qNOfJO+GCC1DX+cc/proV4glTzoODvU86OjCvX3vtNYhZI38xPjLcLtbNP188PZzxFfohDAvkvzA1jXXC9/H9GOXV+Dh6B02M49gollx/B7K1stZ21HoujaC2czaF5+NYEb0Tnn/hEMTRCO4gU495bWZWIJ30ZAZrfJ7G20uv4vpzYhL7yS2FqzdPFoPvl6w0IwwesGA4hax7HQmZF6Ym0YesMYPeMBfvQl3lMerfZJyuYyiHtm7YCvHGLtezKkbC9Ou70MPj4ouwDVu3bYN4mjw9UgnU/554EGtsfx/7vrj1ybk+I68Dx4eC6iXXKiaeiDuvjY3iOngwSfucWXssxYPpXDjj6OHik08CTyXRkLmlYOT35FzXkhcX9W0+i/ObP4Rr9fYmnJuGBrEWmpk90o+eHQ9/90GIT47guNiwYwfEV1yJvoTNHq4T0hk8vw0tOKebmY1N4HGP9Y9AHKdOb2vBejnSR/MjafHni7iBfMH1cYpRnrK+/9jYGb+H1TzH+lz83AtdC3I4xhO0lo/RGM8XyCOOhnSR7q9MTZO3ReDWgPUb0cOtZwN6U15Cfm5bt2Kt47UE+71df/31EI+MjDhteOJxvNblepLJ0LU1Gb8kqHYVi+R1QoTmzSI9Bqqdc7FYYq6Pi0Ve++NnOcXCKj6vonNnM+Gcga/n2fIjQ55ZP/uWt0L8q//2V5027N6L82emgdZUAZ6/XBZbnUjhOmLHrp0Q89h7+fgJpw29z6LvYJG+M0n3GkcG0OMjWYd+R3wdxXNILMTTh72+eLJKxs+MJb9UXU+Pha5lyl7Ph71W4T2BkA1AGFng2utsOGso2oZP9zGuvhY9WPfsxVoY0Lrg2AnMkVLIOduxHb21HnsMPadfefkliH/+He/A79P963q6Nh8ZwbwN6+eyfikzY4H9ehZCv/QQQgghhBBCCCGEEEIIIcSaQA89hBBCCCGEEEIIIYQQQgixJtBDDyGEEEIIIYQQQgghhBBCrAlWsafHGb3xSnXaWKNuMQQkylyXQt27D/67X4b42gOXQlyYQn2yeIjBQyk/AXF7WzPEb337OyGOJlE/MB3DbeamcXuvu/5qiJ957qDThtVAJMJ9s3p8P/KlM5J8OdLANmo3a+7GQzR4Hc13x4uCtPsod9d1bVjw/UIWtVDr6rqdNrR3oBb00CTqbQ6cQn2/+swWiIeHMc9iSdQ4b2xqhrihod1pw8EXnoF4ZAi1oT0WfSVdyUq9Exy/jpDXKtEBXGnm17uw9xYi7CjYvyQSYBwrcb1DLe/rr94PcVML6hVPZ1GzNxrHnDAzK5KWfiKDmo4RI38NqpmlAPVQY1GMSZrUfu5nUaPVzOyJH6EHw4P3o/40azmzz0SlLEaXcrUwX4t9YgLHOGsVOzqwIb4VvI1K5+3hYdRl5+1tJq8hblPYPtgvg3Wc2ePj4EGcM3mfySSOE/YAWQyTk1izjx07BnGlORimgc99w/PQ/PO3WvPTLCSHQtZVrDfsaPLyPE1+Rs2tOF/FA5wfc+QdtHkLzslmZt2dqC9+8KWXIR58Df0zJtNYy7q7MM96tm2EeHxgAGLHk8LM0nXoKcHzNGfJVB7zzKP1Da9mynnVzGxlEZ+pDYEFc/nEOZIgL4tkmuIkni8zVzO8IYV5dc0V6MF38iSus7o6myCuS+L527FtD8S7LtjitKE+g+d403rMm+Ym3Af7a2RayEeL6sb3f/AAxDma98PgesRrXPbc4XU011heM3MNNzPLZPA1XttNzcx1xXOc38+JcvrUNL7C1rBRqn8F0vYuJUj7m/q2QGO+MIGeLc+99CrEx0+iz6SZWSqBOTdKmvI9XZjH+zswB3dtx3p7wUbUnE/GqJ+a0U/TzKy+AY9zehrb0BZgHm/dSL5ZLx+GmCtbkUwHoqxpb2YN9Tje2WNsvpdULedY3jfnmU/3Pkp59KEwMytO4rFFqH/y5E0RC7i+kqcg1YgCGUtGQm5Ntbdj3rzxTW+C+MCBAxBz7eN+YB879m+bpnWamdnEKOaZ49GRw/HGfmGl2ML6/rxOC1vj8v2TStfZK0XEzsz+PnkI8PU8EzY6eP0RD3h9QmOUPs+9sH83+nP89n+4A+K9B65w2pDNoT9RiTyV2CeNPSPZMNWj08ljsanJvY5ub8Z6WhjFmhwhj7rhfvQO3tCMtY9zkufjCN+LsZA1NH1m/pzNfsgrTTQaPeu9YmYx/s+ON0yFPp98/zlHnme8Oa6FZu5aPJnG9c3t73kXxB/+8Ecgbm3De34F8hZiD5AgZF00NjIE8bat6DG3k7y6Juh+Ty/5vxVpbJTzblsUM3WlkvlVv/QQQgghhBBCCCGEEEIIIcSaQA89hBBCCCGEEEIIIYQQQgixJtBDDyGEEEIIIYQQQgghhBBCrAlWrafHfCrV81/KNj1S9bzist0Q3/bGG3ADJdR9jnqo7xn2OCmfx+80r0Ot0lRrJ34+izqafhE1JlN09m658VqI//Krf+O0YXyS9fuWv2/Ls3p1n4vBmdYVffbjwA5nieuS7+riJZOkrR5DDeWST5qeJBTdSRrNkQS2IRLDeHBwzGmDBagH2D+KWn3Dg6gBGdCBdW9CLT/O44ZG1E6NhpSVJx77IcSFAmrARkgDtBQsrKtYzhVmNfl1rDTs33H6NSRKeRUp4jncvA49O97yevQHSpImby7AXI+G9HeJ8igRw7EQZQ15Gk+eF10wtiLmzK7tqIFuZvbz70Lty8cefQxi9mRgTV2uh+X0c1ezPwIzPT09590RozrCvhPNzc0Qhx1nLoc5NTWFerjsE8J9zd8fG8NaViBt1EyG5lxzNXLDNJHn09CAPjPs8VFXVwcx65Au5XxzG/m4yuUcE3aMfD45T+d/Z3FeDdWB9W5Z25ZjM7NiifMqQTF+J1/A2jU8gjrdm3tQA7m1GfMszp4DZtbUjPUzTf4OU6PoT1OYxnNeT75YrXROM452uLvWKBrrrJOeNK1PmpobIY5GcTyy3xHnaam0evJmMXh2xjeLjzWRwJzhIRc2BqPewjrXl+/bB/HhV16AOBZFDeSrrrgG4u6ObRDXh9S7OtJ6bqrHcxqjCxGfvb6cdRV5f9ExNTbi9s3Mxlj7PuAxinkXJ2Fzn/SkeU7mcxML0YIuFnDuOHES5w5/Zu3Oa5Jq4qxJy3m1hbQ1RnlbpDE4lcUxGk3SPOBc7+H2snmspf7YuNOGrg243m+pw+vYeBzP37PPoL9RXUMzxlHUBu/qwjk5VXQ9JhLNeF3kbcYaniR/jYsvuhDiBx54EuIi6dCnqN7ydZwZenaYmU1n8bjda5Lq4QfBnP+j4+lBOcN1fGLcPecF8vSIRmiuoes57k/2/EgncQwnaK6JxVzfnngc68CePXiPZv0G9Npy1urOFpEEzetcG83MmsjHJcFed3SS+bhKJRyPvE5jP7d43L2W5nrIfR8sQed+WSjm52paMsJrCTwO9nGKhfmhko8ObyNJfctxC63lf+nfvBfiC/fthdgPuWmXSKGfBvs1ROmaJlvCmjCWxbo0NIz3Xl579UWIpwbxfTOzgOrMCy88D3FdazPEmXr0vklk8BiM+po9PCKeu7Z0/Be47+f5bJ2rL2alRCKRs3t6ONfrC3vohlHOd4e3wDVh0/oeiNevR/8/9hIyM+vsxHvBGzdugvi2N6N/aWsb+mKxD2GBrnliVEvNc+fYF59/FmL2vWb7mmPHj0N88NVD9PmFPT0WU6/cml75vWT90kMIIYQQQgghhBBCCCGEEGsCPfQQQgghhBBCCCGEEEIIIcSaoOKHHg888ID97M/+rPX09JjnefY3f/M38H4QBHb33XdbT0+PpdNpu+mmm+zZZ58N35gQi+T2229Xzomq8oMf/EC1TlQd1TpRC5R3otpojhW1QLVO1ALlnag2mmNFLVCtE6uRij09Jicn7ZJLLrF/82/+jb2L9NLNzD772c/a5z73OfvSl75kF154of3BH/yB3XLLLfbiiy86+tnLxWK0wFjTmnXs0qR9esE21F1rrE9DzLqYEdIn8wMSPLMQLWhqE0ske6QWF5B2tV9CLcdLL0Jt1NeTx4eZ2d/+w/30ysr6a4Rvnc8X68z68/736c/u3bvXfu3Xfm3lc25eLrGHAGvQ+SXUwUu4UsOWobzK5vE7HomARkkPME86ePEMaZ2ST4KfQb1dM7N8Dvc5PjoI8TRpRuby5CVDeTYwgLqTA30nId68BbWozcziCcx91haO0ljwWRea5ZCdPVT2fuh3qA1TU1NVq3UB5F0ZrWfWmAwpf75Hur1x0tkk7ee9O7ZA3N2O2rWlIvozpOLodeCF1LtICmumxUk7lDRaLUK6yeQb4tNYIYsdS4Zo7V98yUUQb9yEdf2lF1FvukzXl/XwCDt35c4nU61a19HRMacPnEphXXnuuecgzmaxRoT5aTQ1Ye1hTw7WeuXzlU5jvrDeMdffMC8LbgP3PbeB9VXZh+Sll16CmPuB9V3Nyntk8PuVenjwPlnj2ay8p8f88zfbJ1WbY6FdzisLfr5UcrVnPSqA7e2YA7kczmfTNB8eO4bnNJ3G/oynMG4quOcnEsdcvuwAeiKd+MlP8POks9zY0Y2ffxl1m6NUOxubUcPXzKx/aBjioDBNMR7nhk7cRpLWKmMT+PkY6TibF5L7Jc5l5yNAVefYmf8zMyvQWjrucR2nOMRLxmcPFdJW7+5ATfEr9+6E+JlnHoL4J0+h31Tjjehb0JZ0de4TsTI69B4eJ5/DgD3l6DjZw6OJ9cHNzOic56hGZknfv8ia36yTTnWetdyd75vZOPmKpNM4P83Wu2rXOs/OVDT2Uwn77Hx4vWNmFpD3JHvTBDT1TOXJqyLK6xd8n/MnCOnr7EgfxHX1mBOT5AvSf6of4sERPFd9r+Jao7UOc3rPpZc4bbjq9ZgTzTTW0hnMwTe/+UaIv/l3D0B8/Bhew3BtGxsn3xozKxYWnufDPD2qlXeBH8x5wpRdb/h4vorkJWpmFqGbE+zJwJdrDRmcM3fvRE+VQhrP38gUevIURt02dPWgzn1dPXtJUu4an5/Kxl9Tk+tf1NaBfl8+LUGnBnFs5CdxTvDZB4qui4vkRTM5hXlsZmZ072pdJ3rqTE+fXsP6vm99g2NVm2Pf9dY3zvkZpJJ4/tnbhN9Pp0LmNvIzSdB3krTuZb/U9XQf4tqbboE4Sn0fVm9j1Ab2gPBilDV0GOxPVZfB6+amBsyxg0884bTh6EG8Ru3sxrXi/qtwrdmyAdcNWfZLdXwPsd/YJ8os5F4YXXul5nmLzXrbVu16IuLNXUhE2AuW7xmwh1nI9RsT0JqoSP23rhNrwr/7tV+D+Jabb4W4uRnrFl/3mpklaa2XStE6j+b9Aq3tzeN1Ar7Na6jxsRGnDdlCOY9NnDcGhwcgPnnqBMR8ncoegez5abaIe/sB/XcRVPzQ47bbbrPbbrstfP9BYH/4h39on/zkJ+2d73ynmZl9+ctfts7OTvvKV75iv/7rv17p7oQwM7P/9J/+U6iJonJOrBS33HJL6IRtprwTK4dqnagFyjtRbTTHilqgWidqgfJOVBvNsaIWqNaJ1ciyenocOnTIent77dZbzzzZSiaTduONN9pDDz0U+p1cLmdjY2PwT4jFspScM1PeiXNDeSeqjXJO1ALlnagFyjtRbZRzohYo70Qt0D07UW1U60QtWdaHHr29vWZm1tmJP0Ps7Oyce4+55557rKmpae7fxo0bQz8nRBhLyTkz5Z04N5R3otoo50QtUN6JWqC8E9VGOSdqgfJO1ALdsxPVRrVO1JKK5a0WQ5ju+dl0ze+880776Ec/OhePjY05yVzes4O3HbYvbhNrUmLc3bMB4ubGdRBHYqi55rMGcAn10MzMkgns7iCHOmze+CjE4+MTED/8MD4FbWLdzAvaIX4H6ZiamT359AsQHzqKWqYx0otkvd1yZyJM49yFt0J9B/HixNoqyTmzs+edb555M7nC+rZR6psIaaF2N6Beo5mZkfYhn9M4afNZgJ/3KG871uE5HhtDrdkjIZPGieN4joMiault3ogakZ0tqDF44sgxiH3SBY6Sr8jwKHp+mJkdfe1VeoXGH4sR06mLOHqtDL7ih3krUFd7Qbltlme58q4STw8Xt+WsQc7azXUpfP/Svbsgrs+QhxHtI0LbC2tykrQqo6Tr6vgs8VgokKcH7TNHeVwI0ftPp7FO9/Sg/u3Blw/iPkJ0Xc+Vys9nZdtbas4lk8k5Xw3WfebtsZdFT0+Psx/22BgawjrAPhOsZdraih4D7L8xSbrt/L6ZWV1dSA1e4DvcJl5r9PWhRjP3E+vPL4XFeJLNp5wXipnbLvZsqZ+nwx7Wj2EsV97hNvhbC3tChHVVjMy0WPs5Tn5GLS3s+4J1p38QvTGipHm8YQPOl2Zm0SSegzTlYWsXfifVhuvJTGMzxPUp9CSYzuJaI0q+I2ZmGdpnbhr9aSKG/dDaiDnRSOuXkVEc8yWPa4TThLKeR0thufIukUrOrcF9nh9pG40N2P+JhOsfVKBakM2T3w9tdRNpcb/8HL5/7/f/CeLnXkJN5P90x8ecNjSm8caBc46iFEcwB0pFfJ+1o9uoJjeHeHokIlhDT2RxDTqr8X2mDaSrzTrcdA3BNXdy2tX7L5CvyM5NWyGeXcsXi0Wzgzjnh7ESta5io7mQz7MHi0++BTHqO/aFpG4ynr0itL1Mwr1FUCKd+km6bq2n69LxKdLuPoXrgnQEa9vICI6jZw6jJ4iZWczHHPiZt78RP9CC65M9+zZBfPHFuyF+/vlDEHs0f4Z5m7D/zUIXEIGZLWZpuWzXsb5v3sy4cXKGxmOJ7kNYofy9Cz52j/ygtnVj3XjbG9Bf9JlpzIF8AufkoPeU04Z1VIu61uM9Gs/x8OD5auHbXVx3kuxhZWatHXj9HWnDXK/rwu8MH8E8faEX1xYeXTt7MfJXKbp519iC/jUbNm+BeHLGl65YLNqrh/Da/Wwsxz27Gw5cPufNwR4ebDbEdSnO/o5mlmAPSL5VQh4eLV04xi/cexnEzR04VwZcK8N8u2juYR8C9uzgayBed0/TWpJzetNG97qq9wjeO2lsRsmodB16YERjuBaNc79RmwNeM4T8LXyU5vg4eYnNv+5a7JpvReZYgu9HshdR2P3KgNpQpHrZsx7P0Yf//W9A/Evv+SWIM+TPwX7QYTjWbM4L7ING77NtGve1cx3rjr8OeijFXjDDwyMQnzyJ69WhQfQOrtQv9XRDMfSpjsx69AUV3L1b1oceXV2nbyj19vZa97wFfl9fn/NUb5b5N16EqJSl5JyZ8k6cG8o7UW2Uc6IWKO9ELVDeiWqjnBO1QHknaoHu2Ylqo1onasmyyltt3brVurq67N577517LZ/P2/3332/XXnvtAt8UYmko50QtUN6JaqOcE7VAeSdqgfJOVBvlnKgFyjtRC5R3otoo50QtqfiXHhMTE3Zw3s+DDx06ZE8++aS1trbapk2b7I477rBPf/rTtmPHDtuxY4d9+tOftkwmY+95z3uWteHip4unnnpqTpJDOSeqwcTEhL366pmflirvRDVQrRO1QHknqo3mWFELVOtELVDeiWqjOVbUAtU6sRqp+KHHY489Zj/zMz8zF89qrL3vfe+zL33pS/bxj3/cpqen7UMf+pANDw/bgQMH7Dvf+Y41NDScbZMVw5pxrMkcrguHr5VKqJ3YUI86eVcfuAriZBr1jkusk0manx5t38zVDMyRTnphGjXQHnjgEYj/55f/F8Sb1qMe4Ed/419BvHmzqw94+eWXQHz4GPk9cJudLdD7S9KrL6O/FrLJ173udXP/eyVzLjBvrgEeeXh45DmQJEVcVO47zTid41bSX2/I4Lf6suSdQFqKzS0tELevQ23w40ddDc+BKG6zvQN9Da64ZA/E/X2ozeclSQPSx35oakT965cPvua04cgR3GYxwL5jScKAdBRZWzNYgj5gOV3EMxs//Z8nnnjC3vrWt869XItatxhYr9HM1eWMUX26cAvqwu7c2gFxMYf1K5HCPIxSLXP8OMwsRdr6Hvsn0Dk21homj46pCfR0eOkV1OaeYm1iM+shHddLLsH694N/eXjhNhFL0ah356uFde+rVevGxsYskTh9jhobcf5jbVr2iGihOmRmNjyMesXzfSPMzGkjv9/RgTnIY358fBziYtGdY9n3o7m5GWL28Hj55Zch/uY3v7ng+9wP3E9m7vkNa+dCsM4s7yOTySz4vpnr+8F9Pf/92fZVK+8WgksZD7cw3eUM+S001+Ecu7ED+6tYxPksncFj6B8cgXg6i58fGEJfLjOz12gdNT46BvEPnsJadWoa60z3RThnRiLk2eFhHKYPn0zhZ2I0v2UaMAcy0zi+WurJy8s5Fwv7A5iFLd0WrpfVnGMjEW9ubPFajo8tzlrrIdvj3JyaQg+VbA7nr42bLoR4fc8WiPfvxfpmpEF/8uiLThtam/CcRlPUL1QbOG980oxn3fsumj/byVPOzKyX9Pf53JQoB3I5HE9Wxk/KmXNDUipBmtRc96ezM9r6M+e9erVumT3CnLUeeyAtvNZwPQSx79nHsBhSaCYKdO2bpfNHc6xPa9Gde3ZAfOEm1OJ/7LEfQ3z4hOsR+NILhyG+YQK9t0rNqPVe34TXyh3rMC7Qcabi1G8xV1aFr1lypJU//9QEZlYIqpd3vh+YN3NM7NlVIk35fB49PIp8HGYWS+Icyv58aVo/lujaeGoCvS3YjzRCxgNXvO6A04bjJ8mjKuB1FdV09vRwtogMDAzgC872za67+mJs0wTWvova0LeptxuP++R9j0M8RnMGa+uHeQx2dOL1e0MTrsXjM/5is/4T1Zpji/m8FWfXZ6WF6wzX/HzIyZli79AE5kx7D14vXLjvcohbOtZD7EUX9u8Lu2fA1yC8ls/lcOyw96FzHUX7GB7Ae37Zabx+MTMrkT/wxCSuP7M0n3o5HO+RJLYh4pHfCp2qiOd6Y8bj7JOH9TA1z4OuWDjdZ6vjeoLuUyzC08OnvMjUYe374Ac/CPH73ve+BdvA1xvs0xt2CzVC9x6jvF4tszav9LgdTxBzfew8jz1ZMT51CufgIbofwPcNubaFjb+ArmHYn6pinzRbwkOPm266acEbP57n2d13321333135a0R4iyMjo46N+ZmUc6JleB1r3udap2oOqp1ohYo70S10RwraoFqnagFyjtRbTTHilqgWidWI8vq6SGEEEIIIYQQQgghhBBCCFEr9NBDCCGEEEIIIYQQQgghhBBrAj30EEIIIYQQQgghhBBCCCHEmqBiT49aEGY2M5+gnKuxmfEm8nk0HLrkkt0Q79m7E+JCEc19YlE0eSkFbMYXYnAaRTOgko+mRUeOopnlDx/5EcTPP/sCxJFgM8QDg2j4lsy4ZrNtrWhgzMZZQZg75QIsxgzqfCISiZ45Bsf4ik3/yGQnJE/Z8L4xhXnRmkYj85ESGp+lEmgYlSBjrOYmNH7y867RZP+pXojbWsksKoJGS5t60IytQKZKeTIynMhiHh8+hKblZmajBTQAy1Le1NfhcZZovOVzZDRKhsI+mfVFimScZmEGmfT+7OvON6tLObPsskaf5o7rFB3VtZddAPHUyDGIn30SzdP2HLgW4ngK+zfEB8sxzWRTKp9NOEuYIwUyJh8dxvr24AP3QTw0Nuq04d2/8G6IL730Uoibmpog7u9HM8Ny9Wwx52K1UiwW5+ZWNgBnQ7m2Npw3uruxRpiZ7d6Nc+jRo0chPnz4MMTt7Vir2Gw7QcaFbCIeZhA+ODjovDafY8cwzz//+c9DfN9990E8MYGmgdwv3CYz18yQzRA5R/g42fywnKl8WBu4L1OplPOZWWo5Z5fbtUdTaiLuLln56AOaOxpobonHsS/q6jEPBwexjkyO45z8gwfRjNTM7JGHHoM4RvX3iedxbdc7jNucKv41xC3tWJc6u7CNm7dtcNrQUI95FBSwhkfSqK+cIOPzejKXrU9jPJnH8cZ5bWYWGK8H6f0alkfP8+Zy3aM1TYSMefk4ojE376bJ8Hd8HI3IJ6fxHK/bvBXiq67+GYhj3DkFzOPcpDu/BT6ZjlKHe3xctA7zyNQ4MHy/tRmvIbq73Lo/MoLHHSOjVTaf5HV0nPo2nU5jG+mY2JjZzCxFNZSNzCdmTJDZpHSlmb87zqnIElw4eRsMj8h4xKOYzoWzA/z8ZN7dX8m5zsHvDI5j3YnTJrZtxXHw8+/GNVqericeffgRpw1TU2MQZ7OYt6l4M32D5kzDHErQIbW14vf9optz07Q2SFAez5+XgyCw7BT2y0ri+755M/W5ROtqjgsFdx3F5KnWJSM4p3q0BpkmI+vnXsT5b/tVeH+lvbEZ4nTRzbuYj+2cnhyjT3RSTLWvzL2KE8fxurWzA9e8ZmYdHbh2yL4wAnFjBmvXj3tfxg2UGfIx6sdCwTWVLlI9jZDJdGxmDAeR6t7eCwJ/rrYX6fo78HH8eHQt6Bidm1mpgJ3VWIdz0c5LroC4pasHNxlh42Ua5DSmS747xp35gnKG1+YTE7QGoLgwjTXj2JHDED//7LNOG7KTaHbv0d+qF+g4UtTmWAw/X6Tv8zrOD8tRqvnxGB53Zp6Reang9mOtKHc9HnZvuUTXlfv374f4He94B8R8/cbfj9HNkbB1swudE/qKR+3mWlYuZgLfvV9diuB5jNH9azYyH+hH4/LsNK0D4jRnUJPY2Hyl0C89hBBCCCGEEEIIIYQQQgixJtBDDyGEEEIIIYQQQgghhBBCrAn00EMIIYQQQgghhBBCCCGEEGuC88LTg3H1yco/u2Gt2ngC9ciuv/4qiJsaUZuxSKJqrJMXJ922MJ+RaAw1zeoasQ3xBGqi7b/iUmoDbi+ZwjaUSJctQvszM2tta4U4RjqkhRJqd3okQllWU9ZnbxO3H1az74cXjZ1pH+v1U//7pGs4EZKHE6SrXZcg7TzS2G3N4PvpFObI0cOojRq7YBvEXoiO55YtqKGbSONn/tc//gvEr794O8QX7NqFG4xiRzz32BMQjw31O20IYqSFmcS+iqWwTX6e/R7ID4I0QdmKZjFPc1eTHw3ojVfoI8H6jmZmAfVAVxvqoV596Q7cRmEE4t4TqOe4PYt57LEfR4geaoQ1G1nTms5hkbaRm0Yt06lJ1Ecd6O+DeHwKP2/manZu3LgJ4m7yrzl+/CTEXB/XEplMZk6PlMfC+vXrIWbvky1btjjba23FuYU9N/g77DPBmvjr1q0Lb/gMUyHn+4EHHoD43nvvhbi3F/2NXn4ZNZdZn5WPifXkwzSXOee4b9nzgz+fTOK8zTnIHh51dXVOGzKZDMQL1ZRq+9B43pmptZwnDh97mO5rjvTGh0ZQ63tqGr0stndjDSj6uI8IadUODWBeHjmKOWRmli9iG9rIr2ZwFN+PJdHvIfYC+t+cOvUQxJdfciHEGzegfrWZWYZyN03x6BB6QuSzOI9PTmJe5gusTYxrk8Dc3F+cXnFtKOQLFp2Zg+LkdcFjrpm8LOpoPJmZFabw+At5jEfH0IOq4KMPy5Ydl0DclGmG+NnHfwhxY6frpxGJ4XVKlL1K6HyUSP+bvdCmqTYV6Zi2bcP1ppnZsROohX+iD+fQKHl7RUhbnWsun4tynkhmZhu7cTx0d3VBfGjGLzHMB2olCeb9f76WWspq073+Yr3wMhrmHse0Lqe4EDKc8wGvxclzpcjrOtzIwCDW501bcK3xrne/BeJp8vgwM6urx1oUS+M8bVH0tDJDL66NtBbp6uyAmD08J8m/w8ytIekU3TOYp21/2hugip4epdLc3Mrri7LXOSHvO9ugvCuxNxD5RR3tJQ+WZ45AvKkFz/Fj5L1mZlZPY/zNDW5NXqiN5dwaPRocR466bUinsQ1b1qM34otPYM0+fALv6QS0tuDaVgzxK2KK3Ncerl9iMwY1wZIqzNIpFQpzfj+lEo6fEt1XChzPAve4PfKN2dSMa6ouukaxKPsVcfHicUDeFiW32HE55e/wXJXP4rpuZBA9IrMTg/T+KYhPHjvutCFG3jT1GbwWC6jdpRLO4dEoXmcV+V4K3T4ohaRNhDzqYjEc36l5/VCg9fhKA+sB9g/zFr4WC1uvsn/bLbfcAvGGDbiOy9E1YIzmBY981zzKy7CqVHLahSclxp5KFY51vo7N5dxzls3SmKV72lOTmOt9fXjfr0R5Fo1yni7s9Xb6tYVr9uz7lVzD6pceQgghhBBCCCGEEEIIIYRYE+ihhxBCCCGEEEIIIYQQQggh1gR66CGEEEIIIYQQQgghhBBCiDXBeSlY7mp/sVaf+50iaQy2tTdDvO9i9C2IRlHzzItjV7Feokdt8qKun0YsiW0ISAe6vQM1Cy+i7ze2oG7p8ChqTTe3oNZcug41Rs3M9l18McSsm37sCOpYRqLnpgsZprW2mj09Il50rn2OXjs1O4ijpuhEyX2G6EVQe9YjvcC6RtQbX9eG5yOdRO3EYpE1QDFubEa9RzOzgLRKs9OonxpMYTw6Qe/T+DpyDPVYH3zwQYibGlyNeSvgeGquR81sz6PjIg+egDQOs7Q91jKOhaSYU+woNWe72q+u/K4DDw+PvC+8CMeuFmIdlZ/L96COfXMdbqOlAWtLh48ax3FuE+uleq5WdmBUQwMaH+x75LPeOI6//DTqKm/rwTamQ7wNWHc51YzjbRNp4z/6wx9hmyM4/oy1Nqvsh7CcdHR0zGnS7tmzB95rbm6GeGgI9ek7OrDvzdx6yVrt7D3BOtGOv1SZ7XFsZnbw4EGIn3/+eYjZV+TSSy91trFQG8bGUJt6IkTrm+e8cnGYL8h8uJ/q61GvnP1WzFzfj3LbrCanPT1Oj/1yvkqBzxq87nijcmjj5E0xlcX+nZpEL5hMPfZfinSax8dRh3lsyj1f0+QVMHoCtZynqY19w5g3uTzp/BZwbTg1iXE07O+VyK8hQhPcxDjus38IJzmeU/O0tvCoPofY1rlGBauoPBaLRSvMdFuO1jilMl4yHR2uv1B8guoT580E6rnnC6iBnEjiXNTQvBni1g7MobqWZqcN5mENjAY07smTIzeFbShMY97mSY+7oQ7XuOt7SEfdXN+jliZsZ5ZymTWwuVaV02f2C+5aYxN5dSXj2C/Z3OlcLxbLa+YvJ56d0dt2xku5sREyvsppd/P7eTLlSNJ1bIK8KclC0JK8ZjOzItWeSdoH65FzTe99FXXrRwfQE+bSK/DKtz79HqcNuYHDGPO1V+8LEDauvxLi9eyJVMJxkR3HOSKddK/nW5rRJ2SSNM7z2TPbqLZvVqlUnMufcj5ZvJ6YmMD7CmZmxRyOOfa/iNIYz9N1aimN13uFCMaZJhy/rW3olWFm1nPhFojrm3Ab7Hfj+oU5mwQ6aU3bNzDkfObgq69AzH420Wn0zfKTWBsjWXyfz0U2W/7CM05eeBHaxuz5jpTx91lu8vm8zd4uKufDxJ4CYXr+qTo8zu6NOD/G4+ShQ15CkRjXLvbCxHejMXfNzGuoEk09Rcr7In2Ac5Jr4zR5KQwNjzhtSMWwH9h3K09rz3ry9YpG+c4H+fY6NxycJlgkurAHWjJxJs7Hq3vzBPyL2MODP0txIe+2dSv55F599QGIHY8yygn2O2W4L3ksmJkVaI3DtStC9xW5jvB44uFVyOP2J0P8Mdl7ktvZP4jXRUMjI7gByiteey3Gq41xrqVnXdPk6SGEEEIIIYQQQgghhBBCiJ829NBDCCGEEEIIIYQQQgghhBBrAj30EEIIIYQQQgghhBBCCCHEmmAVe3p4FiouZ2GeEOU9IlgbeueFqNu2detGiH3SM06kyFshT/rJpHcWi7vPk6Ix3EaJNJLjCdRpSyTwuNpaUXuzubUN4vb2TogzDa6nx7WtqGV6882vh/hLX/wyfoGFDyuUiQz176hkG1XWhA78YC6dSqTPyDrorMUej7u6r6x3nIxiXmXa8f227i6Im8iDYHRsBGKfvWQ8t8OSlIuREubZO954E8Qx0hycnkZtv7Ex1Aa/4XU3QPy3f/sNpw2pOO6zpRFzt0THkcyglvTU9GsQs7Z7sUDHHTL+2GMiQrq0HTNjvOQHdnJiYZ395WYhTULWBWW9xkzazbv2RvRPyMTwePwiajh2rCM/oAbMwyLVJqP+D/P+Kfm4T88jrVHHJAfjeHxh3cruTqx3Le3oiXS6mdhXqTi2oacLtdqjbBBA9ctjzdCguhrhy8nFF19smZlxtmsXelqNjqL2MOcna7+bmU2RLujAAGrSnzx5EmL2k9q9ezfE7AHC/hktLajpbGZ27Bh6Uq1fjxr0mzejLjAf5/Q0aXuTrulSdEh5DuRtFIsL6+o3ku8THzfr64btcyHvjGrrjZ/eXfg+y/VVEKIxz9LVWUd/HOtIkb1iyLCouxvryAsv4tyTL7i5n6P1Inv/xGkfUVr7TY6gV0ya1n51aZwPm0lP3sysSJ4RrC+dTOF6cHgUPSdGJ3D8speX603j6nCvZiKRqEVn9K75HPb390Mc5fkuZIxs2bgV4rZWzJtsludc2iS1oRSQNjd5+CVoPjQzi9F8FKU5tJjFc1Qg75jhUWzDcN8zGNPa7/6HnnbacPw4eryxb0SJ1qSRFB5HKoOa5VHq6oB8SdIp97pm43q8rjnai74RQ6On9flLPE5XmnmXsZU6GZbz7zBz14YR6uui7y0YNzfgNWk9TSVByc17tkVJZGmuieL5TZLWfoE8AZ/+Z/QEbHjrjRBv3YprUzOzwhb0gDjx4qMQ9+zAOdMMc6ajA7fZ3toMcX0ar7Xr692cGzjVB3GevKLmjwK/2heyftFml6a8vnB8sQqoa59K43g0M7MYbqNEmvNF8iaItWAiNa7D2vjGN70F4lte9zr8fIg/n5ek64dEOZ9V+j7VRr4ndMH2HRB/8N9/1GnDs888C/HTzz0H8fApXOP25XENXCwOUsz+RljP83m3XiXpPkSCrmNnx6dfccU5N6KxyJwvhlfifbPPBNaIMK+29k6s6e3deI+O1yd+ia9JcXuB8VrSFozNzIp0X4/Xjvkczo/j5JvGa/kStTFLc1tvP+aHmVljCsfC4BBes/A2IjHsW163lbuG4XFhZhaNlrs2PxNHY+46ZSWZf88uoOt3n2L21Sr47vX73n17Ib5gO/oLFWjdRsPPnbcjC3uWhd2z41xkP40i1d9omX3w/exSkRejId7LdKk1Th7STz+Da8GBQax17PvEbVgK7rWqP/vGorehX3oIIYQQQgghhBBCCCGEEGJNoIceQgghhBBCCCGEEEIIIYRYE+ihhxBCCCGEEEIIIYQQQggh1gTnpacHy3exbUSYFmoiitql11x1JcQd7egxwF3jGWkQBqyJRjrPfojONm0jEsMDydShtmaefA0K5CMSTeAxeRHydyAPETOzjjY8zl/71V+B+PHHfwzxM6TbFotW9pwsTGrN9xevNVlluXHz/dI8XXHWsOYP4/lIsB+AmTXUoRZsPemSJhpQm9snHbxYDPv72LGjEBdJn/GSiy9y2lAqsYY55jbn/nQWtcED8vhob0ct/sG+IYhHhlAr3MysuR41cidGUcM804AavK3NuI+xMdTczsWwjYUC+XWEaKGSpKejsjurjx2msVhNnPpG78dieD6S8Ywx0+NYSzhXW5tRL7w+g7qhkSh+3ouzZiTmpee5U0mR+9vDPEzSGWDPo3gax0ampQPizq3YhgzlmJmrb8qeAQ00/qIxPo4yJ+M85qKLLpo7/qamJngvl8P8ydBcNDzsjnH203j55ZchHhxEvVo+F3v27IGYvSraybOFtWnNzI4exfq4YQNqd/M+2aeJfWNYuzaVQr1r1ssOaxfvw9FnpW2wVxT3A+dsmG9WqJfWWai2p8dCuL4R5dvGWt5cd4xqU30d1ompSZyL9u1Df5vBIXz/6FGci8zMCqTVnKZ62UCayJ1NzRAPkU5zlDxANqxH/6KGZlfzfHgAt1FPvk5R8lIYHj8I8fgEzfvsZ8SCyCE4Z2sRutnVwvd9K82OTTq2KK1xJtmfqB/XOGZm7etQ67mlpRniGHm8lQqYmPnsJLaPzBLY8y8WcbX2I9TBedLWZ/3p7BTW9R/84GGIp0aegnhgDOv8Q/fj+2ZmjXXUriget7t+IT1wuqYoTqFO+rom9DB64xtucdrQvQn13v/lCfR4mNVWD5szVpJzyvew7/KYpN51/d8wZk15urywhgzWyqZGt86wrv3ICOaUR9elcaq/DXR9cfIEztmFEmn1x7H2mZl5tJhPkudRvB7Xt2aYk6k0Xm900jrhlVewTYePnnLakOXrJKfYzffNcr6+sviBed7pPoo4mv1UV6j2JRtdv6h66t88ef0M0/yVIU+Oiy5Bnfyrr7wU4o4uuv8S6pVHecH3ERa2CAzx+MC4nta4+/df5bTgMnrthz98DOIvfRk9UXMF9K/JUs2fmMCYx2tdnXtN00Qeb+zrFPinax3PHyuNX/LNn1nbsmcH16kS+UakQnzpduzCnGntRn8+n+7RRfgCn0PKKed2TsjUUKQ5mdfm7DM4NYXnc3wcfRAmx3CcvHoI/eLYr8PMrJDBho1TzuRpXRGhvi/RgbGvFfuWhE08fA2ToBo//54E359YaTzPO/v1Dh0Kz/98HGZm+/btg5i9JXkbjn+i04aFi3/YmoSvEfkz01nyj6I+5/OVy08vGLM3jZlZby/Oec8+i35v9//zfbgN8r8s1/eVXKOe+Q7tYgnzqn7pIYQQQgghhBBCCCGEEEKINYEeegghhBBCCCGEEEIIIYQQYk2ghx5CCCGEEEIIIYQQQgghhFgTrGJPj0pAYS/f0agz6+pAjc9rrkZtxnQadWn9EmqksZ5xnHQwA5/1PEMEAiOoHxdEsPtjCdQ1ZC051us92Yfa0gHtM5FxtTmLedzGlVdcDvFvffQOjH/rYxCPjKDGbzRC/UDnIky2bfUoiLvM19TktrNOHscNrjygtTXgOY3HSROe9BiLdI7z06i919HRBfGPfvg4xCPDI04bLrn8CohThucsTXp+qRS2eWAENSSTSTzQl19+EeLt21Hr2szsyMFXID4+cgLb0IjapfV1qK+aSpIOdIz0scnvpljAfjNzn/AWfXzlxPRpbWK/BsLjC+lSOj4DCeyLyXHUdzQzSyZxW10d2L/tzejhkKbaU/BQpzlCfhxF6iM/cHU82cPIqGb6Hn2HtJ8TaYxTDc0QZ8hOIe74cZh5Rl4v1MdcY1nbveho0i+cG+fqr1BNmpub5/whuB/Yw6ORdISzrN9pZqOjqEfL9ZF9Q1i39JFHHoH44osvhpg9P370ox85beB99PT0QMwavOzZwW3K03zJ55L9Nsxc7VLOGfbw4PcnJycXjPnznLOLYf5x8HmqJc74cvzb3LHEXymUWP+WPa3wnDW3NUO8c/c2iFvIS2joNdfT4/EnaQ6kvLt4C8YtDTjejp8agHg0h+d878U7IU5l3LxLpdE/zErk50D9dKofPXZyefanWXhtF8oq8vBgorHY3Fya4bUxjYHpU6hn3NDKHgFmXT2oMV4sYP81c70jjfUcrfV47ccL0HiI/jRrjDseQ3RNMDGC/jST47ieHyTvksY2nAeuuGiL04Z1bTg+fvzsSxAn6DonQfrTuQlcv3S0or7/29/2dohvuuFGpw1Pv/g8xONU52d9C0pVNuUqBWbe2cZNuaaEfI2/wvXQ8bMk4wIew7wGS9G8X9fk+sWxn0YihXkZpTm1mdaaSZpTE3U49rJTuI5o7djitGGwHz038mRhV65UBR6OkxJ9YWQU82cyZL3jTFULrBWr7ZsV+L75M7nB6xHHcyyB4zNT757zCPlG1JH/XiqF1xfNzc0QX0Rrt/Z16M9WojoV9dw1Cee25+M5ZI+OEvuP0tCI8j0a8ggpRcLW8rjNbdu2Qrxj+w6IXyFfu3Lw+pN9oszMMk04FwXkoTQy3Gtm7tyw0pRKRSvN+PHwmtQnD8gS9fW67k3O9tZvwfsIUbrudTzHeL3CXja0fa6F7HVhZlbIYx9maY6emMT7DONjOL+ODOK6rr8X69bgAK4zkml3XTdFvlxjdL8mIGOmCMV+ia43KHauV0KKp0djIUnnIjrv/WjIuFlJFvT0IPhY6+tcz6qtW3FMO7lcoS+Y4/lBeRnWdr7nw99hrzb2mI7QvD4+PgLxKOXpYB9eC5iZ/eRJ9G+797vfhfjQK3hPjy2N2beHWdqcyH2J/10Mq+dqVwghhBBCCCGEEEIIIYQQ4hzQQw8hhBBCCCGEEEIIIYQQQqwJ9NBDCCGEEEIIIYQQQgghhBBrgjXh6cF6XmES1Rs2dUO8cRPq8bJeZCTC2mGoteiRhppfQJ0931z93SCxsE4bSwqyJBprDvL3szkUNs1OoS60mVkkilp8fNy33nwzxG+4+fUQ//XXvgaxoye+CE1nlrBbTbrPZVToIOLzMzLp6r5uJW2+ZD3qbhdIgzlGerl+CTUl6+pQi/qqa66D+NHHXZ37SdKavuJK9HHp6WyBOBHHAXT41WcgHhpE3WfOgY2bURPRzKxE57xA+tbskZPLoVZmrsCiveTpQbnPHjxmIfrHHm5jKn/6hFZbf/c0Z/bp6qFiO9lPIRkh7wwzW9eOWpUXXLAO329Dj4YoHbLvkR58CTUgg6AZv8D+HGYWiaM2cECeHUEU/W2cZ/B03FzWUzE8n/mc623Curwe6U83kFcFa2kWC6S/yZqSzh7PHzzPm/NzYF8H9rrgMRGmazowgPq13JepFJ5v9sNg3xD2FXnpJdSKf/XVV502bNmyZcE2lNNXZZw5OsQvjCnXlwnS5i/n+cFeKYODqL+6fj2uZcwq151dtZCGdqivBNWJfBFr0Ym+EXy/hNtoJt3sNHla7dqFa8e3vB794MzM6mi6aW/thPjm/ZdAPD6EviAb21H3/sgEei1s3YFzajzqri+LpOE9NYXzxLETqFPfNzgOMU2HjnZ/4DoKOG1wWT0VslgoWGGmPR6NSZ/aOTiM811DC+aAmVnPBtQhT8Sx1qSp3pXrCh73iTJ1w8zMfM598iogTfJMBteft73tNoiHTqJ3zLPPPgrx+m734qqPfEDiNH5a67Gux+N4HLv374f46qsOQLxrJ7apZG5te5Y8PSb52qeGaTi7a8dvYwltKqdTHylzHRslP5VkirzyEqyT7/Z1mnTnG+owpxIx3GaGvIa8An4/6pHvGvlFBFG3zkwOH4K4vhW9DtMNm53vzKe7C9/v6MTvxxK4tmgkjwozs2ny2sqRV0ktL2xLpTMuJbxm4bVBLkdrmgbXC7SuHl/LJLG2NTU2Q1xPY57nbUez3rm2ds95hHKxmMdrxCjnKq0vA/KRYH9T9qKJRNx6S0sHZ83KfpYN1JdcA8r5u4X5tfHSjj0oD7968HRbF7FWXVYCf85XtsQ+EnSrMd2AviSbdux2NtfQitesjl0RW7bQ2t6nGzSl4sL94fhhmTufTkziNSZvs0ReC6OD6Nkx1HscYrrVYl2ddMxmlmnE+zNFMk8YncK1Ctfw4hTeGwl8rgd0DL7bD3zPjj095vtWndXDaoVAH97K/ERaWlyvto0bN0Jc6TadTzveM0jYGOdrZc5Nvj9WLOI6z/MWvm49daoX4kMHcT41M7v/vvshfvxRXAsGZeYVHn/u9UN5yl6vL8HUQ7/0EEIIIYQQQgghhBBCCCHEmkAPPYQQQgghhBBCCCGEEEIIsSao6KHHPffcY/v377eGhgbr6Oiwt7/97fbiiy/CZ4IgsLvvvtt6enosnU7bTTfdZM8+++yyNlr89HHTTTcp70RVUc6JWqC8E7VAeSeqjXJO1ALlnagmxRn1jfXr1yvnRFVRrRO1QHknViMVeXrcf//99uEPf9j2799vxWLRPvnJT9qtt95qzz33nNXVndaQ/+xnP2uf+9zn7Etf+pJdeOGF9gd/8Ad2yy232IsvvujoGy6MZ7PqZ2Ul1Uj/MUyTbhN5evR0o+Yy+2Ww8ppnpHuXRW2/sQHUSIvGUC/ZzKyxcwPErNVvpK3HGs150qBsb2/H70dQG65UcPshO4G6zn4R21CXQS+At731rRB/93vfg3h4GLWnWZ8u/NxFFvGZ08xquP3ar/2a3XDDDSued/M141iDjjXrPBJkzIZIRo5N4zls6sT+jZK+cYp0SNMJ+nwU27C+pR7ijbfd5LThlWOoK/mPf/8diCNvvAHii/fugbirC/Vujx4/BvHkOGpK7t5+odOGyy5HH5GTJ05AXMiRFuYQ9ltjGnUts3kcf9mA9XTd3GcRUM672Ewdme3hauWcmVkkEp2nX4jt9ElINhbHMUYS2mZmtmk97n/nBVj/0knaB9WKwMf+DApYN4oxPOdR301+z0MtZyMd+hL5gJRYE5LqH2uFpqgfJkddD6NkBseHTxqsLS2YV+k0+khMZrGOs18Dl/DloFp5F4/H5/wmpqZcP5T5sP9GmP4t621yX7FHB+uMrluHera8jyeeeAJiZ/4z1z8jR14/rJVaoBzjffJ85s5v7uTFnjvlPD64H7iv+f2+vj6IW1tdXdo06agv5F0yewzVrHfLC+vX4qA8dgLnvxOn0Hvm0stwvuLz19SM52v3HtTtNjM7cRjnszoPc70hSbWO/IimxrF2bd6Mc25ndwd+P0Svm/2+BgfQa+HFl1CnfmAIvWICFsmugjRzNXMun8+ZN+PNN5nHc5zNY504dAS1ty+6bIuzvRTVs8I01tAC6XszPuUpr+9jtJ4PX0ov/HdrrEneug5rhdeMx7B56zaMt++C+Nvf+wdnH08d/C7ERfLu6u7Ea61LL9oH8TVXo0dORxd+nuk9dcp57UQvX39hG2b9VmbHTVVrXeD8j7OwBM3rs+1qBtbVjpLHRzpB8xv5IpSyrk+hTx4b8Xq8Rkml6ZqGPEAa1+EcvPlC9Ndo69oBcXYc67WZWaYO875rC16zxNO4NmCPge5u1G0/QDn4gx+gN+I0SqibmVk0gcfl0Rp6vvfMrO/Cd7/7XUulUlWdXx0fGPYQo3gq69at9jZcT9Q3ogdVitbNPT3oM8brEV5npVLsv+E0wTi7c5N4TeKVMFfrGnBtHxQxbyfJKy3ZTD6HCff2GHv8Feics69qnuaATB2OlTqKee0xMjLitKH/5FGIeQl67MhhM6v+vZPT162Ref97XhvJ56d7E/phdW9xPXii5GHlOdfv7NFJ/kVl1uq8hoqEeCskk3x/BuPcJN0TonuPRfKZHB1GP7468thq3eneO9m6A+fgPK0LCuR3yvc/i1T7+JqnQNfdYdcK7A2VTPB49Z3/XYt7dg40NvgeXkeH66HC97uc+35lbkhza7wy037YWt59jfybaa1Jp8cihnMse8300xrqRz90vYB/+MgjEE+Rnw1f1/J6lvstiLjjqxzu3EX7mIkr8eGt6Jce3/72t+3973+/XXTRRXbJJZfYF7/4RTty5Ig9/vjjczv+wz/8Q/vkJz9p73znO23v3r325S9/2aampuwrX/lKJbsSAvilX/ol5Z2oKso5UQuUd6IWKO9EtVHOiVqgvBPVJDZzV2r37t3KOVFVVOtELVDeidXIOXl6jM48KZ/9S8NDhw5Zb2+v3XrrrXOfSSaTduONN9pDDz0Uuo1cLmdjY2PwT4iFUN6JarMcOWemvBOVoVonaoHyTlQbzbGiFqjWiWqjWidqgWqdqAXKO7FaWPJDjyAI7KMf/ahdf/31tnfvXjMz6535iXEn/Zy5s7Nz7j3mnnvusaamprl/GzduDP2cEGbKO1F9livnzJR3YvGo1olaoLwT1UZzrKgFqnWi2qjWiVqgWidqgfJOrCaW/NDjIx/5iD311FP2l3/5l857rHkWBMFZddDuvPNOGx0dnft39OjR0M8JYaa8E9VnuXLOTHknFo9qnagFyjtRbTTHilqgWieqjWqdqAWqdaIWKO/EaqIiI/NZfuM3fsO+9a1v2QMPPGAbNpwx5541gOnt7bXu7jPGuX19fc4TvVmSyaRj3Gl22jjnbMnPpiVscOSHGJlvICPzdAaNXopkwhKlbUYiZGCVQ2ez4f6TEJ88grGZ2aXX/QzE9WSimyugidXQEJoejYyOQJypRzOx6SyZaOXcJ6bNzW20DTTvqmtAw5uLdu+G+Oabb4b4a1/7mrMPYBnNMKuRd35QMm/G/cgztyBjjDkTiWFOmZmd7Ecz0RgZQG0lQ69EArexjp5m7yGT8emJEYjTcXfMrOtCs6aTJ9EY8C/+/AsQ/6t/dTvEQ4OYh4888ADE199wI8SpRjS1MzN70223QTzY1w/xwZcPQpyMYD90r0dzw3wRx99AEo2Z+o65E2IQYhg1n9lyM78HlzPnzBaodxady7fAx3MYi2MtitGz6nXo1W1mZjdchoakm9bhuA987L+Cj7XHD7AN/hTm8dg4fr610f2ri2KJzHsD7P98EY2xckUyWMxiGwOq0UX6/PiEa7rZVIf1zc/j3NCxDueFljY0wOwfxp/Q8pQUtmhjyhnuhX2nGrUukUhYYsYskI3T2FSXv9/UhHOPmWtUzttgo/LxcTSJn/0J9CyNjXjudtNcVM583cw1zGQT8XKm4mwsmSBzRTZrMzOLkYkuGweywSK3gbdZrk0nTqCJtpnZtm3bnNcWQzXy7twov6Dg4TQ5jXnY24/zWRBgPU3F8RwH5ETY1IG11MwsYXiOO5J4TqNFfL8hge8PBpin6zf1QNxIc+r0lOusm8yg+eP4JK4HR2h8+bR+YSPzgIsd1e/wU1H5gq9ac+z09LT5xdNjL0L9XyLD5yQZ827Y6BqtttJauo/W3wMDmGcN9WginkniGofXJx7NwfmcO78FtEZlY90YGcjG07RG5X4oYO1q69wC8S1v/DmnDZNF/M6h145AvOcCNGfdsx3jhkbMWzbI5Os7Ngs2M4vRcdQ3hCyKDGtprWudY3ga8or7nYXHl2NsTh/nPPfpAyVaUxU8d37L57CeJmj+StG5SKUwPzq6cY3V1oNrsIFevBbwp9xr6bYNOB5jadyGBQvnUDSOBsKvu/4miP/+7/8R4h//+HmnDfk85yHfl3Bt5n/7t3/b/uEf/mHFa10QBHPrSl5v8PmKxvH8ZEJMhJtbsXZt24Lri+YGXKs11uM2uA45feOsgRc2CzYzS6Zwnp4cxGuUEk65VpymfdCf/Ebj2E9hazvfxy/xGnR4eBjiFNV4XiO3Ur/yWo/XxGZmzz35KLaJDnR6xuB9/nVFVWpdJHr6n5l5tAaO0ucb6LgT9SH1mvLSc+aF0OadFTbj5tufUd/dYKG4sIl1lHKokJ2EeLgPa9cpMqFPUL9s3+Gu21va8T5hkMTa1dSNa0W+L8XXQHy9ye+XQvKeTd75mmX+nDz/f1d7juW1Q4TqfsHHsTJ/37PwtW0lJtlhBLSOK1F/T0+7a3k2p+fMzE5invWfxGvAnh7MiRLNVQO9mJePP+oambN8mGNczkblfF+exlsQWbgfF9PPzviz6Nx3S/7C9/dmqeiXHkEQ2Ec+8hH7xje+Yd///vdt69at8P7WrVutq6vL7r333rnX8vm83X///XbttddWsishgI997GPKO1FVlHOiFijvRC1Q3olqo5wTtUB5J6rJ7A2dv/u7v1POiaqiWidqgfJOrEYq+qXHhz/8YfvKV75if/u3f2sNDQ1z2mtNTU2WTqfN8zy744477NOf/rTt2LHDduzYYZ/+9Kctk8nYe97znhU5APHTwV//9V8r70RVUc6JWqC8E7VAeSeqjXJO1ALlnagmpZmHHv/jf/wP5ZyoKqp1ohYo78RqpKKHHp///OfNzOymm26C17/4xS/a+9//fjMz+/jHP27T09P2oQ99yIaHh+3AgQP2ne98xxpCfjIpxGIZHR1V3omqopwTtUB5J2qB8k5UG+WcqAXKO1FNZlXF3vKWt8Dryjmx0qjWiVqgvBOrkYoeeixWc+vuu++2u+++e6ltCtvzwu+Shl06nXA+c9GenRAnSZs7O41abyRtajHaR3ZGN3GW/lPon9F36rjThm/9zTch3r7rImxTFPXKXnnpJYjb16HWHXt6HDl6DOLjR10t1J7u9RB3b8Q40tcH8cuHUJ/3Ovrp2ZNPPIGfP/gyxKzlaWYh+p0Lcfqzo6Ojjsb7fJYv7860jT09WNfQJ33cHGndmpkNDeFrmRhu47prrob44osxT9nDoz6JbZqcxP4dzrp929KAuqLcj+2dqP/3f/3f/z+I9+7GNr3pVvR12bjtAohzBVdbb+PmLRC/91d+FeJDr74C8aMPPwzxyBBqpdanMfdjrdivI72un02ONbPPois7+2r1cu70tmbbw1qIUQ/bnfSwVu2/CDWyzcyuvhTPSSZOeVGkXCVd2FmtxFliBfRfmCYt25MnXV+Bphjqk+ZJT3NsEjV485w31KYEna7JUcyJRMzVZI2RgCPrPjY1Yx51dHRA/NIrhyBmbWizxelIVkK18m5qamrOf4J9KNi7YpI0RFvIj8rM7IILMOdefPFFiHm8tbejtvdLNN+1taFm/oUXYp4fOoTnJgzWHWV963J6t6kU1k72KeHvh+2Dj5vbxFqplXp+9PejP5KZqxXN8fx2zx5zNevdQvtA2EdrUVuBKF/EMXqiD3WyB4dQu/aCbdj/rK8bybjrS5rWrYG8tdIJHF/5MWxTog7z7IJd6GGVII+QSIR2aGYjdBwDQyMQs0dHPfk7RKOoLeyTh5Lb+e7JqFT+uKo5VyrO+bOk6lFbfZy8nvppveGFHFc6gduor8OayP2fqcM1ycb1GyD2SXe5VKKYJzMzy9Oaxqd5u7G5GeIi6UtHp/Ec+z7O61mud3lX7/vS3RdDvGsb5m5LE7YhneK8Y+32hetlc0i+8FwRP/YafmfGc2C27tWk1rG311I2UWZ8uZ4f5PlCy5XRSVxj1aeozsTcWwRxSgG+7vHofPnkZ2R0LZ3L4fut7Ych3rgNfQ/NzKLku+Ssy5y+Xri3d+zYBfGV+y+H+FQv+iCamY0N41jr68PPzK+FqVjEskV/wbxb1usJv3TGo5D6IkJ94dEaJj+B9zbMzKbIf62xoQ7i7dtx7Vcq8RqHdO3J5ywo0fkMuTXlU7sTabw56tXhNidfOYxtoDVtHfkneAn0Sijm3bV9ierhJPXL8BBe0zTSOnljsAXiftLWP3UK41zW9a2bJj9Zd8V0eizM5l+1al0QnNkn+4PF09i3SfbwiIecb8cLsdL2kH+Rv7A/B3uGmJkVHP8FPB9jI7hO6OvF6+BB8vRorMdxs5mumTo6XY+JAvkTFajGZ+qwb0slbHO5axz+PPs+mZnF2aOFzEzGx87UjKmp09eKq+F6ggno2Pga1Gxxvo0L72ThmGtj2KKZrwFzNOZjdMFx4jjeb+b7M/U03o4dwfu6vSfde8XchnP1NlkWlrJoIiry9BBCCCGEEEIIIYQQQgghhFit6KGHEEIIIYQQQgghhBBCCCHWBHroIYQQQgghhBBCCCGEEEKINUFFnh7VBH06UEuMtfhKpNm8ffcWZ3tXXnEpboN08iKRJG6TtN9LhSzE42MjEA8Po55ynPSSzcz+36//I27z774P8c8cuALirnWoN2+GWnBDg4MQ9/WitvfLB486bZjM4TbijagHeOIkbuOBBx6BePuO7RB3tKEm3iuvoqeHeRXq4TlUW0fOs1nhuEgE9W0LpH0YNdQQ7exe52ztkn17If7lf/1uiC+7BH1dMkkckjHSmZweRz3yVtJWncy6GvMB5fIVl6JHx9VXYhvf/rO3YBtiqHE4Po65fqr3FMTpJGpdm5kV6flqNo/jae/FqAudSuI+//Fv/w43SLqIHusNhgiAsq4v6yMHyyEYuESCM2lnURozmTiev4s2oX71DfvxfJqZtdaR5jvpg+cpJyKk0enRuEt4+P2hAYxHCq6nR08d5sX4GOrfsmZ5kcZXboK090+iZ1ED6dxfdgnmkJlZoUg69ZSHSdpGV1cXxFHWzl9COVoVWpghnDx50sZnNInZu4J9JEZGRiDO5fDcmbm66hfTmD5COqLjpIecyWDd6CN/Kd7n5s2bnTawL0gyifM665ROkfYp+2twv0xPYz6xx4eZe77ZL4W/w5qx/H1uM28v7FycOIHjsakJ1xKud0ZtKN8OXvuV/Yij21ukD/QPo2b50aPYV5eSr1ZdC52/mOvpsXHbVoibC/id+ibUH5+k8dRB3mrrNqLPFh9jmM5wH83D/aQx31iHur7d7ZgTJwax3o5NYJ6ywvm5ruyqTTQam9NCLpKmPPsScMVOkya5mVmUakUd9W+JvAuOHcP5q74O1251Ho7zQVrf+76rMZ+nWtHUgb5/HnnJZKlWRKgfsllcl01OoZdTIU/+DGbWTLUlkcB1sHO9Vlp47cE1mL/f1MjXRWY97ejF1UR6/5GZMl4ouO1frSxm2VCuepKVgqUS5GlF6+gs+RiwV5GZWTxO8xHV24Cux438csbo+iFNHkn1Dbj2yE7i583MJsdQgzzTvAXiRAw9rByPCCpeGfLj2b4d63kui+PAzCydxrVFHenXj46caXe1V4CFfG7Og5I9T31KrKCA7+Oq7DQxyrRDnVhn1tF9gA2bcG0W0NqerxlTG9HfKBZ1M7tEvRh3ehXzJk+1qr4F67NPY2F6GmufucsqK1INHh3BObOBcmDnbvSKOUG+qwO0xh0dxe2x94mZO+9wdvml03G1rzv8WMT8Gd8p9kdp69oIcdcGzI9oAsfS6Y2Ue2Hh42PvBK79vIYqlNztTZF37/AQrqleevF5iF8mH8NEGnNux4W4tmxrx7myGLirKvaRCbwyfjk0v+ZLtI6jXRSoXrMfi5l7zVEif87hkTP9MhHiCVQtHB8X6s8oTWg9PbTOtvKeHrweccZZmUmZ+9KLuPeKea3H92PYh4m9U06dwvrK67r+AcxjXheamXleyOS/AGWv5Ra2Gwv/SpkatpTrWP3SQwghhBBCCCGEEEIIIYQQawI99BBCCCGEEEIIIYQQQgghxJpADz2EEEIIIYQQQgghhBBCCLEmWLWeHqcFwML1vFjzNU/a8Fft3+98Z9NG1BD0Sdgu4rHOGulCZ3EfE2OoM8oawea7bd9Fen77rrgW4gP7L4O4tRl12gYHhiB++SX0zxgdI03mcVeds3ESNcl7e1E3+CTFL5BGYT6P/dDXj9pxEdbAP8+IRONzOnHFEp7Tyy5F74tf+ZV/DfF117h519mO2rIJ8hAoUX+yRB3JuTsavRHyLKiLunkXJ43C5vXYphLlak8naibni/j+qVM4Vn5yohdi33fzLkYHMkqa5izhmqkn/fFu1JCdGB6GOChim1zd0xA9eC88rIXaved5c3mXTGJfbe7B83HNpZsg7m50x1ySDj9L9SuI41Gm41T/PNSM9CivpkizfiTn9vfASy9APDGIOpLdHeif4ZHeZu+x4xAffwVr0a6t5OlQcvVvfeoaL4rjL5PBPNuyZQvE0SgeZ8CCqOcxU1NTc3Opo4Xqs24szbkhXhasG7phA+o08zZ/+MMfQtzd3Q1xQwPqsh89ih5VdaSJb+Z6kbBnB3t8lDtufp+/Xyy6HkphHhvzYc3YyUlXL3yhNrDHB7fJzPVg6e9Hr65161z/qWrheRVosVYm42xmZkXSNPYod9n36tgx9PQYpL5qbEe98umcW2dIDdx80qlvaEe/m7FBnL/SPbgPjzzhCpRn/aQFbmY22I+v8ZxLTbKOVppjKTYf9zlB/ZZzU39J56taxGLzPD2ojpeof3mMcv0zc8chf4e9LkZH8ZwfOYb1rKsJc6S3F30LgpAh07EevWCSlDdTtL70i5i7fNxcN/i4w2oN90O5Gspjv5xGtlP/Qs7Fhi6cOy7etQfi1My8kM3l7Jv33ut8vxqUk7Rmj7lQAyPSW2cvO/ZviMfx85kUxjHaaUB2HKWCu97JTmMORXitSL6E0RjOyckUxok0jTWawyen3Pm0QMWH8zoIqE2RBL2P22O/v8svuxLi9jb0/DAze+ZpXN+2rsNrlELhzE6CILAc+T+sJCXfn8s3vtfBOvcJOj+xEE1/XtPwWu9kL14DNrfifJah697Dhw9DnKTrj/o6vPdhZpYtUB6Q7n0si2vSaV6r03Vs7hTOl5NTmDN1SZoPzSxH93leOfgKxC0tmCdNHsYHX8BrmCnyTGI/hmg0ZN6hmNegAf23WgRRs2DmQj5GXngtNDbSdbi2j4UdZ4TnCdpfsPC84dN9jclJvBbI07nkNpmFXWPgNo8eRZ9C9oy48EKch5rq2e+UxmbI9URgC3tgcY7w+pe9cDiHcwUcN4mE6zERp/GZy+N9p6HhM/cmy13PrCTOWsJfeO3R1NTsbKOcB+MiWrFA5HqwsAWWWciah9rEg6GO/DCHaI3EPischx1jNIprvXLXbGW9TsqsgMLW2CvhS6RfegghhBBCCCGEEEIIIYQQYk2ghx5CCCGEEEIIIYQQQgghhFgT6KGHEEIIIYQQQgghhBBCCCHWBKvY0+MM5bTCGhtRe/Hmm292tsE6dcUcaZiRmKlHWntTE+hTMEz69Pz0KOxpEmvQX3nFPoi3bb8A2xiQHmsL6nA3tKBuZkMjagg3tzzvtOGVQ6gj/OwzqDHZ1IK6wu2tGE9OYT8USA/QL+G5iUTDUmwVCT0TfjFrs1pz7/3l98B7H//ov4e4u6MZYtagNAvR6KSPJNLpitoXIf1kj7xoWMc7rA35POpGsgZkoYh6rT6Nt85W1A+8/prLIT58FLWoT7cBc7lE20yTdmYkjnqCpRK2eWpyBNtM45nHr5mZR/rFEdYznvtu9fMzkTzjJdPUhDnR3YH1jbrfkuZqzA8O4ThNpUhvvAX7GxV3zUgK2vwEno8U1YXRKXecH3r5JYgHXjkI8d6LLoG4fX0PbnMcNVgDjzTUSV98aAQ1083MUhms+5EYfic3ivvwaAzzPqZJr7Sc/vhqJpfLzemXslY7a3yy3maYlwXD2u6bN+P819aGOfTqq69C/NBDD0E8PY06spdcgvkTtg8+H6xN3US6++wJMkzeQXxMrG1tFlZvsS+5Tdy3vA+G+5419c3cNdOxY8cgnn++F3MuzydYyps9AIq0RhkaprXdMGqv90zjmGd9YzOzUcpNG8K6smPTFojTVIcaNqNPUzSJ9TpP2xsP0YcvUJ411GONLxbwOBrrsDZu6kKvrwzNGUdPot9b37g777j6xKvHA6lQKFhktj1xWkc5YxAPJJul8xsCj0OeS9racL0+PIrn8NQgeslEqf8bQnwFknW4GOB6VCyjqzw9TXNsGf+gsNrEtYY/w34JrHte7vtOHLht2LQRx099E3oCxGe8BifJ46m6hK83z0CLrpClhEf67oGjs02eHaQFnqALEGfqiGDfZshnxsxs6/YLIW5qxjpTmMZ66hUwjnmY10XyaojT2r8+pA3RJK6RA499DXhOK/P3ndTX7eR5tfui3c5XDr54CGL2GUzNa2O5OX25mb+/gA4uRb4/iQiueQohnmTsCTZOfqE+rXn6yHOqo60Z4uefeQrip3/yBMQXbNvmtKFAfcheMQ00pyb42nsadeyHaM4OKEea6nFtaGY2MDQC8XPP4z2W7k3kY0fDk33q4nEeC5THITWAz6fzvn/2764khXzRojN+MLk8zkNjo7h2GBvG/EiRr4+ZWYLmCZ/uh/Hxldi7psyYGxpCj9zYlLuWb6HrgxjlXGMjzjPJZrxWb25uxjb6OLaKAd2HjLptTiSwH2JUH3mOLpBnB/cLr/f5esU8tw0xuiEwOYlrl5F5fmXso7ia4HUe+6OYLcKbYplNX8OsMtjrZ4LqbZ7WbezfzOtAPoYRmqu4Lpm54y077Y4P+Dx7ufEHamGWG4J+6SGEEEIIIYQQQgghhBBCiDWBHnoIIYQQQgghhBBCCCGEEGJNoIceQgghhBBCCCGEEEIIIYRYE5yXnh6sQbd+60aIL9q719mG7y+sG8sKZJ6P8eT4GMTT5G3BXgpBiIBZIYvb+PEjqFkeJ/+Ljg2oD8n90Eoav1fs3w9xN2nkm5l985v/H8Q/fPRJiKOkMelFWOMXt+dq2i+sMXsaR/j5rNustkb+L/zCO+Z0Nj/5iY/Ce831qJ/M2ojFEHG+aBQ1IFknLxqhIVhG986nD7DPQcQL62/swzzldqFA2qd0kuOkTR3Q+031GF+0Y6vTgoFx3McQ6aYfP34c4h07L8I2xfC4nn7qSYgj1A/FvKtLG6O+KRprENbOjyGZiFpkpp8bUtjOBtL2TpCmZ/+gq+8+TrqaGzashziVx2PNZDAPWRc/R/Xz5BBqQp4YdMf0QD9qpg4MYvzyS89BPJ1FzV2fdGHXNaMW8bpW7JehwRNOG04+jd5LLx/Gzxw7NQLxa8fQjyadxPFbymGe5VkPNSSHWNeXPRxma1y1a12pVJqbSx0ddo+1v/G4MxkylrHyOqK8jdZW8hCgbXJNYB3pdIgfUiqFOcLbnJjAHGMPD9ZAD9M6nU+Ypwe3i71IHN19mkdYk7ecBm+Ypwcf1yR50Zw4cWYcVFtvvCIWIQzrrjnoG/R2kfp3YBBrWZa8MZIx3ECYT1lA/f3w/T/EbZLP1eZtuGY9sOkWiH32lBsZgXhizK35WZrzkqSTncrhcdfReqatFXO9pQm1+mPUkaMHe502FEt8Lhb2lKgmxWLeInZ6rGTSeKxcq4q0Jhqm+c7MHTeJBOmzkw+ZUZ6y3neetbBj2IbeMbcNI+Q1UpdETfFUEuth3ie9b/LH4FrCc1UYXI/4O+U0srkfp+mYJsaxZrMHnZnrf5KlMT5VPL3NKfbeqSJulcJXeOmeSbp1PUXeatk89sV0DmMesyQPbxHSb1/Xhdecb3jTm502XP261+F3OtFHK0fnb6QfvS/6TrwGcTGH18VNLVhLM5mQ+l7E+Wx6HNcK8UQnxNEEavOzzwyXpUQCa2M86a41MqT3PzI6AvHYvLjaazvP8+bGHdelgK7/ckWcN/IhaxpuP3vAtdBaLqC6Mn+9Yeb6KTxHHh///N3vOG3YeAH6fFx86RUQR9vwfke8CWth/yju88UX0XPwyGuYl+zFZmZGlhvW0obHnWrAOTOga2dej3K9TdHaMTfl+q0FxfK+H7XADzzzZ+a4fA5rwPGj6NfH19pTtD41M9uwBT1u65rwfleOzk8hjzWfvZ+mKK9HaA117JmfOG1oIl809hnp7u6GmG5TWIHXcTzWaJ0RCzmXRVq3xaOYI47PIK0DC2WvLzD2PLfWeeT1NDqKa5H5nh7TU1WeY4PQ/3kavvamE1RH4/X0d2h9QnNkhNczvA/eKdVb9qcN81TMUy4PkQfH2BjWst5+XItP0ZrJIy+vGM2pV9/g+mPGoljj/+XBH2Eb2A/V43vgRJl7m9WaI/VLDyGEEEIIIYQQQgghhBBCrAn00EMIIYQQQgghhBBCCCGEEGsCPfQQQgghhBBCCCGEEEIIIcSa4Lzw9GBYQ/ayy1CPjHX2zMx8koF1vCh80lnLol7gBHl65EkbNsYSoXFXjzWdRq3SadLF+8mjj0J8qYe6bk2kAVyIoOZaPIFafK3tqDlqZrbvkp0QP/iDhyF+6eAL2MYc6qin0rjNceoX9lawIOS5mrewn0otuevO37aGhtNaoGnSCQ5IqzgaRb3kMP3jWIw8AUg/MU/mCbEobYO6xiM/FL+E2wsKbl8GHrbB4+Mgnco45W6MNczp+34J9xmJuWVlemoE20TvT02h3ubYGOZVQz3qswYF/HwpQm0OSbsSjXmWGHR0fquI5wVz2vPsD1Tw8WAOHkct0uFh95xvXo/6pw0TWK+aWxvpG9RhHp7DHGlH/+gRrBsTKawrZmaJCNaj9hZs04kjqKH7zONPQnzgqsshvuQS9IrZ1Iq1qGBuze3q2ITf2YZeMXkPx/jxU/0Q/8kf/zHEQwPoEcIeOuzfYWZOsrOeba28ZPL5/Jz3A+sX19Wh1inrwLJOu5nrZcHfKQfrHV977bUQDw4OQsz+HWZmLZRj/f14PtmzgzWVeV3Ax8n62KxtbeYeRy6HGrvs6cGavKzxWs4rhddDZu5cxPHAvDyutt54RTgWEWEDjDw3POyPTALfb6B1WIR0t9lDwC/i9oJoyBwbJ530etzHvxx8EeKO16HvXKKrGeIi+TsUSeN3kvxtzNw8SaUxNxtIv3hyksb8FOkA02Hu3IHa/SeGyYPCzA6fJN8Jx8/B+UrViMXjc2ubEnlbRALSSTeMj/UedbY3MY3H39raDjGvq3wShPcoT9ONVEuoLoTNLawJ7hcwLwoFPMexJNavOK1xeT47m/8UNpPW8846i7wr6DimyAPitaNHID52jPwaUm7NTZE/zWHS55+1JszmXK+3asFdR2XH0uTh0daI58bMrGcdjuES6YWPTeD5Lhbo+iJC/it0vdbRjb4IGza2OW3I51A/nFLMmlrW4TY7Lob4AvLrKxSxVhbzmMO5CfQEMTPLT+NawGiNHNB1Eo9nz8hrkXK4sR7H8sbNWPvMzAr0Hb7+9qZcT4hqEY1GLDJzTcTrCWe8Oteg7jqa/dfqeX1IPgIe1ZHGBrzeWN+DHoOvHXoF4hefd8/5wDj5WMWwDkT2YLuHJvDzQyOog/+Tp9BH5MkfPw7xyKjrm7VxI16D3HDTTRBziY7StfMUzesDA7g+LdGauS7EO296Es9XoYh55s0WliAwq6Jdm+8H5s/UoxLdl5ikc3H0NTzf+Zw7VgK6Bl2/DcdslO6tjNP6JUr3BPhWVCKB3y9MjDhtePLZH0Pcvq4L4u716IFU14jXpPEEXqOksnj+s9NY60Z60fvNzOzgy9hXXZtw7PTswOMcmeS1I47/HPV1nsYunzszs2wWPVf6+rGdI2Nn6nF22vUEWknm+xfxtXSB1lybtuL4vXDXLmd7zpBhsy1awDjLMvaHK2F/T9O6cXLSXUfzNR37w42MjUD8yqvomdNMnnX15M/X2Ez3f6Kur0g7+RU1teA2h0cwJ6K8oFlF93Xno196CCGEEEIIIYQQQgghhBBiTaCHHkIIIYQQQgghhBBCCCGEWBPooYcQQgghhBBCCCGEEEIIIdYEq9jTw7NZtTTWaYvHsdnXXX89xBnSmzQzK0yhdp5POpZeQDqJedSlmyK9QPYHYH1A9j0wM4uRHniQRw20sWHUnHz+yScg3rb9AojjSTzO+kbUM8/nsM1mZmw10taCXgnPPI+eHh3rUNet71QfxOOkf+1FWIc2TNeNdZ75M7XzViiV8laa0cgsljDPAp/F+UlHlo1dzCwgufVoHDUeExHaJumtBqQnGJC2X8AeIQVXszhO2t4B6QXGSKMwQqqGPm3TI98RP+Dz6fZDC/kvbAi2QTw4gLk/OjICcS6H4zFOu2ArmTAtU36JJQiDmWfAXg20CIPAm+u3iRzu/4Uj2DenyMpgx3rXu6euDnUk16+nc0Q54LOmOZ9CEhQf6j0F8Wtjbq1pbEJt56aWZohTcczLwRHcxvETWGuCfdshTsZRQ7k+g5qTZmZJakNngGO6SPXqkstRQ/fVQ4ch/n8O/hHEpRKPV6cJro59ubhKFAqFOS8P9gNg7wvWdg/z62B/C45ZpzTMA2k+7I3h6G43si+N60XS2dkJ8e7duyF+4QWc79h/g49z1gPlbPszC/FWIO8R7hfeJ/uIcMxtcjS6rXzfzt/Gqvb0WETTPDKfSNLk0NWGa5yeDqyXLc14fsYnUKuWfWHa2nFNZGaWTuMEdPXN10C8jTTh912PfkWRBOlPD7OnHK5fB4ZwTjBz16xNTXjcrC89NITbbKwnTx7Seq4jX60dW3BsmZn1DqCnR87xGAtf01eDZCppyZkF8DhpaWdo/V6fxnlhYAi9nMzMevtxDmxpQf+DRAy34dMcGqVFC49z1oNPJl2PBx67rN/PsM9IOR8z3j57IC0G3gP7R71yGPX7n3jqJxD3kZdTXYNbc6eo5g724/lKJ07X3HyFPlMrSZTW0Um6OAtK7hiJkFdFdzvOkXVbcE4cGcUxPDxC17Xk1fbYo89APDaEOW5mdtkV6Mmx+2LURd+6HXXTm5txDZauQ7+MTEMzxL5Px9SIOvpmZvkc5kQsTj6FEfZ9KbNOoziRxFp53bVYz83M/vr//V8Qnzg6AnF6Xpv8ILBqSt37+dKckY1Ta/k6lvxMed1l5l4DHiEPjp10byJCtY+rRmcHntNrr7sR4roGdy3/0su4VvvhD+6H+OWnn4SYPVdy5Is1SP58Pl1bt61z/Wy6N6CfQms7fqae5shp8n49/tphiPOk7+/R9XyhGOLXFiU/mghdr88cdzDv/1eDQilvs5ZBUbo3Eqc1WpE8OYcHXS+L40ewlkUS2Ldt67CuRCjLnHsGtMbq6MLve5de5rShnub0ZArnnp4NuK6rq8c2J1M4ltg/Y2IU13F+iCfrRAG9Z3J87zKC64QC1fQC5T17ShTJE8Yv4DrQzGyc7k32nsDzNTZyZt2XzVbXN8vzzthscO/xtdGBA1dBvHOH60Waz5L/E5vBOBZmC3t05qk/RkdwjTw+5vrzOV54dM7HhtEj5+RJ9Nm64JodEG/YiD7XT5BXzcm+Y04TJsZx/ETpXonn/GainFdp7e7rzke/9BBCCCGEEEIIIYQQQgghxJpADz2EEEIIIYQQQgghhBBCCLEm0EMPIYQQQgghhBBCCCGEEEKsCfTQQwghhBBCCCGEEEIIIYQQa4JVa2Tued6csV9AbtDtZB512WWX8rfdDZJRuZFBlEf7KJFxF5vvBWTo58XJZDDE0TYaQ3M1Nh2MkbHdKJnVHHzhJYjbycgpN4GGOOm0a0g2OTwG8bVXonlTfRoN3KYm0Iir7wQayDkmPmSqFQnpB8fomoyC0NCxuoaXJS9ipRnz8HwBzw8bfFuUcijEhMrzyBCY8iSWwPfZlIofSxapCQV6IZV0zzkbS8U9/E6MTG/9EhpfeXy+yOTYL+DYCDPHzOdwn80tLRBfdjUaBTpm4gU0uX78X/4Z4qFTaOTEx2RmVmKDdjZwT5w+N14QmE1h3q80pVIwZ3g9NIpGutNJrDXJNPbdcDak3iXRUK1IicQmUx71l0f1LZPCc76hA9twrM81okukyYxrHPNk+849EEcyuA82P8yW8JzkPRx/Yea4JRrDU1k0cYvEsd7NGp7O8uaf+1mIv3c/mic++fhjEMdirtGrx2aEYW7nNWB8fHzOXJwNunluaqHxGmaYy0bl5Ux1ee7g73PMjI6OOq8lElhf2bi8qQlNrF96CedUNgBnc2F+n/vNzDUu58/w+2x26awLqN6y8XlYP/FrbOg3v+9XtZH5IuDRVJ/C/t63axPEXVS7piYxjyYmcK4Z7EcTx5Y61+jx0t0XQjw0jue0e/sGiBsb0JQzoH2MHjsB8aHXXoO4fwjXYWZmLWSimqC1RcnH3I1FsefqUzh28vQ+l60NXTiWzMwaqYb3j5Ap5LyzVW0z81y+MHcdkM3iGiedwflyXTPmyMkBNLM3MztyFM/Jti3bIE7QHMrjmMdkuVoTNs55mzGqNY5fMxtk8vqdYv48x6H7oOMukEFwH+Xucy+iQfHBV1+F2Kc8GZvG8WlmduIEjpcJMgeNzZjGF8vMKdWEjcxLlA+FktvXExO4hkrH8DNxGvOdPWhg2taN65snnsK+fvVwH7Yh55rSJlNY/6KUp8UpXL82teDYam7G6/etO6+E2IulKG522pBuvIBeofNKxsk+Xd97/HmGStOFF+xwPnJg/16I/7EPjbHHJs+sNas9xwb+mVFTbl2WoDrP9yHMXPPdEzH8zDCN6RStq4eH8Pt1dWgIvXnzFny/Ad83M+vs6oT4heefgfjk0SMQT5JzPHkBWwPNwTu24zneuAnbZGbW1tEDMa8nuT5OT+H1xsgw9sMoxZkE1u/cNI53M7M81QmfKvDs29Ve1hVLBYvO1KxSCY+DczASwRzM57BmmJmNjGAtSvQdhThXwL5NZbAuxakvrYgdks7gvZKebe4Yb+tBo3Lfx21E6H5NOsX3X3CcTGVxXdg/gMd45DjmsJlZlAzYPRqv4+M418Wj2KbJAt1PyGEb+F6nX2xw2tDfh+1kI/PRsTP3FXM5N2dXEqyt2DfpNObE9h14jnkONjMr5LBueBHcZoHuKRQKuJYs5PH7k6M4LwwMYByNuvcMuF1N9ZhXMQ/fnxjHsbDlApwfN2/G648rL9sP8b88jG02M+vrH4F4nPbB93F9p+Dw+tY9zlqgX3oIIYQQQgghhBBCCCGEEGJNUNFDj89//vO2b98+a2xstMbGRrvmmmvsH//xH+feD4LA7r77buvp6bF0Om033XSTPfvss8veaPHTx7XXXqu8E1VFOSdqgfJO1ALlnag2yjlRC5R3opoUZ35msGHDBuWcqCqqdaIWKO/EaqSihx4bNmywz3zmM/bYY4/ZY489Zq9//evtbW9721yyfvazn7XPfe5z9sd//Mf26KOPWldXl91yyy3Oz6+EqJS7775beSeqinJO1ALlnagFyjtRbZRzohYo70Q1mRUCue+++5Rzoqqo1olaoLwTq5GKPD1+9mdR3/y//Jf/Yp///OftkUcesT179tgf/uEf2ic/+Ul75zvfaWZmX/7yl62zs9O+8pWv2K//+q9X2DTPZpcKJdKg3LIFdfa2bkMtXQtC9DpJbozVUllfN0vae9lp1L2LkFeDBVF6P8TTI8r6u7QJagPrBY6MjEDMPiOFPLaxrQ01MM3MsqQfzpp3F+7YDvGLLxyEeF0b6rEmjx/D7ecX1nFfKrfeeqs1Np7Whl3JvItFIxab0StNxVH/lrX3PH5kGCLVHyEdu4C8ZUqUZzn2ESH/DfYESSVR+5T1B83MSPbX8R1gKT62v2FtaXrbYtRPQYhucjQgTxwf43XrWiEuki7ibW96A8RdXe0Qf+q3fgvi8V7XYyJCfcMKhKkZD5zT2sqjVcs5s9M6rLPngTU7Ewn2ACC/Id8t4wnSq52mWpEivx8vQp5EVN9iUeyt6w5cgtsP8bNJxrG25Ap4XFOnXoG4NYZt6OlGHcpNHc0Qx33KM58z06zEye1xiN8pFrGfNm3ZCvG/+qX3QPzqoZchnhh1F21hc0FYk2ZbWq28Gx0ddeaQWWb3P0syiWOc50sz1wuBYb8N1pbmtpTzzwjz9Bibpy1rZrZz506IBwdRe3py0tUSnk85b4ww3xLW2efj5nnEmVfK5Av3Sxhh52c+849rVhO3mvVu6bh9w1NeewvWvp3b1kPc2YE63H39eH44JwYHMGc621wvi82bsFZtS+O8HGvENlkW57fR13AddeI11HY+dgz1rOMhOdLehj4UBfLmCsgjIE66wTHSuObxmC1gTq1romMysy7qm6ER7DteGVQ153zv9D8zi9LamqeSRtLmPnQMdZjNzI6fPA7xyCjqsydo7ZehbfI4jkboGoLOz2J8lMrVhko9PBzfpYLbBm4nr6wmSSP76Reeg/gw+dVMTqN2dIFOTm7E9ZkYomsj1tKPzuhPz/pmrIZax/rwbP015bt93Y8pZsPjOMbjfdg3dfU4hhNprHXDpNNN1ns2Mu224ennsRbVZXBtUF+H+zh+AsdOPEAfrTR51rX1bMEdltCvz8ws04ra7LFkN32C6yOvT0lfPLqwAUJTU5vz2k7ycXrpOTyuqeyZfvKDwAaGJ2379u3W2Ni44jlXLBbnagHXCB7TKapL2ayr784+YqdOocb/k088CXHywMK1zvE3IsON1jb0KzUzS5MXWjKO2yhQu+umsM3pevQq2LQJ7yNdfDF6tLS0uue8SP6jvOYt8URCcN/ycfP7sYirg1+kedl3UjeA/1ar1hUC3yIzx58nHyeje1NFusnAsZmZjWPdKPbigY5PNUPc3Io5k6R7I8kUxlFnXe6uqXw6n3nyLy1R0Q4M67FfwjaPjqE32NgojqPxMdc7rL6O/BbJy2SIfEHae9DDboh8Y7I0lgOaZ3i+NTMbGcBtDAyhB918n5D8jKdHLebYgAdDBONvf/vbEMc8N+/WteIaltdlTc3N+D5dvyXiFNPyKE2+yZkQj0C+ZxCnWnfBFvTs8Dz0Gn3hIN5b6dmI10C7LtwF8ZNP/sRpwz8+/gDEoyN8rUx+b+zhQce9Wpwjl+zpUSqV7Ktf/apNTk7aNddcY4cOHbLe3l679dZb5z6TTCbtxhtvtIceeuis28nlcjY2Ngb/hDgbyjtRbZYr58yUd2LxqNaJWqC8E9VGc6yoBap1otqo1olaoFonaoHyTqwmKn7o8fTTT1t9fb0lk0n7wAc+YN/85jdtz5491tt7+q8xOjvx1wWdnZ1z74Vxzz33WFNT09y/jRs3Vtok8VPAs88+q7wTVWW5c85MeSfKo1onaoHyTlQbzbGiFqjWiVrQ09OjWieqimqdqAXKO7Eaqfihx86dO+3JJ5+0Rx55xD74wQ/a+973PnvuuTM/Vw77efRCcg133nmnjY6Ozv07evToWT8rfnrZsWOH8k5UleXOOTPlnSiPap2oBco7UW00x4paoFonasGDDz6oWieqimqdqAXKO7EaqcjTw+y0PvX27ad9H6688kp79NFH7Y/+6I/sd37nd8zMrLe317q7z+hr9vX1OU/05pNMJh29cIYHwsUXXwxxI+nXB6RlHLYNjwTHAlIcY01s1sFkDw/fp+dHYd4KpFlfIr2/Eikez3pLnIlR+22a/DlYZ9PzyDTEXB3ZEydOQMyeEqxXlybd5/o61Emcyo1AHNINrip3mYWdWfXyzi+VzJ/RaSxGSM+dPhvhZ4Yh+ptRFrbjmDQH00nyzyiSxifp2nPeToUYQdXV4znzSYfSczSZMU8DanOcvBoCOqOFEJ+AtjbyBKDczBdxzI6RbqVRHl5x4CqIP/6puyH+9Md/x2lDfnQE20DvR2fzYWbsL3fOmS2Qd+aZN9OPMdIC53FenMK+arjQ3WeBvCnqMqhnm07ROaR6Fnjk00Japfsv3QMx61yamR16+RDEff2Ym5w3be2opbn7ItSt3NSGxxChMxiEPMPPU1+m0zx+eOGF349G8fNvfsvPQfzkk09C/H/++mtOG6IB6dsGuM/ZuSYIAvODoGq1rq+vb+511ovnmA3m2PPDzPVC4DmUvS0KBcwp1o3mOTtFms5hDJN+7fxFtplZfz9q5nIbyvUDtzHME4Vfq1Q3n/utnCa3szYJeY01tcPaUIu1XTkWs1aI0Bza2oJ1orUJ5791rZi7HvXNkcM497x2BP026hpcDd76lmaI17ejR1U0hUvt0ZOnID56FD08jpBfBOdpT2eX0wYuXs48TL5NqRSemxjVzwnDfhifQA+dVNy9fNhAXlsvH0ZPj/ly0YFVd47N5wtzczv75eXzVAemcN2Virpru2Mn8Jyd7MW1dIbmDl5wOPWMUrvcGDYLu65ZuLaUq0Ucl6gWeSVXA9tn3w/SBB8aw7w5eOhViI+fRP+1oo/nYppq7jith8zMxiZwfspN4/mLz5w/f4XWdou6jqU4Qmt3PrtFV6zfJsgzMcjR+ZzCvu8fwjk5wnkc4etgZHTc9U8ZG8P+72zHerpr70UQP/8ynu9+qnWvncQ5eccO9FHbvgFripnZpp0obdK6cT/EXqwZ47IeHwv//Wc84Z7b1nXoI9LSjp5KW9ef6ftiybeB4Um74IILrLGxceWvJ0ql0HWBmbsOY6/DiTHX54zXPbxGeZXG9I4dqBm/eTP6Z/C6apg8eVJ0n+F0O7Fmt7agh8OFpFOfIl+t5hb06GhtxTk6k+F53V1rsO8qr8147Xf48GGIjx/HeT1Dx5mdwLwuOlepbrPYx4DPe7VqXaFUtMisbxh5cpbIZzdOx1UI8S8K6BZAwce6MzmGa4up8RHcRwL7tqGhGeLsJM5LfK1n5s5ljhcNtbv3GG6Tx804tXF0EO/Z1aXdOhQh/80i5dzwINbPdGMztjlBbabax/d/8iH3T9kXhH23ivM8XPIz9xCrlXdeJHJm3eLRWoS8ZR770Y8gfvFZ18uC78FFaY7keyeZOsqzerwfnUxgXjU24n2OsOvaiQmswY4vJHlSPf7kUxC/9OphiA+9gh4feVovPfqjJ502DA2OQOwZHgd7VAc0xtkPx/FArhHn3IwgCCyXy9nWrVutq6vL7r333rn38vm83X///Xbttdee626EAJR3otoo50QtUN6JWqC8E9VGOSdqgfJOVBvlnKgFyjtRC5R3YjVQ0S89fvd3f9duu+0227hxo42Pj9tXv/pVu+++++zb3/62eZ5nd9xxh33605+2HTt22I4dO+zTn/60ZTIZe8973rNS7Rc/JTz00EO2a9cu5Z2oGso5UQuUd6IWKO9EtVHOiVqgvBPV5Pip038B/tprr5mZKedE1VCtE7VAeSdWIxU99Dh16pS9973vtZMnT1pTU5Pt27fPvv3tb9stt9xiZmYf//jHbXp62j70oQ/Z8PCwHThwwL7zne9YQ0NDmS2fYfaneUHgz3sNfwrHPxkbG8OfBIbJW5Wy+HOhUg5/nsUyQuP086LJKfxp3RT9fLpIP6MKk2EoFBaWyuCfShadn5LjNrNZ+gkh/cxxcop+H2huu7PUBpa3ytHPNQv0s9RyMmAsvxTGQp+Y3d6/+3f/zk6dOrXieTf/Z2X5OB4r/zQ8wrJQYfJWIa/BfilXWbLHL+L5iRaovyP4k7Ps5ISzD/5paTl5K/4JL0vBxXLYZpYIKhbc8Reln1D7HpaeAuX6BMnpeAXqe5KjmKJcZ1kGM7MSy8g4sgw+/Helc85sfr070xbufx5j3O58Ac+nmVmWztHkNI7jsUnKK5bSK9A+siQ5QW2YnHZlEKapDVmWZqC84c9PksTI+CTW4EiU8rDk/iw/bywhwnIOJAcSx76OBzi+eB5gCZnFSA2xDA3nQLVq3fz5hyXU+GfELK/DP/M2c8cg5y1LGvA2WRqApVZ4ezx/mrl9zZJb3EaeQ7kNlcZm7nGVk9Died8Z7+Xm2EXk3EJxtfPu9H/KrwvOspWzbncWXjdxLZyiWjidxThHdSpL6wD+vplbm8bGMc+idA7HJ/DzE1OYy1PUJq6N/L6ZmU9z7FSOPkNLUt5mjNeX9D73SyREfqdQZCk2fH92PTj732rOsfl5bfMjnDMk0Uk5xGtrM3ctPE21xFl/05qHZSq4ppaTqgr7DEtgVUPeiiWSSrQs5n4od01R9BeWGOR6aVa+Zvozx+VXaW0XWpPLfMZdJoRto3ztX2iji12LzMJrTTMzj2X0aMy79ZTmeVqvlqvPE7QONDMbp/oaG6PrBVrPuvJWLGWzsOiF57nyO9N0Lc3X9/Pnodnac+WVV1bneiLk+meWsmMl5Lvl6giPSV6bZbM437E0CteZsKz2SLqG125cVzySw+LP85qXb9l4IdfuLDnH2ygUFl4fVry2W8R6p1wNqFatmy8RyXWDJbhI2d2RUTdz70uUqC9KPp6wWBzPRbzIcyNJBMXwGmcx8lZRmqMDmqsmJ7Eu5WkcTNH1I9eQfNa9pokY3xfEfohFcBt8jcP1mMeBR/06PeXKR2apXXlaW85fy8zmQfWuJ+Zdy5SZH8vNwWauBYBnvBZcWOKuSPMh3/vieSIade+X8Weca+EK21ROlpnXomZhfbNwXLZ2lVurnANhuXA2vGAxn6oix44ds40bN9a6GWKVcfToUduwYcOKbV95J5iVzjkz5Z1wUa0TtUB5J6qN5lhRC1TrRC1Q3olqo5wTtUB5J6rNYnJu1T308H3fTpw4YQ0NDTY+Pm4bN260o0ePhhqnisUxNjZ23vZjEAQ2Pj5uPT09oUaOy8Vs3gVBYJs2bTov+2o1oZxbHMq75UV5Vx7l3PKjvCuP8m55Uc4tDuXd8qK8K49ybnk5n3POTHl3vnI+5121c0737JYP5V15VOuWl5+WnKtI3qoaRCKRuSc1sz/paWxsPO9OwmrkfO3HpqamFd/HbN7NSqWdr3212jhf+7EaOWemvFspztd+VK07vzlf+1J5d/5yvvaj5tjzm/O1H1Xrzl/O535U3p2/nK/9WM2cM9M9u+XmfO1H1brzl/O1Hxebcyv7J1ZCCCGEEEIIIYQQQgghhBBVQg89hBBCCCGEEEIIIYQQQgixJljVDz2SyaTdddddlkwma92U8xr14+JRXy0P6sfKUH8tD+rHxaO+Wj7Ul4tHfbU8qB8rQ/21PKgfF4/6anlQP1aG+mt5UD9WhvpreVA/Lh711fLw09KPq87IXAghhBBCCCGEEEIIIYQQYims6l96CCGEEEIIIYQQQgghhBBCLBY99BBCCCGEEEIIIYQQQgghxJpADz2EEEIIIYQQQgghhBBCCLEm0EMPIYQQQgghhBBCCCGEEEKsCVbtQ48/+ZM/sa1bt1oqlbIrrrjCHnzwwVo3aVVzzz332P79+62hocE6Ojrs7W9/u7344ovwmSAI7O6777aenh5Lp9N200032bPPPlujFq9OlHeLRzm3PCjnKkN5tzwo7ypDeXfuKOcqQzm3PCjvKkN5tzwo7ypDeXfuKOcqQzm3PCjvKkN5tzwo7xaPcs7MglXIV7/61SAejwd/8Rd/ETz33HPBf/gP/yGoq6sLXnvttVo3bdXyxje+MfjiF78YPPPMM8GTTz4ZvOUtbwk2bdoUTExMzH3mM5/5TNDQ0BB8/etfD55++ung9ttvD7q7u4OxsbEatnz1oLyrDOXcuaOcqxzl3bmjvKsc5d25oZyrHOXcuaO8qxzl3bmjvKsc5d25oZyrHOXcuaO8qxzl3bmjvKsM5VwQrMqHHldddVXwgQ98AF7btWtX8IlPfKJGLTr/6OvrC8wsuP/++4MgCALf94Ourq7gM5/5zNxnstls0NTUFPzpn/5prZq5qlDenRvKucpRzp07yrvKUd6dO8q7ylDOnTvKucpR3p07yrvKUd6dO8q7ylDOnTvKucpR3p07yrvKUd6dGz+NObfq5K3y+bw9/vjjduutt8Lrt956qz300EM1atX5x+joqJmZtba2mpnZoUOHrLe3F/o1mUzajTfeqH415d1yoJyrDOXc8qC8qwzl3fKgvFs8yrnlQTlXGcq75UF5VxnKu+VBebd4lHPLg3KuMpR3y4PyrjKUd+fOT2POrbqHHgMDA1YqlayzsxNe7+zstN7e3hq16vwiCAL76Ec/atdff73t3bvXzGyu79Sv4Sjvzg3lXOUo584d5V3lKO/OHeVdZSjnzh3lXOUo784d5V3lKO/OHeVdZSjnzh3lXOUo784d5V3lKO/OjZ/WnIvVugFnw/M8iIMgcF4T4XzkIx+xp556yv7lX/7FeU/9ujDqn6WhnFs66p+lo7xbOuqfpaO8Wxrqm6WjnFs66p+lo7xbOuqfpaO8Wxrqm6WjnFs66p+lo7xbOuqfpfHTmnOr7pce7e3tFo1GnadKfX19ztMn4fIbv/Eb9q1vfcv++Z//2TZs2DD3eldXl5mZ+vUsKO+WjnJuaSjnzg3l3dJQ3p0byrvKUc6dG8q5paG8OzeUd0tDeXduKO8qRzl3bijnloby7txQ3i0N5d3S+WnOuVX30CORSNgVV1xh9957L7x+77332rXXXlujVq1+giCwj3zkI/aNb3zDvv/979vWrVvh/a1bt1pXVxf0az6ft/vvv1/9asq7paCcOzeUc0tDeXduKO+WhvJu6SjnloZy7txQ3i0N5d25obxbGsq7paOcWxrKuXNDebc0lHfnhvKucpRzZrZyHulL56tf/WoQj8eD//k//2fw3HPPBXfccUdQV1cXHD58uNZNW7V88IMfDJqamoL77rsvOHny5Ny/qampuc985jOfCZqamoJvfOMbwdNPPx28+93vDrq7u4OxsbEatnz1oLyrDOXcuaOcqxzl3bmjvKsc5d25oZyrHOXcuaO8qxzl3bmjvKsc5d25oZyrHOXcuaO8qxzl3bmjvKsM5VwQrMqHHkEQBP/9v//3YPPmzUEikQguv/zy4P777691k1Y1Zhb674tf/OLcZ3zfD+66666gq6srSCaTwQ033BA8/fTTtWv0KkR5t3iUc8uDcq4ylHfLg/KuMpR3545yrjKUc8uD8q4ylHfLg/KuMpR3545yrjKUc8uD8q4ylHfLg/Ju8SjngsALgiBYnt+MCCGEEEIIIYQQQgghhBBC1I5V5+khhBBCCCGEEEIIIYQQQgixFPTQQwghhBBCCCGEEEIIIYQQawI99BBCCCGEEEIIIYQQQgghxJpADz2EEEIIIYQQQgghhBBCCLEm0EMPIYQQQgghhBBCCCGEEEKsCfTQQwghhBBCCCGEEEIIIYQQawI99BBCCCGEEEIIIYQQQgghxJpADz2EEEIIIYQQQgghhBBCCLEm0EMPIYQQQgghhBBCCCGEEEKsCfTQQwghhBBCCCGEEEIIIYQQawI99BBCCCGEEEIIIYQQQgghxJpADz2EEEIIIYQQQgghhBBCCLEm+P8DXYAaw2gITI8AAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1325,14 +1306,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9WaxtS5cmBn0jIuaca6299+lu9//5V2VlUSpjEBaFVDIyD0ZCMvAAwrLBNvBio6IkBOKRxhIPli0j8QBvFrKQZQkJjDCNkLAACRBCgrJcBS5ZdpFZmVn553/70+xuNbOJiMHDGCNmzLX36e7d9/4+J9e4d5+99lpzzRntiDG+0REz40QnOtGJTnSiE53oRCc60YlOdKITnehEHx+533YDTnSiE53oRCc60YlOdKITnehEJzrRiU7009AJ+DnRiU50ohOd6EQnOtGJTnSiE53oRCf6SOkE/JzoRCc60YlOdKITnehEJzrRiU50ohN9pHQCfk50ohOd6EQnOtGJTnSiE53oRCc60Yk+UjoBPyc60YlOdKITnehEJzrRiU50ohOd6EQfKZ2AnxOd6EQnOtGJTnSiE53oRCc60YlOdKKPlE7Azz1ERP8qEf0Lv+12nOiH02kOPw46zeOHT6c5/DjoNI8fPp3m8OOg0zx++HSaw4+DTvP44dOftTk8AT8nOtGJTnSiE53oRCc60YlOdKITnehEHymdgJ8TnehEJzrRiU50ohOd6EQnOtGJTnSij5ROwA8AIvqPEdH/h4huieh/BWBVffZfJ6I/JKJXRPR/IKLfqT77TxPR7xPRNRH9S0T0/yCiv/Zb6cSfcTrN4cdBp3n88Ok0hx8Hnebxw6fTHH4cdJrHD59Oc/hx0GkeP3z6sz6Hf+aBHyJqAfzvAfzPATwD8L8G8I/rZ/8pAP9DAP8EgF8C+DWAf00/+xTAvw7gvw/gEwC/D+A/8fO2/kTAaQ4/FjrN44dPpzn8OOg0jx8+nebw46DTPH74dJrDj4NO8/jh02kOAWLm33YbfqtERP8wZGJ/xToYRPT/AvB/g0z8S2b+7+j75wAuAfxlAP8wgP8GM/9D+hkB+FMA/xwz/89+9o78GabTHH4cdJrHD59Oc/hx0GkeP3w6zeHHQad5/PDpNIcfB53m8cOn0xyePH4A4HcAfGULQOnX1Wf2Gsy8BfASwK/0s99UnzGAL3/y1p7oPjrN4cdBp3n88Ok0hx8Hnebxw6fTHH4cdJrHD59Oc/hx0GkeP3z6Mz+HJ+AH+AbArxS9M/pd/f01gL9gbxLRGcTF6yv93p+rPqP67xP9rHSaw4+DTvP44dNpDj8OOs3jh0+nOfw46DSPHz6d5vDjoNM8fvj0Z34OT8AP8P8GEAH8t4koENE/BuAf1M/+FwD+GSL6K0TUAfgXAfybzPwnAP6PAP4BIvpHiSgA+G8C+MXP3/wT4TSHHwud5vHDp9Mcfhx0mscPn05z+HHQaR4/fDrN4cdBp3n88OnP/Bz+mQd+mHkE8I8B+KchsXz/JID/rX72fwXwPwDwv4GgfX8JwD+ln70A8F8C8D+CuIL9hwH8TQDDz9qBE53m8COh0zx++HSaw4+DTvP44dNpDj8OOs3jh0+nOfw46DSPHz6d5vCU3PnBiIgcJN7vv8rM//ffdntO9P50msOPg07z+OHTaQ4/DjrN44dPpzn8OOg0jx8+nebw46DTPH749CHP4Z95j58fQ0T0nyGiJ+oS9s8CIAB/47fcrBO9B53m8OOg0zx++HSaw4+DTvP44dNpDj8OOs3jh0+nOfw46DSPHz59LHN4An5+HP1DAP4IwAsA/3kA/ygzH367TTrRe9JpDj8OOs3jh0+nOfw46DSPHz6d5vDjoNM8fvh0msOPg07z+OHTRzGHp1CvE53oRCc60YlOdKITnehEJzrRiU50oo+UfpTHDxH9Z4no94noD4nov/dQjTrRz0unefzw6TSHHwed5vHDp9Mcfhx0mscPn05z+HHQaR4/fDrN4cdBp3n88OkHe/wQkQfwBwD+EUiCo38LwH+Zmf+9133n4umn/Nnv/AUAwPFjiX5QM95C79u3d2nEu9zzHe7DfHSn+77zcN5Yf/J3/r8vmPmz4/ffdx4//fRT/r3f+70Ha9eJ3p3+1t/6Ww8yhwDw5PFj/uUvPn+n5xIR6L4NSlRWLYN1TzNyZuScwWA4ciBHINDr74P7V3pKCSkl/YzlIgKcc3DkZMuwPR1gZjAzwIzMGTnL6/J+aae8zlmvwdwuIkIIAd47MGs/OCPnjJQickogRwjewzlnw1B1xHpCcM5pvwHAlbH6419/9SDz6L3npglwzsEHL2NNBO/93CjrN7OMpfYppgTOuXwGyLh6H+CI4L1DCAGSv6506bUTxlRdcDTHdOdimUtilhvlDGR9vZgruSUDSMxI1fvMdufqWaxrDkBLhEAAMeA4g7Ly28xgcBknck7HL8B5h5wzpmFESkkepGuo7j8B+GaaHmwvuuA4NEHvPfeH9C/mjKxz5x3BO4LTveSdXBNzxpQyMst6zvV9fuDh+sNPn/mb9Iab2LogAoKf++J1a1O517yn7K3M89RkZuhSXjx97vbxCpS1ME4ZMfG9g/O+89g0DXddB+dk3xiPCrbGiGRvOZk341/zthE+sdhv9T5YyAtcPudqbOZ5PuJ5Zf3Oq6vmxfX9jX8u+Om9RFhs+XpzHBPbiFM5C7SVi/Yx84IPLz6bb3TUDMKv/+TXD7YXHz96xF98/unrPp679Ba5eSHdMarxzMJWUkbKMz/OOSv7szFnO9rKmeedB9n557yuHz1X64fdGQibFprv+YY2M9fjbO/peckZnDPGcUKMEeQITWjgfZB17f0Rv7nnYbaWmcGcAGZc3+6wPwwPshfX6w1fXDyWsc4RzFnPnIyZnzDqlVUN1T1tp8X79+2n8u2yp+92xfp8Tw/B7MAMjDFhnLKsA93HRIB3Dt4Lj2iCRwgiWzhHcPeMWv0YqjZqPTf1WuB6vsv0s8pQ1Yhx9d16LJSubrYPthdXXcfnZ+vqeW/eczRPl+4Jkjmq+n98DjwcHU/C2+79nmcyA0llUdbX+Z7N/BABPMMwIE7Tg+zF84sL/uRTWw5cFp3tSWYGq67AeX6dUkKMEzib7J10T6Dwj3qfOSKQsz0hMh0RIfggcqzKeE1oZG04V67Xg3e5b+nofKv2dZFNjs9vzNfqq2rglu/c4TP1xPHd1f7aaX3DfP/tf+ffu3cvAkB4/dfeSv8ggD9k5j8GACL61wD8FwC8diN/9jt/Af/8//LfLAdgTa87LN5NZr3/sFtKnXfEpupC++DdgJ958paH+8xc6vvU96/a8Brgx3Qhuc+P2MVHHOCf/qtnv37Nle81j7/3e7+Hv/k3/+ZbBZ8TPRxVwvCDzCEA/PIXn+Nf+Z/+T+4eP9W8kjJP7zyapilAR2kTiSAPyEEUU0TOGf0wYLffIeWMtuuwWq3gvUdwAW1ocSwuMYAM3X4EwBGYGdc3N7i6vp6ZPmcQETabNTbrNYhID0IRnqdpxDiNyDnjcDig7/vy/jRNYGbEHJFyQkoZh32PYZgAELxvQOTRtg2ePXuKi4tzpBSx399iGA8Yhx6Xr55jt71B2zb45MkjnG1WcI7gvRw84IycMjgzvA9YdxsE38CRR6AWBBnPf/Kv/XcfZB6bJuB3f+9XWK/WePrsKdarNdq2xdnZGUIIOp1yuA7DgNvbW0zThP1+j8vLS4yjjFWMEcyM87MzPHnyFG3T4PGjR/j02Sdo27bMt4z3ko/aT3Ye2YX5EC0HJAsMwfPVxAw3RbgpgnIGHQ6gvgdSQpoG5GkEA4jOyQ8YN9OEbYpIzBgZiAwwHBgNAA/mjDQdwGnAigi/2wZ8Fhx8zlgdBjRjBKeEOIzIMSG0DR49eYLVZoN2vcLjzz/F+uIMh+0O3/3Jl7i9vAbHBPQRiFnHYD7e/4Vv/vTB9mJoAj77i5+DQPAkAJ4D0JCAhVPfo7+9RppGnHUBz85X6JqAVeNxvm4QPOFyN+Dbqy0OU0KEx4AAJgMc/OJ5r+Pdi/dpOb84eq2XLF6Xc7HmIfUtuQJ7wHCIcJTResInjzo8OWsQHHDeMtZB4CufI4iT3sEDcIgJ2I/AGIEpZmwPE4ZRBWKTLUkEQFuPtcpnCuzvf/nG0Pz3mseu6/Af/Sv/ADbrDT559gk26w3WqzWePX6KVbfCerXGk8dP0LUdmiZgvVohBFPkFcTzAW3bln3GWXlbBdoCGcwGGCTEFAEwvBceDQAxTpimqQAKKcn4FWGXCKFp0LRyfUpJAW7GNIlCL3xzwjiOi9kWPuAKP3D1a723XU6QfqSckBXUCW0LF2Q91sCH9c/GwTlX5ophQH6u1ugMXP21f+avP9he/MUXn+Ff+h//i4VvLiRIE8irdiwBthpOsO/L/DEzphgxTANyzthut7i+ucE0Tej7HvvdXpSdKZa5s3sTETZnG5yfnyOEgM1mg7OzMzmXfUDjTYxfcGTZawR47+C8A0DI2fAP27Ek7eYMhiiWMSbknOa+MRBjxH6/xzAMOBwO+PLLL/Hy5Ut03QqfffFLPHr8BE3T4Oz8EbrVSscpYVZq5t+2LjlNiP0WOY74V//1/8vrpuS95/Hi0RP8F/+J/xrSuEe/e4E47oE8AtMWzBNE2pjASDpTqXxXRkl5FLGOkADt0icGpwr4MQC12hdOjSY2I4X3JEaO8heR/ABAzB2m3GGKwJffbfHld1tMMWNMI6Y0wjvC00cdnpy3aBuPX3z6CJ8+O0PjHdarBqv2Ln+v94pXI1Uxdii4nJIA5syMnHT9MiMnMeKllDAMk6wHZsTMCrgzYrU+c0HdGf+7/9P/88H24vnZGv+5f+Q/WemL83Pmg2UGo4ipKP4mrzrv4RtR/GvIbwayqrPqdQ15DZVv6vwvPnubfsSk7T1+7l2wAABSytjtD+iHATFl3BwGHMZoNrTyzPmcqG5jhga7aQXeZSqDV3r0d/7tf+dNLX+vefzk08/wz/5z/7zsKWU+nCLi2COniDhNGPo9UpwwjQP6/RYxTtje3uDF8+8x9Afs93tcX18X2X55VgjQ3LWznrFebXB+do4QGjx9+gyffvo52rbDs08/w6df/AJN06Fdr9Gtz+CchwstXGhk/3oH0nv6ADgPBZAcgpe9HhyJcYpoNliRGeRMNxJOUkAmBSA9Fa4LYuXRnIEUZWwqbISZZ95RLdWFDP6a1wDwxe/+ldftxR8F/PwKwG+qv78E8B8/voiI/jqAvw4An/7yd3VQZJPOwPnxliMIc3zXpsj1iz+pYILVm4DBMnxnmxezyAI5XhDXb8r974B7upl58eadJoBontCq0SDick4e9er9iOhd4d+3zmM9h7/7u797An3+/UfvvRe/+OIzgAhsyiyJFTKqEmCCPIjQBMCjqbaIiEZE9o8cyUmVlClF9KpARBZPDeccuqYFM0RZqPaGfE8soaRCalaBQg4tQswJKUYQUVFUjJmaMpKSWCJTStjv5cBIKWHoewzjoIzUPHgY05gwRfHsSGkEswhJ0zjh5voGOSeM0wExDkgxYjgMyImBTAi+Qdeu4IjQBIJzEBkki0XUu4AmtAg+AEzi7/N2YPm99mLTNjg/O0e3kkOvbdsF4JNSKkpE3/c4HA6YpgnDMBTB0DmHrutARFiv11ivV2ibVhTQ4tF0j6cWc5n7Ga9TSwxz4aGUEyglELMoAinJATdO4GkSYaDvgaEHMoNyhMvi5UXOAeTlkBwjKE7wABomyHAzoiMkMAiMQAx4QkuEhoAGgGPAZQYl8SpyyltdBnhKyOOE5BzG/QGOCOPugDxFIImXEFU8/x2Po/fei77xFWpSnR00e8pV35xbUnS3ytpUDpWMDBYBhLnab/dBN3zvUcGkonYFAi0+X9xhCf7U5xfp36wNrM0jVReq/axKF9fjTjrLZiDJ4iiWGSkxYjLgR+UKAsiJgsAAmKgI+6aIv+UUe6+9uFp1WK/X2Gw2uDi/wHqzwdnmDE+ePsV6tULXdticnaMJDULwaLoW3rvSdxDgQ4BXD75cAT+UM6AeiAL6yOqn7IAsr7338KGRe3kH6D1ykv0HZqScxWoMYIwT8k6BCVPElX9lsyqnhKygkVPQiGvwjhkJBoqKEO68nxVlJx3zXoBMciT98176koCsYD5B+mum1SKCOfnDkdc1oHIXLVbbD57D43n8/LNPS38AFBmK7T1mMJknHpdr5SWXNX/8PiCA3H63xxQjrm+u8erlK4zTpIBP7f0DMBMmBYEAYZMpyTyPQ8Q0RHjvReHpWjhy4qXpXdlD7I5H6FgmtqZVwIz+Xbx+uAK8DMyq+g2yvZgQk8MUJ9AoazJn8yq1ezPMe5YV+ElDD45j8T79ofNYz+H5xWPx2PWyDgVE9IALIAYY5kXswcjItp+UNwDiNQrO9ywxKoyNqv8AKnkziHXC9NriuQkU0IWcAD8MAmeHlIGUGamAK8tJSiljmiIIwDhFjGNE9l54iQLI5pVQn9f2+r4zvPBbAEzLM0DmGfN8HwEksi2Vp9I7AB0/YC+ebdaljdkeZA1YfEnON9Il5JzIY6Z/O9sP1lYo6FGE2Ao9eQMdn6AEzIOub5RrlkN2z81EFqE7MuEsV9XPzWRgofa3zG/d/PvneG6brNOy5cu42B9v7r/Se+3Fx0+f4fnLW4ATOIm8l+KAqd8hxwlxGjEcdshpEsNtv0eKEYfDXg2VI4ZhQLL9BKr2kE4wZC5TymAmjOOEgxvgfYRztwACQtOgnzL2Q0RoWnTrM3Rn53DOwzcdQtMBChS6IAZMFwjOwB7v5bwuYI/w2eAMEIICQsp/nS/6kw8GvIpnc3ByfesJjZOzT0xaZQUI77GJq/flO03R2+nHAD/3LZM77WLmfxnAvwwA/4H/yF9lsTwwmA2YoON1Xj3AtId3bdJ8fe2NM2MrS5fvI95qlxRGXbetPsCXgE3d3uMP7tnUi0uM2ZowS/de82Nm+x28ht46j/Uc/tW/+le5en++ybujdO9EDwku3de2N93/ofvyY6l2gX8Nvfde/Pv//r+POYgwDVW6Yh6xnwZMU9TD04McoaMOgToEAwLsmCFSvktImTFxRuKE/TTierfFNE3wPiA0EjJ0tl7j4iwjOF++DwAxJUQNrfGNRwgBDFE8vBPFlaeMcRwAEJomILZNCU0KwQMQwWi3E3Dj8vIK19c3iHHCbrvFfr8Hg9UKZLvbF8Bot+vRH0agApyJGOQyiCTEZtUGtMGDAmHVrHGxeQzvCG3jEAIVxkDG11jthxlI8Z38995rLz5+/Ig///xzNG2DzXpTLP6mQIzjWLx8+r4vrw0QYmZ0XVc8hMTjRyy3bdNKmMo9AmNRSCsLvye1oxEDOQvQwgwaJ2AcRRAeR/AwglMGxgF56MXjZxpA6lngghywTIREEi6TM8MPI8I0gQEEUsWWCL1LGDQEIniGDx5rENZEWCvo41IGxQTODGTAMcElRu5HTImRhwnEwLjdYxoGTLseGCOIAY/jUIofP4fH89iuW6ZaSSv6mQo2ZMKOK3/f90NMqnSIwi9e+oRcy3TVizf1yoTkbOcfzSBQfRtavK7VoKORMNmSAUMFiUTBcgR4BXi94gWuUmKqAxwAIYORMhCThLeNU8IwJjADmZ0qTQSmPAv71W3K7zefMe+1F589e8rPnj3DxfkFPv/iC5yfneHi4hG++PwLbDZn8M4h+EZDCxUMUc9Ga0fTiMePAD9ZBVkBRFyerYHm8QNYaB9EMA0SbhNSQkrixRdjRIqpeEGO+z1iStje3uL25rZ43XBmgIDgQ7GiOm/hReIh5MnJ3JlSCNZw3AznCE3TooHw+jY0CH4Oo/RBw0+9hP7mzOA4AUmtwBHyGqpQmjKnXms2+GzrzPbBm+m99+J/8C//JXZHcmJ9IwYUdL7/tmXrFtByBlAO+x7PX7xE3/d4+fIFvv76W4zjgKbpsOrWYn32DsEHMBP6fsLt7RY5JwS/Ew8x57BerbFerxGCx/n5OS7OzxG8x9nZCmfrlYQ1eFUkDPDkWj5dKrtUQBnVVhV5kO9J422NZBZgUFiT8J2k3mEpM8jt9WzJyOoBDGZwSijeuRpmzGkCjzsgTcUr7YfOYz2Hv/jF73AbHCh7jD7ApSBnU+gA9gKJU9Z+Jd0DWSzwPAFgeDC8jhPV4wdToAGCrE1VR+fPs9x3BmEsrNODNETPWDkD6CfCOGWMkTElRmL1EtJnMgPTFHHoxRtru2vRNQFN44unn3OE4ABvsg1RkRvnM3w5jI5EsZVp130IIJedxjPPqSZCbmUKdwaYCh/6MXN4PI+fffKUvXdgZBC7shbnw2VuFQHF+OY9Slic8xDlXbXqcp5BWZk1bYF63d/iY+CnvFnkxbofbwZ+FL+5PxS6clogBU0dGM4zyClgRLWeMrfMORsna1PRZKvrTCDgakL1WW8XdN5rL37y+e/w7//h1wLyjnvkNCGOB/TbS8RpQBp7jP0tUhyRU5LfWULbY4qyroruTQCJcaE0RNueMjBMCUQZ05TR9xOIHK5v9vju+aUYONcbdJtzOB+wOrvA+vwxnA9oujWalfLf0MA14v2D4CvvnwBX0iCIjOpIQJzgHBwBbXBoDBxqAlzwsi/bBr4J8I7QtaFc92jTYdMFBEdYN0Cn7kDiCaR7zjwz30V5oKVH/pvoxwA/XwL489Xffw7A12/6AmFGimfB0BjV677D9R9voft36sy+9XUtvPLda2sra9lS2tY5vvfoeWwbh3BXbNBLeO4rV6DX8v1qPIrp8m39vudZy269id57Hu993tvBife610PScdvedv+H7MvPRD9oDtkEAhUOM4ApJYwpwmWC8wzHEi5TvMNxtH91nDIBCeLdM6WEcZowThMoJfgknjreeazaCRzsuJXvRgUiACCgga35pUWVi3CYcyruxZLOxoFIw71GCXPoD4NYVycRnrfbrdy/Mabt4EML7wJSTDjsDtjtDhr6NCGlCCKgaQneE9omwF2cC+jAhOAatKGF94Su9YL6o+IprO7TWQQppvwuwtF7zaNzTlz+vUfXdfBqSbdQjZQSxlEsJn3fo+/7ErphY+ucQ9uKh0+3WmG1WqFpGrFcuPs9feowh6V1UfvHGcji5YM4AdMknj79AD4M8nrowUMP5ARMIziOcq+2gWtbMBHMOZuYQVMSrx9AvAocIxNh9KK4kCP4oAcxCA2AxgRYVWTMg4cgAAnHhKRzNR16ETymCJ6iJpABiN2iAsLrePsPnUO96SzszTJfdSjqqTQjkiZ94w6H1/4YyFWU5eoyu89dr9dlm2bQZLbs1o+pBeF5nfD8MFNcql6YbcPWSq00mWV2PoO5Eu6Wbc2slnG1kqcsYEQ2hRVViAUYmer2K89781S+915cr1ZYr9c4O9vg7Pwc5+fnePT4Ec7OznU8FCglVVJ0kIyXuRDg1OMHOYPJwm2cKs5iMDNLPOBlj5B4KoYgwC95B0qqADgHkIRUYhiQmBFTwv7Q4/rm5k5ogPECIkLTNGgaCFjF5gUh48kQpc9Ae8okQnJ2cKrQGoLnmgCvVtSC6DlzdQcoQ/MtALPXic4USR4TtlVSeM3Sa/Qh5rAmW7fHwnT9d9lHygfrHChUdEnbaxIudTiIJ+rNzRZXV1cYhgGbzTkAj+CDKPHarRgzBs03RjSVvF7TGDFNUYB5CFDUhIC2DUgrhme+Z2/P7xHqz6u+4Ug2MkW7fL/K+UTzXGRWTzJKmOJUPOpynMRjjBk5xTl0UT12kSdgHIA0vk0me+95dE6BDUfqueoA9sqTMojUmyc72VPE4BzlM2RkZGiGPhSOwgYWVF409hrGt+Zr53G11TuHg0nyudmzxzx+LG/Z0TZAzowYBUyaYsQ4RVlTSTzECECd7OfY68emTKa1PrdnPYfu8MRq/gveQgp+6htZDQtvF5d/0F40Q3y2HVmfMzU4UvXBlqZz5vGF4k5Rg7Y0b1I9D2rdrmrDcZvqxukb9/V/1vPu+Uy5F9HRRC/6p79JZZzq2DfgZ6kiEpjvOlIcgz7z5+bxXyYXy8bcS+81jzElvLrcIqcRcZCwzmnY43DzAtN4QJp6TIcbpDgWsLjMSUk1MefNkyG6xxjJ4vFDJJBJjFn7PQE4AETw7R6h3YG8x/psj/VFD+cbtKsN2vVGgJ+mhW9bgBwQAqC5y3xo4PR1bRxpnMicjghd49CqYaNpG/hGPH2arkVoA7yT0Myu8WiDeOt575A8oQ2yxistVf8vJ9G9M/M+em1NPwb4+bcA/GUi+osAvgLwTwH4r7zLF6mIDkClRh4Rv6ar73b/egEzDIyhil2Ui6ttIQpCHbtq8XZErrhuCfN2qpzO9yngz+vaVa5XrwI24YIBrsJnVLh6t334ujGQ57zD13/wPC6e94BAyfsgl+96v/e5/wcG+gA/YA4t54CFdInHT1YlKoPJKVihwEyMs9Ct93BOlWISpms/RA6hbZVxS+gWqdA/pbQEQFg8e2KKsv3Axf3/dVZAy0tDRGpdFKH6+fMXeP79c4zq8XNzfYOYJDfB4SChPOvNCm4ljL1rO3TdBtM44fa2R4qScHMYRkzTCCJgmgjOA2PwoMyY+gEpJlxdXqPxImzjfAXqJGmcV8GDF8zB6K3r6r3m0ZQzc0EFZBz6vi9KxuFwwDiOGMexjKcoiXKQWr6IpmmwUvBoTo7n7u4VPXSLsm/KQZQfBksY16hhXMMA9AOQMngYgUG8f2gcgXEU5S9nCcHSMSJdFyL9JlBmhJyxUu9XD4bLjEyMzCSpX5jQwCE4J9Ahi9u+ZXexHENF/BHNFaCMHDX3T87iHRHFIk2VV6rQO/GkH8BPGRLNTdUSMYVCzxpYmFMlxJkkaNKgni3qDIJajq3PKWY7c2tB+riLrGDufOtcHlspGFznvJsFMoc5jKCInoTigm/NF7Cn8rKru2VDX60NMZVbfowsAho5fa03rBCqedbrNXwnBuY+es+96Eqo19n5Oc7Oz7FaryWsqbRFNDqyAbWzXn9nMGJOcCZ/lN/Z7H8KeMl97DNoH8nJGkopY4qiaB8OB+x3B8QYcX19hctXl+IR+eoVLl9dahJzk8cITRCQxjlCCA0aTYzZrTq0GhJK6q1kygJDlKyUE5rYwqvVOeUs+aVUGJZJVo+fIzDFe188e4oeAioeFUvJ6p098H60bHMsJ9yVG3h+v/rMXuaUME6jhh/vcXtzi91+j3GcEEILwGG9PsPF+SOEEDR0UcKhxiliGCekqDma9J+URLHx3oMhHjdNCGBkOCfeX6t1C++be9tqfMLc4BhQUGb2MMtaVIE5lxxT9pNzFoWmbSSUGVjmJHKSlDVNU0lKzzkJmGkeP8xAnkDTAOTpbaFe7z+PymxcaOGZQWjgqJPzwDlQEEYkQKh6FuQIxFHPnATHUUOUo4SjWZJoC0U2fqODWnaRnjXzFheDg3MMc/gpsR3MyJSROCPmjMwR4tGnHjg6VwJwEyhlDEPE/jCijRmbVYdxFRHMOy/MZoraQFOvSwMkDCiRI04BBs31YmuhLBiq4yBqSIgLz34L/eC9OAOOpjDV+h2Xt+acPeZJmRUoV48hzEaBWgPN6slm65c10bodRDZOBirZ2Sx6nJ6kNSBq7XqDjsFF7z0+f4/Ap7JXrT+2LuzvWaqxtXIHmF7o2DY+uHP+0L3uR3foveYxp4Tbm2v1+NmBs3j8jOOIHOMcSqwuWc551X2dArYG3vqyBqkCOMskVkA0qCr+YuNCjMwJUxwkRLp3SASQ82jGA5phD3Ieoe0Q2pXyiA4UOrmflzxAIAfvUgGBPGluHwh402qorW9G+EZkt9AFDfcirDoBfprgsT/0uFi36BqP6aLDxTrAO2DlgabyairgnmIES4Huh9EPBn6YORLRfwvA/xnCxv4VZv533/Y9qrbe/N7ixrNc+06C9ryga3GPUAlE5W6zEF8zK6+6AwDEFBE1iZR4DwwAIG7MmvfChw6+aQFSY7I91kyM1b2Bee/KB7x4XYzkNIszfNSXt9Frr2A+Ziv3XPL+81i7kf5U9FODLx8SuPO2tv6QOcycsev7UoWGyGGMEUNMmGIWIYUZRBk0Ouz7ASGmGdyAhgIEVgBG4s5TTgA5rDdnJQ8PrKoXA/2kHieawR/QZKtJNo+f/BxqoABEUd9UYIkxYhh6MBi73QH73R7DMOJP//Q3+OrLrzGOE3a7HfbmwZMk3CEEj2efPJXcO53H2eYRnjx+hr7v8erlLcYxIk4R290efX8AiOE0Ft87wrZt0QSPi7MzNBRw2A8426yAX3wK9+hcDqjGS3iaJk20QiICHL95nt93Hp13ODvbqIVQhIFxHHF9fV28fG5ubjCOYwVkM5qmwaNHjyQZ59kZHj9+jKZpEEJAa0kRQfAV8FMSOBIdWef1Zxo1pCshH3rE/V68FPoBfOiBnCWZ8yTCtOTQUa8tR6DKY8qpMEoxgWKGy4xVzGijfN4gowEjEuA9i7dVcPDrBj44tGA4VVIICcRJ3fgteae230IOYsKQoiQVz4w8JSApFyYAlc9PDQM9xBzaMCaO6iARKsBHE3GSFyBWHL5tlFCMEEWpNiXOKutVuMk9jb6vH0XOhAARyYTlJZ4y8yQ2UE3uaJe4KkRnFpyBxovgxo5K/gVP0JAv4SWz588sGMtczMCPLhS5r/MoyCG70lCu/s3MRVkr4/UGvvq+8xiCx9OnT/H4yRN8+tmneHTxCKFpENoGhh9mFcoJVHJNGWYngJwoy8cSjVQnki+kKgRM8sFIgs+GAdb9Oo4ThlEA6levXuH58xcYxxHff/cdvvv2W4zDiKurK1xdXkoy+loWM+GatLph8PDOY3O2FiDLOXTrDm3XwnmP1WqFrpXXXdehbRp477HZbNB1K4QmCGBofCM4EJwqLKZsavUznXE3S7eLqnpcV9ir5vah5nDx3bv3Ku/XKmdRtnCcN0r45jRN2G13mKaIVy8v8e0332O72wEgdN0G6zXhyZNP8NlnXyCEgJubW1xeXkpoz2HEbttjUg/OnEVJCkHCm51zuL65wXq9RtMEHA6fIMYRbdPg6dNHaNsG3lujK9BH3UnYEj1jTqLNOSPFWBL+SyJ0AUemUYonxJwQmoD1ZlMMoFPS4gmHpLwnIapyBwN+6vOCWfO/DSCOmsPjgeZR97YLDZrVGVzTIQSHrpVqnb5p0a7P4HyDlCU/WGbW0LMenBM4jsj6ehz26A836rU0gnMPIOmaVkNPTkCKCj5UfcVsdG6chwtqOHEMdpJ3LmHCkEeMOSPmAYknDalLYHXbTJkxTmJgu931SCmjbQOaRrzEmiD5nVbkioFZ8oXORmwZmpnnEUw5FgbkigeSGbzFM0p4seS2Mq3MQnAcCct9m5ryw/eigh6ojPBHu7B6iP4iMCfJ3cSiMFOegbka+GFoqoEo4F+Kqax9q8YIEm91M7A5rzKq8u/7gIjFCcQz/yCqP73//GHm5X2I5CTWMF/jBZaXrdaU66Ted72xab6/8icL3YWOyVtn4z3ncRonfPv1VwKqpl5+5wmsrx1HycNoQE8I2mdn7vzV3WpPO51Dc5mrznPnzdi8HPuYB0yxlyXV74DbSwFyQpDkzs6j7c7Qrs4kR09zDtecA+SBsAb5FUAO7BqABFSXQhwq2xAQVDxznkFevbQakW+dk8iBpvFog8OzixUuNg3O1i1+7xdP8cXTc3SNxyePVuK9S8qkZ0lgAXQdA4u1B+rb6Md4/ICZ/w0A/8b7fMeSF88bQ5HTcoG9b9cv/z764M5nx94+5SoClkvIBFIRpTU0FomzKCw5SRKqoQcgDC54B2IPChlOERtL9PcmjcD2uqHsC8SO6q9yQeTlT37tPY3uc+rFoj3vtJnfax4fOhTrRG+mdxnv959DOfAcszA/T+pqrJbmLGvLOavYJVYuRw6sByITxHuDqHgKpSSW9xCa+SDRBZ31gBXQh4vrd7GywEoz56J4OE0oumy7eOZI0uIDttst+n7A1dUVXr58pZWrDugPw3x/ZskNFJNuK8lJsVqtkbP0KydLiBwxjhLrD5LKH94R8hQRnAMxcLvdYdV1ALMAXikDcNCQd22o7T7zAnqXeXn3eSRQsRLHKBYgy+1joV3DMJQwOjs0Lbyr67ry07ZtiV8uyt8RZyntr3mvji2ShGwhJeShRzocwDGB+74APxwTvCbTlu8pi2q8lU/QfuljFCACM3xiBJb3WpYwrkCEARkTBDnwEI8SzyaoWiWQ+fAUQAUlCbIpn4nTDNBXAL4JiZW89tZ5fP9z0bzcTBHW06lGBVC9V3v5LK6pGleV4T1+Vt231/dBve9qYbl6THlpym51MwnJ4RJKatcKz3BFpzf8hjB7B9Vu+9UhjfmpKP0myzmjAqEAKaRC0dwars5RtvG9rwbynTF4j71IDqvVSip4rQ0kkZweNn5Z11sxWJMqJWQiwZGVuALXCrDAWHgCRc2L41RBJyi/VgXm0A+43W7R9z0ur67w4sVLDMOA66trXF9dVRV57p4zIQTNZ+Bxtt9gvVlLDq3NBquNVFCxUDHLLZHVy8erp1AGY5USUpZgDZepWJZZ+0hAAZuJBJad9+dc9ndhNHtHGeSHyKivu/PCc6J6tQCFeHmF5L+JwpMHCT/e7/Za7XIDHwK6boXNZoMQGhwOvQDBKSPGjCnKeZQ0bxMg+V7EM5OkIEOMaJoG52drHA4b9YjVilqmIlV6MtcMQNcUigcBlwIFM7iYtfz8nJjZDEbGi+w6yyGXU8I0DBrqlbWiD5cfySuU4fIEyvGtMs57yzcF/AmAcwhNQLvuEIJHaFdYbR7DN60CP7qvphFpPABZqksmvxewBx7jGMEYlQdGGdei9OspkUnXrDE4Wx9HbNpVrwmQBNMJycAettLVs0IucpH8NcWEYRSgbZyShICpflHO0ErRtz1e8xfx2s2FZ5I1qrDF+lpdSRXLtFxt9kj3NkXlB8yhqvZ6vsx6nRidq/VioP7Rt+awOwWOMJ/ni9c8r+2YonhLMhdZiYjAngE1yoCs8Mn8/GpkbPbn1tR8Qw9L85pG1W7r23IEUPgf115J9rP47j3f59pAf1dJLbyr8NaH1TVyTjjstpBM/gMoRxASHE9SrZMyNNMoLKxX0TQBfgpYpTeswCzomTAf77NsZIAsDORm8fhJMaqzxoRk0of3IK+erTFiSgnOBfjWwTUeoCCIjncaCWEyfgnYK8CPh+w98kkqiBALyuJQgJ8QHNrGI8UJ/dCgHzo8u1jjfNNpxTxI/3Xtlr1tekS1h++by3dxavhRwM8PJWEk80JbNpQX1927EO/plwEn9rpe6sbPGFV8I2ex+IIxxQlTHJGzJD3c3lxL+crdDvvdDgCwOTvDxpKgPn6G80dPZMGEFhQalFhgqtszt6HwZJ7bVPTiO2ODskffthcX/Tz+4CcAaJilNDQzF7ff48/r3z+GfrBXTn0mvGHw3uX+c4z3D2jCe4zBnbaQxidrPpqHJiJCExq4khzQI2dGCA2yWlatwgiBMLqxhAEF57VtXtc1IU4JOUm1LILEwYLEddNr+d5xHDFkqayVOc3VdSxhJLCoclBCjkBo266AxuL6SWUtXl9fS/Limy12ux3iJMKyLc2cNOyHMvrDgO3tDtOYcH62Q9du0B96DP1YciekaB5I9iwALC72yBn9MOHmZgtHDuM44vx8DRCjbRo8enSGlesWkpIozfzGffxDScLrYskFYWXs+74vCZwtlKJtW1Hizs6w2WwK+FPAnnKgyj8qZxZAqfRF13VOCVlDSiS8S6p2pchILAckfAu0ADiDg4DqJcwqS1QzewKXcDUn94MoTXMIhf6QCcLSDs8ObSZQEnDIR0bgDB8TKEVQzCV8N7PkJjAbLFCxybsykfaXS+z1D+RG70SzRbPiNsXD5R4AyD6n498Guszsp2Yt77wEq4OFqr9tmKi+0ASOWfyaf7M1bzl6ZgWf312e3XfPNX23oHZlRQioovcr6kGtpNByMIqx5gHJe4fz83Os1yuQKsIMklxXpKXJoXIAcikY5BzBwfJ+3G2X9b8W4A3kmqaIw35fQm98kBwmu/0O21tJrv/dd9/h62++wTgMuLy8xM3tbckB1rZtpUTIM2KMGnYrPNPFqNW8GOM0wXmHQ39Au2vhfcDYDxj7ASEEnJ2fA5k1bMshpyTepCBMMZZ8B1JemRCc5D2QpN5OkkcDBRDUCSv9zzGBq/Dfn3I/vpFsLVWK1synlpdZ6G0/DBjHSc9Lh65b48mTp1JhpuvQ9yNAE25ubvHqUnL/3N5ucej7ImdZ+JXXqpe2HlJOaMKIm9sV1qsWXddis+lwMWzEw0WrHAEApyyVKZmRIss5xyiGlJwZwyjGgnp/JQ2vNnCBvK43zB50VPKLzAqIeTjUyntVmw8FeHpoIgffdGhWa4CkIMRqtSrAT7d+BB8aqQZkmFSK4DhIqNs0Ig575JTQHLZAWCHGETkfkOIWzAmOGF7zkOU0IU8SDsY5gfO0UNAJAPuArJ4CjFSMbFYN1c7ZUmVPQQkCxIuTGMyEKWYQEpgJwxgxjHO+H6uMxzrWNXg3zwkpWGtnfs23WYGoXOSyrPcUXW2eR7nfz7EP+ej10d/zkaA0gwXM9Ukzn62ZucgX4zRhGMdSOW0Yh9mTRG/nnYDZjgiN5kGTcNi6qlolQy2ozgs2tw/WroWupu285+xeHqx3n2G69H26F+N1KVWWVz08MZB7AXmygj2ckNOowA/DkThSOLjitcoMpJh0/rjozValz87YnFPRQQCowdir+F2tA8whssyMaCktQMVQ4ZxDhkcGgV0AJ4KLGSAPNBEICew82GWwB/QEh8GeGZIUHgSppOlUZo6kydwJU8rwAWgmwLuImIEpAs8v9/BEOFt3OFu1WLWtOJs4B+9YHbP4CMjTEa7B3ArcfRP9rMAPwZI782Ibvk7/fqtefsR06n1Rby22G9EMvuQUkeMAzgn97gb97TXiNOK7b77Bt19/hXEYcH11ieurSwDAk6dP8fjJU3SrFX75538Pv/xzv4fQtlidP0a3udDSw9WzlBhYGqqqth3zqvJ+dVH9+nU0I57LJ/8U2zilhO12u8glIm2YBaDa3bBuwzEYdt/7Nf02gR9jyHX4Hd8Z6Pu+X1ko7nl0vSkXzzehvzo8QvDiLh88Hpqcc2JxVEDAAKZxmIqgPqrQmWIGR7HqeufQ+KAVtTxCI5VqJERS3GVD04j7v+YBaLsO5Ajb3RYxRXCM4JwQDfzJEsog/EErYCiDb0KjydI8gBXAAtTGFBWo3eKbb77Bft/j+++/x8uXl0hJyqk7J+wtJRFwcwKur7YY+hGrboXGr8DJi5B9s0W/l/U8DRFxVBfnhsTLiRlTzJjASKnHt9+9xPX1Lc4vzsDE2O73ODvbSFWq0IoVTN2uTUFg97A70kIJxnHAdruTsILdDjc3NzgcDuUaK9luIV2bzaZU7wpBE4qWODSrAsNqpcUdS5MJTHGcMA6DuPaPE/IwiSAfAXAAwHBtgG86uXPW8C45hYGYQRDhOZI8eaIMb5VgLMcaV9Y7yA4ze3aTIclh4dCOGaHJcJzRxQkujkCaE4sSLLeICkmmuBHEWlu2ox0UhKSKuuAqd72gHmQewcgcFSDQPhIwV/E6/qHqN5nsMf9UANB8r4W+irvMyfjdomE6UndlzmMYR/6tQr2q1zOYswTQqpS9pbpXwbCqe9tVFmogfdJMgUTqmSQfzc5adWcYcyIDeRgvH/KjKYSAzz/7DEHDwacUQZyRAPUKUG8nQCYii9eDJXh0RFqNyesl8zlahFjmsgYZjP7Q45V6OCZN5p5ywuXlJV6+eIFhGPHtt9/i66+/wjhOJYSHAHRdh/XmrBKg5We/3yENGvaQTGFk3JK52UPCv7x4dT598gQXFxfouhaffPIp+MljOOcLGOS9x34vHi4+BKzPN2hXKzQh4OLsHO1qBUeSoFgS54smzmXWHQgyFnGckKZR18fbw9h/DNUC9B1Burx/1wIPqGqqvGUcRlzf3OJw6LHf92JIIY+L80f41a/+PLrVCrvdHtc3W4zjiG+/e47ffPlVScQ/DMMipxOA4oVFROj7AUQMq34U44jVqkPbBZydSQhY8ITgNe/SFJH1nI5TQtIy8tMUEbX6m4BUo2wh74tsa8m6GSjJuqWvqlzXbvUk696xKyXdxdtNQ8htjC3c7CGPRiLAN2i6DuePHqNpO5FJVuKx5sMK3eoczjcCQykzIJaE4wAjTSPGoUdOEYf9Ldrrl4hxRJz2mMabkgjaQZNXTyPS2IM5IccRaRrArGHmGgKWAUxkms+AnJNUJ2SJNEhZcnzFNCElBchIj0sWnxUCgXPE5DLGJmO3H7Fej1iljEdnDXJuildAOa8t7LlSmg3wsXN/xh0MgEoK+qQC/JB6cZZhhu5D99ZE+T+CGKX8VW0Aqj/XOV+WRq9e67osIAKAFDPGOCJnRj8M2O0PiCljGAYc+l493FLJgWbhXc45bNZrbM5Edl6vOmzWq1ke9vNRUx5/B5Saz8vl+3zP9UfdeQPTe6O+VMQeRh26XgzbXF/4cESc4KZriLwl8l6OUfZHTpI2QsOgvBdDNyCVdvt4NwTUkRNPWtLcoDUYDUBA3gZdbkEqf4t3FWGaMsZRjB5xmkqhk7aRFAfZObhxAg0HkPOgZgcK14ALQPcYaB8DLoDbC3Aj4yhAkYT9OZ4LFsCqBhKQiZAVZPUNdC1l7MeMdeuw7sRr//J6hycXa6xXK7TdGq13OF97NBaOVOUcPqZijM3/PgR+gBl4YUOPARhS+drr3+We9hrm0k/3XkT6DyFLTG6OSGOP4bDDNPTYXr/C5YvvMPQ9Ll+9xOXLlwCAOPbIccBqtcGjx08w9juAE3i1EcWASXOZYAn+FMFNAZpKCL/j5AGUa193zTG97pp3+e4PIUPIp2nCoe8Rp9myAWC2VrwB+LlH5biX3h/4OdJw8MOAn4IeYwZhatfb+lH1H7UL9X0WQLvPfc83i6+9tlAnAMj5OEnjQxCVUugWUmWCujBWEQhzkspHE0t2fXYOjiVGHQxhkNmsSrN1S2KiPZrQSJUY5xCGAaUML82JnE2onY90dfnXhOry49VqKfOQcgJACnZI8ub9oUffizda0xAakvGbPc0lbxdYLO6HQ4/+0GMcxNsnamninHIpbzzXgaZqXUtVnBgngIDtbo9WkztPMWnIBZVS9/L1h5eMTKiLUaqiDcOAQYX2aZqKp0/t8VOHdln1nlItYSEsQcLxKsthbT1kZq3GpvknJsmjZDk5LKTKMBQinnN0MAMxAaSVvyAusWTP4KxCuN7LBD4VXFgPVJMJA1gTQANNEsXCWQ6hqjQx2RqrFA/rK8jAARuJmVtJ1ZeqIshPxFeXrts1cFEGcfmzaMviEBRB97idegbdzxOXnlBy/X3wTvX30W3K6JUDzG5Bi8+XUFKdHPoY9OFyv+WjrO/LFtUc2oCduU/zMwuQ8oDknCR3Ji1/Xs5ETSxa+mOCgHq1sfEKUg9PndtjT9oiG1TvpZTQ97rf41QSuF9dziFdz58/x/PnLzBNU7GWOuckZ2HTFOBHvErEO8nCbVOKGho7hxlIX6UbTdOg0aTMcepwfnaOadzAe+HpKUbxCiUJKw5NENd5J2NgfNLZj521RAKM4QhAzEksqWwy3k+mbd5LC2u6GnaOLaxc/hFKmityHEdRUuROaJoWm7NzrNdrDMOEcZzQ9wP2+wO22x16NbrEusrNsjXaDLGgO+cUXGqQs6yLaYraKILkvmLEaRLwJ2fEKYqnbhaFKEZRdGfgh+CtpLFz8E2AI02ySg7OG0CJpVGsZlF61h+vXZvDn8Y8SZrYWSr2rNYb+NCgXa3hQ4APLdruHF6BHw3QAEEr14GR4gTfSqVH9g3GxJimAX7qQMEJ8MMJxArw+hGOgoA5bgT0tXMTMo26XnIJOGJ2GoRMJY2Vef1YmJ1tehsnGUOWJNBZcytGDev0NHvIYgn8LBJvL2TMebwsHxDKnNThRLmAJwLuzb6dd+b1waeSy6ZaJh9enJQw3mqmBdF/qpPkCIgR2TaXsNhpEvlvHKfiPZ1S1D2kRk81eBJJeW/z9knFO9yAfdzzXHrN70Vnl19+47jcvUvB7hb95qPXlc4BOtp/vPj1MJRBPJR1TGCAozhepAjyDpmkOiG7Ge7PrOGuiwIv4rnotQ/2ecklqucoOQ+fLD/nvM5ThkYlSB6zpLqrV1DWOS0FQgyQVMhFTiAXAGoB14JdA/YrwEcwnNYAFAYnRUpMi9E9BCARIWtooOMM8oTgCY5YPfYZ19tBfI2IcBgixijAr6xjlTwrw9fr6F3Fmp8f+Kn/UeZ2rxW1yL33bQaqrjkWIGleYHZpuUQ4LOeM3e01bl89xzQOuHrxHS6//xrT0OPV8+9x9f13mMYRh+0N0uEWAONwDdzkEYeuQ9c04JTQrtZ49sWv8OTzESE06Dbn6NYbtVHNII7qKyrA8iz/wS7Cou0L160FGnvPML3mmnf57g+hYRjwR3/8RzjsD3j16hX6/qDDmlWeFYEx5/kAqhr1mrvO7ayvqJWGNxIv11AthvHROzXdJ/wvk9/Vq0vvZsJMcZCYlbAy3sxgDQs6fvx940GE2apWtWG1WuHJkydYrVZv6PwPJT34AESX4J0ktmPztkhZE90lwAOBRFAJToAic31tGvHsiUni3nPO4rXDWokiJsRpAoiQDJ3XRU9aFUzYvezfpgmlulTXdVipt5AYHLX6woEx9AP6wwG7/R673Q6Hg4CQ5QDQwx/Mmi8hKeicESMhRlGQOJMmdN5iGqciJFm8sYBPulm98CznZa4yE8Yp4fp2C4a4CT96fCFKUWiw2azRNu1CIX1IEgv9HsMwYLfbFeDH2t80DVarVUm2enZ2VkAfA4TMa8gExBRTEYpynEs92z4opXuZJfn9IFYzThkcZb13TUDbBM0ZJIccwKLgDCM4MSLL4UvMaDyhITvUAwJ5VQyyVCrSQ1U8exieAa9CjORVcHCekNjDRScJKqNHjl4THYuCRCyHtNezx1X9mq3VNSdZcCMUZ+mfYDKJqfzMj1Xg+TUscM6fQ0XJomJRvksLYOT4XpUaXXs5Hl20fHncLnrd2N39i4xn2/lcCTVssT4aOlK3S5I866E5m6lREDm6r29zn2pr90OqLFLOfS3VQLyEMpHzcJrrRqQ+/c1ZpFCw5AwzAQG8VJitOpbmyOGcBRw47DHFiFevXuHly5fFSr3f75Fiws3tDa6vbjBNE+IU0fgGDq6A/N57PHr0CE+ePAFpuOowjkgxYRgjwjhKCBB5kFN+kCXvodCsGI6j5FOLMeHm9lZCe5V3N5romYFyFvjQgpmQW0bf9PAsiVOpaUA+yNkziYeeA+Y8UDHCF8HaQjZ/HqqNP7IsLXCklhfuB38s7804TmANpWYWz0Mbt6vra7x4+QL9ocft9hYppyJrlP3Pdk5KO1JO+lrmxQxyZvjYbre4ur5CEwKa4NB4OWmTen6xlgeXM19CICxUaJrkGlnLrhQ+sfaYESxbSC6z8tlcrsNyNEq7RfGrwbOHn0VyDt3mDN1qjWa1QWhXcKGBazrZm0HXWqkk5yteqhKjKmlICSGv0Z0/go8T8rRGu1qDcyr2fiAjxxF5HGAeP1E9GqY4Yhx7kVtSknAyzkhpj5h2SClJdbTgkHKC91nAIvWOKFzb5EpAPGyItOJqxjCKN884JUxagKPK969DPYcB2RkhLIaKLUb2tKyBnJdJhIlIAGxn7HoerRpw+mnoTfeuz4Cq2ijEk8t+ZjAeVX+tPLhXENCDnKQIyBmYpoxhmMAslWqdiwqUS05F78VDfhon5XktVt2qGNq8nyWMosuYUqhLn+6ot3rmLYxSKFjCAleovlNe1eA0Kt41Sy/VTX96IgBBj1qRnUjD0LPKkpI7N0NKV9jk5Jw07DjNTdb+RE3/kLLk7BEnEldAOZtbghTH8ArINZ6BRs+yxIik32VdGxkCumqYFmXSaK0E5AOQWhAiHG3gQgI5aC0JhVHUyDi3V0Y9QcEhO9MdSU5hJs04QxhG4NAzmpDw/NUOXWjQBsLhjLBpTfo0niDhtbakDDuoHvtW+nmBH5V92Jh9kbrrRVgv2uqL9Qav/62F5PLKFjkXxZwBjW8W18vL59/hT//w/4fDfotv//SP8NXf+wOMQ4/YHxCHAzgn5DghaWLUm/0l9i9bOB9w/eJ7fPknf4RuvcGf/8v/IfzqL/596NYbfPbLPydJHen+vam8e25zeb0UQrnq7yzoAnc3q4Erx8qBLb7XKw0/lLa7Hf7G3/gbuLq6wq9//Wtc39zArHdgS447lWohrNn0K4l2KZybVV+bTWWDV/2orRM1yMNYCA61dXdWcJZVS8q1NcBzBPbMr2cqCb0IIE9zXIKnkhmc1bMAmcGTKcKs+YErYWd+cEk2Kla1avMCuLi4wK9+9Ss8evToTvt/LLFa/zhLXojsPKImKc5alj2OURIDB0aABzxAjUPbdKWahIRxOfUwcSIkOGFozAkTtAIEAWMBVqC8wMIjZeKJCKtuhfPzcwQDftquUmbFMn2VrnF7K/l8ri6v8OrlKwzDiGEY5Z6mBFbg06TJEAeOAEsC0rGXSis5M4Z+1ASOsnMFGIF6GgmQ5Kv1mwmYGOBhwnfPX+Ly6gqPH52jaT36wwGbzQZffPGZeG29Kzd+T4pJwjqGYcDNzY2EBaj1vg7v6rquhHe1GoJnh6R5CuWcMQwjDoeDhvclxFFCAkpcNWgue4q5AoaNN0Gs9u1Zi9XTM1E0G4+m9WDOGC+3OFxFxIlx6BP6cQCYsW4brL2Em7VelBQCQEkUZBJzqHoBSfJmD+EVPsnhTBDQhCcHykCcGrioAkYizalClmdPxQIpDU/6eubC0ldhTTUX+GkCTIgJLnk4eC0hb4APlcpVdUJQqn7MS8SZsF/CvYw18sxyGBVffG1rcHxo3Dmi7gDms5et5Z+RRy9Bw3Ibnu9RQVeFH0rbLZ/EbF1GeUb9aFoyZ72UKyAImL1JQFW4w2vH4P3JO49Hj57IvtBxljwoDchLWVergISctby1Ad4MaCapErFnVkJmcBIBN8WE29tbPH/+HMMw4Pvvn+M3X36p1fukGlSM6rlhYG5KWLcSatmqt18IAZ9+9hk++ewzEDncbrclVHRKjGESq2iIUZM3Z6Q0lQpNKUfkHMEZ2B8OGMYRoWmQFMwIIeBsc4b1aoUQAqYpYbWeEJoGOTuMY0LbjPDZIfURTfBwqxWoaWVspgmckibKlPmmnNEmK2vOVbDCT0M12GN/F8U5W0apSnEGyrrPDPVunL2yDocDUma0bVfy6F1dXcM5j6+//gZ/8id/IvnZhgFTHMEatOjMa5TnfcRa2Q3QcNicQI5wOPRwDmiHAS9evkQIJIlEgy/AD0fNy8Zi/eakBjuGFnSQPosF3GmFHH+H8+U8GwDMA8XOBSp8y0Rcg5xV1qu073pvPxR573Hx5Cnabo31+SM07QrkJeSYnBfPjbbV5OsKPB7xNE4ePjggZ7RNA25XyCmDMsu5xIAnRnBqmU8RSJLjJ8cRSXMFDeMBh2EviuwgxWKkUtgNhuEGMU5YDddo9y1AE0LI8F4AJC6l3XUdWsiV1JFAysAwJux7qUJ86CcchgneSfLY4KtdwrO3q/yol2EBlw3kkcTc4pFh+lKCI68J2OeKq0ROle85J+LD0x1Nqvq7fr8KHDYPN5hm7lTJ1pBWQAxGes5716BpAOcz+n5CSoRpYgx9xG7fqy5jvIDQtgc0zRbeOWw2K5xt1gje4/ziDBfn5/BW7bDryliVPJ2VKntcKbPuy3F3y5bJ83kut7p7g2PeZWCRAcdlrT+8KHO3LZDy5GXG2HJuRkxpAhCQWEoPlrQPAHJM4ol/lEpkccZnA58ZwXsETQvBGSAKIBIDdfBBbfUegYIA1AmI41RSAHAEMjEyRWRiyS1NCeQmOZUTAYlB1KJza3TdOcgD1Dq4RjwHs4atMquCoFXlEjtklpD0mKVSKkHOtBwZEYT9XrzWp2nEn/zmFW6v9+gC4+lmwlmbtPopSy4kR1JhTo1GtTxDzt3hZffRz57jx5S4+Z3jl0dCZwEAjoXR+787Ox/eTWYlyLkclEN/wO31JXbbG7x6/j2+/+YrTEMPyhEuxxKCQBpTN6URUy9hMCkD/TCiW5/h0Sef48lnN+o6O6JmVCIEU31iV6/p3o3HbH2mslHvis7z+M3XY/H+TwXqxjjh++fP8fLlS/zmyy9xeXlZHSYK/GiitIWLuKKddfNKkyshwCqe1MBPbfWm+sslecXyfYnOmSGgOojI6L2AH6owJiJQIAF7iATOLsCPHdAMnhJ4Mm8FnpFgYJ5kmybn7gA/DMbjx4/BAJ5ogvEHJUax5GTNu5KzJcKtmKqVhmYuFZMtntlXcc+c8+xFYp0ApDysgvZzwsI5vAHAjAeqpcQsxU1otNQ8CYDHc+UYs6KOCviYe655ERSPH6B8xxQhzlGrnuyLO3yKVjVDQxmsVDTRfGibxV7Xlwm9fR8xjmIB2u32WK86OOeK90xZfg9sFeOci5eP/dSu3MVrSoUQs8LbmNhvywEwTSOGoRfX8Sli0nho77yUx8QcwsJQj7Gqqo8Jh+wIoQuSP6jzaNogFsydR3SEiYCBMw5JMvU4DvAknji2FwBT8kX5JdVMLNSfawCYRIRLgHgFZQfOhJzl4M0sqqIDSm4gs96bss2oQQiU59vUkVoOfyphiawMOc/u6jQ3BLbu5r2C0lqqLjFiWvqZ1UvvvlU497/+/J7+Hh9FixfVfq7AncVVC1ndTrc3DCrNVyxP9NLre9pw9/0yhKRVo8i9+bnvSeZhl1VBM75u/BFOBTUA7Ai2WM2d/LjlhvUxSJQ2VVqmccRhv8eh77HdbbWiYY+bm2tcXl4hKj+z+3hHkozfObSaey2oJ+BmcwYip1WCIkAOoWnhQ6OFL6Qh5qVpoZjMJrpCeIV6JB0OB81zIQK3I6dlp0eEEMAsQDP5AGLCNEyYnAflgOQDMjmt/id54IhIxgoAWEM4tV/iDfTwYPp99C6CdO0lV0Q8qKeTes+CWUEGqVQpOSYIh4NUptwf9stQ+XKOWVoE87YB5vxC6qGaoaG3YqgUsGmP4D1icGiDBjFpgmxm8Uo2RXIGuKnsS0tGbp2puEnpa2a7Ry4AWB2aaeDPknjx6+6e/XFE5DSvTwsfWvimAVwAeSnZTKY0aUEB8q4AbICdLQzKCnI0hKCyh8sklelACvyIJ7KUq5Yw8pymAvz4YQ8KHVJOmPwBzrVaKUzD1WmCDyO8P6hBJihIzEujQwEXWXi7/i2hShnRi8dWSqK3ZHaL75aOoVaiZxZdhzCKrMWL9SUVMjEDsfb7zkMeml5339e9b1B6FfZVXW4gGheBHiDycE5D2nRvMkNyLk1JZRw1YELk2BiTeILrfhfgIaBrO4TACCGhaURJ5ywYgHjySBuLTrHQ3+aGzp5189u8+EPv855j+LYUz+9123cgIsBr6rYiS6nsLMnNl4Z5Lp/VJeu5zNuirTyHJyYiOM5wbGkLZmOLU7ndO9YS61kMuuSQNZSQTWHW840yAaypCNgDPAI8irGRIhot1+4C4Fq5f8oC/khiHwdkB2bhF5lJVUCtcmjjkBmcCDEB48TwlHG7k7CvLmS4aUBso1YV12TymlS8hB0aH6uMWm+j31pVL8AYLF670O73+Jm/cH//qGx7k1stfrU/7HB7fYVx6PHi26/x3ddfYr+9xfXlS0zDAWkcERwjqLVRlAIDK1QSo4w0HXDYATGOuH75HV58/Qibsws8evIUTz/9XJDH4CW5LNUbdhZhF8DHm8bmqG/1eBTZuhzK1TjV0scDUkoZt7e3uL29xfX1NW6ur4siBYgVKU5TcQNmMyN5VejcUf+zesbUwM9xr6uYjCXwA9TgT03z23dBnzv3v6Og3LOw7LEEIJB4/ehr8WWcFVJkAGPSfgGUuGpzxeTsuY5UGLH7yDWND9jutpJI8Scg1gpbibLwKhZrnXcOQQEYaZ6DJCpkSfo8jTKuzqGFKDgueLTcqkfIPMM2ZgxGIIfWB2QiScAMFZQZJcdD1zZogi8eN1Dm3g89+qHHNE54/v0LfP3lN9jt9ri6vJaKXNMETlW4J+lSI0LXtWiaoG7sDinKKeyDK3l4QisHvpQ6b0pCbQIDyj+ixoSXtWhVxvSwGocJtzdbeCKkMeLR2Zl4lTiPtmlL4taHoqzK1qT7DcC91btWq1XJ58MslXvGcSzf3+126vkzSriIJvSOk5Y1dQ7ezW23uTXgBwCaIOFdwXs4yuhaAXxC4+Abp5VTEsah1zj6HoehB0GUUxekqk8iRtRx55g1oZ0o05b3w0M8dBwIgQlBhbzWOTQqkDqIB5F4C3nJDwIogCn3yTmrx0+puCk8qExxzTf4qNrQAxIDyAJGOM14YpWenDMB2/iYAVaYrTxE9/xUShcfv575ldAxcFPlpFkcJK8PWTSFr3jSMM+8vBq3+hoy4dwaW6nPd478qo0Ec7gUUFb4lQT/ZKp8E8yDqPq6jekD65rQLkMETK0qYu7YDF27arE3E2z5UMFwnlUWqS4jYPb19Q2ev3iBYRjw4sVLfP3N1+j7HlfXN3j56hWmccR+f9AqJaKENArCt148PhxJQt5A4uVWRyqHYIlvG3SrHt3KkvpH5KQ5/LxDDl5B9KDVVDKmJMAPAxjGEbzdKVgv4GvTNGjaFXyICEyIE8MHxsQJ/WEAEmN0DuhHDMHDAWjAIpg6AkIo4UaNE3DY+MFPoWqKcSAWxcSAewO7LQzWlOKsYVamxIDFgJDUYDIOAwCtbukd2tZrDiXG7e0WOYuXVEqWSL/sQtjGFb49h9NY0l/YdTSDxKYglZLuLJbirGuNs/HUcnG1w+cng0SOzjkiRmlDQgZFLSOeoq43ltwZBfWRO5ACnZzzIoxdZAG5d0mf99BEmkA1eJiTnSNI8lhHcJZjQ3Ple2/ehTzLK8zIXi3sgOQ1ZElWHdgr8CP3JDCIG4AbQMcsp06An1WLsFohZylvP/ZS4n63W4GpgZtGuJCQcUCCA1wHFzp4RIkwsQRAYNMXC5lMIqAtcOgjtocJIZgRYVay5xwos7fvMs+PeiFqIQMJb6ciszjn4e0sqhEfQnWPn5L46PdrrjKQ1IAGhgIvFvItjXUuoPWN3M1FJHagnOCdSALMqv05Aay5CPcAmEpeq3GMcOiL8p2zeJ+M5xNizOJ9peH1rijnSyDEts0M7qJ61/pS6xgGZuk1bxj/cmLfOU/fMJIPuinNtIZK4CANkBS+xCQV6+Dk7PLeo4kR3jkkyosKbPNdsXhtOovTKoZEct5agRUCI5GCmlYCQmUASz1PYEQmUFajdHbqTQ7JF5kiAAfEATzuAd/AhRY+twAk7QBnnb/s1OtHeAcxwSmopOiQGnwSODvksUOiBhMI+32Cyx6Ni8i7Hba+1wqCGY4komIJ9sxyVTE0vYV+duDH2eKexbPXMo7F+7MZcXlN9XqOIKPqc03exBn760t88+u/h/1ui7/3B38Hf/h3/l3sd7cYt5cYbq8BTmjagKZt4J2EdnjSUm2krmDMOPS3OGyv4XyLEDzGwwFnj57g8dOn+PwXv0TuVmjXG7gmACAVIKouqGIq3bm7yxYo8B3h3N6ee8kwxeDudQ+dVDbGiOfPn+PFixf4/rvv8OrychYUSN0pU1qWQwSA4OG6RuHfGZDhKQFjLNffuxT0gAYwc0p9/TMZ/WYiaHiXvm5m4KdMWgYwaLkGBlADP2+65xLFQ0oJm4szTCk+eDfM0yNnW5ukHkCSxK5pGKtOXPVzyohR3CKd89j1PZoUAe+woQ3IOwTXiGUNKMlBoQw7qSDdeA80rXgB+YSUxIoWNC+EI8J6vS4VwcTaKaj/7c0tXr26xKHv8cd/+Cf4g9//uzgcDvj++XPstwfklEsSaJAIZc4JaLVeSWiaAB2SEwcVByIiuCDefCEEXJyfY7VegXPGOAyI0yTW1MNQ5mLG7BhIDOcyDhjw4ruX2N/cYndxgXUIyP2AVbfCkyeP0TxwrqaUM25uboqVGJCEqxbedXZ2hmfPnqHruvKdnLN6CNxgHEfsdjtcXl6WhNB9P6jbtyk4piy7ss+LRVj3OgCcrTucb9Zo2wBHCWebBt2qlYoNnjBFgPOEw36Lvh9xu9tju5PKYxmM7LSKGwcEdRtPJdTEPB5EqAuk0AgRGvJoSFypO+/QaN6opgnwkMPW5wyvCaN9Ei9Oe99lEXSDAULMcIji0k+avk8Vcrv24YlAUUK9HHt4eClv7awU8yzIEPGi+pVTsKhOkFvyOzhh/2y5AVGzIVqck0vwx3IfaB5egiqe4i/Fx/cpyl6VKJyh1jKot9Zsg7V2mkeXpfcVLY2V2ZvEdTTibEKOE4XWCeiYkq7JytugVjbLrwoce8hwIYYoaSKUqVcHUEAKAfUd5tAuaV5WC7uc6E7XX8Y0DLi5vsYwTvjqq6/wB3/37+J2u8Pz58/x5ddfYRgGTFGSj1qlOlZvsaZpcLZawTuHdeOxaYW3Jg3PcTSHShIc2m6Nc98ixoRhShgmzdMXR+RJE9PmCZyj9RTMUvXmdrfH7nBAZuB2twdv9wghIE4Z4xA1tKmDpxahJYQmgRwjuQRMO/TuAA/GnhgNGK33eLzusGoDWu+BdQffBATnxSjgvYTNjJIj4qFJcpeNsDw6JfdZOSvzgifFJLJLZkk0KsCQKOSZGbvdHoAUUnCeEBrJQXZzu8WryyuM04jr6xvNuwPdpwQQ656QdtmzZeHMW4MzJOeQgqmsfDtaeHPIwlds3aVcEvDXyMu8yzQhqqLgKUbNOQRgJIteKMrSHKwoa8/CwxgAewewJPcuFcFU5i0iHC250kOQePy0pfqccwzvgS6IsUcKWQibcU7ObvPGyGy2fzkn2IlCyl7iVSQHneTMspAL4YGafJgACc/SMLg4aUg9SwGJQcLpr65eAV7yc/krINIeEQHwe4R2D/IRmAgcWasDcok+EPBM1tw4JhAmxJRxtRvhmoA2OOTE4BzUU0DAaBCJp4OXtsuPhN5IJISEwTunIJmiZjmp54TytSVDld/voGv+CDpeH/esF9Oxjj7OWb2VFLzJCqKEpkHTdtKvcQTTgBgTfNiXPlruHwGCWBV3OQtTlIfkOGDoezgi7HcHXLe38N7j8eNHePRoRGgCLs4vcHHhiqc8tPAFM4rHiaN6BwI2uLNntnmNUAFZuVy90ILLv3x3cxcZ4I56ef+o/mgSgLQRGS9boQDJCybpkQWQIWKQJ7StR+MbxCQhwDlnTGz817zOjP9JFTAxVhPaJsB7hya4OSxKwRIQgVKa9yblwsss3xAxwJmQkoaGZy8efgAoJhCNEorW75DDteQNCx5N4wFy4ETImfQ+8uNmfEkM6znBa76+GCfpl/dItEHkDjwBVxE4NIDjEZfpJULeCoiFCeLXjhKRUHNj5zzatlGe9Gb6rVT1us/T53XuSYtM7kskaPGqLObFIp+ttARGnEYctrfYbW+wu7nG9uYK+90Wedgjx0kYa3C6YAT4CUV45JnhZkno5VxEv7vF9uYKADAc9lINIARIQjBatK8O76LXuDvdAX3uDAstN64h3HcufA0Q9COJVXEc+l5+Hw6yqcyNXQWiYy5CyKBAIGi2dEVtOCbwNC1DoY5Jw3WJUOr1FsDn5wZ+AKi7gfrik6CCJokRQctgKfDDc3zJ64gg12i1E7t2GgcJY9Kygw9NZlnIOZdY7xKTXJUWjjxbQLMK/JSoeHWVhKm6cB0zEs2uqjnLa7POG1BJ2YFJLCSNhnQF7+Erd8U6tEuqlhywvd3h+vqmVOUqninVfis/BDRBGKJYQZsCRBUhjyCWAu8QGo+2a7BadRLrrpZtc0g1d9867VZ2MscxSj4H5IQ2BAz7HsOqFyu1VqN52Pnj4tpvJBV7mkXlrqZpiqePAX5WKrjXpLAC/EQMw6BhmioQVvNrc2zjbMAPASpsNshJhOAQCE2QZJDwkoeHWQ47+YmYYgQRxGtAk7ki6aHMrFXWZuXLQhM92cFOSI7EzddUERIhiskhmL+mBl+TCoEuZ537JMCJWvMcS/4OTyrI6/4gmvNS0E/BcBggdqY6qZWqDjmbWUt5r5oHqv4uRwHdPRfns4XKB8c5jOwJxRpMVPo8C6SMReOOGkmLtw1xOv7C8Zlv/T0STav2mhevXW3WZ+Er817mxXftWfMbi7F6cFIwy/iXVTo0IAxQpV7OwGVvufyVU9Iw1gHb7RaXry5xc3uLly9f4uXLl+j7XjtFqtAF8TRWUCx4j+A92sZj1QYQIPkSFLyUs1qeJoqwAG8+NAiN8OKsAjHr3qFSp1iq8MWU4PsB5EjABq0wmFLG0I1oQwuCwzSJVxDFXEBlZIY4xEbxmMwJkRNyE7DxhFaNbMgByOIN60m8A4kJ6VjDezASBSUrn5y9Z6KGPuc777MmvE8xqnWaJXSYpbIZ6RgzHIg8HAvvHvR8n6bpjjdH8Vi3pUxz+5b7mVBtixlQsRDtlMFek+DDJl15W+XBILfksn/L0zhDC2hK7tKkcrABrKQZl8y1RvdkCYt3VXJdFf65bqzt1wfcjHaeO2flnBV3cupd6lB+iKDVf6R/pLnkABaeslhi4nHWkC9FH5x5JhNmz3QOsHApF4IkDmaG9xmTl/x57WFEaAfE7EGuAyOAEQAKIBfE2GBhgQrGLfPByOClLCFeFLVc9SRntyXr9k6UYhkX43vGo0q3UKAClvXliJD1LCUvHXQVY5flM58I7xJe8kPIKnGWh+K+P5arfw5yVt8yXeszx0UxcDrn4FOGc7EYChcSpPLTmTfzwgMoad5JwhzWKV7XHbpOcifGVdScXLQAyEwnJDrSD49AHWt3nc9nyfmWimLxjCEZC5o9IqprqtelAUdn+wMRkVPQcvaArUZzbhtBogccFe8oW1Z1WJd1twBAUDnAVfn7DIjVL9j5WsIXSwvmdjBEdbOvzWG1enbnDFCWBO1plAfnCOIIsJPiHNmpxw8vdFqC6EWOo+Zly0CaJKyZvcrODsTABAnDdXlAnPbwaSf6M0apJFgLWDCDgK275p0iC35rVb3qhXfMMyoZ7c5nb7ov19/Rm+RpQhp7pGnC7eULPP/mS2xvrnH96gWG/R5x6AE9nEXYAWLSpLAERL15plzczmIWd7HMGUN/wO7mGmBgd3OF7fUVVtOI0DZwtJGDMS/baa9o3uFHF8j7iwPy+JJ68GrmuByRdxu89yWufuxpC95zxEBE8pFDMqjHjx6unMXab3lfFGvX7+jjND8bAMCJy6sJLlzaMasN79SFNyjhdZ6UGoBg7ZPljbN+UQkdUIGfWTLQMs8lrN8EbKmQZAJVkciLAvjwh6qVH7a+WX+NwYYQsF6vi7XTgBOrFBVCQKNl2isMBADKdyynzlwGHWp5krLwjQ8AWDyMCvATSpuGXqwp0zTh22+/xZe/+Rr7wx7fffcdrq+vMQyjVDHRBOICWEhuCClFosqhI8kxkXOpbGMWXSuL6vXHVYpr/QNQEfbnKdO0lVlOC5UFwBmYxoib21sQGMNmQNM0JSzqoek4vOvi4qLk9amTOFsY1263w263wziOpWxwPUe2BI3qfEBFgAf0wBFloWkCNpuVVLZYSQJT5zzGOGE4jFL9Z9ejPwwYhgkp5uIdIuWERykLHaMm6K6qGVXAD4BZKAAhOIegyTm7EBC8VBNrnXgJOAI6OAQSECg4gicJKQnewyub8gb8cIaPGhrGGT4nKcHJGT6l2er6gEREaEIDH8SjwbzfYMKGhXkUgU41FjINxs+8gpwICbU8tdAeZX2XBLQW4y6SZwF9AQVDbY7U2iisSfNM2BNUQDPPPYI+wAwArO7VJqzRcm/NorbtPWcMHlik3RbGS44QGqAF4DwjI6Bp83wkHXm5FvHu6Iyy0NqHIIJZH6FWxZlfiDGEkEvol1nXxXvLq/Uup4R+EtDhxcsX+JNf/yl2uz2+/OorfPPtt9hut7i+ucGgpbolnMaS0JvCBjQe6BpCCIR1RzhbyXP7QcOYkDAcbnH1yoOcR4KTn5Swv71Bv98J344jOIrRofWQfCaO0LYd2sZjShEpjohRQtI4JyQtQ2ugCJHT3D8BoRnBzmGMEcE5rNU7QSr0yRohCCASNPRkCOIFlXOQBMWkvOAn2IeAeLhcXb4U+U/Ph7pSqQAhM09K6vEjnq26T50DUQBIPAuePn2KzMAwRfS9eGd473R7Z3gXsFqvkVNSQHzC7N0zK7OkeVYs5KysPZoVKuRK5ig8oARVoha+CVSuKcqynv+sR1WSnQuA9bXwe+d9SVruQ5C8TXp+O+eRnfCBrCFf2QwfzilfEP7AOn4PLakSyXOdhjY5854kS4g/1+dQX1apKmTKh2OYpwfZxmJCIIdg4qmD5AwBLbzSi0IPgOGFF2RGpglTiogp4zBG3O4HqdI3RAyRMSYgsfJ1Mh+to/wmbMqyhC7llBAVxOmHEfuD5HNaeUbjGME7eGeh6+bx4yuPH82hZ+NW/jFl2umzZznYflv+sdoY9FNQKfJ432c2KOW3tTWBdf6QWYuoeAXqZP0KaEkSLtcPGNXwNY1SDVF4Wp3vaLnvyitV1HJmTDEhZcahH+BuJeyVNXTMB6muul6tNKm4/JT7mFyFu/shV717/V7hWU8p12nfq/kzgHfxlJ9KXaTKW1zHz/vZk9l7L95XKpfDgC6isv6WIYn1refP65yjpseIoTAhK+g9TROGcUDOCeM4zWA+WM8eqCxVCSogBblJc9xlpDhi6vdIfpTKvsMABmGMwJRM5FGDifaIdB/n4jnKiCmq0d2DpxXGtpWE7OsGaAO6wHh0tsamXcE7PdO9zZuGHeeEcRpmY3ZOizX6Ovp5kzvbeCqoYfykxgsWr9+Dl9h2NwzAaRWD6TBi3F5j6nu8/PpL/Okf/B3cXF3hxfff4nB7jWkc0LiMxsnmkANaDlkCFbQ0uYRMUmZzShEZGcQT9tsbTP2E8XDA5fff4Or5N1ifX2B9toZ3jwGSgo/IcwOLnl8YGt/tA+7bi3RncxLwBnfZn2g3Fw2XZ3ynzJ10rGAxKtW7QPCthwteARFADi8Gq0XBg9RKT8VTACThkolU2UgKojA0/k6FmFLVpbRCm3o/qzTmgOo6sYSYZ4OAFGKp47maEbHm7jKXaFdi2InsN7RdrELNLD4tDjFCNU405z+ydtnh/BMcqk5L+pYqbHnO12IAj42FlVbMOQvg02gFpkYqY9RjaN8366d4haj1SwVDEZqoePYcM2xWxWG73eLVy1fo+x5/9Id/hD/4/T/E4XDAd999j++/f44YZ8srIIps0rlFY7pxUDfQBuJx0grzZQZFICHNwI9zAv5A0HlGDTKgWHtt/cjeA9QLXN3sGckx+n7Ey+cvsbu5wfn5OYhIvIEekEypb9sWjx49WoR3rVarhRI/TRNubm6Kh8/19XUJ75qmaeFKa/eu53S2ItVrkVV5JXRdg0ePL7BeSRskxCPgdnfA5dUN+mHE1dUtbm/3Uj2NSUEFVXjVc7CA2CoklGqBOc97EDOvlDAoWUch+LJn26aV0tXOY92s0PkGjgir0KBxHg6EhgQQIghO66AeP3EE5QjijJAmCfHKCX6a4PLDg3eOnCSFbALaptGcXqx8Uirv1Eic9NcL33FBwWdR4iVsQQUOxszTQGpNUyAnZUSrGFOJk+I9o7+DRwhez0Uv+a2gnn92ZlXM37xMAEi1IFXwRPaecxM5KLsDW5CX7jM3h7EVTdbCvghgyb/gNFeKDw45A+1Kq6NbPxQ0mgGfo3wtCgL5BwR+QEBofOERmS0xfg2oqoKQItIoyV/btsFmvUbwDv0wYLs7YIoRv/nNb/Bv/+2/jaurK7x48RJffvUVDoe+5P7JLIC5bzRnkTPXdkYbgM3KoQmER2uHJxupynSDjDiOiCljdxPx6vpGxF0XACeJqbdbAYVl3U3gNAmQumnRrVuE4PDkYo2LizXGSSyfOYrSlOKEaZSQxBwjxmlCzoyb21spEx8CDsOIbrVGGzwenW2wWbXwkPM9kgAvHTE4TugayUmUU5TQTc9I3KDYwH8CXXOaJnz79VcCXOVU5rCEd9me5Nnj0UJIkoZNN22H1XoD7wPWm3N8+tkT+NDg5maLF6+u0A9j8QqXszbgkbsAM9D3B0nynGbjoihvDCbxkE15diGWvW3QhQAM8qP7P4ts5JTPWSBTkduUZmUCWnVHlZOcSi6fyGL4JOfQdJIk3HnJ6xbUCOQN+MkZyQvgI+FiGWkBZrNWzhVe8aCTSaQ5aWZlMPg6dBYFBEIFAFn6BCaWnD56wM+wmcqoJus6gErFCyrAT4blaTFmJqBA7hOGKOFZN/sBlzd7HPoDbg4jDqN460TW/aiASo33l5lS+Zkoa9VUIOeE3V4AjzZ4NCSl5psg3tRda+FaAaEJmvNIeSDP3tImx88AvYWs2rRxBUahGIN+slivmqXb35jP/3nZMEAJ5jWTQRKqBzVYAAiNeEPLOenBJLnYpiliu9tr6LukAhjHETFGBXPzAnxbKtZz8G5OrCFBGSnvsO9HeO/RDxP6fkTTNHj6DHBevTIaM9RIZ0yPs2fVT8mwvDiz50/RI9iUCgWm7Zv1llqAPzJeArDUFzw8QyUA3gewkxBjzhmNygmBHZomoFu1aJsGwUkO2FIVU1M3OEpLYNJe01w8wfQSC6XLmQGDrLW//TBgv9+LN+0kc8w6drLeTSckGPhafmzEckYcJLUEiJBvb8EUkJkxRkm0LnOXimGUqJQUkbYUGRf6uUOvcl/bNHBPHoE2a6zONvjkl7/EF8+eoG0bPLo4w2rVCfiUIjJLsYftTir6DuOA25sbDEP/1nn5LYR6URG86nX2+tfvvhhnZlBQCEXoJqRpxHDYY397g/3tNYbDDmka1QKGEkqkAHFx87c9lMGSBFcFX5vEFCdwdAjhgLHvMQ4HKVuaom5oNuCwNLDItFVfC+hTASnzayrXH2/O2e56PE41fPRwxHdPovkpNahhbxp3rqokAQRSN9pFCImKMKKkoAA/i0q96nVp3jdkY1NZs8vDqwPtPhS0Bn/qgw+oFCaabWXZLG40Jw+3E3LZD22zej8beg2zHvFySitNBwQTOOaEfD8FEVEBdwpwwstQrxDEFdbKgwta78v75uY8D+18MBroYxYT64+EZijIomCP9/NrAyCkSl7E4XDA4XDA7e0W19dX2O8lGXHfDyX0x36WQN7SS8I5jb/V/uHouwbk1CNuvOTY88s+K7KIsYlKGEopYRhGcIoIPqDvB7Rt+5PMo4V3WWhX27boum5hoTKvGvsxwKdYPd4RILVD6/gglgTWjSTG9iJYydqSBIjjIOGx0ySu7iAvu52gz7fb37Wu8RHwU9eBKNZuRwg5FBf/REAAw7sM8gHsfMnXxroG4TzYcrhB47FdRkYCZcBlAfodJYnqdAnunjH60UTigVes00Xgn62NKPNT8Z1ZYin8U25HqrAY2DLvOwMyORt/4cW0E1ivQdmnMglucY15PjFMYMUCaJztAgymfGdv1feaeS7m/pUdZuCP9lMVsRI64wjIJHNHAFQ8lltV/OjIcgss8yr8WKK5eTJv5Xma707nlICiDHPOYPWQIkDygEwThnHEbr/H1dUVXr16havrK63eNWgIkp1ZlndCxkqS/poXkeT2CJ7QBFJvN81ZhYw0jejHSYAf3wC+ATMwjb3IRSzAD1KUs5s1XwiRho9JHsROy0bn7JZ5KnTMEyXxTqIRKWf4YRCBOQWs24AYHJjEm8iThJfEFBGjHP8xRcQk8xxTkqSWQFmjD02WB85CvWzdzNb/ikdlrgAhAx8BwKFtBYB1Xjxrm6bFqOCXj1GT50LPRSelwyHAk1OAR3eubP2ywGYZoggaul+KXFn/HJFxhVoGXV7Ihe/IGa7nMTMSJ02O78BZPGihBjCvBjCnwDtI8j0CGh5tyZ7LWWIavUMpF/qANFf1qfKJYVbw5DWr7KbfMdbKKrPJjUwiLfKpw8x+i75MXPigyezM0L0jo84gCQPMkgNqjAlTTFI0gqEAhcmTwvMKD61nqhyW9T6TUPNpkorEU0yIMUvIFqM0tMgz7g37pyw19ZgGzWBCee5Spv7JPH4qnYKqo6p+2iyLycUy0tk4Ima/i1m+rSvoJvVONAPYvO/z4rwA7tcjZJ7mswbMYDV8eu/RtyOaZkTKLDnZNH9guRXRAoCx+V7uyuNeH48TV9cdDY4yCy6DyTP/sO8YG3lwfWPWoXJZd6LfOaJiAPbewxnIeNzbep8d3910CjfrLXYeAsarlQ8pgC8/c/VEkgNleU97cP1QFfJzTuA4ASDEPCFpsu8pRkxqjGYkgJN2IulPdZ+KZ0sSfA83eSC1iKNHbgmcA9rgJe9p1+Li4hE2m7WeR1E9lwYwuADuh31fKhW/iX4rOX7mFxVoUQt/dHRt9d6CXnNeOKouz1JlapokV8phkB8p52zO4xmek1SJgeSPEMbnKnSVNEVerZhYOpcMHxN2hwNurq+RMqSaQ86aQ6JEnughgPJsy9hjykwBBAo4QItNes+I3gvELFXTh6c7yqAq9mZVlfdROiNxjam4EBv4Z2pcYXYqrJMTJiGAUZ7Hwp6tm9sQ2yWntEPtrmLzuj7MCj0tx/oe5ah0jklzN8gYwFnsPIrmw/Vv/VrNe5eMuKoewCxWc7OcPzARUPL4OOcWIMqcRE3+DkGsegyev6PCSc4MQtLyi7OQPE1TJSBr+7VSAhOKZdyeZ9dO04RxEmvL9999j2+//RaHwwEvXrzAzc0t+n7AOE53AJljqq20+/2+3N9AD2kPCxhAkgSYkgrrrJWjvEdzdgacn+PQD9gdBuz7YbHfahlbLG8ZKTtQzBhcRMoEd+hxfXuL+MDz6NVra71e49GjR1itViUMz8a1rt613+9xOBwwDEMBfO4oxKzKAfFibI8FHgb0wJa8TKtVh83ZGuuVePqkKMJTfxiwvd2jHwb0/aTPtESYKvxoPp173alr4RImhC9ZHhGpR6Va4h1jwlQSfnNiDEEUqkNo0PgApxXmJByM0Cgw5MCSLNqLO3jjg8Rm54QQ2p/E40fGqYfzDuM0Fff7nCU8Ik6Dup5nHT9ZayZwJCJkdmrJDJrQ0JI9z1Vcum6FzWYN5xzGcSrg6TRNxfolY5xBeg56FdYsRKAoNYoDTTFiUi848U4UZD5lIGNe75WsU4TMGggWRWd2vzdYSSLdxDMpZsu55ZCYkdnr3pNzWpQ6SYCtzSzKXl3pwtbOgyorDFgIV4pTSXoOaMQyz0CTPTWzeBZKXitCfzjg8lIS2F9eXuL29hbb3U4AZNY+ZC4h0JKAUtzULbzH7M9OE5NbcksHRtDkmRQJQ2K1wDJyjEhRw9jHAXEaZC3kpDkFHDwBrRcvosYJUCOADaFxpMnZTfYSrxThMQyiATnL2ZFywqE/oG0aNJSBnNAFj9VmJR4kJJ4zg3qhOgLGYUTbNiAnHihN8Fh3HZx/ePE154z9brcECyHnlSndXBQA1mpcqmrqge69w3q9Qtt2uDi/wJPHj9G0HaaUsbq5ReYs56nmy3MlnEvlIhLvPLDsDVaoxmn4YFRjJbOs4WIsKwYMKmC55OJTD2sTZe7RDmf5iwqYJHtHwusE2zDvOwF4gg9iCHJOvXfNY09lMw2PMpkhW+in155qCEhOlsDxoUiZDM8ASmEGOodFftOBN7l7lvaxKBYzZ2CzW8k41Ip1TTbEMSYMvYQB9sOAYZowxQgfAs4uztC0Afv+CQ79HuM4gDAhTXukSIiju2MIOa7VUstYMSaMIzQPZ8DeO8QcsB4jui4jgBAs5YCuHSm17ap7Qc8eM1iX1QVyDCqY+tIjZdnrn47eptWIXpEVhFVuSFqhlWbjRGbGNI3ImcXLbr8vOQ8tB6GBnqZnFBFe14/xgRn0qdrBsyf6MAwS9j5J+oRu1aEJAaA1QmPVY+feiRy5hH5qz1F7tyznqvdFf3wH+ulnS8j65i1c0lHhGU5LrtueNVUoKzhqSfWNv9n9ZC6Ntwg/Mu8+oL4nFsZLA4JsPlm3Lqkcas/nYlCziA5N40Ek+bdYYrooMyiJAcalhFDOjNnjh8kqiVXzbDIICKIUZ4AiEifsbxzy2CMPPb492yBPkxSc6VZYqyfpZrORwlKjeJL1g+Tc9b5B3x/eOie/lapeDJJs+XpQzjx/iULfBX6OlmrFBept4kisRYAIjdMouUIO/QHb/R5bTWYqAhIQkNFwlOgiOAQSxSkRYDZeEzHLps8ylTExhpzA44Srmxu8eP4CwzjhV7sdXBahy6NahFXTiWjOxUAoh+/c0zqVKFXfXm5+fg07fN37P5rKjpnbQjNXPOKA+juL+zez5XqQvmTO6sbMWmRCN6gjuEAqSarAAZ5DC0wgKxM/M8VieSQAr9G1X6dcmpB17M65GEqer0ZmqVoDlARmhgKYVaT2PKnwn+XMFARBFAH7zTGB48MrmwboADMAdGzBqYGhoB45BQ0nlHLeiSWJ5TRNAgAldZNnntcFAPYOxL6AXTY2wzDgcOiRc8Lh0JcS5d988w2++uor9P0B33z9LV68eIkY4wzavsG92BRaIskbs91u5w9ZlJCuaSW3EKDLS5QcA35CCDi7uEC3WWO73eHqZovb2y1KCJLcDIZDSv4vOQBMYXUExAxQuMTt7u0M+X3Ih4BPPvkE6/UaT58+xWq1Kvl+nHNapUtyJN3e3uL6+lpcXXNeAD9JBZxlLrK57GhNXDadAE9d18g4nW/w+PEF1usOTRswqUfDdrvH5aWEeu33A2IUUMARFzd51jw2cv9ZkKoVcwtbktfzZqz3E2IWsIGgXkXCO/Zu0LwbhOCbEgbQNa0oL85j1XSqyDiszGuJgIY0/C8zmpTg3pSr6wdSzhm77Xbmi0SS/yJbJvuk5egt75GMYcrApInls5aeFff9XIwUXhP9OnJ4dHaGTz55htA02O/32N5uEVOSNTFNSKxggSo4niBV0rxDt1phtRLQyAUBgRjAvj9g3/d3ciEgcclXdiygFsGNLFSPQORheVEE+HGQcuFA0px7w2h7n3SeNSOck7A3IsA71mStBnqZguNnwVF/u4cM9QIDagmMgygP3klZ9ZKHQNVHqdCjGE5isOaF2N1u8d133+Jmu8W3332LF69eSfW9QUA5R07TOpmWql4VTJq0OWtYT1bQB/CU4UkSQrYNYd0FhMAYYoTXqgNxmjDGjJQZY3/AqOB2cFKwkhyj8cCqcWgaj9YTWs1z16hHUc4i0AvPkNxuY55AlJBixuAkGSbtZH2vuhaepXLYZrXC47MVulUHyhlTHBGnhIGAYejhibBatciUsIkd1qsVVpsNwqp7y5y8P6UUcXN9LTM6I4Tl3KuPfjFyqEJm1elIgPDz83Os12d4+uwpPvvsU7TdCilnXF3fAAQ0jZecSElq21ju5az3goo9zsIMSvgiA9Mo5jK2vIgiG87/zm0jACkHZIumUvfpu1BF9Vdh/IzisQ7zNJJ1KAUZJDyh8UEqdipgZV4icK6MmeTVs+HUNuaERE684x/cY2ROxFgnWy9UDUCRye2MKQkrZxjIcv8JoG5jksFlfuZ7zgZKYBgn3G4H5bM9DoPk1PNtwJNnTwTQR0IGYxx6OEyIww7T6DEebiHhgGkOm120DAX0SSA1aEXE6LENIvx2U4P1eoVulZGY0LR61Hrti3dztUqVUy0HCTCHUpu6JkcTI6vie78HzAOTLMMjnaceh6WmwzDQFgD5+UwF4IIABXGY0B9kXnbbHW5vJQzeDGN1AveFN4894wiEOSbJDSZhX8yH4u3XhAbOkvAGh9W6g1W6Nl2ueMvbE1jAcCtGAmh36AiAO1rPcLMeObd7Oa6zpxEbg3hNj34EqfpknndBjYVNFtC4eLeBShaPmLkUAMlZPGecm3UPAkqkgPfLUC8irykoaDZuZl0jnMv6LmoZq95pg8H2EAfyoYA+M/CU50qlMUp4HzNCSnAF+MlFR8jIxaFh5tDVawKQACZCHIGbfo8tOezWa7g44fLFS3z6ySd4+uQZnj55hqZr8cmzT3F2doZxGnBx8QjD0GMYBlycP/73H/BjAh+AmYvYZ699XS3ENzDve5+jSkrO5rbKpaRpVmZhB7o4jkOtnFBhWu/HxmQUrCiHrTxNrK+yUMdxwDRKskNjWHL/un22xVFZdGDoTxka1u8e95urxVNc1XB8TR0J+hPRHa1wfnnMQgwEsRCbOXLABIz5L2NqmghiSfqZ7U3Uv3VBcD1C9/Cyt7luFu+l+7tWP6ocmNWMlDmcw2d4AY5xtW653gcFbkaVzY1LqfuHprd5zSxCswz4qT5nmq1NKc15gHJV8rb+DhHE3ZNmhpwza5JmEYj2+z32+z2macJ2u9UQBzmQJe56zrHzJqGjBhDMswgw91I9EYMoxiLA5Hm/2p4lh7ZpsOo6TNNUwC9AVxnXz1OxXPkMCKVc5RQjhnG6y79+JDmiRWhX13V35tPmxVyZzROrDu879rKRsbXXyz7WO0HAQV/C/5qmQdNIGCBbuF6MmMaIaZyQYioliy2c0dqAozaU97HkYLU4fnTxDBrbfBKJtSVnsAqwKTNIgR+GWECDzyDnkUnyN3jIIezJgbyX0DDHIHi4nyAsgfXsKH9DJRIFT0WBNw+NmZfaj+VyFSWnDkyYlUEBej26rkPTNMgxYWxHuBgxVnt7IUyL7iYeUd6ja0RodSHABQGKY9JcLgpCZOUHc+jsfWt+Ztz1uWr+RubBYwmlBeQSC+AUEwAHdjMfcETQiq0yRuXgnNUDcwe314tmPBTxnLukeIhUyVOJRMaw5pm4ax6REtoqObj6vsc4jRinCbHKK1ZGjagIluWcsf2pf9uoWuJKCQUjAV1J/pZ9l0sS/pwScoqw0ZtDVcyji4pXj/WnvGfnIdn6FE/dhIyco57b0jZHs/dlDAFglHDinBmcUima6cBwjjBNEVPj0SStJvkT5BVhxmIvGt1nZBBxpgoXIIB1rIIPaDRnV9dWFRbVe7bcr/CtymgEk4FkUOWXqYGsQIZ41s1BCaZE6EyzKp8KxBXWzQAq4Lz8oqNkr4WO90r1POM1VPON+ar5R8ED67PJAJA5dDyfqw9H5cmLewtvqJUQ7Q0ff3d+XfpXWNp8DwIvcmxyhQAxBHyb1FgVYxIjC4snqhVk6FYrrNZrkCM0jbyXLOfhkZxR5rBSfswTSLycZR3EJGFkEqovoK7Lx2csFR1oMT7l9XJIZuDc1uLPQK95yAKGrQELVeiz/jYgzzz5bT0wuITcxjiHvd/nCS23Xf6+8/pOm+d3BBwWuWtUGYzI3q/GmeZ75qPn1B5H8xigLgSGwvMr3WWJ5Syk9/t3+0PvQzsQ1GtQvJCXYed09IVynFm/q3Yt96HxRioGJGeeh87PckVeyobVJhKq5NH65DReanyudIfn7xNnEJuRWwqBMEsci1PeXoo4VTKJnc066eUvBpCraKTddgdPHuvVWkMRZc2E0JQ8nlG9xJ0TD6A3GcSNfjtVvexFrTzjza9fezO+87IkZwUYbdvg/PwcTfB4/PQZPvn8CzRth3F7hb4hIEWs0WOjEYbeB0gCfEafEvokaGNDhFYFxwSvYA9wnRx8JjSrDm2nCUW1JLXl5XfVJiMFd2Qx1YFkupCo6PsLPOC+MeTq+nuH5ifgzAvloNqM97atCBoQhDQmwDmwA8gS4EBdgvUAZUjOZsm5xKhPXalXw4BnRborgbfay1Qjt28Zg+PcLTUJOmzzYQiueidB3F5zEgs5VwcLM8CJZyXXFFsbkzJA5UHzZNaNtoPnJ5hIUzYlgd2cy8CYhq88fACUULByUjFjGEfs93vEKNUQdrtduVdSpdWXUu0OTRBhmIiKW21KETc3t7i6ukKMc06fGCMuLy9xdXWtpcdHGBOe94aum9cBBkeHWPFicpJcbtV12HRrWV46ByEEbLoV1m2H0DSSLFgFSHMtlRweMhYlT4pOo+RCMGVclHWXRGn1DwzgOe9wcXGBtm1LeJfNFQCMOj99L26gdThfUbI4gyYbJyoJKj1RNdVWIcH+luu7rsX5+RnatsHZ2aZU9RIvrhExJfSHAYfDgH4YEaM9f3YfL3OGN+/Fcp3yAzPKGh8yIK4c8MYXCchkltIMQiqlOVOEgCvJC9iTEnLw8J4BNFKFiSQ/kANpwYCfIIklCx853vvGQFgFEybZs4deLJJxikhR8p4MQ8Q4ar4IS4BfwjtkbXvnsWoFIAzeo+taqdjXNBIqME0w0ImI0DUN1p2EDj66eITHj5/AeY9k5atzxjCOxeMgk4NDRj62kJUE3PracoBAQtRSBvoxgZxUdguB4D2BOUv1Da1+MU0Snw9ivY/MvYuWP0wSlhoI4b3kcnDk4H0S7wmCKs0CJj3cHDIQI1xOaM1DEgBFqbYBJx5ZRISQMxx5wEmp821/g5gzXjx/jm+//RZXN9d4dXmJcRwLHy3yM1EpZECkIQFFMCWACTEBw5SRmUA5IY4ih/T9iMNhREyMbZ9x6CUkYqqS+c7V8xhJQ5lBwDhN6AcxaO17Af5ijBhTloSjJaSmmJnL4hYAiBZCgYShDjgcJPH07rDHqm3E020agSTekq0Xj7tJc6L4KcP7iH0/AW58uPlTMrjgzpv1eV2m3PLYCQBq+TuaboXt9hbMjLPzc3AWj6uubfD40QWaEPD40QXOzzeapyFhGCYNb4gwycbpflkgK8xaSdO8dio+WilCmVkAQ4LwhCzFSuak65VcwmqVxpzD0hLapirPie17gDDFDDdJ9boYE5wTrx3yAkyJkU/4juSX8qAgg6mnMxwIvmGwr4DiB5lDQgjiiSp5CF3Z84CdEdWEVi9r+XW+X021AGepIOwGcmVKGTGJkXm3k1xdU8ziZdpJXkXvPHzwEhJK4tXT9wfsr5/jsm3BOQrITg5wJm/YwQcgaz80gTGrTiHHhkM/SB6pzMDuMKJtewUiPZrgwJkQveRzu5vnb+698J5KWS18fYEo/MxUj/n9cnuKmo/KAZ60MmRWUD4R0jRh6A8YpwlD32Mc54TOx0aw+b5zOot7PX5eMxymR6SU0Pc9bm+3aNsG680a681qznHj3XzmTRNAc+6/GYh6ywOrdWz7TP6YOdvdb+k5XZS7h9uLcl+H4BxWIUhooQPWcRAdz3vxZopJKq56KvlDQyNJkwOgAFDpEQCUaARbj/ZbPIHkrOWJEVkLzRQATdbObAiqdE3M8rN5BmW11JizRzmPq3uarmZnZ1ZZlIFSFaxu+7In93Ed4SOmUwGMP/qjP8R+v8WTJ09AxEjJ1ghhvV5JIQ5iTNPmrXPy8wI/ZKFeVRdp7vY7vX4N1UPmAC0Rylh3HfzTp5jGDT775S/xy9/9PZw/vsbh6nvsVw4cR5zlLc6Th0eCB8OTHHy3Q8KN5nQ4b1qcNa0cIr4BfEBkwvcJ8IkQuhU2a6nMEhqpJGRqgohGssicLjTplios+ldRWhb9OV4cy/6+Cdv4qdiy8IYjpbqIH0dL2xqhwA9T1qTNspnYJAN1u88qvCCgVPJlopKMzREjq98nOZ5DBusfy+9Z+4e+rU90PL4mBHPpRIHvCgAEIFo8sd5DOSuncpmEg+mQzMeVMvHCiWnZB3tMZql68cBkIVbmEWLVqixO1mKhC5hgOSuYS2nW/W6Hy8tLjOOE3XaLy6srjZueq191XYf1al1CkMwr5eb2Rr874sWLF/ju2+8E4BmHOfeIJiLOOZc8F6ZAGvhjidvus8gY1dYCr3lbmhBwttrg0dmZgDq6DL0PONucoVut4YJH64OGvpgCSchZQZPiBq8zyoSosdkEqzDGgMsYY4Z74JC94AOePXu2SMSdc0ZUb6t+GHBzc1PAn7oiWV1FbcAg+4lsfEXItPxiBhjVlici0hCzJ+i6Dk+ePFEQKmC322O722EcJ2y3B9ze7jEME8YpAZDDiWxDlPmxQ/W+nlZvGqBT+IGtUS5fnq2kskcdsfAdkIRjqhCUUkQmh0welCKSD0jBw7sEZlEaAPFy8c6DmhXYPfyROXv8mJCt6pEJ3STJHzOAaYzYbvdaQcth19i8M2RbMlLUsD1zIkji9dE4j7P1BuvNCkQXcF6SPG9WHZATBvVWHUdRqNddh4uzDZqmwWfPnuGzz38B7z12hwN2hz1iihJXbhn3CZCEy4xkiRazhEOw43l9KV9hEihuyoTdIWo1TRQQJzOXfF+s45RV+PYBcL5ePwr2KPYgQK0rz/TeLYEfQkmS/ECTCJoGeAbW3gHOSfjr0IsFz3lQaCSPlFkkHeF62+Py1Uvs+wFf/eZL/L0//mO8ur7G7W6HQ38oexlknsk0V2bLQHKyWkhBH2aHKQL7PiN44JAGXOYB4IyhH9EPkm9nSIQxKfhGHuz87BGdJKk5COrElHHoR+yaXoRL55DBiDljmBI0sAwMza+gK3g+8ERBlbd1j+YoLuksVvebs42EVLLkFnLM8M4hN5KHi3zGYUyAi2BENPtBwhx/ArJQ8Tur4wgNYPWQSinj0A+4udkKCOIDHj1+ghgjzh89klxFADarFT775Bn6ixGvXr3E08ePQGBc3+xwu91JlcpaLnBUyk+bQsZgUPQQc6JucE1QPydOlbw+U5TKL20TMCWRQXNK4KhKSpXgNHFC4jTLPVXc78KTEixhfU0EkUfOgA+TyrUEHzSvmso0xLIimhAQOBTxjBkgljLwqAxOD0FEDk3TSZVHzUM0h3UeqVwsZ/TSDHEEKeg1qOR1k+EWqJFem2JGP0yIMeH66hrfffc9Ykx4+uwpPvnkGZqmwdnZGc7Pz8DMGi7tcdjvsb38Hs+7DkgRjZ7p0HLgljy6HJKsqRJYtYcMRAKi8jrhnxlddwA5h64N6FqPthE5xjupglUnNM752MOoUrgVQJP1+fDpB95Er+fUszBo7Uw5Y1TviKaBAO6OFPRJco4OPfa7LYZxwH6/RX84YBiPi13coxfcK2fSnfdmI5a9L3x8t9uLsaVtsFp1WK3ECNO2jXji5oy+l7AdIipGPfGsl2cVI7MtB/1n0dbCLxTuqWWsO6NahL+HxnxAEFmzDQ5n64A2EFxw2KcRNIrRZ0wZOWagcWiDgD4+BDSmb9N8lhe57mgezKDotLJg27awyILaoFHLryF4HZ/ZYxMMSYruoDkVuXzOTldYnqus1gAgV8+wCmwAxOu3VAZ7HcxT4x1ybk4p4erqCkTA7c01xrHHH//xBb744guE4JByxHq9xqefPsPZ2QY5Z5yfbxScfzP99pI7m0BQ0Mbj10fXH70uo3bPQqXqbal4I+Vxu9UK682Z5H8YtsirFXgirNKIVQpwTPCc4CHJJHvHCCQhWw0xOnV7p+BAISCC0CVCmwHfNgiNJpha5BMwjGO5yeo21q/nhQxU2eUWNIdxHVO1pRkPvokLve6+i9MSBeyQ91lL50B1tMpbQpVnY2jGsER24MKQ5G97Pb9/tx28kDvvtI1wdMzfT7MFpLyj7eLlNVkYCVcPPDaeGIPB0R0rKQLH4UN2o58ijrqOXz4+sGZGS4vrgYq5Zam6NY0jRg3VOmjuLPP4keu5lFWtAYdxGEs89Xa7LeXFx1GUE1aAaWbcdYiXgT7LcbnvbzpiIObq67QUZPBBQtlUQLX3SuI5LL5elNLZo2EWii053Fy6WjzTzNqQH9jjh2iuzGaVVKzfBr7V1Srs0Ctx+4tKewBQ/62iMAHm4XMcjuu912piEuIl3o6SpyWlXNzbYzTBUsUQZQz1nqlD9+pxtXYddVxdnJVfOMxefoUWG6tiRvaSZ2CLpByu/NbX2cAHp+ewJiX/CRx+pDkzwzClghbMRPqdM2vIHIOzJIaUKmBU5onV0m79ND4kc6YebyGgaYMqHh3athEQNWckDXUJ3iFoOeC2bbFereCcxxQj+tGLRbWypJO2EVydT0WgtH0zJ3IE5janzJrLjIoQJgk4M6aSQFe64lQIm3NtzOsqO2jYF8Nl26dSNceVs6Raew83g5pnR407qmhGydQp7ctZlHMwvO41zqz884DD/lBCXfthKJXsajnBZAd5OYeo1BIF6yMjWBKMTQmcxaukeJawQ7TiFX720imrkKWSKbF4zBmgDLIwkozEWS2b1dk9t/SeE3b2XGJoAugUkVIs3qcEhq9c83NmZJJQ+pQYUb0no1ZE+imITGHi5QopIV1Adc5zOaviFEsoR7SKicmSfKKE94AIXduibRu0TQNfQtzyYgxLmJLKRJUQVK4pDbKzrWqeJdGX80f2hPA39ebJko9vAfzwXeDHblrEJ8qa34/LazMOuFyFyFdeBlStj3n9Ag6WT+jhhFUilOpix6HPi+u0V4R5H9n7XH9usjzzPBZFf5nZs32WtdqbVNmatJhCQtaqdE0Qz5/1WipvrtZSlCGnJHlKrO12Pts8U/UsyB5i5e8CyAFmVEk5I6YM56TE9BQTvKNZmSWoMjwrx6+jIkctGNHPQwtJoJyD91xY86+i6Kc7fZOQfqfyUUSK4jWbk4C4lkvpXWi+7E3XL3WFlCKmSc7MqM8Gm8E1L+Q2M+TNIU+V/FK9MNV52YpjmU3dDO4BrOpfP0Wol8mnkhdMZIqgJd0ZUsAm5Vo+nnUQ+/HeFRmxhMNVQMtSzKci45rWVQNFFgpe+GXFRvWiIitXUuRy7Fj+mcNo59+mBpqOejQcRxrlPJ9V7+XbmTHlBGbxGL2+uUZKEV3XYbvb4XA4wPs5QkM8pd6cAsPo58/xA1VwCxOrlbOlona8Bu/f73znM6tsATC8A0iVo2effIK/+Jf+Eg67HfavHmH7dIM09qDrb0BXEYgjKI1wyhwblxFI4sk9ZfEGcoyua9FtLpCdB5oOq9DBt2v8zq9+iS9++QU2Z+c4uziDb0S5KnmspcH2z2LSyQR/wuyoMr84uvodB/vh8YK3ElcMiG1DEQT1DE7d+xzgzRqr15TDRUPANPyLbLxUJpIKFbazqCyqheKXSavnMYA8gzDg126K481354PqkzK0cvuZ6R4zkON7vGFOanfan2vaFnl4KsDHGG+5Ti2bYMY0jhgOB6SYcHNzg5cvXqLvxbPkxYvnxVvAlD08YZyfnZccMF23UrS9gdbIQJwkqfMwDOr1M8Jy7gAAeLb010QEpERFsJZLj0ZPkI4CJph3TAgebQjoQiPADwieJZyncQ5eNE+M/YA0jTjsD8g5K3BVCQeafBE5g9ncR13hcwDDxYR+GB8c+AFZgtpZ6UuaM2nSkKB+GDXMKhZrHpFDaKT8Y0gZIYyz4nCfgkEWYlftASKs1x0ePTrHar3C5myDpmsRvITB9r2EhogVTYRP02sY874n49YVEPzGc8v2e6UQ2WvbPcSyJoqnRAn1otLPWlFyjjQpMjSXT5JPGIL0sPEXyS/z0FQAPOjZRYC4Wtg6Y614LK/TUSLl2UigayAlU8XlHc5Ahri3H3pxsNys0YQOjhwuzs/wybMnGlIpIZgA42xzjouzC4SmwdlmjZV66+32JALzNBW+IAKUzoAKaiF4cJY8MObJKdU8ZsA+q9IlhS2KuFQErZiAlN1irsXyLV4PKL2W+c1VpZ4i1QGgWNwy9dmEB3WkZICShJMF59XbV9qaQAhE6JwT7yhNlgowpn7A1atLXG9vcXV5ie12h/1+jzFOizxcYPntOc/7hyW3DkxI9g3Ie5DvAL8GiBBZKgvl7DBMEcOgETikIdW6IclOIOfhQqMKkOQkQc44jBPcXuaUQgMOLTIzhgREdkhSGxVwfj6bWYVw0oouRJaPuyTl9E7mVsDEAYGc5JAyj0QnxTWmmHC7O6DvB0ky7htMD+8IW2g+41XJKIpDJStYAlkIT/XBi6Oy97NXm4ZQjqN4XXVtA+8dnjx5jN/55S9wcX4G7wO2uz36fqjCqQAxJIhXhvjsmbKfYZX/LGeGtTerISrGhHGKCNkhJg1TZ5J8M6N4NYzDhNFyvinwAxjwc4SEVC+d94iJ0Q6TVHBMCePYwTnhY8HPSdeVMWO2eFM5WsSLIWuY9cOdjQRJ4m8gN5Uk71ieHbir6B7pfzAhpAau5gsqAyUI0OpRw7DH1eUtxnHE1eU1bq+vkVLGs6eP0HhC23i0QZKiMwNd67FZtUCasF516FYdcp5K3r6UHOIkBTTIhqqSKbniE5JENmOKGeQyQBnjJOGEjqjk28ueJHE/kYB4lRI9j2Kl+IpFS9dkvTboQefuh5KdHAJ651IExJEHt1qaPQsAngHkOEoFw1HkOyuPXcuStVw8Awy1HPR+OpkAP7lUlT0cemy3O4QQFp4pkuftsPCcAwiOPJrGq2F1lgGi6URHZLIViqRj/TE5cAa27fx+aHJE6LoWqzbg7KzDug3IDlj1OyQWmTRG8QanDAwuIHnp22rVgbmV6qpVpVrJc5O1erCE5oXQFPADsKpoSfPujmoAjYW3SRitphygmakvvMXN+zUz2B153ImAUnRRZsv1q7m9WEJj7SSRQiaWH49mnRG1w4DdS9caQ3IIASX/aUoTmjbgN7/5NZgTnn3yFOcXG6zXmt/TmQ7yZvr5q3oBJZESGdBhHx69run+rvC9nzuJOocoenIIcBPwi1/+Et1qg2kcsXv5DW6/+wxx2OH2T1vc8g3SsAcPAA8TUgJa9fhhEAIyAjECARebFR4/fQw0LS4ePcXnF08QuhU+//N/EZ/+8s+jW63x+OkFQiOo/Sy4QRVaW0CV5AXMjiqEYoHgO+FKS3DAXh9v+6IL/FQ8uRpwtnbqIi4ZzC2EywHkxVMKZskIchJT1iSOCvpZwkbSA8w6V1cNK8APOZCVaiylhDGXvGXJw1RABMt7ofza7GNFUdDesPVqseheM5AlAziqzVyNz/HvarJsagn1oxb+RPc/8wFIDqG7oT9mJauPNsnHIEpev9/j5vIK0zji6uoK3333Hfq+x9X1Fb7/7nsMwyBeM00oYVVffP4F2iBJLjfrNYgcbptbiNswaUjQDn1/wDjOCYidlnwEFMEva0PHiU3u4NInrtYJAEnSW94ntbhJdYWuabFqO0leywL+yDMDHBxizjgMPfo0oR8H5JQE2DALYCakBOQ4IamFxhFJiKKNHgOMBNoPGMP0oHNI2h/xXJE5kxwcPYZhxHa3x27fY38YNCxhBn6aRlyMc2aM3QSK4hVJ1dhZF7ITZX5WcmRuzs43ePrJE2w2K1w8vkC3kgSVKRN2+wGHvsehnzBOUa3zJnyo4moYStFC54fekSXLPlJvCg3nKcK83Vc3voRa57LDCzBhP/YfyWHcqM4qxWlE6aXq8BV2EIElU3gQIiJ0bSeWapqrT3CKczWXnArvSDEJkIKEqBWbFsxHr3PArFRlRhxHHPY7cE7o2garpkFoAjhfIDgJN7OyoMyMVbfGerVG8A0eXZzjbL0CQ/I/xXHUIgaxGC2c8m9R6DyK5cwRWC1TQYEA4+dZz0ZLxsmA5sjiwrJZEr7BB8vXAdgpv2TRs4DL5Z5zWEvxqtIvvYtL9DsTazlXx5LjB4So6ywRoSGHzpKKW9syMOz3eP7dd3hxeYnvn3+P6+sr3O53SCzjwNBBMAGzKlNJbgZOJEdEC+8DXFiD/DlAhIkJh0mqR/XDhL4XecQHwAU7c1VJIAL5IHlXckaaRuQckTOw70dMMSMEjxxaxCAVtfoIjOwQ2SOTbiJzXFH+7D1JuJbgdSBHBRi0c2eKEw7/f+L+pMeWJMvzxH4y6HDvteGNPkZERmVWZWd1dVc1wP4ADXBLgCsSIDdcEOivwN5x2x+Aq14QRW4IckfuG2wQBLjmADTQqEJlZkSGh7u/92y8VycZuDhHRPXae+7hEWGeqQ/27JrZHVRVRI6c8z//8z/jSOu9dLxpGgpAm4C4RMbhgRQT+/0ErmEffob9UYGBupds5lBlJOpTz0oHrME1DRiLa9YgJOXEPI003mGdp+9aAD5785q/+md/wfF4AmN49+EDxmaWJTAt2v2UFViKWoaXNSBxCvhLGbI6OxoUJSNC2MZK2U+v5eiZzDgHxkFKvE9H0dOT0oRV42fVMzy7Lau9tJZhmKuY/zzN7PoOq7phja5TV0qVjFlLco1Rt1cAA5NivcfPNoTG0vhOwfzCbBW9l9KlbLUUiHj5R6AOytTTJ9ntyMtDARn0Z2sxyNoeTjPvvv/AMIy8++49H969J+fMl5+/pmssu87RtZbOy4677xou9j2OxGHfc9jtMDky7HYMux0heCYSOc3SnciW8i5DRJnVuYybgIJmSSSTSETGOdDNC5CV9eels5IGvklZnuIPrgDB9laUzyBrh6SNe/yPAvt86kPOYhAVhUc0reZ5IYQFax1disqqi6S4QI6EZWKZBuZxZJlHovpw249ZE6ErCPRxqdcfA/7kCjClJPotpZSrsvBi5PHxyOPjceOTO2ULipTIynSRUr+0hMoyP79NttrQkmSFrECHGmftqHzGZP+JV/NTDmMtfd9x2LVcXx3Ydw04uDs9kHJgWSJhnpnGmRwSFov3YlekdbkkatuuEyHjoMBlSpVNl1JSwHndTwTEgxAK4y6wLHMtnZamJP6cfEApdS4aP7IukrLjS1eyGlsU8Kf4ZVmSPDnDkiKhVik4rJG4v8YIUNdYsbllvykMSmvQZiOGJS7cP9xhH2Wv/B/+hz0fbt7x9ddf88UXn/HixTXOWbquxXvHHzr+IPBjjPnfA/8T4Luc83+iv3sF/J+BXwN/C/zPc843P2kiVMhaJ1+djDx5XF7wyYfV8D6dpGuZWOmksTr7bddxcXkhNLrlCMMVy+gIu56TExHPZLSOesXxKcupLPbCGqDxdF0Hux2+29H3faXNW2vEScvrBDm/ioJy5dUX3V7T2eOtccmUzhHrmW2vuzxnfR89fm2M+Y4/dxwNZ5vC9sibc8jo3m5ZWQS2BG11pdW/mfp4ff+a1D+7jGKsZEEVOl+lxKLQSXHSPppMm0lTwJ8CIFD+XIrpMlsiUX14tumZ9YLrmD55UnltXq/rqRP5Y8fmEp5nDMsZfnSPNnc7ZwqVuNBik1KX53linoQdUL/G9XGpSU4uVW2gUl5lbRGN1o0oU8sISklQYSKRi7NJnfNrGZD56Fo+6TvmfPbsAi4WUMk5i0MYPh45L6d/L+Jupf4d1u4uRn82+tlF/LiUdZXPhtLaU8WEn3kcjU7cbXcHEZeMKsCrgrhnzrVZ74Nz6lioTS5oWjl/AzZttLcUoBUb6GhbCdS89xgnjkamlGOkSi0vWZQ12Wo+uo6njKKPL3b9Xv9+Zi+Kc1YuYZ0r5aWlkwQoMFL3h2JvShcGLc8hr78rTtPPMIalht3peeQkTBdjEfCnznux/2rlJCOkfzs3PcWuKpqiunVCbQ/aeQsVU9b2ss5q8CfOfduKFlZhZxSnUJzsteTzaelxdSDLuChro4yI3c4vnS+SMZN5UrSp9Y6r2RT7XmTBiyrH2ZqvdkI0aKS8Uj4m1qzoapdlnjyPf2NAgUJhZ5WGlNIhVLuYUDT/oCQwogrjD6rrUEqetoKQ2yNv/i/fjd70us8ap1+GjCVm+UrZkrQk0CDnlMv6KRug2uikNqKcQ0wZE2UeLlGYWJiSWNmU95Q9MK8+SQVliw3Zzg+9xFLiEDedn8oVZrTsL0RiiPglMIdEs1K2nm8tbmzFuuI4s026nM6irLK/ZXduY8r+FmPUfUd90bZhv98BsOt72kbWWsoZFyMpl5Ygmww0K8PPqlhmPVtlWMlTy9xXbbatP5NLKZLcz1kz5gL9FDF5/azNBVewxBiczVirm1nOLG0QGxETzirb1SgLpWgUWRF91j8WJ2ijl5GfL9Yw1Lby64SrI0e5a9U+8WQ3KgHdj33Gltq+eZ0Em1H0tNQnWuaZtVxdx6/chgzOGimr1fIX511tEiN7c1znlEEAWoOO6nmSToZkLS0X3a71q9psY7Tsb8OOpczz7Qoo750396T4jZuwZr0Zz+qjbj9k65p89Kmba1991lXIvF6bsl9zKgwgvR8lJtXP/OPgj6ds9B9+7fn5xdpBcOv7Snl8oDCEBIiQsS/+p1VbQlr9lxK/1M+v++b2MPV8s+6Fqx1en/mc+6Iw7KXD4SoLoH62AVKq/kQp0SOvbdq9F9tonXTqSilj1Ccvieris1cwJa/sr7XsT5NL21i8bJn1lp3P+ZQy1kqSppT5l9hEn7SuHbUklXlW8IKcRDLAFCtOXbfbnbP46CmXUlv1PJUhEFMikJnmicfjI23X8OLFtTSBiAEj6vk/GJ9vj5/C+Pm3wP8O+D9ufvdfAf9tzvm/Nsb8V/rz/+YnvFc1sj+l1OujwPnpe20Mz9OXbYev/O8bx/6wk8By3BMeDzibicZxP8zMp5E4zoRRarMflswpOnFKgTkFXID5cWRojpgmkOyJZHe4KcH375mTo2lbhmHg/v5O2A9th29FqKpte3zT6SaqwEXxIp4CEGeGdb22p904s9luUqtRfmIV3wH/S/7scTRYV2ooNye1xvHVycBZZfkAzmEaVzyIs02qOCQV3TaGXddy2InivbcW70rGSLKKBoOxTunEME4TwyDlOMu8sMxLpcCmYvw3yu1WheqqP6B/Lh0tyga7Fn8rQwk47xKxzrZtHW5GhazzZi6Wx5naReqTE7i+s6kdcZ53DNf3BzZU4UjU84kxsmi5wTSOHB8fCcvCeDxxf3vHMotGTwoLJufasSSEXW3v7ayj7zuoAefCsswYY1iWWTspTISwnOn5yO0w61xRB85sLXQdynUSbn82bhN4GlPnVtN29P2Orm3ZHQ7sLy5wxtJg8Ua6bXT7nqZrCSnSjidOi5RMRcB5z7IsKsYZzrLBAmCVbC3YXLZZh82ODQ7/vOO4DWT159JymeLsFKOizyntNKW7U7cKCNbyIur3GJMIBufCEMg4Z2hbR9839H2D86aCY/MsZWbDOFUq7lqHrcD1VtMNXZ5P1sCT/bn68EX/ACPreJtBKcBTonRYkM+qs6QI/mKo3cU2c221YSUOlky9VQfE+7plPtsYGoOU0FB0aNRBsFAxH7UsFTeXK6uPn77fZkulWuSwMA9HTApM+5Z5uIDYkMOi5VeGJllCskJvNok5TNi48Hh0NaC4v7/hdHoQJtcykbQTkaXsZUCOGIL6kwljcwUblKMpnWpSVqaJWVud5yRslwyh0J7ZmGIyBQI6nzDrhRc94ZW5Ue/O09v/b3kG/8YAnTE4Y/A545Kwjo1bQZRSSjBMM3ePJ6Yl8Lvvv+Xb9+/4/uYD948PhFAy+OWCN058nbfF0Tc12VI4G6izKhlg2Zit8WANXb+Xjj5krEexIQPWk9VpdAV4T4ngPaFpJEOq807apnkyTgMTFODNkK120Mk1UDRnq0nXfjaqUbU6ujGK3o81hnmZa4bVGeGzxJRZsvCdGmvJTQNdV27/s9rTcsPL/BKyh1HzuTpV675CbV4Qc6bRNt3OOXJOzNOEs/aMYWtI7PseZwyvXl7x5edvubw8MIwjRy0rLp3zcs6q2RIVxNRAJkNcAmFWUeYC9oCCfJItdq6h7XvIEALEZDBLwAwTsQCuZr3uArTKPCzrWZN2GoykXMTRRfg7KugTYtS939K0koUvwLY1JdDSvboAP9VWP1+sUWdeASXVBGz9ve2zP7ILBi3vLeto1SMrG1HW9ZWRcvUlBkJI3Nze8t1333E6nbi7u+V0esAAx+MDjw935DTjbKLttG2ESXSdJycv7NmLPc4kHtoW5ywplQSNB5OxzmAaSZSEeSYsCt7ErEL+olMXoyVYKaOclwVnxZ7GvAJGeXNdBfRZQZDi2MshQtLmzM+ljON6/AxrcR20TF61lmp2m7o3FXZnAVGiamwJAKRgj24OpnxtRr8kTHK1s6uP8kPHeeL06e/4yG6U8xUdRPGPiphzjFE7246qodgCUkLZtG0FfnzjwWhijQIKy2elCv5sz+v83IovV+7pxgsrT/u3PMNabFvP11++5tB3vH1xwb5vcI3l5uGWFBfCvLBrHCkYvM04pOTL4LBkrMkVALJO9hwXpIS0Qas8MjSNp28ajLE1OZ1SYhlHwjKLcH5OUjWgjUtizpgEOIt3q99gC+iSc9V9st5LJ04gp2qv1oSzrgljRROSZOodlXbyKh9gs7IDkUSpNsYoe2GJI1JMNSlTO9nq2IWQeHg8gjEcLi758OGGm5tbdrsdXdvhuj8M6/zBZ+Sc/x/GmF8/+fX/FPgv9PH/Afjv+CkOLmImMblS0ygBSrmyzePNXvSDC2+7nM6nual/LYF823q6vpOf50vi6QrvDNF4bo8Tw+Mo1L9BOwlly5gbMnCKYHPA2sS9G9jnB2wz0Zgezw7bLAzh99zeS83mh/fvuLy8wDcNVy9ecLi8xPuWq6uXuAsDxkppwSaz9alryptfbO/B2rH8SXbm6Q1fj0fgw5Nn/NHjKH6iFZ2eFSaVSbrFQjBkbzCtlnc5C9oRRDYpoSpW7EOBH2cE6b3YX/L561e0bSNthdXouaalaTtZYM5jXUPKmQ83H3j37h1LWDgdT9IGLwhzJMSg5V9GaeiFfbJFq2S+bOv2hVkkG8GWWeRcI8wV5KIN4kwnbb2bSaS8kHKheKwBd53i5cJLbW41Huu8lfttq7F/rjEsh9UguWQ8UhJGT/k+DNKq/XQ8cvv+A9M0Mg0Tx4cHwhIomUUL7NqW5uVLaomW6hwcdjsFfmaWxTPPssFN88g0DUzTyKw11jHFajxzlvHKZfPdlHqVTUr8lHNh0eJUWue0K9NqnI3ztF3P/uKCru04XF1xcX2NM4bWOhojG8zl9SX7/Z6QIofhkdMsGflkDL5pGMaRcZw4nTIproFWjmK4g1GsEzkXR8ampm4uzzaOTwN8/bkCAxX0SXV+VZdVgZ/Ge9jtNlkobWdaFmUWEcI5S/mdsVlLoixd79gfGvb7VmrP9T2meeZ0GjidRqZ5OWP8lIUgTDv7sb+9cZgK8G02wYIx8tnbjk3mycaYcyZsMnj1OXV+nD8WMMtUO1Yqs62xGOuxvsF5KYuSRgHPOIbIvZAadnXFDUQj3XPq3ZAYS+i/toT0yhDaPKXct1LmnSUKkMfLxHR8IM0jY+8ZjwfS0oJF56YlZUfMqiMQEtMyINogC8fjo9raWx4e7ggxMi0LsVLZHK5cQw7yhci7FSDSIcB+cVCTBlFGO19kpFuUURAyRciloyBlXkpQ7rBn1y3Xuwn08sah2tztbcbiufwba6C3VgTic8LqeTjvyM4SU5IuSylx//jAb779nsdh4G9/91t+8/tveH97w3GaWMKy2fQ3e4GOeWljL3HPem2F4URWfYFU5oDF2gaDo2sbvD/IPHcZbGkFbZRhUlrYSqA0zx1hGSl6CilGsam2JeHl98GwzCrMmQ3eeDKJbGJdR2caLsUkFWc3SaAm7dDleqelAYNqA0lyLOXMkkUTqnGO2HXQ78rtf9Z9sezTwroqI2GpzJni5CM2NGFw3tAZ6VrVdVJGW8RZpXQy0batBBHWYslcHnbsuobP37zi+KsvOQ0jj8cjd/cPUpqgGhYpr2LBArhEFk2UnI4Dp2WoCatSpuBSaSlscE1HvzsAhphkjRs3gzuylPE4Y2GvTQ22IIAEwwJ0xFSC10iMI4OVrHs3z1W8te86tWvCaikfUXUu6mSoPsizrEUBfayI9ctFiK+TNdb4ZDDxhLWIVh8XOQbdq/LTxxp4zvPC42lknhfeff+Of/iHf+B4PDKNR8bhiLWGx/sb7m7fE5YdzmX6XpJjlsiu81haLi92XF9d4B3cfOhxzpGidifzDSYrg8KJftpoLJlRSrlzaaAgwE8OIBo/M9NssTazxEhQ8CTpsqw+uI73ai1NTabIUIkIb71DBhVAP4s+nnUtrqNRh2nzeWV/X219XSsqsh7boGXSTrt6BbKxkIKCPgrQm3XN1y555jy1cFbu+QQ8KedRzvU8iZWrGS/2Wtbq2ngDjGrQRB4fT1Xjx1pLjImua9kf9hjtLCssayPMbi3NTBnxQdO6XqtTszkVWJmX1W+ufysx8/OsxbZt+PWvvuTQt7y+vmTXNTSt5cPNdxAm0rJw2TrMIgQBmxdIEZsd1kjCwVlD02jjkAzBZTCRxjXYTq7FW0tbOkPPM/NJErPTMBKmiaDaPoV1KEoA6os6g3F+s6fa6jfFEDAqTL1lE52JbotyvrDynOj32WQwyay2rXR2tpZsJHHpAZw5K8fPKVXg0qAagUb2fe8cFsMcIje395yGka7b8d3377i+fsH19TUvrl/gXfNjQwL86Ro/n+ecv9Gb8I0x5rMfeqIx5r8E/kuAL77+1erMw9l6PlsnP/D7p6SIEhScfd7ZY3NmlIwxOG/JyWhNvMVYESOdY2IOkTlk5iDlCYtBavZYtQgMGRcCZglYDHEONPOCTRnjRxKldl1I3U3T4JsG5x1NE1l2B1IIWKv18MV4lf82dnW9TxvjwuoSPsPxk8ZxO4a73U6BEM6NxxP7Up9QM+lmjUhrZnaj65OlPXWjXS76rmO/39O3HV3bsO86QX6bjqbrtUxFgjLp/rIwnAbmZSapgFqwUtbgnHTkkU1Rg2BNYZZNrWikiFXQC7GGknUV5o1mr7R7UWFtWbMCPylJqUQsFOaacV4d3zXbZWpCpRjrOqn1ewl6/9wxfDqOn3/+ubxv2mRKUiLFsG6cKoo2TyPjcBLx5VG+QpDsrFUhR2cNRltdW2OrOGfpWFLfP8kmlzSQSIVuy7qp6rn+2DXLvfnhP54F+GevsVbre6VlpG+8MH6co7GOpvF0fU+/6wkpMhOl0NYYdn3HMPVUkWf5KD0yRaRYfqICHFbvg18BvE8df/RavLy8qFNltR0b0KY8zhsbU+/Q6sC4TSlOzq46+0aZSymu4tglw22tqd0WnFMGQk41Ux1085L1UO/IE9uVq9Go18E69k/t+wrwrAJ2pXTi7Dlwtm4+BfZsH9f33f5c5pC1FXwtXz9y/ElrUerSoTpk5Cdzq7xGv7MpFQBKUUh5zRYk22qkk6X0MllDikG+kpZePgXhDGRWLQGgApxLWLQb05OuKRsxwxJ+lfMtTnTZCsq1lo9c2XzCKLOZFfg6974/WvvFaS2hWzGvPLG7f8TxR6/Frz97W0u5Nv60llMZSqekmCJzWBjGgeMwcBpHxnlkmmdtv612UBdEgbnWG7W9H2XRlGBiW6ajr9XuhViLb6BphAGXrGiAyOtk/AVrF1p6tgmfPNDUUkOZV5LwkVtbvpesp66dbM7XeRnaJ2NWbH7dGzb2I2k5ioAQiZSNBPLGSDm+taob9YO7wJ+0Fi/3/dlc2Tr7ZjsmG8Nrqk2i/q28RQHTQ7BaHhs0sFCdHi2z3PU9gAolz4TocEtQgdcsQrVWEktLkPkQ40bXMK9lDObJjS8tjsGIBlRJimhr7gJmPXW285M1U9lmxdkzRUxaukNll3HBltPBu1KiJHNj2+yjTuOcztfpnziO2zF88/nXFcwo87uUS5xx0OolZz62D8X2PLU0BVjWx8qAKUzzVSBf9JPCMhHCjHO2spybxqpvtYAK2Vq7KfnSBEPRNyxG0Iiwne5Djqxae5IQ2wJaGvVswJCytop22hbceXLZGwDgCfAhY1B990+/5pPHn7QWL/a7J3/99PuvMNAGCM+rbdk4NzrPNuWFyIiWPWqzIf3QKW7P9clj89Hvy3vJnrSef1mrhTkSY1SQ51zuoJR9OW2UUN7PGgPWYhXMkHX5qfvzdP6ujRjKHDCb8cyfWgrr8UevxVfXV+x3Hbu+Zbfr2HUtfdfSNo1obTqHt0X8H4rvIP6NlkXq9dqyH+h3a1Snyqh2oHbMNDmLiLeydWr8pZtS9VDy5hfVKBkdr3I/cq07366GM6Z/1nR99UuejH+JA035TGEa5UJxVmO0+lG5glI6WyWRpO5yyqLHaAzSCXmapaHLsogL9hPQgZ9d3Dnn/N8A/w3Av/w3//mGUVo2zicL5XzvoRqgT1zLp9em3vq8fU6uzkdxOKZ55u7+keHxgbvjwP0wM4yBtCRS0gxTgqVsqEUEK0GYRk6AsR4fwD8MGOfwXY9vhOa7u9ix2/X4puH6xQsuLq/o+p4vvvwFr998Rtt2vHz1hsurF2pwbD3BMk+Lg/zpK1xNcyJ/cqh/eC/9447tGL58+WKNI37oBfUEs27sRr5FmfzOiPivMZa+7bjYH/DOcXE4cH11Tdu0fPb2Db/6+iv6rqfvWvZ9J5osvsE3rQRkVhyYlCQL/f7DB+Z54cPNB95/eM8yz3z48I4P799pxvrE6Tgo0FDDkM0Xwggqm4cRarkxhq7raRoRz7y4uGDX73HO0fU72qZQzgXACMvMw8MHhuFRPvfhkXEaIVM7cGiII/NR239mFfE0RhFibzHeYX6CWNcfO47/8m/+JluE7hhnyTos88Tx+EBYZm2z/sCyzMr4ec88TcQQWKaFFJPoutBQUHSrm19xYkSHIBHmWQxxSoQkGe37h1sejw8Mw8A8T+QsmiMFMKnzaAscnlvtuk5S+VmuUhxvY4V9sHldNnK9S0xSjtG1dBcXtE3Di4sDh92Oxnuuri45HHaklHi9zCxx4TSO7C8uuLm75+7unnEsxnaWrhCgIsHStahxjkPb0jrHvu/5/MULDurc/z//+3/3LGP4xRefZQEdtRVpzuQwE6YTyzAQphM5jBCnlYVlLN4mclxIJsOG+VYAqm1ZVsGOZt1UmsbR9o7GO/pdQ9d52tYRY2QcB0KIjMPAuNEskbE0VGHNM2MlVixvBv5Tf7d2LS91VRSWMzCmgm66iT51wM6BHWpNeNFsK+UZnQoueu/Z7XYC3mtL802p1591bMexbZs8L/N6m4yAyFLmkc4NuWEN6lmdkbKvlSfZum7O2S7lX06GFCGFLJ1ekpQoTmFhmicVH15Lhkxj8K3ZdFcsdfNxLWGx4LIGIRX0kZbvTgNALW6Qe/DkntThOotJcnWWUpT1nFMS4rQrvkG1pKsTl/PqA+RNbFKCvD/sG/3BYzuG//pf/PPST5mSIEDMHwBzjNwfH5nmme8/vOc333zD7eMj33z/HffHI6dpZEmrltjTMf+EY6TXK4+FpTljU6RvO5xJeG958fqSQ/8WawwhToQwkXJimAZOswj7+raj8SLcPY2T7FXG0h/2OLev7180z0LMhCVIMFm6uukXmtn0VdTX4J1XBqiRhICzde5GoY4wTiLE2TYNjXMYMs5KabhzjmwM1jvAYpuGbM1G5vr5xvHzV9drBLQ5CgCzeVENSgrrNekkW5aFx8dH5mmS/SEEmqah7zv26utYV8AYKZN+/eoFy7JwdXnBixdX0uo+RJYlknJimqRLYoyR+4cH7u7uWQgYtC11SaIgdq5pGnZ7KWk+XF5yeXUt45gNIUE2VnxV3yjIFqnC4bWNOLVJhkUEuZ0a8LXEdgUSYjbMSyKkjLOCOIcQcAZa73BOWD9bmYCfEF//0WP4l//Rv8lLUjZkKtewkbfVUg9hA2mAqX9bUyACrojvYMlGHmc96QzCVNNy+Nu7W373ze8ZhpFvvvkt33//e06nEzktpDzjrOXdh+/47W8lLjgNR6Z5oGka2ranbXtiChiX6fuGGBuME0bHEqLo86iVSziylQSNbRq8rkObFkysOyolbEwxsASL94Y5RqYQycaKPpdmHoUdLdceVRh3a6FlT90KjpszM/1MocbZOL59XWKNJ++u824FatanlYB+y8qo+1EuOksGUul8qQ2AvBeAPmtnpu0n53W/FUB0ez7nsek2qXR2XeV3m0SJdLSKqq8YqhakNDgR0HeeFwFrjQgbpyh+srEGhyMjZffWSoyFAnxgtQJj60yX7881Wp8+tmP4V3/xi/z61Qv2fcurq0t2Xcu8THz+9q2UtxvL+w83LPMsDoT1YAxd4+gbT9N6msbSOGlVnpwhOCmplvWapDwLcFkAG0ekIYGJtC7Te4gJ6QKZSo+fjW8DWKf2TEEcmStZ7/d2Lq2abSXhUXzNFUBb/RJ5K/19Rsu+ip+Q6qjU7mCqyyXPy1UPN6N6RtnUeQMicXL/8MDt7S3eeeZZiA9/6PhTvdhvjTFfKur3JfDdT32hxHClThTOsneGs8flwVPQ/Yf2iq2DuwYRqzJ/DbhzZhwnbu7uOd7f8eH+kZvTzDjM2JSwSZD8ECVIzEByWbrbmEgaTqRxkHO7O2LNO520WtZkLU3X0LQe5z2X11ccLi7Y7w/8s7/6a77++pfsDxe0znF1OIhWjSs02jJ1nsCTfMKQrHeI/InF/BO6ev3J41jqDp/iJuenqQFYVgqbZqqaxtI30vr51ctXfPXFl+z6ntevXvPVF1+x63d89eUX/OWvf81uv6Mvej9Kny7K7QI4yAZ4d//I7d0D87Lw+2+/4Zvf/45hHPjNb/6W3/zmbxnHke++f8f3378XemSUNohkRDNI7z3Z1G5bIP6fc47+4pL9bk/btbx58xkvXrykbRqur19wuLioTqAxMA5Hfve7v+Pm/fcMw4lv+IY5Sken4jAVpoUxQgdnljp5aZkZRTWzcRgv+iLPPYYG8EYEjKN26BmGI3c375nGgXEcuL+/ZdZOQHcfbljmaRM6Ak2LMzusEw0JaxwYaYtdNiOyAEphMUzTCINkO+9uP/BwfytdhKZBnQoFBsqGZc3aAUTnXHU1S615NaYbbQvNCJPWDFkBg0LKzDHSZHB9z+76il3f89nnb3n98gVN47m6OLDf9ToBZLcYxolXr95wc3vP9+/e8eHDDQ8PD0yjZRqPzHPGGUPnhT20axteXVxw6Dqu9gd+9dlnXB8unnUcDTKH5Lql7XIKE8t4ZBmOhPFIngcII9Y3tK0ViQ6byGkhhoh1Da7pJIO4mfcliw1ZRfQGchbg53DoaRrP/tDR7Rra3nM6TpyGiWVaOJ6ODIO0XhbgZyu0//F1nMW4Zus8FQBcgR/V+RJQZqMd8QT42WbRtr8/K+3SgLK8voA7Bexp9edegR/pqrHW2D/XGJbzneZpvXaDsCxUE8bkIjC9OqL1h3o/178bkzWPoO3NN5hIhZ2ziHuGmBnGicfTUdgGITCHWfRBtPuSCJ57LX3TuDhFFZ5cBSqtNWS3AhclNLBqD4yCPqUMKm21lzb3QzHCel0FPYkaqWVricZg8soqLPT8ksQrqLDJ5+dSzq2+96ePP2EcMzkFsnUY46V0MBup6c+ZOQRu7x84Did+9913/Pvf/D0f7u74cH/P7eMDp3Eir6H3BjrTMbUbf2DrG1lxLFOKpGXEBEfa7XA20nrHZ59d8xdffUXjHfcP99w/3LIsM+9vM9MykIFD33FxuCJnuOOeoHPx8mLPxeVeWEv6iSEE3r274cNwL5T0EDFFODslEb03Avw41afz2t3JWotvW6yXPXtZhFEaDcSwYICuFeAHsgrGC1CEBeMbYdo2DclaVq385xrDcsPP58U2mMuaTc4IGJKMlhEhczYbWOaZu9tbnHMcj48cHx5w3rPf7bi6vBQbs99zcXEhScKu4fO3rySTq8L8KWdiiCza4eV0Gnk8nliWhW+++T3TMCBdCzMxLKphsc6Lpm3ZHw70fcfV1TUvXr4kAyHBEjJYR9P1ON9Ciir6HRXn0M6r5Z/aYO8sTrvqWQ1scs5aRiG+S0wRFgmmUwjCYLGG3DW0zqotUGFaDWD/ALv3jx7HTGZJspbW1sZGWzIrHFIx01ztgwBDZa8q5cQC+mTj5C8aNOYMIUUmncPvP7zn7/7uP/D4+Mjf//3f8803v2EcR5zLeC86Jd9+Z8EEuq7l/uGO4+mRtu149eoVr1+9IgPOw+7QkfKCdYYlhBX4KQKxxpGth5yxTUtjEFZZHNHtVmekgG8xBubF4JxhCoExRrKBkOWqjUFKyWzR6duUdFXgRDVycjqzTZQ58uMA3p++Fp8cHyfDi8Evmk5bdnnSgFr3xpxIIcgcSFFLvTLOWtrGY6wlRE0wlCjsqXOyCfLXBNk52PND4A+sPiyswI8AC9JpKiVh/M3zrAmpRvZdDMsswv9WNWmcE029sp4qi0jBIYzfnMPTe6bbpDn/7Y8P4x8/jo33fP72Fbuu49X1JX3Xkknc3d2Kj53hm2++EXtmrFTBGEvfefadMPJ942idwTgDzhC9ler1st+QcYDTed8QaU3Amki2idyorlnQUkCoAFkZD2edMoYQO5Eyy7wQYhQ/aiNXsAV+YAV+ZAxW37XOA9QdIa8AzxZcZ523OYlkRIqqM6s0yZwtzup8i7mWjQ+nkdvbO969e493Xn3unw/4+b8B/yvgv9bv/9ef8qISw5W1dI6Ubh/n8xedPcd89Hz4yAc+f93Z9xIcaIeiZWHRDXaJGZfBl4AHztrKFoMfcxKnIxsMk4qNSWCZBQFgWbSMxEtmOsVIXALHh3uOj48YY1gmaRFtQcCfs5tlNlHYD19rvZf8wHN+fCX/8eNozo3F+fiUjMiTM8lr6YE4EJJVb5qG/W7H5eUF+92eF1fXvHzxgv1ux6uXL3n58iW7nQI/+147MWkHHPEaBDjJYK3H2oZZhb3GcaAfOx7ur7m9vcB7x8PjI03rMcEAkkmrwsG2hEXSHnW99RIgtl1Ht9vRdR37w4GLy0uapuHy+prLy8sz4KfrGh4ebpinE8Yaur7DN019vxoE2zVrhrWqayHns9ZymFWw47nG8MnwVDG8ICVepcxLvibCLKyWsCyavS90/zU0qZt/OWW7Gj4BdVQwVhXrpX1oqEKiZyfEx5vQWahWfBJMBSvqdzZGVD6ctXRC1nMtJYDa2cq3De2up/WebtfTKfAjTaNlfR4Oe+Ylcjyd6LuOtmlIMeCtwxlTqdqNs7Tes1Ntqn3Xsu86DqsY6fOM42ZzkRsQV8AgxprVsohosLMCysmUO9f9gSf2lXMApv5etRyqzk4ZF2WthUJVVvZCOjP2MqrbU/7kRW1/2jhRtdTAFMrvx4wfoc3b+ryP3v0J+FPAowoqaz13YQCVFqE/sdTrT16LpQOPsWUip3Xu8rGTth41gqnP22IDG9djexfklbpgZOySinhHQhHyrqyqfI4Isq7SSqM2PPmM8+Ppef3ooU5SPUdW8G5LsV5/V9x+ntglziaZyXm9hz98qvAnjuN6TqsNq2FTSsxhYZpnxnlmGAdOw8A0zbUD3xbQ4RMPzwfWnF9DVjurdHfrpKx917dcXh5oGk9MM9PcYEzGe1sk77AK8JEV7NN10TaNtOm2q2Gf5wXn/WZu5rPTk+8FkC1aeqaWpJTHOW2ynVk6DhkyMboatInvtdXV0P9MvWR+ZCD/9H1R94sf8qlysWGaMcZs2GUUrZ1YO+c5a3Eh4Kxl7jpyzjQhaBBtsQqOAQIUaOlzjJkmKtMqUQWU27bRLlArk64A9dkIsOK813brjQZPItJdtPeq/VO/g7XfnNrNUvq5BiilqcVZ8H1my1VkWOeFxC4ixJ5iFK0KDNlK6d6qu/Ojx580jsLCKsHw1jdYfYZiZ1au8GofPoovxI1dmSRkbREtWjLjOHI6nThp0qM0rvBNOR/LNI2cTkdiDBxPR45H0SHZ73fMy1zBiZLksBttuqcWXdajjokTIdxSlrwN7KnXXbp8pVWTsC4d9X3LnlkSNHl97flKZ/PO20/6wePP81HLp1QfYvvY/OjHl9Fdy75WgWo585JsNNhsMSrKf2ZaP+2oUMq7ZDmYze82ftnmuU+ZQrVEllxlKOr4aAfKwgBZx0wndB3/Ml5ih1Z7uRHB3uz361k92TzMp37/0fFHj6MxAv40Wr5Yunt1bUvXtWrLnJZ6acJWfWmRRygdu4qvprISuYge52qHbQmlTGlGsDYlyJsw6lMlcWazBmr8VWZCDTrWKoNz/+P8/WoJ3acCd32tqYnrp34N9fs62+VD8/YTNuBm0G7LIa6s3D90/JR27v8n4L8A3hhjfgv8b5GB/78YY/7XwN8D/7M/+Enl/YAz7rXJ6w16uoa3e8t20D7l0LOZshufaA1gNGuqQdEyDjze3/Nwd8fpeGKeA0tIWjcrr83rSK07h55DKb6xOWFygGyIxhJV7C2ZTMiBFCzHnJiHgaF/pGs6ptPA1dU1l/sD+76jaXsuXrxkd7hEKKi5ru2zY/P566Vut65P3Y/6Jv8M+H/xTOOYC79OjaZxm1pjvXfGmBqtdG3P1dUFTdPw9vUbfvXLX3LY73n7+jW/+voX7HY7ri8uef3yJW3b8uL6mlcvLrQW1NF60R8wOUtbWcAY6eqVgX1rMFd7Yow09jOuDg3zPPP6escXb68ZhhP/7t//B3ZdxzhNfLi95+buXhaKkYwxxtI2Ha5psdbR7w/SCaVpePP6DdcvXtB1HZ+9/YyXL1/SNA1X11ccDheVwmwNTNPI52+uub/9wOPxkc9ev+a7779jmRceHu4ZhlEpnbOKeGXJamYlIBfOeOkJvM6DZxvDjOoJLLMEIOPAcDoynE5MozguhcZvrRG2Q9nUtLX62n5UdAOcl/K9+lhr0b0T+qZktLXTmVk7fZTyXmuoopGZLOJoT+Lswm5bN0DqDSoaM8aYNQNq0AymiOQNgzD1cs7c3z9we3dHCAvT8opCrXTe07StzOIYIEWckyBqOeyYp0t+8eXnxCBlcL3L3N05Gue47Ht67zn0HV++fMXVbseu7Xh7ccV+BX6ebRyNkdKXeRoI80QYjxAnXF7YNZlXlx3LTgKLpuukjjzBHAtLaCEsMvcFFJP7b02pmZZWo9YYcB7vpNSy8Q0xZh6PA/McOB5Hjo8DyxKEblqybTpmUuZlzkH9T17Pp52m2grZSne2wvhZu+dsaq63ujOsm+qWIfS0vKvv+8r6Oez3tTNPq9+3DKHnHsOMdOopfoxGABX8KVa1OvJlfyuBMOWHLeCgJV2UHLaUecQMJmWSiv5a2+JcpPWRYCI5OWKQPcjr2rWqb5Zql6w6MvWelpGuDqsGGuLwrktV6tW377GOEXntTFQ0KXKlrhf/S9mjUToQCn1eWEBZJ1DdqlVnrbyuvslmej2Xf5NS4jSc8L4BY/FOrlVInJnTOPH+9o67+3vevb/h5vae27t7TtOs3ZGezHlqlU0VxTVIMwhnXF1LUe+36HhErIH9vuPzz15xOOz59a+/5j/6m1/TeM8//NaR04lhNJxODfde2KYuR3KYIBtaCxd9i/OOL9++5osv31awAGsZh4lpnLm9ucMQCElsqUX2A6f7YNs0tN6tzpsGqbXlbl3T2uyhlg6et5Yu2VXxI6RJQ1haQtiKij+vb6Mffv7zJjAqD0W/SUtfTFZheNFGy3EhGgOzdBKyCpj0XUfKma7vKWLJIQbmpTSG2PquVjqYWUid+KBL2/Ly+prxdGKcpnp60vFL1rpzjjdvX/PmzWvaTnyprmur8PMSZml4gZSJYJQdm3z1lyvYswF+0M6meXN7chZyctQfqqucMnmJWDLeiZZQE0TXaPEO70oZoPgAap+fZS3mTBVHTQXkSqIZVhZVSCW+MxU8kzsuQ13Kx8mZkBaWuJBylg6npxMxBB4eH7i5vWWeZn73ze/47W/+ltNp4ObDO6bxRFhkbS9WwRyTiWGmaRqG05HHh3vatuXmw3s+vH8nQs4hYIyI/e8PB16+fKVl94+cTiexkQgIaAy4pqG1rXRWTEHtowD5hfkRIyxzxNnIPEfmOQjMt0m4iS+m/gRadp+UZVnijs28EFB2Cy39PHFGPer2pj5EtStZbUt5mmyOpfNSDJF5miAlEej1DcYYZQNLLGmtVR81E1OgMKXOgPy8JjelT4zZxGgr2LPdjbcZrvLUs2RaRmQnTNGJijWY31634ktU8XYjZU0lOChrlIxc7zyLj4SrXRb109mO2seY2SaufK61iJAecgHC1R7s+55w2HPY9XStAEBS+SL7567rJDZuWlzT0nYdxjqC9zRWm08sM8skEhmtg1ZZiqmxzK0lWEcmEaJcuSWeldoV96km43V8smq2rn6ogLzjKPa2lHfK0H7sZ27uIdu1sQX/tr7q9n0KcF72ggrosxmrMiFQYLMkSoo0wI+Dd8BP6+r1v/iBP/2P/+C7Pz02DkxtQW6ol3UO+nxqgpqz5390ruV7+QxW4y6vTrJDxYXpdOL+9ob721sej0fGWTZfvMGr9ZcAM66An2pXFhFHyFiCOLIYcnYkLRlKOZCCvGwcTpDBNw3zMPL+22958fIlL66uuNjv2O0vaLuew+GyXtZ26M6uVk9mBX/OgZ+t2o/hbOL9h5zzf/6JUfmjxrE6JmXuWcBJ/X3pxpSKsTQ6GBh23Z7P3nzOYb/nL//ZP+N/9J/9G169eMHbN6/51ddfs9/10r2rK1o+IrQrm03CqiBbDguESQyx9ZjsxdFuO/a7HWB4fX0gxbfEGLj9xWfc3P2K03Di+vIS5yyPj0fcb/6B03AixEQylmQc1jp2hz397oKmaXnz5nNevnpD1/V89dWXvH37hq7rePPmLS9evqDxnovLC3a7XVWft8aIxs/dLxmOjzw83PPFZ5/x+2++4fF45O///u9Vi2jm/v6eYRwAsDaSnBokK1mJ0tVqk+l/ljEEMTTLsjBPE6fjkdPpyDhIN7R5Gglx0Q5PCWsMXdfSqMBcirIxekXypeOEr9pL1lrRYzAqpOwF+EkpUto3u/pVwB9d/xrY5YyId24N6Q+s+fq12awFxCjaI5ptLpTZRSizt3c3XF4cCHFhmqYaOPrG03Yt5ExcMjEk2ax2vU75xK9/+RW7ruHh/o42L7z3ls57Xu737NqGy92eX715y4vDAW8MO+fxK3Pr2cZRgJ/IPByZxhPzOGDCiM8z3sPuRQ+5EzCuaTHWMEyB++PMskjwHKLYjRAziwJmwgJQJy8Ji8YC3je0Xkq9YoCH+xPeW06niePjSFgC0ziRYqpdhopTstrtT29MW7znjOljisaPAjZuZegU8AaoQePWcdoCQlvwpoA6pbxrv9/Xtvb7/Z62bT8Ce56wiJ5tDMm5OvKrU6sZuwKpmI05LS/7aD2s9r7sWVpAKfoFSDcek2TnMrbBupbGZ9pGdDlytAQNYL31tAr8WONYOz6h4G9hdKz7zzZTuc1mpiLUWPfKcyxmXferCPwKAm2iTMTxjhRGhRHtvU22uganWwf6U1mw/Hz+TUyJ4+lE23ZY15ARvYig1/k4jHz//oZ3Hz7w++/f8e7DDTf3D6KxFlMNWMqQGqjafZbSIVDspZc+7EAiliBFM8XGZA6Hjq++esv19RX/4q9/xX/6r/9akidN4PT4nuMjHB8abhtLCFmAn3nEYOgstPuOtmv55Ref8Vd/9Wu8bzBadvX4eOTduxt++9tvJAgNQXXwkASAkfWy66UpAznXtuQyAVZWtDVWALsEIS9noqZiz7MyRYzqsRpydIR2Ji4LcVnK7X++tQifniv1byVoM9qhdjNsVvathAY6QAwwjTKixhr63Z4ELDFS5AFihGkMxJTWbqPG4L0I/RoMthdbF2MkzBM5BqZ50g5aVhIdWG0u4vn88894+9lbYVVfHOj7nmVZACmxW5aZTMJ5Kzo4UdpDl7mHjqnsyyvLstiWbYAS9WsL/IiWXoRc2rznmtnvGymvcdbQuqwlRs+3FnMWDSqTLdEJ4Cj7mKnDW+asVZaB0bF01bM2IgVAYl4CwygZ9fv7O96/+555mnj37h2/++Z3jOPI+/fv+f3vv2WaJk7DiXE86lwO5BzAwDSeuL+/wVnLh/cXfPv7C5rG8/LlS169kg62b1695vXL18Imv7zg9es3jNNIzjBOmlDJhhBF86PrW3ZdJ75VzpCtlAtNM0sOAmYEAR+NicxTYBoXbIYYlVmg4IfTxEoBfpIRe15WQxEUlqTcx+C9Hs+7FtGBKroVBgq1w5TIXRdlCbS3JTPij4zEGGm9Fz0YI9piWd/OWUvjG0wS/TKyAmi6J9XT0P+FKbkp09FzPAd21r156/WUVxVmVklUFnbj2gBlC04UP0z0vDCOnGx1fGV9CmOv+F/Oed3fy/kXpt7qUzyNI7fX+Wxxf5ZS1BQdpcOsd5bDvgcSh8Oevu/o2lab9Ug5fb/bceh7mrbFNy1tt8NaR4iRvhFdsnmAIU6kCK039F5LIYMj9J4QMjkHZm1daEmQJHmwjQdK4lm+rMRdOVeWkcRKoQLnK6vx/BBJBPUVNxDgtjSw/sua2K63Kdf3qJIVQKmWOXuvrd+XV82hMzHrP3D87OLO50dmS6MzNb1ZHuvvN68ozzEAHz3evvP561a0rLyPKZGhdiGIxBAEvdOa6tLecNubZPt+eftBhsp8KNibUWSY+lFlMFdq5TSOtdRpOJ0YhxPWOWI4r1ivYHE9gTUAKL8sIsTbx+bpG5y/y7MceZ3Tm681KNre80IrbpuWXb9nv7/g8uKCF9fXvHz5khfX17y4umTX9zTO0TbS7tcUceDiWZW21CkI+JMTuKR0Rmm77PXp3jrwhpQcYdkR4wXeWS4UYU4x0mrXhG2dp+xrtnZ7aruOvt/R9z373Z79/kDfdRwOew77vQSJOxHrM8bg9Zxj8Jg003mHs5aX1y+YhhHvPR8uLhgGadV4Gk64RYJWY4VmWtuqrikMvd8fgx5/5iiK05ZS7dATY9BOWytbQwdyk9nPK5Pj7LyMthouY16EczeGb5tJ3AT0q1K/Xnfdi7YaIJ8GfX78+tb3ySmBFeFCKWsLzIuUXvTzIloTWqJUQIK8WV+YAoYI26Tvey72O1KY2fc9p76jc55917FrGg6tlHYdug6HoVWn8uc4soo7xhDIMSDZDdF5Kd3HjHO4RsC4EBPOQDTasCBr15yUNoDN6vBnRXrXEivVPtAadXG0ReslhLBp+ZpXW0kxxk9GzZx9O//TmU05Q4U28+e8/GotCzkDaervyvOfsn8K82f79an3f/qez3Gs03QL+rDZKcuHn13Mk8f5yZOqWkX1mSWMKWCQPKeMqbMeQ1KtB4fJIq7rrKt6H4XF8xH1X9f0uuetlOhPXejHjonZvOcK1FV20XYdZnH4t2vzY77r5uO2n7X1wJ/7qIDVhr7NuveHGKXMa5qYtLw8xsi5i6//G7mmlfFj6pawBuHS3aquDiO+kjHS+rbvO+misu/Z73sa7+i6hsZbvJdOfK7YZPWJsimi4KJT1mm3qaZpML7Bek+Kia5tpJyolirLYcv+qeCsdyI+mkOuIcbGJD+9fR85xgXAF7BQs5nJrMCgAvs/x1ieHZuYsz5l+3ujvLoMpeyrzACVvgGM7pubdVrAFLWxWTu95GJ7KV27ZN9psjAxu7al1xK8/a5nv9sJ46cCP47drpfmIt5rS/UCehRG5FrWtf3aXvL2PM+uW7/X8crnc77cwrW8Rkv5VGk5bHyLqJP851mS56UT1Z6oj1FU0Qp5PeVMILE225FxmeaFcZSSzOF04nQ8Mo4jj48PPNzfM4wjx+Mj43iSjmzazILCWMwyT4MgtARbEgqGZWlo24a2keYBl/uLmsBwztMpS7hpW7xvZM7rupe1Jm3ebRI9mKZppFwyZJKDYu1Lidta7pVUG/H8WOOZ8/tY/rgC1MpDKGP3E4LNP+kocRvUhP5PPnTMY0qYEIhGNYzM07IrquEtsVzOH0/K7Roq/sw25vrBMi82q/7sc6jvJ7Yuna2lT7n9Z/vi5hPKuJRkiTHb9xKWVHUvDBvAp9yozeNnPKqdKA6B+vS1pL502NWKEacljqW8a+3mRQVqrf5Q/l7KuApD3WnSMmdbf7cduxLHr3uq3sU6zQtKsbV75wnFn3L8FF/xI8YQqz9Tx6u+ob5n8Zn/DF/0Hxn4KYYlC+Mn6wTczPDtrT5zYetFPnVw15+2fyl0eFuMFQjbQGlncV6Yh4F5kCy1zElDyGAViUs4olWHpdgfA5aiMYNstvqcpAuvrKMqrmxW522ZJ05IxuPbb/6B/X7H1YuXXL54zfXLV6Kur1nmsmjKVZvN+5VWy+JwyAZs6m/0w43Z3MVnPAxlpUlLQV28Rim9RYyz73dcXl7TNC1fffEFf/PXf8311RW/+uVX/OLLX3B9dcnFvsORyGFiCYk4KAXZa+cvCzksxDCJoOhwIp4eJNtrHdZKeZHrLvG7KwlI1XnNORGGE2aZcHHh0DheXV7QGMPlrqdrhNo855KpFoPUOkfrPI0xNBl8yrAsxGEkpEQcB+LYYbwnekMwSQEjJ93dcuZqtyd3HZf9Ho/h6y++5OHxgZfXL/j+3TvuH+75D3/7t7x7/455Xnh4eGCcJkKIGiwg2VDzqYrUP/9IKYsA7zAwDiPDMLDMi86zre6J0p/VWYghkkIpxcgr7dEYfGooLRhLBymrQfTTYL3vOg77A955TqeRruvEoM9L7fRSgghj1g0AhLRXWRysHVe2jmjZlDEbnoluikKtF8bVu7ZlmgZ+/+1Ldn3Lfr+jVUFKgBQXcmk9r2V5rXe8ur6itYarXUc+PnLVeBpjuWwaeus4dB2v+h2XTSsZ+/T8KzHnrK1jR4bTI+PpAZMCnc3QOprG0vWyqVrnsL4Fa3k4joQI4xQYl8Q8JlKUzGAICoLbVRjYGI+zjQJ6pcWzZ54Nx4cFa2EYRk6noeoeFBC14JgrVPDE4QDKrrANas9Anye/2wI1XdfRqW5GaS++/V6O8rrCENoKOlctDGX/rOLxZi1N+bkP3QOLHc/Vyc6FNLm5VTXc32yDWyCoFCwUoI66HkKUriYh6hrOmbZt6ToRWtxNE2M/CMvLgXXyvnOQTn/SbnoRoE87jxXbiUnEWLArgZiEkZaldenGnVpzMDInkjrjleVTNF42jJ/qAWx9svzEUTJPn/jkNuf1XjznYayl7US3zvkG6zzLEhimmTkE7h6PvLu95/ubW+6PJ8kY+wabwW0TOOp96hZWwXGnwubOeRrfYjDMIVD0KhrnsN7RNC2vX73iyy8+58WLK66vLkXPx1L1DqwBbw1NYVTmRFhmjLFSWt00dE1D13g6ZXW2ux1N30si48ULXr18yTiO3H6IzOMA5FqO6Zyl61r2O+mMOAxDZfLMMWjgvzK8tlnKFBPzNNfAANByCEt2GaxjnkeG4cQq3PszH/mJ/1XGCtGQyFlJCKbM7818tCt403Ytu72wb3b7PV2/wzctMVqWlsr8Ks69c04AWQXz6CFrxny/7wkh8PLVSz77/HMp7UE6Ellruby85OLyEgNMy8I0jbpXaCn3MpNSUFkDFVwvGb2zayzJTVMXV9ljk35FBYRXjEh9w2yliw6WoGLyDiCKn+0xWNNImfsz2lhxT21NWtQSVZLMf2dxjTb0KF0Jc2Yejwz3t1JCosyJmCLjOPOoe9vD/R0f3r9jmiZh/7x/z7IsDKeB4/FxFbtPEeFYanIyS8yTQsZY0fccMTg7EZeZx7s7mqYhh6SBr6zlr37xS8KysDtccHl1XRNWQUvCik5KTom+3xHml2Kjx4llnkkxMA4PzNMJ5ywhJIbThFGpgbC0ZKtxBDK/igaiVsrWe1r2ElmzkFCh55g+ZWqfbzDLPpc1pqqQ3blPVciyJqvNSIllXjhxqj6nweCsYw5ih2JCBNWXKD+HyNq+u56A+kG2br/rnrN6NluAYXs8/VvePtZYqZQ3l8RJsf/WaFMLKyX9xacp7bxjFbA2FKbbPE04n3DNXBPvzvozKY5ygWfRxQYUebYjC+MnBqe6no6sLEDvHG0rOnK7nTB6jGs0EWVZ5kAMGbdouZa10klP95IYAlabInnvaBpJcsaupY87Kc+KGTMukKM0ZkJ8DuO1w6QRoGktmpOLt6jGkPcVtNrO8S2QVH4+G3sDRgGAP8q0bcCeM7dvC1BtfOHCXN/1PV3XqdzGH/7Af1Tgx1DaJW7Kk7a+65Pnnt+AcwTuU7OzTmlz/h4lYEwZCeKWQJgmBX5OhHmpWqcxG6YkAU9CaoTLYsgYdRxL7SQVwBJEUASDoRjMJ4ELmXkeCYuAGL/7h9+QUuLVm7d8+Yu/4MuvfoHzHqetywVDeYoAmwr2KKSNnFkBiNYsYM720zf3zz1KptBa0fbxUtpjVWvDIro7h4tLvvjiaw77C379y1/xn/6r/4zXL1/y2duX/MUvvhLBZgI+z+QQCMtAmI7kFGm7hq6X0pQwjyzjUdpSPt4z3X8gx4hFyrOMsXT7l/QXLzHOk21DtqKqF+KCCQsuLBwaz+urSzpnudrv2LUeQyaFxFLqT62ldV7AH2NX4GeeBXRKkTgMxL7FeE9wEIg468hdi2k83jn2hwNd05Jy4os3b4kx8nB85PO3n/Hd99/z7v17yAIAnoahig1bF4QinTI4IxnAn2EMpVPIidMwcBpOnE4nUgoCptSAXUQ8pYOOCKKbDMEs+h5R204m6WSXUmUHSHCtorhOjFGyCZuFZdV3PReHA23TcDoNIiJqpDxiXoKCtmvnM7dhXpTAvqwLq/Mx5SQsPLOuhmoT9Lml9n82M3e3d+QYOR4feXl9SeMslxcXHPqOvm3E2G5EdpPWhTfe8/rlNS8u9gwXB9p55m63w2foU6bJsPOe17s9+0bKHYhPWFTPNIbTNDIOJ06P94zHezpnueysZv0bLq96mtZhnMc2LRj52zhHvFvIp4XH00gKsQI/MYnOWVQ7KCyBstZayC1kxzxBDDOQGceBQent87xU0MRWn361Yzoi9VGFfX4E9FmBDFOBZu+9sPH2+wr8FMd7WRbmea7vAVTgp4A721KvAv5shZyfAj9Pa7if88g1aDrf2TaX/uR+cAZq1idkaqhWNleje0kqgA+xCgqnnNn1PRf7A9Za5mlmVA2ylOW5KUXCY2CaZpZlke8haLCZldFQMpFrQsIaKT1KVthhcr5ZgPm83s+MOr56j2NehcGTOvDlerd0/m0QSpljTx2wzd3Z2tHnNqnGGNqukxbZTYP1DWkJHMeJYZy4uX/k+w83fPvuhuM4EbECxOYsCSkdvNKk3Dkp9SkAqnNyXd41NE0nQcg0I1tFou17+t2Oru/47O0bvv76S16+uOLliysBeEg4k3FWRN69NbTOYVJmWaREwBhpld43nr71Ffxp25bDYc/u4pLGN7x+9ZK3r19zPB4Zj4/c146MUi7ivaPvOi4Oe12LM9NcWhXPTMsCatutMQr8JM3OR6ZpgpxE8FgBwWws+ATWMY2G0/GRnH8Oxs9TcFrHl0/+miIOm8lVmL2cVQZF2hxYYYkeLg70uz27wwVdvxcWR7Qs89ravsxtpwC3sUYYIZ3HGLi6PBDTK3LKIhQ+zxL0JS25wmjCxRNC5Pt373i4f2AYB4bhxDAcZf2mQOmu5bIRnZ9yB7IGn5+wNTJl5bNKMiVqyUoJUsmZnJyWqhuWDCZKkzsRFEf8Kysg6bOmRercKltvEQ4XYNX5UsIqvkhapBTq9uae3//m7xiPoqdzf3/HMi8M48D9w5EQFh4fHri7eV8FnYfhpKCmBPHFbynM5tJwIevEKIydJUsS2gD3N9JQw/sGk8C7hr7vefnqNZ99/iU5Z65evOTlqxtCCByPR9H7ISs4uAKkJIlD5nFkmaQ5x837b3nIsvbDEjkdB4yWg4VlIas2pTWmgu6xaEZtsg6lBHHLmqh2+ie0kP5Tx7JGw7r+qr3XCbnCKWgXR42bUpYGJdMMBsIuqD6gZ16C7IWqhxT05xhEM8Y8Yd1YBQjkPpTuZ1KOmyhKeudz+Cxuq5djCgoku1dOFDZJTE8YP0aBYwXUk/o4OWfsUsqlVUtPToawiGyBj0k6KGpi3jbr2dXkwtm5lVhyvZfPcQgYtRAaJ/IRQYT9nRM/tLBKD/sdotkq0h0pwTwt5LzgfGAOqa7Xcp+sEc0woyz8pnGy5mmJ7Akx0C4J40YpFTZ6D3PCwxqf2ErlODukBNCfJRXLGD71CT8Cgjb/fYp9/qn7pI/WX54NUHkf1CdYgZ+uE+Cs6zr8uQ7lDx7/BIyfbXZr8/sfuC/niyb/wF9WVPWsBMzw8XBW9O5JZrGeXdn4lCRpEOOnhibX0SgUegMV/NmaIH2TJxeWVe8gRnFwhuHEOA4s8yzlXsbg8pNtsMLuK71yC/acL9TVIYb8tCLueQ41XOvEXKOWbceItu3Y7Q7s9wf2hwsO+wP7/QW7fk+rArHEJCysHInLQpgnUgoYE3GuZEdG5nEgxYV5PDEPJ1IMoidgnBhk02Jch3EebEN2LRg0exHrJittZl3dMJ1Nmg1V8VdTKISqDKUZ0RwjKQSis7XzFSmxNA5rshgea5T9JR0rJGPpaJyvztTlxaXQ/eeJ/W5P3/eklGi8BJ1CibabIIcfXhx/zlHmf+nCFGN1XMoQyxxfRe1qKVaZ53XjKRtWImcpB1unpGG9DKWvW+2k5T0piYPvnSf6hLWLbqwbwPQHwOF6byQNVcGD/OQq1mumBpzCVtKuHPPCPEkLzWmeRCE/BNU3WEs4S4ZJRCkdDohtQ9+2zF2HS5k+JnzKtN7jrcVbq7pGUDQUnvMotb2Vvm2pAZhzmglRJpr1EoA03ivFNtaucmuJTgHmn4DXT/5JNncF8GvniXTuuGxMgwxBPrdWtdr3E3vBOQBU/7qG8hVccnru8oxSN1/eY33flcXz9OtT5Q7lfHV6ffR+z318and7atnLl3ny+81VUoSd6zuZ9ZkpK0M0r11ejCktll3tZJZMEYJOoLXwbO6B6LNogFjv/fr9R29T3j7MFHNRGHtljZY1d/bSJ05WXe8ZnjpfZ9FCDRR+nvGToNeddeJJWTKzs2bpF30cFOSXDHJWv6Z4IJKVLXtRKXm2m7n7FAw32eCdl5IR7ZbSdx1d24loabVf8tDkVbxd5n4J8stX6ShUro0aMDUbkLQCpUa8kU1M89HaquNX5qAMVB2PspdUICFGSvevpGW6edP5ppTr/tzHTwV663ot96DaNSOipdYK08RtWIW2dDpThrca3Wo/N/fPaemcMZCdwes+a5wk3SSgYVNGdc72jrWceyMgqwG0UTsvdm5ju4ulPRu/9fu27GQFX4uFzutk2J6PdqFyzuF8g28amrZ5drt6DhDXHU1YIVl28pypfkCKkWmcBFR5fOB0PHJ/d8eyzAzDyMPjkSUsnB4fOR4fa2JhGkdlPJfPNNIgwm27cqxAQgXPkvqUULUWS0wwTaP4gBmatgEMu92uMn3qNeV8vr7K/FHmmOhtGS0T81hT1s+mU1SS59ZuZ3VMy0Z9vo8YBX62pnU7Z3/OY1vqtQ2tnnp7Mu3UF0xriU7pXGnMylItfs5ZOdJmz/mheVnug9msnydB2/mPZ+tp+6zz+bm+//o5JciX69bxSSvrrpx2ZeIV9tCZX37+/ud37mc8Np+/PY+S1HVW/NPGC+CTjQNU8ygnSSrFRFaGm4DOCsDYjHFrzFZiBXTfNNlW4LlAc6trsEkyll89OfWnCchPHT9mt85jkc3vfmCt/LFr6FP+7E8BmeCfqNTr6YT71GluYwHzA895+vyn7l4xDgX/qoBONsQk4nNSay8TTATqzLppf/QhcibZFEG48mEZ5RfWjbRe4WYwM0UsT4KT4fjI7YcPWOu4vXnP7c17un7HdePo+q46wiXgPDds+iEmY7c1ZZv7sIZwz3gU59BmSd/YTDKJkCMmZ3b9nusXr+i6ns/efMG/+Mu/4erqms/fvuXFyzccLi7ouh1kQwyZZRwZH29IYWYeHuRxXGhaT9uLwOrpeM/D3Y2IhI1H0ulBOmWgeiNYTPsdtjlgrMc1Ha7tMUbadPumIabM6eFREP0MTdNyOFzg24APgTZErHVc7Hr2nbQYtDkS5gHSwunBQFpovCctI8fb95XW7pyla1s+e/uWF9fX9F1Hby37pquGKGPo247PXr9h1+84dHs+fP+Bxjbc3d+xzKFm8JYQSGRc47HeftTZ6jmOnLM4LtPMOI6M46hBSKpAR30u2gJ9g3qXv4jOgpHynmnCLotovBgNIptGDJLS8q0RuLJvW64uLyUwWgLTtDDNE41/kCydil8WEIyNwSzgUdnkzEeWe7UGZwG00U1Dy1HmeWYcpRTqdDrx+PiIAY7HE6fTgHOWVsUzt/fDmJVl5K1j13akfo9LiS5EAX6siD23WmNhHM9+pJg4Ph6Zx4mcslDEFVCTDEhD00j5ifUNvusx1nEaM207sARwLgkdX+nCznlZ1hal0ULrHJ1qevTG0mWHz6IXhHNkk/Ex43wAE/A+4P2EMUoJdyWbj4oSntvENT7YivRuMqfly4pxjSlVqrsxUrJlDHhftBEcx+OpzpEyC6yTe9K20rWvadQhtuKkl5aqpSOcfGas862U2/wchwTlmRWpX+1+yqsYaWlJntU5KqXMWfcuyJL11XtZW2KDZugTOcK0zJzGIylHvDf0avNimIlxql2WgnYacU6CjzZJ18Pd4UK65E0TwzgSlc2xLLM6xAW8UOdoU35WrncLFKacN4yfVFvXngGFBegpTu5202cLCp2t+k38sg1In3f8rDXs+l7ZHZaEiLG+u7nl7uGR9zd3HIeJSUsKjPXSECFnrDICDNq50sj6KxUw8ljWQGMNjddkBx3GClvi6sU1L1+/ot/t+Ozt57x88Yqrywsa37JMgRQC87iwzIGwJKz17HYH2jbSNIlllnLdru3FBhhHjJlpmnWPlc6OIUQO+z3Xlxc4a7g47HnY78gp1bJOZ6TlrthNqw6+ABveOZoGvVZlVmdTbXkMMM0TKYrYcdO2uEK3x5CTlS6M0/hzYXh/5KEAA0ZYSXk7vwxN09LtDjjfcHF5yeFwoN/t6FVI3jmLbxxt5xWMWd+50d9bY/CNVQaY+qD6ucZZXONrB7nSRW5ZQhUkHceRh4dHhnFkGEbmuQhpa0AGFG+x2GG5jA2EfBbXlkhT7YkGmCYZcAX4sVgtBrLW0KiOx67f8eb16yrq+vLFNX3f8x/+7u+edUS0y7NqH6knrPtOg8G1GW8Mp+PAh3ffMg0nvv3d3/Pv/vv/Lw93t8zjwPH4QAwC2E7aqXKeJ6ZhkJKTsEi1wJoVACMlejYLW42UBDx/em4maddUyEHWZ0iZ+9s7fv/N79nt9hwOl7z5LOO959WbN7x5+1ktnRzHkZSFobKWvmgZfoyMp5OwfuYR72Dft+S0EOZ70iJsoWWeGYZBOrtlR2pkTq0lR0/HfX20llR/3EXzuY8tZPHRp1QASHwBaw2+adj1e5z1wlBVcC7GpHNfy4eN0fInNAEqzEMBsstwmvMPk42aVaJEyoI+FWdtK0/qk7egjzZKED96BaNKF03vBczvOvFTnDX6mkwIVI2zWPbQmLScSnyjGBbi4snqE2qhJcUlqr5XvbFPNtRnODKl1Mur+HDEWctuv6NLHdfXV7x+/QqMYQmJ0xj0ehIzIjswz4HpKOXnRQJEGgg0wrJ1FmeEnZzJLDkzJggRhgjHkJlCYowQMCRjpamMAu5lf9vaN9mf0H1rBdTgHBD64UPt85OE4qd+XsFzKpC3mWqf9FWKLmphrvd9L36t+2mBxj+Rxs+6mJ+ApGfro8Zz5pPX/uRYqXa5/lzex9T3L8h2jJklJJaQRLclC2Xd5h+81/Vc0KCvnqlRgEUzzZmiu1NOLVNZQ9qKNafE8XhUBNpw8/49tx/esz8cuLg84M2lOMeIZB/1OoyCPrkaZQtaT/gE9MmfMkd/3mFAO59ncvkyiZxFzO6q63jz+RdcXl7z9Re/4K//5l/x8voVlxcHXr56Rd+1tJ0nZ6nXHE8jt+8/sMwnpsc7TnffEcOMbzxNJx7i7e0H3n3/LWGZsGHGhhGTkwA+SkUNNCw0gKXr93T9Aes8F5eXXFxckY10HgpBDGfbtBwuLmlDoF0CfYwYI2rz+67VTGogTAMpWI45EKaTlGbdf6DxDrJq3MTAfr9n+cu/JH3xJYeLAy8Ol9jDlWwsWodq257PXn/G65eRq/0F93f39G3Pu/fvub25YxomvJsY5omQkxg4Z38e0KACP2OlLDtraBrpvLHdAEqZ05buSEHfC8V3WTQ4lXKtQjXHGLxvcBRfWIxe1/f4pqkbbgwSOBosk4otp1TaFa+B8epjKdqdRR+k/E7TlnWu5vKZ5ecsYFUka9tLyRYcj0ceHh4U+BEqdeM9dtfhbLO+p65/qw54Yx37rsfuFlxKtHPAxUhrLb3zNFrOYK0/E0J9jiPGyPHhSFyk64cwNryIPLYCbLRtR9s2ON/SdAesc/Rdom1OzA1Yu8imEzNglTZuJNiswI+nd8Je6o2lzxaXLdm0ZNeRDQSfcX4BG3B+xjvZSrPLJJcrqzIV6vg2S6iAjgAtrNomms1Yx1aenlJiCaFmzBsFF8tR2Amlc0bZZJ110oq+7aqGgvdlZpoaCGFMLV0oLDIBfVrN5D7/kbcPTDHvq/2OqJ03KhZrynxeHczivGXAaBMl2UP0PVMmE0kmMS8Tp/FITIGmsRx2HTk7QphJcZJMeIyEKPp3zlopqQP2aBl0Stze3XN7/yC6FlkYLqXnSQF9hP+49tbM5bzzGjTEkr3UwKMCP59yqFkBoUzGbpBxYSCd74XysatNW+/X8+2Oxlr6/U6TSpaUYZgmvv/wgXfvb/j+ww2P48S4BCIG4zzOIaw5rTO3JmtppIqzKwi/gkCiy9Nq2aVzhqaVveXNq9d88dVX7PcHvvjsC169fM3FYY/NC/MYCPPMPMwsUyAsEWc9exWSbZrE0ogd907Yl9Z6YshM04KxotHWth0xZQ6HA1fX0iHz8uLAw36nzMMgIKE1K9vRboAfEOq82Sr6lkywlpckaeIQtLRht9tpEkABP2MIs2EeR4qW4D/9UcAYAW4zSOdzDE3bcbi4pGlbLi8uOVxc0Pc9XS+C29Y5UpNIna8lGyWQbVsp75I9qtjF8nlyP2UKqU+bpWtfSpnj8cQ8S+OScZx4eHhgGEaGk2j5VW0uXYzlc3PeaGua9Ws9CoiyludVBoLNtdufnKXRpq+WtpGs/vXlnl/98gtev3rFfr/n7ds3HA4H/tv/+3/37CNSmg+kHFW2Rf8ZS9sLoHo8DnzzD9/wcH/Lb//23/H/+//8v7n78I6wzCzzSYLVp9u2Gp+UEinEaqNKkxCaBmeE1SBTIqtZX/0QVBcnZ+2MtwSyidzd3hIj7PZ73nz2BSGJfteb12949eoVxkjCal4WUkychkG1iJKylgMpBoaHR6ZhYJlHusZyue9Z5oG7D5HjwwhZ3mc4Zdnb8ORcGo2sY158tvNJoCBDjJVR89xl7OsncYb85Kd/rKclII4lSye73Z7GNwzDwDzNlFbopdV57T5byqBjlLHMss9ms/ogUALyc3tTl6ICRCsTa/N3+AgkKBiLrJtNmWDOCvSvpexd125KeEytGMlL2oyJjE9K0qAllr14WcTnoVnP3XwM7eT1XbYz9FmOUuoVQ1N1Mq21WtplePniirevX0uy7jSRODLNQTryGrkvwzhye3/PvAT6vuNwsdN709D1O9rGk+JMWgZiSiwZpghzglPMHJfMFDJTgoA2qNGyMuuUKXN2D+SuOCV4pJwxT1jkT8f0o98VMDKfgz0lOfUxm6jo3VXz8tEobH2hyv51jq6VJkTSUdQ9WaufPv7RNX7OCzGKOYSaiXv6mu29rKhk/eHJkc9ntVkzFvn8WRRaXEHbPjIsm9VgnlKAKkT65IR/9MfioZfXSTAdQmAJgWWemaeJppVWdUXDp5aafMKdXcm8H9cnfvJ+PNNRS+6K0bNGF5CjaVt2uz37w0GEDHc7up1MyqKfYTQzlpIEr6GU28yTbGJhIgTHEmYycHo8cjqeCMuMSws+zXp/TAV+lhyZUwBjRbAtsQmCOzDS8lQvAOc8bdOJU2sdJkasEeZO23qckRItryrzReQYslJ0JUCZp5EwLzgjgn1hmYlLt+pS5FwZZMYYGu9x2UkZXL9jv9uz6090bUfbtISUcN7p/dyUWD37sZn/Sv22Oi7rxnUO/vwQXbQg1SZt6nBjAqJ0iSpBtG6QJWh1RkCtktnImSqyK5+VKq2znJHcD7syfpAgaVvegwGTV6Fc+d35jlecrnLtog0TtbuX0OJLzft53W55X9lsi3PgrISf1lpczrXkY/u8n2McCyW7bARGy+iMlfIuY7yWGuh3I1+FTaXS3XqLtIRHgZ9aR2ytZPGNwSEtua3Ok1TdBVn/Qj93dXyqzk8yJCMYTy4gxFng/fG92bJ/zOYpW8BgG7w/pb6u99yoQ7WhxNrt31anLSVqhnYL/JyP3c+wHgtToDxe//DkodHy41yF358uy1KwXEChApqazU2s+58Gq9sgzxgFIUxhtoE3pjrJ2ViyscSUaNtWaNpQ7btgZ3kdt/qZZt06OXdkzq7xD+xZP373PwH61N+Uxgd/8E3+tENtjGgTCXA2ayeveVkzzXKJtp7ueXmXOoa6sj66BPVoKgtNWa/CZBOh87Zt8c4L8B4jOar4LobSkU/2xpKxjxV8cs5LyZp1FMbYWhW0gqDNRivLOSm11Nq/c8dW7X49cyP2QADW1Xad5VuLbXmieSGlyFYbC/xMXb10X/gJT6Nc1XYm582Mz2YVlPe6r5X7ZTfRtdimzUrRfbIkJVY/YOOL6u2ymlDM2UjQYIwk4iitgZUVol9V2qCs/R+41LOOu0+uul6r2t9qh/P5XSn7Zbk+Zw3Oi6Br37faeU66j/0UXYo/9hAmoXbaI1fwJxXQJolAbGmQMI7S7GIYTsQwE+ZRunMZUxnL656gexhpg2Fm1S9L0tGrsgXO7qz4D2XPyfXFgAAQy7LgtawraTLCama/lDb7phHgBfGHJIFsMWYhRkeYZlIIkBOtslzJcaNhpzFIEqkD8YN0reaf4quUufDzAD71U/LKWC33sc5CBdpyjQtlzhbmc2H/bsvhCqu3MM+fHnr5VSj67Pebx0b9mLr+s/4un6+d+vriu2wtXfFtDPXei/9y3l1U9BVVrFzEalaf1BhQ7aGyFrdl+6XESs60jFZxCtZzrK7HDw/Fn3YUPztnWResDVmstfimEY2avidE8H4mRG0sYZOCkHb118vmbXQvU5+XtMq0FIZ0yho9m1Jmqus4m1WSpP4rO+vHd2BbDvaDl7kFDurzzTpHyuTQHzfvXm3EKrOQz3yUj4H3Nc4pk/HTwNMPH/90Xb3qEG6X09PnffyYH3j+U0CkLkaEdi7CzLmqvRfEumibYFaQxZRuNmefUoZSFo2pg7gJnBSuWxfY+bmW9yyLMgQRyR2HE3e3H/j+u2+Zp5G3b96QX74AwKoQVV3IapTKJJKuIJw51LA6Tz+XWa6lF9bQH/a8fP2Wrt/xxedf8y/+5j/mxYtXvLh8yeHyWjLsvlFxLWmpvciexDgMPNw/MA2PDPe3PHx4T5gnKUWYZmKMjNPEaTiJKLCHndeApDoeEHJmVpFMc1ww5hFrHS+GhZdLlC4rtiPbFucdVy9e85XtVShMJNqMMaK704kj4l2Ld1JuVjOYaL12TizLwu0oHbFma2qXuMU3mj3YGIESnKvT0Lcdr168JsWMdw1fffEVMSbuj4+McSIR6ft2w8D52QayPpRynEgBKKX9qormFmpvyfTkYoDEqK10yMyyLOSTlNoUbQvpouSVnXFu7Nqm5eriiqUXevo0L8zzIp2ihkHKmLzDOmHNNG1L27bkjIhTjyMxRoaxdI9hzdKZco4bpw3WjTRL9moYBx4fHjBkHh4eeHh4EBCwkbbGWxfYKC0lm6x19A3ONTgS3hucke4CyRgCa2hgP7JZf95hrWW/PxCDJ9hECi1919AderrG0fYtvj+I2KzzGNeDcWQzk2hIBLJpMLbFOLDGg2vASJmG9w5rDHvvuGo83lg6Mt00YHEyF7JkRVosye9JTjm2ygBY/EjrrQoTSleTlLOOcdnktppOULqHeKX1AhVAzCirRJr/MY4T0zRhrQQU3je1jKvvejCrk+Gco+962q6tQeyZpgFyDmsZ2Sru3DQNrWqa/CxHTrUdNE/2HqO/lgBPskLJyH4WFZhZ7bwG05S2tatz7tSGWWdpW+lgt+s7Lg97ri72eO9EhNGbeq+rf+g9xsvciBn5SgnvDM6L7lnbOrwXQCgsM2ER4L6UoZQzkT203G+93iJQaTSYzXKNbrvX1vtxDtoZVse+2lrW6y43cuuOP/e+mJOwY0KCaUnEBHePj3z3/j2///4dH+7uOY2jdOLCkHC1fbq3Tn0DEawsY1gDnVS6JhUgWs7fWofzLdZ59vsDV1fXHA6io9e2O5qmI6RESAsxW5puz+WL17S7CX8ace0oJe9zZFmkZFc0nlTwfLcjm6L3JKXxMWWapuXicIHBsN+LqGSMnugWYgzKGCqaNTJe1lhwUgJrS7ybSmmFJfiZlESHz9nizxpyjqSk9ywZFe/OLMuE+WTy7x/3KGcggUYZF6vdVSz9fs/V9TVd10uZe9tVbaTiCxpTymrz5l0zogkn0rElKKzbtfoVsqwK+EMVq53GicfHI8Mw8PDwyMPDo2gLTnMFPQoj/CweKWul+s6f2LPyOeOnTkh9syJZVcSVvTV03tG2jl3rudi1XB16druWQ99w6Bues0ObiPou6meGastKLWIIkWmcCSHw+PDIh/fvuLt5x93NB+bhSJxHcgrYvIhfWO4xYLShiASRWnBXfW31+hPEUObven9XPTp5TSkzEqkA0fKxVuznEiKnYeTu/p4lRl6+fC1dbJ2jc57OyPpp2p7dPBNTYhwn5kn1J2MixYCxmd1hB/nA0lnCfMDkAW8zXj6SjJZPRwHofLm+JxHQeqyBpuzV+WdpQFLOK2fVpFohIDmLXFNweo/Vb2ha9hdSUWCdIyiYVvzTmCIul8InOXHn5ZpDTNV3LzYK0IYnMn9WsBtC1GYs9dzqLeLp0hHbJvuvvI+U+8IKcltrV/Dee66ur7g4XABFk3Ku60wARLE11jotHRTGpJSEKQtTkL3NfeWjx7Uj2p81Yh8fmSy6djFoElcawXgv/tjl5QVf/eIXXL96w83dI9m/43gaGaeFpptYQsS3LdmKnETbNvS7rooaYxwJS8yWJTlN+kdCssScsa5ht9vjm0DTBJpmJqWsreQlwem9VDpIJY6U0GUQQWj1DQ3SDW4rHUCmspNB9bYQbS5r1wmwwjmZZKi2ojAixW6X7oNU/+VsOpl1bIw5OwUSiZgTkaT//vC++I8O/Kx6OxW7++Tx1PH9oeesx9PpvC2Pkt8tBTxR/QLJ7AcVOFNdAtAyImrGs35ePeGCohqgCFKJO1eELs3Z9RV3V0c1S6lX0CzgcDpy++ED33/7e+I8M/7yl+RFOuM4U6iHRQMBnRiy2YrMjhLpNw7yGZvpmQ8FGbUI0rA77Pn8q6+4un7J11/9ir/+l/8Jr169obENvetFRLnxm01GOokkk0U47+6e8fjA8e6G++/fM08jN3f3fPf+RjqAWAfWY6wRp2Hf4dzqEGcgpMSShNK7zBPzNGON4TQHlpjxTYu/eEVzccA2lusXPf3lGzDS5cRp68S+7+jaBmssvulwTrqDiVcncyfOM3EJjOPAw/v3zMOAN4bpNDCdBrqmVbrlxilSwK5o1nRtz5tXr+majtZ3/P7L70gps7u/4fZ0yxRGEef0Qun/OUaxINnV3cyZFMsOoPPZrPXcBfhJKWqXHmVv6f3JWispwofSuaVpGuZ5wVorNM39jtIdonCoGt9wdXUp3RVCZF6CUHLNPfM0k0iiVdO2OOe0fO+SnDN3Dw+4+3th6mhHmCK2uAI1myDRGO3QsAb+MUXGYeTh4QFyAX7uCX3PxaEnp56SYRALrNcOGCMtd71tsCRclnpji2iVZJK0yq1n83yHdY794YK4NCwmE4MIu7aHHV3rRdSxF1qssSp6bizZjGQaYg5k4zGuwTpUd0Q6BjXeK/PNcvBw5Q3egJ8Tfhwga7cU48jWkxuHaQ4ko7RYEjEGQuNYGg3youpExcwjQfQIkoiSJgVGpZRKAg7nHV3XkrOCiUtSwDzUsizJ1k61O1cBeCSrLOO2beHe931llFVB7M3jsg7KvClBLBlS/3MFmrnuOR8lO7YgkH58orAIjf6MYgVllm33p/UwUMVgm67hcNix63suLwT4abwjNJbFIQG5ddK10Rpc14lGlDEsKbPETIhJwTnHvCyamTS180yMQfcgAYvKJdiyD5OlJCbns0RL6fol12zPgJ+cSwBsKwBU6t3hHCQqCaYfPJ5xQaacGeeFJWSGJRBi5vbhge/eved3337L4zByGiemRVipZXCtL40GLGR1OLP2iUmy2afCLDCQojAWjOpxNa2UzO4PF1xdXXNxceBwuKTrBPiJSyAmS0yWpjtw9eINyzzjuwHXiVbJsijwk8Gp0L5zjna3Ixsr3eASLDERU6ZtWy4vLzHGcNjtJVsbAsFaYnS1o2O9zWbtyNhYh1NmadR9JBjLomW/YlNzBR1k75Euj5FiRzNh9h8Bgv8Ux7p3Chgqy7IAco7d7sDV9TW7fiedvLpOde+csitk7jsHuWh41LIMTUhR9i90H1qDypw0QNf1X4AfKe96VODngfv7h6rpF+MK+si5r9GGYE/F/in4s/ESyv8lgZpzrr4ROQtWpdFM8ROdNbTe0reefee52HdcHjp2u46Lfcu+b541uZWz6NcIgCJlbdKB1onPGiJmGnGL4eHhng/vvufDu++4v/3ANB4J84ghYAkis7BBNYQJKeu3NM0tCawKlifZ+ynjkpHHzoHdCNIjYK6zBte2FLQgJmEen04Dt7f3LCExzQsY6ZDaNg2+kYYh3RIIWoI/jKOUe00T8zQwTwPWZvaHPd4uLJMlThfYPGKINMyArPvC0s7Z4ryrPtMPms/qS0EyVpOEz3vkLEniWkq4AX3qaeTCkET8SYNoZrW9jJezLEtgXqR5xzBIkjAV0EgXkvfSHTjnRZRiskoCaPt07xzGN1gjXU7bVpIg45QJKZytIbk9ZgUz88oIct5WP6XpOpq21aes4MF+f6DfiZ9yeXnJbrcnxsD9/T3jOMj9UP/HWEubW+kOqMxNiQ1TjXNTiuv5sdaQrLdyrYw506d9ljHMzGHRkvEARKxxeC/dHy8vL/na75hD5vD+ljE2dI8nhnHCtyeWEGi6DuOcMOG8o2mk/LVtWwF+suxvc7KkCEu2hGyI2eJ8w36/J8RI2wa6tqN0Cs2aaPDOKvADMaQ14VLsHBrp67pfBbW1amUjRyHbnOACRftJvOEVAEp6ky2r6UxJYq/C4C/vcgYebgEfLSlOGmdEBX/Kvz90/OMzfswKRpyVMG038c3FbquKtsFczRievXs+/67ectm2jA5WLta4Znq3zuL2ZMs5U2y0vntdOqsxOnNC9Nxyrud8Hvrpa4WbS0oiFLfME8syk6LSYQpHoHz+9jyfTpCykreeyOY5z34o8t14Edg67C+4uLjkcLhgt9uz6/dYLA7HNiMrToM4JxlhPYVlkU5KKkgYFtEhEIHCiHEG44SJtYTMvERsLB0/ZDxDtoQsWcY5JOZFWpXO88I4zzQYTEq0VspgGmsxjWZcbJaabGvo2pZONUO8F20UQDqPJTEEJkZMStpVZc2L5JRrHWsJJC1Ga98560pgNSCVLiwd+92e/f7AuEyC+DctTeNxtgh5/hxjyLqcUEOXtWxLJ1XOK2V8/Soo+Bpc1vWQlUqtxtFaVzfPbUAtn7MRPTQWYznr9lVLcvJ5CU9pc5tzrp1ttp1vtnOtwOPlV7WowJS1i2oBSOedeRHneJpmrLXa3jzVjPWPs3bWv9WNAbmPJj+/RrdB5pDJkdQ0GDKuEfaRcR7rGoxtVKNDvzBgZA1ISZbHOo9z6awcrP5NsyKK8WJJ2JKa0G55GYNLwmIw2eCMxRkvZEjryc6TTQKCbnxJsi2yP5KqCV2ZN7Da2x+lnVeAexOsGMnOSDtoqoiqta7OEXlpyVxTM9eZ9TxKudpKNy971/MaVb0Nxe9fwR9Td8e6vszm//qk7ff69yf3rESL1WFfNZSKcLV3DpzDNF6AH+dqzbhvPK5RQe+YpNufEaHhthFw3DdeQTW0hfyWfl3laNe7Z1agx9iypykjr7CxyrnXoFpeauu63nzV5/7U8XleKFacQAGvl5CEvag2Rdpnb7urrGyK4uBlnpy77vule2hxysu2Xu9NAQY217R6NWXMxQluux5jLZ2WQ8eUcD7i/Krx47S0oGk7rBf7gDHVprOZN2tnKltLvkoL8qfzsNLqzXnxegXjC6N2c09A1ygrjFcYAE81N57t0KBwe3wqe7/1GvPGQTTK+JHOVVJu7gvLp5SYGrEzNWg16zuuU2Drm27myubn7dpYS5uSMBGKXxXOO3qt9vLJNW4+dd0vn/jsxa8sJ1r9zvPHdRZWEG/VKKulUEk7W6W1U9VzHAKAxTXAUxFdKQkR8d4UTfW9t+ylErCbrImdT1FZfsRsrN27dMZmyNnoY0POa1lO+V7nlim3sOw1SRkFW/HkskFsylK2+6ZOkJWxunbvs7Z0lhMw3eTVF0LPr9zBH7y3Wz/KGHJhbP7YHv1nHGd775O/1Z0xlzPS72bVBrTKkrLJVYbV9r3LUWxPSsUOJRk3NclG90ipBPDVt3ChlJSfr90VnDWbn03V7rG2lOeuwE/OSQD3rqmMn9Koo9jFbaIqpyQalyWBlc7F4c/lGcpcKf+d+6rlTJ87XKygxsa32n6KdbLPGA9d39PvdiyaVA4h4YMwheZlZlm8+P6+sLClnNlaQ/IeH1uSTTQZ2gQuRiKGkCHEhDWzkgUMKUDKRfoDCqtj6/+d3bPiX+hTP5lQUjNYTHmu2/lTH1KAtjJvtxQRo/a8ruHq45TfsfoFJWor86H4slsc4AeOf2SNn6zSShvA5JPPW78/dWfPb/jT2rvNhsOqrVJ+Y8qGExM5BnJYIM6YFPA5IrWfm05C5M3+utULYb2CKkSJAjmrwS8fXCm8Gdn09MpETyITl5nh+Mjj3S1941mGgTzPtQWoKQJkZKWVUaFCA9i0ilIXwMewTrrnPHKGZc542/H61ef0+yu+/vqX/Kt/9W94+/Yzrq9f8fb1Gw77S2GBBDkx51S/gMg8jcwPjxAXPrz7jpsP7xlOj0yP95yGibgsZOvZXbygiVkXrwhmPg4Tt3f3FDHIAiq4ppeMNEYcCSnN5uZhZOGWtuv4fP+Gq/6A9y226XFNK/d1GUnLhAF671U8U7oDuMZDziyKqGaTwRlsdsTG0/c9h4sDXduScmKYRvzYMYwDwziIlpDpJcupCzKrV7s77PFNi3GOv/rnf8WLVy/57v13nOJA0zWiHXMGZDzvkY0EXTgDzgo1ehEhPBFllHm0zDPTOEkr0bSK+gkjQNkZxtTsS4yBaQ41cHO+wSC1y123w3vHOE2Mp0EMllHLoFaz6zp5bj/StC0xxhqMFN2JUiYZC0iaBbjzzpKsiPMWCmbZgI0pbG+lycfEokb+9v6eeZ54PB5r69SLg3RjMSp4uut62qaV1O4SyUskLkFFTUXcPCjwZ3IpmxNwqm1s4RY/2+G84/LlC1JYWMYdKSy0jZcSQW2RaTuZXxnJmJPBtjv6i2uy71lMy+ViaKaZjCPjQQGlVsvyHAHDIteSMm2csSmTrXrz1rLEjjl1JGPwyeBNT3KJYCzBK5CQJmyalGqdMEk6mZyWxLCsbJu1/Wo8Aw2zzwRupQABAABJREFUjqWUDBraRjpedG2D857GSytyA1xcHGi1TXAVccyl/WlSxqUE5DXwUi+vZrKNdlRyVoOFQFiefy0aI6UQNdjdAALFkJvNc0snL9HNcNU+lEBf9grW90Ce773TgFRAsMK5a6yjb1u6xmMbjz30sq+4QkuXsquonyHtxBPRihh+zFl06pbAOM04t3AaBtXSEHpzgSacla5PBpk7hU1lWXcqbUAuTuNmL11ZCvr6GjSXxEKFOlYH6Mn+d+Y9PKNdTdkwJWGYvr97YBgnvru54eb+ntuHR6YQlH0QRfOqFhqY6uBJwCqNEgylFGTrxBmScSzJUFj9RpMR4zzzcDySgMfTiWEawQo077oe07RcA42KJU/zImU/Odc2x6BaZTqnjM5/ay2+65jLNaidNk4Ajgpq9L2WMhtZh9YiYsdW9RZY7XLFDwSU8r5Z/aOsAuEWYgosmoUtjBpyJDae8DOVeuXN/+W+b4+zgA7xOq01er2G3W7P5eUVTdNy/eIlF5eX9F1P07Y1iZOTtioGpMy8OKuFKaASBXmjvVI3kI1PUMRAE8zzwvEkzIbbmzvevXvPMAzc398zDANLCNqxsAB49d3OrtxswNPV7kABxkUOoXzwFuhJOn5is61qhzkyVsc1zCOPtx/4YBJ935GXgV2/k/KkZzpyCkynD6QsEgDSsNKRFw9YghPfzVpDirDrL7i8nAnTwOXVS7xzpDAR52NlUVQ9KbPqhayaIzoARUsll6QYlDrcjJGMfiqivL76Ipuwj1XGP2I0GVnKRpL6wNMUmCapVDidjgzjQE7S8CDGIOy7MGMdwgjTNu6YpJ2KJJnmcgksywmsjW9ylmYnUr5SDTj1NMs+ZQoA9GzDtx1JAb3YrsYnqZCtbaQANcpTMwbrPF3fa7cjw7IETFi7YYGybHY9OUMIDV0r93ZR5jnAbrfjcNhLp9e2EyYycHt/T1BmUMxrBzdrTNWRkfJZAaD2+z273Q7nHLvDnn63k7FVdo6zTjpeqdxEKQudZ7EJyyKlmnEREWdrnQr0B2HHR600SFlLveQrRwVBMayMUzTELQDC2Y1+liPlzDDO7Hrx4xMrmJlyxPmWfbsjGw++I/mecZRObI+PD4RFNLgKg1g67C1SpWNLrE5dkyDdS0OSzzieTtw/PLAsCx9ubnj3/Tvp9DZNTJP47BAJQc53WaTzZVbwv+7PVtX1kU6BxNKUIlXgJhcXUq8bJSXElCTpQ1a7r80vqj0veq4F4BPg0RiE9FDA24plZAGtlNE4LRPDNDLNM0sKyjb88eOfpNQrmy3VdLuk10ercPGnwJ/yeGsyt++zzSsWmElhoyQt5QT4mclhwcaAo9BqpROFGLt1JUjGQs+4dG4AQRDL/pdW0OcMx8uok5ormpfrxEiEeWY8Hnm8v2PXtYTxRF5mcA5rPE6fHxVUEqdJN9wMNmVF8BFgK6/n/NxHAX6c7Xj98jOuc+Iv/uKf86/+43/NV199TeM7+v6Acw0pBJZRSm+8peoXLPOJ0807wjxy8/57Pty8ZzodWcYT8zhpJwXP/rAnYZmCBIY5Jh4eRt5/f0fQTNYSREXlcHHJ4VKCFcUxMCazPI48zoGu67n6PNF2F3T9jt3+gn53ATkxPt4zHR+ATOctnTcUXQ/feFJO2BSZYpDF7azMlsaz23WyIXhPInEaB3zbSuvUccT7RiiirrgIUTIr1rDfH8h7aHc9xjs+//LIy29f8eHhhqI1Mo9DBTmefSxB9DiVzhGT0DJjCEJphQr8jNNE1Hr5lIQebJzD5UzRvPFe5mQIUnIlgoOOrhXhbGddLbWZ54Vpljp7pfoAsvK7vsf5SHs6SatuaxXZL7o8qZaRJF3P5KQsKlfrwdlof24ID3VNFuHHGCMxLDw+GDk/5zmdBq6vr7m8uqbfHURY0UhJFzGTl0ieF92AdXNNUtxvozrFQYyzBNwNz70crXNcvXxBCpEwybrx1tF6KadwzmJbD1pCULJFpu3pL66xbSCYlpMCPzEZQjTkbBRI0VbCccLEjMkC2LRxwcWopW0RrGWOgSlmkhHmiHc7oaG6hmA6IOHzEY+2IU2BGD1LTISMrO98DvyUEsPyGJ2PpXSrbVvarpWuZU6ALq9t59d5QK3Nj0F0oOZZ6M8hLFpSKECXVcbC2q1GNuTS3Uxe88yDqNe0Aj+bXXCTtCgbzspwobIsSmIg64tyzmedZKw69U477TmrgvVIAOCdo28bAX+cpfcCdFnV78nAuMyMy6zlfQkR0c9c7Dus88whMIwzj8OEtRPWeWIWTTfVP8WYTLM5f2EzrvfgLPVdd9A1gVE0VM7v3HpPtscalPH0RfX3z7k/ZmBOhtMUeX93z8Pjke9vbrm5v+fu8UHAMc18kgzObcG8NbBOOZJzfMJeNCVbQMQxJ/WjopRVFuDn8Xgk5cxxEKq80RbavuvxQLvfc80b8SUU7BGsZWUMlOYLOSemaWKeJxF4jlKCuyzCXEKBDus9vmkhZ7q2pfHSATFGYQNiC7CvQtE5VbNcSn0F+BFQJOdEjpBz0DUXWEJhnmqZG4mwNNh/NI2fjZ9Zsq96BeX31qkGlrX0+wPXL17SdR3X1y+4uLik66SE1lhbAZSUgr6nAGwFbyksERC7Z0zpsFjYQtsovMR50qr6dDoxTTO3t3e8+/4d4zhyf/9QS1yWkEhrg596fPJWnl3rdj1Vh7cGjrm8Ry6lUVnKoqAm/Ew2xHnk4e4GwkTXtcTpRN93hGX+k0fn6ZFTFOAHSzIOSTc7Ym7ISCliCg3GGnKEvj9Ie/Zp4Or6Fd57lunIeEzEMK+6gTlJRzqziUOy3g82YM8WrE2bsdRGCgW8z67A4SXaUWNJlPtlVeTWmQo4xQRxCbUJxd3dLY8Pd8oKEr8naVLDWkN2YnfREiBnpbTF5IxNFpvNmR1MGRGhTxlrM+D4qJGlgdLzvM7Hn2Et1gCap1HiU6gSSkFiKYFWvhbOe9qux/mGlMFPM5igTWUEBG2bhr7rRF8priLo0zQz6MVfXR548eJaEmJdS9v14ofmyHE8sSwGk6IA8pkzBnqnfor3nqurKy4vL/Hec3F1yeHyAliTXKUcves6GY+i76brTypCIvM0E+YFq8z3GETHKIZY12YpZ8ql3EuTrHIb7fm+mLPGr1TQ91nGMGWGaZZOvUk64FXwB2lk0+0vsL6jO1yxv35NSJl5HDg93BPDIgCc+rfH08DN/b1UhiTpyp0yNG1H2+8x1kk5XSPxxP39Hbe3H5inmd/89jeEaWAcR6xJpDCTDJAji3Z0W1RfNAPOeqyV5KGzojFa5mDOQf3Lbe3PBheocXpS4EfSZmWdlr2vMpctmjRJmqzcspEQpqhdg5ekLMYQA9M8MU4j4zJJ4vknoHf/BOLO60I+q9FW5/TpxDOys8jjFTepf30K+JS3MuXB9iPy6lJSzqIITlEoqRuRSf0yCJDgTTHg59ASKeteJ3oVhRr7FMuvxybdUhzUlJMis2tLU6F3FzFhBXeonoEY3g0AhGazf87adwNK6Xb0tiEZtDPVjr7f4V1TWw9ShMzQzUeBH+lcMBOmUcrbZslSxRCIRbdHX2+McMRClK8lJOYlMs+r8cYYmiXQLAGXnG6osqgKGytlYZz4RmjX0uq6FZaG8wRJj8hyTLmWHtjSeYRc2zzq3qIMki2jQIPVkgGIUYIyRYVlyFZaeNkYnHe0XcsuJ3a7negB7HaEeSYXraBnP3IFMIu7kcirkTLixpTOVimtlNKYCrPNUDKzVn9vQYWgN0BDDWKstnmX8pGqq6LrVDb6la54ZkgVEDDW6OYcNIBZy+rE2dR5E1fUZ+O7fvSLQumMSbJdSwiM88RpHGm7jmGcGKZJ/tYGFhchxY2AcazjW64hlzW6sXUpb9h6z3RIRstBpoqJWmO1XMvqRrHtzaoOulXmRzK1DCEmAcoSRh2X8j5AKv3s5Oat1P2MQ0SJi2Zaso5oRAw9F2aHlpg543BZxCClxbMjZgGEa1Zxc1RhvcrsKFk8AZeKNsrarWsFFUwunUvWcc+aSV9F4XWcyvtq9tVaYWM+lZ046xz3zOPobLGTG7d2491Wir3ZgD+l1OYp6GE2tGTWgLGUd5Vyk7y9B6zvX5zW2k2IzRSifL6WKuV1nFYbUd73qenS3becX4lheRJMm7JnrnskyF6Y8zoP16efB8LlOupzn/gB6yc971hmDCElxmnmNI6M06SCyIkiTVrP+Ylf8NG8MutYlwx28Si2AVHp0rUteYNSaqvl4rZomlG7E9mUcXFl2W09lTI3UhaWq9G9LMRYS9aKbZe2up0GUNLhLen+EFLSsLawmta5UgbFYDZjo88paVPDZq1u9oZKa/95gs0fOj45RjouVkEwYx2N+hdN01Y2lAgCr/P9aVlr3gTgBehU06TPX9fS9jQKWJ6TBn+zgNnr17J28/qok6JeU96sqLJWNp9RIdjMZkGv+1t5zpnBKven6GbWv4r/J22nrbAutdnDcx05J8IyCsvHNmSsCqCaCo44a7FZgBjnGx2zjqbraEOPyZG4CBhg4yJzMRXgZ+3IJ9N3ncNSxrG5B5Q9B9AepOV5H5c1y1isnk/ejIOu/2y0nDQQgjAjTqeTvlfxQzIkYc3VfW5jjM3mHdfPWEewnFedh+ud5elv1sF9/n3x/FPPzxpjttPv/G9PfrfdL9dun6suUUmgbDuBFlZckZJo21abR3idK8JiLuXNkDGbpFDp6iqdq3ztVtu2axlX27Y0WiZdkzjGPOlsG9d58tE+WxJk6oPq3C77xke3Q+emNAhafdPzu/e8NjUjTT1iWs99698DCmpYnM802eKSJBnz0hGClWSeEb2nmCLdJN3tXMpYL+/n255WmV1FdxBgnkfapiWnhKvC6vU/NWmrP1jYOVB8sc3OaMzHc7/awa3tW1nKtYPiZgzry8s8rPuj0bgwY1awYuPzsdkjcv2+loOWxhB/eAz/Sdq5k1Xg8ROTzHz0Pdf7+kOm5akhK58juirrjbC6BSj+j88RT6Qh0hCwJkjLYqcUPZNE+8XAvvfsO1mYMjm0O02EOQgN+TTDsKjBICuVdw1cNj4tJQApjgyaBS/fTQwUgUO7cdDPGD8IGGRjktILRXqrgf+Re/anHt43vH79Ftc0+P0e13i++OprXl6/5GK3x6DBpwHnDZ5GNsO0yAaaItP4yM37bxmPj9y++5b3775nGk4KcqXVQVSf5OE48t2He+Yl8HB/z83DIJTlDbspmIkpPuKsZdd7dr04XO3+wOHiin6/58WrN7x+8xl9v6Pv9/T9nhwjJiykcVAW2MQ8TVI2ZHc4L/OmNRnjhBm4mMySJY/kvdTkGmMJMTCMA75pOA4njsOJJnY0/Q6v9LtCeTfGkJ0semsd/W6HaxpeTCNff/U11hrGYeDD+/cMp9MzjyJa5gWRxJIDc1pYwsywSKmdx5CsxWFYFsmCiPhyYFpmCQi0hTfG0viGbg5VF2eaBbDaG0vbS+eX3eHA/nDAe8/94yMhRqZlFm0MXQvzIlo7IUSGUeiL0rZ0tQPuKJnsnEX0d1EQSFqXetlclOa6BvpqGczG7qjhLutVzPrMh5s7xmnh4ThwuLxmjold13N6/Ybri0tsTjQhSOAUAywzUiYq+jXYrPZKxByjNYxppRg/92GsxTUtzmXVyhBdLawhW0OypmZ7MhnXGHYHS9NFknFMARH+nCPDEJTVsQp3ZyMylxlpUeuaBh8jjbN0VhggbZrolyAMPd/SxZ5kDbMzzF46GOXcQO4gRayJ+CaRbcI3M01j1uxeXh2bArZYJ7pc1lp2vbStbpqGC+1M5ayl8dIBbxsE5yz6TYUZlmIgBaEKO4O8xlk6zchBPgMsrTWQEykkpvgz0H0oovKl09j5357ukMVJ0B8q6FEYoVAAanmOU00Co2BcU4SEkeyhM4ZJwXdnDB5HdPL6JURSFmHdJUahTwPChBLHdxgn3t/cM80L79695/t377XkZCSkTM6lM5rsCUU3SEBzKuu8gOj1Ok0JmDYOU34SdGzuStnoCrhO3X9Z/0CJXbfr/3mODARjeBhHfvP73/Pt99/z7v17HoeBOUUwFqPjYI10YbEIEG61M6g1IvSaslUGSFGPVW0HjFD2jbABes0ON23LxcUl1y9esN/tRNQccbYba7XkUe5/uWZXfYhzwChrKVZSSnoGwrJwd3/P7c2NlBHd3fGo1PuXr15xuDgI81mZjyEE7m/vOB4ftVxdwf6UyEEAJGGiyf5XmjTUzj25AA3C6DTVKVeAw1pJEtlnrp39SaO8BWCsan2IEPb+6hrfiPD1q9ev6dqO3X5PpwL7W00xSsl0zoj0TClTWX0aAa4dxoiIaAGjc5Z1kzMsS2RSLcSbm1u++f33jOPId999z/v3H5jnmdPxRFiiMlw/ASCZNYF63on6fK1Jh7XVLpdrKb6ttQmjEtxCIpbSTm+Reegs3ggzIi+BkDOnB1iUjfRcRwwzd+//TpoWNHuMbUjZE3JHzg7f9LC/lA6QxnFxcV1La1KamYYjyzwwD/fEuDBPI8PpqCXsE6dBuoeWuStWKa0BZQ0Yxf5V3KWAQEBOhhhXEL7YcWOyJJKzQ5g/aQXZrSNjOJ1GHu7vmaaR3/327/nu299pKZokjL13XF9ecDjsSXEhhkV1J4WBXJLFuUjOZplbMvSZpMkZYQMlMlGBBEkiFeZelbiAZ7Wl5TAgzQUAVYj6BFJh1ueyQvniw2iyTbK4mvhtwQho4L2I6Xdtw67rcM7WroYYBEhVn63vO3a7XgBDFcBPOfPi+ko7osWzUspVY8my3+/Z7/fSmOTigsPFhXQY3e/oehGhLppUBfhxTgD0EBaWZdavhRCE1RP0Z+ccMTRELfkSP0g1SktizJTy8AKhrXIj23tpVIv0OTG8nDLTODONM+O0VJHyNmeEXy0MNwhYY2hFWYPGOHrbk1LDNM0cj1piZSBa6b5mrcf4VvY257G+2YB8AvKO0ygNf2JimCYetNPhNE21ZKywvIQ5lQhBYrW2sYj9TXpvZD8UrlJUBCNVrSDZO4tOUPnKtYEUaOm0UdmLtqf1OwUxndqHREwjOS8YI7bTVh8pKzasGmY5yT4YolQdhKT26A8f/2Tt3D+V/V45NE+ZPPwA+HP+/C1YZOskz9WgCeBTvhKWiMsBT6AxAUukUefYGvAmCfhjDS93DS8vW4yRdsJLjKQkQM8QIGi91xI1iE3r6VVA/KMVVZxaoeSRIjkFiMImkA1UgR8Q4KcglQX4SRkTpbbUVMci1c98biDeec+rl2/o9nuuXr+i7Xe8ev2KF1fX7PudOGul1KW0ywLSoh198sI0Hbm7ecfj3S1377/n5sN7pnEQ8KDtqjBbjoKYPhxHvn9/I5nU08DDcdKg3mgZB8xxYpwi1hpC3KkBNVjXsr+4Yn+44PrFK15r2/m+7enanhgWwvHI7BtizsxTYBlPOGvIrcV1uuGQsNYQEVX2qIG+95a2aZQtEwmjtB88jSPHYaBLmX1tKWqqyJnUT4uDZJyl3+1oc2YJC1998SVd0/D48IDN8KAC0899ZAPJZJYcmVNgjgvjPBHmmUYFgJOxWjsuwM8cAqdpItS27/LVNC3dErXmWBz5sirbTkTb+t2e3f4giLz3qwBliLqesgI/8nnjOArIVDOEamxTqg7X6jAhTC51sGNYREp4AyZUjL8qxp8zH3LOhLgQb++5fzjycBzYHS6YQuTQ70hzYLoe8UBPplVb0uaIF9ePbV9MawwmWyKZJZV64uc/hJ0j2jyldtggYtma1CTZVG2Iazw726r2gRfB9HlhGBfIg7Q0TQJmk6Vrh8LQJCtdoZw1tCbTW9Vti0E0DIAp7mg9JGsZ24bRtaRsWXLDklvIAvw4n0km4j14XwLO+FGpl7XaZawRNuFhv2e/62mahv1ux65rNQhbs3ZOAQYpwQtqk4RRGYO0drUGGifBW99Jln4F5DXYDEXjISmA9PxjaKx0E1zjsE9lwM1m/9MgfXOeKYtmVWYjIm6Mlv5ptzNrK3hmkHp2g5RyzmHBOUtjMzEakkGdzUne3xhiQQ5UIyglwzhO3NzcMowT795/4N37DwL8LoGorbwk+JeyQeMctpS12ZVRWxwiPe1N7LnZSOv+V+7IylgE1L6WnJupbcPLX8v/lUn2J43Wpw8BfuBxGvntt7/nN7/5LY+nE4/jwJJSFc821gnzzTgFzjeMHWuFqVYCB2XnJEqmNCM7T6isvk5B9cOFdPXaqz6EYAtJteraCpSvRwEZ1/bEBSQtbMotI2wcR95/ECDh4f6e4+mIs5YXL19wcXEheiOPR6ZhZBpH5mnidDrpPiclhtkE8sIaNBvJjOcNg2jLQCtAiTFqG7QEJQarHSZ/HiD2Rwd5eweNVSF9x25/4OXL17R9z+XFBS9fvZLSN23eYJ3TkuJAsTEriFK6wVD/BmjwL3OhSMikjU+XMtIFUwOq29s7vv32O4Zh4N333/Phww3LsjCM06rtQ3mD9Uumgdk0I8kfXWtpEV1Fk3Nk7T5WAGkqi8Lo2FbwxxkaK8APMZGDdKMawsJkjPpzz3PEMHP34e9xvqfZXeN8R8wNIfbk7Gn7A941IntjLPuLa3JK0ijBZJZ5ICwjYTqS4sJwOnJ/f0tYZu4f7pnCOyJammaEK40C1eVeba0S2dS9N+uvUrIC9uWVjQJUhn/OjpxVVU2jcSnBhNM4cnN7x+l05Le//S2/+dt/r2tBSt67vuOXv/yaxr8lJ9nvUgq1JN6UyVRjCRXfT2p/c6KU1FubaiBhFIyuuqb8EBD/TIfaQCmLEUemBNPqRLONCMujXNaQXlfRtbFOylJNacut60yAH7GRfS+NVsRerkkCp2WzlV1qSrLlCqwlxFR17grwA+KbXV5ecNCE5041fqyVzppeGT9nSS7do4sdLsBPCCrUHqI2xZnJyRObheScslosbaPsb6el6tYU2IyyO5Y7VfyJGi8+8xCmnBnHWXR7psA4BYyCWuv8iWCkvLm1Wg7pLbbrIWdOgyVnKTU23mGahpih7Xb0hwus8+L/PPGLYozc3t2RcmYJkXGaeTyeGIaTNBJSf26ZxX5WRlLS2WQcxkqTGZvWNulZZWHk/0imyBHETaKmuPtFjiJVDEC0SB1917PrLxAozpGzI+bAvBhCtNpBDhonazEXvbFSPhYL4KNfJe7+Ccc/OvBT4W/YbDSwbXn0qfItef7TN1uXevm+NQWFxSoOYnEqTc0uemvUIZNsRMTSFo0Xa2hMxiMaD4fWcmhlIQWXWYKAV9YkrIU5Gh5nAQOkovn8ZM8AGD2xshlsr6QAY7JhCPpfpvSK1Ctqqz8bNeaF9WCKyBzPv5Bry/NOvlrNvLtScqABVYXk9ASyMi2EliybUYyLoKF5VaoPMWJTlo0qLqRstDuFdvxS5y/puOraEjAmRsi2OpFyLtL2dlXI92t7Z2chi0G3zpKTBERFBC1r16KymEsm62ysyuakMG+CNSNSs6a5moyCBpfJXP+mrDDnHG3T0rUdSzfTtx1L+3z17+UoJTNrlsMRlWpagqOYEpis5V3leyLoOG2BH2Mi1kasVZpjoa4rum21RXDpjGA2NzIXp17nQCmTi2kNuuu9zAL8FEexBPrr5rVd52o9KjPMVMS83O9PUcxTSgQE4J0maQFqs2E4DZyaVjpSaaYuKSpfAJZspDLKZGrZp8yH+JPaLP4p41j+gWH7kzzh3Dpm/Z2xAig7ZytYFpZ0FiCKhEPJNmqxo3XgPJgobEq2zr+Up9os2j8mgU8iCG2MmLKknU2sMgNtyWbqGitz7+wa0SyJK86MfpmVIWM2emzlNdu9Y2tnV9qsOHfrGlCtnLTao8gagG7p1c95GMzmWtb5u9p6nm4gm8vKNeYw5TrNOv5VzNycl3mBskh0Tae65qxommFWRygL02v1DJWtoWWwWZkY5Z5lBX2dvqbYXKMOj3fK/lF7KsGtXtkmiGS9er3q9efyuIRbdb/ZQGPbkSrPLM/NP0NWRLK+kXlZmLZMxPJ56L0vgVQJwk0Z77IMVhe92KjCDq7jDDVIKJ1ipASh0bLPlUWwBRPOjw17jNV21nEsAcwmGHFOyqXbtpWs9W7Hfr8XjZR5YZlmDWK34rfUefPDx5rMquUqFIHjXH2dOtqbwO0f65BYc51fpYzDOr33bUPTbsq7tHyEzWvqe+Vcu38WP7Uc65Csv9xeaQEPSpIthCiBzFxES2fmqgOz6eS1fsInHkHpPpnXT/nkUWxoSboVe1NFSC014JSvwjpY7VIBXgXMet6xzDkR5lFMoe/VjRaR7EQkhYYYlgoAyP4mOoJN24mfZxEvPnpiTHTdJMH6NGmZtO7nyUE2pCwdhDar9qN7dj6GT9bkBiwozy9rQnRECzgKQUWH52liHiemcSTGgMjvC0MoLIv6w3H1mzax10+/lytIXuKVT+Ukfq6luK63s8iOsjOaJ2vrLCKsPt8Tu1vsHHX66pfRpFHp7LW+YxXZLudRgJ3/P3N/8mtLtqV7Qr8x57RiFXufwv3e8HtvRLzIF8pspESiRNmjg+APoAU9BBJStpFokOIvyBYS3SfRAIkGSCBBFyGQoINEppBopEBUr4pbuPup9t5rmdmssjHGNLO1z/Ei4m6Ph7mW73VWYctslmN8Y4zvs8CRGECmgNl23Y2guZE0r76Ha5UR237ffnP/2vOSQNr10jKKtrVZ91qjTjBahbW8rZEDr3O23d025ho49KK74m7INT/HDNCbvtgx+j37ou5FMUXlmEuFmAu5gO9v+3cVOGJbq/f0EntfodmZDfTcl6GtCqTV1uladufdr6N2xbW9w/rvxvu7vyWt7nAKxFlGVgiBiiA1UPFQBMnenIhtL2jjV3Bmd39+rHPg1mz64vGPC/zYZrVu7DtnrL1/izreRuU+v5fPF9f2Wiv1QraFy4tGHYoPnMaB13cnfFkY85lzuafmyGnwnAYlNOsk00smOOGrVyNfvToq/0M20KJUHpfC41K4xor7NnFZEjFrau5KYiitho+bRUeBgoKwse03dSRnykC6ilj+Usty2HZ+fT83JL9q1lAtu8XsH9pZXz66vud3f/k7QtfTn874ruMwHoxsUvMCHIUV2FgHaaKUhVIWcppI8UparlATffDQBWIsXK6P5FxZUuUaNWXz0+OFx8cnRdRb1kfbbAzkcgWKcYXU3Ck3jnf0IXA+njifzpwOR8ZR0yu7oHW0RWA4DpzOB2J05EWYL4lSKmmCqc5GYtnjQ4CqalfeQfFKJtwNypFSorHnV8v+yYmQ840yQUuwXTmlzNttEV3nHOfjiZozY9dDLLw6379sJ6LEqvf39yDw9fXCYRx5/PSJdLlSUqKmwrzMyhxv5Gq5ZK7zzON10hTYCo240PtIFyJipSUaZQ7gPMPxyOF8Yjwe6S2lttUx++AhRlWLMbWZadYsn2WZlbDOjNdszHmrdGW7F2/E0KLR6xY5ERHTx9CjrTvV5tiNId/m6G4zijHy/v17ckqMw0C6XPj+fGLsAl+dT9yNA0MXkPsTvhugFlXEMOdXM0QquWZiXsj15aKaoOudX4GCbX100pym/ae3HdgJjWWfse8o5yMpZTqnfR+XRCyVJSkY512AMEIt1C5Q+o5SVTJ4yhFXCkJE+egqvhYOeaGKIyyZUBJFhOgKi3gSjoWOq9MsHMe8bbC78k1Qw8l5T9crAWPwSl69ysGXTE76W1IrEnQTUTUoZ6oWGu2UWuk6Dwyro9LGzOFwoOs6nfcpquJbSsRlsYhpMfW2XwK8gy6EG+BHjf7Wb/vXtzGrwFTLBLGMM+pqFDZAydsjGMinqlqVFBekZqbpwtPTIzktuDoyhCPeOZIplWh2lGY3IA4JPfgeXFYuk9CRQqHzXrNlEfq+X43O0cqP1FlsBq0SkOYUbU7nbS03jiHW9bHdl1utqVsnetv1iz1ay+25U1pbN4vKveDmGFPi2w/veffpAx8fH3l4emKJiSIOFzol//V+5a3zLuBwFjBxqzHfjF/dyjVzIFn6eSkQRNP3vVcumXEYGMeR8/nM27dvOB6P3N/freNZxJRs5LYdnPOro9HW1lqrAQfzDmyqFrW+45tvvln51XJWBZrz+cTpcGSeZnLOPD4+UqjErCXByeR4W+OvXBaY82L33Ej2tVxFCa7VAa+rDbeOB4xI92eol7zU0Wahc7LKMY+HI+fXb+mGgcPpjvvXb+gsIBa6zvp7W5jV2VcHPsaFi5UP7Y+uC+vcUVWn/TUIjWSwmEP0dLlqafI089137/j22++YppmHTw/Mc8uW3QKBt85W64Vmi9id1m1/3TtmXtTRrV6DoaWE1Y8DvVXv3Qr4DEFB3s7I4/vO03nNaKs5U0WsrOjvC0f8+JFz4uHDn/BhoLtecKFHpAd3QqSjxgtQ8GHEhY5uGHHO0/cD9/dvTL1xYr4eyTkxjHcMxzM5RcIwqrLQfKWkhRxnasks1wtT2WXu26LUbIwVOlmDKipQoc67rpk4VJQhBCv1qSzzTAgT0+XC09MTpRQ+fnjP999/y+Xpke+//5Z3339LKXnNII/LyNPjA9fLCSiUZdLy5hz1+ozRsQH3e9Cj9flzEHgNJhiwsR8bL9t7t4dyhFrJDbLam3oN28DRQMLO32nrhXMaeJOt5NhUcGilii3gKIJlH26qihvYU7d5ZIBCRfft4+m4AxHa9TSOHxUMGcdxy74MpsQp7OyJPZzQAAULltt/zolyqDlB6kDnPaEL3N3peg9aedIAjGRlu94Hhr4ndDpfdW3ZNbL99Ar8vKTPKNoWzgVCNxB6VV/uhoGu7/FdZ5RZZpu3PsmZtKiC2Xfff+Bf/N0feLpOxAxT0lSIV6/e8NWvhb4fVgAMNrCslIILgbtXr/HdwN39a47nO/VQL09cZ7XzVC3S+qNuSQUpZyTG1Qb11TcIQ+2MqoI4KecNSGr3bZyhgvr1zmuW/DB09H0ghJ678x2H4z0VR6YnE0hpIT5Vlqq+cxXN5BMcIag/k7Koj0Yx284Z16WSmj/nYv/S8Y+c8bMDK9rqsQN/hA2t+qzU6yeOW2LnXdlX+0k0+yN4T/We49Dz6nzAl5lTObPUM5Ijr0bh9UHwAoMkBkkEL/zq9cDXbw5aApQ9tXhyqXycMp/mwsNceH+t/P6TOnexoKob2KK0orRtGWl5SJUWYfAtWlILYo6KlB1H9xdgRP3MJmlNS+f8hYCfvuv47W9/o/XG3lQsxkEjczmZsWI8PbLSzaHATyTnhZwXUpzI8QolEYKD0jHNFz5+UoP56bLw8XEiZmVun1O2dL6GHLdNyZxZMh7LKMjJ+JI8nQ+cD0fOx5ORUGuWUkOBi6sMY8/hfCDMwvTgAJUtj3PCJTWS++OZ4BsTuwE/DkLn6bqAlEIsyrTeSJJTTuSSLN10v5ijzk41Pg62Bc+J53Q44REO3UCojnmaXrYT0Q31fD4jogRoh3EgiPDp3TuWaSLVzDTPlJhIObEskVwKl3nh8bpYNLvZ3lo/7d2CiDAMI4ejo8NRnfIfHI4nhsOo6lhOlGTb+FUq1eqXNcNmmucN+GlOdyvvegb8tKjIHrRpEZCNC8U4bkAXhAb+WH88B3zakVLi44cPXC8X+hCYHx44jSPHcSD++mvm+zOnw4HT3cix91q375pSWGXKmUgm1cRUrqRfoDTBEmN3Rhto+vntvdTd+ggKgiOohPfxoGnCtZKuM4sT5pRBKrmAeCtuq4Xa95Q8KvCzzNR5wuWMLxAkI7XgayHkCAihZLqswM/iVSksARc6OlcpNSHidrwBxUpUtuhXi5qNxuUTrNRM6XesdEuUF8WZHVVqQYpl/xlhvlDpQyDY2GilYd6HVW0ul8Iyq6IetXAteeUEWon3X/gQEbqwgZfaX2yZDrefXtf0jKYll2pCBOj6qKayLv6eJtHtlOMneIu8a1RYOdeuBvz0dA5OY0f1ntzKOpAN+HEKZEhowE9nwE9WwNepWljfDLsQuDufOZ9OiMgafc45c70+MU06N1NUw3rdL12DBYrFEPT51gqstkMzxioW4XtuBez3XnO09hHWlzhyzrz7qCpeD09PPF6vaoAjiO9uQB9xSvarfFw7AGo3Zds8aA6HEvSC73rrC78qzIzjwPl84vXr15xOJ+7Od+t4bjxo0O69AfWsrzXQp1Yt6ZqmiVrrWgLWgJ++7+27WzbLYRgZ+p6nxye+//57BV1r1T2jlek2x9F+37tdeqTZew0QaaAPVeWstcT61mbcg4H/2IeISSwHz/F84s1Xb7Xc7njm+Oo1oeuVW6NrWVeNGL+VZOoaF+PC9fJ0U1YnIoyH0UrjtFTK0gdurqE5qzkXrpeJDx9Urv37d+/4/vt3zPPMw+MjszlOZXeOLXK8B3Va3L8Zyxuodpu90LLUQCTY+eoa5FPgx0oZnGMMwTL8hLELdKa4qAHKxjkHL438lJx4+vidgjrTE853OD8Qujuc78nxqrZXOGjZVxfAe/quY+hfIyjgcu1GLTHPkWO6p5QEznG5PjFde3JcSMtVeSKBuEyomnbd7RO3dkUDdouBXwAh2Dixsi9dRz01F5ZlwYeZ6Xo1nqHCp48feP/991yeHnn//js+vP+eUjIhaPVCTpHL0wPX651SXqQZskp9a/lYs6J3PtbqL+yQPNgyTmrdjSO5ARB/qWMtfzXgZxup9tgtCxo4365cduX8LmcDnb1mmpftuzQwthakmKpiyVaAsmW1lVxXzsgGymI2xLHrtD2cu9lbGvjTyKDXNtuPh2fg9dqmdVszNs4vtX1q0X0dy/K8O584nbVkCAMZc1GRgRiVdzOY8mlbg9efsc1z16ov3K8GLjuP73oFfrrBQKBeAyIW5AELmlYNuk7XiZQS37//wD//V7/n0+MTqQhzcVSEr5eMG4+Mh0znPX1nFQt18w29D5zvXtH1A+f7VxyOZ3KBaYnk8qgiNBWqNNbhsgYqmkCMc45QFIhl59NWMODHuH92fSVVEAO1O+/ovGaSHYbeaAVGzqcTx9MdFU+UkUzHHCce40yNiarEIlRLDAm+BTyF6BaDg5wCP/bYZ1X+2PFvptSr7p63zWeFkdd9BHYAjr31o8dNaj/V9pPWRdogTYUphMDYD+RhwPcd0nlwhaDiC1aCsJ2tVLSDi7Sdd5dJpI7UbXKgXgMiVk7ht9/HkN4qpKIcGWt2T7FHLqB7we1FPHcEajHCNmP1NuCn7mfySx6ihl8VLXNZ79OiHWrLacaP2uXaoU0+OcVoaahpR27olZjWWKwMjzcHXzN81o2J1pN6MU3S1XsheI00KaDQanL1t1eeGHuIQDUCsEr9QltZGnUpOF8IKVJyb6CNGkaCOVlOcGskYlfSZujxGuVpj6rG0v5zbbFa0+PNqdmQ7Jc/2gYVLFU9NKlnc4y1DCSvTPdaElJMCrjuNk+9u1URzzlCU8owFYNu6JVMsdUdW4psi57S4hrGI6DKMS0KsI+GPLsHbjN1GldFc1pKUf6r/Td+bE7sI13NQU0pIcC8zDbXYYkLMUVS7tSMcgbhVst5q5XsdBpnB8VphOClj89AH+z2dumgN5kjsn0PLILtnZasmRpCrVqUFqtxiK3/VXwplo1oZUJx0Q3P1E50urdCHC1D9cUMWgPFECWX9UhjI9oZHpvhs7+BaqWGDaxbFbbautnKBWxPWe95N3ba+otrY7ABP26dZ8+BwC89fomjSc6361zN8i/8nr4kazbGCua5avwwjcdHnWwvTdFrV3IhX8qEga3h6xod1Pebgthm0DpRZbbG2dV3KglfamUwgD14v4KlDfhpyoc1R2puUrOJorRtN/unICsB9H4zlN3/9zfhaBk/rbhrA3xaO6vh+7JrajMCW8Rwi/61YM9W2rWl6e/VuLiZBQ3Nem78623uHIj65fe3c7NGyWEDulcX9Jk98SUAnVrXctC2xrZysq4LRti9ZQ9t5L91DXqs+1q79p0ZuDlw7ZU2F26vcdv1bW35BYCf1gPrLLC5tv62E+U4CwEfgvLK9QoEbSXM+4V4vw6X1RbZSFuj9aF+PgRvWUA6t0utJu7BBpKtIJJGm2O0MoioGdEx6f55UyLI7TrI/hKpN/ctbFNtv+bt1411/RBALIApLXhp6453ZpM1svKGGzQb5/Px9yJHrZQcQTQ7Xw9H9Yvalk6DjxWnNl3LNhS9VkHwPinQvS5ImVKEEFStLaeooEpJKnhgym1FCpqhv1MAkrYWtUHfbIw2hc2XaL5R+7MLchXbA+s6vzKlpFUhbSUNb79UW6ZOhZpX/2Bf8rVVDvz4nraWq7YXZJsR6yl+iX4Esw2bI9Qe29rdrn7dv2Qb3/pXjIpBrBTR47y602LAul5+oRpNxGpbiFCcsl5vqkk0t05/brcWN1tC7fattKjRAny+l9cbYPXmkO3+my3b1MFqKRRx1JJNpVjXIt1fdKK5nNVf3dkDLXtJATW7j/1v7Vr4pQ4nwjCognKwLP8QbM9wflUl3Uw5407KlSWpavO0JK5z5DpHYoE56x5/vM5cpxnEUbqAk35VR60838f8zVq2gkP1tg/Exsu+j/XzLXh/uwtt43E//jeAcvt9WxNXe9Ot11XwOPEUCbjS4XynQhAVzRwylWsBnu/NNw9pIS/53FF6dvwbAn72j2czdXfBsnNebubGl27KNtmtO7ZFtqUqOnF03YDD89Xrt/yT3/2O6+Mdj33kIb+jREdNkcu8QK0EKQTR63hMC398NEJQpyVgsCZNsiyFlLTES9dvc3C88OruyOvzSb8LBLQM5P2Hjzw+TYxEfF6ocaYuE2W6kq9XcIL3db23ajwnBmFZB9cV7NEUXd0EkEqW+qKTuDWza7wlaaYA3mVidAidKRuZUeacRjpFmC5PvPvuW6bLhe+++45Pnx64PD7hKvTjCINO6P6SqC4yFBiWiE9CqJXOVAdihVjVwd7Xr57GnvPYE7xwGnpOoxL9QubTx3fEOPP+3Z94990fGMYDh+OR8aCZDjFNpBxJZUtLL7UyXS9My4TzjpKSGhFOqM7jnTrIvSuMXohVuFYlLSxJWeJjzIQuk7JmTlQUHS5VN10vxiVUNUOoFiV3btGdFBvR5i+T0l5KwYnjOI50zhGPVw7jgThppk9MkWm+klJRBvxcuSwL06wG5upgIDpWxSHecTyd+NVf/Jrj8cg3v/0N3/zmG853dxyHwOHQI8D5TksTDoeRlDMfP36EWlaJ0pQzKS08lyhcN3PzBlu5jnOqcHN3d7c6xM4pCWhT4bhxNn7gWI0cW58WKzWLzkGKXEJgOoycjj1iWV8LhdopXbySuhVyFiKJ2VUKgTIcuGUd+fOP5tjvrt58JttI2UAfEVbuLddk30WV5Wowh9DaWZXbEoclkms1Z0fJ5oZcOKWElML08SNPOZFjQnw1sLxwonKuqtrgSqavmunkSyD4SEI4O5gdzCJ8QuirkKrQikUFoWRIUbPortdpJS/MQ0fug4ENAREFFXSZbOZ2K6hsPF82Ts1odU7UeWvZMA2ANGJLXee0rKNlXpSywjEv248iW6nX6iRwM17XdbwZ3QK1BEoXNiPGIk96f82B8UZaKmu2lIjQe0ffadlQk6rtezUiV7BZBOc1Uum7kW44qGHpAtV5kMLpeODNq1ecDgsOOAyaFXI8HjgeD3jnOR5HDuOIgAK6VTnCHh4febpcWGLk3bt3fMqLYXhFEVMRfKfEwDq89+SFW+NsvaIGoW+v1WbM3RpMra9fstQL1A6ootFN54MGh8y4b8CboGCZ8uJ5K8Fr/ZtxRWg49Q3hcet7C2yEEBC0xMwvC9PUyJSF8/m0loK11lFHMK/BFm2PrSS2AebDMKyls74pwIlw3GUeN3n4CqoqYlLv8zJzma5c50k5jhpvlPG1Ne4EBVihpGKEzUYUXA08MG4KagbUcW9cVqt9J/wiwA80J6BuOKNeNCIQDgPHV3cM/cDp/p7TqzPDeNByIi+Wnl8s804snKFzOsaJy9ODqqS9f8d3f/ojy7ysPyEizOc7SlwIXWA8HEFOeB9wXsioc5drIddCzInH64XvP37icrny6fHC02U2QCmvBLzsy+Kk0mxHExJGRMVOvO0fzm8Sw6Fx8gnmuGgnuOZjrhe/zbNWzhncBjT3Xl9ve0Rr34qzYMnL9WWtmTQ/4fOCk6ycdL4jlQXnAi5POhb9iCOSj6OC5qGn8wec0/Vyk06fic6RS+JwuuP1669YDkfiMjFfHzWTJhemywXNPRcjWt3xvoigmFADD1qwz4LAYqpCOZFTwjlPipG4RGKIWtrRlClLWtW6clrIaQEqYfBWSmJKcDlSKdS4QJqoWT+vYFgFWladrpV7EKrNgz3PV3tIMybE7uMXm4fqr1Wz92ttgJPZPJW1oqOBj/pFtj28gdSu0NtHSzGwdJ7WvT2mRLLvtuQA37jpdvuEYEF+8Vt7rADPPuPHW4ZNA69Y966b1hLZrRCs9kpbkwcLmPR9T4pRhWRKIS+RnBIhBM7nVuolK79ayhkJnmUJK5ixgvot46e5lm33rNs69FJH3/f8zd/8FW/evuLrX/2K16/v6LrAcDho2b04RLTNmkBOKZXLXPj248w0L/z+/ZW/e3fl48OFKWaeJqVZ+XStzMVzHEde35/59dtX9F2g63v6QdutAU0pJS37a1yl2Thjba452/Ocq0bpsZW+VmeCPvaa6oKL8QR2NH5Jj6xwRltbvYexdwyDAj6HsWfoO80MDZ2BXx01HBB3oPiO/jgzioM4US4zy5LolCFfgWmvSSvBew7jqOXew0DfuHZ/Rr/8GwF+pO5TIc2Aa54K9rw5ew0Xgs+Aof2xDVo1CNp3NKNDnQBxns5UNV7fv+J3f/ENy92J9/k9/cOBOFcenhIfLxvp3nqey0Il4qRyDJVjp/V1Q+8ZOkeMKL9HbYpluip577g/H/n1V68JompAHUU3/OmR8qSOkc+RGhdKXCjzRJ6uiBfwBXxDpO2B4GoALEJdN+CHEqFazaGUX8Q4cigCrjxHBe8KafE07Z8mje18wPeaBjlfL7x/946nhwfev3/Pw8MT0+XK2A+cj0e88wxLoR9nini6nOn7gHPqwnXocPBFoKh6SzDSNOcdr85HXt8fCd5xCPpQhLvw+PCBGGc+vv+OD++/ZTwcKOUVzummldJCKsnIhNV1qqWyTBPx8eOaOYSoapUbBlzX46l0rjJ4h9SCq0bYaPJ6MRW6pMTIuej22KLCQtnSnY3foDane564Xi7rAvVLAD/N4BARxmGkD4HpcOQwDCzDwHy9EJOSRaZUmJZEzgoAzUskprJG9FpEBStjGA8HvvrV15zPZ379F7/m67/4NXenE8FVOtExfDodeP36FcPQ8+nhYZVfTCaZmizTZotkbdNfgabNwW1RkWEYOJ1O6z2KyEoKPjGvxmlbbr7cLpvhk2ulxEhC7Zw0T3iBGI+8uj/SdQ4/eCKF0ns18gtUCiVBLI5FhCqBag70ix5mjK+lgujat5L4Ude2Y31JrOTVIi2tUWjyu2q0TjExLAu5qAqYH5QvJCSVsq+5cC2Fp8cnYoXqdYNUBUKrWK6VoSS6vKjBVBI5e7IIpy4w+0AQx4jQ6YJFrUJp5RFF5TVLqUhdyDFpRK10UHTu53zcQB8agHXToavT0gwBt3vu1w3fiN2rM8LhzcmutZU1vDSM3vpFS72eZxTdxpDWD6/3W+3+1j8WMRbL7GnBjn32R0tdD0FLVIN39H0wYlotv2xGYvDevDtH6EZCPyLiKCIUHCKFwzjy6u5MSokueM4H5fK5uztxPp3U2Ok7hk4lcpNl8qWceP8w8vD0xDRNLNcnLo9WktmIhZ3DO0uTr7YHrnKlW+u0QDk0Z3v3ujkuLeqqgEgwcOHl+rOuD8uMcl7V7kwBR0vQ3AbAeZUEdqLk8CJo2WNq0EbjfStWMmb3J1sEGFRqPXrPssxcr5PK+xr/TghbOY6WfHFT1tXW/+fzYC3p2mV/+t28aUfOmcenJy3TLZk5RqZ5Zppny4a07JZSjCsKHZPOKQda3ZSttn41PgSvzqiWp+wAhtp8zpcPatnP23K4AyMcaos5IQwdh/OJw+HA8e7M4e7EMIwUcQr8ocCPghpNzUntsZRmrpcHlnnh08f3vPvuT8zzbCCMAmo5LnipK2jXDR3UQg7e+CAV+EklE0vmMk18+PSgwM/Thcu0rJLPW8ZPoTHdyc1DSwWESpBK0O4heIc3lb2+86ZGJ1quYCCQM0W+ndGt59+BZTe/0/5tdlR7pzRg4SWBn1LIywVKwLuMhEDNAcpCFU/Ji1ZD+5EQoMTXVO8R3whXO5TDxRsfU1AFupw4HM7cv3pDWg7M04UpeFJSDsTQDbrmlAoStwaxaD3OmdJgfbZ2W2aPCZTknHFZndI1Qz41OgctOS45bgBQ21/9yNBryYuTqkpftVDTQo2LAT/RFMAq4nb+wRZbuwl+3WQXtj0SVuXBXwr00aYTa9OqNKa1ZR+bfVAxBTS7gdVntIwWu07vFfhpoEcrJS/Fqg6yKjztg4t74KcBQes+6r3ZkFvbtAzYTVVUgyz7Y22p1aDdLNo9+ANbkGIYhhW4aMB8yYU4zySTcz8cjsoLJi0gqsAPTpRDs7L1UwPFdr7t+ne9rJcEfjr+8q9+y939mbdfveV8pzZB6DoLtG1BLmi2QeU6V949LDxeZv70YeKPHyY+PExcrjMfHy/kXLgslVwdx8PI8qu3nPqOMg4Kuh02v2DNUGUTrEhJuUtzznS9EWG3+zZEVkEopTyobEJCtTZHQhAJK3iqWcTath4s4AjD4DgMDu+Foe8Zhg7vtcLCOU91Ad+NSHek84E+LkQRyuxZnt6Rl6QVSWDBdQUCQwkr6DP2Bvz8zEzmnwR+ROSvgP8Z8A3qg/+zWuv/WETeAv8L4G+A/x/w36y1vv/xs9W1UdcG1h/5wnODc3Ve6FufB/ueXSz72bW9th9dNvC982rgJCOhNYcw5sqc1FjZD/9WgeWA0ln9oFPapQrMCWLZpeRixJreMw4D59OJINCXRFcyjqokpV7lLlVqOJkscqKkqCi3sCKKTc5NBzCA30kzau7RnhhRS74qf/ftdwD/joj8Z39+H2LRClOCKZmchZwWkqtGsLapAJRFF+J5mlUV6emJaZpNIrysqfHKNetM+nebrAg33D6lCJ3VePbDQD+OeO85ng4cTwflsZCqERztOVKKuOiY5yvT9Qmo9EPPsAwAJpWokZYWmVzLfGKiFEeKC2kJdm0KPGiT38pjNvLJpnTTEOZVvrABC3UjIWvliPs03G0M34z0TkT+D7zAXKy1MM+zleiV9adaOcgagahbqj7o4hZ8B1LW8o7GwTKMGi0+n0+czyfuzmcOhwN9ZxsojcB1KxnYq6xpuvxu8W2RiNZCexDDLEvvvBJ1d8rTcjweabwWMWq6d6tt1uiU/ODGdlNStgMQ2pUUNFOrqZu1crR9ze9q8Aurwlt7DYH37z7CC81FNaR327cZRkiL6Mi6KVFZeY325Rz777fyJ8Gy7GrANeCnZY2IAt7VZVzfIX2nxleslJCpUta6ZwS6oiX1TXHhxuitxRQJt0zN7eaM9LXu29yWeFtf1yyO3X0879tmQP0YD9Tmv7QIuL1fNDuj+PKlc7/YXISt1GsP6mxgDzujcLsOsXayzt1tedt5mtKOmEGyz2b6Urrwdo8WwKgVRMc6WSPEVZyObwveeOeoTon08zAgAmPfMVhGkdal68U529cV8GgqX96cTWdRPwN56q5PBU2vc18wAvYT9ebYz4fP570BHy/Wh/vfadfsxCGu7tbVxkFk643s+3Xru9vTtnks1p8t09Wt0eZ2P3slyfWc65i/nSdfWgfaXGnP9+Voz0uOV8C1nfOZwszaC3W//7We2a/v+2ts17y+/QzM1e81vMGOF5yLtl60q1QvUEvZ9pmSdi9a+qwKh6WNtWYFiAIb2a43J82OzOk2gwMsely2tmpcWC0zxBpivemNv2rnmLf22Zu+spnFOu8VtFnXAANlgjh8m5deFW/FKQgUvEPcRtysTdIU+dhqRNr1fNaiGza0OpzNLrery6W+6FwspZXIqU2s62O2ZkxQIiJeA6UlUstCLb31idooW1lwU3lyphDbQc3k3OGDynGrI9dRfCY75a17Nr2ftcjtYrWVYLIZHDvzr4FDpRTrC103u06Je0VYuWSCZY9qULishMXNf2jZvZvtyTPgYbuemxLSelvsst3LzfGi+6JYTdLqXO/BkWdXU9s/t61wrRATxHyLBmS3clW161ZCbjHAHaUIKBacXcucnQE8TQF3N/eafXPbOrs+Xdua3cDYBa2e9YF+bCPEb8qNxZnacK27vWAL4n22rj9bA1rA47nN1Z6X+nL7olgmfiO8b0pjN2tW0TVLE32Vu2xJhSkWpphZMmQ8VQJFMgVPBmKqTHMEHJfLzNPFMricI/Q93nlVNzR6iiqawdxKdEOnYhWaUbn5CNS6zp392GpZp63ltG8CIbRBZuThGE9vrbv9THZjoW7+zc142c4hztMyoWz0sj27tZe3ktC67hk/dfycjJ8E/Pdrrf+piNwB/4mI/O+A/w7wv6+1/sci8h8B/xHwP/jRM6nnrg7KLpL/2Q6FsHI2wE012Pr+8+PZWrotaMUWAuM5cNo44zBwf/+apQu87w9cE1znzLdPC//6/ZWYMy29sGJcHUWN50NXOYRKcMLdmDgNjpjh/aUyp0JG8L5j7Dzn05G/+t1f8e/+7T/FU6mXTzBduFyemB4/sTx91DKKNBMvn1iGwPz4gfnxAzU4hoNHeh2QUpSMs+JU/q02bpRiTm2h1pYhoq4qVHyJAP+q1vrv/rl9WKuSgsa4cJ0eWNJCnDtqvtIF3YyGoClnOReWmMi58nf/6l/y//5//r/49PED8frE/GjqUZLwnZLDRsD1vRIDCuBFwaWKZcwImY4kPTjPq9evefP2LV0XOB177k49TirL5YHl6RMlZZbrxOXpEX8N/OmP/4rj3ZHhcODrp1+xzL9CEKbLlfmq1zM9XYlzIsfI5enK9eERJ1DKzDI/4LxnOB7ohoGKIxZPqQ5SweWo8tW5UHcSq9N14jJoGr7YSiC1ybia3HtuakZZqyk6gSxI/syQepG5uCyRf/2v/zWdEZ13zmuKsQidD3jnbf7YhmFgwmE8cDwPiHgOh5Hz3VlBn6HndDrShcBvfvsb/vZv/5bT+cRXb9/w6u5E33ekJROnRRUoBA6HEe81O+DV63v6a8e8LPhPnyg211hBTyyTbiOudc5xPB25v79nGAb+8i//kt/85rfUWvn22z/x7t07pmlayS5byeeX1o/noM/qlNlfXQcU9W+S9jFnYk7Ks5CTrjOizkKmMufINS1qaVcld036My8yF9WztByHKtsy2owANu6F/XeaSkEzqpqv4DpPJ70RPXcMRSOY4rVkU7uj4rIak0tJzCURY+T68cJT90hJmWmZeZgnfCkkyWSDxxt4loElJ3I14tcUlSC6NuBYgbNs4LIU45vKUEJA5MAwDFae1K/p2JuBzmfZCdh597KeDRBcHyjpbQjK7eC8GlR97tdzPjteZC6KiCpusBlqX/rM9tw6Gm72PEG2qB3NGd/V9u/AgL4LHEYloh3HgXEcNAW5ge0oeLokA2B8Aj8j4vBBHZ5aq5UlQBcc3d2R+/NBSwK7oGSLtVLyQrpGKlj2RzXHLDF2DornOPacDwMxJS75qhFYv5X+aAfsbrnu9vj9vr+LVrN3VKQBXygh+FY29nJ96IKqbuHxmDFuXrYzZRMRhX5KVJAUL7jer2VnCjB4i0rLug427oi+6xjHka4fOIxaQtcPA845Uoosy0KySGbOeeW709N36/VqKULjo9jmze04kxWQxECM/ZArVHOKNCNoPBw43511zvQ94h2UVga22Endtq7ab4hTWfTqFODyzhSHmkO1RuKrgdv61rOErZfrx9BZmbpbf0jMuQq+02zeOXKVC+I+GHddwAdV4+q8qpQ650hUoo3Fp4dPPH74QFwWlusFV8qaZdPGpwKuG0dSczBqZS01rYg6Bq7qODgcqVUYuh5vGXmYwgu19aP2b2hAhmjwMzgdG73fMs+6lslrINAK9kgDe3b9IexK4rY9aPdHx39b21i7Vd9o9/iCfag2qpYXd71nVcMtqGOVBec7YIHoydM7cp1JZSF6Tw0juEDnBxTsK1QZKMVT85Ga70lJlWGlQkqR03nicveKfhm4mC21ce8oT2XzXfT+HXpBre93QEADQZtaD5r5Nhvp+tB3vH1zz3EMTI+/RvIVqBwOI8PYE4Jn6BWcqiWR0kxetNSrxpmalq0PLHNayu1kau3YHiKy0jao/bDZhF/Ys15oLjq6rteMX2kZbGzZgTtnWkGXYj71M+DUrs875TAEFWUJnVMez2VhmScVb6iVWAoYCJGMDsH5QNdrYLMfBgZTqVQ7cMug3BRlHeEL3vUGflfLkt+B4SuwsAEOCvAFii/Uo3Kt5ZyZQmCZVUzFGeeqzqQN0NOM5b3NYv20rjXsqSDXefKSfdh1Hd/87jcMQ89wVBXoZoJrM5jvUyrLnHh4XJhj5t2nmT9+mPn4tPBhdtThNb4eCG6mKyOSMlMR/vDdI949cXmaeHp8YugCr17f89VXbwldWAO0KWUKgbtXb/HdSKFTXzKl1iuon5FoytjzXMk52phTdVjNqOrwTkGjrlfFQBGnIg6uo9ZCnJ5IyxUnBe8jEFd7KdZMCRC6GecWqEIJWfu4VsQHQhjJXcL7nuo7y0h3NC59fVRqyszXievTE9PxwBJn0spr9sPHTwI/tdbfA7+35w+ikerfAf914L9iH/ufAv/HnxoEekIzuPaEq+pZbmPODIP28vb6zRfWr+/2InPSdk4cxSTFzUkyUt6+6zmf71m8w3cDc4anWHl/Sfz+06QqUkWMm0Ul1JL5jWOAsdOI5euD43705AofJyEWnYC+83TdwOl44ptff8Pf/lt/i6+F5cO3xIf3PD4OfP/t7/k0Bo0qlIV0fSSNvQJAT5+Q3lOM6IlaIC2qVoWj1oBU14ar/b9qNGPNQdBUzl+/GgEuL9KHtSr/yzIzXx+ZlokUA5SJEDx96JHhQPCBeV54fLiwxMSf/u73/Mt//i94/+4dQbRESgDxmS5mvPF7SKfs84N3+M4ZwTCkbHfpRoo/4nzg19/8Bb/9y9/R9z2H0XM8eKiFT9/9kQ8k4jxzvTzydHlARPj++z8yHAfGw0jNC0LGOcdyjSyzEo2my0SKmbxkpuvM0+MTShB9Jc6alZLikfEwgjiyG6jSUzO4rMpIztJxU0xEr+VS03VSfglTBNF0wWzlAC0yZZEGB675Os1u0SPWWv/Tl+jHlCJ/+OMfOI0jcv8KhoGSsnFO+JXkcI0emoE/jAPn8xtC13N3d+arr75iGHoOx5H7O63f/c1vf8M//af/FqfTkWHoOR4OOCdc88yUEylFnUdjj/fC6XTk7u5ECJ5PDw/qcDeiV2mG/5Z1VMU4CpzjeDzy+vVrDocD33zzG/76r/+aWssaub5er7x7/2HllWB1f/dDuv7wc2kQivWTWJljI+nMZS1pUGkJ3VwzlZgzc4oGzuhuN96d4aXmolrjrIZzixruDGy3M9za0VR5WkSvGUjOVAMA+mYk2N8tGml9UCoLmRNZa6VNfjbHxHwFqQmfMxUPxeucMIOk1EJs0R1Ty3JFSyU3clRZlb4EqLkqmbw5Ml3fKyG5ZYvtMxLa8y3itRnTfvf6LbmuOd5oGRQCvvqbbKFnYNKLzUVBFRv213Hz/rPX12yOmz1Q1kySLdzJmoWxvmDGpToHPV3wjEOvBIxdZyp72s9LSlymqLxVEsmyIOLo+4G+HxC03MeLgoPD0DP2atgp45VGz69PkThflNunaK28BmIcfXDUonLPh7HHR2G6Xsi2Rgh1BSi21vqyzgGoXbGuE59F1OxTln1i4//F+tCLkjR6K+tqxPktS8SJZtOVUtdSHDEHpJqx04ju99k5OgatPLHrNNO1V9nwYRjoh96An7SqI+bcVMGayEFbExop+FYutn9vP9b2Y07n4g74EQPiRcFF77Us4Xg6UUql67s186cBP81Jcc7vgB918BwKjKvNohK26iRtQN5WlvJZhuDLzUUDfsQ7kxq2QI2tS94HcipQo2YiF+URCV3PMIw4H6jB47ISjdaSVzXAy6cHrg8PxGUhXSekFNZikHWNbeWBO9EJmsncKIPVsRTnCaFnHA+Uok6WcurYvunauNxKtIIzMEHEAnVabtgb2OP2WT5ihPFmYKvtrHZ7K8fcTAQB2e0zctumX1rX2lGrigy8VB/WCilljbdkr0oCGjkyH0CQ4oEFUqAsH8lEEpUUDtSQCcOBrtf+FFc006A4KAcoZ3KOCsikREoL8+HM8XQmBgUG53AFhJyjlos8H2cAu73FGooWgBAaIb8+VOV0QkTL7+7vzox9YPr6LeQJKMb9pUB/F9QWrlVVL+Myq++QIuS4zjvNTLq1D1p/rZkEOzuozYe9q9YCNXa86Fz0vkNMpXQjjN+uqe1tFVQ8o9a1RLzZja1NXRPZEaHrPF3vNYA1KfhZciYuaq/XWslOxSzEOYbDgdB3hNDRjyPD4aBttkRyjZr5bVxnbQ1pscNtYP7AcxrI1sAfC4w4BWcb/5r2fa9lf7YGrKeqmxeI/d1z9W24otxc1A3wI9pmTn/vRfqw6wK/+vWvdI/obT1tnGPWj8WAn7hkni4L1znz4WHmu08LHy4Ll9lTuju8nPBM+NRRY2KZLzy+/0QtiafHC48fP9F3nrdvX/N4XYxQWrN7NPM+cLx7je9HUvXEqmWaKS3kuFiZ+ULJ+jylqLZn3SpcRCo+9Er54QLDeE8/nBEXcN2IC6OqCn76nunyEakJJ09QFWAqKZFKpVYhpYhPEfBrpqGuhQEXKqTeFAmNd9EiXw30oUK1sr/pemGeJy3zLT+tHvz34vgRkb8B/n3g/wL8hYFC1Fp/LyK//oHv/IfAfwjwu9/9JexTkdpfkZvna2qvKUM1/2Oz4fZo0A4Gat/9kkEIG+i0M1jEqYkaixCLkgenCmklaVZDWEy5QgB81dReUaLhOVdyhVTMkRIl+QpBpW6HfuAwHHA1Q9dRfaDzgS54uuCoODWepeIoijiWSM1F09uLUGvWhbuYHGNFjUGeAz/Z8hJ0AVEz4eX68Ouvv1Zk3RxfLUuDnDxCJVVhEUd2iet15unxkWWJXC8XNXhS1AghxidSVJmigpGTNgffolqNQbAVlPsROt2Qx2FUfpq+p+9UzrGWSpNorj5rKVGTDKyQW+10iloCJs5I8rS9S05GoNfUN1SiPsaK92qQhbisqd/FadlDKkpGWxuk3wzVWihJ07urRd9FlL+iFjRDZAf8qFpYK0vRFM/b3eNl+vH+1f262exnFbsp2VJjfZM6rDAOA8fjkb4fOJ/P3J1PDMOg2T/nE10XOB5Ghl7Jtb0t9LXKmnJ8k8oOFpkIaypr13W2wWudrRohBSn5Mz+ulZn1vTqvwzBQa6Hv9Twxxp2zv32v7v+uy9HnTuL6uhm46zWLrNkUrexi+0zbLFrKqM5OeXb+P7cP375985lBLc829pvX23U/c/CaUbFPNf7M+dv/rRUceK/cMIjQDQPDYSB3no5CKBmXM84ix5rpuVea2co/VgII9nZJW7caP5sp3DVFBCsLhQ3oz608t+0DjQB8vVdV6WhZDJ+DQG4lRBW7TydiV6DX9Blq+AL9eDD+pO1x88nbfqABPs+DH7tU4t3bDXQQaZ/Su/He2cMyoBDrWsuuY5MRz0XLVbIiSSrNuqqIsO6L3gvOG19Ji7a2vq5lBfK0PFJVIbVaVufXTcnZs3Twdv1re3ypUe2DbYjKlz5YGyD0sn349s2b1W5ZuQWccoasBPiIKt5Jy85VA3Bdd6pxWEjji2iwgAO8OUImse7dqqb1vFSvOTqt3Z7PeR3vP+6Mr/fIF4f8iv6IOaYN/Glqmm1e3qypdVsbW5D1S1fwHOjfX4DY77ZSxc+u98/sx1dn3dvEOVynZQl1dwmC2hiFgkgm+0QtFcGtz1OtRCA34CdpBDklfZ9qXEpdR3bOCHN0zHfdpn6zzs3P5oKsIIHy7KlsureSyZLVNqnFGXDKVsa1B37WzB5ZVVEVHN+X3Km9AmvCXWs0sy9vx0hbf7d/3LTzs47GQKyX7cM+GInrzs3YMiENBKpZMy5qouaFkgMlN6JkJWdXlVoj/Kft+a102G1zsCgBfRdUcSmEzpx1A15aAv6uDZqzftsme+NrA4BAgbacEiKyEhKLaMCg7zXLQOffvvR5W3/rjo7gOSLxc9aBBiy0NZ0vzM0v9Mnf8Gf04939+bN1y1yDbX1fr39bO2/smbXcfbMBWhs7cVTXsh81ozn7sqrBOtdsPC35dn6bk1s5q6yKo7lo2SdoQKSVHcHtVGigVVvvrVnX9a6B3PvXnjXS1h7tyzZenn9+tX3kmS1n/tBKpwIbFcAL9uFf/+VvDDxtZVDuZgyVooBKKYWYknKIzpk5ZpZciRlSFap4y7wMeN9Rq6OkiJjyXsGzFKEmuC6Fp2tkydAlFQaiwpIrVTxVOiT0+H6kuqwi2kkDt7W41YiX/Rhrhr3tBm09cM7hjKTZhR7XDcrvFzrEAhwbAUgbAHYuUzOlWNlvzTYmFAjHmRhHCJp5ab5YcRXJGFdyJsaZeZ5YllmBn/w50Pz8+NnAj4icgf8V8N+rtX76WYsFUGv9Z8A/A/j3/gv/xcbStWtEANmNtm1hbC/tVZBvzL4bR+72ejbHbmdhqNSC/rsoAlhcx7UGPiTHp+h4SI5LcaRa8b6j80FJoccT/XhSpyJHSo5IzVzzlXmayAUusZKrDobDeOTu/jVvX73m6ze/4ldv/wIpkYdl4mmZICfujiOvTqMuWUGQUDj6hC9X8vxAqZ6yLBSnBH/kGcmK9lI9xpiwu+dKoal2gOwDpS/Uh3/7t/+0prQQ08wyX5jmKzkHRDLBe6ZSeUiaKvnp0yf++IdvuVyvfHj3jseP74nTBekCvesRhBQXnh41PTJX1owpcIgfQYTe94Ru1H7oD3TjmeADX//qK371Rku9cnwiL0/UkuhFOI9HcuhwGTpLcR+HAzlmokTm64Xr4yfEOdK8kJeoYNY8keeJtMxcrw88Pj0gVGJ0TJNOvus00Q89VRxFBop0VHEkN1JcTykJqRFXI5JhvnyCuuB94HA4aHqgE3wXVhncta3TghhaH3ynajjPDNyX6Mff/u43VUExvyMadSsCL6K1ubkYobXXdMbXr9/ym2/+kuPhyN3dma+//kpBl7HneBwJwXO+O3M+DsraTyHOV6iV+frEdL0oGWJcWOJCzkrYez6d6LqO6zwxLTPLEnl8euLh8UlTW6eFqc5mZG8G8DiOvHr1itPpxJs3b/j666/IufDp0yceHjTTa69Uk82xfW6x/Ij98tkhoipMStQ2KLfQ4UAumTkt5JTU2M9ZEWQviL8tuXqJPvybv/kntRG47hGxL93Lc+CnOYk3xoZsztr+ejZDZ3fyqqnlOCHnQn84cHh1R8kZf7niLhckF8L1ir9OUJS4u5jUcJonfeRISRNMDkrBO+icGj256jrtnDOQV7NSxsOoNdzBk2tlXuJqDP4QeLdrQbOTWtmX8b0ZiWLbfRpo4By4gs2LvGY97Nr1z+7HN/en2ngZNAq7nn33O+3fz+9v2xF3OT+bD+E25bfm0DkRjuPA8TDSBW/KaPqdXDLZFIEeniY+Pl41nb04YlUn9O584h4tPxo6z3EY10yBzumJ0pLJUcs6l5xYTK1jyZmYNbK1VM2iTUmNr9D3FNFsrr6Plh2y3XOTyIVGfPzMfqjVAgQ7j+9ZSzXwdj/GX6IP//qv/qrGNFPJjEPH+ayKZn1Q9S4NIhh/SKwsVfnkpARCEqjqYHpxmqHRGb9UVZGEZjyf7u44HHUPGcfBFNkU9B7HUcvAum5TccE4A8yhF1HDtjmxdh/7e2ptcuNQrP/et6cIwQfoK0NMjIOug2lZNEshqdw0pa7RympZfsAuQ61aplaGUlSNqBoxbbWSCITGD6fZKh2DkVDvrufP7sd/8tu/qH/xzW/0DWufmBLTPOu6XiHPkVTB+URespWqqQ3hzIFcd2zL/sXWDyp4Fzgdz5xPJ93LTLEFEYbDkfF4wgXP4XhmGA46D5oCDKJghHiqE46Dkqv33vPqdODu0LOE5qio09v5SvAGHzohSMv+UXVSEWwdFAOLzTe04OFqkVlZUG3/QFfKWjf7e5+LtTmaxmH2GRK0uQE7J/7P7sPj2NWUVMyr0Rfap+xvQuqEFEeJjuXak+NIXmZKcrhwYDjcgdNqgCoVb3tB8Y5k86vrBvphxDnP8XQmza+JcYFSiPNEjAvTJKQcFXjZsLsv7FOVVq7t2MCbNu/meeLh4RMiQloupDiTc6TvA/f3Zxq9w8YxWSyLIBkZtDqYYgrAUtvasAOCV+6Xz9u8wpop6VFgQ0EotRfLs9t5iX785ptfVzuXrfvqxDXgq72nD81Sw9YdxD5Xq3FYNrvRQCALftSqXKHe7qXrFoIBPxtA7jgcD5yORw1QGjDb+rEpv07TxHWaduDcxsXkzbYotGBr1TXflDhbmZie0+NcwRUNcBXZMmNWQKlq8Pj5mrxr/43bcm0j7d2bGtmy2X91Dwy9UB/+B//+v1d9f2Sd4VX3gLbGp3lhvkyUlPjwceYP3z7xeEn88THy/pJ5nCEWTxJH9uCGjoGBrhTCcMIPZ1tXM48lIalyeYB3y4ORKWsmsYhwnRKXeiD7Hg49g9wRcqZ8es+c3xuvbqImnTtSC8EARF8LLqsymK+q9u0Eur5nGI+I7/CHV/jhjpQiIUUkRSgzNV7JaVvovCgHUFmuSv0QZk1oEOWuDUquhowdcn+GPhGkcnCFXiopRyTNxJrI85X33/6REieEzKeHv+HV9Oon++hnAT8i0tkA+J/XWv/X9vIfReQ3hvz9BvjTzxgSK8fPZ0pFOyR8RUG5BX/WTWcP8+wM4sb5Xrc3aMww60vN0aFSnae4wFw9n6LnU3Q8ZWEuKi08+oDrR7wPnO5fc371FkSYpolpvlJyYnrURbnWylIUvHAIw3Dg/vyK+7tXvL57w9tXbyFF6qf3lP5AGRZO48j5oDwaeFNJ8RlXJmp8ohCoS6Z6BX4kzUhR4Ef5fQxxtqbQ5bClCAvVb4u5ffjP7sNaK7kk4xOYWeYrtQS8FErwpDkyP13JMfH99+/45//8X/L0+MQ8T1weH3RS0EMfoHpyiixx0Y3QBarVTjrvEa/oaTccORzvDTg5cjzdEULg7ZvXvL1/hfeOy+PC4zVSUySgBlHtenxxdK6nViWpzSkjRJZpYro+qYEaLdUvF8oyU+KipWzThetFyaBjFLpON6B+WVZisCwdRQLiO8IB3OB0g61ZKcgKxOmRkmZCF/BkpGpEkRKoLaPHEPlqUptNSvpwOJrCR5smLzMX1RHwa4S2RQE1C1MjmF3fM5ZC1+niFkLgV1//mr/567/ifL7j/u7MV1+91ZKRPjCMvTH2B4ahwzkhxoUlTpqqPF+Z54mcE4vxRDWFBXVmOlOFWVjMiM61Kvt+qSxLpNCIqOsK6pzPZ87nM69eveLVq1fkXDifzxyPR0opdH0rYdHNs0U5NnCYH9xAPxv/NIdHI21D3zEOPeMwEFNkifOq7KYZe1ofqlKuW/O/RB/Cjv+Ezx24myyRNQp4+7z9+4eOW6Bo1who9ldLox1OR46vs2ZyXSa4XLR2+3KlPl2VqytGaoz6/OmB/KgqNuXSUYOOvaZyVBWFQFOWYRg8x5PyKvRjv6pC5KIlSS0tvZghs3Fk6AWvWUHGpbVmTzgtnzmWQt8PmibfSExtk27lfTWn1Tiztnm5ueg3SVh7dff+T52hmbKfZ0D4lpGGATNes9R0zPZ0IaiUPLKCWzmpWuPlOvHp6YmUC3MR5oyuW66V2nnG8ch46C0Vuaylq4VMzGoQLyUTjdtnTpmYlLdNI3oKBBQE3/UEtD+ClQrJTamdWDYJiBStFpfnBW/1di43AGyzOzfVMHm5Pqy1kpI6eP3QcTyMynfXKclkjJFpmsmpknOl1EQuCZcrJQuC10pR66sa/Eoc67qO0Ct/zPF0UuCz6+iHfs1s7Lp+BYFUiWaT5G7Aj7gGovCZD/6D4A+7j7dourWjs3VQgL7rFAQfBqa+V168nFeww0krHdmd322AUt2R0Jad8lBTKBSaXaggUrAMi/X6Xqgfgw+8/errFRystWrpR64sBSu5SRoccY4c1QFOnY5155yt/8mi2mWlNeh8MMldryXQx1Hne1BOIMTRDT1hOKid0Y8mS+wQF8AkpEVlxghOGPqBu+ORIML5MHAcOzpTa9JyoUofoDMzI4hYNbJl9ojBb26febOtlxsgU5uZsntVbdAmfGJQ0Qqs7/pm5bDafmEbV3X73AvNRUgZQt4ymuvu/9QMZdYIfxLSFMiuJ3eFXAacV3ve9wdCSbgQcH1Y158QOrI4fBfpukGzxscD+XxnIiAz16dHLQvMiWlyyue1O9bMnxu7Y5dJ0MAfu+y4LFwuj2YjztS8UEtWfsvTUedPTkriXAsxLlpOWoqpfyU0yylb2XWzOdvjWQbgZ7hUvcmGXYnkSysHu7m3F/IXt7YScTR+1i8d3in3XJMqL1Uz9ttab8Nza2cRRDQjw3eO6rScqmX+bFw9un+O48h4OKyqoM77lXMrpUiMiev1yuPT0/qdzmgrGAYtn8LsGmvfWtTg0eSPvALi+r5TwNH79R62Nt9Klbfu2dbsWutN2fuW9bN/WB/LrjR6t76/WB+K4LqDAd/N9zf+q7IQ48w0PZGWyKeHie/fPfDxKfFugoep8pR0Tclt7et6Bl9tfh7x/ZlSMvM0cbk8qTLzY6R8ekKoHMaOs9kn2l4j1QHjkb7X9XyOUJ4mSnHUejHgR0tDvbWLqxUpGanVgJ9qJZUd3XjA+R5/vMcf3uDSgr8+INdHyEJN3niqNIvIA1IqNU3kkiEnpD8joQfx+DBoiZcL9OcjYVA66y7PhJqIsZDNJi3LxKf337PMF8bjwNPTA9N8/clu+TmqXgL8T4D/rNb6P9q99b8F/tvAf2x//zc/+WsKba6OVjVkZ4fH3G4EsGb7SN2kA9fPrB/Y4KIGevzAjytgUs3rM6naKjbxncrXOouODSFwHAdC6Li/u+P1mzeA4/HpEe+9plVNT8y4Fchqxpa3NC0lynUrIW2T+Qve03mnpV6l0hibPAUxUjbNzvTULBo50poqu3G3Al2IbRnV7rG1jbSNuQL8E+D/9Gf3IVvqaFlLoiBnze5Ylpnr5UJaItP1wjJPxGWmpKSOVCt3WvtDnQ1z12hkviBaXucCPnSErldjr9u4PYJ3q7QrxhVSy5YuB6yLsC6Gsv6+DkETnm/qGnUXJWkKCOZIlFLJWczAz2oE48giplokOFNr01K7rXSrWOqdSCWnSEobE38b0GIlYy06wXr9n3XAi8zFBpp0varaee+VvM+uqfFThNCtpVQhBHMuOvpOS7m6FtFwbuMWqJrdIQVijMzLovXTJkuaclPO0PnirCSCWo28dMA7x7yMHOaZEBIpZaJJyleTeWtlD/vU+Jbd0HXByH/tWjstpykWabdmX8HlH4N92j4pNFWUpgqxlV00hR0FCVrZJWtEUwccrW9fZi7Kltrc+hRuQZ+fA/A8N0Kff7c53fuWaoaHOMFVwVMJArU6ah+oeYCclZsnWwSy09pslzN9TnRxoTpsHDkcleIqXrQExnmPdyrHehgHjocDnZHbDuYQtUjlKusqpV1cQ/TWXaM5cm0TBuUFqAhLVO4070SlM73tE6WRShbjTblJo32ZfRE+M9R2vbPrpx87w67Ua/ctsdIOESV6DGEDu1Z+pB1PQiNCzEUfa3YMVhpn89zqVFlV+tYz1N2/9aLVUFaeOufV+HFGkFI3DdnNSH1WurSdSowLZD8mv9BSz42I9med8G28Ay/Uh7VWlmWxDEmxdm5lAVvkfmtPuwxpy0I1p36LzjpbUJvKpRg3134gbFluOw60+rmDpKbSs1i+PHc87eXnA01kbSyRTUtnD47UUkhRyaXjEjWLq9xG5+0Htf+woSO6R7Y5dtNGTcmn2XgGWLQgybPrfJm5aAGXUsoqofz8sa7j9mg2am3rPuYktz3O2t2ZjLH3GlTphkFFFIKjGveID53JpzcFon2p164/aFag2j8OBde8QDE+iKbOGZxm/AgKZHs7hSnU29F61Z6vKkrbfG6gxO1nWSHn9qn93Gf3SWmfabdSuV2qX2w9VZUw891Q87r1X7usugKOpSSdd3mhpBmqI6eJnGckCUixsjC9y3VHsf1vr0Rb66YaVEpZS4OUo6u1s+1KtU2tNt7b+9r+W7VCWYFRBQq2kul2HaCZYGJBra3N687+qFubr10kt2Nru8Rdr7XOa+sLKxCxTYebL73Yvth+7/PXblXH2rxbIeJm94Mpg24Z13Wdv42vqt78yJe5AregSrvfrR9aU21rUq11LblJKW0BndacBsAIlmVv7dnu6Xngrl34l9b29XxfaJc96LPe/80Xdca27+l3gRfrQ9n23Wp7vj1aBtMS1bZfopZ4zTETs5htdmtd7M+7ro2wZsVWEVXfXQWPHLkKTd5tbSdTJkX0ufrTbh3bzeYRkU11tm7gt8i29ja+oraetH1BVl92S3SRdt2y3dO66tYKzsaf93gXGOjoux4pmRATkosJPrR7LBu3X4zKT5ueJdV84fg5GT//ZeC/BfzfReT/Zq/9D9HO/1+KyH8X+BfAf+OnTlSpGgnfD+DdgNQ01tYQXzZ+9Tzb69vcMGm9zUWzVwur6LpUqukK1wrVBfA9hBG6E3SRrn/k1GkK4F+8ueebX/2acTzyl3/z7/C7f/Jvgzj+8Kc/8Ydvv2O6XvgXtXJ9eKDUpL9qKe+HoefueOR8PDCEgLfBc+w73PFAqAuvTgMPx36tcaxl4SAzIT9BfKASyHMkowz9Jc1U26SMVl+NudWCrCsJoyjKgjjh//r/+JcAXwH/1T+/D1E1nhyJcWJZruQklHjFifD46YHvfv8npqcrT08XPr37wLws2iZ9wLlO5X0pkOsWQasVFyquD6aeEejHEz70HI533N2/IXiNpJ6PJztfjysRKZWyTMTpogBTLYgt5kqOp2UqfafZAt47jYBlKxFJEzVOa8ZPXmbNTjCSrEohJeW8EBGWlA3BF4oEsnh813PqRqQfjCcoQY2ULOS8UKiEEKg10S+9qaBo5LY5OzhHTnnlGarVP1/kz7zQXOy6jm9+8xtV9ep6Ou/pL1dc6MAHQj9wOt8zjJF+GDmdz4Su4/WbN5zv7zgdTxwOI33n6b0aRzkvqn63FPJFy0WWSYHAnDNpiSzTTKll42gQGLsOd6grR0vXBVLO3N3fcf/6FTFG3r//yLt3H1YAKC2Jvu85391xf3fH6XhkHLVcx9fC/d2ZX3/9Fcdx4I9fveHd96+Yl4WPD0/kfNXsuGYgfcGhXkEP+59DORC8QN8HjscDd/dnTncnhsNIN/aUpVIuQqqFWFW9KmOp23auf/7/fbm5+Pxab657Z0C0fz93lm43+81pfP55Z/wd0HiabBNzDt/8di9aUFkBH5BBozz1nKmLgrGp1rUOvv/+W7p3Pcs8kZcn8vUD2SKWxWR3CR14ld38+i++4fXXvyaEwHg8M4yH1dlOSckVU0yIKXNIzhSnIFBpjnGpKz9HLWUtRXLOc52j8WQ4jkOnJJAKC5vNa5KgW6bqi81FMWfz8z6Snc/9Uw663OybTc+gC5Zl4FUR6jAq6exhHDgdRrxXGfYC1FyY50UjZzkzz1HBGoFDHzj3A855xt5bGWuGHKjZb45NcxDExocI/XjAd4PuS/OCiwrgZiuxBeNu8g5fA/0waBkUt8prGjQJZlc9M7rZtVGtW2tZO+yNq6pEsi3C+iJ9mFLku++/ZbpeCZ3nfKdlPN6c75wjpUYr+8j4ADjN8mkqY06CBjqcw4VA6C2CHQLSBcQ7OnsN0YhfI8pvpM7Jyg7aWF/XuNY1n2E6X1j8tjdvQKb15V1bKiHqwnS98uH9e/7w+z/w8PCJx08PLPOsWQd5K7OoJtcroAGT5rLluKqprKqkrXObsW3zofF7bRxILzcXnXMcTkcVZJhnlmVhmWfishBjXJ2W5kC3kVZRo71qxSqJQpWipdShw4njcDzy6u5eJbiHgdPpiHNegwUNgXFeuSFECWLbuqAcT7e1+7kq+awvGVcSvRSOnSNhnCROlbiC38Q0XG2slRjnXMuGlxWUWcGHLwyHG/DNrsU1F6g5agbUfdFBXe9Atn9UzcR8qT4sFaaYkSAcU8EnR3V23w5V0tOBRMmT3XfQNakIIgOVCR/AdyNhPNLLHeIDKRcKlSIVvNM56h19HsiHIyFFTuc7lkXHTKUwL5NlA+YNCM2QJe9AxEItokFDyfaIVFlsF5opdVaFyxypphimC7cRVq/tmhEcrraleD+XWvaLIF4Qk6IuVJrcPev3tI32FAANZM5Zs3vVgL5p/hebi7DtfV8CYPdZvRXW7FBQ/kHnDGBom+jKdaTXny1Dc+VvMae/lXG5HQde6MK2Z6wlWRu4g2jpc8vOzznz9PSk3zVKBbFkAG+co2L8bBUNuJScNyCjleSy2XKl7srNn9lpX5prjRS6tc+uVfdLq9q3smUM2z29WB/qjxQkL8pRmybyPJPzzOVp4rv3T1ynhT99WPj208zDJfNUPLn06KLaBoL1kWV1q00eqE4rFJwLZqdFUtIqkuDU519DvbYBJhMTKla1kSWQJVGrcq+aGLiWD+5AfqESHAyNvqFGSryqv7Y84XynwhRlxitdvO5tOSkvpvSaqSqOIsHKdo37CIcTTz+O+OHA4Hve9sI5nCjLzPIA+frEPCWmp8IyJ0oWpsuFuESePj1xeZi4PCw/2SU/R9Xr/9y67gvHf+0nf+HmZKySeS0lH7Qv9pGkNSJHi2JaiuFnl1FvgaLV8nRsDM+GjFGVVLGl09UKEsBl8INKOHYHVUkIOvm+ujvxl7/6mtPpjn/nb/+Wf/vf/feoeP4///xfMAwnHh8f+PD9t/zedZArzhA+74Sh6ziOI4dhoHfOpIorYwj4w4CUgfPYcx6CzoWYKCkyyqKlXulCJVCWQpZOjaI0Q4mK7IcWqRVWJr5SV1nwKgJFP/Nf+qe/BvhPaq3/wZ/dh1SUsE7Z0GOcjfhTN5hPH97xpz/8HU+fjNT5OpFT5ng4MB5U+lvT6MzIS4kUF3KpeBzBFwRTrBgOhG5gOJ44nO7oQsdpHLk7HvDO0ftiNcuZkhYFbFJUngQbLY6N40J5WTTiFpxATWol5IWaZgV+0kROy1rvKUYwnls2EUA0IjA0BbGIo+sz/XmhL4lSE9RkmVt1lfxOISBSyKk3Y7BAHWhRXXFODYtdlsGzBf2x1uem+z+sH0MIvP3qK108bcnvhkGBH6cqJYfjiZIzwzhyvr+n63vO9/ccT0cOh5Gx71UNxEFBla4KlSUuXJaZXArTZeLy+KSAb1HgFxSEGwdz6kKnNdamxtUPPTlnxuORw/lMjFEX1CLEmJinmfk603cdx+OR4/HI4Xhk6HtdqBHOxyPp9T1d8Ly+17K0adIyssv1ujrGzbBotoHIM9DHDueMH8EJfQiMh57j8cDhOGrp0RCINVEcJFS5KNe6CXNat/3NP/1reLG5qMfnWRGWwbEzjvavt/e+BBg1o6oR1Oq9b8+LyGp4OIuEVVQ5ZuUI6PpVSliT3/R5FY1K5pw07ExkuV6ZP33PfOjJUQnSS9aO8MOA70e6YeSbr7/m69/+VgkWhxHXDatxdb1edX7iqERTGxLl1gBNq60VccU+U8kF5iUSY7S2UdWhLnjyYaDv1Cl3olvyTbBCjxebiyJ8UZns+fFZFscz4Gf/TNWwRZ3MsSc4xzgOnI8HVU3sO45jb2VgFlsuhSVGLtaecVcWN3Seg5WmeAeuJu3XErVkVUNVNEdAkDWTqAuOziTKiwtUv5ByweeKJDW8lb/H470Cvzn3do+30dd1HJZn0d66xc5aRo0+v8UupLJyJHQh8FJ9mHLmw4cPlKIS6u446o9nmytOLDtWx6dzm/NcjHND5523ctnOVKK8lQJpNqYPne49Bvw0ro0m355aEGkdq5/FSVew4ub1Z87Dl8afPD+bOSIt0+fTp098//33PD0+crlo+n67FidaBt9KQ1hnIubA6j6+ktB+do2yi7bKSlpux4vNReccwzgqCJCzAj/LQkzJOH7q6ngowKhWapWqCSEOilNgoFS1BX3f65w7HTm/vqfvlY/peDzhnVP7ydq+GJhZUXUXHe/qlG2lnFtfuVpwJeNrphMYAlou6R3eeH2CKwSnY0GKBcXMu29drlaye9buu/GzYzpte6Q0r1FziAC5UdvTvi83Z2sA3s0h0AX/YnOx1sqSCiFVUlZaUamV6jQbXktaBKmyU7B2loHgEOkQVzQ7qxspRC31qj25yrqliQG04hyl7+nHgZw8Yzxymu+I/cK8XOmflNMx5wRZZZ01OLlr7XXuGfCDgj9V1N7XfS3qWKub5HStqLpvW/Okrb9uxdX0sWUqNf9Xdnt2LW0ubj62xo4NcKx1DabWqlxwrWz0l5qL+6b5UjbjvuwaEXzxa0mh7qOO6jRwofOWVe2rlGwBo7LKY7fveePbCz4QurDuO3t7qgExeSXaFlTQJ6yfm6ZJfZCmkuuc0SL0RobvLYC8lXE5cRTXlOiewTWtzMsCG1/K9m5t9Dxru9RWjvel1X/bXwWh67sXm4u7i0eKAZZpocSFnCLTdebjw8TDZebdQ+TDU+ThmlmckB2si866qNQVdG92U626VobQU6mknIhpsX0lqVCSVXdoCwgZIYtTkQkCBU9B1ZaLpQl2xocGm18topntwcwdqYmSZpNWn6lxIucIJeJrotZErpmaNWFDy6ODgblufSBu9Xu7vqc/jBy6jrf3nteHI3G68ChPzG4CHN5XRFTsZpmuIJHr05XpEpkvL6zq9RJHWRePfdplQ5hRg31vuMHu+XMjhg1wNoR0hUnbotTKbqhg6V0rgGjQgPN+VRMa+0AaAo7Keeg4DR2nIXDoA2PXUVHp2bHriF1HbxLI1QlpNQR0oRVb4ClZUfpWY2vdrU6kJ1OQDFkqXgrCvtQrKdP4jvwQV03YyyZ4ael9sBIiIhpB+AIS/OcctVZiXG4eUlXCXGolzgs5GqljrbrgeUXDW9p7ra0gbVPxWq/TNiPnPF3QhbfrNAIfOo/3gmASzyWTqwE/xr9R1pQ77fJGhqbjbEtZXuX5zHitOZuqV15Lxuqapq6Pm6wIa//qrGhtv2PWtpAbY3yT+zYD3Rmyn00JQFrmlgGi+5Tyton8cke1/tg2DLeS22nqcCtjaipWW2YC645ZSiGWSKmFOS5Khpkz8zwzL1EBH3OEBKGGHRhRqmanVcE7lZTHOTofGDqNlo7DoMTYIalcsngrC9Oyn96M6+acqHRnoO8C4zhyOh3x3vN0vTLNs5burRsp69hpa0pLz1+zDZzQd4HeZKuHvqcfOrpG0G0DqxkE26hpmw3rhvVSh8ANmAOfO2w/GtHffeZL6cHPjYfnfw3NsXbarmnthPaGPVpmW8Wt4Gv24D0EscCHbYg4K4voe7rW3n2PCx2+H3Bdv6pOtTnifSA2RbicDUBlNZRqKXSdlqHknPHeEWPctaZGeHwIq1LV3mBu53n54xbw+Tl91j67P8cNUNkMYNlUl9w6h5uhvgElzaDMpalvmWNpH2tlJA0Ic7LJPOtaVXS/sqjrmpEDWzmENFWqDmiKi5op2/YHal1LSve7fwNEWqnJfghaY6z38vkcsPaRBgo1z+dnNfPPO2pVx86MGuec7ieNu6Y+A2Pa+tKuo+6M71YiZmWkeLeW4WoGSVgjyT5s/95dyg6obI2wa4/dP34K7Hl+PP9Ec1iy8fm0vzcOUmllkjYuWsQc87h2AJX17vZj64K88Z/sMxFf+ii1GNCzkHJaMxtEdByrQIjZqK0cyznthy7gQlNx07bpQocPQce3N8l6Z1Fe2+e0lMB4O2jqiqxAl7bARrLc7A9DyU0ZJiOUlZNsP0/1PLYbyX7utIW6zbTd6rYu5Nu7+norgbBxJLsrrO01FCjYnWO1779wvOQ0bFebciHlsu4REmSbCzbkaqlWatrstoJU49AskZIXBXXSQkoLDq0dKFVpFmrNu3a1Oe9UUTZ0gUpVha/Q0dyNpuZHrVTjKmmW8N4XWtfkPa+L8QVqxlmxjD4rnaEaF0z7bF6pGFb6gLYet2aQfZvVFfTZ48XNR1tHxn7r34Gev8TGqH7aM7u7vfccFGl7ltn62zhkXWsrsruvDWxp6/AGCzzbTXf90UoGS7PVd7Z5W5P35wbWvhPbi5stVLuwZt9V23dV9OoW9Nmvec1O22bd503/fB2v+4Hf7oe6tsl6jv3geLGjDabmvyrZeEqFlApLLFyXzHXOTEthScr7l2ohV83W0mCBjjFtd9ax3MaqVo7ra22v0fFQV17h/V1nnJ6/KOi+eu3S2NHsvzZ2RFawVKt6xOzVitQMNYGVitacjIMrrRQirSmKukA6j8VTJYALiHir4mkPhzhMzt3hvQa/xanYVONjqhgg68rKz5jiC2T8vORRayXFbIvUfpORbX/fDenNNF0/yPN/rq+Ikajqlqv/BgoZhxIFtvo6QOv+8IgLHMYTb16/ZQiB1zyR5COBwl9+feav3544HE58cz7wZhyoeN4ejzyczwxU3hxG7rvATGFOkTlDkKKp8GWC1JHnB+LlA14KxAsuz3Qkzr3jzXEgJ2HhSqyR3i34fCHHR3LtyLGSpCiAlGYoSXf1YvJ2tuE457b07qJ3W24a6GWOnBMfP77j4eEDH95/z9PTgxofUVWxro8X5usTeZnxznF3UC6Ovu8YDbjJFZbUwJW2Qel4CJ0it8fjgftXd1pmdDxxf6fEaqEWKDMlV5aysOSZUjLX6yMxLyYvn8kxGQCjaK0y4AeTNS2UuDDnWT8zX6nLrDwF06QqXylRjWCynadkW2xyXtu2eI3wSUkUi1iWqojzdZmpVVWHUk74EMBrhC/Ugu8C1dlId94WdW2fihLoxZjWdeMlj1pVwjDXSjIwNpaCCx3dMIA4YlLHWUzK0q08E05lul0zSAvLPPHh8pGYIk/zzKfrVZH3ObFclTjbiyOINw6MYBxCyv1RazCDtpJjwiGcxpGuH8i54CUw9EeLwkaWORK6jt/+9rf86ldfr5LyGIHa0HfU04ngPb/77TfUosos5/OZ+3fvSDlzuRgIlDOTpfMDq9HrnCiflFcQ8tX5yGEcePXqnl/96mu++uotp/NJIyTmE2h7ZpIR1rZ5mG/38hc5xBxp7c/6A07vBtZ8CQTeZ1HAFkXbn/u5s7WeZ2+cNGu6AYnNlqaVo1rGlNfsoLGDsa/4Ujl1hVOXKVII4vESNHp2viOc7gnDgbdvv+LV67e4EPC9ZvzUWrm7v1/VkjQqr/vLaijrDaxtlFJagdjr9aokmFmdvZzVkPfmz6iEblwd91JbevvLHiJiUcaNBPWHjbcfOIf9f3MYtb8UOFfH85aTSlaFkRQ167KUzLQslnWonlowsKX3lU4yTiyLwYmSEdcEKVIMvM4WgIhJs0/A+G46zeAZXUfos5Z2iO5bKWUELfspRcHaUvJq+N9YtmLOSBtjsgEF6lxtzuiGeexLwjfi788ziP/hR6mVaZrwzqmz7z2xRmKK5JjW8aVjsjkABlyYVxi6Tsl9rcwrDJqR5bqAHzqV++4HzQRy3lS0FNAehoGmfNP2Decc3dCtDtrPPb60jvzQ55YYuV6vXK9XpmlmsfKobZ4VllkzZmqpN2OrYV4iFe8MWKlmfFfNRNt0uC0gJBpBDwZ4vfSRUuJP3/6RZVl4ujxquU4F12m/llKMNFfFIsLY47xnOI2cXt0Tev1MaVx0bDZtdxgheIoTsj2QBrfYWkvFNdAVsVebR24Zx9mc/ZRVBGR+pCwzvswMrhB8wUnBia1nVBxlbesGsLe5hAE2q8O/A2xkhz7pML29p2YBbGuPWe1StSzJHL9C/eK+8QxuepGjlMrlukCtPPVOs4d7VdgLXnk8cq6atSMFcRmRAmUB0ei5qn11uNiTy0IWkNBTnSoBG4psvB91zVT03lHyYc0oWdLCFFXha5kn5vlqe1My2ouiJc5JAxDi3Jq5p/yIMxW0dCxOGozLGYwoN8eFYmUtWiqtzmacn0jxSsmRnGbjMWoB8BZcsDLLugXBtHvEPuYQp1xu+6DHmmFZzREu7hcADPSX2mMPJH9pL6y1aKm328qCm//Y+FWb4nEDqtsa5US0QqABK25b/2qpFCnklFiAFrzNpkSZjP7BO4/rHX2vQjKt9LaUwjxNTPMMsCl8OacBy6Ff92rQAEjxgRoCiFhlYlPhc+QdqHx7/1+eRes6vmE+tFCWgrGWNSY7zrwXnZAVaqTmRUui4kycZi6PE/MSefdh4u++m3j/OPPhWvj+krkslSyJJJPa0HUXEC8bwLOCt7RMUn2eSiEVtQO1qiPZXbN+Lxv3TymFOSlKUPA7MKYiSr9m+xA0hdlj7zkNWqGRfSLXKzUvxGslLZNmwT69p0yftMwr6VpUq7BoBacG0ocBCQckDNCfkP6EdJ0qfLkBPLjuSBih1gHfP+G7DB5y9cRcQQpOIlIS83Lh6fE9nz5995O98o8M/GyqKj+ctr4tSp8DP58fm31i31s3nkampIVIrZCsUT9VVEVBCPT9yPl0JkjFlzO+HgkUfvvqwDd3I+Nh5M1h4NyphPf9MPDqcMDlyHnoOXYeXxy1CLlUAhVXs6XBL9R4Ic+PusmkCVcjnswhOO7GnhQLU1QwpHMJV2dKulJI5OjJTjQ1NEekZAN2MirXKZbq6TbbYIcsvrSzWXLm8fETj48PPD584unpEyUlyjxTciJOC3FWeb7Q9xyaIesdXdeUo6o6+xaZaNFhESPsDYFh6DmdjgzjgdPhwOmoktx1mWGZNdsnTqT5QilZuYZyJJesmUiTgi7Oet1XR62DGj6gAJGBQ3WeIS7UnMnLoo+WMbDbHEvZnNpCtewxy2BqUV30b8wqWV5qZY4LKWWtx+80Vb9Q6VKPJEvlNuBSx64u+qVWlaZ8acsIgLrjgjAjohTEnLRcKuI84or9detf15SCbJ5iKhKPj4/MceZhmnj/9ERMibIU0qwldZ0P9EHLTs7HgncK/ig04lE1ikiwlFMfPIPzlApOOkJ3oJTCEhMxJkIIfPXVV7x69UpVZUzeV6j0oUMOB4L3fP32LbVkpmk2Z9izxMjHj594enoiJVW8oJgSi60p3jvGXjPOhr7n1as77k5H7l/d8+r1Pff3d4zHUQE8dGsptaxlXvqa3t2WUv6yxz4F+YeOH3Li9mDOGkmSTRXiS2VHe/CnRUMApDSCOwW/qoE+zcGrYqBPUOetC1qW4EJlCJWDLxQKg+8YghL1dXdHwvmeMB6Ux+l8v5Z6+a5fje8WIUsts46dc28OY7uvbKSzOWcul8vqpD5dnliW5QbsyTkrmJGScQXAL4DBguxKvX7E4f4x8Ge/V7pdnzbeoqbe51rmgTQ+Dk2NnhbN0IspkaztvCivlYgQHHSiafNejLtGBKf582ukrK7trE6+OKdKQl7XNPEQKqtzs4JxpuSkfdav/dX6sZhhn4qtWW2rt+mqQbSdI70fm7t2be/t5/lLHLUoeNiFTpW8vNfrTYkYF3MC8vq7buVrWdEPXPAK+DTgp1MHIfSq6uW8p+8189G5sGZBeu/pul4dNdn61Gf/D8oWvVkvfmTNan03zwr4aAZwVAA2FyuFyKp2OC+3GQWgRJabd2bbn/1jBeaas9rWK9ZsqD1g/VJHSon3H95ZgGFelbpCCHjnFdAxR9R1nm7ocMEzHkfO92e6od8AlKolgCkqB5kfOqr3FOcoTiiyL5dqbS00Uut9cRdG5KnOT4aUlDw/anlBjRO+RjpXjMdHixhE2vMNnrntXht/+7KjG9DnNnhYqbeXq2dc598WrlUbvH2GWprsyOfr2M8AGf8+RymVaU44gevsAaVhqLVDrYOqvFMG/HiylakmpMyIJEpypKVDUq+cPr5DfKecoJ1KLztxBNsjvYMaPK46unFgNNLVw3zlcD0TomUPmRx5zZ4SNIM/JUeW1raa4aDro9IpiIiqhcWo2ZtFASdKoeS0ctWkHLWUtGRSvJIW5R7JOULNVBsH+w7dypZaViKsRLgYX2j73A/030rQ/wsde8Dnh/bAWioZLT9uGXetnHYfTKlsRMrJshM1MNVUNctnvwtG9WDPU9J9Utdy42Zxsq5LzX5q38tW9tUUbNujWCCgBdk0eO8ow+Yjt/IgbE9vtBVtllW90C+2yZftvnrzfJ+A8XMB/7//kak1qhpdmowTbuE6Jx4eI999Wvju08LjUvk0wZTUvy22frTMKh3ylsmjbseaMNAy+CuQarXqG8whTuv9td7NVQz40Qyjgok84a1PvQa5vPE8SkVco3FxHHrdsGLNxDqTi6OmQqyaiJDnB8p82QFPGCillyNBCNLjwwEXBuUZDiP4DlxPlc5KSTt85ynJ4cIJCRPiFwqOVAy4M6AypZnr9ZHL08ef7JF/5FKvhsptiDGs9vvu+W2p1w8esgYgzNAzIiYxbwMt9SrrgudoiW1F1mVMCSiDpwRPCA4flPek91iGiJZsFeMwqbUa/4NyfnTeU7wjZEuHByvxSpbuFall1ksqSSXZi0ZPgxPEO7KldGspkwEj7bE6VWo1VRpx645/wiZGrVvkpn3lJQ+diMrnknMiZc2MyaVJR5YVPW5lBqsz05zhnWVU20ntcO27TpWemuOiqctKzKqZNZlSVBK3pbS2dHqDsneIv01cvXpWNZq6K0nIt0zzDRSxoWWDbV1q13ZtG6L2QV2jfdlSjRtg1JQFCqxKE9k2HxvA9sdZFriO5eICIjdKQi/Tjw2syplskYklbmUwtVacd9Qa1lpkZ+UaeqltkLU+LRvHRAOUauthMVtiKxlbI/MN7Kqriah2vqH5+hv6etv0gg+A3KgSybMx1s6lQI9KDQOcTkemeWIxWXFBnZfSyBKbgVPBB89hHNfSrvPpxPl84nQ8qiKaKc1Ji0rUzajQMS5G1ifrWHlRb3ON3N1u8vuSrZ8+xW1Z1/61/TnWCNjOOLgB5mUzrNo7gire1V03t89qDFhBX6FoWitC6NTJ0g2vw/f6V0JoREs2hppzYcURdYuU7wGs58CPoICqOI3ONaMrFyNsL4WSuxX48cGTU9K5asS5v8TxpX740md+9BzNuVvP1abY9r1SjecDIa0JBK0MR/uuGa/eb4pgrs3ZZ0cD0WjAD6yR0JQU+HExIT4a4KKfaSW4G4/Ztta2n1l/t1blwPEFpK7qVM2VbHvhDbZa96tAG5Xb+v3y5u0uYtwuoe0Ldn9rvzgjJrabbVkSrXRLS4PCWnKoyoo9zmuUeBxH/KpwGVaS41a2GG2cbhlGu2NvD+zGxg+Cil8wxJ6dYrsnK5l/Xnq23+TXrpbdifaLSFv81y/qeuxsHquktqfv+3VNf9lD5ZlLVXZPZyWIvnEqCrjqoGBZr9v60lRDa2nlvmqXpZispMTUtpynFh3TjVejAYGutaf9zc3xNuJ7qiqDFuMcSmk2YmwVtWiAbLN/WrvKzjlv4Mx+N2pqUNuivq3x7f+aodUm577FbgGf/dqr71sp1MrqtO2Fv4ifSTOV666kW5NkyspLY6Vpu41pt4PqnlLUadQs8mU3TI2Tw3l1FG01avfinCnx1YoPwQh/Kyl1hNgpAOyEmlsAxXqjGfSCjRFIMSOiGSY5JapzSCm4VpprYI9SFywUA35K2bJ/1sAqdVtfdz7XZr9uPCiKQW199aXV4UslWL/M8fkg+SyDWTYQpAFZtVi2j7P9YrXL7NgtM+u4LDv7bWdH1bqDYHcUAYj6Fts+tIFFzrnVH2rnWbl8nLOAR1q58Gjjse72cXZrrM0t9wU74Tlo8yX7bbM/dwvvszK9l+/Luo7Bdu+pFOZUmZbCFCtzhCVBzMYDZ1dYahubrNxh2s675/ZvY1qysSrre4oFGE+PtW1dfTkHFth2XomhGzAvpfHuGHje1Gvd9hDRRA9XTf25RPMjTaCnUbMgiJVwie+RMOBCr8Tx/WH9t/NaxlUQcoGYKte58BQgTZlpsbaKQspiRPTqdwqVmDLzMnGdLj/ZK//oGT9L1JSUZqytfuTzgbp964eNtM82t+YI7D9SzHGutq3qQl2lUJ3yugze8/p4YJFEn3q6KIQK931mcImOhRyvXJ4eKeJJcaGlJ4+95/7YM/tKQUmPg6u4slDiE2Wp5PkDaXqnC/pyQeIEcWZwyiNUfGFIHUmCybipwlfJaoREF5Cqi72rleoqpRiUJZoNVKVlnrh1opRi6fAveNRaWdLCHCeepguPlyfIFoEygCqYkdSFQHBCMG8+pyZvmLeaf6vdlKpR0BA8XRdMFW1kPBzoQ1BVCsmmjDJRcmKJV2bL+JnjRLRIfaXgve4EHq1zVwAvWzqvAT9FJ2aOkbwslFyYrhPLNGmkMmfb5EGcpUgr8oWZM7oA5UpJml6/zAu4jst1xl9UMSLXSqmaNtjZ3l5L4TovK4FqsqwCNZ4HrRMPnbV597KdiAI1s5U3XZ6eiDFyeXri4fGB6XrFiaMbBoZRGMbBFMgCXd9pFNIUJUpW4y3GhWmamJaJJaY14wVxiLdFs+/phlHBvL5XPhADuPSa2Ko0i24YWjIF5KplQN7TBQ0Ve6/qKM74Empt6iBqdIvJrt+dz3gnpJQ4HkZ+9dUbYkx8/PhBs5SWhW+//dbIWcvqlPZ9z9u3bzmfzwxDz9dvv+Lu7szhcOBXv/oV9/f36hCIs3IZzUSKMZFzRcRZpoNyAnzRevozDoE1++azKFzdHE34MoADrJGmHyst2p9nTxyt03rvpGFGi/I1tY232DpdHEqwWQu5LsR0IeYruEQYgOoYjyOnwwkJPf7uFe78CteN+OMRGUatg/ZGOLk6SO0yRDOP9tf1A4BKLYVhGDQ6Uwr3DdQx4I6qDkM0gLARvf4SwE8DnwTW6N7f57uwgT4NYHDSzivNT6FYNmRa90htowbgUysSPEN3RNAyr9Ayh9zmUFZklUjWsa5tkovJKFeIubA0ku4p4sJ1BQjEOS3NswyRYpxqq7m2GtRKUisG/pTOG/ltIcWtRDhayn41wOk5wFppIFhzal7eUREndJ0qplHrxnXTAJjKChI7A20aANSI/fthYDwfCT4YwaPKfffjyOF4JATP6XTm/v61lTk1h1vBng8f3iMijOPAmzevqbVyOIw/y5j/Eqj43JH4UqaGM86hrus5HU+8evUKb2UMa9agbI743mpv6mTcvGxjQDYIGVDVwK6j857T6chXb9/y5s2bf1Bf/diRc+bh6SMhBIZxxAftn0bymnOBpA6d9x7XGedDcAwhMIRAipklqy2yXK58+vhJszVaybQomNd3WsrXdT1Dr8TpQ9czDr0FzDTwSK3kOGsZQSnkOBMXLVG+fPxIun4ix0iokWMnmlFkxMW2LLJCNtIi2vaKASF+Zbi1vXiHAjWo1Fmfb1vZHuRkO6fIzXiptSr5dd0DDPXmun4J/CcX9Td0Lcssser2YVxZYr/vxFt2lUJTQtUofVYV3SIQRZSLw3dIGHRN2j+Xxl0m1BoM3A4c05mYZmKKhL7DB7dy8LQMrhxVmZLabGIFzEsWnj5dCSHhGVT1TxyuZhxmu6YrJU5QC6nMFOMSTYuKlNRSqHmBmmgE3StAXQu65WkpkxLFO0RUGuVmzm4jSPu/bH3bCOZf+mhAR1u79wGt5/ZNA14AW3eTfZY1a06DOc+CDdXKEE3FqZHPC6wBxbY/h6C+owa+jZPL2gvRgJIrLXN/y+INQSkN9mTxDeApSTMK+15B/Fo6qBXvPKFlB4mWvQbvqSWQJRMbWPRsXV6DJbcNicOyuqmG9bS5qE5N29tf+tDxMZPTwpK1FP9xSnz7MfLwtPCnj5l3T/Dh4piKMBch2vVlK/emAbYVVvJl2BIbqnH/bLuHrjdAI03eLqi1ic34WunGE6Fmal5I6ZF0HaA4o2PL6gsJdKKleqfBcx51LLglQ4zqsyyFNBtvkClDq/UREO+R0OGOb+lP9/gwMNx/TX+8Bxeo/Qn8SBVHTI6YC3GulGvkO18p8cLyKZKvhelSebg6puSBghARMp+eHvnDn36varY/cfyjc/x8qdTreVRyLSGhjcX98/ah/dO2IH2pTKwBP+1oE0YnfS2VzjtOQ89QB/rZMw6Cr3AMymsQUNWoeZ4oeHJOCJr1MwTPcejwZKbFMzmUI6JGapooScjpiRwfdD2IExIXaooEqYyd1hSGwZMJVOdIrlBKpAiqnpUTKspgTm2rc2yLh7WfVlBV1rKvXyTjp5JKYkmRaZm5ztMagZBa8QU674wAyysXBHodbSK3+vdWOtVmqxOtlQ1eiXsPw8A4aGmQNznSWDMlL+qspJmYJitRiGuEU1CEVqoaNB7jVMTK75qnaI2kZGOZkhJxWZjnmUZIqYPTac2nkTpaaEFbwxapUhTYijEhITHPkTBZlFt/HFOw1xK8AlhZRZPEzTnhfWAcC12nkaFgCgMvfezT9B8fH5nneeVqmOdZI6rjqESrgyoRdMGbwWQRsWbECXbvUZWSViJPMwKNx8iHQOh6gvemHtYAG0Pim0NQUSWmVClJs6QEwZuz77pOuV4smtaiIfuSpxbNc85xOIx0QcseDmPP6/mOGCN3pwOPjw+qvlC0yrfkomMpJcZx5NdfveH169cMw8DXX3/N+XxHP/S8un/F8XhstvFKItkeuaDX6sxY2BnJL3nsAZnt3utn73/JINgbT8/BkR9Kq/4sw6jNI3GsUmnI6lysZPrCqnyjnDmJnBdymaku4ztdxftDz3h30MjI+YicjrhuwA8jhG4tOWxrvZN91PiWULRd55ceAP2OcPdGGtZuu5Sy1unnnJjnXwb4AdYo3vNSr8qXnXKeva4Grq5JIqzAj/Nb5k8rARIRy860srhdX/cN3BUhWNalgGawNnVMNie95Ayp2rmLAdmwlKI16IiG80w1bS3RqaqsohxvZV23m9up0U/WMrW1Pexak0u7rKGtD8WiHrd5f+Zk3rTjywKxgqXry1ZCt/IOmKHa5l8jr3bOq2x71xnwo2uu896eH/DBM44j5/OJ0HXc3d3z9s1buq7TtcaySZZFS21rrTw9PTHPs2ay5fSTNsCXsn5+CAh6viaIuFXNRpWqlIet67oVUF4B4v1Df5FG9LO+vJfYaQA+rCB+CAr2393d8fr1679PF/2so9TCdXpiGEcO4aClXN4Tei27k5IpUUFhJw4xDizvhc55eudBCrEWyJm0LFweHlmWBQUFmlMYVpn3cTxwOp7xPnA8jLhadSxpKBFqJc4XlunJbIWJOF0pJTM9XcjzhZoTriYGrxLFqQipJYlrT21zQFoW6g48p2w28W49aAGLFlRtj2ahr5Z6i+LejI1tr1jPWS3reZcJ8UsdauMUnAgxVWKGkNV5dE6z8xvcs5Jhr3adOoKItxHolIfRd0heNPAQBg3IOocLAy5okMfjCQjiDbQ9nehSAtHxVRrhqwUYUuoNpDHAONk+nuH6tBBCYegn+n7Q664Jb9myJV2oaUKVdmdKMa7KFJU3qCqIJWst3xYgbxlpZZeNASrIgrNysrplQK/9ul+p6+3flz9us8J+KDPZLmK7J6NpaH7gugZRno1v+15uYEKlNiBrd/4QAqUE87O274uwcq1KrVa+uYFFze5q9lkTPGklXKpouVdgk9UXclZO2PaUVV1sf++frcefB7nE5r5WvgiIBmc0I7tlg/1CR63UollpMau/c42FT5fEh8fMx6fMw1V4nIWII6qXto7JlvFTi6406tM2EGj3wBispK5yTg1YRvarVWuRBnBW6EekJmoO0A1k3yFScZJ0f5NCcI7eayBq7PQBWhocsWqBGCnzopmFKas6LaJrhgs4P+CGO8LhDb4fGO6+Yji9oopfJeVrgSUWcq4spTDnxTi9Zrgm6lJZrpXrIizZrT6skLlcJ95/fI/8jDyBfyOqXvv053Vim1qA7iQrx/aNbdb6sfndWze281icQmf5akTKGskw77uleBkz/vp7q8Gs527lRerkWiaAgLL5K4Gedwp0FO8IHuUzEJRQr2bj+rGSLzTq6oqWKklVAc3SFFKENTq+oiHrH6tPXCe6rJttM8JbmVfLpvpFjnZ+u8LCbmGFtaxDrF9VsaKVwbTSp2JZMJWmTEBlXbAbO3mMarziHVIUcChWVtai1DHFFeGv5gSYQN7an671pbAStwJWeqUtW0omV01DVEncaqpbLXWUVa2pyLbYwDaeG1iUs2aqKE9Oa7hWBtHuO4MZJS0Sn1Ok+IwTyDlqKZGpBLz8sdUku31kYafa1TpWDbVMLrKqpm2WehtrN5bBtvmIGu1SRY0l6whF9NX404VNQbvG06LqQru53tLopSnfqMFdSjWOHq2/ze36aZkPtoE6jWx4I2oWKsPQk9OIiJaAzfPJSnoSOSeGYeB8OnI6HjUaPx4Yx3EtZ/DOU6RaueFWIqj8FoClBzdHsO5UVH6J43kk7IcyfvaRsx8DFX7oczcOon5AQejmREiLnTbQp7kedV0/2vrtaP2jEVgXgkZGQq8yyMOIhEHVUVaOqVZyeBsN1OtsvETr1Rlp4fbZNTiw2gK399d6qZWc6qHjZiVAfMFD22w/76Q1tN3LD/fRdo4N9Lo9xbY2rdtfe91KKdv4BNnUSqSds6metARqrGBjZ/CbwZ0M6NAIal33CZ0MWyS03ds+BXwda/om7U8DlxW5Yn19D2R676jVW/agIHlbl/bwz2bdtrnwo93y9zoaP1kDf5DbOei9x/XmRHQd43jEewMTTLGrM6lfF0zSddieh64zniYlxxeEYk5EiyS3Uq/mVN+MpdaeNy1we/wsR7xNDrOZWhlUsDKvfhjo53lVSaXWGwCoRWVvbbd2eW0s7Xh9QAEJkRUwa+2kJTQvf6yA8srbse2TCPhSdE+jxZJ1jOYYSSKkJZLmRfeyJa6KoXtLqaqWK1WEFAPLMuN9JnhhDlbebiLD1EK07NxiYFJKy2r3tJIebA1QDF7XVY18Gy+GGbnazzYHmkFtjis3zmTbw3cOUwMJ9w75DvOpXxpDdt7V/drN3XWd/oVAoFo1EzHlQoyaXdF5zfKpRqugS5hsKle1le+oU1Wbas+eD8XspVoCFU8tnlKyfs/aWsQCjt7hqzMQ25kfagapgRFOArUo6FKcrbNO95u2X7VSrNoUkppicE36vGbMWjM3uM0js9Wak2P+Ec2mrdtavXeN13/tTTv5HPz9JY91b98//4J9g71OvR2Dt9e6L4XeOAyrcY7CZs+0c7bxWp+1wWpPOUunFVm/+/z6vN+I6NcMa2vbtlbvAxj739jPCnn294fa6/k6vo7Httqu89VshvW3ftge/Icf1XyHTMyVmLXMa04wJ4il8eo0H97W1UYMX93mBNjNi81XYe02s7d383PNGC1giR8bbqDguBMtaRdnilpVVRc1w9jZGNFV3rmKdwVvtmezCp1souyC+vRyO1gQr/asdIMSOYcBfK/VQ1VrOxM2F4tlTudiitNFs9izZg3UUkkFUoVUWlBF/auUYV4K0/T/dxk/puZUm7NfdxuRHbYwSXPen5kqtX0G1gZu7AJrUmozWsEWc1vS1p8pa+lOLZmaKxbXJIgSWfqKkj07VUcoeWFeLroVpyuuLgQihw7uD4HZdcTFk2dwrjIS6fKMT0JdLsTpUdf6FPEpUkuCmvBSdPA4KF6U9M+ACBGvoITd+RqldYKrtniY0Z2L4tst02Kl8nvhiVyBbI+EkMTY4JsjZ/3pqvWBld6UkllSMtWjwpKTZckUVTcokJeFOCkh1tPDRz58/x3DMDL2PYdhwIkwL09M0xM5J67XR54eP5FLhlJV1g7daDvvVgniIOrEDV4Ygtk2RdOPM5p9sCQl4LzOE0/TZHX6WzZK4+lpG2SRHVGcOTHzEqnXiYznMEXCnDTCPWi6eBYhloLktG7aYiDWcr2Qk2YIuaBG59AfWOa3DMPhRfsQsEwYPe80jlSUiDJ0PakoyXMRyFSkJKZlwidFuks+UYtX96/odrrfsJxTx78ZlBh/gYRO61i9J5XKdVnwItQUqctCI2Cepln7h7YpiEmkKqGvZlAJ4txKKu29I48jddT0+T4EQudNXtqIMZ0g9PQeSunovOPudCAuC2Pf8dWbV1upVy50fcfbN284n890Xc/dq9ccDie8d/TjQOg6Yo5crxNznLlcr0zXmXleAEeRQBWnJKdmZP0Sx3OA5/Psyc8/vz9+KNK/zxDal3i1x95Ics0AqhDEGQAjeCqmz4SrydTyLDsQoYqq5fTDiIjQHc+Eu1f4buDw5mvGV3+B+I4wvsLZZ3Sd2dZ6u/IV3Gv/vj12hoU0fodmK1T2TdJAz1p1V9AMykBvUvEvfsguOvjMWX9eu//lo7Fs6E6hwYt2T1ou3Jy9GwCv7ZfNS5EKplbSrsWvTntdjR3BosHmGLUMm1KbE6UE39mCzLVkipHqp72R3LKIzB6wbcTwZL26FOOqZNIIOKGBcgqKe+fXgFJKRdUXq5E9tmsr+/TXndP7QkfKmQ8fPjAOA939vfJTeS1drkVT/cdeBQrG8cDd3SvN2imFOSdKLYS+pz8ecEFVug4nK/sKgd7KyIa+VwBU4Hq58sc//YnFslSnaUJElCDfsiG9a6p/L3ar6yEi9H0H9QCl8urVK96+fUMXAq9fv+bj+w/M80xaInmJmlVQVR2ziSyIXVzZOV9K6qmcKd5bgX7wnO5O3B1PvH79ilf399zf3/8i9xQsC6vvOvreMkuHXvm+ciYEp0GsvCl8pXnm8eMHJhdYloXrdSanzPU6ka4zJSV1Kmx+55zIcQaUuHeeJ5w4pnFgvh7UwdgBPznO5OWqAFOaKctMrYU0L8RlNuc1EYLKjYvzpm+iQgNiKKgSmLZSr80BdTTetLru52pr3zTO+sLNOnWDEezQxd33mvMJtn+3ASk3f17kaM42aKaPZthERK50YWHoA+eTZjAPnVO1UU3/WQOGVJN2F6dLXKysNbNmk7RMgeI9LkflmBNHbXweoiWA49CRg6OWwXh4NIurZfBTA7UMCl5UscgipKyAlXMOVwslzeYvRXUVa6HmK+QJaqblTKjPEHEkW+Mba8q+H9WXZLefb+9z06c3r++f7wC/X+po+1BxghTjZhJZeSJXrE60dE1xNCVOb2Osrf1uDWrqetKjyqA161ymNh9rT/AMK6AqW/aOs/G1jYm2d+04EM3W6Pt+zYTc+IFsP7SM4gbqrzyWxl95W4a/a+wWFPkZC7uI8Wu18qe6ZXEJQpUtSLomX7zQUWshLlemJfJhWpjmxPfXzHcX+PAkfFoC2R2QUPACnVNV1VKUs7ElMShc0KDJtthIAwTMD8NGe8VTzPffkzuzBoMqjiLe2iJTS1T/PPSICc54FwguEEQFSMagymp9EDorp+okE0TnnC8LLs8W4A1U58F1uMMdYbzDdwPu/BVyekN1gYmROTm7/iYaoMrn2dI1a1Y+YFKmxgJLIcbCU6wsSdvAmZ36ODm+f6cVCz91/OPLubdSr7JbjPbOSkMgFUdfowTtc3X7kC7ODeKwdCfZToE0Q1Lad9ic0CI4l9eoo0MXj5YV4kUBHNfkv4tu1EU8pbSktMQQ4DgEPIlLJ0wGLPQUfI344iEt5DiBgE+a/UNRJSExcjBxShaYxbKMzChuA1kqZEMTpa4ccIZ66lBuiGG1mKyShr38ytwIirO0ALKBPWzGgquaxmg1LxRLS0+WVRONHK1xIVCgpESKMyKV+Xrh6eETaV4o44A3dY2YJmKcySUxL1eu84WSMx5VjxEEcYEgmr7bgDznhM5DZxylalq2yHQmZpVcn1NkWqJFsnfJv3XLcmpDsHFdNMLvmBLMEXxiiZklFQUUV5UE0awi47SocVZi7BSZL4/kuCiYIoUqlXE8GgncT0/kv+/RNqScM6HrCPbXBY9LHvGOZoOkUpAUySKaQtxSlSuagtk22TbFREv96pr+pTXjzis/C04l7ZeUNAlhWcjzpJwI08xi7S+uUwNWrASwUxnVsq73QkqZa52UcM0cBZVUdjinEedqpMC1giNoEKEWuuDIeVDAK3jOpyNrOWophBB49eqe4/GIDx2n0z3DeFBwzqL0uWqJ1zTNTPNCNK4fRH8T4+D5Jfi2fqhfP6vx3h0/BCTsgbvn59uDSV8yNhpwILbOOqt71226bgT0RvpdsvJDqVyx6Abb9ZrVNYz48UjoR8bTHae7V8arcATfyFxNunCdjT8OjjTj4ctp0O0Mu/bb7UWqNrePMv7gz/xZRzv/cxLlnws0yQr+bEYq3Br1n/lja7/JSkKesmUqNkPQDE+HtJiMZf9sgA2txHC9ZnM1miG2U/TRvtNrE9up9mBd2+HXNbfW9fzebYZwy/zSTRUzhKH4sgOB0lpa3ozuPdjzkkGRUgpPT0/63MaLaxw+Lis5/N0dfddxPJ548+YtfT8wxYXH6apr0NDTHUfEa3nX6XzWaLE4gtNMos7KgwRhXmY+fvzINE2kpApiWt61KVGJc9T6hfnOn2MZbCMphICg+/jxeOTufEctldPpxPF4xInjyVTO1uzOz3wLy4C1LItMMWeEbfx5p21yOq3nPh5ePiAiWIS+OWLG7dH3wcoUHc4bqXlMKqlOpaTI9PSEw7HMkek6kXNhNtBLeVuK7glm6Gcb1ymq6pmIkONASYtmUlFwpkhb4kJJE5RCzZFq/C0lJXJs9krR0s4KxpZv86faXNU7xGySltWxzuu2j7vmIW3r6z6LYltHZY8F2Sc3QHl9gf1c+5Jj+XPA7b/f0TI/c27lIRlY8N6RxkLwntJrG4ydgeUtbiAoCEOThFZwQAGsrVxPMFCmBF17xGv2gO/A1BC9wwjYhdRp8KB41zxZ1FpvyqZWeFZ1z5mmyDTHFXivORmtgwE/jbqgzAbXRdTJ1XFTZbdPyn5f2GzaFfhZO4rPwLifF3z4BQ4zH2l2vSFNz0mTt4/vAZc2hOvuPtGOxvaSzt53hSom9Z4zz22cuhvDNxk84mxeuNv96tmhtA3lJjOzrR+NnmLlhDN+oS0Lf9uxmhfxfAKp2fXjQf4VjLL/FRvnwqbQ6th95oUO3XsXlhS5xMRlyTzOhU8zfJqFa/QUcYhnzaoRqSvd2ArWlM2GY98iLau+sgaeNMjUcksTtaqBsII+VS2PYvdec0cJnZbCOZvD1UqYvcdLJQToQrXyd0cQXee8kr9QKHgSrkY0G8lTUQDe9Qf84V6Bn/EOhjNVPEl6SnbrOG3AY4pJ6VDaeCxF95mkWT8xV+aMSsNXTQJxVKZFeHhU8aOfOv7RS70a0NKIzVpHKpinHl2lKThtUeW1CnH3XGyzqwaUuKoItxiAU9u5d+n5Lc7kXHP81XBdASMDMaSaEU0xRa+oaD0e8gI54krE10wnKqk2ejh0+ttjgNFB78BhylwCe4b9Gyih7ka5EaC2GmC97u1zdlfqoNjm0dDQbeNtUZafTvv6+x/C5gxYZMqykAJCJ44OIVShcw5XhUzBFUGyRWvb9TmHOC0tcA4rv8u6WCyTIqlSWMyhT2miLAu1JFwpDM5RdIrZ9WjkO+ekZWhGPVKrkI1/RYCUtZwn58KyRDOc80Yc1sZkA3yqjheaM9TGVGPFNzCDmpGcSDlqOjYeSc761LG4rJO9ZEqcqaYoFZeZHBfVOqrZalyh6y78QrQiW+RhF8loqjLidCzlUhTgyDqfkqmApRjtexqRbcS3SrKm5kzbWFr2B7bQtnKSRpDXSugUpJW1lM4JW+2l15KI5tDuYjIWQXNrmZ1Q2VSKbsxQm3WtT7fNWgzMaRtMga2kzNpG2rWgzixF9DdtXBXjN9Go7j4FWA2RH4Zj/uHHPv25/fs5UPP88196vv/uj/3WljFTb4wNQddM++DaTq7WtTyw5KSkd2nRh5X0VdAoi3P2V1Nv2ya8Znqsl6Zj4DMD6M8wTts+8+X73t/WyxvAwqbUsbYv6Fr/c35PGpCyARti5TGfoT27X12dsBtp8c2wWqGkatj1bqtar8qcyZtCAdle317g2fMN5Nm+d9unu5/UT8v2jc0vbRfXmsIixCgHC243PypGptvhnF+zYV7iqEUle4P3zPNM8J7UAJiuM6UuLRvyXtfYEAK9wEF0nfVDT3864Lw39a5BiZ8LONuXcs5M8wQVpuukhPomFdzmeim7yHIr59uNg/2Q+jnj63NH3sbburYpMD8MwxrZvr+/59Xr1wzDlcvTE/OkXHwJECO9VIU2229b5JUGFtbVRij12Tq2d+he+BAruVtL69xWmtEcI9fmRRtrNlBzUYAzl0wquh+UnaqS3nKleTWrGpDTYA/iSGSWEnFVgZ/QsjVqvrX12hzcN8E6dWXdd0AQVxCrllSSVLmdcu0rt1Npt4c8Xxp1nn5pdtsXuZ3az+b57rtfWsdf4nj+Cy1IR9FMmiXqWHMCS7J1wDuqt+/KxtWlNnQDfTDgR9SXKUr/ICXhSjLbXhDZqX1hWf32wJzGlvGzVSw0u17HhfdC1+lo874R9tdVpZY2lhowtJ/ja6uKAnlF1v3rS0EBaO+7tTS+Zaf9+BqxX3v/4f31xWOd58/oBRqX27Nx2YL3WkWn6rjF2rpWdmTN2JD0Nh8NwCmoopO4FQxrzdOUFlXFz9/wDFZbGepuburWquuXD56udCuJs4pKFKI4JX2XLVi38wjXf6/Pd+teK9Wuz/v9s/5qV2bPavscN1OvreMvfVQUfE2psiyFacnMsRCTcgCmalfX5sRnPjG7cdCu365TZbKhsmX8mJ9WVuBHpeTbHtiEgm1W6nnjQkkLJbWsVJBqxZLVyrrqxoPUsp2lGp+i01IwHRfB7OAAdOA7qnjlfkLFJ1yyrDyBNSS261ct4dWbXfESWkmnqoU1xe/WQA0cazyzP3X8I2f8FMpyhbbomRpVQ2HXLl/7uwEkLZ2ucUlYqmotKo1OhRKRHPW15qiBqcBoGo4u3FqNJ05r/EotKtVYq5G7WRxaNJvI10Xr5+IT8fKBgqPMV9x8wS8zY71yDolUM+4IJ3NSDgfHOArjAAOFGiNZQAeqZkyo4piizaVqvbaWHkUrUXFaH8k20GClmiNYeykZ1t6pbcYUN4vCSxwighePF08QT4cSOA9oxsXoHPc+0DuHr0JXHa6CXxwLGbKm8EnLgPB1Tf31HqgqiTddH3j/QUkQp3HkP2/vb2IkS5Y9P+xn7n5ORGRmVfft+/WeZvhEQSKHD+CCFAZaaSEIEkBoQ0IABWk1AghwK+040EYrAaMNwQ03A5DALASIA36AAwFaEAIJSYBAUSQoEuKAEkFJ1GDevHff3O6uqsyIOMfdjQsz93MiMqu6+3ZW3a7UsUZ1RmacOHHczT/M/m72t3y8tQov5Qz5DFT2Are7BCRPP7MJkOeZ4+kIavxLuxCcm6NSikXPnKcz02T8CO/enXi4P3qFmOK9a5EJObfwcycZDoFhiMRh9EoVpgUVYaJQ5xNzCOwe3iDO15DLnjQO2KmLIdpaK3U6WQi4+iletXLoD+czU8mM44E3357Zjc9/sqlamc5nspeTjCmRxoFxvzcQy6uaaSnkaia5oJyOkYf7tzCfrZrbbM9/P1lVr7kWSkxotDkrEglhoPH7WNWf2kHbIGIbebANtAQhBzeqY0CSlwkeB9J+hwRxg9pP8rNFTIUgnKJ0UnFLj0i+2bUtxUJCWxRAzl5+vprRndKwABqlEtPg/7zUohtzqso8WYnv83TieDxxOh6Zsi24MRpxtcQBQkRV/BD1eTfWBtitjYFGANhOxS74U66Mgu+K7vnQd8IClizQT+NtMN0reDSflSLOx7cc331DnSeO795wOh6t/KwE4u7W1uThBkkHQtohcXRjK63SJKCRkgK++Ul/tuXZ12vgYuCuCbDfF/3TpAGH3kwPFf8Y8B2rsukLuNmBjUeyACzSf1XorukKv1kbSivpd2368w8sr+1zzdxp0WqyfhxtO5FefW7tQIrvV4+foTk66wdqRtClU7l81rNXempQe+r2X/QqgqqWwqGVVb9a1MjPvvqKw+HAfv9vPXqm31XmnPnNn/2G492RGCKn04khDex3O/bxwDgMDOPOqlbuRvaHPfv9nn0IvIo2nsf9nv2rW0LySJPByESn45nz/YOlDp0e+Pabb8m58Kd/+qf85jd/xvk89cox4zhyPlu66ThOXi2SJUT4R8slHBeiWSLjbsdXX31FjJGH+3tqqbx69Zp3795adc+UyPPMw7u3nI92oFNqNrtHrfJQ8ciU6vx4NYAUtUObVTGIqpU5Z6b5+SNhY4y8/sLS8Pb7A8OQiCFYBDEO+ngqfRBBY7CU6FI5O0HvPFvhi9qrlxZ3CJe+s+3QDryKFLMNpVApTPOMAAMw+NxKWom1mJ3qjkmP2tHVbPGTLpGIqM+6qna45nZXIxtntb4seFEDjNwG1+rtvQYKsLVDuVgTpY0PeZ/tud5jFs/z+X3Otkba3KoqTNmc/lIrpZyJUbjZD6CwGyKH/cAwWlq+ohSti93QjqEbXgPUIuRZkBKtOIRWkEhMO4IaMayUQsDIlaMUUjCn1KI7zCFtFdxEIBIJznca94H9bgQs/T9EexorpJJBai+cAUKtYmfF3U8S3yNiz04zDkfv+haWiTj3kO1vKabVPhQ6gLH+96i3nx8zMPtunmjpWFQ74JdSO61DU7WI9Cj1EM3eV8zOLinSTitsmzNLpfH1Bcf2pNkKpXbQrwE5wfmZYDkklea7euXf/jD29N4GSGOi7M0WS+PA/uZAKZXj8cHWQrVnUQeg2gGHrhrYsmRK9sigbP/WnS9+oB7afFwZAY2mQoSFr6/ZDdL2Yulg37PpsCrnY+XhvvD1tzNvHmZ++6bw9jjz7lyYilA6v1btXGUtSl7bIbEfqjYAiGbTt7no1djaOlUduEM9wwZ1UMfu07JWUKXMD5ZGm2fm84lcbJ2cxWLoVBbAyNLcK+KFMaIEhpiAwDAIaWfVNgMHhB3EgRJHIBhNz+nIqdiGrB4V5KjXqtOWF05ZjdYzWo/UeqTWkwWiaPYMIAtOybnwcDxT6ncfaH3aiB9VtMy03P7F6BMHZnRlYC4ghwE/tnIp4q9xjhQDe6gz5HNn2actXDH59wQn6F02hNqQ3Zq7iStt89RW2jEjGtB8okz3hhJOR8J8IuQzAzP7UCmxEkbY++TZ7YTdIIwJBiqaMxoEFd9CtC6rDYZqa20Qj5HJqaTOIdNK8DVkvw2bileJYgHLoMUTfYxoHxvWy39CksgYLLhtnxKHYTDgh8CAAT9FKmm2wGVRIIQeEm9jAMuvU0sHmaYj+d50qfnAUCZSjKQ6k8pMQBn3I4eDcf9MKJPaZp3nwjQ7T4xzyoQgIOpoqXI8HTmdjr4AW5pONdod2omVgQReiUzsX8A5TAbL4a4rncxFyWVG85nzdGQ43RNTNINOB4wg3MptaimU6WQ5nDRyMGWaM28eHjhNM8NwYjor4/AxgB9LhahewSBEA3+GcTCsPIsBkWrkYkZorkzTmel8Imk1TqbjCS2Fk1bmWsiozato/WgnSMkcP7HMv1YVzPdgJ0ezzi0iFPHxGwPB8vSQIRLHZMaUFMQBm+ztEBHmlJnT3EmiWziw+b7L+lK7c1GdiLkiYu2vtVqufgOHo4X4h1ZC3DfhBhpNU2aaZqZpZi6WxmLRQZ7W1qqCeKW955ZmRDdAowE/16lZF4DNezb2p8q6r2V9n4soo75yNkBGVoCQrW1SbbzP92/J88R0fGCeJye9Dw70RCSNFiofnA8qREJoViv0QbM8NQs4swZ+bOcQWQDw1v/Xxuv7oqOe7usPXvI7STuJDaGRCTokIpeneeil7i6joPwCb3P3e9a/rK66NE/Xzlf/YPcL167+8jxrx62dFq8+vzxlV5te/BUW3V1+SYvOuSaK7Slr/STQfo/IivMp+Fqz8BqEEBkGq6J19+oVv/rlr3j16jXDMPJcUkvlzZu3Pc1JVbk5HLi9vWW32xn4MaQO6DSC4jQOJK/ktbs5cHh1RxxSd2YAHhDm06lXf3zz5i3TNPHtt9/y5s0bzueJ/X7P4XCwdXDOzPPc+SP6uF4r/seKtPkViNHWxLtXr4gxcnM4cDqdSSnx5ts3fPP117y7v2c+n81mw6KS5iLkIohWimYqAfzEtSpIVYoPkQb6dEfA0yOeW0QC+8MNg3MkJbcdYrNb2lB1QDUFIxgo1aqdllKZy2xFJ7JXS9Jin2ucFCKIqKUo+uSoUtzaLOCHUyNQWKqiCnTeC6vyunIY/L7NdrGIbLcVPXXColHqKoLq8Rq4XlOsne1goXHUqfeBA+5tHDwxsNra26QNv3CxRn9MCbQ4W0WMdQB62k0Qc0z3Y6JWi+pQt/+NQNmtaNW+Tva1B6hlQrLzKeGRH8GKkAQ/vLIDZUtdjGLR61Zsxgq8tL4L4juoeLUxEVLw6FfWQLojNtWcvSCKRHHv1J/R3ckOCDQM6GK/6BDd1f7TCOR9cH5g3/z44vxMVT37AWt3eaISVRAD/GkcQLZ/1RDMp2gTCPraGmLsh/3RyYL7vqJLe7ut07fGpcx7K1ZyMX/a0/e+SsvBXDSy/uJ2dwczWnRms0X6XS7v1ziIdFUtsoFZbujSItbWBzjmb/o60n62Dze7rtkBv7O+HosdxCvnc+X+mHl7n7k/Fo5T5pwrc/XIG8T8VfX0yqpo8QpdHTx3gMcn8hLVv8xpgF4wCI+YqRkr4GOAq+Lp566Tkk+U2XyxMs/kautrqbb+GmjuS7XSwRYw9cdoSbkhCXHwFC/2wB5CojowhEKeJ+e9tbW1rU/t4AqaHW4bXwgKQVGdqDqtfnolMXX7GosGns4z6PSdevnEwE+FbBE/4ouee882GX2zd/Nu2TQ6YZqjY74oiRrwAxXKbNEgWkGdoVsEkeqRmmI/ffFvp9KG3k1EzfgWTotGqjVT62RzozZC5mDPrpWgRr43BDU0PkH0kNoxKkNQxqAkqY7KiW8KWOhlM/ChD2ptIZzeB3TU2aIkVr3Tr2nhfmsbwO75/Au1SGA37hnHHbthZDeMRJQoxXLSe6lQWZrgOkwpUZqT2gCt4AFfCqSIpuSzKawWL+2pTwEYYyQKjCkxxtRJXRU1ncQZCU4+7Bu+qoX4hkb8WZRcnFRSIiGOFhw2JquwoDBPM/Ns4btTKczqofu70SJ+oG/qojZJQ1EkRV9k7ZlrzZTsvxfjyNFqKVO1GOjYoq9LrazL3Buj/EeIMlA6At5SA1r0RDMCYrR2BA3O2WQbRM6ZCcjnM+eHB1twUM7SoMYAQzvZa9F3ruQ+Jp2gGWjhy6rGS6XiOLcDNALMpTDnQgjNkVk2vR7d54ZCEat4Y8adeLvoG7sfLBt7foscUidI9/csgu6SU2zt/LYS37W2PHrpvBpO2OUAhkX8VP04fFvvS/F66vWHon2euudamvGzjh66+LnauNaevumw2L+cKWX2OdD4y9zQFqu0UglUlYVYvQMLPkF8PViMGt+Ur9rYUl/X3m4zcK9T455aI9s17f3Lal7PrUfpoFtwo7IZth388GZ0Y+29jyIXwA+LVvpYXv9+/fHrMXIBzK+/r4M0q7/J9Xc1DbzPoFzeefL6J7q5j8Pre64AR0Qs7NlTbKoK1EpwdzUMI8N+v6TrPoO0tSrnzOl4dKdZ2R8OVFV2o5UFVxHmkjlNZ1RgFCWMo51Wrw67jDDbedRKMW6XWqnF1x03cmNMDIP2KlrjOD4iBu06/J2buxoTPvdaSgueltL2i8ZncXt7y/l8BoGfffUV796+szLGIsQhkUvhdHpA5skqdGpBcjsMuLIf3DZqUT7zbCTx+aMAP0b8KrEBBottJT5Om6PVHD/BDgkkGa+O1EgY/KAyA8VPonHwpKWTi/0rEbK/7utYv8C7oVZzhNRsDV0h2eILQwOW2l7bKt80Fbb1pK+DnWezAdqyWmNYnNK+3y5RA4t+dPEmWX3Zan+GpR3C5c+1c/q8stxP+3jqPWNjCijVCKBDsOhuDyzxiIDVQ6/2uaUCEXRr2yP4TcnmbErzsFvlYK3OBtNryXYdtsgFDR4B730mDjq1KAZQ83m8RHtzm9cug31uaa/ZSKv9EqwN7c2+dy5k30+u1sqTe2V772PIet8X39O79df+55Nyje30z2MxSxYB1XwnlraK2y7i81iVVlq5RZC061at7T6beF8rq0PsFZiyboeq9jRfEWEYB8Y8Ou+h2eApRQetnv5vGW8L8LXmvYvNbm/P4UOwrdltLPX5uVpD+rrzjHNR1cqTn6fC8Thxf3/m4Vg4nSfO50pW4VzM5iu0AwCL9sl1TQuxAD9a68XaZK9bdDs0MMQa21Kkmg/t6ZXq5NF9wjglTIxoGpAqwGzrQG2VAYtXzwrkbPOrVqcEwQrQDCOIRsawp8oelYgMI+L8pITEcoDs65Ku+n1lAwIesGjRr4jx6oYgVkkzJQJqxYuwTAMJOKD8Yfm0wE+dCQ9/hhk3Zcl39gW0qofZ9QlunSMhQBgA6dwPthBUAq7UMsN8MuVGKwksYsRroe6s091wahPB5qcyzN+y1wdUT0g9IWVC62S3PM9IHMlyA/IKiIR5QvJMKDP7kMk7r1QTK4zWnJiUGCspVQ4yk/RsDrQsJ9haLbJIJdjAypUqQo1qp0HVnCapuZ8ciDPa2EZQe25ji+1Zgz7liqH+OSTFyFdf/pyg8Pbut4QCUjOxnJFaGNqJtTpHDL74DgP7eMegupRMV4hVSNVSYWoI1GROYBbIoS36lVws5W4YR77c3TCEyG43cPD0n5PAWbAIkCI8nKtF1eRKyRZdNivMnhd79lxTVQhpz2GwHN7Xr77g1e1rwACO4pEd396/493x3gynMVnVKwzAFPXy3bUSqxFeEoVcJ4uJOhXqHFGtFC/DqrWQ58mAH7FQWyOvLpidL0AkpZFh2D+rDsG2rlIsH3SaJuacjZxaIMRICoFDDOYoaSVUi/gJKMfjkQk4vn3Hm99+zTxP1JSoY4IY2b2Cw+GOEBMxJKKnetViQBdgRL4pEcV4gqLYM0mt1PlsZdW1kKdinw2WJxtCYAiRoVX68UVQMON4niZqLJxPieQhvylGUgzd8DbArzLlwjyXHtnV08eKbTyWjmigs805C6U2XqiJ83RmzrONoRAJkojj3sN1AxoGKzFtKwLPzvIjj6N4lpO7q6icJ4GRy8+97+f7jL1HETa6+qwDNFoL2Xl9ptNDJzGf8+T53YJKQiUSYmBmJJRIDcFKXcpSYjPExblvJlwj7vtAJxnQ3vK5V21Z98VFZMRVGz+2iNi6KhJ6yhe4eamri5qsnvPyiVdojDx+f3EFeGTb6eqj7c1HvtwKnrk44e9ft3zvxeWr57t8nlW0ll59tt9/MdbX7V65YRcGfJt7hcJpLh4NGAjFiBt3+prx9SvufvlLYno+80dVyfPM/f19J4u/vb3lOJ05HA7c3t3xi18Ie1HKEfLXtk/cvXrFz4fIPuxJJSGlICE4cJ0NwDqdKdNEnWfydGY6nXo6UOPUubm56dFFr169YrfbdRDouYew+WEWni+6rDOHmwPjbuQmZ9Iw8NXPv+L+4Z40DPziV7/ieDzyJ3/v7/HN119zPp/5+3//z3n77i3zPFHeRsrpAS0FKWqGA2Z0o8o8V969e4CqhJC4P504TN99svmD2xYCw80OUT8VLsXnZItmtNQcicYTKV7JUBKEcSSqgu+DNVfm00RWtdQMO22wcRzb2gfnEDh5RdcG3gURtGB9oUo9z8x5soPR2tJe1JwGCfa8WPRsWzdCXw8cTEYJEqihOU6ypH2txR1EWUWj95/uaDVumTYTVRq3zfV+g/vmLRZ9GUMX/f6sWlzLugxKS9WuFAdpzhneHTPnuSAxcjsVA17WFVRYAAhReiqNpU35oZLOSHVKilJRilea8rVNlVAnIjOBCppR7FDR0uktEo60cBlKTED0Q8viQKcBP1JnixKKYoHFanPGqKBsLw7Os5iiEGKLeK5djwYY2LoZYiRIvNrTF3/Cgm7cn2jb+1o+AvAjIgwp2ZdnTwHC+FTxqI5WwdF8dzFON+nYjdmH66gpacDPAnQEsbTgFmkqblJILdanHWDQZR/qIEno0VUhSD9MkIt0+HZvBQnEwSLLJQaG3WBVAbOB2SlaZKgdYDpfm8autwb4GqAFPTXPgf40Dn1fWzMLrHnSWjv67PWp3LjLwjNuGKUob97NfP3NA3/3733Nb76+5+2x8JtvZh7OlaLCVEMHWksDRRWvVI3tgasU/VrbGtcOyB0WW61l0oAxXdKlhHXfLQfIKooOAWoi73dkvTOsYirk+YSCAVdlYg5YGmexuVLCSAkDSmDcH7g77ClEhnTHORzMD/Dy7TYeVpOnrm08WX524EfBeRuLBKYk5GpRReF2T0lGlbFL0aojK5QMVafvnI+fPuJnfuuAzboyiy8mBq05OteHtkX7xMYTEix9q0XrtAgdQ2nsdU2Ijl6pZCA4s10tFcmXxEdCJZQjg55RZlRnqlfdqgUjA9aZmk9oPIEkpGRCKVALo1T2SdFQSQE82MPLxSsxVUYpRJ0RjU6cBqht9FoN4DKH0iN+Aj3VTT0iQ6CHl3kAak9dazq2T0h/3SI6nlNCiNze3DGfT9zsb5hPJ+v7SVFmYl8ztE01jFNJLF9eINZK8DKoSQOjuuEShBzMXAmWCe2Ll1rUjApRdhzGkV1M7MaR/WjVgGzRNZR4GCdCOln0gFd2QZ2nx9n7p1yZshmsuzQwjHuGNPL6y5/z85/9wiZ1KUaWlTPyzW/hrVEtlmjocEGNp6B62qKXIAwhYlHrGVQoFKjBmfwntFgERJ4n060ImmzxNk6AthgEQkjGGfPMon0jL70iTPG8VREj0g7JKjMFVYIDXJJnptMJSubd/T3ffPst0/mM7EbkZm+g6+7AQZxXI3iaFMGQelMnSOibVQwQnYSVaE5/dYDwnG3uxnkiRuNbkGEgyXDxrG3xb1UDc56Z59naIeLVVJoBY6Wmc1HmXvVnCf1snOqmhhaO6ez7nktsJGpWCc6AH1ub0jAiMVoZdweMDOG33N/nlOaAtX7QbsxdGt/t9fsix74P+ANcAEmX93+EECxue62UPFPyTJ7P5OlEycY9YoC1r+/BSPCyRmIVpHrZYbF9oH/XChxQlpPqNWjzGMB5uh/W7Xof6LPus/eBQz9epBNqXqfbXff5+u/20183wGb1c+1orX9bgzv9CT44NFeAzxrvufjlyWaZUdmf+annuQSiHqeMNAPIH1IvW7WcUvr7DgpaNcLCVKxalKiFbM8ocb9n9+oOaSejzyS1FM6lcJ6s7PJ5ngnDwGmaqMDdF6+I40CdJ8qDz9UUeZ1nhjqYQ28Ls+0RrQR6ni1VvFjUXM4zeZ5BYDeOVFUOhwM3NzfsdjtLLRsGOxFs0QMfwbO2YbRExY3j2OdSGgbuXt1xdzxynmbG/Z77hwc0RtJ+z/HhgVPJzKqE85nj+UzImcqMSHKHWjsIkYtyOhsR6uFw4jzNzsf3zG0Si0jCK2ZRjU9EA6iEi2nW174Gvhj0aHuaCiEbVxHHySp1+sGmORtAMTsiUzmHQI0gg5D2RnRPVpjVvn/OxrOnldDSPJrD23m22qHbSj/tOf1ZJSyRm1rxdNLLtbPNMO2b9TrCaFl3/BN+ibgzvKAlfW6uFoCPB/A8JbL653u4/97alguc50Kpwn4ywtlU1PuJDow0YNmwhf4G1u/ND8nW/tp8uJUzpyCaiW7XBowTyLiuZqrzVQWiZzcISLGS02BRcbMdcotmRDNBYBBLB+spaC2jwdvcxmnjvKnNv/LHsjaFHmWwAJwmaz33fdIM9A6UfCwR3LZDPd3FuBi9LE8HBWz8Vlv0CayGuxfpkYVHVla6YbFhJCwATh+uqCPPq/avOkaxCKGqjZKkAabS79Mjqfz7UhCixn4gH6P5BdlTc61UvMO36iTFK7Bu7eU1oLVF+YS4gECtEe15W7qoPzotoni9RvRcjWcEfqoqp3Ph3cPMt9/e8/XXb7k/Fd6+zZxmA35m9dg1bZqlBzTY8+oFN2OLxFtHPV4c6Oka7lVvH73fOrm+xZu3xdwpJQak7qBEpDxQJlsrZq1MNVMDTFI5Y7rSFCENaBDSsGM/3FIlEYZXpHhj2QthsIp/vb+1dQ4tG6E3RRbco+1/aCBo6H6nxICMI1UKKQb2QyKFYBw/DxP6PfbFTw786PyANbx0WKAroqqdeFWbVLT0CIlQs+duRijJUwMMABHUwIc60fiDVKo52+rpWxKsnLCX6+sKV0XykVBPzj+ULW82QBSLsgEnkfa0slALUQ0QihSiWHhA8ioMNiGNuDlKJciSxdiC1B2o7MBNG4b9im5U0D9jqQALyagE6UW72nrcUN7++zMvzDFGvvziSwLKwy//gMN+j+YZnY5oySRRRgFnNrFy5kAJwhzFIppK7Q53UmGsxstQRCiemzujTGJAwU6EfbBy7V8dDnx5c8MYIsOQGEcLoYvB8+1rpYQ9xBtyqdQpU2bj0UlJiMk6ZZon5nkChHE8MA57Uhr46qtf8OUXXznwYyd+uWTY7Rju7gwkCEIJtjhNtTB5Dn8jlw4hMKaRIVpIZwrBEFk3Jq1kpDnEtdoJb1u4c1HOuZCLlXP/8stfst/fPq8SsYVynjM5ewQcztwUPDJFlrFk6ZCN36U68CqEccdwuDHy9CEho/G0xDSYCezpCsWJDpvDolpJUag1IaJGFu5O2DAM7EYrsS65QrCYsd0wMA4DMQQjSm1lhEXJPazT0iG0L/JmvEWP+qkN0PJoGIRWM8XDq20pSn7iY5VdkkfpBSeNtsgtKxtvMVAxBGo14Cc4J80a+EGs5lwjpX9OeQqUWUf3vA/EWX/mGsxZ36Nd1/52DXwsqUAr52LlDAYfD6CkYSQNFn0ZazWSStTKtEfjYBn3N+z2N37tSAjLaVYLV2/mj6ye7clnWv3+VPt7JY0O+D0Nkre2fMzon6d0dv28T4v3xPoywfbKdoWDJR+673UE2KP799ePP/8kAKSXv6/7r7mWsr6k6cf/f2F8N0tB9ZI0+qLpshj7fkVllR7h/6pgId0fI32Wbq7ZflBKT3cax5GHhyMiFtWBWFng8zzxcDx6ym1d0kUdAMLBghQiEq009DhY9LPxXyUUesTPOI7s93uGcbCDlthO9dedfeHbfa82Lb9crh/X7V7PlRCtLYfDgbu7O4ITJ8+lMAwD3755w/l0sj1yGDrHyPIdDlCsAfdaL6pAPre0Q4N+fKrqBNaxN18cALL0bkE1IK1iE0qIQhwFjYoWJZ8zISVqLuRspdclgkaxrTYZea/xlMQlTa+VuJeVAxmAUFcpoM3dXDQh3WdYO/iLnhqYUduF3YE38Kj6fXt7+we5mtcrMJnL7/CHu/hNLub4x5XFoaoeidNQkSXK0MYX1GLFK3KuTJOl88ckpAChAVq66oiL5a7dS1nytQqiq3SOViHYU02sypdTWrLGa2yNCmb0u89grrAdvBVw0MhSvOy+yHLEej0WWI0d4wKx59H2fndFF3+jVkW8Wq2261sls97B9m2fSqMNrFF8D5DG5wNrFdDoMtx+7XtLG4rShrEuH/GDxrZntt1nXZGvRzut9qN2ZfPNFrtkvZezRAb69+p6bskSKRTCCqDzw/5SCiXkFTGx7QkiLJ/xSpGNuHuNx7XuaesotNQof789Z3ueZ9ZlrcrD6czpfOZ4njidz5xn7Qfc1b1E3FYXf+KwKKqnp9IwxwuwR/vf+5oFPeLnctS2NFXt/dCnswPgzX5Hq9kIblRUheIdN2dlQqxaIhnIRuGTSrczAmpYYwMBu+2/WhNDRVqp+fYWq+vdiTeC/UhKA5TRItrqHg0GHI5DMi66OZNrRH5qVb2oM+Xd33MKF19cWC1atSKzRRY0Xgw1mnZUjDujl/wloCtfylJuLCVKRaiTKU1CpLox0QwHG1jLkhemI2k6QpmJ+kAcjE8nxWrbvYKWB8r0LRCJtTKWitaZygmVDFIYZGYQQ+4NRbaxM8pMkmztlWEZ0AhFA7VGsgayRmwSGCmsZ6faqVMQUgrEYA5nSMHy0FuFqNbFjkS3aKCnInl/jOz3e/6Rf/iPeXi45y/8wX+F0/GBmmfydERL6aTTbZlr4ca1VWsK4gzs9n7SwFhjNziKL9hFltcDOHm0cDsMvB4HYsut9wW3iJDFFvDTlDlO2UO1q/MhGA9TMFZEC6U3JmdS2pHiSAyJu7tX3Nzc2ZbaF/3C/fHIcTpTVZnVSIzVgZ/cjIw+yY3t3ao12HPbOHJjvpdhXNIOQ7Sx3ci8q8I47Li9/ZJxfP5Ur1otdN42BeNX6Y6Er03dyarV+a0UISFiJ6I7GXgVd5RcIIqh3yIM+4MZSsXArew5p9N05nw60TirxsEqsu3Gkf3+xlM6EzGOnoqVmWf77OGw57A/OPATGZNVUzsdjyAG+JSpUuuMEEArUSAF2A2Jw26kau0lxCUIeg7MbbMYBidwFnZpJMWBFKJVdok7Uozsx5HdOJBiYJ5HVGdyEWodvLhDJAxWAUwJaHBSN/Golo9gIK0drTWQ00CNGOPiiK2c3XWUy/sihK6/56nPLUZDWDY3f60ow7hDqZQ8kqcvyPOZkmc43lOT8WTF8YY4HogxcXvzmpubV6Q0cPvqNbv9wcuw0sOo+2H3ygC4Bkze10/r61t0Tfu9kQO2yJ51X36cSJ/2bHRC7jUx91OybkP72eZrv2Zl8F4Dgpffu+j06feuQZ8Pj98LHXS/dD3G7FmbcdkNPWE5cV7/3R2ZFg7dQ93b4zx+gBVmYKeHWT3iRyKIkQXXFKjDGmB4HjEQYHm0aZr4+puviTFyOlsU0OHmwM3tLT/7+c8Ydzvq2zeeGpY47Pbc3d4ypMRuGLnd7YnR0hAOo4WKq6eE52wpKerpGfvDgdubG4Zx4Oe/+IrXr+7YHw7sdiMhysfAnC9lBUSIePqtk57+4pe/4ObujvPpzP7mll98+y1v375FMXD94f4dp9OR83kCmQjhhJMVON+d8a/MuZDmTPa0qY8xI0stvHt4S4N6zE4cYEjmB3jqiAieqm5uu3ppehWQFIn7CCpM+5k07inZ0oNPp7NVqInG21CD0wKMxv047EaG3Wh2ngo6TYBCEEKKBmJooQUAtMid5oYHd4ibDQ141ENT05LKUcJFQAPNg5LOoYHb377urh1/6HP8KdBHWCbC+v3+VVfXP6soHkndYGPT4lJi3RxtwUCfsxoQk9LEt+9OnKbMfj9wF0ZI0SNB/H+yXglX8KOWDqp0gMcBE/unhJqJmi2CWioxev8WtYNqVZIEUo82yuYBqFJ1IlYbC0HUwQQHDRwQQVq8BH3uNaCyJfJc9H4DgJxTTzow0FJjrM9EaMffHepp+44BGx/ee393NfphzArFMA5ra0cVPLXXLyi168f6A3svrnh6GtdRiy7RNg+FBSSzS2qjBsEi7C6zJ9pF7oQ2YNZ9gLDaC2NcDjYbWAMeXJAa5YdXcxMBLcx5oojN9ZqNHLrk0nmHQhCGwUCKcRxI42CAj++zi6a9jT2i/Qr0idH7pkV+ybPui7lk/vS33/Cnf/9b/vy33/Dnv33LVAOnnDyV3w9MxSuySZtja3DycbdfiIOQ6qW3pK9lS3pXu3DNV2ZHQ/0WoBbgIXVEY0DnAY2WapgznHKxTJS5chbjs017Je4qEgdCPCCDpWAmDx5RsTSt2tIN6TAPLadwDUbJWg/t0RVqDgRek4fBgmD2I3jBo8M4MKTIPGeGh/NSzv3//Z+/Vy+ftpx7LdTzG2toDyxoOXgQSjG0StUWpRpW5J+pOxTSUr2CoLFNsBZu6d/VfjqJ84J6LulSfgUhn5D5BJoZmBiiegpz7dVCcp0gnxACQStJFdVMYmYIhuIPUhjIvmBmkECQTBIr5dgQa/tW+qZgYW7BCGC7AeztcifZSH6NCyYGC03k4jhmOQVrg6tnDD2jDGng17/6A6bpzJevXjNPE6VYGTwjKm6IrJ+y+usahOLlFpt+VPFUr0hQsbKorR3BU+GAJMIgZoTtYmAfI0FaqpKHYEqgUecVhdx49lpuLEbg10LI21iwzXMkhpEQAvvdgd1u3/sUd3RP88xcZovyKZlcCxVLJ8i1OsgYFsLiNpGBhHEYCVjkzLLymn5EHMS7dJpSGjnsX5HS81WfaaKqnKd55WyGS7LTC0fSgEX1vGRb0SpREvtgZJ6NqNLakugRP9W5KlSZzmfOZwN+9ruBUiuxmlOWhh0xtspXBtIOc2aOGREDHPf7nUVTDRbtZZvhTJ4baKjd4AObu0EgOSpenDwvxthPeIpbLykE8HS7YTywG3YkCQxxJEoihciYBgerKkOy6B8BBgdXCJEYvPy4GIjV05WkhZk/v1xHpKx/rrl+vgsYed817wMImkHf1qslBL5FOUFMA0mrVVbaHRgPt5Q8M6kS3Xkb9rcMu1tiSuxvv+Dm5jUxxh75Y4cuqy26rjjNrgCZ79vGNciyjvZpleDW1wO8L03ueWQBmH4IgLWILkCLrKNleDQm3nfP9z3X6k6r10/f40NjB+iOQrvz9TgNXTfrb/M1GE9NaRtHt2yX/bSjRjQHQWkFmdtaXMSN/Gckdu5f7S+Mb0U9TfjYDdn94cA0z1SUw6tb44k71R7ivx93nE9HUkzcHW4Ir18zpoH9uGMYdsQQmMfCzeFALoWQBuK4Q0LoVb2GYeDu7o79Yc9uN3pJ+Gdt6nd0xDJf2pi4u3vF/nDgfJ6pIuwPNxwON/z5n/85Dw8PiAi73Z7UqioG249aBU6tS0nfUqoT8l+OyucS1cp5OhFFGA3pcWJ+NadNpDvVoRnqiEX0Gt2PVceUndtsiUqk5IKcExmBWsxpje7Ex0ocqoFAQyIN0ThHQlnAFbcvBLW0l8a/I9LHuPc84iBQB1jb8tCcWlnNiLicLNsb2gEBxR1JBzRDa+P1muv/W810aN++nvSr6z+G7hbxvtG6kL3gfDu+H4vaz1pBPcJlmgqn00ytFuVVqvSI9Uciy3d1e08tbd+q/ngfKPYMCqEWgraMgxYtpnbIaSscQZQo9jxtHVQqQWeCejqY28K2Xjab1p3f5i6vKk81MlkLS/CIp5VvoD4g2u+1kVG3PYkW8YPZrFeg68fUpS3xCwRgQM/y3sVIXEW1dJHaNkK7QV1smeoHkipqaZY+N9b2TjsEeiodvMMrne9qKY6ygG7SPysiRILzPrZ9z9qjndrE9F2KZbhk1Euc4+mdbocFscPlEJzo14CFBv2to/3QVhxnAXTBy76vMoE/xj5RivL2/tj/vXs4UkheJj11DIC2JYemBLrffh1d/KS9cqEjXRzMq9cX17Ac6C3rYYKYUFFKiHa4ooGiRgthgLoVIwgijBIZJBCSMtRM0oIQfQ7j0Zrum8qSYbCQq/vQbEEwArG3UaCaT1QDaN15IaQCSaDODCmy3w0MMZJygXAiTT+1iB+UUmZDkKVtTL7IAT2XsXrET2PpluhZX8HInasBOhbqF7xzzdmz+1h4dHOqWzUwMyLbQmDPY45EBs+bFSoeSGOLTA1O0lZRnbCZUr2yl0UZeemmtlN6aFpwcMZJZR2NXJfisxKgBlTPRZmybeoxGaKvVZ38duF/CNEjSUI0wjZfeNQ3+46UuoFidODPJyLCOIwIQj0UhmGklkwed1Ya/GIjXHBbFaFEWWwLX5eiBgbtQasUXwRUPBRZDCNMYqbEEISdh683g9C3xt52C8ujL4C1kXuJcsEd4EZJkMFSSiQwupEtvmCCRVExZFI2xvlULWpEMR6a2hyRHhrIBfAT18CPavdhe0RNA42u1rMYB3a7w0fh+AE6r0gMy+lsX3DaBigG+NRgocKoWgg6Sk21pyUUXarotDHfNqmm8JampaoMySJqOpmtG/hmRDdQV9teakaOKbSfdK6NE1SNIDdZekPyU5Y1We7aMFW1SgE5Z9tsaiI6gNe5flhXFfBoodJKp7vRHwxASGr6lxj7vDfAOlysQc8t15vgNUBxDWI8DRx8/+9qc6Yb9I+M+sX4VNROczznPO327A63lJIpImi0hNBhd8OwuyVEj7Aad35KlpZn9jNHu+8TzscHgKuLlJT3tP+p6J41GLNc9zt13XfKtXHzlDzVDrnSgRnHH77Ph+79OPLn2qz/8Pj5IMD0ge+upSza1b5bg4P2NHBulet/YeD3xzR7YJ4L5XSiTDMSo1FwJqAUKGXhG3tO6W3XFqvbndxaCufTCdScyt2bN5ynM8MwcNjtDYRUZZcGUJjnmfPpTE1WzjhJSymtHtYfCGkgDMbjMwwDu93o1b3SFV/U+3XyfdaC9+n0EtR73308jUEjMVbGYeg8ROMwLmm7Kwdp/dnl2duaXS9AoI8hWrKt5Yhxvfjhm9ZCXTltheKVsSyCNGJOXMT3eYwIOiUnbq+VuDe6AUTRYJZJDIUhFFSUQYVUMEBIvcJLEFISBrUxIrEi0cZFmScHZuqlHQp9Fe4AUBuRDZzrs+wKpAnSI4FCEKgtrcZW4cs1dHVI6Spbp4us77to8lKzz70tupnQ/ce+tqFYcsk6gtMdd7UxNc0ZRRmGwDzboVOMy94SRKkNlBFz1s0Rh1BxoAyvqoVxeDrws0TSrNu98LvhYJCBNva84sZikBYpYlhdcI6dFiFBwx5WfbneD1vESwOCRLg6GPbnddtK67K992nuX7CYxs3nWA5iPoqIuI/TVlPp0fWIeJr+0hK97AS7xvt60XrbX8wwb9XT1h97tMesZA0X9PvweG6Yz6cO0LVx1ECIS1CpgxDV1wYVipTFWWr270X7vDXdV2mpsAsApLoqXgIGMilGyC5CqOqgbnWQ7/l2xqrK8TxzzoWi2gM5QrCCHhKiHRQ3/6eN56bj68VBrv+yCqX4IOgDj/cXLvbszlMWLN4zxAgpgShRR5LsLOijRpJX7YteQVNi9AyP5o9Xul/e/2YPX1u7LkC32pu+RGU2LEFAg1XtQkGLpftWTwmOCWKwdLABkJ8Yx4/Wynx+h4ZAVCuZ2VE+AQthnS0srSolt5LfCYmDO2gRjVbaXVVQYgcIPJoKLdlIdGulheE16WoW1zNqkTzlhGghycxusBOBmcCcxbNqZyrvbJOLMyE48V95QEo2Q7LapLLJbY4LwaILSi5ogIqVeqxqQM+cIc/K23PleCqECGOoDFJJouzESqSGIKQhMaTYjYkYA0h1YmVf8JZVmhBYwiCfSWKM3N29ptbK3e1rC3/saHIPBL3oa1QvkPq1iArh4lOrn4st0cOTQ9u82oUrxLZ9QFf/loWBvuAuspggjZyx8wxcfbaqA3bQQQH8dV961oZw+04areDVGxed4P/rH/cIOAmEMPQKAc8pIuLjyngYmoHZon8sd9gjIlZRO9bf7fmaMSLM88xpOlNLZZpnzufzCuS060dPuRIRbm4O7HcjMSaSxE7SFwjskpGEVknUaFF8Ev0kzdiZ3ZgyYHRMyZD5ENBkBNCH/Z7dMBgoE0KjEetgYa6F8zRxfzqCBEaEAUhVGWMhRXvmrMVYAapwTgClpwQZf4alcaXiY7xH+QRfkHz9Cc8P/DwFTDR5lI61unZ9kvVDvstfeDXGZlD2Py+OhS6GlYREHKNxfoXA7nCg1srNfGKaTqgIw7AnDZbSNcY9Q7QxkpKltSJ4JYeVYXrVPuCiL57c5J/oo/dFR12ng/knvnd//ShZYy3XuAtcPPMTb5sKfiBCdQ0qLa/fY/i+Bzx76vWj69r46KVZlSlPlJwdBMo9xJ4Vr4EW5/Dqf/cxUNu6vjiXuVSO58xcCiGNDLeVOOyQ6YxOk6XQPGfhA7djrOrPaj/zdN55OvPNb78mxMC3b77l27ffkoaBm9sbvvzyS8Zxx+u7O6JY5E/NmXKeiCFwsz+Qb85G3DkMHPZ7i/5I9ruEwN3dLa9evfaIn1sHgRaOnyY/Buj54R1iy56RTNsp9d3dHWmwCNbXr1/z5tWrHvHUnBP7XGANzalaZaOQhSlnTtPM8fz8Vb20Vup0QmMiDEICQqmQsx/wGKuD+U4WNaAYl9mQUt+rzS6oRIns9oMdPe0G8n4g1kqmMDWulpoZygwoowb2c7VUsyqkYCV6xxQZb6KBNV4ERbVyPp2YjkeLfj5b9TebU1b+3VzPNfjj6WDSIJuwGEvOCxCA6hwvVYQabP6V6oce12uryGrm+dagzXpq83KxiJZgu+YEyzPvjNYUoZ8beS8U/65K0Oi2+hIBcJ5n3r41/r5aCsMQmefEOEZEjF6gipdtR91O8siaahV5pQERwQHqKmg7azT+Bevj7tAJDBFxV8wiiZu91wrgCCkKOB9IjG53rfcnjzoRtyUtpSg42BN6H/doOvDKddY3jVfeQAI/hAuNG8nXMk9BUT/863hEfX4/w8Ttpqqo16tbgB4ftnEFmHS/YwEPOpiAta9qAz/aobG9IauAgIYp9QNGv7t0kKX/yfaxFWjUoq9gifoxPFY7mKRqB2GqXnxHG3+ZR/ZQffgIteTOdyOr/5oehcY/VLxibe6H0q36VataW2rzWWzciQh5nmmcZdHB7uesBJ1L4Tff3PPNuxPnAgUDeoZhh8TB6BEc+F90uPizXbMrXVxk7XQVLlW6LoCfpqh+n2VNuvS5bI0KwSqCUwN13KH1BqmZ3T6wryOihVgmYpkICMNoVdgkRtIQiKGCGO+vSkGBLJUS1F+3CpH4WPZ5KZUWABP7Y5lvodrAYUF1b8BPPaCaFx9MIEbYD0uffEi+E/gRkT3wfwR2fv2/qqr/SxH5CvhXgH8Q+P8A/yNV/fpD92rlrCUGajTEz9JDfKFTK3Nt//wUULFKBoJtUmLEzbZ4BaoYWtlDxADVTM1THyBtEnqD1tgItrtNUCcES8lKvmjkKmjxMs4Uqp7dgZ8IGEmt1Gl10uKoXgN/gkHzRZ03AiM2rtReVjpXmAtMWTnNlVAFGSsURRJ9cbcUr0ZyulREkp721abIqp3msXI2npQ/FpH/+4/VoUj4KJwzP0TW41qu37j2hH6kRfGkY/Ud18MS0teAn+9zj+W7rj/dRUTk/8ozzEXBuApijCSPrIgxevlf6XnJ5gRb6Gkr5dk2wfX15/MED5FSCoownadV5RHrlRQCu52la+2GkRQNLQ8ibqE5qVuI9hkJFnGnbQNrUXXLPUW88kPbrYOdjA8pkRwECg4Utq2lqhk2c85M82xzZRgM3Uco6sCz+Mmyrz0lF7Isud7NsBrcPlEEywKWFfDja48DP5OVIH6Wudjafx3pst64r4Gf9d+fku9yDG1plMd/u7wLLTJIQujO0BgD7AzUG/KZuRi5ehp2pLQ3XZIIJAeSmpFdfRzavZ/a2d4X8bNuz1NRLdcA0vr07brPcDdq+crnmYuPG7P048WhhaxO466At9VF/ccPMcWvI6GW7fLpcfKhyLH3RV6tbCzE91SbzpU8Z+Z58sqH8wpoLt3R1Bapo4r6381oV9aYvmClYOdWVWmoMI42H3OGViGrVJ5dh+1QAgDtIFcphePxAYDT+cRpOhNS5NX5lUe6zaQYme4M7NFSYM4Wjl8qA7am7UNgP1jJXokRGQxs2O12HA77Xg58vX7/UFkDoj9G2pw10lJAYLfbISFyPp/Z71vkz4BIi/Cu/bMWSdKW/MZ9Z5Ubcy7kpXrJM85FNVJnMN6GEC28vxqhcoMPFvfEnxchRQjVazy5M2gHdoOlbcRASuIR7VYcJGhFsoERUpUBGEolqJAUUjCwZ5cGdskirdv6VB1sKFoRrxSqOXenyVvjzVoAlrZVNldSey1483Y1BIuAUMWoDXyu25a8gOqP1qJll7Wl8sJD9rmxgFDrxcvH3LPORW3cRs3O92dpFAuWTugLhyg5K2ctxrU0BM5ns3ODQB2Tp1n4aT5LNE5z8Jd1r/W+2TW6CtpYux7BHcAYAtU5YGIMy57THVwDiqL7ODFYefaLaE+5BDnEf7+cx9K5VBpYEaTtgS2ScplrUi3zoKqDHut7NXSv/X+9dTyrHq0d2simvc3abCpdDhb7tazavQLhzYZs43f19H2/X9pxubVd7XN+XdtyWtTcAgq11y3F/pIzsOlmATmW6B/wdC1drA3Tukf/tZ8SWA6yl4P34tylLTpSoQM/jeOnF03CqMLbQXpxYM/T3Z9Fh7Uq704TD1M2+g0JiESLVo3Gqxn6PmVza+mHxdRfRzD1vm2a6WtRXQE+eqHEpvNLMGhlW2Gz1jJ1vJpxGmAYkCoMKANCoBJzJGQDy9IQSck+E0OL+Gnpl5Uqwfi7ME6qeDF+l7Fg+IatKYt2bC+xdQqf/61tyfYQb4uqFRVIncvrw/J9In7OwH9XVd+JyAD8n0Xkfw/8D4H/g6r+NRH5q8BfBf6573E/64SqZIqT0dlmUEq11JlqhltbhCy8aUXyVW2z8mFinah2eiGCnxwVNyJ8M2obnS8EAWPyRyvkGc2TEbKJRfMIyqlETsXZg4J2zpleiUstpWj2hb0WyEblw5yVFCoaKoVC0QxBqXFGnWNkms14mefCuSjnYs8VcrVIh1iWfPbF31i1qYU4rjdc/9kcLwK7QQD+U1X9bz6HDj9k9H9sWbt9cv3Goz/+ePldb/dDP/d4OVo7fP135ZnmYgiB29tbMyha6kCwFKngznoDZew0wnhstFqVrjYoc86gkOeJPM+UUvrPBkC0jaUBRTHYT/uu2N+H5SRsGeW22GXnVerOVGnmrQFY6mBOrXYKez5PBLV2zvPMkCZKVR6OR07nM5NXV2ltbWSPa2VYZFfFKqBWTudCzpZ2VHR2x9UiAvE1qDknOHDRPJ6G2O/3e3jmubh2tK8jVj7kuF+/Xk5U9NG1jwAV2oi8smj9neawrW1TsNRcQU1nvv2EViWnf76dvvkpmVmwtLLFRtD++Dnbsz4VvbLul+v29ye/AoG+Q55tLl4//+q3D7/f5s0TuvmhC9BTzv6l7r7rWR+/92QfOxhca7WqgvNMqYXj8ch0PlNrIc8TxVMu8IhS22Db4UrbED2dRi92RQQ/ya72QmuglhnJgTydOR3veXj7poEMz6LD9nVmvC0REEbUeDVe3RBXVabTxMO7e/I0ExEOw8h5d2I/jLA7GBgUI6fp7BVehBICIUXSODLs94QYmWerEFlrpHqEpgH4Zmg3w/q9z381Z54CTNfvf+g+61NyWDkwIpcpxdp4+loaben7RgOBlmIHBsJnyeScmfLcQPT2Rc8zFxUkFyPmlZlSFEnJospjtBT0sE4ZsT0uSvTULNe9BAIWhVo9GjVo8Sh826NqsQIUsRaSmWsMBEaxKOikQmqv/ZCkxc5UBzzTbiRpsQIWjSbBiVxbdM6l1dQ9XnfmfY/tERuNM8j+XleRHD3tSy7N8W5b918v0xz7Jf7iA0vcM62ngrCQt69G8vJ8KwCnvSdo9ztyNhvCKmEp4xix6m3V/1nEj+VEud0S3BlX3B+hFRmmIxL+BCEs0TkWuW+VL2MMxOjPXVup8Gr3Vk8zbBkSa5v/ib3wqf2xAT4NyGt+jOlsSWG7Xvt9V79UJOvDmItLn0ePF20MEDziO4KE0NN1QwgNPmluDy2tZh1r1vd3+8UqtoE56p4uJt3MXvdRi0xr97nu22aptk6TK/XIak9oXFPXbV3tGas52nq0laG3OdUOp5zWojibna440FiBXH5X6XO9HWatY4gerevPtC9a1Ar9X1h9P92naJV4295+sWq1Qcoq2a/1Lbj/D6oNMG27sfed92c/1OsaWvvM3rNFQapH7+4QORCo3KU9d7E48HMmlrPbse1gI5AOt8TdDYREHW7RdKASOenI5PW+Jy8boGBFq1rED8UZapWFDdTeUSItMtJ02doWzf7xd9bg4HeZf98J/KiN8Hf+6+D/FPgngf+O//1vAP8O32ciBzpBbijtz/aYtSpzaRULaj9V0FohFDP8JNBMrOqnK4iQBWY3KmqeqV42uu00bfD3RaBFFqlSzw/k8wOihYcw8RAnBDjlxLEkVALDfmDYBUKArJB9EJ2Kcp+d/X1WNNs4CqUSp4wGpQxnahRTdAKihUnOc7HTq3nizanwMBkB8Vlmhqzsq3AzF/YW9kTtBGCBVvXLQjwjuDMkDkp1NHhZqxss/uN0yNMbysX733WDK+mcN9d//47R++j6p67R97/xaLvq37l2rj78DN8lj8ztq196Vz75PdL39AXP02eZi8Mw8Ie//rV/jd08iIM9nmduYcSeN+xzJc8Tp/OJWgrTNHF8eCD769PxSPHX59OJWo0DaBgGggR248jt4cbKovvJtJ1kxb4MxxAYPAJp9BLuKBzPJ47nk21utVCcuT6FQBx2qCpnr3aDKtPpzLfV8maTR/9UVY45c8qZosbPNO68vHiIqy2Qfuo11UqpFvV0f39GNRvnwhAJSQzpTyMhBj+NtjktISLJ7paiEJOXaTZ5nrkojwmB1xErdsmHwZ/rz67Jja+vW0ufVhcOYvuArT8ejd65CVAn6ce4DFJNDlK4QavmdvhWvUQ0KrZ2agO06ODPUmZ1MVzW0TvtmqcAn/XrdZTPk+29cGj7355lLjajq/37IUTSRvjaG2TPRTehfpA8dvC/ew3+ocBiqcXTuAv39/c83D+QS+b+7Rsejg/UUpjPJ/I8+fbVeDHUCU3NXghhSftNIk6IiJ+62WpSpe2VhXIKaJl5ePs1f/6nfxeo5Hl+Nh2iUKpV+og+8EWFGBcnoqWzalHmk1X5ynPm+HAkhsA3d3e8+/oNu3Hky9ev+fUvfslut2OeZ/KczfF/F+Hr3yJBuL17xasvvmQYB1KK3N3dIiJM05nT6UhK2dbYHg39HjDu0cnoh0fO+9aUp9JH237aon9ijM5hKFQ1YuvZQZzT6UQpFvmVs6XPF4/yyijnSclFeDideHd/z+GwRB4/21zUSjifgZkSshWNSAn2O0JMViZyGDqvSGtvVNsPEgFCYogj+GdrGtAgTFqQyUJAap6YpgdKLRwQRgJRhEOI3MaBKIGooZ/ghhXnWQlWCKMC7BLxdm/78W4kjiM1Z/J9YDZkDSnFTiWbw+iExxIXPUoMTnWjBA09rV0Ef23ruQZncWvchlfggXQnimXxWDlfF9hBu0YwTr9nW0+FEHbW3l4upH2vAT7t2ftjKhiproM6D3ZtSpG72x2IVSGNEYahrY3O2wKdImD5e3POpNu3xgES+pxo1bCGYexRseLEzqiNdYrpJGI2mS2KK+RgQe86YGPgwrLuXOxz7acukSXNzgzieg925XI/d5V93nscCd1ZvgJCnm1NtV4zLprgoE6gxzRUrV6BziMB1WgBrtnbuhvsYKmyjsL3KIvOBWDRN2iLDF9Sw3p0mK7t9kCQVrHL069WoETv8z6ZHDiiGfV+mCXRuLdXIAdXttw1ITAAtVJrNs4Xrcy9WjEXG3iQSEOjFrJv+oBox2oNPHg2HYpA2kFSJO2QBBIH57kBih1StAfp/Ec0ttjHcgFbhcXmu+j0FXTU50J1vla/y/pwphNr1wktCaEwHIRRRoYAv7gb+cXdQBQllROpnEArWmao2aJub+7Y7W/QEMnhlhL25Cp8e4J3s5Kr8FACp8aZFpJV/lU14MdzQkMtnRy+4tQRdI548AqSa5soeIuS6/G75Htx/IjVQfz3gf8G8C+q6r8rIr9W1T8BUNU/EZFfveez/yzwzwL84tW+q6TU2kO5+mRQR9zrAtN0U1ZrR9gNzxGWtdsWqNoY20vuoA6rO/WhoEa2WIuBQ/k8MZ/OiBY0zBCNPf9Y4JgFRDlEkNHCb6uKo61KrspUlFosQrjMgHjkjhpyWGqmxtnyfnO00tdqPASlKPNcOM2VU7HTS50LWUFSJjvq3wKK1/8M1bZoA+sbXfHotOuWRVBE/sMfq8M/+qM/eu84+aGORvvA+z63Bjzed53CBXAkPHH91RsXxunVTdsJhqyMlh8K/qz83yef89EzXH3IsNune+W55uKvf/1r7u7u+rO06JfYInDC4oAaIGARdFMQSsk03vh5nplnM9ynaaKUwjzPFOdEaOTKIQgpRsZh8Ggfj/hZRXsIK/DJgZ/DztaMqpU5zwb2Vk/TwDbbFBNaKxPSU0Tn6UyezoA5GyEann5WZfbNv4pFOyHh0tlum61a5GGttqbM5xMlT4QY2B9GkiYLuY7QTsxKtRMXAUJ1Toa4pGiudPEf/lgd/upXv3oSqFgbe08BGOu/X3/2qYiZJx29bow8MeNkMRovCiiJgK7IMJ1Tp6/j/j9lfeLhTjSLkbQCQR8Ztld99cF2vU+uwbAPXPcsc/HL13fv7+cPPCPwgfKrl2v/9237cs13//2HgD72RE6IqxaZN08zp9OJeZ64v7/n/v6dObCnI9nLWLddOwApGD9Iq25pY0uo0ZzmYMhPD6MmWPVPrVDLBALz+cjDuze8O+ytCuUz6RC6meltxf2xbsF03hRVpWazf/KcOR9PIEKeZqRUxnFEgC/uXtmYUEuBDTFY9UJXRFEl7XaUWjxNrvRon5wdGE/xg3NkLd8H9Llq/6PPLutLv2qFAyzAZpuPFu1jAFDO2e0yS61aV9Sp1VLjVaXvN+cl4ufZ9PizV3skF7CEfCBAKWQRYqpY+Z8AK0APgGgRBNH53SREP9GNFI8Uih1hsP00Z4t2U08TSARGCexjMuCHQKTtx0Yg2hfV6CMrBaQk55is1n85UqepXy9aL9h3VZf1VXyM9vGqxkmjXnEKEa/kxQXYZZnZTTeLvp/cd8S3C7leh7gwkp5vLlqUW4uCaOvgAoU3WLyt8d4WBzQEZZqydbNH4NxMOwCSip/wmy6Ftre0/mzr7ppXydcBET/j8L3RgR+rytRcsbr0sVZq9T0vxKu0rAb+XM/rZd9q834BDtbzdf0Zg0LEr2n22nJt23N7S9zeeXqPfC49vn59t7RJ2lj1FDkwwv7VGoEf0LUW8Wgtk95tdh/8ntqjLVSNP1JVCbVaETBdgLbllmsr//LQ5tFKe+FDyGr+sdLJCthb+0Ur46hF8Yi0SDx3kIpxflXs4LFRETTC5GbPLzbGJfBjz7OKgZHn0+Hd6y8t4icY361Er3iLOPiqHZTutl1/tMsF4tquEFllCDTbqXfnJfCjaoBmUHB+ma63tl4ABnyKIkR2SdmnwBiFL7684asvbwz3L0dSPUGtlPlEnc9ICBxu79gfblEJZNmT2TFVKDGTj9VoXWYhF7NoakjLQajaOi1q/G6m92bzhstqdkIPmhKRTpEcHPR5NuBHVQvwj4nIl8C/ISL/6Pf5nH/2rwN/HeC//gevtS9I2pTixJ0+BlqoZRAPiGqbhpPr2qhsQdVXzPRiF2stBv501MzeMzJo/1ytVCcxm7MyzR5SHqCV/JsIZLEBW+KAxp1tglGpwYiaiyhZCkUqUy20SmqxLSbBqniID/yURsKwszaVihSFEBhvbqjYqcpuTKQUGfc7YrI889BKJMsyaK1zfCJ7n+BOrf1sob5dFz9ah3/5L//l91qGbc59b9PR98j3fe7aVpWra+Tqjae2QL24sN131U9XX75scJfP8ENAre96zvYMFxumXL982lB/rrn4x3/8xzqOYwc5FHp1iQ78NBIyVaoa746IkUtm50HIc2YeZgYHdCyFY2YcR6rqwjkRrGKahGX+taoZwSvWSDsRqbUbHu3/0zx7RZe65CpLW9ptk/DMDooaUePpdAKUGI3kVMUiA4srtXoYfhDtlXFiTF4ZZ3Cgzk9KMRI6qA7iJEI0x7KUStVMrpV5mo1QtpFWSzADota+IbsufrQO/9Jf+oc19JPCxeB+NLZW8pQD+HhDlUfvP/U3f572YH2y9IqGuGF1YTStJlp3SBd9Llv90+P/KUCmvV6Da0+deD7llLS+CiE8inZa3+Mpea65+Bf/4Jd9KVpOzZuz8P57PNJLf/0Yen5a7+1Zrj7+/qe+uNf3Banas7QQ9UZkOWcjgTenv3QQsBnQvhj4OGl/F/d722vj+IqygEKWXSlL+RtPqzBgNnM83vP27beNC+FZdCgiZts0g9alnytq0603S+TiwMLs38r5bDxH797d8/W33/BwOrLf7bg93BAdQGjOfxwSu/sD8zyy3++4vb1hHHc9dSqlxDiOzqsTPF3IokasOISnWj5BEP8+Ha/n33eBRP2zfa1eogN0dU2QpXKpAOrFLKyZOwRIMbDfj6QU+eKL13zx5Zfc3r1a6+JZ9PhHv/pCY9WL6ENEqPOS3kyMiIal6ow4j4aZe0j759ETrdpzEmEXrDJXlsgoQsFOabs5F4zwE2lGv71eyHqF4jZxc/Syp8dlFI1WfpgUkRRt+6rXBPWrNdvtZ5FVgkAbsPiJeu3L9Wqt6B4WIawiIFiPnXYzu9cHQfpn1GFKox5ubrHo4LkDQFrn1Rq0pAX1dbQ5zKrOOxLcb6BX97Q+CY/sk+Cp8f0vrQ9af8FqjC/rUdPDAq4s0qKIWgpWbQsFzhuyBgguqh0+3id736/0tu799p6BeaHrs5dxX+1QbU6IMYSzAF9dF8+ixz/4g1+rtn2jtgOhRrBNB8dMP7W/butMgw7ea1GsxnPnENKeUdwyJ5drOligi/49heny4KYt8ssXtbG2NoHoV9pndDm1d5/X+19XLWigjfNU9a/x8bFEtTiQs6aLCs1MW421vhxcGgHPpcNf/eFf1Op+d4iJkCoiXjFL2gPZA4o3r/VJB35kab91r/3W6BNooFsf374As0od835ST7vsMJdYrFMHfor59kIlJSUlq+oX0kBIyW0MI+i3Z65UP8Qcxx3jOFolXwZUI7Gop4DWxX7xSuFIpHrhmRZtJZ4iLGqcwAZge/KXR3rir9uPVv7dksieMeJnpdBvROTfAf4J4E9F5A8d+ftD4M++x+epDshoqX0B7iSMSI+mGaKwS9YoxUCWZazagK/Qq1faSfsK3Wvhekgv7Y07YmCs/cVPSc7HzOnBUr92Udn5wq7jiA57QkwMwx1l9xoJgRJOlDBRamZKkVNU5lp4Wwr3R3vCMCsxVUIK3AwD+3ggxkQ4vGK3vwGFXLxUdMmEcWT/+kQAxmRly8dxYHe4NfAntpBCI/ayxdnZ+UN0PtxW8ta4j3Ju5UafT4ffR36IO/AY8Pjuy5+87j0ffu89RS7f+44v/0Ft+uD3rh/h+931qet+rB5DCNzd3plhoC2s+zJ1qKHqq2+l5Mx02FNq4XQ8sRt35JyN28er8rTQ/VZ6uBFA97QcVaY89+pYqVVEccOjOUm7ceQ4joBYepfnLpdal6odilMA+5jHUrje3N/zzTdfo6qkIRG9pG4YByNEFQGvwhLTwM0wcHNzQ4qJ28Mt+3EPtZLPM3UuaLU825q8fPI4EFOkauU8GehTSuHhfGbOmTQM7EUYRECUlNOjyhc/ei6u9HU9Vlp/X5/ENwPwfZ956u9PRQC1v3ci6Q5W4IZxC3tfxlBdO3xghjV2th5WBmsznp56lvXvrX0NsBHxCC6WtJP1s14aZ1y0rY39JcLgcWWLpwAwv8ePXlO9xebsrpy997X/+u/NzMHvc4kZre/z9PdfgHJPX9Hv832An/eBAqXUHrFx/3Dk2zdvPW30TM5mTIUQkMFCoC1618tix+CRPsIQxYnbPZXS+ytFA35EgqXlhGg8K1EhVKb5xG/+/p/x5uGeaZrXz/ujdWicCmaQWDZNM0rd8aMZqErU2ElWW/ndMk28McJpjscz9/f3pCFxc3PD61evbB2LkZSsGuPD6cQ0zwzjyOl8ZJpODMPIbr/jcDgQQiTFSEwWcXjYHzgcbojR7nlzc0uMcQGHZO3AeqTkFbC81u16bblcQ5ppbX+r4BXctO8BWmv/vuB7xDBYRsFutJ9DStzeHMwO2o387MvXHA57bm5u+OUvf8Ht7c1T4+5H6VGAMbtRWb0FuZKLmpU9DIgWK6ESoxUFkMCsMLnjKBWipxmHqhYcpMJOIq/SQA6BWGZqSGSFwWP1qygaBQavUqktgN+cphgtxyhX22+LKuecOc5nT0mp6GCpZowDYTdC8dP07sG2lC/AoxsEUI/0NWfCHVGsLRrUb3GZMtuA2roGAVsfuIOy/tkc2+8CDH+sDmMc+PnPf0XVQikTVc02meaj2/32e62VEBuvoUeLqHElxdCiJEAJlAI5KIMGUhxIKVw4zJZOPrAcZLS1eAF/oheeoDmptP6rSC3L3GmOXIwkv65qRD2VaR3NUIpXdEJA8qLblY7anGv37NW+VntsA7nsNR3kK6UuoE7fAoQgtq62KKmndPosayrmrJuvpn2PazZrH4PoRcWullrY9lNhlWp3AczY54vfs6paQICDTaVxSfr+YvdZpfOKRfbRtd3bvjwry/dQaVXDTT9tHNSG0OAgpa4+Y8aux32iGM1JX1+1RQNZVGRRm70StB96hKhIbaDPyo7R9VMbqLVG8X60zw9MRSgk4rhnVIv4Eatc5AOt+L4vxOD90j096WPOfiwgZTswsNeLPWnzo0V+LQCcqdtb28dBi4CKrocBLTMitRPqD1EYDjvibkcIkDQwMFgkZRmhzsQg3NzccTjcoAgPJUIJaFbiSQmx2iGVWvkSK0yVqJLcNkhWpMLe6ZVzK8thTw2rg59ogSBBvBpbMC44I6D+br/y+1T1+iUw+wA4AP894H8N/C3grwB/zX/+m9/5bdC5Qlqp51KVKVefYDa4m5LHYCG1ZkutByO+YBq5sqo5g3MuvUSf+nUV4+Qx4EdBjFdibYCcsnKc/XmKZWOFIIRkJ/sxJkoc0bRHg1iJSwke8XNmlsQkcKqB+2yLbVQlVLXKDBoYJRmL+bAjeVUsceAn1oJGIeYRQRkjJIExJdIw9NxRZDUZaPNTugNYauM0wtFq6+dv7s9gI5vn0OFTDuEmH0eunKskIl8+x1wUETe0YWUpXAAJQdaGgV1SUyImi44IEnqEj+pCWGpG1tQdguZINB6HqtpP/G3jblWcLJpIiy3aLTKgL+i4Pd4AhIbit7/7z6LKaZ55dzyiWhmygTQhBpIoKTg4UXwj12oRScNAiqlzC2mtaFbfrAV06P0TogFAtbgz66kK0zQz50wFhlIItRCqAVdShG+/fQPPNBeFSzCi623lrDWdNCPwu5z2p8CN9tmn3n/q2uDA+eVb2g3K9nNpx4JSPAZnLkGnaxAKePLZngJ8Wt9cv7e+5kNl7j/WXOx9wMoYl6d18f7P2/8buNiMpH7377jNtU4uZQF9luvf/2yP+28xMtte3XjBzk7oXDzix4x1c1CoHna/coha+dIe5RO8yo20aB8HfkLwiB9PVQmgYhEADw/vmHIm54nn1GHrqaoVUTEjLqy5BNruLYvNK7jDATVX8nxGgVwyc56IMXJ7PpG1WCRicm60EJBoALRV8bKqXy1acfBrGvGkkfnfcXf7ipQS8/wFtWqP0mzztqWcrOfhU6BPe73+t6SyyiXCqE9cfzWOQlwBTn7qu9uNvHr1iv1+x83NgV/+8ufc3t6w3+/44osv2O127Rueby6qgTWdGBwDrSpY9BgYoOj9EGJCokf80APzFzoO1e78JyziJwFzCOwIxMYJIj4Wghj400pwe1qChODpygK1FRGo5FqYckbVnAWJHvGYApK8au68cur1Spe1LchNbcuBmHibu34JF7ruBwq+Py4Re023rO/0aA1aj6VS9dnmYgiBw82tAz4DtWZytsifLDPU4AUYLGU0tYMgqkf718XK9v/V2oJqrJT2EpGo/TuXKnraD9TaLYTLiNRVL1wczFzurZZmpqrO3emARZ896kddSq8Atlp62z0vgJ9mG7DygaUdMrSxhn+uZWNYrM2Ccy3rca/4RQeInnVf9C2h+zKAR/bo6v0OP12A0sBChyT+/B3wsAV4AbWWSLDW5vYabOqLIzbGf9mA0rACfppver1Gth7nog8XPTbdOkl1B0gXJdk9bP5Lu97PplrWS4tKa30m/kFbStZRsw7Wr57JRz8BMaqCZ9KhKlbNi4BE8x18Nix9oCA4iNF5x/yaa1vzal/qB9X9/daiK+Ctv2x7U4v0ac/i62YVNJpGhgGGZIdJcRiQNFgAMRZZY5UYBakG6I77Hbv9jqrCNAtRzLcIMayeV4xDraUE09IWm32grS6wT0eLIlQJPXVXQ7CDB29/p9MQweKFvlu+T8TPHwJ/Q6SxCfM3VfV/JyL/F+Bvisg/A/wXwD/9Pe71iWVtgH4fA/qnAGR8P0P/h8hv350A/pKI/Ec8ow6/r1OyybPJAPzbn+dc3ATg69/+Fp5xLv6YOfjx5+97gIHVd/9Q8Ph9TuinFH+GTz4X3wu0PNq3nrpubUCtPvsEkNbuulzzAx7yJymP+8MAKIXn1OEPNTc2+dHyUebiZz/eF/kpDMPL9ebpa9yp//8L22bpj8eA+id9jme+m1e++snbqD+FOWHy+HDr9y2raOePo8OnTYyPIhdf9dNR+mO57pPvOqT7Prf8DttePqXxLCK/Ae6BP/9kX/r7l1/w02jvf1VVf/ljb+I6/P/y02nXp5CfSlufRYewzcXfs2xz8XeXn0pbt7n44+SnoMfn1uE2F38/ss3F311eqg63ufj7kW0u/u7yUnW4zcXfj7xXj58U+AEQkf+bqv7lT/qlv0d5qe19qe16Sl5qW19qu94nL7W9L7VdT8lLbetLbdf75KW296W26yl5qW19qe16Sl5yW19y267lpbb1pbbrKXnJbX3JbbuWz6Gt3ycdbJNNNtlkk0022WSTTTbZZJNNNtlkk89QNuBnk0022WSTTTbZZJNNNtlkk0022eSFyu8D+Pnrv4fv/H3KS23vS23XU/JS2/pS2/U+eantfantekpealtfarveJy+1vS+1XU/JS23rS23XU/KS2/qS23YtL7WtL7VdT8lLbutLbtu1/OTb+sk5fjbZZJNNNtlkk0022WSTTTbZZJNNNvk0sqV6bbLJJptssskmm2yyySabbLLJJpu8UNmAn0022WSTTTbZZJNNNtlkk0022WSTFyqfFPgRkX9CRP5TEfnPROSvfsrv/tgiIv+AiPzbIvK3ReT/ISL/M//7VyLyb4nI/8t//uz3/aw/RjYdfv46hE2PL0GPmw4/fx3CpseXoMdNh5+/DmHT40vQ46bDz1+HsOnxJehx0+FPU4efjONHRCLw/wT++8DfAf494H+iqv/JJ3mAjywi8ofAH6rqfyAir4B/H/ingP8p8FtV/Ws+8ONIFI4AAAM2SURBVH+mqv/c7+9Jf3fZdPj56xA2Pb4EPW46/Px1CJseX4IeNx1+/jqETY8vQY+bDj9/HcKmx5egx02HP10dfsqIn/8W8J+p6n+uqhPwvwX+yU/4/R9VVPVPVPU/8Ndvgb8N/AWsjX/DL/sb2MD4XGXT4eevQ9j0CJ+/Hjcdfv46hE2P8PnrcdPh569D2PQIn78eNx1+/jqETY/w+etx0+FPVIefEvj5C8D/b/X73/G/vTgRkX8Q+MeBfxf4tar+CdhAAX71e3y0HyubDj9/HcKmx5egx02Hn78OYdPjS9DjpsPPX4ew6fEl6HHT4eevQ9j0+BL0uOnwJ6rDTwn8yBN/e3G15EXkDvjXgP+5qr75fT/PM8umw5chmx4/f9l0+DJk0+PnL5sOX4Zsevz8ZdPhy5BNj5+/bDr8icqnBH7+DvAPrH7/i8Df/YTf/9FFRAZsAPxvVPVf9z//qecCtpzAP/t9Pd8zyKbDz1+HsOnxJehx0+Hnr0PY9PgS9Ljp8PPXIWx6fAl63HT4+esQNj2+BD1uOvyJ6vBTAj//HvAPich/TURG4H8M/K1P+P0fVUREgH8J+Nuq+s+v3vpbwF/x138F+Dc/9bM9o2w6/Px1CJse4fPX46bDz1+HsOkRPn89bjr8/HUImx7h89fjpsPPX4ew6RE+fz1uOvyJ6vCTVfUCEJH/AfAvABH4l1X1f/XJvvwji4j8t4H/E/AfA9X//L/Acv7+JvBHwH8B/NOq+tvfy0M+g2w6/Px1CJseeQF63HT4+esQNj3yAvS46fDz1yFseuQF6HHT4eevQ9j0yAvQ46bDn6YOPynws8kmm2yyySabbLLJJptssskmm2yyyaeTT5nqtckmm2yyySabbLLJJptssskmm2yyySeUDfjZZJNNNtlkk0022WSTTTbZZJNNNnmhsgE/m2yyySabbLLJJptssskmm2yyySYvVDbgZ5NNNtlkk0022WSTTTbZZJNNNtnkhcoG/GyyySabbLLJJptssskmm2yyySabvFDZgJ9NNtlkk0022WSTTTbZZJNNNtlkkxcqG/CzySabbLLJJptssskmm2yyySabbPJC5b8E4X8aghtxwgoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4y0lEQVR4nOz9eZgkWX3ej34jIvesvbqrq/fu6enZGGaYfQGGQcAgBNgSli0LXV2QNyEkXyNsSyA9+mnsRw9gbOvB99qSJfv+QNe2FktCCCyBZgAxDMwAwzBrz0zP0vtS3bVX5Z4ZEfePWrre90RXdk1XZfY070dPi/lWZkacOPGN7zknIvN9vTiOYxNCCCGEEEIIIYQQQgghhHiN43e7AUIIIYQQQgghhBBCCCGEEOuBHnoIIYQQQgghhBBCCCGEEOKyQA89hBBCCCGEEEIIIYQQQghxWaCHHkIIIYQQQgghhBBCCCGEuCzQQw8hhBBCCCGEEEIIIYQQQlwW6KGHEEIIIYQQQgghhBBCCCEuC/TQQwghhBBCCCGEEEIIIYQQlwV66CGEEEIIIYQQQgghhBBCiMsCPfQQQgghhBBCCCGEEEIIIcRlgR56dJH777/fPM/rdjPEDxnKO9ENlHei0yjnRDdQ3oluoLwTnUY5J7qB8k50GuWc6AbKu/VDDz2EEEIIIYQQQgghhBBCCHFZoIceQgghhBBCCCGEEEIIIYS4LNBDjw7xV3/1V/aGN7zBstms7d271/7Df/gPzntqtZp9/OMft71791omk7Ht27fbL/7iL9rMzAy8r16v27/8l//SRkdHrVAo2D333GOPP/647dmzxz74wQ925oDEawLlnegGyjvRaZRzohso70Q3UN6JTqOcE91AeSc6jXJOdAPl3QYTiw3nq1/9ahwEQfymN70p/vznPx//6Z/+aXzbbbfFu3btipdOQRRF8Tvf+c44lUrFv/EbvxE/8MAD8X/4D/8hLhaL8U033RTXarXl7f30T/907Pt+/LGPfSx+4IEH4s985jPxzp074/7+/vgDH/hAl45SXGoo70Q3UN6JTqOcE91AeSe6gfJOdBrlnOgGyjvRaZRzohso7zYePfToAHfccUe8bdu2uFqtLv9tbm4uHhoaWk7kr3zlK7GZxZ/+9Kfhs3/yJ38Sm1n8+7//+3Ecx/GBAwdiM4t/9Vd/Fd73R3/0R7GZ/dAmsnBR3oluoLwTnUY5J7qB8k50A+Wd6DTKOdENlHei0yjnRDdQ3m08krfaYMrlsj322GP2vve9z3K53PLfe3t77b3vfe9y/PWvf93MzPnJ0d//+3/fisWife1rXzMzs4ceesjMzP7BP/gH8L6f/MmftFQqtRGHIF6DKO9EN1DeiU6jnBPdQHknuoHyTnQa5ZzoBso70WmUc6IbKO86gx56bDDT09MWRZGNjo46r6382+TkpKVSKdu8eTO8x/M8Gx0dtcnJyeX3mZlt2bIF3pdKpWx4eHi9my9eoyjvRDdQ3olOo5wT3UB5J7qB8k50GuWc6AbKO9FplHOiGyjvOoMeemwwg4OD5nmejY2NOa+t/Nvw8LC1Wi0bHx+H98RxbGNjY7Zp06bl95mZnTlzBt7XarWWk1wI5Z3oBso70WmUc6IbKO9EN1DeiU6jnBPdQHknOo1yTnQD5V1n0EOPDaZYLNrtt99un//8561Wqy3/fX5+3r70pS8tx29729vMzOx//s//CZ//8z//cyuXy8uv33PPPWZm9id/8ifwvj/7sz+zVqu1IccgXnso70Q3UN6JTqOcE91AeSe6gfJOdBrlnOgGyjvRaZRzohso7zpEt8xEfph44IEHYt/34ze96U3xX/zFX8R/9md/Ft92223xzp07l81poiiK3/nOd8bpdDq+//774wcffDD+j//xP8Y9PT3xTTfdFNdqteXt/fRP/3QcBEH88Y9/PH7wwQfjz3zmM/HOnTvj/v7++Od+7ue6dZjiEkN5J7qB8k50GuWc6AbKO9ENlHei0yjnRDdQ3olOo5wT3UB5t/HooUeH+OIXvxjfcMMNcSaTiXft2hV/6lOfin/zN38zXvncqVqtxr/6q78a7969O06n0/HWrVvjX/iFX4inp6dhW7VaLf7oRz8aj4yMxLlcLr7zzjvjRx99NO7v749/+Zd/ucNHJi5llHeiGyjvRKdRzoluoLwT3UB5JzqNck50A+Wd6DTKOdENlHcbixfHcdzZ35aIjeCRRx6xN77xjfa//tf/sve///3dbo74IUF5J7qB8k50GuWc6AbKO9ENlHei0yjnRDdQ3olOo5wT3eCHPe/00OM1yIMPPmiPPvqo3XLLLZbP5+2pp56yT33qU9bf329PP/205XK5bjdRXIYo70Q3UN6JTqOcE91AeSe6gfJOdBrlnOgGyjvRaZRzohso71xS3W6AWDt9fX32wAMP2Gc+8xmbn5+3TZs22bve9S775Cc/+UOZxKIzKO9EN1DeiU6jnBPdQHknuoHyTnQa5ZzoBso70WmUc6IbKO9c9EsPIYQQQgghhBBCCCGEEEJcFvjdboAQQgghhBBCCCGEEEIIIcR6oIceQgghhBBCCCGEEEIIIYS4LNiwhx6/8zu/Y3v37rVcLme33HKLPfzwwxu1KyHMTDknuoPyTnQD5Z3oNMo50Q2Ud6IbKO9Ep1HOiW6gvBOdRjknOs2GGJn/yZ/8iX3kIx+x3/md37E3vvGN9nu/93v2rne9y5577jnbtWvXqp+NoshOnTplvb295nneRjRPvIaI49jm5+dt27Zt5vvnf0Z3MTlnprwT57jQnDNT3on1o1N5p5wTK9EYKzqNxljRDTTGim6gMVZ0GtU60Q1U60SnWUuts3gDuP322+MPfehD8Ldrrrkm/tjHPtb2s8ePH4/NTP/0D/4dP358w3JOead/Sf/a5ZzyTv824t9G551yTv+S/mmM1b9O/9MYq3/d+KcxVv+68U9jrP51+p9qnf51459qnf51+t+F1Lp1/6VHo9Gwxx9/3D72sY/B3++77z575JFHnPfX63Wr1+vLcRzHZmb2O//99y1fKJiZ2V/82d/AZ06Pz0L8Y+95L8RTk/i6mVm9Vod4ZHQLxM1qCeLjx16B+MSJ4xDX6ri9VCqAuEWvm5nNTk9D3FPIQfx3/u47IT4zPQfxK0cnIR4c3Apxls5mJnCfePk+tjOKIoiX+n/FX/D9cQhx2MLXW63VPr2A51EbQt5mc/m/m826/cWf/Wfr7e1N2NICa805s/Pn3VUDAxYsPjUOPWx9I2xCjD1n5meyzn76+gfwPfQUst5oQMzH2WpgHgX0+XwOc2hgcNBpQ09vD8Tl8jzE45Pj+P6eIsRbt26DuFjE16fG8fMtupbMzFrUWalMAfexYyfE1UoV4pPHj0EcUWb19vVjGxPypUZ9+cKLL0JcWtxnFEV2+OjJVXPObH3z7vjx49bX17fq/sTlzdzcnO3cuXPd8+58Oed5qeVvyAwNDcFn0uk0bQML++DAgLOf0yeP4DZSeI32ZLBW5TIZiH0Pa1tI44LRt3mqTXeM5W3wOM3bpOHKetM4iL7l1tsgHspi3aqUsE6ZmZ2tY/2bGDu7ahuCFLZ5y6ZhiI9N4Lzh+CweU+zjuTIzy0ZlfE8T2zRZOTeWxRZbaO7Ys5L1rHWbrxgxf3FukvExB3I0P5k5jfOuK0awzpuZbR3Ec/LkUezveS8PcYbOsTvnsTW9bmYW0hfNeG7A8PfSfNoHTT2c2E+YWaUN8+Lq7Xg+R3uxVelWDeLYMI8mcZpgY1OY663I/XadT30b0ZE2o4UrLoxie+5YtaNj7OCefvP9hfb4AeZZs4GVIEW1KQy5UpjFbc8ykslSvSN14epsBV/P4us9QziPM3PXNbV5nE9GNTzONM1RI+P6iLHv4/kMPLfWlKndGa7raTyO4c04R623cF4dRlSjPeznTAGvZzMzL6ZcrOE2KvMLyRxHsc2emu7YGGtmy2Msj6lBsNa1mPuZZhP7jj/D27xc4OO8FL/pu7JNcRxbHMcdG2PvuWmPpRbH2FdOnIHPTMzR3MDHvotjzDEzM7oELaDu7jG83m7qHYD4NloHz1VwcDlSxrGFxyIzsxad87kW1qoM5cCuAvZ1KsTPz8d4UOUM1imv6LahOUftbOI26zQul6lfZugewnwd63Wd7tnUnJmCGd1ysTTNYlOL88k4jm22tHrOma1frft7g1dYeuneDp0Lvu/RSFM/RBibmdXoQKM05iVvM+fhWOVTG1p0c4pfH4px3DIz66FbpGXq60YD51BezPXWWzXkfrKket1m+unWPowj+jyvP7iWhgnjTi1efWyKV+ykFUf2UONMx2rdT77nHctja8R5xBNnmrP5kXuPlO+p8XyDp70h9Y13AeuFtRJTrvM5bz/O4/uDhONu8xEndc9OTkF8cgprOuddq4nXDqdt4LvjTkydHfp8nAtx2Art2cefbFvrzDZA3mpiYsLCMLQtW/ChwpYtW2xsbMx5/yc/+Un7N//m3zh/zxcKVlh86JFOYzFKpXAwyuVx0ZvN4kBiZhbTpDiXw8/4dDM/Q4sD3mcqjOh1OmGhm4RBkFo1ztHFls3ioM79kKGbSBl+6JHagIcetCAJfXzdpzhOGLTbPfRoJfw8abVJ7Vpzzuz8eRd4ngVLk0DapZ+wyIfXE9rNixR+Dz/ESNH7Y4pTbd6fTrmXdIYWWw16T7tt8OeztKjlm0he020DT5pT9BneZtjCnOA28UMPXlBmMu6ENaLBic8Nn4t2C6n1zLu+vj499BBmtv55d76c8zxveV9cl9rFfO0ktZsPw6fFNV9v/MDCeGLNC6mEfuJ98HsibiN/nl7PUN3JUp1ppdzFWjqk+sp1hY6L+yHdpi5xP/GE2MzMj+k9zrlZEccL/69TY6wf+MsPPdqNh3w+Uglf5EinOFdXzwHe53o89OB7ru24+Ice7vzSp61yv/D8ME3vj43zEHea4ptjCXO7gN4T8vVnq+RhAuuad75nfrD00IOuSc4Zej1KPMFrO+m8TX7owW1w2pQ0n29zHB7XHo75fMRt2sA12hLqfrvj4Dkxrb1iSnb6uHPMZgkPPSh3zx13lNhmZiPGWHd8XNu18Go+cyk+DNgILsXj5DbFcefG2FTgL9+T4PHQvUe6+k3TpLc4czsee/iGNF2zdZ7zcF8ltYHiFH2Gt5HhtTKNsRkaUxtcGxPqDBcjmmbRIw6zlHOzsc3cxJmftu8Hp4bDNlbPObP1q3VpL7CMf2EPPWK6eZl2es6sRfeSojZrkjTdV3L6ku9Vcb4kPOzjvzXpvkNM99P4Pod74bR5/VXcL2/70INe9T2+R0f9ktAIPjv8mch5uNC5e3bpdHr5HpVz7985Ie0fevC9oyzF/AWny/ehx+prZb7nluJ7dNQN7b6ocCEPPew8Dz3Ot80kNsTTI2nn5xvwP/7xj9tHP/rR5Xjp265hdO65QW8vfrO8duQUxOW5GYizaXc/vUX8hmCKOu+FQy9B/NwzT0HMN/uzWXwoErf4CbD7LdQWfSsnlcJvbvFDjYC+BTlA367lIt5D38Dnm0Zm7kDBFwvHPGHib7zVYzymIOaHIG6K8cXA+1i5fuGCshprmWSeL+88f+UibfUb6yn65l4cuDfaef/8bYORzZshHt2Kv96ZGMcBoEnfLBjZgt8K3rlju9OGHLXz7Bh94yHCp6O9/YMQDw/gzXj+tmBx126IK/PuLz2q9I2WJp3WQ0fxG71Hjh6FeL6M2+TFd1/PDMQ7tuGvU8zMRkdwgB2gX5uEtYU2hmv8Bud65N1K+BrsxoLuQm70XSztjqtdGy7Fhe6r4dUex8WOsYEXL89rohZ9Q5g2U6/jN9xmZt1rhL/1FLVwIw36tUg6wDGyt4DjV0DHUq5gDWjE7gMHXizzw9MWjeOcYUWauNWb2C9lurlWoWM2M3vlGNauKv1ic2gA6yuP09U6bnOCfolXa9Bkke9mm1k+i9ucrWBftVbUz9his9hddCaxHrXOT5stzW95ePdovsBfkLAkvVZeDNM2WzXsz9Do23nODZ0LWBAQLb75wTea6P28h4D2ybnvLGt9tzby927SdNOG75k7CydqVY1+hTpXxrgVuouUFn0Tkr8UY4vHGfEksA3rkXdB5tzDNn5oy78Iiykxk260N+gXCtwe/hZ+JofzQ5/mk34Gv1GYy+KXmubOuvOqiH6h0qBz1KR1SFzE48rm6cYRfZHKo5s+1Ypbc7N5rNv8hZZyFb8B2KS+Dan2DAzhvKxax1+SNFsJD5oD7Dv+tcjSw9S1/u7hYsfYQqGw/H7+BQznIN80qCeoBVQq2Bf8q2vOOd6G8w3dDszz2j1kbhdfyJfJ2n1572Lnmq+Gldtcy/bXo9bdfuPVyzfr+ujbr3/1tz+AuEkPCJ0Fupn1Ue72kKjBNjof++lGYY1+XXKqhnVqln4xkfTlhmqIn+nZvAnia/bthXj+CKoDVKbpm8g0qubp/svwZlwvmpkdm0YFEC4oOYoH6IusV5GKQp020Chgv51puTVgvIx9WSnRrxAXJ1dRHNvMGireRa8nfH/Fl1ZWn7/Ui1jr+ve79y3GjuA8enx2FmI/wCQMaO7INSEM6BeDtMjZbXiuzNxfDxnl+UBEYzjlccQ32ds8mEn6bgU/YGi/Xmzz5c02N6Nj/oW9mVMT3C8SnYvXUkrXo9Zl0oFlMgv9GvLN/zYPhIKEyyOToYepFAf0gKcV8zHQBvkPbeb2Zu66lJckF/IDodW2GFzI/Jsbxl8aJiUHZ45M/cIPnZ0vcDirIvfLevyrxOUvs6zhFsq6P/TYtGmTBUHgPK07e/as81TPbOHhAT9AEGItrDXnzJR34uJR3oluoDFWdBrVOtENlHeiG2iMFZ1GtU50A9U60WlU60S3WPtX2tqQyWTslltusQcffBD+/uCDD9rdd9+93rsTQjknuoLyTnQD5Z3oNMo50Q2Ud6IbKO9Ep1HOiW6gvBOdRjknusWGyFt99KMftZ/92Z+1W2+91e666y77/d//fTt27Jh96EMf2ojdCaGcE11BeSe6gfJOdBrlnOgGyjvRDZR3otMo50Q3UN6JTqOcE91gQx56/NRP/ZRNTk7av/23/9ZOnz5t119/vf31X/+17d69u/2HF6nXQ/ODBW25/j7UpCzNo7bft775txCzCfnC31B7r0o6z1MTE7h/0g/PkL6uo2/mmJQn/IiG9Mmy5LXgmsdimzdvHsHXyUOCjbySfsbD8nKsrdwivVz2MmlnaOtq/bkpxvtosun7yr5L6scE1iPnzJYMmxb6JKLOyhVRazhNep1RghZ4SPqI3F/FHvR1Yd3fweEhiJuk8Znvxc/3DA44bcjRTwIr5K+RKdI2evB6G+hHP5xGg3ME+2lq/ozThjPjeH2NnZ2E+OgJ9Olp0fXVNzQAcdxEHdOJoycgLs2h9rGZWTbA81Uk/epqeqGfWv6F6dubrV/erSRJw7jTXAp+GZdCGy5V1iPvghUmqyXSy3VMySglq1VXVz0IVj9fbNbM1/DcHHpfsD5ryHZ6SUMse1bRZ9gMmKVQW6QvP07zggbNLU6Mod+GmdnE7DTEA1Rn+qnmR2ky+eTxsYF+Kq0m65q6Y2xAY1VfL9bw2gp969iMnBiSWa9a14jqy/OEQgr7xicfs4inqOzxYWYe5SrPccIGey+spbUuSZrFdcqbkHKT50UswstGzCk2s6fPF3PuOU+nV9ceZpNx1ss1j/xUqKs9mm8m5R3rQ7MnW7Dk9xDFZobzkPOxbmPsilPEc7t6BdtSn8e4fxivHzOzuEX63XSsKerPJtVMkqi3gDTKy3O4RqnOYh0wMxvqG8Bt0nyzRl5MVcq7LPkK5rPojRGRb0sr6dohbedMjvKO5p9hiNr6OdKxT5Mwfq2Gcavkjj2VCh4nW8nkigt1JeK1xiqsyxgbBMtjLJ8b9t/I0XqiRmtUM1enntcLa/W2aBcnGaTyNtsZmvKaJ5/HHGu3pmw03DrB7eK+LJVw/d4Nj7pXs8/1qnV/+ucPLI8ZA0PoIba5H30lzlCdcXwMzGx7L56zgofX28370Jfwhi3o0fD0EwchnqjgjKNCXdWb6KuF7WKvkr4ixjijNWvRbK9Fng6sc98soXeGmVnAXhX+6vdcfBoj0mRmOZjHXE+nsEZcs8m9l9Wi+eNLY3guXj69cORhFBuuis/PutS62LNgcR7D3hRxSPdS8ljr7vyRNzrb29+8CeK/+cY3IT7w/CGIo8idG66kGZGnLpW22QrO283M0mSUlqb7fFf6eH9mM9U+9tF26q1jebb2tb9bs+NV47ZjQJIXMNvGeOf3DWFfxfOxXrUutmjZgy2MsKGeY2ROfZFwrCHlSUhzoJC2wXGJ5iLlMt6L4vGRx/2kv62e2a6lRTtfWMc/I6Ef4jZ5E9IElj2rY9oHz3+ccd9384abFZ9nfrOWed2GGZl/+MMftg9/+MMbtXkhHJRzohso70Q3UN6JTqOcE91AeSe6gfJOdBrlnOgGyjvRaZRzotN0/yvFQgghhBBCCCGEEEIIIYQQ64AeegghhBBCCCGEEEIIIYQQ4rJgw+StLpZSpWbhojBgTw/qSZIst1XKqAU+fgY1Y83MZkmzvFJGvcYW6YuzmBjrsBVIl7RIPgi9/QNOG1gTrVhEbU32BfFIya2XNCxZl9gnDbYgQf+adUbdGDVim03UbWs00FMinWIdNjw5SbKmrRZqu7VC1ILz0+f61g86m6LNqLWcdynygQko9thvJEFWjnXsCoUCvY55V6a8ZN08FiQfn8Jczw+5esc+6VJOVMg7xrBN5TKetMFR1LPuKeLrB59/HuInn8HYzGxiCvUyY9IDzxYwtwukVVzowWtlywj620yeRh+RuRlWdDV7/qVXcBv9qI2aXrzGu+ElMXbmjJUrC9qPk+Qj0E6/OEk5mI+A39PuCNenD1jYlWpNYssvvA38OuuMmrk66+6Bkw4ztSluoxXZTjPbzNVpZS3L4UXfnvl5d9zaSMJWc7mcuHrURjFp4NM4YJagZ0zHWYgxztP4VCP91VILayPXMc93x7fA6WusI1w/I9YpJf+HUhXrcYbG2Hny/jJz/YhYn3VoCHWAGwFu89TJYxCz1GmWxtwh8n0yM9uzEzW2Nw3iex7+xjkftCiO7Wz1wn2MLpZWVFvON9Z+NvaJcOIEdVv2kqE4drws8O1r1sFP0J71WB+cX+dSR9eC44VG7+fXvYTaydcfd4tPn3E8yCjma6PFWsYX4KljrC8dLG3b/exG0yqH5vsL57paRZ3lehnrGWsez0euvnvsrX7N5HtwXhXVsS+q5Lfhk3B2o4xzv7junvOZJq59IsP6lU6TNxPNR6M6vr/cwmuhUcN91mqu+0+uB/eRz+FcrZ884XzSrY/JQ83nayPEeXdl0j0X9QpuI5PDbRR7Fmpwp6d2pVLpgudS9TrmYJKfBo+p/Bleb7TDmUP5vH5zc47Xwnx++fXh4WGI9+3bB/HJkych5vFy69atThtefPFFiM+ePeu8ZyXsj9Jqre5i1QkPkI3kTClczvXQxxpxyw3XQvy9p16AuFVxvWRGs9gfP3Ln7RC/8933QpyiseKFMs5tJ7/1FMSBR2vthPEtTwPa7OkxiJ8+i+umHM3DnCGYLss6afFPVNw649P8o0mLftb392h9QRYfVq3SnLeKNT9Na3MzcwbPzQPo+9EMexf/N7Jnz7rz9I3Cs3OrKT5u7vs+wzZvSrvHGRfJL5bGsjqNXYUC+RtRLSzN4Vzdo/F5/+14XZiZ7duzDeLnXsR7CAcfPw5xPrcJ4j7y5XXmgU6NT5hbtvG1dcYXZxOr3/Nz/R5cfPqrMx9dEfN7N55o2TzF9fBgbwu+PpPukfJamNaM1H9z5B91+iz6PJ4dR/9annsmeVDv2IF5t20U73fx/WduE7fZW8WDZeH9ThMS8oTe0OY0t5tbtNvfwi7afGbx+mGvj9XQLz2EEEIIIYQQQgghhBBCCHFZoIceQgghhBBCCCGEEEIIIYS4LNBDDyGEEEIIIYQQQgghhBBCXBZcsp4e8/NlazYXdLp6elF7P0saaD7pto2dQk1sM1cnv50gWZLW20pmSK8sCPD9Q5tQg83MLJNCfb++vr5Vt5HNom4ba52yF0ZAz7BSCZ4eUbS6vt/addywDRFJytZrSZqSeL7ypE83XTqnKdpM0I7fSDzfN39RsztL7QrSeP5Yl7qZqBO7ep74dI5KpOtfJ035PPm6VA1z4ulDnOdmXn4Q4laKvWFIY3kK/TDqHmqnphuoEfv4dx+D+PDRE04bBoY2QzxM10dAHh6lEh53o4JapzWKvTTWhJ5h1NY0M5ucncHPxJi7m4YGzMzMX6Mu8nrwX373dyybXTiGr3zlK/Aa6zSXS+z7kpB3lGeOdj55VfhsfcHal6Rj7znC+AlapKyFSduMbPV+drRGHe3R9lqkEcvW56gmUhyF1MYS5VmTOorrZ4Lef5AlrVnSWH3LPW8xM7NGg/x7Nhg/8Jb7lMcF1ghlMlQLzcxiEixOkY4o51gqg9OPIsXVEuZ1kWqf48NlZnXyoPJYK5p0gbnu1Ork/UV1JtXC81tOuPbY08NoH03q61qE25itorZ0TNeyx35jCfrXPG4Wclgft/ee02EPo8jOVlGHdiMJWhnzF+uFlyat2QxdsBwmfE3HyTPS/o7IICPmORBtz/U/4jqTZGbRpp08kSIfF8ePKGLtYdqcU9Bd3V5uhOOdQP3k83E5NZ635zTB+UyaPFlSwcL1GDrayxtPbfqclwzrgfvR6vMy9tEyc4/fp9rPoxvX1DqNLb6PWvpp8iNqtNw+a9GEO91H/U3HEZJmfDaN+2jR+MZeNbff8kanDW9+M/4tncF9Hj99BOIDLzwB8akzqIteLeM+5yaxHtbm3H7IpXGubjHWv8xi3Y94ENpgoig6r6cH//1C/Dj4PSXSE2/nReFqedO438bfyMwsQ+MZr9/aeZOxb+H4OI493Eben5nrZcL90NNDfn00X5mZmYF4PTw8LiUfkKHe9LLufk8B14jT0zjH2UJzoqtvuMLZ3k/+xHshvvOuOyEOaTz7xre+CXHf3l24zyPowTJxDHPAd6eXjlcAK+Fn2XOKYreC01jFXkIJK4oGlQ+eb7IHKQ+hfIXPhlTr6HaHl3Lnl+XpGYjzBTzO/oEFD51mGz/C9cb3vOWcc+ZQNDY2JvB6LZ1A3wMzs+dKRyA+ehS9f/geXV8BvaRKc1SHaL3QR3XrvW+7x2lDPsKxpy+HtegLz5+CuEzz7sE8XnsB++5SznHOmiV7dsLrfM+OXm/n+eHUrYQdrsWfgefLG453ztPDfW312X0cJ3h6RHQNRzwXxKvYM8yJYhE9rGrH8Z7c2Gn0t20lXKenT+P1sHUEt3nFFbsh3rwZ76el6V4zL0n59CV6kdJ6gtdNfK+knY8P5wzPNcKEfgiSPBwvEv3SQwghhBBCCCGEEEIIIYQQlwV66CGEEEIIIYQQQgghhBBCiMsCPfQQQgghhBBCCCGEEEIIIcRlgR56CCGEEEIIIYQQQgghhBDisuCSNTKvzNctbC4Yo2zuL8Br23Zsh/jMaTROnifDYjNznFzama7E9DyITZNiNskiQ6uzZ9B0ycwsReYyz79wAOI9V+yEePPWKyGOyBQyYJfemI0pEwyF2GmcvGNCMqdh8+4smV+yAU6TDCKjBB+amM2982hJNn78nDlUq9lZc9++/n4LgoV+dUyJHTMnjNnQz8w1+5kvoblWjgxmM2R6PDePpn/zVezfsxXMgUbBfY6584brIG5l0eRvbn4G4hTZrX3vmZfw85NHIS5PTUHs+W5ZKRTRhLjY0w9xi3JieBO+P00X6PgkGt/N1yoQRwnGTGkyFUvlySA4tdB3Hl8UHeCFF15YNlt85qmnsF1sSt5qb3jp96OpW0z1L55Dg7a28CnlJlw6Ho6rwwaJxTYOxHN0oAme8W3hvqP0em50i5mZha1Xs/GLwA+Wa1qQWt3glM+vH7vXeMxJQWGVDpxNeFNk6shjbj6FtTJOmL7EZDJXraI5cNTAfaQa2Od+zGZrZHRP5sLNhPEtRe0qk0H9PJkiZ3qwLpVpzJirYxtTKdx+s0bul2ZWqmA9rJAJXb538/J/t6LQbLxzRuZ+Lb1sapcp4jlNp8hM1KMc4THZXLPmFF3DXtCmONG8ySNzw5hf99yTnqbrpxXiOQkp9z1qY4bmWT6Z+nlkMB2wabmZ+R7mhdNONnX0+bjJ2JVMWXtpfhMmGTQ7U6ZkA8ww7LDZpZmF0bkpXDaHx0KeitYi01PnDWaWdebb1N9Ui8plNG9ls/pMlg0zqQ1Zt8+yvXiOOM/COn6mkMa1VMaw9ly5dy/E11x3M8R33f02pw3leZxLhBHWt31X4Db6e9HU+E///P+GeHoG55ONKhuHJuQOGZSz2ejczELfs3nmRuP7/nmNzJmNMNNuF3Pb2hmdm5k1afxq0byFDUsnJydXfZ33yeso3p+Za1zOn8nlMK8rNB52Og86zVA+Y8Fifecx9eWXj0P8+k1okvv2e+5wtrfvJlxDPnYE14APf+dxiL/+t9+AeNeWTRD3bBqEeOIEmv0mkSVT2wzXAaqnDTrHEU1iMzT+pfmeD7uQm1kjxlxno12+J8BmwHW6nObqOE+o+1i3rty32Zh83xaIBwaxL6vjC/cY6s3QzMacz28U3uL/JeHTNR41sSOeeuJ55zOvZGdx+zT35n3xkrTJ97oCNmbG/Dh48KDThiG6HzM8gHlcHMB1dmYW35/meyEhtsnnhVXCWNHyuIbT3JDnWM4kbPVxJWSX64T3O3nNhuCrRBtOHC/8S9p3mzE1aXzjPzUaeM5CWiNu3rwN4sifoe1R3cpgzgShez+nXsMx7+hRvJ88fhbnSFdeuQ/iffswztO9rxYdZJCwrnLuidNnwqjNXIE26dyDojzzLqANvNHznPVV0S89hBBCCCGEEEIIIYQQQghxWaCHHkIIIYQQQgghhBBCCCGEuCzQQw8hhBBCCCGEEEIIIYQQQlwWXLKeHgeeO2jp9II+3p233ACv7di1G+KnnngM4kajvQ8Ee3IkvQMjR6CM3k96ZYlaqKgH+eSTP4B4vox+Dz/xkz8L8Z59V0HcClkjjTSFY1crLiItZZY9NJ/aTR4eIckMp0lHkzULgxxqHJqZ5UlXeGwWj3u2dM7HImx11tMjU8xZatFDoUHnizXnUux3kkbdPDM3b2bLcxC3SMOz3kLt2RPT09gG1skPsX+Lm/FaMTPLDl0BMZ/iVBWPszT1CraJ9N57SMsvncLjno/xGMzMAkd3EnO1Rfqa23ehb89wDn1IMhns+zMTZyCuNV2d+x07RiEe7Uc9+XDxM46WdicIo3O61I5/Ar2VpQ8TqniOfAJiqhW1CnodFGgjXg6fh9cC0sclncu4maC+SFqW3GzWeGTa6VGznm4m49aaJumLt+g4gjR+xicde8uTRnoF84rPTZQkaUuayhEd91K98dZB03sthFG0rAeby+C1wDrdrIGdNL7xewLj4ybN5VZz1dc5YapV1I5nTV4zV982IP1w/pZH2tElpe2Rpm//CGr6bgrRc8nMbHJ6BrdJ40YP6VuzF0oYsXYqafjSoN1MSLo6ea5cffNtEKezA+c+32zYdw65msobRV9PnwWLOe/4RPDcjTXoAzblMbM05m5A7/GjKr2OfZOmcbxaxWs8ov7Opd02FAqkQ9/CvGnRXIw9p/Lk7RWSN1orpGNIqDMpGjgCmg+6Xlv0eoxtHhrGMaQ4gNrvnueOkzH79nAdWRyHmq3IHj/UXsd9Pcnk88v1ga/zZp09WEh7O2Eu7TseRLTNGnlRUN3nOVGKrtkaefvkBtz55eAo/m36LM4vU5Tr/eSttnkA9eFvvQH1/L00vv9LX/wbpw1P/uAZ3GcW93n9DbdCfO9b0Rfkx34U/Rm+8dAXIJ6axDypeu7cLs5gX6cDvJ781GJud9jLwfO8C/b0uJD3tXvPhYzTq73On2f/DTOzkNZ4fI2zn8a2bah5vmsXerqcPn0aYvbnuPrqq502zMzMQHz8OPpUcE0vl3GcbtcvF3rOLlWCTPqcpweNj80GrimLBbxejxw/4mzvqf/xPyB+7AC+59Bp9G0p13AcH5vBurR7aAjizTtxbdYcw+2ZmfXRuB7Q+MX1kn1c05TKqYCvFfp4km9dC9+UDlx/L4DG3BINI/N1ul9C643tu7c6m3zn+94KcW8WPQJe+srC/bBKvWn2wLOrt28d8eJ4eQ3D90qcJSv1y/GTrqfcsV5co+YzWFeyHvZVqYr3kZoh5mC6gJ8PaV538Ch6A5u598fywSmIKzRfjeneFvvwxny/jIgT5hm8LvRpFcNrUOfz1Pkhe4T4q48BZq7/QsT3O1fshL1zNhovNltKBT/m9Rz1nWOD7N5fDClbm038UO/ACL6f5tmnTmGOzM9hXrZ43dsmJ8zMQrqXMlfCa+PZ51/GfZbxuG644fUQ9/SQP2aCn4bjMUqJxP3U7v5OK6LtUen0fbeW8n2r2PEgW/ThTZinnA/90kMIIYQQQgghhBBCCCGEEJcFeughhBBCCCGEEEIIIYQQQojLAj30EEIIIYQQQgghhBBCCCHEZcEl6+nx2A+eWtb4Ks+jHmSlgvqcE+Oo+eo56mIua/X0uPg44U+ko3bolUMQ/8Wf/ynEb7/vxyB+3evRvyGTRc1LlmQzM4tonxE99mKJSkeXjcSkffZqoDjOuv1QJw27s5PHcB8rXmd9842mFYbLpylNvhGupwBpKwbuM8QUaeUPZrGDS3XU5jt6HPuiXMf+78+iLmVEJzk7OOi0wYroh5EiDfhCfQDiOXoW2myRB0EWj6k4vBnik+Oo0WtmNjuL13AmjTqke153HcRZOs65edRFHBjANjea2I9RgjbmYC/7guDr9UUNUD9B33CjiaMo0aNg6TX8A70h4WPNKvqqeJSbrOMZkj5qJk+69awDSjU2qe0xCaIGHg03VJ/aeXg423cMGC7gvFE98Sm3PTIt4vrDx8nlKdHTg7uG/FDC6kLehS03ZzeSMIyWu4x1XFnT+kK0wvlvGfIp4I5g3V/W2OUxut5ALfck3W3WBWWvkloN60Tg8XWA2+wdHoC4MIRxagy1xM3MPNIh7e3vw88UsbZNjo1BHJFmOvs9sAZsJkHUt8fHPK7M4D627Tg3TtTrrkb+RjJ+5uzyuRsjPfeY9G4zPvZlI+ESqTbxnGUyqKucMZwv5iknbrgR9W6PHTtBMZ7jFBcuMyuksbaN7NgBcbaIOvUnz6AHFevilxsY8xlOKnUpqvGej3nWpOl+uYpeCjxGxz6eixT5H2UT5nZZ8nMoFvFcLGnwNpqdrXVmZnE9Wu64Gs27ojB57F2C/VHMzGKPPIvo9UYT+4/rmZ/GbYbkkRKTjnOz6uZdVMdtDvTj/I9k683n3E3hefje49+FeLaExzA553oYcV7UqZ0Pf/NhiNnv5u/85I9AnC5Sm77/LYjPTrheMD5df8UenOsV+hbyMGy17Oxxd366Uaw2h+Hxaz18JNa6zXZzrqTP81yA/TVSKTwXO3fuhLivD8dD9ttgb7ak8Wl2dhbiafI+LJWwtrEPyWvds6MdXiq7vB5N53CtFaXw2Ef34ljFNcTMbHgA13hnJ/EaP3ESz0dMNxJ4njxewnN6y903QZzZg9szMzv55AGIG+y95eOaJU2n2KfcboY85+U9utcu398I2owBLdpGieawrFHfornMoZfRH8DMjIYVC1K41+zswj5aDXrjBoP+RavXIY96KqT1u5lZZR5z4Jbbb4F4pA/z+skXnoOYPVzyOcyPsIH7rM+7dSZfxH088cqLEGfJ92UyIC+wHMZUGs2r43XEfqlmZlnyDnM8WcnLJqb7Ui3qB7a+adLF2fLcvHd8Bfm+34q5Z/t7q+tMbMuXqtt0zjvqK8+d91UbeO/ED3DuniWf4rEz6Edz7BjdwyuvPhZdyFo6wTEVonodPTwOH8E29PSiN9v1r78GYj/hnnmjtXo729zOtpCucZ/uHcd8rzlhCt52n4vb9OILH8/1Sw8hhBBCCCGEEEIIIYQQQlwW6KGHEEIIIYQQQgghhBBCCCEuC/TQQwghhBBCCCGEEEIIIYQQlwWXrKdH/6Zt5gcLGnzfffwpeK1ZQX3/OEwwr1gz7Tw5WHDsAjw82u3R2QTu4+UXX4B4anIK4ndMvwvit9yL2rjZPOopm7na0ZbC514sbcy6/Gl6f0DanS1HtNDVQj5zEvWs5yqkzblCny1ag1bbelCpVpe9OjYND8NrA+SXkUqhRuQknR8zV9+QrQ9OnUSt9blZ1Lft6RnC7dH5aHEOkW6lmVkjQ34OLdIl7emH+Orb3wjx6Tw2unLsJdweX38Jl8LM7AzEQ0PYtyT3Z88//zzEA6RLmyft8J4efJ01fc3MXnnpZYhHBvH66O1ZiJvN9agnayPwPAvOozPs6i2S7nKCPHpURr1Sr0DXZZa0ZFmQMUX+Nc51zR4h7nVu3K4mJUabbm6rR82eD3VXFzZ2RD5J17eCWpjsMxGzLG4bn5HEYaCNL1G0mG/s5bDReN45HeOQCn/A/gB0LsKEMTdNOZLJovbpPHlz8el1eomLJRUJ9rYwM8tSXhYLeI1XSlhf60YnmBrVoOOskSZzkt44a55Pkd54cPgI7oP8d3pIj55pUBuCBP+iVBPr38HvfRvizVu3n9sei0RvMLVqbTmffNZ9Za1nuh6PHce5g5nZ5MQMxBEZlZFVgkXkJ7FtZBTifXv2QPytb6GnwAydTzOznVtGIL7t9rsgPnb6JMRnSAfYC/Da4XkVzzX8lDvON+m4XzmB7eTaViJvvIhqWxaljM3zsL6mEkp+itqdSVO7F19vtVb30NgIoqi1nHdRG/8gpxoF7lIppBoZ8nVI2vlcD9M53KaXJq+eBvVdOqENOdxHvoA+Lqz3neUm0kne3L8N4hu3oR/D84dQ09zM7PQket54IfbL2VO4XnvpMGrzf+sxfH81nIF4C3kOxD1kxmZmPo09BfJvSy96lHVa5/5SYz28LNizY2ho6DzvXODFFzFn2FdrdBTrb6OBc7JHHnnE2eYZ8kTiesm66T9snBmfWfafaEQ4DsTkU9C3C6/5TdtxLDMz27b3aoj333QnxKmev4T4299+FGKyLrDJGZyffP8g+jH823/9S04b5u65HeKnvvMExC89h+u72jTONx3DPb4WaHxk3wkzszTNLzN0LbRoDGVPhxuux1yfG8cxeHJ8BuKr9+122pAjT80m3TOonlw437UkU9cNZKWnB88lfPKZCMhLIZ2wGBzswbHpmquugDi1bw/EL758EOJ73vQmiJs1nDd/69s4Jy7Xqk4bBgbRfyhD9wxa83gcZ2myOdmagTigC8Gr4ng05LvzuuE0julFek+GbgKleO7ieNvw/Bjb4CV5TPANGmLlmidKMmfoEO48bm33EMzM5slLpq8P5xsh3Wc4exrnP7w+4PXghYxV7t/ovkSb64vH0Jfo3tfmzXj/ra/PXXNOTk7Se/BaiOnerEdmM3zrxWf/I/b5YUNpMwudG5y0zcXPtPN/hc9c8DuFEEIIIYQQQgghhBBCCCEuYfTQQwghhBBCCCGEEEIIIYQQlwV66CGEEEIIIYQQQgghhBBCiMuCS9bTY+8111sqs6BdOLQZNUNPHHwG4jNHUYMtSafNM9ZrJI20th4da/T4uBAvCtIh4zawpuTUBPo//OWf/ynEIWlz/9jf+XFnl6zH2k5+L3L0AUlrmj9A2n9VFvM0s2Onz0JcJ922lfrWXof1AbOZ7LKefaGI+o0jI6h1yjpyFdJmNzObmJqB+MwE6uSxHnk2h/tMBajfWJ7DXA/TqM9qCbrPlsVttEjPOtvTi+/3cRu9u1DPdfI06umWShP4+cD1kmFdwzBCzcEjh9AnpFbF17OD5AFCefa2t94D8YsH0RPEzOyZp/D8ZLOolel5qcX/dT668Xh2XvnJiMQRHWnajPvBVAF1X/0MnlOSfzePBdojvG6DOraBNdn9wNXZDjK0TfIJaZAnQ0xeKgHVGtaIZO3Q2LuAWsFlvEEv89cASKfSKXi8y4Qm+FQn3LfE9L+dIfDPafByBrXT/mYPEDOzHJ1vro/skTRDtaxeY0+W1ceeMKknSW91gLx+ijm8LkqkncrHXSRfrGYVdX8rCZ4eDdpmaw417ev1I/QJupaoDZkMXlvsr5Pke1U3GjcquI/o9Mzyfzc7rP3c29O7rEGbphLRqmP/Rk28QKtV17enXiNfHsrmFOcyaRiPnz4F8c23vAHiO2/DeHKaxjszG+rbDPHmoQGIn6fxiOc1GRq3C3kcm3JUnzMJ12eTxthKCfOwTtds6JE2NF0bMX8nii/H0J1rNOu4z0Yj+Zrm+UAnyA5kzVvMu1SIx16tYN6x7vLmUVfnvkq1JiITq95+rD3DW7D+ZXvoOs7QfLKE133Kw/NjZhbkaACjeVHQwH2E0zSvCjZBvO/qGyDu60et50rsznF7tuI+Js/g/P70KdS8ni6dgHhsBveRGyS96l487q196DOy8CbyNmFfpMV+adapv17j8BjLMY9na9G+Ph+sH87s2rULYvaoYr+92VmaB9CYOp3godSuTT/snh7V8Nwl0aTxsEHXwAuHj0F89dW43jMze/qVIxAPbSEfkC1YR7wA+z+Isd6m0nhNv3j4KMRfftj1cfmRu9En6+4f3wLxztcdgvjBL/0NxJNn0HPT97G++rTASEXu3K5An2m2sC9LFayPe/bugfiGO6+HOKjj+ydOYK28+Q70sTAzy2Ux1yefwPnL6eMLfmHVLl4DbesSzX9GBtAv1cwsvQc9BJ564nGIe2j9vmkQvUnveePdEJ86huPOSerrLTu3G/O6K9BTZfKbWIuOzGI8EeNcOmyRJ27I9/jw/dOh6ysyEWCO9QZ43GTZaj0hXu+9EY7POfInc+p5gqdpxO+hueTKZTL7uWw0cOuE56irT2GtlXCNzM3ieq23B3OzVUcPnfkpXA80aA3jUSN4bpk0F3bHcaOYx3VnC9jGeTymI0ew5u/Y4eb+0aN4vewhr8OBwQGIuS/nqBbyrVzfI087z/WziX3MxSigvFv0ko34Ps0q6JceQgghhBBCCCGEEEIIIYS4LNBDDyGEEEIIIYQQQgghhBBCXBas+aHHN7/5TXvve99r27ZtM8/z7Atf+AK8Hsex3X///bZt2zbL5/N277332oEDB9arveKHlJ/6qZ9SzomO8u1vf1u1TnQc1TrRDZR3otNojBXdQLVOdAPlneg0GmNFN1CtE5cia/b0KJfLduONN9rP/dzP2d/7e3/Pef3Tn/60/fZv/7Z97nOfs6uuusp+67d+y97xjnfYwYMHrbe3N2GLyWR7+y2dWdCuGwnw2cyZwy9CHIWrazqbJamlt9MAW6vHx0aA+mUePaOqVVFb7itf/iuIR7fvcLZ48213QNwkzcEljbQlAtLyY/3wkPohlULNy9MnUG/SzGymhFrIPn2mUDwXt5oLuprXX3+9/dN/+k83NOfMzPp6ey21qJ/dQ14XrDU7MYlafi3yVDFbuF7gM+OoK+qRf0Y6TRryDTw/NWpDi3SevcjNy4D/RDrqrIc828Jz3rPzGoh3ka5p9Thej3PkPWNm1qzPQDwzg31XIx3J3kHUa42ojfuvQd3Ze+5BT49Tx1Aj1swsRdqKrDHYbC709dI1UalUOlLrzMzSuZSlk/xYzCxmqUPSc/R6Xa1vP49/azUwN/nYs2nUCb39BtSe3dSPeqnFfvRZSuVcH5fHn/wBxCeOo0bkVAtzwCOtyzTVBTYzaZA2f+wkupnvY+flsthOn3QkWaO3GaH+NItnOlKSrQR9TtJxtZBr5kIblrQ/O1Xr0kGwrA3KHjke1fWAEqaVoNsa0nvyOcypX/vYr0D8Z5//M4i/9rcPQ5xyrge8frOBe730FzGHNlFa3nHdVRA/c2Qc4mPjqH06QDrB1YnTENfqrseE4/ZFeRpSnCWPDvbsCMl4xkuRRmzKne+UyBMplSN/nOq5VrYW9Xk7lXfFQm5ZR9gjH54opP6kayUf8OBlxpZG7I0W0PwxorFm4sQRiGd2oD9HMY81oh5iXpuZTc+jj8ETT2MenTyF+2g2cBzP0pgaxKgLnM+Sz4vneig1a3R9FGibIeZdiT10SFs4bfh5vuSTvGRYw5q97ZZq/JJfXSfH2H23XnOuplDT58l3h73vhobQj8PMrELz72wRx9yhTdi+NF+D5HEVN/IQFz30RujP45hrZnZm4gjE43PoGZcvYv0a2YVa/EbD2wsv4Bi9azce946dqHFuZhbMo/Z6dR471/ewxjbJpydOY971jtBx0hokSJgnlWt4vaQcf5pFL5nFTXWq1q3mocGvtfPKWOv2k15v59XFJLWpWESvmgppdz/77LMQ79+/H+IdO3Bdms3iuapRXUqnXa3vHM0tzpxBn8FL1dOjU3nXCvzlc81a60WaN738Euq7f3PgKWd7973rXRDPzKAPy0svvABxTONAkOD5B+2lpfMf/u+/ct7zF1/6KsT7do1CvGcHxi+W0G+h6uG4z/eJ+qh+92bduUZvEb1Lbrr+DRDPzOH6vpe8Tk5WcJ9b0njgvQOY66XSjNOGgXmsn2PP4Vp3YnphXKpFnR5jz7krcN1w6g7N63KBu4bN0ZzoiReeg5jPDnsnPPLIdyGulnC8vuoKrEvv/8A/dNowSvPTyneehrjk4XVwiNcDtB4MqY0ReXrUEubyzSxeS7NGvh90fec5r8nAsz/Gfu1j70xzayf/Jaa1Xm7FfUN/cc7XqVpnnrd8T8TxkqE5rUcL9hbPV82szF4UNG+OGuT/Rj4u7MlodE+VX08aw/l6cePVry8+7pBivi95IuE+7dmzeH8mIH/hTZtxnTQ4iPPAJvnCVhq01qMrOMm+me9H87w9XvInji58vF/zQ493vetd9i4aAJcbEMf2mc98xn7913/d3ve+95mZ2R/8wR/Yli1b7A//8A/t53/+59e6OyHMzOw3fuM3rK+vz/m7ck5sFO94xzsSB2wz5Z3YOFTrRDdQ3olOozFWdAPVOtENlHei02iMFd1AtU5ciqyrp8fhw4dtbGzM7rvvvuW/ZbNZe8tb3mKPPPJI4mfq9brNzc3BPyEulFeTc2bKO3FxKO9Ep1HOiW6gvBPdQHknOo1yTnQD5Z3oBrpnJzqNap3oJuv60GNsbEHWZssWlKbZsmXL8mvMJz/5Sevv71/+t3PnzvVskrjMeTU5Z6a8ExeH8k50GuWc6AbKO9ENlHei0yjnRDdQ3oluoHt2otOo1olusmZ5qwvB0ReL4/NqiX784x+3j370o8vx3Nyc7dy507xUYF56Qc+rSXpkszMztBXUqPMyrn5kgTR6M+QRMFfFp4ZhiHpkLnw8jsJgwmcSRMtW2QZ7eKTTeFw9fajX22hhm//my64u5sgI6rCNjmzHfeRQty0kXTaf9OfS1NczJdTDOzuBmodmZh5p8oakb+2v1KvzLsw7ZS05Z7ZK3p2TB7SI8o61iCukERmkXA1Q1j5skO9His5pQDqWddpnxJqFpEnoNVxtu6CGfwubqEkY5+h6yaFmb9yD8c7teyGu9g9CfOg7X3faUK9gHrFWaUi6kwNDqD3doOtxyyjqt7Lu7/FjqFNrZlaaxWvcNzyuTZsX9Fd9z/VmOR/rlXex51m89Dl+FM2bY13D0G1vs4p/2zKME4w33Xk3xG+8HeMfve8dEI9swnOcof72fFd3+dBR1In81qPfhPjLX/kCxN/53uMQV+uU26QL7MXYUfUEP5sdO1AX/Q1vuBniffuuhDhF3haPfOsBiL/7KH4TJU36yNwvZm6diCpUA4qL+tStdmPOAuuVc9l0allfNKa+i0KsWxnyUvAS/FPY52p0ZATit7/1XohPkpfCo/Qtn5j9G2j4HOl3fzr9vr/zTojPHD0Ica2MOs9G+qxpOv8njmMb/RrWkExCzXd0SLlmOzrrrM/K8wDytchizg33uX4682XUFm61SAc4s3IfF6aHul55N1eaW/6cT/3N/icB17rYbavbBvbMwf5i6y2f5l2NOn7++NHDEM+RHq6ZWY7G0G3bSN+WxnHWrc9kVj/nWZozpWL3+0ot9oCjbuE4prldvYYdk6aBJpOi2pZw7n2qI+yvck6Dt91ceOVu1ifvdl61w9LZ9OLusV3NFs5BI+rLbMbVHN/s45gYpOk6puRlv6g6+Wz5pPeeI9+Wfg/n+2ZmpSr6X1RreFyDfTiPmhhDE4/hIh8D1pLxCXz/0DbXJ/DI4eMQnzpOeZTBNYdRV7LcvxeQBxL5wrRovWBmliafo2aDfEMW861Zx7+fj/XKubXA640LYa0eHe08QJgkP41+8nfj+sp64a+88grEZ8+i/9Fdd90F8fXXo5/cd7+L2vxmZgHPR9ropK+1n7rFeuWd73vntOMprQb7aH1Ha9TvPvaYs58rr0YPxTm6B3PqBHoBsS8Zr2l8W32uW6m7a5rpEl7345Pow3TgBdfHcSXcjVGE9yoa5LEUFgecbZykm7LXvwX9B37uwz8DcYvmK4cP4bp05mX0Tzn88vMQH3nFzf3Bx7De9p/A661n0QsxtQad+/W4Z+enAgsW576OBwFtg+9jlGfJXMrMoioOFFfu2QNxJoceWFOT6Gf17LPPQNzbg3OyO2/EteAbaW1oZlZ5Cn0p3zOANf2FMfQ9OExrPZ9OQeThHyK69mLPXU9UaH3PNTmmvK1Sya5RrZwlv78i3Zvp89yan6b1YJ7a6Sd4erRj3cbYOF5eY7lzXio8dD+R89DMrNVi7x+aK9awbqRo/dRL98tKNdxeSNdl0jGv1cODPXRiep2Ps1LBWtpsunOP+XnM5XwO1771Gm4j34PXK3vUNml7qSz6csUJ98wdfxlnPYj/eyGs60OP0cUbkWNjY7Z169blv589e9Z5qrdENpt1jMyEuFBeTc6ZKe/ExaG8E51GOSe6gfJOdAPlneg0yjnRDZR3ohvonp3oNKp1opusq7zV3r17bXR01B588MHlvzUaDXvooYfs7rvvXuWTQrw6lHOiGyjvRKdRzoluoLwT3UB5JzqNck50A+Wd6AbKO9FplHOim6z5lx6lUslefvnl5fjw4cP25JNP2tDQkO3atcs+8pGP2Cc+8Qnbv3+/7d+/3z7xiU9YoVCw97///evacPHDxdNPP209PT1mppwTnaFUKtmhQ4eWY+Wd6ASqdaIbKO9Ep9EYK7qBap3oBso70Wk0xopuoFonLkXW/NDj+9//vr31rW9djpc01j7wgQ/Y5z73OfuVX/kVq1ar9uEPf9imp6ftjjvusAceeMB6e3vPt8lE0mmzdHpBwKtCuoj1CmqDjW67AuL+rehTYWZ2w5X4nq2kS/qXf/NFiI8ePwSx10aX+8I8Pfgzq2/DI03ffB77MJdD/V2ftOheeRn1zM3M/tvv/meIb735Tojf8o77IM7ksQ0h7SOVR53Ek2NTEJfrrthak3QMWW8uWqE1HYYL5/7Nb37z8t82KufMzPLFoqUX9UibdKzzc6ghOk/atSNbNjnbazZxGy32HQhZsw5/fFVcHDSW315DHct6SNqKNVfvOEP6qPUyavMNDOBPCmdzqLVXT9E+s3jOwxxp/JLWpplZrXR+DUgzs4D0r0+fRo3Yngb2NWuF888eR0fcn0k+/9ST2M4Aj2PTpoXz11jUg37iiSfsPe95z/LrG5l3kRdbtKQ3SVU5lcNja7FWa+jWmjfehd+Y+OUPfwjie+68HeL+Ap4znzSyvYg0z+fPQBxkXF+B6/ej/un1+/4BxPe9+UaI//1/+i8Qf+HLD0LcJN+Q7dv3QHzTG7CWmZnddRf+7XWvuw7i0a2YJ1k67p94170Qf/GLfwnxg1//GsRHjhxx2uBnSCO1SbquwcI+o0Wd/k7VOt/i5Z96xuydRDFrNKcSvJZapEk+NIh1oUh+UddeuQfizYN4DJUa6bKTruxPv+/HnTb8o3/8QYh/7df+NcQHXjmN+2hgfc6QwPzkGczznIfvTyd4eqR97KuYrlf2EwhJQ7dOphNpGi/vuAlz+s133eq04dBR1Ld++DHUjq575/q25XV2jK03mis8PUh7neZ6JFXraNUufGh1DeGINIZD0iOutdinDI+pv4g1olFBHWczs9486vg2yFvL9WfDc97kmhBSjoTcT+31/1mbmH1FWjz3oHlYrYY+MGFAWsfsuWPnvBPOt83lafHi+zo5xmbyoWVyC+chncbxrhWT7rIzf3c16OOY5loxntNMGuduWZonNRrYVymeE02g/9DUOPnymNnRoychLlObZsdRK/3wEZxXsZfM5s3owzQ4iH4c0zi9NzOz+RmsV2x5k8kPQ5zuwffnC5iHuQz63QRUk4OUK1AQBNj387OY6+HieNXwF/63U7XO87wL9pNYq9/Gq6Gd10WO5v6ZBH9M1g8vFHDutzSPXuLkSczRJo1v7PlxlMauJHPbSoV01Wl+wm3sBBdy/jqVd4HFtmRbylOUAnmCtZpUM8iX08zsi1/E+yN9NJerVbDO8NDC6zs2GuHRLHbup5gzGeBxfK6K+2BbkdjRh8e91uawcJWrbs2vlrEGf/lrOP+/50dwbnbt1fsg3kx+KmcLuI/plw9AXJ/A+aqZ2dRh9Ersa+A407PovRUs+mR2aoyN49byvZwUzXcy5H1olIOzZTfndvfj+vE9P/JmiJ9+hXw7d6J/VRDjOPLCOHoJXXcjrj/zHp4bM7OZF7F2hQHmTIlyir2GeO7P86OA+oV9e83MuZXoU94HWfoMlaEmtalJXgulNO5girw0zczy5EuxM8C+6l3hMbe0NOxUrQMjXvbCoDLiWHwk3KcNaS4+NYFeMXEf3jfiMbRYwL6ZJx/JiIpjwI0yM6O5II8sPL5xG/ieakDb4/u4jQSfNN6rTz7Y9Tp5ehRxTAhoHTw7g/7OA8M41/B893GE59NxnOceeuT8/fys+aHHvffeu+rg7nme3X///Xb//fevddNCnJfZ2Vnro2KzhHJObARvfvObVetEx1GtE91AeSc6jcZY0Q1U60Q3UN6JTqMxVnQD1TpxKdL5r0MIIYQQQgghhBBCCCGEEEJsAHroIYQQQgghhBBCCCGEEEKIywI99BBCCCGEEEIIIYQQQgghxGXBmj09OkXKPEstmsyM9KNR0z/8iffSm9E4Zjp2n+Vs34zmare//vUQN8nQ7w8+939DXCmhCYsLW3Elmde5dl2rvR6TqWe5jGZh8xSzmUvs7M/s+NHDEJ88gUZZuT40W/zRFQZYC2A/nZlGc+8TZ8YhPjsz47QhjNggh03oVvbdxpv7rSQV5C21aC41MY0GRiUyz4ti7ItK1W3rfKVJf8G8aEX4eq2J53RTzxC+nsVrYX6ejNJnsP/NzOpnXoZ4mowFc03M7cweNF/zyeTa4zwL8HoL+rCNZmbpJhpkZrLYDwPD+Jlai0yScpjL/b3YphQZO+3chqZmZmZbt6Ch5s6doxAPDyyYaNXraILZCeLAX+5HL4PXQyaPhk8B6bPefce9zvY+9HP/GOI33YambXEVc/vkqecgHhhGLc7SFJpJzh45CHHaR7N1M7Oh7ddCHGXwHKcaaDR3wxW7IX6oiOf4bAXPS18ODTSLCd6+tXG8HupTGFfT2Jf5fjzum695HcQ3XoXHdOetaAj/X37vd502PH0AzQnPNLHvw8XUjTr8FYSUd87skscO3zHPI0OxwG1sFGEtisg4uVHBsWJzP56/K7ajYfQrR9Go8Lbbsa9/7v/5QacNhTwa4ZXmsQ3NCK+tAl1bcW31a9/1ZU4Yn6im+2Qyl6a5RkQmvDFts1lDg80c5f2evVc6TbjxppshblByPfzYD5b/O2TX0Y0mOGc8GHmcd5x4GHoJBrVsbu7FPPfC/vbJuLFUw7GmQSZ/112L1/zMyIzThkZIppmHsD5WKriPFiVSnfIu5ZPRK5lPOodo7nlsspF5C/OSzQzZHDGmeVpI81EvSpqb0bmgdp4zXLwwc+f1xPdq5nsLx5BO4XiVyeCxk5eltVpuXShX0NU75eN1GaTS9DqbnOI53r5rK8T9vbiueezBZ502HDl+CNvUQKPdAo2hO2hedJQ+X61jv+wZ3AvxqdNohG5mVi1h7kch5kWjTnPgLB532kcj1r4+7Mc0md4WCu5co1bF81OnazqbXRgXaMqx4azFyPzVbv9i3t/fj+u9zZvRuD4JNjfnbbaorrDR+eQkzn9mZ3H9US7jeDc/j/MGM9dwnQ1wq1W8DiK61tbjnLQzhefXO2FUv0Tgectj6UAv9n+e5h+zDZo4+66J+Ayt4/0iXoMhjS2tCLdRp4Jao/MR0z79BHNfn8a3mOKI+p9ruOetfr44JaKWu6CgZlu1gTuZmcb1+/QE5vbS+LNE0D8IcXp0F8QvfPdFpw3NMs2ZenCc2TU8YGZmYdgyO+p8fMPw7Nyo7uQ+dVwmjec7F7k5F9AJvGL3HohfOo7G5Du2bof4rW+8C+IjZCh91e6rsY0vkzG6mVVfwPtjfzWH905Okll6jozJ4zSeGzZ/ZoLE+S3GPs2dMik2P8e+r5JJdZO6OpWjeUnGPRdNH6/vs2Q8X1hx8bTihIX4RuL7ZovrUd51RH/g3vUTl2+Yd0eP4pwn3rkD4loLN1Ip4fhlIbYhRbUtFbi34UNqaSuiuTePNXR9BfR6KoXbC2mN2mjwfcqFbl1Jmu5L1WqY+6V5zBuP7sPP0hiSzeP8tkAG8GZmXopqHb0eL9ZoP6FWnw/90kMIIYQQQgghhBBCCCGEEJcFeughhBBCCCGEEEIIIYQQQojLAj30EEIIIYQQQgghhBBCCCHEZcEl6+kR1pvmL2ox33wtau/ddMVbIH7sGfQsePIo6vCZmYXkG5EuoL78m+59G8QHX3oF4m98/W8gjpqoaef5rLH2avQ72ZMD41bYoteRkVH0KPBTrm7p2CnUp4tC1D49fuI4xMXiAL7fQ9228ZdQB5E1L5sNbLOZWUCadmnSq16pX9dBGVQzM6tVqtZKLbTHIy1wPqUt+sPRE6ec7c3MoKZnKoXHGtJZrFRRv7bRQzrRGdRSLfRgXJpwdSkPP4m5OnEWfQ3Gjr8A8cCZ6yG++u57IS7uQP3c1CDqkmaHUJvazMyvo/5fH8ky9w6id0l/AXUqm2XyjjmBx/nEE09DPF/BvDYz23slat/7MWpdnj21cP4aTVffcKMJgtiCRf3COE1ePi3su7e/Az2N3v/3fs7Z3rYdqA3bqOE2Dz3zFMRnD2P/FUhX+9lnfgBxtj4DsR+7OqCl8KsQDw5jXuwi75gm6ePu3IkeH72k07xlADUgyzOo8WpmduQF/Mz4UdTIrVJevefHfgziHT/yTojTpGf9zre8Hbd/yvXUmZnEGjBP14KfWajT7E2w0eQymWX/JNa8Zn8AR5s/laD7Sh4eHumpnjmBAsP5AGvfP/nA+yE+fhLH8etvQE+P7TuucNpw8EWsZVXyUsgGeP4Cqse9OdI+pX4IL8B4JXY0bVlflbRPyWMiJE3ZJn3+m9/+PsS9w64O+z94H9aIO265DeIf/OBcP7Wss54eYRyvOCLMAdbg5UrcSrhE0uwPEZI3Be0jJG3vWhNz5PQ4zpGGBrAWNuuuv1uVtJq3bkXvhC1Uj1+g+eXpMZw7pALKEY+0ohPmRezh0WCPj2j1+SPrcIfR6nnhha6OrtMs1h5e8hB6VfPji6NYDCyzqF/tedh29laLqC/zWcwBM7N0gNddQLXF91DPmz2PMqSdXWugFvT+7Xsgvvr1+502fPc59IuqVDA3hyl3jbxJ8mn0/MgE6JVw+DCuB7wUvt/M9fCwGPsypr6dmcIxt1nDa6W3B72dQsNrK53BfjUzS6Wx3WFMS9vFmuB32CPQ9/0L9o+4EM8H3hb78LQjn8fzt3PnTojZK4PXK0ltYJ16/gzHAdU2fn37dtTmP3bMXdPwZ/i4+DjYZ4Rpd44u5Nys9p44jh0N9I2k3mwte3qk+rAvCjTfmKM1vSPmbma9veh1t6kfF3Az0+iXUKbuLtOaqk6vZ0jXPmy5Y09M9z9cTw7ylnS8SfD9POf1qR6P7nR9IU+eRm/DM3Tcz72Cc9zNI7jmyZA/0elx9AB54KmXID7ScM9FOkueOjGu721RG7+e0IcbSSqVsnSCH4yZO97HTTyXqYTvX/cU8L5CrojjbTaD9yH2XYs+vVuvfgPE20IcX0s/wHn0qQcec9rw6Eu4Xnx8Zg7iRhaPN92kdRQZcqTIC5HrUjrhnh1XlSDA9zQaq/sXOfM+Ngmhay+VxXphZtaka22SfAZ7wnNjQNhhT48oji1arL2OS7IzyeW1GPuhmG0bxev+2HGcA01NYw6ks1gLG1Tn03S+2LeF7+uauZ6a7MnheFT5XAtp3k3b57V6kq9jnvwuBwfR/ysKsabPz87gBuiee62KdapGntSFHneOzVNLzix/sW7Ea/j9hn7pIYQQQgghhBBCCCGEEEKIywI99BBCCCGEEEIIIYQQQgghxGWBHnoIIYQQQgghhBBCCCGEEOKy4JL19Ijjc7rFadKY69uMmq89g1MQF0kz1szsqquvgnh48yaIWdf6//GBD0DcJF3ah7+BevVxE3X1PM/VnWVNSVf7m59BkU6bsVY1tvn221HzfNsO1EY1M/v93/sv9Bfcxvws6e2SqNrU3AzEZ8kfIqyjVtxQwdVpy5IvBevDl2rn+rLjeuOtpnmLCngt0j+eGEfPgFIFNeoaddcLIp3CPNhM/hdTpINXI629Kun/e6ST11NETcL5GdQjNzMLJ1EvPAqwTZUZOudPol5jlnIg8zY8fz10TEO7Xue0YezUEYhbpAk5NHIrxFfccAPE33vo/0D8hS99GeLHvvssxL0FMg0xs6Fe0kIlYdlaZaFNzebq+r8bge+t0HEkbdm3v+s9EP/Mz3wI4oKXpIWItWW+hPqJR146BPHRZ7H/Hn/meYgD8kDasxXPOV8rZmZl0iudfe4IxDfOoxZ03270krn3reivkSf5zcF+1HTN5VF32MzVjq3OoR7nN7/2dWzj2Qn8PJsUUZhNYZ698fY3Om14/gXU6Z2o4HiVXTzfLa+zeuOtMDQ/Wkw6lmWna95PY83gscjMHAHOqalJiOcreM3fSNf49bfdjfuIyU8jxDbELHxqZodePgjx2VPoC8I+VyF7TrGPAcXstxFGbq3gcZ21vhuO/ip9nnIsTfrlZycwf/7yr9BvzMzsxhuxbzf3D+MbohU1psP+Cn7YXNacZflwPqUeta2ZoBfskUY8e3iwpwDTV8D55batOL/cuwPjSsHVrU6RznZhCD2qSnXMm3wec7lA8YmTJyGut/CYUgneBD555HArM6y3zT50tEnfZy1+jL0EDfuYCqQjqbz0H1xXO8DIpiHLLXqFVat47DXyJ0kFeL6ymQFne34ONcZLNMYGNPfLZqj/SN87RzV2cAuOZ9uvcL3SspSLP3IL1tCoRj4vpBF/89vx/ZUG9stLRzAPJ0jP2sz1R/HIg8P3MG7UcN5cmsXXW3Wcz8xUcG5Rq7trglyePBtJ733JRzB5XbZxpFKp5VrnehCs3cOLPTzaeU3w+9n7op2/RqPhzusy5GvG+xii2nfddddBzB4ds7PoQzNI64mkNszMzKy6zwqtzcplnHtwm1kj/dV4eHC8cpsXsr31pB6em1fMlXB91+/jvYqUj954UcLcrreI19NVV+6AeHwc7wPMTNI5Yy196n/Ow2bDHbNbNGRk0tROup4i6nM+5x5PPsgT5NprrnXaUCziOujpp5+B+KFvfQfiq/Zj7u8axdyemcbcf/4F9AQJG26tu3r/CMSlOVrb2eI6tsP3TlJBYKnFOUaLPQHpHk9Ac4+QfIHMzAKqM0eP4VhUm8drvI9qQI0+Hz2Ba9zKn30F4uePos+amdkDc7ge7MsOQDzkY46Nk9elR2NVio7bp35JB+7cMpvDNWad6mGLrpVGA/uSvdl4fsxrO0vyzCK/BV4mVebOXZxhtPZx7WKot5oWL66dXW8K9qnDVwPfPdade/ZC3KD7GOMTuK7NUW0rFnGMnaPrs1LF81csuD5pff0495uYQe8go3sFPG7zfYtCEWt878AAxFGCf9/IKK57tm/D+8mHD+E9pJDutfT24THwer7ZoHubCWuaJnvFRrzGWej7UJ4eQgghhBBCCCGEEEIIIYT4YUMPPYQQQgghhBBCCCGEEEIIcVmghx5CCCGEEEIIIYQQQgghhLgsuGQ9PSyVWvhnZkfOnIGX0gdRh+3sDOrM7tm909nclVeiTlvaEY/G5z97r7wC4l/8pX+Or+/ZA/GDX0Z9wPHT6KNgZtYKWbOM9fvanA6WyiMtOdbFvPZaV5OStd9aMekM0z7Yt+LEGTyuocF+iE8dPoLxkeNOGzaNoiblyNZRiAsD5/RDm43OavAGvresu9ioofYpazKnUqhzWqu4upRbtqAuXop0JufmUdMzR9rgrRD1GptN1MErZFEPMGuuFmqT/BYiHzUiwxb2cW8N83T6uScgfmloAOJr3vg2iLfuv9Fpw5mnHoa4RD4icR77afd1b8LPn8I8+utnvgjx7CzqBe7didtb2Alpt/diXOxZ6Pt6gp7sRlMphZZa1Kh9413vgNf+xS/9CsQ9BdSFLc+6Otu+h+f8uaeehPjgC89BXJrG87HjitdDPF7CPvnrh74PcaWC14qZ2fbdWHPzaSwujzyJviHvv+3dEF8zinV88vhhiPtzWLMLva425vQMXl8BGYNs3Ya15+wUariOT2K8aQvqqoeknXnF/iudNvzjf/JPsE2k+zqzuI8kHeONpFxZ4a1Ar6VoPGywVqrnaoD6MX5mahK1T+doLCluRl3oyPB6DFpUI6iOzc65Y+z3v4NeW80q1uR8P/nfhKhDGlK9jfm4SVja1ZB1NXMd7Xb2T4l4HoDvTwekh53Hfp6ZQK8pM7NXDqFuergbx67KCu8o1l/eaAZyWfMXx1if+4a7ivoqCNzv6WSyOJ5FtM0WXaMB5XaWPOMCmldtIn3d4a3oB2dmlsnhORyfo7pDp3j/FbshnqTx8BXWr6a8K2bdeVGWtIEzTt+u7gcQkl5uTCeDNdGTiNhzhXPdlrSXIzMjneINJp/NLc+vqmWsJb0FPMdN8o+KQ9c3q9WgvKK5dDGH5yNP3jFGeuDsk3RqAv3ZvvkdHHPNzCoNzJsbb8A5/+gAzhUiw7zpGUCd5oe/8xQ20cf6WCq75yyVojwKcT4SReTx4WONLc3j3CGO8HqOYzwZs3PufKcZ4gXG9jWFxXPBXmcbTS6XO693B19P7WKz1X0jzJLHo9Ven5pCfyj2xqhW3XldTw/6GvAap0A+jvx+fp29cHiffIxJnxkbG4O4XT8wr8Zzo50ny8r1eKc9PXK5zPIY20tehrk8tTvCujVbS5iHknfZJvJEHRwcgPjkNM5Jsmm8ID2+1+H0T3tfAI/u4UQR1yHyU6B7H2nyMojo/b7n+ivs2b0H4uefewHil185AvHZszgH3r4ZvdVefAnfPzuH63vHhMDMpmcw9wtp8uFZ7JdmgufdRuJ7nvnLcwzsy4hK2byHOVbPudfHmSn040u/cgDi44fQK3FuGtdqwSzGJ778NYjDV/CewkHP9QK++q13YJtO4XsmnvkBxDnyPaNbKxayp4czn3XPN/uAxPQZ3maLTvsWyrm+Hrxv1WzhuRgjzwozsziksYnW0fGK+WkcRWY4rGworbC1PLV15qx0DfPlxO83M0vRZ4Y2k4cOrSkrFbxmt42i19vQAM4tJ6dmIL6K7k2bmfWRr9V3Hn8c4hp54KRogTEwiPX5iitwH9t374K4nuCp43prYZ488zTOw0p0H77JXlw0jrfYeybh/ofXZpiIFk9o1LpwH1790kMIIYQQQgghhBBCCCGEEJcFeughhBBCCCGEEEIIIYQQQojLAj30EEIIIYQQQgghhBBCCCHEZcEl6+nRCiPzFvW6JqdRwzBsotbt5iH0lXjdNfud7eXIj8FIx45ksx3t161bt0H8Mz/7AYjf8IZbIP7ut7/ttOHBv/kriKcmUfjOZ48P0k2P49V1Sp9/HnX673zj3c57cuQpQVJ9VuhF/dUT5E0yQ3p0BRLP3dyLeoGj17u+Iq8cOwLx9Bhqv119/fXL/92od1aXMuUv/DNztfk2j6DebUBamlGCrFyjjnl2nPozRYm3aQj1F7M51IE+M4ZaqYM9qBs92I+eA2ZmYydQH3yC9HDTacyJvnQR4nKI7589iVqYk2dQO7N3ADUQzcxGr78N4sOP4zl/5jBuY/qv0QOkPoltyPShjnDfANaAbNYtbZXyDMTNftQ99NILJzCKO+/pcc01r7fsojb9zquvhte2bsL+ZO3D4ibUjDQzq09jnj3zxKMQP3/gGYgH+gcgZoXVRx97GuLTZ0izPkF/eu7FoxDv2YnHcet1N0B8/Q03Y5t6UVPywDh6O82OocfHUN7N/YEMXl9TNbxIe/sw1yemUM/09Dheb32bsCaQ1L6lAzfvtu9Eb5Ife/uPQvz9737XzJJ1NTcSzzvn4RQ4WqgYcxVO0huPIvoMeQiUZlAPvjyJ5/PMJGp5e4Y1YpA8Ww4dfNZpw8ljqPPrkf5tg3RFUz5pD5MWcezj+/0U6fgnTKFYJ9bj3uO+JU3egF4nqxTHs6KvB3PYzGyA6uE45XFzhZ7qWvXPL5ahwb5lbw7WRWftc1c33Z0PcPvrTayPWcrVniLOcfKk7T07OwNxqYxjT0/a7e8Jmhe1SGM3k8F50bPPonfCk0+jXnWT5hLZPOrgp3Loe2BmlqLpI3vBOBLfNJ/06NrwaBRgtelWnHAuHElq9g1ZeEPod9ZbwcysWqkuz6FTHs55+ot4vbRCPLZy2a3NcYj1aWQEt5Ejn5d0Go+5Rv5sjSa+//RZHMMzRdfHJZPD+vPkk6gx/nM//RO4D/IwOnTsIMST0zimvvgK5mkmj9eOmatpHcfo3RTFWNd9qpm95PEwNIzzmZi2PzXtao77KTwuP8C8ay5OzptRZ8fYIAiWx0quZe08BpLG2Hb1skE62rUa9h3PMXgfvL2kOQm3gT03jhw5AvGBA1jbuF5nyZOJ45mZGacNfJzsA5KjdRP3NbeBj4H7Ielc8N9W8/iIosjm513PgI2iJ+ste3ps34ZrpWYJtdfD+TLEKaprZm6tGyUfzptvwbn7oZMPQjw7gfv0KddzeZzb1artr9OQPFLZ74vPD3ueOv44FLd4cm+uzn0mjblar2E/TZNXV62B+zg1hrWsXMU6lgnIXMrMJqawL7cOD0A8Ob3weivBD2RDiWJbmiUENBmJaPKRHsb50Ote796z23EDrudyQ9gXg323QtxH877pP/pziFtP4f2xIwOYc9fcg56SZmZTKczTA88/AHGd5lDFIs4NW7RWDyOac9H+OAfNXJ/BDN3LbLWwr3toLvN6uh+6bRjrwRzNb59+Hn1qzMzIdsuq5EfWWHFcSR5MG0mQSS3fi/PIs4xrBK9Jk771X+fJt08+aL3Yv8Ui5vLwIMZbRvC+B5/idDrhNjy18w1vQI/VUpnWyjT27NiBfpmbqQ15WjO2EjwxeMw8dgx9IqtVnOdVyljrClTTe4s4z+PjDhL8bMywXXycSyW9tQbPLP3SQwghhBBCCCGEEEIIIYQQlwV66CGEEEIIIYQQQgghhBBCiMsCPfQQQgghhBBCCCGEEEIIIcRlwSXr6VGZm7NUZkEfsYd01HvSqJl27ZVXQTzc7+rOeqT356dI240kwVjfmLWJWYPy1jtuh/j6G643plJDHbYvff4L2AbSoIxIzyxmzTPSfWPd7hnSUDdz9azL86jnVy6jTtuZM6i7vmkIfRAGqR92kpZ4PuPqELfqqEk5Oop6c/v27Fr+b9aN23CicFm82qf+9aj/s3RsPf2ut8LsHOrc9feilt4Z8ikY2YyeHlddsQ/ik32oq7dj5y6KdzttePZp1LL81qOPQBw3UYe0RZrMlSb2Q7FOOnsV/Pxs4OqxDt9wJ8TlgLwUjmDuTnwfPSd8wzzdvud1EIezYxCnAlcf8Eb2+knjNT0xd8jMzBpegjnLBnP33XdaYVHzMMrgNRXWsW5kU6gL2vJcPcNGA6+x6vw4xP3kZfHsC6jlfeTk4xCXGqT7T/q59ZbrC5BuYLtjOo6do9shHh5Cz5w0+Q9t2YnjwOwYakVPHX/FaUP/CHoxsbVTkfqhOov6xlVqc0TjQIu8n7zYzbsW9c1Ve67ENizqy1fKZfuM8+mNIx14y94dPP751kYvOXC/L1Gt42dGNqN2bJHGivIU+vgcfQlr22QFr/l734w1JJ92c+6a/Vj/Tp3FWjRRwfPbk8LxsFrBa79F3l8ee4BE7rUXkK8L64tHpOvLmr0NmqtUyBeqTjrBg8OoM21mNrIJr6XHvofXc7zCgCqOOuvpUcjnLHUeT492esBJuums587XZMrH85Elbe/eAp6f0hzOm06dQg+r/hyOuWZmDdKIz5OuclDAuUExj3WnQHOJraTBu5N8gVqhO0aNnzkNcYWunyzpqAcxe8+Q3jT1Y0Tvb3lJfjasq84+BgttWKiJ6Pm00VyxY4cVirnF/eNr7B0X0bH3FVyd+7l5PNaM4TnuwbSyIIV51aKiG2XxA7Oko71lF+rom5nt3LMX4scex3nT3l2YN1u3Yl49/eTzEP/gse9AXG+w/5Bb91uk918g75GUYc0NGthPOXp/uYl5XKui7n3Kd3O/VsKa2KIamssu7KNRc8/jRjI0NLTsJcCeHVzLXL1qMukxd43I3hRNOu7JSey7SgXn9gXyU8nQnKunx11Lc7tOnULvGfYRYY+OPM0D+HX+fBL8mf5+1lnH+sr9xBrm/PqF+Fwl+XysZOX57LRv1p037LN0euE8NWmO8u3ncJ68ibyHUrF7fW3fjnO5bdtxXr13H65TxybQ8+/hR9BraO+VuBaLPWzDNx/9ntMGz1nnrH79tIuZ0S3oIXEFrb3NzGZm8Lh4ulIs4L2pXA5zvUrXZ8w5RNdWI8EodIrWKD1FHDeyi2NuwpJsQ8nFKcvFC3OC+QDbPXgVjjt3vOtNEA/sxvwyMxsYpXUwrWlPH8X1w/f/5I8gHn76ZYj3Xov3CXdSG9K73Hndg3+KviDHz+I6OihgfUyTjwqfg9hnny/ycUq7Nb/WwHrI6+KQ1ii7d+G6es82vFaHySszTfu89irsJzOzl4/hfarTNEdOr/BzDKPVr7P1JkinLLU4f/YMx4UU+STzUifjdrdTZ1rsdUfru2aI56fVwjlGSDH79DboHoOZWUBeMlu3Ym1KZ+g46f2FAl47RnXGWdcm1EaeA3NcyONx5Dbhvcsr9u2hNmAbp2bwes5THTMzS9F9+pjGsqXT12xdeM7plx5CCCGEEEIIIYQQQgghhLgs0EMPIYQQQgghhBBCCCGEEEJcFuihhxBCCCGEEEIIIYQQQgghLgsuWU+PkeEBy2QXdMk2DaNe5zX7Ucd2E+lX10nL2MyswNp5pHHmk6aZH7PJB2n+UhyTBnpfH7bZzOzd73kPxE8+/gTEJ4+hprlP2nER6YKyrmkqhe/vTfA2yfeg1mlvETUo3/LGN0Jc6CW9SJJdG9mGOm6FFIrkHX/5kNOG/btQd33/laideXb2nNZbo+bq3W0kcRRZvKhJWCV/k1aM/c/nfHZyxtneIHmgXHkl6vmPk+Zums75lXuwr4qkfeoFqO/YrKJWn5lZXx9eH1uHUF/z7PgJiCtN7POqj/sYIk3JHF0rzRzmpZnZfGsA4t133wfxldej90ljegrifJ5K1Tx6gBz+LuoK33zDdU4b9m7D3D94CnOzagt517QOi6GaWdpf+GdmNlMiHWbSDuf2ZUi/2Mzsie9/H+ITp1Ane9vWHRD3TaAuZX8Jc5/3MN3ANhUStJ+vIp3W4QKew1deRP3xgwceg3gXaepWKS+5Jh976UWnDdtbeFyZ/gGIh0jPeOwMvr9MfjWNFuZ6rYnatVHgXn9N8mAYP4P+M0ueDmGCfu9Gklrp6UHaxPxtiBTpnCZ9W6JO5yObRV3RQ0dRF/aq/ddAfOPNt0BcIz3Pgc04pk4dx/wxM9u7F/VsR1/Gvu4LUcN8+xDq5E+N4/mfmsJr0Q8wB/M5V0s0m2N9Vbx6MuTfwPrjrNc6N4++JIeOoMdEcRi9bszMajQHOn4UPXsC8Kda3UdjvenNZS21OE/gedjqqt3JOuoDNKfhwwlIR5n1b4MA99JLZgy9fVjbgpTbhr5+1EnO9+G436Jx+5p9OIftJw3eXTtQw3ewF/O2zqYUZvbKiZMQP/zwtyAOyWOpODQAceSIgJPnBPVr2jk7rsdNivSil3K92ey8b9aWzf1W7Fno5znyWitT4rEmcnHA1Ruu1kj7uYp5kgp47opjSdTEvmlFVO/If68n5+bd0Zewvh0+gDrmX/vbb0NcJB3ms2NYk+fmUbM+04e1pTSP/WZmlidd8+3kP3MtzQNOv4TzgFQK+ylsYBtyHo+pbt5NzKDOvePZklk4V5329BgdHV1elyV5dKwkpnk0x2auNwR7dLB/FPtjlEqlVV8/exbn1aOjro8Me3Kw72O9juMV69bzOnV8HHXy2W8jqQ2NBp5HblM7fxTup3bvT/KaWotPR6c9Pfbt2mS5xXnGF/4Ga8BsDdtSpPEvarnXyDD5huWojrCnynvf/WMQX3UVejBu2YY14uXDeO/jqWfQa8jM7MzUDMQ+nSOeGnjkycnnfHgY18W334a+rFu3oheCmdkJGmNT1Ibt5J+QoXs0HvV1i0wGquTfkEm5t+iqTczFBvlIbBpYOK4F3ywcHzaSlOdbarHP+3bg/OfNP4vr/f6t6OtUqrjjyilas44O4DizqYDn90SIdWcyj/Xz6tuuhjh3Bc6xvvFdXDObmX3zO/i38TKer6FerDuFLHmyUAmP6R4Szz0zWfd89+TpHg95KzTqmGODvXhPL6J6Oklrmhr5zNQaCf5lNfRfaJDXbr9/7tyEHV5PFHv6l72omnRt+OTpEYY8xrp1mc9JluaCI1txPjM5wXMoHGPZLiPPPlppPL9mZj20BuTxiMdUrm3OXILHn4Q1DMO1bes2vF48uxni8izmyNAQ3hvm+9mpHB530nzHp3PBrV66LbGW9YR+6SGEEEIIIYQQQgghhBBCiMsCPfQQQgghhBBCCCGEEEIIIcRlwZoeenzyk5+02267zXp7e21kZMR+/Md/3A4ePAjviePY7r//ftu2bZvl83m799577cCBA+vaaPHDx7333qu8Ex1FOSe6gfJOdAPlneg0yjnRDZR3opOMjS3IDG3fvl05JzqKap3oBso7cSmyJk+Phx56yH7xF3/RbrvtNmu1Wvbrv/7rdt9999lzzz23rNX76U9/2n77t3/bPve5z9lVV11lv/Vbv2XveMc77ODBg9ZLWnOrsW/3NsvlF7TPBkgvcv+VuyBu1FETNkrQ9/LSrOOMz3s81oklfTGPBCNT5F3BamSxo49sdsONN0L887/wIYj/v7//3yA+cgw9BzzyVmB9uhx5Lbz+da6vwdYdqDk5M4beCe96xzsgLpNG8zceeRTi+WnU3x3dhBrAh46h/riZWYo0Xx9/9imIDx4758/QbC7oC/7Tf/pP7Z577tnwvIv8jEX+wmURtrCdvk+6r5QTJdKUNDNrxaiPmEuhnt8weX6cOo4anMdOol5gKovnuDSPWsazc6irZ2aW9jH3r9iDeqq1Gun8+uRPQ7qkQ5vxGCpV1IhMlVz9a9ZFbFBf9fbjPoYLAxDXp1BL9blnvgFxMYVtyGbdGnBmEvWKJ2YxNz2/uvi/C9dup3LOzKxeLluwWHPOnEFd7mYVc2CkH3Pm9NPPOdv7i//9eYh7STYyXcD+z5G++17SJq02UCtzaw59Ye5+85ucNmwexp2+9AOsHS8/g54Mf/vVv4D4ttvvhnh+CnO9Rl4Hx4+hN42ZWa2KetGbRrE+hakBiHOkfVkt4dgyfha3ly/itZD0NYIoxFxM5/FN9UVJVX/xfzuVdylvhacHa2dS3U+z5jXVQjOzNGmAlsgX5qUjWNuuGcNaVfOxbmzZi3Xq4IsvQXzmNPr4mJlddTX6wDz6nach3tGHWsJBiG04MvEKxEWqt1u2on9EMe/qsWbS7OlB/gCk1Z8lo6xcDvcRxqR9Wkf942YGt29mVinhe+amp3Gf6XNTv9biuexU3uULOUufx9ODcT0/XN1XnrsFfBGyxwfN3Yx0fYepFg4O4vwzjF3N4jNnJyBujOOY2k+eH7k0tvHWG1BvOk3zhokxHKtqoduGwSLmyejmAYhfOXQU4pEs1nDLYpsSdgHEoTvGxgl9s5Ilj7Zmq/NjbLM5b81F/eogwP7t7cVrrq8P5yPNOGlehceaKuBc2CMPj5A8PHI0xzEf3x+ksA2tmtvfpRLW1FYT827sFMY8Z+Xc7+vFuUW6B9tYmca5iJnZdVffAPGb34ba+Fdsw9w/2I+1aTz9LMQ7RkiTvIlj7NgE9rOZ2SReftaiNGwt+hg06wsvdCrvisXisv421zL2iUjStGZmZ/HYm03XQ2wlrPU9MDAAMftncJuS6nO1inOiqSlcQ87RGmRiAk8O65NzG0ZGsC4VSAPdzGxoCP0Y2CekXV8neXSs1sYkuO/5/K08rqU+++pXv2q5XG7Da933f/CipRfvcRw5jeej5WNdCand9QT7kSmaP1TmcZvsFbp5BHXv8xl8PSBfs9FRPOdff+ghpw2nz2Ke0VLa8jQXG9mMGvSj1KadO/FeyK4d6AdXLeF6w8ysTj6fg+TdOjyItW5uegbisI77HOwh71cadKNUQk2IyKeA1mb1xRPYCjs7xtZSocWL64grX4/epWERz/c3H/suxJty7jXeS+PrSBFr2cgevA94+0+8F2KPfCeCATyWHzyLvjF/87VvOG2YmWWvEfJSwNAKRZyLZwuYk9Uatmnp/tYSYcMd49lTrtLAdS97eJD9os2Tj1PKw1o5Q3l+hnydzMya5PORqmI7e1fci2wtrh07lXe5XK9lF9dpvo99w14PmTQeeyty6zyfI5/WC4Ob8Bov9mA9naL+m5uhdS7dG75y336nDUObcB42PYvnsETnLJejNSDV9Ihin9ZMLZ4wmZnn0TnuwXOS2kHeXBk8bt4ne5Zms3jxeAn3FNioiXN7yaskTvjo+VjTLz2+8pWv2Ac/+EF73eteZzfeeKN99rOftWPHjtnjjz++sOM4ts985jP267/+6/a+973Prr/+evuDP/gDq1Qq9od/+Idr2ZUQwM/8zM8o70RHUc6JbqC8E91AeSc6jXJOdAPlnegk11238AXEa6+9VjknOopqnegGyjtxKXJRnh5L3zpZ+tbF4cOHbWxszO67777l92SzWXvLW95ijzzySOI26vW6zc3NwT8hVkN5JzrNeuScmfJOrA3VOtENlHei02iMFd1AtU50GtU60Q1U60Q3UN6JS4VX/dAjjmP76Ec/am9605vs+uuvN7NzupVbtuDPCLds2bL8GvPJT37S+vv7l//t3Lkz8X1CmCnvROdZr5wzU96JC0e1TnQD5Z3oNBpjRTdQrROdRrVOdAPVOtENlHfiUuJVP/T4pV/6JXv66aftj/7oj5zXPNL/juPY+dsSH//4x212dnb53/HjrgeEEEso70SnWa+cM1PeiQtHtU50A+Wd6DQaY0U3UK0TnUa1TnQD1TrRDZR34lJiTUbmS/zzf/7P7Ytf/KJ985vftB07diz/fXR01MwWnuJt3XrOROrs2bPOE70lstmsZcko2czsptddY4VFw89MDl/PpfGiSHtoFpQJXBOcNBlHshFrzAZuZPTik7GZT8ZpjlGM7xrkRLSNt779bRDzcX72s5+D+IUDaPzbIhOkq65E86hbb0LjdDOzv/++n4D4c//9f0A8N4uGZVddjyaFhw6jWfDUFL5/YgqNn6ot14irXJrB99TQfKiWPtdPLTv3353IOy+dMW/x3NYqaBaUCvBY8mRatWnzsLO9NJnasoFeOoWvl+ax/1548UWIh4bRRGnTAMYhmWea2bKh3RI7du2AeGJmBuKxSTSr7BvC6+n1+9AMej5CQ7/Tp9Bw2MzM68NtpMnga76MBo0TZ9G4/MxLB7CNL/8A4i092K9HDmEbzcz6B9EQbG4eTan7Fz+y8iyvZ86ZnT/vavWy+cHCMcxMoSGUH9cgPnoADdi++Y1vOdsrTdOxbcHcPHEMTW1jMhpMF9FYcPce/FbFyBY0/bt+H9YeM7OTR56CeAcZC+ZehzlQmcPrbfz0MYgbJfw5a3MOc+b0KdfIfH4ea+7ZSTS8b/h43PnNeyDOxGjaOXYE+35kMQ+WyBZcU2mPrr80GaPtW6zbpflzZmWdqHUrjcxT9P0Hj74OkabhLAjcialHZmhbBzGH7rzpLohPn8LzF6XQqDDTg9fBd77xNYiv3U1GzGZmNO6ObEaDxBtufD3EVRrvanTdbNmC+9g8igZzQewaydZqeL3myKQxlyezQzIu57lJqYw5OEiGjtOxO407dvgIxBUywktnz7XJW2Fm3Im8y2Uzll40FHQNY/HYV7nfc158W92ENkNzt0IW4xEaY9kUcGrGNVJ+6dhpiGca2PDrrtoH8RU7MK9ShiZ/0xNY6+ZbmGezZcwxM7M5MrjP96JJag+NwWw6nqe8bJHhIi9GvTjhO1M03ePzFy4aDzZWGEx2aowNw3lrhQvzoxStB0JyQqw38Jqr1tjQ1MzI+zFI8xqArssY5x/pDBs54j79AOfFQ0N43ZuZXX01zuVOHcR508wEzgfrdTTp3LYd+/HW23BNUvPwWnr2JXeu8eY3XwPxvqvw+klF2He9A9iGzCDm2fAgXgthDfuxXnfzrrdIf6vhyVlaSzZq5/qjI7Uul1teA7DRdTvj8kql4vytRKa087Re4Nd5vdHX1wfxkqns+d7PBuFmZpM0hyqXcd7GdaJexzzmbbJp7ZL/xRIrz8ESPMayuXq7dRebpzM8LiUZn7fb5kqj86X//tf/+l/bX//1X294rTt+7MzyPCKK+TPYN8V+nIc3p9w5zZEXcL1w8mWcm/f2D0AcxriPVgvPV5DCHOFjvPkNeN/BzOyFF3FduWkE1zQjZP67e9cVEPcUeijG427VqObPu0bmlRKO/X09NLejmj43g9fKPBmbX3UFzguu3o/m3IePnnLaQMOyzVE7l+5VhSvysxO1LrbI4sVBsU4m4k9++/sQHzuK49R4y60zOwexNo0U8HwXe/F6y23D85vJYl2ZmcZzV5vHuX8275qpb6X1XbVO5s45bHeW1h+5PLZhnmp+g4ya/ZBOrpk1q1g/I6ozRboPlc/hPKFF2+Rrz/NXv7dpZpZL4bXSn8N2DzXOvd6MOrue8DxvecxJp7GdjQbWMp/6u7cHc2xhg1jXQzJx53E7m8E2jY5uo9fxfHAbRhKON0Xj1/wJXF+cPIXXD2+zvx/n/hHN9XnZWm+49w2jENuQoXuVDfoM3yM3Gh+533KUp87nzczo3klMxS9aym2+YbEKa/qlRxzH9ku/9Ev2+c9/3r7+9a/b3r174fW9e/fa6OioPfjgg8t/azQa9tBDD9ndd9+9ll0JAfyrf/WvlHeioyjnRDdQ3oluoLwTnUY5J7qB8k50kqUbPl/60peUc6KjqNaJbqC8E5cia/qlxy/+4i/aH/7hH9pf/uVfWm9v77L2Wn9/v+XzefM8zz7ykY/YJz7xCdu/f7/t37/fPvGJT1ihULD3v//9G3IA4oeD//2//7fyTnQU5ZzoBso70Q2Ud6LTKOdEN1DeiU7ywgsvmJnZf//v/105JzqKap3oBso7cSmypocev/u7v2tmZvfeey/8/bOf/ax98IMfNDOzX/mVX7FqtWof/vCHbXp62u644w574IEHnJ+wCrEWZmdnlXeioyjnRDdQ3oluoLwTnUY5J7qB8k50khMnFqRX3/3ud8PflXNio1GtE91AeScuRdb00KOdBqnZgr7a/fffb/fff/+rbZOZmQ31DVhPz0Lyt2LU8WqSlliW9OaypNVoZhZG+JkgtbqyVxTisbIuu0caah51TZKqdESfKZKG2dvvuw/igUHUMPz/fOYzED/zxKMQv460ULeNkja1mf3Dn/xJiB/+xncgPnIctTp3XrEb4r3bsU2jm1EjNqQjzxfcFHvxWdRS9EhDsH/gnB9Do76gBTo7O+vo0cI21invUun0suZskfT+AjqUXmqPl6BJx5qCrEU7OIjae3GMmp6bhvAcRiHq5PUWUceymXK1+XqKqFUZxdjOdA6vF0pT2z6M+9g7gJ+fI+8Ta005bZgbR03CTIH0qUkzu3LyMMThJGoYZurYj7UWHvfUuNuGTIG0bHsxTi323dK136mcMzNrhTVrhgu6lPPzqANbJ++RR776TYinp1yN+T270HMjamB/zc7iOcsNoC7l8E78/PY9+yHeuQnrgJegeV6ZwnZnSeM8Q3V7mK4Fa6A+dViegLhO3kCe745Ps9O4jdl51O1t+NiG3QOote+F+P6JMcyrsIX9uGnE9ZkIMriPkPT5l8bVpf/tWK3zAgsWtVAD8lJgXwkfL5UELwazbJY0kpuoRRvQGFxqoDbtdTfeBPHTj38DYo/6bfMw6u2amZ058wrE+67E8WvPLozHTuBxXHkF1V/SiU7lsRbGkat/ncnjtZbOklcJacCyx0vax/lOgepz9pY3QPzMcff6P/AC9gNfGrn0uTY1/YXz0Km8y+ULljmPp0eSsWE7XONDyl3axBDVmVHy4hoewEVXg3Rkj5/CsczMzDd8z1W7UNfXb2J9jBrk/UNzoIA0fUe2oaeSN4OeH2ZmlbM4bqSp7gySVwn3Wz6PeRqSFrSjC5zgJcOni0+Nt9iX0aKOdCfHWItKZos1yKOxKJXChqfZxMiV9Le0j9dxSL4sgY/9XY9wn60Yz2EuYP1p0gfPudfCe979Doj3bX4dxI8+jD6Ah489h+/fh54gd955B8SHxjDXr7/tR502bNuEx9mIcX5fjzDuHcR+2LIbY8/HPM7mB7DNVw45bcj34qR1voJjTWFRr71aWRiTOpV36XR62V8iQ9cj+06wRvbJkzjnNTObnqa+Jb8M9gHha5y9L7j+smZ6kpcF64ezNjdvc2BgAOIRmiP19ND6gqRQbr75ZqcNvI+HH34YYu4XrmUccz/xuUky1+Wxid+z8ny+733vs89//vOr5t161rrB3h5LLZ6n4zM0H4mxTmVpDZkvub50pdMzEB99Bv01tu7A8S5HY2xE4+N8CefNW3dgDXjPj+K9EDPXC4bHoyZ5g8Yh5khA43hpkubyEb1OXmpmZjPj6DM31IvnMk9edzXyHTx7Cs2Xd+zG+vsPyXP1C1/6stOGZw6gz2eNPB5mFn19oqiz64l06Flm0Rtr7LlD+OIQ1pXUON0Xabrz6ON5HB8LfTRv24dr1L5NNGanMD/6yS5j33Yct/bSuTAzKzVwG+PT2CYuC1nyPdi6CWtd1MAcbVC97u3Da9HMLGajNPJLKfaQXyqtL/h+aY3uSTXIi7EVuvMMWg7aYAbvKfWtWMs3Fmtrp/IuiuLlXOfximMe//y0O4fNk7dLSOuzJnn/zM7jNe7TkMnjW558P5sJuV+j8YuWNMv3xpdY+iXNElPku9VHHh9p8o9OasMA+TTx+MZ5xa+388Xi+RDX36S/+ZSIS+vYJA/t87EmTw8hhBBCCCGEEEIIIYQQQohLFT30EEIIIYQQQgghhBBCCCHEZYEeegghhBBCCCGEEEIIIYQQ4rJgTZ4encS3c09kWnXSDmM93ixpN7IAnZmxNGlEmp4pMmzwScfNJ0+PmPTLHC3q0NUnC1gAkDTPmvSZO++8C+L8r6IG2v/87H+DeO/ePRA/9b2nnDZ8+9HvQnz77bdBfPMtqKu+fSvqXe/chnq6oYf9EtJztCh6g9OGJ3ZsgfjzXyTdytYKTcEEfcGNpNBTXNZz3bEHNR6bTdTy6+khr4zQzbt6DXO3SnqAuSzq+7FuaZpi9o5hfd2RLa6nAOsqnhxDXdLxadT/a5A/xtZNpFtax/dXZmYgHmyh5qSZWS6k56tlKj0N/ExPP76/dhJ1S8vkFzAyhHmZSdBqbDRRRzY7QBrlXmPxfxMEvDeYo8dettyizuLhl5+H1xqkC9sooa7oFdvxejIzK+awtkxXUNe3ReeY/Wv27kUN+Z1byVtmDv01xs6if4eZWbWJ53R8Go8jRUKVmQDzbGb8DMTx3Axun/LOzK25zQb5QdVI25l00qMYtS2n53Efc6RFbBm6XouuHrJXpVwkLfjS/IIGb6mE/iMbTTrwlsdKn85FyiONTBYqTZDQzJFnzitHUPf5c5/7HYh7qVbtueEqiJ95/gWI33Alan2nE67xTZs2Q1wk7dK+3gGIzwaosbxl21aIe0izOc6iPms9oeb7NI7nyOskl8F+8kO8FlMx1rZ0GnOqdxPWuskQj9HMrH8Q+6E8+SDE9RX61l7c2XqXy+csszjGBmwgRVyIpwfDW0zRPCufJ08VOj9NmixOT2Gtq7XcOlPMYS72+Ow7R/q2VawjFZpHVes43g2Q78ho3jV7jPnIQ9zG8ADmcou0wCukFd2I8PWY2hgnnTvW9aX3tBavDS9wNYQ3miAdWiq9sP96DY81Qx5/vkfXKPl1mJmlfLwusymqFTH6Ac03yMvOUFM+T3PBWg1zJG659S5L6xKeb/Lc78qr0LPI93Fe8PQzT0I8WUUvmh+9BWu0mVkmxHYdOop67j09eD1t2bQP4lb6BMTjUxjnM1gPewNXJ3ygD6/JngLWjThemHukYtfzbiPp6+tb1q5u5xvBc/8knW323BgcxHlZuYw5wzrabBLLuttcb3l/Zq4WN/teXXUV5sju3eijxR4g7L/B8fAw1j4zs9FR9PM6cOAAxNwP7JfC54L7nvuBa2XSe7gvV/Y173/jiZcXizy360+THynfC0kYcofTeM7Pvozenwd/gP1/5W03QJzvGYC4WsXcDmms2rkD52FmZj/1934c4qOHj0L82He+B/H0DK43Ivb0mMd6HJLXwdQkvm5mNnP6FMQj+3Hd1BfgNT03hTX+JK0tM+Q7kaHX9+/GdZiZ2dFDRyB26sri9bngc0DrlQ3EjwLzFxcGjUm6BzCD1/SA4VjX6nUXFDf+6N0QX3fnNRD3DmFOknWC+R75AZSxTVu2YF25Bm0rzcysXKX1I93HqNA6uncLzrt7R7E2VscwZ+fJE7CYMKXqyWOORTRXCWgNWqdxI033NrkWVcjnokq+I2ZmPnvvtbBIFPrP3QtLhW6t3EjiOLJ4cQ2TVKdXg8cJM3e9xv1XpXpZIU/bLNWArOPpiZ+fo/s7ZmblCp6TFG2Tx7/ZWdzGkSNHID5zFu/5sa8Wz0XMzPrI6ylD/ZBt40kWJviBrYTvXbYS8iYiPxu+bx8srkmSvMfOu98LfqcQQgghhBBCCCGEEEIIIcQljB56CCGEEEIIIYQQQgghhBDiskAPPYQQQgghhBBCCCGEEEIIcVlwyXp65PMZyxcW9ETTGfLsIH051hrzEnSgPY901WLUDyO5Ysezg/XH2OODX48D93kSa4ByM3kbUYg6ZW94w+sh3vFrvwJxfw9qpX7jG1932vDVB78K8W/8X78J8Q03oBZnKkP6nyRhzkpqER0UH5OZWe2GayHOPfwoxM0Vni2R19kUDTJpSy1q1RV7UdOu1UINO87L2UnUPzYz80j8fvu27RAfOvwKxA3yDUlR/w0PoA7lZtLTDRP02c9Ooib5E0/9AOKTZ1CndKAfdX8HSAt88sRhiOdmUfs0l3c1lwsZ1KV0NHNJk2+GNA1r5RmIM9Qvu7ej/0pfL/qtmJlFHp6fdBY1CGuLnh/ttAg3gnK9bC1b0OI8NYFeFinSmu3vw77MBa6vQK2M/ddq4TGxbUkhjxqrO0Ywz3I+tmGyhlq1U3OoGWnm+tdkyXspS5qrcRPPD3sjLHlfLDExjnltgVsr/DRqUsdNrPthE/cxP4f7OD1OusCkzV+Mse/PTGK/mJlVSnhcAwPoyeANL1wLrOG+0fgrXABSrMXfxtcmaYwNUriNBU3hc8xOnYb47NQYxF/4sz+B+LrrUBs8R/4cYeRqgLKnR9SHmufZNI6RPfR6hrS9/Qz5NmXJS6Hljm+NOurk53I49yiSp4Qfkr9AjDmZoTZXI8rBIr5uZraFtIUH+rEmT0ydy+uIjaI2mEwqfV5PD24J61Unwe/h3OWpmE/y0fNlvD5nZklvnMaDwS2uh1KBNXEj3gYe2eQUjpmVOr6/RF5Ep2hukUnQ2g/J58rn2RnNDXiM7O0hT4kq5vHsHLahUnV16mPSj48df73FuMNebWZmzZZnjdaih5FHOtnkl1Gb5+va9WqKaGwplXC8C0P0Pkunsb+LPajX3gxx7GhRDvm+6yUT+VgDDx3B+WRI/lF3v+1miGdmjkD8jQfRB7CVon7yXOHzlo9j5jTldtgagHhTH7ZpZgr7dq6Jrw8N47UVR+44mQ4wnzIp3EZ50dMsTMjZjSSVSi3rZbfzleghUXqOzcxqNbwmQ5oj8TbZP2PXLvR02bsXfbJYC7xKeu9mrqfHzp2Yx1u3oh9Du+Nm3xDeZ5LXWbvj5H7hNrPXDb/O2vAX4unB71mpM560Dt5IGlFo4WL9Lxaw7ly9C/Xg52ht1Z912zps2D/lcfzMNx94COLiVhwjX3cTrntbNOdhPfe46Y77+RzWgQEav5rk2TBzBn0G6zSeVSs4nrVo3laZd/MuTeuH5iz6K86fwbXbsWPo4eBdfQXEp6ivz05im2dp7W5mdudtt0D89AH0gGzVF3Kf598bTegF1lr0AmRPwFyE17jXwmv8pre9ydneWz74oxD7PTi/aVVmIOYVS2Mez+f0LH5+huZY1QqeSzOzsIm1a3AI18W7tm3D+FpasxSwLt26dQDigwfJv3NyxmmDR99N53lbQLVrahLnHbV5HC9zKRxvA/Lr8RJq1cBAP8SZKl4bueFzbfLW6Ktxsfh+YP7ipN7z6L4urw3a+Cibmc3NYx44bjOx+5mVOGM0eax4tADJ5925Ja85fDJaalG7eRu8Vj59GtfaRveWBwcHnDZkd+C4nuZ2ZzG3SxWsvzw+8hjLpM31FWG/Sb5v/2rQLz2EEEIIIYQQQgghhBBCCHFZoIceQgghhBBCCCGEEEIIIYS4LNBDDyGEEEIIIYQQQgghhBBCXBZcsp4emfQ53ec06ag7/hqkq56kAs06zgEJAAak5e18gLbKUtMsce4l6MszrDfXaKDmYJAiDeZB1Hjduf16iLNp7JeeHldD7Y1vugvi6667GreRYw8PPjDy7KC+j1jTOeFkTMyjlmb/FtSArYbn+q5RczVlN5Iwjqy1qCN37OQJeK23D7UUcxH27/GT6I1hZtZbQA344eGhVWOSHLRmBTUlW3WMWT85TvB3eO7gQYgPvHAA4jDCbY5sw/OxZRv6ZcRzqFvqB6gvmBt2Nc9TPuZu4KHm4NQM6llPVFAzMiigZmGmhjqJuQJuL4pQX3AB9vTAbZQXrz/2pekEjThe9kmoUX3L0jlNkU66V8W6YWY2U0EdzxLpbLK2dWkKz+krzz8L8TbySpgpodbs6THUrjUzy5Efz0ARr598Co+zn2Tqm+S3cbKKWptjUzP4gdjVhGSPG/ZaarSwHyZJU3VoHvu2OIzapvN1rE8z1I9mZvOT+LfjpMO+Z891ZmZWrXS21qVTgQWLucSjXYpMrjJUmIKEOsManr7PHi64zZka9sOpV16G+K1vuhV3EOK5yOWwdpqZ5XOYY+k85kS9wv44IxBXA6wzYQq3V/W4zuD2zMxyBRwX8jm8Dop5fD1uYr+lqfxkM9imefKI2bQZfUnMzJpV3IhHWqgwp2pvm7GupNLpZZ37FM27OIcuDMo7ejXw8fVqFccGvuw8ylOeG07PuZ4C8/Qevn586v+4hXnDR92K8KQ0m9jmckKtCAzrZUDjBOvcl0krP53CayWfR83efBbzsFl3tY1rNbxGHT3/xWSre+51s9FEUcGicOH67cmTL1YKj7VG/hxJVhAhzWmadI5Taeyfvh7UA6/RFKVUx/Gtpx9rz/y0q2c8N4fzpuFNWBN7+tHzrQ+HcUsV8BiGqJbM17CG11qoV21mFng4B41i7Kw5kkqv07ygUcMaHNbJ44M8erwBN3cyvXi91avsYbYwD/did67UKYpFzDlex7Lm9Sby6zMze/HFFyHma7rdPvh65H3s3r0b4qefftppw7FjxyAeHsa8LpCHRDtPDz5uPoaZmRmnDZOkW8+wvwb3E7eR98ltTvL0SJOPU0Q67JUVGued9vSo1uvn6j/No9nvJqDRp+jc+zBL0SRhYo7WnYb1c4jGjgLdDqmQRn2Qxn2GjkODWUi+Hxma7nsR1qaJk8ch5rlfTOc0oLVCNsETg+diAa1Djz2H12e5jMXveIxt3HvtPohzDWzTk89+y2nD23/0XRDf+1Zcrz+w6NvacU8Pv2XhcprjCQ9D7Ke+K7DuXP929JoyMyvX0d+kNIW+kcMDVCfK5Dt5Cuc3PJaN07q56uP2zMx2Xf06iEdz+J7NV6HHlU8eHuxHdMUW9NPZfS1uf37G9ZGp0bWWIt+KnkEc80vzOLF48tHvQfzKC5ijHnlOZBPm4AM0l9n3BvQyufHKc+NGtdYw+9rDzjY2iiDwLVhc17NHYJrm5Tz2JN2fbIU096axIJvBbfYP4JwprOH76+TxweME+4yYmfX04n1D9jZu5+U1MoL34HheXiH/jULe9YVkry3f4/vs1JeUN9ymdv6MvBZc2Cj1Fa/NFmPu09XQLz2EEEIIIYQQQgghhBBCCHFZoIceQgghhBBCCCGEEEIIIYS4LNBDDyGEEEIIIYQQQgghhBBCXBZcsp4eFp+zj2BtcNZA8y5AB5qf7jj6Yqw/Rvv0aZ8RaaqxfmKyniK9x2k3bnNoAPUjBylmIeg4Qq2//VehXmQSrLUYe6xdSjptFMeksRaTOny54eo+H3gF9f9rdHaiFdrSUcrVUt1Ioiha1odrNlEHb+Is6uClyEPFSxAILJDG/NmzqEtZKGYpxnPM/eeTTvfJE6hbOjji6gBHlFe1OmoMBuSZs33nTmxTbx/EabKKyQ2g/mCLdKLNzJpV7Ksy6avu2HclxGEOd3L0FGpXZ6h0FXpwn6lg1mlDKov9kM9jXy7JeEduym44aT9raX/hmPMeHvtQAc/PLtIfLsRuGS+dxtz1SaeSPYeiBvoEvPDS9yFuTKNGZKGJ2qOvGx5w2jAXY0eOnT4N8UAWdSSjiK63SdR0nRhHfVzPR1Hf0pzr49Kkwj8witdH6OH1NlZG/dS+sUMYN9HT4/Rx3Gez5OYda+2fGEc/lONHF/bZaHRW596zeLnysnVTijw7sjwGJ+lzeqxViu9Jx3gy+qiQRORVMXkCtcNveuudEA8OuJ4eEfkT1UgjmeO+QczrbB7Pbz3C445bpJEekWC9mWVJazqTxc/kyX8oYC+aFp6MJrW52cS4t3fAacOJadQ8b5Fub2aFILbX6qypRyaVssyifiv7SESk4cpznCRdWM/nv5GeP9UAz3jOsuouzTE9SWhDFHNe8EZZ3xaP29F8J5lf1lRPwtXYxdf9gEXQ8f0t0sVt1skHxsNG5XkiYGYZqsn5YRyXb7n1NjMzK1cq9p/+6EvO5zeSgYGiFXsWrj0vZk1k8mnJkLZ2RHNvM2vUsIMzGZzrZdJ4nbfIPyo27L+ewnaIa2VswyTNHc3MauM4/mwdxvEtRXOHahnrQirC8zM8gDmxKYvzhHod52FmZs0Q2+mTR0NIc4/xaayZZ8ZxzM3kMIcaIa1BEr6qlyZPAE7+/r6Bxc+6niQbycDAgKONvQTrULNvRFKtu/baa1fdxsmTJyFmb4rxcZxTnTqFPoRvfvObV/28mVl/P46R+TxeG6ztzVrdvM1qFf1zuB9O07zRzGzLFhq3WX+c6ilroNfrONds0vjIryf1A/+N93m+894J+rMDllpsT7pIvnZVPB/5mPwWzfW9ickD5epr9kJ88503QXzFlegDWZrBOe/wANapDPubNt1FmEeeHqxC30/rCavjOfVpLR3QPIBXUe68wr0mayVac9CYW8hgDoxuQy+EPVejJ0RucIb25zTBnnrqcYh/8/5/DfH+qxbGkVq9Yb/1737P3cAGEcSxBee5F9f0sO979qO3RX3IXcOeOYleiDlaHmWmcZtHX8F7IYePY87ld2Pfh5vxvsbgPnzdzCyOcVxpko9PhdY8lWkcy0Kaq8/N41jZ14dt6CV/JDOz3kF8T6uGc5WQ5mXFUVwXveEevHZLs+SN+Qz6Nt191RVOG163D6/nfVvRHGzHCn+VUqWzY2y9WjZb8lakuhFQDeDLyc+7c9gUeY82aD4S02K5kMb7MVnKGaP5i+PHkVBn+J63R/MbHmt4zC329VCM9+hO0TyB89SMV1Fm3HtN8hdukb8R3zNP+eybjcfQCt2aH/BaLiAvqCVPD7/9M4Dl3V7wO4UQQgghhBBCCCGEEEIIIS5h9NBDCCGEEEIIIYQQQgghhBCXBXroIYQQQgghhBBCCCGEEEKIy4JL1tMj8H0LFjW/WPEsoL+wJlqcpEZG4ogBadqzeKJPOnlMRPsMWceUt29mEekIz8/PQFwkf4de0v62iLWqqWcC0kiLkjTisZ3sEcF97epd0z5Iy7rSxDY++yJq4puZnRxH3Xsvg5qwKf+cNmeiNcoGUi1VrLWoQRuQ30maPDz4fBRS7jnPUIfOk57i2bOoZxtkSDc7h31TqaGGaJZ08SqzqNlsZhakWMceNSJ7ChiHDdRkPHr4Ffw8aRx66dW1ws3MpidQX/PYIdzmW4feBPG1pL85f9VuiOtlvJZ27USN3yCN2ppmZg06PWGAWsGe31r83w4nnZldsevKZW3kk6+8BK/FJey7mC4KV23YbGQXanBWaviunpC0usnXZdYw96s1vGZv2IrbHxzAHDIzm0xjHkzMolbw1CzmcjXGvJulczw0ugfiG6+/BeJ6zdUiPnDoRYibdH3NtvD66w/xmq6Td8n8JLaxUUF91VoVfSnMzLI51BoOyReiWBwwM7NUKulMbhzZdGpZ9zlusd4xjYdU+hJkSC1gzwDHkAH7tqeI56JWwWv2uw/+LcT33IK60dltrh5ruYrHUWbtbnp/P/lhxBnSG5+egfjowecgPnXG1RuvVDAHNm9Cjd2777oD4oECasI2mpiTRjqmPTl8fyV069XB556HuF7DvE1lzmm+Rh3+7ks2nbHcou5/msYO1qbleRu/bpbgn0a5GfP8kLbhs59bm30mae23cwZhDw/XU45C9mujNsSJziM8l1s9drbBx8mfpzZHvjtHHp+cgdgnjeV3X7fgSTBfIs+MDuB7U+Yv+mbNzOA1lvJRA7lSZi1o19Oj1piBOFfgk4jHPkt63ikPvRHiFo4TpQqNB567runpw7zq70M96lqIxxmSh069RP5h5Bu4ZfcAxEEKddPNzOZr5A3js08P5snZaayP4zM4D8hkcG7S04vbC70E0zUqYfkc/qGnd2GbYYL/2UaSTqcts1jr2H+Da98EzZGTvCyGSfOdfSU2b0at9cHBwVXjHvLC42uc32/mtps9OObn8fyytwW3uUZjE29/bs71zRobG4OYtfHZk4PrJ58L9vRgnxL2ETVzvUh4HyuPI3nM2DiuHdplmaV7EEOkD0/XShiQF0Yxoc4MYJ68693vhHhwFDXjx8fRf6h/BNdndbpH06phX46Pu+tYtu2ZP4H7qEziXHzLAF4Lfj95cNK8IY4xj6OkMZbOY9J9npXkiti3N9+KvnRFH6+NPsqht9/0emebQQ47Ikfj0LvvfoOZmZXKVfutVVu3vgTmLXuPcYUOKedmT9L9gEdecLZXKeN1XzqBOdHr4zV6hnLmJYp39Y1APHw1epdWE3wNKhUcm4oFPJ9ZuieUpbrRIj++2VlcR09NoUeW7884bYjIZNSnC9gLcAyPaVlUJA/QO268DuLcZry277gC77WYmRXJ28unayUTNlb8d2e9KQu5nGWzCwcdxzi2RHQ/slGlewS8sDVz/PSKNH5FrkE0hDx++TSP5vGu1XL7i/31yB7T0tnVfa75/vYQtSlNxpOVMnnamVkzJM8Oup8c0/1s9h0s0ro214MxWyAn3evltR13fWrxWqhn3Hs/50O/9BBCCCGEEEIIIYQQQgghxGWBHnoIIYQQQgghhBBCCCGEEOKyQA89hBBCCCGEEEIIIYQQQghxWXDJenqkfH9Zb5z1N1l72Ccvi9hxpnC9K1Kkxcc6eSw4xm1gPw3HAyRBO7ZBmoEhabkFPorxpegwfNaz5jY6wtCuDmmSFjt9CHdBu2xF+Pp0CfXpXjh8AuLv/uCAs4daEzcakKboSg1gjwX2Npjy/JylFr05UqRzny+QZn0Gc6aQRV1TM7NcHo8tlSd928lxiFukIzo1hxqQIXkIbCIt26jp6h0HpIF81ZV7Ie7v2QRxnvT+aqTRW55Crb8gg8cY5DEnzMwq8+TjQrlfmUE9/6iGbdg2MgDx3Ay2IUe+CV6A+oFmZvUWXl+tZrIWY8z1pgO8+53vtd7ehfy56+bb4bXKPPZNEGP7/Ng95w3yruBD6gmxLxokIt9KUW5T4RiiHGkm6KG2PKyBb3wnvU4akUGAMWuZZtJ4fQ0OYN5a7J63t9P1UmpiblYpD700aZeS9nCWam5AHiBxgnYzb5PL9ODAVjNb0ML+3f/yWefzG0U2dc7Tg8eONOn1Z1LsSeBuz3f0UWmb1A1sgZRPU22s4rk7fQrHlh27Ud/czKxcQm3PEnl81Gp4vkszqBs8eRbr8dNPPAnxE499H+KQNWLNrBWS3i3Vpn0j6Iez6ZorIA7IXyfysaNmqZZOn5lx2nDyhSMQ58lHJrVCAzZI8ATZSNLp9HKtZf3bdjhzwYS/sVZs0jW5knZ66+vh6dEO99pZvQ3OxCxhG2m6wAKq4ewxF5E2P+/DOcKEJteopnukWR7mF/0NWq4fz0ZTqZ01b7GOTYyjVnc6GMU4jXrwhQL6b5iZNap4HTrazqS9HpVwHsVzvdkZfH9oeD7SRXdN4ac4N7H/p0+jZnijjNtMRXgetu/ZCnGcwfHyxOkZpw1z5BdWrmM/VGtYx+MSvj+m+lancT/vYRtn5l3vqxLV4c3DqFMexTNmZlarXLj283rQaDSW68WSt8f5YF+KO++803lPibxw2NuCPTq4JgwMDEA8NIR+U5OTqIPP/htmbs12fA4SvA1Xwj4h7L/BXhlJ2yuTBrnr2YnXEreZX2dfEn6dPT7MbHm+vgTX6JXeJknj1kayfaDPcov9FlOhDgIu3ORvkuRnSnOS5x9HbzMvTaODj9vcNIq1cr6KdcpPoxfRmdNnnCakqZ3TE5irU2ew1hVz5FfjeFzxOcHY8Qqz9nnGcYriQ0+hx+AJul/iUR3bmUq4p9CDfXX8B+iHURtc8DqpJHgcbiShf867g/Odx7rWAcyHl04+4myv2ofX+LY9OCZffQfex9i9H8fo41/Hufw8rdW2bdoF8ezkSacNzSbWPy9H9+jYL46mUBFdB+3GgFq96vyNPSFbdI+nUSHfriqO2X19+PmrRjCnrhm9Gt+fUKtqTcylkD15gpX/3dla1wpDC8KFPuH7si3Hh47m7nXXT4O97uIG3ful+tkgD5NWevX70zzWhGGCRxnfh23SmEvnmGs6+2hl6H5NJsv3q928rLA/KXl8RC3slzx5UPf24z24Ft2f4X7meYCZWUT3mwu5ZK8tP8Fz63zolx5CCCGEEEIIIYQQQgghhLgs0EMPIYQQQgghhBBCCCGEEEJcFuihhxBCCCGEEEIIIYQQQgghLgv00EMIIYQQQgghhBBCCCGEEJcFl6yReRAEyyYlERmgsJkUm7Wxmc3C9mzV9/hseEOmR+wzGZNbpkdG6JHr62tpMgMrFNigiAz+2Dw9WN0Ql61cogSnyZC2GZH5WrWKBo9z82iSNDaJ5lIvHz0F8bExNBNremhuY2aWzeJxeDG2vFw+Z2gTddhktdxsWLBopNhLSdMg40+fmtb03LaenkazNTZBCsgYi8/53DgaFWbpfNXJYCpOMHNu0nsGe9EAeKAXDcCKZEjEJuQ+76OBRk71Bhl8mllMub1lCE2oqyXMs5PHj0Jca2BelktsMo9tDlJuP5w8hYbguZ10jWcXDOJ8LzIzfO9Gs2Vk+7KR5eiWHW3e3X24dxOfnvObuCyv7h+8ZpIqxbaL3AZbjL2aAZO36TlbXagzc3Nz1kkCz7dgcdxKBXgysmRcns1inXLNMF0jTzbt8/m4yeTPo/Fx8yY0ds3nsfcrpRmnDdUy7mNgYDvEDzzyNYgPPP4wxC02VZ3H8S7LpnMJJqtNNpDOo6FbpncA4jiH9bdFk4fT01iLJlpY67ZfjYaOZmbXvuEsxA999SFsozVX/HfCZOUSJcnwu52JXZwwH1wLjol4Am18yC9oG7i91TeYMNWwJpkOj0+hGWytQobSZMAYNjD3I3rdpzlxUhtKNcylvq07cZuLRswRGRF3gnxqs+VTCzWpvxeNIFshmsPOzuE1F6TRFNfMbKAXRxcvhXOUBhl8Z9I032+QKa6Hr9caOCfyMm6Hz1XQ2PrEHB5XWMNaNE3z99FhrD2ZAubAgZcP4v6aeIxmZhOzaHgZGZtiYlylGrtpBM20i/1Y3+oR9kOGTKnNzBpNzNXTZ3AOWq4s5GW96hpzbyTZbNZyi0a0bFjK4z2bhrMpspnZpk04b2ZTcDY6Z8PvHJniVip4Pg8fPrxqm8zM9uzZA/HwMK4n2JCdaxkbkzumx2T0mmRkzn3J9ZWNx/k4mk3XwHa1NnG/Je2D273yPkWthtflRnNyZtYyi/cL4gj7KqC5XYpi33fzjoevM5MzEEe0NvZoG94zuJ4LKCfCiOZMCfcuuPyFPu4zm8V5VkhzWjbO9VMU04LFCxPGYHcyv/rrFPM6d76M11+BVhipyG3DHBkMn52Ygdi3hb6utzo7rysFkTUXTayztPZL0/ku+Hg98f02M7N9d70O4jf/1D0QDw5gjrWmJiB+a4B9e7BBdaWGtbIncOeJXg6vjQbVy4yP5yumlTDXvmIRczRNY1mxiPMQM/f6LE3j2BbW8B5TtoW1ZojG32uGMN5RwDZFpQQz9RiPc3Iec7CxItHrSRPDDcQLUsv3RsMQz3HMY01mdTNtM/ecxXRvuEnXVSvCbXjUBr5PyLU0aarP92nDhOtjtddDum/K42NEa75myx0PI/pbs4Z5kaLcz2bwmm7SPb9yDa+dJo3h9YQxOY7wGq+WsQ3pxXEmaZ5yPvRLDyGEEEIIIYQQQgghhBBCXBas6aHH7/7u79oNN9xgfX191tfXZ3fddZd9+ctfXn49jmO7//77bdu2bZbP5+3ee++1AwcOrHujxQ8fd999t/JOdBTlnOgGyjvRDZR3otMo50Q3UN6JTvK9733PzMx27NihnBMdRbVOdAPlnbgUWdNDjx07dtinPvUp+/73v2/f//737Ud+5Efs7/7dv7ucrJ/+9Kftt3/7t+0//+f/bI899piNjo7aO97xDpunn0IJsVbuv/9+5Z3oKMo50Q2Ud6IbKO9Ep1HOiW6gvBOdpL9/QUbuG9/4hnJOdBTVOtENlHfiUsSL1yo2TAwNDdm///f/3v7RP/pHtm3bNvvIRz5iv/qrv2pmZvV63bZs2WL/7t/9O/v5n//5C9re3Nyc9ff32/MHp6y3d0EbNIpRfyydJv1H9vTwkvTPSL8xYE8O1kAjfUd6PhTxLtqJwZuZT+JuHmlSNkmLL5NGPbNcjvwxSIKwRRppUdhe0zEm7c2xs6iLePgkxmOzqJ02V0F93npEXikB6/ualeZR263exHZOTJ7zBWnUKva5f/uPbXZ2FrRiNyrvbrn5xmUtXfbPyGZIm7ZAOvcZ1Hg1MztzBvuPde73XoF67D55wzRIsznNspOk11oru4NGtYTawQPDoxAXelBTmQ1p4hae4zRpDVeqqLPnp9xzzgwN4z4LBdSyrNbwOObK2I9TE/j6wMAIxOxRYGb2yvFnIe7Zg+0eGl1od6Me2f/4fx/Z8JwzO5d3K/fVriSvh2Imy246UrVtZPDb2XUk7YOJ2+zD6QcK2dspqc0X21ftJHz5DYnnzls1XNYQTcoFs42rde/at8PSi94cAbUqx7rPNBb5CZ4erGndS9reHo3jMcVNil9/040Qv/Ndb4c4ycrhB088B/Hdb74P4ke//R2Mv/p/IPb5/DVJA5ZebyScb3YryG7C2vTjP/N+iDcNbYb4+HH0yTp6Gr0ZMkXU4b/h+mucNhw9iFr8f/sgepnYCv+URrNp/+ML/6djefeb/+KDllv0iOHx8NXgaN9TIQhtdX1bhuvKhUyR3dpDcz2nVq1e/Nq9n7VtzcwOvfwKxCeOoT7//DT6rQU0Sc2l8JrOZsiDjubd+XSC9jvp+qb6UO//bX/3J83MrFKt2T/6pf+ro2Psg499zIo9C3No1mlmveHJSezfngJ6A5mZ9dLfSpVxiNNZWnP4OH8vz+Pr8/PYpvFZ1Oquhu45HzuN3j1cr/Zsx/nl8aPoEVevoo5yvjiA259Eb5Ny3W1DlebvqTStU0if309jPDCM40QmjW3yWrjPgd5epw051iWnvkotXo/1at0+/S//a8dq3a//+q8n+kGYuXWF3zcxgXPepbasZGhoyHnPSnhM5n20qzPsnWHm6mezt0U2m131dceDk/bJbWbfETO3H3if7APC++DPc8xa+7w+MXP7ko9r5XFUq1X75V/+Zci7jax1t27ZZanl9rQbvygHYvecu3NW8uygdWtMnwg9PKcR9ZVPvgN+wuIgzZ4btrruPfsr8CZj8pTLkadcKqEN7XoyIn1/9ugM6R5QRHmZdhrptqFBrWDP2yV/2lYU2aMnD3es1v3cdbcu+8gM1rHdgym8fnJ072vHnbud7b7lF34M4r4r0L8orONMOzVDPk5n8N7JSxM4JswO4n2Q6QQvmwbVgRZ5rERNOhcZ8kIkjw6Prgu+Z5fkrcDjxMtPP41vmMYx/YZR7Kc3bB2AeM8mrMd18n2KQ7cfIvJbODuF84Laivt+pUrd3vJP/mPH8u7/9ZGfX/ac5L5K0Tlt0T3RSsv1gmCfY17pxhHvA89pysNzGtI5bVFfhlHCGEtzKj/Ac5ZKY710bgtyG2nO5QW4z1aCJ0bcIt8s9toiT48M3f/kOXaVvIV9GqNTCV5tPnvm8HEtHnm93rDf/b3/n5NzSbxqT48wDO2P//iPrVwu21133WWHDx+2sbExu+++czcZstmsveUtb7FHHnnkvNup1+s2NzcH/4Q4H8o70WnWK+fMlHfiwlGtE91AeSc6jcZY0Q1U60SnUa0T3UC1TnQD5Z24lFjzQ49nnnnGenp6LJvN2oc+9CH7i7/4C7vuuutsbGzhaeOWLVvg/Vu2bFl+LYlPfvKT1t/fv/xv586da22S+CHgwIEDyjvRUdY758yUd6I9qnWiGyjvRKfRGCu6gWqd6Abbtm1TrRMdRbVOdAPlnbgUWfNDj6uvvtqefPJJ+853vmO/8Au/YB/4wAfsuefOSUokSQOs9lP+j3/84zY7O7v87/jx42ttkvghYP/+/co70VHWO+fMlHeiPap1ohso70Sn0RgruoFqnegGDz/8sGqd6CiqdaIbKO/EpUiq/VuQTCZjV155pZmZ3XrrrfbYY4/Zf/pP/2lZm21sbMy2bt26/P6zZ886T/RWks1mHT1OM1sQKVvMf/bsoNDxykjWYCadNr7gHJV61mSm5rXRfU7SGw/IZ8AP2LMDdWlbIWq/NVgLjvQAOeZ+MjPLkOZgQDpqW0ZQXzxTQH20gVn0HTk9gT8xOzWJ8VwJddzMzFIBpl21htuMV2iKLv13p/LOj82CxVMZ1lHnrlxDTbuih+crlXV1X3t68T0BaZ+WZrC/UqSV38N6uY62Pu4vSFAdbc6h/0WadPKqDTxHp44dgXjTMGpE9pJOZRSzPqCr+xySFl+9ibrMYQVzIJ3hc0M+PinOIdL9TdBCzWVRC392irxIMgvnt9lYqAXrnXNmq9S7FbTVe1/11Qukjc9EOxLKW9t9rPHl9sYiF9+Ei8fZwcXvsVO1Lp/JLPvzZOh6SlNhYU8P893jdMYfOn8B+YSw7nMuixrZ17/+WtwBaRd/79EnnTYceB69LEa34reBmnWshezl5Wij0rwgS+NnznenUBFpoQ4N45h6mnT4yyXUIj594iTEZ8hXK4pwn2dPHHPakKFxfWAIvRXi1LkjrS/quXZsjDXP/MWe5vHQT7FW+Nqvp4jGwMDRrWdN+dW3d2G2d6vPQdvp2PP7I8c0Dt/PPlpmZsePn4C42cD5SqGAc4mQxswln5UlihnMsxx5mmVz7gTTy+E2Gilsw/ce+7aZmdUbC3PZTo6xlXrFvPTCtenYRcU4B9o0sAviZsM91nJphvaLc5om+WuUaP5YKuP8skVearUG1oX5Es6RzMx6sqQh3ota20Eaa0OcQv3uE9O4j9b0DO0Br8coStAcdzwZyCckj/PFLOcZnSvOw0HSih7s63HaYHn8WzaHJzgTL/R1dXGe2alaF4bhsrdDsYhrAfa6YB8Jjs3cOsH61U1aI9ZobcXeFQMDAxCzF8bUFPoAmbnjPH+mpwfPBfs2sVltWw+7hNf5ODnmvmVPDn6d6/GFeHpwTWdW9tPSf+/bt8/6+vo2vNa1vHNLIB5K2APCKYYJON4vEXudkf47j2e0Pe47n/ylvART1LqH5zimWhTzmo/G+ZDGUNbuLzVpvppwfrmrfA/rY0yepiF7esSr+6xeyHyH+/Z818/SvjtV67z+HvMWa0FqbHUf0LAP69K19+xztjc4gvUyDimnyHsiSuH7C7jct310Pk9MncY3tNx+bNG9qjjAuhB5+PpMDV9vNLBNRVoLxNQvrcBtQ2ZmBuLRBs7bdu1Cz8Cb9mO8vYj1t0wPC+bKuL1N23DuY2ZWqtM9Oro8W42m898dG2NjszA+5+0Ar0XYbva6aDmVyZ17p6mOZHkdS/O8Bn2e54EcJ43zBboX7JFPLh8Hj8nsSU12HObHVLditw1RSGsUOuexkd9NE/upSV4ldfK/8VN0DM6axywIyN/NMVld2GeS99j5eNWeHkvEcWz1et327t1ro6Oj9uCDDy6/1mg07KGHHrK77777YncjBKC8E51GOSe6gfJOdAPlneg0yjnRDZR3otMo50Q3UN6JbqC8E5cCa/qlx6/92q/Zu971Ltu5c6fNz8/bH//xH9s3vvEN+8pXvmKe59lHPvIR+8QnPmH79++3/fv32yc+8QkrFAr2/ve/f6PaL35IeOSRR+yaa65R3omOoZwT3UB5J7qB8k50GuWc6AbKO9FJ/vqv/9rMzI4ePWpmppwTHUO1TnQD5Z24FFnTQ48zZ87Yz/7sz9rp06etv7/fbrjhBvvKV75i73jHO8zM7Fd+5VesWq3ahz/8YZuenrY77rjDHnjgAevt7W2z5XMs/VSvVDon++N5+LOXVAp/oMLyBfzTnsW/4mdoG7Gt/vNM/hljRD9jNPq5UdJPaFjyyqefsvHrLG/FbeKf9ET0c6KkX0q68lb4c7F6E38HNV/GnymWSa6qUi5BXK1gXKvgz83MXPmPehV/XtdYIbvQqC/IOPyzf/bP7MyZMxuedyv71HN+MkYyTnQczab709UW/a4spp/K8Wf457EN+um4R7nN8laNhDY0qZ0sk9aKsU0tOu4mHQN/nveZ9GtblrdqNEiqjX6aHNEVxPt0+o1/Npwgb8X90PLpZ4eNpf9d+PtG59xCuxf6ZW5urs07xeXOUg50qtY1wxX574yh+Bke7pLkrRpUNxp0vfEvt3nMpV+rW7mKY02pgpI+lbo7tvD4Va7iz5srNdxmndro83HT6yyZ4CX1A49vVOtYzjFFP/OtchsbeJz882u/7kpI8nt4GyvHmcbia53Ku9qK8+b8Wrl18fJWMUtNOdKkNDtrt4t1kLfy1ihvFdP54zbzz/jNEsa3kCVISGqD5CKa9P5mi/KMuy1BqcNrUg2w5Gthafzv5BhbWTGXdeobyVv5MV6j/NN9M7M44vkfSSdQf1br2GFVmhs78lZU/+pV95w7c1RaM9RS+Jl6jeZRVJtaxvJVlEMJ8lYRXUB8OTV9bAP3ZIPqnUcnp0b9WEuQg7AY58mO/MOyvNXCvjpV61bKSQVJmscr4LUCS1Ot3O4SLI3BMk8sZ8VxlWTyWKoqqQ38N5YqYjkrXqfyPtvJWzUabt4ntWsljhxTm3GE+4XbnHTu2slbrTzOmUWJmltvvbUjtW6lVAhfC+sib9Vu/Gojb8Vy4ix16iXIzsQe1yIe31bX7G0nb8VtSMKRReR+aCtvlXRv6hzrKm8Vd2Ydu7T/xor6VQ+pllHMejulqns9z83jfaG4hbWpRXMgj8ZLr4x1psQxSWqXL0jeiu/n4OsVH19vkkSQl0V5yQad7wb3k5m1SH6K5wUVUvaeL+FxztF9q3IZj3u+gtvLlF3pVP5MiT5TXrHuWlq3dSzvVuRBg+Wt6NhfjbwV37PzQp48rj5H4ntVPEYnXb/8Jyp9beWt+Bh4ncr3DaOEvIsaNLfke5ksrU8xy1vxPTyfx6WEc8GWECxvFS2em6X1xIVIEXvxhQkWd4wTJ07Yzp07279R/FBx/Phx27Fjx4ZtX3knmI3OOTPlnXBRrRPdQHknOo3GWNENVOtEN1DeiU6jnBPdQHknOs2F5Nwl99AjiiI7deqU9fb22vz8vO3cudOOHz/uGLaJC2dubu41249xHNv8/Lxt27at7TdrLoalvIvj2Hbt2vWa7KtLCeXchaG8W1+Ud+1Rzq0/yrv2KO/WF+XchaG8W1+Ud+1Rzq0vr+WcM1PevVZ5Leddp3NO9+zWD+Vde1Tr1pcflpxbk7xVJ/B9f/lJzdJP/fr6+l5zJ+FS5LXaj/39/Ru+j6W8W5KYea321aXGa7UfO5FzZsq7jeK12o+qda9tXqt9qbx77fJa7UeNsa9tXqv9qFr32uW13I/Ku9cur9V+7GTOmeme3XrzWu1H1brXLq/VfrzQnNvYr1gJIYQQQgghhBBCCCGEEEJ0CD30EEIIIYQQQgghhBBCCCHEZcEl/dAjm83ab/7mb1o2m+12U17TqB8vHPXV+qB+XBvqr/VB/XjhqK/WD/XlhaO+Wh/Uj2tD/bU+qB8vHPXV+qB+XBvqr/VB/bg21F/rg/rxwlFfrQ8/LP14yRmZCyGEEEIIIYQQQgghhBBCvBou6V96CCGEEEIIIYQQQgghhBBCXCh66CGEEEIIIYQQQgghhBBCiMsCPfQQQgghhBBCCCGEEEIIIcRlgR56CCGEEEIIIYQQQgghhBDisuCSfejxO7/zO7Z3717L5XJ2yy232MMPP9ztJl3SfPKTn7TbbrvNent7bWRkxH78x3/cDh48CO+J49juv/9+27Ztm+Xzebv33nvtwIEDXWrxpYny7sJRzq0Pyrm1obxbH5R3a0N5d/Eo59aGcm59UN6tDeXd+qC8WxvKu4tHObc2lHPrg/JubSjv1gfl3YWjnDOz+BLkj//4j+N0Oh3/t//23+Lnnnsu/hf/4l/ExWIxPnr0aLebdsnyzne+M/7sZz8bP/vss/GTTz4Zv/vd74537doVl0ql5fd86lOfint7e+M///M/j5955pn4p37qp+KtW7fGc3NzXWz5pYPybm0o5y4e5dzaUd5dPMq7taO8uziUc2tHOXfxKO/WjvLu4lHerR3l3cWhnFs7yrmLR3m3dpR3F4/ybm0o5+L4knzocfvtt8cf+tCH4G/XXHNN/LGPfaxLLXrtcfbs2djM4oceeiiO4ziOoigeHR2NP/WpTy2/p1arxf39/fF//a//tVvNvKRQ3l0cyrm1o5y7eJR3a0d5d/Eo79aGcu7iUc6tHeXdxaO8WzvKu4tHebc2lHMXj3Ju7SjvLh7l3dpR3l0cP4w5d8nJWzUaDXv88cftvvvug7/fd9999sgjj3SpVa89ZmdnzcxsaGjI/v/t3bFKM0sYgOERj0lhkUZIBEHSW2knotfhJQgRxBuw9QYsxdYqhW1ADXgFBmy1M4iVhYWgczoh6P/jzOwhOevzwBbZTTF8vN3HsiGEcH9/H8bj8cRcm81m2NnZMdeguypoLo3mqqG7NLqrhu5+TnPV0Fwa3VVDd2l0Vw3d/ZzmqqG5NLqrhu7S6K7cb2xu5pYez8/P4f39PbTb7Yn77XY7jMfjKZ3q/yXGGA4PD8PW1lZYW1sLIYTP2Znr93RXRnPpNFdOd+l0V053aTRXTnPpdFdOd+l0V053aTRXTnPpdFdOd+l0V+a3NvfPtA/wJ3NzcxO/Y4xf7vG9Xq8Xbm9vw83NzZdn5vp35pNHc/nMJ5/u8plPPt3lMZt8mstnPvl0l8988ukuj9nk01w+88mnu3zmk+e3Njdzb3osLS2F+fn5L1ulp6enL9snvtrf3w8XFxfh6uoqrKysfN7vdDohhGCuf6C7fJrLo7kyusujuzK6S6e5MprLo7syusujuzK6S6e5MprLo7syusuju3y/ubmZW3o0Go2wsbERBoPBxP3BYBA2NzendKrZF2MMvV4v9Pv9cHl5Gbrd7sTzbrcbOp3OxFzf3t7CcDg016C7HJoro7k8uiujuzy6y6e5PJoro7s8uiujuzy6y6e5PJoro7s8uiuju3SaCyH8d99Iz3d+fh4XFhbi6elpvLu7iwcHB3FxcTE+PDxM+2gza29vL7ZarXh9fR0fHx8/r9fX18//HB8fx1arFfv9fhyNRnF3dzcuLy/Hl5eXKZ58dugujebKaS6d7srpLp3uymgunebK6S6d7srpLp3uymgunebK6S6d7srpLo3mYpzJpUeMMZ6cnMTV1dXYaDTi+vp6HA6H0z7STAshfHudnZ19/ufj4yMeHR3FTqcTm81m3N7ejqPRaHqHnkG6+znNVUNzaXRXDd2l0V05zaXRXDV0l0Z31dBdGt2V01wazVVDd2l0Vw3d/ZzmYpyLMcZq3hkBAAAAAACYnpn7pgcAAAAAAEAOSw8AAAAAAKAWLD0AAAAAAIBasPQAAAAAAABqwdIDAAAAAACoBUsPAAAAAACgFiw9AAAAAACAWrD0AAAAAAAAasHSAwAAAAAAqAVLDwAAAAAAoBYsPQAAAAAAgFqw9AAAAAAAAGrhX6tQr91XxyLMAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1342,19 +1321,17 @@ "test example:\n", "true_class: ship\n", "predicted_class: ship\n", - "predicted_prob tensor(0.5685, grad_fn=)\n" + "predicted_prob tensor(0.5685, grad_fn=)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAb6klEQVR4nO2da4zkV5nen7duXX3v6Z6eiz1jPLZnF18A2xq8RI4QwYk1QZsASUCQaOMPZGcVLVKQNh8sIgXyjUSBFR8ipCFYaxLCggIE7wrtAs6FRYqAAQZfMjb2mvFMe9oz7h739HR3VdftzYcuS2Pved7uqe6ubvs8P2nUNeftU//zP/V/6l99nnrfY+4OIcRbn8JOD0AI0R8kdiEyQWIXIhMkdiEyQWIXIhMkdiEyobSZzmZ2HMAXARQB/Gd3/1z0+1NTU3748OFkLEcL0Mx2eghr9Dj1YTd6akEv73U++HOyKY7Gbnzw23Kd9nIdsHHMzMxgfn4++YQ9i93MigD+E4C/B2AGwM/M7DF3/3+sz+HDh/HDH/4wGWu1WtGxeh3mrmbXnFd0/UbajLqRz4we9CqwTusdzDo8RGIeCNqCD7y7XewPPvgg7bOZj/H3AXje3V9w9waAPwXwwU08nxBiG9mM2G8EcP6a/89024QQu5DNiD312eNvfLYwsxNmdsrMTs3Pz2/icEKIzbAZsc8AuHa17RCAC2/8JXc/6e7H3P3Y1NTUJg4nhNgMmxH7zwAcNbMjZlYB8DEAj23NsIQQW03Pq/Hu3jKzTwL4S6xZb4+4+9NRHzNDsVjs9ZBvOXbNanyAddo0Fq5LF9Ln1glWweHBtRHYclYIrDewlfpo9G/e1fjouTbls7v79wB8bzPPIYToD/oGnRCZILELkQkSuxCZILELkQkSuxCZsKnV+OvF3allkGPWWz/PObR3onE4TzIJXTRqo/H7y2qTJ0OVymV+sDYfY9F6mePgnHcJvVw7urMLkQkSuxCZILELkQkSuxCZILELkQl9XY03M7oq/GZICmG86Z2EYOrbwbl5h3dsddIr2s0WT6x57oUXaGz/gX001mk0aGx6ck+yvTrAV/c7b4LXsxe96M4uRCZI7EJkgsQuRCZI7EJkgsQuRCZI7EJkwpsiEebNbMtF9HpeW2/18XEUyxUaawd14WpLq8n2hSvLtM/Fucs0Njg6TGNTo6M0VrD0/Sza9YXtIrMpgte6X1e37uxCZILELkQmSOxCZILELkQmSOxCZILELkQmbMp6M7OzAK4CaANoufuxdX4fBbItUJRB1U8CN2md/Y7SRPZaoUfrrR2YNR2SbVYs8vf1RqNJY6/ML9LY4nKdxmqr6ey25ZW0JQcAhYEhGluu8cy2kSH+wrRIiBuKoUu2LfTLWt4Kn/3vuPvcFjyPEGIb0cd4ITJhs2J3AN83s5+b2YmtGJAQYnvY7Mf4+939gpntA/ADM3vG3X907S903wROAMChQ4c2eTghRK9s6s7u7he6Py8B+A6A+xK/c9Ldj7n7sb17927mcEKITdCz2M1s2MxGX3sM4EEAT23VwIQQW8tmPsbvB/Cdrm1QAvDf3P0vog6dTgfLKzUS5PZJqZjeSsiDPsUS234ojlmwXRCz5Qqd3t4zC1G+U2DHLK1yy4tlxA2W+EtdD7Zdmg2st0uv8liHnFuTeWEAVq4u8WMFGXEzL83S2B1Hb0m233oz/5Oy6LwoZphx6MF1ELlrJBbtXMWuHQsO1LPY3f0FAO/qtb8Qor/IehMiEyR2ITJBYhciEyR2ITJBYhciE/pacLLV6WChls56GhniBQULpfS+XO0Ot4xCNyywQYpBrEC8Nyv0+J7ZY5HNl2dforHJyclk+2CV53mt1ldobGiA9zswzb8k5WSSl1e4bThc4cdq1IllC6BY4AUil1bT11srKgBpXBZxsc/oOXvoFfShw4iuXx4SQryVkNiFyASJXYhMkNiFyASJXYhM6OtqvBVLKI1NJWPtYEW7WSCJK8YTFqJYu8NjhWiFnG1d1UtxOsT17kipPgBAq8HruBlL4gici4lga6VmMzi3YtolAYChkfSWTNFqvBUHghifkIFBPg4jE9ki20IBgEe7P/X4mkUFDNno46e7/mtOd3YhMkFiFyITJHYhMkFiFyITJHYhMkFiFyIT+mq9zc1fxiNf/a/JmAX15MokEWZktEr73HbkJhp79zvvoLFS8PbHat5FyREe+TFBdkQrsMr2kGQXAKgMpOeEJaYAQKXCLa+pPbxen4PHSiSppRLUwkOZv571Fp+PhcVXeezKlWT71SsLtE+T1UkEwsJwU1MTNHb0tnQtPAAoV9JzErlrzFKM0J1diEyQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhHWtNzN7BMDvArjk7nd12yYBfAPAzQDOAviou3P/o4t3OqiRrKdGjWdDlYldczXtqgAAhgKLp33722ms7g0aKxDrbaAySPtE9kk7suwCW258cprGCqxfkFXY6PA0r2JQFw5B5hh7xk6Q/XX2xRdo7KVLl2js8vw8jdVqaRutvcqtvEaNXwOrq7xe36HD+2nspsN8u6lhYr1FmXLMSo1y4TZyZ/8TAMff0PYwgMfd/SiAx7v/F0LsYtYVe3e/9TfuqvdBAI92Hz8K4ENbOywhxFbT69/s+919FgC6P/dt3ZCEENvBti/QmdkJMztlZqdqy8vbfTghBKFXsV80s4MA0P1JV0/c/aS7H3P3Y4PDvPyREGJ76VXsjwF4qPv4IQDf3ZrhCCG2i41Yb18H8D4Ae81sBsBnAHwOwDfN7BMAzgH4yEYOtmdiDz76j/5xMrYaZBoND6atLQuMhkFqZwAWFBRcXFyksU6rmWwvl3i2VmmQx7zEs8ZqTW7/eIefW4FYbCxzEABKwTjK5WBLo8L1W4fNwG6sd9LzCwDDYyM0tmdigsbajfRzVovcLl2Y557uzEtnaey2I7fRWLEQWMFkToqB/dpDvcn1xe7uHyehB67/cEKInULfoBMiEyR2ITJBYhciEyR2ITJBYhciE/pacBLu6DTTvlcxeN9hxtBIhX9JZ7DKiyjW6txeW2nyfeDOvnA22V4Jst5uOvI2GvvN+Qs09ud/8TiNNQvcRqsOpLPUhoL5GA7swfGxMRqbGE/v5wYA99zzzmT79N49tM+th26ksYJxe7AYZN816ul98UqBFVbbxwt63nBwgsduPEhj7Ta/rlZW0vYgs5yBKOGQ23W6swuRCRK7EJkgsQuRCRK7EJkgsQuRCRK7EJnQV+vt1SuL+B9/9v1krNPkGU8FpDPARipDtM9oYBndfJQX/5ue4tlVUwfT+8dN7uWFeqrD3NZaOPMijT155jyN1YKUJ5bAVgoyBMeCMd52E7cO/9Z999LY1HDalhsu8kvOg+3LGg1eILLVTttrALBC9nRrtvn1NjjE52Nigtu9F1++SGNzc2+s7HbN8YbTFtv+A/y6GhpKW6ntoHio7uxCZILELkQmSOxCZILELkQmSOxCZEJfV+NXVmr42S+fSsYGy3ybodXVdOJKpcLfq37nPe+msRdf4ivd87M0hLvuvDM9jiCRZGWV15IrB8kp996bTiQBgHqNrz5XyumX9OgtR2ifO2//bRq7Ye8EjY0N8USNTj193udffoX2ufQq30Fsdo73W17iJcoXFhaS7Y0mn8NyUL+wMsBf63aLOx7NJncThibSzsVdSF9vADBOkpCaLX4c3dmFyASJXYhMkNiFyASJXYhMkNiFyASJXYhM2Mj2T48A+F0Al9z9rm7bZwH8PoDX/JBPu/v31nuuZqOBV86nkz8mJ3ltskOH0gkBd7zzKO1THuBZFU+f/imN7a9ya2XE0nXELs1xv254bJzGpsb4sf7h8ffSWCGouTY+nj7e3qkp2ufy5Xka+82Lz9HYlQVey2/xytVk+9XFFdpnIdjl9/Ii35KpFSRRlcvpen2VAV7Hr1AM5neMX1cTwTZUe/bxen0DQ+mErsogT/RaqtWT7Z0gSWojd/Y/AXA80f7H7n5399+6QhdC7Czrit3dfwSA5+cJId4UbOZv9k+a2RNm9oiZ8c/gQohdQa9i/xKAWwHcDWAWwOfZL5rZCTM7ZWan2i3+1VEhxPbSk9jd/aK7t929A+DLAO4Lfvekux9z92PFEv/+uxBie+lJ7GZ27dYXHwaQzm4RQuwaNmK9fR3A+wDsNbMZAJ8B8D4zuxuAAzgL4A82crBmvYaXfv10MrY4xmu//YMH/2Wy/fjxB2ifH/7PdK07ANhHsowAYN9QsKVUKW27VI3X/do/zmvhjQaxalAHrRXUk2NZWa02H+PLz75EY+cu8bpqjWZQC6+ansfRUb610r4qt5qaDW6vRZQraYutGNhrUWx0lF87Y2M8Vixyy25pOW1HXrw4R/vU6+k+jWCe1hW7u3880fyV9foJIXYX+gadEJkgsQuRCRK7EJkgsQuRCRK7EJnQ14KTnU4H9ZV0ZtM73vUO2u/9D7w/2T41wTO57v+dIGuswC2j0TIvAjk2kraTihVuk5UqvCijB+PokC2vAODKqzxLbayUHn8HZF8oALf89l00tu/Qb9HY5Vd51tsoyQBrtvk5m/N7T7nAx98Jtjyq19PZYUvLS7SPd9LZjQCwtML7nZ/l2Y/1Gs/2a66kx9hu83EMDadf55YKTgohJHYhMkFiFyITJHYhMkFiFyITJHYhMqGv1ttAdQhvu+3uZOxj//xf0H4r7XTm0rPP84ysjvGCgtUgw67pPDvp8gKxQjrcVmm3azRmwex3wPciu7qYLuYIAMWL6aynC5cu0T6rqzxTqlPnVs5wkCH4wnMzyfbfnDtH+1iJv2aTe7nN2ljlc3XlSrpQ5fwczyjzwPIqFLjNZ0FseJBbsBMkQ7Aa7AVYW0pfVx5kN+rOLkQmSOxCZILELkQmSOxCZILELkQm9HU1fs/UJP7JP/un6diBQ7Tfr55Kr+xG9bYaQXJEO0gK8U5QmwzplXoLasK1g9VRD/oVwrdh3q/ZSh9vbp47F60WdwyCBWZMjE3QWKORXiG/PM+3eEKRvy5zc+lkEQBYbfLxt8g2Se0GTzQqVrgshqq8QvJAVNeuxc+tUWfXMXcFBodJ8hU3k3RnFyIXJHYhMkFiFyITJHYhMkFiFyITJHYhMmEj2z8dBvBVAAcAdACcdPcvmtkkgG8AuBlrW0B91N1fjZ5rZWUFvzx9Khl74snTfAxIJxEUizxxohTUkiuWeM04gD9nkVhDpQp/z6xW+bHKZX6sygAffyGoa1f09HOOVfiu2oWBIDGoyO2fepsnybSIO1gZCrZ4WuEJLSvLvN5do8X7WZPYWoG32Qjq5LXJVk0AsHyVj2MosPOmx9PzXwq2ACO7WsE2ab21APyRu98O4D0A/tDM7gDwMIDH3f0ogMe7/xdC7FLWFbu7z7r7L7qPrwI4A+BGAB8E8Gj31x4F8KFtGqMQYgu4rr/ZzexmAPcA+AmA/e4+C6y9IQDYt+WjE0JsGRsWu5mNAPgWgE+5O/8D6m/2O2Fmp8zsVGOVf61RCLG9bEjsZlbGmtC/5u7f7jZfNLOD3fhBAMlSKO5+0t2PufuxygBfWBJCbC/rit3MDGv7sZ9x9y9cE3oMwEPdxw8B+O7WD08IsVVsJOvtfgC/B+BJMzvdbfs0gM8B+KaZfQLAOQAfWe+Jlq4u4q/+zw+SsZXFBdqvUk7bNYNDo8HR+KkVncc8eP8rlJn1xv2OavBpJqoxVqlyi6o0zOuxVSvjyfaBQmBTBm/5VuXnZhZk362ms8rqJAsNAJpNnonWsSD9LhhHiWUIBttJYYDP1cQwj40P8+tqZDDIliunz61sPKvT2sTm82gu1sHdfwyeOPfAev2FELsDfYNOiEyQ2IXIBIldiEyQ2IXIBIldiEzoa8HJcrmA/dNjydhs7RXar91eSLaPTU7SPqVg+6fFOZ6cd3WRF0RsttPWUCfIukJQ+DIksMrKg/ybyV5Oz28r2GuqEHhvQxVuAQ4P8li7STLiOtwawgAfh0X2ZpBRNkjszclRvnXV4RFu6R46uJfGgiQ1rNb5ll0FT9uRpSI/54kxlgnK++jOLkQmSOxCZILELkQmSOxCZILELkQmSOxCZEJfrTf3DryZLtg3Psyzgq7W09ZEs71E+7z99rv4OG7gWWOXXpnjsfl0bGmBF2VcWeEFCttBwUZv8+yw4VI6sw0A3v6u25LtF65w6+eVRW5F1hp8jmt1fm5sX7yBoBDocFCAc2KYZw9O75mgsYM3HEi233bjftpn3wDPiFsKCl9evszt42JQlHRoOF0MdGSUn/PUVLpPqRRYrDQihHhLIbELkQkSuxCZILELkQkSuxCZ0NfV+HajifkLM+lYk68+10gdsZXz52ifyWBrqOkqT4Ior/IV5sFCOqmlVuTJHe58xR3gq/hgtdMArNS4Y/Ded9+ZbL/z9nfQPufOvUhj8wt8pX6V1JkDQBNeSkHtt8ECP+e9Qb2+iWH+erbJHL88x6+dZ+dmacyq3DUa28ddnsExnlwzRJJyJvfy5xsZTzsybIsyQHd2IbJBYhciEyR2ITJBYhciEyR2ITJBYhciE9a13szsMICvAjgAoAPgpLt/0cw+C+D3Abz27f9Pu/v3woOVizhwMF03buZc2pIDgPYqsa+M21q/+fWzNHYlqKsWvfstd9Lb8Sy3+DY9nSDZJbLXCsZriTVWeVLLL378/WT7+4ZHaJ+7Cvysa+PcMuq0uHVorfR51xvcYr3CtjQCT0ICgBefuUhjc7V04kq9zOd3cB+vbbjnwASNDYzx66oYbP80NJ6uGzgwxC1FKzLp8vPaiM/eAvBH7v4LMxsF8HMze23Dtj929/+4gecQQuwwG9nrbRbAbPfxVTM7A+DG7R6YEGJrua6/2c3sZgD3APhJt+mTZvaEmT1iZukEWyHErmDDYjezEQDfAvApd18E8CUAtwK4G2t3/s+TfifM7JSZnWq3e6yhLoTYNBsSu5mVsSb0r7n7twHA3S+6e9vdOwC+DOC+VF93P+nux9z9WLGoxX8hdop11WdmBuArAM64+xeuaT94za99GMBTWz88IcRWsZHV+PsB/B6AJ83sdLft0wA+bmZ3Y80/OgvgD9Z7okq1gpt+66ZkbDGo7bU8w2wXbjPU29wWutzif05Ugm2SGiSDre29Za9FmPfW77knfppsP3+VZ6hNF7hl5ME42oFlt0QyBF/2Gu3zfJBxOBNssbUyxF+z0ZtuSLbvP/I22qc6kbbCAACFQDLBJ9eREW59DpGMuEJQr8+NHItLYkOr8T8mTxF66kKI3YX+iBYiEyR2ITJBYhciEyR2ITJBYhciE/pacLJYKmFsTzqjaHr/PtpvllhvgcuA6Lt6q4FV1gwcL1a8sN2jvRYRPmNw4s1a2tpanuNbExUGJmisuMqz1C4EBTNPI22VPV/ir8zyCC8SOnyYfxt7+gaeqjE1nd7maWCY242NYPbXvkOWZqDEiz0WoxgpElmMtnKihSX5xaE7uxCZILELkQkSuxCZILELkQkSuxCZILELkQl9td4KVsAg2WdtINjLq1xJvye1m9wGiayrlkXRwLRj3bbeeQutQwTFKJfIHmvPNHhG2XhlkMaeqfNijk+3lmlsnhRfnDp8hPY5eIRbaBOkUCkADATFNAud9Fw1AwutWOLFIYtBJlqpwvtZgb9mbZKhacHrXCBZb5EdrTu7EJkgsQuRCRK7EJkgsQuRCRK7EJkgsQuRCX213hxAk+x9tlzj+5eNTlST7fVlXoSw3eHWSpsV6wPQjmw0ErSo3mSPuHMTxek+X8ByIT2/f9W4Qvu8uML3o5sf4nNV2n+Yxg4emk62H5lOtwPA1PgUjRUCe2058D7rxGYtBVlo1cAGrgb7r5Uq6esUAKqDPMtuoJruVy7zLMBe0J1diEyQ2IXIBIldiEyQ2IXIBIldiExYdzXezKoAfgRgoPv7/93dP2NmkwC+AeBmrG3/9FF3fzV6LvcOmu30CnqxwldU90ynV0CbIzzxoBUkyQQhNINVfCer8WSnIwCABakJUaKDBzGU+CptqUQSPwb5XK2O8ySTWyfSNdwAYM8k3yZpZCx9aY0M8VXwgSq/HOstbnk0glp4Tla0i+Xg0o/mPoiVg0SYqAZdmYyF1aYDACcORGQmbeTOvgrg/e7+Lqxtz3zczN4D4GEAj7v7UQCPd/8vhNilrCt2X2Op+99y958D+CCAR7vtjwL40HYMUAixNWx0f/ZidwfXSwB+4O4/AbDf3WcBoPuT14IWQuw4GxK7u7fd/W4AhwDcZ2Z3bfQAZnbCzE6Z2anVOv/GmxBie7mu1Xh3XwDwvwEcB3DRzA4CQPfnJdLnpLsfc/djUTUaIcT2sq7YzWzazCa6jwcB/F0AzwB4DMBD3V97CMB3t2mMQogtYCOJMAcBPGpmRay9OXzT3f/czP4vgG+a2ScAnAPwkfWeyAwoltPWxcQUT3QYGSY16Fa50RBZb612VLsuqPtVSE+XBe+ZhaiOWIFbK4VSkIAS2JRDxOIZHeUJHPtHJmhsZIDXpxsOatdVBtKWVyPI7VgitQYBoEYSqIA4salKbMpKkEwUWWh82yXACnwc7vw1azSayfZKJd0OAJUyHwdjXbG7+xMA7km0zwN44LqPKITYEfQNOiEyQWIXIhMkdiEyQWIXIhMkdiEywSJLYMsPZvYKgBe7/90LYK5vB+doHK9H43g9b7ZxvM3dk4X++ir21x3Y7JS7H9uRg2scGkeG49DHeCEyQWIXIhN2Uuwnd/DY16JxvB6N4/W8ZcaxY3+zCyH6iz7GC5EJOyJ2MztuZs+a2fNmtmO168zsrJk9aWanzexUH4/7iJldMrOnrmmbNLMfmNlz3Z97dmgcnzWzl7pzctrMPtCHcRw2s/9lZmfM7Gkz+1fd9r7OSTCOvs6JmVXN7Kdm9qvuOP5dt31z8+Huff0HoAjgrwHcAqAC4FcA7uj3OLpjOQtg7w4c970A7gXw1DVt/wHAw93HDwP49zs0js8C+Nd9no+DAO7tPh4F8GsAd/R7ToJx9HVOABiAke7jMoCfAHjPZudjJ+7s9wF43t1fcPcGgD/FWvHKbHD3HwG4/IbmvhfwJOPoO+4+6+6/6D6+CuAMgBvR5zkJxtFXfI0tL/K6E2K/EcD5a/4/gx2Y0C4O4Ptm9nMzO7FDY3iN3VTA85Nm9kT3Y/62/zlxLWZ2M9bqJ+xoUdM3jAPo85xsR5HXnRB7qnTLTlkC97v7vQD+PoA/NLP37tA4dhNfAnAr1vYImAXw+X4d2MxGAHwLwKfcfbFfx93AOPo+J76JIq+MnRD7DIBrN/Y+BODCDowD7n6h+/MSgO9g7U+MnWJDBTy3G3e/2L3QOgC+jD7NiZmVsSawr7n7t7vNfZ+T1Dh2ak66x17AdRZ5ZeyE2H8G4KiZHTGzCoCPYa14ZV8xs2EzG33tMYAHATwV99pWdkUBz9cupi4fRh/mxNb2wfoKgDPu/oVrQn2dEzaOfs/JthV57dcK4xtWGz+AtZXOvwbwb3ZoDLdgzQn4FYCn+zkOAF/H2sfBJtY+6XwCwBTWttF6rvtzcofG8V8APAngie7FdbAP4/jbWPtT7gkAp7v/PtDvOQnG0dc5AfBOAL/sHu8pAP+2276p+dA36ITIBH2DTohMkNiFyASJXYhMkNiFyASJXYhMkNiFyASJXYhMkNiFyIT/D8eS5uOWTG7pAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGdCAYAAAC7EMwUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsOElEQVR4nO3dfXCc5Xnv8d+zq93V22pl2dZbLFwFbBIweAomxg4B4wwa1KkLcXsOCTM5ZtowIbzMeJwMqeEPNJ2pxdDBQ2Zc3DbNuHAKgT8KlCkEcI6xnYzr1qYQfAzlmEHGIkgoFrZW1suutHufPxKrFTZwX7bWtyR/PzM7Y+1eunQ/++zutY9397eRc84JAIAAYqEXAAA4fzGEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBlIVewCcVi0V9+OGHSqfTiqIo9HIAAEbOOQ0ODqq5uVmx2Gcf60y7IfThhx+qpaUl9DIAAGepu7tbCxYs+Myakg2hRx99VH/1V3+lnp4eXXrppXrkkUf0ta997XN/L51OS5J+9atfTfz784yPj3uvi6Orc++8uM6t4VfGeku5M/4nuzN0j9mb+4uKptaRod7JdhuMjK9UTJf0s1Le1yzbODg4qCuuuMLrMbwkQ+jpp5/W+vXr9eijj+qrX/2q/vZv/1bt7e166623dMEFF3zm7568EtPpNENoljgvrnOG0Kc198cQOmvTZQid5LOekrwxYfPmzfqzP/szfec739GXv/xlPfLII2ppadHWrVtL8ecAADPUlA+hfD6v1157TW1tbZPOb2tr0549e06pz+Vyymazk04AgPPDlA+ho0ePqlAoqKGhYdL5DQ0N6u3tPaW+s7NTmUxm4sSbEgDg/FGyzwl98v8CnXOn/f/BjRs3amBgYOLU3d1dqiUBAKaZKX9jwrx58xSPx0856unr6zvl6EiSUqmUUqnUVC8DADADTPmRUDKZ1JVXXqnt27dPOn/79u1auXLlVP85AMAMVpK3aG/YsEHf/va3tWzZMq1YsUJ/93d/pyNHjuiOO+4oxZ8DAMxQJRlCt9xyi/r7+/UXf/EX6unp0ZIlS/Tiiy9q4cKFpfhzAIAZKnLT5VNWv5PNZpXJZHT48GHV1NR4/U6hUCjxqnA2zosPqxpFRdtt1nQnjdmub9NHRF3c1FvOfy1RzPZQFJlWbn2Y48Oqn2RNTPjiF7+ogYGBz30cJ0UbABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABBMSbLjpoJzzjsmYrpEZuD0Zur+MUWgWLfRmcJyJNNSjNE6hueiubFxU+eyRMK/uGC7TuJRKW9Xxv1zHrDcjy21HAkBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgpm22XFRFHlnd5kyvnCKmZrtNq0Yb4IF43Xuiv5/YLxoyz0bGy941x567z1T74bGeu/aYj5v6j2/bo53bXnKkGEnqch94hSWx1lLLUdCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgpm1sj3POO07GEjtDxM+5V8rrfPpEDtm2MZ5ImuoLzr//yImcqffxgSHv2o+OfmzqXZGu8q6dm06besci/+fQkfH5dhTZoo9KyhKXU8JlWBDbAwCYERhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgpm12XCwWKRbzyx9yxemSmFQ6huiw3/1CSZYhyZ4FFythdlzBkJZVLNrywOJx/+do+fyYqfdv+rOm+uzQqHftSK5g6j007J81F0tV2nqP5L1rqyttN9pxQ7ktqc8U1zatzMRsTI6EAADBTPkQ6ujoUBRFk06NjY1T/WcAALNASf477tJLL9XPf/7ziZ/j8Xgp/gwAYIYryRAqKyvj6AcA8LlK8prQoUOH1NzcrNbWVn3zm9/Ue++996m1uVxO2Wx20gkAcH6Y8iG0fPlyPf7443r55Zf14x//WL29vVq5cqX6+/tPW9/Z2alMJjNxamlpmeolAQCmqciV+PuRh4aGdOGFF+ree+/Vhg0bTrk8l8spl/uvt4hms1m1tLTo/fcPq6amxutvFMZtb0mdiUr5Fm3rTWBavUXbsHTzW7TL/F/LNL9Fe2BmvkV7ZMT/q8Alae4c/6/sbphbZ+udrvaurUwlTL01nb7e2/AxhOnyFu1sNqvW1lYNDAx87uN4yT8nVFVVpcsuu0yHDh067eWpVEqpVKrUywAATEMl/5xQLpfT22+/raamplL/KQDADDPlQ+gHP/iBdu3apa6uLv3bv/2b/uRP/kTZbFbr1q2b6j8FAJjhpvy/4z744AN961vf0tGjRzV//nxdffXV2rt3rxYuXGjqMzwyqniZ5//jFv1fGCgzfmbJGXpbXkOw1keR7XUby2tIsWJpD4hjhv/TtualnMj5v1Zife2rosz/7jE6Nm7q3WOM7ek75l9ftFzfksYM+TfDgydMvfuOfuxd+8Gve0y9L1n0Re/aC39vgal33NleVzPdtpzx/mbZncaXhCwPK5b7saV2yofQU089NdUtAQCzFNlxAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgSv5VDmdqYCSnQlnSq7a6ssq7b8w3j+53CkX/TDBzBJsh5yluzISKGcLjoliJn4sYcrWs34fS2/Nr79q6Otv31VSU+93+JCk3OmzqXZny7y1JjfPnedc6Y4DY0LB//l5V0rbu/OiId208ZvsOnxM5/+9BGjferqLI9tBoyyW0rqVUnW2/YIrHs2RX+pcCADC1GEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgGEIAgGAYQgCAYBhCAIBgpm1sT1lNncrSNV61BUPszFgsbltIVChNraRC0b8+ZooFkSJDvZOtt5UpwsOYOzKe949uiZxt/8gQ2VSb9o+OkqSxMeN1HvePm6qsTptaW2J7onjK1Dsy5E2lKmyRWpHhxjIe2Z5vO1uCkCn+xnobl+H+absGjTE/xscgXxwJAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIKZttlx//unTytVXuFVGxUN2UpltnSl6nS5d+1FrReYel91+SXetWXGpwvOcJ04YyaUs4ZfRYaML0NemyTNqavzrk2m/PelJDlDslYyactUmzvHlmHo5F9flkyaeifLDA8DCdt1ODruvz+PZ4+Zeh8fGPCuHRw4buo9Njxiqlfkfx+aO7fW1HrRRV/0rk0kbQ/plru+JavPEpDHkRAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgmGmbHTc6nFOx6Jc/lB8Z9e6bsORkSRr0j6dSpbF34ctf8q4ddXlT75ghOy6V9MvoO8kYNaeC4RecIWdOkjJ1871rY8beivk/R8sXi6bWcWO+myL/tdhWIhXlv38Ov/+eqfev+/q8az/u7zf1Hhnxz3cr5GyZhPkR2/0tlxv2rl3Q0mDqfUHLAu/aKmN2nAz73pKlaHmI4EgIABCMeQjt3r1ba9asUXNzs6Io0nPPPTfpcuecOjo61NzcrIqKCq1atUoHDx6cqvUCAGYR8xAaGhrS0qVLtWXLltNe/tBDD2nz5s3asmWL9u3bp8bGRt1www0aHBw868UCAGYX82tC7e3tam9vP+1lzjk98sgjuv/++7V27VpJ0mOPPaaGhgY9+eST+u53v3t2qwUAzCpT+ppQV1eXent71dbWNnFeKpXSddddpz179pz2d3K5nLLZ7KQTAOD8MKVDqLe3V5LU0DD53R8NDQ0Tl31SZ2enMpnMxKmlpWUqlwQAmMZK8u646BNvhXXOnXLeSRs3btTAwMDEqbu7uxRLAgBMQ1P6OaHGxkZJvz0iampqmji/r6/vlKOjk1KplFKp1FQuAwAwQ0zpkVBra6saGxu1ffv2ifPy+bx27dqllStXTuWfAgDMAuYjoRMnTujdd9+d+Lmrq0tvvPGG6urqdMEFF2j9+vXatGmTFi1apEWLFmnTpk2qrKzUrbfeOqULBwDMfOYhtH//fl1//fUTP2/YsEGStG7dOv3DP/yD7r33Xo2MjOjOO+/UsWPHtHz5cr3yyitKp9Omv/ONP/ojVVX7/U5u2D++o6rCFlETGQIoKoyRGZEhX8X6rsHi+Jh3baKs3NS7rMJW78ri3rUjY7a4FFf0v85jhhgeSUqUJbxrywzbKEmJhC1CKIqVLvpozBCrNFr0v11JUlVNtXftnNpaU+9C3n8t5XHb/f54vyGvS9IHvz7sXXtR60Wm3vGY/23cEpElSXHDbcUa1+XLPIRWrVol9xmriaJIHR0d6ujoOJt1AQDOA2THAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCmdKvcphKxbGiimN+4Wpxwyy1JXxJ1ckq79qKcttXUoyM+ufBDY8VTL0Pv3fYuzaZtOVqXdC60FTf1f2hd+2/vPR/TL3HYv75buWppKl3pWF/Vhnz9DI1Nab62ox/9uLv//7lpt7z583xrr1wwRdMvWOR/z0uHtmeE+dHc961ZYb8NUkaqa8z1Tc31frXfqHp84v+m0LB/74/PGzM9jNkaVp2jzPsd46EAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBTNvYnn/52Q6lyv0iJYpj/lEVMeVN66hOVnrXpo1RLL+3aIF37fy51abec5su8K6tm1dv6l1eZYuoOf72+961B97uNvUecc67tsyY2VQm/941xuvkogts0UcrvnKFd+3cKv+IH0mqivs/DLjI1Fr5/Lh37XjBP4ZHkoYHjnvXjhVscTYVlbb9WVvrH+/1Ue9Hpt5Hj37sXVtRZYvgamj0v+9XVvrHWA2O+O9LjoQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwUzb7Lj/ePNtlSWSXrUVnnWSlMtlTetIJv3n9PKrrzL1fv/X/jlp/T2m1lpy6aXetckKW07WcM6Wv5co98+cuuKKy029Rw0ZVcmE7ea+6Iut3rWXfvliU+/mebWm+ppK/0yw4qht/3T3/sa7tu/YMVPvnqP+vYdODJl6Hz9+3Ls2P2bLpUskbbeVZMr/PlQY988klKSxMf/8vcpaW27gEvk/TmQy/r2HTpzwruVICAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQzLSN7Tn66yOKxxNetXV1c7z7LlhQb1rHJZcv8q5NpCJT74Nv/Lt3bUO5LVqnOip41/YdtWUCVdVkTPVza/zX/kc3XmvqHYv8n0dlMrZ1z5s717v244/7Tb273j9kqh847h83lR0YNPUezA571x4fskXrfJwd8K4dHxsz9U4k/B4fJCmZ8q+VpFjc9vw8U+N/36+trTX1nlPvH5eTqqw09U5W+NefGBn1rh0y1HIkBAAIhiEEAAjGPIR2796tNWvWqLm5WVEU6bnnnpt0+W233aYoiiadrr766qlaLwBgFjEPoaGhIS1dulRbtmz51Jobb7xRPT09E6cXX3zxrBYJAJidzG9MaG9vV3t7+2fWpFIpNTY2nvGiAADnh5K8JrRz507V19dr8eLFuv3229XX1/eptblcTtlsdtIJAHB+mPIh1N7erieeeEI7duzQww8/rH379mn16tXK5U7/zYadnZ3KZDITp5aWlqleEgBgmpryzwndcsstE/9esmSJli1bpoULF+qFF17Q2rVrT6nfuHGjNmzYMPFzNptlEAHAeaLkH1ZtamrSwoULdejQ6T+cl0qllEqlSr0MAMA0VPLPCfX396u7u1tNTU2l/lMAgBnGfCR04sQJvfvuuxM/d3V16Y033lBdXZ3q6urU0dGhP/7jP1ZTU5MOHz6s++67T/PmzdM3vvGNKV04AGDmMw+h/fv36/rrr5/4+eTrOevWrdPWrVt14MABPf744zp+/Liampp0/fXX6+mnn1Y67Z9/JEk97/6nIs9csGxNtXffNW3fM63jxhu/7l378x2vmHrX1/pfJ/WVVabeFWX+WVblUdHUuyFTY6pPG+rLK20ZeeNy3rXJlLF3wf966X3n16beR/o+MtXnx/y3s6zcdltJp+u8a+vLbdlkY3lbHpxFIumfBxc3ZsFZ6y2PbzU1tsfCeNz/vnxiyD8HUJI++uiod+3oqH/vkWH/jEHzEFq1apWc+/Q7xMsvv2xtCQA4T5EdBwAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIhiEEAAiGIQQACIYhBAAIpuRf5XCmRoeHvLPjLlt6mXff1V9fbVrH3Nq53rVfXX6tqXcs5p8Hlk7Yvu6ipto/PyyetGWqlSUrTPXOsJ1F5U29B471e9fWlNmuw6Li3rVfvHiJqXf9gsWm+o+P+X/jcLq21tR7rOC/fyJne96aiPlfh8WiLcNwdHTUu/bE0AlTb1csmOpPDPv37+7pMfUeHfHPbBsb9r9OJKlQ8N/Oyir/+49lzRwJAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCmbaxPb+3+HLF437L++b/+o533+FCwrSOd979yLu2GNl6l9dUe9eOucjU++PjhtiRon/EhiQVCiOm+shwKysqZ+o9mB30ro1/NGbq/WFfn3dtLmfrXRwdN9VXVfrHML136ANT764jR7xrozLbbbxunn/sVT5n2/cDAwPetf1Hj5p6O0OcjSTFYv6RQ5GhVpKqKvxjsmrL/W8nklRe7h/FM3LC/35viVTiSAgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQzLTNjrv5f/4Ppcr9MpPmNC7w7vur/2vL1crn/TPB8kVbJlRBce9aV7Q9X4jLP2sukjP1LhRs2+kM/WPmp0X+vcfGbes+2u+fGzg+bsvTM8aHqbam1rs2n7dlsH3cP+RfHPe/zUrS0aP+GWK5Mdt1OD7i37uQz5t6x5O2h8bK8qR3bSpuvC+P+1/n+VFbhqHkn5FXUVXuXRsZNpEjIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMNM2tudXB15XIuEXhfHmgTe8+0byiwI6KR5PeNeWJVK23mX+MRiS/zokKW6IVylL2p6LlJdb1i0lEv5rT6Zs12Es6b8/4852HdYk5/ivI1Vt6j0W949LkaTRwrh37bgthUnJykrv2rFhWyTQ8FDWuzY/busdjRkiaox5UPmCMcpqaNi7dmjQtp2Vhgih+Rnb7bCs0v++nDTcfYr+N1eOhAAA4ZiGUGdnp6666iql02nV19fr5ptv1jvvvDOpxjmnjo4ONTc3q6KiQqtWrdLBgwendNEAgNnBNIR27dqlu+66S3v37tX27ds1Pj6utrY2DQ39VwrvQw89pM2bN2vLli3at2+fGhsbdcMNN2hwcHDKFw8AmNlMrwm99NJLk37etm2b6uvr9dprr+naa6+Vc06PPPKI7r//fq1du1aS9Nhjj6mhoUFPPvmkvvvd707dygEAM95ZvSY0MDAgSaqrq5MkdXV1qbe3V21tbRM1qVRK1113nfbs2XPaHrlcTtlsdtIJAHB+OOMh5JzThg0bdM0112jJkiWSpN7eXklSQ0PDpNqGhoaJyz6ps7NTmUxm4tTS0nKmSwIAzDBnPITuvvtuvfnmm/rpT396ymVRNPlbPZ1zp5x30saNGzUwMDBx6u7uPtMlAQBmmDP6nNA999yj559/Xrt379aCBf/11dqNjY2SfntE1NTUNHF+X1/fKUdHJ6VSKaWMnw0BAMwOpiMh55zuvvtuPfPMM9qxY4daW1snXd7a2qrGxkZt37594rx8Pq9du3Zp5cqVU7NiAMCsYToSuuuuu/Tkk0/qn//5n5VOpyde58lkMqqoqFAURVq/fr02bdqkRYsWadGiRdq0aZMqKyt16623lmQDAAAzl2kIbd26VZK0atWqSedv27ZNt912myTp3nvv1cjIiO68804dO3ZMy5cv1yuvvKJ0Oj0lCwYAzB6Rc86YNFVa2WxWmUxGVfWLFMX88s+Gs8e9+ycT/jlZklRRaRmetpfY4s6/3hnfQxJLWLLjTv+mkU9TnrLl75WX+7/mlyy37Z+yqrn+60hmTL1TMUNuoPEtPlG57TqPIv+76Vgub+o9OjLq33vM1rsYFf2LDdsoSWUy1Hs+lkxI2XIGa6v86zNVtseJOWn/+1ttlS3XsbLaf90pQ87c6MiIHvjhDzQwMKCamprPrCU7DgAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQzBl9lcO5UD+vRrG4X9RGz8hvvPsWCsdN66j53bfG+iiLbFEf2aPHvGsHs0Om3mMF/3iV4njO1FtFQxSLlSEqR5ISFfXetS7x2fEhnzQe+d89YsbcnsqkLZ6oqsK/vjA2buqtoiH+JmXbzsgQCVWetD0cVRjioOrSVabeLdW2rMsFTfO8aw3pN5Kk3Oigd23M+UcwSVJZ3H//1Nb4xweNGO7GHAkBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgmEIAQCCYQgBAIJhCAEAgpm22XFubFiu6Jcdl6lKevcdHLVlK40VTnjXfunLS0y9XfNc79q+3xw19e7r968/cbxg6j08PGyqLxT8s8xcwbZ/qsoy3rVfWnqRqfeHA/6ZXb/J+ucAStJI3v92JUkjo/7XeVz+eWCSlEr4Z7BVJWzZfrVV/nlj8+fUmno3NTd61170hQZT7/qU32PPSSeGst61H3/sn3UpSfGk/7FCZdUcU+/qtP/+mTvXv/fwsP9tiiMhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAw0za25+PeDxVFfvEjhTH/qJcROdM6hruPeNfWxW2RJvPLq7xrEzlbVE5FrOhdOxK3XSfO+cfw/JYlFsi4f0b844muvepSU+9Lv3yZd+2RI++bevcft8X85HJ5/+Ki7Tosi/lH1FTEbL3nlfvHt9RW+d8fJKlguF31HvW/H0vSO0d7TPVRuX90WE29f1yXJFXUpL1rK9O267Bunv9aqjP+EVlRmf9o4UgIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEAxDCAAQDEMIABAMQwgAEMy0zY6rb5ijeNxvRn5w5APvvoWcMfcs8q/v+n/vmFoPJCu9a63PFoaKY/614/61klQsWLPj/PPGYp55gSflc4Petf/xy1dMvVdVVXvXLonZ9tBIxj8PTJKK4/45adG4bf+M5v2zFwcKOVPvvn7/bL/3//MjU++jI1nv2tGE7XZVUV9nqp/TWOtdm6rxv99LUrzCP5euMlNj6p2q9M+ai+L+48JSy5EQACAY0xDq7OzUVVddpXQ6rfr6et188816553Jz/5vu+02RVE06XT11VdP6aIBALODaQjt2rVLd911l/bu3avt27drfHxcbW1tGhoamlR34403qqenZ+L04osvTumiAQCzg+k1oZdeemnSz9u2bVN9fb1ee+01XXvttRPnp1IpNTY2Ts0KAQCz1lm9JjQwMCBJqqub/CLezp07VV9fr8WLF+v2229XX1/fp/bI5XLKZrOTTgCA88MZDyHnnDZs2KBrrrlGS5YsmTi/vb1dTzzxhHbs2KGHH35Y+/bt0+rVq5XLnf5dNZ2dncpkMhOnlpaWM10SAGCGOeO3aN99991688039ctf/nLS+bfccsvEv5csWaJly5Zp4cKFeuGFF7R27dpT+mzcuFEbNmyY+DmbzTKIAOA8cUZD6J577tHzzz+v3bt3a8GCBZ9Z29TUpIULF+rQoUOnvTyVSimV8v8eegDA7GEaQs453XPPPXr22We1c+dOtba2fu7v9Pf3q7u7W01NTWe8SADA7GR6Teiuu+7SP/7jP+rJJ59UOp1Wb2+vent7NTIyIkk6ceKEfvCDH+hf//VfdfjwYe3cuVNr1qzRvHnz9I1vfKMkGwAAmLlMR0Jbt26VJK1atWrS+du2bdNtt92meDyuAwcO6PHHH9fx48fV1NSk66+/Xk8//bTSaVtMCQBg9jP/d9xnqaio0Msvv3xWCzqp5aIFKkv4LS875P+27qEP/LOsfss/c2q04J/vJUkfjxe9a5OR7eW7vPPPDys427otWXBW0efcxs7GoTf/3VTfPZj3rp0fs+WBfd596ZMKhmy6EzH/25Uk9boR79p3c8Om3h+M+2fNDVfabuPpC5q9axtaF5p6l9faMtgUM6zdMxPzpOpq/wzDyhrbk/1Ywv/1eBf5r9tSS3YcACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACCYM/4+oVJL185RIpnwqp3fUO/dt8cY2+Mf2iPZwlKknCEuZ8yYZlOQf+9CCWN4rMwrMeygsRH/eBpJGjr6G+/aWKrW1DueGzXVf2jYn2/IPypHkt4t87/lDlX73SdPqmqZ4107v/kLpt5z5zd416aqbLFKeeMt0Tn/6zBVFjf1jhvq43Frb/8REDP0jsUMtd6VAABMMYYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACCYaZsdV15eqWQy6VWbKk95900kbXO3MOafCWXNPRuPLL9hTKaztJ4+0XHm/D1F/uFxJ4q2Df3P/LB3bSZZYes9+pGp/uD4kHdtf40tJ21uS6t3bVOrLd+ttqnOuzZVVW3qHSv67/sxQ7abJMXL/B57JuoT/o9BZZ6PaydFMf/tLBT8MwYlKTLcf2KR/2NnzNLXuxIAgCnGEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAATDEAIABMMQAgAEwxACAAQzbWN7xgsFRYVxr9qhkUHvvunactM6Rody3rWFoi0apGCIwShYo3UMvxDZkj5Kyjn/uA9JcnH/m/BQzO/2dNIv8gPete8P23r3V9qe/5U1tHjXNi2Yb+rdOt+/fm5mrql3zBDFM2TMjxo1xF6VlcVNvcsNUWCSVF5Z5b+WpO0xqLzCP4YpVW7rnUgkTPWlwJEQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIBiGEAAgGIYQACAYhhAAIJhpmx03VshJBb8stnjSP0Nqznz/jCdJGqtOeteOj9my4yzlY8ZcOmfIjovZWiuSLd8tivzrnaFWklTmn31VVmbrPVbhv+9zmTpT7wtrG0z1c+pqvGura2x36+pK/1y1VLmt9+i4fzBhXrYQQ2fIPYsnjA911tuhoT6R9L9dSVLckHuXMG5nPO7f2xmy/SwpgBwJAQCCMQ2hrVu36vLLL1dNTY1qamq0YsUK/exnP5u43Dmnjo4ONTc3q6KiQqtWrdLBgwenfNEAgNnBNIQWLFigBx98UPv379f+/fu1evVq3XTTTROD5qGHHtLmzZu1ZcsW7du3T42Njbrhhhs0OOj/VQsAgPOHaQitWbNGf/AHf6DFixdr8eLF+su//EtVV1dr7969cs7pkUce0f3336+1a9dqyZIleuyxxzQ8PKwnn3yyVOsHAMxgZ/yaUKFQ0FNPPaWhoSGtWLFCXV1d6u3tVVtb20RNKpXSddddpz179nxqn1wup2w2O+kEADg/mIfQgQMHVF1drVQqpTvuuEPPPvusLrnkEvX29kqSGhomv+unoaFh4rLT6ezsVCaTmTi1tPh/gyQAYGYzD6GLL75Yb7zxhvbu3avvfe97Wrdund56662Jyz/5dlzn3Ge+RXfjxo0aGBiYOHV3d1uXBACYocyfE0omk7roooskScuWLdO+ffv0ox/9SD/84Q8lSb29vWpqapqo7+vrO+Xo6L9LpVJKpWzf5w4AmB3O+nNCzjnlcjm1traqsbFR27dvn7gsn89r165dWrly5dn+GQDALGQ6ErrvvvvU3t6ulpYWDQ4O6qmnntLOnTv10ksvKYoirV+/Xps2bdKiRYu0aNEibdq0SZWVlbr11ltLtX4AwAxmGkIfffSRvv3tb6unp0eZTEaXX365XnrpJd1www2SpHvvvVcjIyO68847dezYMS1fvlyvvPKK0um0eWHxRKR4wi8Ko3ZutXff6irbwV8h5x9AYY3tGfeMJZIkZ4zKicX8d21kPCCOGSNNYjH/aJBYmW0tZYbIpkpD/IkkpdP+EU8N1bWm3tWpClN9VdK/Ppnyj7ORpLyh/ETStn9GCuPetYXI1rvcENmUjNteebBG68QM8TdRzLadzvnfxvP5MVPvZNK/PpkwRPwY1mzaMz/5yU8+8/IoitTR0aGOjg5LWwDAeYrsOABAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDAMIQBAMAwhAEAwDCEAQDDmFO1SOxn3MGaInxgfK/jXjvvXSlLRP3VEhXFbbE+hWLrYHuf8tzOSf8TGGa3F8FTHGdeimCFWydZZY2P+v2GNS8lFtrtemfwjU4rG69CUNuVs684VDPvHGNsTFf3rnWEdkuSMazEkcMlFtvgoOcP9LbJFNsUM2zmW8H9MGR4akuQX3xM5S8jPOfDBBx/wxXYAMAt0d3drwYIFn1kz7YZQsVjUhx9+qHQ6PenL8LLZrFpaWtTd3a2ampqAKywttnP2OB+2UWI7Z5up2E7nnAYHB9Xc3KzY5wS2Trv/jovFYp85OWtqamb1DeAktnP2OB+2UWI7Z5uz3c5MJuNVxxsTAADBMIQAAMHMmCGUSqX0wAMPKJVKhV5KSbGds8f5sI0S2znbnOvtnHZvTAAAnD9mzJEQAGD2YQgBAIJhCAEAgmEIAQCCmTFD6NFHH1Vra6vKy8t15ZVX6he/+EXoJU2pjo4ORVE06dTY2Bh6WWdl9+7dWrNmjZqbmxVFkZ577rlJlzvn1NHRoebmZlVUVGjVqlU6ePBgmMWehc/bzttuu+2UfXv11VeHWewZ6uzs1FVXXaV0Oq36+nrdfPPNeueddybVzIb96bOds2F/bt26VZdffvnEB1JXrFihn/3sZxOXn8t9OSOG0NNPP63169fr/vvv1+uvv66vfe1ram9v15EjR0IvbUpdeuml6unpmTgdOHAg9JLOytDQkJYuXaotW7ac9vKHHnpImzdv1pYtW7Rv3z41Njbqhhtu0ODg4Dle6dn5vO2UpBtvvHHSvn3xxRfP4QrP3q5du3TXXXdp79692r59u8bHx9XW1qah3wVVSrNjf/pspzTz9+eCBQv04IMPav/+/dq/f79Wr16tm266aWLQnNN96WaAr3zlK+6OO+6YdN6XvvQl9+d//ueBVjT1HnjgAbd06dLQyygZSe7ZZ5+d+LlYLLrGxkb34IMPTpw3OjrqMpmM+5u/+ZsAK5wan9xO55xbt26du+mmm4Ksp1T6+vqcJLdr1y7n3Ozdn5/cTudm5/50zrk5c+a4v//7vz/n+3LaHwnl83m99tpramtrm3R+W1ub9uzZE2hVpXHo0CE1NzertbVV3/zmN/Xee++FXlLJdHV1qbe3d9J+TaVSuu6662bdfpWknTt3qr6+XosXL9btt9+uvr6+0Es6KwMDA5Kkuro6SbN3f35yO0+aTfuzUCjoqaee0tDQkFasWHHO9+W0H0JHjx5VoVBQQ0PDpPMbGhrU29sbaFVTb/ny5Xr88cf18ssv68c//rF6e3u1cuVK9ff3h15aSZzcd7N9v0pSe3u7nnjiCe3YsUMPP/yw9u3bp9WrVyuXy4Ve2hlxzmnDhg265pprtGTJEkmzc3+ebjul2bM/Dxw4oOrqaqVSKd1xxx169tlndckll5zzfTntUrQ/zX//WgfptzeQT543k7W3t0/8+7LLLtOKFSt04YUX6rHHHtOGDRsCrqy0Zvt+laRbbrll4t9LlizRsmXLtHDhQr3wwgtau3ZtwJWdmbvvvltvvvmmfvnLX55y2Wzan5+2nbNlf1588cV64403dPz4cf3TP/2T1q1bp127dk1cfq725bQ/Epo3b57i8fgpE7ivr++UST2bVFVV6bLLLtOhQ4dCL6UkTr7z73zbr5LU1NSkhQsXzsh9e8899+j555/Xq6++OukrV2bb/vy07Tydmbo/k8mkLrroIi1btkydnZ1aunSpfvSjH53zfTnth1AymdSVV16p7du3Tzp/+/btWrlyZaBVlV4ul9Pbb7+tpqam0EspidbWVjU2Nk7ar/l8Xrt27ZrV+1WS+vv71d3dPaP2rXNOd999t5555hnt2LFDra2tky6fLfvz87bzdGbi/jwd55xyudy535dT/laHEnjqqadcIpFwP/nJT9xbb73l1q9f76qqqtzhw4dDL23KfP/733c7d+507733ntu7d6/7wz/8Q5dOp2f0Ng4ODrrXX3/dvf76606S27x5s3v99dfd+++/75xz7sEHH3SZTMY988wz7sCBA+5b3/qWa2pqctlsNvDKbT5rOwcHB933v/99t2fPHtfV1eVeffVVt2LFCveFL3xhRm3n9773PZfJZNzOnTtdT0/PxGl4eHiiZjbsz8/bztmyPzdu3Oh2797turq63Jtvvunuu+8+F4vF3CuvvOKcO7f7ckYMIeec++u//mu3cOFCl0wm3RVXXDHpLZOzwS233OKamppcIpFwzc3Nbu3ate7gwYOhl3VWXn31VSfplNO6deucc799W+8DDzzgGhsbXSqVctdee607cOBA2EWfgc/azuHhYdfW1ubmz5/vEomEu+CCC9y6devckSNHQi/b5HTbJ8lt27ZtomY27M/P287Zsj//9E//dOLxdP78+e7rX//6xABy7tzuS77KAQAQzLR/TQgAMHsxhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADBMIQAAMEwhAAAwTCEAADB/H/1BgpSnPvEFQAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1366,14 +1343,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9W6xu2bYeBn2tX8YY///POdetdtW+nrOtGDsXJRgwJg9REgcQRIhESh7AIQlCSH4yIU8G8QB+AJEIkacAUh6QIGCMiEiCkUUIiiwREI7t2C8nOr6ec/beVbsuq9Za8/Jfxhi998ZDa/0y/jnnqrWq5qp9au2/Lc01/zn+cemjX1pv7Ws3Ymac6EQnOtGJTnSiE53oRCc60YlOdKITnej9I/OrbsCJTnSiE53oRCc60YlOdKITnehEJzrRid4NnYCfE53oRCc60YlOdKITnehEJzrRiU50oveUTsDPiU50ohOd6EQnOtGJTnSiE53oRCc60XtKJ+DnRCc60YlOdKITnehEJzrRiU50ohOd6D2lE/BzohOd6EQnOtGJTnSiE53oRCc60YlO9J7SCfg50YlOdKITnehEJzrRiU50ohOd6EQnek/pBPwcERH9GSL6P7zm+98ion/822vRib4Oncbxu0+nMXw/6DSO3306jeF3j4joDxPRXyOiayL6l37V7TnRw9BpLX736LQW3086rcX3g37dxtH9qhvwXSNm/gd+1W040Ten0zh+9+k0hu8Hncbxu0+nMfx9SX8awF9k5v/Mr7ohJ/r26LQWf1/SaS3+GtJpLb4f9L6N48nj50QnOtGJTnSiE53o/aLfBPBbd31BRPZbbsuJTvTrTKe1eKITnej3Bf1aAz9E9D8goo/V/fJvENF/Ub/qiOh/r8d/i4j+aHPN7xLRf0k//xki+reI6P+s5/7HRPSf/pW8zK8xncbxu0+nMXw/6DSO3306jeF3n4joPwDwxwH860R0Q0R/loj+N0T0F4hoC+CPE9HfR0R/kYhe6Xj+U831z4jozxPRFRH9ZSL6nxLRf/gre6FfUzqtxe8+ndbi+0Gntfh+0Gkcf42BHyL6wwD+FID/PDOfA/ivAPhd/fqfAvDnADwG8H8D8K+/5lb/NID/C4CnAP4sgH+HiPy7afWJjuk0jt99Oo3h+0Gncfzu02kM3w9i5n8CwP8bwJ9i5jMAE4B/DsD/DMA5gL8E4M8D+H8C+BDAfw/A/1HHHwD+VwC2AL4P4L+tPyf6Fum0Ft8POq3F7z6d1uL7QadxFPq1BX4ARAA9gL+fiDwz/y4z/x397j9k5r/AzBHAvwngdWjeX2Xmf4uZZwD/GoABwD/8Tlt+opZO4/jdp9MYvh90GsfvPp3G8P2lf5eZ/z/MnAD8EQBnAP4VZp6Y+T8A8H8H8CdIQk/+WQD/E2beMfN/AuB/9ytr9a8vndbi+0untfjdotNafD/oNI74NQZ+mPlvA/iXAfwZAJ8T0Z8joh/q1582p+4ADER0XyLsnzf3TAB+AeCH95x7ogem0zh+9+k0hu8Hncbxu0+nMXyv6efN5x8C+LmOTabfA/AjAN+DFP74+T3XnuhboNNafK/ptBa/Q3Rai+8HncZR6NcW+AEAZv6zzPyPQBKvMYB/9Wvc5if5AxEZAD8G8MnDtPBEb0Kncfzu02kM3w86jeN3n05j+N4SN58/AfATHZtMvwHgYwBfAAiQMcv0E5zoW6fTWnxv6bQWv2N0WovvB53G8dcY+CGiP0xE/wQR9QAOAPYQN7C3pf8cEf0zigz+ywBGAP+/h2vpiV5Hp3H87tNpDN8POo3jd59OY/hrQ38JkjfkTxORJ6J/HMB/HcCfU1f3/yuAP0NEayL6ewH8i7+ylv6a0mkt/trQaS3+PqfTWnw/6DSOQr+2wA8kzu9fAfAc4uL1IYD/0de4z78L4L8B4CWAfwHAP6Nxfyf6dug0jt99Oo3h+0Gncfzu02kMfw2ImSdIMst/EjLW/2sA/yIz/7ae8qcAPILMgX8TwP8JItye6Nuj01r8NaDTWvxO0Gktvh90GkcAxMxffdaJ7iQi+jMA/iAz//O/6rac6OvTaRy/+3Qaw/eDTuP43afTGL5/RET/KoDvM/OpotB3iE5r8f2j01r8btJpLb4f9D6M46+zx8+JTnSiE53oRCc60YkaIqK/l4j+IRL6YwD+uwD+7V91u050ol83Oq3FE53oRA9J92WsPtGJTnSiE53oRCc60a8fnUNCSn4I4HMA/0uIe/uJTnSib5dOa/FEJzrRg9Ep1OtEJzrRiU50ohOd6EQnOtGJTnSiE53oPaVvFOpFRP9VIvobRPS3ieh/+FCNOtG3S6dx/O7TaQzfDzqN43efTmP4ftBpHL/7dBrD94NO4/jdp9MYvh90GsfvPn1tjx8isgD+JoD/MoBfAPjLAP4EM/8n913zwQcf8E9/+tOv9bwTfTP6q3/1rz5n5u8dH3/bcVytzvjRo6cAANb/GAz5nwFmpJQAMIgIhiyIKD8NBICRwBzLdUACABgyMEbOJzIgGIAIBPlbPreNX/5RviWAwHectrjgDYhxa3m8yS0YuGtV8T1f8Gv+aunnP/+dBxlDAHj27Bn/+Dd+Q/uaFn1EdLsV3HygO/qA7joRQEwRMQYkZkzThMNhj5Ty3DAgIvR9j9UwgIwpx+iuh7wjuqv/62tIO+5rzfG1iW/PGSLoXJb7/LX/+GHWojWGnXU6HnJzIoIxBjKO2o8EMAPMCVzGT8e5aSsRdJ2hGQNZsWBdrTEixih/60+5/p4+OnrL0lfCPxip/nV7vTVXUH5H1PlRviOCsRZkCNY6rNYbdP0g72HMa+fTbZ5CuYn3rsbf+Tt/48HWYtd1PKyHwjtzX8h46FiYdo3eblVKQEoyHikxYkwyNu2pei8AEHZK5d7WCH9lZrCwYxiz5A3tGHHKnxmcdG6khJQHkHIvks5/+W2thTWmfDbWgBmYQyhtjjHpHoIy75DXlU5gabvMV2sNyIgNK2njOfclo5mrZYwAADFEpBjvnBhvvRadYd9bXSrLNme+387t/FGWGN25dojaebA8h1nGO0U+Zrl30xvuW/deXLfW5ec7HkLH11Azg454xuKGr20qlX0n923+HOf0YGuxHwZebzZFlslrSMa0Hlvu5Xm8b3chlTVHMJk3U5Z1TJnLRudvy3cr/5bvMx+jfC0gx/WcPEfKum543pL/UW3cHXSsE3B7TXPwaKdcUEoJ8zQhhqB9GMu6yHPAWAvfdbDG4ovPfonrV68eZC0SGSZjF60HMg/N+2TTFZknln68q0/q6fetJS7/5XaUJ5f753EovLLhFfmick5zs3a+LfiqylEAiuwEBmKMSFH2kjxf815oDC1ld5bxqrJ8+64LrlM/pfa8LCcAYR4fbC0+ffqMf/Tjn9zzbe7T3CCu8/FoHfIxfzniS21/AoCh2+fWrfSbyKXHe+OiVXde8WZy51ddx8tPX3Hxz372M3z55fMHW4sge9dXdwleRwebtXu08CrrXe4lde95i3Eq9+DSQfyVHVXbVp5LdR209xN+ykfXAXeP7utG/DUC6Z10974IfLMcP38MwN9m5r8LAET05wD80wDuXcg//elP8Vf+yl+5tbGc6N1RZXLm9+455a3G8dGjp/jn/4U/LQI6q6KLiMAzEkfEecR4uEGKAd71WPdncNargO5BIIS4xzRfIqYZwATGHqCE1bDB+foCznk4u4K3Gxjj4NwA71YKColCkvcaMqwLz4PQgUAwJsLaqAqH/jCBYFGd3BLA6c51RqoApdQoIEfffRVF6FJVAR2oykj+zEV4ZeSGMDHSHfcDgP/+v/QnHmQMAeDHv/Eb+Pf+4l+EtRad86qMiXBKRGBkhRwNNCdkkPs0968wZqPHCqDHjOubS7y8eoFxPOD3fv57+O2/+dvY7/fwvkffD/De4w/+gT+If+AP//1YrVboux59N7wd8HN86luyF6a6sXNtff3y1j3vbluMCeM8IcS4EBKstfCuK8r1RU8PMo7OOvz4g49k3JwoBs57DKsVnPMqWPcgYxBCwGGakFKCMQbO2TrPo4yudQ5d38NYC+cdfN/JOSkihQDmhP31NbavXiGGgDjPCONYNs7jMSuCVSPMZiE4pIiowu+UIiZVDISnSH+388sqKGjIoHMOXgFiq8CwdQ6ri3P06xUuHj/BP/if/WP46R/8w7DOoxvWsL5bjNqirYuPy807L/W8d2d54L/1z/5jD7YWh/WAf/gf/aMIIWC/3yOEGcYCvgOsJThn0A8e1hqIUBJvvcd4iNjeTAghYbsdcflyj3kOCvjpuZZgvShAvrfoBwdjDVbrFTZnaxhjEOeEeYoAA33vMfRenyEcgZkxTRHTGMGJMY8BYYxIKeEwHnA4HMAAjDMwVviJNxbOWDhr8fhig4uzNbxzuHh8hrOLDaY54vMvL/Hi8gZzCLi62mK3O4BTAocAjhEpMcIUkUKS9ncdrLPo+g4Xjy8wrAckThjDiJgiwhyw340IkwBK8yi/iWSuGGvx/Bef3jckbz2OXW/xm3/fB0gpYZqDKF6JMc+igKUEhLkCYylzCGNgvS3Km8w+hjEMaxOMAZwjdN4WpQ6JwAzstjOuryaEkPeXfIfbdHttAhmIycRc1+fyPqRAoSqaBhD8gkC6IGQPsCBkcMKCyCgQS6JscsI0jYgx6LsXiXn5rLv4RgOOCDgYStuff7J9sLW4Ptvgn/iv/ZOIISAov4wxYJ5npBiRYsQ8j0gx6n4ey14eU1zuHUTK+x2MMei7DqvVCtZa9P2A1Wot+2/XoR8GGGthnYd3nfLyDt73IGMxrNdYrTcwzqEfVuhXG7ln36Pvexhj4L2Hdw5EhK7r4L0v/ZZBJtmldYyMBXTelX2vAFsqu+R9kaspLfOUfL6A1ZnkfvvtDX7589/D1csXSGFGGK+RguyN4zwjpIjN+QU++vFPcHbxCP/jP/nfuW9I3nocjbEY1k+QmAsQbK2F73tYZ0EGME74ICzBeAuyBmQtbOdhbAbh8vsyWPdIMgRjb6vVRZ5bAD8ESwZOARnnHLwTlWscR0yHUeaXGscAwHoH6+WcKBxX53sssqMjAwsZ15Xv0btO3tmv0LseMURcXV5he71F4oQ5TAgpwFiD4XyNbtWBGQgxiZEgREzKK8tGBwAEGG+K3l7k1ZiQxgiOsu6dcSAd908//jsPthZ/9OOf4N/+8/8+joFK0/AF04xRjLEYt2I2RoAE+KmKkK4JgrOmyBDWyF7lLNA5fUZ5JCEyEJkaOfEuPsstjngnETGyQSfL0chtPD63+Wm/ZmrN2vc8Z2FlaHn8HcZsLMXbP/6P/SOvu/XbjSNZ2P4pwEdvWF6ewGRAlA/YpjHFAgWyTjYdUfrklBTBMZTWl/3CWJBxaDutGjGP1i4zkAKQQv1c9hbVCLi5TKxeAqSi7mFEBsZ5kPVyWkoCRqaEFCZwnKvBoLS3Av8F7M99UB6ovJUjOM4AxyWPWcxt1PYCiOHmvrX4jYCfHwH4efP3LwD8F45PIqI/CeBPAsBv/MZvvGPQ5757f13c9D76Jqjvu6YGiXwz+spxbMfw4uIJDMmSzOwqxohx2iPGGWEeMR62iGFG7wMsLKINyJ4JhixSmhHChJgmhHjAHK7BHBFDgoWDcx69J1Dfq/IQAScbYBFgGQC1kMmbURZsy/Jr76n0ujn6JvM3K4dZeDq+7tbnBT/KXlFvNTffei1+/wc/wM9/8XtYDSs8fvQYQz/AWYvOdzCFCXFpC+l75W/QNJvAAqxlpC0zPE7Y7W/w/MtPsdvv8Nnnn+Czzz7Bbr9H160w9Gt43+ODJ9/DzXan6oNF5+uYlL6ixqPruG/edhIc34XrfGjY/dGJSyQ/Ww6ljfI7csThcMA0TQuG7pyHMyJcfgW91Vp0xiKvRFEIGRwIYRyRQoAxFjHMIDKIKSGEgMQC/KRYgZ9svUssirGxFswJxohwyawQ4PHc57wx3l5D2QJnjFFBunp4AUAKjJAUHiUBZqVLZd6BAMrIoz5KhOCEECJg5JlRhWsmEsUre6Dw0c/xJMnrLs/lwlaW/LNdy/XAa+mt12I/9IjqSSVgs7RNuieBCEhRRFiGfg+14GbBNHL5SZFVAOYl8JP/56zUiWYnyq0Cb7H2X5gDRnAxZBHJ/cQzJyGxWIpTaXcq/MxZA995GDLovUNvPZwzOF+vcL5awXmH8/UaZ6s1Jh9wfXNA70cQCN46OGOQAER9BrEK49bAqLLsOw/fefR9h6HvEWJASDNSivKuSec2q2BGBGMNrBVF/CtYxtutxc7AGOicl36W9SPKQgwJhiKi9nfuY2GZ1VJPZZ7m+SnjbK3clxOQSN4ty8pErwd9ACzW6ALzbAwZjZicvyxLxBTgBzBWFCWAhf0cWSpkvSUQ531BGsqZv6jXi1UPveylllrlQN99cV/kd+BinPgKeuu1eHZxgR/++KeIMSLME5KuyzDLvIohYJ4PMud5OfeDKgwpVc89MaYIX3PWwHun/QGEoGCSKv4ZjDHGKUDpYZ0HGYt+GDBkoKgf0A8rWQe9GFAK8NPJ/t33PbquawAhBYGsKCcEgrEOZJ3sZTpnb9s5CGDlyS34gwz+EBhGxy4rIYSk0kPSKZIV8Lt/zFeN5FutRSIFccAwENTCWgungC+Ikb3pjLFwXSeGE2dhOi9zMiVwaPYT5W0GRhXVuv+XqZoy+CNek3n/Y+u074W3EQhwDHICTIUQERU4cc7BuQb4YQGLZyaENMu7KJhkjIE1Vn9MAStkXeZ2i2Enxij3mSbdAsTIwkn3AQNYJ+PA6rGvOraO6W1QK+/XZZP8hmN4PI4//NGP9ajyRK7rv27nDdcyBGKZiyZ3A2QPkf0+y5R1/8syrG3kdQE5ub6fynvlcdy0qVDm5fdQZanlPAIKT76r++o5zSmU94ivpvY8bv4vr3D0rDfUON5qLYKqR2J+DkDgIgofe/fncVpMtroXVQ1EeQfKvKAFIl2fBj23jict+oNTlI2V6/o9nu+lHfk+2bO4PEV4BCiUiSS3SUUAI92ob/Uzl9u2D6v9A4BhdDHy7cEqoBYv3ut19E2An7vm+O13Yv43APwbAPBH/+gf5eZ4Ob26Nt55i+XDvvKdqtvtXc2sgkW7hTVfvNHs/xpa5rdEnF8+e27w3a6rDX3lOLZj+IMf/AYbIxM4JcBQQhgPuLl+gcO4F+Bnf4MYZ6y6NTgEeNeh6wcYw4B1CGGPw3iDECbsD1e4vv4SMc44P3uEMEZ432OzTgB6OJdgyMFzgtX3YTZf9U6vecuWi3J+v9uK6zchxgJZL5aSW8g7l/Mzh8+bC4HuvO4eeuu1+Bs//U3+S//R/xfPnn2AP/T3/CE8efIUQ9/DWwvj7JIBHj2BFne+bSNOnBBSQIwBz198jr/5t38LV9ev8Du/93v47d/+bez2B/TdGVbDI/TdCuvhDD/86CcYxwB6YrBerUXJYS4WclpwxiXne7uRW57dYvBZf0kNc679kLcdKsrW8S1DCLi+vsL25gbi4SbgympYYfAdjPdv17jcxPaPZgwH75mQBDSJsiHEGJGmEXknYZUyZB+sgjmZvAHWzcw5j9iLZbDrOhAzjBXXcGuy8C+9lcGUPI9bpbENizDWwjgnng0qqDIzAifwPNXx1fYYbt+YgSgWj9h43sUgYjJR9QRyKcLPK3QxIaZUvImIBYCkVMQE5K4AkygBUMHgLuLKKpjfaKa99Vo8uzjjcRxFwWxCnkSYFA8oYwKsNbomVAkhDWMDYZ4S5jkiBFUksrcii/IFAJRIwrgM1NKbwJYxzwHTNAsgGBgpAGBGDDP2e/GKdNbAOg2nSoQUZZzjHDDPk1iBQwA4wcCg9x3Wa1FUz4Ye676HdxZPztZ4tFnBe49HTx7h7PwMh2nGfhcx7gMmM2P2E4KbEUPEiAkxCrjpnXiRWOewOdugH3r4zuPi/BzDesA0TQhxErBTFzRHAR+ccWAFfpwX76msgH/dcWzHcHXm2bgkCpf2ERkj1nBjMM8R4148HsIcwaOAbAYCiIpC2fLcDIBy9f4yEtIXg4BuxjKMAZKBokFFxmzbuHyphnG1n4sBonl5UuAKAIzh4vVjrXjxgAlJ2yI8oXp+sK5bIkJiDVUiFM8H8drysNaKl9Q0IajXQ4tUVqNDK/hLW8xXr8e3Xos//YN/iP/IH/tHkTLwkyJSDJinDPzMmOadhtIEAW9SQgwRs3oIzfOMaZrUQyggzBOY6/mcEjgljIe9KAJJvPiyMhqTyA5k1GtKPXgKkNN16Hvx5Oz6AV2/gjEG3TAUEGhYDRgG8S7arNdYr8Vjuus36LoVyFhY38O6roTHGqcWaGtL6KSE3EP5IKneUTYUPV69lLNilWAQQAg6dgkGSee4qOUMZgNmi8TV9+HrjmM7hs737LpO55tRsNLCeV8MGYkDGAnOOaw2K9jOAc6COg8YQhgnTNu9eHZF9TxkBli8zpk0dC+rfZGRQgSxAC0pSDh0cg7sGGwsfGew9jpW5DCT1/kSMIcZBKDrPLrOyV7OjKj7154P2AfpZW8cvHUC8DmP3nnxViGCYYZJED4UBZgMU8QUAsgQIieYcZQeNVT0BGcdjPeyvyioWXqedO8Td24BQURAk/GPfIvPfJ0xPB7Hf/Af+iNs0Mhi0pDm0ioTilFZ5ywzDAkfFaBd5chmnonRg4oHTiK5jomK4aVEFuT765xnWjY8f26BHyr/Ld+emsOGqm621FmP5JRy/vEzl91XYZ3blGHyRuz5uvRWa9HYjo0RDxZuAaDyYneF/nL7R5mjQA5nzbKrGA4ZALWRGZz0u3uar+PHTRtEWEADAuXTmwlQBlj2vnqtGthiAKW8h5HI5WAxgBTp82gQ876rhs/GyqYnmaaH7fK5i0mYRzgdq0d30jcBfn4BoA3A/DGAT9788mYiHgkdCzCrPXbPyxTbz+tOygxazy/n5hXwxguh7dW3UznfNS0WUINwfwW95TjWxScWYEbiiGkacTjs1ONnhxRnGAamTnJXWGuQUoAxhJQCYhCvn2kcsdttEcIEaxyGboMYGd6NCCGAyKoCcxerrW16M7r/vK8D/ryR98/ROfdfo8guUWXSjTX2K+it1+I8z/jklx+DmfGjH/wQ6/UaztRtlsrmUNnV0uOmouZ0R78yi+J5OOzw8tVzvHz1Jb788jM8//Jz7PYHDP0BqyFi6Na4urrGbn9A1w0ansIFuK/3W270aFjprR5qd7WFcrBsZ32zFuhZPrP+nd85v29WTqowUtfBoQhT8tuCU7otDNymtx7HwtWKhYERNbeJBueUdprsNqBXct5Es0bH6qGTrIT9xADASk+TVXaSN2rOjy39Vjlss5lTzU9hjFVvIl5s/O2b5D2vBbBRQCaU94x5v7QWhiT8J/Ednj7axuM9Bo0g247h0Y5T3u14nryG3n5fZEYI1dsnew0gSqiPWGyzhakJF0UWRlXAjaJ0ZEtv7q+spB3vD6zgvXjtqIeQRsAyQz0RxMqcvIXPLsgKvnO5NharuEwEhlVPA2cthr7HejXAW4vNapDP3mE9DNisVrDGYug6dM6DE8NZC0sGIF0zOnbZW8RZC+998frpOo/Oe7B6sxXhumEiRDVU0BqroOwDjyMxKAMkqB4eGfSIwQC6Z9LUyJQL7npbfCcSgCenLUkWMCl7YjUaxdHkfN1e05x1dKwVtht5t/X4MaoUMcCGQGnJJzOAkUUQUkuleC6ZAtg6a2GdRUqEEEiAyeN1qv1a7n3Pu95Dbz2G3nf46Ac/RsyATUrq5SOfQ5gwTjuVYeR4iuIJNI0TYhQA6HA4SLjYPGEadyVEjA4SkhIULMrAUpgFEAoxYQ5tqLB0uvcO3ouC33Ue3isIlIEfa9EPK3TDAGstVqsVVqsVnHNI8wiOM6x1yHoNGQufBEgkY8CeYSGAnMneHEd8kXQPLvyQs+6SZ26F1hNyWAzpjiCf8/vINVR0n4ceR6NGF6M5bciIp5/IVAAn4WPGGDjvYLsOcAZQ4CdpuHbJw5P0t0kQw6O8f5mqLAoeK99mBX4YBkwCXBuQGNaMFRcTB3ASYDrra5316JwDAYicECH7+WxmWAXMLBnY7PFDpobpZ40WKruUvUT4OxKQKIGSGH7IEmAkHBHOab412WuNyg91H8aCVbQeT3yshD7QGNZZk/0gG12NjhtUJULRT9p8hqneryidVabM75m9CPNTj71/dcjL/lJk5abFwpJrZ9zeY+q9lh5C0scLDITu/pxXErCUa+7bztq3aL33631Vrn1HPDW7ppJRz75jD59jl1Fa/lGxl+VOmXlQCWsrRlpkxnSrKeX5uncu1IMqLC7v34Ax5Y5kyrmcr1W5V1IUGGSgXBtf+OftRh21c7n514OafxOtLpSZaxnUr5gMSt8E+PnLAP5TRPQHAHwM4L8J4J9704tZ/+dmYOvx238vlKZjAeeYKy2IFsco/0/LJXzfvW/f6/cvUZ6Y98yve+itx5EIIhBFsYKFacQ47jCOO8QwIYYRKQXMweJw2KpVTEAf5xymeYcQJqQoxyUsQUJRDuMBMSY4N2A1HJAS4GwvISrMlVHdIR++WR/J77q+3xzwacOPXhsOVs65+x6t4su6O2Uh/s1l2gW99RjGGPDy5UushhWurq6xGtYgIjyKUdulb5KF9/JmQFk/RbFmtayJZhJiwGEcMc8Ttvsdrm+ucX1zjd1+jzkECcmISUJTUkIICXOQPAohRrFKcU75q5sr2VsDvty8blPmMceAVbvYuWUszHUNQTcYquN4HE/b8l0wMIeI3W6Py6sryePgO1jn4LxHvCef1BF9PZ5KpXUAxPKVYfUihGRJoxF2iBnFfRSi6Id5BmnyZkAUaWstvJexnSa1gmsoX9urmermqMFJzKAkYR6UsnBVe5mbI8wqBrSLoFh7UDb6Fq9PrLmB1Msl5cQUbXto2U4RVvMgcunDKlQ1vLRc8UZ84muNYZ3DzfxkElf9lIGhLGhkYYOQLVXzHBU0ukveycKmKR4E7XM4iUcVMYGjhOExC4+IUfI+JI5IKYcHGoAlrimEoDlsFLRKDBjAeY/Vao3Oezx9fIGnF+fwzuLxesDFSnJtrDcbrPqVeAg5D2cMIlVlBo2XWPUQ8ZJ/ytuSKFreQUAnm4FWK+CTGCgUdCRJJu29l9CO1/P9txzHnJSaEYL0B4HgXA4TyLklDIgSssFcop5SVbJzQmcFVyTxtiiLxlDt69h4QxLuGffb86AN92r30jrRqxSZQ1UF7CHx+lHwxlqjyhOa36bcj5E0ZERDubhm18uu/7k/GOpZmLJHLxeFpsprjdKyXJgPOIbSMZRz3hkDTgnWJ7iu0zk+w4dOcvto6BezeHiEOUjI1zxjGkekKEBRmEbhrWHCNB6Uz4rRi1NECDPCJMDSFCKmeRaPPE3SnnlS3pkk6br0xzzPiEn233Ga4PZ7kOYT6npJnHy1WWO9WsFah77foO83Gia2guvEQ6jre/g+g0kdnPfqCeQFqCCSvBmUrfcS8gQQIiRcSxqnxoS835HIB3MIiPNYeVlMhV+9wcb4duNImvMOKP1EGt5FhgAm8bDLyn5icNDQvZTABMz7EXGaxYsxJqDsiQAjgk0SXmpsmaPOOH1nCzaiWlndP42x6Izk5rGAhqKRJmhPAM+yV8aINKuSawy8FX6Yuh5G98DOd+g0b9SqH7DqOhmTyEAEggmY+h5plT1IFVjMPS2bZtnfUl6rVtec9pEA/DkJNerGLMhuEX5qyPEDjuGCjiQMyvs3EGOV8jJHMCThlTmJtdPwL2YqgHQRJhgyZwk6R2pKgbsMmq8zd4qczO3Jd78NN7/p9vHF342Icjcdawxfrfzdvhffustr6GuOY+XpixcnoMYs172h1T/yHsIse6rRd+R0l1fPG2yGDM2TdCy1KsPKoG4TpsYyoaT5GT2HvktphyyInFOKYBucIXvi5LQJbZMbeaxRsWrLCIBBNVTWo60SQkVXuS9LbKWvDfwwcyCiPwXg34NkI/rfMvNvvdG1WchHXiitMnb/NZnuZDLF1SkzonzSffc9Ps53H773/N+f1OqxwD191dDXGUdjAMSEeT5gDhP2+yvcXL/AdnsNcASnGUBCijPiPMOSxKWP0w7OOiTMYD6AWYShlAJSihjHPa74FazxSMnAmTW6TjyBzs4uwNaKpVkBIOEjb8Gyag/lt3/zq94QHJLbVkDkje7TbDYLFv4VAFNz3luP4ThN+N3f/V2EOeL7H/0QACGGiGePn2G90mYV/rlMWpfXWfbqYWZJvC1XYZpGXN9c4TAe8OWLL/Hp55/hxcvnePHqJXaHvYaVzPBOknCP84zDYcS+GzU5clhYmLU1aONz7+CPt/uvnFM3msXoU+3z1npejmaW0O7Ax/dhVgE24TBOeP7iBT799DN03mOz3qDvOoAM5hC+kh2/9TjqfpAVOtkPSNycFVCsoAdXuQ252hFkkBX7SSlhCuKqOhnCbpeTUtqSKDRpUmdu8ljIbY/sX80GnhT0qd3Ki6ogAg6lLI/W0KSmt8XtuvXm0DbHIIk3KYc5iXdMKu4GWAx6wtF64vbrxiU3b7KLDflNhKqvvy/WfctIS3MyyZkR46wgXs2ZElNCnCV3A6v1XvobqKasRphRRcUYqm7jLKDPPAcQCDEw0ixrOoQZ8yzJu42GekmXWoi5GkhTQJrESy9yQkwMw4R+WOPR46dYrQb85o++j598/0N0zuKi89h0VsPULGAstrs9Nv2X6K0D24TOOnTGIVogOg/4BGMthtUavu8EVB16eO/EWs0JKQZQSuisBbyHSYSDsQgmwhgL73tY42CcRTdI4vOcLPghxjElYBqDJnSW39wRuq4vYythJk2oFABDDGMkI0oZKuSk3laTO1tY62AtIcwzQlCQKR4JkFjKu8cyUCsX3bYmc3N99dbJIIO0WZRC5yycMyq/J0RKda1k4KbhDIkTOIo3oYV4HZIxmszYghIQolWwiDVMkY/aWT345M+v3o+/zlokQ3Ar2QCJK+hSlCOuFUklt12jxakynD2AxNuigkMxZvAjIYYJ8zg2INAeKSYcpgn7wyiFAsYR+4PkE5rGg3pSJ8zTQQGkhGncS+JphiYzrmNPWpWv6zrJ3WcM+m6FrlMvu9Uafb+CdQ7rsw2G1RrOWf2sXkSrFTotEOC7AdZ7gAyM6yThqmRKlrUMA2IBhJgjsqdaRMI4HjDutwuj+hwCxBHl9Tl+3nYcyRD8oGFLQRL+ymTWPFlQ71cWb6AURHGbx4gxSQXSNM2IewlhJWbxsAMDRjy1ZE04kBNDi7dSdIAoJ3TOG4+Ef4IIK+PQSy8BzoM6KwDfHLDX/TQwAyHCGJK8Tr2AOivfgzcCTAxdL0Yla3C2XmE9DGBmHHYHTPsJIQSYCPTWY5ok9HUaR9lnU12ZyQjIxcmCfVIJIe+1ruYG0hAzCVmB5g2KQGTxoCRfwoAfagzLWCLJrlwU6MryEnPd6xu5wTuDoXPCuwAB+cCICZijyuWc849J3iZDNfSKTDbEtu3g8uz2qwyeaweV48fzubCtOh30+tt6Z6PponntRmY75uHHJqkFqrD4RrSlrFcs8+u8iSb19cZRuaUm3pZnKX83FuSk+I/sC1blxupBzCkByk8JWe/Lekjmv7cauvgs21NVKBjtFlL1L+lwlXOMLaH0bEyJtRN5S/J/IUb50f1bd3XAEmBtvWexVKYCGi20jbK3afhhyaLb5PbJI0S8GPs6uRjEUQxzX0HfxOMHzPwXAPyFt7qm/GQEsF0qr9vM5aXbyXkn/tNsfG9H3w1g523pDXCDrzWOADchW6IgzPMeMkZiA0JiTEkSOjOSCo8OZBKMCYCWdc8cLcaIaZpgKGEaJ0zzCCIjVZKqxIflXPlqZSzTW08JvPk8WuTvaf6/7575/HL/5hcf3+/NwJ+3GsMYI66urnHz6Aa77Q77/R6j5ihoFqlscnmZqlJQ16AwwJQ9ZRSQiylgmqYS9rTb7bDb7TCOo+QfialY/LJVM8Qo3j4piXcBm6KcUsPm6++sJd0Ov+EjBpGvq8FhWE6Zo77PDDk7hFQLxPGlZbS0hHbE4TBiu90hdB7OCnudQ1jkDXodve04MjRUP7eIcn/JHxVv0Y23bJTLjVGfre1skRdCdFYS5hLluuGq3GExze+e9xW8bPPTtD4/ee8qSkG+jQ5GHoPigZAbl0ShTNruNtSr0lJYXL56857Hmwo3f7QWqnewFpdUZyFrjDgrmiOW65x3RdbNNEdJ/NxIqvVV1KqVPaZQ+3AhaLIkjwbpPNbkwyFESaTNDMMJiXP/NwJuiCXxabamMkQp6voewzDg/PwcT588Qecszr3FRpWEqEJwnCO8dSWEwWoiZm68f3JIhveSF8YpcJOF+5yQ1KjHTzSanJzkJ4d3ybUONlfJerBxrB4/+fdxiHKZuUTq8VOFvDbf0NLLJnss5XFTL4FUlfx2HO+Tjlqr/N22h7vDiuWROu6mtimHeiWjQrGuFwbEuCmRenWtMyrP0BtXjyJTEsknJN1v2kVZf/NiLd49Ess+ecu1SARyTmtfASDNw1Q3I0ggk/SNbfhtTijLicExV/tKpfJXlpc4JcR5wqyeQPM0KvATsR8n7PYHxBix3+/RbbfyeXsDglQzSykC0whAvPLGUcCkWcPE5L1TGU+nIZfGGPR+hc73Gg62wTCsYZ3D2f4c680GzjvxUponWGsFrBpmGGuROMGxgEAWkj+NyICyo0sBy4Fs2c7hMzl/mTQpe+nd56H4zcaRSKoKckya/0rGLbPIEjCi3kk5AXLSJN4xRQGM1Nsnj2vuVxGMCIykoZ0yR7yRPnbGSkgXcihsAIjgDUk1LohSaZzk+LHq/sfMkisoQZRgRgnpQg7nMgZD12PoBAA/W61wtl4hxQQTGRQkF+bQecRZktw7a7JtR/o6QXIt5cpXlAsBaIJiY0r/1PFRnq83yYo5mcwXvlrZ/Fr64i0dsX5iXoLEOc2LNY1KXXgtVJ5bSAKoemUNbc1z5TabXHqPFxA9C8qL85YtFsCiPl3aw20TbtORyNGqQMXwTbkFfHzZoi2LrWGhS729UvR1ZNT2N3RPyCCOQQZ8BEQGaVgUS127wvfvMYTfB13dOjf34+KVq8yU50vRAHRvAon3Hagm/S43ZEb1/tH7KFrHCiDl8rQliHCRW5AaobdpajFcNrJ8bWTlZ8zNPElAMkdz/G76RsDP29IcAr54/hLZ/T8vnuzKXaohLBY7AFUYWqYDFL1Ez6kMKilTyrkoFrbocttjV713Dfx81f3fRC38qvsc3ePrIB1fQQwpDznPI2KYJdwrziBWsKfUc2CABNhJnBAjYZqsur0yjE0gUssBqkdJ/s1aMSMEFXRuaYKV6b0NZYaJDBwcMYoHTfJ8D90J5OirVTT+XTdC+JUojwHjOCFofp3cxVx00NpPIUoem5gSxmnEbi+JLvt+wHq9gbUW1zeXePHqBfb7HV5dXuLmZo/tdsThEBADkCIhRHH/NjZgHA/Y7bZw1uLyssMwGFXwpJQ1kcHQrzEMGyxDVY5eqeUNlPPXyHeUx7xF/PNbHW0ITUR4w1duE6miLEl1A/b7EZdXN3j56hWGYQXfDTDOS1jbHYraNyVmIGjuINN4w+Qy6LKrqnB75yaf+WIrALE6u3ARTlKE5OAgSDWh3M/Z40cVNXPrzjlXTQSBkEzSBIyqFBfLFcGwJk1klA2OWBO4Uq4IZvSzvpMxsGplzzkdqkU5g0AVaJIuaQa0omKok34hqtXPx2jiOyDWhMsxJoCSChAqqaurMOl5IPHOiUH+NtbAueyVBcwugEi8hpJObGMl3IlIvMIMQazgWbiRDlquI1ANh8zyCav/WOnn3C+kp1mEyDiMM4x1GCcJ4yRmRIJW9CCxuOZnaGWxGCUUNFc4k7LWvlTlcd4VLxQRCJNY30j2fGukOk90URN/Z54fkZIqXhZw9i5H/m8wdixhBwL85CTMjGmKYKYComVQzWreH2uMVBsypoBGWfwRmVLXYRIgLCVaJNeu87FwMxm3Vs6h222Vc44ZEh0pFMd7lc4jbbMspSTzLEnCcM6hSQQ1VJJGI6rwyzV/1TwHZG+/GJuqcM0jswwHALmaXQVi3+FaBNTXQL0EC4usaowps7dKk7JeWOY4M8AaDsQMYiflfjnB+A6m68EpwYcZ3bRG4oRuCujVADOOI84PB8SUMB12GHc7xBQxHfYY9/L5cDjgcFDvn3kuYWIhaCJpXctZOTYswRIgwhxm8H4LYyxCnLHb38BYi+vrSy0vb9AXLzuHbrWC7wephNUPsM7DWAffr2B9Lik/wDqHcb/HdNhLmNs8g5Cg+cC1TZm/Luftg5HytqpjifdVTkOdlXUTGZgBioSUIkwGujMAk/cjRRUkt1gPaww677Hq5L0NiyePAWHTD7g4O5M8YmrhJwDGe9iuA5GYRiOk2qZzDtZZIKLwwRQTdtstpmkEEUm+NO8l91kXwH6G9w4XQ4/eWiQyCNYiOgtKScLJUoRh8YJcdR0k5S0jkuyHQXMIiexAZWmlnCOQpTiAvFWW6WUt5MTRxAR8Nebz9ajsLxpS3mzXMiRthUR1uGMgGkKIUdYeyZrMOQDbWZfvHwkIiUvyZkMsoUA6X5tYEmRGQDqPW8/Zlh2pqnr8OrdPPDqUr8ve2UXF4dpmQJ1PsoxkjtRlLET29uEVfFcmv0g7cecgPCRVGSHvPTmJfB2QlJlE5ahEYGN1PnKRUaoxo2xWrYJX5Rm00hwddb+OZ/6K677CCj7lkEddIhVbyB2dE+EjG2ekqiBZq9/nxzKY83sApZIYCFLDrwFXSb9PZSPNL4TszbmQXxkKKB3nw72bvlXgZxxn/K2/I5Xg8lLKMffWiGdH8ToAyoRMmmAvhxcktaZk6+dxuM88TxjVFTZxBHPQ++FosrxJSBiW33+t1ZG1z/uewXd+vP9W9wmtS9byLkAMTgmHww3mecQ07jCHETEcAA4wiBA3tKSTvElEOgekNEGqshC8l3EIQcpLZrfkPD7MUh0DkCSzRQCl0gWL/nhzomYevP66u6ygbxR+9Zqv77s2K9AZ+OGvOP+bEkM8FOcp4bAfsdvuMB5GcErFOpQZTosgT+OIl5cvMU4jrm8u8fzFF5imCRePHuPDDz+E7zp8/sVz/Oznv8B2t8UvPv4lvvj8FS6vrrDbHzBNQEoG05RgzIjEhOvtNV68fIFpHjHHLba7F3DOouscus7DOYdnTz/EM+ck5MFoiEfuN+SNP5X5lhMrFyfOo41VMYzbII+eWwWD23xU1pYKGTFhvx8xjhMuL6/xy88+x+/9/BNcXFygHzaw3YBxjpgjI3x16O1bUWLGOM/IiR3LvyzsEEBsUEOEKq8sCh6g4Qo5KZ30aOKcowOIiSTXiwoaZWvUzpS/zZ1rMaaImGJVjJo9Wv5Wi7/OspKUGKKkmHKO1So3WsnL2JJDBKWCmimgTxYKSXMRkW7URXhoGkP5M7ectRXQ8gQ4lqYekFTgnueAMGc+ml16VeAmLkI4AMQAzLOEeXW9hXeDJM9lq6XdozpoyRXWSW4WMgJ+kMolJaErACkXX8chJ+YtPcKQqkNJqhBRDjdiiOeH5rfYTxGXNwfMEbjZ7rHbj0g+Yk2MZOqYWlLLeIiYx0l+pgnTNAEArHOl+lM/9Oj6rplioqBIyJPMd+8MiDogseTHUMmcU0DkBMeAc0DfG9ADKizMwktF6ZYxmTjB0ITJCogVs9xiGN5LuJP3FkMvYRvzFLA/zJLzAzIGCSp7sgEngxQN4izJkAX8OZpER3Qb9Ck7S/O5XZt1X8xKYM7rlJP4Wmfhu04+21SSio/jjBCVlxhJC88MROUbgPCsEKOsyxRhptzAVJTK3CJG3m9TaUt9zXcH/GQn+6Ls5mNH5XwSoNUOVWZp+o40EzdBZRv9q45HXjSi7IjnM0pFwiw75TmTwow4T2AWbyHJG5QwatiXeJvuJal0jNjtxIs3hojtdovtThJM77c7jPuDVBUbD9jOAg7J3lk9PnJCft93sAq8DpsNumGAcQ79sIbvezjf4eziEfrVGs512GzO0fcDwjRhd3WJab9DCjMMR3ire2YSMM2QhsrxA2+MAKDhk8ZC8nMwI8QJudiP0TLllAAKkmmdmGFZ4lc45yBKKBWyAKDvHZ6szuC9l6T1g+RImscJ4/4AAHhyfoGf/OhH6LsOzgCexPQyc8KUJDRpNwdspxlzjOgHD997UCCEw6gV5BKmqxHzNIGIsFlvpEqiMRh9h8F5DH2HD8/PcdZ1spZHD8wzJk64QQLFAJMiVt4irQfhUdB8eGCMccasXjuGjUal1aqQMrMNLDmIfBABJKk2FgLCFESDdHdlvPnmJOFZUY0XqazGvATbogSJa6gzEcNOjGgNnDXonOZHU0/EbIGLJS7SAEHmflIFm0jAFUuVR1b+uPT8MRnE4KqMc2voK+5D3OykLQlfyYavkIDAy6+PL8te3oYAB4ItCdR4eV0BEZpQ2cz3G4T/HakZhQQjsVJQhBpZlBSIzgJ3jEDllnqOBdv8DrJvlLa3MlyLjhVAqZkxre5WBNiCBMjn3J6sv8bYjJr+TpVnEZEAPKjGSfGC7ATkJ5KQL1MNnjmnraQpCNoOWVu5+aThBhm8EjE3z00Dshpey4AAU8JjYH8fAj8xRlxe3ZS/GawKnsQfS3LfUQSDZlBTjIiaOC+XzszAT3HrazbUcTxgr54I4nEim1txUZYrUF2ulkLEXSyM22/ecpHc56Fw1xOA+8dtEY95z+1aoOBNwI23JWbJNyEux0Emr24IxQVa2TOBCwoPZgTOrr8klmeDkiD2OOQpx8dLEsXbWd/fqEtv0fKCBhy+/4o7wJ9MrwdlsjC4uOD+a7kylje7/zckhmyoGtIxz2JlL2j5onMqEiK5Bw44jAfcbG/w6vIVxukAsoSzizP0HLHbb3GzvcbNjQic+8OIw2HGNGVFFCWkJMaAaZ4xjgfNHZFK6eq+9xiGDs55nJ1dIKZYkoHe1U9ZWC5hZ832fDxV+Oj6og7poHFzHrcXtHgA1LKv1utxmrHbHXCz3cE6jylIEuugQkBa3OhhKOb31c3KqPcMSGLYjcn90CauVvCnNKfhGfqSecNhMJBUwaS6SS5C09W8dCtFYNNnteAv6oZPIuwcA1JlzKha0xfAsMZegwjGRLAqKcdMMQs6GQzKx5oT8oOaz8v+pcVBvn3CA1Fua1b2iseE9gmo8tSijCbxxmLd/A1ZTQQcYa1t5TqIYJKFk+rWTsfdptJnu/RbXTUr4zmBNqc6F2o8ukFMwBQiXIiYs7dLrpbDtgh0+dXy2pX3T2VeW5KqM9bJj1EJt4Rc5LHVNkgyckkIncO8BExP5TpDEADsIceSSxRkUxUtJ3peGkEsSciUtQTvDLpO2sxsYCeq1WRLfwOlChKrx0+Svn8dP7lLXjjeU5ZLpm6qC4CWssAs89+QJHiWE1TgBIHMDOEDWVCVuSRgcW4/K8DAZX5mo+ktUaXMC/mD23lZGvduqChoRXGqRyvwpOOS94wslBRRRvmcMQ3vosrXWl6nO03u5TJOWVlJEawGsBRmCRljyf0zTTk0bIf9TuTem5sb3NzcSL4X58Ek8nWYBWCNrKH1Wq1smiY1tOX9UOXrrpN15xxWZwL8WOcwrDbw/QDfdYgpYjVPUmkMAMeIOM8I06j54ILkydF3W+ZZq2EcDzt6LHughhwm5KgB1vHUeZ5/QwzzVnfLktAYTUJglopavfPofIeV77HuBfjZR8ZMI8BA7zucb86wGgZ0BujUu3AfZuznWeQeGjGqx6y1RsNWJddRVOP2eBix3+1kHCAhZNYYmMAwLqpXT4I3kvfSWQNnCMlIaBeSGDyskfxDuUKZ0WeElJDyRETeRyqgQtBojHZh6jk5zw8b+8ASzZJyTqKUjObtw2KNSHRH3jvzNQkpqXyREzdjyV+KXKfPSHqOGIxEbmJWh4tG7aOGF2SxIR9nLItOLGX/5vOtbUdlJ87ro+bOvnVts6e3UkkOG76PGp/n298t9JJ7b/G1qPCy4lUsKy3r3rTcaOr6lC/LfVoDVEmUrJtHdfyQvUjC25WnKOh6Z4jYkThXRaU8Fhmkyb3Ht7tPeb40RX3+TP2Rza1W0yUST7QiLGQvnVtbeX4WL8aV9D8yNWcgUo6CqH3wVfQtAz8JV9f7qrhD3YatoNpzCDgcDggxlmoyJd5dN9QUVZhiUXKSuo0bg5IwUSynkuRst7vG9fVLrT4SEWIuF11d4LlpUCvkFqLFN6iK8BtSmZzNfe6ROWWs+fZBbUNtSmM9ygcbBTYffmDcR8dOt28WYI1T8yNbF2RDz8IptAKEuqklI5UoGOqRVQUsTgmJxO02pggTY8kLsmSnb6KEHZ+z7Nc3YXJLpnj35+MnHo/B8Zm3vIjAi7d6lxtpIbW4pwTsdwfc3GwLULPb70u53QwARc3FtN3v8eWLF7jZ3eDlqy/xy88+xv6wx+6wRUgzur7D8+cv8cXzz7Db7XF9fY1pSggBYLYw1KlCK55cMxGuri7xyaefYL0asF53ODsTC3g/iFXL+w4MA+8l0eRmc4H12gNAyR+UUsI0zZjnGYYIq9UawzBIzg/nVICBMmNVHqnJVkJ17SWuiZCh1ggGNGRhua6mOWG3n7DbHbDdHrDd7bHd7uG7HrvDiM04YZxmTCFhvqsIwTcgZkaIWi1LgZVSRaRoVPKbGYgq+B1xoltEum/mc4iAYlJSAbhtg4DqRnM9lbs0wFJz71svgWY/EKUop/rMrvNyXK3QpCV6rXj8GGOQcv4TvWEWCFNimKw4NYpbGw64aMTi0509c+83D0EZ9Ika/lpjwgFjW2XR6PlArqRnrZdwAOd0/5NY+RQr+JWVC9IlkItpgHOehAy+ZEGJpKKPtkFYQRa0NSQJ1XJnnIdxUsnOuA4wDgyLKSTs9gdwdDizhNlptS5n4ZxW6+M6bm13i3dSFWwW1jdmFYBIQ4gJnXew1iBFRt93mKcAkIGxDjAG/dBhve7RD50AEw9M2d27VaIk2WIjvJF4ihiTy5oL8BNKdRkU72ZADGbzLLnRglZva9MHVdC0uu4vQZ+73lMaKLJx46my+FyFXQG45e+cRB0QeSylVJQyo/E8xYOVJSwwe0zk9SVLkkv+uOrpi9IukR9Q1i/X5lRF4Z3QEYdslK3C1xQAowWQahZXyx+Vr4Brn5DKs8c6ToNhLttDBjBW+stJIlrmBEcGsE7yrdgOrlshxgg/rDFsLhBjxObiCR7vdoghYre9wUHBoXG/U2+hhPFwwKSVxeZ5Fg97CGDC2kDrnagViTFpvr7pMCJFxvb6Bs55bC+v0XcDUgyY9nvEaZJcQBwk8SgZJHU1nMcB8zxKSNoDSj3MkGpcwJGBAlXOlG1FkqfrGPbWYeV7qS4YE2LIYUTC8wiER+cXePb4GfrOo+97rFe9JHcmI0nuU4KFQRwDAmb0Q4dh6AWEdg7OSYXPwIz9PINTLc2e9zhjFUwxNen1rLmcjDFAjEjBgQzUGKYhzkkq447ThN1+h+vtDZglOfzFZiPr2jmQMZhjxNV+i/00IoERkBCVpzjjYEuHqdmIax6kFGSPymFpYZ7etBT4248lhNcF9V6F8orMLCgDMHWpLkKBkY0UBjUHILLcouHKxhSDYSSjHndUkoE3jZHriApgKFUZacGLy/2Rj7X84xZyIEdZAB/mGrJWd7uGOeR2UC3QkPGDykvzO6Jcdws0v6uv36XiwQlIUcctVkMG6v5UZfO8BzU8vmkctbpkBl5QBgDF8kJUx6HI+q180Y6QPk37HUfzX/akVBn2sSJQIAHZtDgFvQVJe3L10dwC3aclARUBcGooyU9FkauKrq8IpiE1bFkjxj7rhW+oXJGbtP3y/uH4lnP8RHz6xaUmW6Rms5PumKYZ+/0BIQY459BpArOu89isV5psjjFPgsS1BhbvcyiAlJgdD3tM44TPPv0Yv/u7fxuHwx673R432xtNJsuYsrW0vdGdkz9v0lUg4OPvM92xrilv3EdfUDtxmg2/vTsvVnAVzkrygvx3+/is2LwDCIGgVUhIqnelOCPFSX/ECpU4VGFNFWdrrGw6ROL7rYmvqo1LNq5IUg0ixNCEemWPIj33GKpdEDc/d33bKoGv75+7gJ7XhXotjt4zl9rrF/fXRf2QAtDrSKw5HiEwLi+vwQnYrDZ49fISQychFWfrDbx3WnJdPO5eXV7i937xM7y6fInnLz7Hzz7+HewPW1w8usCnzz9G13W4utziy+eXGA8TPv/iS+x3M+aJwHCwVgAbhpSiDSHgs88/RQoTvHdYrxzWG188frpeBKztYQTDYr3e4MPvMbphg8SM5y9e4dNffoo5BOy2Oxz2exhr8fTJEzx6/BjOWgyrFfq+1wSxohwTSWUP2Wwqk2UwQopaRpdAcECjaGev9Lwv7A8Rl1c7XF1d48uXV3jx8govXl2ByeLyeot+tUa/PmA3Bhzmh3VpZwamOVcUkG3NWoveAmysYDVWBMoUa7hs4b/5PrgNBrUJfK0RxZnUYyOGqIJFata5hiblvC1U/AAW925Xbft9DocQZbCoVhX40ZK4RATjLKwTZSdFyWMgnixZSWT5TsMmXJvvrVl/GWxqW5N7o351zPsfnhiaoFpDvSRPR00Kay1pclYCoMYQ5M+S88bZAX23kuprkBwHNgaEuVqtrBWwRdyTubgO58Tkkmslap4ZFnDCOh0flP7NCWY55YJwMsecH+BWGwnH7FaA7ZGMw34MeHW1xdg5rImxMQxnHQZN5AidKznHSwIXxUyqP2lpbVQP0RyyZyCJnjvv4axRoFgSRe/WKwUHJdG0cQ5d73H2aI2u99Vr5YGItOQqkQhhDChAItWNTAlxI1hn4NTjxzsD5ySEy1K2+HIZB7lmAhmDcYwIs1SoEVwor5UqT30dT9+8FoyGUQLQ+aeVWGJ2s5ecZm6U0M9FQnUDWL/MdyCV/4J6G0ibsudjzpUgCkxOp7z00ssgV3tcrn1HeyUTNEHPHXwr8zblSsZoriaZwwVslxsd3VclnZgVlFY6a2Th5hJq+A6RBel8NexAXua/07ABMLBqeEbOl5Xz/UQtVz6PB8zzhJQiDvu9Aj8B+xvZO0MI2N3c4LDbS8jYfldyCB2mA6YwIUUWQ4+GZdAXz+X9jUHveylqwEmSI6cIZwhD7yQM0zqYbpAE2s7hsN/BD+tFlcdvSswJ82GsxuNibYcYig0kdIQk8XGvqSbOV2t87+wRet+JF/QYtF0Gki/G4PHFBT589gH6rkPXOaxWHgTghevAY0CYAxwbTLsZCISzrsdmWMM7i4AkeXVSRGRgN44gZngrnjzJimeV8eKhBSOhMYlZUmDEBEOEyVp01iIlyeNkrRhdYoo4jCP2hz1eXl7i8+fP0XmHH3z4EZ49fSoJvTcb9H2PwzThs5fPcXlzhSkEXO722E8TQAbOdYC1yoOihvYmzJMkJ09B3jNFCU88YI/Zzg82fnUcK+A8TQEhsu511SGAVLVi1GiOhW6JHF5DClJz4S21ylSWBwRAmLW4QF5/GVBvdZqsYVlGqfaU2wz9LvMna2pOHnlODlmtRsXEQNCQ7Gx4FBDoyBiiIc0mJ51XtRUK+lS1UA004PIMoPKx/L55f1nqNQ/IVxk1YRGC5g1l5H+5f4uMlyt85cpUCvCVPGsgGONqX5Z3aR7JsQK2VEE56aDjxml7sk7WhhsToZRkPzY0NHttAfclLhTMBA4TQLOcmAEtUm91sgrgkMSdQz3FWDygDVMDpNYMnPk/m9PjWCs603qDznewltB3Dk73iV/8nfuH5VsFfpg14SOJm7MhKgI6M2OaJgF+QoD3HimJIkMgxF6Ep+pGDREMtYfskZKeN779fo/LVy+x221xfXODy8srsVRExjTXVG/LjXhJdXJiMcMWRfTuKS9K5RpaXEuLv4/VofIid6xBPVfLy5X7V3NZvfadgQisbC17/Ug+EFZBMaWoAjrpuYTEgGERkhITKPFxl+gCU0sip6IM3Qm03NnddwFCR8fqWtffjfh1j7D8dUKu8kK979IF+JPR7YXU99aP/BpkxHo3TZokcsQ4jRinSd0Iq7CdQ7OmecLNdour62tcXl3i8uoVdvstIgdYR+g6j5vrPa6vt5imWT34VHgng+yhwCxAEoFx2O/w6lI8jA4Hi8MoiZ273qMfBPi5vHyFm+0WDMI4TyKMMGN/GHF1s8U8Tbi52WK33WoiWA/nO0lCqu4N4kotP7nijxX0sSi22VMkKoMhqtUHuChbdXhCZExzxGGcMI4zxnHGNEmSzXmeMc1BQl0SIzxwdmdGbicASgVASRABQJTnLB1lJS0BMLC4g2ccURsYZrPnkN4L7fwtDeIFjrJ0P73j/qoL5tAHxnIN5vAQ4b/ZbdaU0An5TA0QnnulUUYbC19u4nEvNlJE+/K3j70zqu2tCn8qCY6Zc+LqHCYiLyFgQrYU55LfVspka+iQgA06BpTPhQghJXn0UoFvrYNZAK68Wscq8waCWEC1Moe1Hsa5UuqZYRCiJJ614FLVz5CWWa49oOOU/857ZG4rNXNryStJw7skwbWFdw7BufI5G4+c9/C909xhruQ1ehCiLEhn3t++D6t3Vg07MJSrY5Wt/Nb+U+aEJn0mrT5Uva6AJgM/gGVxgoVBaDHxl4ugFW2OvX/aynLyDlwUKLlTtqILn8zKFxFpIvd6z6xjZWWkeJZpiofjNVqBnvs/PzRJO6pXT/mlSkcGgUv+uFJsALqJ5DtV3toC6/kZmS/lmzM38xtQ3gwIkHjEjAhoc32p2gGb71+UWm7mihwLYUIIAiyP+x1GzQ+0u77BfrdHnGdcdwP2/VYSshsB3EMICClgDgFgAf/naVJZW2R4QwajeteCGUZDvJwzQOqRvIA9lgiGE0KQlAGLHI4PQQxw1ICyXNKpdCsVUDlHphpLkgvGO6xXAwbfIcwREwWtmGhA5EAwOFtvcLbeKPBj0fcORMCu36FzvoQ1ppCQKIIY8Eb5EBiOBKDpnIZtUa08aMo+ZwDDRSdhaEg3Sz4/Uu+JOXjJX2dEnhbwRyqk5vB5QAxeQ9/De4/z9VoMYdOI7f4a4yQFAZwZi8eIMQLQZe9PIvWMKdXPqjGh5KF6Z7qGguDFA1JkkALmNaGTOsALfgY0fAWVzywNsPWcpGCLHD/aHzhvPXVFL/hSPqdc0ERloO4LixuSPKeA3Wivb8zid4hZOdKXFSiSaV3espH32kbclsUedO3dRS2gpHppCb0GVC9QORxOXzDL3Xz0/tS8w5HcVuSDHBCvFy2VzOZPTeNBbduwkG8LHz6+TblFZiblDZGBrdJmtpBkYurNlFHAAlCSAPvQPmCNcMJSpM5vLSH9IvM459D3XvKJOYtV7wvw8zr6VoEfYyzOz89BJFU1srsqqzATY8LZRhRC7z36QcpODkOP87M1nHdicV5sFNIzkiRRrJ/XqwG9M5LrZ3uJLx49RufETXYeZ6kmMQZMYZaVTrhra1aqgFBJeniXhlA0/eU7s27S5fvyBFVq7rjn0m0NWKKNWXI0ZWMozC4zOqAkbH1oCYmZMYdRkzprrp8YgcYSmxNYVZEkry1xe6ekjJPy4lyOJcEgBhEIDNnG8ljfSZREAIux+Kq252sy8/nqvnkopsjtv2OluTasveCdUuKEw7gHEcN/aXBzc43VqsfzL79E13lcnF9gsxHLOKeEiIDAEZFjUdISizVxnmfsdju8eMGwzmDcB+z2E0KQCnB1DlZGh8QCGoIxhQmHcQdrDJgcQB7GEMbZYn9w8N2ITz9/jvX5J1gNG+xGwtVWFJGPf/4LfPyLTzDPAjKNhwOsMbjZBnz5YgvrHFbrFfphEG+YvofXnGK+E2CIDME6QdJTYsxhRggJxlpJYul7iEU3F2Pl4pe73W7x6uoSLy9fKgi2w2E8YJwmzCGUWPoQ0zJh3wORrK3l+jGWSmhQKgKagggplRLYMhS04BHc/tbvshJHRoB6ajdVqGJTEp/qas+bJ1UekCOLKikPzErV0fc50V4O7yK19BktzZ1SEi8gExvlqAo+aACMxfcNO61CYla8lvtAriiYFfB3oXEyQy2rNZ9Zfl4WrlNEEycu/WKMhfcWxjh47zRHloWd1ZwNKkkvo7q7myYRYAXmTBVquRGMYZavm4XMFhwiBQw05txq2JKzBt5ZdLlNzsI4C1gJzYsETDEiTSPGMAEG8L1DooR+6rBKAUQE3zlYL6BtPzg4n6uSST84a7FZDeg7r5V2xOIV2aJbWfhg0HUdzh9t0A8DnLcYNr3020N7/BjSEs6cl2KZThnkkX06K0xSLW+eIpJhzFNEmBNi0DDFrOQAiz1joWQdgTZlfhAdbSlUwJp8n7votkKUv5CbpUTidT1HVVokGIhICnXk3Ek5rNCEhHmO4DlABG0ggz9VCcu8o7YfEDAskSgJAgJK2+rntxqeN6Z83wQFR7XiYMuhbm/ZS+1DwgV0nbXiG+eAAw2hkRfGgu8s4pPK3Y5bWeVSQJWdfFRyvmXZijMIKQwA5AgmJbgBgHXqSeLR9WukGNEPG4x78QS62G0xHsQLf7fb4TAdJGRsv8c0TVLdc5S0CkVWZRavkMMOcR7BDLnHBLHqTzPIOsTE6DafYL/fI8zT2w3SG1Cev6T7EjU9r10oCY3nJHPazNhvD2AfkSJK/rTOO/T9GtY69F0vc5zEI26eJKTMEGOzWSGGDt46hCCJuOcgOX1sYpjOwncOMUU4a4EYwSEKOEYGyYiX1HiQvp/nCTFJicA5SgIFQ5J3ydsODPGMn8ZJuLix6IcVEgObszOcXZxj6HucnW9wtlnDe4eNAj/GChg0+A7WWISU0HkvQF8v1UjnEHB9s8V+nEBkEa0DEiOBkOYApqTVhR586ADkHUxyojlVoawheEcLgDmrXcq1Kv9TxT5qGHNIjKihz6mV/xegdAUbWFvR2K/UOAj1pgEkZUidTi1ekO9QEsOjhrbm9yvnEgqgUTgDSbW4pVCm6h9VW5fsyWJw302ylowhdAoG1P1ADRMPafD4StJFhpZjHXMz1nUqnmU19a4pazZfT6j8uN5u+XcGlYrXedEXj/msHtPE4RXk4TInKDP6shk2g00KxlDmKyYfrM8qRqsMVNbQYOhhkWOcAsCQXF4kYeC+6+DUoDf0QwnnX5+t0HUdvPc4O9vIWFuDVS9yIAD8v/4f/869o/KtAj/OOXzwwQcSV5uFIFbJlKHWSAnDcM6hH3oYazEMHc7OVnDOFstFpjyZvHcYBrn25vIVXj55jPGwB+KEyy8/w/XVCt54hCmJ2yTvsRtzecfjhXD0N2VLd1ViFpSR4cZa1t6H8wSBTI/6dc030koRrTJHfHw/ZXRNVs5cdlBukye39usDIwiJIw7jDeZxwjTtMU+TbHLqe84xIQVJyixt0SSsADiJlUrcV/U9WkETCbq9wdkZYZ4FBNLKFsWNTgVB5mr1elMqro9chd+3d4u/P+HzfU89/ngrZEw401u145tQihFXN5fY7q5xefVCXI3TjJ/8+IdIMeCjjz7Es2ePQWYFpoQ5zQhpRuBQQjGi5tUZRwFuXr36HMLECVK2EDiMEQmprI26DpKEBiLhMAbEOCrY4zBNNf8GQyr7zGnA1Z7Q9Ss8+cVLPH78BVICPv3kU3z2y88lFC3M4BBAZLBafYZ+EAGnHwZ0gwg4w3oluX+sxTCs0PU9rCH0g4X36gE1zwhzgO86PPrgGTYXZ7DGousGeOdl3DT+/+b6Ep9+/hm+fP45Pv/ic7y6eont7gbDesBhmjDNAVOIGGPCGB++eonEpovgmUEf6wycl/xN4uLP4CiJtKGhXhIipF5dGchp1kTWw7ISl/MGJTr20ri9KaMIPbJhtkpTVY8EvChige6vC0/ItoS7tRImQJJrwjoHkyR8zUSjYRbaptaix21y2SooaiP0GGtegGMBMBXALMUmAfoDEzNrTrpZ9jb1oGzBugyAifVZ/vZerD3ed1itOvS9CHrTPEnfsiQBnoNUXiJj4ViUQpUzRSuKUuqcmZr8PXkd13HMwnLO9SCkYZOGCtjjnMPgHYbOoffiXeM6D+st4AyiFUEthAkUZ+zGA2CBYd2BPGGDAPZ5CpBUiLIW602HYRBQ2HsHZyXMa7Neoesk5EJELwa5hPXeI8BhvRnw0fef4vz8XKz7nZXfzt41HF+LiBQ4pgSqKQYWIIx4fMt6KTkr9McSYX8ImA5RwsMMgawpAFfO95PafWMhGlSgJwNwt9uYqx6qwS1P9kIVaARyolN5kKZSRGLCPCcAQa+QCnTGEAbfo9Ny1TmvWggR4zjnuyNby0Xs4xLiw9lNEVTWYoKBUQUrizQ5f0VWJt4FpZS9eZKErhIa8EasyaILUBlneb/bsp98zH7lvPi2hpTm5Pxyl+O75XEqVzMf3am9QvdNrpw5HxaAzsDAA8ww3YA+A80XWsUxScUmCQtOKt/NpWrYNI1SKWy3w0EBn+ubLfYHAYTGvciE02GP6xefY0wRKc7YbW+QwghdzGBj0V9dYncY0W/ORFZ/SFItXKorVfkjW9Kz2w8FIIaABOAQDriO1xitgyEHZzsQWdje4+L8ETrfYeg9vJMw6hgnzNMIZjGmPH36CJyAcT9hvzuAmHAYN5higGGLtR+wOdsgcUL35QukEJDmGSYxOmuBlBDnGdubK4QQMI0Hka0TawWgqDlRCT15MDGmecJ2v5O8H1aKYDjf48mzLaYY0Xcdnn3wBE+fPYJ3HpvVGYZ+wHDwuLreCMjEjNUwIKQEYx3csIb1HXb7Az4JCWmMiAaA7+HIyj41B0Bz7GXw5+GlV4ZFAgyjc4TEElrpvfxmFNVR+AkXqUNkHCP71xylAmXMyfbzlpYB5saIIfxPFnzrhZdz6ACQKosKDSUWPQTIz9d7ouY7LGA9K2Cj95U26v0zwIRcoRVqoCEQ5/BZLnKS0aqfGWSNKUrF3RfPsb2+Qt93ePLkMTabNUirnuYcidzI4aWn35nXDyNX1V5MkluTRUAfjgFg04RE5QHgkn8nV0BsZbXl/Y9SF9BtPtsaRlgV6EbyzV/U3wXVy0D+sr8IpKCO/GWaAiRAfZb8lWV1mVfGEPq+0+rmhFXn0TmpaPzo0QXW6zWGfsDTZ89wtjlD3/d48uQxVqtBQKD1SnIbugz8yDv+a/+L//m9o/Ite/yQgDkEOKv7fAP8GOPgXQdjRHjshk6t9B6bzXAkqOkwqS+UCMEihHKYMe13cMZgvVph1Q+Y+xF918E7jxQZxkw6Eb6aXZUN+Oh42WgLsLN0vgUqqHB8XKVCFWrqht0+q7i68/IcNbFWgYjyKVVp4nLtAwtIDHHPTTPaqluc0RQwcjwe6wKRYZbvqidQjm9t3S5rAq6icBXvofvQYnzF8ftO+2aM7hj8WTLOO+bUu+KrX5PEc2tCADBN0uLrm5tS+vUwHpA4ezskJBaPhKQW3jxmsSSknTDHnXphOBjjARBiGbojjs+MnDVfvGySKpAMa1XZYamGZYwIl/3lNXw3I6YVptAjJeCLLy/x/MUlUpDk4lDAcXcI6PwBZC26oYPXfGHrzbp4/6zWI/p+gLWEYXDoOgFCplFyD3V9D7MaAC9l5BNIEyQDPEdwZBzGCbvDvuRCmOYJIYYSphPLT7Y8PeQYyjhWxUN7uIBstUxvzqehO1i9yR3MLZ+ne1gVpG4B28cN0vsVVxA9xOUL5E2wBYAWlL0WGgAofyYitBVy0LYp871jj4jXUumxRXfkqjOtp1RMsShAD0+sfHTpgi6slLUIhOZQUoExN9lqeFNObmw0fKAqgI1QrILpschSWlGEqMzHefFd+ao2W7YfVdRzsuKStFgrVxktIU9NuGACxFAAyakFknLzDuLF5IOIJqxl7K0jOG/gO/X+6Ry8E/CnHzz6zmuzNfdJMItrhpXHatMX777SngekAvSgkVfLHOXFtsBaSSaSJpElQgxikY5JFQQ0HsFZ+W+B2fbZuQGLZ7ZjWy3hXCCHvB7bdXCHRyqa8Sdpe4w50SVDqpIsPX1s8crjWzyjyArt/dGCKK2w3Fqq2zYeezQ9EOVmEUBcasRUw1oBgDIt19N96QcXXtzNubkSWB6N8t3iHnfLGRW4W8qxt2TNphWShkoUWwMLaG518iieMRw1qXFKktNF97NxPCgQFNENOxzGEfMcNKm05AcyZGHMCAKwtw6TarZS/nuSnBsK5jMDtr8Sz9gY7mjv1ydm8UItxj3ktdnsKVDfVfXeTUaSp1PUiAQwpCqmgbMCsGdvHwEJxJjCKcE5D+80v9okUQvQ/SPzdGMI3jkkBYqgfUwQ4NeQgYTjBcnLFGMB4lOSSAfLRtMoKPCg+RetdYAhCW9PjK7r0Q89hq5D13cS6urEMzSHwnor/NMCsAKxwFgLNwywvgMnhjeu5K6yGbRTGSsDCct599AkqroxEIDc5MT4dZ0qByr7URlwZPWyeuxmmbKcRk0OGOUrKKv+iDIjaPk48ppsPe5aySJ7x0PB4iPdbnEnan5TeV7p48IDGRnoz/KOeJBKAvD9fo+UEs7Pg8rjALNpjDj51+0RezcAUNMnR/yRFu+sJyRGzavTjIQeK/5Y3Eqzep8cpktHOlrDZytzpcV3t5pMC84r16tOe4fkWuRRAFrVq1bEy97VxFzkgww+WWPgFeixxmAYOvTeoe87XJyf4exsg9Vqhe998Azn5xcYhgHPnj3BZr2GcxIR5dXTeRgq8PM6+laBHyLC0DkFfnJW8pzYCLBGst6TCg3ixm5gNcSgVihRppcXNRg3211xjXz+2Wf45Gc/w2G/xScf/wyfffkK+90O20OQUBILwBzAi5HlZvotZuZi85Az0XwqpVHufOcscIGOJnhZBUfn57mYW8Q6xY4EPgYv3d2O7kbNknhICjHg1asXiCFgOhyQQsQ0jeAYZUJnlBrtYlKWmGp2c6jwmcGDJfBDGjeec1zwrZ/6jvWNW3WyPU7NqOZhuGPZPiA149yO0dGGA+jceicS7OtJEgYexFJtjMTnhwlXuxu8vLnCcDXgi5fPEXjGbr/Fy8sXmMYRn372KV68+BLX11e4ubnBdJgwT1EV44TECdYmwIlXAmuceErLOZmycJnZNkGtuREhCm9IbNSiAswzYxwFCNy6WdavHjemA2yQfDqjlFSdxlkS0xLBeS8VSYxBP/ToOg9jLDqNexfEXT1+mBGDgDW+6/Di+gbr8zNJEj2s0PlOXkE93Pa7G3z6yS9x+eoFLi8vEUOUHAcgTOOM/X7E9maHly9fwfn+nYxlVuwJkkx2HGfx9Ek5/wI0bjjPu7efb61wA+DueX1rD8/J++pFrc/PQlE1x+cQSux3o8gu3JYzX6Wj1VwAmygJMOMMzCJU52qPnHNMpAhDBs6Lh0LhR5or4XDYI8xZ8ZkeXEGR5jJiUylFLNVtGXCAELUf1IOKUsmPEaPFPE/Y7yW3z+EwaQn1CiSkxFItcwoKftS8eCklSaNNkGTgXnJ0OOfgdA1lQZ+Z0XmPVd8BALpuhd73sNZhc/4Ym/NHcM5htRkwrAd4Z7FZWXQdwTkCO0Yg8VLLYGQyCf2mw6Nn55jnAHQE21vEFDHOo1Tqcwb9YLHadHDWSqnkzml4l3g6SZUZVaYcQJ5AXrzUtuMW6Qao2oGEqT7oOOq/Vm6v32meDqgnjVFAIQKwAnrPIWkuC61Us5Q8gSwHNPJIDnlo5XVrIeBWUTt0t9UaCdmzqyJ9RdpARj6yEpOVpAz85j1arKSsoJ+R+dOUsc3gXhbds3dMauS3/L+8UpLcf9oEg5wEulpoSx+AQRTxLpSUskOxhEgdS3ZcPI6o7mdZGVQj5EIma+5xzHWzfCfnoTkjH1cFqJy0vP3yc1VWy/Fb/dPKz0eqZl0WC5A4kUEyDgyj1cQcrEvoycP0M0KIQLfCMErY/+bigHmacdhdg8Dww4D5sAXSDHAUn+5sNIoB425bKu4+FFWZUvuMxAIv4TEEZ0SpstbCkUFvJbRi8B3O+zW8tZhDwjRJYuP9bo/nz5/DOYfNusfFuSRrjnFCmCcwEvpEMJ0HGULXD3j8RHLnnD+6QL+RsvewVgpHpASwhHd0zmOzAmCcVDXe77Df7TCHGdNoMTmpODVPBkFBdWdqIQMJcR/hXILv12rIsnj06AIhBUkGPU/44sWXsMaidzfwrpcCOOOMzvUyDy2VJMkpJfA0woSITdeDNxeSOHoeEVLANI1IYQbUazDnkXoXJDyDy1RuZy5RVSco6dpUfpZ5aDUe130wqczNOuEFGBHjgzMZwBZv2aR13qlZn9wsT16s1aXeWESaDCIoq2DVe+YpqIzCGOeIMahnUrMGQ9ScQ6wPhuiTzmr1MjBIw9HDNCFMY8m3GuYZ8zRJSDMzoInODS0Bu9rX72IMRY5b6Lv6mcofmj4h64hllEORAW1ObZIqq2UCltOubrq3Xq8ARlR4wqLgkibsP9ayod6CdYyzjstHj6xGt2ygzHKrzQY5Q+i8hXdSZGNzthbQpnO4uLjAer2Cdw7nmxWGvkfnPR4/eoT1eo2+7/H48ROs12t477FZr9F1HeZ5ws3NNaYph/eJN9xX0bcK/FhjcLbqJdTL5ozk2bWNNCmlV+GhlnElgoSF5IUbs7eBxG2mxHh5+QqfffEF9ocDfvY7fxe//Vu/hZvra0zjFvvdpeaiYUTqQc4X4EfWU91csxtvocXE4luH5FxTv1kEGwKZA1TVJCtQrXSQmQbdlhD4zo8Qx/uj2X0EIrxtGNSb0DxP+PTTj0Xo0zUaw1Qy/BMAoyyvLbEIVm+fxGhD3KTqRBXisgUsqpXJGHFjrHknGot+losW3bAUEOtRqr+LvlgBtXdLKqxiKYzXpJAo4/ZttAaQ+PSb3Y141HUdjLXYTnt8cfkS1Hskm7B+1OPV9gxXV6/w+aefYL/f4eXLS3zyyS+x2+3x6tVLbLcHHA4TEgeEqGEqPoLIQhKBJimNGhlgSTgrwmWo687yIrlyCDl/hENKDsYwDmPCbp9g54g5jdiPNwAMwpRgXQ8iixC22N7skCsilQSklEEEwDhb+IrV0qlEEGZsysQAyMBah9XZGfywWgA/BMCwJKaepxE3V1/icLjB4XDAPAZ424HYYL+fcHV5AzIdfvnLz3AY3wVoID9565w5IqV9sXawCgzOWnTOl+pXZcks+Muxt0yek2oVy1aYe8DMOydvO8VxB+BKVPLDQIUras7OG79pyrkvgFzUdZR5eSrAz4wYgWnaI7J47NzcXEvC8TBjt9tiHEfNIzfAe8l3Mc8zYkyYphFXV9eacyFiHEeEdwL8APMUEEJEUvAnW9wluWgVrGU/FIurJGqdtJxvRAySF2ecAsZD0PLfAv6kBPAsYX9EgLEM66EWJ8BaAoyFJQZbWZfOeXiryT+dF6MMybMAAStWwxqrYQVrHS4uHuPi4rFUnegsXGdhLWGz8uhXBGcA+ITZSh8mLQwQXcLZkxXcmcM8B3RXHqttj2me8OoyIG73cJ3B+tzh0aMVvHc4O9tg6Pt2iiHGiGlMCBEwEbA9wc6EaAJe3bzC1eGmWMiTJqp/wFGs6ydPTN1ossyeong5yh4pu3cgYDYRhgghKHieGDBWqntki3TxwoHue7LXk605S0j3EecMnM9eFVoRBYwQCYh6THOYgFFiJDK/KMlNExUwRmSlHNJAkquSCMSkCrXknDJOS36TKPhRLew1gakqXix9oaqT8uqEHB6eq7FIymJTjkt/SK7AdxXuVSCpzOtQZZm7zm5/3Xk3qiyzSoGtb4Bprq+yqA5Oc68jYOfW5wb84WVoWJFdS/heha7K3ZlV8c/5oAiJnFTAMgwyHWySEbHrOlc2ISIozxIQJ2F3c4muH3D55WfYX18ihQM4qSw3TYgcJazp+hIgenBAPYQIQwmJpDKkd2pYtgYr1+HxRqp3DZ3H2VqAnN732PSy17+6vMFnX3yJeZpwOV7j+ZcvwQw8fXKB739fqnpxmhHjBICRBoI1kv9ntd5gvd7AOYtHj8+wfnQO5yRUesqePAA65wEm+H6F83OpxJjijBgmBfJ32O89knpbTYcJRJB8pTKYGMcJ19c36PsBT1fnOD8/R4gREQn9qsM8TXj14kt88fwzgAkmeRBLIYCzzQZ9v4KxBN+LJ+QcIrbbPQ7jDJuAJ6sNzrszhBSxnQ8Y44zDYY84T6UwzzRNWgX14WlRdAB1bZaiPhqDGinzESDniwVyURKtdMdASBm4YaRseIrVm5atAcGCEyEYILhcgdqU4l0Ve5e1lD2Ec44WouwOUP1ZMiDFUMAiMfb7UQxLMeJmt8NOq+fNKjOnJIVD5tLoXAWR0HsL5xRMcBbOipE1TAcgRaQYME8jxoPIuOgY7CyMdbCmVqrNVPhRebeHIyKpXMUcGl6Uf3IMHQnIEpWHKUBHZGCchTMiuyYSAK8aEfK8MzUH4vGblUTSXJmluoxRBqaoXsvlg4LRrIpmxnoaUC/jEwQqhTVa6ZQU7Mn5Fy/O19isBwxDj+//8EM8ffoEw9Djo48+xONHF+i6roA93jmcrSW0K8uozrv8WmBmvHjxAh//4mf47LPPCxD6JqlLvmWPHygDRINYEmzOX5BzSejqIasRuWr14FQr7rCGTgRdIIf9iMura+x2O3zx/CV++ennuLm+BqcJnCaIUCFVhViFiMUUKbsy35r4GSC4tR5KB+eJq58XUoL8Xd2r0Ux0/f4IUczzM59fXPQatYypyUheJuQy/Eim3sOuYk4J+8MOJo8bpMRzzqfRtiW3t/QSq/eTvmtW1EriVAIyeFVzOamQuIT837CxzTg04Ep7iL9qkSzxowehdpxKXpH8LKDOhXdI4mUQADAiOxATQgwY5wn78YDdYY/t7gbWAdc317i8fCWV8a6vsddqIDneP0bx9ElR1mnefLNVSqq+ZeWibrytkFsUeK3mBq7AhSjygFSPZckxQRGEBCRJaph5Q9D8UmGei4Als0jZsa2JAQuQQBIyk4GfHJ9rrMV+CnDdXkLDWuAHCQaMGCbsd9eYp30pw21Mdm+XvDDTOGG/36Pbbh96FEv/5dAHToxQeECdQ0atLmQar5tGIVjedclDyp34NbPyliaS+ZpygMUyq23Io09lfR7/5EuO1vJdx4HCh3KuEkpRkmiS5AwbRxG25nnCditgnbUWKeZKkgmTevaM44Sry1c4tMDPA3uJaKMFFEi1gwto17xT3p8KZ8+J9FNCtpcTSNdAdm3Pa04VvhjLdpONXmKlsop5GoAsAAELc3JI7x287/Qcp4IyYb0asBpWcM7hbLPC2WbQsvEE58Ul33sDa1UuM5KwF2AkJDASmBi2sxicgXUG/dxhijPISLJ4EMtnS3BePIG7zqEfPHLOoZyrCobBkTVETJ/HSQo5RAHDZuUNOZfNww3jkVDbzs2iwNT1VVaAgjMxcslTwVz5pZyl+2m7EKnxqFOFQ0A9yfUFaq5nKRSUctO4iFUVTKJW1qhL+hanbtpV35CQK1zV8IljTnIsWNXfdT8g3TuaK/UFq7ei5Lm6VXXngWgRPpv3sdLUJmFo3rsX5x+93lETufyfx7NCQq1HLOdB4vYWx72ZVQwufdGaFAntnETdfPVWx7ycdcLkXCWcf+ebZf2IxXCbvzOe4fS+KeZKUMBqc45xv0UKM6zvYKwTKdiEkjk5hVCAwIeiIlMykD0kRcmT8ElHFoPz6H2HVdfjbJDEx73vsB7WcNZif5gl9AoCIuXwmfWqwzwHyTGTMg/RqlPMMMxiTBt6eOclh6B34nWhuktUr05SY4axVhJCx4ih77HqO1hDSDFomJ0Bxwh24lVvjClbQUoRIQQ4J8YAax2IJKH9MAzatoj9YS9RsMEC0aLrOuHb1gnwo/yaAOwB2Sdg0FkPZyzmFDGLsIUYQskZ8+5yw1Q+WPiQ8qZ8POfrI3DDarM8hCo7NvOhAAbKZ8o+yAI6JzWysKl7cOVlRzpY4dX5ybxY9CXnYSb9Lt9T8p+JB/J+v8dut0NkSYaf9dpxmiWRftaHWEIGJ+8k15QlhE7yTgEMaMoDTlYLIYlkIIYwAuUEdLWr6hu9Tr77mpTzEjIijjIy1995q+S2d1PJb0tsSrhf9vjRnqy8sRy8gxFn4vJfmSA1wqbqYbWVR/oitd9SUSmzl08Oca930crBpha7GPoOq1WP9XqFx48u8OzpY6xWK3z4vWd4+vQJuq7Dk8dPcLbZwFmL9WqNzncw1sA7D2Nlzc2zGK+urx3CPGO33RZ57k3oWwV+AIldt0asUjYDP8X1LLv864BmN6v8dwYHdTOb5xm7/QFzCHj56iW++OILbG+2+PLLL/Hy8hLbmxswz+A0AmBYK6FkADDHUMAmaN4SodvCRGEyt7+QtuVZWyRq3LOIqtC+EIOqrHXnI7IYJvM2J2I9eh4ya2pv9PBMmcEIcZIkeVqCjktIlpxDWToobcjtMsil9spbiZMIsnSR0VOj80Jin3O5S9SylzhWDXnxw4rSlgXNAChJfDmgseYLDbLcpnjlVNnr6Lzbc6Xqu7rxUHtdPsYt37jzjvc96aGJIBGPlgGKkndpPhzw6tVLAIwQ9rBmwmYz4PrqEl98+om6IR9weXmDaQ7YbrfCgIIIPjFmu0EsCsA8S9x8CIzi8QMCQ+OPtC058WlZ9yAIexKl1HcrrNcXcH6A82dwfgOAkOYRaZ4AlvCRmMRtnFUYkHvbUgXPWAWUCQVkrq7gmkOMTCkZmtgiBNIQkhmj1ZBGRHmLGBCmGTEkhMBgWJDxSImw3e6R2GCeI4zrcfny6h2N5vHItp9zrp4af1wVrTrnM92e68u/M/ut+6o+Y3F/WqwMQoM05IfkXVP72ZjsNUmLPbsKWdnKXwV7XjYEGZwPMWB7c42XL74EGYMIQiJgnmdcX1+JlS0EbLc36vFjtBymlLANcyieP9vdFvM0IVd7e2iwoPQhE8DVTphDnElDsOo8FeMIEaHzPQhinTfILuwQMFQQHTjDcFZKvxojoAAIkktLvezWQ4/zC1F4uo7Q9UbzUWjeCjLwroPznY5z0h9C3/XotNLNWi3d4sHFICNr0nuCc5BrzIyoljTOwA8gjVaAxzlC1zkAEd47dF5CM6cp4OZmD2cdQgB2uwkpiudODFEUtMMe8zxjHGe8eHWN3X5UYb/xvNEQuhAebiyzkpENUpwYoFR2e5mqDdKhKzCBAK2UF7n63Ml8i3Ut6dopYB5aHUOUAWPVtdwbuE4rD3HS+xIoGRitAczJAMmKnKIJpqVvCDHJek1M4FR5Rm4L6cZIBJAlBeQA3xP6tfDQFBNiEg7uOwnTK954jQRAeYNVGUCUOEYuIS15IKvMU5XBd1hCOit8JNBGMSo3ezpDwB+Jw6Q7RTgVOQRxK0fyJwVrGpBe7pE7I5/fvuOxbFevuFOIPOKN7ccqe+ZrqkzDoNKCnH9cPtPRtfI5pmys0TWg78JkwMaCXId+fY44j4gxwk7yO3viMgjW/S08FBljsFqtkUsaMgPOegzdgN55nG82eProkRpyHNZDL/kx+gFnmzWcdSUkZ5wmHA6T7OUp4enTx/j+9z9C33fgGJBSUIVc1tGcGLv9iMTXApo7YNh0cN4izhFxkvC43W7ENM6YQ4BxgPUC5jx99BhD3yHEgJubG2y3N4gxYHuzxW67K7mDmFkr+XQApBrpdrsD0SvEFHG1u8ZuL+kvQAbdsBbj2ciIAKzvcHZxjqdPn8JZg37l4DuLcRzByYLYIkTGftQ8T5xuzyEFYqx1st8AOBwebBihq6R5VuaLCZFqqFcGmnPzpPw7VZ6c52R+BZY7lzAhUzVmOS6heCkRQkxqVDOSUBkSihVTuzqP1x3u1ulYPCABYJomfPLpp/jk448xTRNeXr7C1c21hudLiKHk4QySAw55LovHj7NG8ucRSSVLJyE+g8oxm80Gxln4QSrSxphgTFLAvLY8/8+lKuA7IA2jki6uYV25kxYFjMrhHNKPkgBZPJupcXogAaAZWYEQXqxrXnQAU3U+nQdgNPo86b7SyAKcAaVqMq55M+UNrO6H1tRQrtWwkhzGxqDvahoJpx4/Xefx4fee4cnjC6zWA37ykx/igw+eaSJuBXucw2a9Qd/3msjdKdCrnrpN8Q0A8N7jyZMnkmuNNGH07zuPHwBOq3/03sFaccNsXyzqptvG8GSrFlF2q1M0dNzj8tUrjNOEzz/7FD//2c9wdX2DX3z8MT774gtstzsBfljcMfu+x2pYgYgwavUfaywiQ13pXzftdZLe8U7UftfqUpwPNLtlM+GWiv19okNlaK2y1VrmlpfxPZ8fhpgTpmkHSwZshOFzTAWNBkSJlnNZkwFDhUZ1cGcqwlRKJFoJa7iPxkkaMnDGwBmJw7bQUpYQwKJCP6VHIBXBCICEEOjSV68aWbJFzSAU4Kcopk23UWZIXMfpdeCgMDC+NYoMbsqpqiX6jntUPOj2k94FMyYAHQOUGCaKReGw3eLzzz7F9c01vnzh8eLLX6DrHXY3V3j1/HNM4wExMiS8mzFNEeN+UiE/IWgIZooSx04EjGPCpCWKwVaUdyYpwW0yOKNKqFEFP2XgpwNgYchhGM5w8eh78H6AdSsYuwaYMR+2mCmLqoygYYeGxNsAZGC8hdEwFaNlnEldZK2zqlx7EDkwgFCsQ6IEhUlGZL8/oKCUnBNmRIAngDVEh8S6FxLh1atrXF/v0b28wquX1+i6d5Pjh1rGA6AxYxT3ZNN4OBbedNfkKhY2BWxUAC4R2ZytaNI/mqG0ng80v+s6Vf10WRY5h3EZA1jp+1pVSpuT1wKLZC1AR1pYG7MXYRYSwzzj1auXMN4jccJ2HHGYJOn27uYG4yjliQ+HPaZZQGypWibuvzknQNKqYSmm0k3vRDBigKNRa5YCPSRlPROxCABO8905JxYgI6GIBAOOWvJdBRNmgiMjIRopITnRTzPwk4UwogRjCRdnK3z/ow8kmeDFgMePJWmgd508i4yGenUykiaBSBMy2xo66ZyDcyJSJARINY8EIELUDQZxUOG39V5FMeoYG9F1BpEdjE0Yhg7jJADXfj9jGm9gjMHV1QHOSdWo3XaLcRLL6W63wzRNmOeE3W7GNEfEBEyzADJGQzjJWIT5YUczu+eH7L0FBbvKGY2nm66DxFnR0DmnEyIkxjzKX4ZMKT0v87JZuOrRYCzBenEtd72B7y3I6LhnkLSEpMs9bZZeYmVrIUheCVHic5gZJLG/ejew5lECaUJuZ+B6xrCx2Fw4MAPTNCPMCWSBfmUAdnUvJM21YmXtp5gwH2aEKQvf2TqMApYlBlLInl0ZYHgXVN+teiGh2CJybjHxrszNLDDWnZLBAilpPy5eoIYjFNiFj64pNz9CX4pM2Xy+C/ThzL/1ia1YqrweDPVlVRMOK+Cj5ydksIr1frkCYWqaJSGCbCzYeJhuwPriCayzSClimqXEORkD6zqpNuj/o7t67muRtRbnZ+dIIWKeBBTuux5nqw0G3+PpxSP84Hsf4nyzhjESLmQMYbVa4eL8As57nD06x5NnzxBjwl6BnxgTHj96jO998D10XScGT03ufPnqEl8+f4F5njFNO1xdb0WvccDm0Ro+OYz7EYet5Iy7vtphtxUAzPeyF1pr8YMPP8LZxQYMxtXlFa6uLxHmgFcvX+Hy8rJ4Hx32wv9634NgEEPC1eU1bm4O4uEz7XGYR1kvxmF1/ggxJBwwI3GAHwY8ffoMP/zhD+C9xWrdo++96EzRgNhiHGccDtcI06QwqwLZnEOoRCrwvqudf/1gw6g8qHrdMIAQJVcdQ50IbDUW5zDwFBlzyMAOV52scdGpnj8iGxmb+YxGH4AREmGOhMjCOa0ucwF+ZH2UvC65ya1c1a5v2ZgFlOKE7WGPv/13/y7++l/769jv9/ji+XO8fPmyAGzln+b6Kx4quoizJEcZBDKEruvxwbNnODs/w7OnT7E5P8f5o8dgJlgbS9GHLN+UTtZftws/PASJ4RbGFMMqo74jcc3xm2U/ANV7VZN52+ypzxqiTCQlz7MXqFHUA0AMQEhBdUoLWC0UUcYWyKBOBohYC9lknps5uim3Fx2U9Jky7oB3Fl4LbDx6/Ajn52fw3uPxowucn5+pR5/8DIOAPR9+7wOs1yv86Ec/wAcfPNWKwb7mUzQqiyrukSkxa9hDHaW+7/H9H3wfm7ONeBzZxgD7Gvp2PX7Uc4OyB4chWXS6eGJKoEW2prqKalLP+h1rvL4w2wmH8YDDYY/DOGKcZkzzBE4zkgI/ZESANUYSpkFRO1pY4l5DxaUl/6oL/k4oYMEA6qbc6ltfDf4sHy2fswZ1dKVe3soHD62qCP+RJH2JYyMEtIKYrhYSaWmpALZKZAu4tIJTjpWlRR/nTjg6unhqFT3avqkugYveIDoaiObvwlwb52mi0oZ7e7UZl3wdAwL4NMrscqBwa6zaGP2vXsZfj7LvDTGDkgA20ziCrAHzBEMjvDfYb69xfX2JaTwAbMDJgpkQAhfXbk4QhQBqBI2y4SZVEmQ/y5Jys5PndyQgl6fMCnz22AEZWK34530PY9VtnBnRZqBw2UvZ9ZJUQTbOiSeCszBOeI7zVl1kDUAdCE6NhLoxqjdaTkgagyTNk803K7VJ4cy8ieTcGoR5Dghz1OsIzo8PPobL1z6aKXma5Y6k5QULN+0qyy/XRLmwOZXba+n+CbpIbpGlr6Nb6jNqnp7KA6tuw/V3Pu9I8cu8lsEl70CJn9/vsB9HxBA0r48Ix+PhgDlIqWlLjVKeGNXCmF0S6bizH5TKnkimBJCzNaDEWrnLKQBUPWDECpn3xCVHLNYpk0MbSYUodYsnyHogEsF/6DAMPc42Kzy6OBMLldf1RlLVxjlJCkSUAErimaHVsbL3rIQ5auhDynkWYgnnSJyQy7FmYbOwgyzYanlwuSepB6kkLo8qC8QonnwhzLjZHgTMCwG73V6TcDP2h5rgugA/RnIjWLsMi34oKu9x695Lzx09VJQQoNl6iEroqvydbs29Y50CAJDHInv/SDZ34b1l/ko7rDGwWRBvgB8yAIX8HqT5YFi1HWEQSddZTspuLNTrR6qoMYCYCInFo9Q5QtSQPcX9i9BsjUEMERw0sTm0Lbpr523TaEJs6L5yhyvuwxBndlMg5yIaZP4i2AeBqI5d9bs5Gt/XNlW9fhaSE9+6E5dG3L6LNFUlnKNz8nflc/tb29TaD9tGMte3Yl2nNe0q6bzN86F+XshLwmSkWIvv4Lte0jQYC5OSAj4DjIYNPRQRJHFyZCCQhAUaNfI6a+GdR991GPq+eJcRWMBu7+A7DzIOZD1SYjjvQWSRImNzdobNZgPvM/AjoTW73UH3ffWASgHGiAwQY4K1EoYuudyCHA+Sy8U6DYU3QN91eHR+IV2nxo55njFP8pNzKMUQa04RXdchBLAWppjmSfY2olIlWYB+5d3GwHcew9DDOYvVaoW+75CiVATzvkMMOVy/RkTcUiqVR2ePn4emNhF5nmJJ/2AjsrbsnRLGlyWINlRam9lMeL3jYjE0Moauy+pZnP3wKv9rK39mntDAP2VfK17tZb0p+BMjdvs9Xr56hd1uhxcvXuDFixeql+rmCDTVWAE0nh75OBG0OAswDBJmnTih63vJvZQ0hE3BWZOyfL3kJQrD3MVivjm1Mp4yU9Y1V+LvIPL/sUxXvH7yDzKby6F+1Nxb5TeVaxgoKRuAnLesAXw4Ncy5aUdpT53vWccQmUo8onMYl3WyvvrOa9EJj/PzDR49OpfrrAVZg9Uw4MnjR3j69AlWqxWePHmMJ48fC5hk6jouvJeX3j23MACg5P4RY2gDkH0FfeuhXs1Y6QHUyhBE4h56NPuoIFny8s6xunP2ePToDOu5x2H8ANvdFtc3W4RpxC8/+VgSXAXGNE062aUsdQ50X4JJdQNeVFy67z3Kp7xzNptdo7wsPy/1nTvvvjx90W8Zh5S1Q4trbvHjcrOHJmWMkAz0rC7ZVTqqTwdMiZPOsZ5UBNAa3pfzuZiSb4JgYWFYrJVpDph2e9hE4t7a25IQVpKBy/00i7a43lmL7Eae8bEck89ASRQurSQNXZOWm2xl1MVH0Njf/Iq8HO1lz8gcTUgll0X9v24YtdPo6Or6mcr/D08GhB4EYqPu6EDPhMFY9NbBAeAQEBgI4yg5fRT4AUtyuBgYMUCrHyQkda+VSD9T3s4QwIYhoV7KSBWUoeJOr72kIFImUm+CxJDk0SECYQRDLI3TfofpsEOKAav1Ch99/wcgIqzXa6xWA8haGD/AaJgKNHE8EUlCZyttCrNDiAYhRlxut5poj4E5agWyBDITcnlW8S6TzcsggighxYh53Kv7NwNpApgRzISQqyu8I7oLk6hYiwpBjUK6mGntMW5ZEKmir2vX5I0pC0TLC7Ly087qXEmMmHUzznfOm3WuAlTdgYk1oXHRnGgh5GbPEk5Jch9kD50gXgk0Tbi+upK8KSnh5nDAOE8KCI2S6F8TgOdyutnHLL+SdEgVBrKl7U7m/A3Je4ePPnqmm3wqHCPzI+ss+k7iu13j8cNck1m2n0OIkqdIwy9n9ZTw3qLrnYIqGlJjgKdP1zg/69D3DqvBSr4HJ9WhnMl7dgKnIOwakmNrMdhUx0qSa06IaQZzQkxzCYmIWrqZEyMqcMyJS0LLGBmHccY4iXL06vIaN9udvh9pZE0OzTQC4GnuJQnPY4RoxNOFHKwFfOdx8WgF6zpYY+E7qUL2/Hc/fdBxzN1AWbDOgqoKjK28kX/nHMWsvC+mZj9VRZ4BLZ9OKOADUAU8IpC1sM7BWsnH1HWu7IvMkv9BimcYVYytWBih01y1+hgFVGOGKqbyLvM8YQ45OacDseRcWm86rFYevrO4+N4ZNo9WAIB57hFDQgoJh4sZ0z5I+x2B1CrZqdd3DBH7mwPmcRalKLQV7WQ/iClhnkL5bp5rkuKb5w8XXyKqQQWcMoxRi7uIvCL9pvsdlJ81/Ir0Zgs570hY4PaLVkkt/79m9y8yTVERseS8eZ40c4YrS8tySsklRc1VqeXvVOQniyo/5YThrEpyOgrX4NwPCghLPJMDGQFfwQzrPLphA+s8yNr73vTrkYZbxig5CLOB2JHBYX/A9dU1OEZJO+FFkYssu7l1DswGkYXHxsjw3oMd4L0FWUmOT9aAHIFZKvQ8fnwh+cOS5OYhQxiGXtdVwjQG7Hcj5jlgtxuLF1HQvHzOO4yHCfM0C7g9RyRdQ3GOUl0yRFiyGLoVnLM4W5/h4uIRAOAwCs8EAY49EkkY1tmjR1itzzBNE76g54jhEjAGN7trPH/xObquR8ITxESYAsP3a5w/Yli/Q7fbw04ix9gcaqRVl616KFSl9WGJkY1wKncsvtFP+rFEY2ozrCWJsKR6fgYeGJDKTJQBywieZT+zfYfeS1lt5wy88ipWME+MFxX8ibPkDgSAoR8wDCuVbS2SMWiWIBg1z5AxFo8fP8ZPfvITHA57nJ1t8OTxY0lovHi/LLNlT2TZL1MMKr8wYpzBKQp4ygm77Q1uhg4vXnyJ88/P0XcdHl88wmo1wCeG7QbAiMRjS6gcyx6dXq/3fj3KipXq2lmOYpYw2BItYpTf8oK/iuEmqMEnlWJAlOR6IoKBJG4nY3B2tpKQTefQ9wOG1RpEhJvdDtfXW4QoXsI3261W/2tSvXDVvZyzJazeO9kvAYCTWEoMEbphwDB0kpT5g+/hex88Q9d1ePbsMR4/upBS7Z2D8xZ9L0mcnz17gr7r0Hdd6Z+363IqerV3HpuN5ChT9eaN7JPfeqhXSf4HFEWarFgFDKP431VBWwQc60hfTCyXKTGsXaPvPGKM6DqP1arHbrfHPB3wO3/3d5BCwO4QVUgQS2OKETAy2Pl+JTEqY8HAjpMl30v3nrMcgVseOWhY2H06BdUPJbwp4yXlez46PYsbD72AMwnTEOdPIEMnVdNsBKBslUa23OYQkvzZwkBdN6Fut0RwsLBMMAlI44zD1Q14DKD1GQbqYZxB58UqTbkikD7fOdKkoFBvExFTYqKmykiN6qxwlSK6EAWVOOcIEgkupztYKIdoersIVYwEqawgp9aTs9VsEQJTgJ5GMltMiIffVA2ANayMleZ0GGCwsR6D68A0I00jIiLG/Q6H3RbjuAfBgqgD2CBFgxhM8YpJalk2RlyFhdcTrIniwaShcwCqVZokADCXsc5JaQEtSUwKHrIosAkBIcyY570CP9eYDjcwRLg4u8D3v/8Rus7j2fe+hyfPnsJYB+PXIDcACiDljcXq+o8R2O4IhwNhfxiBzz7F/PIFUoowWrqUUwTNI2KcZZwox/9yif0O84hpilKdI0Wk8SCu4JxdWN/NemyMHZVuPaqZhXx8XFWH1kpWlNPqyZGtKhJDr6IMt7dUAUvXDYHBpPle9KYFZM8KARkFlXJVBQIVd19dkUbAHutE0Ow0jj2vbSQB3UKapaRpiAgvvsTVzTViSjjMM6YoicxzX+VQrppMvO439/lx8jsav673+OlPf1A3bgNJ5qdhid47rFZdEUS8dyBjEOaA8SBhE5JIXICv3W6Hy1dXkqtIlXkAWK0HnJ9tYK0mTKYEMoSzszUuHknp9WHlMHRiNXIOcJZl42IRNKUfIoAggjlnCyvKvJC1OkrYZUqIcUaMkidinibM8ywVSw6TKPMK9kyTgDfjJO8SY8J+P2IcJTxsnhmzep20nBPlUw4btwooekmQuN7gex/+AGebC1gVBp3z+O2/8tcfdBwF2MxzScISydgy52z2YiIqHk0CzAhviDGB5yaMqVXQF7ml6v5qNK8BWQvnPawz8L1HP3jNPcCa20EBIe+0rKyH9xL+2oIQnCS3BSdgnmZMk/Cy8SD5P0AooQXOGzx+ssH5owHOG2yeDFiddQCo5O7jyJh2CfMobTCdA3nx8PCamyLMEbvrHaaDVAcaxwmzgrhS6U7m9/4wifIbGeMoOdUA4JO/dflgY8ggBM67c3X5t5BlYBT8IQIoESyqtbkYEbl6MC5U1tYbOA+sjnM7tvWaBjZqxYHm/IZtZRfexb3y+Xk+ldAZvbgozpxVU0gukRyqWO5CS8MZVyU2m0DQvFNiFB5PxkolXdvLOoB4aPiux/r8MXw3wNqHU0WYWcJfFTCZQ8BEM8ZxAiXgxm7x4sUr7Ld7+M5htephnYE9TNjuR/ESNh7WDSAy8N6j7wcYY9D1HtYxyEY4K17IIs9GGJO02EVAiAIGrNaDAJdzwrifcH29xzROuLrc4vJyixQTujmgD1Jc4OJcqncZIoRxRpwC4hQQxhnTYQYnhjUefiWeBY8fPcGzpx8gMePq6hrX2514bxOBrEM/rPCDH/4mPvjwB9jttggzYbcbAUN4dfUKcd5iGFZIbBCSBTMwbC7Qrc7hr6/x4uYG23EPkxhhjuCY4Ix4TXk1ppl3BfyoEQMwpTx2q9YwMziRLCuCgOg6t5xTcFYXTjZ+2QzmcYJRvCFOAXGUsDjnDTa9Fw9b3Y8BxpxmzGHUnGlSsTClhJvrK1xfCf95/PgZrP1AADGr4fVUdQJAQ8kAGOfw4UcfIUYJR3z16hWur67U0CzAVF5n+V1jymCP7KNhniV8fXstHq/zjJubK1xfvQQR45e//BhkxAiaEuMxP4LvEky3QjJOvH2d1aTJjDiHxrD5gOMIleWMGOzFsV/BltjqSDVCJCPazJIEey7eoEnBGoDIyj1h4HsJjbfO4YPvfYC/5w/8JtarFR5dnOPJk0cwZPDp51/gFx9/isNhxC8/+xzzPGGagwBMZaaoXK9yZqe5djoFapgZ83TANI4wxmA43+Ds7AzDMOCjH/0YP/7Rj9D3HZ49e4THj85V/ugw9B6d93j6+BEuzjYwxsr+26QSyVT2DrobWsgGUwOC6SRygXMFMryZnvEr8PhpLBL5raiiITkfS5vkrrWQ5ZwQUvVBkhOmZLFeDTg728Bai/VqpUKFlUo98rSyAIul+jVtWx5bnrtQC/ReS8fcuz4vr22P0Gu+PT63/U1Z0AQyaqXftu3lN5kHb05FEtClwlk8MXe8qXoKZM8eLD9XEIvLEYOsNAqDIOhinwMCBcRONh8JNOZyTukVgnoCqacIGrdMiMVYPeCLXNWGlBEEnGiFvla54ObTcW9n0ansTcya06eFd9rr1Z09H+H6LSGvj9Z1+mHJgpqOABwkftUZg8iklSqiKm9ShpQI6uGSFRJNuJaBHUCZdl7TBoRUFX7I72r9bgZQv6tzuZ4HVE+TjPrn0swhBMkH5SWpXdf3uHj0GI+fPINxFfiR8U+lXLETTEFyWmhXJNrD+QEwHQhRcxFJOlIyQUGJmtCdAPGcAEAUkGdw9iiTinepeJk8NBHdzW9eJ4fVYIJmPn7VZk/tXGlX3F3X1fl+3xnlPtJxxRggj6qKba0UVPMB5R9G9RDMvFCEQRGmgo71FGbMWt3CWlJPCBU+GsGKtRpN+8rH9C7Cg4wxWK8HkFFLpZEqc10vXj6dKicSomThVHmfpgDvJU9EDiOQKl8T9r3RNWpKuM4wOKxWItSiSdAsQonmatHn56SZxTNl8e5NgsiMc6CCtpIbSZK6J537IYjHzzwHAXhSwuEwYTxIwuz9fsI4KiA0RcyzuKaLFVuSXU6zgL/ISmbTf6TWRAFbZCchklw+znUY+jU2mw2s9ei1/PzDhpfIXMx5loC6ZJY/1YAl41NBgpTkJLpDPmmnXbGvtM9v1oa1plQptFoNjQjotRqaMQad9+i6BvjJz0mkPxXQFnzUgll8PpzXvAbeYr3xONv0sJ0RAXflpX2auy8loKOE4CW8xHRegR9C13lYZxHnAEuMqTMIMcEdqICYQUNlQoiAYcyTJNoHRbj4bvbF7Gub+0Wdsop8keUEOV5lFZmW1dun3ibvhYxlMuXblt47OHnbsKOGNmEtZd7c806NmNiGDrSycDEBMC/4XAWhMrBVf/I9coYGKtcft4AKn89AmbEO1nlY3+GNy9G8IWVZQRKuJ83dksQDKETM8yz5QUjmc2IjHpIqDzoHeHYwxsFa2e8lD1zuL/nJ6zoD9MYQTAQoyHlWc9G1ckv+iSEhpgir3o7W5CqNLI7V2QjO2RNa7mNJkr46K5UWew2hk5xvIlMZEh3JWou+G7Bab5AYcL6TvIbECHHGYRRPvHGaME3y2RgL5w2sl/VpnQXHBJOT4ef9OFdFfVehXiyeUrmCJKlsWPUOKhXb8piL7ChAbStrZ8+0Ns9PcXNMESkE+TtJ0Q5JNVHl8CLDcVJvHwlhnucJ42EHAJjnc5WRCWzc8vkLni791/c9zs/PME8TOIkHSfaGKVEKpbni2ZM019qkQE+YZ4AjDAGTIWy3UC+3gHEcsd/vYYwRj80YQNFpMna5f2IIyMQakn2UQ+YBhrBAKtVxoTDLpSJWzgGKDKkssyRs5iYEGgyJgubSp2Qs+q7H+dkZNps1Hj9+hA+ePoExBuM04erqRkIbL/tSzCOx5j2CJIPO61q82sTT3DkH5yV/XYyz5O3RnIvWezjfwfc9utVKQKJ+pQYmi2HVYzV4dM6h73t0XQfJL2wWDL9K5U3/6TsfYxOll4xUKcxJs9/UwPytAz/iy1/jNJESMActMywJoO7UWbI1liSZFUNCByyJBXo19DgbVrAwOF9vcL45x3iYEOOE6xujK5UlEbG64BVd9CvR6vvVl9erN9R8n8/OokGe6PnUexJr8fEft+95+/t3RwSoS6Eu6WIlb87ISnsTVqM1ueSN1dJZF3fdSI+ZtQj/B1xeXcK7HcbDiP3uAGsd+lWPfrOScpidE0HSWpydn2FYSWItthreB0lWmRMVZhdbQJBiZ6XqSBgDwiRKSsr5WSCVSErqzRbfyAwaABsuCzVf0facwhcoPdbmQKkv3v7CuxpTawzO1us6/4mwHgZ0zsEbAyTCnBqBI4kARWTVUweaXU9CpSihWCkIhBStHEua9V4XXDvfSd00vbPoexEgam4LgnFrGD/AOrHIMSUkRIQo3gF5QxYByOH84hGeffh99H2Pxx98hLNnz2CMRaIOiTyYE8K0A88jDAG9N+gdYZoZ15cB4yHgsNvh6vIlXr74Qlx75wM4SdWwFGdIbp9GkSvglEEKkwhm1sDAwrADLCOEWRQYdQl+eGIcBSvhXv7QCklHFrQlNSuaspeCWD9Xq1UBzzIASmjyLGXefnS3bN0ASN1+CTnBs/zWN8jeP8334vFjS1Ura60o2Y3yXrx4iMAxgRBlFSZ1SSOgxkZkbYUX1vcMYhAab09Cs64fXtl0zuCDD89AYJBRwVVLl4u3q0HXJVVAEqyNkpycIkBRK4EAYdawSwb2I8M6UVvVLwGrlcd67cR92djiFrxaeawG4Z1d36HrxMplTQdrxaJtjJUQDSJIjh/J0xMSS4UTBnLIR+Kkufb2modvQnQiNFszw9kZ8xywvX6F3W5CCAnbmxmHw7gAkxMbpNmCo4TiDr3HMIjVUKpdiKXZtNX5NCQxsSamZWBYDbBecicxJcQU0HoUPwRZZ/HkyWOEEETuCFE9Imqi8jx1ZJ5zUdLyWpM8AoKZUJl0IidnA1arOFunntCGMHQW65WU9V2tHDYrD2skXM9bUWSGvsNq6DUXgKyhKvuoW30QT4mUGJgCmEcwGK4jbNTCL67tHt5bPH66xvmjFaw3GM4curWOCVsYGHAEwgDESfhNcgas4KvrHawziNGh7wlh6jUcM0gC18QK8EtI4DhKRaSYGNMYBQAC8Jf//V882DjmYapmnap85M9ZVclERz9Zn7nNjVs5UP+n5TQ8Njjdu/M3CmH2WBTF5/g5OQ+fgLVhnhFDUPYngAgRaclxCcGKISAFCWfgeQbHsJATmAyS68DGITEhRkJIJOdr6O142GM67DCPO4TpgGkUT3wQCX8ng2AMwjSCKHu9PQyJHDdpSKkmnc6gjzEIKSDEgJAM4iHgMO3LmgLJmlitznFxYeA9RJmMktB+PBwAnmCMyJA59HA8TFLyPSYFXoVPraYeMQgYEMOsoZgWw9BhczYgMWN9vsHmfFMMV74Tz9Z+6BCjyD7D0KHvRPHsOsmX1Pc9Li7O8fjJY4RZqoAlNdDNKWCOUgTh+voK/sVLjOMBxhDOzjYAB3DaYz9OGOcZ+/F34dxnErLy6DFW6w3macTZagXzwTPsDyOml6+kMhuiFA5w6rGb3VQfmOZ5xCef/A6c77Ban2tVScnVVEFE0SdjjOpJmsTzer9HUi/f/E+82+XexkrBDxAw7g843NwgpYTHT55gf9iKN4ahUhzjMO5w2G+RmIuiz8x4+fI5Xr74Qu6ve5H3Hc7PHqmHsoZkN/PbAHAkeio9iYgh4Hy9xuHx4wJqZaaQPWhTklxPIUq4336/wzROCGH+/zP3Jz2WpVu6LvR81SxWYZV7eFR779yZeQ6FQEJI/IAr0UWiBRJ0aCDdv8Dt0b0/gNZtXAEddOlBHwnRoQG0AHHukU5m7sxdRIRHuJvZKmb1FTTG+OZa5hG7yJ22U2dK5ma+fPmyteZXjfGOd7wvTdswTgNxmem6hmE40XUdIXjmecQ7y/F4wDpL30c2+zuZ57UVGMM4zjz+8D3D+cQyv2acKgCbtKdJPoCOyrqhrj9zOY+MUVC9RrdGUyazzjUBZcV1tN3u2N3d0zQt/e0b3OYW2/e0u1t2t/cE7yjW0W16pnlmf7dns98wjRNPhwNPz4cVtJOtwNJ1LW3XyWPV+hLRAqO0Agi1W1y3p4SGj6eF9M0Hgve8fz6x2bQEZ7nZdWx70RT7+ZcLn70pBO/Y9j1dK3nnssykVGO5qgsm4KD3XsEfLeblsjIsC5msLfWSm/MjkOinrn91cWesoxi19cxgSibmBQM450V3w1yCHJT6VheC2JZKMlB8oWQ5rErMpF2i9Q13+xvub+8E2Z9HodzlSj+WZPGCQv6ew/X34So/+dfryE6mqnnBu9XH10igglh2HaSLnsVPvO7V/1kDhauA7UfPM0bbLV4/ScFI37Doa8QVZTcrkga1pcuqsFZlbBj140LRWRBGjrl28dHXu1RsMsNwJseCNeo044V22/Yd3abHOcd2u2G339KEwKZp2ISO4D2rrhNoS6FsGsJmkc8TQsAHQX8PhxPH05mUMgtiPSxtYXndrC7fLwkP5gL6UL+vI3SZZYaXPJ818V6f/nLM/mJsH+e42e8uiQSGdrOhbxq5b3ERkU8NulMSTQ7jq6CcJGPZiUV7NmbtiacY8qKBVC54W0R+yRSsrfMkrkBa1zZs+g6r1oy5Vj1cj/EbrGvwjaOYRMKwxFlsR0shGAiKpN+/ectXP/8r2q5j9+Yt2/sHwDInxOUhRWAixxlvYdMFdr1nGDLf5ZHxPHA6HPnww3d8+82vKTli84gpM1IFEthQ+tqr5o3FmkBlNllQ1yAwroHimMbC+biwTOe/wEiuKcSP13sNZpH5edmeLuvrRwyWFxlHXaua+DtLYy2+bfj0MuvzuXJ5uQQtklUWBWQMF1qJxVqnyYCpvRTymvrYRdfnpcZPdW9b99CqkaIfxFztIesGk9eN5sXnX3fw+jSunqff15awV75C4/jqZzcICCUBRrUwFYBVrFipgoiqHeYChFYDo5RVb0vOmXEuhEkdwWyDMU4S/43HWQFvnd7Prm3p+0box01L03QK9DQ4K65eIVwAIWtLNdBgiYUY6y7lKcaTU+Z4OhBOEkzHtCjjrTAHAUHHceJ9nHh+emZZEodn0bwwGEJo8C4I+KPsE+c8Xb+j6WS/7/sNoWkUxBCtmPUyEFNimEaWGGnaltB4JQhrvFHij+f+v+Dy3vPuszfEJTKcR2UiJhGaztqupHpGF9BY9sK6doo1JEUMcgWmqqZRTXRq/AMK/Mg82bSem01LCI5t79luRO+ncYXgCs4atpuO3aa76EOtcYkmAKWwTAtxLhoEL5Qs+jlN19I0rZy1u55+0xGC4+Zhw+6mw3pD01t8J+eCNwFvxAQgz4YSxVFzMkmaBK3Btg4brOpUdKuuT71PUhe8MDckyc7q2pO03RT+K/6frzaOBWldWv8CWD3bK05+Dcxc/73OwBen/Sdx5HVEuLIVzCVeuLyOefGaL9/jpRWwMuxAc7ny8n9I26Uw7nJOLMNInEa9p8IesM7Sbza0fQc5k6aJZZopOZHOR9I0rLU6Ywx4j+1vMe2GXAwxe5bs5PnzTI6R8XxkOh+Zzs/EZWIajsyTACxitCDssaVpuex7r3OVnJnHUVpCVLCqKGs5GojRs6QZl2BZFobhrO3Zwv4tGO7vPwOzoe+t7p2i7xKXmeE0QEkcjwOPT0fiElmiaFCVAv2m1+4Dz7bvWOYFZ6wwk50Utzfblpi3FOD27o7b+zu89+x2PW3bSpSYO4wpNMvC6djR9w2lQNf1dG1P1/W8ub/n3dvPmOaJ779/T1rEvXKJkVlZxh8/fGSJAq45a7i/vyUuI8enI+NwZF4ij4+/5nxa2O12/M0v/4Z3b9/hveVmt+Xt/Q0fjwc+nA4sx5lEJHsDjX8Blr32NU0Df/f3/1/6zZ6HN1/Q9zvJEZsOZ+V3Gz2IxnHkeHhmWWZOh2cev/+WeRxlrVSWdhHdH4Oh7Tr63Q7rHKfjkeenJ1JK3D+84fHxCz1blJVB4TycOJ0OlFLY7vfs9jcA/PDDN7x//1ugEFMkU2jbTsR8d3ucRXXSdI1qGcYay/3+htu+V3A2kZRtk0uVpyhEPTekAD6LW2KMHA5HhmEgpch5uGGeRIZgGu6Ji65vEDZSyTw9fWSJC/ubyP1nX2KcFIOyVEM4DxO/+c1v+Pj9e6bp9TTTANHEMYZqqHQpXnCd1l7Ff5e20hrVXuRjFWzEYNVp1FrH5uaOu3df0bY924fP8LsHXN/R3z5w//Ydbet5ePeWXxZhQ3356y/4/Ms3nM8D//hPv+UffvVr5nnR1mwFbbuOvu+gFMbhwDgcqMCP8wHrPGFzg988UIzh2+eZ3zx+izEQvNVWecf9vmO/adlvN8wxU7B0bYNznr6TYsc0jYyjsLerM2nTNDw8PLDdbjXGVYmVUq7OysiyTAoqW4L/JBb6PdcfBX6MMf8l8D8Cviul/Hf1sQfgvwJ+CfwD8D8tpXz8kycCNX6uB6ometfJSX3ip+8H1uqevIbRKrvQsYLPotjfdaKwHQLeOuKqNfPpHvXTG9ZVA84fe+rlc+lnuiBuP12zqdStawptfflPQZ8LRfAPv+b14y8SwEtw+0tjzHe8yjiaC0B1DUqtn+LHqOOLhjZjXj7PXOjRpo6RJtY1SI0pYciVjbmKWwkQ5QjOsTRBOsBSxpaq7K5sIyP/x2oy6awEvsYYfPD4xqvDwqUP9cc989dzoVz+WkEfuLJr5yfnrzz9GrS7xnyuxByvfm/5C4yhMG3Cim5jtIpeRXZXZKu+ncrcqkmIJO52FWy2FB2rtWaph6zVe2JtUZaPQF9ZtbXEbUNs0Kt2ABgRg1RFfGnlyQoSplXYDm+1J18qLW3X0XY9Tdvhmw4wpCWTSpb/bxAAx4ielHfynSKVlxRFJ2aZJ0qJuDxhmfVgkvYHqUZYEcZGQC+Mk9qJ0f2pqHZNUYeil8Ht64xjXTR15/jRvlb31d+zY5TfM1d/9OQLRb86SNRN9HqZ1zWer4CfnDMmCTskky7zqYLBxqg98gWkWvcOe93iVVt8L98v/+fqTdcMjfIjhs71M39vym8uW+b1/Smf3q9XXIvWGNrWA1lZIrUdSMfUKHC39m9f2g2ryP/62XLBeXCu4Fyd43rftI1LBFbtWh2yzghLbWVTeRVPdjgrVUt/reng9L2hSWipAELAGE+ymeBnvF80Ka2tVwWfLSWL6LLBiWBzEtaAuMiIzTfWKr6lu4l1eNcIKKQ6PU3bXtg/Ndgp8p5siixq+yuaRjonQFk4evq+UnxjFUBbrNiTO2txVpJtE6sGigTjsgddFuVluqtoo8mrLl7RcV6d2YwWxsylJa/a3QZvabxdv3tnCK7QeJkHXXD0jWg7rFp3dfaojppJFiNdVXhb8NqK2zhDF4R117eBTdfgg6NvAl0TsN4QgmprGENjPN56afdCWD4CZhlsSeAMNliMl3PcZ7sWTnKuRRSoumPXgFDORTWA/hKxzRWUrtXofLlLgBQmLJ/sCaaSCq/iM1O3o3oWXhKYdW/6BID+ZDdTA+3rB68KTBR1kJL9wNY3/0nsIK2gUXTQlllaS4qI2+ci7lCp8ZTkpSAbF1JcKGkhziNJCxbiGAcmBYrvsC6QsKSkhbScSMtCjtKCEuNM0tfKSR5fwfxSyMmRYsS6Rdb5a+UaBW2xvrRHoQWA9Qv5ntRePkbRjpqjtAT1GxEzDymv97gUI5p9aaGUyDSNnE8nce+MmWURwxNjtZjoM8E5Wr+QteVLCAuy34YmAKLx1rQXDbcKBNfn5WzXliuKFLpCCOJAplpd4uqzzkpqG3PWtudpHMEUTKmMBad1uaxuiCeengdKKYzjwLLMWCMMwq5raedJWIfVeakm6Vx9l+vV1mLKidPpmYJhuxu05aYB48hOznljBFSY54lxHJjnifPpyOH5mWkcdH0JiGILOD1b47KRNeM95+OB0/GZGBOhCfTbLaFpJNbRQvF5OK7AD9bgvKTO43BmHM+A3LdpGsBAjNKWJXlqXtMka2osDdZ5jKstOheAStqPlKGn8y+lrKLafnWFq+yQ+nty8liTSIslpcQ4T6qRltT5emJZZgU5y7qfUERHZzgPHI9Hba97zbz/qtWtIG5sK7ytz6jHYf3h9+XaNffQONB5h3UeHxqatpPCUGgoxsm5o4w0a0Uj0nthJN/e7rm/u6VtGz4+PikT1oK5AD9N04ioe8nYyVBFqK31Eu97j/UB46VINc8TwywO4laL3N5ZyS1U1/B0HhmnBWOsANNGopLKWIsxMs9S2AZhsn1aoFrPybrGk5qaAMVVMfQ/fP0pjJ//LfC/Af73V4/9Z8D/pZTynxtj/jP9+//qj71QzoVhWtagVhgAdg1M60FbpJSh6tkF67XKZY32rWsiWA9NRG1fBDAtX3/9Of/9/95/h6fnA//wqzuaxnA+n0g1YSzS3xrjsoraiQZB3Uz0DX96/64CpT90a+uh/GMQfEUKKC8OaLN+vYCb1gH/JCu7svu7hg4qzPFTbx34Hvif8wrjCGjbhgSMZvXF0s+wuo1IkGTKJSmt5D1r6mdhDdrb4OnbBm8d+90ND3dvBZzAyVcREMcUQWScOpNYI8H2NIykJfL04SPfBRVoc1VIU9xdmiZgVA/GBzl4yZG4yOa6xImYZnIuWG/pbLsiqzmLoGnKSdlCV4nPipNo2LgO3XUU9slQ/sTP67T4qaF/xTE01tHc3IqQttqpmiBOBMva6+6w1tOGnv3uhq7tBFytrkLZkZMIROdsSNHIz5UdQd2k9IOYC11yncOm0LaetpHkTVpVBBgq1ikoACVHUpyAhWUamMcRA3R+Q9d2tF1DaAIuBIz3ZIy0CxSY54V5Esq6y2kVJ22sw+GxJTOPE+fnA9PphCuZTeOxGBoHwUr7qauMi3Vo6ufVdje4gBKAK14BtMB22xKc1JLPH193LXK17l8O8ktg5qc3rSvWT01OEJBUAACDD0EqYE4OOxcEDLCuMvrg4vqFAHJZ9vEUBVArpTCPE/M4XQHfFlVixHi/Aj/rvmDt+rre+9VhwV39LL3XQRyeQpBWA5AeFw3arrueL0WDwmozXu+D/pmTzl9zCVgk2H3hOPlqYyh03YG1Olmg1N9t5BOUcqGtrztNZk2SkwrgStvBghydhmUpzNMMWIZh4XAYVvCsgj0PDw/03R3ONbTtnu32VvUsGqwVen3wMgcA5nngfB40aYCYhOEaGnG3cLbQtWBoSCkxDCdSGrAUgm/VUr7j7m5kWTzLEtntjoyDMH6cE5vvkou45KSEC4HNzQ3ddisth027Bt+VHl+4BENJq4togWiJM2USurS1lYJf4JXim+A9n78Rxs+4nVTHIzIM4wtnoVXnqzo+liKgdBHx1GmSBHRZIpNbxILeXM6wGgNhRHjbB3HDvOkD97uWpvHsN4GbbYNzhtZDq6ygbd+y34hgbXWmkfun6nqlENtInBdyShxd4BxaMND1G9quE7bVpqfrleUTHKE4TAKfwC3SRtx5T2saXd+yFpecxJ0oZjkXg+yfAuxdKrz2J0AfirREVhaQz+4a+Hm9tajtwGKdHBV4LKwOjtaS7AWM/ilHo6q1tILlrjKdL2u3ukzlkklxYVkWSiliN67V+LWaxEWrpsaF9btYfc8CcNrLfrzqoOXCMA6M40iKiel0ZDqdJBlV4MeHwMPbB27u7sgpcz4eGc8DaVmYD4/E81H2Y2/Fkc0F7O4O2+7IGMbkidlJgjnq/xtPPL7/NefjR9KyMA0HaeuylfFjcb5hHo640BCXGV5pLcq5E1ebeYn3E/M8kVOkCU6E6k3BOkO/6UhJNMeGaWCJiXE8czgdNEme8C7RBI93WVonVfB1t90TY+I8jCzLWZgZw6SaPY5lO1PUer3R+NMZT7fpsUH2r6ZpybkQl8wxnTifj/I5ctQiV6brOj57+xkAIbR41xIasZs/Hk8sy0Lwnru7W2KKtPPMtMyUYpjOR86nM85ZNpuWrg04U7jZ79ltPKfTyPEojEvniuZmGeegawPbvmeOC/vdhtO0xc8TQ5pI5FWHK6e1qPVqazEuM99+8yu6bsvp+EzTbgihpe22eB9kL9B9fxpGTs/C+BnPZw6PH2VO1fWrsY0rEiuFpuHw1GONZZhGjuczKWemaeB4PFzayjWGmOeZeZZkvGlb2r7HYJimI+N4wFrLsf/Ic9/RtB3BBQXpAn23Ubcvi3eBxjuNcrLEQFQg+DJ/6xqvc1icDKUFNi6RrgmclBnykUTOCwlDBGIBtEiHd0DmfD4wzwNLXGj6HcfjEe89fdsTfOD9+9/x69/8im9/95v6OV9lLdbrIp+MdN/YureZS+xquICIciisd6R+WapmnWW/33H/8BlN07C5uePm5gYfGuZx5Ne/+hXOGo4f7nj84Xu6tuHufs+bN3dCFGg6fv6zr4lxoWta9psN07Qw6pcYS5wYz0cR0D48cTo8gbHs7j5je/OA9Q3ddk/TdsI+HUfiPGk+WChGijI5J45nz3Fc+OzbH+jalv22Z7/tudltWOaZp6cnnp6eSUlcSpdlYbPZcHd3t+5h9Ty5FNtkUrurPd/58DqMn1LK/80Y88tPHv4fA/+J/vy/A/6v/CnATykcx1ligTXmt5gmoO3FKzpfchI3nZIJxmMbqzbdFu+cWACnvAZNofFsjdCF//pvfsH+Zs84Tfz//t0bmgaenw+czkeej8/EGBmncaXK5ZSYkCqY4BErDnkFSdZP8ftQoRdPWoNRAYA+hTAlor9m8xijwUG5fs41UlCuFgJclPwuLV21AF4xFS6BEcAR+PDJG/7nj+P6tjRxo2C5OHdd3oR8vpJT/bTre7bGUar2jwrDGWPYbDc83N2JK9PdG75496Ucigmy5D2SSC5a+VM9AkqhxMRwPEuQXArLNOlhK9o/1lk2fcdm0yldfYsPIoqV0iIu4SmxzBPTIht8CA0+dBoMTsQodMUlFha1dlwDeK6StSsg7/qeFbj4Tr4Ya16CfL8fVXydMQSM97R3b/DO0jYBby1LSYxpZkkCbBnr8cZgOqkYlxzFEjgI2Fa0Wi84raGkar+YFXRRuj41iE/kslBB0frVdZ6+CxJUZxH6LxgSjqSWDSVF0ecplnk8MQ9nSeK2HX3f0vU9TdviQoPznmxg0faSaRyYzgO2ZDYkOrU1bo3H4zEpMp9GDh8fGaYRlxM3TYNzmV3n6RqhXtuSEdaZVGJyzqRsWKJRcwKlHpvqZiYii95mbOxZWhnYb15xHGUw+UNzZn3ONa5SBfYKFai+PLEeIt57dR9oCW2H856ma2n7jezDCghV1y9bNUNqwlIKcdFEMieOhwPH58PFQlOrTsaL0w9X+0cFJ2pbr3fq6oX05ztjScYSfEMOiWQSuWlF5EY+wAr8VM0gYE3SBBxIq1tSxWdzzkTiKvZX9HMUBS6vbtXrjWHJpHTS9wUvzhG1nK2W9fW9U8TiOsa82hbXKuA4Ltr2ZVnmzDQKIBRjYonLGkQ4ZfhYu+Hduw7vN/T9Pbd3n+FdwJiANY0EkU5axErJjGPmcDwooCEaP9ZYdmZDq5VS13X0rSRcOXmmQXZJV+eUT3z2madt76Q6OQws06RzRwDinJJWcWdc8Gxub2k3W9kPdJ6IJsys4KLck5ySMvwEUMgUES+NUQBNH6S9UGKHV4lvQgj87PPPJcGcFtVkiIwr8JNWp6qirAOQ9oA56vPnpGOXmeaFs5+0+npVXLdaNANJQn3COcPDtuGzm562DdxuW+5uRF+gDYYuyH607Vq2fSsi1KrHJOC1CtIXRNdukfl/7jacNwIUtpstrSYvoesI2u6ZjFa2KYQFHAVvHRsX2NhWCjU2YIpjigvTPDEtiZINNEbs3TUOqG3Y1yo3JV9x9q6EkSvVXa9XW4slJ+J4pJQkiTdiT7YWIW1lPSp4qsBPWd+rss+dw5gqxh6EfVzZByVr/HmWuT8OnIczJWfa0NC3rZ6vF20eESWOXG8PpWTGYWAchKmxipGaq3bYkjkejhxPR1KMnJ+eGA8HFTxOlJJomobh5z9j/uIdOWWePz5yOhxJ88zw+APT4Un2i8ZhvTh02d0tpt2SsUzRiV5OTMzDWWKleeT0/J55PMrZvYzK+DGr/o2xDhdarPM1YXqVtSgg6qKJs9yuWBaGHFVU3EkLP1mEyhtJg3IpxMdnpmnmdD7x9PxRgaAeayNN8Gx6z+1W2kvatsPctHqePXM8juScOJ8G4tMBgGm/I80LwQdubve0XYvzjtA27Kysu6w6aTFHpvHMOJ6AIqBqIwDEZrvh/v5eC+QOijAZSi48Pz2TcyKEwNs3D9IuMg2M88Q0zfz2d9/z/Ycnmibw7t0b2vtbaeO6v6Vt3/D8/Mz333/k48dHvAdnM9YkvINN13Kz25JK4u52z5RnwhA4xZFoMsu8MI0j07TqwrzaWpznkV//07/Du46m3eNcS2g6NtsbXGgFaFQwfZlmpuOJtERSjCyzOEraUtZ2SYuwfkDZ/0baxOacmXKNeSXHxFS9uGpacwmwrqOlrvN0XcB7J+Plxa0uLQvD+UTTtLx7+wXd28+xwdP4wKbzmqdd5Xcre7cy67n8fBWzlCLtibtNx/l04jwMxHlgmc4sJTPZy7v1qn2XcuJ0fGKJC+3xiXFe6DZ7urbj7u6Bvu/55re/5j/83b/nt7/+lWjzvWLev961K4mVtZ9WLEwxKPN7ZY9dAlZTElWI2xoIylC+u7vlF7/8K/rNFh86QrcBDN9/9x2/+/U/scwz2/2em/tbmrbll7/8Of/2v/G3bPuOL9/s+OXPvsAZ+PKzz/jl118xzTMfPj7zw4cnpnHiV7/6B57ef8M0TRyfPnA4fMD5hpuHL7l5eIcLDb7Z4puOGCPPpbBMo8RapqwFx6ejfP7dpmO33UDO3N/u+ezhjs8ebhmHkR8+fOD9d+9XAfpSpDjw9u3bq2LRpxgCK/BT2drBhwv7+Q9cf67Gz+ellN8BlFJ+Z4x59/ueaIz5T4H/FODd51+xLLL5UrWljCEUsOVlVaM6CZWccc5A8fVzUnve88rOudC+TM70Xcvd7Q3TPHN3e8N+v19RuCUuLFGtZZd5TXJ+lD1d5eXl6iabNbH/A9daSfu07evyhFIfKz/NDDJXCPDLG3r984+fsQJXVxnKT76OXH/SOF6PoQ/uMueqSr6CPmvrxTVqW4HJdQO7uI9Uq3fr5HvTtnR9R9e2bLZbtrsdTWgU+JFNLy5JxJdzIc2S8JVcq/dS5ZUqxKJK+VLtdEXojzlVR6qs70uCsVxfI18lpNYovdaKnlFOGCBZg1UbyXzFZnoB2hlz1dL18t9fDtuViOz1a11myPVQ/tlj+Ok4bjYbTGg0gW/wzpLTQsmLDlltkavaSoFSROdFGB8GSgV7VD9LYmNSStiobAQuwVcurIw7YfsJUu2vAuU6hQQsEprzJQnQ5FeDZ4PqSzuH9+6iJ2UqGCW02ZKS6vtkjBW9C1cP12LW9xyXhRwjloJ34m7WBOgaETO32mqWc8GaSEzakpzlXsgbQoEfBUNMwXkr9Ors/sXjeD2G8sCLf/09P15aCF8ylsqPJlfdr8yVzfoK7FjR46mMm+pkYBT0qSycCzhccG7BWqkGh2nGNRNG12E2l+R8BcevgJ9VGN6Yi4PIdUBWij6uujOVmn0N/BgkuPhkk60Vk4rDXi9VW2n5WqeSPaW6Nv3UqKzXn7UW7x+2kmhebQNXp866P61FEb2/KYtdseifJHHRylULBW2LLcSYLyySeVnbAmqCGGMGHMaIWKJzjYAjJmCMtncZEXeWPdKwLOqsV/TeWFlv1Vt3HasMBmHylVLZuiIs7X1L0yYFDgzeql5fjgqGVQt5AYxqe0PBrEFVBbHqbrlWTl+cOco8lUHElqvn/QvG8XoMb293tE2DTwmH0Li9c9giBYWUMkGTFGFESjAbk7hs5ZyxREo2JCf3MYZMslmXRFm/S0UevDPSxuUMbfB0jX61gb5tBPjx0AVhCXVNoAuV7WS0/cxQlLFYgIwlK4O2NAmiOL81yuYSx58gGkyyyeq5aMRlM9Vt0OKUCWyRNZqMlcQrFzUhKZczbw2/rirAGLRL+/J3NLYxq8/Wv2gMPx3Hh3dfEOMkZ01eKKjehlaerBFx4lqwyrrnSVVeYorsHNk7+XcvLZxWBYyznl3LPDKPAzFFpnFgPIseVmlabEnyfxXELHV9r6x0ed8lF8bhzHA+r2yhCkSFoC40uXA+HTifjqQlcj4+MxwOK+OnlERsW4bzkWnYCdh6PjGejqpnc2Q6HTEG3OKxQYEf4zBRHHGm5IjJkVNkOivws0xMw5llGig5kpeJnKPcK2XvGz0XjIKwr7UWL90Ddc4A5dJCmHJa40VrLuCdsM6ENRhTZF5mMJY5OKZ5gpJoPOTsydqG7IPBZWRNeE8VIq/td7VNLOd61l2KJNY5CoZ5iSrsKiD2OE7I7hbU6VGYik3TAOK6l/UgSjkxz5URwOosFpInZWGHlJyI8yRaVVn2HYMwvUWkPWjyKPnU6uKak8bJFWh2NN7TBC/tZt6LCDj8ofH7s9di13mWeSLZQs4Oa6UVBuPwfpFC7bKQciJNM9NpIMeoemqSI1hg7ZhGGCNoDifxuWEphXmNBS7MlMo2ltzGinOZUT29nHWetXhbMCWwzDPzNCogeyaEEylG5nkkxgVjCjn5dR0YLrnfBZ5SfVjNbc3VWbpeJROCk1a/xSkD5tLSf2k/rXupFBiWZQJjOJ2OxCTgqMypzPl84jycOJ9PF6DhzxzHFzGqcS/SUY3k6zNRbv9VfGautnXzyXfWDgXnpaDfdR1932NdwDon8YgWkqZpFK0gZ2namdN5ZJoXEe42lr5t8c6y7AScneeFuCTGYRIBbmtlPsWFnGReGSvj7nzA+yDxzGVgND6TAmHSschZ9pQwS/w1zcu65kspa/xWWZ/1q4L+NcahXN2n+q0ggJm+g1w0IPsj119c3LmU8l8A/wXAX/3Nf7P8wz/9huA9fd8QnKjb7/NWtXgi8ySMoGk4c3z8wLLM3N3d8sVX7+j7ToN7c7nh5RL8WSvoedMkmlYU2+9ub/n6q6+4u71lnEbO45kYI9//8APffPet0qoyz09HsQl3DrMuwk+cma4T+0+DjjVo101j/bP+/VN0oFy+1ki1vHjKJZzVv19hU78vaH3xzn6MKP1Z1/UYdn1TstqlFNXxMBaMN2s1tWm79WBzIagAZ6AJGjjqc5wVXaZGq8R3tze8e/uGtmm43d/x5uEtwTdI0U0PukVaGkqGvGTynNZFktWy2Qe3CsHa2pduzcr+MVaENKdFKNLjsjDN4jqzTAsmCSjRu45dt4NSiLYhuplcMnNcRDivZKarn5eUiCVp6CrBrt6/T2A/HZ71kStb13UusCZ4r3Vdj+P9w7sS3R7XeOymwwdPWiYcnrzMkBcKItgoNuYBSPgm0PXiNOGsI7iw2lAWtfeRfuJZ++ntWlnOOZKUKWVMxBAxptA0rbBqrKVgpXUKw7QYxkUOReMbTcQNfdNg90Kzv7294ebuhq7rCW1DRlonSAtlUfv25UyZT2AKrpP2BDCMc+I0TTwfRk7DwLgMxDQTXGHXekIw3O0d214AqWqamFJiOJ+Zl1nBn8KcFOyr1SKbaZzD2UycDWZpiCb9gdH554+hsT+B/P74P4AmJuRC0YRLRGZf7lLWSiuX0XXsNdFzwasov70AKlYYP23fr1VtHy720HVfjsuijJ+Mbxq6zWZleIzjINWRnIia4K/A8drrfWl/vQaBrIo6eu/JTSMHdNOIAJgxsAq5m2p1wFqVr6BPthfg2srvyaW2deb13gjwU9bgHODjd683jl//7L4cj4OKU0sL1/V7lWBGHbtyJi25GpKtuXNKSrnPhXlJjKOADdOUGcar9iF1w/POSOtCcMTYYc0e53bAlpxbchahZmM8dX8qWZLPD49nvv3uIzFGmR+1xYSAQYCMKkgZY+Tb777j+/ffU2DV36LAHKuLhgCjBumnLzGrbgF4L/ohxmZinMijAjkK9lSQP6UKnKnOljN4F3Al6PheqriuJq5/rIDzzxjDn339rgRj8dbgG7VwbhpKt1mDNxH5lMSilETt7Z+1EBWXzKRjNc8LwzDp50oKFBUwCUgYU2gbQ99ZvDe8e3vH11++pW0D+42wfpw1BJsJChq1zkmbgZEU6ML0qYlkoaQCSQSUN75jbCZKMRgfMC5IIJ0sUQPaYY5MmtQ0DXgvmkJbA5XFvJp4xMQ8RKZhEaaPTC0BUTCrW2RNeOS6HqOaxsj5+gehuz9zHL/4q78u//Dv/98KjERNfDNZwUhrVA+rzlsnRZDrSq1zwpas2litsiJLzmsyPQwDp7OwcKZpZBilTahr2pXxk9V6fAV+krhxWafORhSWaWZRo4OqQYGp7ZLK0JtGxmkip8R8OrMMA5V5lEshhEATCst0EKDo+ch4PpNjZD4cWIazbKPBCvXXOsrhSPENucAShfmbcxI3rRjJeWGZT+p0mShpBi2clQrmyUIFY7Uw8zpj6F0o3vsXRadS1M2vZM7nM++//8DhcKJrW3a7Hd4HFgXRC4VhPBPf/w7rHE99x+F5Swie2/2G4eGWpgnstzfc3b3Bu8B2t+OLz98JU+585nQ8kHOi7zdsN1ucd2y3W7a7LdZYxnlmnMTJ5/n5xNOTzIVhPDEOwvjZbFr6vlUAz+KcAD/DeWIclbmJ6o44w6ZvabtwiftLwVvL7X6LQYDBTeMxOZKXxOkQGQfL+XzGAJu+xxj49v23PD490nc9Hz9+4Ga3QzmY3G23dE2L9Z4388zz4UCaZqJqkvxLr+txfPPmpty/+TnOBrzfrC262CDxdUEKskn2gyZIJ4EUStxaKKHqDaYium8V+NGEKpnayIky0mrxq4pXwBUyTWUkFhR4izO5RE7Hj3i/4JxnOJ54/viI9w3n52c+fv+9CFOrJpMxoj1XZUuM82vh0jttZccoIFcLpPL8Kga8LAvjNDHPI6XUtsCLnElRVltOiRITJWWG05nH518RCzShYbvd0jYtz0+PPD79QMzLBTh6hTE0rikYaTeTf8xXWXHd0a/3eC0eUaAkwEhRz0kMfnt3y2eff07bddzev2W72xGalnGaGQ5HaaGdz2w3DV1r6fqOvg+ExtMFi7fgTGFeIk/HgeAczgU+e/tGND7nifHpI27JhDKT54G8LHTdBt9uJL9tGtJ4oswjY35GjsxCiQubviOVwpQSRtsfa6v2zbbn3cM9X757y+1+y3bT46ylCYG7+3uJUa7ufdd1bDabVaPQVCDPQK2IpJSYl0mA6nni+fl51Qf6Q9efC/x8a4z5UlG/L4E/KQwep4n/+j/8Shk5e9q2YbvpScbS99JK4UvElMLh8QPf/vofGYcTX3/9FTe3W+2xdTgjlu5Zb4Qw3y+6Iiln2iVhrePhzQO//KtfMioSm7SS+Pe/+hXFGE6nM+fTSMFIP72Vav2aDr1IyC8/fwr9rH13P87qX/7HH0EA9e9awSoFcxXSvAh7rqpimOtX0qCtRk3rk//o9c8ex1IEfKnJI6VgvaDUzjraptE2qoambdjstgr0tGw3O7z3dG3PdrtXkc6W7XaL9577u1s+/+ytuMx0G/bbG9n4cCstMydp8aJAjpmyFGX8XFPkRFwwl6xtXAu1slh7S2NODEoHPZ0GzkMNnqRK6YNl63vu+1sMhehnUpAEdkoLS4rEnDhOZ4ZZHSTyRNZqijNS2aYUFdKsG9/6Vn6UeKyVfrPOPq6n1GuNIUAxjhjuCG2D220JbSCPAz5ZMiOkhVy80CxNwrAAmdC2bPYSBHVtw27bCVsnR0yW+yxCexLIpuJIxSnwcxkjw4JB3LJElF1BAxPABnIxnIfEaYikDLk0JIQO6ruGbdvifOD+/pb7Nw80TUvTtXK8lEyJM5YkbJ/pQJmPYA2+29AG6ck9DJHDMHM4DBzOZ4b5SMmJ4AutC7SN5eG2Z79XZyMre88yzzx7x3A+s6jNq12U9qCC1M5mupDxLrOMFrOcWcwfROL/rHGU69PD89PBvlQiyFZqW6YKQdZXUCvSphEh3RDwjQLtIYBV8e7KnrEW37b0W1nToRV7WWOtAEz6O2OUVq9SCjt1l0kp8vT4yNPjowhLDmemQQNZBWsuAJLu8VyqXxd2p8UHSYiTdZQUxXbTyGcxlfKqQFVNoIRFcg2om7Vqdqm05AtwrImdvPfXH8OcM4fnEymJzoNUiBUoyIWcjbaZmhUcENZZ1asxqiEjFaJlSQJk58I0J87josCPVLVKKbStpe8tTfCk2GPtLd7dYIwAPzE5rPEYK1oFyxKZZ9El+f77I7/+zQ/SH982dCpMSnEKeJvVfWSaZ377m9/yu2++BWC3v2Gz2a1zzSvr0ODxXsClZEWjKNmCXxQMIzFH0egQxw8NvktlalZGTAUPNDm2ol+DqfPKigWsvQDzrzGOBmiMFTADr3PKr8WOF2vUlLW+nHJSHZFMigLa5QzLLPb24oo2syyTtuZEShEBye0mcLNvCMFdgJ8msG09u94LqzFHTJL2WjFXrHpgFrgAM2uRUMzjKKUwdTNTLzqIU4I5CQg5Lpl5Fk288zlyGmasKbQtNAFSQFhL1TkmyRjGJTGfItN5hmAx3giTyVm8saISaATQl66vTyrdcDk8UXD4919/Xow6nPj3/5//hySKCvZIIimyA9K6a3ULrExVswool5xFhFYBoRDEaKSCoUmLRMMg4EBSZsmkTlttaCSxNkbb2iNrq5eCIyGInp1BWqCLgkNxmYnLKpS83rukTGZKIS+Rom2RNWZ13rGMzzx+v5XCzTiRplmAqmmmLFFESJ2hWIlUF02YSy7Sel9BzVQZ04WLpl/G5qiJ3AWsqMAMBUr8vRbS//y1aERzq3BJ6GNcmKZEypHDUVqDnLXc7G8oxdF1sldmbdc7DwfOH78jpSxrquvx3vFwf8f5/Bl91/GLnwW+/tmO7XbLbrPhdr/HWsvT0yMfPrwnxYjzDT7IuRi8jFvJkD488vR0ZJpm3n/3A9/87juWZWGaRCDYGNjtNmx3vTDtTEPTbCgFPn544vHpKEBbnElppmkCX3/1Oe/6N8JUAUzOeGt5c7fnbre5gM4pkmJhPM/EHMXNqBi2mw3TPPOb3/6W4+lM2zQ83N2y6Tfc3Oz567/+a968eSCBWMgD375/z+MPHzgdDn9oSP6stehDx2fv/lYZ5y3WOpZFdNNilHM/x1nMXpAE2oascbPKL+S0do5MS2YeC8mUtTgLUIx0jwAisB2E/VRzMVAh/LVoJGA5QCyJaUksCczzSJwf9VzuMU7Aqm/3v2G7u9PCptqUG0OjIJC1wrp3XlwqWxUVNkYMWJz1OGtpW08TrgvaRs7Y6UzOArYmddCEvAJAOUr7W46J0/nMr7/5hqfDYWUGCsM5UaQ//A8B6n/GOBqwXuIy1UiVR/W3/L48VQuVFGFyBy/yDA9v7vnbf/Nv2O33uNDh2y0Yy+l04sP33zJPE87Cza7DmKrH1OBDoG8twYEzotn08elM8J539zu+eHhDyYnl+MTpO3CzAD9pOpNjor95Q7d/I3FL8KThQCyF83lgGAcwjmb/wHZ3K+zicaLMC8YY+kZYcnc3W75894ZffP0Fu75jv92oZXvD27dvubkRpzir90TcS7uVSX/R0TQImGbJZWZOA+O88Pj4xH/4u7/jw4dPOy1/fP25wM//GfhfAP+5fv8//Sn/KefMWasNbdtI5dE7pnkRhkiRjdmUzDiOIko3DEzztCpXX+ju119oZbSqXGetzqZ1gQFyGFlByfpORK1Ex+IiTLym5AYu6tgXzPcPUm1+9G/X8NDLf7y8Vrl6ynUi9in4c1WdX7Gdl9jpj37rHwd//vnjWF68TX0fUvnySsdv25ZGvzbbrT7WsdtKZaXrRCzY+7ACP8F7bm9vub27FVe2tmfbbSQINJqEGAkicyoaLBTyIvRqaeMSKvWiQmyix+NwUd2iyKtmRo7lSlW9bupX4Xm+xC4Ggy1GQSFwWLJxFAq2mItO8bVipmpYlWIulbiropzcuCzJRyk/uqf/jOvPWosYQzGBYgK4BuMCxkXRY7BJPruJikLXDSdjbIN1IqzqQ6NCgxZTHDZbai9uKaJrkXHE7H8C+LEq1i2Bp78CfowJZAxhiXgnjK2cPUYr1GbVTxA3jBACPvhVz4OcMTlJ61lOQm/OEYyAHlW7JabMvCS1BlZaM9JH7Iy0UHjVFJOA3+Gt0/ZTYR7aUh2ndOJYAV9X22sV0XXWku3vTTT/rHGsO8I1Hbi82EN+6vlgrnY7eUDmtbxXBa6cV4c7baGrAuCffDml3a4iywqw1HVQqxRVg8IHvzJ+mkbaiNx8aXe5ftM/zci4VOrMygKyWJv1u1RC7JVmSGX8ZFBmj9WgTtb+tWMYyhi5OGvZq3v7Rym0f+a5WJgmoRIvy8X2W1gzop+VolXg58LmEcaksFhSujw/xkJcWH9OUSpSKYG6G1OyheKQEMArgOQRlRZlg1yxtyoQFaM4Ki2zWAZ7a0kqVlktaQ1GbUaXlf1Xq1ChmXFhxmVlhPqy3nMZK2VfqVSTst4vVXuteBT9hxoDoGt6TXhXlk8V3xXwp7YwVtr+q42jAWterkXvRBTbq/ZVpfBrmUoqdgr8CChZ8E5Av0U1lQRwdMzeqF5eJBeLIbPdCPDeBMduu2G72dA2gU3j6DsnW1FyEGVfNkXb3fQUM8ZJfG3kq4YSRgGBZD3JSUFtyfL/a+U8LkkFcxPzFLFG20mzwRZLisIeKmixJkFJ2gaTCsVmbM6YLG5vqwkEmrRp1fdS4eSfW4n+s9ZiyZnheKAmTi+BH2n1egH8+CvgZ7kGfuSMiqGhpEWBHx3rnBnGM8P5IK0gi8QrpRRKaCAuV8DPosBPVrtnyM1CTrJ3kpLSAQuLulHqQuDCULgEHSUmSPmSGGtQsswjbpT1lKaFNC861lHb3BBdqAr8lEzUfV6AHxWlz5fKlnEKxlLbASvgU+9rrUlc2mteYxwN6gYrH36NhwtaIATmIut1bhdiTCtDEQWPcxGgPKaIIeOQRGzsW8ZxEnC7tt4hzNOulyLYsoyMQ0+MC9ZLQi/sL4/3IshcteuMkbxoWS775bKIAY4Id0tbSlyittYWphUUTsQoNt6llIuuIlzay0oRzbVgtCgaSRLwihZOXEjKvPTey++MC8Mo+qfBO2KMOC97kbeiIYWzJCNOhl419/7A9WetRYPB+04B1kZjBIO1whSvrHrhC2qrtwy57CeU1X0V6pJQpuD1+tBxqGfGOjZXyY7RXMGYmhfo513dNqtcgLACixYarPUY68lF9v6UUeMUbZ/VtqPQVODH0jaNdCYYQ3BB9fUsXetpmmq44fE6NvM8S7E7xhUgFsawAK2pMoC0DXGZZ8ZRtNuWpRbTDEGZjK86jobLva6x4NU/XT3p6j9VNPgSQ3ov8WjbtPSbDf12CyaAc5f8PydyjgQfaNugznktbSvAT/BaDDESzyxRGEWlaKFQjROMSjpcazB5F2jaXmLjuo/lRIqzitZLd4Q1l/jfaXdSEy7t1/Il70lEmCV+Dd5rDGTWOELiUnfJ49czWmVxEC3VSZlf52Hk+XDk6fn5jw7Ln2Ln/n8A/hPgrTHm18D/Ghn4/6Mx5n8J/CPwP/mjvwkJDA/PT8xjIM4DTfA8tg3PTx9oQsCRCdJlTpxGpmlERB6FxjRPowQwFJx14sK0iHr/+TzwfDwRY+RwOPHh8ZklRpZ5WQ/VttU2FSNYb4qRuIi1Wtt1GA3QilbDVw0XymUTMJqQ/Aj80E3kReJlVlynYjQvi1RXwFApXAs2wyUx0V96lbhxmQzrQirrzz8NB/HXwP/9NcZRlqkVoU7g5uaWr778ku1my/5mz2eff07X97Rdy2a3Eypx09L3G23t6ui7jVIfPW3TruLL+91WqI4aXFV2wirdgVkTkmKNyKYUcNcHXevw0etmEC8boWEFegSEkCB7Oo2M55kUE6enE+fDADHz9LuPnL89sCaZRV/DQjHSonI4P3Mcz+RSmIuwgJxzdL3FNp5UEss0SetTlmp8Slo5DM2qyO78Rd/m+j6/GMxXHEOw4PcU51lKh02OSMGEG7zpxf2qkSqnJFxyD5vWY5uW4ixLNhxPKtJuHMFa6aGmpe12QCEmy5LERSalhDFRK6cJZ+QAF8BQHLBSMaQsYFrbonrmButarBdHGt+0qyhkv7uh3++xTlyhpFqm9qeiSE2MswRJJXE8nUnaovV4XDgMkfN5JJNoWktJBZsSZHG2mSaDcyIK2ziPM44lSqAe0yxq/mSsEUBJWnISJkMkS2AcM8YIpfQ1x9EYQ9u0q+uVNVba62pvsOpWUVg1eawVO2hrKq3YrYBNu9mw2e+lPVNbvSrw472wJELbrO4+2/2OzXajQW9Pv9koiL7OXqIGsushrgBg33fsdzuWGPn48SMfHx9ljDQ5qp+vBuK22k1XsWMqGFBWF7maPhguAZykHZ9e5erPS/JR99+XmEDW4pPqHlwYP6+2Fqcp8vf/4b2eZ7I/FAVb5DyxlOIBS4qZeRZds7bpVrakHFN2LZTV9+5sIDQWlwshNLStvP/9bs/t3R1t2/LwcE+v+7X3XmNZ1dQywg6I88w8Cr2clESPxxYB/BUQddVqHCNJo87FWDKxSPA5zAPpjDjepEizzCrYKIYPVNHvFZzwYBsdL0tl+gioY7UQcmlxqfT8yznOi+eLW53FqKDka8U3zli2bUdlUZQij9miQLS1rJqLeo8KVQtM57EHrwBW9p5t2+r8XshJVCisy+q8A7t9x93tlhActzdb3tztCd4RHLROAZxloVjZx0mZEmtLjcXg5DxLwowsubBMtTWzMM8C8KVcOE6R0xRZYuLD4czTcSAmqSCfxxFrCn1raBoj+kIpYGNNoGQdTmlmnETfACxmiZgFbLJka3A5a/CdV8DVqpbKjwKuFb4GXnEtlhyJ549Uu/MKKq5fxhCtuWj9JEnESi4YRVXFrMJLEhAjaYxkBROqTp2NE74krMmqbyrM9aCtCNaAswW8xjrOUYoYBzgfROjeSGuxKdLWEq0h6etc4tC610n8WoKur3K5ozU5aYzoFibvyEbnpLOUrOyZGjtRsEWYzCUXoo3Cvoa1wCXLVIGUkpVJJnpVzvirqNXoezi+2lq01rLpN6ScV0H1fKXFkYtq7xjDqO1K4yRsbbFhdzgv+nwC/MhqoRTmaeH5IEyd3/jfQrH0Xcdnbx746ovPaZrAskwsizC4giZvxoJvDF0nMcADN4TWMc+LxniZaZo5HJ44PAs40XUtoZGiyOl85tv335FT5sPHZx4fD0DBe2n1dFmEjqdZGB9PT888Pz1hDHRNWBNLYwWAIqKtwDOlICyTRpibh9NpPYPnuLAcF0ITGAZxhzPe40JPUCHyTb9hu92+/lrEkJKwv2XpFUqxNE2ribwagsQIREweASnkxTmq4YbD4CkWbMg0JeHX9VG08GNFtLwm7E75QLayL4oyarUdfQWcIAT5EtnahDMVTGgoNMRieTqOfDxOlKLum0nmvtN9BCPAg1WtKafmIwICqMaiMQQvDtjOOTbbnrZtte1rWrWOpnFkibOcns5QDZZtBTC8iCKHrlUWkYx5zom4zBTNX14v7zdUjcXrfbysG9DVvl4EeDf1YQWKtvs7Pv/6S/q+5+27z9nevaPrN2KfPo7klOhax8+/+gxKYb/bcH97gw+etpO80zpHt9nSbTarttZ5TrhY+O7xwBIXyJHffvOeH97/wPl0IqfMdrenK4bNw1u2b74U1lYcKQq4+mnG2AEMxGWE8zNYS+s83balbQJffv6Gt/c37Lcbfv7VO97c39AGT3BOgH2KnjWX4mVt+xPpCNEMnMdZitXzzMenZ4Zx4nQ68c233/B8eOZwOPLr3/yG58MrAD+llP/Z7/mn/+EfffVPrpQSz48fsdZwCHKoeyvOS85anIHGFhyFrvHcbBqCt0KHnUbGoSEtC2lZsMbKRjctpJz54YcP/OZ33zIMIx8fn/n2/Q8sS2S73XB7cyOIod3R7DaAxRokAVxmrDV0/QYXJLCPq6gSXEAYlZMseqq9ACh/f1DyadXavAB/Lojii+DiajHUvP9THPY6uSovH/x9tZO/L6X8D37i8X/2OFJks2x8g7OOh7sH/s3f/hvePLzh4c0Dv/jlL9jt97StAD+CTgfaVvVAXCA0rSrry2Yrm9xFjzUukWVaKCVhuBIwq/ofpSYCToelrIJ6uTQUpRVf1bWk//daNR5pS4nDQhwWlnHmt/G3zB8nliny4fE952fpb1/ZYc7gu4BvPEuKPB2fOAxHiilSDbNiG9/5BtdKsDdPI6fTSSxDh5lliUrj2wjS7xxd30q7xCeDbMqL8Xy9MTQOE24pzrFkD8lS8NjGY0Oqv369h0k1KZw3mGDAwrwsjMMAOdE6xyY4nDW0baDvW5yzzLEwzkKVjXHBaBLibSGocGkIntBIIDvNFx2SvhMXDWMtXbel77dY52i3O9rtTiph1pGMowCxiHUtQPAOr8BPXiZKjiQKT8eZ5yLshechcZ4S8zRTiHSdI8dMmhI5TaRkGIdEycL4mX3AW0eKC9MyEOOo1TM5+HPJwjYsBqwEx8VJYmWNxfoV+HmVcTTG0rYtzrn1u/T8LqvmVbWQdt7jmyAMulpVwEjrXt/jvGd7c8PN2zdi3e4DNlwcu5y2Lnjv5d+tVQF2AR42my273U6E2vX/gFQt4yyHm3fSqlsKDHe3DOeBZZ6FFdg0Yn89jkyqWZFX96PLPnrN8FxBn1zFj3WtGDBO3vN1Is4VOHR9XbfpmroHSZy/gmhZKeM1IH6tMQSYxoX/+t99q2MnzJ969JSiLmYuiBhqFmZIKYXdbkehoW2UfWUkWS6rArXFOmht0Djqwmy6v3/g3bt3dF3Hm7dv2Ww3dF2Ls15afURAQYDfnFmmkXk4iwBhTHjrsQ6C9QT7Evyp51AqmVSSgN9ZWlzSNDAqA2JaptUFbNN4uuDBVOaHvo4N6Ba/sjKlMuuV0VW0leoCLHL1t1IrjcZdhFWV5auMoVeJb6y17PpeWaay5owRAXJyFphFE4miYyPFJdEFAikoZCuJu7tik4hisurotI6ul8Rgf7Pl/uFG2m4bcUZ0FkxKGNVSS/NCcjPkLI43RVuBUJ0cBZaIwsQZzzPn40kroiIMHlPh8TzxfJ6ZloXffPuBb394JKbEMI6M04y1hU1r6RrLtu9oc4NLwhL0KgY/58gwz0wxARk7G4yX9k5vCjZdwOg6T52vNHfWeWWMSEZfVUlebS2WFFkO3yvQK2u/Ov0YI+Luzkqbk3MOk7zGFHJWS1RhcejYZSsJgW4oNVQ0MRK0mOKsaG5JgYOVPeUc+B+JyxqwXtonUKciDRKSd6TFK+hfBYbljdX9rO6Z15FpZac5q8l2cGRvtUBW91Xda5HX8Pmy9y7WEd1V+6xBY2JtGykZIohGEjRW57y5gPtOmKKvtha3m62eJ5OKq0fqBMqlEFVrZBhHPj494b2j67TwGDztEsT2PUV1rprWJPvp8YBzjtNx5Lvvvid4z1dffs7T8y/ou5auu8Q/JliCDRgHvrP0Ozk7+23Lw5tb4hIJXu79OE58/94LAy7nNS4COJyOPB6eiCnz+Hjg+fkkuiE3W3a7DT7LuT9NE/Oy8OHDI9+//07cj2527LYb0RPpOhHIV4bQOIr77WazpWmFgXI8n0klsywLh8ORaZrwIXA6nRjOA03X0e52Et93PfvtltNuX2//663FYlhSwGaZScaIflbT9lhrSE3EhyDdIEldd0skjgvzkFhikTYp12iuUWhdWYsSSRkxPtSYxrxIv7wCLcK+kpY4EOA1BNEKDcEQgjCO8jyTl1nXWCBnT8qZp8Mzz8dndeZT3a5ctIslai5TVjCkFrTqXK0/W9B4OXB3d8t2J8VVcehbbSqAsjKEvBc2yU7ZoME73jw8cIe0eW234sQ5zxOHwxPzPOK9e9W8f9VarJXta4afOFDo5iQ9x1Lgu7Bzb24f+Ku//W9zc3fPZrdn//AGHwLL0wemx4/EZeJ21/P23Vc0jeftmwe++vIdbSNuv9vtDmMtT8eBj4cTMWWWVBhnKWoN08QPHx/JceH7X3/D97/7jnkcSDGxv7mlWM/27RdsP/85GMNyfmI5P5GWGX8+i2V7KcR5ZMkJ7wM3t7ds91t2m57/1l9/zV//4is2XcvP3r3hs4dbyXsR3cU6H0GBcSe5puz1ooEWc+Y4zgzjzOFw4O/+4e/54cMHnp6e+Pv/8Hf88MMPTPPM47OA2H/s+ouLO19fMqHzOtZkWEwkp1kOHwpJW2RsacidinlRA31ZrClKBSUukWWZJaEeR07HI+dh5HA48Pz8vDqI7bZbnPrFVzpVpXEZXSTe660wmRzT+vuE3qG7gVYVX8AwV6jMj+EffvJ55gWScwX8vACQykr5uHbi+RQA+sl/MT/5hFe7ip7uFZ0U3R5RV+/7nk2/YaP22l3XrcBP07RqIay9rar4XtlSpgYJVCBHe1SNtO1V7aWqxl8/6tr6pqDOhXRaoyzdRK1Z222MET2KkgsmGmw0kMAZBwlKEqHn8TSCgdwkcm1l0fcXk4BTix4IBAPOrLTn+i5rECZijYs6jnmilx5QcbC5uCrUyvVfYuzWS5MnjOi2SOuEw7oARasflRapm1Ipue5DUtQnk7OlpEwyIspsi0VaRyRRFTcaBU1XKF8eW51qtM1k1eeggCnYemhbK5t41+KcsEvafgPWMGfDpAdniqqAqxW02hZ6aT+Tw7akTFR765hEWLhQVA6kOjfJCSx0aqSVCAF0klbH6+F1ed+aar7Abi/P4Q/Tof+cIVyT+fpVSlm/10S36o14bTupFUyDUUCoWQGdpm0V+PHYIFbe1n5ajXJUq/XL7xZQtv697rfZOYqXsagWwwAptpSUNUBpV+DqArRcu6Fc7XJXnzev976296zP4gLO14Tr5WK6VJzkEtenq7E0F/vl6g5XHXle+8q5cD7PK+X/Ux0haws+WIxVNkgqWj0s0gpWxLlkPZvqPbGXca6VzTp2bSvaI13X0TTh0upmZG9bc7ers6+CbQathFq7gveX/UJLFS/GpbZvyevncgm+qxW4OEtlPRuvQRxZN6aUy/hejfXaCqStefKY/HmxBb9OMi/j++lZ+i+51ntiPmka/4R5Ud/ZJfB9eVzL9i+Uc6/W3EYliowttK1n03mcF4bsRhO54C3By1hIq6VZh451GxRB5gvwoy1dKZNiXtuVFhUJjxFxf1GmatV5GqeZs+psDJNYRlsLJltKksaLcZqZpgXnhO3pc2EpMrdzyhUpx4oom+yn6qaZdQMVx0QBXioWWK/ySUXkda+ss0f2HvlEGoevLMRPvuoco7aOajX/ajZea/c5ayjWUfQMVBgQa0XkFapUutG55S5aUdZRrOyj1lyciiwXZoq4k6qT1JUHgLAj0fd0+e60zaEgc00YlLK3ZEWhU5GzrZ6rKUvroJg3VL2U+ps0flZXNN245Pc4i1tboi/71atdek5ldV66/pxX7w4wIqquLVshpHWfENFVTxY0jLhEfQ2zMjInM1HlKk6nE6fTSZ3SWqxDQMvZYYMXva9lJqYFq1po3kusJO5ELYDsy21DSmI17ytIM88Sq2h71hLntX3wmvVawbgYI/Oy4JOVFqCY1mzPKDhf6hhalDUsYLMw9MN6ZkqLorzevCzgHG1M+FS11Wrx9vWvUow658rcsxrj17PF2lr4vfQEy+dCmTUKel7HBoYVzETn+dqSziVWqEWG+v8kJrg+R8wFoACNd50+W8BZSlYBdHEyjUskLlJQEd0d7UYotf1Smdp1zV0BuNfAjwBPcs8rW4S6P4EKVAdCEmmC1LaUIsWSEIIUbIJn02/UrdEwjaIV9JprUUKwq3PcXJy8yuUmX2Lp+v80ZrXOEdqWfrOl3+5ou420xDm/xqTGGEIIbDYdXduw323Y77a0bUvX9Wy2W4wxTDHjz6Pq2YnebymFOUqBKi9yZs3LwhJFBNw5R6nC27XtSr/KVYxjJagWDVIrLpubNrDpW3abjpttL6Bw2wj7DihJW16vDrKqKpVr/pFEoHteFoZx5DxMHM9nDscTz4cDT88HHp+eeXp6ZpoXjqcT8zz/0XH5VwV+Gu/48u09zooIoLOGaRw5Pj8xTxNLKSwaCAZusHc77ZEXho6hkOLCMAuqOk0z5/NIjJEf3r/nm999w+l85uPTgffffyDGTN+2Yg++6WmbgNHgvTGFXWMxrYN9jzOi+TEtiXEWq8dlmVniJIt0WUhRbuhlWVxAmQKrzZ88oJoDcAF6VsBHg5Z1gZWf+Lp+fv1tnzywPn4VA60gSr1eNzoqRfr7nfHS9xganAuiSRETp+OR3/7mN7Rtg/WOoKwB7xRVN2rFF7o1EaltKjUoqLlDyRK6Bx9otP/VGqksY6xWfatri9D5JfDSA8KwPi5BjDBXAA1GDCUV4jQTh5l5mBlOA8PxzDLOjIeB8XAGIDUNMSyiQXE+Y7wh5cRxOjEuI9ZZOhXi886LbGZJmJLXil5JhbhMQpfFMA7nlXrbbbpVq6bb9PhGen/NirS8/lUp5k4PfGs93jYYA955mlZa8JaYmJZJLSwzIk+XWXDiqpYdoqXhwVoyQSo1xTLHxLRkPYghRp2ZxYLNqoMkYAoGqTBrq0fTBPq+wzvPze2Om5tbsXXuenzXUzBMKePVqaFvLLl4JGnQHu8ijltz0VYG7cOOuTBFaV2QFjRJrrOxkCxGewjnJTLHWQI1F5VVIQFlaFtyAROLClAbXBYXM+ugbaRqW+JCspES/zKZipAKpCKW16qyITQN2/0OZ6WaebPf0/ig/0Hei/RMC+On327Z3d1JFc2o3TOXpLEGRDWdKUn2xZIzA6jdZQWZtG1WA5cfA5lGXMCs5fbuDmOFrTTVtkgNyFOMl4KBBgmKFsp+YyyDMRctilWngVWo88IIujB7Si4s2hNvKBhb1jPdueoQqZbl+hkWdY967StnGIbqTij22tfsHOc8oenWhBBNNPvNhqYTjStnhQViMPhS1s9uVqc2ud9tI2LK93f3vHlzrwBQS0oLy6J6QaY6iihQV4y6gIlgfds14l6Rk4guWv1S1xIwdABO2oFvbm84TyO5FAnYVPS32uxWtzyTr+6tgk62GJxqq3nVaHtxbpY6IyVokhbhqu9RRcGtCgY7bblyqxbUa12i0SNaYTmmda8sdkXJccZSrATzIvIrZ30p9QPrGikGgsfbAtoi1nphnWzawH7b44OlbwOtBVcyzJF5VIv4aWIZR0rOzMPINMjPUdnSpSDsLCtJ5fk0MJwGaf0YJ0Zt/xDdt0BMmWGcOZ4Hhmnm6fnAx8dnYQxMIhhuLcyNpfWGaYx8v3umdcLmCkEqz0vJHPKZocy41tN3rZxz2g5jsxaC1MWkVHavrYiK3uwLnvLql/Oem7efA8r2A3WCq+wr1Qs3wlIJXrR8KnNZQJQrtha11Y11rhYtKKyFrbVNvbL7/Drfm5IUdFKDC2MoxpHV1dCo6xgAKgYvGcM1gyCvUGPVshFCzsWqu4qnAiyloDKKxFxtiRUE0vmasrZ6lcKyZGKqbGv9XTmr9oxoGhVtI/HW0gVPUAaVVWt3F/7p1cZwnR6lrHIOOaWXAMXKqMjMccYmcZUbBk+Msk/e393hnBOh9WFU0PLizmeMIadMLHA4nvnu/fcCojuDq9IcVmI4ay03N3tps/GBm/0Ntze3GGNZ4sJ+v2Oz6WmC5/ZmL1pR2nKWc+bx8Mzz8cA0zxyHM7EsmGyY08y0TBiLGCmksjIallhIJnE8T6Qs7m22aQm9FPtihiWlleJaCwJv3tyz2W44nk6SbI4j47zw22+/5TSMhLZl+8MPNF3H8Xzm8emg7Zuve8ncGlgLwkUYPylJh0jKIn6ec2aeJ86nEzFOjFPkdJr07C7r2V81uTAiirwoO6dpAq06Rqco4BoU0Rrt1WEvCzh+mWBSQPDeEkLVcmml9d44nO1wriPnwg6Hsa1oG07CkJS4KKkTcVn3A1AXKAXw1xjFoA5Usp/e3d2x3W5JKXI4HhjHYd1LpGUIhvOAsYW+6whBjBQa77m5/YyuV6Z23xK853Q6cj6NTNOFGfcql2zo+qN5+R0BSmQfuhI/NbDZ73nz7gu6rueLn/2Ch8++YLu/xTpxG03FsNnu6X/2MwyZNzdbPn9zSxc8m82GtulXdvk0St6eY9I9W/Y3l1W7UK3U07IwxMKQPUtJLEbBOwzn0zPDt/9EAZbhyDKeoCRKjuw2Pc47bu4e2N3e0jQNb9++4e7ujr7v+OXXn/P5ww3BCxjkNL8Vdq+9gGNGXMmPYyTlhXmZeXp8YhjOnIeRb7/7jufnA+dx4pv33/N8PDOczzw+HzlPC8s8MZ3PzPN/ZIyf4D1fv3sgOOhacVJ5/PCB6eO3jGehwi2qhdIHgzXvaBpJIirwE5eFaRxVIHTk8HxiXhbef/stv/3NbzgeTzwejnz/4YmcC2/fPKh2zI7GS3BZcqSxmX1r8MnR+g27viflwmlOnMZEzJlxHBinMyll5mlgnlgPSpm7l2pCAZKJmCqwlvPqMna5tPR2VRW5XPnl81bwx6xItvzGq5e6qiBd3s0ni/YFKvQKV4G4JBoPwTW0TYe3FfiJHJ4PHI/P+lSt5FGDoaBAR6ANItoWmoZOq/2i9yOJSXBeVPqtUBXb0Iiwom9oFExyvsGGVgJ7L9bExhqC8cpSMBhnsF4O+xgjadFgK4loakmZZZxYzhPzMDEczwzPJ+ZxZng6MTwL8BPDwhxkuUQTyQgDYMozS14IbWC36dl4ad0KxkhPe8k4A8EZksnEZWQ8H+WwWiIpZpx39JsNQQ+guzcP9GUjB1XTKnr/upGukcIhzqtQnAbnXStAa9O2bHZ7vA9My8zxfBYUPEdKWlRQ0rEMC6RZ2ENWwKqMY04ekw3TAuOSlJ1gyFGrMhZlDBSWVDCqPVG0ImkteB/YbjY0TeDh7oY3b+5F28A3GN+QgWFe8MsiFU+tXEnFcyEn6fM+zplFBSWXmOX95MK0LMxRaODGIsCPtZAcpigQMS4syyzhu5EgP3jDbhfwXUvJYFzGJSlJZ3Uws87QtnJ/c7TMdhYh8le8VkKTJvrGXFXOCzRNy93DvQqo73j78LD2hWd1xQiNus44T9N19Lst1nmxXo5RD0YRnvxU70L6whdMku/DMAjwsIptXxKiqtEjc0+DphBwPnB379nvb1QDayHGRYO5ef29OadVvD8mSTRijFTmpgT3USuuGtQreyjVvXgFxVhfX6ojUmOpDDTv7Qr8CNiTVRPsYvP+mpcwfqIE31V82F4cu5xraBoB56w1okdgDZuup+k6Gm1d8tbxabXOh0BQALdtOzabHq9C+m/ePKjrkAA/85ww2qhijKFrO5yKpodglZVY6LvAdtspaIZaXDt155O9GWdxTUPTLNzd3bPoGDgvwE/JhTiOxEmc/ZyUt2SXUzERUwo2GXxxZIq4CJmX+k7XdULRdtLX1yeVchEtr0yxtZXoFffUKpxaq+0V7Mz6e0yBJGI+YuE9zyK6Kf97LenUdiFTGoo6Y/ng6IPsy/u+4W6/IQStzhspPi3TxDQM5BQZTwPD4UiKieF8ltYtZQtE3Wcb39D4hpILh+cjx+ejMH+yMHyMsTSbLaG3xJQ5DxOH48AwTjw+Hfjw8ZEYxdFmXgTAH7yh8YZzN3PTPeIUiAvB4Z3wZyabWEwi9C3dbo/vgwquO4ye0yoJJBt6kbkkf683p1bwXx9Id6Hh7vOvXjwmulCy5gRULivwU129XGXTGaOxjr9i/JhVvrEouFdbWSuTbq3qW7e6uDQl0ZSor1DZBDKnsiZTq3kBlZl0zTiT4C+VrI5wwjyIScSgSxRHMBGa9asT1lIKsUhb11xg0db6XFTwoKAitbKfLkkKOysjv4hmVFxGUpTCQF7EoCU4x7aVBLSyTAT4+X+96jgaKhgrZ1c1enHOrUzOet/nJImSMYWgiXXfNry5f6DvO5YlMo0zOWXO55HD4URckrKBE4nE4SAW7NZZ5mVkWkZyTkzTsrZe3N3d8nB/R9s2/Pzrn/GLn/+CtmnZbfbc3u6xxnJ/dytnMwXrLcYJSPHN+2/59nvPMAy8//ADqSyUXJiXhmkWwHSOkagaMjFJrAOFcpJ123Yt/f6GrXFk44ilMKeMcTL3nLM439L2HRjDh4+PvP/hA+bpmXGe+cff/hb/3XtcCHTbHaFpSAUWBQFf+yolsyyDxHNJAA1nLXFxK6u5Ap3DeeTp8cA8j8xLYhilE2SaJ4bzmZyTaNypw94yz4zDSM6ZtmvpNj3WWuZ5WVvNt9sNu510i5hKGSoI01/BIR8kHnTOc/vwGb6/lVaddo9rdhKXuo6u2RFT5Hg+4c5nLdAJMAUiop5zxGAIzhGc1RxhZlGx975taIIwdW5ubthsNkzTyDBOLEn2+FqcEqBqJufIfrdjv9vT91vaPnB/9477h89EriN41Q36yIcfHjGMvDqqbt1KkKBc3DdB8J5cCiXl9TnGGHY3e37xN3/D/u6Oh7df8Pbzr+k2O5GXmEVb82Z/w8P+LW2w3O83fH63o1nlMmoMWJjGad0LvALOMUvBOFGIqTCOC3GJnJfCqTgWPIsJYIUNeD48MTwd1pauOE9YC7ebjv22p+ta/uoXX/LVV1/Rdi2fv3vHw8M9TQjc32y52Up7okgtlNWBO9f83gYwjhwjz6cj53HidDzwj//wd3x4/57D8cCvfvUrfvjhg7R9TVlcNmNinkYBuKeJ8XxmUbmLP3T9qwI/xkDbeLwztEEqq423eKtCdrmQjMGYS/uV9Idf2r2ytnrFeFHBjz/6LtTGCrw450TR24kIK0Z6p1vvyMGtTiIpS1tRIhFTVrHRBWMSKbrah6y2oy8/WylFgrwsLSFZk4g60fUO1Ge//LPUimW5+veryqZWF360HGu0yI+X6gUgem3kpyZuVblcgp1KMS0lk4rYoF4eu3IMMhbvAksTxaaxCcR5xjpHEzxLW6uEDUm1RKIP5BAVBBJ6pLEW6xMuqnCm9/gswVYOXqzIjRGRviwaMHMUAbxS1N0moQ4l8zqXUhSNjfpZaqZY2QJFq1qpJHEJq2h1pTPrlyD4VhNRtTWtr1GdQtQFB1NU/wbc4qVynJJUsNdk9fUP1spwsNpKYG11sbJK+xVAKBXRiMmgQJ44HFhNoIp1K+W19oEVbccrXHQ2QAXertu/VmTSrO/J1QTNO0IjLILQBEIjlGmceDKaos5bSY4Mr4yxgrR0JWOxqaiInhL4S1GHo9pKdLFwvdwY1vdb2TQAxWTNRyxVeUY+mrThUBTgwMpb9AbvDakICFm1IF7zWufl1VqrbUqyXoK0cGkbV9O2Eog7AUjk3jYi4KyUdOucgG9JvJ1zpeKXy9o3V79fHC+MtmpU9p3B5qyWzqJ9JRTmjC3CyKjBlLUW44NWUWUeVrZfrXylXJ3XwNiEsXml+Ir1KcQ5kGOgUt/rd1erSrUSrvemUrav1zjUFi/WauF121mdC69+mcryubTUVcdJ54O06SmY5oKsDxEi9TjvL0noJyeBr5axzkpls21VYL/Reyf/V4C8giVrC50CdaZS+S9JU12PLkkbRF0T3nlNkC1OnXCyE8HURl08nQ8K/GSIkbyoZbZWPCvwY5RhoDQDGTvFBWTILkFiBX+uKfjyCOtzfurrta+VUcbl/VHbl1QrKYMwfnJa2WNy2ktcsXI71cTCGGmicUbwD2cM3hg1qCiiiYBa9s4zOSbiNDGPkzhGKeMnq5V4VLCOJF+lFOZpWjVMVrthXa+VIXfR0lKmShYmRz0rMZCyuMvlVLQtJZFtBYmNGCLYTLIKlKsDGMVgipVWwDpudXiyYVUoXcOjcgX+vO5ljME3zdUbkLUgLZIvgZ8qFC5tXTL/a3Dvq/gyUN1AuXy6FayH8uJnp2L6FkMg0hSvJ6jDIGyFbBxZWW3XwI+9Ep01VzFqUtA8l4JxERtrC70lmyjCsboXrO+yFOH1riGQGC/YUlsIi67RQknSJlvUstnkTM5iAY+63RhjMOoO5ZpWGVTKpFoFvF/r0paZq7Ox6NhW9kZdnrXdR+6TrJEK+qMJqrPS/pRtJoREUBZkSi/P3yVGbDaqtSOGEudh5HQ6U9AY2Iou3+3NkdPpTIqZ4MTFtoKZdtV7sir6bZUJJu3VzklhiSLf11ZrcxlzHSL5XMrG8spgq0+SUPUlG7aePWJbHXDeqUmCaDrOMeFjIluHTyJknK06Qb7yVbS4VPeZ2mJoDBJb6IcQIDLr+OWr2C6vDs8yrlYYNkUY5ikrQKJxuDDPIzHFdTxrG6A1VnTFYN0HCwWXoRSn88tiXZCCtJeiFkXAZB8WjHWEEPEhanySVwAyWYtJVuNfpzFwJikA66wwuNsmrHlxdVktaKyi+4i4gmbVttJ9WOeCMdKF0TSd5llWYwe/xnh/mesSZ33y6AoEVVctawxt29FvN2x2O7q+lyKh82IAsGIETuLaxtGEel+czoGoBX4pEhZqcVTbsjSGKDpvYlRR8AwJS1YjCXFdlvuZdC7IfiZj0gTpSui7lu1mw367oe1adtue3aYX/b3a3mWuyRkaY9ZYsyQyRVu6Jk6nM8fTmcPhyNPzgePxwPPhwOFwIBYYo2HJsv8L601dlFNlkf3h618V+HHWsu17nM20PuFM5mbT8uVn99xvG908xEb27du3/OLnP2O339G1DcsyczwmpmHkrO5d8zQznAdB3eOCc4bQeLquZbfdkIH9fsfNzZ6b2x3eJIJZKCnyxZsb0ldvxS0sO+bsSAWex8LzlJlj4oePH/nhw0eWuBCcY1Q2gXMWrwuuAgZ106yJSikX0eGa8EORAS5qffkCAMrUTm/qo5LlcJkoFzBpDXqu11Ipl5XEq+O2gCT7+90Nfdez3ezouh7vg7CvjJFEoQphUz+/1KPkAQUCyqVKW2mTkuwIkNQ0QZhAmry2IayVt1oRu271cu6izB+Cp9FKtfMOFyQhStZIKw9ymIp+EzCCmQppSZzOzxSbsKHQ7howW+QQlsOwmEIqkYyM45wMSzLaEjVwPEaMN7jkMSdHyplxnlaHOWMzTeMoRWjiWaurYvkiB8/5fGJJkRAkAA3N64+jodDakdYFWu9ofCGEQhcU9HELlgFTIpZI4yLOiKCIyF4ZQnaE2JGjtLYFDXSNQ4AQA76xbHwjbR4UrOrtmBQhL5hScEGSWWOq0LMkh/d3N9zf3a0idJttizGGVCDmhEXE4K23ylAQG0eZdx25SJXbItjcNEcejzPH00BMmXGamWet0k8jSVkjMUrVLBeEUu8bqWxm0VRJCdycyUasqy1egm5r8dp/7Lyh21h8Y1gmxxIHEVZ9xauUom0WostRE5Sa1HedCNt1fa+tri1NaCRZb4pWo5ywOjQZrsKDJYneii0Gb73awbKKBRpNPs3VYb4GDrlQUiIrqFJsFR0ul2Q3S4IIVRvmQsE3xoItAvIVtYJXkWAwtJrgp5Tpmoa7uztySszjmWWeVjZPjFHcEJZFAd+XrIzm3KqrSSbFRanWRQ56MiIsr2J0CmZ+qhX0GpcPnrefvRUGZBC2or8S7A5NoNt0Wh2/JEtd27LbbKWoYYUlKZa3F32PquFkraXve3a7Hd57+n7DZrNdmTD1tEi5Wi/LHiyTpdD34iBWSqbfdNzc7rWqGFc74O1uJ88BztMI04j1jru7O3wrm5isDbGhff7+A4cs7YLD4YnpeFjnnNUzImEpxZCtIQZD9kZAsuBVU8HI99rGFRpx5yzg6hljZA7X5MhqK9trn4/XSWD9e87qiqaFKgNig64C7BX0EeDa0ur5Z4ynCeLk0gZD4wzegs2RNJwxs2XJiZKl8j+ez8ryiZyPZ07PB2JMjMPAcB7IOWOdERcoDNFOLFaYV8PhzHQSZmvT9fSd2Nb6JuCcI5IIBjyJYArb4LjpW2JMBCft8dYYWtUZ6tpG9Py8ALJJk5BiYDGFZIqQeBaPi+JKaIoVdMuwMnuECWQhXj8u1dJiyquPHyA02P4WuFSlrbmyeDZQxZKtuYg+WwVsqpZbUbdO6kwzRsGYNetYtXmui0pOW94NhlDiFePHroyfYp18YSglUbR9/SXwU4XEtdChCeayRNwSySkxphNxilgLrfX4pgNrsE60bVIxonuWJH6zxZLUOZAi52MpYDJYBQ9MjiswaJdRWZiZHGdIVePHrS4eWVv7yysCPylnTsNZ2mTIYNVhzzRgxGRinDTprkVWhMlxHgfcPOG8FQZ229KGhk23wTnLdtPRNw21PT2qzk0ukVREr6VrG9qu0QLhI8+HMzElng4nxmXBe8+8ZI6HgaZp2G333Oz2yow161fTNTStFDJOw5lxlMr+drPhy8/fYYzh7mbPfivOufd3e9ouABkfPNY7AXaQPT2psKq1RfXiomhOUjgPZwxFjCL6Dq97/6bvuL29IcbE8TwyzxMuZ5L3+Cw5SzFXltOveKWYeHz8KH/RPMI5o+3FV0qexYjmkbP4NogAe5YYojEe7IacMz4EmkYNKxqPazy5FC0win36mhaUjPUwpxlbLF3T0nStdB1kT0gNxhjJL/ciSbK/e8fN/WeyfoynIK20zoELVlrhu4aw7VewNxcBkqZJ7i1FYuNURIrC+oZgpSj+cH/L7c2OnDPDOPD4/Mw0TZzOA+MkpilZW9MFUELyrApIhY6m69nuxdFT2ImCq5/PR1KKDMOgLKpXvK7cEU2p603BSGvpNpLndf2Gm9t7mqbl3ddf81d//Tfsbu5omh5vDSXNODJbzZ9aLwW9HAun8wgxYa1hnmcFXis7W/bdthdml3MQTyMH1QE+nU4cDidSXDhMM5MNJG8ooeBywZRM5xLWC3i43z+w3W1ofODdwz1v7m5pm8Dbt2+4v78jeM/NzZ7tthcx8qbBeWkZS0n341w4jxPTPDMvkcfnA6fzyDAOfPPNNzw+PjIOI++/+5bn52fmZeH5eGbOQlCJS5TXigvT+UicZ9IyMw0n0vIfWauXtZbttsMRCcxYU/DblvbdPWnZYX0gNBuM89zd3/Plz39Gv9myzCPj+cQ4RMbzmcPTgbgs0o4wzRJYLLPc5CC946Kva7jZ77i93XN7e4MvM55JqhJvbunTO+IyEwkspiEVw+MIH0eYlkTbdqQE8zwTrLiOQSF4TxOk+nk6S8BUqd123QAvG2FO2udcMjFBSQrQlHJ18Fgu7V7lihxUn0uF6FmN3hVkegH+XLEKTH2tV7yctSvws9vt6doO7730QMdFbUi1LX+tQBi1Q5TqQlyiLMwkDijzMisAougvYi/Zdy+Bn1XDZ/1kKip4hRhX4EcSKBWsUxDIty2ubZWdogLEGJrSEkoQsfHzQnERY6DdNYRONCuMUmOE7xIpSOXTL7BEI2MbB6blIAfHaCleAq8qqJizMM6axl0lIJZUBGiMKZPywul0woyjgGqhFZ2fV76sybRupHWZznuaoMBPY/G+iLsIBvKMM4XWX9plZM82ZOPpTbfaAedFxcoMFCvz7gIUCCMnWEm40jySJrlvTeNpOmEl9Jue7W6D946721seHu4E6ffCRirAPCfyJBWX1hpaZUDsty3bbc/FnEF7pKPoEFg7k9IzB7UinqaZWTVqclzU0riy/dCE04MXEfAlixB0TAUzZ5ZS8MbReUewHus8oZHqhG8sm50jtIbRG4bxmSW97jhKID+/KKR0nQisN00j4Ox2x2Yjjk1t06qoulnBU4BqAmUwWjHIa0BvkDYG6zwYtKXhil2xVuHsBaNW4Agg2VxLOmsvNQUR1o4C5AQvwtNry5CVpMk7EVsX5o4w7DC1lUwC4nJ7Kwd8yaRlJiehOp/OZ6ZJHF2GYWSa5xUQSlGo2m3bMc2TtBhPYs+ZU2ZZ5DERDBbracGDzCqn8ZqX94HP3r174c4WQqDvpS0rhEDbtyvg41QXo20atv1GnRK9tHwZuzIJSxGNH6cttpuN7NnC+BGx/QoU5XxhaOZFROdzbikIo7Lf9Ox2IpJ4F2+1fUJo1LP20IdGhMFzyXB0JK0yuxDY39zKnucF+JmnCbNE4jgw5cTH04mP330HuRCwOIQ9WIXfcZbce0rjBJQwPbZRTRXnxDHPWnGiU2q+QTYCawzeXiXF9Yx+xWRFqq6VKaqlHK0mXwuWS8KYWVJUpiFrUNw2Hkejos6ZNliaxtIFS6t29y5F8pCIBuZpZB7PpJQYjidOz0fSEjkdThIjxcg0TYzjJHtl19BsJHkxRb5KKQzHkfE0yji3Pdte9KRMCOAslkIwhaBJ5CY4bvuGmDLBJUYnmhJN8ATv6BrRSPGhoRTR34iq1VWh1KDAj48C5ptshIVkJPES4Ef2oEvrlwI/oN//AuVp62BzuwInaExnKvCDumjpv6+P2zpXL3tjUZCnCtIKM8j9qCJXWcAyV0XzygChJJqy6MdXRi0GnBdxZ4MC1NomZi6cMXGNkXkZiyQauRTcLIz4GBdpY04DDgMu4JoO4xy2azFNQ8JQIpQobFmTpQW6IONSBaBNNrgirDaborblJuwirSaUTIlRWjkNuFU97gJ6Vh2Q17hyzhxHcaarwI91bo0Jx8kwz5OCYazxdWV4GCOFpSVGQgg83N3RvmtoQkfbBTZtpxozeQV+jqcDj4cnUoqEVtqlCnAaZmL5yLRkhvlEenrGGMPj45FvvnmPd57tZsN2s1XmhRTenLVsdxs2242wfNQZD2C329IqM/7+7pbb/U4LPi2hCRQSPjicd+SMtLynSMoRAX7AGGFlpbhAyZxPZ3JM+OAvmlols9303N/diGnOeWBYZlzOROtwSQ0vTJ2xr3ulFHl8/CjnhjLYRHTbrSC+IrFSpPGW4ALZFFxeIGWsD/hWmDeimaRuXCkTcqOxi+YOgPEGG1j36znNmGxou4a2FyA8FWlztNbx9u1nfPHuc0LTstm9YbN/gzFOZASWhZQLLjhcG8g50ywbtlF01lLRlsmURWPnPJCznIlxHgEpZjsKXdfy8PYtn3/2hnEc+cd//Ec+Pj4xzzOn88g4yTgalTS4ZrphLNY3uNAR2g27/S139/cAWojNPD0/ElNkHM9UraHXuEopKmIsBbVaWEO7QkLfcrPb0DWB2/vP+PLnf8Nmu+fN51/w87/5N2z2e+YpMp4ncpwJzuA1f2q8yGnkCKd54XQ4UUrhfB45qotyZU47Z3n79p5+v9Mi/cLh+ZFxmnk+nHh6OoqralyYbQPGYzO4XHAlY/1MW6Qw/fOff87XX39N13V89e4d79681UKdMLKsNdKhoK35IQjwI2tRXMPnJfN8HDmczpzPZ371T//E+++/53Q88qu//zt++O5blpg4nweRI7Ae13UYH+Q1FmGxLdPE8PzMPAzkvBCXkZz/eIH5X7nVS5wqTLVtU/p90MntfJDqpPd6ExvathHRTq0eC5VNNui00v+Uau49IWdihiYKMFIptyDAgjMCHUglzeHwODzWOHKx9MUyYrEu0TYNQdH9EBpCkJ/bNtA2guYm/Ry1ihxjVHCGtTIi1RE5YVZWEKyB6U+FLy+cv65+LhUIqj+v1+UEMz/1gq90Gb2nQjVUwUwkgU8JsMIEuLCO5DMXZYOstWXFu0ouqximsJrU1SsnyGnV+ImaGL5oM9Eq/Ar8mAr8XA5552vLhMF3LX7udKMPGOMxWKKZaWikwjyLgB+1c0s+nVSk1vYk/VKnFWPrZ9Fe+ixgX312VnaXUGovbChJQlidMoQqzbrxXicRrz+O0HhDqAmFkXZLZ4tUhIzoE5kCpgiLS4muVBaAZF1y8GYsNmdKEeHAXAUDvcUGZWJZQ6sVvmSkXa6UQtN6mlaAn64TzRHvPW3XClqu1VO5zxUqvbQhmHWdoe4/lyCkXFVUa9uOtFlc6MAo3VJrEoBRp7Oi7SUVaGW1VsgY1TwQBpLNBrIc5CaBUWTf6mM5y0H/uldtEeAC/igteXXeqmB0nZ8q5mg1s9LGPdk9TL5sPLVahFTeUdBVbFUvgnRrW429ALJVtFbWeUVztUqvN7rSq1FgqeRMNlZafnVTNOsCYU1UhQ58sYtfdVNLlqpQdqtbG4BLurcYo4K7hqjsvWVZJFmxVoKTmprGCsLLXKj0XGPM5Re+4mWMEcDHi8aZiN8HcUTUdkupGgnwYxV48z4Io0fBMuf8lbOWlhOcBLuyjzZre5j34aodRZ9fgzSu10y1ir24t9QERBg/iaRWzuaqJefyf8v6Ga+1ULzz+p7d2n6xzIsGhZIaCnW+rnur/YLi8GWNUaH1i3OdMXb9PXXcKtBjakq8gpyvf9X7c836qQWhl20nV4e+7vsVAKpTXpacAFZ1DRtNxkoSsDbHKBbtSb8vUdvco1R+U6akGmddPvf62Uu5CGuSdX3J771uhRQQRM8IY2i8owuB6DK5WArC+ArerYmrXRkc0gaekrCU8xobWIX33GWfqEfrRRDnUgur+9IaPKw7zOtftdCyVqLMKoC7vsl1oOp9sqJloXNvrWBdv8bV67x456Vc9lrqeSunqjCkywtACU1UMZc2R/nzwpyst7COt3EGW4rsB8rOcdo+JMC+u3x5j1H3RVePwCIsNFMu7rjVvdKs+3Ne15vNhuKkXaro42SxveYqBlrBu1ccyoIyF8vlDdYi5HWb53Vstb6bIvFzZeVVVm2MkegjQQXIrZqGWGfJpRCWoILeyloOgQIXdrqRWLeavyyL6nzZJOOgAtDO6R5pRQg+U1SfTWIhkHP8op1Xwx2VIaif26BghlEm2LUTp1lbg1e9M3Nhs65jaO2quxlTXhNoo3N4BRZKPStf/1rZk3XpXaDCq4KX/OD0sHA54Z0FnHiIaHuizG+7jr+7AhtryFi1ueq9zCrd0bYtbSusW7E2kdfbbnfsdntCaOk2G/q+B2MFEF5bBiWuylm6RVwU1lzKFfhJLIswKHOykCJk0RByRtZf0zRy3ruLvtF1ixrUc04ZdKUAHmOyFE6VaStzTeOnUi47h5E2SGtfn70l59plt7a2zklL24hRRNe1bLYbKVRud3T9RgpJvhFd1iznmsVhrYDcKJAiOdOlHVDIBMJwCxjNZ7g4FGZpRZ5nMSZYZpX50HjFWCn0Oee17TcTNPhvQmC3FdewruvYbbfqGi4dHFXU37sKToqrZWX6zEtkmhPzIsZUp9NZGUfiRH46HjkejytwNY6ztJC6QvEBZ9zazpVjkhhAgd1VVuRPyBn/dYEfa+j6lnlYxG59OuGNUISddxjV5yhZgvGu69hsNqrxU5QunRjnyHgeVZhyq2KSAetblhgZl8h5lArTZtPz/PxMXCb2vafZSBDsMNiUcUn6H4223GzCHr/ds6TCMM2cxoVpntWqfIMxcHez4/ZmhzGwLLOwhmLkcDhwPApyOAwj4ziRc2IcR+YpU7B441WHpFZMii7iGhjC9eZ22VAF+EJtTItWv+szKkBR8Z+/UEgkrK3Ndm0bqX3twkzMWOfp2pbg7dobbXUh5SoSmAsxZkouTPPMMAykJNXJ8/m09uQOJ0FwpQFQN2s9FOtG5dTidA1Wgegti1fgoR6MCkIYFf+qyThYnGlwppU7mB0UeU2Dw+IvSZYe4tar9TeFQhR5eArOZyyGVDJjkrmaS2ZeJBEtBdVE0IPVSIAcc2aYIktKWO9pOoMLshaqRfZrX23w/PUXDyuDwBpwHoKJWDKUJD1NyQqdckki4FcBKgouZ4JJ4MAFh++F/pqNJVm/3vOK0PeNZ9uJdaTNGaOOSj44QiOtGl3f0WnFuVGbb4y6MKRIzjDNhWHUKnoUMMMawxLFfQZgyYkliYD2775/5P2HZ8Z54fkwsMxJaaAG77ysJ217KKVIdUT1ZC7V9jSdnwABAABJREFU+oLrZJ0aU3AmgRGQOQ4F4oysukXmVIB2C76BGCfmcViFVV/rqgSsWgnDSHWh7zv6vic4TxwnxlxY7MByPK0JWU2KL2T3IgGLAhurZhMSvFZXG3sFPKx28SCgvfPyGhoUY14GW87VqmXViZDFmY2AaNLGlzE6NmugjrTzOKNJk621bLMGtwbNlovHhwzW0DQtuWT6zVb73C/OXMuy0HY9wzAQl4Xz6cg0TatGnLRQVKDHauVG2HCvfTVN4MuvvlKds7AWMdquxas9jHGVPYk4W8kgskT5PNEYaSVaQQJ1wnKevu9xTtwuttutijCrtpMxCoYKc2CeJmZTdZWytj44zcHLS4ZQzkzjzDhMVH0kjLA7n47PHI5HUhZ2S8wJax27/Y7NdkOKSVon+h6TBKg4n06UlHBZtlRjHE27wYcGGwKhD3jr8SGw2WxpNxuKkXawbBSsNdXJSxcItR1Rk5PCGvj/KQHSn3o5a9ntdxfQp7DOsxVs1jmYUn7RcjjPEyVngjXieOQdm7Zh33ei6WAKjiztNFkElSl5ZT3nVFaGIsYSQstmK3tX7Ho2USqATRdoenFtLEn2TQGmimpmWbre0bZWwd4CJmNsYeMc+ybQO0cwlrvNjlQK5yUxxspkks8kzjNu1TEaxplhmrDO0W62hLYj9FvabkvX7RAAW1vg0T332q695pW2xj9lFXp//ctokefya3PFcEDnl8ZaVdOuAj/rz2s2LgmyQf/HlS+rPqa/UoBNWBmUFNEeHOczpmSCmlrYCm5WMFr11ADFpHQsVIIAA6bqjRiRQqAJ5JRoS2KvhhibTU/bt8Jc6lpoArFAclBiIWUD0VKSFNtyrp/mcpaIzIE66pkrIEiZNYVa3LuyMV7j3de8CrE6JFUmh2E1XMk1Wb6aYlfDT0GAn/M4YK1TUDbRhMDNdsubu1uaENhst9zc7MWqvXVsti0pJ7mHTtr8b/ZbbvYbxsZrQirtntt+K3uxc3SttBEZA8MwMI6jAHOHCtRY+q6n7zqMtgJaPYuPhye6VliCm+2Wvt+IVklcaLsWKDRhi3eGvmu5u91zs+tpg+PLd5/Rt43GEHL2h+DZ3ezp+pa+7zHWcHOz4zyM+Kbh+XQWMdxFmM8xZqZpUR2h172ctdzud1egvsVaNV8wZt0/cy6ipdI1OGfF4attpQ05i3hv1fuLuj+LMH5zdU7Iyuy7jo2yaIMXJ2JnLTf7Pfe3twqghFUP8eH+gbdv36pxTYN1DQWVAFGTisr+kfNyZJomchYb8SXK2Tvse8ZRnHOncWCZJ4wRJ+ygYF3rDeN4ZhwGxmlimuW+h6ZhZ0WByDstGtTYyxr2+z2fvX3g/u6Wm/0GbzM5jpSUiRo/lJx48/AWY4zIAbzWpQVHY8F7mbfbTcfD/S1d13J3d8fXX3/Fbrul3ezZ332Ob3ravscYyzzPnA/PPH77O5ZxZNu1hL2MTwKWugd5j9E9ruQk2q5YtpsNu91uZQU/Hc7kXHj//RPfvP/ANE0Mwygtbkib5rYNeBu4ub9h3zd4a+haS9sKCeHtZ5/x5s0bQvDc7m7YbTZXwDIS02LJWUDh4XRmnmXt//DDR56eD4zjyLff/JaPHz8wjSPfffcdT09PLDFyPJ2JWJFIaCWXKDp38vlMTpF5OImhSYws41k6FlbQ549n///qrV79pmOZjjwfnjk+fWDTdby5uyW04ghUyOrqY+j6ju12o+wNK+DK84lpipzOI7td4OZmSxMCbbdluxfa/xSrJbtY9R2enzifHPZhz93mVpW1weVMSQmTCqSEMY7tJnB7f0/CcJ4ipzEyzQunzYbzdou1li/eveWLd28EgCBhkCDs22+/4/vvv2eeZz58/MjT07NQnHMiRWnJcErRBTnuslZHl0VbH0yt4l8qzno2rkFPqRWnK1DoMtSX6pH8k/kTpsE/ZwwF5Q4+iEWgC1hTxYoLthH1+bYRUdG+FVs9sbSs7CtNKguM08TpJJpNz89P/PADTPPMWVHPuEgLTlqESSVJi6DywXlaFSWrKLYkp5einSTu6rRmtN+5qE33vAgObRswjSStocM6aa/yvsU50cdom5Y2tFhraBpHCBIcN40I+BqjmsMWllQop1lAwZQYhkmrR2v9TSoxVoCfJWXOowjnhabFqjgcpYpiv36rVxM8f/3lGwHc5kmdrQrWiupnyWYFFkiZtERtV9S5WUSAPVgnVeAmsOnEiSxbT7SBYgTA8krN3W9abncbcc5wjq5Ws53FeglgQ9MQWgGQorJkci6kPLLM4g42zYVhUpbdvBBnCaaGcSEEcfQ5zwvDsjAvkW9/eOKHxwPzkng+CvADguwHvbc1jC2gzCVlAa20WUNa70kmx4mSFuKcGM4Dy7DIexvFLt76gu9FK8qahPMz1vxlLE8vLlBWxeb6lToex4k8iW0p1c2llLU6UkGfS61PWwWu3GV88PhGGXfqlGeQwKKyRkJoaIK0bWhJBoxZGSurgKi2HRnrpSWHS/XLXgE/ArC6VexYgmmt1K4VKRVdtFLlssYL9lMKPoTVCl5NzrjW+JmmidC0nE4n5mnSdTYwjSPDaaCU6UfAj72UV1/1CqHhq6+/Fo0oV9u53GrTnooE8iLQmlXkumiAWZ3NLsLAwQdabeNyPtD3W0IIbDaiy+a9UzHX5gWQU0phsG5lsKacOZ/PArxmAa+vGS2lFAF+xllaIbUwk1Li+fjM8/FIylpZU20LaaUwun84tpstWe2Wz8cjOSbMkrFRigj9JtN0Pb7NNHlLcI7GN+y3W7Y3N6RSGJYk+ltARFqJACUlKntCJoAem69fGXHOsd/vXzyWUpIgP8mYxSUq8COAUFFthxIXUsk0Vqyum+DZtC27vqNrG0iLAMuqqRSXSe2y0yquXIsYAD50ONsgSXZl9EBoHKH1YEQbYFlmBX4yWGHtdL2naZUVoXudNZltsORWtNruNluxFAfOKTNmAbOqDokAb0Y+Z4ycp4nDaZAK7i7g+x1Nv6Xt9/T9jpIzi7ZgFgrk2tbJWsgqdRANULKYSv4F+i6lTdlJ0QVhKFqM6grJ56p7pejSKIdZdaauon/0aVeslqt5Zy7sHPT3FMDkpOtZ5AuW8xGTE3QbGqu/pxjlSYnwsPPV4UvBPHVDmnXtBtUBs9ZI3CaZBNlbyrbTOeOwXgOYJkDjpahhC3mBmBAHnFpsUOBkZVorkG9sUQDIkEtlc+k4GZmL1em11PlZb9RrjWEpLDmKXpI6rdUEtBRWFtzKWPmJX7+kxDKIEPo0jZyOB5yzPNzektJM37b4xtFv3krlv/TkfHthHEQRCX662UqOMnnmOapdNsoU0BatNtA0gZIzj8dnfnh+Eue/RVrRrTHsN9v1TO+aQKOGBs4KU9t7kcfY39wAhpxEI8g7x37bsemle+L+7oab3YbYtTgjGkEpZcZJdAJDCOxvdnR9R0yRrm+EnTBNNH0v7V7jzPsPz5zOE4aZ4RyZptfVLwTZU2/2O41vnBaVFMwzEJdFJCZSoms7bm9uaJrAPI/0bUNKC0vMyv7IzDEyqDSI927VKizKfDTG8HD3wOfvvhC3td2W/X4v+j27HXf7G7z3dF1H14scwc3NrejlWMuyzJJTlKwdKaIrWE1lpKXrxPl8IqfMMC1MiwBX0yyxasqZYZqZ5hlrLZs20DaBGGeePrzn+Pwo4OA0MU0zGGiCtPVbA22wBCei813XqT7mVoCf+1s2/QZvC2UZiTEyDBPLEikp8+bNW3a7PU3TvuIoCqgv4veW4Ay3N3t++ctfcHd3y9vP3vG3//bfcnN7C6ahODlbhHE3s8wL5+cnHr/5J6bTEfZbbvI9JgSWlBkXwQvcZkPY7jFqQuOD7MWb3YaHtw845zmfB56epXXqu+8f+d23P0juE+dVpqT3N+yanrZp+OKzN3zx7g1tCNzdbLi7kVy232zoNz3WWBrnpeCJstizsHcjIoY/L5kfns48HU6ch4F//NWv+Pbbbzmfj/zmV3/H99/9jmVZOB0OjMOA9Z6wucW3vbBJncMbR5xHptORaTiR48J0eiaqbftabFrTy//IgB8DGvRf2nJqxcIYq3Q+OQxyyS8C0hX1tXZF1GurkQjrgSuyeH0xeL8aarBU1Wt1dCoFNWIqq+BojFJJNSlhc14dgNb3bsRe1zmxIxfQQ6z8glouDsOwWgTPWo0Te+L5ojJ+1b5TGRSib5NZKeomrxUgrVmu76PUEv9arrgkQdf8n/q4qRPiFcdw7a9V0Cojzj5Z7aTlfpmVIVCZAc7ZC3KvgnC5ZOIiSH3big4JwBICXt1fLm1gZdVNKMZgi2gGWE0kLnfj6n5pv7nEKWkFgfKyKEoqt7qYAka1IbyMd87K4jF2rQxYazTotZoIiqOBtN9LxS+rkF5UF5UYa/VNWER1nEsRlpRUbNPaVvFiXejHee100xpD3wRiMhiSfNeNwxhhQ0lrmqwVW+9/USANNPCrSTcqFid/kftk1scqI8s5CcbEslIAAeuVjWUqNVorrjnJoZ0yoyLzKWbOw8wwzC+AH4AlOryXxPQ0CfCzxMTpPHA+j3KYTDNxkecLy9DVG7KCkaaKBFGqHRXoPMvFqFaBoyiFVyqgQudclswyJ0wuJCt7iXWZBhH5e+2BfEHzrV/U9an7DRr0Rqm05ixVTzQAzy/YhRX4sWQFVWuQbNexBYyAEzklfU4BZbJh1MHMGLL35OS1nSpTgjALrEuqG2TIzpM18fTJkZVd5LInO6eCo1ba6YxqZ9SKuUMSemMwrrZj6KexF4ebcnWvirb8NU2jwAk0TUtS5kJoGsKyYG1lhtXXe33Qp46dD6I9sNpDq4i9taIvVVmTZMgm18Hn0iYkVtzyOFoZlmB0WYQFN8+OaZpIyWmro9y32gJZSmYcR8ZpWhPIyoyrrDdrK/ipwM80i9VxFuHYZYmklDgeT5xOJwHZ9Dz03rPdbZnGSU6ppADfVVsR5tLSYrUFxTu/thd7F7Slza6fdT1XMdJ+a8xVuwzr8+Rm67fXPRbXcazfa0KxammpA5At9sXazFEYPpaytl7Il4yf0/l+zUyozMSLQOhFKFQKftcsUd2/DOpAJWy5ogUFY8B5u1LUrZNzx5rKiL2KgeCyt1Q6vC04ZM81Vze66helJIF5ta8VsDisouJ1r19bcEoti9T44sWwyW8oigTlv8x6xKAaUWXdT8z6R33o0kZYi2umfo6r58DFkdVcvc71z0oJkueue7f835zzpR1Piy4lJ3LS88rKe8VIrFN16tIyM0+j7CWhgTbJvS21UaWou83ld0sPYQHcCpg6K6LiUM94bT/St1iu11ldwldjVqPR6496FbL+5S4dOqtFQQF+BG5a2/Gu31O96vlRCz/IHF7MQs6WeZH43lqjMb4APOZqzV3OVJGxCN4rq4LV0KAWMIVZIl+5iCZldU9kkRioaEEka+t90n1ZthF1sSoXFyqwwrwq2q6uuVPVH60uXvWcAYN38nlXN1fVZWxywBjZYzabXtSZjKUJA5NbiOu9fX0QVtpHg8bCIo4rQ6egrOYVpZTVhUwMUYpq/TmcTxgnOkxmWUhFmELeO5qmdiPIQFtj2G137Hc72qZlu9txo2DPbrOV7hMvHQ1d1yrTq7nqaigaKwkrKyWzvjevDLCibVwpZdCiVf7/M/cnv5ZlWbcn9FvFLk5xKzNz9/AovurleyhBNIBU0qCD4A+gBT0EElK2kWiQ4i/IFhLdJ9EAiQZIIEEXIZCgQyNTCJS85L3Mr4jC3c3N7Fan2MWqaMy59j7X3ONFfC+uh3JHHL/nHjv3FHvttdacY445hu4TbZNEE6jqURmjIJ8jBMNZTRzkufLeBpG2kFZBI+YsGmNvNp2afPTaKub12sqLXEoFq1KKAmB0kt+94iCKpmDj2PQNrXfsdhuurq64urpif7Vns93Rb7ZkPLF4EZVIaZFOSVFMV4reiIFixYwnTJGUkdaqrsdQKNaJm6xdC6LijlfU+Tuq81Vd4yyukVir7xolLrRsNx3bTS/svu1GQDNvRYKiETFwa9yy10tLs8zFKRfmJC5dx9OJ58OB4TxIS9fhmeF85ng6cT4Porc2z4QYsBjc0iKvrb4G1W2M5BiW8yH6acBS+mNdW//A8WcFfuqO2PcbvvrqS+5udot4ryCmkXGYxa3l+cj9pwdC0Pqd2lc2Xc/d2y/Y7K5om5Z2s5EAdxzlAo6ROQm6WzVVSpFWkH3fMEzXZO84T5HjEAlT4HmYeTqNYld5ytiniYTl20+PfPj0KK5hSURffVmFSb1zvHvzjq++uAPgV7/4hVSQQ+DDx0/cPzwwTxPff/+e+/t7Ygw8Hw5i45jE6nGcJlHYV2FOSdI0eCpCt190PC7+uzCAXoS3v2fUX3ODNdWAKjLPA8K1kFqr7gDsd70syBicnXE24bynKSwgXa3kd11L04he0lYFRKVt7pmH+2vCHBhOJw7Pz1LtjFEo7lknRQ6y+PmGllXjYdF7cG45K5aEKeJskGxDatRxpVih1hXDXCJxFqAoMDBrRW9w1UUGASq05aXtnCy8XhbatmuIKfF8ODOM0wJahBAR155O3Yo0ES3CagkZ0aYyLf2mY3e1p+t6XGPXSOoVD+8d7968YbWUzFqBE2BMQBLpex2nmYM66YWYmdQJC+egMVAsOSdiloptTJm5SMDivYUkm1IAZmMlmXce46USYBtpB8NAHAJBe+HvH5/4eC/0x8PxKMr7KTGOkXEUS8youhYS0JUlSBnmyKRVlsN54jRWcV8R9rXWsdnt6PsN1jp8v8E1/uXqWcDYKvYkgRyyX+N8q+MYsD5inFgqS+tixPqCywnjM02LWrO+fsteBTOqboq1ItAc5llgnBq9alWrBicL40cT0AUsvtD1qXNIPnutZrO0GtkKxIMGHqL3JXJHRa8zDSKtVEdarxumr4wfnaOa/HvvF5cx69Upx8rjohVlF2tPYTi1i7Vpp25mF2dnCXoroNA4D14ta404FMYQud7fiK31NPHm9o5xGBmnkcfHB21FTQsz7tUPI8KT1hicX92nilkFVLFr/76zkhhUkeqsjIlpFNvuhbqGAFp9p9T1RvSzBICVcRFQJy9aAVK4mC72zpfjKIDsev0szMlcdF+UzzOMI6O+ToyBmBJN0/Dx40feffEFbeO5vdpztdtSiqHf7Li5fUvJGa9isU3Tcn3zhu3uGtc29HdXtPstxUDKhefnIzFlzvPMFKNoI203+LaVa786PxUNjQQVURFceM2NsSBsMnsBqAiY0lG1RhYWobZ9lZKJ88y06ckpsu1arvcbGu/Yb3oaI7osEttZ0aswwpyV4oJUPFNOjFPkrGtc69QMwdQGIy2cmKIJhyRNbddS54jT6nfXb9SBRBXdkuzuUl0VIDSkmZAKqRROITKou9FpODNO0/J5MdreZCyb7Y6u77m+ueX27k7awRt1jaMsQsqqJoUpdpH9Wf+jhZAMVnX4XvswqLmYKaumtBGAq+osVSDn0hVHABItdLG2nav9xAIGXeoUXsgg1WfIa6nUWrRm2dMcGVsiJhnCNDJFaevcbHs22w0GmMeRME3EEPj08SP3Hz9irOXtz37BnZGEMjtPtF7mQpgwIShoLK6Jxjnaqx3NdkMxnt5vaDY9IWVKnCghkik4xJ2tIHFLRl9yASIzuYiYsBRyExRlM2kMJuvaT4H+GDyGznn23ZbW+yWWru3zY5gX4OrzlkGJaGs8JN8rJvn743ni/f0TbeMZY2YIka5tub664s3drexf1rBpO7JvuN5uubveMU2NrJVTBMzSdlsT9H7TUUDase5uiSHy8PjI09MjAFf7HTttKbEVrCuiyZZzplhHyjAHieFCmIkxS0KsIGoICWceGYdBmEnTTIxBigSuoVGgYLvp2Wx6Uk44bwipYbPZsru6IeXCw9MzOanUgjnzxDMp/ASMH+95++6thC46DilFQpjIKYoJRN9TcmG/33N9c0ff9wKM5jdS5CqyV9S9qu5Jfdex220VRGkWU4X9bs/NjTgz9V3PdruR1mstxBiQ9XYedY8upBxVb6kWtlkMFID1OsqZ/bYnzFdLXF27DiQf0tYgdXsqORPDRI5BWvcIXG8a5hC4vtrxF8fTC3DcGvCNtgJaS9tKnNS2Lbc3N2y2G5x1jOeBoKyip6cnxnGk7Xqur2/Z7a8lrn2lo21afv7LX3F9teGXX73hatvz5u0b/uqf/DXXNzf4tqfdXpNtyxwS5+FIjJnT+cjj4wNhnonng4BZmx7nDHE6Y6LhcDjz8eGJEBL9zS276Qt829Lsr2hv77BNS3GGkAKpRM7nI88P98xzoDGZr9/diRRA59luGhrneHO95+3NXtq4rq+4vrrCe8du07HthSFd408QJuSsWkuH04nT+cwcAh/vH3h8PjBNE9+9f8/9pwfmeeLT/SeRnomR0+lAAIr1uM2ertsChlxkLc85E6ZR2N7VvWsaNV4LlM82wKIujH/M8ecFfpCtu99s2H71FSbPxCg94DElciwMU2CeZtrnIw/3DzJIbUe32eK8o2l7bt++I4ZqcynVszJOKtQ0E7O4ReVSCCEwa7/kzX4rtne5cJ4ShzEyj5GPj0c+PDwRcqE8TeTNiYTh4XDm/jAo88PjnDg8xSiq2qU1vHvzln/2b/2N0Nj1Aggh8v3HD3y6l6Tht7/5B7777jvGceCbb9/z8dMn5jmQy8NiBQ9i07lOZEGm5xiodp0rMbVG9ubiZ71v9az8NNKHNTASNoZQ/IWVIwGEs4Zp3uO89EZLcOTwqqFkS8EbA17FK704EVgrdofv3r0j58zz0xM3V1fM88zjwwPOe8I0cTqrTae26cWizgIIHVQqpFYQXwzeOnV0AV8iHg0+vOjYZBCgUMW3TtPMea6gQmKOGtwoQFNgYXoYa2n7Bt+Ki9jVjehXxJR4fj4xDBMpF8IsiY9znu1mR6uC4VGtFzFW7B+NgDz9puPqaofzDc5XPZPXPbzzvLu7ozqfWatMpRhER2IOnM9nYowczwM5TExq5z6lQImRQitNxUApSVltmZANc1LCureYKMnsXGDCkawDL6CItRbXOkG4DZzGicM4MofIr3/3LX//698xTRNPT8+6YCZCyMwKzsWkSRSFlKRykUthiokQE5kiAnpL0qU93k3D7d1b8rW4Dm2aDtcpJWeh8AuQaZbIIyol2GEbqdKX7LB+ApcopjCFzHkUIMilhPGFPlv63lOa1wd+QGZ7dS+wxgpIHQKqKreAVlYTqKKMnzp3FxbiZ5fZooVSGTzy18JUXADoFSSr+1AsmagsA18BKWME+FEWkXXCtjL1tRX4cc1L4Mco8NN06zrR9xtadVbp+41YRzsn7mWdiLc7v4pWWmWHYkXTyXkBLLebPSAtKdMwSF9+CJyOB7VJPfHtt99wOIht6vPhiWn6w1aZ//gBFHDNWbt8bsHqVAMOFl0jcWTScdCqXYyR8/nM8+PTolE0q52p+KHInlBZRBUYF+08nfdpdZxKqm9FBR3qf3Xca+GjrmExxQvmbGIRntTrKimbsWlb7u8f+PKre7bbDX/9F3/BpuspWPrtjpu7N5ALrfV4Iy41b999xfX1LbbxuF2P61umMPPx8ZHD+UhMkdM4MoVA23XcNg7XSpVaWnX08+s8NhhMWR3tXuuoGjcgrMPKAPAqklsrj/rkxekkh0Dcbig50zee3aZVW3eLV+CHgsyRYsnVuh5IJarWRmKYI6dRdCTYNHROWiotBaumBDkHYgoYU8RJUcF26xxNJ7GNtDd7CoZUCjkVKUykzBQiMWbO48Q4SfHlMM+co7C8zuPAOE9i5GAdxjic92z2V/QbcRu8vr7m9vaWtpF2FZQxYnUeGANku7RxCSsWKBe852zIqfwkDnvoZxExa4mjrAFvavdqWR2A6nOMgD6Ns4u+ltOYo4LvhpfMH/muGruZBdISVUGHWKS7Sp/JuJIE+CmGeThyOByBAvGa1ohb1nw8MpyOzNPMp29+wze//Z2IOTvDbrfB+4ZoLMGIQLNNM0Z1SMZpYJonnPfs8x2UK2zT0rcdzdYzh0QYMoFZgB8tsGSDgEBLci77rSkri1DmXqKQLvS28ko24mJsX+EwIMCP9Vx1G/q2E+fUIvIPGWjGYbG4L3kVRF1KqAXVrZG4ISRZ+/IwMoaEs5bn88jj85G2bfjFz35G23WiEdO39Ao+X+223F3tmLqWEBJhFuBns9mw2UrryHa/ZbcXUOf29oY5ZUKIfPfddzJHS2G/37LdbjBGOhiCrrlhjuQQKdYRs+gc5izORuMYVHDdY4xjcoEUZo7HqiclBh6+abi6atn0Ymaz3YpGYMoJ7y0xCajebXf4puH7j/c8PZ0kh4kJC6RX1i8EAU/evn0njCst5M/TyCkHQjbacSHFi93uipubO2nBcjIXXwiig7gcztL2vtttubm5EU2j3Y7r6xvR9Gka2k6KI41q4ck5F6aXsFmPnIezADMpModR45Itfb9ZYrGua1YRbo2fpDVXrsNJgR9jDZt+S9f15JIZh4lpFr3B58d7jocDKQW2DYxXG3LOfP3VF8s5CSGSYlIAv3bQrGCSs7KXeudJMTIMZ2KYGcaBD58+cjqduL17y5s3X3B9c/eq0hJt2/DLX/6SL9/d8l/6p7/i3d01t3d3/OKv/pL91TWnKfDpeWYMiXk8czyK1uLz8xPfv/+WcRzYOLjysjd5EnEeyCVxeLjn+99+xzjN7N++I5RE0/fsnaV79w7bNRQrwI9JheF05PBwTwiBpm342btbnLO8vbvi3Zsr2sZzt99ye73FWyfOXK3oqjVOhZsxFGsp6jYbg2juzSHy6enI/cMj52Hg7//h7/ndN98wDme+/e1v+fjhPSkmHdcZrMW1PbZppJ2rbTDWk1NiHgbiNJHCxOn5E/NwWpyHc6pEmOU/XAbupfxxa+mfFfjJuTBOM45AUxKOH6Eqa+JVCgvAYq1MFJORiq+XIKVCwUXbY+rivbSJlRocB9kY55lxHMnJq5Vzkv7LlAm5EFImhUA0Iwkj9KswC/sVgzFerbnlVtsfRO9GKqIFsYXcDfuF3n59fc0wnGm7luPpzDTPTFpdrra4Ia7Bd2X1XrZvXAztekJLBX30cfPDC+EnOarW0EU7nlSM86I0n3KWljntnc3aYiKtMco00KrK0hbmVneBtm3pOhGz6/qevhcWUUwilm2MhVQoSp1dSA1aJc+5UAxYsjrE1MLh5QZvxE0Og9f9wRuDR/rZHRLU1GuvaMIlnzsrWGXJWfRfomoaRO3prQtzbfkCliRIzkd1HALjlIK87lPysybrP8Uw1hY83ZgMgBM7du/zUuGvLhV1XrWtIN9N09C0okPilG1irKSarkj11ml71wt3qVLd+ZRVEKHMEuCfx4njaWAKgcPhxOFwYpwmjsczR2XKhVCIISszKa8JpgI/pRTmJMBPQVyCSzHL+JfCom1yyWpYT778NKVeKUXxjSVSXQNWYxZ3j+q0UgdufT/VNPgpkNjlw5ilrFyDjYK2jC7JlSbwNeGwEpybC2cIymevqT+Kvr60ItYvs4JFl0BBZZBRxMUno3R1DEJENzqnRKC+GEN1S3M5YbO0fZlY3TGqdW5caPs5l/W+2nZapOXMVuDnom3KqGtKbjIuVfBJWZZKU69tAd570R3R5LRpGlJKF05Frz98S8tIDVap57XoenAxFrkmkPV6W4euAi1VxFryLr1aTdULW1svgYuWapZ1utR1p6ygT1GR1qiJ/gr8VOH61WUkXQCKl23b4zhwPg8AjCp0GeYg7aTOgQVnGwHsm2ZhhmHFHaOkLIzCEJimSdZcdbbKWZijtehh11Nz4QrD5Z2f7LhsdZbzvWrQLYBanQPei6j1sk7quc9SsV7bfNb2rqRAW1CW1RyispwzbRThVad7lbBci1bCpfDhvNWdr65Xci2Is4mM5zRnaV0NiWmOCvwkpiAGGikLGDQrA3dWsB2jAKaXWK62YVSDhGrOIGCUfLdLo4ulhF3P5UWYU1v0jDGL4cPrH+v7G8yypAuYuLZ4rY9fhF68/L0CRC/+7sWrX/zdcluvHWkhWeURoO6fAhyWLK1dGENJkRylHSDOM2Easd4TZ9GwAGGMZZMxCOhoUhC2bphFO6pkkSaIQcB4Mk6BLXF1k/lVjLiZmlJWsfki8ZJeqYC6OKIKekvBQO6v69pFIeGVjtouaBWEo4DTa6vGKZetmZeRNCCtfvV8L/9RvcHqHhRE/7Pq+tS10lonMRJG24J6ZY0kvJUcoeta2qZZRIS9d2pSI05q3ke2257tpqeUwqbv2GxEBsE6iw0av2TR66ttsc55jCl41+B9UQZpBbqFha/brlqkW3UBXfWQSs5qhiA5SUoi8G5gYbZYK66K1vxUc1DGRdqosn7uTE7S7ltytWFXx1h1uKxOdbWYaYx9AYSg36/vOjZdr61QIpwtr1FjWatxraxVUZ24SmHJd3LO2BRJ0VFczUMvwrFlcdD7mtNZK4Ypda03+tNaYTo6J6BWyVoMUtC/8Z6kWlBG4++UMtbMBKPtho4lDjWsTOdFJiNLUbC2LAbNcVOKL+KD1zqsc+yvta1rv2e/37PdbulaYZf5WLA2LOetagtKgVd1p7AU71WCYW17FZ27SEraClYLmLXY56qzrawHzhkabzE4uq6h3/Q479htenYbYdr2fUfXNkscWFvvpfAm60RKhVREOHwYJ4ZRALzD4cjz8zPDMPD8/Mzh+ZlxHDidTwzDQBUjT+nSLZklJ6rfKV+2dGmrG8uar0xJ8xkhoNRR++NyxT8r8DMMI//v//j/S2szOx9pbQbjwIobDMXS9Xu6ztC1W1IsTEOgFIdtAqJ3a+g2PW0WIbuoIonWO9EJyYYcEuM0LuKKw3iGUvgdieH8jHOW4fDI8HQvCGhIzL4jOqEuH86PpFw4nCeOZ6Eubzc7hIiViPNImEaCt1JhTRHr5EJxihq/e/uG7W5LCIHbmyv+4le/Yppn3n//Pff3D4zjyG9/9zs+fPjINE98/PiJp+cDSXVIQhALe6/VyUIhUZPIGiixXjQoWGRVFLpuaq8+ipJKZyIxzspaWd1L2sZzOJ1Jurhaa2lAeoPtjM1WepRNwSZLVCHHuqE41f5pu46b21tSSmy2W66vb4gx8vT0xP29oLan05nTQWzvsrHMgMki7m0GcZRw1uKNTP7OZDpTRE/Bio05RgS3vfMCeDSGjXHkAqHJhCTn+hwzY+2lzolYEtYr42DTi3VjgvN5EkHL88h5HKUFQkU4oxPHh6jtIkk3bufVurlpaVpPSoFpHkgl4Rr3k9ChC8J0sjmv+j4UjJZRrRURs0IRtkXXqqtWFtp3KdoC5DHGEmJtDSsC3BoR4+u8p1egyGawRQKyrMwhCozHwBBnQkp89+mB3334yDjPvP/+I99+/0FYe9PIPI0KjBpqH4BQzBVoqe1qIPpCykayF99Z9gxJfFTSB2ABHsGovtd6pkyRqq0YeV4gHUVo+G3nMLRgYXNuSWSKycoMA+sKmGoX/tMdBbTCLv3oNTl6qTshT6xit7XiWRP9H+sqLFSLdgUGapKm/pgFVtvoUgjK+CkU1cqQdciZKkrKApyvul1a4Y8BlFRTR7MGbdbJGtG07dIe3DRicyrU5nrfLJu+CCWrnogG5M57cdBqO3XjsGKbbe2afCLAktDrZR05PD9RfgL3Eoxo/NRWr8sET87/mlzlkhWELrimoe1avBdHuhgCoW0oz4VDODDPM9MYGM6jBoh2aam7BJhegBKCQgMKUqe8jFHWVomSy8X4KVCkIGA9d0lFh5ekXoHAx/snwpzo+w5S5vB8hJyZT0eyUQ2DrqdpWoxzDCkTzgO5ZIb7yJxE9PTh6YHj+SRtgK0XxpSzmBLxJi9sjFXY1UjLPEBZWXCvNoQX4M7KrNJkakk8tLChulsoKGaSW34P80QCoilEUxZXyloxnqaZYZTY5vH5wIf7R+YQGM4DR9VUut5LBdVbR4ozOc6SlJAwJWLVqeeGPdZa5lkEUHPOnIcT51FafE9D4DwGYso8Pp04HAcRsA+JKYob6hgTk471HEVM1XvL7XbDdr+nbVvu7m7ZX13RNA1d4ylxJpXEOBRikMlexYL1ZMpRqqbHmsgbNOb1luJ+mqSzqDikWfSiLkAZ89n9mtTJX+oPWVNX/Z91Dbb6+4vw/DPMvQLtvmnxux0mZ9HE816LjauWTIqJNKuT5Tgyn0Wsfj6fmM8njHMcn554+PRJgLemwau4c5lHShDn2Vkr0c57ObcU2n7Dbn9L7wquwLaB1CiRtBhhQBdDzJmUIebCGGBOhZgLES1slSz21EtLcQUiWYsirzh+Ne6rSXN1g/RGuI8+iAOlc5G1eFpe6H5lY4g6Tku7EICxGh8YQhIh3qgxkTEO7xpub+741dc/E22Y/Z7ddsscgjr7RC2AsiTlbdeIuY2VMXdNQ86Zbe+4u94ChU3fitA7Uliek4jFf/z0xP3DAe88b+7ecnN9J4VWZcQZRNvLWdFa7FtL68Udq3XymPMS67VtS0qJ+4dHNSOpTJuEb1uurq5p+56HpwPzFDTZNEubOcBrEn+cc9xcX5PSKtAc45Z+s1mAigrm9P2GpttgNRYwtXXaXVpsR7F5z4Vtv2Hbb2gbT+cbKRqVwjiMSxdG27X0nRhWjOPIOA7EmFSz5UTJIk9hkPegoNeV7J/VZXPZa8rKqM05MwwD0yjr36m2qRdpZ8tJdULDiDFZxqtrsaphmWIFSKI6q0lbZVJQT7RTo7jMwbL3xBQYzseFwXQ6H1WKIgiY1LavqmW42+34d//r/y7Xu55ffHHF1bbDNQ0hRI6HI3PMNCSMLUxGRJHnbBgTHAMMsxSstp0YgbRkPAYHNNbQNpacHW3f0m62NNsdm+2e3W5P2/fsWs911+AM7L9+x9c3wq5t245G89Ou9XStxI1tI1SAhFjOZxUlC1FK/illno8nDqcTIQQ+fv+B+0/iDvb+u2/5+PED0zTz8dMnHp4eFYOYRbfIWdqmyqBITlyytg4eT6rdkwjjQJxnco6EaVj0iASd/pGxudg//tiR+/MCP+PIf/wv/hM23nC3gd6Db3s2uxtc07Lptlztrmh9S+s9KcCUAxiH7xK5GJyKKxljFlHXlKLYtzmpkuSSmeZRNIPGUVTUc+J0eub9+2+k2pEUSaNgmg7b9uQCx/ORj09HQkwMQ1B7aNm0W++wJuukGQmNW+zwcs5YZ+l0ce76jhsNjr/+2VeijzIHPt3f8/T0xOl85t3f/i2/++YbTsej9F/nvLh9pCRifE6ZBEWT8iXgrugmtTqrhwZLP6gUv+qRKCUSkwhSpZiYJgF+Gu8XUc+cZfHECPuDIJWWpEmhtQr8FAF+GtfQNVJFaFuhnQJcXyDs9/f39Ls90zTx6dM9cwZCoMQsDI9SSPNMHGcoRapVCPCzsXKzBjon9ojOWnzv6RRR7owl+0aq2brhp1J4niLnkEglM6TInIQxsO029NutuMvMyuKKkfOgwM9F0uRUqDamtAR+pRRaK9d133d470g5Mk0juWQJCH6CALcUCdCkHUIo2LbqFChiLnoghj5v2F7tRCDPWUlOazuKQiGn05mHB2k1ca7RRFZ0V7ZtjzWWeQxMZ3W5UTpzTpmH05GPhwPjHPjb337Dv/r1bziPE49Pzzw8PsnmVZIkLoAzHmelMlFbCqgV2SpEqYEOrAG6MBqULeKqOLegIEYFhAvSJ7uccRU4FXeXlxVL9LG29zhvwEK/awX0KJGg1VRhc9Wg96c5KuBlvWOz37G/uhLtItW/Yalc10qoqX+4JOWgCdjlRYKCNNUNrKxWyiVLy4oAP2mxyQ0lESpIkEQPBgSUNfo6MURCDBTEejfVtryUiOpaFbMwS+rnRL6FCGDaKka7On+52gajIN6ScGsl0FgrbWGqV7Pd7mm7bgnQ207s07uuw6u4/Ha7UWAlSwKRX38Mq7bR0gL3GWhfgZ+i5xAjY+abQsndct7F8SlK8BqjMOUOJx7unzUIraAPy/UAUlWtLD7rPM61YFDxx8jSupUutKDWi2T5dWW4sDhOyVO0mpUKT49PHA4nmrZhngIPD880zrHvW7ZdC87huh7fbwAYciYNg1ihPj1xOJ0Jceb58MQwnmnbhpu7K7bbnrZxmBxFD8UYvBMNllKMgsVasY+Jai39eoOoa46zLwCgOv9esHdzFVyXPd04BX6StKqTE5bMXNk5zi2A4DBOnAZxZHl4OvL9x3umaeY8DBxOkoyMcyJm+SxhHJnHM6VknMk4K3brxTi6bou1ME2JeRaW6sf7Z9FNiImn08jzeSSmzFFBICl8iONiKdICHbMmyEn2x75z3DYbNle39F3L7Zu33N5cL0L/JQVyjow5Up3yLs+RU3aeXJ4K9xRpFa8givM/EdOgAuJU1oe2fpWLVq16vVdAZ62zyUt8zljS1jyp8GubjcZtFTCtb35p+e59Q7vdYUrGYXBGWA9W975SylL8pBQpRo5n5nFiHs7i6mUdp+cnnh7uxZSk62m01TyNJ9I4UIq8RopBHBhV6y7HBGmmc6Khv/WQG0lY0oWuT0zSFhiTjpN+Pytqxgr86E9NeSrzu+qvfM7y+pOOhS0l57vqRxVryYZFQNk5t7R/Lp9bl7OkCV8pEv8txQ9jqZzCOWWYZ0IWW25pbWy4vrrhFz//JX0nzlC7XQV+glhw58I0T5oQFowD42QObHc7trsdULje93z55hoodI0I5II6jqUkshXFMo4R5xpub+949/Znap7R0DjRAhvHgWmaJJZrLa13n4FAVsFzxzAMPDw88vD4qN9d2Ltt2zEMM/1mw+E0ME9zPdlUB1B4ZeDHOq6vKvAjDIuUE7vdXhjDxmi7uK63XpyhjWoS1pbvtm1EbNl5GisM6F3Xs+t72ee9l2sgF6Zx5PnwLAXnTU/QAprkkQL8nM4Dh+MAyJrU+GbZERu9tnIR1goIE7bU2CjFReLhfDoxnM/yXXXfqOuL1Rwu5bgCP21DQ6uvKTnFNM8cj8NF8UXnVYqchxNzmFnmHKJDN45H1YCqjsNiQFMLaa/ZBr3dbfmv/jv/NToP+xZaB3MInM8TwzABhsYYGgdHKy2jAvwYzsFwmsU1+ap4MREwCYehwdBYQ+MNOWsxcLOl3ezotzt22z3dpmffWK47J5bsNxu2/q3KW7T4pgMMMSZmZezlsjJeRQZfqsNTYm3B/PTI+48fGYeB3/zd3/Ltb37NOAx8+81v+fD+OznH08Q4zVjn6HZXtBvR82r7LW3bUZ1lwxzIITEcnhlPR0rWVrYYFpLHvzZOKZd3fshc/H3Hn7fVq2TGcQZfaHMmOmj7Aq7D54KzjbBWlC3AsoWYi8rA2l4hSagF4/Fa/QRoQ6BtW4yxolbunUhdaCJREH2YWsW2QhGQzuOyun2BCpgacVtpGun5bBuvLQD+QjPhsyqqBgnV9cBZSVa2mw0pRow1XF9dcbq5xjvH9fU1p9OJaZpVTLpWWONSZa4Vr/r6UEHA8vv3zdeOj8zq6rVUu2oOqRNHEoZAbJqF8l/bvWyxy/MoLO1gANlW54K1Eg01obBLm1Hfi45H1/eibG8NyUZhRKVCMsgYF2EcJKRVR4zKRTQ1GSMBaxEtFp8TdaNfKLtS6hdWjhVb24J90bcrP90CxF22ui2tDhc/k1oi1/MFopdUaZgpReYwL9awly5wr3mIkGvAkJXlU/DOYlVfpToOWGvFlt1I8GudwzWywcq0kXPmmwbfCI151ZtREV1lagiAiVbRsjChcmZO4t4l7QqJOWZizFJRNFZo5Wa95o1RoW0FfjAipipWn+i1Uy6qxSvwY4q07bmLhAyzUmFRFD5rAmCyaEFRnY9yrVZWhoPKker7OydJSVaB2uU6Mhrkv/J8vKSjC82VJRCyCtJZFSWsDjq2Aj96UsoFmPFjwE9tL6lzI1X9jUtb3Ar8IOfMqPObBD3CKDI5Q8rL5ywKYNTMycriLxoepVDS+jlKHQ9zuQrWfxOh91TAZBmLnC8o3jmTrLBdhGHniE6u4ZSTULydCJSLaJ8mVKqhk6uA5sXa8NrHj+0hn8ErFwwD+delJWQZbycuchdJdGEVYxahWPsCqDEYsrsA8mwdd7NU5Ot+uDqcFdbg8OLaMcsl81lAovfqWkjCRru0XifvaVWXoYpwWieilyEJuDCHwDhWYD2oW2YUEOPic8mZqT958XMpmJkXH+vVjs8D5nq9XF4zpRRQht3nuloVPGFplRSGoTFGr2tpoQtB2oinWVpN6m0OovsxzUFa6p0lzDPzJIwf78Dbgs8qyq2GA7O2coUYGefIOAXmKInlOEei6vtMSVg+MdfE37zQT8u6bkaZ5pqoSUuvsHKlFTNr3OBKXhhoFZitrLMawDrWi75oj4pZL+DXH8Q6lvVnXZN4OR/rZbTM2YtVyVyiQ6Abz4urUMZ/YX4t/3nhemXqnC7K3ERAqLq/1mKS2MLn5RMYCTwlOS7CjE9BtGV8q66hlKUFXvQRRRdxYUou30tey5SyiFjbgrqJCStTWlHkeq46SFZQ1vV6rnunilVXMJjP5sBrHEbPHaYydsoCUtW3Whh4Kj+wxNX134u6eNbX0za/9ZDPvjoiLq+srY2tFC/Vwc4lMUBJ6aKVRZNNU4y8n9MW2VKjJB3Msr6fXD1G25CyOh42ON3P6vf3TtitOYmbcU5JEl5thXKWpS1KYhOzuBLN6jJUW3YlXje000QxVlps1fCm5lCvCRYs42gkByhF24BN0TEFm4s6jLoFOK7C6TU+d7aykaS9VABcZc05t8SGUNYc5SJuTykvgv1LPlakcFBZQWEOhFnYT0kLz/U1ajvmZfyQ9Lwlda2qrdGlrBpwzhrt0C8XeSAL4IjmGTlVxo/Imazt2EVFsGfCPMq1pMX2lKJKjMyLdlJSiYo5TMzz+CIe/JPHEIPzDdYVrMvyM2nuZC7mIWZhXcvclbyjmOqYm4imkMjLuHnnJBd0nn7T03Y9bdfRti1t42i9o/Wqz2Oh8WYVv3Z+bd8yWYpDtTBU53JICkzDMIuO3hwCT8/PPD0+MdaWruOBaRyFwTWLoU9MUsi8xPXl9fOa72kbV23pyklIH+LMmOsKUE/ky+NPjEP/rMBPSpnn05lDHPk4PkGaxM3jzRe03Ya3b97Rdzd4vxGWRnVscY1YaOsGiFLWm7YV5fSigrjX+8VK9unpIOJYh2ceVNBpHE6czgdh+6S8VKuTccSotqPF0DiHxdL6DrMTwObt2ze8e/uWrmv5+qt3fP3VF2y3Pe/evWGz3Swg0ErPX6s5lQYuej9XbDYdcwhsNj2/+tUvOJ8Hfv7zr/n++w8cj0f+9m//ju/evxdWy/0Dx9NJAC/cgv+5JdiSQDBp0vrD4ON1F2RrDJu+x1lHilJ9staSogTfKUaenp84nU6EMNP3LSVnmmp/dwHm1N5TaiWsgMWSTFoSGQMv6PPCZLCEGOm3PZtdRwiB8+HIUdXSz8+RNBfRFikF7ThgpiaYMOWCjbLY+zDjBwE8quWhNZa262naToLuDCZJIOVtQyni5NU2QtEsURaF0+lE1BbDoE4HddGv1pP18Rpg5QLm+ZlxDFjneTqccb7l6vqapu3UovJ1jznM/OZ3v9NKpCTLu+2Gt2/u2PSNnHsv1FIBS2SuGGtFd6MmkBpsbLL0voqW0RoMW2NJCOg758SYg2pDzIzTREyZp3HieQ5MIZFcQ7+/xnYR0+/orm6lldOWC5ce7V+Ws7iAwdVpTa6vC6S8JlLUZEuEuZuuxzcd1jpiCAynoybKl8BPwmQJXJOy+yTvXoGTGhwVEk1n2BYvCVBsSLngHTj30zB+Xga4WcfIYJy4D3TbrYo71rm3Bkf1eKnv8yOfsZQXm1dlGgpolBcArCiVP5VCJC/JTa5MkbQCPynGRY/phRDwpU6M0p0XhuMlQFXB5ouPXAGKy8qXBHWRqFpgYZYqk7GW0+mgLWSqQaLCz32/WdzB6jc/nU5M4ygiiq98VLr8C/CHCqqbBQQoVI0RQS4qGJo1ce7aFu8cm37DdiNOP9MoAEBckrkqOlvvG60Or4wfq4KZVc8Cq+uXnluzRsxI4FT3PLMOjLm4f1GHkvGSdeJ0OpOTsO+Gk7QBWWOXFrxCbSkRAe5BnTtzSYQozMGSMxZp43AVPMy6TthV42pJrH9C4E70INSCWXUHk1o9X763JPA6ijGBBnopROZxpKQogaqryachIdfd4Tzy6fHANM98uH/k+0+PTPPMOM2cB2GYjiFzHGbZl8NMmqWdoG8dfSe6BbgzMcu6MA4zwyjJ3P3zgftn2cOOU+A4SaV9jIUpmQXYqYyflNUsEBQwN0RT+PQ8EMojXdswzomHpwPeWvrW03qrrmLNImbuG9lzqs6WUeZpoy0bS7FFk8H6dz/JWLK2p16O1/JuiuPUOVSBV1fXWWqcyiJyrDNWhK/RFi1l09U4zRgwjYNW5oF3LZ03ItBdRLOplMLNzS2+7Skl0zixWy85E+eReepltnknrbJZBEWH05Gm60TIdrfFALn15NDp9BQw3jlHt9/TbqQybTGEcaRkaI3BtO1inhCzaK+URpK0OWamNCu4EUnDifk8KfCTKCUps9asjmb1LL/mvDQG2zZkZznHQMi5etGLU2LOdI2sdyUlcoiL46VREWejLorCSC2IvIGC19ozKuxBEaqOCoKUAt41bLc7tn3Pw+MT0ywGNu8/fOLb774nhMAUZqYgrJmmb2n7Fucd+6uR/SCPT+cj0/kIudDYKjBu6DZbmm5DSoa+2/HmTqooJRWe7h+kOPq2ZduJo6DMu1bXKGHdWQPei4B4yuIwHKLEr/ePz9w/Pr+wp3bO83gU8e9pjjw8nximmfMwUYrBVTfN8fWGEWqLq6NBbc+1sFGBmqpns6wbRtp1tpsO75RxvumlsKNgS1HAVAxqMiZZjMbkIQR9TykEDaPo0eXaQ2VgGAfuP92TUmQ4nTgdj+qgZRaGsJgsBN168sKYrnqf0up1ZhjkhDm7spSqHbuwQkZpu8t5MQ8Sd9ppsWJ/eHjgeDxSiujDVLv2cTqLA1opuicVNVOalMkrrlS5FHzzgd/89j9lnB6Z5uHVxi/mzMfjwLYBT8Goce5+02I26pKl6+aMZfscmIqj7Qdc0+G8sJGeHp45kWk6g9lB6w1v796w/+JLsrU0t1/Sf/FLXNdz9+aWL2/3tG1D31i2rRXTnyLAUSwwj5FJwbuUsoJ2IK7Gki+M48g0TsQY+Pjpno8P98zTxHfffcv3798TwszT4wPHZ2GITSFgu60WLCy9xkPGOEqxxJgJ05MaqyTmaSCGmZJE2DqFeQHv/k3TdrP8h39tuvFnFnfOHM8D0+mZ44ffEs4Htvtr3hwEAErJ8rMv/4LtFjIO66Xf1Xonlf+KeFqxzfON0PiqMK3VgP90Gnh+PhBD5P7+E13XMk0Tj0/3hKwTMmVMlAVcELpa1QZvPc4UunZD34ro11dffsmXX35B33f84udf8fOvv6TvW96+fcNm0y9Ux0XrYEk61yDBeUfX7hcQ/4sv3qmt38TPf/Fz7u/vuX94UCqq5Xg6MYyjKMgD1SIVVDMHpdTnon3Dl8H2Z5XxVzpEvV5El0NICz0x+DqJEofng3xxMjfXVwvAU8Gby9eST6pIb5G+SqvaCA4FiKxdqO57bb/IObPd9Wz3Avw8fPqEs7Igpnng7DMgbINUWRnFUbKIYmUVRVyLcWb5bl0rLVdXmw1N34mTU0iYELFFWsdAhPN8q+KvRdr0TmfRN5q1Ig1r5bei/PW7O62uiUCxxboJ6SEXxtvbd1/w9t2X7K+uX30c5znw22++1fYuOc93d7fsr2/ojAXrMTr3KKv2j1GtFGqCWoEHY8G6tdqhLA9BtlUbqWSmIrbv5zhxnIQ6+zzNHOfIHDPZNnS7a1zKtPvCXpNNsc2VOSUkHGUAKlhbg1brrAbZqyCqVFyEqaP8QZaarc6XGINW4FYLbVMKJq3AjwjmSiJX3aYk8ZVzWkym7QzWVuDHkZPH2Iy1PwHwcwEU1DasUooGuRbXNHS96qVYESs0y2aEnqf1Y13UGT97m5WF8qIIcQEAwQXQQtXn0ap2rWynrOyfQo5Rgfe1QkbdhBX4qeO23s/L8yvAs1TocrkQNM5LlTMXSCHK7xr4pFpBu6zG6FrpvGfT91pF9XS9tIJN08Q0TqurwiseRq9duEg2K1BnKjtAzu/luF0CRd55aFtyzvR9x2bTA3A6jRJQ2rjYzQKLnpoxBm8bGqfaCE7swjFGdIFsgizgTjZZ97ML0LBiQBcsh1Ifty+1sqBycUSQdDiPzJPoIBy9Ff0FYGX8QsaSdcOs7DKpBBesRcW8VdNDQf3K6uOFmcCrD9sPjsW5Ja/XSNEJtjIKwRm7ON2RszDhctb2vJEcA613mFY0j1IRBkIBTsPI/fOBYZz4+PjMx4dnpnkWRtQke/BpnHk8DhJnpERJEWNgv+m52m1wLhHzmWGSYRPa/UiMmafTmafzmZgz55gZtCA2YwhaFQ0XwE/t4JG5Lv8eS+HheWCcE413nIeJXd/ReMvVtmOjgE+/Uac+Z5eWS6MJnLQbGzrvF9Frp2CQc47WtD8J4cdc3JbHyirqLBd2LS6YZU5JAcwtGj6L8HSpcUZZ1l6ANAdCdd4zUuE2RjTQTCPAl3diMexMwRXRmAPwbcd2f4200gaKmhrM44ap6+U1nSMjYxfmifEszjDeGPbbrSRCXUtJMv+cl0KWsRbXddi2FSALiGNtyRAdtZTFIW8qAqiYxoOzuDlxHgOzKZgcSePAfDzpQisXirEG38k+LaL+9Zy84gS1AvyUAmOamSK6/1XzkKxi454cI7EomyxnirJ7jcYbss7qvlOLiFoEK1nYiJVhUY1qvG/Y9ju2mw3WNcwhMYyBDx/v+c/+7h8Yp4k5BuYo83K737K92uG852qM7GfRKJtPR+bzUYCKnHAl4Z3n9u4d1zcdBUPX7ri92ZBTYjgOPB+e6LuOL2/fsG1FZqF1jpi65QKv88ZZYYGWPHMexcXydDrx+HwQy3bNjVJGY7wjGENMmXFWU5wQxMTD/zSppDVGpA6s6CrlnDE26rxZv0tdHwyGrnHs+hbfeDa9gJ3S9SHsJ2GVCqtJilLV+EMlNYzFOYnXp3kCyjK/jYFpHHlQndHz5sTx2NN1LdvdhjdvbvHeM2u8sIL9ZgV+snz+cRgZ1SXUacu6tdJ67fXcn4aZYRhIOTEvTJ3I+XwSuZEw8/z0yPl8YrH5zomUI/N0JqaZnKuDsIj+D0MixKxrjujrGmv43Td/y2n4wPyqwE/h/jQSOsPeC+DQes++72icrO1NIzqLpwib7cA5G9q+wzct1kfCMPF8OGBi4Oa6xXTihre/vWPz9de4bgO7W7j5AuNb7q46vrjZ0nhH0xi6RorU45w4zxL/PY8zT6eRlGoBcxWgNwhT8eHhkcf7e8Zp5Ne//nt+8+t/YBoH3n/3Oz6+/+7CqKdgrKPbXdNtdyKx0PQ431JKZh4nEdhPgfPzM9P5SM6RNI+kOCk5pOYr5uXm8484/jH74Z/Zzt0sAV3KRZy0olhHGzsxjBPnYWBzPkPJdK0npYRLnsZkqcwWj3FSXSuIwKxTWqZQhWUStY3YsHWdWBNa55jDxDipba9qwuQMMen9euKRQLPvNvTdlsZ7drstu91G1OA3vah/q7Dmi0D48wjToK4UaxXXastLtWuVFqaGTu0g9/s919fXWGvZ73cMo/RwhupghAQj8lbyeatglLznTxARfXYsDAutzumXlx5JpfemBaGutyzfvawtVVld2XLWVq+sVD5jMIruX76nUxHPUgpd37GNG2L0TMOGcbelaRzzeWDoO1J05JAoNuqENos1bIaV0qc/TM5SUSiJkg2xZNEqyUVoe3UMqcmOBvrlwpluoXmu9N/6XReGEy+vk1LQFkThT1db98vXeu2jissJ/Veol+J0JwEJFtzslmR70YGx2l5VAQS9lkVPa6IK9UoCXpTWLOdwGEbOgwiTDtPMOM/EKCBZUJG6yvyg3paUfD3fxhRNOC9qsqbingvhXYfWYIwKbcoV8KOA+NKWsfyDtkBl0ScQMCsubZrOgDTnl4vsV+eFM5Cr3onFmLKA06951PVEPj9LciluCMIeE5F4BX2csjzs+nfLnODlNf3ifSrAsJysizvLHJINs1Dp8grSVVCQql9h9LmoPnfBZIut427yAhhka8lZGBvJuZWhmVcqbEqSOFfgC8MC7hojc1peQ/QcKqhXUM2GCv5cfI91HS3rNXVx+ymOFViri1EF6C7BkwpWabBSgT5ericVNKrtqMvn/j0fvXDxWlkBHswCNv2wxa3uk/WvUUCoXM7Wl2scLDGNbLN13ZfqswRg2lhhKkhktNWz2g+X5b0rznQ5Psuc15a1ur8s768fwhgrrSr/2hH5Nzt+bDzq78ueYOtepMBPSsveKV+0MhglEZCWKgXPNV4SsCdqFTiTFsFthN2mFt8lJ0iSJFUR2oJhjgkfAhTDFKSlS9o8ksYZ0qKVVcsll1XTZWmH18eLCu1XED6XNaYqBaY54owhJUfjhbXjUgUnFPS0ct8aQ9bv7YoK8yJunRQFC5D98icZQL2miq7/GWkdtyVpG5bVwqPRa17mWW0nwtbCg5FWqBRIcxXXFlYaQJwC8zipkHSNXQ3OFlLnMDiNOYou9OvMclY+Q0H2wYwIEzurbGW7MvZyEZC1suMMq/BxIWsbtaFpVevEWmzbYpuGqp2WlF3huHAXMzVdNotbpKFAipQYKHEmh5GsrSZGBdWNsxSrBThjKE7nQXnlGMeswswGaVNf5yZr0aPG48Uu57maaRRlDb9kYWqb67J3lGX9THqeZc1ZUYmCzP8QE+M0M44r8IMB4x2mER2vpp9o5hljjMRFQQWoi4xdMixzUza7lRWYcyaGQHR+iTcri91YRylZ25el5U7af/MSe9UkVvIJB1mufWOKMv20kJLku4io908jRXB5LMu+ns3LeHpp77IGbytjxmkrUY2NZJ+pjJ+qpTrP89pGVXTOXkSFIr0gBUNrC87xIravLk2ztsVN48g4jgvwM08V+DHLBhRSJKpJyqjOzvDSYCGoG3RKifNZiv85J+ZpVOAnMY5npmkkxiCsoFkc+XISRmzOiRDFeKhk0fZJOZOijF0IAjhbb7C2kHMghJFpcq+ab+RSGEOic4ZUHJUVbMylxX3SttAAKWL0ZtXhlepcmCO5eEptS21a+s0Wv9lQNj10DfhmycnrshKSjGlIhZBk7gR1B5U5u2owiWW6xPnPT488PT0yjiPH52fOp6Oca3UTzTmxsDg1GKmrtJhwSJxaHbpSfW0F53KOC0v+4mrnxza2z+O7y+MHMekfEaP+WYEfay3b7Q5SxLY7CIk5O56ezxxPMzk7rGm42l+x3W55c3crtod9x3a/xTeevu/Y77d47+nalt1W2Dat93Rds4i59f1WvqBv2e33i9jV4XSQ6sgst6yVYlkEymK1DtC3Avx473nz9o43b+5o24Y3b2558+YG7z2bjYhQri1eq6jyOiAX7JslaNJWBqXlCfXScrXf8c/+6b/FV199yfF44osvv+T7Dx84nc988+13InabJPgLGjB6ZY7U5Ccvn4U1kXjNo2SsgVap+bW6HsKsCXIQrYFpZBjOsnHkpPRFEVat10NRaz5j7BKgGCNtcU0pa8uXrbawXvSbrGF/veVtuiXnxJdfvOXw86+Y55kP373n/Tc3hHlmOg+Mp4GcZKEdx0l0EqbMlGo6WgMZiCkyzuBcIpxPDBokkMC4Wi0X21Jx6ErkaWKcJxHsmydB2HNako7ltH2WRNX2v4KRDSkkvG/pt9KC1PhGhLNV+f81j3me+bt/+Ae8d/Sd0IynMNNtNpyGAe8dbeuptuBVR6MG+yCLetV3mKaZ03kgxUQMq9h3yitduCYtFcQU4LUwzpFhksRjmGZhVuS8BhaUJYFdEIMLYKeo9WrxDpdXRllN4hf6JCwLNFwury8BplWJSCqqOYr20ng+M0+TMPd2Wxrbyd9cgJ++EZ2hUiTgkiqS2of9RH7uEoQIe+Z8PvP99+85HJ7p+w3XV0fpeW47dtudWFR6T6OWlSwbsIB40jOvr7sAQuv8WE4XSyxz8UEuQNrlGl9bgTCZIoJq2KSgDiv4SwFXW7o0Ea6OY7nSpSkvgq9Kfc4l09Se+ZxXRlGWKltWKn7Ua24Bal9cI4jo824rhYPq/OUcwyiCyT9ViLskIsu5rCKp9VcFe7K0iOScFv0GYTit96EsVq9N0+Aaj4u1ZY4F7KpaSykkpjKLla9W4QtctNpJ8LysAZdAlNGEV365/MDLExe4Rt/vct4ZbU9MMWszk1mc+owxWN8Iu46VHCBVUWHFttqiJwwaK+2mQVpKUi5iQ2yk9bFa+3p/wVZ8raNIcL3qLKwAHHouq/OlWf4HWnmCIl4iTdthaem6hl3f45zhdB55PpyYQ+Tj4zPffbjnPA4cjmeGKWjRCnFHLYWQYZqCnk0ZB2sMzJliI85mhrlwGCIUGIaJcZxJOTPMkSHIej1n0cHLSOU2KegT1S5+weerhvcC+RrGKRESOBuZlPnTeMvh3Avjx1k220laJLyl3/TaLm/pGmW6OEvfJrwXfY7aomKtpW2CujC+/iGATWSYpO2OnDApYIoUH522OjvvadoWa0VDpFVHwYrXQGE4nTg+PZJiULaSfOYwTsznkZISOGXaOcubt28pX30pLjPe0nnRpGgbh2uVkdM0NK0w+socKVMk+0joJ0I3U5KnZM95COSU6TYz3RxU187Qta2AbcVLq6SzbLY7uo04ztimwaiD2DQLWCHC+JbGONFoQm8546LBZAjTRDw+Mj0dGE8nho/fcn58wmLEwKIyfNSRrRhLcp5sLOU1VYFBMREBv8yyj0lXgAABqidJkVYTCyYXrBMQLebMnEU3Ev1vLoVkZJWqLV9CGBC9xNPpTOM8wzASQlIwBX1XyzDO3D+KsYsAPzJHm+OR9lHcJm+HwO0sBc8SJso8YY3hquvoug7nHDF5zoO2VWsim0JmPI0cnw9ktcIuRhj2/VbcLqd54v3773h4fKCURMpB2UvSmid7sGW3vcLghdmj68scIuPpzDBrq/4clKmeFrHin+KIyhyv1hopRuI8kVKibVu6fiPxjJdW5+rk5p2TgsI8c4jSOjeOI8fjUTRxUmLW9biCWQWW9cXoz0Uk2orNe22zkmIeDMOJ5+dHZa4ARAFtYlR2Ud270Rg4LMDPPE3M2t5TGc01CjAU1cSdlrwqhlnAgyIufDEGUo6Mw0Cor7O0KpWlpSyXqi0kRdjTOTKFTOMdm13CeU9KhdPhAyU9kVJ4tfELMfHbj8/MNz1fXF+zcx3ZWowTM515HDkfD8QQeHg4MX/4RD5P2MdnuvM9aRzI85kYz5Ai2J7Qb5l2Pdd3b3jz9dds9jtK00G/AWVdVgH0OWbGIDFf0Jusa+JqllJiOB44HZ+IIfB0/5HHTx8JYebh0z0Pn+6JIXI8HTidj0tOs72+lS9opWhR+whSypSQGE8nEWjOmTSNpDALGDeN5DBrBaW2dJk/OU//gb7gH3j+nxf4cZbNdksMM7bdwCT9t/NpUKAgMo2BruvY7Xa8efuGrmvZ7Lbc3F3TtC3bzYaba7EG3fY9V/sdjff03QoC7TZbrnZ7nHdsd3ve8BYozFET85KZxplpnHUCjppspkU4Eirws8F5z83NNdc313jv2F/t2O+3S0V1RePKMoZV3HkFgGqiui4CElhHslKxvbP43Ya/+Zu/AmM5Ho9cXV3x3fvveXh4YJ4D5/MgQlxzXAJx5ywOEWeLmvgAF6KXr30Ivb7xHmcL82gXd4mcK51SFrZxHKjxddu21DRAkmOrCYVcuOL2JEGq2GcKrbvRipO1Vq6N/V6+swfXyOcZz2fG85kQZm6v92z7jnmaODw9c3wSV5uHp4PQk6OM86hjtRTDDcwpSYCXLMFY0QIylo3r6FyzMhVUaC6mRJlFoX2aJ7XBXKuvsFakL6u+FeH3uuhOMQr9EtEK6LuexvufFPj5zW9/S9s27HZbmrYhpsR2f8U4z1JxdfVz52UzqX3fhUJUm81cCuMwcTicRCF/Cgxn7fUvmagtlMKyUohFQQfgRaUsRHG/KCUTVGC30m9rP7cxbhFmqzepwnlKEXr65conmMtnIKypnILlkpTr8qK8VIrqzcRACoFpODMOgwhZa4sfWlkw+pW8h2z1fYq6r2Spmr52UfPyG2al34/DwKePnwSU7jeMp5G2adlut+TbSNeK+J0pW1Bqv1n0ZdxSQdNi4o9vIDWQLgrq1KqWAjxC2CjL3KoTwVi73C/OYrICqZfsuFyzSQVjlgpf/b2KoUsAv4IT6vyXNPCJUfRTyiqeLsFQ/uy+vG9tk2uaht1uR6tWn03TStDnHefzwOIy9hMcPwB/Lh6ngsa1je0S+CniUpn1+xsFsNpWgR/vsT7qHFsTlwrcpZwomncJkFMudHs+A6/1s9T7xawAoVwGawBiuCyIyK3OWhngvPxhymuLpbBXJPBuEP2eSvERSr/slWK2IKCPsw5r1NY+qghwBmNlrfXGibaIcfimuRDFfZ1DCjlVs2pd42s7bwV+FjFPrUKK7pUAP5vW029bGufYaOuAs5bznDirhs+DWrifhoFpnhkUSJfMVUDbGCKT6sfUargxUEKmmChtVCQMM6XAOM7iMHQZHCNGCAlhnKWEruOFFMriWLPie0YH10ISpqcJEg+dTJB831lOY2DTtjhv2YwzXSttX9ttoG3FSW+36WkbaXOLMYsmkAHt+MAay9SEn0zjB6QKPQ5n0jyT40yeBkqKUmRUBzznG9quk2TTOYJvBGCrIG0pPD888PH9d8zTKM/zsv+EYWQ6naTQ5S2mEa2xHM9sN57US+FnbjyNs7hNS2k6iRMbT7PtMViwYlmRYmTuRuZuIgWgOMZBgPDtJDFtE8XwpG1bLTjJrHTOsb+5YbsX/UTjnbBFY2R+fGIcJolXfLuCw0X2SgPKkgY7B9LxmenpE9PpyPjwDePDPd5I25rTokJR4DVbEdlP1km1/zWPuiYtW05RxR5z4Uyp+mDOiS5TMfgsEUJIkRwF2Fq0gYqASAu4m5VSkMWlcjgPNK5hGmdCTKQojLlqVDNOM49PB46nI1MIzHGWopZzWC9A4phhRl3HcsKWTGMtm2aD8xucc6TsGEbV9MyyV6aQGM8Tp8MJMoSQAIt1DZvtnu12w+l0ZA4z9w/3aiIyEVMQgLVvaZsGsGw3O1rfE2LCu4kpBDAT4fnMMAZiFjepuDAV05+cuP7YUYoAP/obYHQdnUkxinhv4+m7jrZp2G17vGrjZM2DQgxM00TKiePxwMP9A3MQkDvoWhxTJkaZr85Jy7Exhrbr6PuNzHV1LiulEMKMku4Yx4Gnp0dZn1yBMotBRCmLJuGlAHhltwuQM6lIdGaaJ4IyA1MKqtVTxG0vJdY2Lt1jssQARc10KjNJ3D8LRQuOWbsrUlQn3Zg5nQPTnOg6R7cpYIR8cD7NpNmSXxGEDTHz3cMJ7wxj9iTXk0XDA2MgzDOPnz4xnE88PZ0I9/fkYcY8H+nOj5RxIoQRkrgPYguh7wmbPf7mjtuvvuLqak+xukEYGKbEaRRTgqdT4OE4C+tHweACkGZQd8nD4ZH7D98xTQO//Ye/47d//3dM48jjp3sePz2QU8Z6h/MSK3f7a7ZXV9L54FpwDaVkhtOZaRzIMTIdn5jOBwFWw0QJ81psq8XGS7Cm7hv/BsePsdD/UIn5DwI/xphfAf9r4GdI7vbPSyn/C2PMG+B/C/wV8PfAf6+U8vAHXg2nKvTiAtSyOFdpO0ZMCRuCCNKN0tuYDdjG0baC0FljaBpPCkEQe++JscOYokGgp2uDMkbEKrvSF33jJWloAe0ZrcJgQt0LREXi26ana/tls68Czs5ehK81wTeK+VW2j5Wsx6yckuWoCLD+skxwQZKlPU0YTR37qz23k4BV11dXXF1dSUvOLJv5mqa+GDN5Xf2ZUwT4Z8aYf/GnjyFLtVQlKHDe4X11mlDRypJX3aOyVllSEgp6jFWssVAcGGNlk0aFnk1cRNxiXK2fQ2xUwV4tcM2acC4i0MpoKCXT9R1x3uCbhilm5kp7tIaICi/nVX8hm4sx0c3BmUI0SajOxpCdUVqf0kFzUfS9JpXo4ruer8/psBXI8t6DydiQFQtZr5XK5EhpWYgbY8z/ldeYi4YliKnndpwmTqfzAmhW5f1LRknOq/NEbQ3IuTCO08L4mafIMMzkJIygxfUFEaItIIumzqNSN+qiyVOO0jKoc7GUotpCViutBWObF3Nq4f/UdpGXJ3t95ILxo2d5mado4lqrtQsiWOnEKipfafmXlcTLz7E+LrT/bAsmC0A1nU/wmnMRXqwusslLJT+4wDxNkCW4n7S1IBdpuYzqbOZ8tUD3eBWlrWKYS0vY8qXMApJent8amC339PSVH47G8jeVpUgFhEpB5bNe3uoL6bppTMGocK8pGVMqEy9TrJXuO2spTsEn5SKUUiqLX9/KUDVgrIJMVbPq85O8tJn6hVH2enPxjzrWZPKyNatogJkvQGUBSle3r5qYkqu7TV2Yllemsn+W16/g5++pHf0ovf/3BC8/1v68XCTrRlif/KPfuwIYi+1tbbcxLOtSLpnqPrd+PbPM+dqWU0WtU4y85hj+YK5cfP8K+i9jVGmTRQDb+h0lPnLqOiPfL2dph5WkIRHzqlMlOlACqYnDIsvetKyERZ5SKe5W1zujDpshZWYFq8SRqwI/q+l9Xr5DeRm8LnP0Yij1TaWtU/W+dN7GVKTNjIILCYzB54LXeZV9ofHqQOUKjQpmW6DofuRskYR3vTZfby7q2l9yIUe1OQ8zcRwoUVowUPZySUnABOek/SBFNakoqhlTCNNAnEbiNJKtIUdZI+M0kedRnREVBHeOOJ4JwxFXIpNvmGJLchZjC641uOKxbcRlad8rKYkjTFTDknpasq7By03WvsWZyy7w6wIMLhoXRZ0Z660kuUZzhGQFBUwBE8M6xwAzj9h5xM0jfp5oU6DNEW+E8dMW1UpKilOWTCiFYqRw+JOtpz+yAdV4tLqN1jY8bwUEyhRclhjTATk7jeXB2kTO0sKtV8syNyrD4pLZ/XnsX5e4On9yvV4UyI8xQCl4Z2idslm6jr7vhZGLBywUIzEjULKj8V61ixpAik31lktZtCcFCKnATxTHYu/JTguWeV2Gja6bpq4pCwu3rgFlmTN6vOK+WM/hurhIO1NWJ6qgMY0Yb1CSAj+V/Sqx7ah55Ol04ng+LQB8tfBO2vZTCi+An+ocWYu0Ffg5n0+M46CgkrRZAQzDmcPxIOL5Og9lfFdx51lduET7ctb4NjPPs7J2BITJSxEhqnSGmFRkBX5yTsru+dz5qywxTVKxfSkM5bUYbVhE1q0D52RNFRVdYXG91hgWlO0aM3MQJ0qXpLjgbSEOI3EYSeeRMs24GGlTpDew6xqcgegNk4eSE/1uS9P3okPWCL0+q8xJZTTHpZVLQb2kIGyRQnQpmRRG0nwmJ2npen56YJ5Gzscj4zConlJcilEYkbgwRou5Bd3Dk4Bs2tKVVQc0xUBJUVu6BKCrJ+QywqlX9pLLrpWU339OL/7d/J4g+1//Cn8c4ycC/5NSyn9kjLkC/kNjzP8Z+B8C/5dSyn9gjPn3gX8f+J/+617IOcv1fo8FxuEL2n4rdPxZKIe12hxTkopWiuK+03jaD1J57bqW3WaDd57ttufmStg/V/sdb+5uaNuWm6tr3r15R9s09H0nlTO1AzTWyoXeO/qu1zNUXVNYKqlyVp0kb8bSdQL8GGuF6jhNa36gPy/1FKqQsSSCqyfE8jd1gIugnvf3n/juu+9o25Z3777k+vqGTd/xN3/91/zlX/wFD49PtG3Pz77+OY+Pj/wn/79/yXffvRf0fZIFpCZT1phlI5F43gD8tpTyX/xTx9AYQ6OuL7Rr2hmmwLbfaPAti1PVQAK0L3V44V4j14THKU3f+YbGi8uSc47GNxhrGLV31jknwqXbjSDwjcE3er61GiwsJ0fXb3Gupet23N29o+TCz2ISDYMY+f7TJz58+sQcAs9Pzzw/HxRkkZtJBWap3Fgsswt0VhLldtvTdCJyeDyfOU/iiDCcB6X7rwNdQZ/PkwLnHLvdjv1+L+9hR6Y54H2LQXpNwzxxPh0/XwheaS46bq73hChCcTEmUbGfZrq+l7zfSUBUN6OF8XPRKlOrwDFmglIqUyzEUJPUVU4ZYyVARtssrHrbFAkuoZCS9sLmzHg+cTodyaWo25AIgW73V+zaK7V0v/hOJsssMy+aKRZbyIr4V6aRWZdchLqwMhDq49aLDYGzhr5ssa04PzWdtALVP61/I0mKJplGwJ+coGBJJVeWwavMRVid4epRUiZOM9kESoiUOeKcp+06huMJ3wjw3vXdAvr4Rqxgm0Z0xsRlx9N2tbLtcdrWadRxor53bQ0z2AUUWuPA8tlGp6FJkSSutnkuAEZNuJaWoqLXBio0whJsk1eNC6zoYxkMxsgmm4uOe9HnqFaQMWuibXOp9m2rcLA1hBjIClwXwGdPBrrNBuNebJmvMhdrcLRoSVysj3XOXep91ZtQt1cx62paUFIRDQ/vRXRyu8VYxzSOxJAU5Pk9gM4LxG0ZSBaGkPxy8RcvlLZefCdKZdStQJJeLGuQYwWekDmjcynXp5SKP+KsoVOr1squqy1p8xw4u5HMqj0h7TfC1HLasue8033GLSDua42hNZa+F9OBSuWv17a4oyUtKun51+TKUZksorOy2+2kzUd1zGLOnMaRTw+PHI9nno9H5pRJRdrgNur4GPNqUGEyYlFbW1F0WQs5MSoLR8ZFUlnRBEuLeG0lI+WSxESiaKtXlusjpaJtlxdjXliAPF05lz2wtmnEYhjmzJyEdTTMCe8lVtqOM23jaRrPuI30bYv3lrnvhP3jDF3j8cqa6a0Dc9HW+0rjqJeruIOeTkznE9P5yOnhe8I40LUN++1mSbI3m426gEo7iDHiAJR1Xp5PJ85PD8QQtCghIIqNERdmAa5NWXTXJjPxIZ1pmpZD03HQVtPruxtu3t7gm4btbWCPMGaH54Hh6Swg1flEHCbSGLAh0ydDyoZNMWwwbIxh4y2bTuaFWDxnkS1KM3k46rqjIGLKNPOZbR4hgz8P4tqUMn6YsFMQjao5QszY4czm/TdcPT3QTSNuPvHWBJyxdIAnL/OhZBhKIcZCkAXw1cbQ8HItksfMok9UtMCbUsQ4MbDw1tL6ll0rsWUzz3A+S7uMgaRCz9M8cR6MtPIHKEVZpboWLzbn2kpWdA2sxeXaai37VmUfVb0QiNPIdHqmNC1v373lq7dv6duWr96848vbOyiG03lmOEtx2huLt5YYEx7LfruTdlHf8ngcaJpABKYYOBye+XD/kfcf32vBUtaptmnUOU/cecdhIkxh0fTyWiCq+oHyvRJ1ETPms2z2FffFmHPNigGYQ1B3x5nT+czHjx+hRplGdJCkmCvrbAhR5RdE12ecpLNjmucFEKrXJEgO55RZLlbw/gX4BTBNE+M4Sh44rjo9w/DEp4/fSFGcNdZfwH4FgZaWrqI2GBXIUffTar0u++cKBJRS/13X5lzjcUPOTgogtXU6SQdNiLLeSyFXTmW/8/RA11qu9p5Nb2mcZds6WmerrtrrjGERNtz5NPD++yfm08QNM+QTOyLnw5HhwwfmYcSFxNtROgXebjb87OaWbB0zhdFICLi/3nOnnUDN7S1nY8QNMxamKELkc0iMUySlwjzN5HmipMTp+Mzz8yMhzDx++p6Hj98R5omnh3ueHj4SQ5RccxjEQa7tufliK6uHFpzk3GaG00glbETNV+I8iUtXTgIsxXmJAWrOcRkJvdZRPovH/pjjDwI/pZRvgW/1/kEr1b8A/jvAf1Of9r8C/m/8oWTTWnY70d4ZpzuabiNicDowMQSmUej00xiYT0dSqQKb8pUa3yy9nLvtltubK9qm4fb2hsOX7+i6jje3Z1LMdG3H1dUeDDSNF4psJ4uYV2DBGoP3lqZRwdoFZZZkNsa1X7/mVxWhXc5RTfisVUtXsyDiGLMEr6CvY80ysUEq9E+Pj7z/7js2mw37/RXX19d0XceXP7tjt9vz+PhEKYa7uzd89/49Hz584uHhUdhRo/S8mgtqeUYXHCRpBs6vMYbGSIuXKN97BbUMcY70Xa9JlyRf9XyAJDazitYJSi3gmgBkjbJfWro2Ui3iK0hU26icFRe3ru81IbU06oCx6Xu2fa8j6GjaDb7JtF4orFb7Sq1vCDGy/+Yb2t03jONIMd9ynmbp/S2z0NiLJFamSG9+NDOTEVbTvvX4viOXzHk483Q4EJIsGpUCbz5LyD8/vPdst1uurq6YQyRnYaSZGjxmmQ/jMFzmWaGU8h+9xjg6a9nvt5xOJx4eB87ngdP5xPPhKOddq4IGpGpUgZ9ctCJcXgh+Sk3WapXDonxOqAlWzdZUgK8+LvFPxiH99iUHSpJ+2On0xPHxXipzTav2jqLl5c0ea9f+fbk28xL01euyLhxFk81cQSBqylqBH2GQ1PuyVluKV2DDWjoLvlNbVBXChDXVoa4TrIGeMYUERKV7t/0OXm0urhoi8v6FRVS9QLSBMMqc803D+XRaAGnf+AXUaRTgaduWTS+OCV3Xsd3tZJ1UnbX6fNpGv6dfWFj1BjWpLC8+Vj1PC5OkmItAZhW2zTlDUp5kTZC52M4UyJaxLhTr1n9YsAoLbmXvWSBdOFKZGuQtbWUV+JHPEFWA0Tn5fjWd7bqOpm3rJ3m1uYgCO7VgsD5cBeHzcquBY63gVm0AAX6k/TfnLG0VztA0LX3fy7WfEsYMXFyx63u9eOQl8CP1ibWCffnUBfSpQM4l66ese+mL66GyxlyBLIwO1GFsWUqyks4QgHa5Pje9FmjiEuTOMcI0SZU2CQMTW1ut/AJuVtcoa9bA/rXG0GgbcsoJE8wSyAdte85ZdDeisvFqf5wIxct665uGzXZD37WkFEXTISeGaeLp+Zmn5yOH0yAClUgBpuvUCjdIAU0mfqYYRy5GGJepVuYzaKJaLkZdQCmtGOdVw+2y+JgvHr9kVengX1wzFyYK1GZauaUCKWQIohE4zgVrlI04R9pGmAcxFqYuSqtzgq5JeO/IvaHxhqaAbyy2LHPl9eaiHilKq9f5eGA4PPLw/jvG84Ft15GudnRNQ9s25M1WxESprBmjOiSiczhPI9NwFrtg3dsoma5kmpK1yp6wRYR+5zzyMJ2w3nNqeo6tFDmH8R2pzLRdR7Ye120w1vL8fODx0zM5ZnwMeH1vGzNtljbjrhh6DJ0xdM7StRI7FcW9DWDyTJ6ijF0GWwwlJ3wa6YswEcocIAcFeWYBfmIiH0eYAnYc6D+9Jx2eSCmyjQMRYUE1BixZwNmcSBSeY+ZxDJSYsJIAv9oYVsixHtashVmAmMTd1xuDMZ04y7UN292Wxjc4TexDjFKk0H3AGMsUEyVKK4lc8pXtUwuH+YXWZi1C1ZjWey+tKdaq7txMDpGCJI/z+YTtI7vua77+4h2bvufrt1/y1RspYH789MR9OUCBznla58i50PqG/e5KCmqu4ThMuBDJBuYkwM/90wOfHj4toFSh0Lcd225D13SizziIzqJxVt3dpCW8gtqlMpSoJb0Xu8mrzcVSZK3RKoKMW0yMCrZM08Dh8CROvikQ5nFhji86NzExq0bOkkiWwjAOnE7PpJhefH5jVnfGOp+Xz/Pis8lvKa2g0dNTVgBK4r+FVVe/B1LMqDGrcwoyLe+1fgY033RmFYRfgMuCsrjQ+4ZcVo3XUgohwnlITFMSTbzO4RshPXS9xzeGrjXsdo5NZ/DGsvGWxlqcM683F4vkt8Mw8fHTgek4MqUz/XRPSiPTeWC6fyJMM95Ybpy4c5rdHvfzrzGbDbP3DG1HslYkFjZSdG22G0YMIWbOU+J4VpZPTISgBiAxQJwpKXJ+fuDTt79lHAe++fXf8uu/+1dM48Dh+ZnD0yO5FNpuS9tvcc6zubphs79RF2MA2dePz89MpwM5RsbTgel8lvmUAjlXbb28Fin1ultmyh9g9PxjD4mVzfLbi6To9xz/KI0fY8xfAf8V4P8JfKWgEKWUb40xX/6ev/n3gH8PYH99y1bFkMdxlOA0RXLTQE6EeRb70hQJKWG0F7NOZH09KlVaRJqlx/08DByPJ+YQ8M7Ttx1dq4GYFbCi6Rq6XkCjtm3oWunPzsXr2Ci4s+SDFellmYhybtfFrlw+xLoglFzItoI/KzhkjMViloWpBveNtna1bStClXal6deWoM2mZ7/fcXXcc3W15/rqSqwh56AuF2axE61Ufz5rg/9Tx/B6v3tBfTTG0nhhFBhjNCn5XF/g5W2p8C9Idn3cYHAvgJ/6Xk3TUJzQb6tOgnj2CvDjbFgcQKQNLuqmEbXaY8WGXVmYwmpo8CnRNKLXYpAe4krpNFlvF6yVmgReVuKj6ozkywl9USFfE7iXE35NpF7+XVZB1bzQBH+oK/KnjuNut2dWmmoIEgQBJK9OE9mIVo1WMFOKC8untgJoXl4/OEuKromNAC+13WZ9fNniljxyMf9+cY4qmAqXrgcyH1cQoYI4y8joe9QkFH6Y6JYf/PfFRC6XaYx8kMoUMqZcWNCuMUl9B/l2lfUnN2sM2bcvgojXGMMFKLgIjOrnp1QdKbOsXUWvVwwQVXgZYbkYZQoG68hV0NA5onNaHUwyJxsvWhHW4H1DVitOq+KHmBrovjzdch5fzgnKy7aiChSUz8fkxbCV5QVLvQjXH5/9WR2jF4v6iycZ1ktSrtF6bZdln1nAi88CwYsx+Sv+hHG8ubu9WAt/6P5XVCPrct0slVGyvt5SkZLkomBtFg2cxtOkJIwEKkDzsva0zM/6eOEHYwNrm8Ll9Fpf0yyi3hff80VqYHWPqiKa7kJYHGPXrdWIrpd1ZnmedSK2KXR2hylGxHa1vddqi1S9Huu/WXvZcryKUb/ELv60MfzqizfL/rbooBioLSU/oGcbaSmtxZHqtLTskTkTghQjwqwtXknAwbbrcF6dQHut1k9B3L9SJqSC8xlSpqBtYWW9ltaxlYFcHMH0nFwsIcvcXWRHP78udHfkxbyor7w+53KJkhUfAWCNVOpTykRjMAhz1BrZv72XvbjRFjVJsMUy+wfrwyuM4/7uDp3oyzpOQRgESa3Zc6JkS8kOShKE2dRVTyIFa6Com6OzFlyhYMlZzlOjQIwDHAZfXaVKocQoAtNlJhRLdpFpGBjOJ2KMuP6I7w9gLMfDgePxQEmJLmf6lEjTiM+JrQoobwz0JdPliJ8nGM7gvcTUpbaICAQlYZW2MpRMSdMCVhVNoEiZMswwi45aHkfKFEjTRAlBW8EEKTSwOgUacVIN2nKxtGGkH8yPP2kMq3mIXGq6Xi4Fkppom2Ue1shBZkvGFgGoxMHUqHmDrK3W2EWnzFlL4xsw0LUtXdfTdx1N45frv8aHIrS77mv12jKXn6qwtL1nPSdGr6uSswL7wqCIQdvsVBTcWClup1woxojo8jzhkliTgxQmU0zU5bpqHaXaAqzzNKbEHIO4bRow2Ut7VF6Fg9dCQPnBmv9a4/jm7VthMH72nMvcoO57MYp+TooBPju31nkR+dcYEv2O1vmlzS5ndZ0z6zUi9z6HEF8elckDRcXCla1sZT4ZaiufxofmAn/KaxHyhTGCuZAeqGunhi+FyvhR7SB1UVSy0AIG5bw+z0A1I8Q6MTdoGitsS1tBKhZQ9PKE/6lj2F29IcwTwRbm0DJZcZGchokxTcxTIKRCzAbjLaVp5ZruelzbYdoO3zQqoi/xp/WtCPsbqxpaWcEeAWPnKSyavWkaSOORHAPPj/ccnh6ZppHz+cQcZtFbKoWixghY1Q/VWES0M1mu+ZySCDXHWQWza/udsuCWWFGvix/DYC6LY3Iyf8/V9Uccy5KydpX8Ma/3RwM/xpg98L8H/sellOd/HZvhxecq5Z8D/xzgL/7qn5R/+5/+E4Zh5OGLJ6ZpkkUuiPp1mGeGYSTFyDhPHE9ntV6XXsoFzc21Umw4HE8Y4Hg68fH+Hucsu82G6/2V2rBvuLm6wjeO3XbL/kqcba72V9zc3ND4ht1uw36/wzoBGNqmUcaDx1kRcK3BmezN1U6YJXkBtCVBfoslLNos8jxFcK1bUN6a7DbO89WXX9E1HU3TcHv3ht1GUEcyxGnGAV++fce277nZ7zkfn3l7e8PT0zP/6j/7Wz58+kTK0kOacsHhcM2K+jy/0hj+/GdflL4XJ4valtV3HZt+o72m0ntbRUTrlXmpbyD9rEGF2iIpjXqNOZyVtpNaGTHGcHV1tYBfxohbkqD5a1XlyLgkt+N5YDidyFlaHqxuDpvdju1uS0FcELb9hsZ6husb4iyia6fjiWE4y2etFqhFitMipSBV1JAiIUbGMDNOo7iz5dVidrk2yvr96/muAFkIYWEJCaNGzl+cg1RYc2K335Jz82I8XmMcr66uy9/9Z/+SOUbOw0SIib7f0DQtXpMrsQytluxKib3YVCQhqJtFXiokUtXQxcdaBegksYMk94sF3fhKgWxq0IzuUtD2Pft8LZo0TYvxrbifNC2xKGPDZN1e9X11TgnjZ03Ya16LyS9F1ZaTs27uL5LuouCWMZSqu6Hfe7GK1mxJ8GEBphrfcH21o+taEd6cZF17zTFsmqZUV8G62BvM2u5mlEVmJIAV7SxDLpkwT1Q2YIgilBrUgtQaSbTdxd8aZTL6tlVxU0fbtfQbET/s+w39dkN1uBGmXwX/9JNdVFzr5ij36k8u9ANYgkwJiMsC9NS1pIKkq71quni8giWf3WorWR3vOm5oElCq0LgEcbUFC6rG0w/Auz99Tf3lL0rVEqh/f5kIpXSpCyD6BUkdywSPNLimodVkuChbMatI8jjNDN1ICoEnswIgKxAnOlxyL1OhkUtgqFyATJdgW517AFY10GrsbIzVn2Zh93l1a5LEiYV9Y2pkWqStKBf5e9c0ON+oo2dPt9nIJ9N9t2k8V1c7+r5T4f8rNrsN3jdsdxuatlWRz0iIauagbh5R9+fXGMN/+5/+ZZEKrxXhciPaelFB9ZgShgp2ObwVNlnrHJvWq8BqRzWLOJ8HPnz8wDiOfPh0z+F0Zhgn2s2OX7z7GdZ5+r5huxHB3+fDkYcHMTHojiPGn4kxcR4m4jBiUiaWQogvE7fCy1YE+V71Gly/a00o6nVRQXdbxbxM0XVeHpdpWxk5q5D/CirKU7NB93BpN7MuqqisgHaH40DjHd5Z+q6l8Y62abjaj7Tt6++LX/zFXxZjPc41NE0rLAjvpR2vJEyO2BwxGWy2uJxxNuOMjKtVoIAao3QNfdfK2jRPxEk0cm4pvKPQAltTuLLCTHzG8hCEvTczcyonijHM45nD0wPWe/qr92yuf0MxlsPzkefDAZMLb73jTeMxMXAdDvwXrlpMKVz5zC4OtENm991vyS6As6t+BaIFkuomqVTeUgoprwl/0riu5EyeIzlmda0JZNUuGc9nwjxpLAoxSQIV50QqkVgy5xQJJXMuhcdUOOl8f60x7PteLq8sbkalZHAer/rn1jpa3+GMgMNBW9lTmEij7JklF7IzGOtVK03ayucgxelsDe1GcgvnHb/6+S/4m7/6S673V7x9+1YdoGTtfX4WJvVwHkkhk1PNF4zoLtV9skCaM9NpxiRDHCN5LkQSD5+emJ6FhfT4KOw/7zz+yy+4udpLjtI29El0fN4/PPLwfMQYaBsrbZPzxDiNdF1PTIlhnAkxI2mGozhPmCNP5xNPT09SEHESMwzTxHk8EXNY4p2iUJHsAy+TzdcYx7/8q78uMUZqUR4kjt/udnT9RlrRnSWEmeenRx4eHxiGM13bsVUH06YVy2/JJxoaZWw/Pt7z4fvvmKaRcThxVrdnY1hs4F98H8qL9VA+6+d5vba7655c9TptYSnAS/eHvNAl2LJ+xwpK1ndlabet66YwekSDtGRDiIaorewVzBV9G12lraHtLH3vaBrLfu/pW2H/9K3BewGf0fbi1xzD7dufl4fvf0fabtnkTNhsycOB9vmew3QiGUu0nuwa+t0O8+4tTdfhr3aYt3e4tsV4T9s0FGukI6KRPDAbGCeJV47HE8+PB5XueOTh0wfmeeb48JHHD+8J88zx8Mzz4yMxRqYwM82ZjKfZ33Fz9U7H2Sxd8HNITA/3Ek+GmRRnSs5q6T4uLaM5x/XcX8Syy9m6+MUsz3j9oyxQ4x8+/ijgxxjTIBfA/6aU8n/Qh98bY75W5O9r4Ps/9Dpd2/LXv/qlLIZ3B6ZZAjGxp82EOTAMgwQs54HHp0fmeWYaR47Hg4ptiTiZCB7ODMOwuGOFJItS23h6bQfbbnqudkLHvb6+4s3tLU3T8PbtO7744kvRBLq95m66XYLL7VZE1LrOYNp2WfhrJSEnQyEtAZRG23LqJXtZ6NAyUbM6AoiDgNd2HhGplMr6u7u33OyvMcbKhe8bKn0+Bmk3enN3w93NNfvtluF05OZqz/cfPvL0/Mw0TdIydB5IObxoO6vD+BpjaIwRC1bnaZtOwCkM7OR9hIU1XzjtSItCjHEJuCtjRzQqAqO6q0mrkCSMtRe6tnv1fU8pRV2wVI0/iqtUKUUAwll6LedxZBxGSRw1YjXWcnMzcT3HpdWub3u8FRAwzCLkJpUXTS5jlApJAXISUM8aMpmQk9xCZApBqidkrX++ZK5cgj41uavAj5yT6rYjieY0iRaEdUYXmxeAwavMxTnM/Pa3v0Y2l7U6sd/vgVbGTlsFU67id5XltOxDLGmzAWPzkvg5W8GeTHW1kJtdfhZlBWW1O9UiuWp9WZq2VcZAAd+Cb6Vq0zQk1GWjVCzm8r7RhL7Km+YLQC4v4E09KmRSa0uXAJAkMPp8bVmrAAWlgj7aRoRZGDbeNuy2e3a7LTlKm+MF8PMqc1EAl75GA/LCxrxgDlQ70sr2KUVES0MU4NW6SEpe/84RtGXmUnC7VgYB2rZbWi377YbtbieuMFdXXIXrZd5WkPayN946DaD1UliGQRCzdc5UYGIBgNbf5X5aAKKSL++vwpPL2F0mrBUQyp8zwCqAodeBVuhKdZszWdpolRm1/M0rzcUCy5pWK5ILOwsVkNd1tK6fKcm6VK937xyN88I2ufi+MUZOpzPeOc6Hk7Yc616lV3ZePoWCbSsn5sVnXO9cnL3ld0MV0b5kvtRrsK7jTeO1NUYC4Pr5jVbaShFx4ZTLAvxYL7pUbdfRdp2efPkMbdsI2LPtaduWfie21N57+u2Wtm0JITCFyBwiIQTO6v6ooN6rjCE1YViEc7XFOQa145XBslrUaBupYHaNZ9t3eGfptIWylMIwjnz69MD5fOLx8YnzMDLOge1tz5c/+5qu37DZNOx3PcbAp0/3WOeZphncmZAsc0jEbDhPEYok3nMqSzxS5/TlXvWDodW1tK739X6lKGRTgf41pBVw5zKDYE1aLl48I8lvRoRL63UzT1E0KYwVG3Nn1dpdNAO7tmGcIl3Xrm/xWuOIFKCs9TTKaJyckx2yCBvE5ITNBquuS5aCM9A6FVTXn8aIRknbJWFWjI5oEqTILfCVgR64tYYvnOg9fTsFyjgzVKeoGIkFzqcj9uFe1qF+h+93FAzH4cTxfMQCYdvjtj1tgV088W7b4IDeF7o44YhsP3xHCSeSNSuLC6CYRWu91DVy2TPyspZUTZSQamxXFrHxXERnI+ZCKhASxGyJOXOOaq9cMocYmHJiMoYDhtHoTv2KYwiy7tdWWIOheE24jcX7RgshEOWJxDgzT8LS8sbT2gZnnAK1wpb0zuGMtIxv+p6r/Z62bfnqyy/55c9/zvXVNXc3t1TjgnmOHE8Dx+OZcZwXQB4E8Ckg5gRFXA1SSEzM2GKJk+gIpZI5nI8c0hMpZZ6fjxxPJ9q25e2b20W+otE47jwOTO8HPt1/L23ytS0aicObtoOYKFMkJPAZsrEU64gUDtPA/fFZYnTdJ2JMjNNA0iR33S9+yMh5tX2xlMUMZjHUcJZ+swFkL7HWEMLMOI6EEDmfR6wVSQffduyurrl785a27Wi7ls1mi7GWzXZHyonxfObZWabpTM6JamiyfohaAFlZ0y8+Y2Xn1BjYXP7UskgFdJA9T8DypR6m8dAF6MP6/DUWXcIhcha3rKBtZnOwxCQQUX1iXjTZZE9qWku3sXSNZb91bHqxu3f6eSz1e7zuGOYYeL5/D9MNe7+hBEM5nWg/PXEejrDZUK5voWtJm2vatz+j7Hew6Wiud9hGO0C8X+NvKzlEjkHdKDPDaeD4/Mg8TXz6/lu++e3fMQ5nPnzzO775tbh0zeMseSHQ7a7o9zdY72k3V7T7K4yxpHkSjcyUGE/PTMeDFHDGM2k6U/VOU15bptdCckWv199eADGfI4c/wfHHgj9/jKuXAf6XwL8opfzPL/7p/wT8D4D/QH/+H/+I1xLkrhSpbjkrqHwjIEFoItY5Uoza8iUJU+O89shLomwwVXmcWumNKWKiLLb+IkGLSa0Ho/b7W0fTNLI4WE/bNovQm288282WaRKEuN9s2W6kxaFrW1LbKCKoSqOwTOxlwoOyGCqFFoqpwqI1IDDLxbEkbEpPr5X5SkNdk52yVM+9c6oFtOM8jFxd7bnStq8xSMVsXaQWEOIvgf/7nzqGy6GBo8nK4KCyocpS5QWLtYVS7NKqU5Ce/qbxyzmTPtlMKUao0IVl/HIRqmwF+zBmea1UUe0iYoxRq+BZ/56irTlGNnux8hQXoKq0fskeKKUsgbnVYMRW3ZIsrjjGir6LdQ6b0sJiMLDYW/+hiVfHs7qciZ15umAv1JuKBC7sKeCV5mLJhTBNAspYD8YsQdLy/qw9w8t9uEgLJYN/gW4v/wYs56JcMFnLeo0giZ6pzINy8bcYMGKfCIC6gFXtnmUNvdwdjVkSDrN8vpfPKZfPv/ys1A1+zWUvv/8K7iLXyqU+jIIOkrRXvQeLsZJAFGfAJME1f4q5WJNn1iBj+W5lDdBWAOXyS5eL52RyMXIdXzD0cgVwUSZVbbu7aPlcbj8AfvRcwNKqU4dq+agXrXP15C9YVv1sqZ5rFkaOrEFpEUuUuVL0flmu4QoAl4uxKhfnZNmeC1TRZHWZ+eH5enm8ylz8fLzqeNT3v4gLL85pZaHKWuWdo/OtgA5l1WHZbMYFHBTAvrbP1oqkztDleqgA7ctjecSuv9W/XVobzZrw2gvwcTE6sFr4WK6B6oSpWlW29uEWJQmqsLgXnR5paVDgzdRzZFnc53TPSzljtcXCXgiuVveTyoTS8/w6Y1hW5kwdp8o0FdCraGxQ1rlS585FC0JKWd1opFBSHTyjtnqleqvfQ1lf9b4Am/VzrMKyRQFh78Ti11YB9M/HV9eu9VqURytgynKt1LhlZfFdAuflImGCsozXy3lklkB1fUkdmwzFZmJeCynBxsVSe5znZb3W45Xmollul8B1fbQmo9EYnI3Mteij7OxqrmGV4RZLJlZNLh07UiYZiBQikLAkjYVqO3Vt5bRFGQNZBKOxmTzNxOIoBsI0iYMMEIMlTAIn9CkJu0AHQ8ByxD12HGW/vxyOOu9rYUf3tqRgei5laWkvBQF+6uPqbJpKYcqZkKWla0oQswArQ0yEnAklM+bMlAvBQLRW2LOvORdZE666zi8JfN3GSx3rdY/MCgDlYjE2k019csZenB+j49s2DdvNlq7r2O+27LY7ttstTSNMtJz1HOm5qmu5XU635AVV0gEjTOGmaQUYNso8yoUSM0WZ4XOYmaZJAeKB83CW3MGJ4PkcxCEqzJOI1FYGtpH56q0Ua+W9Mt41qjUUl9a7fDG2ubz8/GvlRrVFfgj+vNo4Zs17bFnglwvQpK6vEm80jbCRfdPiXbMUjsVAZpWQMFaAv77bQCmM41nOgcv8QLPIFFYQ+yLSXSfOj3zq9Wy8iI3Nxb/py657bwWW0O9X18QLdn2Nf7QwIlpStf31Ih9FLi3nDMaiAvrq0qvE2kV9zVye0xfz4fXmYk7kFJljZIwBlzOD8VLMVTt0YxuscQwYUjGi9R6yyHPYjC2y9i1kCgpxngjjQIqRw9MjT/efmOeJ49ODuHONgzrYSUtcsR7TbmQOthts24v+rfNamBFgNIaZnKK4OcZZnBNzXHLGxZQE3fPK5U70ci4UXS8uQZ8fSUF+/Lx9Fstfvub6bhevW5m6f8Sr/zGMn/8G8N8H/j/GmP+XPvY/Qwb/f2eM+R8Bvwb+u3/ohay1XO22bDc9u81GULOLjTbGKCyglBnHiePxSAiR4/HA/ad7VVMfOJ6OQn1P6qBRCjFFbTGS3vh5nhYq1tNBFLjvH4/Aewyw6Tu2mx7nHVdXe25u9vjGc319xc31Nb5puLu94/bujqZpuN5fcb3fCyDUNvStBNld1y2VOqc0dpDBWRJkU7FUnXwa8CQViJPJbhd9gnpbXidGuch08W2852dffcn1fs/t7R3jFHjz5h33j4+U//RviekTOaeFYROmM8Bb4L/1p44hpSwAgQgZ19D/RSVcwZ+CdTWI8rLPZXER6DedBLghMk6zjmVmniXwTTktDlmn00lc1KyhbVqheBoRhXauo7a0OFudRCxNKy0wNTkyxtC0XkChmJjnSUXhIsPpxKRifhbotarsakKC9nbrwl0qvuAsbS+VhKSJRslp2ZQuF9IXk1WDx3GUFrdq15u0DzxGFWxNEzEOhLCIWO55pbmYUuLp6RFjHc43ClJY5nnEewnGogy39uXDsi0as+DKy3e8TOSNJDjyeGU71Y1MrhkByfR7Fb8EE5KkOKCAa7XVEunBtdXi2C/90XKt2TUBvQja101Wk0K9/2OtXgsLpChwWMGuyiCpEWMFU7PqI2jAlLPqqfSexoiQuPEbTLujhEi0jpAS3//uX8JrzcXLY4kntG1nIVwZBcouGD/KQHMqWldUayPp96vPr5tVStKGm4tUoadpwsCSkBtrFzZGbcmsDI+qy4S51GnSpMrqmLma+L7UBFuSLzSRXiO+CldcjuBL8FCB9xdjXLRVKqWl/acybUouwujTBJ5SaFoJwI3Xt704J7ziXDS8dGerwcJ6/kB6xitDQ8DgTd9LS3PT0Hcd+62IceckehA5Z672V3jnOZ8Hwjzz/fvvFWxRMfaLcwqsegdr2WIdB10LF6DCrG0KBnDGKssH1YzS9kDv1AhAjBScq/arlV1kxLXPVW0MZSBag2tarDo/tv0G37bLIBcKtvFgrDSQpsIwTcQsjmxzisIQjVI4SMpYkCDZEEPktcYwl8w0jjJmKlDZqIB/ipGcpcBRSsE7r4wfR+uF9eOspeTEeRgpOfH4+MyHTw8cj0fun088HQfmEHGHE+3jM+0wM+46YhJ2zPPhzOF4FoezQbXbYoKSaBtLVm2HrvOwgKTiJLQkRAogSis1C1gma9zKMluSablwQQHKBYwqaoyR5DwXJKheZ+26NpfPftZEyFLIqSxAjzWGKUYFOS3ncVoARF5xLlJELLVgsa7B+VbMJ7TgkGLifB6ZjOHsJ07naYk9vPeLO1Jd/3IRcX+AEibKPIAyhXzJdEBsPLb1eGN4ngPDNDOXAsXSm0bEeXNhCpEMhCEyl6Mmg6sG4BACT+czrZHAfqsJeciZHIBkGB8T9nSSMVvSPzn/NU5NugdKqKSafkUsmJMChnPOxJJJpby4P+bCrH8/KehTn5NyIZbCWOT5xXly5yje11av1xnDi+tLHPVE7yylDCRyKhI/JEsxhazxXFGQBqCxiWRlTXPGELSwmWKi9Y7GWb64e8Nf/dVfstvt+Cd/8zf8k7/5a3a7HW3TkYpoVU3zzDjPTKpFWq3Tq9kEFLyVtcIaw9X+mv3+iq5t2W125JiJORImYSKEGHh4eOT+8UGuN2cYxrOYXvQ9TdcxThOf7j/w9PwAlKVV0nvPbr+n7zfEnPHthq2y60LKPDw/MwwDwzwRsugSjdMo+o9GmJti7MLCwFkZz6+/LxYFSzEGm2teYdZWLGNo2g7nG/b7a969+4rtdk/b9ex2O7xv2Gy2NKoT46xXHK+w2ez46quviSHQOM94PjOOZ9VUm17E62uc8RkopA9dPrfm+C9CBVNjKgVwFmjgMoJeH7l8m1qgqOeigvtziNK2mw0hOVKSInvbSB3XWkvfOKyDpjFst5aug8aDterIhsEUu8RWFbSOsfBaY2hKpo0jefZ8OjzxOEd2pjDv79iYW2hazGaL8Z7ObXkcoSmRdoR+lPlibcF7ySdzmIjzmZwS5+cHDh+/J0wTT4+f+PT9e+Z54jycOR4PQhyJGdPuaRpo2y27docxDtu22LYHII4nxtORkiLh+EQ8PgrRZB6J9VrIUTsvVJF0GbTy4sePHQv485+j449x9fp/AL/vU/+3/zFv5qxlp64cZauBm9K4jLGSYARZIOdp5qz22M/Pz/RdzziKKFP/1BNUjLZuXCFFoW/nzPl84vn5SVrDjkdOw0laioaR8+kklD6jtDtr2O83XF1taRrP3d0td29u6dqOL778kq+++oqubXn35i1jBYF2O8peHW+8xZoGaw2NdzRqX56p6K1uqPbC8YaLyrJSZ8Esybe9WFQvE7Z6897x5u6Ou9tbtrsdx/PIdr/nu/ff8+33H3h4eiKEoho6s6wE8B+WUv6dP3UMQROPtNq6XoJ3lc1jXRXl1YDOSCC1MJcQYKZujill5ln6juX+rG5SiWkcmOeZUspisWitpe92bDZXEkC33WpFrYKm1trFdlWwKKW5Z9EZGs5nUopCA9TXt8bQNQLktW37Qleo0nenKHpAGWjaVuywswgCWl0BFtYWq76RnLuaTKfFGS5rElqvhZwr6BCIaSbGqZ76YynlVeZizonj8SDVkrbDOnFMi2EixUaEQo3YuqYiyjzqWaAMtpqMr3mj/KxJGRe7mIIPNWtAkrtaPRPUXEEIfQ9jrFYo9OtaJ++rwF5RQc2i51kot9XSuwqFoyCP0QpLfS/zYkUrdfOuc+yCHVIrXdQAh7XdqCZQVa+qlMK2qxVBh/EtND2USDKGSOTNL//L8Ipz8fKoe0+91i463F6sI/VYNqNSK/u1xWZNwkDo8hXcugQxa+UFEAaczpWF4fECvDArU2h5/IetQPVvMahmhqwj/kLM0V0kqpeMgxUwugjGLpgX1f2qMu3mSYTNBVxfg/7LUGw5l/qaF0KWrzYXP//s9bgUNsc4Vu2VRM6W3W7Hm7dv6btOHC6vb2i9MFjDJNdk4z0xBE6nMw8PD2w3vdi+I3OkUANqq983ITqXGn1eVLjtZ2NU57/V81WTpPqZa3KwMsAUNHLC/Kyi4cZYnG8E+DEGY1Z2X9X4Mdbi2lYo38h1VygY5xadsFgyUwhq524JKSqgkl9cv1UXrmlbXmsMi8Yszjla1anzztN3HblpJAGNMs9W4EcYOK2XgHueEuM0EUPgcDrx+PTM4XDk6ThwGkZCzPjTQHc40s6RlKNWcC2n88B5mJQlNBHmWayQNfErpSyAeoGFYQpVd0n2t7ZtaNuWUpD26SBGDUENEyros6RC1orrURGWkhQtCpmAKStTeWVf1qulUNRp4QcpVn1MUNj66KqNYQznYVr3hleci4r5QzGi7+K86rtYEVxOmTFGnRcW6xTsMyv7rrrGGqMAp84tcsAksXB3JdHkREfBti19aWmM4RQiU4iEUsA2dM5RMKQcxLK9ZIY5cppmuZa8pfEyz6a5cKDQGth3LaVtBLzJmUimREjTtLq2LZ55q9tlMSgLSWJYadeS6zYU1WxGwJtQpBVoylmAHWBYHoepFKJunbGsLqBBi6KWQmscznqZxyW+2npaB3ONoeveVplxEhPkAkkLVamInk6mkGwBK9bWDmhK3RUyXrWcbq+v+eXXP+f6+ppf/eKX/OLnP2e72TAHkS8IUebMXOeRak46lXiolTJnHV5j2+ura97evaVpGjbthpKEaVUFa+cw83w48PjwuIg6j/MgbrPXV2x2O6Z55vn5kdPxGQz0XUvbeKBT3dMdORec7+mDFM+H4cx5GJimkSkGYsmLU+00jWous8VXpq8XBieliOh5WfbJV90XkzJ4i+rhGBCtFz133gu7arPdc3N7R9dvtC24VbmOjbi0VYdOvfa7tqdvRdJgniY+fvwABSZG4hwXMHUtivxIZn9ZaaoPlbUAurI9ZLWrsa5g5jUuNQuI8LmOkMSfK/Aa46rdN89JdTcNMRVydjgFeayyfPqto+1Uy6eDpil4C9bUsVrzNoO2qRpD27hX2xcNBZ9nYhg5DydSyJz7DeXmhk3XSoG0kcJzaxuOM/iUaG2hHzLOGrzNtC5iTSGOR+bTAylMPH94z8ff/j3T+cTTwyc+vv+GeZ4WsetiDM32mubqVvSdrt7R3HyBcQ3FWLLGhNOHbxiGT6R5JDw/Ep4+UFJUppvE+ZI/Kivrcvj/yOM/b+DPP8rV608+jDiOXAYP1U3GGEOxlWGRcd4tPZzSm9kvYIgEJGFJ2ArgU8Q5p1UnScaaJlK0HzKGgDFuqWQZMqZIS5S1bqn0zvOsOkOR/nCgVTFTigRLjfdMoyyQ3jllIU047dFvFDSoNscYg/FKw2Tt/yx5RXDXS8gsDIvK7pEqpSDqi8NZBQqUNTKpWHLUx1aQ6GWi9+pHTZbreC7jkbHJaBDPBYgl7CariXEFBmpi4Tw0TYNzkqRWoAVYxjXnQk6VReIwRgKz2qJkNOiqFpRt09CmRoMzsLZ+5oJvVqtukJaWXAWdawKJBHggDIeF/m7WNoamabBJXL2KLhAV+Pmc6XP5syagMqZry0qltldBxRDmn24MURKNqRWWKIJlGKJRGnYFgS6SRakWXPx9uXid2oYByzXwY8h4rY4ILqNBPSLaVvUGNDO9+Lvy4r+m/mUBsfi2rC1mclu3sFrl/OFR9WEkWMwLAyinVeOAxQVF2kvRVsGojhfeACUj5BXRfEpFgvWE6B781McCzCzX2vr4Qgc2q234cs2X6gKm7KkaZHGRxIMkc/rC0gr38hxiDGtYIXMkW6lxmcvXuQBtXoAK1i3aZJcgeLLa6nMB/LB8tsoKskvQVe9U4OESHLIKBlyes7Wlcp279fNfso5+muPifT4DsYyCGstEQYK8SnFvGknUW6W5t00j56SIQ2HXdfT9hpwLm74Xhmo3SxK2WIrXcRG70rIUI9bryNgVwBNqvexneqnLWLAGRxW4xVTGzzqmdbwkKV7BP6t7pDD79Hl2ZcGyAL8Xa2kdv1KkHeAi2VtuckJlLQJdz3+qyfgSyaigAEacjS73gAoy51zACrMuhrgAKKvbllmu7ZQzwzgRkySx4sxiGcaJWWOAWiAxyiRYwG/KsucKwCfJzdIKYQT4aVrRzhF3TCnEhcaLq9DF1ytGgZ8al1201Fk3Mun+nS6F1isIj3mxdlycMB2jzx5e/1nP8ssk6TWPUgQINVXU1zo9/1bWfJ2PhrIIrBcje0c2BqcnyaiRwLIf5gw5YxQcGXMmA+eUOMSEt4ZTSoxZhLgFuc8UjOjmaPtNzuv+VOORXCBRCEVb4WLmZJPysNe4QjrN1tSlIMy9bBT8wRCN/IUAP0WAH1i0ezIwFfmMAvwU3eNgLoWoe119br4AfbKCPlV9r64BrzyCa4tUve40bs51PZUR0etJ2+oMeJUjaKyjcU6BH0NTywGmIM6zMrdqq6YposUZvGcYBmXfzRxPR2HRjAMhzhKjLom+/McaYUA7jVf7vlOnWa/gCrV2td6MxKtzmDkPgzgf9R1N1wkzj7XoWhnmWZ1n65oorZ9yvYs2pxZCsuzXzsjnsUiO1DiPr6xr1jXlp5qLBS5aWcFokCnykYXLVmMBrVsFQx1egXWnAJX5LA61Ne/LRkC2jbR95VJUB0bmjCnyXst+SAWGL9bwuubXmKnmCNRWVpbHL5pGL86j/Fg+nwJFFFnvK/CTL3KgJd+qI1EdBJXZ6Zb2LtHndg417KiPXYA9vIx3eMXpaIDOgiET4ihrl82EyWNLFLOW3Mn+nuQxZy3RWpK1OAPOJLyNWJMV+Hkkh5nT8XkhBaScMc7jvJJJjDCB/fYKv73G+gbbbcG1FOul6DRrS9c8kcJE1hav1XH7RTMsUFiKbz/4ppd53sX3v1jbfl8u/ofiypd55OtMtD8r8GONZbvZqGZEtb+uiZiIsRqTNaCxbHc9JQvDpfFiKXgeBp6fryXZStJuVPtT5xBIFbwZB3JKDOPI6XQWFfth4HQ6iQVbmElh0kGOlByAwjDODOMHjDF8+Hgvlu/Ost/u2O22eOe5ub7i+upK3cH27Pd7vHNc7UXM1VlHv+npuh7rHJvdlq7vpWqpG4Uc69K1VAEKlClQyApEBbWMk6qlsHgCh8OBcRx5Phz5zW9+w8eHB+7vHzidTos99yIC+sqH00W01AAhJ+Y5al9wHdusekXoirZuDt57dQayGCOBlbcW51v6Xipcx8Nh+a7zPDPP81K1FXALGn+kaZ5ErK9ZQbfLhbjvO3oVo+06adFzznK133Fzd0tKiWEayM/SLng8HjmdThgjbXxt20p7X7+h6zpZ3Gvy4iyb7ZbrLMjwNE3MaifptNWhtnRVRlEdjwpgVsBKaPfanqKoRwgDx+Mj0zy8+hiCbgRu1WihZIbTScTWjSEo6IPz4Dth3SA6NqUmfXoFWyPilCjQpwNf/3/xs1bOLhgO9gIsstI3XsGkZZOvrjHG6BphXgBGLIHZkiLIj1KThLKsM6Us/6DP0UVedXsu2T9VT0Y2XmVl5UxKouafS5YW05TIuz1vbza0bY91kTENpNkRQuGcE+GVk035TOv1tDymejyl6twUXpybpmmEHeesMCvDmZQSbdvSNKKDtsyhiwS7tojVM3yp/VPKxVgUEZCmnvffFxXWmOdSAHoBn8wKNqBW3vYSPFDdoIVZsrLsartNZf/tdjtZf41Z1ojo3AKWU0T7IoQgVUKd87babFf20gtXstc7jOEzTaRLbZiXKGjOSVtxMrvdjqurKzb9hv12y83NDW3TCHigoocUZSkMI4fnA7/76hs2mw0pi0BrwSx2qcYYTCmqYYdqe1y09wgEIUCO9xK+aosciINOBRNWwOOyNczUKFXGuhQJQIxZGT9AwaoduhUrXidAUAWEBHhVzYOUCSlBNLjiMN6B8i7dEqsbbWeSopNdEvPXHUuDbIqL4yeInoZFNHp0jckkEtpyau3/v70/iZUtW9oEoc/WWrtxP81tIuK9//1NtlUqoQIyE6UYMUAIpBKTolGVYJRISDWFWaWYMELKEgIxYZISSDlAghSNKoXEAKEqAVIpKapUBcrMquRvXh/Njbjn3HOOu+9uLWNgZmut7efciHgv/N737pVb6MTx68d977VXa/aZ2WdAIo1iOeDuYYdpmrDbD5gWxpwIcAGh3YB9wn6YcffrL8AgbDctLi96eOcwjaPwfiQpgHB5uYVzDhcXW1xeXuaUQQs+4bTksXJVWl7TNAiNVIcTfqEpp2QvmnJenFoQr6kqpotymczzgpvbN3i4f9DqQVK2N/PcqEEeExQMN/NFxD1xVmirFXAhPOLiOOEoMjxAAb7pAWb4pocLLci3YiikqOmxSUFPjSrUdDZxZC6gssFp60XXBBgLR4wpwoNxkyJexQUewBQTBk3/dy5pWgZh5oRRDdM5plyFL0Z1loBwSML34SHRWreHBQRGIgYrj54BvnrawqKxkjPgB4hEGSpaVKcTkF+impk1KoglCjgCiGwViEoqS4SCLkSIakonIi2bLt0iEWMe9fj/UEmJMydk0r5MkTHPCkrCwZMHeQI4wikg0rYe3aaF94TGt+ibXqJxyKFxjaQYKeDniPDs6hKd9whEGA8HfPPqFZom4NU3r/H5V19hOAz4i5//HD/92U9xOBxwd3eLFCe5J/lcZVP0SXEgvnh+jT/8g08RmgbBSXR7Sgk0O7AncHJA8EAQJ/fN3R1u7u/Qti0iABcaxCS8pBstiBKXBeMyAQxMw4ipH0Dk0YQGbdtgv4847B7wzeuvxRk5T2jIoWsDnm8vRB9IZX0nMObMjwksS8pE8acUiyIE1mrd6pxUwMKFgOfPX6jDmPJ547wVubHjR4AY75xmZ3i8eP4c8U/+CqZxwBdffoH9fo8lGV+olOhemf8GDAD6GS3uYfQDgFalLGyYRQcSkO9YBbVny4CS/jEDdVxXXyxguqnnHhLts7nw2Gw9nAO6DgiBETxh2zo0jfDwdcGXasf2H4k9kPfeE0lwhM8uAg7TCHq4wzAncNPi7u4S5Bv4pkXothJZSYyg4yTlXnQniRN4GYAUEecBy+FBAJplRpxGQQV9g2c/+mMZ824L110DPoC7C/DmGuw85ghMSQrrjPevMNx+iTSPmG5fYbz5AinOSNOh2GJmuORRfH9yrJscBxH8UHm/wI8jdG0rETlu1ggWZCKxGtMOgUAkymhopCxfjBGHw4C+26jSbjw2SgCsVZ1itJLijHGacBgn/e4Bu92DhvkfMB92Ag4d7nHYSzm//eEBu/0DjGjXlKNOI3+C97h+9gzXV1Iu/vrqCleXl8oJ9BzPrq/RhICr62sBhJqA62fPcKH8QCXs3aEJTX4NcnCsCtSyKNgjYIIBBAZ+DMOAb775Bg8PD7h/2OGrV1/h5s0d3ry5wzAMWu63kFGdWgw9z+qYRT1ovw/jIGTbZFWO1t/vug4pbaQ/mhatNxK2FqHpAQhgsj8cZLIT5apgBgSllCQ6wFXpJZoGkAEvAjbbLTYbuZcQ8G3QNg0ur7a4vLqUdIhvGljqwW6/w83tDQAI2NN38N7jIkZJIfBe5oGV4+06XLB443wI8LOQjxvwY2BdzMTJJfLC/iYqlvJqEGcFPcYJh8MDxmk4+RiiOjjFE+AgYa8HxGVGRAF+qOngOwfy5iFkQEPfs8cFUpqX8glbR3QB5l0jKvPH5pIQebKCQ0YgqF6M3FbODhJ5nfJm+NR2WAByOZgNvS9IvvytVDKRaB4AcpDYARutUpSWblQQdl5GAX/s/RTRuATwZwghgVzElCbMy4AlKt/BSY9Ue4Q1uLIudV5Aq1XKFRGatllVyBP+DhZyZu+PPFoF+LFUBqCsM5vTOXpNAan6fWtbidRYA0L2MnPdmFJXASG5sodbv78ChPR3aEKOxrOozVU0IAoRa4RyxM0zQmAAbV4bmQhZFfR3IkdtB5DPirzXOhvfqJGQSSpQbmR/215c4OLisgA/jVSmsOpswzDgk09e4sXLF1LCOEZMiwDobd8LOK7Vi+wpWaNCWNdQ1H3LzjAAWvlMK/1ME+ZJUudqzqJVCh5MgTI+LwPqmkz8LWSv2uc+aNqXgCSW1pWgKVssxiklia4IVZqmEIPqHuV9McSBvCZOPpRy8dWaAwiJ6r1GDApJAZeiBgRgnCbs9kJIeRglVSsywCROkeQYu4c9Xt/dY14iNl2D7Uaql9YV1a6urrDdSNTAy5cv8Nmnn2iqMsECbVM04IfzXJfouAYhSEr2MIyYRqlItiyzFI0AlI/JPwYM1Ds9TRP6NuCmCZiXGXd3D9g7UbinecGiJeXnKFh+HhPY+VDwQTraM/OWYYbPOxECnIfzDRASfGhBvgG5ICTLapAVl7s6P8yZwYBbXU2eIZFUCGQCZo4YUoQDo0kRr5dZnllDYwiAp4TgBEyKMCCFc4VNhjhGos2fCMQoUM6AiBtlF4pOU5cgoE/S1pESFjMg4+j0NRFyHShekFQ3SSwJYAIgaQSwzjzOPHsWdVkgu8RAdFZXyuKPkNPLVsrkCUScakveA+S5LeqFNAJCwfyEXK2tdR5XXYOm8WhCi65T4Mc1aINU9yXVGRwRLjdbtN7DA1imEW9ub+Ccw+eff44//9nPsN/v8asvvsQXX32OcZywTCNSWmAMicaH5ryQ2DdNwNXlFi8/eS4puktEXBJiBMg7sHfgSAIAeYfICYfDDofDQQimr65wdX0t+y8Reo3+2WvFWwIp6fMMH5TDrmswTVLV6u7NLQgkkU7OoQsNnl9dY9P1mJeIh91eKs5yQoyT6FXJ0uhOb2eAoTxh1UKvdEzRXTWd2Hn0l1fwTtETnU+JTQdSvVEuIelQ3imv0qWcifOMwzDg1yGAR52v0SDQ3KSVDrlybOmWQATRLalEBBXHHMRjnkGdx49tET12fbt4yapA5uCyZ3EOCA2h6z36bYBzjCZEeAc0HmgbQhdEV2p9A6+cZZmjjyQyqLB3nkaCA553DmE54HD4GnF/wOIa7MIW0QWEpkPbX8L7BuAoII9F1qcZ4CSVtgax1dMyYRkPYE5omxabvhfH/OUzXD7/FL5p4bfPEa4kpWtptpjaCyQ47HY7HO4fsMwThmHE7vUrpHGP5eE1lvsb4fGB8IBlmI7wDs+Zp+XteskHCvyYrHw1BPHssnj6LNULoNWiMoW4CVKJS1BdPdhiAikRcEoJKQQErR7mmwCnBk7iiGHwEo0CW0CcFW9ml6NRkpbQTXoPI8AFOVFulgWJgf0wAs4jhElTjsTjNsWIYZwQmoBxXrA/DMI500iVEkcOTdNl4Ceoh1m8a6OQViu52jwL+fE0TVjigmEY8fr1a+x2D9jtD7i5vcWbu3s87Hb5M0bKCJxWQSpou3j+PBJSclKiVw1xH3w5yKlsYDaWBuJYZa6UJOzSh4QmSlj7NE1Y5lkIkzllD7iW4K0iPozF1khQkb2qxECMM+bFI7HHOHl4L5W9hnHAMEroYYK02UevucuSCmBgEAgaDTAKVwgnhBhypJkZtM57tCRh8qYEfpuBsU4/8ar0smAmBCFe9v6dGZymnzkqKT6Seige6chW2cyDQlSljtZarQyCnWXVwi5KsY272m75cCSoJ5IU7iFk48jmGOc+qgxJ8zhXt3lK8nls5b/F6noE/LBsHMpXxWpUaHpljvgxfhgh0+Q4C9kbi2cCkLKYmbzRe1F4o4SHkvPwb02b/u2ECDllq6x1l1O3DNCxOVjAEjPC7TucLyjGoQPnSnuclWZmGyt1Th2BTvU8dzbQuW2V14KVIK9ShooP+sgGMODJxojWKVjlApQBh7oNFs1Q5ngFeCpfGKcCVNTRNplYuTQmG3mnFMLai2l9VZ6z3isKkMoabRbmoNwuA1KMUjRgskIHcyazJgjZfQhe1nVMOeXC+pEUBAbkFK4BUAOsDVCUrbbMtaSRjwYa2h69Bn5KqqXw3hXOFyugIsTOyh6WAb9SSY7B8AggShLO7gs3XkYO9D6c50Y1hu9ASgqipWXZGVWNo3OgJJUj64g1+Q50T6tWgn7OB4eGpUJTOwlhNYNy5J5V6wraB1eXF7i8uNAqpRv0fSecM04DMcFi6HtSA4XyHAxNkP1L16knISieRgKR8CqWcZAxTMYP5ZxytwAXmw2WacKytCAG2hAkykyrjiZmzAtrGWLFUFYlF0u77N+1J5zWh81JRQM/Yele8lsixlI+d8zCWwsr2Gigo5yP+ozOYno5pz8xZFxnA7tYo5lYAZIkK8Y4dxjCl7OUw00KKAA5+oBYTBevBnB9L8GV8g6+WnM274zLD4TMTyTRfkU3lyqptka9Aj8kukLuF41+gPAzCfAjd0rM8FaBqWlPCsJKdLeAHvM054iMfA5BwJbg5Oxsmx5Awnbb4epig7YJwhPT9HDOI/gGbehkLqQEjikbx1Zdy8AbIsL9/T0eHu6x3x9wOBwKDYPumZx1Vx3nlIAY4b3LKZjRUXY4WfGaaZ5yAZvCl1fti2TpkyQpNMKIK1xmEMA+qjPcxwhSXXYcDtl5JWdlUMeDRL9u+h5+XiSqPwJICyhS5nSWvf/0a5Gh5M4VkAOIvQgINQig+vNR+m49A0kVy+OjvPwqaZ3eCxjRtAuWGUjLksFDsMUZWlR49foJraBaolk3Zn3jW3tLJglsD7TrF11L9DQG1I50wvXVENqG0ARx5jYe8D4hOIfG+Vx8wRnoWHonn8GnVm4Y4vBktXG7xsODkBCxJAYtQByARB7MEYgzzElL5qyNApY6B7gQ4J1U5uq6HpvNFj4EbC6fYXv1TICfzRXC9gLkG0xeikNEJgxg8DKC5xFpHpAmSe/iOMMKtZhWfDRBKrPmu+f5afYyqo4XOxfNnrT3nm4O5dF8e1vfK/DDbBUDCnIJogwUuMRKwKXVnoYRMUbJLw0BRI1WnWhUqV1ySOc0zTgM8toihIgI0zxjnCVS5vMvvsBu94AlSvrUMEp0DDMjNC1806DpWlxcXsoCNw+1Hpa2vpkIu2EBaMH9YQS9vpX8+OYrNKHRMEup9uSdw3bbo+/aXEbQiBS7rkfTdrC0BoJs/OM0YFmkzfv9XgirqoifeZ5xdyepXtM8yetRqnjsDwMmIyxVpPvU4pVpXbgyJJywbVrhAlgWtFMj0QBJUrUs/cvSneZ5xm73oJNYSlBKmHmPthPW9WGQtLwlColZ14kH07zdxocjmyMQWkInyaTAKGUomRnTssdyGEFEGKYdHg7i0YRnREg62pgmbJ9dIswtHsY92mGngBAwxRmIM4ZxghA+kkYTlOoGUCOy3/Rou04MWzWUpnHCbrerkPuyMZiX1QeHfiOeJiLABcnDNf8En3o3rsRKQTdBiCDnSVLVFmZMUTzOoU3o0MCFBOdbuDZkw7TS0zW81Taj8gd7ZcZF2dT0udwCJqeVwQqPx8rIXhnEZXNbSbXhShNkw2SW6jaC9M7ltSmDbCV09XWMmeBZ0rs0goYVOIJFtEi+fqOe9G0gXPY9ri4uMVPAfSRMQwRRQBt6uLb5gaO1Fuc8rq4vqwcuYAxwxCF1BKKLUhUl6lIBOOedpns1md/DUmcHq3pXpV8VTcYMX1fGSMdCStnGvA/ZEZbLxaMuvb7WO+poLuNnAKBRAjoPrCQ51eldDcImYNNtcsSPpXh59fIFH7DdbNE2LaZRIhvivIhjoWvQdYUvp3RwbZieUmhVBQ1QQMALYAX16IEIWIoCMI4Tbm5usAsP2PU9Drs9mhAk4tO4WaYJ0zDmKl9912HZzMA4Yl4WPeOiVIdiJ0aOVqlc5hmzphwvo5xFnJLwT7TNag6wgenDsAIacQTS6Y4ta1udKeQcAiQkHwo8OiXHtRQwciSGVQ3GkUQRN40XLgcdX+MCEuDH5lGEkbqbQX7Ks9GRQ99vFNymnFJld/MJaDL/gAGSBCsKQQQcmkH2QRDYebjQwIeETd9i22wAEJruHok85mXB9dUFXj6/QtMEbDc9LrcbBO+x2fS42IondKuvnbON2QDtGVFJiqEjI2ew8EXJRq5gQUx4eNhhv98jlxtX4INcIeJ2WjI5xoSrtsHw8jliTBiUGDqlhHEy/iIp5DDPS3agRAXfF41Wtv4zkHkVvVjNqT/92ZcnG0dJL4nSTSQ5FC50CG2P0PZ6/50CZoYzVmeJ6YlZwTVnBiM5ICpWIueOPFsEYc42V5mUjpOkJaJw4zAglek0hdcnKXVMCoYJrseadpbUmeJAmv5YIm7MvBEPvyeC1zLfuRIjkMFCIoCC8XY5LcEsY++CGFekqZl5z8xk9MJ1J3u9VKlKKcGHBs1mCx8aePfzk41hCAE//vEfYDgccHNzg3EY5EkFyYZrCH3foG0abLqAZ5cdmsbjctPhk2eXaNsAoSCQ/vBNh6bdwJHHNEwY9oPodzHiyy+/AAA0XYdeC9d8/tVX+PmvfolhGHH3sMPd3b1EhDsScFbbaYBUShFpGjEvDR5293jY3cl5BdnHliXifnePb17fSOXjecrcNW3qwSSFSMgHLGpL+L5H33dgZnTxMkd/TuOE/devMsjrvcNwGLC7f4M0TXAhoN1ssOk6bDdbfPbyEzy/eoZhnODdLXaNVP3az5Ombaaqgt9pJSXGYcqFTWRuZ2DfdFetttsEtA6ZBxDG+1cBsMXBAe134XViIpBrQN6h317h+cvP0G8vpET4OAr4xLkF2dkBmL6lF33kFOKjV9XeACigXPTafFawLR2GFaOx6zMzyAFNIw6BEAgX2wZ9J+DP1WWDTS+pXq13SuZMaJxTig7Kv/PZDYumZwWBT3cwRibcRQ/yLZ49u8Tzi1YCIfaifxx2C273B0xWFCBZ5LlH07Sik3YtNtutVq7bYHMpNCv99gqXVy/gmxbd5gKbi2u4EOBCD99uAHIYFsZ+Fhsy3hxwc/s54rBDvP0c890rpHkAzweAFxRo/fdF6r24RPAD5ax5/I3vZyu+94gfZvNAyPQSRckpn4Mc6lbSelFW/LZp4dsuc5E0TZsBhKYREGgcNRojJfSbHtuLSzjvMC8F+NntHhCCgzD7CygRl0WIr3JFGjHEi3caCiAsmDVdZ5pnKTvPVu1CgJYSrQApoRikykPXBrSNKLJSglEQ9a7fClAAQF0ASCliGA+Y5wnLMuPh4UE9uRbxEytAaNL2TBoJo5wIqhxbmPkpxRRbwMGbU58J3MjreZnhAuW0LwCqyClZtVYaOxwOGoUlmTUAoWk36PsBzknY5ajPV4jbrIrSpOkjljnOQgzdCvCzRABOSzZHRpLyhPBzgBslhaLtG/i2pIN0Fz3c7NFuOjRdiyUKp4FVKVnGGfMkefs++Oxl7voeTVvSSS4vLsAsZa+NP6SOQqijgMzrG7wX4tW+EZ1KgR+LGMkeh3cghFKlJyaLapFw8kkJRpkdfDMjSA17eH6ManP1YmWwH7W9PuDsCqyHb8aRqmvXBmNp83pWr14fG5jMsqkr2ENpAqVCDA89uIXUW8GepU7Lq4yQ1TMrUbIjBBcQyKHzhE3XYttvcIgETFImVcooN2ia/ltG4jcX55yQEh71gXW5AT8Wkn0MAlkkk/WWc0KE3DRN5k6Lut8YgV4GflR5sMg243GpI2YAILoEn/wRGACtKqR7QpWSBqyBq9xWlLm0mlGxjLlPPpPUet0zQhPW5eXVM+29zxWXHFVEnQqCCteJkmuWnsWp91OgOgOPgZ+as0hTZlO1p8/zjN3DAw7OYRwHzNOs5dwl6ofVkOYYM0l50wS0XYs5xqxDW2oeOAHUyLmlAHtMyqkTI0YFdTKRPhVQx86hMZfCXUcvOYsQQQF+HBttD4OdpME4OFAgQAEhF0I2Jn0IheDbG/mzlIh3qugXV6+B5pA1nqqZQwQ68TAaaEJqF2dVX+evRQQgavSqpSh4p4C/AFsCWMlFyAW4kND0G/QX1yDnEUHYK5Dy7Nk1Pvn0Bbq2xfXVJV4+lzTzrg3oOwEtm+DQKrAkBQRknJfFIS6u2gNlfdo5ZuThzgekGLWilswjSVGW/S+DdM6hbTpxyjHjouskSowlqqdUo5GKmEuM2O/3GCZJSZymWSOVY45a1p7N/VhHL1qVv1OLACsMJIl0hQPIN5KKGFq4ZVIvuab8mCcWgKUKM3Mhj2eW9C1YtA0yqLaYx50JC1eguBp9xCyE0CjAD1ClLjPgIsMtqbRBDToCAxoJJJw2pJyMVl6+pPASAS0RGo0I8C7kvWe1zpomR0S7xtLfPELXy79JUgWdD6oHWBcIJ55xGUaLLvFBvluDRSeQEAJevHiBex/wcHePsVJO8vO2AV3X4Opqgx9/+gzbvsXVtsdnzy7RNY0kfGgqnG96hO4C5DwOuwH3tw/ifH1zh5vbG8yzFJbxjVAGfPH1K/z6888xThPGacGg6a9d26DpmqwDGlfMrFylMS0YxgOGYY8YWyVdDxrlf8CdlqgGKcChY8KA8HJ5Lzw/RPBNCxc0qlDNwWkcsd9/hbu7OwCsgJ7YUcN+jxRnQMGprmmw7To8u7zCy+cvsD8MGMYFzFp8g5ykeMWkUfun11GZpWw5UIE+Jgr+cpKz0ROQGgcWbgA4dhmIyQ4K+6rOBM5rSs8bJjTdBhdX1whNK4ChAkS6wNWZUNKupJ1lfmX9swLUocAK52vI32RPrR0j+kPIBRMkG8JsgOIcCw2h7STa5/LS42LrEbzDxcahb0V36LxwpxIIjkmJqmuAmZAo5Wd7F6BHArBPDr0LuNxs0FHAuD/ADzvMaUQcHzDdfIPdYRR9U1N4m67L0TwNPUP37Apt3+Hi2TO8+OwnaLoe28vnuHr+I4S2RdNu0G22KGT8Am3sDwO6vRBA3/AI3r9G3N0jPtwg7t8gLRPI7INj+R1gQCv7iArwY5E+tgQeE08jf+/7yPuN+AGyMpBDxwlC4EVifM2LGOzjOGMYRiyLABo9LOxNAZuYlDDtXg30pcrrTdk4H8cBu2GPeZ7xcP8Gu4c77Pd77PcP2O/vEZcowI/XPMcgSOoKOWNgVo4XiWqZMS+zGlNqGNpBp8CP0Fqwkv4xwJKitMQI5xY457Ek5I3NvhtTxDgdMrixPxw04ofzc1vlDAPQACgSjmrs9QW9q9krvqLVrSCgUE4V4KQpYPKAUau0MScJPYcqWbaRpohllpQ5qVAm3kCnmzzMuNTNUgx7SzsTTzEMUDGjhEuXZMNPD61pEk4PIjVUWat0tS18CmgbRdxjwkADiKcywLpRprhgWeRe0zRimpoM/Aj3lBB1y3PLIWTPYMZo0wQFjxo1ZOQwk43wMXhyCiEApISn9tvChFOOvtA+rFYD1e/nA0N+06qdVA4Urt6ySkKrb+pvXv+7PqJqP8Tqvny03RHKdyx1oIr4IZ6BtOR2mQcmmfLCJVoL6nEhG3M7oAlwyi0VvMN206FtAi4vr3CxvcB2uwVFws4R4gI430iZ6+x9Oo0QIXOtvA34IV1vKYnxKevMIpag0ZENXCyRl1mxMSWFUD17ffpg9fnMqaLggBixXI3c43GqwYPshaqeoY5UqlPSTBGs01Qs/N2MCNaw/GVZhOPAEZL3q2iBPL9XFcZKqpfxMADmoX03+2mtMJIahiuvYpJ2mNcnJkk3WCjCuYTZecxByeJjRNJIVo4pA5lRHR1J91bj8NGuBBNhmTxG7aNpEiBHDPMxpysUZVb7jEijNmJOM6yfieq0P9u3q/cUB8qgooAOFn5PGkFD5TVRnoZZXVbUJ793pIA/XnenHcfE4nySyCTxQtdRtzGJV9wMJEutNSDMzPW6ZbbeMpeFdwrsNMLB0QZxMHkBeMTZ5HJUm/RF4aNIuh4YZR6v1lFe2pbKYHu6gsKaygUoXxIhR/kI+GvkoMIXg6Tr1AEEJyTDjaTDhejAsYV30jfBE2KUVO4mOMRoelEZR+FdlEjjoFXL3oXI2UhqQECr5ylPWGwRg8eilfWsGqFEQrni9ChTWzzsEI6ehTTdibVwAZCjdcAAU0Iyc5S1qAEfcwaVdGUDEW0RWVp4Tusjc+wEmOmYqj2ZdR23oUXwAZau5TR13gAGIgffBD0jDPgR3UFAhkYi95oWLgTVEcxoSUhp0SjPAvyQRgvlqn0nEiE1v0CcF7Rdh1bTsYyLTNRROQfZjHrT3WGAAoSEl1E+B84OTXFMSkXfaZ5kHiwC8ByGURzFFsUG5HPTOM3Ep1yiEi2Sblmi2gSysznyeS45Qq58bHM/hCD0Ek1Af7FF6DsF5hwoSKRAnCMQIxYkzCkqYbKkpjuC0ClUoEVKMRfL2R0OaNoHDOOEYZ4wKzhr8yfv/yfVbIqYHiHbkuneqj+qiil9WaWE6+8yzrX2WOb8EiVie14MeLNiBx1SYjRth9C2EMeH2CcZedEh5bzYV8aX2ifIbbXz8qnP1yDS6lxSHcAgWjsjpXKXgD5tcGgb2f+Dd2i8R3A+20zueFwYYE17K2OIoq6fGu0gB/YdEhNmnkApYWaHCCeVgn1AaFu0bKiU7GVtv8H24gohtNhcXeHi+gWatsP24hr99gJN26PfbLHd9miaDm3Xo9/0cN4hJULU4g9IM8Zhh3EcMQ57LOMBcRqQFknvshQvm1/GxrDqhR/QJY8c5Ef649vSwurU+Nr6KoEDcjY+/fWnHmIt7xf4SYxxEuLhaZ4QU8Q0T9jtd7qZLhgV7MlGGYBnz57h4uJC0nKmETc3N5jGEV98+SX+4i/+Avv9Hm0j1Zu897i6vsbLT14gBI/b21u8+uYrjOOIX/3qV/jpT/8Ch8MBD/f3uH9zq6lkgPOkhyStywYr4UpJu6lISm2yZmO2LOYlRbEvCZgni5JBvg5M+VWfUc0lMs8TFj0ol2WuKkEhb24pMZgk1NY3lEOCzTBFgXZPO4Z6SD0SM4jJoSXxfDTRo2kkCmuZZ/StVBwYhxGNI8QlarqeRBOkOIsHULs2Jblu6J2keZHD5CcJMU56S2cGcIu27RWAWeBoABPBuaQGN6EJLdq2E2BpTrh/sxPS58sLOAQwA313gZfPZUH1XY+ua7EsC15/8xp3tzJfhlEOe3CSaKzhgBA8OC3Y73YgFCMxxgikBW2jig1JJIRzTiLZvEfbNrh+donNphOluBW+JzDwDhwpOlwObbtB03bCNdW2SNOMxIuATZBSmB7ixfPOK/u/lFjMRkJGbRLAMR9S5ac6dOszbQXelMX+2NC3tFAu/05p5VG1yLz6BquDtIpqkbxhC0suSpiketn15DcRwVk0gdNKRhqt13YbhKZB33X49JPnuLzY4NmLT/CX/+pfw6c/+gPsZ0azi3iYEpaFMY6i8J5SrGqPPEl+WnmG3Jdp1X/mOTcjvmmFVDKmlNP9Fk3TjMkMVY1yS+7RtpL3glS8UTEDtOthKTuo/luN/+A9WCOEzACVMYnIlamyAoQMytSv6+cWENeAcrnGwe8lAqJttby4kLRLaq5GOrUCgnVdi76Xao4+CC9YjAnTNL6TKon23PIIOk5arje/T7KO4rJoEYOImSTtl0BKmiueZ6QEaKorzwviNCMtCQ93b3B4uMNhf8A4DJgPe8QkjpVFN9J5v8NOy6pP85SjSodhxDAI2b73YgCakeQU4IuzzCsRzvqtcdqIXudB3oHYAUF4ehyJItt2QcdIODYsvUvSSDQS11K9tF8yrQ8MPNLw+SMDoGjreIuy9MNknhd8/tVXaJqAzbZHo1V3lly5kbKlEpoGvTobyM46UP6drJy4GvWhkegE7wPi5VaM55Rwue1xuenRNB7bvsWmb9AECfN3JETMnCtnQUE/i5rhDJA5hwJ8kjgziAhRqylyksowfd/q/iH7AgE5dU3A0xIpTQ5YnCinxk8D57BpJH0mpYS47cRxlonzo74WgxlcgWF2X7bIxHcT8WMOGcfC+eGYsdlc4tn1c/SUMDceh3mHxbilNFI8MjAn5fAhp3yQhCY06NoOjhzmOGPU9FmOEXHRikFJAFoAiBxzWpRohyqWYlWmMQAgwENOaY2Is8IhrVRnk6idBk7bY5VX5Ropn3PeqkyhHMekY5bnRgiydom0lJCuxyCV95wP6LYX4jjzkpYRNDrf9qOUoqyJqJHUUcbaKvqdQrq2xV/9y38Z31x8g3F/QCCnUS0HxGUBMSHOC2YAyxiwTAsW55CaJOhcJCAyopKQS1sngBx29zvcvLnFOArP5hevvsQ4TUrULhw7D7sd7nZS0Y4gQJno5R5MXsizKZXKaRwxJQHod4cRt7cPaNsGF9sLXGykqpcnIVtmZrS9RKV777G9uEC/3Urlw80G6DqwI8QWSEHW/OHmFtPDgCkNuBv3uNs/KCAp0yqlJJQNus8e1AY7jAOGeUb/VY/EwLRELJExLjMWjiAvjtSQfJ6np9RwmFkj/6iAP4TsrAEkJbbYRAnRCRMVtAx8TGkdNW8LZ4n5IJiWiHHWKmXwuLh6jn4jgQTDYY9pHDCNA8bDHpxi3pOkjTXYVGs3yHahEoVUX6Dqu/Iir8sMLMnnC/+b0Fk4IoTG4eoyYLsNaILD88sW2z7AO8K2adAGAQuzTqhtTEc6cjkLFQbKTp0Tigvg7WcY5z2WfQLmA+IcMXEvZ13ncf1pwEVa0DSSXuhDwGb7DFfPP0PTbtBstuivnsE1DbrNBturKymadHmJT168kJTNvsPlVqo3PxxGvHk4YJoXfDPc4stf/xS7/Q5ff/5T3H/zOabDHvP+Tjg6YTbGYxvllFKpJNV7BS9YA0D22gFMK55TGTQ2Asb8jd80OOA9R/xI/vSySAUuqaK0x+ub1xjGAdM4Y7/bY56FwLBtOk3zEQSWiDT96R6Hwx5ffPFr/PN//p/g7u4eV1eXeP78Jdq2xTgdQBTRNAFfvfoSv/zVLzAMB3zxxef48otfYBgG7B4e8HD3RlKkPElpR6yBn+BF2SK4XMkiwzs6aN5J+eM8iOatBeeN3XhBzMA0jqMlWmibprZZhZ0kfSOdZhvWuowxqTcazlBdLr38jrzSZRzLq+KlV0WcHJwLYLCWCheSuqieyRQTAhGgXgVPhLQscGCM84zpMIrSl7l/HKjrNbTb5/GQcgxSYYocZa+cAXZETo1MB0cWHh7QBFHC0sI4xEFTO1p0bVLPVwd36eGdx/W1VGyb50nxA+MsilgWTfWbJyV+dppDPdpwKTAi4yFV6krUhKWahCCpF5cXW/QbKbHdtI1wVciV3skYSlh2ixBa+NDC+QbkWA0PaD8GnXc+E8JZ5ZhSchd2eiFXJlsx4ysAVB06ZqSXPycxVqvX8tJSfQDjdbLIMItU4JQyOlbnvdqBiroNAKxqGlYeSaukUPUPNFfet+IBdUBohHcjhAabiwu03QYX2w0++/GP8eLZFa6evcCPfvRjfPLZj7CbIuZ2QjNGDMOENN+XNX0iIefQdY+JMZ+MkrH3UcjVhWdB+FEMYGFWDolMLClRmd57CQuurmX7HKDAjBGvqyJTp3blKBbrW9gaMUD0OPIHSNGt070UCKlTtyw9iyHpY1FTQwE1dEm4akCyr/exlzSuqjIVkZVtDwjBSwReE6rIE9njjF/t9FI8OcfjlqMJtJ8X9SQbUaj5hm3MvHcglipXxECcZsRhQlwWDPs9xsMB03DAPI7i+VIvp+0zYwVC5HRbTlIpbCkVu5xVRiOCN4OxDomv1nupyAa4wCCIoSDRZOrJ9Jay5SVypZGUEu99NjYt+sCEARSya+T22B6b8+FRdtHvmwP/m0qMETe3t+j6DkycHQbTWKVh63kmnBycqXKNEJlBajxobRWiDP5INE/Atm/BfIGUhPun76QKX9cGdK2klxsIT7p3Rl3YsUo/9t4heFmJTqOUANs7JBrQJa3YxRIR3bYhe9AF+BHDr/Yqs4I1wpuhhOsCMeh4BgEhwAA3gEavlCqkBvDoGaBGkkWJswE/zbsBfgAomOkQIHO8bXtstxdo0oSZZ/hdj4UXOE3vIeewMDAmRmQG+QAKDUAOfdfjYnsB7z3GccR+kBT3ZS4E7HVlPOIIpDk/p1NU0wBTa5/9F5xH0NSs0HZClOwcun6Drt/I3uYDnAvajykbeMQpR+k6TQiy/s9VmhRZJSKN8FGk1Tsh1yUCvJcUoaZBf3GJphdute3VNbp+o8imzMEUDfgRsO9wOAg9gBItn0JC0+DHn/0IlICvrr7ENI4YhxFxnMBJ+JDSkhAh4FtaItKSwJHzguQI8CLlypEiEi8AOYzDiN1uh2Ec8Ob+Hq/v3mAcRxjxAAMYxgmHYUBiRgitcngZ75gSuFPhWoqQyHdGwjhO2O0HzHNE41ts2pTXWvASkbvpO/SbDZq2xctPP8Xzly/AzmHnHA6OkBwwtYy5YWAcMe3fYHc/Y0oT9vMopbWZpZprtkhZgT+t/LXMoHHEbhhyRLhvOjgfsMQoUWnKr+edO4r2Po0wUFULK3pBjvpMsl9CU2Gs9Hne9VnsK7Gr8mUAkv42Hs95iRjnqHqvQ7+5BKeEw36HzcUVfGgAMJZpQEQ5b4DcdUVPhZ3dtYdMbBGuGnGcKmaZHFlXzaCMg/MEiy73gdA0DpuNpHc1wWG7CbjoAjw59D6gcV512pQpVSIf2YVqtmXsQZ0SJaDhREIe6K6xMOGQ7pGWGRwbRG7AlOBaj81GbI/tZovnz56jbTtsL1/i+Sd/hLbbgtoN/EbImkMb0G5aeO/w/GqLT59fo2sCLjYtri+Ey+71G2CeDyBmxOkBtzdf4v7+Hne3rzDcvcY8DojTAcL9+e55fbJ+or+/DQBa23v6vp6pK9CfTHuoIIL8ve9+nvdP7hyFSFLyvKU0+f39A/aHHQ6HAXe3d5imGU0TpJyi9wASthc99vstbm5e49WrL3E4HPD69Te4u3uDh/t7SOUniZ5glm3Ye49vvnmFm9ffSMrXw71wIcxSijmnMaxAE6deckKkKIoiKQlp5T2U81jLsWrparIqB3qtrAQbqohiYMqmpvauGjX5e6i9krZCkb3hdn+7FdefZ6w2pvqap5Jaka5fGwhQh1VKc02BFQAhNeJVD5pSYF4VSzeKFh6vOdZ1CkCGuPKmJZ+pc2RJF0stckAJf0cOueTyOU4sJKrkEJx4tNumRdd1ypwftOqCpoH4ErljPxZNQdVYlZ/KeCENx/flmYQkb5GoCgDJ0tbeGfDj0LQdfCOkgOQDnBfCxcSW8iLeQx9ajXbx2n4NUuak4a8MTgtSnDLImSyg3CIYgKMdrxx8YqRyBsk4Az9VypFWLDHvCEcFlgwwOjI2MyjBQJ3uqL4N5E01r7cCUHivYK4ReQdf+AgaUa67i2u0/RbtpkfYXMH1l3DdBdC24BBA7NBuCX1IoOAy99VJxxB4bPysFmR5LumGEhEjIeIFnLGUlKLIGEdQ0gihOaepZHAij4negfF4tmZ0sG6i9rmNEVEel9V8Nyy9ApWPAaIMFLGRvmrUQU2Ep5fz7LHk1FrGNAqgOykHXFIOlLpMvfXvogaLkJ+fWso6sbat/splHdRVtOpnS5pGkQ06BYbsvE0Woq/Rcla17kklz0C9XF3DoIga9K2CkDNIBdhYSylb2QMtRcucF86XaBZxDuiPRReYlzPfj3Tcy3wuT14Bi0cHn61ua5alJ9nvUwqzFDZws1SkBAGLFp+IMWpfSdTFsggAHBRoXJRnyngDQRLR0m968X72Pbq2VaBSjZuU0HcN+raR6LXGo2nEuSJBjZz7KI9RsvLE0L6XVKag3wWg5aOlfUkUNtFVDAxQ4Ie5Wq/VHmM6QD2ns1GUEohqEnchIDbA3obE5XlUvJ3mcGAtAGJz5eRi53X+pzkAPDgEJB/gnQNXTjjA8A9N4W5aNP0Wznv0/QaXF5fwPqCdRoRWq03NM6ZxEqfYIpxciZPoxlEKYhj5NwECfjrVM7m0LZCldkiaVdMK8NM0jURwOKlIJtGVEuWR+5TtHFfAg8vIHMvxX452KAUttVqZpqJaZKkqvvnsXhToWlLKxV5OKSkm7HY7jNMIgqZDNVFS9YjQtg36XqLyurbTyH7R3ROL4yuy8BzGJGk+y7QgAbh7eMDD7gHDOOIwDJmvKgM/pr9ad1aHak7ZdE6qt7HqjEHOWeHJCxl4dBpl7Jmx2WwyJUa/2aDrOyW7JyxxAcMDjQGRgGsTXMOgtIBJIsnEicPZdinjqfZEVSVL9luXyfdhHG1ZR+P8bLXD7bTCegat9QPrVyYHK7yxOBKakEoPAEHGztKPK7Mg88wy8jjbd41TRexJ4WCdp0HHzbgfi9GdnWBcZ0NQPoAESC9cXVnHQvU9BWmk//OpJgB9I1HnbSvpXU3j0DYerTrTAxWuxUfmv7bP/qvfV18cLCG/nI2n21e9d3h+vUVsGVN6hjg2SNOAOTikZYRzQNNwBn4unz1D27bot8/RX1yjaUXn9n0Pch5NF9D3LXzw2HYt+iagawI8kZ5Rwutz++Yeu8MBb+7usH+4x2F3j3k4IMUZKS3Ih1jukMd6128ib0vZkjlcUrLWt1iPV7nG0xBO+S4d2YZHFvmqOubT8l6Bn8QJh3HANGl61zzh1dev8Kd/+me4fXOLN7e3+PWvf439boeu73B5eYEQAl6+fImf//KPsN1ucXvzGl988TkOhwO+fvUKP//Zz3A4HLDdXuDq+loqujTitSUCdvd3eHP7GssyY5hGHIYDrOwsuQTn1FohWQlMEYmlU5eYcq65RJm4jBPVisGjAcR6AEsVZxmw7GGlAhQxILnwLB7UUkuG8zUt5LaotKYBVGCLPotx27wb2OAJ8MfKtqMY6ABrUI7kKgetLNK3DS76Hqye5ElTvYZxxG5/wBIjxnHG/iCKcN9axSufARYJ4dfyoY5yyWbrHwmfljG1v/Vdj6vLSxA5TKOEcjoiIBHiIpECIQR4TX95dv0cL148xzSNePPmBnfdrZBYKvmkEVyWNA1JBxHwoABWTQiZDLptNYpMoxXMozcOA+Z5gvGMkHpM6wobpxTnPS6ffyLkjMqeH6jBhhq0CsJ5rVBHzkqDVqkWiEhxQpwOYjAvE+I8yCEH8XyugJ+3GZj625mhYoc6TMnQWXVkQKDymBwbr4/Ag+q3kUjXxooAckII50PA5cUl+s1GxlUr9JBv0Fw8h++2aNoNLl/+AfrLZ+i7DtuXz9FutwiXF+DL55g3W9AWuH7usCXCPE64ut9gHqcfPG7rB6VSzt1AGa3PWwDHsl9YL9XRLutKAeU6yxJzJaikoCQrGGBVfexvBnimuMA8xmLcVpUI2KJ2OCs99dAwGMSUCX7t+YT7Qf5m7xVekSq1B5TTfhji5ZuXJc8jQD67LIsAeU6qmXjvNX1zwGIcDYeDfF4Jz5166+8fHjAOpcrIqUQM6/jWdSJcX8rplmJOCy7KsF5FjUViTWlkRhwnzIcBaVkwVkUDUjTlR76TzyEGYEowp1xS1TsSzghGBmGQASDW/je+kbJ2xSD28r7yhDgFkdu+Reg7eB/Qdy26rpHIGG/plSUCF0QlzUQmgk2HHOWzOuvYTllZ75aOVH31pIdjTAkPu52AiGlB0wTM84zDwSqHAoKRs5Zh7yWSpwnoWqn+Oc9iRJJzElHYSxWp1ogudf5KMYkkhmsnc3m77XB5IaXdBeRT417PPmbGOExAEjW/bRu0rUS19ZsW3aYFmLE/DDjsD5mzKcYpc4/EJRYw3fo2MIxI0yQRI2olp5QNaDXgNI1M7EyGUX67rBVZ6pFuYBpNLevYZpqqTu9Uu4EYvpAIw02/QeQZYRmQuhYuSlpsgpxHzgd0TQc4j4urazz75DO0XYftxSWePXuB0DQYpwnDYUCMSfhhDoPQHYxSNTHFhGkeMYwDrGKkYVumPwAkqUcKzgVyCKr3tG2Xo+R9aJRsWIqlRA2QdiRgAUG4hxxkT5/HCcs0mxUqk1VNQth9K7iAoemLak0L2JhkbpKT8XZe+GoUKMjpOLFU8MnpuCcEf6ZpxF/89KdSah3AZisRSE0IiDGi7zpcX12gbRr0jcemD1IdygXh3YyMcYnYT8Kp+bA/4PX9DtM84/buDV598zXGSaJ6HvZ7aT8kS0yw0pidl5wShOjPwbsevRKni1IhxPldM2NsJjhy2PRbBC9RxX3f4+LiAk73g09/9JnMhSAOOAYwccTd/h5oGjRXHfoXl0gOQBMBn5AaYAkS3b7EEYlYovu4AhBNT8jpnqbnKWeTD3lamCMoZR65BOalclyfUFiieAkGVupenlOllNyZKBdjcRqFlPU70xn1ggZYM5eqjsalaZ1h0cm+6XD9/FNJ0WfGYf8AngjzNEqF4lSRqrOSt1fT2PatpFWk5XN1ZDmhpH1xPsvNdgiesN002GwbeE/YbAL6Vqt3baUinSdCFwT8MYd3zGvNiihJ4QSm4tyzszmf4QQtOHBS3AfbrsXf/Bf/BMs44HD/Ess0YZpGPOx2WOYZXlO8vXfYbHpcX12ibRrl8LnKFbCdVm/b9A2uLjo03uGi7/B8u0FwDsOy4H4/YF4ifvbrL/Ef/yf/HHf3D/jVz3+GX/zFn2E47DHe32De3wuJeaqjfd4FaClS7JenlI6id1GFBeS/kc3V1cWyzgMnlAYpGeePDewjk+iRvOeIH/GKTbMcdNM04e7NPb788kt8/fXX+Prrr/EXf/FnuL+/R7/p8OzZNdq2wYvXz7Hb32Gz2eD29gZffv4FhuGAN7e3ePXVl5jGCf1mg4f9PbwP6rkVI2Q87DHs7+Wg9KJMQo3q7LHJY8K5nWwHGscyL6oIkUzGVylCx2ieGexibCrpnnlfIKGzxYtdyApEMRKDxw5fQ6Jr5FAcNGsAqLp9BqnelWTwh8wAoWzs24KSTZhhJWwBwDWUgS3h+ZGQ58Mwom0azDFitzsgatUAibbR9C3jStJbFC9/BZDUmxvKZ5rQou/UoE8j4iKqDJIYvAyGI4n0aZoG280WV5dXGEf1ELXKXRSEg8I5K0mNbBynFHWMPADdSB2pV1t4RYLyAtQyzfMqQdoiGUI4bcULE+c8uq2AYKbYeQpoIXwv3gep4mHWdG4Dw6pRIC2I8yAo+jJimSQHOjLnRK/EXPh4KqkNXEoWVYAMquZDsn6dPSt8NK9roGf92ioZWCnnstla2LVoxFaOuGkkjevq6lrar7FLLrRorp7B95do+wtcfvJjbK4/Qds06K6vEfoe/qIH9xdIbQsKolCi8YjzjH7rEafTAj8EjfhhyMGuYGj25FCpEnVsI4UQHoMMXClKiVcAjwETKfEK7LH353nGPE/5NWklkxgjYETDqQDCee+s7i17Fq1AbFHCKLe/jupZ50gDljADRuaOqIFHckJcHqKQj07jBOccEqfscScCpmkuUX1ECPpMw0HKlZ9cuPTpU2Ie9JwGk9MSC+AfoxCYW6odaV/HeRZuonlRI0s49lgVH9L+smVDeZ1x+TtY+CCcW49ZJaTgkKWo1s8SdO8jV4Af5z2attG0Vo+2CWhsX1Q+IEclWihz1x3N4xz1Za+PWmVn0Ns9cqcRZsY4CW9hghQ1mCZJZbEqWHGRsQtewB5zCvRdV/pHf3eNVJYjIjSNVI10ZEa/rKcQSiGAftNi0wlfVVyARStZOvLwTgw3joxlSvpdub73Hn3fY3shINMSJd2E1XgdbR0vMTs6rGeJCD45JJdWYLvGpiEpSGx8YdU3Zb6QRKAYkONQ9B8Aks7uzUgmGB9ivssJwYJjkeeT185JJdkQO6Bp0YQA9l6AWKtuRiSOkhBwcXGBT15+gm6zxeXVNZ6//BRN22KaJhwOEgE2jiP2hz2WZcEwjNjvd4iLANDNYY+UIiyTCoBEpSjIv8wzogIqnkiMPiJ0bYeu6ZQs2YOU0HlZouixQE6NNXDNk/ItzRHguVr7FiPgxECicv4DyMa0nc1AyucERa1y68acnpfPEubqPXGs5ojgE8m8LHj16lUeR9O5gpeU5u2mx/Pra3Rtg0CMhpLyFjokBpYklbaEoDnibrfDl1+/wmEYcXd/h69fv1aANykxshj8lshd7+VcVWDzJNV+vQ8aSSPj4yjoDwnvo9JHNE2beUuFWFudNdBqeSni5uEO+/0AxxHBE9qLHskDi4+IPmJJM5JjzHFGTIuMqHLrienAer6as6hEelsqo/NB9IF5yUTXUgU1lefDOwB+FFGUOaaLgaFVxQjRClESIUaJ+HjrPk8lIg0wW+34QDEkRIFR32B7cSVFdnZiW0YvIP5iVTP1e7ZsMvCjQIysvwXLMlX3Lfejqg2WJaDU+RrlI6lQwTtcXgRseqnUddEH9I2Sz0MjIs1mVbAg5TUs+7FpCxasRWA4rve505+TbePxV/7gJaZpxv76EvO84DDOePOwxzgvQkq+6eGDR9+3uL68yPZeCOoIQoKHVJa87Bu8uBTgZ9O0uOzkHF32EeO44DBNePX6Fj/95a/x5s0dvv71r/H61VeYhgN43IGnA8zhlQ3F9yLZWlZ5CgA67nsqX6vayYwcFS3zTKq3SiZLtp6+Vd4r8LMsC77++iuM44T7+3tM04ibm9e4u7vLvD3LPCMuM+LsMGpo1q4JeHNzg+Gwx/3dHfb7B4zjiHka1ahMSho3aa50ysCPKUkAqnFWZbfeBLS/KBuHFnWACviRX1TPl6yAH4uWg8/joGzESHnToUwGpgs/D3xBIjnfhLCaPPnk5Vz+U++av8Ggd1fUy6Saq3UvMFtqgHzIDFLb6ixImj0QOCElh7ZNWGIHH6WM+KRh5055C8zjbT/mASOo4uX1307Hj7lUN9E+srlg+cCA8GNInrmCUyTRabv9Dt1Dq9Vtpkx2ezQdtB+o6otKCWbxBlOUQ2KeFx3FKoIrG9w2H3UsVSl7FxE/An5a3r8CIUzqYbUQ38KvYeSsEt2j4E9aVj9IUT2FyKBNcTE80Ya8Lg0IWL9d/Wn99yeQ8RoAyAlD+jqf53qo57HKE8PMW/l8aFq0vRCFUxD+AgotwsUzuP4Crtkg+Q5TcuJZ3884zMAQGWF7wMgE1wY02MCzAy9AgkdyzW8/Xm8R8yrVB7btEit+ndJF+qHqxLexIoAUrOTMncJIiVA4aKTEN5hXKY6kRnpSjh0Ll45xQfReFX0zHjmXGq8QHwAVR4sBQKvz0sa1soiqsxGquIIZXtNq5PEK8OMrz7n0nW3qRQkTT/QCpx69ZRFDbX5nqV7IUVdPihliti+gWk6q6IEZUY8baKoXmLEss1bbiupZr8Ew5LHLnayAC0MiqLwrSq3cq6wta5pJ8W9QTuPL+5zZ7rT+TdUatAbYflNSDta/a1mpTPWeA6zOPgvjL209rYK7kjxWfPQ2V2tIyXwNVAXg1GC0tQaUVE6nc5tTFNAOQEpG/2vnq4Ci7B08ayoyCV8dINwnbSdrqjXQzTlNZw0KCIXsmFiWKJEFiZEc57Lk0n9YjUeGILmkUWTDo45IzvPC9K+SepIR62pyCbe8GViuimJ/N4qNRMuJTpV1hRSFgygumOMi5bc1Ai8qT4iTcAjlFBMONfIewzgoj404uIZxkiqh44hhnHKhkzlXAdVokZQy3i06QswOj6jRmGLOkdrEJMUXWNeJ8yAnusYSbd8lMaSTjC87ApNTnjyNMILY2BbMk+w1qrbk68tr9l4rrnrhAbKCKBWgLcCP6r7mOHpHRldKCfv9vrRZ37f0pLhEScfkBA4OTSvPEplxGEe42QnIs9tn4Ge3P2CYRgyTVLZaUsVDBQCkKakozhgQ0IUGfRDOxu1mI+S1moIHktTN4EImVu7aTgBxBWWh5/s8L5g0InWaparwEiNud3e4O+zgugbpzSXitgd7wtgkTIEx7vaI4ySVHJcoFR+jVTiF2jxC7l10I9P31KGqUbfOiR6ewfgkvUtaiOTUIuaNztuVIkCqv8h5xJUu82hfP9KLio6t1+QnPm/6tuooljZuldeS8U1mfrxiK2bbTg9ScWia/qTN0UfJxPhkBRCUvDkQmqpyV+MJPkgEkHeZUmutxtqjFk8n4I7XmPSZRU/LWjadgkq7HwEQv71453B90WFpPVov6c+bqUEIDtO8wIeAtm8lLbZtcLFttUCB13NIGOIcC09S1wSpXKZVuCMLTchhmHB7f4/9MOLu/h77h3vsdw+YhoNU8EpWsv2H7Tu/vd5wdLapznOcnrcSm55H7aXq/wZeUHVe5XZ+y2O+V+Bnt3vAP/7H/x6macLDwwPmecbrm9f42U9/iru7OxwOexx2d4jTiCGOWMYdnCPc33yD1199Due9EE4OQ1bOlzgDYCzziP3DohO3lLtMeoBmNlp9nyNlzgoAQkZov61Pgco4Leq27DlPDBbVBq5VHQJyShfrRqaDnRBhIV4WWlmboECtQMpGwk/cVxSrSm9aNenECi59x+SvDH3jZzAl0WflVNLZiMSbzqkBmNH1HfqLDVJiXA4jLi4HLEvCYZywO0yiPE0H+VkWONfCodU8UfGcgiBVgjKqq4ZERvyjVHVIC5akfB8jY0kSgn4YDtkrNowHvL59jRgjbm9vhJB8WSSUMlsv6pFEIZuWw9qJUpYYaVowUZSqZHPMKV5BPd/VcVYihyrv6gn34eqaBBc2WnlGPbKkPD4k6RVOCTSdg1TUIWCZRizzATEu8nt8QIoTOC7AMmp6CGn+uhlk+X/VPMmrSQ/v8qzFqC2GeU1Ay+WUywe1bYamLDPKOl7blVT1pxPFVxMNKAHBefRX13j+6Y8Qmgabq0u0mw3YN+D+OVJzgZkd7qcWd7NHGhLGr28R54hu0+GT2xHbyy36iw2e/8FLbK4uEBywDRs0p+Ov1EeRVEcGIxFBeFWAXFuC6LEXxw6SChTJZdjJUt7kg1blxQBXAMrrI3tSHf2T1GjhJGDPPFva16IeZwWBjMB+WTS1CrD0sTIjVPg4LFp+2z63nhmF/B4AAjVH64Z0CzUDk9XA0jBn78EKFg3jhHmOWZsiANMkzorx1Ol6OgbGq/LU3mqRBUn3VoKRcqbK8WHOjgTEBI7ikYzTjHmQdKNBS7Ivyfg1SilTK8hLEAWTWQhfPdZgSulOym1jg7ItQsP6W8VXwE+V5ZBTw+p0PZmzViZbeeEywWy5L6q75He4RBOUs4fyv61vDaw8tRgRuHDj1JFZutbUVI8JoGVGJMqExtYHtl4dFWLx4D3GRvlawDn9p+tb+NDlTrBzy7HLqZzeBQQnlbSapsd2I+dKCB6hleiivm/RbRpYRFlU4xhEUv47plW/m4FiZ6sxaRlhKieJRohKEs1gsAbjpcrojxp15ogQiXKaoG0ACSVtwRIK3w1UcCQaoRF1TSzzJE7J/Q7jfo/dMGAeJwW39ARLBM8jyC1w4QHh5gbt/oDdfsDuMMH7BkuUUt3MjHGccBgOmhY759SReZnFoanrsl5NpOfoPM8KXFjlL5nfrW/Q1tHEeY/XNpKUqvZW7Ut5FwGGSwmehAPGE4FZq82SRrI4SMiKRV43wgsIR0BoMvGzb9pcBIUZmubIed+vgWp5rtOP6DxP+NXnvzI4FARIJG/fI/iAFBcs84jgHK4utth++gKhbTGOI27u7qSAzH6P17d3GKcZ9/sdXr+5U8BlwTiNAgjoOQnVl7yXSoTBeQQf4Bzhsu9xvdmgCQHX18/x/PkLTZ1yWe+Z5wXTJPw9202LTd/BB4+u70Be9irhFtphWWbc3N7izd0bLDHifthhN+4RuhbPH+5wdfONOKu2Aegc5mHA/uvXiA8HxGHCvD9gOhxWZyk5h7aVvgE5qdjmdL8JGvHjGA0c2Avp+BIl3ZTJIfkgKeYAcHfCgWRx3AOo9h9zIAMGigFANCO60vNWBrK+LrqFgT/2j/K9sm4SkBakKLam/ESxQ5ZYIn4sXQtFtfK+kRIGBDiX4JJfNYWI0HYN2laqFbdt0LULhAAEz/CesN1IOm/whE1H6FvAO6DxJVqyVNlVag2nET+RYVx+tnuSKsjWFAOeyko5rfStx7/0Jy8QU8I0CXXANEfshgXzkkp0Igl5ddc4eNUNjNTaigkwGI136BsvzqkEqZIYE774+mv8sz/7Kd487PBnf/Zn+MVP/wK7hwdM9zdIhztgmYE4FfDnvcrKAHniB6gnh80js/tVu1pdjh/Z9RL5Y4D7d8l7BX7GccSf//mfYpom7Pd7zPOMu7s7fPXVl9jtdljmCdM4IMUFaUmYx8K4fVtfaLWWVQGNC9JsSnmlIjgqoA+qP2dQpVy08H8cNfyR4arpV48valbn0ecTcqhihTKLx9uUKg+pVFW1v3K1yiVrjoPqSbXNtfFc9rJ3gRo8LRayu+qpCvyxFI2s1NY9yIwGjFYNiaZt4ZtWjMa7BzzsDojLhGWZEKMAMKyWNAGZLwEQQwPqWc3pVtqv4kmTlI9kiunCWtZYlW5VwqdlwsP+AcyMYTgo54GRsFE5eIjKIJDLfaB6DngpRp1VHXLOoUmMEKS3rCxyjBHTOFepNe8ihFZ6jVwDcMTCCTEZR4dUKSFfuDacJ4RGxjDFCcxR0rvijBRHpHmUSJ8oudDE5gESCz0viSycvfEr8Kf6YIVdr9ZpAYDstKtTAewrlO+5Bn2wWg6ZVYIob7RMDm2/wfbqGm3X4eqTl9heXYFdg7l9hiVscZgSbm8W7KaIaRxxe3PAYX9A13e4jw6bixnb6wVDf4kr10tI7kUjObknFwM2U4XnPDZ2V9vGW4BbMzwtYifzBzGD2VfesnXESE4BiyUFbKkUfnstKS/yepomzHMhRK+rd+V00ars6ep19eys7RFQoUTRWWTPU1Eiuc3zrAprSRcClN8IZf1Ze/f7wzuq6lUifgoIom0FMj+GnQVUrSiGhd5rPyfjX5gF+JlnzJNEws5aJjv3tV3FOlXBw1xJSOA0HfdiTNa9mcAlyF/P2ePIGgthJ7Nks6JaOTxsnsLmoaZfWgWXFWCL1fWhz8Bc0ixWUUPAeg/hdfTPKSQ/D9FqXVSfWN0/agU861uX+RXK8xpwFbxDXEL2tHvtkxAcmBsw27ll0WzKi0UK/PgGAEG4oWXPc4EUzCe0vRggiROarkU3d1j8gmmeEeYZkaICixp9VM9R26+5pCSmJBw/llyQav4/2PpOOUKUgMxXUHdZSgnTEnOU7aOT8MRjWETboWtuUXqCeRowzBOGec6cZzmBjRdEmkEuSeqWVqed5ogpAs4HAXm0f6ZpwjCOORJvUeJ1A8rtdHJALnxgORrTPAlQxElSNfSz0c9YNI2rjjir51RsI3ws1U+dk+qwrSc0higSUDtdAGRnC+u68j5IGXfnQE0LaBSLs2gW1NE+pWrZY6309GMYl4jb29sC/BCh76XUM1qZdss0wUFSrxgE5wPmdMCbhwcMw4C7hwe8en2DcZqwOwx48/CgaV2VZkIkRisg56Wm5TchoGuEt+vyYovnV5doQsCzZ8/w/PkLqZCZhEiaGZimRbiQALSdVOhz3mmqiwDJwzjgjVYQ+/LLL/Hq66+xxAW76YBhHuC7FmPjMXCCawLCVQu/aRCnGePDDmkckcYZcZoQLWpVN2WnVTFtbOEkgktCSzSaiwEEgpY5E8BeNhigIQF234GYA78oc9XrysZ5ZOpWuo98Yq0E5uNUbvLou/nerNGyKYrzJVnBi3Skm9f7O0GCtVy+t6N1mrRzDm0jRMXOOWy6Fn3XCvDjE7xnOAd0LaFttKpiILSKtXpXAF87W0Udlsjm/IDlkNdgIKmyKHp5UYjfVQRsCA4/fnkBSyNmZswL4zBFLNGcvuIk9sQILslzucLZGBOwRNn+hCBdWj3NEXMUEO724QG//vIr3Nzd48uvvsTNN69w2O2A8QGYByAuIHU0vF/Y52nQpwBta72mgD4VjEAVLgk5GbJGVoOXVH3wO+S9Aj9gzl5JI5QKwWOz6UFgxKXB3HolrpOKD299ElucleKHvBAr+IEq4Kc6eIA85fWFLYBKWazvfWRwrEYr9z2Xj1Y4ULY+CUffEyVNFqyvFl/SQVVvKlfGyRMLNIfmVu0hRp5aADDcvn70vd9OHrfhrQhjVu51miunknl36+WQgSvNozNDLoMPDkp4JqVtCeJhtc0hpYjZqqlk0rnKYGLdTLzPQyH8M1omOhalxw7ymCLmWULgjRQ1piSVHJZCfFtyuikbRvU8skgwW5cWZZFSMQCIHDSDRhQoRr7mu/BOW7WuhAgfCIwIH7yWg5Xy5c5X6T4xAiSpI1F/UtQ+YKzSKnKBENRroQZv9Ld9hnC0ya3nlxlT8noN/tRmKFX/B/DE38rdrc9Bwp3Q9pdouh4Xl1e4fv4Ml8+vEZoO3fYCvtsgUkCExxKBaWYMw4RhP2OaZszjjGVa4EAYdgfliwLubu4RGejbAEwLDt3pU71qeWxwl/eOt556TlkERF2hrjYWWFMxJaKo9J8o9XoPlvKuQprIEkHzyNhGvp79W0qQ+xW5sRFFGrhUcHDbl4F6ey/P+3iPlC2FywerfjKui+O+q9tsoJRFU7wLILaAV4THgAHyHlbe13MmWcpc4dcw4CcqB0HUvcr4mHLIen0PBVUqeEfeRplHj45hnVAGWIuVahxs8oWyJVK+Vl2hcVWtsQIcy1is929YW1Z9Y8crVRsK537jxLkN7wLwKd1BmaNIKh8C8B5JjUFHMh4pn33mDLG+krQBmavyiWxsswE5a+DHeQc/+lylL2h6iKk8IKAJnIEhsFOPLwmRepIzNesZkL0gBFkXXdfm803m/1x3r7Q72vyUXjCgX8gnFTRMBvgIPwnXixpl7cr4VmseptyWeb9aAe9Kg7f1phFbMQmoOitXk9W4s4gPeXSpBoXEmGPU1HDGwoTkpIR9ZEaM0tezAbJZh9D9L1XcExlgV91WDSdellwlq+grtve5/B5zmfsGIsqa04IYFfCT0zFLJ4B1HOX5HDgEsPK/SIXPoPq1R3HA6E81xnYOl1RVBf/WGuDphg9Q8ns7+0jGTzn2gnNCH0AOMSYchgEA42G/x/1uj3EcsB/GXLErcXGiUGWokaW3kVRRazsh1m58QNs0uXKeDJ9wgO32O5kLUTm0mbEsCfMSVSdtwGglxRYJ4yzg4K1G+czTjMMwSORmFMoDTgkcE+bDiOFuB9cEdIiglMDzDJoinPHhqF3AR4snnwks8c+1AQo7l5JUcbWqZUQk1e2aIKDQyeX4LKxPqOPXx5YdV0YRrT7Pihi9dQ/Rr6UUs567zLMWdJF9XFV9vcYTz17p7wLGB4AUsPGyz/Z9QNd5eO/Qtx5dK+eGgD4SWdUoj5vXtGs7bx3KuaqbZG481/9x9ZtlLSZ9eKquYVv4qUexvp4jsQ0kYsnBaeVP0+skE0RI/+3LhT++vGeA2hJn7A6jROU97PDm7g53b+5w2O9LetcjEmeqJ7b+/q6D5ES9ooNFNnlqXbX+xZzHgssAF10Mlb5KnLP7uHTRdz7Reyd3XuYBHBOcS2gCcHXRoQ2f5lKzSctDI+Na3/4I622hVgtqxfbx9yi/TVnRkn8ex/Fw/Q8dkPLt42uvNip+bHCZoiDvawh7NREAZO6h42fPytHRsxz3EpNs8K765Fe/+BnelRQPU+lXURqKIelIQmCzEZBbXj8Hi+ECKe8XGgdyQBMcGu+QvMOma3B12WNZNGVKcz3nacT93RswOHNFpZjAjgD2IDgJJexaAMDeSbqSKXUWlZAqJL/wTCBHLXFiya82j1+KOWVQFG5VvBWwylqYPi6Ds4LI8wJaSuUvn9vZgjxyLnGdkni6MXNo+yu4mMA+wsckJew7qfAFngEeAY5IacI07pHSglHTMZdpAi+jEv4l4X/QnG8piVqtXrPH6iGnavTrM3p1+lSrtEKzc1qI/GOl4FWruqzpFZSks5NICLp9g67v8Qd//Cd4+dmPsL24xJ/89X8Bn/3kD0HeI4UN2LcYF2C6T3jYJzzsZ7z++h5f3+wQ5wXj/oBlnDF7h3k/Sj9uNrh7s0d7eSGRQ8+v0fX9Dxy1t8txSktJaymfyWlz1R5VR7jlVBGn0Xi63zA7OGcVISySDgoWAWBG0tKqzJrCo8DPmuehkETHOJdIIAUlYN7hXDLVDH+zg+hR+5/kirB2ywdgoMBx31hE0zFYZP9OKeWqM845xBjzd+7uThjTrs/9NlBiBWDbM0OjfGYhlF+WGfM4qLK6YJlGJW2dMQ0jUopSUXNZMGtf14qHqc6s1yftxuBlJT0FSBEBrmngG60UpJxgAPI+ms9P7X+r6OVckEo7SiDfhEbSkwxI0kZJRbi1cauXgxmVFuXFYvHJ3kqaVkRcgTFH8+eE26pzDlvjBVMChhQT2tBo+m7EGMYcFZfntoykzO9UFPV6s8zV0oiU20F2tsM04TDOcN5hdxhxfxjgnUcIAt44IvR9h03fa0qdz2dwgoOHAEEhOTBLek7TBGCzATOjbVtcXmp4/jRhnmYN1ReuK2ZGnCPiLNE9kTSVGhJBgUB5fds5lmJEYpt/yGQVFJxyiDA4yryR4VLiWJ3zrGdoTPHRfDyNKAiXklQtSoxpHLAfDhj3e8RpwgxCcprOZOmwMOqAhHgYMac3cM7DNy3abgdyfmVMx6RV0irw5rgdwsmihLrLDFZCZzHcEizKywBs5z1cEGpYeQa5sLc93kmVJt+1sIhOq44YSDzueoJLP5DwkCQFdlJowb4BSKJ8yAeJlnUBbDmc4qFb78uU8r5i/SvGDSHTIJx0CC21DFpQAJqqLMTqm75Dc3WFJngM84Qvvv4G3hPu7u/x1auvpMJjSpi1+tjCDNLKhKK3y/rzXviwHDlsthe4uLwSEFbHxAEIRJoCuWC8vcPN7T0AYFkSlkX3AhbgxZHD5dUWl1cXIIJyP0kF2ds3b3B3dy9V4Cbh+EkpYYmLzLtxxv1XNxjeDGjaBs9eXsM/u5CKc7sRzchwEyMkwkIaI2ZrjySqaE5JbIYk6UMMQtKqgAkR8zwhqfMzAhIR1DZwlxvgHTi1OI9bEQPEa9tNPnxkq+UzpHYOUvVT9Il8Af2efX4aB4wHSa/b7+4xHPaYZ+HlIkDJ8Cqe1gpQMKyWCAihhfcCrPa9Q9dLFP2mD+g6razYeE31KvsBkUT5BK1o1fpC5C5pmmvgQswKBpJVKitncDlvytlHVKqBqf/h7WDYDxKx5Z39doTQunKvzDkEEHkQsRKsS6GY/DEAORURhIfxAb989Q12+wP+/Be/xJ/9+Z/i9vYNHm6/wXK4A6YJWDQboSJcPz289f1F0qQ18n+ldypblJ2LZgdlE3JN22Bpv3nM9Brfd/Deb8QPjGw5wWk+Yuga9GqMF713xejx7Vfk4llcA6/1JK+gMBVXbwe10n80KfioWx9d6NsbV3262hTkppUBS/XDP/HdAvo8dfdHwI8+xzuKvvweohsJQb0iLvPGkG2QTyptVRg4sW5sDt5LWd/gCU3j0XcNFm85s7JLxmXGMMjmNk/iJRGjwWel0Tunob3IFX5ijEreLHn1y7JkhczSIYhIK3nJcrFon2PF0xSw4nl7HIEQLVyYgagGtGOGd142RXIIxvfAjEgRRKePMiBy8E0HeEZAAiIjNB5t1yihp9N0EQlxXZYRcZmEX2k8YJkmQdRjKpuqhu7kWL2qex4Nty3NpwAf6XQcH9TlPftnfaTXoM8a5llf2D5B6t0O6LoOL16+xE/+6A+xubjAZz/5MT758WdI5HFIATN7LGPEcn/AMM84jAt2DwMe3uwkumIYwUvEAmA+jEIi3A04LIyw2aPpe9wfEtrN9jccpd9McoqIoj305LayJo81wMe+53OlwdKPkgpXjH8DgAyMKwpFAZ9qHpUaACoVwTxCWAM/8pmS9mXGYt4uqm3j+Nr1z9ueFShpKjXgVa/Ruv8yAKx/a5rmHRmb62d66v3Vs1l/MmsIuoI9ClLFZVEjPWLRamvGUxC1f+W5jm+0/qfY5eX0Ksab/p0IIUh1LjJeHgV+JC3WeD3K/CA1QJ2mkhrQKCB+xQDNYniK9ixGYva4r5rMcHCPlzivfdr1XHgXUT9EhFa5U6xj2TGSF0DUOwE7oota2ajM86hRWBZhBi5eWrv2ao7qe0tiLFEi9eaYMMeUUwjaJsAbV5PzevYxKChITAlIDg4uA61EUj2KWuknm+8G/EzThBgT/OEAGRoGEoE1QrtO3raoEnuGRIQITetagQL6bBYtpn+SIy/H1hS9AFAH4XLSEuBrkXvZ2lriLOlV8yTV/wABfMgYdrSqU1JQal4wx4OcsWFCmOa8p5iux5X+UKLddF+y+ZNK5B7PM5Ly+oheVfrNVfuZs3RiyYvQ62vKpEa6+FCqNgnBrDyFRBFUqaQK1LLzUqI9tGAXBNwJjRaCIEQSYIiJwOT1GRnGvVeATN0/Kj43u89pR8946ZLwU+l6Ks4NjXhxhDlGTA8PYE64u7/DN7e3GMYx72dQUIScgyVq2zgFH9AESdXpux4X2wsFgoTDEgAQF9GjmDFOI8ZxUodCzM5D02Gd82AsioUxHh7ucf9wj2VZcP/wgPsHoR2oueySRn6lFDHe7TDRIHxGEOcbmOHmBSEyEKGpgZU+RVAgWCpBMhwcc97w5ZfyNamTNPO6EYG8B7oO2HQnHcM8lvV5g2ou1UiFOnYeZ2jofpL3pSN90myxRzeV/8VlwTgeMgXJrECczFkIqKQ2COd22CUKmbNUBQwC9mwdthdiz/Sd8Pc4InSNR2sVMXXvdyQVMYORPoPgqp/VkUf1GV2K19TRPqa32TM7TkjOKafXO8B7jjrVets70yv0GbJ6QJnUjDQt1s7x8kOZMmFcIm4e9ri7f8DXr2/w6tUr3NzeIh7uESdJ7xJS58L5W1CVWp56711IHdn6tD1v4I9NpToiaG1Lqr0lX/iNW/JegZ+ua/HX//pfhYVg2wPmCUBrkOTtx0FeXfXxUX3hCAp5BPzQ0RZA1b3rD3J9t6PX33FYPQn6HH13ZZlRtXE8dZeyyTy61ROvbVm9Ax33e0i1CZthmGdyaV8eB+PZqMZBlBrZB9q2wcV2i7ZdcgRRjDGDCwwl/2I56IMCPCkVZNxK4U7zCGYqqVt1uKwqpKRGbyr6jz5LCcGzNmZRhS0TkboS8ZMjf7A2RG1aGsHp2hAVwmhHLitwJxVC9i44T+oV1HBvYjCULDYuiHHCMk+IyyShr2qoUD4tqg2MdEPSucf2oAYSHLXh8et6Q6zWB+del7+tut4+b4NlY/j4+lx9p+s69JstLq+u8Omnn+AnP/kJuu0Wz188x8XVJSITeAGwEBYmdF2DrmPMc4O+C+jbgDgzBlJycEC8SAlIjhCHUW6cgKE9IC6nPlwMYLE1hBWgse4nJXEmUyqcKsPmca2BaO0wBdZyJIIpDlbZ7mgeH+9zxwBT+QEkr1uog02hLhFLqsxSQnIyacxWWIOJa0DEjFS736PeOuqbYz6d+rpPtd17j6Z5N+l6T4E+TwIUXH221tasbxiyD6ajnwp8KUoEUPZg7ROYKavOEW1CNqIIsHSsbEgpFwWc7FsMwDmbI7Yu5V7OCyksOSlrnI2Yer3m/Q8o5Pl2nqmSX+3FVSeWn0pBYpS5QUSFX+eUyh6tI8hAEnUhir+o6ZwSoqYLLs7BSM0pudw+RwVgTZyOnqXSTHgdQTfPs85vQly8cgK5bKNYVGkTgla3c/BBzijWyZOBlyfuZc9lqUICFjOiS3BO54t38En7wJeKf7UC24SwNtJYPcAaUQG2Ojml6hnrHOKkbSXAk68io08nzCjpk9EqiJbIDJmoDuy0iLLN08rwk7NfotcoV3CqlH4Yr5z2mxPOQ9tvM6DuIiptI+/PzpcoN9M3QJZ+pnqUh3DtAZKCSxKRxyQ/ArTpWpRNHtnEqopVsGuU68WBfCPednKAC4AXfhwip5FPhMy3Z0VMWN+rx1bT+XnV6acdS5tz+RzUfYZ0P7HdUBx/A1JMGKdZK5w6EHkta05aIbHad6nsRaa3hRDQtR1CMPJojSCfZ8RZiLuXpfDdJUuZykC0jPkSF0zzCADKgzdnkLhOyc7AD4SmgEgixYMTvq6LtsdF0wNgTGDMAIgJTdNiaTUCy6rtOeXy8T4/j6WrWuRU0uqQMUbbUKTdwYNCA7yTc7ECv7HW3VbnZXX+r08FBTEZ1fvKMn9kR9lsJEcCZoMRlWjdoq5qvb0cwVQapvcxm8b4dpwHfKDswPbedO2qDfl8VrDbSduFolajclDms+hDNh/NTpXUe8X7jnQ13ZuqM92BlHfV5Wc4spxPIlk71+JFBuc//hDDorAiS9RPTMAcGdMSEROAOQHjjMSMb97c4/XNLe7ud7h/2GGZZ3CM4CiFfSyycAUSVPZKETvfHrf6qSf5fnJslZuCY+NOed+u9ZaVbmf7MmUXLPJK0PkiukLKr1fX+BZ5r8DPixcv8K/9t/+bWWmxkPK6Px9761U4/2/91vGHM9mIdtVRJ6xsTQsxO2pn3jaO/vAtd/9WKUkvVN2A8iTk404AVpwp60YeWbBH7cx7ASmZsn7+f/Y//be+d3t/U6lDCFcRUnnMCuElsDItS4UQ0rxs/brYAgR2hGfXl7jYCkHYNGlJ1CShsnOUiJT7hwfc3d1hWRaJCNr0cljm9BXCPA24v3uDxIzdwx2Gw06rWi1Y4pKHyArTuCpmSqgQNO2AoKH31UZKValoBX6OIwvkuVxe67JY5SCzKmeyGRcPhXPu5Buxjg7gkqbgSRlY7wjei7GSlgnzvEecR0zjHvuHOyHWngQESjFKBa/KTLDRZX1u46xYtb+eoChLIUt+dntdscGi+k7+OOc35FopX7NgqsWqZEjyQAgez549w8tPPsWLl5/gP/83/gb+5b/5N+CbFuHyAr7vMC0J3zwMuD9MCGPEsBB8aNA2Drc3W8R5xnggxMM95uWQDxlmgKcJY2QJiW9a7HcTXHt6r5hzJcpMHpXye/UxzsxwptxzIVw1g0RnW5539p98N2mKiqbPpJogT6+f+MmUxKeiaUx5FUOZM1GiGbtW4cs4NhgshXYeAU1rOY7Ce9vrp+T4s/ZjbQ4hoO/7d8bxcwxYPQJ98tw6OuCLvqiKXkLU0tEpLhUXhKTjkJeyz1SNu+2REmVYTE1FTKT/lwVg2SNdCAi617Vdj67fAKQRlGyKq4djrUDmtXqQGp/y4xC6DqERQzL/3fZOTaVx9trOEnvkOmLC+uOov3IfMlbjlsf3hCm04rVtyqZzBDylmNC2rYyPpWioHmTpGjWQk5ToV15zDtnPvE6AVsubQEQYpwnO7QDt76COh03fYdN3BfhpxJgNwSvw47Dd9thuN/KZpkFoJCIkBKlOZNPPacpPaITnJsUk6b1pXoEY8vglgif4lNOWvfdYlib3DSC7jXey+zCzKO+aFkbOIQZJuXEpZk+2UUefXlg57JYcOSzpHRqVRSRgSDDjRcAPkOgLDI2wUjDUIm1MH7N0obrlxtFkKTd1hCSTlG0n5+F8AwILF18QPSOBkEgTKZyXiBxSYKgyLJmB5Dw4tODQiae/kQIaJAsEnKKqpEnPVQc0rUb3OLic6kUC/JAkb9gykkgylLOaALgEUJIoEnJgjsDCVlx3BdyfVLTCqkXeBB8QQqc6WkBiiZg7DCNub28xTaOQ9iaAXCNlpluJ5onLgoVmNaJLe71W7/LeY7vZ4uXz5whNg7vbN3h484BlnjVd6CC6baUHRlvrQIneYsJ+2EvRETB2ux32+13eJ8zpYNdh6JbMQtR9vbnEZX+Jrm3xB9cv8fL6GVKKuB8esJ/2kuILD9d0YE7KWSXV+9C0gNMy2k0D7xtwShiGQYi5U0ScR3Bc4EJA07ZwIQB9D2w3wPbdpLFzSnm9mPaXHhlHFeiT/1TbScXiEECZ1p+phAyvZMYw7HF/9wbzPGI47HO64Le0FtDrk0sIgeE8o+0I/VYizbqNQ9MJoCNJC4XShKUOMJxLICq6eWMOZAUlGVJBMSp/nR6dciZEzhFZuSgECGCZX2Jr6L6EYpsI4P123eqHiNOUuJSKffjo6OWiBzGAcWEMC2OOjHGOeBhnLDHhMIy4fxDi/J//8tf4p//8z3B3/4Avfv059vc7LMMAnkbwMgMxSjSq6pFqgT0xZvXvt0mxP75dnniwAn3JWveW6iW2DXMCL0l52wAYt/GKYH9t5JtTyHS+Ynh8Cy9yJd8J/BBRD+D/DqDTz//vmfl/TEQvAfzvAPwVAD8F8K8z8823XWu72eBv/o3/XFZm1hv+ukrWo5Duo89q46qGVu+/5buPQCV+6tOVnBz4wbrNKKS1IFq3/ntcnp9+3AwmmKdxGAYA+M8Q0X+MHziGT7Ti0evaKDx+vQJ9zOC0kGSyIGPZGMVhRRK2ftGCQFgWSVlIzJhmqYawaGnFw34HpITGe7RNyB5eOViBGBcMwwEpMaZRkHxTtq18uhGNmvH7VIcXYIFWPz57lWjl5Sulet2KUDYbl9Wd1ia3Rc2U04yI/l84wVq0MSFHwvUAZdF3cvgwpHLXsoxY5hHzNJQUOiO4U8OTHs3hapPMxheXjqulXsK1Z5vqMSg/j0EfKq/t7sRlmdVf1/VGkHHebDa4vr7GixfP8Yd/9If4q3/tr4G8x+ylvPAwLzgkYBKrB5sNIyaJNrvYNthvWri04I6SGD+JgShkaxwTIhwwLeAwIy0ENCM4zsCJ1qJFhhlJLvS55LV1QCFTTQae6AbD1Z5bon2ePuCYC7ByDPCsFa51+47/XUCVAgIR1cBPFcXDdu91xFF1xaM2Po4Aqt9/6vXb3jt+bUZx9d7p1uLRc1k/HfdfBtjfAvrAIrOUND4uRuasvEly8RXJvkXtGFfFI9DH9qgkewJIDA8fhJsnNC2CpjjNGiFRjwxRSZOVqCABD+QaoQCXrizYOurRyrprB+RnTXZW1PNBAaAnZm8+K2unUxKelJOMoQBcfnW+1+Hc7JXwXCOw5uhzNJaLLr+O0SmImrCQ8EwlSljYIk4KMbcpyfJchZtOKp9IH87ThHmangB+HELjNXpWSEu99+i6Dp1VQGIpNZyfxzlQMuJ2IFFC9BHeF1Bn9eymajsxVqx93q0r3Ig5U8YwkURHERGCnbmOpRJvShXIcvq1aIp0SjEDpzHGnA7HgAAsDD3vbMwJIEtp93ChybyAhoWQ/m19hhF8tT6Mm4OZM/hpa8LpuvXeI2hF00WOHADiJDOuHfIup13qshDgxQWwler2LSi00p64IKlHXlIrFZAIBfhB6KSEOxFg6V1QY7lSpqVrBHgBkfzdiRtNIhKkUETex7TfT6vbyPNK/4uxZYTUxreUkuiQu/0ewzCU/cYAEItIhAAQRkxu0WgG5Hnn0TYttpsNmqbF7l5An3EcMewPQjabUiZgB5D3ZOs0cgRKlFOJmBnjOGKcJnGUVFUqTbdkZjjycCRUAX3T4bLfom9bXPeXeN5dIvKCmBZEjnAuYuoSIjkt1jEqWCcoBOtzmwMzJinmMU+S8o80KzrgFAgMUnu8beUnT+nTnYumWqxhdOTnt7lT/wbb/6pvacnYmkTE+r40vKipzAnLPGMYD5inEcsyZR0kN2/lcS8NZmhxGiuOFgihUcqKID92NJTW6Fog5cEhrd5F5o4rZwmY9DwvBqBSLSpIuNZp5EwUnZDg4Kmkh67A4aodp1yLZtPV/Z2jC8sIgSF7WWLj+JFon3FJOExSwetuN+Cb13cYxhGfv3qNz7/8Gvf397i9vcM8jojzIiXAogDZqz3mKZuuevJvf4LvA/qUp33yHtbfWS+wn7JPY9Uv1XzOSpmBPFUV3IKio+7pb5PvE/EzAvivMPMDETUA/p9E9H8B8N8C8H9j5r9HRH8XwN8F8G9+65VIkGkGw2n54dUDyoeO4ZknPmP/fhvwU77LR2+vOoWfeO/JN55qwXdNlvpyNpj0yPjlwlS2fqLvf/knWySRKHLwbbdbAPhPmfm/8IPHENWGsnqvurdtoHRsqFvbKqPQDHxTjJyXw8U0CBSFp3zGgZgRvFcCNcJm0+P68grLMqMJUlUhKbuagCcESXMmgDiHUMoO7XLn53St3May6OnoQWrjCWRhv5QXuFXYMFKuzMjvJNyU8zOu7/KYm2k1K06zFsFgFo8TU5K7MstmSfJbUuDW4e6m/ALIJOKlDHs5iMpvzn3J1WcegwLlWemof497SP5VrRYqa4uOXpchtAgkaTiBkJJERkzzjHEYMRwOcE0D6ju4xiN44ZPaxojgI8YLApFwMT1/vsUyR3QNcLjfgJcBaUmYDxPSHOAWhlYAACFqSURBVCGErVKymFnnNEv4PE62Fo95pSyMlzJ4YGvL1iOAvFatl+vvrP5u+1IFTKzAlXov48f7wjF4Uf6uStijPY7yJQnqPdZrWBRQmUfVtyolsH79qL2rNqz/tgal5DMFmHr8N5x0La77jPMzi/HLqW5/6UFbH6bEwUAhcPmg7qHHwHOu5nNkeBLr/sNW9VDWvWeg1Z0pNAGhaQVgUEMKgISn6xovEUVWRcir8mqpXaWCF1lkqs3fvKd+a0dl8Kv2wq8ANJn0OAYUj4DFE+k2BnA8EXlWjW3+bAXAMTzYOaQkBhxYouC8zr+oRiMnVlJgTTsg6U8QhOdJ19Q6g0CuxRUgJgCD0/QRI41ENvZikoi82EbEmMr81+sts4IhibFkcJFzZIKc2aRNK8aFnaumA2YgU8fTwEYZUzkb85xNScxtyow/KzXqZOMIaKqXmSLVOe8cwF65WLTvLcKGXHa9S8SPEp7bekClb1Tnm1mI5DVdkhkgPStCA9e0YJfgkgBsDoBvHHxbIrFsn/dNCxcaBTAK8ENKQEvkQE0nn3EeFIK0X1uTAVYIuCacPQFCDOXKj3220puyxazDkU0QFj3HYoPzD5d1UcnJ1iJU96x1TmgFoRgZ0yRRdrOSFZvRLX2ZMv+jrJ8SaVZmhPYUC0djjFFTxSTt0njriCSNkXUeGyEvWSle6wfdt2OKcNE4V7jookYFUPUwQYABOI/GB/Rdi23fK9eYVD1aUiwAE5V5bFGZ5PR8sz2YJeItkTgO4jIjLQJGOd1DZAaoAZoieJzqTedka1HmSSnnLkeZ6ShH+30GZWRC1q/rHnvqfTurZC2JziupeRPSIqB4zYvHvJ4DyGaEpcgRus6jbQUYbBuJenRenMNOdfzg5IcI8I41y0GvRRVIYTpPrYfVT7Gyb0n1Xkvfko4r8FEBo2sdrIBG+WIn2k/1LH+LPWtnipybDAl8YUxLwjAtmBfG/WHA67sHjPOC29s7fPnVKwzDiK+/+QYPuwccDntM4whOEZQirGps3mj0lC0ztNglawDmcduPnuRR29/2r3xPqv+tOjFrPp7xwLK5YE2XJgBVVD1B9y75VHm0sonW26/tJ98m3wn8sMy0B/1noz8M4F8F8F/W9/8BgH8X3zEJHAkBoimmtSJU/cLTg/CdLX3iPZveR4b7t33le93+2zv16c/VRk99A3r0yce3/677PZ6Qa6MOAGDuhR80huB12HxuwZHhfmyMOmf5pDl5J29yZhw65xHoGMfWa+oTBS3xzgx4cgheyq23PuD68jITUY7jCONQSBpef/PmDjd391hYeYC8AztCSgQ2JckMEUI2TOT96vWTXa8paxpCCYvsocLGLnnYGpGhxq0pKPlStrm/ZeEy80nWIjNjiTOIkp7kDuCEJDVLEOcRcR6wzCPiLNw+i5WRtUMfLFVzbNepbc3HHbQaa+tra8v6veM+lx97XY4++5Meg/pRw/JcJrckGPDjkhg95AjTNGH3sEPX9bi9ucE3X3+Dtu9x9elLbDcbeO/xghibbYN5YWy2Mw5jxH4/oW08Pv3kGg939+j8hG8uCONhxOsvbrBfRlXigrQyOoAXIGVI7yRrkUhy9u11DdSUvqzV7dJvQhhe+tTAH7Mn6+uYcZE0ncsMSWQFwsbLPv/99sdyfVEnK5vo6DrGTSSvayDqGEB8/N3HhngN5Nhna2CzJpe2z9TvVfc4yVqs23vcdxnI0ijgwqsl+4d3TqrvGMCh/CSWEgQIhwrzOl2tTi/JqV62zxpJe049ApqO89wIWoGLiITLxaszBx7evOE5Ck1SjzKxf8W14X3QktCAAUFYAVlP++dQjZPsl2Wc6lPWjDROSQyxo3QvsXNOM4YEQggBMUYsFkVapW5ZuqBF4UoKlfRpgzKmuX1Jic1hJOdynWVZME2znG0wY5QlrWS2s9kiSSVdap6E/2d2CxxNCvwVh8ThcMBDK23rug5t18E7j67v0HVddQZSBpIsQpajjkfiHB0jW0mAhxA8NyHAK7dPNqATq0GlqW0xZYAzkZPnVyCNnBN+spUBXoAZHc/TrEXWAiRaCcZAEBe8RDjomcKJ4XyAazoxoL3XaBGNhtDor7wOzQhhW0ek1yJQCCCNxEISpwszw3EDjxZICYEZDSeJAmg8fKPVuFiqTsk6C4VbyMINoK91fYV+A9/2Ag4F4fgpbdMx1TQ6BkkJdyV3BnkAotd4jRqSicE5dyPVfBMGALFGIViQMGuaXLbJMrh+sv3UUaVfSiPB7JCSwzQnLHEPIqnYtsRFuHLYjGTCEhmYtV3JUp0VJIClxwg4v0Ci6u/u7xBCwG63wziOWOYZjiDV/oCV6h9ZUncMWFqiREounBDTIh8kRtM1+jU5H21ftnOo8R6tb9C1LV5cX+NHL1/COYJnxu6wQ4KkkrI6wVzwCGCk5BCTAnsoGkJKCeO4y1HwyzhKNUsiBN9I4RFAeI/SAp4Y6e4OfCjRfqcbx7J21pZU2esL8JP/mPd9e11pEWUATFGErEUjVF/mCfM8IMUFh8MO47jPxRHy97IOhfybiNBvAvqN7aMebStE301DaMMCcoTWezR6Xnee0GgAnQA/OkYWg0+Uo3CZgCUl2BG2qv4F1oq6eu7mGePzCVoYESy1TFP3k0AMiYEllgrCpzsXM26R976675iFzycxY4nAOEu65cNhwev7EcMU8ermBj/79ed4OBzw6tUr/PwXP8d+f8Du4QFvbm8wTzOW/T3SOICWGbCMhKTrOTfgaPxX2oLDepY99SS/qdRzzdoRkaLp68KTB6hTQAMChJD++K4MROG9zNgJy1qol4DZkN8l34vjh4g8gP8AwL8A4H/JzP+YiH7MzJ8DADN/TkQ/est3/w0A/wYA/KW/9Jcygp1LdL5Fca+u8D1a+LYnpaPf3/HV33hsv4+Bc/yZ79Gm3+he3/86RPQf4QeO4fPrS+jnH7VjDf6ocpONfQWAqCw/KpYjDAhxVKp1FQS0GJ/mKc2HsASqoAkBF1spQzvPM+Z5Xh2qy7JgnGbcPTwgKhjjnXo9vVs9hz5zCa3NYNC393WtINelMksaDqF4WKvIoqPriOH21nucZC22/VYMJgCO7dCOsjFxBKclp3XliB8Nnczuh9Wxmodq1Y/WH4/Bncf99vR7xQg8ghl0L9ftzjZWfS87KA1NUA9KgvAZERHiohXdxgmHw4D9bo/EwKV62wmETd+iYY95SYDz6PqErg2YxoimCehb4M3NBZb5gL0H7huCo4QEUk03gln6VSJ+8vP9Rz90DC8uLlf8UfUolP62OWkAS1FU6v49vsTx8rb1twI/VLH6tmXxNoCmBpWO21k9a76GczXg8zgN6tsAoOP5d9y2+jP2bDXgk0lqa2cFTrcWr589e9Sm/G/zwOlSqw93ggI+tlNWbazbWoB1AR+YOUf5ZDJPi8ipgB/hoKgBcfkJISCExnRra6lEOKDcq05xzd+3FFhXIn5qxI9W+waAR7tjsVMNJLdosOPPiGbLOX3mkcOCTzeGn718Js+WU7Zkz7RzyCu4lvsSQImwODo7UJ6trLlC4uxIU8OQZK9Wo13KDJM+dpm/ERJ5gFjuVXf7EheEWcZrniO6OcI5p1ELKY+dSUqc56VTT7KtHYtSqysgee+F1LmSlBjzTEia5hYRhWw2iQHO1ZwFoBWHALN8LO2m6r+TjOP2+rn2eeFNIOszRwA84IW83IUGvu2VsNzBN02e39CxFq4iA2JZK6BBPmPrIgQlTSbhxElewV5xVCAleABBV6NE/OhcAmeSazEkNPUsgz0EckGiipyDazoBqwQFkPeBQpRdgWoMIGbQR58dtm5dTgNkPW/NYWWQj1yyZjHJSxLVKX7yMSRLWTVdk6q7MSFGW5dReAtTSZux38axpW9WfGCVA4q1sh2Ea3IcR8zLglHJgGOKCN6jDV7NTP2PGWBX7V9RQXogys3yvlkAeZS2cMpAW041C1Km/vJiCzBjGg+YpwkJsra06Uo2rFxU3mfwCSxcOikyolWCTAlxEcJc42ZzsKgj5YSKDB4ZvKz2stOsxYuLFVhQj8/KUVL/vSoTy7wi2UA+PQ1B43Lu2GdiipjnUatkTsr3Na/2GtSgAVm/AqHx6Hupitt1Hl0rYF1wLMAOMYJz8JCMA+8IjS5XK6piEEQdoVOeDbm8udhR8jysAEC9T8seXOosUkbEZO7Y+chcom0sclOvdZIx/OM//uNV7x8LK8wsZM6S2rUor89+WDBMC97cH/DVN7e43+3wxRdf4We//BV2ux3iPGEeBtlTx4NW8YqFK+dIB36ipWVOvE2KefFbyvrLMl8jcuRzDSKq/lDNrtwG2z8eKc7Hevq3P02W7wX8MHME8DeJ6DmA/xMR/We/z/f0u38fwN8HgL/9t/82rx/qezSRvmvwePW6Ng3Bb+sGevLl2z7yyAp6dN9vkXrQv+NDdvQcmUjfcYPqGZ/4aK2wMfMPHsM//smP+Pi69m/5KZ55emLB5NG0zco24vwYFtJW3mJbxHpdU8bsgvWckvXjJLyWy2boiLDdbvDs+hrLsqBtGnRtJwpyVvTsCvLLGUElitGz8qp/W18TZeXVLihKsKs4No760Z7PO9v9Vxu/jsVJ1uLFs09ZQDbj0JCIn9wNzNlLsG4rA1QSrWT8yuGbW2tG21vWzrExcQxU2H5JVD6/ugJVPZPBHy73LXfSVq5UTDAD87JgGAbs9zt8/eoVfvXLX2J7eQnXtXBNA3gCggMFC80lNJ4QG4e+D5jnAI49fvTZc7SesLvfAzPjYrPBwoT9EjAnAvsGS9checnvH3GatfjZZ5/x2wCP8n5RDmQOogI66nVbf96+b+8J8GnV6dR5f9yy/N1vA1myCq5T4/E+Uj4DlCiT42d7G6BU/60GdL4NGKq/V5ehr9f8U/c61Vr8yR/9Ia8Bm6oL6h2g2g+ISDNiNS1WtcdS7Uc83FztbWKwqVdRq2oZGGPRNgb6yLJxmpnIayBH07ts22ZVKqVClLTPOCnkH6ZgaxuLplve12coW7zuKfZ8prjqWbACt1blWq2vck/l82J1HmX96TRj+Nf/8h/ysiiZtv4cj2lOF1g1s4Tfg8zzXJ6X9Fm8EyJ0ZgEQkkX8IObzErDqawLYMKR6n1PjvgYD82sCKErHuMRwPsItEd6xViGKR2tKiKoLX4+XCoGsETxRiwMw52qVUHCuXtvMrBxUsTxTcWevwKNcRVLTywA+4rg43Ti++Mkfs80946FksIAmPgCUNE2HQS7kaBrA5Uo7RKT0NjKnc9U6Yi13jrxGoevJKRm01/XqmBETAUvSe+aVJtHEGilHzPC5H/Qch5x7toQkvdzrXLAUzwLG2qgQZPk7VlxBdaBknDKrVC+5hq0thm1BokcQHBLZ3kN5TbP9tsiwKgnsVGPYhoa3hkOw9BGRFDcgTaNj1RW8dll+XhTD2mddh/O2mDsqX55hDsY5LvBs1QNljBMEdJbzrlRXtCiHBI2ktTMm3wR5ntgeYTWRWNM0bQ5ZZPO8zNgPBwAayTSNYAJSQ3DBgxMBy7JO22eJ/LCUXqtoZ6TKjfeAdwgk4FLwAUyEpCme7Ahxkcj5aixOMo4vP/mUTT+Xv5U+18+udY3KuiycPk/Ym7VSod+PamhY6XYBfuYcVao3xtragJ6lUmnPe+PycQheCeud6I3Bi60TPBAU7PFkmilKwQVAIsNZHJvC31xIfnP11vzDMABLtnPT94QA35V3YLxaRgycGDk9OJ+RdtUTjeHf+lt/k4mQzXgbr6jA5ZwShjkiJgF7dsOCeUl483DAN7f3OAwTXt+8xpvbG9zvdtg9PGCZJAUvLVFSDZMSI9dhhcejXg/b06rgoz9wPoCP/87Vv56yb8yGofpf5as611be/WR3LMrfo2/n7+o/7PdROzh39hNNU/mNqnox8y0R/bsA/hUAXxLRTxT5+wmAr77XNY5frJTc488+WrLf58rfftGTyLf06AmumBfqb3Svtxs2Rwb2DxtDqit3rA+o0l4NNc+eIuT3SjvWE5pU65CyoJzXrsxt3fx5/ZoUnMhKh6IFjfcIRiDJ5jFleB9wfXWFGBOGccIwCmFb5rLA+jB5yiCWUNgR8zTnhttnDPBKzJg1vax4Qo1v5ulFbcaT5XK7zA9UKrPV8kPHkYgQQg+wRMHIZp8k6IchoDQzHIsi6EnJI7k8a+5zZAvQri5jmV+vwxEBUaxcNgj18EIZYusd8YLIyVFGokprApWqdjp31s1RpTMbl2LkMhiHwwHTOGMcJ/zTf/JP8PXrW1w/f4Z/eRwxzjPavsX1y2tsLrcIAPpGiXAdEJ916DuHF886fPJsg2mcsXs44Fd/+BVub+6xHyNe3Q54GBbMIBwQMKtSboNziv3UxuLtsl6jBewpKQclCjNfcXXtOlJE250/V4zaQuxbK5ZPtDa3yxRWrubHsXFoQBVQXr8NxKmlju54/HyPP/PU5yxq47vu+UPHkVkqNOm18rzNpPcwBZHyfkNEYDIuKQDK6eHYrzh7YkrgRa4pRMqy1oVotC17nHnvU1arIUSQaiDVqWFUQJ2a+4Ig+wUAOEtpha1pVv3U5UgHI4iFAVcwjpyyHyeOqvyWfgAkT57McElL9pjb2i/Xlz70DhLpp9fJZ86JxjCliN1up6lYU+b3KOBhwrIs2v/FmCFYRUc1FKvoKOOEEa9+SRFrvETeM7EqeVLtcppGiTJaFszTkuetrftVOWlOeb3GxPBR7ptYUkCkaqWVLKdcylkAm6Xwl2iFNwCaDrMOU3fOoe96tK3MtQwGgdfcVUn6RIBFK4BAaPSMSZwyn1AxWB/vLyfZU1k94DFKZbXEcL5BaDpQYonKYUgpdC/VkJhYSJaTcq84MdVBDhRCjpPI8zivO8D7shYdxCBkBha3x8IEjhGuivJAE0CtVg2jMo+T8jOJAW/GlaR8eCfRSN41GkViQK7TcbJkB426grrlNI0NgFYNszmtgB+g0Zg6n63yUA0UGpKdIGlTywKOCywWiFD2/1OMoSfgE+1Em1eyT8wAFJTxEn27MDB5qYwGmM0hgKknAYwSSbGHBOGIXORRhIUjJSRiTPOEw+EgUXPLLPu0F266Kc3SBnDm2xHQR+63pAWLrkVHTqovQYl9lTPGW+VDltLsZiUIb5AHHLAbdqBb+dus1Vdd8Ng+u0LfbUAxgqcxV3m0KEhLu2QtMW+pjt55bDY9mhDg4NCShyePOS7YDQOmZZGifitL7XTjyLB0Xl7Npxw1haKvr3XkIydf/tvTvzOvDyfsd/e4v7vBssyYhn0mds+2yJF4RxKBp1E+mz7Ae4c2AK2SODeeELy8DkHAHwIjOEgyFkNJusuZmqLaFpLHrc1NckJSrRPoVNDjz+IhCZpCZQ11CcLdKftCKfOu+jRk7llGxqnGEJDmc26oEDdPi9hEwxxxN8yYl4T9MOH2fo9xXvDNzRv84tdfYrc/4Ouvv8bPf/EL7PY77HY7HO7vJGIvRqnelZJE+8QFSBL1Q0+cDSvw53vIU3ZXkewhP7qBjgzV0VpH1n115uWIatbvZ0X4KBuEi41YIn94/Zlab/+OZ/s+Vb0+AzDrBNgA+K8C+LcA/CMAfwfA39Pf//Z3XeutcoTTPLWN5OiQt17gbRcthsb3vf+3y/edOXbR727D00+73r6+//0ey6tXrwCJ08UpxjB7iVbASP4r5HB9In0EKMjv0XjmaWyAgSEAtSckAz5r45P0eyBU9z2+uVRG6PpeKoJNM8bJyuU+5veon9PaC4hn57DfYxzH8pkM/Mj3YkoYqzLKRoS5Ar7qsbVDRS8VNCrIiKCrdgQien6atUhwJN4byiA5KQcx1zQ+q0NGDE6CkShnuMbwG8ulpTLWT959VW7WTpv16Sr3Q7mHdHgF+tjn6put51SeY8d7DENSAlnIHV99+RXGOeL5wwv8wZ/8MV5+9in6ucf2ciMAGAghE5Y6bHoh72QGri82YAZ29wOQCBeXF7jfj1jCPdxuxCQaI1wC4uEOOOFa/HbQp+pLOv5szT21Xivrz/FbwKGidBUlrIAkT4M+b21dHtPvAnW+D+hTf+7bQJvj963dGbCoDOe1Ec/ASddiAdBWOwRX/VIrFZnwk3TNCnBjXFZE8hmnYxOp7LTm6ZeIHF94OuwTCiYwGyYj93Q+5BLVEqFiCgvnfTpvu0RSVcj6MdlmAlQ5mPna+be2I6lyk1iUVPOGGwROhMwlZEYdrGqZnS9Z27T5XSJQszomXvOTjCEzZ8BnVk+xASM2Z1LdDxaFpXuX8Ro5oPSNVoBykIgfW4dOgWv9I8xQJYLeVz3GvN4TzfnAen4a5xGjzHXnIshFJMcIS0SIKe+VBhot85yBn6aJiCHkPjAjjaMcKhkg1JTJUFUnMqH1xJf5owCRPbesyxKtYFG3Kidci3YWsnK7RIDFKJL0KaB4m3xOqdIZK0C5nYOkkTUuFICl2m8N7PM+wPtWAVFL32RgWcB+FA0nJWQzzjVCBm2f1yXMSwQphQJblBSge4P2u86f1b6vZ6qd88kJgMsQZ4/TM9/WKZWVCF1aeYxsX0iqA0pqWAWwm5NN06ucmaopnmwtOgBbfTQDJST+IeU91ek4BsGhtTJamYYOLKC39KiCPXLRpdpTEicQSFKEllkJ0mPeBxkJ0aLaoAAUir5rjkfb48BCFi3jUnRs510me3fJwaWjFFzIGt3THsyMeZ4QlwUhNeghqb02CkkjjyzKx0Bgm+9WsZVIKBS6toWDQ6OJXiklpCVK5IWtxbKAT7wWebWvSPvXwI90W73X2Xv2urbD6jNf1jFrWh9zxDKNGIcDlmXGMs/aR3V71u0jJ5E93lulRKneVSJ7CCFIpLjo9qRl3EUJLCvKCc0FWxqrgk1EGo1W9ozyuzxPaVfVL3YmGjJE0LRnxZDzNGMABvoIL9mpxrBoLQbwCui0RMYSE8Y54TAuEu1zmPBmd8Awzbi5u8fXr1/jYbfHN6+/wc3rb7Df7zFNI+ZxQorCN8pRPdVJqRRSyqBPnhO18lumRx7/0qHVJvCtaiZXv+vJUe3r9uSr6cYro8jSick4z6prmYPrSbCqVnTql4QnPvy0fJ+In58A+AdE5v7BP2Tm/zMR/XsA/iER/fcB/BzAv/a97ngi+XYg6Du/vB6Q3/Iy3y7v/AbfWz7//HMA+JeI6P+DHzyGv9tn+U3kaIv/3UvVIHpi3X7rV2WnbwD8O6dbix/OWP62srIn3uF9vs+1iYC4fwOcbC1+39ZUB8r3BE4+BHnbs9Sg0/f5zG8pJ12LP7w5v528fY/8DefJ7/m8yvOgUpI04uuE++n7k9+7s+13INXaPvG5+Js25J1c9cOTHzAp+b2txe9q2HdafT9cfleb/TsWPVNPfC7+HvTVSZuwBuN/Kznx9Dye8ZqG9Xt9Lv72Q/KWb37fCz7xuaewmd/09m/9uw3O2773W64Pep8Li4heAdgB+Pq93fR3L5/i9+N5/zIzf/ZDL6Jj+DP8/jzX+5Dfl2c9yRgC57X4O5bzWvzt5fflWc9r8YfJ78M4nnoMz2vxdyPntfjby8c6hue1+LuR81r87eVjHcPzWvzdyFvH8b0CPwBARP9vZv7b7/Wmv0P5WJ/3Y32up+RjfdaP9bneJh/r836sz/WUfKzP+rE+19vkY33ej/W5npKP9Vk/1ud6Sj7mZ/2Yn+1YPtZn/Vif6yn5mJ/1Y362Y/kQnvVp1suznOUsZznLWc5ylrOc5SxnOctZznKWs3zwcgZ+znKWs5zlLGc5y1nOcpaznOUsZznLWT5S+V0AP3//d3DP36V8rM/7sT7XU/KxPuvH+lxvk4/1eT/W53pKPtZn/Vif623ysT7vx/pcT8nH+qwf63M9JR/zs37Mz3YsH+uzfqzP9ZR8zM/6MT/bsfzeP+t75/g5y1nOcpaznOUsZznLWc5ylrOc5SxnOcv7kXOq11nOcpaznOUsZznLWc5ylrOc5SxnOctHKmfg5yxnOctZznKWs5zlLGc5y1nOcpaznOUjlfcK/BDRv0JE/ykR/SkR/d33ee93LUT0J0T07xDRPyOif0JE/wN9/yUR/V+J6P+nv1/8rtv6Q+Q8hh/+GALncfwYxvE8hh/+GALncfwYxvE8hh/+GALncfwYxvE8hh/+GALncfwYxvE8hr+fY/jeOH6IyAP45wD+awB+CeDfB/DfZeZ/+l4a8I6FiH4C4CfM/B8S0RWA/wDAfwPAfw/Aa2b+ezrxXzDzv/m7a+lvL+cx/PDHEDiP48cwjucx/PDHEDiP48cwjucx/PDHEDiP48cwjucx/PDHEDiP48cwjucx/P0dw/cZ8fNfBPCnzPznzDwB+N8C+Fff4/3fqTDz58z8H+rrewD/DMAfQZ7xH+jH/gFkYnyoch7DD38MgfM4Ah/+OJ7H8MMfQ+A8jsCHP47nMfzwxxA4jyPw4Y/jeQw//DEEzuMIfPjjeB7D39MxfJ/Azx8B+EX171/qex+dENFfAfC3APxjAD9m5s8BmSgAfvQ7bNoPlfMYfvhjCJzH8WMYx/MYfvhjCJzH8WMYx/MYfvhjCJzH8WMYx/MYfvhjCJzH8WMYx/MY/p6O4fsEfuiJ9z66WvJEdAng/wDgf8jMd7/r9pxYzmP4cch5HD98OY/hxyHncfzw5TyGH4ecx/HDl/MYfhxyHscPX85j+Hsq7xP4+SWAP6n+/ccAfv0e7//OhYgayAT43zDz/1Hf/lJzAS0n8KvfVftOIOcx/PDHEDiP48cwjucx/PDHEDiP48cwjucx/PDHEDiP48cwjucx/PDHEDiP48cwjucx/D0dw/cJ/Pz7AP5FIvqrRNQC+O8A+Efv8f7vVIiIAPyvAPwzZv6fV3/6RwD+jr7+OwD+7ffdthPKeQw//DEEzuMIfPjjeB7DD38MgfM4Ah/+OJ7H8MMfQ+A8jsCHP47nMfzwxxA4jyPw4Y/jeQx/T8fwvVX1AgAi+q8D+F8A8AD+18z8P3lvN3/HQkT/JQD/DwD/XwBJ3/4fQXL+/iGAvwTg5wD+NWZ+/Ttp5AnkPIYf/hgC53HERzCO5zH88McQOI8jPoJxPI/hhz+GwHkc8RGM43kMP/wxBM7jiI9gHM9j+Ps5hu8V+DnLWc5ylrOc5SxnOctZznKWs5zlLGc5y/uT95nqdZaznOUsZznLWc5ylrOc5SxnOctZznKW9yhn4OcsZznLWc5ylrOc5SxnOctZznKWs5zlI5Uz8HOWs5zlLGc5y1nOcpaznOUsZznLWc7ykcoZ+DnLWc5ylrOc5SxnOctZznKWs5zlLGf5SOUM/JzlLGc5y1nOcpaznOUsZznLWc5ylrN8pHIGfs5ylrOc5SxnOctZznKWs5zlLGc5y1k+UjkDP2c5y1nOcpaznOUsZznLWc5ylrOc5Swfqfz/AUCn/VoV1Qa7AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHiklEQVR4nOz9eZRkaVnvjz57iDkiM3IeqrLmqWvqeR5ohm5ARBQVjqCAehQveu7ioEdlsbi0Z3FA8V4Xv3vPEfX4O+BRUXDJURBkhp676am6qmuessacMyNjHvZw/8jorPp+3+jKLqiMLIrnw6pFPxkRe7977+d93vfdO+L7tcIwDEVRFEVRFEVRFEVRFEVRFEVRFOXHHHulG6AoiqIoiqIoiqIoiqIoiqIoinIl0IceiqIoiqIoiqIoiqIoiqIoiqJcE+hDD0VRFEVRFEVRFEVRFEVRFEVRrgn0oYeiKIqiKIqiKIqiKIqiKIqiKNcE+tBDURRFURRFURRFURRFURRFUZRrAn3ooSiKoiiKoiiKoiiKoiiKoijKNYE+9FAURVEURVEURVEURVEURVEU5ZpAH3ooiqIoiqIoiqIoiqIoiqIoinJNoA89FEVRFEVRFEVRFEVRFEVRFEW5JtCHHm3gC1/4guzYsUMSiYRYliV79uxZ6SYpPwFo3ilXE/fff7/s3LlzyfeNjo6KZVnyuc99bvkbpVzzaN4p7UZzTlkJNO+UlUDzTlkOdA2rXG1orVPajebclcNd6QZc60xNTcmv/MqvyJve9Cb58z//c4nFYrJly5aVbpZyjaN5p/y4MjQ0JE8++aRs3LhxpZui/ASheae0G805ZSXQvFNWAs075dWia1jlxxmtdUq70ZxbGn3oscwcOXJEGo2G/PIv/7K85jWvecX3lctlSSaTbWyZci2jeaf8uBKLxeSOO+5Y6WYoP2Fo3intRnNOWQk075SVQPNOebXoGlb5cUZrndJuNOeWRuWtlpH3ve99cs8994iIyDvf+U6xLEvuv/9+ed/73ifpdFr27dsnDz74oGQyGXn9618vIiKzs7PygQ98QFatWiXRaFQ2bNggH/nIR6RWq8G2c7mc/Pqv/7p0d3dLOp2Wt7zlLXLixAmxLEseeuihdh+qchWheaesBFNTU/Kbv/mbMjIyIrFYTPr6+uTuu++Wb3/72/C+Z555Ru69915JJpOyYcMG+eM//mMJgmDx9VY/0XzooYfEsix54YUX5O1vf7t0dHRIZ2en/PIv/7JMTU216xCVqxDNO6XdaM4pK4HmnbISaN4p7UTXsMpKobVOaTeac+1Df+mxjHz0ox+V2267TX77t39bPvGJT8hrX/ta6ejokE996lNSr9flZ37mZ+T973+//OEf/qF4nifValVe+9rXyvHjx+WP/uiPZPfu3fLoo4/KJz/5SdmzZ4989atfFRGRIAjkrW99qzz77LPy0EMPyU033SRPPvmkvOlNb1rhI1auBjTvlJXgV37lV+T555+X//bf/pts2bJFcrmcPP/88zIzM7P4nvHxcXn3u98tv/u7vysf+9jH5P/8n/8jH/7wh2V4eFje8573LLmPn/u5n5N3vOMd8lu/9Vuyf/9++ehHPyoHDhyQp59+WiKRyHIennKVonmntBvNOWUl0LxTVgLNO6Wd6BpWWSm01intRnOujYTKsvK9730vFJHwn/7pnxb/9t73vjcUkfB//a//Be/9i7/4i1BEwi9+8Yvw9z/5kz8JRST85je/GYZhGH71q18NRST8zGc+A+/75Cc/GYpI+LGPfWx5Dkb5sUHzTmk36XQ6/OAHP/iKr7/mNa8JRSR8+umn4e/bt28P3/jGNy7GJ0+eDEUk/OxnP7v4t4997GOhiIT/+T//Z/js3//934ciEv7d3/3dlTkI5ccOzTul3WjOKSuB5p2yEmjeKe1G17DKSqC1Tmk3mnPtQ+WtVpCf//mfh/i73/2upFIp+YVf+AX4+/ve9z4REfnOd74jIiIPP/ywiIi84x3vgPf90i/90jK1VLmW0LxTloPbbrtNPve5z8nHP/5xeeqpp6TRaBjvGRwclNtuuw3+tnv3bjl16tSr2se73/1uiN/xjneI67ryve9974dvuPJjjead0m4055SVQPNOWQk075SrCV3DKsuF1jql3WjOtQ996LFCJJNJ6ejogL/NzMzI4OCgWJYFf+/v7xfXdRd/6jQzMyOu60p3dze8b2BgYHkbrfzYo3mnLBdf+MIX5L3vfa/89V//tdx5553S3d0t73nPe2R8fHzxPT09PcbnYrGYVCqVV7WPwcFBiF3XlZ6eHvgZqPKThead0m4055SVQPNOWQk075SrBV3DKsuJ1jql3WjOtQ996LFC8OAsspDUExMTEoYh/H1yclI8z5Pe3t7F93meJ7Ozs/C+izuIorRC805ZLnp7e+XTn/60jI6OyqlTp+STn/ykfOlLX1r8ttWVgHPN8zyZmZlpOSFQfjLQvFPajeacshJo3ikrgeadcrWga1hlOdFap7Qbzbn2oQ89riJe//rXS7FYlH/5l3+Bv//v//2/F18XEXnNa14jIgtPBy/mH//xH5e/kco1h+adcqVZs2aN/M7v/I488MAD8vzzz1+x7f793/89xF/84hfF8zy5//77r9g+lB9fNO+UdqM5p6wEmnfKSqB5p1xt6BpWWQ601intRnNueXFXugHKBd7znvfI//gf/0Pe+973yujoqOzatUsee+wx+cQnPiE/9VM/JW94wxtERORNb3qT3H333fK7v/u7ks/n5eabb5Ynn3xycYC3bX2Wpbx6NO+UH5X5+Xl57WtfK+9617tk27Ztkslk5JlnnpGvf/3r8va3v/2K7edLX/qSuK4rDzzwgOzfv18++tGPyvXXX29o9Co/GWjeKe1Gc05ZCTTvlJVA80652tE1rHIl0FqntBvNufaiDz2uIuLxuHzve9+Tj3zkI/Knf/qnMjU1JatWrZLf+73fk4997GOL77NtW77yla/I7/7u78of//EfS71el7vvvlv+7u/+Tu644w7JZrMrdxDKjx2ad8qPSjwel9tvv13+9m//VkZHR6XRaMiaNWvkD/7gD+T3f//3r9h+vvSlL8lDDz0kn/nMZ8SyLHnrW98qn/70pyUajV6xfSg/PmjeKe1Gc05ZCTTvlJVA80652tE1rHIl0FqntBvNufZihSyCqPzY8vnPf17e/e53y+OPPy533XXXSjdH+QlB805Zbh566CH5oz/6I5mamlrU51WU5UbzTmk3mnPKSqB5p6wEmnfKSqNrWKUdaK1T2o3mHKK/9Pgx5R/+4R/k3LlzsmvXLrFtW5566in50z/9U7nvvvt00FaWDc07RVEURVEURVEU5ccFXcMqiqL8ZKIPPX5MyWQy8o//+I/y8Y9/XEqlkgwNDcn73vc++fjHP77STVOuYTTvFEVRFEVRFEVRlB8XdA2rKIryk4nKWymKoiiKoiiKoiiKoiiKoiiKck1gr3QDFEVRFEVRFEVRFEVRFEVRFEVRrgT60ENRFEVRFEVRFEVRFEVRFEVRlGuCZXvo8ed//ueyfv16icfjcvPNN8ujjz66XLtSFBHRnFNWBs07ZSXQvFPajeacshJo3ikrgead0m4055SVQPNOaTeac0q7WRYj8y984QvywQ9+UP78z/9c7r77bvnLv/xLefOb3ywHDhyQNWvWXPKzQRDI+fPnJZPJiGVZy9E85ceIMAylUCjI8PCw2PYrP6P7UXJORPNOucCrzTkRzTvlytGuvNOcUy5Gx1il3egYq6wEOsYqK4GOsUq70VqnrARa65R2czm1TsJl4Lbbbgt/67d+C/62bdu28A//8A+X/OyZM2dCEdF/+g/+nTlzZtlyTvNO/7X6t1TOad7pv+X4t9x5pzmn/1r90zFW/7X7n46x+m8l/ukYq/9W4p+Osfqv3f+01um/lfintU7/tfvfq6l1V/yXHvV6XZ577jn5wz/8Q/j7gw8+KE888YTx/lqtJrVabTEOw1BERK7LZsVpPr1zHHxyE4vHIe7PdkI80Ndj7CcIMC4WixCXGjWIa/UGxA3fxw3YDoQevV6pVow22C6e7kQUY9sPIc4XCxAXymWIO5JJiHt78Lj90Hz6Wa7VcZvFPMSejyeqM5OCOOVGIC7VqtjmCsa+bbbBcWK4TToO+HwQyJ6TJyWTybziey4350ReOe8+9P73SCwaFRGRdWvxaTNeHZHpqUmI5wvmNT9y+jTEZ8fGIO7q6IC4v281xLO5eYgHO/FcDfZlIfbrmDMiIo6DuZpN42cikQTEhTrmsh3Fay6C1zQRx8/ny9i3RETOnDmLn0lgH96wfj3E8RjmXZXyzHEwT8vFEsSTdG1ERFyqI9muLMSp5MK1qFZr8pH/9qlL5pzIlc27bLZz8dsKruu0/OwrwddXRCRG59dxsNZc7hcjzPfjH2zbHEpcqhWug3GtjjW3UcdrnKa+0ahj7WLsFuchGsFaY1mYA7Zz6W8FvHx9Xsa18RiikSjEtZrZxkYDj8vzMHd9b2Gs8X1fDh85cMXz7pVy7oXvPCqZVFpERCJJ7MNODI/L8vF6+y6ORSIito3nOmansd0xPDe5Bp7beEDjfASvp0VlyHG5IovYlJchKXiGtI9aFY8jFsM8dqjq2wHWxtAYFUQaNIaGgnMJ28Jzm5uj85LDWtbfh/ng2B5uv2HmsM/zF5rfeJULcbFUkjve/GDbxtjs6oxYzXmB38BjSSWxbnkBnptaBY9LRMShOmPRnGOp2lWv4rmJ0djj+XS+HfOauxG8BjzWUBmRIMA2RKh+1qmOBDSBDSkPF/aBOwlpjsrnjrtPvc55ip+Px6nW8ZxYRFJpvH61Ms6JXu5/YRhKOVdp6xh7+vRp6WiOKXw+r5VvCnIONBp4TXmusNS34q7EeeE2eR72J96H6y6LAIGIiOTzeVm7dm3bxtj73nCXuJGF45mdnYXPJKgJnZ04BgcBnicR83pNTeBYcXp0BmKf1pSRBF7/TBfus3+oF+Jq0ay3XZ1YH4MQ25kvYO2q5HD+M5ubwzbRmJukOduG1f1GG0bWrYL4xaOnID5/dgpin9bjfFzJDK6rhtcNQ1ysmGua3DSunctFPM7IRfcpgiCQmdNjbRtjxelcHPi4f9k0PgaUIyHfLGnB5dcF2geNPQ7dq3BCcy7v0TaCCF7T1dswdyMZ3MbpA7j29vM4b3ACmvNKizHW4rkdtsmh2hV1sH/5Ht9HwjiZwjaEEbMW1ngOGmAb6s21chiGEpRzbat1//0L/1sSzXs5Fs1/HFrT2rQetcW83rwOth2e19G4QXMovm8oxryQcs4yz7VDcyjeB49tIjSvoCbw9hjuiwv7uHS7jXkfxTzXCShnG5RPfot5Hd/f9GleUfMu9MVKqSy/+TO/2LZa9/N/+HsSiS2MGet23QyfmZs9B/HZsYO4zVnzfllAa5LX3nQXxNu274b4Wydwmy89+k2Ie7J4X/bOXbfj/jzzmkdo7Vss5SCenDwP8f4zhyFes3otxPdcfy/Eq7qwVjaMPBZ5/jhu89nDP4DYtrFWles45o70j0A8NYvj/tzcOMQB10YRGcxugbgW4nznzMmFc+83fDn2b3uWrHUiyyBvNT09Lb7vy8DAAPx9YGBAxsfHjfd/8pOflD/6oz8y/u5YljjNIuXQRM+lOEIT+WiLSTOP4xEqqJEAY9+59ODGDz0YbnOrv/HC2OYBlN7vcJFe4jxYLR568D55G+ZNvku3mV83jrvVQw9jm0vf5L3UJOtyc07klfMuFo1KvHnDj2/Mc1mIx3ByXq2bnTYSoYkVHWuEJ0l0E5U/H6U4RjcnfeEHFCIuTTDi9JloFI+jYdFDj9hSDz3wPNV9c6EUpQcnLz9YeqVtxCnmy88PPQJaSPP2RURcF/MuHsfj5jYsNbG/knlnWdbiYmTJn+cRrd7Pf+MJ4OUuWpZ+6GH2Yc71pWJ/ideDJepEq4cevAjhhx7GxJgIjHqI2+MbNL5vLhiDgCfKVCfCy7sBd6XG2EwqLZn0wiQhmrrchx7muTYfeuAEpB7HmyE+P/TwqX9G2/DQg754cGUeevB7Lv3Qw/fwvHgeHgNP5NxX8dDD44cedTx5nmOOE+0aYy37Qq0LaH7ADyH5evIDDRHzJs7lPvTg93PtNOZRLUoGL8g55oUrN4r3yccUCh9Ei2vFqbjUeaH38/U3YuPzra4FnTvjejXjoPU+mCuZdx0dHfrQ4yf8occr7ZO5UmOsG3EXH3rwjT8+zAjd4AyCFuMbz+v4xuAS6zmurw7NiV1qg+Oa8xl+DzfTdXH8WyrnjDZRzOdFRCRKaxLOGd5muER95Tbx9vg8t9qHZezD7FvtGmPFshb3ZdZ1XgvQNX4Vff5K10uLx+Sw1bkzBiwIjbmDe+k1jxHLEuelxT7Nl5c613wM1D+tS+ftQju5LmB8YZ9ByzYxV6rWJZJJSaZefuhBa7mlHnpYl//Qg8/Vj/zQo8UX9/ghRYS+9GY+9MDaZz70uPTYthwPPfghxpV46OHxvKLFGqRdtS4Si0m0ee8mnsQH8tEKrmsjdM/Hj+EXnkREAupzcfpCYDKNX+aL0usujU0RWkvH6Uver+ahhxfQF7PoOHifUb63lcJ9ptJ4nuotHnrwcfNx2A7GLi3QowlsQ4S+NOXS2rvVF+R5n0FIeRfh+ztLj0vLNrts1TFbNejDH/6wfOhDH1qM8/m8jIyMSDoVX7yh3tfdDZ/pyOA3gPvoGzJJOtkiImUPk6hOFyw3i0+pCjX6JQh9Y61Wx4k7T+xa3ci/+CmliMg8fTudFwMF+jWKRQu1/t4ufJ0G0NA3vynE32zlyQYvBnPz+G2WebpBV6ZfdsxV6cZWy5sUdOOQbsBcnCd80/FSvNqcE3nlvGtU82I3v/FRLubgMzwYnD2D3y4qVs3znZvDbRTyeP470/grpfFJfBqam8dvh+1cM4T7LOH5f/HgqNEG/iZVB30bs78fn/qm41mIe6JY5AO+2UEPOfL06xQRkbGz+EuPgb4+iL0K9q8G5aFP31R26IZovYp9qZCbNtqQStKNP/rWW62Zl/zN36W4EnkXi0UXF0m84Fpqst5qQcY3+42bUUts07iZa/RDakOLhwfmAzysy1zvYjHMyyh9g9umNvK3pviYRcybprwNh2alcWpDTy/2jXVr1kHc34ffQpyZwW9aioiMjp6E+DT9+qtQXDgOY0G0BD/qGGu5oVjNBwcOfXs9QnFA/c2xzYeKfGN9dBzHjrMz+Our5w/ieRjK4rhO8z5xE3h9N23GWigiEqUPRaN4PSMu5uDsNNaJjRvwG6Q8jIf2Uv3C/ExAYyYvfGx6iGEsrI375XSTMNLiAQYt4BvU19zoxf9tPqR+Ja5ErQtCZ3Ehx9/uqZXpgXvEnMsxHjU/RgsA/tUEfxsvGsEcEXooGdA8quXClR6mVWmf/ECWv53Z8HHMCap8IwPPsdfqW6j8gC5CxxnFNiboF562i2OwR9cmoPoUj5t5x4tj4QVk84skQRBIac78tdgrcSXyzrroRmCrX0deC/AND15zJGnBvRLnoVTCuVqUvqByuV/6uBwud9s/6hg7Xygs3rzjX1KFBewr/EW8Rov1W4TWSuUiPzDHzwT0ZQWXvtxXq2GbirQm9XF5ISIip0/jt2eTaazRgYf1sULrWKHjGhrAMXdtH865Nq8yf+mxbuN6iCfHcR/5SZx7zNI6NkMKBkMj2IbVQzi3OHqixTeC61hfkzFcJ118oynwfcE7DK/Mlah1l4LX+Evt/+U2/GjwNi/9DXkRc07C9yqE8mxyPAfxtp2DEK9LYjx7DMe7+gxuv9JCuYF/YcnzLP4leIS/uEPllmufS/PXUt1ciw6vwl8h8Zqjsbh+vdwvtv1otS5s/q/5YWNbENM2gxZNDYwvhtB8g143vkDDv+qnX5MYX8do1cf4nBj3s2gf/IDC3CDFP2q/MjHOLf+yK7z03LLVgz1+UMK/uvIuuoBeq4v5ClyRWmfZi0+XElGs63zP9OyZMxBXpida7Anz7DyphsROnICYf/USpQe2/Z04fmU68L7tfMG8X+bTOVjVi+NRdR4/k47iF+N6ElmI16zeCPGLLz0DcTepv4iI9NFc8dZNuyDee+QliCO0Bgrp13oBre2qhRzEfs2c7wyN4P3RKfoVaRjWmv9vrodeiSv+0KO3t1ccxzGe1k1OThpP9UREYrGYxGJLL2wV5ZW43JwT0bxTfnQ075SVQMdYpd1orVNWAs07ZSXQMVZpN1rrlJVAa53SbrTWKSvFFf9KTTQalZtvvlm+9a1vwd+/9a1vyV133fUKn1KUHx7NOWUl0LxTVgLNO6XdaM4pK4HmnbISaN4p7UZzTlkJNO+UdqM5p6wUyyJv9aEPfUh+5Vd+RW655Ra588475a/+6q/k9OnT8lu/9VvLsTtF0ZxTVgTNO2Ul0LxT2o3mnLISaN4pK4HmndJuNOeUlUDzTmk3mnPKSrAsDz3e+c53yszMjPzX//pfZWxsTHbu3Clf+9rXZO3atUt/uMmq/v5FY+4kaQdHY6gnV66h9mKhhaG0HUG9zXIFddhm5lAjzSehaDYEnJ9DjdDuLtRpi7TwFTk3jaqeOdK2Za29TjJ6uXnnOojTZE6zaesaiPv6UftRROTb33oC4hOjYxCzJix7mXhktMTqew5pGjZaGDMV2Oi68eo1xV+JK5FzIiKRRFKiTfOcWoP8TfKkUT+BWprlunmsZP0iPT2oV7tj5w0QHyBPjnwRNT3Pk+dHsYJas53d5k8D+/vwb/kc6t+eHMW8dFzc5q7r1kHc3YF9yW+gzl6ZNXxFROhcJknL1ArwRPkkw+4ImV+SbiSbIluB+SM2lzQGY+TrE21qX7byoXklrlTeRaMXPD1Y09I0JSdt0hbtZVPFpbZpfN4whMbrxxK/rSR/2ZvEdVkDHvcRI/1+Qzuf9mGTBnYrLVCb9DUzSdS+XL0KtZw3bETty+uuuw7idWvwusbj6AdQqZg6wKwjum/fPogPHTkkIgtjzP4DLxqfb8WVyDs7nRQ7szCGsIk849Oly7imp8fkDGr0f+OFAxCfO4ta4J0dWAsHV/XgPj2sfXMFrEuHj6K2qohIuUS1JyTd50ms2V2dWMuyWdQQHejLQuzarFVszjUcNsQkT4+Aze6X0Ng1/HgM/WsTiw0Yo9i3LvbKqHN7XoErVevc0Frsl14Dz1++jCLy8TT6TkSjZp4myXCvQYMua5jzPIv9bLg0OlxXWmkW++TZ4V+6vrIHkk85ErK5IYVBpJXhJcaJONVfqqe1Eg6yUfbooPlMgmqd4fskIvN57KMZ8umxmo1s5RH7SlypvPtJYCmT05VgKaPVq6GNrbgSeWdZFyTSLYuMO6mPT0/h+sJxTM+cUhH7l8UmAey3R6+75GnFRaNUxPpbL5k626UirpXzBfL7srBO+GUcxxs03qzfsAXiX3jgNRCvSplzjTqduyej+yFO0VyynsC1cjdJqPBa2qvheegm41cRkZyD1yJNuuiprguf8TxPzNmKyXLUuqX6F/vetdL0X+4+amydvdPEvNdgBzSe5fAzs5OYZ30jON9MpXCuGM7h+8fQik9EROansY96VfyMF9C9DI98q9jYnNZEvQOo/18bw/szIiK333IbxHv37oX4rL/gnxkGgcyV0BP0lbgSeReGF8oJm61z/rBHRCsbB54i+Gx2b/htUHvYuNwwqheKW3l6UBvoOMyl96XH38tzWfnhMGzuL9dGpKW/CsXC17P1f1+KK1Xr8rkZiTRlr3JT6NFx5thBiBu5HMQ18u0VEenswnsCh89h5U6QxzTf0ztBa60S+SjPVHCf05Omcftq8vDoy2Qhnk/h/ebbNt0A8Zqh1RCn6QJ2J3Cd209rcRGRoV7cp0f38Nb34j7O5bBWFapYC3M23rsMq7S2C81x/rkXfwBx7+pNEEfchfNgh+Y85ZVYNiPzD3zgA/KBD3xguTavKAaac8pKoHmnrASad0q70ZxTVgLNO2Ul0LxT2o3mnLISaN4p7UZzTmk3V9zTQ1EURVEURVEURVEURVEURVEUZSXQhx6KoiiKoiiKoiiKoiiKoiiKolwTLJu81Y9KLeJK0NRsD0mXtOHhs5oG6UIXq6i7KCJSKqFuWm4e9cUqpOEZIe3oah11ScvkS2GVUN+zQNtb+AxqKDdIEDBuo77jzdvXQ9zXgxpo+QJ6gqxfgx4eIzt2Gm1wE6ix/Ln/+UWIT549CzEfBbtvREmjMhnBlIq30El0Sb/aIV3LaOTCcQZhKJMFvFbLSWjFJLAWNPmmZlC7dnwcc+jM2UmIy575DLGvuw/itdtQO+/pF1Dfv5RHndHxSdTJO5JGvcCRYdy+BKa23dQY6hwOrxqBuKsDc2JuFo/7wP5DEO/Yhr4HqSTq3TZ809cgnqI8yWBcrGCfjbmoC2yRBuH5GdQqnabzVG+QlqqIdLno5xAI5t3LOvish98OHMdZ1O5nDf+l4laCqOzzYfgCmIKmGNL2QhIG9f2ldbnZe8T3MTdt2qfruPQ6HSfVR9fFz3ek8fqKiKxfizV0+7btEG/ajBqRq8jjgz07LJbaD3DscUk7WkRk66bNEK8ewjq9Y/tCm8rlsvzTl7AeLyeRICbRYKGe2FQ2rIAOlHwSimM4ToiIHN4/CrGTwLpwy204Hm1Yjdqt2zehp4dFo00jwHzy6qYXVLWC4/QE+S4dOngM4mIJR7gjR9F/JZXCMbczQzWDz5OYesacxzZpuzuuT69jXjvULxxOwhZypjb3JRfHXP+i6+kbor/Ly85tA+I253bj09PwWpX8oeKk597dg2OViIhLtS43j7Xfq+OYWangNY+Rv1TcxbzN53E8m54x55cF0tr36DjSnbjNWJz0a6medqRxvItG8P31qJn7szkct9Pkh+JS/ZybQi+veApf7+jCNhfm8TwEvpl4PM74VB9f9v8KW/SbdmJobbfS874GuRr9M67GNl0pQj+UsFmvi3msSzZ5CVk21mhbzHlouYSfGRrCMbNOHgONBuZ1lNZnZGtnjD2eR+Z6Yo4t3JcrtFa22fYqgnVldAzn8rPkrznomjU/6mJtKxdw3VQkv8ws6bB3ZGktENDanM5jV4c5t4y5uP6r1bANw5kLuuteo73fL7Us69XXNMOfbwX6IxsytFrTWDRPYt+IKibz9Es4ztNtB7Fs8tCpkYdVP/q9iYgkujEXK3O4j4BumHh1yivyL3Vj2Mdz5IlVKZnr2Ee//zDEEerTiaa/QRCYfnPLSdj838LOKYeo1oW0wmxV6wz/E2N/7J+BcUA+BiHNm3muEnIOiojNPiBmK3GfS3h8sOEFe5uFLbw22ZtkKX8UjvlacO/mNrNvSat98lbCizpXyB1tmcnPTYvbnMO7DuWA8LoHx4VW3svxBPb7efLgmKvi/ch0HWvC5BSOC1ynjp09ijssmmPsTRu2Qpyi8Wf7rpsgDsnftE5z82ny2R3ZjF6lEdd8FHDgRfQXLdGYupXuL992M3oN7T+MPlt7X9oDcYXuda4a2mC0QcgfJd2N853YdNOT1Lgz/croLz0URVEURVEURVEURVEURVEURbkm0IceiqIoiqIoiqIoiqIoiqIoiqJcE+hDD0VRFEVRFEVRFEVRFEVRFEVRrgmuWk+PqPiLivuujVqNhTIKJ56aQl3oyVnTA6JcJT3VALXeEqRTGvdR3zgkfcF169dAvGkwC3HvAMYiIoUqarudPYdapiMjqFc2mCWvhTk8zk2kgZ6bRP3yVDd6OYiIpJN4LlNp1FfNdmQhjsbw/awTGSU97E7Sok4lTY17IY3CRIL1ri9o6jW8hvyfR75lbmOZmJzNLx7T9DTm0ZkzqGM/OobnuyNjaoAOD6EW30277oL46NEvQ1ypYJ52ZvDzPb2oTXvmHLZp/QZTF8+2MJfPjI1CPDmJGoTDg4O4z4EhiEfPoRZ4VxfqB1oO6u2KiFiC2ny2g22qNXAbrov97fjxUxC/9NLzEK/uz+L2gxZaxIPD9BfMw4a30AbPayGSv8xYlr2oMcpavEvFtmM+u7aW8vAglvL8sCz250Dd5pYywKwV6mHtcGysudYS3ge9/V0Qb9u6DeMtqIMpIrJhDXp6DAwMQBwhrXxT4BhDizRCAz7IllrE+LdkHPvH5vULfbZYQo3L5cYZK4uTX7iutk86rB7GIfn0nH/4cWN7efJAuvmXfwHi7bu2QHzmPNbXkPTDXZc8YChH43FTBzgdw3Pbm0XfkK0b0M/oxCmsZS/uQ/+i8XEcczsyWEPYO0dExDKUfymvSb+YvW8c0mfllOK+Fgamhi5runrkGRFcpPPrt9lfIToUSiS6sM/N63AOY7vcn/BcuC1UlR3K3aERHDPncqjdHQTo05NO4bjdoNzvq+L8JH0Wxy4REZ/0wGPkReKmsZYFIeZ6qoavr+5bDXGpinPesxOYlyIigY3bNCSquf9QfY3SmOym8RgiDaz5roXnUUTEIW3gwjzWNKdZ40NDWVpZDq5GvwzWtef6dy0RBIH4TdH0Iunz1+vYp5OkL87+GiIikQjWtq4segTWyE+jkMeaEKP1HHs9VciXol4358IJmr+wBV6Z/C0jFr6/oxd908IoHtOJ0+jPt4qnaCLS04frSs/HuSXr1LsxrG1egDnI3mzpFK69e7Kmr8h0H67fM124NutffSGut/AfW05s21qcT/P8MzDmC5ee87YFGouCwFzTOA622yKPBou8BMJJzOVCB/aFukN1qI6JFiZNP41EHPMuTNAahuaD3V04t/AbPKfFPj81gTnVqjayR0CEPFEb1sJxBuz9tsyEEi76SfDV43XSq2raEl4zZkzeF+w7scQ8upVhB79nKZsc47Do/Q3qe5wvbovrzffc2CfNOA9LNIr7v+EJ0sKTwzzX/Porv7bcVArz4kQW+sDEuePwWoy8mblPJOJ4T0FEpFpG74rKLMbH4ugLuSaC9zyDGtaVPN2P7ipjXRqgMVxEpE7jmUP3ZUMXa1WFxrPSPK55qlR3VqWwjs1WTR/eh3/wFMRHTp+AePuxIxD/p//4fmxTmTwAaR/daRxTvRbrWF7EnD++F+LS7MI9WK6rl0J/6aEoiqIoiqIoiqIoiqIoiqIoyjWBPvRQFEVRFEVRFEVRFEVRFEVRFOWaQB96KIqiKIqiKIqiKIqiKIqiKIpyTaAPPRRFURRFURRFURRFURRFURRFuSa4ao3MT56dFKdpvOiQUdP5HJo9jeXQQNV7FUY6UTIYGhlG8+YdW9Bsrb8fzdb6ujCOxtDM5tx5NJQTEbEsNFu55wY0We0bQkObAhnd9ZBZczqBBzo/i0YxR57fY7Qh29MH8doRNPbtTuM+2CRUQjL/IlM7lz6fSpvm3r7FRq347C24yIS13mivAdyLLx1eNA87R2ahOTJEtSPYfZK+2dZ7778D4iOH0TT85DE0RfLIVHbNCObh/Cy2KZNAM9HRUTQbEjEN1jeuRXPn+QJuc6YwDvGZsfMQs8F0bBzNgN/1jv9gtGF+Ck3f9+1/GuKQHL/cCJo/HTmFbUjFsSbcfuP1EI+dw/eLmIZ+VTKHrdQW4mrNNEFfbizLWmwfGzYvGVstnl0vYX7eav8XY5grU+w10GjLZjfLFu1ij7ZYEg2CVw0NQbx7926Id+zYge9fhX2jowNrsIhIlHI1pP7FMZ9bw9yOXNrYbNRqcR7Y2DqwsKa+3Oe5LcuNfXZG7OTCOFUNKOep7teKOMZOkNmoiEjdRVPGFJ17qeM+ykXsf4Uqmqt1dOK1sHwyOm+Z0nwOccxl3/r163D8Gx09DbFPee7ReBSNm32PTThtNgaknPHJXM+JOJeMhcYZ3zMN4Bzu79TMwL3wB9dt73dfvERdpGkwyN2FS1lIDa+3OFbOgyhdYy9ep9fxDSUPcztgg9MOzOuR63HuJyISklF8PI6579n4ulfFOO1i7pc8HINrlIfJmHkeNgzg/HFyjszOPTyuLddj/fTpPNYtPG8DncMQhy1WD/M5NH0MqI406gvHEQShiJjmiT/RLGGs2np04PGMTEp5vBM2e700xvDX4j3BpVxNFxoFYZ3Mtp3IVbsM/ZEpV4qLcyc2y26QuXVF8Dw5Nr5fRGRoCPtgOk3GyhNYL8sV3EY0hefa5aHFY9Nrc00TBPghn/q4T3UmHsd5XiqOa5buNMbxNK4pazz+ici5WVxHZWl9vjrEdW5I9XdoKAtxB53Hvh40JRffNErtnsV233L7Logj8QvtrlbM+wHLimVfGEx5jurweM9Ox2be8fjGfZyNjo3mcCVZwhC61etshm1btAYJcbwKaL5YnaLjSmFe1qq0Bq2Z58GKYW6HDfxMrYTXuWzheBhxsf85NI5bGcypLp6wisjGtWsgHqf7FBeue5uNzINwcQ3jk0G3RfM4h8ehFvnDhtu8RuXYMNum4/eN0Qtjq+Xodum8v+yZM50XzulGYNYZm03glzhuo2/ycdLnAzLNbrUOZY9pLhEXx6HZbZaVcj4nTrNfPf/s9+C1wMFj6e7De65Wi/XEzMRJ/IOH83+/gjXApfEpk8CxxKbrMTuJ/TXhYJ8XEZkvodl5JImm39NkEs4DuXGPLolt6k3hvZJq2Ryfxgp4n/083XtsnEAj8zOnz0J84vQpjA8fhDhJx+07OO6LiPhUw2cOv4TbSDePw3v1Sae/9FAURVEURVEURVEURVEURVEU5ZpAH3ooiqIoiqIoiqIoiqIoiqIoinJNoA89FEVRFEVRFEVRFEVRFEVRFEW5JrhqxVRfPHd+UQeSn8x4rGP7KrYXIV28+29Gffg33ncTxIGPeuOpFGorBqTtffQcarDl82ar7rl1J8RTsxMQ26T3t2EYtRuPjh6FuFpB34Pujh6IGw3UrBQRcaPohbB962qI63Vs99w0+lgUi6RpnkEd6TBGenaskS8iDRIENOTHLxIFtBvt9VfYf/joouZhjbwdHDqWpEtatBnUhxcRWbvtZoj/5h//GOJcHs/v5s1bIS4WChD3j6D3zO7rtkE8NUX6niKyeSPmUdLGbj88iNdwehbz6vx51M+dnsHXK1XUF4zHUQNRRGTV9usgrvt43JNTuM2JadRZX79pC8R2A4+zdxBzP5U0vWSmpvEzdfIYeLnQeG3OORERy7YX/SBYc5f9NEy/jlaeHhiy7KfFmqskrh+NYW67gq/XySshlTBrTVdHF8R9faizfOPuGyHetRM9PIbJ4yNGbWKt0pD9h0QkZG1gOlVeA4/DIb8hlzR4rYDOG/k3eC0ETX3WTKXX3Uikua+ItJPv7nlSkrEFHc2ZGtaZcqkMcW4O+2dhDn18RETcVesgzlB/K7mobzw3i2eiQWdm3Tocc/s6MMdCaXG+7EuLRbPGvRvF671h0wjEBfIdOTeD52l4GOuOiEiELrBNScg56ZOWu00eG1wPfP/Smr0i5pjKuvrhRXkatlmEN9Gdkkis6elheBBQW+h6ui08c0LqX2XyDHA7sQ8HdL6tkGqfheNXnTxUqoJ5LCLik19blQpNqYR5ZJNUfi2Gr1ukRRxQqkc6zdxP0DjQTfr/tRrVOpoHzJJnmRSwkf3dmOuzVXq/iDTm8dzYMfJra2oot1dt/NrAHN1MrfwGzWnqFbweTgbn56y1bk4UKDQGVJGAtuHSPJm10kPyfGD/qGuJSqEqdrN+Bx72P/ZFYy8MxzHnodUqrjNPkQdVqYj7qDdIT3wG+2ysjK8nkzjmxrKmznaSPTrSqDe+bi3O2wZ6cc2yYf0miONJzJeOLsyxYsTUG/dq+Lcb7sB1UPoU5vnBIwcgXrMBPTtWkacnzwvn53E9IiIS6cRx48WjeyEulS70vUbd1OpfTnzfX/R0cEnvPRrF8c2Jsu+d2R+rNB8M6Pws5f1j+AqwTwGtJ5byIGy115AqpE9rFquA748ZtQ3bEOTMNvgu+e5EcBx2AjyXVZqL1F3yhGDLVLoWNpvPikihkIM4l8e40PSPaXUdl5MwDBf9JXz2vqBx44fx9OB7SYaHB8XsNcXjEKdYK08P897U5d97vBiHz4O99PrRWOcuddx03uZo7RaJRS8Z8xpJRCSkdW8Q8PWzWv53O6iW82I3a1w9yv6J2D9HhvH+WujjeCoicv4E3s/qHeyHuK8zC7EbubR/X72IY244Sz49XeY17+7FfXo0t8+XaT1Bxcyj9UaUPKhnG3iezpEfh4jI2Hn0xa3R3KHo4twgV8xBPDWDnh6FOXw90YWeguVZ81oITT9C8kKsNetx0MKb5ZXQX3ooiqIoiqIoiqIoiqIoiqIoinJNoA89FEVRFEVRFEVRFEVRFEVRFEW5JtCHHoqiKIqiKIqiKIqiKIqiKIqiXBNctZ4egVzQ2GPFM5f0AH16dtOdNJ/l3LFrPcRvfP1tEGdSKB529MgYxNlu9L44P4sal0cOoybaQE+n0YZ/+Nd/hXhiHvXBWVd/TR9q4u/YtBHiAwfPQRyLoEdIZ1fWaMOqNajzHI2gHuvsPG6jfwR9KjJ11KMr+eidYCfwPDbqph6r20DNPNYcda0Lum21Fp9fTqrl0qKQo+PgsfZ24bl43T3oM/GO977H2J4luI3Dhw9C3NOP2n3dvai9NzY6A/F1WzCPS2XyBFmDOnkiIutWYbttC70R1iRQ43VuDvVrR3rQ82O+gDrRR04ch/hL//x3Rhs2b0E/m7kSbuMUaQrmycskQb4WvQN4nr772B6IO1Omr0iCjjMWx9wNvIVKE1qmbvxyYzuO2M1jZO1Srgum0La5Pdb1NCDdTZbxtOgchD62qSuDtWnnLry+IiJ33nknxNu2oe5ydxdqxEddvD4ea2B7l9b9dVro/bMSOuujsgUE+7lEqDbZtE+fdYBD87yzbwTLto5PLNTcUsn0ClhO/mnvkxJp+ojM1nA8cx2cGvg2Xpuobeq+ru9EHe1oN2p/r1mLni5rV+NYcejoOMRWHdvg+ngeWedURCQ0/G74DUKv4/Xr6cGaMDWbg3i+hPW8o2qeh2yU9W/Jt4I8KNjzZel4af3SpT5zcZuWrBVXmEg0uujp4VqX17989vwQEQkxT2KkUWzRJWINZJ+Ov0HFMCI4XgY1U2s/bmGuG94/EcxVm7S96+TT4oY0BhiXyMz9Wog6vgnB/liuoWZugzwDoh2of2yR/5sXx89HXPNa9A5j/2lU8NpMnsuJiEjgX64a9k8A7MNlvKGF5rihjY6vs4cfydxLyF4/l25hS/8gh8bYE0fRe3B2Ej3h1q5ZB3Gs5bh9bRB4rkjT94s9dBJRrFOJJI6HGfLKEBHx63iuq+QtmYjgON1IYE2IkOGU7WAfvus29La87jpzPZFJ4do2QfNoyyFvEqp9LvkgNDysK56Pc5Fqw/Qp5IGdTq10dWPt6+zENh87iuv7s2dyEI+P4+uTLbwS5+bwOAslHKsSiQvnJWizb40lF+6fGCMFjaGBT2Ou38JXgMZIc0xt0YDLAjfgtJhH85EEVMx8G/PK8FLz6LgqeP2Scfx80TbPQ9UjvzDy4eG5HXtA2MaJoc/XMJ5vmF4wXhXbUKUFRbmx0Oe5ti87obPwT8S4acfnJUL+jOdPmZ4CZ8hL9NY7b8U30BrEmOpTTpp2cbyONpM2pK0GhsnHEt8bD8m/ysNG5fLot2HRmCBi3qdwqA20SamSr9fEOHozDI6gx6tN3lIB9xMxz11Ic+SLa0ar+rGcxJNpcZremztvwHsOFjUl24leTlPjeJ9JRCRp49hRKuN41Ef37DJZvI+RoHsjWRrXHfIMrFTNe5y1NL5nnu591Gl90cHrqBT2r0YCB8g5H3MkN3HGaEN+Eu8vhyHet3UCHFO7s1mIA66VMayvQ2vWQtw1YM41Dh1HL66ATJCcoHkcrdaFr4D+0kNRFEVRFEVRFEVRFEVRFEVRlGsCfeihKIqiKIqiKIqiKIqiKIqiKMo1gT70UBRFURRFURRFURRFURRFURTlmuCq9fSw5YJGn29o2KGe3HAX6im/4Xb0WhARuX4r6odlM6iZlq+gXln/CPpn7N1/GuJTp1EnT1zU4jt+6pTRhgOncBvz1arxnospF1A7bs0AaqLvvGEHxJaLz7A64qZWrh1HfblyAdswPYUeEVMT6CkxsGoQN5hAnbbAx/PqtNI8JP25OmtUBhf06+p1Uz97eQku6CSTfONQH56797z7FyC+897XG1v75ff+FsTpOOoFVkuoZyvkKXDHjTdAHCOt/RTp5jtJ1PITEanRcZw6i7mZm0VdyVX96OGRJn3BBGvzDd0Bcb5MxyQiP3juJYiPncL+UyXvliz50fA+Z6awzcfnUJNwx3XofSIiYlEfDUh4NOos5GoYtv9ZsGVZix4V7FXBcJeyWngbsCcD6/azNn46iXk00I8+MBtH8HzectMtEG/fvt1oQydpPPJhsa57vYG1iPXKXdKGDgxdUVP/1iJdW65HMdKXrrCPCNUfh2qsUMy1TETk7FnM9Seffgrir3/j6wv78sz2LyfVZEz8SLNPJKluR6iORNFDxzWctkSG122AeO0Q+kcNdeM+2MegfwA1zFn3l2RMxRFzbLBIbJr9G3hEDClnUuS10E3aqAny/mqUcd4gIiLRBP2BtIct1uHH17mv8us2GdG08pExpfd5G3bL/24Hju0u6ts7gv0vJH1q1i+2XfIoEBGfjj/iUN0gPyif6gZrIAdUG0PK03jI11dkOIu5znXDy6NmdUBeMuzzw5rp4tE1ZhMmEQk8PO466cjXyXvBjtC5JTnpCK0O4t34hmRgnofYPNa/SomuZ3RBn9pvBDK2D8fwn3R8QxgfWWpeICJSq2NeVRp4zdMB9vXQqIgIa5iHYtaaOCXvob0vQvzMD34A8c+/8z9AHOvAum/4hrwK+5dXc25Wgvvuu0miTV+VaAzbmO7A/tPTg+ch0WIuPzeL67NSEcef48fQX8/zshCPjKButmVjvgyvwnE+kzTPazyKF8RroC56UMd5XKOE76+RhnyxhB6C1Spur1AwdddzM3geZmdxzZEvYB3K5fA85cl/g4dQh7zcYtEWHoFJ1HK/7zV3Q9xxkX58vVaVvzzwSWMby0XEsRbXBRZ1oIDWmL63tG+WRXMSnjGENCfhWrZU/wzJn8FjMX4x/THYy9VzMHYCNjC6tB+OHccBz4matdGr0bli/wI+dzRpZW8Xm7wS2Sov3+IeUTWJuZ3pQg+BeNMALAwCKWI3WVaCYOGfiAgvSS2ar/Da7qX9h43tPf8CjiPDq4cgXr8Z16Q8rzNMPij2aV7nOOb1DtgXhjw6LHrdsjCHKnR/x6N5XI08W+bGZ4029Pbhfb8+8n0NG+QHR1606zbi/dA6naYanbdGi/sfnLeesfYOWv53O9i1fbdEmj5+G7ahtyjP5VO0Xl87hB4fIiKruvG+a66GfbB/EO+N9HfhNpxdeD9sYhrn/nOz6A/V24vjiIjI7BzmgRvgvePuTrxHZ1fQd8TzsMbHQoytKubxmcPonSEiUqNxN6C1cSfNTxK0NmtUsW8k0uhNM3oavd/SQ5jnCw2lGk1jQC23MHe4HM8s/aWHoiiKoiiKoiiKoiiKoiiKoijXBPrQQ1EURVEURVEURVEURVEURVGUawJ96KEoiqIoiqIoiqIoiqIoiqIoyjXBVevpEYpcEIEnDbpsAjXrbtu2GuL+LGreiYi45D3xwksnIH7qGdQXK5RRx61cQG2+XtJxC0kAuSfVabThza+5D+LT4xMQx2OoG3r91usgTpLO+p1vRA1Rr4w6cFPnR402xMjnw+vHduZy4xDXqqiJ19mFumxkzyEv7d8DcX4e9VpFTO19m/Q+Y/EL16rRZp37i9m6BX1d3v6210K868bbIf7Lv/qisY1HH38U4u50FuLBTjz/Q12o1ZftxDzLdqHe4L9/+5sQ56qo7ScisnbtGohjMew/IWmdzhXQxyWbRu3hG3fcAHHPALapUDB9DTo6UI+zf98+iGvk6VEkb4Sx8TGI+7qzEI9QG9wWQtDnT5+DeNUwnZemRqG1hLb2SsMeHq30ckPSGo2SP8K6NehxdCN5x2zdvBXizes3QdyRxhrbylckJL3bkEVVObRYH9XY4iVju4VsMNcWQ9+YtIpd0gUOqFYVyfvp+CkcR55/YY/RhocffQTig4cOQlxubpO9G5abZCIlkZc9PUjH1SKvBcvG/Em65snu70RtUq+AOqKVPJ37BI53VcH4PFkDuZ3kO9JoMTaQYC1r0Nss80yayi6NwbEEafiSJn5x3hRN7kphfTVyagnPDjPG9/OZb5U1vA3Wnr7Yx6PdeRcGloRNreuQ/DdYltm1yDOshaeASxeV63e9Qjrb9H7XRp8tx8Vr7pK+uB2aviLiY66vGRyBuCxYNybncDxLJ7ANfEnqpMNus/i3iIR10lWnPGP/lBj7o5DuL3sohWQ0YkXMNjgJyjvyNskMLPQvr25qtivU76kzFEvm3C5fKEE8egbnONUy1qfpcdSXTkaxrkcp9kjnvNGi2sRoERDvwDnrEHk9nZmchDg1gHPDTprzcsFrd736UbjljhFJNMc5P2B/MDoOm/X7TW+8eJo8xMiwr1DGfpWI4pjc3Y3XNxbHsaqb1nfpjKl5HnXReySbxfew/UWpTDWb6u3Zs6hXXq1hnmeSpm/Wi89/B+Izo6iT3kHrrMBDz7qNG3Du39uH64d4HM+T4TMjIlNzuE+LvE5K1Qt9r14z10TLiWuFi/5mhkcVv5n7k28eq0WX0KX5Pnv/sF/iUrDX3ppBU9+9PpuDuFjB2lcj/XePPD088h6iqZ9USLs/kcY8FRGxojhm8rjs8yIEm2Rqz7OXF73MPq0iIg0Pr0+5jP3FftmLpM0+R56E4jWzi73yknR/bPw83mc6N5EztrdhLa5Rx87i2Da8Gu/7RaLs2UnzFZoz2ez3yMZqYs6BouZgBGGD5qds+dKg69+dwXqbmzRr/uQk3tfrJA/jgNZB0zN4/8amNgX0XfcI+XkGLe65hZRzJVr3+OHK+fDOzM6K2+yXc/v3w2vZHhybZsdwve60qMtrutGfb7Aba9HEPM5f6vPkk9zA/piM4/nddAOuDTav2Wy0YWAAvbca1MfjIV6jOvX1zggOwp0W9Q1K45t332S0IU65W6Nk7qYxM5nAMbNMfkRcyapUz2fHzgmTH8O5gVXlNc5CXVFPD0VRFEVRFEVRFEVRFEVRFEVRfuLQhx6KoiiKoiiKoiiKoiiKoiiKolwTXPZDj0ceeUTe+ta3yvDwsFiWJf/yL/8Cr4dhKA899JAMDw9LIpGQ+++/X/bTT44U5XJ55zvfqTmntJXHH39ca53SdrTWKSuB5p3SbnSMVVYCrXXKSqB5p7QbHWOVlUBrnXI1ctmeHqVSSa6//nr51V/9Vfn5n/954/VPfepT8md/9mfyuc99TrZs2SIf//jH5YEHHpDDhw9LJmN6bbwSoVyQy+thT4FNgxD3kqZoV5fpp3H0LOpvPr/nDMT1KoovZpOoiTZCGpO7d6HfxpGjxyAuFk19wAjpAW7ow+NIp1Hfj7U1Ixk8D5PnUOvP8QoQZ3pRF05EpFZEnbUIacHtuuEGiCfIS2HVKtRCLRVQW64y/wzE+/a8YLShQRqjneRr0dV7QYf2ZS3ynTt3ym/8xm8sa86JiGzYsH5R7/x1r7kTXkt2oYbkl7/xJMT/7//vp4ztZTq6IA7Iu+Lm22+GeGxyCuJtu3dB/Mw+HBhOjKG+YFe3qcFbrqC2aSaNuT1HvivXbb8R4loJX//eM89DnOzA6zcxjscgIrJhNepzdnShLjBroyYbpFvawP45MoD9cXAA+4ZfN3UpK/S3gIQNG7Xcwv/XF/ZVLpfbUut+VKIsoiwi69ajH82ObVivrt+9G+K+btR+TpAHSJJiFgZm7wsRMTRlWe7WIh1fQ0l4SfMC1mw1m8CaqwHHpHeaL6FW6eFDhyF+ds9zED/xg6cgHj11ymgC+9XESC96YGhARBZq3cH9B9tW6yKp1GLu1Ojy2Rb2p0QU9Y27YqZecCqbhfjkONamaATrRIEkzL/xFI5nkV5sw8AqvMBe1dSeDrxL+8bEo1gLbQevfyyC2qk+yYkn6PXuNIk2i0hXCbWmE514HJz3NiWuvcTr3K8iEdNjgmW52XPnYo+Pl/fXrrzz/UDspgarbeNcwHHoWPjYA1O7NQwweT0aO1wH9WwbPvZHJ0IeK4Lbi5AetXhmG0p5zN2ONTiGvvn2WyA+OboX4sDGPDp+Hj2vKlR+Gz6Z04iI5eJxBZQEMRuPg/MsHsM+ThYe4tH4WaiY+tM27SNi9LeFfdpNv4oflzF2WaCxyKbxrEZzom9941vGJsYncV0jpDlfIR+JgPpKlLSea+S1Mk+6zOXQzP1GHd/jerjPKO3zhf2HIH7y8WchfuCBN0B8++234fZIu/2HoV21rlGfFKdZf9g6oUF1yiMtdfZ0ERGpVPDclkt47gMP+9+ZCaxL+w/g/MQlz5Zf+qVfhnjDxhuMNjg2rlOjpB++dx/Okep0nGtH0MNlw9rrIT50CPOjt9tcx957L9aqwk48ztDDWjg7i2uSXvK049lrPo/zwEqF/VZEbBfP3dQM9sX4RVrujabOfbvyznWtRY889hXguYBDt4EaLfq40JrdMN/i6eASfn3sazbcjfrwH3z7LxlNmNqHY+bRA7gOLdIYOlnBNs5Use9MUN9hzXqxzGueTONAbMdwbldskEcATV9c8oRjPwbhc8/i+2L6K1Rovul6dnNTC9tq1xjrSSBes/2GLx1d7/Ex9LMtt7CBSNDccJq8oArzeNzZbvIqZc9HWoDW65gvsViLBSTNoabHsI6cOYWeA9tvxFoWpblnljxavAn0MeiMm3P5g6exrnT34T2lPsrJNM0BJs6ehPilvXgPqad/AGKeF4qIFIu47jk3hvcFR7Ze8ACtNT0q21Xrao1A/KYZToI9HWk+06A8LFdMT8ZzU/iZCs1za1m8puVurAG9ND3Z2oceHjfvxHsvG4ZwLBIRcV2sybniHMSZBN4/c91Lz4nY29SjWrf1zT9tfOZnH3wzfobWPQGNf7k89o3pHPbX0nwO4oiPbZqgviQi0mB/YPKqXbypxH+/BJf90OPNb36zvPnNb275WhiG8ulPf1o+8pGPyNvf/nYREfmbv/kbGRgYkM9//vPy/ve//3J3pygiIvLRj35UOjo6jL9rzinLxQMPPNBywBbRvFOWD611ykqgeae0Gx1jlZVAa52yEmjeKe1Gx1hlJdBap1yNXFFPj5MnT8r4+Lg8+OCDi3+LxWLymte8Rp544omWn6nVapLP5+GforxafpicE9G8U340NO+UdqM5p6wEmnfKSqB5p7QbzTllJdC8U1YCvWentButdcpKckUfeoyPj4uIyMAA/lxqYGBg8TXmk5/8pHR2di7+GxkZafk+RWnFD5NzIpp3yo+G5p3SbjTnlJVA805ZCTTvlHajOaesBJp3ykqg9+yUdqO1TllJLlve6tXA+o1hGBp/e5kPf/jD8qEPfWgxzufzMjIyIp0xd/Ezu9ejBujaYdR/7OpAjdFE2tQ32/MI6oVtIk3PftpGOoWaob6gftmaLevw/RncZyxtai73DmEnL5VQIy3bgcc5P4tafqwtXankII4nUFt1YAA9KERE8jZ9Jo7tdOZQQy2yJkttRF32sVHUBzx1BjVjK6xx2YKA9EIv1t1nDf5X4nJyTuSV827VqlWLenrbtm2Fz+zZexbi46ceh7irizxZRKSYQ1H4od5eiFmLb/N12yB+4hn0SHn+RdT67ujEnw9Wy6YO6XxuBuKN67H/rN+A/g/7Dx+AOOGiRmTg4fWq53IQ+y00Yb/z8Hcg7uvDvhD4qK9peahTuXrDMMSrtuCAZxexrwwNmN4m/Ruxz9dIjr+QW9BNbKXf+0pcqbz7UXBbeHp092Cebdy4CeL1a9dD7JHerU0aiazJyhqRpoORSEC6kRbpRxv6tfwIPuSQdYRJv7NFG7wQ2zA7i31h30svQfz886gTvO/FFyEem8BJWbmCurLxmHktVo+gJjX77rysUd5oNOTg/oPG55krlXN33HmbJBIL41yJrm/Uwrri0LXrSJpne/U69KgqVHC8en4/5tijTxyF+MgE6f/3YQftXs1+D6ilKiJih5hE7Evgsl+GS3lto8ayS5/vyuD1vWVH1mhDZwnHvEwn7jNKvSVCusF+gOfBJYHs0CF97BbX3ibPh9CjznXR9bSdS+vBvsyVyjvbFnn5MvSQljdrB1fKqGXr182xJeZgHnRkaZtV3KaQb4gnmGfREM9do455nHDNPr5jB84Vtqy+G+KNwzdAfNMq9AubzKEebq2AOXJsFucB1RrWHRERlzRyWea2EeBxOux1Qv4OZHcjPum4W7a5fLBprhAlHe1FPfnL0OC9GsZYY+xZaMgSn7q0Z1XIx0D67a6NeTi02pzP//N38ZuRB6dzuMlO9D6LJnCO2pPCa14o4Hx1poFJ4CVMzXHbwnoXreM2EtM4ZkbHUMe8O4H99+TxE/h6N2qY79y502gDa8hfKj9eDVcq586enZJYbKGflEvY/+o0Aa1W8NzOz5GhlIjEyFurSvO2PGlgT+ew9hUKGPf1Yn7EYzhPrNVNeRKH6u3UNGqeP/o4zqn6enDNaAvWz0IBP//9hx+FeNXIOqMNWfKg6+xKQVwjv4Z4BfN4cgY16QML+5pP/iqOa67nO5PYBrHw+kUiF9YwdXvpdbDIlcs7x4pc8ALjOQ976Rn+X+Z+AjbkozlLYLVaAVy0T6r37KWXpTZtsM06s30bro2v68I8ypdzEBcb5ClInlUvnsH1/J6TeO9irGR6VnkxHPPS3aStL1hPS1RPLfKuSDv4+eIM+rIGnjnG0PRPHPJoaVQWcpdr4qW4EvfsQs+TsNlvbBq7pqdwfb5vD943Wj2IXrEiIuU5HDdmz+ParU5zxYA8BUsVfL0niWPfyVNYA9aNmOPrFNWJSjEH8fwMztviAa0H41grK1P4+QjdgygWzXld3wDWmUgSa11nP667Ih24vnS78bh6tt0HcYnGoTzdLxIRSVWxL3Svx3n5i89d8Let19pb6+p+RYJm3qVobZVMYR0pHSVvjKg5h2XvimIJ84hL04BgXr3uJpyfrM7g+Ld2GHM9EcfrKSLS8PCaJBN4PyxFsWPhcQR0b4UrgUe+a26LuXyCvEfZxomn8FNTuM1sGu9BrV2H9fvMQbyXmZ9Fnx8REZ/8wCzyRLIWi+Grr3VX9KHH4OBC5xsfH5ehoQs38CcnJ42nei8Ti8Uk1uJGkaK8Gn6YnBPRvFN+NDTvlHajOaesBJp3ykqgeae0G805ZSXQvFNWAr1np7QbrXXKSnJF5a3Wr18vg4OD8q1vfWvxb/V6XR5++GG56667ruSuFEVENOeUlUHzTmk3mnPKSqB5p6wEmndKu9GcU1YCzTtlJdC8U9qN5pyyklz2Lz2KxaIcO3ZsMT558qTs2bNHuru7Zc2aNfLBD35QPvGJT8jmzZtl8+bN8olPfEKSyaS8613vuqINV36y2Lt3r6TTCz8j05xT2kGxWJQTJy5ILWjeKe1Aa52yEmjeKe1Gx1hlJdBap6wEmndKu9ExVlkJtNYpVyOX/dDj2Weflde+9rWL8csaa+9973vlc5/7nPz+7/++VCoV+cAHPiBzc3Ny++23yze/+U3JZDKXtZ/brtsgkabu9JpVqDvamUUNtJ3XoWb6noOozSgiEougtl5/L+rESh1/9FIqoCZaifwzsn2oxRiNo17kL/z6zxptcNKkQR6QlpuPepCHnjsC8cRJ1KAcXI0/BQt9bHN5AvUhRUTqZdTbc3z8uVhuDPX8Tp9GLxSJ4Hl6+LHHID41jhqIEcf8MVFXBs9dLI5tcEAsbuG/77333sW/LFfOiYiMjo4uap5aNrarXkZ9zsIcaR+2kDLMxMmzY/MWiIeGUW/xpcOo6f+DH6CWdyKF+oFV0htcPWz+PPADv/OrEF+3HdvQ04Ma6Hv3Pgfxw996BOK7brsV4hx5enRlqW+JyMGDhyE+PzYJ8fq1qLn97AHUfU5Q3s2Pod7nxnV4Hm+7FzXTRUTGZ/FcfePfvonb2LhQRyrN6/jCCy/IT//0Ty++vpx5F4YXtHVZi5XjgPwXWmloct6cPnES4gde+3qI77rtdoizXagLyjrAjNPidVbn5Ng4TtaMJ31Pjvk8jE+YmpDPvvAsxD/4wQ8g3rcPdSXPnsUay14Wg32oU5lJkZ9Ap6mB3dOP/StXyEN86tzCPv2mB0q7at1dN++QdHrhc9MVbFPEQR3SqIvbr7Xw7cnN4fV59PvnIX7ySdyHF0VfmQTlXIO8g0pVrMd2xPSisCnLopx1bCNjU99iLVTKyfwsfj7/nOn/M7mKPDsymEPrurHdoZB2NHkvWKRTy3rJQWBO47jdjTpu075Yo7x5yO3Ku3qjImGzX01NosauIziPitAc6catOPaIiGxddyPEAwM4vs3k8Px65CFWrWP9bHioqzw2i3kbVEz98v4MtnPiLO7z5B4ca8pl3KZNmrznjmAbGjaO++vWoz+ViEiNvKiKNTy3dgy3SeVTwiqNK3Se6nXUuec8FBGpNfA9XLOj0aYgsrOQn+0cYy/VriVpUe9C8osyagv5BLDqcI18A0KqVakY1onBIdTuFhHpXI9eMk4H5XI0i/sgo5Z4Bx7DZA3nZV4Hfr7RaepPx0ljPEUSFOsKOFe7PYraz5vI8+rQUVz3dHbiWHQlaFet+5d/fkHsph9CqYTrB5bcj5HfSqOFf9GO667Dz0QuLfeRzaIudz/pv99wA9bO7h6auzfMNjSqWEfmpzFn0uQ7kopgG2I0p5ohP7+yj3Xs5Ji5nu8uzUM8QHnJ9VSiOC/zaa3MvnhuhOaiRgtEPBLKiNB8JHrxura5gXblnW3Zi54e7GPmk9eeE2IdiphlXeocU1oENv6BLT7YWy3u4B+2D5HPnZh+NqfqOPmaTuJxdbhYJ27uxXl3dRLzdNtd2/H9a/Dzj+09brThhXlc88+X8R5LIoO57/Rg7lepBvgFzPUIeXz6QYubCnS9nAZ5bjbvW4ThgnNKu8bYhi/iNK+7Q2NjuY7HOT2F6/tSPmdsL9mJ59KO4fVmP1qbJjSru/FeSJTGqTU0n1k/jPcZRURu2ojbOD+F1ztKnlkzIeUcTvPkTB2v73wJa+m5PH1ARMo1moeNjkJcLKKHUnmOxnDyIfFLGMeFcjAw1zQDSfzbUBZ9Rg49+8KF7TfnNe2qddVSVZzIwj67qfBMzOB6vjCN9yeTVCNEROIRzJORdRsg7iVPzvt3o3/f5iG8F1Ut4ljF/qit7Cj4fotFvj2GXQ/dfqnSWmAmj21IpXGuEWW/VREJAl4b0/0aurcb0IHceucbsIlR3Mff/F+fwDZOmSb2IfkrWsLnxYL/fzVc9kOP+++//5IGSZZlyUMPPSQPPfTQ5W5aUV6R+fl56egwbyiKaM4py8O9996rtU5pO1rrlJVA805pNzrGKiuB1jplJdC8U9qNjrHKSqC1TrkauaKeHoqiKIqiKIqiKIqiKIqiKIqiKCuFPvRQFEVRFEVRFEVRFEVRFEVRFOWaQB96KIqiKIqiKIqiKIqiKIqiKIpyTXDZnh7tYseWtRKLLBg0pbNobuNSq+cKaA710j40UBURGRleB3HERZOkM+fPQDzYj4a167duhjiezEIcTaIR2vHDaFAkIiINNCmq5dFsxiNjQ/JYlcb5aYgnxtCchk2uPcs0oZudx8+wCfLYeTQuPz56DOLxIh5DnkxAd+7YBXFPFxoeiYiMjKyD2LCguchkrt6oy3MnTEOx5aLRaCyaCO15Hg2i9r2EpsgWGfes6jNNkXbsRLO08+fRSKlYRXPtPS++CPFAN54/Nl1duwYNTX/xHW832nD9rp0QR9B7WSwyf3rw/jdCfNtONI9tNNB4sFLB/nf+DJqUiYg8+DpsZ24aTYsqdbTKe2wPGp+Pnca823IPmkf9w798FeJnDx412nBoP5p5Hz+NbejvX9CfZKO/thDKoqEVe6ayQVRABrOuZ7a3XEYj3X3jWBNHT56A+ORJ7GNvefNPQbx+LZpORx00ZAt8s9bUqqYh2sVY5JgYSbCJHx73JBmVP/MM9seHv/99Yx/7D2AfnibTzZDOZTyObejpRmPP3k4ci2JkNpsvm3X/4OED2IY5NGSs1erNtryy7u5yYIWWWOFC9Q0tHA8DG4/z6Hm8VgcP41glInLoJawLp0/jNsoNHFNT3WiqGsTJqDCFtVF8MmK20MBRRMQP6XscZLDpkSm41aC+RY6bSxmkTebMKdTT89iumRKO27ffgDq3GepLaRfbnKZpmlXD8+y2SBuu6VYE62t40fddQquFWeYyYlnB4nmt0SVOu9jfdm++DeJfftt/NLYXC9CA9ODeQxAPJXGbiQ6cJzlkHhrG8PoVPDzBM+NoZioicvLI8xCXybw56eI2/RDP+ewMzgsS1P/uvv09EL/xLa812jCXx/p4cgwNob/y8BcgnpjBOa8Y80U8bp91wW2zb7BJfMzG43653rz8/yvFpTTORcx+zybjIiLlCvapBs1hikUcg2fJrLVAZpPxGNbg7gSuKaZm8fMiIrdtR5PN1RXMqyKWCgkC/EPUxvf3OFijq3HsW/Ps1i4itQYex4CL7bZpLjKen4P4bW9Cw0vXxRre04Nz4ICNQOWHMKZvE5NT1cW2sUlxIoEmx51kDhul+ZCISLoTx444mWdnaH6SzuL16+/HNcrWrVshLhRwbuKIOcb296J5b0cGr/fgAB4Hf7MyncJjGIriMWyn9Uo0TgsWESlMYQ22GjSG+ZgP8QD30XBx/sJ1KxCc78QT2DdFTLPuGJmhxy86LjZZXm6cqLe4jnU9qmXUFMshI+yWW6R5FK0BheZiNs2jvADP92o6n/ft2A1xqs80ld53aA/E3z+A8U0DaCC8c81GiBs1XJcm6d7H7auwb2xOmDVl00k8zu+M5yA+MIVrYacLczdikbE5zQMaQveAkqbBsFenc09TcUeaRubGJ5eXIPAX16YWjZe+h/mTjOHrk+fwPpOISHgWj+Bnf+ptEN+7De+t7DuDptUz4RTEnR5ONjvSeC2+uRfXxCIiB8dxzTF6Hu9DzFVwbKtVnoY49HFszETxmPpSmE/DXWbNX0PzUZeM7CWGOeeuxvVCMo7z3SEyX+/N4nmwOaFEpEb9/7tffwri6vSFetzu+ydVryqOtXDMIZ2bsTHs83yvKhk3PUeSUTQy30xj5O4tmHcb12KdoemLROp4fn3qG7zmFDGNy706nlOf8ihKxudPPofrkc/+8z9C/J53/hLED959rzAej1k0x+LKlKP57WwZ+9vNO+6DeOOO2yGe/M6XjTY4Lu4zQvcI/JfH+cuY/+kvPRRFURRFURRFURRFURRFURRFuSbQhx6KoiiKoiiKoiiKoiiKoiiKolwT6EMPRVEURVEURVEURVEURVEURVGuCa5aTw9fLPGbOl1Ts6gzaofY7LqHGoerV40Y2xscQK1a20FNtN7+bohjSdRhK5ZQCy6SyEJcmkCvjFMvmvpkmU7UivPruM3pSdQpzVdQE80izfdYBNtY8VHPbnQMdaJFRHIF1CAc7MXzMrB6DcT922+GeIi0OGMxbEMqztqeptZaECWNVpaKvuh6VmuX9gW40sRi8UUt1EnynbDIZGVqGq9XZxq1E0VEykXUhDxxAnUjj45ibBwv6SPu3IV6gr/6q78K8fikec3PjKKXxar12D96ulHXsBHgs9B0B75eLZOHx3k8TzM51L0UERmj3O7uRK3hZ556DuIfPPw9iO0Q+/jXn3wE4lUDAxAPd2WNNmzailqWr3vz/RBbjYVzXa3W5LkX9hifX04usvQw+kNAeqhR0kCORswyXiN99noNr9lYAevVF/4Z9d6fexGvx5sfeDPEd91xJ8RrRsya67MOMGnROqQDPHEONViffPJJiB977HGIDx5C35fxFvUuTbro3ZTLmTTW5L5e1P93SLeetYxLxQLEBdIvFxEplvA9rFOZcBZqaBAEInP43uVkesyTSmrheB5+AXXWqzWs84dP4nGfmzR1tksF1PKOJDCRnQxq3lcEY8fCfXQmUe+4uwfr0tSsqYXaIDnZgM4161UHpO3P/jlsW2Box4em5nnDxxx74TiOyyfH8Br3pHEbG3sx3rkR+/dqer0j1sqTA/cZ0thlgbY/aUQvMzG7RyL2wjHtWI86rwPxVRDfdD3OPwaTptb3+CSOP1/+57+HuFjCeVSN5osB+WTFSEs/Fsc5Tn8LvfHV63HeZNNnkjGsM6vJY84hXd8U+bN1kd5/kDPzbiiGvnPJAazJj1v78AOd2IcDG3OmUMhBXM6jN00tMLWfHYfmDgk87rDZPy1nBXyzLmIpDwj2/KjVzD7yla99C+IX9uL5PT2O49lZmheVaW4Xo+KVcbDfV70WbY5inbYsnD+moviZbFcXxbjuGe5GXftOqsn1EGu2iMis4D7taRxLJqdQa/18Hetfbhbfz/rU7OFxdbp3tGbn7l3iNk0oO2nOy14lHV04bkRi5ryujzz+0nG8/uyj5sawj69ahfU1TWuWOvnSVMvmXD7sw5zZff0OiDdvRZ+ZuekcxMk0+o6cPIc+knfdfhfEUfI+ERF59hGc/z/37W/gPsiLxInicQY9eN7idF6jNC90kthmEZEE+YfFqL9eXGNCu731Lp4O5OVuZFexnUnySCmTZ1Wx0aKuk8a8TWuSl8fzl2GPvwbVkQ6aukXmMW9jUfN8dySwds3P4Fx7Jopr7S995WsQb+jAz/d7dC+DfF4GU2bNf+Na9A1Z1YPj/tcnsOYfprnHXI28Y6KYp/VIDmI7ZXp6hA2cn3glbHfQ9FhayrfqSvP0o9+RSHNtWizg9UySkWijzutTc3tRMu8tVrE21aJ4blJdmDNnj6C327dP4Zr3uTFsY6WI45CISHcS896hvnPrANaVgSx6l3Yk8f09CbzefeTZkkyZo1sihdtgv5Qo5ZAd4HmyaPz0qW/WGthvSnM4zxMRee7hxzD+AfppSvSi8+S3N+8S0bQ4zXsgA/3YH6vUB4pxPNatm643tjdA49ON16HH1PpB3EfGwmvokGmSTZ6NNvnZhS08WZmghn3cj2FtCsnbq0HbrJRojkb9r+U189i3ic1KMO+q8+RvM4X+qVOH0WMwlsZ6HImbvlkBzZEbr7Q+b+GL8kroLz0URVEURVEURVEURVEURVEURbkm0IceiqIoiqIoiqIoiqIoiqIoiqJcE+hDD0VRFEVRFEVRFEVRFEVRFEVRrgmuWk8PceIizoJmWJr1NH3UEsvQo5vpGdR4FhE5fPgAxP0DgxCvGUEtvoAlz0jfLD99BuK5GdQDLM7njDZUaqjNVydtvZcOoObZ8bPnIS6R34NDOpoVj3S8XfPyVug47u1HjdeR62+H2KIUibioX2c7GPsN1E0MG6YGcIQ1CEnDV4IL+wyd9ir47t69XSJNrbpB0q6tlFGfM09+HRM5UxPy7GOYJ339qAdebqCY5eAgelPs3LoN4rvvRi+F0MPza7fQtuvqxuNIkh/NzDTq9lZr6L9xaD9qVU+exmN6+qmnIN5/YtRoQ6lEen8V0oou4blskAauQzmS8jHv3vrA6yB+/wf/k9GGVauGIT7w4l6IP/sX/2OhLfX2atyLiNiWLXZTM5E1rJNJ1DrMZrMQ5+fNvGMvi0gfahZ7VCty89hvD7yE1/zkCfSF+Zcv/yvE//HXf91owx23YS0plDDPHv82enZ867vfgfjgwYMQN8hPIxbDY+zvR38iEZEBOu6ONGk5x1ALs0jnYWxqAuKAypHPGpNcy0SkI0m62VSD6039Tb7uy823v/OixGIL5+Pfvo2eL45F+pou6o2bVV0kEKyPyQ7s88kU1v18ETXOA/KsSnfh+0myWeqzphCwb2Fee3Q5LBpPLJfeQGFoKMizyYdZbw3bDwvzcmwSP3PuNF73E3Qen38ePc12bsHPv+5eM+/7SQe4UcFtxN0LV9BqkbPLSthxwQulimNTkTzHDjyP2sGj5OMjImInsH+9/s0PQOyTN5pH+rVxF+tInjzk5mkuF4+bGvP9XTiub9i+FeLHH0U/oudozAwDHu9wfJuYQJ3lQsH0DnJcrGUDq7dAbEWxjb/0lrdAnCAPnnwea+HsHGr0js2cMtpw4jT+reTh2DRbW5g7sOZwO2g0GotjyNwctos9PhIJ7D9F8jETEdmzbz/E//adJyCeruD5jAyhFnS8D+d6do3mzuS3N0P1T0SkYWMuennUlJ8/8iJ+oIQ658kU1uDBHuxL3Q7W01NHcB0lImJRf+gjX5CefjzOQZqHjZ7CnOEx29CmX8KP5WrijrvvXpynsPY6z+vKVbzAtYY5vs0XcA5VyGPcmcHruWYI13dDg0MQp0m/nOeFE+O4BhUROTeO3ml18pLk6zU3i20sHh+FePQsenrMF9DzZdf1u4w2DA/i+v0rZ89B7JRwjtXbj14Mw0O4rtqwHn1IZsp47s3eL2Kz1wzN66yLDMHQQ2v52bRhRNzmWr00hWNFnHzIClXyXiubeVep07yK/Jwc0qnnMbZKE2f2Z9i/H+tSJ42nIiJrk1gX7l6H/pb9pAk/fQJr1cRJXLdu24A5ESbwXkeqz9SYz2ayEN/Sj94v69ZgG//5RfTsPEiWfbNUynIR/EPJxrmLiEgsi2NTLYrvacw1szUMW0/Ul4k9Tzy1eD8oTfccVq3CsW+uiDWh1qJ/xMi7MtWNHgBf/R75+JAPz1gJx6Vvn+e5O/aD+4bNeV3dx76wajPOqd50C/qo5aZwnXxuHO9FFnI474l6uE/XxfMmIpJOZ6lN+LpLfS8ewbljmfyIz5L35akTRyHe+xyuu0VEntjzEsSVCt93urBP9mFYbjas2SyR5hj74B13wGuudSvER07iWLNrqzm2bF2FdcGnNR57rDrUZ/kegEP3GNiTxSVvjFakM7j+5nsfIc2J7rv3XohvuRm9EbNJ7Cu8LhYRcR3cB19VXjVu3X0jvj6AtTBj4/Y6erANA12mJzJ7lD39g6chnmr6hoSXkXP6Sw9FURRFURRFURRFURRFURRFUa4J9KGHoiiKoiiKoiiKoiiKoiiKoijXBPrQQ1EURVEURVEURVEURVEURVGUa4Kr1tNj/fp1kogvaIB5PuqNJROoW5pMoTaYxFBvUkTkse+ipvLcNGr6JhIYZzpRP9BxUHfNjaIWXwIl1yQMUVdPRCSWQS3GKdLWmyCd5jnSSq2TtC3rmDVIli1DmogiIi5ptk7Pon+DQ3pzEc4QC/cZ1kgLvoGx10KnfuwMagZ2dGchTnReiL0ANd2WG9fyxW16K5TLqDuZ7UT9263rNkLstZAaniWfD9/C8zFPutlr16L25eGTqBHZ2ZWF+A33o4ZhVwcloohUa3jN/udn/m+Ij504BnEH5X53BnUmTx7H97OeIGtliohUSCe2Vkb94uu2oAb65ARqCUfj2J/6erGNb3wb6pN3DaCWsYjI3/7N30L8tS/iebDshf65EnrjlmUt6oqzvvjwMGpg7969G+LHHvm+sb3iPOrSp0k/mveRSeHr83kUn50rom7s/sOoZ/6Zv/oLow17X0LPlEMHUGP3yBHMo4C0oDMZ1Hi0bWzzyAjpNA+jXrWISOijVuyRI+gJcPo09s98Lgex4+D3AqJprOFC+p123Rx7oqTZGScvppf1NH1pr6fHuZkZiTaNMmZJCz5BXdi1cLwLLfP7Eux3IiXss8nUCMSFHI4VAenEelm8/lNTpBU+Y/ZTN45zAZ90RMUhDd0I1y7eounZcTF2i9cj1LcsyiGyLpGAvnsyF+A4MzePF+P8ZA7is1Om2P9P3Y7bWNeD2wjrFz5TrZg5u5xM5s+LW1vIjVNnfgCvnTuEdccq4jjgki+QiEiScrWjC+eHnR0Uk8fO8DCOFdEE5gh7nqxejXVHRCSkcb5AflF95M/QS+N4hTwjurtQD5c1lBueKdad7MR2x+K4z44u0osOaZvkKRCJ4Hnq7EGd9eFOnP+IiPSkUDP5wLlnIJ4tv6xx3f7vWz355JOSaq4Vjhw5csn3sqdHYJvz+S6ag/zM234K4hxNyMtRrE0VGgfq5EVYpzmS77aoRUmsb24a/TP6U9dBHJDvQMTBNUJXHGtqeRx18EOXxj8RqdfwOI9O4XGcL+EcvljAevNSN/bP3sG7cPt1zFOeu1zNRGJRicQXzjF7ATXYx4c8P2ItVufT4+irc+rkKMTzc7iekADzNhIlrzfyfazVcJ5eb5hjA3t2BHQclQpe70qV5v5V3gfmZINy9M67MR9ERN7y4Bsg3rRtJ8QZytNt22+AONqfhXjfUZwXTlI937ANtftFRByb5mt0rlz7wvX0pb2eHjErJpFmfUkP4DW3Q7xeKeq/2YqprT6Vw3HZDmiuRu/no61RHk7TJOiFSRznvccfMdrQlcY6sSGL41Ga8iZF9flYIwfxntN4/yU1iF5E61qsJ3zy9KjWsEbH5zD3R8gHdGwe21iJkcdgAscI9vgQEakksc/GklhXKtGFaxUGgVROtjCCWiZcO7noRdbdiXOPUpnnFlTcLHPtk4jj2NRPHgBr16+D+OmjZyH+wmPoE5OmWnffNsynHavRJ0hEJJXFeZjjYjvPnsN5RLGI1z+gWhejY8r04j4T5EsiInKWav73H0YvzHIea9XuLbjOKpfw9ZnpHG6fvIPPjeO9AxGRwT6cI/M6+eL5rdfw5Nyh48Y2louDxw6K08yn5CN4TR+4B71e77zhFojjcfNeVTXEava97zwM8Sx5/PXS/KWnE+tngu5PJ2LYXzMxc07lWFgvQ1pnOpTLLnm42jbdr6b569gsrvcbvrme8H2u6rSuJS+ZMs0d5qnPz9N9NYv6xg3Xo/+KiEievX4tPM69Ta9Zv16Xc8/jPalXQn/poSiKoiiKoiiKoiiKoiiKoijKNYE+9FAURVEURVEURVEURVEURVEU5ZpAH3ooiqIoiqIoiqIoiqIoiqIoinJNcNV6evT2JiXZ1CkbO5+D1+amUTO2UslCvPnGXcb2XvcG1E4cP4s6efl58qaIoPbe3Czq4jVIyzEZR122fB7bKCLy2DPPQnxmDLX0inXUOGONdNYC90jnjRV/C2VTz5EVIkfPoWfEqcMvQtxL2sbVBmq/9a1C/cDkRX4cIiLVIvqUiIgUJ1EnOFJFnW6nfkH3skHnZLkZPTEljrOgf2fHMAfYZ+K1990H8eGj6FEgIlIr4/GvXoU6oR0Z1Ps7fHwU4lIRr+HIMGo2F0g/d9+L+4w2HPniP0F88CDqUG7dhn4a6QSWhb5u1CDc+yyehwpp+UUCUx9w3SrUrnx+P+ptnjyDepzvesfPQvy2t70R29hJmuekp/v/+n/+ptGG4sQpiPt6UcN1vtTsQXZ7Ne5F0NPDJb3GuTnS5JxBzc277rzT2N4p8mk5fRq11lmvMU7+P5kMegK45AkSWFhtRk+Pmm04hX8LyIOoK4sa8wN0PVZRX8lmya+GdGDHxs8ZbTh/Do+7WEBtYi6qHVnU56xVsX9VWV+cfEYyEfKQEBGH5GprVNP85rn0W/gfLSeDg0mJNfVEE4kX4LV4EutOKorXv1E3/aJKFdQrzk3g8fhFrPvzeTy3jQD3GdZRs9l2sQ6NjZk62bEkagm7MdRXdaMUk6ayE8F92OQBwn5FNnuGiIgn5H8i+BmPtFADGpVD+i6KHeDnywEe42NT5hg5N4o14q2vx3Zu33yhjVW/vXrj+VJFnMbCGJsk/4yOYawJuXN4bipl0+NrOofjkU3eaH4F675Vw9edCNaAEvln9PaQN0YL3yyLPN8CqiuOTXM18uRI0PwxQd40nR14XlIttJ8THXiNAx/zyKPaVaC5GWvre6TzWyF98vmKObfrWovXq3cj+aM0xzbLb78vw3PPPbfoq7BqFWpUp9PpS8b9g6bed5zGRNfBcZsdhyoBjrmFCq45SjM4zhdJd3l6nsYuEalRbbFoH9Uynv9SGVtVIA3yRj0Hcd7CMXhDdoPRhuka5s3hPNb5hIO5OkM+WgePof73a9+I82r29PhxIp5MLOZchLy9eARlv796w6x12W70KajT3PvkiVGIjx3C2HZQ25v9Ubi2xeKmv0OJ6kCttoTnCs0VXRfb0KjT+EPzoMcfQQ17EZHZqRzE6wZwPZDqx/56aALX+wefeBric+M4RmzcjN6KccscIxNkJhV4eFy16kXnKWjvOnZ+qiBu81pne8nrCcuWMWd1WswHnC78UMTCOlMjy6NaAbcRzuDxF0O8xsd8uv8yMWq0oWua/IvoHs0IzSW2jGBOlB1c0zxJPi5TNTym3ckW/kXkLVnysU3+DB5Htop9o98n3Xs6cclO7H+JlOk5cKiEudyg9eKiyZnf3vVELBpd9BqwWe+f5hrsk9aomjWefWN6s/SZBp7LDrpf8/940zaIs7RWm8ljXXriCPrbioicL6BH0oyFc8EgguvFKM0tN3Zjm+7agfO42Ulcs77w5AmjDS+8iPdKjh0dhXioH+8J5SfQqyYdw/N24gSuiaMxHJ8jMbPmN2gd7FNfmZ6auPBamz1RvUZZwnAh78bncvDac6OjEO99Ce+PHXgaxwERkZFeXHfmc7iWeuJR9BuKx7APJygP2Yot4tIasuXtJsxVnzyieS7BdcKhuajNd34p9D2z5gdcP2hNE1Lsk59phWPaR0hjQDJjrqviPVn8Qwbrbc/qhXtGDR6ALoH+0kNRFEVRFEVRFEVRFEVRFEVRlGsCfeihKIqiKIqiKIqiKIqiKIqiKMo1gT70UBRFURRFURRFURRFURRFURTlmuCq9fRoeIE0vAXNr7FzqPdfIP+NZAa1F5Mkwy0ikoij9t769esgrtVQX+zQvoP4edJCnZtFXcXz8zmIfTbYEJEbdu+E+M67UIv/+X17Id7z0ku4Tdpei10ArmvqQdq0lZ2b1kNcnBmFuBRiisSSWYij/cMQj59GbdSoZwrW3Xb36yBOZfDanBu7oElo1dqrhToyMrSol3eefCZipKP3/N49EKfiZuLdf89dEBdII7JWR33c43R91q1ZDXG+hJqR33vscYj3P4fa/CIiHmnublm/FmLO7cJ0DuJ50iO/cRvqYWe7sri9btSYFBFJU//7OdID7OtCrcwNGzdBPEW+Fo88/DWI9z2JOouZuKkruXnjZogniviealND1HLbq3Evgp4eNumdFkkP9bHHHoX41ptvMra3a/eNEPf2ozb3gQMHIK6Qvrhlk1Z4iNcrnSKNX9t8fh6SNnOGdNLXr8Nr3NeHedPwsO9PkFbp5PQExKUi9i0RkSDAaxmLsw4ztjGgqupTntZJ596h447ETK196j5So5rmNU0/gjZ7euzaNiLJ5EJ7a3XUbI2mUHu2Rp455Yqp+1qu0nvy6LXQncAaMDuTg/jQIay3M+fw8109eG4d8oISEamw7H2I18eySNPcQf1VO0LXz0YdaHHwuJ0YvS4ibhy1SV0bddgd0gWOuFnaAs5nghBz1g9wTLZCU890zzS2s5BDveJf+w8XjrNUbq9mfsTqE8daOIb+BNaAM6e+AnEth5rHbhL1dkVEYjaOkRb7gLmYA7FO9A6qk9566KK3jO3i9aiwBr2I1H2s0RGH/DVq2L9y+Ry2mbxjWIOXZPGl7pmeGAEdh0s1OyCdbZ9qI9c+9pSzIlif+jeZNaCHfJdqIY4rQWOhv3mN9uo+i4isWbNGkk0fDofmPOzxwZ5WGzfj3EFEJELb8AXPT4PGioDmdiHP4AP0EQg89lgxz1md9LOrNI6X81gjy0V8vVjE+WeFfFrGxnCMLcyb83ErgXOBGwvo+3HsGK4JXjyNdb5G/i5R9l1izfofI2LRmMRiC7WAe6xDxxXSfMdmbwwRcWzMue4uHFv6+7E+njyO59qxcZ8Rmuel45j3Tsxc09RIz92zMQfZ04P93wJ63XKwPoesN95iXnT0CHrWnSX/OLHwOD2K2TeELO0kTtfGbqFTH9K4ElK9lYuPs8W1XE5iUXfRO6VCfgkeHZtLORGPmnP5eByPLUneFk4U4/wc5nLcwvGvQHrxLnl65Fv4Qs7W8D1hDid7uTnM5TDAa1amXI/Qd37P0Xkql81xPjOAiRJG8DM+jfOZENswnMI8KNAtGps85RIt5nbTLtbbs1Q3yi/fH2vzemLNur7FeycueQD296O/ypGj6CvaqLYYV2h+kp/DuWCCPSJp3r33GL7/i+N47hsprJXDSaylIiKV1Ti3LJXxnK71cF7dMYseubMxvNfyZbytKOGhH0BcPvq80YbcNK5rR9bhNh9842sh/urXvgrxs8eOQmyRL6GE0/i6b96zi8SoZkTp/oB1Yb7L3lTLTefQJnGbBbxKfn7H9j4HcSaNeZnoNOew3/i3f4M4oP5lUd75AXnn0esh3QMNaAz3K638NPg+BI2ZNJ5EaYy1aG7psE8k7a/1vWRqwxKxJXhcAe2lYdxbofpcMj3rMuSBFPXxelWb9wS8FmuyV0J/6aEoiqIoiqIoiqIoiqIoiqIoyjWBPvRQFEVRFEVRFEVRFEVRFEVRFOWaQB96KIqiKIqiKIqiKIqiKIqiKIpyTXDViqVOTMxIPNbU//VQP25kwyDEg8OocWdbpg5iNIFajPUGar9NT83Q66jNWK2SnmSIGmIh6fneff9rjDbsuvUGiD3SZb79XvT4+NaX0bcgmc1CHEuh/upzTz0JccQ2dUS7BlBbcfetd0BcruJxl6fHIc5N4Hlq5DHefeP1+PmZWaMNzz+DPhTFMp7b6kX6jo0WniDLSak8s6gh/ItvfSO89g9f/neIT42hZuQDr73f2N4LL6DHRl8P6toP9KBG3X/4uZ+CeKaA1+PEcdRnrNXx/Nxww26jDcf3H4a4OIv+GBZpf06N4zXr68Q8+6Vf/y2IPQ91TVMdpjbm5z/zFxCn+/E9jz6Huftv/0h5RjrCtou53dWDep4R8pwQESlbqM0+k0dfnkLzXLc75xjWa+SYtYOf/sGzxjbOn8dju+66bRDfchvWmqmpKYhPHD8BcSGH2t5dnZjHHavQ20dEpLMjC3HEweHGJ7+FuVwO41lsU6mM2qY+aaYnUqijv/Ae3EetghqRkSh+plFDnUnWuY+Qr4+Q1nPEMr9HELAWO11PO9Icr1hEf5lZv6Ff0k2flWQXeUBUSYfbwf51+pzZ1uk51IaNk85zpE76xqvQ26KbauP4OHp69PSh30Z9HerRi4jMzWHtmqJxfXISxzOb6opPXgP0stQpn+yIOYVyY+QbEmLdsQXrqevicYcxPNeWjTkacTFOJExdWlfQq+vFp/DafL/7whyqVkMPi2UnCBb1puu072gHzsviGbwe9RBfFxGxKlgH6uSb1YhT3vjYh+s057HJC61Qx/HRq5r6sT71ccsjjySSOfYoJyyqOw59INmFPiQja3cZbajNjkJcyWPNLlPuulSPA5ov+i7Wys5BzOu+9S0842JYNypl0j9uLJwXr95e3WcRkVtvvXXRq+PrX/86vBYnPzb2uGrlK7Fh40aIC+S9VSSNYn8JVz72cTE8AloJL7PvCo2paRqD0xmsLT2Ut/Pz2He++Z1v4/ZbjG9vf/svQuxSfTqzBb24kqQ/ncuh78ie5/dAXJjB2rVzJ3ojiogMDuKakH3RVgrbsha9Odiziz07QroW1ZJZl2tUq+qUp50deH2jCczrOtVKhzzLWD/es8z1W8gGQ0RAeUtlR0LycOGZBH8+0kIjnvX+CwWsVXXSRE9R3ifIt6KD/ObiUTxv5ZLpMVFtYLviSVxzdHRdGNerdN2WG9/3FnXdQzJJcepYt/N1PLZs0pxPpJLkfRaSJ4eLY4PtkS+W4BhcpVx3yI/K8c0x9vQErmnqNIb4NFmr0b0K9vaqkS/B8RLWocNnsW6JiGxL43mIk59NuYj79Og+UppqY6yCc9icncPtrzY9zEaGcW5XyWEfrYwt+EqEbR5iz46eEqeZB/0D2O4+vkcXoXEqY3oHRagPTozlIM4fQb+iZ2azEE/27IDYH0Jfy+FT6Kdx5J8+b7RhYMetEN9y+5shPvnkv0B86AW8jzGwHe+Hpe9+F8T13lsgnh7FsU5EZGbsOxDfehN6eO7YthXi734Xx+yuXrzX0kk+FjUaZ2yrhadHnKo0zRWDi3yZvMZSbsNXloG1myXS9J6qki+PHcN5djSLa6/OPnNe13kA731MHdkHMc+bhfq0TXNFvr/G9xDsFv58oYOfCWmcZr/UCPlpGP5h7BHIHlM812wB+4QYRoP8Gwoad+wlPAODqHnfPk9rOfaIDtPrRMRct1+Kq2NmqCiKoiiKoiiKoiiKoiiKoiiK8iOiDz0URVEURVEURVEURVEURVEURbkmuKyHHp/85CcXfyLe398vP/uzPyuHD6N0ThiG8tBDD8nw8LAkEgm5//77Zf/+/Ve00cpPHvfff7/mndJWNOeUlUDzTlkJNO+UdqM5p6wEmndKO3n8+4+IiMiqVas055S2orVOWQk075Srkcvy9Hj44Yflt3/7t+XWW28Vz/PkIx/5iDz44INy4MABSaUWNBs/9alPyZ/92Z/J5z73OdmyZYt8/OMflwceeEAOHz68qKf7aijOVsSLLuh0xeOolbn5OtTJawR4GLZjPsvxa6idOHkO9SHnZlF/l/VXE0nc5o5d1+E+LTy2dCZrtGFqMkf7wHb3962C+M0/8zMQnyZvhjXDqyEeiWEbTs/gMYqIdG3dBHEjwOMKq6ihlqTzEF+D+4x3oFbnM9/7LsQvPYeeFiIio+fOQByNoE5m90XeJX5z/7/xG78h991337Ln3bHRsUU94I7MMXgtT94jmQjqBe7Z85KxveOjJyF+79vQs6O3C9vWPZSFuFBCXfu7yIPlxb0vQuxm8XqIiORIp1nIg6ObNB7vvh01I2+/5x6IZydQQzSsoA7l8SJqIoqI9HSjJvm+55+GuGtgBOKCg74jkQ48T0EdNWBTlPvFMvZnEREripqt5QJ6RgRWvPn/C7qB7co5kQWNxQs6i6y/iH00Sj4UlYqpF3zg0EGIT589BfGmTahHvn076mR396Im61HankX65KtWDRhtKJdQ43xmGvMkT68HJOkYRlG/0SXdyXoJj9uxTU1I12H9aKw1URd1Y23yavJJt7lBWtK+R6/XTS3igPQ4fdasbl5P329vrcvNV6ThLZwzj5r91OOoTZvswnyphRvM47TQm+KGm9ZB3EOlaXYc69LajajLXiigDnC1jv3Xq5nnukoa5/N5rCOzs5iDFvmMVIs4TyiWMUfZ26vhYR0SEanXMC9zc+fpHdifPdIfb1Qx7xs+xhXKp2rU9LJJJtC7a9MG1P3dvPUNF7bX1HlvV94l3OKiBnilirrKqzdQfw1Q/zYjeP5FRGwHj79eQQ3jYgPPn0M62ukYXo+Aciifw88X5039WNfCdtZCfE+J6kqMvC4qebymeR/nhltuvhfin3/v7xtt+Jf/+79CfHgveo5JHLfp0pxWSLc51oG1Mt2Nbw/E1H4OScA/mcRrY0UX2uC5C8ffzjF2zZo10tH0PLiJdLH37UPdZsfBseTcOTqXIjIwhPWqVuPagPMstsMgyWNTVpkllFmHucV72AeEV0K8BfYqSSRwTnvDDTdA3Em+giIivYM49vN8JZbCMfY/pHFds2fPHohffP4ZiMtUw4tF09fnjW9E/72X8+eVaFfe1Rv1xfVoNIr9ideYHg3CrbzlqjTXqxRRjz0Zx+s3MIDz7tMnTuMGec5lGMeYxgAhmQX4dBy8CZuykPOYz4MEWBvDVnkfwfdEHdNf6GJc0h/vG8Cc5XF8knwP+4fM+W0X+adkOnD+c3ENOX1yYc377W9/W+Lx+LLXuqARLs47S+x3UsXrUa9hnSrFTK+0dBTrRIZyOdOVhdinOUoiTvNuG/eZjtG588x7OON0TeYF21kln8ca5ZVFuu8O+UrUyIPp8ITp6TGQxv7VFaN9kodHkSpuVLAWpgI8DwfyOD8NKuZ5SA2gf6JHvp6LlgzBQldsV61LdWQWxxOf1uejx45AzP5Fa9fhXF9EJBnDnPvKV74JcT6B96JKO26DuF7Ez/eO7YF45sAjEHeTL5SIyNRxnBdM7H8KYvaMeM0Dr4d4dAxzKDKN6+gO8uMb2W2uq/aN4z2eo6dwLf+Nx56AeLqI66rAwmtRbeA4Y8UwZ1t5Y1p0qziZxDzu777Qf+t1T56W9uWd59liNcfYIMQ606B5dL6I/TEfM2+B9265EeJKjjwCS3R+aezx6B6BUP+0A56jmX4aFnmm2MaYSB4fNOfiUZtXLLaxy1bjPG2DvLUCmgfYlCNByPexhGJqM3ufiojYNK5nsI86TjNPAtNz65W4rF96fP3rX5f3ve99smPHDrn++uvls5/9rJw+fVqee+45EVmYcH/605+Wj3zkI/L2t79ddu7cKX/zN38j5XJZPv950yRIUV4t7373uzXvlLaiOaesBJp3ykqgeae0G805ZSXQvFPaya/8xq+JiMh1112nOae0Fa11ykqgeadcjfxInh7zzW+Qd3cvfAXs5MmTMj4+Lg8++ODie2KxmLzmNa+RJ554ouU2arWa5PN5+Kcol0LzTmk3VyLnRDTvlMtDa52yEmjeKe1Gx1hlJdBap7QbrXXKSqC1TlkJNO+Uq4Uf+qFHGIbyoQ99SO655x7ZuXNBGmV8fFxERAbop6MDAwOLrzGf/OQnpbOzc/HfyMhIy/cpiojmndJ+rlTOiWjeKa8erXXKSqB5p7QbHWOVlUBrndJutNYpK4HWOmUl0LxTriZ+6Icev/M7vyN79+6Vf/iHfzBeY83OMAxb69GKyIc//GGZn59f/HfmzJmW71MUEc07pf1cqZwT0bxTXj1a65SVQPNOaTc6xiorgdY6pd1orVNWAq11ykqgeadcTVyWkfnL/Kf/9J/ky1/+sjzyyCOyevUFM6HBphHQ+Pi4DA0NLf59cnLSeKL3MrFYTGIx0zinPF0RP7JgABOS68rseTSS6V+LT/zY+FNEZGoSze8iDhpnDa9Bg5RGPQex7ZFpbhQNVvwaxb5pcGq7aHxWK6LhzZ6nnoc4mUGzoHXXbYN46ugBiLt7hyBOdKOZqYjI2fGzEJ87i0bbdTJBOjeGT10n5/E8Vsj0s1hAMzDLsE4Uceh6s9nwxeaxF5v+tiPvcrn5xaI7MY0GtBtXoSngITKWn5sxDeCScdoHGW5/7kvfgrinHw0Y3/OWt0FcTWAObbruOojHx/D6iojcdxcafFXIQJqfmG/YtBniiXNofjh+AvPu3nvuhPjotDkYFUp4bvoG10G8dgMeRyGPeXRqcgLioIr9a2QQc58NqkVEHA/ryJpBNITznYVyWL/IjPpK5pzIK+fdxUbml1jjiIiITYbdbJApIuL7aOyUL6D5/HPPz0A8No6Ga9u37YJ4w/pNEKfJ7KzumeaieTLlEweNr6JJvB5FD005K2QaXaeaarlY56NkKiciIiGZNpKJGJtO18nY2ifzQ56QOWTGVSybRsvJVBJivn5+My8vNjxvT60LpV5fuCZnz2GdP/zSKMQFfxK3mTbHN7FxH5EAc+xtP3U9xGvWYy2sVzE/HJfN2vBaBTXzOxts6uj5WHd8n643GS/X6tiGWhXzulbBHC0XzZo/n8P3nD2L9bPRwL7JOViln22Pn8dxqFLFfd57391GG7Zsxnp43RY0Ml89fKHmF4oXam078i6bcSTSNBCsVPDYymRIF/VwXrUxZZrdddDcrBLH/jXn4zXNCG4zFcE882vYx921WF/9VqZ5Pu4zX8Xxp0653BHi+09P4esvnMZ9DK5Ho89Ur2m6OV9Bo9dYFs+Vm8FrkUzhPhId2KZYHI+BjQlDy6wBCZ4X13GOazcNGAPvQtvaNcZezM033wzxeepjJ0/ivLgji/MuEZGhEZw/ZDqxnrFROX/FzPCSNIzLl3h/i/ewVTkbUxsm0uRWmSQD8AfJINwPzVbUqH/ZNCbaZLpZ68R9XL8T1zW7aU67adMWiA8cwPmniEgul4OYjcxfNngP27yeqFUv1CY+9z4Zd9bIULpaMecSrot9dJDMd/ny5Gi9duoY5nXg0HyHDFMDMdfSnIlmHrMDKuZDxMHbDm4E42gMr10q2WIuT/cEbBdrdK3Bc03cZmcPrY0pR9etQ5Pk7gGz3vb190I8Po5rlKmpqcX/ftks/L/8l/8iX/va15a91sXcuLhNI/ViDfOoUcfYjmBOtbrpOE9zkgQZl3sBmWnT+YzFMAcSdD0GerognjiDc0cRkXgEj9Mns1+Pap8b0Fzdw9xO2WTOHMF5+kwB53EiIhOTuI6q0x206Qae23kq+uQFbJivV2kpV8EmiYhIbhbXVZNncO5uNy9FGF4wMG5HrZuemRGnmXNBA+cGHWkcGxuUL8dncX0hIpLqwPVcMoYnJ57CnHEDvGeQieK1yNiYU9OC79+5+xajDYcP4z2eg3twnrBhHd5HXLdxPcTc9yaPkRF6Ai/woeP7jTbUKtjO4imc/3/1C/8McdnHmh9NYt5XGzhH4/5e9c35rdfAbfpT2A+OnLlQ+3zvQpK3I+8mx2fFicaax4J1J0LjZTxGa/EW2/PjWJu6t+2GeO7MEYjdJOZ2lIzMwyLdG6nj9QtLeH1FRCyb6gaZz9u0zhXjnjfN82xeKy9xk0nEGBPZeDxCjw+iPC+gMboW8FwDr02r+W16EPtTz/W41q1ZCzXBozX0pbisX3qEYSi/8zu/I1/60pfku9/9rqxfjw1av369DA4Oyre+deFGbr1el4cffljuuuuuy9mVogC/93u/p3mntBXNOWUl0LxTVgLNO6XdaM4pK4HmndJOXn7Y9pWvfEVzTmkrWuuUlUDzTrkauaxfevz2b/+2fP7zn5d//dd/lUwms6i91tnZKYlEQizLkg9+8IPyiU98QjZv3iybN2+WT3ziE5JMJuVd73rXshyA8pPBF7/4Rc07pa1ozikrgeadshJo3intRnNOWQk075R28uxjj4uIyF//9V9rziltRWudshJo3ilXI5f10OMzn/mMiIjcf//98PfPfvaz8r73vU9ERH7/939fKpWKfOADH5C5uTm5/fbb5Zvf/KZkMhlRlB+W+fl5zTulrWjOKSuB5p2yEmjeKe1Gc05ZCTTvlHZytCnJ9pa3vAX+rjmnLDda65SVQPNOuRq5rIceYQs9V8ayLHnooYfkoYce+mHbJCIiJ08ckkhTH7CrE/V058bPQWxbqPVXLJoaaTOT+JmQNM5GNqPmdY30xW2Skk5HUWf05OEX8A0R1M0TEbljE3onbNqJ3gn1Yg7iH3wf/R7u+2n0dwgTaYj3H3wR4oC040VEnnn2cYjnSW+uWEINQvZi8JbIAX61s0UBS5G+Y0A6mNHIhevpBwvXYX5+Xjo6TF3ll7lSeVer1RY1DgcGULP1px94HcR/8f/7C4gPnThhbC9JbT52AvXdQ/KemJ6i65FHXdEvfvmbEL/uftS4u+V29O8QERkkLcxEEvNmbhb1Gb/5ne9BfOT4cYjXdWFu33Qj+j+UCqgtLiJyegy1MDNZ1E30BI+zrw9fny5hnCRN2XgK9T+70ui/ImJq47M+pBtp1oSwvTm3FCyxy7HrmmU8xtqV5JtTIw3E8+fQ02NyAvVP+/tQP3XDxlW4vbrp6eEHqOvqkaZjvow6wXnStvQE329RdXEDrNFew9Sf9sjHxWuQzmQFP1MrY+zX8f3xOPYlK4JxqzaEdME8anfY1J8O2lzrInFXIvGFvlwnnecq6ciWqlMQF6vYH0VE+vt2QHzuJH7mG19Gz6qOLtTVjlGd6u7DOtORxf1lYktrfccipOBp4TZjNEZ2ONiGSp68GmYwJxMx008nEsN9hDbmRLlMmq6kb9yXxZ+CH9iPx3Tw4D6Ir78Z5xUiIo0C5lx/F/ZXyzf/u115F0oooSzkOkmxS1ywjtvkA3Q2bs5pbNLQrZSxtnmUJ50RjL0qjj2lAOtpKsGa50YTxCMDB6uT8ozqxCzVX5/8jTpJbzy0MWfOnDxotMGOoh/b6g14Lq0EHrdFY0Iig/tkTx32LQmDFssHqvkB+T0kEgvnwW6OBSs1xto0/7/+evQbOngQz+806aiLiPQN4Rxj+w70omBN5JB1lOl1Yd3lpZdb5luW9Pjgl8lngsamRpW0klslP2k9s4+IT3rTIflqdXagLvpAP/oRdXbi3IO9MEQW5u2XQ7vyznXdxflZQOc2QmtEy8b+GYZm+3ZtxzF2/cgaiEt5nIclyOds7wu4RvTJ88yi8bBRb6GVHdJxkKdcnLyAXMrBKO3DoflrMoFtjkTNOlPz8HpHSYfdcnFuH0vhmieWxjgQynvqKOPTpsdEvoTjRo36SniRevgvvf/98g9/+ZeXzLsrWeuGB4cl2syv4T5cx8ZjeD4jtA4qc58XkRrp0Pf249yNlyDdAXmllclXK4n77OvqhvjcCfRHERHppFzORDGeJ59Hn+binZRH1w1hnekg/f+5efTKEBE5PIXjQG8H3suYJS+ZeaqFBQvXPHMdWAPqWew7jRZDbGEK19dBnmpfZaENL9+va1et6+kfWPTnYe+8mIv5UC5gf6oGpn9Rma5fuYrb6LTwvsQNQRZiq4x159iJoxCHIW5/8+YNRhsmJzAHeH3nUZ5bEbqvUcPrf+ipJyGO0LzQbjW3pJuPDs3b6uT95CTI+4bmaWRbaYzXtYLp6cF+DiGNG45zYZ8v+7W1K+8qxYI4kYU+YNH6r0F9uk41Qlr4ocbpM14Na1+d5h8heaD4cRxb4l19EDvUNxpF835ZlOYGbohrHKdCPoZn8P6NkJeez1NP8jcKAjPxXPIb6mDvLZrHObQGcsjPuErndZr2aXWbudK5cSe2M5HFzzTH7aV8cC/msjw9FEVRFEVRFEVRFEVRFEVRFEVRrlb0oYeiKIqiKIqiKIqiKIqiKIqiKNcE+tBDURRFURRFURRFURRFURRFUZRrgsvy9Ggn3zh0ZNFbIUsanyencxBvXbMO4mgUdRVFRFiyrEKydRXSk49FSRevgVpwUxOooZafRf3ykQ3o1yEicuLFQxD3rUY91p7hQYhD0oB98WH0c9h2450QP30Itb6PHmyh++yQnmqUdGVpn7EI6dvVUdMwmkINw27yWuhMmzpt5Tqe/HwNNQkv1oANTJHi5eUimbqzZ9AD4svf/DbE1994A8T10My7k2dxGy/tRV37TVsxT9KkWXfkNH7eIXG+48eOQPxzP/tTRhv+8v/6DP0Fr+nZs2dxn4dR+5I1Xu96389BbJH293wO+4KIyHN7UEv4ltvvgHjfPtxnNo3n8h2/+E6If/DkY7hP8vEpm9YKMjmH2om9vax1u5DLAWttrzAWtYfkNcXhP4hI3CZd5IA1ODGOuHjCGqT5eGYS/WpKAWruJlOmhxFredeqpDNJ14ilun3SXK2TvnSSdC9jFtbsVvt0SetZaB8V0keNkeeOS3rUrMFa80y98fkC+WNQvYvIwnEEQXvzznYaYjsLtbi7F49z8+YBiI+ePYYfdlHPWkSkM0l6qQ087kP7ccycncPrV6Zzv2PXWog9H/WQywVTBzhKuqO2g21yophDbpT8pGKUlB7mz5kT6A3WmUG9eRGRVSM4jpdobnH06GGI169HD4977vxZiLdetw3iib9A74Z9+88YbTjwwgGIY6Rde989uxf/24miZu2yY1uL/gXsxyY01jgWjgNzebN/WRb2yZiLfkZ1mm/M+3hNbfJ5iXZj7azR+72a2QabtJm5Zns18jWgMThwcZsxqqf7n/0axIf2PGW0obsH9fx7enDuFUlhG+ukwVvx8DwFgm12bNLyD81663k0FlFNizb15K12z+sI9idcvXo1xDt2oHfCt7+L/noiImfOYr/bSJrgtsPjMnt8cL2n1y9HqPgV+FG/1Wa7poeOAR1GQAN5rYI1mPurRfuo1DAPJw7jHJfnqyIiu3fvNv6GTQzh/9tFNBZb9I5zaO3F3he2g3UrmTQ9q1avRv+mtWvXQVwuYA1gX4Mnn3wa4nwZz3VXL3o1RFppzNfxetZpjEzQet2j61mYx3GcPenYb8dcVYlE7SzG5PfQYM15Ws+HDu6zSnOyIo1DbsKsdQ2qbbEEroWjF9UYN2Jqxy8ngedL0FwXDPThOJBlHwnyLw07Tb+2YkB+Gn1ZiOMxPN/REI83P0V+GzQvn5vFOY3VovZ10DWOU2KUqGuHlLw9PegdtGvHFogrfE+nYLZhNI+5O+Hiuaw08DMTPvbHUh/mUb0H+3glRj6FFXOeXcvh32Ie7vNlW5EwbN13louOVELc5pqMrBTFErz+MQfPQ28P1j4REXGwD9LUXjo7cZvlHM6JHv8+js/1IjaqbzV6upwbN3175uZw7m6R/94kef089Ti24dxJ9B2xye/PimO/4XmkiIhDvnZWhGsbrUlpPA1orhOndXM8QrWthbFISB5zFs0soheN6b7X4ubLMhI0ahf5fVIto75h0Tw7mzbHWJvm7n4D10c9Q+iPODN2EmKviB650WEcs3NzeO+kyj4jstB3LyZFY+TwWrx3HKN1aH5mjmLM0yjNv4OGuaaJNrB2cZpUErjPdC8eZ6onCzF7t7lcSyvmeZin+82JMtY+qznH9i/D001/6aEoiqIoiqIoiqIoiqIoiqIoyjWBPvRQFEVRFEVRFEVRFEVRFEVRFOWaQB96KIqiKIqiKIqiKIqiKIqiKIpyTXDVenpkknGxm7qOt2xE/bL1w6ipFk+Qxl3E1Jc3NZRR+218HL0T/CrphZNfw/g51At0aZ/9BdSoFBGZm0Att5P79uM+A7wcPcPrIH70ie9AXHJRe3PLpk3YJtfUB0yRtvfYudMQV0ivdTaHumuD6/BaDJMGbFcMhd9m5lFbTkQkSe8Z6ByGOLzIcMXzfTlI52058b36op7okSPoM3HiFPoa/M6v/ybEswXU8hMR8UmT/PixUxAf2v8SxMkM6q961EVfc+99EB8+hJ//u//9RaMN1Qbm8mHSSD56ArVMfcr1ga40xHnSDZ4njd5CCbU4RUQapB++dz/628yTBuHdd90K8ewYtnFgoB/iWjEH8QvHTJ3746N47t+4fiPEYbBQI+wV0Bu3LGsx7wyLDvb0MGKzvRbpiTv0fNshLVoviq/XGqjDHI+i5mo0RTqyoXnNuZbUG6QwW8ea7NdJB19IZ5I/Ttrh5dDUdayxJmSCjpu0LBsN1BpOxUmnmXS5Wb88aOHr49P1Ym3vIPCb/99evXErtMVqal93dmDd2Uz69OdnxiHu7sG6LyJy4iDWovNjOL65LurjSoj7bNTwvGxahzk3O4vaqidOmufatrtxF3Q90lm8XokU5ke2C9/fmUXN16kctunkKB2TiCQ7cX5yww3ovdWgucgLLz4Hcb6EOXjPPa+HeMtm3F5u1ux7xSqOG8dOY/3cPr/9wntL7dXg9YLGondY4OP5znRkIOaxKGyh3RqQD1lAY41r4bmIx1EbnH18anmMOzpw/GsEps52mTylYqQBH/rYt5NRzCuPvIA6uE51Y5ssG71lRES6BjA3I+QJENq4D8fC6x6n1YBXI219qt/VhukFE43h/DLhkr5/00PJC00N4XbikV+JuHisN95yE8RPP/OEsY1jJ9Cb54577oK4i7xlQhrAajQmm8O+IYxuYvyN/4CxTZt0aB/UlaRGHhi1wKwVFuUBey1VKrjRep08cmiukSMd9fNnsHaVG+aJ8NJYN7hKxJofaSFXvqxEIxGJNtdcPO5HaA7m0BysymtQETl4EL2aZifRP69OtSyg+U9vD+pwF2t4bqtV0i+nebaISJ58ldjbJpPBesneNlPkf2nRhJfPk98i8d0kzh2S5MuUJC/JWBLbFEtgbcxGcd4Qo2LYyl7HD1j7HfPYusibpN5CM305SSdTEnvZX4H8pAplnC80yPelrw89yRY2gicgFcPa1tOFeu31Ip6Lepx8H0uYp+US5l2liGtMEZFihd5T4zqC5zgZw2scozVMPIJjUzSTxc9HTL3/io3tPp7HNhUcmuuvwrhjO9YpO4X7iFABdmotvpdcwblFtUh9vqmNz75Vy83r7uiQeHwh5/r6cX3QR14mqRR55vLAIyJOBP9WrGJOdHZgn/3av+H9mce+jXOkSBTPxxzVoe9949+NNhRm8b5EMkPzGQvb9NzhRyCOkv9GYpiuf4Q9s8xCQ8OC2DZ50LE3FHvUxXAN64TYbyzyakuSJ5OISCzA/pzNZiEeHLgwrtRrddn7vWeNbSwXkWRCnKYXikVeTZLEPj9cxuu1KWf6g71EviqTU3hfb80tuB5zS+QzMYPjYZBHP43SWfQACS3zNrwTwXaXa3iNDo1h7sYz2N8yKRzvUmn0rw0F61ZpFu/hiYj4NG5nuzF3s7e8FeKRteiLd+RF9N0d27cX4uL0NMTxLPZnEZGhm7ZCHJInzuJ9eefVT+z0lx6KoiiKoiiKoiiKoiiKoiiKolwT6EMPRVEURVEURVEURVEURVEURVGuCfShh6IoiqIoiqIoiqIoiqIoiqIo1wRXrafH3Vs3ScRd0Ltb14+6oqU6ajdapH/mttBizM2hNl+5ijpsGdJ+y/Si9mmD9OkjpNWXy6Mm2pkJ1EoVEXn68EGI1x7C+M477oG4Z3gE4qKPumWjJ1Ab7vV3kqZwP3pliIjk5lCfrljAdgdFPC/3/TR6SKzuQ224yZPoD5Ggc99L+q4iItEkaQ7aqGtYLl7QHK17nnz/6HFjG8uFHYkveiQ0SK9/19btEI+eR83I0nzO2N5b34D6f387+8/4mQrpsZPo8EBfH8R7X3we4piL7z9zHH1IRETWjOA2+u69A+Lp3LchnprJQZxKocbjyAh6YXh0ntg3QUSkSl4JRw+iHva2tZirlo/nJUkePD3DeExT43geIjJqtOH6XTvpL/iZfFNDmTWn20EYLvxbCEx904tpeNi+Vtqt0Shpwvuo++oHWM9CEvsOyB/DcfH1Cmk/ew3znAUBaTNT/XJCfN21sab6Pm7TpjrB3iu1itkGktKXIMDPFElb2CFNUNaXJnsOiVCbWl2LkPQm2XMqGneabQtExPSIWC7qNU9cZ0HPmf2fZmZzENeqqOm6bes6Y3snD6KebeChr1W1Qd5MAXkJeXj9X9qL16ZUxjaUGub0xZYBiB0Lx/FUKgtx3MLxbN0q9KzauRvjpIO6wU89hbGIyPP76VwWUTN79chbMF6H48ozP8DzeJTOa5LmKuWKqf3uUZ5bMdQ4P3b6giZsuWx6VCwniVhcIk3N9FIJNXYbVHtrNRxbWLdbRKTh4fmNkggyeyCxh0edfEJc8jGoV8mbqIX+dDSB8xyHROD9EHP3ZR+fl8mQz1lIdmypLOrpxjOm7nJg47kr03FVqvi6a3gLkWcHzU0ci2udeR5COi72PHrZNMKrr4CnRxAu/BMRx2g6/mH1EPry3Lz9emNz3/3mNyGuTGDtTgzjNeXBww7IM4XGDp/axJ4gIiI+nW9KXfHoI+yhY5FHR71CuV7F132vhU48zUfqdG0D8jDyKG98aoPtYV+ZL+E48oN59JcSEZk9hPPit8Vug3hXYsFzIF+99NzqSuM4zuIcwqM65VPf8MqkYV8yPXNKRfI1qFIf9XEfNfJHmR3HNUt1FnW1K/Q9yOmz6PkoYnr6lWj8mKb5jTFHokkZ1xHXxXHdTZjr+WgadeozGexr6Qz5G8XxdTeK+wip47D3S7SFT6hP19OxeNxp/d/twE2lxG16yVjUH8fIn231CHp4lOrY/0REYjEcb1wfz1+DLDjKeawJhTy+odrAOpMnT6zjp9B/UURkroyfKZCnSoHmBqkY5t1QB871SjN476NWwzyebzFGFWiMnItim5LX4bp06AacfwoNCcUyHkMkoHUbF3QRseNURyL4nmhy4bjDMJSCaYG2bLz7F3dKR2ahr45NY50aPYvXc+9BzId9+8w6MzWH87QTZ7BW9fTinCggL4v4aqwBdRoMA1qX5WzThzc+iHlvC86jA5dyjtbJht8mebzyGjcaMdc0SfJ+ch3yTUtijnV1YDxC/Xsr3WvZtBpzdnhovdGGVJzmn1ST4xd5/BTyBfmf/59/MLaxXHT0jYjb9O8JyZ8kRn4n7hye35kJzCkRkWgSvSUGtm6BeHgDni+7gHXl9DTm8vx5rLcNWrf2DZn3abP9Q/gZul/NHoK1PL5ezGENr9bxdZfGqng3HoOIyOB110E8MoT34Ts27ob4/N6nIT7y6JMQG165dA+9MoM+JSIihRm8Pn4S+9vLcwm//uoLnf7SQ1EURVEURVEURVEURVEURVGUawJ96KEoiqIoiqIoiqIoiqIoiqIoyjWBPvRQFEVRFEVRFEVRFEVRFEVRFOWa4Kr19Fg32C+xpo5mLIFCiFnWl4zi68WSqVFtCeogpuO4jVoDNdBOjecgjpA3RWo1+m3ESa8s6eD+RERmnn0O4mf2vghxdxa15HbsQs20XdehJ8H01CTEtTruc/LMGaMNzz7/LMQbrkM98dvffBPE2b4eiEvnzkK8Ze062gPqaOanZ4Vh7ejz0zMQj09e0HZjv4jlJtvdI3bTWyBPerce6SfPzqMG5Fve9EZjey/tRe+Kjs5OiDds2wbxGvJxmZnGazwxjjr4tQpq+w0MbDLa4NfxfHd0oj7j2nVrIU6k8PXhAczLY6OYV5s3oX5yd5Z0TEUkQfqZLvWXwa4sxHfejLlfraD+aqmEOWM5eF7XD6OOpYhIsgvbVSF951w+JyIijRb+FO0kII3jkPpLrYZ6qfU6+cKISIJ8c2wXa0ModXodr0csSbr21A/DgDWQW/grkMZqSM/YQ/L4CKmr+w3SP6XzEo2htqndQjjZM3Tq8bj5OOKkAcq626GFsUN6q0ELDd5KDffJPiFu8zxwXVxupqdnJZFYyJ0MeQR0dGB/WrsGvS1On8K6JiIyNo5/q1RQo9N1UHfTpuMNSY98cuIlfF3w3Pu2qT3te6j1LV4WwxqO4xMTOHcYPYfX5sAhrCOVIuZHpYLnSUQkX8V6On72PMTPOjgmdmaw3iZcHOeLeXz/9AzWvrqXM9pgR3BsOngUvUdmchc+U6+Z9WM5qdZq4jfnY3Gah5WKqONcLGBs2+b3dOLkhxGJ4DVseJh3pTLWzzj5H3WTf0aF/GysOm5fRKRKfjP8jij9IZ7C2uWGeFwu+5IIHoMVNeeXAXkrREi3vkx1iOdWUdLSz3TgebCpja3yxqEaXyrguY40S7RXb2+tExEpirWoKzxPx8IeI3M035hYhTrOIiITtHw6eXgU4gKtKaoWXrMUlS+PdJbrIftvmGOLRfMo9pRyyD+B5xZlmgdUa9TfSuQfVjXbUKR9VEl/ulYhD4gK6VPT/GV+Bue4zx04APF+1oYWkYdJy/sR8q+5ZWBhXl0vkvnAMlOr1cVq1qxWfl8Xw753jRb+RezrMk8+gg716RKNFVXy32BPF8fm2mm2waFxOB0jvwu+PDSxi6dwDOV5D9fzaIrGdBHJdOO425nB91g8n6VaaLmX/r6nw+NMi2vHHh48r7uYVuPWcjIVBhJt9vUY+WQlE+hLkIih90GtRV3PZPB88xopN4/1Mkb3ZFJ0/ySXx/nJFHmuVmzzXNYc8rsg3zKPrrlHmxjow2MoVrFvPDeOHqulFnnXPYLz4P7VmMteF9bTfAXbVJig/pnHcb1Kfjm1efNa2PNYo9dmUY+/e+PCufZ8X56Y22N8frkolitiNc2yyB5Fwipef7+Bc9qREfQwEBGp1PBe0603oc9WF90zmMthftSrOO8u1jBnK+Sn0eor4DFaU6biGHf14HHZIdYZXzA/0gnMKfa1zPZj3xQR6aa+t57uPdYb2KZyiWoV9YvV/eh7eMN2vNcy0G96egQ+nRy2KrmovzoW1oLlptEIJWj6pQU0n/HIoyzag/czz8TNeXQqhteoP4d1wj+Fnh0xm64pea7YEezzbprmnhXzfnVuHHM3nca8isZxH2EiC3FXFx5nhrxmagOYQ1aLe3beFPrwHD+GfsEbo7jPsydw/c+egT7NJQKH1jyW2QErNL9xhY67OcYFDfNewCuhv/RQFEVRFEVRFEVRFEVRFEVRFOWaQB96KIqiKIqiKIqiKIqiKIqiKIpyTaAPPRRFURRFURRFURRFURRFURRFuSa4aj09EomExJueHpPz6FtQrqHG2gy9PjWN+pAiIt3kYxAjHVKL9CJ716Ou3XW33YIbJC2+Yh736c2gJpuIyOph1CQ8OoratXsPo3ZtOoW6mFs2b4W4r6cf4kQG9QDDmqnHumnzdRBvvwWPq3f1aoi9i7S/RUTSNusOY5wr4LWYL6Gms4jI4eOoL35uHs9dMn7huP0269xn04lFbdapMdQDPHjwEMR333o3xFEW7haRR/fuhTh0UT/VdlAPcD/pF0dt1OLbtAG1+EolPN/fe/wpow19najvF4libvb0Yx5lOtDDIzeOHh433nYDxPU6aalWzbLyaz/3dogPHUF9QJf638kTuM90Fs+bS3r+jz+3D+Jd29YZbShRH50vYm7NjS94EHgtdIyXmzAMJAyb3g6kgeyRznaFfFwkaKGtbifoD6T9Te8PSC+87nn0OuV2gP2+UTO1MVlv3KLhxmPvFGqUzR4gIfuIkDdGC53mmofnpk76xtEYaq6ypjXr3vvUyAZpYrfy9BAL/+aTN1C11tQjbaHZvpw4dkQce0Ej0/Nw35s34VizccsWiB9//Alje2vXZiGOuhgPD6I/RmcaXz8/dg7iEyeOQJwnHegK6bWKiAQ25XkU9VKDALWEvQYed2UWr+fsLNZv18baGLGxtoqIOO4eiGM25ljYwH5QmMZx3rJwH0JeAGLjeUhnTD3TOvlYPP30DyBeNTK8+N+e114Po0q5LA1/oZ9FyE/Dti+txR6NkH68iESjqPMakO59irS52afHjdB4RRrI8STW0lanK08+IY6LdcTQ4PWxjW4C9xGQB51Fta5cMK95qYR64FHWxrfx3HEd4vrKfiuB4TFgXgt+T3dnFuJyfqE/8jVqB0+MnZFkcWEd8NUzWGtyRbx+k/kJiMdnUF9cRCQXYj+MPfUdiG+dxLl2so90k20aO6ibF+bxes7P5ow2zOdxLhCSBjnrJNfI06FUxc8Xy0WK8bwUC+Z8vlDB+UmV5if1Kn6mTHW7TnOJGuVh4GD9tEY2Gm2oFPAzL87kIC5GFnLZb+H3uJzU6jWxmjXtUp4PIiJ+AxMg0sLXwKf5yzx5AHgVOtc5zNEqaV83aH3Fe0xEzTmVa/R7WktTDjbYm4bmaVzb+DTZLe5SRIxxgMYNqn0u+RVZtukLA69TDlYr5hybxyKun7zPdmJ3ZsRunoMo+T9ZZcyJ+Rz210jMbPfcXA7iBuVqJ3lVRuPks0p1hOw4xKecsROmn0ZQw1znWheG2KZoksbcCHlzJcnDqhvX1ulO08cp3YF+CEfPoL7/6B4cV/J56m+URl6ZxoAa+9yZa4I01fQgTvvoXdiG57V3jB0auk86Ohau22Avjgm10rcgHj2OJ6KTfYFEpLcDc6DqsQkW3RtZg94mjo+FhD2y0nGcq5yfNr0oqnXMkfVDeB9i3Vr0Isk38NqcOofnwXWyEA/0YT5ZjllvE+Rh3D+wGWJeeo/TcXAGzVXxXE/P43noarGesKkIh3Rfyg4vfCbw8ZiXm7BSkNBv7p/unVgRrBH+LL4ea1HrajO4RmzQhD9GfrFOCuMMjdGZLK0Rfcx9p8V9w46eLMTJNOZAI+A1C17TLiy/Esujv+ZzR7Fuzex73mhD6dRJiAPyXju/nzw8smmKyQdqHP2Joy727ygdo4hIdR7bHaMZSjy1cB4sXz09FEVRFEVRFEVRFEVRFEVRFEX5CUMfeiiKoiiKoiiKoiiKoiiKoiiKck2gDz0URVEURVEURVEURVEURVEURbkmuGo9Pf7t+4+L0/SPmCXPDtZ9HuxD7cX5FrqtHWnUhR0mreF4Cv0w0hnUF5s7cwriAmlcnj+H+mdzE6gLJyIiFmpMNkjXco70dBsWat/GE/iBzhS2MUWeHiMj6CEiIrJlGM9Vqh91EIMS+h40ptF35NhL+yE+PYH+KufJA6Tmm1r/fSn0V9myeh1+5iKPAs/3Rc6jvvJy8nMP3i2x2MJ1+uw8HtvYFF7Tb3z76xCnfuaNxvau27od4sI86i2eOYO6eLfdvBO36WDOHDiGeXbyFGrzDQygvqCISCaN1/jwkZdwm8cPQhxSXvZmUHvv1rvQB6Yzilp+kzlT/3bTCOZdhXRlZ8uY6zXSse9L4Xno61mD+/zG0xCfOmeWtqiLeVcnncotWxa0ouv1hjzyjKlxuJwEobeoI1xvoP5tpYrnyrVRl7InQwKOItLVhfXufAF1NtmHpVHB810nzXk7YN8WfL1eN7VnLbqGjoOf8Xz29CCdUKrzNqmTelRb7BYa2BHSy/R9Ou46tikgvdzQxtdrFp77urCGaAsNbNKWbZBfitPU47Ta7OkRjcYkGl3IHdbR9klLOOriWHPfPfca27v5hm0Qx13ssx1p9KqIp1Aft0Tj9uEj6KF08ADGE+exPouITE6OQzw9g95A9Qb5gPikRx6SxwudF4u0VK2Q/HVERELUIQ1Is9y2yMfCwv4bBDTeUUqFPtaHjes2GU3o7UVPshdexHHbuchnJrTam3dBKPKylHxIOZ8iXVefagR7lYiI1GjsSMQwr4R06xMJ8tsgXd8ybS/wuW6ZbeigGuzQRbPpHLOPSj3E2CJfEZas5XotIlIjn4/QozaQbjZf9Qodtx8hj48Y9mexzFrHNZ29TZzMwrUJ6u33zRotzEuiqfn81RNYS87P4hgbTONczzpjenpER9Eb7ctnHoP4afthiPtXoWZ8GMXr5RXYjwHjUtnUyp6jmmklsX7ZPbgmqFbx/f74NMZFnLsF5I1gxU3dZSdC9Yv0/KUb534heT9ZpFkeT+A8LZom7efVLea46/HcZrtxHzuyC2NP3Y0KXvnlJfD9RQ8h9hJiQqpTHIss+CFdTIHWW+Uiri9K85jX5Rr2cZv6Z0BzsDAw2xwnn6Wljivbg+O+S3WEvbl4nw7nk4gkk1jj4wnMe55L1um42bttST8O37wWDarZ7E8VXHT9gjZ7U0ZtW6LN+yfRFJ6beoX8R2muV8ub6zf2m0uQz9Uc5eEs5yXlbblK6xHymqlVzHs4fhXbFRU8rjRd0zVD6Jew6TZcixcF77e8eBzXxeXQbMOhA7hWPvoS1s96gRbPRv8hfxWf34950kE6+SIi/Z1YDxMdmHfO0MJnwoY5R1hOvKBTvGBh3zWaZzsxbPPmregRGEbMcSUQnAdXaY05PYMeAYMd6E06eNMGiA+P4r2SoT4cGzNp068qRnne15uFOKRbqIU5vH6bNuK9F4+ub5ru4Q0PoUfIwk7wuCNxPJflEvalEp2nahWvxbxN87z96J14agzPq4iIR2Y0G1cPQ7x+9YV7jbWqWT+Wk3olL463MKZ0dODcIU7r9+EE9pUNN2IeiogcPYt9Oj6Ex5roxWs6P4NjbGYEx7toEvtwnbz3xDPPV4U85aYmcF3bmKd6Suvegzma1+VxXjBPnmdSNdc0hicr+Tl7dL/azWJ/6hnA+js2hXnV1Ysed5Zr+voEJczlkbXYx7PDC9toVKvy0peNj7dEf+mhKIqiKIqiKIqiKIqiKIqiKMo1gT70UBRFURRFURRFURRFURRFURTlmkAfeiiKoiiKoiiKoiiKoiiKoiiKck2gDz0URVEURVEURVEURVEURVEURbkmuGqNzGcKRbGtBSOVJJnDZshcKGigkc9AJxlZikitjqZjzx44DnEhT4akZB6UjKNplk+vV8h8uJUpSzrZCXF3Bk13UmTwNnEGzWlKeTSm6iYjmO99G424htejAY+ISPHsMYirRTSjOTV6AuLRE2i0PV9Ew7ETZ9HoPCSzm6EstlFEJBZFY7rpHJpG5ucvxHyel5vc7JTEmoZ0b3/Lg/Datx95EuKpaTSs3bcfz62ISCKKuTpbzEH8rl/4GYjHzuA2+sik7I5bb4R4y/p1+H4yphcReey5FyHevX0j7nMMDYEPkVl6nfLyb//X5yC+cQe2KZk0jQedKObF+s3YhjPUxqFkD8SZGJok1avYnx+493aIDx7BvBURiXbhcVy3AdswMbNg/sRG7u2hISILplteQMaOZJYdJSPJTjL6FBFJRvFYq1U0sqrXyZSqRsbkHhnwNfB8s0luGJpDiU8mfj6Z93oBG+2RYZtDRrwum09imxsN0yzSIjN08z3Ybpucq2tknNwgQ3eX3s9mXyIirkXGn2Rm97JpZrvNLkWs5j8Rm9rtOHicIRkuxlsY2mbJhM+1MAfJv10qAeZkohPH2FvvuhXiHdfvhLhWNo0HZ6bRLO3EiVGIjx3F+PxZNDqfmUHD4lIJ29igcb4RkNO5iDgRPA43QnlrYb+wLNymLTgX4XIUcTCfzp8+LkyM+s5r770D25S4MEeq1ary1Pf/ydjGcmGJLVbz+zYOmbw3aJ4WUB+PxcyxpVRGI8ACmfxFaCqW7cV6Wa9jYvpUI8gfVaJxMvQWkWQC+0O9QsbkFhmTk+F3vorzsBjNN7keu4kW5r42jpG+j8fVqJOBJU2teKplUb2tUgd2WhiZR1M49y5X8NpYzbri2e2udSL3bdgs6Y6Fc3SQzJf/z/GjEJejaD5pT5umsNU5NLUtzmKtKMTwhJ4j80i3jPPe8nk0RvfI7N1NmuN8lNYAqXWrIfbTmJc2GQg7HWi66dWo/8XZRBwNw0VEXDKstPpxHIgOofF4huaHW3vwGNZk8NxHLMyV7pR5Hrb2YRs2duFxdToLfbaQz8vfG59ePjzPE6fZb8wxlsYFMosOWhmEU7cJqC6Uimi+XGVDYZo7OtSmJPVfNzAnw9yuAq0hMym8ftkuNLIvUx1Kd2COci21XLPeRvk9VF9dmv+6Ecy5kIzJfaptIR2j1WIdSruUeh3Xxt5F22zQa8tNstGQWLOBZ8awrgRVNDLPRvBcxR0yhRcRlwZRr0F5V8G6MkNr+jiNZzHKs44O7NOrSliHRESyLl7zTAr7uENz+YFuvL8yG8Fr8MxJXOfuO0oGzqHZ//KTtDYjD+IIz+GNYYOShobQ0MU/DHabtW4NGZln+3HcP2cv7NS3W9SPZWR2vi6NYOEcF3AolFxhFcTJNPYn3zLvl9104w6IZ2Ywb7v6sNaVBfM4ENxm5yqsQ7M1vJbrNrQYVzagcfLkHM7NC3T9k5QQPk0eOxJYG3NzaIJ97jzeTxMRGR7ENpTJdHpsAk2rCyV83QopyaJ4XmbKmLNj87gmEhHp6sD+21vGc3/g8KHF/+YxaLnp7UyK27ynuHrjenjNprrfRXPiG2hNKSKSz+AacKqMdaNG16hIta5M87rSJNaVyhTeb2vkTOP42jjW7HoZr2lA978afH+GygyPjzwXsRzz/g2PeDze8Twg24G5vYoM38fq1Oc93ODgBrx2IiJraW7p9mEezlfOiYiIJ69+fNVfeiiKoiiKoiiKoiiKoiiKoiiKck1wWQ89PvOZz8ju3bulo6NDOjo65M4775R///d/X3w9DEN56KGHZHh4WBKJhNx///2yf//+K95o5SePu+66S/NOaSuac8pKoHmnrASad0q70ZxTVgLNO6WdnDh4QEREVq9erTmntBWtdcpKoHmnXI1c1kOP1atXyx//8R/Ls88+K88++6y87nWvk7e97W2LyfqpT31K/uzP/kz++3//7/LMM8/I4OCgPPDAA1IoFJbYsqJcmoceekjzTmkrmnPKSqB5p6wEmndKu9GcU1YCzTulnSSakmzf//73NeeUtqK1TlkJNO+UqxErDH8004Tu7m750z/9U/m1X/s1GR4elg9+8IPyB3/wByIiUqvVZGBgQP7kT/5E3v/+97+q7eXzeens7JR7NqwVt6k7lnFQg65OesjFOunURk298ekC6jx39KBnQLGAuqQTpIM50Im6iekEaRf7qCmWaKH7LB5q5+VL2KYaaUjesesGiFNR1DM7N4/acEeOo7Z34Jo6bRY958qmUYet3sDjGBlBjeA8FaVzpEOcTuF5cgMzvVwH/+ZQOycmLnhlBGEop0plmZ+fl46O/3979xoj113ecfyZmZ2dvXh3Hcex1xuvnQUbOyYEEZukSdOElsYp4g2viohEeVEVOSgIl0ooQVThRRVb6iskgpAoTdWLZKklSJGQoriFGEcmIoS4ODYEFWzHTna9+LLe9V7mdv594d31Pr8z9u6ZGc/Mrr8fyYKzczvzn9/5n3PmZJ7n2nPfrNx9Y+/fWMdsD4vCjK/POJX39QD/7T9fcsubB++KPe9dMn5dHb6O3a6P+rqVb7x+yC1vWOfrlpYzPnenpWb9ww/62u1mZn+Q2vfDZ6Xu/e98DcdTZ99zyxcv+ZqRd93pazYPbPC9Y+7ecXdsHVb3+tqKO7Ztc8v/omO5brVb/vDdvpZ0JL0aIqkPeOpd32/FzOzt3/p+KZ985E/9Y96/WsuxUCjaP/3Hf930zJldy92WbRstM1uHv2BaD97nrk1qK/avis93XV1+zjwx7Mcjn5f60mW/XJC5KCVzVyr4WqWlYnw7j2Tb15qQQatGpuT+Us+/TfoUZKXmfCYdrz9dktrN+bx/Xx05X8e1TZ5zakpq7Wf9XNUutaOL5Xjtd+1LpPU15/oURFFkp0+NNGyu+/bzL1ln59X3r7uKXIfPj451OhP/vNNSez0j9WwzUje0GPx+W3XKPrZNHq95MjNrl9rTQYqbTk7617x4wc+F58/7/dnZ9/zcePasr/c6PHwutg7nRrXGq59/tReNSi9STHXtWl/jd+zSWOw58lLL/c8++Zhb3rz5Q/P/f2Zm2vb9w982LHd/vucj1pa7mo0o+O1Fc6e11iv17Zm4Ir1din68uqWHQHuXz1G+KL0qpJ9NT6/PYakYrx8bJPtd0negLePniUJBa/D6eUn7+0xJ35IKh1WWlbHLy/FlWfo1FOVJ2uSYNSuTgvZtymYq9LOR8E5LD4m5bbiUL9v/fPs3Dd3HXljwWq9cHnP3+cdf/9ItnxjztbYzl+OfefHoUf86r7/mljvWSI+jPl/j+MpvfE+Q6Pf++KRNjtU7VvuegGZmaamjXNBeL1LPW3sh2ICvc9620ddQ7rvDzzWb1vv3ZGbWf4fU1u/2tfRXd/pzgq2r/Pb04Ho/LoPSE0J7XbRVyH6PZDF29jX7mPHxcetb3dewue7v/v6Z+f485Uo9OhaSqS22HzCzSHqMDb/3rlu+eMEf50VyHDcj22On9InJSn+HVIWeVTNSU157k+h+O5LjurzUH9d9dpscY6UrnMe2d/mMWFp6lci5clq+Q9CeHgV5T9oPqRLteTQl54sLFQsF+9G//6vL3c2c6/7y8b+w7Oy4FqWPS7nk9wsdkrvbuuN9OHVfkJKwluV4sCTnLLf1+jkgnZb+C9LzJFOIH9xlzX+mJTnnm5TjrAsTvifqsPlt4+RFf147dslvK+MX41/AlmbkfUvfJZPvgTKRz11KepiFjJyPyLHKfds+EFuHrWv9fDtpfpv+2WxPhqgU2emfn27YXPf2//3Uemb7MZXkuG3taj/H53R7zcb78F647PfBR9/2PWuH/zDmltukl16P9InRXnu/e88fp/d0xv8b8C3r/L5s3Tq/v9R+GMd+788P3hv1fUjS0tOlU/rbrlsj85qZ9fX4ffYlOd4fkZzm5dxczzflUNVy0putUPZzoZlZZ4d/zj/52Fa3vG5BviYmrth99/xRw3L3V09/w9pzVz/bwQ/475XO5/32WL7oP/PbV8X3b0ekp+3YhO9RUhr3uSyM+3kkP+6/l40m/XcIZVmneG9Ts6z0WE1Jb61IvjuJEn6NH+s9uoTHx77HkH1o/4d8Ju64y89dpXbpCzrgs1/ojR8fFcs+2xcv+fPzybGrc3pUKNvJf/5tLHOVVN3To1wu24EDB2xyctIefPBBO3nypI2MjNju3deaP+dyOXv00UftyJEj132efD5v4+Pj7h9wPeQOjVavzJmROywdcx2agdyh0djHohmY69BozHVoBuY6NAO5QytJfNHj2LFjtmrVKsvlcrZnzx774Q9/aDt27LCRkatX1ddLt/X169fP31bJvn37rK+vb/7f4ODgde+LW9fx48fJHRqq3pkzI3dYHHMdmoHcodHYx6IZmOvQDAMDA8x1aCjmOjQDuUMrSnzRY9u2bXb06FF7/fXX7cknn7QvfOELduLEifnb9adUIYTY3xZ65pln7PLly/P/zpw5c9374ta1detWcoeGqnfmzMgdFsdch2Ygd2g09rFoBuY6NMPhw4eZ69BQzHVoBnKHVhQvlrmI9vZ227Jli5mZ7dq1y9544w371re+NV+bbWRkxDZsuFb3dXR0NHZFb6FcLjdf03yh1d2d8zWDL1wYc7ddKfiaczNSk3li2tdcM4vXpj13wddhu32N7/GxZbuvDTcqtb0nL/nacO1Sb/zCpfg6mNRRW7XK1wu8eMnX//vvX7zplrWu5pTUlu7q8rX/yjPx2nx3DW5yy33tvuZkSWpSXpF6dEH6Wqzt9fU/p+Q1z0lNfDOzcsnXbkvLuNy29lr9x3IUmU1ONSx3d/T3W+dsDd53FkzQZmZ3bvY16v744Qfd8v07d8Wer1c+k6nLvq7oH0Z9jbptH/6YWz59ytcXvO8B3y9j05Cvo5eJfL1cM7MhrQWtdZ5zfh3v/bB/zvGZMf8abb7u5E9/9nO3PDYTr3+95jaf9XfPDrvlc+f99tKZ8+u4SXKXbfO5Taf98oaBO2PrIO0crHu1r/1XPH117IqzNYfrnTmz6+euWJy2cpSeXU//GWazWn/RL5biw21TUpM4KkmdT8lAWXp2aKunSOo3dmR1/OPrkDLp+yHbfYgd3/jXKEmdX606qXXvM+n47kxLVbZpbWe5Qz7v6zJn2vwb054f6dhBWvygLUT+fbdJH5C59zH3v42a60IoW5it+a3lxqMoLfeVep4V3mesXrHcR0rHWi6tNZp9ZssFv5zK+udrq1DruxTLseRW+hZsGPA16vsH/Dhu3/ERtzw97esnXx6L/8R6ZMT3CXlf+l6dP++PPS5KndnpaV+bWmv4Xh73dU5Lsh2Yze43F/jlW2+55e6ua3WhC7OZb1TuisXifA+MSLaNSIKo25vWk7/6IL/Y1eFz1ZmTOvWyzV6a9DV7s+3+NVet8vfXjJmZtUm92iArdVGOF3X76ur066jzUEm2hUKF3iZR2a9DWeqil6VvU2wfKrX3NXeh7I8TclL/38wsk/brFVmh4u2l2VrojdzHZmb/mZndK30j/nrzFrd8OOt7Jbyb8p+fmdmVj+5wyyO3+eeclD4s3VK3vLvbr+OVO+Q4TXfsFcoua++etPS1WtXjj8/b5Dxn+nb/mmk5Jvro1iG3/MSueM+4e1b718jKvK81w3vlXKlTtsfYocSND38q0n5hqQW3mDVurssXivM7Pu3Dk5JeGG1yvJRur7B/Mz8/ZuT8rUPmvinZX3V2+uPwTu2NIZ9VqRivs53t9OvV1eVzrcdhJZnT5RAs9h70OCAl85SZxXp4BDn2mJbzhbz0QmmT95mVcY2kT2j8WNUsnfLzX4ccpy/syVKcne8/+MEPWm9v702f6wrlooXZFciU/O19Pf45U3K+Yan4vK77q1LeH/dkZd7YvNn3cChKz9QL5/34ZnN+gDMaEjNrl/lzQmrrD0/7c+th6W8zMe6/X7ld+h+lzR93laL4Sc10rD+fnEdl/HNK2xGTtoTWnfM5/oD0VLrzTt8T9OqT+s/r4pR/X1dm+47MnbM1aq47/s5p6+q++hl1yXH2++fG3PJq6fu0dnW8Dn9Wjtv6ZSzyKb8Ond1+7kvpRiuL6bQfx6l8vL/D6JT/28Swz8joRd+/4eIlf2yekW0pl/XP1+VX2XLp+Pc3a3r9ttTX48eqYPJdiqzDjByHBD1vln1GWza+7UXyVfFbv/V9X/ty19Zhera3TqNy99Yvfm6Z2X3Er//3uLttRt5rKUiPj5n4+Zv2d460L0jJj2cq8rendP+lRyxlv5wux+eZsvTwSMn+SY9vYufnGn3ZX6a0J26Fnh66/XRLT7rNd/vvIgc/9iG3HNb6rF9o97/iOX/Ff6c+NT4WW4cpmeMj6ZuVmjuWzFTYQV9H1T095oQQLJ/P29DQkPX399vBgwfnbysUCnbo0CF76KGHan0ZwCF3aDQyh2Ygd2gGcodGI3NoBnKHRiNzaAZyh2Ygd2gFiX7p8fWvf90+9alP2eDgoE1MTNiBAwfs1VdftZdfftlSqZTt3bvXnnvuOdu6datt3brVnnvuOevq6rInnnjiZq0/bhFHjhyx7du3kzs0DJlDM5A7NAO5Q6OROTQDuUMjHXvzatWG06dPm5mROTQMcx2agdyhFSW66HHu3Dn7/Oc/b8PDw9bX12f33nuvvfzyy/bYY4+ZmdnXvvY1m56eti996Ut26dIle+CBB+yVV16xnp6eRZ75mrmf6RQX/CRWyzdo6YaylmKp8FMdfYyWRinLT3D1J0n6nLq8lHXQWiu6TrGSMossx+4fLb4O+lPjkvy0Kna7lDzQcYp9FjrOFdYh9rcbjMvc///iF79o586du+m5W1g+I1/wPzXU0hpzZZCud7uZWVZ+RjaT9/fJy0/nQtovF+Q1puU1CjP+p3SVylvpJ6CvWZD3GeQzL0j5uEzw99fPXDNkZlYsaXkOeQ55TFFecyb2E0P5iWDaLxf1d8UWf5/T8lO5udvn1u1mZ87sWu4Wzkex7Vh+Dikfj5XK8VIn+ltefQ6d/8Jic4feHrt/pTXQOVfmr9hHlHB+k0fr7RUfI8up1I3XUQdbxy2KPb5C2ZnYOlT6vK79vVFz3cIySlqeLApSciKrZb7i21c6LSXUUlqOyj+HlrsqyxyhZQ/bsv5wpVJ5K32MlrfScgRz5b3ml7XEmpRkm5nxZRmmpvzP3SvdR0sVFaRsm+5HSiWdG0s3XNaSUGbxslH6mMKCdSrMlgttVO7mShtVWs8gP+uWX3VbqRDfdvRvJflMixk5tpMyUPp4TXZR6iLqsplZkMksk77xY3S+LS5y/4VjZla5xFZaBqsspWliJQxl7NN6HCbjEso3HmczsxArbyXPMfs+58a8kfvY8fFrpQwmZK6ZnvAlIQpXfMmz0mR8Oy9N+e1cf3ofybFeJMfakZTpDTIPaBmTSnWdgryPoGUL5DkjmXti6yjvoSjz25SMk5nZlbSWafLrUNCJXspbFRcrbyWWUt5K7zW3G5/LQKPmusKC8Y0dWsi4leWdR+X4/q0g5cwW25focbTu/9o0c0sob6WHL0U5ro5kDtDz91iZUvmLlrfSUh5mZkH381LeqiT7kWKstKqmTOZKLa1aqbxV/E/+9gWrPTVbQnHXrl0NmesWnm9F5j+fgpTFTsmxQYXKpZaWd1teZF6JnSvL+Vte5yGZA1IVvjfIBDl3Ltz4XFnPQ2Pf8Wg5yLJ+dxHfx+o5yeLL+vgbL8fPg+Pn84WSHi9qiVBf3qpRc93Ugv1hkEwVpTxnm5RXzmndLzPL5v05iJYdmpKypJEcjyxW3mpa9m1ajtnMbKrDv0aQsdbnmJFygvo9RJAy0xmJ2FRatkUzm5RjkbKMna5DflqX5ThD5uM2CWG6wrldRkoxZlN+39S+4NhmejYHjcrdwvPGkn6vFPuuWG4vxcc7Kt34/EqXU/IaqbKeT8icEPs+ILYKsT/qdymx8lax7zX80+nj9ROuNNfp9qPvW8e6IHN+mPY5LUrrhNK0fBYzFT4LOQ/S5bk5PJo9P9L5t5JUWMq9Gujs2bM2ODjY7NVAizlz5oxt3FihvmWdkDuom505M3KHOOY6NAO5Q6Oxj0UzMNehGcgdGo3MoRnIHRptKZlruYseURTZ+++/bz09PTYxMWGDg4N25swZ6+2NNzrC0oyPjy/bcQwh2MTEhA0MDMT+K956mstdCME2bdq0LMeqlZC5pSF39UXuFkfm6o/cLY7c1ReZWxpyV1/kbnFkrr6Wc+bMyN1ytZxz1+jM8Z1d/ZC7xTHX1detkrlE5a0aIZ1Oz1+pmSuP0dvbu+w+hFa0XMexr6/vpr/GXO7mfv6+XMeq1SzXcWxE5szI3c2yXMeRuW55W65jSe6Wr+U6juxjl7flOo7MdcvXch5Hcrd8LddxbGTmzPjOrt6W6zgy1y1fy3Ucl5q5m/ufWAEAAAAAAAAAADQIFz0AAAAAAAAAAMCK0NIXPXK5nD377LOWy+WavSrLGuO4dIxVfTCOyTBe9cE4Lh1jVT+M5dIxVvXBOCbDeNUH47h0jFV9MI7JMF71wTgmw3jVB+O4dIxVfdwq49hyjcwBAAAAAAAAAACq0dK/9AAAAAAAAAAAAFgqLnoAAAAAAAAAAIAVgYseAAAAAAAAAABgReCiBwAAAAAAAAAAWBFa9qLHd77zHRsaGrKOjg7buXOnHT58uNmr1NL27dtnH//4x62np8fWrVtnn/nMZ+ydd95x9wkh2De/+U0bGBiwzs5O+8QnPmHHjx9v0hq3JnK3dGSuPshcMuSuPshdMuSudmQuGTJXH+QuGXJXH+QuGXJXOzKXDJmrD3KXDLmrD3K3dGTOzEILOnDgQMhms+F73/teOHHiRPjKV74Suru7w+nTp5u9ai3r8ccfDy+88EJ4++23w9GjR8OnP/3psGnTpnDlypX5++zfvz/09PSEH/zgB+HYsWPhs5/9bNiwYUMYHx9v4pq3DnKXDJmrHZlLjtzVjtwlR+5qQ+aSI3O1I3fJkbvakbvkyF1tyFxyZK525C45clc7cpcMmQuhJS963H///WHPnj3ub9u3bw9PP/10k9Zo+RkdHQ1mFg4dOhRCCCGKotDf3x/2798/f5+ZmZnQ19cXvvvd7zZrNVsKuasNmUuOzNWO3CVH7mpH7pIhc7Ujc8mRu9qRu+TIXe3IXTJkrnZkLjlyVztylxy5q82tmLmWK29VKBTszTfftN27d7u/7969244cOdKktVp+Ll++bGZma9asMTOzkydP2sjIiBvXXC5njz76KONq5K4eyFwyZK4+yF0y5K4+yN3Skbn6IHPJkLv6IHfJkLv6IHdLR+bqg8wlQ+7qg9wlQ+5qdytmruUuepw/f97K5bKtX7/e/X39+vU2MjLSpLVaXkII9tWvftUefvhhu+eee8zM5seOca2M3NWGzCVH5mpH7pIjd7Ujd8mQudqRueTIXe3IXXLkrnbkLhkyVzsylxy5qx25S47c1eZWzVxbs1fgelKplFsOIcT+hsqeeuop+9WvfmWvvfZa7DbG9cYYn+qQueoxPtUjd9VjfKpH7qrD2FSPzFWP8akeuase41M9clcdxqZ6ZK56jE/1yF31GJ/q3KqZa7lfeqxdu9YymUzsqtLo6Gjs6hPivvzlL9tLL71kP/nJT2zjxo3zf+/v7zczY1yvg9xVj8xVh8zVhtxVh9zVhtwlR+ZqQ+aqQ+5qQ+6qQ+5qQ+6SI3O1IXPVIXe1IXfVIXfVu5Uz13IXPdrb223nzp128OBB9/eDBw/aQw891KS1an0hBHvqqafsxRdftB//+Mc2NDTkbh8aGrL+/n43roVCwQ4dOsS4GrmrBpmrDZmrDrmrDbmrDrmrHpmrDpmrDbmrDrmrDbmrDrmrHpmrDpmrDbmrDrmrDblLjsyZ2c3rkV69AwcOhGw2G77//e+HEydOhL1794bu7u5w6tSpZq9ay3ryySdDX19fePXVV8Pw8PD8v6mpqfn77N+/P/T19YUXX3wxHDt2LHzuc58LGzZsCOPj401c89ZB7pIhc7Ujc8mRu9qRu+TIXW3IXHJkrnbkLjlyVztylxy5qw2ZS47M1Y7cJUfuakfukiFzIbTkRY8QQnj++efD5s2bQ3t7e7jvvvvCoUOHmr1KLc3MKv574YUX5u8TRVF49tlnQ39/f8jlcuGRRx4Jx44da95KtyByt3Rkrj7IXDLkrj7IXTLkrnZkLhkyVx/kLhlyVx/kLhlyVzsylwyZqw9ylwy5qw9yt3RkLoRUCCHU5zcjAAAAAAAAAAAAzdNyPT0AAAAAAAAAAACqwUUPAAAAAAAAAACwInDRAwAAAAAAAAAArAhc9AAAAAAAAAAAACsCFz0AAAAAAAAAAMCKwEUPAAAAAAAAAACwInDRAwAAAAAAAAAArAhc9AAAAAAAAAAAACsCFz0AAAAAAAAAAMCKwEUPAAAAAAAAAACwInDRAwAAAAAAAAAArAhc9AAAAAAAAAAAACvC/wPWCcJ29UcsQwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1385,14 +1360,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9S6wtS7fnB/1GRGTmnGvtvc/5nvd9y3bZbiBkcAEuWQUGIRmQAGEMksEd44ZtGmCJBgIagLFsAaZhZKrlQiWQQJiXG0i25I4lXkaywRQIMMaPureqbt3Hd77z2HutNWdmRsSgMUZk5pxrrv04Z+3v1tnfHOfMPXPlzIyMjMeIMf4xHqKqXOlKV7rSla50pStd6UpXutKVrnSlK13p06Pwx12BK13pSle60pWudKUrXelKV7rSla50pSt9HLoCP1e60pWudKUrXelKV7rSla50pStd6UqfKF2Bnytd6UpXutKVrnSlK13pSle60pWudKVPlK7Az5WudKUrXelKV7rSla50pStd6UpXutInSlfg50pXutKVrnSlK13pSle60pWudKUrXekTpSvwc6UrXelKV7rSla50pStd6UpXutKVrvSJ0hX4cRKR/4mI/GN/3PW40nejaz9+/+nah58GXfvx+0/XPrzSlf7aoOtc/DTo2o9XutJfG/TLOhevwM+VrnSlK13pSle60pWudKUrXelKV7rSJ0pX4OcjkoikP+46XOm707Ufv/907cNPg679+P2nax9+/+jaZ58mXfv106BrP36/6Npfny59H/r2lxb4EZG/VUT+VRF5IyL/S2C3+e0/ISJ/QUS+FpF/SUT+ls1vvy4i/1sR+ZmI/EUR+Yc3v/0jIvK/EZH/mYi8Bv4Lv9CX+iWkaz9+/+nah58GXfvx+0/XPvw0SUR+S0T+We+fn4vInxWRPyki/6L//YWI/M9F5PPNPb8jIv81Efl/AvffB4H2U6LrXPw06NqPnx5d+en3k65z0UlVf+k+QA/8LvBfATrgPwvMwD8G/Cngj4A/DUTg7wN+BxgwoOz/Bvy3vIy/Afi3gf+ol/uPeDl/l1+7/+N+10/5c+3H7//n2oefxufaj9//z7UPP82P99f/A/gngVtM2P33A38j8Hd6H/4E+D8A/8PNfb8D/AXgt6599gvvs+tc/AQ+13789D5Xfvr9/Fzn4voRr/gvFYnI3wH8M8BvqDeAiPxLwL8I/Aj4QlX/m5vr/3XgHwSOwP9aVX9789t/A/ibVfXvF5F/BPgPq+rf8Qt7mV9iuvbj95+uffhp0LUfv/907cNPk0Tkbwf+d8CvqWp+y3V/F/DfVtW/1f/+HeAfVdU//4uo55VWus7FT4Ou/fjp0ZWffj/pOhdX+mU1Nft14Pda5zv9rn//CeDvE5H/8ua33u8pwK+LyNeb3yLwf9z8/Zefv7pXeoKu/fj9p2sffhp07cfvP1378NOk3wJ+91xJEZGfAv8U8B8AXmK7lV+d3Xvttz8eus7FT4Ou/fjp0ZWffj/pOhedflmBn98HfkNEZDMIfhv4t7AO/MdV9R8/v8mR3r+oqn/TW8r+5TOh+uOjaz9+/+nah58GXfvx+0/XPvw06S8Dvy0i6UxZ+e9i/fK3qOrPfYf6z57de+23Px66zsVPg679+OnRlZ9+P+k6F51+WYM7/1+ADPzDIpJE5O8G/jb/7c8B/0UR+dNidCsi/3EReQn8y8BrsQBdexGJIvLvFJF/3x/Te/yy07Ufv/907cNPg679+P2nax9+mvQvY0Lvf8/7bScifwbblb4DvhaR3wD+q3+clbzSCV3n4qdB13789OjKT7+fdJ2LTr+UwI+qTsDfjUXf/gr4e4B/1n/7vwL/AIbUfgX8m34dqlqA/yTw7wb+IvAF8D8GPvsFVv9KTtd+/P7TtQ8/Dbr24/efrn34adKmf/5G4C8BfwXr2/8OFtTyG+Cfw/v6Sn/8dJ2LnwZd+/HToys//X7SdS6u9EsZ3PlKV7rSla50pStd6UpXutKVrnSlK13pl4F+KS1+rnSlK13pSle60pWudKUrXelKV7rSlX4Z6Ar8XOlKV7rSla50pStd6UpXutKVrnSlK32idAV+rnSlK13pSle60pWudKUrXelKV7rSlT5R+k7Aj4j8x0TkXxeRf1NE/uvPVakr/WLp2o/ff7r24adB1378/tO1Dz8Nuvbj95+uffhp0LUfv/907cNPg679+P2nbx3cWUQi8P8D/k4sqvm/AvznVfX/85Z7PkokaTn7+7s+5Ly8t5UrIiCCACEIIgFQaq2UWs9ulJOvIGL3A+oXqSrWJXr6QDk79PuCCDEEJFhdRAIigqpSaqH17zyVL1T1Jxfq/0H9mPqX2u1/0m72+ojVSvwvOauw/7at9/Z3kc3xSRttr9n8fdJBcnb5495rZ77VuNDTA738ox9u/9blvJ7cpZufFXjc38ucVD259/DNv/UsfQjwg89f6W/82k+pWqk523gplWnOlFptHFZ7egyBGKOP7zbOxceqfaoqtbRjqKqsr6VeTx+jbTxsxo+cjJ3lvZCwjuVSCihIWOdNrYrWai2paxtafcPSnqrr8BCfd7KZf9sxWEqh1spmVoK/Uzs+mZo+54wHhHVOq67vv7nnD//wi2fpx93+M3358lf85k05j5jFE7+dPvzsum9J8j53vs9M3Jaj77zlyZ/P1reTufjOMp++4Is/+jeebS6GGDR1aZ1PsM6zhXfK0iTWxLo5Fp9bwa7RDQ+RdX6J2NzxZxJjm882v5cbnHKu5LmiVcm5kOey8Kq1WddWikEI0eoQYyQmmwsxdcSUrJ5BljpoLWitVgcJhPP1RKHW7busc1UCSLDurbVS64av6lK1hS/UYs8KIdClSIjCVz//hvu7h4sD9kP7sR863d3srN5hLbJVZemn5QGbm/VtI21bqZPV7uSo8R05acP3o+DlCkLw6iuQS6GUSlVlnjI55/W553zzbfN+031Wz4CixrtVQZVai/HX83W0FaEsc/n813nKzzYXf/zjH+tv/4nf5sM44FO996256C8d/aXf/V2++OKLZ5mLL1/9QH/801833uBrf5NLVFc5pJFu1pc2E0MQUrT5FAOkKASRk/M21Z9b+/hQen9txabQY95kpehSlGx+OeE0T77aKpf/3//Vv/Bsc3F/c6ufffY5IkIIceUxT/LLJyq4dO8Td6npa6rKNI2Mh4P/becESF1H3w+IBGKKxJgQEV977LqcZ+ac38rPtzxat/+cCpQL/17Hpi51wuWEZbQufFHXZ2/KCzHQdwMxRdbLlVIK8zxTSmaRIZD2Ps8yF3c3n+nLz35lvX979A72+LafL6iAT1711nLece9KF+bEWypx+ZqnS3/XL0/V86kqCPC7v/uvXZyLAOnJ57+b/jbg31TVf9sqJv8M8J8CnpzIABLC5XfbCujvwTuFpkTCOZzUpoS6sKXthreULSjikzxsLm/KYgEqK/N0sZvUJVJKhBC42Q3shp5aK3cPD9wfDr74tNdbBfAQAsPQkTqbjMUFn1orecqU0p5m/woOFPl7xxgREYYu8erljl1v9RhudsSUmOeZN/d3TPOEAr/3O1/97hNN+UH92O1/wt/wZ/4xe5eQXOkNhNAhzpxDiA6AtWN7aYnR+z8gfl4IRIkLQ2zH3kjrvU3Z3x4jVtYlRZ4zpV7W5exkCJxgNRugpQmhTYlqzFV1GQl2fW0XNS3FrikFGoCi6/W1FhubWikl2+JSK7UUF4AbENPOZ78f/sI/959+lj4E+I1f+yn/q//pP8F0PHL/9ZdMxyNfv37gr/z+F7y5PzDnynGcKUV5cbPjRz98xW7o6frI/qYjRqHkwjRN1Fo5HCdevzky58IxK/djJVdF1QEblNRF+j65ohlIyRbPFCJdsOMQhRhdYewiqU9UrXzz+mu+fv01tVb6fqDre1SV43HkeBypVclzocym3L24fcHNzQ2CkOdMKQURfL5GQozsBiunzacQAjln3rx+zcPDA6qVSkYplFqZ5plSqvejdbtIoOsGYkx0KXF7c0PfdT6PZ0opaIWcDRgD+B/8k3/uWfrx5ctf4e/6e/4p7NoVcNqCT9tjL7MdLXPofK5sr3+KLpd5QSF0Ot1g0AtHZ+VvFokTwXxTzvseK9v5V9fzJ3P6MT0qZ3PZn/sf/UeebS6mLvGT3/wJpVbGeaLUStdF9vvOQIpgcyIEgQAhqgP9EKMBICkl+r5HJFBLJTuY2+ZZCELXB/pdIkTh5kXPy88GUgrcvtjz8uWtgz8RIaJV+fnPHvjZH9wxjZmf/+w1X/zha/JcqKVSfR4UrVQUCcLtbc/Ni57URV794CUvPr+l63s++8mv8OpHP7Y5su9JQ49qIR/fkMd7oggvhh03XWfrgfYIiVrg8FCZRlNK2voRk9DfRuIg5FJ4uH9gnCZqgTKDFtAq1CKowjRO3H/zDdPxyM3NwK/+9DNub3f82f/+n3+qSz64H4f9jn/Pf+jfi8RA6DuIgbZSNLA5Bu9DtoKcA9eLIL9RGuTx3DJwRlag2c8Pw8B+tyf62htCZCvFmFCvJ0pdm/uDwCAQRbjp7FNr5Wff3PPlmwfGceIPfv9n/OyPfk6tNqZss8nHVozbF3oMOvkjQ4zsb27o+t7XjCNznsnzzMPdPdM4WjvUzfrq99ZaKbmezUN7zl/+nT98trn427/92/zv/0//ZwcotwbxsrzIFnhd1v6LJCdf6x+yCHWnsshlHnZW2gfRt4MhzsfoY36+lP+eG8crTnyZ9/8H//Y/87bbP6gff/zTX+cf/Sf+F8xFuR8Lc67MRTm4TBKC0HXGVytKqdUBIjtW4MU+8sPPevou8Nlt5Cc/6Bm6wIt9xw9eDnQpklKk66ID2atcuH629P4AzePrn7h3o9iInq2YUvwb1MdcRShFmphqegltHam+piiB4rzCym3lU10z0tOBG0KAYM+/2X/+bHPx1Wef8/f+ff8Qfb/j5vYlKfUOGFeqy8SNT9ihnq7ZTX9q5zcbK61dFZimI+PxgTzP/KXf/bf5N/61/xcPD/eUeWQejwQRfuXXfoPf+M2/jmG347PPf8TnP/gxIQSOhwOHh3vmnPnZF3/EH/7sj8gln+ga1fUKEaHre7q+B7A11NdRLbbBAuLrdfJrfFyWzHh4wzw9UGshzyO1zA5olkW2yXk2HUOhQTe3ty/5zd/8E/zgBz/ysmxj882b1/ze7/1lXn/zNUFk0WOPD4enuuSD+/HlZ7/Cf+bv/7Pe3FvZUi7LjayjPaA0WxGBd8qcJ+XIug5ty5STay7X4fExrLxf17LO1+YL5Z4aNWw+bynnqePtHkvYHl+4BuAf+gf+1FNz8TsBP78B/OXN338F+NPnF4nIPwj8gycnG5Kx/K2PTr2TXJEXbIA/tiWSi4eb9fv0ZzUG2X5e6rMR0E7LkOU+31JYhDtDqAMhBLOaWJjN9i11+a+BCw1hXkaHtsdt7lsADt9tEKCadUYTjpDqVhuN6b+V3tmP2z7sdj/GJm1gtfTx7dd23rUS2YAyuKC4gDeL8Bp84Ty/t5XLWTlyUgZsgB/fIT/fJV93yzct2brzbGxI6ytRl9q3LHwzMrQuZWs7H8TuXyw92t9iyqe64K2NiQRfEAIipqCKWDtpVedeclbJb9eH5/34qz/9Ea9f33N8uOerL75mfHjgmzf3fPHFl9w9HClFmWcTiMo0IVrou45hSNy86Ikp+I5BptbKOGXuDxOlVO7HmdcPR+ZSUS3UakJI16UF+Eldou86Qgj0XQfdYLv+Kqi61ZpE+6hSykitBjKVoshsi2ueR0puwE8mTwUR4RgVYbb+cSnHxlsEjYQsHHVkzgZephSJMdpiXEeiZCqVWie0ZuuPOpuVwgIIAkSqCtSClMI0C2imlsI8zpRcbHRUeVo/+IB+3Pbhixc/bec2i8LlhcP+fnws22M5vebyvecLolw4Pl2AbJfVGFoDwP2XCyP7Md9uXLmVo8v8OT1/cryxnNngRsv9rb7qfPuioiVv0emepg+eizEF5/02V2wXEbQmWz82/DIEiJ0gQYlRSF0gBEipW+ZTKZWc7Z1SinR9Ikgg9YFuMGuXYdfR9R0xGe/ObtlRa0GLUAuMx8nmVLbx72zcWN9m/DQNQhdlXR0U6IgxgUKeZmo0kCgX30bJxaVTWdYvUaWUCWqmFuU4Fqax2traG8igEgglQQ22O0n1+lTmKTNPxdYVOnD+0SqvIkylkObZLfi+fT9u+3DYD1Z/VwLXVcHGZPC1pzZFysGYFYDUpf0cUV7aFL/WBqOgBFSVIFDF1piqasqQigmCuq55OMJgypwDn8s5IQWovm6q89+mCJ9+vL61UrG1MosQ1wZZG+dEXLLztqM+LRtc8zwxl0wpeRn3yxrbnlnX524f88SG9Af34Xk//uZv/RZFFakQRDcKyRaUOeeTKz97fI4L8u7Z35foLcznfSCFbwf4vKUuT/50mXe+qy4fWL8Pmos/+vGvUbW6bFWRUJHKRgYUSmWxTM5+7SJvi1n8mDW9yfQpRlK07+ifZr329Gp23tGX2vGCQvK+mlCb4iqn/NhfoulF6jwDhVqc7SobCyirZ6TpHtv1e6M+i2z4Sns9WevxdvrguXj74iWvv/mKlHoODwdi6jZAR+MJdVnrVeuiZ+ly7myDpzZoXZZXmOeJaTxQcubuzTfkMqNqa0pKcdHnTkQTOZOvtOlgxaxLUarz7KpqmyMiSBbwomq2TRRUXe60etVaiLEsMqZh4cU2gBedkPVAL4yhRTex7yBNH62LWrPVLPTs81368URGffVTzvXe5bjpusjJsS7/6gmvfSy3veN4mZEnGvQJA3+/MtvlLuf4eG+yYyvH3/3R8akcrsvXU+Ws1z/Rbk/S+1xj9F2An/dab1T1nwb+aQAR0aULtI3XFYF9/2qfPrCN/QvN+/bKX7ionjC6lT00hnJaiA0uU9KVGAJdl6gucKcQqLIBdDgdgqrVBEHFXG6ccamowXjqz2zfG+5uzMiEPK2Vmo1RzHEm12quMSroKpa9tSnO6ORFt324/+xPanCgRySyADxtEdxa80ggNAuesJ7n7BqRuDAn2Vj8SFi/JTjQtLgKvAX4afc/esNmQikX+34Zh7oZkW2HsQnnm8WmCevtWnFgR7WCFAcJvP9xs9GmrLRFqjqDUjGNClN+TFGoXoXKO+iD5+Kf/Ot/S3/vr/6MN9+85g9+7/e4e/OGu7sH/vCPfs7Dw3HtOwJ9F/lq35NiYNj3vHi1I3XRhCbfrS4VZt85++bNG7746kumefb3riAG/AxDRwjCbjew3++JMfJifwM3LxZhyix+IJRALBHVyjTdkfOdt12gZFN+pnFiHidqqYzHiXGcAcjTwLEb3DQ70blpbpnNxQWB+iBUAQlC33V0KWHQkNAHKLVSyoGaJ1vUy2wLNabAqY+1OY8QIrkGtB4YJVFLYTqOlLlYW0YDmL5rP2778Ce/8jdrA2vWXQY5sSrYgjrLQzZCi8l57frzHZnTql2S/08ExBPQ6fLrXVaY3kaN826Fm9Pjtiuk2kSd7fW+d7ksqKdl2OLc9KxWzun7nQof76zwB8/Fbui0VrNKK2Uml0IIHbUmajUruBAgRCF1Qr8TYoSuDwy7tFj19H1PCNF3/gxw7LpEPxggFJOBPyEI/dAx7DtCtOqO84wqzGNlPpqLz/3rmcNxJM+VUrOBPlG2urm7WDkvrJVSKiEGUkzsdjfElNBSOd4fjCcnAXebGDrokwMOpVIoaFXmcTTrvaw8HCbGMZuF7H4wEKtG6Hs0dv78Sggw18LDwx0P90dC6BiGl6Q4UCoQIiF1VBEexolZ8+qK/S37cduHLz5/obkWQgWtDcjHhH98PFafa02uUHHZoIExuvL6jWAjAsGBjtCESVzmcSUt10yumYDappNvPpiMshEe27O82wQIGohBqCJkDRQ1N6xazbKruTOsbg0gpYAIsVZyiIuQvGmbRYgNbeMmCLkWJIitHaWYpXOpzDn7BgHIRlGz3entnLXvEIT34B8fPBf/XX/qT+lYzGo0ibp1VbOsulTIylPevckmnDXTOy6XR/Lx+sy3vNAT0u+HytZLHd7nmguM8Sl5/vx93kPZ/KC5+Nf9yX+H5popWiFUglREG0gjaIXRN2QrlaIZRYlB6FIgiLmtdlHoY6BPkaHr2PWBoe/pu56UjI8293ddNIc2Hhak6az6TfZ/+wsvV1948xOblUugT7vR1zaqg7lVmWf7qEKpZrkcoq2dmlynSAJukSCitqku52NulRlOBI23vMqFc2+di5999gP9q3/pd0ACIXaIhAU0NpWoglu72LbpCp4XrYvcrg3sURxcWZ4FQCmZnN1y/f4N03hAnU/1Q29rZxdR8XIcEG4WmG0A11rIeSLnTKEu4KM6+CMi1DqTq22GaClu6e/hBYqZHoSQiMFdo13HwT0EliZrOo6u06/Jf9bY63cQsxhOMVLFLPWXKzc90Nrwu/bjiYz6a3/zgnSsEqee3rldnk50bl/n/Jp2vJXFLh1f+vtt9F5lqvX7eZ3f5zmLfEnT//34reVsGuXS8SIfcNIjj4Gmy/RdgJ+/AvzW5u/fBP7qu26yum4asNF5m/o/79V3DS2Dk4Vy+8z3KGSrwq+dv5R/WuctKNcsPAzfsMADLWaB8cyzwb7p/EXZOFsO20B51LFe1w2EsTI3qebSApSGeL/77T+oH43fuMlnA27af7Iuruu3LNe387TrZHPPAuKsVkE05rpcd3re2drmmjMTu7MJsII+smnT7TWbtt9O9EU0aRoP/tu2dZtZooE4i3Cu5ltuu6kGkoRg1uxL20hdGbyAtC2Bpa3fSR88F2upvHnzwOvX9/z8q294881r7u8f+OqrbzgcRkKIdLEjhsgUhekYiTGwG3uKzqQ+UnU7zgw0VeDh8MCbu28Y55G2nAD0fWLOZvFT6g7IpJToIuyHBCRUAw3MUxFUAluLH1U1F44KqFLzZJ9ayXlknicThjRTy0QIgV3XEzpz6TKTZavn7I5cIkItPSUlYgjsUkcICZWC6IzW2dwxaoYGzrpDqOIIv2YokbkqRWZqLkzjaIusBFLqN3FUnq8fl3lwAtpwdswTxxtB4cl7Lx+f1uG8zKd/f39alb3HOyhwKkCs8w2/xubRhfMn5axMvAlOa/mrcL7Va97jXb7FuujASQP/3c1z1Q7sfUIQQoSUhJjEXCeHREoN+DHLnloDKYUV+Nn15ioW7R4JQuoTqW9xCooBRapMU2Y8zpSsTNNMyZlSdLH4aaDhaTvosg62ndatG5CqkufZWG+xRgxR6CQhMVlPVqjYruc8z8yTAWHTNDFNs8Uk6hRxnlSqEEprIln6bp5nxnEkRiXFQpBmRRvM4gdhrgXN62bMc/Vjs7hBmxLomwbeWNW5RltCln7nzOpn06xNdGhyxNYiyIa5KQur0O67wirLwF0dvOz3Jq/g65JZPpiNVPW1q21UbK19YP3bWt3bXh/P++11MUaCmMVBcXCngrvVWPyluolHeF7Gdt6eAtPPK9u0JioOZlbvrIAsm+pbuY/Hh6cK/ZYv6iqjnrrbvYPOQJX3tHS6VIW3PHX95bRNLz3rXJZdbrw4n5pMfv581bUl3qM1PrAf22yoLlu55Y/LkLXaRlV1nlto1kFtLTUrniDN6sc2o8zSJ3h8tOi8cJXIbdE5t2pdGuj0rxMF48I1su0TPRlXW63oIujjP2z1KLCxU6tiUQXs2yz7hJpcJgWaFeYi3y5d7nKzyskoWOvz1rH54fy0Ft68/gYbJ2GVM1tsMCq4JYzC0o/K6r636EYbnnfiDqZmpdPCLuR58vAKumyWhLCJF3mxpuLleniGWqharD6bNXG5tG1U5YKW4n1RfVNRiKFSXSdYNsI52xTA1wOw/jiZf6f9IT6Ow6I7tX4+fYt1rj7vunjWUpunbQStE7Tlkdp7dvllC5nVervNy+024NnYbHLKW8pZj70CF6u8tTh/qpzVcum8h54q57QFnjretOsHytjfBfj5V4C/SUT+euD3gP8c8Pe+866zBrhITzGzi9fKaWOeL8zC6aB6ulonz19uf4p/O3igGPMsagEmm4l0jIGu7wi1UmtGSl1453qf25u2GrhQHV1IMiXXlAFTYlYe3MwPQ4hu5h9RMJN9N9s35vfOFvx2/SiyTqZzkEU25zfM58TKYNugG+V1e+9WyHt8fv1e+lieqM/JU9fF6/zn1saNUSxM45yx0ISxLQf1d1sWyIC2XZOlXB8zy+Vn9W1coE2Qdf19F31wH5ZaeX3/wJvDgcOYOebCXIGYiF0lhkiKZinQdZGdW/z0+45uZ65ey8IKZmXmu7MqatYFGi3gq++OxRjouvVY1eaGLZSVohaHhxBAXHRzi6JKdSs464MkAiqkoefGY+r0MTG4ObDEtMS3STESovnFDinSp0RFOZYZakYEghakgqjPKakElBIjglnxhSLkaovz4gUvggYPuKJhldcCSGqCoynoMb6T3X5wP7ZdJzmbF+tUkAvfp9eH5RzLb9vyt9+Pn78cbQCZ56Az0VIeu3qdX+N27etcOimrUeB9JtQpXV5sn6AP70NspzWmQE+iVHN/TF23KM2qUEol1uZSK6QUGYaerjPXgxQTEoTZY13V6gvGJO5eafFfbHnJtv6IA9IuHM9zYfLYXjkXBzMUCUqIVlu7rQmIq2Le1pxQKtM48/BwtPp3HSEWJARCF4kpERACwXfiVwVLA+z3wjAkf74pcc2qtD2/ZEWiOyiFQAqBvk/s9r3tjGq03de5unuouRKFGAmxX9riOfuxATfteDnbwMemALRlY1kMVsX4RHk+QRxXZVnkVMD0h6yf1jcKKps54pan+GaEOkutoqg5erAKydu1zd/tZNq4YN2eeUaNb4uIKUOb5VdPynDF2bWR9TKhSiAEv2bD5+x132s+fnAf5lr52d1MDIGhqxaXScz6IwpIsGC/LcbCRcOjsyEgm3a8pLQDJ5vJJ98nSqr9otsLzh7/eNvTRQpWGeZRRV3WXFwjLsWLW/rm8RNWhXGtjJ5XksfnN098F31QP4pAPwhIZB87CHA82m/TBHOFOld3+8H4gKjJN8ms3/rOjvsU6FKga25eZzHzLr/f8tfaIJfWkC0acFFxUd7yqJNST0s3vqHOPqpCqThPr0yT8dU8V3JRbD8qon2gRkge+L/Nb9k+TeWEy4EBaO+xRf/h/FQVtGDAdUvgwQLimOtTXsbuAn2rgyQbnigOXmsLbNTKx2PJRJPfkvTUZDJClxJ93xFi5Pb2BcOwo+v6JbDzyqt803fh5VbjxXKR9psYD274TXNv3fJu7L1Ui/PuzSZCyagFsFsSGqg2K8w1GHWt9URu0w34pe7fd8IHWtXeoh9/p37kVP87nwcX5c0NZxDOeOWF60/ulW05Zzx3vfid5awyLc7/dHP8+L6n67N9/mY+vUc52+9Fpt/cu1GxL5bzFH1r4EdVs4j8l4B/AYjAn1fV//e77hN8jLdy3uNZl3aT/IfT8+0Jlxbjdv07BveJPLEpR85P+rPNRcsmt2XBsB2tlBI3+72BL/VhzYixcAul1ExxXT+mljXJTP1EzB9zmmZwCz/dAAgtgGNKid2w42boGfPM4f6BwzwBQg3izOMt7/ut+tHEdhMImpVPO9csgLYWP80s8lIcoK110OMYQIicBnaW1YIIf7616/Z402N+vLABvXDNaYucgn5tQEj1+qu7+TTrHD15lDTQhuZsYv7li3+umpCheN94FjiRVo7FiVCCWwuHNXrXM/bhnDN/9Wdfcn9/z5f3Bw4HU/akH+hiIoVAFxNRhP1+4LNXt3R9IvaBbheRKBYLQdc4QPPDRNZMDZXUBSQkdruBm9s9MQa2wQ8VpehMLUKuE3OZULHd/xgjCBQPDK1amZnRaIwjCQzYjty+v2Xf96jC/fHIw3G0LDT+QSFWCGrZyV4OPS+GwYCvyWIFgRJqRmo2SycReu/Q1EVKb25tk1YPZise7N3jdohZElRV6uxBnAWiBEI1AeLmxoSGt8lHH9qPwpolJ4QVEDgHfZbrH4FDW2XqMfDzLmuf01PvtQP/LagJQyvffyygaPufplxvr1Xnz6v1wKngs7UqOD+/KrjvXDraPR/OTwVSF4gE0pBQ1FylegsarlqXgMoxydLffd/z8uUtw2Bm4W1w1WKuUjnbZ/a4V/1uAI2EGKhjdhcHmxchGh863I883B+opVImG8tVQUKl6wI1uvtpbW5eLqRi5uo5287s3f0D8pW5ofXD4AJzZP/i1qzfCAR14EcNHE2+BvYvLWjqPGdCsmDW6jxXa6AizFOhqFqZNx1d31vA+fmGoQ+Mx8KXP3vg4X4GkcXVMsRA19+wv915AOTn6Uez7KwEXYHF839tx3YjVHJq7YM2lcolGV2vPbVc81LC+rvx1ubG1SzXTFFrE9UsyloSAe9bgSKJGixeEERfWt9DlUMdNPRabOZ/A35a2wTxuomvsNv13avYXFQXG2J3qYibBVmWuXgORF2o3beYi8e58v/9gwe6FLjpO1f6hZs+ktz9Z+ha7BcW16D2/rK0i5/zf1ehvQFdLGCP2C2bVl2/WznaytQ21tZ7xctdMZU2ipqV3poxr7mdbMQW0DXgq8DGbR8DaWNw2SYs73ECH52AlVv+uW1ZvXDUavp2G6gP7ccQhduXga5P7G93pC5xf5fp0sThUDhMhfqgTNkCGodoVpBdEPbJ+vZ2iNzuIrs+cjMkdn3H0Cfr73Bu8Xj+Vuvfj9eqUwVjq54+Xdbb6dLVdbNmlQLZQZ/jOPNwsOQxx6NZVqYUKKVjtzO+2yVze299s6yvy9q54hRCICjv5BXfZi4qatbWrFlim+5oVakWTmGBfdyCUDdWilWR6rJ31Q3w0+aAEjxQt4h4NkrbNBx2uyUcwW53y+7mJTEmhn7YyEjN9tuV+lrsY6vVyqvcnEqLLnHetFSTFf2FFt5R3FoINtZKvug6szW32BXo0QUMKgvwI82AwN/bAkh7LKH2WRiM1VFF3spXv42M2vjGslH/6KLNLJDHM0LWS/zyy3LpFvg51di359drL8u065NPZenT6srJ9Y/LbLK1/b/ecPJe71vOOQiEZ+Jc6qanbfcecvh3sfhBVf954J9/3+tb5d4TWbR7nuycTT2eeM/tdY/N4Nrh5QWpXaZYw54zbCtzKXwR/NqkC0GQkCCXxUzwnLW3CS1BzJBRGvBjgn0VU26ryMKrNi8HDpakaBm9sqeQz3O232M8SS37FH1YPzaBjaW+i/DRFMlzwKdNpu3kPwGEeFRmkwYvHm+U1aUtzmaotjI39V7q8KgvV+XS37CV4D+vx6rbctuK50LqVqgX8by46zOXXUpp5/2jTRhs15wCXe9eVj98Lpaq3B+PHMaJ41yYisXXkOhWOuKmzRIsleVuYBgSkoTYy2J9U9q2UhEKBoyoqMcOsZhXu50pfbYj0VLHZ3L2BVurBVJuQRbdcVnV/e/bjo7owiwDkIKw6xIvdjvvb2vDosqxFItkqIrkCkUXQX1IiVILXbZd3BOtvkLQSnRrCLMmMKAHrRRM6M64qiWWLaMCUlvaaF2GDiKEzhT6rns3u/2gfhTrp3UuhXb6Sb55vqCcWgvBOrfWe87vfXuVvv01l9eF1f3q6bVjE8hvM5+2v/8i6YPXRbGUq4oZuyEGhMTUXLdacMfVjUAkmCVZZ7uSqzDurotaTzLQmVBbqL0J77laXBXFwJOUDHRtadtLqejiSqVeR3xOuLDR2O4GbKuqSFXmObvLlWWXMv5ngufG8dfdMs36p1n9DH3HsE/Eyax4UheoVag1LBlpSq3UrLTNghgDmsyyDu0peaSUmfF4tDncm4JXFUJMpG5451j90H5cNPO2bLBZstV5Gh7PrSnqTUXfgj7rTa2B20jZLFJtMdpcy/a4zYiz8nR1P6hq8TvMVSIs9TG+cF7e4z8XuUv10dw8AVNrNVBpOzVFkbjuaCw8S9f1uclRBnqt66BIS6D5bjnyQ/swV+Wrh5k+RXIVuhgYklncdVHok7kMJlUSglR1IVyWFmxt1OaiNCVzK+hzetzuOT88V3YXILvJjpxyt6XNm9ouuNWUUd0qkssD2Lia4Lk61Czsat3IeaeWHcYa1lG8WFyeURvp25F89rrvpA/pRxHoeqEfAre3Hf3QoyrsXlvA+FIrISghmOwdHcxJnrY9BaFL4lY+wS1ggmdWDKdtoP7el+u8rdX6xicp1Rfp+Uw1ebe1z7nC8qgW0nhys/pRcjYAKGez7JymTCmBYbC4cSKgtVvlXN3yqROcwHgpWwD27T36wfwUaOBGc5fSZYht46M1a5+6jMm17Y3nSZszdfMCXlLArLzMKrajHwZCCOz3e25uLdtl1+/pOgsB0IDQbTtbD7Yy3eLHny8LYmu8tgV+a9Y37bZVFF3XhJY9c52zelL3pW02n3Z+BYPPft9Mfa/+wmC2Gw9P0YfLN5dly7OLzg5lrdvjSy7KqJeON09+ZznndT5TKb3+G74t59dvZOWl/usN5+/1XuVsjk/KWFiGugz/+P630XcCfr4tuRjYVOv3XAAWKePs9BPnz+/eAAIIixneyjA3isO2kaXVeDtNDM8V8JTdgKeGzLW40tz8gMUzAbiQE+xaU2SFFt8lxkBMFuT4xAJ9GWnWua3+TQAoVZlyJs7C7FZFwbOXfKA7+AeQWe9sIJ/z0XvSVm3Cy6Vjtu392CKBjXJ6cr7dJ6d1UE4n23ld5JFJ1+NqN5zH/uDpQXqxfbfL5Lqw62aUPRJ+tgDQcsz6jh+hI5siJ1GRmCFkRBSCKQMxYi4kIRAHQVOlBLNxKb5LMeXMcbZg4ofDkTd3d+ScqTkDQvDdk67rSSlRtVBLwHzvDaDBBZM5ZxMkUqRT30UJgS7YzlOVSvTMFEHCoigGTyPa4qFHseME5o6l+G6HZ+Mym2cTBrBFX5tbmapjdVvAbdM3LGu0u3da9KK5VrMAKtVcS0r1nrbvqtk+7w60/u368kwpeutCeDaPTucWy2+X7j0/96ge3xH0edsivBWiLwFA7dzlctZF2HNa0CZ1m3LOVFkU7aY10cpsFX3nK34rWlhZaJkMxcAXMf//km18dgVQy0xXChyP2bNT+RhQGI+Z40NmnmweKhkB5lHJs4FMpRayWiD0vu/Y7T1WGoGu60ixUiNoUnMJkmKrYIUuJepuoFblcJiIaUKB2EViZ3F9+r5n6Ac77jp3k4iWgaoYbFozZDE5+D7PjO4x+ebOYhTlXHjz5oHDYQSCA04JRAglooLtYh8yuYjtlGaASJBIl4S+AwkQO5Ao9L2BSf3Qvdd4/WDaCNbiQnrj8eduXG1ZWc6blL4sOW2MCkJscxXbDBIfMw1ESwqxVtt9D7h00mQe+15dyxU8i4wAFNtfriGQgzCHFgtkAza29Wi7GG5FonUinbbF9txmmG7/3OhLtBaQxrs3QAb+rlsF57mpVPhqVPpcGWshRaWPlYe5OvAj3MyRFM36Z9fZRkkT0wyUUs/W43G5WqZXWXdqRSD6TSYSbpWUjVLnimrxbJbN8mcLqrWd+1oMsF20SOcj/TDQDz0CHkDelMl5mshTi22SLR6dB7Ttuo4QA7v9jr7t2Ad7h8YeHzFDTyP1mFW2cXiial4Wn56BYgx89mpH13fc7jtLRHHTcXxV6LtC6oSpZg6jWVB2fURCYJcCL/pEF4TbfcfLW0vnvtslUrTsiSaaraCqrI3xjhfSixe0vmwBzA2M8svD4yl1meTk+7TdV6vC6vHTjuNI8YDqpWSCW1gHd2ts42bhRRvQpfGzxdrZeZx8hN4MQRh2Peqy1jr220a4or65V1FLDtDOe0OEqkgxmdZiO60gSosNFGNYXPgsq6Rt3hkYusoHISZiMNfrZURrtaQfdSYI9KkjihBSJCSLb3c4HjmOR5/PmPyLB72P0flGWAL3zzlTmocIugS9ZwP2rn1kiQRALyr9xpqVnDPzPPt7ldUVt13zsSZjq4c8PT0uqY6bZWLhq+s1T8u3F483svFphR7X6FH7yfb8srCfqZfrCdm8wMmsvPBeT5YjrDrshWta1cXfbUkNf/mVLtIvHPgxn3IsAO6ymH+IPL3tgJOePCnv5I6w2Vmi3b4KDycdIbY6i5e/6H+Nk2A7/MtdVRYBJ2tlnCdiiNx0e3bDQCmFYz/STQnXWn311yVKvAQLuhk9ICe+m6Um5VlGLF3WVa+DCQNzLhyOky3otaIq5h5A891/floDMm8DNW+OWRXKZolw+frtb8JjFzAbyZbdK6yTtfVnO7fMjmX2nXKQjeIn285u9La1uw2d2rq5Pe8cHWoCK8sobCDP4+92vFmoxd9xyQZhQZ+X3I/PTCKQOohdJaQJ0uhPtb7ou8hun+hSInUR7QslmlVOzmaF83AceXP/wJwzDw8Hvnn9hjxndn3PzX5HjIlu2LG7uaVLyVwb8+yxRSZbzLVSVDlMEyFkJAW60nmmIkv7DgpZqbMpIgmPHyQeeNHnZgf0+JT0flJgLha7RINCyhCzZU6rkCRSUGYKMzaP1cdi4wfq48vcuVgA3mZhd5hn5mrxjUp2y6lgFkkhCEGFXGdCfa9A3R/Wj01gWT7r4nPp+xKA+lSMn/dZVC/9fbGeb7nmbaDP9prz4/NzW0Do1NXLhVjVZd1pAnfzzbc5uHGXkFXYFd/J1qZQPTc5S5MgSGoBSCHP2Vyqiu3U1qr0vaClA+2YJ3jz+khMEEK0TCAi3L2ZeP31yDTOtsOd7X37YWTYHQlRUPE06AFuX9wgmjyeUOJm74Esa9txhHks9L2Bpyl0dKGjqnL35sCbu4O5Ofq8CzGyv7nh5vbFkk0kBXeR0EqZR7QEZjUQVqvy5jiRJ0ujO+dMNgRnyexo5vZKPxiyYWnMIyVXpvEIMloslhCJ0pFCYdcH6k1rV4EIu33g5kXP7Yudu7c9I2nF4nxZFiF1pQhs7FRjIgYCuMXnkvGzKTbbFdstCYJEuhDMmVpYtlwWoFugq0qXCyKVECISbH1a1hnFgHc34xJ3gRCAWigu98xaGGsxq8Y8m4LgWXRW6Mnn0/lkaECPru99Dv4s66Np0DTgS8+KYTNHVdvTOZm7HwP8mSr85TeVFCq7VC27U4CbZBYhQwrc7uJiCXS760hxC71DyYU8GyCbolnl2WagWZSI2Npgx1ZuHzyTJUps/KZW1CLxMs2F2cvUTTvUOVPm2RTG48g0TuAypQSbi69+8BkvP3tpMuo0G8hTCq+/fs39mzfUUpmmiXmeiTHy8rNX3N7ekLqOzxQ0xCWDbFg2L85gnSZuqbAGPN5SU1NOb/gY7LTvIr/+a595TMFEjMK+j/QhMo2Vr98cUEbuD+bKPex6Yorc9h0/uN3Tp8iuD7zYOcDXBfregZ+wgihtPIKtER+CI7cpYkp5ZZ5tQ6JLgdTZuAjwCPx5DB+tcg4a1jm52alQNdkkZ+VwHHnz5s7AlGznJSZgtwSuDivC5RtnVs42pmNt+Zk1oFI/6N3fl0IIvHh1S/OmWMZ8dfCnuT4twE8DM1pQCUzGywb85Krk4mVswgg4ewQMQ82TeUykVJkH43M9cUnQ0QJ7g6J1JueRkidiEG52O1Qr+5sb9jd7alW+/OpLvszmXpeLA6wipL6n63cEsUQIKZol+sPDPcfi8e200Kzkm/IgLveaJ4nJMKo2uwp5GRWNarX5fXg4+IhYz4MB081m6gnjtW9PsjqdLOCPPLpkOTgFfmyGnfCXMx3u6eMNfzmFCS4en6iLm3NyPp2274HLtYvcvD2/Ke/Re23L0bW+G/lbLpZpf8imDsJm02Aj+7+LfuHAT0NVAediTcloJ95286ODi3TCHDc9t2GFbAUJ2l/ekk15kpNWt3/WO90XMrBgAKpmRtqAi+RobvRgaaoCvvCbRU4DfnDXMCu5+WAvEIIIjxl+s1Ko5GI+pe1dQggecO1jwD6bwb4BZ04Gb2u/MwWTS8dnIA/vc9zq0DrGj/W8rc5n63LHetw2y4VVWWyyayue5RpXLLfHZ9TOqKw3r0DQeaHtYe092o3+Tls3sffpmA8hMYufEBRCRYLt6JueFQgJUm8BYUMUiEoVpWgh12yLSZ44jkemeeZwPHA4HMg5E4KwZ0+LRRJjIqYEnk1CtBJiprkmqZrrScCyvpgyZP1t8X7U4oGUZt0TfHEPK2NUFqsfcKUI8cXMpQXwHdJmkdP4kYM60mx0TpacEyCv9WdTPEq1xXwuZUlnraoExXeGAu7Ihi7WJs/WhReAHP/tEdjz1PFm7p5dsy3n2xy/D70v6LNYbL7l+i348/Yy2/xrynHjrT7x5fHxBTX32WhZyH0dQASp6uNJqWUxUrOMdhpAgylscyEU9SxWBhrNc2UeC9NoKdHzZIBNyRbXRYJY0KtgGQb7rlBme7+QZBFstSoaLKteA75RGLqevhvQahY302w7iBkosLiOmWm8uUrG0OaqzUVFqSVQRKilMh4nxsNIKYXDcWSaZyQIw9CRukRKStd5/AJ3M9Xa1lxTYFKMxN42UERsze0S7hcKEoWULCh2i+nwnNRM9P2P0/HiwOG6c7hZP/QM8Hk0PswSMTqvijTLHxPgBAu2ENQtJWsLCOoAgcsqYdnpVsICnOiSCKwq1BwoMSzK7UnN5LRWy59bcOcSGNPObYTxpaW2suDm7/XP5Widjmza+pkXxqpwPytRYCrVABqBORnItuuUotBFZdeDSj0Dfiwo+jxmalW6ThmKBalO0VyIRKCLgU6tD0tcV5vYxAHUYnJkm3jznJmmeQP82KdMM3m0rJbT4ch4PNpaGASJQkyJ4eaGfTG5dC7V3Tlnt9K9p+bKOI7M80xKidh1ZqmryrwooNJQupP2WsQXXZURVTmVdp6Uwz4OhSDc7nvbUE0el6gKZQ9drEw5MgxCLkLXCbvBrO1vdokXNz1Dl+iTsOsDKYrLSSzWxW3cre/3HoPwLZfYhpHJBjE0d/+NR8T23u1zT8p3kFcfW32gq/XcYvmhzfWHBfxoes9JwSuL2mymNL6yaYuPAMJKELrOLb6X4MVCWdaiwOK6ipqkpeaLEXGgskIKIFVJFeagnhI+kMWB91Y+uFu1vZvFZ23iolnoGKgelo4xKx6TWYNAlyKqgd0wcLO/odbK3V1PbMle1GVQlw1TSBZXMnWWBbMWYjhs2l83mwPW3Nv4qSa7Nf7adBP/k/W4lkLO+USHgk2f66mG8qz9KButebthvmULJ9dvz8vl8x8sl24fcPlYznjTY9BnY13Trt9cs1oWnb7Y43KaNtH6j9NyTspk7VN5WxtcPv8U/UKBHxGh6yKlKjXXtzLDteobzfyM9InjsztPZ0KbME2BdzOaJfxKEN9FdyUorMrpWu7GWsMnv2BgjgW8XXfvRIS+77i52dFQ1fZf8fS9tjNjaPvqh6prfapbDohbxQChyhIrYM6ZWq2NJFr2E/O9fbtA+V1o3f3zYzk/30bpOhm2E+OS5YFs7mkWQEbh8fWyfQamLLUabGftpm4r6eY3XXYYwRbB6gHU1nfZilqNQaoLPbpqRKu4Sjv9SK5ltfppuuWjsd0eubTfR1hUgRQjXYoMfaJW35UMiSBCSh0SMVeTWsiT1bpUW0CadUuQQIodXcoMfe/ZwJIrDrbTcH9/T0rRdpxrS185LwuaiLkyRPEFu9quZ6cw+M64hI7U24ofC8TSdr7XLbEWBFxaF3jmg1wrU7HjuRTmXFGBSGQIgaLKXM2Kx5pcqcEs8iY1i6ECTFqZfV4Vn8uICYRRBUJ0sNfGXAimsKWwBtd89n6Ux99vA3ouzruLc/PyAnK+sH4X0Kfdc+KX/pZnnlv1bI+3f5+f35TEMjEFIGyUVlcsLxxvkKGLeu13paZP1Wyxr1SEmpV5MtAHj4MjiKU7H2dEdHH9iBE0CbGvxvvVNh1qUmq2WFoGIGXLhhXwVPARYoBiLlzqoFCsNn6LW7TVqozTzMP9BAplELQGUCG7RZBisXli3xO7xOeff87nP/qcGMISK0PE0tBb/C+zZKqlMpMZx4nXr+8opTJOmXm2XdFprKQuE2Ngniv9MJn72O6G1A9oVdtFraak1z7RxYDWzNBBdztYGneLEs2uA+pEmQ8s6XGfvS9Xq4wt+SjeKFuyDKjNamXfAsEF+RiETjz7DFjAUliyEAURi0WSNvPal85SbadbpCWiMB7a7hGBJGrli7n4isfKaFYMTemNwWSPWnRxQdoKWO0dFoV188tGZV4vcrSgKTWPLLA5aSJkU/LHUlIQS8zhhtaAWZDOVSmiaDYpLgXlkJXjrN4uq0KQ58x4HKm1klJi6IrFkPEsUcFjzfWd9V0fhSHapkvUQnSrrDKOlOPRAGDFXKORxaUSoMzZst+VwsPDkYc3dxbk1ePmpZQWeUOkWfzMzNPMz/7wZ/z8i5+bIuoydtf33Ly4pVQlqj7id+fiyunGGb5XdbbF5Tz20fFZWc9JNk8qefIYMNkzs/WJvO/50Wc33Ow6D7GQDCwahJsB+gRdgqE39ijCEtdsGa+mPDwW3aQBI1vSs3HvVivVXcazZR1EoURLRmHzWM9ccC611ipjl1wpLYeI/1tVyaW1uyWR6XobO8F5xTAk9rueYUgkj3d0Untdn7NYvS6AkDpPef6erLXycHhAtRq4r83iRxY+23SlrQTetbAZIkQgidhcVmXWYkC3B0JWhW4YGHZ7JAQO08j9YaR4Yp2vv/6KECJZKyFZps1d3yO7HaiS55k8TeR5Rku1jMziiT1cP4khkEIEhRmz4l110YhItLhzqYNifHrO0xKsmZYYxjc6qiiW+T26/rmJg7QRb9pmQUJJWkkeYLq56enWlRcW3bJ+hFm5VckEXf9gM6rljPdvj2U9J5s/FmDo0fFpIbopY3vcym6r07r+6oVnKZtHrM9ZFu91y3jVRx302tZ/80JLOasAsKn/ppzNNa1vG3gUTuqxhcqepl8o8BOCcDN0TLmSy+z+oWyyFm04CnAqQrTfeWLf/JzVbmhpPHdrEDErgFWiWA0tQjDwxI/DAvxswR8rYxHyXPFXtXgfDQBa3vlmYNjbJJ3LTClmsjvlQnYn0pACIYXFP9zioLCY64ZgAFJKAapSJ9sNUlXGyZhE6iK725255uCBz55dU3Hw6cQ9yxTwJavXo88GyNkcr99NWW5gj6yrLReAniWHarumTYqzWbn+4HQ+tpoC2RQ9XTJJgTHvFXxyWxDh5LulG17KVFjS6Z499VwNOAnNaCjS+q7LLA8fA/exBb/rqEPP7c1AitmzxPVLwODmbjbnmeN4NCWwrGnbwYCiGAQtUPbmPxyDpWrPRXk4HMglOyhjSmdbBJb4PAidWDyhToWuKJHKUOBGBdHAbRrQaKna5zEz1xkwM1WaVYK7VqnvVBf3Z57mwnHKxCAcpsIgGQmB2PW8SB1Z7ZpJZwNMQ6WmSlblIRcOxex1Jmy3t3UXAhrUU58ar+hS54GsFa0WPyHFtKQFfuZOPMvmJd4mbfF6fuBne/5dwM/bgKBzN60t6HNe5tvcvN7n+/y4AeKLwunHS0rlRS7RRWBu9zx3F9oDzaLHgEmzpqtFyDNogRSixw6IkCuH+yPTJHR9IOdATMJuEPqgSFAiQp86RAPzUZmOo7kSqMXWEeD2xY7us1skRcgBndf3S6EBP56pslbu7498/dU9tSovbiv1xnjvOBVKsbXy5vYFLz97RTf0/PRXf8SPf/pDYooMnQU2D2IZd2IQczX55o77uwce6pGH+yN/9IdfesphyMXqEFNY7umHe1IX6bqeV59V9jem4E7zgZJnQlCGZODF0Cd++OqG/We3KEJx2CR2gpQH5mO2+BDP2IltzTWLXZPuV8HxdE1oSsyaEcateFoiCPFMWA7K9GLWIDWbfCAKfQzcehy2lMQtnZpsYvLJVNTuUXMbKNXiPe1iYpeiAUBBScH63rI4tyC/FqQ/FHHX2+QKqi674o/yXvg5j9LDylnWsX7abLooNCfht/xieXSj75pz2p7PRUECw663tdjX86KVQzXFPGS4G23cBEypbIpDe9N5nDgcDtRSiB7jKohteva9xQTq+8i+N2vaIVo2qSAQ80jMI9TC9OY1x9ffoKUQ+4HYD4QY2N/ecPNyj4hQxpkyTpSc+frr13z9xc8pOTNOE+M0ElPi/v6Bh4cDIQTKNFNmA1r/0u/+JX7/r/4BCNy+eMHuZs9uv+P21Ute1EqsJtmojyl3PH/U6ksYAmxcbxWURWJWXTLMrscnEtDz9mNLXz7Plg0xJvbdQOjNmmfYBXI2xboUc6XZ94HP9tBF4yGpE0+uQgsbDIty7bLMyVrVDi40Em39sTJqccuVillzjS0+J8QoC+jYNo9FLm1gttYz+WeaC9NkPLHUbG6deEZDj+PT9ZHdvrf4Ob1ZmfRd5OWrHft9T/AA15zMr2ZxvqqyrdOq2mbFs7JSp5IL33z9tYW0KO52itASc6mDIY17Bg8zsR8Sw21PSIEogT5EIoKWipS8xLmZi8UEerG74Se/+uukruerb75h+vkX6Dxxf3fP6zdvUFV+PI5UAsMw8PL2dnGvmY4j4/3BYvKUSuep3lMw9+ZaoQuRPvUImSOePVcUJSLB0sWnrqcbepiFUgvHowFey/zQNTB704LrptHbZoJWS+YQBRJCL5YBt6+FvswWkxJ31fMNXF+pDKyS1V3sOci1CNa5LiwgynK8uX47h54qcOEv681PyqGbw02Cy8dlLvduLXpOoYmTey+ol3JWTlsRGmB8rqLK5t1l+16yBaA2qqCs62mrm8AK/Fxoz6foF2vxA6QUKaoXkk0J73QwfFvMmqd+2LZsA328Bx51mrfiYjkQwhofSFld1GRlgOpCjgkudQWI2ie4aXkQ86nMFRFPga2V2tKCe++dYBytWYIJ1jEFUoq225YVDUIpZoVRis12BU8HbpZCz76qik8s2Sh+G6VyBXDWASqbF9ouYqfXrS++XI+8/fyF2fekWfFJU2wGy2I9sGGe2lLPnu8rnvqb2mHbAdmAiO+UR9tY93fzldQMuHxqe4XE6/Hs3SguzHssnVLC4qIRxGJNlepmsVqZi8UFqKVSso3zECCGzsuKdDGdpI0FMy1WWqY7U/xEzP1RJC4MMchqnitqrghBTYmNsACyqkCoFpNCjbXq0s+yclRWQauoWf1AMNesqkSgI5DEYhbEFqzdi2lumFkrs9puk7myWL/FxkccrAsOOnUpmbWFbttpC7Q8fz+273eZvL7N0u59wZy3lf+24y2du25duvZt5Tzl0vX+rl6c7iVsjlfQ5/T4Y1NLj16yp2UtULKg1bIFiTqgV00gVgxITR1AoEa13U8XXGII1GCCQnUlSItZ3AkwDJa1y9AExykqiH+CsMaaq+YeMo4ztSpDl5n7goiBEBVzP4oxsdvt6Ieem5sbbl/ckFJk6Dv6zgRiy55i2cPG48x4mAjBAjkfj6MDP5FaPeZJLsYzgpBLIaZA3yvDbialQq2ZeZ7IeTRlKVdiUCIDMd6wGxKKkFU8oxeg2YJAP/OmyOrqtQKGq0jmA02dtzQ9chHgtuvnVlxZgwKHbdkOGqXgWYc8ZswW9FFwDMfva/di5XUxuEWiWRUtViub7ExtbW6u6KGGZUf4qX9Xt8gnJk9DjBbQaH1eo7Yet+OTJdvf53wtfhaSFXyjubqpmKLUNM6NAhbA1+l1jZ7GzOEhO/BT6ZLapkBXGHIixsBQfB2KwhyFsgA/M3Ey4Ge8O3D45g1aCt0u0+3VrFO6ji4PhGAB4GsulFyYppnj8UieM4fjkcPhQEqJ2xe37G9vCUGoU3bgZ+Tu9R3ffP3NEkNRYiTEuAb1bg1yxmMf9RNs+pIFNFvYqqzBeE+Ol8ufGcBTbGKpeRaU4glXQrNyixB6iscrnCfjuUNnwbu76AB13MiN6iEYWvnIOo7X1nhUjcd1s/FkfLVZ/qjHW2mA8Gq5oXpa0sl6d1qsx/GpS/iHUm3DLYkFLwaWLGYxBDrny10X6bq0uMXJJgvcCvg06yM/3vxeqy7Jsp6TVCvjNHos09limOLu+EsfNzUrEMUCL/cR0OSu/0IM6gHUtTWU94O9R4iJYX9L3w/cHy0TpeRALoWHhwdqrdy8ODBOI4hY7FYPTVCLzb3qgHiQFshdNrwzLB9Zxo3rTa5jSrC5J8Xi7bT4Q9GvWV7U61y1Wpy2jU60tWXAZWmzooeoSqwbkwkFTgwDrM6h7cw+I22k87cAJdvjDcN/oi7vJ38+roSenG9MSx9d3/RS0BNQZgFwzuq2LXOtg54ykJMHnN3bLjv7XvXnzd/t9g+Uu7f0CwV+Ygx8fjtwGAOlVERcodLGSp7qZWBB0KyTVoa0ucYPto0iEhbXLfPRbI2oa2ye5Rli1j7RRbEmcfnj1zkSzuLxNBPsZnkQyMBYCkFtZ7ZLFqQ2pYBqZ4xjnJBpBsFdS+xB4oE+URPc2mCNCMlbwFLTmrBYSqKSIYhZEGUXLmXZp/gIdDIb1uMNI9oeby0Ozv9bmOCigJ4qppyf3/T700jvetV2IspmyWoTbFnGfFe0Fst2E7Qs9t61mnm7uGC4MOPGOBbkiEWObR9/3MUWXMbe9u/tFVsJ+JnJFCpbYNfdg2AppFmShaBafd6EE2uJslk3ask2dh0QCQ5kphhJXTSBw0Emm4uyACKpi4TO2zQK1bxPmGvhOE8GClUhVVsU81zIHgxxkuxLnO9cxIQEA1iJNv41BDQGVAIZYa6WJSxVpXNLj31MiJgw3bnWq9h1VUy5tZhabVifApjqi2bE4m3YWLZ2bDspzw/fwfncAi4ef4jFz3kZJ087m28fsuBsyz531zp32To/vnT9uTXQ9p5LLmDvQ+t0a+W/123fiVQtnbJlWbLYVeCJEHA3m06IUUhDpNslYgp0XWDw4KVDiAzVFvQYE8OtuVSnGjgezeKtlkJ2a8Z+15vAHwNdjOwkkgh0GojZMmh1IaB9Ry6VLhVEjghKycI0GvCjKmbRFiN93zEMHcOQ6JJZkkRRVLOv90KQRJBIEIujEoOlyd7vErcvBgO8ajBXMrDUucE6xVK4VzKFhzcPlMmtWPKRUicEZZSKUJlvMjddos6z8YfgIHNMhL4iMS3K1nP35bIruxlHphQ4h1ehbgLgNrAnSAOUBcv2aS5Equ7ORlOybN2ZqEzY3xEo2uAlXZSjWZWsDuCLoov7kpIpHi/IQHYTNtcNmxiF1BnPNWuVRAkGtpmbYRNET+f943WM5b0X0QBW7xBhzWTEVhCWk5OLRR5iMYq+U0+9g1wZNwXdLZzUlPQWE8mCItWNfG81zlVd0giUCnUuCIVcArnYWjrnSCmVEAJjhCk5wDseYbyHnHn46hvuv/iSWgr7ly/Zv7KYPRPCjFu3ThM6WnKP+8PIcSrkXDhMmcM0E3Lhyy+/tjiQYq5eZc7keebN/QMqwRTfm1tuP/uM/X7P7vYF/f6Gru9snrTNKL0goW/1Gd3uPnu3gQ3ERdhqFkFCk8GEjyDiqIBGQuhAk7mw+9ZSEKWLkaDisbFss68Ltglk1swt7o0DDf5SK25gVhvibjvR08C3NUN1ebPl5ZZ7XY5Y4NFgrkmAWwafxUMTaAlnmp50vtRWhXkuHD3e05wncpkJMXITEqkzF8Nh6MHHztB3dMnWjxCb5T4bQEsW2Qos8YeFqN/MzCBoohkJPitVVY7j6O+TPXkNlKYvtjb2NSgkD7iqFa0zWgMaPD6OCEIleZ8SDMBWEUuKoAFVs9DJHger1opZa5g7VS6ZUGbbAHX5o+sHXr58hdayhPEQEYZhYLcbbBPnlRIlkUvh9sXI/dEBpP1L+t2Nbxp6zM1qLqFdF2xtbaCdKll8g19szOAWZyEmRAJaKyFAyZkO4TYIuyAMMbBXZVcLs+LrAUjOS1y4GMJimf4x5NT32Zg8PRYuGYKcy7bvKm+rWy0qKZt1rn1ke9yUOAcHm+zsOnnTV9+7Dj5fHz9n5ZVWv40RxIU24+x4Lef9ZfBGv1Dgp4uBX//hLW8OkwVjDDNTqTzMhbmevvzKMLfI35nSvgEEGgOgleGturpuOaIZ11R8C4jUiuAU+Fl6p5GuLmCrJZBugAP7Cggzyv002STe7eh3w+LPnXz38uv7e+LhYDFGdGau2R4bTfivVREXNETMdK9zC6GaIhrMkiEr1CBogLHMTGqBMWPnQvOzU2BjaMaacev0+1LGrhWIC8tkkpP7zl29WO73HjqdGK1Ksl0Mn5qMayedBORr3bcoKRYgMUSLl6GKuw1ZeanriNKdMJG1mFMUeVv+Bupa7lpkpnZLYypNSN5yq2ckETM9Hyeh1kIuM1IL2RU0sECBNksqKQY0mgI9o1QtaC3MdV4FYnSx6kmusHVdRz90vuNpyqGV3yyrlK7riJ3t1pCEEk0xoc7kw2wLqbuMoDBNmWnKiyCVi/oCKMSuM1Py7DFEpKApoSlRECbgUKuZwdaKFiWK8DL1vArJYhrFvARjrlLIUqhiAkcRU9BoMbcQgpo/t0ggqRCrcZcSzL0khEiSuCj0z9aHrKmCPzbw86HHT9b57Jpz16ynrr/kGrY9Pgd3nnL5Ov+cl7feIxfv/xikqsyTWeIEcYHOFXUwq4BusF3ZbpfYvdwRu0gfIzfJTMr3otyWSipK1/f0Ly1mwU3XM6lyP87MpTBmi2uwG3oLnBwD+xS5DYlOAqkEUvX1ct/R7zqyKm86JTKimpkn4aHOBpL2vbsgJ272PS9uB/q+Yz8EuqgEBwrmqkgIpDj47jukaG4VfR94+XLghz984Yp2XBSnECIigXkufPPNAw+HI2WcmB9eE+QO08JnoHgWMnPh2t/0ME3cvxqW9PIxJQN+uhGJiZKf0T/BeaA2YKYBlZj8GsQ2boKIK366sHiP5+1uV2F1tfX1SkvhmGdQpbrlks3+SNLqO7phCfRcdXUlm2tl3gRAVY+vlKVirWZjzRRgnK8Zn0pJ6MXczHe7jv2+J+dMKRPTEqOxyQGbVVdkSQFtr7DKbZtFc5XRXHluoNQi0p3snLBkHzx51nOTYhY9tS5pnesCArU+9suKUmYL6h+kxWAUW3eIaAjkksnzhKp6nCSTU/ouMQydx/9QumAWXeXhjnL/DXWeePOzP+T17/8etWRe/vjHfPYToes7XhxmXh4mSwefZ2SeqaVw//qBu4OFErh/GHl4GFGtvL67J/3e7zufsex5AJI6JEW6fuDm88/5wa/+Gvv9jpc//BH7V5+RUkLSQNawWE88anfZ9vs58HPOLzcA0Ab0sV+ekbeqUEtENNLFDnVLnyBudSgOmklFa6Ak29ByHd8C+qoitfgEXcM/1Gox/2xIe2ZE1FxZQ1iVw+bg4pn+QD2dePMKcIAI2xDr+w4wj4gWCN+sz9s7+dxtoIyctltR5TjNvLk/eJy0owXr7hKpHxj25jFw++KG/Y3JeF1LYx5srp93pqk/2szasMiGzXHHPkGF0AXqx4jxUwp3d3fmAu0ZyKq2Nmy8xKDroR9sQyQGD4o+ecLliEoHWDCKToQYIJAIMaIS6OMA2lFrImeYpsLkme9wNaRoZswTGoTJY8qFmLjZ3/Kq3/l6bToEAn1MdDGiwMubl/z4Bz+mqvJQzG1UEQgJJFFrYRzvGMd7oga6PtEPJsf2IZKCeXlMMjNLth5PoMHkv9R3xNRBrdQpUnOhBz5XuMHq8kqVfc5MqhbgvVbCPBNVSWKZN3d9T0qJu4e7Z+3Hc/m0nXvX8ZbZXLrmw+XTtUjXcJbzYaMXtuNay7IhHmJy/qEg8YPr8E7g50xmPz/3qMwNorXVg/+aBH5CMP/LuVT6FJli8R10d63hZF1gdYdZO2g1I15J5OzmxsPOlZ7F5eLs/vZPU7rb5+QB7ev09+XcWYkVyC2QmIin23U/7yjEEujHxBgjonWJaQDqmIds6rUKkaE9VECjqZIhGGClHtVeq0W2F5ULLnXflcQRUKvH6obU2kRWoa5VtR1vlMyt4rleb5/1uAmH22PWY95+vO2X0+48EzKWWWPIvro7hNZ1tGltil8A9RTjS7lbpXM7GNu3bP5uk7btqGz8p4VVSLaV308//6K6zg+bUy1InEhBpLE+E+rbLsb6vqsy3ATirUxv1jxhY+UTbYFKFuvDlPRKrc2vfb1eg/nUB9TiZOma7SQFi3dUimXPAtudsd1xS+VMCOaS2bQpCWgQd9uzedkCsDeLJhHo3BS8ijJJcZ9+V5a8Ky7JNqawsbh+RUxA9r0fA358jjx/jJ/Li8S7j8+AH+S95tPHAn/eh84BoC3Q046312yf8V6uXxeu/ZD7vhM14FRs58/mnykUrZ9CMNeD6IErU5fczce/tZBUSShDCNwMlnr2m93IMCRmFLKDkaqkLhKjWxFJoBPfXdRAqAY8RBIh9qDqLp3RRrY2C6VA11l9Q/RYMx5kOLSYXoKlC9dqwKd2NLVBfK0L4mmVh+R81mzmbJwmWhaTILLJ5DV7fIdKwNKY11qXmB6iyvHQ0SUlJQOMU6lIrEgNSFxdep+pCxdwxU64cqbN6aUFYRS2Su8qdjSXLtkAHDb2jGdVs0JBFlerokreKMy2rKkDP/ju+MpHl7qKKSiV5l7i9d8IX+JjMagB6iEGU6q0bSY15bP15eN5IkvL+ONlXe1WOU0s201riPbTZp1Zyltkt1We+Cikq3VPW9+alUdrSjvnSmi1QP9xccloo9tiaVgK6YpU2zgQX4uQQAyVHKAEW5PKcWZ+mKjzxN39kdd3D9SSkZsj3XGiq7YhlTyot2SzQqilMM62cZOLKXdzMasFzTNaZrRW5nEiTxMSArsXLxi6W4jRwIHdnm43kPqBmCz2iMXPMxm2bUBuGgpUtt3m8UL09Jq1BzfnNhtfZwDfs3RhbSvbuvFoQvNm7RNBw2pVpxU0tw7mxCoveviEuul7szqxHesWDyk4KIuu7aNtTGw+2/dt/B1Wt/BHTUdbj9rx5rz/VlrGtlKYZwMvVIRS13UspYh6m6S2eSWbfvV5uj5ANvrHxtKHhVNgZuPPu6nVqpId8GlxJS2mkFnc4JZRIHQb83Nh7UPLRmeAlSBEV9pVhEpAfWNhzXyGB1VuvLwFktcl2LI25Bcsa17qzDrXLSoFlhg/KMSQLCMlkFTpVd2iPlBUKCVT6pEpi8d0NblZVC1ZSrCMYCUIRWQ1dPLwAiYPRKjicZCgA/qqDEAXhA4l1WphVmoxNzF3V2trjq3fz53t8tvKlk3351vc+67jdQRvg/JbDJ11cpo+XV0tq2udPvC5y5q1PGh9p3UZlJN7z/vgRIbf1F7Ofr907yX6xVr8pMCv/uQFtw8TEiJ3h5m7wwzf3PMwWoC14oKlvVFkETDCyoTZdtwJYLBuGTXGboCPz8aN69Z54y+B5xaFccN3l+PW+Cuj3PJwaT9iO2kNvBpz5mE80sXIEHeW5lYiL29v6YaeXDKvj/c8TL5TV8wSIVQllIJniKfWakHEkMV0nWAAENvQe84UdPsOz05rQrq1QbzNN0Id236Qx21/CgDJo3va5Vs7GWnFL82tfv2TVb383Ug3kIxYWkgwB+wm+JUaKNXGUkrdZty199gyBzhp+c1q+Xjarn/rSVuytMFHsTRQJWfbHRRRFzhWqywTJmSpV9FCi2EhQQgLChK9qrLsVMewBhrt+84sehwAammUTXm08RqiQHDhJIBGqCI0MygBZnOoBoWxFiZf4GLO5KqLa1kIwXfrzGw2VAv0GKt6phZB+oCKMIaCMhMr9FMliUJQtFdLa01gCIniKUAn50+21y6L3VvCTcYl0AVL+dkyw1WtFvZcThfA56JlN2E7Xy4cbz+Nb25B2JW3bcbnZk5dWlg+GPA5W8jbfW8b3+eAz/ae9n1u8fMcc+ZSmR+NxFyeYrSNgRADtQRSLJSidL0gwdR0DRWJWGryGNilRBcC+yLcFFvQd9JxGxIxJl4MHS9ue6SHuSYGzwR2GxOvUkcXAp/tBl71gwejdFBVBFKFTokor171/MpPX3oGIXMbAyUlJcaZQCXP9xzuI3k2QTeGeYldp96GZRw5ehyRu9d3PNzfW+p2ndgNoFUcVPJ+QAFri/2g6M0m5h7Go7Tokup+UiFTiZIoszCNWHr7eSKEAiETOnWLn+f0T3BJQBXRimzdYgFz+4y+dp2680VXYFJIdB5jDYpb9qjFiqmyZNJqmFI3V8IhO4OL0Pk6qHjGTwilEuvG4sdBllphdqW9WaIEf565tSslQ81QcyWoWWyLGsAXgng92oq2kYK8nHXubH9nWbxNNjMOXxuY1C45kbn0hHdsBeWPQQbYmMVPy2pXcgvaTUPILBtWe1eg+PrU6td4axAPv1UrFlgLtM6UMllGakxvFlXK4UAeZ2qeKXNxZdMAm+PdPXMaqcd7pjfRgEQ1OdFcoDNzEWoNlNBBt4NSyFNmHi3r0DTP5LlYQPh+T//qc/r9nnDzAh1uqF3PSOIh29o5Uegsj8IKErAR09hsqNJE7BXQ3V6LqGfR3YhEyvmS8J2pKoxzA3M8zl5b+8UUOovY533r2Z20xTpzuT24npFSoBtsw6pUCz5vFifu7mVCsFkFBJPT1ctsyqTxKrvO6iCPxzQb0a+NRZ8S6rG6qv+7BnEwS5w5WwDkFozfLP5czsqWocpEKpNtBTBNwjeswupm2qXgMb9kDT4v21qtNbb4psFlxeelEAK3L14sgGuT07fHxWXU/bDj8xev6FNHHzN9NxGluoWlgeUpDez7G4TEWJSH7CB5zrz+5msIicPDweS7EAnBNixV8fiXtuHS9R39bqBLiV2I7CUuVuC4R0kfIr1n8ipuPViBg8DR+cFcqmULzDOFA7k+gCR2+56bW7Mi6s02ybw/MFdpCYIMCeksI93Ni1uGvc31chip00QqhdvDyDDPvrEDEbPsjGKfLlomzhosgZBt0H4cvnqi//G07LiVP7eA4zJPPqCMRWOUpZQTFbAB1EFWA4laypJxeDweGccjiLC/uWXXYjUR1zhwZ+/4qA6yfb4+0l3l7Nrzcp4+f/n4fdfFXyjwM/SJP/nbP+DuUHj1YuThWPj51/fUUvlGj8y1ciyVUnUFLYQl9o1u0ye2CNeegg53H1oEiiVIlSzfBvrLurPVAKQNx9WNraoC9VH7tnJcCGtCLevgbsypAEWU+2mklJmhS7wcBovwLsLNzQ3EwJgn5OsvqPe+g1TMfLjmajKdFkShlMw0Y4HA+oDxFcFmdYSNSTfB3b8+xjwWWTI9tE/zg1xX/CYQbF26/Pz2WhHW7F3BY+r4ZDkBQJbDxWFme7x0D2dg1+PZfpHMrQlsH8DS6WgZKWVEVSiayJoIMVH73VLn9dMURcvEYqdaVP6FBdl49mepuDuVrCkWbVwakGdmw7K2wzNSrZVxPJCzCQQxBY+B1SxyvE7qAm1eXbNMKAgeKNXqFmKiS52BQmKWBCLQdYl+6D2dbfQYPxZwNgQbq83HGVEDfTwtscq6d1iKMlYLoDeVwlQyPsx9obaj6IstGctGU4SUlZjdhzoJsjMXrHsK91oIFfa50Gdzq+lJZj0kcJNskSzY8+e22+NWQ1GhFyGJKXCdK9ylVqiZ7HtNLc7Pc5Kw7hC2eQani+xj0IeT698F/Ni5pxenpxejJ85euOSSi9Zy+Qb4uRS8+dxl67ScJvye3nv+eQpA+kWRYHFuuj6wv+ksAUKpzLOY9UoAUjYwNCTbEUxCnyK3fWcWPnPksxroqrILHS/SQOgS9zc7flB39CWaFao/8YbIKyKdBF51O34w3JAk8JCPPExHqiihS4TB4pzFH+959aKjlMrh4Z7D4d5cRHOlZHPHnI6V119bQNla7pnHW3OXjWZWL+DgrSm0x8MD03g0C1WtvNi7K+lscUpUBa3ZeEVUXtzA0EUf97bM1KJMo+0Ml1nczdoUmWmKPgYytc7WryESOtt4anHCno2cJ4hWgpbFulBRWGIbWR2jLxFJzNIqCKZI9L0F5q6FUs1Ko0q0FMbFeF3wWD7hWAnTZPM4JkhpWVMXQMYthcDSkVdPEZ2ThUETAUkJSRafrCmYqkqeKnkqS2rvXUrMNDfe4O973gbt/u18bMqxLtKuiO9dBXHXxpbcYAMh+Tq0ginrd+D9hdxv0Y3UallXS84+F1vMj+YK1xQJ32irLSBr26VPy1ooYtFRzC95BE+1nl2NX53loI6jfXJmmuYlePN4/8AdXxJC4E2Zoc72/JiWGB9x2BGHHRCpYQd9h5aZ8e6Bh/uRWgpTzsy50O8in+1fsP/xr7Lb70mvfoTevqKmxAM9dQQRJYyZIGVZA4J/p7CuPTGucWmShemz8RzWdOgxsmT0DAvy8+6149tQrcrdoVkAlpNYTWa54XNLq2cubEBJAzCEKEoMhSDQD5GbfUeMlomreLynuHFprxpAigeqz+Rs/CaKZckSGnhwKt+2ZrCAyg6sLWgProDYfKw+p3KdyTW77JhBAnOujPPE5FkhLa17oFZhmjPH4+hNnEFMjlJ3abT+NFf7GAP7YaBzEKCLG7nC/2vxqxTxkDryUVy9Ykx8/oMfuGtwXOZSs9rJVZmzWbHc7m/44avP6PuOmg/U8TVaZ6RWyzpW4ebmhh+9/Cld6rk7jHx9f7BQI9PMF2/+iFyVrLOF5EgdU0rEZLHgUooG+PQdw37H/nZP3/XcpJ5bz4QbUrKPCPuQ2Hm2YnXwtgoconCIgaLKYZ44zjPzPFLkgVzviF3lxasbtLxAtJKqkDzxQxc65liRGOhe7kn7ga7v+cGPPuf21S2aC/nNG8phhHEkfPEl4e7e3kcgoRSgE7EA2CFyG3Ykrb6GtBAdz9eXW734UrlPgzftbj8v77r+9HgjxW70r/YRGvgJDoS5G+U0Z+bxYFlHX3/N6zffIBL44Y9+Qt/3CAli2mT7XuXGbT3O5e1Wl3CWNWw9fnz9eXnbVpX1go1u/P799gt39bq96UAih6MQQ+F4zAwp0UVbFeYG+ghLUDVZ9F+XDGidewoinIMLJwrzIjW0Y4drtuc21y0RgNYWXq5Rv0w3P7Vrm49vE2IqkGtlxk2B1Ra+EKL5ZnaJMAt915Fi9CBuulRRgr9XXc1RzSleHRBrUpQ30gaJWtvsmem8Lbfnl0O/QJ46voAAt8l+NtFPJsdZFRrgsrz0ZjLhxUEDD0/P+e0Gni2/N9NOU9y1zAuQp9gi10zSVoVZXGDQZWCIV3JxFpPV5L/Vt51vA2phD94ObRflYwm4JhBVGz4+d5rljycIQmTN2LAI8mLgp7SJgCwuKCEE313DhcJogqGj5TEusN0KtoU2NvBx6+MZc/sSNkFN1VwXis8+q6fNjWZ2b5Vl8dk3Qx7bbRTBcxZ73CY1ESaVSsgVVaGr0eNy2C5Yi7+QsVSZiPrGrS5KSBRZro/+MmYRtC49S38/I7UxeAnsOT/e/r2eX+8/LfPp47ft3pzNvstnN3+8y7VqC8RcAn2eOr8KDqslwlPWO9/Gfew5qc27ECwzU9cFQlDQQA2+FgoeP0CX4P8hmLl+FwJdMMuzBCSCB4UU+hjo+0iuZjGUvM/3GtirBXTepcQummA9V3FAthKCEoNCVIYhOiBRQUezKiiKxdaxtMFaZ0tBr5l5TEy98YOYPAaBKrVMFodHC9N4ZJ5G751AlwwQrkXRsCo7ri3SJbtOxBTKEJrLmc8xNQC4uGyghWV3flHcgyIlmAXVcwN8zSKyfRRY9ubVMwW2PmexBGy8I0kgBYu7UahQfUPFeZg6H2vAj6BIcQE2CWY2sso+ZrigBLeOtHgddZENqo+jUhtfcxtr56e1VGoLOq66uAQs1osbEaq9mC5I0Om3amN9m3V6Fal8GTShR1pTspnBm7V/ueGjUBt3Hudn+Vhg1SDB3Tma695y1wmYvKno+g7q4E8tqBaqZr/T11JV6jxTs1nUqbe99UUxFy0R6jxSpxFQJPWErkNCpA+JvmttE21h8oxLuRRKcVewqmbdFRNx2BGGHXQ9xI4aIlmF2QFAX4WNR7mSEUQo0bIliQhRjWcEF42qnMb6EXF+tYwRzocHzzkTFYv7V8o67xd3IXXgp8ye9tzAA9swNVdGsHdLoRDE7IOSu8VWNcAUWMCOoEJuG9YYkDTPJltZTC1vuwXckU1dhbbl2Nqq0Tq2nFpg6GpuXdraEvu7yXOnYQdkud4slApIi4dWloQCGgywVFVKqh7kFzQonE01m58LB3KQ9zt32yMKQSw2Wwh0sTNwRcy9WcQCpY/ZgOn9bsf+Zs/Q9+RRGcuB6usTpfoGY2ToB/puYC5KPE5EhVpnpnFkKhXcmjZs45AKSAgnLq8xpdXluuttYy91xK5zoCWxC8nayoHHCmgKaBKKKjUGaoux1FnChlqDg0wJqZVUIPqa2CVBSyWkSN8N7p7Zs7+54fb2Fp2zBcFuG8spouEsWy6r7hQw4LI06TQ87zwEWHU+//MJvv12AOhd17zH8UYGX+dbMx5x3gUOBht/mOeJaTzaWHMgt63gbwOxLoI+F3RU2bzf22Tqt4Nab7/+KfqFAj+1KvfHmYexMM4WbDJ2lR//sOfmBo5z4fVxNvQ6V+7GbGmYLYiGM6CNjYfNSDtsAMlGEaJ1Zrt848a1aGx4Y4bHClTDUdpQuQhyyCqYrO4c6yALQApi1Y8mgB+niZQSw37gZtgRQ+DF/oapWJvU8UidZjQIIoUiSozQh0BUgRCoXbRgux4TQqoLxW5iLqJ4tuznJW87s7RqbdasrbaWB96WW8XSP+fnT8G6dpm89du16PblZVkVHzEv2QqQNCmTtlvXdjGaFZkVouTpSB7fWC8mJaRAkHoWwLD1cgN95OQZywtt3rctmss4w97LWYqz6bYd+3EsEEQswKSqxd3RlvEi2G5K1bazJYTahAbckie5IO/BVxHLTOH+wSILbrOkbwcP/LwATJZNQmkGYj4WoptRbscFaoBoNMmyJCW6QNyM7wJC1co4TVBhfJgYj5Z+OhRlHzskCXvPPKQCozMHM5XPFAoEMwuuBbQ2jMiyyOQWPEMghmjvrDCkQKfQYB5b5FeB6aPpKLLOn8eAzuMF6Px4mYfLfGx13S5Wbd6xHG+/F8XvXDo8myEXL/FnnAIyugiR2/qeWuRAA3zfdp7NAn9+/V9LZBsiA10X2e87z+gRqbs1uKd6X3S7gb3H5xmCWZoFUUqZeTgeiXNhFqX0gdglJiZ20eaV2KQGreyKclOUqEJHgmQ7xyEoaTBHJA3FLR6hZPuomnvXzU1CayQPgZyNB/R9b27MMTL00awctJKniWmcAEXULH5UKzXPSzw1i2kdkKCW/lpciQymK6PmgqDVxl4MBj7nuaLlaEK+qFtnmFIWUrKYYQXmGUoBpBoaJMGz9zwTueIeUDoxywcVi7WA91GkLq6hgzt7JRGGkMzdikBXLE1vyZk8TeZSdxzRuxGyWSfG0kAl23kHkBAhusVPsNgliMdcafMuqLmyCtAHGGytjrFAsg2OAsw+B/OUqbPHu5gUsiKlEFRJImj0l2vKnwe3XqfXpfZdmYA2QGuJn7OiALq9SF3hbVxKLdvix6BalcPBUkibJQgOFti7FcoSFNwsOW08Nrci1LZ6qhQES5zQzlMLWjJaMpSJko9Qq7mAuTWr5mKfWtDpQNSZoAWZj1S8zGIxe8DF32YVUmZqNnBIa4FaqDmjOUM1d71+2NPFjrTbIf0NMx1o5H6qxPuJGCNjhmFawR6zrjPgw7JOyeKCIsISkw9VjiVbsGuUSCGirsAbz5IWR+Qkg5bJGs9FuVR+/s0D81wYjyM5Z0t1Pjfgp5KrH6u5C1mINZdjEbqk7LpKDDYnUmcZD22a27oSY0eMlrhCPXsiFObZgARVpe8Du95cI1uGwlWucfnPgcZ1I81niZo8rWqu9sVBnVIs0YhdossSF6MlwKiqlGDX2UacGp8VRaIBuBohYAliRNy1yTNIeajEE8+G6lYnFrze4lbVaqDxcX7e/msUQuTVy1fEYEG6W8azGA1cGaeCHEbmUhn6G4bhhqHvLcZiqdQ8oaWAzLY5GPYcc6XozN3xyOv7O8Z55iFDFixmThdIgwVljtM9ioeSWzZq7aNiwZyzmrFCCWYVWT2eUpRK1EJonaNKFaGgWI4/MwjIpVjGRs0UnSmaUTyswgb8Npk5EJMs8fSiRIIGyJU6Gt+oU6XOFc0GZBLiEnYko0zA7B9/0uJSvDLuj6FvnAIb2/OXj8+ukXddf3rcZlHTxk+Bn+11G4tLrczTkfu71+Q8M00HVMuizzQ+COpBn1ed9Pwdhcd1lnZ9q0ez/jlrm3e9V3snL3Q9Prv+bfQLBX5KrXx9PzJOmcM0MeVC3yu/8Wt7YMf9MfPFG0tJ+c3DyPjlTJ6K53xNixsQS1dtGtqVyk2vbp7su04inrEL70lvzBZcFlnMcxeFveEArG5TXtqisDftJ2zcLVogR8GAHwukFphq4e5wYDcM/DAkXu1vmbqeQ55AAuM8e8AvCwiYYjUmLcKQOlJIFOAoyuzCsYRI9OBqTclWZ1n6zJPYBu8aC4bzTF1BWLN7nR7L9nxDBk5Ao1MArvmbSnMFovVXqwusk2tbxw3rWma67ZSrT1z7Wp8lGnD0DPGJPR0fOL75CgmB4VboUmf+nVT3/172dl34C8v9tiB7rAdPW7Icix1bkDFTBk6CZAeXpti41D0zhRDY7XokzExzh0iHyJr5ou2ENeFIsrWhZaBIC+izxjtiMe/fVrkFeQ2+Q2/WP/7+oVu6Z7EDcg6rPv+WTC9JFyEoIR4DSFerHkwJrOMRLZXj/ch4b+bwfUrsk2UO2w0Dw36guuKICJIrKiNZDIjKKsQZJFjGr6RQHAwKVQkx0A2WASHQhGDbWZtmC66oDVQ8A2M+Rj+KbAHXswXoLYDQAvosGfNOF7G2sLE5vz2HbI45PX6KLv2iJ1vAcvGqxc8fVgWRU5eS0/Pq4KRu7n3s5vW+bl8rsPT8FGPgs1d7UhfY7Vd3yLik2PX5giApEvvOgrMGoQvVXBHniTd3d+g405WJewqhS5Q93L6M3MRInGa6OSOlkuZCmvCUxgFSR42RkJShC9QgTDEz5pEqSpmhZGuAvgvc7Adv8xYMX0ipp0uWLtgipZnVyDhOjOMMKCnaco4qtc4WRAZBgu3IAoQE6h6bS9wNEYJ0C38K0daHcZyZp4l5rshs2V+OYyUWe1AhUAtMR6Vkd/WQ2aK4lWeO8VMLUQNDVAZPsSXO/wQ1BZ5KT8AiTZi11i6ZUqOq6GxCf54m5ocDtRTkYSS8fkByIcyVOFlwTgsQajyrilB8HdXo6dK8nXBraluuHUTfJ8K+s2vC6lo/i7kDqFpb5uxZiDJIEduF1kIffe0Td/tQU6xPpaOlZZY1eVnj/IHWvy1z1gr8nNy8fJ+X+vwTspTKm7uHk6fU4hYVpZoVUDZLiZaFzcSZNYi/aqVoRkQMuPNBrKVQ5wlKpo731MMbKNmCL8+WgasZZaGKjvek4uDoNFFGDzTa3l3EzU1to0jzRJ2SNW82pLbmjE4TUixpQ7e/Jb34jNgPyO4lxzCQayIcKpMciDGy6zN96pAAXYqWESuYa2lKBg5kEr3LMBFzeS6lcHw4ME2TAVp5hpJJKbLfdR5QPtENAyElt0RSilq8k+eieS783h+9YZom7t48MM0zJbu7Xqn2PN/DQQI1tHkQ3G1N2PXwcm9qx6xK6gN9jQS3DhAReulJaSDGyDxnDoeZWivTNHE8HkGVm5uI3iZStGxN4pm0aGMFl5l87Ic26Fj1B1XMpbY4aFWUnFdUwNY46GLkZtcb8JMN+BGxzSvNM4YDWAB+YJWtaBanZiVq6d2bdGsVqqqMUyFnpRThOAklW4azh2Nlzs8/F1NK/OhHPyaFSJfcqiYEUjDrn4fDiMg945TZ72652b9i6AfmsCNoT8kGsmrKNgeD8DBXZJ746v6en73+iuM0UeNAiXtIkTR0DC/2IHB/vDPLSHW+4+rL6lihZCqjB26PxVz7AkpLWBRg0SkVZVYhq7kAz7UyFbPSmctEriOljh5zqoHIPlaChWNQPB5PSCRxvW9S6oMBvPVQKIcCs1uwpQTVnoVWJuAolt02ow7++KBz063nlnPeJQOfW8fY8dnvj+TQdwEkK9jS4pGueoYgHv8JbFMmUClaOB7u+frrL8jZAuZTs6uw5rETfUeq5OJyiAHaax3W57aHNhBIWCEFWeqpi+77tvcSb5TlXjbHsvn9r0XgRxXmbIHIci3kWkgRdkMkBmNE+9ka+pg9hkhQm3BhAxZsvaJbJ5tfxUYpcYxWN+LGgrbDEuhZWNKzrzscC8qwFKg00IDF5Ou8sWVzrz3COic0aySEipmcWqpA862tQelCoo8dtaoxOIKDB7IsSilGcwdjjT6uvvPXgjm2KqtWN074OOjt0vaPBul2ksui/C59sLRpUz5Zrzm5fy1TtuVfZADbym2/dPlbT86vbbW0n1dENmVoLZQ8EUJ05aZ5Np8+zxbntQzVNtnd1cvfq+0UiZ9vTEFbW3pFF0BRV+X8Y1CMq4tJ3Joku5LbGOPCZGQd48EtfFrGrpbyton4K/BzzsTZzLOVeYXtBTTAi5PWliAWQ0NkcakUb2tp/vvFhTuPzxCwoItJAlE861A0xTZGWVlK9OxfNIXT+so8XeydolpK96hiqa9jNHNZmnuXQi4nKslTY/Y5qC0ep3OOJ4+Xv9t/5/NyW2fWvjo//77HcPl9t2dP3bIu37fOm3Z948MAl+L+tLo8fXxOTwWI3pb5kaYhgitYKSyfFhMrBAOlA8F4fHMHDqsRrKAUreSSqSVDzoR5Nl41RAseHMQyfegamypWB05dKLQdZg+2LoAoVYvHv9Al4LKIODjFIi+KCCkmuphQzLpGXYGtpZBnt1BQMcs9VgsJmzqLc7UD+9KMPSzeELK4jG6Bn1LCkufA1kNzeZAqzpNYPqWYsN52OZ9TwBXWvojS0nar101cobcX6lCPuWDxFoZglhS1FLJbjqjzMEohzIU4F/DvNGZ34RFaQvpMA2HEQJ9q1j/iQVfUN09CxMz/cyB4EG9pfr14nzeAtHjDWScgVRZ3AVNkTCZSkSUBhdHjhj0Ff07nr7LoHOu9Z+DPsk5ufjy5/plIVck5+xpjcuZiPIhb/7hbDSHQVjybk2Fd21eUelNFV6y8f6sDI3We0Mli/8h2d7Fkt5BrFkFtQ6HJVQb4WGgAr+QSFX2NFekmVYhga2E3GPATk+fEC+b64jElbYPFN94cWA9tQ9RO2WaIuquEv2OplSkXximbddNkIFdz7+6KEhOUkIhqSRimYuU8p8FIVeUwzozjzP1xYhotVtI8ZbOWAeZqVj6E6Gt/MPeuuG4gD52DoaV6HdvasMqRSzKMKgbOVAOY5tmCKOfsfCjosoZIWCTadaUL27His0XaFW28n88VVvlZm1VWICwXrEG2myQlssZYat4MAi7TuZ4iIM36XdRjUarFQ6qVUoR5FnKGORsgND93vDR8s7sfiCHSp36x+EmhQxDmWYlxdJfkSAiJEKJbYg2gESWharHSwPRO1MfpPDHOExCR5OtQNGVegnim5JXvrDLwFvwxmTDQ4ruZZmjhCCpVLJ6btbeFLmjBppe4U0ts1uphu7fuev5gbZvhYY3r2CTzYpaCNVtSIC2GahowH8CTk1S1sV+xfeVtKpo2sD7G5tbT8uG7rznRHXjqmieON/rcRtJlBTS3coP1QymZeRrJ2TaqfKVioxks1+O/rXWTzfGmLm0en4i4enoNp9c8Bf5cfL/zdnoPQfUXa/GjyleHmcM489WbA8dxZjcEXpLou8AsleEmEXeBHJUf1sJ+6pgVjioUNQXbdrl8H9R3uQxZ1ZVNnoAufk0IBN/9cg4I0phedCbZhMtTPqywxgTYKHNrZ54BFrAMsAZqKJBVmbQiOfPmzR0dgbkUHh4emI5H5jxT7mf0MBOBl2mgT3sDfvqOkCJjrczzyFRmM1JRX3yFRZlGTCl9bosff1NY/F9t8QuyWh60t1+RV1naYG0nnyjn1y8S9ArSNQV0mcTtvP+9QHuXxnu7H07i/MimKxUTn8TNcUOMUI3BRr/f0ok7kIELUwLmFPxoMLB5kXWlWEAVf98TYXZT34/UbxcetYzTxtzagm/WOSbs910E6Sm1GtgTk/k8b9y7VEFrWICu1uay6cfkGQ+2wnpzrluBEpa5q5vJ1wLkqeIpNT2DirgtRBAkRUSFUJVuVrTYb81/OibbXb/pBopA1kJWd6dJEXamnNW5MpdqrhcqC2gUY6KK2q5d3xO7tAjytbpCSYvH0uYFFozd2+uj9KNs2hmWubUFbi5Z/WznUBvC4dG9m+u2D6TduwFNN7zwybo+qrussu7TV9F2NS+BM0+BNu28AZKr6rktp7VHcIuLR3XbCPsfy+LHyHagOs9+Z2uRrPOzFuMhwRPTet2mnMlqu1b97Q0yVLpdz26/J6RICJUwZ6QqQ57ZlYlYqwUi78yKKCdlplium2rCfA1QiC1pn2eUtLk4KuQ5Y5lvKiIWJ6xPgiarcdVA1bDorM2aQ1sAEAANnsYeahXcGHIBd0zZMAuYqpZKdw0Ia6vrNFfyHFHtaQHxQyxIsGDWpapZbDQQSFncPJ7b5S84j9v3if2uM0PlztcMFYIxBjoCe01ELPth38nitpaPM0ql1Il5Hqm5EOaJmmfEgZjoy2aIQkhu2SPiFouC9BF6s/wgBV+4sOyfKUAQ0q4n7XuXS9wipQm1znObZ6tZHJiVQa5KmAJxDhSFyTPT1NpcAetiYedda70lJrttRvSK8Ti4sHX1Wuisi2wGfxz3Z6uLMk4zIQRzW2wWyMFc82qLtagezNljLMUYCd0qZ6ZkAUA1RbSLoEqOkKnUnJsggdZMnEeYBwN25hmdJrQWapmZjwe0lCVmXgjCcHPD7sWtJVS4uSHtb22NSR0h9aAwH4/k45GSZ+aDgYAqELtIv+uJw0C/G9jtduZeHaMBIdUsvVAHQDDLgRjEAzUHlMCcw0beLIgKeZo43r3m4e7eQMzDSJlnQoz0u53FP0mJtL8ldL25u6hQVJieMcNerXA/VqZJGbMw12BgRXXgToWsDdBLQAdqwHqLWQPQYn+kmBj6nl1v4HyfWqDhtIA8x+PM/WF2UBCUtAHaerpkQe7dKY5F+nLArLaMcLoGTG8pttfAzuL9kuhakOiFV0IIlZrcTbPUxf3VZBBb6zqXg0z0Xi2PmngeBGKSJRD3VtVpoFOuhcOYGUezPvpYFj8xRj5rrl7JXOpqUcrsme5y5v7+nofD0RR1VQvAnAZ2/S1xl0xOLxb7aDy84eHuS3IeuRuPPEwj4zzRpZ4+RWJKC+izlUEaWBc9K21sny4hYlHLVWwz0WQLs6xRWhwdT7cuAl0yubFW4hwJkxCKAJWqmVoz0zxzGCeL5RY7QjB5O+0inXtWxKhEJqRk5ruM3kcolXKcqbNbOEkHfZN5NmCg+iZ2VaIHpNdaPQfAx3GhfQqLaLLjKmOeypubXticu3R2+9c6phstOmL7WxVLMlF4OLzm+PA1c5744md/wNdf/gGlFva7PbvdHlHh8HDPV1/+nBg7ht0t/XCzgKSGj291WggST+qy4BGsG52Lg5LrfItu+hZQq43MsHnHp+59G/1CgZ+5VP7ozcjdYeQPvnzD/XHi5W3ip2HHjUa6FNm/SsQQSLcJbiLjXLibMl/eT0ylUmogFwN/LEuGxxiBJRp+07PBg2Z1HhgsWQDaRdlwDtsAIcGD0brJeVM2gRNTZGlZLXAxaaNwQBNrqtdnRRerC9VSKlnh5199w/jmSK3VXd9m5pzJ90fqcWRIHT/+7CU/8OxfDAlNgfs88XBXeThmG3i67iY0H2x7v4+laJ65ei0WU+3TYr24hOqripwfswJHy/ltrKWNe1fYDuzFL4hlwCuXmcsJRnfKIxaf6paRTMV2TEiRotEtYlygbzJzMDNOVTdrl2RtIIpW24FbHyacu3edHusCIC2KKLIGP2zv9zFQeDZGb80VQdyiqfmeuhVMQkh9RNXcUmJMp0CC17HNgwXkEBb0dAsIrTtYLMAbC/oghKVT286FeprFsgjctXhskBhtV12FKKkltwMNxJBAbVc9SqBLkZuu57N+b2au89HSUyvQJXORyJVaRqapWnZkhF6iZVIYDOxRsQGhMVBK4TCNzGQKSg62A4SIg8xirpgpLq4sz9qP0nYd14XnksVO2y1a75GLx8ElvnNLoaefvd67+eXJhf5iOds/NtlB1uDmbCyDOFH6tgrjpfO2Wx1oQczrJk3ju8Cey2W+/3u9PylC9mwikb63cVtpGeSa2Qo2lrzPa6kcpxmqchMGXnz+go5ElyK7obcU3RyJ85EwZ/Z55kU5kmqli92SXfIuFV7LzEzgUIVxDhQHfjR2gLlFWXpppYwztU4gSoyFlKzuuYOha/y8Aw8SX4q5Hoh4pkn1bFtVm6ERUsUy8QVZLAnVU8urWxPmuTiIZGF6SvVsf2Oi1oBSLfhmV0ActMjFlIVsFj9NYSi1Pur770KCx+tJkZf7nhc3A10Hu0HMSEvxuMoWDDfV4IB1RDpAlONDYRwnqmZyPjKNB8qUCeNMnEYDfrAA4BEhDpF00yMhGJAdfC3rI7JLZoWSBDoPiN11xN4AiX4Y6IcBEbGsNyUbn/Wdz8a3QjC+P03Fsq3VyjAmdmMiV+XNceZhzBbQNmx2r7VZbG35iNnMNvG8bazpYpnlK4G2FmUFh2Az/1cl9LmpVuX+MNJ1TQlsYI4peLXYRkEp7opRDFTuu57Os6qFaJksbVOkvYkyHjsOIZrb1bBDhh3UQshHYj4gtZAfXjO/malZKWVivH+D5kzqO7qug5S4efGCH/7Gr5OGgd3tC4YXL5y3i79D5eH1HYc3d8zTyOGus1iQQUh9x+5mTxx23NzesH9xY4orlrHKjPQsq17wuarq6b2lApFQbQes4Bm8klm25fGBh69/zuuvvibPmfs3B6ZxhpCQ4QZJHaQeuXmJ9DuqCFkSVQLHuTzRIx9OpSpf32dyroxToJRELUou0dmoUDxej2hEqqGz0gBIgebEH0TpUuJmv+Nml+j7jpthIITAw8PM3d1EzpWHw8Td3Uip6oq+8d+YeoahNxe5lJZMrmzmQClqWQzRJci3YLJ8y+RV3MIPTEa17GAswI+0wlzWqh5s2kc1uPzV4iyJCKEzwM/uMEsYEYgOFuHyT5t8zVpyypm7wz339zO5KMcRnrH7Fkop8ZMf/tg3GI1vHY8Tb97cUabKNE+8fv0Nb97cc9/3PNzfmXvYD3+VH/zmr3N789J0Q+cXX3zxV/jDL/+Qw8M9Xz/c82Z8YJonbnc37PtE6nti1yGr4tFEUmIKdJ0FXe76ROo7UpcInk4Bt5xroHmhMvom6i5FhsF1pKGj63tCKaSpIx0DJQoWcHuilInjOHJ3fzSddYjE3lwQh9vEsDfZgLFAnmFWpvvMOPqmiGeDkBiQXY8MN1vRGrQgZUJqIdRKnGco1YPJq29dPi81UHH793q8AS22AAaLet5+sSPdypZnMufm7IlM+UhHFAMDa6bkma++/EP+6A/+ItN44OtvvuDrr78A4Mc/+hVudh0BuL/7hvuHkRQ7Pv/hj/nsc9/0xqHcpg9hOq+5dMblhVt9bDPPdkROI9OsLy48fbwFe5bjTfl/TQI/qjDmwjEXDnPmYc6kWZhKIVUhYABMSoFeI7tdR+gCs0CaLDVyxVAd2VhQiARjlk1I2Ay0JehsCAtSu5jjboEfZ4YxRGJswI8gZRsodL2+xQpS1vgR0DrSmKVIPVXaPauHxZisTNPMcTZha87ZMi/kQp0LOhcIllZ633UQA7VPkAKzmDIji3XP6QBYrWM2I+vZaKPsL4PdfxFZJvlWCZXNzF+tgNZrOBm8spSzXLM9Xqvx6Ngmtp783CbHeu168aM5slF4V3TVgRA5Tbv6WOps9VwqayBOs2lZFEpZx1+rz5mlwvKuH9PVaztetu/lj1MHYFoMh/Z+zQ/+ETDQ3l3VdkdaLK1FAW/X+Crs5aluOmJjgXFCPvUWZX4zF9ujRThx5YwxUJNn52rXBAOAkvOLlu0ABBWrd3P3QnXpO6G5iVnKehUormTVFvyw7crRKrN+r+PpmeejrHNlC/LYTx9+LJv6Xrrm6WrIyff73veWEjkZFqwL4Kn71em8sfMrOLPWQb3My/duyz2/5vT6DwO0Poi0uqLhbjSiyOJHstlcWMa+bS6UWgwcjUpMiRQ6uhTpYjTgpwrJszL1WhmoJFE6UQbfhJyCEqXauqTBFY22891QdgO2m5I+F3s+mMWPilCjZdazsegx1dybS1cG4NR2161n24akOm9oQPwJSFB12VHPGXJpblwCuJItFiB6uyZsucXynGWyPi+1XXpzKYUuibmPqH0EIVYharDYA1FMChNW13aPD2fu2raBVJ0LL5k6xQKRxt7BiSBrls8hGvgTBDpBOmvP1EeSAz9DnxiGDhEWUKxZVpXG9WIixm6ZB0EgVmGoiUkroVS6XIhZFoDndP29PFlOml1P7IwWJY3teGm8QM/68SN0oKJLFqg2FuGUx611sPay/YnVDcfWokDLvNdcpmPqCKnzTG094gGYzVWlIrVQp84DsXvGr2oxtLSumwYxJfr9nm4YGG5u2N/e2hjw9bGWQh4n5mNCtZpy38aMb3K2LJzR86w7fmVcRZdOoFZz4wOznKzF3j9WBxbE2wulekDyeTwyT5nxODIeJ4gWCJ5YoVNEBiiBKgYw12cOtK7q7lnV4geVarGwqooDW1unfYsRcao2trWhWT971lIPtZC65J4BluktZ/vMuXpwX4v5B+tGaNMvGgf3wbYZR26h6m0v4mygbWps3u98s2eV+9crCx67a5lHTXfxe4MsCSoah1ziM/rfJoNu2nX5tphXuWRyMT5cPgLwIyJudRfcjSsQo3EnVQNpc87Ms9nXtE2DnDMhdHTdzjiZv0eIncWuLMWDKhe3/qxrnNfWkIsQsalPc7Fylzi72Da/m6VYW6fNpcp4dhGlBnNPlmi6Y0DX8mhroPN8zyQIm/hCIoQUSH2EWtGMATZUNM+UcQYNiFjgARXTpwnJ1uEW09I3p5u8GBzIXs0zn1fAOde/To/fIpf6sD2VGOTiMU+cX0f9Y2XPADrbwJ+nkYf7N4zjA4eHO8bjA7YhMtHi5NacKTpSUyXn7H0VFuOQ1cgB2IBn203Yy+/6nu1Ba8vHx2+79yn6xWb1UmWclSlDwdwmxhL5+qAcSuHFPpAGhSjEvucHww5FiK+P3E8AmdkDspqLdfC0g57Pahm768QMKZF6d03xBY9FWfJGXPyXxRm6eH2b7ta4MDTF2Hn46ZhqAJC6UOxmcyvQ4aAsylQr34wzbyYLoDtNmZwLpRbG6ciUZzoCKQj7oSN0ifTyhrjrSccDP5sOvCnmuxoRSqircukzRpqf0keglV21Raip14Fm5bMAPovSu23ArfWP11HOpnM7vfyz+fZjXW89uWTRvbflnDOgtvAGCxasVdBgrjrmWmI+n02YKrUQQrVMOtEZvu8IGiOR0wpoa4+2rR1MSdoOpNaWG6WzAUbLC3wEBWWtppx8WoyfKIISwevSMkqYkdImz8HS7psxXuvi/98WsiYRi3emSj0DDMSbLCwZaaCtvzanDIgCkdAs5S0elu8CLHCagHSBJJ0JTsUsB0Qqh3ki3T9QBUotBv6oWSTUUqG4wq3GVQLmBhokEkMihkT27GFTtZ3uh3lkKtnbKhAk+mLhVgXRsoNI/BhzsQ2SZkHHo+/zPm5t3o63lkCXrIIuPvWk7z584Xnr62x2dXQjjyzgTNNQ2tzYHC/qomzO1+0fp7TMuXPB4K0A0PNT8zGvLR2vrpaiKmIBz1UNmHTmVrEsQ6oVgpKGSB8T+5h41SVL9a49PQORyEDihs6EzlItHpUWUoDB18AuREJMlrI5BIoWE2oxBFVaO2oDg33jRYRSA3P2OrNakORigTUt9oHQYgC73osIdL6GVBVLFV/FlM6m4AcI0RWSagCEYmt3H+w+iYHdVM2tCdbd8qJoMQFcEgaSadjE2ni+PiylMM8T4whooHNLYkVWK+HkayZW55AsbtNOOpAbSikMQyLFSJkzjJlgqXPYxcA+mdVXtx8YbnZIDMbP2vLTBehdiYmY1Y/YDnpLN5y6ji71Nj1KpFZL5Wz6v/WxuRiYxU83ZYuRUiuyDwyTZSgdDomb0SxEdkm47wOlKuNYmWa3jqnVwQN1Vi4buUk8jpAuIBC6wH0nyvGpLPNx5qGImLtI19E3Kxv1eFTYBlCeZ3KAnE15bFmippKpKFICqRZzrXJL82ZhkXY9oUa0C9TOkNGke3peIFrZvbhBP3uB5on7oadDKdO0vHFIibC/Jdy8Iux2dK8+Y/j8M7cmNZ5Ra6GmgZoG4jiyuz+wOxytT/sO1Rk00id4cWOWeXM2q7hmLVI9tlOeZnR2a72jMAVzwSn7PV0/IBTmciTqzHg48ObLr7j/5jUlV6bRrG60QpXZ3DyrUGW04LMSqbGgEj2m3vNQC0Rcq3r2KR9em7WqpZZ3rmQWw5hrfxToAgwxMCQYUvRPsED6OVMRjseRh4cj01Q4joVpcuthqYRorjNTLkyzOYFLSLZp5vF8GlAwz4VpzmxFPhG3jnSZobibKoAUDx68kdlgo5dggJxtWjYZqs2dFrfKYhJRvQ0sZoSX0e5zTwJtrmSBmCB1kX4XGWokFZBoQPxzU62V4+FocrNnm53Gydyba6VqAalIy2p5sIC74ziCsKxjwdPUh+hymVbP2pfJOVNyNpdECR5rTtpAMqvxZO03z4UQZibnhWiwnEMxrmvXMoyr6Xoi1GhWPW1TMdbWriyZAS1umm0cpNjRdzv3UhkgDEgM9Pue/cvOEox0QhgDZcwc7idG1zVbmAEkUByQChLo+56YImhhlztSzdRayHGilELOGVTJMn83+e0pWnRTXGeQk2+7ZKNJCGs4Dv93Ob/Ub7sRd368Xt8M7GQpS8l5Jh/vmaeRr7/+OT/72e9zPD5wPNxxOL5BJHB3d8fNzT2p69nte25ubkipYzcMdCn5eDzycG8x4fp+oOt73/hJK5C4kUubnoKcWvyc6L5PHG/fSR7J+h8md/+CgR94GAvHGWbtKBI5FCXfVUIs/KAGdrcgCfb7gR99/pKu60j9G14/FGBkymaKWaougWlFILb0krhFTjOB7CLSJQd3GqizRrA/Rxe2AMIawcuR/3Y6YDtzrdGbXlF1AXva7svS2X6homSglsL96zccXx/M/HwsS1YMEdv97cWAnxe7nm43cPvDH9C/vGG4v+f3D3d8M42GDoe8xD9Z0qkGQTwQ6POTvYtsvh1642QnIqwZu9gen7t2NcWfTXfI5ePN7L1YLStjtc4Jsk6Yk/I3GmJ1sEex7g5BqaJUNVPAGlrg1AIOsMUUQSKFtoOzraQ9s2Xq0uY+gxqoYVEFbQxVy/yFAyFL8EZtk/u03OektnuxWrxt+8+C5YkE230oZm+nqmiuC6a9ZT5Bmv/6qo+bu4alqm3PW+fZ2sFbEKK5XZ4r5KH1oqxKlI+6BW9tgFkcImlnLj7lOFGmioryMB4sAG4QajL3Uq2gU6XOli2H3Oa7ZTmLIfluX0dMPTlPHI4jd8cDWSuHMjPXSgyJXb8nxc7c0WYzoaWL9J27fn2MPjz5bBbQM6DnKVevDwV+Lu5GvMf17wWabPAZO9T1D/+hKfTCoi/68brCiuOwos0qy9qmbgIUNzdeWN2+GgD7zso9KymqhVqj76oXZ5P+rMUKzYTH6uyzUMmaUS1oVPp9Ytf1vIyRH6WOIQiDKLehEKWQktINphBM9/ccX///qfuXXkmyrU0Xesac08zcfa2IjMzce3/frvqKqtMAnYLT5AcciS4SLZCgQwPp/AVOj+75AbROAx3oHEEP+kgICdGmgYRAqIqq+i77khkR6+JuZvMyaIwxzWxF3iJzr9wIC3ksX77czc3mdYx3vOMdj9RSGKVykUpGeEoDManpxQgH8MW0z1rfHz1VgpDclxBqE4/8NnJr1JbdYe/AmaWT9D6zSmGWTivB0g6kCaXalxyZFIgSUiPE/ZoQc9tSSKhE4lipNNJkgaGcG7V6NTK1ql+qjTiZsOxrAj8KW6BgWRaiNLQFhjQgGFsgeHUkYjA9MmdPpmTsnGEKnO4mVJXlmjm9OVOzA3SrleSexsh5TMQojKcT57sLEixtuDNgJCgSuxepG+Ux9jYWs4WidGZzsQcGHehW5S8imNNUcvGy2I3LOrCWTKmNt3Pl6mlg70+Rx6dEKY3Hp5XrLVu557WxZkP4VNWBWPb9cWNyekO+mPOHuXigcv9KsRBjQ51OjGNiOruBj27MixgsNS6uAViZFyhqyuGSM7FVNAqpJhowRtPtkhCIDIyhs3hGtJ1BlTEGpkGIQKoLQ72hNfN4uTCKUJaZZVlY5pvNk7u3xDdfkc5nxq++4vL114RNF8wcZs4PcH5gmBcuS+GyWon4NCW0raCR8yh8cT8iElhWJWdLKVqXzNosjS2XlaVaOexFC0ErydPNptMZLSvl+oG2XMnLzMdvv+X29ISqkDGdrxYaRZPZWaFRS6CFDCEicYQQX6zFf+mhqsxL2arF4Yylo50Ru1MpvdqemNg6Bu6MIXBKgdMgnIfIZYich0RVA/5ag9t15uHhmWWpOD67sYmIjaSwZBO7rhZN3MR5u7BvD/quqwUYe3EZQUjJy7xzZDb2PbG5PSvbmhw6q4NPbeaj8WypQKqWYtYwuYgYKxIOekBOBFIjdRrwk4zJOKhyuiSaNGqDuPw6jJ/WGk/PV79j2z9KrazZKi7VDvxE853m60prytdfXyEEUmcLxV4t0gsPqGnHlVwMxF1XyroYA9ODfwBUZUgG1KLB0hYRltmEw5sKMZyJaUAkbmwtDOYzBm0QagzUaAy3BMbgbGZjRhFnnssGAo3DyHS6EAik4YLEiTAETvcj918NxKacbsHA+Gvgw4crQauVlxehxmhgkwQKkSEk5HRhmCaiVmLN1FbQVinrgtbCkldUG0t85YCIvJx39tLB/vwE+Dl+s9kZL10+Ofz2Y4yXnUwAHeXdXHVVcp65Pj+wzDf+/Od/4j/8+3/DPF9pLdM0E0LkdLpnmu4ZxzOn8zvu7+8ZhonLxfaHpo2Hh2c+PjwQRHjz5i13d/eklBinaSuYY3uebutzB22OWMPPYvt8x6eV7z3Pjx0/CfyIyP8K+O8Df1TV/8Rf+wr43wL/Cvi3wP9IVd//5LepCwZ240JMxyBX21hzVZ931kJDGpg86pJCdOV2JYTmETR2gSU3U4SjiLODDxvLR7bqWtGFfLfY0qG9+uDYhpgcHhxe/M7vR2iPfdBuA3EfxU0h12rl273iQMkG+MTgJRhbs8ieO6jjaGjjmNcNUQTQELZrfpFu0oWt7fhXIvLHv7Qf3W3fn8neMPtgfDnxtvd8OiHlk/McB3b/vkO7dxr5p/31AhiRvd/6KbccTDoOtk+mY3dxmIy26BxF0Y7G5h7llu6a6uE6tL+nx8fFnZTN2tjO1sGe/p4t2nlwQA+T+VX68HgcF4y9zV4yRYL/3v3hF47xAUAz0FJ2Ix7cyD0Yda6Jrduq7if2zuoG0XEHOE69/sqLjeCFF+AX1Om4bU+DaFgqSi7F6brByFi+MKuH1ULvv35Z/m8fv+LRxEpVK7Na1SJPqvv71YVlQzhow9jPV+vH7wN8+uufvuenXv857J2f2qh+6L0/erwAfTrj5eVnN8DnRacfZmYfp3KY3wfgSXys/ljK2A8/P0aVXn8udvRy+64XONNhnfh0oeq/hg7kCimYttUYYIyBJEochDSCBKWu0fdPE4ZOnoYcgiKhIeKaF1vbCj19S5qtf7aedkel30IXTW1bMYQgnVXm4ZNeyrvrwKhsD2vrXVS4A8jH9RzYafIiGwvK0lcCaQjm1KhpLqiaELKxhNxGkI3p9Wr2TQcwWjWw27SYm1e8khf3Y42Csai2TJxgFdXc4apFqUMznSIXCB6GyHBKxCAMpxPD3clAS/+HpyVv6W7SX8OYi94PQcKmpda1lqy3gzMjBFP2DvTwtIjpjKhEJDRSC1S1tk9BmKdEzokcKstoAsChNkoVqqcI9Uo49PW/D3v2uU3fU1/suLx87eWy/6pz8RgMidFlBHw9il6Ou8VuVx6CHOzVcwyw7H1i19uLR2gQT5u0fTEmE38NAYYWGDVALSyXO8bzhRCClX/O2QJoMUFMEAckDcg4EmL0QChIbcRxIk4nokKaTqRpMkA5+ODSRgiQos3lGpplgWx7nt1R7UC0NqgZbQZAlnUlhoiWlfU2U+YbZV3Iy0LJGUVoMngyqKeveMWiWiotCAQ1q731tfl15qKBGs3nUbfJd9sS7XagrwZd49DXBXPAcUFrZ2T4o3XApqkzJYwtUarQqoHhtf9dvOhDtVQiY1LZqH0pEu5aZqrGeFaXFmhhC1octexs0B1sJN1femFi+nv3ubO3j/o1NPb1Ihzttn1Qb/Zc33KCj+OYAlLBJZL68WpzURXqViW1t62NpS01rrOT8DXX117t7SOyARmypcOyzc3OtFVnEEkTC9bR080DwYGDpr1IQLO+rG0LTHxq4fSKaUiXSxD/3p5CvfXkwb5Vur8UQtz9hg6exEBMQmyQkjA2sewY93G2tca7riFebER83YgEFYIb4SoC0ViKqcYX+8Nr7oufYyt+5/l3xvHLNv4s+1Nefn5vGQPfS8mUsrIuM/N8Y55vIJakFyPbeOrpm8Mw7NpvYlurVQFbTWev9hSw9vLaPx0gm7/08h5/TjvJDzz/Thv8wPE5jJ//CvhfAv+bw2v/OfB/VNX/QkT+c//9f/5TJ5IgnMZEpTEMSnYH2nKQlSYDcxFkVdqtIo83hjnzeFspRCQMhGRGalAzWqNHswYCkxjnR7wyk4hsdEkVE0uLBy2f5HStvmkDLxbYUiqEujmGPVxsGj82qnpZavBr8lVVOr+UnlfrBl1qaGmUVMjPC3U2OmwtiuZO3/RqAiFwdzrx7v6OdJ64vLkwvrlwpTCeR+JpILSGVDMiNlp7z1HzdCQ//gz8T16jH+GTsXt0OjfrXPy795SAo5cix9e/b3bLpxP9u9+vn/ze7zTAVo0rCETfsTqdEnQrm6oYRb6JbYRVG2gBLZszFWIkjSPT5UKIE2kckRjR7sQcr6ZjGQ7ibBevhzZRV9DxdLLtZjcPZ38uHACj1+xD7U7JAZSR3ZnCgQvFKk6oh+q7gdRvNPTocAcfHHTpR1XdxqZs+1LXjLDvkdCBtC5+5gvaS/xna5eNRWSf3sZiB3b95gxAVqVSaMFm+VwzORs1M5RqLIYGZbV5KEBSi740hFwba85EVVJtJE8FG0LilCaqmsBtQQlEoiYoQstKvmbWNZNGiGlFd7TyVfrR7ZoX4A98P+vn+x4/9vfj315858/cxL/v9x+9IYVukL8Ad7YpIiaEqdUBgrYBhXtlQTYavYCLdW4txj7R+gbdx7p9785n46Wx/RJhfMX11NJqgsTN0Db9Ht+ZVFD1EsvAGM34aAMkzGgNSbitz7SybGN4As6jkk+NFCGFiQGjkJcR6gW0VcYUGVKiifBUlFPZ5+rmN6VoDFKCCSk3W7+nlBhdNy/FSHQPoGBCoLbWWvxTdU/vaq1xmzOrl3kPwcSPUaWokovn1iuoWsGCMUaGEK0dJFAHSx1bqqVtNmlItJLRIVqKzaiWwlsvwSqHBTUx5QD/7v8Zma+vZN94FLeUyrJmG0UtkEIlp0AaErUpMUaGIW6ll9U9rBCEgBnfIsI0TYzDhc447vkqMSrRI/IWGZ62yqY9eCKbTQKbtybH+Sy7Z6dqUc5q5Wub7nZLZzArikhFQkVUScnOGxuoBFISSg1EOXE5RWqtvL0bmV30+TpnlrUam6RYBaDalDUX00XB7Bb4ZIbJFlbZ/u/22gvv6ZVtmw1slEOg0JuxjQOn84k0FEI05pgJIXctSTG7MpjORkMoVQm6gzyOcm1rSwzdVhMkTqRodt3dV7+FNVOXmfTtn7e0RxGroIWY2O1wXQm9KlGy+ZElocNEUOH05i1vv/4NNWfy7YFyezIx9mWhrisikZYbmm2cSc0Ed2IGtQg4rSHlhpQVsrCsV3KItFpYrk/kdabWyrJUinaxaC9Q3SpFV1poaEjoECBasDdEZ0tY0/9XvJKvcUwftF1j1/E0gOdlkFIwECwFiBFSigzDyDBGUrJ0OEU2XZlSLYCUSyWXSqnWzwpIUSQ3QhWuc2EcCimKp36bjVPbDlDMszG6VHVzvkWEISUbS3SmgPW9gY89yC3OIMJTWvt7DLTa97xdF0dbn38r2SvGjROkZGNRhoAkWzdbsTTZzU725h0HrxqogXMLqL6+n9Fa43mefU66jk47VnpUUhqYpgkI5KxIqDQa1+WBh+vIMCbOycS4dVgYLjC2wFgi0zXBUJGxkXmm1ZXIQJHR7ICwGnuUQBjAWLmZdZ253p4Y8rABgCb+Ho3FBqbTFX0/L4IW12RNxiLXVk2jp2RqtTlm6dEZDRmipUYuBXLOFA08P69MjwNJlbAWJFfyUqyyXLXy8TctrMHYzDkIVQuNyrhalUnVRqnZdcMardhPVBlihDT01MHXm4t81z78KTBj8//05etm4sqLz/3YOS1LoUuuONDXKsty5enpI/Ptyu32zJoXSlkZpsFStoaRt+++4je//WecTme++vp3vPvya4KzE5+en6ilMM831rwYozcI0zQSU9qq8e07mvo1HALs+638NNAjOyGg+zv9fMh33/tTx08CP6r6fxaRf/XJy/8D4D/15/9r4P/EZwyAIMLlNNJCZSiQpB42VzMirlkowFwzc3smxcDzzTYT0kgERrUFyNg/ZtyPEjmFgegC0cGN0UIja3Pgx8TZRAJDSozDcAB+bFPtiLJpcwgUPIqnqCfRd8q2iDDEaGWqxYzy2Du2NcIG/IQN+GnFyizmJZOfV+paTQhvKTQpWLFMi7WNMfD27sxv3r0hnk+M796Q3txxlcp4fyI9m/Bi6Mhz8+dbMvCulQI8Ad++Rj/u4M22dcLheTdAv/fRIZpD2tdLR3P7hsOA/sGrePG8bz09T7tjX1690kEgf3c3vhCqYKW4BQoVaXkTV8SpouPpzOnuDSGOyDhZxA3BRIHsIuUgkKbb/bLdu4E9jc6j7XnaXQSwh/i7uSvIXuHLjlfrQ8UM1lb36jZCH6tehrlVF2dtG/DTwRkDGEz0+DuLUQd13HO0yINHc9XTqHRnClhU5XCeFxe6X1t3WCzKlndwzD8Xk7ECTaCzbk6Momg08DaXSlubG/OR6IIg1cHXEAKMI0OKVCCXygwMqoy5MiQFFYYwcE6goluaYGuQVy9rvCjzU+Z2mxlPjZgGDhjbq/Xj5wI35gz+eErXD73ef/+p559e0/e9/oNHd+RkH+429PVwTlwLwo1mXI9CXd8sJet/B4961C/QxWc7dm/gurqQMQrqQpgqStA97avvBdLn9a8wF0UsXSmIXbu25uCTpVdCRDWhKgw6MMbRRMZjpI4BXGj3ujwyN8i5UJaVQZW7u4nl7ZlhjAxpYuRCCANhHIlvJoI2plPkck6owOPjzOXjzTSA1DVfxByhlKw6ZtKJxAkhMKWR0UvtnqaR0zQYth3ZwFZKRmumNWWZLa2h1MbjMPM8r6aRUrMJbWJpQatXTTQpoUiKwmkYzOFAGEdzNnJt5FuhrMYnCEldkiEwhdGcSolInEAiMQnpIsQk/N/+L8Or2TcKtNooGW63hVoCOQtoYkjCMCRqaaQUqeNgYvEpGkugBRcmNTtGQmC6nLm7vCVGE2DuQE5tmdpmUKseNGw6FmlLzRWJBEkOAu3BH8WFe1G0WelgUEpZqHUBNae/NSuNrNKdggahItFsGgkGrqkK4xhplsnLm0vcBG7nJbPmQq3K821lXsxBfny2KmA5Vz4+Klc1UfEClG0N2I2ADgH33/cVQX+lffEA/DgrNIpVUrM0GF9HSmMYrTx5qdUvx647bdXAwsbsFhVSDIwebOygG7Dp6gHEcWKYEhGzV8+XC3VdCePIusy0Yhoc62wVpML1hp5m07KcII6W1lJlgPGMxIHLu6+IEijrzPt/mLm9v4E28m2mLIsDPxUtFqQJJROrl4RuK2iGVtB8RdcbrVZuszF7alVua2bJ1eUFBhNzVrelVS0lqCqNYH/H0mIkYuOpt/1r+RqqLjpjjBCwFKoUohd4EIZwCDy5XlmMypAMMBlTZJpOTFMkDbZ2KKZflXM2UeE1k9fi1e6E3JrNsVwpkg3MloSo+QglV2q1/i6lkEs2HZt55na7oapevcpTP1PyNdcYHoOPwWlMjGN0OzuaID9Kro1Sq+meDcYik80yNtCkZNNyKrVyvc4s60qMcL6LjKNY9TEZiSFaJbSstILr1bCllZ2mgXGyClgpjMhesfTV5qI52M/uEXXPyPZ/+7syjKPv84k1K1IqTSsP12/RVLjcnwiXO1KMMN0Y3ghTjJw0cZoHwtoIqbHqE1IDgYGIVTtsUUlna+MwQKNQmjKvV54ePxDTwLIszPMVCZGUJtJwQkJgGM8Mw8kYfiVACS53YdIBTUGrUvNKzQutrqiuB+BntXVxXikrjDVwfhxJQ2IAYmmEquSbFQlas5JpPLXCTUxSolHRGqktM06R4AUDasnONnQ2vgM/Y4wk6azb1/P7P9eW3H3E7k0ePv8Tn33xHUczUxW6LWFRY1qtzLcnPn78lvn6xNPzA/Nyo5SF6Txxvlga69df/w2//+f/ktPpwte/+Vu++s3vUFW++ebPPHz4QC6Fp+cnluXGMIyEGDidT8SYiMmqjL7wUf2m+v38EOjzg8DPJ23Tz7Gf7/vt7u87fqnGz9+o6j8CqOo/isjvfuiNIvKfAf8ZYFW6QnDARjZARA7IdFWhNJAGa7GoZ2nqAIFTlv3cIWDRL5QokRTiJuYVvZKBCUracrFFZcTLtse9tPuWIe+XomoOQK+WEFzFm34eB3662n+QXRzO8IIuFHbY2NXS2BqKpkaM4aCvIp+0Wxf6MpAqOsAUU9iBpy1iiFFx3aDYnJQDGviX9OOxD8fL37BFDTvIwz44P0Uf9xG+jfrvTIDvfpaXz/nuc9j8/u1rtq87PHoyn4ERPQ1sp5L0bcS+3sbSHiXqk8nE5WJKSEjg0TwzGugeqrcHB6bBflU2zvR7n9ONHxH2Etbfm+r1fccvmotfvrvfKbz9cVhk9GBYvwCu93Ptn9mubwdpPkWf5djgL4bGdwGLHzw2r7un4B3+JAe6q7WFIf0eJUXceFFPy+rsGz+PiTvr/pL3b1P1Kgud4m0Mk4BV71EMUFQRo+M7SKa10YrR2qvTgrU2vjOI9+Nnz8Uv3v1+A0T6BnB43w8+/77IwI+9/nOe2+/769/Ry9mm+eEzxqneHDo5QD77+mCPnTRl87SLhwefR9vftp/H+bRf29HH7GO9r9E9qv4y1evlvf3A8cv2xSkd7rQzAQyEst8/AWcx56RpDxEY6FxaRWpjLZllXaitkQZhKQMtiAUvmhCqkDQgMoA0JCXSZBHcYS6kEEgNUlBjdWDs0zF6sIPIiAFVY0wG/EjgMgychtGAn2SXpjQDb4oZ6rGauGURIadISdG0K7TSmpekVQP4DPQW7y8z/vt+0wGNrqNgdoQ/9+uMoQPKkThEJCTCIIznSBwOrJhf2I/HPhzGuLHM+prRWqDWirENDKwU6WLKrvMgJgJLs/1pY6q5RkVKXafChCJLDSaYq80qkDpDKIREDIPP40QIg80jB4LAUl27Vk3bhO1M40RdJFy07mxYEXZWHPSUMZRN8LWzYQxQilZNsZnDnaJYCgtm7+USTGxXjdE8pEBy8VrH/aHDPP2L/P9t3h7+f/nsl/Xhp/14+upvt7m2nbvbKm6TxRCRJCRV0tC1i/qe42mNrl24bZ3b+tF1Jg/Aj9+vgEsTJEQMBAqnCyEm0nQipuSNL7RWkdYsYFGrSSdU3SqSmCC8ASxhGEjTZABxF4n3FGwt1bL5HOAzxrorlPTnnr6gna5XCy0vlGWlVhMnLkUhWrqasWU7Sb4ZYOCcWEWQVq2iWejssh/pxV8wF++/+J3bU9bwQtfOUfMZBKKDKMetwiqweV9338SLlhi7VH3eGrjZ0426HeXWIz3lD8WZPda3xe2BJsGDVy4M7jaCnata9afW554Hx/Eqq8HTzba9bEso3NYeaezX1pvB+6M29SpcXoksF1RNm601Y0X2cezdbywhsaz5HRQNBsd4MD3swM8v7sNP+/Fyd0euBbZQ+A7LWtqpM8d9nQ8xWLBdlKqZ0laqBjRMaFBkMP23VAPDyVJmNVTfM7zSVWgQK0hwuMyD+kmQqJ7SVmlakAa1RXLxFCmxdCohEptXMOjj238cfRM89VFxhzfsaXcS1XUK2963rWz6dpbSplsqUpeyKq25Pp96OinUFmjV9tctra3Vg69jR+xFU37YxvnZc/Htu+4vbn/7vOffY2997mePTPGezme5zGorkzZaLZS8kstKrRljkO/77jAMDNOJ0+nMdLowTsYCai7yn0t2zbu62WsibD69bV8H/2rzg/qF/sz2+OT5PoZenv/T9//Q8auLO6vqfwn8lwBvv7ioVV4V0hQZerWDLmY2CKSIRlNCb76BShLGk1GLe/UKA3LUc/WVSRLnMBrjJvb0MaGijNjClWJkcCpbL83Y1/6+SNbWrJKJQmlWtUGVXXQAM4JTp2NGK50ruFHgBov0TRS2gaiq5LVSsk1mouXwtj75vczeEIQpClMIjMCgXuozL7RZKPlGoVhetho13mjA5qC2rWLSj8/iX9KH91//a90Ai83DOw62/XV5MTzp1uPuxdmIfQEOHJ3G7znlixG/sUqwzbxv2lHMafGh5ii2v6d/vOMG0ietWNUXrdAyopVxHLjcvyGmkelyR5wuSEhUSfsW5ItUv7W+IR9f39O+AluFr+ONHCdt/89XDIt3/qhh9NnHsR//xd/9drOvYzRZQzrzZuuH3dncwa3D9e6Igzvh9nJVtYoL9p27salsTuxmpKhuVSnslN8FgLb52a0REU+161/v1xt3hluIPZKHG22YwNooiLiugFcywanPrfa0u0CIydcPWCtUKs+3hVzbZtwFj0B1DKqsldvjldstk4sJB/YL+MtnYT/V3of//F/8J317pN/4pwDO9z3vv3/u6z9/c9p/V3eC7fUju+/4Hu/WT86jnmayv5/dMOpV95qJztoQrNRq6344fBduOCPspVG27/DvDBzAlV0DqBsScnj/axwv9sU3kxqNvFGygTMxCimZQ99UKMU1DXANuGDi443o5owJXGqptOvK+vFKKJXnpXGrgTRkeFT4tkCMvBkDX5wiYwrE84l3d2+JQ+ROT7zLJ86lWZpjsb4bEozR2mqSgTEkAzRKQ/JMQBh1ZVotWq2DwGCLRisZLSb0fMqF0gpN4ItLJF8ulNp4uAWe5kDRxkOJXOtg1S/VKgSqCrkGbtlZGDEZoJHg7s2Z0xtLAZxvCzkbTb5VY1yEoIRoOtRpFKazkKZwyIL+y/vwcj+5Fx9JaWQYopFCfQSbg1w27ZGYAqkkUgpoM5q4BV67RuHKPKykAcZp4jydLaA1VAa9O3hlnvIqBnCpiDG6kgE/4hUJdxCizzlLl0SVWi+0mm0+rc/UfLXndaUF67cWTOwf1JmgXsZc1Cqz4TohmNbZNBpLrDVlHCPFy2u/vT+zZmN1vXs783TLrGvl/cON59kEo40dZO3UdHdCxe2FXSjodY4Xc/Ff/re1NSgOaIDZdK0LczdPCHUH4eJ721FbpGsDdfAxJUtVHFJkGtOeZrQtKoeLCdGcVQWVAdKZRiJe3nL54mtqNvaP1NUKEixX8u3Z+jsIjAMBr4I0CloDbZyo40RQJYwnwnBCYqKumeXh0WxlTzFSlEQhSAWpNF3QukKtaF2ptVhKV1Xmartgm07IyZj0kgYLjOWV+XplnY3JsgF+w8RwXwnjmTgVZJhsr33FPvzbf/Ef65u7szWsmIMbkzCOiRAN8B26FESDVsXxMqvIKSIUhOe1msi1NCRkhiRAZ0hACInT6UxIllaevdJgSEoYzBGcxsgw9NSPwLKYhkgphTUXXx0Sp9O93UivkCtm3/YwCCKbhlsaEtPUQV5bkxvGngr43h3iphdUcjFgpyq3W2FZjOm9rislF1oLjNn3G9QBBQuEFf9cUyh4tdYgiFcipBnY8Fp6wMd+fPflO318fsByKTw/t8NrouS8staVqpkwNO7eJZTI3dcwvbsy3MP0ReX0dWQYB768CLx5y7pOPD2PfP1xsL2Cg1kgCZHO5pdNGDxuwHpw9mtBxCrFhrACAU0LNU6EENEho0NBQ4ShwFgNTJwmwjhZZYPxmTo+onJleFu4S4FSIpwT49sBrVAWjPGTAl+/G3h7PxBygw8rt7mwzo3bWrmVRgbmoMxSLZAQFSRSC+Q8EzsDt/XAgTEQo5MbOss3/oUb47EPf/93/7HHvz/PhnwBbLjP0YPMn/tZHHBWGnldWNer368wRJzx88zz00dutyfW9YZimmf39/f87nd/w+l8x9df/Y43b79mHE8Mw2kD3JZ15Xp9Nk2fplYBchg2gsYG/ND9iUMmwyd+7af38lmBWY6f+2Fb/seOX7ri/kFEfu+o3++BP37uB6uApkA6JyYXTeq6OyEGSIkWhBqFEswgYghMKdmUF1AXLhRR4hH4kZEoXtHLG7+KUIM538f0LkG2xWqj+zsboKph6FV1ex50hzGGEKzsLViql+d19oiBndQWeFWoaiKwRnW3coAqiiTTkzgCPwGrAnFKkVMMTKJM2tBWWJYrJWTW5UrRTI12fatfq4pamUMM+LFN4Ecn8S/qx95+vUX2lnn5+oaGuDO9vdadMpHvDHR5MRn85/YfLyaNCBtoYMDPJ2APkFzoVPBUr08sRsNgHGlXCBjwg1bG04TELwz4uXvDcLqzEqQteWTkeIGH2+3AyWHhOrJ//GrYQaCOEHEAe/znBhr94PGL56L696aUCMEWKcWMzq373CP3q9w98ONz6RExZ9g4ut6Pzmjrgqe20doGJGKlVfu4CbIz4FR3Bk+tda/wEwy8sXN3ENKuXv1nB5NhL9Jgl6dotBe1ZXdidGflSIAQicMIWCnq0hqhNUq7kW4LMURO08gwJAO8HBRe5srzhyc+Pj5v1OgjYPYTS/Ivn4vf8zj+7TWeH7/vc55ve7C6o0hnZ8bNiN3E6T16+un3ahN2oTwz9iwiZQLEaKO1lZyt3HGNltYTgjCk0bQZ6GPExIqbeOTHjf5+HFPKDhI/5kx9vpP5i/rQUhMLtQhZqlXtGhNpmBiSsSSqV9QTFx5MqcevDPjJAjlX6pq5Ps2Ub55gLZyeKx+XQEyJVW8s7QMqwu++uuOf/+4LzueBy9eJ9PYrptPAG2Z+U26WspMrmq3M6xgyQygEgVMcmeIACvVppdxWaEpaILnFJlOEyRhxrWSrpIdFtK20cSDd3xHPZ9ba+KePwrdRWJuSViWWZqk/uTBXyzVYi7F3JQSGkIiSiCnx5s5KS+e88vjwyDzP1KLMt0JeLaUkDpaeNJzgdBcYLi6k/Kr9aOtSGiaGaTBqvRSaNkoFlmzLfGsmwJ0KKUW0Dc5OUmrydFMGUlpJBUI8EdMdaRhtLHuKbMkLeTGjti8zIoJ49UGrZJoIMbGzfzwY1NdS1BiKzRgdOX0kz6ZBUcuNEiwFrIZGjTYGW62bzoYWC3KhuGioza+UAj2QFWTEfQsT3NbAmivfPqw83TK3OfOPf/rIh4cby1p4/3Hmelttjy26aXhp5+/aRvRT0/KX9aFahaJSGstiDnP0yjwmUi6e2h8Yk3CKJ9/bCutqqTtHYzx51bYgwpgS05h2fRa3FTqTRDG2TFGX3ZYBhgsaCunuHXdf/c6YNmWhlBtahTpP5OtISANpHBC9IGLXGGNCa6WeJko+0QTC6Uw82XvKnLl9+4GYIuPdheE82d4pGZWCSqW2hVpnYwxUi47n2phr41oxls/pnjBeQGSrvNnqE7fbwvXjB1qr5HWh1UKaLpxqYzjfk2ohnO6RYeJHFtmf3Y8xBr64vwMaEgqIpVieTomYvKKvp0jmqqyrbtUGm4NuBeFxroRQWcrKsppO2mmM3Lu4egyJ8yUyVigK2e9CYkOSjYMpJU/HBK3KPNu8ySWbWDfC+XzifD6ZALQa+Ivvm33vxMdUiIFhSEyn0W2k5gE0qAixF0AJe7bDkjPLYhqGjw8L12veo2Gq1BaYToFhMK5WKc3WrgalKDWbvbaUQm2KxMAwWZVCFTFg7LhpvkIfgtl8Hx/fY7kUI6KmBYun0FQt5LagakyeN/fWv2+/Vk5fPzPeZaYvK+ffRabTyBnhnX6J0ljWt1xvX1BbIddKLsXlMsTYkGDOajX7WytodS2lYuXAVaGU2dhuKqhMNJnQEGnDgg4rGiOMGZmKgfCnTJyKCaWfHqnTBzQtTEPm7dtIbTBdB+4XW/d0FVoRkgS+mAbuhoF6Kzx/XHi6ZfJNeV4rz9mAn2uozGJ9lEojSqJIY10iQX1tcvg/DolpmBjHkdAgGulo0+l7jX7c18KfZ0MismVT/FzgpzWrrtm0Mc83np8eaLUwjZHTaHvb9fmBh4dvud2eWOYrYEy7t1+85ff//O+4XN7w27/5Pe++/B0pjUQPYpRS7ZzPD7TaGKcT4zgxTSPDaOLPZluqp9O57Rl2z3hrF37c7j7e43dAMbwfux/9PZ/9seOXAj//B+B/CvwX/vN//9mf9Iu0dKmXwE8HbAwQ2HVgRCLBKe0aHPjBgZ9Dqpc9wu5UyI6SA6QultYbql9TD9mrpXeFzcjeqdGCDcQgwiiBIXgUJ0Rj/4BXSDETzECBdgCVBGrbKKTdMzo6t/3oFQS88AHi1Fxap9u6Y33AEhQPhIU9Kq3uEL92P3ZHu09KDgN4B0EOoEifuC/n/wEo+e5nj9gCskf995+HPuz4A8Jeyt2jIfslbGyfDhD0C3wxkbRTnpvrLkQzErpYG9E4ry/aA+tjNpt6u64+evofNjCHXXj22H6/INXrF8/FnpK2MxuOTq7DT/2aPr2E3nnH130O9XP3a38BSHQP5cXH9AWrYl/s7Dp05zX3ltr7ts9x9j608aYeMfOxYVa1rwe443PQ93LWXPAoc6dqa2tQPaKlFv1rURmGRGrOcnIjqrVeWaJa36e+frE9fuT4xXNxP//nba4/GVH4GUDPy9eg983x2FKXvPO/Y+J/sglug0T6VtmB/n1tc/jQafd7LVmzWfYU2P4FNr51B5X0qNuzj9X9+f5dIl1Q9tfpw/2O9GCPe1qzuMz4Ya1nG7WHz/Zx6yBmzhXNlZAr81qJTVhr5VbtJPNl9BSDSEOMop4SMQ2MQ0WkoVrQCqKNQRqjFAIwiTAF2w+z9DVTiU0NWBesnHi0dbLWgjjws6cvRMagDFGIBAtyRFNjGqMyNkG8qmV39j3QbmoPDcRF2ENMDOOAoqRxIDVz9sLSCKFtVQl7hasO9L9+P/ax+1KzTX2MNbUCEJb+4aC3WLWfvq516nhr1dpNglcA6t8RTMsHMbHlEB1hPrAKt8XmsOj09aHvxb0Sm2JVpgiomPBoCBYeaSESWvA19DB32LVzfXl08LLPGdnBVoEh+rwU6JXCYgxcsjFGRITzaWBeCggMQyCtzoZufU4ejQf/+ePIzy/fF7d5aGu64NWVfMz3NhYJTu0XLM2tfmKj4OCbp+YH2QIV3cYDoJndZjaEbOZoB+sIEUkDcRgRsDST7NfZKlqKOeDVijAosvfvCwPJmUDBgYjWqDmDNmPkVU+n2RTYC9oKWgtaqwF+1US6q+rm6kuIlp7Gbvso4lWvin0uZ2rJSEi0Umh1T5PobPvX7McYXd8m2KJtAFzYUjGiZxs0lBDN/mg9WuNmUPWARC7K4vo8MVh6j3gnB0/3jmormwE/slXqCz0IDS507Wznbsb7phJcF8rStHz9175e9nHZx1b3byw40nfVlzbAvmf1PcHSuyzFjM4Ogs1H6V+i22NnMx/3loCYGLsvID2V/keOX9SHipJrNlvcbpau2YQoVj6godIIKTKcAsMYGM+BdFLS1EhTJU2NOFViEFJMIErMjXA6WVn3UljL6ilTQvMKhFLFtHkUWsGErtUCLGG1dpWisDZnJFaEYpXhUrFH3J9bClexBwVJ2dPKCiEoqQmhCbV5JbDmhYmKkET21NhotkytjeJSKFU9cUxNHVC29HBP01RP75JD7RVnNfcCRQmc4PCDnfkL+vFTMOIzbVRf8uUz3//y8DWleZCiFA+sQYuCtkKtxat6Zavm1ttgSJymE6eTATopDS7uvsME3c5vW8ViffG9L69HOUzJ3iI/656++7xLluw+0Y+3x3ePzynn/l8D/ynwGxH5D8D/Auv4/52I/M+Afwf8D3/ymwAkEIYTg8AbMVFdEdlosTZMbSFNKTANyXNxowmIEVBR6rb7NozKiUtydaHDnuqFaRt4vnVKaUPkhF5BCALBU7SMtVDVJnJWjzqiDiTYpDiFyOTl9rzgKZv7KjhzyCajihtHasvUWosh8OvKvK4si9Et65YOYdffBaPXZeb6+IicRrgEBo0MwCkmzmmgqglcZx/oUQotuvOypRQB8B8B/9dX6Uc7O4eRfHCI9tdfYpzHj3bDWz4ZwC+ulx02Mf0Da5+d5WMRuK6jxFZ5IwWLPIt0oWf7bEA3VtBxOw3BHYLWbEFuK6LVSyBH21Sc2aUEahCq2sbb82utDWyBFekxib1FtF+8/yLeDmzjazf2OgAk7vQdzKJX7kO2CK45z+YA9D7c0r6C+Fgy571tC9lBtLnfsfR78z5yXS387LohkwfAQtUMS/e2O3gTgnj0Qdx9ss8OIWxgbpB9xKhTWPuoOXhCXkzNaPuaBC2VZS5mOrhTpk0pa+Hh/SNPDzc3/m2Bj0GYxsHGQYpc1sI0DmybDLDklZwaXFysdbSf4xQYJsEJKL9KP25z7hMA5/sAmhefkk835u++/jkgkv2+/xTpgI/lw3fQTCn+mQEJ1iDfy4bbYDnf6KQZywfsnM3SDnK+mriiCEM6EV1cVEY5OMjOFBDcYDzMycO3vgBs1d7bX9/euHsor9eHQeBijhO9DPcQkSHCYAym0bUdQlTWPNNaNmdFrE3KsrpOlZXOrq7XsJZGWFaia0skzMEYQ2MI1QossJJ1RrQRT4H7r+8sqvntE+XphpZCrDOh3qxfp0o7eTpxq8SeQ5srtWRv0AJqe7m2Yg6qNmoxIcsQI4FGcDbPpTZaFFYXzz1HZa1CrJmgZuA+LZW5NItmTkoYCqfzxHRnufnDNPImvOF8f6aslWGcWWeL5JamlFppS6V8XAlXKxX8evaNjaLWlHU1kCtFmAZjIJh3b9oLrTbWZaXkQB0i2pprBQZqjYeKQ5DSgKqlFaRhZBxPnE4XT59tpq3hdJoXKeUl+3xc6a7hMdlrn7vOPulgaVss8EUjAE0MiFjXwrys1Np4vs7cbuYolVoptfkwtnPFKFzOiWmy9U9D3/pk12Mi8PZu4jQp9+tADMJXb+9Y1syXb65cryYO/fB4Y14ypSrLatVrVI2h8evZNp84vRxADutJW6GsIekAQBqSRelVt31oi/Z2+7Kpa+qo6VNhAEN1cG+zM9V3416g43QmvvuSUDL6FI05pw2qUq/PtBhZEKiFECJ5HOx6FJbrjbxmaqmMw8Sbt18gHkS8PrwnBGG5PZB8PzN6Q0NrJc8zZV1orbEsK2suNBUWDVS1dMngwbKmjbYaULTenim3G3WeDZwvVkmo1batBV1rpLk6+KvNRd9CbF8Jbo8FShN3intKogEYHcQyF67r9RigKQK5KDO6BX8ijRQCtYrZM25fbATCuGccCBHVaHC3QtNo4yOwaZFJHO0hYiOtM6ElYsRmRcWYKY3AWhurA8d7EFn3VB7/X9XXo6LMq4E+a1Vyc7HrITDEYIDCkIhxsPlKpKlVrOuMeKtwCmsBLZW6LCgr25f9CjZqa5Xn50eEiOiwM36CFXYYTsLpTSQNwtuvBv7m795wuhu4/3Li699fGM+J893E/TuzvdT9QYBYhJijp+9AqR3w9UCnms0bvHKHekogamm71Uwa6p5tCxo3jzClRHIgeBhmhoSlKIeZFBJSC1N55k5WaiukquQaDFAbAzKbZpeugmYDFpM2KzrTrEDC9VZYF2WusOiBoNQ5E6GDgXYDR5kFGy9iLH0c1I7R1htbr17P7/fjaGUeTc4jSWAPAL58//Ek+751fL8TPHyvryUb8JwX8nqjtopoIBBprXC7PXG9GttHgMvljpQSb9+84927rzif33A63W0FE7yDHUhtfv7CU155en5gmibu78/c3Z2JMTEME8nntHSmLd+9dnGD81PbeW8jOTzvTbB5PIf5/8O2/Pcdn1PV63/8A3/6733WNxwOkUAYzkxROA1hF2GMtnCWBmvpZfqMlhVDYIiJMU1ECVT6Qt03V8uTHTQwaPAIYNcAwLWCrHFiMo2fY8RFsDKxUzRAyDR+bILkVllb38D3SM05DJxjMlSyVt/IPKULo14u2qi9xLqDVYXGWgs3B33meeE2LzQXd+vfYXnhiQCs88zTwwOpnDi/nRh0sjK9IRrtTyE0JbnzWmL0SjSYrbk7Kv9GVf+7r9GPfXTKJz933EYOj/4Z2Otzd9fcWVUvPrNPMjtlj3zb5mbAnr+zp/rR9ZVsUpjGj70nSpcU9Pdv17OzfqI01wdqRM1IW4wW6aJ1ISWGZJpQSqBoIOouRksvuyweKccjuS9Kcn3KenKw6aAxtDNrwg6miHCgJ71eH/ZWVjySV8AjtIg5yuJRs4BHlyy+stUawumMPToVdsjFNg8gONV9W9wOQrW7reCpBtiu1YGfKEapRjrwY8eYAkOKG2gkvpGVYsU8zCG2UrrdOBenr0ZbIai5kuOyJ1o2y2mvtTJ/vLEsBQUylYpV0Lm7nJjGgZQid+eVcbTl0whgptWVh4YMgRiFaUpmVKXEeBKGfbV95X78vMX+c6ICP/X6D7OEYJvXh80LmpUqVUVqN6ZtnIdNet0tFe9/CB5Z73OjFwOAqlbtqrWFWjPL8sT19mgVsabGOJx9igWriHRYhwRzZDdW2EHvx236T9anff3s97N/4vX6UIIglwOIqIoOEcbkLJxGGDyqiLKsV1Z3UJpNTNpSt9K7tYo5OVUgN3ReCVEY0sA4mIMySmMMlTEWkJVVr6CVeLnn7Zt7tArLbeG2ZnTOsFyR+cma5011BzaABuIQzJHNlVZWu/4qkLtPsIvD5vmJsjwTYiS2QiwrSOQSJ6Y0UoBLFG4q3HKBBdDKrTa+eVr49lYgBsLUCMPAfVa+/Nqq4aQonO/PhBjIa2aYnplvK+ua+fh4Jc8rrTTybaXirKhXtG8g0BosizvZY2CIJnhsjpjtd6U0Wl3MqcyJVssG/IxDcBZQphYrE7uuV9NoSAOXyxvevv1yi0QO42TMRne8wRymVlYDg9RAN8tzLaCWkBIOTOsYBpKDsDQrRd+FnPs+tiyFp8eZNRe+ff/Ih49Xamteytr2qTEZKD4Oka+/uiOmE0lBvfKz+L4cgqXIT2NCxVIZ370x7Z9lKbz/eOV6W7neFv7xTx94fLqxrJX3DzPM1XRZYN9HfoV9EWxb962dtoVl9qBRYF/rQgwMYaBrmh31fo7GuTpzQp3a10GsWjvr1dnvWFpZFDH2zvmOmALUYgytsqK1UEulPD2BCLqulNuzgVCnE3E6AQZclGyAwjieGL/4Ci2Z+cOfeH74BlA2gj1sjry2rgOTqU1ZspUvJyTkdAfDRGhqD0wwdZ2fqcvKensm357J8w2cwaYe4OnC0gb69Opyr+lryAGF8TLsCLlaNVHLSGy23Shb8Rc9AHxV2ewuK3tt86FV+0AM7VBExkVxe8ysi/MKiAYT4XeQoKqPWwmElIwFliarFitigREX1hbXVEObpdiVTGyBpVTG6kLVW6EZS7W0yk3mS3U23ro2bkullsaaLe00RcuAOE1xK13fsyGUXWeqoWgwNt/aYC5KLo3rvLK67lwveOHHq83FWisPTx8QjQQdQCOEhsYMotyPI2/u7znfD3z1zwb+5X/nHW+/PHN+k/jitxPDyao7x9EASkU3fdixBqYaDRzrfdTnn6ELbin6OGrdDjewbwP8NuFpbDD5GrynqfdApm2GnUwntXIOj7TTSm2ZYVXWYsCPTIFwDWhVdAFWkApproSluuxH5um2kle4lchsqza1u1AdbJeuh1hN7FmdJehrk6USml8Whuh+s7yu388nFuoB1JHDH1/Ylp98fv9FdhDlAIF0f159vpS8UkthXWfW9Wb+TRNowYCf6yPPTw8sy42Y4P7+DdM08uW7r/nqy99xPt9xvtx7VU0bG+oOtbZKrSYxcJtvLMvMNE28eXPh7v7COI68uf+ScZjYdC17MEd2OkRf54/3/hK8OQJCx4Y6WLSHc3zahj92/Orizi8O8RsLwZTgPwF+BKVGRZr6grY/hhDMCXfjyaLszodQJaoQNRCUnVrbG7EDP9JV+4/pVA60uNhbEEN5N/YOniLgqWOmwWPVTLoR0I06PEqENELbv39n3uz53Nujl1/fPIyjk9GpapVQK6J45TDTGBpDoqiSRTeDAvUoXdcz0e/riL+0H2WbzS8G2oGVcxjSvBiaclyQ9hXgxcB+8V391Y5e70Zk2H5XZ370DXB/z9byDhBt1wheNadPLt0f2g3lvtg3OkjVP9uv6YiwiUdd7Wc4TFqsCsrBMd7gINHtF9vkddt41MfN507mn318el7121UDpI6LkoruCxYY4LL1s+79wWHxErb5KwCdwrp93aeD09tYO5VRNxjQLsR+RBFndEkvVLptyv0s9bjdyK6ZFHwOb4ClX/9usDfWtbDMq1VJkGYpB0kZS3X2kpBL8XYxewSx8aQRr8zilSCsCNxuGL7isbd1n1OHjfMHAZofZvJ8DsPn09f23/tcOoAp4izIHmnisGF1E7ufasdHX1TK276qr63oVl2tOcPLV7rDfRw22MMm2oEdYRdv3kahf9cR6Pmh569+iBCGZOKcXhQgpI0mYRcdxCvuYIabN1nrTosb3z2AZ28Vd17Vl6gdcKfHuLXRK2oZ5VmtFKnvhdJz1atXAAITkK7V1wCfS+4F76uoX+snt6qtbalNWixNhQBBGpIUUWEUZ1kIjKKMAhlzlEsxr1+C6Urk3CjVK7s50zcOlo+fhkQqFoDpBpg2XLeroq+8OW6sDnWBe2eDvmCSYf3Yy6qHUKmtG7IOIgfXQ3PB5VhW00hpjTKMlLJizrqQdDARV2/pDTjsc66nh9M8X8GVSJwF110Xl6FEt72v9yTbeZv3XS1eicj7ozhDIYZA6PcM2z627cXdHup7bhCQYNXMxkQMltq3rMM2Rs9TIucEamBRjo0CSH3dvjsee+pRb4PvmfS9ffQ4yPu+ZcdmI2x/1W3MdV243l/tAHT3D6uCdsM+BMKQ0CCElAhpQMHFwnv6UEHyihoisOXXtWqpRWgzPkKINKkOKHjZdvb0x73ym5LXhZyLPc/FmCY9fSUMxr5o1TWA+sM0vTZ5ghet0O3lX9Izn39817LY10PApKh6FT16z333M2YaGnAUcDClU/k7YCYv17ptj9N9jfbla3u+284+0rWzS92Ox3R7xE1Qq5BmdlltNueiB8m6DJ0cGlrVrrX7GZ1V1o73Kzgbjd3eFNk+uzPeevq7p401yA4ibUBm+7TF//LD0pkKgqV8bqlvoVoHxoE0CcMpMF4i5/vE+X7gdBcZL4FhcrZdssbZmHrePcHv2dZAt7X7b8JL4McoZN6vHewRRExXUMAr4/ke0HzOuf3T+0Sz77k0JBZCMiA0NN0zkYNuIKxJmxgRmL6Pb7ICDhqrMbLaod02A+ow+/TFevPyeUTZWDOvbOO8cBGPVqD8wHt+4P2+e/rrx/d88v7Dvqce1K41U6TP4UIpxhhvtRBTcEkPD6YMg+n6BDfsu4+zfdvenrVk1nVGBHI2DbRajY3bbdEN3XIj4Kfs689rG3nx+qeG6U/5jH9d4MePqHDSSCQQJZg4cghkaQQpVLVSoFMyNDsFYYrBqzhF29jA9DYcerEqfD55QkA8Vaq6Q+q2swNHnf1hAyGJafWYERsg2oYwaKPE3cjuzuJdGrlLow3CwfKqG8raMmurNG1IC4QWjZ7fKqk18pp5blfqUraHrqYMHtQWkYiVQM0lk0tiLYW1ZGIdmWLizXShSOJ39yslDGRVnqtVH2iq5GrtZ4K19VdZkIFtAvovu7f2I4PR98IXm/KnhtIOlqg5A9Kr2Bi4EH3Btuf+How90NcsT4Pd+rmndwXpQIJ6utIxnUQIWqGutDJvLJjaKmk4MYxvOE9vUInEmogtotqoubhw6fHWA6ID+/Q6Osw7CLE5nZ+2SN/tpb/rVzjEopSqnhap8eBIqkeQC32B2YxCgcmdvCTCFOOmRRX73PL0LhHLXQ9e9W7NmWUJ7rC7Q8kOnvbz2/qoJG0M1a4Bj5AKkEplqAbtJJE9TVMibTBa9YpurIilVbKaaxPEWFxVG1MIlGEga+HhduPp441SGk9PM/MtW4rN2SjzIcAUBi7DBAK1NOa6ICkwpJEwJIvQjYNH+9QEs8Vo3T+uz/0KnXkYY5+CPMfH9onvAYJ+6PXPAY72DbGPa1tDSyksy2LGTQx7ie1BSQ7Oa9sN3xAs0r07RV0Mc6WpRXFu843bzVIIUpq4v0vEEDmf3zCNVv1oHKdNPJrtyuyfugHRwYn9nva1oANDlkVzmIG/wmSMQ+KLv/2aqMbcDKoWkW7VUni1obWAl63va9vxekx4sKAd6HAQJKRE8HQxImioNGmUtrIuV4IMLLcz+fkJ0UyYIkEntAlLnnl2QVdKQbIL994yiRWJienuxHj3xsfDCHF04LuinoYW3AfVVg1s9zQIlUReFUJFtCCuVzG4Uxxq48uoxFPko8AfsD2+1MZSVrJUala++eMHKJnxNHL/1RdMdyfTzxhGBiItDpxLQNKJeVl4fqgsS0Pb601KEWEYBve17bxVYc0GSqUA02B9px0woFlqXq5oaND26qDG0jHBZ9UF9JEYkzvUhRSTl5u9bDoiwTURw2G+BwlIHKAb+ziwUxrV4XENhdbTIR30UdS0XRw0SlFcmDjwxds7YkobI6CpBcbGzoxNgbf3E5ezrZsp9jSU3W5QlY3VJ2rMXQLIAG/vBk6jcD7ZHvLlbeX5lknDE4/PK8ta+PA4mybQax+q0KykvTGKzZYYAlsV2dCrGGWs8pm8dKosBmiWjkow0XmwcR9fVhvsX7nv8z3ghG97expdiFYxi8sbS9WqBZlvcLtuQF9ZVxAx3ZLrbWtrw3aUmhfEq+yVvNge35qtN36O5sBua43b7ca6rtTWmFdLNyIk4mUmjickDYzLQpzOBurmQiuVsi4oQhhGH+rGFiYMGD+IDWjgh8Vkf1kXouS6hWRB1c36DlR3kOvg7NoHt0CT+R3WV0mEIbrNiWv/NLO1xaseOlHVutUrhyG4DpkxfjrLaQd+DNkpapWCELaAhgAxCTHZXlhrMXBbFIkruVmAu7PshJ4lbLtbcbZPqY15bazZNbjEglIEoaiwFCsIw1zIpSFBiO6PsY1lA3qW0sgN1tqYc2NeLVlRNqrTKx/a51VDtACVNAint5E0Jr7+Zxf+xX/rS958eebL397xxd+MXO4DaQJNmYIgRDNqpbMu2eZoR4B2DsYecOyWwosN/2CXb+/tVUa9Hfr6FlTRpL6cKLXZPCsts2RLQ5rXJ+blSm2VeX5mWW/U0lhumTybvh4LkIVQQK6KXpX8VMhzI2elFDEZEYEmJifSwbjScxVVqEmJsQN+BvU3VZacQQQdR+7GiTHIq/ekfPKzz7vepP0PnYm9v3lve9n+P/bJ/ncDvm2wtraArqiuLMsDDx//QM4Lxng1wOebb/+R+fZIKZlxvDANF07jiWk4M6SzyQZIQrZ+tv21xcSUBk7jgGjhocw8P72n5Il1ebJU9mjwYghW6VA3wJBtrTE/59AG3wOGffr7i6Z5sYXId9/8E8dfF/jxmZdUOBEZSUSJjGEgxMiqlSCZQiVGmJLTgsU0DqKXWQ6D0a/MiPSBYKucT3LZHpWeDOYd6DM+qjEHAnb+IRgItTECgKKNonVHvTGK9P048WY4uYHW3Khq3GrmVjNNG6FFYrV0kcER+pmVoEJdCmXOtCXTloKqpz1IJGBo7pora06seWVdV8Z64pRGvjhdkDjy+wphuJBb46kUlmrVyJZmekHdEWi1/UBn/IWH/MSD42S1vtjWzE8Hd/95GL8iHIAfZQg7qyT1NKJDqpc9gr/u5Esxou+m8SM7g8QYLB0b77o/VrK05ZmSV+bbM+tyJY1n7i5fEu6+QCURdSTpYLpM60zNpqdgpXMDiJc2lWQRu36BvQFeoADdIN7xbDluPSK/irNpTDsDfGIw4ermi6eqRRWqq6l2wE1QhhiYJBAFTjHyZkikYJnNCbN9YhwYhnETa+8O+LIs3IDazKjs568ejTE/YKcNJ22kYi3hCUBmEOVKdON7CHErzUqKEBMNuGnl1mxOXH1eKlbiMqhFv9YQqMOIFuV6W/nTtw/kXHl+WphvmWGIfMk9Q4jEJExx4DKaIOCcZ9aSSdNAupyI40BIQroE4iAGWJSb6Zv0tMJfwTb6PnDnCMz0tv9cIOeXAz/HKBOb0VZKZpk7SLOXthVVq7wXwkGr3h0t1xitbigrlVxm1nWmlML1euP5eUZEOE1nLpeJGCKX8z3TdMGAm07HPlyfqIMLbpS7kOfxXkSgfQ8gIN0n/mXd9KNHGhJf/rPfEBUGtcDIervx9OEjeVnM+S4FWn1RJahj+hahbVaad7UIogmuCiFFByWNjWXAj1DqwrwIEFmeJ9anC9JWA7WZUA0seeapZGOYlIJkY/kkLQx5JQyNcB4Yz29svYsnZDiZs9pWtNm6GIfgZcurbwURvBrNutoan1omJksXHVshtcqAoDFyd0lMAv9WhFAMAL6uK9cK65y5DJBvz5zuzrRh5K6XMh8nhhEYG6WNhKHQ5Er9dma+Ztorbo0d+OlOpWLR2GWtZFGmwbQ0bIfvUeBmZkuxz1shUJuzxgQuBBFqMRHeEAJ5uZKXJ2KMTNOZ0+WOsJWQnwgSGIaRYRzNWA2mTQdWsbTVgmpPJZsBYwxUjzB3Rg7sAJWoiXCfpoE2WFrd3d3F11PZUvbHYTAmt8AwiJe/VtCKYOnwWnuqr7HJkOZrQd/nhTENNE3kqtzdXViz8vi0EMLE+4cbT88Ly2qirK9/WDoSMbjtACmoAz8eOGxWIhxtlK1anUeZ+y7uadPNxZkBNEbUUymOBUgO3Fpvr+1S9vGVAjENtv/dv6VNI1or8vwAKdJqZb0+k28zx5QqwAXi/dwlgws2lzJbmpU2pFSk2GfyvFh6V6k8X5+5zTOtNm55ZS0mKJ4uz8RxsjT425OnlXWORPACB0IYps2eEFWII41oIrqIgWE9d/+1elDZgJ8uXCwBYnNZAekWvWUWDEk27KlfRgzCkKw08xAjUzLwvOZCWVdjXagFBh0/2Pb4EFysWQz4kW51Hlh0cpA9uC1KZ6J3oEUEhjExDD521NZ/EaG0mdts68E4JIZkWnbRQV/UQB3Tr2lc58aSO7spWgBALB1MsoE9VTNztHESYmVPp7GjNmXOzbS2iloJ8cX0pGJKhPDruJI9+INrZo1D4vJu4HQf+c3fXfiX//o3fPU395zvE+9+OzGeAkqlSsG8r+SNatE33VK2rJG7jxK6TbDd80vQxzyF4PvX3qebjg49IO3sH1/fLWhVTdCcRq5X5vVGKZXb8sS8PFNr5Xa9Mc8zrSrLtZLnBlWQVZA1IEXRp0Z8aqzPhfXWyKtSvKJcETX9ODqbpxHqnqNQ9ChzYSBVBea8Uls1/dO7O6YQDiynv/zY5DwOr3T/zn9lC76LzwsEOlucw2tbZ7S9D/tyqZWue6Z1gTZDW1luH/j44R+Z5xt5vbIsT9RaePjwntv1o60Pd2em8cx5ujCNd4zDhTGdjdHowYkYLBVbY2IaBs7jCHWl5BuPj39mXU/M86NVQGy94rD5gVag4NAmfZxt5ufO3vlx1s+xnY5/kO9+4CeO/x8wfmzBC2JF+iIWlYpiG20IYpW1fGEU+k87RNgiWjgtulM2NxDI/67Y+OjZm9uA26JhB2fJW1MOwE8QSx9TDDASPDXM8+MDGPtIjWkU1HOItd9D2AwBwSJc2pRWGlp7ojpO6dwreR2TYfpT8e9NIZKiMsbEFC2nd1VQXJsIT0+hIUE9pveKx8Hxs9/53ud7VIudrvziPfLJR/XFq6bt44/t+TGdqGdv7wuv9M9tMEo/7/F5P/bXwftAnTDpi3arK3mdAaHmG3WdISSXW1ZPW1hNT0HEIrLBN/yomxvcDep+FSI9jevoKr/kAImwLRY/Yz7/vGMb/5+0imrHaB2U3K9DMBAoIQxioGkSA34GzPRLMbjRFN3I9TPESEuRVqGGQKtmNFUsYmERJjGmgHr6prdLODz32moEhQFh7O3qWjFNMDFXsbz3hBDV2lbUUknFb84Mdssnz6W6ZkWlNkvX1J0bvW1gpgN+TDfSzUzoYIu2Rj0OTHo/vyJ0cOg/kU83jR9+/pemer18LoexegB/+r6s3XhrHnmutuy5wKd4CpITsoz9463ZWqG27Ckm9VBJYZ8xIURSHIyqm4YtFa/WPuMPwOoPVMz7vOdbk7/+IUJMyYIRapWfJNje0dOAtTMxtLe5HO0A0E7H120/oac+pURIwRiSwZxZCWGLktVa3aEJaMz20EBeC2sulFIJpSKt2blbI1jFAutL8QhxjBASliobUSl7o21j1VPYCE7Ftohpq3WvNtIqQY3dlEJgDMLga0xQjD1QlZKhxMq6ZtbZUmBytrLFEgycDtGN9Rjt8kJCjPr0+t3YqwtuY8T7T9gqc7W+sPZ3ODvX9klP+WkOHjVjpvbKdeqR/1qyC0JHch6JsbMZAxrMWU010YI5/X51fSVlsyt8ziq653odF6xP7s30apRhMAcHgZB2rcYhJZKXrk7RIsygW1oT6A8GMnq7KR4g8rk7WJYXw1ANOE6JlIprfr1+H/b9D+0Oy8u0Y6EhWq1qTq1WDaszZbyPTNA5bONdu85Di7b3+LU3D1ioP2wQHAAAvx5bvD4xCCS6/et5xK1tA68zGpozZFXaYb3e9yqwfqXJ1uvqX67VdXjcaa2tmfNaKhK8GpiYOKysq99jIIRhq5rZq4j1vTOomm5gsPf29ulM6FftR91/qrJV65Ttj/aG0NO9dL8C8fG32+Ry6M8+GtqW+qTorgoAGHztqR7YmOkjerM7zanw9x9TlntKshgys1XfU1Dba0tVRJz9Y0rhG8jY53v1ClWl6sZQsrG9t3NTe5/tFxa8FsQqJsoRGPHiNG0/V5esALPNjo7tqx69H/s+HiCNVk5+PCXGc2K6JMZTpBPi6vY5b2/fJ7U7hHYmeo/3vu42+At7eHNjDvb79n4HOvsa28e0f+IId2yVtbRSPJOgtbJVga3VhM9rVdP2sfw6C04pRgSsipbmf9ctI9fWiE86YHcdt+vuxoIt87Yn68FuQI9X/HrH8ZzfBTO+77nu69NhL7W9RLZ+3Hc2PLWrWBv31K5qQaucF3KeWdYr8/xMq4WcFy9o44yyF1f6feuR0PXXekZDz2ToAvUvxbO/7zzynR8v7/tz7O6f9/4fOv6qwI/a3kdLGHc2BhPQHWwzCKqIWjS4CazqEUYqTQoRy4Ucmm0YpvXhnRHDNhBM42fXSFC3KNWNK3vPboSGEGhB6VmgmwMEWxoJvmxbCXfZciI7CEAHIHxiBVWisxrq88IyryzzwvrhmfXhmTKvxNY4DwnU6JUGgCnn0JikcR4GTtPEdDozTSemaeI0TuQQuR8rM4GlVqqCaKV4BSJR0/kJMW4q9q997IsfL8b3tqhsr/fnHSX3CfTiX39rsxK1AjFUUsgEUYu4dfaPiOv2ydaHh2Vt+8rD9rbv6uorKLg+Rd9VvL+1OCU/IW1lvX7k4c9/T4gj1Mr147eENBKmd4TxDU2V67wy54xIJE0XYpqIaWK8jKTp5Bu8uM6TGYFoY1NT1MAW/enX2S2wnvT7a22qsNFCW2t7/rlfSnP2TYyBMZrQ8jlF7seBIQRGbUylEdTSdsZg6XYniVzGk1GQZa/qVYaRdZo8WmaGBurAj8+irhOA6s7iUyw67E5tUiulbnMxMgSvnZoiGi3VawiR0Sv0RVUSJgq/FiW3lZqV2+PCw1Pmdlt5el64ztmM5RCZTl5ZD8wpBubnm5Vt1cpaVkqzUrWSAmteGaZESucttcKEOW1eN5SivxL7Dvi+TeuHgJ3j334Oy6fP7ZcA0Xe/y95j1lZn+dQKrWau67OL6mdoi62hdQc4amuektKfH+jkbqiM44kYR0KInKYz43hCJFgVBdLBiDcQuB1MoJctdtTd+i7o0+9JtTtQ3znFqxyqahH2aqwdqY3ldmN5nsnLYntJN8qCIPR5JXSBhxLq9vmkwjhMhCjcv3vHu7/9LcNpNNAn2Lo31iu1PrPWyvNj5Zt/emIYEi1marrSmvDhHz7w/u/f09bCSRpnmhc3CMRpRKLtM00CKh7Fb0AT2lpp2bRo8mI6Wdoa5fZMcVZCK1Ym2m8Lw6oC4ziQhogEYRCjWpxi4BQCpyC0orSlstwKUiJPE4SSmVcl3D8zt0QcEqfzmWEcTFBTzUFOw8Td3T0BE7J8rUNESKk7h3Yv2qt/uIUeJJMCxNhI0cRZFaPqBzXmo7Rmmj1i658BA7idooQSiLlYGikB1auN/bSS02oMhTSQh9nSr8aJaZp8zikSEhKsKpR4JF2ouLu07zsHp8gqGiYrbqBdO8TeIh58M4M4OjjU+7MHSDoDT4FK6991NIo3AU3dnJFSjTG1LI1lrainw6doJXdL5fUPVSgrRCXWQIqFAWESSytuZUXnm2lHrDPz8xOtFEutyotrTblT4IyrmAbvo4E02roVhoE4Ois2JcSLjuCOZDcHWncioqDJNF1qydS80lqlzDNlNbuvkZDhYgGxvpeL27pWkoqgBbRALZSk1ISlkK4rUgqtFG6tWmopntLWwUoHJZVGWRZyqYQYKQ3imgkxMV3ekOKAJLMZ+nLZ4ydxGBnu7gjjieF8YRxGUho/y1n5ed0oW9ABDuOV7t5bW7ZqchDanE0eD/aoA3+dxedkbiQJoQUHPizw2xwYgW7/e7cFYw912Kd3SgcCNocWt4UUqtujWV3ORiASN4mDUpXk4tFxKcTogI0kb8cDOKONJVeyp6TtQJuVqQ9gN8/Ontvf01+wHx2ayrmRq4tsqGu//TpuhvsZ1u4InO4G3v3mjvsvJ97+5sx4FwgTaLLCObV4INPta9Pg8d4MFga0AiINxLTEQmguGXEMIvsivt2Yi+0giCQ7L/38ydsNuoHQNFtRi9bIqzHIS6lcn2aeH6+UWrk9zcy3xao83irr7GD/at0hDWIzBjANWJR6VeoNKBHBmF7WiYfrxFJv0zCazl2ytOBhtBBpOAQo4qbpI9RSjGH8K9ipnxdkPLyfngFqgalSLNUxr4VlXmhVOU0j59OJGAI5L6zLlVYLT08f+PjxG3Ke+eOf/p737/+JZbmyLs8st0daq6zLguoCCDnfeL4+0LRyvT1xm59RhClMVnE87I8QEtN04f7+i4O8wMWEnElWUbViwJSPweAZDZtvKi+ny88JtIr31QvbnOPzz5uKf3Vx55pAk0AKiAM+MtgGKaqE5guyVnKzhStRqZIJEkii1GpgzRiiAT8BF2i2DTOGuIs1d2ROPB/9JVQD2CZROy4qSts0YdiBCdnZQEM4MnOMXmdrhOd7epWD2GxRrM83lo9XltvM8uGJ5eOVkjOxKienpacYiBKJopykfgf4OZ3PnKYTp/FECYX7qbESWGohVwXN5CY0ijspQo2BT+RxX68jj4OSffC99D+Pr9lm23/uIJA5iWYsNkRMYDSFSpJMkEYSKz3cCV57Jm3yh2xn7u7c3ru+uRrfmD2Opvst+CYdNuAn0gqs1/d8/NP/BwgsTx/4cPl3pHTi8u73nN78htaE5yUzr5UQBsa7dwzTPWm8EIe3DFOPmnSDrvnVdYm5nhhuEZxe1Euctmmv6wZW/hqH2XSduXKYE6gj2coYhDEa5fkyJL4YJ6YQkZyJ84y0ailgSYgB7kLg3TSRhoHolS/MmW6bqBzsRm11UESBWnpEW2lrpi62eWoXl1UYgcGjX4N4KoP4xh5NP2BUZcKA19hML6i0xkNdyEumrpXr45WPHxZuS+bpaeb5tiIinIaBYUpEd5bamimtcXu6QraaZhWr4CfFUlPDnDhdRi6XiIzRDcVg7GAHfn6NDdWOl0v9T0UFfgjg+Zz3HCNaclwHPgGBRCwKmVJkHBOlKLf1mdvzA9DQeqOVJ0uXrc6e08a8LCzr4oKSNnuDb7BWXjMyTReGdEIkMo4nUhrpuhhuVtNLmOK/fzqD5Htf/QTAgj2SKTgG+/pzUbWRV0unatcZLZV8m1meb5RlNeMsRgcShU1QUkyzygISi1X4WQuRkThMDJJ48+Vv+dt/+d/kdH+HBCW6Fbm+/wPzH/89S1l4eqhIfSIEWOojc43UCg9/fuTjHz6itfHuMvDuMjKkSJxGpmDARQtCNYU1mgZz8iu0tVDnFUvdXCleXaquCzWvBgJ5yVXceVBPB7z/4i0pXozxI8ZamoJyDoGzBIo22lxYnlZ0EZ5CRdfIuDT08si1Rivt/i4xNau+GbB0t2GEN/dvmNJEivGnuuazjz7We0RQxHRW8mrVdFo1TZYoyjjC5WKU+u7cW9S2Ic3sj0BDxcBtix2IF4yohFCIIRjrqVQHPY35FkRMoDImA0YvF7TdEaIBsMMw2vzQSuglwXU97I3HObRXuJl6Oi1su69dM2wqtIf1YGOsqL7UdDvGMVx3BtnQBXeiG1WNtbkshetcWJZK6zqIceA0nX4d20YVLRmJjdRgaJFBlUkbSaAuN/LjA21dqc9P3L79hrzMrOvC9XalVgNDUhq8iMlAGk7GwhonpvPFWHiTAR8hRsI4EU8nS88M0QIHiIEs1UHnABqt5bKn/6s2WrEKYtYxCRmHLeWkj0PzP6yNoxQCBvzUoLSg0CpxXZCymmZhNmBJnXUnnUXoTFkbdyuV1QK3pSHDwjCeSOMdaYoWiB1HQtpdDBFB4sBwuicME3G62Po9DN9Zd/+yPtyBH0vb1RfDcwd/hCZQi/kGKfb19QA4dD2gnoEQMLFgFaRYkFqdIVWrMfbEVYRFjJEsnbVjrQAehGpbaqBpAQLkamXnFTbqiohJUaQYsXToSsDTDaWzFVzI2LVsNgYCXj3NWQ3GenSwypkjTdXsri4L8T1dEYIB2zGKsalr21gi5TVzZj85RG38hmTgz/lu4Mvf3vPFby988ZsL030knoDYyK1RshKjV292PyN45zciIqPZuNbVfm9KCm0bG7u+cUDoAr+dJeoAmwv/CgYC2YrZ21xpzMZeblZy/fa8kkvh+fHG4+OVWirz9cZ6nWlNWedKWZotw1UN+FGITRjU9tSyQH1W2qJoNh1RA/N7ejGd3UAIiTRMDOPIkBLDOHn6r/maNgYauIai+n61soOlr9SD32tjfh/wsx+WftyDQaYZZulx1+uVhw8PlFJ58+aeGL5kGBLz/MTT0wdKyXz48Gf+/Kd/YF1mvvn27/n2239gXWfy8sRye0I9ZVKwvTrnZ663RG2F59sjz/OzseemeyajDW8AXwjKabrjzd2XxDBwOb1hGu98DRtsLakuGu4syHYEFcPLNUg+aYMfZ+pvLfr/Z8APvgF5BEJ6aGi7cH8cqmDtDoU976ydDt68PPneKMEXwV61yxrFq4lswI8/2q6XQP+2vggcXtt0Gz9xXlsvpWoqpcZMaIe0EqvXuddzbGbg2SIj20/zE2UTrI1BttzC0KuahZfVzkILDob06+sOmXpM43Udlc8aqN0Y3J6zjcYjSCQvHjvQYeldbdP4CTSC993+ELry0kZf5yU1G3SvBID/1MP3fIeS54t/MCBJW6FkQ4XX+RkhUIaV4fyWYbqjqaCuoqcAzSpc0Hq6GHQoRaQ7kT6m+xgX2Sxo6SmLwItKEb8i8NPHcq+Stw+XlxOi87UsndHtoJ674KkKVh7b0h1DH8P+sMh12FKujt9QVbvyhVXSUtBghpTEZlR4hRaszyJC1H3hjk75bwfwwSBPGw2bPpBHLFsxg7nkSs6FnM3oac2cWRGxObeNVI++tupGtoNxYvfeKxVp7SmcbTMU9xMcnv8Vjp+XrvXDm/HnUE75znsOs9QrLIZg9PjaMrRGzsIy23zb0gpa47YuzMtsYyNECMbMUK2+P4iX0U2bUHcQqxet7Uiz7Q2u+692hdse8H1t9jlpX69+qF979SqPpdO+vQKWetpXYKvQ0qn4lgsvLyq4qLcTYrogw3RinM6mb5UAbbRx8uo+FrkuayGIiYHmXG2rWvM2pnvb7muF78Pa05CMraf90WsJe8UwqUbDrqVSSzFAoHq6jIMCWk1/yHMdvLesfbafamtAB4NbsGIIpUAolZJtXkuo1KLUqtvcFx+PMSZSap8M4r/0OBi4/bFN+O6EmqNWm/dX2Hcu/LZtmO1pGQ1jDx/1nHo6pKCIp31YknL1lJvqoJJuaQQALUSagwe9Og+9XVS26/hUUmGzU6TP6Re37YRZM5iOsw/d15UtfWXb//e9d5uLIoeT+pqre5qcvcXbOcivMxfBbA+s2ENQiKg/VxNULhnKiuaFOl+p80xZF/L1iVKt8qM68NPigI6FIBFqsRTGmNz5wIAfTzmQYBp1IRrLEa+WJLBV+gElr1blradqtuoKJMFSqwSrlKtHoE46kBHsWmgb4x4sJVJaQMPeti8emy3eh4b3iafhiggtFhcfrzQ52MuHuWGR84OsQR8Kr2ji2NzZQfuuKbXZX8cv6/aI2Hzzhe2TE5ploofKrMdx3r+vZzQqbETtLcvxMLT71rTJlMg+I5S9vDyeRiZggswOdaqYvXQ8OnjUWey7T9JZdLo7j35xWwpYU3I1EeLjvR2PEGwMImxsot6+eyj9dQ9jMbl/EwWJEKOJWacUibFrQ3mqUm0b6Cee/hY6UQdFscIiEPf2l0/6/MW6twM/e9l2D7xsz/t7+jhTt6nZK29V25Ns76ubeLq2Pc2Qw88Xprdi/rB6alfDixLs67FlEHziT8nLlKQQHQgOnZlpDWBp81b1Evl11tTPt0WP/pjdrGJp4CVnSimUbGXUa7HiO0fWXH9sqbdbtsdhz3Kmnbhek/ZAQynUVAxUXxZiHMh5pZRMjEoMYsC76Na2vT03n9bH0L7O7GPqOP2PT4TPbZuffn7s+586/qrATwiB8+XMKSbSmGxQSvDqXNYJwS8qhcQpmUEfjgwe1y3o4E7zKggu68vm/CsuzmdouYi4cdQpxdDho+PmE8XSQsBMks0mgc3/rmXlpitgVWuKizhX9sU25MxQCqFUztWIXoME7mPgmhJZlSpCcYBmEKMSpwDnGDnFyN04cJ5GTqM9pmFkHEZWxLR+gqU9BbcGRRsejKBTyH9NjsELoOfF4Tub6P5edpCr95T9bDtoRSVKQcRYXonsGi2V1KysYzcmBEElocGiY32Rdl/IgR0Q6aCRImrP+0YRNo+iu/iZIVTGCCUqtJm8Prpw6o3r0zcM05k4RNM5CANTvHAaJ4iJOEXCGIljIEUIUlF10LGX//Sx100o3dqpO5bO/lFnP+GleF/5MGHVlZIzOWdKzmzpZ041TzGgAVIIVma6QV1XbmshK6TWGEo1EDMJWSMxQClq6RjB2lxUvjNW+lwGjyb16yJRxRzDQqKQrP1DprAejDhbTRuB2vPauwOsSm6NXCulNfJaydn0e+bnwvN15bYUPny48s03zyy5crutXjUjMk0D95ezMxBd20TES72vloIymqiiCaaYjkEoSr2trBhmESeXPImCTOwhplc/dkvhuOb/0PO/+PjeeW+zWbFUWwk2rIchcTpNlCw8P1aW5ZGSV96/f2Zdng04qNkqCKlVmVhLIcbEF1/9jjdffIXIiWlKfPHFW4IkQjgTZcJotANoN7xeGrqbkf4X2KSfuAm/yqEK5VZpuVCumZYzZc7kuVLXRkExaXIhRuX5anuirbE29pePM9cnY8jFlGiTrW0hJcbpjun8hnEMTJOx0W75Snq4oy5CKDP1+WqpdSSiJoIKb1Pi7os7UKtINQ0GiEqCFhqFwnx9pP3ZU1PmBZ0XEyGtC1KNSdKKVQbT1liWm5U/hS1td9sbXI9IQjItNQmsVVhVuS2NZcms88o6F8qyUpYV0cC6BlISGJR1rcTVkkdv10zTSAyB0zARghBD4nJ3h57OWwrqax3bdNDdDQohmMGoVoXFGFCWamBC3XAazbmxYG+1va3taWNVLOWjCZvzHJzlo4eINtjegVS3VwJhXWyehAAhI8GqLdW60oqVdj8NjdPgYH2A1JEfPajcKJsAquphXqgZw31Xe+kQ7w6LecHsk+mQN+lujH9u94hVvXR0M/KDhEBISigCDhS+9hEF7kc4x8ql3ZgKDDQmKonGOt/It4+wLJSHD1y/+QO35yvLcuPp2arEiLPUhA4yWkrXMBp7O4RImibS6WwO2TASpsmKQ6SBmEyYu7eKrayVSEVprPNi6Q7uWLYecEkjcRisquHpzHg6EWJkPE0Mp8kEi0dhHGxxbgFaMD0azQfHFQdovCpgTCMSqlfbE3OyWyN0lm5eqHmBkrlJoMw34pCYLnfGMojRmGYpWUW0NIAIWiJ1uflgeT0bR9Wq6XUnEMyuig42mfPcNn+ja0uPo9k8iDhjyB6lNupc/dwd/O4guRdSaZZGrmogRaDrGwriGHNnaJphGp196RND2ybGvHoQqlSleIpWdP/A2PDN56jPO3c0Dehrfp3uFItXvg2eGp8iMQUr7FeUnlXf2l4M4ahT0sdEBxKTQlOhtuBCwjj759W6bztiCHxx95YwCOkUiEl4ez4zciKWAZZAvlWWIVvaY7PCOlqEliPahDQExtGd9DQQhzPGGrTUSxFhiDAk66MYDTQVwQNL3a2PBM8uoLlkAx3kc23VtlLaQtPKvD4zL8+UUnj+9oGn949ekfRKXlZjYIkynpLN3xqgRFTUBcMrqCA1EHKklYBm07WrxcCMkIJX03VQGlsxGmafns9nTucTKUZOp4kxDXaPLjxvAJUFlcZx4nT/ltM4EV4xBfp4/BTL3L06ANPhKTdaqzw9PvDNN39mXRdqMXteAeqFIUbGYUDOF2KEWov3oaV/nU8D4xRY15mnh2/4+H6glu73rCjGoFR9JpfCH/7w95wu/w9Opzveff2RL79+ZBgmvnz7jndv3ln6ts409Sqz1fx/glBbPazH+312WFfsFr/XfP4h1v3xZwj7TrkBRvISPNqDTj9+/NWBn8vdmVEiQ7Q0kI64V3dwoxsYMSSGcfCytLKXwRTpjDuCdsTO0NyOxhnoYw8rxehVUOjCobALqhlwEnyhC5jAJmA0yL4feXt2PYY959AGUL+/4BVrQsnEWom1canqYrjCmxC5psjaGmsQVuy8VlkMhiBchsglCffjwGUcOXfgZzTgZ6SnhjmbQtsmiBk9Etx8oP0aC3Jvj5e/HF/Y0VfZlqMDAMQGeWDU1eYLUiGSzSiWsgM/Wkha6GZoZ2G1MHiU04EfiQ4yeI51Zwu55RlcmNGeq4sIg0uMI1JIoTImJceGtpm8PlBLphQzsqbpwul04nwyCvfd28TpcgdhQEfTmAlDIIVO17fx3Llme0vtRnKnFXenFamI2HwQqa9qFG091Az4qXndgB+jmafNSEk+5xLi7J5GzZXbUglVGTEWT0CQFoiYD159c4pBrSNCO0TDHaaLgbgZR8EXNXMoWxxQhSyZLCbuu8ji1Z/0uIxiChUGOHTWTlXIubJkE6Vc10peK2sxZ/D50fR8Prx/5s/fPFBq47YY6yfFyDQOvLk7gzbKstKKpU+WVmm1kFJiOtlcdJ9oB36eFwMuUkA0IqOlsjJJT1r+lY4OJ+6wIrwy4POjx2ENELYI0jAMiIyUCEhhmR9Zlit/+uO/509//HvTq6gLrVoEuzijZRhP/Ev910yXiZSE6ZT44os3BBlodUTbYIyIFtAWDlGWDv60rV+2dvkLRHp+VQCoKeVWqWthvWZaXilLZr1Vam4u7Ng8ctzQ6Bphh1Jx7flGfVrRXBhPBR3NIY9pYDrdcTq/4XweuL+fCALT8kj8eE9JsD4szE+zjfM4EuOESOBuiJymEyJYBRstlsIQoYZGo9KuH1mer8bEWVZ7YFUYh2DrWQeXa2vcbs/clhtBhMs0EAczRlOwVGeLTiY0JhrCWoVbUW5rY5nLC+CnritCJK+JJSUDfpZGnE04M6aVWm0MDoyk0Upin4aTM2pfbz528ErBo7huiEcTmW65koulhLRqUVujjVv1KwnOOnYmiPa1UXowi82I7KVlLagQaLILiVrE3+2a1kAWY/aIUFqiaHRRV2OUBYF3d71ghTOcY7eRfHx1J7jf7BYPO3Kn+28HAMftpaNAvj0cPdqCajsLeIOP1IDcopCbUlQhBuIAsrpGSn39ql5R4M0IJ6lc2sqUK0krk2YiDZ1vLNcPsKyUh294+tM/8fz0yHy78fT4kVxWjlCWsRNN42cYBk6nk702jKRpQmIgpIEwTq5BNZJcs6yzvAGkrUjLqFbm68xyvVnKVTPnHRHSdCadToSYuLx9y/nNW9KQuHv7ltDuLV00TIzDiEgz4fBowdAiVsV2Y2aFaKmhaSANpiE0uHZF04ZUZwW2RllXSi20dUZLZnEtI9a36OlsqYeXO8I4EVJDBtf0kUCbby5U+5rAj27ATx9kvby6BnFheK9+6H3eg4l1MDuleVVIA3gqtXrQya8bhFIqqwM/1Vkzql58oqdJdm0hB1XVbb0YgrGsBFQrTS2AVtdsup0VlrmxLMUBKrehBcaoDNH3JE/nQsWlLLpWl2k0icDgpbxDEMYBBi9+vK5sOllds8bA1l6wQh0csDQ4FWHwOdtbtzRYiu7phq94xBh5e//GwJtLIg2Bu8towE8eYA2Ua2WJjZwzt9tMqYX1BrcHpWaYpsj53qqyDtPEdLcSUmRIo2mfhUhJQhsMfI9DII22HqegxrQS54xL2oCVbZ3znHSlkevKWq/UVni6PvB0e6DkwvP7R65/ejRQry1kJw3EIRCmwVLdc0OzOsNWaeIDpwakRMhKy426OvBDIKRoxSBacB9HUK9+PY4D5/OZu7sLMQSmcfBUwV0Wo0OHoEynC6f7LzmdL8ivAPx8HqO8r5pKq4VlfqaUhY8f/swf//Hfc7vdSHFkGGyN01oYUmAcBoYUOJ0nVBvTaeJ0OpPLyt3difNlZF1nvvnTCdVKXmau16fNh1/XlXUtxDjzh3/6e0qFcTrz248PPD0/c5rOhH/2d9yfB7u2NqOsNM3UZiLSiHjxEd0Yqn3/dql3uqQJ/Djo84MSC8ff4TsG6cao/Iz++KsCP9uCt21qgU6L63zIwC6ibOlMpt8ROpLVhV7w7VW32NJ2LqXTxgMtWFUClY5Q92hcLyvaO0PpvJHedM1s55e+lHbqWaeuu8ArHdSQPcXL02AiShL2RxCa0107EBLFIqApiA9mL33c07xeKMb7BDkCfX2Dw7ROxJ2fzxoFv6Af9+ff/QIBjqleXby4b1wiR515PTyaMXSkc7MMtAnO1erwyQYmabU77uI4RycP3AE0NRbBNGs68NPRQbtWo39qLWjN1GqUZUthsFSFXlWo1EStC7UsBvLRNpFVtXCpVzmx6+yjzVK39gjniyHV78nf09vPRGV1b8tf4dim3vcdvW/V2q4CUhqxVqiKbnNzM0v6nTj1Wbcc+O0+VbZ7277G/+/m8ubsfLLYbdd7AM0U0whCLWWsuC5Rro3ijJ9SqkXPPI1l9UfOnhrS2rZY90dz7vaWyeZ/aGAAWNsr9nSWcPOUr5rtyqqVFUOCp3a+eje+XJxeTsXvjrAff/4zj89FlPpmtKVmWBS2lMyy3ChlpZWFVuctwl8dsallRVuhqZVMto0NL8O+jZZP9r+XEI1+si78KIBznAjH8XlgcPxF9KEf+drmaV17itdOp7eqcwoNmjTT0dmvzm7SHRA2UU+bYz090bSzArVUqx7VeiS8t+K+1/WZHEMvHW99Iv6B2Kv1CeBlxy2luSDOzHR3hC3dqLUXFUxUhNYSL8bgttx4yhuuJ9HEqd1tA3e3tD7v25cphnba1oxmH0OvtrG3+ZaS9Ssce1XEvqB4HzdLyxFMWDWGRklQWyQ0T0vYTrIPtb7mCWwC2iq2bZWqW8qMushnZ7w1ekqXacuVVi2lY3vdS7l7qvtWR0D2GGX/Xvz3DU09ThWO18mhH1++p4OzfRy9eNNxScJTK3vqzdYex3TDto3hVz0EE+BGidoImBaStGIBNk9lollKY6vFq11ZBZma84uTBYlotFQK0UYWLybSjL1j4s6FUKuBfzlb5axuI8cd+KGt0BrrbWa9zc74Mee7t5lqs+p2YyINCS2JPA6UMUGM1AHaIIinaKnl0m1pJzjws6dlxe0aQoyEagzeLsBvbxdfO9Qr9QlaAloKWoqNt1rQYiClOCtKxKJEUuILe+AvPRQLAiE7DAnikXjd1xEHPtXnT6mNUj1tRiBGRVVs7SoeKJbgekl4Gs8u7Fy7kkDD1kMRE2wXrEqxG8F96en2gOGiNm+b9kqLNm9LdRaRdtuILdW+24ubR9NtfuiIxAsCgCrUqAQPaNcOGvp5xadbt3n6GmROrHo6cbdqdZvTtt+8WvdthyAMaSAlK1sfh0BKidhhME9Vsv3R0qlKaaxz4/ZYrdz5FNFmLKfhJDSNhBQpyUSUQ4iUQWhjJAQYpghihQVIxrg3MD1gnHLzQqocgR9bm0rNVjikVXIPduRiRIFcbE+TPr56wNPANtuHPaDDJ+ueKX47m33bUvaOPTgUfV87piP1Rw90vJAw8H6MIRnbcHhlofV+Tf3XH31+8I/UCyPkTMkr67qwLjOMYsCPHOVcwl4JUgNDGhmnybQBT3ecL/fElDif7zmf74khUasJPJufx8bSKSWzzFeTHbg9c7s+0mrhdntmWZ4BWNfZNIPyQm3lgCPIJmuw2yP9/vaO2rtNDj2xt8dum30C9vTnfWy8hAC+t11/6PjrAj+IlyFPnNLIGBO9VK85l1YCWVUZ48D5KMDo9xJDJA2JIGErQ2v6CLYpt6ZktQjRBhD4mCq1sbqmQBcADSLcTwNvnAqb4kBKjuw2M4pULdpvRmdjXmZuy7Ij8Q5MTUNkGgx0oQpazEBNCCUEhhh4M0RuY2JW5ZYCSzTWzjlFppQ4j4nfvbvjy7sTb84n3t1dOI8DU4qg5sTWUq10u9rEFZxFE4SURg+ouYDcD7s5r3x0A34z/zbwRkz605g9HLNlceFmK00ZQyXJioiSyAyd/aOFqJkjSOSjARUrpS56yLVtldIsorMuV5blaoZisdLrIjBOA+M4eM7rQAwDpWTef/MPfHz/B27XR56fPpCL0flqMyColMD1+pH04Y+czvfcf/EV42i0y3geieMFwoiOAlLMUEcx+M/+tU2byOImsrlJTvGkoBR3n/prr3uYMWKgTYyDGbW9DK0Dsj3aMy+Z6+MNLZW7kHiXRhNWHxL3lzvGmPYFLwhIYCkmgByjkiIbaNnXv2EzMMPOuBPf2NyAKhXPPTfq9uzRr+hRDdidq6bKvKzM60ptjec1c10LVZXrWplzZcmZf/zzE398/8BtKbz/eOM2F2pT1mbVNNaifHi8sZTm89g0e/ocC0BMkaUJ45gN0EgGSKQUWUtlGCIhCcMqFmk6T1zCwPhriJFaK+ybiUCvqNXbZ98HPp2jr7PB23w8OGGbl6dW2SAOqCpDmhjHM7VWhOAG0UrNz5T87EZsQBGqNPLtieX5gYiy3p4oy5UQRjpc3tl9vbS07kuPaZaohxEOVqw2Dm/sLnX/mO7XvnndRyf311lLW2s8P880zy9vJZtoqzsEpTaWW7X0SQJVKnuYwmZVWBoxg1RhzY1lXdBW+fj+W/7p3/0bTnf3DIOlegWBOH/DcH1Cqq2Hp/MJHRstJGow3nsaR4bx5ACQOZLSBZ19KDcHxg1Ir2gyvaalFpZsIu1rKeRs75uXmWVeLP0qRXSw6kdG0VRnNDwxrwtFhccWubbIh2vm4fHGw/PKnE0nJ8aBlAam8WzV3aaTpUNHE/asS6aWCmOjjBNDSCiNumYXqX29dVXVBFLb5gipC1jbPlTWTF4KtVQWLRvD4f5+JEZhnCJDEkYJJpotPr6BoLZjKoFSxCr0aCNI2UCf82Xg/jJZCfUK3emrKgRnaiw1spRgTDnfSUMQzquyjI0UxaLCXpmrSyTY7D6YqNo1r/or0l+mOy2tAzj9/ag5NcEMZO2IZgcQuhMMe9noQzCQpuTFquN0xstyu71a//UjCryZImMtTGVlKCvSqun5tEqbFys6UIpHeJs7/tbXuTjw4/djdmpBJNBaQbWaI5YTcZ3NSA/BcoN9LTuWgu9V0tiqsKk5lWvZSmo3B37CdSQmS/WaH98znc/ElLi+uef5/o6UEvPbN9zu7yywWgrRwZ9WsgEODZBESCeSVE4nEEm02khpoQzZUqlLdiaMr0U9MCnGQJdWaMtsgZgQaetiAFIaCNMjkgbCdGZcVuJ0eVX2VquNh8fnF6BHF/wNIVBKYVmsmpLZQfaeaUzM62ps+ghDMt1N0wXx6oOxV2mTLRWrqTGvSjFrOyYlJXUtI7ySon1P1xAcPLBrjnpzYKVxuy08P1+ptbEssCzOHnBxYQFWw/AMnI+dSCwohZ5XqS7cboCWD7Eg5Kqk1GgNlsVS1UQCMaWNXXYEWFs1+YoUoFUhdcNdcKBKyC1slche84gx8sXbL0hDYLpE4hCY7iLTNDKmaMB5K1CUZcncrit5rXz7TzN///965PqQGYbIaRxsjT2NXO5PhBQ20EWCMJ4S5zsDlr74zZmvf3/HMFnGyTQa+5USkZzo6X8N8wvVK+EZO/FG4UrTyq3cuJUbtRSePzxx/fgEKOP9yOlycr/DKyyiFClelbkiNSMVqEpdKvmm1NnYrMvayNVY7U12kK4HIYOLB3d9n5RMJmUaBoaUbMz0VC88PVDEQJE37zjdvX1Vxo+wgx4/nOK1P+8+e84LDx+/ZZmf+fDtn/n4/k/Mtxvv3v2Gu69+y/l84f5yxzSeGIdpWwsVOJ1GYrpDW+V8fsObL76mlJV37/6Wd1/9nrzOfPj2j7z/8z+R88rt9sTt+cn2pFZ4eviGEBMlrzw+fMM4TsxPf+Lx4z8iAo+P73l++siaFx4f/0yQQkoDp9PI/f0dp9OdMd3pgcnu+exhlO3Ohf01MdbQPM/knBERAzqjFcgxYLp7lwABAABJREFUhlrYTfhjO3f/6pM2/qHjr8z4EaaYmNLAaRwZ07CzZ1pDxZxFVJli4j5NDCl6ypUtaKOMXAajy+acmctKpZJrZpl9Iy6Ztq4bUFKylWlecmZesgE2Yno+MQTa2zvOX7xBUkTGiWEyqm1VQZpFN8qaKatVIZlvV55vVwCmcWIaR2KITAL3tlPQqpWdRWHEGD4G/CRuY2LQxlMKXN2JvaTIeUzcnUZ+9+UX/M2Xb7iMI2/vLpyHgTFFSwlwTSEr39nJ1Ta0YgikYSBEo6jWjdX0q/Tm4fmn39GBn+7GqYvtmvkYUaIL0SVpDFIN+JHKINlBosKgK0IjaiE2A4FEj8CPeOlbNw8lgu7lTmutPD184OHhveWMrjeyG1v39xfu7y+Wb59GUpzIJfPhm3/gz3/6B+b5mafnD5S6Ulsxo69VqPD8/AGVSC4Lv2v/DcsNHyLT3cRwPtNIrApFs4FewpaDu+lK0V4AQHsiogE/rQM/Ujaj49V7UHBWXTLhvgASd9EzdUB2uS08fvOBclsolwt3b98xjIEUE3d395zGkS7yCgohsJZmZV5Tr8DlS6ADEYpHFF3jqustqYqJZqtFMnOxTW3NjXk14KcbZsDWL7U2Hm5Xnq43Sms8L4XbaqDOXGApMC8r//jNI//wxw+sufHhmrndLCJZPWWiZeX9442H64zgQusd3MWNtxi4lUYa4lbtIkT7mUtjTBGJkG5KiMrpvhLP518xd/qH/nKYJ9oBIfv95Zz9S4y2I5i0gz/9+4ziPoBCGhz4KcbUq7mQ15WyXCnrA6hu5aabNPL8xHJ9JAJ5fiYvN2KsxJjsnJ2f6ZHdnkFiA0n2ny7Cva8bh/zd4wX3+/k+0OcFAPS6R2uN6/NMq5m8LLSa8W0QENYK15ulKzZMS8tw00B04vZQKmOx8q9LacyrRbMePnxD+g//lmE8bdU/gsAXY+Y3p8wYzKifzqZptSKsBFSEeJoYTidiTNxdLtzd3SMizMvMvCy0VsltwRSImgnRxIpKI+eFPM80bay5kV2wep0X8m0hxUAZB3QaIfR8CGMordcnY+dp4GMbeG6Jj7fKw+ONx+vKWqFpIIaBFEfG8czpdGGcJqY0MaXRNczMSQ0N6rnQkgWZajaWbn1VxoiacKeDAM2dplIs0ltyYV0saFNyYZlNU6zUM6fLSMMAmehpX5bG6GknIaCWQGJg+FqdCWYpbSLQ9Mw0DajsAQZjZBlbTlWYc2XOgabiqTyJEGBeG0sOtAanUQjRHNKKgd52d3uk0ZzCPuePa4c5Eao9Mv09fw/YPKeDsJ6i4BW/mljAatPIx9PPWiPPC/N1NuDnZlVSX/uIQXg7BeIK45qJZUFLpi2LlXBfLIrfBVqbi9LXVim1kEs5rBXq4rTmjbUaabV4gMQdT3aGluHNBpwqB0FtOTpQurG11Juvg2y2nxobbxxHhmEgxMj17sL5ciYNA8u7L1neWiniKQ2MwVItEQ+pqYAMxCESYmPSSIyTpXrF0YCf1lhLdiatBVeQ4P1dUZRQK225UfNKATS4lRrNxiYm0umOc2kM53vaKwI/dQN+9uh7jJFxqF7FJ3ObZ9uHDm07pMh1NpAgHgAbs5PsjSkNDKMakKfGIlZc76fYGI6DkgZnAKDb/mQ6O2yBx2lqfo3msLfWuN4Wnp+fXU/Q0rFMdDqBuuMexeoeiDAMpmPzMiCKMcpaL1biDxGGYsBUq8q8FPJqrLNh8IqPB9NA3X9qrRID1LIDP52YYoGIzsV/3cOAn7cO/CTiIAxn4TSYplsIFuRrpbCsmes1s86FP//TI//v//sf+PjnmSSJKQwECUznxN39RExCVav4qqKc7kcu70bSFPn9f/SOla853Q1Mp4Hz2bTh6i3QrqYb1JrZqKhS14W2zGb/hhmVGZXGIplVMq02nj8+cX14QoLw7u5LTueTzVVN4MpdkZXQMrRAaKsBP0WpS0FvUGdYV2XJSvEgpRfw2tKLPBZqoJLbo8OQSDEyjgNjGixwGVwXTkJX7eZy58DP/TtC+DVSvQ7gzo+APx5CoKwrTw/veX7+yMf3f+bj+z+zzDfe3N1zdznx5v4Nd5c7TsOJMU3GFHf7b0iBy8UGaCNTyTStPD1+y2//5u/I68Kf/unf8ce7L1iWGx/f/5H34Q+UkpmXmaeHZ1SVp4f3FlwaBp4f/sCH9/8BEeE2P3NzVtCyZiQU0+o7Ddzf3zNNZ5eB6IBPf/Rnzl7v/w5tYODvjev1SgiBaZos6HZ4bCfqLK8DcPS5bK2/MuOnswx6GpenJIVghkLgsOnZ4AyY+LO48xIUl733yjyrRV7ysrLOthBQC5qzLVy5kFffrNbMspgAmKVW2YKex4FyLoSmJhY8uEhiE3uoosXEN7vhWJzSm8Qqo9SgVtUgJLunaom06juzYNcexQCgGiODP4xpFEhesnHw0tkpBS+956lueDqJ07drrY7Id9p7Z/8Er3wWfqVS4D8+uLbB3Z/LMZ2r/625ULOncIkSqIgWb/uMkrGUPEvBUgd+uuZNVdmi4jb8PSc7L+R1odXKPD8x30xYLa8zeZ0JAik2UmouHD6RkvXpPF+Z55unoeQt8tHZAZY+UShloZTV6N0lIyFbVM4rLogeU9OaizvDzjDoG/XhcfienUVxVMR83UO2nzvl0MB58bGrG+haPDXK8ot9kTlEFVqDTj0G2caktEZrXex3F15/sVn1z4I7DeLtfKRRty333L67v9/p0fh7ValqaV5rKdQGS1aWDPNaWbI91mI06qZ7C2+6QV5NI2zGdB/He4/1CIMZP0pPObJrYKvEI8du/TX6UI7Pd0fr+PwIAL18/lrHDv5896y+CoiY0OkwMrhI/TCOoBUtkXIAj8zQbdSykteZNQ0s85X59kxMmSFFF+EMKAPKAPZJWneOeqlq+4Ot4eq/6HGOHa7+CJL/Wnj59xw2bnwdFywK11XsA6jYntgjjV0y5Vg4sfm86ftka6YTUEpmnWdzrLeKicpZlZKaiZBjlHfBn2ORwM4qNraGbBUsgM3pNZFUb1PZgWPp9VhbAGmbkbqtcMo2t4/30rd3e+hWOrg0e9RqbB/YI4ifUqK3NbuvX7VaafVsAtO1lA1oeLU+1JeR8u3xyTraPE20eKpJKZ0pYmC2ajQiTBdi6D3s97eti/18XmWwHuyAbS3TjkH0fcvSXWy59fXZ988d1zwYqpvh2q/hMGC/B/TZP29/7wL8vHiXaTGqi9lq8+vzdqo9paF5uq3bNOoMrVrKVvXuNXVh9mMPVm22hk0oG+s+3rs48IsdfFtjvH1627PfgwVIvGroi8/1cWJjRFVpDlxAd5x8rehtQ59H1rIWVPEUo2I9EmogD5EYhVZN32JdTsQQic10RjYtqbCDzXvKSAeooEarIosIsTVadH1MrzbbmVtmz3VpAlvXm+ugIDjDH0I1e7oz/l+vB20+iEAvrgFQJBCCOlPJ1pPD6EYEcjFgtAoenLRlrMYevW8gjRCcmeb9Vjx9TNXWa2PxCOGw5krDfxdCdOZXeAn8lFIoXlq9FisGbIuB+0ri3m0Tq+7VsOIT/R583DW19L1uu1iJbyitoVU8nczaICgEO9HWFvi47P4GavrDvZ369FdR6ibu/rqHiJBCcrHe6ICXgV57RlSjs5zE953N+fU1uTZFRSmrkpdKKz3ttfieq8gIqUaWxQDNWgOlBHI2oLaukbpgadYuhK3NgJkyr8awCisaVyMwxEqL+zqlbiN2AEREvCJfo2b1apRt0/hBZatCq9ua2NO4O7Du6Z30/e4H2hHZ/O4tBawvKA78iIRtH/g1+vHznu/Ao7HJ9mqvPWW9ta55av2+2eHabQK7Y/reI4EgCdFASsZgFoRpujCdLogEltMdp/OFkrNNLc/sUdR8QBrzfOX6/IgEYV5uLMtsY17DBsgMw8AwpI1ZKL5nmk3WU5x3m1226+17xb4G5LxuRa1CMC3Lbj9sc9r3+G4b9In7OdjPX53xcx5GTmngMk5MzvjJEmwCtGbJPdpIwSp+BRdu7bZGuWU+PsxoUx6fn/n2/UfWnFmWhevtSquNKQXOowk655xNRb1ZKsj1ZtUQegn0GANhqUzNBLB4I0xhJIRALbvewnK9cr3eKLXyfH3m+WqMn5yuzCkRQ2CdTlzHyemdBipZqoHRdGttnMfIV2/uWE5GF+4Vx04xMcbAZRq5jIkpCVMMTGPidBpJQ7LoaSnMy8Lj0xPvr1dyLVznmaUUp4UNLlbn6TCv6d/9cM++GHQGftgmF8RLo8ouopeCMkRj+aRQGMJquj5tgXoz0dC6UMrNwJRa9goxbTcUMo0szQ3GPQ97ud2Yb1dqLTw+fuTp8b3p8+SFklcTFr07cbm40GKciHGk/n95+5cfW7Js3RP6jfkws/Vw9/2IiMw8ec996F4hUdVCQnQQEoI/gBb0EEhI1UaiQYm/oFpI1b0SDZBogAQSdBECCTo0qlQSjQtXhe55Z0bs2Hv7Yz3MbL5ojDnNzH3vyMhz0yPtHM+9YvnytWyZzccY3/jG96XE508/8PDwkRgmTqcHYlYaZ6Gojg+Feb7Uim7gx+//VheS3Q3fFMet8WA8mNrXXQymeEz1imvNPgpVREpz7SoRrZZFWHx8ErkEfolWL1iKr5hKX10sj1FALQW9rvOUuY6R+Rq56YsKwPqebhgYjjt2fV/V7ZVZl0phDJFStP2py6W6I9QxgJAlqvC1COKMtjMINTnRTXWaIuMYSClzGQPnUcHcofPLkGt2jkJReqv3pGAY54nPjyMxZh6vidMYmebEh8eR++vKBIqlVQZatVODJm1dqcmu1QDce1s1t0SF+ap7QDd4be8yBuMcGINxQjdYnBf63YCvFdg/9yHPNoOXydprHs97lzdnAEWFEQ+HN/zqV/+EebqS04h3hWk88+H3/44P34fq/FQZXHHm8fMHcsp03Y44znz+8QPO9ewP79kNWpnqhiPe7xFjcJ3HOFcD/0gqaossReEMU628jdh6hk1ZoSi7obwArjb2vc9Bs9c/MoA1ONcDnTJ+PJAglYg5CyYnShZkwwZqcHoiqwMehrmyfnIuyPmMKd9ry/Qmn5eDxUdP7wxv9wN3xwPeGkJRGE0Zf5nL+aRBRSm1JUJ4enrk6fFpqQS3xGXoPH3f6z7ddcTdXgWdxwkzastsjtUuXuApZqaraqV1Iri6F5pOKc0xwfWceYqZp5A5x8IlFlIRsmjLhbFazZUilFRt6a/q1tG0O8I08/GHH3UPso6+77HW6jx/xSM1a/qUl39z1GAtzolxDMQ5qijsrEnB5TLz6fOF/mI5HrTdvOsc3oHt1sTbWKfaMHNknCMp5qp9MCIU+t5yF/eVCr4GmapnUt13aus6ALUdBytI8avmorEUaWNFFj2TJbhE9/c2E0p5niwswHjd4VpA22ZWe4+UdW0Pc2U+xVAFYlWHgyKEkCghYUKGKTA9nrk8nBinyDQFZVi89lEKhAniDFlbZ0pLOmpSHuew2DM3RhR1Pm4vQgM4G7zcwJ0G4DWx4Ab+tI/fFvJaN2LL02DBsdd7UCEJRV0UPI5BQSRT9fJiCFjr9LrOGWcd8XAk73TfdN5jWzW51PskRl38siWLaKtIAxUQMAkxFp8TqWkRVctvZXq2pEWFuHPOFFkLJFocSVXv6BWBn1yYJpUAaMmusn60fSIlZSw1xl+79i4aplABmRavQi28agHIWXAOxJi1pZNNYYqiIIUPFfjRXACobJ/Kzh+NGkBUgN0YBVlOTw+cnu4VRMqWnEy9D0esVeZsztI0o0llRkLSCKZETE51GGoyr3PYIlWPUUJGxKokRtB1REQIMS0AXwNPGshcSqkmMobcTDikLMXlZDK50U1e8VDmWo/rhK43WC/YoWCHhB0KxWcSAUpAXOF425NTYf5N5p/+y8DTu5kchDwaSt6wuIA4JsaL6vFkSRSf8cEyXXfkFMhJmK+ZOEYohnzuyScLSTA4DB3kwuXxxPn+iZIDdCPSX7Wd9WgxBwVDnRV2B49Yg+sqoznD/YcrDx8nUshMj5H5SXOiXZfpvUCENCcFlyYIM8xRGT9zFKak4GOo69JihGRQHbK66ip4qXq5pu6zCtQCYqreXuJ8PavkQX7dfKPp3fwxrV4KSJWlpdI6XxmwmgtN04Wnx4+kOCHA0O/p+x3W9bhup0DOfFHGc8mISjZV4C8gOKyF3f4Nb9/+lhhnbo9v+e7b31Ytn0cuF3VnvL//yP39Z3LJnJ8+M00nYC36Oud49/5XvHnzLYfDDd++/zVv797jfa/n1FonZUUxjOSq97XW9nLOhLr/jePIw8MnHh4e6LyHuzuQHTkHLpdMCGqK5b3XWNYYdfeui4xZU/E/ePx5Xb1EGJxn57sF+Ekp4TBkm4kpIkUXUWftIuIlpTqYlMI4Tpzunwhz4NP9A//w+x+4ThPjNHG+XMg5cXvY8e7uoHTyOTBPMzllruPM+Tpqby+13csYugR70zH0HZ103PZJreFCJDW20NOF69OJmCKX85nL5UIphcnaZUKNfcfZd6pfMHT0faefUX2HCoWhc/jOEkKnfdNW6ZseXZiGzrHvHJ0VemfovaPvOox3Sl8PgXGeeDpfeHh6JJbCNQZCynQZ+q6ArSivMc8m1y911Gm9PNa2LtGWrSqVrXakuhA5yXgbFfiRGSdXDIlSrhCfKDmSwkiaTioWGAM5qrBhipEY1A4x5MhULRzDHJinQE6Jy/nE+fRETJHz6YHT6ZGcYk08dEMedh3DoDar1vSVzpw4nR85X54qq+dKrIvgehkz83whzCMxjHz88HfEkNgf7xj2b9jtbxDbI53DWK3UWNRtodCEw7VypA4MimBLfawgT1iAH/hlgB+9JxUKKBXnKKtqSCpochEz85S4XhPTNRKOIMbhvLZEDvsdw64nxogJVinvU2QcJ1LO+OzIbJl+Wu1sLBtTAwoFfoScpAY9hXGO1W0rcZ4C52mmAQy2Up1XDg6LHa5kYZwTD08j05z49DRzf56ZY+Lj05XHMdXF25Jbab2CPqsNeFZHh84oK8KCH0zty9d2LzFgnTpOdJ329JraeiPO4gdP11m6YVDqvftlgJ8Gtj4HJ772+M+AAn8BMOlIE+BwuGU3dKQ4YySy6y3X6xMljjzd/6jtQeFaBVMDj/c/cnp6wLmO8+MTH37/Dzjfc/fm19zcvMe5jpvbd+wPdyret9/TDQOFQogzMWlLmZEOEdW+GIY9xvU8X7HKKuBc50L7Bq0V45c+MoJxVtsHLSqQ6oAEMQVsR2V4KouunVJLqBMW9d/LzCUp8COZks5wPVOdQJcE3kwDnj1D5zh2Pd2wUx2AkolVOPdyOnO5KO1ZnTb1Pj4+PPD50ydKzux2HbvBY53F7nv2+z0iQoyDtj6lhLgLmCsxRuYpwDSTS+EUMzmp9kfvXQ1mjMYGXUcImetl5JQSp1S4xMw1VvlSZzFWgx/BLNXRNEVmmTV58RasEKbA+XwiTDP9MHD39i3DMCyCjq9xtOq4Moyqdk3KlKjPxZCYxkCYAymVqnlUkGuAhzPOafFrv+toLYxdVxmHVh1cRCy5RKZZNZPmaWS8XIDM4TgQU8bmxrvRcRFiUcvp0hqKa9BZNFnUV2pLkFQUbwF+1BqzgkjboH2FdrUDfwUvSi2+ait6ZqsnVKMSTTSz4TyeuV4CKSemaSTGgBGD9x3GWHLICvyodZDGYPdPTDEzT/GXBX6SVvFBNU5iSuSozLEY9CfFuAA07U9hnZPUlaO1vG1ZYQ3wkWd/r3tPG5elsS2o8UdjtMFiKNCq3PUTaIzaVJR1rkBHZJ60glwShCmplXXWJNZaS48CPasWX61GG4NY1cKkaoQoS8IgySIp4Usm22r0UPVTkAaYqG5FmtU1kMpWyKwMuPzKreyq9xdWJqBepmXU5lJ0jWvXu94DTaIq+NxAI2rSXA0srNFWKaG22tDeQ79HQWMD60IFv/SnFeRbu/WyZy9gvAJ1l9MD1/N9Be20YCjGIV2vAJLIIvBOyZQYKGWEkrFpxOQKeFmPGHWTE9tpMRIVGCjouG3MOf2+YWENNDOZ7eqYxSDZ1bZTLZSUFsWaqhXzyoeIoe8GbAe+E2wHtk+4IWOGQuoSSQK5TFjvGfoe1XYTpn8Bl28C8wWuD2qDXkIk1xyh5MJ0nQkxKvDTJXy0zNNUDXsMMUCcRVk+J0N+HJAkePF0Mmhh5MfM/Q8nUpowuytmf0UcDN/09HYAA84K9uARa3GdA2PJMXP/8crv/n/3yva5ZNI146zh23ee/a2HmEkhk6ZImlX2YI5U4Ef1L+OGJWasIWWDyWvr7LLq1g4bI8qeavd3AWJz5nK9wJxe2aHtS9DnD7Z6Vb0qLcgrk8ZYoyMuR+b5wtPTJ2IYscaxH24Jw8ywO+KsB+sI08jj02dSihhvsZ1dWGqCwxrLbneHeWMpOWNNworqeF0v91zOn5nnkb/+6/+Sy+WROSRO53vGj1cK4GyHtR39sOMvfrPj19/9BcfjLd+8/463d+8UoJUemuYsK/hvpAqGA9rtoiSAFGfmeWa8Xnh6/MznTx8ZhoGus3gv5GQoOTJbg3Oe3e5A1xXAIl6FyVuI98ccf/ZWrzb4tI1LB16jnTW3L2Dpi0aE1T2rsnYuI/M8c75cuVxVb2Cc56o7kOm9ZZo7srPa6hVU9FkniFLUl5YTU5hCYpzVkm2cA+Mc8TZTqjBjrpW8ZQfRmQKVdleMVlai0Q0iG4ONpoq7Cd6qq5dI01TRW9Q5T+8DFHAoS8ZtWkuW6F62Q6csVSGt/Kw0t+VP1lLQnyXXa8dWwFcrG5o2Sa0ASaW/ChmKCoKWHEh5Uk2bcCHNZ3XWClfCdF6ctnKYq8ZRqJS8zJwDc65ig1uA73piHM+kGJinC2G+VqZQrL3kgrXVPcwYjNHJrwDSSIoKLC2uIS/5j6W2XuSkVdfpgvMd83QlzFeMK1gbMDbV+1FbvYqsSQqlXodWDy3r41K+8vwvcL/YpOfl+XNL8LcAVXoaKRfdbCpNOJXVRSjV+aBuFImYlPLtcqmOMyC5Yiyl1NZKkLy2HaRMdbIohJiYgwI/c0xMVT+hc1qxaqyqNR/R6wui79OAq6jtXSEmQlLh93aJF7k12W5CtfpgRBlLncM6Q997fO9offkqvmboOkfX2Xq1lH3gvNVk2ClL6I/iX/57HWVTdS9/FqAXanF5+ah1fC4Oe7wctrqZi3gE6LqBftiRc8L7XpkbSd1s2juqGKr+xzxfuF5P+BjoukeMcXjfYZ0FKVjrKOhaUkphru58WvnsEfE463WvKarRYMRixC7fQZb/ha31+wv551/mMOh+4QzWVcUvoy0wmiTKci3WZtHl1HVPQMHbXLQdLFHp4VXod0sJ1vanRDANaM3V3ri1urC0rOpESZX5iLLsyqblJVensdSoyFKDrJZMVtH4JjZRnUwKop3UxpCNI1unjC3fUboeJCN9QWbBpIjxEesVPs8t0qHtibWdqTIJSqE661QQIuVFjJdSlr3qNY/y7PHzkbKutetYkgo051RIUtfUkIhWW7wbvb/d9+cn3MBudF9poHUDGVgT3c3sZLvCiaxVxzUwX5VCSlndemQ5iXWOlEJtO9fXLO4+tb1C6fJ1PNYroGuAIYTEFCJT0ERjmhVM0Uq0wdmibKmUlAXY9HQaDb+UF+vLKx1FgTtp4N26UbC9mNvWis32w3Oo+OUIWwGetse3xGvL+Gn/PhtPCyq9fSvRGGoJTXVtayOg/b06VCrIl3LShEjM5jq2cbNe0227zIsH7dvqemJUGNgiYATjLWLtEuuKESQlnAC2ttYk3euN94hVBsQvcSytu3XKtf/Om/ViXTt0jLf2bGpL1nKZ208uSKrrCmWRUtiyfxQdY5lPCnauc67dx1Vzr+o7Fo0nwzxCLlij8ZEp1NbCdifWOa5gc4ScKHFGkmpYik0Yo6rOJoNY6j6iIvFNw7FJayydMSJqeS9mHVPofc7Sinalwj7K/Mnly9HxGkcD3US3EZodtm4jVSagsScEbQMTQ9dbdgeneZXVjTGGQg6QfKEkw5w9w+SxQej2jn5w+L4WXkzBSBVQTqW61BVKRNvkpBYuVZFCf5fKYu3e9uNWMGnzRGrel6O2doUpMV0Tcc6kMZPnAq6Qo6tDQqhb7ab9dV2XFyOBNo/rk+ua1VahVXZDY+QNiL+JFzXWyJuV45Xu41eAnpdxamO+Lefb9iPT9po6P+LMNF0RYBzPXMdzZVEafDdgcmSar2oFnyImGky0yx5nav6eouaBIoJ1nt41nGEkhp5Cxjq7nGfJmZRiXWstIvn5nCwaU4UQVJtuTeJZQH5RyFQ2pj5C0TgsKPDT5EWMWdvAtD2Y+vmNzLEpemzWse19/0PHn73Va/CezjqsbNpejAr02kpZKqhOjQblwnma+PTjZ6Zx5v7zA9//7gfG68T5euX+8Um1PGo1BgohZ1JR1lDJmRwVuJnnyBRT7SfPteXLYB7PJOPovOc0RU7XCW8th86x7zRRwRr2h0NNQlUESm+0CvqJaItaEg3UT/NY0UHLm+OOm706lO33O4ahI0Sl7Tuj51higJTonMEZEBKUVJknURHQupAUI4hzGO8VsRRDSRlj1RZTrSyliiL+mZAfaRO2LsICVlpLnfptuTq5DTOkKyVFxume+fw9OU6Ml09cHr6vLVlX5umiFOGkrJ+StYUj1kpbKlHdu+rkUe2GosyBSvWLYSaGiW1fPlArjI1q6xFxlAIxzeQcanLTeio2E6qyTAwZ8sT19FG1gS5PDPs7ci74/sjdt8L+VsXbJBdM8RQEU1pKlaEKOFNpuk3PCCKlVFHnEvglxJ0FVfcvYlYb57ImKLZVXm3B+hHEkjFc58iP94+M40gxhZvbA2NScCZGZcedLxMPjxdSSux3O0rVrjIiS7ufLTpPRZTpYIsuRSEUQm0xe3w68/BwIsTI+XLidH5CpPDdmxucU10sX5OkJRAS0VazGR7P2hbx+Wni09NISIXTHBnjJlioG4yzqhuz3XT6wfHtd7fcvtnhvePmds+w6+oV1A3SGAV+nDN1qOj6ZY3B9+ru5ZzSfNMvhhr89Bs/B2h+4aMGzJty9JoAiWBNhzGObCOH41tSHOn7A4ebb+h3b8FcVPsEna+msuBSClzOHwnzBWMcT08f6boD1jqG3Y3Saq2j3w10fa+gYR2T6pIzIKaj7wbevv0Vx+Md3vfc3rxjtzugO5GvoOEmsd2kT7/YrQNdq3uP6xy7mw7nLeEaucxXYknEpKyNMGvbTqwMju05maSGAlIKpghXdHM3VhdjqWPd1jYGZUZemSfDqXOcd47cOby1dF4r+6UkcBo2diYjZQLA2UQ3GErWNb7MMzkargXyFJfWJKlubiUZDLXv3fXgVci1eAfWIc4hb99gbo76+PYWs9/jUmb/ZiZdI3INfDM8MN5dCCHx+KQOT0UiMc3Mc8bikeiRqPFEidpOmlKiZDBiscbR+Z7eDwvI+Fr3UO118kpnFJYWV1+BY2vUpU1qC4wx6g6Uc+F8nvloT3TecjjuKOjaUsh4L1XIu7aaWsMw9PSdJkb90CvY1yr4Zk04nG/tNWYBcpzIQhHvO4fvOpxTUC4kAGUphRo75UXDpLqvVk2haQrMc1wKAxlW4Kcm1CrUXNvWnMMYR4yB8+mRaboqxX26EoI6Ku0HNbOQlJFRS9zT9UKYZm2xqsnQLzEnc86Mlyu+BExOuFITOtHz3xa3NMZRV1ZnDM5Ysl3NSMqScK0gSql6drkG9EgLMbYAjGiSsAGfnwM+L4/noBGi7Vitqm8X0E4FyMMcoUgtaCorqxU4W4uPzv+ijkXLfU80n9hSAVuxln63xxsFfNxuh+lUKsF3yiZqLQwxaHvVNEdiyhjf4/e3mAr8v+axaCPV/9HwbW3tajp+DU/T55XdsQDty36gcVKpBdZS50fl+tQruybMjQEk9RoVu9GfMWs5zVSEKIeZHK+kOHP6/D0Pn/6BUjJ9f0s33GJtB+aI6UrDlCrwHonjhTTfU1IgXj6Txgf9wsaD0bnW7W7w/QF179JrretyrEB4TWpzXsbZkigbbY22ziP9UUH5Crznep1iWa7kqx4iBu97xGeMjYgtiAfTF+ygj3GG7DQO7DtlKt2973BeiHMmBhjHQk6QQyaNyrS8nm85P7wlxozrBNcLxgnvfjVwPFpcXyhB49EShTJBmQSSkFJhzlGRl1nwdFgDzhXskBFfcM42zAxbrehBCGNhPI9Ml8Tn3418/PsrOWQkC5KF3hviUCg9kCBPkGZRHaAEsVTTk5SZY5VHiYFQGT8ualEyp6jdErUws4JA9b42QEMqW0tAVFH6dQsi8hzs+Tngp81blU2wGOsoUpjTyBgufH5MzPMZ5zx3n37g8eGevttxc/eWt+9/hXOe+8fP/Pj5B0Kc1UKnrrNGHFbUEXzX79gNO3U8647sD8daJJqYw5mUM2IcWyXWbcGmFVqulzP3nz8xjhP7/V+TcsFZj+/3eD8sOqimtWLVPSGXTAqrO+Q0TapFXDJ95/j2m/dYa/DO6L0s6uqWS2Y37DgcdjinZIqUZ3IIxBgZrxdi+Hmh/D9/q5f3OGO0ZxTdPJ0RSm316Iz2HGqSXy/uNPP7j584nc58+OETf/PXf8f5fCFEZeqk0iqUusmGlEg51USuAkxFlfdjVEeMVAXeIBFPV65JQZrzOHG+XOmc45vbA9/eHVQV3XfshoGUEpfrBW8tMWfGFBnHq24WVshWB8p1Ckwh0NVJP+xVt2DYDby5PSrzKBYsRquv45UUpiryXCrokNYWpWyhiePVDdc4T8kFS6RIVg2AGvwhlcj9Z8r6NuCmavtAdeqqYnaiPdPagzhBOlNKYDr/yP2Pf0OYTjzdf8+n7/9KmTNhZJq0da/EVBeyKjRcg9HSJjXNPrduQKXQRFyNrCKu7fwKkKfM3Dqlizqm6Cq9vqbpx6woaqnvWTftVLie7rmczoy7J7rdLSkVdoc7+t0du/0NiCaUqqdTxcqRWvFLWo2ntXpV29CiWj/6ONaWsNc/jKytXXqUaiGs9GTvLbYIznVKTxXDOAc+PTxyuTisd7x994a5gqix2lqezlfuTydl3CC4fsBjMJLXvvmcsUmTFpsLroIF05wZq/vNx8czP366J4TI6fLE0+VpOa/joafDIUZwjZYsDZLLjHPh6aKtYg+nmc9PE7EUxpyZasXfV3cVGrPHW21TNAVjYL/v+Pa7G7791S1d53n77ob9YQcoAKnB3cr+KYWFbbEsbnWzE7MmXb/MUauA5eusn9cEgNp7ffU9F/CHhf6tQrPa/uacQMnsD2+gJHy3Z398Tze8IeMYxyu5mDr3lBZLhstl0qAcQbctu1R5rOsWBwTvO0opxOr0hliM22NMx7A78Be/+Re8efMtu90RK2rZK+K0N146hXoacFW+/Gq/yGEE6Txu1zHc7OkGz1VGLg8zqQI/Maj1bmoWwltpEVRkVeUddK0di+Ck0FVKh6mFla4ySkvMXC4jxgjnznAZDHQO2/d0u0GZtyUhlX1kTELKpImky3SDOpzInChBrefHOTKfJsQYut0BP1SHwGSw4lUHwvWULik22A/QdeA93L1H7u4Q32HevcXc3OByYTdFmDNymXhnPzIdnrheRqa/+6B9/FIU+AkRJxkbB0zStuiY86IzQwV+nHF0rqPv+iX4fbWjBtFt+Aiq71EA51RD0Fllu6joaNXRiNrMe73MlJSwVsGgvu9JSYVXd7uVkaN6PAXXWbzrMEbo+zrukxoWqF6ZqYFn1THLKhIqqFaJN+oi1lXgR5mJKqitrbbaUtWMMRpzumlKpJQ5n69cr1NlO7R9c8OAyGonrSGJwfkeax0pJ8brmTlMpBQX4Kezhpu9Y/Ba6PIxYXNhasBBzEu1+5c4Ss5MlytFMt5o4Uo1/Jvg+cqBFTRqaOCPNdr2ry1uOu6WuIi11QukOi7V9fGr7KXK4moL7Re/5RloUc9+fU6osYXG1ouwdC3QtBasBfgpiZIrELoBoXJKq2ZVWZlWjakkztMfbzHDDuM7/M0tdthhndoPO+/JKTJdR22Ri4nrOBFCBOPAq8OX2Ndj/TTQ4nn5YcPuaYLrpf1GNhe0/YXeYWkxRdFEPuW1XbIBPPqheWGfUMqijVWsWp6roLOpDJDWBKL7Ygwz8fqkupKff+D+w99SSmF/8y37VHB+h+1m/I7K8NMqXU6JNF0I10dSGBkffs/09KHeH08Rh3Gew817hsMtxjj6QRPSBvw0Tb0QtNWSDXNAjMU7na/W9ZUtUSjGkm2n/1KZMa9297b3UfC+AxcRm8FkxIHpCmYoiCtamLAG7w1dp2vdsLPcfdNRQ3RC0nmRAirQnCBOhfms+q3VMgEEuqHQ7RW0i5IhFsoslLnAZCAZUijkoPpeZQaPpxjwPuN6BX60xYMF+OkGT84wngunh4nxFLn//cjnfxjJSVnszlpKV4g3Bep55llIQfTck+r7hFIq8JMq8KPGBTZbkre4JMrmaj/GPsOPW8dN26/aL6QWo4XXX1xfgj5fi1GbyLwImt9ah7E6xkKcmMKFcXzi86eIFLi9+cDT/T1dt+Pt+2+5jI943/H54Ue+//g75nkmxJk5zJRScKbDWXUp/eb9r/jVt7+h73tEbtjvjxgjzPOFy/WJmJICP9KgGni+2Orefb1eub+/p7+OONczTjPee/aHG3Z71dzretXopUK+UkH38Tpql0rO6m4bI77rePv2LYfDLZTqWpxCZcVOSm4pmVLe4Rw1jlCiwjSO3D/cM43Xnw1W/6zAD9Tlt26AWWpiLevG2uojKWfmWYOL6zhyuY5cLiPXcWSaZ+YYVZ0/a+Wp4fsi2vcYanvWiqxXocPmHlGdghAFiqaYSLlwnQJnPxFdYhw8U+iVPm4drm7Azlp636p3VWlchL7r6Dq1kp1CXFxL1h9AjLJ3jL6Pd3YR9iTJwpZpqOJCE4OFRq091g2pLUty2bKwVmlqrhO/xD1caeQrJioim8dluZfb3nMo5DST4oWSZ6bxzHR9Yp5OjNcT03Rhnq7qzDWN2jedVtZWqzZSK2aZtYqz0q810m97+dpX3UbJKpDYtv62mbZWFQV/yhJEAav4cRuvyBoQZbWVjEFdvpr6fKP2Cc2tCKQ0xk/mWVvXIlRcaebbc3v1ow2ydkW2/7IAKVCDjTrGMjBH1eIa55nLOGGs0da4pO1yUwjaohXVxlmTkVwFAevmU1jaQhb/MxHmkJiDtqFMc2CcNakbQ2SOSedc1uB/6/5TCoSYmIJWFKeor59TItR531rRWvD97Go0kVpREMhZoetdbeNydL3DeXXaU2cPQzUWq4lYnZ+t2g/VyagBMqy/eMWjDY32b9tPtwDQH/tY/17+EX+7fva6GgBLIN1WIpbAeqmBi8E6X+1xB/p+Ry4J5zul/i8XU0UKdZ7JMr1Lqc4xUSm62kqUyVmrHbG19YjFJBCj7hzjeGa87pRpEabqyIda7Zr1M9ak4Pn0K7/AXBSRRVxVrH1GC1/OY5OMldb+sz1Ku8jLCqIiyEsSXlsGlltRaoJXv1NpLknLHdTWs5rwSK1aFeq+5R0l5c0tauyOjNS5SIhagCildkZXrQHn1mp4XVe0GFPA6oqZxJAMFKetwZIKftfT7WdSKfhBGVJW0CSo5GUNSikt14zNuG67Uc5lec1r30fq57QqavtpALFeA/3RNiiqKU1ZrkEBQsjMs7Y+dl1Sa/oMMaSF2g9SW5XrvAU2X3n93o3ZZFiCenUSbfojdTevYyWVVJmz2o6Vc2Ge0wr8hAb86Bo9zUpP34oOt3W2FIhJNUnEFIpEctGWo1g1bFobwwIY1QKPbACRdV2R53PwlW9iKWiLmanjSZqrzGb+Le2Pm7lCu69qjZU3sQYvT/fF5F0BoZfnUpa/+QJff7GfPEtJNsnc8tzyurIyktp32KwtmxPaACTb1qj2hWtkbS3Ge6zvFLRtP9bqv6qEjPWZgqGYhE2FjFUhcec1Mf0FCpR1513/e/kO69q37lV1na2P5cVjKgOrbmvLtdT/L88+VWisKdkMk1VLSOPPNucUwMlVxzLFmRQnPb/UkrzM8ikFtKipouMlRXKcKXEmh4kUpgr8JDIOmxNxvhKd6qFFo6zm9v7NMSnOV2Kcl721UNQEISeKcdrqEmbEeDCFIo4idt0jf5FMo43lNSYXKbXNq6zE4gI5oUzYpM5f1jf+LqqZV9BsN2uBXv9IW6maAy8UbJcxpuYCS35FdamsX9awtKsYZ3CdpUjGeotxBmyhmLLO22W+aA4ax0ScMjkWtUrLBYrFYBGMkkZrcJuTfrfW5tVYlIuD4wLG/sRc/tq13B6lbOZeu5uvdwib9egPPG6vXpauWiw1Ne7QmMjUMasMmBAmpvlKKYVxPHG5POG953I9MY0X5jARYmCeJwVpbQav8WJO2kmxto+NNT4c9WeaKnvWYIy60XZ5hyB4v8P7Hc539P1QJQdUQytV1mSMMyFUt0PJpFyJBTXEyjkzT3OVLdHxZmvXgbMqEVEW18+4AMyNzftsPS9tj8q1Iyb87H35swI/mcIUA0n0glsjWLF4o/QrjT91YD8+nfnd737gch358ONn/vqv/57TSZ21ztdJxRErAPJy2M4x8XSZntM9YdnIqBtts8ScC1yjMmau08jj6QnvLGOYiDnRecfdMXF31OrO4XjgZr+DUqtfSZMN13U475lj5O++/8AUPiFiuIbM/SWwS4b3qbY8uMRxGLC5kGLgWgJzjlgrdNXm3Vmroo5eRdXmnMhz4BIioRSy0WqEiu9VRXQjFKMDIpNeHTNYF3n9WVONJlqlnAtDwaItXiIqJlnSDGQuj9/z8PGvCNOJ08P33P/4V4TpzHh94vL0STV2ciKmUBeyXHtXeXY/kaKB//KstMiKtkov2Mbzv0RYF8emC0NNIlq09kzzpTSMTXUKjErFQ7Y0tlqMM/N4wbuOHEZKnFFbT1dFjNWxilqBI6caDCQkB6QkSoksq31RfQN+gVYvRNuicqNiZW0hTFWOphipFuyC8QbXO1xwxJT4/DhiqghswbAb+mVjBgghMo2KsmcxuG6g82EDatZNqtIWNKnUGtg0JcZJWV0/fPzE73/8qBWNHAgpKCsvZK5JSLL2uceU+f3nR37/+cRlnPm7Hz/x/dOJOSSe5sBY7YPTgszUTnVJFGNUl6kTvDfc3u7Y7z37vef9d7e8fX9Q965OQLSdVK2VFHBwTqpLUFENqQpGh6T3V0SBXiN/nuX25ab/EtyB8uzxswTij1gwtvv18zn5LP1YX6Ola23RCPX6m46uPwKWd9/8Bb/9p/+K6/WEMYVpVtp7SidyrJVUs87lAlVzJKO6PgkponTZYOv3q+cmAqKtiime+NHA5fSZ481b9sO+ghgDh2OHs93ypbaMmuVK/URA9ace1jnefPcN1oLrSw0sN6hBVqH1FLQ4oXoCFWhvrDJQIAwNEKeshgKdyYxJHWi6IkhWFoP14KzqzWlMm7EkRArFGrLRvcdV0NcNPW7oEBGGIXKo1ujxMhEvkzpUXQOXcSaXRJrOJBnBCF3dF0XA9wPv9gO5qFjzmNX5anq6cJ4Ktu+Z+z1DvycbIXpHHDylsxzCG745DFzPVwIRN1hyDITzWbXZQoLRESoTz1q/aAvZaosqwOVyWVw0XutobRGFRLGVViOrBoCx4DuDTQqA5GKVPZCqtXuNSeZQIBbMaULME85Znk4z53PAOasOXVETs/2+04plBdBy0tHakgMpYK0C2YggWak3AnReW7yMsXRW6paTGaeZqQa9l8u4uKDOcyTMyugMQWOelBPjODFNcw1AW5q9ZGkoeFnjFJNxWTC2tg4VVJAfcE6dGq0oEBaj7sPGWY0T54x0HnxS++o5fgGgvMZRcmY6X8iSMTYRJWvVPAZIWcVf50AKgRKj2pmj2oydU4H/aDQeVJvh520wC3jSEnieAz/bZGiJUcvXoJ/6mvYGL44GdLY1YnFqypkYZ0QKKQVSjiCFFM0iZlxalkkda3UxXO6t0ZYhcR7xPf7mDfZwRKzH7A+YrlehcO8pzkLKKiLtE8REZ3pMTBQMSdQx7DXbLksFL9ZzrgXD2vrSGGPL/rAIEBYFVESqY1UtXJhWtNzASEUNOjTxrjHNJlxsHc9NT0gaiFR03bZSmYE5MV9PzI8/EsOVcPqRdP6ov9vfVpZ00bWkFUHipEBPGomXT6THD6pNcvqRdPmkYvLFkItBjKVMZ+Z+h7GOfjjQeTVAyDGq9mVOzPOFFKc6lGoBUizWdhhxuOHIFAJ+/wbjBtzhLaarLbXS+G+vfIhq/JStcq0B0+lPRvUgUyrkS+BhipQkOCd0vWCtIFYQ3/ZJg4iuhdbr66TIM62/TNTIsBTEF2xf99faiiUtHI8K/valQ8oNSCTvDHmfKCYRu0S0CbEK8uViSAmuDzMPv5+YLpl0cnTlACLsOk+/93QWJBfmc6LEzHRJjNdCiIVpLkxRmaxziMxBAYG06JFVAKDqoq0tXq3rotq4t/WmrA2KOi5NBTZfGfz5CtPn64wflljGOc+w24MUdvsju8OBEEfCpO1YOSXmeOHx6QPGOq7zIw9PHzHWMk5nztcnUpVJUSBEOOxv8RbEJpCRIldSTvz4ceLz5+/JOfP58498+vwDMQZOp0d8t8f5gds33+CdMpAO+1t2uxusc9wc37A/3Gprq+u1NQ1RgkqY6xdT4oOCPdrSJaL7hbOOru94/+4bbm5usNaqk52zTHPicj1xPmtr2/F45Hg80A8Dxgopq7SG6gplpvnKOF64Xi8/e0/+rMBPKYU5RZIImYjJQme10mmsUYSzumKcTmf+9u9/x8P9Iz9+uudv/vZ3XM5XXbQrCKBo6ppxtk1wjokQv+xz26zLtXJRn0mZMkdE4AR8loK3ql5vrGHoPRhD13s653h3OPDucKh0OVZ2i9GF9jpOPF1GPnx+pCBMIfNwDSQsMQvWeEQs+2HASyEFiwkjJs4YA52zi3aJOAvOkq1hSpk5BK4pEqisH8O6wW+qjFrxzQst9VXvI1REvAUkq2+Hgj4VAKqJvmqwzZAvlBy5Pv2eD3///+V6vuf0+IH7H/+aMF00EAkjq4jomna1e6fq9NVBYvmFVEDhedC0vcX6nAah6/NfCbbqZk497w1kj4poGozxGKPWqCVr0CxiSCkS5ithHkjNEtYURIIG50UwDSgqBSlJF9yq5aMAUERtZFfw55cAfgqsm7ZZAcPckuvG8gGMF1xvccERzoHT+UyeQ51nha5TN55WyVdcpSbq1tPvrnSdr+OhVrxSWnpXpdFtgHED/Hz/6Z7ff/xMTFGrNBa8c1xCZkq1raJWiOcQ+XD/xN98/4HLGPj953t+PJ0JKXMNMJUWdG8Bj2pLKyAOdY8YLLdv97x5s2e387x5d+T2blfHi9IbdGxVu0xRgWfntPWz+g/ogpwDMSWMeHy1Xvylj1Zd/BpzB9pYL8vvyiYwaK9bn+dnHlMfr2DwOq1q0NwCa1E2Q6oJhRWvugPGc/f2O379FxeulxPn8wOf7z8Q5pEyBVIFi7cC97J80VKrNvqS2DA5AaqgZqPslwJh7kgx8PT4mev1ifdvv2O/O9IPB4bdm2VfeN4GoB+4Vm5f/7DOcffNe3IOpHyllFCDXV1zStGkPlWL9hKrwImRGsjqHqDWzcqwmYpBSqbPhrEKeFJq+y2rEKYx1eaWXPWuoFhDsVWzw2s7ZTcM2gImooBtFdmd7IVRLsQYuc5npjASU+YSZi5RgdHj8cD+IFhnOe4GDodOx8H5Sr6MhJw5n65cSsDsBsLdG6abCN7CYGDXUXrHzljM3Z7hdGWaJ4yD+XLlczgzXicMmTI5TErVtl3bVE1l11qrVbfxemUcx1d2L0GdqAAxzZ66bSK6vvhiKFbjhZwtKQnRVP5sZSCrflMh50CIZ6wVdueZyyUsOmSuriXe133QroL2hcqu0tutrqVeRSpNKohkDNB3lmFwi9tLqZbvl/PM4+lKjInT+cr5oi6o86wmGVppnYmVLTCHmRC0wrg2VYtWamuSpXbSuq7EXNsGRUnO0qyznauXq1DQNk1jtT3UOoPpEuI7qOABJv0i/SXa6jWSq+FDkkpHSgFyJs4zcQ5V+yYhWZl0VoTOuaWNIidl9JZa4FjYO5t/Xz4Hz5OkvHkNz9Zvnr/X5vyfJW41bNF6YF3fs4LHqvMVyElbO7IxJCMV+1hUZKtGSP0cU93exCi40w2YfsAdb3HHO7AW6Xfg1U0KZyuNNiPisTkhKZOtAj8ZIEsVU35d4GAtTuqRywr86FreYrp6BUUX+VINSIqsUgkl84yZuLxn1QrVe7EmrppZN52mzb6hb1RDyXpjUiRcz0ynz8T5wnz+RLx+RsRQ4lXjadH4utTxlONEmS/kcCVd7onnj+Qwki6fSZd7SinE6v4kYkjXE8Z1GOsIwwHfDVCKGubk5pZ0JsaJdeVQEX1jOkQcbndLlI4uZmx/YOf3ONvX/OuXMq8QmhhB6/IWy9LuRSykWb/neI48fYzEqdB1wm6nJgmuE7q9rSwghxucuiT62tovzXlNP2cOMM4VIHeinyPqOmsLlSVUCy8FOufp3BEkMrvI5EayCFEKmai5mEDBkHNhPCWefpiYr4V0sfiyR4xh1/Xsdz3WZCRfmC9XcixM18w0FkIqTEH/jSkzV63ZVXurrik51ZwkrWtMWdu7tqLtCixXLbKi6/IawL/ynfwZ0Ge931IBf0c/7MAUhv2eYbdjmndAJEwK7MZ05ek8AcLjyWI+anEpl0guQXeSygAWBGfheGix/ARM5JJ4vD/z9HgihMDnz5/4fP9RTaI6T9fvsNZy9+Ydd7dvcL7j9u4tNzdvFaTxA96rruQ0TsyzGgNN00RMoZ7nTEqBGBPnpyeulyvOOd7c3XHYH7mRI8ebgV//5jugtfJnQoTreOH+4Z79fs+bN3ccj0e89xgj5JwWbVXNPSemScGfnzt+FvgRkb8E/jfAr9Gt9l+XUv5TEXkH/O+Afw78FfA/KKV8/rn3K5UlsPR8LLdbSz056U+srIHrOCklqraM6HvoX32tDlJe/Lt8j/rcs2FdKylt+2ypYNMMCjEyhYAIjCEwzfNShZEaMGnO2ga0BmAqOuvwzi/Vt+ZQpK0vCVN3A2sU0bbLjyyPjbFLRbeIkKWwyOtJ1SepjlHGrJNGKaqtYlF4eDgB/FdE5N+8xj1cLvqyabKQZRaEeWHTtCucISe1ak+BEEbm+UoMIynoxFAgoAVJ5YuP08fbBaT9j/77tZaU9jrdmOX5yb98TfsOy1u2MaobUHOocb7D2V4D66Tgj/OqL+JcBTLrAiq19Kr0cFMzyA1VvH5fac/TEtp6DZ6zDLyI/N94pbnYdBjajzQ0aONnrddb3fastUSjzLxUCiFm1djKBessroqW1quFiLZRzlFbPkwN9gFKUh2fBsAgOkqmOTFNSf8uhMqoS/X6CybX/uZQHdOMAducu+LSejDX9UJFRlegaxmztSzXnCKsM/he3bm63tMN6uBlbeuHbmDAOjbL5l6tP/X5svmRFW56fLjAa83F0oL8tZXsj2vpqgn+8vyGTfcVwOiPafVqoE8DStoX3gInbVw1QEbBGRVwHIYDpRSG3YF+OKheWboSw3mtQi5Tt2wW9C/bnpYKbHvRkjwpqJsXh6rn68x2pSlrZWH5fvCsev96c7FASfXatOuyLOTybCh9GZOV5SJv9zcdh7K0eaVStSm+EnOVoolRzkKqrbSFtGjtCfp8TokiBnJWJ75ctJophiyObDz4oYLdBWMyGEO2HZEVlMpZE0qSsjdMRt3+SiYHwzyOlMsFvKNUvbucdQ9NJVOkVIq96of4zuM6r+yRymxQAWSLc7a2YiqDcbmDpbRW01daT9fiy1qEaf/WQd+eq+dTisFkBdyKfJnUp+qKFYK2eiWbyM4BmoTkxl5Y8/T1Z3tmbRsrRfdgqKzSWuWuOi45a1KhWlJKM0+tGFd/GlOnFd++BENl+fkiPlv2E1nyRSva7qbXo3Fva8JXf9cK10VacS3TZkr9gFebi3qJtP0lmYgswE+q8Wla1hGW27omVc+YNg1MYF1X2wV7yR58Cf48a93YXLuX1fg2lttnPL/c6/+1S7W2OW1a6kSNSRqz50XM0U6qtrsoIFycU4CnVsEV4GkAQNsjqIyl9Yxaq2+djMvYLCm+4lysbKv1CtVLWZ7Nkc1XW/aUsmxWrPdKWnvYs6fb1WwbzuaXstnjNt+/PH+PIjVmqGtrE+SltXWwtiAtBcACJc3kONWfmZxmbV3JrTVsXQQUCA7qTFUyMbplXKZqnJJzrC1mc7t6aCxhqyZYQrwml6mu2Sso+SwZgFecixrer5pphdbSmzatLXkBzOcxMo+ZnAxSjLIdg5oQGKt28DGLyg74Al1ZgG9ndZ8LKZFiqSB6NUcoVSs76WJUcuvrB+Oq1hAFbNE2uBdfooX2OVMdvQopFiim7k2a65kKglNkaX9NSVlNagCwuugCdd+ogCQoK937Kk/Q4ZzaoTdjlXVv2lzgTZzWxnJtV3rVfXH5r5943I42oowYrPU41+G9SgEMw56SZiZnyVnva27rcF3P9D0SRZQRWqp4OSIV9G7558Q4XjDGMo4XxvG6aMc6p0Lzw37HfrfDOcfNzR3H27eVefOGw+EWY1UDyztf42Gr5iU5EazBRkcuCROltljOFZSdgepQnVoRRbugSkGfj5EQtPOl3SSNa0y939ucIy/f3RqLcz/P5/ljGD8R+J+VUv5zEbkB/jMR+b8A/2Pg/1pK+U9E5D8G/mPgf/4H36kUSgpgLUY6rKgKu0GrJiEkrqcrYQ48fH7i44dPfPx0z/lyrTRjfZu1uesPHT/1mi8ilfqsvl7lrXTyPk0TPzw+0jlHSJFxGtl1HYP3vL+7VVExZ/BOA6iSMiVlvAg3+x3fvn3DHCOfL1c+PzwwTh0fH47c7ju8MeysWrobhDQMSM5YI+x6S+8NtvOYzpM7rcbMtjCZSKTgvGGovbex9oC2hb6UUjeVCiro6f1dKeU/+JPv4fYyNu0cgFJZPyUrk4X8zCUq54kULjpxL49cnj5xevzEdH0ghqtWMUqhaeisgNwaXAla3bTGflFgaK+BL4Oq9vuyCYIWtKp9GdFPXLcyWSrggsHYDmM81nlubt+z299pVaZo65Z1HYfjW3UZGo7sdrvaraGsBEqsQcUKAJWigtXK7pmg1J7rFJaFoP27OV5lLuZSGEMghpkpTKQ46SaIrYmJqQ5cgreOw36HEwsxcxJLyobzFAn3pwUUsp0CXt5ZZfgYQz5fKe4R5xze6FwRpPa1q2uaVuN0rF6nwPWqTJnPDydO54mUM7ZzuE7H+8Pjld+5B3Vy8JbeW0KIfPj8xI+fT1znwNN1YgpJXRAKi+ZC2+IWS1Cbcb3l7u3AN9/c0Peeb7+74c3dHueEvrdaRaHpIihg0LTCSqWaxFIWq/slSWqcclnZb1Z7E19xLpbNTwtKZROHvpwHDejJdaRn1ub1qsWxZFTbCEH/XQFUngcRPC/Ar3D618ryCm5ofNtxc/MNznZM05UQ1DlqHM98/7v/kjlMGriWgDreFVb2T01iFg2vqqS7BYPblSmABeNtddlwCtA6tRRWrsHzpEDX0Y2+wlbASY/XmYsxc/rhgvNCf3BY5wlkpDjUL1bXmbwIZK3ucw28aldZaLVhDVhDEcZsSKVgrDBIJdeJfmNTIObIJcykYgjGMou2XorrEF/bpqaAu1yXRNIUKEW4hMI1dSSE6XiD7D0OYS+ewXhKyYTpict8UZe2MZDmUdshryN+nDRmTgWTIV4djzkw/viRbC1hNxA61Qzx+x2279TBcnAcv7kljj2GxP4wUDKEKOQs+M5zvD3S74YKVigtvhQ2Gjnl1e6hiAbeOvQsJmugmesYypJqAlAZaBmSLRij7b0ml9o9uhZNYkyAkJLqGooYhr5jv1cXO9c7dlMiZwVNBIO14F2hTe/mPGUEUpiJlxOUggueFDuSMSQfiS6TMjydRk7nmZQy05TRzlUFqUS0jdKYhK0Oor74qmuDgoJtraiPRQSxZgHlnHdYa+o+IVgDOScsmVSxMSedMnhLYYqREBKXuZDFantREcSE+hmvOxdLzsyXkUSkMGGJGtMkjWlSTKSgbV+SE1YEbwzJWKxYihRSTSahrhibeOQl42ddn9vzsll/y/O16PmI+2IAtkS5JQgLCFrHARRyTSCNCGHWtj5nm19cBYvaEtv+u5og2L7HeA+uQ25ukN2B4jrysKM4D1LX9Jg1WU8V1CyNOdRa/FZG5RqHyavdw1wK07wW0dr1S2ld29fgclOkFBToA42Biv5ORZ7LUhx8fg/1zTY5NKZCNnrJG4BPvZ/6qtZyXnJknoNaOYewxERCRnLEpBmTLBLPyPygieP5I9P5nhxH5tMPhMtHSgrkdAVJS7FRP09IsVRgzZBSwJhzHQtN3DuTku6z68WpkXCxgCGKxU4XSjeSTYePCtgvX/H5LXidfBEQo5FEykmBqjlQLlesBKY4cZmuxBh5+hz48PuR8ZxwYuiqgZBzBt81xo/B7ixitaW/H/R5fY3TmNALpmv5hsHvrRbWdxkTlJUPpl6XgpEJYaSgWksxBgWmmnEMytYNOROumfEcuT4F0gTkjqHfqemP9/TWIyRyGBmjIcXEeUxcxkBIhfOUGUOugJSht726MvYD3ivAc9gN9L2n73vev3/P4XjEWUc/9FhvVyhYWMCrtlnkNaR63Xu4iRdfPvfscQVgC4K1HfvDO/oYeP/+yl/89l9ye/ee+0+/J8eJaTwTppkpqLs2rAChxmtpec/WDZLixPXyyDw55mnk8yeVYlGATRnQx5s7fvWbv8A5z5s3b7m9U7DncLxlf7zDGks/HOj7PUYMzqp2FqUQqkuXGt1MpDRX4XTVz7qcT4yXiU8ffyTFyNUbIGIk8fj0mcPjjpQSj48nxutETIlpmivL12zWdI0TtDCTiEEdzUUst7d3HA/Hn7slPw/8lFJ+B/yuPn6qlerfAv894L9dX/a/Bv7v/OwgKNrG0uJXqUS+optNDpnpPDKNM6eHE/efHvj88V6FnKsbl25uX7zr5vjDoJAuZ+XZf2+PhrUXCudphifwVhfMaZ7Y9z3fvXtLEnUjs97ReQcU0hzIqeANHIeBd3e3XKaZj6czD6cn5tBx//TEw3FH7x1+v2ff9crm6Xp1OjLCvrN03iDeYbwjO0MSIZjCLJloCtYJvbHkLBhpzIZaJVysKjVJPd4OAJfXuYfPryRQwZ6aUJek1uRSngE/5KDU1DgRphOX8wOX02fifCbFiZxCDVrW4LHdyYZyIopoWms3hYZ10/7iDJ9VJGoS+AVitP0+FSCqwZeIujCIMTjb41yP7wZu777l7u13aE+sQ3AY69jt1Vra+YG+H+o5VeAHDQC0GqOuRUt1JydKDgoO5Sral5MyE3Ki0YmBUEr5z1/jPpai7VExBOY4E+OMNRYvCsJSqvAngrOO3TBgscyXGcSSEMKcOI0XzamdxXWuuit1HIomQtmMFCNVyNwxuG6hwueggWDMoW6Ymet15nxVjYnTuWpMFDXbLsZSSubxPOF4wlnDrncMvSXEyKfHM5+fzkxz5HINTFHdhvJSNVpZKiqAURBbcB6Odz3vv72hHxzvvjlwd6vAnSmtj7+s9FnK4mJDzpSY1AmnFNU9KqjeRi3DSynLunV7u4NfZC62sb5EtEuQ+TUWD7SxDlDp7fXx+j6y/G2p1PX23vo+bZ6s1X1p0XEFU/WFuSGvmzM2lUpvOBzecjzeMc8j43hR58TLI5fzPZ8+fU+Jpto3t571GtRLfdw2BuRZArQ5Af2VFYwzWK/iecY5/bFWk5Ym7Lyc6Oaz6nq6OV5tLqaYOX+8Muw9u25P5xxTCZhida3I7dzquvgs310BtlyTtsby0ZMUpqx08862tk5NcBSoL6SUGWMgF0OUiUCtQLqM9ZoEyaji1yJgMBgsBeFMz1l6ijjYv0H6N+oe0++x3Y6UAvcf/pbx0++QFJBpJMczkhNumnCzagWZlJCUyBjuzxc+mY5oLBc/MLkON3Tc/eodhzfH+v4D+/1AmnpsKeyHgRgSl/PMPEW6oedwu2d32Ktr1HwhxLo3xkxJpbJMXuceQtunAOzq7pVzZfPU5UAEVxnPtrGpmlU6Rlvg2l4elZ0zz7lW/mC/31PE4lymn3rmoC1FIoI1moimTc4r6DpuqBXGywVyIuaOWLQFeZxhskIscDrPnC+qGZCiAj+l7gdqD66ir8XkWh11mMoc2gI/DURV4GctJnjnKgtL6J0KTKcUkRyJqJi1rW1iOUXmayKFzBRUL06c0/XUWJClIPKq+2IYJ1IJ5HzBlKA6PiWp+UKp9xQFpqwIuSaZ1hhybmxts5SRcl7X4vbvCj62q8XmsTx7TpfT8uJ1G1BeWNqlFuBH9H6tLKTlC2rbqGiLQJhnsrXqtFvjLLtAQFsgyaqGZd8jXY85HjH7I9k4pq4nVm2Loln6cmq5fmZjoazuqxvgB1Qb49XuIXVePAd+1hrI9nrUfKBuhtLMUto91iyLhMaCXwPx2mPdgmQppaxUlXXfXQDnWqkvKRKDtlGmoJX/BYjKqv2owM8FCU9a6L1+Yjp9IMeJcP1IGB8gR0qaEVqbafscqgGO6pyEeaS0Qs/Crldr+KXAuMStymYvBbLt6KYJM8zgAinl2lLa/m+5oq82F+vlBNHvkMjkGEjTiJiJOQZ1iIuRp4eZTx/OXB4TNgsuWUwRZcE4ZbyYzmAHUeCnF/qdUeCns/idOnv2R8fuzmOdod85dntdq0zJmFqEQewCEOYcKHmi5Ei+zsSrJv7aPqXXJCd1lA5TZr4mxnMgz4YOi+96rLFV3sNBFlIyhBligOuUOU+RmApjSEwhIcbgK6PHO8ft7S373R7vLMfDnqHv8F3H7e0Nw06BJVcZRc8yqwp6ltJkE3RYVFD/de6htNzsZ0AfdFa2UM7ajt3gKCVzd3flu+/+KTc3b7ACT/c/6PxJhbFU5+eyjc9abKgAmbEW1TSbGa8nRAyPjw8qDYDQdXu6bo/3Pd9+9xv+8i//Bbvdnm+++RXvv1WL+H53pB+OiKm6V8bXvVVFuRXEzUtxOMVp0aoN85kQRx4fPvN3f/tXagAkME4CErC2cD4/cDofmOfAxx8/8fR0xojF+76CSyuQj6hBhSTdo2P9sdZwPNzUlvY/fPyjNH5E5J8D/zXg/wX8qoJClFJ+JyLf/cTf/EfAfwRwd3dYwJ6cMqlor/cUhYhhGtXeLMyBOEdSTJV2+xKe2Rzl5e/+MPADX4I9X560/pOKVvBBdYPmEHHGLk5Fzijilm11ckhNXKtRJXWDySUTUsRFw1xbxiiFNDTEvYpvWavJZg0cmrtLqZbTrSwjRZkvTgpZ0ErwEvSLMhngWeVmcz/+OX/CPewOv24RnW6U7XqVtcMf1ipKjZD0wSYIWZOzn78hS9Ja1o1m/ZvSPv7Z658HVbL5l83z7Z8Ckpe/1U2vfRYbNy+rAZDr8L7XVjzxiDiMcTpJXaeioo1Z0USES9WTKW2BbRuuBu40p4bNTwuYvqBd8xpzcd+e3bxg89/LfVoriCqQaio4p7bpC/NFhBKzuiPZxBwTjua0FRZGjykalJak84VSiElbu7SvNWlLR1LB5pQ0WLSpidgp4HR1AVfdxGI2xJgY50iImZAqVbdeNmOaDoYyblTQVug6tQHdDR1D77XNy9saAG+xxS2tuQIirABBC2pLK2Nu8JG20X5N/vBPvYdv3v5mOa+l8rgBd/64x9BAou1jBX22r3k27dsQ2fytPH9N+492EV6+pl6XQqkCvCqO23U9w25PzpGu3+H9ACKqLxJfzuO2kqzPrVda6uPtLamOitYtVqE6hzeuMs+mWktinwf4X7knf9J97A875kvAAPN1RiiEKarrR8tfRECqIwt5GX9tLWlMn+dfQe9NKovUvSbnUnORiszXIr0CSrkgMeucIZGJNRkvSmUHMrZ+vmE2MIsoo65YpFgoloKliCNRCMUSqpZHLEIqgilCLrI441nACyQBWypzNEMO2hqNRMIYmUcNlJx02Nrmp2uTU0p/3TN1nCpgsjpisOxBi3b2K93DYdfXPaqySmuA1gK17eMGltZbquuh0TbW5XleTLbN+Gs/WllM2tYWIRqhZK0Up1yqiHTby7SoYqypwbhZxkrOhUgiZmpC11iLuVLpN2zHsrY7NkBgBdNX69s1x9a4ps1xa9XyvDmR6Xddtdpa2lwkL66QKSRCzIuDawPdv9Yq8Kffx5sqylzjuFz37xyr6yZLpbwlHNt7Q/t5tt5/eQ+/fLxe06+tMRqTfG3tWWGMBeRZfsyz32/3Jf1sjU1NMctptxCgxWdiKwhsK1Duvdqv19auJrz7bOWpQ3cbo7UPkM1zLTF+7X3R79+/mDbb672yQLdL/spQlcqYadd83cs0juOL+PPZRd3sOBo7yvOXLLd7HSc8+8vGqkWLgCmSjbJJUhi1BTGM5Dhqq1eaKVlBG/2pEXJbJ6DGlWb74evzCwD0EoisgMDyUzZnuFx12qV4yUer9+Sf86fEqLd3azja9vqibEkqo7qdl7YWC1oTFqjsrpIhRc2TjGRybfltff/GUFu7StUUE7q9r/lTZbJbi2Sr84nn7Yxt/1zW/O21aSMrV33DWBl3ldlJbUduMXVTWMhZxe1jKsTmCN3AwA2A7rsO7x193zP0CgQ1Z2nvlYmi3RGyrL8trtMTr26oUPNM+aIw/qfew7fvfvNinW5r1dcfb+M4Y1QP1dmOrtuRU6Rvxg8xkGPG+wlBtXRyBS4XnVadzcsnlwa2NvA7tfuTlxzHd57dbs9up7pCfT+o86zvcc4vOr4NVDdUwey6gogoa167Att5ND1FS9d1DMOOFtiFoISS8+WsYFRIjONICAFrMtY6srGq4RNmpnlSjdu6TqS0OnyCqcDUKwI/InIE/g/A/7SU8vi1TfdrRynlXwP/GuAv/8l35abvibEwnUadcCERr4ESEiEkxstMiomnz4+EKVRXgVIDKjabzL/P8Yf+si38K24YUuY6h4r4QgmJqQ/cP554fDwxdZ40d6TeIxTyHCkhElK1Pi2FVDLXaeLpfGEOMz/ef2bwwr7v6E2ht0Yp99bSDQNWwHmthNE5St/BzldgqFaTCkolr7ao45RrD2hRl7CKxGvesEkDXuEeHr/5ry488mUxzqUi4AWWHuVaHSuavBgK3lqyaP/p0A/EYQd5IhjzvE/ky88nN2eJ+vhrZ74mqOXZk+v3XP8qb3uhl2hkmyZqT3RGkdbOW5zr6fyew+ENb958hzEO6waM7Wty5LDW6cJgjTpmoO4K7VLowqPvXaqmETlRkrZ6ab93XIJKtS58fnFe4z7+9rffFGMcxkZFxYtZ2FS2uhyYmiA5q+CIN4ZL32F9h7Hajz7HWdlmMVEmZXYMoTBl/bvrNDPOI9ao+OXgvb5vqZtogZiTCjjnwuU6c7nO1VUmcBn1OsQc6ZImdnHKPD5OdU7o5h1T4tPjhftTJCStEDf76H7o6AaPc4bjcWC/77TiXJl1fe/59a/e8P7tsbrqQQmhbuhl0X1S2rujVRcWnkthYdm1RN0UgxNLrha/Gkeu9/FV7uFf/odlBSp/em17yfT58mgsn/YYQCvVmnuubJ8vmT9t0tUstgW8X3vvja7bM3AiV3c5KRxv3vPrkrhennh4+MDp6Z5punD/8D3T41zvaZvr2+8jqCK5WR4XaUwEpd5jerr+hv3hLfvDG3a7W/rhBmd7BEfOK925neU28F8SmOfX9k++j8PhWH73bz8w7B3nTzv6nSNMgetpJs5QkoJiztUWvVL710tGq7TN/Sez4TsDCrRMqZAEdkX1drITik1kCSQpjMXwEA2+CC5m/BQwRIxErIwYEfpe2A3a9hHxRDwJy6MdeDSOLF7BnmQRa+iKwWchJ+FxFJ6uOueLdIjdYyTS2UIySp3fe8sghRFhzI5YDFMxXGdlvuRJeMonxoeI6zzxDewOqjVki6XrB8QEXIikksBkLuOZMY6IkYXhpTrh2h7YDH9f4x7evb0pKlKvjKhGDlFrX3WGkoK6JYrGNGIKpViyz5is+5SydiElXRszRQPyxZSgJemFeQ6czyem0TI6y1hNMkrOmhh4HTNDrgyQrmd3vIOS8U5tjzMwhcLTNBFz4TpVt5jqNppiXPahnBKIOpRp9dEshQ49uW1SJBVsaq1eCkIo8NNgQ22fKiUzXgOXy7UmKQ4RQwqB6/lMnGbmmDldI1NIlR1VFm3F15yLN3e/KtOcMTkRw4TJM+SIpJmmsdLeNVTHmFT1WXKMlepfzRlqUv0cDMjLo22Fel1yGmoCz9a3ZxVtWM+itm+I7o3OaazorMNZRwPd11in6kEaBYpTyghJCzMpU4xBXDVqMAbf92rV7hz+cMQMA8U6Uj+QjCOL1f2fVMEi1SeTUtpKvPmO+j2rsXHlo6/sxNe6h7t3/6KsoMQK0pT2nGzP68V13tyGUvuec4bERjdy+4+01HJz38om6i6qNwOitcWKdEspSBVy0bhC9UFAQfNcIM4z0/kR40ZiSEyXEyVnrqcfmc6fKDmQxs/kcKI5OrXEtnUAlFL3vtXcnAajlNZuRqmgUQWCWizTgBYESBijc85UsHqB7VpwuzleJb75i78oDWiy4lDZhECelU1Zsq4h1iSGXrh70zH0jjQJ8azbJFUfh1K053/UoaEFygqcWkGcFgze/uqAtz1lEMyu4zjc4ryFbCnZLdeEClbH5AnRI3WP1g4A7YAw7WPHQrhE5mtmvCTmKUMy7HZWW7BMLayUQo6F6xi5nFXn5WmcuYZZ11Lv2Q2qHXt7e8thf8B7x92NMn6cNQx9v7hPdX2v5gwNCG4gTwWESwHTwDMRci2ArZq1f/o9/Kf//D8sX/072UIy2/ZW/dcYi8ITwn73lndvfsu8vyLZEK4j18sjp8cHBv+BME8KjMSZJqYc41jBoFiB0aJdFFVvNCe91ogas+wr2PPN+2/57W//kt3uwPH4huPxTgsX1iGutS9nGts0UyjZ1vi+1BQ4cT6fOD09ABlrVe9QDHz33bcg/4ppvPLDD//A/f1HTqdHLpczf/Xv9lhr6fs93neLXpBzHTHOFODh4R7f9RyPbxiG3ZJ3GnEYsTjbvZrGDyLi0QHwvy2l/B/r09+LyG8q8vcb4Iefex9jhH3XcYkzT5eZ6zgznUdOnx+ZxxmyqKFRKZweT8QpUGrp/o8bcn/o+HnQZ8X9NV0J1WrWgLoRBG05ezpfeTpfiSFq73eKupCGSIlKy4s1YEo5M4XAebwSouXz0yODF45Dz9v9jrv9DmsMg1WqnxXUHtpA8Y7cOUrvdKLURRcMvijhPiYBAiGoZa+kTKo6AvY58CO8wj3Uy6WC0s2JSdANTNlItVortf0rF32eos5PxuG8x3c9XdcR58aO2SSRX/vI0hLP/Awk+rm1qCHdjYEDNfzKK33++dgoS7WqlFr9sZpQWtPhXM9ud8Px5i3Wenx3xLoB/Ybr+2TMpgITFcmvwI9WLSq9trZ1UVu9ctbqYmkCei+qiq81F4EqKLeKnzb9JCPKeqkSs2pV27n6r6+MCU8JhZAgRIglE2rAMycFHZ0zTLM6JVgj9NYy+OokIw5ndGFPKS/aONcxcLkqlXicItPUALBKbxThUsKSCMWSSEUTlSlkxqBCsHPS+2cwDJ3neNQ+6G++ueHuzR5rDUOvDB/vLe/eHLi5GfQal6CgHNqvT63mGKvJjgYdsgByK52dZWxKEdUwqwnSEhzWX7/WPWR53wZWljZOeMnu2T7/5eP2Gtk83+ZkqTnD88ft/UUaBNaYeZuKfN0MlQVU37+dcX2fjCDZIOLZ7+/oO8v1esP7D7/m86fvuV5PnK8ncr7XJKFqJj1PjFgCsqpegza4iM5FEZAO3x0Y9jf0uxu6/lh7tTsQt4rINhXwDYiyAECb47XmYpwjP/7NZ/qdYzxd6HaOxrQTUeBHjMW4uh5UvYw2pjSo0TkCDZLXv80F5qwd7wFDtr7atQeyUcB+LsI5CbYILmdcCUqTzzM2K9k0Hw0ONRsY6ZmAKIV7W7i3jmScJizJINbQY+hQ4Oc0wmUCUwTfezpTMDiQQDEzRgqDF3oHYxEeo2FMwiUJJhTSmCljJE5XxAX80GHpkGKxIuxsdbhCcH4kJl2Lx+lCGgvee/bHA952OpVzG5+vu54qm1UB0GIa8LMBgUpZcACj6szqPJON6mUUiNbQFpFSzJKElQZyiFn2khAC14uurc5aJuuwVUdtv9+Rs9D3mZj1NZ3v6W3VhypVOLYUwpQ4TxMxwRwa+7ICP0GdY1JScVcR6Huv7A8jdJ1WY6XRl1ofojRmKAvwA6zOMiWT06TrbBbmKXI5TzXOiSCGGAKXpyvzNBFT4RoSoSVx20T8FediKRBiQVLCzkEBnxQo4aoyBUuSwtIOl0upmnXq9KWafi/aUpcEuy0k7flnsM8yTp7FKw3c/wrw08Yb0phvtmpPuEWkdCkk1bXXVDe1VkRLIhtmfQWHrLJ83DDghwFxHnc8YoadVqBNRzKWXFt2mzD0wuRiA/zU77zCX+v557JW5V9zLi7XM6+f9ewiP9s/ngNsLHtYZY1mhet0jLOsrcv1R5b3W7jA9XuVyvhp3FOpjxczj5rbqPNdbTlGTVtiCMzjGWMm4jwj9kQpienyiXC9170gnijpugBoTeS9iQDrpTcvvqssc2gdm42ZvrIi9GhMkVRZNSz4rmyvWXn9udjOV5kVmqrmbMlBAWuagYBkuh6Ot56+h/lSuKZMnAtpzqSgQHtOeSESKIuvQo9SlQ6NYI3jzZuCzYJN2nrdD16ND1KLpdqtK0i05GJ1vDf2MGsUkjPEuTCdE/M1MV8zYc5IUXZGN3S1C0ZZWzkXpjlxugRiilymwBgCxlp2TiUkuq7jzd0tt7d3dM5zd3PDvrZ0eVeLz9LGlMauy9iVVSC4fZc2cotswPrXnouyffhsrHzxwrW7okOwDP0tt7eJFCdKyszXM9frE0P3CYrq9YQwM01Xck7M4cI0G3KOxDgRq1xGWXK+CvxU52FrLMMwsN8feHP3ll9992t2uwNdd6Dr9woU0YRT9GpRNYRKDWRLY/qi+8L1cuHh4R4R2O3UNMaI8PbdW3Z7y+PjAz9+/B1PTw/knPnw4QdKgWHY8Zvf/BPevn2n2kGAz4kQZuZ5XtroY4T9PuF9x353xHiLEYe1fi3E/IHjj3H1EuB/BfybUsr/cvOr/zPwPwL+k/rv/+lnP62uMzllruPI+TQxXyeul4kwBQTBtnrAklRs1mhZ36YhwfUsX3zIz36rnzi/jQZIXcsqYWXdJFMmhMg0abuWpWCKBuGS1AYw5toaFjWIijWJb4txzk2TR583pdQcq4I7zmKdULxDOqcAEOAMRAGhivBiECkqLl3fq4guWhmwi2BpAfhnwP/jT7+HGjTWTG6bxi06P5TNz7IJtkleXctsbbkwz+tCX37cT93PsqDWL48V6KltPqZS3774mEaJZfkO7dESdhUN2KTemy2VmuVnI7pR1sWhvW9jiGhinmtimZcqC3VZ+SNbvV5nLrZNYAEUzZK4LJsCNWCpr20ij0sbYtNFqbe62Qin3GiUBStqs10MNdlIGMlYQxXzFGJSgDTnsrRRptrmlfJ6T/T66fs3V5lYErGOfW3xWiW6F/qmd7WVy7EbPPudV5vjzqiwn7OL4OgaGK2LTWlrzTZglHUDey4KvkUI1rHSEp5XnYu0+fGntHr9OR5vgKNlfjQ2UbtXtW1HDMVo8OJdT9ep4F3nB5zvKSXhfdEKGUX7qFPUa55VO0VE2XnWdgCa2CCqv+U6rPFY49a2xU0QtJ27S1j8Ii/YHK8zF4FSqccxZMSkOnb1mqWF9ao/pdrUrcvsljFQh6nUebmsPEo/jqVgS8EVBcQEUb2u6iSSEoSka3lXCr6AFVBx3zqGM4RSiKg20IkrSQLZqR6dGMsUAn6eKCkwXi6M04wlEWwmOFUIMsaC9VgKWVbKcmctO2spURg6S58NWdRivlRGQY6JOM0UIyRnSVbIOWOtxXdeW5VirO2kqqMkUi3Ao+5dtYX81e5h3RJ1H2cbcD9/vMQ18nw/kdrRrQwfXVeMyMI8hE0sVGOVti4Dy14RY2aqZhjTHBlHbYstRZkompRrcSblQgjqsKjjT9nKJRfirNprCiqq4YCI4L1rX7SyTFw9w00SvAF+Sk2eQZkTlCroPwdyCozjzDgFpjnW76PtnzGkpd23tRRv47sXOcOr3cd1ktfEH51HLRZoi0NzNlrAcyNIXkHXzRXR71XvmS7Vda9Z8Z0Xp7BN1Hk2v9cL8LVz13PdxH3LOdZIpp5VWWLaZd8T/Q7GGoxr7V1WdZWspRidhxkhFZXyaQlRrjpTUtr7QZbNvlmva4sX2P6s5/pqeYbU2yTPrmUDmLb7eZUoqBv4sr1v8gB9E23VX+JYXWQXkEv/cBs/bMCeJR5Z31dKbfFkBexKVtaPGBUU1vfWk2h7nLIWZlKKUFYXsGW/2u4JS1a/7gLLarKMhzaG8zpOlr9d9+UFtKxxKjSL+a8O4ddfU+tcpNTA0Riwag6EaIdE31usUUYZIRM9pC4TXFJpgZiJISnwkxMpazySSmV1NwflJU9TtmmMhpyqsR/Udi2FAUIVdE7VWrs5H7ZlggIl6f6TgrYYlTo+1+KOxpvtHq5Ou20+VhDW+wq0d3jfqV6ad0u7mLqC1Tj2WZ5Sx92L/eb5da4FuDVGfcV72Ab95rnt/8qLX6LjMacIrG53JWeMGHzXk3NiGCb2+yPOekKYsM6Qc8JMhUwgJy2+x9DmxupiuOZ91cExRWKcmaaRy/mkshNBW6m3wA+iemQK8qkBjmnAex2jeWk31zwvxgAEctHCifce7z2uvo8WVlTry4hhHK9cLufK3qwFLVfozIDfuLb1vbaf+a6j8x3OtZz6dVq9/pvA/xD4f4vIf1Gf+1+gN/9/LyL/E+BvgP/+H/FekDKXpzN/+9e/48ePD+Q5Ea8zOWaGruPucFCqWil01tA7Bzkxl60kvx5t0XnVY/sRWUUxVXu7MOeESODz4xN//8MHOmfZecfgtY+yMxZnLKkUPk+BhylwmSaexpkpZYoIc8zaCpYSc0rMOVLE0RtRMWdn6W/3DPsOOkt5s4O9J1AgJ3xRaqgzDiOGlBK9F0KMVe9EtVK2gea/+f/8DcB74L/zp9/DAinobG09F0tSzyLuLA24yKVWCDLOGATtc9ztdpR0IM7nBfwp2w2X7Yb9E2fylde3ZN85vSeuTjJd/dZAKFaa9vI4RZ5xgOtutqSpRoXibNVIaIRtld+sFdr8vHa3JpGyJpALqyBT8saCM891cXvuQPO8+sKRV5qLgtSA3eKdx0jW9q66eVQiOKkGR9ZXXalORR69T5i5kMusCUMp6i7XNrRSsDaTvFCSUZowAVPUytCaxvipQFHdMOeQmae0brpJv7sttYYoog57szrmzCURqhBjykKqQqNqbWnoO8c372/4za9v6TvLu/cH3twNCyABpboqCMtyKepkAaXeh8qby5XFJs0ppYqdtqCLteomgoqaCohUfQTj+Ku/+gCvNhfbHPkCHFyO7UZnjHn2d89YO4i2v2wAqpeP//CRF3Dn+bxcV+kvQaF6uaXQWDYK2gx0vnBz8w3ffPNbrtcz4zgxzwmkcDx27PeelBJPjw9cLydN9Gtg5X3Pu3ffcnNzRykQsoLv1nbs92/p+gO74Yj3Q62q2Hqv05qYtHMvz/7ZbkGvNhe15GhJM1yeIuaqLTCIJulhTsxjIIUKDudUk6gNs0AjxiUhLzWYaol2EriEzMOY6Fzh0BlwA85oEhezJjDzdWY+j5ALt05444XOCsfi6bw6OD1Nlqc5c42Zv334yF89fCRkIZuOLL3Oj86pi0gp2HDFhpHOCvJuj7E7rFh6d8T7HlsSxBHiRLGWN4cDx2Hgkg35xtLNlpjhGg1T0nV8Pl+ZLxecFULn6Kpo93AcuHlzJMyB0+OZeZpJCc73IzmPOr6Mr8BC5NXu4XLUZK3uvcaorlIBZf+IrhOSZdFdck7Iua432WJTJkqhEWlTSyRoOWjSAo84dr3DOqPGkEm1JM7niZQesNbydB55PF2VcSmFnoyRUllCOmSepsx5VrD9UgtxKWfmaSLM8wZULqp3YYxS0a2h8wP73QGAmBWkoa556piSmWMkRI1L1L1I997z6YlpGpnnmYf7ey6X8wIk2dqylmYF73Jdi58BP+tFf725WA8jVX9DPJlEmmsbXsrEpGDYCvDpFHZeWywkQQ6BpvJbimCKsu5aLFClg5+tw18e23ji+Rh7+TqKag6lCs5JkmWxSpXxo3+qAG6uYqcxTFAchQHFYYVu37Hb7xDrcPs9th8oxhKtJxVLKsI1w1TZaElldxGUHN3cUO2LcKr9by4rJJKKttem+crr3cOiMSgaP32RKTRQRl/A0rr8DPBZyzrVhaCO65bQ1QKm2e6NrQxaBwQogNNmumSkUvvUOEJALKXvkf2RFBzhemC8HKBknO+VvQHM83Wxdw7TI3E+VQAmIKUxyqv5e6lFuBaPlhWM2u5hqbZ2lbIW0vTly263AAc5R3KeyHGkpAHJM6aE+o0NZr2+rzoXNacwSLLapisOxh5ixnYF4zxY6A+Om32PYIlBCKMhRyGGTBiVER7nyDzqehJDZJ7UWCDEzDTrjOz3liyZlCPX8crjg8NfLDEqEFBKYZpmxnGi1M4GpWtm5jAzh6DXrrb35QRhTIxPkfmSiWNBgtKmhOpQbKrLbVZNnzklpqgSD8532E7bt968ecvxeIP3nje3dxz2B6y1dH2nQK1IZVdW4Ke2dArSbP1eAD+tg0Tvsa3i/DG+7r4oDf3e3NNt4rZlALX1PcWReXwgp0wII/N4JueIFXhz9y3pGDge7ri5faMi9eHKPJ9JKfL49InPn79nDhNPjx+ZprPe86ISH0IT3NexO41nnu4/Ml3P/M2/+7c4ga4fGIYDQ3/Q61l1do213Nzccbi5xVnP8fCGbne7CGhb63AW9ruO684T48z5fM91fMJa4eZm4Hg8UkricLzhcLhRsOly5Xx+YpqupBz5+OkDQz/w/v13HI+3HA43fPvNr3j79j3DcODbb/+Cw+FOdTFrHKtYaLunf/j4Y1y9/p/Pb9uz47/78x/x7M0gFcbLyPe//8Df/8OPinyqCRS3hwMH3+Orxbu3hs4ZUqwv+sM4wJ98PMtV2j9FwZ+UCkEKQuLxfOHDp894a+mcoauK27t+YOh6UoHPU+BxDlznmfOsdnxGCrGK1sakopUh62ZQRBBrMZ3HH/cMt3vwFm572Hl8SeQwY1NcqLzWKPDjLcRYNYWqmKWI4IwGaf+t/8Z/APCflVL+61/52v+4ewho86ygloYaYDRBPLVy1/72lc5KDRqlKpU7hn4ghQHvu6UyCCuY83Ogz/b124GhCe4qmtaQUZFWn9CNLgS9Z4uAZTXeeok86/+WinNpGwNLFbZSlcvyzuug2ZyPgghpraQUlBpdVDdAKYhajc2lMYG21Zfl7U6l9Th9efzj7qOsgs3WWaDp+rQGr1Ylqii302BGHZEc1nvEJEoxpGKqWJpej1BvjBEoSYMsY6h0eGXKmQqSgixsuFKqqF2s3zlV4FCoAJSOk5DV4SCVzJT1Ry+RWwJbaxzeW7re8eZ2z6++vaHvHO/eDdzd9vo+UQXkRRTUMzVAXIJ5NvTO7X0opToFSD3/FkBVsWIU/TdiKpvKLtpP/+pf/hpecy7qCdGC26+1cS2v+qkk449E0Ld/u1ZN2nuyBtDtOsoKomwBny/OfgGEim6eRii+cDjc8ebuO/ruzOPjI+fzBWPg7bsjt7d7YghY+R6K1wBBIjFkhmHH+3e/4dtvf0UuMIWZudpdGjNgTEfn9zjbLboKuUbMWgmtkUoDVIBV62A5/9ebi6DzKEK6pHovIqDrQ05KWV9YP4ve2UY/RGPPF9d0pfwbYIyZ85yYc0GspZOOJIaEAj+UwmkMPD1py0ocLN3OkL1W+TvnEWtIU+EcCuc58/3HE3/1D2fmqM43uTnYVDzNinDjPUdn6TvPfnDsj0ecFWJv8d2ASxGfM3YOOGO5GXYMd0fOxXAOjhQtcyo8nMFO6k51OSto4KyQB0fwluGw4+79Lcc3N8zjRBwjZU6UlBlPE+OUsNbR9QVrPUb1ul7tHsJaWV3GtNTWLSNVzFa1jowI2WhDYrEGERVg9VaFSIVCri3SZKpjVh0aFeyzhqVVNcyFOSn4eh1nrmNEjHCdtKXeGqEzMEipVuoqbF/quBijghqX04Xz+UpKiXGcGMcJoLqKKCiz2+3qfFFNmWHY6YwPAZHWDmWX755TIMyRGCOXy4VpmpjnwOdPnzmdzxUEOjFNo2qyder8pUmfrsiFTDF1rEu9zuute9W5qNe5OrZIpiS74KopJ+ZZK/xNVNzUApitBctMwiRZ8m0jdZaKVAZXawPagFgv1uXnkE9ZzurlOUJdU2vM1FhZiXWt1aRSgR8xK5O+VblFdKcTC8YZbcfc91rZ3vVIP5AxJBwzhpSFMcCUSr0utY1MwBnd9wVIZl33lxY/WNbXXBpvRLDd8Gpzsb67xqXLldwChi8et9i1vWwD/mhM2xir1HnchF211XRl8izQrCaVTQ+vvr8RBZnq22CLoUih+A7pd0QrdJ26wpaSMVaZyaUUUpyYLk/avhLOpHChgUnG5A3wo69fOg03SE959rh2HFAZPQW+vPyNI4bGpCnUAuVcgTUtllb+ZvujX2QuSlbQXKJDZgfJY0xCcIjJ+K5jtz9gnaNkS06OkoUQMvOkYM88RaazasjOU2S8qHvsNEXsRRmSbjAUss7zaeZ8OuOcIcyReY5Ve/LK6XSuwIzFdwYx6L2sJjEGBb9LhjhnpnNkvhbSVCAJ6his7X1SmV+JshgKhRQB6Pse75XRcXNzy5u7NzjnuDkc1LFLpDJHzMLeX5g9mw6FBrR8wTLdPl8Rg77rXm9frKHUtm74vIgoX3lUSGliGh+IIZDiTJgmZfMYw83xDhDC4Yab29ulvWueT6Qc6D92JALTdGGer1ALtLkW1gFK0eJuKYV5vnIuwjRe+P3v/paSWgvVgd3uqHmfs4i1OO/49tvfUFKk63p2fsDtbzAGdWbzHiuFvvP0vQcC1/HEx0/f03Wew/HX7PfqdqoC0nudiykxXi8gwnW8Yqxlvz+o4yzQ+Y79fuD9+3fsdke++eZbjsc3yjoyHcaYJY9c3Pn+wPGPcvX6U49SCjEErfgEDQQkV3psqY4SNYkSEbxzdJ0nAiZsNkYRfmpU/uRn/8TzK1a/Bvnb6kSL9Zs4f0YrW1OMpKKtJcFq9T9jiFk39ssUuMyRMQRCynWTY6ka5UV8rdIlK6ggTsEf23fgLdJ58A6KoaNQDAvwY6oFpwaBVWwsq9aPqcCPkT8C/vtHXchaaa7CvE0wT4EeaL3r2g5Wd54FDNEdRkSRU+c27RabnXebG/4UAPScUbB9vi6qRm0Ypb7HwozY/I2+jkqPXAWYn7/rmsQu9L12ngvc8yJgK8//dqmgbMCcbVtXy9q27I2fAH5e7yhlcaBrbnS6YWQNVEsb7Tr4zdadYvPt2jVbfiXKDOo6BSa73tAP6uISZ2GuQJdW+/RPmgq+BiMbeWGztkgtfcnC4t5AVh2daqqnlcT6nsYKzinI6H3T8tHXtjPfBoCN3rsGivLsHjQcQL9i+w+p71PHmWhwT6njkOeh+j9+1fqZo7T79EqtXg3w+gOvad//5eOffv22peuP+koLdGaMx/uBGBPeD3g/YAx4v6PrBow4un5P30+kpICzkaT2nP2evt8rZRoDEpb3bdR2TXwCa2m+JSaVgdigv7K2ePwSU3H7zde1sh1S140K/NBanGuysuSEa3uHNJHtzXjOaFU3VMfJOao1bKpmAM2BeUqZqQJMgYKSreunboJIDXJ1r0tZxWHzUvdncy2FIpZiLEV075znQHYG23u8tWAskga1zK5MTZJq63nJdFbFKPtBSNZgQyFES8oK3i9Jb0qEOVSmilZelaUJzlqcZQFsf5bA9u91bIFBWe9Ru3YtAq7g0Bp8t//WXzfGRBPZLFCFQluLSmPIyUrxryL3paDOhjHoWbT3NEI0kIyyFb23dFHZq2MsTFHbbec5VGAjE0IiRo3HctGiZyExTZFxnMkZxnHieh0pwBxUkFSvgOripZS4XEfGaSalxPlyZRonQgiM06QMoJQq43P9vmVZX/WZZa9Zxv928L/uYSpIJ5iqxbFmLm3XWJJlqLpjmjhJqa07xi6Zt21t+LUgp4BW22U2O87LtXj55ptxJe2vvjxa686zx2WNetqftzFnjdF54eyyVzpvNZn12t4l1oKp2h+5tXW3gHhRwWlDHSnLpXoWt+Tlifq9ZGVCbw1IXucoSEkL0CEv338L8lAZP+Xl8+gXWV5Tn9/GQe2/2bJcZXlu+TCSgr7SYr1NwFSqSUSLW63H+h5ywjqPsU5fI7LuRZt4FljBdlq7UN27XgazS7ywxsSFBvzIiznXxmNZ7nkpqTLUk+pdVfMSyjqeX/NoY7XNAalgGlk7B0o0lNBeWwguofjmuj6CFtaNFFyG1AvGGXWkE0dOWUV7rSFn6HdO2e0OimQ1HUFZ5iHG6jwbiClozGwykuxiAEJ1VC5iKmCobWEpZnJa8x/ZrPf6s+6tS6FQUNCntvJ03uOc07zJNvOVBvjURqOfAnb0hn4F8NHftnXpl9gY21t+rb1svdPrGKMU5nnkfHpgnq/EeWaeruSUtOvAqWB1jDOhOt2FeGUOygoaxzNhVt2flCLbeGqzAi3PqDB6JCWYpyvnyxPe+UUwWgv+Ffhxnq4batvdQOcHvFNmXuwGvO/X80o6TuZ5ZJpGcg48PT7gLJxOT1yvZ0KYK8OqFg6MZdjtcL5jvz9we/OG29s33Nzcstsd6HuNfZ3zS7vZM4bXs7Xnp48/K/CTUuLx0wNP90+cz1cul0kHa1Fngr6PVRMn4bzl7d0Nx7Tn0+nM4xzW6BTYBgWvccjXHpc1uc1Ge/eSCKcQ+Hi+aI9u63cV0cnpOlIpPE2Rc4jElHi6jMQCNsM0J65jxErUtq9cVNWoc/j9jm7X07+9ZXh/p+4Ke4/0hpQzXZiISfvgG2iScyGFKgpcNAhvgYMCP689kQs5qqOS1MWnFBareRV+jktlY9kQmv2iFBWzHgbIgb4fMJUNoRf859HKrx0tABYR7YPslUmk1MxpOfeyeb33VQsiV9AgF1JS15D6cl2cjEGcw3Ue2zmwQhaleRZJIKluui9DLJakjVI1AaowqyZysW6kpYo4N2eGLTuoPI+gXunIpTCOIzGOzOOVlCZlY9mugoX1vNFE0uKQUvV4CrWlqVpOptr/WpOKw3Hg/Ttl2PSDZ7frMAaens48fH6oTJvMHBoA2oCfGqLV5MhbizcOK4LvDM7rNR167YXPQF9gRs/nOhXGSQGjYddxcxzY7zx3twN3tx3OGazJhHms16BtNso6KqmNvRYqrumGFKoT0Ar8GNF5pvbwWhW2prZzCEvwJYXmnP3qx8tWr1IWzfWfeO3LJ/V7gaYTkn++1esZtV0auJM3QcTz+EF+JkFbX9vAMqFg6Ycbbm6/w3cX7h5PXC4T1sKbO2X8pBQppaPvbkkpM4+BMCWGYce7d7/l7dvvyDnRjWemeaytLDMhJqZ55nR+wroOYzydP2BNV4MjFdNvCWib13kbsL/qUUAmZFlEa1Ivrn5qICdlpxnRFgNp163e65yUaQDovJW1fbatH2MMlDFiRZhiYAqTirgbaA6g0xwYk8I3+wJ39YOiMYvWgHigBySTrBAlEiQ/D2g7g+kUmPG9wfUqBnwdr3z8kOn6Drv/jsPhHc4UuuORvkwK/sSJfL6CMey6jrc+Eayle7Pj6nvCHPAfI5cnXbPLFMkhM00zHz985P7hAStCZ1TbyznAdOyaFBRVHPSVayJ6tMCrJnOtfbgGZmSDEW27bMyeptFjraG4sgB85MoySQVjGruuaRMlRMBV9y4j2maTUuY6nvj0+ZEUU/297tOdM+oiaoSuagWIqKZTrEU31duZtS0rRIK2wy26btYYQnrg8TThvefpFLi9eaJATYjU1CIEZTbnnLmOM3OIlUU0KvCXEuM0ru8vUuOANZFuYQU0HLFBP/VK/wILqhGh9xZTHDY5TC5kq4lWzha1dzcoV8JA0YTLVBBlKRAt2hGJEHU/nyWRS0C0H1rZFrKCPMs5mKaNtElYyrrGP4tVxWzW45qcl5aw5+VvdR+XOte1KLLbddzc7PBdx93dgbs3B1znuXlzYH/cg7Fk15OtJ2ZhnFDnryyLaxGU2uaje6Nl8cpTNk8Dx3KTpi4sOkNLjvIFNPOnHSVDGpfEu6V7L/enZ3sUy8vWY6lArUniYs8uUEoV9pW6Z8m6g7EUMy1Ic4PKS3xbCirGX5pQv0HE0Q1HDnffQsnsO8/QeUqOXK8nWptvTpm4dO6ZZfxkGuBH1bHZIJMLCKSPdR1UQBKEXNbCRwMCSin1a+jf5DiRwoU0d+RwpoQBBX4cv9BiWs9ZWVb6r4fcg0AMkWkUki0YF3DDE2I1gXadVwDXCla3c7wDv9c9tmRHzr3mTFEIQW8PRjX2dDDPnKcRUB20MGu76mW8cp4u6p5YHF1xVQpCi54igmtXOEAYZ8bzRBwLJam7rTEOVx0ORTS3NEWL4f1u4BCVaXI8HNkP++redcfxcMAaS+87vFX3Q+vUjEUqaGTqGmoaIADPQJ+tuPNaBNkWIV7v1i1xymb+Pfv9AkIJMQamaSSlyI8f/oF/91/+F5yePjNdz1xO98QUqj5sjc+ytuQpmyeQkrp6jeOZ8/mRmCLXy4mS03oeizsm1B5Ocp6ZQ0aS8PFz5Hz9rAY3zuOsX3NAUbfDd++/483bb+i7gd/8+p/y7be/wTnPfndkGPaUonvwNF24jhfuP3/Pjx/+gVIyv/uHv0KkMM8zHz78wP39vbrTWcvd3TuGYcevf/Nb3rx5y+Fww1/+5b/g/btv2e+P/OY3f8nd3Tuc9Qz9AVvNcZb1X3T8vXR2/drxZwV+csqcn05czhfG68Q0zTSBYhHDHBX0ySVjreF42FOKViGtfQQCm92iHjXIeoXja5drC5oXI2QRrjHxcB0RIKZIrAPLORVsSqVwniOXoBt+SolUhJRhrsKL3qntdCpVds05XN/hdj3dzYH+7gaxBrezGK+iVd1s1VnDNHSwVq9TVaqvLI4G/Hj5BYCfqkejiZEK/pU6ofTOZFqN+FmRqgayRQpGDJ3vKX2otnWKXD6zwfxHHtsFzTpXW8hgnsPisLatrHnfLX2RKRXVO5BcnX1qoNQCEqlJT9VgEtM22MWQlJ9aLTXvyku1ZRHjy1krJs1GcwF76u/aBv3Cyv21jlKq3kKcmOaJFCessRSrKvdrjbVS1Svo0UxVcqECZpW5tsQ6Qj943rw7shs6hqFjfxgWRttlnChzIJVAmIMCl0WdNqFtFNV+2Dk6r9br3oFxGiJ2oq18GXAieAwxQ8yRMSTECL5z7Pc9h73ncOg47D3WoBtErYarZlClUudSg3nq0NXxbJrgKtWJVaj3pa6vogm6rZFk7ZihUIhsq46vD/ysOX0LcFvAzxK4wfr4ZavXUk37Iybd11k9CppVHKyu4+0xm9f84SRtxaOKioeKQDF4v2e/T1jbczi85Xh8whg4HI4cDvtqo2xxdkdOagk9T5FhGLi9/Yabm29IOYJ1WOfVBWlKqm0RA+N4wbkO5zooQtcVnesmI6Kie81quCyX6ReB7xBinUCqR9ZaBTWVqDonKYJRQUENRMqiK/+MoUcdsMhmFhd128vKpAkpEGKtGpqVXRLJBLRd4wJMCA5likh1ABQniBfIiWz1bxIJK80qGqwH0wnWFuwg2F5bd6ZpJp9n+t2Ou2wxu9vKyNnhTUTijHz+QL6cwQqDh6OD1AnurWM49kyjJREQV0hzYkyZOCvbZ5xHMpm+63n/9o5d77FO156YTXXZrHv2L3ArF1CiPRahFRBUSDzrWtiEgGvFNtcWLGvqnmMBp4UdI4Kkwir6maqDm9rUO+eW+6ii+InHxxPzHLTdtAbXnbP0Xl/b9R1D53XNylnfsxRCBXtyVjAo1CJIY+aKCHMonNyEc5ZpipxPV6AQUiTlSMqZcQzMsxakxrm9Z2aapmU/ztX0wlnLbqfClfVybeqx7d/nzFrkj1u3/rGHgmkWk7O2YkhWsLM6LomYFbgoqlGj18VinF+KJmS1dU8m6fzN2oanYqG1tZ/nX2GbjOkYWiInGv/wZXvY9rEysxSAzct6v3n/+v1U30m09XKvLkH7447DzQ7nPYfDwO7Qg1iCeKI4SCDzBlDIUoEfjZJqrUZbn1jvYdujYt3nl+fqhqiul695B+sVy9pSLjXua3GFgrEsyfHy0St29vxf6hdAwTppG4Jo/FCKoRUJ1gSsariIUERbkXRgt9gYyELJDQxSiFPE4vs9AwnI9E51CnNUV6cWH+bFPGPZKZZCk1qel6a/vAZrz4qIZfN/m6eXS9GilXp+UguWKZBj0/m5Qrrq98fDqpD46oeSAzROI1kkeaCQmBgvotICLoJPYAtd7xiOuu773mC8wVrBeofvfGXuGwVpEHUKy5ZSYJ4npumiLJIQuc5j1QFagZ/rfGUMVy0UiyOL1w4Lb/Eo+GuocWNSbaFwDcQJyK7KdNhaMKTOA239MqXQdT3Dboe1lpvjDcfDEeccx/2B/aAOis65RR+oyVpsc6Av2rhePH7GNm3PL9f7F7iHXwF9lrvbTABKJoSZEGYeHn7k7/723/L50++5Xh55eviBGCZEGhvqJVjcuicqAzkFlNWdKvDTvigv9o1qXECEBPN84fGp/W4twjVEzFrH5/sfubt7T98PXKvDmPcdx8Mt+/2xxsCJQuJ6vXB6+szjw0fmeebx8Z7T+aTtaTU3tdZy2B8Z9keOxxv+yT/5Z/z613/B8XjDP/un/4r377+j63pubt6xG/Y0Nny1y16+ll5nwx/DhP2zAj9tU3XOLO0XpQIiuWhfZYiBKZhFLEmM4IzBGcGJbrgv5dqWBB34Mhr4qWH85cUpdVP4+ivWIFqDIl1kYw2QEMgxLWyIkDKpgjBtE9Y2sVIFnteKWC5FrbQ7h+2qVaqziw2qtiSVZfEX0xTE9dt9jQfV2Mkv6XV/6qHVhFT7QWXZE5dko2QVei6lTrL6+cvOokmjra1eW0X6UuneDezYLlg/fTasrzVVVwW+GiC1VpZ1sdHnjbE4p60QORWSWRNjIwroGddszF1DOCjbsfUiYNB8fI1it+ydpdWLtZWrLK9pl2uzSf8CjB8Ka0VooQe24LGeZz2ZXBIx6+vGUd1X5qDsvAaSGWvwnWpKDYOj7y19rxuv85oMdr1lt++wrlZGGmMta29zu0dGlEA+eM/gFHGXEsg5IvWzrNfNwhmLF0PKMM5gRBM6a6V+jiz2o8uEaWNSnv+7gLwvAurtyza/Wf53YcbAUuFf72W7xnVheNXjOdMHVuClnbv+7kttn5f//fz59dJ80QK2ffwFsLMBl2pipO/5PLCsn/TlZ7Peh0UpSdQi1RhXdVnAmKbPIljrca4jkSpgo2JdsbJ6corMs4KMc9V0UnfGVEUBA6WAszO6oVqsYxHsfnauhefJ5ysdYlRUslQbeiroY62reiyWzlkFjWk7UQsutOKldOHqGsIiA7T5EmvEsxaEXnzDuj+L0zloO6FYIRmpbcp5cZsx1mBdwXmD67RiqQmlghpu53E7bffsh46ud5gCkjMlJjKJeZ44ny8kZ5iGQuj0ukvRBCsJkAsmJUo2ODJZVPtGNWqUhWhsRWfr+h1zxprIPM/KwMOSTYdYXVcaHf+V7yLPNKCWWEKWwkh7fvl9W1va+iGrmKoIdZ/XMSelJtqblih1Hok1eYGcpIoPr+4yCgRoq1xKmSCqkyAhLutW07krpRBiJqayguGLJkIVpxUhSFqWtGkKOKsMSgV9moiz7hE5l9rWrwW91uJe0bA67ta7sSyZ9cHGXFGf36zB5RcAf0r9rrmu16bUuGATy+lcaG3IBsQixlVNFmUulxwx2QCRGFc25PrDOkaW77RJ2GS9BtuTa2suy+tZtDmaptya1JnlfUFBWdf1dJ3HO08/DKoh0nf6nPc47xegq1TXzmZY0Nw6U6ljpgqS2yX5kMXVqw7VzTfetOjBsiH8Qt16tdVrA3bIBugR3Zte7uX1xJ798/z52nRUY7YGxm3HcWlfqvW8yfJXGFFXU0DF3ZP2ZuacFut1UIBdalK3tWhfYsW6L+obWS0CoPtBrkXDJS5/EZe2x/qrl22GzYq8FhzqGqRxsGrfqAGJ6v3kFAD7fN37BY7WjrbGxirMmzPEBKFAMYVsE8WojXvOBesEPxhythgnOJ9JfXX6rc5126IYqMjylpW/xutrrGetxTtHqaD1Aq63mGcRL9f9KFfdyhTLaiPevhP6vsZUR2tblKXpvH6O9+reVcGiRTdyA+jLs3WjgRRs7uv6+CUo1O7zciavvjFuQaf2bTe/fbEtbnOeUjeCkrPqlKXEqpn18kTXInluchJLDL5FCL6GFdQ4dnmf7ViWzb/qEpbirNpBFC6XJx4fP+N9R64xpQJwGouP07W2m7U9veqJVvDR+w7vPXe3bznsDxxvbnnz5h13d2/Z74/VVn7Auw5rHIJ9lsw8uwrtWpafv49/VuDHWsvd3Z7z9cA37w6kNDNOifvTTAiJSxj5+PTAeXIcdzu+vb2ld55j7zl2HSUl5lQY0+p09JUlWx9v7ulLKu2zv3jxqyJf2Yxa/p6FJMIUcl30mp10rC/UpGOtcGyTMoipcJ4Ctqh05+k6MU4zrvP4/cDx/R3dbmC4OeB3O110ndTefV3cnV17xxuVVRkiVcyubnTKpJI/8N3/PY+SyWmEYjA4mh2y9sS3CdbEndfkj6KAmVSa+zAMWFMYhj193xOD9kbmWROZf9R5C9VhpFsCnxjjkqh75+vr1sXRSKWOIvTdQN+rONbVjIhMgDKHrHP4rmN/vGM4vsF3A9YPNJp3KbIib4vpSJ2YVXMmtza3UhewxvJJidbTWukz6+Pm5tWce36BQzc5ZWBhbE0gCqUKUTfryWmMnE+BEBKfP575/Y8PXM+zVs5LQmxhf/DcvdvjO8e7d3u+/a6jH7xWpL0ut9YN7A7vtC1nzkzVvWvrXKOVkNqyZxzeOnLOfP7xE58+fqKUzJvbHXe3O6w1SNdjfMccE5hPXEZdeLveMOwcw2Bx3tQinGCKJZt1MV8UUzRyYtkI61ix1uKMBrjSsh2o8wxaFVhEGQ2NsyZIDSCSii5KophXnotQN7vmULBJKmhsnC3FdvP7sgYI27m24LVl81ayzbjKkqxoS1H7yyZmKnVZbZv9qs20JnQrvbf9bQsdc1JQW3ULHCI9YgreH+m626rxs8e5HcYk+r5QiiWEyDwDok5w9w+PTJNaUF/GE/M8KttjmrVXP8H59EROYK1jGmec7VW8dq9uUwpwaBuqrrMvWAevdPj/f3v/EitZtvR5Qj9ba+293f08IjIy8z6/V31V/TWgFjQIMWKAEEgtJo2QGsGokJB6CrMuMWGEVEwQEyYlgVQDJCjxUJeQGCDULUBCTdNNQ6m7uquKqr5V33e/+8jMeJyHu++91jIGZmvv7SdOZOa9eSLuzcAtdOL4cd++H+tp9jezvw2RH/3xBaXA8WgRiF0c2PYXxNixHQauLy/ou8ThuOf29rV7xo4cjlbJ4jiO7O+NlDdPxaItfP62zCFhWaMlYmuxQArQJQdvn20YXlwSYuAiW9WfMcAxWOn2REXSwDYldAhcftJzdTswlkoXoynCMbJ9fsHmekeMge2QGPqI5srxl7eMXxwZZc+vvvgVr/dHNkNH+eEz9MUFsUCcIBQ3wI8TPcUSa0qmp9BHGHcbCL15Ug+VnKHmzDQ5kbC3QYyBYbPl+sWnDNseLe6UKOU9WJ0+pn0O0ObdvCcY2bE4p1wNXu9HWwSIAQEanARWzHMfqhmSpleAenjk8Tjx8qsbq+qlgqoB6Xd3BwdbHPTBvl8KjNkU0njMxDhi83YBd6yMcfVx01JBQMTWGUEIU3HlVjgeR968Sf7oCmLfPY7OD6TmHDMg0pXz2Xu6cLjN64m69tCMvEYQrPpWNono0xucqso4TkidCGVCqkUrHbNxUk65WmpcNadDSFtL2+gHhu2OFCNaR+q0RWvhcNhT6w0lZ6wysHNOrIyvtcNKwlKOeeGAtEmsJ+PVwYSwpHTEGA14EvGospZuZBEoMUSeXV9zdXVF1yU+//Q5nzy319fPnnFxdUGIibTZElJPUWGaAvsCU1b2x8L90aLNpmokz0GwdBqP3IkhkHxf9ZVm5vJrtUIboTOAfE209G/fiUuqV20RNSJzDrTMr1cG0lt25IO2Xu2FLRWzhta2NjNav9k3HO4SoXp5ZdECeNpJ9UpVgJbRSFmpaEjEfgdUSp04lomSK8esjFmNw0Y6QvJ+jgEJ0ebqtDcHQFv0223XNleYnX0zV5WASCSGHgnd0hhqjxaTcYellKBkynhPiYl8vCF7VViRAUtne1pRlOJcTdUByFyFnAOlRo7HyO2tcMwwlsx+uqdoJnbQbSFE6DaB7UVnINCQ2F70Xp02kDZmgIfUWbESEdd9jfevlgLZ9J2oBsgpds7dsLE79L1VfZjMAV0VplrJR+V4X9jfZPIIZR8oR6/kWKpFn4kQkzkmarVKnn1nTpOriysutjtijGz73gosuONlju6ZAwTW4A8L8CsyZ348Fg00i7xrMnx3afre247804g/U7Gdo9YBthgFoWVFFGptmT8LeLbolg6S+rlVw6pz1kjoWlb2lZhetH5ffE+3CGtlHG+5vS2EEMnTPV9+8XNSTFxcXLHdXBKj2bf9YGDQ/v4NKVpmwNXFJUPfIyEy9Bv6zqK7fvKTP+LFJ5+x213w05/+MS9efO5RRM/ZDDsvrDAgDbJp+vhKT5816m/RfR8U+AlBuNgNXF4MXF9uOBw2SBh5fT9ahZ48crOvHKYW4fOMbRfZpMimS0xTAgpjqbzLFH7LszzbLF8D/nDSfm+nyPmgbeeeihE0t3SO3EjXKrOHbFYAcXVJzGNyGLNN9hg5jNPMFB/7ju3VBd1moNsMxKF38NZCLW1jUQ8PVdRz6W1xN3RaZuBnMWmfHPhBrQy5eopX8JxCL18oLeJneXKactk8MCEIXd8TROn73tMtOqs88Vvqcq3iSFtYWhWLGKKVoG0esJY/Py8UgZT6me+nFKFkQISuH7x0eU+/uaTfXNB1wxxmp43genW/s9G8NNfsqTGQo6V2NY9CPcnHbil7doO22D21cmvPr/N15zSE9r57Kkq2e9nvJ756ecvxkHn16p5Xr+/Y7yczFDCFfNhEnj3fst12PH++4fp5xzB4eLznSHVDx+6yNwNmUuf4Yf6BRsKafLxHogRytpDJ6dfmiemGjmfPL4y4ebuh22w5HjNfvtyT4mvru07o+0DXW5jvjAKGQKjNI7OeG97Gq40zhJY/7d61OQWPGZx7ayNdGVKzt6haZF9456r1HfpxXr+MJ2BJ+VrvCnZP63LusFrvWCkAq4WwRfjYKU/9eovfRN1oe3hfrT0sFP3UdY9tyCtFoF12xj1VgAjSIVKJcUPX7VwJ3RLjBpFC6jJ9BWEkhANgFebu7u85HKwSxOFwxzgdTZGsLcpOOBz2WJRPIk+VGA9L6il4CqrMhqfq4nB4SklJePHDDeNYub8tTFNlSD2Xm2u6tOH5s2v+4Cc/4mK3483NK379679kf7jncLjn5iYx5ZHD4UCIFvlzPEwUrSCmNEuzfea+cyXGh3oMVkAyJOXisufyB1fEFAm3t9SbTNbKJMpUs+V69j1DH6klsLlIbJ91pFLpYiLFjthFrj695OLFNTEF+t7mYx0z9W7P+KaQS+X1m1fU13u2m4HrbcfF1Y5Yla5A8mUvToUoxcLia6GjEoOw3XROVBxJw5HQm8FTqvExqFbu7w9UrVxcZXbPn7HtPBWt1PcGpp/OvfXbDRCS2QiVRqgfDBACI9E3PNXMZg2KFDeYq6IEajBwZZoyN7f3nrayROAeDkePJvZVzpHawhqoLQ80gzYPl/s+BTlPFob5G8fjES90SYhC4zQ2jp+2NoV5PQjtWPGqWS1CpekIzE2x3JkT8jeeND39+ElF1dKxpBZCKYgaR0/OrRprJXsxgkCA0COpI3RbuuHCnEx1RFPnhkrgeBiNF8crnvlTrZxQMjs7DFBrQIHOkViEZmQu624D3xqvSIxG/LoAP+4dloiKRVjvrp5x/cknDH3HsxdXPH92SddZpb3tbmvfST0aO6tIpMqYDTA8ToXDWByAtAp+USBJICIQLP4jNt0QqwZofXa6zjd+q9YeT9ufilVMnTcTB1bDPAeX1607HszZh0qc36RF+FgEl1ZL7W79WOc5vpiYVcxZbKex8YQqUhNSo+95Kz0vBULqQZU6VUqerKJwUbL7AEWSRTKLGDlbCIRaUEZLAdPVXFEWgNQjZez+5lgfICAeUTs3n9pcNUJ8s1eswuRIzQcDgLoeJHmkbcf7EKUVxgmz2lWmQKmBaS8cXgv7I+zHypv7I1MZCakS+0KISr+JbC47Ugr0W9M/Ywp0m0B/EQjJ9NJuOzhJfiXGJb2tRWkHZC6NHjwaB7G1Is+UHguBcy0g2apxTsfKce+RSEcrM4/GmdKhpW6lLnnEViFFWxN22x3bzdY461K38IjFdUqXO99Xuuu837CAPY+9bvLUmSGPyWPXeOut2aG62G7RibKbM3zNXda2cW0oZtt/mz1jPeagubLyzrcLzr/fvj2fIR69Jw7+TPlAcfDpcH9rcydEi9DZ7Cwt7/Kai4sLP4tV4Awhstls6Hqzd6+vnrPbXXJxccWf/umf8cMf/oTNZscPf/ATrq9fuIOoQ+Y0SlnN2Xetmd/OgP7gwM9uO7Dd9AxDpO8j3TFYnuNqsQpYHrKFuCeGLtGnSN8lsmIbaPXRIQ8MGN5+7GXLWf5qoq3kIk3RkZPz+UHzQrkc6QDD6v23/cGryBU3nvANb56XroDP4YfREdCZ76YZmy3M0kGDnJ0Q2KqZNG/Z/OMhcfrUXk1l9lBaXiW0gPSTlp29iG3b1xPrI0hAW0WS9vPo4vOO3ls91xI90BZB5nPFEOdcXl2dJ4SEiKUS9v2Gvh+c3Nk2dARSPxC7jtT1C4v6ugrZfEfr16dNoP7CmsNHyRzNcxpWOBMRrj198/tPKy081KrRrZ9h/SimJNVqZJ3HMVull2IGlgRXWAN0fWIzGJlq3y8K/XLahVwSBU1CR2xD240UcfK2Bhg6m4J7O+ewZ7PKITQFd/3boUZZe0NX/aF45IZvAU33E+ax00KLq6c6VGlzS5dOVRvvrRS9aMuXX1L35qaUt1r3aWRtCLgy9zC9a37wBl6su7bps+31vEb5OigPx3P7QgNPjBsEWmWnPM/xBvhGD1Oejd6TudJoQH3uImYwRRsXpUxzeco5Sm6VPmbKd6V49YScj0yTpZ3EGj19tFgkYc3L6i6WGdQUAa2ZaTLukVqtlKdqJcZIXwsxdg4avR/gx/QUI/CVoO6g13lp6bqOi8tLrq4ukQhTPrA5DhyPW4ZN53xFB7a7DTln7m7vUX3NNJlToUzO+yaeDoLSBaELBsvFBDEaIB+T/3SCREGDh9VjKVQtgix10EVhu+u4ut4ylUqQaD8pkvpk624MhBSIva3AYQjIEJAMOiplzOQc2B+sRG7UQj8e6UpGql0jAYSC7jN6P1GrkI+FcYLxmJmKgVNV1K7VJd+jClIFnEi5pbGu19Yn78i3dirx+eX7YzM8ZyW9RcR5bv6suDdFVGxMVCwypLb9zhYZqxAq89xQhVzqogas7+XBIjRvSTzy/iOvH55CHz3G700epBC0We57c9uyG7dEW3NPdLn1QjU3rWtU8rCdn0p8b9NmQK+4lWpL9WrVJwUjeo4YrB88UtHSv+z24tzPc86xA13NIx89Uq5xdBjwI54a5xqmLpEma+PnNLXrwdrauGZih8TeKAT6DaHfIl2HxAFi5xX37BlQ455RLLqsFCeOr6fd0Cp5zeiCd5pWxZBmQcRgH1GLZAuz3qyO/AhGdrzajJ5IgmvjjZ9vnlazgfcw3fPB9WW93y2fiywG4gxcvbWRnp52TqjytadZDjiYMa9FD6epepqLrsa6V6y1yC5QMRevOgAQ5iIpNnZtJHhkIXiqqJ3N1kSLZOn7LTENoB7xV3WJ+IlNXw7zvdWaKXm09kjduytKfEdZN+ey3izjUaugNUARtAiaw5w2Z7ShtsfHqJRJoFiqTdoEpkkc+FG6o2UNxKikzqMtHXhdrD5be0JQqk/vnAs5F9dX6gy8aQayMh2V8VDIU6U0Aml8DZCV3dPaXW3OtHUgOqF+q9zVnHdv8fTMYA6+vjDrwU3eBe6crBtPvZzK2j577B6W95f1LyygT7RKVzNZ+nousZo7azvx5BJNn31c1u7MuTLbYw/RjlewQAt7pkohVMMBSp6sSqwqOU/kabKCCE5rgpgzGrFgg6vr51zsLueUrmHYMvQbYuwJ4k5zwsn15eELYbUeia9z39yJHxT46bvEH/zkU1Qzn316wZT3VK2kLwE1v1AnQh8Cuy7xfLfh2cWOqWQ+vb6kS4lwv+duHMllIUxdNqNlcj4yHEwe2WCaR9v/emtLACzksE0urHEVjHOg2VfIOwbZbHKYdzUJKTZlWwnJwv2HbUcajAzOwtl0IQPWSnGwp9ZCmYy/4gREYlkMLEc/W1n1JxRTnrOnmfnzakWIyDzkVhDLykOlHrLelB0hzeUJU+ooeZzzw9++7lolNJHV80qwPHsJVnKv69LpwohaGkA2boNht2W7vSLGyG53xXZ7gapyd3fPfr8HMEXJeX22F8/oug0xdZ76YQZR21rful91EMD5AWpL9fL+Wyp4tXQ9O77OEQlt49GTZ34qEbEqdKUopbrxsZoH6xSdaYI3b47c3hy4vTtydyyMk7LdRnaXA10X+eSTC37w+SW7XU8/BLq04lqyCWaVZ6LNnr5zpZRV5SGfxBLsezlbSWGtmULh6CmemYCmhKYEXnElJCvdnNwT1nWBrgue5iXuobWNurYSxa1lRQzgS9EM3GLVWKqHSuTim+1KwW1KlYhSMkTnllmNAMDKzbfUjvdRYW8BWFfzbTYClJkATt2RvgJ/WghrW5uUhV8rBC/lK8tYnIESZ46cpiPHcU+tmfv9Dbd3r42HSTyFIwi77QW73aWHJRswALix2pqplSK1nOe+6wGcq6R4ycs9pVhqisiGFIWsSs577u/fMB4PvHnza169+gowECM0w9F/Qgh0/YYuJgM7QkWwakN3t2+YxkxMHXc3r+i6ga7r2O0u6fsBr4HC+5mLSkwjpULsvF5QrBBsnO6udvzhX/ljfvD5Z+z3d7x6/UOm8WiVvsrRCHQP99zcvWHKIz//+V/yD//B/5e721uO+5H7W0sBSwn6zubXQGAjplZEUVKohCBstoHNhRFi5imQ94FclGOt3B8n+lSQq8LFZWAIgZ9snlE/v2CqyjQq0+ht3vfQJ1OsLzqGi0SdMv3dhlR6yrEyflHIdxOHOvLLXyj3t6+JomzjyBAySeDqGNmGgPSVqLeEm8qhKq+mylfFytPf3k8cSgaB7mKgvxgouXI4Wgp52PTUACOZrJnsHE/vD/xpETztb1d4LWcbxE2+FiWAAdsq4sB2dYeN7w9iPj/DAsMMktSqHPaTGenZCEi1KmMuHkHZjIV4ohOZza6z8vz2/bc15ZGP1s9E03naY3tpWTXdZnGoLWk1a4d043IDM9CKuyCQRnrqFwwGHCygPs419fT9VxWOuRK0Emu1iJ9SGEshl8JUKlPxlDsNRDoqHUE7DiWRSQSMj1KkUsMEoUeDWuiEgzFB3MkH9H3P0G/M4ImmC4FQdDVOvdonqkx5JOdxBULrvH7SoislQeghROLmiri5JHU93fXnpOtPSV1Edj3ad5QYONJRs1WJKRN27Qr3o3KYjLpAixBY7evozNvV+kmLLuXtZaUVqo3h5rxpSRQKzq35dHqqYJEq4FX/1MdM89zj4BRNU12shTVY+RiWMW8ps6xti9NQNRvrnhrd9mpdrqhMvgfrrEIGaaCVcXXlaaJMBnYTegSlHwb63vbI0ctBC5BSP+u6M/WDiPHFhNQsEJpOUAmomGG62ezoektNGY8H5ypRQvTqpSGQut50LSr5cMuhFGIaGDaWxv++ZGkxs2sMiKwWOZMTTB069nAY0EnmNV61Gp9bGN1ZMdH1R0KENAjdzqIU0xDpdh0hCn0vDBsveBC9kuzK7rN+XUDW0rI/1Ok9iunyZSyUsZKnyle/nLh9nalF6BQ6SRYlkhJ91xFCINfMeDD6kBCETT8QQ5zLuAcJHg3v0YCtYpctpG2AzwNU5PQ+T4HhRU5Bn28DGfw2stzP+u/ltfhzB7q+R4KlZ2+2lxwP9xwOd0jsaGC6al3GRNsDHk5MXaM4+uD32/c3H9tQ4rXMqrVdr7bsGqwgkIpxEI6joFqIsaWnqUX2XD/j4uLSwZ5P2O6u6Lqe62cv2O2uGIYtn336I66vn5NST99dIvSr+1psWLtdnftaaPviAvp8mz78oMBPSpHPXlxxd3/L9dXAzW3H3X2y/GA3oaPYptnHyMWm52o7cHccuNxuUOCYsysMzN9ZDJdFTh9/MZBOZQUynHz89rFGkP92coiGB0CFyDsARnWFRkgBD/0y9DgEiF2gGyKxs2otWhtZZzbUv1rYZyO5msYDtRifSUqNLErmClnNG//0ylGLWAFL74LFjFwif2yczpbdjJm3VJQQAqJhRnVnZnp4a+Dqyeumbq4UTmmRPhEkElNP329ooXlNgbaStbbZxtSz2V3RpY7Lq2dcXl6jCl1/x7DZW187yaGEQDfsrPRztEghZQ36PDLVHMiYASAHehqqv6R6uQK+0gvmZnNA5H0YKCJikRhamCOY5sdY0r8U29zu7ydu70bu95njZDwHGwn0m57NkLi8HHj2bMvFrnMjQJfe0uWcLS0gxiU1bxkroG5gqyqHY2WqFbIBP1mdDwhBWw1qz3GXUAlR5mihRu4cHQhSPDqnWpW9RrZuuEOwKkTNMFOrwmL3o4Q5T3hZV1qvN6LH4vMszBuZ+n4sM+jzvrbVNk7ay/V2J7Mboxl6pyuYuOdCm7fSDUZthoQDgqrN82x51qqV8Xhgv78hl4nXr7/g5atfkHO29SzYHL++fk4tz22OBytjCkItzJVJjMTZfoZhQ+mHGbw2o3ayEPPaqhTVee0seWQ83nM47Lnfv+Hu/iWWI954UgJd2hCjkbP39FbOOOJkm5laJu7vb9jfH4gxMR72pNTR9wMlj2w8nx95H7ww3g+xEJI5AULFI37sZ9hs+PwHn/OTn/6U4/Ge57fXTNNoZcHFVqL98Y6bu1eM08iw6fnq5ZfEBHfpnjyN5Kz0vbDZ2BzsCQyWrELQYuPZS6/3GwuBr12gOlA7oRxzBgJdUDZboabIi8ueSmBSuL8t3N8VqsKowqhYBM4m0V301ByI1x3x2KH7gr46kPNIycLLlxN3N2+ISbi4ELbbQC+CklBJxCN0uiftYdTKXc68roUC7KvV+7TQ+IEuJvPEilBCRvqOEtyYpVIad8376MpZfJ61ebVWwgmeumOQCBqZK0SGZQds0enWRz4folgqTVXnSisUL70+HrN5u1fXbl7l+Y5m0GeGd07uWv1Ifdg+s2PgwTPKqqLRnHIAQZtSvuyRcrK/nJ5qcRCAhiUyRDXM/CTrpaw5up5c3IATr64Z1DiKyuonKxQVggayp6NmjYw1UiWQxKNNUZAOdb3EDJelOlrj6Oi7DdvNzvh1okUYiwilGtikviepO4ziGDjKQji96LbmjGq6kEoyIvz+grR7Tup64u4FcfeCkAIMgeqGbSaixVLypiJO7A3HSZmy0RRoNeDHCtn7/q54dJTMbM7N+Sqe17dU/xKCKqUuY3GG0p8w4kfE9Gu/xAr4Oe3oWSd9YDnYWG0Rs+tdW1fH6MlZTj6aj3hbF25zz4h3ltSN2W6XVVJcNWev6SsCkhzA2DBsNrNjMOfiOo9VrGrAj2olhGjOjtTTSsa38vJVjMA7pchut6MfBkqeCPe3jMeDt0G1/VZkpkwIqpTxYByVXabrBkt9es/S8i6qGsBiWVEBSoQc0TGhU6VkZTxa0aBSlyI7MSrRsdc0KGlrU7IbIt0uEqIwbALbXSRGqwzbb9IcNf7YamPFSax7LRLe3puOmXzI5Em5fVU43Bs4EDorTECIc2qmiDAVjxARIfbJuW3iTOzc+CbnUuxzmMcK8JF55NDWZjvkFAB6VN7Xenp6Ab+H5e/1/azpOrqup+s39MPWAE0HzZfMG12AH98XHm5NiyHFO9aXh8/7deDPulrGesWwAAiVwJSN9D6lxPFoVaNVlRgim2HrAM/nPP/kcwd+PmO3uzYun8vnbDeXNl/TBkhv390a5HL6DPMntTVL5qJP3yQfuKqXsBk6K/G8HdjtNmw2IylauleKgc3Qs+07tpsNm+2WzXZLf39Egm81cgoNzH30YOFt/Rw93cM2gzAjpjlXD9FbdaIbpG0Rs7AzP2G1sEtgicoAMguJc9sI1y3f7ja4MjD0id2252K34fLygqvrKy6vLhgGR9Md/Gj5jLVYlIgxmy/AwYIMzK3gz61utApGIf30IZiq7clOn/NEU1y1gwFmNkkFvKpOdo919iiY0zQKi+JZyAkXr6EBOaZYuIIlYh76fkMMiWHYst1a2cNSJkqdPGTari1emjimnpg6B3R6FIjdRPLQTWZUPSwLwQzMNMBmtQTo8nkDfOYlaoXmtHQglPn1w2NOf96fKC0qyRW5sFZUlk2jRU6tXwev4pNSNKLlRct59FrLgr+M1eW3GyOyrnamc2hy40EIPo/ndAH18sZzWVQebALqFQMtMH8hLF1PVJ3B1UaW3kDeJerqZI+ZaShahJqyAiOXS5si/GBcP5UoauAvAjXM/dOIYhE8oqC1ybI46sPBiu1tbX+LKXl55WARhrX49zJVM6qV/f6Wu/s35Dxye/MltzdfkfPk4clu2GDljK1CVVwBP5ZWadLy1cOcdoksoyjnzO3tV+z3r4kxcH8HfZeZppH7+9fs9284Hg9M4z0lH2z8+Fojc8WTjGpinGxdzCUChZx7I2893jKOR0KIqGZSTOTcE2Ol5I2tXVJP+/eJpFbluM/kjBFAZgixUONE1UjRkamMjPnoZcijVTgTSE4EPJXJyOgpdEPHsO3ZHIeGY1JyoeuUfjDQLFVIxferKkZaIk6gmYsXyToFLBpYSlO4vMrTMiF03ottjffvrKuZBCF0kZBxgspmJOIIB1ZJLEFGyAqTz8GgSqhG9CzB1gEQOleGowRrgxDQIPSqhCHSDz3dEAl9i7QI1PIOTf67SANH1iCHKyi6el/9WIElilga2Gp7jjavnp+ktat4M1Vpjh5LN4otDWDWZ9ZK//K3nUtmsuWTNZC2xvnat9KrhNXa1dYSaXrNal+Yr+u66frSc4NwktW23i9mG8av14LdFztmUWzfV0Wo+U7n/XnZs2dnjw/a5jRRaYUcoDofT0XnuK8ZEAhiFdo8ukdEiKkjdcMc7ZMasXwthOK6nmZwwN28zq4Tuu5kJ18iiiQmT/GyiqQhdnNF0qo23XMx/p4216M7a0oVarW1gKpzmlZESa7PiHu+gzjPD3aeKEJcgRfSRpPa/thSLRv+0Tzn76kHV22/ft3Apvbf6UBab9Fv35uevtbT8z6YUvOLtYmy/NF0rLVe4Lqyvx/EonJCTAYIwlxwwAh/GtgaSNJBSKYTVXMYW6pJZ5HqEgjBOCotPSz6uQOxG4geaRZiR4ytyEqeGyWEBjy0qN2mL+kyBp9afK1ZsA2veOmpQF1KlK4j50Lfd3O7lZqR4jxq2fhQmxOYakUkyqRIsTZXMbvA+bcJUeh6yKPOe9xj47TWZg96aqTzZk5jIR8LJSvTsVCyE9eHSgnFCzIc2R/2BBFyMZ3K+siJ2mNcKAxWevjcNKeL5dxPsvo9O1aBd+me63X9fSg4s+3Acp+PgT/GwRoJCqkb2G4vyNOB4+EZl1fPSSmRS2YqR7RaG1rkYwtE4BGAZzVHH5vrj7w6UT7xfdAnrahX39QV5ODri9aKikVpTnnkeDygWrm9uyHESH88kvqBUiB1PcdjZru7o0s993d7ttsLt193dN2wOjc+dn0MCwuZt+8jljIY6Pz1N8mHj/j59JrDeOCnP/mUkKBUYbf9kj4FLncbPn/xKVe7LT/6wWf88Mc/5vnVJbcqxF/8mtoQcu+IRhkxv3fSp/ZHlyLboSPGwOVuy9XVBUGEN2/uePnqDbk08lyb4LuLLZeXW+N36DuGwUMqjyPTcXS+k8yYrVTp3TiyHxvRsnmK2n00T0MQAyeGPvHik0t++uKK59cX/NW/+kf82V/9Q3aXO158/oJhO9jiIwvIk8eRUvKyuLaIkXpK+ivSQJ88AxPGTfbU2pEpPnrC17G09/zSNdzFVFDfqJRSRvaHO8p0YH+4ZxyPjNPRFz+/im9YEoQQe0IcEAmoVFrVMAMcbDPaba7Z7a6JsePq8oqrq2cgcHv7itubl0xlQtkz5uJkdT2b3TO6bqDfPqPbXgFQpUeSe1NmpUqQkFZYjM4VfhbQBGbiPG1RUZ7itUrtWqd3Na/zAjY08MtSaU5WlycWRWllrac8WQRBEGJyj0IzXtyAT8kBnlSJ0arHdF1isx3YbTv6Ifki1djW/EKyMgpkqURgqVzZ201nMLOtsQqUXC0tq1RSEHZDj6oy9IkuWbUt1co4jkxjpmoxj47ghNKWi5uzlXYWsBSu2vgRwrzplJxnPoXsnFn6yIbfXjdk3Uqr6txe8+asOCeXkSo3jpUn7cNaGfe3J+/NHn5DO2ZFW5qxhuXntw2zlaa0FFLjsUGh7weGYUOIgZIzU558DC9A6t3da97cvCRPEzc3X/L61a8oJZOiVWQIQdhuL7i4uKSVqBUJDgwsUW7NeBIR49Pq+tkCVLESq/f3t+z3d6QYuL+74uVXO3KZePnyC27evCLnkbvb1xz2d8wbJMs6EkIiSGB/MK6uIIGY7P2SC/v9kXGaEFpqjHmftq8u6LrO5kZ4PPz/u0qelC/+co+qUIp57csQSOEGuiOH6SWvbr9g87ojSCLRk+JAl4Sh83sKcNR7ZFIunu349IefMFx01BHKwRRaiSMhHYBCOYxMt0e0FKbjyHF/oKKMReH+iMQAU16As1ApOLeJVAgZoqIUTtJ93POfD4XDwaLwUh+JXURRQkpsrrbklJm2mdxPiEI3WIRe6ISyC4wXxpdydxR0UhLG5TRkIUchDolNimiKbDdbSy1ThVKQqvRBuEg7S3WKgb43D1w+GpDZyhQ/nTRAoNHZymKYueNDZwNUV4qcjVFV5+SoYU5tWhur4qhPcGBMFDq1yNNaG3dTcGB75iT18r+rqNR2Sq++Zdh6dS6Mdjk9AXeAhbONBfhHxAidQzPIljaNYQG1mpFrvxYl3HRY+9sizuxy62pfMTgfVzMAV639XgAD7w9qS5evzuNmYInivFUqln4QEoQOJVr6lxsaoRaCOJm8t1XjexDwdPTBKuBtL7m8+oTkxn3XbUzXYXFSBAoiDrjfv+H+7o1FBE0TeRp9VEWPLgpIv0O6LRI70uaStLlwrrLEOFm02I3COFnfdrGSgqfcLvAdKKR5nVaG4BEXaqnQItDNa6M4Ka1916pY+V6OTYeqFnld3FgrrvM8LSWBJ3KrOQDstz/PW6OmgVMsz7waZY+qX/rWC9fbwsl74Po/DQ86dTIvt+JrwXxFhxdbBEQQtrsLWiRxF4230pyYljZkabob+o3x003jkSmPWKrXhpR6QkhsNpd03c72VSffNsdpIqZg3CTV1q2qhZKP1JqXyKEumQ2UKzUXJFhavCxenCcUIWDp98HXQA2BvuuIQah1w3R9RT8O9ENv/HfTxDiOdPueXLLrfpNF/TgPoWo10uXJqw+H6mG2zJHiIp4G1q2jZVpvrfp9Cdp3/clB31IpuaIVpiOMB1u/Qj1AVUo+8vJlQuvkqXaWvicSSSmy2W6IIZjzLUXHmZsD+nQNnnXOB2BKSwH6VgultHShp11ZBeb1YAal/PWiENvvECMdA5oqV88+4Uc//ROeffIpV88+YXNxORfpOBxuKSVzd/eGN6+/YppGSh7J4wE9YSx9bPY+9myPafhfIyem7pJKqmqYgAUcFO7v7wgh8vrNa/puIMaOi4tnbLYXxJjYbq/ohy1d6ri+fs5ue0nqOq4ur9lsdqdNhGLpqepOg47ghXA22x1d6r0K2OVMlfB18mHLuYfA1eWWZ9c7PvnkijGPvHy1Z9MnUhQ2fcf15SXPLi94/uwZzz55zvXVFbvXN0iKJ8vjWo+ZMZ+3wB+L4NkMHV0KXF/t+OzTZ0ZIq8r+7p62ZSrGC3G56/nk2aWHP3rkCLC/37O/31t5tuPEYRytwoMqx1y8EsdyN20wwBLtk2Lg6mLDi08uefHsmh/88FN+/JMfMWwHLq8u6QYjEc3Vw3pLccKoPEc/MIMKp6BPa40GLNS6RDS9H1kS7b5OmsIwoyZq6WvTaESs43hk8mesDsIJnh7joE5MPanfmYEoBcX4HFIyxD8EU552u2ek1HF1/Zxnz1448l+4398R1M5cqhkqEjq63qp0dcOO2F8ASufatdZKzpPxKvnzzmNrCelhiZ5YwuNPPYX1wc+pB3EGfuag50YXDu8N9WG5bgN/WjhxCJjRh84LtYQ16ZqXwPToub5P9IPx45zYUbMmdeqtaGh0u/aSBmeKw9r7pcWANWolijB0RvrbRY8oES85XCyCTKlu0CktTaYBXNOUbXFeRZbF1RaxgKoOluDnCI33ZlELmwQRJ/tczf3VAQ2AfW9zUCtlOrCOWlzSPWWOrGvXb32Q88g03VNrYRzvOexvLDKu1DlffRgGdrsLYoxM08g4Hk1hqhO5jNRauLl5xWvfeG9vvuLm9a8pZTJQzoEfi77bLQpFKyurC6F3+xExrqWYulkxUOd7mqYjeRqJMZDzBfv7LaVk3rz5iru7G0opjMd78nT0htBZMTLgxwhTOa6BTQOiaq1zdcU5AEqtzPv9fkNKyY2jSAzfvOb9plKLcvNymo1D89KN5O2eQGbMt9wfbrjdX9CnHRf9lhR7Ugz0vd3TVI+kqaPKxGY3cPX8ktBBKD2xbN1TdU8Nt6AT+5s999xSpmJQ7WQKca6gxwmJQnLA1YC5Rq7ucyOU07EuMNOIqkUYTYeMxMB0LEyjp96FSLftEDVAKCVbV4ODPtIJdQjkTUCLleqVSelUiVoIZSKHSEg9/SZB1xGvL5DNBi2FfDxSponYRYaLgTRYhJl4FTkCpP1kpXSfGomlgSXSNr55vDfgQnVZSRRf68Q5gYIjO7V58pe1qt1pEHFCerWURY2WcT2v5x7RsaoueqLMt18SnCBVzXgRVqDMiQ3BzNl1YmQsEUctIHbFo+97x8pAAudIa0Z20wnsO+27FkGypL6E+fUSRfUeuu1Umm7pi0Eji7UoCUujsrWjFYiwiOQ5QkaUIp60rDo/qRVDsF0npo6uHwghMgw7NpvLOdrH0tQDTS8FiCETg6XZWmROpuTMGCOjDzeViOJRP/2A9FskJFK/IXYbQowoxtnVnFW5WNv3SUnByyiLl2fHjVUfz0HU1uNaKWI/QayqV0u9TXOUvC4+ILVovUoDGVv0aF3Ii5+8yl5ru7p653T/1vn/d+zPayWexw47fUO9yueyGdPUqFna0rC+y+VDt25cb2g6MGIVZts9LRV7izlUnNS532zZXV6gWjns75HR9IDUUp1Tx2Z3zbC5NF0YoapnQ3hRGQmJ1B0NxCieZkYFSUSvfluK8e7VOQvBI9Hei/ia07gHxZxKAvRdz2azIaaIRCHXzDRZ5KtikcLTZFkPpuNm6mipObU4Cb424vYWNcc8SIznZ76NeeycAD+r4VNWTuDaKvUCLUJBJJBlQjDn2+39DWCpQXBN6ow7NEQDfGIIhBTniJ9T0GcF8Mjpe8v7p16q9X0/TP1yVem9yHoveetiq71JJBLdKbzZXvLskx+w3V2Q+gFC4Hi853Dcc3f3mpwnQuo5HI+27qmicpjH4duQ7bvAnd8E9FkAhnktUfvPpmzLVjAAshUigTeA6eVdtyWltu5vvaJ0z7Pr5+x2F/R9z/PnL7i4uHgA/ECLIbXzWIRo3w1cXl7T9wObYcP4/AWbzfYbnuMDAz/Nm17VojX6vreSzF2kS8HTRWwmTXni5u4WpXJzd8fhaB5ZW4jg8WkI6ygJwZDsi4sNQ9/x4pMrfvSDF15FQRCpvjCYkRdC4PnzKz558cy8vZuBzdZIyw73e477PaVWA36ORhQcvnjNVMxbbtuq3VPL9VzfYfRUtsuLLRcXW3a7LZvdln5jFRdWQZ7+ALIwuasbsgqozNwibYKvJ7Lqco73Y3R6eOnKaPMHnWUJrWzvL6SwpUwcxz3jce8bSAOoWlqVo79dN1cc6DcXhBCpZAN+UFJKdJ158ofNjmGzJUXzpBlBovqGlywsOSz59euF5wTAmpW8BdvxA+1nhWGdDrwF9GnGflMcFyJny6WZwQf3tKpa7OkCDLWN1BWi9wbevb1x2O2vgacVmupNECQYN1UMnhrpkTyrfeZBwsF8zoe/1zKnS83fbAqOKaLJE/fNI2xKAOLASzM8AouRwrKvNGJQPVlJTzfLJnP61vJlO3plhNmir8t12p3PTeZjoFqOfK1LpYinklIyNzdfAiycJW6k8QD4sbawuVXKyDQZKfM07jkcbryClnmCQZmmgZzvCSFQyrQoenUiV4sW2u9vGMc3zsGzByZEygJsVqGWkWlq5OFLW68BlrlFRSg6EUuyqeaplqoOwpYJrYHjAYLkhYiyrSHuzQMPxXWDsbK0QVu72lrT0g/qPP+Y57GqUooAxYyZGqjvAfgREVI/uOJtz5z6ROqCV9kK7kkXklfeCiFQJbOf9kDl5vCKN/dfchz37MdbVDIhKpu+5yI9I0pHlR2VLUpm2+3Zxh1lKtze3lrkU83UDdQALRdHonF0tAgUdcXMljJLc55UmSrkrMZz0Eqxe5i6nU69XwyECY27RW3ehKbkJiF2kdAnYoVQWuh6oKZAjoEaI7Hv6IcB6TviZiBsN2gtTDFQSyKkSL/tib2rONX6XFVIm0RVdT6Mp+rEd6mQMi+hlsrla6OvG6rrVKxFsV+WwUXPWa+j7ehWtcgMb5nXpZN962RharrqEoHYOALm+amrr/k+L55SbW/ZGF3AGdr0PVm912rBkgIv8wXa3dhznAI8cwqgtDW26QePtfHTSvSmMCW+7b/LKm96SFj0CWQGrpYWbgZ6e74lXVmAFKJxnsU48zK2yjVz34m3kqint9ga33cdm763eQDGuqNQmwYaItL3SN8ZiWwXZ26TISidR+ok7EeAqEKiIk7CHOvyxG1bXxxbStBs5NcBOonOY4fzjomPd/WitOopY4rURo66AD5V9Un70vA32wd0te4grPaB5di5wed5utZDHtgX79i+H0zTB69bdLC130qjWs/I+drzNiliqS8IISZi8lxsNSeViKV5dP3glYN6i+rSOqeDSdvnfKy+y7qfcWrw9CJfo0OAsqRihxAdlw7zHqEsts5TizhStrZvbL2yCPSus4go1co0bNzhZPZSzpkpZUIQSqnknIkhnES6N918qdipM2R4wre0xudY/bmyA5b53wD69sES0TxzsUpL9zQHatd1DM0edn6fIKs1pq2NbaHlbd19bi97cfL36Zjm5LPFMfBg73kCUVWm8WjP3ErRS3BnweJgbk0pmGOjS4nNZuuRXYU8HRmnC8bxwHZr0d5dZ2P9eNhzf/eam1dqkewlo2Wa51vrm8dXmUcn7NuHnIjP5gcLyTzH52ud2k821jKlWKbCNAXXOQv7QwIK49QTAkyTFRhaHB5tVKpHAvYOAPXs9/cWod8PHA57hs03E61/UOCn1srd/T25FLbbLc+fV549u+P6asvV5cB2YyStqhOvb1/zD382kVLk57/6il+//IrXN3fcHS3tKcxET+9acKwnrq93/PEf/YjLiy1/5Y9+zH/iz/6Yoe/48quX/OpXXzDliVZSL8TA8+fXBvzERNc7zwVqkSnjgVLUgJ9D5n5/5O/9+/+Y/+A//KeUXNikwBAtMuk4ZcZsC8rheOQ4jmz7xGefPuOP/vBHfPLsmh/99Ed89uMfElMibDpKiP5E1Tg7gpBSR2yGZ9PP3ACrNfvCbhOmor64qKON7yn80lMlxMPLT6ZKM/o8xLYBeW3QC2Ywvvzq1+z3N7x583IBf4AQO4jKsNmxu7wmxsTu8hOurj8jxo6qE9krnqUY6ZLdy2ZzxXZz7SF0WzbbHaqVze6Czf7COEvuNpZX3xStVgHDlRlTGFaRKFWMPM6fG4xPQYssjiSPSGlDDi8VTi0WQdII+jxq67SSVzM2K1rH2XAt1Tx7foGvGePfoRfF84iLRWfUahE7FolhLuA5bbEpT7Tw44iK0Pcdm83AdtvTD2mOBmqo99wmshgtj+WC62pR0wah6KJ0RhE2XeRql1CFbW/AbYxQfFOMNRA7q8Ig2GeN/yk4kR4ClOJ8PyzVEGjPyLwpz+BgcC8v6wdirnoesMihyHKeBvjUUqyPAQnTk4Owx+Oef/JP/l/Ulgaqy7aDWrRbzpbrb4CQKX61jpRyoGohT3vG8cZTRBePVYzdwvGjZflcM7VODoqM5GxVpUqeECYnGw7UaibP8Xhgmm6X7W9lkJ42R7OcFgtSVwpBU3hFhOPeypyacjdRipWRV59zwKx0nQB4sAL+ZDasGsjT7qf9LsVKxS7K1WKuPqWElLj+7HPmFE+UfgjsrhJdH9hdRLZDYtcn+j6x3SZiitztX/Pl679gnO54efMrfvHlf8xhvKOMhRpGui189slz/uRH/ym2wyVFJ0o1r1g+HJj295Sc+eKLX/GLX/wFx/HI6/E1L8eXlJoJvVXHS6qEDLRqeKVSjmqVs0rmtkxMFQ73gePeykFDx9B3FjkUBNHihp8QSodUCDXYFhUs0qvfdYQh0D3vSc86ggr9ToijtfmxwqjA0DM8u2K4uiQOPf3za+LFjqqm3BctZrh0CYlxSZNWZTqMEALd/mgEt+9BZPWqpYHOSi3YqraqMCQaEJQajIx8HrmeJmZ7wJIoshgXkMKiXgrB56WSHSSouvg+VevMTSZh2VWCttRtX/8W1Gfxj5yALsLqEJ8XKyJbaU/sR6++Zzqsq+Ht+VmAHwT3cC/P2PaPJaLa2+c9SBDog0U+Zo+6Rm1NE+coSzKgEklpIDnviXHb+JaBItT5J3r0ocRI6C1dueu29JstIST6bkOIHSKJijCViogSgxdDwPkvexsnfbjgorMKMsfjwbkkdC4rjwRCf0Hod6brdD2hM0O2S5nkVY4a+Cgq9FroqpeXdwgJjKS7JQoG1RkAbtyMgeCE+Yn1AFB0Tqs2v1arbAqxLlG11b3kgbf1gt9elEKe9+I2bNra3f6fh+XsjGJGPx6agKdAzTwpVqNx5UQ6Gaay+paenGe9Jy47t6UVGhITiJ2lsIYY6PoOrUoeLfpVQmATr9h41czNbks/DNRamHK1ysfSqBIax9NSmKQ1TdN/m2pme3+lhOhOHSWEzjkxB5RCTFh135goFXgPqV5N3zTg0Dg6iQGRDiNrtrSoUivTtGW32Xo00sThcLAoYH9dS2XMI8fjkVoqU544juPsHMtTnrkgm7PMACGvqqeLhrrqNF/PlvuNYXX3Hi20TpE17p5AioGh79lutvR9z7Praz558Ymn7mwYeiN4jw7CNV1YWIE9nII/85VX4M8S0fM4oLN89/S8TyUlZ968/DUpJvrBorNi7GawcplLsujkCGl3wab7sTlz8sjxx39ELYVcJ3IeqVp4/epLvvj1X3A87PnFz3/Gz/7xf8j+/pbD/Q33t6+oJfOQCO7xXUO/8Yi35e1WmsG1tv9Jm+ELAGRVWI3EO+c9jZphf/+KmGwv6buemKxtTnTOk4rLYQZie4/+6VLHdndJ9/uW6lVVOU6Wb9n3PdttZbcd2Gw6NkOi7yIiBnzsD/fcH+9Q4IuXb3hzd8vd8cg4PVR/3i0isN30fPbpM66vLvijP/wB//xf+wO224GvXl7x2ac7Q4FjcOPQgJ8XL57P5Fo2OJWcjzbgamV/yOwPmdvbA199+Ya/+Ge/Ypoyl33HtrdF6f6YOUzZ+EJqIeeJLlmq26cvnvH82TXPnj/j6vkzCMIkxpZgT9e8P3VOjZlzNsUUuFKUumAD7slon6+ibd6LhNXgW212q80LB7DEeX2Uijop7DQduLt7w93dGw77u9N0lGAAROoGC4Xrei4ur3n2/FNS6sl1JJcRsLDilBJBhM1wyWa4sonQ93S95Tob6fOAYoS14iRYcyWrk01QFyOwuld7cb/Yz5pXu23QDy1G92ShLZy5lXBvBkhDf801rtUqC7VqUmZYLxd6h5PmO0vzQLQ0rtZnun6uVs1JVt+JwcAO97h0XbeqLDcPAx8L9l8bl7W+K8VCT37BYmxYeG9g6COo0qWFU6Dx8IQoq6pezPeypCMYQLT2Lr7l3fDHjOuosHYNX7hnHGvleQ/rNb6dSl2p1QpVPJLmacOhcz7y61//zICfskTaNKLrUgz4aW3e5mvViVoPqBZy3jNNt07YvDyDETmah8ZCWJsHtVDVIu5E7Jns2X0jagCLWnRFrbp07VvA1+k4aKvG6jaWTBnvS1E4spyzGY3rswmn13w4ZR/fOt6O/qpVeU+OzBMJIbK5uMTGh62R/QD9Brpe6IdA3wWLjO0iXR+Mj+Fw5PXh19zuX/HVm1/wi69+xv54Sx8GtnFr+eLXW378kx9zdfHCFNziXs7pSBn3lJwZtlsKhf3hnvym8Orla5oNFMVLMqtY6iVYpE9WigpTLubkqMrxKBxHAQ1mICfj1wnCHKpvET+RUKvx2bhhFFIg9cnImLc93UVv6WApECaBouTJOL9iH9ltN/SXF8ShZ3N9SbrYUVEmLZTGrRPiHKFU2zyI0aqnRJ424sflBBuZB5s2e3IxQv2+bE66s6ehKK0yUysLLy0Sc7mGskQ4qqqtU7Glkvla5YZ69T2tKaQtgGVZB+2s4uDwW4bEu551ZfUIp/Nvfe71Djq3TTNc8DW6HSf+2PP5m7x/0KeJFbJrPDQe8SPW2CLJoipCmkk1oyzFBizpy4AftNLKUoBFmEk0lTt1HZ1XCTXi3Wh5JW3N9KHQ0pGj8+cYMNVDB1oLfQr00QE/wgz8xGFD7Dd2zyF6oKOSYiVJ9jHl40WEXoVOq+9nzv6iSlSHCdQJnAHciVe1EjTQSyBZR1KbiqSVrNm5Vbz8dtNTa9sJLR1OaVXCnkaa81RZRdjqMtYajAhyso/bcbo6z2PnNmkpXTq/nif2cmCbH7pMgodzaVHTdXY+zp+J0IiUQxA0pVmXJFtRh67v5nHYDT3JU7FiOhLiBMgS/TNXRnps320qn0eipM6vmwjBU8qcT0iiIKEgQbEKt++DS5RT4MLXS3PQW2pP9IgZVaV0HX1KlGrg/2YYFhDIX4/TxOG4AEL94TAfPzkIlHNmytFelwLq6c3S9OFFxz+h21jBig/TsOb1TpZKfs2B2vfmINluN1xeXHgURzdX8lrAmNP18uuAn3btFWr/juZd3+vD9fZpRGvhcHdjPIkCop0ByF1iDhrwBxOWPbmLA9vNpmmTLAXc61zM5c3rL3l2/YzDYY8gvPzi1wQSmit7boCymnuzRvmN9yzf6qh3PG8Df+ZrrV+7bl7be+P8+R5O+mK+l5XT8rSP7X1xovMW/TcMW2LsvvE+PyjwY8ZII7k1wxr1Eu4x0PfJ0qC2Gyf1tdFYEF7eHUldx91+YixHM0BwpWZ1CQFP5YqkFHh2fcmnL57x7PqCZ9cXbLcd203i4mLg+bgjlzIvICEEri43bDaJGOJiyNKY5I1wEiyKQLVysbMKZTlFLvqenQM/yAgiTDnQxRYGKzbZO/Omt/xdi3tTEAuH1RAs4gfxKEHxRXAxMEUDgejrkM6pXy2c3HJ7i6cqPKU0pdTaQXUxiOd10RfFNqlN52zel7rKDTZlN6XezumfWR8mr7jVFCzj8gmaCOIo/HwfbTNr9+SKhhEvkVKiarFwys5KAzYOkiCOpLfZvjzE8rNS4Gfenpot47IE2r5fPOUPzCuOh5COxwNTzqtNo4Eg2XPeMzXvqW6UlTLNocorc/Wpu3EOI21jS5uBh86KzbxwrdqkjUNbk1b3OK9RslTAkmVLnC+sy8vWHmtpBtICwC3h8ogQVnMhODjT+Ies5OhSnS/EhVPo7TZYbXwP7mm+tQXzmp+L9lyqc6n2Oe6tPbdN5wU/W0XTPJWoVo7HGzt3OeWPgjXPV/W1pLVFpupoa2hLj9IWnLrq79W5lrmgJ06UORT7ZJiemoFtfZgnyvz+qbz1jpy+XFezXN6Xeegxj7T11r28XvfpqhVtHMBb49BiDN4/8iMBYo+DZQaGKMo4WXTaNCq1ClSZPZdBK/vjPTf7N9zuX3N/vGUsB6Y6EoAsAhTGcsd+fOOh4xaxIJIgFDRahGnsEl3fkzWTuo6YzOcfxHl5UFf2xQ0nI4u29c/3AIWZWFwdXG9h7XOakJfhHQt5KsYp5cajGsrkxrET6CKImlGjFUJUyEoYenBvYVUrtlCORxSLdKnep1oMALLou+yRaRlBmXkyn7IfV69mcmbxceRr6WIjrg1E8+e2tCZdLbCtvdcgddNl5zWtKc1t7RX1FLBlgTUoYhWVs75rWV6LtNSvh/Ps7T/mGT6v+e2KzVOp8+cnbeOvwuo8oc3BB9vO212kb/3/tNJAG9NVmNdGK2WO+DoqVrY9Ca0YnaVKiWBMO+58EyM/rh5drL4Gpy7Rd8mqNaVAF2VJlfY5lyTQiUd2CfPrmWg7BKRaWmR9APwEr7SJtGqbtm8nihUK1vlJCQid2o+gBE/Fstf2I0BUC2KYdZdaCERimYjFUx+q9X2tlViLRT4349mBjeBzQBvws3LGPGU/Nl3FANZ19NqsKa62h1Mr4p33M3+wePdhSfl+e0x6pNqi+i2naRND1/e63kZXJqQ2ONcNfU8ZDE3nWaUdLmlZph+HlX3TlpYFb1oci4s+Z23T5mUIyxo+gxDzOAQ8XeV9yGORLK0/wdKJW1RXSskcCmBgYywW5ex2Z3Sdv5RKlyaPdDe6jyl1c8ToNE7z6zFbOtHCA7Q4h08Ne+a2bzpq8E2mVYe2vTC6bpq4vrzi8uKCru8ZBouAadUZWzvP0eft/KzG70OA6WHb2YerP76ujZ9+BoKtA4f9PSVbBFOeOrqud/s02xr2gLS6tV+aU8M42SysXQJd6tlsDSy7unzG8+efkmKH1sL97Rsmlmh1k28H/nzdpw9VxybfVpdYa6Yn768U0OZngAbML7vdQ/1WvZiDYIB6zt8us+CDR/wcxonjmJmmwjRZGGifAps+8sn1jj/8gx/wyfU13ZDY7AZCivzi1y/ZXF7w5nbPL794xfSzX3J3XygKk1dSWBZMYbcb+OTZFZuh56/96R/wn/lP/xkvnl/yw8+v+MHnF/Rd5PJS+OyFhd2GVjpPxHhjkjXLDFChrpAbaVjVSNXI3d3AT370nJ/84Dl5KlwPAxfdQK3Ky7s9b/aW4jWOB/b7e7ok7LYbrp5dcnl1Qb/pISZXJryz20LsERhtA16Mrwpq+d5aDfmmqJfxWFJOqhppWK1PuyDLfBVX+KWlSlSvLtJSXczyVVeALD0tQy3kyZj2p+NECInLq2eAkifjElFV5+y5oOt6+n5H1xmSqRKpWBSC+LXt7yWENZdKPY4Y2W9gu93SdYnj1TXZ8013my19jMbiHzxPHrVKFGrphKdG7pLOpeVIya6k1yMhR7RWjuNInpYKbxZ2n9nf7xknq7DQvDNaK3kaKbVQy8R0vKXko5NK2/u2yTQA6GlFEA+TXSJ1bK1pTKEtxampM56bj84EtxaG7mNyMQNcKQgPFqqmTrk5sAIV1guVmpaIVTiyyggl23U7B3W6GJxEMlBjoIZIVWEYjOwvCGw2A8PQ06XgPDV1VgKBlQJj9zSnrLenqJiy3Kws33BoG3LjLhEhYXn4KK7IWopFdYMYD3V/auUo5yOvXv7M23LVfq0t2zhc90NT1PDIM69tuvaDAgYklxahpCuFcAXkqUcknKojD37mXayd+B1Psz7/6hnm/V7mw8xIbqdbKV66BhlPTUNF1zy7J8e8617gVPF8+O2nEolK96yiNVDGnlqNgPtwe6SWic+eZ/JR0BIZNXMor1FRfvXy5/zsl/+IV3dfchxvuD9+RS4jJSSgJ9XIq/u/4Jdf/UNuNs+43H3OJ1c/JcWBKiAhI0XYXGy5eH5FPEa25Q3DfoNMQieFKMUN2UCoySrUqJBHyMGqcpaaTPmQROqMdURI8zxJUeiSVZ8aj5nDzYFpnzkcJsZSrAJUFKRPyOD8PkMiSCRtBwK9rUcloCUgMSLDxtb9XDnc3FDubyxUo4+e/+RputqAn8lSHrUgdSLFp42+W1RnOQE35/kksNT3MSAGLy9sfFSOEEtzBuE6gJ/bFUB7BosCojYeOBun0dPEJOhsbBZ1olEMqCva5sViYTZl2zD0sIAwusyek+ec18Nm7LS5G06e9wFj4dwirtPOO8vyt8ygz1vAjj6Yre8jwgBb90KdCK6rUAqhqmk80iLDExI6Ukr0LR1LHOwBAoUoFjWjAWqXoPqeEc2oi/2GbrBULEuhMaC0AU4CdFHpgjkNNyGwEYv46aLQRacg6IRpEx34iWRPCAlxsLR5bJxIzQgQtRDr1Dqj4Y4kFaI78YIW0zsb6ON8PwEIKrNeU2ohxEAKE6FYdF0V0ODOt1UFzaW7pNFt2XnUnHhPm+oFcySqP5+BqmExHPHxp7xzLJ0s/euhKMubJ2P74d7mg/n0GP+92ud0ZQ1WWS61dpqZgdd0jzAbxX1n0e0Lj09zfCXjuRShS0tUUHIn9Jxe3+ax89lUKsGrB6lYARXorIhKDDMIZJE2nodIOakK+JTS9t+W8rUGfZouAFCj0sVEi3guG4uAnoGcaqmbUzYuw1xWAM+UnW5C56pgtVbGPDFO41xAJK+iqptu1cD5do/BAbmYkheFsKyElpmQ3OkfQ+Tq8pKLix0xRKOnGDYr0K7ppWvgZ9UurN5/APzMANnqS49GBD36/nforEck54mvfv0LutQZB2uylK/Lq2sDgELwLI813T+k2NH3g0efmWOqlbYPbgfstlcMXU8p2fT1otzd3fAX//QfMx4m9ve3HMc7Dvsbs4PfaxbMN4vtc+u++ubGbqnitP1UfLFYrVnNzqgaLP3yW3TihyV3VsilkHO1UPFsYaAxCH0KbLc9Lz655tNPnrPZDVw+25G6ROw7bvcTu5t7xqnw8/4LDgefd60NZhtD6fvE9dWO3W7D558/5w9/+gM+/eSa59cd11cDKQq7XaBWD2eMzgECTrbLsmhMDS20rU9EkNgjoadLwvPrHc+vd+Sp8KzfcNlvrASoWIZ3ioE+JYJYZFPfG2n0sOmJKWEh6b4hiSuAUt3WUi+42JRFD11zln2kuKfdQQtZonFUK8GJsZ5WmgpwOrha5NEcMDMrskukj5W3LlSvIlVKtQiooSeIMEaryFNr9bKmw1ze2XKULUwwhGIKML5QzHnUMn/flF0Dh7q+J0RhM2zYbbdAoO+tJGSURhTckkyqK9euUNO29zbRPHWrjA48CbVYieDxcGAcx2VTwCoL7Pf3HI9HC8ftLB9ea2Eaj6ZA5ZHj/o2XzixM03FJDXtPwA+y2qhWCpKJ9+/KhmmRTogPWZoHbQ1KLie3SJC3N6N2mLZzvvXd5TNLYapzelwMi6ep/TSPQYxqvFydb7DJS75HL0ftPDdva2HNs7KsqevIrLVhZYF54pVnGqmnmFGsy1g0z3rbrH1RrnoCaDyFaC3s779cP9BbLxcF4bFrL89/slnM/bZSxnWt2K7aUdfm3cOfkxtZ/b2+l7WRrG8d81DlWQNPa5VaVHjQuSd39fCay9kfv5e32+uJNaIHp45bqNkIWiUHas7sD4U8Zg6HQsnGN1Rq5piPFApv7l/x5c2veXn7K0o9UsodSkEIpDKiIbIfX/H67ldM04EUN3AlhNABGSVCUNLQMWwHNCj9pif1HVWKA5sGTEiyKBzBgJ+SwajOxBUOQKKlCKiAeo66kw7HYBEhNRem/cR0yORcrHSwGqGjpIAki1YIyVINQ+oJcQAClA6tXlEpWjGEUpXD4chEgRQI2hE0WTTxZJGz6uC6aiWIkdsG0ffZo6ed20BVabaCzMCrSHDQB2bi8RmIadE/LR0MN159T20npH3FDXf//gwCh4UUWt3gXqIVmK9l4NFD1r7TeTDfHqvfNMeBLMf4s59w/axm7Lt009OZ12bug9n6nkCfWdQAwqWwgjrvka37XYimM4ZAH8QIjWlxx+pxN87xEzBekoCBJJ2nh3U9aeiN9ydYVSJgTiMWoAuV3osVDFIZMKN9iFbhUlD6CFM1B1gmGPAjwlxxDLBSfTaPI5W42tca8BNXYIho9uOVUHXFZ+dwRa3kYuTOqBCnSlADLGuwH9QI81uU2azg+mtFUPG0DZ5+b/Qrrgxf5oiqFqE1H/RQxZLT787H6Vsv53Of7h3rVw/AT13m6cku5lN5ZhOcDUQ/i6znzpIyFJNxe9h8X+kzIcxkuo1XxtK3mUGeBVxdpWa6vWEgsOlctEiUFViw8CDy3pyTj8miR6oXDrCejICGxYnYwJlSCrnLcwZAKy60ToM3O2/y6J/JeIBqZZxGjlNLAStzdeUlqhof1jL3SeuXruu8PLvQ9z191xt/S9/T9/Z6t/Wq0a2P5hJiy7OuI35OPmPpi7fapt3X8sGjx7ydOvT0Umvh/uYNMSWm8UhKiWGzJYpQhgGkATnBoqq8WbvUo6UYgNn1DriDECz6WMSqFW43qCrT8cDh/o79/R33t3dsd/+MWnGOprvFdv5dgj+r+XzS3u+4paV7TqML7cO2fuv8Vovg/5p4xVk+KPAjYghy8LzMWipBhO0wcLnbcn15wfNnV7x48Yx+03PxbEvqInfHiWfPrkACF7s3HtooSNW5ddrGYXwvHdfXF1xe7Li+vLDqXENv6LXb5Kf8LQvni0RWxkxEvFQcJESKHeO5rl2ycN2+N2OzRQ1ZNMxiDrfyfH3fMQwDw3bDsBkcbJKVgekAj3smbQPw/Oe2OwSsNK2o5fdX9eo11VvB7rw2kuBHyHS/cz++Y2Dp+v9WrWRVvtmKERg4JN7mMSTLdQ+WxnCUI747Wh878j2nWM2VsHyzcgXYIoq8os+sY7RIo+Jg0HJMq6yleKpVbakAI9NkkTc1u/63PDgAubQw2mVy1lo5HA6M0ziDRoptMPv9nmmaPPKknyOx8jg68DMxjnuKAz65TAbYtft7T4puK6d6GrZqi2qt5qFXJ2K0ZzWwpUvWv2lOo6pu6K3Pvep3BTMR3aDBgZ11u7YhtRrqiyfaN79WPqZpSa6QNgC4hYA2YCY8+FlMMGxczutH4+5ZK98sNzI/lBtUaqU7w/xN9+CvgaxaofhcDusg3aeVlTq4fvMdnz+unDZwavlEeWgWn6oIdrzK+grCGuh76z7n9nzXvSwHnJK4rr6jp3+vj7I9/e3vvWvmnLSAvvteTk/3fpSj1YC310EhKi1VW2Jm0lvG8oaxjtyXe3LNHMY3wEQMRgYbogHRSUBCc9Pn5UesNK9SOIx33N39mlxGXr35kte3LzmORw7HvUWnOa97cV2pVPMsFXyuVaWKzYNcKk3daACcpWgWNAilCLlY1FuplVyrRZ5ECH0k9BHp4gwuKQaCEUGTWCi4BnSeR8ycWfZEFsEmgkUL1mrp/dl+W2qxFRAI0crIdyk+rXezrRm04STzbjw76ea98QGQ0Yw64XS9a/uYTy3bTnVR6leGe3O8NLy9fU+qG5Mii4qxBoVYDJd2Cwv10eqhHsAxM8dE22/nz5Y59HbzLudYwtm/pkFnnXb1Wh9zFTytiEf6GnG/AR7BgbcYoAsQRYmiDGIONlFdCJE91U7sDwN+FEIyMtoQvFJf8kjTgPOl4M4+e9gu4BW4hE5k5tiJqsRi4yC6judDbtY9g1QEU16kZiiTAz848MPJuAq+d1qkWJkLO4hW07PxPV3dqK7FI0Itsq46WXlV0x1gHa0s83iZwQlp56meWvaE/cdpGiEsS2ubO/Nu/NhW4/onq3Hdjnt7B33wzvpBdHV9/7/ppfP8Rh9sP6fzx5yLFvnfqsLOFRLx+beeDYIBO6Keqmtjwbi7DPAOYWVnzMCU97EUqi2eNBBo+b6dU6USghKj9yHlvWKxDyNadL14zONq1Xyre1mDMagD26rze63ab/BqX9GrgpnzuSNNlgJWcvG0+VPgZy61DjO4NmeOdAkRs/2M40aW142ftHH+rCszt//lwbNr08za2JG32ueknZaTPSqna7C14FPbGg0EC55mB8wAm4JxrjqfUeOiU3B6BwOFet+3a0zErrPqn/NaZOdMqWe3uySGwNX1M549e0GKCSVzv3+NThUovMdhOstJVBp60iero3i7c07vbt0/a+14UdZ19RWdP/s2z/hBgZ8QAtvthuMxG7P6cSKFyOefPGcTO/7kD37Cn/1zf4Uf/vBzuk1kczUQu8Du6pJSA6/f3LE/jGz+wc8It/fWEL7pmefdQJZPnl/xp3/yU54/u+KP/uCH/ODT51xf7UjBco4bsrjwWUREOl8AnAeBxhXT1IwVOatpuKCBq6stz55tmY6ZviZiic7dJM6SLwz9wOXFjsurS5598pxPPv+U7XZLvxlmZYaWD41Sy0jRbIt2y631MOEQTctrnDgqimqezc9WltDKFY7U98C2/7YsbbQY+g7WNIW1QMkGwmgVonSkMNB3AxfbC8tH18D+cLDoCImrFDzsORQPH268JdqKo1DyRM5H42JKFooqDurkabLPx5E8WqSOkSlPRlRaBJmsxOP+/g23N6+tGkVe87IozdOay1JJqIUz11qt8ts02tG+gFa1HOJSLCx66AdiSnOqVy0WATUd9pTJShAu5dyZfz95j6kyTUaUXTWjnkIYQvS+g2lSalFKtk2m5ZNv+g4ksOkTQnVuIy8li1WI0eohuKWSi/MkPNzA2969csEFt1hsCjn4h0cbxDgrQzbcXNFGCFVIBDoMhO1CRx86YhT6EOg9BLdqPeXa0TqP3nVlm7bIrrm9FazEOJ4Gpaaox8rMg9AMoeqpjbUW4yuJFob9pCK4l+jrNhB55H1ZfSq8/f1FEXz7LCsTT2HlO330PO+8rbeOldVBj53n8XOvT6ny8J23j/l2nuXVtT6EpoCgeBpxMKA19MrmStECYXvHXf1zXh323I/3vLx9xZiPvDl8iXDD0E8QjLgYEUIthGLrkHQHJO2h69B4oMqRopGvXv+cn/3532N/uOXm9oZXb14z5Yn98UgebV2cUAqWLjTmwFg9lagIISsTcBgL+zGTEfrUW5q0WqRjztmM2r6gKVCLchhHju5d1V5I1x2pj6TLjrTrkSRoFfKxGnl8H5DgJq8kVOw80zhSpkIVq4ZVA0hVJGYzjEpF9xPqe46l1Wa6zcBue81uGKwy3BOJKav+uvHeiZjBNqM0q9TJk953AzwYEKAii9JnuXVzBq51gKctqqdR62LsAX4OO7MIczRiVcFtvtM5sTJwzVh00HB2CJyCPu0ZbC1e4gxoRskjzzh/S09n47uO0dZk/s8X6BUM9T5iRExCVaJCh0VzGqhqoEgXYZOUGCoxVrpYiEF9H2hpa9WBV3VSngRUYhdJQ2cRql0idS2VA0JwbkNR4wrCQSfndonBEuyDQpcrXXHeHSpJLWamhkj18RMcLEAVmQ7I0ULkT4EfiygTEaSz8t2s1tClOmV1R63OBM1WSVKhCKrZ8j5FLNJdPAJsoe44jSx2w1WrEkr2ggtPp+cIxol08l4DRHyczumMcJJqtcgCzgBvAVPzODwxvB4c5Mb5GvwRWX+2vF4HGa93aZlJqguUyYGfTNDi3ILFQT5pBWpBKl2okExnTbESY7bU2ZSJ0dugLql4ix5UqBzdplC6YNB6jEIK2SI3qWiqxKAzCXL1CMb3JcHHKs1huNInRQx4taiolmHAnKafxPakJMsttopdKHMqF7SMlLxEC7VqvJ7qZZderYezjsrM0YNYNa5gOaCkmOaggDUQFaMT89qJEFnIjmdwZ6Uzq6zWV11d/x3AzzeLroIfFlvjKcGfGCLX19fOkWR7Vc6F27s7T90KnjobzAzW9r1Al24JEhg2Gy6mkdQlNtsdXZcWJ7D38W53yQ9/9FPb53NhPBy5vb3hz/9Zz93tK/YKda6cbDrmkzp+Hsgp+HPyCae6rq+175o8swENbUVYvvvYud/12al8I/AjIhvg/wIMfvz/RlX/hyLyAvhfA38C/MfAf1NVX37Dueg6mwRalZxt8brYbokEXjy/5gefv+CHP/iUtIkMVx0hCVNWvvrqjr7ruL6+JKU0RwNoc6fZn8Qg7LYDn714xotPrnnx/JrLiy277QbqiHqonzX5rO5gubGBGHvLjX1L+V8rQQUo5L4wDB2bTWdI8hiQaobqsmTbgtD3PZthYLPbsrvcMQwbZ873+68VqYbq11KoWvwWjPiyRS3MZH0+6AVLK8N5Y1p6UFVPp6qFw3EC+E+KyP/7u/bhaZusX6x+zyF1ttJatE+r7OCLskSCJFLs6bsNKUUOxyOt6kAjp2uRNcYhZJE9jedA5+tZSGEtRhYWakCaN8LfL8V+15IRCV5K3cL/tE6U4mDZeOB4uDfDpDhXkYM+oFQtHA6HOSrIyl2WGfjJeTqZxKoLGBdCIE82vlQrxQ2gmgv5eKRmJ61mbSCcWssi8v/gCeYiLRTbx9xDlUMV39RdwZNGcB7dYxHpvJbwHD2lMBd/1XYOqGWJ0PJp2y4zAyrt/dngaccFP6CRF7Z9ryGM3lxShaBeYQWL+IkhkObf6w2znn5/VrrWIZXrBZfmNvfhJnOfSjUQyAIs1KubMEdTzeFIalbclAs80Vz0oO5HP3l88X8A8qyqjbz7Gt/07ruu9dvK0+7G+jV/vfu9byVPNxexsaECKgbmEytpsKEj3cRYX3OfldvjLa/vvuAwHjiWO0SOdKkgUQmdWVtaCjpZxCAhQ5yQMIEYlFN14m7/ml99+efc3b/m7n7Pzd2tcaNVoZQwgwNWoceyRYpaGpBU0GIKeJ4q47FQCGYsNwWuKHky4GealJCjK8+ZXJ0EPwlhEwmdRf2EzlJeFKFMNjFVvSoRzikXZNYdpnGyaZVwRVChBMigpaLThE625rdoSo1CL8ImJXcaPNV6ytxm6/dsF1yvrasjfE1shmczAEBXFTzxpWjh5JhBGeHknOv1s70OwZc5XSDe9T2ezORmHDfj/5Sxfb7nk+NpP+vnW59VH/2u/dnuW07em43gOYKyrffLGfX07p9wLtoVAs7rg6Xod2509UHYerRDCmZgi6d6RSdlNsBn1V9OshtTJHUW8R5TIDbgByWKRawlUTo/X4usW9oYr66lpBbdjKWYKVBlle6j1ieiitQR8tGrdK3TnHygBI9ib0jNao/NnvJWfZ9re7lTILq6Z5VqVIQagnEDSuNfF0+xWgiWZ9PF6ryDmp71lH34cFecdz5pq+3ywRKbtxxrL1aG9oNt6cR0W43rh3Nr7pE2r1ev12ea53qzSkQcyG3MlQULP1fQgrijTlhnBLRfxtMTg10jhjqTgsdQiaFxgxUkLBHfilKlIJoRrHJnFOOpilLnKLIgOp9b0KVAhN/CU/bjYvOuADRf5ISVI3H9uYjptegcSaOt3RuIoq3q6rKoGKBZZ92urkHPWinlNPp+Hs8OvCzFRYQ1aNOiiE7SrN56yvU5ZX69PlBO/3i7reTxs+rDN07Ed6gH6+5T9WEIwjAMVuRmbFWuK3k82hN5BbkG/LR7CAKTBz1ULeYEKsarps6BNu+vKnT9hi5FtGZub2747PMfsd1e8Pr1ry1VbDyiGk6A2jkr5VtKi777tvL14M/6r0f22fVnKqfrwxMgVt8m4ucI/JdV9VZEOuD/JiL/R+C/AfyfVfVvisjfAP4G8K9908lkRQ5m5ewSu91gA2RjXCwSQDGjOiCM48jheGR/OHI8juRSKVVnbkNOUEvlOE68fnOLiPDLX33Jz/7ZL7jYDqhOUEZoKDqm5PSDpV6FEI0srevdIyCLsQozD0hMtqkd9kfKWObcZ0sVqkwe0t4kxkCXEikZmXBTsKpmSrXUoJqnOZJF1XOMsHZAnEfBo4xAETcqtVYrh16sxF2Zfxv5XqmFZPnj/5Gq/ueeog+tIx+uI3ryo7pWeFvKkvP8rKJYRLw8uEf3pBhRTUiQ2XiupVDyiIRoFa+qeT7aSiFAFvMaSQjUEtFq0RUlT07UXFf3ZpWzxuPB8ktzgKNQSuH+/ob9/nZWdGbSOjEPngE8B/I0zW3fgJ+SR0ops1LePJWtKgAESgHxtii+CK7Bl0UFecRQsD+eZC4qkIuScyVPypi9lKt7e/OkjFOlFNwgNABIwrJMVa1M2YzDcUpMuSKhmEJSXV2pK+DLQRnbhNuNiIdtumLkANM8fkyzMjBnVcliyX32vm28DLWYcdiAPoJxMBWPQKreF35eYOXNk3nsNuPK4vx88fXfwJIip00RVi++3PLn3QAQWr4AEoSui/DUc/FR+Zabw1v7zYM3ZP7v5KOnhnt+E3nXFvmbffE73/3TzcWqjGOhKjZX8PD8aMp25cjd4TXxrnC3v+f27taKBpQDh5zJtRI6JfY2xrQGtERElXEUjgfbL4Y4cdfdkULhcLxjKvfkeg9hIvUGYuZRKFk9LdfWqKjKmJUpA2KRDb4z2bqQzU+cpTCKceKVbA6WYKEsxmXSqg11iRDVHCKDErtIt+0N+BEDKbSYB7uMmSmOWCRhRTVYyljOtu/h0zhAJCEVEgGlUkRtzzSqH5/zlePhYHPV9ugn6UMJQuyG1dBooMZaqXubC8O8+Y0brxCLGVElF4L09sylUlMzkN07rcxOkPn7ddl75yXOIzTae+sA1sfmwBw59AD0kZP/F4V5NqjXx7y19OjJL9vn3r0+tfW57YNLxM/prrg47t482VwMwEaMp6ZzAtuI0qkQUFKETVCSmDFtdMq2q82xl6Kut7FsLg6EpNBSwZToJdNbtLogBvwE30PKMjZkpY/i/S4OjFUn+24p8EirchkBS8sJyRrNMClP5W3briMh2tAQf3923Ahzmfa1a0pn5djAoxa305w8Rqunft0l+nvZ+23fXBEDP5md0XDgpk096IoZ8GlHrCyId57zodm+dh+vr/P29xbQpz33Mk+WQd3mjxmzp7weDeBZ/1tzSc1XERBtIM1iIM86Ug3O+WV2hjoH6Jz2VSvoBJpXfFP+U/NKbzIACDEic6QszfKE/djaZVHRZAZyFrRrdURrTpGT78nquyf9sljUNm9k9Z1ZFzXdN4R60nfLOe1crXra+v02Fxvp82PPdvKqAVgN/Gn/r778TvDhdCDPb339996pyT1RHwoSrPhJTCAhuu1gVw0hErvO07mXbanZIst64fbj6gekAcY2jqtzBsfIZrOl1sJms6XvB6bpyDhmSjE7fY6i0tV69A3ydaDPQ0Dw4WenYO8y5GZ742v10dkgoYF0c/DHI/JtHucbgR+1J7r1Pzv/UeBfBv5L/v7fBv5Nvkk5EnN+xCQMm8R215NiIEkkT4VPPr2kGwIanAvgWNCjcnPzhi9evuLlV7e8fHPL/jAxjlYKdvE62MZVK7x+fcs/+dnP2W03fPXVS37+81/S950j2c0wV1r51M12y263NXb1YWC32Vg1EhGSo45dinQpEaNweTFweTEwjhPHN3tiFWIV9tPE8TAxlcpULPJDAvR9QmTDbjvQd5EQFQmVUg8cR9PI6mjRSKBzHj9AzfZaRCBHJLoLzzcdrcUY6Z1xvniaUMujLAu5c0NbvlMfNk1PTJ+f89NbhRJo+a8O9ohVDNKaKcWq1NQ6We64KDEGB9s6i4jabIiTVR/QWijFlH4b88HOU0d/9jpzGB2PLU+WmU9JZq9JXVLpHDA67G8BS43INZOrRQXdvHnN7e2Nn9uVknYOT/UqeaJk84hYu1ffM8uyAMg6LL2psKAlMontLnPUie/J7ehT7+mpAq6qTzIXtSrHY+UwVu7uM+OYse3LFpdclPGo1AL3+4lxKpayJUpNdo/TpNT7yb1Jgc1uZJjSilPHwLTsYFib+6ItvN23NRUnE7Gc3kgy8EkVSoECUQJ9sj7tUiJ5zrClbWakWii0lNG6e+rIR4EYyJKYMCCw5RFDq8rVjKSVEjjrEEquhdJIrVvZVP+eY0PU0pRwS9Vpa7Lxk2BkdClAmjf/p5mL+IW+dtN4Cnlbo3jfV/xm+V1BT8t1n2oulqLcvj5CVOPsD9CliW4opFiZuOHnX/0TvrhJHPYTN2+OTGOxyiROPhn7QNpFSwUmggzm1CDxUpShy0z3t0x3vyCGji9e/iV3x19yLDdIF9gNCVXh/k1lvDeOncNhYn8YkarsgCuUPghDpwxaycCUC9OxkCvU8ch0sA1CQ0WDcfhJjKR+g2ql31ZLHRUjvbToQSH1idhFVC2KqBwrOlX2emDcZ5DgUQkWOXQ8TEyT5exXMeaiYejZbQaGIaJSydG57kqFakW/NE+8+uolbwgtjP9J+jCEyPbymQ+RlbH5llb58O+FL6JF+7Z9xZwWtg/VskRGUFtKtTlS2l4ypxfPnmpmXcB0ywZWt+MfT695WxGWk3LRIcSZM22x9R794unnjz7/3AzMpvS8Rq8+evDidFf8+ZP1YxR4nozdR/oIsSNS6SkErcQIfcxmBM4IiTgf0GJsqge+SlAv1CaE1IwfCFLcuLfvRd9Pkgi9OwfHmhlrxnCd4AUFQKYKk5PUOmcWAtol6CwaPvSJrk8ISkqV5BZtqbang1qEkHdijeBbpFWWElAViv9UjCu9OEdqbcZ3ECOmdr6/0vgxVQnF0/HBAYpT4Gc2kBsI9UR9KBgPUrsPRT3tp/1mJut+uIecpFysc8AemRNr3WwdMyQPjhLk4WXaxR4cuawZc1s5yJMsrNnnhUXeCIHotdxAzG4ARAqVCWVcntmROpWCmX2Klgmtpsdqc6SWihTXp3RW9428uygqVjmrgVAiFYkTKSxryVP1oz/Mqq38+cJq7WkGvA2gE4BoBlFWwM5iMJtTYtbMZ9AhEKIu3T6n7+rqNPLIuu41eh4ATg+PX0cxLmd4cK5V9NJaHhtCb93Hw+E7vz0rtcxAurQ2PD2XR7Y8TR+KEFJnc7KXeX0vnvZlUZD9nNkx7xi1oGUErRa4oMWdUZNzsvrx1deOWiyNq1a6vueTTz9ld7Hjiy8+5fr6GSLK3V1lHO/t/DN4wgys/7bydZFAy96+tunakFy//o2uyLxCiK8vK6Dw25zuW3H8iJFT/DvAXwP+Z6r6b4nID1X1L+3G9S9F5Afv+O6/CvyrAH/w4xezwZdSIKVAoCMg1KJstwMxBZBKxRSfqoXDeOD+fs/tfs/hMJLdCF2mkEnzeu0PR756+Ya7uz3Hw4G723u6ZJwvMm9AOgNR292Oi92OmAIXmw2X2+1csaGPBvwMfc/Qd8QYyM8uYNoZ0/sxEzwEvhYrAWgRSYUWURSjV2Bw4MgWiErVTC5245onNJu3VKKs1jsHUURAK1LaZ7YilVLI0xItVL3Cl0X75CWH1/ri3/uufdhvP3MkG1bjDdsl2rVWqUPaon28olfNWFlrVwg8FDKlZAzu0UL5QhBTcAUqE5kW7p9RnZiJiWdy4mVyldJTazeXrzRSb/VrWsRHnkaOcocCx+nI0aN17m7fcH93Z8ryOp65lbhEqTmvIj7qcszcEqtRuV58xRYukUURaEqBNE3xLTmdxk81F6+udkbKOlVG/7GdIqMaKEWZRqV4VFBxkuf1AldrpY5WJvE4ZsaxIBIIoiSnC2ghsnYDahwTJwuuKZgLq84q4mdWWAym8ZRpC6l1zoBZYdGCaDGLVQQtEzV3prgWM65t/Cwd0whP16Hea740qwKRKZ52GaiWyulhva171QHoObQePHw++G/mQmmrvvj3vmsfhpn4Y76Tx74yb/K/wQff8dgPId8F9PnNv7u07vLdp5qL3bZnPGYkmf0UgoIUQldJXaXIgTf3BzMGD5W7m0Ieq/GmjTb24gCdRvPsB+fEEjjGwH2nlKki5Ugst4QQud/fMJVbcr2lSwPdxgbp8d7nQFHyVDkcClKVQ4CjlT8kVCVptd20WHXOUi3Kroitb9IByeewR/poNW6T2Bup5eZyw3a7OV0jq0UbavEIhkMmT8W5AAoSItVTvUqxtbx42m8KAamKmbtWLUuc4Mb0REFzYX8YLVWtlCfrw93lJanfnOyHpwaCmb/vkjl60J0H5vTIiwPCHTumNeu896ie7n+qxkdR5tLDdeWQWPYr9eihE4DlRPmdTSsDEoIVurC1Ly3cFMu3H30u+Zq/Hm0D1uD81xz7QPt7qn68GC7YCIQohGSerQT0VAKBKJCC8yD5vdJ4eFbKuGX2ilfzwjkabX7PqU8UWrKul/mgE6Hzva2I72eqiEaCV+mSUtBcZiLzmcex6ThBbC3xXTVFpYuuczgptMLivPCh2QJvG1dMxSN9gjh9uvlnmraj1nhWgMPHTvPkrxpnJiZex2k0A3xO59en68Nhe3kCmuCvcX3j4VYmsDruVJM7eXkyfFsEz2OG/HLed267j7w5rxVulAp40HC1Muvokgrsumz7Ob1+de4fj89q4X/BOlc9DYo6mkHdQrtQT0/Pxg+FA2SKpVepGLehLNcSKiJtdPh7T9SPz589e6RF1zbHaXPq/OFbOvPSOvMvaconywPZ6xbwKJgtdqrOy4N1/fQuTnAqe9i3jmog1eoG+Vr5NmrXg/F5Yhc/tE1WDaYrMPTkkk/Uh9fXnxr9hjTaDiefr3ZXIUarujynwvmsKhNlNNJwWy9bkIfbkjMfkc9ArfMeGWJit70gxch2u2PYbBjHDcfj3UlTr1Ox3p2W9c3yjXvVA9Dn4Xd+c+DH4v3mDARZHPbf9lTfCvhRs9T/RRF5DvzvReRf+Na3qPq3gL8F8C/+C3+szdhvaV5FLJS5eEhqKRM5TxQymYmihf3hwM3dHW/e3HK33xvos95g5qXbQlinMXN3t2ccJ+O5ycVD8OZg1LnqgghsNkc22z0xBC42PZfDYCXmY2BIBvz0KTF0iRgD96933F3vqLXy6ovXHO72TFNhGkdyzo5mqocNWvUjlUTqEikFYljAH6RFIBXwCg7RyWAV9TQgWy6qFuYI4jBPkVm5ayle1VOLqhNZr/riO/fhxfM/1WboajVPq4pVitGZbNqvq4Wihtrmac843VPLRM4HSh2pdaIUq6IF1vdNka2lME4HJAdCKMRgFdVUs5F0+SalDQB0RRYR8pSYxg4RA306zws9HvZM02j3rYEpW7se88hYjKtnmo5+H2qKlVobz1E/TWluA3Bh1GO9+M9G4npBVk5BnzVz8PzzjYvIk8zFH/7whY6eznU4FI7HzGycOFiSs3kHc/ZQ4hCNSwrx8s2utqpSqzBNAJUYhLICfrKhmxjva5wjhGwSuGIzh8y2dhMzJlVQDQ6gegWE0Ln3XwzsESubm1LHZjDjq+8Huq43Ar0Y7d5dy9W2qYvMJUqDb/irxsK4FwTV4tcNpsCLkBqRX1U0LOCfRD95sCgfq0zXWR5zK9PE08zFLnWrPf0blvx3fvxNW8V6M/wuYMvvQh7Op6+//3fNvne9/1RzcfP8QqfJUkaCGkl6pVKK+XJBmbzCyngQDvtInoJ5wMxhS4odTD1BjUckdYkQA0UvudvDMRSmwz3T/ZcEEW7ub5j2hVKtOlFNThRc3ZBxvThKtLUvCjUJJQi1i/aDQLIU3Sr4vmZRrnGbSEMipkC/6YzXLyjd0KGlIhIYhmQRvtrIoJ1LBJzrB6zqIuB7mkj2NdmNanUTSNVSuiiUauT7k5P6t7U6EKhiFZpaFaKn6sNPP/9cF/J22y8sWaMtaqdm4KJkLqk89qAO5opztzTuPjdSmtFmUbRmyLWUHwMIfMvRlg62GOVtpcPb9aEhuzpo9cK/L8GjflqRCXtW0dV3T75/eurlaR9Xrlt6UDvnosKuldm1If7AoHqifvz8+jPto82FUBcOnahqhMke4bzgB8JSWtfuawZFMH4g8YpIFoSgJ4bzHB1t6o2TI/v5c0VaurkDMihGXO5OqdocMiJunNt4MkDUdFA7ZyNPlRkorRLsfUCDkTLDAt6oKlk9nVON2bJBDCoeyyMy+71MQ7JjxXWk5gjRpkLJAn828Kd15VP14dXzz5WZbFjfHuZ+3VW8h+MFLTqovdtu9PQcJ303j9vVuVh/X/xaq+ufvF6l9rR5Mr9uNoQSpSDBDFuJ5uCVIMRQEAfbG+l70GI6szaWUddNJBDEeFVNVzeuUlsczY4QrygpVIvMbk+xTh2b32M+t66Up6fqxz/86U91SeuC2VO4nj882J8dKXgLltHH8RU7v4/Vk/XZe24FirTxa/P4oV4kqzY5ucA8Dt06sLX7saiedQjKw/tfvXoIUKy5jmR1H4p6emWbY54WtRrfa4fr3LBPuC/++Md/RWutXg1uxanja2YQLKtmrhBsH1dxx6nqyungFT9Lpea8GPBmaMw2YHVS7skLTOTJftd6WtXr3SlZ313W0VMLoTeseUrbNdfPvT7+VFaFhmZ7c20/vi03t+M77+83quqlqq9E5N8E/iXglyLyY0f+fgz86tucQ7DQre2mB1WmMRMxD14MyjjtuT8IWTNjHSla+PLVK/78L3/Jr375il9/+ZLDOJJrPdWnbA2miHJ7d+A4lhlEsdKtbYBb481OeDcoUzKDdNdFdp15drZdYOtAjaV9BVIQPrna8Pxqi4hw1MSokapwnCpjruYpUef0Q+i9lN/FdmAzJLpeSEmQkAGLmJBQkGilBbuhI3WdbbxlslK6XgUql+IRU4kYgvMEOVhWC8fjkVyy62rBy6E/YR+qpW0pRgSHKlWcu0ecVJrJfBRlpEz3aM1M457j4TWljOz3bxjHG8Zp5HCA+7uOlDoO457qNdTHceJ4yL6kBkTMJ1br6MBPXQE/LbzdPF9Wmc0Wiq7r6JNFKo7He8bxHq1K0XsLS1bIdSLXyZSlPFEcqJjdX0DjhQJcwfLxvIpW8Qby/1ceydVCfnpsW+gfvqdf8/fT9GOpyt195v4+8+rVyP5wZEn497lUrH2msUAwIy7EuGz/KjQ/5zgKt7eV5IT7jfyvViuDicKwgU3tbD4lA0TnjcjbKEchRZuneRJKjbZBOBgaQiD1A6HrERGqZCRnYixc7C6N20SEi8sNu90GCULqAqHzjcVBWQN9bG7DUj1l1cCmoEox8kTMsDWPd2TTWQUjI/i2KoWN1HOO7oliERIhEbodYQX8PEUfnuWb5DG45jc/+pvO8l37sdbK/f2BbtMTdz0SEqUGxmOlSKZMlfEwWTWrSTjsrUT6nGAiQqoDg+yIKbENO3b9M1LXMR4mfvnmSC0HUrkllZ8TakHkS4SjGaS5EqVAsGiR6oSeIQT62BuIOcA4CBqFeDHQXQxm4B2FdBCkqlVTTJWQIrvnG3bPLgkxkDaJ1FvUZRcCZRgIAYZtottESim8fnXg/rAHAkEGgu9/UxnJxbglGhmnhEjsNoTU0RgoQCHCVI8cshHnH+7vyeORIJEhbYjBqhASxD3ay4z/znNRAoQecM6VdldrRW82juRkX14MyQAeGaGqiBMTabGIHwNy6lzhck0g34wXVNEszgdYvaz96X5ljele+re8ket0iQZsGIhtxKVGxpmS7cdvGcmPyPqQNShyui/a/8oqTeeBCb2+T3veR671HfsxBuWyz0jJxjFRLA+7cSrKbLw0U6kZLF7xyo3vdmvm6bYo9xCVuQijR2OBGTK4PitZLFoPLJp2zF5OXVDJretojAVTrYwNZKmClIJoINZKrJZeTYwQE4oyiXFxKTIDPwBOFzzPs1aEw/j9zNFXVCi4R2fO87fEo5YKU2f6BeMME61zBEVrNQmuNwWrUrbyhT1JHwIzBcAjn7CAPr73N3UGBY9Gt78c5lKnhWgGvLbR2dLylzG5jFh18ObUOJv/btyG7d25xKmsADID5U0BytBZp5eYqcl0/JiUFKbFDhIHcNJICdMCRzWdJyghZAc6PPp+1r9Mf6lSqK30W22dUxfkQ9v6ZVQKRvXwSEt/5zW1Gf/Mc4YHgMmCnzdUZuFGOtHK2y3Oi0ZDcDwdWJeoqValq4FvKEuUT8NGwqpHH4l2C+LnRxfurdX9rnYef1/mDx9GYs7PrMsI48F9ic/Lxk2rYJXWTtpJ3azR2eZYtiaZK2Wdttt360NVy64IMdAFMOeINvcGKSh9sgygpfKXUhFEO1QjMSVCtKggVWEajdpEonEqQeOsKk5xMrLfHzgc99zf77nf79nv94zTdLLnvOt+f1t5CBo1AGe73bJp9DGpswwUlltpgQSqjZ9oQ9d1fk7m57MoZ/cQaHvfsjLWUUXt5c3tq3fe67ep6vU5MPkA2AL/FeB/DPxd4K8Df9N//+vf2DL+tEGg6yI5W2WNkiZbRIO6p+5I1sLRgZ/7/Z43N7e8enPD3f3emMHbPJ8f19eGqowlczjmr72NdfaF+JgPApsIu2Q2264LXPRGJJuwFOgYhZvLgTcXGyMk3l4Rt5cogUlxLnyg8ZwIFh0QA12XSHEd8WPTEyxqhmBtEJMZqzYBLGRdwUCVmlGEqG3LaSHbphBOefQyugYOCYGXr+7w2+e796ECSzi6Bg9F9+oPRvM5IVoo5cg07S3KxyN+Sh6ZpgOlGICTy8g4Hah1xWmgSi2ZaTr4gPbeUqh1pNSjK71LuHojIm29a2CR0Hc9fT8ASslHajmi2shK1b1amUKeFWdmYMdHyKy5ni4KJxv38u5ql2lq9GqRnfedhzvl1yHNM/iTROT5U8xFVRjHyvFY2R8K+31ZfdY2IANlarE+aOUpmb0wDowJlCqMozpxmpFXQvY1yA8AAAoSSURBVCuD6aSAIZE6RV35bei3lX+fG2xuo1os2seaKxKDpYiE2CGhb7dC4+rqup7txl4P/YauH0zZSStDS3RecQ0ctI1ygbzWra5EscQRxL232Hzu+w196iwKIVhkoTbgRzCOBx8+IXbEZAb97e0enmwunt7tanDxcKx+GHk/133/T/NbXeFJ5+I0FaSrVAdTbUO339MR9neBPFVyFo7HSK1WiTJEi2zUsCFMF1RNbOo1MX5GSj1HfcPt/kgeM4x3yOENUjOb7o6LoRCjUjsjaCY0PpjqEcSBKMkmWYTaQYmnET+SKjFaVFDs/CfB5iKxu95YGewgs5s/EugscJB+K6RBmCYzsqYyAYE+9Uh0MueicxpzcRL9EBOh62lOMcFTEoJSKEzF9IhxGsnjRIrQRzPSg0dUhGAK9lP1od1IWAESvg6cePhWUTaPeBbtreBGmUWXqDayZTeufZ20aAqPvPDjm/IoWheillXEz2zsaDM0/D5XA3GOEPAFUf3GxCN+gpcpbhE/y3e/plmW068utf7j7WNtRsrq9SMHL+d4srkoQB8MfAvq+pmqRzIvyvVDww2gSrVCADLbVbb7h+Bl21tfNpCh/VTnd2SpXApWSi/XE3Bt+YrvzaoUv4VGxhtaxLcq6jQEJZj7osQ5xsOjffx9nTVRWjFKc5B5Ba+q9r3Zcm26QEvN8+/OoJ3ODjLRBprY/hma0anWkkGN1P5J5+I3redvefe9b7QBPpaK1/p6XahkSSFb/6yPeez6Mv+c6o2r9+cJZ+cKDjbZuCmI2P0EKVTn1AkhI14RbslP8gIxMyeQLncguG5s52zPuhAbeqRz8HWsRbOprGEEWuViS80/Wc6ebC7O13pMNX7wnqzXON5eXtdLnbQD5mCAdcr80ivLuVdtt4qeXEd1gNmPcy2Y+fxitt3bt7zcmXAyFvXRB1491EPjd4GgaCXh1+vnsm75tWZjeRVlufq/WAr0E/Wh7d9mFi1gd2tPcxKLOVUVWmRvELFoV6yqp/3YmGvUEWF2zq7OPdvBE9M0nfx+WJXtfco8JkKwit6bzfy6gTpzCz0Afi4uLuj7fuVksKjLaXI7w6e07QXqkdInHFvfeH/fJuLnx8DfFoPqAvB3VPX/ICL/d+DviMh/F/inwL/yLc71fkRPfr2/CwCLNvQNx3yDvG1kfnfRR29M+fWXNwD/vIj8f/iOffjBzcnfhf36dfJt7+ex4+Tdn3/L03bAv/Fe5qL+/jX1B5NVv6zTvb5Le7xrPt8Y8PMkc/FU9B2vP6S8n+v+9mf9toDOb3WFp5uLj9kIH6G8l8ealeHf+IuoWczvZz39NnewVvY/kEL6tfIbdtCJefSO754+1tq4evy670oFk9WrxXs+v/uk++K7muFd9/z/vxvn04gBTxV+h3PxN5V3jZH3NhRm9PS3+9qHEJ+O709HlfUqsMjjds+D9en3bZJ+wI555z7zDoDJK1J/b+biU8lTRvt81+O+3bmW/VXkdF/8pmeRD6lwiMivgTvgiw920d+9fMbvx/P+sap+/l1P4n34M35/nutDyO/Lsz5JH8J5Lv6O5TwXf3v5fXnW81z8bvL70I9P3Yfnufi7kfNc/O3lY+3D81z83ch5Lv728rH24Xku/m7knf34QYEfABH5f6rqf/6DXvR3KB/r836sz/WYfKzP+rE+17vkY33ej/W5HpOP9Vk/1ud6l3ysz/uxPtdj8rE+68f6XI/Jx/ysH/OzPZSP9Vk/1ud6TD7mZ/2Yn+2hfB+e9d31Rc9ylrOc5SxnOctZznKWs5zlLGc5y1nO8r2WM/BzlrOc5SxnOctZznKWs5zlLGc5y1nO8pHK7wL4+Vu/g2v+LuVjfd6P9bkek4/1WT/W53qXfKzP+7E+12PysT7rx/pc75KP9Xk/1ud6TD7WZ/1Yn+sx+Zif9WN+tofysT7rx/pcj8nH/Kwf87M9lN/7Z/3gHD9nOctZznKWs5zlLGc5y1nOcpaznOUsZ/kwck71OstZznKWs5zlLGc5y1nOcpaznOUsZ/lI5Qz8nOUsZznLWc5ylrOc5SxnOctZznKWs3yk8kGBHxH5l0TkPxKRfyQif+NDXvt9i4j8oYj8GyLy90Xk3xeR/56//0JE/k8i8g/99ye/63v9LnLuw+9/H8K5Hz+Gfjz34fe/D+Hcjx9DP5778Pvfh3Dux4+hH899+P3vQzj348fQj+c+/P3sww/G8SMiEfgHwH8V+HPg3wb+26r6H3yQG3jPIiI/Bn6sqv+uiFwB/w7wXwf+O8BXqvo3feB/oqr/2u/uTn97Offh978P4dyPH0M/nvvw+9+HcO7Hj6Efz334/e9DOPfjx9CP5z78/vchnPvxY+jHcx/+/vbhh4z4+S8A/0hV/7GqjsD/CviXP+D136uo6l+q6r/rr2+Avw/8FHvGv+2H/W1sYHxf5dyH3/8+hHM/wve/H899+P3vQzj3I3z/+/Hch9//PoRzP8L3vx/Pffj970M49yN8//vx3Ie/p334IYGfnwL/bPX3n/t7H52IyJ8A/1ng3wJ+qKp/CTZQgB/8Dm/tu8q5D7//fQjnfvwY+vHch9//PoRzP34M/Xjuw+9/H8K5Hz+Gfjz34fe/D+Hcjx9DP5778Pe0Dz8k8COPvPfR1ZIXkUvgfwv891X1ze/6fp5Yzn34cci5H7//cu7Dj0PO/fj9l3Mffhxy7sfvv5z78OOQcz9+/+Xch7+n8iGBnz8H/nD19x8AP/+A13/vIiIdNgD+l6r6v/O3f+m5gC0n8Fe/q/t7Ajn34fe/D+Hcjx9DP5778Pvfh3Dux4+hH899+P3vQzj348fQj+c+/P73IZz78WPox3Mf/p724YcEfv5t4J8Tkb8iIj3w3wL+7ge8/nsVERHgfw78fVX9n6w++rvAX/fXfx341z/0vT2hnPvw+9+HcO5H+P7347kPv/99COd+hO9/P5778Pvfh3DuR/j+9+O5D7//fQjnfoTvfz+e+/D3tA8/WFUvABH5rwH/UyAC/wtV/R99sIu/ZxGR/yLwfwX+HlD97f8BlvP3d4A/Av4p8K+o6le/k5t8Ajn34fe/D+Hcj3wE/Xjuw+9/H8K5H/kI+vHch9//PoRzP/IR9OO5D7//fQjnfuQj6MdzH/5+9uEHBX7OcpaznOUsZznLWc5ylrOc5SxnOctZzvLh5EOmep3lLGc5y1nOcpaznOUsZznLWc5ylrOc5QPKGfg5y1nOcpaznOUsZznLWc5ylrOc5Sxn+UjlDPyc5SxnOctZznKWs5zlLGc5y1nOcpazfKRyBn7OcpaznOUsZznLWc5ylrOc5SxnOctZPlI5Az9nOctZznKWs5zlLGc5y1nOcpaznOUsH6mcgZ+znOUsZznLWc5ylrOc5SxnOctZznKWj1TOwM9ZznKWs5zlLGc5y1nOcpaznOUsZznLRyr/P+P3P5gvxNUaAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4oUlEQVR4nOz9eZhdV3nlj7/nnDvWXKWhNFuyJEuejUdsBhuIDbRNkxAaOiQdkv4+CUNCmibpNGl+AUMSSAjNk+7kS0JngHQnNEm+IYQpBDMZPIHnQbLlQfNQJanm4U5n+P1Rg2qtfVS3Sqq6V5bXh0cPfuuee+6++7z73XufU7WWlyRJYkIIIYQQQgghhBBCCCGEEC9y/GY3QAghhBBCCCGEEEIIIYQQYinQQw8hhBBCCCGEEEIIIYQQQpwX6KGHEEIIIYQQQgghhBBCCCHOC/TQQwghhBBCCCGEEEIIIYQQ5wV66CGEEEIIIYQQQgghhBBCiPMCPfQQQgghhBBCCCGEEEIIIcR5gR56CCGEEEIIIYQQQgghhBDivEAPPYQQQgghhBBCCCGEEEIIcV6ghx5CCCGEEEIIIYQQQgghhDgv0EMPIYQQQgghhBBCnJY777zTPM9rdjPES4hbbrnFbrnllmY3Qwghlh3NscuDHnoIIYQQQgghhBBCCCGEEOK8QA89ziOiKLJKpdLsZoiXGMo70WiUc6IZKO9Eo1HOiWagvBPnEpOTk81ughBCLBmaY8W5xEthjtVDjybwzDPP2M/8zM9Yb2+v5fN527Rpk/38z/+8VSoVO3HihL33ve+1Sy65xNra2mz16tX22te+1n74wx/COfbv32+e59knP/lJ+93f/V3bsmWL5fN5+973vtekbyXOdZR3otEo50QzUN6JRqOcE81AeSeWk69//et21VVXWT6fty1bttinPvUp55gkSewzn/mMXXXVVVYsFq27u9ve+ta32t69e51jv/3tb9vrXvc66+josJaWFnvFK15h3/nOd+CYGWmPRx55xN761rdad3e3bd26ddm+o2geM9f60Ucftbe85S3W0dFhnZ2d9nM/93N24sSJed/70Y9+1G644Qbr6emxjo4Ou/rqq+0v//IvLUkSOG7z5s12xx132De/+U27+uqrrVgs2s6dO+2v/uqvnHP29fXZu971LtuwYYPlcjnbsmWLffSjH7UwDJf0e4sXD5pjxXKiObZxZJrdgJcajz/+uL3yla+0lStX2sc+9jHbvn27HTt2zL7yla9YtVq1wcFBMzP7yEc+YmvWrLHx8XH7p3/6J7vlllvsO9/5jqNp+T//5/+0iy66yD71qU9ZR0eHbd++vQnfSpzrKO9Eo1HOiWagvBONRjknmoHyTiwn3/nOd+zNb36z3XjjjfbFL37RoiiyT37yk9bf3w/Hvetd77LPf/7z9mu/9mv2B3/wBzY4OGgf+9jH7KabbrLHH3/cent7zczsb/7mb+znf/7n7c1vfrP99V//tWWzWfvsZz9rr3/96+1f//Vf7XWvex2c9y1veYv9+3//7+3d7363TUxMNOx7i8bzUz/1U/a2t73N3v3ud9uuXbvst3/7t2337t32ox/9yLLZbOp79u/fb+9617ts06ZNZmb2wAMP2Pve9z47cuSIffjDH4ZjH3/8cfv1X/91++AHP2i9vb32F3/xF/b//D//j23bts1e/epXm9nUA4/rr7/efN+3D3/4w7Z161a7//777Xd/93dt//799rnPfW55O0Gcc2iOFcuJ5tgGk4iG8trXvjbp6upKjh8/vqDjwzBMarVa8rrXvS75qZ/6qdmf79u3LzGzZOvWrUm1Wl2u5orzBOWdaDTKOdEMlHei0SjnRDNQ3onl5IYbbkjWrVuXlEql2Z+Njo4mPT09ycztg/vvvz8xs+S///f/Du89dOhQUiwWk9/8zd9MkiRJJiYmkp6enuRNb3oTHBdFUXLllVcm119//ezPPvKRjyRmlnz4wx9erq8mzhFmrvV//s//GX7+t3/7t4mZJX/zN3+TJEmS3HzzzcnNN9982vNEUZTUarXkYx/7WLJixYokjuPZ1y644IKkUCgkBw4cmP1ZqVRKenp6kne9612zP3vXu96VtLW1wXFJkiSf+tSnEjNLdu3adTZfVbwI0RwrlhPNsY1F8lYNZHJy0u6++25729veZqtWrTrtcX/2Z39mV199tRUKBctkMpbNZu073/mOPf30086x//bf/tvT/haEEGbKO9F4lHOiGSjvRKNRzolmoLwTy8nExIQ9+OCD9pa3vMUKhcLsz9vb2+1Nb3rTbPy1r33NPM+zn/u5n7MwDGf/rVmzxq688kr7/ve/b2Zm9913nw0ODto73/lOOC6OY3vDG95gDz74oPObpj/90z/dkO8qms/P/uzPQvy2t73NMpnMvPI/3/3ud+0nfuInrLOz04IgsGw2ax/+8IdtYGDAjh8/DsdeddVVs38RYmZWKBTsoosusgMHDsz+7Gtf+5q95jWvsXXr1kGOvvGNbzQzs7vvvnspvqp4kaA5ViwnmmMbjx56NJChoSGLosg2bNhw2mM+/elP23ve8x674YYb7B//8R/tgQcesAcffNDe8IY3WKlUco5fu3btcjZZnAco70SjUc6JZqC8E41GOSeagfJOLCdDQ0MWx7GtWbPGeW3uz/r7+y1JEuvt7bVsNgv/HnjgATt58uTscWZmb33rW53j/uAP/sCSJJmViplB+fjSgfMsk8nYihUrbGBgIPX4H//4x3bbbbeZmdmf//mf27333msPPvigfehDHzIzc+rbihUrnHPk83k4rr+/37761a86+XnppZeamc3msnhpoDlWLCeaYxuPPD0aSE9PjwVBYIcPHz7tMX/zN39jt9xyi/3pn/4p/HxsbCz1eM/zlrSN4vxDeScajXJONAPlnWg0yjnRDJR3Yjnp7u42z/Osr6/PeW3uz1auXGme59kPf/hDy+fzzrEzP1u5cqWZmf3xH/+xvfzlL0/9zBld8hmUjy8d+vr6bP369bNxGIY2MDCQ+rDCzOyLX/yiZbNZ+9rXvga/Jf3lL3/5jNuwcuVKu+KKK+z3fu/3Ul9ft27dGZ9bvPjQHCuWE82xjUd/6dFAisWi3XzzzfYP//APp/2NAc/znKR+4okn7P77729EE8V5iPJONBrlnGgGyjvRaJRzohko78Ry0traatdff7196UtfsnK5PPvzsbEx++pXvzob33HHHZYkiR05csSuvfZa59/ll19uZmaveMUrrKury3bv3p163LXXXmu5XK7h31OcG/zt3/4txH//939vYRg6RtAzeJ5nmUzGgiCY/VmpVLL/83/+zxm34Y477rCnnnrKtm7dmpqfeujx0kJzrFhONMc2Hv2lR4P59Kc/ba985SvthhtusA9+8IO2bds26+/vt6985Sv22c9+1u644w77nd/5HfvIRz5iN998s+3Zs8c+9rGP2ZYtWywMw2Y3X7xIUd6JRqOcE81AeScajXJONAPlnVhOfud3fsfe8IY32K233mq//uu/blEU2R/8wR9Ya2vrrEzGK17xCvvlX/5l+8Vf/EV76KGH7NWvfrW1trbasWPH7J577rHLL7/c3vOe91hbW5v98R//sb3zne+0wcFBe+tb32qrV6+2EydO2OOPP24nTpxwfltavHT40pe+ZJlMxm699VbbtWuX/fZv/7ZdeeWV9ra3vS31+Ntvv90+/elP2zve8Q775V/+ZRsYGLBPfepTqb8JvVA+9rGP2V133WU33XST/dqv/Zrt2LHDyuWy7d+/377xjW/Yn/3Zn80rdSTOPzTHiuVEc2yDaaaL+kuV3bt3J//u3/27ZMWKFUkul0s2bdqU/MIv/EJSLpeTSqWS/MZv/Eayfv36pFAoJFdffXXy5S9/OXnnO9+ZXHDBBbPn2LdvX2JmyR/+4R8274uIFxXKO9FolHOiGSjvRKNRzolmoLwTy8lXvvKV5IorrpjNrd///d9PPvKRjyR8++Cv/uqvkhtuuCFpbW1NisVisnXr1uTnf/7nk4ceegiOu/vuu5Pbb7896enpSbLZbLJ+/frk9ttvT/7hH/5h9piZ8584caIh31E0j5lr/fDDDydvetObkra2tqS9vT35mZ/5maS/v3/2uJtvvjm5+eab4b1/9Vd/lezYsSPJ5/PJhRdemHziE59I/vIv/zIxs2Tfvn2zx11wwQXJ7bff7nx22jlPnDiR/Nqv/VqyZcuWJJvNJj09Pck111yTfOhDH0rGx8eX8quLFwmaY8Vyojm2cXhJkiRNedoihBBCCCGEEEIIIV4y3HnnnfbRj37UTpw4MatJL4QQQiw18vQQQgghhBBCCCGEEEIIIcR5gR56CCGEEEIIIYQQQgghhBDivEDyVkIIIYQQQgghhBBCCCGEOC/QX3oIIYQQQgghhBBCCCGEEOK8QA89hBBCCCGEEEIIIYQQQghxXrBsDz0+85nP2JYtW6xQKNg111xjP/zhD5fro4QwM+WcaA7KO9EMlHei0SjnRDNQ3olmoLwTjUY5J5qB8k40GuWcaDSZ5Tjp3/3d39n73/9++8xnPmOveMUr7LOf/ay98Y1vtN27d9umTZvmfW8cx3b06FFrb283z/OWo3niRUSSJDY2Nmbr1q0z3z/9M7qzyTkz5Z04xUJzzkx5J5aORuWdck7MRXOsaDSaY0Uz0BwrmoHmWNFoVOtEM1CtE41mMbXOkmXg+uuvT9797nfDz3bu3Jl88IMfrPveQ4cOJWamf/oH/w4dOrRsOae807+0f/VyTnmnf8vxb7nzTjmnf2n/NMfqX6P/aY7Vv2b80xyrf834pzlW/xr9T7VO/5rxT7VO/xr9byG1bsn/0qNardrDDz9sH/zgB+Hnt912m913333O8ZVKxSqVymycJImZmf3GR79s+ULr9E9jehfGPj3k8xYg2uXzk0EvoXje0CXBD02SlEMMf+hTQz3jN6WcZJ7PSJKYYvf9SYzfJKZDIopDOoA/I4oiiKulKr5ew9fNzDIZTLuAL2CQnf3PSmXS/uwPf8ba29ud88x+5iJzbuq86Xn3v3+w31raOszMrBbjd/WonRH1b+x+VYuoQ5OYk5MzC/uvJR9C3JbH92cNKdfc5K9U8XvE1NC4zjXO+Ph6R3sB2xDQ+Wv4HczMahGN4QS/N2dqrYrnKFWwzeUYv3k1xpwKUwZsRD8LqfzN9EN5Ysz+fz912bw5Z7a0efeT/+UHls23Tf8Q3+N5dJUDius92W4EKUV3/uqVdo6QfrC4M3jO2DLzkub/BkhCdSHmH3hTca0ybv/8yZcved6dLuc++v9+2wrFqTmW58OEap8f4DnzFJuZFak2tRVzeA46nucO8+avU9yIIHAbkVA9rfH8VMOcCqkuhXXmcZ/mgLSRF9ObaiF+RmmyBvHIeAXi0bESxOUSHl+LcJyEIY8bsxr9jPth7rRUq5bsX//yVxo2x/7GJ//C8sWW1Pc4v7Hl0TVOqTP8Fv5Nn8CbP+bP5HUTn89LWw06a9D5a7Lvz7/erI/7Bu6HuutDXvxRbvMnxDxeU+pznGCuchvi6bpSLk3a7/3aLzR0jn3Pf/1jy+eLZmZWKOThPeUSjrkwxO+6cuXKlE/C/hweHoC4q6sDz7GqB+Is9XdXZyfEHR34/tGREacFYxPjEBfpe2UyOH64v3ntNzExAbEfYB6npXWGxx/1S0z1ys/g+rFWw9djmnt4v5DL4bxiZlap4DlON4YnJ8btHW99XcPm2K23/E8LMlM55wd0bbJYA4MMrusCXueZmZelOZXek/Xx9Rydw6N88GkO5dc9371FwPMu72N5juTdu1M1uEZw0eBNqbnrkyTh609zIs2HSQ3rVBzTnBrh69UaztFmZhHtc8JKGePqqfdE4aQ9/d1fatgc+3df+ZK1tE6t7XKG16uQpzpPYzyXwzw1M8s5eYfnzGfw9SzlSIZeD3zMS2eOTSk0fJ/A83mM4+sB5y7P0c79FyROWd3x+pJTtcZrP0ruiPIw4vUn1WNet5mZVWn/4NyDmQ4nxsbstpdd0bBat2/fvtk5q0r7d15jLcdv5qfd75oL5xgfX+/9C8HJ4zpry/OFud9zbGzMLrzwwobVus6uFbNj2fNxbZFQ7QtpPMbmji/aAjoxFwqe//gaZ7I8r9NY4HW4ufNbTHWDm8T7d16rJzyH8nhMu9dC+3GOeY7lEe1TnYp5XcjzTgteOzOzWoX2vmWch3PT80gSJzYyOFq31pktg7zVyZMnLYoi6+3thZ/39vZaX1+fc/wnPvEJ++hHP+r8PF9otcJCH3pQBuihx0y8gIce1LU8NmqLfOjh0Y3kyF/AQw9Kfuemrs0/SS4258xOn3ctbR3W0j790IMWJB4Vq4j6phEPPVoL8z/0CKopi8UlfujRWvehh7tB4Bt/i33o4WWxzX5EE8lCHnpQ14T04IT7od7CbCnzLptvs2xh5qEH3Vh9ETz0SM6Bhx7+OfrQg+vC6R56zIZLnHeny7lCsdUKLVM5FyzBQ48WeujR0nLuPfTI0EMPrkvL8dAjQ5+RGC7kKhHWrgo9uOYbyV6IsR+4Dz2Mf0b9wPfczRo3x+aLLVZY0ocedE34oUedhyDL8dCj3p9YnwsPPZz5rs5DD2e8LuihB62R+BdJGjjH5vNFyxem8i5PDwcSmicC2mSm5yt+l3x5ct73FFtaIeaHHi2tbRC3tuEGjh/EmLm/eFMs4tqMH3rwOZ21H111fujBS3Wzc+OhRyazsIceMzRqjg0yRQumH27wQ4/AeehBN4ZT9kF+jm8+Y5yhhx4Z56EH9iXfvOb4zB560PxF76//0KPOptTqP/SI+aEHzYeJh/sLfuhh9NAj9tx+8Gj3lcTYL0nirk8ato9tbbXWmYceNIfyL6cs6KEH5V1AeVTvoUc2yw89KI9fog89nF+6OYOHHjwvVKPl3ceeLuc6Ojr00EMPPeb92QxLWes8z58dy+7cM/891tSb/c4TBf5A9/OBhNfV89e21DbwRzrvoSbWyzOOF/TQo06czP89fOceH9fv+fdtacfUjRdQV5bF0yPtw5MkSW3Qb/3Wb9kHPvCB2Xh0dNQ2btxoPd1tViy2Tb93/psjzo0I/suBBbSPl2buAwon0zHmC5z20IMHg5N482dZvSK9kIJa/6EHT8K0gan3lx4FXMws6C89+LeNglOvl0sLnxwXmnNmp8873z+1sePfwohoUct/JhOkfFS+QE+aaW3NqZ2j3O5swULQ2Ua5TicYG3dzIEN5FFOuRrxoosV6OcHF/eAE/6UVjZ20hz9UapI6RTqOcOEd8g3RgP5Kw+fz81bLLKGby3yjd6ZsZNIu5DwsRd6Z75+6qUtj1LnjzHXB/apOvXLamNq6xUDnT9ngLZ75H27XJe3BS6O1PtPqPk/mvB6ZfuDuHFeHs51j21qzVmyZGtu+8YaA51i6ke+714bul1gU4caHN62tBRyzrcUivp/aMDGBNxW9lDHu8YOQPG98MZ4o4W9nVp0H2fPfPOO5bKpdGFdDvomHB4T0PWtUQAM6PorwO0Y196FHtYo3bcoVvBbVOXNbJuVh4elYilo3d5PiLKt407KQ32hx/9Rj/teT+Wujsxjnz6z/zCPl4Q0d4PPN/0U+4E1Z49bbYPPNZKfcOA9NaH3DN3B48WhmPj+kOs0v+mRSHljOx1LkXblSnt148bqVHxa0trXR6+5Dj3IJ/yqCN798RQNas2TTniDMgW8cpfU3X7R8HtdN3Ef8S4X8V2LOg2R6f7GANXrqpPPfMM7SXyNUQ5pLMvwXt/P/8lbaNqfeQ8aZz8hm3QcJ83G2c2zgZ2d/q93j326nBxL80CMTuA93+CGH89AjmP/mMv8lR5DNzPu6n3KzP+Bj6vS9R79ty/W3Xt1JXcvTL0QknINUT/0M/aKXj/N+FNMvFtAvbvHDxanPpJvszi+4zYnTNkWnYSlq3USYWDI9zvL8EJKuV4FOnUmpM/xXgbxnjOgXljL81z7OL0dSzDcjU655TP3t8z6I97mx+8t38P4693Q8Z99l5vE6mV7PzH9v0fgWAs+pHPtpxc75xYH038jOeQvPuanznF2ty2Qys3XWuafThIcci/3MBd0/q3cPT94Sqb+UcDqWZD9h/uy6kn8x2V2G8+elzV10Dl6vZPkXB+Z/iOxlMS7TXwQG/AvBZpahuSSgoRzUSdWA1uGRP/993NQ5nPquFmK7PfrFgRWr8BdqMi2kzlKlv3IL6d5oDf/a2systQPXSGEef3GoVp7+Hqlr43SW/KHHypUrLQgC52nd8ePHnad6ZlOLdF6oC7EYFptzZso7cfYo70Qz0BwrGo1qnWgGyjvRDDTHikajWieagWqdaDSqdaJZLLkuSi6Xs2uuucbuuusu+Pldd91lN91001J/nBDKOdEUlHeiGSjvRKNRzolmoLwTzUB5JxqNck40A+WdaDTKOdEslkXe6gMf+ID9h//wH+zaa6+1G2+80f7X//pfdvDgQXv3u9+9HB8nhHJONAXlnWgGyjvRaJRzohko70QzUN6JRqOcE81AeScajXJONINleejx9re/3QYGBuxjH/uYHTt2zC677DL7xje+YRdccMGCz9Hd3WIt08Z/ibGnB+sE08sLMNVxZJ4dTUk2vJlfE5+1HtkgMA1Xz25xnh4sbuvYoKdoFDqmuiSF5nh2sOk1m2GS70W1iBpsUYpeHWsbs5G5P+f1Esq4n5alyDkzs1x26p+Za1TusTYqe8uk5F0uxyZ/+HpYITNMQ21pny5QpYzaszXSbh8tuzqktYR1jFmXFK9HjTR4a6Q9HDm6o6TBnKIDHHIus9Y06zj7rOvLGr7sk8Aaoq7OfeDV0VGfPkW4iKq4VHlnQfaUQbkjQU/fzTh2844NSB298UX6AdWTKvVS3u+8xfEwIpJW+gH/IeL8bQxTrnm8SF3bRcO6+SmHeAEn1Gk8PlJMQ0/HUuRda2vRWlqntOodvX+6OFkSEc2m+N5kyXuCc8Ijc1H2zuEpM8da8BSHKXNLzGa/nHPUxkKOdNWpH9hDlf2QXGMEs4SNXanu5Iv4egcdn8mSp1Jp/prP187M7Rv2B6hWT/VTJWXOSGOpal0SBJZMaz6zfRE7JbNut+OvYZYi3FtnrnGMCuusu5zT11/bsQeO28Sz80BKUtrAa1gn9x0fjTrrT6emc41Ia0MdpvvFy9TqHHiKpco7z/Nm19xRiJ8f0qTPGseDAwPO+cIQx1R3dxfEPT0Ys659iXwDCuSHVyKJ47RxzvrZ7I9Rq+H3HB8bhdg1/GYzZvIfSjFTj8kXhI3NA6dG4jm4jY5RNvv88CbG0n0+8PUE/n8hLEXeeV4wO9a5b9n/xolT5hY+JuBz0hqCx7zv+CfO/37XT879GddX3tf67PdWZzHJe8xUjXfqGvbc8EjDnOcRj7xdYtJtT8iXJq0f+HpyX86NvQX6Zi1VrQujxMLpxQvPFc7woa+aNr/5tP7L+zx34PE8RhOn/9jckjwZw5Tcd9YG8/uuOh55dbxjePJK9dOg2uXkOtc+Z+3BHh4I7wDSdwTsK0f9MD1PVxeh47Jk+9hp6tV05kwMvnk+ZH8q9u2q95lpbeDrW8+Ptp6R+fnK3O+dtk5JY8n2E5ZYPH3t+H5Z5Nw7nn/+NJtdop6K6Qc13scW0O8tW8C5ZWJiDNtURW+MrOf6jPEeMqH6Gzt7a2ozbwX4ddp759vcStPagVJiE2SRFNJ9xaAL79+MDuFaszxK9Zk2161trhdMzqlhPOanYvacmo9lMzJ/73vfa+9973uX6/RCOCjnRDNQ3olmoLwTjUY5J5qB8k40A+WdaDTKOdEMlHei0SjnRKNZck8PIYQQQgghhBBCCCGEEEKIZqCHHkIIIYQQQgghhBBCCCGEOC9YNnmrs6Wzs2CtrVP+Bkkyv6eH69eR5unBWnv4emLz64jyGVlBjLWm0yQK6+kW1lPFr/t+1pdPUjTPqSsTEtVmPb56cURxtYIaeWm665kM6eo5uoin4uwitJ+Xgu7OwNo6pj5/dAJfK1fxu7A3ScwC8GYWkrall5AeJ+mUhnQ9xukzHSnUGD1AKin6gDXHO4YF/jCMjD068DskTl7yJ6aMP9dwBkLqBsdrhnWDI5bWJ938JHb9HcqTIxAX8m10jmnt5ZRxs9wknn9Kx5GEYT3WaSb92yBFH96pb6wBycc7j78d4Xs6IWvbok7l1GfyRcTQkWHkOs+fWacmxyn6nEmAOpHeoq+t694Er7IubJq2pHN9+BxT1zNZhKfHUpDYnG/HWsOk+ZnL4LXIZt2+5jGcpTwuZIv4On2Go8lLcUsrvj9NOpbnPCq3Vq1hjkXkSRXwNaB6HJHGfS2lDTznxVSLWCc/n8O+zGdRIzZuI01ZmlMqNVe7mLX3nXhOw8sld85YTjw/Mc+f0RunFzmtEh7zKf5Fjo4y+2jx+nD+13l8euz3xoK5KdRdbzq+I/R6XZOCJdCKZp8R7geWPKd+djxEbOFr1CQzv8b3cpAkp5Yd/F253eUyzWcpdZ1rZKGI9anYguOY9YijKp6Tx2g+T/5uKR4P9cjnUZeZvX245vKatkQecsPDqNNsZlbM4XsKLUXnGPyMeV929l68P0jTDK+33pmpmVw7lxvfz8z6ZDh+G47HB9cldz3A8xMfw54dfjD/6+w35vj+pLTB8fBwvBPI58BdbeL5EvbfqE9CGwDWKHftGmhvTH0dU5s45u88/aEYs/fenL7jNfxyE4XxrJ8m68F7EXmG8TyQZoVQY618jHPs9cn9SfuzOMFxmCVfilxKfznT9Om88WaZf47kHDkj+4U6vhD17iPxXtPzeF+V5jNB84azhpp6vRrUX6csF1nyzDkTbwuu88PDwxD39fVBzH3PflccMyU20TKziQm8CcTfo60N7yGsXr0a4vb2dnr//OvC88ED5EzWKWdFnJy6wcQeZTziaJMap/U33STlIchelWGVvNlacc3V1ok5UMnSnBy5CyLe+3K95DaxJxVbUjkbYSqWlRSvtkyEa8VV61dC7OPXtMlJMmAex/VrroU34zi+J0fQ+8TMrOTsnfF1b9ovbDGeQPpLDyGEEEIIIYQQQgghhBBCnBfooYcQQgghhBBCCCGEEEIIIc4L9NBDCCGEEEIIIYQQQgghhBDnBeesp0dLS85aWqc0+BJjvTHSbWNB+hSdNt8Vz6MjSFuRXmWtPdYI9UiMOtXTI0UDmY/AiLVr+XV6lT09YveZluPpwdqnMX6PKOJzzu/xkcmQBnqKp0eQIU8C0tmbq+Hreagrt9zUarHVZvRL62nNOhe5vtawk2ck51cLWJOe/WxYixb7Ms1TwGd/izqykR7pr4bk6cFfk3WgU91pKA9Y95FzNyLzksgVIKePpLyrkSGLmT356I8gvuzy6yDu6OgyM7NgAZrtS02SZC1JpnRQHTcN8vBgXfvYXJ3qhPWFqT4FXEO5tnjDeLyH/Zmj/s9m3HHKtSBD15w9IHz2anINbCAkSXQrVVwt8fFqNx7joQaro6FLc02SkA6so7FL4znl1wg854qmewZ4Kd4sy0mhkLFCYSq3+GuxXn3Gn1/z2sz12IicGK9nlnxC2N8ok8e+5/xx5n1z2x1TXo+Mo25vSJr1CZ+T2pSl7+SsK8wsy74xNKeyzqzjGeEYiFFtjFAvuRq6479GeqmVKuZ1pXLq9VwmTcR7+fC9xHx/JufZX4q02hO+5inn4/dw7Hi+4fvZ36GervJCdJedI9hzgL+IE9bRI0/9faXF+dC5beTF4PzzYFoLPdeoKfWUfqbxW48kiWf9A3wfxxDrfWeofSXWKzazfIFEjXmcki5zoYifERjGvCZiv400rewowrGboZrKnh58ToZfZ5+6asWtNfkMe27g69zsNE+OxbQxTlnj8in5M2bG7GK0n5cC3w9mPQoD8oBgLzb25+DjZ84HxwT8HtLSd3xE5vcVcTw9Uv3i5t9Lu/WR99bz72vLVZyjc5k0LX7M+4D8C6I6G13X84Nj9vRIW9iRPr/jbRKk/3cj8OKpf2ZmfB+APccoB8KUucXxLgt5fPE6mPuPvNSoTnGt9NNsxniNSi87c2a9vXe9Sbru/Zq0ejJ/Yrn+ALTfiEm7P6XWZehnHtW6mftlVee+WeOo521S73Uzdx7YvXs3xMeOHYN469atELOfRgt5bLFXVFobxsfHIR4aGpq3DcePH4d4+/btEK9YsWLez0yb489Fn4+FXL9G4Xve7BrfvReMIZextP2b6++EBFR5ohLmaSlBb4pCO+ZdPotrslrk3juJI57fcN5mL2W+X+bR0rSuT1pKrRsbxVo0PnYS4oQ+M5ujNXUB77W0rsRr001elaVhtx/6D+O6u1bGLxYEU74h9daUc9FfegghhBBCCCGEEEIIIYQQ4rxADz2EEEIIIYQQQgghhBBCCHFeoIceQgghhBBCCCGEEEIIIYQ4L9BDDyGEEEIIIYQQQgghhBBCnBecs0bmuZxvudyU2UqSsEEVm+iQoViKOU19o535zS5d2AiYzG8S17jMsZXyybyLDYvJCTa2MsSO3R+ZpWUT9/Im9KYoRtM4x5jcw3PEZCzKbYjpM9OMggIyMWPvPH/OD4JsYw3gJquReZWpK1VjE3YyAWQPsxTPMcdtLWazee5Bx+mM2sCfQcbnQZqfj2OWRqZHlDdRdX6TukIejy+QYXUYpRhN0hhm07kamaWHPua6z89nYzRNYtPHyVE0FDMze+b+b0G8uojn6Lx02ti86pqWLjd+EsyOf5+ulzOGaExWU0zEI6qJOcq79mw/xCs70LAt34qGbdn4MLZpEttUruH7zczCKv4sqeA1jWt4zf0QDStzcQXfT2aIfguawnVYp9OGnuKVEO+rXYRtJJPHDPV9nJDRdR074MSxV0yDa+LUe/wFvXfpyGezVpgxH2M/6YAN9tjgNM3IPJk3rpElnGN8bhzPb56eSesuNtgjY8ACmw/T5BNRmxM2YKQ6lGZwyjXe6VvHL5rqMxuhO+enfoxSjEdp7qrV8EMrc2r8ZLaxhpfZzNQ/M3cO9R23Umqb7/aNTz9jM8jFGpPXe/+CjMzrfmYdk3Cn5mOYutZgU2J6ua6RuVPL6P08ttLaUNfBfepNKSm77GQzOctmp+aYbJYMoKkOsJF5mqct15KWllZ6C5snUz2k+S9bx9w9zYSbjcxrNTLVLJfpdTIip3OGUUgvs7m6WytKJfyMlnyBjqDxRbldrWNczuMxjtOOn38MN9rAfBbPP7UvYzNrHq8UO3OupRmXz29EXs+4nD+DjWDT9m9sUu3unTnm/cT8puLV8jDEmaw7Lsq0R2lp7YCYvwfva51soP0J7+c5NjOLnRp9emNzx+R8mYmS0KLpzb6fkCs4NZtNcauRO8YzAa2TqQd5yxdS3Qho3cR5l80X8fwZ18k8Sz/j+whsXh9THHi8TuDxxdcobV3E955SDpl7dB2jc88xPqexk7YWpD2JT8fMXBvey5xLLGQNxWN2ZGQEYjYq33LhhRAX8jg/85zObWCjczOzrq4uiNnY/MSJExCzkfkze/ZAvHPHTohXrsQ97IuFc8lcPbG5o4rHW511wAIMsBOer7iAOusTHHfhJObMZZfugPjaqy9zPvPhhx+D+Pnnj0I8NIL3bT26JxTwspuuV41Kg1OHzIxKvrW34Hjq7MD7LVu2bMDPSPC+1Mn+IxDnqNaVq269ytE9g44ubFS5OlUL+V7DfOgvPYQQQgghhBBCCCGEEEIIcV6ghx5CCCGEEEIIIYQQQgghhDgv0EMPIYQQQgghhBBCCCGEEEKcF5yznh7mz5HIZE+POvqtabgadPU0led/fz0t6jTFO0d2zDmI9HZZd9hQMzgXkt5uhBpqtRRtTsdkwkedTP4eSczicKSr7+j14vn57VPHsObr6XUyG64c6J1KPM/YT4O9MeitTp6axaQjmrBHB3vDsG42aQ56CV8ffD2qpWntY7s90kAfHR6F+OiRkxCz3nXvatTSDPPoxWCRW1Zi7kvSBWb9/nwRNV5jyu1qhb1ocCxUBwacNkz2HYT48XvQ46M03Q+VMp67EXiZmnnT3hxxTN4xjvYs9reXUsZzNPQLCWqPXrp9H8SVoQcgfuoh9PQYG8SciMnTo5aS+5UyeqOMj+I5yxOoddlCHitBGfNykPK0ddPlEBfaMGfMzFrbn4B428v+PbYpvBjiaoK6lUFmDGKPrg3rJadph1fq6J/O6E+zN9Vy4wee+bPCnRnntbmwJnWa1jfXLtY+dbwTeM6c3wrDaqwjnaLHGvK8zFreVHdy+fl1fnkhkNAkHqXV/PllnJ3Fg6tHulgPCbcfIvIDY5+luR5LE/lGe3qEls1M6/JTXzhrOZ/zME1jfv7cXMj6EM7n9DfGQdr5HOuK+deX7jXnNVCdseO7Nd/3WL+fNOb5DfwZ87bIXWukfUP2m2FmuiXIzu/jsBwEvj/rgRCGuNYul7DdZD+V4uVkFrDOveNVR5rztB4PyXeHhuys/8gMccp6PiKPjRESa85XcN3USvWO1+cRXT+2ocjlXZ8JzgsefwHvEdiXgua9MGYfHwy9jDv+2CMuqmJ+ZaY/k9eyy03i+5ZMj8OYxqPrx0F1LKWtjt+QE9N7Aq4J8/ursBZ4kGLc4+yFnUZimNQpv7x2zxquv6ujuPY0MyvHuBdube+hI9hMEccB7zm5HzKUkwkPBDOr8r6Vrpc/x7iIr/2yE2em/plZ6BT+er4SKd5BVJtqMe3zaeFVDbGATpbZEwSvx/ExHK8tWfJeM7MsjftCro5HAx2/oRdzJJOr5+Oatu5aWm+gen5iccrneTSgnLlpEfr2jcJZD7F1acq6LqA1TpZyolpFz0dnrc7+ROx3xH2fMsazGZyD8+Q9w23KFfD1o0fRi+GFfbjvzhXQ/6qrA72JzFKHI1D3Hlkd/7iFce54eDCe581eSzfNeD1af3w5voJ0joh9QshrKEP3MarkwbP/KPqjvvLabU4b3vQa9CI9djH6ZRw8jPdzHnnyeYj7BicgrlB9DugeYEeHW2+vuAz9T/MZfE9rEcfGpo3YxnsfuA/i8ZPDECdZ7KcijTUzs9VUs4Mc9v3YxNQ8EkVmhkPttOgvPYQQQgghhBBCCCGEEEIIcV6ghx5CCCGEEEIIIYQQQgghhDgv0EMPIYQQQgghhBBCCCGEEEKcF5yznh5zddrqH1tfs67+qerpO/L5WD+QvRdc/d0MW0TQ6zkP3zNUwfj546gvP3joEMSbu1sg3rR5rdOGgUnU2jx6nLwRqNmrV6GmWj6Hums+6Ut6HvtHuP3A+o2sZT+3bxeaA0tFNvEsO613nqF2JnRNawnpUqeI1wbUfu6NiDrckbYkHeekivEE+RycGMAcmfpMTDySILTBgWGIx8fxe/nUqMoYauzmM6iFmfFRp9LMLAqwDayt7EcYd7V1Qzw62odtHuyHuCWHn7l398NOG8ZOHsc2kH5qODnVd7Uaees0hIJ5NqUHGpNnh5FOM+ssZ0mv2MzMxgchLI3cA3G8HvvzkXsehXhk7Ao8XRlzYHIM3++H7jifnMDaEoWkdVnFepXQ62u7VkJcKqFOZVhZB3HLxp1OG557Gr933vs6xFuuWAXxQLQRP8MwD1kzO3KquKtV79j4nIZG17rIvFkvHY/1bOvo/aeRpss73zlZQ5drJWupJqQ3H6e0ii02uCI7lh3O6/N7K/CKyU/x9GD9YtffgecVjtm3af7z8fvNXG3ojM/f69TrYa2xOvd5r2yF6c+Pub9Zo5406S3F96aeLrbP76mXpu4HzB+nkHJJgEyGDmCvGFoXsHdDkvL7ShHVJtc7rZ5PyOnXYWYpY8VpQf06MfN6aJV5j1sOkniODxsNSfb44EvMWt5px9Qb9zF5X7S2oTdaWyv5FLTi/Dg5jh5YZma+z2svXDtkAtJy5vpI76+wxw7laVsbtsnMLEtXnb1NcrTWS2JaX5KXRRjh646PktMCsyBLNYy1vWvx9LkWOBkvEX6QmfUwYR8e9jbhtYXjz2GubwQfw7r13LfsMxNQQjheXikDum75o7mGk469Dx0vIrp4/Yeecz5ixYZL5vsIi437ifuavWvoeNqPpHnBBM48TXk+p57yvLbcVMLY/GnPILrklrB3DHmq+GzgYa4G/OjoMH5eHX8FXhoWqT+/dw96CvZ0dzpteMUrXg5xPsFrWsyjLn1LAePYcH9BlkrmeexN5DQhdf2B5+CfzO+Xwmta9uxMu7WVVhfwE2fuXzR2XTcf7tyIr3spRX1wcBjiE8fRpzOi+zHjk7jf5Poa15mPMylrqjCc33uMPT/Y4yNL64bDR45BXCOvvSsuwbpmZtbRgesE9q9yF2b1PHoWd6/zxQz3FX9VnqrSjnHX2uSDRTmQKdB9DZqchqp4D/ZffviQ04Y7Xn0txFddvgXi17/mZRA/+wLe+/j2vY/gZw7jvZNiDmvhVVejt6mZWe9avPdxcD/eb24r4usP3v84xM88grnO90cHPb7P6DTBjO4bWobufU3fzHQ9Ek+P/tJDCCGEEEIIIYQQQgghhBDnBXroIYQQQgghhBBCCCGEEEKI8wI99BBCCCGEEEIIIYQQQgghxHnBOevpMR+uNjEf4ep71ZNldmTv6nym84mO/rGri8na0jFpDvYPombvj184DPFjhw5C3FtEHc1XXHsjxKvXdrntnMD3DNWwDY89uQfiiRx2TFcnnrMYoDZc0ZEbTPH0qKeLOedZnNfg53LPPfmIFae1lTs6UGN5bAz9M3bvfhrigPrCzGzN+g0Qb9m6HeJCC35GeRI9OU72ncDXR1G3cnRwBOLhcdffwc9xH6KWHkkoW5nkWashnjNJJvH8MWuhup4e2XwbxO0tqIOYMzzn0eH7IX5h7xMQDwyip0R3C+pe9h/Z67TBj4chDiLSypyYylWvNr+O53LgJ+3mJ1PtCcgrxovwGuczmCPRmKt5PH7oSYirEz+CeLgfr9HJIdR8HCuhJ0jFx/4OgwMQ5ybca15gfdN2PGZyEmtLwUP905Ud6NmxdiW+PuKtgDjfgWPLzOzCTVh/Xth1L8S9azHPetZh3w+UMG9DQ4+jKEMa5ynaz1keYHW0ZRtFnJjNSMo6OrGO7ja9OUVsuJ5nQF2PANabJ8+PhLS/k5S5hTWSkxSFVvgMXis4/g/zOxmk+4mxf8bC9Uan2jS/x0dE+RJGKYLI7BVFL8/Vds+w6PcykwknLRNOfSduOeuNewnPqSk69/wDTlbWvWdPMUcjef71JfujpDXCzXWM44R9DKgGsLkaXeMwRcOWT1Gjc9SRdnZ+UG/Nm/Zq4Ggop/uG1CZxvm8EYZRYMJ13hQLORVFEaxwaYznSbTYzay3i3MD1ir0LctkMxeTHQdrPPC+w14WZWY489gLa0uVpaLOXzBCtJ4cn0dtkRRd+xzRPjHwLa+dH88aJsWcH1XnOU/IcSFI8B8Ypn7IZ7Ieutpnv0di5NvAzFkz7SbDGfMCxj7Uu1dPDqWXz+4Kwpwd7dgRcC+n1FJtCt9bxnFpnYnd01ckDJi5iPuUCt9a10LQQR7hp8XLswcPeCTRW4zp+Kux5Zin+lfOsd5w5ZpkZr9Usqk7VtCzlQIHE01mzPkmZY+ME60KugHWnox33sawZn6P7CB3kVzQyhJr1o8Pu/HDljq3YTpoiHf1+9tOkwlKlOZU9POOU3Gd/IVeHnua7hHOffWAoL3leT6m3Tn2lY2a88VyPvMbhtIn2RezXMT6G+08zs/5+3HP29WGcoRx77DH0FMjQHHDyJHqR8kTT04EeBWZmefKJ4XP2rumF+Egf+hjs278fYu6XkwPoU1Ljmy9mdv216O/Q1oZjzfEMnD9M8S18cf/uezL9PzN37nHmmpjmt5QhwntGdw+J1Cp4zfwC1b481rogh2uqg6Pu/u0ff4i5vPVZfM8rr94B8apunO9edd2F+Jm0dzb2Q0rxUHpk9zMQ79l7FOLDh/Ee05GDmMvsZ8N7g4gWF7UUX9ioRvM6+e2Wpucl1zfz9Ly4s10IIYQQQgghhBBCCCGEEGIaPfQQQgghhBBCCCGEEEIIIcR5gR56CCGEEEIIIYQQQgghhBDivOBF6enhsngN7Zg0wOppbjqaYaSXGNfR4TZz9VWPDKBW//0H0cOjL0b9sksuR03Lt12LGva9naj7dsKVBzTPUA8wTNAfYKKEviIT5OdQm0Rfi7YsaiOvLaJ+XTZFfzeOUdOXvTBAC7XBupR/+b8+ZZnsVHvypAtbrWK7x0exr9JUrvPkNXHhtp0Q9/auhXhyDL0UqhX8zNIkxi0tHRBnC/h5ZmZGOs4kLW3tbV14zlbyuqihHufEOOpvZklbM0jcslIZwVz3STu6FPdD/NAD34B4fBL1AjOkEVo5gf1SLrkaoe1tqEObMRwglenrGaZoCy43mUzVMpmpsVZI8Luu7EYt0qB2HOJjR/7VOV9vC/p8+C14zqK3CuJwHM954gher42bcZx392CORAXMQzOzaoR5N1EmLxnSUa+FwxAPHcc2sfbzANWy1gD9b8zMWjrQ96PYg7qtTz78NYjfvhPP8YqXrYf4sV04XvtGL4W4mqx02hDb/B4xM5qqjdZWTaLEkhlTD/IpiFnD2mOt4pTzUcz6quwdEdDvXPgUe6zlTecLEld7OkN61Dwvh6yp7Ojh8reos5ZIE4XlQ5ylw/yeEYnjMzK/T4Kj12pmHo29OGJNcz/1vxtBXJ20ePraxqzBmyFtdY80XRegjc7eaT4JbztrCsePg453rkfK/FBHx551gWMWDHd8DPAz3KHg9gOPyXpeQTw2YpvfW8Hxy0mrAXXW1TN9Xyuhl0QjSBLfkulcr5Rx/RGTQHyO1jQ9XTiPmJl1d3RBPDaOa2NeBrW34noyrKJufZm8vKrVMp7PaYH7s4j6tUJeBhVKm/4BXMOWuG6QXvXqFa72c579UUJsQ5X8Fgo51pfGvItKeG0mJvF8rJFtZhbVSK9/Er9Xd/vUeqXR+wnP/FlfQvZ88alu+7Sm9YKUus5eE/weqnWOvRFbVnHpp71z2vTG58jSe9gbgb0FeHteIx+RiIpdueyu5atVzKmuAmrvVx2Psvk9OzzyRrGAfPVid63hx/PPK3PnHfaRWm5KldiSYGrsZwKsAVznQ/oeYeKuV7NU+/OOfxHtAVk7n+IKTU3FLtyPPPscejiamZWpttUibHeO1pdZWkuENazxedoIezQegxTPOE6TKp0zoDawZwffd3In2XnDqXPUOac3HTfLKzDtsycmcAzfd999EPN9DjOz4eEhiI8dQ7+Mi3air0G5hPvJri6cJ7ZeiPfL2lpx/5jPpNRbXsdRX7NXybq16EO5avXqeY9nClnXO6xSxu/F69MczadBhvOaz7jIe53W+HlzUSSenfpOddq5IH9FZ0PmftwceO1YLuO6LsnSfEh1J0pp87GTuJYs0X3Zrm6837K92gXxhjV4H+KZF9AP+vsPoV/HOC41zcxscBTXYZGHuZnQ/ZfiOlwHhhG+n3ue9+op1l0WUl/WaC3gTfvcJXFsNoT3sk+H/tJDCCGEEEIIIYQQQgghhBDnBXroIYQQQgghhBBCCCGEEEKI84JFP/T4wQ9+YG9605ts3bp15nmeffnLX4bXkySxO++809atW2fFYtFuueUW27Vr11K1V7xEefvb366cEw3l3nvvVa0TDUe1TjQD5Z1oNJpjRTNQrRPNQHknGo3mWNEMVOvEuciiPT0mJibsyiuvtF/8xV+0n/7pn3Ze/+QnP2mf/vSn7fOf/7xddNFF9ru/+7t266232p49e6y9PcVv4DR4njerI+fqybHAcZ047fxOnK49PPuJaQLGc18nXUzW0DYzO9KPvgVPHOqDeGgS9csq46jD39qGevJDg6hhdmIIdU6fP+FqUj67h/wAnkdtt44s6rDtf+IpiKM8+W+E+D03dXVBfOF61Dg0M1u9eg3EAevUwrWY+u/LLrvMfumXfmlZc87MrK1QsUx2qt8mxul6sAx1DbUW03JkrIzX5JEHfgRxSwvq4nV3oC5eZzdq80UB6SfXSPM8RW48IC+EgMTzInr2uaKIfVZsR6+YWoL6gvwdquOuXvfQiccgPjaGuZ8x7MvhAfSxyBWwVK3uQY3tyjB5hsTutci2oKY264yOT0xd72h67E5OTjak1pmZRePPWhRO9fOKFahlevlmFFz89pf+FuL2/F7nfP/2p7dA/MJz2D+jI6ihmq3gZ/hjwxBXjmLfVbqoXhbQj8jMrK2Iudq7CvOosA1fb8vnKSYPkBhzPSlgm/JdR5w25FvwnMGVmyF+5qlHIQ4H74Z487UbIb7vGA6w0YHXQNy15ganDYnfBXEli7lR86fOGU9rQDeq1lkcz3oHxM6cyuH8XhlmZkba3AnNgRXy2SnkSCOUdIBHx9HfaHIC60oSYf6YmbE9xdq1PRC3FSkfSGPX1d4mjXOqK2nLAi9Z3Nqhnm8Iv9/1IXGvBev++nRt5mpPz3iNNSrvhoYmrVSautaOtQX1f5a+Rybt93QcLXWO6XCO+f2sQc85kea9U09KmGLnlCwj7Fxzej1FY7mO7Zz7PbkvHY+cermekrc8PpyXp/XGa1NjuZFzrGfJrD9LGOHc0t6O+t+FAtamfN7dKmVoXVUo4Nq4WqV1EGnltxbx+DZaZ7Gv0gT5kJiZlUjvO5fD97TmcY4cHsU9Q5XWsDXyLvBJL3zlCqynZq5Xk7E2PmtaZ9jbAvshT4L/vLdK0xcP6UcRJevw8LCZmU1MTK1dGzbHev5pPbvYe8jx63D2RWbGXgpkMsCeHm6t43j+ucdPKWw8EvL0GQW63jkul7Q1LlMbSiHuu/wUrf2etRuoEbQWoITwaY6MHE8PXgfgZyZ+ir+D459Cfjgp3pSNyrtaFFowXeM8yhnHstCjupIirp4xrIc+ZQF7OETkSeVFeM6wRh4hWaxTew7ivRIzsy/ejz6FR8fxnJtX0N7Zx8949Dncc67uxpr/1pvQn6+jzfVXOHwS91H3Pos+E7fsxHs029agBxL7pSTUT+ydwnt1M7OIvEbIInXWEy6c9hpo1BwbhqGF4VRjTpxAb8RsFmt8kXygDux/1jnfXXd9C2K+z3DHm/4txG2d2Ndcbwvk+5On/Wa2zhoujRztYbppzxvS9a1W579nFNdcb5OJSb5PgfdfeD7kvub5Nk9tbqH7Ihk2fTUzP83EcZ42mDVwjrXAZn5/P+Hbrs6NXvacc79XQhOUs/5nfyeqbYUM1tO1ebxvsW0LrvN6V7g+oIN0jas0yHtaMc/iErZh7wEcf0dOUg7R8cdPuPfsIh/zwjKYV+y9RRZLFhgez2sJZ20Rubnv+BfF6XuYhTi1zLDohx5vfOMb7Y1vfGPqa0mS2B/90R/Zhz70IXvLW95iZmZ//dd/bb29vfaFL3zB3vWudy3244QwM7Pf/u3fto4O1yxZOSeWi1tvvTV1wjZT3onlQ7VONAPlnWg0mmNFM1CtE81AeScajeZY0QxU68S5yJJ6euzbt8/6+vrstttum/1ZPp+3m2++2e67777U91QqFRsdHYV/QiyUM8k5M+WdODuUd6LRKOdEM1DeiWagvBONRjknmoHyTjQD3bMTjUa1TjSTJX3o0dc39eeDvb298PPe3t7Z15hPfOIT1tnZOftv48aNqccJkcaZ5JyZ8k6cHco70WiUc6IZKO9EM1DeiUajnBPNQHknmoHu2YlGo1onmsmi5a0WQpofRprmm5nZb/3Wb9kHPvCB2Xh0dHQ6mZNZ/TXf5tdhY92vsiNaaVau4c8i0g9jzUmfdGkj8q6okTZfJUQdtyR29XcHR1APskDdvzGDGpPlgD6jD3XXdieoe5lr7YJ4eNjth7Fj6OlRGUTvhOMV1II7OYLHX3TZFRAPnUT/gXseexzfv2Ob04YtF2Cx6l2FxW/t2k2z/+2Zq/OWxmJyzuz0ebf1kustN60PW66gdh/ZZ9i+vWi8lCuSBp6Z9azdie1M8JoXEtSv7TuIHiqb1qGG8lXXoGdAvq0L4tHQVber1jAXPdIHzFAesn5/Nk/9sAqv3/gEdszRYdTiNzMbHHwB4riMY8FIq6+YQ83CImlss45ptUZ6uubqIbP+ZoVMWkan/Vei2PXjOR1LlXcnn/m6ZbNTGqOv/bcXwHtevRO1SnvegD45CdUJM7OtO/D7T5ZJZ9vHDly7FnOkoxWP33Ex+vC88jU4rletxdplZtZKYs8drajxyBromSwLUFPeenhdsgGNN9/thyginfQAzzkygd4nfQfR22TkMI7PeAIXZf0Hvonx0aedNqxciTWg48JXQ5xkuqbO7TW21lWi2ILpea1A+vQZ53T1xwT7Yk1OYF/yb/GwVPe111wFcUsL/ml0hXS673vwgNOGcoTX66JhzNs1PV0Qd1Ked3RgThVbMK+DgLS+0/w6qKvqeSEkKZ4c88E+JGnvdzwg6AdzdWodLfnTsFR5t2vvgGVzU7UuYR8Y0s8N6LtlUtrKbXBi5w3UF87x7AnCOvlnIP5MON4xdfw3zuQTnXY7/UTHB/N/JvsFLATnHNMfWimX3YNPd44lyrsgSCzITF37POleb7oAtdgz1Bet5GVnZpbLki59DjXCx6j+WYLrpK4OnNdXrkafsjLVu3AI/TjMzGLyHijzbz86PiAYZwLSh69g/QwMddTLJfe3KxMPa2SNfF1y1C/s+eHTmO7sxL7OBqhvnQncGlCgr3lyEPv+6LGpebtE+uinY6lyzveD2e/HGvP14lTvIPaiID8Vx2eirr/R/LUwSBnzOXpPkcYKxzkyGuTp0CNt8KSK13vdZlyjmZkVe3BeH6uwDxMez/2QUD/GPK94HLv9UHfemfMe59qehqXKu1pUNT+aGmeTJaxTGVoDd7Th+GXddDOzUdrjjYwOQ1yl+ydZWiet6sR1+GiCfqV7j2Jt+/4u19Njdw7vLUS09/XZDyPEPj9Rwe8QxUchvu8gtilgryIz29+P9W+wjLn95UfQm+IXyCfk1itwb8f3riZKtCcdw3psZpbJY1+vaiMvxGnfumAR65SluGf37LPPWlvb1HX+wQ9+AO/ZsgXHcEsL+jZcd921zuesIP+oF15A78rJSewrvscX0n1AXjdnybtiVTfOx2ltYB8Q9r/IkW8IrxXLFTy+UsE9a5jiRRonVD9pLT8wiHnLBbatDfs6ivB8PGd0pfTDypVdEDvzRMqcXI+lqnV4Ugy5lPFWKc0LImHfLNovdLRgHbnsolUQX3Ihxpt7cR+7df1qiNf3YG00Mzs+geP+R3sOQXxyCO9DDPi4Tjt8HF9/4Qjex/UM76/deM3FThv6TgxD/By1oVZl7zXyQmG/GhoLjg9biqdHSJ5zvrN3mzn5wu/ZLelDjzVrphYifX19tnbtqU3E8ePHnad6M+TzeaeQCLFQziTnzJR34uxQ3olGo5wTzUB5J5qB8k40GuWcaAbKO9EMdM9ONBrVOtFMllTeasuWLbZmzRq76667Zn9WrVbt7rvvtptuumkpP0oIM1POieagvBONRjknmoHyTjQD5Z1oNMo50QyUd6IZKO9Eo1HOiWay6L/0GB8ft+eff3423rdvnz322GPW09NjmzZtsve///328Y9/3LZv327bt2+3j3/849bS0mLveMc7lrTh4qXFE088Mfunk8o50QjGx8dt795Tf1KrvBONQLVONAPlnWg0mmNFM1CtE81AeScajeZY0QxU68S5yKIfejz00EP2mte8Zjae0Vh75zvfaZ///OftN3/zN61UKtl73/teGxoashtuuMG+9a1vWXt7++lOmYrnReZNa4H6pA3mk37X0UPoQ7GX9MvMzMok3tZSRH1/LyY9eNLW88keo5hD3dmABMpHxlz93WP92K7hEdKXzaGeeHvnSnzZUPttpA/bXGzHz1zZ7mrFdW5H3eBnQzzmrm9/D+LVpDN8fP9+iH0P/9zsgg2bIfY8N8Uee/xhiEPSd/7pnz5V+CYnpvRdX/WqV83+bLlyzsys2LXV8oUpjdO8j9eDpGztmeeegHhFp+trsPki1MqLydMjG6L/xatvRg3Qay6+BOINvejnwBq/e/vc3D96HD9jbAx1SScrpH98ELX7SkP4/okS+R5MokbsxISrQzo+gbma9Un7MsHX21rZZwRfHyLN5igi3dqsq9ZYqeD4GBxCX5FSOKUpGE+P/UcffdTuuOOO2deXM+9y5V2WjaZqypYVOCaLtWMQ33AN6oxORu6ffD67B/VvJ8ZQh/Ka61AT+ZprqNZkMF6xEj+jpROvMfttmJkFfoWOQf8f1jh3vA6sQjEJd9NYShO+94NW+gGeo6sHP6OnDfU2wwnsp207N0H8o8fxfJ/9X1g/zcz2Pf8QxGs91GBdte46MzMLyo2tdffv2mX54lT/rOxE3dGuDjxfeyvWto6Cm3NtBaxFLeThcvGl6G1SLaOG5z33Yj0dHsNJd/POCyEeHHV9AV55PWoH99L89cw+7PuRCn7GBaQvHpNXV7EFx2Ymi+sIM9crgWOWH3VlbOfXYnZ8RNI8PSiO2Rdtznvi6f9uVN6Z32IW5FObznHIur8L8JVweoN17Pl4bgOvN+kEXpLShrqeHBzTOeiLJynazvO18XQ/m69NKWet8zpp+KZ8HmuUu22Y+v/qtJZ1I+fY9s6CFQpTWsbsJ9VDc66RjnZnC2ogm5m10c8S8i5YsQrXj/kczldF2jPwHMq1xQvc6/fU0+gh9dgjuLa+5MINEF+2E7241vbi9+5NcB7IkjdhteJ6YkSU24MjuDaYpPXiGqrJa1bieqanC69tZzv2g5+y1ihXcT4qtmDsZ6biyYmpa9KwWud5s0YajieOU5eozqQuaPC7c1/4jncE65NjjpKVl2XZj8N3dbZz9D0K5H3AHh5Z0uEOMxgX6DP82jDEXW2uV2KRfGIqEfkOhnjOhP3eSLc9or53phm+AWBmMfU1+4AGczzakuljG5V33717j2WmfRH7h3A8JuS30UJrPfYpMDObpDlvhDxNQ57f6DN6qb5GNL+Nj2MbC6tcH5cTk7hWX92OtWlFAdeo0TDuNyZfeBRPuB39Sb+3dxjiWuyuLwPqmzzp0N+3F+vjs333QPyV+3ZjG2kKPTJIe9R+t96uKOKbXnkJ7lmuu2qrmZlNTky9t1Fz7MGDB61l2gPv61//Orw2c/N7hjzd6yoU3HsnXP5qVbzex0/gWn7tevRL6exEb4oszactNH9PjND+1MxGR/EeQVdXF8RtdI8ty/si+g5V+g7sr+EkhJlV6f7YGN1bHBjAfhgfx5yJaayV6Xzs6bFpk2sQ/vIbr4GY/VHTaNgca77NTKYhfZcqzT0pdkUO9BZnfrpqB0pw3XbTVog30rqvjXKb/WzGq3wfxKxI9yluvQTvQ7DnZkBzz9gkfsYDuzFPnzqCvlnbd6APiZlZ/yp8z/hJvG94+BDda6S1YpDMv55JeE8au3Msrx2cyze9B4nr7H3msuiHHrfccsu8myvP8+zOO++0O++8c7GnFuK0jIyMWEdHR+pryjmxHLzqVa9SrRMNR7VONAPlnWg0mmNFM1CtE81AeScajeZY0QxU68S5yJJ6egghhBBCCCGEEEIIIYQQQjQLPfQQQgghhBBCCCGEEEIIIcR5gR56CCGEEEIIIYQQQgghhBDivGDRnh4NI/FmXWcKZNZcyOKzmoPPo/Hy8wfQ+NfMLNdOhrZkjNzTg+YzHa1k3EsGVivb0Mhn7Xo0DPznr9/ttGH37ucg7l6DRkvdHdjGDH5ta+lA46VcAds0PNoH8YEjJ502bNqA7dx5+Q6IV1KbfDKvHBlGk6T29m6IJydLEHd3ucZE6258GcR/8sd/AvHzzz0/+9/lkmuKvZzsfvieWQPJLRddBq/1dKHhYlDG/i0fPOicb+8Imv1UimhEfuUrX4PnbMHPGCmhFueeH6AxGvnFWXXSNQP65698A+KDw2h8VSviSQb6MI8yZJyV0LPSiAz9Wos81swKOTSDypETU1LBvMlMksn4JLaBjQvZsLGryzVGq8XYhojMDONg2sh8AWZXS017t9mMN9jqdVhb+o6jWekLezHPMlnXhOrkCYwvuRzH3LrV+CW7VpBpX4L9H8Y47jM5MgyrojGsmTmuUwkZgjnG5PQZQcBG6Hxh2EybzmdmiaH5VmyYm0mE5wyTfRBni4MQ9xTQhPUnXonm2nufvMhpw//3NTSVP7jrmxBPntwz9dk1MttcZp58Zq9l8lPzHs8l7e04ftjYvIeMCc3MLujugnjVCqx1SYDnSPJY2yoJjseHH7oPYo9MAstld6AePoq1bf+BwxD3DWMObt2MpnSXb0EzRCqNFpKxuQVch8w8Wq/EZFLtpDHpLbvqy4svSKzhzJLOc43NF2MCtxTkM95s/Q9pfcG1N6HOClLMnLku8Lfx6DP8gGLfvYZ0AiATuL8rxD9JQpyH2Zg8pnckjhEsmeRynGLoHtDP2HC9jse4mU/96OQQ52mKmXo8/3tmP6quafrSs+WC9dbSMlW3eP7q6cHaFJMpY1veNe5sa+E1BtaWAtVUNo0OIrogtJg7Poxr329+D9d+Zmb/9//7Z4h3XLge4lte92qIL9+2CeKEjFRjHkshtvHEAK7DzMxGaYleTcggtoI1uX8A5/ljfbhYufxiNDG+YAPOuXMNomfI5GiQ0pq0Gk7FE4WUdcoy4nneqfrkmGMnzrH4A3eM05B2ZgZ+B58yG2Bet2Tx+uYdI3O3aASGfchmo1l6T4Zej8h8PZNgDtYmcF/Vt++I04bVKzFHCjGOXzYlzmRx7ZDJoPlzzWfDdzZhdfvBMZ73+Bxe6n83gueeP2ZeZqpmRR5+98jHWhaPUA3IuvNhkMVrHtD+zc9TnMH+6qbXJ598DOLq0T0Q3/Le/+a04WgLmvnGZMjcVqN9ahlzYHziKMQ9I7gXKHdcDPFY2p7GeA7E71XMYw0fKmHffvVpvB8Q1fA7xBXst6TizpNHMrhPODyMe5Qv/OCZqXPVXIPk5WRiYmJ2vi+Xae9GY6VEdSgYd+/z8BqH1xI0NdnGzZi3vFY/frwf4tZWvOfXmjI3PP00Gs8HtN6/+BLMmRWrcC/e1oH7pJFh3FePjWPOHtx3wGkDL5WOHME9zaOPPgZxGOL8ODqK8y334403vhziiUk83sxsw0bcJ23bts1tZ5OIPLN4OlUSnkKp7vIN7yBlb5Uk2H/5APtrfS9e4yzNDUWqn70r8R5pHOPro5NpuY+fWchiO1uoROczeHxnEWv+rS/H+bLrOTIhb3HXt4Ucjo+J63DtWPOwdh08iOboGeqXgOZ5n/LQS9kT+LSf4O1f7PxHffSXHkIIIYQQQgghhBBCCCGEOC/QQw8hhBBCCCGEEEIIIYQQQpwX6KGHEEIIIYQQQgghhBBCCCHOC85dTw/zbEaxdHIMNeaGR1GnfXIcdfJaCu7XGpsYhjhDmpPtbWsxJo2zNeTx0ZNHvbPu4vweIGaun4a1oObggecehbif9Mm37UC9+JtvfRXEJ47shfgHd33VacPtb3wTxNfd+kaIC1egpnm2gP3gkXdCQiLcB/ajJv4o6U2amT32CGoTH9yPngWjY6+c/e9KGb0elpvjB3ZZkJm6dis68Rofex61+ccGUSMyIh8EM7OBw+iPcdEt/w5iv3MlxEcGURfPj1Df9lv/8i8QJwnq6l16yVVOGx7fswviiQq+p3MVaiaX6Zr5VTy+pRW1UCdGcDwG1CYzszjG8VElgevaGH7vLtJRzBVRJzoO8f3jY5gnA0Ou9nSxjXR9C6jJPSNTG7PWdgMYL01aNpzKu+MDqLc4fgJ1Pg/ux5yKQve7VstYf3ooz8aG8DuuXo/n2HgRXo8oxHH/7DN4faqx66cR5Ej7OUcauhXUeGwp4mdUybOhvw/bVC3hZ5Yq7nULY9TLDEv4PQPSYd+6E3Pk+Wfx+BPHsA0jI6ivOjqw1WlDRxF9egZGcHyN9U+dk7VYl5verk2WzU9dk7EJbNPQcfyeg4PYD4cL7u9LfP/pZyHeciHOT1svIj150tnu2XA1xDsuwev5wm6cWy669HqnDUeOY070H3wBYj9CnefSEczRzvByiK++aifEE5N4fi/j6gC3d6CG68x8Mvse0pENWEefdEsjkjr16AeJl6Y3jjieE3M+02+w3ni1OmEz/gcezQMx67qSz0HEovbm6q/zl+dvx94Wnsdasqw1i2eIIrfWHT2MdeBkH9bwmDw+yjU8B+ss+/SZOcqzXGuKx0Qn6tqvWoVr2g7yJPPYj4YEc0/nxzEfrKEcJ6RRPn3OMHa9x5ab9atWWGvrVB95pJHc1onri4A0lYOUrVKOcjMgX4AcvYW9DYIM1r9+knb++j243vzSD5902jDidUD8E6+/DeLLL9kOcSHk9TR5z9B3GqO8PdaPexIzs9Yu9G5q6cBc9UaGIc7lMU/HRnAs7NmPHo2lEDtm83rXw6yVamw+h33d3jaVh5412tPDn61PPDYcnwcqY4nv1mWf2u9TXgbsl5GhtXsG+7ItQH+ArOMr4nrjseOD43dB3nlGGuncRp7wutpw3/XAN3HPY2Y2eBjn9XXbb4S4f5j2OKtRg37dDswh38N+jT0avJ6bNx551HnsfzI3TvFGWU68JDQ/OY3QPftHVbFtnnO8WUzXNJzAvMlRbYszWE+fPbwfT7gHPU/Hh9Bv48d//wWnDZfc+nqIi2vwfkp/Fv1Ix7bh+jOzEmuhGa5pt1A/DA/j/t7MrH8Uv3dEYzQsYd4FVey3bI58J2gN7JNfbbbo7glyVCj8ENfqY6Wp9yQN3k9MTExaPK3Bz2usXI722rQ3TJw1mItP67yQ9pzHjuG8cell6Mk6NoHvH6P7hr65PoXHjqE/cFdXF8T9fZgjz+/FurRpM95P47XqKN3LvOd+9DE0M3tmN/qKXHzxJRA/vecZ/Axn3iA/iCLW1zHyS31+7/PGXHoU7z1ecAF+r1zOXY82isiSWT8I/uqO913Mtc49H3sz8Vp1nO6fVSlvxkp4v3qc8yyh/WDK/SZnT0aHZMjfMlfAeluqYJ1qK+A1D6vokzVaG3baELR2QdxFnjfrV+D3HhjAtWWZLUrZ25K+d5rPH20fLKJ1+YzlR7wI30v9pYcQQgghhBBCCCGEEEIIIc4L9NBDCCGEEEIIIYQQQgghhBDnBXroIYQQQgghhBBCCCGEEEKI84Jz1tNjfHTCknjqmcxj9z8Ar8WTqB02OI66eCdGUVPNzGwtadCtXo0a96xZP3Acde7WbEJNwv4jwxA/vxc1nS3F1+DggacgfuJZ1OydHET9wNIwfq9H7v06xMf2Y7+sXIG6bZ2+q/V/YDe+56uDqO3W3bsa4q4VqANdJD3AgHShw1oF4gd//KDThnvueQjiSnkY4onJU3Gl4vbjcpKxsgXTqrVPPnIvvDZwHHW6q1XUx/UcvWSz1SvWQHzJ5VdAnOtAfeNwFL/vIPlr7CW9xYj0PC+4GDXozczGYmzX5NgwxJVh1LmPI9QCjQMU1stmSNU3xGtennD1uv0Av2dnD+qNB22oSRiOoFZm1ict/UkUDPRIizqbR81DM7PJSWxnNcK4OO3bE7GAYgMYPHzIMtP9+r2v4/W4agf2Z3sR9TOHx916F9N3GBrC3H38UcyzieggxL/237BeDp3E4//8M5iH4xOu9nOlhtdk05arIK5FqMO48QLM9Z5urDV/8WdYS0iK1FatuNRpQ5DDa3zsCLb7qmswL1dvRk+H7/8Q/VNOHsa8SwLUOO9d7Wo/5wqUq0M4Hr3qVD94DdbgtSQ/9c/MVnSux9dYo5nENYdPor+GmdkQ1cdCEeezIwfRm2ZVby/E3esuhLi1B3W4L6d8WL3K1QB97hj+Hsemra+AeOcWPMcFazBHW/Kk0Uwa6gODwxD3D6DnkplZlvSLr7n6Sogzp9ElnYWEaQPWOqX3O6YfZhazH8N8ksksnLrMlIYHLZzWAPZJ25l9JXzSvHb1yc3yBa71dA7W9aXf9QlDnFt88maYLOF4PT7k+hpUaE0aUp9WQ6wBMU2hGWpj/wHUp66Qr10QpFxz6rsNW1HD/GUvfznExTasfV6CjYojnHc4p9x+dX/mqEtP57af4lew3OQzGctPe+3lyJOoNYcxj9EgxUuGv0NCet3cFzXqvxfIN+nep3AO/tq9uD84Nu6uq3ZchuvJm6/BObAlxvkvJj+axMfxF/m4DjtOmuP9gxibma1vxTruJdjOQga/d2cL9stq8gQZH8f1zzPPPgdxLnCvxY7NqO+fz+G1aZ3Rmg8b7ekx9W/qv+fXWjfyuvBTBMczHs8N+J6ch9c372PdaDGMizXcw/BcU8u6+y/fw/Un2TJZJsE2BDGtfzxc5/D52nGKtvGR/U4bThzbg+8h/8Vtm9EfLCKPzgz1U0BjlzXCk5TfD/X5evn4PQPvVJx4rg/UchJOjpoXTOU6r2EiD+fLmL57kjK+zCfNfnpPheplQp6pJZofjbqjdSV64Q2Sr6GZ2ffJ2+XSnZshvvkN6Gc0Tt5B+9vQU+7p/eiBOvIY+ilc0+uui1b62HcPP0v+l+zbRF4wrR2Yp7x0iSq4qfFCt+aXyVVnZBLHcBROtTsJWVR/eRkfH5tdS/H17kK7FauSp5nPRSSFHPnm9vXh3uzHP/4RfQbOfexDMTmBbahW8Hgzswr9bHwc5+z9+/dDfGIQ14bH+vE+BrehRGvLi7az74zZ0aPod9Pajl4KN9yI67pdu9DDleed3tV4j2/FSvR03biB9oJmdpz2dnv34tjZudO979QoAt83b3qtxWuw2Of9BNVCZ/Pl7sdCqvMvHMH1ybZN2H+tGRx3XQXMmR665+f57JLlrr0T2k+4NozY6JDGV5jg2DlyDPethyZOOG1YsW4zxPsPYR4ODOP3ylIxq9G+yqOO9XgP47trM/arrMa8dpg6R8ImQvOgv/QQQgghhBBCCCGEEEIIIcR5gR56CCGEEEIIIYQQQgghhBDivEAPPYQQQgghhBBCCCGEEEIIcV5wznp6PPjQI1YoTmljP/HoI/DaBtICHxgehnj91oud861auwXi432oYTZ4HDXKJ4ZQv+zkARQlDErYdUER43sf+bbThid2oZdF10r0Ndi0aTPE/kbUddu/7wWIv3/XtyDuXd0FcRy5OmePP/YMxKyB197RAXFbK+qTZ0gTLyaNtbGxEYgrFbcN69aj/t+KHtT0Lc3xXkjTWVxOAi+alRWPSGM/Ia3aYh71j8uR+wxx646XQXzJhZshHoiGIT5prM+JGrwn+9CDpY20alsdFW2zHF2jCdLYDUl7OkM66z7pWVcreD6WHk5qrn6tF6E28DBptmZIu31iHK97Rw4/MyK9TtaYTVI0uIOA9BwnUZOwNt138SL0AZeKbOBbZlpL9+GHUAd0+/qNEMcZzIly6LY3pOfZgyOYV8/tG4b4hYMYv3kPao9mjcZCQHlHnixmZl4V+7vYgrVlRZE8LML9EF52MXo8vOYWrOGH9pLvUq/r49LSju2MDHV9X/W6Logv2ol1/E3/phXfH2K/FrtQj7OjDc9nZvaXn8fc33eQ9I0zU3kXxa5+73JyYnDAMrmptuQy+L0LpM85MxfPEro6pBdux3m3Vsbrc+wAzl9DR1AXNk9+RT3r8FrdfB3qPl+0A+dPM7OJGtbHMMrQ6/g9ntyPtXD9Snx93RrMnziL16hSc+ttuYLX98ghXGusXolrCfYGYH1j9m/wuNal1HzWfGU/hrnvSXv/cjJw4rhlpvMtS+uJXB77O8hi7GdSdF9LmKsZymXWzA1yeHxAnVWewHlhZAQ1fAskb25m1rUKr2m5HT+DfUGqpNHrk1dJbaIL4oEy+QCF7hwb0jxw/CD6gjzbhvV3G+lHZ6nfEsrLDF2btDmW7MAcPemZOElp/3KTyQaWzU7lQit5PhQDbid7erhzrEfa9xGvLzLYX/0DwxB/6wc/hvieR56GeIL2NS/b7mpt/5tbroV4S28XxAmtkyLSiE/IC419YY4O4FgYLqXoxB9FP8PVPTgWtqxbBXFbHvspoLw7RB5/vStRg7yWst6pxeR1QdembXrQJrXGenpM+Xacrr5SXTe8NlnPXQ/kyAwh7+Haoo30xFt8XPcVE7yeedpf+OTHkniuh4tPPgWT5Km5fy/uMcdHUD984yact4uFLogf+fH3IC5Vsc1mZlXaT7zwHO6tL77yOoi71mMOjdL3rpE3Cnvimbl+a4GRV4lhjfa9ObFHa77lZrJsFsxcS7ymHumkez57eqTcFvLxHAH7Ovr4njCknM934eFbX4WfWcR1djjp+maVx7EPD5zE3H5i126Id1yI+4Wru9Ff8/n7vwLx8W/+PcQPFN3x9/LX3QHxZWt3QFyLMS9baN6eHMP7SiMHcG0xMkBei17K7yWzpRutN23ayyOJG+sR2NraNuv5yjk1NoZ7gTz5c+QCd+/Gawfel4+R3xT7bzxF3hbsR8v9OBljPpmZtbZiXq5ciV7AmzdvxuM70a+B57YCeY1OkB9Lezu+38zsssvRZ3JiAmtXRP4PO3ZQTtL9GF4fczw66noBP/xj9AI+eRL3NM309Ai9ZHa95rj30RrVi7BuJex9aK6vVUxri6Mnsf/7h/Ea9rbhuo+vVyutw1PvNrF3IdVX9piaLGHuD9M1zNDwuukqvF4HBlxf2IEqtuF5WrOXaLwF1EaeIngPGjnrIrfWJeRfFNG1SKbn5cXYUuovPYQQQgghhBBCCCGEEEIIcV6ghx5CCCGEEEIIIYQQQgghhDgv0EMPIYQQQgghhBBCCCGEEEKcF5yznh4HD+213LRnQkLaYMeGUAdxzRrUbiwUVzjn2/P0AYirFdTjjEnjM8ii/tgTT6NeZGeuC+Ikwffv3v2w04bOnjaI167qhnhsnNpEmmdrNmyGeHwC/TOOncA4Zl04M0tI39onDd+RcfRaYOX2JGGdS9YLxedohQLq+5qZtbbiz3IF8h8YHJ7971q1sZ4euWLGMtNidDXScV1Fut0F0mxmrwszs5tffRPEr7kOPT4O9h2E+JkjeI7j46wnjp/ZQlr73QXMMTOzC1ailqmRd0DPRnw9iUkv8DhqZ44Ood5qntrU1ur6O6xZjzq+bZ09ELd34ZhdtRLjImkVP/kojq/+o6gbXMi62s0xCY5XSqhR2N4y1XdTGpk4DpabfGubZbNT5TiuoADjwAj1bw+222PBRjMLqLRPlEjTn7TxQw+1RPc8jjrKb3odaiK/55fRVynbgnlqZhZmUZ/W89FvIevhNc3SI/iuLvR4eO9/Qj3V0gS2yffd8ZfNodhjjupRpoDt9hPMo9teT54gCemR57E+jQ0POm1oQ1lY6+gkn6TpjwgbK8FrmWzeMtP+BlUeG6TTPUQ+B5maq+2+fSt6btz3ja9DXBvDvmnr3ICv9++H+NgJnLOfaMW+HqpifpmZnTiE9fTEUdRQ7tmE9Tj2MR8emeyDuJc8PrZciPr0hR7MSTOzfEC66FmaY2nejmrY912d5PmRxVm4StrGeRZPNTNj/VSWrp3jWRCl6NouJ31HjpgfTLXZJ93mHGkeZws4l6zudX1cVnThOop1mFk6ln1EWH967yDW/slRrBErVuHcZWbmkW4yWUaYx59ZxeOrFLO3WrQKx9sk+T2YmdGS1Woh/mD/7j0QD/XhPN6zGnN702b0deoq4FgII1fzPApJ5/40nh61aoo3xDKTz2csn5/2kqEx6rHnjUdeF36K3jAdM0b+PkeOY737/v0PQvy9+3ANc4h8Bnn5nqmQr5KZeaR9/8Cj6KeQJR86r4b602u6cb24ZgP6KD23F/067vuxu68pDeGc+aZbXwfxDVdfAXG1RPUvxLHRQtrrq9eh558fuNeiQgWulWpixp96vZI5d37Pj8dGlrwWcp67IMj7eEwbrT9afMy5eAzXXCdHcH6LJlH7u0Tz/GjN9dMYHcb3HD2Mc+5R8uqqljHnelZgbcvlcL7r68fzVSLX/4dzoP8o5v093/kyxK+5A/cT2TZ8fzbhvTfmj2fuWsNLaH1reA8gnHtPIHH9ApaVQmA2PccGMfkT0Z7dJy12L8VfIQnmv2/gB3wO0mLP8DyAn+HRGqeUdfex4TGsdcODmCe7ycOij+bIVd2YA0En5mFmK/rADIy54697Hd5runYd1qovfwPn2L6jOH4GJ3C8TrBvaMQeBCl5Qz8L6HsHM/ctnHs1y8vq1autpWVqjlq5AtfFIyPYD2wHVmaPTjMrFNz7CHNhj4Drr78eP4NeHxrGdVyW9sClFF8AXiuyr4hP64I1vXgvpbUd85j9NVrJ86VScddFaT4fczlyBGs8f++REZxvR8kLZXAQ5wz2sjUze34P+o11UJvm+oqwx8iy4/tT/8y9Hh4t/iPyA0v19GB/N/rbgEqZ9vzjOB/WElxH95exNj73LPb3uhVurVvRip/peDKSx1JC9/RGyEs5oLmqvRvr1oUpnqybc1gfSxXM3RPkbVIbwTaWae2ZOMYbC1mL4TG+R/PQ9PVNvIWbepw7K0AhhBBCCCGEEEIIIYQQQoizQA89hBBCCCGEEEIIIYQQQghxXqCHHkIIIYQQQgghhBBCCCGEOC84Zz09jh553rLZKbHzWhk15rZsuxTilnbUHtu//wXnfCXSFfU9fh117qqk2zYZopZY73rU1/XKqB2eJKjzZmbW3rUd4lWrUT83rKFG5fgEtrmN9AGLLRhnDHXauleQl4OZtRTJl6KAKbCC9FYPH0Rd9X3Ut56HWnK5HGp1trTg+czMOrtRDzBHPhQv7D+lCRuFrp7rclLIZy0zrS8aRqivmGlBff9cgHEYuvqA69bhdy3mUCNyTRf2z+b16yE+uAav4T0XXwzxs8+j74EXuF4WF265EOIq6QGuWIGa6O1tmCOrrkCNwrVr0EthzWrUOF+92tW57yJfkbb2LojzpN+ZJ233ag01CQ/s3wfxob2Yl488cJ/Thv0v4DFBFj+jo3Wq78JaaE/uQl3i5SZXaJ319FixErXUJ6uoh9oeYF95Xv0xwpnZRr4BK9ZgX5zsJ+3LMaxFm1eiFmm+B3VDzcyqOdSPNq8fQj/Gmho7NRNb3dKK481byZ5Fru5yTPrFcUznMPLooN8DCGuovxkkmNteDfuxlKIDXClj37S2YM2dqcG1WmNNPWLzZn2jAtJkzmQw5pZ1d7tzSyHAelkjn4JssQvisTHU2C1yG/J4bQbHUTv+2L0455qZPXvf1yCenBiGeOuVGG++7B0Qh2QgtmsP6uzv24/v71ntaqG2d+I83NWKY2v1KoxbC/iZZcN+XEe+IqOk0XtiFLVVzcyKLdiuItXTYvbU6xOTjfVXCMPQ/GmNWtb/LVdI23kcv9uqVeglNAX5l9A529uw/8olPCfn+kaa31b3dEHc2uGuafgcrMEbhdimLK2TEtIeDkmjt0oeGOUK1l8zszDCmh3VsA1hlc9Jur80H/pZrJVJQrrtbJZiZmHI62z3mKm2NXZdZ2bm+4n5094OjucNzQO1AMfwsROuV9MzL+Aa5MkXcK389IFjED93GL1iBsZxrqnG7BWDfTSyb8CYY8Pfh/giyt3tm9APYwNpOa+gdUB5AsfGwcM4hx886tbcK7dvhriFPHUmSjimPVo3F9tw/V/IYp72ncS92bPPu/u7l12Oe6urtuE6OpjWjM9Yg/XG54H3oFlal+c8V+e+SPZNcQn13B/f9a8QP/PotyEeHcH5LKR9LmvKR4k7TlnXnn0dMx6OLfYu6TtK60LjukO/i+logZvjS5ijvnvuqR9C3NKGe5gbfuLnIM7yHEK1zhJ3jvQTyuuYanJ8qhYmcWM9PbzypHnT66k4wv6P+baPj9/ND9x1tNG+kr1BjTw8Ekpu3/AaehVa6/uUM2HKOCUvi2xE3gT374J4/Cj6bwxtwnjNjssh3rp+J8S7n0Q/IzOz4QzWz/Y2XAs8cwjrZ5nuXXH58eqMJQvcPQHv5WLSs0+mfX8S59zLSxzHs7WhUMAxXSE/AI98E9jjI42xMcyZC7fg9ezqxvsYD/74xxAHtEbjurT3WbyXYmaWI0+PQh7X1U899RS2afs2iNs68P5PuYxji78Tx2buenblCvSmeeLJJ533zKWD1qulEtapkydxXVGtuOM/k8W+Y++95DT/3RDiZPZTPf5wWuf5vGb13MRjmw9emxfIn6jYivuLYbrH8NSjhyB+fDeuA6+5bLPThldchfeGV5LtR6GCOdFBa6hyiHnkUV2ZrGJdqVGbzcxOHMV2vnAQ709P0F5tbILmmRhzxqe+TqjmByl+a5kczivZHJ4zP/2eOIpslJcVp0F/6SGEEEIIIYQQQgghhBBCiPMCPfQQQgghhBBCCCGEEEIIIcR5gR56CCGEEEIIIYQQQgghhBDivOCc9fS49/vfM8+feibTSXplQ8Oo7d3ZtRviMHJ1SFes6IKYpd9yhQ0QV+h50PoLUaf2+BDq/21fi9p/F16EmmxmZusu3AHxpg0Yd5D+X/8x1GuNY2x1oYj6kju2oiblVVfc6LShkzV8SVtzcAB190dOoG5mRwvqJrIO2403XY/nr7m6tPyobcUK1Mnff+hUGxIW2Ftu4mRaI9Cshfw3fNLyswR18sZIc97MrFLF/g1D1NLLZMmfgbRQu7vxer3vve+B+FnSodyx8xKnDdddfw21E69pVxfm3apVqH/b1YHXvEh6nVnSPExT8eYs4LgWYb+whnmONAevuOpqiC/biV4nO7eixrOZ2WOPPATxxPgwxNlpDe1yuWLf/vb9zvuXk0oYz2qzTlQx7/qHUdewYxXmTKHo+riwRGNE/ZvJoW6nRz4hk1W8iidPoq9I0VAHtDPvXvVSCc85Moyv+6Q13N6FuT42gq+PDGIckefORNmtFaUyFpuohh1TKeEUWCX98cuuQG3wwwexrx9/BMd8e6eryVqeoPkoIm3Lac3WJGqw3ngSz+plsxZqTHq3AWlpxrFb1++7+xsQr92yGeILL3stxI8+8F2Ijz33I4hbfcwHz8dr178XNXvNzLIZzOsbXvNGiHc9+jDEvRtfA7FfQL3cDGu+JqjtP3Tc/b2RY3sxLz0fx0FrJ2rs9qzA9U1nC+bYprWYU2s2Yv0dL7kavE/tRR3ZDGkRd7acWjuUJ11PkOUkCLLmT2uAB6wVTnnI64ux0WHnfPf9EDX+ec1w0UUXQZwjfWL2symQv1QQYBvi0G0De1BFpKfN+tEt5OmRo7VGQNrhWdKWzhZcL5mQ1ocheQTF5PnBHkKTNczbMfLkGRoYxtcHXJ+LfCt+zzx9r8z04s+rNtZHxsymHYym9c5pXI9TTf7+I89A/NVv3+2c74VDOMYGS9hf4yTHXiW/IPNw3HvkoRL4eIJ8q+sl074S82T7RagpfvlluCdoKeDxfeSXcLwfr0uBPPluvOFapw233fIKiFe20zw+ilr8A+TTc/Q57OsfP4A1OghwrBw54mrtr1mDfihXX7QRzzG9Vg/S/CGWkciLzZte13nkaxAYaqtnyMspn/IrifEkrjfu+dZfQbzvaczTKu3vEtr58qotl6EcDNx1XeBzzWatfGpzjF8k47EnHWmBk49INkXr2xKqh1kSPaf16+gQ7muTEu6BshnMsTAkP6OUewpehGtiC3FNlESVOf/d2HoXV2rmTWumV0Oav2L2L6E3eynrUPKWiHld5GjjU63jj8jy/IXn9313T2OUi3kyuJkcRA+lvocfhXh0/3MQRyfRk2nzy18HceUi15vyUIxtyFKtK9CgLZXJy4t17T3Ms5h8YuLEvRYkhW9ezBdw+j1xY/cT1Wp11ttsbAzHBq/JMrTm8lLGOK/DKuQhsG0bznVHyG+KvTCGhnC90t6G9z0GB1zPLP5Mrp/7yFv0iV3o8cH7poSuFfcL10IzswLN2Zs3o+fn8ePovcD3b3htOjiI/RCzP1LO9XcoZDHPL70UfZUzczx9MsH8Y3+p8ezUPObx/MbjjW8+ptxf9Gidls/hMddchfcE1qzF+LGn0Vzinodw7hmaxHl/4EHXS2bvEbxGG1Z1QZyjvGrN4dri2gtxPXTRdsyZx3eh/9xDT6Jfh5nZwZO4dhgYxzE9OU77iRLmWZDlWod55ifk+5RyLQL2QCIfwkp5al6OF3HvRH/pIYQQQgghhBBCCCGEEEKI8wI99BBCCCGEEEIIIYQQQgghxHnBoh56fOITn7DrrrvO2tvbbfXq1faTP/mTtmfPHjgmSRK78847bd26dVYsFu2WW26xXbt2LWmjxUuPW265RXknGopyTjQD5Z1oBso70WiUc6IZKO9EI3l+1zfNzGz9+vXKOdFQVOtEM1DeiXORRXl63H333fYrv/Irdt1111kYhvahD33IbrvtNtu9e7e1tk55Xnzyk5+0T3/60/b5z3/eLrroIvvd3/1du/XWW23Pnj3W3t5e5xNOUSwUzfentNXGR1DH9MmHUbtv4+Ytdc/33NOoR+b7+LznZdegnqPvoabksYOoy1apDkP81AnUGsvn1jltGCcd0WqAum2r16N3QrWEWrg18oNgHWiWfxwewjaamR08iPpxkyU8pr8P+/bYYdQtLpVQj+6CCy6g17HNu59FvV4zs961F0LsZzAvMtm52nBTum+/9Eu/ZK9+9auXPe/K5VHLhFN555OgXI71bSncuh21FM3M8kU8x7fuQt37nRdfDnHPOsyB0PD911zzMogvJw+PLPltmJnl8qjR6FHDM76rIzkX1rEMY9S3LZMmZJiizVfzUCeR9cdZf5M9Pao1fL00iTr25QnUiU4Ctx+yBcyDcOgExG2FqX6Kg6mx3KicMzPL5PKWmdZt716JY+rI8UcgHpvAMZrPuhqcWfpZlvQVcznUoezsxvYeHdwP8cF+zJHWKuned6AnkpnZ1771LMR3fR1rSZZ0gt/+C5shfn4PXtN//TJ6HPX0tEB8rB9rj5lZiaSUu7qwZkYh5mFbK06Ja9a/HOLv3LUX4h/dOwTxxVesdtowMorjJa6hP1Q87RmQTGsvNyrvwjgymx53mYC1T2nMl3G8nTiIPgpmZk/9+AcQF0h3NFvEvrnmFXdAfHg9avQ+/+T3IZ48gVqpYycwn8zMrr/xZog3Xv5KiH/0g2/iOU7i9WxbhRr2Ifll9K7G79SzwvVW8Ejr1LIYP7cP2/3oM9iXmQwev2Ub6vJvOIZa011dbhvYt+K5Y6jZms+eysFaeWrcNK7ezVXhpVfYNovmiWNHsAaYmU1O4rjv6uqC+IXncc3TswJ9W3Lsl0HxjE716WIzV6M6yOB8x+vN0ZERbEOO6zWeb/VqHDtYQaZgveKI1osj9JlV8vCIYzx+6AhqpL+wB+t5wkZAZta9cQ3ENfIu8cKpelOrTdXERs6xUw2Y+r9KiOuJu+59EOI/+bu7ID4w4Ho1RXSNLUPrccqTfAFfv6AV+2/DavQl2LRpLcSXpfgEvmwnrhUqIzgWfrRrP8R9k5SX5B3TSr51W9fhZ67ocrX2j5O3y333oifHU7uxxj7Tj3upEydxfxeXcb684WW45h0ec+f5kTHyrqA16YzW98z/NzzvzMwjPxGffNb8GOeaNGX0iVGcA48ewJtEtQruMTP+/Fv8gPTXea+QqnlONZrX7lzb/aDO71bW0frO+u5avtiCc+AlV70Kz+FhXveswP14QMYIYYg5ldC1iUPXw8xq2NdhFa9fFJ6qryf7p/bB3/72t61QKCx7zsW1snnT90888vTIJOzJQnsx38081lvP+LxepPfQ60Z7TPYV8QO8Xl5KziQJrs36Q/LNasM50sviNZuI8d7FkT3kyTn4bYizne7Y8dqxJn/nJGrnl8uYNwmNhYhqgOf4bvB4Sxk7PO/Ov31vWK3r6uqaPWdLK+7NqhXslxqtNZIa94NZSwueI6Cc4rqzgtZ1N950E8QPP4zz0urVvRBfedVVThuc+kfFz6c4U6D6yX5F1Gb28OB1o5lZQOORx2sX+fRO0j26AwfRv6FE6+VyGcfJGJtvmlkhjzXjkktc71imUXnn+8Gs/3PMg4GGjzP+UuoMe2/1rCC/jOvwfvOxA3if4tGH0DuIvZ4u34ZrZGc8m9kLe/He1DPPoG9LkqV5m8ZGaQI/86KrroR4aGI/xD94GNdoZmbda2iflMH6O1LC7x1Rv0U0ptlOjcdOnHItqgnVCZo3Zvy/EvJQnI9F/aXHN7/5TfuFX/gFu/TSS+3KK6+0z33uc3bw4MHZYpIkif3RH/2RfehDH7K3vOUtdtlll9lf//Vf2+TkpH3hC19YzEcJAfzsz/6s8k40FOWcaAbKO9EMlHei0SjnRDNQ3olGct2r32tmZhdffLFyTjQU1TrRDJR34lzkrDw9Zn5zrKdn6mn3vn37rK+vz2677bbZY/L5vN1888123333pZ6jUqnY6Ogo/BNiPpR3otEsRc6ZKe/E4lCtE81AeScajeZY0QxU60SjUa0TzUC1TjQD5Z04Vzjjhx5JktgHPvABe+UrX2mXXXaZmZn19U396W1vL/7ZWG9v7+xrzCc+8Qnr7Oyc/bdx48YzbZJ4CaC8E41mqXLOTHknFo5qnWgGyjvRaDTHimagWicajWqdaAaqdaIZKO/EucQZP/T41V/9VXviiSfs//7f/+u8xjp1SZI4P5vht37rt2xkZGT236FDrk63EDMo70SjWaqcM1PeiYWjWieagfJONBrNsaIZqNaJRqNaJ5qBap1oBso7cS6xKCPzGd73vvfZV77yFfvBD35gGzacMrBds2bKoKWvr8/Wrj1l+HT8+HHnid4M+Xze8nnXqGztmvUWTBsBHt2Pf8aUxGjAuPUCNJbp7EQzaDOz+++/B+ISGR//8K5/gNgn0+piCxrrrFiBZjRPk1lQoQ2NuczMruxBYyX2Rutei0bYx3NoZrNuPZoPP/b4jyHet3cPxIcP73PaMDSChjjVKpoehTU0EXTw8DnZwaNokHq4H02Wq2FKAfPR+NAL0CAnik+9J4pOGdQ0Iu86uxLLZqfMcto60CC2qwuNtVra0XiyI8VQtlRFM9B77n8a4koVjXpWD2EOrO1F47RaO5pWtVCesX+cmZnvkXkTmT2FVXw9ZsNFMhgKyLAzojJSrbqmf5P0s0kyCJ4YH4d4ZBRNVwcHhyEeGsTXR4YxPkomrGZmzz+L46O7Fb/X5ds2m5lZtbY8OWd2+ryba2R+yWWXwmsP30tmy2SAygaKZmaVKppITZZxnG/YiAZ8G9o3Q7z78Scg3n8cc729hnHfpNvfzz2HeVYuY/0qYhOs0IamrCt7MWd6VuH1WrcWf9MjCdBU3MwsJmPAVWvYMBGPX7USx3AtQcvgtZs3Q3xlDdsQ5N0BeOwZNFLOkGnxjKlfOMdctxG1rlyrWsabGrt+NL/5aERGYVHiGtpu3H4jxIMHH4H4h//8aYj3bLwc4ituegfEL3vlz0HcfxRNW+OaawC3Yg2aoQ+SKV9YwrVENIrzYX4l5ly5gnPwiUOYHxNj7vVuJdO/jm7MoUyAY7GQ4Jw7cPAhiA/GwxBXRshI7/BjTht+6p1vh7hcw8+cSE7V7LB6aj3ViLxLksQxY5zB3QRh3rFpuZlrPM7G5AMDA3iOcVz7sXlvLosxf4dMzs39LB3DbciQYXA2M795On/myRP4HQ4cdjd87Z1dEO/csRNi7vLxSeyHGs0RB8i4fPDoYYhXrEPjWDN3Q5GEmNszo2WuWWSj5tgoiWfrWIlM3kdp/THUh/NZaxHnOzOz1h7cE/hkSHkVGY/ffO1lEHfnMNdzMdaeHTuxlgV0fc3MvvdjrIn/8C+4J9g7hN9ry0V4ztddugPil61Fg+gfPHAvxPc++COnDf0nhyEem8C+paWI1QLsp4Dmmt5O7Nf9z+3G8/ftd9pgJTSy9uhaJEFu+v9PjbNG1DovCs2LpsaAT2sRz8d+8mhfm4SuOWcrmft2deEianzI3fPBORM28A4pxvE6z/320zKzbz91EgxrNfyebN7M1y4kU3Ezs56eLoi3XHgFxC1tuD/nPU0txFoXJZiDcYRjMaL508wsqY1hO2kdPrcvw9rU+f7Lf/kv9o1vfGPZa50XVk4ZmUdkOs4m0laj193bQrGHc6Lv4zEJbzzJoNunnPB82kNGmBNe7CaeR4v1MKK8ITP1JEdmyD7eZ+Bd0+QAri28Q+5+ImNoUrw/g/uJmIyoPTbeDakYklGvT2bAlrgG33z/y6NjfJuKE4tmr2wjal1LS9FaWqb6I0dGy+vX432MSgVzbnDI7esk5O+FOVHI41q8uwdr47FjOIevXo3rlbCGfZ8vuPfsgsA1Foc2Ud7zMOB7LcZLR3o5k3Hznu+njI3jHmZibBji0TF8ne+NVCp4vmoV88mtz2a9ZPp+uvU704i8My+ZNQPn+7ZG/RlksQ6llBmLqb97V2HdKNBa/ZlncS1eo/nshpdvh/jqSy+C+J+/db/bCB9zMVek/XcGczeqYZtODOF8NT6O91y3bkCT8tVduEc1M7v939wMcd8RPMc3jj2MbWzFNoQVrLBejIPDebjluesd5xjKO3/6LWySPh+L+kuPJEnsV3/1V+1LX/qSffe737UtW3DzvWXLFluzZo3dddddsz+rVqt2991320033cSnE2LB/MZv/IbyTjQU5ZxoBso70QyUd6LRKOdEM1DeiUYyc5Pwq1/9qnJONBTVOtEMlHfiXGRRf+nxK7/yK/aFL3zB/vmf/9na29tntdc6OzutWCya53n2/ve/3z7+8Y/b9u3bbfv27fbxj3/cWlpa7B3veEedswtxev7+7/9eeScainJONAPlnWgGyjvRaJRzohko70QjeeaJfzIzs7/4i79QzomGolonmoHyTpyLLOqhx5/+6Z+amdktt9wCP//c5z5nv/ALv2BmZr/5m79ppVLJ3vve99rQ0JDdcMMN9q1vfcva2+lPDYVYBCMjI8o70VCUc6IZKO9EM1DeiUajnBPNQHknGsnhfVMSJrfffjv8XDknlhvVOtEMlHfiXGRRDz0WouPmeZ7deeedduedd55pm8zMLNtatMyM7rFPOomk3bh/L/pprFjh6m/GpP+Yy6I23Bjp4PWuRf2/a294JcS1GuoJHj3RD3EYu7p4lTFs10gfakjuG0N/jLFx1AzddAFq3pdKeL4TJ9BPI0ppgx+g+FlA2pqZHH6vbB51EgsFjDs7uinGfvOCFE1vlnKj65udo/E7o/08MjJiHR2orQfnWKK8u+KKDZYvTA2LInk+JIYa2H4GNSeTALUTzcxODKEudncP+hr09qK23sY1qH353PMvQHzoAObI5s1bIV6ZMmFUKU+KbdiP7V3YhoCEJmuk+XiUtDKPkd/GiSGMzczGxjCXWVd9YBD1Avn4cdKxPHnyJMSlEmqExomr3DdRxtwvFDA3w+lyOPP/jco5M7NSuWThtPbzkcOkpd7fzwdDWGx3y3hLO7Y7kydt0gyO89FB7O+RQbzm3/gOtqmzjbT2K3g9p8DPWLce9cJbWlEn+Lvf6oO4UsVrWujE40+OYs4EQYr+Lem29h3Fmhv7mOuHD+P3uuce1EwvT+DxExSXyq7+tGWxH3buRP3M/LQ2bXW6rY3KO8/3zJv+/iFpMBtpEQckVpttc+tM+0b0oil2ot74yYOPQXzg+R9A3HcAX7/05f8e4u1Xvg7iQ91Yt8zMOkln35sgvdoy5fkA6sW3t2ObJ4ex3tby6KlUnsR6bWY2GOAcme3DnMoG6A/Qswr1yIMQ+36MatvQOI7liZKbc16VxnsZz9lXOuUREU1rrzYq7+I4nhWL5zUlLzE90nllbwwzs05qc0z+MzzXTMaYA0GA9dPx3yAPHi/n1tsMaQVnyLMjQ5rmuQz7iOBcxP1ykDzjMjm3HyI65vhRnKd37sDxGZE/W0h64l2bLoQ4uxJ18h39ZDMbGkEPCZ/EdrPTHznjJdDIOTZXKFquOKWVfOwozjWjw6gpvoLmpijnigZnE1xX3Xj9tRD/7JuxXuVDnHuGKS+76DMnJnA9+c3v/tBpw+e+fh/EAyH2pVfAuSezDzXpn6+hZ1H4DObEd+97FOLDJ3AdZmZWJaFyv4D1rdhG3nhkfeeTbnMH+WJ1e+QzkXd9B9f1Yt3OkLb+jL3CTGltWN6FE6d028kHi/diPnm6JJG7nmktYo6sWoVj8vA+2rM49XVhWuxz3uH+hM7RTt6GnV1ddAb8nuN1/PvYaC1mnwMzy5FvFteuCvkcxBGfg3wtEvpM8lOJQ3d9G9F4DsmXYq4f5eve9Hv2na9+aN68W8paZ0ltVug8of1cRN81ob7yLGUdzdLqzjFkVsBa7OwZR3NP7NFe2tz5zfMpl7lNHvtlzO9PypntUZv8wkpjQsojL6F7LOyJyr48Eb1Onh6OOH3i+jV69L38mOLpfpi5ro2cY2d49DH084uolt1882sh3nLBZuccfA8gor3cY4/g3DRexvH4CpJJSmhdyOfvpP2KmdlkGWsy33OboDl8bAT3pHzvpEb5wf4a7G1jZjZB3mvcl+zLxB5Z7CvCa9EirRHWrsE5xcxs2zb0Akvz1mMalXdhFNusDRSVoYT2sR77xKSY4AZ0DdavojqQ0L3f43TNqTAFHjaqqw1rWzHPRi9mkWGeeXSrPiF/jIB8sA4dw/tjRw7j+nZlJ83ZLe4ekr2Dwoi8KFtp/dJC+6RW2ifxPQZaR2QzKTWf5pEM5/b0OaIoslHXVjaVRXl6CCGEEEIIIYQQQgghhBBCnKvooYcQQgghhBBCCCGEEEIIIc4L9NBDCCGEEEIIIYQQQgghhBDnBYvy9Ggkk5NVCzJTmmG1GHW9qiR7ePAI6m6fGCANfDNraUEdthzpNG/Zjrrabd1d+JkJaaplUX/sFa96PcRjg24b2ouo29x36BmInx1FvdyrX3Y1xM888zTEQ4Oo05bLslguxWYWkA5zoYAa6K0dqJPeSn4PxSLq0Wcz5NlB/WQp3goeS7cFpLs3R8fNj1091+Uk31a2wrSnR6XGWoqkrxlhDo2VUKvWzMyL8Jp2FVEDfu9e9ErYeuFGiK9+2ZUQH+1HDebde1CTvpCiwft3f/sFiLddfBnE7/m190Mckbzfgz9Gfc67vns3xKNl1P6rOvq5Zgnp1NdIy3JoaADiSdLn9EizcIzGSls7au33rkHvFDOz9es3QNxC2tHhtBZjyGKxDWBkdHJWa/Opp9BHYv++QxA/OrAX4mzRbe+OS3ZA3NmD/eNnUNt79cpLIC6PofboQ0/iZxZIhrLQ6urfJobjpRaiP01M2qRxiMez1rAjd0upnlYqWBuYPTxa2kjbshP9GEYGUceyTP4JUYg5VAvda7FuK2qkrl2/BeIZ/fFKxdVzXVY8f+qfuRLMrNsdkx6nl+Kt4LdijmXppKsvJH+oFsyZvhd+BPFD3/6fEB968l8hzhXcWpdvwetZ6seci2pYV4YG9uDrpMHLmq8+zXf+yH6nDb1r1kE8fALP2dmNNT7xcJ5eufnleDxpvVdJ435D75ucNoxH2M7KyWGIR4+fiuMann+5iZPYLF5YjeUakaYxzzrL7OnB52Ct/Jh0fp1RyPrFKTrA7CHg+ISQjnKQxbXDjK/PDOUy1sKQ2njp5VivzVx96KefxtwuTWLeZPPkW0G6+KynywW3Frqa6bUyroFyWdLknf4MV2O/Afj+rH/cPfc9AC89/tgTELcW8Hpl8+41r9H8dnjf8xD/2f86DHE+g/1302vQJ/DEOL7+4H3o1/H4c3g+M7MS6ZLnWsg7pkLzVx9qPX/3kSMQe1U8X74LfQTXrkTPPjOzhGoipZkzr4XDuK4Oqzi+8i3Y19uv2wlx5gKcZ8zMLtiK/jOlGn5mPJ2rFV7cLjNRZcRsWnPfj0nzmsaGT/4AXsoQiWkdvWoVXo8gwM+Io7Or7WkeIPk8Xu/2DrweIyPo0ZEYe4Dg8WyDME46+ez/YGaWb8d9aOSRR4dH159PQPvSOKTjnfxxNexZfz+mOJmzZkrixs6xiYWzC2aStbeE9uhezD4VKT4uPF2Tprz5NE9z8sbsXUHH++z5kbK+JC+S0OfbV3QOyjv+CuwXxntMS/HU8blrYvaOofdQ7MW8x2GPD74Wbt747KdCviDx9Pfg/dNys23btlkT6ve9733w2kMPPQTxc8/hXNnWih5bZmYXXXQRHkN7tQ2bcB1daMX9Ba+huA7xGi1P6yEz1z+jQP4XR4/g/LnnabxHR2nteL0xQca9Jet7+LNW2uPkcnhObmMH1efe3l6IV61aRe93fXiHhvG+Uz/7jDaR1tas+dPrOo/8MSq0RuVtaz5w55Y4YQ8UPOf4JN0DoLknoLX8gYPYd2M7cX94xQ5cu5iZHT2GfjU18kSK6N5jNou5PV7DvN17eBjiSy7aDPHaTe667uEnMZcrZdo/4HAzj+5DFXKYR1murzQrZ1I8AnO0r+KaPvN3G1G48Fqnv/QQQgghhBBCCCGEEEIIIcR5gR56CCGEEEIIIYQQQgghhBDivEAPPYQQQgghhBBCCCGEEEIIcV5wznp6BJmcBdNaah0rUBM9Mz4McbWMOrQTJYzNzEYnBvH8pOXW3YV6ZVXSJh7qJ+1b0pxkmedqhfwfzGzFCtTS23ER6u5v3oxa7zUSO33iscchzudII70Vtf6yRRJdM7OWVvTwyOaLEPs51KPLZFGXLUM6iBHpgSYsvJ+iwR2Qzn5AfZnNnNKr81I8QZaT4YkJy0fTGvtl/C65LPbd+DBq+Q2NuTqkHa3Yn16IefXsrh9gvAc9Pm6//d9AvIW0i3tXohfN88+jV4OZ2e4X8Gd9w6i5+9pbb8NzrtsE8cE+1NusOJrppM2XosfKeVSdQK1S9ugIQ9SizpKHTlcbavq2kmfP6i583cysja5FbQI9cSyazu2z1EE+E1b1bLJsdqrejY2ifvAEi8xnUKPTC9wynvjdEE9WcJyH49i/xw49CHF/H/ZNHHdAXCWJ3nVrtjptaKF6NDqC15i1vjMRjXXSAWZd0XIF63ziaPya5Yo4Zv0sHtPRjX25ZTPqxPYd2Afxcy/sxw9gbWinBWbbd14D8eZt6NMzoxvLGrTLTVwLLZ7WI3XrNo3xpF6dN/NYe5s8prwi5lA75Qzr2R4/iDr7/f3oUdDegdfWzKw6iWP3mScfoyOw3ZMVzMlCO60DJrFeR1WsnVHiasS3tqBn0oHn8XuEIb6nZwVq1nevRt+niDS2Ex/1XIMWt9bdPYD1Mt+FOrJbNpzyNwqrJTvgnGH5SJJkViuefSMcHwnKqSDj6i6HIeUq6Wy3kaax6xNC7SMR9JB0geMUX4CIjglp7VZmjxyPPUBQN5jHV2srXuOh4WGnDdxOVsgdGsD6maFayLnM/RhTv7CWtJlZIYfnDKuUu9PrQfZdaQQj45MWTa8977kfPT12794PcSt53eVz7jXPFDAXj5N/xn7SVS7Q2juzAv2G8j72yaNPYJuqoTu/5RO8BuEkeqPla9juVfQZ+d4uiI8O4NojR8dnY9d3amwY5+Eqmy5SLhd9zNMkwXkvU8V+6+rEtcumTe5awyNfkQFqk017NY2Nud4My0lYGbFkus+yRnst9lbguSR219ER1bqV5LHS1oZz7PAIaq/zXovtGxwbH6cFrrZ+qYR92krzUUCa6Fx+167BNVd/H9apFqrfZmY9a9BrJqZxwHYGHnlIxbRuC2mchFVcR7Dnh5lZUqM1Ec0Lc308Gu3p4cfJrEdFQD4w7NkRU9+k+bgkPGYpjzz2+HA8VegzPPa+IM9U350fYvIN8fkc9Bmez9+LD0/L7jnHx+46IXH8TygH+D2c7DHXPvKBcdaTrm8Wj8qYjpn1HUlZoy8nK1assI6Oqfrzi7/4i/DaT/3UT0G85xm8J3HPPfc753v6afQrHR/HtfgFmzdDXCM/PvY4GxtDr6ALNuF9jmzWXVt2d+Mehv2KeI97ySXstUY+Ij6ty8kfqbMT9+1mZl1dPRR3Qcz1uECeEjwO2P+A951xyp5mzVr0X2S/lWZy0bbuWc+8Qgv2Z0T+N2wbkfFTPFZCnEPbiljb+H7zJTtwbzVZxWsc1XBdeGLgOMRbtmAempm9bADn9eODOMdWQr4vivUzrlLelnEs5DrRq7mjG++xm5k99Rj6uGZoP5/N4TzvzCt0k6jq8RxM+4uUesV7FD5mZgpgX8b50F96CCGEEEIIIYQQQgghhBDivEAPPYQQQgghhBBCCCGEEEIIcV6ghx5CCCGEEEIIIYQQQgghhDgvOGc9PQotrZaZ1gJNYtQfYy3hahm9KyplV7c1jFD3MKJ4bAL1AgeHSLvb0esk/bKEtBdZ39zMjp/Ec4akY9nVhdqlff3HIK5E+JnrLtgGcZG0/Yx0bs1cfVX2A4ji+TUIMwHGOdbRdL43K0u7ut38Gd6c2H338nLyWMFyuanPr7IMa4x9NTKOfTVWdvUBD5RQY7mriLp4A32oQ/mtb34T4kceeQjiO+54E8Q33/xqiDs6Xf3bFatWQZyhHNi16ymIt++4GOJX33wTxFu3ovfMs8+h9t/wEOrkm5lNjqFuZFsL5kmSkC/PJGlnkvalR2NhknSFTxx1Ver3kh7n+Chem5947S1m5mqBNoIN67ZZblqLs1zFvlpPGv9BzLXGHSUB1cgaac3WWMM4Qs+jDZvRbyghjXoj3U+P8trMbJJqideC9SlfoFpTQ01V1sdtobz1y5RnnjudsY66R15OLZ2o35lpxbHSvhrb1DJAGvX0HVtS/FVyLXjOts71EBcLU31Xmmys3nhSK1synTv8PcwjnwTywkhS3EtY35i1ZD26fgl5UhVXboC4N0MaouRRNT5wyGnD/d/9GsQHnv6xc8xcaiHq/G7d8XKIC92ot3qYfEZOHHrMOecLz6MvkyORSx5IlRL6hfW0sSY6vx1z+PChZ5w2VFrRP+yqHddDPBmdmmNrFXed0ChYP5xjXk+krQc4z3iNU+8z6rUpz8r2LBhvZhH5tESk5c0+LiHprHM95vezp0dnt6v9PDhwct52VkuoLUzTjPG3SqizAzKuy2XdWhdGfP1IT3r6erKOfCOIzbNoOoN6aE7NPodjMCJfwNKk6xPIvzKWbcd9Sjf5DhS6UKf5xLFhiKukWR7SerJacvOuM6B1UY3WTTWsbzsvxDb5rbj2Hi6jl1dUIk+jCfe68cyfISsKnsfzPo8N/IzyCMbj4/gdKpHrdbHneZwLuovYd5npuWmC9nnLTRiXLYmm51jykfBtfq+FmffNJaZRWihg7xdpjhzFdEg5H9dXnJuClPWMF6A3yUrSnPfIa2FgCNfZW7aip9nGjehT2N9HPiQ5V2u/2NIFMXt01Lu1wT6EIXl2hCF7eqTUfKp1fM5oTt5zPV9uprwh/JkAXvN46UaFPuHCn3KM53gy4eu+4wnH7eP+oDk7Le/YOJULMO+DfN5j1pn32V8sxdODx4dzTMz+X/h6QveJPI8Xh9zGtDbXW89Mxw329JgLe1X09uJ6tKcbPSI2bsR5yczswQfRZ/Kb//IvENfIw6y7C+ffI0dwTmcS6kduo5l7L2DGs2SGzRdguzO0Fs3TGqmF1nHt7bg/bWtz79/w/RqPxlqpjOu6sTFcqwwN4pw+Qp6u7FNywQXosWRmdvvt6Pu6c+dO55hm0d6St+x0P7e10rxPXrAtBczLbIqnB/v2FArkU0deTiv5nhuVoYhWSBO88E7xe7riItx37t9/FD+C5mCP7qGWyV8u8XCsHB3EeyctLW69Xb8Gc7VAnpwheehEdI+IhoJV6PWEvJ1rkVuvyuTvxsf40/ejo7Q56zToLz2EEEIIIYQQQgghhBBCCHFeoIceQgghhBBCCCGEEEIIIYQ4L9BDDyGEEEIIIYQQQgghhBBCnBecs54eQSZjQXZKb61IWvDZLGp81gqoqRbWUGvMzCwmYW2OWXOTtYjd+HQtPz2sYzxWQi23iRrq6rd3oxZ8N+kk+uyfQbpurNdqZmYB6QNmMW4jLU3WaWdt6roa3CneJj5pbWYzGT5gzvkbq4X63JPjlpkWJU5IOz3wMe+Kbahx193hakK2duN7ulpRy9KroO7k6AhqdT//7HMQf/ZPPwvxrifRj+PKa17mtGHtmjUUo6fA3hdegLhKeoDdnagf+MRjhyEePEl62LUULVHSPg08zH3fwzE7OT4M8XAfajGPkecO61iOj7vazax92U4eOh0PTdUZzvFGMDpatVxuWvs5S5qSrV0Q5z3ytvBdjeuI9Epzjt4tvt5NfgoevZ81ern2sD6jmSMlbAl7PnBNZTFM1rgmPeuYcspL0YlnfWI+JPJYHxdf7yngmL5hDfrZcBvSFHgjmmYffxLHdH5al7tSIa3PZSaujFsUT+W60/dOv2AcpegFs56tkQ+W5+gZkyY26atm2rEWrvSugri1HTXyzcx2PYkeSGMnXG+fuVTHsY48es//hnjVBddAvH7bKyDeuv1VzjkrY8chHh8+SjHO8xHVvkwLaqQXUVrVaqQl3l4iLy8zu+nV2O6d16JP06Gjp/xjKqVxQyeUFzdcV+rBuc3rE9YSj83VmCfZZWdhnefCQnUjIk8P1pJ24pJbK9gbjecxp1voBz578LD3Gvm5LUSnnvtyJo4dTfjlpxYmVpv2UrngQvTDe/D+RyCukqeHJegrYebORyF/pyz6K9Qob2pDw3g4nT8I8Rp7VbcNWZqX2+k9q7pRT3rHpTh/eeQJ8dzhgxCPjKNPjFdz10YRaTvXWOuZ5oGYlwoRHj8xgd5WTz6N69P+FFuOk6OYqxdvxvVMYTrvJifdPlxOkiSwJJn5wjwAKV94rZLmKeBjX544SXPLBOYtz+sFmkyKbTiHxh7mT2sLrv3NzNauvgjibdvQ/+2pXT/CNh3F/ULPavTwaOnZDPHKDLaxnHbNuOvIcyMi7e+Y/FHY0zOKOGf5fO7KLo7pPgN5mXin+e9GkCRVm/mdVtdPg/1IjWJ3z84+IF6Kfx68TvsBn31DnNzmC0oegmaOR4eXUMXkCS7gXp/f08Mh5d4D74s8OsbjOTGm2me8Bp6/ialrGb7nUmft3gy43ZxzWfK62LAB67WZWUsLzp/sX/T1f/kGxCt7sZYV6f1F8p3M0L2uTZtcLwv2kyqXsT4G5BHJHi9d5Pewhu7FsPdJmu8Mr/1GR9GP4egxnAP279sH8YEDuAc6fBjrcY28Ftrab3Xa4Cxfm7B+Ox1RGJs/XaB4v18jT4jJBGu2x/6oZlYjP6eeLO7H8hlcx50cHoaY14F+FnOkUsGcas27c+yWjZshzuXwM0bGcY3k0drcyDctpnpdIcPijb14X9LMrL2IfjN836L/OO6dKzX2g8b6zP5GXNpyuRRPVvJmayV/lVx+Kg5rkWHrTo/+0kMIIYQQQgghhBBCCCGEEOcFeughhBBCCCGEEEIIIYQQQojzAj30EEIIIYQQQgghhBBCCCHEecE56+mRzRYsM+3dkSXtPdaTS9pICzVFb9zR8GStRdKddWQS6+jP+6SpFgQpXUu6eL6PxySsk19PmpF13BJuY8pbSI+OfT8iEvgMjHWdUWONNQj5e7Omczp8TPPUUG+47ibL56f6KAiwr3I51F/MUpzLu74Ghdz82qZbNq6F+MbypRCz3iLrMz760MMQP7ULPT7MzLbv2Anxpg2oXfnkE/ie46QRmSEdveee2YWf+eRuiMfH0DvDzKw8iT8bGkJd+8FB1I4eH0dt4loJ3x9V5/eWSVL0W/OkCcpp9+Tuqe/RDL3KqFazcHr8x6TFznLCVY+02lM8PViHPuFh5MSsa8/+GuzHgefP+G69c7Vm2e9nfp8kz9GYx/Ho0ddmzfm0z3A+hL+n0y/sI8K5MX+/mJklEXktUY2tlKbOUa00Nu+iyqTZ9Pfx62jwsl9Umj4yz18hzbmsgc/XIjH2UsCcCkiPvLWA+vRmZvk8HpMhs4WxoT5sYwUF4odHnsf4CYxf2IU6wu3d65w29KzcDHFbG9b4fBG9SvJ51E49dPgExNz1uXbUX1295SqnDe2rsA3P7SXvqMlTJ62WG6tzPxdXs3p+j52FnMN9D3tX0BhlHW2uCW5RqNuGujHV0yTAscFrC/bn6DuGeWxmViUvO17r5bKkH03vd2P2a6vjwWTm1PjE+Np48P+N5OTgkE1WpmpSRxfqNK/uRf+84TLqZo9PuGOEfQCqo0MY+7je8AtYm8b6UHs7rqJOc43mGs9354d8Dutb3vAar+i6AOKNOzbjOQNsY3dbF8T9E89CXB13de5rlHdRbX7d+pg8GQM6oFhAjeuxCfYtoXWcmU1MYq4ePYZ609npXC6XsI+Xm8DPWxBMXROfvNi4UMXkYxCY659Sq+E6ePfuR+h1vBa5Avo9rd2Ac+a2HddDXKpi3reQ5ryZWU8X6u93dJK34UrU1s8e5HOQNxCth0L256ilrOvYQ467ivTDE/L4SChHKyUc35HjEeL6hEZV1jTHa+PPMcKIQvf9y4kXh7NrUfbjSFwTD3pzmo8EzZm0Lk4S9DqI6fp45Ifp3B/h/VuKP59j+0F+GuwzGDsTex0vDII9CFOaYAHr9/P9EGpDwPOeY7hCNT+ljQFP1Lx3m47T9sCNot76h7uWPT7MzLq7cZ180003QvzEU09C/Pjjj0PMfhonT+C6+ng/eu/xvS0zs2IRfUFy5IGby2NeZ2ntWKb7FseP42dO0LqC74OYmR0/gWs9PsfJkycpHoB4chLnPPYhuegi9GjqWdHltCHt+pwrjE9WLZOZqgU++fjQUsNqdN/XS7kFXg1pXh7B/isUsLaVQ57PyMeOzl+j448dd6/5ipXo/dLagWPhmX3oy+JTXvpZ3vPgfJenVN+xdbPThmwWx8+xQzh+Rkew5rOf2FgF6zPf36hV+Z6dSy7HPoLoRRIE014ui7hnp7/0EEIIIYQQQgghhBBCCCHEeYEeegghhBBCCCGEEEIIIYQQ4rxADz2EEEIIIYQQQgghhBBCCHFecM4KtXl+MKtVH5C2N+scJiR67QWuDmJMWm410thk/UPWNI9YI5S0GNmfI03bnVXLWIvf4zawpi+ds0geBZmAz+f2g08id46OOn1vn9rEmvZxTBq/dc0DXE171nSdq3MZR43Vud+4fo0VpvuVtWU5J9g3IdVTwNH8xLhIPiCFPOrosc5dd1cXxGvXoPbfQ4+hxq+Z2f69qB193TWo4zs8iFrU3/vOdyDuWYl6gvd87wcQP/EkenyUJ1F3z8zVeY7C+T10WJfd8exIWCscj0/z1AlI05z1HWcuVTM8PXwvtmBafJd1X+v7c6S0l/KM9W45sbieeaTh6/S3x2MY9R0XguMbUY80rWE84aLbwPAY5rhemz02GjEz3ydNa0dCeep7eQ3XuY9tRqXYHW8YB/S9/NTfl6jnEjD/8THlFHeHn6W+jdz+yrb3Qty7BTV5u3rRS2hijDR2B/shrkygbndYRQ+QkZN7nDak/Wx+5ve14N9NybesgHjdzlc4Zzw2cAXEQSf6igRzPCPCquvBtJwkSXLacVTPNyLVC4LrZR3vIOczHe+g+Y9fyG8KOWdwvi/XU9IBpjYVCijCy+tZM7Mc6fjmu3F96Kxp2RvPWdstfh7ktd3pakA9PfXlYHKsNOuvtG4F1omffvObIT703BMQ3//Avc75Dh/aD7GzT/HxmoUR1zs8Xxjiuilkj4DYHadRGU8SJVjvLEH/BT+DORHXsE050smvllCnmXX0zcwytNbKFdkLDz06WtrQk6irG+M1a9BzrmcDao53r8bXzcyKtK+pkUdjOL1/K9fc9i8nvpcz35uqtVy7ooh9JWnNFrjjr1rBHJgYQ73xTZu3Qzw8hPrund24XyiQv1TIbXTGs1lCfg0jo+gDsnIV+uNs3nQhxEXSh8+yP0SIa0n2QZxqA/ZNtYTzelTDeXtoCPc4XOuOH0e98tZW9EKZHMfvaGY2NoS66iUaK3N9Q5198jITJJF5030U8jWkPPMSzEPfS6nZzvzF8fx7ZWN/I/Ie8nysW7XE9e1hPDJycVI1rOchWOdexQL2E+z7EVFe8v0Tn33t2NeHzWnS1jsee+OxT8FMGxq/jz0djqcH+6ukfE3W8+/p6YL4jjv+DcT//dOfhvju738X4v5+XNuXJrHOHD540GlDlrwS2Bc0nyOvGscPjvwbyzjHl8jzo1R2PafK9DO+L8V9x/c+OjrQM3DnTvR4fcMb3gDxT/zErU4bNm/eDDH3SzMZm5iwIDOVK3GAYyGHt52cdXUu59YZ7s+JSfZ7wnGVofpZpHV4kTxxW1fieidkP2kzO3zoEH5GBuvlxl70pCsUeM2Fta+7A+Ntm7ANne1dThsmS/g9r38Z+sN1d+P4rNA9o5NDOB8OD2Mej47iPfjxUfceUkBr6HKJxlM4dYHj2DOc8U+P/tJDCCGEEEIIIYQQQgghhBDnBXroIYQQQgghhBBCCCGEEEKI8wI99BBCCCGEEEIIIYQQQgghxHmBHnoIIYQQQgghhBBCCCGEEOK84Jw1Mg+C4JQhD/kxRWzkQ8blafZTbBSZIQMiNoxiQ0bPn9/A2/OwK33fNbRlk6Mgg23KkmFxLsPGiPR+MizKOkbmLuwLziZnjsF0HS8vboPHxugphu5sCl8jk+u5BpqNNpWOw6l/Zmlmm2z2jK8GiXvNM2Ri7HjEseE0mR6FdD2473p70ZDzDa9HUyozsxf27YeYTZL6jh2D+At/8wWI16zFz3js4ccgniDjcs4BMzOPDNsCGh8hmUM5HnJ1zLwTujZJiqF0lT7DGdMz700xb1xufD+YrRn1/LqZVFPguqZ988Pjznk/G18v6uxnSB1jwYUYo7vHJPO+zuOvHq6Rr5klFfpB+rWoVvm45SWOQ/NmzTbnzxfXOHkBRuZU25xqehpD99nPpLkjcmpISj9m2Ai7A+JCBk11i+1o8N21Cs3WqmU0Y2NzYY7NzColtFSrTqIJasiGp2TcGifzrzWqZTRtPfb8j502xFk06Osio98oOmVuGFVdA7lzhfrmoykmmXXqwGJrIeP79X9XaCG1aDHw+dK+QyYz/3K+3jliinkNyyaQafD65HQ02tjXzMzCU56vXpUcLkM0VTwxdBzi0VE0hDYzq5TGIfYDHGNxjO+ZqJDJJm1sggTfn4RYW7yqOxfVYpwzah6+Z2wUa9G+59Cstb2A9bA6gaadnofr13wRjzczyxfQhLhAJtArV6+D+MJtV0K8ehWuLzs6OyEutqIRayZDezdz9xBJRPuS6dRNWRYuL4k3Z7FKaw02f45pjctO92ZWKeP3zGdwflu7Cvt6aBivfy6P17Nawdof1XAcsFGzmVm5hPNZSwtej9IEjovyBM53SUzmvZNoIn708F5sUzWlVvj4s5ERHGuVEs7j42REzvuFGq3z2tsx5yold54vj9L3YpPqOeObP2+58ZPQ/OkVV5CweTbfL6k/f3p8E8bJCz4HzUUx5RWvq+l6mo/Hm5l5Pt1jyaDJLbfai6kG8KbRmYN4L+DmfpLwfR9en/Cilk7A96p4jUymxukrDd6bUTtn23DuGJkzC1lLJLzGofjinRdB/J53/RLEDzzwI4gHBrBGDA8PQfzss885bdi/fx/Eg4MnIS6XaT9Aee3cR6zztdPWdQHd1+vu7oaY7wFdcsklEF911VUQX3HFFRCzsTmfz8yspQXn+IWsgRvFuhWdls1OjfXWNpyLPI/WeTQmsrm8McUC/izw8RoWaA7NrsH1SiGHdSehOsNrX9+5KWiWyeA1byli/0e9GIe0/vGp8ORz+BlH9uMce4hro5ntPYD3BY+fpHm/gPU3R+sVrwP3oKs7MXZKY1pO8f1RetPMWrBSqdmffvaI+/4Uzp3MFUIIIYQQQgghhBBCCCGEOAsW9dDjT//0T+2KK66wjo4O6+josBtvvNH+5V/+Zfb1JEnszjvvtHXr1lmxWLRbbrnFdu3ateSNFi89brrpJuWdaCjKOdEMlHeiGSjvRKNRzolmoLwTjSS2qd/E3bBhg3JONBTVOtEMlHfiXGRRDz02bNhgv//7v28PPfSQPfTQQ/ba177W3vzmN88m6yc/+Un79Kc/bX/yJ39iDz74oK1Zs8ZuvfVWGxsbq3NmIebnzjvvVN6JhqKcE81AeSeagfJONBrlnGgGyjvRSGakkr///e8r50RDUa0TzUB5J85FvOQsxYd7enrsD//wD+0//sf/aOvWrbP3v//99l//6381M7NKpWK9vb32B3/wB/aud71rQecbHR21zs5Oe81Pvccy2SnttKSOvrxHmnepmpSkBcY6ec7x9U5Qx3PAzyxAPJbamWHfAv4eFOfIl8T3+P1pH0keHtS3rMns+FpwNySsg4mxn6JRyJ9ZraJ+59zPDGsV+/Y//rGNjIxYR8cp/drlyruP/95vW6EwpT1XT4fV8fRIeYbI3hV8jRzLE9IPZK3iGmtRUyP8wG3D+Dhq7D7zLOr5PfrYkxAfPoLaePk8afaSh0cUck6lJR55dtTrW+6nOtruHKfpm3PfeBTP6FQmcWxDA4PLnnNmp/LuHT/3ny03qy9J3gXs1XMGmvT13nO2OvdpLNaPp95UxOdbat18s4V5CMz3elqbuBtY53XmPdVqxf7u//5Rw2rdJa//dQtm5lj2KyLxc9/JwfrzWz0PAdZHDkOsbRG9njhzk9vXTqvoPbHjWVUnh6iccg1JnefplDH5fkQl1M0Pq/g666zXynh8TFr/QcbVpW1bg3rHLasvhNjPntLmj2ple/wff6thebd209ZUzzMzN0f4uDS/qHq455z/HPVqQKr2rOOBwzq+Z+9HVBdem9Wpl854pNPFPN4WMkd4868HZ88dR3Z437MNnWM/+7+/bcWWVjMz2/sCroF+/NC9ED/1FPrkjA/0Oef1aVz75HsUkc9fhfwxkgBjn9Z+Pnn9ZGJX5z4gH4Eq5d3aLajX/eqfuAPi8jh6Hzxw7z0QhyGOv87uVU4betevh3jDxs0Qr1m3AeKeFSsh5rUar3fq7dXMpnJjLiXyYJjRWi+XJu13/svbG1brrnr9X1iQndLfbing9e1uwb5vDfDaZTz3eo8Nox/fk48+CPEll1wM8Z7ncW3f2dUFcS6HcRThXBPVWBPdXYd1dqL/RbGA+4UXnn0C4lby0RqeHIb42BH8jnGY5umBYy2k659E7H/Dnn/zey84c0CK5rkf8x6Da10055XEalaGvFvOWtfdkpvde/Oenq0squRFGaVozPP393mNk7D/Gs/b3ME8h/L1cZpgPvljJhnUiHd8DMkjhy+Pl3Bu03ozcT2UYnpPwPtUbjg1wcvwPRq6t0WfGaRtpanzPVqPzHjFJkliY6PDDat1cz9nIR5ki4XrDsd8r4TnAL4PwvHhw4edz9y/fz/EBw+iJ9bRo0chPnkSPT9GRtBTiT0/+B4eewmZma1bhz5NW7ZsgXjz5s0QX3DBBRCvXYv1tpM8s2bud82Qdu9kMfcg0vLBbPny7vbbb5z19OjqbsWDyNODfSDjlPVpQN/f8Qri42mM57P4/hx5fGTp/Nms25fs58xr8Ql6OJShfVKW2tBK/hsZj2pbivey+fieGtW2asTjEd/eUWRvFHx/RO+vpszzE5O0xiYfp2J+KnfL5ap9+Pf+zsm5NM7Y0yOKIvviF79oExMTduONN9q+ffusr6/Pbrvtttlj8vm83XzzzXbfffed9jyVSsVGR0fhnxCnQ3knGs1S5ZyZ8k4sHNU60QyUd6LRaI4VzUC1TjQa1TrRDFTrRDNQ3olziUU/9HjyySetra3N8vm8vfvd77Z/+qd/sksuucT6+qZ+E6q3txeO7+3tnX0tjU984hPW2dk5+2/jxo2LbZJ4CbBr1y7lnWgoS51zZso7UR/VOtEMlHei0WiOFc1AtU40g3Xr1qnWiYaiWieagfJOnIss+qHHjh077LHHHrMHHnjA3vOe99g73/lO27179+zraXIf8/0p1G/91pSswsy/Q4cOnfZY8dJl+/btyjvRUJY658yUd6I+qnWiGSjvRKPRHCuagWqdaAY//OEPVetEQ1GtE81AeSfORVzxtjrkcjnbtm2bmZlde+219uCDD9r/+B//Y1abra+vDzTkjh8/7jzRm0s+n7d83tWkTuLEkmkdZNbuY3059o1gTbaFkGHNujpeFvV8Rcx3By9rDrKeHMvLxaR5xlrUrBMdkqZwmpxyvXM4bUjmbwN3jO9zIXN1/bmuZUjncq5e/Izue6PyLorjWc+RerqUrOeZpl/NWvl8jXx67pg4WuDU/+xL4bFOnqvBmyfdyLa2lnnPmc2ibl6FNOY5JxLKgbSJi3VHndfr6Khz3vGYZ8+BNB1oPocXsJb01P/P9PlS55zZPPUuiWfHSj19d+d7nIFeqtOfdeIz0ZxnbdDFenww9fyDFkI9X5DF9i2fL+34hLSCPRo/8XSNS2yqNjSq1nlx1bx4qr1O3SfNz5g0mgPS+zRzv7ujl8pdQ687dYXzxbHVSvFPoZ+xdQR7KhnNsRbX0yLm+c1pgnns41Qgnd48ao5ypcqTHnlcJb1yWkd4WfdaBK2o22s5alP+1NhMptvbqLybWnNM9Xtdz5wFzC31WKxPTz3SdICdXK7j4cHU8wZaitq3kNzFNi1+DnD7Nr3dM//fyDk2k/Vm9ZM7OnENtHEj+k6Mjg9BfCzANZSZWWkIfyvRLw1CHIfojxB45N2T4DkTxxeGNMtT6l3E63m6ZieO90N8/73oXVIjaeeWTvTs2LHjcoi3bkePEDOzVb2oGZ7J1dHaT+Zf47LuubNvSllHsC9guVxOfb1SnvLRaFiti8rmTe+JatTGuIBxJUKd7qFR97dehwdRU36yhMf0HUNN84T2G0cPvwCxZzh3VGuoQR9xgpjb176H52hvw/mtWh6G+OAh1MEvxzguHO+uxN3Psx+YT7UtoO/F/l/sF8bFsN68b+bue+ZTf595ZevWrdbR0bHstS7IVk/tkWhPznuxLOVIxtzxlSS8SqH1IPVnhvaxXNsi5/dtaR2dUut89hqJ3b0unIPNSxwfVvYR4Zs8KX427Lnh1DZ+B61HuUmOtwz5OaZ5X7JPCF/P6bybWQs3qtbNhWt4vf3kmaxn6t2fKRSKEHObu8jfaM2aNc5nXHbZZRBPTk7OG7NPCNfKevcyi0Vsc9rPWlpa5o3Zo4Pv59Tb66dRb98893ss19rudHn3/NGh2c8vDmD/Z3I0L1AZq9Zwb2WWcm+J/CudfSrVvrYWvF5tbTgns99Gmi0k3yMIa/N7VhXIdzeXZe8LjIOg/vhz7t84e5z57w2PjeP7uY1s3FSuuNcioM7J0Jw7MTklcVapzD8XQDsXfORpSJLEKpWKbdmyxdasWWN33XXX7GvVatXuvvtuu+mmm872Y4QAlHei0SjnRDNQ3olmoLwTjUY5J5qB8k40GuWcaAbKO9EMlHfiXGBRfxLx3/7bf7M3vvGNtnHjRhsbG7MvfvGL9v3vf9+++c1vmud59v73v98+/vGP2/bt22379u328Y9/3FpaWuwd73jHcrVfvES47777bOfOnco70TCUc6IZKO9EM1DeiUajnBPNQHknGklkU7+JeuDAATMz5ZxoGKp1ohko78S5yKIeevT399t/+A//wY4dO2adnZ12xRVX2De/+U279dZbzczsN3/zN61UKtl73/teGxoashtuuMG+9a1vWXt7e50zn2Lmz2zC2qk/C3P+tCrmP5WjP5eOUv5eqN7nNkPeir8XyWLE9Ge+zp8IOlJI80tVpZ2D27BY+ReG/0I0Td6KzxnRn2rNlbea+bOuX/7lX7b+/v5lz7tyueL87FS75pe38tP6m/KiXn+yFA7nQL02cV9O/QzPwX9yya+7eVQvtnnj6Z+m/XDBOJ9Z5/WFSCl5HksT4XuXO+fmtrtWO33e1ftz1IXItdSVC3Pi+eVWFoIjd7RIyRfmxSBvlUbEdZoklWZer03PeY2qdVE4Z47lMczf29GJSpMtPDt5K65dMcsTOKM+ZW5hOR1+D1+vyNFzhNDjeZzjxJ0PPfpzaJ4U46TOeCW5iTjEep2EJG/laiqY0Z9DezWUe5l7raLp1xqVd3PHjKMowX3l8Xg8gzrk6KKdnfSU0+gUHGm2RVJ3zj3L+XQp2pCGO8TT6+3M2G7kHFuaPCU3VS6hLEWVJDxDXqunrKuc2u/I9VFcpzbVW9OkraHqXSNuY0SyI7T0s4hqS42k9WbkoeZSLpGMV0gnrSdvdZocmfMDPH4h8lYklVCblbeaklJq3Bx7SropNGxjrUp13DgH8XgzszDkPST2Jcvb1ptTPauzH0zdv7G8Le8h613f+a93ves/9Zl1xk7KTxbz+sLKa73xmTj/fe211zak1k0tY+b+t3vMaeMF1Bm3v+rsCZ13L6bvFvoefrleI+bPoQXV27pvOcs8TZXSdBoF4cz1npl/GlXrRkdHZ3/G97oaIW/l3sviz6C5kCY/luQyM6vQPMJyVqUSSvNNTOBcuFh5K25T2s/qxfyZ9eStWMYo7R5fPfnVud9jJg8aNsfO+f4Rrz2c+xj4snO8uXvfuM49Tb7/HNYwrrFEJJelhchbUW6yBGTg8WfwvUqW+ao//jgVnfHG1ge8V6O9tbsPwzhNoirgeyXU7mp16vXK9FpqQXuU5MzEgZeNw4cP28aNG5vdDHGOcejQIduwYUP9A88Q5Z1gljvnzJR3wkW1TjQD5Z1oNJpjRTNQrRPNQHknGo1yTjQD5Z1oNAvJuXPuoUccx3b06FFrb2+3sbEx27hxox06dMg6Ojrqv1mkMjo6+qLtxyRJbGxszNatW7cgw6UzZSbvkiSxTZs2vSj76lxCObcwlHdLi/KuPsq5pUd5Vx/l3dKinFsYyrulRXlXH+Xc0vJizjkz5d2LlRdz3jU653TPbulQ3tVHtW5peank3KLkrRqB7/uzT2pm/qSqo6PjRXcRzkVerP3Y2dm57J8xk3czf5r3Yu2rc40Xaz82IufMlHfLxYu1H1XrXty8WPtSeffi5cXaj5pjX9y8WPtRte7Fy4u5H5V3L15erP3YyJwz0z27pebF2o+qdS9eXqz9uNCcW95fsRJCCCGEEEIIIYQQQgghhGgQeughhBBCCCGEEEIIIYQQQojzgnP6oUc+n7ePfOQjls/nm92UFzXqx4Wjvloa1I+LQ/21NKgfF476aulQXy4c9dXSoH5cHOqvpUH9uHDUV0uD+nFxqL+WBvXj4lB/LQ3qx4WjvloaXir9eM4ZmQshhBBCCCGEEEIIIYQQQpwJ5/RfegghhBBCCCGEEEIIIYQQQiwUPfQQQgghhBBCCCGEEEIIIcR5gR56CCGEEEIIIYQQQgghhBDivEAPPYQQQgghhBBCCCGEEEIIcV5wzj70+MxnPmNbtmyxQqFg11xzjf3whz9sdpPOaT7xiU/YddddZ+3t7bZ69Wr7yZ/8SduzZw8ckySJ3XnnnbZu3TorFot2yy232K5du5rU4nMT5d3CUc4tDcq5xaG8WxqUd4tDeXf2KOcWh3JuaVDeLQ7l3dKgvFscyruzRzm3OJRzS4PybnEo75YG5d3CUc6ZWXIO8sUvfjHJZrPJn//5nye7d+9O/tN/+k9Ja2trcuDAgWY37Zzl9a9/ffK5z30ueeqpp5LHHnssuf3225NNmzYl4+Pjs8f8/u//ftLe3p784z/+Y/Lkk08mb3/725O1a9cmo6OjTWz5uYPybnEo584e5dziUd6dPcq7xaO8OzuUc4tHOXf2KO8Wj/Lu7FHeLR7l3dmhnFs8yrmzR3m3eJR3Z4/ybnEo55LknHzocf311yfvfve74Wc7d+5MPvjBDzapRS8+jh8/nphZcvfddydJkiRxHCdr1qxJfv/3f3/2mHK5nHR2diZ/9md/1qxmnlMo784O5dziUc6dPcq7xaO8O3uUd4tDOXf2KOcWj/Lu7FHeLR7l3dmjvFscyrmzRzm3eJR3Z4/ybvEo786Ol2LOnXPyVtVq1R5++GG77bbb4Oe33Xab3XfffU1q1YuPkZERMzPr6ekxM7N9+/ZZX18f9Gs+n7ebb75Z/WrKu6VAObc4lHNLg/JucSjvlgbl3cJRzi0NyrnFobxbGpR3i0N5tzQo7xaOcm5pUM4tDuXd0qC8WxzKu7PnpZhz59xDj5MnT1oURdbb2ws/7+3ttb6+via16sVFkiT2gQ98wF75ylfaZZddZmY223fq13SUd2eHcm7xKOfOHuXd4lHenT3Ku8WhnDt7lHOLR3l39ijvFo/y7uxR3i0O5dzZo5xbPMq7s0d5t3iUd2fHSzXnMs1uwOnwPA/iJEmcn4l0fvVXf9WeeOIJu+eee5zX1K/zo/45M5RzZ47658xR3p056p8zR3l3Zqhvzhzl3Jmj/jlzlHdnjvrnzFHenRnqmzNHOXfmqH/OHOXdmaP+OTNeqjl3zv2lx8qVKy0IAuep0vHjx52nT8Llfe97n33lK1+x733ve7Zhw4bZn69Zs8bMTP16GpR3Z45y7sxQzp0dyrszQ3l3dijvFo9y7uxQzp0ZyruzQ3l3Zijvzg7l3eJRzp0dyrkzQ3l3dijvzgzl3ZnzUs65c+6hRy6Xs2uuucbuuusu+Pldd91lN910U5Nade6TJIn96q/+qn3p/9/eHeIqDoVhGO4IQCCwRZFugQWwD5aAYwdYNoAkWBRLILAGEjQOj0Ag+MeR3GTEPT2d0DTPk1S14qR53Zemh0NxPB6Lqqp+3K+qqijL8sd7fb1exfl89l4L3dWhuTyaq0d3eXRXj+7q01w9msuju3p0l0d39eiuPs3Vo7k8uqtHd3l0l05zRVH8v3+k17ff76PX68V2u43r9RrL5TKGw2HcbrdvH621FotFjEajOJ1Ocb/fP9fz+fw8s16vYzQaxeFwiMvlEvP5PMbjcTwejy+evD10l0Zz+TSXTnf5dJdOd3k0l05z+XSXTnf5dJdOd3k0l05z+XSXTnf5dJdGcxGtHD0iIjabTUwmk+j3+zGdTuN8Pn/7SK1WFMU/r91u93nm/X7HarWKsixjMBjEbDaLy+XyvUO3kO5+T3PN0Fwa3TVDd2l0l09zaTTXDN2l0V0zdJdGd/k0l0ZzzdBdGt01Q3e/p7mIPxERzXwzAgAAAAAA8D2t+6cHAAAAAABAHUYPAAAAAACgE4weAAAAAABAJxg9AAAAAACATjB6AAAAAAAAnWD0AAAAAAAAOsHoAQAAAAAAdILRAwAAAAAA6ASjBwAAAAAA0AlGDwAAAAAAoBOMHgAAAAAAQCcYPQAAAAAAgE74C180rTDniVI5AAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1402,19 +1375,17 @@ "test example:\n", "true_class: ship\n", "predicted_class: ship\n", - "predicted_prob tensor(0.3574, grad_fn=)\n" + "predicted_prob tensor(0.3574, grad_fn=)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAdnUlEQVR4nO2dW4xk13We/1X3vvfcOBwOB6Z4EUNSsihlTChg4CiWYzCKYUkPEqwHgw+Cxw8WYAH2A6EAkfKmBJEMPQQKRhFhOlBkCZEEEYaQSKBtSE5iRUOaGlIaXjTUzHA49+7p7um6V52Vhy4iQ3r/q5vT3dUT7v8DGt29V+2z99l1Vp2q/dday9wdQoi3P6WdnoAQYjzI2YXIBDm7EJkgZxciE+TsQmSCnF2ITKhsprOZPQLgSwDKAP6zu38+evzM3G7fc+vBtDFQAIeDfrK9KArap96oU1u5XKY2g1FbiZjMeB9uiW0Ofm5lNpHomDc4x+FwQG2laB3JeNH6RnhwgdzQEYNOxZCvffRcl0r83hldqyDytwXHY7M4c+YMFhauJM037OxmVgbwHwH8CwBnAfzEzJ5095+zPntuPYjP/qcn08bgolq4fCHZ3u10aJ8777qb2ubnZqmtWuYLXKumL+5a1Cd4wirGL+DhoE1t01NVaquW05dBhbQDQLnEnfbq1UVqm5mZ4fOopudYseAFIngRGxQ9aguWmPcx3qnVbFFbpcJdptFoUFuvx+c/6HWT7RONCdrHyHP2G//sYdpnM2/jHwLwC3d/xd17AP4CwIc3cTwhxDayGWc/CODV6/4/O2oTQtyEbMbZU++5/sH7UjM7YmbHzOzY6jJ/SyiE2F424+xnARy67v/bAZx784Pc/ai7H3b3w9NzuzcxnBBiM2zG2X8C4B4ze4eZ1QD8LgCy+yaE2GlueDfe3Qdm9ikA/wNr0tvj7v6zqE+5VML0ZFoSKzmfSreZ7lP0+K5po8Z3dqcm+FiVQJIpYZhsr1f4a+ZEjdtKgbzWHabHWhuP7/rWqunxgo1uVCp8h5wpEGvHjOSw9LnVazXaJxA10Gyl5VcgvmPVyHiO4LyCxaoGu/FMgQCAfje94w4AFaIMTNS5fMyk1EjR2JTO7u7fA/C9zRxDCDEe9A06ITJBzi5EJsjZhcgEObsQmSBnFyITNrUb/1YxOCqWDnhhshYA1MppGadaCuSpEg+saZDjATyQBAC67bTUVy5ziaRR4cEM/S4P5CmBz98HvJ9b+ikdBlFjtSqfYySvwfn6G7mPDAsuobVaXEpduHyZ2vbv3cXnQaSoco1f+uVgrcrBehDVEwBQCSSxLgkCi4KX+n1yfQRPl+7sQmSCnF2ITJCzC5EJcnYhMkHOLkQmjHc33hw1soNeDHjanjLSO7jVUrCrTvoAQGnId31rVb6zbuX03KslPvdqiS9xYUGqpYIHTgw6gQpRnkq2d4K0SJOTfDc+yneHG8ir1gxSiT399DPU1idKCADsmv01aqvX0/ezYKMb5sF5FXztS1GevEC5KIr0zroHYznpE23H684uRCbI2YXIBDm7EJkgZxciE+TsQmSCnF2ITBhzIIyhRpK8eVBWp1oicsKQy1PlIJDEgn7VIDdZnwSgDIug2sosz7lmzuVBBBVQikEgDQ3T0uHqyhLtMj3Jc9qViIQG8EomAFCppi+tpSDYZXGF2yaCPH89/lSj10+vVaXGz8sD6W045M/ZIJCPe8Fa1UheOw+kzYLlKAyeL93ZhcgEObsQmSBnFyIT5OxCZIKcXYhMkLMLkQmbkt7M7BSAawCGAAbufjh6fMkcdUtLBkOSmw7g0W03nMOtCPqRHG4AUCF57aJcYWXjUo0HEmAUvTQI8rgNSbTf6rUV2udMtI6B5BVJVIdmJ5PtUS65nx4/Tm2/+sAD1FZEeQOHaTms4bxUUxHInu0Wt9UqfD0GfS4rlivpteoP+DXc7aaPVwRy3Vbo7P/c3a9swXGEENuI3sYLkQmbdXYH8H0ze9rMjmzFhIQQ28Nm38Y/7O7nzOwWAD8wsxfc/YfXP2D0InAEAPYfuG2TwwkhbpRN3dnd/dzo9yUA3wHwUOIxR939sLsfnt+1ezPDCSE2wQ07u5lNmdnM638D+C0Az2/VxIQQW8tm3sbvB/AdW4tWqwD4r+7+38MeXqBMIseKQJookWii9jKXk0CkCQDwEpeuyhN8SWpE8qpVeKSc9ZvUNgzmiGFwTBI5CABOklg2m8u0z8WLfB5Ts9N8rFIgy5FIrt4qH6sRJPu8vLREbc88zyW7qXp6He++807apxLInt3WNWqbqPB+RbdNbUMSxTjk6iDQIdd+kNjyhp3d3V8B8J4b7S+EGC+S3oTIBDm7EJkgZxciE+TsQmSCnF2ITBhrwskSgIal5QmLEuUR6a0eyAzTQRLIuSCpZGmZS2V1UnurwaeOUotLLqVOUHOuxGUoDPm59VbSazUzxY+3azf/stMvz16gtlde5baXfvFUsv3qlSXaZ7XDI8pa/Z9RWwVBokciOb773nfSPr/zrx6htoP791Bbt8Gvx06TX1e9ZnodZ30f7WNtIgEOeaSc7uxCZIKcXYhMkLMLkQlydiEyQc4uRCaMdTe+1+vh1VOnkrZ+n++oXltJ7zwO+zyH22uvvUZtV+s8wqC5yoNrbtmT3rWenuLlk8oVvkPb6/Od00ptgtpKFV5Sqkl2+DslvoMP55fBmXM849gvzy7yefTSc2zM3UL72BTPn8bDcYCpGr9nnT/9UrL93LmLtM+PfvQ/qe2+e3gAzb75WWprry5RW3NlIdnev+9e2md1+WqyvdPlPqE7uxCZIGcXIhPk7EJkgpxdiEyQswuRCXJ2ITJhrNLb6uoqfvS//i5pM+PBKQUJQGm3eXDBqQvnqC1SoYJqR9g1l5ZWphpcCqsHY1WD3HWVOg9cKVW41NciwSQVMncA8DIf68LiKrX1C75YkzPzxMLlxig/XQl8ITsdfh3MzqTP+/3/+N20T3OZS4qdDi+VdeZMWg4DgJMnT1Jbe5COpDq9wIOo2q30OS83g8ArahFCvK2QswuRCXJ2ITJBzi5EJsjZhcgEObsQmbCu9GZmjwP4bQCX3P1do7bdAL4B4A4ApwB83N257jCi1enh2ZdfSdomJ2ZoP/e0XNMdcKlmbhfPFVavcemqF8g4l1fTskvZuCw005iitsGQl6GyKn8dLpf5/K2SHq/e5JF+vT6P9Ftc5DIUgjJJbEl6Qx6VdS2QjXpt3u/QPp5Db8+uW5PtUTmsxauX+fHm+doffs8D1Hb2PI/CXG6nJdgXzqaj4QCgVEr36Q+DXI7U8v/4MwBvzsD3GICn3P0eAE+N/hdC3MSs6+yjeutvfnn/MIAnRn8/AeAjWzstIcRWc6Of2fe7+3kAGP3mGQmEEDcF2/51WTM7AuAIANQnJrd7OCEE4Ubv7BfN7AAAjH5fYg9096PuftjdD9eCjTEhxPZyo87+JIBHR38/CuC7WzMdIcR2sRHp7esAPgBgr5mdBfBZAJ8H8E0z+ySAMwA+tpHBhu5YIRE+HkVQTabTDU4EEtTth+6itn6PS16XL/CSRlcW0lLI/v18y6K+93Zqay5xaaUo8eSLc7v28/Hqu5LtHX7KaA249NaY4tFywz6PiCtbOlKxFkTYVWs8CrDf4LaH3sclr3f+ym3J9k6PS6y/PMmvq5Mv/pza/smv8Ui6Q4fS8wCAM8dPJ9sjGa0gZZ6KoIzaus7u7p8gpg+u11cIcfOgb9AJkQlydiEyQc4uRCbI2YXIBDm7EJkw1oSTViqjWk/LaPtu4dJEg9TyunLlLO3TbKbrwwEAiiB5YVB/bW5fOoLq4Dvupn1m5tJSGADM7uWS3cIiDyIcFvxp65PSclFyzlaLS2i9Po9EA7ieV6ul59io8yjAqvN6f7fMcglw3y5ua5DowX2BfDlb4xGCC2fOUNvpk6eo7dbde6lt+WI6CWt19z7ap1dOr28RJObUnV2ITJCzC5EJcnYhMkHOLkQmyNmFyAQ5uxCZMFbprVyuYNd8WoIoEykBALrddKJHC16rFheWqG1lJYjWqvKorHKRjrw6/dpF2md2hUtXc3PzfKwgoq9L6rkBgFlaOqxXg6d6iicVmfCo5lxQyM7TUXtTQQKTqnMp7/Y9XLKbDKLlmitLyfZBIDcaDxzDOwKZ9cQL6WSqAPDOd97LD0oi2M6d40kqG7vSSTZZXURAd3YhskHOLkQmyNmFyAQ5uxCZIGcXIhPGGwhjRne7W22+w1wm26PlCt+xHg7561ilkg7GAYDCeb9aPV2iau/eA7TP9PQEtTUm+Pzn6txWqdaozUndJQ/ymQ0GfBd8bpavVakU5UhLP5+VINil6PId8rk63/n3AS8NNSTlpnoDvoPfDtSOyZk5ajt9gecU/PnJ71Nbt5tWbPodHpTl5fT8i6F244XIHjm7EJkgZxciE+TsQmSCnF2ITJCzC5EJGyn/9DiA3wZwyd3fNWr7HIDfB3B59LDPuPv31h2sUsUekset6PNyR9MT6ZxgxZAHmVRLXLq6Jch3ZxWef6zWSMtotUAmazT4Epcr/LWWSWgAYOUgAIX0Kxsfq9XkkleJBLQAcXCNE1mutczlqddOvUxti1V+zvMTfB7798wn2xsNHpDT6QWSV4UHBlUmeS68y2fPUduhA+lcczM9vvYr3fQcy8F1s5E7+58BeCTR/qfu/uDoZ11HF0LsLOs6u7v/EMDiGOYihNhGNvOZ/VNmdtzMHjczni9ZCHFTcKPO/mUAdwF4EMB5AF9gDzSzI2Z2zMyOdYKEAUKI7eWGnN3dL7r70N0LAF8B8FDw2KPuftjdDzdInXUhxPZzQ85uZtdHfnwUwPNbMx0hxHaxEent6wA+AGCvmZ0F8FkAHzCzBwE4gFMA/mAjg5VKZUwSeaIfRBpNTKWlrflZXj6pGPCIrEqNR41NTKcj2wDALR1pVAry5xXOo6tK0WttYAoC8+BIyzWDAZcpB8MWta0sXKG26OKpEultdflysh0Azp/j8tT+3VzWmp/ipZVaRL4qAtlzEJxZFD148PZD1HbvPXdS24P3p20vvfIq7fP3z51Itj9d5dLxus7u7p9INH91vX5CiJsLfYNOiEyQswuRCXJ2ITJBzi5EJsjZhciEsSacLLxAs50u5TQzwSUvVhrq0mUeQbWyvMTnUfDXuLuDMj3zu0npqiqX1wzcNhjyqKZejydRbPWa1NbppmW0QW+F9rEhTzjpXT6PqRqXeebn0+WJJmrpCC8AqAR1l+aneZTa3Ay39cj8W8E10Ovy9SiR8loAsGuOy4OTdT7e2VdPJ9vLQRmqB+69J9n+l42gXBc/nBDi7YScXYhMkLMLkQlydiEyQc4uRCbI2YXIhLHXequTqJyFK5dov5NX05FXrI4XAMzv4slzDhzYT229oO5Zv5eWDQvn9bVWWlwma7d5tNkwqF9WDmqs1arp1+9IJmtM8Xp0E0FSySgZSUGi76ameU6DKFlijdQ2A4Bymd+zquS8OwMuoVkwlpHzAoB+n0dunl24Sm2t5nKyvRIkt7z1wO3JdttkwkkhxNsAObsQmSBnFyIT5OxCZIKcXYhMGOtu/HAwwNLVdPDKudd4/rGpqXSgwz+6/920z+69PD/d5CTffe60+e751avpWhn9fhC04nyHdnKSl42am+U7sVN1bpsgu8+VYJd2GATCDAZ8/v0+VyE6pfRutyHYLS7xXfBhkPutHwSMVMrpfINepJUVAOh0uW3hMs/JdyXI13ft2jVqu7q0lGyfmpyifeoze5Ltg2CddGcXIhPk7EJkgpxdiEyQswuRCXJ2ITJBzi5EJmyk/NMhAH8O4FYABYCj7v4lM9sN4BsA7sBaCaiPuzv/tj+ASqWK3fvSQSi7AqmsQgITKg0uXV1b5UEaq6s8H1u9zgNGWKBDEQTP3Laf51yrN3gZqijYxQsexNHspMs8dVa49LNEJEUAWFjk5ZragUx5333pXH7V+Xnah4tyQLnErVFQS7eZPu+zF3hppctX+Dn3elyKbDX5eiwvpYNdAKBGcixG1/BTf/VX6T7X+LW9kTv7AMAfu/t9AN4P4A/N7H4AjwF4yt3vAfDU6H8hxE3Kus7u7ufd/ZnR39cAnABwEMCHATwxetgTAD6yTXMUQmwBb+kzu5ndAeC9AH4MYL+7nwfWXhAA8PfhQogdZ8PObmbTAL4F4NPuzj8Y/MN+R8zsmJkda5PPT0KI7WdDzm5mVaw5+tfc/duj5otmdmBkPwAgmWrG3Y+6+2F3PzwxxQtBCCG2l3Wd3dby3HwVwAl3/+J1picBPDr6+1EA39366QkhtoqNRL09DOD3ADxnZs+O2j4D4PMAvmlmnwRwBsDH1juQA+h7WlJqBGVrKpW0HDZ0ng+sHJQSqgQ5ywKFBw0ilbWbXI5pL/OPLu3gU02lFsyR5JkDAB+mZagXT/yc9jl96hS1DYb83DzIvXfbgVuT7bvn5mifdovn5ItsS1eXqG2BRFm2e2mJEgCGZA0BoBXNYyWSvfj1OFlJu+H5czwS9MKFC8n2TodH7K3r7O7+t+AS6AfX6y+EuDnQN+iEyAQ5uxCZIGcXIhPk7EJkgpxdiEwYa8LJTreDl146kbQ98MD9tN8EkbwKrryhFMRQFQWXjC5e4mWomivpyKVuO5BxgoisSOK58+47qG3fLXv5McmiVIl8CQDzc7PUFkbm8fyQNGnjCy++SPusNnmUV5QEsh+scUGk3maQALIVPJ+toJxXr8tlynpQRuvMxXSU3RJJRAkAwyJ9XkHuTd3ZhcgFObsQmSBnFyIT5OxCZIKcXYhMkLMLkQljld68GKLfSUsendUl2q9EIq88EBpKJIkfAAyDBJEvv/wStV1bXkq21wJZpVbnSTFZIk0AKAZcHiwNAs2R1Pras3s3P14Q6ddqczmsHdheffXsWx7LgluPl7ix1eOyHJOvmld4Ashq8HwO+kFdvCF/zppBwskBSdw5DI4Xi2xpdGcXIhPk7EJkgpxdiEyQswuRCXJ2ITJhrLvxJQMmKunXl16ws9uopLdwrcR3s0tRnrlgt3V2dprPo5oeb3pqkvYpB7n1JoPyVdGu78svvEBty4vpUk7LQRrvYZBLrlrjaxzl8qvX0gE0FpS1apHSVQBwaTGdSw4AWkGQTJlcI7vm5mmfXpDHrRUkDhz0+ToW4c46kSiMSxcWSRcE3dmFyAQ5uxCZIGcXIhPk7EJkgpxdiEyQswuRCetKb2Z2CMCfA7gVQAHgqLt/ycw+B+D3AbyeQOsz7v69dY6GEpFChkFwh1m6TxQs0u0GUlMQCDNBSvEAQKmazuPWbvK8ZN1FXsLnTIvLjUWQV81IXjUAqJI5Vipc5qs2AgkzuEJ6PT7Ha1fTMlqnE+SZ6/DSSkH8DBpBkEy/nQ6i6oOfczvIQRfZiiApogURQAPiEz7k51WrEjk6kOQ2orMPAPyxuz9jZjMAnjazH4xsf+ru/2EDxxBC7DAbqfV2HsD50d/XzOwEgIPbPTEhxNbylj6zm9kdAN4L4Mejpk+Z2XEze9zMdm315IQQW8eGnd3MpgF8C8Cn3X0FwJcB3AXgQazd+b9A+h0xs2Nmdqzf5Z/JhBDby4ac3cyqWHP0r7n7twHA3S+6+9DdCwBfAfBQqq+7H3X3w+5+uFrn3yEXQmwv6zq7mRmArwI44e5fvK79wHUP+yiA57d+ekKIrWIju/EPA/g9AM+Z2bOjts8A+ISZPYi1ZFinAPzBegcaDgdYWbqStLWuLdF+l86lI6g6nS4fa8Bt/T4v09PvcznJScmdUpnLKtUqlwcrJAIQAMpBfroKib4DeI63/pDLje0mX49ul8uK15a5DOVkGadmuQRYDiQ073NZq7vKPx4OBulzW+7y6yOS14ZB6TCLSo55kDeQUAlKdlmRXuBIotzIbvzfkmOso6kLIW4m9A06ITJBzi5EJsjZhcgEObsQmSBnFyITxppwst/t4MKpdHklDyKGWBmcKJKoUg9ki0AqsyDJX62aTh45WeNfFoqOF0VJDYKot9VVLqP1uul+hfN5lCxKlMhluVp9itr2H7wt2b66yssgrVy9Sm2DHp+HRxGCRIxq9SK5LpBfg4jDSPeKZLkquY7L4NdHq5WO6iwCaVB3diEyQc4uRCbI2YXIBDm7EJkgZxciE+TsQmTCWKU3Q4FykY4oKoZcZmDJFyPpbRhkSiw5twVKGbrDdKTUoM8jwyLJi0mK61EJkmJWa2l5sBxEUFUCOSlKBNqo83nUJ9LzWFzg0WbNazxJaDWo61cOkiz2SHTbIIhCc/D1iKTUUhC1FyUJbVTS57a6skT7tJppCVPSmxBCzi5ELsjZhcgEObsQmSBnFyIT5OxCZMJYpTe4oyCJD6NoIifZC73gMoj3AzkpkLyihH1GpJVhkByyXE0nywSAej0tTwFAOZCaSsF47Kw9kGSG/Q63BckXe1WePLLdTsuRkbwW1rer8XPutHgEG7uuPLjNBXFtofQW9atEyTR7aXnw6sJF2qffIxK2pDchhJxdiEyQswuRCXJ2ITJBzi5EJqy7G29mDQA/BFAfPf6/uftnzWw3gG8AuANr5Z8+7u48iRiAwh0dkkssCu5wsgNaDvqUgsCPUjnoF+yash3yaHccgY3t7gNxTr4oR9qQlAXqD/gubbnDd9z7q3z3fBgoBlPdPcn2aMe9FOx0d9tcMQApyxVRRLnkAqK1r1T5NReV81q8eCnZ3g9Kb0UBW4yN3Nm7AH7D3d+DtfLMj5jZ+wE8BuApd78HwFOj/4UQNynrOruvsTr6tzr6cQAfBvDEqP0JAB/ZjgkKIbaGjdZnL48quF4C8AN3/zGA/e5+HgBGv2/ZtlkKITbNhpzd3Yfu/iCA2wE8ZGbv2ugAZnbEzI6Z2bHiBpM1CCE2z1vajXf3JQB/A+ARABfN7AAAjH4ndxnc/ai7H3b3w+FGlhBiW1nX2c1sn5nNj/6eAPCbAF4A8CSAR0cPexTAd7dpjkKILWAjgTAHADxhZmWsvTh8093/0sz+N4BvmtknAZwB8LH1DmSlEqr1dPBEKZBxqkSiimQyD/KShcEukSJDJB4WqAMAIHnrAGAYyGtFIJUN+kH5JyJttgN5bdgOSiEFgTBTwRwn5vamj9fjc+93eImnSJaLoIErUbmx4BqI8tNNlfk111zhqvQKyzUXzKNEciwa+Pqu6+zufhzAexPtCwA+uF5/IcTNgb5BJ0QmyNmFyAQ5uxCZIGcXIhPk7EJkgkW537Z8MLPLAE6P/t0L4MrYBudoHm9E83gj/7/N41fcfV/KMFZnf8PAZsfc/fCODK55aB4ZzkNv44XIBDm7EJmwk85+dAfHvh7N441oHm/kbTOPHfvMLoQYL3obL0Qm7Iizm9kjZvaimf3CzHYsd52ZnTKz58zsWTM7NsZxHzezS2b2/HVtu83sB2b28uj3rh2ax+fM7LXRmjxrZh8awzwOmdlfm9kJM/uZmf3RqH2saxLMY6xrYmYNM/s/ZvbT0Tz+7ah9c+vh7mP9AVAGcBLAnQBqAH4K4P5xz2M0l1MA9u7AuL8O4H0Anr+u7d8DeGz092MA/t0OzeNzAP5kzOtxAMD7Rn/PAHgJwP3jXpNgHmNdE6xFYU+P/q4C+DGA9292PXbizv4QgF+4+yvu3gPwF1hLXpkN7v5DAItvah57Ak8yj7Hj7ufd/ZnR39cAnABwEGNek2AeY8XX2PIkrzvh7AcBvHrd/2exAws6wgF838yeNrMjOzSH17mZEnh+ysyOj97mb/vHiesxszuwlj9hR5OavmkewJjXZDuSvO6Es6dSh+yUJPCwu78PwL8E8Idm9us7NI+biS8DuAtrNQLOA/jCuAY2s2kA3wLwaXdfGde4G5jH2NfEN5HklbETzn4WwKHr/r8dwLkdmAfc/dzo9yUA38HaR4ydYkMJPLcbd784utAKAF/BmNbEzKpYc7Cvufu3R81jX5PUPHZqTUZjL+EtJnll7ISz/wTAPWb2DjOrAfhdrCWvHCtmNmVmM6//DeC3ADwf99pWbooEnq9fTCM+ijGsia0livsqgBPu/sXrTGNdEzaPca/JtiV5HdcO45t2Gz+EtZ3OkwD+9Q7N4U6sKQE/BfCzcc4DwNex9nawj7V3Op8EsAdrZbReHv3evUPz+C8AngNwfHRxHRjDPP4p1j7KHQfw7OjnQ+Nek2AeY10TAL8K4O9H4z0P4N+M2je1HvoGnRCZoG/QCZEJcnYhMkHOLkQmyNmFyAQ5uxCZIGcXIhPk7EJkgpxdiEz4vy3hjABKxLmJAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGdCAYAAAC7EMwUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAue0lEQVR4nO3de2zcZX7v8c9cf77EniQkvm1M6l0SdklCjpawkJSFQIuFe8qBzVZiF2kV1BYty0WKsivawJGIKjVG9BCxUkrabisKKhT+KFAkWCBtSLLbNKuEwklO2GUDBOKQGBMn9thje67P+QPFqsmF55vYPLbzfkkjxTPfPH5+v+c38/VvLp+JOeecAAAIIB56AgCACxdNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQTDL0BD6vUqnoyJEjqqurUywWCz0dAICRc04DAwNqaWlRPH72c51J14SOHDmi1tbW0NMAAJynrq4uzZs376w1E9aEHn/8cf3VX/2Vjh49qkWLFumxxx7Tt7/97S/8f3V1dZKk//Pcf6i6ZobfLyuXved1/Ngn3rWSlM+PeNf+TttXTWPPrK/3rk0mbGeF6VTCv/YL/lL5vJSxPhnzT4Yql/33tyTNqPE/hK370FKfiPnvb0nq6zthqp9R53lfkJRKpkxjJw1zj8Vt+7BUKXjXGg8rk3jMNvjQ0LCpPpn034dRVGUau1jw34elon+tJFUZ5hKL+2/jwMCAlly2YPTx/GwmpAk999xzWrNmjR5//HH97u/+rv72b/9WHR0deuedd3TxxRef9f+efAquumaGqmu/eAMkSeWS99yqhga9ayXbjq/xne/J+hn+9amE7U5kakLWsSeyCZVsD6Azav3rUxPZhAzHiSSVDMesJK8780mpFE3olLGNTSiRsD00JpP+9VVVtiZUsDShQt40dnVVtXet5bFw9P94vKQyIcu+ceNG/cmf/In+9E//VN/4xjf02GOPqbW1VZs3b56IXwcAmKLGvQkVCgW9+eabam9vH3N9e3u7du7ceUp9Pp9XNpsdcwEAXBjGvQkdO3ZM5XJZjY2NY65vbGxUd3f3KfWdnZ3KZDKjF96UAAAXjgl7FvbzzwU65077/OC6devU398/eunq6pqoKQEAJplxf2PCnDlzlEgkTjnr6enpOeXsSJKiKFIUReM9DQDAFDDuZ0LpdFpXXHGFtmzZMub6LVu2aMWKFeP96wAAU9iEvEV77dq1+sEPfqBly5Zp+fLl+ru/+zsdOnRId91110T8OgDAFDUhTei2225Tb2+v/uIv/kJHjx7V4sWL9corr2j+/PkT8esAAFPUhCUm3H333br77rvP+f/X1kSqqfF7rSju/Dcjn7O9/lQpDHnXVqVtH+SrrTZ82t8YoxeXf4pElLQ9K1udttXHVfGuzRvSLyQpSvp/8C+dMs7bsM8tn5j/bC62+rjhA78xw/6WpCid9q41fq5ZuaGid631tYG0Yd5Oxv1t/FBuyvBhVeuHiYt5/w+gJo0fyq22vB5vyPIspP23kRRtAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwExbbc76SKikZK3nVWiJq0glbpEkqboi/ifvN96Qqw1xSCVuMSH7YP24okbBFGVUl/b+XXpKK+RHv2rhs+9CV/Md2MdvhXpZ/VE46ZdsnlhgeSZLzPw5jxr8tyxX/aJ2hIf/jSpJ6P/3Uu7ZxzizT2DFDtE4ibVv7hGHtJSlhWE9jepSShu3Ml233n6ThcaVY9B/bGebBmRAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgmEmbHZeOl5X2zG2rlAre4ybkn5MlSam4Id/NOHa87J/DlU7Z8t1iCf+ssVTcf/99Vm87bCox//Hjlbxp7NKIIdsvUWsae6TgP++aGlt2XMKQByZJqhgyD50t9yw34p+/9+ab/2Uau2jIMJxVf6Vp7Cjy/xvaGL2omLNlTKrifxzGjbl0MUNuYKVizF40zNsZxrbUciYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAhm0sb2pJIxpZN+WRsu5p/JkYrbIjNU9o+RScgWmREzjJ1SwjR2seQfxVKu2DJNEvVpU33MGeKMKrYIoUrJEK9StkUfDWb7vGtn1FSZxo4bo3VKBf9jJZmy3a37hvyjdY5n/WslqTrp/3duwXb3UaHov/bJtG1/O2NsT7nsf4yXDDFjklQwrH06aVt7Z4iDqpQN8UGGWs6EAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMFM2uy4KFZWFPPLHyrH/EOnUnFbJlQx75/BFjdmx7mKYeyYbamScf+5JBPG7LiYIQtOkjNk5EnGTLWK/1zKss17cCDrXXvIcJxIUtyQqSbZssxa62tMY/d++ql37f/du9c09uWLFnnXVozHYb7sn8FW5VKmsSvGDMPhIf/6dNL2GFQq+uf1JZK2tS+W/B8n8nn/eRQKw961nAkBAIIZ9ya0fv16xWKxMZempqbx/jUAgGlgQp6OW7Rokf7t3/5t9OdEwvY1BACAC8OENKFkMsnZDwDgC03Ia0IHDhxQS0uL2tra9L3vfU8ffPDBGWvz+byy2eyYCwDgwjDuTeiqq67SU089pddee00/+9nP1N3drRUrVqi3t/e09Z2dncpkMqOX1tbW8Z4SAGCSGvcm1NHRoe9+97tasmSJfv/3f18vv/yyJOnJJ588bf26devU398/eunq6hrvKQEAJqkJ/5xQbW2tlixZogMHDpz29iiKFEXRRE8DADAJTfjnhPL5vH7961+rubl5on8VAGCKGfcm9JOf/ETbt2/XwYMH9atf/Up/9Ed/pGw2q9WrV4/3rwIATHHj/nTc4cOH9f3vf1/Hjh3T3LlzdfXVV2vXrl2aP3++aZxEKa9EyS9qo2KItYiXjHEc/YZ36xliLSTJxf1jZBLVtqVKG+Js0knb57hixZypvmzZL2XjXJL+US8uZlv7XK7fu/aTT2xrX1s/w1Tv4v5/L7qk7VgpDPrPvSple+r8074+79r/+n+2SKDayP9YueSrXzWNnTTGR+WHBrxrq5O2sSt5/wiccskWCVS2pBmNGB4LRwa9S8e9CT377LPjPSQAYJoiOw4AEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEMyEf5XDuYpiTlUxv4ylmPPPYrJmx0Wu7F07o+KfYyZJGflnX8X7bXltUcV/3lW2KCvFh/yzrCQpPuKfTZaOG7/Wo+y/zwtZ29rX1frPZdbs2aaxDx7uNtV/0OVf/9v3/t009oljfd61gyO2fThU3O9dm5Rt7IIh22/JpQtNY/+v/3mTqf4rjRd51+ar/O+bkjSS87/vF3K246rezfWujQ375+PFDHPmTAgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEMykje35+NAh1dTUeNUWi/5xHwNZ/+gJSSoX8961H3/8sWnsE1HKuzY3mDWN3XCRf4zMjNoq09iJpC12pFAsedcm09WmsePJtHdtzhAfJEkjcUMMk7PdlQ4dOWaqP3j4uHdtruC/TySpKtPgXRurrZjGnmGorU3b/iY++tFvvWuPHPnENPYvfvEfpvpvLPiqd+3cmfWmsYcH+7xrc9le09jFb1zqXTvYf8J/HoZoL86EAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMFM2uy4nb/arSiKvGpjsYT3uJWKLfdseDjnXfth9xHT2JZosqTxz4VZGf98qtoqW9ZYZJi3JKWS/uuT9Fzzk+JJ/9y7oRH/jEFJShr2oUvY5t19fNBUX6z4HwA1dTNNY0v+2X6FQVv+Xlz+B8vIiP99TZLq6/zX5+orlpjGzvX7Z/VJ0sjIiHftoUP+GWyS9P7773vXDpecaeyPev0z3oaH/Ncnn/fP3ORMCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABDMpM2O2/f+h0qmUl61NdV13uM655+TJUn5kn9WVmbWRaaxo7R/7lnBmKv16aB/llUiZguDq6uqNdWXykXv2ljK9ndRIuG/D2NJ27yjnN/xJ0mFYtY09vHjtmwyyT8TzLicKpT9c74Gcv5ZY5JUGPYfu3XubNPYF81q8q7N5fpNYx8/8altLjP9j8NlSxeZxj589GPv2v5h/5xGSfrN4V7v2njcf+xCwf8+z5kQACAYcxPasWOHbr75ZrW0tCgWi+nFF18cc7tzTuvXr1dLS4uqq6u1cuVK7d+/f7zmCwCYRsxNKJfLaenSpdq0adNpb3/kkUe0ceNGbdq0Sbt371ZTU5NuvPFGDQwMnPdkAQDTi/k1oY6ODnV0dJz2NuecHnvsMT344INatWqVJOnJJ59UY2OjnnnmGf3whz88v9kCAKaVcX1N6ODBg+ru7lZ7e/vodVEU6brrrtPOnTtP+3/y+byy2eyYCwDgwjCuTai7u1uS1NjYOOb6xsbG0ds+r7OzU5lMZvTS2to6nlMCAExiE/LuuNjn3iPqnDvlupPWrVun/v7+0UtXV9dETAkAMAmN6+eEmpo+e99+d3e3mpubR6/v6ek55ezopCiKFEXReE4DADBFjOuZUFtbm5qamrRly5bR6wqFgrZv364VK1aM568CAEwD5jOhwcFBvffee6M/Hzx4UG+//bZmz56tiy++WGvWrNGGDRu0YMECLViwQBs2bFBNTY1uv/32cZ04AGDqMzehPXv26Prrrx/9ee3atZKk1atX6x//8R91//33a3h4WHfffbdOnDihq666Sq+//rrq6vyjdSRpoOSUiPlFlbiK/wldTc0M0zyqDbEw81q/Zhq7aIi2+PQMb+w4k2O9/nEcjY0NprGjOfNM9bk+/7lU4hXT2JlZp3+a93SiaJZp7BH/5dFQyfauzqraelN9uTjoXZuIlU1jpxP+T4en0rZYmGKVf/23vmmLs1k4v8W7dqRgi706+L7//V6S3n/3He/a5VcuMY3d2uq/nYf2fmQau1j2j4OqlP0jz4pF/2PQ3IRWrlwp58488VgspvXr12v9+vXWoQEAFxiy4wAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwYzrVzmMp2RUq2Qq7VU7t8E/W6kqbeu7x44d9q7N5QZMY6ty+u9YOp2Ron9ukyRl5jZ5136l7RLT2HUZWwZb/Rz/bLre4ydMY5cr/oewIc5KkjQ87J83NjTkn+0mSYXisG0y8g+yS6dtd+uqqNa7NuUKprEb6v0z8ubOsuXpVaX878tzDRmDklSfTpnqew8d8q796P0PTWM3zZ7jXdv/yS7T2KnZc71rCwnDfS3u/9jGmRAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIJhJG9szM3ORUunIqzZhiJPI50dM84gZ+vTx3j7T2Nmsf9RLIuW3L0brKwnv2o8+/sQ0dn3WFjmTycz0rk0kqkxj50f8Y2RiMVv0UZQy3D1qa0xjVzvbesaT/jEochXT2LXV/nNPOf/4IEmad5F/JFBN2v+YlaRcts+7tmSMVYo5U7naDNFXv/7NB6axFy681L+4bDvGjxz52Lu2atZs79pS0f9+yZkQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIJhJmx2XSEXeeWlDw/45RQljKFQi6Z9lVi7benoyOcO7tuJsY6ejOu/aOXOaTWPPmFFtqq+q9t+HmciWHZdMpb1rXcyQvybJlf2PlVLJlqmWqfdfe0mKx/3nUin73x8kKen86yt5WwZbJvLf566UN41dLvvXF0q2XLphQyahJNXUZbxrP+ruNY39zvuve9fm87Zcx+KIf9acS/jvw1LR//7AmRAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIJhJG9sze06D0pFfPEylWPEed0Z1yjSPStk/BiMVt0XONDS0eNfGkrZ5p6v8o3XSxqicqirbYZNI+v+tY43WiSUM9caxEzH/eQ/lbHE2ced/zEpSlPLf584Q8SNJQ/3+MTIff3jANPbxlP8+n1ltO64aL5rpXVtVVWMae6TgH2cjSS7pFzEmScmaetPYnx4+4l3b2jzXNHZdwf84zOb990nJcHrDmRAAIBiaEAAgGHMT2rFjh26++Wa1tLQoFovpxRdfHHP7HXfcoVgsNuZy9dVXj9d8AQDTiLkJ5XI5LV26VJs2bTpjzU033aSjR4+OXl555ZXzmiQAYHoyvzGho6NDHR0dZ62JokhNTU3nPCkAwIVhQl4T2rZtmxoaGrRw4ULdeeed6unpOWNtPp9XNpsdcwEAXBjGvQl1dHTo6aef1tatW/Xoo49q9+7duuGGG5TPn/5bEDs7O5XJZEYvra2t4z0lAMAkNe6fE7rttttG/7148WItW7ZM8+fP18svv6xVq1adUr9u3TqtXbt29OdsNksjAoALxIR/WLW5uVnz58/XgQOn/5BbFEWKIv8PegEApo8J/5xQb2+vurq61NzcPNG/CgAwxZjPhAYHB/Xee++N/nzw4EG9/fbbmj17tmbPnq3169fru9/9rpqbm/Xhhx/qgQce0Jw5c/Sd73xnXCcOAJj6zE1oz549uv7660d/Pvl6zurVq7V582bt27dPTz31lPr6+tTc3Kzrr79ezz33nOrq6ky/p6a6TmnPvKfiSMF73OpaW07azPoG79pKyZbZlUynvWurZ9j2n4slvGvjCdthUHH+Y0tS3HLCbTw3d4Z6J1teW6nknxtYKg+Zxs72HjPVW1YoZcyOG+z/1Lv26BH/HDNJapztn5M2s3aOaewhQ+5ZxZBfKEkl40OjK/vv86/Ms73mfemCr3rX/o/L/Gsl6bcfdHnXvrXv1961hcLp34h2OuYmtHLlSjl35h3+2muvWYcEAFygyI4DAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAAQz4V/lcK5yI3kVPYPB6qr9c9USxpy0nk97vWuz/X2msSsV/78BLll4qWnsmbP9c7gSKVsWXEy2+lLZP+PLkjklSUOFnHftSN6W71Yq+H/Lb6xcNI3tzvAlj2dSm055186cOds0dnV6rndtMmbLpZs5wy//UZIydf61klQw7MMhw33ts7Ft6xmPlbxrZ2X88/QkqSbyn/vhro9MYycMy7no0gXetcPD/rmLnAkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKZtLE9UTKldMovqqT3WI/3uO+fOGaaR7nsHw0yc9Ys09jNzY3etYWSLUakWBjxrq24smns7JB/VI4kDQ/7x+WUS7Y4m0TcP3cknbL9zWWJyqmqrTaNXZ2y3fVGhga9ayvyj0mSpNoZM7xrE7GYaex0wj/iKZGwrU/KsD4jJf9YHUmKGeYtSTHDPi8WC6axD/ee8K4dyvWbxk4mI+/apuZ53rWxhP/+5kwIABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEMykzY7r7zuuVFTlVXvk4yPe49bW1pjm8fXLlnjXzp7TYBq7psY/b2xk2JbXduLEce/aYtGW1zbkbNlXNTV+6yhJmXr/LCtJqo3866sNWWOSlDTkpJXLtmy/Usm2D4tF/3y/kbgxJ03+2xmP2zLVymX/bL+if6kkKZlIe9e6in+WoiSN5G31vZ/6Z1Ie67XlVw4MDHjXnujrM41dW1PrXRvVXeRdOzLiv/84EwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABDNpY3tmzZmrdJVfxM4sQ1xOMmGLHUlW+UfODAwOmsYeHMx610aRLXKmWPSPhamUbJEzLY1zTfVRlX+8SiJuy25xFf+ImtzIsGnskax/XEqfISZJknqPf2qqHzbENn3jG5eaxk7NnOld6x/w85lE3P9/jJRscUP5nP/6HO7uMo396THb+hQK/ve3oZwtgqu/r9+7Np2wPaRbHrP+fetW79qS4TGFMyEAQDCmJtTZ2akrr7xSdXV1amho0K233qp33313TI1zTuvXr1dLS4uqq6u1cuVK7d+/f1wnDQCYHkxNaPv27brnnnu0a9cubdmyRaVSSe3t7cr9t9PLRx55RBs3btSmTZu0e/duNTU16cYbbzQlwQIALgymJxBfffXVMT8/8cQTamho0Jtvvqlrr71Wzjk99thjevDBB7Vq1SpJ0pNPPqnGxkY988wz+uEPfzh+MwcATHnn9ZpQf/9nL5jNnj1bknTw4EF1d3ervb19tCaKIl133XXauXPnacfI5/PKZrNjLgCAC8M5NyHnnNauXatrrrlGixcvliR1d3dLkhobG8fUNjY2jt72eZ2dncpkMqOX1tbWc50SAGCKOecmdO+992rv3r3653/+51Nui33uGymdc6dcd9K6devU398/eunqsr2VEgAwdZ3T54Tuu+8+vfTSS9qxY4fmzZs3en1TU5Okz86ImpubR6/v6ek55ezopCiKFBm+ohkAMH2YzoScc7r33nv1/PPPa+vWrWpraxtze1tbm5qamrRly5bR6wqFgrZv364VK1aMz4wBANOG6Uzonnvu0TPPPKN//dd/VV1d3ejrPJlMRtXV1YrFYlqzZo02bNigBQsWaMGCBdqwYYNqamp0++23T8gGAACmLlMT2rx5syRp5cqVY65/4okndMcdd0iS7r//fg0PD+vuu+/WiRMndNVVV+n1119XXV3duEwYADB9xJxztrCuCZbNZpXJZPSD//0z7+y4qir/15SSSVsGm1zFuzQRs+3KVML/2dB00pZ5F3Nl79rhnC3zrsr6Gp7hSd9k2vZemXjKv96Vbdlk7+7d51370YcfmsYulf2zxiTJGdbzmhXLTWO3zb/Yu3Z4aMg0tqW+70SfaezeE73+8yjYcgPLxmNlyLKdxo+hxA0P0TOjatPYR48c8a490zucT6dSKav70Pvq7+9XfX39WWvJjgMABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABHNOX+XwZXjvvd8qmfaLh1m06DLvcaur0qZ5VPxTexTX6b8z6cxj+0exfNLTYxo7l+33rs0PGyNNSrZIE0sEylcv+R3T2HMb5vjPw7KYklKGiKeZmbNHk3xeZDwOE4bUppH8iGns37z7rnftoDHiyTKXovG4qhjibHIDA6axh4z3iaGhnHdtIW+LbIpS/g/Thz751DR2X1+fd2254r+/K4ZazoQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwUza7LhifkCu4pexNDLY5z1uvGzLbXIyZCAlbLuzXCp61x448FvT2AP9fd61aUM2lSSloypTfdIQfFYp+efpSVK8ZMiDK/uvpSRdNHu2/zxssYEaGrZlsA0b6ru6DpvGtsw9Zvyz1cX9/8NQwZZ5Z8k9yx3zz1KUpJTxPlEq+t+XS2XbMZ7r8597adg/w06Syqa52O4/vjgTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEM2lje6qTcSWTfj2yYIg0qUra8lVicf/ImXjC1tPjhmiQ+voZprGrUv7znlFbYxo7URWZ6muq/GN+LPEnknTgN7/xru0/ftw0dn9uwLu27GxRLKm0//pIUtJwbEXptGnsWNw/jmVoZNg0ds/xXv+x87bYnoThvjkrM9M0dmHENpehYf9jpVS0HSsVU7SOMT8q5l8fM2Q2xWKGuDPvSgAAxhlNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQzKTNjovHEop7ZkOVSxXvcWMxW2ZXpeSf25TP++dHSVK55J+TVp20LVU8lfKuHc7lTGPnjx8x1R8a8s/2q5RKprFjzj+jKmXYJ5KUTPpn3qWqbMdV3HjPKxT898vACVu+28iI//qMjAyZxrYkmVXFbX8TF4cL/rWyrc/wsG0fWuorFf/HK0mKxf33YsmQpydJruy/z9Mp/3lUKv6Pm5wJAQCCMTWhzs5OXXnllaqrq1NDQ4NuvfVWvfvuu2Nq7rjjDsVisTGXq6++elwnDQCYHkxNaPv27brnnnu0a9cubdmyRaVSSe3t7cp97umcm266SUePHh29vPLKK+M6aQDA9GB6ZvrVV18d8/MTTzyhhoYGvfnmm7r22mtHr4+iSE1NTeMzQwDAtHVerwn19/dLkmbPnj3m+m3btqmhoUELFy7UnXfeqZ6enjOOkc/nlc1mx1wAABeGc25CzjmtXbtW11xzjRYvXjx6fUdHh55++mlt3bpVjz76qHbv3q0bbrhB+Xz+tON0dnYqk8mMXlpbW891SgCAKeac36J97733au/evfrlL3855vrbbrtt9N+LFy/WsmXLNH/+fL388statWrVKeOsW7dOa9euHf05m83SiADgAnFOTei+++7TSy+9pB07dmjevHlnrW1ubtb8+fN14MCB094eRZGiKDqXaQAApjhTE3LO6b777tMLL7ygbdu2qa2t7Qv/T29vr7q6utTc3HzOkwQATE+m14Tuuece/dM//ZOeeeYZ1dXVqbu7W93d3aOfFh4cHNRPfvIT/ed//qc+/PBDbdu2TTfffLPmzJmj73znOxOyAQCAqct0JrR582ZJ0sqVK8dc/8QTT+iOO+5QIpHQvn379NRTT6mvr0/Nzc26/vrr9dxzz6murm7cJg0AmB7MT8edTXV1tV577bXzmtBJA/29SqTSXrVDA33e4/Yc8RvzpJGR07+r73TKJf9aSSoWDdlXRVummqv4Z6rFE5aELymV8s+FkqRk0v+EO5GwZV8lU/71hgguSVKx7J/tN5zzX0tJyudteX0D/f7ZZM52qKi23j8jL2HMd3NF/5y0/KAtl65U8t/n/Wd4d+6ZWLPjyoastJgpUU+qOFvWnEUy6Z+nGKv4H1iWLSQ7DgAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQzDl/n9BE++TQe4on/KbnKv6xFuWyLXImZsh6SUb+ERiSFDPE5cRitqiPdMr/6zFq0jWmsa1zqRjWp1SyZc4MDvpH6xTytrErzn874zHbcVUp22J+0lGtd23jV1pMYw8O9nvXZk+cMI1dKvhvpzOuvSX+ZqhgjQQyxmR9QaTZGMb4KMt2pozZVAn53zeHhga8ay33ec6EAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMFM2uy4RGVE8VjCq7ZS9s8pqljzqQxZTOW4bXfGnX+9Ma5N+XLeu7ZUzJnGtmSqSfa8Potk0n8fptL+eXqSlEj6ZwEmLdlhksol/2NWkqoi/+2Mqm3bebzX/1jJDfjnh0lSKu53H5akRMz2N3EhbzjGnW1/O9nW05KnGI/btjNmOLaqkv77W5IGs33etUM5/4xBZ9jfnAkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKZtLE9lXJRkl/0gzPEWjhni+1xFf84Dlc0RrcY4myMqT2KGaJByglb1EcilTbVR5F/jEzCEPMiSXHD3G2rI7mK//qUiyOmscvDw6b6QqrKu3Z42BbDZIniMcdepf3XZ2RoyDS26X5v/HPbeqxYYnusYycN92VX8I8ykqQTvZ941xYL/sesZW04EwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEM2mz40aKBcXLfrlTyaT/ZjhDxpMkJQxjx5Mp09jxhGFsQ36UZMtgs+SvfTa4rd6SY+cqfnmBJ5UMWWblii33rFjyz45LjNiy4IqD/nltklQ2rGdt/iLT2JY8uLjx/pMfNmTqVaypapahJ25syXYcJlO2x4mE4f52/JMe09jFvH/OoG3pyY4DAEwBpia0efNmXX755aqvr1d9fb2WL1+un//856O3O+e0fv16tbS0qLq6WitXrtT+/fvHfdIAgOnB1ITmzZunhx9+WHv27NGePXt0ww036JZbbhltNI888og2btyoTZs2affu3WpqatKNN96oAUNUPADgwmFqQjfffLP+4A/+QAsXLtTChQv1l3/5l5oxY4Z27dol55wee+wxPfjgg1q1apUWL16sJ598UkNDQ3rmmWcmav4AgCnsnF8TKpfLevbZZ5XL5bR8+XIdPHhQ3d3dam9vH62JokjXXXeddu7cecZx8vm8stnsmAsA4MJgbkL79u3TjBkzFEWR7rrrLr3wwgu67LLL1N3dLUlqbGwcU9/Y2Dh62+l0dnYqk8mMXlpbW61TAgBMUeYmdOmll+rtt9/Wrl279KMf/UirV6/WO++8M3r757/m1jl31q++Xbdunfr7+0cvXV1d1ikBAKYo8+eE0um0LrnkEknSsmXLtHv3bv30pz/Vn/3Zn0mSuru71dzcPFrf09NzytnRfxdFkaIosk4DADANnPfnhJxzyufzamtrU1NTk7Zs2TJ6W6FQ0Pbt27VixYrz/TUAgGnIdCb0wAMPqKOjQ62trRoYGNCzzz6rbdu26dVXX1UsFtOaNWu0YcMGLViwQAsWLNCGDRtUU1Oj22+/faLmDwCYwkxN6JNPPtEPfvADHT16VJlMRpdffrleffVV3XjjjZKk+++/X8PDw7r77rt14sQJXXXVVXr99ddVV1dnnlgqXeUdJxM3RJqkjPE3lrgcF7ONbUnBiFlTRwwRKM7Z4mxUztvKDVE8FUNUjiSVikXv2kKhYBp72BDFUx4eMo1dGrbF/NQa9kt1Zo5tLgX/fVgcse1Da8yPxdleaz6FMQ6qbLy/OUNMTW3C9jiRy57wrs1m+0xjG6ateNwQjyansvyOq5hzExyqZJTNZpXJZNS8YNGENCFrBtukaUKmkaW4YS7mx4mYrVFUaEKnMDehixq8a1su+bpp7IHeXu/afM62nZOlCZU0eZpQfU21aezhgX7v2mNHbW/scs7//pMwZF0651QsFNXf36/6+vqz1pIdBwAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACMacoj3RTgY4VMqGT85bPt1sDYgw1LuY7VPZE5mYIEt6gzkxwbadzpKYYFl3Y32lYhvbMm/njPvEeBxa5lIu2WKYJnIf2uM4LEP7j10xJiYYUq8k2RITzMe46Tg0HleWx7dzqPX5P5Mutufw4cN8sR0ATANdXV2aN2/eWWsmXROqVCo6cuSI6urqxvylk81m1draqq6uri/MIprK2M7p40LYRontnG7GYzudcxoYGFBLS8sX5m9Ouqfj4vH4WTtnfX39tD4ATmI7p48LYRsltnO6Od/tzGQyXnW8MQEAEAxNCAAQzJRpQlEU6aGHHlIURaGnMqHYzunjQthGie2cbr7s7Zx0b0wAAFw4psyZEABg+qEJAQCCoQkBAIKhCQEAgpkyTejxxx9XW1ubqqqqdMUVV+gXv/hF6CmNq/Xr1ysWi425NDU1hZ7WedmxY4duvvlmtbS0KBaL6cUXXxxzu3NO69evV0tLi6qrq7Vy5Urt378/zGTPwxdt5x133HHK2l599dVhJnuOOjs7deWVV6qurk4NDQ269dZb9e67746pmQ7r6bOd02E9N2/erMsvv3z0A6nLly/Xz3/+89Hbv8y1nBJN6LnnntOaNWv04IMP6q233tK3v/1tdXR06NChQ6GnNq4WLVqko0ePjl727dsXekrnJZfLaenSpdq0adNpb3/kkUe0ceNGbdq0Sbt371ZTU5NuvPFGDQwMfMkzPT9ftJ2SdNNNN41Z21deeeVLnOH52759u+655x7t2rVLW7ZsUalUUnt7u3K53GjNdFhPn+2Upv56zps3Tw8//LD27NmjPXv26IYbbtAtt9wy2mi+1LV0U8C3vvUtd9ddd4257utf/7r78z//80AzGn8PPfSQW7p0aehpTBhJ7oUXXhj9uVKpuKamJvfwww+PXjcyMuIymYz7m7/5mwAzHB+f307nnFu9erW75ZZbgsxnovT09DhJbvv27c656buen99O56bnejrn3KxZs9zf//3ff+lrOenPhAqFgt588021t7ePub69vV07d+4MNKuJceDAAbW0tKitrU3f+9739MEHH4Se0oQ5ePCguru7x6xrFEW67rrrpt26StK2bdvU0NCghQsX6s4771RPT0/oKZ2X/v5+SdLs2bMlTd/1/Px2njSd1rNcLuvZZ59VLpfT8uXLv/S1nPRN6NixYyqXy2psbBxzfWNjo7q7uwPNavxdddVVeuqpp/Taa6/pZz/7mbq7u7VixQr19vaGntqEOLl2031dJamjo0NPP/20tm7dqkcffVS7d+/WDTfcoHw+H3pq58Q5p7Vr1+qaa67R4sWLJU3P9TzddkrTZz337dunGTNmKIoi3XXXXXrhhRd02WWXfelrOelStM/k819g5ZwzfanVZNfR0TH67yVLlmj58uX62te+pieffFJr164NOLOJNd3XVZJuu+220X8vXrxYy5Yt0/z58/Xyyy9r1apVAWd2bu69917t3btXv/zlL0+5bTqt55m2c7qs56WXXqq3335bfX19+pd/+RetXr1a27dvH739y1rLSX8mNGfOHCUSiVM6cE9Pzymdejqpra3VkiVLdODAgdBTmRAn3/l3oa2rJDU3N2v+/PlTcm3vu+8+vfTSS3rjjTfGfOXKdFvPM23n6UzV9Uyn07rkkku0bNkydXZ2aunSpfrpT3/6pa/lpG9C6XRaV1xxhbZs2TLm+i1btmjFihWBZjXx8vm8fv3rX6u5uTn0VCZEW1ubmpqaxqxroVDQ9u3bp/W6SlJvb6+6urqm1No653Tvvffq+eef19atW9XW1jbm9umynl+0naczFdfzdJxzyufzX/5ajvtbHSbAs88+61KplPuHf/gH984777g1a9a42tpa9+GHH4ae2rj58Y9/7LZt2+Y++OADt2vXLveHf/iHrq6ubkpv48DAgHvrrbfcW2+95SS5jRs3urfeest99NFHzjnnHn74YZfJZNzzzz/v9u3b577//e+75uZml81mA8/c5mzbOTAw4H784x+7nTt3uoMHD7o33njDLV++3H3lK1+ZUtv5ox/9yGUyGbdt2zZ39OjR0cvQ0NBozXRYzy/azumynuvWrXM7duxwBw8edHv37nUPPPCAi8fj7vXXX3fOfblrOSWakHPO/fVf/7WbP3++S6fT7pvf/OaYt0xOB7fddptrbm52qVTKtbS0uFWrVrn9+/eHntZ5eeONN5ykUy6rV692zn32tt6HHnrINTU1uSiK3LXXXuv27dsXdtLn4GzbOTQ05Nrb293cuXNdKpVyF198sVu9erU7dOhQ6GmbnG77JLknnnhitGY6rOcXbed0Wc8//uM/Hn08nTt3rvu93/u90Qbk3Je7lnyVAwAgmEn/mhAAYPqiCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCC+f9VgcPu4KEGTAAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1426,14 +1397,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9W6wtydbnB/1GRGTmvKy19qXq3M/5+mu5cRtbNgaaxg/ItA0ILIQt2Q9gY5sHJD81xk8G8UI/gLCF8JMByQ9IYGgaYWEbo5YNyGoJg2i6290PfNbXpru/yzmnTl333us258zMiBg8jIjMnHOvXbV31ao6rjpzbK295pozM2dmXEaM8Y8x/kNUlbOc5SxnOctZznKWs5zlLGc5y1nOcpazfPfE/bpv4CxnOctZznKWs5zlLGc5y1nOcpaznOUsX4+cgZ+znOUsZznLWc5ylrOc5SxnOctZznKW76icgZ+znOUsZznLWc5ylrOc5SxnOctZznKW76icgZ+znOUsZznLWc5ylrOc5SxnOctZznKW76icgZ+znOUsZznLWc5ylrOc5SxnOctZznKW76icgZ+znOUsZznLWc5ylrOc5SxnOctZznKW76icgZ8TEZE/IyL/28/5/HdE5E99c3d0li8j53789su5D78bcu7Hb5eIyB8Xkb8qIrci8s/+uu/nLI8n57n47ZdzH3435NyP33459+F3Q37T+jH8um/g2yaq+nf9uu/hLF9dzv347ZdzH3435NyP/5GTfx74C6r6n/x138hZvlk5z8Vvv5z78Lsh53789su5D78b8l3rx3PEz1nOcpaznOUsZ6nyR4DfeegDEfHf8L2c5SxnOctZznKWs5zlEeQ3GvgRkf+eiPyyhLT/dRH5L5SPWhH535T3f0dE/sTinN8Xkf9ief1nRORfE5H/Qzn23xeR/8Sv5WF+g+Xcj99+Offhd0PO/fjtFhH5d4F/APiXReRORP6siPwvReTPi8g98A+IyH9cRP6CiLwqffkPL85/T0T+LRG5EZG/JCL/IxH5935tD/QbLOe5+O2Xcx9+N+Tcj99+Offhd0PO/fgbDPyIyB8H/jTwn1HVS+C/DPx++fgfBv4c8BT4PwP/8udc6h8B/o/Ac+DPAv+GiDRfz12f5VTO/fjtl3Mffjfk3I/fflHVfxD4fwB/WlUvgAH4J4D/MXAJ/EXg3wL+r8D3gf8O8L8rfQ/wPwfugR8C/63yc5ZvWM5z8dsv5z78bsi5H7/9cu7D74ac+9HkNxb4ARLQAX+niDSq+vuq+jfLZ/+eqv55VU3Avwp8Hpr3V1T1X1PVEfiXgBXw932td36WpZz78dsv5z78bsi5H7+b8m+q6v9TVTPw9wIXwL+gqoOq/rvA/wX4x8XSwP4x4H+oqjtV/Q+A//Wv7a5/s+U8F7/9cu7D74ac+/HbL+c+/G7IuR/5DQZ+VPVvAP8c8GeAj0Xkz4nIj8vHHy4O3QErEXkTEfbPF9fMwC+AH7/h2LM8spz78dsv5z78bsi5H7+z8vPF6x8DPy/9UuUPgJ8A38MKRvz8Deee5RuS81z89su5D78bcu7Hb7+c+/C7Ied+NPmNBX4AVPXPqup/DiOzVOBf/BKX+Vl9ISIO+CnwwePc4VneRs79+O2Xcx9+N+Tcj99J0cXrD4CflX6p8lvAL4FPgIj1V5WfcZZfi5zn4rdfzn343ZBzP3775dyH3w059+NvMPAjIn9cRP5BEemAA7DHwsDeVf7TIvKPFmTwnwN64P/9eHd6ls+Tcz9+++Xch98NOffjb4T8RYzD558XkUZE/hTwXwP+XAmR/j8Bf0ZENiLydwD/9K/tTn+D5TwXv/1y7sPvhpz78dsv5z78bsi5H01+Y4EfLM/vXwA+xUK8vg/8D77Edf5N4L8OvAT+KeAfLXl/Z/lm5NyP33459+F3Q879+B0XVR0wEsR/COvn/wXwT6vq75ZD/jTwBOv/fxX432NG0Vm+WTnPxW+/nPvwuyHnfvz2y7kPvxty7kdAVPWLjzrLgyIifwb4Y6r6T/667+UsX17O/fjtl3Mffjfk3I/fLRGRfxH4oaqeq3t9y+Q8F7/9cu7D74ac+/HbL+c+/G7Id6Eff5Mjfs5ylrOc5SxnOcsjiYj8HSLy94jJnwT+28C//uu+r7Oc5SxnOctZznKW33R5E2P1Wc5ylrOc5SxnOcu7yCWW3vVj4GPgf4aFRZ/lLGc5y1nOcpaznOXXKOdUr7Oc5SxnOctZznKWs5zlLGc5y1nOcpbvqHylVC8R+a+IyF8Xkb8hIv/9x7qps3yzcu7Hb7+c+/C7Ied+/PbLuQ+/G3Lux2+/nPvwuyHnfvz2y7kPvxty7sdvv3zpiB8R8cB/CPyXgF8Afwn4x1X1P3jTOe+//77+9m//9pf6vrN8Nfkrf+WvfKqq3zt9/1378b333tOf/tZvISL2M18JETgdTbp4IcJrIg8dCKScSCmSVRmGgcNhT86KiODEISJ0Xcd6tUKcm96Th77kaxJ94K/5Mew+3nQ3p+dmVU6noggIDsSu81f//cfpQwDvnAYfSp/YF4gIzjmsL0tbCqiCakanPix9vbhfERBx03WsH8SeVBUFNCVSSvZ3+ZnOf9ONHj/p1F4KoEqe/3qt/ZZnSH1G5jEyfSaC8x5xgveB9WZL263sOZz73DElr/0h9RZfmwtVfu9v/vVH6cf1+kKfPHlev658p2L/W7vnbC1k88YvnkVK72RU03QeZACcOJzzpS9dGYdS2q++fnNDTJ8KCA/187vO09fnx1td4g39oG/44KE5/ZD8/Oe/92hzUcSpOH/ynYI4mcft3G3THzY/5UG9WttqOSRfO+bkEWXqsvn6dbxozmSd5/L8BYtjFhdbtm+dbVJ1jNh+U9XZKKSUyCnbyFUbv3X+OSfH41uxca3H3ynLhzhqS9C8PM50U4ojOacHW+dd+1HEKeIf+ughJXHy5qLPTzpsXk+WHTW36YOd/yaZrqFT5+vpIHj9pKMvndv45P6Vos/15Dx4eAB+3sr4OcrzQcmPOBdFxclrt1Cb2Tlw3sa86sPt55zgPdT1rzaLD+AbhxO7hvNuasrlWjT3qQMcCsQxE0ebG25xiAiIW6x/2b4zpUyOeVrTnSs6WxRxdU1PZE3z95a7sPstz7R8NF2sbcUemFccyrws14ZF+ywaUEDk1NCB2Ctp1AcHxbv2Y7da6Wa7ndZA1Xl8Lt87XgN0eobXlhmZ28dVG0nqGlnbtdpOx/bPbEfZ59WekHou2PuTLi/aSRbnzu1w3GjLdj2RU79Ol+cs3jyxWo8k58w4DKQYSxum0m61bxXnPU3b4p0Hgd/767/7aHOxbVtdbVaTHVN1fZ0itj7IQ9py8QyQs91rzjYv6niYb25uWzNtZLq2L/2rqqiZRjh37Pss7c+6ztjxpa3q2lm/q7yQyR4F7z3euem18w5VGGOc7jmlXOw5jtbhab5OY8Zsce9tvAHkcvNa21KZ58G0lNudpZjI6XHWxefP39Of/PRnD33E1BJTQ+o8Hk+6SE/G7qz/lrb8bAs5ef3Yudvf1fZcymk/Ht3Vg2d83kr3eXJ8nh6/eov18a/9tb/64FyEr8bx8yeBv6GqfwtARP4c8I8Ab5zIv/3bv81f/st/+TWldJavT+YJ4v7gDYe8Uz/+9Ld+i3/nL/wFvPe0oSnKyhZEEUGpzvjSjTQxSAFEy+8yUV15bzIhVLm9u+blzQv6/sAf/PwP+N3/8HfZ7/c0TUfXrWiahj/2R/8Yf9cf/ztZr9d0bUfXrt4N+Dk99B2HpcrCyFkaQPXD16758L2llOnHgZjSkWLy3tOEdlp8rjp5lD4ECD7w0/d/YH0XbIEITcNqvSaEpizoHeIcMUYOw0DOGeccIfjJ8M3JetiHQNt1OO8JTaDpWjsmJ3KMqGb2t7fcv3pFipE0jsS+nwzM036bFPrC+KlLbcyJVBbTISeGYpAkVXLphOUY8wUYdOJoQ6ApgIYvQIYPgfXVJd1mzdXTZ/zd/6k/yW//sT+ODw3taoNv2qOeO7rXo5fHDtFkOy99GYX/5j/2n3+Ufnzy5Dn/5D/1zy+eXVESUUeyJtLY0x/uyCnShI5Nd0HwTTEKGgQhpj3DeE3KIzCg7EEy69WWy80VITQEv6bxW5wLhLCiCesCCpkRVB9bnJYFsUFoEQTnEt6nYuTU+S8InjngNIPmB6fHNM7ywug5+eyLJFEdETMCrU90ut4ShLRZXBwgUfID1wP47/6z//ijzUXnPKvNM7LqZKB572m6Dh884sAFM0Txgms84h3iPb5tcL46HMzPU+alOMH5102I6ZmXeIIIXhyhADIhBJpgJkLf9wyHnpzzBMoD+Cbgm1DaWckFuEkpTe0bxOExx2fddHShtWdu1nShI8XEzfUN97f3ZM2McSDmiPOO1eWGdt2iCjFlM95jYtj1xCHOkwvrNte4CX+Z+jRlcp/QpAhCcAHB8enHv3hTl7x7P4rHd89BT0zUuughqDgDTRHAL9p+8igQHwxdsAllh+SEpjg956QTnUdcYDlxZgf+pM9VIUfIcX6d4gKsKQ7AwghHzdkSbBxRHAoXGsQ3dljx9DVnchzQNM5O9XS/s3M8OcS1DaYvzEU/JjSNoOl4bC5BLmG+XyDFu0ebi+KEsGoMxEjWDrZGWrd0a8/Fk4amdaSUGcY0zVkhIwLrlefyMhCCkFMmDglVuHoeeP7DjrZzrC8bts86QuPwAsFhoEII+GBfpqzIsiZn4dMPez795YE4ZtoATQNOlNBlmi6BQBqEPAg5KbtXO3bXO0SE7cUlm+0W5wXfKb4F1ch+vKYf7wDwrsG5AGogU45FP0SlGnSSPaKCZtuMS9E25mK2dTdGZb9XhhFSVvpRicn6y9kDIk6RkEG0gFb2+Qf/3/5NXfLO/bi52PIP/lf/IVKMxGK3pBQZx5GcEjklxrEnp1TWgTTpw5TTsR0nUuywgHOOrm1Zr9d47+m6Fev1xmzhtqVbrXDe40NDE9piU7U0TYc4z2qzYb3Z4kKgW63p1lu7ZtfRdR3OOZqmoQkBEaFtW5qmeQ28q4CggRO+NOLCBp2ArbLmTUDcvAVTMPzpeANWqtj19vd3/Ornf8DNyxfkOBL7W3I0O7UfR2JObC+v+MFPf8bF1RNA+Kf+1N/3aHNxtVnx9/39f4IYI/v9nhhHnIemBe+FEBzdqsF7Z09fQMxyfQD6Q+L+biDGzP19z/XLPeMYp+cHEC/4xtbXpvN0q4DzjvVmzfZig3OONGbGwXRS1zWsuqZ8h3k8qsowJIY+oVkZ+0jsbQ089AcOhwOKzQPnzV9qnCc4T/Cep1dbri42NCFw9fSCi6stw5j4+LNrXlzfMcbIzc09u90BzRmNEU2JnJU4JAN5nRgIFzxt13L19IrVZkXWTB97Uk7EMbIva2dKmbG33yJmBzvv+fQXH76pS965H3/y05/xr/9b/zdOgUons11fQZpqN1RQOVXgDLFVaIF225wQgneTLe+dtWvw0IbyHdNXCkkhqSx8tof8MV3urT0oUnWXLJb3eo+nxy5+lh+rLLdD3/A9S9t28foIUD+682N59mT7prn4lYCfnwA/X/z9C+A/e3qQiPwzwD8D8Fu/9VtfM+jzpmt/WcztTfJVEMOvW+ozvfU9fmE/Lvvwhz/6ET//xR+wXq15+uQpq25F8J62aXGTUad1r6v8np1wdDkZ1JzA6hVWA1Izu/0dn372Ibv9jo8+/oCPPvqA3X5P265ZdRuapuP9Z9/j7n6HmfOettFJmUzjTBbRB6f9vTR030F08WI2m2cA6PhAOTqz7uDbPdrvpInD4cAwDEcGcggNwZmT9wXyznMxOI9ZdFIQOkWjEPueHCPOeVIcEXGknIkxktWAn5xm4KfucGQtu4veo5pxzowV1WI1ns57rc7G3GfLzxTbCTOndo7yAshRibm482JAgjWrjT0EpKKP5avMIc3EmMDZd6bi6KqIGXx1l0ZPfk4HiuqsyXXhcJ/MvQr0LMfLF8g7zcWrq2c4qb1ocy2lRD/sSWkkjj394Z4UR7om4vEkH6mRXk48OY/EOJDyQEwHxniLaiLFjCcQQkPXCNJ1xWBJEE76TQF5rZW+UGTRTtZWr4+Fz1sv3mYtWfbBDMQdL6JHr4985hoV9U7rxDvPRZEC4qA4DLXw3hOKIWZOkt2Dc57QtgbWBo9rG8RJMQYXYzibMepwBXCY9Y7UhskV/LHdzDrn1Icyl4XGB2uFoEgwYCrGRCrOQQiBEBbAjxogO6oQ82jPUsAk5xze+fLjJsPMvOx63wYmp5TsOsNQppmBm5qx3VMHPhgworl6ptWRFI4nHtPz1zVoMeq+dD8u+xCZd+2nNkbQSXWfRqPqfJ/zBct6Va9Qx58czQ858trmb6McOz1nPa/+nxPW0XO/n7bTdB/1OnWnePoWG1tInCaVXSZPE8yiuB6YNTpddvllc/sAiiudWObi8iITqKVHz/U58s5zcbJDatNoMfRVoP5kB9lAK+eKDePAO9OrbdfQtB0hOHKKiAwomabzNK3QdBYRJDmjsYAmWkDJVvCrYHO6gHtkwUtL2zi8KCFkgs+IKM6P84Q2pW5hDl6QUCKKnKKSyJSxk5SskXFMDIM5y7Ze21hIMZNTaYNIAX4Ep4JkW9NTVlIBFZLq/DeKll0XF8DXCIogiHcGTohOPbiYMl+pH5d9eHF1xY9/+tuklIjjQC6RxnEcyTmRYmQcDwYCabbfZWMhFjA05znKxDY2bYQG72iaUABciLGASQUMr2CMc6E40w0+NIjzdKsVqwoUdSu61RrnPW1nm5kT8NOaLd11HW3bLgChAgJ5A14FwfmAVB3tbAC/vudo41ZQWII/VDUiKI6s1T61eZaLVZG1Yn/yOT+Pb6N2q45U+s76x8aVmX4GsuZk366Uz0t/Tc5+0unHxnSeHOdFEA7VljOgzAa2AYZlUzHNtmEcIz06q0mx61lkTrb2ysfjqtoWwTuatsGJo2sCnW8IwXG5WXO5XhOawOVmw8V6w9BEbu8OdE2PYGtxcI4MNtdyRrQAHN7ZWGpbmrahaRu6rmXVdcQUidnGvsC01prKsHXYeYf3Bm5+wXR8p7n445/8tLxblP9k4+liUZm/UZwgamPRldPq89aoJsrL2ld1VfALO89ATl2shcrkCU7ryqnFqtMG5YNS7acyRSY/dmkHP3CKsPQRKPf0djbl8rjlmne6NL7pvTfJVwF+Hmqf19d61X8F+FcA/sSf+BO6eH86fA4Vf/ASx1/2hU82h2w+dJuzTb9Uf4sP3qrlvgRa8A2J1oevETj6cCrAQr6wH5d9+Fu//Uf0L/5//l+89977/O1/29/Os2fPWXUdjfe44I8NypOrH0f4znBM/Z01E3MkpcinLz7mP/wbv8PN7St+7w/+gN/93d9ltz/QtResV0/o2jWb1QU//sHP6PuIPHNs1hucs7FVQyuXQMvp1Hi3XjxxSDlNjqFEXExtxnIL9bWUjcUlY4zc3t5wf3dXojEMWFmv1qyaFtc073Zz9RZP31j046ppVMhm0CZTkCkl8tBTrXMt2s2U1WwQiKtOxewghNCQOtulb9sWUcV5S9Pwrhod1mIVTKnAykLtz0CLWhixCwFxDl+cRlUlakbHYe7jcj/uyJdTSLaLlRaRIimayyoyRwKFnGjGNW3KpJynaCJRAyElT64XtSlQAanA5htGUvWpykL0FvJOc/FHP/otdc4W05zBSSb2B+5uX3Do9wb87O9IaWTdbtAYaUJL263MyPeBGPcc+jtiHNgfbri9/YyURi4vnhD7RNN0bDcZ6Agh4yTQaMYX3aLq3sZwf8NTLldDrc/3OhD4VUQ52iGZokBe20HR6fi6UlcjQZAHz3uDvPNcDE2noW3LFLP2tMi5ZgJPs0aUTAiB9XaNbwMEj7QNOCH2A8P93naxU9kRVAW1yCyVkqZQ3fek5JgQNaAlR0vBzCGgQVHnaVrHplnjnKOVwCiNhf+PkTGOCNC2DW0bTH+oksqc2euBfbR517hA44M5M6GhC43tzIngVHEZM0aTGctxSAwxIk5ImnF9b61aclxEhOADrmlM16c56qKqJC3z02w/SxmrYImm16Odvkw/LvvQ+VadMzBAlwDQNJb1eOzI8nKzRXmUIkLVswZyKwYWzDeQy2dvuP2iu3VxDxZdxwIEqoc/YNUWh3E+tzhMKSI5lrfF1hAUKY7jbJouT9Wy/Mo0v44XRLdoYX/8vctWrwY9+W0s3Xeei86JKVNlwrIUi1ZBDfDRGMjOI5JpvI0zH4pD54TVasVme4EPnpx7YrpDSawvYX0JbQveK5ISZIh9Jh3sO9dboaGzqDXvUd+AetqwZrsVcgInI+JGexR/AHewDRZXmtELrgn4VQl9azLJDYjYWijRIlv2h4HdfjRww8Wia5gAWFWBJJDNGRNVREt0RbI5lhXGpLZmZrXDnYKz+R3KeHLBUqlTVoZY1qvaHV+s7t9pLv72H/vb9e/9k3+/6ZJxIOdETpFxqMDPyDDuSnppNPAmZ1JMjCVCaBxHhmEoEUKROA6ozsdrzmjO9Ic9TBtGaXJGU7a5Is4XnW4RPBOQ07Z0nUVUt92Ktit6drWaQKDVesVqZdFF282GzcYibdtuS9uuEefxTYcP7ZSm7kKJrvN+SvOxVG3KVJJJJ05eqEKN1Ld3bG5mHBHBYg3t74wrwF2NsnGoerJ+IfDzznPx4upC+7430G6R8mQOugGmzkW8d8XmL5sdYvpeEMYhM46JGMuGRY0cLmMXQLJYGpejRJRm1CvjGBmG0TY7o5IjoEqKI/t9noAcH0o6VRZyMlshjZFxHGxNixE043B0TctmY+Dfxapj03U0wfPsYsOT7ZqmaXjy7AkXlxcchpH9LtHvI4MbGZuBGEZSTPQMpGRbfk2wMeZDYHuxpVt1NG3D1eUlq82KYRiIabCN3LoEJAOsgwtmG3iL+Pe+RqV++X5c9uHf/ff8vepY+EUF/JlPm/0zw63LmFXFifV1ygWIVTUdXE4wgE6mCJwsdp6KTCDhFJFer1/GvMrxTS+XwSO/9AF/TRZvO5n962Pc4cRfmI4//c7jKfDa2nn09fPmajVvvqx8FeDnF8Ayee+nwAdvf/riIaYd9PrJLEuz402LfG2Qzz2oGrzl+OnY2npv3YhLa+MRHZRHkCPDcoGOfoG8Uz+O48gHv/olqspPfvRjNpsNwc1TW6YBOQ/h44ibeRdSHmg/VVPMh8OOl68+5eWrz/jss4/49LOP2e0PrLoD61Vi1W64ublltz/QtqsSvqmc2vNawZeFsykPTjmOZ5I+MOMXT1HHwQz0HH/n/Hd95vq8dbWZFWDWxDD0HA6Hyamx3x7N+XUF9Lp8qbk4zYhph9MMOJ0MgflenfclBcHO1OqYlDB+tEToZG+hsSkC3lpbfBmKOi3cEw7E7BPMzsXie0tevHO+RBMtgYFTx2nZrDr9oczPVzY8rSe8x4mFyGZ9INKn3OOpfmLhVC778URbTc92OlY+R96xH2cH0XaddDGWdiXiZ0dOI05haC1f3ntHzhHnhJwjKVrUz9D37Hb3xDjgXWDVbklJaUJPjBERX4ymh5bM+Z7eTt583JcBf94q+ufkmDefU2aqyLzYytullfEl56IrYK8rnDbibAfOvhc0mxPunCM0Ad+2lh9SgJ9c0kQnHp5cfrtcwLlq8E8Pb0ZSVgNIC/CjOFTMoHSIAfrO23ZaMKdQVCa/u/UNbQgIkDSTMB0yuhFfnAMvDl8jfsTN6cGT81F05sTFkC2FNEOWjOTC5eAFnKVeEELhQbD57YrOmuc+R+phGfGkp2DCY/VjyVsRV1K0TiN8ThMH5fiPGXuprtfCBFXm0O/ldnXRa6cyfX8BWY6Ws1mxHV9/AcZMV5wJYYrJNOtoC+xwkzNZbr7c5wPz9/Q+j5bYxbMWrrhp46T25WQwLk7+GtZFWNoR9QvLeqcGeJMFnLOIH6cE72maYGlBTUdo1ngfyCrgB5SR0CqhyYS2mBolvSaPmXSw9JPUZIuyQQAH4kG9Ae5Ng3qgpslKQiWSCw8gR6dZFICgaIn4MXwuQzLgZ4yJYSwcP05B7PW0RCuQfAF+KCm6i76gpOEufqauEbUUU6GkmwLOHGz7msWO/Ber+nfqx6Zp+cGPfkqqgE3OJcrHXsc40A+7svbZ+zlZJNDQD6RkANDhcLB0sXFg6HdTipgcLCUlFrCoAktxNEAopswYl2n79pBNY33oRGjbhqYpIFAFfrynW61pVyu896zXa9brNSEE8tijabQxVTBbcZ4mW4CXOIc2iseixVyNcDyxT+rcnOwSrSqkWmDz3M/UtBiZulwXz2PnyEIFfW5HvvtcVCXGOdqnRmKRMs5RIkNrROIidZvq4BfQINnmxgxolhtejOHld2rZSKvrkK1NTECwRXdZNGtuPE1NWS0bYTqdm6boWzNyFV+it4L3rLqOzXpF4z3b9cpeN4HNasV2vcY7z6ptaUODZtMxXhxI8QlUpz52zhUd1ExRP23b0DYNWiL1J8Bi4SSJzDQI3vmy6fy5vfKO/VhHjRx5f5PtfLRIz96ZrYFLXtE8X2+xDlT/rq79lW6kfutpFH4xg6a2mPzWxR3bkjmPidfbY77WcYSQ9cfR/o48/LrOJDj2L97U9MunUOZMmvm6xcd8KxP1qwE/fwn4j4nIHwV+Cfw3gH/ibU/W8r8uDJ75/df/PnJ+9fQYOT1yIXL0ntT/5bj733Tt16/1H12RarC9we56g7xTP6YUefnyJevVmpubW9arDSLCk7QwGsrknCfFcnLr5ICbg+eQQsoQU+TQ94zjwP1+x+3dLbd3t+z2e8YYLWQxZQvdzJkYM2O03O2Yku0Oa6X7LRNa/GttcTxhXpc6Nk8Bq+Ug0eWALI7qYnkFmcGfU36CpR2LwhgTu92e65sbyx1vWnwIhKYhvYH75ES+/FyU6Q4BQ9wrJDspv6rhFkpWbDtraq2cLZRaCnkz2GJjhrD17zCU3beSzrds2Sqzw1ECeFWRbGlkkqtSn1taF++oluVhOYenHXQm52mJ9WYt/DhlJyjXhPjl/cjxfZrjWDtSpzaclfliHk5nvNWEfOd+FMEM22S7mXHo6fsdfb8jxYEUe3KOjNFzONyX3U0DfUIIDOOOGAdysvctFNpS+w79gZQyIaxYrw7kDMF3lvKnOi84+jZD9OF7h6UP+vaAzzKl83PTwaZjHr7GEmTSYmXYkDmCad9F3n0uSuHZohomWnax1KLZVCxlqxo2WdFY0hRyRgXGfU8aRttdTBmmeQhKQl02Xev8NEaDC0WtedSZKeDLnHXO0zrj5vFQUtFsJy2nDGqRAjkl8lgMNedovIE7ue1wZd61TUtbODLW3Yp12wKCJoUE0UWGriOv685ucaKohioWEVReZ2y3Ha+TY1nTcFQrCTWzMlBdEF2Ue/3adKrOhtwSABGYCE2qQyZytF5WJ0Q1I0ih9TWetAcGzXLivOlWCpfAqYadnTdrjzlNTZ0Y1xDMUUGUZ5nuwxqy8i4IfmFP1UicmuK7vGWZv/sBc83u0zGD6vO7y0VTprX1TQxck3ypPhTKzmy5TefAObUfsR9Ls1JCo4hX2tazWhsn13p9weXVc0JoiemOPiqqA003gDsYoXKGnOwL0pAZB1u8hiZz2CdcEJKMRNejeHL0NL6xvnENzq+wmdCSxJy7SCISkZRxPuKDRQWJk7KJM0fH5ZyIUUmxAjCThzV3MUAyp1dKdNgcz1XdKp0j3JxMmJ0Nz3J0UmI2Xp+cTT1VXVaHxUObgF+6H0WQyj/pHJozvsmEti1r/EgTW+P2Kalfqhb1GMdoKV/jyND3xtEUB+LQlzYbGPpDsXdss0RzIsaROBiwNMTEMI4WPVIIhes4ru1nBME2i8ZxJGWzhfthIOz3SOETajsjTr7ZbtisDUzsui1dty1pYmtCaxFCbdfRdBVMaglNUyKBGgPvRYwTTGpkoqUBg5BYpGvVogLV9hRbG8cYSWNvvDLRyPhzBVK+2AL4cnNxuuzC/i48U9N91E2Oahlq0UMK45ime3xdVdbx52YduPgezSVCTgVNFN4r84FSMn65rImcK/WBA3WgFsWf02xTalZwEJqG9XpD2zQ8f3rF86tLmuB5ullxVfTHZrtl3a0tQig0BOdIMm+asIiAN16fBu8b49Zs/EQUbc9gk83XjWRv4JNtFpYNVTEy6aZpzA75/MXxS6+LR2NEqh0NKc0eV+0iJ5ZeWQs7hJL+ZVGGZcxVo16xMSsUu2mm93hIr3xe6IHpIl0e/PDT6OK3vP7+0d8LV+FhObU0v9iBf/1a+tpVPk++NPCjqlFE/jTw72BbEP8rVf2dtzq3OmrURl461W8+p8qD43IKAa6GXT3oTdc9fV8ffvuNx/9HU5Z4BLyhrRbyrv3YDwO///u/TxwTP/zBjwEhxcR7T99jsy7fuXTkFvdQ+6dG9aiqkcSWOx+Gntu7Gw79gc9efMaHH3/Ei5ef8uLVS3aHfQm7HGmCEcb248jh0LNv+0KOHKcAlOWCseQ7eMDeLPf2+mtZTMAj07k6ivXZZHnMbOzKctafXqfsXqhmDv3Apy9e8OGHH9E2DdvNlq5tQRxjjF9o3n6puVhsbKhRI5iDWTuvAllFQU8+FLUiANbRBfvJOTNEC/8fnLDbVYJYPxEU5kLqrIv8ebvsCe6+cIpyAX3mptWjCj0GDuXqG87hu4sWt3DP5Y5HuecUjQRXaiiw7SDlus1wopby0SihGMLzH1MsWXVcjpyct1Hm796PzgEpM44Hxjiw399wd/uC+/tb0ITmEcjkNJLGES/GL9APO4IPZEZUD6iaUZtzJOdE3++50Vd415CzI7gNbWuRQBcXV6j3trtVACDzdd9l6ants2jMtz3rXaKBFiDzW11nYTQc6YQvAJgWx71zH4oTmlVJW4pGbmiOlPWvUiLu1KKBcjQHfOwTfTaC1TyMpL2FlosqrqYnOtuVFsEiiIKBu403ovOZ0LkO9myTSIS1C3RgkTmhQVpvzswY2Zc5HFUhJpwT47DoDNRZNx26NSNs1XYGZnvHxWbNZrVCVTnsDgz7gRgjLkHnm0Iaa06X7eLO2iE7A7k0e7TJRSvV+R1mbqCSYmapRxTeoARJbWdTGvwXGLhfzr4xMGSueLRwlJ1HghGrm/Pui46bd4Q1ZygpetVQFOq6WS3N12706LWpnXkBVFhE+8xj24AaSysU56fUCHVuikfPqmjhPiMl+ylKz45w4IVSwqqAB/U+8wQaHa2OEwhbQvQnhrIFt0/VI6KLdXwBIqkimszR+rze+JI2asURq1/hvKVmOZfxIeN9Nv6rRunWig+wWge2l1uapuXi4vs8e/5HaJsNh/EF94eGlA+49hp1ByJGnpwPiiZIeyXeKSSxaAIdcT4zqjCoohLYrtdcrLfFwfM0rYFtY94T856sid4f6N2+cNpQeOuMjymLvR7jWICGzOGQGA7WrEbjM88nN0Ua1uhBs9uqlvdO57QFkYmQXERw2cZ13aTTrMQUSbnoXOfm9djpxGX+WP0oTghrM0ZFZ9Blco50rmRpPJMLL648a40AsuiPGRxKqYIfmRQHxr5fgEB7csochoH9obeiHX3P/mB8QkN/KBG4mXE4FAApM/R7I55WSuRUbdYS6SglTaxECHXtmrYtESHrDV23xofA5mLLar0hBF9elyii9Zq2FOpo2hW+aUAcLrRGJm/VA0wn4RA1QEg1GcDpIJHp+wP9/n4CUVRL1amMRZ19jnwVf3H25xyQDVBU0FFJaSwblAZkgFi6/piK/porzeXCVVWuaj9SbEPny7ivN2ygzzhGBCFFJY/ms8Q4Mo5WmMSVVC8zFz0WFgt5iOTBxk8qnFhOhW614cnT56zXK/7IT37Iz374fdrguWobtq0vaWoenOd+t2fbfUbnA+ozrQ+0LpA8pNBAk3HexkDTtbZpvOqmyEM0G8dYzrTeQ9PgsnBwnugSzll0oncBFzztyoq61Gpzj9WPBjvL1E+leYGy8ZrmzZo69pvgWLXBAFKwjS+UlGFMxZ7TyhFrXIZO5tQrcXUDb3kfOn338qO6gWl/LCJxTp+9/p5NpHL+69jBAq1g8dgL30kW321nHKvA5bcff1JtghrttLRj3tYC/yoRP6jqnwf+/DudM/3UnbFlM3+eQW+PtHywB/GfhdJ8N/l2ADvvKm/hq7xTP6aUuLm55e7JHbv7Hfv9nr7kRS861yZW7d4FCDS5+tkU87zrDilHhmGY0p52ux273Y6+7y0/N+Vpl6HupMSULNonZ0Pf1U3KW6YpwuJ3Vfivp97oycCq583JYRwPE5l/LSGiGgwy7+ienlrPqCUmE4dDz/39jtg2BG/TcixVM95mIn/ZubhIgT3eeVvsik/OzOR8HDsb5fvLvS6RFyEFb6RyIrW2phn/9QYW9/KQqtWj69dzF21S/IHJGKmXKR1S+6EaD5MTkrPt4ugiTP015/4hAOD4jh9USLr4Y7kl8HbAwTv3o42jmrJlRsk47rGes708sjJkI3RWMt4bJ4C4jHPG4Klao0RsTA7DgJPM0A8MY4+Is8pz03MsGnr6++306DurZ95epx/x9yz+f9M16/HT9U/m9Skf0Ft8/zv1oYhV+9CUyWbbTjYp05yUqbx7JUDOhbA05WSAUYn2qaSIdi+V+FhQslXVcWppXM6MvOC8pXRRQ9QjiNA4sWpcGDjggnH8+MKXo6rGFZQxMEOZUrqo6VzOsWo7Vq0ZphfrNRebNTllXFIkGl/Uqm1Io5FPBu8qnmzDMWO8ErXKh+RprpqR56b2mXd2dQHy6gSwSIlKeAsSy3fuRz35XXehK4jjqICPOVpISb3QRK2FWQ3aB4HKo1efMyZr3x894KzLqk6cViwpTlOJ2rKxoosvrMo1z39SDV4DbWRa8OtKqxxzRchCQS9udQLZF+vOfJPzPND5flQzZId8zrxeXP+d9emUFlmaqARBGV5Ro33E0k1CgNBA0zi6LtC0Lav1ms3mirbdIsNIZEPKgro9iJALEW2MNn/SKMQRAyYHxQ82Toec6PMIoqwbxbtA8A1tY6kcIuCyQ5IzcCJAjBmIOB9wPpRy7QZyZEqkdDJbKsU8BQZWGBVRvJ9TAyvJ8xI8nyKaS1vViOYaRSCOmR8pW3WeWL5LnEU3Vt/ybTcL3qkfRZAQJsojxPSdmw1DLJHJ+tgv7J6qOzUrmmq1rzxV/qrrrOZMGgfGEgk0Dn0BfhL7fmC3P5BSYr/f097f2+v7OwQlJdtcYbBKZilF+t7ApLGkidkz56nNQ0kPcs7RNWvapivpYFtWqw0+BC72Vr0tNMGilMYB772BVasR5z1ZM0ENBPIYj6GIQ2rwpyzmaAXNij6oXDt2SzWi5E3RNF+xD1/vVKr20sIppgXN0XKP1r86V9tLNZr32I4ze35eYIXZPjxy3tXGv0WqFRqEEmUUS2q000zWalsuQIOYpgILNUJFsc2XtutYrVZcXl7y/Nkz2uC5bDzbwhWUCrCQxkTjw5Qq7QsRsy6if2rqd9M0VhCijJEKmNTCB65E/CSXJ2DXiUzpXXZuwDf+C+2sd14XX/Pz51eqMz8YFHAO8G6y1EGEiaJPONH7dbEo5M1Lu+m4O6fjl5kcU9Th0XpXjzu+Y1uG5m+3+9HlLbwuJ6b/0nSeNkyl3oGennZ0L0c+05EN/u7G9FcCft5Vxhj55NOX1BSO2vA1ZG1i0j8aKEBx+pZGHEy+ZTlmNvhyMfIqn8hRPMF02dMwr68b+PlCM/MRrnNyjS/jXX2R1MU8ZYYx0vcDsfDrVEdbJx09z4aYjHsk5Uw/9Oz2Rq7XdSs2my3ee27vrnnx6gX7/Y5X19fc3e25v+85HCIpWmh0TBZy6nyk7w/sdvcE77m+blmtXFGAVupRxLHqNqxWW45DOU8eaTmmJkOmNGF14pc7qBxPwslImptoMR5fFykLiZHORfb7nuubO16+esVqtaZpV7jQ2I5ZnneAHlNUIRb+ILeIhqll0M1TKY7mg8qlzqml4tUS7KKTUswJYiwgUi68IosF2xSgHO0XVWfd8rkTgpBdLsRvJZd7Qsyt2ohWJVpuRxRc2bZ1tYxyWezqzrYvu3uVX2Vp4FaDrwJN1iSLTl1EIc0D/2iJmF+fIoqPJIqVvh7HnhRHS/dKI6IF7JnqciiIATtZMykJw+BLSo/iSoWYXHb0q16tv7VUPomxGKxLwGf21975+WRqmjr6jp3ZRyV5foM8COSUR5t3Vb4BEZiCHspN5FwBgdkwcUlhBCnRAa4aoBWAqXOgWFCW89/hnaNtGtatlQ12apE8DmHbrbi6uLD8/hKpIYBrGnzbImLwYcIq/IUQ8MFDoqQZWtj/7v6eYegREeMxaBrjJGgj2ow0TeBq1dF5TxZH9J4UPJKzpZPlhFPbnVy3rTmqKKlUAYqFQ8j0lUw6NldeMjXSTnuqOu5tjlfiaFHhCzanH6kzK2hR9GT1dKfFwe4VndNDRQR1vjyHTrbOskqNXUOXk2fS18f256nVa59OeIouHKICPtVUudK0sw1V1/JKFkt1kqwanXhfPq9fq6jW54CpkhhCBSFkviX7PAtH1byKbShuXnur2jFA6ZRr7HFkCkgRpl1ji+4RvBeaVuhWFuXTdMbZ44PiQ8YVGrwQPG3b0XVrEiuasUNSIqpnjGWDKpZIhDIMxBfATYSYTXfHNJY0iMjY39Mfbki+JeeOrKsyXhJOfEkN2uBdIOWIk4RItjTf8d44ZxSyCjkLmqWQ0U4rd+k7gVRS/qhzq+ggt9hdXgznpS9iRKxCCV4jJXvOlMy+F0oRhtrtKc9j4ZHFWtHGWmbpoM1OU7V85v8LMCBqPLKqoCVFVhXRgPgGNOOaFtd2aM40caQdNmTNtEOkK5uhfd9zeTiQcmY47Oh3O1JODIc9/d5eHw5W7jvnzDCOU5pYjIVIuuiB6hy7ouMQYYwjur/HOU9MI7v9Hc57bm+vS3l5RzdFhATa9ZqmW1l1yG6FDw3OB5pujW9qSfkVPgT6/Z7hsLc0t3FEyHipaksnAOZ4FHwN/VgIl1PKILnoVOvdmloq5TjEonNStL+dd4RQI85hDBERixrKxXB33tKdrHpbiWRzhWi4bhaebAzaGLFXdWiZjivE8LpMgZNymCcm5dCPOB/oB6OpEDVSdK0R+DqPx7q+pmRUF7XCmbhKxmzVP0MTpvRBKLZrTmXDxDZrJHhSSKWoSV1CEjmXDR4PwX9B0uU7d15ti0LtcKzKZ5+/AIgla4/khJiSzb2ilyoX53LU1esngZh1Im92YimotRDjIh+IaS0s43gZ5bV8+AI3nD7O6weevFXPq1kS09Kt8z3DnE4sOq85R5c7Nomn1/PGuY33I7qCBzvhdflGgZ++H/n//U2rBFe7oeYWeme7yVP0CEwPkws5W00RyQWJryjv6a7BOA70JYwya0I1lutxYkS9TUoYx59/Kf125B09IPrgyzdf6k2T83hYfh2Ok2KL+ThkDvue3f2O/tCjOU+7tNWAWyKzQ9/z8vol/dBze3fNpy8+YRgGrp485fvf/z5N2/LxJ5/yhz//Bfe7e37xy1/xycevuL65Ybc/MAyQs2MYMs71ZBVu72958fIFw9gzpnvudy+K0RVo24YQAu89/z7vhYD3Ae9KCCR1/FVlk6cxV4mVp6D4k8lc8IvXQZ5y7KyMXlcasyNtwNl+39P3A9fXt/zqo4/5g59/wNXVFd1qi29X9GNiTEr8QiqDd5esSj+OVJLV6V9VsoJV8pjCaOd5NiHVUMKkK9GntWrWwsEBpCyWD10U3ORulAa1vxfEAAtJOZFymg2yhd9jf5c85TLSJuI+zDhy0zG+VNcolbycL/dnzoYR2rkJ9KmLkRQuIinOz+SQLW5G6mtdzsrlwlAHwakW/+qiOXM43DGOPUO/Y4w9KR5AI46EpUrk4ogtyA/HSM4DVgnCnBoRiHEoTbKIkBJ77nEcASPtnsAQOem2B/rw80UWOvnzz3uIXPmt0q8+5+M3nVsByQr86Bcc/yjirJ+cx5wuVWIaqEWbXClTLhkkDvZaFa8Wb62VbyEzVcgC6LrAs/UFTdMYmeTK+CDGfqDfHwB4dnnFz37yE7q2JThoyu7lqJmhVLjbjZH7YWRMiW7V0HQNEoV46Eu1nMxw0zMOAyLCdrO16iXO0Tctq9Cw6lq+f3nJRdtaW/YNjCODZu7ISIq4nFg3nrxZoQojhYMLpU8jY4nacepKVtpcrcU0lMNLwHRSArJVG4uROESzeMLDhQUeQ8xg80YMLgu9KcVZqwtEStS5Mq024o28dxFlMIE8S32ztCAnQGnhfC3nxcKrPnJu6/1U3ZDSZJNNv7MypWuJGMDDDKRbpEBrjrCIpXy5GZyvfGGWUhvLfVif1NsXlVmP1M0jV36Ls1LVzpf1wnb7BQX/9QE/oZEC9jhzhoLQdgvgZw3eG29Ms0qIV5o20QQlBOjahu3mktXqCeJ7hnzBGB2pf0W/S8Q0GriSXKlK43FNQLIjO6GPCZVcojcBHHsJBDW+lqbb0vYXSEntaNedbXJt1hY5qIn7dUe37ohx4PbWMd7WqlSOFK36UBohjWXMlupTCOYwFa8ll40nceYU+lDGTx1j1bHLUsAKpvLZw2Dgj1Zen2zOpRZuakokUE5vocffUWoC4QQA1/dOyvlkKFVHy1q38Aks9anMG7eAhSbVUeac2jyxiFmmyqB1za0lwXMcSeOAqkULGW9Qpi9pXxb5vTdS6ZTY7SyiPsXE/f099zsjmN7f7+j3B6sq1h+4Hw0cMjt2joKshTGarsUXkGC13dKuVrgQ6FYbmq4jNC0XV0/o1htCaNluL+m6FXEY2N1cM+x35DjiNNH4Yr9mm8VOSqqcfg1GamniWkkyjtWmqSmgSk0vFeYIwBRhHG0tbDtPE1ZWrUp9GZupBJ/bGT44+7yQkEvBsSeSbMDKxc82piz4LRW7jZRraixI0nl4OCNpVxfYD4nruwNjgrv7Pbt9T24SG1Gym+1VLyUCNybGfrCfYWAYBgB8CIXbp+iArl2YXrYRkpNCqercBIdIC1mNh6+gHZojSTNBLXqx69xi8+kxuk9LyqkUSoZjyo0lgXbWOS1PRPGDkrwjeEcbfClGUtzLAoKmKS/SQbRxkanrh4ErfmI8nn1/SzOebXRXN2imHF/r62nTfQof0kWvL6UAgMU3ihmiHn98elrNtnACAcFPtXP0+LzqTkzgI/PaV+2DxVuvfdED8o0CPyklrm/upr8VLY665a4aoWhPTCU1pAI/KZEK6Votu1iBnykkbKGM+/7AvkSU2C63KUbnFuGelPDm8nrpsDxkEuryk3dco94UafLQN8Cb7ZmjXL43XG65gL6NQ/XOotgkLiGP42go9LT7uNiJXCIhlu984NAfuLu/49X1K/rhgHjh4uqCThO7/T1397fc3dkitz/0HA4jw1AVNVPIZUqRYRzp+wMheCs1XUo7dl3DatUSQsPFxRUpJytVetJxR2lEhUvG+BVmlXDaenpy/uQUFudfF8fp8oQlFkDdBbMFrR9GdrsDd/c7fGgYopFYx6J48tGFHk9SfebiALgSPYNY7qxztS2W5NUF/JluaTHeyoNWI15RyCXdTWbH4ygltsDar1GTLdptLjTK7EQJhYfhGJCa+k3mXZMjIKPwWSCCcwktxtHphKoKtoJB9b3FAfWLFq+P21eO3tTXD/iKomo57hY6Hs3BKs7uFMpeRqKg024KqkStfSplx5iJcPs05anyHBgZ5omBV9X0Oz/a8QlHauNNZzwA/lT5fMehGvVHJ7z5XJ2X97e7/leVoi1EKUU7LPWiAo0CdatMdB5Vjlo3T2ZCYxbkh2oVtbpg6SHrpmNTSgXvkzJKDwpd03K5vWC9WtE6aMuu3z6O7AsfSJKevkTpee9KOLnRD6eyGdMfeva7na3LWAqZdw4XFRdSierJNM64oYJ3BCdkZ6ldZANZvTP+oVqhzJXviDmThWNDR2fjUSjRw6dbZ8rE86POfw2atHyNFg950klzadyZp6zogdqvcKR7lg7FRJQssrimnS9VZy442SrAeypLjgGWL6c1q4I0NbpRea2RyiSXCshgelOW+rOGvAAitls7Ldw1SudEzc/fpRxVUin/iZOpzDi5Ru3ObfD4YqCP90IoUT4+QNvab0vrsogfF4zg2Xkt1b1KSph3hBBogtkgwTdkDQjOHM9oqWq1qR1S2tBZKeJi4C9LT6d4YBx2ZNeYZ+oavLcUD1HbzAgh0HYNmUzMB2LucaPH7xoUV/pZZt6TPKdWCDKT+i66ZdrAqmt4NZlz7bayrqCTXVi7PCWL+DVcoEbUChXwUyx9M6NfqPu/jEwO2uQ4ze9WXWmPIPNcqIvZtASWuVdSV5e8O9PUnEaONVRtrmkuVpAsJ7RsnOQ4WsqYGvfPMNTUsB37nfkud3d33N3dGQdaaFAxHymOBgYkLSnZpVrZMAxlg4ZpLosIvm3xweNCYH1hwI8PgdV6S9OtaNqWlBPrcbBKY4CmRBpH4tAXXsZo3HHl2Y75Dr++yNhqh1UATaYxWMAfme2bCeDL87gz3kqPdx7nEt77pa8M1LSn2r9M33FkEhaPfunaLFzOqb9rcRDNs50785c5UoYhJkK0qnoxJlKtyqmeugFQH636Jvb8ebLZvVh1Sx/sxxXUYErtrnZruQcrtGKE0DXNy+Zsns5zggFgj2ynVp6+nF3hz+RojliGTu3nek4m52K3VeJmjvtk8rHKd+RyTC5Rh86Va85QgqmChS6odmd9X9Gj4i+nS9UkrzVRWY+1zo+JLuz1cxfjb+kdaOErepMscg9e/+zInn3jJSb5hoGfzM3tfnYWoJShs13CMUYOhwMxpakiUJ2Mrsy0nMougZqjmkt4nHPgfQGKcmYcjTRyt7vl9vZlYVlPxFTLfs+hfrq4oeVknkSOPmEGNN5SZLGgctLjJ1IX09feLPcw38pi56G+qfrabT827kNBpHOG/e7A3d39BNTs9nt8KStYAaBUeEPu93s+e/GCu90dL199xq8++iX7w57d4Z6YR9qu5dNPX/LJpx+x2+25vb1lGLLtGKnHSVsUvkUdjCLc3FzzwYcfsFmv2GxaLi6MQLRb2e5y07QojqYxcrvt9orNpgGY+INyzgyDER46EdbrDavVynJiQyiOBJNhBhxXSpG5z7LOJMiU3V2FyUha9scwZnb7gd3uwP39gfvdnvv7PU3bsTv0bPuBfhgZYmZ8qKjLVxRVI180A8a07VTRp65+JR5UFVKxAE9G8WsixRepx4jABGVXS3JxDwbIusL3NF1lASwtrv3aQ7DQJWaMlULKUxqLvV92v6SUy/YW8eOc7bDOjqJOC1HOilvsak5m5BLgXN7E0asHW+aNn3xpEcpCUcgq1aqUTD/mlpfnMmMEKJU8SipFdlZRRCnRkbOhrDmTpRCO5oQrFWFqCu3cQZ//5A8fc9y5b7NYvYlr582RO6+r8dMjX4siQo+e6usxZ0/vAavGBSegKHNfFH/EOQjFSO18YN10VvWjcHbUkuha0iqeXF7x3tP36NqGruvYrDsjdxZn5JM543GkPhIZ6VYtq1VnxmEIhGCVBaMq+3FE81yavc4r5wuYUsuYA2PhrXDOQUrkGBBHAeErcaxVj+uHgd1+x+39HaqWKnO13docCwFxjjElbvb37IeejBLJU3Wg4AJ+arACVevMg5Rjsk2g4jzEcZiM6sfvzAw5FSvSdjqrSzhHEtS1pOqexdw42rhZzNMKvLAYIBMwKPMmxLQ2LZ5tseNJ/TYtLupJu1GdgVP1trBUZ4c6m0NYvhfNE/AzzZ0CMBtJg0ApN12/un7zEliqVn4tMey8M+fNNzbepERplFu6/+yde+mNIg6alpLKZUFMIUBoLRrPh1yKIglV71oUgVWiQwP94cB+d4+mwKHfM/ajcYJER8PaoiRCY+S6OFwO+NSCGv9PNCiE4CJJIiB03hEk44ho7Il9IDkPmGPovKOLHTl3KEqKitDgHXTdBZcXkRgjXu9wGkgxkQZHtACCqZ1trc8LB9YcKefFACZxxa6r1f1qpb8y52r6WC6pMgXfqk6Yc7ZZ6+qarQuD4VHlxFI5cfartW9ksEun3x2dbX/M86Z6iXWDcAkALLHd159IbHA5b0EqgUKgnQniwAfjIPMtoV2TUqJZbVhtr0gpsb16xtPdjhQTu/s7DgUc6ve7Ei2U6Q8HhlJZbBxHy5IAJnZGEXwTTItkZSjcmcOhJyfl/vaOEBrur2/p2hU5RYb9njQMxgWk0UjVxZFLWMzYrxjHnhjHR+izh6WCPqmkoldozbDmJQDnyvFQKwV731jacQjFLzRutSV3Vd3EkKKWa/FF6jyggi8V4BKrklbuwVydCl6UEuRVn4rgylz3IeBCCy6geIaY2e0PaApceGEMpVpX8IRQqhHrbJMeDyXB+RkIP4rWVC2AuZR0fqFtAt47clK6rmUcIojD+QDO0a1aNpuObtWafn5EMdDH6D6mQPu54Qy0qzYOVV9U/W7Pk0tVtImLk+o/lNQ656bN+ySuRNzJVCBjcTN2nsi0ieZcWVmnpVXm689NvtAfp7O76ActJPk6p6zNPXOyvqv5kbWp695I5cUVqc/IdN6cPvg5bf2WqvQb5vhJfPjJdSGVkoWitMk1DCP7/YGYou1eFELItm3YbtaFqEwZB9uhWoLzTVPTOayUXn/YM/QDH334S37/9/8Gh8Oe3W7P3f1dIQVWhooKLy/0YMNVBT8vJnr6eZUHxoRUpX/ygSxH02KxWF5dj3q/LFcLp3z6e/n11Tn9GtwW21VtiFG5vr5FM2zXW169vGbVWsjhxWZL04RSct0itV5dX/MHv/hDXl2/5NMXH/OHv/w99od7rp5c8eGnv6RtW26u7/ns02v6w8DHn3zGfjcyDoIS8L4pz2flL2OMfPTxh+Q40DSBzTqw2TZTxE/bmaNzf7ByqJvNlu9/T2lXW7Iqn754xYe/+pAxRnb3Ow77Pc57nj97xpOnTwnes1qv6bquEKjZ4iFiFXbMeJ+NVkWJOZXSnYIQYLEQ6bSzZv/tD4nrmx03N7d89vKGFy9vePHqBhXP9e093XpDtzmw6yOH8fHDaFVhGGuVFnMVvPd0HtR5w2q8OXc5zamW09yt1+F1MGhJcuedLS5SdjVSTEWhzfwRtjOlc26zVOagY7j0FDaon9cwbEPrJ5NuBn5KeWoRwQWPD2Zk5WScIrbbU/SQWk50LuHaYckVVoEg6tQ79Y6sNeaPTvXG44pglWZErHpXTiM5DeXHdhOzxkU7mxXuLX/B9EYSanWfea/SnPIkVtUjprhI9aoRReXY03CCIzkFiE4/rUrviyGWh4Cez0v1Onr3DXp9ef7R9YvjeRr183WJamY89PNmxxQ1YYEBOCw9Qoz4uCup0ZfrDd+7eELXtBZ92cdS8c5hufGOp1dXfP+99600cBtYrxsEeBFatI/EMRLUMexGiMJF27FdbWiCJ5KNVycnksKu7xFVmlIuNnvbRXaN7Ubj/BSx0A+DETiLMHhP6z05G2eF9wb0ppw49D37w56X19d8/OmntE3gR9//Ae89f27kpdstXddxGAY+evkp13c3DDFyvduzHwYQRwgteF8qhKQScp8ZByNizdGeMydLxTiwZ/TjFOH2OJ3InNRPLDx3Sv0nE8hT9FGt8FUrUxUjeOIiQXAuTFNrTtFajps0A32yKCRgO2UnN8dkPAIzKSUU8L+UZNeT+SzzMZMDbPmEqAoaB5DRDqyAlpTISvEFwBFDTyi7qWo72k5l4fMvamiW/3ylAfDe1vjNlrZp8V7o2kAoGwq/+Jtv301fJOJgtTXgZ7UCHwzwCS2lpDt4n4rtZg4pAuMwcHAHvIMm3HL98jP23cgw3nDoe3IeIXnWeoVKh283hO4C5wKiHk8DCmMaGOIBzQniAKPNOY8nMIImxgEOvTng/X7P7s54XdYXG9bbrZUw94q4NV46Li4869UFKUbuwitad00cR3T06GC6L5R0F83KYRgZciopoxY9Yare4Z2tnTEXYuhsIFN1pCsXo60zDn+ytS1i+0Dzyuke1M1fSVTKvDq2TaplYDZGrSpmznYd324xzl+7sepwpmniLI5Y+DOLU2Sx/ot443ICnAakMeA2lJRIFNZ5JpKu3C6V7ydF23gZ+wPjOJBz4rDfF+Ansr8zOzbGyO7ujsNubylj+93EIXQYDgxxICe1TdeSciqffGrP7xxd01mBEc1WMCAnghNWXbCUIR9w7coItEPgsN/RrDaP0nVHzU0pvlFSvYz7aG4f76WQGQtQggSor43zJvgVXbu2yDiMN8anSBznKEfvDWyxdFadUk1r4RXjRTTbXlUNuPShjJ8Z+Kmk3ZprsVtbg0OzIqy3RjfRrsF3ZBfY95FXN/f0bWAjytYpwQdWhfi/jq/Ke5vRaQNInDPgp2y21LWs0hE4jOi5bRqCd2Uj3Iiid5t12fg0omlXIgUvnmxoO/OhHq0PdY7+G4ZITFr6ZQ7qkOIeK3NGzhE+QE0dNsAuT4TiM9BWZ10l2R4LEXadfzVafGkLVy/ZK1Mly3rPlM+qDejdzMlj31MLHcwb/FkhlvTBGgRgINAJcFfS71wlnS/QAwX0mV37Aiai03fArMfq89bsp7eiPijyjQI/qoXYSiyE1olMTpaqMgyDAT8x0jQNOZszKgips0W3bnLNyGHpmBPHoCrN/X7P9auX7Hb33N7dcX19Yyh3UoZxps48VuLHMhttHFleRwXYjktoLM6t58jRuXL096lLOz3IA4tiObaUXZ2uXwzHo3O/NsfFDIRhGAoxXU8/9PTDUMKyZzS9pmYN48Dd/T03t7dc31xzffOK3f6epBEfhLZtuLvdc3t7zzCMJfKrEJaKmxB8VQOSBOWw3/Hq2iKMDgfPoTdi57Zr6FYG/Fxfv+Lu/h5F6MfBnAJV9oeem7t7xmHg7u6e3f19IUprCE1LCMGcGakpDfZTGfG9ecqT4q9RIqkMTJG5mstxSLVJTMowJg79QN+P9P3IMBix3ziODGO0UNCshezxccVyb+tN5QlAyczlbGetXJH2DDg8D4y3E1kmhvkaOVSuVc97LXVqYW8dh/Q/cH1lkepVjjydXwUaqsTO1NSE6bUsQNTaKguAZ7GzUG/xtBUXntny4V9/72sTLctTjfoxfiUtpXxzTsUokHKskBWcWjtkFSTrqXoqDWzjI2ueDLAHF5YHn/MhQOjkvdkfLb8XZrQ83HhfJkqjOpNvOvUI/Knj7sh6f+evfDdR0FSC52v5ivrVIpOxVyPGnRfLe28Cm/WKVdMSx8QgsVQycYhYasnFZsvFZluAH0/XBURg1+1oQ1N4t4QcM1kSotA4TxMCHiWIATRtKGlbMlcEcdPccuB0WkOVkkaqxiEmJQpmjI1xZjkbcwb+WJWhmrYLBrSvuo6mabjcbAyAH3ru97f0gxF1BtdPu2POmTNSd2VFyi7gVP1sNvInzg2+hvSEeXtuWn+nUHoo61hZNwhF59V1QmcM1HreAJT6evFr1pMyzf4yWBY3s4gIpqRIVuty3tpcvBYevMx0iYXVW29TZ6PU3vQYCVWJZqqW8mTEW7SwUNpASyQ3x+q/PrWlaBggEUKg6xrjoQqedddMwM9jioiBPiGAb+y3uFLO3Zu9Ka7sUNdYCrW0zBQT+EQcI8PQAwdiHMhjmlK2PMaHFPyaptkWBzLgShlooidj+tuKJWREMy7LzKWSEymNKM5AgWRlnX0TCIU2QTBuJCceF4zXI/nI2PaMzQHBSG+9M9KW4Iz3I5u7OmGAWjetMuawUMZcte+08nKopXOV1zXiYYoeWKwvZgZUpf814D6A6gNzR+uNzDZ9tQ9m+36BSi0WjeUGV/2Oah/Ui+tUzrWeXuaULAsVLNpjwUtTZgG+Xn9yaucIzvpejAMxGgjS73f0hR9od3vHfrcnjSO37Yp9d2/kwc42vmKMxBwZYwS1TbhxGIq/ZH6YE0dfIt1RxZUUrxAc5I7cGNjjRXBqPFQpReNxfHSZbbFa9lsLCGO2SC3KUfvS2tIq8NWIVG+Ai/c2R7xD1U0V+pj63808ehN59CLCZPqxO6ugwjyuZdbjxTZVEetjV6IVQ0C8KRTFEZOReXt0qlrsJE1rRmmBMp7r39V3rPe6GHMn/qIU3Wmpp7amxxCm1zWoIjQNTRcKN2qYeI0eU2ytrzyT5gtMG1yL1El7Q450BSxstPqz6JPp0bX2GRPQoqd+edVrixlddVm9/rFOkqP10Lp6qbG0qIlFcRiW5y+2Ux9wd3I1NwtQZENqesqF37W8idd9one1Zb5R4Mc5z+XlJSJGFFdDHbUgqSllLrbm2DdNQ7eykoWrVcflxYbQBIsaWBKMloZvGs+qM5T3dr2iC864fu6v+eTJU9pgIZZjPzKOEe0jQxxtlAgPqfUiMyA0M2c/4OVN3sXxM2tR8NPn0zcUx/SBax6Hc1NG5WLhECYacFvLZiVU776S7n6ec/5lJGvm0O8RUZrPHHd3t6zXHZ9+9hlt23B1ecV2a8ix5kwiEjWRNE1KLKvtYIzjyG6348ULxQdHv4/s9gMxWrWi+d5nw5Gs5uCiDHHg0O/wzqESQBqcE/rRsz8Emrbnw48/ZXP5AevVll0v3NwbmPTLn/+CX/7iA8bRQKb+cMA7x9195LMX9/gQWG/WdKuVRcJ0HU0xqprWgCFxRnbovRlgYxyJ0YywbrWhaTpsF6kWRdYpFvD+/p5XN9e8vH5ZQLAdh/5APwyMMU6cFjHlY5KwRxQbVcfzyHmZwmfz5CyVhTbnqUykdcexN63L3+Uzq5RgIIsWAtZlJMUUpTNpRpkdkmluTAVjFlLmTzXmTj6v5KU1vUvKDoMr5StzzhYF5NLCKJsVLotF/ujzxVScF6e6+B7rkFoBa879ftyOVFXG2BdS58L1k0qcPRTgJx8tHNPta0bVIbksgFL75Xg8CI4UzbBz4stu2yLdqxi/8trzf9G913Oqg/zFbfNYjrou/52CkItxtzjhG5FqOEiZCxXSlKViz5DHbJGvbmR/f0CbRE5MvAZtE+i6Dd4HurazvH0BKztsBroTZbtdk2JL4638r2pmjMbp47PiWk/TBlJOBO8hJTQmcwTEkZ3tCPcH23Eex4GUrYzPmCzJ0IlxTDS+RbHosaEfbE47T7dakxW2FxdcXF2y6jouLrdcbDc0TWBbgB/nDQxaNS3eeWLOtE1jTk1nVRDHGLm9u2ffD4h4kg+QlYyQx4hKLlWivpbeo1L+HycLHh9j/aultHx5u1YpY+lkmvegsrjMyd9TtaViB8g0F49BGpveYnO+eipV3y7OnfT5ctNoUsnVw9Gylsl83fJZrfRljzSnz1DeFhGCDwU4xDigxAj3m7a1csLes+pWU3rG5mJN27Y0TcPFxZa2bQnese7MgQH4v//b/8aX67IHRASalaV4+UYRbzQCEsoubUmhkOJ4haIrgt/QhBXOWSplzpGUenKOE8AV/IrWPce5RFhf0l4+w/kG+9SeZRz3DOPa1o7+AIcd5IxGQaONAR9WdG5twE8BYnBC61s8RtJsEccBKz0vOAl4iazanrweGf3Aod3TNx6LYrCfhOJdyc5WgQwp2rgd+4y4XMAHq9RVo2uOHJ/itzpf0xR15kxR5hLgVF4pXp8qX1GqOs8UR77MnaWl8LqqPwZntMwPA+AWH6suNPNsgx/POT2+5JHV8/p7thQuWYKMe7GuyVpTPzCQXYLgciasAB9KdGVD223IKdGttvR708tXu3v6g2VS7HY7DsPBUsb2e4ZhsEq7vVFjTP6GqkVKHnaksUcVu8aARSwOI+IDKSvt9gP2+/27ddBbiColgnPmFqy21MR9k1jwipnN55ynaTzOBZomFA5Qjx9L2CwyAZappBC5BXH8vOnoZqCgOOc2Xt2xKVcd9yU4VNRl5SjzvgDY3tEET1vvKXhc8OCNdiAJDCmRh54+DuCg6QJZMt3Qss4REaFpA76xTeluFQhNrUpW9axnu17RtU2p6GkRkkk97drTREfbtlw+2dKtVoTGs9p21m6PCKjXWeEFQnGDvROaMEf3VPt5XnXm9GZLwdJC4myb4KlEF+al3Vh9Ya1DeGnNyqR7ar/kqocAo32ZuvJoL6ReYSKGL7pgsv1ZHFvWhOKZmGYQq6B6ahIItt9czRHVSs6e2A174jhYil7Z6JiLrUjRW1/NiPlGgZ8QAu+//77xFEwLQZmBSkFdLQUhhEC36nDes1q1XFysCcFPqHeVqjqbJrBa2bl31694+ewp/WEPaeD6s4+4vVnTuIY4ZAtD1z27vpbLPW3Ek7+lRivMztORVFRR5KRDZPq4Gu9HoNGUUMrRCrR0yEVPr1cmyYJ9rJass8vUEVja9ZFX1JwSN3fX3O9uub55YSH/eeRnP/0xOUV+8IPv8957TxG3RiUz5pGYR6LGKVQxFV6dvjfg5tWrjzGjWLAysBbKnMlTm87tly2NhcyhN+PKwJ7AMMz5qYox3495xc1eaLs1z37xkqdPPyFn+PCDD/noVx9bKloc0RgRcazXH9GtzNHoVivalTkaq83auH+8Z7Va03Yd3gndytM0JQJqHIljpGlbnrz/HturC7zztO2KJjSmpAoPx93tNR9+/BGfffoxH3/yMa9uXnK/u2O1WXEYBoYxMsREnzJ9+noqJlhOrDmBFfTxwREa43Cy0GJFk5FpU1K9LIy2RHZVIEdn57liMUJd9Iw3KMvpTsbrjg6TsjUnZGmszWaZLfCTq1UU8VEU3bKEu/cWniyW4+5DwGVLX3PJlfBuJiBgGfFTIyJgCfCwAH+0OAKnC0+eALOcFiToj9l/mjj0d4z9wDDsGYfBHPhkIWaaMjkaKbPphdIegGbbbbTUnPL8yx0UMsV1J/iROI4GApUKJVOqhxYwT+fdy7eVedzMY+ddF7TPI3x+07eevnwtRHZGsr45KRaHVZKY9V6NiKhhPxIhxUgGDvHAbbql9wEngeBbRDy+a7i6fELbtKy6hiZY6mZKA+PQo2oA7vPnT9AM/X5gvzsgKhz6LUOKOPVsmhXbi62VKP7sBTlG8jjistJ6DzmTxpH7uxtijAy9RThYpE1EC1df8EInDSrKMA7c73fG3+KNfD80Hc/eu2dIia5tee/9Zzx/7wlNaNiuL1h1K1aHhpvbrYFMqqxXK2LOOB8Iqw2+adntD3wQM7lPJAc0HUG8lUQerX62K5F+jw/+KLV6aF2j68vXjsvZqlzVMtG1jAxgxPpVF6VJn0y/j65/kmZbdwKlEvYzgy+YgVudy+N5oPPvyfKtzu7x3LIoDjcBvW5Blj8Z2FRLpa4rFOJjoevaUsVVWLcNbbAKnE+eXLHZbFh1K56/9x4X2wu6ruPZs6es1ysDgTZr46oIFfixZ/yX/qf/k7fon7cT52F9AeKMwLmCPd7L7MQ5b7/F431rUTWyxvsLRFqcBFI04nTREa+KqGPjL3myfkbjPc3lE7rn3yukvXNy9DjeMw635BTJ9zvS3R2aEvGQGMv48qsrwvoKFccQR4bC5eJDKBXtHEiD1YoR2mA/OSdchEY843Bg2O0Z93e2PhAREk6U6DHuu7IExF6LmZoYhqlzgRqFbfxNlVcrJS2pGoL3RhprBNgGTo+xpIlpjVSdN1keS3Ku0TzZUsiFBXhj7W04Z3Wk7LwHN3UBpOYGHM1C5tTuec4tvbwFVsQR+KN6cqXlGRWYmi2k+rZiEZ2OBlRx7YqugiJXpZpqtiqGlp6fi10wTlXDhqG3SmG7HYcC+Nze3bM/GCDU782WGA57bl98TJ8TOY3s7u/IsaeEwKHO091cszv0dNuLd+qftxFVLVyto/l8JZp5uRFZN/csasf+bhqLDmyalvW6pevMeR7GwexGtepQY6koJ84T1Pqv+O42WJKVOjdC9GUEVrU5zEatAETllDMptBBOJrAnhMCqCazaQNdYdE1oG3zjITiSN3AyxgFJI7v+AB5WmxZphC0RbcqIcVK6wbPZtqxWtundNIHgLc1ru1nTtpbabVC9IiGz2TdEApvtih/88DmXl5cWRdx6+x38Q93xZXsRTwanpoPUUiubxn4rk/tvUIBO1r/5Gs7aekxWLS3VSoC1+cvEdQvArXKNIcdReJVDB8CWVlvnspr9CvX7yzXRxdo5R7c6oRTBqfdYrj+tf7VSMgVMFEQrd5hO/oorFeoqyJpysurXLz7l/vaGrmt59uwp2+0GKdWHK1epLnziqaXfQYl+wxE/YmCOQPAlZ24B/DhnlRCmCgWrtkRbNGy3q5MBWVRiiZmyyW6TTePIsN8RnGOzXrPuVoxdT9e2NKEhJ8W5oSjrL7YAJ+V98v6kpCdg5zhwE2ZH5vR9CpCk9fXk3s7fNYX06fExBUqeHGxbEKpjugCYBB67zKJFGQxEYLDqz9ze3U3lJg/9gaw10iGT1RB7K+U3O9VpImwbGNOuRGAEnGsAIU2Y1YkFPRkLuUTZ5KJgFe+tDSynEpyzBa27vqVpR1JeM8SOnOGTz6759MU1ORoRLsU53h0ibXNAvKddtTSFZ2qz3UzRP+tNT9et8F5YrQJtayDI0Bv3UNt1uPUKGisjn5FCjgw6JjQph35gd9hP+dfDOBBTnMJY0/RT0e7HlepszwZPaeUJaJvLg+qC5+ZoFjwwMepxRf/NCvw1UPT0hsr1pu2S8tYU7VZmxJFPdXI9WUBEJ6+tGsdcmYPlPdU5U5X7W8nUYkfNkRd6qRooKafJ8HpUUSzMOo8sq27V9AMbcJYbq8WJE+Y+miOBap7yMnx2JomdAKwpeuhk++KNbfPF9/9Ox79BTsGf4wXwgTH3+NPpK4uqRb5NABgcAd7zPpKaSlclu0wcE5JKBC2luhCO4M3wrdE+ZhAZgKs5E0JDEwrvwRBLKopO/AmqBmg2IZALUETRBQIW6i8O2/034lgjUNYJ9Ewp4tWVVMNiZBXeN+8DOLG02qy0bUe36li1LW3XWgh6sB3bGqLeeDNqPeDNnMR5T1it8E2LZqVxYeLp8NVBKbq9Gk1fYy/O/09OJov+W75ZrFyZ5+p0eHlv2rOseEy5kr1RHc6T8V8BmOk183eeRiUs7lNP3phBn9fDypcbXFbVa66kVnfLpURFiNQ1xThfmgL0eOdYrVq6JtB1LVeXF1xcbFmv13zv/fe4vLxitVrx3nvP2G42hGCR303ZuV6tZuDnMUXEUrxECnGsFIehzCNXOOtc2aQMvivAT4dzDSLNNC8MuMuWBYkQXKDzG9oQaNoLVt0l0rRT3yol2kYyOUVShNSXFEw/om4AFZqwou02IA5xA0pvgEAtyV50upaaf05cuV9H8C1NaCFnm0tTJS+ZnZrq0EhNM7JxkaJa1JwI4ovDU200pYA/ZcmReUzLdE0tG5RauMjmVJpHlTqlhKl6mNjtWR+fzM1jOOehz0+OkuNjdTHnjq5zdI2H16cKCM3r7fLoh3SVGK5XSLEdHgoPsDTVsbXNOi36OsXRxlNK9P2hAEGJdrXj0PeMYyyk0sYP5MTjXI8Aex8YimebYiQOgwGVZVNNFXx3Y+ljjy5lPcpLu4Ri1mgpGlj4IcuYrU3mS3pTJTd2JU25HlCjeGYS3jfztlY8fNLCr/Ufxx2vpT8K+GmE5m76HQqQ7EoJeVlQIWSwTTuMMxSxcvMBi2JqornsWsrY+yCExtG0JfqntfUyeG90F21TbrvwSUV3dM5q3bDedlP2wnQ/jyoGiToHZEpEocxZ7UV9TJu4J11gEMEcOV/9u+kwWfDbUcCeadafSFUEi4+UOieXEXdLC79mqlDA4hP//OhKy3Vepu+b7A6tekHLOjr7HZaGbkUx9vs9OWcuL2PxjUHVLQDH+ut13fk2+vQbBX5EhFUbCvBTGa0r4R94Z1VEpKRjWLie5R4bGasudodLqetCfnR3v5tCzT/96CM++MM/5LC/54Nf/iEfffaK/W7H/SFaSpAH3IFafs1Ep+46sdiOjHE7ksWriQL+wWeuxEvIieE3KfyT4+viVO+oGA11ZM96Ro/DwE+uNucJPq4YcefBdnOcGRR9HLjZ3fHy7obVzYpPXn5K1JHd/p6X1y8Y+p4PP/qQFy8+4/b2hru7O4bDwDik4hRnsma8zxAMtdfC15Dz8bPkuqDVpVEwA4VETDamsrqC4sI4Kn1vTut9GK3fy/vOteCj8en0tkM39KPl3YsQmsaqIDhHt+po2wbnPG3hn7AdzBLxo1amNeVM07a8uL1jc3lhJNGrNW3T2iOUaIz97o4PP/gV169ecH19TYrJ8qoRhn5kv++5v9vx8uUrQtM9ej9WqYufADFm+n60SJ9c874poerVqH/3RWGpVIHj6aIn702TrBKizictY34mYGeBuM/HmLV+CvAchUvWOSknjs0E2CQjo00jjGbI10qBWnPbc8KJIzSWE18BTS28JYfDnjhWg2t49Dz4mCKvXr0gxchwOJBjYhh6NCVrhbrbwLLfytKW5wo8ZvbIfP9HwI+UcVDz6vW1H3jNdF58nxy9PwMZs0p8wLV8RFkMqofGHUyL8szx883K3O4Ue8AiKaoDFpw5x957gjg6bykyq6blstvQeM8YM8NgxMb73Z5PP/2UEALbTcfVpZE1pzQQxwEl02XBtQ3ihLZb8fSZcedcPrmi21qJX7w3wvrCTxJ8oA0N2zXgglXhLOWHxzgy9J4hWHWNcXDEYuwGN5OnW2ptTwiZptsUAN3z5MkVMUcjgx4HPnnxGd55unBHEzor2NCPtMGqFlEcT0VsXA49Lia2bYdur4w4euyJ2fhWchyhEEFWzozHlYIQLNf18lqmP6qnXObfZGDGSV/5msJdCmupmk1wfLuzwfnacJ0AI5nG0lFhiUJqe2pNUKLMpvuXqj9mZ7fO3OpEVTC96lhfHSwntI2nCUaaur3YGGjTBq6urths1jQhcLlds+o62qbh6ZMnbDYbuq7j6dNnbDYbmqZhu9nQti3jOHB3d8sw1BB42zF+dBHwjSM0LavVxjj/QmPjNHi8CzRNZ1E/BBrXmvNNi+gGweObNU13ibiAjj2530FOdE1H4y21Mri2RLd7xmjEtVo8Ci9WASh0Dr1oIWXGNtK2RqLdbi5ot1cgjtAfCMPBOIYkkyVb1bvRojQVZSTjpfCjDHekcUcce9LYW2RRTqiOZI1WfSdapbKlvqdGPVgQqHGHOEtFqrybxi8HmpSUIWome7ENuU7KclMd59mR06O6x19dJmtRLUXq1DqvaVO28lRnXuYJd2pXL67x2nRjvnez3Rfr7DSXFrb4yeWPX8/O6vT+a07c0gc6cTWr06zHgEYWR3YBxZVqYgEfMp00uK5UnGvXrHpLF99eHRiHkcPuFkFpVivGwz1kIxfPWJVXo+eI9Lt7SxN7ZDGbeq7IiOrkF9jYASEV/VOiwyVPnEMpecZxYL83bp/DYSgl1C1dKJWKdTEl3BAL+DHzxeacrUSIYIVOmsKHFQKh+Ah1Q0FVaZuGddcC0LZruqbD+8D28inbyyeEEFhvV6w2K5rg2a49bSuEIGhQolgEft1ozS7TbVuevHfJOEZoBd95Uk70Y2+ViIOjW3nW25bgPevVirYNJb3LIp2smmXZtAkgjSCNReDf9/fku8XARB+9L83HmKP6liPXwHR7XwpgbMdJAfVqafdCB1P6LBdbrQLJBowYUBacxds4Z5FdudR5l8X81MX01KO5euz7TytMXVKLqtBiL49DLLax0o+JPpbIpMUcjKlwDimT7rN0vFK9DEUKLUQcBuLQTzydcRwZh8HS71ShFP9w8vAm1tuC6N8o8OOd42LdWaqXr2zWNSxKCvlWU3aR5nJ1Ilh6T+30VKNGLOcvZ+Xl9Ss++uQT9ocDf/h7f4vf/Z3f4e72lqG/Z7+7LvwXSpIOCc0E/FhfzIq5hoBOctSO+tpbdqybPzlKwoc6emS5IEwYYn2rDrgZyXvo+48WLzKvIZonjsu7pl68jeScuNvdWSRW2+K8537Y88n1S6RryD6zedLx6v6Cm5tXfPzhB+z3O16+vOaDD37Fbrfn1auX3N8fOBwGskZiKmGcTULEI1JDhk1hWQ65KwtanPvLz7njxhuUyuQM5BxwTjn0md0+48fEmHv2/R3giEPGhw4RT4z33N/tqBUDcrGyVSqAAC74aTz6UsJYBDNuKw17Od77wPrigma1PgJ+BHBqWfnj0HN38xmHwx2Hw4GxjzS+RdSx3w/cXN8hruVXv/qIQ/917KZUY212R0ZN5LyfdpC1KKrgPW1opupX0wg7Gpun0TLV3ZEp2uQ1o+p4QL8uC3/dfk7Gu8zh9xSlLoujqzNVdzuPIygq+DC7ZTVP28bASEowDHuSWsTO3d2tkY7Hkd3unr7vCwfZiqaxPPtxHEkpMww9Nze3hf8k0fc98ZGBn3Ec+PDDX4KqRaIrpDhM1YsEcGXpWpbKREu0T1aW6aZWPSRNi0fdyUxlt9A5C0edc90XfV7t26MuWoI/unhX5t/T1JEHjNyvQ+xeKiA2A8jLwTaPiW9KYkw4yWSxanRNKBsh3rEOLU+3Vr1r1TZcbAzI6ZqObWc65tX1HR998hnjMHDd3/LpZy9RhefPrvjhD62ql+aRlAZAySvBO+P/WW+2bDZbQvA8eXrB5sklIVh65lAjeYA2NKBC0625vLQKKTmNpDgUA3vHft+Qy87ycBgQwfj1ANS4JG5v7+i6Fc/Xl1xeXhJTIpHp1i3jMPDqxWd88ulHoILLjVU98oGL7ZauW+O80HS2QznGxP39nkM/4jM8W2+5bC+IOXE/HujTyOGwJ43DVEhiGIapQstjiohVrlKNk4E3/7h5gmiGVJy8YsSKOFzwBGd6NotO5epzcapN3MxpcfTtOh2zdEbrtqpUYGpRrlqnFyUSUcskrljPwvCdKrAgE1HqUpNKAXsqn8bV5YbtZsVq1fHDH3+f58+fsVp1/OAH3+fpkyvatp3AniYELjaW2lX1aWhCfSxUlRcvXvDLX/whH3308eQsfB3RWyJCswqs1luePf8h3WrLqttwdfmMtu0IoaUt/FlePUEbRB2aHBq97Tb7BmlacI7h/o7D9UtyjKxDw6rpjNvId3jfIj7QH0b2dwdySrRdYL3aWHTAVghr04tpSMRiB7TrDd3GqijtDjt2hx05J/bDnsN4MMew37M/HMg5EccDaTgAGS8RL1btbjjsSLG3KLw0krJVkBpHGFN1jgvZbBZyKhWpPLg20ASrpBdzoUxQyFFJgy0+eTR7rGnEorOCK6PT7L1c+INyPrUdvrrUaLmaEQDzGvjQ0ctfD15N5jkzW/LL2IBldbIF0INSub9MToCd114vwB89Tg2b/I+yIWrHn0Yr2fk5S7FjhSzBqkI6RVyLz0Yi7Tc6OeXbmIjZNlVjjOSU2d1d03Yrrj/7iP3tNTke0FxsgGEgabJU39vrBxDory6qMA6RGBO5gD81ismKGMwAvukni+w08msDiFUTKRovTj9E+kO0qs6jFnATdExFB1tKYo348w68F3AeL4p664MQGhpfigwUYNhsZqt4KiKsVxvWqzXeB66unnJ19dSqFLae0Hq8F7brhm4tNi2azOhtfudSpCOFzMWzNeEiMI6R9qZhfd8xjAOvriPpfk9oHZvLwJMna5omcHGxZdV107gC40ka+kxM4BL4TvCjkFzk1d0rbg53UyRuLoV4HlOOCLKZ5+ZUmMnZ3aYCyFay+FQoLqxoTql0pxAr0IyS6wZwmiO/1BtnmmYhOoihVhF3U/Gu6vuAjYEaqV/55+raVz2GCbOpmIHYfe33vW3wpsTdbseuVM8bi/+asxXxGaebNrvDidA1nhDKRknwBG8BD3E4QE7kFBmHnv5g/iatosHjfMC7uWp0lUkfvYUq/YYjfigGJQu0S/A1T7PygZSWF18YDgpirnmunKQlBSaWxj3se65vbtntdnzy6Ut+9eHH3N3eonlA84BNSKsOZQ7NCV3spNH1Nf+jOiWvtafMS8AE2kzgz+LCU7hpdS5Ojj/Zaat2Wz1+Cu9aLI8qi0odk6F2nPJgJtkjL6hq+cOgJA2ICjFF+nFg3x/YHfbc7+7wAW7vbrm+fmUV1W5v2ZcKBDXHOCWL9MnJ+rdO+Cn8TfO0G1Qn6hT+Xh02av/kgqrOoEUuuwJWsVIZxwySEDJkIxetYyoWLpQ4jpOjY750USx+JiObQASxna8K/FS+A+c9+yES2r2lhi2BHzIOJcWB/e6WcdhPZSqdqyG1xgkz9AP7/Z72/v5R+7D05NSGWnLgNStxGj/zuHFlJ1vcDJwsDZHjqx6Pv+lK+tDRJ18li4MnIECOpumsiucRIJOzfvpTT1m+5uH3KfNM625SNhQ+JVRs97TvTcmP48D9vQF23ntyqlUIM0OJ7On7gZvrVxyWwM9j76TkzP6wK9SgBp/nysGjc4PX9Isjo1VLJGJp7wp81V1Y6wvrh5lXbW4fu8i73OxJH5y0vcCUr/1GOcaPHkWWOnPiaarfBfN4/Bplandl2rk0Z72QwopnFRq6pmXddlysjPi4a1o2qw3Be/aH0VJMMBCphgpv1i3jGC2fvkRtQamwoYpTNRB/1dGExrjLmmA7TGWtTWW3VQqA6rw3QuiUWHUd6661ikAplpQCh6aEBos8sypD1ow5J2KMhGBGuvcBESOaXK1W5d4S+8Peogeih+Rp25b1am3kwN7IIUNjmmAPkBKCo/UNwXnGnBhNyZNinPLjHz2tpEjlmVASJ4zM8++i1pjWMYA88fiJuikkvkb8gK3h08yY3lzq4RNZjtmq0yZcU15XtycQ0rwzOlshInPKbk1ZmK9SKl26mbx01bWs1x2bzZqnT6547/lT1us13//eezx//oy2bXn29BkX2y3BezbrDW3T4ryjCQ3OW1+Nozkjt7eBOI7s7u/r/srXIub8WRRnu1qzWm9Zry/YXjyh69aE0NGtNjjX4NURcoOokJOQB4vUwnu0CabP4kgKDUkNyDWSZWcFHwoPnaqt+SkmmsY4n5wYl1AIVjbaScJJAX66NW3bgUDMiTGNpOzwaUBGMy9zSqQSAT8cDoz9DlBan8DnqRCARRekCRQ1iphqP+VjTETNRmCyf1zhwUiTOVGjf1AllTO9q2S4ZQ4czQl9kynxleQojb3alLWPWZChV51/dPxiPEz/La49/V/WVV3OlYVdhU5AqpyczXR2BYLqdSr4szhm2UCzx/qgTWVZDDpxlWj9XS9WsV+1zff6mWuUUCNdUq2OCOvtJf3+nhxHfNPifDBPxsWpmkCO8bhc9WOJlk3+RUTYkg9qsnPq4lI9nlrUImdqcr0gxcav6UK1KQuIltI0Rqp+MX3ny8aUA/GAbYRWwt2mCTRNW44JBXwQNuuVrVchcLFdc7FdlbLxtm45h/Hc+ILjO8jFz7WYvYyK4lvPKjh8cHRjy5DGwj9mGwniSln7xjJk2jbQrYxPNKdKni7gFE1aUsTK92m2AkfJwLCx+D45L4HKr9iFtc+mLrV+qu9X3kwj1V6eNQ/1Wg692kjTZggyXVsEq4AoQi6AoLp5vFT9U2P35vup91i/WY8m/cQ9WqV8Vq8ZY5qI0ff7PbvdjqSZcUwTNtEPI+OYmDZc1dLoh8bAc++F2BoXIygU+hHNvhSzslFsG9KCVS09tsGXG7BvMxO/UeAHLNfXO9sBqPnFfgpbqmkbRR3W8OP6d900K4pwHEd2+wNjjLx89ZJPPvmE+7t7PvvsM15eX3N/d4fqiOYeULy3VDKAMcUJbKLwz5i87nxMA/T1D+zeqjU3aQ7e0AGzcjryYZYe2QNfUd1cG7uVTPfk+6jD+gR0emQRLFPOK0gyjpDxcODVq5eAEuMe7wa22xW3N9d88uEHJR3gwPX1HcMYub+/N4MumgOSUsUqEzV8chyNvyJGZYr4QVBK7lG5F+ew8qpg4wXBhrUp7aZds9lcEZoVobkgNFtAyGNPHgdQC69MuRhCRQHZtf1UPc15mfL8Kzg5p2QU7ilxU5nCrJ4YpYRYjvS+pN9gZVpzisRhJMVMjIriEdeQs3B/vyerYxwTLnRcv7x59H58c+8uX1eunkWOqtSROA26SY5H2+mArsp+aViV7zi6/nIEF5Cnavb6JdUTKW3tXI24W+b6zvejpYKVvV6kKB0dbE8VU+T+7paXLz5DnCMhZIFxHLm9vTF0P0bu7+9KxI8rJYatnHQc4xT5c7+7ZxwGasW3x1xQ7fmUmAajJCxlkqtzXx9NZiIGqnUudeXXOZ0LmEv3Fiux7vC7oqON16WW8mYu6V275Kjl5x8tkQST06mAZOMJgMIZcDr2KAbzTB6+CEZYHPe63p7eLY0wFY2b7o3ZADrRvW/Clr4GzGkS5xzr9WaqjawKwTes2hVdaLjcbnn+5EkBkAObVWc8J92Ki+2G4MMUftwPA4fDYDokZ54/f8oPf/gDuq5FUyTnWIwP6+sxK7t9T9ZbM2YDrLYtofGkMZEGSwXY7XqGfmSMERcsHUaA50+esupaYorc3d1xf39HSpH7u3t297uJO0hVS0WmFkoZ6vv7HSKvSDlxs7tlt7d0bcTRrjYG2vfmQPqm5eLqkufPnxO8o1sHmtbT9z2aPaKemJR9XzgtdGEcMRv5YGCTE8cwfAHQ+K5S0qhsWM9pXXWQHRVqmN6u6adMBMi2Uy2LzR0xJ02pCx6IFKe9rPvi5vmkOs+ZaV5J0XELHaTV7Zy3OGaON3sCX3Std3Mq13q1Nq5G5+jaOe05lIiftm34/vfe49nTK9abFT/72Y95//33ClllAXtCYLvZ0nVd4Z4JBSCUCXyeqwdC0zQ8e/bM+EikEEZ/LRE/jrZdsV5f8OTJ+2wvntG2azabp4SmKxuHjVWKizD0AyTQVDJhsuC7xuaSs+iopm0J4mi8URiIc+BKimK2TSYv3sZNNtsnOSWKMk62jTl5YKTuh3sjab+9u+H27oaUIrvDPfvDvZH49nv2/aGkC/TE0SL9kssMTsk5MgyJnJ2pHUBrpJkmYk5G+u+s4IN5Z2WdKCW1JVr6V4qF2NYuUnh1yvgEixxKmZQtNcxsf4toQxSXMGfmMaU6fFLKT9TLL9YCxcAfyxmSB83wslSBW55VXxWwZrFZNru1eXH8cuU4tc/nMx50BE5slOXL2X+o58xroSLTHeTF3eQJDJpPUazgSk1HyTrH8qo41HkktHSbS9LYk1LCD/a7RsW/DVfqu4tQq8ZVW7BSfwiVc2tOt/KlcmvbdAgW8eSoaUHWCM4QHYJTgrdy2s6ZPkEwrtCSRbBZdVxe2cZK2wpt5wrvXeHHE0cTWkLTFr2Zy4/QtR1tqai5KRG1Fp2uiDOfwyLhbOyLG0laodIC/NTeKwBPCELbBiDRNIG2MeqJYYjc3e0JPhAj7HYDOVnkTorJNoIOe8ZxpO9HXry6ZbfvC4Ay2+U1hS7Gx5yLZSxN6y8TN2uSOdWr8vTUIW7l32UCfqYI8wlYtitPKdBO6sJb3rf09JyFmKwQiUX82EhNaqwb8+x8AN19UCGo8bUCwzDwwYcf8sEvf8kwDLy8fsXN3W2hybC0e+PEjaRYMIY8R/wE74zrScSqrgVLX14Vf2K73eKCp1lZdeiUMs7ZGDvOUipPPVUF/GL5ZiN+gFBYzrsmWJ5wmcwTx0RFdBd5A5XrQ6SGZBUkrd9z/eoV/TDw8Ucf8vM//ENubu/4xS9/yUeffML9/c6AH7VFr+s61qs1IkJfqjh550lKCRn8vCYrxtsDzyTLz5b+sNY3Fpp2YYgdOxNvWnbmybB0mOcooNPT9A2vH0cEaBUkK85KM3C4v+fjjz7k9u6Wz140vPjsF7RdYHd3w6tPP2boD6SkGM2CMgyJfm/KKeVMLKl7ORmfhAj0fWYYMykqqKdWjhCXDOgpKLEvdrAWxv9yh4DHSWC1uuDqyfdomhU+rHF+A6qMh3tGqcujEkuKjJOSiy4O13hcCeN0pcyhlLA8H3xZfBpEgoEGEyItpCzEwZTQfn+YPeoSDmq08gOU3TYV22WPWXj16pbb2z3tyxtevby13b2vSWQ5aIHF1vAUFukW0XGz487rw2tC9gtgU5zRieVCK3pvbVSYEefjYfG7vi7vlEOnT2sal3Pgrf3nygvldqhgqXm5Zgzko53/GvVSF6c4jrx69RLXNGTN3Pc9h8GIt3d3d/S9lUU9HPYMo4EuVrXMUipqLnIuVcNyylMzPfZsVM0Mww4vDnXmzGrK064CGDBpx2ohWKeAa8VYU5mM4pzFLCEtKZSFy8OJIzhHcMYx4zHQx0h2536qYvowlfdKqgAFlpY6Htxs2ggT8DMBfdNDltFRKhLVYfd5QL052ccRTpRz5rK4ZffrgWvMeNDr3/T4GtWA5MuLS3JMjIMZa13bcbHesmo6nl894Uff+z6X2w3OWWi0c8J6vebq8orQNFw8ueTZe++RUmZfgJ+UMk+fPOV773+Ptm0NFCzkztevrvns0xeM48gw7Li5vbd1OMD2yYYmB/p9z+HeeKpub3bs7s3Ybzqbf957fvT9H3BxtUVRbq5vuLm9Jo6RVy9fcX19PUUfHfYHQklPExwpZm6ub7m7s9QUS1PpzcBzgfXlE1LMHDDukWa14vnz9/jxj39E03jWm46ua2yNTw5RT9+PHA63xGHAIHwjohat4eI28prGeBh2+8cMG7GNBpybNgIspcW0kOjMZVj1FEz4denXQvrpbA7kZAf48jMp5TKnU4SYY5mvHnwh/izAiUmZe5OOS8z2yAz7uunyNr+lfKfx+UATPE0hTH3y9AmXlxc0TcPTJ1dcXl6USDD7Wa0M7Pn+995ns1nzk5/8iPfff14qXDYzP4YrepPj9PqsWsJ059nWdR0//NEP2V5s5ypbXwPw45ylPl5ePeP97/2MJ0+/j3ctoVnjXGM74zGSslUcGu560pAsdS9ac3cXG7Zr4wHywcrTExKtmGHvxUo3R52Ja4MLFgusQt+nMigS4iMgNE5ovY2Lw3BHf9gbx9vLF7x69RkxjuwPO/b7e4yDbiClsWxy1HLYihcjWlXNDGMkRY+VhQ+2Uy6ZxMBY7kucgbzFZ6FGSMRxTvnNqQB1icIL5UtlqcIRKEqMio9mX1UHOiVztGPEIkgeTdSeV6r2LnZ0MQ+nqjhCIaIGppnwuo1fLnn6Yuk1FplTLSfYRU/OmS5+gr5MY3nx+iHQR6sdVb5x6VoUmwulxJWX7VQtgE85PlPBKi3Xq9Wy8uK2rNqnOo+6Bteu2Fw9wwdPzolhHM1Wdw4fWtM/jy2KpVBmZqBHIDhPFjXAOBQe2BAsYtAZ1YLg0MJTlQuQrSoEcZb2ljM52JiuwE8F7UUyzgtXF2t++IP3jXz+asXTp0Yy34TWvktcSfVqre1dtug3KZvDhRoihEAIppszEa2KgoRtayiisQAKy6wOpmAH5xNt60gacD6zWrX0gwFc+/3I0N/hnOPmxtbZGBO7+3v6waJRdrsdwzAwjpndbmQYEynDMNq66ApFhThPHB/RypmAGybAMSbjVVJKIEgl0aduOgg5KWOswI7OfvUiRGeO/DEfxfmyjTGtf0rMwpiEpIXuvkxzA36srSfOunrLS/9m2RQ2iAyU0sz9Yc/f+Ft/i7/2V/8a+/2eTz79lJcvX06bTtO/wktVG6EGblSPSioI5IS27Xj/vfe4uLzgvefP2V5ecvnkKaqC92kiKK9+xtTI5dfrJOUPyzcb8VN2i6XuGjuxDisNn3JGjlgM5x6YiVnnz7TkJZrxOnDoDxwOew59Tz+MDOOA5pFcgB9xNlGdMwJKm+nLnbgvMCSmbfT6ax4sD7ofR4NnVuhLB+KLwZ/jr7bX1Qs+ObOcvlxbvg5XpcbeiCqSDbAZ+h7xDtUBJz1N49jf33J7e83QH0Admi0HPk47RDqRASpl4yXZJM+FjMzmUF2dF9qjiBnO84SqgVC2ljsjYwwtTdPhfAlVVSX56tSeOH1lXEpZQFwIhtQHjwulMkbjS1ieA2kRQtmsL5OxRE7YXDcDyHb2lMk6LEuzTEZ5rZIgjGMkjqmcJ4Smf/Q+rG23+Ov4wzqWamPK8QlHKROzDXE8sE8AATtvea68abhznFRftf7JJct3zDw98/yZbSqdf087lno0K+o8VXTiAJnydvc79n1PirHw+hQOhcOBMY6AVTia0s+KwQwUQ2qyNt/woF9erC2NbDFrWhhzy+crDSZ2H8eA2hKUWwIuSwO45jzLkb6r7Xry7tG3zibkUk/Ne4NHmknkeOws72daJBdB8CLTPbxRwy10ZD1PwQCfaa08VZr1gosWXLTn4/eitWHwwfLXS1naKdXDe5rQ0LUtq64roeRmxofgLdS8bRAXEN+QsxKaBhFPTsr24oLtdkvTVODHwoh3u0PRN2W3N0ecM92TUsZ7S381joVo70fLW/ehpOA66NqWJ5dX1oQFYB3HkXGwn8oXkWKauWGK8RJjRAsh/jAONp9KFGUIoRjgGcQcjKZtWK06QvCs12u6riUnqwjWNC0p1jThOYL3NXBAxPS5uAfH7VfsSCZ9VMawlr6aYtSx9epU/0xRP/WHamcui0PI4jWos/VLYUoxNqNQOQJ8tETJ1nFd72O6n7md6pooMBE11zQuX0oSd21TSEQbLi+3PHlyaed5j3jHerXi2dMnPH/+jPV6zbNnT3n29KmBSW7uf/v6OZV04hY7tXVg4v4x4H4BkD22iJTI8Ja2XdF1ltbl3MqifbRAiprIuZQmH6M192ht3JQoHrtc2Zwo/VijHjO1ambRQcXxqQVL6mKntWKRerKVwS3krlbm+jDs2R12xHHkcNhxOOyKoxHJeSxtOIVxFiep7KBnqDwRlSvR7iyWJV3KfJyXlmp/1c0NlKN0/Oqj2aEyfY/1sQ1smaKIFOfFoscfsw+nIT5t/UxLSl3nDfsQm4uTWV/baHE31dY/NjuPvmxO9Zqvc3olnW7i9avYrZaV8eSY+tn0evlb5y55aFGd5td0bN3mLDejNfJ5jqpgOmdpo1nlPt+0NG1nVBvO43K2UujNquiex5fJVxQ3UZqod0jWUrkrFABojoCxyI7qKx5r+Sma0VX9IQV016piy/ogtsGwalmtOi62a55cXVhEY1P8CbHqmSEYKZBIWatEp+pYNavEaBxKinWu3DWpRFmVTTldpEwis7tTwQLRKcJJCmcNWFGWhOkXA1O9cVLeH2yjMkZ2u30pMKLsDzPB9QT8OOOb8f6YLuQxZElEXodYLn+oMxvN+tlS26tVtkzrs75bXKRe8WgyLGz9Mi/nCP9Z79bleFmBd6mD67Wn4k81w2SabwX8SYndfs/LV6/Y7Xa8ePGCFy9eFGyhKkwmsu7yx9we5X0RSqEkWK0sJTBrpu064yPMJYWtgLMuV1/3uJ/KFtNDKuY1+cZTvRY2THmDaRA7EQstPLlzmXZ4rE9D0BIe3/HkyQWbsePQv8/97p7bu3vi0POrD35p5EhRGYahNJSVFy+j7gRMmpX3UZWXNz3H9Kpq3aVrcKqJ5bXzjpeKhRwfftRudX/OFjE5Ouc1+3a62OOKQ+gQRF0JgYVOhZXzdD4QAI2RqBD73jh9CvCDGiFVikqKFMb1TC4hfZaV4iaj1wmoUyzVqximBZSRKYS3TPJcDZny/AVtz4qRR8cEsUex3Y1hv2M47Mgpst6s+cEPf4SIsNlsWK9XiPe4ZoUrYZwUwnERMUJnb/cUx0BMjpgS1/f3hdxLYUylAllG3EAtk2yREOYMOBIimZwSY78vaRgKeQBVohuIldH9a5SHMIkZaynKV/VIgdffR+/pcvhKWQxtbourxr4uFPp8QjW6lqqhVhIT1eLg1CtXB8ghzlIchGK8aiH9myw2OXI46+6L5mw8JDVCJ1qKlAwDtzc3ZIzf5O5woB+HAgj1xo1QSMBraesaZ1YfyRpkXogqwv/4sEEZ+1glAZW8UEdLTWOtWTlgpj6ZAKk51bZyZLkpx13weJyCUyWPkWG3x2ex1J3OTwTbRswvpeeMcNu74hBWroO6/skcllpJ++0upaSuFR1QniOXsSOUHO76iIu1/xS7qTZCJk/58/P/88I/N5qcnD2/lun/r0lKdZuUjPusbmgEcRz2B25vbtGULE26KTvmalrEh4CqI2nhC0lK0zRowDhDvJFWindIEFSt0tLTp1eW15+Nm0ecsFp1oBhBeR/Z76zc727XT1FEsXCBhSbQHwbGYTSjc0zkmMkxk8ZkFe1iwotn1a4JwXOxueDq6gkAh94AJQSCNuTidF88ecJ6c8EwDHwin5LiNTjH3e6WT198TNt2ZJ6RsjBEpek2XD5RfLOj3e3xg+lPX8OqS5VQXyJNKvjw+FhsHbTl2nXOq1qqyBSJ54prVcZVqUBphngsBnyeiNYl2/kigsMIv8U5Li7WluoXAl23YrXeICLc7Xbc3t4Tk+363t3fl6pxi5R2ncd1LXtsa5sn1MihXMqRi9CuVqxWrZEyv/89vvf+e7Rty3vvPeXpkysr1d4GQuPpOiNxfu+9Z3RtS9e2U/u8m08hk85qQsN2a9xWZTn+OrD06XtzhnHM9H20XengcWLRPuNgvG1W5dHWhCCepjVibueFFHtUI3G/Z7y7QWPEIzSl0mI6tMTDHvWOPGTSIZpd6sTy60SQ4HBN4dMJHi8BQYk5ktR+lEpKa6l2rbZlffXkbGTjs44shQ7K+hlCwPtgw7bxEIRxHPn4k094+erlxFmnYyErzwuNmeY1VgpI73TWnE6UECyKtGmMzyQ0dT0o80QMeDlSvY8g5uDJ5KhVGGMuXGfr3HLuVct6cvxqBICe2Ooni4wuP1g6qdP/n7NqTGvh5CJy2hjTxoRWO2I2Ler6VgGbOZNUmUug233Uddczr7t5Wg3NMc4nqaha26GAF5bjGxBnOhVVfGhoV1t8odB4TGmawA9+8F4Bhavu0knN+uDpWuMDC4uInzJUp+evr2NMxsFY6CXGaOtD03jaLhRQpZAEO3j+fMPlRUvXBdYrb7xyAbw3nnLzZTOaY+ki4xCFRTfKPJ6MsHgg5RHVTMrjlHqdolUiW6ZOataJJDgl5dCP9IOtma+ub7m735XnkxJZV6knXCF476eNl3FUYnIW4SQB76FpG66erPGhxTtP01oVsk9//8NH60OlbogX+//ok/KqvJyyMUuTeS+WYSnz8XVTRTG9Y8CtgiZ0tLb3XUvXNMY5FxxNiQ6tgLgBbTP4k0oFRIBVt2K1Whc/05OdYzEFMdC/LOnO8/TpU372s59xOOy5uNjy7OlTIwo/er7qO9WMAOvbqaJiVovOzKlsEmR293fcrVpevPiMy48v6dqWp1dPWK9XNFnx7QqceR5+SpWzFN6lH/wm+cZTvSrYMhnmUpx0Z85Fjd2anSVz9n2o+YCG0OaseL+haxtSSrRtw3rdsdvtGYcDv/e3fo8cI7tDYhxrg9uOJ84av15vIrfVGfSBuTG/UN54zLHKfy0ih8Xwf5NfKPOLKaWi+mjT53pyeF2q3snKeitxwAZvHZftJlY4tr5hFVpURvLQk0j0+x2H3T19v0fwiLSgjpwcKbopKsY2jkrKn/piOwveJdttL2keQKn2VqLGKCG9qhNpG1DGSnF01RR8JhLjyDjuC/Bzy3C4w4lwdXHFD3/4A9q24b3vfY9n7z3H+YBrNkhYQQGQqqnjy7hJCe53wuEg7A89fPQh48sX5JxwpYSw5oSMPSmNpgyk8inolG8ax55hSFYlJydyf7CUDK0pAY/fj1UWG8izvPZ1ejxOj94vJssSnZd5ntfdjrpTbbm7RYXq8pJFsRfnXlBUSk50uegE0FZDpJBjylTlRpAphaLMF1cM3GBOX1vyZ7WQ/5ENeIt5tFKKMRFffMbN3S0pZw7jyJCMzLy21bzbmacdm/owb4oB1K+tD035K5W9w6CTGblbGLJ1J4y6W1TaaHrtcZQQXEpKkQgBj1fBZcj9yOHmDu0jsrlgJR0uONrGdsKkVlgr3x9C2d0VpjZXIGUhqU5RcQsKhvK77MxhgF8dF3VnJtfHm/6bz58N4rJQY1Wj7ND54DqzlnFQM9Cz7Nelcn58b1NVLSy9ACZjjAwy0vcDkuHO3/PixSv293uaNrBed/jg8IeB+31v0YmuwYcVIo6msfLTzjnarsEHRXwieIt+tD5POJcLyX4kJjN81puVFZ0aM/1+4PZ2z9AP3Fzfc319T06Zdox00QjNry6tepcTIfYjaYikIRL7keEwolnxrqFZW4TI0yfPeO/5+2RVbm5uub3fWdSoCOID3WrNj378R3j/+z9it7snjsJu14MTXt28Io33rFZrsjpi9qjCantFu76kub3lxd0d9/0el9XSUVImOIuaagqI72rUySMzBCtF7zgDQy0QtTgsaTn+5ui76vWpGlHkWHaDtZBqm03i7Zo4ms5SHXwIvP+99/nb/ugfYbNe8+TqkmfPnuDE8eHHn/CLX37I4dDzq48+tpSkMZZdz+pKlnWo6MS2cO20BahRVcbhwND3OOdYXW65uLhgtVrxg5/8lJ/+5Cd0Xct77z3h6ZNLI2jetKy6hrZpeP70CVcXW5zzNE1TUoCOl49qa1Xb61RqHzkE11qkrdYKZHyd66I5SP0hsg8jzhu/hu2kDxwG26QZ+4Fx2JPGiG9XtOs1jW9QB+NwQEXp7+64e/UZaRgtPb7w4MS2Ia5WqLMNNIkFPAke39j4CW0grEKJFmgsKgEY82jrVY5kkhWewNF0DS5YK5vdkCaQo3IkOtfgpMF7z9XVE7YXlzjvadeB0AX2+z2Ev06fjNcuc0/SvRlplYux2FtoTdp1RU9jmw+Crd3e3ms6S+/quhrVVgFSEC9T5NljiSJErVp9Tmf0mA3uCvgjApIFzxxJNwHCOkcSH7msyyjSutDYly5EFucsRv1yGVkcvwxWOK05M/1RgRhdpM6UkyfHuUY6gIF0teLVdBU53nDR2Ymt25EsnsmKgpWNVuetGrLvLEIBi9Bo2o7N5VOadvVF3fLO0nYNv/3bP5qBXmfE602hXWiawHrdTsB10wTEOeIY6Q+WimaFUmxTb7fbcf3qxngYFVKyVllvVlxebPG+ECZLRpxwcbHh6omVXl+tA6vWooRCgODVxoGa825dk6BEyxlPkjVltXnNF+mNViJnUhpJyfjoxmGw+ZaV4TAwDnECe4bBwJt+sGdJKbPf9/S9pYeNozImLZjYbMVMA6f6VnizmV1T9PWW733/R1xsr/Bl8yCEht/9y3/t0fqwAm5Q7HSZEJTpc81i00owOqcytkKoa4Y9Q92E9nWDSzOu7KWkIZJ6SxUPjWPbNRYNVsYOKGMeGWNP1mypXsWOv7u94fbmGoCnT9/D+/dtk8gXmguZbUlK32bAhcD3f/AD2wQYBl69esXtzU3ZoKRwnTFvjquWyom2aTwOA3EcjUbi/tais8aRu7sbbm9eIqL86le/RJwFJOSsPNUnNG3GtWuyCxaZFnwpCKGkcR6Pnye/hoifBZpdNVZdCMrnMw3oMg9+XjRcifgAb4owezbrFRcXW7z3bNZW2i4EbxWX7NumzpuiDT7n3o7fOz72yAUo1zoO6nzo9fG5y3fkcz49PXb529pqmkGTs3Wc5acPPepXEk9FC4pzh/EBBOdIKqViTCrKzcoBi1AiXMokyv9/5v6kx7Y0S9eFnq+axSqs2tu3VxGREXnOoRBICIkfcCW6SLRAgg4NpPsXuD269wfQug10oIOgB30kRIcGTbji3COdzIzMKNx9u+9tZquaxVfQGOObc9l2j4jMCIujMyPMzbbZsmVrza8a4x3veF8VsKzADmgQXOeCxZCv2FjyeWVplR8fkMs9WB8HK8ukVlGrdWGMUbRLgghpNW3Lze0dd/dvsH4FfgpKs9P56gVPIKqMiTGQzQUfOrANhqRaRJnqgGDKGmhTgxFTP0eojV/KfhB3prwwTP4alzE/PVf/WCX1RctM/d6fCtzM9Xy5nsM/9XvrwfWHHrE8jwIM125ML0Sizeo+UveN+lFYGS11HckhJJt41PGe4sysqvrOGWW0aEJ3taGXXF7ct5+6h6/uKLTczhqQ13tmf2LXWe9Djbqvv17vZ1m+Y6kgnCSxBk1I50g0kdRIYi0iKoXrJVmXrTCBlH3HFb0WqVIJq4tlsK9byowmLdfB+3VAU66++nTnqyHwMk9LUU0fc/Xz698vrNL41zTayspYg4+/xrXoZRQBs7MGJSklDV5n0XkxBR8cuVipXOo98x5C8VjrcU72GdGeun63K3hZA2drjYirRnmcU/2r6/2yfqSYSTnhtArpbHVPKULoXFo+KgNTnscZEe/1ThxQWm0XEC0G2cutkTPdOUfbdPSbLbmAD43oqZlCTDPDGMGIiPU0ydfWOnywuBBwqr9WUsZWkcq6B1Q3oqXV6xXHjzVAXQs0Ot80gVpn8BWzoM64osdfFWwuayGjUAQc0Ocz2nrRNi373Y7tdsPd3S1vH+6x1jJOE8/PR2mJe2oX4flcVBuAQhV9NwZlQwkr0nuPD14ZSLPo9qiGhgsBHxpC29L0vYBEba8Jg6PrW/ou0HhP27Y0TYNRXZvrY2Y9Qa7nv7znT2Ow5S5Zcberotl/vYKIngdF2s1TEqFVa6RqnZTtWV2DqvWy7HUG66248uQkTVNpFmbQLCAuKmWTyERjBPgpBptkTjgyxRZMNhhvsLm+XyfryihDo+5uOp9NMVhkncg8VNYlAvqUIkUSaxusDSIev9mz2d6JY9Cmoek9LjR0/RYfWgoG5waRRmA9W2v4XK5jzjrNuTr7rn5mqiY5V0y711yAn1yVo1nnm2Vl5i5HHUa/v55xslxXts/6NDUu1YXK+oBPj/WfiKiuX9gnL/SqrcWszJyffE9Xof51W+R1PrOU4sr1GVZPxhoHcH0kLM9RVTbM8vufvgKzxFsVKLPO43zAhebTB//Fl7WWzaYTnSmnLVlOihnWWRotgkiLksPreTZNkRBEj662K8t6nbi0VnMQAXeh0HWevheggCuBZgGxhTXi9e9XIeKaj14n9nAlulvvK2tRWnQfxbQma2wfozB+5jkKwJMzwzAxDmIGcrlMjKMCQlNinuXMFbasCAhPsxS3l7Pm6v4ZZZ8atFiKxRjR8vG+oWs3bLdbnAu0aj9f3YVf5SrCHq5uZ0bztDVeNYuLKfVeFgkk1eNKn2Zlpl3r/CzaqTmRY5R/ZzHQEYmCNX5b8qmSF0H7nIW5OQ5nAOZ5r/mqoVj/8u+/wA3kHG7blv1+xzxNlCzsWDRWXNjtZZ0nKc3L+TEp0BPnGUrCGpis4XRCmd+RcRy5XC5Ya5nnSUypklcxdp11BQGZirYPpv8EgR/d/ZceP22UVqtotbn8qd+rFXUjQkgFaf9wyiLou5Zd1+Ow7Ddb9ts94zCR0sThaHWUi4ifKn1rwRT+WKZLfdAf2pH/WIpqrn5eH12PlRoA1of+AVGm8uk/fvycP/75X+9y1rLbbNb7ZgybrqPxnmAtZCPCgC8+MsY4ZeqgdGZplTKZBRk1GHJy8r2sLiI6UNf3ySjtPXgnVSQr7hISKBus32BDh/NSGS8mk0nEJOh53QQkEfHsb2558+4L2rbl7u3n7N68wVpHNg3ZBErJxOlMmUesgTZYWm+Y5sLhKTIOkeF85vnpIx8/vBc64TxQsriG5TQj2j4rBmKoh4clx0kSJGexOGzx4AoxztIuoTTEv85V+KRZiT84t64350+Q+5fX+vv1kLRWmAh93y8AWk3YDVdaS3Vf+OTZasVYIuwaeNirz/oOKvvn6ufC+HGL84NzThgGVwfcwuIxhpIyBgnchRWkm8XCya5RUnlR9asHveGKKWjWQO21QQMDi34EV2CFuX5EBUKvWhXVk0t2H3MF/FCDmDWNhfXQlYBj4On5ieDPjMPI5TzgnKftW9ptL1bfjadppKq82+/oehF/LU5bbRE3iSo4WduHQNgM3kmSE8dInCQwylXzCvG7qByhF5hxPWiBYsvVfc+f3Pu1IrvcsWtNqfWNX3/ir7W/ynudlOpddTMU9LGWmCMxRWK2pCEyTJcl8MY4MIa+33NzYwkBAQWSCE2OwwBlwlq5zyK4WhiHSSzfUxabWScsg35qSVECnxRnnBOtg65r2O46cils9lu2++0CmIdG2HRt15CS7Lld19A2AiA0jWhDtG3Lzc2eu/s74iwuYFkLA3OOzEmE1w+HZ8KHj4zjgLWG3W4LJVLyhcs4Mc4zl/Ef8P5baT26vaPfbJmnkV3fY9++4TKMTB8fxYWGJIKeXlmCV85YrziKsFC45fyS79a9QyfWcnzr3zZGE8+6Exudjpotg4J54iLTbnfs7u5pmpb+9g1uc4vte9rdLbvbe4J3FOvoNj3jNLG/27PZbxiHkafDgafnwxLYyhSydF1L23XyvSLwLIiGFKUVQKjd4ro9JTR8PM2kbz4QvOf984nNpiU4y82uY9uLFtXPv5z57E0heMe27+laWdPzPKllcNGikMy/thWASsAfTc5yWVgIhUzWFgnZ91Yg4jUveW4pKE5TxA0TIRScC4votTUOTMF5j287sku4psGEAM6J+HGW5C7mwlwgFpS1KAO9gOCmspsFBHVeElhjLS5IUi2i2QHjxNrdh5a2zfggbQLWqGblsqPyQmPEuUb0Da0lhJ4Qerzz3Nzds9vfSKtM63CN43w+cTgPRAzjOPL44T2H5yfiPHM6HhkvF4npUiYnTXRsZWcKE7OexanunxnSDNEXqp4HBnJEi4SvPoy6ja+wSwVW69eGlzu5+eSjLtEfR0XXsbz+9+rskUe8LFT8wVl6lRBW5rCAup/+naqJKcBCnGdSjBqGSJHAGIMLXrR2ShFjiSitmmWeKSm+iNmLsWTfUKwnF0NKhpiNPF5b4MfhwjScmcczcRqYRummQAFLjCVaS5xGqt7Ma17eW96+28n9tAoGaEujVZ2opsla6Mg4l8R8xSQwdY+BOKusRIHLWHC+IPGPOKH2fWCz8XoGuqWNtO8DfSdxTNM2NI2wIp1tcE6Ys9Y62S+MQTR+RKcnZnGtk2GVNrpcsmrQXlSfdiJ5ASKcnfFuZp4jp8Mj5/NEjJnTcWYYxhfF8lwseXaUJG3xXRvoOmUJOr8wWu21+7DKLeSiYt8Fur4T4XaLiLrnyHWnzWtc8zzyu9/9PT409Ju9OqCJfuEKIgomIO2zAnjFeWS6XMjKtl+A7mKWnjDrxHwHA+NlYDgeyTlzd3/PZTgJ09SaxaRmGM8MlxO5lKWIUUrh48fv+fjhPRVIt84RQsN+d6udAto+eNVDZQFvBGsw94kUI/vNhuHubgG16n2sbK+cRf8wJmmBv1zOTKNotTVtwzBeiPNE1zVcLie6riMEzzQNeGc5Hg9YZ+n7yGZ/J7GfSisUDMMw8fjD91zOpz+9tl5thP85l5QaKaZoRRNMycQ8YwDnvOinLJUC2VErAg1aVdEKcvGFkmWjKzGTdonWN9ztb7i/vZNK6TQIXSsLm2Jx/rkCXn5yY/5DuMpP/vM6U5Dt3rzgbOr3l1Okglh2CV5WTZKfeN5rpHEBFOtzmx8/ztTWiNc/UZ1z3Ox3K+qPod1s6JuG4D0lzpioQZv2pqZYML6KWMlmlZ1UobIxizYFxZBnjRxywdsidGBTsLYidXFJ+rq2YdN3QikulepqMK7H+A3WNfjGUUwiYZjjJPa/pRAMBK1M3r95y1c//xvarmP35i3b+wfAMiVEWT5FYCTHCW9h0wV2vedyyXyXB4bzhdPhyIcfvuPbb35DyRGbB0yZFHmWgEz0JarejcWaQGU2WVBVfTCugeIYh8L5ODOP51cfR7mW0OXHc+WapbM2y1MrSWvf6vXvsD6uQjpakbfO0liLb39cGTLL47lyl1g3Syk/FwVkDGvpxWKt0yDEVA63PKd+b9X1eanxUx3clvWXRdOnvhGzMDCqLgdrSeyT97+s/vowrh6nn5eWsNe8jGiiiF5RXKolZkG1obZ0WRV/rWvWqB+XjJE8JiP78VpZLC/eay6Zy+VMjgVr1N3CS0tR23d0mx7nHNvtht1+SxMCm6ZhEzrZG8oK/Bi3tugtwb8xhBDwQRgKh8OJ4+ksTjqI3am0heUloV4/r0EWZgV9qJ/rLbva8Q0veT4L6LM8/OV4/dXYPjkzDYO09qhTYlG2ZDQQo2dOE07bLy6Xs7aFCuuwYLi//wzMhr63GOPoWullj/PE5XSBkjgeLzw+HYlzZI6ZeYqUAv2mV7asZ9t3zNOMM1YYkU6KMZttS8xbCnB7d8ft/R3ee3a7nrZt5U7mDmMKzTxzOnb0fUMp0HU9XdvTdT1v7u959/Yzxmnk++/fk2ZxzJtjZFJ248cPH5mjpZSMs4b7+1viPHB8OjJcjkxz5PHxN5xPM7vdjr/95d/y7u07vLfc7La8vb/h4/HAh9OB+TiRiGRvoPEvwLLXxvBKFjemahyxVsa5Pr6v9qq19aLuwKs0l4JUGKw6x1jr2NzccffuK9q2Z/vwGX73gOs7+tsH7t++o209D+/e8ssiFcMvf/MFn3/5hvP5wj/+0+/4h1//hmmapXXDKNjXdfR9B6UwXA4MlwMV+BHgwRM2N/jNA8UYvn2e+O3jtxgDwVttfXDc7zv2m5b9dsMUMwVL1zY45+m7lpwz4zgwDFKNr04zTdPw8PDAdrvV/UnbV0u1dReQaJ5HBSMtwYsr7GtfUliUvXEcJnIZ6DpomiKMT6wmVkCwhN5RcsH7BppAsY48FxVPzUwpM+VMLGV1doMXZ4GxDueCtNUGr8CPERv4RsxIXAjiMIp4llor+2nwDV23BUT41VWwx3sBAqyj67Y03QZnPf1mT9dt8T6w01YvY42U112R9kocod8zXM78/nf/yIfvv2UcR4z9TsYiJuZhtfP2V8mbU7yy6lNrAZ44Z5nzBnDCEi1JzNty+olY4i+4CtK6tPwD0Ry6rlddAzPX/64z6sUp8ck+cR3VL2wFs54z6/OYF8/58jXW2ICFDQKay5WXvyEtQsIOyTkxXwbiOOiZLOwB6yz9ZkPbd5AzaRyZx4mSE+l8JI2XpcZjjAHvsf0tpt2QiyFmz5ydPH6ayDEynI+M5yPj+Zk4j4yXI9MoRQcxPRHFoLlp+fSsfI0rNI6vfnYjd0sBaWNV59MAVuytqQL6quPnAoRWgfSUVU9U5t4wFcKojmC20bOyod94nJXitNNYsWtb+l723dC0NE2nQE+Ds+LqFcIKCFlbquEic5Q9QO6KpxhPTpnj6UA4CUAR06yM/sIUpMg7DCPv48jz0zPznDg8i7aewRBCg3dBwJ8sxW7nPF2/o+kk9ur7DaFpVAD/kz3SQEyJyzgwx0jTtoTGa+OM5uElvupaHMcLf/f3/zX9Zs/Dmy/o+53k+U2Hs3IeV0e4YRg4Hp6Z54nT4ZnH779lGgZZK7Vjoojuj8HQdh39bod1jtPxyPPTEykl7h/e8Pj4hd4HZZxSOF9OnE4HSils93t2+xsAfvjhG96//x1QiCmSKbRtJ0YFuz3Oiv7e4sSpkKE1lvv9Dbd9r+BsIqkbZS5V1qAQlSEthdOJSU0vDocjl8uFlCLnyw3TKJIg4+WeOOv6BmEjlczT00fmOLO/idx/9iXGCXCZBbnjfBn57W9/y8fv3//JcfmTwI8x5n8P/E+A70op/3393gPwfwZ+CfwD8D8vpXz8506GFQyrm7Em7NcJZn3gp68HFhRTnsMoW0JoysFncUDpOnGeCAFvHXHRt+CTjfyno78r0v+feuj6vvQ9rZWon8b7K6X5mn5Zn/5T0Gell/3x57z+/oskfl3EvzTGfMdfOI7CtAlLtRCjKHMV2F2yMH08lWVQHd0kabeLYLOlqCDbUifRhW1NBfuKsnwkTcuqySSuN2KDXvuVJfrwsigqQEjWhDYtYlp4q9oYgu62XUfb9TRth286wJDmTCpC9ZZYPevfBe/kM0XQ3hRFI2aeRNTR5RHLpIG+6PlIddeKMDYCemGc4LVG57VSsk1RBX/WDee1xlAH5mrOlE+m1Irg/KH86MXhcL1Of/TglRpclevrArxeh3W95SvgJ+eMSVJByaR1TlXwwhi1ZV1BqmXtqWC8AE+1PXT9vP7O1YuukSHlRwydn4BZf3yZdbld35/y6f16zXHELMDHC4D46lX/uH1i/ffa7sVyT+rUMHW/VLCyCifGlDDkJaivAqwCRDmCc8xNkA6wlLGlug8p28jI71gF55wVsMzUxKfx6h61aqX8WPvgel8u6z8r6ANXdu38wUH71NFxxXyuRDmv/m555f20/lFp7Vzbo1CgbflAPie10o1RNACmKPTnfjMxx0hIWdtRpDUlp0hJM6VExnHgfDqJa2DMzLOIghurgJvPBOdo/UzWli8hnhhJthsR8GzaQNOu2goVuK2Py9kuLVcUAdhDCOJAFgIhBElWNCCrgb0k+tJqOQ4DGEmWhXnitB6Q1aXkxNPzhVIKw3BhniesCaLH0LW00yht3tVBq4ItXH3mteObKzp4QRxLlhRQH1H30/rFH4oplmRahdO9wzqPDw1N20mgHxqKceIPqUwma0XPzHupMN/e7rm/u6VtGz4+PtF3ra67FfhpmkbEwEvGjoYqQm2tl/PJewEdvCQd0zRymcQp1WpRxjsrZ6HqVJzOA8M4Y4wVQNNILFWrujFGpkkKMSDV3k8Tjgre5jo3kgrwA8VVwVDgVfdT3QcL2pohmhovwGPdMwVM16F0TvdJC1b2OtmDFAmp501VK62PNfV5rApDuyXxtFWQ3KoguXUym5zGhnpOVr6Yc3YpLPkQ8Opy1G92tJ0Au5vtDX2/x3nPbn/LZrsTxrSVFjOMZbu7YbeXavdmu+N8OiKueo2K+BqimV7Me1mrdd4uObgC79XIQ+IMY4qwDMrLdqLXXIul/leZdrUYU2dMLmprz9Webiq59yrGNjUsqHHpCs4uMcInhaBPogphrXH9zavCBGXZr0Fe06chvgCfSYV6E3GepLWkaNthEcfE1HhK8lJUjzMpzpQ0E6eBpMVDYYKBSYHiO6wLJCwpaQEm6xqO0oIS40TS58pJvr8U1UohJ0eKEesWVvqrrUVrDG3rgaxaREbjZB2IZaLVts9VTqGa3yxjkQvOg3MF52oMrzGhtnGJaLVd2ITWyXm2MsW9iic7YeipnfuiHef0taHAnhaiMQFjPMlmgp/wftbxrq1XBZ8tJYvossGJYHMSJpa4VRq8031DE2iJzRzeNQIKqU5P07Yr+6cCP0Vek02RWa3URdNI413QM1hn/yutxZQTp9MzBcN2d9F24gaMI7ui+4UUTKZpZBguTNPI+XTk8PzMOFx0fQmIYgs4nQdx3sia8Z7z8cDp+EyMidAE+u1W9qvFUQ3Ol+MC/GAFHAcYLuKGCBJLjOMFDMQobVmCNeQlvBb8Wuei8xhX23FXgEpaq5WhpzFZSlmNJvzilFqZr/Xv5OSxJpFmS0qJYRpFnkTPzWkapXVYWbNLsF5EI/ByvnA8Hv/U0vpnMX7+LfC/A/6PV9/7L4D/eynlvzTG/Bf67//Nn3qinAuXcV4WrzA57LIA6yZd5NRVV4mC9cry0YqG0+RtYR4g7iUi9GX5+uvP+R/+D/57PD0f+Idf39E0hvP5RKqJf5He6xjnRRBNei3rRNQX/GlQtuQX5g/Ga7Bu6J9WCq6yE8qLzd0sHy/gpuVU/CSZu7KKu05Xamr1Uy8d+B74X/IXjqOxjubmVqpTTtpnTBD183nRnHBY62lDz353Q9d2AspV1f3syEkippwNKRr5ujIjqEGfvjez0s+X924KbetpG9nchMopwFCxTgEBKDmS4gjMzOOFaRgwQOc3dG1H2zWEJuBCwHhPxhCTJETTNDONQpN1OeGdxVlDYx0Ojy2ZaRg5Px8YTydcyWwaj8XQOAhW2hadWSnY8o7q+9V2N1gBCcAVrwBaYLttCU7qV+ePrzOGL6/y07P5GhfRf//U7y5BUw2KkKReDkkJQEPTKC1TqpDGaKCrSePq+oWAcmpXmKKAaqUUpmFkGsYr0FQCbLzHeL8APxUIkfupQbD3i2uNu/pa9CzEiSWFIBRnENsGPSyulSRWwLmwWHHW+6D/zUnnsFmTQEk8X7gVvuo4GnWKEYZA/dD9pPJcjawPU8oyljVhsKYOOEug0AZP3zZ469jvbni4eyuAL04+ioyBUdFQ59wCAOeUGS8DaY48ffjId0GF9tSC2RhxlGiagFGNLR/UFSRH4iyH5BxHYprIuWC9pbPtUv3PWUQUU07KFroKtswCJ8joLMN0HU3zclv9ia+XLfqntuFXHEOZ63Gx1JXzKTFNIzlFmuBEsM+I/XG/6UhJtAAu44U5JobhzOF00IBgxLtEEzzeZYIri3DvbrsnxsT5MjDPZ6lCXUbV7HHM24mi1uuNjpEznm7TY4OEC03TknMhzpljOnE+S6BRclRwPdN1HZ+9/QyAEFq8awmN2M0fjyfmeSZ4z93dLTFF2mlinCdKMYznI+fTGecsm01L1wacKdzs9+w2ntNp4HiUSqhzRWOJjHPQtYFt3zPFmf1uw2nc4qeRSxpJZKWRi1imrsd/yyvFNyBn8AIYZ6OulPITsy68FXyS6H2ZCfXDogwTY9nvd9w/fEbTNGxu7ri5ucGHhmkY+M2vf42zhuOHOx5/+J6ubbi73/PmzZ2AsE3Hz3/2NTHOdE3LfrNhHGcG/RCh0BPD+Sgik4cnTocnMJbd3Wdsbx6wvqHb7mnaToT5h4E4jbrWCsUIkzfnxPHsOQ4zn337A13bst/27Lc9N7sN8zTx9PTE09MzKYnrzDzPbDYb7u7ulrn/qe5aPVwqyChAWLiuZr/6uZhLYo7C+LHOMs3zAoCH0CogYAittF+4KpxuLE2I4FtSSjjf4n1DijM2g80KKIcG07YCqPhA48Ue2nkr7NQK3mjVuvEimi1xgcbGoG058rX3UvyUtp8gbC1rabsNTStshbbbEBqx327ajtA0YAzJCI/SN5m7N58RS2EcBrqu482bt1wuZ7bbPT98/x3TMPDx/XuOz8+YknG1PdAadfbSGDSpXlgqxEnBFg9Bk+tS10teYo1/yyusxdqaL9bJUZNkAQYMshcmuxaFqsvf9VW1AJeilasM2XWNVufFXDIpzszzTCkFr8UPU1EjjQOqfluN7evneZ4FyEFtna/mucTLhctwYRgGUkyMpyPj6STJqAI/PgQe3j5wc3dHTpnz8chwvpDmmenwSDwf5Xz3VgS1XcDu7rDtjoxhSJ6YnSSYg/7ecOLx/W84Hz+S5pnxcpC2LlsZPxbnG6bL8Vrj5xXPxUzOFxbGR0E0rpaDWcd32XP11FeQsZTa3py0vXlGUkrDPBemcQIsl8vM4XBZCoMV7Hl4eKDv7nCuoW33bLe3qpvXYK2s9eAlvgWYpgvn80WLExCTdH6ERtwQnS10LRgaUkpcLidSumApBN+qpXzH3d3APHvmObLbHRkuwvhxzokGX5Y5k1LChcDm5oZuu5VWzqZdAI3aclRYwfOkbFSUODHHiTJKi6G1ta3p9c7FOE98+82v6botp+MzTbshhJZWWYelVD+nwngZOD0L42c4nzk8fiTO07p+NXR1CnaHpuHw1GON5TIOHM9nUs6M44Xj8bDKO2gsP00T0ySFhqZtafseg2EcjwzDAWstx/4jz30ne6MLUMRRsu826vZl8S7QeKcRdpZchAoE17lbljVe47qcixTdkjiedk3gpKzXjyRynkkYItIajBbL8Q7InM8HpunCHGeafsfxeMR7T9/2BB94//73/Oa3v+bb3//2Ty2tPw38lFL+n8aYX37y7f8p8J/p1/8H4P/BPwf4KYXjMEm+tuRtFtMEtDV1qXaWnMQVqWSC8djGqhWkxWt1pSRlZJRCaDxb05Fz4Vd/+wv2N3uGceT/9+/e0DTw/HzgdD7yfHwmxsgwDgvNKqfEiLjMSA601OeuSnX1XfwhVOjFg5ZFVxHol4/XI6+sXxujB0u5fsx1dlKuAkS44gwvoEItKtU87pPm6SPw4ZMX/C8eR+M97d0bvLO0TcBby1wSQ5qYkyRhxnqh/3aCrJccpXoVJDEsimYLvmcoySybdKyV76JJdymSTJSZCqbVj67z9J0ENymLcUrBkHAklYkvKYo+T7FMw4npcpZNbtvR9y1d39O0LS40OO/JBmalX47DhfF8wZbMhkTnnOgRGI/HY1JkOg0cPj5yGQdcTtw0Dc5ldp2na6QFwpaMMCQE/c05k7JhjkbNXpTuaGq/v/Tte5uxsWduZe5880pj+HJA+QOgzsvHXOMqVQWxUEHO9YE1YPFeqiMhtIS2w3lP07W0/UbWsAJC1fXLOm2/WOgahThH4iSo+/Fw4Ph8WG2Ja/XQe7GiZZ0Y9QCvLaHeqasX0hfsjCUZS/ANOSSSSeSmlbKkvIEF+KmaQcASHMoBKn3wsOIJOWcicRFQLfo+ioKXV7fqdcZx2SKqbk8RhxVTgaD1oxQoOS3Bdt0/rHGUqv1TRW+NYbPd8HB3J053d2/44t2XkvAn0WagIMDcrLomUVypKIUSE5fjGWsMthTmcVQgQbR/rLNs+o7NppPWsN0WH0S4NaWZmIRVNE8j4ywHdQgNPnQa1I/EKC01cyzMatFZQWG5JRV4u5646z0rsPqHvth3eQm4/+G18Wprseo2SJAgLyWWmUuOWGtoGidtbmR8EA0lkPM0Pj4zjhOn84mn548KBPVYG2mCZ9N7brdCV2/bDnPT6hp65ngcyDlxPl2ITwcAxv2ONM0EH7i53dN2Lc47Qtuws9JLnlW/IObIOJwZhhNQaIIjNBJsbbYb7u/vtaDjoAjDoeTC89MzOSdCCLx98yBtP+OFYRoZx4nf/f57vv/wRNME3r17Q3t/K21c97e07Ruen5/5/vuPfPz4KPa6NmNNwjvYdC03uy2pJO5u94x5IlwCpzgQTWaeZsZhEMFMiR1eLb7R0ZSEs8KGtedELGkwKEvRXs3LylYsoslRwdigFee7u1t+8cu/od9s8aEjdBvA8P133/H73/wT8zSx3e+5ub+laVt++cuf82/+W/+Kbd/x5Zsdv/zZFzgDX372Gb/8+ivGaeLDx2d++PDEOIz8+tf/wNP7bxjHkePTBw6HDzjfcPPwJTcP73ChwTdbfNMRY+S5FOZxEPDPlAUcfzrK+99tOnbbDeTM/e2ezx7u+OzhluEy8MOHD7z/7v0iXF6KJNBv375dTQxeJOG6FhX4qdX3oNo3er3uuWikhWaaRkQI1TBNG4xRdlTfS3JlPMUGAdyNxRkpQPiU8LNqk8WZ3c0dJWdcKZK0FIRB1azJY6PaF8IyqO1aAe8FHG98oPHNAkRUPN+Ztb0rBKn8i/NpWJLz0DSqrSGFDzlrV0WgUudsKQTr+Ozzr9nf3hPnic8//5zz6Znz6cjN7R3f/P63nI9HLFbaslMkTxdK1BZeexUsaFaXKcxjhgi+MQSN5eVALsvvlZJfZS2WnIjDkVKSgNHkFSwrtSVOzkmrrO8FaNSikxQynIyrc1ogqsVmiUEkhzhLZX64cL6cKTnThoa+bTXWXbV5RKg/1rRAXmvJDJcLw0XYi4vQurlqSy+Z4+HI8XQkxcj56YnhcLgSF080TcPl5z9j+uIdOWWePz5yOhxJ08Tl8QfGw5OMf+OwXhy67O4W027JWMboREMuJqbLWc7YaeD0/J5pOEocPQ/K+DGLJpyxDhdarFtSyddbiyWT0knv09VNo57vCqQtxWI5PFPOxJjVJjstzIphmLXtyzJPmXEQQCjGxBznBXR2usdYu+Hduw7vN/T9Pbd3n+FdwJiANQKYOictYqVkhiFzOB5UmFfOSGssO7OhVfaJ6zr6Vgo7OXnGi6w/V+Nln/jsM0/b3sm8ulyYx1HjYgFYs863aZpwwbO5vaXdbCXO03gv58w0TVo4lXuSU9IOBllvmSImCTEq6CwMwfKK5+I0Dfzmn/4d3nU07R7nWkLTsdne4EIrQGOUmHkeJ8bjiTRHUozMk7ifWWXngajZ6JYhDEkjbWJTzoy55p+CE2CqtlE1cljPletwr+s8XRfw3kkM48WtLs0zl/OJpml59/YLurefY4On8YFN5zXXvsrRF6ZZ7XJh/foqdyhFWvZ3m47z6cT5ciFOF+bxzFwyo11frVedppQTp+MTc5xpj08M00y32dO1HXd3D/R9zze/+w3/4e/+Pb/7za//2JAAf77Gz+ellN/rG/m9MebdH3qgMeY/B/5zgHeff8U8SzBL1SUyhlDAlpeIeHWEKjnjnIHil5shB58RgVZFOSod2uRM37Xc3d4wThN3tzfs9/ulOjXHmTmqhd48LYnqjzLgq1ygXAUfZkkm/shVN/UF9Ln65otnFJDrp5hB5go9fHlDr7/+8SMW4Ooqy/zJ55HrnzWO12O42WwwodHkvcE7S04zJc+6BGo7R9UBCZQiGi/C9jBQKtijuktyHpNSwkZF61mTILF8T7oxl6XH3l8dzjXHFbBI2g1qhWY5HPTANqi+tHN471btE1PBKKHqlZRU3ydjbBG2WV3QxSyvOc4zOUYsBe/E3awJ0DUivGu11SzngjWRmFTiIcu9kBeEAj8KhJiyVP/I7g+P4J+5FtfJ8hP/ePHl2vLykrVUXswxfX79vNqsL8COFW2Eyrip7jBGQZ/KwlnBjIJzM9ZKFSqME64ZMUloj9msB9gCrF4BP4uQsTGrm8/1QVCKfl97sysl9Br4MfBTIrC1Cl1xg2siia0tMlxZj2d0v/pDIwP8GWvRB7eeOdXtQEGfZT5fMwv03q4H0ep0Vq3epeXA0LQtXd/RtS2b7ZbtbkcTGgV+5PCKcxLx5VxIkwBoJVc2VNb3ngXUyFmtNQ2uCI01p+ryl/V1SVCd63PkK4DPGm0dsqJnlBMGSNZg1Q40X7GZXgDoxly1dL38+cst9EqU+/q51t360yn/Z43hp+NoXuzXFaCq+ibKatJ7as2aqBhrlmpeTJFpnsBYpuAYpxFKovGQsydr66MPBpcRNoH3cq/T2mpQ2w5yrutrBWatcxQM0xxVoFeCy2EY9e4EdWCRCmLTNHJPszA7Qd7LNFVmB4uzWEielKUSVnIiTqPocmQBQwzCMG0aaRVzi3DlGiukrA5LWsDxztF4TxO8tJt5L4KnrHPuLxnHF/upcS+OXT15ljEttUBzTSde5pf55DMLo9Z5AUu7rqPve0nonZMzURODcRxEK8hZmnbidB4Yp1nELY2lb1u8s8w7AfWmaSbOieEyikilteQYyXGWRD5ljM0vwAe3BM9Q45aiemBJ7pPMpZIJU2ScZsZpXuZK0fiuOtQtbO1SlsS4Jl6Uq/tUPxUEMNNXkEuRjfUPX3/WWtzswvL+slqiV5CqOnsaI3R9rAfXLMCP1eJd0XaQkjNFi0UUAX68Mn6MV82eWkFWNrS1qAmGEUFpH1RLZAV+rDJV0LGr+0FoGimmmCvgx6xtX8aYF9pqsehax4ihBmXRM8EYUmjIaVaWvWO3v2F7FIC47TtC05KTZU4ji5FMPcPXu6sxlc6ciu3VYPpqTP+Scbwew4d3XxDjKPc/zxRUb0MrFtaom5oWOrLGHnUuUiA7R/ZOfu6l3cga0R3LGkfO08A0XIgpMg4XhrNot5SmxZa0iG7XNt4U01VnQb0fheFy5nI+U9lCy3iq3lPJhfPpwPl0JM2R8/GZy+GwMH5KScS25XI+Ml52si+cTwyno2q8HRlPR4wBN3tsUODHOEwUt78xOWJy5BQZzwr8zCPj5cw8Xig5kueRnKPcK+3AMBqfVZ2Wv2QMPx3H+4etgHdXR/L1rlpjhYUsoPFNypk0p2W/ibMKPcdMFgyQnAoxigbpPMt+VduPK+gWYwYcxoi4vnONrseAMXUtirizxCuGeVbnYJ3z1mqLY7mKTY3BZjBIp0IptYtFhKW9b2laOfMNBm9VxzZHBcOqZbcARrWNumAWEL7upTVyWdgoL+I/ZYHnyta7etxfMI7XY9h1nnkaSbaQs8NaafPFOLyfpcA3z6ScSOPEeLrIWZRq/i+gz9Ldh7Bh0Txc4jrDXArTEpOvrNvK+peYWNppMar9lLOeNy3eFkwJzNPENA4KyJ4J4USKkWkaiHHGmEJOflkHot2q83GBp1TjV/EJczXuy1UyIThpf5/dAvabGqovgURlCov+0DyPYAyn05GYpGAocVbmfD5xvpw4/6cg7lxK+a+A/wrgb/72v13+4Z9+S/Cevm8ITtxC9nmrWjyRaRRG0Hg5c3z8wDxP3N3d8sVX7+j7Tg9HswYiZZ3k1ko1smkSTStq33e3t3z91Vfc3d4yjAPn4UyMke9/+IFvvvtW6caZ56ejWBM7h1kG8BM3mOtk4tPjatmcdMIt/63//jQjKevHsiLLi4esy1b/fYVN/aHF+eKV/RhR+rOu6zG8f3hXotvjGo/ddPjgSfOIw5PnCfJMQUTixMY8AAnfBLpeHF+cdQQVM6QUue9KeZ2mSXUtLLkI7JBzJGlV35iIIWJMoWlaYdVYS8FK6xSGcTYMsyxE4xtNwg1902D3EsTc3t5wc3dD1/WEtiFTSGo/UWa1b5/PlOkEpuA6Q6PMkmFKnMaR58PA6XJhmC/ENBFcYdd6QjDc7R3bXgCpakKbUuJyPjPNk4I/hSlp8FMRaptpnMPZTJwMZm6I5k/b8/1Lx9HYn0ANf/wLgmJr5a5Y9ABaAc06w611GmhK5UAo6sLyEkF3uwIqVhg/bd8v1bQamC5LQlkQUQ9k3zR0m81SBRmGi1RrciLqIbgAHYt+xto6eQ0CWQ1SvPfkppGDpmlEsMYYWIJjU+1j1mpgBX2yXYEWdTXJpbYh5eXeCPhRlsQB4ON3rzOGXd+UrBYNi96DRWyAdRyatluSdheCiv7VRMPh9THOSptAo5Wpu9sb3r19Q9s03O7vePPwluAbpHiqSfwsNOqSIc+ZPKUleK6Wkj64RVjbVn0Baxb2j+hLGGnzAYZ5ZpzE6WIeZ0ySZKR3HbtuB6UQbUN0sk9McRZR4JIZr76eUyIWCZwMkpjp/fsEgmcdK/3qmvCDgnc1qHyt63ocvQvFe/8C7C5FXTZK5nw+8/77DxwOJ7q2Zbfb4X1g1uC2ULgMZ+L732Od46nvODxvCcFzu99webilaQL77Q13d2/wLrDd7fji83fkLM9/Oh7IOdH3G7abLc47ttst290WayzDNDGM4sj0/Hzi6Umqz5fhxHARxs9m04q9bvCUbHFOgJ/LeWQYtKKK6sc4w6ZvabuwnlOl4K3ldr/FIEnQpvGYHMlz4nSIDBfL+XzGAJu+xxj49v23PD490nc9Hz9+4Ga3U9ekzN12S9e0WO95M008Hw6kcSKO4198PL7YT11TMELJlh/mq9O/nv/Xf1CTAQqUhICwRVmKcHt3y2eff07bddzev2W72xGalmGcuByO0mYyndluGrrW0vUdfR8IjacLFm/BmcI0R56OF4ITAeHP3r4RTbppZHj6iJszoUzk6UKeZ7pug283snc0DWk4UaaBIT+TijqUxJlN35FKYUwJI7TVBZC42fa8e7jny3dvud1v2W56nLU0IXB3fy976xWC2nUdm81m0ZwwNdg1gGqCpZSY5lEAzmnk+fl50Qf6S68X8c27rqQ8YcyEszPGzMQ0crmINtYOw82NI/gW3/a02xusJtHSKmEgF0zUalZtR1G2jy+rNod12pa1tIlVrRF568ImqFoiXlttr5IIo/dcC1/Weay/EkzVc846p2ewzkcFdZOCydf7DnpuYEVQGlNou55us2NOmd3NA6fDM9569vs7xsuJ77/5Jw6PP0hL15i0ZR/de0VjkaxsmYRYf5XKzF1Z3K81hl/8za/KP/z7/48CI1FB3kzWxNka1W4xCobrOFyz0Jyz2jYnOi6tspNLzgvAfLlcOJ1lHxzHgcsgrbNd0y6Mn5ySnJEVhEjixmWdOhtRmMeJWU1Hqr4Wprb2KJtkHBjGkZwS0+nMfLlQmUe5FAEGQ2EeDwIUPR8ZzmdyjEyHA/PlLPMlWKHhW0c5HCm+IReYo7Dwc07iMBkjOc/M00ldZxMlTaAFl2JrfGNknr2Sq9f1OH79s/tyPF7UeENauK7jMAG/q35UJs15FRXXj5S0tTcXpjkxDKLZNY6ZyxCvgJ+owJuRFungiLHDmj3O7YAtObfkLELNxnhqrFCyAHofHs98+91HYowS+9a2PQIGsUmvIr8xRr797ju+f/89BRZ9UQpMsbouatsnor9WYlYtGPBe9mJjMzGO5EGBHAV7asEtpQqcqY6oM3gXcCXoPrEyY1wFA/8UFPsvGMM3b27K/Zuf42zA+83SToYNEpcVpJCXJE5rgjDQBdRzC6hH1f1MRTSKKvCjSXEyK4NRGGm1CH198q5fVT3Zug9OcSKXyOn4Ee9nnPNcjieePz7ifcP5+ZmP338ve7XqFBrDqqtmDMb5hUTgnUpKYLRIVckK8vhqdDDPM8M4Mk0DpdRW+VWSpijTO6dEiYmSMpfTmcfnXxMLNKFhu93SNi3PT488Pv1AzH/aBfrPBX6+NcZ8qajfl8A/K5UZxpH/5j/8Whk5e9q2YbvpScbS99IS40vElMLh8QPf/uYfGS4nvv76K25ut6pZ4HBGLN2zBgjC8Fv1YVLOtHPCWsfDmwd++Te/ZFAULyli+ve//jXFGE6nM+fTQMGQcpG81KxskRc4DevXn0I/Sz/6jzOJl7/4o7Sj/lucLKRaWX7yaVbgx9RCytWjykLzWx/8J69/8TgW44jhjtA2uN2W0AbycMEnS2aANJOLF9q6SRhmIBPals1ekpGubdhtO2Hr5IjJM5Si4l5yeKbiSMUp8LMeyIYZg7hlLcGQMWAC2EAuhvMlcbpEUoZcGhJCwfNdw7ZtcT5wf3/L/ZsHmqal6VoJ10umxAlLErbPeKBMR7AG321og2gcHC6Rw2XicLhwOJ+5TEdKTgRfaF2gbSwPtz37vSr/W5mz8zTx7B2X85lZ7ZbtrGUBFaR2NtOFjHeZebCY+cxs/mhl889ai+v1aULy6YCv1V2ylSDOVFnE+gxqgdg0IjYXAr5RkDZIEFmsCJCijBrftvTbnYxhK1bPxloBMfRvxiitXqUUdupqkVLk6fGRp8dHEXm9nBkvmlQqWLMCSDXwXFH3lRlo8UGC82QdJUWxMjbyXkxtI1CgqgZuuWor1PduVmr+Wr3OK9ChAaW89tcdx1IEfKlgHKVgvVQbnHW0TaNtVA1N27DZbRXoadlu5N53bc92u1dhwJbtdov3nvu7Wz7/7K04W3Qb9tsbOcBwC702J2nxokCOmTIXZfxct3GISGQuWdu4Zg1sWfRPYk5clNZ7Ol04X2oQLHpFPli2vue+v8VQiH4iBQEExzQzp0jMieN45jKpO1YeycoUcUaqaZRCWir5LAGi4RqYX++t7KkruHm9vb/WGIIsiVCBH52vMc6MYyLlyOEoNGhnLTf7G0pxdF1hnJKyIwvny4Hzx+9IKdM2gW3X473j4f6O8/kz+q7jFz8LfP2zHdvtlt1mw+1+j7WWp6dHPnx4T4oR5xt8qNojon9WMqQPjzw9HRnHifff/cA3v/+OeZ4ZRxFDNAZ2uw3bXU/TNFjT0DQbSoGPH554fDpKUhEnUppomsDXX33Ou/6NVOUAkzPeWt7c7bnbbRSkK5QUSbEwnCdijuJKVQzbzYZxmvjt737H8XSmbRoe7m7Z9Btubvb86le/4s2bBxKIhTzw7fv3PP7wgdPh8Md2vT9jHA1YL3uI6k/Jd6vG1x/4awqqU4R1GLwwRB7e3POv/vW/Zrff40KHb7dgLKfTiQ/ff8s0jjgLN7sOY6pmQYMPgb61BCcOS9M08fHpTPCed/c7vnh4Q8mJ+fjE6TtwkwA/aTyTY6K/eUO3f6OWtp50ORBL4Xy+cBkuYBzN/oHt7laqxcNImWaMMfSNsKvubrZ8+e4Nv/j6C3Z9x367Ucv2hrdv33JzI24qVu+JuNF0C+tz1XwzCJhmyWViSheGaebx8Yn/8Hd/x4cPn3aU/KVjKMDwHAecCxhGHIEY4Xi0WDuIu5rxNKGn39xw8/ZzmrZXNqswrGwuuJSlpcuWhTS6tHppRdhqsizuO17fu7CaAZxxS+utsx7v/E/Ed4b1uLOLqG1GGPHX07NQNKGQgmbKSUAMIBspnmEMLrQ4KTvTtT1FHeK2N/cMw4XT4Zm+3/DmzTuenz6Sk1TJ4xyJ84WYZ8Rd0S7C/zGpQK8zlGQhi225syK2a/5wvPovHsfhcuLf/3//35IoKtgjiaRIR0gbvYJltrLGzSKgXHIWEVodkxDELKYm7kmLC5eLAOZJ2ZajOm21oRGw2RhthxZQQVqAIiCty6ERIK+kKEldERfGOM9a5FxZAkkZsJRCniNFW3hq3uG8Yx6eefx+K0XUYSSNkwBV40SZowB/zlCsZBuzJswlF2nZVne1kirTtrDqa2ZsjgpSrwB+BQ3/xMH4Z63FnDOH5xMpiZ6cMFGLOCzlQs5GW74Ncc6MQ1RWvV1A2JS07asU5jlJUSnL2XkeZgV+hAVZSqFtLX1vaYInxR5rb/HuBmME+InJYY3HWNF/mefINInW0/ffH/nNb38QPbW2oVMDBIrT4pNZHJ3GaeJ3v/0dv//mWwB2+xs2m90SR3vtqjB4vBdwKVnRKEq24GcFw0hMUbQAxSFSAY1SWdMVWK3sEwUcrQhLY2rMbGXPs2uR7DXG0YeOz979K+3+aLHWMc+Ry2UgKjie4yQmIUhxwIas8Za27ee0dP+Mc2YaCsmUpagHUMy633nvcEEYwTWfBgEK1+KtdJwAxJIY58ScwDwPxOlR51CPcQJWfbv/LdvdnZIMRNnHGEOjIJC10gHjvDiqtWqYYIyYITnrcdbStp4mXBdCjcyH8UzOArYmdXuDvABAOUr7W46J0/nMb775hqfDgcoMlE6DRJFexj+5tv5c4Of/BvyvgP9SP/9f/zm/lHPmrEh12zaCsHrHOM1SlS4S6JqSGYZBBM0uF8ZpXBwdVlrf9QeKAFf3h0rNTcvgALKRWake9Z0IIokWySqGuqQBBlbXiBUv/KNUmx/97BoeevnD9bnK1UOuk+lPwZ8rhsVy9r+sKf7or/5p8OdfPo7GUEygmACuwbiAcRFjA8YmZe9GrerVAC5jbIN1IjzmQ6OCnxZTHDYLFRqKBhmJjCNm/xPAj1VhWTns/BXwY0wgYwhzxDthF+TsMcoEMkvPtrjSVOvo2u9KzpicpPUsq2hijmAE8Ki6LTFlpjkxx7S2FyC6DM6AcwJMeuc0yHB467RtURhrtlS3KR0s7Y1fbCFVZM5ZS7Z/tJryZ63FOpuuaYjlxfz7qcfXKt7VzzVpk9er4JXz6sikbXRVBPyTD6etDIvIsgIsVZuqVn5r77sPfmH8NEppd5Os32qhzNXr/Kl3XSsEZmEBWazN+lnKWLIhXwE/Rq3OrR40WrUtwLVjWK2qrO4T9ure/snN+F8+juXFlqH3TCqYXinAbdvS6Mdmu9Xvdey2whrpOhFg9z4swE/wntvbW27vbsUhse3ZdhuxOzUa+BgjwE8SNKTEQp6FJi9tXEKJn1VQT/R4HC6qAx956dPPsVw5/9TD+QqSzGsMapC1I6AQOCzZOAoFW8yq/Z7XeVR1wEsxa0X1qrgqN07mAKX86J7+C64/cy2qY1odUxYoX/Y+YCqSKE/tTFSnoWvb8KyMyZgihizuzM4x9C3DMErQGVerVu89XS/g+zwPDJeeGGesl+Clsgy8F0HmqpdljJzj8yzBbv0wBhUpleQ3zlEp74VxmhmGUYEfsSwtpax6brC2l5UiWgjBKHAYSTIppO8/ziStiHrv5W/Gmcsgen3BO2KMOO+EKWhFLwNnSUYser3qfP0RwPvPOBdZKzN137r60dWDrn5JJ2tZ9zvvZe9sm5Z+s6HfbqWo4dwa5+REzpHgA20b1HGtpW0F+AneS0uyEbbhHIVRVIqC2tX2W1uQr3UKvAs0bS/7eE3uciLFSYVdhc1rzXpeOWVhN8HTtYG+bfRDXpOIMMteG7zXsKS6fNZz0F2BGvXlaPs/ov03anX0fBl4Phx5en7+YyPyZ61FiUHEyVM3Eir7Lucr97HCwgYJQSzvva4blwsuF3XmrK1bnwI/BqtJy+LeZeq5JGNhjcVSgZ/1MaXeJLPOIqhtHkbjQ3M1w8r1A1cQe6ExvgSTzPV5ZnWXtY6uz1jvpRCzu+F0c0tKkbbr8aHRc+8lC0vOw6u/XRdFuT6D/+iA/IvHseTM5XigJk4vgR9p9XoB/Pgr4Ge+Bn4kXoyhoaRZgZ8k+1bOXIYzl/NBWkFmOedKKZTQQJyvgJ9ZgZ+sds+Qm5mcJIZRT3vIhVmdYVHWzzqO62FVYgIVp1/GV1vP3CD7Zhpn0iQAUk5R29wgF0OuwE/JRI23BPhRAeW8VkSMU+CArO3VFfCp9/V6Lr3eGILsXeMobT+zGj6Ibk9Wlo8hRavAz8rmEfaysFhSWh8fYyHOLF+nKKyZlGQIhL1joTgkNfYKIHnACTBaFFzVOV2BqBhln52nyBwj3lqSCgBXm2+DIaX13Lx2NQzNhAsTLis728sfWNaGggSmCqErmCxrOZME2V3A25oboznLyhKsLJ8qaC7gT5VnqK1QrzWOBoP3nQKsjcbqBmula6OyscWQRCUX5NZKYYGyOCFDXRJW5vz1+qj7iL6/JV65Pl81xjSmxpMa4y/OcFW6Q1iBRWMEaz3GenKRe5syamIkmm+NtlSL66G8x7ZphNFuDMEFZW9autbTNNX4xuM1XpmmSYqkMS4AsbDbBGhNlQGkrfnzNDEMIkg+z+s5GpTJ+Keuf46d+/8J+M+At8aY3wD/Wx34/4sx5n8N/CPwP/uTfwlZAIfnJ6YhEKcLTfA8tg3PTx9oQsCRCWQsmTgOjOOAiFkJvXcaB9BAxVknzi+zuKGczxeejydijBwOJz48PjPHyDzNy4bcttpuZAQnTDESZ7EcbbsOowKzRRkNi24EZZ1ARpPKHyVcOgFfJM9mwXUqRvNSauLq0C2Fa8FmWJPLesi/gKGuKj7l6rnWpOHqsXL9Cvh//eXjaMHvKc4zlw6bHJGCCTd404v7VSOVFdmQZAI3rcc2LcVZ5mw4nlTc2zhxeaAALW23AwoxWeZkyZpIGhO1WpNwRjYNSW7FASsVQ8qS+LWtAtkYrGuxvpMgrWkXIbp+d0O/34sonTFatVYbYu3Jj3GSZKUkjqczSVu0Ho8zh0vkfB7IJJrWUlLBpgR5FrHw0eCciKY1zuOMY44SHMQ0iTsKGWsEUBLKasJkiGQ5jGNG9ATCK4+hzNe2aRfXK2ustNhVvQXVWaGwaPJYa2XtmEpndAtg0242bPZ7aSfSVq8K/FSBytA2tJ0K+u53bLYbTUB7+s1GAdh11kY9IJeNW0HAvu/Y73bMMfLx40c+Pj7KOGlQVt9fTYqtqdbU5SpYqmBxTS6qHOt6cNRg+uVVrv57FfTo2n15bmYt6KsGycr4eb1xBAxWxAGBm5tbvvryS7abLfubPZ99/jld39N2LZvdTijhTUvfb7S1q6PvNkph9bRNu4gv73dboaxqkFzZXosUEmYJgoo1IkVVwF0n8a3DR68Ja1wPNMMC9GS1usy5MJ4GhvNEionT04nz4QIx8/T7j5y/PbCAdkWfw0Ix0vJ3OD9zHM7kUpiKsICcc3S9xTaeVBLzOEo7aZYKYEpaAQ7N4hrk/KoZdn2fX2ysrziG1lo2/YaUM3NULZErTZVcVHvHGAZtVxpGYTSJDbvDedEFE+BHxoZSmMaZ54MwdX7rfwfF0ncdn7154KsvPqdpAvM8Ms9SrQ6ahBsrQqxdJ3vPAzeE1jFNs96HzDhOHA5PHJ4lEOu6ltAIEHs6n/n2/XfklPnw8ZnHxwNQ8N7ivcFlEXUcJ6luPT098/z0hDHQNWEBCIwVAIqIUvQnSkEqao1UVA+n07LupzgzH2dCE7hcxAnHeI8LPUFFVzf9hq26oLxefGOo1A5zxYgsFcm7DhiKJKemfluBou3+js+//pK+73n77nO2d+/o+o3Ypw8DOSW61vHzrz6DUtjvNtzf3uCDp+1kTVvn6DZbus1m0WQ6TwkXC989HpjjDDnyu2/e88P7HzifTuSU2e72dMWweXjL9s2XUtmMA0WBOj9OGKs2t/MA52ewltZ5um1L2wS+/PwNb+9v2G83/Pyrd7y5v6ENnuCcJL+sjJMKtFdqvLQ6i/X7NExSXJkmPj49cxlGTqcT33z7Dc+HZw6HI7/57W95PizAz6utRQGbZmyZgRnMLHt4knUwjiOHpwM5GowN3M0R04LDEFTo1ZWCTyJCaiTHkoIC0vYthg9WvRfNopUiMd5q1mERD0VMtRBeLdOLuYoddZ5JJVqBVMrCHryeiwvoA1RdN5m+AnIUDVaX6FORG+MsroHGBcDy7qtf0Hc7nu5/4Hx4xrvA+Xji9/mfmKcPUigxZQHQjNq9VyCfjOiKUN/b6+UaJUfi+SPV7nwFuMrynqI1q9ZPkkSs5IJRBECYVl7uT4ykIZIVYK+akTaO+JKwJqt2u3QfBG2ztEYYTXg9I52jFBln54MYTujcN0XaWqI1JH2eNZe43ksKJSgjp6y7SgVeGyPAX/JOOupKITuxCi9ol53OD1uEAVtyIdoorF2uJwhotUWZjJI8GwPO+KvZdZ3UfHy1tTiOkb//D+81z5OzuijYIvfGUooHLClmpkk0BtumW5jLMvSWq3oikHE2iMh4LoTQ0LYSm+13e27v7mjbloeHe3qNnbz3ig/o+BthXMVpYhqkZYeURI/HFim+acHXGYmb0TO5xtmxZGKR+XmZLqQz4qyZIs08qcC/GCFRDU203GWMB9vo/bdUpo/RXlEDFLO2DdaWpzW/5cXjxYnXYtSA4NXWIoaUpBNDll6hFEvTtFqkUHOeGIGIyQMgRfU4RTW/cRg8xYINmaYk/LI+ZE+z1opoeS1GOOUD2cosLcr+UlmIBXCCEORDpIcTztRCSUOhIRbL03Hg43GkFHWKSzKZnO4jGCmqWNXnclXbjVVX1BpD8OJi7pxjs+1p21bbvsZF62gcBuY4yUi7VchfS4N4L4YPoWuVRSRxUM6JOE9Ul8c/dv1zXL3+F3/gR//jP/nsn1wpJZ4fP2Kt4RAEofJW3F6ctTgDjS04Cl3judk0BG+FSjkODJeGNM+kecYaK4HjOJNy5ocfPvDb33/L5TLw8fGZb9//wDxHttsNtzc3UkmzO5rdBrBYgyTy84S1hq7f4IIkZ3ERG4QVhNEKkNLEXux1P0K7Ky+C5fPykxfgTz2Mrr++/t6aa3yK4V0nyOXlNz/FpOr196WU/9FPfP9fNo7GYcItxTnm7CFZCh7beGxIL15VoagbTcF5gwkS/UzzzHC5QE60zrEJDmcNbRvo+xbnLFMsDJPQ82KcMVbAJG8LwcrhE4InNHJ4jtPap9t34mZjrKXrtvT9Fusc7XZHu91JFcc6knEUIBaxywQI3uEV+MnzSMmRROHpOPFcBN1/viTOY2IaJwqRrnPkmEljIqeRlAzDJVGyMH4mH/DWkeLMOF+IcdAqtmw2uWRhqRUDVg7k4qAkEQi0fgF+XmcMkaCvbVucc8tn0VGYF42WqGr7znt8E4TxgVZqMdK+pw4n25sbbt6+Eet2H7BhdeyqlUrvvfzcWhUMlsN5s9my2+1EWFh/B4RBECdJGLyTNs9S4HJ3y+V8YZ4mYbE0DTFGLsPAqL3yWUUYZT6uoGwNqBbQJ1eBQF03BglynafSqItGy6tk3Hpdt3hKBXGJlRfwIytVtSanrzmOFDn0Gt/grOPh7oF//a/+NW8e3vDw5oFf/PIX7PZ72laAH6kyBNpW9ZVcIDStOiQYqtC9re8FiHNkHmdKSRiuhOiqnlKpwYfTLVJFMink0lCUHn5Vn5Q+7mtnI6TNL15m4mVmHiZ+F3/H9HFkHiMfHt9zfhadgoWp6Qy+C/jGM6fI0/GJw+VIMUWqmlZs4zvf4FoJ2qdx4HQ6iR36ZWKeo7aabKRi4xxd3wpF+8WC0b17/c6rjaG1lu1mq3N4JC4tATJvcylE1Yy5DAMfn57w3tF1Cs4FTzsHsX1PUZ2rxiWgeHo84JzjdBz47rvvCd7z1Zef8/T8C/qupevWfdcES7AB48B3ln4n67Xftjy8uSXOkeAtzsIwjHz/3mOMjHfdjwEOpyOPhydiyjw+Hnh+Pon+y82W3W6Dz7LXjOPINM98+PDI9++/Exermx277UZ0YbpOhCuVITQM4hC32WxpWqm2Hc9nUsnM88zhcGQcR3wInE4nLucLTdfR7nayBrqe/XbLabfHOfuq8c2iC1ZRw3K1Y4iiqCZVWXRWSlkqrcZYbm4f+Jt/9d/l5u6ezW7P/uENPgTmpw+Mjx+J88jtruftu69oGs/bNw989eU72kbcKbfbHcZano4XPh5OxJSZU2GYJEm5jCM/fHwkx5nvf/MN3//+O6bhQoqJ/c0txXq2b79g+/nPwRjm8xPz+Yk0T/jzWSzbSyFOA3NOeB+4ub1lu9+y2/T8d371Nb/6xVdsupafvXvDZw+3sqcgOho16QFNHp2sY9k4RSck5sxxmLgME4fDgb/7h7/nhw8feHp64u//w9/xww8/ME4Tj88Cfur1amtR9q5ZXETNBKbRYH9SId4Lz4/PTJeI9y1pjphccMbQemnZ8kXiWFMQpEe3ErkXsqZdEVDHFGXoLE4uNd4U4MiWJaXDlHIVCEpkuD5akvl6wiT99/ro6sJZw1WDMU6YkMhmb5R1KM9Vb4j+KQrBBXyB0GxofEf87GueHz8wDwN9t+Xxww8cH088Px4F8DFRXokpC7PMUEQnLsl7FhfT5d6/ylosKTIfvteCi64zdfoxRkwWnJU2J+ccJnk9i1jAKYvFoayIbAXsrGtab6uJkaCFTWdFH0aKjaLfKIkb+B+JyxoRBrfqNErB6uGSvCPNXotvVXRfXliNK2rscp1dSCFO9uWCIQVH9jKea3yjMY/ca3xeY6DZOqK7amM3OlkqlFjElU00kqCxFq+IXS2y6fVqa3EcZv6bf/etxqXC/KkpWSmVKRdEYDoXUizKRttRaGgbZZZru2RZ3DUs1kFrgwKgK2v7/v6Bd+/e0XUdb96+ZbPd0HWtaG1lKTJRtF0yZ+ZxYLqcRbA+Jrz1WAfBeoJ9Cf7Ue5RKJpUkhagsbYNpvDAoq2ycx8UFbNN4uuB1DQlgIZMmoOHWwpAWtovXc6iolqVM1iUG1n8VPaeMcauBg3a/KGPoddZiMcwpYLPMJGNEP0vaYw2pifgQpKMnqVtricRhZrok5likTco1GqMWWleWsyQpI8aHmluYFym0V6BFGMnSJg4CvIYgGpMhGEIQxlGeJvI86RoL5OxJOfN0eOb5+KzOfKrblYt2IkWNgfW81zixArfVzl1mHpq7Bu7ubtnuhOggDn2LXQxQFoaQ98KU3W02tE0geMebhwfukDav7VZc46Zp5HB4YpqGPzkuf3Vx5+tLbkZeYiAyzCaS0yQbF4WktHxbGnKnQlDUZE0GOkVB3+McmedJgvhh4HQ8cr4MHA4Hnp+fFwex3XaLU7/4SjO+PmBdrSoCmEyOafl7UlLWmaTo6QsY5gqV+TH8w08+7mWx5gr4eQEg1UP+mjT+YwDoJ39ifvIBr3Pp5oIRzRahFjqsC1AUcVXaXQ3ySsmr/puBQhZx3JRJRkSZbbEItVI2cul1r3Tr+kbke0YPQaM0zKV/lQKmYOtGYa0ExV2Lc8IsafsNWMOUDaMu1hRVIc4gyPrCX63tZ7LAS8pEtX+MSUSFC0XbZatrk6x6aWtA2ogQQCcl2SxqMrC+7qtq3jJe62NeSzjvk2FcDrz6UUpZPtfDQNBrAQu8cxqoSCAjgFCzADpN2yrw47FB7C6t/RQFd1Sr9fVvC4hQ/13XanaO4mU8qrUpQIotJWXdGNsFuFqBlmtnoqsVcvV+83L/KwV2eRQrsFsDvZeLaK3iyyXOCFfjuVBtq0PV6gTy2tcaxMv7Et0ecQDq+55Nv2HT9+LS1XUL8NM0rdqWaquCuhJV5qKpwR41GdJeYyMttFUHrboq1Du3tKEqqLPO3Bot62FozdLCaIz0wJdcMNFgo4EkGhckKEmEnofTAAZyk8i1NVBfX0wCTs16sBMMOLPQ1+urrMG0iG7O6jjmiV50SsQ1Y3WMqtWyV99Hry9dG1ldJpZg/uohlY+WS16cYUJIS+At4rmeLJE/cY76HGaplI5mpLZXn04nTqeTusK0WIe0Z04OGySBbeaJmGasahR4L3u0uEy1ALSqZZCSWM37CtJMk+yR2p41x2lplbhm2tXEI8bINM/4ZIXuHNMSnRgNmkspKmiJMhWlTUNYbGFZp9KOIc83zTM4RxsTPlXNA3PV3v1KQ6jjKAOiiQZXen2aqC17/zL0sr9a5whtS7/Z0m93tN1GaOPOL/un9PMHNpuOrm3Y7zbsd1vatqXrejbbrRRBYsafB231F13DUgpTlIQjzxPjKPdmjiKU6ZyjVHHK2nalH+Vqn7SK0RZj8NbQBs+mDWz6lt2m42bbC5jYNsLaQgoYlJd78TVYQRE2eCEzzTOXYeB8GTmezxyOJ54PB56eDzw+PfP09Mw4zRxPJ6ZperXxu74qW7moq5eUIuV/0uY448y8zNMaG6z7jDpvKS5+faSY+j8je2eNR+Fq79R/GFP+wAyt9/FT+w9+4l814fvxBmZq8gcvGQHLa7h+TbrH18c3Hd5Ypmlks92z290wDROh7cTqHnF5FMD8as5fhVZyRr7eGnx5VaAp6zpUHTGjDADzYoprHGaWcZL2Q63mL+dbeaH55qw4uBWNR7VPAGtlHUGV9ZV7Vh2gwIi4spUNzprVqUiUVyTuEFdLdVe88uKo4tnLPdXPTls4CxIyCpNZmC5ZEZNUJM6sMW7K4uokRipVL6X+Jc2B1BVNqllJ/o6zuEWeQG/ga49gLpzP09Ja/KlGorUFHyzGFn1pRUHaIq1gRdyg1n25FqzWGLbAEnNaZU90XUfXdTRNWNv49fxZ8LCrnLAWEmWMDVi7FNLWfEhnzYuYs7ZvyfPnsgIa4ugl7JhSsuaM1yCOnjPXYPBVHFvnMssecz2LX25Ky2sxV/vAK16lGHVcLap7pjthvT+2FgzX/jU561FmjYKe1zG6YQEz0Xm+SEOwxuxlGX+Wvylp/NV8MCv7R3JPp49W58aSVQBd9nrRMhPwT3R3lMVeavuldkzUNXcF4F4DPwI8yZqrTFjq/gQqUB0ISWRCUttSigB7IQQBF4Nn029EV9EaxkG0gv7U9R8V+Gm848u39zgLTZCNahwGjs9PTOPIXAqzTvjADfZuJ9VdZxeqa4ozl0kQuXGcOJ8HYoz88P493/z+G07nMx+fDrz//gMxZvq2FUviTU/bBIwe6I0p7BqLaR3se5wR7ZZxTgxTWuze5zjKAM8zKUqgsS6MFZQpsFjEyTeudCrqSfriROVqQpaf+Lh+fP1rn3xj+f7VYb8kbvV6/Yyl0lqdBt7WerxtMAa88zSttIvMMTHOo9rmZUQSKzPjxAEoO4Ri7MFaMkHQ4WKZYmKcsy5+iFHfUbFgs2p2CJiCgRgFlAFD0wT6vsM7z83tjpubW7E97Hp811MwjCnjVR2+byy5eKBopUYSkikVpiJgzay9nzEXxhhF3ycljJHDJxsLyWK032WaI1OcJGFyUasOktiFthXXi1hUgNrgsriYWQdtI5WiEmeSjZT418s6hZkiSHxeqlliDbvd73BWmAU3+z2ND/oL8npEh0IYP/12y+7uTtB7IyNdn38VVLtKwJOsqZIzF1AL4Qoyaculbpg/TrzFotZYy+3dHcYKW2msbTyaHKcYV7BZEy9FDKWVyFguxqw98ItmCoto7soIWpk9JRdm7cU1FMyVM4lz1V1QbT31PczqsPC6Y1eIc8IZv1gCOxekDz4mTscjv/vtb2nbBusdQVlY3ml1xKhddOiW4Ke2/dXgrsYrRW2IgxdbYbE9lWoWxmqlqTpFCIVYAmg96A3L9yUYFTYgoEGlUVeYiXiZmC4Tl9OFy/HMPEwMhwvD4QxAahpimKXv/XzGeEPKieN4YpgHrLN0KjLsnZf2ipIwJS+V2ZIKcR6lFQjDcDkvbUXdplv0v7pNj2+kh9u8onvJ9bWkFqUs7cdidV8ZWCxFAXEym7DJYJ3hcvHEKK4z93d3OOeYp5nhMkj7XFIxzCKAR06ZWOBwPPPd++8luHVGBVbRyr8EwTc3e6EU+8DN/obbm1uMscxxZr/fsdn0NMFze7MXXQxtOcs583h45vl4YJwmjpczscyYbJjSxDiPGIuIt6eyMFPmWEgmcTyPpCxONbZpCb0UGWKGOaWFVlcD9Tdv7tlsNxxPJwENhoFhmvndt99yugyEtmX7ww80XcfxfObx6SAV5PKK+6oxUAPGegZfncVFNpWa8S4Dv9nvefPuC7qu54uf/YKHz75gu7/FOnGPScWw2e7pf/YzDJk3N1s+f3NLFzybzYa26Rcm5DhIfJJjwllL8IVUwGXVolAr9TTPXGLhkj1zScxGA1wM59Mzl2//iQLMlyPzcIKSKDmy2/Q477i5e2B3e0vTNLx9+4a7uzv6vuOXX3/O5w83BC9gkNO9I1tDUU2uulHmXDgOkZRnpnni6fGJy+XM+TLw7Xff8fx84DyMfPP+e56PYnf9+HzkPM7M08h4PjNNr+Pq9fKqLakj03wi5oS1W7zfYIyjGNGpHKeE+/CB7e9/z+F4ZH9zAxi6rgPraX3dM1bwp8ZpRROCJcWqiARXIZ8pqmX4SXynoWPW36tdU4XK8tEzdzkyX/4d0am7mqc1oTL2KkG8ejzrdF3gJmUhW2Ppt3veffVzQtOwu/2O9+9/YJoS4+XCh2/fc47Snms1ISMX5jGRciYkg/XSjviaS9F5z83bzwFl3YK6FrnlPVdynqwTaXOrjFcBUVbtH7kjdR+WGyNx0+q+s2qUXWk2AR5pTZEhVmMEYyjGkdV1zajrGAAqXIzeq5VBoBqTsOi7CSFH3TxhEYYHmIus/QLELHOjhm4ZBUiytnqVIjbkqbJ09W/lrHpsomlUtI3EW0sXPEEZVNZVLU+A//rVxjFnuFzq/dU9xKzsHOc8oekWkE3+b+g3G5pONDxFG0tgHl/KEteZxYVWYsm2ETHl+7t73ry5VwCoJaWZeVa9IFNdmrQIWYy6gIl5RNs14naYk4yFdYs2VwgBMHQATlrzb25vOI8DuRQB+NUFqlqXVzdgc926oxuILQane6pXvcQX+aTOU/lXtYuvOoLV8ESEnqW1u379RzV+/sWXzK0LSyGxCOMnJenySVnEz3POTNPI+XQixpFhjJxOo8bQZYnBqyYXRkSRZ2XnNE2gVdfvFKXgBEU0Knt12MuZFCuDjgXs8t4SQtWpa0UCwzic7XCuI+fCDoexrWiMjgODCqfnnNTBtiz7ASi7UwvAS65gUHdNSwieu7s7ttstKUUOxwPDcFn2EmmHhsv5grGFvusIQUS/G++5uf2MrteOib4leM/pdOR8GhjH/8SAn+A9X797IDjoWnHDefzwgfHjtwxnoVHNqr/QB4M172gaSQQr8BPnmXEYVOR14PB8Yppn3n/7Lb/77W85Hk88Ho58/+GJnAtv3zyoXsWOxssiKjnS2My+NfjkaP2GXd+TcuE0JU5DIubMMFwYxjMpZabxwjSybLK1UnMN3SQTMVWwMuefCCy13GGu/r1c+eXjFvDHLCio/MWrp7oKJtZX88mqfRE1/OWXMWh1WMWpglDRulYAuqZt2ez2eB8Y54nj+SxVxRwpaVYRO8d8mSFNwh6yEiRlHFPymGwYZxjmpOi9IUdFgi2KqBfmVDBRJnnRKoi14H1gu9nQNIGHuxvevLmXfmrfYHxDBi7TjJ9nqbJoBVmqLDM5SW/pccrMKmI3xyyvJxfGeWaK0o5hLAL8WAvJYYqCEMPMPE+ykWv/fPCG3S7gu5aSwbiMSwVxLZEAyDpD28r9zdEy2UlEc1/5WkhNehgaIwFH7R1vmpa7h3sV/N3x9uFh6UfNqsYfGnW7cJ6m6+h3W6zzxJiYYtRkQ8TsPu2zl37UGZPk8+VykcN5EdxeA7Gq0SPzTzfrEHA+cHfv2e9vVLNlJsZZD5Fp+bu52tYWSTJjEmCosv4k0Y7KftAEW9lDqa7jBRRjeX6pOEsYXllo3tsF+BGwJ6uGzWrz/nqDCHFONB6Ca2ibDm8r8BM5PB84Hp/1oTq+1KA2KNARaIOI74WmoVP2lOj9SDAUnBe3BSuU0zY0IpDpGxoFk5xvsKGVYMKLHaqxhmC8sr4Mxhmsl8A0xkiaNahLItRYUmYeRubzyHQZuRzPXJ5PTMPE5enE5VmAnxhmpiBHVzSRjDCqxjwx55nQBnabno2X1q1gjGgTlIwzEJwhmUycB4bzUcZzjqSYcd7RbzYEDSTu3jzQl40EHE2rVZjXronVBGtdL9WYwDm3sMdqUDAlSXiNKQQNIvq24c39A33fiT3tMJFT5nweOBxOxDkpCzGRSBwOYsFunWWaB8Z5IOfEOM5LC83d3S0P93e0bcPPv/4Zv/j5L2iblt1mz+3tHmss93e3sh9QsN5inARk37z/lm+/91wuF95/+IFUZkouTHPDOAm7bIqRqP3yMckeC4VyunAZRtGt2d+wNY5sHLEUppQxTtaRcxbnW9q+A2P48PGR9z98wDw9M0wT//i73+G/e48LgW67IzQNqcB8lfC86mXdUgiirG4qIDFvLoWSVuUVYwy7mz2/+Nu/ZX93x8PbL3j7+dd0m520Q0+iBXezv+Fh/5Y2WO73Gz6/29EsrYh1vyqMw7jMIa9JWcxS4EgUYioMw0ycI+e5cCqOGc9sAlhhkZ0PT1yeDktLV5xGrIXbTcd+29N1LX/ziy/56quvaLuWz9+94+HhniYE7m+23GyFwi9twWVxGs01jrEBjCPHyPPpyHkYOR0P/OM//B0f3r/ncDzw61//mh9++CBtX2NmSoUcE9M4CDA6jgznM7O2Z7/mJftRpDCSzQFjR5rG0LYP+OAoKXO8nChpIBuDa0WE++3bz9i0PeSMa1rwQQBvqzEL16BPBW7KUsZ+WUysXxXlqayPuwZ7KPI5mfqca6vXWmb5pH5o7aIZcc3uqSFmhTmuL7M8f32MwYaA8YHeWr78+a94ePMZN/ff8t233zNNmePTI5fDmcvxqDdAS0GpMA2RMkOKBhcKBfuqa9GFhrvPv3rxPdEwkTNJijtlAX6qq5erzA9j9Iz0V4wfs0hwFjQWVXZGZX0sVX3rFoe6piSaEvUZKptA2K5ZgeLFSITKTFojeaPjn0omFylUzso4Jxdx91Kx+6bxizvkXAqxSFvXVGBWJDAXs4CDIlIrcc2cpMi6dFUUcbaN80CKUqDLs5jsBOfYtpKAVublCvy83iWMnyggfxUftqtjl3MNTSOFR2sFRDTWsOl6mq6j0dYlb92yD9fLh0DQAnXbdmw2PV5NLd68eVAnNwF+pilhtPnPGEPXdjg1hQnBKkO40HeB7bbTgqAk/7WYFrzESTiLaxqaZubu7p5Z40vnBfgpuRCHgTiKc7GjQJbnqwJNphRsMvjiZM0bxCiDuse85JWKjpg+vz6olNWQpbLgfTVhecX4ppTMPF8kt0oCaDhribNbugsq0Hk5Dzw9HpimgWlOXAbp5hmnkcv5TM5J9JjUYW+eJobLQM6ZtmvpNj3WWqZpXiQfttsNu510/Ji6hxaEIa7gkA+SmznnuX34DN/fShtyu8c1O8kRXUfX7IgpcjyfcOezFsoFmAI5N3KOGAzBOYKzGltOzCr23rcNTRCmzs3NDZvNhnEcuAwjczqRU1qKxAJUTeQc2e927Hd7+n5L2wfu795x//CZyDwEr7pBH/nwwyOG/8RavYyBtvF4Z2iDVMcbb/FWRdByIRmhuNb2K+/9gmIvehlq7VzV0eOPPisFVw8T55w4XTgR08VI323rHTm4RTE9ZWllSCSxn8yJmGaMSaTocLUdhpU+V69SighyZmntyZoI1gBQ70B99Mv/lnpAl6ufXyG4Wq390XK8OtE//dkKEL0y8sNStFPARCr64mJllX4vgFAqog+TQZNOUVW3usEU6xaaXe0DK1oeq94X1IqLsVIFM2v4cX0DjB7i0u7iCI2g7KEJhEZaF3DicWuKOm8lCXy8shsK0tKVjMWmosJdShpWWmxN5KtV4gsK9YII1oqQjrCRoKe2GC3VCSM0VUq1PbXyEr3Be0MqkjCXv8KhCiwslhVlhtqmJEl+kBYubeNq2lYCACcJu9zfRgSctT3EOicAXMpgRJC2MnaW1qqrvy9K+0btQytbxGBzBm0tE9M3CbJskapF3cSttRgflNHAKtIIC+K+2NYWMDZhrDKvKt3SQJwCOQZqG0r97Gqlvlbg9N5UqmiN5CujqGoC1SrFddtZnQ+vea10Wa3YGLO0z5SSSUXsbPPVGK+6SxbvAnMTxW6zCcRpwjpHEzxzK33mITQk1WaKPpBD1PkhNFdjLdYnXMwKAnl8lqA5B08uGqh5i82iqzVFEfctRR01klC14zwt+3qK0tdf38v1va6U2qz98nmho+elClo/ZK1aBfY0bVrmvjq+qPMGpqimGLjZSz93SlI1W8C/1x5HpQdfrceiY1srVWvVvSz3ISmgWIFGFGhwVtqfss2EkAhanRTd0vVvzDFis1GtHRGyP18GTqezVMmtVfHAltubI6fTmRQzwYnTmyzBgl20LawKnFqtektLp3MCaFPk89LeadZz9DopTlp59lqtX9gQRQLJawZeBcfEfjzgvFNhdtGSm2LCx0S2Dp9EtDFbcWh5/dUIQqH48TPXo6FqY1VRyLbt6LcbNrsdXd8LoO08rrb9GTGyaJqGpnE0IWhc5BZr6aJBdUxqFFDb2Ux9OVq9VxbiHJOyACxZhUHF0U7WUNJWwpKTnqvijNr3HX3Xst1s2G83tF3Lbtuz2/SE4Nf2LnNdhNL9sO6LJZEp2tI1cjqdOZ7OHA5Hnp4PHI8Hng8HDocDscAQDXOW5Fgqw+r6mWql9a9w1TWSE4VIKQm0xTxTW3dRG94RY61qVU2080x0XtasrXSfn5gMS9Vdx4gKEtamzlrsKzo+LFbtAjyYK1bPWlKB691pjZNeNI2Z5T8vvtaX9QKEurolLDBRBawsaj/dQsl0/YZ+s2Wz3RKnSY0fHNLaL1tzNUwpqcievCR+r3cZY/BN8+L1G1PbeV4CP1XUVtq6hA1bgUtfxZeB6iJ5fV9q0QzKi6+dmlpYDIFIU7xGsw6DsBWycWRlYFwDP/ZKdNZc5RlJi1e5FIyL2Fhbry3ZRBGODYEQ1pTOFBH4zsvRKSYotijDqkjrTR0Po8APOUr7V46qP+V0LzAYdUx0TasMKmVS/ZVi1No2ey0XUJ2YnQ8iQaCFQhck/g+6RzrvV2DvkwzJVxtuZ4Ut0rZqdtEs99GpVk7OBUtWeQAFKU1tGV6LMzXfcEnarWvM751X0NHi1HEzOzFmaNTd2vmgwE+GGMlz1P1Y3akB1LxGfGHKiv5WcypT41CN4+WrJVa9ZqDWx/zUx2teRYu8JWcFfsqSE9tPumOSnlFyrl3FzeqGJ7GOlX2/SLdHygqQaPwmXSCRqOfirFhBKWVxSQSWHK5QcBlKcboHW6wLUsj0UlymCJjsw4yxjhAiPkQ902pbcCFZi0lWz0yn+WgmKQDrrHRStE1YsI3qdlzQnEH3EXGwy6r3mNQhtY6bsPebptP43Oo890uu9aeu/6jAj7OWbd/jbKb1CWcyN5uWLz+7537bULTDtRjD27dv+cXPf8Zuv6NrG+Z54nhMjJeBs7p3TePE5XyRKmaccc4QGk/Xtey2GzKw3++4udlzc7vDm0QwMyVFvnhzQ/rqrbiFZceUHanA81B4HjNTTPzw8SM/fPjIHGeCcwzKCnHO4nWwapJSg9CabJayCp3WQAKKBD5F+sEraKA1O2qXMPW7kqmyBlArmLTEE9eDXMoV+PBjMOg1LkOhtQOtC7Te0fhCCIUuKOjjZiwXTIlYIo2LOCMNtyKXZAjZEWJHjtKGEfRwNQ4BQgz4xrLxjdAgKVjV2zEpQp4xpeCCbPbGVKFn2Tzv7264v7tbhK822xZjDKkg1G1EfNF6qwi+2OLKLezIRaiCKqbPOEUejxPH04WYMsM4MU3C4IjjQFLGSIxSvc4FofF6EYacs/QcpwRuymQj1o4WLwe9tXjVc3De0G0svjHMo2OOF1KZX30cSylM04y1kXmOS2BUD76uE7HQru+1TbKlCY0caE1RFNxJ5UMPjCp4VpL0JNti8NarNTOLSJkxRuyGrxKkZcPKhZISWUGVYqswX1lapURUTYJQ6Z9e22GMsWCLAH1FreBVSA8MrR6CKWW6puHu7o6cEtNwZlbbcbFWjOIwM88KUJRF7DrGSHNu1WEok+KsFM8ihzUZEUKu5HsBNF+bYWCdY7+7oe96tpsdXdfjfRAmpJEAfRGlp+5FrElAMUsSAZpsaDIuAZYASU0ThAmkYGAbwlJBrZXN61Yv51aHhRA8jVbHnHe4IEFYskbaIxGgQDYHYAAzFtKcOJ2fKTZhQ6HdNWC2Muaa6BdTSCWSkT11SoY5GW0zvXA8Row3uOQxJ0fKmWEaF7dHYzNN4yhF6P6SMEtVDiSAOJ9PzCkSgiQSoXnVIQQk4DldzkIJJoMFZyzWNGBE3H4YNcC4SvFiipyHC24acd4KS6ltaUPDptvgnGW76eibhtoWG1XnJpdIKtKb3rUNbdcoiPbI8+FMTImnw4lhnvHeM82Z4+FC0zTstntudntl45nlo+kamlbA09PlzDAIQ2O72fDl5+8wxnB3s2e/FXe5+7s9bReAjA9e2j5KVhAvqXBjxtqiOg5RdJkonC9nqYg6R9t3+CYAhU3fcXt7Q4yJ43lgmkZcziTv8VnO2GLWVtJXva4chEwtrer689bSbWQNdf2Gm9t7mqbl3ddf8ze/+lt2N3c0TY+3hpImHJmtzs3WC/icY+F0HiAmrDVqBzxdMQllH257qX46B/E0cFC9w9PpxOFwIsWZwzgx2kDyhhKq/XimcwnrJcDe7x/Y7jY0PvDu4Z43d7e0TeDt2zfc398RvOfmZs9224tgZ9OovosRG+UsH+dhZJwmpjny+HzgdB64DBe++eYbHh8fGS4D77/7lufnZ6Z55vl4ZspSiItzlOeKM+P5SJwm0jwxXk6k+a/R6lXB1UjKI5REjBfm+Yw0X3T4pgMasik8H585Dxewhq7ved48c3tzA6XQtepco8xJSQSvqvDLX6wg2fVPClizhHTX+FExuqubyv75tMKvAPVaN2QJFE199qvC4tVlrh76KVa0+o1dv1wj5gDOsr+952e/+BXOej589x3Hj4/Mw8Q8TZyfHpmmpLGrJKulXP2t17ysg/5WX54WiMyVxbOBKpZszSr6bBWwqbqKRV0elzExqz5TBXirNs91McJpq7TBEEq8YvzYhfFTrJMPDKUkARfhE+BHi1foWtIEc54jbo7klBjSiThGrIXWepmb1mCd6L2lYkR/MMn42WJJ6nJFkVi1FDAZrALqJkdN1hN2HpQNnclxglQ1ftzi/pBrS/grXz543n72VtjIQZjD/sqMJDSBbtMp42gFoLq2ZbfZSrHfCmNZbMRXzaSqT2mtpe97drsd3nv6fsNms12YMHWip1zt7CUekkC40PfiIFZKpt903Nzulakh5ANjDNvdTh4DnMcBxgHrHXd3d/i20SnrcWrt/fz9Bw5ZpBAuhyfG42GJp63GawlLKYZsDTEYspc5a4JXnRojn2sbV2jEtbqIsHxdG976pQhjtZXtNYcyxcTj40f5h8afzhlthbtSgCxGdACdxbdBBNizxPKN8WA35JzxIdA0ahzTeFzjyaVosV/s05dwsmSshylN2GLpmpama4Wtnj0hNRhjBCPYi6zM/u4dN/efyfoxnoJoFjoHLliRpOgawrZfwN5cBEgaR4k3KJKnJkW6rW8IVoqpD/e33N7syDlzGS48Pj8zjiOn84VhFAOjrBIRAiihaLwCUqGj6Xq2e3Gfq+L41sD5fCSlyOXyp5mw/1GBH2st222HIxKYsKbgty3tu3vSvMP6QGg2GOe5u7/ny5//jH6zZZ4GhvOJ4RIZzmcOTwfiPEtLyThJJWueJPgInr5rhbaI4Wa/4/Z2z+3tDb5MeEZBtN/c0qd3xHkiEphNQyqGxwE+DjDOibbtSAmmaSJYcR2DQvCeJgjKezpL+0HVIlnsMa+WT07aI1syMUFJ9TSvjJGCgD5Xqt4LsFMfq1+XWr2Rg7smc+tN/lFd4nXH0GRaN9C6TOc9TVDgp7F4X8TRAAN5wplC69dWmRqtZOPpTUdJQifNs4o/GihWXu8KEggjJ1jZkNI0kEZDKZmm8TSdoPb9pme72+C94+72loeHO6mcemEjFWCaEnkUlLe1hlYrBPtty3bbswrCa19mlN5naydSeuZwvBBTYhwnJtWnyXGW95ErSwzdkD14EaydswhBx1QwU2YuBW8cnXcE67HOExqp9vrGstk5QmsYvOEyPDMn90dG5M+7JICYXhSnu04EgZumETBhu2OzEVeDtmlVBNgsyT5ANUowGK3C5iWQMAh92joPBqVSX1UgFvTfrvimAkcAyeZaJl/0KSiIuHYUICd4ESteaLVWgjXvRBxYmDvCCMHUVjJJTsvtrSRNJZPmiZyEYnk6nxlHcVe6XAbGaVoAoRSFItq2HeM0SnvqKJbHOWXmWb4nonoRiXChZLO08b/W5axdgJ/dbk/XdnjvRd8lzmonK1vCyq4wamspzIk4R0keU2aOkWmeFADRW49YZ/fdS+Bn0fBZdhkVh6x/S4OJoLRWW8V4FQTybYtrpTXMGBV1x9CUllCCCP+fZ4qLGAPtriF00idvhNol1SQiBamK+RnmKHtDjBfG+SABwGApXgLoKoyZs7A/m8ZdBT2WVAT0jymT8szpdMIMg4BqoRWdn1e+cs4ch5NUehT4sc4t920YDdM0auDPch7UapYxAmjPMRJC4OHujvZdQxM62i6waTvtp88L8HM8HXg8PJFSJLTSLlWA02Uilo+Mc+YynUhPzxhjeHw88s037/HOs91s2G62WmUSwN9Zy3a3YbPdCMvHS5UTYLfb0ip77P7ultv9TkHmltAECgkfHM47ckZabVMk5YgAP2CMVKBTnKFkzqczOSZ88Cx+0CWz3fTc392IycP5wmWecDkTrcMlFdqv7RavyDQopaiIsYC/FQRGGXehb7nZbeiawO39Z3z5879ls93z5vMv+Pnf/ms2+z3TGBnOIzlOBGfwOjcbL62KOcJpmjkdTpRSOJ8HjupQVyvhzlnevr2n3+8UAJ05PD8yjBPPhxNPT0dxyYkzk23AeGwGlwuuZKyfaIsUUn7+88/5+uuv6bqOr969492bt5p4SdXSWiOMWm21CEGAHxlDcUed5szzceBwOnM+n/n1P/0T77//ntPxyK///u/44btvmWPifL5I66z1uK7D+CDPMUuldx5HLs/PTJcLOc/EeSDn1y+IyCWsh8wg2lKxYZ5PChBbfOuwriFnAX6kWp0Wd8DL8JbQtGzShq7r2GkC6uyqT/IyufpxldZogrecz+YqDITFsSubF1EjRuNDDS91Hn7y9HVjN+vvffrjnwobr79dwaa6l3sa9sXw81/+LTc3d3x791u+++3vOD0fGE4nxuOJnC4vi5bXAkWvGaZaB5vbBThB43JTgR/URUt/vnzfqladWWOUoiBPFaQVZpD7UVW1skcVr0NVZwgl0ZQZ9crUIpUB50Xc2aCFIm0TM5aqJyQucHJrYhHwJ5eCm6SrIcZZJAXSBYcBF3BNh3EO27WYpiFhZAuKwlw3WeQIChKjVQFokw2uiIacTVHb4xN2llYTSqbEKG1HBtyi4ijx8l8Dv/M+8Nm7dy+cZ0MI9L20ZYUQaPt2AXycag21TcO236hrqZeWL2MXVm8povHjtN19s5H4SRg/YnxRgaKcV7Z0nsUAIueWgrCb+03Pbiei+nfxVtu0pe12Us210IjpSS4Zjo6EsFldCOxvbiX+8AL8TOOImSNxuDDmxMfTiY/ffQe5ELA4pDuiGtvgLLn3lMZhnMObHtuoTpVz4ghsrbjsartTZRNaY/D2CmisuesrongpRR4fP8p7RIuK1tIEtwBOlfZYSsJ4S3CBbAouz5Ay1gd8K8wb0RFUN66UCbnRHEJjTsB4gw2wtsZPmGxou4a2D+JgXKTN0VrH27ef8cW7z2XP3r1hs3+DMU4kPeaZlAsuOFwbyDnTzBu2cZZ9v2jLZMqisXO+kLOMX5wGQIqgjkLXtTy8fcvnn71hGAb+8R//kY+PT0zTxOk8MIwS2xiVF7lmf2Ms1je40BHaDbv9LXf39wBKisg8PT8SU2QYzn96bb3aCP8zLmOM0O6qnam2UAS9Mc4HQWG91+CioW0bEV5VBoDQoCTgTQt1TCl13hNyJmZoogAjla4Jksw4I+lK8JY2OBweh8caRy6WvlgGLNYl2qYhaLU0hIYQ5Ou2DbSNIIFJ30dlAsQYFZypFY2iyLpE7AsrCJYF+FOb5gvnrxfVm/Ly6+VaMwLz19iF6+sy0HhDcEiLnpE2PWeLVGaNaGmYIkGIIVdyHRUll11JFnvGYnOmFBHwzFW401tsUNaANbRaVUhGWjtKKTStp2kF+Ok66cn13tN2rVQftWJjLOuYsIr0mmV8UHX8dcMrV1Wc2rKTcnpBQawURa3xAkadzorSLytAxyLnnjHaZy0MJKuRW9KqjNFKqdXv5Syby+tfZUl8lmmkdMjFeasCmQWlaoqwqkUrYpQ1ADR5nbQVpUYCQxQkEDvHVeRzoZ7aFUDIZb2bi76VMeKcoTe70jpRYKnkTDZW2kV1QclZIgGuKUY+rFnaAYGFIltKlkp7dotjG4BLIkKJMSpQbojKNpnnWYIkayXhowAJEyuAK/OhtjwYY9Y/+EqX0f1NKKMq0ocAH0ntct1ysLJUK4smHks9q962LFoaSfflGoyWnCCnReMnKtD2om0PbdNcQKYK/KwAhvOVpm3wXYufOj2wA8Z4DJZoJhoaqWpNIk5M7dySd0cxVqLWJWOQ9WZs0bWu87UkdZBMS34hElZVLHBlQy3TZVn3WfI/Feurmk9/jaugFcVaAl/u33ov4eV+rytXgtgCMYk9emXyxRiJPhKy7IFWhbWts+RSCHNQ8VJlSwaxtl0YXEbmQzUrmOfIOE0kKwluFYJ0TrUxrKVY2Q9EN0H2YJk/+Uqvq05HbdWr79uggZvRqve1+59ZKPuLDkEteixjZ5TmL9pUMeUFCDF2saiV+1bq+nzd8SxlaVAG5J7XCn7biPBn17VsthsB1bc7un4jiYFvRPMqiyi9xYkwurEyD1OdjytlXoBaYUYFjJ6/rC4+uci8mGamSRzv5nledMuMFVDaOa+tMZmgO0MTArutuIZ1Xcduu1V3VGHHVeFb72oAb8mFhekzzZFxSkyzGHCcTmdlHInj6ul45Hg8LsDVMEzSeugKxQeccUs7V46JHBUMXLTY1tbP1720uGbkdJN/CrCc0yxtzhpLUrYqzQABAABJREFUFt0jc17Xn3MT0zwxzjNunrHOM2urKM4uyTy8lAv4SbDlCpgxLEfqsmOt6fbVLyuwsYSJ5fpx62+//CNLNLrcUvndT/ebn1o16/5knaNpO/p+Q99vaLtOiqdzxC6A+TV8hQJar5doLlf9e0sFwyyi8Mvfr5v+0rptRaerMnoWgMz85PO8eNWlrDEPNfaVCLeOwTWghCaqmLUlR+8mlcFsrsbCgGjklSJMa2XnOG2plQKbWz+8x6gLqqvhaDFyzpbV4bg6yZolTsrrfpoNxUkLcdHvk0Wmm6uz868D+8hraNsW52VPFyOKIO6kKichLEMBfqwWFb0PwujRQqBz/spZS161dQIgSEzTLO1h3oerFr/13C2Vbb7kBNV+e3WJrIUOYfwkkpPfWdrgCle/W5b3eK0v5Z3X1+yWNu95EkCAInCbtCPVvMaqFoI4fFlj1EhmdeU1xq5zT2PSOsamwowV8/krjGM9p1fVkRUqXLcY+cLpG3M54Z0FnPj5KAgu89suY+nMWoir+2nV5qrxRVb5lbZtaVthiInNkDzfdrtjt9sTQku32dD3PRgrgPDSRi/5Tc7S8eOiVcC/Aj+JeW6lJStZSBGyaAg5I+uvaRqZm27VN7puUWMZE6twRwE8xmQhMSgrTOIvzWNKWXcOI+2q9p9RnPyPC/xYQ9e3TJdZ7NbHE94YWq80PdVZKVkSqq7r2Gw2qvFTVNcnMUyR4TyoANdWRbMC1rfMMTLMkfMgjj6bTc/z8zNxHtn3nmYji91hsCnjkvTOGaX5b8Iev90zp8JlnDgNM+M0qT3yBmPg7mbH7c0OY2CeJ2ENxcjhcOB4lIra5TIwDCM5J4ZhYBozBYs3XvVkKtpedAJU3QK4XhjrUhTgSzITJCgx60FTk6IaJfw1FjBAGzy/+uJhQditAechmIglQ0nS05Ss0NPnRKpMJd0oXc4Ek8CBCw7fC+UuG0uyfgF+asWzbzzbTuzqbM4YdVPywREaoTJ2fUfXdxp8iMU3RpXfUyRnGKfCZVCR1ChAhjWGOWYuis7POTEnEXv9/fePvP/wzDDNPB8uzFNSWr3BOy/jYN3iWmV9g1MtmdVavOA6GV9jCs6IXkDMEC8F4qQjOAMWF6Ddgm8gxpFpuKhC/etelYRVEXiMVGz7XqzAg/PEYWTIhdlemI8ntfBe4Yy18aTIRllD2qrbhCSS1U3DXh3Oi108CODrvDyHJqiYl5u8c5VBUPvTJWjKRoA0aeXLGB2fJWlGKK/OaLBmaw3NLImmwUiZrnh8yGANTdOSS6bfbLW/dnXmmueZtuu5XC7EeeZ8OjKO46IvJtTtCq1YrYYLI+41L2st2812acOr+gTCMM1Y5+naluDtovtiNdnLVewxF2LMlFwYp4nL5UJKol1xPp+W3urLSVgG8o700NWEvx44Tq1qba1sA9FbZq9gbk36dX0bFaitACdYnGlwppXdLDsoTmecw+LXwE4BCusLguMVClEsjCg4n7HInBiSnBu5ZKZZgL1SUP0gDXKNBFoxZy5jZE4J6z1NZ3BBziVjr1y2XvUqxOoGUatWpoJXoju2tul9cinOGlPiPFxUU0OS1SYEbrZb3tzd0oTAZrvl5mYvVu2tY7NtSTlJpdtJK9zNfsvNfsPQeAUWZgyw7bdst1u8c3StUKaNgcvlwjAMkoQcKlBj6buevusw2vZgdf0fD090bYN3js12S99vRHMmzrRdCxSasMU7Q9+13N3uudn1tMHx5bvP6NtG9y3Zb0Lw7G72dH1L3/cYa7i52XG+DPim4fl0FlHjWRiXMWbGsYquv+J6VLDRWPBe3u920/Fwf0vXtdzd3fH111+x225pN3v2d5/jm5627zHGMk0T58Mzj9/+nnkY2HYtYS9V6wTMNT30HuOlpbLkJLpZWLabDbvdbqnyPh3O5Fx4//0T37z/wDiOXC4Dl8uF2t63bQPeBm7ub9j3Dd4autbStgLwvv3sM968eUMIntvdDbvN5gqQlEmaseQsYOLldGaaZM788MNHnp4PDMPAt9/8jo8fPzAOA9999x1PT0/MMXI8nYlYaedt5ewrOTMOA/l8JqfIdDmJ+H6MzMNZGLYL6PPXinKk7U305wppHrmkZwwTbQeWG0oAY6VAaYzDe8M0j2Qy7hAIP7ynPXZ0Xc/ufBb3lbZl14sLW9AkVhgeZS2CXM2npajy4rVVS4JPHsxaVjAVgFcsojo5QQXQdSNR5N9cPffLZ+QnfsLytz4lsHrn2e33UhyIM1/+7GdMw4XHjx94fvzI6XQUvUOrCZEtBIeYrrzqUBotDqwlmFwxHBBNwRovV33JCvwsX5v1RRmj2kdVe1LvxzVoZaCqeFcmM0U064bpjCmZoGYItibi+oqqriGgmJRqhqiMBAZM1RsxImdBE8gp0ZbEXo0UNpuetm9lP+9aaAKxQHJQYiFlA9FSkhRpcl6b9+qrEakK1T8zV0CQsk0LtSikrITlUHp98KdpAl9+9ZVqDoaluN92LV5tKI1bAdRyhZTNUWK1aAyzMnWqLIBB5mrf9zgn7ojb7VZFmLU10xgt9gobaxpHJlM1I7O2WMtZmykvGUI5Mw4Tw2Wkaj9ihGn9dHzmcDyScmZOUV0DHbv9js12Q4pJWrT7HpMiOSbOpxMlJVyW8MYYR9Nu8KHBhkDoA956fAhsNlvazYZipB0sGy1GmytNsUpCKPLqaxCxMH5eEVB31nK7310BUBZr1QTFVPdbMYIJwdN1Dc5ZcfhqW2mZy2JMUHU3o4Jv3juCaa7ek7yvvuvYKOMreHGwddZys99zf3urAEpYdEkf7h94+/atGp40WNdQUBkXNYup7J+s59M4juRcmKKYUqScuex7hkFcrMfhwjyNGCNu5kELWK03DMOZ4XJhGEfGSWKR0DTsrCgQeZEdlg8trOz3ez57+8D93S03+w3eZnIcKCkTda6XnHjz8HYdxz9y/Udv9eo3HfN45PnwzPHpA5uu483dLaEVZ6dCVncmQ9d3bLcbrRhbAVeeT4xj5HQe2O0CNzdbmhBouy3bvbRujLFasovN2+H5ifPJYR/23G1u1XECXM6UlDCpQEoY49huArf39yQM5zFyGiLjNHPabDhvt1hr+eLdW75490aSHhKGTJxnvv32O77//numaeLDx488PT2LsFROpChtNU7pnSAHcFYUeJ61fcVUJsbKGlj2VaMASq1WXIFCL47s64bwTysTf+HVBM+vvnwjyeE0qrNVwdoEJGlp0XOPlElz1DY3fU9FhLuDdTgj/bKbTlxzsvVEGyhGki2vdMD9puV2txEHG+foKhvFWayXQzM0DaEVACkqSybnQsoD8yTuYONUuIzKzppm4iRJzWWYCUEU78/TzGWemebItz888cPjgWlOPB8F+AGplAZF9+vRWUCZS8oCWqh6hrTck0yOIyXNxClxOV+YL7O8tkHs4q0v+F50TaxJOD9hzesDPyDzbnVKsCrg2S9tHHEYyaPYJVJdJEpZKs4V9FkrVkpRvnK18MHjG2WIqLOTQTa0WlkJoaEJosOkZW4wZqnqLMKFSs011gttlRV1t1fAjwACbhEElMRWqzfLpqhib1bQdWu8YD+l4ENYrODV5IxrjZ9xHAlNy+l0YhpHrfZcGIeBy+lCKeOPgB+7Uh1e7bJWqhXBB7F6dAFrqlhxwTbiItA2ImTYt5J0iF13ZUIqSFdgGEdOJ9FPe35+4ocfYJwmzlqZj7O0NaZZWI0SKOn4OE+r4nK1GiFg31p8FTBUXQ+NarkUYQdM00zBgG3ANAIChg7rpL3K+xbnpCe/bVra0GKtoWkcIQhg2DQiim6M6rhbmFOhnCYB6FPichmVGbPUUaXqZQX4mVPmPIgocGharIr8Uaoo9l+p7TJH0YZQV5kKJJQCRYX+FsYK/CgTm1NivogI5DgOnI4HnLM83N6S0kTftvjG0W/eCoOj9OR8uzJHoggiPt1s5UwdPdMUF2tQYXxoi1YbaJpAyZnH4zM/PD+RYmScpQXWGsN+s132ka4JNCqi7tTIwXtp56422DmJRpB3jv22Y9ML2/f+7oab3YbYtTgjGkEpZYZRtMlCCOxvdnR9R0yRrm+EZTKONH0v7V7DxPsPz5zOI4aJyzkyjtVp8NVGkZyTCsRagjPc3uz55S9/wd3dLW8/e8e/+jf/hpvbWzANxW0p5v/P3J/8SpZt657QbxarsGoX7h4RJ05xq5fvIaAFpJIGHQR/AC3oIZCQso1EgxR/QbaQ6D6JBkg0QAIJugiBBB0amUKg5CX5Mm9xiojwcPddmtkqZkVjjLmWbY84N+67Z8eFdWRnb7ewbbZszbnmHOMb3/g+p0yRmTAHzk+PPHz3O6bTEQ47rvItpmkIKTMGiYvcdkuzO2DUNME3kgBt91vevHuDc57zeeDxSVqnvv/4wLfvP8leHeelBXTjr9i3G7q25RdfvOUXX76laxpurrbcXMk6sdlu2Ww3WGNpnRdwHmVcqlZGRARj55D59Hjm8fnEeRj47d/9He/fv+d8PvKHv/trPn7/LSEETs/PjMOA9Z5me43vNsK4cA5vHHEemU5HpuFEjoHp9ERU2/ZabV8y+FdeT9ejJkPSsivW7o/kfCYHS+tvIRvafkPX7fDa+jqFkSnOZGOI1mlhcsPudMZ7AWG/uBYQdtN1Uq12F/IAS0X8R7gUy/dd5+yPlAaX6r0tRvczSFS3L/25MN/0LxZQ4x8GpRlWRcrL83Desb+6YrcVzZOv/+zPSDnRf7flm9/9FnP3EWljkDjK2ULroWtedyhFMsAJWI8whS3CdC1aEKoxSzGWBQFTTZQLZHP5wstImAukzKzsHPRzCmBy0qspEhThfBRL7n5La/Vzikg9gwhJO18dvqQgmdUNaT6fBexRzRprjez3gpKSvaXsekDWAut142sbaL0UGG0hB4hJ5kKsRb/Kdlc2iNGCmrFFASBDLnKWS5+6kdb46hBaWW8/x9E0Lb/81a9EA9PVdi632LSnIgUDEb3OauBRNGmPy4yuI9T4hk7buJxv2Gx2NE3Ddisaid47FXZuXwA5pRQG65bOjpQzZx0XkXBIC4OjPqZxZhxnkXpQwkJKiafjE0/HIykrE1M19KRl22h+5Nhtd+QQyClxPh7JMWFCxkYp6G22mbbf4LtMm3c0ztH6lsNux+7qilQKQ0iiL4qu03XaFqjM1Nr1YD6f2690OOe4Ouw1zxA2TzUEMgZiCCJNkBJ913N9dUXbNszzyKZrSSkQYlZma2aOkUHlXbx3i2ZokWo7xhje3Lzhqy9/IQ6k+x2Hw0H0e/Z7bg5XeO/p+55+I9IgV1fXopdjLSHMEouWrF1Fou9ZzUikpevE+Xwip8wwBaYgwNU0S96YcmaYZqZ5xlrLtmvo2oYYZx7vPnB8epCC2TQxTTMYaBuR17AGusbSOBGd7/tetWp3AvzcXrPdbPG2UMJIjJFhmAghUlLm7dt37PeHnxyXf1rGD2jitrYCVLTbGKtUMKXPlvzixlsQQ2uXCmVtbxBRNnBFBt4Xg/eStBlkEahuYAsYnwUYqKKxMQpibFLC5rw4OS3nbsRG0DmxQJZES2zgGrWwHYZhsXmeVYNILKbn1X3jomWgMmFEUyOvVDyTl+qBYrPLeZRK01iQ9jWRXWtG6xZuFs7v6xzWGDZtQ0wGQ5KfukcaI5V7aaOQa2ypSK0mffqlBP2tyKa4nKAJclF03tmVPeCcJEVikyfJpvXKHDC1RUGrPDnJQpEyo1Y6U8ych5lhmF8APwAhOryXhfs0CfATYuJ0HjifRwnOp5kY5PXCTnP1giyJs6kiQZRqRQUYdVoy2h/tKEoblKqL0ONDyIQ5YXIhWZmD1mVaRFjs5yhuvqAX1gdm2YCyBvclZ0qUCk/OwkBAN/5aSXwJ/FiyggA1YbXL+AJGNvCcElW4GWVeYNTFzBiy9+TktZ0qU5os96FLqhtkyM6TrbyPT46s7CKXPdk5FTq00lJntGe/VuocsukZg3GVBq7fxq7OGuXiWhVt+2vbVoMLaNuOFOV7Nm1LEwLWVnZYfb/XH0BD3UAVKCjSamNyJpuyuKXUsV3affR+WiowKnabSyYGqbh0neg6AYSmwavjxNoGVhY3hWIMtkCitgauUODlxC2qGyDxZlpAoByCVvJl2SumgNF+dC9rRc7K4tF1A51TxThpF7UGjLg1iYyCjGdWkeCYIjFJoChVVGER1TW3FASMStUFTPagF3uUfp2fJd3UZd0qcCbAj4TWS+uB/v8Lo6CLKp3G8aSUCSaQs2UOsh9Za3RPEoCn0tP1o/U+lrbrxnutILGIqFeQT6po8shFdJuqqwlB1t6iIGzWlt+ke7lMDXXsKKvjBlipMhdtk9W9vibE1cXL6LoBBu/k+y4ukqoH1+YGY6QyuN1uRInCWNpmYHKBuFzbtVXhVQ4FqtvGsekbWu/Y7TYcDgcOhwP7w57Ndke/2ZLxxOKlCTqlpUU8RTEJKPogBooVofMwRVJGWqu6HkOhWCfOh3YF78VVrajDaVTnK4kNnLW4RmjmfdcoKNyy3XRsN72wwrYbCSy9lZbppmHRwNIAO5eyjOGUC3MSl67j6cTT8zPDeZCWrucnhvOZ4+nE+TyIJsms1rYY3NLyoO0wBtXhiOQYlushGiMy+5fI5ufCfPStK/MaWJzOcjJyXecZa2acayAnKF7vv9pqp0YEJmJDxM+iEzE3DdM8L8Wv0EhM6Ky2FXxu7f6D71h4sUdxAUhc4GE1YrzAJy7ahtZ7ifr3F5+77OaXIDMXb/TZqb18jawpxZUlQW87KciJtp4XNmpeRat/5E1e5zConsl6zS7njdF/CJ5mqAVSo8CQuXhNXYMXvLG+/+V7LnZo5SKGkr/NWSmtC1NN3ZqSxo6WhaVVclo0I1OYmadR1r2mhS7JOJfaqFLUuW/9bLHHLIBbkntnDb52txuw6k5n9RRLKS+/14v58tm80K/6RybAqx5SOBQ9F+9WV6+lVSaXhcFMhmw03tIcUuK2TMoX94gRlnIIUgwCmGfHNE2k5BYmqGj5rO6o4zgyTtMCylXmf2X1W1uLuwr8TDPTKHqJIUiRIqXE8XjidDpJAVHzRO89u/2OaZzk+qa87M8vWgP1p9W2Pu/8svd512hLm12+65JvYmSOGXPRgvjZ+NX74nXTRSnsqiaPsSL8L+GMgrK6b5VSFmdOMdIoqrnpcD5hnGgTmhBIRZhC3jvatrLYJfixxrDf7Tns93Rtx26/50rBnv12Jx1EXpjwfd8p+7m9YMMXzVmEqZySWc7NKyu6aBtXShm0eJyLrHltk0QTqGo0GqOFL0cIhnPVe1Pn3LZrMYgkgrTPGzFK0nx3s+nUbKfXVjGv8VZeJG8qWJVSlOJM99Pj8k8K/NTVtO83fPXVl9xe7xbBUEHbIuMwi+PO05G7T/eEoDilWh82Xc/t2y/Y7A60TUu72ciNPI7y5WNkToIMVh2HUqSlZ983DNMV2TvOU+Q4RMIUeBpmHk+jWB2eMvZxImH59tMDHz49iGtYEsFPX1ZxWe8c796846svbgH4za9+JSyAEPjw8RN39/fM08T337/n7u6OGANPz89ii5vEOnecJnEsUQEySbTlbsxKK1y0WC7+f2EAvdzif/y6v+Li7L3j3Zs3rDZ2WVF/SeIEJBEdgXGaeVYHthAzkzph4Rw0Bool50TM4i4TU2Yukjh4byHJjRCA2VhJ5J3HeKms2kbawTAQh0BQTYq7h0c+3gmd/Pl4FCeTlBjHyDiKDV8MkRiEcmxMWZKFYY5Miuw+nydOYxX2FVFfax2b3Y6+32Ctw/cbXOPXXVOvt7FVmEQSKmSNwPlWHacC1keMK+QYtc0mYn3B5YTxmaZFLZJ/jvaSFcyovcXWikBzmGcBFWomqWh6XRQXxo9uLAvQeKHrU/uK5fxrFY2FjmsriAu64Ik+jUgeFZ1rmtBZqTi3XpMQXxk/Rn7qBum9X1zGrFeHDivPi16UXeySheHULpaKnbqZXVydJQGtm27jPHi1jzbiqBVD5Gp/zTxNTNPEm5tbxmFknEYeHu61dSot7LhXPUw1oIrM84Dw16S+o9kt+10vGysGZ2ecTTjvaQoLYF6ZUV3X0jSiXbZV0UJpYX3i/u6KMAeG04nnpyeSJqsxBGLWxC0H2cR8Q8vaV770mDu3rFCWhCni2pRsQ2oElI/FSvtHMcwlEmcBigIDs1ZmB1edKxDwV1sI287JBuplw2y7hpgST89nhnFagOCgmhNN0+m9qPdCEaZgyIhOnGnpNx27w56u63GNXSPiVx5Ij6Fznn23pfV+Wftri9kY5iVI/5ypIqNe12G5XWOSvz+eJ97fPdI2njFmhhDp2parw4E3tzdyz1jDpu3IvuFqu+X2asc0NcLEmiJgFjp8DUb6TUcBace6vSGGyP3DA4+PDwAc9jt22hpka2JSRCtBrK4dKcMcZO8IYSbGLMAGAmSGkHDmgXEYhJk0zcQYJHh3DY0GRdtNz2bTi8CuN4TUsNls2R2uSblw//hETtqOaM488kQKr8v4aZuWX/76N1wdNvz6qzcctj1v3r7hL/7ZX3J1fY1ve9rtFdm2zCFxHo7EmDmdjzw83BPmmXh+loBv0+OcIU5nTDQ8P5/5eP9ICIn++obd9AW+bWn2B9qbW2zTUpwhpEAqkfP5yNP9HfMcaEzm63e30rbaebabhsY53lzteXu9lzauqwNXhwPeO3abjm0vFe+6VoKwBWbVI3g+nTidz8wh8PHunoenZ6Zp4rv377n7dM88T3y6+yQt9jFyOj0TgGI9brOn67aAIReYx1F0LKZRqvfVvWsaNbgNlM+aioo6Ff1ch6nbdpb7LU2J8TgS5sB0dgzHBuc27K+vybnQbzZ0my27q1u9ZlaKlzkxzSMpi5hsmCbmYVgE0q/VSajvOrZ9L0VFbU+wWoRZEntQsOHlnHWs4V3lrrz4vQIgWmhaosiihYEXKIb9Aei1rI2gxYsVRKkgQP38YqCq3WEtvu/otju2VwduvnjHMA3EeWB4+kiYRPsih0R0r6vXZBAJSWPKomMnRgdF231WcOfSFUcAEi2QsLYrq23BAgZd6tsthJ8l/pMxcyp5GK1Z4ktHxpaISYYwjUxRWpA2257NdoNB7ocwTcQQ+PTxI3cfP2Ks5e0vfsWtkYQyO0+0AjYSJkwICnCIe6lxjvawo9luKMbT+w3NpiekTIkTJUQyBUchGQH4YlYVzqIutKVq0YjAvhTjha1lKsBUIzX7M6E/RsR8rTE4v7pPFbOKUmNXTRRnpQBRDThEH2eW1lFx+1kma9t29J22AzWiDyoFMYk5BdTJi/6KFPSni5zyZYyKeam/trCYc9F8Uc5nGEdGfZ8YAzElmqbh48ePvPviC9rGc3PYc9htKcXQb3Zc37yl5IxXAe6mabm6fsN2d4VrG/rbA+1+K/dfLjw9HYkpc55nphhFG2m7wbetzvmqoanrSSk6b1erjtc6nPe8ffdWUgj9qJQiIUzkFMWMpe8pubDf77m6vqXve7WxfwNFmK5Jiz9ziMv167uO3W6rIEqzCIDvd3uur8V1su96ttuN7GcKGhpEjH+cR51PhZSjahDWgiiL2LdckUpmyOy3PWE+LDluZatLHK1tz+pkWXImhokcg7SzE7jaNMwhcHXY8WfHE8sQyHTGN6sRQNvKHty2LTfX12y2G5x1jOeBoKyix8dHxnGk7Xqurm7Y7a9+clz+aYEfBGPvNxu2X32FyTMxJoZRaPg5FoYpME8z7dOR+7t7CV7ajm6zxXlH0/bcvH1HDNUi0UhAOU4qYDgTszjU5FIIITBrr931fiuWablwnhLPY2QeIx8fjny4fyTkQnmcyJsTCcP985m750GrzV4qPBhiFLeJ0hrevXnLv/i3/kroehoYhRD5/uMHPt1J4vf73/0d3333HeM48M237/n46RPzHMjlfrGCB7F4XCeBoJpzDFSrx7UGU1cwc/Gz/m71qqwik695eOd5d3tLdemxVqvqMVByYpoD5/OZGCPH80AOE5PauU8pUGKk0EojI1BKUjZUJmTDnJQk6y0mymI/F5hwJOvACyhircW1TiqGBk7jxPM4MofIb//wLX/72z8wTROPj08agCZCyMyaSMaUxH6cQkqCluZSmGIixESmiGhXraTrwuObhpvbt+QrUeXfNB2uU0rOQhuWpNssq11UGqLDNk5YUNlh/QQuUUxhCpnzKECQSwnjC3229L2nND8P8AMyU6ojjDVWAM4QUKXOBbiyGgwWZfyUXBbq6w+c5WCpKC4MHvlrYbktQeUKlNXYPpZMLCIo6CsgZYwAP8oisk4YV6a+twI/rnkJ/BgFfppO3INEN2xDqy5Hfb+hbWWz2G639J2IDTu/CshaZRZiRdfJeQEtt5s9YATUGQbpBw6B0/FZ7RlPfPvtNzw/i13j0/Mj0/S69sM1wBWG27yMScoSCDprmOY9zksvugS5Dq96ZrYUvDHg0ft5vU45Zd69e0fOmafHR64PB+Z55uH+Huc9YZo4ndWCXFtmY1HXJITW64xS6RWk89apiwT4EvFoEOlFGyyDgPYqEHuaZs5zBWoTc9QgVQGaAgt7zlhL2zf4VlzEDtfSMx9T4unpxDBMpFwIswRbznm2mx2tivdHtdDEWLHxNALy9JuOw2GH8w3OV32o1z0MCPBjPYduQ9924i5WpF05A804LHa+Ja+J0gL5F2H6oAFKSHKf5WFkDAlnLU/nkYenI23b8Ktf/IK266Qfvm/pNSg87LbcHnZMXUsIiTAL8LPZbNhspQVou9+y2wuoc3NzzZwyIUS+++472laEQ/f7LdvtBmOEcRtSFNr7HMkhUqwjZtFXy1kcqsYxiHCw8xjjmFwghZnjsWpniHGAbxoOh5ZNL+YL263okqWc8N4SkwS73VbacL7/eMfj40n23JiwQFIThtc62rbh17/+NV++u+G/+M9/w7vbK25ub/nVX/w5+8MVpynw6WlmDIl5PHM8ii7Y09Mj37//lnEc2Dg4eLkPPYk4D+SSeL6/4/vff8c4zezfviOURNP37J2le/cO2zUUK8CPSYXhdOT5/o4QAk3b8It3NzhneXt74N2bA23jud1vubna4q3Y4IquhbQwe68i8dZS1BkxhsQUEnOIfHo8cnf/wHkY+Nu/+1v+8M03jMOZb3//ez5+eE+KAnSHMIO1uLbHNo20c7UNxnpySszDQJwmUpg4PX1iHk6LU2ZOteB3OcvX8SrldVvYPz8MWoDLhjhHhmNiHo3GYoFCw+27t3RtSz7sccbQ3LyhaxtwVhgbII5lYwAMg3U8a8X3sNtxvr6m8Z7Dfke6uqJRUxPjrIKULKw889m5/djvl8CPY4lEFoSmmMoKlHW0xjZwoTFz+Y4KDq0AqbApX37+S80hkcQuoPtut9uyma64/eIdMQXG0zMlnilxwppCiYk4rezU1zosCuYYOUNrwJvaRV5WB6D6GiOgT6MC3JUZUjFrW5ShcMH8kYKQxt9GcxEQNTqHWKQ7o8WCjCtJgJ9imIcjz89HuXLxitaIW9Z8PDKcjszTzKdvfsc3v/+DCBE7w263wfuGaCzByDpr04xRHZJxGpjmCec9+3wL5YBtWvq2o9l65pAIQyYwC/Cjxc5sEBBoSc4l9jVlZbxIPCtNg6s2TF7JRj/H3aiFQ2ftEpNJHbIsc7hqNlpjVP50Nf+JMXI+n3l6eFz0F+dpVrHfqkm5sohqkUo0ZTWvUSAnpdpKhtwXwCWICmUhBNR4IuqeJx0liUXMV2PmpMzipm25u7vny6/u2G43/OWf/Rmbrqdg6bc7rm/fQC601uONuGG+ffcVV1c32Mbjdj2ub5nCzMeHB57PR2KKnMaRKQTaruOmcbhW2LDS/qjnr3mKwWDK6tb7Wof3nrdv3wkLWckY8zRyyoGQjXbNCNC22x24vr6VFiwn9+ILQXQgapG8lMJut+X6+lp0/nY7rq5kPRWmoQB5jeo2SRwi7GdhXh05D2cBZlJkDqPmB1v6frPkRF3XrMYUukaKNqTEZpMCP8YaNv2WruvJJTMOk+6BgaeHO47Pz6QU2DYwHjbknPn6qy+WaxJCJMUExuB87YJawSRnZdy986QYGYYzMcwM48CHTx85nU7c3L7lzZsvuLq+/elxedVR/okj58I4zTgCTUk41DGp1J8IXGFEu6MCLNbKRTYZqdp7AWAqjFiUkl8DuaVNrNRFIMiiOs+M40hOXi25k/TupUzIhZAyKQSiGUkYoSWHWZiTGIzxagcsj9rCIhobgvwWxGZ3N+wXGt/V1RXDcKbtWo6nM9M8MylDoNr/hbguMpURetmCcxHyrBe0VNBHnzfmh6/5GY6lXURvBgPgxI7d+7wg4NUtpo5H20olsWkamlb6dJ0yTYyVpdgVIbE6bUd54SxVqqubou4Ryiz4wXmcOJ4GphB4fj7x/HxinCaOxzNHZViFUIghKzMprwuwAj+lFOYkwE9Bq1elaixJkFR7fy9Rf9n1zfLTrNGWYhvL7rhskovAsSrHsyxu5eLztI/6545wl4qfWRY5cTRZVeNt3eRqoGMlKDAXivSUz95TfxR9f2mdqV9oBYsuN9PKIqMgws1o6wgGaQoxuhaIuHkxhuqY5nLCZmn7MrGq8lcb67i00ORc1t/VCtkiLWe2Aj8X1GKjDka5ybhUwSdl6Gk7V23R8d5TciY0omvSNA0ppZWC++rjV3SurK2xUqXKi2NAylnaV7UHOmvLnrQbKnNLGSNLW5hbnZPatqXrRKi363v6XlhEMYlwvTEWUqFoW5AOp7C39J4tBixZXSlY5vg6U4w4O2Lweit4Y/CILoFDgtO6D9QERs47K1hlyVk0tWJK2kokP+sGW1u+gCXwylqdFwc3ME5bIdZ4o96aXMLvrzqM1Aq/XeamU/pOXR8XAVjzQz0OU9b/Xpb/U52z6gIVRK+u6vrU+9ZaJ2szRinQvVbIEt7KntZ1LW3TLIKJ3js1VRDXGO8j223PdtNTSmHTd2w2wjm2zmKDrptZNMIqXd05jzEF7xq8L1rZrQGoMNX0Vlc7WE2K3aqHVHJWAXbZQ1PK4vAGSxXPWnE7WfRUXvmwzrG/0rau/Z79fs92u6VrhZXkY8HasCRKVStCChKqV4SleK8tw2trSMlZHa20FayC7RWYXlwYK5BvaLzF4Oi6hn7T47xjt+nZbTY03tH3HV3bLGtWbaWQRErmV0qFVERccxgnhlGC3OfnI09PTwzDwNPTE89PT4zjwOl8YhiGRbAzpUt3T1b2yMIcvWjp0lY3irRaoq0ai01fPUqd9z/PfSiHWRk/9ZEKORZySeQcFgZamCbmpiFsZlIIJC+JPbbR91E3uWJIpRCBrG2X0yxJaDs3TCEsTmve617lpAJvl/v+4gwvQEuzrKAXa0Jdt8qytV9cu8+Pi2LMsin/kdfptv1CCFbBkLKcCUvRxKlOX9N1tF1PCpOyix3WCHjwulpbl99Jz4XK8lHQh7XFa33+s+t7ufbXf1/+3Yt3v/i75bG2V0sLiX2xhpdlnhdp78qS9JUUyVHuizjPhGnEek+cRZ8LwBpHNhmDtEmbFIQ5H2ZimBB9En29tRgyToEtZ8Bp8l+MuGCaUlZh5CL7rMwI+X+jwMbKDtFHKXqNls3xVY96rSvj+hKUKC8+W36UbJZrf4FILWBRymkx6Kgth4CCPS+NKYALqRGWmKnUGKCsoE9R4WtZ8y6Bn2oisTo3pYti6aWcyTgOnM8DAKOKB4c5iFyGc2DB2UaKZ02zsN6x4qZYUpaOiRCYpkninyAaNTkLi7uSAex6aS6ctuBnGUNjtI0q616eyUla00quNuzq3qxubNWprhILjLEvgBB0z++7jk3XayuUmEnIe9S80mqOKbFsVCeuUlji5JwzNkVSdBRXsYSLtMisc6lKKixt8lndSvW/SQ3aYIq4nXpnKVmBS2ugCBCVVB/RaC6cUsaamWC0Bd+x5ISGteNgkVfIUpyvbfxBcYqU4sVc/vuPf1LgZxhG/p//0f+b1mZ2PtLaDMaBFUcfiqXr93SdoWu3pFiYhkApDtsERGPT0G16WhVBiyGIC5h3oveSDTkkxkkEo6ZpYhjPUAp/IDGcn3DOMjw/MDzeCXoWErPviK5wCpHn8wMpF57PE8fzRAG2mx1CUE7EeSRMI8FbQZJTxDoJoJwiju/evmG72xJC4Ob6wJ/95jdM88z777/n7u6ecRz5/R/+wIcPH5nmiY8fP/H49ExSPZkQxMLeKwpbKCQqGFBWqmMNptA92KowYQ0WXnkMC1KVtzmv+j6ICwZIErHZbikUYVp0rbpqZaGalqLtPx5jLCHW1rAigJ8RAbDOe3oFimwWsUKD9N1OKUCB8RgY4kxIie8+3fOHDx8Z55n333/k2+8/CNtrGpmnUQE1Q+UmC61VgZbargaiV6JspEvxwqK0b+el6rVgHJokg1FdqPVKmSKVIjEPvEA5ilB/285haMHC5tySyBSTlcUA1hUwC3n6Zz0KQsvc7KUP1hijidZlv7u8sArCVfZB3Qx/rAumUC3adfOs1Rr1HC6wiNdSCkEZP4WiPfoyh52pYogsoOuqMyNzr8QASqqpI1o3C6tV1KZtl9bSphF7RaFU1t/NkkiJmKDX351ah3pxmWg7dQGw+NqnvAQEAixJq4uAmM9Pj5T02v0JAk9mIjHOylpJCiZn2sbzfDqTdJO01tKA6J7YGZut6K+Ygk2WmBNZQRSpOMsm23Yd1zc3pJTYbLdcXV0TY+Tx8ZG7O2EWnE5nTs9izZyNZQZMFqF9M4gziLMWbyRB7UymMwVLwVtEg8CI+L13XkDkxrAxjlwgNJmQZN07x8xYdWJyIpaE9crg2vRiwZngfJ4IMXI+j5zHUWjXKZFTJjpxs4rafpcUlHBe7WKblqb1pBSY5oFUEq5xPwutvV6bGiBUBzpvpCbpg7jeOVdZKppmXSRy2RhEzrKs1GgAY3VdMoQkooNR12JjHN413Fzf8puvfyF98Ps9u+2WOQR1aIoKErIEIG3XiBmDNfimxTUNOWe2veP2agsUNn1L34mde4iROSViiHz89Mjd/TPeed7cvuX66lbAyCQFDwNqTywab31rab04gbROnnNe9pi2bUkpcXf/oILdtaqY8G3L4XBF2/fcPz4zT0ETX7O0tsb4ervjbrfj3/mv/jtc7Xp+9cWBw7bDNQ0hRI7PR+aYaUgYW5iMiG3O2TAmOAYYZklAtp2I1rdkPAYHNNbQNpacHW3f0m62NNsdm+2e3W5P2/fsWs9V1+AM7L9+x9fXG0rOtG1Ho/d+13q6Vta4thGYNSGW81mFO0IUODWlzNPxxPPpRAiBj99/4O6TuIO9/+5bPn78wDTNfPz0ifvHB421ZtEtcpa2qS2mst6UrPT640m1exJhHIjzTM6RMA2LHpEiCz+8yBeYxM9WCymGkpyYkwbpcE5TIYyFMAlTLMwjJVtssXjr6Tc9x4dn0pTotzu63Z7dzVt824F1WNdQ+TeJQs6G03iSNcVaTsOJ5/MR77y02Gr7wrbr2OnYtbUFjBXMhKXmcQE4yHEJAAmEahYtNldrLhWE04tayuqIeXmFl9ww58VyBG2DqqBP/WmNJKlN07LZ7dhfXVFK4c0XXwJweuyZj0/CJiZgzZmSZl6bn17b2MyibXJxjcxnv9ekDlgnmcQ2q/7PGgvVNrwX0OPneJmRXMU3LX63w+Qs+pTea8F41VdLMZFmdZUdR+azmEbM5xPz+YRxjuPjI/efPomjZdPgVdy5zCMliHvwrCw75z14iUfafsNuf0PvCq7AtoHUKKG7GGHOFkPMmZQh5sIYYE6FmAsRLYiULPbUS2u/3Ks1Lv5ZIlQjGj+11esSNJNrtwJWuWQtCBWcakt5L467MQRC21CeCs/hmXmemcbAcB416baLXMAlwFR10xaNPVNdSNPS0rWAQxrTrrGpAkUVLNW4UDSEJNbN+joKPNw9EuZE33eQMs9PR8iZ+XQkG9WF6XqapsU4x5Ay4TyQS2a4i8xJzBXuH+85nk+yN7deGFPOYkrEGwE13GUxXbQVdA1YGf6vdTjnuL66IqVVoDnGLf1mswAVFczp+w1Nt8FqTG5qm19loRqDd1Fs3nNh22/Y9hvaxtP5Rta4UhiHcemkabuWvhPjmHEcGceBGJPq0Z0oWWQNDPIZFDTWkrGujnDLdSkr+yvnzDAMTKMkHacqF1GknS0n1ZcMI8ZkiWG6Fqt6sinW4k9Ut1Fpq0xa6BLNzSjOqzofjTHEFBjOx4XBdDofVcIgCJjUtj85Lv+0wM848h/9q/+YjTfcbqD34Nueze4a17Rsui2H3YHWt7TekwJMOYBx+C6Ri8Gp6KAxZhHnTSmKrakTxDaXzDSPohk0jqLAnROn0xPv338jSHnSChMF03TYticXOJ6PfHw8EmJiGILafMuC33qpUsgFHwmNW6zUcs5YZ+k02O36jmtdBL7+xVeiczMHPt3d8fj4yOl85t1f/zV/+OYbTsej9O5msYwuikZSJAg21mginNeFpVb9qCi0HkUr6p8j4q90lCKbgtAFhfZpa2+0VnmkX9bQ5w3bw05EuZyVxbvSNRUKOZ3O3N8LFdO5Rhd60VzZtj3WWOYxMJ0nslZzRbQyc3868vH5mXEO/PXvv+Ff//Z3nMeJh8cn7h8e5YYpCeGLgDN+sZwWlNkpRlaWXm2rCQesQYESy4Qp4qqQrCAgRsWDC6I7sFztDLVaUr9xXTjQ59re47wBC/2uFcCjRIJWcIR58MoipD82phrCWO/Y7HfsDwfRL1L9mxoMVvHnpWpeg0U9vcsq5Mq+W+niuVSRb30uJQV+0mJZHUoi1I00Sc80CIhg9H1iiIQYKIgNdqqteSkR1dkhZqm+1PNEvoWI0WqFobZxGSMtUGZ53i795FYrEMZaaQvTnu7tdk/bdUuy3HZiMdp1nQhZOsd2u9HgI0sy/8p0djkSpURiEtHUFBPTJMBP4/0iJJizbIIYYdQRhEWSFGSzVoGfIsBP4xq6RhgSbdsum8nVRaXk7u6OfrdnmiY+fbpjzkAIlJiFNVcKaZ6JowqaGoNHgJ+NlYc10DmxuXTW4ntPp6yHzliyb2Q8FcxIpfA0Rc4hkUpmSJE5CQNr223ot1txtJiVURkj50GBn4tAzanwd0xpCeBLKbRW9pi+7/DekXJkmkZyyQJ2uJ8h5Vwqw8L4sbrwFGvJhkVA2Tm30LIrE68mNEkT91LkGi2Aq7HUWt+cMswzIYsFqTEO5xuuDtf86pe/pu/EBWO3q8BPELvRXJjmSRP7gnFgnFS9trsd290OKFzte758cwUUukaEjkEdx1KSNutiGceIcw03N7e8e/sLFe1vaJwn58Q4DkzTJHtIa2m9+wwEshrUOoZh4P7+gfuHB/3uwhhs245hmOk3G55PA/M014tNdR1M6fXGcrvb8l/+t/8rdB72LbQO5hA4nyeGYQIMjTE0Do5W2ioE+DGcg+E0iyPdoXgclmISDkODobGGxhtyVuB6s6Xd7Oi3O3bbPd2mZ99YrjonluzXG7b+rbZvtvimAwwxJmZlemXV7ChFgJmMVDOmxNq69+mB9x8/Mg4Dv/ubv+bb3/2WcRj49pvf8+H9d8QYGaeJcZqxztHtDrQb0YFq+y1t21FdEMMcyCExPD8xno6UrK1sMSzFrL93n3tRlf6HO1D9Gx8FSrKS4wYRN0+zgD9xlL1nGhIpGlJI5Dng24bz04kSC5vdjqvbtzSuxWwStmlxncQbJWdikV6pMEaGcQSD6FMcO3Hz2W+5uhJL9KvNlrzb4Z0nty226yjGYJxfK+BGgJwK8Pz4ZTML2GGVTS/FrCqAuxZnFljNrGtLvdap6pugrU9VWFcpBFUXB8D7hs12y+7qCgzcvn2HMeIcevz0gTjN5DSSZmGxvWqIUwtToExIbf0qF61aerEWQGetlcpbfMZCMtYtoE8F3Qxr69zl/Ly0fPe+od3uMCXjMDgjrAercWgpZSlgU4oUlMcz8zgxD2dx9bKO09Mjj/d3YizT9TTaopzGE2kcKEXeI8UgTqiqO5ljgjTTOWn/23rIjdzz6ULXJyZlpKWLvYWCFYV/BX70p8K5lTFc9Vde+6i6jUt7/2fF7Ar8FFAGuMSjvimU3C0xZYqi5zkOI0HXrOPzifu7J03s7TIHLoHPpmmWLgXrPM61YFBBXVlHhVV9oXO5HGtVpjK/QBwRa0y7AK+p8PjwyPPziaZtmKfA/f0TjXPs+5Zt14JzuK7H9xsAhpxJw8AcAp8eH3k+nQlx5un5kWE807YN17cHttuetnGYHEVjyhi8E12rUowWw5UZHBOF1803nHVcHSrwI+zRlBO73V4Yjka1H1Uk2Xlx9zaqDVqlF9q2EbFl52lUhHnX9ez6XuJt7yUuyoVpHHl6fpJC5aYnaCFbsAABfk7ngefjAIjsQeObZfQajbdyEUYuCGur1BwlxUUa4Hw6MZzP8l2dXXXBDItLcMpxBX7ahoZW3zMvIt/H43ABFOp9lSLn4cQcZpZ7DnEXHsej6iJWp1oxLqkF7Z86/mlbvUpmHGfwhTZnooO2L+A6fC442yhzVFgfLMuPWVDlUhdqaxVMsGA8XlFegDYE2rbFGCtK196JXIkmgwXRpKibnS2AthjVBL/2HFtdFLyqdDe+ETXuRtq71t7Qz9Bi3WCqYr6zknBuNxtSjBhruDocOF1f4Z3j6uqK0+nENM0qJl2R5LgwBSrVtL4/1OLYZ+DP5fHK0ZEInQUMWVk+Be8sVrVVqsq5tVZs2Y1suNY5XCM3tVxuGdPF7QEutGZUQFdZGgJ8yUKfS5aqfc7MSdy75hCZY2KOmRizVDGMFSqruaRKqyisAj8YEYgVe0G9rlYBs1oVUuDHFGkxcQqG1ErQKnAsVc2sQYfJoltCdQbItUJSKwBy7ernOye9nVkF3JYxNhpY/Cz55jqHpHWAZQG2CtRZFUOrjmm2Aj96YS57838M+KnteZWhk5QZ9sKiugI/yHUz6v4mi60wikzOkPJynkU3+RqxWVk4IEsrWEnreZQ6JubyDqr/TYSJUwGT1ZUlX1BLcyZZqQgJI8QRnczjlJNQS52IlIsQqgZy2meeq5ht+RmCI7O6ei1Vy4rJaXInQUogNs1CM67tXrbY5XUUlnYwgGyrK9Na/YIaxNildbPvRRep63txKLCGZKOwE1MhGWS9LcLgSpRFBDQhQo3JGGKWe8mlhM+JGhQv7UhCnZIxsBlrMgX7ov9afrplXl22ui306oufSW1Y6/UC0UuqdNqUInOYF4vfS0fGVx5GSaJMZeyUJSCvn7a4fGiL3rIP1P9e1D2wvp8pL+e6BhSrU8nyzuqm0QrA50VM0CURCU/poiVJQQNTjHyeU+p6LUDIidby4Zp8oZbFLqsTSYPTe6h+f++EUZdTUgelJMCF0r6dZaGA12p6dZea1S2qUullThvaaaIYK9R3NWioe/5raxkYDM43WFewLsvPpPPSXIwfZmEIyphbtZmuDo+JaAqJvOxB3jm5z5ywS9qup+062ralbRytd7Re9XksNN6sApHOr+1bJkuwXwP9OgdC0uQNhjkxzJE5BB6fnnh8eGSsLV3HZ6ZxlCrnLGLpMQnofpn7yvvn9V7SNq7a0pWTFLfEvSgvwOsyGS6Pn+F++6mjXqPaolV0DymFxQ02Z8hRKrKFwjxOTNr22vUDs/7uVdjZuAzWUqpFZ5E5jIGUrOwVNqsmpbSATd4zhZaUM85AY9c2UFmSZO8z1qq+ycrAXr6LPrLeky//ix7m5T//2H++/CnXSWMGCpcqz1XQ3Tthv/umFQZl02i8J+zaRCQpMP1zHPVdTY0NeDm9TH3U2P1ixTSX6JB82Yt/K/hYVvDs4v9euF4ZbWm1RRnUyJpdY91ahJC1MC9nYCR5kOS4SHdDCqK35lt1m6QsrdOiqyd6egtjefle8l6mlEXE2hbUTUzY0dKKImNadZCsIALCxCsar+Uk+09VQF8ef/p4/djxY7nVZ7vaAtotwA0VFK2xrBOX3ItrUljFmEV8exWvqnMhu4sipUXXIrOwnGqeuLq3rm55lxdkIYy8ePriTqxxCQkb7SJJkrynVa2bUkTY2DoREg5JtA7nEBjHWuQK6iIdRWD+4rzkytSfvPhZr+GPrgN/4mGMxI6laMuaKRrngM1FXHc1vhImYx07dXO2laHrRFoEsEVZc84teySUNba9iPdSkhjYWrvm1EVArsoKCnMgzMIITlqwrO9R2zEv4/iksURSR87axleKXeJJZ40qZZSLXB6WhjuNT3OqjB+RpFlbB4uKYM+EeQTWzpSUosrEzIt2UlJpgzlMzPP4k+PyTwr8pJR5Op15jiMfx0dIk6iWv/mCttvw9s07+u4a7zdSGa6uO64R215dPFFqXtO2orpdVITzar9Y5j0+Pouw0vMT9yp0OA4nTudnYfukvDAOknHEmFXYzNA4h8XS+g6zE8Dm7ds3vHv7lq5r+fqrd3z91Rdstz3v3r1hs90sINBKQ2SpBNRKiOj9HNhsOuYQ2Gx6fvObX3E+D/zyl1/z/fcfOB6P/PVf/w3fvX8vlfS7e46nk2zquGUjdxqMCEsoqs3yj21cr7upzmHmd3/4g1Y/JFHebTe8fXPLpm8EKPBCZxOwRK6xsVb6UusCq0H/JouWgOhurBuwNZaEgIVzToxZnMKmMDNOEzFlHseJpzkwhURyDf3+CttFTL+jO9xIC6AtFyr22jMJVP2IpQ/b1Q23XmFks6tAhW5wxlqarsc3HdY6YggMp6NuJJfAT8LkrFawwgozdWB0J6hJSiHRdIZt8eQCMTakXPAOnPv5GD8vk82s42QwThxduu1WhVZrJW9dlOvxUt/nR86zrMFmDaaXpDDnBQSr9sqig5CXoCrXakpagZ8U46LJ9EIs77KXWmmWCzvuEqCq4MjFKddN/BJxl80kElW7JsxSuTfWcjo9awuZWFBW4ee+3yzuYPWbn04npnEU8bZXPKwxbPoeZx0pShXRWkuKMmdTjDw+PXI6nQhhpu9bSs401aL5AsypPcTUimYBiyWZtARPBtnEK/tEmGGWECP9tmez6wghcH4+clRHn/NTJM1FtJqKJEylwEwF7GDKBRtl0/Zhxg9+qfaJjoul7XqathNwLoNJEhB721CKOHm1mlyUKInr6XQiartvCEHHWdtNrQRT9fkaFOYC5umJcQxY53l8PuN8y+Hqiqbt/kHVlH/jwxhs25Cd5RwDIWfUd1ccTHKma6TyWFIih7i47BkVcTbqbiIsuIK0AGpQqVxuqeqJrkZUEKQU8K5hu92x7XvuHx6ZZjFceP/hE99+9z0hBKYwM6n9bdO3tH2L8479YWQ/yPPT+ch0PkIuNLaKqRq6zZam25CSoe92vLkV5LakwuPdvQCIb1u2XSfFAGtFbNqIXo1T8MR7EUtNWRwxQ5Qxvnt44u7h6YXNuHOeh6MInU5z5P7pxDDNnIeJUowUIebX2xtjznw8Dmwb8BSMGj3uNy1moy5ZupbOWLZPgak42n7ANR3OS8Xu8f6JE5mmM5gdtN7w9vYN+y++JFtLc/Ml/Re/xnU9t29u+PJmT9s29I1l21oRVC8CHMUC8xiZNMBNKWtgC+LCuVoVT+NEjIGPn+74eH/HPE189923fP/+PSHMPD7cc3ySKuoUArbbSkELS6/3sjGOUiwxZsL0qCYAiXkaiGGmJBG2TmFeAtx/bHhilv/jVbfHUiAFQ0qQorSMpigxSk7a6ZKBbEghM50nWTvKIwZL03Wcnp4Zh5Gu79ns91y9eSuahl1Ps90uYFx1piw5Ip39Bs5SUbbWMp5ODE9HnLPsu579RhxdRNuik3VRxUuFbS2aFkvFSi9NiIGge48RxWhkH6t6futlXLfn/AOQ5JLtUmBphSoVDTIsRaFGWy29dzTO83j1iTDPpBjZX98Q55l5akjxSIoT/+iJ8EeORY/n8vwvoj8UxxGQwC4ggavxDjXXYBE5lrxYQFqDtmgp86PG2saAaRy0ogHoXUvnZWWWtn+JLa6vb/BtTymZxondesmZOI/MUy+xmHfSsp5FLH04HWm6ToRsd3L/5daTQ6fZuwBxzjm6/Z52I6w7iyGMIyVDawymbRcjk5hFe6U0AkDPMTOlWQH/SBpOzOdJgZ9EKUlZ7mZ1NPvZgDvzw8I6K+BZRacLVbdJR0jnYdYCcte2eOfY9Bu2G3FPm8YZ5yxxAYPsi/lgjFEW6sr4sSpCXHXzsBpLaNxoVhQCAdprLrigUpcIFZcwqsSikgedTmdyku6C4dTQNTKXqrxAobbpibnIoI7WuSRClM6IkjMWaRd3tTCaNQ+yq37nAlb+jAC7sJ0cDWp7riBcBWqqnk3VyTRGWpG3mw7vtPtjI66HWcGWooCpGJtkTLIYjeVCCPqZUpAdRtFOyrWHysAwDtx9uiOlyHA6cToe1UHLLEx9EQQPepny0rlQdSKl1evMMAjQ4uzKUqp27MJ4HaUVPefFAEqcoqfFiv3+/p7j8Ugpon1X7drH6SwOaEU0wap+1DBOyjoTx81cCr75wO9+/58yTg8/OSb/xOLOmeN5YDo9cfzwe8L5me3+ijfPAgClZPnFl3/GdgsZh/WiH2C9EwZHRcusWK75RihgVWDYatJ2Og08PT0TQ+Tu7hNd1zJNEw+Pd4Ssg5kyJkpALJWrykwAbz3OFLp2Q9+KYNRXX37Jl19+Qd93/OqXX/HLr7+k71vevn3DZtMvPYFLT+cCHqwbjPOOrt0vRdEvvninlnATv/zVL7m7u+Pu/l6p/Zbj6cQwjqI+DmjDslxLXTBkEhXVYbhcVD5jN7zSMc+B33/zrbZ3ySJ8e3vD/uqazliwHqNjRlm1f4zqpFAX8Ao6GAvWrQirMjykUqg6HiUzFbF9P8eJ4yR0vadp5jhH5pjJtqHbXeFSpt0X9roYi1Vn0fkHJZUlwCnFLBulVSFFETXWpD+JZsqK015EOHqdYwxaCV8tJk0pmLQCPyIoJ8Jd1WlKNgadIibTdgZrK/DjyMljbMbanwn4udhMaxtWKUUTTotrGrpee4pVJM0sAf5FceAC9/mxTu8XonwX/9msEab8Zb3mVH0erabVilrKyv4p5BgVtF2ReWpio8BPHbv197y8vgI8S2UglwvRv7wwDnKBFKL8WxfcdEGPXwNm+X7OezZ9r4wGT9dLK9g0TUzjtDrVvNIhLgQiuhxCWmimwddEL/H89KwXPnN9dVjGu4I3l+8FYLRyaIpof1gVi3N1LK1d+u332s6Wc2a769nuBfi5//QJZ2VjS/PA2WdA2FupMt2Ko2TRvcgqbrkWVc3y3bpWWq4Omw1N34k7XkiYELFFWsdARIF9q2LaRe6501n0jWatggEszDMNIOp3d1olFdF3i3UToo8j7NO3777g7bsv2R+uXnUM5QQE+CkFxjQzRfSeqwLbAtZ578kxEouIG5IzRVmFRtc5qd7pXK9Am4LvJUuVsFaTqrGC9w3bfsd2s8G6hjkkhjHw4eMd/9nf/B3jNDHHwBwjxsB2v2V72OG85zBG9rNoB8ynI/P5KEFZTriS8M5zc/uOq+uOgqFrd9xcb8gpMRwHnp4f6buOL2/esG2lFbF1jphEGPoyZnZWqrMlz5xHcc47nU48PD2LZbvu5Smje8sRjCGmzDiriUMIYh7g/cVe+acfMRfuTiOhM+y9BFat9+z7jsZ5nBMhR2Mtpwib7cA5G9q+wzct1kfCMPH0/IyJgeurFtOJi9r+5pbN11/jug3sbuD6C4xvuT10fHG9pfGOpjF0jRRVxjlxnmWtehpnHk8jKVWwfRVpNUg1//7+gYe7O8Zp5Le//Vt+99u/YxoH3n/3Bz6+/+5CBF3YK93uim67k3bgpsf5llIy8ziJCG0KnJ+emM5Hco6keZTkvoBZ9tfLJOnf7HjFYfvhUYy0cSngkxMiGp/qfsHS7ZKjsI4xhRREm9F5z+npieF8Em20N28gBxHF3x9wzmCaFuO94i9Wg3mJk0IMnEaxGR685+hbcQHrNxy2W7xz7LZb9lvRAerbjr5V/bamQaa13jRW1olhnpnGSc03msX50jcNfrFwRlsvWPbTJS3VhNvWuAWWNprK+qlgkwAC0tJ12B9EWw7L/nDFOIykGNkerglzwJ0Mw3OLNCG93qCai8fyXFlFnSnrolKZIVVrRESntfhY36HU/aksMRBAmgOhukQZYe8ZI1qEphHWsHcNjXM4U3BF9B4BfNux3V8hLe2BogYj87hh6np5T+fISEE6zBPjWVzvvDEy/sZQupaSRIfEeSmAGGtxXYdtWwGygDjWdlPRM0xZ3JymIkUG03hwFjeLC91sCiZH0jgwH08a8Ajzx1iD7yRmLjrPfo6b0mhsXsd0Ga+aOxSWZPwyJr0Eirzz0LbknOn7js2mB+B0GiVJt3EZf2DRNjTG4G1D41RvxjmslT0jpYy1CbKAO9lkzfMuCqJ1efsMhC1GiqsrziJ3WYWIcsoM55F5kjE9eiuaNsDaCQMZS9ZEsjKcjZGOBWtRoxLVDtQCW+1a4IWxx6sP2w8Oa4wCzqI1mHPG2Kj3zTp1BPiRe69rHLu+xTeeTS9gp3TuCCNYGFAqkJ/yeg2LyqIYi3MS503zBJTl/jYGpnHkXvUpz5sTx2NP17VsdxvevLnBe8+scXsFxQxmBX6ynP84jIzq1utUOsJaaRP0Go+chplhGEg5MS9Mncj5fBLJmDDz9PjA+XxSwEccslOOzNOZmGZyrs6ziZgKw5AIMeuaIxrJxhr+8M1fcxo+/OSY/BPbuZtl4qZcxEkrigW4sRPDOHEeBjbnM5RM13pSSrjkaUyW6nrxGGeEyoYIBTuluYtAlwxA24g9adeJ1at1jjlMjJNaL6sORc4Qk/5+Wboo0Hcb+m5L4z273ZbdbiPVlk0vrhgqIPbihv/8TjICxNfNszJMCuJaY7Wa0LYNndrr7vd7rq6usNay3+8YRun/C9WJCrmJ5aPkfC8rNz9nZFQFrYSGL1R2cUiTxAALbnar4FnVgLHaXlXBA70GosM0UUV6k1qFS3uBJOXDMHIeRKx7mGbGeSZGSeiCCmNV1gf1saTj6/UwpuiCfFEHMhUvW0i2oH9tjIr7yS2//NXlCNfgZwVBtP0pS0+0gFlxae9zBkQko1zsDjovnIFc+4EtxpQF1HztY6mcsDJxKnssBGE7iMC4gj5OKyF2/TtzAV7VAPEHn3NRqWG5RvrLwhaSJKRQW1cUqKvAILVv3uhrUWZ5wWSLrWNv8rKpZmvJWaoaybmV3ZfX9oKUsoBzCnxhWMAIY8DkrO8h2ioV2CuoJkIFfy6+x3oPlnVeXTx+jmNhrVm72vIW1fFQmnZaKg31kWUdWloZKvAtyU22CqjV76BVmsvPdCocWEqh6zu2cUOMnmnYMO62NI1jPg8MfUeKjhwSxUYdQ5072mK7tJ3oD5OzVIZKomRDLFm0n7LaBdf1lJdzb3FdzJd03bW1qX7XheHEyzW7FLQdWHjw1db98r1+pkFUsEa+j61JlZ7TArTW/aNU5mRZBKeLshVfVkeVfr7MV/1fZcckdXi7SGiKXpMQE+M0M44r8IMB4x2mEceepp9o5hljxKkoBBWgVsZAMqrNpKw5lpY0CQBjCETnlzFZdB2so5SsLZOSXAstPy9rfgUjZP9zkKW10Bi5jqJZJWyNoNXtdDEXXvPIpTCGROcMqbilymvMpQ1s0taJACli9GHVjZDq7pMjuXhKbd1oWrG43Wwomx66BnyzxB7GCBgRknyvkAohyTUP6vYiY73qFIhluuxLT48PPD4+MI4jx6cnzqejVCnVHSbnxMJ00Ei97oYiqipranXoSvW9NYDNOS6MzvVYYIUXx+XYfL5e/mD9/BnW0wXUz2sosZ6SefE6iqxFZilUCbAfQiBME5TCPA5Mg5iLGO/x0wafMy43Ggdpn7m9/Ai51illopFrG5TFmHOmmWemxuOSamMYu8R/xVwAP9o+OwexQMbIWusNC4vz5eU0VGmCF3dIXYCWE/zh/VP/7vKoLf+imefUxc/hG5FmcN5jnH39cdSvXzQWy8i6YEvSNiyrxWOjCbucZ22xxdYioJGxTYE0z8qCEgYFQJwC8zipkHTNPwzOFlLnMDjdqyo4tl4jp+MuOjUs88hZZbnalV2Si6x9lclhWM0AClklDQxNq1on1mLbFts0i4ZhUnaF48JdzNR02SyurYYCKVJioMSZHEaytpoYFf81zlKsFm6MoTh1V/0ZjrVoWAODuq5egid1e1Nw+8Xe+XI9WeakvYjJ/sip132ySFVXAB7MAjb9sH3/ck1bcwJjymU28jLegJqGKB5eYzBhuQpgrw3cpoJERqUsFBCqRVTqnn+R05glQlpa1mqst3y+noQxsg79HCO5nGK9Nhdx2NLeZQ3eVsaM0zbpmqPINamMn6qHW9til3Vbc7V6SMu+FO+tLTjHi5iwOlDO2io+jSPjOC7AzzxV4McsFyukSFTDolHdueGlGHhQR++UEuezEDhyTszTqMBPYhzPTNNIjEH221kc+XIK6h6ZCFHMo0oWbZ+UMylKPBOCAM7WG6wt5BwIYWSa/v/M1ctay3a7gxSx7Q5CYs6Ox6czx9NMzg5rpFKw3W55c3sjNrJ9x3a/xTeevu/Y77d47+nalt1W2Dat93Rds4hj9v1WvqBv2e33i1DS8+lZkPVZHlmr/TKBymK1DtC3Avx473nz9pY3b25p24Y3b2548+Ya7z2bjYhtrS1eq6jyGqhcsG+KtpWg7ShK6RIqu+Ww3/Ev/vm/xVdffcnxeOKLL7/k+w8fOJ3PfPPtdyJanAQsC0kWYq/V6prA5nJ5U79ukDvPM3/zd3+H946+E7r/FGa6zYbTMOC9o2091RK89plKsizvkYsKkBaYppnTeSDFRAyrMG3KK22/goMV/BLArjDOkWGStr1hkqpWznkN8CnLAr+gBRfATlEL5OIdLl/cLDXBLwpccRFMcbkwvgSYViUiqeLkKDoh4/nMPE3C+NptaWwnf3ORqPtG4r9SJPER5FrFE39GP3dZ/IQ9cz6f+f779zw/P9H3G64OR9GRaDt2253Y/novtHXVp6hVQLP06ur7LoCQWTa25ZJxueHU5y9ABZ2z1q50WUymiBgXNimowwpWUMDVli4FParjWK40TcqLRb9SLnPJNLVXN+eVUZQF3c/aFhN13i3Awot5gog+77YCOlfnL+cYRhEVfP10EygZa6BVOnBlK4UwK+gYKLkwTSPDcJakOCelocp4yrW2eh2lWlIDTWOkRbUpZW350p9N40VLzRr2V1vephtyTnz5xVuef/kV8zzz4bv3vP/mmjDPTOeB8TSQk2yY4ziRciZMmSlVeG+dLzFFxhmcS4TziaHmHwlJGJBio6OoQ1ciTxPjPIkY8TxJpSSnJdBZLttngVttxS0YCSxCwvuWfittnY1vRDhbHRxe/TCozkvdPxQAogaCqrlEkZYhCyYXrJOEIebMnEVbCf3/XArJpOX7ZlT/rIhO2+l0pnGeYRgJISmYgn6qZRhn7h7EiECAH6FSN8cj7YM43N0MgZtZQMESJso8YY3h0HV0XYdzjpg850FbORWQSCEznkaOT89ktTQvRhLDfisaINM88f79d9w/3FNKIuWg7CVpQ5D5atltDxi8MHsmaWuZQ2Q8nRlmbRGeg7K50iLM+GMJ7D/2CDHx+49PzNc9X1xdsXMd2dpFiHceR87HZ2II3N+fmD98Ip8n7MMT3fmONA7k+UyMZ6Ga2J7Qb5l2PVe3b3jz9dds9jtK00G/EbcoYxbh7DlmxiDzPOijFIln5lkCzeH4zOn4SAyBx7uPPHz6SAgz95/uuP90RwyR4+mZ0/m47MHbqxv5gtaBdVTea0qZEhLj6SQCzTmTppEUZglYp5EcRNSdXFu6zJ8cj3wO/rz6mloqcxRSUuZPkeQclZ2sOYzkaZJopJwxMco9ej5jjerBhYE4n2nals3hiv3jO5qmpdvu2F1d4XyDbzt8v1EtIC9t8gYymUAgGgMjSwvYaRrphvPS9tV1Igzd6e+LnpSTdfz56Ynj8QjAdruV9mDvubq6wvt2AQ8rpFNs/ZJaXLwsbOl+XDUsAZL+x4K0U5gCJak4gXV4K+1oTdPS9T3bw4GcI8ZGmrtOtR9fN8YRwCYyTCNFqVsmBUzJi828McJebdoWa0VDpFVnz4rXQGE4nTg+PpBiUP1J2XvCODGfR0pK4JQV4ixv3r6lfPWlOOh5S+dFq6RtHK5VRk7T0LTCPilzpEyR7COhnwjdTEmekj3nIZBTptvMdHNQjUlD17bChile2nqcZbPd0W3ETc82DUYdxKZZAHwxqLA0xpHNWjQxOeOiwWQI00Q8PjA9Pkur4cdvOT88YjFifFAZPt4q4GNJzpPXvq/XHUd+CEKuUTxLsbdkabvLOS06cUXB2Po7lMU+u2mE+eZilQOAWsirLLYUElOZscYszCZZ+6qMgAASS45zCUQZBRHlH5cnvLxwXUPKyxgZ6ZQoIM5PeiWkdVtBEt9oq+hKuBKmiXSLtCo/4J3GhakQg7TppVwwtgorW6pduvcX3RiveETt4qg2NylG4jyRUqJtW7p+IzGml7a86m7qnRPwa555jtJOPo4jx+NRNHFSWsDwWuAp1KYFq9fkQiTais17bbOSwjoMw4mnpwdl5QJEAW1iVHZRnWdoPhoW4GeeJmZtXa6dBXXGGorqGk9LPB7DLIWRIi58MQZSjozDQKjvs7Rhl6WlLJeqLSSEiNM5MoVM4x2bXcJ5T0qF0/MHSnr8yTH5pwV+nGWz3RLDjG03MImewXwaNDmJTGOg6zp2ux1v3r6h61o2uy3Xt1c0bct2s+H66kDTNGz7nsN+R+M9fbeCQLvNlsNuj/OO7W7PG94ChTlqMlAy0zgzjbMO3qigQVoEsqACPxuc91xfX3F1LT3L+8OO/X67IMcrgluW2GbdGD9DXVknkCwgkZyEQu+dxe82/NVf/QUYy/F45HA48N3777m/v2eeA+fzINWfOS4LjnMWh4hdRk1egQtxr9c75nnmd7//PW3bsNttadqGmBLb/YFxnrFWdBlqi0KdwFV/oVCIau2XS2EcJp6fT+I4MgWGs/YXl0zU1jthBCjEooAD8KJiHaK40JSSCSquWyl/tYfUGLcIXdaHVH08pQgl9nKXEczlM/DOVMyddeVG+rfrH5eiWjMxkEJgGs6MwyDUam1HoQZb+pW8h2z1c4o6PmSjNtOvPowXh/avl8I4DHz6+EkAzX7DeBppm5btdku+iXStCIqasgWlFJulB9styL0W9n88KK9JbVFQp6LpGlCapeqhOJveW+IgotfXWUzWxP+SzaGgD7pQrxWb+u8q3ivJ9LqBq1NV0gU3RkpMCtKuom7xQhwuLkwJlja5pmnY7Xa01Tq9aWWz8Y7zeVhdxl55/KyBxnucLcyjXVxCcq60WNmgxnGg7ult21InsFxaq0GMJFfioFewxqg1uPTLN1o5tNbKOr3fy/rjwTVyPuP5zHg+E8LMzdWebd8xTxPPj08cH8VJ4/7xWWjmUdbcUdfNpQBnYE5JAvVkCcaKFpCxbFxH55oFyy0qGBhTosziIjTNk1p81zZGnXdLtXAVOa6VGq+b5xSj0GgRzYe+62m8/9mBH2BtvdcwqYoYZ11LLRoQYaTVLcvKFFIkRwniF22gIiDSIhiYDVWBPobIcB5oXMM0zoSYSFFaw6qxwjjNPDw+czwdmUJgjrOA6c5hvSRNY4YZdR3LCVsyjbVsmg3Ob8Q9KzuGUTXoVNw+hcR4njg9nyBDCAmwWNew2e7ZbjecTkfmMHN3f6dC2xMxBZyz9H1L24hN9nazo/U9ISa8m5hCADMRns4MYyBmcc6IWijJ1bb2FVGDEDPf3Z/wzjBmT3I9WfojMQbCPPPw6RPD+cTj44lwd0ceZszTke78QBknQhghiUMPthD6nrDZ469vufnqKw6HvSTlTm6SYUqcxih6d6fA/XEW1o+CiAUQS6pAzpHn5wfuPnzHNA38/u/+ht//7d8wjSMPn+54+HRPThnrHc7Lut7tr9geDsLUdS24hlIyw+nMNA7kGJmOj0znZwHkwkQJ85o8VWD8Mqmv7LN/xPFj4MBrl0QEvJD7QBxoBIy9CBku9jZtKwBpt4y1vTiRk7jSzeOR8fyE847d4YbhdMK3HfvrG0qMNG1Lt91LwdI1mMZgrICFOWeCflJMiXGeFkZc1fXp+l7aqaxTJvpmMccQ57rE/f09jw8PGODqcMVhv6dpGrquZ7stS6xq9BovpSwjQM6lfMFFVCsJMazr61IIkfGX1whj2HsRem67TpxeiaQ00nStyAL8DLWtnBLjcCbNMznO5GmgpCiFYnVrcl7OyWm7b9DrWhP0UgpP9/d8fP8d8zTK67zEgmEYmU4nAbu8xTTCasrxzHbjSb0UDObG0ziL27SUppNYv/E02x6DBStWBylG5m5k7iZSAIpjHKQgtZ0kL2mimNa0bauFCtnDnXPsr6/Z7kV3z3gnrO0YmR8eGQfRorK+XYGMInGrAWXXgp0D6fjE9PiJ6XRkvP+G8f4Ob6RtrWpIFQUJshWzi2R/mmXwjz1+AP5cPL8wfGqL/iXwU8S9OWtsZ7Q417YK/HiP9VFziLVAUkHOlBNFusEVyCkXuj2fFZL0XOrvRdeJ5emLtcvo5yyvZcGU5V814C9FnNf0nFIWJqu1lgbR76kUH2mTkhxSTIgE9HHWYY3a2kfRuDEZjJW4xxsn7ZnGCQtvERp/naMUAX7WqyS6RCGI3lfrHW3j6buOtmnYbXu8auPkVNmOgWmaSDlxPD5zf3fPHGYpGiqDNaZMjDIXnJP2OGMMbdfJmqhyFVWHN4SZSrYcx4HHxweMAecKlFmMWkpZtEEvTTFqp4kAOZOKRGemeSIoMzCloFo9Rdz2UmJt41J90hx1v8iLSDQ6xyR3keJ/VlZ+iupqHTOnc2CaE13n6DYFjBBIzqeZNP/0+P0k8GOM+Q3wvwR+geTg/7KU8j8zxrwB/tfAXwB/C/x3Sin3P/FuOHX1qOr+i3OVttXElLAhiJjZKH1x2YBtHG0rlStrDE3jSSFIBdR7Yuwwpuhk93Rt0Cq12POC0Z50L4lfC2i/YRWVEtpXIGpls216urZfNooq4OzsxW1aNz2jtTDNWoyVZMS82C5Z/mZZN3ThiiEoCintacJo6tgf9txMAlZdHQ4cDgdprZplI1jhhhdjJu+rP3OKAP/CGPOv/uQxNCzJRLXUHqeJ0+m8AGHVyeSSTZLz6gAjTizK2hmnhfEzT5FhmMVCtaysoIwItRWQIFSvf6mLQxHNipKl4pZ1DEspqi1ktbpTMLZ5MRZ1sTWVTvnyQq7PXDB+dOCW8UUX9loh4mJBXnrIl/MwLyr6l+exPi9U42wLJl/WN2iMMf9nXuVeXKCv9RsVEU6mQHCBeZogS1AxKaVZ7L4NUd3NnK8W6B5ftDVOhWmXlrDli5klqb+8xnVDWH7TS1h+OCLL31SGGxUQKgWVe3n5qG+k95wxBaPidqZkTKnMkUyx6o5iLcUp+ESRty2ldtToRxlqn7RVkKnqVn1+kZe2KO+Y5wle617Ua2uspX608w7vq2OIXtOSVw2ysjJIUkoYAzFWR4VCcWCMFQBCA3dMXMT4YozLfR9io/eZiM7LvJeLtIhAK0OslEzXd8R5g28appiZK33VGiIqvHzhkpEV+CulEHWTd6YQTRLKujFkJ/elBEbiTiRVlArSoZvoer0+b/WpQJb3HkzGhqz48np31LUspVj/7FXvxZcn9MOn6phVl8PacuCtgECZgssyDg7I2eneA9YmcpbWUajX46IdrgbPFWR98bnrtau3UdZAGw2wYxQrYu8MrdPKXdfR972wAPGAhWLkugIlOxpNBr1vAAG56yOXsugzSdBXgZ8oDpvek52CelU2hgrsqTYSle23tgHXJBYWqvmrjGEBddbI2loTcUmYN94W4jASh5F0HinTjIuRNkV6A7uuwRmI3jB5KDnR77Y0fS9aHY3QQXNt59HvHJdWLg18k4J3JS+29imMpPlMTtLS9fR4zzyNnI9HxmFQzYG4JBcYack2ptpNK6BOkkBUW7qy6talGCgpakuXBLH1glzeZXVtX9aJumb/fdf04r+bP7Ih6Cte9V6scz7n6ib7Ms1btpbl30vKtiR1UhRQLTFNDMIsrQM5F+Z2ZBpkXDAOpzpPrmRKZexoq9/S3qItSClnjDoSuhSZkxP9mBixQSx9XRFNmaSMsJjSEl+HGDHWLs/bUtRFR0apvLhPfnhtzFKo+SNoTV1PLsfIrK01lXFjvVTgJRnj1e7F5f7OhRzV5jzMxHGgRGnBQFmvJSUB2J2T1soU1dxA17hcCNNAnEbiNJKtIUfZF+I0kedRHUq1GOUccTwThiOuRCbfMMWW5CzGFlxrcMVj24jLonFSUhK3u6imM3WCZY2FlofEIIszl13nnTDbYdHvKkUcUuujJGGW5AjJIlS2gIlhgfIAzDxi5xE3j/h5ok2BNke8EcZPq+NvktQHTMmEUpa2I37OffGPDXZZ5+wlk7cs7Oy8/Pcaj1ttlXNOWoSrEcLFpVgB7Fo8uVgJPgd+lrP5sTXtj4DdP3jtZQD88u75kb/Xcdb7drESry2MhiXvyiVTnXXXr2fWdcXUFiX52xTj692L1M9d4TtpZ8q6XwbNLcQEh5IU+KlMLckzR8UCTqcTx/Np0eScYzV5yQuz6BL4qS5ntbhXgZ/z+cQ4DgoqjTUuZxjOPB+f8c4tC73EPKu486wuXNLeO2sMnJnnWVk7AsJU4Ccp+EgRs5iswE/OSdk9nzt/lSW3EOBPC5UpryC7YRFZt062CWeLWhb9NFPgH8L4icD/qJTyHxpjDsB/YIz5PwL/feD/VEr5940x/x7w7wH/47/vjZyzXO33WGAcvqDtt9JSMQuFuzIGYkqchoEpyQbVNJ72Q6t01pbdZoN3nu225/og7J/Dfseb22vatuX6cMW7N+9om4a+79jupPKIkeTMOXC9o+96nYtVHZ4FMQbAOEnCjaXrBPgx1gp1fJrWHE9/XvaN1oqLJPSrn8DyNzXwKVINvLv7xHfffUfbtrx79yVXV9ds+o6/+su/5M//7M+4f3ikbXt+8fUveXh44D/+//wnfPfde6lmTjL5akJsjVkCc1m3DMDvSyn/hT99DB3XV3tCFHGqGJO4gkwzXd9Lzu8kMak3wML4uWiTiVUhPWaCUtRTLMRQF/FVThljZVNm7Yk3SPXaFEFJU1JtgZwZzydOpyO5FFXjb7DOst0f2LUHtXS/+E4my+gYOe+a7lWb3VpBrUyj2tKlL3qB0NfnrRdbF2cNfdliW3F9arp26a0vZv0bYwRMkJ59AX9ygoJdLND1eJV7UearfVFFLSkTp5lsAiVEyhxxztN2HcPxJL35vqHruwX08Y3YMksFUZ73jaftakXN47QNyajSff3s2hpmsAsoVLGzmjms250uiQWKrY4OF5t8DfQW2m3R+YG6sLAkvuS1tx4rei4GgzGSuOSiY1/0NaoVZIwwoyji5KAWbqu4njWEGMgKtBTAZ08Gus0G43xtI32Ve9EYQ6NOE7QrjBemwLbf6IYv91/VIwO0v3h44ZgBaBAuY+V8Q+Olkuyco/ENxhpG7YF2zolY4lacZlxj8I2ufVqBEsaho+u3ONfSdTtub99RcuEXMTGrRfj3nz7x4dMn5hB4enzi6elZQRZ5mFRgFlaKxTK7QGcFeGy3PU0nYpXH85nzJG5Pw3kQ94cK/rGCPp8Dks45drsd+/1ePsOOTHOQNghEDyXME+fT8fMA7FXuxRfQ7vKcWbQYihYkUooYJ8L53lpa37Jr5fo38wzns1CDDSQVep7mifNgpN0tQCnKZEti0b7YnGsrmSR2LMWQ2t4p90plH1XdF4jTyHR6ojQtb9+95au3b+nblq/evOPLm1sohtN5ZjhLMcUbi7eWGBMey367o2k7rG95OA40TSACUww8Pz/x4e4j7z++V1BPgq22aRaHoRQz4zARpqDBu1R1K1ApoIaKYFNbGV8sLK8yhlK8iZxPA++/f2Q+TVwzQz6xI3J+PjJ8+MA8jLiQeDsKs/XtZsMvrm/I1jFTGI0sV/urPbfKeG5ubjgbQwqRORamKALWc0iMUySlwjzN5HmipMTp+MTT0wMhzDx8+p77j98R5onH+zse7z8SQ5T7eBjEZaXtuf5iK7POrXoxKWWG07gUpqLur3GexKUrJwGW4rysxXWP/BwseY3jZaL0A9Dh9cYxJXXyUqHnqOAi9bGqSFzqBVZnIGABncMsbG5nrTB4Y8H5huF45PT8hPMNm/2e3dUNrmnotzsVgXY0/Ya236rLZiui0HKSovVSCinMzCVjrGVMkSbMeu8qoJIz52li1vv6HAN5HGlSwp+O0Hi9z8Uy2eh9v7KALgpeOsa12LXYQ+uav14f+f8aS1c2BVacXZu+p8uRftqy2W8J067qx71abFMK4ip5OjGdT0znI6f77wnjQNc27LebBXjebDbqHintIMbI+pijMA7OpxPnx3tiCFogFBDFxogLsxSQTFn0Dycz8SGdaZqW56bjWVu+r26vuX57jW8atjeBPcJeH54GhsezgFTnE3GYSGPAhkyfDCkbNsWwwbAxho23bDphEovFcxbZojSTh6PuayK8XFKmmc9s8wgZ/HmAEUgZP0zYKYhhwhwhZuxwZvP+Gw6P93TTiJtPvDUBZywd4KnaKHJPDKUQYyG8vNlf514ELU79UCex5hSX2nv1kXRvqyygauZTUpH70HsR8t1uMdYxjSMxJF2//gigczG717OrgNDFpFuOy5Xh5XeilPU+vlhJlupvKeK8pSVgYzRXyPUlpdZWcdbQdcrEN1oT15a0eQ6c3Uhm1biTlkaZO07lCJx3GvO5pUj9mmMYc67oLyAW9OJENnM6n/n48SN1VTVGNKykCChjEkLUtn3R9Rkn6c6Z5nkBhFawXfJwp10eYgXvXxSEAKZpYhxHyeXHVadnGB759PEbKaayxogLeKgg0NLSVdSOpgI56kJcrddZ1ssV9Kp5jMRRNTc25OwErKttfkm6oEIU8FFIFXIp+52nB7rWcth7Nr2lcZZt62jdKzB+SinfAt/q789aqf4V8N8C/uv6sv8F8H/hp0ADa9ntRHtnnG5puo0IiWnAEkNgGqUlYhoD8+lIKlUkVaZN45ulD3C33XJzfaBtGm5urnn+8h1d1/Hm5kyKma7tOBz2YKBpvNArOwkKvSYz1hi8tzRNdRaoCKWAEjHmWo242P8E3VuuUU3crYidLlVl+cPlJoVaoTfLpABhWTw+PPD+u+/YbDbs9weurq7ouo4vf3HLbrfn4eGRUgy3t2/47v17Pnz4xP39g7CjRumXNHZ1p8noZEXAD+D8WmO43285nU7cPwyczwOn84mn56MkklqJqJWpBfjJRVtGhK5Yg3ShaVhFVi3Kj4e6ANXVTEW/6vOSh2QcontRcqAk0ReYTo8cH+6kQt60apcrGlDe7LF21dGQMclL8iUg3Trhii7GuYJA1CW9Aj9qjai/S+xrKUpfNtbSWfCd2hOr+F6dN/qLzAvWhMuYQgKiWdllQCil/IevMY6V5bAcCpSI7hREGwijiLb6puF8Oi1gpm/8Auo0CvC0bcumFxearuvY7nZyj6lGV309baPf1S9MrPqgftOLDbQsl+ii2lLMxQIqCyWoG0lSjl2RSVZrDct1xuh4F8pCT75IBIsFt7JNLJAuXBtM3VyWtrIK/Mg5RBV+c2rZWwPhruto2pbdfgevdC8aIy1e4mDgl7kb50jf9QpiCZhV1yaQYGpWQd6iVWFAx7dR9ktL10aqRXwFiWoblbPiqNj1vY6tpVEnk03fs+17vUscTbvBN5nWS3uOVe0T6xtCjOy/+YZ29w3jOFLMt5ynWXq4yyzCvkWCOVNEYyGamckIq2nfenzfkUvmPJx5fH4mJElsY7Uw/gzg/Pzw3rPdbjkcDswhkrOwQ01NArLsTeMwXE7NV7sXoc7R9c2tWQsJADGJG6U3BmM6rLO0bcN2t6XxDU6DmBCjAKM694yxTDFRorQEyYSsbJ8KruUX2nAV/K7j7r2XFiNrVetqJodIQUCA+XzC9pFd9zVff/GOTd/z9dsv+eqNgHwfPz1yV56hQOc8rXPkXGh9w353ECDfNRyHCRci2cCcBPi5e7zn0/2nBZQqFPq2Y9tt6JpOdOEG0XczzqqTjbSh5izi0KVW75eUfU1Yc36lMSyyjw/DxMdPz0zHkSmd6ac7UhqZzgPT3SNhmvHGcu3EbcXs9rhffo3ZbJi9Z2g7krXSEryRIkGz3TBiCDFznhLHs7J8YiIEFauPAeJMSZHz0z2fvv094zjwzW//mt/+zb9mGgeen554fnwgl0LbbWn7Lc55NodrNvtrdd2UGZBz4vj0xHR6JsfIeHpmOp9lHFIg56BzJa+AugZqyxX+ser3n3DIur5Uzi6qaK97L4q+EeruZciVUfYCL7wAfzRGMDVQZS1AQMJQiAa1uQ8Y4zh3zxyfnrHOsd0f2N8c8U3D7nDFYRpwTUu/PwDmQo+m1dZbSJoFmiDi2sYYxgpEGCPOtFacVUMIBE02TYwkM+Fzoh0GbOOxztG1zQKoNl6cqESj51JgVdPfWqzS61DXqULV+2EpwqScZM4YFraPb1va0tONG/rNlrDd4r3jNccQxG59HM6cj88Mzw/cv/+O8fzMtutIhx1d09C2DXkjn2+orBmjOiSijzdPws5KMS1xJiXTlUxTslbZE7aI+P2cR+6nE9Z7Tk3PsZVC9TC+I5WZtuvI1uO6DcZanp6eefj0RI4ZHwNeP9vGTJul5b8rhh5DZwyds3St7LlF608GMHkmT1GKrhlsMZSc8GmkL8JEKHOAHBTkmQX4iYl8HGEK2HGg//Se9PxISpFtHIgIC6oxYMkCJOREovAUMw9jkNZ4OV7vXlRgpxbS16erOUNeHjUZr0zRqrciwI/IYuSc5Z5whqZp6fteYvuUMGbgIiJfP+vFMy+BH6nbr0yay5cuoE8Fci5ZP2XNMV/EupoD4ApkBZHVYWxJlbLGBsgKtMTem54CwihR4GCOESZpDw1J2NBoi5dzfincenVptWYFS15rDEuRNindEACULCBgyzQNPD8/igNsCoR5vHAMVFmFmJhVI2cBA0phGAdOpycV1b9YmU11IGS5ny9HcD03+VdKK2j0+JgVgOKCBXnxPRDgrW49zinItHzWeg4oZuDMKgi/FPMKymxGfzfksur0llIIEc5DYpqS6Dd1Dt8IcaXrPb4xdK1ht3NsOoM3lo23NPYVgJ/LwxjzF8B/Cfi/A18pKEQp5VtjzJd/5G/+XeDfBdhf3bBVMeRxHOUmTJHcNJATYZ5x1pJSJKSE0T6+Ogn0/ag0PhFpFtHf8zBwPJ6YQ8A7T992dG1HygljJUFquoauF9CobRu6Vnp7c/E6nxTcWfL6iyrOBfBzyewol0+xTqaSC9lW8GcFh4yxWMwyqesi1mhrV9u2IshlVzpibUPYbHr2+x2H457DYc/V4SBWu7PQ3tCbVzYwbdP4bA78qWO42+2ZlRoXgiQjAMmr40s2olWjVZOU4sLyEeBHb6Ll3eu1NPpr1dKprTbr88tttayzi/H3i2pgBeHgUmldxnEFEGrYUlPzop9RF2n44UZQfvD/LyZAWb9N0ROpTCFjygvby7oO1k+Qb1fZYvKwxpB9+2Lheq1xXDbTiwW5fgdK1T0xy7wvugljgKjCywjLxWiFMFhHrlVD54jOaaVeaemNlx51a/C+Iau9sVXRNUxNOl9ecrmWF9TxCrhcgEF1My2fj8uLoVuj91In4vrjsz+r4/RiQXjxIsM6LWWeroFxXaOWDf6zDeg1xvBqv3tBYTXG0nhhaElSm8klLmvMJSOxPi6p0fLZ9XmDwb0AfupnNU1DcdJalFKtlIkmjrEGZ6VCCGhLatTNX4JSY63YsOv0E5ZYg0+JphENLIP0gldqrsn6YGUCLnfuRfUvqm5TfjGoL+fOAsxfTo+LoOzy77KKOFY3NGGO/GBM/qRxrALby7mWogxHWNapi8Syfu9MIZGxRYJxcU40KhovwI81dtEPcNbS+AYMdG1L14k+SNPI5xfWayiiguu9VNcmc3lWhaXdNqe8XFtJPLIG3MKEiUFbClQA1VgpxqRcxMEoJ+I84ZLYsIKAdykm9NZatI5SpebrPIgpMccgDn8GTPZCBc+rSOIaoJdFPP41x7A7vCHME8EW5tAyWcMUAtMwMaaJeQqEVIjZYLylNK1ci67HtR2m7fBNo0KzslZa32KdsAJEeykr2CMg3jyFRZswTQNpPJJj4OnhjufHB6ZpFMvYMIsmQSkUK9oFWNW7M5o8ZhXl1WuVUxKh5jirqGSlqCt7alnXVur5j1ygH9xP/+hjmYorY+/H3u9PHcemW79auXysp6Cb9cU+82N7jQJANWEwBkzKJKsWxlEkDWyWFrAwScLTNA3T2OJjELHgpsW5Rt9ShUqdVVFWXaM1Pi1WhWaNIZOX/aYs58OLtTKkyBQvWo6QZEdqQEUBJLckNot1tn5p+VgjTIQlzqyA2HpRlrXXoHbWa+t7LSZdgHh/ep5xe4tuuMu6JWuVutrl+rCU7KCINTemRh/yHa2Bos6qzlpwhYIlZznXRoEYBzgMvjotlkKJUQSmy0woluwi0zAwnE/EGHH9Ed8/g7Ecn585Hp8pKdHlTJ8SaRrxObFVAeWNgb5kuhzx8wTDGbyXvKjUFhGBoGQ71nEsmZKmBawqCg6TMmWYYRY9wzyOlCmQpokSgraCSaubgdXVyojYedB20qXFNOUfG5M/aRyvb28u4pIfOnEW1QC9jGGKorRlfb+FwShFjIK1WTRwGk+TkrC86iZjXnIVl/yjPl8ucwiWxWJZii7Sh/U9zQ/2HGPWGAYUZDBmESZ2F6YpdY2u5yHrgFleZ52sC9Ii5DDFLA56taVyMeW4cNez9rL9fxWjvjzVP3UM37x9K+vfZ6+5jCnrGMUo+jkpBvnuF/GGdV4EqTUGBdn3rfNL63nO6jpnZORejOHFtf78qEweKGqgoV0DVu4nQ21v11zNXOBP+cLR7lLE20ikqslL/bHOnyKArTB+jIhTK4mogkE5r68zUM0IsU6EuJvG4r1oOwlIxbo3/th+fHH8g4EfY8we+N8C/8NSytPfV0G9PEop/xL4lwB/9hf/rPzn//k/YxhG7r94ZJomCRqDuEKEeWYYRlKMjPPE8XRW63Xpw1uQwFyr/Ybn4wkDHE8nPt7d4Zxlt9lwtT+oDfuG68MB3zh22y37g7gTHfYHrq+vaXzDbrdhv99hnSQ1bdMoc8XjrAjxOicgjKzr1RKaJQEFjQUU3IglLHoQ8jpF/y43Ur31G+f56suv6JqOpmm4uX3DbiPVODLEacYBX759x7bvud7vOR+feHtzzePjE//6P/trPnz6RMrSf5hyweFwzYr6PL3SGB4OV+Vv/rP/hDlGzsNEiIm+39A0LV4XH7HurZbsSsO7mMgF0e2Ri5YXVFaQVL09rdVk0mhUkeT3YsWmVAOUbOpGjd4Z0PY9+3wlejRNi/HtEkTFomwNUwMj/dwazBi7ppWa1Bc9zx+1rCzrgvJiUyoKbhlDuQhsxMZ4fR2lBlACTDW+4eqwo+taEfub5H64PF5jHJumKdWRrq70BrO2vBllPRjZfETrxZBVq6AyyUIUTYGg1oci5lgp09quokGqb1sVVXS0XUu/EdG1vt/QbzdUZw1hplQAUM/sgv1QEw75bQ0zVy0PloSPwhIgUFZqcE3qV1vHdPF8DSg+e9RWsjrmdezQhLxUsXHZPCpNGarO04vg9k8ew1/+4ovS93I9a1tW33Vs+o32DEsP9UK112t16WwmfclBBfdEcFPOz+GstPFV1ocxhsPhsADRxojQqFRlVsbIkXEBC8fzwHA6kXNZWgistWx2O7a7rawXIbPtNzTWM1xdE2cRzzsdTwzDWc61WtkWKYgZyVIkCE2RECNjmBmnUZwSc1o2v2WdLuv3r9e7AmQhhIUlJCxFuX5xDuQswM9uvyXn5sV4vMY49n0vp5jFuaGUDM7jLRiH3C++wxkJ2oK20KYwkUa5T0suZGcw1quGgbSzzkGKKdka2o3shc47fvPLX/FXf/HnXO0PvH37Vt0uYJxmnp6EwTmcR1LI5FT3NyMaE/XeLJDmzHSaMckQx0ieC5HE/adHpidhIT08PPH4dBSXkS+/4Pqwlz21beiT6Pi8v3/g/umIMdA2Fu8t8zwxTiNd1xNTYhhnQszItugozhPmyOP5xOPjo4Cwag89TBPn8UTMYVlniyZ0UlBYw+7XGMPt21+W++//QNpu2eRM2GzJwzPt0x3P04lkLNF6smvodzvMu7c0XYc/7DBvb3Fti/Getmko1gjbrJF7LBsYJ2npOB5PPD08a1vkA/efPjDPM8f7jzx8eE+YZ47PTzw9PBBjZAoz05zJeJr9LdeHd/KdMQt2MYfEdH8na1+YSXGm5KyW7uPSaphz1PtodS55gflc/OMzqPxVj7KE4y+PVxnHvSkSdK+Pi6+re7WAAuvGj14XXZcUkMHInhSyzLvkEjkHjDELK8E4S4qBGKR9djjec3qS2K/bHegPNzjf0O8ObPZXOO9pNz3dZiNssLaj6Tppw+RiL8qiESgzvagLoiHpOUXAnAcm1bgURry0erS+pXHC/mm9x1spjDqDsgLU908vb22TMtrKJS3cBawGQUait0ghG6Nszw7f9nSbLXG7X5K51xjDL/7sz4uxHufUSazpiN7L+ZeEyRGbIyaDzRaXM85mnApRWwXPqXtb19B3rcQI80ScRCPnhsI7Ci2wNYWDFYbwE5b7IEyTmZlTOVGMYR7PPD/eY72nP7xnc/U7irE8Px15en7G5MJb73jTeEwMXIVn/nOHFlMKB5/ZxYF2yOy++z3ZBXB21eZCtEBSDViVVl9KIeUVBE8aD5ScyXMkx6yOfIGs2iXj+UyYJ80nICYBHuKcSCUSS+acIqFkzqXwkAqnz1wzXyW++fWvStVnqX9/WbBJ6VJrRTRhkrqxSr3V4JqG1jdLTJjUlCMX2euGbiSFwKNZAZC1yCg6o/KbrL/ye7k83/VfS/xfwQY5Z0sFaeUpY6z+NEv3gnfixlW3sMq+MTXbLxD1vI0RVzjnG3W6lvUA1uJn03gOhx1936kJx4HNboP3DdvdhqZtVTg5EqKaHKn7Y9S89TXG8M//4i9LjJFKrACJ/7a7HV2/EUkIZwlhlv3s4Z5hONO1HVt1Em7aln6z1Ti0odHuiYeHOz58/x3TNDIOJ87q2G3qOvXZUff+l+f6OUaishM6f6rOoy0sJArp4JE3ugRb1u+oY2vqp2q+qyFH0XkTomhXlmwI0RBVUqKCuaLdpzQFa2g7S987msay33v6Vtg/fWvwXsBnTPkHmUD/g4AfY0yDTID/VSnlf6dPvzfGfK3I39fA9z/1Pl3b8pe/+bUEl7fPTLNMOLHhy4Q5MAwDMSbO54GHxwfmeWYaR47HZxVqErHHnDNzmBmGYXHHCkmCvLbx9NoOtt30HHZC5by6OvDm5oamaXj79h1ffPGlaALdXHE73Sw30XYropRdZzBtuwTStTKbk6GQlptMVxUW5PdCTEsGOavDijiyeG0hEDEuYUe8u33L9f5KqvZdh/dqcVmkv94aw5vba26vr9hvtwynI9eHPd9/+Mjj0xPTNEmbwnkg5fCi7awO42uM4Rxmfv/73yITekVE9/s90Mriqi1mKVfBrVplWuY+S8pswNi8LIzOVrCnlpHqAmqXn0VZQVlthzUWUY0oS9O2iqgX8C34VoKSpiGhbjelYjGXvxtN5qvQc75IHvMC3tSjwiWX4o6wAj8Lzq0taxWckOlSqMIB0lYhC723Dbvtnt1uS47SknMJ/LzWvSiAS78Erfre2mamwI+ydyrbpxQRSwxRgALrIil5/TtHUFrppeh2rdIDtG23tAb12w3b3U7cKA4HDuFq0ROpoMJlT651mszqdFiGQiLxNSCom/cCAK3/lt/TAhCVfPn7KgK7jF9ZLo1eA60yfXYtL3kQSyWqOs4Z0V9wyoy6OOs/eQyNMbRtIzpMTSdAMQZ2cj7CiJwvnMuEFh1jXDb5ytiRvvjAqE6H0n4p91wdk9ru1fc9pRR1wVJXhShOfaVoa8EseiDzODIOowBxWsow1nJ9PXE1x6XttW97vBVAPswiyGd0PHPOInypTmvkJAC7lcp2yEkeITKFIHNOK94r00OOS9CnBpQV+JFrUh0+BLibpkCMCeuMJsSvfy/WoxQWirrBULwGF8bifaPgK0R5ITHOzJNUpL3xtLbBGacWylLF9M7hjLSqbvqew35P27Z89eWX/PqXv+TqcMXt9Q1VLH2eI8fTwPF4ZhznJVAGAXwKiCB6ESX1FBITM7ZY4iQ6Qqlkns9HntMjKWWeno4cTyfatuXtm5ul3brR/eM8DkzvBz7dfS/tubUVE5mrTdtBTJQpEhL4DNlYinVECs/TwN3xSeaxjLjQyaeBpGDFAlSUl9XH1xrDHANPd+9humbvN5RgKKcT7adHzsMRNhvK1Q10LWlzRfv2F5T9DjYdzdUO2yi7zvt1v7By/+UYmCa5L4fTwPHpgXma+PT9t3zz+79hHM58+OYPfPNbcemax1nuORDwYH+N9Z52c6DdHzDGkuZJ9NxSYjw9MR2fySkSxzNpOlP1+ZIIzck2cQm8wwtg9QUQ83l0/TMcn4M/rzWOdTtcwf7Pvo5BmSB6Fou8X/0DDfx1rc+FReTTpkzJcVlzxM3VkMJEmE5C528bzs+NxJ/bA93+EecbtocbdtdvcE3D7nCALCCQKVmFXR3FWLLumdnU815ZgGCk8FSKCLOPI4O2hrnG4VXfqfWdAD/W0vuWxnltAVPRVFRIVBMdlxTQd45O97lyMUeKgaz21sUYcB7rM77paPsNabOta/GrrafGOKzayOemYXJOVpsiDEmTEzYbrDoRWgrOQOtU/Fd/GiMaJW0nLWtpdESTIEVugK8M9MCNNXzhRFj/2ylQxpmhuifGSCxwPh2x93cSD/Q7fL+jYDgOJ47nIxYI2x637WkL7OKJd9sGB/S+0MUJR2T74TtKOJEU7FuBB7PoApcaqyyxW22biYsmSkg1JijEnBZR/SmKo24qEBLEbIk5c44iFD6XzHMMTDkxGcMzhtH8PPdijS8qMFi/D6iZg8Y0NZZJSdarGs9755b5exnLxRg5nc545zg/nxTE1BxOI/e8nIXkcBecmBfnuP5ysVAs/zZUg5Alrr6Ir2tM1TRe2w0FVKjnb5SZWUp1GSwL8GO9aG62XUfbdXrx5RzathGwZ9vTti39bke3EdOgfrulbVtCCEwhModICIGzOrFqwfJ1xrCUxURkMbdxln6zAeR7W2sIYWYcR0KInM8j1ooUgG87docrbt+8pW072q5ls9lirGWz3ZFyYjyfeXKWaTqTs7RF2ctNvlSwbu1eeHGOlZ1T81Fz+VMhvAro6PhYI4jRCuaxJCWV9Vxfv+aFS1pCzuIEGrTNbA6WmAQiqi+ULhnNI62haS3dxtI1lv3WsemF7en0fCz1e/z08Q9x9TLA/xz4V6WU/+nFf/o/AP894N/Xn//7f8B7SUWrFPpedApKLqRGEpPQRKxzpBi15UsS38Z5qV5rcG4QavialApKaaIEr/4i0Y5JrVyj9jVaR9M0MrGsp22bRTjTN57tZss0CbrYb7ZsN9Km0rUtqW20UqZqsbBMimWygLJRKv0SUbwvq6K8qS+sswEWGl5lVxhFfNeEtbopCDosWkA7zsPI4bDnoG1fY4iEmC4m+JL4/Dnwf/1Tx7DkQpgmAWWsB2OWZGXpuWXtU1x+X67YCvoUPkdb9SYxNagrF+y5isaDQRZCU5H5cvG3GDBiRwuAuoBV/ZPlnr+8I80SyenT5gevKZevvzxX1gpAPZfL77+CgshYXmrDKOAgm1rtMbcYK0FLcQZM+rxd71XuxeWoGwzr4rZ8v6WCsc7BZVLX77O8JpOLEZv2C0ZJroADyqaqrXcXLUrL4wfAj14PWOisUJF1PYeL9rk6AAuWVc8t1evNwsihVJFaCZ2EBVP097LM4wpYXFKJy8U1WVKewiIsmNO6Nr24Xus1fZV78eJNhaKalRVHZSaWpbIEFmsLpdilZasgjm1N45f1S/qdM6UYobQXlrU0F6F1V+AdY5b3SrU6UURUM2rlLevfU7Td0QiQITbl4qpW3YAu2ViliHV7rSZn5O8ATBYnDmNF/8I6h01pYYUZkHlofpwZ8PLSrcHxonejgqQv1jSdKyt7CnjFe/GSjrww1TTjXnELs5wzCIBNTuRiMTaTTX1xxtYexLrvWEvbNGw3W7quY7/bstvu2G63NI2wmESTQx038oXQM7r+6T5WW5AxwlBsmpa2aRfb2JwLJWaKsqfmMDNNE6VIX/55OMte5xwYJ61IYSbMk4gNV+ankUqXtwJoymdlvGtUaygubQZV3yGqpsjl+a9osWrE6PN6HV9vDHMip8gcI2MMuJwZjJfig9qhG9tgjWPAkIohJSBkaX20GVsS2NqeJnMgzhNhHEgx8vz4wOPdJ+Z54vh4L+5c46DOZ0IbL9Zj2o2MXbvBtr3o/DlxNJWWsUgMMzlFcTyKs7gLXVjMLgL66J5YXtS6X9xZRefZJUryI1vmj1+3P1JJvgzQX7RfFPOD53jtfVE+4AXoY8waWJvLFrdyGc7JPrcmEXB5JS7bvqTiX0ip3loGGw0pSNtWDDNOme5zO+CHEy56vDeq9eA1yZUE0acW12RNKhuMUwcmBXRkHZdYZ42d5V4zSZwVxeErAgabRZagJtIFR87KXFfWk4BAEq/Wli2v+2RQkKG2jdaCypIpmdVhSa/zK42hWR6XBaT6bE1GozE4G5lrsUAZ9tUgxSobI5ZMrPoxCpaQMskIiykCCUvSPbRKG9S2I1uUMZBFMBqbydNMLI5iIEyTuOMBMVjCJBB7n5KwCzSWkaIV4gA8jhJ7c3GPXaz5Odd9RAqwpa6P2gpdCgL8XKybKQvDZcqZkKWla0oQsxQbhpgIORNKZsyZKReCgWjtyuDnNcdxPdZ4i2XuXuTaF/Fi7c6QuME7R+dbKawWlnm42YxL4VOKZ7WVvbI8NANZYt06e3440wCN0WsOsfQSyPmYFUSsxaZ6v1RdVO9EXF2+i3Yg6BzE1p74ok0QapriRadHWqc1STD1GlkWZ13NBVPOWG3lthfGDsv+qfHaa++LWXNXWxb45QI0qVqCEvc3jXQF+KbFu2YpOFb3vyo9YKwUw/puA6UwjmeJC1zmZROdXpNLbbg6auuN8yNnvY71izzVXPw3fdt1nlRgCf1+uluUi06XmocoiCf6itIFUgHNZfWyoiFkLNLS5dQxW0lglXJgzOU1/fvj3Xr8Qxg//zXgvwv8v4wx/w997n+CDP7/xhjzPwB+C/y3f+qNrLUcdlu2m57dZiPVpItFOsYoLKCUGceJ4/FICJHj8Zm7T3eqxD1wPB2F4pdEvFEWtKhtDZkQZuZ5WijKj8/iTHH3cATeY4BN37Hd9DjvOBz2XF/v8Y3n6urA9dUVvmm4vbnl5vaWpmm42h+42u8FEGob+lYWk67r6FSw1ildT8b6Ah82S7ggA4fUM5MKbspEsUsfZn0s7xOjTGUNZhvv+cVXX3K133Nzc8s4Bd68ecfdwwPlP/1rYvpEzmmp6ofpDPAW+G/8qWOYUuLx8QFjHc43ClJY5nnEe9kAIjL5pRcYlltRA4+6KMq1uUjiDZTawmNqZb7ePDJXJKFTUKf4Jai3pj5fwLXaoodoGthqieqXnkxZEO26QF8ECuuNrYum/v5jrV4LA6RoklvBrsoeqdFjBeGUO16rDjlrv3HvaYyI3hq/wbQ7SohE6whpSTb3vNK9+OJY1jGlti6kK6Ng2QXjRxkTzlYqewGjf6cL/FL9RJxhwjzLPRqiuOHBsmkZa5eKRW0hqlWQqs2EudRq0g3e8jKo5aWGzRL0IUGBXXeauqVfjuJLAFFB2xfjXJROnNIa1C6tp0UYKAr+UApNK8mw8fqxek3uPn6EV7oXKWUBXUXIuM7mFSmsG78xBevqdfGSaGRxSOo3nQC6ITJOs66rmXkW0CvltDhknU4nGUNraJtWqLpGRKGd63TcnAIDAhs0rbQU1oDMGEPTerlfYmKeJxX3iwynE5MKFVug10qWq0EQqlujY1l1I3CWtpeKUNLgpuS0BBfLenMRQNZ/i8uZtLgJkzSo05UwRwQUmohxIIRFZPIV78V1zclZWmWt1QSDRE5F1q1kKaZINd+gzDrZZRqbSBZpVzCGoOBfionWOxpn+eL2DX/xF3/Obrfjn/3VX/HP/uov2e12tE1HKuKuOM0z4zwzqXZetU6vIvdQ8FY06awxHPZX7PcHurZlt9mRYybmSJiEURJi4P7+gbuHe3HbcoZhPIvYft/TdB3jNPHp7gOPT/dAofHCPvDes9vv6fsNMWd8u2E7RakQpsz90xPDMDDME0ETzHEaRXdOK6oifs5SbVyZlgVzNpTyOmNoSqaNI3n2fHp+5GGO7Exh3t+yMTfQtJjNFuM9ndvyMEJTIu0I/SjX2dqC93Kv5jAR5zM5Jc5P9zx//J4wTTw+fOLT9++Z54nzcOZ4fFZb24xp9zQNtO2WXbvDGIdtW2zbAxDHE+PpSEmRcHwkHh+koDaPxFmAOXJUVpsq6C1bXnnx48eOBfz5pz9eeV+swFL9Kc/VvURa0mUPqpfj80rywpwFMQvIoswao6TqMRlsyroXWpooxYLUSMuKsZYQE/M0YKxjPD9yevoo7by7PZvtHuc9m+2Bze6AdZ5uu6Pf7DDO0fYbml6Y675pF/dNY90SD5VcSE5YtCnnxZUq2IS14g42Or+wB6uQaeV6W/32tTHbOkvXiVYVsICX5+HMFAKxKCOvxl4aQ/qmqxoxrzOGRcRSCxbrGpwXnSSrxb8UE+fzyGQMZz9xOk/LnuV1XatFB2OEIbU0S4eJMg+gTCFfMh0QG49tPd4YnubAMM3MpUCx9KYRwfpcmEIkA2GIzOWoyeCqHTeEwOP5TGskOdsqwBFyJgcgGcaHhD2dFiCvXMzXmmskjUdli1V9zVIIuZDUuXTOmVgyqZQXv4+5MOvfTwr61NekXIilMBZ5fXGe3DnKqlP3avei4aXzbF1f1tgQRGNMuTnanr3pe5H6aBr6rmO/FaORnER3LufMYX/AO8/5PBDmme/ff69gi11m9GWSv2jILKCCQhhmZXJXPVbM2g5tkD3ZVmKAtUth33unphxiMOScmoEs7CIjrsSuavBph4U1uKbFqgtr22/wbUtdjQoF23gwVgQyUmGYJmIWt9k5RWFrRyniJQVoBXgwxBB5rTGsbHKMweYaj66C8RhD03Y437DfX/Hu3Vdst3varme32+F9w2azpVENPGe91rYKm82Or776mhgCjfOM5zPjeCbGKHIUl6j9Wq3mB5tYebl2V/DmIo2hkhEWAGcBWC6z2fWZy4+pYFq9FjlXlk8kRG31So6UpDjbNsKpsNbSNw7roGkM262l66DxYK26lGIwxS45TgWtf+r4h7h6/d/qd/mR47/5k59wcThr2an6eNnqBFV6szFWksQgAec8zZzVkvfp6Ym+6xlHESvsH3uCigrXRS+kKDS1nDmfTzw9PUpr2PHIaThJG8Mwcj6dhA5mlLJlDfv9hsNhS9N4bm9vuH1zQ9d2fPHll3z11Vd0bcu7N28ZKwi021H26lrkLdY0QtP1jkYtkzMV+dPFuPYw67VY2AFKuwSzgCj2Iki9TLrrw3vHm9tbbm9u2O52HM8j2/2e795/z7fff+D+8ZEQiup2zDKL4D8opfzbf+oY5pw4Hp8FoW07rBN3nxgmUmzIGJIRK8lUpLdbddKV+VQT8XVdlZ910eLizlHgQSvf8uzKnpLqlQIQ+hnGWEVF9UorBbomoUVF/IouvkLzq3beVdQWBXmMorprpezyTih1wahjc8EMqRVnaqLB2mqEAkNVW6WUwrarlXmH8S00PZRIMobI0l5yLOWPdnD+G43j50dd3xY3krXL7cUcrMcS4C9VvEpDrVUPfZuUFoDrMulWGAxAGBvK8lmqIC82eLMyhZbnf0iXXYUi0V59uef8hYhcfV7e06zna9bfl++pG1S1hk61nzwl5knEzQWYXRPwyy1gdXbRoKUU3r59C690L8r7igZLSgpAXQDplc1jXRU6r99VAuKFRYgAMzXxTykzz6KpIr/P6tCXmMaBeZ4ppSxWmdZa+m7HZnMQPZpW+sorkFdd4Kp9rmBRRQM10RkazmdSitKqou9vjaFrBFRv2/aFrlBtTZqi6AFloGk1wckidrwkJhctgwur6GKcK7O0/vcQ47Iu51yB3EBMMzFO9dK//r14ESDUipAx1YFL1qJcEJ0OBVsjSUSebQFrBfgBmlJnYsarbsXN1RW//vqXXF1d8Ztf/Zpf/fKXbDcb5iAtfiGKEPcc5GdRXSanLckVoXfW4XX8rw5XvL19K7bI7YaSpKpchYfnMPP0/MzD/cMi6jzOgziyXR3Y7HZM88zT0wOn4xMY6LuWtvFApzp9O9GI8j19kGLPMJw5DwPTNDLFQCx5cXObplHNELb4yi70UlmlFBF4LRlrDSm9zhgaCj7PxDByHk6kkDn3G8r1NZuuFUC/kUJJaxuOM/iUaG2hHzLOGrzNtC5iTSGOR+bTPSlMPH14z8ff/y3T+cTj/Sc+vv+GeZ4WQchiDM32iuZwIxoIh3c0119gXCPtP7p+TR++YRg+keaR8PRAePxASVEZUrIv1eqhMeue8PdgPT+cwv+/AX9+hn3xZSh/+ZXMRbFKSXAXMUv97ytQnXPBWlmj635vDJgom6zLhpJr22ki6+/Syin71DQ0uDp/+i1dvxNHsN0V2901znt2h2vCXn5P+wMl7aWY2G1wRZNa32gHvaEohp2BYteimzGRypD21i1sBWdXVrstSWzM9Q1qkt72cs9W4NUYIwYkUdxCc6lJk9FiZ4Nz4q71WmOo9TcoRjTPnFfNMyuCyykzxqhxpMW6kcrGr0yR6vxrjCbjVb06B0wSC3dXEk1OdBRs29KXlsYYTiEyhUgoBWxD5xwFQ8pBLNtLZpgjp2mmFMRV2MuYT3PhmUJrYN+1lFaEvWPORDIlQprk3pfvKpF0YXWeLQZlIcnYSruWxGlB14yMgDdBwbgpZwF2gGF5HqZS+P+29y+xki1LmyD0mbuvtSJiPzLzPO797/+oZ7daqIGqQiVGDBACqcWkeagQjAoJqacw6xITRkjVQiAmTEoCqQZIUOKhLiExQKhbgNQqmm7RoKrqLv7HfZ9HnpN75947HmstdzcGZubuK/bOc/LeE5n3Zirs3n12ZOyItXz50+wzs8+iqrGRa0XeWR3bDoyePLwrpuRJ12Krl5m0hVtAHnY7icp1uLi4wCefforVMEjl5+tn6INkdsyj6NxdCIjzjO12h5ubG2zWKyn7DrEBGAZS2BpOEO5gtei5RtK6I/3T7Bune4g5Y6zN5oSo0e0KGnmJwraCKFLJrxPghwhENXvBOH7IOfi+lxRhiE7NYJD3hQc1chbgVbML5iQZNRIYUXVz42js+v5kaxGQFDWAwQosEyA8dtonIQhQvN5c4tnzFxhWa01h65VyZS2VS61Srs79oV9h1Qu9yDSO+OablwADIw6IUyxgagXwnjjJWo+vvcV1f6+RrNK3ZncyF1cAJCjAbsWlffZ9S9ETZ3/lmZqmpBy4hJgYOXt4BXmcRvmsNh79oFw+A9B1jOAAR2ZbVH2foBGUpwB+TiokRHCyMWvYlzM0lMDODssMH3zJ/5O8vlUBQ+Z5VqOrXiekCO+9hC6qUd11Eay5dHGWMprMougTMoglJco5X7z10zQpz1DE6v4evRLSgsWI7ULAeBCFM3ivUUgjvHcYeq1Io4YqKeBAQcPaYeG/6m1JNb3EOsgiZSy6R9BY8VCWCmdmnKinelSC1qjvVZBoaayffDiperqEaG2WiB+SyJ8CAjWbqSCUzfe5uY4pHvpHapSpdm0aIiu4jHmdJK/dcpx1526+x4v/kn2TASnv7VBTzOSnbn3mWXksxg0jZ0EuEUA51bxqlMoLkpYITWuJWnkmEADOmoYv/CSJRUFI4FIi9V1LTefSXuL6fglDpFpaMyuZMbNVAXPVKwrp63LQASCu0VGSDtfcW1OH6nYme0J2qia212lAm8XB63zhtWoB1OQ0HLYBflDaZp5cV5X7BgwysMH+7fTAbPuspgDVNE1rfxt19E7FAEjYONremOESlfVUAWWJNHQKNprhYs/oA9B1HbyX5zOgBUDZY3Nm5GSReR5EomBbihSp8mzltfuuQ586VbIB57jMhdB5tQWEO6bMrYaTx9IFAYkYK6kDVEOnu66DS1LVi9WItTE5jvRpfxugJ/trTQFk1L00xVmA9NMPXk2RKp4m2eczNempxQDVFAICgqbsdc6j816BH0JnECQxpDqbROl4L55tYuGOm0PAfr/H/cNOSIK3DxJFc9hjjlICuBi5+h9HEnnpdUxXq0GrsQUFV2CYef0hGdNpnrDb76WC1UqIaZNGNNbSqawRV6lJGRblOHiAmZS/SsHXnItnte86UbqdcDsEi/Ys+7qN6WlHkAAMDiBkzPEga8BlzGOA4yjFBfIg8zvJe945ROeQnIMnwFNCcBGOsgI/t8jzhO3DXQFcU84gH+CDOs1IPLthc4WwuYYLHdywAXwPdkGMiElTuqYRaR6RNcWrVhZdJIxIH5V0qmNp11Dz/M3+9iad4/v2wOUafU+H3tMtWfy3UQOKriJp5vUTLRh0LM5pIYpMxYgAUBxanAk5MchJhKwQJTOsgg8xNI2IQC5Lap6TvXb2B0yukwhaI3YPQc5XZDjnkbRSjkTYDPBdL8BM6EBBo39KoAPVpQI9j00vYqUKgug6jo20UZ7DMYNm4TMCkabfOq2wl+t+DRTHmpyRxQ14MmEpHybAjvPClaL/hka8gFUP1PQ7JnmeTCRAmeqGAqaobpqF8ZsUHDnkjAxglxLuY0JwhG1KOOQsXGzIAGUwSHhzNLUq56orWr9kBhIYswKDh5ixdUnjd+t5JJlmdZ0wJMokk4I/IESSbwjwwwL8AIW7JwMYOZcorDGz6pvAxIyoeqd9NjegT1bQx5gwuYznqaXRoRodzH64IHzSipytAqk4mHqNupbfwllFLNVCh2HAarVGzoz1aiWZG8Mkz9jwdInOKYAsFyd91ZHJVeekpCuJnaeqPIAaESd7RK2WKxE/VV81XdT60xybTm1HidTTz7maHYLi2G70Gn2dmSXFynSK9kc6VPQnQNfhafddRk1vFRVf94aMsq8YbGGl6QUMlUhF0UV9TeNvbEJntnsmcTytJe0rMyvHnawZIdznOnY2bdo+0b3Y+qJNS7Wd3t6vNqIhRFVBKu3jur8njZSrtkLDAWy3hfSNcxJZGQLBl/QuIfz2Hlo4x95rwB4s7Y7vk/cK/Dhy2KzXyvthJXfNoBZSXaIMIkYIDpuLFThLhEsXpETrbr/H3d21GM1JUhws33/SA2aaJuwPe+SUsD8csN3upCrIfo/tdiulSecJaR5V+YngPANg7A8T9oeXICK8/OaVlHz3DpebC1xcbBB8wLPrK1xfXWl1sEtcXl4ieI+rSyHl9c5jtV5hGFZw3mN9scGwWqGUr7TTs5n2xavKAI+zHNs5a6n2qOkcUaN4Ztzf3+NwOODu/gG/+MUv8M3NDV69usF2uy1l1gvZ2YnFO82jtQgLzthvt0LSTYRZQR/4AIRBom4gPDZsm6I+uSMhxIMapVqb1P7f/DYFrJnYrZfKCX+DgUllYyGGEEWTzi1aAEZFsatWP3Q6VqNP32Auf9DPqNKsvD1t9I9xychi1wiCnJGSVEfJnCU1MSXki0t8+myNvl/B+YhD2iNNHvPM2OWE+R0owdKuVF6X95SPh43nhrHon67rJJrDO4nKm3dIKaHve3SdcGiVTbQ5hCxFzHq55f5hbsaDhUAaqAfUk2J7bUsAXcAnqgcytNylaw9Y5Q0q3pcaFSKHrSvRKhcXF7J2iQqoG70vQCtYcu7neRbvRN9LLrJWASzRS+7tNuTfVLwehmyKXk6YpqicJ7bPZuUOs3GsCngIQSutORCJghycgw89VitZrw/392XfmaYJ0zQVT5EAzUAXHtB1r4WIuKsAeHugrlYDVkruPQySLuu9w9XlBZ69eI6UEvbjHvlOUncfHh6w3W5BJCm1vfbtarXGMAyypk1h8g7rzQbXWaIXxnHEpGVBvYZXW0qXRRTZ3mjOBAOsck6QRBfAkOR53uPh4RbjtD/5GObMhTcpa+pvTox5lvx7BwdPHuQJ4ASngEjfewzrHt4TOt9j1a0kGoccOidVecy4cUR4dnWJwXsEIoz7Pb59+RJdF/Dy21f44uuvcdgf8Bc//zl++rOfYr/f4+7uFjlNck/ypbKf9LmAbC+eX+MP/+AzhK5DcBIBlnMGzQ7sJZIBwQNBnDI3d3e4ub9D3/dIAFzokLLw6K2VNDzFiDFOAAPTYcS0OoDIowsSGbDbJey3D/j21TcC2M0TOnIY+oDnmwvZgzIjGocFpPywKFxAjLI2Tgn+BEf4/CJgP42ghzsc5gzuetzdXYJ8B9/1CMNGog+IEVRJlJQZjZxIEzgegJyQ5gPi/kEAmjgjTaNozr7Dsx/9sSjPwwZuuAZ8AA8X4PU12HnMCZiyEAiP9y9xuP0KeR4x3b7EePMlcpqRp32d53bQqrxPyOV4TzwGaH9nQmZkHgM6ajFQW9FxaZDKsuMCmpqjxMCT7LjwaRnAm4RWB94TZi/f63pClyTqNHQJUGJonmekg6yJebvFvpNoOknvkuqY3XqNTit/rdYXGNYXcD5gtbnCsJZIoGG9Qb9ai/O1D3CdRN4L5YBEDGSQEkZX+5IAkO4rYAg6oGDPYZqEW6RR4GKSSFLhgKsGlaV7SUTDaQeP4QEK8N0KYIbvVnChB/leQNCcNE09q4Fu5bSzGlMEolhhv+J8EHsBYEROGHOCB+MmJ7xMER7AlDIOuo87lzUtgzBzxqiG6ZxyqRiVkjouQdhn4fvwAOZ5xu0+gsDIxGDltDRwgsus0ogfZ8CPAIUGFUXVBcTZJvshs0YFsURgJQCJrQJRTWVJUFyPCElN6UwkUabaLeyEaP/UQoQjvkfjg/Gqx1fXQs5JK4xmXFxc4OrqCuvVGpebDZ49e4a+6xDniFlJ8sEa+bU/4P7uHr/68a+xXq+RsowNg0SP0UIxxKzcrlC+pIb0HgIGhCA8lQSU9H9AKnVm1TUssgzUpobZolI9llkMc6Ia8QOA4UqapPNBOfJcAYTEsaw8MikLRUQkePYC8GoMtC/4BylnjgRjuAJ2nm4xMjPmaFXCbGCX+6VTwMKFgOfPX6ijkUrfOG+FiqyrZO/1zmmGjceL58+R/uSvYBoP+PKrL7Hb7RCz8UxKmXdetKvh0ctagIYBMioQQCuoVWbaei6J4+vYHLRnK4CS/rE4rxiLzIeUzXEpprKHRPusLzzWGw/ngGEAQmAET9j0Dl0nnFFD8LVKrv2PxDZ3bzF87xf4cYSh7yUix5kXQMPvuS5igBECgUgWXeikpFtKCfv9AathrYZXKpVY5HCZi+dW+H4Y4zRhP0763T222wdN1dhj3m8FHNrfY7+TUnC7/QO2uwcYuact2EEjf4L3uH72DNdXUi7++uoKV5eXygn0HM+ur9GFgKvrawGEuoDrZ89wofxANbzPoQtdeQ1ycCxKjwA8AhaMmlJi0UgxSjj7t99+i4eHB9w/bPH1y69x8/oOr1/f4XA4aFnDStJ4UmkWq6CPDhJqt0eKMxIq8EPdAD84kDevBAMabltQXkAidcqqbqMPIJ+yPxXEVxXEDLBjBYeMyFOR09JWLqCsvM5FuXxKvawOR1bjoE3TKiU8muoJEs0DAMqoB8vl5GxVlGZkBe/mOAr4Y+/nhM5lgD9HCBnkEqY8YY4HxKQ51qfVippnXYIry1LnFbhapFyRVB5pKzpJJQUWcmbvj5D0CvxYCDWARUWpRbSFAlLt+9a26s1YAkL2suSD22HSKAulooBbvr8AhPR36EKJHrGIv0X0CioBZILyi80zQmAAfVkfhSxQjeV3IcU4sb6wSDLdAw/jQYjvySrHLb8/DANyXsve1PXovZHp9QjdCoAAJrv9vnhyrSqYAUE5Z4m2ck26noYeF/CZgPVmg/Va7iXkwmv0XYfLqw0ury4lBPvbDhbuvN1tcXN7AwAC9qwGeO9xkZKELXsve7ILhSvqgsWr6kOAn6UQgAE/BpynQkZfI9nsbzK7NJefrCwskNKE/f4B43Q4+RgK8BSLhw6AEokm5Ezq7VEAMaNUpumdx9XQoes8utBjGBT4cR36INUoSfcqR4TL9Qa99/AA4jTi9e0NnHP44osv8Oc/+xl2ux1+9eVX+PLrLzCOE+I0IucIY2YzngLnhVyy6wKuLjf45NPnEjofE1LMQlbrHdg7cCIBgLxD4oz9fov9fi8E01dXuLq+hqX1rTT6Z6dV4QikpM8zfFDerKHDNEkFj7vXtyCQRDo5hyF0eH51jfWwwhwTHrY7qcrGGSlNsp9nS6PLePoE+O0kOOD54BDiHvv9N0i7PaLrsA0bJBe0gtElvO8ATgLyWCRongHOUmnrIDpJjhPiuAdzRt/1WK9WAnpePsPl88/gux5+8xzhSlK6YrfB1F8gw2G73WJ//4A4TzgcRmxfvUQed4gPrxDvb4THB8IfVVRZas6+9yRvNjB+D4AfoHhwF+CPoB7ykmoaAJFFrJWdWLGQGiELVu93ieyzikoonZ8cYFVOs5J5OQcQExyiVhSbkWgCQJg16ouI4Pte08Ec/DDADcIDst5cYbW5FB6N60+wuZSUwHR1DY5SUKXLK4DlnCPuwE6eLaN5eA0uAIRwmKDnvOZwCbBQIPOFQynq3sZNmK+ciwIynRj5kes5D+c7IGT40IN8B3JBSJbVIKsud3VEmmORlzU1DADKJJU6mYCZEw45wYHR5YRXcZbpoaExBMBTRnACJiUYkMKl2i1DnJRJU3PHBKQkUM4BCTfKLpScpvNCQJ+srSMlHWZAgB+nr3XsZEwisp5pmSUBTAAkjcaHsjYVzkuLfjZXq0YjOau1aPFHKOlleONa/iFDuNTLABQbqug91ifqPGDOUpl5LbrG5uICFxeXFfjppJKhVZ49HA749NNP8OKTF3Be+DSnKM6sfrUSR5VWhLP5wDk1VWsFwAVQbDsAWtVVq6dNcoZZZPxx9BJQLV8DIGvET1eKmkhFPtUnfdC0LwKcK2ldWdcgWAA/yhKxFhoaCiFb1q3M+wpuAkXfP5mwFFha7OmNvSd2pKa+OY/V5RW8U/REm5HZbBHdc7XtzkEqERLh6lLA7HmesT8c8OsQwKPO12QQaGnSwp5bOJgrhi12HtWIoLqfQTytBdR5/NgW0WPXt4vXaHwUDi57FueA0BGGlcdqE+AcowsJ3gGdB/qOMAStvOg7eE3HLXxSJJFBb1PZ6/2meqnUSQ4F/gmOBdG0VC+AFgNiC78LUolLEEHdFFMGKflozhk5BAStHua7AKdGauaEw8GLBxzW+Vw2GGZXPOBZSwVmvYcRGYMcUmZMMSIzsDuMgPMIYdI0BylzPKWEwzghdAHjHLHbH4TnohM2dkcOXTcU4CdolICQrI5CWq1klfMshKvTNCGmiMNhxKtXr7DdPmC72+Pm9hav7+7xsN2Wz1iZxta7fyqxM8EqMhCgKWsJCVKtRKrweFBIepDQUXUqWTi6fpoJUQ9iG3vd28qCJKj3gxTuacD/4nErm2uz0Vr6XXObp6TsAVb6WxCeR8APy4RTZUaVHyUOTSXix7hhhMCP0yzkmSyeXkBK8RUSVe/lkE0Sbk/Ow78x3fa3F2o8kXWeuJK6ZYCOHQQVLLGDyr7D5YLOCTrPpTIUFwOW2carURib9d0eNs4Gu7QNBayDKpbtJlx9X0fqowFPNk5UQyHL/XRS2aHctsEpYFDneQN6Kr8N53qYtx6pQj5YG1OUy1NJ62Em5+CRkbOTsqD6TD742ilU+9T6z0Acq8yVs4TP+pDRJQnDn6YJcZ6FMJlzeUYt+4kaRWes4Ea8CCAzMpKkK6QZc/TI7DFOHt5LZa/DeMBhlPSYDGmzT155WST82MAgEDS6aoRzDpkzQgol6tPmnfMePfUylqDSH29SapbpfF6NPRYcmiDr0Pt3AuBJBJSAHvM0F+9TmfsQsCWoV7XvVgAyNpsBVxdr9J2Wde2UzNV36MMge13O4JSLcmfVtQy8ISLc39/j4eEeu90e+/2+pg1rChWX8WU1XjOQErx3yn2QxCiwiCkWMHSap1JwoXJ01ap+TKTpniSpUMoN0vU9GKJIJ3XeeE0byZwxHvYFNJf1GdQgkIi79WoFP0eJfEuQSIlEpTS3AH7fcQD8FsIQgJ71LB86Dw9CRkLMDIpAOgCZPJgTkObiVCBzLiQB2ZwDXAjwTipzDcMK6/VGyHwvn2Fz9UyAn/UVwuYC5DtMXoz8xIQDGBxH8DwizwfkSdK7OM2wwgJVEa4Kb/PrrVCg0xgI1OyTqvDD1qq993RzbE6fEsCTe6liUm8PFEcUF30EXPdz+5s5rQTUqfxwRE2Ehho+Uq3QSn3ovtw+lRxbAAPJAz5BK/VImqwZJ2LuETjLfCd2QATYMXKaMSmBs1c+HUAiCRgZKSnwM68RjJdNyVZtLyye90BNOgpVtJDRDFBRnpa/0VTY05/q8Xc4xUxqRYOwYele8luiG3LRAc3CWwqrYWwGsmx+ulqcAVtc0p8YAoTNZLigADdgBUiyQCvGucMQvpzY9BGT7rUafUAssKzXOdXeK7NBNzoSRY+uc8x4NUEo/EQyu6p9JdU1Nc1OuTAF4PfN2tboBwgnqgA/cqfMDG8VmLr+VENXhNDqOA1YgkbvKe/X/YI1mj7MAdM0YdTKeClGxMkKAM2lUAdBCk+E4OU5Uy5pbDY+pE5uaF+g6MiVM9CcpTJ3qh6dNQrZznTTl5bATzXXhQ/W1sRyfEX/kA2Ijs9TMDwCiLKkCPnKGVvRa6o6MbVp5Cc2EstVldy5AXIAsfkBoXcBUPaBth3tDCQ18o5V6vqrpnV6L46Wro+IM5BjLA41aKROAXK4ef3ELtRuY2ansr7xnT0mihPkvKBy/ap7i73EgGIBTri+OkLfEboggRWdB7zPCM6hc74QhTvUSKmaN4RH/fwmea/AD7OxzVfUC0TFOHGZlbxJK8wcRqSUJHQ1BBB1UvYudLp4YwmRn6YZ+4O8tgghIsI0zxhniZT54ssvsd0+ICZJnzqMEh3DzAideEu6ocfF5aVMDosy0I3W5gYTYXuIAEXc70fQq1s4cui7r9GFTsPWpcKMdw6bzQqrQaMGlKRKlP0Vun6ApaYQRJEepwNilDbvdjshcmwifuZ5xt2dpHpN8ySvxxFzTNjtD5iMdDafNpy9FSuV2AUhn5snSauIzJhSRmIg9BkDOriQ4XwP14eycdddzkLqbJHVP9grOwCqkqgz20UwOa0MVvNcFwb24sCoyuJCmsNfmiALljkBGiaIPNfXZpSxle3U11rCuqZ3afQMK3AEi2bRUG5HcB7YBMLlaoWri0vMFHCfCNMhgSigDyu4vvuBo/VYnPO4ur5sHnoJCBxH4bQArGzmqXjNmcSQlHSvDtM0l7z+aZokCq0J3zTV0e5LVA/V9jCUstKpzGEzC0q5eLSl15f7XRvRZVwpAKQcpm2UrioRNb2rQ1gHrId1ifixtCWv3oXgAzbrDfquxzSOmMYJaY4CSg8dhqHmlNcOttafVrxWAxLuIQkL7bseOUuIbT91OlaSqmXpX5buNM8zttsHVUikvLakta3QD1IZ6HCQFNmYhIxuGITTxTxsxodjRlHoCYMQngCjlIplZkxxh7gfQUQ4TFs87Dsh9vOMBElHG/OEzbNLhLnHw7hDf9gqIARMaQbSjMM4idHlSKOzauUmKCi3Wq/QD4OuS02bHSdst9vGA1MVR4sQ88FhtZYoGiLABfG4m5+J3+ZU/Q0lhIAf//gPcNjvcXNzg/FwAMAaSMhwHWG16tB3HdZDwLPLAV3ncbke8OmzS/R9gKTpSdlz3w3o+jUceUyHCYfdQfogJXz11ZcAgG4YsNJCC198/TV+/qtf4nAYcfewxd3dvURNOUJwruD1BkjlnJCnEXPs8LC9x8P2TtYIpP9jTLjf3uPbVzdSqXOeSp5+n1dgErJu8gFRzz6/WmG1GsDMGNJl8cpO44TdN5J6LWPtcNgfsL1/jTxNcCGgX6+xHgZs1ht8/smneH71DIdxgne32HZS9Ws3S2RwylJZqVTTPJEkJtwlD/I9nj27xPOLXhw+uxFzjNhvI253e0xRqsUJ1xsrl2Ev++fQY73ZaMWzNdaXkk6+2lzh8uoFfNdjWF9gfXENFwJcWMH3a4AcDpGxm7VE780eN7dfIB22SLdfYL57iTwfwPMe4Ihqfv6+SFPBETXaFEABqR5/4/Tr0ISPoSSCppILzwIH0noNJOHK+i1tcOFwAUQvKSmSMMdJjWIwPS1qOoQZIcxAnCWaRvBbB84SQdp16iU3fUhBg5xi5c2LDjjIfQ/bWzjfS3rmsEHo13AuoF9doB8kHaxfX6Ab1vA+YH1xhdVqIzQFm0pT0A9BHKlOzkBXogUsdrvACA2QJeJhPDlqvBLAPmgJ5u5JAOa3Hj9mzDEJFRpJDoULA0K/QuhXetZtxaAvOFSj15muX4wU9ZkwIzuJyhIsSCxyAiTSvdhcdfY4zpJCg8qNw4BUUdJ0U5+zkmWjRMODWdPOJHSI2IE0VadG3HCZMwRJAfF6BtT1BMkGsucMxjHjAK/ObOfgggDHpGlERXcpxMnCO8m6PqPqtz506NYb+HB6HRWgRYVXQB1yXteURkmACIjVsB7HCTc3N9iGB2xXK+y3O3QhSCaEFg+apwnTYSxVvlbDgLiegVH2a7H9EmKKcOzEmaLVm+M8Y1YqjjiKjcY5C89db+x6Np/UsXU4LJyoKOBVnTEGppIGGZBzCJA0J6hT1SnhuKWAkSNx4LSORoLuE17OXdVdLVezTm2NbtaiNQZynvJczJmxn0pBjCX4C7MjtUprF9A7FD5OGP9mA8BWMA6qi7BGQRLIdSDvsNpc4fknn2O1ucD961u8HkcBn7i0oABzAMp+K6DJ8cnCR6+avQFQQLnamHZ9z7Z0GFbExK7PLHt61zn44BAC4WLTYTUI+HN12WG9klSv3jslcyZ0zim1A5XfZZ7BMlsYbxMn8N4jfpgNvZZtS7wXTjk5NLxUy+hGrTLSdz18PxROma7ri9HSdQICjeNYvCur9Qqbi0s47zDHCvxstw8IwUEqpYghlGIU0qRSVUiU/xphADVaImZNEZjmWcrOM2OejGiam6gTSEnaIBUChj6g72TBSklb8VAOq40YJwCgYEjOCYdxj3meEOOMh4cHRawt4ic1gNCk7ZnU+665n8ZbYujwOxBCZbFP2aJaJIR1iknzFx18NyNIvWV4roZWmQ/Ni4WxfrT7tIuqqFq64AuO1Fy73VBrm5e9sXh9vAEzi5KsYA/lCZQroTh0sxACWgV7YptCEguHzlKpUYXQEYILCOQweMJ66LFZrbFPBExSrjgEwjB06LrVd4zEbyfOOSFDO+oH63YDfiw94hgEsmgm6zHnhAi567rCu5V0rhopaQF+zNOnh5/lOrcRMwCQXIbP/ujARClhzsyFaLgqbBW4Km1FnU+LWZXquPssc1kqewiIFbqwLC+vHjHvPVbDgNwJj0ohzVUgtOs6BCO6rT2LU69FIhRDwluQFBO4k9dznOEClbQvABJJaH2nVf/2+72OtXqYQej6NVarA5yT8NlR95pKwGeV6SZNkTIGABZi6F6U+5gAODHi58TIUUbAzwFulLDtftXB9zW9brhYwc0e/XpAN/SIKSLGqKXVGXGcMU/Cv+CDL56tYbVC19f0vMuLCzAz4hwLH1Mb1dVGARnvU/BeyB5XUv3GK/BjUXj5aF86hYQQ8OLFC9z7gIe7e4zNpmhnZN8HDEOHq6s1fvzZM2xWPa42K3z+7BJD10nijob9+26FMFyAnMd+e8D97YM4C17f4eb2BvMshRB8J2l1X37zEr/+4guM04RxijhoWPrQd+iGrvSTpabMyq2XcsRh3ONw2CGlHl7Ly0pU6h53WmocpMqcE94EBqTks/fC80NanjYo95YqeNM4Yrf7Gnd3dwBYjRc59w+7HXKaAQWnhq7DZhjw7PIKnzx/gd3+gMMYwayk/+QkxStljWw7bZxIBrDLDisXcLleY6CAcbeHP2wx5xFpfMB08y22+1H2Rk336YahRPN09AzDsyv0qwEXz57hxec/QTessLl8jqvnP0Loe3T9GsN6g0pYKyrcbn/AsBMC6BsewbtXSNt7pIcbpN1r5DiB7Dw7lt8BBrQ4z6kaqhbpY0fmY+Jp4F3pNEsxC5xQUj5lcioQXJtVvcKNKV4y7DMyeQV97GyjEhUqaT+aetI6lcBICSgqBOT+3gsPEFANvcLmkhM4RzmRo0bGQtJ4MmvUi+8B1ylH1xq+G6QU/OoK/bBBCB2unr3A5uIKoesQnz1DurgQ52yS/dg5B9f3IJboISsO0Op2BNN0BC637ioAPQsxvVeOkVMCeQKsMJAl6hwOIN9J2kzo4eKkXnJNg9WzWca0Sf/ITYR3NvBGn4tE6Yx6JWJC5Ab0UqOPmIUQGhX4ARoaAQZcYriYaxvUoCNwAfWE542Uy8/Ky9dUeiKgJ0KnEQFG9G1GvxACy/5rkbSus/Q3jzCs5N9ECMYrw+3cFn5K48BLFnHpg3zXn96ULLbhMfDT8jFq+npubJ15nrF9eMDeOYzjAfM0azl3ifphjdLnlEoRlq4L6Icec0plrYuOI8VYQJ3Yc+rsSlk5dVLCqKBOKWpBFdQx+2ws5cWX0UviSF0CP46NtofBTlILHRwoEKCAkAuhAHQ+hFq8pB1rBflsGyudWuZ6dS7Z306Iv0JuIWXLSxPaG5CmtWUZR09A7pwQzYPg2ABzg3zqOSD/qvq9KhkgJnTDGhdX1whdL040BYhs0y6gdAF86jwHalR4m6IFBVa4XEP+5qiOaT3TyI4NANAoetMdq5M6dIR+kGify0uPi41H8A4Xa4dVL/N88MK5SSA4JiWqbgFmQqZcnu1tD/P3G/EDScsSo1C9OgQhfyIxoucoh+A4zjgcRsQogMYKFjKlgE3KSkB5r0ZBbHgScjEIxvGA7WGHeZ7xcP8a24c77HY77HYP2O3ukWIqhykR4IOgcIuDiIFZeSXEkz5jjrMaxGrg2yapwI9Qk7ASxjHAkhYRU4JzEc55xIyyKOy7KSeM074YVLv9XiN+uDy38FTkAqAB0BMVjU5kWsFptToChJBPFU/nfAnXzyXyQhdC04vUvt9qTXo4Lu5gf+fmLWPaX3xTf/Py3+2yAKqCv7gvox3h8g/5iCGpNeKHeAZyLO0y1DcnSxuokQVQlJdsMtimQIBTHpTgHTbrAX0XcHl5hYvNBTabDSgRto6QIqTUqe42p1Z1iVDykd8E/JCjglY771QZsqglaGRdB5dq1F7ZUG1zVI3VcnqrRo/F50vesXlLieo1HjXenoEWP2XEW0W8QfXtwe0AKlFgaviXsFhAlIMknth5mkGOkL0vkSHl/qDCG2TeKFPqjRMFsGiJd2VhiYK/6BsIKFTCkzlrCph0UFLPLXOWsrVQZdnGLyfEWdJXpVqghMs6PaxhYJ2uaQFLNfxavVMwQIXquq/6h1XbEoN8moQjiUiNI9YqXX0PnwP6Tj0nKeNABxBPKJutHng5RcQo95qmEdPUFeBHeOCENN+q7JgxZmCeRDoFBY86VZ5EKRFjvVUGTifOSQnaNEf0w4Be07GMI0CGTNYemwJjZw1MeYIQDjLq58AF9BPwTipQTvMknsMoAM/+MIpjQytIFuODKteA2KTVWyhRDeKgkTNMdnhHvmyxjlAqdRoIGkKQdOguYHWxQVgNaoQ4UJCogTQnICVEZMw5KTmkpMQ6ghjKjYKWcyrFHbb7Pbr+AYdxwmGeMCfhbrJ9pKbYnDhmhBzYD8hMmHkC5YyZHRKcVLb0AaHv0bNpbmKo9Ku1GNmhx/rqChfXL9D1AzYX11htLtD1K6zWG2w2K3TdgH5YYbVewXmHnElKMzMDecZ42GIcR4yHHeK4R5oOyFHSuyzFS+zR6hVczOYfMLUfOXSedNy8+Xu1vgtgirSBQMxvMkieeogfLu1R5RzAmUCO4VgMf+e02lWGOcuLQVCNg9pGOw+RCZaSsog6hO6ZTAqu1gqKulEJr4viEFIWPiOz8H+RazZWBTTMuKgmJcs80OqTzBnZaUpwTpgpgDMQvRRoyFEi54kZaZ7hg8c8SRS78x79MKDTctJWLl32+3rGW6oRYEBIA2iAS0XUlvfnVGJ9Ss7S3AI6rfBEqUcKHlGrQFlVUNnTXAXwuF7Lk0X2AJE03Ym1iAhQonXAAFNGNnOUtcAIH3MGVeoA55ye01TOTAAlUgdkTtYAMx1zoxvZXtiHHsEHPRO8nq8VdJcy4EF1NQN+RI8X4F3GM3RSHlzOdgNkM3KOGm1dgR/SaKF3yWEIoDhoRPeuOh1n2RssSjBl2dkjJTiXMTuPOWjhhpSQNcODUy6O2qQBAFn1HOPwkfsDTIQ4eYyq/02TADk5JUzTWNKiK0BA9ZxhOSONQqF9JmopDUyHat5D2YMqH6WQHDt9jzRgQl+rvtmagqTrrrx3BGo83lZPvxZNn7ezx/YHAgrVh+gXDTWD/q66T2vJ1Tkfk2RPzNGcUUbMPSBnRtcPCH2vIJ3otc3muABzjgxo1PTcupeaLnT8+RZEWvShzlcuc0P1ck+a2uXQB4e+c+iCQ/AOnfcIzhdd+1EiLAOsaW9Vr0E1nd9iDN8v8JMZ4yTEw9M8IeWEaZ6w3W1VOY0YFewpxjWAZ8+e4eLiQlIBphE3NzeYxhFffvUV/uIv/gK73Q59JxVjvPe4ur7GJ5++QAget7e3ePnt1xjHEb/61a/w05/+Bfb7PR7u73H/+lZTyQDnSTdYWpZ+VpKHGurfEM2aEldAiToRYk6CExAwT+aZR7kObJGrv6HlhJnnCVE32RjnpvoMysLImcEkYZq+oxJOagADmkP3lELk0PdrdP0gHEV9jzzNyBzFMIKU3/MQz4F3XhnHpWRtsf0LapMBTmVh1J9mobfraAHe1Eny2Mi3dEKu/1ZFw75rEV3tDRaLt4loER6G6sOyDUBSvex68puI4Axtd8r0r1Fe/bBG6DqshgGfffoclxdrPHvxKf7yX/1r+OxHf4DdzOi2CQ9TRoyMcZRD9tQixuZGn6Y8sTxH6c+86EOLErGDruuF4DXlXFL+oqYVpWzhjRqVkd2jKVlAy1xR8FQAheXQ1NWn/9YDMngPtqopevDJuGhJbjVSbS4ZKNO+bp9bQAcuOeA5Z+z9Ds45dH2vJTiFVFjSOjXSqRfAYBh6rFZSCdAH4bFJKWOaxpNX2DMD/JEYyEgOPUlUR5c8uk4iIuM8Y9VLNaXxMKJzhBSTps5KdFZOMw7TVLgScpbrhpWTNC9ymPwkoeJZb+kMUOzR9ysFYCIcHcBEcE7ALwKhCz36fhBgac64f70V0ufLCzgEMAOr4QKfPJcxXQ0rDEOPGCNeffsKd7eydx9GATLAWSIjD3uE4ME5YrfdglBBt5SkMk7fqZJKMm+ccxJV6j36vsP1s0us14OMbS/ca1Cj713I0Pf4q3/5L+Pbi28x7vYI5DSqZY8Uo5SgnSNmAHEMiFNEdA65y2KJJAISI8VcAKOcJ4Actvdb3Ly+xTgKL9yXL7/COE2iaDrh2HnYbnG3fUBMCQQtGUsEkAeT1zLBuVaJ4YQpi+K83Y+4vX1A33e42FzgYi1VvTwJ2TIzo19JpID3HpuLC6w2G6lIsl4DwwB2hNQDOQApRuxvbjE9HDDlA+7GHe52D2p8iSEkpZAhRg4R9qoz7McDDvOM1dcrZAammBATY4wzIieQF7AxZA+n3XYycQG8+RzjvEPcZWDeI80JE6+ElHPwuP4s4CJHdJ2kpfkQsN48w9Xzz9H1a3TrDVZXz+C6DsN6jc3VlRSHuLzEpy9eSKrfasDlRirjPexHvH7YY5ojvj3c4qtf/xTb3RbffPFT3H/7Bab9DvPuTjjlzNh+7CU5qTwGPszYoOZ1+Yt1HsC04OWTw4KNUKN8410Ar8u2SlQNAORcDSlmh+zF9xPBIK3pwBHl3EdulX8rN53LHp1JUpdbZ4GdWVIGGgr62P25gD1SqAQgMkLZWNK++t4Vg0L4PJQbxtho2CJM9LWWEMs5gqc9GA6H/ABmDyKPmzCI0ykEbC4uMKzXCMFjfbHGsJbI+9XmAt0g+3c/rCSSRIH6oBElPoQazV947zR9lKQ6WRxnzON0UvDHgHzHwvnhmLFeX+LZ9XOsKGPuPPbzFtF4UDTaPzEwZ+Xw0YpjIEIXOgz9AEcOc5oxWnn6lJCiVgzKAiYAQOJU0qJEw1exFCszOvXtAA/RmLXPrPhL3yGUNPOugGtWsVOukYvO6a3yIqpqTIDywSgYEQLIUml8ALxyxQSpEuV8wLC5EIeLl5TToBkWKEU3EuKsFWmz8LkZwfGppQUqmIVWIGtUDWDAgVaCnASMmknoMAiESaN9vfeixOgz8ByRphk5Zjzcvcb+4Q773R7j4YB5v5N1Sg5RlZp5t8VWo/WmeSrZFofDiMNBCl94L6CaOWMcCQSb5lRSOcWuQNHPLO2RnJdxYQcE4elxJOBAPwTVP4XLz9K7nJ5/PtTqtAaqFFofGHikY34EqrST8Q3Y/A8SiWiM5QbFNCUD+gmsVcUsaio5SRyFloFPOS+jra2dMZVGTzFhnLVyJzwurp5jtZZgkMN+h2k8YBoPGPc7iYxsLBHbF+X1ETVyyZtqikEwo6ZA1v2/rMsCLMnnnavnSOitSqPD1WXAZhPQBYfnlz02qwDvCJuuQx/EgVZsM9u7j+zVOm4KAxUA8rvlPUf8SO5tjFKBSyq37PDq5hUO4wHTOGO33WGeo6QAdIOmFgh6R0Sa/nSP/X6HL7/8Nf7Fv/iPcXd3j6urSzx//gn6vsc47UGU0HUBX7/8Cr/81S9wOOzx5Zdf4Ksvf4HD4YDtwwMe7l5LipQnKZWLJfATvPDxENSroQu/IqcSUumdL/+GodLgoigbv4sBBcZxFJOFfGtqm1VJytI30mk22ZvqRBDDVzzvhghy7eV3qBxJKGiPEHr40MP5DuRYGeehgFnQ9vpCQuX0u6WwENmzaZ6pKiq10ogCQM1ENwO9/jnLZt68lpeW5gMYB4lFMRiSzzkXS67lEShKXNsGABbujYUXxNjbm/5Rpc77XrwuDgidhwvCZ7K+kLz6i80an//4x3jx7ApXz17gRz/6MT79/EfYTglzP6EbEw6HCXm+r3PhhELOYRj6Jz21j6Jk7H1UMmDJ75YcYgNYmDV3vZC8SkSf917CEZtr2RoBFJgxomDdQNvUruLpsf6FAYhmwB9H/gA5uWW6lyoLbeqWpWcxJH0saSoTIAZoJsnnBsmesEorSeNqqjcQWdn2gBC8RIx0ofHOyNo0bq5TSzNC5V52XAgpdQCDBYjyQsCbgoSU5pQRiACNmPBEyDHCgTHOM6b9KApd4f5xoGElRPRKoie8LlkVWiVBVO+qgedETkE7B6eVcIIP6IIo0zky9umgqXI9hj6rB3OAu/TwzuP6WqonzvOkmKxxFiXEqGm386TEz075YUabHgo2y1yQipE1Cs1S90KQcO/Liw1W6wHOi/Ltvanu70AzgqQ9/fjzH4Ey8PXVV5jGEeNhRBoncBbuhxwzEsTQyDEhx6zVdCCRBwngKOXKkRMyR4AcxsOI7XaLw3jA6/t7vLp7jXEcYcl5DOAwTtgfDsjMCKFHF2TMxOEhRrikGNTdOmU54cZxwnZ3wDwndL7HuhfAlyAccCBgvRqwWq/R9T0++ewzPP/kBdg5bJ3D3hGyA6aeMXcMjCOm3Wts72dMecJuHqVEOrNUkSzKK6uRo5W/4gwaR2wPhxKJamksMSXxwCunl3dOo0xPOJ7kgeEakQn7fI8cZ3DqkLgDU4brPdZrOSs36w2eP3uOvh+wufwEzz/9I/TDBtSv4ddC1hz6gH7dw3uH51cbfPb8GkMXcLHucX2xgnOEV6+Bed5LVMb0gNubr3B/f4+725c43L3CPB6Qpj2Eq+7d8/rYUWK/vwsAWvZ9dVe2USJy3BoZbaMKle+9m+dxyjGaC9cowQcCSdaigjGydrJD1SMWV6nv5QWoIXub45rSTIQSmQmgOPiQUPVGzsixJAoJqKBAgvGQCfhue63R0xrlvrQ35QRiidgVAMghZ2AaCdOshk92yCygyGojdAQ+BFxcKvATOmwuL9GvVgpeXqDr5TPr9Qpdb1FBvRQvcQ6h60oqNYcAeA+OUXhXYo3IO5WI4e0QINGsfb/CZnOBLk+YeYbfrhBZiK2tElpkYMyMxAzyARQ6gBxWwwoXmwt47zGOI3YHSY2OcyULbqs4EScgWxUnjZBtjHtrn/0vOI+gqVmhHxA6iaAZVmsMq7XoGD7AOdE5JP2+EsNbxLzTJFlx0NVqUzY5iEgjfJxNOiHXNbRTU8FWF5foVsJxuLm6xrBaF2AT6lgQ4Ecc0/v9vqSSn1Zq5N+xTloitHTeRI1YNXJli0E1fdR7J32VlTh7mpEOE1KMOOx2GPd7TIc95nGUSEmNHLHdZmQIYTajpr5zlkphsVbsclb1lQjeQLg2zaixZ2q1WcAFBsHDSlmYveG8pWx5oQ/pFFT1vgB4FtFlwhCAmJp91DX6TuFPQ7sbvxvdRvacpcNcnl3nYyYwyz5mkf81fUvmW8qaDsvlMgCJDmL8j3NMGOekNqjDan0Jzhn73RbriyvloGLE6YCE2jdAUSeqzQibZ9QcNkrC3zTiOFXMsnGK3VhAGQfnCZbp4QOh6xzWa0nv6oLDZh1wMQR4clj5gM55tS9zocVJfGTbq7pfjlUNn3ob+//9kzsnIcyaY1QugAPu7x+w22+x3x9wd3uHaZrRdUHK03oPIGNzscJut8HNzSu8fPkV9vs9Xr36Fnd3r/Fwfw+pNiMeW2ZRa733+Pbbl7h59a2kfD3cS87nLCW1SyrKAjRxsIoMicQ7A1Ii2QYllb2cwC5L5A0BVKjt9Jq22GEARwUKZEEobqGGafkeWvTVRhfFO2T3t1tx+3nGYlK31zyFiCdigO+EnJN8gPNC8pbZ0l3EY+FDr9EuXsG0GnLM2TwlETlNBRzLFsRqCD9wpEHWxSabOBeDjgvw06QbaZUEQ2Q5KbBkgNHRZlwACQbaNDnFU1F2nTJOFZzwGiZdSGeDrznQnRzow8U1+tUG/XqFsL6CW13CDRdA34NDALFDvyGsQgYFV3haTi2EJd+JPXu7/9cwfIC4RsRIukYFZ4xEvG6gxhGUNUJoLspvOcDLuOgdGI+PnoIQtk3UfrdxIipjszi8DIdtQJBjgKgY/+oxs9xxI4+2ZwcAzx6xpGUyplEAiEn5wyTCKC3K1Fv/RlWUhAD9tNIO2WL4DOjAcg6DJJTcKyibO4lSChrGbBEjlsKZdGyNP6YNOy6roBw+8pk215nUoGtFjG/hQyqhs1w/x5mFS4McgpN11Hc9hmHQCghBK0ppWp2vkTv2Y9Fp1Oyb9adRmEgAOiP3FmVRUvxc1jQ5S1t7R8pRThnb7RbjNIKg6VBdkrQEIvR9h9VqhS54DP2gkahy1mQWwD2x8KulLCHNcYrIAO4eHvCwfcBhHLE/HPTcTRX4sTFGA3oXYEVBEuekUo2moKQga1u4uUIxspxGN3pmrNfrksK9Wq8xrAYloSTEFMHwQGdGF+D6DNcxKEcwiddcgGMuZ23tfT3/moogsrZdIcWEcSeUs4HLs7VA/6nEe4fn1xuknjHlZ0hjhzwdMAeHHEc4B3QdF+Dn8tkz9H2P1eY5VhfX6Ho5I/xqpSS8AatVDx88NkOPVRcwdAGeSI064fW5fX2P7X6P13d32D3cY7+9x3zYI6cZOUeUUmaoj/xDHENvStmSc7SmZC1v0QI+7TWehnDqd+lo3R3tdkw49TgCgjWRRjGWtFBavl/9fLxUwK11VLZgFKyyPB8X77akCNPimYtpYXuXgTdFJ6FyniblVXS5+M/rPtcqiM01HXOJrmKuhMyFwJhZASAgxRnRCcXCNDmQY/gUNdUwSfpRygj9KHyP8yQRod5jWA0F+DEeEu8c+iCA5rh9wGG3w2F/KOftaQbQnt/+ac44Dw4B2Qd458CNI9X6xntN/e16dEpwvVqtcXlxCe8D+mlE6LUC4zxjGidxpkThj8mcxb5JUkjB6fgSIIa68SFxbVsgS+2QNKuuF+Cn6zqJanRSkcy4kTyhjJ9j06lZkfkjJa6R47/w0V9ZjVkjJ085lwhvNV6KHh0V6Io5l4I9p5dqBwCP962WVqCtotU+W9bUtAKSKTBkdmi2VGBLO6ylH59oDqt+a6Cb9L2oPubUbpJWC0gFWM9LeXAqe4tT4M1oAsiZI7H5sYgtixwp97Nzr91TW3Skno2t2K5pzSIFOOz3aYW1v5Z6uukaTA5WBCc6EqqXRh8HQfQZS5Vr1MnCFcwouo991/jiBBMQHt15OqguYzys1aFQnNHcRtFT6SzmBEvNLCXcG1uxBWmk38sISMW4TjJA+l7Su7rOoe88enXCBqqcp4/ORW2f/a99n8jGkgue8TZ66nsFfjJn7McDpknTu+YJL795iT/90z/D7etbvL69xa9//WvstlsMqwGXlxcIIeCTTz7Bz3/5R9hsNri9eYUvv/wC+/0e37x8iZ//7GfY7/fYbC5wdX0tVXk68bwTAdv7O7y+fYUYZxymEfvDHlZej1yGs/xokl5kSsgsSzcmKXcJQEAdKzvZGKk1vWuhlpZXABqWbVmEBUmmChQxICR0LEhxrQfE5ZoWrlmXrp0ejYGnz2L6yKnXsfMel88/FUI4rUYSqMOaOvRqMHqtbEbOSvQ2oYhIyGlCmvZiLMcJaT7IwoJ4WxbAz5s2YP3tclmBaujagaC9V64D8ZI0KO3x5v4IOGh+c91x5d/QzdcLwaYPAZcXl1it1zJGjkRR9B26i+fwwwZdv8blJ3+A1eUzrIYBm0+eo99sEC4vwJfPMa83oA1w/dxhQ4R5nHB1v8Y8Tj943B6JRjoAKGHWrHUjq4Fc55r1VBvtsqy+Uq8TYyrVEqxiCeuBmUvVsxqJlVKS3GoWT1WMclCX65uibJszeDE8DAYxFRI8ez4rBU6lNK+FnGvFJgt/RfWYMsS7MMdY5hIgn40xCpjnpLKQlTQ/jAdE40vZ7+XzSnru1Et4//CA8VCrG5xSHoE/VrYdFfQEWINyJP8/OLFGVn2Hi9UKrN6rSVO9DuOI7W6PmBLGccZuL1E1q94qXlVyUgkb1jKwTkEAqn0rYfCyv9rfVsMKV5eXIHKYRgnJdURAJqQokVchBHhNJ3x2/RwvXjzHNI14/foGd8MtyDn00ySh5hpmX0PDJb1OANkKWHUhlLSDvteITl0L5pkdDwfM8wTjbRIOqGWllFPKNI34i5/+VEqtA1hvxNvahYCUElbDgOurC/Rdh1XnsV4FqYThgvDEJcYYE3aTcMA97PZ4db/FNM+4vXuNl99+g3GSqJ6H3U7WGyRLzJwxBvBxzhCCMQfvVlj1vaaPyA+DMXQzxm6CI4f1aoPgJZpxtVrh4uICzjmsLy7w2Y8+BwC4IMA/A5g44W53D3QduqsBqxeXEjXRJcBn5A6IQSLAYhqRieGDGDzFWLK9ydIXyvmi/BQ+qCJWvXC58DtkMEd1tJzOWNkMPf7mv/wniOMB+/tPEKcJ0zTiYbtFnGd4Ddn33mG9XuH66hJ91ymHz1Wp9Om0wsl61eHqYkDnHS5WA55v1gjO4RAj7ncHzDHhZ7/+Cv/Rf/wvcHf/gF/9/Gf4xV/8GQ77Hcb7G8y7eyG/zm20z7swzkTqefsY1Gk1ESL3+G+67x6fyzLEJEynzBr1bUq6GgEnfiQx/gHhGKs2k5TkBuAB7+R11uZnguhuZpXkRiF3NdVH5qQ0uBZHqHvTMmpVtBFri6W8MaAUANKLmTNidCAH4YnoZP54T4W3stVQHTHga3sML4gua7luDexIwnczHSLiJOs3zTuMvfD57IZB0k6I4EInALBW9gxB9KFhLRGydhZbBOjQCxdNHA/Y391iPhyKU+V0YnNIgJwQAtarNRLPCPGAPPRwqbPhAucsaU7dADiPi6trPPv0c/TDgM3FJZ49e4HQdRinCYf9ASll4UzbH4SyYpTqpTllTPOIw3iAVW+1YAw7dwCS/UijzwM5BD0v+34omQ4+dErAL0Bf0sBaRwKgE4R7yEHOu3mcECVsq6Q1mUkIu2+FJcDIul5lsgqbgZQ6Z3ISqeG8cLgpeF7ScVKtTmhp8acWBhZFRY5FePeU6zSnQpdRAQa9igJwxErZwIw0Tpj3B+QYMTbFdHIysFy+U+wzXRjMFmUle6p3JNx0onhVQBjGZUUNh1O1TWSf8fK+ci85dZL3qx5hNcD7gNXQYxg6SOEeo4+omSkgqql7QGmv7Z1ERzAAm/UpG4MVLGm+elqjkSWanqA2lN23pEopuTNRKeLhNDK32Fpmv+kFme28qIC5cTDaw1uWgO8GXD//TOgymLHfPYAnwjyNUtk2WzyktpWXKf3G85O1EjhrHy6cE9y0U+ed6ZzBEzbrDutNB+8J63XAqtfqXRup0uqJMAQBf+wMSWWtWSEsIflmqk52m0dlvpFEjr7RN9PIe474kRLD0yyb5DRNuHt9j6+++grffPMNvvnmG/zFX/wZ7u/vsVoPePbsGn3f4cWr59ju7rBer3F7e4OvvvgSh8Mer29v8fLrrzCNE1brNR529/A+qPddDMlxv8Nhdy+brKdCPicIqiuoJ4CiWcoAUkH6ir7UeKULkRvKjHzk5TIjgc1dBFTkHhJ2WSMRalKmLFaLM5aN21DM1qMm4P4SAGpuX0CqU4pzHsNGDDY7TDwF9BCuF++D5HubJV2iShhWFQY5Is0H8UrGEXGSvMvEXBK9MnPl42mkPQAoG+qOAsaVhdm+LmguH/VHC/QsXxt7enHdNeqT+MjkFJYNWaoRrS8ucHV1Le3X2CUXenRXz+BXl+hXF7j89MdYX3+KvuswXF8jrFbwFyvw6gK570FBDDt0Hmmesdp4pOn0wA9BI35YuAfMeC8KK9VKCscHQQjh8UFsqLQCQPlISSibWAP22PvzPGOea3lx0qpCKSXAyPhyBTDKumvubUh3C4DK5k+l/W1Uz5J3AoCtN0bJWW/BR3JCXh6SkB5O4wTnnPAtqKePCJimuUahECHoMx32UtLzXUkBf8iUHioAqhl9cpiyRmdoyHlHxTARnh8JXd8fRvRdhzklbLd7JK2IJNE2mr5lvGV6i9q/DUDSHlLNGHShx2pQkDSPSFHpdrPMHwbDkUT6dF2HzXqDq8srjKNGv/TKXRQk7905BRKBAjbmnHRsPawKjihNrvA0BeV3aGWaZ6AJzrL5EkJT5vaEMseIly9fQoevtCt4SaPcrFd4fn2Noe8QiNFRVr40h8xAzFJpSwiaE+62W3z1zUvsDyPu7u/wzatXEpmWsxIji3JjqnqtigfdoyUSz5NUp/Q+aCSNkIs6CvpDwo2k6c5d1xeePSERVYAYopzHnHDzcIfd7gDHCcET+osVsgeiT0g+IeYZ2THmNCPlKPNA+bwsIkHWtAHUNcLU0jacD7IHzbEQXUv1xVyfD4/Plh8ifefxV/7gE0zTjN31JeY5Yj/OeP2wwzhHIbNer+CDx2rV4/ryoqwlMaAdHDI8EhwxLlcdXlwK8LPuelxqNaW4SxjHiP004eWrW/z0l7/G69d3+ObXv8arl19jOuzB4xY87YsBUxbhe5EWhsYTrwmPDhQDTAiLdjKjeLlBBIIQAUuUYDntTy6mtsi0YzW2RL1yzPU1lalYvnf8yLbnGDAmzyUbZn1U0w1Fx2s5IeqebvusnklJ9SSIg7JGDcle1aFGApRS3sUglbYwWI9HI0435wrrfRLSFJFUX+Y8Ic6aJr3vSoUyVjDPNSldkgK2Rtd3eje5q6TVrhB8QI4z5v0O+R0BB9SMidP9KaQB6Hp0IYC9F9BALUZHJE7LEHBxcYFPP/kUw3qDy6trPP/kM3R9j2masN8LX984jtjtd4gx4nAYsdttkaI4grr9Djmn0vcAJFJTnW1xnpEUUPFEYvQRYegHDJ0Q3ktqmOy5MSaxRbQPS7q6/ghJcQJ4rsAoW4yAk32Aqi4OnU+tngwtUZ5SAiWtVOykFLbpb+aAq++Jc/yd0EswL86mY7GoJHMYVtqF6ghPSQq0GI0AqR6Z5ll4F+eowJVwz7IC5aS6YFnbxY7g+new8M45t9RHGyEFhyxdvH2WoHoIuQr8CE9WpynmHn0X0JmOonxAjmq0ELXIbnvfBvR5BP6opUSoqVfvTqS/ZFh0MTC00iYhWdE0IqQk0axvbBPViDQAZb978owhA847bC6upFDSVvCB5MURHa3Cm36vAOFc70c60lJAamruW+9HTRssutzqFEqUj6R5B+9weRGwXkmlrotVwKpT8nlAIy+p2DfSlhrp01K6WwAzQYoO1H3u7cb0vQI/MUZ8883XGMcJ9/f3mKYRNzevcHd3V3h74jwjxRlpdhg1ZHnbBby+ucFhv8P93R12uweM44h5GhUcyEo4NmmebS7AT243paL/6KJuJ5DqEVSMfIseQQP8yC9q9aiy0RyLloMv+om6gZDrAV2IpHTSlAlcPXRcbkLNbzS7NpfSkXrX8g0Gnbqol4JmlmusQAiTlNIrofY1/9TIyyS6R8GfHBc/yE3dUgVtKqz5RBvKeBoIsHy7+dPy78cbRIP6yX5EjaJVN9SCPpdN1k5z2/7l86Hr0a+E1JaC5ExT6BEunsGtLuC6NbIfMGWHlAjYzdjPwCExwmaPkQmuD+iwhmcHjkCGR3bdbz9e3yGGZrcbhc2wBb9O7Sb9ULPT2HgRQGpcc8kvZiXIrOWgUxYjrk3JIT3IrFy4hWmmFJG8VwUjaVQHN5VACuIDoMljNgBoYYPY2Laa+hIwIZK2eVRXbwv8+MZjJ31nG0Ld/MUDFuHUkxCjKIjzO0r1WkgzRu2OxMxl2tpBRVSPLAt2Zw8EzsjZoe8zYhrgU0LKjCmKQuiChxGWWnpbzqn2C1SB9vpvp3spc6lyZnPD9mXL6wYkJ3+Oc5kfIPFqb3dbDA+9VtSYCnn40das/UCLca/9IGlNlOSwn+eo499EU3Idc+s7uSRpasbpgZ+cM3a7XWmttdjSk1JMmCZNhw0OXS+RVYkZ+3GEm52APNtdAX62uz0O04jDJJWtohIPluOMNFQcFQAGAUPosArCa7RZr4WEWNMNQAEAI7hQiJWHfhBFVQ0+6J4yzxGTRsFNs1TBjCnhdnuHu/0WbuiQX18ibVZgTxi7jCkwxu0OaZykwkpMWnLXKisCBjB6LbpgP6SeUzLCTEiYNzhXJTlL75KSdZ9SvHO4vhgQe4/eA3GOWE8dQnCY5ggfAvqVcJ+s+g4XG+FScs4r+OhAyHAsXAJDF6S6h0ZtJJYUzP1hwu39PXaHEXf399g93GO3fcB02EsFr2wl21sl5TeX394gIJQDQS4E2y8fWScmDM3aWraXmv+akka0NJ5szZ5SSkr9EViyOP6dNskifXL9e274NY6H4Fi/1E/V8wqNs6HRT4AlL0W5HsxYoEJ5SCTqVCKAiMXx6Oq57opXSxvIenrZZxzgjlQv64eqe2Vw1nPD0s+YkTWSFGDE2cOuYnu8dx5IWdKuUkIaR0m/PyFwIJEdoheXMyYnqcCbIuYUMaese6JGjQByZqek3H7CZUje4zAelMdGHCOHcZLqkuOIwziVYjVzqR6pEZQ5F7+TzNNUnI9Jo6LFnCO1iUkKobCuF+dBTs6omEz/Ie172X/ZCfAmnJUaYQRZTxbMk+01mraU68tr9l4rdXrhAbKiNg34IsCK2i/mxH3HgPJ3pgAWgLJaUaU1ajyDGUnNMGiqF5gR46zVtsQB2aaKseoAi/VHCvRCosO9q0CB3KvaDtY0E9svoPaYOebIAOVmr6mmRvOGNsDsqZravPzdCjU/C5sKWNiElhpV2/rb7vtPi5iolW+sfR5FLmAphvYMj9pwZJ9U3UyvyU983vQ0tRWMvsGqkWbjfi1cTtXeL/a5DroEF5gdo83RR3GuqZ6nzlAh5SZ0TeWuzgtPXPBSiVEptZZnij1qjTrQjbhdY9JnlsUgY2/zn2q7v0feK/Cz3T7gn/yTfw/TNOHh4QHzPOPVzSv87Kc/xd3dHfb7HfbbO6RpxCGNiOMWzhHub77Fq6+/gPNeiLUOh2JgxTRDDpkRu4eoD11LJWbdfAursL7PqeZJA5CytfbbFi/QHHR1W5H5+tQp3J6WuV7EwptZF4Eu6IwEC322UPUWSqjGkc2y6q9phTVE9ykdiI4XxQ8VIriwFh6MOSn5q/L4kIQfuk7LZDoI4zwBcRoR5z1SivJ7fEBOEzhFII4aPknKI2EbVvlP87BlFHTDsHa1m341yluCNq4rq2wOplyWnHzU8V/uu9TorU4OWzj5fAaC81hdXeP5Zz9C6Dqsry7Rr9dg34FXz5G7C8zscD/1uJs98iFj/OYWaU4Y1gM+vR2xudxgdbHG8z/4BOurCwQHbMIanT/R2DUiCqAXxYNIFERW5U6f9xF6TEAL+hj6XhRK78thadUlDCAAoLw+Mp/b6J+syhJnAXvm2dK+onq6FAQy8vMYNbUKsPSxOitU+DgcU37bGlnOjkqcDgCBOiyXGeny03mjyiJr6oEQRIuidBgnzHMquzgBmCYBusdTp+yZgvAmacBTywk3pcLrQWYkhEQSncS5A5gxrAasLtbImXF5GHFxeUCMGftxwnY/iRI87eUnRjjXw6FXLpOA1TAABKm6ViIPVHkxhZKTVKzKETErf9LIiDmCiLA/7It38zDu8er2FVJKuL29keIAMUpIbFnTmpKESjYtQIQT5Toz8hQxUZKqZHMqKV5BvW2NWlIjh1KjfJ54OwWAeZ7wqy9+pUe2zJmu67BeqWc8RcR5RHAOVxcbbD57gdD3GMcRN3d3UvBgt8Or2zuM04z73RavXt8p4BIxTqMoP6aZ6j7tvZasdx7BBzhHuFytcL1eowsB19fP8fz5C02dcmW/neeIaZJck826x3o1wAfh9CAvoK1wC20R44yb21u8vnuNmBLuD1tsxx3C0OP5wx2ubr4VkHwTgMFhPhyw++YV0sMe6TBh3u0x7feL9UvOoe+lb0BOqtM45cIIGvHjGB0c2EvERkyzGC3kkH0QcHr3cLIxXPUe/8qfvEDKGdMkaa7TnLA9RMwxVw8+CcHj0Dl4p7xUSvwohruAAJ13WHVejI0MqSSUMr785hv88z/7KV4/bPFnf/Zn+MVP/wLbhwdM9zfI+zsgzkCaKvjzXmVpqDz+AdoFZIq26TcGwraX40f6i0T+mFF68icgMerAleSZ7TUg3GO+PgbnamRXnYVg9HUZRx5kh0IsvoB+dNxBxvdIakzYZ1hoCbQPaj+6Yvjk5DBb5a/ImL2cT8FboQEgOCOSbqr6sKyREJTfghgutSkVUKOz6gecYmOUiw7LRJjTDONPy3GCDwGs6UMpW6WirvCpOQigm08d8aMDkKBkv/MkjuXdFuNuh+3hgHmclCdEtclM8DyCXIQLDwg3N+h3e2x3B2z3E7zvEFPCpPrJOE7YH/aanj6X1JE5zuKUVt3Ipk6x6SBRwALmW+UvLcnuO/RtFGrRtbSNJKWqvVX7Ur4+gOFyhifhRfNEumdr0UcbJk+ARex2wtEJR0DoCvGz7/pSyIZZCl1YBHaJnm9AQHpH+0yJ+sbTeo5Fa1mUGsHI/438Wo39LCm+SBmcJMojTTPmw0HInbUke8zGWZTL2JHOH4IY7cxCou2xBFOKaDtrJVmx7dwTBSJ8A/w02dQlNaylIhB9XMmjSTkaC2l3vS+au5R3uEZoVT2Qyr+tb80Re1JhqyLYttEcj1D9TCShiWDSv5U9qnmyBbhXzofG9m6AMOYM5IicBC+QnyT6a0w14sfStVBNHO87odsmwLkMl/2iKUSEfujQ91Lltu+Drl0gBCB4hveEzdpjGMSJsx4Iqx7wDui8LEcCmorXGlHqNOInMYx3yrAB0sOmnAAKPFXt8fvlvQI/4zjiz//8TzFNE3a7HeZ5xt3dHb7++itst1vEecI0HpBTRI4Z81jz8G/bCy3mgR16EXk2w6qadhIXR8vv6Oa7nOTU8LgcNfwRAEEFtT36kKEHR59X7cCgQptkWVUDIgAewhzYtL+BlOWS7tEGyEBB9lsQpK6DU1sqBHIdwAmRM1K2HFapjEC+5qI6TwgdqQdqAnOS9K40I6cReR7VNSX5l8TmiSUDNo+OFC5o9QL8aT5YP79UDCsAZCvMdtrFSi73PALbF91o12KqIdxMDv1qjc3VNfphwNWnn2BzdQV2Heb+GWLYYD9l3N5EbKeEaRxxe7PHfrfHsBpwnxzWFzM21xGH1SWu3ErCAC861TTfhZghnhs85/GBsJhybwAajKTSInYKfxAzmP0igqL1qpQUsFRTwGKjaNjrGGMJKZ6mCfNcCXzb6l0lvakpt7h43Tw7a3vk4K1RHxbZ85QnpbR5nounsw2ljTEhwlLbcmnvbrd/J1W93iTMTbqjSgv+WMqbU3LjxZHBjA6MXvuz63v4rhcQ7u4BD9s9UpwQ44SUBIBhRScJYlh0nRwtXj3AAsS75kzWyC2SFLqslWY4spZSVWBKx2GKEx52D2BmHA57xKg5/WpEFQWCqG6I5CqErvshx6pIWhU35xy6zAhBestKsaaUMI1zk6p42vQgkxQTbm9vK/BDhNVKSnajly0yThMcJPWKQXA+YM57vH54wOFwwN3DA16+usE4TdjuD3j98KBpXc2OSCTgAyBrVFPXuhAwdD28c7i82OD51SW6EPDs2TM8f/5CqvJlIZJmBqYpCu8DgH7wGHrh9zDOj8wsVcS0gthXX32Fl998g5gittMeh/kAP/QYO48DZ7guIFz18OsOaZoxPmyRxxF5nJGmCcki5XTyOK3Ex6SRPk681eJGU881AwikJZiUiFqseqAjsEMl3ziBhODw408uZK/SvWyOjP0kJeUFNBOnhidGcFmMPVf5xVKWCrWZNWpOIzCmOWFOoqjePjzg1199jZu7e3z19Ve4+fYl9tstMD4A8wFIEaTpCu8X9nnqwGyhzKUOVkGfRl2iRneHnLNsV20VfCK8y4cjUxlbdcFUQ1f/7RzArqmfxYI3ONIoC36sfS39KJaOi7pOmYsx8+j+i+PIlD6NuFauDKVSQ3YMSsqJFCyCiKSCLZaGNOtzOQBggjdPfDmrbV+UT5fCCuVAtdTiQisDilIkwXjwxnFESrHu6U643vogRMu1uMmpRB0/qkNHpZiYpwMO84TDPBfuwUINwhGJZpCTMt1WYXiaE6YEOB8E5NFo02macBjHEjUSlSTYHFamKTqgFCGxHA0rCc6cJVVDP5v8jKhpXNXpi3IeEhFSn+BTrZrpdG/rPaGzPY1kLBfgogx82Te9D1LG3TlQ1wMa2ekswhNttE+tWvbYsji1jVHFztwKguizAIVzyGykqr3L/JQUX9Uhs/G8zTJG84x5kgyROUaNIM5LvcnmN4ljtFRnA4FgIAnVz7TtBtdkYrU/jyNrLLKQyiSxNd4EApgODtS1U9JBj4CSRsq9VNe2Z1tEDQFLG4mX0T+nEgvCqIZV87qxUx9t6Y0NIp9Yni+82IKeBuAENNHIrpwEKCyFZ/KRTtfMr8Lx5sq9HS1T+pxz6DspwuCcw3rosRp6BdszvGc4Bww9oe+E96cPhF6xVu8q4LvY453oBa3j1g5JI/h3xUau5+5vMnbvFfgBc0FfjYwoBI/1egUCI8UOc+8V/c8gVODnkdjANhMcZRAbk6ec4igbRLmE/ZeafzWLbZHAdWQ0LlZb0Um4frTBgeoJjqPvCdYvg+2bgcuq7FgIcGNgPjG4JayzaQ+xbVAih9tXj77324hV68pI8IHASPDBawlKKV/ufJPqkxJAElqZ9CertygzFmGHpSgB2j5swRv9bZ+h5iNkx2zbVmr37gX4027T1PwXwBN/q3e3PHyQ5Gv3q0t0wwoXl1e4fv4Ml8+vEboBw+YCflgjUUCCR0zANDMOhwmH3YxpmjGPM+IU4UA4bPfq9QPubu6RGFj1AZgi9sO7SfVq5fGhVN87nrbtYWFegraiUquksKYOSURR7UNRJvQeqi0LWRtLBM2jAwnlevbv3CiWBZCxiD7mutwZRZlerM1yZtPip9wXqrAd9Q2AkmN/3Hdtmw2UsqiV0wMHj/eDN3psikKhpph6XM2j1B6pINtyZO8xYKwAug5KXOek9DekGooZsDknzNMEkOZRtxU3zDvnSHmQ5J7C6SXjR6kqr9JGJylgs3BLGRFjylmqVMVKJF45AagoY+2eblGZZjta1FrOVgVM1rdmJIoizCjXfBdRBgwoKaWtN5LytMrtFZyTFDtySCljfzgAYDzsdrjf7jCOB+wOY6nYlRvglhqDmyyUn6RiTD8IiWjnA/qu02oiVkaUBUTabeGcR0rKF8qMGDPmmHTcOjB6CX1HxjiLIXSrUT7zNGN/OIhHNUlaIGcpfzzvRxzutnBdwIAEyhk8z6ApwVnuv55jx8nUVtEDLHGXLZAA3V8kJTSVqmWSGiGeboSnz9LfVtorOZKzTLx6TkhzzUCHgjrURHPY+U2NzkFV6YxpxnY/SjTXwxav7+5w9/oO+92upnc9InGmtkP09/fN3RP1h24i1KAWxynDVb+B2ajljyXVClisWzp6LMK7wX/q+ddUyFoo5lTUSUuPAqA+PCo+PpsHttcYbwjaZ1IDph4NbVQ3lz1KQBm9Z+mfqhcCdk+CGafFCGZLAWMkc1agPh8gf2/tM9OWzAwu54TpslxmWdNSlPsd6xOS+lutW2WqkP3+Heypds6w8r6knErJ75QyrB6TzTvWDhRfLGNOSVOKGZEJ2QmpdWJGSqKXzwYelLMnlX2nDFYLnmWNOmEGxwirklXPOdNBXHnP6CLaSA05g7WQQgP8lNSh2glgyJyQ53PgEMDKiSbVdoNOHI/qDNWfRoGys6mmVamTbak5nHYIUcGIFoCsQ1z7t34DJbXH0nukapca/8rrklRvMK7JkgbU3kPXUjvP7UnLGjyeujqfzHkEAuCMD1FXVFFPKgjbVktdVE5tnKl1TS11KTT7Ze0b3Wao2TDNPtV1YW14V4DPoq3Nv5fn0fJsWlrn3Bi2tPi8pcYemYhYfB2a4qk2Z5xnLQQic8COJ7nGE8/f6H1CZRAAUsDGi+2zWgUMg4f3DqveY+jFnhfQRyIpuyCpX15TBG1uONQ5gLKfyz+4/R83v1nWYtaHp+YahhG9zUi+d3LnOB/AKcO5jC4AVxcD+vBZKamXtcw3UEObvvOai9ftBtAu4Mffo/J2e1CiGAuPr4nmsKvfPr72YpIzmkGtdy6DY8TOjYIEoDkIl89uEQjHj3PcS0yiMLvmk1//4mc4hRA59KsruJTBPsGnLOWWB6nwBZ4BHgFOyHnCNO6Qc8SoaXxxmsBxVOLNDMqsZTGsNHEz6rZftV1BzbO2+8JixjejS/ULRWmRfywMrWY21LmwgJJ04yENVfYdhtUKf/DHf4JPPv8RNheX+JO//i/h85/8Ich75LAG+x5jBKb7jIddxsNuxqtv7vHNzRZpjhh3e8Rxxuwd5t0o/bhe4+71Dv3lhUQOPb/GsFr9wFH7bjkO+6yhn/UzJXWumd9tRIaBGxLCTWWuMjs4Z0z0FvmhyqwDwIxMDlYS3hXj06KBWhJBS/uaaySQHtwwr1Qp1WiHo52P9Kj9T+aoW7vlA+XgPO4bi2g6Bovs39nC25Pw36SUynfu7u5+8Ji9SaqnsK4CUf4qMOdI0nuK4iG9sbiOeMwSMhjkGKGTyjFdcOi8Q/YO66HD1eUKMWrKlPKRzNOI+7vXYHDhbcspgx0B7EFwku4y9ACAnZMUUFPObWxz45Gpue3G5SQK3hwbz21OJX1XjCCt3qaAVdGm9XEZXBR9niMo1spfvrSzB3mUnPA2PfhkwhZGDyUxB6wEbfAB69WA7uoKXfA4zBO+/OZbeE+4u7/H1y+/lqpyOWPWSiuRGaQVQ0g7gwAh3g9BqnFtLnBxeSXkwk7XLoBAJCXhc8R4e4eb23sAQIwZMeraYgFeHDlcXm1weXUBIijPhVRZu339Gnd391LxZhKOHykDHKUPxxn3X9/g8PqAru/w7JNr+GcXUl1nO6IbGW5ihEyIpMawFWYgiSqac5YzLmuJYxCyVo3LSJjnCVkBwgRIRFDfwV2ugaED/K9PPZCQxEL97Qihd/X8aiI5iDyIWIm5pbBB+RiAksIGwsP4gF++/Bbb3R5//otf4s/+/E9xe/saD7ffIu7vgGkCokbPLshQ35Uy//0iXAcaqbrYI3lh0JZzuyzPZYqxpcYUJV+v8X164W/dbiKJUsxC3ArNGGVHxUnlAko2aWljrMAJAYAjZJLrZK46WQW0UIZHzj0qrzO3rzUiiEQvNEDKQHYqBmQ1HtEa5eUslMalWIEGb+WkoW7WRu0kfbDSTLJIyBrJu+w4KJRj81f6wKo89tSBOUgVsizFEDIIiWdwPjWgLs/LOUslv8yYxgN2hz3G3Q5pmjCDkF1LTq19oFH4aT9izq/hnIfvevTDFuQ00lCbmnJC0lT09mhp2yE8ZUoyH2ewEjqL4ZZVh6pkzc57uCDUsGw8SqTVuzRSKnQ9/NDDIqutSmkgiSZUbVr6gYSHJCuwk0MP9h1AEuVDPkjkugtgyzdSZvOFfkS5ADHWvwLcEgqVxalFdbo3gRILZ1LTtpysqmxCjDPm8aAAQEScRiXCnjEdRuScpNJ0jJhVj2z3K9uV7dnF0AaCl15+CpAiAlzXwXdafU05TwEUnaaN8COiUtHLuSAVPbVAThc6qaJrQJI2KqueUAx/a6/ul+LcM+crzGsjBQI5Kw+nOPMeRf+ccCmaXrboH1Rqjad0skVHAgC3jvrmsEDV6xcNb2y7aTxg3EvK+W57j8N+h3kWXi7bp9Fy7TZnZwXMgRB6qZLogNXKYVhJRst6FTAMEjm96rymetX9gEiifIJW6+x9JXKXNE1atF3UUQbUyVYi0dDYNI1hTFSrgRkQ+TbD934jfmBky1I6khwQhg4rNQDq+l4ws3z3FbkiqEvQru0gmxD1r66dSq3hdrSBLTwZzafeShoDrEUu5GBsvCcG/LzxuxX0eeruj4AffY7T05DKRPPdAHhGQAYSI3Qe/dBJyd7sNJxSwupiHJHiJFwg4x5xmsRDmXJVUjV0p8R4tdjZ8fDbkLbrZfG63Rie0LJgipK+XoA+7TwAlhe2T2j1ihAwDANefPIJfvJHf4j1xQU+/8mP8emPP0cmj30OmNkjjgnxfo/DPGM/RmwfDnh4vRXvw2EEx4QIYN6PQiA8HLCPjLDeoVutcL/P6Neb33CUfnNpU2vk309Nyep9se8UhUUBG1e8VTrrqUbytCleBsjVjayCT22ucQsA1YpgHiEsgR/5TE37MiO96AWNDvM47WwZ0v7UswI13LgFvNpDt+2/Aljo37quO7Fy+7ZCZfpTA/w4Te+qHXQs5mVQzgAnVpCVCQ6e0HUeq6FD9Jb7LKddijMOB+nPeZIIEFFUfBkM75ymLaFUTEspKXmz8CPEGItibSHYRKSVvOTosmif4761eVk9qI8jupKlQjGQ1DByLASkBAE2go6zY0aiBKLTp3vZYS/h9KZQcwOoqofcEeaUMD08gDnj7v4O397e4jCOGqIvPFOZWUL59fr23MEHdEHCklfDChebCwWChOdJOiXK/s2McRoxjpOCmKkAbDbOznkwour9jIeHe9w/3CPGiPuHB9w/PMCiAaldF7pWx7stJjoInxEE9Acz3BwREgMJmgbR7ONq6GZIhRaGgzNXV/ml3BQKJBa+BSKQ98AwAOthiWyfcDRNjfQOpSQw2UDbGWWggaaOgGuKgT2DpfiOMeHmYYe7+wd88+oGL1++xM3tLdL+HmmS9C4hda7chhVVaeWp996FVOD/TXoLwfZYlHVtf1iuU0M98IZ96l203sDlhtRZf9wR8TF5aHgXQEarRAqoZBT6ADLnASCGwdEzi2FJGgVd0xgsAsGio6UNjT5CaCJBXJlvRuQOWDSRzKrUjH/QKM1iMdjDH2u6Zfk1BtjSRirSzmFTrRyRoGXMWgUzAUlOGPNcn35eytmVNNIjplnSq+ZJqnACAviQMexIH6cs7UpzxJz2ou+GCWGay9lu+jo3506NzNCxMGM61ygTnmdk5fWR81jPJIvYsTG01H7J+dTrWylvif70oVYyFIJZeQoZzibtSUEFdl5KtIce7IJM5CA0AkSERAIMMRGYlMSKGMaDyaiTXqKXWquDHyuLpxzJN6z7R3qb6YrMZdxTlEiPpK/naRZASCvJGvdLUt0ReOJRjm5v+4P9iY/aSEQIQapz2blswI+kqBtXUtV9ydIflSrDnKjiUGsYoFnAG0EkBHhbrMvSZIYzRvf2GXgZO9vque8q6mfRN2jmUotUEBW9p3kI2OaoUBYe2XbltD2+qfwnxYhx3BcamVmdUzDUjC1aSgEyO5BQ9QhSXafrgoA9G4fNhejBq0H4exwRhs6jt+ptkLnoSPbZYKTPILjmZzE81M6nSojfRvuY/WTP7DgjO6ecXm+/i75X4GcYevz1v/5XYaFmdvAXxYhsOJegx2MpI9NuPc0X2k0J9YQqf6ej6UPNvdsPcnu3o9ffs0ieBH2OvruwrqmZdE/dpU7QR7d64rWpmydfy4SCaDpP6onQEFOSozznCE4RKU2I84QUJwm303BKKjO0UQhJFTxts3QDlz7hozY8ft0qmE2/8tFIN98tBns5uNhsi0fX5+Y7wzBgtd7g8uoKn332KX7yk59g2Gzw/MVzXFxdIjGBI4BIiEwYhg7DwJjnDqshYNUHpJlxICWyhSh9yEB2hHQY5cYZOPR78dKdXAxgWSqibS51C8RK+ohtZk4NU/P0tCCmdpoqubbOy4ZllZgK+FLvsWjdEcBUfwDhyhB6PTNua8SSGpaUkVVDNx1lCSgulQYDi+x+j3rrqG+Oc87b6z7Vdu89uu7dp+w9luYw1TGo1pa83awanQsWhaijS1Q4IPq+w8Vmg76PJYIopVQAWwaKhzmnjKAAT87Vw+GIkFPCNI9gppq61aYCqWIk65EkKLDVLw0IQm1jEVW8C/mhqxE/JfIHy3GyuWGkiktgTwijHbmT8sK0YsZvWXuqCJIaJ3aiCTh2QE4Z4zRrdIADkdey5qSVSxqFi+wsqCHkIQQM/YAQjDxao6zmGWkWktIYK8dWtpSpoiDKHIopYppHAFDurbmEzrdpoAX4gaTyEUk0VXBCjnjRr3DRrQAwJjBmAMSErusRe/U2k85lp1w+3pfncUpea5FTWau2pKRE67ZegweFDlBy1FNKOU20SIOlkzz+EMM8lYkl6idlYE6MKSakDGDOwDgjM+Pb1/d4dXOLu/st7h+2iPMslZCS5OeY932hDC0VouYPx4bNU33wm/TLsfZhByjV9AbTc8zYOTLW9KAoBTbq5lSNoxotWr387wpIp6bZztUmLvCR8hkuzyt/aHTa5jPcXLtEGlOjX+o5vPBt01JHkTXMxUAwQ6lG49YwJDMebM+rEUV5seflzKg3RLGHjsvBml50vGbqlKvAPFAjd0Po5FPZKnLq/kGqd/0GxsrbCjNqqk9KS4eQrQtyYKdFlA30bgw/OTMk0oJKVcMG0IRxPHLzvBbBr/3AADslPTrSk5yvERl2ToEs/UxngYfwXgKSCk8SPcIkP3JGCEEz2Rqyxd8UOWDXKf+ZA/lOIgnJCRjnvYIHTiOfpG+kHzTcgfU9XQwE2YsXIMI7WotPrfEn9+32vDvaCw1fYa7p4OWnAV9AdgYDVR/S+QyDBzVoQJtQnDUEWDpWcdgo5x2c9i8EtC3rvS42Obt9ADkP70M9M1t7pOgiQC1kUc922xMb1a7pD672lHYMo+q9RFRS3fmkK7Lu0832udC9Shu1PcsnUBCT0bzvgMdPWdpNSrLGYCQlWrdI5Hbvq9OFlvMFBvhz4dtxHvCBiuPTe7N7mzaUuaQnv5O2C82wRuWUPcDsEjtQ7CwQCgwux2VrM+ne1Mw/B1K+Tlee4W1G770CPy9evMDf+W/+18tks9C5dvweR12ocPnP8q3jD5cDyw66owOsfW2h10ftLFPu6A/fcffvlJq81FpaNtlqnvHiO8eXp6MX7Zo5nntQpYUqpvg//Z/8W2/d3u8WBpxWZ3BSetI7gvdSSjLHCfO8Q5pHTOMOu4c7IYGdBATKKUkFr7oF2HLVimqq4hwh04sHAx7NGzuM6+uGLQ2Px7kqbHatXK5ZsThadHeGcFI9e/YMn3z6GV588in+s3/jb+Bf/Zt/A77rES4v4FcDppjx7cMB9/sJYUw4RIIPHfrO4fZmgzTPGPeEtL/HHPfloGIGeJowJpYw3K7HbjvB9cNvPVrfJc7VqAh5XCrvNdaDGG+mVDAjUx2Lmi5kc61ucPLdrMTNGmKaczOuev3MT6bQPBVNY4akpE1xIWhjthKNaihYtA9YCnw8ApqWchw18qbXT8nxZ+3H2hxCwGq1emfkwI/bUg+R+j5ge5AdKMBS57dSlCDlnNGvi/5BYEd4dn2Ji42Q2E6TlrbNkgY0J4nyu394wN3dHWKMEhG0lmd3JR2QME8H3N+9RmbG9uEOh/1WKwVGxBTLdmnFMFwTvyi8dxrqTFqlhpoDkSpBtwE/x5Fa8lyu2KOioMg8sypncqhWT5Nz7jfY9X9D0SpkFnkTfEAIgz5HQGZCzIz9YcTt7S2maRSCwgyQ66RceC/RPClGRJpLpSAba6/Vu7z32Kw3+OT5c4Suw93tazy8fkCcZw2N3sv4N32VLNVS5wkRgZiwO+yEmBuM7XaL3W5bopcM6LTrMACOomh553G9vsTl6hJD3+MPrj/BJ9fPkHPC/eEBu2knoffwcN0A5qz8HEkGvesBp+XQuw7ed+CccTgchIQ0J6R5BKcIFwK6vocLAVitgM0a2KxOHvHjNGw857r2Hm1rapNk3QfHyDhExpwY45zwMM6IKWN/GHH/IOSyP//lr/HP/sWf4e7+AV/++gvs7reIhwN4GsFxBpKUvYfuedVUObrx4vebpJ6X3y1PPFg5Z0VZJm+pXnIWM2dwzMptApTEoAUJ7VKZyZZSwnzEnfId/I8/QAhm33KpqcBcpwpDIn7Amu5o+rbjAgozC38Tw7ITWSMyKk9LOx6t/m/Hru1F1QitHyA93wAgUwZIucngCqGsrfvqdBBVP5Wy4E2EIVqdR/nczL40YxikUS32jK48a1JifpBEksJJOvxqtcLQy9pNSqpLiRDTVJ0xuZ6XpxNWPslYIk4lvUMMfUlt6oBgwKyAHyA5Z8RAr4a7RdqYTm0ptG2LBeQS4D03OoBUFZay7eQ8nO9AYOHFDHI+ZUhaIEPAKDbA6ciwZAay8+DQg8Mgnv5OCi8QWCLos8Z0UVYd18leGTohvS+pXiTAD0liqu1TRHRU/RaAywBliawkB+YERK6cUO8IhLV90trV/l50CjdtKL/RrCVWXp+EeVa+l8I5lyV61BMcGmcPUPQVifhtdkZdsAwWriYWfcWFgKB6Rz+sMKzWMr6ckdjAAA/HAgh4rxXZFNCTH4cwDAidjE35u+kxmp7o7LXpdfbIbRSa9cdRf5U+ZCx00qK7njidnXMu68VOiPzIwEUFfcqfWlu3blBc6PTb96uQ4ZXMOBx2uL97jXkecdjvSgr9d7QWRtdPLiMEhvOMfiCsNhJ9PawdukEAHQl2r7Q0LPVj4VwGUbWTO3M8qqOOwUhZfkBKsaWQQExcopQLgTlEtyBWYNH2JVSd1o7Ft1mK3wv8ENEKwP8NwKCf/98x8/+IiD4B8L8F8FcA/BTAf4uZb77rWpv1Gn/zb/xndEM83iwqgRiwBICAY+NrCQLoF+r7b/juI1CJn/p0IycHfrBsMyr5MIiWrX+Ly/PTj1uUBuNbORwOAPCfIqL/CD9wDPUOkpakxr6kBsuEZ0jlrhhHxHnEPB1quoeRaunGTI+evVE6y+ZkmuzRQ7ZD3/SpeVSOwwIfgz5UX9vdG7LDxdd1nEQpdFiv17i+vsaLF8/xh3/0h/irf+2vgbzH7AmJCIc5Yp+BSTXG9ZqRskRGXGw67NY9XI64owxkMdCQtFpGykhwwBTBYUaOBHRj83j0/8QJ1qJFMlReABTvee1cO0QUhS5jIZtS9Vwu+/pYmCuwcgzwLDf6ZfuO/11BlQoCEbXAT6NEst17GXHUXPGojY8jgNr3n3r9pveOXzvnSqqXHrQnXIuLp3j0umnRo9eLqW4AnqtjKoe1HHCi5xP6LsBf9CAQYpQw6cyMaZZKT1FLZO53WyBndN6j70LxKgloAKQUcTjskTNjGsUjYzxOZowYuWFdz+3j1R0DZpw0P75EzNDCW2uHpIGHNs8KWNfcaQlhkh7MVSs51Vos0pbl9L6Qbxq3RM7Sz9vdDofDARbqTwaAmKcQomxlWJUS7U81Wrzz6Lsem/UaXddjey+gzziOOOz2QhqcM0IICAreSOW1mkZEjkCZStg0M2McR4zTpEZzrYxn/S/Rgh6OJJ1u1Q24XG2w6ntcry7xfLhE4oiUIxInOJcwDRmJnBYJGNUwEY2L9bkN5EtZigjMk6QaI8+qCTk1eoLUWe17+ZFBPNkY2nqp/ypmffmM+TOTAgfC8SPRPmPM2E9Swetue8C3r+5wGEd88fIVvvjqG9zf3+P29g7zOCLNUUqAJTH20O5DT60X/cv3P8HbgD71aZ+8h65zRQ2a61awAIt+4fqrKD8G8jQVG6uliban8Q7WojrqhSOFTE+g+kjMy8dz0BwwKnoEc9MF5Zpv6F/7PJYj4LS0/KP+tlSusr5rSrX0IC+uUats2o9GZR6dx9Ze0yHbP9R/18gVEEu9cNOhHAEa/RKUq4SzEDgnJDjOZe+oTooCUp1kDM3QzzkVIz+lVPj/GBCAhaG6p68DSZYK7eFCV/jkDAsh/dtSnyR4TT824KdER6qhbn1m+7P3HkErYUZR/2QMHRWuHfKupAjZuEkETwA7rcble1DopfiEfsAAACNoSURBVD0pImu0IRR4JEegUIEfhEFKuBMBlt4FaEHhahBJ1yjBFZH83Yn7RSISpGhLu+/U7jjRWjzS2UwHfBR1ZvPoDaAPDFzUAg4pGplzrimRBqyg6hIG5jlNdytbU6MrUhabR6aOgw/CzRO6HkGjSmeNOoNdQ+/RNXPGyLXlGqE6Zd1yzRW9Xcu618khz5pNb2vHRCfPE5p5sSHbYIws3FMnG0NT8am8VW3hp/Tp8r3jb2n5Zn60S7b2X91HmTPiPOMw7jFPI2Kcii1Qu6a5TnMuMbSoiRUMDYTQKdVBkB/bK2trdP6Rcvzp2eHJ3OLNYcCWjluNeKU8VcfZ0raQ8RPbjODgqaaHLsDh5r/fJW8T8TMC+C8x8wMRdQD+H0T0fwbw3wDwf2Xmv09Efw/A3wPwb37nlUg8fQyG0xLSbXOtA5phbN4/fhhe/p2OP0PlU+3bi8nPT7z35BtPteD7O7deznYiqpaKXaWyXC2f6O0v/2SLxPsthsRmswGA/4SZ/3M/eAzBYBavAlOWycgsyifJb0nXWIbY2oELoBAd1jLsdfLX36pIkIFj9d+t1H820SGLzy03CWp7meqY0NHrqq9aBJI0nEDIWTwH0zxjPIw47PdwXQdaDXCdR/DCfbJJCcEnjBcEIuENef58gzgnDB2wv1+D4wE5Zsz7CXlOYGjofk5g9mq4lCgZxqnWIo55UBrvYtmQ6ZESyIs1s/zO4u82p5vDewGutOvgsfLw6ICvf9fN/9H6oAoCQL1Weg2LAqpzqflWc/gch5++CQw6/tsSlJLPVGDq8d9w0rX4eF9s32rHb6ms1t4s/WygqSm4TuefaYKoimv9jAMxI3ivRHiE9XqF68srxDijC1IxKitLnoAnUnY4qeFgobBy0rqyEZZ0rdLGupbp6EFahQ1kKU0EM0KtUooRx5bKCs7IUAnteWBXfRwTstihT3QuynNYv5a7aCWolBjTJKTIs5IVm4Ih458LRxKzVpNb7Ll15DMLj1FKSVPFpDqNcWUREYL3YAXGjHyQrHQk25YtylHKCS5ZfjnX8bJ0udJZ6ltXbarzAauhx2a1Qt91IJLqVTGnCjDpHBOFnNUjqmvKollZvPuZRKFPcUaOAkY5VXZFXVIgISfwOIlGJiDsifZTnXtvOLfFXuAC4EngC2OKGYcpYo6M+/0Br+4eMM4Rt7d3+OrrlzgcRnzz7bd42D5gv99hGkdwTqCcUNJ21BixvbHO0HqO4mj9HLf96Eketf1N/yr3pPbfun+zxqwbxxabu6Aqv1L4uL0UFQC2PhqX25ajA3Ue4sRrsaR32etsr1lfi7fVoknJ1W0SZCnH8t2c9Tfbnml7We3HEvJv04fruWttWuzTjFbxKb3RRvfZv62L7Cwi3QPbM6E51coN2yOh6gZ6jgKApheIkWhtalrDQmRbi7bkxXxtW9+AVCfTbSTVq/ZBOR+cA9grP5nOTYuwIVdc7xLxo+S8OsUIzTnVnDtmIZLX1B5mgLRMWujguh7sMlxO8D7DAfCdg+/DYnwAgu96uNCpcV+BH1ICWiIH6gb5jPOgEKT9ZdzsxJL0I+HsCQBpeldJEbLnreftYnGB62jrurU4/fLD7dxphvOE41gu2uha5kTiJnig1UttrBfRdWzRJI0mjQrGtVyV9r0WzCOmUlkvK7DIzPAM9KolhC4gdL1w5qnDBoCcWTaHTNeGVWYTIm8DfWxdGcBjYAGZjmBIw5s7qqyxdj9YAGi6uQnIU3VTbr57qjGUeVLLBUq31zNi0bYCysiEbF/bBfgN71u/yloS+1PS1SfkKJW8Wg4n1vGvnWJ7vKWNE4bBo+/FWdZ3UqLdeXEqOtUNg5MfIsA7Jd3Xe9RocWh/ax/Yc7dP0ersMOeBhZPanmnwUQWjW32/gkZvUEIa+V7gh6WVD/rPTn8YwL8O4L+o7/9DAP8uvmcSOCL0XVcWILerFe0wfNfMfmNLn3jPuubIWPiur7zV7b+/Yx9/rjnFlybYo08+vv333e+xomZP3OgH5q79QWPIzIhpBlFWjVq0nix1EpDmEWk+IM4j0izcPtFKV5aaDyys8gWafeopm9lQlCX793LjqO/pU5fSh4SikMP8Ge0JoUtPP2rKmoUzm9eSQXCZkFkiEKZpwvZhi2FY4fbmBt9+8y361QpXn32CzXoN7z1eEGO96TBHxnozYz8m7HYT+s7js0+v8XB3j8FP+PaCMO5HvPryBrs4qjEVpJXJARyBXM1PZj7JWiQS/gx73QI1tT/bY772nRDc1n418MeU5fY6ptTkbCWzzWjFYlXW773d2qrXF9Ou0cWOrmPcRPK6BaKOQcTH332cAtYCOfbZFtxsyaXtM+17dln9/YPGELwM1a1tLK+qolF+NJS/pDO1ylLtE+c8QstNUSCQepgFLfHODHhyCF7Krfc+4PryEjlnIWseR5h3OeeMlDNuXt/h5u4ekZUHyDuwI+RMYFN2Tfmhdk0fvV48eH0hhKLaVovsoVoxSDhmNMKNUBWs9lI2V94wJ0+1FgGNKrAx0BYwO+TsMM0ZMe1AJNVpYorClVOMKEJMDMwKimRLrzRCWQsFFqU5QqJA7+7vEELAdrvFOI6I8wxHwGa1UoOm9mliCVM2YCkm8WBGzkg5ygeJ0Q2dfs0Vg9D4FABIBJjvMPQ9Xlxf40effCIRCczY7rfIkMpfrOC7Cx4BjJwdUlYjBnVXyjljHLclUiyOo1TQI0LwnZBzA8J7lCN4YuS7O/DeW3GB0+yn+mOAc91H5Tez8PlkZsQEjLOk6T3sI17djzhMCS9vbvCzX3+Bh/0eL1++xM9/8XPsdntsHx7w+vYG8zQj7u6RxwMozoBF0GadB6UBrY7RHLBiujb/ftOT/KbS3Mv2YU7IydawVDADjOhX2iBE5sd3ZSAJR9tjI6Z84pGyfMpxdBrdKCCP3D83/PUM6fIMAryAP3CQqEg1brxuG0xStNQywXwBW5r0NlauVnkOkDpFiajo/WZwlC9Y5a+memXmVI0sA37c8ryyqF47kzm3EVXtOd86APSclxsCTaQwMQkxPlsEsOlmGfM8advUkaVROJLUBMWRpRccESLn0+ynrEVktMqdgSAueIn6c7XvnA9w3SAGuPcaQakRgkqWb+XBK9rBZXxgfRMCqNPojSwOUGaG4w4ePZAzAjM6zjIPOg/faTUulkqMACm/i6V6abgB9LWCAmG1hu9XAg4F4Yapbcs6gln7lqSEu5I7Cxu5nIdeo4Zk4nPJS80tl5YBQKxRCBawz5omZ4uxOSNPeS4+BVwAVQ+DDkvlDZWZ6p3TaD2q+piBgZoyKgDoMhW/TdkrqV6m81gRGkt7ZqAbbC4AQStwERHIy/xhMBw8vEXdlgh7SfUqRTYaTj/vA5wPuo0bz18LZD0dz2n7pVX8WvB5Wb+V16InxCTcfYv+plOOYV07vHy3tKsCP+WPpY32utHmsTxvTCeshOpxnjDPB+QUsd9vMY67QuT9qBf0UrbXrdYBq7VETgvwI8Uvuo7QhwhyhN57dDq3Bk/oNIBOgB/VWywfhqhEjDEBMWdYdy+qf4HloIDOkaJF+TLalZ3EUsuUQiOL+yQzENPbVZ59K44fIvIA/gMA/xKA/wUz/xMi+jEzfwEAzPwFEf3oDd/9NwD8GwDwl/7SXyoeQVmxjaX45ru/RQvf9KB09Pt7vvob6zxvY6Qef+Yt2vQb3evtr0NE/2/8wDHsVxvZUAA4NmrdJIoeJ3COJa2rRPxoKHqBPBdL+fjp6vMcR2A8jvZ5/OxtpM/TUQKWw6wnlu0d+l5xijSeHQIhQ/iMiAgpavWhccJ+f8Buu0Nm4DJlzf8mrFc9OvaYYwacx7DKGPqAaUzouoBVD7y+uUCc99h54L4jOJISp3K6JjBLv4qyVZ7vJGvx4uJywXfSjsQyugaKkNfXx318fIljO9nAlgX4oRv6dy3/NwE0Lah03M7mWcs1nGsBn8ehwt8FAB3PweO2tZ+xZ2sBH1OyjyJ+TrIWn19fLu7XfOoI/LH5jLImTGetK4SO7Dct3avWTvXS1/F0JB7UAjCop7wLARebNZglmmSe5wVgEGPEOM24e3hAUsPCO6c8QG7xHDY+x2TLbxqzpp/q76YMeE1rrKSn7fuPVkPOhcvgiXucZC2ShZLbeJShsIifrH2YhC8t50ZxqnMtpVjHKNc1XIBvVjJXCB/TOI6YY8SoxIcpJwTv0QevqlETRcAOBoQZATcAqRJUyhK7RlFGbQvnYlSUVLMgZeovLzYAM6Zxj3makJGRkKzpSqyovBveF/AJLLwBOTGSVWjJyiWSUuFMcLCoI+W/SAweGRwlHONUY/jHf/zHdc488VlWU0zInCW1Kyqvz+4QcZgiXt/v8fW3t7jfbvHll1/jZ7/8FbbbLdI8YT4chMdn3GsVr1S5co726ydaimqhvUHqcfhbyvLLMkYJxZPdKtoaClPV79oGm3ePNvnjM+XoaU41jkrLIT+a6eJck/alzYeBPVn5KnQj5ea70GgfyQAzzrDSW0ULsjVf1GHm5hNo9q72iWWzzYDMaUAjqp7oqCMdys4r2/vKeD3ZN7W9ttsQLM3NoJ7HkQi239uYwngdWQBrp8/bMjWdagw318/1vK2cUGTP7giAB7xEcLnQwfcrJdd18F1XUlNh6XFZQEoBDVjWoXWOnUshKGkyCSdO9gpMiNMQOcMDCAp6ScSPRoRAnaCAgqSaelbAHgK5IFFFzsF1g4BVgozL+zr+2vl17waQCuijzw6LKnFSsAAQoN3ZurVoHwNbWxYTHTeus4KO5typxvH62bPFfGqlnG/aqLIf6HxzZHTo2h9HP3ovACg8jMxconxK0QCLyGmAH+G6a51T8hNCEDJzarcr5TtDvVebbl6+v+AjdAv7Q/q4tYtq3y/6BNXEMmD3STtLB7AtF378oZOtxYsLGFBaL1915/K7/XtTspl5QZSCelDp/si1j+wzKSfM86gV3Sbl+5qP5lC7v+olHRA6j9VKKlQPg8fQiwMrOBZghxjBOXjIHuYdofPNeUFtlHGN0KnPJg4gwPRv3VFZ+sXmg/ZjoVNRDU6bLPqUjSVzjSSuhOXfLW8F/DBzAvA3ieg5gP8jEf2n3+Z7+t1/AOAfAMDf/tt/uw0+xlupGUdkzU/cYfHalone/A3foydfvukjjyzZR/f9DmkPw+/5kKnyR2bu99ygecYnPtoaSMz8g8fw4tlnLAah5ZhKxE91NDEaPagBCkSrKYoOSMa2WXv1Bb2xz9uFoW1rv1j0T6L6+cUVqFmGBfzhet96J20lLeYrMzDHiMPhgN1ui29evsSvfvlLbC4v4YYerusAT0BwoGDhgITOE1LnsFoFzHMApxV+9Plz9J6wvd8BM+NivUZkwi4GzJnAvkMcBmQvPBsjTrcWP//8c36T8Vzfr5sSYOHnNWWqPfTq5+379p4Y6uY1DOGpoa1b+3eBLEXRKErysv3LA7F6Yo6f7U2AUvu3FtD5LmCo/V5bhr5VsJ+61ynW4h//5Ef8pueQnxrpdKSXy7Xs83bo2IFathRLu6hvsWkXel1Tqu2C7f5OUKXK+woOkXhmNps1nl1fI8aIvusw9IMcWEVhtyvIL0cN30/Tt8WTd/Rsiz2ClBem/lUOVe+avP6jfrTn885O8cUBrmNxkrXYh443jTNfSj8LoTppygDrHuV1y806IKXSCAlFqeyxbDpq3YjL5bkYZXOK8GxVPeT5M0QZlDVWq55YtEqGRu/ZvG4MAOt3MQhF7ZH7uRKe31YYmuOM3WEPQCOZplEiJDqCCx6cCYhxmS7M4uUqkQrFkytAQuc94B0CCbgUfAATISuvAztCihJdptc4yRj+rb/1N6Vyd7G95EVSA2XOGYc5IWUBe7aHiDlmvH7Y49vbe+wPE17dvMLr2xvcb7fYPjwgThKmnmMqEROwn8LieKRNHS/AJ+VYw+Cjt4728+b1k9cpxsnionXDaJHTbHesesujb5fv6j/s91E7uHT26dbis08cOx1IR5CImawOIWZQpma/kB9H1ZlUaDcyCVaaa+qY0z1Etlh7LipACtCqIrp3K/F1SVmqW6Ksda7GhnRTc/7pPSxCwYzNNg3Z694MMHKqI7HYLYs6bfepbSFA06GovgEUkNkShFotykrOs4HySnB6qjF88ZM/ZjMmjUuUwQKa+ABQ1tRVBrlQomkAV9LuiEjpbeS5SoUlYi13jgrGkVRlckoG7XWfcsxImYCY9Z5ce8975dqReeVL/+gGD9FB7aiVtGQPR65JR6rAQTtuTAI2ljOCHLLxrC1SveQa4OaMJ2g6nNA4ZLLzmGydwRw/nJIOd16M76nG8Sd/9Ie8BGywMBRam6FERRBp2qW2WS3yWkFNonwqMAjtR43U0KpaBsZYtE05UGXC6zrnJZCj6V2mQtn6k7RQaZ9x38k/tH3QNlb0oL6vz1DVLZ0Q9ny2j+i8XYBbVvGxlWL/UBn3hW5Yz6+TjOEnn37GptfJ3+w2Vc9e6PwNQlA5fR6dcmYA1NcwqjEupdsF+JlLBFR9PlpekdQRqNW6hMvHIXgpXOSc2HDBi44cPBAU7PG2pwOVHByQLA2Wc0G2txrhWaoolx+GAVjM+m/VvTOy6lH6vvJqWdGDzOJ8M71cNeTvHaPfqKoXM98S0b8L4F8D8BUR/USRv58A+PqtrnH8YrGYjz/7aLjf5srffdGTyFNK0OmuWAb5N7rX0897bLj+0DEUZHsFsETByATNEvTDECcfs4Q2s4Q2s6OC4tp6rSh6+4ikio69XoZ3A7JXurJhclF0dN6XnrDSqKBqmDJqJASDqo5E6pFcNEcPurL5yiHAYOz3e0zjjHGc8M/+6T/FN69ucf38Gf7VccQ4z+hXPa4/ucb6coMAYNUpUZwD0rMBq8HhxbMBnz5bYxpnbB/2+NUffo3bm3vsxoSXtwc8HCJmEPYImFURaAfnFGvRxuPNUufNEuypoc41gq9ccXHt1pui7S6fs8M850p+1xp5T7S2tKtWFzlOq6jvG1AF1NdvAnFaaT0gj5/v8Wee+pyVtP4e4OiHjSHV+7b3WAJxrG0wjx/Ke7UdS6OLVHtkXRdmX4ryoYc4L1+TAr5FeRRtDJ33CM7BvPjmifI+4PrqCillHMYJh1HSAkr+PJZKwVMAo6T5jJinuTS8erDlc5kZs6aXGVCUs3F4VYW5neumsBlPjSv8QLVK4inH0RPwqdf9Lls/ZXCeASgo4yXqLzIweakCU9oKFuJmEsAok5DMZwiPUiSxt7NYQsjEmOYJ+/0ezjnMcZa+88KHNeVZ2gAufDsC+sj9Yo6Iul4dSboHQUkMNT/eW0USltLsdqoJb5AHHLA9bEG38rdZqz664LF5doXVsAalBJ7GUn3FvJNC0impHCnnktbhncd6vUIXAhwcevLw5DGniO3hgClGZAIsXirHVMbgFPupRYXYuovK4ZMz4zAn3B1mzDFjd5hwe7/DOEd8e/Mav/j1V9ju9vjmm2/w81/8AtvdFtvtFvv7O4n0Skmqd+Us0T4pAlmifuipfXKp136vfLeiWFOHljdQFZNaj+aRFmN7fpaEBwAVKCyb9lGkHdf1VyN/ePmZ9ow5au0P1m9QU72dGnfsCc7lsqdIljuZuiIpXg5g72qmnRrtsghNca99JUa97otGhVTOVXswi7izf8vFJQKpRs4TU9mKTbJ9n4GYEniqQI8RPTvn4HoFgSYgclQjuvZFeRwYHwgaoxcACyeY7aWpnOsZkWckkFa2McCH4R0hkEPOhARGbg3PE4yhNlcA6pR0r2A43yF0AyizROUwpIS2lwqBTCwky1n5yJzA1yAHCqHEDpZ+sfOGAO+F34VInH26nSO6HSITOAmxdSmf1QVQr1XDqHSfpMMXMmIDjiXlwzuJRvKu08hKAx2czltL5GQFwtWdo2lsALRqmIE+AiQxlL+qgPlixladDQr0y0HCOSPHCE4RBuodR/2cYhyZgah7tEU1ABa1VXYgmMOqOITIuDIBKE+SY7/g7Ek5gyPrs5sTW6N2dBwLEAPbw2RiCbku67g3qWFUQZ2WY48g9hAAOEsvh6lQrGvflegxI9020MfcOyU1E5LWqXhpY+wLrxoV/SGWyFyzber1pQ+9g2Qy6HWK/neqMYSlnvFiPpkDqowtl/gsWIN58brdlR7/Lrw+nLHb3uP+7gYxzpgOu0LsXnTYI/GOJAJPo3zWqwDvHfoA9Eri3HlC8PI6BAF/CIzgIMlYDC1cUcc/J9VJrUIAAFCW0aR2/upk0KFSjQsETQ+3hroM4dGVfaGWeVfbFnIuLAJD3yBvU9XrcwCzToA1gP8ygH8LwD8G8HcB/H39/W9//+3eILqn1H8+sYngeGIcX+BNF63G4tve/7vlbTUqu+j3t+Hpp11O/be/32N5+fIlIDGe+OFjSHAkXlQqTkdSDmJuaXwWE5vU616qY1ibtXvYNCZC8Zo+efdFiUvTGJYr2my6cg958Ab0sc+1N1uqlW1qy2JuMiR9hYVk9eVXX2OcE54/vMAf/Mkf45PPP8NqXmFzuRYADITgJA2G4LBeCWEgM3B9sQYzsL0/AJlwcXmB+92IGO7htiMmsdzgKsYQiOj5qdbid4M+TX/S8WdbrpTlnFt+jt8ADtXNvm7+FSR5GvR5Y+vKuH4fqPM2oE/7ue8Cbd4ULVQOdW6I/JqfeZ6Bk63F2o6nxkImrlbTOvoTo07947212BkGwoqGUgaXyr+hDggu3yT9nugsdt/jm0vVp2G1kopg04xxigWYsXnR8iQtwGttYUoJ+90O4zjWzzRjB0gZ8rEp3SqA3BHw1W4etpXopYJGBRkRdNOOk61FB2Bjin95OqvKJX0owU6iaDhnVWDqXubAooxCAB8Be+SiETY3tGIHSMKh4wyphpXKpsnISMpPIcpZLvPBFNXMNeIHDCnzW/pMPateSBGZGS47uHwUGg/ZR3e0AzNLueUYEXKHFSTk3ra9rJFHFuWTOZd0s6zksVCgtwsBQ9/DwaHTRK+cM3JMEkFj8wrqsT7RGFYFXNlbFMSLiRFTxjhn7Mco0T77Ca+3exymGTd39/jm1Ss8bHf49tW3uHn1LXa7HaZpxDxOyEn48TipZyVr6m/OBfQp87fdqFu1oz0fqfnD9+o93Pxu14jtOXZOPrLcF4e4pdyQ8YIsVHr99/Lt5vZ89G9r8+LDJz0XqcxjS2l6/MNclkzZ7+yNCgBSifYBH3e0KT5H1ywfq0bR4ivW3RY0kC2ase3vtn/4yAFRz6I2+ie5VPaIx91b22Q7TPFak+hknjwys5COo+4T9iGGU94uSzFzICcReAIy4GRrsfSB7hlZU85cIW8GqpfCl5QqNVPBrOl56oWXtoYKsDRnrc0V7wO879V4t1QjBmIE+1F6NWcUM851QgZtn7dIsZhkB7e2c0Om7bRSojojFme+nrWmc2cnYANDHK9O9W/YHIAra9emj+kwRhCdVXeQ1LDG0WV7se6jTp9JW3LCtVidg4vTmhudr4U+SmEBUpuEYNE+BRhyDk71i0RV67HoKYnI8ZX7yD5BDDZg1qH0o/MBXiO9JJrPAG4uOlNRgYikUpvpiLlJdKwcE+Xa5be2Q6jcNMqjibotI0koXELmPKrV//TtsjlVnaDOG5R2nXYtWgRS1bty87r8Xmzw9p69pub9xWEj/9dUd+aEOI0YD3vEOCPOs+oNbXuW7SMnkT3eE0JwpXpXjewhhCBZG6ITkpZxF0W+rign9AgM1d0UbCLS6Lu6Z9Tf9Xlqu5p+KYV9GMZVJil6VhTAeowBuBJV+n3yNhE/PwHwD0ly/hyAf8TM/yci+vcA/CMi+u8B+DmAv/MW1zqZfDcQ9L1fXs6d3/Iy3y3v/AZvLV988QUA/CtE9P/BScbwd/s870PaveFdPu3bXJuoqGMdgH/n3a7F4xY1SvpbAicfgnxHFM5v9JnfVGKMwMnW4oczHkdH9e9emga1QPPbtE3nxXtYi2/Tou+13n+4/ID5/vss+lTvYQx/cBtP9823veATn3sKm/lNb//Gv9s0ftP3vnsOvqe1eJZ3IYQyvL+7MfxwjtJ3Kz/8oD7pWvxdHT1v7obfcKL8nuvMRcdtMBeNZj/hGP4e6A8nbcLCA/HbyYmnxSNI43uuT+9zUIjoJYAtgG/e201/9/IZfj+e9y8z8+c/9CI6hj/D789zvQ/5fXnWk4whcF6Lv2M5r8XfXn5fnvW8Fn+Y/D6M46nH8LwWfzdyXou/vXysY3hei78bOa/F314+1jE8r8XfjbxxHN8r8AMARPT/Yua//V5v+juUj/V5P9bneko+1mf9WJ/rTfKxPu/H+lxPycf6rB/rc71JPtbn/Vif6yn5WJ/1Y32up+RjftaP+dmO5WN91o/1uZ6Sj/lZP+ZnO5YP4VmfZi49y1nOcpaznOUsZznLWc5ylrOc5SxnOcsHL2fg5yxnOctZznKWs5zlLGc5y1nOcpaznOUjld8F8PMPfgf3/F3Kx/q8H+tzPSUf67N+rM/1JvlYn/djfa6n5GN91o/1ud4kH+vzfqzP9ZR8rM/6sT7XU/IxP+vH/GzH8rE+68f6XE/Jx/ysH/OzHcvv/bO+d46fs5zlLGc5y1nOcpaznOUsZznLWc5ylrO8Hzmnep3lLGc5y1nOcpaznOUsZznLWc5ylrN8pHIGfs5ylrOc5SxnOctZznKWs5zlLGc5y1k+UnmvwA8R/WtE9J8Q0Z8S0d97n/d+10JEf0JE/w4R/XMi+qdE9N/X9z8hov8LEf3/9PeL33Vbf4icx/DDH0PgPI4fwziex/DDH0PgPI4fwziex/DDH0PgPI4fwziex/DDH0PgPI4fwziex/D3cwzfG8cPEXkA/wLAfwXALwH8+wD+O8z8z95LA96xENFPAPyEmf9DIroC8B8A+K8B+O8CeMXMf18n/gtm/jd/dy397eU8hh/+GALncfwYxvE8hh/+GALncfwYxvE8hh/+GALncfwYxvE8hh/+GALncfwYxvE8hr+/Y/g+I37+8wD+lJn/nJknAP8bAP/6e7z/OxVm/oKZ/0N9fQ/gnwP4I8gz/kP92D+ETIwPVc5j+OGPIXAeR+DDH8fzGH74YwicxxH48MfxPIYf/hgC53EEPvxxPI/hhz+GwHkcgQ9/HM9j+Hs6hu8T+PkjAL9o/v1Lfe+jEyL6KwD+FoB/AuDHzPwFIBMFwI9+h037oXIeww9/DIHzOH4M43geww9/DIHzOH4M43geww9/DIHzOH4M43geww9/DIHzOH4M43gew9/TMXyfwA898d5HV0ueiC4B/O8B/A+Y+e533Z4Ty3kMPw45j+OHL+cx/DjkPI4fvpzH8OOQ8zh++HIew49DzuP44ct5DH9P5X0CP78E8CfNv/8YwK/f4/3fuRBRB5kA/2tm/j/o219pLqDlBH79u2rfCeQ8hh/+GALncfwYxvE8hh/+GALncfwYxvE8hh/+GALncfwYxvE8hh/+GALncfwYxvE8hr+nY/g+gZ9/H8C/TER/lYh6AP9tAP/4Pd7/nQoREYD/JYB/zsz/s+ZP/xjA39XXfxfAv/2+23ZCOY/hhz+GwHkcgQ9/HM9j+OGPIXAeR+DDH8fzGH74YwicxxH48MfxPIYf/hgC53EEPvxxPI/h7+kYvreqXgBARP9VAP9zAB7A/4qZ/8fv7ebvWIjovwDg/w7g/wsg69v/Q0jO3z8C8JcA/BzA32HmV7+TRp5AzmP44Y8hcB5HfATjeB7DD38MgfM44iMYx/MYfvhjCJzHER/BOJ7H8MMfQ+A8jvgIxvE8hr+fY/hegZ+znOUsZznLWc5ylrOc5SxnOctZznKWs7w/eZ+pXmc5y1nOcpaznOUsZznLWc5ylrOc5SxneY9yBn7OcpaznOUsZznLWc5ylrOc5SxnOctZPlI5Az9nOctZznKWs5zlLGc5y1nOcpaznOUsH6mcgZ+znOUsZznLWc5ylrOc5SxnOctZznKWj1TOwM9ZznKWs5zlLGc5y1nOcpaznOUsZznLRypn4OcsZznLWc5ylrOc5SxnOctZznKWs5zlI5Uz8HOWs5zlLGc5y1nOcpaznOUsZznLWc7ykcr/H4btwCMbp+DmAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHu0lEQVR4nOz9d5RkWXXmDe9rwkdkRnpTleVdd5n23tCYbkAIISEJRiABGo2EXqR5F4M0klgsPlqzGJDQO1q83zcjpBnNgEYSEmiJkUAgPDTtfXVVl3dZNn1mZHhzzfdHRmXV85zoyi6ojCyK/WPVondGxL3nnrvPPufcyHweKwzDUBRFURRFURRFURRFURRFURRFUX7MsVe6AYqiKIqiKIqiKIqiKIqiKIqiKFcC/dJDURRFURRFURRFURRFURRFUZRrAv3SQ1EURVEURVEURVEURVEURVGUawL90kNRFEVRFEVRFEVRFEVRFEVRlGsC/dJDURRFURRFURRFURRFURRFUZRrAv3SQ1EURVEURVEURVEURVEURVGUawL90kNRFEVRFEVRFEVRFEVRFEVRlGsC/dJDURRFURRFURRFURRFURRFUZRrAv3SQ1EURVEURVEURVEURVEURVGUawL90qMNfOELX5Dt27dLIpEQy7Jk9+7dK90k5ScAzTvlauKBBx6QHTt2LPm+0dFRsSxLPve5zy1/o5RrHs07pd1ozinLha7rlKsNrXdKu9GcU1YCzTul3WjOXTnclW7Atc7U1JT8yq/8irzpTW+SP/uzP5NYLCZbtmxZ6WYp1ziad8qPK0NDQ/Lkk0/Kxo0bV7opyk8QmndKu9GcUy4HXdcpP85ovVPajeacshJo3intRnNuafRLj2Xm8OHD0mg05Jd/+ZflNa95zSu+r1wuSzKZbGPLlGsZzTvlx5VYLCZ33nnnSjdD+QlD805pN5pzyuWg6zrlxxmtd0q70ZxTVgLNO6XdaM4tjcpbLSPve9/75N577xURkXe+851iWZY88MAD8r73vU/S6bTs3btXHnroIclkMvL6179eRERmZ2flAx/4gKxatUqi0ahs2LBBPvKRj0itVoNj53I5+bVf+zXp7u6WdDotb3nLW+T48eNiWZY8/PDD7b5U5SpC805ZCaampuQ3fuM3ZGRkRGKxmPT19ck999wj3/72t+F9zz77rNx3332STCZlw4YN8kd/9EcSBMHi663+RPPhhx8Wy7LkxRdflLe//e3S0dEhnZ2d8su//MsyNTXVrktUrkI075R2ozmntBtd1ykrhdY7pd1ozikrgead0m4059qH/qXHMvLRj35Ubr/9dvmt3/ot+cQnPiGvfe1rpaOjQz71qU9JvV6Xn/mZn5H3v//98gd/8AfieZ5Uq1V57WtfK8eOHZM//MM/lF27dsmjjz4qn/zkJ2X37t3y1a9+VUREgiCQt771rfLcc8/Jww8/LDfffLM8+eST8qY3vWmFr1i5GtC8U1aCX/mVX5EXXnhB/vN//s+yZcsWyeVy8sILL8jMzMzie8bHx+Xd7363/M7v/I587GMfk//zf/6PfPjDH5bh4WF5z3ves+Q5fu7nfk7e8Y53yG/+5m/Kvn375KMf/ajs379fnn76aYlEIst5ecpViuad0m4055R2o+s6ZaXQeqe0G805ZSXQvFPajeZcGwmVZeV73/teKCLhP/zDPyz+7L3vfW8oIuH/+l//C97753/+56GIhF/84hfh53/8x38cikj4zW9+MwzDMPzqV78aikj4mc98Bt73yU9+MhSR8GMf+9jyXIzyY4PmndJu0ul0+MEPfvAVX3/Na14Tikj49NNPw8+vv/768I1vfONifOLEiVBEws9+9rOLP/vYxz4Wikj4H/7Df4DP/u3f/m0oIuHf/M3fXJmLUH7s0LxT2o3mnLIS6LpOWQm03intRnNOWQk075R2oznXPlTeagX5+Z//eYi/+93vSiqVkl/4hV+An7/vfe8TEZHvfOc7IiLyyCOPiIjIO97xDnjfL/3SLy1TS5VrCc07ZTm4/fbb5XOf+5x8/OMfl6eeekoajYbxnsHBQbn99tvhZ7t27ZKTJ0++qnO8+93vhvgd73iHuK4r3/ve9374his/1mjeKe1Gc0652tB1nbJcaL1T2o3mnLISaN4p7UZzrn3olx4rRDKZlI6ODvjZzMyMDA4OimVZ8PP+/n5xXXfxT51mZmbEdV3p7u6G9w0MDCxvo5UfezTvlOXiC1/4grz3ve+Vv/zLv5S77rpLuru75T3veY+Mj48vvqenp8f4XCwWk0ql8qrOMTg4CLHrutLT0wN/Bqr8ZKF5p7QbzTnlakLXdcpyovVOaTeac8pKoHmntBvNufahX3qsELwREVlI6omJCQnDEH4+OTkpnudJb2/v4vs8z5PZ2Vl438UDRFFaoXmnLBe9vb3y6U9/WkZHR+XkyZPyyU9+Ur70pS8t/mbplYBzzfM8mZmZabkgUH4y0LxT2o3mnHI1oes6ZTnReqe0G805ZSXQvFPajeZc+9AvPa4iXv/610uxWJR/+qd/gp//7//9vxdfFxF5zWteIyIL3w5ezN///d8vfyOVaw7NO+VKs2bNGvnt3/5tefDBB+WFF164Ysf927/9W4i/+MUviud58sADD1yxcyg/vmjeKe1Gc065GtF1nbIcaL1T2o3mnLISaN4p7UZzbnlxV7oBygXe8573yH/7b/9N3vve98ro6Kjs3LlTHnvsMfnEJz4hP/VTPyVveMMbRETkTW96k9xzzz3yO7/zO5LP5+WWW26RJ598cnEzY9v6XZby6tG8U35U5ufn5bWvfa28613vkm3btkkmk5Fnn31Wvv71r8vb3/72K3aeL33pS+K6rjz44IOyb98++ehHPyo33HCDoUeu/GSgeae0G8055ccBXdcpVwKtd0q70ZxTVgLNO6XdaM61F/3S4yoiHo/L9773PfnIRz4if/InfyJTU1OyatUq+d3f/V352Mc+tvg+27blK1/5ivzO7/yO/NEf/ZHU63W555575G/+5m/kzjvvlGw2u3IXofzYoXmn/KjE43G544475K//+q9ldHRUGo2GrFmzRn7/939ffu/3fu+KnedLX/qSPPzww/KZz3xGLMuSt771rfLpT39aotHoFTuH8uOD5p3SbjTnlB8HdF2nXAm03intRnNOWQk075R2oznXXqyQBV+VH1s+//nPy7vf/W55/PHH5e67717p5ig/IWjeKcvNww8/LH/4h38oU1NTi1rkirLcaN4p7UZzTrka0HWd0g603intRnNOWQk075R2ozmH6F96/Jjyd3/3d3L27FnZuXOn2LYtTz31lPzJn/yJ3H///bpBUZYNzTtFURRFUZRrA13XKYqiKIqiKNcq+qXHjymZTEb+/u//Xj7+8Y9LqVSSoaEhed/73icf//jHV7ppyjWM5p2iKIqiKMq1ga7rFEVRFEVRlGsVlbdSFEVRFEVRFEVRFEVRFEVRFOWawF7pBiiKoiiKoiiKoiiKoiiKoiiKolwJ9EsPRVEURVEURVEURVEURVEURVGuCZbtS48/+7M/k/Xr10s8HpdbbrlFHn300eU6laKIiOacsjJo3ikrgead0m4055SVQPNOWQk075R2ozmnrASad0q70ZxT2s2yGJl/4QtfkA9+8IPyZ3/2Z3LPPffIX/zFX8ib3/xm2b9/v6xZs+aSnw2CQM6dOyeZTEYsy1qO5ik/RoRhKIVCQYaHh8W2X/k7uh8l50Q075QLvNqcE9G8U64c7co7zTnlYnSOVdqNzrHKSqBzrLIS6ByrtButdcpKoLVOaTeXU+skXAZuv/328Dd/8zfhZ9u2bQv/4A/+YMnPnj59OhQR/af/4N/p06eXLec07/Rfq39L5Zzmnf5bjn/LnXeac/qv1T+dY/Vfu//pHKv/VuKfzrH6byX+6Ryr/9r9T2ud/luJf1rr9F+7/72aWnfF/9KjXq/L888/L3/wB38AP3/ooYfkiSeeMN5fq9WkVqstxmEYiojIddmsOM1v7xwHv7mJxeMQ92c7IR7o6zHOEwQYF4tFiEuNGsS1egPihu/jAWwHQo9er1QrRhtsF7s7EcXY9kOI88UCxIVyGeKOZBLi3h68bj80v/0s1+p4zGIeYs/HjurMpCBOuRGIS7UqtrmCsW+bbXCcGB6TrgM+HwSy+8QJyWQyr/iey805kVfOuw+9/z0Si0ZFRGTdWvy2Ge+OyPTUJMTzBfOeHz51CuIzY2MQd3V0QNzftxri2dw8xIOd2FeDfVmI/TrmjIiI42CuZtP4mUgkAXGhjrlsR/Gei+A9TcTx8/kyji0RkdOnz+BnEjiGN6xfD3E8hnlXpTxzHMzTcrEE8STdGxERl+pItisLcSq5cC+q1Zp85D9/6pI5J3Jl8y6b7Vz8bQXXdVp+9pXg+ysiEqP+dRysNZf7ixHm+/EHtm1OJS7VCtfBuFbHmtuo4z1O09ho1LF2MXaLfohGsNZYFuaA7Vz6twLO35/zuDZeQzQShbhWM9vYaOB1eR7mru8tzDW+78uhw/uveN69Us69+J1HJZNKi4hIJIlj2InhdVk+3m/fxblIRMS2sa9jdhrbHcO+yTWwb+MBzfMRvJ8WlSHH5YosYlNehqTgGdI5alW8jlgM89ihqm8HWBtDY1YQadAcGgquJWwL+zY3R/2Sw1rW34f54NgeHr9h5rDP6xda33iVC3GxVJI73/xQ2+bY7OqMWM11gd/Aa0klsW55AfZNrYLXJSLiUJ2xaM2xVO2qV7FvYjT3eD71t2PeczeC94DnGiojEgTYhgjVzzrVkYAWsCHl4cI58CQhrVG573j41Oucp/j5eJxqHa+JRSSVxvtXK+Oa6Pz4C8NQyrlKW+dYcToXk4F/M9CmnAloLR7yBqIFl//bhnQOuh8Ord+d0JzfPDpGEMH+Xr2tF+JIBo9xaj+uR/08jiUnoHlAWuSdxfUO2+TQvifq4Fzje7y3wjiZwjaEEXOtUeO6HGAb6s31YxiGEpRzbZtjT506JR3NdQyP4Wvlt1O57jQaWEd4fbrUb2JeiX7hNnke1nA+h+sui+jFIvl8XtauXdu2Ofb+N9wtbnOczM7OwmcS1ITOThyPQYB9JWLes6kJXKOcGp2B2Kf6GUlgDmS68Jz9Q1inqkVznu/qxHk5CLGd+QLOmZUcrrtnc3PYJlrrJWmvsGF1v9GGkXWrIH7pyEmIz52Zgtin50B8XckM7ueH1w1DXKyYe+ncND6zKRfxOiPN52NBEMjMqbG21bqf/4PflUhsoQ/X7bwFPjM3exbiM2MH8Jiz5nOLgNaGr735boi3Xb8L4m8dx2O+/Og3Ie7J4vOxu3begefzzHVdhPYgxVIO4snJcxDvO30I4jWr10J87w33QbyqC/O+wYsAEXnhGB7zuUPPQGzbOD+W65iDI/0jEE/N4jiYmxuHOOD5WEQGs1sgroU4/k+fuND3fsOXo/+yu2217r9+4X9LovkM0aJ1t0PPUmx6DmKLuabi5y+2w/sJmjto7c7Pq8XYj9C6zjLnHofW7nwOnt9EaG1BTeDjMbzeXTjHpdtt7Dco5vVOQOvCBq3Z/Bb7CX6u7tPaouYt1NdKqSy/8TO/uGStE1kGeavp6WnxfV8GBgbg5wMDAzI+Pm68/5Of/KT84R/+ofFzx7LEaSaLQxOuS3GEFlXRFgsY3rNEKLEjAca+c+mFPH/pwXCbW/2MN8Y2bxbo/Q4PliX6wWrxpQefk49hPuS7dJv5deO6W33pYRxz6Ye8l1oIX27Oibxy3sWiUYk3H/jxg3kuC/EYLpKqdXPQRiK0iaRrjfCGkB6i8uejFMfo4aQv/AWFiEuFPk6fiUbxOhoWfekRW+pLD+ynum8uWKP0xcn5L5Ze6Rhxivn285ceAW1q+PgiIq6LeReP43VzG5bafF3JvLMsa/HBy5J/nke0ej//jCfiy91YLv2lhzmGOdeXiv0lXg+WqBOtvvTgBy78pYexQCECox7i8Xiz7Pvmw7Eg4AUL1Ynw8h6GXKk5NpNKSya9sEiIpi73Sw+zr80vPXABUo/jptTnLz18Gp/RNnzpQb94cGW+9OD3XPpLD9/DfvE8vAZeyLmv4ksPj7/0qGPneY45T7RrjrXsC7UuoPUBfwnJ95O/0BAxH1hf7pce/H6uncY6qkXJ4I0Rx7yB4EbxOfmaQuGLaHGvOBWX6hd6P99/IzY+3+peUN8Z96sZB63PwVzJvBPLWjyfea08P1IdfxXz5ZV+iG1xnoZm4lnmTYTQGE/updcBRixL9EuLc5ovL9XXfA1Uc+n9YYv1jmUkP8YXzhm0bBNzpebYjo4O/dJDv/R4xfNezJWsdW7EXfzSgx/88aVG6EvEIGixruL9BD8YXOI5Atchh+qQS21wXLPO8Hu4ma6L666l8s5oE8XcLyIiUdoLc97wMblW8bzObeLjcT+3OodlnOPy9npXqtZFYjGJNvfQ8SR+QRWt4P4iQntvP4a/eCIiEtB1xOkXs5Jp/KWqKL3u0r2K0J4mTr9s+2q+9PAC+gUZug4+Z5SfMaTwnKk09lO9xZcefN18HbaDsUsbpWgC2xChX15xaQ/U6heV+ZxBSDW+xVhpV61LJJOSTJ3/0oOeISz1pYd1+V968HrkR/7So8UvjPKXFBH6ZUvzSw+sfeaXHpee35bjSw/+EuNKfOnh8dqicXm1TmSZPD1anTwMw5YN+vCHPywf+tCHFuN8Pi8jIyOSTsUXH6j3dXfDZzoy+BvAffSbCkka5CIiZQ+TqE6FIjeL344WavSXIPQba7U6LqJ4gm31IP/ibylFRObpt9N5YVagv0axaNHc39uFr9NmIfTN39jg32zljRUvzHPz+FsF8/SArkx/2TFXpQdbLR9S0INDegBzcZ7wQ8dL8WpzTuSV865RzYvd/O22cjEHn+FBeeY0/pZHsWr2d24Oj1HIY/93pvGvlMYn8Vv43Dz+ls6ONUN4zhL2/0sHRo028G+0dNBvY/b3428bpONZiHuiuLgI+GEHfcmRp79OEREZO4N/6THQ1wexV8Hx1aA89Ok3lR16IFqv4lgq5KaNNqSS9OCPfvuo1sxL/s3fpbgSeReLRRcXq7zwXerBRKuFMT/sX2ohbFwDP0QwxiG1ocWXB+YXeFiXud7FYpiXUfoNbpvayL8hytcsYj405WM4tDqIUxt6enFsrFuzDuL+PvxtsJkZ/I03EZHR0RMQn6K//ioUF67DePizBD/qHGu5oVjNLw4c+u31CMUBjTfHNr9U5Afro+M4d5yZwb++euEA9sNQFud12m+Im8D7u2kz1kIRkSh9KBrF+xlxMQdnp7FObNyAv8nH03hoLzUuzM8ENGfyAtSmLzGMh4jG83J6YBNp8QUGPaxs0Fhzoxf/t/kl9StxJWpdEDqLC2r+rbJamb5wj5hrOcaj5sdo48l/NcG/FRWNYI4IfSkZ0Dqq5QaCvkyr0jn5C1n+TfSGj3NOUOWHttjHXqvfuOcv6CJ0nVFsY4L+wtN2cQ726N4EVJ/icTPveJMi/OAiceG3UEtz5l+LvRJXIu8uBa97lzr/+Tb8aPAxL/3beyLmOOX1u3iYm5PjOYi37RiEeF0S49mjmAP1GTx+pcVfM/NfHXHt4b+OjPCX2VQvo/QLKy7V9FLdXJ8Nr8LfkOZ5uLG4prvcX/b4EefYi75oa/UXudcCPA54n5ukh4sr0Q+lEu4POMcu9xeNLpfLOf6VqHXzhcLiwzv+C76wgOOVfwG00eK5QYT26OUi/6IGfiagX5Jx6ZdKazVsU5Gehfi4rRURkVOn8K8FkmlcGwRU+yr0/ETouoYGcK23tg/X+ptXmX/psW7jeognx/Ec+Ulc887S85MMKWcMjWAbVg/hmvbI8RZ/AVHHeSEZw/35+Qfrge8LPtW6ND9qrRPLXnzamojidfKzqzOnT0NcmZ5o0SLMuXOk3hA7fhxi/i3wKP2SQH8n3s9MBz4/my+Yzy18uv5VvXh/qvP4mXQUf0GpJ5GFeM3qjRC/9PKzEHeTCoeISB/Vz9s27YR4z+GXIY7QWjSkvxANaI1dLeQg9mvm+B8awedUU/RXVWF48V9gmGvTV+JK1Lqw+b/mAYzjQUzHDFqcKjB+IYnWufS68YtbrCZBf01i/BpQq+vlfjGeo9I5+AsK84AU/6hrVxOjb/mvp8NL72la/fIMf1HCf9nsNW+g1+pGvgJX/EuP3t5ecRzH+LZucnLS+FZPRCQWi0kstvTGVlFeicvNORHNO+VHR/NOWQl0jlXajdY6ZSXQvFNWAp1jlXajtU5ZCbTWKe1Ga52yUlzxX2+IRqNyyy23yLe+9S34+be+9S25++67X+FTivLDozmnrASad8pKoHmntBvNOWUl0LxTVgLNO6XdaM4pK4HmndJuNOeUlWJZ5K0+9KEPya/8yq/IrbfeKnfddZf89//+3+XUqVPym7/5m8txOkXRnFNWBM07ZSXQvFPajeacshJo3ikrgead0m4055SVQPNOaTeac8pKsCxferzzne+UmZkZ+U//6T/J2NiY7NixQ772ta/J2rVrX/UxVvX3LxpzJ0k7OBpDXa9yDXVmCy0Mpe0I6h6WK6j/NzOH2nw+CUWzOdv8HGo1dnehPmCkha/I2WlUWMyRzihrnnWSwdAtO9ZBnCZTpE1b10Dc1486tyIi3/7WExAfHx2DmLU52cvEI8MbVlJzSFuu0cIgp8BG141Xryn+SlyJnBMRiSSSEm2aNtUa5G+SJ436CdQNLtfNayXrF+npQd3Q7TtuhHg/eXLki6iPe448P4oV1Pzs7Db/NLC/D3+Wz6EO6YlRzEvHxWPuvG4dxN0dOJb8Buo7lllLVUSE+jJJmrpWgB3lkwy7I2RESBp+bIpsBeYfsbmkbRkjX59oU4OwlQ/NK3Gl8i4aveDpwVqHpik5aUS2aC+b2y11TOPzhiE03j+WM28lb87eJK7LGvB4jhjp9xva+XQOm7SIW2lj2qTrmkmi5urqVaipu2Ejaq5ed911EK9bg/c1Hkc/gErF1Dxn/dq9e/dCfPDwQRFZmGP27X/J+HwrrkTe2emk2JmFOYRN5Bmfbl3GNT09JmdQo/8bL+6H+OwZ1GTu7MBaOLiqB8/pYe2bK2BdOnQENX1FRMolqj0hadxPYs3u6sRals2idu1AXxZi12bNWHOt4bD5L3l6BGx2v4TWqeHHY2j9m1hshBfFsXWxV0ad2/MKXKla54bW4rj0Gth/+TKKecfT6DsRjZp5miSjxwZNuuzXwOss9rPh0uhwXWmlH+uTZ4d/6frKHkg+5UjIppoUBpFWxoMYJ+JUf6me1ko4yUbZo4PWMwmqdYbvk4jM53GMZsinx2o2spUf9itxpfLuYpby42AvqFZ6wz+6p8elMY7OfkJirr/tgO5xDj8zO4kd3zeCNTiVwvoZzuH7x9CeSkRE5qdxXexV8TNeQOt7j7xc2Nic1gm9A6jFXhvDPYuIyB233g7xnj17ID7jL3jKhUEgcyX0yXslliPvrkWWMjhdCZYyWb0a2tiKK5VzlnWhZFkWGRXT3DI9hePXcUyvplIR67rFRjzs80ivu+SlxpNVqYjzfr1k+gqUiviMJl8gnzkL5ye/jOvHBq1z1m/YAvEvPPgaiFelzDVunfruyeg+iFO0h6kn8BlNN0n38DMcr4b90E1G1yIiOQfvRZp8IFJdC5/xPE/MFXJrrkTe5XMzEmnKD+Wm0KPj9NEDEDdyOYhr5J8qItLZhXuzQ2fxahLk9cvPVo7TmrdEfrYzFTzn9KRpoL2aPDz6MlmI51P43O/2TTdCvGZoNcRpWjt2J3C/0U97IhGRoV48p0fPUtb34jnO5nB+LFRx/s3Z+AwprNIaOzTz/vmXnoG4d/UmiCPuhX6wQ3PstuJK1bowvFBOLLl0nWePiFZ2Grw09WmVZcx3tNRn/w32ODOtLFp5elAb6DrMRz6XnoMvz8nsh4NnVJ4SlrQRaemvQrHw/cT/fzUsm5H5Bz7wAfnABz6wXIdXFAPNOWUl0LxTVgLNO6XdaM4pK4HmnbISaN4p7UZzTlkJNO+UdqM5p7SbK+7poSiKoiiKoiiKoiiKoiiKoiiKshLolx6KoiiKoiiKoiiKoiiKoiiKolwTLJu81Y9KLeJK0NRsD0kfsuHhdzUN0oUuVlGjUkSkVEK9vtw86tpVSEsxQtrR1TrqQ5bJl8Iqoc5igY638BnUUG6QMFvcRi3NW65fD3FfD2rv5QvoCbJ+DXp4jGzfYbTBTaDG8uf+xxchPnHmDMR8Fey+ESU93mQEUyreQq/OJf1qhzR8o5EL1xmEoUwW8F4tJ6EVk8Ba0IKcmkEN0fFxzKHTZyYhLnvmd4h93X0Qr92Gmo1Pv4j6/qU8aiqPT6I+4+E06lSODOPxJTD1FKfGUF9zeNUIxF0dmBNzs3jd+/cdhHj7NvQ9SCVRd7Thm74G8RTlSQbjYgXHbMxFfVaLtC/PzaAu8zT1U71ButEi0uWin0MgmHfndfBZD78dOI6zqN3PGv5Lxa2EKdnnw/AFMIUlMaTjhSTQ6PtLaySz94jvY27adE7Xcel1uk6qj66Ln+9I4/0VEVm/Fmvo9duuh3jTZtQmXUUeH+zZYbHUfoBzj0saviIiWzdthnj1ENbp7dcvtKlcLss/fAnr8XISCWISDRbqiU1lwwroQsknoTiG84SIyKF9oxA7CawLt96O89GG1ajdev0m9PSwaLZpBJhPXt30gqpWcJ6eIN+lgweOQlws4Qx3+Aj6r6RSOOd2ZqhmcD+JqSvLeWyTxrbj+vQ65rVD48LhJGwhoWvzWHJxzvUvup++Ib66vOzYNiBuc203Pj0Nr1XJHypOutrdPThXiYi4VOty81j7vTrOmZUK3vMY+UvFXczbfB7ns+kZc31ZIM1zj64j3YnHjMVJN5nqaUca57toBN9fj5q5P5vDeTtNfigu1c+5KfTyiqfw9Y4ubHNhHvsh8M3E43nGp/p43v8rbDFulhvLslrrJ7fC8KxaAQ8AFotuNc9bVDtY07qKeTP9MuY+LcXFsknfv0a+Lv3ogSQikujGMVmZw3MEtInw6rQPIk8/N4Z1Pkc+MZWSubZ79PuPQByhfUiiqTUfBKYHU7swdLZfbS7+mHM1+mdcjW26koR+KGFznVDM43ixycPKsrEI2GLuf8ol/MzQEK7V6uTj02hgbkdpPJKdorHm8TwydRRzTcNzSIWe0dg81CM4n42O4R5ylnxdB11zrRF1cU4tF3C/XiSf1iz5TnRkaQ8aUC2kfuzqMPc0MRefO9Rq2IbhzIK/gtdo7+805+emxW2upVwH72cgvP7EfmrlgRtP4FwzTx4cc1V8LpSu4/2anMJ+4rnx6JkjeMKimXM3b9gKcYrux/U7b4Y4JJ/JOq2RpsnvdGQzekZGXPOR7P6X0OexRDm2lZ7z3X4L+lvtO4S+M3te3g1xhZ45rRraYLRByB8l3Y3jPzZ9Yd/rG08Jl5ew+T8REeF1JdW6kJ5stKp1hseYcT72z6BcJyOKkPZrvEYOeZ0nIjb7gJitxHMu4fHBphfsqRe28Hhlb5Kl/FE45nvBMy63mX1LWp2TjxI2F7AhL2Qvgf6lh6IoiqIoiqIoiqIoiqIoiqIo1wT6pYeiKIqiKIqiKIqiKIqiKIqiKNcE+qWHoiiKoiiKoiiKoiiKoiiKoijXBFetp0dU/EXFfddGAchCGUViT06hLvTkrOkBUa6SrmWAGmAJ0ouM+6hvHJLO27r1ayDeNJiFuHcAYxGRQhX1yM6cRU3JkRHUyRvMktfCHF7nJtJAz02ifnmqG70cRETSSezLVBp1LrMdWYijMXw/a+JGSQ+7k7SoU0lT415IKy6RYL3rC1qODa8h/+cH3zKPsUxMzuYXr2l6GvPo9GnUsR8dw/7uyJh6x8NDqAF58867IT5y5MsQVyqYp50Z/HxPL2qEnj6LbVq/wdRjtC3M5dNjoxBPTqL25fDgIJ5zYAji0bOoBd7VhbqVloO6pyIilqAmpO1gm2oNPIbr4ng7duwkxC+//ALEq/uzePyghSbs4DD9BPOw4S20wfNaiOQvM5ZlL2o9stbzUrHtmN9dW0t5eBBLeX5YFvtzoH5uS4lk1mz0sHY4NtZcawnvg97+Loi3bd2G8RbUXxUR2bAGPT0GBgYgjpBWvinmjqFF4pgBX2RL3XX8WTKO42Pz+oUxWyyhtupy44yVxckv3FfbJ01MD+OQfHrOPfK4cbw8eSDd8su/APH1O7dAfPoc1teQdJxdlzxgKEfjcVOPNR3Dvu3Nom/I1g3oZ3T8JNayl/aif9H4OM65HRmsIeydIyJiGQqslNekI8veNw7pAnNK8VgLA1PPlLWEPfKMCC7SW/Xb7K8QHQolEl045+Z1uIaxXR5P2BduC3Vbh3J3aATnzLkc+hQEAfr0pFM4bzco9/uquD5Jn8G5S0TEJ++DGHmRuGmsZUGIuZ6q4eur+1ZDXKrimvfMBOaliEhg4zENqWAeP1RfozQnu2m8hkgDa75rYT+KiDikSV2Yx5rmNGt8aCj8Lj+2bS3OMVyTA2MMXXoeaAt0f4LAnOcdB9ttkX60RVrH4STej0IH5kzdQT1up445ECZNP41EHNf4YYLmdaqR3V043vwG13lcK05N4D6J66WIqdceIZ/AhrVwnQH7ISlXnKvRL4N9Y1rl0LVEEATiN0XTi+SBU6/jXJIkPwX21xARiURwTu3Kojdljfw0CnmsKzF6jsAeYxXypajXzT1YgtbNbL1YJl/ViIXv7+hFv74witd0/BT6Qq7irYGI9PRhrfN83NOwTr0bwzrkBZiH7AmYTuEzn56s6Ssy3Yf1MNOFzwT6Vy/E9Raed8tJpTAvTmTheifOHoPXYuSRy3U4Ece9nYhItYzeFZVZjI/G0Z9vTQSfPQU1vP48PRfsKmPODVBOi4jU6f469HwsdDFJKnR/S/O49qzSXLcqhfk0WzX9UB955imID586DvH1Rw9D/O//3fuxTWXyYqNzdKcxx7wW+wleTJ47tgfi0uyFZ2E8ny83oYSLfhK8QuL9+aua/pfwczNj8r5g34kl9m+tDDv4PUvZfxmXRe9v0D3lNZnbYj7kZ73sz2f0wxKN4jW24QnSwpfD7Gt+vfXPL4X+pYeiKIqiKIqiKIqiKIqiKIqiKNcE+qWHoiiKoiiKoiiKoiiKoiiKoijXBPqlh6IoiqIoiqIoiqIoiqIoiqIo1wT6pYeiKIqiKIqiKIqiKIqiKIqiKNcEV62R+Ykzk+I0jRcdMqU7l0Mjp7EcGqh6r8LUJEpGLyPDaN68fQuaXvX3o+lVXxfG0RiaKJ09h8ZeIiKWhQY/996IJqt9Q2ikVCDDsR4ya04n8ELnZ9Gg6PALu402ZHv6IF47gsa+3Wk8B5uESkiGcGQu5tLnU2nT3Nu32KgVv3sLLjJhrTfaa8b10suHFk3uzpJZaI4MUe0IDp+kb7b1vgfuhPjwITQNP3EUzbg8MpVdM4J5OD+Lbcok0Ex0dBRNrkRMg/WNa9Hceb6Ax5wpjEN8euwcxGwwHRtHM+B3vePfGG2Yn0LT9737noY4JOclN4KmY4dPYhtScawJd9x0A8RjZ/H9IqZ5aZXMYSu1hbhaM03QlxvLshbbx4bNS8ZWi++ulzA/b3X+izHMlSn2GmhqZbOrYIt2sVdWLIkGwauGhiDetWsXxNu3b8f3r8Kx0dGBNVhEJEq5GtL44pj71jAZI8csNn20WvQDG1sHFtbU82Oe27Lc2GdmxE4uzFPVgHKe6n6tiHPsBJk+iojUXTTETFHfSx3PUS7i+CtU0dSvoxPvheWT0XnLlOY+xDmXfevXr8P5b3T0FMQ+5blH81E0bo49Nhy22aCNcsYndz0n4lwyFppnfM80gHN4vFMzA/fCD1y3vb/74iXqIk1jSx4uXMpCani9xbVyHkTpHnvxOr2Obyh5mNsBmzl3YF6P3IBrPxGRkIzi43HMfc/G170qxmkXc7/k4RxcozxMxsx+2DCA68fJOTI79/C6ttyA9dOnfqxb2G8DncMQhy12D/M5NBsNqI406gvXEQShiJimncuKZV9IMK7bDo8BdmH0heF7znPDUobOPC+0MrRc6nU26rQtmpdDvIcB1dDqFF1XCufkWpXWZTWzH6wYmfM28DO1Eu6FyhbmSMTFRHIot60MrnG7uIiLyMa1ayAep7X7hft+9ZlsryhLmKq27i1eQ5FBKa+x6KBL3QFjydXiPcErOZpeaBSEdTLadiJX7aOPK0K5Ulxcs7NZdoMMriuCfeXY5hgfGsLan07jfBVOYP0sV/AY0RT2t8tLGo/WyIG5lw4C/JBPc4tP81s8jrUsFcc60p3GOJ7GZxk1XneJyNlZ3L9n6bnQ6hCfr4Q07w8NZSHuoH7s60FTcvFNU+juWWz3rXfshDgSX2h3tWI+g1pOyvmcOM1a/sJz34PXAgf7obsPn31ZLdZ1MxMn8AcersP8Ct5vl+5XJoF9a1ONmJ3EOSLhYL+KiMyX0Ow8kkTT72kyCefENp6VJLFNvSncs1bL5j0bK+DzznP0DKhxHI3MT586A/HxUycxPnQA4iRdt+/gOBAR8WndMHPoZTxG+qLr8Mz6sZyEQbi4d/bJoNui/YPDc1GLNRobbvOzEY4Ns21aY/jGDIax1XKGu/T8dtk7NuoXXjc2ArPO2GwCv8R1G+tfvk76fOCTMXqL5x90K4xl+Pk4vIyU07/0UBRFURRFURRFURRFURRFURTlmkC/9FAURVEURVEURVEURVEURVEU5ZpAv/RQFEVRFEVRFEVRFEVRFEVRFOWa4KoVtnzp7LlFzVv+ZsZjTdFXcbwI6ZM9cAvqw7/x/pshDnzUG0+lUEc2IG3vI2dR+y+fN1t17207IJ6anYDYJt21DcOoU3tk9AjE1Qr6HnR39EDcaKCmpYiIG0UvhOu3roa4Xsd2z02jj0WxSJrmGdSRDmOko8ga+SLSIGE2Q378IoE2u9Fef4V9h44sas/VyNvBoWtJuqQJmkF9eBGRtdtugfiv/v6PIM7lsX83b94KcbFQgLh/BL1ndl23DeKpKdIyFpHNGzGPkjYO++FBvIfTs5hX586hjun0DL5eqaKuZTyO2psiIquuvw7iuo/XPTmFx5yYRp319Zu2QGw38Dp7BzH3U0nTS2ZqGj9TJ4+B84XGa3POiYhYtr3oB8H64uynYfp1tPL0wJDlFy3WviRx/WgMc9sVfL1OXgmphFlrujq6IO7rQ73bm3bdBPHOHejhMUweHzFqE2tGhuw/JCIhC0RTV3kNvA6H/IZc0hu3Auo38m/wWohL+qxdSa+7kUjzXBFpJ9/d/aQkYwv6rTM1rDPlUhni3ByOz8Ic+viIiLir1kGcofFWclHLfW4We6JBPbNuHc65fR2YY6G06C/70sL4rDfuRvF+b9g0AnGBfEfOzmA/DQ9j3RERidANtikJOSd90tS2yWOD64HvX1o7VcScU1njPLwoT8PLEUS9AiS6UxKJNT09DD14agvdT7eFZ05I46tM+u1uJ47hgPrbCqn2WTh/1clDpSqYxyIiPvm1VanQlEqYRzZJltdi+LpFGtgBpXqk08z9BM0D3aTDXqtRraN1wCx5lkkBG9nfjbk+W6X3i0hjHvvGjpFfW1O7eyWcFXzfX/R0cEl7OxrFe+5E2QvKnFuqVCMDmkuW8iYwNI9ZQ5nm2KV8uVqdNaRc92ketwr4/hjbjITYhiBntsF3yRMggrnpBNiXVRqfdZf0qtlGkO6FzYaMIlIo5CDO5TEuNPXtW91H5ZVp1Vucpw1aR9crWAOcDO4JWWfdXJxSaCziRAI6hkt7M9ZJD8nvgT3LrjUqharYzXVD4OEYZj8+9sJwHHP/U63i842T5H1WKuI56g3yT5jBuSJWxteTSVzrxbKmr0CSPTrS6K+wbi3uFwZ6ca+8Yf0miONJzJmOLsyzYsT0V/Bq+LMb78T9d/ok5vqBw/shXrMBPTtWkZcs70fm53EfLCIS6cQa/tKRPRCXSgvjr1E3dfqXk2o5L3ZzXq1H2ccO54SRYXzOEfqYXyIi547jc4XewX6I+zqzELuRS/uo1YuYg+EseUN1mevg7l48p0drrHyZ1nU0gXq07ouSF/BsA/vpLPlxiIiMnUN/0hqNpaKLYyVXzEE8NYOeHoU5fD3Rhd5u5VnzXggNx5A86WoXrQGCFv4sy0kYhov+Ej57X9Dc8cN4evAzTMPDg2L2m+K5iJdxrTw9zGeil//M+2Ic7gd76ecWxvOVpa6b+m2OnhlEYtFLxrw3FxEJ6XlLEPD9s+D/Xw36lx6KoiiKoiiKoiiKoiiKoiiKolwT6JceiqIoiqIoiqIoiqIoiqIoiqJcE+iXHoqiKIqiKIqiKIqiKIqiKIqiXBNctZ4egVzQOmO1MZd02Xz67qY7aX6Xc+fO9RC/8fW3Q5xJoWjdkcNjEGe70fvi3Czq+R4+hFp8Az2dRhv+7p//GeKJedQHZ139NX2oib9900aI9x84C3Esgh4hnV1Zow2r1qDOczSCupiz83iM/hH0qcjUUYet5KN3gp3AfmzUTV1Mt4Fajayv7FoXtN1qLT6/nFTLpUVBPcfBa+3twr543b3oM/GO977HOJ4leIxDhw5A3NOPmpHdvaj5ODY6A/F1WzCPS2XyBFmD+owiIutWYbttC70R1iRQz3puDnVER3rQ82O+gJq9h48fg/hL//g3Rhs2b0E/m7kSHuMkaVnmycskQb4WvQPYT999bDfEnSnTVyRB1xmLY+4G3kKlCS1TN365sR1H7OY1soYk1wVT9Ng8HusrGpAGIsspWtQHoY9t6spgbdqxE++viMhdd90F8bZtqH/b3YUa8VEX74/HWsTepTXOnRZ6/6xKzTqVbAHBfi4Rqk02ndNnzfPQ7Hf2jWD5zPGJhZpbKpleAcvJP+x5UiJNH5HZGs5nroNLA9/GexO1Tf3N9Z2oZxztRg3mNWvR02XtapwrDh4Zh9iqYxtcH/uR9XVFRELD74bfIPQ63r+eHqwJU7M5iOdLWM87qmY/ZKOsQ0q+FeRBwZ4vS8dLa+Yu9ZmL27RkrbjCRKLRRU8P17q88eWz54eISIh5EiOtWItuEWvR+nT9DSqGEcH5MqiZmudxC3Pd8P6JYK7a5GNQJ58WN6Q5wLhFZu7XQtSPTgiOx3INtZobpN0e7UDdbYv837w4fj7imveidxjHT6OC92bybE5ERAL/clWJf3QsubCnMHqP8irwKQ/9FprHAXvD0Ot8ia9edvj8ESByWswtfCUBeXb4Nt5Dw1/Io+uqoL5/Mo6fL9pmP1Q98tAhjwCud6xPbRsdQ5+vYTzfMLXqvSq2oUqTbLmxMDbCln34Ewx7vxlvaKE3buii4+vsG0kpadyDpSpBK88qh9Z1x4+g3+XsJPoQrl2zDuJYy7XitUPguSJNvzn2bkpEcX5MJHEdliGvDBERv479XSVP00QE14eNBM5FETI6sx0cn3ffjp6q111n7mMzKXymkqD9m+WQNwnNuS55DTU8nM88H9fA1Ybpj8kLSupa6erGObezE9t89Ag+VzpzOgfx+Di+PtnCo3NuDq+zUMJ6mEgs9EvQZt+aeDItTtMDcceNuPezaNrIdqK3ydQ47vdFRJI29mWpjPenj56dZLK4n0zQHjVLee6Qd1ulaj5rqqXxPfO0B63TOq+D17MpXDs2Epgwcz6uwXITp4025CfxOV8Y4vMzJ8Ac685mIQ54fo7hOBhasxbirgFz7B08ht40ARlvOcFF19Fqjb6chM7CPxHjYTGvPSLkC3rupOmhcpo8bG+76zZ8A+19jS0mTVemTSE/vzEXhiEdNTBMPpb4e4WQPKw8bFQuj34bFs0JIubzMYfaQIeUKnl7TYyjF83gCHoL2+QtFfBaVMy+C2lvdn5d3mp9/kroX3ooiqIoiqIoiqIoiqIoiqIoinJNoF96KIqiKIqiKIqiKIqiKIqiKIpyTaBfeiiKoiiKoiiKoiiKoiiKoiiKck1w1Xp62HJBK803tMRQ12u4C/WU33AHei2IiNywFXXrshnU6stXUCevfwT9M/bsOwXxyVOoVyYuaqIdO3nSaMP+k3iM+WrVeM/FlAuoWbhmADXRd9y4HWLLxe+wOuKmbqkdR13DcgHbMD2FHhFTE+gpMbBqEA+YQH3AwMd+dVppz5HuYZ31eIMLuon1uqmfvbwEFzRrSUZvqA/77j3v/gWI77rv9cbRfvm9vwlxOo46ldUS6ooKeQrcedONEMdIaz9FuvlOEjULRURqdB0nz2Bu5mZR329VP3p4pEnXMsGakEN3Qpwv0zWJyDPPvwzx0ZM4fqrk3ZIlPxo+58wUtvnYHGphbr8OvU9ERCwaowEJQEadhVwNw/Z/F2xZ1qJHBXtVMDykrBbeBuzJwLr9rI2fTmIeDfSjD8zGEezPW2++FeLrr7/eaEMnaYvyZbGue72BtYi1o13S6A0MfUdT69si/WiuRzHS+a2wjwjVH4dqrFDMtUxE5MwZzPUnn34K4q9/4+sL5/LM9i8n1WRM/EhzTCSpbkeojkTRQ8c1nLZEhtdtgHjtEPpHDXXjOdjHoH8AtaRZf5Xkc8URc26wSFif/Rt4RgwpZ1LktdBNmrwJ8v5qlHHdICIi0QT9gDRgLdZEx9d5rPLrNhnRtPKRMWXQ+Rh2y/9uB47tLuqMO4LjLyQtftaRtV3SixcRn64/4lDdID8on+oGa9EGVBtDytN4yPdXZDiLuc51w8ujdnBAXjLs88P+EOLRPWYTJhEJPLzuOml610kH345Q35Ksb4R2B/FufEMyMPshNo/1r1Ki+xld0An2G4GM7cU5fLmJONbiXGnReAho3eV7S3vJWDROeRSFNE798NJ1gAlJO9pjYXQx/THY39BzMHYCNli4tFa/HcckcKLmnsKrUV+xvjL3HRVy1p63yT+M7aPyLfZN1STmXaYL9dzjTVOcMAikiFucn2g4J5mlclREpFbH+19p4P1MB3g/Q2MWRli/PBRzfotTwTy45yWIn33mGYh//p3/BuJYB641DN+QV2E59Gr6ZqW4//6bJdr0VonGsJ3pDqzbPT3YF4kWe8i5WRw0pSKue44dRV9Hz8tCPDKCPgGWjTkzvArXl5mk2bfxKNXDBvpABHWsC40Svr9GGvLFEnpXVqt4vELB9JnIzWA/zM7iXjdfwDqUy2E/5cl/g5duDnkIxqItvCmT6F1x/2vugbij6ZdRr1XlL/Z/0vj8crHz+l0SafqpbdiGHo+8pkrRvmntEHp8iIis6sbnX7ka3t/+Qdyj9nfhMZyd+FxiYhrXYHOz6JfS24v9KiIyOzcLsRvgM7zuTnxWYlfQd8TzcF0RCzG2qjjfnj6E3hkiIjXKw4D2KJ00XhO0Rm5UcSwl0ujVMHoK/ZDSQ/iccaGhtC6geaOWuzCW2u0lEwQL/0RE+FGIRetkfqbw8r5DxvFeeBHnkuHVQxCv34zPQng/YZh8UOzTfsJxzPkwYO818uiw6HXLwnVahZ4rerR/qJEv2tw45rmISG8f5kEf+Q2HDfIhJA/kdRvxOXyduqlG/dZo8dyNc8kznvkE8P+vBv1LD0VRFEVRFEVRFEVRFEVRFEVRrgn0Sw9FURRFURRFURRFURRFURRFUa4J9EsPRVEURVEURVEURVEURVEURVGuCa5aT49Q5IIIPGmBZROoHXb7ttUQ92dRe0xExCXviRdfPg7xU8+irl2hjPqB5QJqpPWSfmBIAsg9qU6jDW9+zf0QnxqfgDgeQ/3GG7ZeB3GSdNbveiNqOXpl1GWbOjdqtCFGPh9eP7YzlxuHuFZFLcbOLtQDJHsOeXnfbojz86ibKWJq79ukjRqLX7hXjTbr3F/M1i3o6/L2t70W4p033QHxX/z3LxrHePTxRyHuTmchHuzE/h/qQo3IbCfmWbYLdS7/9dvfhDhXRU1JEZG1a9dAHIvh+AlJWHSugD4u2TRqwN60/UaIewawTYWC6WvQ0YG6iP1790JcI0+PInkjjI2PQdzXnYV4hNrgthDlPXfqLMSrhqlfmtqY1hI6xysNe3i00hYOSfMxSv4I69agx9FN5B2zdfNWiDev3wRxRxprbCtfkZC0vUMWt+TQYp1K44iXjO0WEstcWwwtd9Jld0kDPaBaVSTvp2MncR554cXdRhseefQHEB84eADicvOY7N2w3CQTKYmc9/QgPU2LvBYsG/Mn6Zqd3d+JmrheAfVrK3nq+wTOd1XB+BxZA7md5DvSaDE3kHAo64HbLGlP+vEuzcGxBGmpkj55cd4UiO9KYX01cmoJzw4zxvdzz7fKGj4G6+xf7OPR7rwLA0vCpq5/SP4bLI/rWuQZ1kLf3aWbyvW7XiFPAXq/a6PPluPiPXfJS8EOTV8R8THX1wyOQFwWrBuTczifpRPYBr4ldfKcsNnoQETCOnlIUJ6xf0qM/VFIb5o9lEIyGrEiZhucBOUdeZtkBhbGl1c3/SmWG9cKFz1/DN8WfjPfAN+8VotS0aU5kL0J2ENsKdh/as2gqbVdn81BXKyUIK6RFrdHnh4eeSNQOZQK6agn0pinIiJWFPOIc9XniRmbZGqAs78NvczehSIiDQ/vT7mM62D7vBfJVezDsDLQXEMFuFgy9xP5AubY6GlcV1fLOCdOj6OWfjKKa4koxR5pnDdazHAx2njGO3CfNET+YqcnJyFODeB+pJP2WTzJtnuO/FG59c4RSTTXV37AvnR0LTZ75JiejPE0edeRUWShjIM2EcW1YHc33uNYHNdI3fRcIZ0xPR6iLnqPZLP4Hra/KJWpcNA8f+YM+jNUa5jrmaTp1/bSC9+B+PQo+kJ00P4+8NArceMG3HP29uG+NR7HfjK8ZkRkag7PaZHXSam6MP7qNXMfvpzMzM6K25wL5vbtg9eyPXivZsdw3+S0aOuabvRJG+zG+W9iHsd0fZ78aht4P5NxvBebbsQ12uY1m402DAygF02D5pV4iHuQOs0vnRFMyk6LfEWpztyy62ajDXGaD2u0lu+mHEomMIfK5IHFs2eV1hCzY2eFyY/hWLGqvNa88Pyz3Z4enoTiNccJezQm6bns+Dl8vnl2Imccb8NafDYydgb7Y3g1Pm+ORNkrltbJtFa32WeUDf3EXHtHzQkJwgbti9hWrUH3pDuD9TY3adb8yUl8ntxJ3tkB7b+nZ/C5oU1tCijzIuQjG7R41hvSuq5E+22/Of4ux/tZ/9JDURRFURRFURRFURRFURRFUZRrAv3SQ1EURVEURVEURVEURVEURVGUa4LL/tLjBz/4gbz1rW+V4eFhsSxL/umf/gleD8NQHn74YRkeHpZEIiEPPPCA7KM/dVOUy+Wd73yn5pzSVh5//HGtdUrb0VqnrASad0q70TlWWQm01ikrgead0m50jlVWAq11ytXIZXt6lEolueGGG+RXf/VX5ed//ueN1z/1qU/Jn/7pn8rnPvc52bJli3z84x+XBx98UA4dOiSZjOm18UqEckG2rIc9BTYNQtxL2o5dXaafxpEzqIP4wu7TENerKDSbTaIW3wjp6e7aiX4bh48chbhYNHXaIqTLtqEPryOdRp011hGOZLAfJs+i5prjFSDO9KIeoYhIrYj6fhHSINx5440QT5CXwqpVqElZKqAOW2X+WYj37n7RaEOD9JQ7ydeiq/eCHuh5LfIdO3bIr//6ry9rzomIbNiwflHv/HWvuQteS3ahlt+Xv/EkxP/P//dTxvEyHV0QB+Rdccsdt0A8NjkF8bZdOyF+di9ODMfHUNeyq9vUQi1XUP82k8bcniPfleuuvwniWglf/96zL0Cc7MD7NzGO1yAismE16iR2dKE+K+tAJxuk0dzA8TkygONxcADHhl839QEr9LOABDUbtdzC/9cXzlUul9tS635UoixmKyLr1qMfzfZtWK9u2LUL4r5u1OBNkAdIkmKWmmXvCxEx9LNZ2tsizXJDvXZJ8wLWzjSbwNqXAcekO5kvoWbkoYOHIH5u9/MQP/HMUxCPnjxpNIH9amKk2zswNCAiC7XuwL4Dbat1kVRqMXdqdPtsC8dTIop6yF0xUxs9lc1CfGIca1M0gnWiQFLS33gK57NIL7ZhYBXeYK9q6h0H3qV9Y+JRrIW2g/c/FkHNXp9knRP0eneaBOpFpKuEmueJTrwOznubEtde4nUeV5GI6THBFgTsuXOxx8f587Ur73w/ELupMWvbuBZwHLoWvvbA1AsOA0xej+YO10HN3YaP49GJkMeK4PEipAssntmGUh5zt2MNzqFvvuNWiE+M7oE4sDGPjp1Dz6sKld+GT+Y0ImK5eF0BJUHMxuvgPIvHcIyThYd4NH8WKqYOsE3niBjjbeGcdtM7oJ1zrOtai75RrHnM48OhrVEjbKFTTetYw5CGS+QSHlbs9TPcjVrdH3z7LxlNmNqLeXRkP67NipRXkxVs40wV110TJSzKrB8uFuv/iyTTmJx2DOtdsUF67TSkXfJJYq1o4b5nIXQxtZ8rVINdz24eauFY7ap1Vx20/rFpDVWjdfi3vvEt4xDjk7iXFvJ0qZCHRED1OUq69jXy95knDfpyi7HXqON7XA/PGaVzvrjvIMRPPv4cxA8++AaI77jjdjwe6bb/sLQr7xr1SXGa8x7bkTRofvRIS519XUREKhXs3zLVicDDenl6AufDfftxXeySb8sv/dIvQ7xh441GGxwbn49EyS9hz15cm9fpOteOoI/LhrU3QHzwIOZIb7f5/OS++3COLOzA6ww9rHWzs7gX7iUvRd415fO4/6hUzHpru9h3UzM4HuNN74pGU+e+XXNsrRGI3zRgSrC3Ho3xBs115YrpjXd2Cj9TofVGLYtjstyN804vDdmtfejhccsO3ANvGMJ7IyLiupjXueIcxJkEPsdw3UvXCfaY9Gh+3frmnzY+87MPvRk/Q+vPgPIhl8ecm87hPqw0n4M44mObJk6if4eISIN9WskzFDb3zdfaVes8CcRrzhGGHyLl2fgY+iiXW1hBJGhPMk1+UIV5XFtku8kjl71G6cFHvY5rslisxYMLWrtPj+E9PU336PqbsJZFac+TJR80bwJ9Sjrj5h7ywCmsK919+Cyzj9Z9aVoHTJw5AfHLe/DZZU//AMS8HxERKRZxv312DJ9Hj2xd8J6tVUz/pVfisr/0ePOb3yxvfvObW74WhqF8+tOflo985CPy9re/XURE/uqv/koGBgbk85//vLz//e+/3NMpioiIfPSjH5WOjg7j55pzynLx4IMPtpywRTTvlOVDa52yEmjeKe1G51hlJdBap6wEmndKu9E5VlkJtNYpVyNX1NPjxIkTMj4+Lg899NDiz2KxmLzmNa+RJ554ouVnarWa5PN5+Kcor5YfJudENO+UHw3NO6XdaM4pK4HmnbISaN4p7UZzTlkJNO+UlUCf2SntRmudspJc0S89xsfHRURkYAD/bGVgYGDxNeaTn/ykdHZ2Lv4bGRlp+T5FacUPk3MimnfKj4bmndJuNOeUlUDzTlkJNO+UdqM5p6wEmnfKSqDP7JR2o7VOWUkuW97q1cBatWEYGj87z4c//GH50Ic+tBjn83kZGRmRzpi7+Jld61GLce0wat12daDWYyJt6urt/gFqoG0ibcV+OkY6hdqNvqBu3pot6/D9GTxnLG1qLvcO4SAvlVBvLtuB1zk/i5pqrC1dqeQgjidQ43JgAD0oRETyNn0mju105lC7L7ImS21EXfaxUdRpO3katTsrrOfbgoC0kS/W3WcN/lficnJO5JXzbtWqVYs6jtu2bYXP7N5zBuJjJx+HuKuLPFlEpJhDrbmh3l6IWQNy83XbIH7iWfRIeeEl1Pru6MQ/H6yWTQ3Q+dwMxBvX4/hZvwH9H/Yd2g9xwkWtvsDD+1XP5SD2W2jwfueR70Dc14djIfBR59DyUC9w9YZhiFdtwQnPLuJYGRowvU36N+KYr5EcfyG3oNfZSkf1lbhSefej4Lbw9OjuwTzbuHETxOvXrofYI21vmzQ7WRuTtUlNByORgPRKLdLxNbS6+Sv4kEPWTCf9zhZt8EJsw+wsjoW9L78M8QsvoCb63pdegnhsAhdl5Qrqe8Zj5r1YPYLawOy7c14vutFoyIF9B4zPM1cq5+6863ZJJBbmuRLd36iFdcWhe9eRNHt79Tr0qCpUcL56YR/m2KNPHIH48ATp//fhAO1ezX4PqOErImKHmETsS+CyX4ZLeW2jyrJLn+/K4P29dXvWaENnCee8TCeeM0qjJUL6rX6A/eCSGUDokBdAi3tvk+dD6NHguuh+2s6ldYjPc6XyzrZFzt+GHvItYA3XShk1lP26ObfEHMyDjiwds4rHFPIN8QTzLBpi3zXqmMcJ1xzj27fjWmHL6nsg3jh8I8Q3r0K/sMkcavbWCpgjR2dxHVCtYd0REXFJm5lllxsBXqfDXiektU92N+KT1rtlm9sHm9YKUdIzXvTO4MZdgiuVd44VueCPw3WA/aUMTxzzPAGbVNE4DqxWs+JF56Q+YH+pLLVpg23qLl+/DdeL13VhbubLOYiLDfLZIh+Xl07jGnf3CVzPj5VMHxcvhnmQ7iadc8G8KhVwTWyRrnbawc8XZ9CrMPDMuYdKojjk0dKoLNR11vx+Ja6GdZ2x3lloyBKfurRPWsjXQP4oro21b2i1uYf8x+/ib+MemM7hITvRby+awH1RTwrzoUD5MNPAceAlzLy3LZxjo3U8RmIa12nRMdQw707gnHHi2HF8vRv1y3fs2GG0gXPpUvnxarlSeXfmzJTEmuOyXMK6X6eNT7WC/Ts/Z+qjx8jTrUr7hTxp/k/ncM4tFDDu68Ucicdwf1Krm7I4Ds3zU9NYix59HNfyfT34rMIWrI2FAn7++488CvGqkXVGG7LkfdjZlYK4Rl4n8Qrm8uQMatIHFo43n/xVHNd8jtSZxDaIhfcvElnYO9ftpZ+9LB7iCjyzq/sVCZrtT9EaN5nCNpaOkDdG1FxLsHdFsYQ5xNPhgGCded3NOGZXZzAf1g6jP20ijvdSRKTh4VhJJvC5RIpix8LrCGiPy/XYIy8it8WaKkEekGy5w0upqSk8ZjaNzwLWrsM1w+kD+EwpP4u+FyIiPvnjWOTDZcEE3N45NvQ8CZt5Z9P8NT2Fz4X27sbnlasHMQdERMpzOHfMnsNnBnXaowTkZVmq4Os9SczLEyexBqwbMefYKaoTlWIO4vkZ3C/EA3oOEcdaWZnCz0fo2VexaO4n+gawzkSSOD46+3G/H+nA5xpuN15Xz7b7IS7RPJSn55QiIqkq1uju9Vg3Xnp+wVe5Xnv1te6KfukxOLjQCePj4zI0dOEB/uTkpPGt3nlisZjEWjwoUpRXww+TcyKad8qPhuad0m4055SVQPNOWQk075R2ozmnrASad8pKoM/slHajtU5ZSa6ovNX69etlcHBQvvWtby3+rF6vyyOPPCJ33333lTyVooiI5pyyMmjeKe1Gc05ZCTTvlJVA805pN5pzykqgeaesBJp3SrvRnFNWksv+S49isShHjx5djE+cOCG7d++W7u5uWbNmjXzwgx+UT3ziE7J582bZvHmzfOITn5BkMinvete7rmjDlZ8s9uzZI+n0wp+Jac4p7aBYLMrx4xf+7F3zTmkHWuuUlUDzTmk3OscqK4HWOmUl0LxT2o3OscpKoLVOuRq57C89nnvuOXnta1+7GJ/XWHvve98rn/vc5+T3fu/3pFKpyAc+8AGZm5uTO+64Q775zW9KJpO5rPPcft0GiTR1p9esQv3Hzixqi+24DjXTdx9AHVoRkVgENc76e1GzU+r4Ry+lAmrxlcg/I9uHmpPROGpe/sKv/azRBidNGuQBaQj6qHV68PnDEE+cQL3dwdX4p2Chj20uT6AWrohIvYzaZ46Pfy6WG0NdtVOn0AtFIthPjzz2GMQnx1GLLuKYf0zUlcG+i8WxDQ6IFC7893333bf4k+XKORGR0dHRRX1ny8Z21cuodVqYIw26FrJymTh5dmzeAvHQMOrevXwINf2feQa1vBMp1Aesks7l6mHzzwM/8Nu/CvF112MbenpQA33PnuchfuRbP4D47ttvgzhHnh5dWRpbInLgwCGIz41NQrx+LeofP7cfNXgTlHfzY6i7uHEd9uPt96FmuojI+Cz21Tf+5Zt4jI0LdaTSvI8vvvii/PRP//Ti68uZd2F4Qa6ZtYI5Dsh/oZWeIefNqeMnIH7wta+H+O7b74A424X6jKx5zjgtXmd1To6N62TNeNL35Jj7YXzC1CJ97sXnIH7mmWcg3rsX9UzPnMEay14Wg32oj5pJkZ9Ap6lF3NOP4ytXyEN88uzCOf2mB0q7at3dt2yXdHrhc9MVbFPEQf3bqIvHr7Xw7cnN4f159PvnIH7ySTyHF0VfmQTlXIO8g0pVrMd2xPSisCnLopx1bCNj09hiDV7Kyfwsfj7/vOn/M7mKPDsymEPrurHdoZBOPnkvWKSPzLq1QWAu47jdjToe075YK7p5ye3Ku3qjImFzXE1NokarI7iOitAa6aatOPeIiGxddxPEAwM4v83ksH898hCr1rF+NjzUtx2bxbwNKqZXQ38G2zlxBs95YjfONeUyHtMmLeizh7ENDRvn/XXr0Z9KRKRGXlTFGvatHcNjUvmUsErzCvVTvY5645yHIiK1Br6Ha3Y02hTidhbys51zrG3Zi54e7O3jk/+UE+J1RMxLlTrH1J+BjT9giw/2G4o7+IPrh8j7SUyt/ZN1LEjTSbyuDhfr+C29OBdVJ3Edtu3u6/H9a/Dzj+05ZrThxXlcB8+Xcd+RyOCYdnpQo7xawuvyC5jHEfK984MWC226X06DfOiaa/kwXHBOaVetu5jL9nxoMceG5FFmzGfkEcDq6jXyDAhpfkzFsK8Hh1C3W0Skcz36FzkdVD+jWTwHmQPFO/AaJmuYg14Hfr7RaWrtx0lfPEWyJ+sKuD+4I4qjdRP5rB08gnvtzk7M+ytFu/Lun/7xRbGbnkMlGl9sCxMjz5VGC9+s7dddh5+JXFpmJpvFMd5P+u833ohzdncP7RkbZhsaVZy/5qcxb9LkO5KKYBtitJafIR/Jso9158SY+RypuzQP8QDlJs/jEsX9gE/PaNiP0Y3QHshogYhHAi0RWgdHzz9PaX64XXNstVQVJ7JQX7ppspuYwX1VYRqfEyVpXhIRiUewb0fWbYC4l7wRH9iFPmqbh/CZQLWI9459KltZUfC+1yKvKMNiibbBVVqTzeSxDak0jr0o+16KSBDwHoX2zfSMLaALue2uN2ATo3iOv/p/P4FtnDLNxEPyubOE+8Uy/rtdta7hizjNdHNofizXsf+np/C5UimfM46X7MQ6YsfwWtkH2aY8Wt2Nz+CiNFetoXX0+mF8vi0icvNGPMa5KVxTRck3ayakdR1uL+R0HWvEfAlr6dk8fUBEyjVa/4+OQlwsoodSeY7mcfIh8UsYx4XWeYG5lx5I4s+GsugzcvC5FxeOTeuaS3HZX3o88MADlzSDsyxLHn74YXn44Ycv99CK8orMz89LR4f5QFFEc05ZHu677z6tdUrb0VqnrASad0q70TlWWQm01ikrgead0m50jlVWAq11ytXIFfX0UBRFURRFURRFURRFURRFURRFWSn0Sw9FURRFURRFURRFURRFURRFUa4J9EsPRVEURVEURVEURVEURVEURVGuCS7b06NdbN+yVmKRBTO6dBbNbVxq9VwBjbpe3osGqiIiI8PrII64aFZz+txpiAf70bB2/dbNEMeTWYijSTSkOnYIjWJERKSBZjG1PJq0eGTGQh6r0jg3DfHEGJoiscm1Z5lmYLPz+Bk2QR47h8blx0aPQjxexGvIkwnoju07Ie7pQuMZEZGRkXUQG2ZdF5l91Rt1ef64aZ64XDQajUXzqt0voFHP3pfRFNkiw6hVfaYZ1/YdaAx57hwaeBWraK69+6WXIB7oxv5j09W1a9DQ9Bff8XajDTfs3AFxBL2XxSLTsYceeCPEt+9A89hGAw3gKhUcf+dOo1mUiMhDr8N25qbRLKtSR6PBx3aj8fnYKcy7Lfeiadnf/dNXIX7uwBGjDQf3oZn3sVPYhv7+Bf1JNjVtC6EsGqmxfyUbkwVkMOt6ZnvLZTTS3TuONXH0xHGIT5zAMfaWN/8UxOvXoul01EFjrMA3a02tahpTXYxF7rCRBBuW4nVPklH5s8/ieHzk+983zrFvP47haTI/DKkv43FsQ083Giz2duJcFCPjz3zZrPsHDu3HNsyh+WytVm+25ZV1d5cDK7TECheqb2jhfBjYeJ1HzuG9OnDINA47+DLWhVOn8BjlBs6pqW40twziZBiXwtooPhkxW2hWKyLih/R7HGQm7JEpuNWgsUXuwkuZz07mzCXU0/PYrpkSztt33Ig6txkaS2kX25ymZZpVw352W6QN13QrgvU1vOj3XUKrhTHwMmJZwWK/1ugWp10cb7s23w7xL7/t3xnHiwVoOntgz0GIh5J4zEQHrpMcMkoOY3j/Ch528Mw4GjeLiJw4/ALEZTLSTbp4TD/EPp+dwXVBgsbfPXe8B+I3vuW1Rhvm8lgfT4yhOe9XHvkCxBMzuOYVY72I1+2zLrhtjg02iY/ZeN3n6835/28nTtRbXNu5Hp6f51zLISPslkek2kLrIqH6ZFNt8QKsoasTWIPv374L4lSfaXi59+BuiL+/H+ObB9DMdceajRA3arhWS9J+4I5VuKbdnDDv26YTeJ3fGc9BvH8K14dOFy5AIxYZm9PYaAjti5Km2atXp76n6cmRppG58cn2cSldfRFzrmGTcRGRcgXreIPWzcUirvtmyai1QMa68RjmXHcC97FTs/h5EZHbr0dD4dUVvF9FuhVBgD+I2vj+HgfXBdU41vP5FqOv1sDrGHCx3Tatf8fzcxC/7U1o7uu6uG7o6cF9V8Cmx/JDGNO3kcmp6mL7IjS/JRI43jrJHDZK63ARkXQnrlniZJ6doXVxOov3sL8f68jWrVshLhRwTeyIubbr78X615HBez44gNfBv9GbTuE1DEXxGq6nfXI0ThtlESlM4dxvNWjt5GNOxAM8R8PFwsTzZSBY2+I0J4iI0NJOYmSGHm9eFxssLzdVrypO08g9DPE6x8ZwnuFnBsm46f2QjKIB9GbKmV1b8NnKxrU4t9GQlkgd896n+sprfxHTuNyrY+f7UfxMlIzPn3we14Wf/ce/h/g97/wliB+65z5hPL6PVHd4NsxRzZ8t4yL7lu33Q7xx+x0QT37ny0YbHBfPGaG9mn9x3re5LgaBv/hMxKJ76nvYd8kYvj55Fp9vioiEZ/Ce/uxPvQ3i+7Zh3u09fQbimXAK4k4P+78jjXn4zT34LEZE5MA47nVHz+Hzr7kKzm+1ytMQhz7OjxnK074U1tfhLrPmr6F9kEtjWmI4ht3VuE9NxnGfNUTm671Z7AebF20iUqO5/7tffwri6vRCPb6cZ3b6lx6KoiiKoiiKoiiKoiiKoiiKolwT6JceiqIoiqIoiqIoiqIoiqIoiqJcE+iXHoqiKIqiKIqiKIqiKIqiKIqiXBNctZ4evljiN7XhpmZR79EOsdl1DzVDV68aMY43OIC6obaDGme9/d0Qx5KoN1YsoX5ZJJGFuDSBXhknXzJ18TKdqFHo1/GY05OoF5mvoBacRZrvsQi2seKjJtroGOpEi4jkCqgFN9iL/TKweg3E/dffAvEQaUzGYtiGVJx1jE19vyBKWpksFX3R/azWLu0LcKWJxeKLus+T5DthkcnK1DTer840atiJiJSLqM13/Djq9x0Zxdi4XtKq27ET9QR/9Vd/FeLxSfOenx5FL4tV63F89HSjnmYjwO9C0x34erVMHh7nsJ9mcqg/KCIyRrnd3Ymar88+9TzEzzzyPYjtEMf415/8AcSrBgYgHu7KGm3YtBU1BV/35gcgthoLfV2t1uT5F3cbn19OLrL0MMZDQLqUUdKijUbMMl4jffZ6De/ZWAHr1Rf+EfXen38J78ebH3wzxHffeRfEa0bMmuuz5jnpbjukeT5xFrUwn3zySYgfe+xxiA8cRN+X8Rb1Lk0a1d2Uy5k01uS+XtT/d0i3nnXbS8UCxAXSkhYRKZbwPayPmnAWamgQBCJz+N7lZHrMk0pq4XoeeRE1r6s1rPOHTuB1n5009Y5LBdRUjiQwkZ0M6o9XBGPHwnN0JlEvubsH69LUrKnB2yBpz4D6mlWOA9JZZ/8cti0wdLxDU3u64WOOvXgM5+UTY3iPe9J4jI29GO/YiON7Nb3eEWvlyYHnDGnuskBnnUTYl5mY3SMRe+Gatq9HfeGB+CqIb74B1x+DSdPXYHwS558v/+PfQlws4TqqRuvFgHyyYqRpHovjGqe/hbfC6vW4brLpM8kY1pnV5DHnkJ50ivzZukh3PciZeTcUQ9+55ADW5MetvfiBThzDgY05UyjkIC7n0ZumFpgavI5Da4cEXnfYHJ+W037frHg6kPOS23YV25kk/fYy+bgUGy2ulfS+bZqnz+f4edj3qkH1roPKWWQe14KxKOrmi4h0JHC+mp/B+WcmiuvPL33laxBv6MDP93u0vicN+sGUWSveuBZ9Q1b14Fj4+gTO64doPM7VSNc+irldj+QgtlOmp0fYwDHrlbDdQdMDYilfjeVkKQ8IblutZvb1V772LYhf3INj+tQ49vUZWouXaT8Rowkz42DOVr0WbY5ijlgW5mkqip/JdnVRjHvt4W70e+ikcVEPcZ0gIjIreE57Gtcvk1Oos36ujnNubhbfz1r87OFx9bp3tGbHrp3iNs1PO2mvxX4lHV24XonEzP1EH3lLpuOYA+zf58awnq5ahfN6mvbKdfKmqZbNPWTYh3mz64btEG/eil4zc9M5iJNprJ8nzqJ/6d133A1xlLxPRESe+wHuO5//9jfwHORF4kTxOoMe7Lc49WuU9iNO0qz5CfKti9GYPV9nQru9c2wimhanuRcd6Mc5oEq1rRjHeWnrphuM4w3Q/brpOvRcWT+I58hYOC84ZNRlk3eeTb5iYQtvTCao4bzix7BWheR106BjVkpUt+q0I/FbzE+0XhWLzUow56rz5PcwhT6WU4fQ6y2WxvociZs+MgHNG41L7ZNaeKMsJ08/+h2JNJ+JFAvYv0kysG3U+bmIebwomUYXq1ibalHMs1QX5umZw+gp+O2T+Kzl+TFsY6WIc5GISHcS77FD69PbBrCuDGTRM7cjie/vSWCO9JEvWjJlznCJFB6D/VKitE6zA+wni+ZQn9a/tQbWgNIc7i9ERJ5/5DGMn0EfV4k2+6nVuHkF9C89FEVRFEVRFEVRFEVRFEVRFEW5JtAvPRRFURRFURRFURRFURRFURRFuSbQLz0URVEURVEURVEURVEURVEURbkmuGo9PcSJizgLmmFp1jX0UUssQ1/dTM+gxrOIyKFD+yHuHxiEeM0IaqIFLLVHunr56dMQz82gLltxPme0oVJDjbQ6aZy9vB+19o6dOQdxifweHNIMrnik4+2at7dC13FfP2ptjtxwB8QWpUjERS0428HYb6B+Xdgw9VgjrAVHeqoSXDhn6LRXTXXXrusl0tRIHCQN0UoZtYjz5NcxkTO1+c48hnnS14964OUGigoODqI3xY6t2yC+5x70Ugg97F+7hZ5iVzdeR5L8aGamUT+1WkP/jYP7UDd48hRe09NPPQXxvuOjRhtKJdKZrJBubwn7skF6pA7lSMrHvHvrg6+D+P0f/PdGG1atGoZ4/0t7IP7sn/+3hbbU26txLyJiW7bYTa1O1hNOJlFjM5vNQpyfN/OOvSwifagd61GtyM3juN3/Mt7zE8fRF+afvvzPEP+7X/s1ow133o61pFDCPHv82+jZ8a3vfgfiAwcOQNwgP41YDK+xvx/9iUREBui6O9KkqRtDDdYi9cPY1ATEAZUjn7VNuZaJSEeS9IupBtebuq9835ebb3/nJYnFFvrjX76Nni+ORbquLuo+m1VdJBCsj8kOHPPJFNb9fBG1pgPyrEp34ftJnl7qs6Ygq29hXnt0OyyaTyyX3kBhaKh5s8mHWW8N2w8L83JsEj9z9hTe9+PUjy+8gJ5mO7bg5193n5n3/aTH2qjgMeLuhTtotcjZZSXsuOCFUsW5qUieY/tfQA3XUfLxERGxEzi+Xv/mByH2yRvNI/3XuIt1JE8ecvO0lovHTa3v/i6c1zdcvxXixx9FP6Lnac4MA57vcH6bmEC920LB9A5yXKxlA6u3QGxFsY2/9Ja3QJwgD558Hmvh7BxqQ4/NnDTacPwU/qzk4dw0W1tYO7DWdTvYtGFE3Ob6tTSF/Rcnb55ClfyIymatqdSp1pDHiUOa4Zx3VZpMWDt63z7Uhu7sMr1k1iZxfrtnHXq+9ZM+9/Rx3AdNnMC13LYN6M8RJnD9n+oz9b6zmSzEt/ajLv26NdjGf3wJfewOkI3VLNXPXAR/ULJxPIuIxLJY72pRfE9jrjm/hWHryWuZaDQai+uWuTkcC+zxkUjgNRTJO09EZPfefRD/y3eegHi6gjkWGULd+3gf7i/sGu3XyONxhuZcEZGGjfXPy6OPyPzhl/ADJczjZArn/cEerN/dDo6jk4cxZ0VELKrBfeQL0tOP1zlIa//Rk1ineJ1oeL8s4cdytXHnPfcsro9Ze533E+Uq3uRaw6x18wVcuxfyGHdm8J6uGcLnCkODQxCnya+B9yMT4/jsQ0Tk7Dh69tXJw5Tv2dwstrF4bBTi0TPo6TFfwEK084adRhuGB/G50VfOnIXYKeHavrcf6+nwEO7nN6xHH5IZmmfMCiBis98M7SespsEC+rYtPxvWbJZIM+ceuvNOeM21boP48Ans+51bzb7eugr7zqe1NntdOjRP8F7Mob0eexS45I3RinQG90G8Bw2pTtx/330Q33oLetRlkzhX8v5ERMR18By8cuLV+9ZdN+HrA1jbMjYer6MH2zDQZXrTsmfP0888DfHURb4hod/etd3uJ55afA6Zpmddq1bh/DdXxJpQazFGYuSZmupGz5Ovfo98fMiHZ6yEc9O3z/GeEfPs/mFzP1H3sQ6s2oxr+Tfdiv59uSl8PnN2HJ+BF3J4T6IentN1sd9ERNLpLLUJX3dpfRuP4J6lTD7YZ8hz9eTxIxDveR6f94iIPLH7ZYgrFX7euXBO9py5FPqXHoqiKIqiKIqiKIqiKIqiKIqiXBPolx6KoiiKoiiKoiiKoiiKoiiKolwT6JceiqIoiqIoiqIoiqIoiqIoiqJcE1y1nh7r16+TRHxBe87zUTssmUD9yGQKNdUkhlqPIiKPfRc1leemUV81kcA404k6bo6DOmxuFDXREij1J2GI+mYiIrEMarZOkcbZBOk0z5FmZZ1kRlk7r0HScRnSphMRcUk7c3oW/Rsc0jmMcIZYeM6wRlrwDYy9Fjr1Y6dRu62jOwtxovNC7AWoJbjcuJYvbtNboVxG/b9sJ+qQbl23EWKvhezrLPl8+Bb2xzzpZq9dixqEh06gVl9nVxbiNzyA2pldHZSIIlKt4T37H5/5nxAfPX4U4g7K/e4M6v2dOIbvZx1L1iwUEamQVmmtjDqy121BDfTJCdR0jcZxPPX1Yhvf+DbUJ+8aQE1ZEZG//qu/hvhrX8R+sOyF8bkSeuOWZS1qPLPW8/Aw6hHv2rUL4sd+8H3jeMV51KVPk44vnyOTwtfn86hvO1dEjex9h1Bb+jP//c+NNux5GT1TDu5HbebDhzGPAtLkzWRQW9S2sc0jI6SXO4y6wSIioY+anYcPoyfAqVM4PvO5HMSOg78XEE1jDRfSjbXr5twTJa3YOHkxnddx9aW9nh5nZ2Yk2jTKmCVd7gQNYdfC+S60zN+XYL8TKeGYTaZGIC7kcK4ISK/Ty+L9n5oizeYZc5y6cVwL+KRfKw5pmUa4dvERTc+Oi7FbvB6hsWVRDpF1iQT0uydzAc4zc/N4M85N5iA+M2UKr//UHXiMdT14jLB+4TPVipmzy8lk/py4tYXcOHn6GXjt7EGsO1YR5wGXfIFERJKUqx1duD7s7KCYPHaGh3GuiCYwR9jzZPVqrDsiIiHN8wXyi+ojrfxemscrpN/f3YU6zKxl2/BMY4JkJ7Y7FsdzdnSRbm9IxyRt90gE+6mzBz0lhjtx/SMi0pNCre79Z5+FeLZ8Xmu4/b9vFbNiEmnW3vQA1gU7xFqSquEYzlZMneupHOaqHVD9ovezenQtwPo4TYXhxUnMfe/xHxht6Epjbm/I4j1Kk957itZNRxs5iHefwj1JahC9Eta1mGN98vSo1jCP4nO4hh8hb7yxeWxjJUa+Wwms6ezxISJSSeKcGkviWKhEF+5VGARSOdHCqGKZePLJJyXV3J8ePnz4ku9lT4/ANveQXXT/fuZtPwVxjjaB5Sj2XYXWHnXyv6zTutx3W8x/SRw7bhr9M/pT10EcUA5GHNyXdsVx7JXH0WcmdGnNJSJ1Gp9HpvA6zpUw54oFHI0vd+O46R28G49fx7HM6+WrnUgsKpH4Qj+zB1WD/aPI8yPW4qnQ9Dj6OZ08MQrx/BzuY4VqWyRKHoPkN1qr4f6w3jDXJOzZEdB1VCp4zytV2nNW+RyYlw3K07vuwZwQEXnLQ2+AeNO2HRBnKFe3XX8jxNH+LMR7j+B+ZJLWERu2oXa/iIhj0z6B+sq1F+6nb8w4y8uBowfEaT4wSv4Ax9eD96Ln5l033gpxPG4+M6iGeF3f+84jEM+S11ovjemeTpyzE/ScMBHDcZGJmXXGsTCPQ1rvO5THLnlp2jY9N6SaPjaL+66Gb67rfJ/HAu0vyFuhTGNpnmr6PD3fsGhc3HgD+q+IiOTZc9XC69xzkeenX6/L2Rfw+cBy4trJRQ+87k5c85bKvKal4maZe+5EHOenfvI8Wbt+HcRPHzkD8RceQw+rNOXI/dswT7evRp8gEZFUFtf/jovtPHMW1xLFIta+gO5pjK4p04vnTJAviYjIGar5338EPVjLeaxVu7bg/r5cwtdnpnN4fPKsPjuOz6xERAb7cG/Gz2fO76u8hidnDx4zPt8K/UsPRVEURVEURVEURVEURVEURVGuCfRLD0VRFEVRFEVRFEVRFEVRFEVRrgn0Sw9FURRFURRFURRFURRFURRFUa4JrlpPj97epCSb+nhj53Lw2tw06ndWKlmIN9+00zje696AOrHjZ1CvLD9P3hQR1ECbm0V9sgbp1ibjqAeYz2MbRUQee/Y5iE+PoaZZsY46bKyRzlrgHukLsvpqoWxq17Iy6ehZ9Iw4eegliHtJZ7baQM3BvlWo45a8yI9DRKRaRJ8SEZHiJGq2Rqqo0+3UL2hRNqhPlpvR41PiOAv6gHYMc4B9Jl57//0QHzqCHgUiIrUyXv/qVaiJ3JFBLb1Dx0YhLhXxHo4Mo35ugXRM976012jD4S/+A8QHDqAe4NZt6KeRTmBZ6OtG7cs9z2E/VEhDMhKYupTrVqGG4Av7UPfwxGnURXzXO34W4re97Y3Yxk7SPCdd0//P//0bRhuKEych7utFver5UnME2e3VuBdBTw+XNCDn5kgbcQa1D+++6y7jeCfJp+XUKdRaZ53QOPn/ZDLoCeCSJ0hgYbUZPTVqtuEk/iwgD6KuLGrMD9D9WEVjJZslvxrS4xwbP2u04dxZvO5iAXXYuah2ZFFvs1bF8VVlrWfyGclEyENCRBySDa1RTfObfem38D9aTgYHkxJr6tgmEi/Ca/Ek1p1UFO9/o276RZUqqCGcm8Dr8YtY9+fz2LeNAM8Z1lGf3naxDo2NmZrFsSRqurox1PV1oxSTfrwTwXPY5AHCfkU2e4aIiCfkfyL4GY80eAOalUP6XRQ7wM+XA7zGx6bMOXJuFGvEW1+P7bx+84U2Vv32aj/nSxVxGgtzbJL8MzqGsSbkzmLfVMqmx9d0Ducjm7zR/ArWfauGrzsRrAEl8s/o7SFvjBa+WRZ5vgVUVxyb1mrkyZGg9WOCvGk6O7BfUi00eBMdeI8DH/PIo9pVoLUZa5x7pC9dIS+G+Yq5tutai/erdyP5ozTnNstvv0b+/FRB3ObaLttL/idYBow67rQYI04Xfihi4ZxaI0uGWgGPEc7guC2GWC+P+rQnmRg12tA1Tf4KtG8ZofG1ZQTXTWUH5/knSWN+qobXtCvZwl+B/NZKPrbJn8HryFYxr/p90iCnjkt24nhLpEz994Ml3M81aA21aPzjt3eOff755xc9FVatQn3qdDp9ybh/0NT6jtM6zHXwOtnlqhLg/StU8F6UZnBtWSSN+el5Wi+JSI3mM4vOUS1jzpXK2KoC6Y836jmI8xau+zZkNxhtmK7hWDqUx7VFwsH6OEPebQeOov73a9+Iezn29PhxI55MLOZdhDzleOXGPpP1hjnHZrvRS6ZOe74Tx0chPnoQY9vBMc0eKTynxuKmh1KJ5p9abQnfFdqjuC62oVGnmk7r78d/gBr2IiKzUzmI1w1gPU3145g9OIF16cATT0N8dhzXJhs3o6dn3DLnnQSZmAUeXlet2uynoL3PTrxGWcJwoR6Nz+XgtedHRyHe8zI+p9j/NPaLiMhIL67/8zlc0z7xKHpcxWPYDwl6fsP2RBGX1vItt/2YUz559fLY4rnJofps8xM4Cn3PvN8Bz1m0tgwp9slXssIxnSOkdUcyY65v4z1Z/EEG5/ie1Rf27g1e+CwzsWh00VvFZn8TWuOyP1+jatZ59mbrzdJnGjiuOijP/q83bYM4S88IZvJ4v544jL7KIiLnCuiRNGPhHiSI4HOKKO1pNnZjm+7ejvuH2Ul8VvLik8eNNrz4Ej6jO3pkFOKhfnwWmZ9AP7h0DPvt+HF8FhON4RwdiZk1v0HPX3xaj05PTSz8/DJ8ePUvPRRFURRFURRFURRFURRFURRFuSbQLz0URVEURVEURVEURVEURVEURbkm0C89FEVRFEVRFEVRFEVRFEVRFEW5JrhqPT0aXiANb0Frbuws6v0XyH8jmUGd2STJcIuIJOKogbZ+/TqIazXUtTu49wB+njQp52ZRq/HcfA5inw02ROTGXTsgvutu1OJ/Ye8eiHe//DIek47X4hSA65ratzYdZcem9RAXZ0YhLoWYIrFkFuJo/zDE46dQozLqmUKJt9/zOohTGbw3Z8cuaMNZtfbqUo6MDC3qNJ4jn4kY6Te+sGc3xKm4mXgP3Hs3xAXS6qvVUaf0GN2fdWtWQ5wvoXbf9x57HOJ9z6M2v4iIR9qnW9avhZhzuzCdg3ie9Mhv2obaxNmuLB6vG7X+RETSNP5+jnQo+7pQs3DDxk0QT5GvxQ8e+RrEe59Efc9M3NT427xxM8QTRXxPtanlaLnt1bgXQU8Pm3Qni6RL+dhjj0J82y03G8fbuesmiHv7USd5//79EFdI69mySbc5xPuVTpGeuW1+fx6SRm6GNKvXr8N73NeHedPwcOxPkGbk5PQExKUiji0RkSDAexmLsx4utjGgqupTntZJ596h647ETK19Gj5So5rmNU0/gjZ7euzcNiLJ5EJ7a3XUzoymUAO0Rp455Yqpv1mu0nvy6LXQncAaMDuTg/jgQay3M2fx81092LcOeUGJiFRYgjzE+2NZpC3toPapHaH7Z6PmvTh43U6MXhcRN46auK6NetgO6bNG3CwdAdczQYg56wc4J1uhqaG7exrbWcihbuy//TcXrrNUbq9+ecTqE8dauIb+BNaA0ye/AnEth9qzbhJ1nkVEYjbOkRb7gLmYA7FO9A6qk/Z16KK3jO3i/aiwFriI1H2s0RGH/DVqOL5y+Ry2mbxjWPuZ5Mml7pmeGAFdh0s1OyC9Y59qI9c+9pSzIlif+jeZNaCHfJdqIc4rQWNhvHmNV6/Be6WIRd1FXfcKaTl75AHh2hjHo+b8Fo9jfyXJ28KJYpyfw/sTtzAnCqTd7ZKnR76FV9psDd8T5rAA5uawdoQB9nuZ5vkI/R7cWeqnctnM/cwA1tAwgp/xKfczIbZhOIWJVqBti00+S4kW9W7axfXIGVo7lM/vGds8x65Zs0aSTR8Oh9bZ7PHBPmobN+N6VUQkQsfwBa+nQeuTgPYTIe8aA/QQCDz29THHaZ30s6u0dizncV4uF/H1YhH3PBXyBhobw3VdYd7cA1oJvN83FdD34+hR3Ie+dArXFjXyFIqy1xd7wvyYEYvGJBZbmIN4pnDo2kIaKzZ7Y4iIY2PedXfhmqa/H+flE8ewvx2qpxGqO+k45r4TM/fSNdJz92zMQ/b0YN/BgF63HKx1IfsrtKgVRw6jV+IZ8i0UC6/To5jrD1kpSpzujd1Cqz6k9UxI87ycv84W93E56RzaJG7zgqrkq3Z0z/MQZ9I4fhOd5lriG//yLxAHlKcW1SY/IA8zej2kZ1EB5bRfaeWnwftByiHq4yjlnEX11mG/Pjpf62d61IYlYkvwugI6S8PY49KaoGT6OGXIdyvq4/2qXrQ381qsj5eTNev6Fp/ZueQ92d+PnjuHj6CfbaPaYm6hdXF+DvcgCfYmpf3enqP4/i+OY440Ulgrh5NYS0VEKqtxT1MqY91Y6+F+rmMWvZlnY/iM78v4OFvCg89AXD7ygtGG3DQ+TxlZh8d86I2vhfirX/sqxM8dPQKxRX6YEk7j6775rDgSo3V5lJ5LWQtzHPtSXQr9Sw9FURRFURRFURRFURRFURRFUa4J9EsPRVEURVEURVEURVEURVEURVGuCfRLD0VRFEVRFEVRFEVRFEVRFEVRrgmuWuHKiYkZicea+r8e6niNbBiEeHAYtcZsy9R8jSZQPLHeQM3B6akZeh11aKtV0s4NUfctJG3Vex54jdGGnbfdCLFHusx33IceH9/6MvoWJLNZiGMp1MF8/qknIY7YpqZj1wBq3O267U6Iy1W87vL0OMS5CeynRh7jXTfdgJ+fmTXa8MKz6ENRLGPfVi/S2Wu08ARZTkrlmUU911986xvhtb/78r9CfHIMtfsefO0DxvFefBE9Nvp6UNd+oAe1Ef/Nz/0UxDMFvB/Hj6FOXq2O/XPjjbuMNhzbdwji4iz6Y1ikMzo1jvesrxPz7Jd+7Tch9jzUEU51mBqFn//Mn0Oc7sf3PPo85u6//D3lGem52i7mdlcP6ipGyHNCRKRsoTb7TB59eQrNvm53zjGsE8oxa7g+/cxzxjHOncNru+66bRDfejvWmqmpKYiPHzsOcSGHOstdnZjHHavQ20dEpLMjC3HEwenGJ7+FuVwO41lsU6mMGpM+6VcnUqijv/AePEetghqekSh+plFDvU7WuY+Qr4+Q5m7EMn+PIGBdbLqfdqQ5X7GI/jKzfkO/pJs+K8ku8oCokh6yg+Pr1FmzrdNzqNEZJ037SJ203Feht0U31cbxcfT06OlDv436OtQGFxGZm8PaNUXz+uQkzmc21RWfvAboZalTPtkRcwnlxsg3JMS6YwvWU9fF6w5j2NeWjTkacTFOJEw9ZFfQq+ulp/DefL/7whqqVkMPi2UnCBa1ret07mgHrsviGbwf9RBfFxGxKlgH6uSb1YhT3vg4huu05rHJC61Qx/nRq5qaxT6NccsjjySSnPUoJyyqOw59INmFPiQja3cabajNjkJcyWPNLlPuulSPA1ov+i7Wys5BzOu+9S0842JYNypl0t1uLPSLV2+vt4KIiO97ixrbIQm4O3W8lnwdcyqbNMdYKkl+QCF5crjYX7ZHXjGCeVmlHHLIo8Xxzbw7NYHzfJ361acCVqP1O/vd1Egz+VgJ/RkOnUFfLRGRbWnshzhp7ZeLeE6P9lZpqmexCtb1nJ3D4682fX1GhrHeVXI4D1TGFjSvwzan3W233bbo1fH1r38dXouTByD7qrXyldiwcSPEBfJ7K5Ieu7+EEyR7Bxn+AK1E5tnrh9ZxaVr3pTM4n/VQns/PY73+5ne+jcdvsaZ6+9t/EWKXcuj0FszTJGnt53KY17tf2A1xYQbnyx070I9TRGRwEJ9DsBffSmJb1qI3B3vFsWdHSPejWjLXAzWaI+uUq50deI+jCcztOs3RDnnlsX68Z5nPDUI2tiICyl2a7iQkHxdewfLnIy104lnvv1DAGl0nD4gU5X6CvKE6yOcwHsV+K5dMH6dqA9sVT+Jet6NrYT1ZpXu23Ays3SyRphdLlbyg7Biud6JZXAN39pm1rnM/7kGnDu+FmNcvQjXApvrJzzl4L2e38EkLHfxMSHnLvpUR8tMw/HTYq419V7j+toB9QgzDN/5ddlrr2Et4twVR8/lpntbU7NUbptct/jfvoZabM6MnxWmutfoHcG3Qx8+GIzRXZUzvoAiNwYmxHMT5w+hX9OxsFuLJnu0Q+0Popzp8Ev00Dv/D5402DGy/DeJb73gzxCee/CeID76Iz88GrsfnsOl73gVxvfdWiKdHcb4TEZkZ+w7Et92M3rHbt22F+LvfxXm7qxef8XWSb0+N5hnbauHpEafkpD1K0PRl8hpLj5vFQ7zqdyqKoiiKoiiKoiiKoiiKoiiKolzF6JceiqIoiqIoiqIoiqIoiqIoiqJcE1zWlx6f/OQnF/9ct7+/X372Z39WDh1C6ZwwDOXhhx+W4eFhSSQS8sADD8i+ffuuaKOVnzweeOABzTulrWjOKSuB5p2yEmjeKe1Gc05ZCTTvlHbyX/7LfxERkVWrVmnOKW1Fa52yEmjeKVcjl+Xp8cgjj8hv/dZvyW233Sae58lHPvIReeihh2T//v2SSi3o037qU5+SP/3TP5XPfe5zsmXLFvn4xz8uDz74oBw6dGhR2/TVUJytiBdd0IaLx1GzcPN1qFfWCPAybMf8LsevoU7s5FnUwp2bRS1U1sFMJPGY23deh+e08NrSmazRhqnJHJ0D293ftwriN//Mz0B8irwZ1gyvhngkhm04NYPXKCLStXUTxI0AryusonZfkvohvgbPGe9AXeJnv/ddiF9+Hj0tRERGz56GOBpBTeDui7xL/Ob5f/3Xf13uv//+Zc+7o6Nji9qsHZmj8FqevEcyEdSp3L37ZeN4x0ZPQPzet6FnR28Xtq17KAtxoYS69neTB8tLe16C2M3i/RARyZFmrpAHRzdp7d1zB2r33XHvvRDPTqDealhBPcBjRdTiFBHp6UZN8r0vPA1x18AIxAUHfUciHdhPQR21VFOU+8UyjmcRESuKOr7lAnpGBFa8+f8L2oLtyjmRBW3PC/qerPuJYzRKPhSViqnduv/gAYhPnTkJ8aZNqA19/fWoWdzdi9qYR+h4FmlFr1o1YLShXEK96ZlpzJM8vR6QlGgYRY1Hl/RO6yW8bsc2tUhdh3V8sdZEXdTvtMmrySf93AZp+voevV43ddcD0oH1WTu4eT99v721LjdfkYa30GceNfupx1EjNNmF+VILN5jXaaE3xY03r4O4h0rT7DjWpbUbUSO7UEA91modx69XM/u6SlrT83msI7OzmIMW+YxUi7hOKJYxR9nbq+FhHRIRqdcwL3Nz5+gdOJ490oFuVDHvGz7GFcqnatT0skkm0Ltr0wbUX9289Q0XjtfU225X3iXc4qLfQaWK+rarN9B4DVB3OSPY/yIitoPXX6+glmyxgf3nkGdAOob3I6Acyufw88V5U7PYtbCdtRDfU6K6EiOvi0oe72nex7Xhllvug/jn3/t7Rhv+6X/+J4gP7UHPMYnjMV1a0wrp58Y6sFamu/HtgZgavCEJqSeTeG+s6EIbPHfh+ts5xwaNcLEWl1iLvYrtrtdwjVSKmf5B6Sj2ZyaK/ZXpykLs07hNxGkusvGc6RjWU8cz9zXj5M82L9jOKnmf1Wg9b5H+tkOa1zXyiDg0YXp6DKRxHdwVo3OSh0eR1jdRwTk4FWA/7M9jzQ4qZj+kBtBTzCOvu0W56GDBpqJdebdmzRrpaPod3Eya2Hv3oka94+D65exZGr8iMjCEc2StxvMR9h3bYZC8uykhz3LxrDnf4j3sA8J3h4/AXiWJBObPjTfeCHEneVmKiPQO4nqT18ixFObUv0njXnr37t0Qv/TCsxCXad1QLJpeUm98I3o+ns+dVjz++IKP5be//W2Jx+PLXuvqjfric5Ao1SV+tuHR4q+Vp2GV9hiVIuqxJ+N4DwcGcL936vgpPCCv9Q3zGNNPIyRDHp+ugw9hUyZyLnM/SIC1MGyV+xF8T9Qxfa0uxiW/hb4BzFteP05SPe8fMvdVXeSfkumgeaJZR1xv4dztqnWeZ4vVzLkgxJxr0HomX8S+zcfMR5G9W26CuJIjr7YSxgHdC4/2akJzgh1w3TJ9ASzyELCNHCGPD6pDnMW8crSNU7bKezoGec0ENC5seqwbhPw8QSimNrMHpYiITXmewXnIcS7Kk6C9+4lUR2ZxTvHpudDo0cMQs3/R2nW4xxQRSVIufuUr34Q4n8BnoKXtt0NcL+Lne8d2Qzyz/wcQd5M3lIjI1DFcG0zsewpi9sh5zYOvh3h0DNdpkWl8ftNBPpAju8z9/N5xfLZ45CQ+Q/rGY09APF2k8Wjhvag2cDxaMZxTWnmyWpTLySTO6/3dC7WvXvcEnyi+Mpf1lx5f//rX5X3ve59s375dbrjhBvnsZz8rp06dkueff15EFhY/n/70p+UjH/mIvP3tb5cdO3bIX/3VX0m5XJbPf940a1GUV8u73/1uzTulrWjOKSuB5p2yEmjeKe1Gc05ZCTTvlHbypS99SURErrvuOs05pa1orVNWAs075WrkR/L0mG/+Bnl398KvgJ04cULGx8floYceWnxPLBaT17zmNfLEE0+0PEatVpN8Pg//FOVSaN4p7eZK5JyI5p1yeWitU1YCzTul3egcq6wEWuuUdqO1TlkJtNYpK4HmnXK18EN/6RGGoXzoQx+Se++9V3bsWJBGGR8fFxGRAfoTvoGBgcXXmE9+8pPS2dm5+G9kZKTl+xRFRPNOaT9XKudENO+UV4/WOmUl0LxT2o3OscpKoLVOaTda65SVQGudshJo3ilXEz/0lx6//du/LXv27JG/+7u/M15j7cQwDFtrg4rIhz/8YZmfn1/8d/r06ZbvUxQRzTul/VypnBPRvFNePVrrlJVA805pNzrHKiuB1jql3WitU1YCrXXKSqB5p1xNXJaR+Xn+/b//9/LlL39ZfvCDH8jq1RdMXQabhizj4+MyNDS0+PPJyUnjG73zxGIxicVMA5PydEX8yILxUEhuP7Pn0DClfy1+48fGnyIiU5NoRBZx0PxpeA2ayTTqOYhtj0xzo2js49co9k2DU9tFA6paEY1ddj/1AsTJDJq2rLtuG8RTR/ZD3N07BHGiG81MRUTOjJ+B+OwZNNqukxnN2TH81nVyHvuxQqafxQIaH1qGjZ2IQ/ebzYYvNo+92PS3HXmXy80vFt2JaTSg3bgKzdkOkrH83IxpdpmM0znIcPtzX/oWxD39aIb3nre8DeJqAnNo03XXQTw+hvdXROT+u9FoqUIG0vyN+YZNmyGeOIsmdOPHMe/uu/cuiI9Mm5NRoYR90ze4DuK1G/A6CnnMo5OTExAHVRxfI4OY+2xQLSLieFhH1gyi+aXvLJTD+kVm1Fcy50ReOe8uNjK/xB5HRERsMuxmo0IREd9HQ8t8Ac3nn39hBuKxcTS+un7bTog3rN8EcZpMp+qeafSYJwNScdBwLZrE+1H00ByxQqbRdaqplot1PkrmXiIiEpJBLZnXsel0nYytfTJ65QWZQyZwxbJptJxMJSHm++c38/Jiw/P21LpQ6vWFe3LmLNb5Qy+PQlzwJ/GYaXN+ExvPEQkwx972UzdAvGY91sJ6FfPDcdkkEO9VUDN/Z4MNbD0f647v0/0m4+VaHdtQq2Je1yqYo+WiWfPnc/ieM2ewfjYaODY5B6v0Z9vj53AeqlTxnPfdf4/Rhi2bsR5etwWNzFcPX6j5heKFWtuOvMtmHIk0zQIrFby2MpkYRz1cV21MmSaLHbQ2q8RxfM35eE8zgsdMRTDP/BqOcXct1lef2rjwQzxnvorzT51yuSPE95+awtdfPIXnGFyPhoupXtP8cL6CJqixLPaVm8F7kUzhORId2KZYHK+BDTFDy6wBCV4X13GNazeNPwPvQtvaNcfG3Li4TZPXIhtA1zG2I9gXrTbi8zROE2Rc7gVkpk2mp7EY1p5EEtd+Az1dEE+cxnoqIhKP4HX6ZLzq0frbDWj+8jBHUjYZR0Zw7popYG0TEZmYxLVFnXaV0w3s23k2GCbvVjZfr9LypoJNEhGR3CyuNSZP43xmN29FGF4wk21HrbuYW265BeJzVNdPnMC9WEcW1/oiIkMjuGbNdOIcykbl/GuNhm+uYVy+xPtbvIetytmU2jCQJmfeJBmAP0QG4X5otqJGNd2mdZhNY63Wiee4YQfupXfRPmrTpi0Q79+Pex4RkVwuBzEbmV9s8H7+v//jf/yP8rWvfW3Za12temFO5P73ycy3VsN5oFox17Cui/VwkMx3+Rbl6DnByaOY24FD62wyiA7EfIbD2WjmMjs+Y05EHCxMbgTjaAzvXyrZYg9Jz6JsF4tTrcF7HDxmZw89k6E8XbcOTZK7B8x5vq+/F+LxcdwbT01NiYhI/aL72o5aNzk+K0504ec810Uof+Ix2hO1OJ4fx77r3rYL4rnTaFLtJrEWRsnIPCzSHrWO6+iwhM8cREQsm+YqMmO2ab8hxrNHqn0271mW2OyLGDnCxuMReowb5XFCOVsLeOzhvWlV89OD6yHuuQH3HDXrwjjwLtrPtCPvpmdmxGmu64IGrkk70pgTDVqTHZvFfa2ISKoDnyMkYzjG4ylcl7kB5k0mivUzY+O6bVrw/Tt23Wq04dAhfLZ4YDeuFTasw+fX6zbi/eH17eRRMkJP4Pg7eGyf0YZaBdtZPInj5atf+EeIyz6Or2gS86zawL0Bz0tV39xXeQ08pj+Fa83Dpxdqn+/RIvISXNZfeoRhKL/9278tX/rSl+S73/2urF+PHb1+/XoZHByUb33rwoPcer0ujzzyiNx9992XcypFAX73d39X805pK5pzykqgeaesBJp3SrvRnFNWAs07pZ2c/9LjK1/5iuac0la01ikrgeadcjVyWX/p8Vu/9Vvy+c9/Xv75n/9ZMpnMovZaZ2enJBIJsSxLPvjBD8onPvEJ2bx5s2zevFk+8YlPSDKZlHe9613LcgHKTwZf/OIXNe+UtqI5p6wEmnfKSqB5p7QbzTllJdC8U9rJ7/7u74qIyF/+5V9qziltRWudshJo3ilXI5f1pcdnPvMZERF54IEH4Oef/exn5X3ve5+IiPze7/2eVCoV+cAHPiBzc3Nyxx13yDe/+U3JZDKiKD8s8/PzmndKW9GcU1YCzTtlJdC8U9qN5pyyEmjeKe3kf/7P/ykiIm95y1vg55pzynKjtU5ZCTTvlKuRy/rSI2yhrclYliUPP/ywPPzwwz9sm0RE5MTxgxJp6rR1daK26dz4WYhtCzXXikVTm29mEj8TkrbeyGbUvK6RvrhNUtLpKOo9njj0Ir4hgvplIiJ3bkLvhE070DuhXsxB/Mz30e/h/p9Gf4cwkYZ434GXIA5IO15E5NnnHod4nnQOiyXUgmMvBm+JHOBXO1sUsBTp7AWk+RuNXLiffrBwH+bn56Wjw9S4Pc+VyrtarbaoNTcwgNqZP/3g6yD+8//fn0N88Phx43hJavPR46jvHpL3xPQU3Y88aih/8cvfhPh1D6C24q13oH+HiMggaRImkpg3c7Ook/fN73wP4sPHjkG8rgtz++ab0P+hVEBtcRGRU2OoSZjJol6nJ3idfX34+nQJ4yTpZ8dTqMPYlUb/FRFTG5/1Id1IsyaE7c25pWANZY5d1yzjMdZMJd+cGvkInDuLnh6TE6hD2d+HOpYbNq7C49VNTw8/QH1Nj7RE82XURM+Tpqon+H6LqosbYI32GqYOsEc+Ll6D9E0r+JlaGWO/ju+Px3EsWRGMW7UhpBvmUbvDpg5w0OZaF4m7EokvjOU6adpXSc+zVJ2CuFjF8Sgi0t+3HeKzJ/Az3/gyelZ1dKG+cYzqVHcf1pmOLJ4vE1taczkWIQVPC48Zozmyw8E2VPLk1TCDOZmImX46kRieI7QxJ8pl0hImndm+LP4p+P59eE0HDuyF+IZbcF0hItIoYM71d+F4tXzzv9uVd6GEEspCrpMktsQF67hNPkBn4uaaxibt5koZa5tHedIZwdir4txTCrCephLs72A0QTwS07c6Kc+oTsxS/fXJ36iTvBVCG3Pm9IkDRhvsKPqxrd6AfWkl8LotmhMSGTwne+qwb0kYtNg+UM0PSHs/kVjoB7s5F7Rzjh0eHJZoc10+3Idru3gMryVCa4NyFe+XiEiNNMF7+7Ge8bTcHZB/UJm8ZpJ4zr6ubojPHkftdhGRTvKxykQxnifvM5/mp84oNvK6IfQC6iAt9rl59MoQETk0hX4avR24vp8lnft5mscLFq4D5jpw7NSzmLeNFmlXmMI1Z5Anv5nKQhvO72FXYm1n057zhhvQ4+rAARzT0+RTIiLSN4Tr2uu3oxcF67+HrBlPrwtrzC+9xTffsqTHB79MHhO0HmrwWGtVcEnXnn1EfNLWD8nLrbMDNdEH+jHvOztxvcs+GCILe8VXSy6Xk2w2e8m8u5I557ru4r4goP6N0LMJy8bxFYZm+3Zej2u79SNrIC7lcf2foLq050V8NuGT155F67BG3ay35/dl54mQl2GcPKhcysMoncOhAp1MYJsjUbPQ1Dy851HynbBcrOGxFO61Y2mMA6Hcp8EyPm36OOVLuF6p0XgJm6r158d+u2pdpVgQJ7LQPxatwxs0j9RpXpIWvpRx+oxXw/m2TmMyJE8AP459He/qg9ghf79G0XxuEaWx4oa41nQq5Cd3GvfRQp5mPpdj8tQKArPWueRx1cFeNFTbHFqLOuQrW6V+naZzWt1mrnRu3IHtTGTxMxfl8fly3a686+kfWPTnYc/GmIt1plzA8VQNTP+iMq2RylU8RqeFz8NuDLIQW2Xsz6PHj0Achnj8zZs3GG2YnMB1Fj9X8GgtaUXoeVoNc+LgU09CHKH9iN1qT0MPvR3aL9TJ+8lJkL8c7Q/ILtWYs2sF09OD/WtCmjccZ+GcgWfOz6/EZXl6KIqiKIqiKIqiKIqiKIqiKIqiXK3olx6KoiiKoiiKoiiKoiiKoiiKolwT6JceiqIoiqIoiqIoiqIoiqIoiqJcE1yWp0c7+cbBw4veClnSWjwxnYN465p1EEejqJMoIsJSeRWSD6uQnnwsSvpkDdQgnJpA7b78LOqXj2xAvw4RkeMvHYS4bzXqYvYMD0IckhbnS4+gn8O2m+6C+OmDqPV95EAL3WeHdC2jpO9J54xFSFexjtpy0RRqyXWT10Jn2tT0K9ex8/M11Ia7WIszMAVjl5eLZObOnEYPiC9/89sQ33DTjRDXQzPvTpzBY7y8B3XtN23FPEmTVuLhU/h5h0Qhjx09DPHP/exPGW34i//3M/QTvKdnzpzBcx5CDULWs777fT8HsUXa3/M5HAsiIs/vRk3XW++4E+K9e/Gc2TT25Tt+8Z0QP/PkY3hO8vEpm9YKMjmHmp29vazrvZDLAeserzAWtYdkDsXhH4hI3CZ92oC1EDGOuNhhDdJIPD2JfjWlAPXFkynTw4h1lWtV0jele8SyyT5pX9ZJ5zdJeqsxC2t2q3O6pLkrdI4K6VTGyHPHJV1g1sKstdCWnC+QPwbVu4gsXEcQtDfvbKchtrNQi7t78To3bx6A+MiZo/hhF3WFRUQ6k6TT28DrPrgP58zZObx/Zer77TvXQuz5qP1eLph6rFHSu7UdbJMTxRxyo+QnFaOk9DB/Th9Hb7DODGp/i4isGsF5vERriyNHDkG8fj16eNx7189CvPW6bRBP/Dl6N+zdd9pow/4X90McI83k++/dtfjfThS1kpcd21rUkmc/NqG5xrFwHpjLm+PLsnBMxlz0M6rTemPex3tqk89LtBtrZ43e79XMNtikkcs126uRxjzNwYGLx4xRPd333NcgPrj7KaMN3T2oq97Tg2uvSArbWCft54qH/RQIttmxSVM9NOut59FcRDUt2vTOsNq9rpMF3d+gOVcO9GHfZNlHgjz9wk7Tw6gYkJ9GXxbieAz7Ihpi/+enyG+D5qq5WRznVgtvgw7Szo/TErREU0oYwWP09KC3wc7tWyCu8D6nYLZhNI91ecLFvqw08DMTPuZpqQ/zqN6Dc1ElRt5dFXPuqeXwZzEPz3neViQMRcxVentgT8zVq1dDvH07+iZ8+7vo6SgicvoM1vqNpAduO7wWZI8PXmPQ6638My6TH/U3KW3X9G0yoMsIaPFYq+DY4jnConNUalj7Jg7hvor3SCIiu3btMn6GTQxb/nc7iMZii56FDu352fvCdnC+TCZNr7TVq9E3bO3adRCXCzim2TvoySefhjhfxv7u6kU/pEgrjfk63tM6rc0S9JzIo3tamMc6xV6I7LnTqk5E7SzGVH8brDlPz5FCB89Zpb1AkdY/bsKcYxs0p8YSODdFm3XGjZg+GctJ0Khd5LtI8yfVY4vWO9m0mXM2raH8Bq5Te4bQp25m7ATEXhG9SqPDmMO5OdzDVtlnRBbmi4tJUc4Mr8VneDHaD+Rn5ihGT4korYOChrm2jDZwbEUoJSoJPGe6F68z1ZOFmP2MXJ6/K2Y/zNNzv0QZ51vronnHvwyvoytBRyohbvNZAFl4iiXYlpiDndfbg7VPREQcHIO0pZTOTjxmOYdr8ce/j3N0vYiN6luN/lFnx03fnrk53DNa5Ps4SV4/Tz2ObTh7An1HbPKZtOJYp3j/IiLikJ+iFeHaRs9CaE4NaPDE6XlNnBO5hbFISN6GFq0uos153fdaPPB7BfQvPRRFURRFURRFURRFURRFURRFuSbQLz0URVEURVEURVEURVEURVEURbkm0C89FEVRFEVRFEVRFEVRFEVRFEW5JrhqPT0yybjYTX3RWzeibt76YdTyiydIayxi6subGsqoVzY+jt4JfpX0wsmvYfws6ra5dM7+AurxiojMTaCG4Im9+/CcAd6OnuF1ED/6xHcgLrmo5bhl0yZsk2vqtKVI23vs7CmIK6SbOZtDvb/BdXgvhkmLsyuGOm0z86hpKCKSpPcMdA5DHF5kuOL5vhygfltOfK++qJ18+DD6TBw/ib4Gv/1rvwHxbAE1JEVEfNIkP3b0JMQH970McTKDWtMeDdHX3Hc/xIcO4uf/5n9/0WhDtYG5fIj0ao8cR91mn3J9oCsNcZ70W+dJK7VQQk1EEZEG6Yfv2Yf+NvOkfXnP3bdBPDuGbRwY6Ie4VsxB/OJRU+f+2Cj2/RvXb4Q4DBZqhL0CeuOWZS3mnWHRwZ4eRmy21yJtZ4e+33ZId9uL4uu1BurhxqOofRlNkWZ2aN5zriX1Bqnk1rEm+3XSwRfSN+WPk45zOTS1RGusRZqg6yYN1UYDdYJTcdLLJX1k1pIOWvj6+HS/WGM5CPzm/7dX99kKbbGaGsSdHVh3NpNW+LmZcYi7e7Dui4gcP4C16NwYzm+uizqlEuI5GzXsl03rMOdmZ1HT9/gJs69tuxtPQfcjncX7lUhhfmS78P2dWdQansphm06M0jWJSLIT1yc33ojeWw1ai7z40vMQ50uYg/fe+3qIt2zG4+VmzbFXrOK8cfQU1s/r56+/8N7Sq9dDvRJ4QWPROyzwsb8zHRmIeS4KW+gFB+RDFtBc41rYF/E46nCzj08tj3FHB85/jcD0FCiTp1SMtLhDH8d2Mop55ZEXUAfXqW5sk2Wjt4yISNcA5maEtNlDG8/hWHjf47Qb8GqkcU71u9owvWCiMVxfJlzSWW96KHmhqV293KSTKYmd134mj5VCGcdQgzTp+/rQp2fhIJhnqRj2f08XamfXizin1uPkhVbCe1wuYf9WirjuEhEpVug9NfKfofktGcOciNG8Ho/g/Ypmsvj5iKm9XrGx3cfy2KaCQ/PfKow7rscxb6fwHBEa306txe/qVXC8VYvYpqCpU86+Gu3EI48ccfE6brr1ZoiffvYJ4xhHj6Mf1J333g1xF/kZhbRoqtE60FxqGqLoJsbP+AcY23RIh85Bt1dq5H9RC8z5yaLaw/5elQoetF7ncYFjMUca6udO43xZbpgd4aUxb3lmil30kRZy5ctKNBKRaHOvz+vNCK39HVr7V/nZh4gcOIAeYbOT6NtYpzk0oHV3bw/6DhRr2L/VKvk10P5ORCRPfl7sb5PJ4DzN/jZT5Ltq0UaL+8lvkfxuEtesSfIDS5KHaSyJbYolsLZlo7hejdEk3Mpixw/Y6wJz2Wp6k9Rb+EMsJ5FkQpymN4BF3iWSxLo0XMa5bFPO9Mx5mXwGJqfw+cqaW3Fd7JbIZ2IG8yPIow9C6Qx6gISW+TjUiWC7yzWsKwfHMKfiGdwXZVJ4/1Np9BENBfO+NIvPUkREfMrjbDfWneytb4V4ZC16RR1+Cf1Px/bugbg4PQ1xPIs5KSIydPNWiEPyiIDno057i93r7uyQeHyhPX392P995BeWSpFXM08+IuJE8GfFKuZqZwf2z9f+BZ8LPvZtXJtHojhe56gOfe8b/2q0oTCLz8OSGVpHW9im5w/9AOIo+W8khmmNRV7NrSZ6mhbEtsn7kL2h2Bsxhs9OnBDnYIs8ApPkySQiEguwtmWzWYgHBxbmlXqtLnu+95zx+VboX3ooiqIoiqIoiqIoiqIoiqIoinJNoF96KIqiKIqiKIqiKIqiKIqiKIpyTaBfeiiKoiiKoiiKoiiKoiiKoiiKck1w1Xp63LN1k0TcBd2xdf2o71iqo1ahRbp7bgvd2dwcaqSVq6j/lyHNwUwvalA2SJ8+QpppuTxq8Z2eQM1KEZGnDx2AeO1BjO+6816Ie4ZHIC76qLs2ehw1CV9/F+m79qNXhohIbg51EYsFbHdQxH65/6fRQ2J1H2oSTp5Af4gE9X0v6WyKiESTpP1mo75cuXhBX7nuefL9I8eMYywXdiS+6JHQIL3+nVuvh3j0HGr3leZzxvHe+gbUnfzr2X/Ez1RIj53EXwf6+iDe89ILEMdcfP/pY+hDIiKyZgSP0XffnRBP574N8dRMDuJUCrX2RkbQC8OjfmLfBBGRKnklHDmA2sTb1mKuWj72S5I8eHqG8ZqmxrEfIjJqtOGGnTvoJ/iZfFPLlvV/20EYLvxbCEydyYtpeNi+VjrV0ShpwvuouesHWM9CEl4OyB/DcfH1Cmnweg2zz4KANHKpfjkhvu7aWFN9H49pU51g75VaxWwDSelLEOBniqSj7pAWLev8kj2HRKhNre5FSBqn7DkVjTvNtgUiYnpELBf1mieus6C9zP5PM7M5iGtV1NbctnWdcbwTB1BXNPDQ16raIG+mgLyEPLz/L+/Be1MqYxtKDXP5YssAxI6F83gqlYU4buF8tm4Velbt2IVx0kH91qeewlhE5IV91JdF1LdePfIWjNfhvPLsM9iPR6hfk7RWKVdMDW6P8tyKodb00VMXdGXLZdOjYjlJxOISaWpXl0qoTdug2lur4dzCHgUiIg0P+zdKYrTsgcQeHnXyCXFJU75eJW+iFjrA0QSucxwS4/ZDzN3zPj7nyZDPWUh2bKksavLGM6b+bWBj35XpuipVfN01vIXIs4PWJo7Ftc7sh5Cuiz2Pzgv4e/X2e3q4qZS4TZ17i84/Rp5Fq0fQw6NUx/snIhKL4T1wfaxHDbLgKOex/wt5fEO1gfcrTz4xx06iJ5mIyFwZP1MgvfcCjZdUDO/hUAfWv9IM7gdqNawN8y3uW4HyZi6KbUpeh2u1oRuxJgumvhTLeA2RgNYyYs6xdhxrgB/B90STC9cdhqEUTFug5SMIF/6JiGMMF/zB6iH0grrl+huMw333m9+EuDKBOZIYps6k2mcH5NND6xWf2sSeICIiPo1xvh0efYR9myzy6KhXqL5W6V56LXxYaA1cp7wMyDfLo1rlUxtsD8f3fAnXLs/MY30QEZk9iHuxt8Vuh3hn4oKnT7566TX9lcZxnMW1q0fzo0812SuThn3J9GoqFck7qEpzg4/nqJFHyuw47pWrs+gjUKHfv50+g16jIqaXZInWLdO0rjbW5rQZ4PnLdbF+uwnzOVI0jTr1mQyOt3SGfLXi+LobxXOENHjY+yXawp/Wp/vpWLzewf9vFx19I+I2PaNC0uuPkf6/O4f9MDOB+SAiEk2id8LA1i0QD2/AecUu4Fx2ahpzaP4cjuEG7R/6hsznZdn+IfwMPTdkL7daHl8v5rCuVOv4ukv3Lt6N1yAiMnjddRCPDOHz0I6NuyA+t+dpiA8/+iTEhmcpPcuszKDnhIhIYQbvj5/EGnLx2PLr7ZxgRd79izukI7OQX2PTWKdGz+Caac8BrCF795p1ZmoO9wfHT+O19/TiWjwgL4v4aqwBdZoQA3oekLNN/+f4IK4tbcH9W+DSuo6ezxg+r+QtzM9WohFzL50k7yfXIb++JK7jujowHqE19FZ6xrdpNY7f4aH1RhtScdr3UE2ON330CvmC/I//8nfG51uhf+mhKIqiKIqiKIqiKIqiKIqiKMo1gX7poSiKoiiKoiiKoiiKoiiKoijKNYF+6aEoiqIoiqIoiqIoiqIoiqIoyjXBVevpsW6wX2JNPcNYAnURs6ylG8XXiyVTo9oS1EFMx/EYtQZq750cz0EcIW+K1Gr024iTTl7SwfOJiMw89zzEz+55CeLuLGoYbt+JWn07r0NPgumpSYhrdTzn5OnTRhuee+E5iDdch3rid7z5ZoizfT0Ql86egXjL2nV0BtTRzE/PCsPa0eemZyAen7ygKch+EctNtrtH7Ka3QJ50Rz3Ssp2dRy2+t7zpjcbxXt6D3hUdnZ0Qb9i2DeI15OMyM433eGIcdfBrFdSUHBjYZLTBr2N/d3SiTt7adWshTqTw9eEBzMujo5hXmzehlm13ljSbRSRBOoYujZfBrizEd92CuV+toNZ0qYQ5YznYr+uHUU9QRCTZhe2qkM5uLp8TEZFGC3+KdhKQ1mxI46VWQ93Kep18YUQkQb45tou1IZQ6vY73I5YkXXsah2HAWrQt/BVI6zKk79hD8vgIaaj7DdKhpH6JxlBj0m4hYusZOvV43XwdcdKeZf3j0MLYId3LoIXeeKWG52SfELfZD1wXl5vp6VlJJBZyJ0MeAR0dOJ7WrkFvi1Mnsa6JiIyN488qFdSGdR3UerXpekPShZ6ceBlfF+x73zZ19n0PNZfFy2JYw3l8YgLXDqNn8d7sP4h1pFLE/KhUsJ9ERPJVrKfjZ85B/JyDc2JnButtwsV5vpjH90/PYO2rezmjDXYE56YDR9B7ZCZ34TP1mlk/lpNqrSZ+cz0Wp3VYqYh6usUCxrZt/p5OnPwwIhG8hw0P865UxvoZJ/+jbvLPqJCfjVXH44uIVMlvht8RpR/EU1i73BCvy2VfEsFrsKLm+jIgnfsI6YeXqQ7x2ipKmuaZDuwHm9rYKm8cqvGlAvZ1pFmivXp7a52IyFQYSLQ5h8TIOyaZQM3kRAx1mWstrjWTwbHP64bcPK5ZYrRPSdGeIpfHMTtFPoQV28y7mkN+F+Tl49G87tEhBvrwGopVrC3Pj6PvYClF9VVEukdwbuhfjTXS68K8y1ewTYUJzMNSHnO9Slr+tXnzXtjzWCfWZlEbvXvjQl97vi9PzO02Pr9cFMVa1FCfp/HDvjZztMadWIWa1yIiE7RlP3FoFOIC7WOrFtaJFE2ZHmnK10P23zDXMxat3dnHzCHvBF7PlmntWa1RjS+RZ13VbEORzlElrf1ahfwfKqTFT2vm+RncVz2/fz/E+1gHX0QeId+CH5Bn0q0DF/Zy9SIZ/CwztVpdrOZc2cpn7mLYb7HRwjeLvV3myb/SobmkRGuUKvlvsK+LY/OcbbbBofVfOkZ+F3yLaEMRT2Fd4vU2ryOiLWpdphvrZWcG32PxPormYMu99O8ZO7y+aXHv2MOD9xPnabVWWk4ajVCCpodQQGPcI9+eaA8+VzodN9czqRj2bX8Oc8o/iX4MMRvf75AHgR3BfHDTVI8r5nPD3Diu3dNpvJ/ROJ4jTGQh7urC68yQ90JtAJ/3WC2enXhT6Etx7Cj6tm6M4jnPHMd9GHu3+TS2AofWnpaZNxUa767QdV9U44OGuS9bTorlilhNwyyyIJOwimssv4F7qZER9GwREanU8BnnbTej11YXPauay2EdqlcxZ4o1rK8V8tNo9acHMXqWkYpj3NWD12WHmJe+YK1LJ2hskJ9qth/XvyIi3bS+XU/PvOsNbFO5RLWKauHqfvTbvPF6fMY30G96egQ+dQ5blTTnDcfCtdOl0L/0UBRFURRFURRFURRFURRFURTlmkC/9FAURVEURVEURVEURVEURVEU5ZpAv/RQFEVRFEVRFEVRFEVRFEVRFOWa4Kr19EgkEhJvenpMzqNvQbmG2n4z9PrUNGrhioh0k49BjPQgLdLG7V2P+mLX3X4rHpA00Yp5PKc3g7puIiKrh1Eb7sgo6ojuOYQ6oukUakxu2bwV4r6efogTGdRlC2umLuamzddBfP2teF29q1dD7F2k/S0ikrZZAxbjXAHvxXwJNZ1FRA4dQ33xs/PYd8n4hev226xzn00nFjUyp8ZQh/LAgYMQ33PbPRBHWbhbRB7dswfi0EWtaNtBrb19pCUbtVEnb9MG1NUrlbC/v/f4U0Yb+jpRVzISxdzs6cc8ynSgh0duHD08brr9RojrddKNrppl5d/+3NshPngYdSldGn8njuM501nsN5f0/B9/fi/EO7etM9pQojE6X8Tcmhtf8CDwWujJLjdhGEgYNr0dSIvWI83jCvm4SNBCW91O0A9Ih5neH5B2c93z6HXK7QDHfaNmarKy9rNF043H3inUKJs9QEL2ESFvjBZ6uTUP+6ZOWu7RGGpfsrYw69771MgGaRO38vQQC3/mkzdQtdbUwW2hn72cOHZEHHtBm9Xz8NybN+Fcs3HLFogff/wJ43hr12YhjroYDw+iP0ZnGl8/N3YW4uPHD0OcJ837CukEi4gENuV5FEVegwA1Xb0GXndlFu/n7CzWb9fG2hixsbaKiDjubohjNuZY2MBxUJjGed6y8BxCuuxiYz+kM6aGbp18LJ5++hmIV40ML/6357XXw6hSLkvDXxhnEfLTsO1La2JHI6TjLSLRKOoLB6Q/niJtbvbpcSM0X5EWbTyJtbRVd+XJJ8RxsY4Y2s8+ttFN4DkC8qCzqNaVC+Y9L5VQNz7KGuU29h3XIa6v7LcSGFrv5r3g93R3ZiEu5xfGI9+jdmB3ZsRu9kmUPFGsMo6p+RzOsZGYuaaZm8tB3GjgMTvJvy0aJ+9Byhmy4xCfdJ3thKkxH9TwnocW+y1gm6JJysMI+dUkydelG9eb6U7TZyLdgVrNR06j1vrobqzr+Tyes0HLF69Mc2qNvZ/MeTJNOuRBnM7Ru3AMz2tv3j0xdlqSxYW951dPYz/kinj/J/MTEI/PoLa4iEguxDyNPfUdiG+bxP1dso804m3qW5paCvOYT/OzOaMN83kcG5xzrAlfIz+HUhU/XywXKcZ+KRbMPWShgmviKq2J61X8TJnWCnVav9ao9gUOztnWyEajDZUCfualmRzExciF+um38BldTmr1mljNufSVPB/O41PdirTwDvJp3TxPPjtehfo7h3laJZ3/Bu3r+YyJqLmWd435hp7hUB422J+G9gc8p3I32S2ejkWM9QetV2jOdckny7JNbxh4nfKwWjH3drwG4nmbz9kuwkpBQr95n2kPa0Xwuv1ZfD3WYn6tzeBavUELrxj5djopjDOUs5ksrdV97FunxfObjp4sxMk0rokaAa8d8d50YTpILI8+h88fwblyZu8LRhtKJ09AHJAf0bl95OGRTVNM3mPj6BMbdXFdEaVrFBGpzmO7YzRi46kL/WD57fX0GBq6Xzo6Fq5hsBfnhVrpWxCPHsO+62RfIBHp7cD+qHpshEXP5Nagf5jjY9+wT1Y6jrl/btr0o6jWMa/WD+Hzr3Vr0Ysk38DadvIs9oPrZCEe6MM1m+WY9TZB3tn9A5sh5kc+43QdvEqbq2JfT89jP3S12MfaVIRDeh5qhwufCXy83kuhf+mhKIqiKIqiKIqiKIqiKIqiKMo1gX7poSiKoiiKoiiKoiiKoiiKoijKNYF+6aEoiqIoiqIoiqIoiqIoiqIoyjXBVevp8S/ff1ycpn/ELHl2sO7zYB/qzM630M/sSKNG5zBpDcdT6IeRzqCe2dzpkxAXSM/33FnU3ZubQD1CERGxUE+3QfKOc6Rt2rBQhzSewA90prCNKfL0GBlBDxERkS3D2FepftSjC0roe9CYRt+Roy/vg/jUBPqrnCMPkJpvav33pdBfZcvqdfiZizwKPN8XOYdat8vJzz10j8RiC/fps/N4bWNTeE+/8e2vQ5z6mTcax7tu6/UQF+ZR9+70adRjvP2WHXhMB3Nm/1HMsxMnURNyYAB1LUVEMmm8x4cOv4zHPHYA4pDysjeDGoe33Y0+MJ1R1JCczJk6pJtGMO8qpKE9W8Zcr5GOfV8K+6GvZw2e8xtPQ3zyrFnaoi7mXZ30ArdsWdDtrdcb8oNnTW3N5SQIvUU913oD9XErVewr10YtxJ4MCYeKSFcX1rtzBdQ8ZB+WRgX7u06a83bAvi34er1u6mxbdA8dBz/j+ezpQXqNVOdtUon0qLbYLbSII6TT6vt03XVsU0B61KGNr9cs7Pu6sHZtCy1i0vhskF+K09SBtdrs6RGNxiQaXcgd1jP2STc96uJcc/+99xnHu+XGbRDHXRyzHWn0qoinUKe0RPP2ocPooXRgP8YT57A+i4hMTo5DPD2D3kD1BvmA+KQLHZLHC/WLRRq+Vkj+OiIiIerfBqQdbVvkY2Hh+A0Cmu8opUIf68PGdZuMJvT2oifZiy/hvO1c5DMTWu3NuyAUOS/pHVLOp0hP2KcawV4lIiI1mjsSMcwrIf3wRIL8NkhPukzHC3yuW2YbOqgGO3TTbOpj9lGphxhb5CvCMslcr0VEauTzEXrUBtIv5rteoev2I+TxEcPxLJZZ67ims7eJk1m4N0G9/b5ZUduWaHNPEU3hOK9XyJOP6l8tb65p2IMpQd4vc7QWnqW4TN4F5SrN0aSDX6uY+xq/iu2KCl5XmubENUOo5bzpdlyfFgX3IC8dw7ViOTTbcHA/rh+PvDwNcb1AC8qA7z35q/j8fhx/HaRZLiLS34lr1EQH5roztPCZsGGOm+VktDAviaa+/VeP4/x1bhbXdcE07i+s06anR3QU/fi+fPoxiJ+2H4G4fxV6soRRzCmvwF4MGJfKplb2HM3TVhJzzu7BfWi1iu/3xzE//CLmcEC+CFbc1Jh3IjRnkl+OdON+IyS/MYv0yuMJ3BtE06Rzv7rFvmo99m22G8+xPXthvVN3o4J3f3kJfH/Ru4o9rJiQxhfHIgs+XBdT4FpWxH1taR5zu1zDucWmeSGgtX9o1AiROPl7LXVd2R5cb7o0f7EnHJ/T4ZwSkWQS1xbxBOY+72HqdN3sGbikH4dv3osGrRXYFy1o3r+gzX6o9UpeHG+hjzs6cDzFaR81nMA2b7gJPQNFRI6cwToRHxqGONGLzzXmZzDnMiN4/6NJnDfq5IEmnjnHV8hnaWoC9xeNeaqftP84kKNal8dxMk8+QFI115aGNyb56nr03NDNYv3tGcA5f2wKPT26etH3yXJNn4ughHk6shZ9YLPDF47RqFbl5S8bh1g2vKBTvGDh3tZof+fEsI5v3op5FkbMuSUQvOdVerYxPYP9N9iBfTF48waID43iM7qhPrw/mbTpWRWjtWRfbxbikB7dF+ZwfG3aiGPDo1qQpmfHw0PoEbJwErzuSBz7slzCtUGJ+qlKuTxv0/5iH3p2nhzDfhUR8cjwbeNqrAHrVy88465VzbH7SuhfeiiKoiiKoiiKoiiKoiiKoiiKck2gX3ooiqIoiqIoiqIoiqIoiqIoinJNoF96KIqiKIqiKIqiKIqiKIqiKIpyTaBfeiiKoiiKoiiKoiiKoiiKoiiKck1w1RqZzxSKYlsLBj5JMofNkMlL0EBDlYFOMrIUkVodzZ+e238M4kKeDEnJxCUZR8Mqn16vkPlwKzOgdLIT4u4Mmj2lyGhr4jSaIpXyaMLXTQZE3/s2mg4Or0fTFxGR4pmjEFeLaIJ0cvQ4xKPH0Wh7vohGeMfPoNF5SCZLQ1lso4hILIoGYdM5NPDLz1+IuZ+Xm9zslMSaxmBvf8tD8Nq3f/AkxFPTaFi7dx/2rYhIIoq5OlvMQfyuX/gZiMdO4zH6yJDxzttugnjL+nX4fjKmFxF57PmXIN51/UY85xgaAh8ks/Q65eVf/6/PQXzTdmxTMmkawDlRzIv1m7ENp6mNQ8keiDMxNH+qV3E8P3jfHRAfOIx5KyIS7cLruG4DtmFiZsF0jI3c20NDRBbMpryADPbILDtKhn6dZLooIpKM4rVWq2igVq+TGVqNjMk9MglsYH+zSW4YmlOJT8aAPpn3egGbipJxlkNGvC6bAGKbGw3TuM8iM3TzPdhum5yra2Sc3CBDd5fezyZzIiKuRQaMZCp23ryw3caDIlbzn4hN7XYcvM6QzGXjLcxFs2SG5lqYg+TfLpUAczLRiXPsbXffBvH2G3ZAXCubBnAz02iGdvz4KMRHj2B87gwanc/MoHlsqYRtbNA83wjI6VxEnAhehxuhvLVwXFgWHtMWXItwOYo4mE/nTh0TJkZj57X33YltSlxYI9VqVXnq+/9gHGO5sMQWq/n7Ng6ZvDdonRbQGI/FzLmlVEYTuwKZS0ZoKZbtxXpZr2Ni+lQjyHtUonEy9BaRZALHQ71CxuQWGZOT4Xe+iuuwGK03uR67iRYmqzbOkb6P19Wok5EgLa14qWVRva3SAHZaGJlHU7j2Llfw3ljNuuLZ7a51IslGQ2LN+3B6DA2hgyoamWcjeI/jDhnWiohLieU18B6VKrgvmaF1bpzucYz6rqMD83RVCXNGRCTrYt5lUmje6tD8NtCNe47ZCK7nnz2Ba7+9R8hcMjTNg/OTtF4hT8kIz2uGlzhVOEqr0MUfDHab6501ZGSe7cexcNZeOKlvX9r8+Epz/4bNku5YaMsBMl7+P8eOQFyOotGuPW2arlfn0DS+OIvzUyGGg/gsGeW6ZczB8jkcB16d6kzS7Oso7TtT61ZD7KcxJ+0qjgOnA3PUq1HNj7OJOBqGi4i4ZM5r9ePaIzqExuMZ2pNs7cFrWJPBvo9YmLPdKbMftvZhGzZ24XV1OhdqSCGfl781jrB8eJ4nTrNem2s7Wo8EmDNBK4NwGsIBzUelIprVV9lQmPYsDrUpSbXPDcxNGLerQM8uMim8h9kuNLMv0/yX7sA85Tnccs15PsrvoXndpX2XG8G8C8mY3Kc5NaRrtFo8/6BTSr2ONdxrHrNBP19uejuT4jaf7azeuB5es6kfumhtciOt7UVE8hlci0+V8Xpq5/DZU5Hm1zLVutIkzmWVKXzu0ciZRsq1cayP9TLmUEDPIRq8T6Z7xfnCY9NyzH00ZwDffx4X2Q4cB6vI8H2MDKd9Dw84uAHvnYjIWqq3bh+uXeYrZxf/25P25t3sfF0awcI5CzgdSq6wCuJkmq7dMp/T3nzTdohnZnBt2NWHta4sOOYDwWN2rsI6NFvDHFq3ocXcsgHN0SfncE9YoDVWkhZdPm1aOhKYE7m5eYjP0lgSERkexDaUyZh8bGIa21TC162QFnJR7JeZMtbCsXnci4uIdHVgnvWWse/3HzooIub8cyn0Lz0URVEURVEURVEURVEURVEURbkmuKwvPT7zmc/Irl27pKOjQzo6OuSuu+6Sf/3Xf118PQxDefjhh2V4eFgSiYQ88MADsm/fviveaOUnj7vvvlvzTmkrmnPKSqB5p6wEmndKu9GcU1YCzTulnfzDZ/+XiIisXr1ac05pK1rrlJVA8065GrmsLz1Wr14tf/RHfyTPPfecPPfcc/K6171O3va2ty0m66c+9Sn50z/9U/mv//W/yrPPPiuDg4Py4IMPSqFQWOLIinJpHn74Yc07pa1ozikrgeadshJo3intRnNOWQk075R20j+8IDX9/e9/X3NOaSta65SVQPNOuRqxwvBHM03o7u6WP/mTP5F/+2//rQwPD8sHP/hB+f3f/30REanVajIwMCB//Md/LO9///tf1fHy+bx0dnbKvRvWitvUu8s4qAVWJz3kYp00Q6Om3vh0AXWeO3rQM6BYQH3ICdL8HehEjdh0grSLfdSxS7TQfRYPNczyJWxTjfRy79x5I8SpKOqbnZ1HTcLDx1DbO3BNfUCLvufKplHrrd7A6xgZQb3WPBWls6QJm05hP7n///buNUauu7zj+DO3nb14dx3HsdebrJ0FGzsmBJGYpEnTJC2NU8QbXhURifKiKkpQECmVUIKoQlGVWOorJIKQKE3Vi2SpJUiRKkVxCzGOTEQIcXFsCCo4ju3sevFtd72XuZ1/X3h3vc/vjL17ZsYzs+vvR7Lg7NzO/Oc3//M/M5nnieLxymb83zKyn6dPX+6VEYVgx6embXx83Pr6Lt/3tcrd15/8K+uc62FRnPV18qYLvg7lv/7HS257y9Ctsfu9Vcavu9PXT9z1UV8/8I3X97vtTRt8ndhKxufuuNSsv/9eX7vdzOz3Uvt+5KTUvf+tr6X37slTbvvceV+779abff3cwU2+d8xtO2+L7cPaPl/Tc+f27W77n3UsN6x12x++zdf1jaRXQyR1Kd99z/dbMTN7+ze+X8onHvhjf5v3L9UQLRZL9o///p/XPHNml3O3dfstlpmrw180rQfvc5eVmp4Da+LzXXe3nzOPjvjxKBSkzm/FbxdlLkrJ3JUKvmZkuRR/n0fy3tdapEGrlabk+lLPPyt9CnJScz6TjtcBLksN3ULBP6/OvK+nmZX7nJ6WWvs5P1d1SA3fUiVeh1v7Emld1/k+BVEU2fF3R5s21337+Zesq+vS89dDRb7T50fHOp2Jv95pqYOdkbqiGalXWwr+uK265BibldtrnszMOqTOfpCiulNT/jHPnfVz4Zkz/nh28pSfG0+e9HWGR0ZOx/bh9JjWFvbzr/aiUekliviuX+9rrV44fyF2HwWpqf0nn3jYbW/Z8qGF/z87O2PP/f1fNy13f/rYRyybv5SNKPj3i+ZOa15X69szeVF6u5T8ePVIPfeObp+jQkl6VUg/m94+n8NyKV6zOEj2u6UGfDbj54liUWs/+3lJ+/tMS9+SKssqy8nYFWR9WZHa+SW5k6ysWXMyKWjfplymSj8bCe+M1POffw+XCxX7n2//uqnH2D9/5M8sNzc/lKTGfKXsx6pTYnZDT7w3nY5PSgrfV2SOLMtx/IY+v1ZOp6U2tNRkzxTjE17O/DlBWdZBUzL3nJ30fQJHzK8Ljp3za70L530uJ87FP5Qoz8rzlr4QJudGmcjnNCV9fUJGjtHy/r1z+wdi+7BtvV8nT5nP3U/n6kVH5ciO/+x40+a6s4se55XxC+46//CrX7jtoxd8ne3MeHyeKR065B/n9dfcduc66avV7+u5X/y17wkS/c6vibNyfti51vehNDNLS834ovYXklre2gfBBn2N8+wtvl58/03++LZ5o39OZmYDN0nvmh7fq2Ztl39vbVvj5/B7N/pxGZJ+ENrnIltlvu2V+S92xr/oNhMTE9a/tt/l7lrOdX/zt08v9IWqVOvRsZjMdbH1h5lF0ttu5NR7bvvcWT+PRHL+MCvHgS7pFZOTHkqpKr3SZqWmvPYm0fViJOcTBem3oGvFrKzt01U+P+no9jmxtPQqkc9o0vLZlfb0KMpz0j5c1WivrWn5nGJeqVi0//q3f2naXPcXT33dOvKXnv/QB/z5/ZmCn8sq5/wa+cY18df7oPQWvTDp6/aXJ/x8WZzwx67ChP98LJry53IV2ad4j0mznPS6TEmvmUjOYaOEH6fGekAu4/ax80nJ1MCHtrntm271x8tyh/RnHPTzd7EvPl+UKv64f+68P0+aurDoM7tixY7902+alru3/+8n1jvXk6ks5wvr1/p5Pq/v11y8//PZcZ+rQ2/7Xskjv7/gtrPSw7FXerFpj8ffnvLZ7+2K//Zg6wZ/PNuwwR8ztR/G4d/589JTY74PSVr6pnVJX+UN62ReM7P+Xn/cPi/nmaOyFizIZ0L6OYecIlleegIWK34uNDPr6vT3+Ucf89neMJevycmLduftfxDLXDU19/SoVCq2d+9em5qasnvvvdeOHTtmo6Ojtnv35ebP+XzeHnzwQTt48OAV76dQKNjExIT7B1wJuUOzNSpzZuQOy8dch1Ygd2g2jrFoBeY6NBtzHVqBuQ6tQO7QThJ/6XH48GFbs2aN5fN5e+yxx+yHP/yh7dy500ZHL/0XRBs3+v9qY+PGjQuXVfPcc89Zf3//wr+hoaErXhfXryNHjpA7NFWjM2dG7rA05jq0ArlDs3GMRSsw16EVBgcHmevQVMx1aAVyh3aU+EuP7du326FDh+z111+3xx9/3D7/+c/b0aNHFy7Xn7SEEGJ/W+zpp5+28fHxhX8nTpy44nVx/dq2bRu5Q1M1OnNm5A5LY65DK5A7NBvHWLQCcx1a4cCBA8x1aCrmOrQCuUM7ihctXEJHR4dt3brVzMx27dplb7zxhn3rW99aqM02OjpqmzZdrsE5NjYW+0ZvsXw+v1DTfLG1PV0LNYPPnr3gLrtY9LW/ZqUm8+SMr8lmFq8Tevqsr/934zrf42PrDl+TcExqe0+d93XZOqTe+Nnz8X0wqd+3Zo2v23buvK/D9t8/f9Ntaw3haakt3d3ta7BVZuM10m4d2uy2+zt8zcmy1N+9KHUQg/S1WN/nax1Py2Oelpr4ZmaVsq8ZmJZxuWH95Tp8lSgym5puWu5uGhiwrrlaqO8smqDNzG7e4msj/uH997rtu+/aFbu/PnlNpsd97dPfj/naiNs//DG3ffxdX9fyznt8v4zNw77GXSbydUvNzIa1Lq/W3M37fbzjw/4+J2Yv+MfI+vp/P/npz9z2hdl4LeJ1N/isv3dyxG2fPuPfL115v4+bJXe5rM9tOu23Nw3eHNsHaedgPWt97b/S8UtjV5qr/drozJldOXel0oxVovTcfvrXMJfTup9+sxwfbpuW2rBRWeotSgYq0rNDWz1FUje0M6fjH9+HlEnfD3nfh9j6xj9GWWqaa7VTrXufSccPZ1oiNas1duUKhYKvj5vJ+iemPT/SsUVafNEWIv+8s9IHZP55zP9vs+a6ECoW5mova9nnKErLdaWObJXnGavNLteREp6WT2s9ep/ZStFvp3L+/rJVai6XYzmW3Erfgk2Dvl74wKAfxx07P+K2Z2Z8berxC/GfWI+O+j4h70vfqzNn/NrjnNQ3npnxdfi1lur4hK+lWpb3gdnccXORX7z1ltvu6b5cE704l/lm5a5UKi30wIjkvRFJEPX9pnW9L93Ib3Z3+lx15aVeuLxnz0/5WtG5Dv+Ya9b462vGzMyyUic5yE6dk/Wivr+6u/w+6jxUlvdCsUpvk6ji96EiPSAq0rcpdgyVGuiau1Dx64S81GE3M8uk/X5FVqx6eXmu70Mzj7HFSsnCXMH6TNlf3t/r7zMlx2BLxZ+rvoblgp8LcrK+2LLF15cuSR/Bs2f83JLL+9cvI8cuM7MOqUk9KXXOR2b8enNEau9PTvhzjhulP0Pa/FxUjuIH+plYzypZW2T8fUrbEZNWXdaT9/P6B6Tnw803+z55l+7Uv17npv3zujjXd2R+HdOsuS4z98/M7A7pG/GXW7a67QM53yfhvZSfM8zMLn50p9sevcHf55T0/umRfPT0+H28eJOcG+hiskqJee0XlZZeamt6/TlhVs6tZ270j5mW98lHtw277Ud3xfsU3r7WP0ZO1hpaL7xPzs+75BgQS/XVl9xVaY86PSKYmX3wgx+0vr6+az7XFYqlhQWX9n9KSS+MrKzT0x1V1lXmj8sZ+dygU46507JO6ury539d2htDXq9yKd5XINfl96u722db1/9lWUvo9KnPQdefqWx8vtUeHkHWvDNynlqQXihZeZ45GddI+tPGz5HM0nIs6pTzw/meLKW5ubpZc91bP/+ZZebG7Ff/e8RdNivr0XKQHh+z8XW09tmNtC9I2c91qchfntLXU9/FFb+drsSPbRXp4ZGS10vf87HzJHn9UpKflPYmrdLTIyUh6JE+TVtu858JDX3sQ247rPcZPdvhf01x5qL/bHN64kJsH6ZlXRFJH5nU4vl1rides3J35J3j1t1zaS7olvO790/757JWej+tXxvv/5CT84UBWW8UUn4funr83Kevl54qp9N+rTJdiPezGZv2f5sc8euwsXO+X8258/6cMCNzRD7n76/b77Ll0/HPDdf1+Zz19/qxKpp8hif7MCtrkaCf18gxI5uLz7eRfEXx1m98v+H+/KV9mJHedVdTc0+PeSEEKxQKNjw8bAMDA7Zv376Fy4rFou3fv9/uu+++eh8GcMgdmo3MoRXIHVqB3KHZyBxagdyh2cgcWoHcoRXIHdpBol96fO1rX7NPfvKTNjQ0ZJOTk7Z371579dVX7eWXX7ZUKmVPPvmkPfvss7Zt2zbbtm2bPfvss9bd3W2PPvrotdp/XCcOHjxoO3bsIHdoGjKHViB3aAVyh2Yjc2gFcodm+rtvftPMzI4fP25mRubQNMx1aAVyh3aU6EuP06dP2+c+9zkbGRmx/v5+u+OOO+zll1+2hx9+2MzMvvrVr9rMzIx98YtftPPnz9s999xjr7zyivX29i5xz5fN/zystOiniVq+QUs3VLQUS5WfiOlttDRKRX4KqT+F0/vU7eXsg9Za0X2KlZRZYjt2/WjpfdCffJblJ32xy6XkgY5T7LXQca6yD7G/XWVc5v//F77wBTt9+vQ1z93i8hmFov/Jl5bWmC+DdKXLzcxy8vPF2YK/TkF+shnSfrsojzEjj1Gc9T/hrFbeSl8BfcyiPM8gr3lRysdlgr++vuaaITOzUlnLc8h9yG1K8pizsZ+2yk9T0367pDUULP48Z+QnmvOXz+/btc6c2eXcLZ6PYu9j+RmuvDxWrsRLnehvKvU+dP4LS80denns+tX2QOdcmb9iL1HC+U1urZdXvY1sp1JX30cdbB23KHb7KmVnYvtQ7fW6/PdmzXWLyyhpebIoyE//c1rmK/7+SqelhFpKy1H5+9ByVxWZI7TsYTbnlyvVylvpbbS8lZZemS/vtbCtJdakJNvsrC8/MF3lZ7V6HS1VVJSybXocKZd1bixfdVtLQpnFy0bpbYqL9qk4Vy60WbmbL21UbT+DlBOQagJWLsbfO/q3srympYys7aQMlN5ek12Suoi6bWYWZDLLpK9+G51vS0tcf/GYmVUvsZWWwapIiZBYCUMZ+7Suw2RcQuXq42xmFmLlreQ+5p7n/Jg38xi7eA0SmX+PFaVUbEreL1Wq+VlafihfkfdxJO/z2PpR1jQFuX4k82eqylo6E2Q9Wbz6+lHXZrHzHi2RVtH1fDx3epxeeltvf/Xt+NowvsYtlnUO1bJ5vrxVs+a6iYnLZVsm5fg2M+nLQRQv+jJ75an4saU87Y8tWmYkkvOLSM7vIikNHXQsZRyr1XUK8jyClmhZ4n0Q20d5DiU5pk7LOJmZXUxriSa/D0VdXEh5q9JS5a3Ecspb6bUWLx1PnbpUlmPXrl1NmeuKi8Y4tqSVsavIs48q8XVVUUqaLbWG0fM3XXdlNXfLKG+ly+aSnM9FcuzRz41i5XHlL1reSksXmZkFXV9KeauyrF9KsZK+mjSZj7Wkb9XjztUtlLeau69mzXWL1+9lPb+PfWYnl8vYm5lF5auvc3U7JY+Rqui6To5DsfOy2C7E/qjntLHyVrHzS393ent9easdX7Vckj5vHeuirDPCjE9MSUrYl2fktZit8lrIelS3F68borm1arNyN73omBhk3VaSsrBZKeud19qaZpYr+HNfLbM2LeVwI1kHL1XeSksxaRlwM7PpTv8YQeYRvY9ZKSeon38FKW+ekZhNp+Ov+ZSsRyoydroPhRndlhzKeykrC710lc8UMlKKMZfyx6aOufXNzFwGdK1ZTSos51pNdPLkSRsaGmr1bqDNnDhxwm65pUot3wYhd1DXOnNm5A5xzHVoBXKHZuMYi1ZgrkMrkDs0G5lDK5A7NNtyMtd2X3pEUWTvv/++9fb22uTkpA0NDdmJEyesry/ecAbLMzExsWLHMYRgk5OTNjg4GPuveBtpPnchBNu8efOKHKt2QuaWh9w1FrlbGplrPHK3NHLXWGRuechdY5G7pZG5xlrJmTMjdyvVSs5dszPHZ3aNQ+6WxlzXWNdL5hKVt2qGdDq98E3NfHmMvr6+FfcitKOVOo79/f3X/DHmczf/c/SVOlbtZqWOYzMyZ0burpWVOo7MdSvbSh1LcrdyrdRx5Bi7sq3UcWSuW7lW8jiSu5VrpY5jMzNnxmd2jbZSx5G5buVaqeO43Mxd2//ECgAAAAAAAAAAoEn40gMAAAAAAAAAAKwKbf2lRz6ft2eeecby+Xyrd2VFYxyXj7FqDMYxGcarMRjH5WOsGoexXD7GqjEYx2QYr8ZgHJePsWoMxjEZxqsxGMdkGK/GYByXj7FqjOtlHNuukTkAAAAAAAAAAEAt2vqXHgAAAAAAAAAAAMvFlx4AAAAAAAAAAGBV4EsPAAAAAAAAAACwKvClBwAAAAAAAAAAWBXa9kuP73znOzY8PGydnZ1211132YEDB1q9S23tueees49//OPW29trGzZssE9/+tP2zjvvuOuEEOwb3/iGDQ4OWldXlz300EN25MiRFu1xeyJ3y0fmGoPMJUPuGoPcJUPu6kfmkiFzjUHukiF3jUHukiF39SNzyZC5xiB3yZC7xiB3y0fmzCy0ob1794ZcLhe+973vhaNHj4Yvf/nLoaenJxw/frzVu9a2HnnkkfDCCy+Et99+Oxw6dCh86lOfCps3bw4XL15cuM6ePXtCb29v+MEPfhAOHz4cPvOZz4RNmzaFiYmJFu55+yB3yZC5+pG55Mhd/chdcuSuPmQuOTJXP3KXHLmrH7lLjtzVh8wlR+bqR+6SI3f1I3fJkLkQ2vJLj7vvvjs89thj7m87duwITz31VIv2aOUZGxsLZhb2798fQgghiqIwMDAQ9uzZs3Cd2dnZ0N/fH7773e+2ajfbCrmrD5lLjszVj9wlR+7qR+6SIXP1I3PJkbv6kbvkyF39yF0yZK5+ZC45clc/cpccuavP9Zi5titvVSwW7c0337Tdu3e7v+/evdsOHjzYor1aecbHx83MbN26dWZmduzYMRsdHXXjms/n7cEHH2Rcjdw1AplLhsw1BrlLhtw1BrlbPjLXGGQuGXLXGOQuGXLXGORu+chcY5C5ZMhdY5C7ZMhd/a7HzLXdlx5nzpyxSqViGzdudH/fuHGjjY6OtmivVpYQgn3lK1+x+++/326//XYzs4WxY1yrI3f1IXPJkbn6kbvkyF39yF0yZK5+ZC45clc/cpccuasfuUuGzNWPzCVH7upH7pIjd/W5XjOXbfUOXEkqlXLbIYTY31DdE088Yb/85S/ttddei13GuF4d41MbMlc7xqd25K52jE/tyF1tGJvakbnaMT61I3e1Y3xqR+5qw9jUjszVjvGpHbmrHeNTm+s1c233S4/169dbJpOJfas0NjYW+/YJcV/60pfspZdesh//+Md2yy23LPx9YGDAzIxxvQJyVzsyVxsyVx9yVxtyVx9ylxyZqw+Zqw25qw+5qw25qw+5S47M1YfM1Ybc1Yfc1Ybc1e56zlzbfenR0dFhd911l+3bt8/9fd++fXbfffe1aK/aXwjBnnjiCXvxxRftRz/6kQ0PD7vLh4eHbWBgwI1rsVi0/fv3M65G7mpB5upD5mpD7upD7mpD7mpH5mpD5upD7mpD7upD7mpD7mpH5mpD5upD7mpD7upD7pIjc2Z27Xqk127v3r0hl8uF73//++Ho0aPhySefDD09PeHdd99t9a61rccffzz09/eHV199NYyMjCz8m56eXrjOnj17Qn9/f3jxxRfD4cOHw2c/+9mwadOmMDEx0cI9bx/kLhkyVz8ylxy5qx+5S47c1YfMJUfm6kfukiN39SN3yZG7+pC55Mhc/chdcuSufuQuGTIXQlt+6RFCCM8//3zYsmVL6OjoCHfeeWfYv39/q3eprZlZ1X8vvPDCwnWiKArPPPNMGBgYCPl8PjzwwAPh8OHDrdvpNkTulo/MNQaZS4bcNQa5S4bc1Y/MJUPmGoPcJUPuGoPcJUPu6kfmkiFzjUHukiF3jUHulo/MhZAKIYTG/GYEAAAAAAAAAACgddqupwcAAAAAAAAAAEAt+NIDAAAAAAAAAACsCnzpAQAAAAAAAAAAVgW+9AAAAAAAAAAAAKsCX3oAAAAAAAAAAIBVgS89AAAAAAAAAADAqsCXHgAAAAAAAAAAYFXgSw8AAAAAAAAAALAq8KUHAAAAAAAAAABYFfjSAwAAAAAAAAAArAp86QEAAAAAAAAAAFYFvvQAAAAAAAAAAACrwv8DLKHCRZtEqtYAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1445,14 +1414,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9a4xt27bfB/1af4wx56yq9diPc+553etHsEAJFgkQC0UQS4gEkiAn4UOwEyUGhSQScYSIEAnig4EL4ZUvwRIiJg8ggUQ4FgISBEIgBQgSQWDAdmLn2vden3vuuefs11qrquacY4zee+ND632MMatqrb3X3rX3OXuf2ZbmmqPGHM/+aL21f3uJqnKmM53pTGc605nOdKYznelMZzrTmc50pm8euZ/1A5zpTGc605nOdKYznelMZzrTmc50pjOd6cuhM/BzpjOd6UxnOtOZznSmM53pTGc605nO9A2lM/BzpjOd6UxnOtOZznSmM53pTGc605nO9A2lM/BzpjOd6UxnOtOZznSmM53pTGc605nO9A2lM/BzpjOd6UxnOtOZznSmM53pTGc605nO9A2lM/BzpjOd6UxnOtOZznSmM53pTGc605nO9A2lM/Bzpm8Uicg/LyK/+rN+jjN9fjr34ZnO9PNB57l4pjOd6UyPR2ee+vUmEfmDIvJbP+vnONOZPi+dgZ8znelMZzrTmc50pjOd6UxnOtOZznSmbyidgZ9HIhEJP+tnONOXQ+e+/frTuQ+/fnTus28mnfv160fnPvv607kPv7l07tsznemrp6/rvDsDP5VE5Aci8qdF5AMR+UhE/oSI/F4R+T/Vvz8UkX9RRJ6tzvkNEfkvi8j/F7j9ug6CrzOJyF8rIv8vEbkWkX8Z2Kx++9tE5M+IyAsR+TdE5PevfvuuiPwrtb9/XUT+kdVvf1xE/pSI/Asi8gr4o1/pS/2C0bkPv5l05qlfPzrPxW8mnefi15/Offj1pDNP/XpSnTv/uIj8eRH5RET+ORHZPHDcPyYif6n2758Xkb9j9dsfFZH/q4j89+s1fl1E/hOr35+KyD8jIj8WkR+JyK+KiP+q3vEXnX5ReeoZ+AHqRPvfAr8J/C7ge8C/BAjwTwDfBf49wA+AP37n9D8M/K3AM1VNX80TnwlARDrgfwX8z4B3gP8l8J+qv/11wD8L/IPAu8D/CPhfi0gvIg743wD/H6yv/6PAf0FE/ubV5f8Q8KeAZ8C/+BW8zi8knfvwm0lnnvr1o/Nc/GbSeS5+/ench19POvPUrz393cDfDPxe4PcB/9UHjvlLwH8YeAr814B/QUS+s/r9DwB/AXgP+O8C/4yISP3tfwIk4K8C/lrgbwL+/sd/jTPdpV9onqqqv/Af4D8EfACETznubwf+36u/fwP4z/6sn/8X9QP8R4DfBmS1798AfhX4HwL/jTvH/wXgb8QY8V+589s/DvxzdfuPA//6z/r9fhE+5z78Zn7OPPXr9znPxW/m5zwXv/6fcx9+PT9nnvr1/dS58w+t/v5bMJDnDwK/9Ybz/gzwh+r2HwV+bfXbDlDgl4BvAwOwXf3+h4H/88/63X8RPr/IPPVr56L0JdEPgN/UO8idiHwL+KcwNPcK85D65M65P/xKnvBMD9F3gR9pnY2VfrN+/wrw94nIH1v91tVzMvBdEXmx+s0D/5fV3+d+/Wro3IffTDrz1K8fnefiN5POc/HrT+c+/HrSmad+vWndxr+J9c0JicjfC/wXMa8RgEvMu6fR77QNVd1XZ59LzAMsAj9eHIBwnPv1q6JfWJ56DvUy+iHwyw/E6v0TGDr7+1X1CfD3YG5ga1LO9LOiHwPfW7lNAvxy/f4h8N9U1Werz05V/xf1t1+/89uVqv4tq+uc+/WroXMffjPpzFO/fnSei99MOs/Frz+d+/DrSWee+vWmH6y2fxnz3ppJRH4F+JPAPwy8q6rPgD/L/Tn4EP0Q8/h5b9XHT1T1r36UJz/Tp9EvLE89Az9G/w+MQf+3ReRCRDYi8jdgaN8N8EJEvgf8l36WD3mme/R/x+Jj/xERCSLydwJ/ff3tTwL/kIj8ATG6EJG/VUSusP5+VRN0bUXEi8hfIyL/wZ/Re/wi07kPv5l05qlfPzrPxW8mnefi15/Offj1pDNP/XrTf15Evi8i7wD/FeBfvvP7BQYCfAAgIv8Z4K/5LBdW1R8D/wfgnxSRJyLixBIL/42P9/hnegP9wvLUM/ADqGoG/pNYgq2/AvwW8Hdhibr+OuAl8K8Cf/pn9Yxnuk+qOgJ/JxZH+wnWZ3+6/vb/BP5zwJ+ov/1aPW7d3/8+4NeBD4H/MZac7UxfIZ378JtJZ5769aPzXPxm0nkufv3p3IdfTzrz1K89/c8xcOYv18+vrn9U1T8P/JMYwPcT4N8L/N/e4vp/Lxbe9+exMfCngO+88YwzPQr9IvNUOQ09PdOZznSmM53pTGc605nOdKYznekXj0TkN4C/X1X/jz/rZznTmR6Tzh4/ZzrTmc50pjOd6UxnOtOZznSmM53pTN9QOgM/ZzrTmc50pjOd6UxnOtOZznSmM53pTN9QOod6nelMZzrTmc50pjOd6UxnOtOZznSmM31D6Qt5/IjIf1xE/oKI/JqI/GOP9VBn+mrp3I9ffzr34TeDzv349adzH34z6NyPX3869+E3g879+PWncx9+M+jcj19/+twePyLigb8I/MewbNj/JvCHa5bzB6nro252G0DAyby/PYEIgDD/IquTVflMTyrtNFnvAsA5h4gg0o6Qu2e/lly9riC4+vgKpJzJuVBUmcZESmm5b7tP/UbecD9dDrHndChKKYqqgiqlZIpqPfZ+a6i2/+7/Oo3pQ1V9/+45b9uPIvKluIjdbZkvepPXtfRD1xUREBsNzgkiDlBKKeRS7pwoJ19uNZ7aCFXV2g16ekO5s1nPcyJ45xBHHZ82TlWVXDJtjk5jfpQ+BNhsn+rV1bcfeK67D/ma304f4M5xn5PeND9m+iwj44RxfOopr/35Dm884UCfes3XH/DhT/+dR+nH7e5Cnz59hojgnF/a77W88jXPNDfRa85SmwuqyjgODIdD/dv2CRBipOt6RBw+eLwPiAillPnclCamlN7Iy+VkPq3+O5lHMo9FnX/T+ZnQyjNbL8w8UZd7r67nvKOLPT54lsOVnDPTNJFzAgSRZQ6UUh5tLjrvNMRQ+YY9n60D9T3bfU+WEV1t12cTZ8coM89o51YWh9R113mH9zKvN9575hMqpVRIU0GLklImTXlum2VqLH3pneC8PYP3Hh+Mj/kQ8SHYczqZn0FLRkuxZxCHO1mXbYEtZf0uy3oqDsRZX9kYa7x31bd1aKgqJdu9nHPE4HFe+OSjl9ze7B9kOm/bj1eXW33/nSc2/n1AnOBcIMQO5zziHK7OiXU7qxZrB1U0Z3Ke0FIoWig5wQMzpV1Btb53nZ+lrVX3Dj59RQVKyeSS57lyVw7UO3+0YwTrW+d87duAX/OeO7e+N17k7tOc3vDe2z50XXFIleUAfu3Xf/hoc3F7caVPnr9na282vuWcx4eIc55SEqUMJovliZSOlJwpBfJU20jafBN8EGIvNpedx7lY5Y0ecVsEhziPOI/N4zpH5hZknruzDOpkFp9zUXLWyqNbXy7jHjjpX0ErH1Oc03odRXUCbby58tF7zS8n/fTQ9dfUeNl6/UDVZNh6vTbX9ze3jIfjo8zF0F1p3L7fTp7vtAw+mfnmybvNP5/O0foMqyPXMuD6mNXfd9vt5PCH5wp8TrlXTzdeO5PvLny6dObpirzipdR19M46PPe36sm5h5d/6dHm4pNn7+h73/3B/Hyv54R1HZif524b3O/P9Xs+9Et9aOaRs5p/umovVSjzOJd1k77mwqf3nD+isxdGu8/9t3iNMtGu/Bq9cN3vd/n6+pf27B//9MfcvPrkUebil6Uv/izp9bjBw68qbdzcPer+YvdGOfxz0INzESB8gYv+9cCvqepfBhCRfwn4Q1hZugep32749//B/wDiHa6L4J0JIWBMtyrAzi0LnpGibeGoLGA9sU6YclUKmkIumFuTiND3PdvNFu88Is6UpRVTaAvi3QkmCL1AL+BF2EX7lFL44OUtH1/vGYaR3/nxB3zw048oRfHeVWXeEULA+VPh6N7gqbd03rPd7YhdRymFw/HIlCbSNNniOAzWDqVYW+gyYUsp5FRO9rX3++Fv/OQ3H6sfxbmHOeV68f8MY9cYXmWsd46fe7oulLq8ymuvLShShVPHumftv4yNtZlJ119DDNZHzrHb9Gx6a/ub/Z7bw6Ey9/Z6ixLlnKPvIyGa0pQrMFdKIY2JnNvd7H+hAkX1vb034bmPgSdXGzadPUe/2+BDYJomrm9vGKcRBX70G588Wh9eXX2bv/3v+qesBWQRop17eLted25RmRfFFZC6UtrfRA9fk5PrrOlUqNQHtu5cfy0QPCSsvMW2ssyzplitBd3XAef3rrM67E/+D/6mR+nHJ0+f8Uf+vn+Qrtuwu7gihA6tAEjRpgSuhPI7AvopUKmLEjgfYXNkHI8Mxz1pmvgrv/mX+Xf+rT/Lfn9Lngam4YgT4dvf+R7f+/7vot9sePrsXZ49fw/nHMfDgcP+liklPvjwp/zkg5+ScjpZBEsVHkWE2HXErgOg5IJW5UuzARAgda6GeoxWJS0xHK6Zxj2lZNI0UPJk/aZ57r+UJkoxAEPrMLm4uOL73/8Vnj9/t14rU0rh+voVP/rRD3n18gVOZOYRAPub20ebiyEG3v/+++RSGKaRXAoxerbbaCCFE7yv66ID57WCxOC9ASAhBLquQ8RRciGlhKqtQ/bcQuwc3SbgvLC77Lh62hOC4+Jyy9XVRQV/PIJHi/LRB3s++J0bxiHx0Qev+PAnr0hTpuRifaNK1kJBESdcXHTsLjtC9Dx5fsXlswti1/H0/W/z5N338D4Qtx2h71DNpOM1abjFi3DZb9jFiODw2iEESobDvjAOauu8NwDFB6G78PheSDmzv90zjCMlQ55AM2gRSjZBfBxGbl++ZDwe2e16fulbT7m42PAn/jv/7Ou65K378f13nvCr/+gfod9suXr6Dn2/ZXf1jPe+/ctsL54QNxdsn7xLiD1r4DKNR8bDDTlNHK4/4eXHP2YaDozHW/Y3n1DyBNoU9rpiVWV9GgaGowEPx8OB/f52AX+aniuuAoKLKlFUudm/5Pr2FaVkxmlimqZ5fWvHVZaAlsI0jqRxwjvP06unXF1eEmPHs+fv8+TqGTiHrlbdptCo2lgsJdt+twjCMyloXSpN+rI5prbI0l7aiavzpaPbXuKD8Ym/7e/5Y482F588f48//Mf+6wzjxPXNLeM0sds94Z13v8dmc8Hx+CGvrv8y4/iKm5c/4YPf+Ysc9y/Zv8q8/OnIdFRidPS9x3vh+bcj3/ndPZudp9s+Z3P1LXzY4OPvJvZ/Nc5dEjdP6HfPcD4SYiB2xmcMDHWIwCbCpgPvYLPxbDceBV6+Gnl5PZKScjxMHI8TpShTzqRsfG9qgDtKlEyQjHfKZT+x6zLoSJ5+QkkfU3Qip2ty2QPgvVRAVtDiQR1Fq8Gz8tRxHMk5n6wtpRRS5aNTmtjv9xVELwxTImdFxBPcBucC//q/8q+9rkveuh/j9n1+z9/wq4AgLsxzwLloAFs1lJiBT2YQE5GZxyAVkBMxniR+lm/adhUCl3Od3N9G7FpNH7ljeD6ReURO1sWZTrCalfYzI3zM63c7hpXc0mQYmt7Q1vucoTR9YS3nZJO9tZBzquB0oWQDiksplLTen2ag8M/8q3/Ho83F9777A/5b/9P/HUWVlAu5gfuI8YbKKxQhqTLUY7LCWAoF439Olr4GqXzNdEowoCU0hjU3txhY7wys33rT+RyQSyFVsP6YlMNUKApjFobUNMiVztKUG1n6RVACpoB7lK0vbJziROmdEqVdYTnePvUxm/BSj5r59YleuB4PqzFTClTAqm5aG1cjy3/vH/27X9cln6sff57pddqKrBep1XotIjjsY+uykc7/ADntqyBSHUWEjOmha53AcLk2njnROU4Uh3rww9rQg/S6ufiFgJ/vAT9c/f1bwB+4e5CI/APAPwDQb3tKKdXiZ40zK/gKrg11XTPGtaJVG7cNZJEZDW4KuTVUZQhqFo0iglRLQ9ECahMYbZ1bu6gJWFQFb94nBAelKrqG7DpTWO59FqZSAFElieCXBlkaZ9VrswVblXEcZwBhmkamnMjZhKdSZuhiUdTKct/1bVRfN6zfrh/XfXjy7OvLq97b9alUFzqhdsW9USwPbp7Ap+ufq+DYfp6fZwUgnl5D5vOalNvAR/OicDjnavvOajIPTvfW79ULYpF82+1W580CgAFBCFCsHxt4h5i3kdZ3+hR667l4efmttm8ekq8DZOoj39uW9bacHvPwuXJnnzywLadTRNuzNEa5tP39290fL200tOvMlk853X+y3cZy7b82atr57Xmbdfch8Kde5m3prebixeUVr15+Qggdh/0BH+IK6FgJgLNFqsxjeG2NPREQSlu+FgVwmkbG4UBOiZvrl6Q8oWqeGiH4ea5wZ4zInY608Z3N+wKlVH5dVA08EEGSgRsClGQgA6oGNFTgp5SM93mWZU2WySZ8zvONZUMfZhgyz0pTKm2ul2o5XKZwawe9f5XP1Yd3+9EHV/lGnnl8KaAlGO9ZKQzOgY+COMV7IUSHcxBCpIsR5xw5F1KycRmCN0VSHKFzxN68XfpNJHYRH0zJSdVrtZSMZqFkGI4jaTIvVi3a9By0nPIAQ8XbOl69HpwjhIj3ARTSOFG8gUQpVwg+5UXgqbxPVMl5hJIoWTkOmXEoxpc7M6CoOFwOUJx5ElDq8xSmMTGNuYpmEcRXfmwPryKMOROmaeV58Pn6cd2H7zy75HDc21pdIISO4zDhwobtYU+/uyIDsd8iYkYhRMjTSBpuKTlV75EJ1TqWZ+VG53XficyeYM5Huk6qUUwoSp1bbcRS1xqbUKloXVMKiinwuVh/znLL0qtNR0TV4Xwkdh7vPbHvCbEnxA4fIhKivUvO5GwAD5qRqgwWLTNPaUa4E7C5YF7TpT6vC1AVNan7DGQ0vpYV8BP+0+Wbt18Xn77D8XDLOE6Mw4FxmoihI41HkvfkNKK52JgHnHi8CzixdrX56ygFxAmqEZGIuID3G2K8wIctPm7xPuJ8xAdPCL564bnF4DIzINsWp9VTvnrNVHnDPH1qG0sVpE7kj0WBXH+aDIt6SvHk7OexAQ6RtQorUD0a7PLFPlJwrnkILTKwc4rHvIpEhLIJ+GBeSWFy5KwgHkc1wr7ZYPRWczFu3sP0Acfi6eOWMbUCQ2UFyuBWnmRroAZXdZa757brcuc6cnINa8u1N9d9T87Fo3MlKc6Cx/pFTadoCua8WNG+V5KvltU6V/c704VUG89uf4spnFr7e5aTLPLA3k8rr7V20tLGm9x5yM/Xh3f78d1f+h7HYnwo1+/lXk21trc1G2sz3mMOBJVfenf6bIo1TWs65wz4qeqk6U1VfnEroLoUa8WpFKZqPJpUyVJbt/LmJjOusBmkzklXX8EhRLH7emDjHL0rOBEiGS/LGGielvPb6h25pMmo9b+HvP7mA1SrnlWvKcv1nI2AL9yPD+qLP4f00IiVO3NRTvpQlvPqFFv6ZdHpBIhYvzqBzjmimJNLQs0BQZUhZ0Y1HW8C8gzQ2ecBqbXO/88kh76Rvgjw81C73XseVf2ngX8a4PLZpaaScQW0NEaCKQDUVy3Mi541sFShuIExOm+vUQMRcHWmuaagUQGF2iGpJFJJxhCcw7XZIQsTscnRLPssk0Id3glFhKSuWjsq+p3L7Gq9hDaA5Awi+FJIzp8ouLVtZuXRtYXDCalkxElFus0lu+TCtLacrZQ1s1DfXSUqE/p0hvyp/bjuQxHRRRBoOtXiJbCojJ+dVt14cu6nDW55zUGFlav0fM01cLO+iC2Ktogp3jliDJSqNAXnKLICdDhZmk3wUmuLoqUKuaCixuVnhlu/VxqT1IXCgSmcyZTZyU+kUsglk1XQBTZ8Y1PcoTfOxfe//fu0rdmLFaqNmdV6zvK97F8Y4MPePqfgzf2/71731FPoYRnw/jU/nVqPr1no6Xazoqs2GGB9fOULdY7evYYpMFVgmOfj6fvpqss/AxD0VnPx6dPn+tt/5TdATDETcTNgbMOtQPV2MZFtAc5zXXAaIDODl0XX9wIg50RKo3kg3l4zDge08qiu7yxUKHpU6nVEWYTmJk0ZOJPSSEqJTJkVQq3gj4hQykQqBhZoztXKiPG4bLCucwHvauhQFayp1sm5uZrgret+OFmm528n5lETvKeIkFNeFvRV67c2/KJ9eLcfYx+1lFQV54mUM85FSgmUIjhvAqjzQohCtxG8h9g5+k2YvXq6rqvhKIWUDACIMdD1Bgj5YOCPc0LXR/ptxHl73KF6fExDYTpa+PLtq4nDcSBNhVySgT5+6U8D3FaKZCnkXHDeEXxgs9nhQ0Bz4Xh7sP4IAtWLoI/QhWpMyYVMRot5sqQpk5OyP4wMQzLvym1vIFbx0HWoj/X+BedgKpn9/ob97RHnIn1/RfC9KQXO40KkiLAfRiZNSxjv5+zHdR9+/zvv6McvPq4L4k9RhMvLp7y6fsVud8HF0+e8e7xms7vA+0AINm80JzSNaMmMx1tyOpLziKqFF+IcJSXrTy3mNYWBrTF2bHsPAt1moOv3NvdrCF31o0PrGnecEnkcIWcygZSFnCsglGsfVi7YgCQtNo+62BO2nuA9m4sr+t0FIUTi9oLQ7yhaSOmWwzSAFrSCdyLgfDjxqqAqoiUnGzOlMIyJKWWc88S4wYVY57oBA7kUptE8RnzsmNQTYn5T/32mPrzbj+9863v68qOfMqXMYRhJKeMUjpsLKBPTdEueJjQVpAjRRzT0HCWjZSLnyUK6slLEmSziNnjfE7snbLfvEbod4p/jwgXIhr7f0G06nPc17HLxTpiFIieIFwtvlAZ0a+UZ5kGjKNo0SxUTrF2brA34KcanFUpx5GzMcZo60thB5a/OOWZwhwrQqiLFgAAnBZWCaEFDwrnmVbkYEppyUdTR9R1FgynxuR0nlOLQAu7NIs5bzcXt09+rrgI9Iubhs4QH1k/z5pk9QqQCP22cnh4j4mkGAll5/IhbvsVVoGkOZ30D8NPOv/eGzbtAHpRtZzl7FiaMEbe1vCn+zeBTNab5WKnAjgHLeQkzVQPQtfbxHMoNUGy+ikodRwbQm6G+1Ef4VMjgrefiL/+7f7++HEsdq8yKgmtoTFuEVvoHCN5BqJ6Czgmhes21UCzFrleK6YnemWG/SXgmAkkN160gXylM5hLDoJljSRRVsgoJMbbvIOhdnat657oaEu8g1FDN3gm9MzWhc0onJoNKUURt/dZqELZLrSMIqvyiq/UYTuZfmdtFZ+HTxN3SJFvTlaXpk4qbDZufvx/v6otvvNrPAZ3qOm1+ssxT6rK+bpg63h1SAR6hE0dwDg/sxNGLEES48IFtZXBJCxll1MJH48CrPDGpebdPxcAGt77VHYX4sRrziwA/vwX8YPX394Hf/rSTmscN2tTzyrTqmzZ7w/KSC/N6MNRLVzwAWCzw9oM5X5jCsAju1TKsMmsFS4BXXRxnyNQGQFHzRHIIRavFiuYmuaCsjfEuIIH9L7PisdD6OO+9uTKrhQxZW5hboQlJeV7sH7rG2pPhfkjOG+mt+7H22tz+y8MsX8Ly32cCgtoEgzuMfLnnZ7jIeolbFO75+qfPPDeNMve3tIVFdc470cbVQy9r623b1pPfmgVhaZCTX9dL/KKASyFnUzyzNjvN4/ch8zvJnTEDrwNhTrdXSvRrz314+/QZ7l7z9b9/dmr9cOrhs/bWuXuM1Js1by15aP/JdZbB00CF5frzOjuDDp/xXd6qH0vJXL96ae+Aa+xqtfgXqJ4wCuQF+iGXsliN5zxiLHOhvZ2aF0hz+U7TWF27dQYTnPNzCNTDC5PMwqGWahXXbM/T+Nf60AbGpYzmpuAYwG6CXaFIqePWz3PzxCBA7RPADANrz6zTVdWA9xrSIIvV5u7LNN70KfQ55mIT2CsYVttpuVcVCJzgPIRguUNC9HR9IIQG/JhnTymOEGw8xBjoNp15Eng7R5wQukDoWh6mXIEFZRwTw3EiJ2UcJ3KqSmX1+FmA4jvPr5z05TrEWVVJ02R9mwExMCtKQHyw2VigYF5d0zQxjQaEjePIOE7mDREV8RHvPLkILrcmWvp3miaGYcB7JfhcPTEUxNVwJDFrbSrcXUu/SD9qKRyPB0pRC4crSk6Zru+ZxiOFwvbyAiXjfaCLm7rOlBqfVshppJQ0K2Nt/VSqHKAW7qU1F5xzgdj1Nv7VFOhSTJkrNZyycgEK4IuAK4YHzzLNkkdpthy3EVnsGPMuCsSus9xNsbNPMI8VV8E9CwFKqGY0jVAmRIRQlWDX+FTtcKUYH6jhQAb8FMRHgvoKGjuc1DDNbABYQXAxUT69Nslbz0XVzPFwS8rmPZaLksaBNA2kEGaPHy2mCLuaMsDGn3ntGVv1s8eUSEAk4nxPiFti3IHrwQdEbI744ObQ7/Xa2tb/Ze6152we7ItRavb4gRk3ssnYRsEC8BtLXnuvO0rxQF4AjKqINiVHVs8kFBzGh50rIMuac+pVa5Zvb/4/sxJfqpd6SlDy6+WDz9OP1k4VPGvATfvXgB9W++sxrI6hHSerc2YQZ/EKQhb56aH9dfasjllkLVl3aHv2GfRpi1DrzHmEzu9oPOJkxi6fud/X0mMLF7WxOxvHVed53saSc9ZPc9vU9ba540pzy53b+lPprediAYaW46201hGcrrSKlaFqvTa56nXlhQrqmC7YUjYUVz0H6zG+HYMaVgoVsFnGfJOrkprHT4XAKBWNNbxQTiIXDC+o3rIC0QvR2fbGV+BHIApEnL21MON21ZHpVCZj0XROVjBd9pzIVLo+ZPEesiFmunEBnNzXux6gz6Vr/LzSXf1DWI2jNsqaQDiL/Dpv1xlh4YJO6EXwImzFsRNHEMcTH7lwfpbBM8qxZPZu4lBMQRA95c1t/s8YCcv9Zk8yXT3SW773FwF+/k3g3yUivxv4EfCfBv7Ip592ikDPe5uS1QbszPea5nRf0baf15pV+01mxng33GD+yMIg9QQUMIGEygy1WMcWUcx51Z5iZtAnGoKi92ZiVTgeEDLLLMyZu3Zpg0tOWma+/toTqi0pRRyuWXVmtLIyq88W6vX2/VjlizcONjn5ejOJnAzse6O5zUZ4o+J18svq+e7JFPP1ZT7O0Htzm24hfN47YhdxpVBKQnKZx+ZyXlktPloXQsFXEE/VwlRKBTobz7A1p4WT+RqqYeMrVSW3aFPQP7UFP9dclNV4OQWBlt/vf58e7+Z9zL+tr7/+vn//eWsFyDwGreYz5tWzBmceOmb2n1zzk/m4Ro5PGfUPUOPkn4nerh9VQbMJ8BXS1jrmGtCCplkpmGHvqiys+aE0xa+stT+tb62IF1BHkI4SrB1iCHRdxHnPxcUlfb8hxm5O7LzwqSpwzny8hhCsAVNt2khhxm9aaOuab8OiYIlJSPPiWJVOtHleVjBlTkRdKpBVTsbmEi5brWsrIH3dhZ8CFHy+PqSqBk7wwdERyMXRxUiIcTYIqFo4jC8tXEEIwdP3HTFaCE6oSYWnKZOnmvhXgNH4TIjmPWGsKRnvagprff9pyozDRM6W0LnUcSJOq1VeaqjX0pdrC2MuBZcL4zCx3x/t+WPEeVMoXfT4EGqcvEPUzcCbdw51sN0KfR/q/U/DC9r9c1LE1+BrZ5a2rgtstp15fqk377LJ+r/lbXLe43w3t8Vj9WMphWF/oNR206KMoZtD5VLKTCkTxsRE4rAfrO+14MgW4pYsj04pmf3hyKtXr0hTYjge2N/ekkth22+43O0IIfDk6TMurrYWUtdt8JvdnI9nGmsuQCdofU/XJ/w0kVJinEZub68N+MuJqY79gqJqym3Xb4ndFuccm01P3/U45+i6Dg3RPK68JzvzgM51rbN5ZDlhQohsd8/Y7i6rZ52FXmgppCmZQUuVXcqkbB5Nfb8jxM6Av2EkTwnnM+AIISEu2Lrz6fPxredimhIfffA7KI5S84cIcN1vGYcjKd0yDJ+Q85E03ZBrsnoRxXvqx1Uwx+NDTwhbYtgS/ZYgPV46A1tyQSVR0kAeAurNm8Td8TRxUpXJ6hqftaB1bkyj5WdKWRmnzJiqh0RevDmkJBx55qGlrnXJeSbnQB1ZI4Xe5lcOSA37ytORkvYWmhJ6gosgSnbNc6jy4poXZi2vtu5Rrc9M8zRahxHOauij9iMwy8Nt+46Wt/pe1oITb+bl4Pm4E7BG1vLOQ/tXIN6iUT78PCd3lTsa3uoWtATCzZhdt2eZv+oTs9601lHqu80KlkOlAQHtusL6VO62n+pqe/XIX4qMWg07aBW9VtERdxSMBW+rxXdqgvTmzePQ2XhP/fb1uZ1j9vhpwJA2mcViTU3/c9YnTs2LyELUzScOwJUK/qjJPK42ivfm0WbAD3Qz8MPs8RNFLM8QDs2+gvNK8aDFzTrkHPmyqK8zoGU6q8z71lpzGzOoRzTP40FW/d30nk8Ju/ycev/PF83jhTbv235ZgT5tm9UcgugcAeu3jXg2zuGA3nl653AIG6kgEMLGGbAHK91ShHe3Wzo2TAI7EfZYuPThcGAcJzu+FBtfD611q3n32abgQp8b+FHVJCL/MPC/x0D9f1ZV/9ynnEPRgtNFgbr7vw3shZnWQBxmL56GjDUwZJ3kqoFHsijYS/UwUxJo+Xsa4i3K7PlT71+0JTFTSrZcFFkCxVm+IPCzgv/pKl1dHFvOxdWkmisd1LZxUp9NqjIky0LTBmoLxZltGDWswq9QjsbEFy+kNzzd5+hHYWEs9oafTg95O7XnPdnf7nC68q4v9KkC38l6ubqO3N1Z720hWtbmaZWnIITAbrs18KXsl4pt8/qs5JLIdS30NRFrs8aKWM6QcZygRqHoaoFtCcZDCGz6Dbu+Y0gTh9s9h2kEhOJaIrs3vO/n7MNWPc65RZm8C/rMx98Dh9Yg433g59O8fU53yYPHfHFaBND1PLt3TBvLFXReH9uEgMWr7hQUWHvb3d3fFtfX4L73n/Yt+1FRtEwLmMMyL+32ZRbITX2u3oO68lAsiiwZ/lbAj30Liqs5KESkVmuyUIB+s2G73eK9Z7O5YLO7MsWteSFgAMEqrSJSsn2qYDTzqWKWLs0653jTXCh5eSFpb52rtxCsvJUUk5ZqXpFieWQa0KMzGJRn4EcaOFvf2yz5NZdQ+6y0Fy3lS5mLCITo8DhCH1DUQqW6Hu+DPXsFg32Qec52XcfV1QV9H1gzupItVCol+0xjRkToNj2o5RIpQyKreYV456waF8rhdmB/e6DkQh7r+qcgrhCjo/jq2l9amFdV/LBwvJRM3L253SOfWBha1/cVEPRsLy8IocPjcFqBHxW8q3lOnNBdeWL0TFPCBUtmbTkoHFosfGYaLbms957tLlZvFCFPO/rOMRwzH3+wZ387gUitqGXvGbsd24tNLe7wOP1YUuLmw0/M06cq3F4c4+FIDB3jceR4GEAiwzBwc31DSgnvINbqSs4ZKCLAR5+84ke//TscDkeur1/xyUcfMU0T7zx7xrfee49Nv+GX447v/spztrtdXVdMQdjf3nJ7fU0pGReCVVST6vGsWIJzLdzevGIcj0zjZP1dCjkLuWR8iDx75ynvvvdLVnCg7+m7DgWGnMzi7T0pdkzBk1EmLUuS6OJQPNHvePrOD3jv29/BixC8Izip+QutYp4i4Cx3U/CB7XZHjB3H/Z6f/s6PuXn1ilISfW8eUaUoU9LZM/ox5+JwPPBrf+HPEWJvSbljx/H2hvFwIHY9adpzHD4hl5HgJ7ow4Jx5loUIsbe5HPse5wNdd8Gmf86mv6CPz+jDFd5tSCWa95AqSROUoRqBAqFW/grREt075/BZcNkhRZnyRE4TuSi3txP7Q02aPCbG0drfiyWKRRXJGb+SadNKgVYRUI/qhiIZ1YEy3aLZkvnfvHjF/uYDYvA8f3rF5W5rGk9Q8DrL9HMxgZVGWmo4cdGW6FlnJXUGGfBI83R4xH6kpWAVAzjMu6fta9Lz2uOnyTQP5QFaewfdzwGEyGli57a2NBmzAcwn2/N/87a0P/SBY05bZJa5ZQ0QSanP3wCA5p2jJ7eSBtrQgtoLUqrupdj9pUZBzM/cgBAAy9OqOOs2qejFG+jzyahiCbkVC1GroNNpKEw1IrklH4958LTqy7qEcc3gRm2JBohj8wVRMyrMSaS1GvyV7BbZPViykFkLXYAfLFRKIUjNcSVK8BCCqaK9FzovJ8CPYLl+logPIRc3z6G7ntnaAKC1QWwF9DRJqcy6RvUc0iWthfXuatyuyEJNH68ff17oVL9pc2EF9kidhXfBH6ocrCbLXonjwjsiwlMfufIBLzLn8hFaZTY73hJ4F0Tb+CiUEHh2dUnebUje82q34dBH9ocjP/zRb/Pxxy/mNZJ1wYb2tdK/Pw99EY8fVPVfA96Yjv+Bk6gaxYxS6fo3WcWTzgxuUbhm0Gc5qXG/+vcKGJgR6tWxrLeb49ud6zXXWa25J9SY4oLh1hwW9653/8/FLet+ItgTpbEUA5XWuIYospqEbZBa8y0KtnMN9FqEf5HFhfvT6G36sS0cn9H6PT/jp+17nXPS+rj7oRoss6Adc/dh6z6zUN9FhFZtrSshpiqGVoI1QMpzKMv6CjNIoHXhWYF1LTF0EYv/LNLCTk5ejiZkBG8VvVLNeZCmVFcxvwIvX09vPRer4HcqqKzG2L3DT0Gd+95CcBfAuXv8pz/S5z/m4fG4hF+9fszKzAUeBhW/DEDq9fT2PPU0XGoBZNe50Zq3T8v9swavjN9JBWBm97IZuAKH5Tczr5FI15vlf7vdsruwalCx2xJjtPwQ3p22WltkT0STBchp8eVUPtss27qY39qSsQLx6nzNy/svSsfy7IugtAbvqPxST9pjuc7cMu3x22Rfidyvp7ftQxErr67UIkZiQIgPLXRryemxBo2983TRvK4WGbDmStIyl6NuLvveZ0pnbZOK5YxTDDwJwUKuWtn2nAs6h1JVV3VPVXKgua+LtHZhWS+LMk2phlzVMtVtPJbSVCv7p/ZxuNnrp+8i/TbgR/PiCdFRisxJc1Ut9KmklnTUcjRpsNA3tCOngZwnhuPRPII6q5hZ1HLOhNh/Kr95m37UokyHYZVjS0njWEPlzOMoVyBuGEZub28ZhoHohS7UkITqQSciHIeRVze37PcHXnzykg8//NhAlQKbfktKlnPCx5642SHiwQVUIRXhOGYkZ6tYGWPtN+P3KY30veXoSSkh4kwpLwYM5GzjMIaO3e6SGCN939N1vY2r4cg4DahzqHMU5yjSkkvX3GF4VB1IpN9ccnH53PLneXOFVy2M1ftInEOCVVwKIbLb7uhix213zcsXrzjsjzj1NfzEEpGnNM5VeR6rD8Hymb385CP6zQ5xvnrOFEuOPhxJ6cBxuKHkgb5XwkU2gAULj/G+hmRWT17vI971eN/jXY+TiJdIRmpSbstdVqaCOgEXKN483CwRr69K77I2lZxJk+WoSmmyT1ZSGk1RwPKKtFLt5lXWQgmsj0WEXBRX3cxVPUhEtZCLpyTHNMHhMHJzvaeLnt0msu29eYw4aDEt68TOdce8v3kTlpwWIKg6SVt+HUU/DTV4635sIAwrJW6RXU+s+WsApy5Uy/YaEOLeNRsDfHCb1TVh/n3epsmld2XS+gz3ZNXWpvMbtissCyOL/rBct+k/1Ug8X7c+nxPWYSVzlIC0/XIiF5kctXo/ufOeb6DPoy+6GZxpYWoNmlverSntvgI/FnZDBX4EL8taP8t59Vuqgt5MALrO9TPrnUtTILTU57PO4uqa7MTAHwEiSqjrZufN08eJ0AehqyL9xlXgR6xadJOaUnHkmn9oTityF/gxJGf+tPdbSVUzIKUqtMMLzFENTU+5K58/5rr480J3369O4zufZVzfBX4a6BOAToSdGMhz5T3PKvATnSPOOvwiXztt8m4FA+szuL5DdhdMMRCf7DhsN3S3t3zw0UdmiBMgnfKMtX4icBL29Tb0hYCfz00r4VrqYmRz545yJgt7WxYV+29R4+0IwQSKuaNWndsEzaDgS7EYUUedaMtEgXXojkKL5QbIZmMuzpGcMDmpQtJKINf2PAujPtEeVJcOXLfFel97MTn9c6Uz0Vpg7dmztEpj4HfCFR6Zqig/P99nu9NrRql8ttE7u7PWS4kujdtaYGbsM+jQbrsG6qqw01htTcaNE6s6UzJOLMlii7sP3i9IeA3qVLRaRMqsfPhguQlOogiawIAtNO3527jJRRlTwk9Sy66aN46KvBYQeyy6Cxa+bgF4DI+fNy0oXxT0ed1vdwGfhwCgtu/h6zQuI5TZKmkjfpm6sprH2iQ6mjD8GYf3W5NzQr/pUNWaD6p50DSQUdFSLb2oJc9t++vzuKJINnDbvBUWEKXlBvLezZXurOqShbJY3p2lDZwPeOerKzb1/QslT5QyWYWDEE3ICR4XLP/L4XjkOBxngcZqS1SXbu8rH3dz0v4pJQuxqPdoCe8XIYhZIGzVaQy8uA9AGltWUkpVsV7KuTcP0pMF9kuimWXV6mgiYuCLWDvnZMJazIB6UE/OcDymWp2qPqnCcEwc94lptATBSkKAaVDSZCBTLpmkEwBdF9lsa//iiDESfDE382B94iQbBy0QQ6BsekpRDocRH0YbJ9Hjo+Us6brOQoO8t7A17/HOlNiSE1AoyeSaInCbJoYqBF/fWI6ilDLX13sOh8H60YGIea+47FGBlArHQyJlMU+wBOBx4olB6KKt9T6CeKHrDEzq+viZeM5b0WwkquDUlDns94j4WrVKiN2G42HPy5cvmKaRLga2m84Si+tS6vWjj1/w0598wPFwZL+/tZCnbKFtMXZ0XY8CxwpsNdGyqHK4vWU4Wmn3w7HMueJSzkwVLPjpRz/lZn/DNA6M42CKeSmUXEPp8sT+9pqXH3+E954udsQYyarcjAO344hzwu5yx2a3QXNifPWC6XhdlXtvCqIUXr36hM3FhQE/zuHFUUpmGAfSNOG8J242hK7DO08aDgQfuLm+5sWHH/Di448qIGGhnClljseRKX1qcufPSdWLLU0WyjbBNHo0B8bpwPFwTcojWqCz5ByoJrxXfLC1fpoykoVxVMbJEUdP7AMpR3Ad4+Q4DAbeOA8+GW8KLhJ8quXclW3nCM6zCZGLjcMJHMSxt9y8M4CWs4IWOstlzCYImwAgpKSkZErkSFuGTBmciq1tznU4L2j2lHHLlDdMOTOmwJhsfTdAM9Wz77bXAvqYeF/Xj1kOLSuAnYrPL/LTWqF5HDJetoJ8TuXseXv5vck097ZX5z4kB3FPFloDSe3c5W+tV50b8c6zyD2X9fuPPbN8WJSEh5rwQRanq/+b1DybQVjyna6OXgNA8zbLO34JC6St3rD2GjbvnFX71Y8TrUYTc0MJwnxOq5DVYkm0AjLtLc1/Zyke1FIDmMy0ePmqq32nLEDqqh2dWAEGgVqxy0CqGGT2+AnOAKqWF6bpp26GPxW3ztnVjCkshSWa51UTM5c6MrL6tBTO1Xk5t5xglkoiq9Z53+Qi5u8vT2v86slkxzp3V95Nre2Z33sBd+d5zLK/V0ePEIHnIfCODxX4CVzUwk1eZLbRt76zZ7BtJ4647Qk+4DcbNr/0Hbp3n1O6jufPr0gXW65vbtEiXG4uOB6PfPDhh1zf3JwUbXmwf143/19DXz3wowXUIVoQdScNZHZpG3kiFktpYFBLttyCFtbgUJ284ok1vs4JM8ufGYVALEpMGStB6a085mqyoFA0z6FeUsMgBKBksgg4YdLMUPLiNl1qiADzcGHFYu68vy4MdG0hWSvKrJitLsCX3rnMjEbPi6vMdz3d/7hkOY+wBHGzGPE242519InwfXq9kzPcyvOJdvryfrL6sVkypF5flu6grZJl7qP6MrUPkhaGacQ7zy5u2fQ9OWeO3UAcg51vpgQQnSsZibPEqb4mVaUlzBTq8Y45qrAumC1595Qyh+NoVuFamtf7YEz7syVc+1wkK7R/zfyt2e5/PyTYvC7Hz5sApJNn+AKAD7wZ9Fkfc3f77r41IHQa6lVnVLW6rudWy1tj3amr4bV437RymYq+Rgj7/OSc4/LJBc1TrT2beUUY32y1mmchpi34VEGqQEimsKaipFyvobmC2mUWMsCEiDSaN1oIhak3HtfhLYTH+wqWWmNomUhpIKcR74TdZoNqYbvbsd1tKUX5+JOP+bh6RqScrKqWCKHriN3GrO0hEHwgl8x+f8ux5gaxZKqJ2VOnrh3etRDGRZAThPyA4lJKYRxHDvsDrQvbfjCrWPOZeoxSmvdIKt7jBAk2J0uxfCNaqHljzFLfdYLmCBqZRrh+dcQHzLvAGShycz3y6sXAOEyUrORk79/1A/3maAqe1DLoDi4ud4iGmk8osNtWEbTo7MExDZmus8S1wUWiixRVbq4PXN8cTDARrKSt92x3O3YXl3O1tOCsmphoIU8Dmh2TIQxoUa6Plt9G1TyRUq79VCU0CydUul5BzMNE1JNTYRyOIIOVwnUeL5HgMpvOUXatXU0j2Gwdu8uOi8tNDW97JFLF1QTHFLOKj4fEq49fcLg94MTx07/yWwjCOBzY374ipYntdsuTp8+IMXIzTHx8e2ScMtc3t3z08SeM42TzVGuYtzo2mx3b3SWqwstXrzgcj+SSzINLC2maSMNAKYWb/S3Xt7eklLg+Hrk+7Ek5Md68YLz9mJIT+bgnDUMFkGvxilJ4+dGHDDcHRAx8cM7yWrwaJ26mCXGO3VXHZhdxKF0aiXlCVZiKkLJwOF6zudhZNVVxBPF48eScOBxumcaB0HVcPX3CZrs1ua+uKzevrvmtX/91Pvnoo6rI2NxLKXM8HM0r9tFJkTJBduTpgFDQ5NEy4pxjGG65vv2YaRpIF4EudGjvKDlhEXWOcVKOx5GimdvbzH7vEd/hup5N2pFlw+1QeHF9JGXLnyW+mIzqA9FHgvNEJt7ZQO8DV53j3StLCP7yNqHF7qMlsT8eybmwDcI2Wk6Tq61w1dv4PgzKcTBQf+8EJqGoI6swZsvp0Xc7QnSQBvJ+zzCNTKNwHDoOR8sxNpXJEmuvFKMTw6MuXglA9WhqsvsSmqI1b6EgFGmWg0/33nobWhIyO3hoe63Yibzh+PVvwv0QMONPxqfcAoo0ebXtm4EeaQ+4yL6r/TLLUqtjbVjO6849MaKxsTmZeLvfXXRo0UgWlbT54d79XoCE+Wyp7zhDKA7LgeMeXbZpLxqcASJeddblDDyWWjm3Gp+leQSZ946vgArz/urcVF/GwKSqBahileuo8rzdO1F1HapHamubWjkRXbdWBVGctX/z/hAx0Cf45pBQDKSSGpJWh4XHvEHs7tn4zgw+6fzM8xioGagdNViyjiEDe0wHydXTJ2er8mnhvMqQClOuXrz1GZ3UCsPu7aI5fh7pRKOsc7OBOq5V4RNO9q/1FzfPVSMPXIrjmQi9OL4TOr7tO8LczzYBs1gyhWY0pQE1YnPJe8/26VP6qyd0l5e89/v+Kp58/3u4TU/3rXcJT6+4fnXDt9/5Fj/50Y/5+JNP+P/9uT/LD4eBXArHaSI9Ut985cBPc9Ovf5zyC22Ia2NNq0HYENDXkNAmkyBqk6Hp3C0Dgmdx2TJApzE1Y4eq1BLvtni5GThRWiGwolCSI3uLpy/lDhQlp081/7kGdx7qvLavKc7MeswKIDo9dvlz3qoKznr/42sqzfI/P8Ss7K+f6nUn39t4kNZL1rJALu3ZfI1k3q5/tTVPVmBFO6lO7uXMGgPrljVS1RKUtoU9VI8D8/6pbq6+IuN18THgpyaUq8ykNEW0Pdts6Tl9y4LOMfCyGknOOVM0vyTYpzG8UyCH+Vnb95u3l/PvHrO+zufZ/iz0WUGf2VPsDcevwZ83X3M9M9d9KiyT73T7Afj3UUicEKPlhJmrQamQ50quDlbWI4fFi1sJSgN/XKmJDYsSCkyuWoaKIzXQvV2fVUUWarhNTdTJusKNW4LqTRkwAMkJxGAhIJu+Z7fdmXJ60+Fbokml5vuxfAzBWSnoGKJViSoZ7w5LI+hiWZ6Bn1XuBhufjbfqIn8zswqghk+kNAvycxtXPmLX1Qfm8CP0Y7tP5SGIIEVreXSlZMiWs9o8MtRBTQ47ThmXtVaxMuVkmgrTkBkHK4meRgNscrKcPeKkIglmJe1iJk82Rl2QGbjTohbOozorFSj0saOLPVrM42aczEMqYR4rLXTMQv8sp4t5jNUZM1eqdGQRSi4Mx5HhMFhyw+PAOE2IE/o+WrhSUGKs+Zlc7ffS+LXlDwne4zsD30WMX8eWhTGAeCEES4rdclY9KjV0ogKvOWeGKrRpLuiUavLlI8f9NTlPlItLogip67jeD3z04pbjlLjdH3j58pqUEtEH+proG6WWg48AjKPliZnSyDQNNk9zpiTz4Dkcbrl+9YIpJV7c3vLxzbXlxhn3MB6herbQQiabMqgwDAfyWMOexRSfrMqrMXEzJcQLKUfGKeAFLqSAGA8ak5BsGrPf37C5eWW5aggL8LO/YRiOdH1HiG6ZpzXE8+b6mptXL7l9+RIVIYt5NuWUKvAzPW7/gcmkNUF8q44mVI87EabpyDgcmaaBMQZyhlwTIVsxUFsfUi7k0rxtHCk5cvbkEnAaSHlirOF6OAvLE1GyyxSvljA7dYgmPELnlG20ynyHwRE8pOrxk1MmFWPkLYdSH4Rdb3xLi1AypCyETC3hbLJM1irHuID4aKKu9GTtyCWSsidlqfdSkMzsB/mAl4e26mFqz0ZVhGbm0WTq2ZC5Dj96PJrlvhU4M8sqs4x4Cv40wfHe9h2Qh8+y3Z7BtuZ9yh1ZcM2D1uvOqk2qTbcuqTofOov9i7qENJ1pvX2HZm1BlpMXIOjuRdvN2nu0E+s7rcPEPkvHvAUJ1ZNHFyDHi3nTeNfGLYvwTgUzqLre6olakTQzwDUdsXkHlyXcvB6rKvgqn7eQyVMdbxnPs+uAOANxxfK2xWpYtfWvDpHaUrPtmPVn8expHkUmty2AXesWEXvtBiA1sKL1Q3NkQKE0I7g2maKQaiRLS4LtnFjuIuVh/fRrQmtOMk9LFt1krROe6CszP7g/LwUDGzcibMRx4TxPaniXk5ZVCxJCohr763gyzMAiN5wTQt8Tdzv6y0sunj/nyXvvEbZbdt9+n/7ZEy5219x89BIZM14cF5sNoVaZPpFXZj2j7Xi7PvuZhHrZ2KpW8TsP3NjjvHCsONzCRhtjNcaAWDKvKDUWFCxpKRC8owsWJhC8I4RV51ekPBezdou0ZFom5bZzRCxZV6yT1XuQ6ng3l+pzLTmjhTmUWgJ3eXA5eYeFVS2/LEDU6qA6y5tic8/DhdNFQFZXlnut+8VJRIjRk4tSUnnjeFstXZxoXCvS12zfOfNUW2sLeFvgqhvNHJ7spHqz1MncSk2vvTxYWTOqMGJrmgm3rbxeAyK7LrLbbWiW//Yv1/EiTnDekocuuVJ0eZ5SEXWpViOwKgBVUJxSopTKkLxVsLHkt28GPL8IrfC0+ftNQM9DHj+LS/T9c+7fT062vwjo0845ydnyhnve9epZb6//vrt/dSVmIVYAHAuYqytL2+n2Gil47PW0lML+sDfhvzQPGChFZh7bxmEbjQrEFpIoUt2iLTEiqkyaTXGtiZBVIfY9/WaLOMdhHLg9mDI7jhMvXnyCc56kBResEtWm65DNBtTKeKdxJE0TmotVuxPwVZFEjGcGZ0rthHm5LPPcI+ItL0uIkI1HT2mckzXTklJWIKCIYpXffZ3bqzxIqy5shoKAErQQaoLp5iKt6zBemOctGMDxWNRkrZLUkt2KUJIyjQb6UPPgCGK5ZIbJlMRsvMF70CD4rhjfUAOsS1BKSqSkFUBKVg3LUUvBe5Oga3iPVlDI1+okueYbK0UZxon97QgKuRe0OFAhVY8gxXLz+K7Dx8CzZ8949u6zmtfFzaCUD1bKHar7eS5MJIZh5NWrmzlJ7TSZ19c4FEJMeO+YpkLXjxY+ttkRuh4tal5ipVjS4C4QvUNLoo8QL3pwDrUs0WwiUEbydKBVSHkcsjxuWSA18HUqcDjipglyRlKq7niJLgDes4kVGLMGJw0D4zCi40gk46XYRzNea8nYFkYH5OEIeWS/f8XtzSeUnInBEUMwYTHd4vVI1olpfMXNzSeknJA0InlEVAklm6FMDBBuIfMhJ3yxED/vzYMu1bniqfslE8SZ8uG15mwRIh5XPI6B/fVH5JwQHKI11WVOTMdb0ngkxsB0+4LtdlNb0vjC8fbA4dULpuOBrDAqpKa8pPSZcvx8PipoSeQ01snpMC9xG1dCQURrmIR940Gjw3vIGohTh8uB2O0I/RPi5ilx+4zu8jmx39H7ka0MhFwQV2qFOiU6T+8DwTkun+x4crVj23mudpGLjTcg7Wg5Q7JXgrP55DDPui54YnA8uYi8+6RDBC6GwmEopAIvDhCPBvgcimcofpZvQoy40LG9eBenjmlzQcmf0MWJLmY2uyPipznH1yyxaVM0K6BTdF5xZuPjrLA2rwLr6QeFwkei5tUzb8vd/VUzXMsv92SZO/LO6pzmAWTk7h8v63tggEN7AtNGlye91wy6+q2tQU3WWZJpL++yXuGhGRENs1kBbwvsc4rJnfyy+LG0br3XTbPyIqs/Hp9a3ugG5vh53tUnboZX2phcjp/1Brn7hLoAISiUjGarvtKaWQGVWo5LTQ6Zgw7KBGmEUmrkigksEiMirXBErHNCLF/PPAGWOmAFAwsEJZLmBOwt9xdKzQ269saSkw4rauHS86NJ62UlqdTQLmUqypSVpFbGviyi66I/qs4gxteR5tkkp4BPM6aZV1PNZTonY1/xBmlrj317zIEkAlcu8I7zdOLoXSCLgTmJVrenGfEr7uC8ecl6z+7qkrjbEjYbnnzne1y89z7dxY6rb3+b7dNnuM6qVOo0wTgSh4HNMHAxTbyD8B0fGXC8KIW9KhkYiwXdLrq/vJW+/xUDP7V55kzldcLMjHHNmJYM7G0SNxY3d57USlgVlOnE0M+STKAUhc47LqI35SJItQbaQGgTasxq56iFDuRiORE2PrAJVk4zOCVUhuMFqBW4rMyt4LIJRyEEqwo1ewNx6nHJ8qo1S89qeZqb6U6z6azUnKQZqQfLvRNbSMJpez4GOSfs+siYCilP1bWNhfPcWwT0zr4q9D94dX39X23RrBPYUPvVqmU81iatcwae1G03Az9r8KeNgQX4aUr7VKv35Hqsc8Ju19NvTZGcslUjKaqMKZNqohMXHC64Wg3OQinseSz8wbkqYAUHRSljQZMppcNoimyIns3FhhD9PFe+FAR+ZoKngk2rGvdlAD/r/Z8G/LwJCLobprUGfe5e801hXp/l++52A+JmILZuN2P1jAW1Y4T5nM+Bbb2Rcsq8fPHCwgVzDTlFaIW5tIIhjXO2MqjbPtBfdLhg+TY65/EImguS05znZsqWE+hys+P9X/ouIXZ88vIl40cfotPI7c0tr66vUVXeGwYKjr7vubq4mHOsjceB4fZgOXlyIdZS77YwWrLe6Dxd6BASRyxfhbk1e8RZufgQO2LfwWRVh45HA7xmsV2rJ5LO2dqW3D+0uV8TjRbj4QGhE+iBrmS6PFneC6qVJlkFobpKGVhVO3FifLyOVPPoKUWZVrlW0gSaTYiw3EgeUuFwe2QchdiZJ4EPwqY3rwBxah4CISLqmI7KeByYJgMcWg2Si8sN8ekFEjwkh07LGA2uAT+1ymEp3N4eefHJLaUolxeFshMQxzBmcjY+u7u45OrpE2Lf8a1fepf3vvUOPnj6GIgxzDkQvDNvmFcvb7i92bMvR/a3R376k49rGXnzThABH9x8TtffEqInxo4nTwvbnSlA43QgpwnnlD6YYabvAu882bF9eoE58ptJyEdB8p7pmMxd/7G6UCB7x6QwZCVlkDKxTyOI4kompAnRwrb3XF1EuhCIXaAPFkZFSgzXNxz2R4TChgRecWSkmNKzcY7dZsdud0FwMO6vgcKLD3/Ehz/5DXIaePrkiufPnhhYM450ZUTLxHD7Uz768LcZknmRhJpQ+8JHdjX3VvBmoRZVwngkHAZEwEWPi44MHFU4iimknYOueo6FILgAoo7ge6REUhn55IM9x0lqYuZILgFyQqZbSAPBCZebwCZUg4e3RM85KcM+k6bCmAsvp8SQC84JMZhM9/ikUCY0QxoOFD+RkweNVg0vD0gD5JzifZlL1IcQUBXU9UxlS86RfveczeW36C/fYfP0u2zf/QFxs0OPE+XSAHQL9TKeZ4qFIzh472ngW88j2+h49qTjnUtLwD4MjuvbgmYlVg89ROm6yHYT2ETP+88v+JVv7Sw8bTIPrCnDT2/go1tIBV5NcDOZHBR8wPsAJRP9lnL5PjndcnXpGPdPEfZ04Yd49yGW08f8+4yvmvA1e3c2L/j1OoSYp6FatbsGZKxFuMejalw7Cc8STqp63fusgJzV9vJdczfOYE/TLhcZ6gTocW1lasc0uWBGn1bba8HgruxcgZwWrixK1qXyrG+hZ0ALhmzyR/u2ip9lueaslOjJne7enQY0rJ+zgnezdg32fl+OiIoPBY+VO28hTV5KDcFaGWdpycxNWfesmrgq+Kq1FRRMoap6Whop01CB5AajCeoDhJoY33u8mLoseYDjHko278Aq/4v2iOurx7PWiAAhZ0GzXbX6gNhzqoFZooVYBqLa+uA0z+CQxXHXt5EGaVWVsOKp61WsOl+jygzypAzHpKbnqjLV32xG1CZS+83JlzEfv3xajdLZoIcwJ9qXyn/WBW3msvWyAK+VlSFAh2OL0CG873u+Hyy8yzshO2ECXmnhpvIxKeYw4BGuQmQXPGGz4emv/ICn3/kW3cUF7/6u38OT73wXHzv6J0+I2x2KkstEPhzgcKDf77m4uUUPR35FHdvYc+syv63KC4RBlZdUL0/ua9yfhX6GoV6LYtS6bEauFQuhacqULAmaF/fMFbInMrvOufW1K2gUnFkcvTPBZg36KA3DaTjpouw5Mev4kpSrATU05Ib29A1ZFCe40qJHee3/S/jHa7TBxpxn0Ejv9e6C9jGjt8vpDSN+/S0+DwkQgierzoz25Ff5lCH4ppw1r/uh3WfV6W0RXa+Zs/GhhVxJ9fxpAqKyhKhJ64eqFFJBgproubkjG/JYwwOclaElFUQMvMxaKK1sZvXdPJEBWrM4U458cITgzRssKeqEnC1cIWfTSBVquUzzFHrM/jtp1s8Awtw/5r4F7LOCOW+6/pu213Q3dOuhY990ndeFdH32UC9OMczV9gL6nG5/WaRaGMah5omaLKSEpYJDDS6uQ9jhxRIvdx7QUJMCCr7G0bfyv610UvPKdD7Qby/oup7bo1VqkuRIObPf7ymlsLs8MIwDiFherFq9qdRqRqWC4a4K00vy/aUCXlugbQLUeV7nr1TriWRzgm75h3w9Zn5Rbe61xRbimSnIPJ1bh5nreLXsqOLXHgQKnICu1WIkX4ayyVwePadadj5DToIWqxYoWkHZYoCfYoq3Rfw4im+SoPF87xzFmVGhFMw7KGdKyQjQ91a1yywldn8sUgcpVYhuecpKqdWoJkpR+piYOgtNKdlSnnssL9lms6HrO3a7HReXO0Lw9F2kiwb4WXU4y9MyHCeGg+VOsYS9QwV+PKUYcO9StoSZTkg544Oj65R+MxFCppTENI2kNJhFNlWFnB7vd2z6gCKz9dN5QJMlgX5kCbfloClqFZNQpeQJJONKQfOE00IJliOpCxaO5poQqkqeEnma8E4JfgkzEApOpXohe4IPiCZKmtCSGA+3HK4/Jk0D21DQC29zPCccE04TJR05DrcM00RwgSwRJ45ePM2a3PpIiuK14POEoDjna+U5wamrnqstZ4WFccoc6uxweFq1sOE4cXNrHq1D6kg5ICXhp1skD0QB9sLkbS672OGchYTmFNBslbzGceSQcg3T6xDxb+yPz0emmDWPRzBluxR7NgObtbInben7qMn8UBV88PgQQSI+dPiwxcctvtsR+gtCvyMw0RHIRVfAjxkvOzHwrd84NhvHJgqbztMH43PRtfwg5mElrS+qx3nwjk0XuNj2eO/okmPKjinDvsChwJhhcDBWnd3VkFpUcb2grkNTwJXndP4WtIPyARY+bLym3Js/jcEufHg2S9a18sTIqy0s6RSE+MIkDZxYySSyyC0LgNPWIJZ1YnWOrLdZAR4s8s+8/br9D4A7J/LFyf61qLcW5nX+fTZgVI8flbt2/vsyv1D1rLWR9FObu8ny9d0qeGcO6ivPJ1085R9d3KnePS1v6zrJc3svrTk4lrarOpq0Z6zGt9UrtYDWeX0vpVbvqwUMwHREAUrVH2pUgRmbM5SE5Lxst2PV24dcn81VgKrKH623VOdk/q7JXCUZ4E7CaZnHXuuDJYZjketmwK4KnGUGXM3rNOvqU+sWtY+s2qTpj19mhMFXQW0cLLhAi7K487mju9jJ9tXGihlHhA5nBhcXCGIeVhnIKAOwx/rVYWGJQWDrHOo8EiPx8oLtO88tvOtb73P17W/hQsB3G1yIVljhOFFSQlPCTYmYEl3OXCA8dR6vyifOcXCuVpmUWV8B1nDEZ6KfTahXHWBVpoE6UU0xaCNQKBVEmFVMoZbna8zWyl5KBWtSTmSWcnUgjBTGinp7LOGV3UFnBWlSJVXEs4ha3CiWWDdR3aCxnD+2NiwLhvdCiKaMxOjpumBx2iVVV/w2GO8opzzUUbrAjfVrDqMWam6D+ud8jJzsnD0PEMtR9IV66j5573h20XMYnFUZEQsxScrClB4iYV5IWjTw0rurY+qG1PexLzeHblkekcbidcnNM99DzNvHV6iwIYL19ose5+7k42khgjVUyzkSMOSMU7Oux2DJnUNwqEZTbocRGScQKK6Gm4lWoMceTMqiyzZmYgq1p6iN5ZwDhQROzIMoYeCnlEfvw3WDn3rz8OD223j83L3Gyd3uCD+fBei5+/sJs6vbd0O27m4/dPxdb6D1OQ+FgH0WaoJZ42dftuWkqHKsSVynlGpicFvktfESBNQsui7UZFZa0DKhxaGuzEKDUAhNCHYGXquIJQ1Wh6p56KSWLLBYyANi4VQpJ1yerCpWbePY9VxdPbF8GSyhk33fs9n0BnI8UbwEUs5cXA7cHiuAtL2i2+yq1caUdleEEBwxmpIVxCqOoUqSCp4KJqzVRIvOB0Tqgukgp0REuHDCxgm9d2xV2ZRcrWEmlElKc044U6jCl+JloGoJGK2CpKnN0BJLVoUuiq01vSduAr62QR8D3gu98/TFFnTvA/2FheOG4jgeM8cxWR6jainuNh0xeqJ3RO/ZiCfgiOrwySpoRefQLpJyIYaMyBFByUkYBwN+VJu3gKfrIn0f6ftglUyc4kVRTXWtEJwEnHicqCmvDqIXtpvAxWVvgFdxFkoGOO9mTwEr4V5IZPbXe/JYPXTTkVxGBGWorvTTLrGLgTJNCHXwiCA+4LqC+FCTdz8OFYWboZAzTNm8yqR6hQgswIg6Qoz0ux3bTaRoYEoDmia0TGx78y7pOs9u43FeyBnGyRLmTGngJz/5CS+vr+mC0gWzDt9ef2Lha3lC84CWAS0Z76CPlrNp13dcbTdE7yvAlikUhjwSkslVqYJkogVXJnytuOQVS14twuSCzSln61PSZGWMc/WOU4cr4EomF4eLkX7Xk4sjDZ40OcgezUckm6ATnND7Ju8YEGD5njLjhHlSFXNz9yK4GHDdlyW+KkgGy9gAojVpvYHUsdsCyuWl5/Iq0m+c5fpJlhh747doeJfChotn79FfPae7fIbvd2TxVtTEeZyPqCtVVmjKCibHOEyD8M7CyKQmm9fCcDhw8+Ilt8eJFx/t+ejDPSkr43Vkv41sO8+THt69dHQx4MOGLoQ6/xYvm6ImDysY0NoMBbW4tbqe4q/Q+A5ohOkplGuUyTi55vlas5cPLeiBWVFVMfC5KbxN8vvyVcwV8LLeXoEz6+0HFcMm7TfwiIflIO7uX8m1r5VzVmDJsr+ZpNs2Vb5tgr21e8mW38ppnhNJl2JhdrZ8u8Ug0nSEGTmi9vPyqbd7sAVn2Xr99/qIRfB5dHLSgCUDT1pdufYcujRLrb7VWk9m/VJaxS4tledbhSRaxdM8kaeBGle9XDR0FsblHI7OjAaAlomSjb9SMlKSOScUhys13XJeEoUjNXWzUN+h6rJqQMF6lEIhpQRlsrFWFPGgYlV+i2u5ZWXpyqLzjCqqswGiGTtyKQxTYcql6mpa01kYr15mSG3rrxnu08CexRhRnTBkMSquPfoW8NedXANsnDW/qq04noinx+TMJEoW4VaUvSgJ5aUqN7UfzHhqbFudkIJnFwPvXlzgnz4lXFzSXVzQ77YA5DSShoFpOPLipz/h9tVL0n7P7YtPGEfzQLvYbuDZU/opMdx6tuPIbc7oOBBIJFWGXEhvyUm/WuCnLRANmGkKGSyJqjCETusg1rlTmTs1ODe7bLXZrTlzTFNFUm3A2+T3NSYdvLo50bOhnktoz7RKgqo1B0GSwoShe1KBI6f2MM3yG4LQiYXxbDaR7bYjpUTOI+OcA2fBqRdsQ2oemfYKC7OfR2FTwsTAA4QZlJrXmxPOzVxx4eRej0jRO777zgXXh9ESarqJMRf2U66lQVktaK2PGzDF6mEXj6f14rkk6pHl3efQrYrg+qVc9Awiza99Cvw0MGgmXULAFk+glQhSvxzChHI7jqZobjZ0mx4nQlfd4VPOvLi9xR8OZFUmnZhKstvWuPtSFClq1nSx8JJYPYRK8KhTUikktSRs6mDIE6NaclMfq+LzyCTIHYb45QE/X8TD5+SZ7xzzUIWuh45/KDRsvX0X3HldyNfdz93rLefIg+c/NpWcubm5sRChlGfAO5cFzGlp7vuuN8DAO0s0m8ZazM6jEgFzhI8itdyoleVWcXS+B42UEkgJxjEzTsnczcVkm6yJIY2oE8bcyhQHdtsLnnQbcyUWW1gR6Hwgeo8CV7sr3nv+HkWVfS4cSk0g6gJIsNLPww3DcItXR2zluFXpaiy1FmWUiUnqEhhs8XXOEbpoFvhSKKOnpEwHPFPYYc/yRJVtSoyqTLmQSsFNE16VIJY/Y9N1hGBL5ievHq8fVZVpzHWdq4BVNUKAWpLi3hNjIG4Cm6sNPno6782d2Dm2olzkQshK7Dq6K8vJtIsdoyq3w8SUM0MyZW3Td5Y42Tu2wXPhrDxpyI5QKq/dRrpNJKlyHRXPgGpiGoV9mSzkputq+Gpgt+24vOgt5KR3RK+4agSZiiLOQoCcOLyD4C1XSdc5rq563nnnsnoY1VLgiCULF8c0ZV6+3LM/HMnDyLR/hZMbzC3JVmmrQmYhXNtdB+PI7ZN+Li/vQzDgJw6ID+RHLAeesvLRbaqYgfH7ziud0xlMFTGPim674erZUy52G273AzcvbhnHRM4TV7vAtnNcXvY8e35BjJ7b48Sr25GUC4dxz6/9pb+IuMDFRrjaObxTdHxBOb5CyGgKaOpBAp3vid2GPjueXW547+qCwzDx8vbAYThUA1wm62RV0YoQg1TLdqoAiOJLxk1mSJGNw3U274tkW6tUmaaEpIKo4MuI0wD0hM0Fl7unTEkYb2EcsBwZ0wFlQIDeCTtvK/pE9YCdCi9uJq73CfWe0nUU7y3kctMRt/2j9d9Cikl8TTZzOInE4AkRQgz0mwt8cOwuhOfvOroexlE5HDMpQ+efsgu/jPgrnn/nd3H5/vfYXDzF766YpCOrI0vAdc4qCs0eytVjXaogFUA70GBGyJJtLt28uubD3/kJ1/uR3/6tW374WzdMSemjedbtNpGNn3h+oew2He88c1xudzWMj9nDLxchtXxwNBFU0BJtTRCHdO8hEtHyCtUX6DSgHDC1Z7BWKqXms9TqiWLCjlLzpVVFsy2B7Y5r4OHxV8d1ppc1snb6/VDFrsXQWPe7qiTO590N9WI+397vjgzVHqkqpq0Vlt3rbebWmJOdL7tqJEQi5yOoAeNODQTIRS3sVoQQI17iSpWQ1WVWYNCd66+grvmsGZJqpzSEsilnM4D2uOSA6BZwvlTgZ6VCIKza3DI9Y46xFXCn4KsnTSmWC9HUkjJ/yjSQhxvL89MAIcB3G3zeWpgXiRC2iEAqBzTdzsCPZqtyKlFxSRHnDd6RgopDfIf6rj5NWwfqCFU1T85iBnGryjiQhgOIw8WCBAXxJOeMD2DJ1lNFeHLVqRVqztG2XfPko6SSayqAWt0VxTy37sur+WsC/Ajz9DOHkAr2eHH4WrHTuba9mt/YiafwbMMiTKcMCE/F8y0fiSJ03nF0VrnrpygfmJmePXCcgR9BxPKu3QbPVRd4sun57rPnhG//EnF3webd5+yeXlGmiZsPPub46hX7V6/40b/1b/Phb/0IcsalhJSMlMyzp1c83244DiOXH/fc3O55lSY8wofjwLEUPipvX+3rKwV+bHFZK9kV7pzLgleXvsqUVnBA5TUtpEtWAId1XcEGPUVZ0mdBVj1Bw4yX6uzuZhZyW5jWUKdWJaVUtHjOm9EYHVoRRWziegMkvDfLuCnrugI79GSYzc8zt0y9vSweMWvgQmsS6VNQaDl3vt68uKxZ9+ORc5YjZMqFLnhGn2uisDK/yaqJWNxF22JmjOjuU4ncOVnaO94BH1oI150LzPdsi5IIJwfNC3G7vtzfd+eKBUgt2a1ILZlsya07L/js6IbA4D2iZc5LYWOD2aPInmsBOV27qYB6s+87Z4CV1spLWszFVbSVanxkkkXg+DTg53T7DvCzEnLacY+x/drH/hwCxus8f9bb62PW9/hMoV8PHPs2531eUqieN2Ydn4Gf6nFjZWkBhDiX+qqCdzUXWX6GTB1teLFknypCobqrirk6z5bimvB3ceavdt45IfSS9N2HQB+iea9Ub0qBOccPCt4Fq9gEBFW6arVqJYdzTuRyZExS82VZPjVRxdfrqCjZyZx0D2nAj4VehOihSBV+IAJdUXogOiGihFIshLVks7TVcLW23pjXz5cQXqJmEKGuJyLGB2aXdanv4Wt1weCt0lX1QgrOETQTVAkovXPs+g7vPS83A30fmFBIQq4WwxDNg8F7s2ZFqd5TWq2WIngCznegincRy3OhKw8lR4z2vM77OcwkhGZxq2tWyWQt5smkEVbjRqRayaKn70MtB90yNAgigValzYmsKnlNNVVCsRw4YtbcNE01v59yPERiUAPrFEuk6wtSHOKXcInHoAIMybyCXcEUDbfw+7XXwJyzqutww0QpmSmNQLHE6yJs+sjFrid2gSKOY7IQ4yknDtfXKEIePa5YhSeXD/g8Wc7Dkgy0URDp8DXfSBc8fQiUongn1QKuJM34UvlkkTlmrVX0E6rHT/PiQ60SYPX4KVXZL2oO8EINUSymBAXv8aGjiOCCWoKJkmcLvVBzbklLeGq8qZTCOCWOYzLlJwQLtxIBZwnfvxSq63WTaaSWYPYOQnD0fTCvrQ10PXQdKMXKq6NIjLjNDgmXdNsLQr8l9Ftc6FBxcyUtcU0JkVVp4SonOl2wC6e0JLZalJyS5U47DBwPBw77I+OkjCERfGAaE7f7geMwWT8Xe3ZlJUvoku6gycHNS76FC4sEnPQ4v7VecVuK9KCFgoH27T9ta8oJqLMClaB6gbLaswacHrcDtcmIdS1r0jBNbziRf1bbTb65I+csxy8y0Cxjn8iSMouSn03OWe9f7b2bMqH9Vr1rtYbsmsJfZY7SDEzO0MIZQKptMjf0Wthu37L6u81KbS0y77XdDSWSWYd7bD2jkVu0RdZgYXuP5akXwErVkiI7mnebQgN6ysrAX439pVbvoxoNyJbjVZ2zHD8ooqHm3pFa9c9CvMxrqPoglYRoNjBXA2jCMhO1st56Ii/PIVbzuLQ5VEoh5wTiUJcrgGTBY1lsvo6ZuXprzosTQy6ms6ou8HXTce/6460msPHb9WT9OaR7I2w1z5pTwKmOuHj+vE53Ob1uDSuEmlfKsamykZMWAQRHlBvatjC0x6nzIIjQ1bDb6B05Rug3SN/hYsSHYIVDciIfj6T9gcOLl1x/+BEOLCeid3ig6yIxWCXMsTvgh4Qq7Jxn49xcpfdt6StP7twGt2hBcMskxATIgp8bcO3y7qsSE1wghlA9bnL17DFriC8yV9JqmFKcCu6QwBXL+hhttpmbmzWYywW/ZghVYC0FJq2WGFfzE9T7SWUoOdX5nwpOzSNG1ITgVr1gGWIrxtsWzFkBXf/OzIdtIBtjKw1Maoe0y6xY3zwZ+HxK8qdRDI5fev+Si/2IOM/NYeLmMMHLW/ZDsjapzMaexTMDYG552iUX0KnHz+x+1yboPJmbFC1LFrc766c2htrcw2TVWidtNcvgwCmva4IY1KRpFbwaUmI/HIne0/uNlSoWz9XFBbHvSDnx6njLfqxMOFvyRVcUl3N1/TdhNqe6UNTwA5wBQDWwY24vddLStHwp1AC0z+vxIyd9tx5vp+DcQ0LPWwM+q7G9Pu9NnjQPefysgZ6HPH4+7ZqfhR665pdBzjkuLquXxGotX2/nioJs+w3PLp/QhUjnE10cLUmiNEFfCKFn2+0QAkNW9qkC5Cnx6uULcIHD/oAgeOct74ezRJ1WwtsAidhFuk1PDIGN82zFEuSbS6ctU53zdLWSVy7FwCrgIHCsws2UC1NRcprIHEhlDxLYbDt2F+ZF1JlvknnWYaFE4gTpAxIdPgR2lxf02w3kTD4MlHEk5MzFYaCfpgp8WHlXqxxSy8Z6q1RVanL2EPwcZvqoJDWiwxuobElkHcFnclZiJ4gzE4S6gnisNLl3bEIgOsc2C7tsC/pGIhfOkrVe9pHLiw7pYCqBvlYCu/CBJyESnePppudJ19dk26WGywmEAlHxKE+edHz7W1cGNGYLGwMlBMX7CUchTbccbj1pMiDPu2nOe2bru5CHgaP35Jy5eXXD/vbWSrfryKYHLVJBJWsakwysLba9ortVvjYMuNSsc6n7UYVEwUsgT8I4YOXtpxHnMriEi1o9fh6xKpRabp9SFLXa1wBsfB1XwdN1lnMl9h04sbB0EfDggiU8F28hjN02IsGjziHB47uO4ArDIbE/7slZoViC5uBh4yd2oVo3xS25HKYJzUdSUaZp5ARwW4WCZDUlqxS13E+K5W/KVRmRlkMRRBMtg6iUhNSKOMy17AWXc61kmYg64vNISsI4QhoFpoxMCpPinbnO+0nnULIsjuNkCUnHYuJbKBUDKTMW8ujkvePJs20FM02GizGw20VC9IToiL3gg+ID4GpqAAcE86703ZZu9wQXn9JtLnFxi4QecTU5bH1upyu1u72LGphGWUKy2tzx3uOAi+0F7zx7h64beedmx7NXe8ZkYywEz3YTuHzylN3Fju020vWBUFG14O2TtMBongPrvB+q1WO+Vhx1ucOlbRVyn4A+BzpUXgARJIMUlFxfYhkDWv0uzHu/Aj9a5QpY3u9LUzRb6RRWAl+VKZs80fafyDicyBqnAJDcO6cdvvaTafhPu0VFYXmtKCCv+W7U9HQMUHetnYsB3qb0O3LNRRVCPJHNWhMY2K3LRdf3b3jO6iEWaKW157otmdvgy/BoFpRYEyfP4BYLoGht3Hq4jT3b57Q6DmhCiiVNlpwhJWh5uhpYmQc0Hy3cNid0Guuqk6vMEnBRCCXWd80Uck3DkNEKCDnN+JxAHc5NNT9nzfkjGRVHqV5AgAHjqhUsykjNNVSmiTROIA4vES8JdUpxyUK+qryWde1NZx+rLFVWbVWBM1n6fc4Hc6pO3v3z54rk7nbVW1w1ani3RIL4VXiXmxM6n87jOVakjiGPhXhtFHZq6TielcKlTngBKcYTVcwQGOv8ntTMUvN4rPrcmDP7YUBub/nhb/8IiZ6L3Y7DzZ6bj1+iw8D+Rz/m+OHHDIc96fqGKBD6nsv33mPz5Aqnis8FXxS52bP1Hu1eMB6PXOQjl3lEUULGnCy5m+/r9fTV5/jRNtgte7l56tThOcf/W2P6KtwFMWukE0yZ6DpLXlkyuUyWiE+8dUymTkJjB+5YcONone4DhLAw7cbiqqcQKFlqnh+BFMydTgQkBCQYCqc1GbSqksZCGjO5KF6VTQhM1DLwNffEPQFlBn3WSqmeLBBtjXG+AhkORFtytRVQITIrevM6xownPLrS2XeB3/vLz7k5ZJ5cDuyPmY9e3FJy4aUemUrhmIu5H8rCYFruG5WVt8+MgFfM0rW42DZJ3WqW27d52criedUad1lhUbeABIoZMWc6uU4FCZtiwsIcmgKdgSzK7TiQ80QfA1d9b1WIRNjtduAdQxqRFx9SbmuoTc42LlMxzFEzopBzwni6x3XOqkUimObpq2WizgdXw7++HF1zhYa7eZy8CfhZ9q3jZBfB4C7wY/s4Ofeh7+WJHn7ONx3yUIjWfPgK+HkoefPdkK3T66gplXfOvft5HYD0VZD3gWfPn9fQGV8tHm722klFmZJ5sVxsd7zz5CldFynpQBleoWVCqnWpFNjtdrx79S1i6Lg5DLy4PVgY5zjx4fVPSUVJNSSkC5ExBHywXCkheAN8uki/3bC92NLFjl3ouAid5eYKwT4ibF1gUyulaBVei8DBCwfvyKocppHjNDFNA1n2pHKDj4XLJzs0XyJaCEUINTFydJHJF8Q74tWWsO2JXcfzd59x8eQCTZl0fU0+DDAMuA8/xt3c2vsIBFNfqmsv4DwXbkNoiRa9WwTeRyTB8tzEzrHdRUuenwvTJOa94oCQDCRwwTyegnlwXHTRPHwmz9PiiEXZuMhl6HExcLvb8Lxs6LKv3hR2xx2eJ3iiOJ7EDc/7HUEc+3RkPx4popZHpbccEv69LU8uIzkXDvtbDodbSsmkVMhpQkQYj4VXLw6EECj5lmm4MOXZW9igQLWQmtv58bBnHI7m3aiFy63Nn2nKpJRt/hUbm84rl7uarwZLa+EESlbGwTzf8iQ1RNcKMYyjGR1UE6VMNjedx0UzWqTp8YAfBVKxvHdpyjUsR9g58CrELrK73NL1kc1uQ/HeHF8EJJirf3Ae7w24DDEi0YAf10WiOshKPr7i1c0rxmFiOkIZLVzu2WXHxZV5eYn42fo75pEhjaSijOMRyDhXK1F5hziTNzImAvls4A+qpMk+KJZkVUwWKWUi14o45LHaPhcLupU4syp+ToToD0R3S8qO4yEwDQ6dEgwFBrNQxyGRJKPOkSMUH9iPyn6CY6q5q1ricbWP/xJYbYie93/paZW9pAIujq6PplAET4iCeAi9QsioV9RbIk9xnri9ZPvkPUL/Lpurd/H9JdLtLASkCnAnKrli4eCA+dpkU/RKg1HErhsswf3zp8/43i8Jt4fMJ+PAh8eBISk+Cq6Dbe94/t4lT55fsO08u11H3wkuQYxKF1uPmZeS5QGRmhtObByrGHCXestXog5f3sOREF4hfIzIS6wG4ggycQL+iYG4LY9mqePRwHnz4Gv7T+XgRyIxT581SKNNjmlGCGneAeuQrgXQkZPzl3AR5mqo3AFA5s25yO16m1Wfn7ztKbbyOlHI+CE2RhxW8lHzQM4DqkLWQFLLv1W6zfzMy6fJKIWW9Ji5MmaVyaqs3e6lIrYtNWyvPaSYodLyr8mXsi46VTZ5qtWxzAu0VcpagB9Yhw5aQ9VYRlVcSUgZLFfPNFmoYk2O2xLnk27R6cbC36eRPBxBC65cgmTER3xQYh8MLC+TAT4YAGSejuDzhM+Ww8vs08UKuuDxLoJ4y9FT83aIGNhjDgyJkhKkRBlGxv2xejd6zPPHzi1uAX0mXeaWOVm3ytSLM4VWxVAWS4mF2z+E/f28oj4rEpi9I9f5e7yTuvbV8K6axsO1eV3HbNNXslSYUJSAeYB74J0svKtCp/CsZJ7qhABHpxydGSacj/Qu4AXG6p6igsmH3nzUjmlkGAf240D6C/82P/ztH3Gx3fHB93+FH7z/bWQYST/8EfmDD22+Rdh4R3+x493f83u4/P73AUvnoFroXrwgd4Hwkx6ur3k23JCnA5IgJmfAInxm5O5nAvzMVicaKNIS2GpN4mVkTFPmhM6uAkChdmymQKkMvVqAVJe4ycYUJNfAL8u6NDN2GgNRtaobgIiaeanys+JsoOVaBhipPiwNYc3FSndX9LaFBTS3s4YoNB4D2MRjtaO9vTb+uZx0B1w3kaElPFthHg2JP1WUvwRm7ISLnTGxw1HwLnM8Jvpg7mkITA30qZOrrQs6gwB1+ViBB/OCe2fxPXmHhdPX7VXj3lmEkcUysEKa5mPawqGrn2YEuCZlbiBbAVIpTGhNJFvHpfOWPyQG3CR0MVooiDPstT3iHMNfXXG1QEPgdX6XKoy0hquvtrTZ49N990deu73++8QCxv1j3rT90DVXT/Twc77mj08LrXrIk+euF9BD+21zGafweu+dzxM+9ljknFjuEueI3ir0OLHwHxGrhDMkA6W3mw3b3Za+60iDMuSDWfMxn2HFKvf0XU8Xe6as+OOIVyhlYhwGxlygepu4dQ4EoZZhXsJdfQhLSFLsLC9HiPgYK9AS2LhQZc/qcg1ocGgQsirFO4qzRMMhWkLjUlwFmQJSCiGbQlhqaWPNBRc8XewJXU+/6djudlxcXKBTsiTYTagNHnW1TCx1HWBhM64C+LkxGPflWMRmy5SzqpMxOpxTUEdxlY9KXTdWieOds1xj0Tmis/xhAcwLRKyKZecdXedJxTyGQp23W3Vs1RI6b0Jg4w04nIrgnDmEO2feGHil7301thTQgVKceZ2Qa1l0QctkJeg1MQ2BsTOPMB9qjiVVSh4tD49mxuHINJqjtOCIQWqKBUVdXV8bIu8gBjtOxDyknGshZ3UdUXOvznVd0WbgrWBSaaWzszMPqkdWNk0IN8A110+pIZIIszecCxYuONtg65rjvBBqm7m6lrb1QbzHUeq7JMZpYvTKOCoaIGcH9LOyZ8+iNYmz5ayyKlXtrjrLJ83IYf4/syZuOZOqkas6cSBi1b5ajsZ1wtTF81DNCytbxS/RDM6813KSiv3ZMWTzNJpKYaSg3gwtipKykkotPayz6GhASdt+ZBIn9JtYgR9m4CdEm0/iDHS1nK2KVGMWNURTnMeFQIg9IW5woTODowsrWeaOgaJ1QpX9lGaQkLlzmkLjVIkxst3sUDLbbWC7iUhSfAcuQt8LXd8TYyR2zjyFxOZLmzetgqOFutR8IBVoyoValQ5c8ZZySCPoBnSLMOIwGbBaWpkrHtXxtaRzWMaXvZI7BXlOBbRH7MgH5EJOtxcvntdtPyCrNNlg3m5y7EPb7ZC2/q/k+pNnta8lTyWnB2iT+9v+2Y8KSrKE7jB7h6kl72ORzeyjTaCt817qQ87BYrKk3GjP2/Y3gblKcbOMpLrIdV8GeS3oKuBLoea+W+l3NLbQjlmAH9RypdjfFsZlloRq/KV6LRarjkieII0GjuXR/haQknAt9FvtiZo/m7TKYlqW8HDNOK3h6C0wsoaMtgT2svKQUy0GTrVwtFZduNSQ5DnB0nLXu6GUs0Fy/kdlIbpWfWa1aa38tLZb0oz8/NGsKrHMs6Vil1sSOq/1FJh1zPkqq/m2yHqm13cCO4QO6FXp6to2zgtP1fuw2eGlrptNh6v3yVZKlaLKq1fXVpFys+e9zSVXEpFhoHz4Efrhx7jg6J/uCBc93nvixQWbZ89QIBXLlxlUiZc70qsNYRrpghntYquoyTJfP0sPfuXJnamTJoqVSFcxtA2xxchjEycg9BVNCyL0Lli4FY6YrVRvTok0juZ2fhzQmwFSNg+L3EAlQVsCMOfB1wXYicVwCjWeuT5jNSepAJ2DviKKPkMwBpvB6hoopDFRpprzYlRIiuSMUyWIoL6+XBXGWnLrZe17qJsWJqpN6CnLxG6n6fogpS4FzYtJKfKIruyVSlFujxP7ITNMljDUx8J773TsdnCcMq+OE1MqDKlwMyRSZbTmMwcnNhDTGm1zTnJYp+sM4KxU8FUYV0UG62Wk5lU6BTIajjKztIeEAGH+bQbs5oWlenE7m+TiTYk6jiMhBPptz67f4J0lUByztUkZjpRxQp0h+1kU76FzDq8mhZXoUS8Vi3Q1p6NFmRpYoBbW8WWsqXdAnIc9e16/3UA72vfcnGtBQFa8UO59Lzz47gvK/a0H2uAu2ALLvFo/76lHDjRB7E37F0lc7x3/80LOeZ5cPcE7T/TVIi0O7w1cGcaMHAamXOi7HX2/o+86c03NhZJGNGcQS86qbssxFbJO3ByPvLq9YZgm9slKWKoTXHSE3vI7+PGWJrosQqJ9VCw8JKkBwdmZR2SpJda9FLzmGp+slV/VOHbMAyGVQsrZqjVqIutE1oS5Vy8MsAkCBjLInG/Gi8epg1QoQ0ZTpoyFMhU0qa0Lzs8hnQllxGzYE/Z3RudwYr6kvjcwvSdGz3Yba8UyT9mU+ZYtH0rc9Gxrfp7eCaGumzlP7I9H/JSZRMmdw8fAyMjGG3AgZnYHLWyysstq3igECJZTwDkl9NWK5XK1JlcHjgqihKDsdgEtntQ7UjLPra7rLATWe/rOW6JaLaRxZBxqmFHNj6BaainyCqs5cJgHSgzmXaJqhpdSrQcxOAN5hKqEQ5oKmo8GYopWTykDYFwIqDOgYZosFwJSDA2qpcYflRoYIs6AurbmeassF6InRoeIchxHpjQxpoTzjkAwV3UPiDKOEzc3Q83B45hahZYpE7yg0ROC4oKtEVmFw6hkLfSjMiRL6z6kzHFKTLlwOwxcHw6MKTOMyfJxFQA3u/8boGjtrdnC/lQxwKx6WZFbOJjdbwbpcusrkCRINkDVhYy6kVIcKVki7JITaUzk40SoCtBUva3TlMleGZNyTGUGflIueFeYxsThcOQxczQ18l64fNrVdUvndUdqwmXzvgPEIV4hgHhwBILucCUSugtcd4GLOwgbirM8TbOnwt2bzvdY5A1dOWssCoxtdzGwu+ghFK6eBJ48j/STQrDPphP6bUfoDCy3amSWpykGZdOZ0hp8FSzB+qa46ilmfJsiBpJmQUqk5B0+P0EoxHKJ1wvQAHpYKabcA3tUF6UcLSuBZpEBHlXGqReU6llkMkfzJl97OK/kmFnelEU2Wu0/NUa2w+SN321BXMSixSvoHueRRdqYG0Sr1FoVu8Xo2y6ipPFIGq4BB0FxweFmZXDdIC2FQBWIV/eYX2j1vi25/ixHU2Up2jvV1AS1Xb6UUC8tuOlQFwdLNm4T0LxgzNDelN2avUYtx2GaLBIEzWgZLcokJ3wZzUhfWsCUUsY9Oh4gT0gaEa3Hl9E+uUAeIB0t52GZ8A18a8mdFbIMc7J2XzpLiO89xXd434HziBfE2+KmaURTsuiANKB5hJwsIbUYXwleiF5QL7ggaGfeeKXpsIp5r1T98L7HT20baQCQVNC8AXyuKUi0ReDLUDe+CMnq46qch5iRZ+3lY4UgWCo/r8Ahu9Ci70Wgr/PqErjC9r2jypOSiar0uYKGApvY4TeREgK7p895/+kzkggfjROfpETWwjFNDDlZHjYxDy7BDEHH44hm5ccffEA6ToRpYvPiE7rDLTF62HhcsFD4fHvL9OoaREjOjH45J6jevxL8Ih+X8rnE0q8+x0/JeHX0XulriS1piSDRmkCr0OGwbBNm0dwEU2xUFZ1M8E/jyLQ/UHJG9gPu1R5JGTcV/GgJOgsmBNo6JuTK/NXXkiJiljaqhU1q0kKcINuA20Y7xi2hS5NYSICqVdNJqaKzibpIFoJmOl9RWTHwSdWEmsb21/F4azVzVoZbec1Ctb7pIqyuO1vX33ev+rgMOZfCi9uBYUwcxpExZbpO+d53tsCG22Piw+uB45h5uR8YPp5IY651e8PsJguLZDMr6Y46YevNTqSB2mYitWIXc9KBBvo4VzO1u1Xyb1muZ31xcrV5QWsrr1uFPTUkVTDgJ9R40bFkbg4HNn3POy7wZHvBGDsOaQRxDNNUk9KaRTR4s2Q6EfoQCS6QgaMoU1VwxHl8Ldlmt2+su5z06GPSUtXrbUO9VqDPXMmCk2PWQs4abZdV3y7de7r9OnroF10LnPPycPeYBRBah1aaUKoP7NfqfbeyYs/7X/+5DyYtoNSXgRmEEHj33fcIzhND9apxjuDM+2d/GBC5ZRgT280Fu+0T+q5nchucduSULKY9WNw7TthPBZlGPrm95YNXn3AcR4rvyX4LwRP6SH+5BYHb4415o2gdoW6RK5ugkSgMWpAKxpuFZEmc6mCer4oyqZDUwn+nUhizeelMeSSVgVwG8pxAuoI3YiCADxb/7rwnuECQOqdGpewTmhLlkMmHDJOdqyFAsXuhhRE4ijBiwI+BP9b/i9n6ccl7x9MnW0J0bLaeEJqxYRVSWRMcW76XiDjHxgnRmZCYp5Hrmxt0mIh55JaMi4G8hYsrz857/DgRp4TkQpgyYQSnZkwhRIr3uKD00VzKR58Y0kARJU+Qk717Fx27WlFpSTQqhNARQ4epK87yDeTCMIwMg4WCBG9LAaqUMlnuEARx5nEG5hyhvq5e1XiLCE6i5XCqa7ZzwjBMTOPINBVksvX4OBR8thtlHCXDeFRyquqBTCYX5MfN8SNNiZZA9kqpcoUEwXeR2Hu6jadkZX/YGwjqQIJVbJuBBZTD9cCHP71hGpOFykUro5WHkVi9s2Kn+FhwzsLMbo6FMApho2xHwRfhMFqo5pQTL/cHPr65YUqZcQbypDqfWgid5Y6qvCtDmpa53arN5VSsIppYlZMihaKQJrumqBAmwSdny31IZH+kqLfS7DmQp5H9YWS4nQgoo1O6WkxjkJGpZjEZKz/QonSTeQ8pI/4axmF4uC++APngeP6tHcbvbebnnJim0TybXEG85R2R6HDRW/6P3IG/QnVD3D7D909w3VMk7iguWhl3MW+Fh9ax1u+ugk1ODPxxq/W2SU39JnL11BMneOeQeX/MDJOSXSG7TBdhdxno+kAXhBDEwDUHm0652Cp4JYZaJ0nN027KNh5SMfCHIugULD5U1UCfAh4PPAdeIroHvTZgQl2drLqwSqXmK2pyjPHouRrToyI+tS1XQE8rqX1Sqcs1Qb/Jh8u2rPe7JheuQaNTA2PL+TYDpjR5tD1L++9UnF1LLYvYYvxAqxHLvpZ7iTpaxTfBkhKPxz3H608Q5+gvhBgiDvMOdNW1o3mHiGB9VM83D9Kaa7WFH7VtqWtOBWWbV8Osm1i2W7t+a6/HJs344RrEm+eceMSF2dvMScFLrnJaoeiEamEcE3o4krJ5OGpNWiZa8LWEu5SClCr3DNcw3KC2yOGKBUK64pEcEQKkgI6deTbnRLAUypYYehprRcmJPB4RccS+h75Hvce5gPpg3oBqRg0ziBzI49ES3Y8DOo2QM14zsQJEnZcaWmqgD723vI1ecNnkyjTRKtOvqnrpEkaJzjKaVmBnFpt1hhGrx97PHzXwxr4b2FOBn+CZjX4VBDo1Ti88Zq0N98AG8/J5F+E9oEN5ooknOeFVawLmjDjHruvxl09wmw273/272fzyD0gIP7q+5ic3ZiD98NUrXtxck0thGkamKaGlMI0jxzRwkCPDzZHfcj9mo8q30sTznOi7iO/Ma9vHPeMnLxl3H4P35E1Eo6eMI+Idvu9xMZLV8ghNudwxYJ1wltfSVwr8LMid4qWVX9PZpdairAx1jGjNu2A5F/qaJbvkTFI1F7hcBZCccVPGTxnqdxgSVFfrVrQ1zSCMGOhTzPtHggMvtQqMufiqq4JLTXQppZqdAMQsJqrmzmxwK2YhKTKHDDhZxcmKzAl+je53zin4UwfrCsxZ9I6HwR+zCpxe/+T4RyBVmFJmSoVUMqlkSy7Ze6sc4WA7JcTBMVkOm1ahQubEzGvgh7rIyCJcLjiB9ZWu4LA5FAzmRM8CrTx7c/Vzyyo8X7D1hb2HMUdp91+BFu3cE4bTvJFMVCLnXMtZW26G4pToAp2PVjVFHA5XF1d7BlerAllloMVRU6vVpSUbb49sixknvfpYtDDEh4Gdu9vz3+1fA8vm63Cy3Rjw3f2fdft1ANB672lY1sPnNZd5a891+BWYcHU3LKs9y+u379LrEkSvr/llyEVOrEy7d54udLPHT3ARQZgmxfuhhuyYAOKcx/uI9z2oRwmoVusYNqfRYl4B08gwjYCvJUVNMXTe21zwbh7F0MbUXfCHOXGs5XazWZfVIuSLWC43w7nFPCWQuQywNqVBzaJXxa1TC2OVZNrcnXNXNXUpq3n7pLKEmNRqKCoOnAlGRQ3kqTrPEopD3VgBiI9JAlYuOrj545zMyaRFjZeIiuUBq94uzYFSMM+LlJNVJ0kJN03W5r2VvxYnVsms9oFXLGmgYnkGqju5rcftwkrRvFgRK04iIhWcYsbDRITgA9EH6/PcdEArvJCmyc7VavFEq0W2jitdRpIpTdVDFlOWHQaEzUkbK/CTs5tz5BsvtdAjS8ZY86TUT862kjYvrsfty6ZeUR+mKY+uerK6OZyvVE+2nAs+OGKdT63NAXLJjMPIcEyEqES8VdEqVIun5d1pRvACFnqnWkN1TEe0kLMyJ1A3EDVTiq2/s0xWFQKn0nwDTsKpTkQNXTwfbTbW9i1YZcsilvO3TqbSwKEic+hCKUrKhZQtxH6sKEEGjsBEsVRBYiWQW3LgUgolCyll7lU+egRyToi9W811RVLNf5PVgJ/WVyu5xkqRBFQjzkfERUvmLKF6YQvN93w25KwAAW3fbRwvwvIJeICA844YTa6NvdD1DvVKklznJqYQ1bHnpHoPC3hn4Gtws+hkIECdD3O+kBYpU0MVpTgoESkd0FEkokRQq7p3YoCp8/ZE05qpyqUnq8bj0yxLPCDDnMo8VX68K8+sj6uPeW+/LNeU9fVlfa/5MVYPt/7S+W892b/IUbN8WB9kPR60ZHIacc5XAF4rtHZ6P6GCvPVkrfoCUkO96nst8lIN/xEWvaK9Z8s1VAdsu86jk6p54bhSw3OrilCMXzoKQVqR90xWA3JyGS1MK1Xgh5Zsv4UjVs/TPNlAz9UAlhPURMu1cWnVEbUk++CgtrO0xa+uY5qN14pYJVGtefWs7FYF1lYhXdTQMtNl6/Wry2QLbGi57EzHkTkdhK8h6qVUW3oDeco8qubveRrqMhZ44G8bumuJ7mdPK7Y3z9l19a4libObf1+DP/cuVDeb42ZE2KiyA7q63atVBc1VHjQjnKVB8P2Gy8tLrp49ZwJugL0qcZq4GQbC8YDkQvYFl5uc0SrtQhkTBxVGlCuUnYBLVrnWPL8SZRzJxwGCp3jMez7bmGwRLxaSe0cenZcVWfHXh+krz/HjBIJ3bDuLTfYOYrTBK2pJDlEh4thqwCP44OiizK7d6Tih2ASfpoGSMm4aKWkyt7xSXeUcJiCG6tkjQqrAj3QeOrOyEVxdCbHqSnVVDJuOsO0qc6zxl01Zr6vbuix8SmqforjR4SdXkTmrTlNKs7KV2ZOg6OnE08ZI2/Rra6meClx3QZ812RL85bhfZlU+OUwcholPrg8ch4lN77gi0EXHJIV+F/AbR/LKOyWzHSOTwlGrAKVSvbCqLbtaU8z6v4pTPAFd6jGr/AfGGalC8F1XPzcvmq0dFZa8DiKnXKVunCzoNEa4LPoKJFVGLUhKXF/fEHFMObPf7xmPR6Y0kW8n9DDhgavQ04WtAT81x8NQCtM0MOapxtAbYGjv0hZ3XzPGf3mM+C6TPA3RWvbdO2YlkLb2cvfOXR23viHt3JUws+qD1z7rvWc/nSOvOQqzCPEgOPM60Kbtb/kr2qxaX2f2DHPu3lw7veZjK5lG3nuetlCvEHHOUbKSJ1N+p5S4vb1lfziSLPmKJWAOPZvuAr8JVfAxZWw4XLO/+ZiUBm6GI/txYJhGYujogseHMIM+63aWKpS0qjK+fWJAWnJCMS8Saz/zrFFaHp1abl0EYsDHYDx88rjRLFtQLAFisfwmh2G0PG4+4pyVeQ4bT6xWXe8Vz4jkxHST0FsPuZCPE2Wqlj6JFtRN5asroVCwinw+5wp6lJr///HDS4xaIlzLYWR8bLUSlGyagTMQpI2vMSWSWrhXd7FD+kLcdGy2W1zwOFdwU0KK0qeJTR7xpeDFWdgRQgrKRKZgOVWmZKXIM95MYlCrERoTHRTSlEDUcrhIQQS6IGiwJy7qKOpqtS1mq5S28lAA6moZe6yKUGnCrpvfz7y7rFJJaW1gow5FGKdCmjyqHS3ZqPMZcX4WjkrWOUdfUUhlAbMei0SqA7GH4h0R2HbCbuPZRiEG0JxJoxlOximRc7EQr+DxyJzkvIVNWb4uz3az5fLpU3wIHMaR7ngkl4yXES9HHIqrQ8RVocKL5WeKXuljwTvlcut45yqSsoXMNY8MV2SuHr4Lwi4aP7saHfuxupKbJQtxit9m3MZkoVF1lm2OThlFoXCS5zAG8F4pzsoRaxYogu8CrusMaC6JVD20RzUjHcJc2bLJUUoNwTwofvoSlE0UqTke2/O7EJBQAWjBBEvBKnx1NUSvRJQNqhuQjlQCJXs0CUw2T5wzsM7mjcwiiAhLSLfUFAROkVpVbAl/b+uJmodcUEKX6XbJKkrXMe0CqGMGzBrUYqKuedqnYuPVOyEb2m7ztIJrppsKJQmaHBTzmCOryeQSgQ1CxtOZFwalgoWniUYNjEiotEQEC/jTkoE/9vpoYMRaGXSzN7eskh7P3ss0g+Jq/yzD3Dm+LX/tGFnJUdRT7shITYJ4ULxp58NJnp/ZzlzPtyTfUhPmeyg2Pnw930tVXRxIy3MjYKFR94RdVi9SbyLzO82hXg/BAMJnUi6/KGnJ/P+Z+5MeWbYsSxP79mlEVNXMbvOed+ERyYiMbKKSrCF/QAGcEuCIBMgJBwTqL7BmnNYP4KgGhSQnBDkj5wQIAgSHBAEyQVYmMyIjwiPcw93fu9fMtBE5zeZg7yOqdl/jz5/biyy50GtqatqIyhE5Z++1115rOX1pF0fIQCDlmd3ujpgyEpUcjEXceiXUC703ZF3op2faWqm1sJYLvXemnNjtZhdo7lt1opWV1ooVTdAt7+jaWMuCtIoi3qYeTW/WtT5VmrVgqYH1wxEz9EjUTNABjQ/4ZbDsuonk18UKI+uJul4cEDfx/KARk2HvgK2V6i582nwtvUV2bgrkLxEfrk5eegMKfiUF+m8n6DOcuazgY/mfgT7mgGpgUNg6PnBQyN7j+n1NJ9iWsjfAO4WsyjtVHlojqbV3BbV5Kt4dYLcjTBP3f/zH3P38j4m7HXd/8iccfvJTmkC9v2c+nbgsi2mp9c5aCh+68liKzwuB4IzPoBZSCd7WLFAD1LVQjyekKU9//TeUx2dIET3M6JxhWdAvP6DHE+XjI8tl4dI6S+9ujvX7bf/ojJ8kwpwiD/uJ+8NMzrCbxQqZiusqC1GF1IMFuSEiGRDlcmosy0rXSq0X1uVMWythKcR1MeAHoytHhDhH0sEoek2gBmPfyBSRXbJgJglkF43M2QKSEJjmmWmeETFErrfKRpvzXmVxW2NVWNdmjiS9My+J3ZKoXXm6FE5LpbZOCTcVbB1VzVt00pbJW8aP5RujeumLv44jym2hZZvft9e98nVcWucfnhaezwu//OKJ42Xl4S7xk7DjoOY8sX+TiCGQ7hIcIktpPK+VL44ra+u0HqjNwB9zcYtsy+9tsuzfJeXkorCBkK70Pr0eiA0QEgydjd42MIJp4EWrnAzXNW4CEG7AjjFJj2TQv3/3xEiaaQ/89suPLE+2sFjrW6HUSj1e6JeFOWV+9PaB9+7+xZzQFDjWldNz53SpPiEMUMHtCLfvF153AG+2EQTdBjlfx9h5wYL6BAB68Zyv2Cb+rs++vvbmL/yOl758n9tfbuzPrqKD3DCDeJHsfZur17gZqGOJbb+xh/tdYM/Xv+d3/17fZUsp8ePPfuQ0V5uzLpeVp6dn2tpZy8rj40eeno4cp4nT8dnawz77Ge//5OfcHR7suvO54je/+Vt+9cWvOJ+OfDgdeVpOrGXlbndgPyXSNBFzZrT3bcCdWItEzia6nKdEmjIpJ4LLDYO13QzAvNFZXK9glyLz7Iy9OZOnidAaac2kS6BFAbFe/dZWLsvC8/Fi88EciZMJSs93iXmf7MsszTjQRVmPlWVx0MDVkiUGZDch82GLey3ybkhbkd4IvRNLgWY2q9rUg7jX3hShultaZJrsO3QXjTT0pJukQrDAUyTQW+eyFujKIczcv7snk8gpspsnszjlQiwXQqnsa+G+XUi9k2PenAmfU+NRCoXAuQtLCTQHfjRmwNqiWmn0rrSl0PsKosTYSMn2vWaYsydWYpoMXXFRX7sGDfxzt62ug2hk1rfVgrwYDUBUt5a3tW+4ZdmhqNVFaJuyLIneTW4zxEDM1obUFWN6NTWNosYGiLbev3L9/iFbEJizmuAigS6Bh1l4uIscsrXb9FopWllq57wUixOANCUk+HFyEere1O3dhfv7e378458yzTPn5czT5ZnWKnV5Yr1YpViaa/J0zO0udNOGoBOCMX4+uw9ImIwRxWAGKEkhqlWZd9mKcqqwFGGp+LoUrtf71CBbBfNclEu1fX8OlVMw3SCNHa0WQJszqcdNzqgOBNI8EapdW5elG8iHta11lRfdOKhyaZ3SO1JBynCReuVNgNSsSJOir3uBeZyzXJmA0cW4JQitzSAHtN+hsqe2jJKoq1CXbvNJhOhSJTGoM97teMQoV/ZWDKbxk00wPwZxdo4XoUIjpE4UZdoX9g+F0IAW6NU0fUim+2Tkxg40ghg4u5+tYjwla19vwdbLIYTee2eQAHsN9GKoUFs6vajPPzNdDgY4xx0xTAjdC1jVk0yP6rRtLWyor4VeROntRkPtNYfx01avjRE+bvEag3xDq9cAiOTTx2+1JG/auwaeLeLZ5TifbsL0r4ttBujDp38XD29FNkcyFWM+kiJNo+s3eUF91KyDtVKPFick2TEQRXtgqPJtINcn7V0v7+sGIG0FL+TaKrStm68waJ9svRWOj7/yIrap6sy7A1HfI9OOkANzimQRqi6s5URvheV0pj1+oCyF0+nEx6ePlFp4eHjgs88+J09mNKButlLXs7VyNtNbiymYq3Ov9NWMC5Z1IZ6OiATmecdutyOIHZ84WSxYLitrvQBCzJHUZxBxMH/w/rxdVRu9LtTlRGuV5fLEshzZTC4AJdOpWC+urQndXfh6C1v+uKG7il9/2LXnjJABto75o3PNaUSufx9C0/9t2WS7nlyg3kHPmI3NODR+rBA2wBXZDBEUWwvH984hMEWLSD/rys96ZwIeWuNhtYKY9E7oHYmR/PYN009+Qjoc+Owv/oLP/uVfEHcz05t3TG/eoAhvSmGplcv5xE4CUzGtxbauPJ+PqKi7jCVba2XUUAz4KWJafOvlwnpZqU9H1o9P7iIe4TAjcyZ0Za6d1JTldOJ0PPNcG2ft1JHD/B7H9h/f1QurpMQQSDGQIuQkpAH8+IkauxA1EHRA2YAvknjVBHHk1KlZpv8+gGubpEMOxMlOFML1pGCOBv4EgSxItok1TZHkwM88JebZHB5G4Diqj80v4xATMeaNARAEYhfmnli1E1on10aso8/WGAgwJvuvz3JfDKK+4Bm9QG9vV5VRFNLry14dlVfFBCNr41wqp1JJRVhbI3UjPIdo7QqTRna7TMiBIpDWSsUEqFGx1oWbigyqW5Xj1iFSRv+m93RegR99Cfxs1n6RGAfwIxYUj/Im1+cPraARhGwVtfG/gkh/ORjuOmc6oZ11LVyKBbWlVqPw10YvDS0NQiKHyD5niIE+JUiB4hPCsCbcqj5ebbhWj+SbTpE/bNuO+0uQB77f/Wvl6+uf88278VXw57u87lvecQPQYMQmA0S9bb+6An3Xx6/gzHUf1N/z6197+77f5OR12272mpuImJhuCN7GFYjRZiZjICu1mj4F6JZU11oJIZPzzmYxsXM9xEzrSmnNRZWbsyP6Da2WgaaNw33dn9Fi5VVqe7IF3ur7NI7dIGEHzMWnB2vfkWjXZUCv7zdCEx2VMktk4UZfSISQAmmK0LtVwJu3htVCWwpoQCQhRFRsriJY0q3ePoUHxuOaCC5ue6Vm/hAXI+ABirG5BRXFZRfgFph+UcqzZJmuaFRiSqSQySmSY7SEsQvJHScn7cx0kihZlNkLwWtQonSb0zQ402ZU4UcGY0nDKECUdg0URbq16cVBdQdx97Fry8jNWrV9E3GG63jOOK2uSc6LAkh3F00HfmobbVwCjP7+YVE+9vpF4fP6OVcqxKttcbQpi4lvJtfLSclavFS7AVete3I9ikhjn7w40a7MwtEePE0T8zzRaMw905ogPdFWK6D4afKVIxyc+YOY691uivTu4urehJRQks9X+0mYsyW8OcNUx3w6qqmYnm+SrQ1ZBKooJamBB2LfoQ+BTQc0UNwRx1kJLjqOWkzgpBUDK7AkJvrgmVajbsnmaIl47c1zJlvLwgCfroItelMx31r4RFCJiES3nY7Gdhu2ps0ZOj5thg7D+XOTAwi2aOkoSd+cSy/XjZGwWftWiMb8Cd4OKaobC/p6PV1zc9Mbd621sf77Fx/tnJsBibN+hstQb92d/JQWhCbRhcyNTWNvItcD6DHUVfztuiOjEDKKbq8bp17jkS3OGX/5Ssxzw+65iUXGK14wl7f3uWH+jOfc3r/uxlfuG46jL/48ltTrcz+J6V9+tW1/t1gRvZ4Ptx/7FWB77Oe2swzmzmBKfKXVa+zPJ/HS9l1/wFYv1U6rF7qKA/tCCsFMKWKAGBll8qDmzCWtQFvRYre2nlnPR0otlCn5a69t5Kjr9HiBWML1eFis4XNCN7McEcttes+Wh47jA1hr9IhL+lbg31agQRjYWr063VvIWi+05t5RMkZ1gHRjgeCKy9zcFx1xwVhV/XH/2+3K69Es11xHXsYUr12d/J7bV67XF7Fl2H5/oYE2rmNuvrOIt5E7OCpCEmHSzk6ESZVJleyAD+M1IZCmiXx3IN3dMb99w+79O+I8k+/uSbu9EbBzJtdKFDjMM7uY6DGRgmxO4wHTFx7X+ZjiPQ22oW0+xwq01dviU0TKDpkzESE5HtKW1WJzB32+bsTGfP9N2z868DP63UpZWRZAA9mZGopcWRhJtmBDYrB2rSDsJIMcaK0xz4kUI61UWCrhYtXZXQzsk1VG835mPuyQaE4bbVyjOcDkiUzEWD9iVfRhOZxyJqcJAXqL9B5vEFk7tazNwBg/ea2U1aqJsg/MqzlAzefEYWnU2tgl4TgFWleWpbOW7jTBfrVOVSxo2CZ+2fpIBwh0FeW6BrB6m/GOv73y1lVZipo4JIkuytIiH87KuTXu94E0K0QhThPv5x2KEB8vHFeASglYcOx6BdEpejaB31ywHjiGlLwqGja76BEQbcDBEHSWQfsT319f5JExQ3IFWdiukBd5/jYB+gQNN4EAblOvrL3zcSk8rSaotq6VWhutN5b1wloLmUAKwn7OhJxIDwfibiJdzvx6PfPkPb4RoYV+E3R4sDF4vD/INg7AqGzxlZ8vgozbwMjv3zKBvo4V9LWf+gnY82qgj2DXxYibbnL1DZwZ18uYGW+DUW7iovFLv/3l5Tbe89N9/nYA6PW23juX8wWraBoYui6rtf/0TtcG0pHh+nQ2DYhlWUAw0VgRZywqIUaM0WjASm2VWiutVlopRrf1ip/tgBJD8lVEKKURQmH1eRANpuceIyJWxb/q0HW3KRd6NFaPBgtB4qhUqbWCRZHRaWLzcsxMeecMwBnCjMTAtJ/YP1h1JGQhLIG2VM7HlWUT3vXASgLNAakggWmaiMnsiXc1k7q5HtW4mkuIlcOpUl51DMemOgQqPVi8STBVBIaxgTNWkaFe4ELXQUlzZIqJfUy8yRZ8ZJ2YmIlEZhIHsoFqJsiCaiMFmH3+zCFu50ULgaYN9y+x/G3LvD3FkGs1vPVAqb7PXNmxtXUruiA0FYa/gYEgNr1lr8SPIL91offRqmKfHRwFkG7FFcXm/Sk4QyQGdmu3lm1GC7ZZmmszgFESBpJp2Ojgr7HFKNzdZdeMsoR4nyC55TdqBDTB1tAYIoi7k6mxuXotlPNCrx1KY47GkEmh0/tiZmQ0phzpUUgamZpYQd41dQLKLjR0Xak9grTN+eY+R+ZoLXFJOjm4g2o03Zcgwt1+z35/sP3szdvr9NqGBiw9sajFMMdFuRQotTNLYB+qxTaxUkoDrM0TcaBIOrVXgjZyaqRkEHAXazNUTBNooPeKFYgUNf0gn8v7pzpfr7ndrPH+K9eCnSdK6u1sOopWAW3RnO5EqGKtbZI6cWnQhdw8oQts7OWAOfMlZ/+4fispqIGGcqPzsSXivj/B1t+UI01AVOgtmIlJF2qztrjeR0uVvU+OVmiNggkGqzHy1tXGuZWF3lbrAr4Yy0BboZw/0MqRwIkWj+SwkOKK7grzVBE6kUb0I3cVl230IZXvAOcApdrNvr3+MF5jqY39M+KdG7HmEQxeAYzx2C375xYsufmM8fD2381Pv6/Xl34F7JGb+7fvt90fsX0wMFm7nT9dYIgat1btmmgWe4bQ7byJXnRxmQQdwNztDug4HoN6GRDpA17cdmgk1lvMM9aEmxj6tbfWKk8ffsMmDaHQ9nckqdR5R58Tqe9oOVDWlfV4pNXK5Ximnp+pS6FejrTlSC2FMkWW854+nCoH46eslLKi3RxEpYxDI9vABokuJSGsDuIaAOEdH1iMpWoLYG/WxoU2ynKydlEJhGL5ItpZlyd6PdF7RXQhmFf0IPeasHBbCG0xbbG+oBJd/9BAAFsRFfWCdNdRjlGq3og6c/3Z1crvG3ikbPqLBjf9x2f93BYaRyHfGD/RmLDe/hUHc49PWJFbviYmCC5wiJH7mMgIb/rCXWtMvZNdkJ4g5PsH8v09YZ55+PM/4/7P/ox42HP4o58hhz2aszHQqWjtXD5+YHl64nI8UX75C8Kv/p64ruw/PvLmfKGqsnRYPQfdiakLTArvVXjT1RzGuneXuCZf107okZyCddsrnJrNk0/LhWOrnFAWbjhaNwDt79r+UYEfhW2iWpaFKB3tgZwygtO2vK/Z3DCc5TF0D1x4b3c3o6osp8LuYU8rHsSuFXpnniL7KRGjMO127O8OSAh+cfhiHtTsOAU2WM5PsuCq4ePEAm7EvWATBQW8ocwnEEuUeu8c1sxaC7V13lwaJ28D+3IXeXpO1Np5el45nQutK5e1sxaLglXVE042Jf2t/WQcyG1FuLlvL9gm6x8iLOoKp6VZsKfmVnFuSn3uhNh43wO7O5AE+/3M5+8eyDmTpiceTw1YWKuJF7aum+ClCEQCCTN4DjdizZIjktN2sQen2hpodAOM3AIWt8fDYVUDl/zhgCP28gIA2tQNwRH6G0rkhsR7521rHB+fuDyerYVgaZtrm4hV8Ccx4Od+N5F3M3efvWd6ODAfj/z9+ZmP62IMhlCdEopTULGqoIu5/hDbp6DOCyDtE6Dnm1q9fl/g5+tAnu/y/O8U5N/gM9fKhv/ifxjJoF1TV3BoCz7FpgMdgbRcz5FrQWBo/9g22r4+bfX6xp17pa33zvPxxO1yV1tjLcWCwAH8RDsvL6eV3pXPPz9BCKTBForDTcmFedW0VWqp1FKo60pdF2Nftm4leYCm5DQRegQNrEsBhOVSWJZCVyGGvfXjS7SFzeerjomTShBaDLRoleOEBSG92/UaxWbY4LcowpQn5t3B2kXyAYkzIQd29xP3n2ViV3bnYED8KfDhw4mgzezlRWgxGtgkgUokh4TsDuR5JmojtkLr1QLBdUFbZSkrqp1lOAq+6qaoNnqP3ubTPO/w8yUMLSsDx7rnI41O1YpqQ6My7RO7PPEQI5+nzByEWZS70IjSSEnJswV36/HI5fGJViuTNA7SKAjPKROTmhaecAO+2HnSx9yqwfYpJF87Ldk0DUJryWm9eDHiKh7abpO+Aq1aq4KMdbcLtdmHWBw0GF1KSJ0Qr/s0gIEUEiqRODUanTS7S1HptOZuZGquX6qdOAe66qsCPyEG3ry1tvDoCUKSzuT+VL1BrVbckWj6V9HXBrMc7rRlZX260EojRmGfbW3MqdLaGWpFxFqx8GOvEpAuhD7a5JUpVfplQWMgpEbKxr66mxPTFAiizLGxi+b8k2bIs2mGPTy85f7+jVVHuRCx5KWWhVYXahc+nCaeLpna4PminJZOqcp9LDxlM354SivnpVga4edKV8ihUTskGqepsZaG0mkCy9ae6xo7CEGDvwc0BjtKHdj+ARIUT/i6Az/KoOYPMICNlRzGPw20bsBP75GqgctgCISG5IJkpU3B41zIQaxF1YGfybVZpgQ7IwU7AIQl8fJiFxnV7pgSKVu7lnQ2UfraXXNSrZ2K3hEMYJpSYKpY0mRiQNRSWC6N3ipteaatR7R36rnQloq2wnr+QFmeCbKwpI/keCHnBZEVQiFIZ5IK0jbGqbVyNjqrRU1qgK61qbhT7QB3X3sgb4Ef5LqK3Gr/hKtjF7f3P23tkms6eQvSfN39DQz5ht2y97iyc4LHXV8BgW4qUd3BHsVikxCsVaRrpdVCD0PcvxlIIKa5h0TaFgnd7qR95pZfjDZ91ICi7md+GOeOnWBXpr3tzACEXiBWr7S1Wvjy139n39kv9XV/QNoz87yj7CZivadMibKsLM8nA37OC8vzkbJW6ulIOT2a1k9STk+JPJkrUh1rUbfzfhRftFsMP1qLBDcWiHZ+qGsNWgfCRMqT7W9b0V4QoLeFViK9RQjmcCkSrmQ4VSgnKGdUG/QzQRa7JhxoRzLS9oSWEa0gBh51jMlbx/R3o8LfXL6oq7L2RvVYbXyuaqdpsaKgYu3rVivxFk5B/iMCP+M0MnZ68BwvmmyAeBt4TNf8PITtmokeBQesdVmwuEK8ZfdtTHwWMxPwWa28bZXkzl2qisZI/vwz7v/JPyEf7vj8v/uf8Nm/+peEaabNO9o0oyJuDlFodeX5t7/i+Re/YD0eKX/1/yP89V+Ra+VuabxfG1WE5xw5J/NCfBDZhKR/3OBdh6Cd1M3RvLvmVGnFCpwSiM10g59rZe2NL2rlsRWePA+t49j5z+8yk/5O4EdE/mvgfwj8g6r+p/7YZ8D/Hvgz4K+A/4mqfvkdPm8DMIw22jAtZg+IZGje+M7f0l7jmFyt7xnPz1tVWu7Wy5+NNpxzJO8SMQh5tyPf7Sw5G7jncDkY9BIZj2GCUW45HiQ4DMFGfbUlKmx0PJNqCqDX9+3q1N/QST3Q1CbYFITLnCglUUJjmQLFncNqE1qTbWK/5qrX5FW5Jq3XtPY6zLL9dq0M3ZwEfyYi//AHj6MOVFm2xaLTKc0Q49LcVUQtWskpM0/ZwJ8Q3V1ICcGqCkYDt8Q6OIwm3Io4++K8sXyc7of3vscbPaRPgqMNtBkP3C7I48Gv/H4FAMYBHYHWaAcaf+sKpTWzb2/dFppigE8MVlHT3o15lkz/aJoyu3lmKivJdVkA1Ccwm/jH+NsxHCy4VxvD8ZW/BvAZj3/6nN/1+O/D3vm2z/q2537r9gL0uV4jL54yAJ8XU+PN9ePJ5jgt9ObzrzpB39z29e33r0wkXmkcVaHV5vOlJVfNK/NDvHa4uSg+3/q8q7qd2FchvK0VdlSI9CYYMgaRdHGHgWsLSHDKc9chomttAb31LXH/dBR1u97k6rQoDqrfDM/Ly1b9JcZSkpvXI8b4iEmIHVISpi7GPBQYs//1HBkyi8Y6IgQkRnc1ssRTRSBWOkpq8WZteL0x/OSobGAzyE3gb0dio+SPAP7m4AygSBxIT8HcMKeA9bWLErOQJpCgtDVuLThBlOQVQ3OKMkq7vEjIhNG+JX2wcdkcFLfdHLoDbisLvoz7miqEbYHbNO5UttuIAa5sgZvp+Ca/2KjfIhsLKro+Q8qB1tQBBwMLQhRnCY3q4MbWe5X4RsD1NsTZG9amFGzRBkb7jG7tQRKG2KTrL3jS0VsjiWkZBB8fA4fMwSy6iYFETEqp2y20Udyw+Mou0G5tRmpsJ3NTNb2DHCy5mRJME8QY2O8Sh4OZbkxUshS0K2V1yawGlwKXYmOeozJFEFVyCCRXr4zeeq1eiFIHfENQoprY9GhDkzCilmsEM1qqt1hQr9o6Izm6cbF93WtRttnGztObOGqsK1vYsE2Yfi532RhJTTpUM4EQIEqgp2gMpuEG69fZ9Taq7p+e82PuUo+D7BhZ4m1tVtux8VOud+hBvzKfhiEuPb6kugB6deCnGltBm7F/Win0WlyA9kyQldALREs7ms/zwmAe3O6LBepK9zFV/3bXNeZ62F/vWryBUTbQ2d9v+/uVxcP1OfLyceST99ninJvQ8SauvHWau41HXwAjco1Lx1uGMa4MkO8awdyGo59O/dt6oV/NBjZdrpEr6M1+6HjO4HD6dbpdf9drcYA9GyNqdBt8Euf49mrXohXTL2P6RBFqCtT1TBKlxk4tZu9e19XB6UYrK1rr5pQ1qKXaKr0VemNzPhyGDcNh0liOLvKsZq1iOY7pQiHWntVaQdSZzNGuVnVHVDv37X0CSu/2ufixtmPWCXUlqDmLyeYmNha+bm3n2pDuwiL+HAErqm1pnm7zJWopc0OJgw3scZUdww5aTGfopq3TxPgt/rHz8nXz/t9nG9fiWN83l9Ybja7bFi8crLL9VoLKUIZh5I9G4gi27gEJMW07nHUerHUwzrOzfu6Y3rxh9/YtMk2sYhqVgJ0fPk/Wy5lyfKY8H+mnE3I5I7WRCkzNwL6cAhX7rAmYRJhVmRRy9znZr2EbDysEqVgvu3QDAmtvLK2Zjbsa6NO8i2WwYv3K+Z3H+Lswfv418L8G/rc3j/0XwP9ZVf9LEfkv/Pf/5e98J0f4a20sa0Ho9B5IoVFSIOVE60qMkZyjI3xDRNURWK6Uu3memfKBrVHOL94YR0CBV4fnzTlqTN7jhAJezKTXJHZkger7Xezixfs4x2rax8KmiDSr8KiSkr1v7KASSEmoLRBlx2EXaa3x5m7i4qLPp0thWRutK2u1ClrryloqpZqJcRvo7e0xlW1a3/4fk/kntK/fAP+zP3QcJQi7KdHo5KwUX2BCjCBKl8ylCrIq/dyQpzP5Ung6r1QiErK5UYg5kZjQoR3uTGAW4/yIOxeIiAmCRktK42gNE6usppS27ztO/FvR3lobBE90u260DdP4sXMhbOeC75NnHNKv4zwmHxQ0mXBlTZVyXGiXSq3meqPFhfFEXXAvcLfb8e7+jrSfOTwcmB4OnKhM+4m4yyYm1oJb3XprwuhRi0Mg4fXGEG6Djiv4A1/P+vm627f9/fZvLz7zOwA+3/aa3/mFfOUTbidB+5v4X6q3t9jp0DdXoavjB1tVWbCp5RqC3YZhfds/7boFRv2mWnJl/9wkNLa9yjj23jleLvZZI33st05ISkqZeZ6BQCmKhEanc1oeeTxN5CmxT+Z0oXkhH2DqgalG5lOC3JCpUzjS20okU2Wy7xpWY1cQCHkEO4V1vXA6P5NLNjHg1gjBLY9CtCMZo+t7gLpzjARBUiBIsiCqdXot5rihBWsfKmgoEAvaTXy2lELVwPG4Mj9lkiphrUhplMVaTkqzhoOzVtZgjK0ShKaVTmNaLdlV7dRWtsW317YFhTlGSPlVx3CcHyEkgvjx8MCwdZ/V1KjdqsZYnKK5q/UMCQtaQxLO65FeFwRIKszAflLKrruF80zGWuTqBO0A2htTiuSU6CI8V2VXdeuKHSC0JB8vguktuB34nBKTa66lGIkOjFXMNh0HNAS/5ry9q/fO+VJY3eY9BNc+UaOol2prqgFAFuhNMZJDtOMggZatdWxp5qjSpSNRickYOCEFJrX2iHYI5hwW1IwiAvz1fxO5nF4nvlFVal2tLdHbzLuabbuoCfEeciegpKxMO2P1OOaIAMdcaFOl0sgxsIu27mQWcn0kENmlyGGfiAHS7kxqFdHOelYuJ3MDOy3K8VhpKlTprHIVgxhaILvY2SVr8Xr/buLd+8w8wc9jZ75rZFFSWCEsqDZOy8rz88plhb/8+8bf/nqldaEQqRKoVXk8Nk6nRu3KaYVLtXNkFEHs5Pbj0TuzNFownZpzFloOzlZxCXVDM43xdgOgEcJ2fr7+tTi2K9pzk1f7YRzAhoGWIPTWrbWkLlz6I8f2SypP6DyhpxliZDcnyn4ixkg5zOjDgZQCeYqsO2tlmLJQJyFH4ayJdTJGTw/CxubeckNhXRqnp86lKE/HxodTJYnwROKUrA23Tga2jLU9eHxCW+hro10ay9Mzpy9NHLcvH+jlGW2VcjpTLxd6qyynj9T1hEilTM+kdGHeLdzfndB9QUNHdYjR2vlmx7CP3cYhlw3C9iM87vxrXivX4AqUjF+ugM4AcPz8GjDbDchjcfXN4y+Am5v3vP28T0KVT1d94aqYZgwLB33EAFlksMvsmIgjR4pJVHQxFlXbbMarXyLeAjNNzIcDIc6kaUJiNJDtSjNhvKHhN3JFp7b7fkxUMXaU69Jcg6ivhEKfxFuvGKMqkwMv4vH5LJXYLlAalYWjrlxSopVKvRS7DldjqAU1gfv7/URrkXmXmYfDYLf29d6NxRRG7EsnYNbZofcNgE0pmlaeCJTVGacBYqGXFbBW3V5tTKxdvjl7qqJ1AWRrnxVR5tBI0cCiXlekrja9NRNyDrER16MLvyezx9Cz4/mWH9oJ6KCqgmMFBvQ3SDeVTBUDp0pdvYV3ANWWVyWyAfb2/f81r3gtfpdty8NkGDwkL6REUoybc3MIcWNg9nAFciM2XjNgfHChp0yfpw38WZ19VXNEc0Y0sTvsyXcH4jTx5p/9c978839BOuzZ//gnkGaLWbsStRmj7Le/4fLFF7TLmcd//1cc/+ZvqJcL9be/JSwXUlcObiLSgH3rrKERRbgLgZ2IOXvVwrnY+h16deDP8pQUEyElakwQIxcRPmjlSeAjcBHXydRv6zL45u13Aj+q+n8VkT/75OH/EfCf+f3/DfB/4TucAIoJG9YC5/NCq4FSBDSRk5BzotVOSpE2ZaNCp2gK5sO6MMIk1gI2H/bcHd4QY/YAyiax1gutX0CVFCN507JIpsnjqv5Bkifp1+RacRFBFO11Q39rXWhtMXS2FXo3e2SVkRh0CA2J3S66YAGoqjBNEW+V5+EQDcjpymUpbuuqHM8rl6VRauPpaC5gpTQ+PiknNeHNCpuC97bKyDXVHb/fQCC3K88z8MUfOo5BhMNuoodGrpCkcWXhGMh1KibUeGmFSz+SYuB4blQNkCZDPtVSZ2P/WJI9SWQXMtEFooMnFJVOcSvV6JOAIamJKecb4Me++WA9qKqtrsOtoqlZycLWUigi5BhJwxYQnHVkwE/YgJ+wAT+92sRclkI5rrS1UdbKslS6GMpv72PV9jd3e3707oG43zG9eyA93HGSxnS/Ix1NGDwMdkT3+6Oc6ayq1xzDsX1X4MZA0m9v6fqmx8fvv+v+p/v0dY9/46bXc/8l1HKtRolYdQNnviguFKuuq5QS0bW6LNl2QGgEqTIwQ/FgyAFpBQ3OjBG11gRnBI1zcIBq+srXorV6Hf1sG2edfUf7u5Knyb9LYi2K1EbXxuPpCzRVDvc7wuGOFCPMZ/KDMMfIThO7SyasnZA6qz4jLRDIRKylpUcl7QUkEjJ0zJL5sp54fvpATJllWbhcTkiIpDST8g4JgTztyXlHiMHsgmtwqn0ihuSWpWpWq0NzQtcb4Ge1OfGyUleYWmD/NJFyIgOxdkJTytkE2NeiFDrPvXIWo7N3GtoirRemORLcLKDV4uKxXgl04GeKkXQ9D1/tWhSxdqUg0RO67gCi9+ITUU2oClkzU5zIKaMx0qYAbiJwWp64dCilUpeVrMrd3czyZk+eIjnNTBwIIROmifgwE7Qz7wxMUIGnpwuHj2fTABrsAfHAN5mzYtKZxA4hMKeJKVnL4G6e2M3Z8oZobANQqAVthd6V5VJNC611nvKF42U1x65WTEgca3levfppUkKRFIVdzkzZannTFFANlNYp50pdzY4+JHXJqcAcJsRFdyXOIJGYhHQQYhL+n/+3/GrxjWpnXS+kEEjqYEU3tyu6krPysGtMUZkn5X6vpGSg3tC+yqXR5pU1KDlEA35ESJxJZSF04c0h8vkhkbMwh4V9sMDxw5eN36ydpStfXlZ+9QGWpjwW5eNqIpCXBS6LoQZzUnZJyTnwp398z5/+PHN3gHTovPtRQaOSZYVwQXvj+XLh118uPB2V/9e/E/7f/x6aBvLdjrib6B1Op8ZlMbev0oWiiSiwT8YqiqJMoZNFia1zkEaIjdxhyQGdA7XDqZrOhYqg0djVVsxp2wQvwarTr30twoAmbubrzkv2BluY5ViU0EpnvSyUIpyXL3k6B9Y205NQpwAB5nnH3f6OlCLr/T369g0pZ9KcmXYzIRoItMyZnISj7FjudiQN1BjROfm5Zglbb8pyhucPynntfHhc+e3TQgrw4zBxnDI6BdZDRIf4eTCmQBRF64V+OVFPhcuHX/P8Dx9sni0foD7Ta2F9fqScTwb8XJ4p6xkJnTyvxFw5HCrv3h7pD6ul/+EK/Gz1Z7HEdDtuG8DCC8jgNXONK3gz0sIrqLOxfb7pNiCam7avl3HRzTlwg5t8w168uD+AnyhX4CcGa+kTBgjkz3Z0URGaGIvDzA+bCRkPZoq3a0+7Pbu7B0KckGmG6LwHb+dDBLkxKdDt+7J9dwN7OkONXdzhC0YbnG7HcNzbHL5se7Vr0ZJ4E1yOwebCKJVYjtADdQ08nm2MtAl9OBA2NUF1VeYo5MMORUlzdsZrp64LfT1SW/MkO5vZw9B7UUXoiPdTJclMwRgctZush41L2IpZdGfkCLS6EMqFHgJ9PdHShAK1rrS6WlH4kIh7cwtstRDWajpoVQnNNBdjDqRQLX7SE6FZPBdckNqiXP+pilQPVxCSaxjeApe9N9ZloTVzOVU3F48xMYWZhAFMr3stfvP24voQCNEJH16MCm4ClaNrvEr0HN41r7wFMqkSu7V7HQi8I5IQSpoou4O1PdO5aCdqp0yRXieQwP5nP+PNH/8R+XDg7b/4C97+xV8Q55kwzYi38UlfCK3Qlwunv/lbvvi3/456OvL8l3/N+W9/Ya2CdSW2FUF4ILOXZPloE4tNQmCXhYwVhY5lscKtdmKzcyeEwDzPpJQhJWrK1Jh5Do3fSOGLLpwQTiJukHJz6Sm3v33r9n01fn6qqn8PoKp/LyI/+aYnish/DvznAHmKWzW967CNDLTWEILZjrq+gYkpu9aDdENYu1G0t4q861SkNLQqrKpRW6BWC+KjtxeJAz8xZJ+8EyFkWxAcCALr6x6W4n1rrLX+O3XqnFHu7JS1lq9R/YfRMoZi9Ct1NFIGoBSJMfj3MgG/1qy6GYJQaqA2Oz5BIKdAig5WhHH9Oswj1xlXuc7hevP/y3vfbxxvx3C3Gy5CQ58nbMDPWFibWv+pdFirVa5rVz/O3lLn7x2CWZsKShQT7hqCszFaf5+Jgtr3CMPhy1HhcX+APnZc7KZqibiE4GPYUQ3+ucHtVL1FYEw4Pla2ng4xWzZqIWptbB1FU9/6UDdg6MVx88A9GkgVHWCKKVyBp43Rhol8+phex1lezo7fcww/Hce37/5oC2Ls9t2AmtsA6Ls8/vvct9+vj38Fyd4Oxc1rVP0cgQGBDshnPGt8x2vwbgv7cIgKIjcl3duf1+/kH7N95HhfdXB1Y4PxUutnvPb2u33D9ntfi4e7O0qrsMGMV/jTWk51A+TG/BhUQZSmhdpXmgY0zGhQJJs+SmqBvLN2WQ3NQN3obk2hQ2wgwathDpgmQaJi2F+ja0U6tB4p1VukxNqphEjsN7TmAVDrdun6kbcWAWsT6BCuLboS1bWYBrXaKdWu/9Lcgaa14Z40tC+669eou1RB64HerBK3tbV1V0a4OQejBK6dXt9/DD8dx928EZPZQEcMSLTfr0K2HoITg9B1jLsF9LU3pHXWWljWhdY7KQtLzfRgiaJ2ITRziBDvE5KUSHMCgXypBl50E5iN3YYmhcAUHSgnMmFA1RSTAT8SOOTMLk8G/CTbNaUbeFMNiIzNxLurCCVFajKXKXQICft11NUTCl9nTZSNwcYdxZqhE2VrkN/3/RztRkh0C9hEyMK0j8R8w/j9nuP44lrcxU38eDBBzEXbW220E6STgpKDMsVODtYW3lyoOodGCiYKnII915xIGkmsmjlJZ4pqWjCxsY+2dp6yvaaKfVZr5rC1FmODlKacLsrpbPszR2VJypTt8aVAqmKCp9tKaorRSqO3TqmdtSinMzw+29U5gJze4bwqy4rr8VhgqiLUYMxnfL7UYDFWwOxtq5j2THJyQnCc4MrQGJfGiHe+fSL9fcbwK+P4ZnoxT29tvTc1NFuaB+tHtucNfa5WV+p6NmH8ZloiCIReKKJoTJQk1F1GekVoVLFilGiiADShluTzl5//OuJNtuPQm9JKp6ydsjbWpdIDlNXm3RpxRyRbHW++GdY+WNC20MuFth6thaWcoB6t7asc7daq/b1crBU0GKev1eYtLnpNmuXTgzXuDrCBG2BNPmVvfa9xvB3D6fDTbZ5ggDw3a/kVrLk5v26ezwB3PC66xhG3r+Xlfb56/zpKLw+FfHIbYgXGxhptYNeDMko59vF6sy7p9jpxg4eYEhISJjAv2/FlSxUGq3kwmq97ZXG0fu19/PmIbOf8p3HOt2zf61p8/+bggA/bTxPwNSFci9889u+CtrCdftHfz9iGhqqFGEgCeJupaMcYiMHLZuPctZ/i57S9pLuGjOWi2ykuwQuK2Iyn1gZPDNDNSZRhyICidaGX1dap3gmabRydCSlqbbnq0ifSDeQLdGux7t4KOtrXfJ/w/Qr2lWxshj7Kzdkm2oi6WgvcFjcGoipJo2vjfGPG+Htfi9+2vbgu/FoLjOtAbvRfw2bes+UaEjymH8d+tE1b4T4hJEzYvLumI2o5uKi1dmmMFsfudkwPD+TDHdObB6aHB+I0MVj0oxVQa0VLoZ5PrI+PlOOJ8vREeT6ivSHS/SbEobukkPxKCqrMCFmMGCEYO9/Os2adHyOPCmaKMPa/qVIIrBIozUAvExUZ3/9l1v+74J8fXNxZVf8r4L8CONzPtj8hktJEztFA6RFmNKUU6xlGsX79mkgpoN2osLYIDg2YlUteSRmmeWY/7w0wyI2sd9fFqBuFyoJFt/INmZAM+JEQjWa/AQhjMW9eZVJaO9BbsYrweqSVk91vKz2YiGUPhkaC9Yqqi/V2MQq2YElLwJx25skqqb0r0xSpzUCSN/d71mKVz3dvLjyfC+va+PLxzPFigtHGDurbyTzoyDIWsdvG9FccwzdvD2ruuUKaTXV8JJeCkLJAimg0t57ulhSShGlnAeBwVzMgxydhUWZJ7MNkjJs42sdMTGvCEoEUIznlG6GvuK1p6hTs1ru50SjUbrbU1j1xTeRSCCQHa3I0+2NhVBXsHcdEfD1D7TPK2qjFPT9isPEdCarTmnMQ5ijMITABWTvSG70s9ItQy5lKpQVj+pgCvyVKbbOOtLDgdyEG32cc//if/KcDjuA2KPomxs/XgTXf5fHfHwi6/j6CaXv8tup2+xw/7z95H9V+nRRl3Bw0GG4Y3cTYLa5ptGbnW7j5LMSrhQK3ohLjs0XEJb6uC9BIFkbwJDfP/0O32zF89/6dPh0fseXS+1dGYChKKStrW2laCLlz9y6hRO4+h/ndiXwP89vG7vNInjLvDwIPb1jXmefjxOcfM6UUxqVjXzAhMiqJ4pi3EDdQPTg7pG4LYQgrENC00OJsLhi5oLmiIUKuMDXr4fZKC63AdKRNT6icyG8qdylQa4R9YnqT0QZ1wRg/KfD5u8yb+0woHT6snC+V9dI5r41z7RTgEpSLmMtOiAoSaRVKuZjtNQp9FA0CU0rWvqS6sWBeY3sxpz7Mam1ynVoMnImbDXiiq1CrV/Rw/bBgdvTXcNQEvLU2+mll/Xgi1MZx6ZxbIOUCTwpfVIiRhynwdheZUiDud7y7e0PMkTvd8a7s2NdOaZ3VK545YVouIsySmUJCCITakXIhIEy6Mq9mwqBZINs82mtBq62Ru1KpvdIF3h4i5XCgts7jOfB8CVTtPNbIqWVzTtROU2PGlBY4F3HDh4RIhAR3D3t2D9bGeTkvds52dzhSX2MihARpEua9kOZw00H7h4/h+4dJz+dODQrV5v/WlLq6q9KucxcqKStIZ+6NOXYLLoNrHCVl3XXWpOwm5WGnxCimo5OtSHL3ILw9RFKGHDpzsPDv4Q7qu8BagCmQdrA2OCuculAVHo+Nj88GhKboAFQO/LM/nfjz/87MYR/5yWdwv1tJsZNYoa3QO0EaOUHOwjQn5n10Bu9MY6aL0mSliyJROMzGvrOasrW4oZ1VleJxUYuRMAVygLsGIRpAlWJjqf2aWCG+RnoB8LuDP7/3OH7+R3ebV871764/ZYr/X/1osRaOup5MZPZ44vTlB5Y1QFITdohCmg/08oaeMqpvIZ0hT/RlR7mYAckaIseYSDHwIb3l+a0gLfGQhHbI2zLUXd9yPa8cPxx5vlQevzzx5ZdnUoAP84GPdwdaiRwf9ly6WQK7Dwq1dsrlkXL8NeV4oZ3+Dj3/GlpB2jPST9jE+BEtR9dIuaBttZioefbrzIpofAmP5cC1gH1tdvBTvH1JbUxH5PEaM+rtGN5//q90AyxuwJ1rfHB9XG7inzGW298H0HMbz3DD+JHr/Zu3vA2pvCXF7scBXIgVF5Mz3aOYzbSIP2e8fAMXPCsRMWdCbdBNp2WaMof7B2KamA93xPmAhESTdC0DOXA5vtrIE24fv7Z9jYGTl1/kNkYb//ll+JXW+j9gux3HP/+TH+nnb+58CDx1DKZFJmLXQR25jyjq7cTRk/5NRy24nl0KhGwHOPdAbonWbC0xwWAvALVmLD9lA3Wm2JhCtXxBA21o+TDUZTCAAOuAmOhMogzX4uQGGk2NJRQE9rEzyeonSiNmN3cJgiYzPdjFSmIxcKpXQksmNdIGeIO3UpuenDTTsrOTKWzx62hb7Cg5VFpUNu0tAiKN2A0Ekz9QNP92DOVW9Opmu71URudFDMHau0S2MQlBruSNIb7uuaagRAdAZ2AvkQTMeSamnckL7Cb6PDnw0zepjxInLvMBUiT+/Oc8/PmfMx/u2P/ox8R5h6REr9WkBkrh+Ve/5PlXv6ScTnz4d/+ex7/5G9plYX16orq2kzBIH8bQq9j5F5N/rxCYdxNznii1cikrpRtFS4rFDRLs+2kIaM7Uhzv63T2tN2KZmGqhXi7IcUVZP7nqvvs1+H2Bn1+JyB856vdHwD981xda20Qk5Zk8Z6PXS/V+eGApNhH1bv19qZJSRLv3HwalJfW2kkxKK6lCiDtiuiPlyU4kF5ysZaEsBtJsc5UIEjMxTY4kJkJMXNk/nmzrtWVKm6N+vVHSR8rFdChaPVODtYC10GnRqrPDWlFV0TrQZVw41CojKQUGUBBkwvMLE6XUwFoaXzyuPJ8L50vh73/9kQ+PZ5a18uXHC6fzaoh3HZowoKN+4Oj+7zgVvtc4NgFNgbRPzN3oj0N3J8QAKdGD0KJQgwF25MCckqWlAurC2iJKvAV+ZCKKO3oFm+CbmGuFirxo7xooL3jirfazjWQBNYciv78JlzHELaOlzMMiEJuEtkKwGpnO4pxG0+7tCmZZraJIMl2XW+AnIKbRkCK7GJhFmbWjvbIsJ2oorMuJqoUWbf9W31cVdyxh9B47YPnKYwhXgObT2+3fXuP+7ed9l/tyM6a9m1KIscIMmBlWj2AL8xCRvf1c610eoJEFqcaYM/FatNO72XiCJSEi0V10JqNaMhYl05Toft2KyObwBVdQUGQAIf5dgvw+c/HvPY6tNT4+fYnx1CZEoweJNtc1rZS+oGpMnof7REzCm8+V3edHprvC/L6x/0lk3k3sEd7pe5TOsr7hdH5L65XSGqVWb0U0u23bAfHJQNAG2qyK26pSazHgtV6oVe05MtNlRkOk5wXNq1VdpoLMRmcOu0KcK7SC7p5o8wc0Lcy58OZNpHWYT5n7xYXwVqFXozW/nTN3OdPOlePHhedzoZyV49o4FgN+TqFxEUViINVOlGQ6KEskqLOaHKyLOTHnmWmaCB1id7HeVxxDsPOn90qrQpFmrl1TsjUyGQO04W2DdGKElEbQacBPESil0dbC6flC/e0zrJXdsfFxCcSUWPXM0j+gIvzkszv++Cdv2e8zh88T6c1nzLvMAxd+VM/WjlwaWow/P4VCDpUgsIsTc8yg0J5X6tloHmkxByJEkDnC7G5OtdCbtSWomouThEC6vyPu96yt88uPwhdRWLuSViVWa0+iVC7N3IDWasxPCYEcElESMSUe7vbkaaaUlafHJy6XC60ql3OlrIpEiNlar/MOdneBfHCTiNe6FrtyPFVyCKarEoS1KuelU7uitfEuFnLraGjseuVg2TASjLUVJmP/rB3uD53P3lampOSkzNkEkecZdgdvfQhi1WwEerRzuQp3D8Ln781UoqdIy5Gu8NvHym8fK7XpBsrmHPjn/3THP/uzHbs58O6h87BbCNKRuhiy2u2zpwRTFuZdZnc3U3qgxJkqE107Xbq1gKfA/f2Oh/sdqsq6rtRSab2xLI1SLVnMKZGSkBM8SGc/Q6mN6VK5lEpXMXc4zJq81yHGyncpbP0B6+K1yGM/x4zgSfygE9xk071XyvrMcglcnhaOvzlzuTRihjgbO7rt72nrOyRN9PYZxCOaZ1o80PIDKpG1CUszBvJP58rjjyZoM293kaY7061Qda2szuV44emLR57OhS/+4Znf/OaZGOE3+7f89kFZD4nH95lztyp4aUptNles5w8sT79gPZ1ox79GT7/0dpUzUVdoFSkf0fJssW+r0JoxPqrN+1IjoU8ETea+KHZeascdMf2YMnSaBtgyDqHFwK89jiM+/MZWr208bwCOcS3JyANkA31exja3nzO+3/jvJQBksb09YMDPJ2APV7ab4OyWT9M5gU2fSzENll5AG9NuRuJbA37uHsi7O7P87mlzT+PTffOd3e57AeuW/eN7cwMCDYSIG7DHf26g0Tdu32sMc4z89P2DM3vaxoQdmFzrnbV5XNKsWIpaUXcOV/OX7I7AMq5dUYoEHsJkGj8uAQJiAvaraT/2oaODkuO18IHr7YF4fuFruP8TYCednShBrKg8pQxYa5I2a5mLsZkAMxCjC/Ui5kLl7NYUC1Grna8tgAaCNqgXtK+bIXX0OTH2ZKLQRo3yGFTMwc/Hqobh2yXOpLWx7G0IRLdXHcdv24IDPqOQf23vut6/7fLQG7e92JXUraiwF+FOEkmE3bwj3T0gMcGU6FOmBUcKu33H5RA4BUGnifinf8r7/+RfmT7W/o5wONhxaNXYm5czj3/zN/z63/wb1uORx//wH3j6m7+19q42XOCMuRd8raiIsTiDGftMs3V87Pc7dvNswE9dKerv4axuiQFitBh5yrR3b6jv35nhw2XHrhTK8zPyxdMV2P0eoOv3BX7+T8D/HPgv/ef/8bu/9Dqp3PaMKu6GoCaw23qnNU9+xcTzfOrdJoHeG62ZxWkfFtgABOsDRExsOUSjmdxU37fZY5v8x12f7MGRRQxQCOa1oGLioyHY9NxDJDiVVtwpxF8ypCGsOtNHgD+Kxjc0NoFsrn8+KTv9LgYOZQjzCftd5rJUEMg5kFZnm/RBudxm9evPbz8nvt84+vExNPsl8DMAG1swr33SIpHgbQkaHPjxY3bb6mW3cE3uPdEfzkMppU3Q+fbb4sAP3t4VtkTp2ronGO01iDC5wnsQIYdo7B9wLUk7V2xy7zegkkDrDJv5cd6o6lcuvuDnbRA2weihF6LdFdjQF8O1xbPhSiwY1OhXH0OuQYyM8/7m8W+6/02AzvcBej5l+mzByM22tb14hPKV01mugaS8jGT88QEwcjM/GDjSvaVnbIYlXVvvxgdszJ2b8R77+7Kla9y/fpa9dtulb9t+73FUlNKKicMhVnUYFNNRAaOj0gkpkneBPAWmfSDtlDR30txIcyfOjRhMVA5RYumE3c5s3Wtlrau3TAnd3QeliWnzqCdl1ebgUhphtdYeqQpr9ypjQ6jmKpOq3eL1vrVwVbtRkVS8rawSgpK62Zi2Li5U6KLvVUgi17bYaOPVmiXdtVtw1jFh/g7moGQ0QF90vb1LuAF+dVt/QjCniPDtAe4fsC7aeBrwfz3HggTEiwMA24L0aXKgePu0fe9SGloaoTQuayN2YW2Nc7M3uRwmajWWW0esBS8lYspM2WjLqtVo49rJbtUcgFmEOdhcWjbKvBK7WtIiIFFdtR9box34sSSvIRKZgpKjEAkGkEdT1JqiMnWjwsdxHevQLnA1qw6ibtAczaJXUdKUSd10RsLSCaE7RRxu7ZO+oRD5/cdRjbEcVL0q7wzm1qlNTfy/dVp3QXnXjxMfX0TIway2pcOcld3UmTLk1Nlls17P+RorhBCIPr/kxMYKaipXx5pJYHLR5BaozUAUOyCBnAP3e+GwF3azMOUBslsRw61fjM0RzLnMbsH0LSS4RtFIBG3OS0mYcrTrrQVvybCJuIvnX35tAaQodjyAKel2PtPF108oweKnfp3ZX3cMbwfzZtsuuW+79FWvgvBtpZULvVQEKzhoFHqN9DLbvFzP9HK2YlEPqE6oRFoTSgm0GCjrSqmm+2gudWwMV92u9UYthboWyrqyXlZihLIWE7UvsjHJQdzNyG3UW6XXhV4v9Hah1wtoRXVBdXVXJL/frYfEpA4AjZhD34jex9j7ERtJrIw1fCyKX41Lv8K6eYVxlBE3bbGNvHx83B8DPGL+T3bl5qVfee328jG3bN//Jp4ZLx9xFsLVyt3jr+suXN3c0Bss5Ra2GvNtt3U/DMkDE/w3Af5oyf+L44HFsFzjk7FfIzoef9jAnBF1bQdmxDm396/xz7ds33MMIcdgBSSGyPQ4tnZ8TJbhpi3aS9+jk8DYsa7/OuZ/PJ+L1jIT5GbcYHufMU0qV7ZWGPEVg82tDL5T107zgm2kb2LDSe3+eM0Y16AjN3F1Rj8Xgt9EbD3dYo5u7Byzf69sokYbCH6VJsHXR7xlDC/QaxdjDw0XKD8nLL8ZTpzfOLP+QfHNV8Z3/JQruDrypk/vX0FYNoDSjo/lV1Gs+JeG0VBOBvzEaALb16DODmWM5hCXM32aYZ6ReUZS2ga9904vxezVzyeWpyfK8Ug5nqiXiwM+1wveohsjNgynMHG3MInR9IvGTXWTGFGgjVzXrz0VMdZPSuiUoQWkZkJXN0p5ybL71lH7mu272Ln/74D/DPiRiPwt8L/CBv7/ICL/C+Cvgf/xd/s4m7p6V9bVAsEUYc5G3xsqeiomvLouK7UEWo5mix0NDGktbnaUAqSUUbXWgpQnpmnHbncwpxrtdqCcTvOiZacWv+DXLZS4bfa6JrSDLOdJYV8MWPALu4tVM9a1cllWWuscTxfOZ0uWamvUZpNW8MGNUTjsE/NsWi86gEzkqllA4M3dzG5W7tdMDMJnb+5Y1sL7hxOnk4lDPz6duSyF2pRlNQcbVbNVv1nF/inwf/+Dx1ECIe/IAg9ilDYRcfrlOPkNCEspMOdkNrcSSWFCCKioo9vYmItZFJps7BDiHq1emD6Fz84pJUPwB/g0fhK8RcsnYLVks6hXjlFfaO3470Jkdktog9lgTPjqwcqG5ouDd2qp9NoqSyks68plXVmWUdEcC5NsomQiwrpcOD09IbsJDoGskQzsYmKfMk1N4LqosRiiVLp7NW52sa85hl8d1G2/fxdr58Wrbp7zTY9/FxDJfr/+vAaLphVjC3tHqf6ajARj5HxtlWq7jv2alm4sH7D37CutVUo5mfCwCDntiDFDTMgkN8CxM+g8uLu+68tPfRFIqT13PL498Tozv8o49t44Hp8QIqL5yvgJ1vudd8LuIZKy8OazzE//5IHdXeb+/cznf3Rg2if2dzP374SU/Tz3BTJWIZboejnWHqAOhqoKeOtD6LZIWketbAlw85ikXTttPVmwqy2lRIoGtOR8ISeshSdcSCEhrTLXI3ey0nolNaU0s+lmCsglmH7KKmixilfSboKX3QSET+fKuiiXBoveEJQGHh1G9dC+wKi6DLDRdHQcoA0GjoQr++71rsUgcEh2/jgTkhyRHCG720+wSn+Iylou9F6skOBCqnVZaVXpTWhNTLeoC2vthGUl1kaXQMIo01PopikjDWGl6MXclnaB+8/vjLX1xTP1+YxWc1IJ7WzX5tzoO29F7eZORQBKo9XiF0XFWjpAe7WkWDutmlB3iJFAJzib59A6PQqrV2b3UVmbEN2dpXbleWlcaje21qyEXNntZ+Y70/vL88RDeGB/v6eujTxdWC9WEa6+DvelUT+uhBO02l4tvumKsXtcYCKLsVUuxYCfU2g8npRelIxy3AWkG5Cz25kT6d0kzG8s6Nvv4e2DkBKkaK6gQYy1lKYxT5rLyah59NapFfpaWVZb/3PMZMkmLvy289lDs2qvs5ljVH7yrnCXz+QYyDKQR2N4aDPb32mOPDwkSMKbe+HNoXEp5iZ2vqx2vUhnlwJTEg5ZuZtszGc6Ndk8sA/G3BI1geGIsVeaNHoxNuaP3xoLqnU4FyhNWFblyycTpy7VnMtKtbnqy1deF18ms56AeMXZVpgr0EGvbOrPY/GSwpU1NMxJhBqFsphWxElOJD6YPuW0kOYGEllboDTTYzs/33F8PBF653iYOF0qJUWW1US0z0vj+Hzk6ekDT8eV549PPH18IkXh8UPg8UNGS+bxcebj00yKQi0GQj4/nzkeL5zO19v5ckZbJehC0JXeK8taKdU0R6rbYKsIkzgAmFyLYwAhw2FXR8Jm6W73iqclm55ef5KpvG6uAS9QnJvk/vbxK/vn05cOcPjKGeLmt5uzZXs83IA/A9A0BtTQiXRBZ0zMOfk+Wa3CXhvQjRXUbz4jDPSzd4SK9BXRRhIl5miFHWeuK4EWhKZGIxoad3YMbJ0TGbzg6xHRsfP+i/hxYIufB+QhGwA0gOubJPTVrkVzuHXx/1qvDlyWnBkB4CbQsLlK6aEZQ1aGA2XdCscu8Yk2Y7SiZqaSm7Fn5qXQzyuo0lKg5YCGiMaEhrS1x43jYzCbj3sPSLeWn9w6+bxAsHX47BIXa22stVmr1wK77FFrMIweEUyKvW7nw9Bo0hutoNAL4sBD7VDVGO5Nm7MvlXZRa70lEEiIs4ObO3kZAUZdKsQ6Jboq5RXXxa/bRt4GV83W4LldumH8pOhMrRA2JXRRiN69c+jKgypZYU6Zw/5g8/ThAPf3dNORuWI+wAB4iwhPCKsKv3o+cv/Lf2C33/P2zRvevnmLqHL+5a94+uXfUY5Hnv7yrzj9zd+ae9fTk7Vb6gAALdtYxcW+Y6K9eaDf3RNDYJ5myFaVkWxuXalW9usBgFYKS22stUIK1JwoU4bdjNwfmN68oa0rsrjBiY5Y/Crxsl0z33EMvour1//0G/70P/iOn/HJFugdlqXQamOaAjma4LHa5yHY4tTbggiUkuitbsDPlIOzgAqtLsQYWdeT6TSkzOHwwJs370nJhJ/zNBNEHNG06bT3Rq92gatWF6jrmE2i2bYHubUOzyRPNulmRT+EnINYxWtZKs9PF9ZS+eLLJz58PNF6p1QDfkSEKUVSikw58vlnd8S0Iylo8uVIbFEIwaiO85RQMbr/uwfT/lmWypcfT5zOK6fzwt//+gNPz2eWtfHl4wUuzStj1yAG+EtV/e//oeMoEgh5zxyFXQ5XIc0oSDAhw7UOK+nIbjKNjBwTU5qJEmgYqNIdxTebZiVrIGvwKu7QccC1guzCN7X3/BIRxqx+52iAkGn8WBJXemN10c1bVHkfMvuYbFJtzRMTb+nCJsBFvULrVdwmSsXopWcHfS6XhfNlode2MdTsfPG+TmC9XHh+fCTVHfs3M1ln60kN0VpTFEJXkk/CNbpQqKFotxf2q4zhJyP6Hcf96wGcb3rO1z3+zSwh2AKoFwFaNxtvVcSDzlF1C5skomfxeEZP8KKOBysyRMgxG1QqvS+0VliWZ07nJ3NTmjtT3ntYF8wp8EWAaACv6eeIuWPcHMFrMVNfPsb1+9xMyq8yjq01Hp8/IBpNJFAjhI7GAqLcTxMP9/fs7zOf/Tzzp/+9d7x5v2f/kHj745m8M+e8OJneiaKb9tbUAnMz6+yuwYWELYgQj6KD/2ZDJQxdAPVWVQ+H2Xoj1BEiuGnFG5pExaosbvctrbEPT/TdSuuFvCprNeBH5kA4BbQpugArZl16aYSleUtl4fm8UlY418jFZmzawAY3xvDQfGom9jwq92rtxN0FFBEI2SqrrzmGgAU3BxN5HMCT5ghTchZOJ3j/v6As64l1VBmxAetLM8ZVg9aE2o2ZRenoZSVEIadsjA5xkeDQmGIFWVn1BNqIh3vePNyjTVjOC+e1oJcCywm5PNtoPzRzHQxGPY/ZBC5bsTVVVc09sYxqooNqvVEuz9TlaI4lvRLrChI5xJk5TVTgEIWzCudSYQG0cW6d3z4vfHGuEANh7oScuS/K+8/VNQGE/f2eEANlLeT5yOW8sq6Fj08nymWl1045rzScFfVK8U3vyunSSWI6HEnMlnxpjaYG9nyQTnHXsaedQBcOKLtDJyblcAgc3gXTLJzgsA+4/iTeDQZBt+kO8aBYjUUgrRlgd6ykpRKasp8mDjIRk5DvID/gbs2yCcbO+5Vpclo6AWmmh9Cri/eqMM0TcZoIk/D2Ad7dN44X+OJp4fTUEQk8HDKHXWKaAvdZuZ8sKevRzsvehSVDrSPxt8WtN6WFRk+d3QSfvwvc7Y2Z9Lwoa4XjGX75m87TsXNehS8xdxPfXnFdNGaurU+jfT1uCQldkX6zKGv1uNVffsMqQ2wubDVb7LJGllCpUdF6pC2NGCPT7p7doRBCYu2BpVvR6/zxnsePz2jrPB12PJ0qU7bY+XKpnJfC49MTjx9+y+Nx5eOHRx6/fCKGwMcvIx++nGjrzJcfZj68n4kxUNdOrZ3j8czj84nT8cTpdOZ0PHE8nui9Iu2C9NVZkIXuZiOlGZiYgs1ZKZlxRdxEWP2Q6CiEWJw+WuAHQHnL/BGR66F8zVzDAwn55Od1SZeb23jNGD87D+whZ3W8eM0A/3UDtq5gj3rhciS4LmXA0I+0VTHK1ckryiYja8/f9ufKDonSnZnSiVrMZUi7FSNCJKRETqZ5qQSqBqLeSL56y5KKszkd0OwvLLk+ZT3dnMvoBvZ4hcKPnBcArvSk17sW1V09e6esbr0eZMvJ1MFpY9G7+K4qTQKlt62jorYRK2KCuVi8HbqBKnEtzOdCbJ14KcTjgqhS7/a0hwM9RRbNnONsosDDxZkBXhtAk7qSuws0r4WwrnTgWDvH1mjA81o5lkYAPkvZJEeCAUCT54BpAIGKJVQeazaRrTA3xKi7irE4u7E6F61UrEi9aKVot+uwz4imcSVuuWHpJrPS1d2Q1UT8Xz/vv262dNmIxBhIMdnPFMk5ubFPcI2fQA/Qff0L3UC1oMq9Kj/pZt8e80R+eIPkzHrYs9w/mK5PbYS1GrNKRo4Aq1j7fOxCfnym/e3fsd/t+NOfFg4xE3rj+Re/4Iv/7/+H9fmZj//Nv+X4l/+BVla6unsbMFr+OsIigUUimjK8fQs//pwUIi1OJjCIxZsRRWrlrjemGKjryuOy0taFFiNlSpRdJu5ndg8PTO/eUU8ngjkqWJHV82e4Xr3fFfSBfwRx50+3kex1tZNzoNEvqYeC6NDuUEJoNKcuCs5iDEJrjeaCy7GulHUxdDhP1GpVKAlC0uwX/KjCjADbK7yj/YbuFDoDfq4iUpa+uDmDUe10LP7Xw311dui02o1K3w3Eqh5MxBAI4zvDlkQN0GejveELaRCQYG5mUyIGo78va2bwa/ZzopQEamBRid1Uw9vvcyp81wH0fXRUNnwC/AhKi4p0Jbqw2bjlYBXK4OCetUh5vUCVqELUQFBrcRiiX2KrqgVPcqVmXtupZBNQ2wChfqVVDjLmaEEzDR5zpBEf1wE6okOIsBP69fOvzBvZWiq227Bf3zL922Tf9Z5qI7TmjgOmzZBDZAqJqmpuH/6+qLPI+kB2f5BhvFbk5JuBne/CAvquDJ9PH7v+7lfCrSaAOPtqXKO8gGCuXwJu45YXDhbbR40xRb13uzuwZiN/q9GzXYPcMpJki1WFq3gz45VjTbkBer7p/mtu1s5k7QS9i9OGO4QG0iFm0izkXWA6RPb3if19ZncXmQ6BPFtLpWk1D5m/UfnDwfIx/9m5v/0mvAR+CBvww63b1LDTBg+YfP7v6kygK4VbFbSMoKojsRKStU+MIE0UY+p40Gxto6694xTnMcbNExUDmUdf+xi1cd5d5/DrunCtgo370QNfCa88iGBzUk4ENedBUSWkjQI6BsPdHzBgyvd6rCPqLUSDoGRPla2qZwDyNZnhRSuPOWp1bRaYJLPQDg5wqvcqazXqllYTwJRxHYg4GCE3R9T39ZOvqr4+ir+P1goB05RJJv46iQenApMok0Dx5KVWq2hIsBEtpVObu/M5SzRmM0xIOZGqgfcjiTfmQqdumhGvt9nyYfvdxdaJa2hmt+7PGwK9m1ixeLEneTtXEmJ0fc4bbBtnB4Ml32MCN5dNRYN6UmDzZvA2g6hCjsJ+AoljH2y+i9HEm8VBxCtr4zqAQQRiICWYsjJnAwJy7JaUBmWKidlkFZiSOZeh1oahwda2oC4Pw801JkpN9vc5wWFS7ndXN6y12nV/N5vesADHhGmHvfI2Rur2Kr+FBz6dw0ccY79cGYTXViCfCx0MVzUGgMWFBqCGWGm1oEFpGujNBqi1tsWRdbgUBrXWwWbnfauNWotpUZRCLSsaA7VUe50XpGqzedbex68ZbwHr/aYN0XrBvLCh1xY9te9i6cZt3PDJwWKsd9f1XvXmCVeQ5+a5P8B2A/K8iDluWDlXps8nrJ/tu435bbzl13zZ8XxgA4LGR1/DVgR12RXxtfP6nC2ydIBo20fwFqZxLt2sV1sOIr6m9g2kGq8d+3RbQRS1eMd+hu18FgEZ7T/++xZWyXUeEA9oRt4yEt/f0er1vTabI/oWr7XezaV3sKk9/h5xs93vIAaSqIoXtMZqL5tT5Ij1RUFrR0oltE5YC2mtdv5PDW1qwUXHW1pv077Rsue6Taqkjq3TtaPF1ukWm12PQKmVUhoRzFG1h+38MRmKK+trA36qOqHwCq5uA6xmYtA6NKAoFISmnUU7xd1TzR1MNj+O7vNv7c4QUstRR7zzQ20vdn/E2VueF7a8bxisXFmDdj4ExME2ixNmEXaC5ZXerl5Hi1d0oP4rB80PrV8tS2mcLguqyvmysC4LsTXW04nl6ZlyfKaczrRloddqrpRyvRq74u1dgTpau6aMzDsTbwoJxIwOZAhBh7ARS7qjxGPp7RJon7SJSXC9xH6VHtnyD17GWd9l9P5RgR8RIefsWjY2AE3NcrT3TgowZ0PD9WbC6k1opaGhQ7+6LxlLxwSfVRfQJ2I0dpD2SoqJPF/bvsbBZgS1MhggAYkZRsCPT6q103BkL1Tr2UMYoI+i3gdtoFGKwuwMl7dv7ogpeS7i1sruEpNTJKXAm/uZwz4RAqSo7ipzXZDMSQLwiTq6kpdkeHOX2U3Cfmdgx/vzyvFcSPmZp+PKslY+PF1ME+gH2KLCTiORQJRg4sghUKQTpNLUrOrnZBWhFIQ5Bnc58L5LQMUE0cB0G2LzBC8ExFulmi+gnv9sWgDBJ4CACeXlEH2hDhAt2c/aqfGaKI3qz12auEuTHevcjPqJsvbC6pOh9EDo0VoseiN55eHYT7SlbjddK9pdPFoiETGdjVooNbHWyloLsU3MMfEwH6iS+Mn9Sg2ZosqxNdY+Kmt2/NR7+IezwA+zXSfDrwN5bm/bK74GCPqmx78LcHRNwsf0bmNXa2VZFkv8Y7jaM2cl+WIx0G9h6F6IAz3O4lCl1JWuK61Wzpcz5/PF5ps0c3+XiCGy3z8wT+YKOE3zJh7Ntmf2z6DKa3/09TuN/b8CQ9ZdejN2rz2MOsCKjmgFGikLuzeRNCU+//mBf/Iv3/Pwfs/7H9/x9qcTh/tAmkFTMdcBoq1cMhiX4z3H/sr2D0aLg25H48WXEg9C5ea5ogbUMGjhNu5BFR1aHk1p7m5Qe2EphdYal/WZy3Ki9cblcmRZz7TaWc6FcjH9GRagCKGCnBQ9KeW5Ui6dUpRaXYBRMPoz10CxGoUMVGhJidH3Wgzm76ospViAO03cTTPTDwD8xJx4+7PP3VLVdGKkW49cGQUKr2xeq8bXcwAMSKu1ogPocBAkpETwdjHLPxtdOrWvrMuJIJnlvKccnxEthDkSdEa7sJQLx7bSWoFakWLzdDoXEisSE/PdjunuwYd/gjh5UtFQb0NzowoDrEStoCKgkiirQmiIVrOrBbJH16F13kcl7iIfBX6FrQ+1dZa6UqTRivLbf/gAtTDtJu4/e8t8tzM5hDyRifSY2deApB2XZeH42FiWjtlTvs4WRNin4GuRrVM7Ee6igZTvZvjpG+EuK29mSHuFZNdAUaBBKEo6d0qxFq+yOnMgCjKo7oFNlDpEs3AWEVoRulgbdcim32WudbBeGiEJYSfkVQhxAE8KIq4VY8xIprRd1wquGeJrQDDG+o/edf7pzzvnVbk7wE9+ZPHU/dzYZ0hJeHPXOOyCgSFboacbwOGgW6tWMKlFOT3bmOwm+OxOuD/Yqf3+3irZ5wu83QeO58DzGd7+Vng62bH/N3//asO4bS8C6ZvCgyqDAOH/NYaOT0pKy5Amm39TF5AdKneGtuVMmzIaAiUYmheA1jJ1UUQaDaWqCckvpbGu3W6lsxZFHewsrbv+z0otZ0q5UNcjdTlCjLRiLORem7Eou2lqDshXGezYgPQINaKLldYjExFHBzedOEVoBJrpjjhzxOb65u9nc+uGUXALCox1/wr2qH6yfrzy9imYs1WFXoQe8umLPl3VXgJ/Ny8RUQOsNy0ZSwhND8ZB1fEcjKXsmrve3sUWx472ruD6PzjwzQbm2F4EbdBW12UyjdPWGynvyNMD+9lEwmNLxB7tmivVxfVvv3pANHNNAW/jsqtw8zW5/OSI3Kz1wg8zil2tpbM1ZS1WYJUAqdlc1JvSvA2x+TzSO+7i2D3Pw0097JwfcjhRIXa3Tj8WDo8nqJV0WpmeL8b4KZWLKiUnnnaVD0VNiwUrlghw0M6dr9tT6UzF0Pzn84Xn84Uq8HzY8XyYzc24dqQ1PwfOZAIJB/yDM4dUXazZNBKlWcFgZfPSoCZhjSYi/KyZC5GC8KyRC4GqylkrKx00GI1aXZfWx9Tau5rnvG4uo0r5AQB1uF5H1t5lufho7xoOzcldVEf+hzhn3Cuv9ynyPk9MInwmws8kMCGUw4HL4UBLiZAzHWepq+vIKd4mN64AZ0x35Xg68evfKFNK6OnE+Te/JrbG6d//e86/+AX9fGZ9PoLHsGOeU4QzwgWhSWQ93FHu7wi7Hfuf/JT5j35GksDUlKQQWyNezoRloSMmN7EsrOvKqRSeq2EMa0q03Y4+TWRVQq2sa+F0PvF8euZ0OVFb3WL0W/Dnu47cfxTgZ/TPKlaRXdZGEWXOgZwCkcCo9kOndajVXm9GS6ahYkyLShCh1U4rhRACZTlRlmdijMzznt3hjrBZyM8ECeQ8kaeJ0SefQgS8z7FVVEcr2QUcrW/hJVIJV4BK1IQqd3OmZ6Oe390dUMRYMc6MmXI2poyYNWpOPm1qQ9yO0FS+fertCmJV4ORCyCYCmemaKE25uzuwFuXpeSGEmS8fzzwfF5bVhFlfdfMJKamwIzKRiBKZQibEyKqNIIVKI0aYk1cyxXQqogRCtItTPFBl2Cg3byT3gHTcGqMZzJNJP+OjmqhXwN4/BwOhglyZCFU7VdsW8HSshe9+mnnIOwcQnXKunXMrnFuhayf0SGxG5c7dEPELK0GFtlTqpdCXQl/sIjQlfjt7e++spbGWxFpW1nVlajt2aeLt7oDEiT9qEPKB0jvPtbI0cyNbuukFjWSut/4Ng/GHbV8H7twCMwP8+K5AzvcHfq6gz/hV1ZyhlssAaYwGGkPwa8FYZ1eNbLVgyi5jP34NpVHqhXW9UGvldDJtAxFhN+85HGZiiBz298zzAQNuRqvSzf6JemJq0Zr0awB527LWvyaZFHGs+PsN07duA+DC7UWnnDi8y+zuIz/6kwN/+q9+xGc/vWd/n3j345lpF1AaTSp2ZidHe2yR1K1lS7egDvx6kk9rJtdvZMuoV69kcCS56ugwgmFn/+ig/1tPea+VTqe0E5f1TK2N8/LMZTnSWuN8OnO5XOhNWU6NcunQBFkFWQNSFX3uxOfOeqys505ZzcGmKlQxZsEA4VU7oV3ro1VvKfa2wDfgUlZab1aFu7tjDrfnxetsKSfe//xHRIWsFpSu5zPPHz5SlsUKC7VCb673Ep2mP84B3Aq+0ldjSEmISBRCioScfP1RB36E2hYuiwCR5TizPh+QvlrCwIxqYCkXnmsx9mytSDGWT9JKLishd8I+M+0fDNSLOyTvbGz7inbT0Is5kFKw7yEgEsHp5etqiVPqhZiMrTL1SuqNjKAxcndIzAJ/JUKoCl05rSunBuulcMhQzkd2d3t6nrhL1qYp00yegKlT+0TIlS4n2hcXLqfywpnvD92CwF2+KsUhsEvKw94YMO8P8PP3xlqZojIlY1f1aFVabQKrIidzbTMgAWf7WEumiIE+w854sJusGOUi0UEJScl7T4pUWS+mcZF2Ql0iIbFV0cG0jkKp3jY2Wkqw/1zrLIQAAfIEP/lMmWNjrQb6PJ5tntiHxiwuQp1MPyiIi6uOJFYrqBUz6trNknxVvpg6x5OJWb+/Dxx2QkjCNAdiCixF+Om7xGUNPB6Vh0Pn47O9J/+P1xvH222A/DDmWS9Gdq4FObGiXwyQsiVoeY6kXSZrQuWOLp8BGZkSfZqsXYROx8XkW+Bycfapt/ekBJe1sayNae0sS+eydroKa7E2xVIbZV0o64mynCnLkbo8G/CzXsxNryYX+jaQZyR5xuKJBI2IBhPpX6y119jZus3zAlack0qQSpBG4AxSHShpdDUR7tuCwVWmdvw+juWVe/mDbvI7btsPf0DkWrf4Kh5kP+X6U4Qb4EftmImd6ynIBuSMVi+Hbvxxb4AWS/Y3jZ8N+MHBtgE6jnFoaFvp5UItK5fzkXU5kaY9d4f3hLu3qCSiTiTNpju5XmjF5mIJrlMn0eZsMd2a7TuPA/DCxGCskmxXhHBT/vHE+rW33uG4mFnBujZj/AQTmA/B2r7bqhtwvRZ7jQTPKRxQC9Hb1BBGeBbVrMBD76Snhf7FM1KszWt+Ppuu1lo5qbLkxJf7xq8XKCEwHBEjyrvWSc2Ye/dLZ74YS2g5nfj16UwBjg87jvc7CMKsyoR9dmqd3DtJlSz2uKiS2rUAHpoSmrF5qrO2NAh1F1izsErkMcw8h8RK5AudOGqiopzoLHRGu7466nVtEdKb+YDtZ/kB8o0xG4DFgSlG6wRJkZTzBvzkaO7duiF2N2Ol8HbO/PH9PYeUeB8jP82JSQIf88QXeccaApeQ6ARatzM1Ipg+p2wXcHetSlXl+fnI8fhMAB6j8KsAoTbi3/898Ze/REolnc8kxHquR4sycEL4IJgL190D/fMfkQ577n72c/Y//zkJmJaVVAqpFPsupaJUejHgZ1lXTuvKUyn0GOkpobs9bZqZgOB6ssfTkcfnJy6XhVoLbONmR1h/j4vwH7/VyyfEa97n7S3C5szVR+l5PMPZD4hNhl1xCpe3bsgIZLyS1Jw62zsxRkqZiNF4w0FMrCuEQGrJne+ui5Nsp6je5DZ+SYxerxc1gJffLQSjIuZsSQ4CIV21cHJK1rsozvKJ/v43HMJvmkjHcRuUxcE8yNblRc7NEuSUSKm6tsnrJyqeaVv12S+sIA664Joqau1pliyOn/49ZCSB4rGBX5jKFQTyvyu2Bg2FkbHgjr/fMrcG/VRugJ8g1j6m4JVHbw1zml0AYx857TOoWfKh4zuELQAUjIGlXenVadEDeFC2/QnjO49jpeN7y8aOStGp8bETpLMqKK5NBFRnQklQ55y98rYdtxHEyM2fvvn+H9rq9fK+3FQAb8Af/3Fln9jipd2ESYdQrPQxN9hLtY9Fze2xe/HWy0ZrzWiSfUyTYoBvtEUnJvsJJo57O5EaUHH9fl/v5PVt97dD/vrbhpX55wVIUyDPkWmXmPaJ+ZCYdpGYbd1q2+tuSgZjHPQ6Ntew+Fq1fTl3X58+AsExh9rzvRlszK+Dvuuv0JvzenPW0kb1Kmbv1dt5ffy83UGbj3k3MG6gutoUrd3/rls3ruUhn0yoLyolN9nAmKf8wrD1yOnPqj/ElQgixJQMyPYAx6i9o/XTiyCDiTWOr3Ld35v9HHMRo/UpJUIKVn0OBpBKMD2j3rylpFTqGtBY7KaBslZWbxkJtZlwpYL0TjC1e7seJW60ZELC2hAiKnX7ftf5xsuvGBCkzRhhvbWrCGNvBDV2UwqBKQhZZHPwoNt+1wI1Nta1sF6EkBKlVGo1xlMUY8UgIDE6oGIil+jrrouCBVOKt+l63Joi5Kj+09y3op9qo/o82vFaF2q1+CYEb2gVY/2YAxiELiSnr0e3ppWNVbPhEttODaxC1Nt2ujuL9psWJW+TCHi74HDPuRm7AQIbqKPsJvtua7/CI7uRvHgiPERth6uOYE5E4p9TtNOwtvApdUo02+QUuunGiJCiEKMdm2zEFLIbgszTDwscyFeu9uukoWrH/RYAvxWL3xJpGe61cbuZxTIvXntlho7JLFwnL32xB5/8VEZ/53B72oD78Rn6yRz3afzq5wfa7RoXm4OQa0QMw11NXAbn9rvf7uR1vfvK0bxZF1+ySl95u4lH/KO/9v72HMHAj688Rz55qb54VPxcF9Gb+2ysHgtvrxpB1yM/rpgrg/bl/bFdHwePMf36Ge3Qva2U9QIIrZxp6wVCclaHbi5zva62zsREDwYiS9QRavn+3qzhcm3RG89h2+sR2/CDxjYKrO6GuLbBSuwkTES5ewtj95bu0ny97MIwSRBxtoh4FuesL9PkMa2YWr2NuTSkmhNmUEXcGbMjtGQtWjUYg8tYXGqvaw3pIItrDLZOXyp1qRSgTpU2Vc99lYQxQFKtxgJhtOd6DlIN7DHgB4Kz2q241+nBuXdNaCHSolCDAUNmEB9waIHqwE/t6npOL2YdXyuc/eKPvnaDwYtraMs5PE8b+mDhZS63BTae+yW19X8KwU1xEruUmKfMJEJ2IeivXPueY9zOeToWX9+sfcqKWpfibmy1kZeFvBZCNbb1iF2Hg2UDqghVvF0rJZgmNE+QM5KzhZ1+juAxnbom1ZabdDMgqs4iGo5eXYytbs+xGLjWSmv1a9rxfr9B+0dn/KQUbgYftBv9t3lgG6SQgvWdp+hWmNgBCIpZpXZTbFdR60f2QMuCJCXUQCyVEEy1QvWESCCllZJWQgjklCn5Yu1X08w8zy4UrEhISIh+MnhPHg1PmXymHNOlTYcxWJtXitErsHZDLBkjjBM9Ojg0+n/HBD2YBnZK9fFZL1Yqp5mhW0JSmzGmlqWzrCbEKGKK6Lt5R726Vb/KpmJCWz0BOUAMJjCXLfg3i0JjZXSB1S+oRKNLtYuqK7lbEjBs+ERM0PmKCofNzh3BEGD/fN2qI9dEwkTAlKFUsgERsLl9jWXVLNxl0+0YiyRjgfY5J6gSvbe4HReWy8pyWVg/HFkfj9TLSuydfU6gQvRqShRlHzqzdPY5s5tn5t2eed4xzzO7aaaEyP3UuBBcABREG1UNoBC1BCLEuAm6/XDb1yT73wDs3P7t92H5jCTiJUD01c+y59i1NVg+rUFvhdN69Gu0QF9s7No1OTZxusEkNBDBJv6wJfHTtCPGiRAiu3nPNO1sbogTgrVmXpcH2RbDTyfWAbqO/f8U9BnfaVDfX2govuImvrCJi9/t7jLvfnTH/fuZNz/aM90FwgyaTJS81VHdC56UxG0sNAQ6iY09IKYjZpbY/ZMA1i+U7dxxsR0EkWTvy3j/IWx3PY5diwl3905ZFy7nQq2N0/OF49OJ2hrn5wuX82IOj+fGenGgfwXMsZvYjSHjyoa0k9LOQI0IxlawSeVmP7G225Qn04FJ1hKcp8mu+5viRBxRPEKrVqF57U1VqaWY9kapSOss5zPL8UJZFpuHBugUBMGqtXF4zCrU0LbXJxWmPBOicP/uHe9+9mPybjLQJ1iCMrUTrR1ZW+P41PjtL5/JOdFjoaUTvQsf/u4DX/7iS/pa2UlnT3dh/ECcJyS6lo0EVKJpIHSgC31t9GI6e2UxlxHtnXo+Us8XA52quUb517I1MQSmKZOyJchZrE9sFwO7ENgFoVelL43lXJEaeZ4h1MJlVcL9kUtPxJzY7ffkKVurixqNJuWZu7t7Ai+Euv/gLahyv1R6DNQpoNEs77NAwoRE22rBHVGJyYU6uwX8NcBSO6fV46JhAeT6R9c2EjG2IwZqxVS2NWssE/XSzT2qX0GIAKwNLkWJ2+M+Z6mBeKpCrYIUm8di9HYyxFguYt/jEJQ0dWqHjHLnxauh3WeXePeWPwywrIO5YAwZ7a7zpc5wiTDP1i7TurKsgAin1db746Xzd7/pPJ7MkrxUJYUfDvgZ4PX1tv1hS5QtYhj/31SACJj7SgcWRBeQTtbEJM3GMFiV/6r7Yh/QzeuOKJ19bAZwZWGaInlKTDl5PGRT3m43sdtlSq3s5sBuMr3FnLzlJdgYhpCQ6DbOEghx9Xl9JchC4JmoH0AbCUsMREdirwaytwLVWryEQpCKEDeGrKoJy+vQnBELgG9bujbdtD5Szts15IcZwzFu3NzlxePj/mCq2k958W88tSOh+drQSKEQRH08nf0j1o4LssWocrML4yNvUk+2wEPHYoZrqA2k0WMlrS6JkZC+sp4+8vibXxDiBK1x+vgFIU2E+R1heqCrcrqsXEqxvGA+ENNMTDPTYSLNO09lxHUsAyrG/NvExVxXZ9u/8SVGHnSjAfSa21Ia/+HXz8Zmbc5k9bzA2vxHq5eB5dXdjIfskQqbBqglYqP9WIg0EoWond1x5WdLIxejB8/uVjpVJV4qsSqhL0i1FqRd7xy0kxQ+r5XPSyV35b5UkjOT+mVlXRYKdi3dN5vOP0d5j5K187YvvOmFoCb4HzzmTDUQe7h+CbXjvvbKc68UgY8X5TlBjYHjtGdNEy0kdlMnxpmKtRwvqLWASWDddErdx/jFZXc7gK9/PVpcZXlvHC1dMZBy3hg/cWvvCi9aIe8l8D4FZoQfTXv+5O6ew5w55MT9nIgSeF4rXIoVdvOOMGVnqUY0m4yL6NCsxC7AoXsoupk+nWunthVpzbRmp0yIgQmYwIokHrdUER7nmad5RqaJ3bu3zO/fkeYZDYm6FBu3ywVZLsR1hacn6ocPtHXl+HzifF65tMpJhVOa0JgsX0FMiuB0YgGeHh95enrieDxSSqF73PR904p/ZOAHUnIBXr94a62U1UTsejMtgyhqrhYH8+4ZIIcCiAnPdfEKlZiKvs1d4oK8jRCqCSc1E9Gz5M4q/GYdl8nRFMR3hwPa7wjREs2cJ0tytBG0ebV13SorMBZ/ZdOtEGGOkSvgINvzbKLUa6K0JYXjmtZNtMnajm4Gc6hByjXUGG1JTd05ZKmcLpVlaS7YGIkxs5t3XImjrzWI0BJoEkgBccBHsrXMiSqhBwSla6N029dEo0mxvk5RWrNzYArRgJ+ACzTbIhlDvIo1RxfuEtdLegnV+LG0ljBbVIeNIdfAiisIETDg58rMcclCHycJVoUMdGK3akA7nlk+nljOF5YPzywfT9RSiE3ZeWtBioEokSjKTtpXgJ/dfs9u3rGbdtRQuZ87K4GlVUpT0ELpQqc6WCC0GF5/DD8d0NvfXmAw3x3s+S7PuWV7yM11cAsg2PP7NldMU6JW5bweOR8fgY62M70+23XfvKqlncuysKwLTgYxCND1e3Y7a/ec5wM57RCJTNOOlKZtcb1e06OKyg28c3vEvp5W+bLScK2GISM2ev3oSFzAMCQDf/Z3mfc/vuftjw+8/dGB+T4Sd0DslN6pRYnRnfGckTMCo05EZLKr6CaRDEFJoV8B0S1oDQjDbmiwKIQgBpzbkTIQyI6kzaWWJl08+TPL9fNxpdTK8enM09OJVhuX05n1dKF3Zb00qiezNvHZMY1dyGotwHWBdlT6omgxDQMD8kdrMVswFUIi5Zk8TeSUyNPsrb92HQdve8F1otTXqvXVRxBUO2W1dqp+uqC1Uc4XluOZuqwGPsVoAHYQNsFsEYJEB7MXE3pdq2l05JksiYf3P+Znf/ov2N3fIcFsw6GzfvkrLv/wNyx14fmxIe2ZEGBpT1xapDV4/M0TH3/1EW2dd4fMu8NETpE4T8yeVI7qY/Ceeu02Fn2ttIutmdpXqjtntnWhldVAoGpaTqjNseotnfdv35DiwdZpMdbSHJR9COwlULXTL5XleUUX4Tk0dI1MS0cPT5xaNGv3d4m5m3NjwNrd8gQP9w/MaSbF+LuG5jtvscPDWmk5ss6RFgNT7EziCX5X+tLNGjtBmIIVtVwAOTjgUZudpy0EahRUjKGVXLw1KSQ1IEcibq5gYGWMcg01PD+LSYjJr9SmxMVYfzl5K5ngGoWACq0KvXhxhGTafYwCugGQh6AcJgPc70JnnTpdoXQzszD9HhNvV1VK6/Rq82l33SdV9RYkACHna1Dee2NdldqD2bl35cMz/NtfwK8/CvsZfvRWOcyvNnzbdpuYD1cgq9TfzO0jPlOLRcSjEsTK9LoBP83mILkg2shEDlJJIkxR2MWX8QkITcUcmULjLjZ2WZhzcOAnk6dkLwomVj/Pmf0uU2tlP0f2kzHEJtM3dbZVQNwhR5OYiG0aRiELUS4kfSLpF0Anq5DHVx1s+96RVpHaIFgSZYBjBBKqzVsnvaUEX8ctEnzBArq2GY5v/kMAeDfxxfZJt8gPn4A+47+w/byCQHIFUKUjYm2aKTSSFIJ0knRyaBuB/apmt8Fo2zuPCOIavXpeoSPu0O22fQU/RGEDfiK9wnr6ko+//g9AYHn+wIfDX5PSjsO7P2L38CN6F45L4bI2QshMd+/I8z1pOhDzG/KsDnj5d97GzLsetnY9RaQzTL1EBntGb+6/7rbWzl/+6tkL46NB8VpIVB3Ju+eIeDsXFv8rA8LzTazNHREShRQKic6b88KyVHa1I1WZNJAUpqqkSyHFRihKWJoVPiq8r8rUlc9L4UdrIWsntUpye3kdbFmBuSqHpTOJ8DM6f0Qna2evJ+Z+RjBKwQBBY5uI3a7ALgYEo52lLBxbYZHOl6nxGJo5jh0W6jQjKbMLwl00Af0kwoLp0ByJV01H8bhNRsz6yTX4SRz7GpvIldUTYyDmREoGAOWc3MFZTFNOhKDmhBkV3obAPwmZOwl8vtvzx/cP7HcTcbKWWoIwfXhGHs9uQBEJ056ItYoPlSxUkY0IMfJG1zai0THZgeOyekFKYZ6Q1piAWYHe3ZSq00PgtN9xub8jzDvyu7ek9++JOZul+2J6dvFyhuVMuCz0x4+sX35JL5Xj84nlvHDpylEDxzhBzASJNlf0RjkeCevK89MTT09PPD8/uxi/mTHollvA7zOP/iO3et1QucbtZhY2poyCdFq36mEPW+MVCBt1eau1uC1pUH2heTDaPgQTxxIZS3RDJRg4hHhrmNGoAHqI9OhV6W7BCerT/7BH9IN9GwtYQnSlqb24dmQA9jZrvuAQ6DU5Vkfev7og3iSan5SeDBS7tsnZU2S70D5NRl9j2yh14/3DdRy3ob1xwbqOs90frB3la1LhEQiJbIHXcO2yCd8dYTbgx29dXlAUx5o+lvLxWGBgaFeqe3cgrQ+qtDNIpDuFvivSutH1zCbIAqGu13H3nyaFYFXZKMYEi0PMbLiafeJ2FnrwYGHs3wBGTMX+hwAMvm37/dq1vgru/O7nv/iwT55zvclQ+A8WPLZuTdylCMvFgAhtV9rkeV24LBc7WiFCsKq+avPzUtwqMtnkGiJBvIJ62/rwoqbLzXwq27n3dcfsu7R9veYmWItlEE8A46im2C3GUdXxVqXmoLKKUcaF4cjt3yp4QB6vc5b4hHXt6br5/Cvwc7Vtd2Biuz+ew7Xy6zT/zXmrdWox57u2CZI2HxO4edn1gh/7oD7XqLd2dVy09zoX404fL84uLz5EB5VDdCZmGKxMOwDWGmiVRuSHmU9RP/+aOwTW0dbmDljqbV9hrEkOTtpEa8HuYFB03RxAkEBMmTzvmOY9Iaq5imqnTzMhRAssu1LXShBzvCql2TS3Fru+Wt+uj+2Gz+E6WqyxMRs3dwIbjmHSKibu22huu2uFnrYVPLSZ/pAvhNfTTW9+qs3J6g5EPZiQfq3Wl1+LnUsSzNq8NZtDZazhEsz6PfVXDnAN3FEdBDNhELLC0OroniD1r2+HUXDnGGvvrcGDVm+DHPEK2oeEhbeAWWLa2nDbuyaeGpThYjNcaegjXrjNxm3Hu7fxdXE9GL/emgVb1hLUXHDUHwtbEutvDlugNsa2u0sUMuK2Kyt6dLmPuXLkvrWbbsfa4LLCaTGxV5GrFOA/1rY1tKnP/y/iP+XlqmBtOHYhNtDKCF5NfkSuNwabxCEANddXCT5HM1qJxukqN/PQp/ORx7sbiDBirGustM3j298c3KaiWhH18plTVF9oG7mBgO1F2M67a9vXJ9eT3hyV8Xle7TRWLNfXveJYjvl9+/3r7gts7b+3CwMj+pav/GkDa7b2rr5p/ATnan0SwbCdC1sWM8bo5v02lo//1JvPua0e+fvZ1G4rrvZKLQsgrJcjQqDmlbx/Q57vrC2l2lysAL0Z0HtjSb5BDmPqHTH7iOFHDICN9zXP8LHk5li+4tZVWepocR5AjnJd19U1CXHA5xqqXPsl9GY0x37aPCTdM8LWN+b4C9eursRm81sSY3QFMSbQXJRJlak0ptqI2omtEUabcrfHUNMHnWtjEmGmM6Mkhr7P2GvPbFQI3V4/CnAeIJjzZmt0UTqNHk36oFe7HyQytBOHqPGWU/h68c3j9E2R7etttwzKra0rWCvsi8fEnI8zxloy5y67zRjLdJhgBD83RLs5l7V2zdv8c9UZ3FeplptcY6SnN1fkOHe6BDQ4W88dKgQrylg7t9BiRJNXUZKh7RK8M6fZtdZrpZWClkIt1Qp8rdK00xCaKE2E5smzmQl1pEIvlaDKWgrVcYqtTdbCv98b9IH/GBo/445eT7IQAhrt5C7Ffmq3doPkFqK7yRIcK/g62tWvbWNNrB+ye9A7HLxStA7Kje6HgUBI87k/ENYFRmtRKEhYUITWVrqLKO1yZ5eHdTikgfzoWGptAhoiqBtz078rMpbfF+ov/rprsLPNXrAtvuO4XVlELxfm1qF0O2FNCFIJVcCD6dfcQgjsD3t2MZEmU2MPEtydyxb0gNc5gvVhIrieypXtFbb7YsKBusnesS2OigvfmXCztWWJIeBbMOOVgHGo1JwU0nbctivjxVrf6spZrX5fazWVdKzJro+2w1LItRJqY99s1sgSuI+BU0oUtQu2OkCTxVD2FGAfI7sYuZsy+3liN9ltzhNTnlgR0/oJniB4QC/aTStC7CiYFfUPuV0njNsY8pvu/8HbbeB1fRA8fQjO/hKFnBO73UwtwvGpsSxP1LLy5ZdH1uVoSWcr5qyn5sC01kqMibef/YSHt58hsmOeE2/fviFIIoQ9UWa73iWDDlCivwhOx+z0dQnad/6qvGo8+5UthsDbuzeELKRdICbhzX7PxI5YMyyBcm4sudB7o3YTLdcq9BLRLqQcmCanT6dMzHuMMRhIKSMimzaJiAkrxsEykOhtUVZJCl7ZpDtd3L+/DN2qvlL7QtfGZT1yWY7UWjl+8cjzl0/uunaiLKu56oky7ZIljS2Y84wozUW7UUFaIJRIrwEtpvvSqoEiIQWCQlTr2bfZ1+aQPCX2+z27/Y4UI7vdzJSyfUcJN+CwgS7TNLO7f8Nuen2agSrUc6OXSj0VeinUS6FcGm3tVJTiAWyMyvFk86mt/Hacl48XTs+FthRiSvTZFqCQEtN8x7x/YJoC8xwRUc7lRHq8oy1CqBfa8WQUdRJRE0GFNylx9/YO1NpN5uzCwgl66FQql9MT/Tc2c+tlQS8L9Ia0BWnG+OnVnMG0d5blzLpeENhaIgQHz12PSEIynQoJrE1YVTkvnWUprJeV9VKpy0pdVkQD6xpISSAr69qIq50f51Ohq1HId3k2VkxIHO7u0N3eNb1ecQyLgruzEGGXhLsMU4RJTKsBxURbHSBKCXYH+1laINRorI+wo4d7Y+FpQ7TY+tAXpJ834HaAKK0ESgmW08i1wDHNMO1MS1CSErOaq5drZgzw10ymBsvZDBBoghZjcBwvnfNiDmC9NHoxN6sUOknMPKFq3wCl1q6Mn+oA3Jb2KqiKgTcdWhfWxdrMDEC0n5cifHGydq8PJ+EfngO/OQmXbnbytbz+7GqFNIVu7cImPzhAFlwzxbXipDLEnesGjOLr+Ao4I7VZFbpjnlgShRaEEr2yu7XDClUjVY2xvV7OrKsZQ6ylslaFoObwtZrg7bIUlvPKel7s+ZcjMQbW5cSynMgZltVcXlsKDqiby2ipC7VeKO3CWk8s9Yj1RUKLsiW/WytNx5j2IZCmyLxPTHMgpMH+GcmdtamoAzxDm8SYP95W4X9T1HGf1x/LFwDQV2KYm8xpPJdrEW9EovazXxNoGlEqIsZiTxSsQbqRuhlEj2vPKvIJDdnOHy+UOF7vwA6IDNDIEtjgSUAfoKrAFcot5NCYItSo0C+U9cnF/c+cnn9LnvfEHE1nNGTmeLB1KybiHAlTJE6BFCFIQ9XzKM8pRqlxQF+6HSc/VuLsH3X2k7dvvvbWFU7Vc6ybQGwb05tWKEWsaACo2H31oxadSRgRkt9PKJN2kjbCpVMXZa3KuSqPqwELLSgHUabYybHzkC2OeajKm2qizHe1cF8LQTtDVQdRPg+NFhtdYGJl7tbO9bn+/5n7k1/ZsmzdE/qNWay1zPbep3D3qG59M99LSGjRpsN/QAt6CCSkbCPRIMVfkC0kuk+iARINkECCLkIg0aJBCiVCyQNevltFuHu4n2IXZquYxaAx5lxm+xyPe+Pd2CfEUlic7bZtmy1baxZjfOMb3wc32sSdUYKaG4nreaHSisymj1cUEpi7Z0lItQLNqHBUT1LPsjq2KmgUzoO0rvsGSjgTbI8qTE3kuUg1kev9JgvPivB/SND7U4dYu2kIthfHGIkxmqOXD0Tn8c4jfR8S4c4JvxDPQYSvEH6lcBRl2mbk3Q+UYKzaHL0NgSUzzJuZBoRILNY1UYO15+k+6diD8p4/Oq048nHhRwABAABJREFUb+uehoCrgzFxwbR7SuFEG4Pd6ANM4uR4w/HuDX4YCCHaepmzMYKWFUom33+ApyfYNub7B+r5BAo1RPRuYKuVZds450R1Qj6fKCUZuOut5X1ZV5Z5buvnZS727/DvevxxW71gb8vqm4IC4q2nr6ZiVOhSLWioptkzjeZ+Ja5XrEoLevxlo6Gj1p2a2YR51RBFWwjaUiYdYcFEKmU1Zo8IuQayeqqaM1Aptvm/uemCwK2i5/uF7+izUZUvk+dya67qLR2muPytcKHT9pcpbUG7Bi0uuPUOH6klrFmNDm36AQ4fQbZWKSwv6+rlnON4c2CQrsDu23dVStsAfAPAvAvEITZrYdnt2RHpXSHNCaKry1vGb5vQhQETRIi+OdlwESGzQKLdx4b+0v7Gt5+7mGW7iK2qYZoauU3QtCVS2vbv55pzlMvJxNdK5ViUgImM3jnPOXi2Wtmc0OQImrMYRCcco+cYhNshchwGDh34GQz4GeitYcYMEq10UVPfqvm1jZQvX9nsO8Blu4cXBnz+0aOHWrR7ZOyKGCMiA9kDklmXR9b1zA+//Xt++O2vTRusrNSy2j1tbIg4TPyl/oeMx5EQhHEKvH59h5NILQNaozEFq0Oru1S56OBP3Tfh/br8ASI9XwoA8t7z6vbOwJtjIETHzXEw4CdF2Bz5XFh9JaXEPC/kktlmmB+UkmAcPYdbjw9CHEfGmw0XPDEMpnvmPDkINRrw7qMjDLYWB6fNZrpxDCTswMq+xrW+O6WSysZWzpSaeTo/8DQ/kFPm9OGR8w+PJuJYV1IDZH10uDFa8pQqmrQxULS1jAgUh2SzRqqpUrYG/GBOSObc4XBNAVybs+AwRA6HAzc3R7xzjIO5LXbu0gVHtv8fpyPT7Vumw/Hlb2RV8lwoW2Y7J2rayGtimwslVRuWpbVLSLWgpCVXfd7U00x52tCUGaaMDgqi+BAZpxumwx2HQ+T2drTAcX3E39+SA2wPK8vTQs0Z8QPej4g4bqJnGidEoGqmaDZpAA/FmStRPd+zns5WYVs3e2AON9HZbpdTIqVEqZV5PjGvM06E4xjx0cC24KxN1thXAfXW3LQVYc7KvFXWJT8Dfsq2IXjSFlhDMOBnrfjFhMF92CjF1pHIQBgE5yNTnBob8wVbaBvw4wdlaADpwRvwMwYDfVzToMD31inTYjkcIQ7CVjzkSFYH3JLlZ8CA1A3KgvXQPeJKakAQLQaAdRNOT45a2LUDnbM2gwkTl5ZQCdFcw4qHkHUHc3vLmK8FV6w1XpOjBkcuwo/38O4Jc8/ZCjkVvCivxsLtUPY4pra4pDbRVVUjfjXjzMY6slgpV3ZdqLQJJTcgKDtKrZw3x2/vhYdF+Dg7vn/0vD87lqxMzkDRL3HU2hiCxZKoHrOISNMbsbhBdktzA35q7TGt6UFax/BGTee237SHg+yMcWqxakTcADiyRpJGfBjYljNpW9nSYA5eRZFsCeqWKutWWZfEOq+s88I2z6TlRPGOdT014EdY15V1S5Tq0ZoN+Nk2trQ20Gc24Cc9oVrQaiaC0NdvS6ZVrIgqzhOHgekQGKemNdZiFmm6cS1M31t0tEduDUjqsf/OjPoSx2fFpesnLsG27CWBKwCIHfJAUHxrP/eSm3F2JUi+AD+aCZrpZeC+slQXW5dBA37E721yJqDd2EKt8uuopiuKgT4qBpI1CxVEMsEVhqAkX9G6kLYHSk7kbAzacTwyTROHKRLixM2rwHS8ARfRwaPe46IjuC6XYfF659JfrtQln5EGfPbiGFJ20FOkcGEPvdxRVTinVkD6CTDCujDa71tuYKmY7FujVyFoY20YbmptRBWGYsCPLJW82Lw6F+VjqgSDkrjRCs7xJlTTt0I4lMIxG0DuSyJU07LbXCa5jEP52lduWl9RFCXUjFc4VOFQLxiE6KX40JmEmgu15F30P7VH15z1Thgx5ypXbU6u2dbPdYIUrE01EggS0MoO/BRgVUXbufUWPX12jV82Wu3FfgN6PDFGhjjsNu7Rm1svDpy3C3PnPX8eRl6L45VWfl4ykyp1m9HlyYSQrwA+Fc/oAk4cWxwIOQFQQkS8N828LhPQxgliOXJVh2vgp4ZotAJVY/aEQC2FRStzTVAco0LEDDlub+44vnqLi4EQhybcDFpW0+FJifzje+r9PTUnzo+PrPMZ5z3DzR3hcGArhWV2nDdzlz2fz6ynp3aatkaVUszVtkvC/IH36o/O+OnHThffaaQtMGiOHYKSsuJdJQco1Vvw5K6+ql7Ayb6EW6JswYQKSDXRry4eqU3os1f2K50+b72tuRZS4er5ZuXeWol2apXIvkz2z6X99541Xt2T69u055M8B1d1/+/2fvLJi+TqhR2B7OJf+/W4puRfLFtf6hAxpkEXX3bNEUv3k5cdve4tWt61vs1eFuqN0PTFr9899vdSOvXfUZ3R5VQcux0zAN32/kIb7nWV7urV79kzTENNKT2n3n6QqaVcbfpyafGy1RePEoTLw5k4597mBU2QTAhOiMExxGZB3tu8nrkatbt8FYv0bdZhQrvSQIjnAcxLHc8vynOQ59nF+j1+/nc8fl9EqVNB95ZFG9M5J9Z1JueNmldqWXbmW2lzr+QNrZmqGRsfYkyi2sZgA1KfL5vPIZoL1nMJiH7nMvtsIl9+3gVOP33NCxyWOEZCcAwxNNvsgO/VwdaqpJW9nSrnyrZU5sdiduejR6vHB0echKoeFzw5mIiyc54chTp4nDOr4t2ZJli1T5qgKZQd+Cm9+tYTB1VySaRq9uipgwEpGwibsrU5SUu6OmuzuU9ZBbUBHvsai615Rc1h6qptpK/R7ULtw/U6ievrV390IOCizwAdtvcu4ELEx+FF7yG0fa+1dV1avLrtPO3+qbXoSDUdnatRgAqk1k7TBHNr2wNqc4MoOVtCnYs5Y7Z9oVeme2BMD0hpmmvB2/7XnkdMxH4XvC2VWnNrh81Iq3o31RP2VurWl94fKkKt3Qfr6j61v6nFWrNzVXIVaxHr1+Yqeezz83mbqL2t2fxWvOvB0uWa7+3mL3UPuQxJ78yNKjSmXAyCq7Z/ODUhY+/N7tx7xbv231iiomr8OS8eaHpOeNO0EhPovW5v3GOnZh6i7avVCqG050UvLnfa5kp7nbSbLyJtz7NEPpeLaOp5gYdTA36SkpK1PwSUKG3v6kmENtCnfd418FP0Mkdzb+dvBe7SGEDGBDJGUMqwJSEVi8FKa1frnYQvf1wYn1170TlnrYsN+LHWuz5Z9BL/tKODBTsji0uLba2mRVLVtCX29odW+S9YVZ5q7QC5JErO5uaSM9nJ5b9Lc3jp/9aM1mTwQUnUkij9kW0f1JKsPSiny9/XVqFuA6lqY49j53z5Yg31df5Zi8a1UcPn19L+bf/FZ9Vp5fPnXuB4zlj+/NxsLbvE1V28uOWD7O11dACoP0y02swO6g7auMZF7/DJDiZpAZzN10/iCfv+vWRqDLpayw789Oqnnau1YGvJaEn7fbc227K3AZVSyCVQykrJqxUxqbsRgFq7QnMZ3jOhdp0uCdXVlmmn2b9Te02/fmZecZn7L31oz3N+Ynx1TbCGRxnTpcd0csnN+vdB2duATKrB5Bq0KKkoqSprrSzVrNpjVcZqBWUvFS9GAhhLJZZ236uZ1SjVWnrb9YhXcZ8xe2orSHfX4M+/Uf/v3kJrQHnb79rc3MErzOkqi+0VDm/umq0yI+J2tpMieDVtOKS3fumV+d9VzPtF5mJnBF5avXpMf+3ktfsZOBjFcRAxQ4daiWBmPLWSc9OK7DEmYoYJGKju1fK13dlO+tXVfWG4rAlXY6i/bI8bTWgap2Zi0RaI2q3mnWukhiYb0fJG29wKkjO0Fi9Nm7V8VWNwWwpsczKrkKW5hKHkWsm1qT61faYDPtfH70g5fq/jjwr8mOjfBcmsqk3k0TQB8pZIa6bkwqrZNlvg9nbAe2EYPTEIg5gwYhVbUAVwavxqxZGzkLL1sDrJO+hzOEZuj6NZqBfo/bJFBVcAFdbiWbPRm3vl2jnhsCnrUFtA1zc+9pZctXe7TGb9dMGS/jQ9cenChtpfj+4DbdcGedaCYu9UgdJAqXoFtlCVtJpDznJeWM8z6zy/6D0UpNmQB6YwMPiw29LRAqXSzn3wkcO1iGa7FN55QjR0tlsJm8aFRYC1GsKd+6ZCrzaYBsXW+hx7/7sT4XaM3E1jC7qNRijITiW3QLO0xKGyrAvzakwRx2URGqNnjK5pGYi5kVRj+2TniN5xFz3zEFhUmYNj9cbaOQTPGAKHIfDzNze8vZm4O0y8uTlyGCJj8KA23ksuZt3eFt4OHokTQhga4Utbq9eX2VTt0Ms61wOgPlZVrwKo/vxzwOgPPZ7pQvSPaYudEwc+oqrEMDIMhyZq5hpYsFHSiZxObY6YL0KRSpqfWE8PeJRtfiKvZ5wb6DDdM3FK2T/SzknFmIL7JNWrJKu/0B6XEE4v576j0crl1r38PfTe8/rVa0J0jEePj47xxjOOA0PwBprXDFlZ18R83khb4f13C7/+/zxyfkjE6JmGaOvrNHC8nXCNHts1b4YpcLgxYOn1Nwe+/tUNcTQ23zgYO4TskRTQlrhWGtU/ZwNttZJ1JnOmamHOM3OeKTlz+vjE+f4JUIbbgek4Na2d5q6IkiU3x7uClGQifUUpayHNSlmM7bFulVTUEkxbEncNNKRTidn1fUKwFtQxRmIIBnj0Vi+kUYSFw+GWw90bpptXL34fa62cTgs1mRNIzYmaTbxfMXeHdS7mZoWjiPX/XyuEuLXiE0iRxgZY0Vq4//Ce7/7u3zLd3BKjtXo5Ab+8I56fkLIhAtNhQodKdYHirK8vDANxmBoAFAgxIF3QuZW0a7snFpEWNJjm1loyazKXjS2bFW6thWVdWJfV2q+CR6MFqVb+tqrmcn5i2VayCo/Vc66ej+fEw+PMw2ljSaYB6H0khMg4HMyhb5ysldabcHlZEyUXGCp5GIkuoFTKlpAG/r/kURwMUbi58Ux3gdup8rPXJkbsFUK1gNsHiIO1XI0jHI/Yc1UI1VHVk0RYxIBQqR3RVkIRYhGkOkpWUqrUCm42sKxk2rixtdwFiLGBh7mFEw3IM9cvA1B8+3ln6qm1WJ1TZd6Ef/3ryn/xnc2tlCo5V8ao/PXXlT99owSvHKIwNCyvy+EpVz8re3uXOZLq/nzJjSHSgKZa4bQJj4vwuDiW7KxtZfDEmBFf2ph52cPOpVDEmD0CSFsrupNQzRaE706H9CW/gQeuMSMLFPGoWlttksqpFlxVvJQm2C2WMLb1pmigUHAl83B+4OH+R0pZefVq4MOHkRgHtm1jXRPLuvL48APnpx9YTme284+k+R3OO7bTLefHI1LPPHy44/27A8E7Smu7nE8nHj78yOnxnvPpiW3LlOqhCgm92F67aExO5/HDhPMjcRLc4M3xrRVSO8VCu2vbHuPbdVEtl6RSGtR8nQd8yRDncnd5HsOwgzeCw2HJfWd9dtsCE262xN67QpANESWQiJ39oxmv6RlIZIdHxaz6RK/07mohV8t7eluetrbYmm1NHsbIMMS2F0a8i+Sc+PDuN9x/+J75/Mjp6SMpbwbiVQOCcnacz/eEj79lOtxy+/orhsFan/1hwA9HcAM6CEi2QjmKpcudn9UqNq3tbBcwp7VZN8Nwi077cy9/7Eyjn/7lJWkXNVbHjtZZTO8rxGqASdRCSNnAmrxQtzOlFp62je+XhbFWfE7EZE6a3+TCL0tlEMeNdxyDa+B8W5PbuC4NqJNaCK5dSa1EenGlrxXg1e2A1UWFxo5+7bPU5uvc2T52tb0KBzwWAQ+MEph8JE93xPFAiZHl+Io0Hc36XMzXNKGMFBZVVlWyWOs48Iw38CViVGOUut1QJLY4IgTL0Uz2w0DkG+/4eghMzvELEX7pPXciDCrGzKqNWaZNX7WtUR4YpXJ0xQpFFFYHycMqwkzLMFrxF2x/U2+ty+I6uFuv5m1by/ta1Vq4pFYCjrEVWUPwzTVRcKXg1hVfK2GZCeuKbBv6+EB9fLSZ4oR8PKLiODuoObGWwkPaOKeNokpqjNIO9vVCwzXws5/lP/OW/ZEZP2rinXqxXq6lWstNs6LdVkuKc8qsy9aotQem40DFJo1vbV+dPisiVOdQm5ZWKdpKq5Ya7dvo6gfGMTbKamu6Elo/paIqLKmwJEdVaZWNgHOwbJU1OWqFaRBcUyEvtJIVbSLvOZ+2asmnSbIlEqq98vUTvzeumaHxFRvsyO74VcUAgV5J66ABtZKWleW8GPAzmwvVSx4iwugDY4hMw8AQ4oU9Uysq1Vq+VBl94DaMxOBby5UtloMMHOOEc56UEkveKBRSSayL2ZnXnKjbtgMlOSVqNR2XZU0t8DI9H+8c9dUNh9d3SPDIMBJHs+kuKki1ClveEnkzJ5llPnOazwCMw8g4DHjnGQVumzhXLWYdjMKAMXwM+AnMQyBq5Sk4zq195Bg8hyFwMw38/O1rfvH2juMw8OrmyCFGhuCtraNpCvUqm+7BQquyR7MQVDXNoZ+iub7c/fxdv+mfaWN1txW9gjou//3PPa4DsQv40z9PRPAugkKIDfjJVkErKZO2jbyeyduDzZcGFFSppOWJ9fyIB9JyIq0z3he8D/aenRfWKnu9s/I6iN0l8+t1IHfVN3h9wv37/BTo8wwAernDgJ9XDfgJ+CjEgzBF0zxxbrN1NmfWLXE+J7Yl8+N3j/yb/+f33P+4ECQwuogTx3gI3NyO+CAmPFfNNXG6HTi+GQij51d//YaNr5luIuMUORxMO6XMjnq2BKdWa+dAlbKt1HWxoNYtqCyoVFZJbJKopXK6f+L88IQ44c3NW6bDZMC6BsBTUDwbriaoDlc3A36yUtaMztYJs23KmpRcDczvEgBd9Lhv+tY7LYTgiNHox8MQGRrN1xiNLYMz8ROONw34uX3z4vex1sr5tFBLIq0rtSTaEgoIW4HzXEhboSIk9S2xdzSVEGIuDNkS+DVXlm2llszDx3eEf/gb4jDt7mZO4PWQ+GZKDK6aS8zhgKiyIWxYT7yfRuI04X3g5njk5uYWEWFZF5Z1pdZCqmYYq1QT2fNmmZvSSloWqla2VElNsHpbVtK8ErwjDxEdhyZ+Y3Ot1sJ2fjKRaXXc18ipBu7nwsPjzON5YytQ1eFdJPiBYTgwTUeGcWQMI2MYqKpsW2pCiVAOmRqsQFGSMTzLC7JhVZrOYBSON47bV57XN45ffOO4mSyJNMteGgBpgWVowIxzQkEY1FHxZBEOrrU0NoYTgC8QioPq2LaKW4Sc7Z7Woq1dyoATae+ffgL46ax3c0Jlf32DxSkV3j8oPzwqT4vyn/0Xhf/sbzIpQyqVXJSbAba/UDQrU4C3R7gb7QumStO9eQ78pNSYPaqNxUNz97swhLoI9WmDp8XxuApbdYgLDEMwNzKfXqr28Pw+qrHEOmPaCiPS3GjdZS1XUEdry2ZnCYGtLz4KoQrgKTWiVcg1k6oVrXx7mGV303URRyVT1YCfx9MD9/c/ksvM3YfIq9cjMUa2LbFuibUBP/Ppxwb8vCMv73DOsZ5umRvw8/jxho/vRpxz5LRS0so8n7n/8CPnxwfm+dyAn4C1EzbAUTzejfgw4XzAtQQzDOBjwfmCc0DTe7HrYNpsygXUYY9z2yGdxtKLvy9/H9sHXd/ZT+90e0UvF2nT7jDgx6P4JuIcpBKlGPAjhSipgUSZqBtCxWvGVwOBOuujn4OKa25Y1uqFqrWpp41SCk8PH3l4+EAtmbTNpG1BRLi9PXJ7ezR9zDAQ/EjKiY/vfsOPP/yGZTnxdPpILhulZkptIHyB0+kjKp6UV35e/4JhgBA9481IPByoBDaFrMlAL2HXwdtzI+ozAOgitGDAT+3Aj2RUvxTwc30fn+dKfb0CG1IdqbuwS4xBEtUUJEMthG21BH1b0MWAn1NKfN8S9pI3yrYiqvx7uXKXAee49XA0slRzDLNyrEpvY7TzC31xkMsYUFdbp4kRFC6NgAYxXl9zxYCLLCac0YGfijX7TVhhIEqkyMDmBup0x3i8o8TIergjTQe8KkPJ+FrZtBC1ctbKGeUJZRa9LGXSVZ2+xCHNrdmbe2qzbw8x4kNohjgOB9yEwJ/GA3fe8w3KL51yg6LFdH1Ve9XANgrRS1v+IMY8Lk7IVDYHqTnmbGoFvD4uwNYp8zMQumaV0w789LWhAY9gQF+yoCz4wOQ9vhULnTdAydWCXwu+FsLTiXg+QUqkx0fq0yPFe/LNDfl4IAOnWlnyxpYLjylx3iyOysV0Zo3sccn/6o4zPD/+OenhH5nx0wGRTx718m+3ejRr09qAIUv+U3Z4T6ugsOvE2CE7ymsU3f5obBRsQ+8U+L1er30v79TeJmCIVedMMdxee8nf5PJ4RnOV52vUT4A+l7+336vK85dgGwTdMaVV5pTLdSq9raFVzjr1UlsVs+S8O8PoCwa3/cyddJFra48QVdQ5O1eHAUDQHIeslqLdJlJboa6VHGuu5C1TSiGtG9tiySolG0VODRBMW6LWakHPaiK1vi3s3glpiORDNtqlixCbiHcVe6ha72wP+luLCUAQc7cpTqk+U12w72QRqgU1tbFy1Nq5oncU74ntYUwjR+iLnHdE7wnBNXvo1uoGbYzr3v5Qr8Zlv5d2zRqL5QvRaJ/ToS9j9frnawDo+c8vdVzAn8/f9TLHvLce2tjEseMwgBY0m01lB49UBdQ28LQtbCGyLmeW+YQPiRg8wVsyb4aRzTYTNcE7lKqFrh3V+lXa4toyE6429X7216vvH6V6aZtYcKEJLvtdq8N5rjqiWmbVQO5nTn9tPS7NbShvSloLNfeW12zjUhQZIBTPuiZjrBVHzo6UsiWtm6esWBtSNW01rQbM5MWsjdVtqN8MHPbNlaKtURZoPqcE1+ZyVZI2t6a6a/ygpgNGo2rvrlatymyguuwJ2aUt6CeuI7KvaXsLWO+BacCPiNv3gJc+7Gu0NUAsENsVQh2otCCzMam6HNy1KU1tCXNfY2s10CDnxLYsrVVF6S48B1VyqLjWYuSabbentZq2QKkHpXR6dpultRhAr631xdBakOYkJ81ymuosMWwgXA+rOiOgVH32XfrWYA/T7cqlNvqztXqVK9e2Tx9wiTHoMUUp5JxJyQSmS857EeVFD28tFN73Vi9r9wrhc+Cnz0/nac6FdjomcaB2zVxugqWZXm13aha3SLfqpn2efY7dewNX+vDtt2JfX6/adzpBsbf09HFUqrAlc9I6Lcq8KvMmpKykLORiZbZlg3Wz+5cylGDfoxkJfcLysfPKXfun0OzfubSE0l8re2GrVivyicjOzu1j5Usc163yqiZmXKviXL0awFzr3dpO9Szp7C0NDueDgTpX67HWSqm5ue1o03LRNr/NpSTnlXWdCV44z0+cnh4JMZJSB3421uVMTis5r9SaQDOoo5SNnBbSKlbkOj3hnSOnhZw2lnlmXWZS2lpR7VK83JdKMdalC9HYdcNIGCZCrIjbTOh6j9/Z++qfzb/Pru5FxqAtGV/oPv7jMYqtIFftXHLdztV/V9sy3Fq4RHEURHOLLRNKwuIOa8HSBvx0NKuo7MzNPdFXyGklbaYDsixPLLOZG6RtIW0LTiD4Sgi1GaOMhGAx67KcWZa5tbunKzZAW61VqTWT80rOGzlvlJwQl0BL+x7aXON6a1pt4s7Qz7YXJJ8N+qvPubC1W7/pCx99Tv1TL5L9xZ889tdcbZht0qroXt8rQGpgeFbIaoK/5fq7tnnax4ZKiw+vin77x0r7mKtzsGJmP+Wfiq/b3NkXlvasXJrxKtIaAvu4kgZTStPOlWZm0cxiek/snvPWC8h0dQqfcQ9e8LB72LS/ujPzs/Yu65ZwAlEck3McxTGKEil4WpFiP9FP399OvDO4xZt+4zQN+DiyOROUfqar+wyE1h6AfbbufxbTd6CeT+Lo9j1N7kN2uY/QRKVLP3/sfhYx056kSqqVrNW6P/p96WPian/p53I13P4gQsAfXeNntyPrVZViyX+tlbwVliWRt0zOhW2zxOB83nj/4cx49tzeWDvPMARiAD/YoHJtg3XOUbfMsmVKruS0NRcRZRw9r/PRdGlE9klq2gEX5wILLMEoZdkCOo0XTRtn/ZR9ZRLXZ/RlMPSqB/QE5HIN+v3sXgftf/vg7O9RamZZEmlrzKecmu28aXGgQkoFTQWXKqyJ9eHE+f6JZc2sa7KWtxc8RIRDHJhC5DiMjI3xk8RZklarkV+1Epw5frkd1bb/y3Pi/mFBq/J4OvH+wz1bsgrWeT5TS2UMjsNggs4pJXP6qcqybpzn1XrvW37kvcOthbGaSCt3wugGnHOUfNHMWM9nzueZXAqn84nT2Rg/KZxZggmMbePEeTABVO8MVLKWH+u9LqVyGDxf3d2wTtY73x3HJh8YvOM4DhyHwBiE0TvGITBNAyEGq4DnbDTtpyc+nM+kkjkvC2vOTfAsmtuNGJPoSy3K//S9vv73C+4OXLWbfQKUoiYafHPzhl/84s/Y1plaFmJQ1uXED9/9W374PjXXIKt4lbzx8OEHaqkMw4G8bHz48QdCGDnefM1heoNzgWG6JcYj4hxhiLgQUNRo02rzzLQXTJ+p28BfthDbkksDhJ5dnd662b/HlwiMRBiGkTAIw+jwUfCT4qeCnxSNlUICTUhQbl+N1KJsv6r8xb+fePxqoyahLg6t0kBU+x55KSxn0+OpUtBYicmzzoemHyFscyUvlmjU00h98lAER8AxQFXOD0+cPj6iNcGwIONsray3HndjjlnBC4ebiHhHGBprq8LHH2bu362UVFkfMtujVV0PQ2WMAhnKVgxcWiFtsGVj/GxZWFtimZomxi4y7zBL2x6siYHU3tl6E7q2EBhAKEKthdN84gvpyVrN0DtCGIHBGD8RKFA0405iFq9VzCHaTm5PVQqV3AQft8b6qVWR0wmn31u77QVHRW48MUfG4Hh7nHh9e0P0jqQGhfa9+Xx6sv1ItcmyCY+PDzw+PFJr2cEH52AaIuM42ho/DOTD0QSdlxW3WDtCzc0uXuAxV9bZdCiGdt1FBDc0dkKB+VR5zJXHVDll5ZzVAl7x+BBx3thqooKWZks/b7bftO+a1o13v/3R1nQfGMcR7725C73QIV6IdwPDbWQ8OKZJGEeI0RxhnJj7lcgFgEU66GPf21aahLnDVLwkSz2lNjFORVzCkcz9ZzBAqVZwb4XBC6UIpVxctGLsjCKYxutaM7tGAjTgR2FLjlSENQnffoB/833haYV3T45cnQFyDYBLGZ7OlfcPlSk2i93GTErXbVxNH7GDPTsIVHXXjjLR1Q4IGvCX1Zg+a3VUcRb3taIL4lpa8LKHQouxLsl0rda+VGtLsrpYrFz0BGvTaQLwwYTlXXFEdyQMr1GNqGZqXa2YtZzZTo9NH6tAbS40jRGQs+f9j98RozKMA+/ef8tvfvM3+OANCG0s629//S0fPvyGbdtI6wOOGafC/PgjP3xXGYaBbT3x44/f4USMZZI3Utr47bff8u7HHwxImldrRVJQipkkeOF4d8ftq68IceD46mvGwytUF9L2Lef5TCzKeCiIr3ivxEEJ8cImsMEmSNcf6cCd2J5YpbdsfOnjgnzax3edDWvDcVw0RkQgOCV622+Cy0S3WbtOXaHMVAq1rOQ8G5hS8sXFsOntoEqikqTuTLKSDShf55llPlNK5vHxnqfHD6bPk1Zy2kz8/mbieDRmvPcj3g+UUvjw/rfc378jp5Wnp3tytVZqRU3HB2Xbzq2jIvHj93+PIIyHO77RwCsXwUUT0xUFdTiNuMZX6WuEZSeZ3r6HZqzVK8PuNVmomvhSrV7XTPB9tZILeNiLqep4JurcFV7o99op6isygATBx4CPE64WtlVw54rLBuqx2Tz3zjG01iNPaQWYDhpdACEHO3rSW69rbz3rIFEr3nT4r38b6eixs9c4bVo8bS5K46AlhUcVTioUdSy5sqp5fZY1UYO1h2dVyrKQRHkkU6SyoTyqsqCsCGtrF7Orew1/vvwhIgzNxas/fPDmBu0co3e8Cp4owi9i5M/iwFvvmUom5gxqBaZdG65VS+yMu3usEG6P+DevYBg4/vJXfPOXf00dJ75/mnEPJ9ZSWHNmSa2YWVu7nULNmbQa+27LiS2nZ+C3Ff4rrjQL+SBI1znTguYN8Z7j4cjddCCochsjx5sbyrpyXwtZzfly8Y7HUshaedw25mYw1B0k7dbLjrHW+gl20AGg9n//3JXzj67xY1VCq+TSAaBsz+VUWJdE2hKlaNMFUGROcH8iBAMXjgdzQBAcw9AEYL1ttiKeqpl1M12BbV1YzmegcnM7kUvFt+CkJ5mp98prJzTa750WjN4oCNGs1VqkuwM/Ti/vJNco4CWFtQ6nhp039oC1IBiV8lpPqFcFRIRUHaflxHxOlFpY14WcE04cMQ4456mpGvCTK6yZ7fHM/PGRNVe2Nb848ONEmELkEIcd+CmlEHBU3/ri1dgswftdaFa0udCosiwrTx8fSVvi/cd7fvPdb5nXlWVdOZ3P1Fp4dXPgq9c31hKwJbZ1o5bKvGyc5oVa7IoZQOMYChzdwDQODDLwaizmXpIypbOFHs/Mj0/kkjmfTpzPZ1SV1fs96VvGgVMcTINiGhjHwT4Ds/FTlGkIxMGT0kAtleBNGyRiyfM0BI5DYPDCGBxjDIzDgIvBWhBSYtlWHk9n7h8fyKrMOZFKZagwDgq+jYSWFHypowdBz8GJn/r5j4A+fQYwGY4uwM3NKw7TQMkbTjKH0TPPj2heePz4o7WWpNkED3Pi4eOPPD3eE8LA6eGRH777DSGOvH7zS+7uviaEgbtXX3G8eY0PgcPxyDBNKErKG7lYS5mTAZGIc55pOuLCyGVu27XZBZz1qrjUXvXlKLQg4hiHCT+YK5AfwI+FMFXcpJShUCRRdcXHyDSOmPaJsP41nL9JbGeY780GXVOmrqlZ/irrvJFyNuBnKMTs2da1iaE7coK8ibF8nhz1YUKKECUyyGTAwY+Vj799opQVd5hxxxkJMH0zMvoJHAQv+BtzXwhDAOepufLx3cy3/+ajsX3OlTJXgnf87KvI8VWEXCmpUtZM2ZoQbKYBP8bMzdVaiXPOOO8o1eHqpW12X3Ebe9GJsaecNLBaWl2zVs7zGbYvE+BWBBc8IXqcBy2CBqBALgk/0NiBJnB4KQq1IoGZ1SIYtXvN1q6h5QTzyUCbXqgQwa0TkSPTELgdRobpYDpHWpstd+X8dOJ8PtF10Lyzufhwf8+H9+/RWjkcBg5TC+aOI8fjEREh58nauktBwhncTM6ZbU2wblRVnnKllhXnPWM0Grj3zvaVYSClynxeeCqFp6Kcc2XOjVgfPM5HvA+2X7aqXVkzm2xWkYsevJDWxOn0RFo3xmni9du3TNNkuk8vdIhzxLuBeOMb8APjANGb/o1zJjLdW1gv4qpiWmYWxiIkLG1Z8Tzt1Vi17uOm/2fn7QWG1vI+BeH26MyRqdCs0a+ryWLtn72m1ZOUq6qvNqZPUcd5he8/KP/F96bx8+HkyBpai3kHfpSnGT48KlMUJlcY2rmlBsB2IKcXvxp5to1ZS+scNN6lnWptLIlShaSutXk5vHetkiqYPfoXQGFbgr6X4qTHbC0mbO060lR3nTa3QzGGl4g25qXFij5OeP8VIiOqxhBRLZx5z3I+mwZbKWjOdIZMZzd9eJ/Ztkd88IzfTkw3B7Mmbmltrcr58YnT46MxprcVzwoK8+k9Jc847/n48R3Dr48GLOWtAfeF0+MT8/mM1krKtZlyuEYSsLj3eHvL25/9jDhM3L39BYfbN2zLIz98/4HHx8yQK9Mx43xtLXiKCx346fu42dWLtFiws+R7Qv7ler3245Jw96hCWwZRW4wKBiXaWQepRJ8N+JGNIDOOguoM+RGtmZIWyvqE1oLmRM0bNEZhThtVK6lm1moM9bQltra/nk/G4Molc3q65+np4SLSnZMVEg8D0zTY2Hcj3o/UWng6PXA6PzZWz9yEYC+FOqhs25m0LeS08O6HfyCnwvH2NdPxDYfjHeJHZAg478CkgZuqTDdGMYn+2vkKanyTi8ZP2oEf+JLAz3VBrbfl9J8NOAdBHbvunLYz730diDG3NLRcToVQTWCtagUPWjLOQ8gGQlAtDhhjYPSOUBW0sauc7qwcqRepMbn6/ypC3X9x2WcELsyqLiguHfgp9ruWz1q+5KnqyApPVfmgkBAeS2UuilPHtGViSKjLBuw6YXPKQyycfSU74cl7VnFk8awItfXFXa7ulwN+urZPB37MudO6IEbveB0DB+/4mY/86RD5ylkBtnYX12rsq9L2LOnBjDTgRxzh5o7hZ7/AHSbGv/wrjv/l/xKME+H7Hzj9/beclw3WhaVcGR7ZYkvNhbSaYPqWNta0oiguBCsGN00nV3pbqJgukXe2oeUNJ5FDDLy9ORKAu2niWAppNdbmeTMDmrVWnmohFdOWOm9b33xb85Dg6lVpWaCzB5+xfvre/s8MYf7ojB999vPzs77CQfdX9o23Fm2Ce82dxlsLTaf476y852V3ew8HNDHXyya+ywZ/cl7ybCpcs+6vHQz2kEp1D2RkP4nLctVp992BYhe8azR3E3GSJrDWcExn/eQpFdaUWZOp9a9bJqfcqtGO4E1o0BK1stPvaxvcnzqZvMQhXDQwrI3LkqPeGtHdvsCq6J3/fHHPaqyd88K2bZzOM+fZNCOWbWvaEZUxetZtoAZvrV7JRJ8tibPvKQ1xr05ZU2HZEoiwbIlly0Rf0SYcXhvTrCF0tGzOJr6CuooTR3YOL47qHD6buK0TsQC+VYOsxc3u1RAiYzRr3YBVkUIT/n42suR6bOje6lDbGLq2Zuby0i+MuegVG02/KMD07FP1Oki5mnlXbY/Px22fExEBhmFinA7UWohxtKp/syDu71hr3teEbTszz0/EnBiGB5wLxDjggwdRvA8oiVJN7HtrrhngEBkRiQQfbYyrGsNQPE56xblTo/vJX9avT+SfX/QQaE5xtsZd2ASYnovZNwCt3cPb/BxGz+HGejKCV6hmRV0TlKhocWw1Mq0Rn4ThGBinQBwbMOEUJ01AuaiBFFmty6CIdVfSkryE/a65/PQ+JdvrLPimtUT0Db1ma+1Ka2GdC3mrlKVSNyuH1Rwaw1y61t9V6+tlTd5NBPpa2J68OEn2AsA1TVuukhOuB6r9fXMde/HDYWtNcPjQ1BRcO+dG4+7j+ULE7yfW9hnAqewaKYXW8kXdgwppC5O1PxWSE9M0aW1bF80L9nYAu1bNSYOWFGpzN+rtXlWMvVtrYwi1nbS1yXUXoK6bZNRzGyvqHNUFqm+BVhzQYQSpyKjIJriScTHjo6Um1bmr5fJC065qVTlVmgAk+55Y2v5oc1he9jYKFgh6t9+vrqPT25mgxROyb4v7dtSjil4BVi7j81o7cL/hWDxiXeGK80Jsf2JisG1tb2s8KN7T5pjtg7Wf+OWjDDSqkLKwNSB1yxcwwjnBOwOinKFtbbxpM1Kw8yvatlf6NnuJufo3kJ940Mb57t7VgCDX9oadYi/Chb/0JY6LqOzne1U/02vdiOtNm/2/pQHJZiLQkhUt+DD0hRp+AsCy66ZmfILicsal1LQtjS1uTon5Wculam+pv5oTu9wBFgvV+mxN7CYjTVyy/Wv/vbPprx7iWhtvc9nrhhmm16St0NljbQFMK24vg+z7/yftFH+Eo897Ww47/KlX8X1tr6mgJlqv1WKDSkbTmbKdzFkrzaT1tDtt1bRhGo6J3GQKtprYqmmNpesC5vzEspwoObGtZ9I2N6aQuXWB4BtT0IwWKt6VBiAtlLw1x6dPW47a0dfqWqzrYT0T4sC2zqRtxgXF+4TzpQ3V1uqlrfDcY8JP29v7z6o/8fwXuF/XP8nnv7gOj3v9coczxJyvonSxbkeQiqjDixKd4rRp0DiHc57oHIPzRBoDte1b6oRSTbKity3DVajXwaj26VWulX+EnlcWetsqXL5BT/Ibe1espSshJk4swgqcRTgLJGAWYablIdLULICMtUgnYAU2hNwe9r40pudlLb6OcV78EC5rRy86XT28CINzjM4xOiFieVSh64Pps7VsbxtDIEQIEXGecDwSbm9xhwPxeCSOI0wj4zhymCYUYa0Zv3SVKt3jlx4j7tIwzXSnb2harRDaNFesRVK1ObpVXKk4r9bm5T2hfS/nHFIL1Xuyc+RajD/XgSy9xKKf3wHhGjDsx08JPP9zjj8u8GMQLVAvbaFiqK0AMTjGMeKdOZmIM/tM56Q5PSin08Y7/8QQPTe3BxSj4ymVGKWJXRqa6L1jmkbGwZKjcRpbn3ndg5iedITYKrvqdiAniFWXfGvXicNACBa4Jms6JKdCyoVuQduFAWurilU1R51tyx1gtAWhAz8tSC2tl13EGdLoAjknTk8PrOtsgsSr9WQH7zhOJhYspSKLlbnX+UxaN3Iqu2jiiyebIkwxMvhg1nvteXUmYOfb9bLwwbXkWDitK+9//MC6bHz8cM/33/6WZV45zTMfHx7Zsrm55WY7mqr1PQbvbXK2a7xtmTWX1ldeW8uXwz2cKC4wxMjTmnmaV6L33AyB42CAAd4Z/a5R+pZ1sTa1lEk5I2ItakUsMnnaFhQI3vPm9sDd0RzKjscD0zTYfa9CcHaOmk25cgiO4EAoGFWxMQ6cx7dkV50gIeBiRGvFi0NLxXlPpwXTNizqF1yY/5ER8hyg+cKHYgvdtf4EQAMGvBtwLlB95ub2LSUvjOMNN3ffMB7egjubJhhGpXetOlVK4nx6R9rOOBd4fHzHMNzgfWA63DGOB2v/OEwM44iqqeqXUqyy6ybEDYzDxNu3v+D29jUxjry6+4rD4YZer2536gL4XsLcF5+D/RBxxDgiseJ8RrwiEdyo+Ml+JjhqMDe6cbCWtddfD4Qo5K2SEyyLUgvUVCmLsSzn0ytO92/JuRIGIYyCC8JXv5i4vfWEUdEEKSmaBV1BV4HWarLVbFnbJkQGvIMQFD9VJGoTS7Xb65sVPQhpUZbTwnoufPh24d2vZ2qqSBWkCmN05EnREShQVyibmA5QaT361QRot9xaT3MiNcZPyKanUktuG3rTQdtBIPbgBGj08ZZ0mqL0l7iRuDEShsDhbiBET5oz520mayE3J6W0WUtybuzU63HlionRi1owO9M0ZZqNrwEO0kB7WtV5ZlsdT0PgdAjUIRC9Z4jGYFQtECwYHVxFdAUg+MIwGbvES0W3jZods0Jd8952Lc2RT4vDYa3SEkaIdg01BvABCQF5+wZ3d2s/v3qFOx4JpXJ8s1HmjMyJb6Z7ltdnUio8PJp7pUoml41tq3gikiOSbS/SnE10uRS0ghOPd4Ehjoxx2oHiFzmcwHGkDo6FQMiCro74COdm2R69MW5Ml0fbPak414EoRZq7mY23C9CwJ6yf2ky3sRkHi4N7QN9jmCt808ASaRojBUoxECEnKNlYNudVOK8wb/Dh0XFaHFs2V6HbKRorKBZKUQZXGQdt88Lm3dqmRynNiAyuChu66w1xDYBhSZmoAblrhnOGUxaWAluF4Cw+jNERxCNuAHn5Vi/E9OTk6jwNoDAAxuPwYuxg55semBOkg6etzS6nQt6EMBXGwRPCaC6I04CI8KMK5/t7A80pqJpAU5flEAGVAZWI4hA/EoaDta+rAbK1VsQllNWSzZIouQN0A+N0gw+R490rjrevbE7XDNUKiOh7u/dlR2oaqCtNLyxCESsuSiFvG2ld2NaZZemtSsphNi2aEI1VRgN+S9NykhaPS7tfu4Zb0znUBhZ+8aODAnLRveoW3d1vK0hbK9mgzGjJLOtHttP31LyynN9zvv++tWTNbOsZLaYbqTk1QMziPXNlzebehTY3V3OwTV3jR02OIqf1AqS3CWsM/66LYu5qNnc3ak3tXvW+36tiRltLHBXqyvz0zrSBzo9Mx9fUqsTxltc/E46vzEBBquI0YjoxHfavXPTFqrVBNT0jyKg2UWc1FtuXuWefrNFXaLl1pzb4Ws3GW8TcrCbxBGB0wo0aF9ZpwRdzXvNUvJpmmgi4YIym6eA5EohV+WYciMMIIqw4Es2ysBdEAF8U31zD4BL/gXWxKHophEHrfHAN/GxAv0B1HpVIAU4Iswob8L143nthRfitCB+AKo4tRLI31ut4HIljQAWy8wbwOJgjbMFimOKcFVgQzLHWeF0XuHr/Ai86FUWEGCNDE3SO0fL7oQFBr7znV3HgdQj8TISJQqjFgNSSjAWXMyWZGYMbPHE0w4nw5g3xFz/HTRPxFz9n+Is/wx0OuLtXuDevUR9483P462Fk2zZ+/Ztvyecnlpw5p63l1ZVtW9lyoTQmjsVXim6ZqgtaCvU8U1dzA3UiRFWC90w+MIpnqHAjnuPxaMSABurkOfAYIz+qslTlISVOKZlbc2kNd62g3EHxfguMNXkF9OyMnz+c0PFHZ/zQAumd7YYVyRQIwTRagje2iwmPNrHmbGTC+byhpeC9gUHjOFIKOFc5HC6MHNuQlTB4YhiMVjYOrUpigmkmrHyhEYNcHDGA4CE6cxEbGvDjvQkv5+a0sWzWUtWFhzszpetKlFI5nWbmebXBxOWmXiztWyBWLZkLccT7QKmFZT6xpZVS8g78DN5xdwxM0YCEmAu+KuuykFOi5LpXy176cA34Cc7hWzDqBIKzBYWG4KpI2wRtoM7rxnfv3vP0dOKH377n7/72HzidzqRsTJ2ivcps2HgqNhGDd/vzqNm552yObaWUFrQU8tPMXAykOS0rp/PMEALfvLrhZ69vzLknDhymiVKK9ad7T66VpWSWZbax6YXqLXie18SaEkNLTKejaU9Mh4k3r26NeZQtGKylkJeZktYm8qxtUy4XCm9tUmUC1TnEe1yIaFU8GZVqGlUNnERao+EXR19aNVZ/mvXzkgBQf6+ffM8d/OlVibaRqiDBW1CplePNG9BCHI4cb79mmN5QCSzLbBoJamNCKFDhfF7R2qP4FuiIM6vqYFpQ42hWuapKrm1ciceFI84NTIcb/uRXf82bNz/jcLg1t4ggiDRVfxkM6tlLQZ9/tZc+bFMdIGTEV3AVCeAGxU2KBLXE3VvCNAy2zk0Hz+tvBhBLzlLTAykJE2gukFdlO5k2lnRHD4FhUoajMUiyVMiKboJuCqvxrUtSajIxD90gElFneidhNODH6HPswM8wRWqF5aQ83a8sT5mP3y18+M1CLcrQbNd1UPKdQjvPugkliZ17sfaSpNqAn9KAHxP29dVToicUQUu5PJzfb5CtZxcG466DItg1+BLAjxNkiITDwHR3ZJgisyyc7zdKA35yqqTUgJ9sFt5wGVdODbyz1iFYVAiiDI2u6hooPzQ2oubK+bzgnHAaHOfJwRDw48hwmIy1qQVp7CPnCqIrCvhQGSZzcJOtoMl68Jctsz2tiHMMhxviZKwcLQ4vkSoOwogOxfb/cYJhMBGa118jr18jccB99RZ3d0eoymHNsFXkvPKVf8d688h8Xlj/4QdzLhM14CdlglR8nnDFWmpzrbuGHg34CS4whIFxGHdw72XuoYPDSImwqsMXK+S4DFFMM2QMXLTjQk8+qzFxWr6Mb/tg002yn/WqWqo0icK277bXe9o6hI3VVgnuAucg5NoEkxXqqnvb1VZgXYVc4P4k3J8M+Lk/CefVtH28D9yMAwC1BrRWgqsMMds8obVYJvv8Z/GH7lPdCF/t3KNvBCmkJUPO2jVr5ZyUOcNapOlqSdMAc3h6xfzlgR+hM3TE9P0EVKu5BGq9aIFhv3ed3SudXdMF6Q1Ul6kyDoFhiBxv7rh7/QbvPOm88GP8lrxZ/blWK/j0i6bQQJ+IisP5kRAP1prTqVVSQTaUgKpQ1ZmotxOcHxjGG8IwcHP3hrvXb5sWVka0mEnGkjmfVsQ1sEGhNtcxq0JHE+rPJhRfto0cF9K6sDbwp1RlWSBEJRYhNpt31YvgvjR9pg4QdrBSlYsw9B8B+Omz3ebORePHt/bLrvFjU2eFckI1sZ5+5OOPf0dan3j8+D3vv/8bY86khXU1aQLNpRUTtOlxNi1TatMS67H+NZvPCg7uygGqn58Cda1sTWoCNcdi2zAvr+nOcxeEV9t7tib5osxPHzk/nVgOjwyHVwbW3bxmPLzmcLwDscKVw9YL1xtaGtOz0kWgrTlTW1yrdOAnt5awL3DDrtdovQArHbSozU3Oq5nRO4WD83wljgHHjTjeumCluZptDjRQzHc4xgG+IFI4imkgBVXeBE8IwYAfCWxi+4lTY3mAEkQJpe4t/j0hd7U0cMhEfPPudOeozeKru8lZZGHyIQnlvcK9Kgvwa+f4oTF/fvCOe+dQ72CYIJoEwTBasagiZDFRiuqEEj012L4RGwvFruMVULWPG7mqELzgLZTnGj8hBIIIgzOg9c55fhkHvo6Ru1qYasZrJdeEtrypFCMF1FqRwRGHkTAMjD//huO//Bf4u1vir37J+Nd/iUzmmJUaY/TVOHL75rXlxevMh3/4O3zNbGWjrAspF2Pildzal5urVrXWzJQSWgruPOPWra0ZELUY8BMiBwkMOA7OMR2P1saG1TqyF55i4B2w1spDypy37TOmz2WrvNIG5p++Jf/cO/ZHB346TVe4VFL7wyoVbfFx9rA2KJoxTWPHtEQlpcq2WYvHMNhmVivkVHYqK0ijStr770iaPj+nvfrn2Bdhc2rqAYD04o+5kWhpyL21Y9WqbFu5AD+pAz/FHBg26w+t/fO5tCUYii8GODlFJTdXi2LBa724eO2AUdtg5Ar9s39awnL9BV94PvdWJdVmN9srlP2e0miNtZpNaKnMy8J5XjifF+ZlYd02tpzJzVa36mVJFzFtjtTaswz4sd+aq4vS3YhKK4+lUliziRLOa+IUV3IoLFNkTaO1APhAaNcleM8YO7us2WCKMA4Dw2B2wGsTArPP6Q9AjBbqHc2m0O/irBS5uKj0YF4uOv69zc8cfPocaFWa/Q/sGgttfLzs7bvcR33+72VfuABAv+/P9vfy7/C3l8++fGNoA6kh4Ffo8L7p21z1IRJCJA4T43igaiHEAXG+XWQDf6DTROWCqGs1umi2YN7ovGYHCbTx0ICfAuLMuWpZTizzwRiIaW1OGTZnL60Vl/n96cL9JWjtF72EPt60tXnphTylUAtWyShWqfaxc5QsaVTFdoNq4Kf9kVXgu/sHKH6ozYq6sw30kmhedwr05TQ4wuBRqfjoccGBtz75PieuA7xSKnkp5LVSs1rjflVQj6V8zgijzfqpFvtuvc2rMyh398Zrh4b2+Myx4dNreX08Qyh7YP0CN+6Tz+32puL9s7a3fSxdnfclWbo+T7jMpN5mJPs1qdrEc+nTqV+LHvx1B8h9FloCqcbMktaXr7Q1Lwa01Ktp1pmrtTk8FRNdkksbkO3rzr6n0Fii0tYN29fx1stfxFEcaLC2CylKPIwMx42iSpyMIeUFEG2uaM2uvZT9mvULJXIlvFl1f82L3UOwgK+pw9oK5MhNEFjV7QmZd0JQLuyf9rM43dsVXN27xnBV9p+bTN7+c98yDCiw2EUaYIFejxvDCnK1OCNl0+GpV21dpcCaYEnGusnlAt4Yg9qun5OKOjFKu7+4i10zePa5vV8d+6evi70NrneS9I7CNX9yDj320ev3snfXHpO98NGtoPu/Fs/0vUf2sfRZkWTfYJrTHaBadtMBe1gr1t5O0OatuDY+sPnamUeh6V4N48jhcMR5v8eFpRS2eSX4SFaQpksmWHtFr7CPw8g02b5FybZgIoQQbK2pIN2S/brCjLFXUtO82LYFgmutRumZnIA9rq/HVQza15iOAPZr1cfns099mcOih+tYyj6lM+vs55Yf0OYNPSFWatko+YzWjXU5sc6PbOsTy/zEup7Z1tmcudaFqqWZ1DTmf2P7W+zRLdEvc3EfJ03cQYHO7tvNYWDPFa4ulu27ve1R+jrOZYppG609Hqe3/bW2lqY/ZPfPtHtsxW3qpk3kXbQzfrpLWbtm3SG0TVy9PreXvodqbbL9evQn+9y0n+2zu2uiF2Wo5tc6iP3rpJjSaClIvjj17vlTT6y0GdW3D1uBuQFKG8ra7oSr7AZhXrsYsz4LDZza6xQrFaV2r7JemJDe0XS1OhTlyMCDKA/t854QThj7Z0FY23pkIZb9bUJ32QhTW7rKz6rgRamuG8c/n2v2dtLu5csfu07pJ45evfXL3Gib2DN62Q+0tUTV2va71uLlPX4Y8ONAmA6E21vC3R1uOlCdb7GE7OGQU0wTsVZCzoS04dOG3xKSElKKrYm760Brae/xRGOFO72As06txcuL4BWiCKFLnDjTHcpNemXNma0WtlpJPe+7mis9Z3p27DFZu19Xf/NSef0fFfixG946+Hyj1Ujd1wznIQ5WLROnVPXmCFGatXu7IFtSyIp7WhH3SAiex6eN0ykRgjeHrmziXsfjwDiO1pcs9l5wabESbXaowWB0qUa9EWCI1uLlnGfw0pKMyrJurOtKKVY17S5T25ZJmynsp5TJJRtrZ1lZ143eb78vZRdkoD3vEFcJVXC+tYwpiLMGthAiiFUltELOtpG6YHbifqvIECEWpFbEmvNf9B5WlDUnihRUi32ueKILJoiq7InJw+OJb7/9Led54YcfP/C3f/trnp7MWes0rybe3QCQT+IBtlx4PK9NvO0qXqiXzbNrOgBsCnM2xsy8Ljw8PRKDZ0kruRaGGHh9W3h9a0KMN7c33B0PoI2dVSzpD8NAiJEtZ/7h+x9Y03tEHHOqfDwnDsXxdWmtR6FwO034qpScmDWx1Yz3wtBs3oP3JjoeA9U5tlqoW+Kcsi0Ert1332nwhhoZG7QJ7n2JFfl3HJ8uQp+CO6DPfn4WKP4eJ/qsgNNe3sOzq1ddXtMynFJBU6/QDAzjLeD56ps/4U//4l8wz084p6zbTMkbpTxRc9uhnT5PSNSCLtP1MUG9dV1Jybfv185NBGQB8ZT8xI8Ozk8fuL17y3E6tgR44uZ2IPhh/1LPtOOurs2LAz9iGj/aqQGGkOIGe1TMOrkUpZ4T92tGi9Hxh9ESOfGCxCaYJyZcihgwFIIJIV7rGVWyCYuqIlHxo7R1sz2sGEhXdh11QPQOJFMPjnosqCvkoZB9QbyFv71aPd9v3H+3sp4r5Skw6A2IcBgi4zEyeJCqbKeC5sp6LiyzkrKybsqajemxpcyWsrVudiOBFux1TbRLi1ev+DYb96uNt0tEilrl+kskmj4E3vz8G7yHMCp7Wanf1Iq5EyYDtk0vqSUxvV0Z9vOrCms1MfrBVZbiqKoMKiZSKOAjBG+VeMPsqnl9iKLeUZ2tW6ExhsI0ElqbyjRlbpo1ej6v5PNq7ptz4rxsVC2U9USRBZwwtDVVBOI48dVxoqqJNS/VXD3XxzOnVfHjyDYemcYj1Qk5BvIU0cFzk97wzc3EfJpJZMLkqTmRTidLRlOBJZDUWrm9j7tGg7mI2HU6n8+k3SHzZQ7nHcfjyBQFPzgkGAh2yocmJl5MC6RWgheGYEWu4GGIuutmdQFo2wts3fJNAL2zfLxcsFLfAVZHaxnDksP2fC8SqTaApxWYlgXm1doDt6RsyYCedyd4fzIW0GkzZEpwxMEzDt1NxdbkIHA7CDcBBqccIxwCgOx27nCtX2jAU8+TcunFFGsv23JlzvDDufK4KakKp6ysRVHRVhyzBMAwhi+l8dNFiF0rRJrQqqIEcc2tVPZr3fdEbVpS2ly6tCppPXF6ek8IK9u6sK4bznkePn5k21ZyKSYMHQe7VrUlliLc3t3w5u0dwzDwiz/5Bb/6sz8hxmhaEaWQc+LXf/f3/FqFdVmoW2LRJ0ThcDjw9u1bxunAz3/1J3zz81/hREjbTN4Wlnnh8f6ej+/fk8QYkaU5jqlutl4X5enxR3I9Id4THw6EYSTnhdPTe0pZm4ucpxTTJgNvMb52N7SesFg823WpPgPYX/Bod2T/6QKHF7ohtqXZiseYByLgtKBlAyrnh++5f/c3pPWJp/vv+fjj35DWE8v8yPnxvWns1EIuad9buNby6icjauD0/qxcAT9WKemxySd/iVzFWt0RjT7mpH2nPaDqgE3Ps9qerQLV09n4OW9sy5kYBmpa0LyBVESCjWkVajX2nTHQStNaKUhN5mKkDTysjflT+6b/sketlfP5zHUGsIM+GJPy4MxQ5SjCa3EMAgcqd7qZTk+x/T5VNdHtZvSi+7VVtGZqXkGVoRbGkvEoU3UcsrVGJ4TUAH1qRZpoqyulmS1cADDTalZ8NZ2lTQrJFSqwKKxqxerQ8gPT7Yp7q9dHqTy6yqbwQSsPqhQRFoFNjN07ZRvDKpi7V7DXrOJITQPHbx4vjmLUULQVlFwwIKZf0M9m4gtOTXOeHYzpE4LFzN5bZ4/zDNOEv73DDQO6LqRTRUpiLpXTupG2zUCiOODFMb5+zfQnvyQeDxz++q949S//A/zdHWeFjw8LhYUwDMRpNDzr6Qn9eE9dFsJvfsPNr3+NO53Y1o3TulinTEqQM734pY1wUHOipGT3W4s5/SkMWpiKAYt30fHqeMAfJ+I4UIdIqZUPHx94uL9nns98d//Ax3U1Af4rDcTfDbVd1q6fAn127PgPOP7ojB/njB0hrvSQet+/JUBUh3pDwGv1lCJk1/D7xvDoPXi1JlI+4b1wOG2cz6lNJkdo1u4xWiLjWitXqS2hrpfL651jiIYWuqJIU4EfB880hd3xRZvl+/m08fA0k3Ph6TRzOpvL1LaZCLGqktK2C+9taSOlBMAFNzTnB9cSLbOHs4U810atb4GdNF0GH0K7XIpi7SjOWxuMDw43FCQOEItFca78lG7gH3SY+G2miFDJuCoM3qrVzjurwje689PTib//9bfcf3zgx/cf+bu//5bzaW597L3/mysArO+JypYLKX/eVnG1zTVUtz1TKrplROAJ+CBK9HalnHdMo3naDmNkCIGvbm746uamtXT0iou0artnXlYezws/fHhAEdZUuZ8TBU+ugncREc9xmoiilORxacHlDedgCJ7YBMgleAie6h1rqWwpMZdMorF+XK/SXMRXW75H0bq7zH3po1eXfoq5Y5farnr/Xd84P2X1fMoA+umfaT9fgrQWy9hn7CUtAzVKSxJA8RKJ4w3iIq/f/pxf/smZ+fzE6XTPh48/kLYFXROlBXHXwtqyf9Gm22AYEE1aqg2n1g6zV8wgbQMlJx4fPjDPj3z99uccD7eM0w3T4c0+HvcKaP9E2YtJX+BoQoyYSC4C4tnbvchK2QyDWU6Zx3eZvCrDIBwOFqiHQRiOvrGAAmEK5pAYPUP0TRemOzoJW4Jla+B4EPsccTh1eKWxhBowoTCEyBBuQTJbyKxhoYqQRalkG+eCheJVWZ4Kj79d2WalnD1Rj4hzHIaR42G0xLie2c4zNSvrXFkXJRVlTfZvLpWt6Xj1BGS/N80SvYu9dxC5t3ftgfQOLFuQKGpr8jPk8oUOHwKvv/maWhOlzqimBuZZgq1qBYvSLNo1t82r62ZIGwnNHaqqsqpDtDJWx9ICUPueVh3tQt+uBc6euiez6h3qvbmsxYA4YZgmawET2VtNaq2s/swiZ3LOzNuJNS3kUjmnjXM2Nt3t7Q3HG8EHz+1h4uZmsLl8mqnnhVQrp6eZsybcYSK9fsN6l60XaHJwGNAxcHAe9/rI9DSzbisuwHae+ZBOLPNqgfAacKU023YhhKEBLFZVBGGZZ5ZleVngR4TjYSAGIUSPeKGmypYnNENOmXURc8D0plXlnRCDMo2K94qXSpTcWj9sTxLp+ja9PUWa5bReKvvt4VxfX7tWUAdXbP3ZkrAli4HmBebF2E+pSHPhEt6dlB/PQqowZxtjToQQhWm0qq1rYuFBlKMXjkGJAlOEKdh66TG9LUXI0hJJzKkrq4Un57WyJmXN8PGsnDZYsvL+XHnabDFWZ8LAzltRVmtjyXaR6i9ydNCnV6m1tXJoiwVDaxM0RsSF9dKFzguqyYR+08x8use5jXVZWJaEiOPx8cHca3PGx2FvOa6VxjIVjjd3vH37NdM08qd/9uf8+//yXzCMg4E+JZO2DU2Vxw+PzOHE/PCwbzTTOPH69WsOxxt+8fNf8Ks/+1NEhPn0xHI+MZ9P/Pa7G2LTx0QKRQ34MWe5TNXM02njtEhzyTNGolH8FmCjFEetBhZYPmsOXmAtiX2O7Uk24PTC8rvalV/0sL33wurhyjfXQJ8GALWhZD4IG9QzWjPz43f88Ot/zXz6yNPDD3z88W9J65lSEiUtXITuP4ktoI2Rlnfsv5DGiLt810s8dHXebb2/PH8de/Xv1thZzzC0Dir1sRtxLtj+Ua1oLeKMwbXNpG2ipBXy1gpjyYrjKrgOFKkiWqzo0bR8DAAynSjrtW6gzxcCfubzfImLP7kO4gQfHKMIN87xlQscxDHUwrEovkLJibyslFrYSmbeNoqaf1luAswX97LWxlVtbHiE0ExXCo7UwbcuxKW0eML+Vpr7E0AoBv4ArK6yeWMTnVQ5NarmED1DZzHrAAwU4IHCSSoZ5Vwza9MeaRwBgigxVwatVFE2NUfgLMLZOTYRPMJBPZHmVjoYNVO8I0jcCwYXTPJ5rP9SR9f48Q3k8t6b5s84EUNgOBzwN7e4YTBg8jyDZtZs8iDbujKOE8cx4kNkeHXH+IufEe9uOf7Zn3L7V3+Nf/WK8w/vePjNd6xr4nh75C4EghPq6Yz++CP1fCZ89z3H777DnU6cc2ZqDtRBazOxAG0teaqK5ia0XitowYsZ/BjwUxiccOs9d4cRf5jw40CNgW1LvHt65Nvvv2dZFn58fOBhW+nMaukALp+zfa7/S3uF5LP78ocjP/8k8CMifw78L4BfYjvdv1LV/6mIfAX8r4C/Av4G+G+r6od/4t2e0b32ti+RDlXvD2miearOlLNFGrX5+cJZqrlipWStXsUXagiAJSKm0n1pBdDrx7PveZUUtkTBUO1W6S6NzlktsTC9hUrOprtgrVe9uqbPwI3P55Lsj74tXf/qAgKAOGOoVKVdj479t6Sv/W5nK0oHL2p7leniAP+BiPznf/g9bAEOVgXrJ9/Iz6DNVazUFuxuzMvKtm7kXPq5tGvyE9+fy3359LL1UO9ZyGfUjF5XwvJ43TWDUs6sKSECS0qsrb+yqjabTNeMZvrGYlc3eEf0gRjizg5LubClTMpWcXPtxvomnOb3h+w/O+f3qryKqf0X27r3cd4dFawiLX3/BjUq7RUyHEXk/8RLzEXti0kHYX7flq6ue9Cfv6py/QRg9Pu0enXQpwMl/eteAye9iboDMjTHkRhHpukGVWU63DBONxZAl5mcTu3962WQdbSxveenc1P1AgK2i9R+0emf3d3oEvC1b3/1Hnq1sPdvYvfx48dv4YXmovRrvmMVveWl7M4t1hppYPm2ZLalUoszZwsvhGQBu/NmB5+r4FylWmljB72Dt0QzlULJLZnE/g4FF8E1Kx+tbu/NcKFpDaGtp+WTOkcHxlorqzl6KSUr6LWbjG/0YEBlb30txZJbE/83t4TOAnRtzvUWX+8dQ4wMQ/isCtVBn0t7x+djUfsAseNl52Jp47uP7X0RkGd71ucbft/ILmtpjxe0gUBVW9sX+vli215rtGbZrbqVsuu0CfZ8LcXsU2tFGrhXEao4qgSqixAnuuW4cxWco/qBzAWUqrXR61u11DW5EtVKTY5tWdDzGWIw61wtrSWpULQBAcERhkgtmThEwmDuHs51Knlz2Aj+IsDr+iy0L90cyF7kHorQik4Xwd/qHOICKia8WSgUbL5IEVxtXXJO8cWC9eQagX8HdpTgYaw0F5Su63MF+sCu+3MBgey8SqsBqWpr7+rzxsDE2udSs1BPFbasJLUp3FllvrV69cilf2fZ4xXdx5v28ab2vrk9qsJa7DNygfNmbV1rhnOCOZmDWGp6h5dkR/dx3rYgi37cPphfbi6CJcva94K2x11Nt5+4+/t6f1W3QVpxoZRkwAgOlRkRb3bfNbfiQ3s0hy0bn25PKrtjaymZWlxzby1Nj6ey98ldRU5VS9PHSKS0sa0LIsK6zu2xkLOdg51H02tpvZsiF9qqrc+CFGPNGKBSL+vk5fY00OKygF7v+X0bfx702Q+16IvNxau37Rdzv0XSF0e0MX+vI/HW6lH7dVvYtpmcFrPJbmKznb10PRjk2UdfAxX9/7jkOjyPh/rrLuPt6uQ/fU3/DvtbXo09s4bEdEIHgh9t3ysG/oRoOoYhtEJtG9ui2mKhCg3w2cdU+1m1vW5vB7wwZrhiJfCi+6K5+F4DP/t3BrJ3FIHimvpQi62LmjlMVcha2TCdoo3K4sxxsABFjMXXFYxAWhpq39VjotAgFHWUXZXH8h/FCre9tu5L0+1RMBjncuOc9Gb5zjmzXG6r7RYXoBg4dFZlrvY91lpZq4kAB8Cr5QyeSqRSRNhoRSyR5pBp8UOX3dgLnVxoB5+Ov+vjJfdFhIsbYI+vnBkY+RDwcSBME2EckZTIDQxJtZKKPYIq2p1BY8RPE/5whGGgtElR95ygaXVhek81JfLpRDmdqMsMKSE540smtuLfgDKqXhTjpMPEF4mAAWVAGFCC2vt3MfEeX5ZaKSmzZssz13Vl3daL3pd2sYrLsnTN5tl/hmfrSy8sANfz7A86fh/GTwb+h6r6n4rIHfB/E5H/A/DfA/6PqvqfiMh/DPzHwP/oH3sjEQu+bbz5nQJt7T7mHNA3GcX0JYpXnDN6oatqrQT1smjnbP3KpZhujIhjGgeOR3PrCWPgsBZqtYkmOLyHGNTWMOn0aRswJW3k8xOoElKk5IHiHCVmcjDLysenhafTRimVda3WNl0NpDLnAjtn3xyaosYmlokFzvuq3SAcEcS7PXANMeC9tR3EYP39tRY8ldKCoSCDVRBUWXMmpcJ5U6p4JEREBXHJPsOCwH9Q1f/KH3oPUUVLAu9xYvQ7JyZm5RRSKsxPM2lL3H945N0P73n3/iOn89za4NpX/6kM5PMR87tO4nc824IIzItAgcd15bcPDwwhkEpmWRcOw8AUI1+/fmXCt8ERg017LRUtlSjC3fHAz96+YcuZD+eZD/f3LOvAu/tbXh0HonMcvFm6O4QyTUiteCccRm9V3SHihkgdjHK5eWV1mYwSomNyJpSZW4upBVCN4tc2408m+4vMxct1vF5g7JpfQJnn1/kC9LSJY7Kv9Eiuu5FcQl+e/XsJbHieYPOcmHaB8X6KrmYLvEkoDNzdfUPwA+s6k5K5Di3Lie+//f+ypbW5XyTMiUKvIs8WsOy99a59jasgrV8ZBTy46JsDlW1aLkTEG8i8J9tXC7Q2/Svdv6Ga/eZLzUUwmjBQaksMtoSeZ7wk1rxyXmdyzjx+SPzw3cJyKgRxDE2cPQTXBDkFHx3+YGyFGB3jZM/ba4LpGUXBDe3+4YhHb6DloeKSVQTBYWKUipMVYUHJ1LyRczJgqotWYgloqpU0V5ZTZn5MlBWoA9NoTjZTjIw+IhRqWliyo+TCaSmcl0QqymmtLKk2QMox+tEcGceJGA3guTlMjGNkHEe+/vprbm5vCT4wTiM+ejqAbQX9fjPtXOvnwMuLzMWaK0+/PROiMN4EfIgkKqIBarIkUB21A+07OCB0ALLPFOESzKImcrhUcwJyXpg6KCA2ap1CruZyUdSRnGcTj/MeCQMSW9vUmgjneb8+Ti3JOydlLgMFYb29Q46RgHCUyOQiqpW0PnLezua0tyTKtkCt1HkhLiuouaO4CnkOPNTE8uM7qvekw0QaBpz3xOMBPw7mfjgFbr95RV5GHIXjzYRWa2eqVYhD5PbVLeNhakB/3nVVLvp/+mL30DvH29uDteu1Nq7ibH+u4UjxCS0zORW2UnhYjA1MY8/YLHa718o1sDxF4TgKwcEY4BDZBWF7KuI9RGfvZa1hthuWYi3hqsZqzCbr0UwXuCT2bXzPm/LhrBQVGGzee++ZRs9hsrXeJBHs3GsLkrM6lqzmUqXCloVchKLCubWYpQpPqzI3Zt7TqizJmEbnTTAiobAV11jPrlnjthVWLTEX5wghMIRnrV4vty/uW8QFADK31moaVOJaEn8J/J04gjeR+BAqwVvsWsrKsn5ANYBEkBFF2OYzeXuilkzSgNaIiM3x2lgb8xke72FdIj9+HxkHiENseh5KTpmP737Lcn5gWxZqXhFn4M18fuD9u28ZHkdSWvn48UcA5tMT63xiXVe++/YfeHz4oen4zHQVE+dbiivaqTDsVUguwGQHG00zS6nZrhl4BDNQsWKQObS2AMDAiRb3XmtCvug97Pex7++AVdsbM0Obro1eopVaV0o6o2VjPT9wfnzP08N71vmenGZqXlvyJnuc07eDPg4E6y7wzj+Lb65fA88Tvevft3fvz1yFwB282vskANlZmoLD+QHnjBlx9+prDsfXiNjegTp8GLi5fWtuptMth8OhdRQbQIlmi6GvACDV3Kysm4Wm5tYunRrwWPZ/r44XuY+lVO7vH57FjPt1AbbocYeBMXhqCMY6dN5i8JqtJZzCMhRj+CAkjY1Bf7nOVQ0w2hfDztpBiL29uwrNRoyNyoYVmFJeSRmolcNaOWwGVHztHK+ctDbOgI+ejPBDESjCpsL7KtwXLM6vGc227m+tJajWyppXUk544JXAKMrgAq/jka+CsmG7RValeocOnhJs/3bxsO9F4hyEdlv34lu/Dj85Hl8o578wfqzd2rTHpttbY/K8fs3tn/4Jd8cbtt98y8NvfyCviXnZeDgvpHVF48BNjMhhIr55y/Rnf87w9g1695oPT2d0KyxrYpwmwjBwHANHEZxWPr57x/v/179me7jn8dtfU57u0W1lqspXRcnA6By3zpNFWERYnI2JRYW1mCbUpDA5Z6LfqkzVACBRA0i0VuanJ5YffmDZNr7/4Qd++8MP5JxYl+W6O7NN50tBXy9JA21A7vfj01avF8J9/mngR1W/Bb5tPz+2SvWfAv9N4L/RXvY/B/7P/B4LcndBAH9x96p1FyqsCipCaIwS3yuO3SodZzTxahOvZJuy21ZbTzEcj0dUPCFUxnVkSz3AErxrFakLcI3QHBpQck7k8xlqIdeBrEaBXDZYvdGUn04bp7P1ipZswI+2QMFJay8SbzRlVUIIuMYcugZ+erJowI9vLCdHDKFVKoUxmMB0KRmpmYyJWfvWJlZLZpsLJRltuoozS1xVE7qVYvpFcH6Ze6hG8+w5iLRmEzW0vKbKelpYl42n+yc+vr/nw7uPJuTc3LiuiyBX73p1/OOgkC1X+uy/r4/a3kNRTusGjxC9o5TEuq0cx5Gff/WWIuZG5mNgiEZPLluiFiU6uJ0mvnr9ivO68e7pxP3TI1sa+Pj4yP3tgTEG4vHIcRgN+R9GE/1ywnHwDNEhMeBioAZHESE5ZZNKdooPwui8ub+IiVabmPTFCvKiMgJAUtX/9GXu4/XV66HEHsbsi81PsXjs+b5OVTptmz2ZbxuKdGFB4dqa2N5H9kCof7r0khZ6GQKtH/r6JjejUkQcNzdvub19zbYtLMvZHNvOD5xPH3n//ns0G0ikXTWuOzlI+/mKndPBns+rbiDeeqN99PjgcSHYw3sQo0jbldTL33FZZHpqfvfqa3ixudjmkbRqA9X6ktcFcStbTszLSsqZx/uN9z+cOD8UfBVC8TgVY8GEZk88OPwkBvyMwngwsdoweOLB3MvG28DhdTSK9SFwONo6ZRRpAykQv1eMa01oXa2Pft7Ic9577KVRlWoxVmJaK9tcWE6JujkGPHEY8c631skAVSjFkTazoZ7XymnN5KIsqbAmSwxjY/TEEHj16hXHw5EYPLc3R6ZxIA4Dr17dMR0MWAqNUdQDavtHm3i+JSifFHlfbC6WXDm9m5mOkcNwZAiBVRNOvYE+tY+vdnbP8t0LSFppa3Bj+dhJCmu1uHXwgra+BpGeBCmlVJacqOrIspJoDKtQ8dGCRll015BxOBweRTgxcpIRlQDHN8j4BucC43jEDwdKSXz84e9Z3n+LlISsCzWfkFoI60rYTCvIlYKUQsXx8XTmvRvIznOOE2sYCNPA6198xc2b2/b+E8fjRFlHvCrHaSKnwvm0sa2ZYRq5eXXkcHM0R8ztTMptXc1mu20M2pe5h947Xt1M7G1WArkxdEsoODbq6qmaWUricZ1JqZjgcm72sXoNIFvFF5Sb0fHq4IgejgPcjV0Y9NKyEr0ytHaw6GAIBgGWbG59ls90l037XV9XTaq1AT9ZeVisAH2MjikEQnAMg2cabQ6sXNpubZWz91mzVcZVYc2O1ACcx1WYs7F53p8rT6uSqvK4KnOiObAJpTa2Vi8KaEukW3FOGi1QVHaB8Zeei9ezqu9Ldt0M+BGgumYIALt+i8WWDjx4lwkesoOcNtblnpIdpdpDFdORyAm0UqqnFmtD7H5DIo5lhtOTsq2RD6Mj+EqIYTeFKCXzcP+ObX4ibRulbiBWCF3mR+4/GIg8zyfev/8BVK3Vaz6Tc+Lx4T3n0z1Vi7noSNoB5Q4OS1exbaBEr1k7aRV8WjxduoC7gQz2Gm1i5LIz4aGnmv3v22vNCewLxDZtzdQmUkxvX8ptfb8qU9VETTMlr6T1ifPpnvPTB/J2ouSVWlIrWF1i+B4ldEYDAt61ttI9hLjETJ+doerVu7Qk/DPE6Pr79Nirx08GFotzBD8SwkgcJl69/hmv3/4c030LCAHnA4fjHeN4IMSJcZzaOTXgB2lgp9q+o02vSjsTKhk41NsZazEGdGee2fFy+2ItPD2dLpfh2XURyhiJTknVo1oZvGcRK5LXYnb3q6ucQ7W2LicU31vwHEGdaRpha63CriEqQMAxNODHV2P0AJylchJrF1s3ZdkKUuBVhVdbZRTltQijEwYRjkPgOA4GPCXHnI0RfV4L323VgIOS0dTMSGhuwLWS0kJOGxHlqNp0+wJ3o+er6FhUecqZUy2IF/QYqYOnhoj4iMfAV7op3FXscMmjno83515uLnbgx9YUmyM+RobjDdPxyOHtW25++Stu7u7I88ITjrkBOU/LRl5Xhptq32cY8XevGH/xK8avv+KE5+G8ks+bfc44Mohw8HAQcLXy7uNH7v/tv2V+/5716SN5fkRLZqxCKLbvHULkLgYKjhlhdkJRc1VbW5/0qDA2oPWohVFbK58aeFRq5eF05gFhWVfevf/Ahw/vd+b9Nejz+RVnXyN2oEcvccCz5y8v/YOOfyeNHxH5K+C/BvxfgV80UAhV/VZEfv47/uY/Av4jgOkwtuSut7S0ZEs+/3lH0IVmAWpBq+uilg39vspA9+MaKevWis4JPrdgrFq1uFRtItJdl6P1x5rHKN3pS7HNP1NMtLDpG3RnrdqqGVZJbD3f+yItrfLRL4jbA/j9rMX0frryuffeLEPd1TVoyXitTVEfh4oBTykXSiqkXHeHrG4d/ymd7w+9h69f3+xgTy2VoqZFtGYh41iXhW3dSFsib82Gr7XI/c7js5H8jwM/z67d7zraWxQ1sVcw3aAtZYLzrV3LLGlLKVRvFY7a721DBqWBAVUrqWRCdmytZQxVylS4Fi403aYremMTVNNue2JFM2NJeEcQtappo0hb4iam9wS7e8BP3JO/4g+4j2/e/moPOrSBLT9FQ/6n27Xks58N9Ll+TQc4L7f6+d/K89f0/+jo4qevaTdY0X3OOBcYhpHpcKTWzDAeiHECEdPdyhdA6jJAnj8nV4FtS432By0Z9t4CKOd9m9f+EtE9u099jl8BlJ8zqP6ge/j61esLRtG/jxpTktaK05kNVqE1Fx5BoFX8tULJNgadVGpriWm9hsZcyJbomZ6YMBxjG5tur+RI9S3IdBc0ql2Gven0k8BtDz1q03DKau0njdVJa9dxTaC3W6bWaiyGXJTc3fZ6cH0FnsdhIMbAOI5MowFB3bXPqlChVWZlH0d97NqJXxI8m8PyeVD+AvdxvDmwnU1BYJs3BCWt2VzNOna4V8r3VNuA4YYUdKYPXA9DaQDCLiNqhQdpt7dlPRXTgRJn40ZyNTCPQiW3QoNaqx5YYmqjg83BJkIVAfWIelCP4lEJFJSknlRtbctqLBDXmA1NigaPiXUWMWte00uAmqytFsmkJbMtCe+VIAO+tWo6Z3bj2lgi3dVKmytHbUmJ3d4OLlyG6Evcw69eHXa9uH3oN50YVXaHpooYu8kHpLnmbaVcbNbb/a7sMhK79Xnydk+9M90f0a7wJURfKdW+V20Cy4K09nRafGLXvI+nfT5pd/wyRlBu0oCqXfDcW+ty2yNTS/pRs4hfqw2lVC1Bqmri0KnYe56bS9dWYStd+Lmv36b5EpxYG4NYldziIGEcTCdvjJ4YnLEPg52L945Pjz/0Ph5uo+0xe+B9eV0PyC+zq13lPVbtY+vScuCkLbK9EKCNWaomNPwsGwCs4UABK1TltIJWlmXmdHpsOo8WR5RSWefZ9CTzhpa871q1ZnJaqbXYGGznv66zCaGXRC0JmkU3DQi263FZwvfiTP+3O9y6K0209hVV+57TvtBPhnHy2eNT9vcfeg+Hm18+Czj6cm4/9xt46Rqw+dB2+n4f+9n95N7++bHHMdrWZa7HivaPf/b6SzzQY5BPU8LrsaHQiil9T9f9s/pSLohYXBLCQIxji1EiIgHnAjGOhDCY8L30XaTSdYN0B3/6CXe3t/bQnuO05z9hJXxyT/6KP+A+inO97ej6FZe51iUUmpNSEaGTzqqz9rYi1g5WRali+5+KIGqwuUhbd9sl7l9bgSrW/irI/j1Bye1RGzhftWkAIgziGFQ5OOHohFHgxsFRjBly40yQukIzTmh7do97+8LTYrae/5rGoOwgHw56R33tOayIabL53tpsRTz5pA14RyH08xj1pe/hOAzP27x+6qG6u6ulUthybqyn0gqaagUro9PiYsTFAaeCqw2Y67IdgJRsrZlpoywzZVupaUNLeQb0OrF7G0OgjiPVLDcRb63tElYbX6pEIIh1tfQ8QUXIqkgpZOdYt43Fe9ZtI6e0gz7a1p2fusrXK8BnrV4djLyaWy8B+sC/A/AjIrfA/wb4H6jqw6eAwu86VPVfAf8K4PXbO5XWeuTolXiavW/db4xtLladE6eoemqsuFYRMlYElOJakGQD4yKK5na0bNsSp9MT6+JZgmdpIsRaqyUHMRCCMlVpVe+Rw+1r0EoMZn1cgTUpj+tKrsq8NseY5uZUcm6gTKaWAgLO0/QG3L7Q2sldJ0bSwKbe6mULkQE/PbQ2SqpqZZkT5y525gIijpIS8+lEXje2XHmaM2sqjR2l133wL3IP//zPfq5340jOyvq0WFKYCnlOaCqkVFjOGyUXHj88kNZkDmtG5do34X/++P3H/rJPnEvrQyqVeUuNlQCaCuuY+PjwxMPDE+sQKdtAGSOCUreMpkwqhdTt3LUyryuPpzNb2vjx44dGvx8YnTJ6Z20TvqnUC4RoTC2GgI4DHBrq7Zv2j2Ktjirm/LbWplOi5hJW7XvkNr6vj5e4j3/65/9VvQQQ/+jC3//2d7yis3z6zwDdfQWu2T6fM396UNV2tx7E/NR7X+lJPUtsq9iCLcrt3df8Ugvz+ZH7+x94evzIup75eP8968NmiUyffs+uqVhA3sX71KHSGXqt/9uNDOMdx5u3HG/ecDi8YpzuCH5ECC2pun5b3QOIvpFfr9ovcg//5E+0B5VeAkbZTtTNAnWttn54V5hG4fWbgWkMlFXIJ9AMNH0cVE2NdbGdUZwJqopgwUOwhPrtL26IfkQnwR0GbqdXhOiherQGrlAFVJVcIilH0zRxVnk0ir22diHIi5LOmW2uLOfCtlYojsPBWwuWa8CDKjUr85I5n5K1sC0bc9psHY2Rw2S6XK9eveLmeEOMgdd3xvgJ3jGNI7ExtYZxNPHiPZBsgYO4HaR0HTwToV6DfC94H6ebW/32//0D0zFwen9gPATSmpifNvIG2q5dCF2HIbdAtGKV2qZrpHUP5vqRVViLUgQOano7NQjqC1USRZRFHffZEVUIuRLXhCPjJONlwYkwjsJhsmAyE8lECp4HP/HgAlWigT3FI94xqCNWoRbhYREeZ8GpQ2VA/BEnmcErxVlr4DF6JlEWhKUGsjpWdcybsXrrKjzWJ5b7TBgi+Q0cbkxryKtnGCfEJULKFC3gKuflxJKXJgJqLD3TercWzya9+iL38C9/9Ual6z5obVPAtDacV8Qb8zOXymneqH5g3TL3jzOPD4l5sTU/5cZ67vcUOETl4VwJDg6D53bq8UHdv8PgK2OoeFFuBuV2VLyDSCGastAlo+ES+Fa1dqvHRVkyPC5wWm0YHQnEMDJEz3EauDvEBk45cnbUkvl4WvhxsbUmpwYiV0xkvelsbNXAnqpCUm9tZCKMk2NqekjRm+aYEyE4+37Oibm8egvO727sXGLwHMdAfN7q9SL38c3PD5buqkLpEgHlotf4/POaSPpFlkBQYigMwaPR2p+Cz3Rwds/rWvNJL3AoxuoTHKoeVWFdNh7K2ZxK5498eP+tJX1CYyBW5qcz89PJnIvWBacbANv8wGPdmp5GxIfBxmbOOxsi5wWRZO5WV7pRXlwD367DVdsD8P15acB8A5eb3mXKFjcZ880c6vZiEK0woBd2Uxek75v7S9zD22/+w13HYYdwqukSWcLQWCzUS6ZfrZ0wek8V04Cbxok8HaCuJOee96N//vmtdfPy80+d+aUQps+evHzPq+int/l3JNL+8uphY6Bic2iInhBGhnjk5uYNb978HOcCPkw4PzYAP+B9MFkJ7yg1A476jG1otu6q1ZgonfFTrNXL3Otya/HSphH1/OK8xH0MIfYQ1cYbVggahqG1n0bi8YiPHnWeJUSyBSxWkFMraInUK6D/wtw13Mp07Hp7l1RFSo9XldxA263rbaEsVJYGl5VtQ1LGV+V1dvyZTBw9/Iug/IuAAT8Bbnwm4Th4xzQIDxXeSeVbEkmhBEf1FnS4avFRVcuTfQgMIozRMwZHEM/qAg8OVoU5O9YCJXj87cg0DQQfiIcBH83Z0kffCA3yaQjzO4+XuIev7u7UmJmXgprrTqICkjN6OqFVWR8euH+45/7xnnQ+sWwbJSeOQB4iZRzhcMTfvibevWFUOLbClqeaSHOtbL/9yPtf/z35fObhb/+W9HBPmc+QUitkBMMLcOAc49vX3P38GwieIs6YYbnw8dffcn86U7PpEPYilTphE4+Ko26JejqRnOP904mPzpFLZn56oreW0tfAK/RXO87L8xl9TVrpGEYH0l8K9IHfE/gRkYgNgP+lqv5v29Pfi8ivGvL3K+C3v+d72WIsbi9+4K9AINW9QOJMndncZ6rDteezd/RVWNVgT+2oINh7YwFUSon5DN4ZPXj1Ae9M0+V4PFCrMI6VXO01QxwZfetjVpP9QpW0Fk7rSi6wpUIq5QL8pNQ2v2QtWQLjGK0VpNnZDsPBFndx7Fz9JsQG7MAPcFVJqdSyNhtYYVsz55OhkOIyiCOnxPlxZltXclHmVEg9keOZgJe8xD10TjgOA+e88XjemJeN9bTw9OGBbdmgign+q/L08EReE9rocr/nevOPHP806MNVTaeC9cpmc2mTUqnJWs4eTzOPp5mcMlIKUrLNy5TRbK0juQF6pVbWlDgtMyl7Pjw+MEXhdhp5ezzw+njAO8fkrR3Fi+k8eAcaA3UI6BjafWs0ahxRrWkiFwESKZntspTaKqJiAuXXUMcLzsXLdetBhPbPuFSw4LPnP/+5v0aunu87rS1Ye3VJn7+/SCeb9orZFVOtRdpWSOvB4yVWkwbKSHWIRI7H14yDZ57v+PqHX/Lh/ffM8xOn+YlaPxow06ySn40lZQcrmvKJBeAIFasQIQNxuGE63jEe7hjGW8bxiJMBJFzE1fuKfpWAf5ow8EJzsZ+8iODaUl6rp6YmONgFdqUyjHD7KjKOsJ2VuVTyppStUpIBs7XUHaRVmkMNRtev2Nz3LvDmjeKr4Iu1Jo1TNGHg0scLewVYsqeqtzC/M6SurnStkDdlPRW2ubDNlbRVRE3zbJiGxjDMewK2boWncyKXzHlNLCnhvOcQjL4+DANvXr/i1avXDCHy+u6OY2vpiqEFvkJzUpRL4C0tmdvZPxesrld4rlexl5qLecv8+HcfGA+B5enMcAgtCWvgaREL1IPuNvS6JxYtSKjG6LBrK3sSZ4m3iUYmHNXHZteeqM6SoU2FUzHGRaiVoMnaAOuGrw0guHUE7HotjKxAFuWjVz76QHEBxZtwuHeMOAYM+Hla4LwasyOOkcGpjVdJqNtwokxRGAMsKjxkx1KEcxFcUspS0SWT1xkJiTgNeAZEPV6Eg2/unQghLuRi9bVlPVMWJcbI8faG6Ae7x7WvMS93D/s1h4swJOIbIw5CVOI0oKr4YWNRh1szD4vytD3xeDaR8mVreoG0NUNg9MpTVIITpgGOk8f7DlbbKwdfmRrw8+oAa1aih4MXbnx3BNOLdgt7DZ81K09rZUnCaVXOmyVaVUNjDnimYeA4DuYYtyqLM52gx8Vxf28/nxdY1xZ3teJFG6EGzDoIweGDOa8ex8g4eqITbibHGDoIFAiNueWj23XGDuNACPbdx2CA0EvPxf2Mm5NeBy70shC0z7usFU5sTzc2ZbU2tOCowZF9xbtsQGOj79p9LeAM+DFdnxYHqgE/ANsKeWlz+oFeor5sV4olrC3ek51FBHk19yYDiVyTGLDWNN/3P2lMH3fR/RKMceW7UGpjgJqrl83tfWsXK3B24MdkD+whorhg7aH6yf66/6s9Ft5Bn5e7h80wo6ucC9YmSNPdEq2ItPYvy7AxrSxzbQsxEoeRYRjIW2fHXACqn/zIntRpfQYS/VP5slwxIvoAU1o3Qe3aOdcRRGNSt3hDVK33E4d3AyGMHA533N69xftIHG7xYYJPeAcVhwmLK8ZhaaBzKyBorZjGT3Ouaq1etVbTpGndBdoAoMv3fZn72OO8Pi7B2ujGwQo2wzjgxwnX2h8358hYgu7EI2oM0r5rN1ie/kW1MSG1qLEv1TRkuwuQ1mLdAlrJmil1Q1FWlKW7faaEpIJX5U4Dv3CBO4S/CIV/L1Ymp9x4uHGVTZTqAtU5Plbl3xRlKM1NzHuKM2DYNb07VRsbDs/gHcNhYBijmQCo46SwqjBnYS0C0eOPA/44EZwn9BxUZNeM7fNPPx1Sduf2J19sXxQIIVzdzxavduCnZJhntCrpdOLh9MT96Ym8zKwpoTmbQmSI1HFApgP+cEs43hmzikIBQkmEnJCSWU8P3P/N37A9PPD03bek0xN1ndFS8D2ep4HY3jO8umP41c+QITaVPQN0hodHA0eLmfI07gILQhKhiJhh0PlMAt7lwodsmsXmKKyfPK7SAuVZLLmzzOj7ZSO06NXv/5jAj9hq9D8D/nNV/Z9c/ep/D/x3gf+k/fu/+30+sLEhLdjmOuh+/nMPej+jhbWOGWP42BDuiuk7VRX2VWN/D3dJYlWVnCtrExtet8yyJIJ3qJpNYe+2lqa9klKx9rCi5GRVDa1K3hI5pxZ4m+CZiFj/eYvcXBMjvCxB0vaQC/BjYtZ2/sVWdKrWpjmTWJaNZU2sW1O5d9bmkpO1LHW76x0iv77eNmL+Evi//MH3sL19LZV5WTg9rWzzynxeSWuywAELwtmT+6t7Ipe3eT705ZMP+aeO37Gb6qW9qOffraCzV2JKqaSUWVdr1zIF+KbrX8xSJNfWGpYN5Mttk+vUzlq7Jo897zqi28Gd4PFB0BiQIRgAhNE7s4DgrP8Wh4iauHR7LxVLrCvYQvX8G77YXOwATUeUr4Ge///5+Qo40r2B8hOwqbV8iEOdJfYxjAzDgVIKQ5wIcUS1EKNZJ4NS8mZ2jYrxZtWo0iGMeG+eDKWBS+N4MOaei2bn29qP2M/3KmTTq+X+Gl/SF56LXK2nPfFUZ9GOc+BbRVWMfTaOHm8yFJAqOUIZKikUtCg1V3IqzY69UKpd86JGZaZTq/c5YGwMq/43wVho7VoWGKUm6Gzi071yri1otYukxXRuSrJWr17gvIAfwi60StewsY1YXGuv9J4QYwPZB2IcTCsthr1dzJK0FgBd7SltG3r23KfVrR1kfP78y83Fom1vqYgrLemyzy07Y7IHpJfrt1eF9jdiB07teunOmysKWc2NIqiBmoK5jKTm7lSKsTVElUGVqJYomnFBA2orJFUypg30xEyRRA2mZSbOs6ZE3Fa0JJbzmWXd8BSSr6RgCkHOefARj1Kl7vN58J6D92gWpsEzVkcVs5jXJgxbcyGvG+qEEjzFC7VWs4sdorVh52wtu0pLRlsPU7ZJ09qPX+wetst/WQuuwAL9JAAUZB+LfZxbDmqFBvsz21OKXDQJUzFh5NI+SHvbX5tXXtTs3539WwMQmryDdFHoPt4NLDxvzWErK6nseTA726DNRecFamtF9xVfqrl2tfawXM29y8Iet8dc3WlNGiuhAz/T4BkHA37GwTMGY8/ExngWJ7joWotqcyH0rWLsvtBcVLuWewvGpxmSfPKD8gnJ7mpt6aCJ6LOHvUz3t9jhBDEsxnWgrJ3AMzjgMqQuMS6X870KfXjOEmmrwP5hCpftC5FecLxed7k4nrbWLtrzNMxGHMbUcs/Z5fu1+WwTxBIv7Xv4sxj1he6hATt9c7wqF+06P1eLZ7uufV7YBTKWaWvt7qjY7/y43xWv6v4dPz2u9xgbz81T6LOPuVT/r9ePHkr3dUZb/Cbukz1sf1yLu+gn46l9Rs+iGuPH2ry6fo+1g/2erV4vch/7/TDgwnQIdyfO7sbZ9vTLUiB0oLm3QleayzLdBVoN+GmAqTY30g4IUfr+etEvqprNUZLmyHs1EaXNq9r20izW/ry2SW1mpkoCllpZKKzV2EjeO8uWmiCzqIGlrvSGQQN+ghdciBACqpgRQ3NitBxTrQ0qGJvLO79PUJX9al6d86dX+lqu4eXuYc9/+/xC2l6kTdcvJ3SZjRywbSaG7T3Vmf18VQ8h4qYRfzjgmtGDyQo0N2St1HUjnR7RtJEeH8nnE+V8RpujcwfprS3PgH2q7b1aK7W9zoBUoaRsHUhtPbcicANknLMWQu9JImy1koSWI7Yc7pOsTT/5eV+Z99c+j4v7z/01P/U+f8jx+zB+/uvAfwf4f4jI/7099z/Gbv7/WkT++8DfAf+t3/9je8uPXVTnWu8lGPtHLOiRKrs2QQhCrfZftXp8McGuDuSXftFow7gWS6AlcBgDPjgTpi+mJ3E6rZRyj/eex9PCw9OMd8IoykjFiTaWkK0Fj2vltBlocG5AR6mVbV1J23aVPKtpXjhHjAPOO4Y4cTzcADY4ijWO8v9j7096ZNmWPT/sZ2std4+I7PbZp7vNe6+KrFKpASERhD6AQE00E6CBPgK/gjjTVF9AE840FCBAQ40EEAInEkBQAqESWcXie5fvvXvvaffemRmN+2pMA1vL3SMy85xz78l9bkHQ2sidkREe3qzGltnfzP4mYhO4lMKUrEx4KYVpmkgxkVJk//jAOJ6YpokP799zOOxnIMnXlLU8mYJrAq7lk7eehuOYAD4F/sNXGcNcODzs+fvf/YFvv/tAmTLpOFFSYdP33F1dWTqFKr13DCFAyUyaF4FZWxuvV23rSxQjNnVYpa+pZEQi7+4f+Mevv6EPnm0X2HTG9dE7T3CerMq7MfJhjBzGkYfTxJiLeRaS5aLGbBVappJQCQxOjMw5eIbbHZtdD71H32xh1xENMaPTgiAEF3DiyDkzdEJMVnkmFZsHZ6CotWtecS3+WKpXy69W1ar8LN87i9pBqkdTzt9fvf7hVmZwpymCy0C+BArZEQb6tI3LE8KGvlNubj7js89+y/G453QamSYrQ3t93bPbdeScebj/wPHwaEZiBR26buDt28+5ublDFWL1+njfs9t9Qj9csd1c03UbvA9QORmszLusprfOEn42+RR+93f/BbziWjT7zSHZWxqLBDgNkAq+V1MWPAxXgZvdgOBJUYgnR0lCioV4srTVNCWmk8mSFBPTaMS7MRXGyeLOhp2nSCGXxPF05P5DoDt4C/OPZryP48TpNKLVq2qhmoUpTkwx1k4xZbpkiKfM6SExHQrppEg0hUWo1VGc1BLGxukz5cyYLLw8dD2+t/StN28+4fr6hq7reHN7x9XuykLDhx5XCawtslJmgFZcBcyq0XIO/LToPFPsvJwZAK+3FlWgePIEh4eEO1p6L2IOiDhlplMkx6p4l1wV7pqysCBizeKblb3mRMgCh1j4cMr0QbnqHYQNwZnymIogKNNxYtqfoCi3QXjTCb0XrrWj76w65cPoeZgKx1T4+w/f8XcfviMWobieIoPt6b1VMhFVfDzi44neC/J2h/NbvHiGcE3XDXjNkE6QRtR73lxdcb3ZcCiOcuPpJ08qLaRdQJRpf2Q6HAheiL1VePKdZ3O94ebNNXGKPN7vmcaJnGH//kQpJ5MRrqtOk8RrjaGiRq6ujSi0RTqUuvZrvj+FHDMOIYgjuEDf9fS9koul4eTUVEwTJrFgCq4YZ04slfNwlt0WyePFIi2+91b5y4uyC8pVp6bPiKX0wHrKKPcn5f5k6Vjvj/bbixlJMRlRsbgNXWdg+DY5inYcfUTlkcNkUatWWabuo6FGO4nQ9xYB452wGYKBP17YbQJDfb2pHD7COVGuLTkrvtF1fjYAfU0Re+21qGCcUjpL7Qo81VRQ1+RHPbYoUqObijozCqVWfyzgg1qqX8mscRGzpaXiL27mXsoqjcqlyva658kCMK0NB7LO0SWGJdUosJXeoCzf9Y4ZbDTCCvvAOFBsj7WIH6mgjjcuJQGx8mo1EqumuXmhH+xvSzXyZ/t0q59Q1AA1VyNu217f5mJOhdcaQ+vIWNGsim45agQ/M7mzNOCiaAXoikWaYelE2+0WzVekaT+DP+f6yQ+BPsuzXR7fjNDWV6Hr6LoO62Sdj0vJbID5dU6sU94b8jO7w2aA1FUgwmZKnoE/ajTv0k8LACSzjtLGzMidI1pS3XemGv1zXiXxovLsq61FEaELHSEENpvBijV0HbvdrgI/jj4EA4lZYskUiDWFJJVMTAbepJyJKZpxno07rkXPal7S/hrg3f5RYaQlsMAi9ZuAkhBA4IjwHVa5Y+vMBd6rsimFrUJE+W914r8rkb0ID87TX+0stbLvcF3lTqwRPwWzWXIFZUIQYqil61U4YWCT4NhiDhc/bHFdB87hvKc4u9N5Cqwno+gMWq2tsJwzrzeGJkNsfAx02YiymUY2FMJ0pDx8IIrgvn/PXR8Id7c8dIFjzuQUkbefsPmbv2b32acMX36B3wzmWE+FLmVySjz+/ve8/1f/FenxgdNXX3P8h38gn06Uhwd6743DJ1vwxhwhXe3wuN8zffU16r3Z0VkpKbO/fzCiFeeZFCY1nqix7xn7nuSEBy/scyRhoF5Lz5yzHlbAr02vtQtI5zVXmoysDs3l9bkj+bXaT6nq9Z/xsm3+P/9zLtq8q7MxJzV1y0nd6IwPwIlQnCVeqHeIFFQdna+5myilhmhSmMNZBWaF2DssL7zzxEmZsgmr42nieEqIE46jpSx5J/QONqK1lLqj6wyQOqXCKVlI6+HxwH5/JOfM6TRyOlkZae/dDMpst9tKqugIoWOz2ZoZGyMiCbDogvbsJUfilEgpcTgcGMeRaYq8+/4dj/t9BYEeGccTzjmG3ip/2UZmUJpSUFenSNv3VdhtOoD/XFX/pz97DA1u5nQ48dUfv+Eff/+tXd+KJHB7dcVVN9DVEu+dd/TBkVM96DVn7zPtDDNov9R0rJyVKIqQud8f+Ob7d3Te0wdHXwnRtsOGTT+QFd6Nkfspcpwm9pOVjHaipFzqj20esRTEGSgk3uP6ju56x+Z2Z6yctwNsOzrNlDjhc6rlXy3tMOdM5yGlyilUCUlFjO9AFtDlUVVfdS0uIuX5NK75qBXY8+TrPwG5W3+3vV7OyeIJrSdcK4ZniuTl3c+AkM7cENopV1d3vLn7gqHfc39/z35/wDn45O01t7c7Uox4+Qq0o+RClESKhc1my6dvf83nn39JURjjxJQSRpq4wbmevtsRfI9zBvw08lQT6tWzskLsmSsyKf/kn/4H8FprsfUtlu6mApICMgXIHc5lhIC4Qtf3bHdX+BDQ4ik5oEWIsTCNBvZMY2LcGz/XNCZOh9EIRMeEP1h0ZNg4M15LZhon9o97QnDEKTFNyeTj4cjj474CM56ud4jDypZWq8bsOY8WSFNh3Cemo5JHhSxYtRJv6VhiKldGZ7L2mBMAwzDQdT1913Nzc8ubuzeEELi5urKKXSKE6rV1Few588hfgKtPIkzX76/AT155Lao6q8B0yHU9JWACzZRsKXlz1M/MJdFAfl3ydubzmbLYIhQdtoftp8xU1EKcpTfPFQb8oMrjKfLwYN6utPH0W0fpHAWhDx3iHXlU9lHZT4Wvvnvk736/Z0qF3AxYQCsm6kW46Tqug2foO3abwO76muCFNHi6fkPIia4U/BQJznOz2bK5u2avjn0M5OSZsvJhD360ypuHvTlEghfKJhA7z+Zqy92nt1y/uWE6jaRTQqeM5sLpceQ0ZrwP9IPifYdzgdccQ3O8WCTcOdij5lVsnBi5WCodVk2uC4EuFEZRtIxV8V5UvVQtdxEhlcRUVvK0AkusjC8vSqj6/K5Trnp7z6KB7Jg8K5vCfoLDZFFEsUbuNPLgnJNV23JWlliwyEHzbDqUwClapdVWpVW8oxsCm96Msqttx6Y3r/Vu49lUsGc72N5r/CRhJmtuxkhTlEFr1SI/8ya6cxD21daijU81Dur68t7hQzdHHzRQSsEKhFADBtQ4+6xAiDfQJ6QanT3vDDSboEW+mL5bU54VpKV5NIAGFvLXNjOqYqMiZ4CvtN8VMGPVly2qp/GdnMu9atyKrVknVF3WUvNWiibOQ+jdDP4Mgyd0q2ObManLvTbS50LlyqjGZtvSQ+dfdS0agZ3Q+ISonn7DVhZibalriKqDGM+UVYzbDBtyNMBTVhEzDcz5MdBnffxa8TVH2lK4oO97hmGo+1w1CVWJ0dbGXECmFt46V7hm6KbiXC0dr2VBsEQ51ON45n5sR27z3o7RUkBtDzL5ZdkQRVskkK5+5tO93r5YI326vmO73dH3BpBtt1urlCyVcHfuhwbYtOxH09VjtPS0mCLjdLKCPzkxxcmepRi/7JKqV01ygZqBia9AvQM6ulrtSy2EP5jcOwl8EDgBm8pn2qkwqLKhEFX5XS78fSqMznHcXdFtNgTvTY8Z+qrLVRmAaQHzbiCFLMX26wZCicO5jqFyvgY/4F1AxaoKliZH54jhujYbxngZpYelZr3eWqzzHAiV27FHGdJETyakRDmNpJxxU+K6C4TrK3u+04k8eeT2luHLL9h++QX9209wQ494h8+CzwVSZvzmW777l/+S8d079OGB8uEDJNNjgvPQObJL875ZUjHeKiCdTozfZ1QgVp5aLYU4xhn4SUUZpVBEOPWBaTuQRDio8lBy1Usvot9E1suszs0lIq2J7fXPOtVrlp38dFnzU9ufVNXrdVrDZFevpW32S/oXFRxaFPD297KBmaCrGyNUstAaUqYtEkCWMH9vVWpUISYTBMByTickB7mST3Wdp0+Gnp+SMibzgk1TZJqiecRiJlUPXVFzMCiZcUycThOlwOk0cjyeUGCKRkpqPWB5uTlnDscTp3Ei58z+cGQ8jcQYOY2jRQDlXFO5luedUcX6zjKBWgpVW92v11SVFKNFJEUDqqSI/WiteNbyX8VIGfu+s9zbKGeL4ifgBefXfuF9mX8vxrasP2lKiCyLK5XCmBJZlVyE6C1VqOBIxcL6DmPkMCVOMRJzmdn/LYezVnWbDX7MG+idhW32HX7oofNI30EXQB09ijpm4MdVNnoDKSshbrGQxEZ06c7rN79O02X+NMXkZ6Vlzej2y8fA8wDQy8evU7p+0iPRsrmd6+i6DSllum5D121wDrpuS99vcBLohx3DYIaWkHGS6ftdfX9nRhwOJM7nbQZBzuaNq6osS4WElkNdg4KbEqGXwZ8/v5lIbMpiBc2tpAWCt1L2sR2rxJAxyoBFNoKBlk6UUCAPVrYe51AJlFwqqaejFBi2wRT+YIpIyglFiDlZxFpVsFK2qga4gmTLt7curBCYuBpya4ZwTuZpQfVM5i8/C0DTqquJYKBPb8BP33VzGLirkQFzOo2r9Y9eAnbgYr9pBpF9Kk1erT1mr9qa4tper0a5zjktywyf9815K21gg1YjpaUv1PBkDJCINWdoStmKANRohcbHMubCWJXEiK4UT5n7B5EK4tVSuLX6hv2r/TOvB0HFyDdVTO5OU6QEhx86Ou/BeSRvcJqRFjGQjZetk0LvLZR/2AjZO3xUYvLkUqM+ZDHY4xRrFK5FlpkHHIL3BE8NE5dXH0ZVK+mqqjUFuM7tmQC1zIBCjKY3xKSklFfykJlvZdG7m0yU+TqtiswS8VMVxCYn6zRyokwZQjL93kulAqGCPpWQfsoWRTRnOdTIxVxWTo5kxQegAUK1TK0z/h1LdXaVw07Y9oGht2iRoaZ0+Zrq1XWuRlO76ixr6Vtu0QlkSdXgct2yvPex2jrqb3FUUFPFLbqz/QOsyMDatnJYRIwTnLdqZ40rzQpItXlbx7oVJlGjQG7gQn3SWXeZDXdZfuusMq90KmnAjq3Bdi7XUragZv9onVpLqodxudlz+2A/9uU2Ry0C31fQzgdvoE/lEZnHRda6/tJUV2DIbNi8xqgtFzDSe1fP3wywmrJczStLB7uUu8se5Ly3vaSldTdAa56X7XLP3/wyPfXi/QoOugpk1nPMEdir79hx1H3MnfXVctamKy3OjPk+51mzPlpXX2464PLsC/izSumqnoV1lPgLwM+rNRErBW7AuK/8Xg385Wyuz/OpvW5DfmEz+uq88WrzVZQZsG462jwCTeyKUS50dYV1EuiwohAaQDul0Y0lsbp8J4XHAgFlUmFUIaEctDD6wuQcpZJsi/N1LtgcW+yZZU2bziRzVdH5GGlVo5c09kVCnkOE6++dCZhnjnu1JmYXOVVLeRPoVOlzYtBClxIuRciFILDZbJCiXDnPnQv0KXH99i399TVhu0O6QMoZiZE4npgOB9I0kY5H9DSi4wgp4bTpP7XfLp6y6fEKaEroZEnTOdWooGL6hDnOoIhQvCeLVYqLIiQRklbnGi/bp/WCZy/PQMazNafz5+tjXrv9BYAfWKakTT6ZUcjqkS3OQkKdmyN7Wr649w4NOivBNIUlNyI528Asf99KjYdavctVxSfnwvH0yPfv7skp18/NUOiDsypNTui7jr43AyNmU4KKlsq3M1laVkxECxmnle/2zhHzB+4fR7qu4+ExcnvzgEI1itKsAKaqQB1PE1NMNYroZMpxzpzG03J+ESsDW102DQ1ssIBWYc9KzL+2bpRz5v77Dzy8f2C/P3I4jCac1GPewFQ5cTKh83xyd8N13vH94577KS4WxjwP2j3//CbPvW6KBVCc1PxM4TFGvtsfLGS+bmwiYgZk6MmqPIyJfUyknHk4nEhqCtw4ZY6nhJdkaV/FhL30gW63pd8ODJ/csvn0DgkOv+uQwZFLoY8jKRvy3JSKUpRcvRJmOOQZTDHg5+OI5ctUL9WZC/GFYy/fBJ25BSr4twJznkv1Wl4LIk1hKSsD+3zOyo8Al8uxbYMUFM+wueHm9gu6/sDd/SOHw4j38ObOIn5yTqj2DP0tORemUySOmc1my9u3v+WTT76glEx/2jNOp5riORFTZpwmHvcP+NDjXEffXeFdX5WMUI2WlVCnhl1/BOUIABVEK0eRdlAGEEgxMZ6E7BUXImHzgHjBh0DoO1OgvOBrheAuQLczMFpLoJTB5mMSYsTSE5xx0CCAn9iPJ8A40OJkKYqH05H9eLDKiRroNdQwdKtqJyKE2islQjxNnPYj6aRoFvpgpWdD4/oQW7dOTREfthuu0jXOOa6vrtltdrV61x3XV1dGANn1dN68YD5YOeqmJLkqP12L/qkTqc3ZNbnzAhKsHBCvP4AgI1IdAW1/dBKwmRMpOZFTnpXXul3Owr9kpVRiV9VCI03VlaVwShE9JbwIY4qMcawpM0ZMCzBOkVM2+GancFcvlGrouPMe6YABkEL2QpJElHIO2PUO11ey3sERBit0cDwd+e6bYsScuy+4unpLcEp/fc2go4E/aaTsj+Ac277nky4Tvad/s+XYDcQp0n2XODwYL56OiRIL4zjx3Tff8f7DB0sxcoHN0BEC4Hq2jc6LSn7+ini6qjLG6gyqKdulVAdBA6WqjD+NmYd9JKbC4z6SYkRLxoky9DY/G1hUbZhZ0BXFvJWzoXKhQGJe4jZNpwKHZHLRwbyXtOiUGeCZ1ala8j3Dccw87CdiUj48Rq4eDEU+niKnUyLGTB+Et3dbQOm6CgA4YbMx4MeJ8feEFtkTHKFy+Vg6mKtRef6Me6vphy2N5GxdVuPmYwA/bV8WWda+RW7lWrkKohXOwjtz3tg+J2hpDoBCN3jECyknhtHjQ40KaoW8VnlbpVCdegvoNgMWzWhZ6TFtbqzHXaA6ker40tCVlW4Nc5SJPWw7I9WgrFHGq3Hp+oCvkeUN+HFO6DYe31Uwb1Ojz53QdUulL+OEabvyovepao1qW571lZEfShpt/Oq80qYoOzDi51p5DJay7sXsChW1Yh2bDZTIMGyq3u3rQOQXr/xDrTmgG6DRDxZJpKqM4zjfu66O77rKV1YsOk+L9V1emNNtHThLOQp9h+8DeKGIpVqrZJBsIPyZA6rNwRrdplSy5hoFo43EuVaRbHw35TziZ4XkvWoL3vPJJ3d0IbCZo3yaDmG3b86GBl5anxS/LC8nQodHi8mdEDB6DA2kHBa+nlW/NJ22okV2Lzi6yonXSaATi34snfGoSSXPP0phUuPKuy/G7eNLJuREBt6XwodiKUNx2NL1G3BCCJ3x8iAzZ7/SQFqThSscqi7pJgdbarwxh4pK5TStQK0u+8GTdgEAvXYTESR0hJLZ5UJXCrcp8lk6caWFXSlsciYU5erqls2XX1CGLZ/3Pb/ebIk+8Nmvv+Szf/7P2F1fI33Ph+MBxhPT+/ccv/6afDpy+Ie/p3x4j3t8xCXLqJAQzEmhlg2TpcyFF3Kxku9FC2k0zsKiLCldmDMk1nE4dR2x8xbl0wUea6T0Uep3WRGnX5q1Z6DPc6Dp8lN02fPOoodeuf1FgJ8ZlGivRWYBZpO4zLnUZkzWtK+aguVd3Qw9EMxwdiJIbqSfxrlhVU6aRyLM1RfMY5W5v39kmmIlBzNFog+eobNj+6Fn03cgLdzSGLtjBXtK9YjFKoSbZ0BEmKLyGEZC8IxjYv94BJSYk026UjidItNUlcEpzYrhOI5zRalSSYWD92y3G7qua921zKv59zmyP3uFXrGVXNg/PHLYHzgdR8ZxohEUizimZKBP0YL3juurHarmSfb+Hog8xaKf9wz9Oe05Ebb2kKgTigjHlPlwPCFAyolUrORtCB3BB7Iq+ylxiHlWVLIKucBUicG7kIi5zIivhEAYesJ2oL+5Yri7QbwjbD2ucwYkTN4qvzkzwBvxmeYyE3Q2AMg2mY8D/Cy6VhMuTdFmBmxged2U77P3fyKY8XxUj0WdiLS9R1evWR3zw/vSIheVIo4iAurouh27Xcb7gaurT7i+fsA5uLq65upqZ0TD2RP8lpILp2NkGhObzYbb28+4ufnMSp36gA+dVQccMzkbWfHpdCCEnhB6UKHvFcThXEHEVyG+3OOlx+E1mwGvNo/IHskdoGRGTgchgrn9uwxe6YfA5rrDB0c3OFxnxKm+C3R9V72GzhQsxCqFFY8qTNPIOB4oxQzZ43SqPEAL8HOcjpyiVWrIYqW+nYilfWERF2aEgmbjForHSBqBEmoKZC3pXEWFq9UtnCp9P7DZbvHec3N9w/XVNSEErndX7Dbb2Xhr/EDN2Fkbj0/SuC5en0Watvc/yuiBqRapgjXG9eCQOZ1FqBxuOYFz5l10VeZWG87WZfM7SdtYV/uEMtUS2w6IORKTn/fEFjmbKESMh+MAjAgBi4KV6pWUIEgnUDLF23cy2VJEKqGt78D1gveK3wh+MONxHCfKfmLYbrkrHre9rRE5WzqXkDQh776hHPbghU0H1wFyL4RPApvrgfHkyUQkKHnKnHIhTRbtc5pOFApDP/DpJ3dsB5vn4h2puFqhscr7VxxQRYnJnATTZPt7KVZEoqhF9sQxmtNpTNw/jsSYOYxl9jCak8rSIk23YJbNs32FGWbtmq21CCObC81MgHFlo7aUcDtIZutoBhHbXwJShCkWDmOiKDweE49Hc0CdTpFpnEi5EIJwc93jBDaDXzh7KpfPmphZpIK/rgIs1akhIrZWz9blskesHQnA6vPXbw1AafctIhbdOcUavVWYagnH4D19V/nvVKAWtVBRfCeW8pZMxoorlCyUtsfNAK85LUmtdPeK+2a1ftfgT6nk03aeZY/03kAbgCVCkAqmUfvfSIvtdNXgpzpYKkluV9O2nBNL4epqtOQM/Di6jSd0NVVp6AhdpR2oVAMiUEqlqZZzncKu6aquszzXq7XKR2OgmUddJbjV5hwqzAk0Z7aaVsoIxYmj7wZ0iMbVWaMq5tTKP6Ot9x8fQk0hg2mKs77f1rSBQ30ll7Y5EjwUKTWtsPYzC5m68x5XOSbFNXugzL9fWjOmCxrwoxXgoaZAUdO79Cy9q342RyiUZ8/7c5vzjptr4+kbhgHvPS3KsT1/4zHSNYgJ4Bd559RV4Moys0w3M/DnibG+iEWjHhHL+AjqZ+AnSKATc3TnDnJo389MWIWLMcGHWiGsVQ1WhVGVsS5Y3w34YCl+bi7EYdElTV+cwZ26D7s6h9eRPeubn6N9dAGMz6Tlx1NiXmgC3uNFGYr5i65y4i4eucmJXi0CyAND5+k+/wx3fUd584b85a9hu2V7fc3N208Ifc8pTuxPJ1JOnL7/lsPv/5F82JO//Yby+Igcjwb2iSC1spuK5cCIJIu61Ba5GdGcyZP9FFWScxaNBUTxRHEU54jeE4fBKnk54SCWLDqqEjGhLq1/XxIQqmcf/hgI9P9DwM/CdWF/ypyT3ARze3/+vCnf9XUjka3OEAupxYScMXxjyH09VymW42kGDJQs5rlZVZgxPhXb9HIuRMkmoGOaFY6WZ6uqxBr2PId1l7ahKVI9n1HybFyPYyT4E0AFfRqJc2JqAFItM150SSGqaFidUMuKnZWAZrjLxfuyAh1fGfwx5dQ8eF3n6TuPVkCkqHF/xBQZY+U7qsZXcI7ghCCNIX02Uey8bQNbnmR91Rfu5umD6TynnjtiUaRMsTYFKlUAD4GS8sx/EHOZw/fn0H2oFb8M8GsRW0UV5x2+D0bUFuoG7CshpDhj6/cGCti8XcI4n4uDcm2OfxRE/txQaMqazkvzHKhZC6DLv8/fX6ZqA69MLj6XDrYGdlbg0mr3Xd/T6kpPr91Ut9nocSb4xeNcqJwe4Fzj9hC87wihJ5MrYGNeyFSjekpOTFO09JFkERct1D+lSIwRVQh+wtLLzLPrzpbcsjj1NRfiqs0pETPQZB7oYunP5rVwSvEZdVbGvRTFB6HbOErxuCCErpCHmg7gnc3fFfAHRrK89gjSPmsKhtS8fMsTr558NyswzeCs6lol0lNSUnKqfxedDZrWg87VaoFeLUIzdHadGgrewCLX0k1WYH6LDmjRAmtZehmNdgkKmfK1Gkt5WRr9uU2ckWa3gttU0Mf7ULnmPH3wppDTpBimiJNQjPyT2p8m3+rJ5ym37LtL9v7FLK2yXWpEhu8F9UJ2UlNcrYpGU1R9UDMMe4vIauk74oSw7Qhb4zAbNj39EIxLthQ0ZQqZaRrZ7w/k4Bg3Suwr36xihLkCFMXlbB5bipHQOir/XrA93xhroRI2pmIltKdpwjuH4imuR3ydg05ffQxVWWTi+uSyAlbq1DP+FGbS4BAMEEAcWR25CLmU9kgr0KcaLTXa2QhZbbwrS2LdVIWnokafKKWz4SCrz5ej55TmlI3k+TTGCoTkCjpg1QI7j3OmuPdd3fe9/TRAwgzeVsHIxsE1Qxh5Zu3NuyAt6nO9Js//fsU277dr8uFFv2MFntmebnK/SilQS+1y1RnYxhfc7HQyO7k+ozI/33KdBkNIBS/WRoLMEUJrHRCkRjS4Os7nTpqmMxtZ8wocUpmf2YBkqZFb3sYu+Bm0a5XUGihmY9nuX8/0Obuu9ZHt665G5LfntqN/yE76c5sCWnLlZFtFFdX+toifMnP+LAq0zmdo+5gVUVmqQmppYGQDzH4s8uxcb5r3JlbygmUuNx3J9p0FHHTOE4Kt/ZKV7JaxdWIOSxc62zN8YI74vFzUq982dVqftPndwBw18GcGWlYybr0utMmi19dtbN93s+x4vtn1V7tb7dvVedb2pLPndermZ7Mur2vuTPQs68apFZtwK31gNlfP73gRBQXEtb70tj5Ua53eVmW07Qnnsu1MR6Ht+RfKxzN9sujZy/qaf6rO/eR7+rE0U0CaLtbkvJE8u1Lsh0U/c6Gj2+7w19do+9lu6TYbEKO/iFPksH8kxsj48MDp4YF8OMDxgKYE2Wx3WpW81Vy1arVG5G1VmatzRrWSaMOEclLjEE4CyQnFyZLaJVa5LcMSVbVc5qJb9elrXcvyZ0Ceea19tBEB/mIcP7IoJ03jbIK5qjAtZ7G4WqdAK3kuZtirU1p5TC3gVl6QVECTddw4Rt59/2BVvVRQtQih/f5UwZYK+mDfzxmmVEnuxoT3E7Z5LJtzK+etyly+DUDEUHVBcDHPm+Q4Ttzfh/roCmLfHafKD6QGPpSquWkrRUn1kK027obMZxbhptWDhuqT8HXR191avffc3e3YH6/47O0VOU+cxsz7x8k8mPHEdw8f2I+B6+2Wz29vGULH9dBx3fdozkxZOeWFjHIth9Z3Os/9lWB+2p4KMm1yb93mPV/IIozRCLUBkmaSpnrgEoKcipHJru8lZWU/RrxaSP3jceQ0ToS+o9ttuP70jn67YXNzRbfdmpcsSOVtcFVZ9vOG2XhOzINihrRUAWCRVPIDz/7zmikvsihj83VaNE7b5C4+b6QCnI/LLATXGqBB7rNx0bhebI63b1blrMqEtWLd5v2i5F4aBovyWLKBaUYwGxAZEKd03TV9f1s5fnaEsMW5zDAoqp4YE9MESCZl5f2He8bRPLyH0yPTdLJIgXEyHpsM+8cHSgbvA+NpInirOrHdWaUiM44tPHzedF55e1WUrLnKIeOYSEVIyZGLZxw9j4/CmGDKiWM8kDXhO+i2tjd2G8f2qjMQaAhsr6wSYegdYVOV+9Dhu66CchlV4zYqOUOyMfVqESGKnXM3bOwOm1JJHaQagVAKxFJIozIeMseHRJogHx15rMZwLojW3PxghnspVumq7wxUuLm64Wq7w3vPtu+NgLh50Fp0zwy+rsGfOr9soi28FxfAz5lS/1EAWOgGz6/+yRU5wziad7fzA9v+Cu87tsPA7fUVfRc4jUceHz8Q40SMI6dxT86JcZo4HqzgQIoWdVKy1rnBvK7snyLeDDYn5gXtggHX3d2G4e01zjuu0kSKI5OD0Vnp9kBBwsA2BHRwXH/Sc/M4MOVC570Bfd6zfXPF5naH947tYGk/mgrjV49M345McuTrb7/mw3FkM3TkL+/Qt1f4DD6Cq9EuZYz0ZAqKy4meTO9h2m3A9RYpdrIUnJISMdYiCbUPvHcMmy23bz9l2PZorgZfzs9sEj+nLevbiYA3wGIGZXGoekoxJ9e2FLq+4Hvj0Eq5MGVlO3nzPFZeHdM17HbN0WTOKcWcFy1FaCaVrkr8Yp/pLOftz7bnioF4NGOngQ21iUUnH0cl5cz3Hx6BYtE8FYgMHvqrHnc9GHdDsCqoIgt/zxzl0DhjLl9Xx9ZLEXiLArwGR9by/7VbM7gbXYBVYS2lRdgsYFXX9Ww2W4KvanS952maACO6HzZQSiBnB8VB9rSonnbOXMd6lpX1kZ33SOUySzW9x1JvMykvvENaq4T2g1Xeo+3bVW9ay7RmSFtfmjNTmp7pQSrRtpEtY9WbSq4Rm2Gp8FW5tWwYrI+ak6rpDRYlw+pZq+6cV6C+azLpFZsWSj6BOhyW7ou0+d5cjI3cWVh7Tksxm8LVVC/vlM1mxzAMpDiQ0kSZDGz/k+5aqBV++3n+p5TaVkQXunrcskc5qenbCEO/YRisiu/RnRAZAYsc8iHQ9T276zs212/o+g2+25gTQc3umT2LMxlJHbz1XCwmK0rOtUppIz3ObRAXJLrqq2as1uqSr9xEpFJtmIanLcVulgllGQFdqm7Znyu54aARb3m3yEWPX13sycVn3cCAn/U8lbnS1tq8skhmO6erej+o8dZVgdxiekFmncReL/ewhoDWOmMDfxSLClqAezcfvX4Oi3drMpX53p+btlr7UJe/XqUJpiN7LH3SqxAU+pQZUjSe0zAgztPf3HH7N39D//kXyM0d8sWXyLAxkGc8MZ1Gvv/2W/7+v/tbjoc95ZvvKP/wj+jpSH//gc3DPT4mpOso/YBzMtvqpVS5OUZyzoxj5FR5eo8F9mL23D3KvWZL3fICfUCdI3WB5D0ZI3SeCjWWTiqQtwS12P677FfnkbjPAz52jy3F66xK3kdpf3mOn7O3GyBUfzuHtLLWrvm0agWE0hRZNRAom/fLKmo4irONNMbEw+OhhrIvHoDTaazRGtUArxZpZm2Q5os10pSjlYA5hyrmYxYFC8ZxxLcw2brB2r0thImGA9t35wqUYiHQzdMirHJ0LyI3G1Ffy+dUnl3fP7s5J1ztBq6vBm6vN5xOG8RNfDhMZC2MaeLhWDjFFuFzx7bzbIJn0wViDEBmyoWXtoonc37GDn4A/OH8mZ9w0l948WLWqkAriUxqRLylKXxQrcP6ypSZXJTTlMwg9Z7TFOdqRr7v2N5c0W0Gus2AH/o6pY1E0LycitZ4b61cTyavLYJCZuBnESUfDfiZ+62Y+DpTqpfXqufl3GvP1O+ujOOz6V/DkJX67MtqXzZorSDQ5X21Pjcvy3lImwFoCwC0XHbWR1rYvXSIFLzf0HU7nIMQtni/QSQTukRfQJhw7gQ4Slb2hwOn00gpmdNpzxRHA1lm1n7hdDpiXptAigXvT0tIOE3plRmQ/VjCXGmk464ag5CjIxdHPAqnD8JxhONUuD+MxDzhQsH3GeeVfuPZXHeE4Oi3Hbvr3lLANo7+yuGC0A0d3XYwo8EXvLf5rE0RpEavNU9+jcZBICUDIixdciFwLhkkWbWqOBbGY41EGq3MPOrncPKWuhW6YNwWmgneDMfddsd2szVOl9ARGnmvX6d0uTOFmmboPmNovgT6fJyoO2shCG+/3DBNhcNjJsbCEHquN7d0YcObu1v+6je/4mq34/7hPd988weOpwOn04GHh0BME6fTCect8mc8RbIWkBqZ0aoEtWehevdrF3hnxQddUK6ue66/uMEHj3t8pDwkkhaiKLEkY//te4beU7JjcxXY3nWEXOh8IPgO33luPr3m6u0tPjj63rg/ypQo+yPTfSblwof795QPR7abgdttx9XNDl+ULkOomRg+ZrxkS/srmY6Cd8J209UiDJ4wjLjeeChyMb4p1cLhcKJo4eomsXtzx7arUQu5fBRDpTVLUbd93Kuzijw0p5OBNMPg8VkQb0BQLo6Yla5zczRqjLlWeYSYaoRxhtReF13eL1b2dwZ+qEpn5VlZopFktg9aGqVWY2CWTkrd6wpjtN+P+xNOCl3wyNWGvjMuwwbqNf5EN+9zK8DBLetvIddeH7Pqu9X6a3/PtzWPWQOFPsrw0fa/phuW0tKwq3EnNYrZB/pumDmBFiAxk7L93alUwM8ZD2IJoFL5n3SWiyk2pb85Tmq6agXcYzTyfFUlpWUOaFFKsT4cNp5hMKDDUi5tgJ1raaNLGhswGxsmX72lRDqp1ZN8jUo/EaPpfX2tJGtw2OLwLKp1Pdkcb2N2zpVmoI8UNTCh7fILQvWKTa0MudYUr5aK1/SGFvFTx7rFRay97s4JXd/jROn7vqZ1d5SSnzVdfkprFX9bn5QawemdRWG1vUpmYK7NcUcI/cz3k7OQEyBC1w+EvrciB5tr+s0VXTfgXActglTP10rTlVbdNc894xNqqV0tqrfO/xZlVpZ+oqaAvSZYsNyozJX+2o0+dRY/c1091zcRsw2t373p1Rcy5/nLvzwpZ+N+xluWyBWp33X+HMQRrGLeHF1U+7zJYKWZvud67aIRN317/WyrPpD1UefX/lGn1QqgeNWhlMqrqGVOT3NAKJmQM15qlLYPhO2O7eefs/n1r/HXt/jPvsD1Aw/39xwr7+3j/T1f/f737O8/IN9+h/vHPyCnE1dxxI9HtBS8CNp1tv5X4ErOhVx5dGNKjCmRVDkiHBCSwD3wve2aNOJ6dY7sHammgI3ZeH3mbl/Nth/uOj1bd2vQ5xwImofko7V/C6p62W+zj1abga4V9eb5d7a5zsr7UolAnFoZPCe40haPCSerQCG00FZVSLllh7a7kPNbqk3n/555/5nXl6fQZ49p0mKt9CwmfgN95j1R2tRqXqflnO35WQmhGSqQy37++c05Ybcd2G56hsHT955utJBFdAGeHOBdS1MIDF2gD56+CyQFkVSNRjnb92cj/uK6iyh8+jwWndIWni7Pvz6PVu8ryxJt4rSs3n8al7Hy7FQQw+53MZzaPJxTZHwduzkfvOVDFyPIa8R5KVXCvFZCtrC6EbuW6kI295rNdq759bIx1nU4gzl1vekqlHsF1jSP3tI3tf/lcozaF5pwM84saFWB0jyHmyLmawrP4lpZb2WuvmrrRtDQod48lTlHSkmorrxXq/QxEYzkL1sFqpRGYrR0TF98DevO5uEraZlV0vj+TP3VkojROLlKyXRdj2rBe09fMt53FTT6SMDPeiOZfytzCn6ppKNZ0CxocjVt0cSpVq+290qOAtmUrbBxxCgV+FG60TyW3iuhq5GWqtWobStKKuillOpMSynXykWNW63O6QQkJY7KdMqkWMiNQNqEHnMqRZ1kpa6b5nV3zkibvVsqdzWA8jx1hFnxaa/bbPop4M5ZismrGiir0zorTmCln+3vdpNd13F1fc3NzTXiIaYTm3FgHLcMm65yTp3Y7jaklNg/HlD9QIypKjuNIJeaZqB0TuicQas+gPe1xHCt4mMcJYK6mjaIpVC1/gwddF7Y7jpubrfEXHDi7Sd4Qh+MI8o7XHD43pw0bnDI4JAEOil5SqTkOJ6OPD7u8Zrpp5EuJ6TYNQKAy+gxoYdIKUIaM1OEaUzEbOBUEbVrdcHWu2SkCNQiEcq6CuMrr8UqU1ztL3FSU8PFiNcB7yqPj0LXFZurlbMjFxt/MFAgOavy2KJ6vNdK7AqpOrVSVpxbKonlrPUZV7JgFdGw3v3mxIVL0cqiVxgRsyNUzp6hD5XXxiJ+LLVPCK5FeHAG+Lh5HS8gRFtz8+/1uvwp3Sxytvd8jAW5vsaSLuWWe24yCZkjraSu4fPzVPAvOFxRRI2gvgE/ro6j984IyKsB3vxOzls0RzuXVH4S72ulrWawF5MVfd/NERJzdSfamFikTou4gro3aOUwqYTOrUqbpXIZINmif5tDsioMi87e+IbmoahaT2kO1RYosvJwqzmbRJp8fcVxVGgZAlaJChohxNlV6thqDduQhpDUg5w41LV0vtVe9KS9oJ2u9LblGZexaOfyzs98ero6j3MBqSBj32/o+2GWAWpVbwj9gO86QmfAlHN+phY415fWr8+7QOsLnY2dlaNqDQjQ1sPy/uw8/JhWql3hwhB+RvFZ/fFsms36qNV8PZ+7z7Qmo1bftQVg715+dx0Ldm6NrM/Svrvaic7RqItZ9fTbK438/DN5/vgXdfKP2IQKdonU6p6F4jzZBYrLuK7H7a7w/YC7usING1w/IBXwRkC0oDGi00Q+nYiPj4wPj8j+gDudcKeRQS1Tw1Vqkabkmy7c0rpyJUav5dfFUraiMy6fhAE6SS3ty9XPweIssprN2Bj2zFBdr9iLMJCLOajV5nqS3lVPo6s1+LGH5i8Y8TNnpdOmp7SdsgpfV3eXUkGcuYSsgkqpBnFFy0TwVI4AWv6mbT6nY0SBlIyEVIuVsy3VyJBqRNhVaqvGcDN4n97/MmBPPlo/E3W7abK3bbxqyvYCWFRB3eYsLABQEwFFyS28URrx6bxLmd3tFvBIVoDIa7W+C/zVbz5FNfHZp1fEdKRoIXxnneFQOhF659h1gTe7DXdXO2JOfHp7TRcC7nBkP02kfM5Uryz9tR6LJwLwBUG+bLQLqLNuWfNZOcS20RaxnE5oY/Vcny0i3LslrN0MJsUFS9kYth1hCEbmWKyk8EyWp4VcwZ5SsrHK53QOIrEozqbQJys7+upNV4rPrOXOiro9r5sHpoClpa36riGTs9qkjeTcI97Y9Rbh1taqVVCLcWScjpSSOBwfeNx/oBTj1HJVcd1tr9jtrqvn0IxKoIK4bUha7rAzr1fXA1QOr0yMEykdyXmqfbsheLG83nTkcLhnGk/c33/D+/ffA1o9pMBqdjrn6PoNnQ9mKLuCYN6D/eM9cUr40LF/eE/XDXRdx253Td8PtNoTl5v4K47krAQYiFhDR5NAChA7dOrhNKBRSJpIjaPHKeKmasxHun7EeQiD0O0sQjEMnm7X4bzQ98KwqYTA3hG6eeIuquXKoMstsk5r6mS2qDoj1DNP9/dfRR4/JEoWOsUqZjgzevquwzlHKonpFOv8Ejb9gHd+LuPuxNWS3TZH2uZve8qiCKyVtZcifdbtHPT5OLF3IooPE7mA76xKifMFnEHSu5sdf/3v/BO++Pwzjsc97z98SZxGq/SVRysOcDrwsL8nponf//4P/Ot/9W/YPz4yHicOj5YCFgL0nRmQA46NmPfNixJcsX7dOjZXRvidoiMdHSkrYykcxkgfMnKTubp2DM7xm80d5fMrYlHipLXikUDfQx8MOLzqGK4CJSb6/YaQe/JYmL7NpH3kVCa++qNyePyAF2XrJwaXCAI3o2frHNIXvD7iHgqnoryPhe+zlad/PEROOYFAdzXQXw3kVDiNln7sNj3FwUSa536uUQev1RxWGEJRineme2iZy7WrOnIwD2SflaHraqGIzDisCkVEi+DLxdK/bd0Yn1xzWKVUKn9XIabKU1AW3kGTxW1yrecZtMhTL4v3uZH2NmNUKpDTdZ4uGAh+tenYbjp8fb0bAuIqMFfTfpbUhRoB2NbLvG6WqMDZ8G3A7I+2GWlYqV+vvxqlGg/rykUiFqlhj7ICmsWTYiangvOC93aLpWSM69EiuLrOoi6cBLx0SI0sbZWZjIPOAJvSOCPrnttAoDyXkV8ZDXC2pVi61g/3yZrj5/L9mQC/nkdLwfmO1FXwy8kC+JeFkHxOVxFmQ1bnyJHFOQsV1My5RhopoYIgr9kM/Ew1jb7qc1oQjJB30SdXek/7ZqWMkNonQrBo0xAIoSOnyaqEPXvdtblvbY4CEamluy39O4TOOMrWzgnUUlWT6UHDbst2e4P3nt3uhu32ClVlvz9wPB4BjEuy8vpsr+7oug0+dDXFvFabm+2ti/tdAYctHaZVsGtRP2fRCJVUek4pnUE85ePoNueg07otMmNti63Gsem2T0+5vJzn5svgz7lO0HSFy9fL38sdLNPq7BTnWA0zLDTLQgMWZJ5jZ1bpjzdZgKbz+/wYmstPuR2hd5ZUl7vM5D0jwmmT6EPH7u4T+t/8FcPVNZu/+ad0n32Bf/PWgB/noBR0GtGHD+j+kfHrr/jwd3/Hh3ffI/d73PfvcTHSbTe4q52R0gdLzyoipFIY41jTu06cTvb6KMohBJIIj13Hfd8RRXhMmcdUs1FWPEFSdCbRK3o2yvPP+t3WLiN5FpqY59O7VFfi6CO2vxDw01qdjPOGvlLEcVCJsSyLyTMz1LcYZZgrUjosD1NVUS94dRUdL0xTJtfS69OYzOu3unbzLM93NIM+s0g5u+u2IFuazvI48uzCpi7iJWqpeshUmUlPaOkry1VmO6W9s5oV6tozmFIpuuqPKis+hkcsBM9nb2/YHx65vRl4eOzYH4KVXa535MVInHvvudr03GwH9uPA9XaDAmNKFdBi/s4CIKx77kJiPrsiVpvw2cdPjzUyLr08q3m1z04pL9A/aAXchOBqaLuzCAfnwHeObvD4rvI7lEa4mtC6yHOKlkOdM3E6UbIRZrYqGuZZswoSLSrmtcG7y0ditUmuVRdZT6b1mqlHSHUVa1u/FUhVmldL6ldrTJXmqkwXpvHE8fhAypEPH77l3fs/klKyfnQGtNzevqHkN5Yj7KzENwgl10oogJF/2s8wbMj9MINmBvZGSp4opVXvK/OY5TQxjQdOpyOH4z37wzuTN9L4wxxd2OC9kSb29EbW6cGJAT8lRw6HB46HE94HptOREDr6fiCniU3lukFem1PkuaFsHn+tvBSgufJKJI9OAY2FnJRpNEL2XBYCc+/VjBcHYVDCFsQboNntPM4Lw8ax3RnhZ9cH+o2V6UaelzQWsUA1Wu11KUocE+mUSFF5fJ85HYzA13VG3IvzeB/m0PiYrey1iOD7QFdJNxuxs8h59a5ZkK4BH1krZyvA6gIAerZ9BFm6NEV8xgUDkF0lhWwRdMNmw+dffM5vfvtbxvHAm8dbYpxwUucqynHc87B/zxQnhk3P9+++wwfYhwMpTqSk9L2w2QjeQY9jwNV9M9vu46z0er+xFL/SOYq3NR5RxpQAR+eUzVYowfP2uqfgiAqHx8xhn2tZVGFSLAJnE+iuekpy+NsOP3boMaPvT6Q0kZPw7l1k/3CPD8LVlbDdOnoRlIBKwI/Q6ZFwhEkL+5T4ULKVVC1WK9JS/wY6HyzSTITsEtJ3ZAdZC5lCbrx8r7kcxYiOFaFU31UptoO1suy+hZ4HKF0FdbpMHxylRsPFrhUTsKw6ZQF+GvdPjEuRiammUcYKgi3AzzNzu1ZcE0zGhrosnLM5ARZ94iqvYNfZ+jOg1aJJvAibwbPpLALGtahroeo2M13nDJvPXbRaW0sk3iuOwWs0oe4nzZg0MWHRFxYF0jh+wMA3wRyOTX/TGgU5E3jXtF/vAsH1SAVASt3Duq6n7zc452bQvoF8sYI9s2GOcmmMLn8vsctrh0szKESYyYoXXbPpHDVKpIlLAYv08UYWrFX7rjqoESM3gmN/YTTXqkm1gAown7+UBixY/zzvovu5rRlSgDbAo4JTq8gf0/Wb4TZT5tNS3p1ziLoKli0kz89N2zNjr+pMDeBse4/1rwfx+GBjbutAaQ7slAtFI4Lx2m12N3Sh4/rmjuvrW1Sh6/cMm6Ppst5XQMnRDTt86I1bULzJgZVt8bSbdFar5yjs2Rhdp3pV/W8+dtVtVX989QjK2qnPAT8/DGL8acZzi7CoZ356gLwsw37gFuZfsvp71j8uQaYV6KPPOpfO3/mhR1tAn3NZ+5dqAgRxiFOK71BxpKBM3cAkjs31LeHzL+nv3tB//iX+9g53db3ocKoQo5E37x9JH95z+PobHr/7FtmfcPePuFx4Iw53e0PoulrsoVIfaCHlRJ75/yZLYQ6esZZnPw0dx+2GiHCMiVOt8DWzRqni1XiE5WxAW1svhuWd+fUK9NEnaV3nwNATTOEjtV8e+GngyBrkMCuzLkJZHVLBgJVSrm2jE6vwtT6JNMCDGk8kbVMTlOqpqRFFs/LPSglhfS6ZyZbX7yvUKulVvK/QCmG1yIRZ8LeSuTO6v0Jk3bMyp96dLjbLejbMdky9XmVCWdkyi/B4bVtTRNgMHZtNz247sNtt2Gwmgrd0r+Adm6Fn23dsNxs22y2b7Zb+MCJ1MeqFxleH/4n8bcLbt0ogYsp98+qntPKosnx3XbJ0ndNOZXWHhWxQwRjdVyiurIecpa9dnUtDH9hte652G66vr7i5veH65oph6K2kZlUOGvldyaV6yEp93SJf1sJiuWhT9OxvM7ZeuylqoBMCZQm5bgTqCDXSjmUu283NCuV6h9UVbYaVKu2qopfJJdfvJYomVAvH4yP7wz0pTTw+fMfjw/ekFGvqTiPQzAipVjfyK+DHwp2tNS4XN4dDI0uvppR4fPye4/ED3jsOe+i7RIwTh8MHjsd7xvFEnA7kdDLopHr8xLXqGwnVwBRtPFL2QCalnhgT4/jINI0451FNBB9Iqcf7Qk4bLBWwXKzxV2p1bBZso1aEqrwBXQjkriOlTN9XWkGx6oKSK4da5Y5oCijFiLJzVCTX2SIFcYJmIFskUNdDmqohIs8/XikLiWmqKS1alDhl0pjJSYmjec1RyK6QXa6ExSPHk5XnTNnmTeOvaJ5rWZHFPssPslK828PL6vccldCOf66LV+vgYwxiKcp4TMbdMUFO4Hym+EhRT9aJmCemNNYy5N6q1AmEWuQg5mhEn2S6oWPY9mzGwZZogpwyXaf0gwGfoUDIVdYVMZRBKkF4yrWilM4KKVS5ZK9oRQrmPraQwFmOW/W7+p11tTYnuM7jEpWAW2bMgPqjXsgBEkJSC78uqjhVXDGiZ3G2F4DQtRLJ4qwPnFVQ6lVxg6cferrB43orGOG8o+QXJuyf2ea9X1fTTZRSHQWmhNr7Mz1f1Q28SJU1C9hQAF91QF8czlkkWMiF4AwECt7IllWVbgZ+quyroHyT6xZxwJzmEwR8lR0NoBBaOqdUZ4RxujgR+s7TBYt0Cd50KcSismcHwSp0aPn/fNnM79ROWqcUP6eqLEvSjIBWtbMp5B+nrfWTle7XqqjV1Kr2aYuw0qLgWmVLi/JZQJUayVoniNTuQpfX6/fs5BUQwMbNO1m0hJXu3IxX25efsPjOFUShpqO782e7FHuLIWLXtgB1qWBPNfJl+Z6sXjeHKbp4t+dekst054+xIbZneHr+Sz16rdqbQ9CeT2jyK9WoylTBqvP7b2l/be4vUfs2DibXGseSWCRwv8G7wDBs2W63iAg5R3KJM0BcSqkgrQFEPnQV0OlNHnSRUNOnWzTr7Girz6UVkFn0tVW/nAE49oay0utWYGEDX7TaPOtjnjN4f7nWVh6sbUdrP3Y/zdh4fv6fHynL758EpizRW2cAkMj6ipzd7vzexXy9uMZstc6n/vPWzyWY9lFTvsRkDsWhYsEcxXtyN5C8p2y2uJsbwt0tbru1SB1l5uFClTKeyI8P5PsPcNjT58imFNSB9p0BMn0HoTO6B4xaAVVL60rRHEElkzBa9xI89AN4h9tu6a5sLfZjZHCxpk5b9e+qYZ/b1lLWQ7zqy+XFOoJnTptkLV+fAX34ZVbTL17O3dJHyqwa1Jp3UAWvtkUzKxQtf7qWhVRFiptTm9aoS9tUXVUeRaFTQ75LafwGrlbiWsJo3UyotghOoG5UVRGrBGfLk+hsdLWvtYgNW/zNo1VDZyvw42RZ0N4toBZt84b17KmUMva3eWXtcutqX62a7WwErnr7tbfWEDyffXrLaTrx2998iguQi7DbfkcfHNe7DZ+//ZSb3ZZfffEZX/7617y5ueZRBf/Hb6ycabs5ZOYXmN87m/X2Rxc826HDe8f1bsvNzRVOhPv7Pe/e39fF2eaKsLvacn29NZ6VvmMYLP1nGifiOFnEQUxMyULs99PEcUrz4pTGtVOHQqqC7sRAn7efXPPbtze8ub3in/2zv+Ff/LO/Zne94+3nbxm2gxnIsoA8aZrIOc0htTSPSjknxTOAWys3jV28kYG+dtNSmI6PZ+/NkW9Sr12FkrR5DpSSSGnC0tYmpulYU9easIW+HxiGDc47Q9pTrN6kRcHZ7z9w//COFCMPD9/x4f3X5JyMM8Ibofl2e8XV1bV5tGpkjxmVi0BtuewiYnnuXU9DQVSs/Pjh8MjxuCd4x2F/w7vvd6QceffuWx7u35PSxP7xA6fjnkXumMyxMvABJ47jyXLonTh8sPdzyhyPI1OMCC1l1FIDtu+v6Lquen1NBrxusyoSBavOZET3jr7rKj/Ihnh7Qz8N9ENv/DAxMk0T3bEn5URKVrI+F5uPuRjAkqdCjLXyiSs1DIWZX0KkpoF162iZOrdWc3rlMJz5SlSxCIdU0AJxhOlUjdBygqLkNPLuXUBLxHvPZjPQ9z0iVmp4s93gnTOAMfiqZK8Mz5X8nQGhlcU082C8hFg96eq2+b++sZKi8u0fjqgKOVu0Rh4cwT1AN3KK73j/+C2bDx1OAoGe4Ae6IAxdnVcORj0gUbm62/Hpl58wXHWUCfLJADvxEy6cgEw+TcTHEc2ZOE6MxxMFZcoKhxHxDmJawE9XyFgkSpECLoFXjFJYls1GBYqSTpnTyVJgQu/xnaVBuRDY3GxJIRG3idRH26cHm1euE/LOMV05igr7UdCoBIyPa0hC8oIfApvg0eDZbraWWqYKOSNF6Z1wFXaWxu0dfd/jfSCNBkaL+yHl/c9rbXr5th5wtahh5YKphpNTK1WvWtNKO3+uJLazzYBRk8U1aqlG/+RipdYbx09LDVvdDV4WPUEqB50N1SoeoJH/yuI0EWn6TCvD7mrEZKvYtfZMtziTtcaxyIAW3XvZW433xwxNZr1nHbHn2rpVZq47LbU/ftZo/XAzQMxSgxQzICxlVxAaz1jdqwQ0Q1JddEEJ4K0/u1CJexeLvAKX9vw+WASqSLExqUJTcyKXiCqELtB1/ZmsVVUzaLLx45WcKcWqk65dmwaStwprUq87q5yrptVYSpV42O7VuUqdUFMJhcpH1ib8anCb80e1kJJV17NozHAGODWg0cayrHTe1xk9qNWszmbeJegj1XhrcLZWe0TJeeJ42pPjiePpwDSNTHGsDoh6laof2LrqcX5AxKFSaFXDjDvJnIG7zS273S3ed9xc33BzcwcCj4/veXx4R8wR5ciUMs6D8z2b3R1dN9Bv7+i2NwAU6ZGwoaXcNXBNXFhhMTpXEtWWPgjWJzOYU6peppVrch3xs0rjasfPkUAGbEFZoxC/SHvi4JltNQD50Wk0z4amH6zmx9Pt4Ay6Xv6SSz1gCWKYZ3hDeVbgz2LJrY47v6sfuXdZret1KtjSTF+X+fdlWzhlfplBE4wzsggUAqgjho7jZosHrn/1G4Z/9s+4+vwz3NUNOXRoykjJuDxBycRvvuL03/wrjt99h/vDP/L2dGCjkakPnIYtKo7u+gq9uaaEQBlP6GmPpsTxeOCw3xv3YcrstZCdEHc79JM3SNexvbshvLklO0d4ONI9HEk5s3/cs9/vbZ/2Dl8J8rXtV9JA0tq39b+2lem8zpa1ZIByS/XSmrmwAlp/ofYXSfWa0dNmVeuyaqQu3jUyOqdIUQzhqLl/pr09LQvuxAAFxYjwgnqL+NRmWLs5j36+I1ltEu2XuEqSqmbAVIN4eY71sReVLKry0jbbBsi79T4pshIFdS+aEfj29Muzte/OXkJZQInFszef+qM07xw311vubnd88skNU5p49/7Ipg9GAtl33F5fc3d9xZu7O+4+ecPtzQ27Dw9IrQgxK4gr2T3LyCfgjylPm6GjC47bmx2ffXpnJIWqHPcHJlqfmSJ9vev55O6aEDy7XfWsAMfDkePhSMmZ4xg5TZNxJqgyplwrxS1306YnLNE+wTturja8/eSat3e3fPHlp/z6N79i2A5c31zTDYY4p1KJm2fEuQJLtRzmZZWnZbzOc0BbRNOrNy3keGIdLbWkmcns8ZrXVp3LKU3EeKCUzDQdOB0fzGOVm0CDYRjY7a7w3hPjxDSNBiaUSMoTpWQeHt7z4cP3xDjx+PA9Dx++IedIF/wM/JhXbLeszUZSqq3ymsw/IoLvOnzoaAtDKxlmjCMpTnjvSOmK42FLzon7++/Z7x/IOTONB1Ica0e09AWpwI+FxjOuym/KErreqro1YY9aCcvDcTOnSnTezwr367Yqbxq/kpgxIkDf9VaSNnjEC6lYuKsPAcWioWK0iDIjvUuUyTzbJTMblYvndtXl1DRHP9/GyuRbybRFhJFXCmgrH2sHLX2aJCIYwPh4eABK5de4rSWGzXjtOuMbccEvRKZnoM+5kvZcNFAr2zzf6xkIK+e/+XgytWTl4V20/WAucT2RtkcciSk9cjg98Hi8og87rvotwfcE7+h7m1exjITYUSSy2Q3cvLnGdeByj89bRAWVA8U9gkaOD0cOPJJjNrMnGuCXCugYES81uqT1UwV9tHr8XT43+AQaZTBqEUbxlBDviGMmTjV90nm6bYeoAUKhktS6CvpIJ5TBkTYOzcKYQKLSqeI143IkOY8LPf0mQNfhb6+QzQbNmTSO5BjxnWe4GgiDRQlKreiDg3CMlFw+Coi3hjhc3fBbBdIWvdF0E3stiHcrRX01b1t1H5jldFFLVVO1KNVcVkpk1VXW9+Cdm8k1nXP4UOf8ythuwI8Z6A4fLjlgGlAgZ3rOfG80Y2JReucPL/SShn2c47Bytva4WLvtFqT2g33+sbVk65Ni6MSsvJuDso6nOrSW7lEFzUpTbd0Mni0Vm9C8cvYs4LTpho0vZ3F4QqmFCRTnAl3fAKR1Kwamo0Atvb1uzu4hBDfPgdlmrpfRFQLUqjqlFGlAoKuclCKLfuqkxrSs9JY2y9scsPTFvBrHGoW9Gt8l4uRjtKdRFM81m1IzYlJBtEScrODDNI3EqsOV6mSUOj9ahLcPPaHfmayUjGKcYyFY1K1znu32mt3ujhA6bm7fcHf3FhHIJXM47nFqZ87FwHRxHV1vVbq6YYfvrwClw2wgLYWUovFG1uedO3KxPKu+WS2KGchZG6Xl4uc8EmEGfuYosrIasV/QWq1tkduzUHjy+XpOP/t9WZ/nuWPq+TmX6YuMfia6GJ7MtiWBkLPsizMe02qvvnzH6/Odg0fPHf8S6LP+/BdrTf63bI8iJO+JITA6R37zCeHLLxl+9QXqOooLlFxwOaFxRHIi3X9g+uqPTF9/hXv3PddxpNPMoe8pmx3FB9xuB9st6h0lTbYmUiROI9N4IuXMWJQTkEXQvkdvbpC+p3v7hu7Tt0b50e1R90iKiZwyp9OJUsq8P1oHMsv8uU/n/3gyKOuluObHOufKevarH639ssCPnC8MufxAm3JRt4K6yVmucfvGatHN63+lVTThtjq67ltnIc2cIWztXM2YbAO5kH+55p3S88GXen2hetTWBsMZOMOsFKzE1jn4oes3l420QSWXAM8cJi/K7FFipWSd9fHrNKWS86l5M/q+p+tCJYJ01bNku0VMkYf9I0rhYb/nNFpkhBFrru/uYuNfeREE4xq4utow9B1vP7nhV1+8xXtP8IJIqcargph36s2bGz55e2dRF5uBzXYDwOlwZDweyaUY8DMakZ779gOx5qN7KqcUCx/J+g59TWW7vtpydbVlt9uy2W3pN72RinGBxFeh11IMkbaZSiUfXIzQtbGpupzjYwjqnBMPD98BzF4dqlLPBfBjc8w8wjlPxGikzHE6cjo91ApajaxSiXEgpQPOOXKOxDhVT1IkFYsWOh4fmKb7ysFzBCIiK/LKIpQ8EWPtF11m8hpgmVe5CFkjPgdbpjUE2jyPkZwjWhzjCZyYAjeNJ1KcahqeGb6g1Utv41BY+sCiFZv8MZ6Houvyp5wpVTkLkOdQ1/IRgB/rGz2bOyarnCmdXbAINC3EYVNBNZuLKSViSDgnFtaaEt65OvZ5Fam18AA1k9Wmi87y6cxuY/XnCvhp8hgaON8+WKK2Zp6rZqh6S+3suo6hyZrKUzHzbciSqjg7FVgMx0sgqL44+1s5N5jXn72k7L1WExFCP1Qj0O4/9IHQuVply9Xy9Uak64P1TZHEMR6BwsPpPfeH7xinI8fpEZWE88qm77kKd3jpKLKjsEVJbLsjW78jx8zj46NFr5VE2UBx0PKMxQuNbggs1WZ2hBQDH6IqsViJ6dTSMHWpIGSns4kgtcqVa7x0ar3uGogXBN95XB/wBVyuoyKOEhzJO4r3+L6jHwak7/CbAbfdoCUTvaPkgAueftvj+6riFBs/VSFsgpWW/ihA7KJDPFkXzxgK6+PPgY4FGNAqj2wI3GyINQVmXotn1ZVk1hnWwE/jMrRzNHLhJZpnTdD8nBnT9J15/Txz3BmMI8v9tAs/WULPbG8/lErRzvFR/CEVsJijHThX2pfntc/milmmYZocObt3k8XLazibI9XwNkJomcHxtuf7ajC1ilIW+V6WaI41ylbHWRs4i02che+nphE1maesInScaZmr55YZ4qopbs1wmXeANgal7rW1olxZ5padaJH8c6SlNJ6kKr//jLH64eZmvfxs51kba7pE91KfoxWfyDkyTkem8Vj1l+aAk1kXcnVfEufp+y395sqIwUkG/KCEEOg6ixgeNjuGzZbgO7puIIQOUOMQDIGiZbWfLWsMuQCwtKVerXQhO9B+2p672nvnh5x1p8XoXObgunx7q+pV55pa/vcCDOVZX1qDyB+zPSsTzg2H+p6e/73+S9Z/yVNZ9OT4RRY+EVu6fLyWu+3G5u8/Z9TP9uNKr/2TDbfziKSX2g/ZD78ECCTOIVpwKpQalR2dMDphUmVKySLmveB6S+cvcSR/+IBOJ+L79+THR8r+gJ5GXFG8ihGk73aU0OE2G/IwkJwjuz0pZzQmYiqLTBUHwQrPlNBRvKeRWgpKWcnKuV9W9vZ5xz3/etaR6x790k+5uM7aAf9LtL8YufNKBaLliDeow367RflEEa2D44x0dVZ5apqYodDrUDhrxoOwbLWCq0aZlUxFsQGvx6uWOQdf3DIYTlvoaDWuFtRnkc9ngkRYHVIBn1UwtLQnrkevvidAIw9qgE5T4toe2ipvtGecy2hfKp6v3Eop7A8HUs5st1vevCnc3e25vdlycz2w3XjEFVQjHx4/8K9/FwnB8/uvv+ebd9/z4WHPfrS0JyfuTIl42hQEbm93/JO/+RXXV1v+nb/5Nf+Df/FPGPqO775/x9dff0tMcVaMnHe8eXNrwI8PdH3lm0HNczOdyFkN+DklDseR//L//d/yL/+r/46cMpvgGLxFJo0xMSUzek/jyDhNbPvAZ5/e8Td//Ss+ubvlV7/9FZ/9+kt8CLhNR3a+PlEx7hxnAqqFCbbx0wqElJLmeSNY2WRT0rXOt/xC3/y8No5H/vZv/4vq4auh5a3P1bxQKRkptQFCJrBLmcj5RNFMikem6aGmpi3RHN53C8eP5uVzTZQS6/qbSGmcCa+FWIlqHaXYjB/HEzE+Lmr2SsE536/qQpN5oc2bqH3PlBkRYTxaCXADPiK5hslryVRSryWlgHaeeq61QVTHaxHw9kn7nbOgpfEPLeP7mq0ZzBZJZtEEeIdIh6oaOBo8uRRi3LLbbA3QiVb+O+fMVF+XXJjSxDiOlFyIKTJO0wwAppgs2mAFCBogVKsjaTM1dBksrT23An4aiSxIcwDPwIpFHPgK9jiGvme72dL3PXe3t3zy9hOCD2y2G4be0h4MXDAjosJHS5/Dqv+fMbrXgNAsrC/6eD7m6Xleq7kQuP3sc+bweZR+cOxuAl3v2F15tkNg1wf6PrDdBnzw7I8f+O7DPzLFPe8evuaP3/0dp2lPnjLFTXRb+OyTN/zTX/2P2A7XZI3kcjIw9HQiHg/klPj226/54x//kXEa+TB94N30jlwSrhe6zhFUcQlI5uktuZBHtcpZOfGYI7HA6eAYj2KlhukY+s4ih5wgmmuatuByhxRwxVHrpuK7jn7X4QZH96Yn3HU4Ffqd4Cfr87HApMDQM9zdMNxc44ee/s0t/mpXq2glsmYD27uAeL+k2KoSTxM4R3ccccG9NCR/clOYqzQthvV5+HYr9d5AYvupMoQF8Dyba1X4raQzpS6ccqZANgC/6UwALbV8BYy2NJ9mzNGId1fRPG61VzXZt8KwFkCAujesZG09eA6HX8mDc81s6bjLSDt5etR8D8txbiVLXq9pUU6nqYKwdh+5hucbaMJcsQyRSkDv6/62gB1rc1HVV/vvwlqoMjOnZBxnLACT1mfsB5NzzcEGQkomdxtRMs1hIc3IsmqgLdrGe0epe9HlXtWy2udKmbCaM+fASW4RyMY/sPhA6/xVVXJiTi1SkRr5tPSXOFfLjrdqnP5sXr5OkzklWyq9w9nZ25oRGwOZUzZK1cfMMfXu+284Hh+4v3+3gD+A8x14Zdjs2F3f4n1gd/0JN7ef4X1H0UiqFV2Dr5XxxLHZ3LDd2PHb7ZbNdodqYbO7YnO8Mm7E/cYqvNUCH0Z6JnW6tKi/JSpci1gBh/rcZlVYtORC96SzblNPUHEu03m0lDoHl319ccA1sKegZZodZLmso8vKxdx+tWGcF9IZQLISBLOlMyPj1W567n5kvS5/TB9b2W+zXbf+drvuC98+iybWs3t+3kL700GfHzr4EtC51H9+sVSvJgPMk4pTpTjHg3McnbDNie8eHtG+Z7PbcdMPBO853b/n4b/+/xDfv+fwb/4Np7/9O6bvv0dTposF0YDsbnC/+S1luyV4zzEEJpS43zMdJsrhSDyOTKMFKpRtj1xdQwiU62vSZoN2wWRmssq7ORsnqVWAtgwSq7IGa8J/e0FdmxW/WAM7c5W8lt6V5/TsvHIstDX9S4I+8BdL9VpeyHqxtrXb0FBpuYq1SlKDZMR2nVkwNo8Dy6A0Y9FJw4bUwq59SyWzI1TNw1+qYG2AjM6IbD3fDPIsYdFni+mlZ11ZPmuFZo3hy/o6675ZKUF2XWbQqDmRzu2Qjwv6gG06YzROkL7v2W4Lu+3AZtOxGQJ95+exOp4OHMY9Cnz77p77/SP7cWSKLyiBzzQR2G56Pvv0jtubK/7mr7/gv//P/4rtduD7dzd89unOIhW8q2HVBvy8fftmJoA1omclpZGUzJg9nhLHU+Lx8cT3393zj3//NTEmrvuObW+G82FMnGIy9LiGP3fBUt0+fXvHm7tb7t7ccfPmDpwQxRgv7OmswgmUpWLc7O0ygDFnpSx7Jy1M3z5feaM+Qktp5JtvfleriyyRNi3fPmcDfpqHsCmCRSOlnFDNpHQkxsdK2Mw85Zzzc8qYEUSaYqqaKWqeMBEzckUANQWtqWetDGkra2vvXfbF+dxpoMNaiM4ZpG0tKYws5xRWYefzWc+vuabg1vWBF/dyCQiUojOH2Edra+CiykpXN1pVtTSPmkaSu44+hKq8JzbDsIBA9fUUI6dxAYT602k+PlYQKKVETFbuOOVcgfNFiV5bFecK2mKMru95HXa9pCLYb4soNABhu91wfWUe1a7r5kpeC8hzLit/CPhp114h9i907/peL2Xt6zXnPJura0xTN8W6H6DfQNcL/eDoO2dRlZ2n6y1lJ51GPpy+4fH4nu/v/8gfv/8dx/GR3g1s/ZbQddzcbvn1b37NzdVbA/ByjeKKI3k6klNi2G7JZI6nA+k+8/7dh2p4GkeMRyxVLNf1VZSclKxCTNkA8qKMozBOAupwLlilwkr631IRLeLH40oxrr6a5ueCI/TByJi3Pd1Vb+lgweGiQFZSLJRU8L1nt93QX1/hh57N7TXhakdBiZrJjTfQ+TlCqTRZ5r1Vh/O8rrGpi4xqofbP6dZrPYIK8jeu4KZbNENDzubnYsr4puvArDy2656F+V+sAVjOWZxWgI6zdfckMm5973C+b1+srUV3kVmXatEnMwh0drbWce1rL1/7XP7/sKf+5zTFeHNEwAdnfJG6isJR1sGnlaDc18/kicxrypo2I+HiWm3eNGLftQgNnclAi3xcKhamxDkXy8qwdJVcmjnqRi7SC87LBrcfox60fg0VfF/mqenb2nj8YAbt53umpRvqXPYb2txbiIfbXLP0N7fM959m7f4Jban2Oc+n1Rxc3BSVRLbqrFqLT8R4Yr+/Z7+/53Tcn6e9OwPyQjcwDFtC13N1fcvdm08JoSeViZQnQAnO+P6cCJvhms1wg3M1Ur7vUS2V9HlAscIYMkfgNd7RyshV+3l2Ns19fQ5nPFFaLvbl+Xfjkqp8ky2qqVSuxhaJBooWq2CKpjl6e12g5GOtR3uql0+usEqhWozwpkPP0M0aV3nxdOfgyNPXqy/q+Z+wsj3bmlkdar/14r1ZI3ruFn52+7GUr1+qias6Qb0ndc6ifZywL4XHcaQ/HMEHbjTjnFKOe45/+D2nb77h9Pt/JH7zLenDB9R5gu8sUmfYwptPKFdXOIGIEksh+sBpSpTTRJkyuXKTFRdgs0W6Dh025K5DG/9alb+55Jpe28D0xs8L65GcWzMK1p6R9pwV3Dn7KSvAp4E+vxAIt26/OPCzhkpmcmaxya+1E2VevyuBLebTbWlN2jTxqngs1b7qV+rLs5Ct+ZQWZdSqFbSLKDXigsv1t0Jm6v01ojo5P+rJH7PIaNfVJVzYblfnz8/6pr5yq/PMJIlyboQ+oyY9+f/Vmurs/Sp140FrCXfv6PtgaVDbTSW9szHKCO/2I6Hr2B8jUx4NCKCCbqtLCNRULstNv7u95tO3d9zdXnF3e8V227HdBK6uBt5MO1LOs5HrnOPmesNmE/DOz9XAoFU7MtJQkKqwFa52VqEsBc9V37OrwA8ygQgxObpqwDgRM0g7i2px3tfBaxFqRkCuzlnED1IzWdpcrXNBsZQH/KwUt9Svlu4oIoSQa8rQaw9jYRwfTDjllYenIjgLv1Cpz1AT4DRRdLKxa+lRdU7Pa6kqGu1c808FWedxrgt9Tq+fR3+90dbtchYK8NyMf/LOxV4q+vQ4qQvpfPtdzJtnTJ0LY05n4+pymVns3ccX6M8pKOsN37eIILVSvq5YtREtSvHZFO+6pn3lVsq50IVI8AbwxJiIoZsjKuIU59dT6kxBbArjSjG91I5aNA6ypHIhLQWlAT++EswGbq9vuL66out7hmEwENe5xUjlnG/k3D99bki+ZMj+GPiz9Ou6n/+UEfrxJg58TwU8DQxRlClmi9aalFIEisyRWU4Lx/HAw/Gex+MHDuMjUz4Ry4QDkgiQmfKe43RfU+OsMp5IAJdRb9GJvgt0fU/SROg6fPAUfC3VXUmAfQOtqxGSzc9bKhm1LYWW0loNl3lMW1SIRdqWKZNiNl4wLRZNayiTfcc7xBsQLBosqq2A8wpJcUNvih+WahljIo+jGe3OSJQRQbMBQFZNMdXowoSR077+OK5bm/5rvGOZgzobxEsa6fk8vQR0YTVf63FFLS1Z18c8A3CeRbW199u5XvjO09e2rtfS8U81LFpU3RIOf36d9fl+CvjzUZrWlC4HksvigJjvs4GZUvldDJApqku1kDWgo8bL5M6Mg0tJVY3ns0c7B8KhpZ0voE27H9/Krdd0HaE5SxufT62o90yXrc/TZLCvqbR1N5kNmOaQmdPVZX7UWXd3Urn1Clbg4kKZbs4lqZ5yFYuget2dsjmF7eKqix4x910DSe3wOrcbuFf126rnghBCb+ec+9h4/KziVqjk1cbl4zTgpEbCzvfhVpaFzABLMQIwQggUzZbS3PWIW7gOndRo1nmqzA+x/MwGQdPjioE1KCW7WX3KldIATO+jpnFP44mY0jIh2vwtqRa2SZR0pFTHQc6xRrit7+P123Ogz2XET5OxZ1E1KwPpXJ5dnuzJBZf3Zf3GM/dzIY5eAqjaPUoF7FsfL0topSfpj+9L8sItPNdektGXUT8fD3yQJSq9Xaf1Q1FiSuwPB0IwMPVmt0ViZHp4IN0/kO8fyMfjHDETUY4CESzNPFu15M57+i4gqpTgiQIW9Gbp6IoSvSN1gdIFq+rlHXgD5TWZLZpTJqVMroV/zu2Opc3P09Zb+6cXP2VJm9Ry/tnH7fcfbr8o8LPsAedG3KL4gIWy1A0OYS6NqCxeZWnGNrRSOc24E7HONkZFqSGOWheUlXxVQFwNB1SrZNvCa9tEod7BmdJWDXcnbgFh5uc4F0bNVhCawdOUN3f2vM9xs8/+D2nv6+pvWUDGi+uubrf+/fqTqqhymiLjlIgxE6NV5umDY9N7Prnd8dd/9QWf3N7SDYHNbsAFzx+/ecfm+or7xyNfffue+Luv2B8yWSGWtoAWM3u3G/jk7obN0PPP/92/4n/yP/4XvH1zzZef3/DF51f0nef6WvjsbY+q4vxCohiC8YAAC0CFVqPKiG2Leop69vuB3/zqDb/54g0pZm6HgatuoBTl3f7I/dFSvKbpxPF4oAvCbrvh5u6a65sr+k0PPtjcaMaEViXL2VwWLSw+WptlqMM7RUv1FuamOJqH3fraiG1Lef10r5RG3r/7XVWA7L0zj0QDb1itWUMMUFopQ8v7XpI0rYmqGV31rMxzf+XZ0xqpd26qX/xc7IIvRkCtz796htmmX22qLOSWsjY8dO11PF9Ziq7558+Oeele4Dnj5fWNlXaNtrmebfT1eQGKVzofZsU7b8y7NwM5pZCK8fqUoqS8AnhiqqHuOlcFK6UwpcgUJzM4aunLs42tbvLre3S1SpQPoRJfu1o22ryioQKq3nlurq+5utrhnbfQ+GEzG8yNc22ppPiMDH0B+JkBstWXXjJ+n77/MwbrhSZe6e4KWhx56inFSNRPjyMlRz57k0ijoNkzaeKUP6CifP3u9/zuq/+G9/vvGKcHDuP3pDyRXQB6QvG8P/wjX33/r3nY3HG9+5xPbn5L8ANFQFxCsrC52nL15gY/erb5nuG4QaLQScZLxqN4HK6E6rUT0gTJWUXHXEItVR4IncdMuYDQCPGFLlhlzWlMnB5OxGPidIpMOVt1Sy9IH5Ch8vsMASeesB1w9KCW0qDZId4jw4aCoKlwenggHx6sPnnva253TYHQBvzEqhdkpESCLz8yKn9G09W8ekE82HyyqljNiHdVcZyh5x8Ab2yfqYBplc8mi1sFnnMv4kvTdUnjabrNC8fM99Lk/xrYfVlxfQkQOj++7hsroONy3V0ev/bif4ym1JS9bIZDK+9tN+lx3tcKcRZ56LveomOqYWJRI+23qaGkxcnnqjxeAGvBIl/reM16o9TIm0CLHovRok5yznUMnEXEVR0452hVp874f2y8Ukqs5aVII2q3a/kQcGLRJn3fEYIB+tM0EmPdE4pQ1M1Gm646bT6Pt9QqcxhlKnU8RVj6JEWkJMzt5Q0s0tdbj9aFtSJbTTGx/ipYdd9mlJluouhsN5SSoGRStGqXcYw4F7i+uQOUFI2zUFUrZ88VXdfT9zu6bov3HSreZFNNL1el/m0VhhUh5UIZJ5SCOMd2u6XrAuPNLWkaERF2my2991ZJ04GrKVWiGdTG+dyZtqRzaR7JqTrJy4hLHi2FcZpIcalga/MpcTwcmeJkNpJvYHshxcmiIHIkjo/kNFZSaXvf5lcDgD5+O4uq5AIwrLLpqehpMuXs4BcuwAvi5c+TOU12rEGfSwloetpab33d+LeXnAK/RBMxJ/4SBbtEDRdV9o8H/uEPf+C7d9/z2c0NYX/gehg4/O3fsf/bvyV+8zXj+/eM04lM5gHHVwInh6UhThOcRm6vr9hcXePFkbdb7r0jOqWIkmtRhdx58vUWHXp0t4FhqOXjlXw02onT4cDheLBo+Jysz1bleC/BsiVyp6V3LYV5DGRt6WPNOZrPONz+Uu0vxvFz3mZMdAbYbKGUavu5CvrATLC68nxZ9E9LB7PjqcJ9jdjZV+xajcR2XoZuQUDNGVEVsRVK0xQTL5dZw+eDON8eq9+0zX8RQs1cOeP6eQKEvdxby1+L0T5/9pEmliqknC3PPGktyax4J/TBsd32vP3klk8/ecNmN3B9tyN0Ad93PB4ju4cDU8z8vv+W06mOdbURF1tf6fvA7c2O3W7D55+/4a9/+wWffnLLm9uO25uB4IXdzlFKB1CBH5vOWhbldKlc1HqnRgv4HnE9XRDe3O54c7sjxcxdv+G639hCFSvcGryjDwEnFtnU90YaPWx6fAhYWoERAohUgFLq3FXFsQA/Sq4GQgEJILlGvNRNXRZvlWqxHNOPAPxoyRwP363ekScvF+P5ubk0z+rzDWUGU1aKXB3T+XuyHLvM2sufsxtZ/f1k2+R8DS3HXMIBa+DpzPv9pOzr8s2VKTdf82KlPbmXp/31y224C+ijlVjXNi0PqDv3NDQjInVp9j424vZ1qp+toVijf6LxAJXCFCfG2FLA8ly5bu3RQBYD0q2idbquq+XZjb+i73qcs7LbfW+vd9takU8q94/zT551HfFz9tkzRvTZcWtb94Vjzs/7EcdQwG+hJONvkeQoKXE8ZdKUOJ0yORlnVC6JMY1kMveH93z38A3vHr8ml5Gc9ygZwRHyhDrPcXrPh/3XxHgi+A3cCM51QELx4JQwdAzbAXVKv+kJfUeRXL3M5nSRYFE4ZvsLOTWPmhmDhll7q6qnAmoROVILKnhn0a4lZeIxEk/J5kyxcpkq9RrBSJ5dqNEUwcokg4PcocVSRMQbkX4uyuk0EskQHE47nAYzuKNFXWo1XFQLTpROSuUT+0jtB0GfZT2oNpLilxXBJ/OxAT+rz7QCP3KmiF6CJudycH5rvSQugJfn1ksjAJ4f9UeMivX7zz9j0/uertcnR66RhotnerWmjQ5FaXuYSEvpklohq6tgdXU2OVcpFvN8a40guShIjbYxk79GX5w9s2O9XzY9dU26nVYVPluqFjCnvi59pKgouXicuwDiURqnztkDCzX9qgLxXU/XdVXGx0qOauteK0emgT9cDIGbuXW0OMrMoWl9aXPSHHHmaDGdx4t7ZdzA9LzL+aHVym4+iVnxbLZCTXkyeZFrpctiEd5DjxNh8lb5s5RS+2kgdD2h63G+sx9V6/vGGQgw6xgyf98ckgYOdX2P88Jm2LDbbgED4Lyr9oZUwKrOS62cZXX4aDHX1mrqVp6qnBFKdpSSmU4npmlaHDMYKHg8HhjHEeccXdfjfTCy/Gkk50ROE+PxnpxGSsnEOC6pYb8g8AMr8KdpYjVCtt3CrHoY6rJ6vW4v6bUs4M8MAv24nHkRqlnL72eeYX1JGmilWjNWXle+/aVSv9Z7SZNFqcqwcZp49+EDj4eAmyY+E4cMA+N33zJ98y3xm2+JpwMpRzLKCeVe4Njs+pRwKbJBkGFjGR1dx8kJo1CBn7ofBkcZOhh6XG/FeHBCmSIpWmXiaTJnZgNt5vF7Zs+b/+Y8kqcBQKWBPe09PY/6+Uu2Xxb4US4W55IQ0ezLtpjXHis7dImCWYMwzdhGWNK7Kvmc0M7JCv+pytbqe1KYQ6aZN4XzVI3zkOklBevsoS7gGJEW0Ns2/vbZbPk+s7TXE+w5gXVx7CzvVq+b4vdDX/0zm4iVqHSVO6TkghNhOwxc77bcXl/x5u6Gt2/v6Dc9V3dbQufZj5G7uxsQx9XuvipMgpTlIZvxbvnQHbe3V1xf7bi9vrLqXENPCH4eo/P85iUnWjwrUMEjUqNqCIhkO8YFxFlkUN8ZaaqrBmbzhtZ9FYW5hHTfdwzDwLDdMGyGCjbJIrmbl616l23uKq7t0Ihhl2rgpEUPV0EvpfZCUxoriV75CN5p1vPwXMF//vOnyra0Y3T9iT6Z1efmc11jsr6CrACjZ+5z3oBfupflgHNy89V39Pzv9VEWvf70ey+tn7Me0Jfv5fx0H2/DvTTSdC04qgw602FWD7YGY9CqZKrO77VKI65W+2pcE6b4dlZCXMscInsJ/MgqIqfxcM1ReV1AxNZV13W4Cgh1XTdHAs2cP+uqd+1/uXj2ZgC3z1bgz3OGpS4ne7ady1/rwY+yYbeBaZuEU/CKr/ac+ETUR6Z8z1QmDvlAKonTdA9EvLOIAedNyQ8C4ko9V1p+JGOJUJnTtGe//4aUJ97ff8eHx3eM08hpPFrqZyV9zWLrLxcrgpCxv6UoRSAXJeVCqr3dQFTjn8ioE3IWUq7lnUshlWJRtR5c73G9Rzo/g0uKgWB40FCBDnWoW4BbI1Iu2BOVakBhkQjFIjY02W9L2zByVuetjHxXQ8tfva30m7XN8NwavQR1nka3nAMr83cuZNV6VSwADedVYi6OXr96bh2cXbcepPP7T9fAWuacyZv1ldfPsHqv/f6hKKGn/fdx5KlioHfTE0GXSmh2p/X69tOIOnPlSDGunoV7Z45fV3MatT5SXSqGrnXIdTTiGuS5fH3ebFWYnPbVYeTOokAXrr6aeoElHy0jVdOPtD0/1VvdnoWz7yplLoLQtFwnQnDB0osrcWbBDB7RvIqknx/X+ltfnxz4JaNZ1/+3asG6GtPSSi6DVJ3Su0AXenPC5cIoI81KFyeVK6yRuzYi5Bp9204sUiOKVkTcdX5pJeleG4zt/Tl6rCRLuyqFnCZitMibkkAXvHFedCkvkWBt2ZRSOJ1OTHGiKbdtvh+PR2KMtRJrP0eap2mqwE9kmo7kCvikHCux+BLl9urt2bn+zDEvzB3r9rZvP7Wlzt9by6Tz99bHnaWZPaNTXMqwH0u1mrXHugyXa63l9KJZX5xlpc79NHn4iwMOsqR6Nflj5dGXfaWkRMIcOA8PD+jpRDociWpE0Oo8uABeoQsWGew9RZQSJ/LoOD0+8OgdnXMcHx6IMZKyyZwoMgdzlFIgZ3xO+BRBhDhFpnGanZ1zRbvlEZ7I3UsH6lrOPnm9TvH6S4zBM+0XBX4UVuUjbcqqCKKlyl5dDriY5E0+izOyJctrr4vE4s+Zq2oqIDU9Q9dlThfCXNd4JanpW1WxKWrlaxdApV5flqVl3AdVsZ4VodVEWT2xUK/LskwvU0qe9NPZxHhZGVoUsuoJqBrGok68du60KRfb7YZxTFb9Z4wE5/n8kzdsfMc//avf8C/+e/8OX375Od3Gs7kZ8J1jd3NNLo4P93uOp4nNv/od7vFgT1eJtZwIHgNZPnlzw7/7T3/Lm7sb/uavvuSLT99we7MjuAylsrRr62FAPSLdrPw4Fyp406pNKUvVnNqtoqCOm5std3db4pjoS8Bnb7npSPX+CUM/cH214/rmmrtP3vDJ55+y3W7pN8MMtlmVBFMaS57ImmxuuVYtxaqOOS91XlrOuIqimuos0rl0tpXUnij5I1T2EmoExeX8emnuXQIci8L39NRP1+75K6nhyU8V6hfb2SmfmBSrg37Y2HnplLP8+YFjftpqWl3rF5TvVh7d5pU5rJeNVsSiLSyEuHk3q5EuECSAQpDlllvFLpQ5lQtatN+SctBet1Qvu/S5ciTOZkrj6EGsGpfz9jr4MAOuayDKe4d3NfFRLBJuxkieAX5UVrJVV9d/Afj58aZnBuZrpiOcN0GpKajOjC/XK5sbRTO47Z59+Qfen44cpgPvHt8zpZH703cIDwx9BGfExYjgSsblyc7cnZBwhK5D/YkiI1k933/4Pb/7h/+S4+mRh8cH3t9/IKbIcRxJU0SL5dNnLAt1So6p1DTpLLikROA0ZY5TIiH0obcUWzUvckrJ0l/7bN62rJymibFGj2kvhNuO0HvCdUfY9UgQtAhpLPhgRNbiAoaWB1TsPHGayDGb8ueU4gyMEp8MxM0FPUY0mVFlKQuJbjOw296yGwabi6/YZt3mbGSX+edamSjOFcdLbyi0iI4lsmPtCDMj4cL5RZvbq0VMM+5euN/2W583ndbK6vo8P0lvvThnU/5b2D/r++Vl4OcMRJ77bqV2vXLTooyjVfVy3nRDD3jxc4pd06tyzoxVA2nGcEsfajqh4aD1GZ3DS+WmqkDRDALUqSGOOZq8lEY0LZVXsc2NJaVFKuCCCJ5QI4SrRqhNj1hCc/w6MtottERFrWoX5VyOW5pC1Zl9wPkA6AxUrOe3d46hMxmgRcm+m8HeU46kqre136pKLOmnGfg/f2RpOuA8fxpY08DSDLnKCy2Cl47gBvpu4Gp7ZSl96jieTpUzya8oBjA9Te13KY0fUVtxYnKKpDQa12RoaXEG6qQY7fNpIk0WqWNkyjanchYkWtrI8XDP48MHk6FpqaZaN3VU1SIkasXSkhdQyVL3pnl8beyNxy/njPOOoR/wIcypXiVbBFQ8Hckx1rnVCHA/5r64Gr1nAJc1ePiSLGhy9Ml3z5q88Ho+y5nM+ynRjedXXWm+l46nZ8BQVC6Ol/kc51Zme//HNdMfA6CeOh5epzW9b30NQaqTyhbieBptDzuckHf3DCIM337LLhWC70gho8OAZo8besL1ls57TkE57t+Tj4Hy7numf3D4ouy//iP7xz1pnBhz5hiEImIb9DiCFgIQatDBeDxyOp4oOTPltEqlfcYeuAB61gBPrlGCT14XixzUi3n0l2w/CvyIyAb4vwFDPf7/pKr/WxF5C/wfgX8K/B3wv1bVdz94smcAlfb3woECZ0dU1LziRLMRALqqkERVfioA0taE6modL8rDvGnW17W6s3kAuFxgF2JBGoBUz3nOTDvf89nxtJ/18z1nVJ9/1/5cK0nLe2uF8CxKahaG8xO3sOP/oYj8v/iZY2hpGmaoaVVMnAhX2y0ex9s3t3zx+Vu+/OJTwsYz3HS4IMSkfP/9nr7ruL29JoRAC11XWQZXBLwTdtuBz97e8faTW96+ueX6astuu4EyoXM+/Qr4wWFhzA7ve0Lozvt4lqztJwOZ1GeGoWOz6SzaYXJIEVpx6OaL8jW3fzMMbHZbdtc7hmFjqQ1txpRi7PBabLPUXG/ByEtdq2Ixky5KFfKWVkbNq27hs0XzXF5w6X75f/AKa9F8588ZPpezf/3+uj/lfAq/8I0ffvela/257U8x6n+86Q/89fJ7P3LOV1yLsOpBWSkLVcCdpeHJuTJhnmmdI2m0vr94pG0Ozptf3QhLJYOcQ1rz8rp5h1ldR1bgjJ+ruZyDNuuKNevn4pm/noA4sj5KnvvK2XefO6tevnHW6u6kTzbtV1uLdmFnXimpnnRfCINtL9JFpvKBQ1Iex0c+7L/lNJ0Y8x6RkS5kxCuuMwtSc0ZjrptbAh8RF0EMyika2R8/8PV3/8D+8IH94cjD/tF4J4qQs5v35YKdJhXIainOUkCzAYwpFqYxk3HmkHOuYuBKigb8xKi45Cs4mMzwKwpBcBuP6yzqx3Ue8WZY59iMXIdUgFpVLCW77jtxiqYXBGoIrkJ2kEBzQWNEY6LkNHuq1Qu9CJsQqkH2WmN4MZeWSXIOPq5F6LPK+Hpvf+b8er7rtXW+nkmrD1dA09O71Ha+1Zo/v87y3ecl3fK9HwJUL0HX5dgfBn2enqd5jqmpR8vKfa1xNKO5VvWipXeZDDDgeZEaRaGkheekKfrIKqJDLdVJqqOSasipMhsMzjGDN+iytRphdK3MtTI0lnutfVjngEV4CCIFn/1ZxE8DsGcC9qqNOmq177RUmzkr573qGz9HhtqEaGPm6vWDeHrfGZecUwqO4hYSd8BS6GvaV6ty0yKNXnstngGgl78rSTUVKFWllqGvAJtiwI4Egu/puw0heE7jaDK2zofmqLDxMPnZCF0tfb9dz8DBkhM4hysO8VV/r+/nbL9LTjbXW8l0FbREcq7OwOnEeDrYOGWLKFjbIkUzp9NpjgpKKc7gzzSNpBRZj6wZp20uOlLsZ46nXEH6kjJpHCmpJc6sHfRn0uEV98Xl/p5tTfn5ETVM1+uPS1n1Y6DPy+c7u5U/waH0oyCLzgc+ub9FY76QofxoN/wkOd3W/WvqNk/kv6trrmgFHSOqyiEXJGZCKVw/Phow4zzFezQYjyp9hxt6XPCoKHE8kQAdE/kYkVyY7j8YHUFKnFAOIpSqH0hOSITgLDoI4HgaOR4Opu9SZ3abVz/SsS8BQeWM1Pl5efqXbD8l4mcE/kNVfRSRDvjPROT/AvyvgP+rqv7vROQ/Bv5j4H/zQycSJ/huqH+toIkz8ORpvuiSQweqFqalNb3AiZVE1FwooYYeVoPEJtdqAOpka8pVU2ha+cn23lkE7jNDNUcOXYA+cva/zB6q9fKdj3my/vTslyl3Ly/SUm++bSxLxM/5Nqc0IfPwX6vqf/BzxxCoUVfmsbCSy4HdbsA5YdhYrrKlbdum4xCmaeI0jhxPI+M4kXKZc8ftRs+BrXGKfLh/RET46uvv+N3f/5Gr7YBqhDxBhWQUU7L6wVKvnPP0XU/X9bNCIiwAnGvgUrDCMKfjSJ4ytf5WDaUtxOqpas17Rzfn9TeDVimayMVCZ0uKs6dHtcbgYv2AVC6MGmUEitQ8bS3FyoXmbGkz8+9kaHHJy0C/0lr8kRH+aYc9WRoXb6ytED1/+y8lAJ+/7k+4m2cMp59xA6+2FuGiP6sRdaYcyOqIJh9Ezr4nq+8u523GiM7nqXt2/dPAzBZV51zlHajybTkns2HivTt7H1lF+bzwbGevGoDVlIj2/4VB/WxTnkzt9ZHPf+/F2fpqa1GLMk2ZomYYKeCk4HzBSaEwsj99wO8z++OBx/2jEc7nE6eUSKXgOsX3Jpu1ODR7RJVpEsaTyZrBR/bdnuAyp3FPzAdSOYCLhF6RoqRJyElryoPJIq/KlJSYAFF8qwqDRSWUZASKSTKTGJ9aTgbOOwvTRbxxf7jg8V3AeYv+6AfFd55u2xvwI6AqaLbw7Dwlop+gEsaqOosiSMlkJnXKOfAEpEDAoRSyGLkjRvUzb/bj6WQGr8n3V5Wnskz8eX4vE6YSkr7gzFm8u1VJlTJ/djbrVmabVGVSLs639orPeMN8ghotbdat7UGsDZJndJ6zdxcd58lxz4C3Z1F5a2C4yZeL7z13xaazvWDAveq+qGqAuIE+7uzHQHMzD2yYdfVcC9BdsRUbl5X8nA2h+hyzHleaJ9zNRQdcA3PEGVfg7KA0oEmkRhC7BkhJ1YcsPXKOBNAlOr6UVn2xzjNZCfT5Ns+jALQ5X3V1uC7bQnM+ZsSi/No9lmLpXvU3uVhV22IR9k19Vm0RwK+s2zxRs/XsZ14D7W9amtYSzdL6w3lXo6Ws2pZqMFmrpdobmZwmxHmreFViMyyg9l8SRSqZc8keLcZZl1ONFFtVyWqVs6bxhPPG+8Yo5Jw5HB44Hh8NNMul2jSAWFl6A3hOpBhn3bIBPzlZSkt9+NluaJU5wZEzSO2LXKsmlerQrBbFSh1d/57/eNW1uH59Jid0LQmf3EcbvdVniwyaxeNaL5XlO0/xkefO/YxC8UJby7+fEllzLlvXz7C6YjvnGvz5Ced+7t6e2ZNeZwxlAXoEMT6mUqPP654s2lKxhOiMV3X0jmPfGTm8KJSE5oTrAp0IBZhSwaXR9sAxkU4RauR5DoEsQnEW0adOoDnptTqmKuF94/IRbRQQOgearIf9B0Ge1euyApBblM+fMy4fs/0o8KN2x4/1z67+KPC/BP5n9f3/A/Cf8iOTwDnP9vrO/pBlEj+/6Z/dxdxxLZoCtArbWMEdraGWFQEvLaTTBDl6vugWb3U9Z1W4aV7u1Qb7XHsqGOpmW71CjeRuAX30pS+ef/7s88/dQBN1l5NJn3lxNm//9R/ag/ysMRSxCCkfhGET2O56gncE8aSY+eTTa7rBoa7yOYwZHZWHh3u+ffeed98/8u7+keMpMk3mCWq6pi1Qc3J9+PDI3/7u9+y2G77//h2///1X9H2HaEJoG1ctNyzCZrtlt9taBaBhYLfZWEUZEUJNteqCpwsB74Xrq4Hrq4Fpioz3R3wRfBGOMTKeIjEXYjbPiDjo+4DIht12oO88ziviCrmcGCfb3Mtk0UigM88UmDeNqhCSPOKrBtc2+ZKtalILDaxhtI1MdxXxg6q+ylqso8n5vPsY7enm+JcXgX8p6GlWKF5lLdop18BalaluJXfWysHa41CND4FF+2lgTO0fN/Nk6WxAos7Kaq90TTuFrk7zvAffMiXkSe9fGobtLp+akMu9Pychn1X7Lu9jvZGf6ZA6fz6D6IsN/+y5Xmst5qw8fhjBq/G9O+hCpBsywRciD/z++7/l24fA6Rh5uB+JU7bKa5Vc2/eOsPOWRooHGQwQJ/BOlKFLxMMjcf9HvOv49t0f2I9fMeYHpHPshoCqcLgvTAfj2DmdIsfThBRlB9yg9E4YOmXQQgJiysQxkwqUaSSeqgHqCuosl1+8J/QbVAv9tpCT9WXf95XPSQh9wHceVYsiymNBY+GoJ6ZjMuPXBUQscmg8RWI0DrUixlw0DD27zcAweFQKyVeetFygWNEvTZH337/jHtfSFF9NnsqKj6qBrZeGy2VE3Orb9b0Gfi1e6qaHzLpLNSadOJurNZekrfdF56h/n1k5TR40FRcKZQEneLqOmkxYxQw+q6KsrzuTrktLc64lfc8U4NVJnvXCN5Bi/bXFQDkz+V5zX1S7n+ADPnhzbtUoZ9DKebIqjy41Td3XKBBf03ik6avVYHYWvSYitQqY6TqNFwiBoAE66zNfiaTbvJLKylMqJwxgTq7QsUST2VyJMWIhJY1zqKkcS4qWc75G010awDJHsZRq+BtQZZUHZ8OnusZT4zmSTEnFIoMAX/XfUgpMGZfzCuwx6Mypo0BzILzOGK4wrRpgjcxIU+XPqfqXcRVZZVItiZytkmIp0aqxiuK9q87EziK+Nxt8dARvUTk5GzBt88bZecpk52/RP8A4Nq46Zr5I2/vqfTWqgAoYnY6PmCwXUkmkYlFBD/cfeHx8mO2eJb3QjGRVJadITolmJ2klbWuEzNZPiz6whnI0e2JF+OY1Wwslt6PPsxfOLeTX1VHnc579bpe+NKifiqW1/rmSf/qsKfZRWpOD7cI/pHkuUdor4bL69Fwxqd+Q8+N+CGR4KernEvx5rTEULM23AT+qZhs1QMQVq+2HFrLCwdvAxKEnX1/R5Z5+GtgOHT5nnChXUuhVyaeRh/u9OZli4jga7UB0QtxuKQIxeHLwllXSdQgOijmUSCZDc86zYStqqZlNOlifLXt3A3jWKV2pysiY0uzwyqmmerFUT4R/G2wfaz+J40dEPPCfA/8c+N+r6v9dRL5U1T8AqOofROSLF777HwH/EcDu+prQb868T+dGgsCz6Sf16CqEtAovE7ppEYAt1FYVchXujWxtJThUjZOiDZ4Z2U0g6ix412Fa8z08UVCawlY30lo1wbuw8FMs336+f3/gr2f7AHOg/BiK2CJi5jOL/D/5mWP4V79+W9eIEEItJ0qHQyhZ2W4HfHAghYIBc0Uzp+nE4XDk8XjkdJpIMZvCwLkgtCFTjqeR79/ds98fGU8n9o8HumA50VK9bY002znY7nZc7Xb44LjabLjebvHO0Tuh96ZIDX3P0Hd470h3VxB3VllmTLiaxlCylam2iCQLaxWxVC9B6StwZEZsoWgy+aGKpogm83iLX7wGDYIzDpaC5PZZDX/OmRSXaKFSyQ4t2ifNym8di1dZi24mxIIfBEKe4jY/9sHPPPaXaD9H/P7p311693XX4pu7u2eu9FShOdt05OlYnyka86+qrDRjUdoZzDvbcE3xcna6NefDc3dxhlPZwz456rJy0I9qaD9lal1MwTOZs1ZaZ4TLDlLRmQvpyWVfaS12255pTEjAyvY6Bcm4rhC6QpYT94cTIjCdCvuHTJqKcVJMZtT5ATr1GB1OrcAlMHrHoVNyLEge8fkR5zyH4wMxP5LKI10Y6DYOcIwHG1vNSoqF0ykjRTk5GK20DK4oQYtJ4myVHXMRNGeyRBv/DgjUvrNIHy0O3wV8b6Tdm+sN2+3mfFwKpKgW8VMUPSVSzMaP4jPi/Mx9krN5qXMN0Q7OIUUJ1OpDombwaY34QdCUOZ4mS1XL+dXG8JObDaaEu9lQb8DFT/LwrhT5pS0yWs8nbP3VojGWtXumnVyumxW4ugaDWnTyT7vPM1jpYvdejjn7acCFLOv6xUtdnP8yKuqlverV1uLGgJBmsLQoD+MNdDMR7zmAR11vLTJIFt6X0rgsVkZd/SnajILFwejcEnm+RPT4eu4aIZIzjfavRaKsu01V5iggQc7scksfa6CVw63SnS72J1qkz9z3usjH9vgtPUpbefdS6wqKQ30t1V6KRftk+26b1TaSZ2P9KmPYbz9b+kPWa0uZPRVzZkG1KSio1opeJaGa57trRT9CCHgfCD7QKq5SjJ+0EEm0lNSEaqRFA61tiPY7555SahGDGjnfnIFSCbFTnBhljwJjHBlrtM7+8Z7Dfj/3++xElApqoZQ1SW2LPLrc5+bOW16qYKCXLPt6m0OiTyulzf16PhavMo7DZnPWZ/PV/uToiTXgs+ZU+1PAn0u589N02ifOova7gQErmThfZn753PkvAKEL0Kdd8+dGmLzWGN7d3s59cCbLnZgRWws2SBGKc0RRVAoEjx96QnYU5+gByRkpiT5P+FLoYsYdTsgUySkTY7J1sxlIm57iPbkLaGfcgLY2K6BJTZNc20Dr/bOt1/nPp9E+qquKXeWcBqGVb5/HmctV8pdtPwn4UZOC/76IvAH+zyLy7/3UC6jqfwL8JwCffv652nyCKknQtjnNE/i5TX8J8zXYucWIWWUCbdwodRFp5a8wFF9ApYZEm5BsiJ5oSwdbdgf7v+bsVi/M6mlYHcTZIqzuhdnr5x3OVyXiYlN9SXYuT/u8QFlvxGZ4LZN2LdJXX7j8/s8ew3//3/sn2jbDluaVxVLtMgXnlJwjKUUyiUQka+Z4OvGw33N//8j+eKxeojNVg7ZpKUKcEvv9kWmKpuikXNNEbGMEtbQtrOs3m5HN9oh3jqtNz/UwWIl57xiCAT99CAxdwHvH4cOO/e2OUgrvv/3AaX8kxkycJlJK5Jp7blGKVtJdJRC6QAgO7xbwx8q4mrGGWAi290Zeq2fKv+Vft2m1cH0u4GNL8So19LZUIsTVWLzKWuxCt9r7f0Qkvfjxj4my9Tz+t0ns/ZT23Eb/04/+sfdfYy3+9W9/q2ee76bJyFqWXNyDqsmpJ+d9Xgmy818YmMyXOQNFmg1hds3l2Mv8vYsLzEZHhYZMbj8X1XMWuXBx/6tXl8rWmutIVveh6Fw2VXX5bnt9dvxsRayu+UprcfPmSmNMOBxOPYqjUMjZk+ozRYwodDoJp6MnRWfpWObUJfgOYo9TT+g8oQs478h6zf4Io8vE04F4+A4nwsPhgXg04lYvSgm1CEINT27j6MXbwHqhBCE7oXTefhBT0LyR4fvKhyIO/DYQhoAPjn7TGSecU7qhQ3NBxDEMwaJDtZFBt/BoKtdPVdAKUOWhSKrjY6HihutUHjtndb5yMWLTWAlTm9HqcBQRXEsBMwX5Vcbwr7+80wb2LEp3nUPydO6vo3+W459LMajmcQVO1utUajoSz4Ct7fzPeXfPr7lcpcmS+ZOVp7px3i3PY/dVtIEWK/3p0iZaATZPDZK2Ay7HSr12A0Daz3wqldUX5ud5lXHc3fUqNcVL3NP+BCoAo7M4MKffOrKK87G9MBSaPLbUMVB1s843c52tjNNZd6gOoKXyk4FAkXhmBxa10u/r1AO7/noOypzypRi5c6k6toF1dU3NhSXW+jEEQztoqZeaG0gCIibBfDYHU9ECyVK8tD6UQo30OevjVxnDqzf/rmqNJNdi0YAqVs1Q52IaVa/STNYJtJDikSkeKDmS0olcJkqJ5GxVtD59VjkAAA+gSURBVMB02+ZILjkzxROSHM5lvLOKsaqJUibbX4rpxm0PbdFTKQbi1CFioE8XDEwaT0dinCr/iSMmG/sxTUzZuHpiHOt9qFUxbPtVi/pZzTfO1suiCSy4TjOGWkc2O6uO+hwWK6ufH9aFXmscb29vdZF7z8kOnrmX5+Xdn9rapdY26J96nZ8ke18CaF44vdZF3HgcbVH/tPv5U9prjeFvfvMbbTok0vSoRcbPpATS9jl7v4gjOkfBI6XgfCCIMGUYNZMRTiGQh4HivK2rGsEjfY9sBqQWEHEt4qfNZTWikDNTuS2CC6DmWbDnufQu1Rn8aWDPv62gD/yJVb1U9b2I/KfA/wL4SkR+XZG/XwNf/+gJxIHrMYWh5YuCzmS3NJQEU+xWhsZ8D1YJqVWnkZq8r9kifgzIKTPDfkPdmT0rdSNOUvlWWunXZSJIS/BrIbh6OXwrm7lNZhEkNO+Lw4eOEKzU9xPg57m+XR1ypnytPUv1fwX8PKkuFKfVXy2c7uyTnzuGgFAIXthuelAlTgmPeWG9U6Z45HASkiamMpE189379/zDH77i66/e88137zhNE6mURWbVLleFLMrj/sQ45RlEsfK76x4weM5RDZTqNXECu86z6xxeYNs5thWosbQvR3DCJzcb3txsERFGDUzqKQpjLEypGH+FWjQRCH0tN321HdgMga4XQhDEJSBjpdkz4q2Uajd0hK5DtVZYqCHdKU6knGvElJU+NZ6gCpaVzDiOpJwqlniugL7mOP7/2w+1P01Uv3T0D53l58tTqaWuqeunKgXnh7SL2UGt8tU5hrHoDysjtKE7RRdyToG5Spft5Tori7ICnRZQczGIymqvnclM0bnc5fp+V+ZAfX9lDF1GUbRnVmWBxs/vS7AbarxfpiKvI+mW76jorCQs25JUAuHXX4ulFA6HE92mx+96xAVycUxjIUsix8J0ilbNKgqno5VIN2Pc5GIoA4Ps8CGwdTt2/R2h65hOka/ux/9ve+fyIktSxeHvZGZV932MjuKDYRwfC3EtiCuXCuJGN4KuRvAP0J3iXhg34lpQmIUgAwozuHPhwoXI6CwUHXwgqIODr2Gm79zuqnwdFxGZlZVdfaf73npl+Pu4TXXXzaqIk7+IyIgTJyJomwVF8yZF8w+ytsHsvxhLzByrW3JrIAuRsK21eBYGofN8HmblTqA8MTw38jsnzO6chIHi0igWhrUeTqopWrIi5/bjp9x++12yPKM4LSjmYUZ7lmU0JydkGZzcKpid5jRNwxuvLzhfXBCiEE7IYttZNSV1E07+6TYbtywnn52SFTM8TgWAQw5Vu2RRh01JF+fn1OWSzHJOilPyrAiTBpmFSZ9hKdtSexo6h00/UdU5BIa/t23bn4YX9B88461z5KxKn9lq4/PhYGIVVXM5D8PvHJTi+Ln1680GcdaW9U5Xi5uurw/6YrohpXja1OBAgjbuf9gflRTvSYxGCP98lfDQZeuhL9XtuxsGynHPRYf+JNiRM2hk+yPpaBafy8UqyqdzkriHZT+z+azfk6xrC8OkYogQDpM94WAHHzheGhxr2nBql2fkxZy+t2ddxI/F74ynh/VaNpgFZ0bbrp8es2TZ38BuwFGWJVXV9Jvu19GBsCozXR47549BLGfB9rDsocnC2vu+yDhkLczbjLwB2pamzEL/GWK96kpL0w/02viQanBqdxr3/qTTtu8jb0dD3PG2DjrESbnW4t49Fg/NoApHzTclTXWOtzVVecFy8QZNU3JxcUZZ3qOsShYLOL8/oyhmLMoL2niGellWLBd1tCzDrIhlpYyOn3bg+Om2l2iiznkfyTWbzZgXYTVNuTynLM/DSV5+ThP3Z6rbirqt4jKSEOEQH1arAW1/FAnBMTAYz6z3Cgbjg37QMRxnrPUg4v+P3xu3L5cr4zbqYnci1NDx00fAX+U0OSDDdvpStM/lwdilz1/LWe/eBzk8DOtRT2/pxHv08eJgj58w/g7tX2jMoNvjN4vRzi1Om2ecz2ZYm3NuxhlgTUNd55QEh/fiFiw9o47btPR7HeU5VoRow9ydrpVtPUYmOtBF43UO2TgAD+0nq+fWwNmztrwrPr/ruqaKv1dNHZZ9Efuo3HQUsT+uc6rXu4EqFoBbwCeBbwEvAE8Dz8TX56+VYlyXvvJSjxw/wyibDRUgvBVPdyDMLoaCHAY9obOwKtRh4yjrr+9nwryFGA3EIOKnH/B4N9iI+ezwrrH0vi/kMWNdmHfWeRrznDUeUArWxmf978M/Ll878J2Omt71/C6XSwinkrIVDT1EwsxmOXUdTkdpiirq4XG2dUntDcvo+Dm/uODs3pu8fnaP++cXoYJ0Y9FBrg3CZqdNzWJZPzAbveOH2HmNP6c53C7Cng63Zxl35lmIUIo3Ic+Ne3dPOLtzGkK5bz1GfusuTkblUHd3MJ7CZQZFnodO36ygyIcRP2EICbFzm4V7kBdGMYsb38ZlB6HxCcu3HCP3boY1zgzF/auquoxHIYdOaOhUAFCY2eNbq4s9w9Kz+SG+e3aT7u6tuVkKsdOyvbrI5YFfn63hn8P2jQ2DP1h1FLsL1mb71zuGY+eS9R9ZtUfjwWoX3du/Fwe5bqvBwkZDbJh/RsttRxkBLjUsKxcU3ZHww7ZzGHERfWN0jrTRXRumtrW66A5V1WCzltYNyGMHI7xWS7i4n1FXLXVtLJc5bRtOMczyMGvs2SlZdYfWC07bt5Hn76Io5iz9jDcvltRlDeV9bHGGtTWns/vcOWnIc6edhQ2aybq97sLyBbOM3OJpGjm0M2jy9YgfK9qw94k5+Sz+FHB6p+D2207DZrXZyrOQkzHLg0N9fssoToyqCkstqqYCMubFHMvjZs6N90tgm7hBaZYXZLM53WnsRjwCO3MaGqomPIPKqqQuK4oc5nkox5mFCZ8sC52z7banlx05MFz2lK3VkcsRP3S+W7p6PYzQ2DSo2OT0cR936PsCzdCB032+c511CXYRcnmWxz7M4DOdU6j/6jpWFY9RH6sBZ59cNOzyIKMbgA7qNrHPxsCONSdPsGP0Vdt7LhprpwyuonJWCWZZ2PfHIEZcEcvn6mCSbh+mcWSXtx5O8GT13SHd2Icdmkln9+Dzoxnn8U93XTieu5uVHt97x73bordrkKNjvFsiNi5r3mUpTBwUrTFzoM1omrgZu3vfwNtIoCyGZxurCYCWELFHFvp826uLDqy2g/CsG/CF/XPCVvQV5g1Ns6SqLkKUT4z4aeqSqlrQNMGBUzclZbUIDrduT1F32qamqhbx3sbeqEPbljTtMrRfra+uj4PHeEdiv86Yz+bM5yeA09RL2mYZnHe1U9VBu9prGqKzuP+Bvgfcl5P1+z6M2BnU+tjQ9KWBtSdc/zgcP2eveO72/+ew5T5qV/5We32tnB+74kHOl1HuNr87cvqMIzGHrzfJ0+iN7stX2l8rz1d834B2289FG712v/vqXnnss3VOac8ymizs/0WeQx6idhp3yixM0tfFjPo0Lpc1gyzvO6N9n3O41LK1MNnnYf/KNtab7ikUB30MHUAPivhpPS7pGkb8jNriY+U6ET9PAM9aWKOVAc+5+0/M7BfAc2b2ZeBvwOd3kcFNleagXL9uxctt+MdG1s0aDrA2p3vVUrBhw76aQTfK4Pj5iJn9hgNoeC187WV3CQCrB+VbXPMW3OSxeF18Y8b6B/MM+Nn26+J4kHAIdpPuw3/rdR06N0shRDruqC4OOxtrOdycx02zgEfDNirTdZO66hlzRUcqXr+9uji+9Xu0fZ/sxKze2XfjD+KNw7Y03Jlmj/DFQ8fLNdK48tLjL487ei7uimNoa2/W17nJJTe1rovuYksa7v3uHoOcQ66bn03XPaBLcM2vnVhd3C3XcyBd9eHt5eMmbLMuHv+j4/8T26czxcz+DdwH/rO3RA/PuzgOez/g7u9+1C+JGv6V47FrHxyLrVvREFQXD4zq4sNzLLaqLj4ax6DjtjVUXTwMqosPT6oaqi4eBtXFhydVDVUXD8OVOu7V8QNgZr9y94/tNdEDkqq9qdq1iVRtTdWuq0jV3lTt2kSqtqZq11Wkam+qdm0iVVtTtWsTKduasm1jUrU1Vbs2kbKtKds2Zgq2Xn12uhBCCCGEEEIIIYSYNHL8CCGEEEIIIYQQQiTKIRw/3z1AmockVXtTtWsTqdqaql1Xkaq9qdq1iVRtTdWuq0jV3lTt2kSqtqZq1yZStjVl28akamuqdm0iZVtTtm3M0du69z1+hBBCCCGEEEIIIcR+0FIvIYQQQgghhBBCiESR40cIIYQQQgghhBAiUfbq+DGzT5vZH8zsz2b29X2mvWvM7Ckz+5mZvWxmvzOzr8T332lmPzWzP8XXdxw6r4+CNJy+hiAdU9BRGk5fQ5COKegoDaevIUjHFHSUhtPXEKRjCjpKw+PUcG97/JhZDvwR+BTwCvAi8EV3//1eMrBjzOwJ4Al3f8nMHgN+DXwO+BLwmrs/Ewv+O9z9a4fL6cMjDaevIUjHFHSUhtPXEKRjCjpKw+lrCNIxBR2l4fQ1BOmYgo7S8Hg13GfEz8eBP7v7X9y9BH4IfHaP6e8Ud3/V3V+Kv98DXgaeJNj4bLzsWULBmCrScPoagnSE6esoDaevIUhHmL6O0nD6GoJ0hOnrKA2nryFIR5i+jtLwSDXcp+PnSeDvg79fie8lh5l9EPgo8Evgve7+KoSCArzngFl7VKTh9DUE6ZiCjtJw+hqCdExBR2k4fQ1BOqagozScvoYgHVPQURoeqYb7dPzYhveSO0vezO4CPwK+6u5nh87PlpGGaSAdp480TAPpOH2kYRpIx+kjDdNAOk4faXik7NPx8wrw1ODv9wH/2GP6O8fMZoQC8AN3/3F8+59xLWC3JvBfh8rfFpCG09cQpGMKOkrD6WsI0jEFHaXh9DUE6ZiCjtJw+hqCdExBR2l4pBru0/HzIvBhM/uQmc2BLwAv7DH9nWJmBnwPeNndvz34rxeAp+PvTwPP7ztvW0QaTl9DkI4wfR2l4fQ1BOkI09dRGk5fQ5COMH0dpeH0NQTpCNPXURoeqYZ7O9ULwMw+A3wHyIHvu/s395b4jjGzTwA/B34LtPHtbxDW/D0HvB/4G/B5d3/tIJncAtJw+hqCdCQBHaXh9DUE6UgCOkrD6WsI0pEEdJSG09cQpCMJ6CgNj1PDvTp+hBBCCCGEEEIIIcT+2OdSLyGEEEIIIYQQQgixR+T4EUIIIYQQQgghhEgUOX6EEEIIIYQQQgghEkWOHyGEEEIIIYQQQohEkeNHCCGEEEIIIYQQIlHk+BFCCCGEEEIIIYRIFDl+hBBCCCGEEEIIIRLlfxtD2K5jLXrkAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4OUlEQVR4nOz9eZRdWXnej7/nnDvXXCWpNA+t1tDzCA3N0A2YxgSIp28gxkns5LsSMI4TQmxih59N468DDvZiOYkDnrETm2AntrGNMaGhoWl6gJ4HqVstteahSlLNVXc8w++PGqTn2Ud1Va2qe9Xi+ayl1f3WvffcffZ597v3PqfqebwkSRITQgghhBBCCCGEEEIIIYR4leO3uwFCCCGEEEIIIYQQQgghhBDLgR56CCGEEEIIIYQQQgghhBDiikAPPYQQQgghhBBCCCGEEEIIcUWghx5CCCGEEEIIIYQQQgghhLgi0EMPIYQQQgghhBBCCCGEEEJcEeihhxBCCCGEEEIIIYQQQgghrgj00EMIIYQQQgghhBBCCCGEEFcEeughhBBCCCGEEEIIIYQQQogrAj30EEIIIYQQQgghhBBCCCHEFYEeegghhBBCCCGEEEKIy4a7777b7r777nY3QwghxKsUPfQQQgghhBBCCCGEEEIIIcQVgR56XEFEUWS1Wq3dzRDfZyjvRKtRzol2oLwTrUY5J9qB8k60A+WdEOL7AdU60Q6+n/NODz3awIsvvmg//uM/boODg5bP523z5s32z/7ZP7NarWZnzpyxD33oQ3bttddaZ2enrVmzxt761rfagw8+CMc4fPiweZ5nn/70p+1Xf/VXbdu2bZbP5+2b3/xmm85KXO4o70SrUc6JdqC8E61GOSfagfJOtAPlnVgO7r33XvM8z5566in70R/9Uevu7raenh77J//kn9iZM2cW/ewnPvEJu+OOO6y/v9+6u7vt1ltvtT/4gz+wJEngfVu3brV3v/vd9tWvftVuvfVWKxaLtnv3bvvDP/xD55hDQ0P2gQ98wDZu3Gi5XM62bdtmn/jEJywMw2U9b/HqQbVOtAPl3fKTaXcDvt945pln7I1vfKOtWrXKfuVXfsV27Nhhp06dsr/5m7+xer1uo6OjZmb28Y9/3NauXWvT09P2V3/1V3b33XfbN77xDUfT8r/+1/9qO3futN/4jd+w7u5u27FjRxvOSlzuKO9Eq1HOiXagvBOtRjkn2oHyTrQD5Z1Ybn7kR37E3vve99oHP/hB27Nnj/3SL/2S7d2717773e9aNptN/czhw4ftAx/4gG3evNnMzB599FH72Z/9WTtx4oT98i//Mrz3mWeesX//7/+9/cIv/IINDg7a7//+79v/+//+v3b11Vfbm9/8ZjObfeDx2te+1nzft1/+5V+27du32yOPPGK/+qu/aocPH7bPf/7zK9sJ4rJDtU60A+XdCpGIlvLWt7416e3tTU6fPn1R7w/DMGk0Gsnb3va25Ed+5EcWfn7o0KHEzJLt27cn9Xp9pZorrhCUd6LVKOdEO1DeiVajnBPtQHkn2oHyTiwXH//4xxMzS/7dv/t38PM//dM/Tcws+ZM/+ZMkSZLkrrvuSu66664LHieKoqTRaCS/8iu/kgwMDCRxHC+8tmXLlqRQKCRHjhxZ+FmlUkn6+/uTD3zgAws/+8AHPpB0dnbC+5IkSX7jN34jMbNkz549l3Kq4lWIap1oB8q7lUHyVi2kXC7bAw88YO9973tt9erVF3zfb//2b9utt95qhULBMpmMZbNZ+8Y3vmEvvPCC895/+A//4QV/C0IIM+WdaD3KOdEOlHei1SjnRDtQ3ol2oLwTK8FP/MRPQPze977XMpnMojIs999/v/3AD/yA9fT0WBAEls1m7Zd/+ZdtZGTETp8+De+9+eabF/4ixMysUCjYzp077ciRIws/+/KXv2xvectbbP369RaG4cK/d77znWZm9sADDyzHqYpXCap1oh0o71YOPfRoIWNjYxZFkW3cuPGC7/nMZz5jP/3TP2133HGH/cVf/IU9+uij9thjj9kP/uAPWqVScd6/bt26lWyyuAJQ3olWo5wT7UB5J1qNck60A+WdaAfKO7ESrF27FuJMJmMDAwM2MjKS+v7vfe97ds8995iZ2e/93u/ZQw89ZI899ph97GMfMzNz8mxgYMA5Rj6fh/cNDw/b3/7t31o2m4V/1113nZmZnT179pWfoHjVoVon2oHybuWQp0cL6e/vtyAI7Pjx4xd8z5/8yZ/Y3XffbZ/73Ofg51NTU6nv9zxvWdsorjyUd6LVKOdEO1DeiVajnBPtQHkn2oHyTqwEQ0NDtmHDhoU4DEMbGRlJfVhhZvbFL37RstmsffnLX7ZCobDw8y996UuvuA2rVq2yG2+80f7Tf/pPqa+vX7/+FR9bvPpQrRPtQHm3cugvPVpIsVi0u+66y/73//7fF/yNAc/zLJ/Pw8+effZZe+SRR1rRRHEForwTrUY5J9qB8k60GuWcaAfKO9EOlHdiJfjTP/1TiP/8z//cwjB0DHnn8TzPMpmMBUGw8LNKpWL/83/+z1fchne/+932/PPP2/bt2+322293/umhx/cXqnWiHSjvVg499Ggxn/nMZ6zRaNgdd9xhv/d7v2ff/OY37Ytf/KK9//3vt6mpKXv3u99tX/va1+zjH/+43X///fa5z33O3vGOd9i2bdva3XTxKkZ5J1qNck60A+WdaDXKOdEOlHeiHSjvxHLzl3/5l/bRj37U7rvvPvvN3/xN+8AHPmA33XSTvfe97019/7ve9S6bnp6297///XbffffZF7/4RXvTm97k3AhcCr/yK79i2WzW7rzzTvvc5z5n999/v33lK1+xz372s/bud7970d+8FlcmqnWiHSjvVoh2O6l/P7J3797kH/2jf5QMDAwkuVwu2bx5c/JTP/VTSbVaTWq1WvJzP/dzyYYNG5JCoZDceuutyZe+9KXkJ3/yJ5MtW7YsHOPQoUOJmSW//uu/3r4TEa8qlHei1SjnRDtQ3olWo5wT7UB5J9qB8k4sBx//+McTM0ueeOKJ5D3veU/S2dmZdHV1JT/+4z+eDA8PL7zvrrvuSu666y747B/+4R8mu3btSvL5fHLVVVcln/rUp5I/+IM/SMwsOXTo0ML7tmzZkrzrXe9yvjvtmGfOnEn+zb/5N8m2bduSbDab9Pf3J7fddlvysY99LJmenl7OUxevElTrRDtQ3i0/XpIkSZuetwghhBBCCCGEEEKI7xPuvfde+8QnPmFnzpyxVatWtbs5QgghrlAkbyWEEEIIIYQQQgghhBBCiCsCPfQQQgghhBBCCCGEEEIIIcQVgeSthBBCCCGEEEIIIYQQQghxRaC/9BBCCCGEEEIIIYQQQgghxBWBHnoIIYQQQgghhBBCCCGEEOKKYMUeenz2s5+1bdu2WaFQsNtuu80efPDBlfoqIcxMOSfag/JOtAPlnWg1yjnRDpR3oh0o70SrUc6JdqC8E61GOSdaTWYlDvpnf/Zn9uEPf9g++9nP2hve8Ab7nd/5HXvnO99pe/futc2bNy/62TiO7eTJk9bV1WWe561E88SriCRJbGpqytavX2++f+FndJeSc2bKO3GOi805M+WdWD5alXfKOXE+mmNFq9EcK9qB5ljRDjTHilajWifagWqdaDVLqXWWrACvfe1rkw9+8IPws927dye/8Au/0PSzx44dS8xM//QP/h07dmzFck55p39p/5rlnPJO/1bi30rnnXJO/9L+aY7Vv1b/0xyrf+34pzlW/9rxT3Os/rX6n2qd/rXjn2qd/rX638XUumX/S496vW5PPPGE/cIv/AL8/J577rGHH37YeX+tVrNarbYQJ0liZmb/49uHrdTZbWZmjTiGz3g+PtWL5j4zTxy57YoifE8S89MgflJYh6iUDyHuzOPns/TpasN92lSr43nE1NA4pjYm+P6Mj693dxWwDQEdv4HnYGbWiPA9luB54zeYNep4jEoN21yN8czrMaZUmPIANqKfhZSG5/dDdWbK/n8/cr11dXW5B5r/ziXmnNmF8+7nPvElyxc65ltCn8KY0tC8ixCL8/mJtEc9zi83O2CCX5rwBTSzhK6qTw31nKuecpBFvoPzNElpRBLjmVCqGw1PC5uMhSjCPKxXME+jhlsEMhnMs4AvYDCby7Va2X7713980ZwzW968++Gf/7Zl851zP8TPeB5Vl4DiZk+2W0FK8i+eRWnHCOkHSzuC59R0My9p/2+AJJSKMf/Am40btWn760+/btnz7kI594n//nUrFGdrHdelhOZcP8Bj5ik2MyvSnNhZzOEx6P08hs1bfH7kRgSB24iEKmaD60QDcyqk+TBsUk99qhlpIy+mDzVC/I5KuQHxxHQN4smpCsTVCr6/EeE4CUMeN2YN+hn3w/n1tlGv2P/9g59p2Rz70//hv1k+XzQzs0IhD5+pVvDcwxDbvWrVqpRvwv4dHx+BuLe3G4+xuh/iLF3T3p4eiLu78fOTExNOC6ZmpiEu0nllMpir3Ne89puZmYHYDzDT0kp+hkqdT/0SU974GVw/Nhr4ekw1gOfPXA7Ht5lZrYbH4LXA/G9hlWem7f3/z9taOsf+3Kd/3/LFUupnnN8U9Ki2pMxv/BH+DbPAWzzm77xQXy28P2016KxBF18L+P7i683muB/gfmi6PuTFH40//oaY54mUdUGcYI3kNszncrVStv/0b36qZXNsoW/QvLnrnqEx3LlqLcRhHeeBTbe/xfmeDa/7AYgjWhv6WRzT3BHUBCcHM/T+cHLIacPI2TMQTw4dhbi0Zj3EazZfD3GjUcUm8rrPudy8DzMn6TzjeZtzDg+aL/ZC7FO9btC84/EGxdx1XOTs58+1IayW7f5fel/L5tg/+5u/tFLH7NouZ1jLCnnqO0qKXA77wswsl6W1HM1n+Qy+nqW1WYZeD3zKW651KXWM92uez/USXw98ur3FtdLZByNxyuqO15dcZxq89qNaFdG6LOL1J9VGXreZmdU573iNOxfOTE3ZPbfc2LJa949/6C7LZWf7fNsW/E39615/D8Sl/g0Ql8fcNdWpU6cg7qTz6O3phfjsBK4dH3n5EMRnTp6F+D1veyvE6zYNOG0o0DJgdKoM8RTdDwupHh86imvRbz/yJMRdnVivOwOsjWZmd9x4FcTXbse+8ylnCpS3lWnsl3onroF8Got/9eWHnDZct6UP4uGNuyD++4PPLvx/VK3Y/l/++ZbVuluuG7RgroZVQlwH1Gis8D43m7h7SB5PfO84m8W6kqX+zjj3Z/A7EqqNpVKHMZwXXNuytBafmByHeHQMYxZ1OnDgBLYp5d4J76tiqmWJc38UabYuZNJe52mA9/zzc26SmNWq7r4qjWV/6HH27FmLosgGBwfh54ODgzY05C6gPvWpT9knPvEJ5+elzm4rdc099KCJwQvooQcN+lY89OgoLP7QI6inTNrL/NCjo+lDD1xEm7k3YJb60MPLUhGJ8MyDi3noQV0T0oMT7gezlE3peSw158wunHf5QocVLvahB28g9NBjLr6Ihx7UtbynaCzxoYdHD84i/yIeevAOkCarZn8yuZx5l813WrYw/9CDbqy+Ch56JJfBQw//Mn3owfPRhR56LITLnHcXyrlCscMKpdmcC5bhoUeJHnqUSpffQ48MPfTg+XAlHnpk6DsSo4V5hHWpRr8wwTf0PFrY+4H70MP4Z9QPfO/TrIVzbL5o+cLsxitPN5sSGq8B3SQopN60xv7NV3Fjyp8p0iaDH3qUOjoh7ujEhTQ/iDFzf/GmWMS1GT/04GM6az/KY37owVOX2eXx0COTubiHHvO0co7NF0sXyJ9X+tCDrhE/9GjyEGQlHno0+9P+y+GhB+c6/xIbf4MzT1zUQw/aE/IvzrVojvU8f+EGLt/I9YMMxTh2gpSbz9ki1i5eG/rZIn6A+t596EE3bKjfvLo7XjJ5/A5uJ7/ObTaqhe5DD+eJldMG90EZHZPWDhw7/Vigh0U071zMQw9/kYceC8dp0Rxb6uiwjvmHHlTL+JdTLuqhB9X6gOaCZg89sll+6EFrw+/Thx7OL928gocevB6pU662qtblspmFhx6FPF7fUgfWkY5OXGNZ3V3DFmmuLpXoGB04hmdo3ZwrUB3K4RjndaDTJnMfelRpjxlmFn/okS/iQ4wMtSGb53t4ThOcNQu306ccKlAt9GlPk6F+C+h+Qo7qd1ob8iVsQ1B0P9OqWhcE/sIvFAR0rgHNf3zvi98/y+L3w/i+UUB1wrmvRLWMH3rw3sDMfbDS7KEHH8NpgzVZd6deq8XXZe5PuO6kHHKJcDsvHCepr6exIp4eaV+eJElqg37xF3/RPvKRjyzEk5OTtmnTJvP9cws0fhoexZQkNFEEKeedp+rFvxzJ96FydAOmp4RJ09NJGx46wNS0u0jKUJLEtMGPePKip5DVBIvT6AwPaLq5kvbwhy550mTjFUe4AAr5xhQt3GOfj+8u/BK6ycc33M4f35m0i3kBLjbnzC6cd/19nVYsds59fvGbcs4NMP7LgYtoI9+wcR9QNClO/NAq7aEHb2Sc35LiNi2eE83iNJo/9ODFH+VZs7/0KOAi66L+0oMmH28ul6uVpVXr5cg78/1zN3Wpr5w7znx9UveEi08WS34g4UDHT/mNiaWz+EPGpqQ9eGm11mfa+OMNHN8Umnvw6byvCZc6x3Z2ZK1Ymp1T/Ca/Kck3yzK+e2147RZF+MCcN60dBRyPHbRw5powM4M3s72UucXjByF53vhiPFPBTUnd+QWKxW9Eck2ZbRfG9ZBvHuMbQjrPBs07Ab0/iui3XRruhrFex5uA1Rpei/p5a6pM6m/5pLMcta5aqy7cPOA6zg8LeIPHG2Ezs2oF/yqCb2bwkAxozZJNe4JwHnX6xY8o7SYc1cN8HtdN3Ef8ex381zrOAz36fLHgbjIt5puHmAPZDP1VbkhjmnKZb9q5877bhGY33ee/I5vlXxNanOXIO8/zF3LDWVZRu+OL+Y0W9089Fn89WXxO5pv/vEG/iGceKZtZeoPPN/+X+IsFKWvcZg9vOI+cFHEemtB+jm8cpow/nx9SXeAXfTIpD8oX41LnWC8JF/4ClfexM6cOQlylv5Iaf941de1L8K8sZrrwt4DXb9kCcWcO25rJ0QNc2q915LB/pk4957ThxN/+OcSl6QmIi9vxt4Dt4OMQ1qj/Vm3Bc+iiv6xrhG6OVuhnZVrvj53G32Q9dRj7uvuqGyBedzX+NUqxG3/r2/lFFUt56Ml7mvPyNIld1YULsRy1biZMLJnrozw//KYBWKBDZ1LGF/91Ft+riOjBVYbqBP+1lkf9yb94l7a2i2lf5PM+iO+vxO4vfcLnm+ytPWfflfIXRfR6xvkrfYz51hXXNo79tEnWeYBLfTUX57yUG0CLcKm1rpTxLT93135VD67b+uk313v68K9ta1SXzMy6OnohLtDakOupFTDeWMX1z6Pf+R7EedpvrN+w0WlD0MC/kvDpYWmJ/kqiSg8czlbp4R+tZ0v99FfFefeard28DdtJNT6gsZmlbpken4Q46cI25GitWux7xmlDdlUvxP4G/CvFxsy5NkZlXI8vxnLUug1bdi08JHjsaWz7qbOjEOey9IAi5WE2/xI93x/jBwpZ2lPm6AFwROu+mO7BZrJ4fczMcnlsQy6HecZ/OVcpkzpAFfe1XDtD+s3z1N8roFqVOH+C2QTnmIuvTdPWos4vyPBBX8HtnWV/6LFq1SoLgsB5Wnf69GnnqZ7Z7OaQN4hCLIWl5pyZ8k5cOso70Q40x4pWo1on2oHyTrQDzbGi1ajWiXagWidajWqdaBfLrouSy+Xstttus/vuuw9+ft9999mdd9653F8nhHJOtAXlnWgHyjvRapRzoh0o70Q7UN6JVqOcE+1AeSdajXJOtIsVkbf6yEc+Yv/0n/5Tu/322+31r3+9/e7v/q4dPXrUPvjBD67E1wmhnBNtQXkn2oHyTrQa5ZxoB8o70Q6Ud6LVKOdEO1DeiVajnBPtYEUeerzvfe+zkZER+5Vf+RU7deqUXX/99faVr3zFtpAW3WLksrP/zNI01kijkr0WUjThcjkykWMz7RqZYRrqB/okelYjvcAGaWhPVl09yEbCOsasD4mXo0H6gA0yHIoc/UfSYPbcyxuyDiZrTbOOM2m5sx+HYwhP2v6eY05sFnhNdIXPO0R4kRm6HDlnZtbXV7LSnMGVo2HnsU4wvZySd67xDr7OHh7cF6wnyKp3rDGaZgLfrE1sHtvM04PFvB3bpxQdUsfMmaT5HM8ONgVkM0zS86wXaWyErkgha7mzNuO8sWQFrQMWZbnyzoLsOYNyRwqcxpRx7OYdG986OvdL9GVpZo3hpXze+YjjJUMkZHjp/CHi4m0MU2pNvERd2yXD+uUpb/ECLmIX8Phg48VFWI686+goLhgMOrrrdHGyAenGpngtZcl7gnPCS0j3mY7BpSvHHgQUhyljPGaTac45amOBtFID6gfHU5VrZYqHQUJjjb228kV8vZvNZMnNsFpZfK2RZpjKfcO+FPX6uX6qpaxV0liuWud53sIcFJEpexiygR/2zejIiHO8MMRz6+vrhbi/H2PWF680UPu7QP5QFZTLTe1vNnplf4xGA89zeop0lh0TazLmpbxLM1OPyReEjc3ZWNtofcNtZF8RvhYxT+qW7vOBryfw34thufIuCYIFE0m2zWKHZ9aLd/w1zFKMQZqsrR1vySbrrovQPGbYe8lt4qV5byUpbeA1rFNzHR+NJutPJzd4bkprQxPm+sXLNJq88RzLkXeV8bMLtY7X6nU2OKW6cuz5p5zjTR56Gn/QtRq/b+MGiHeuQt36jtWoW19LcJ+bI+/LQooXxfou/MxAB5lYN7C2RUfRF8TPokSJn8cFd1BBTw934JiFNfIqIRPjDtI4z81gfOzZ5yGeGsU2rN+K/dgYP+W0IehAH4LeTdfgG85PyurFbSqWq9aFUWLh3OKFx6xTtmlIpNUZn9Z/eZ/HML6f54bE8cdgU1XyAg3da857Gr+J/6XjkdfEO4iLSKqfBs2Zjq8Lz7nOHMAeHgjvANJ3BOwrR/0wVy/rS9BxWY68S2rJgvdLgpYCVh3HHzSSsxBPz7j+K/UG1p5CGY9RnkHviAz5vWXJZKc6jXWpNjWO8cy004aZ6SlsE/V9SHkeUq2KqO54tHbP0udzKQaddVqAlhuUQ2xtQmuVOo2tAreB/XbqdPHMLIywDXGE4zdbPvedfuXiEm+5at2Tz7ywsDY9O4bXmLY9zr4ocxEG3kxAr0ce9meN9iO8r/XovmxSdetMOIX9y8fgNOFS5dqY85qMa6O7lue9r3MMxweU2uR4gCxeby+GiBo1n+pL2E6snJH5hz70IfvQhz60UocXwkE5J9qB8k60A+WdaDXKOdEOlHeiHSjvRKtRzol2oLwTrUY5J1rNsnt6CCGEEEIIIYQQQgghhBBCtAM99BBCCCGEEEIIIYQQQgghxBXBislbXSp9PYF1ds8qHk6idJ9V6yhoxlr9MYuRmVlIesVeQrqIAWv1oX7ZNH2nI0kZo85pzWP/DrOG46WwuBBbZOzRgeeQONq4/I0pHhOuAQOELPXG8tWsUxyxxDnplyexq7NfLU9AXMh30jHOKV2yT8lK09NTsI6O2WuZJIt7erh+HWmeHuytgK8nxv4mi/se8OVjrek0bbtm+tnN3Biafp59DVKuGevIJjS+WCe9WRxRXK+hOmqa3n8mg+9xNctn4+wSdJ+Xi8Tzz3kBkDCsR14PHml0Bik63U6esb8Cv995/O2qQuIBWdvW1QFNHOFJDB37GR5v/J1Nxkbs6AabJQHqTXtLrieuiw68yt4oaZ46zvXhY8xez2QJnh7LQWLnnR1rDZPfRi6D1yKbdfua544s5XEhi/ri7AsSkidBRHGpAz+fYq3g1B6a5q3ewByLyBso4GtAdSoi/flGShu49sQ0B7KGfT6HfZnPojZx3InXhr0Xag1Xj5U9H5z4vIZXK+5aZSVJknPzlOdog+O5VqtUV1LGF+dqoYh5Uixhf7JHQFTHY3Jf5fPk75bi49KMfB517NljhXOf17QV8pAbH0ftYjOzYo60m0tF5z34HYu+7KxFeL5M8zZpNu/M5y7ncCvw/MQ8f17nnl7kvkh4rknxzfJ5bce+gbw+XPx1nhc89nvzmwsXN11vOr4j9HpTU5Ym5l4XA/uMcD+w9DN7X6SsWC92jZpkLs3TZKkkSXLe+VANpve6HmduX5fqOMZ7SOc+f/wMxE8dJV37zGGI2QeoEaK2fhSlaH1TDa7Te5zrE/MaiebH7z2B73dss1LGnsdrefbFwjmN/TLrXTdAXDW8yVBvHMEmjRxw2jBz5jDEW193D8QDm69b+P+wRsZQK0wUxgu+hgn5cXgReYbxeEyzwaOFDt+bYC+CmC4i+67GCfkKkC9FLmUt7KbBBbzxFli8VnHJaOZbeDEHcfZZTfYsfH/D83hflbI7p5+Fzlw2+3o9aD5fLCdekjdvzrfWI4+do4dPQrzhevTMqTboJp+ZjZwegnjzpu0Q1ylPGzHVxg70BlqzZhW+nzxy9x5zfXvOjuA6q68Hj1EmT0Cf7vtNztB+I8G1aBJhG6OG620SRbT/54Ub35eisZMhv7kgg3FEORp6uN6d/U7024wz+J7zfQzZ03ClOXZ8+NzA4q+mscHbh9RVKNdDepnvPfEe03k/3Y/26VvT6g57zjkjuYnHh+MjQh9gv43U2udY+bLPIOYR76sSj/cHvA5I+U6i6X2sZP7nzY81j/7SQwghhBBCCCGEEEIIIYQQVwR66CGEEEIIIYQQQgghhBBCiCsCPfQQQgghhBBCCCGEEEIIIcQVwWXr6dFoxNaY15Ek8S/nSY0j6NVca5jfw7LrjYB129jfAVsRU1emabv77G/RREPSI020kDw9+DRZBzrVrYH0xlmXmDXTIlKejVxBXvpK0kBP0Wp87qnvQnz9Da+BuLu7d+H/g4vQMV5OSqWclTpmtepY9477k/000oTxfP6Z8x7KQ3qVNUFZL9cz1tlzmpCqgczvwKiJFh+/yp4esfss1fH0cDQJ8TxYB7GZx0cmQ3mX4ukRZMgLg3SA5zXLPQ/11ltBkmQtmdNDddw0yMOD9cXjFGXKhAoa50nAuczX2BvH93s4jnOU+9mM22d8TTJUa9gDwmdtUtc4CUKS4rdKzdWwn6734Xs89A9yNHRpzDu6lY7GLo3flF8j8JoIjc7rbXop3iwrSaGQsUJhNrf4tNgnIeNzzrm1jiX+IyfG65klnxD21crkse85f5z6a267Y8rriWnU1g7JK8HRo6U2ZemcnPpuZllHYJW8g5pp9ztGTjQnR6gbXA/d8d8gD7IaCSDXaudez2XSRLxXjiSJF/x+fB/PJUf6wxmq2ZVy2TlevoB+GU5/kW59oUgax4Yxr4nYbyPN04O17zOU2+zpwcdk+HX2qavX3Guez7DnBr7OzU7z5FhKG+OUNS4fkr9jfj3T1DtiBfC9xHx/vtaynx4OOj/hWpNyPP4Mx47nG36evSzSPOGW8rpZypaCNZH5RJywiQ5+6u/JLc2Hzm2jIx69aBvSWui5BmGph/Qzrd3yel5m4br5OdRB78hj7eO9Vbbi6rv7CX6mFpKX3Qx6fAxVsF5O1KbwgLwwv0JxVmAzuC6M66hZn8mth7hQWuscs9Y4CvFL9/8VxDtfN73w/2GjxXsKL579Z2bG+zH2HCMvvDBljDveZSHXdV4Hs3cQeRvQ/MhztJ9mM8ZrVHrZqV3N7vk0K5ZN981p8xjXMvoGJ6b9Rkx6/ylzbIZ+5rHHwNwepu7cv1hZKvG5NX+O/DTyvf0QP/zCPohXdbmeN/XyyxDnMpsgjsi7YmoSa9sNG3DN9dF/8S48PjbR9rz0tNOG1226BeJnHsJ7V8lrr4b45htuhvj0sbMQl0Nscy3EumN5d37KkVebH2GNz7BXmHOfCnMqoiScphRjTzszs0IDx6eX8PrTv8D/t4DYzg1dxweLawLfy7qIMc5H5HJKPwiosGR9uldFXjtpFoE+35uieym8z+U2OftSZ4nFPoZuP7CdF285arx3ZgtX9jui4y+HXfPCZZenhxBCCCGEEEIIIYQQQgghvt/QQw8hhBBCCCGEEEIIIYQQQlwR6KGHEEIIIYQQQgghhBBCCCGuCPTQQwghhBBCCCGEEEIIIYQQVwSXrZF5uR6ZV5t1UmmwKTEZGLGJSYr3k+N6FbP5MpvmOo5T7NLCx48XC+c+w6ZVZA5ERrZRfXGzsEIe318gs5swcjsiTth0EOMGmR6FPpom+fycLEbHsYBM0cqTp502vPjI1yBeU8Rj9Fx3nrF53TUuXUlyOd9yudlzSNgUiY2WyT0ozWiyufnk4maXLmxATca9iWuG7NhS+WQax0bZ5EAcG+aAY29KeZtN3LKS0IeiGI3LHGNyD48Rk7EotyGm70wzGA7IPC+grvLnfhBkW2sobWbmJ8HCdfCpTjjnQn1TTzERjyg3c1TvurLDEK/qnoY43zEGcTY+jm0qY5uqDfy8mVlYx58lNcyjuIG1xg/RUDgXo5EnmyH6pQGIu63HaUN/8SaIDzV2YhvJ5DFDfR+TYZtrfEaGjY69Yhqcm7Of8S/qs8tHPpu1Qm6u9rKvLxml+VTX0woVGxtz3CAjScf43Dhe3Dw9k9ZdlOceucQV2PSaikBEbU48vr4+ve7+3givLZy+dUzlaF3QxOEtptfjKMV4lNZMjQZ+ae28tUU521rDy2wmZ9ns7FjPZrGWBXQ92Mg8zXeQr2mphOaQPGbZYK9BdSjbxOw4zYSbjcwbZPxYqVbpdXIFZGPBKKSX2VzdvWaVCn5HKV+gdyxutF1vYlzOBu5xnPZ+rhs0XtpgYD5PNjP7b7Yd+Bqbf1pA/eu7Y9Knn/G5LtWYvNnnL8rIvOl3NjEJd9YaGKburWhuWLKRuTOH0ue5pqe1oamD++yHUkrliuJ1rlrYJxRKnfDaqi6sM9k81q3G8JBzvOHRcYjrHq6BkvIZjCNcg/GUGfP81sbxuZw0taSOcG3pUVybGYfY99w5oWM9mhiPPP8AfsWBby38f8yusCtMlIQWzW26/IRcwalzIlqI1VPamiFj3Qz1KN9qCGm+CmjdxOvJbL6Ix8+4TuZZ+hnv56KY1u4UBx7Xax4NXBzSrhnfA0h5y/nvbmJ07jkOw1Tz09aCtCfx6T3z14b3MitNvqfXcrnZdd1UcR28dmYar930Wdz/D3bwWsUszuO+NtuF57k2Mwjxiaf2QPzU0WMQ3/2Dd0G85wzugYuea6YeJFgXwgaapdeGcF8cblwPcXkE67FXx++Ynh6BOJ9xr1mcwWMarf0S2ldZjtYRPq3z6rSvpnHVaLj3ExKqCY6R9gX+v2Uk9F/nhQvFF4GzlMBj5ErYNz3dRjHOHT2dWHc6Su5GtqsHx0OxSPdzCtiGbI7uFftcG7luYVx1U9/qNWz3ZBk/8/LLeG/2KMWp24PzuJilRrO3zJd0GZkLIYQQQgghhBBCCCGEEOL7Dj30EEIIIYQQQgghhBBCCCHEFYEeegghhBBCCCGEEEIIIYQQ4orgsvX0MM+f/WdmHmvWOd4Y9FH2YjCzmPQcE/boYK8E1pEl3UuPXk/o9aiRpnmO7fZIE3hyfBLikyfOQsx614NruiAO86iJb5F7eWPuS9L7Yx31fBG1NuMI9f7qNfZmwOdo9RHULDQzKw8dhfiZ76DHR+W8fqilic2tJOfSztHXbKZXnYarsdxMU3nxzzfTok7TU3R0mJ03kb4466wbag3nQtIXp5xopOrXsoEG6kjyeSQxCymSn4OjT47H54/Pvoc1stP1WduhSellGubNeXPEMXkWOdqzOM69lDKeo0tQSFBb9LodhyCujT0K8fOPo6fH1CjWopg8PRopNbdWRY3H6Uk8ZnUG9aZL5O0TVLEejlJ97Nh8A8SFTqxVZmYdXc9CfPUt/xjbFF4DcT1Bf4AggxquHl0b1ktO08SuNRH+9efnuRR/iJXEDzzzF7SaM85r58MaoWmeOTxnJo5fEY1Zrl2LW2FYg3Wk2RTEzEKuj/SehOa7XJ78jNwCjJ+nYhqlrTWayciyn1iTAt1cy9/th4h8mdjf63xvr5l8a7WfA99f8P4KQ5x7qhVsN9kApXjqmAWsN+54N5G+Lc1PIfmfUNct+I/Mk6bPHpHO8kQD43wN58gOyjueryJa1NL0Zrm8qwPMa1AeowHPmQHN81R/wph9LTD0Mm69Yo+4qI7Cvpm57+S1bCvIZkLLZubaQ2PQWcv5XP9SnCia1MSLWR/C8ZxxTtcv7XhN9KYZt9bwGqhJzfbdtQb7HXC/uHYbF9YDd1vk5nXaGbLPETPfLUG2idD0MpPUywvnOz2N/oYzZ/BMVvWvgbiQcqJl8vrxIyyQSUS62o5fVPM2Xwk0O80knMEf1HFtGVaxPiU53AOZmSXk/dfRvxriAwcOnntvqzs+zsz+M7PQGYDNfCVSPKtoeDVi2m/RwqseYl6Wq+wJgvPh6SnM61KWvNfMLEvzTSG3+NqtRO/fONiPbcg189NMW3ct73Vs5usUp3yfR34pzpoo1Xhp5XnD299hpVLJzMxGbTO89rW/+TrEOwuUUD29zvH8Xhxzp8mzrBDh2jEencD3H0e/jT39L0L87JGDEOdSvO2OGvoweQX8zuL0OMQnnnkc4vwI7nFvxVt25gX4+SIveM2st4yeHl4V85jXjjUarA3yaouc+x7klZjmaddkD3L+mprX163FMVte4vtd32KP5tD+Ptzz33wT3ne4+iq8yINr0OSjrxf3E3zb1sysp6cEcY7eE8bkoeqjTwt7dbEtdoaMJVN9IRt0L5fuae87iN/5x398BOKzw+xZzfcHLr1OvZJpVX/pIYQQQgghhBBCCCGEEEKIKwI99BBCCCGEEEIIIYQQQgghxBWBHnoIIYQQQgghhBBCCCGEEOKK4LL19MgmnmXndKczpKebkMZaIyGd1sR9lhOQxhmrzkWkX+xI+JJOXVLHeIb05s+MoBb87HeisFoGpeFsdGQc4ulp0m+lRtWmUGc/n0H9uoxfcNsQYBtYW9mPMO7t7IN4cnII2zw6DHEph995cO8TThumzqK2LWsVh+VzfddokN/ECuN53kVoqM+/t7mgXPNDNdMV5ePRWPDYa8bVU8ywJQ69nvPwM2M1jA+cxlwePXYM4q19qD+4ees6pw0jZdSqPHmavGCo2WtWo25lnkQNfRrjnsd+OW4/sC43eyjM9+3FXv/lpWCezWpDxuTZYeTpEVDeZWPUxzUzs+lRCCsT34E43oDj+MnvPAXxxNSNeLgq9kl5Cj/vh25/l2fwGkchFrx6HfMmodfX9a6CuFJBHeawhlqnpU27nTbsfwHPO+/9HcTbbkQd5pFoE36HYf3z6FpEzmhyNcMd+6gL0Oq8i8xb8HDy2DSgie56Gmm694sdk314eI5mr4qEdNvjlFaxxQavBBzLDuf1xfVuecXkp3h6sH63q+fN6xmO2d9o8ePx581cbWjWcD2/9oWN1vorJPF5PmzUNezxwd2fz7u+PfyeZv0fk0dARydq8HZ2oJZ0RwfWqfI06emame/z2gtreCbANgScp/T5GntOZPADnZ3YJjOzLOUVe5vkaK2XxLS+JO+TkPwDHD8bpwVmAencO3LxjXjuWBdZFJeRvFe1wlzexzzO2YeC/E4sxW+pmR67z59pVh7dL1g8TiGlFAAZyiPWf+d9EHvVJCm/JxdR7rreac18QtLXYQsxfV/aKTbrmfnXQ6st+r7lJhect5/Ikl4/DYEx8k3ryLnb82yAY7JWG6J3tNaz5FVLQnnQwD1OVKZ63eHOkVXS3+/oHYT4fD/MKIps/KXnXklLXxG1MDZ/Tsidyrol9AOffDh9NvAws4D9RyfH8fvq1J/OWg9fLtJc9M3voKdgf1+P04Y3vOF1EOcTHB/FPPqAlAoYx4b7C9a59zz2xHKakDoP4DH4J4v7pfCalr1i024x8B7E/cb5+2atXdcVunutMLd28jwcC6UE29I1hPvNsykT1+TWLXiMdbhO687hvnfHrVdDXB7E6z8e49px1eabIC7Gbu2sNHAtmKG1YDCN69WQ/E+LqzCPN+GW1jJ0P65k6MlkZnb2FN5jq0/jPnjz9qsg9skkIqQczNK4iJqsj83c+TWg3Drfn2E5vBqWhGfnGugYgr2SPTWO8RKZa73utWshfvPr8D5ER478jthjh+4dT0+692/GTmAecJ3IkDdZNo9trjbwdd4rl3gdmHLfMKD70/29eF533ITJ/OguvAd+9gzeg3J2DLwvTrVQauL4dqHrvgj6Sw8hhBBCCCGEEEIIIYQQQlwR6KGHEEIIIYQQQgghhBBCCCGuCPTQQwghhBBCCCGEEEIIIYQQVwSXrafH/ueetOKcPmB3N+rkTU2hdtjevS9AHLAYmZmt3bAR4m3bd0BcKOF3VMuo8Xl26Ay+Pol69ZOjExCPT7s6bX6OnzGh7hpJKFuVZDLrIR4zSVD3zY9Zk9L19MjmOyHuKqH+X440BU+OPwLxywefhXhkFDVl+0qouzh84qDTBj8ehziI8DPezDntN69x+WjUutrE/A5XWK6ZLLMj997kO51vdPSPXT1G1paOSa96eBQ1yr/38nGInz52FOLBIibmG25/PcRr1vW67ZzBz4w1sA1PP7cP4pkcdkxvDx6zSGO86Gj1p3h6NNNjnXsG7LXhWbCfdJmfzI6DgDyKvAhrSz5D+sNT+53jTR9D/eD6zHchHh/G2nB2DHVCpyqox1jzcZyHwRGIczNurSlkUTs024XvKZNucsEjzdVu1Mpctwpfn/AGIM53Y003M7tqM+bBy3segnhwHda3/vXY9yMVrJehoddMlCFt/cDV0c1yYb8IDdVWECdm0VxTPBbUTBbXZE4TG26m3d5Uq519DsjzI/GwZiQpY5y1TxPnW8grwdEIZR3+xRXl032d2D9jaRq3vuP5wbr7eI5hlOKuwB5l9HJwnq53hkW/V5gwSiwIZ8+pUMCaEEW0xqFzzWXI78jMOoo4RjlvPMrlXDZDMflxkOEGj0/2ujAzy5HnVEBLa5LcdbwVxmg9OV5GreiBXjzHNE+MfIk1zKNF48TYs4PGG6ctab8nKdrv02VcP2Yz2A+9nfPn0fqalwnLlpnLOx4xrHPvJbyHcOu6szLjIsleF+wpxkdosr5kX560Rrg1lnKZvNBCvoZsrka1JWR9ajPjQzToGE0sjZwfNFvzpr0a8DEonvcNaZRdzfSVZOftr7Vgzrxxexf2fb6ANeORBx+EuCN0vYOqQTfER87gXjjiMcrzYYvl1i9bEvTjsNoYhNEU1cZu3KOamQXkbxl0Yv3t3nrtueM1GmYt9PSYbjQsqs/OpVmqbQXy0GGfniSl1sUJzkc5yt3uLvIyyGH9zNF+rpu8ESbGtkE8Oe6O05t2bcd2UqniMc91hL0L6lTb2Ds2TlkWsa+V77yH6k7CdYn92sjTg+tryjzvzOv0nnlvPNcjb2UZGSlbeX4Z04fjpyNHfZ3D9cyM73qUjZd7IS7XcXz19vC9LFxLzmRwzD61H8fr+s3kCbkKj2dm9uQR/Mx9j70McXgaa/QNu7ZCnOvDcdLRg228atUaiOvsJWZmzx5FD9W+GRwba66jfvFx7FVquLbk1Q/7OVYbVBvNrFrH8R/Fi+wXX5GPxiWQnGfqwQaaXpP7hynGPTHVhXXb0JflutvQs/blU3g99j6L3lxTU9j/7FvI32dm1qjizzo7MW9uvhXvddx883UQP/+9xyF+5km8v1ai+2eFfIovJOXimgHMsx/8MWzT6+9Af9Tnn8H7VhMTvFile+SpaxP+zKUvYPSXHkIIIYQQQgghhBBCCCGEuCLQQw8hhBBCCCGEEEIIIYQQQlwR6KGHEEIIIYQQQgghhBBCCCGuCC5bT48/+N3fsEx2Vncsn0Mt93odddqmJ1n71NUny5PXxFVX74Z4cBB12spTqGlfr+F3VsoYl0qotZotuBqgRjrOJC1tXZ29eMwO8rpooPbezDTq8GdJRzNI3Mtbm0CdNZ+0oyvxMMSPP/oViKfLIxBnSMO+dgb7pVrBNpqZdXWizmHG0O+hdt71DMMUvfLLhqVrt8ekK+roOvM3sAgv6XTGTfTfzcx80nQ9MYI58MhR9PAYijEnrr0BtVTfezvqCQ6StuYZ8qIxM/MMNV/DBH0pZio4hmfIv6ZRRu3izizqCa4roiZoNkVvPI4xN9n7Z14Dtpmm9EqQydQtk5k950KCY2xVH2pEBo3TEJ868X+d4w2W0OfDL+Exix7qL4bTeMwzJzBHNm3F/u7rx9oUFbD+mZnVI+zHmSp5GJF+fyMch3jsNLbJz2Aej1BOdQTou2RmVupG349ifx/Ezz3xZYjftxuP8YZbNkD89B6cJ4YmUUuznqxy2hDb4rqi814zzTxnlpskSiyZN/UgvfiYdF657qTJy/OPWC6VvSMC+p0Ln2Iv4NqHYZC42tMZ0qPm+hiypjLXS6d+NqnpF6Ff65bwxbX7E8dnZHG9+sBz53mPxl5M9dA7T9vfS1qcd4lvydx31qqkb0tC3Tla0/T34ng2M+vr7oV4ahrnCl4GdXXgejKsoyZvlTyV6nXUOG7u4mIWVVDHt0YeFjW65sMjOP9V+PrVcFJdM4A6w2ZmefZHCbEN9QiPUchRx9B4iip4bWbKeLxc3tXhjhqkm17G8+rrmp032jHHxvWyxXM1hSWpvQz5wHjYV83WaWaud5pPgu/OOTt+HPR+pw6krIWbGCOxp1HMQvWObwt+h1uCU7SfHRn6xf1auCbHtriXzMX4UnAdv5C+f6PC+uYrS38utDlLDyv5+N0l8lzcMohrqr6cO76eOoy1rRHy2mJpmtdN8zrl5bQ9xqsPrG1eAz09bIp07avufj7XwHsElVNY6146e+71NA+mlaRSiy0JZr8zE+B383gLqSaEibtezdIYzDu+WXTvgQpsQnGNuqPYi/uRl/ajd6iZWZXGbiPCdudofZmlmh42sLbl6QaMR+uoIMUzzqcps07HDKgNfN15/+8Wu0XD2WM0OaY3F7faK9D3C+b7s2srsnyxjbs3QeydxjXY9utvdo63dTWOuWwn1sNMTH60Xbgm+u7+FyF+9gSu87q3YRtOHDjhtOHZvS/hD2bIa6GI+8m4gePgLNWErtW4fp2gdd7QkOvj9NyLlPen0Ffk2pt3QXzz6kGIO2hNHdFeoO7Tvpzu/5iZY17jeEdd4P9bQ3BuH8bjiRcnvMeOU/aQBbr/dSN6v9RC7L9vPIh+GYeP4NqxyS08y7hNsCz1d4+P13CkjAc5M4PxWUqj42cpb6mOrR1079+cJr+avS/jPbuBbTj+broZ+2nbFvQAefpZPJ7rb5zSEc14Bcmmv/QQQgghhBBCCCGEEEIIIcQVgR56CCGEEEIIIYQQQgghhBDiimDJDz2+/e1v23ve8x5bv369eZ5nX/rSl+D1JEns3nvvtfXr11uxWLS7777b9uzZs1ztFd+nvO9971POiZby0EMPqdaJlqNaJ9qB8k60Gs2xoh2o1ol2oLwTrUZzrGgHqnXicmTJnh4zMzN200032T//5//cfuzHfsx5/dOf/rR95jOfsT/6oz+ynTt32q/+6q/a29/+dtu3b591daX4XFyAzkLNMtlZHbKZadTiq7EsawO14dM0R6eqqLP25KPfhbhUQn34vm7UW+3pQ632KCD95AZpAKfI7wakSR+QYG5Ez6AGithfxS70TmgkqJHG51CfdvVrx848DfGpqSGIM4Z9OT6CfgK5AqbMmn7UKKyNk2dI7F6LbAm1FGdm0Pdjeubc9Z7XH7z++uvtX/7Lf7miOWc2q/17YW8HFudrEqcd34nTtYcXvrGJfm5C2oqs3W5mdmIYfVqePYbXfKxM42sa/R86OtHHYGwUtf3OjGHuHzjjJv9L+8iH4gDqbXZnUUfx8LPPQxzlyX+DdBU39/ZCfNUG1Bc0M1uzZi3Egc8agh78t1wut6TWmZlF0y9ZFM6O74EB1Be+YSvqC3/9L/8U4q78Qed4//DHtkH88n4cl5MTqOOZreF3+FPjENdO4pit9VLeFtAXxsyss4g1cnA11q/C1fh6Zz5PMWuNklZmAduU73U1WfMlPGZw01aIX3z+KYjD0Qcg3no7atE+fApze3LkLRD3rr3DaUPi90Jcy2JuNOb0OuM5Hc9W1TqL4wUN99ipbRwu7pVhZmYB1S6qRTXydyrkUBOU9Y8np1EzuzyD81kSYf6YmbE9xbp1/RB3FikfyJPKZyMS9gCh+SytPHvJ0mp4M2FS/rzrQ+JeC/YH8OnanK89Pe/51LI51pIFv4IwwjHe1YW6zQUSh87n3SVrhtZVhQLOFfU6rYNIs7yjiO/vpHUW+9vMVF3N40oV1025HH6mI4+1anwS59A6rWEbpDXsk//GqgHMazPXM8dYozxLOUBiwr6H/ZAn4XVea6T5coT0o4hydXx83MzMZmZm166tnGPHxspWqcyek2NtQeM+S+Mnk/b7Yexz5HNMb+eYP8/ePVyL0jyflmjJ4BzS0VVevL4lKde8mWa1c57cl46Wc7Mam1IvuS47L8/p3Ddma0Gral11etIymdlxWOzDz5Z8HPPdPfj6tqu2OMcrZ3CdtXUbjtFpmiPrdfwO9uWZLuOaqhGy/ru7lg9DrH8hzfMxfYZ9ZRKeH+n4ifEeJmV+cz7D/orNPHg48WltSfNSndYiZmYzZVwzh7SGrofnrtX8uGpV3jWi0IK5c/Bo/nJsMj2az9jIx8wyhvOwT7eO2D8iIm8gL8Jjhg3yCMni/LjvKO5Zzcy++Aj6FJ6cxmNuHaB7Nj5+x1P7cd+7pg/XGv/PnejP103eo2Zmx8/iPuqhl05BfPdu3CtfvRZ9JtgvJaF+Yu8UvkdkZhaR1whZVS6MhXDOy6FVc+x4ecqqc99Z6Mb1zVU3XgvxapqIOrrd9cw0dX9EOVaiPI4qeB8jHsFauT2gWvjCIxA3Uuye3rptK8RrrsG8r5Lv2RlsgnUX10Ds0c3LU0NUV8bc+zfrx7GuTIWY5/tfxhwc6Md7leuo1OXo3kmVb1am1HyfJuGowUmXOP/fsn3sebXfozrFa33HzC1lLbFzWy/E1+1Cv6Gjh49CHNCY3bIBr0+pg/cwvA53mmAdBazZ2SyumUolzJuTJ75H34l16vpbcE/TlcE2bduy0WnDoeNYL/cdxPtS+w/jfcKbbsIxfPNteB3r5Gl95iSNnaEULxlnLXDpLPmhxzvf+U575zvfmfpakiT2m7/5m/axj33MfvRHf9TMzP74j//YBgcH7Qtf+IJ94AMfuLTWiu9bfumXfsm6u12zHeWcWCne/va3p07YZso7sXKo1ol2oLwTrUZzrGgHqnWiHSjvRKvRHCvagWqduBxZVk+PQ4cO2dDQkN1zzz0LP8vn83bXXXfZww8/nPqZWq1mk5OT8E+Ii+WV5JyZ8k5cGso70WqUc6IdKO9EO1DeiVajnBPtQHkn2oHu2YlWo1on2smyPvQYGpr9c5jBwUH4+eDg4MJrzKc+9Snr6elZ+Ldp06bU9wmRxivJOTPlnbg0lHei1SjnRDtQ3ol2oLwTrUY5J9qB8k60A92zE61GtU60kyXLW10Mab4EF9LY/MVf/EX7yEc+shBPTk7apk2bbPu1r7VcflYbrVpDfTOyz7BDB9EAJ1dEfUgzs/51u7GNCZ56IUExvqGj6CmweT3rlaF2e76zF+LJ0NWKqzdQs8wjMcYMXQ7WUc/mqR9W46CfnsGOOTnu6pCOjr4McVxF7TfWvCvmUJ+uSBrbrCdZb+DnY2O9XrMcabnXSOdw8jz/FdZxvBBLyTmzC+edWbLgzeGzTizFrGNadcRSzaoN1sjFDmOtU590uCPSX2yQRm+N9HWT2NXFG53Aa1ygPNuUQW3TKmlf1obw+uxNUG8119EL8fi42w9Tp9DTozaKXjGna2cgPjuB7995/Y0Qj51FfcHvPP0Mfn7X1U4btm3B8TK4Gifddes2m5mZZ5TUi7BceXf2xb+zbHbWb+Ct/xC1nN+8G3Vh+38Q/UoSul5mZtt34bgrV0nf3cdzXLcO86a7A9+/6xr0Q3njW7B/V6/DHDIz68jjM/XuDtSMZ+39DOlWstaw5+FYyAZU5323H6KI9PkDPObEDHqfDB1F/dSJ46QTO4OLsuEjX8X45AtOG1atwrmn+6o3Q5xkemeP7V1c3i1XztWi2IK5+lIgX4SMc7jmdZj9icoz2Jf8WzwZWn3cftvNEJdK+KfRNTIMePixI04bqhFer53jmLdr+3sh7qE87+7GnCqWMK8DEmBN9eugrmqmSc8a581gH5K0zzta/PSD8/0CPMfbKJ3lyrsgSCzIzLYnn8UasHkLamJnyIukg7ydzMxyWdIHz6FvyxTlIeu393ZjfV21Bn3KqpR34RjqVZuZxT5pPfNvoTk+IBhnAtLprmEeB4Z+bdWK+1tuiYe52iCfgxz1C3t++JQHPT3Y19kAPeQygZs3BTrNs6PY9ydPzdbPShn9fRZjufJuz8ERy871QcL+Q6QxHtCYyqSMEW6DEzsfWNx3gOunT6YgjsfHK8DxLGriv/FKvtFpt9NP9P5g8e/02BzlInCOMfeltWrVfXPa55cp517c8+LC584cxfFXIt+f6TLO/z09qAdvZvaTP/5DEG/bjGvBSfIKqtVq9DqOu/EpjKdmsO6cHMZ1uJnZo48/B/GpM/idAwO9EFdmsG4cP4370oQ00T2aQDtoz2lmFgRYm9hrpkwenjM0B8SLzIdmZj7NS0kO15FmZgEZiMW0V8udVx+TJLZaGTXQ01iuvGtEdfOj2fpermC7MrQG7u7EeSN2dO/NJunewsTkOMR12sdmaZ20ugf7bzLBvjh4EnPoW3tcT4+9OdzjRXTPxWc/jBCvzxkaC1F8EuKHj2KbAvbIMrPDwzjvjlZx3v7Sky9B/FPkE/L2G3Fvx/cQZip0L2SKTCLMLJPHvl7dSV6Ic751wRLmi+W4Z+cXshbM+aNdtQ5rV0x979H6pxa55xnSdo6WeZap4Bv8s+ht+eb4GMSdWWzDIK37uq9F3xEzs8I6XI8GnXg/7CT55pK9qa2dwHzx9mEbG+Q5OLUB/TjMzKYGcD16dBzXgoUE++HQMOb18yN4b+VNOzAHwwjzPKyneNZN4zwR0XvOz2P2ZrwQy3fPLlpYOznHpGN0lvAn2zbSmtjMfvhHtkJ8Dfm4DJKf3o3X90Ls+1gT+D6H0b0XP8ULOJejNRS9zh5WMd2IrcXkG5pgzmQjus9bcPt9R7kP4hvH0NvEo3uPHq1nbrgV9++brsE8fuDr4xCfHUZvmlkW92o71zPN/ZTnWdaHHmvXzt5gGBoasnXnFYvTp087T/Xmyefzls+7iSfExfBKcs5MeScuDeWdaDXKOdEOlHeiHSjvRKtRzol2oLwT7UD37ESrUa0T7WRZ5a22bdtma9eutfvuu2/hZ/V63R544AG78847l/OrhDAz5ZxoD8o70WqUc6IdKO9EO1DeiVajnBPtQHkn2oHyTrQa5ZxoJ0v+S4/p6Wk7cODAQnzo0CF7+umnrb+/3zZv3mwf/vCH7ZOf/KTt2LHDduzYYZ/85CetVCrZ+9///mVtuPj+4tlnn7XOztk/kVXOiVYwPT1tBw+e+3NU5Z1oBap1oh0o70Sr0Rwr2oFqnWgHyjvRajTHinagWicuR5b80OPxxx+3t7zlLQvxvMbaT/7kT9of/dEf2Uc/+lGrVCr2oQ99yMbGxuyOO+6wr33ta9bV1XWhQ6ZS7N1u+cKs1mTeR51tn+S7Xtz/LMQDPa6+/Nad10Ack6dHNkSd0TffhVqMt12Den8bB1FL1Ujz9+CQq4V6krRMp6ZQ769cI/3jo6hJWBnDz89USH++jBprMzOuTuL0DOr/ZX38czGP9AE7O9hnBF8fI83mKCL90KyrtVaroX7n6Bh6TlTCc/p08Zwu9Zve9KaFn61UzpmZeV5knjeryeeT7qtPWoUnj6FW4sET7jWv0umXiqhP68UkXEk63CQPaMUc6gMGJIw/MeXqjZ8iXd7xCdLTzuH46upBXcmcoR7rxBC2udiF37mqy9W/7dmBen4vhfie+77+TYjXkK766cOHIfY9zNstG7dC7HluaXv6mScgDknf+cd+bHbCLc9pED/11FP27ne/e+H1lcy7XHWPZaPZa7ttAPum2ECtwztuQ03JcuT+yedL+1D/dmYKxUZvew16Hdx2G13zDMYDq0iPugdrC/ttmJkFPum4eujDwtr6rn5jjWLSGqUaniZA7gcd9AM8Rm8/fkd/J2rRhjPYT1fv3gzxd5/B4/3O72Iem5kdOvA4xOs81A5evf41ZmYWVGfzrlW17pE9eyxfnO2fVT2ov9nbjcfr6sA5tbvg5lxnAefAEnm4XHMdepvUq6hD+p2HcB4fn8Lit3X3VRCPTrr67G98LXq0DFIdefEQ9v1EDb9jS0BaqaRbWizh2MxkXb1xlqXlmCVvXRnbxbWYHR+RNE8PimP2pzrvM/Hc/7cq77p6ClYozGojs95tP9U+S/D69JRQU9nMrJN+lnj4mYHVOL/lc1g3ijSHci3ja+wFbn8//wJ6+Tz9JM411161EeLrd6Mn0rpBPO/BBMdjlry66jXXEyOivBmdwBpdpvXiWhoba1fhvNLfi9e2pwv7wU+p+dU61oViCWM/MxuXZ2avSSvnWPNLZsGcpwddQo5D1oa+CF8JJyvYoorfz23g9SYdwEtS2tDUk4NjOgadeBIvro2c5mGU6mu0SJtSjtrkdcyztO9jbXy3DbP/rddm166tqnWTU+WF85+YJE8c2jOWSNt7OGUPufsqlP/YsIH83Ty8vuz31GiQLxqlw8Q01ozHn0W/TDOzIvkqlTJYbzdvxjXT/n2HID42hPumrVfjmqpBPgnVuut1VqXz6OrA+hnRrY3JcTyvPacwPjiFtS3oxtrY0Y965mZm0y/vw+8s474oOG/zliSx1ax1eXf/A/ssM+fHOTyG55qQ30aJ1nqZrLt3KlPtmSBvyZDrTMA6+HR9qM5MU94VVuM6zszsTBnX6mu6cE4cKOAaNRrH/Ub55afwgDvQJ/KbB8chbsTu+jKgvsmTR+fDB3FefmnoOxD/zcN7sY1Uyk6M0r2RYXeeHyjih954Le5ZXnPzdjMzK8/MfrZVc2yho2CF0uy8HtBaI6B7UyF5K7DPgZkZ7zBKHvlqkW/a+NPow7vmNPrCZMaxDkUvYZuGg+85bVh1O3r3lt7wTojjEvmC9mIb6/u/C3F4/19hm2jNtfaNP+C04fr12yHupv3k6D7MmfLNr4XYW49tHDqD9xEzdE/p+t2ut0lHEWtySPf5YAqf+/9W1TrfzvnteuQDuuVqPN6b34zr8BuupfsDZrZpG9a6bAH9ZzfTNU4i8uzg+xK0vqnV2NPRXbt4WRoPtIQql7Fe+lRPi1lsY5HWGrmY/ajcWtdTxC8t9WM7wwbuu+IAX++k+txHPlmHt+HnH055GhE63ti8lpw/r8TMXC/hNJb80OPuu+9edJHreZ7de++9du+99y710EJckImJCevu7k59TTknVoI3velNqnWi5ajWiXagvBOtRnOsaAeqdaIdKO9Eq9EcK9qBap24HFlWTw8hhBBCCCGEEEIIIYQQQoh2oYceQgghhBBCCCGEEEIIIYS4ItBDDyGEEEIIIYQQQgghhBBCXBEs2dOjVex94jsLBpLbdl4Pr/X3ovlPUEWjmerRo87xDk6gKVytiAZwN73xLRAHJfyOiQpqIu77NhpUkW+X1cuuqcpf/81XID46jqaqjSIeZGRoCOIMmVQn9MwqIhO7jqJr0lPIoUFOLkNGhrUKfmeZTMbL2IZaROZShnFvr2sq34ixDREZVMXBeUbmzTwQl5vEW/jSApn/FMj17+gBNJo/cAQNp83Mcl18DdAArr8fTVa7O8gwmozTVnWi4d66DWjM9Nd/94DThr1790Pct7YH425sY4YuaakbDYdyBWzT+CTm6ZETOB7NzDZvxHbuvmEXxKuoTT6ZV06Mo6FbV1cfxOUy5m1fr2uItf71t0D8W//ttyA+sP+AmZlVK2gS1Qq6+sxyc5d2zXq8xkOn0ST35YNY3zJZ12TxLHpF2rU34LmvX4MDq3eAjKwSHPdhjP2fyeFYqNfJzMvM8ZxKyKzOMSan7wgCNkLnYsBWd3Q8M0sMze5iw1xPIjxmmKDZXbaIpm/9BTS4/IE3orn2wed2Om34P19GU/mje74KcfnsrCFm2MDasNI89+JBy+Rn6w+P6a4urNtsbN7fSYbTZralrxfi1QNkshrgMZI8GbwlWHieePxhiD0yT69W3cnh+EmcUw8fOQ7x0Djm4PataPJ3w7YtENOUbCEZm1vA85+ZR/NGTGayThqT3rKrvrz0SZA1nFnS+Xxj87iJEfFys23LBivNGcJzHenvxxyJycC7M+8ax3eWeI2B17hAuZ2hX/UJ2JSRFnOnyQT3q9/EtZ+Z2f/6P38N8a6rNkB899veDPENZN6bRLhejNlIO8Q2nhnBdZiZ2SRNW/UE5+2ZGo6N4RGst6fIYPiGa9BMdstGrH2B55qPZnLsrE3zRDgbzxRS5osVJp/xFta7Ia0veJ2ZUP8HKeb1PB+5lov4HT4ZPfq+WzvoAEAmcH9HjX+ShJhHbEwe0ycSx4AYX/c5TjF0D+hnbLjexGPczKd+dGoX18cUM/V48c8sfFVT0/TlJbHkgm3heYA95NNyritPfVXBdRp/U40Mv2sNXFNFOdx/cD9uXocmyWZmG9diHejKk/ErbSCu245rpCIV4IH1uE7gfCmH7l66TvWymMG1wYmzuO4bPo3ruJ1n8Tz//ijWyrMh9nN9Ak2xzdy+TWiuCs5b7ybWbBAsL/sPnDIvMztXRh72TeTjHBpP0NyTdetSQCa0Ad038Ckv/Qyebx+9Xn7uaYjrJ9EU/u4P/UenDSdLa7GdVdyzdDbo/kgVr9n0zEmI+ydwL1DtvgbiqbQ9jXEtwvMq5nHtMFbBvv3bF/A+VNTAc4hrlFM1t3acyOA+4fg45vYXvv3i7LForK80cRRbPLeWGqvjWIhruNbooRybOunes1vTj3UmR3NRhYzKu4roH7HprTdBHE3h+ubwN74McebMCacNkw9/E+KJGbov8dYfhngmwjZ4VIeSKdxf+jMYT/b0Om3ofwvWx41bcY9iYzh2akfwvlRxK641+2mfFmbxXsrrd+O9GDOzWhXXjo+XaR1x3j28hA3nVxjPzi2VbrgF56sfeDeuwzdswvHU2+W2dTrCaxbN4MI6oP1BvcG1ndcztB6iew4RT/xmFvM+k5Zd0zN8rwRrlU/zo0/r8FyE5xC5t06cNXEmwXtsDQ+/k3cDRY/WonWM16zDfVt3j7u3Gz2Ltc7zFl+/Xgz6Sw8hhBBCCCGEEEIIIYQQQlwR6KGHEEIIIYQQQgghhBBCCCGuCPTQQwghhBBCCCGEEEIIIYQQVwSXrafH6SN7LMjMNm+gB3VHTx1AjfSpUdT2i0iP3sxs5Dj6Duy8+x9B7PesgvjE6DS+HqFPwdf+/u8hThLUZrzu2pudNjyzbw/EMzX8TM9q1DCsklajX8f3lzpQk3JmArXoAmqTmVkco75nnfRVG1N43r0B6s3liqh9Gof4+ekp1H0bGXO1p4ud2IZMAbXdzpcLjVlve8U5pxBYnkLdvPFJ7N/yNOZZqeAOp6mZcYgzpHXa1bkO4xLq2q0lj4/+PI6FvuLiHiBmrp+GlVDA78j+pyAeJl38q3ehT8Fdb38TxGdOHIT42/f9rdOGd73zPRC/5u3vhLhwI+pUZgvYDx55xSQkOHjkMGlj0tgxM3v6SdRiP3oYvTImp95oZma1KuZwK5iulC0bzl670yOo+zp95gjERw9jLYtCd4zVq5gH/VTfpsYwD9dswGNs2ol1IAqx/196EetCPXZFIYMcaj5mc6ShW0ONx1IRv6NOng3DQ9imegW/s1Jza0UYox5nWMHzDEiJcvtuHE8HXsL3nzmFbZiYQM+IyZHtThu6i+gPNTKBuTk1PHvMMHQ18leSwd7Nls3PXpOpGWzT2Gk8z9FR7IfjBff3Jb71wksQb7sK68T2neRjkKXatvFWiHddi9fz5b04xnde91qnDSdOY04MH30ZYj9CnefKCczRnvAGiG+9eTfEM2U8vpdxdZ+7ulEjd34ds/AZ0iEN2BuAZEojknz16AeJ5+Y9K5062v/nfafvmIysLBtWD1hHx6x3h5fF7+7swfVF4OO5BilL1hxp7AbklZCjj2Q8OibpwQ+TN8bffQfXm3/54HNOGyY81HL+gXfcA/EN1+6AuBDyHEP6t3ROU6Rrf2oY52gzs45e1H4udWNuehPjEOfy6J8yNYG5ve8wakNXQuyYrRtcL6kOyvV8Dvu6q3M2Vz1rvadHvT5j88rDHq17Y3ZDoP6PErfesb4wDzoeVexV4Hms5Ywx14koRXj55HGcf84O4dohprypNvAY7Dfh03fmqL7lOlI8dXowj1avxjVtN3kweuyDFLAG9tJ9N9hfJU5IG3/umGHs+kO0i5ASok7nHXDhMjM/ojVCA8dkIYvXZ/QsauWXsrinKZ9B3f9DJ1H3fmAA96RmZqUSruNKmV6Ii50YlztQZ72H9q3FIuYPz3d9ObdWsN9JoYDzxnef/b8Q/9Zv/hHEpU6s18H21+EXhDiHDz2Hc4CZWeM0aukHCV4L/7yakSSt3cd6SXju+3lBwT4+dWyb57zfLCYfznAGtdZzVMviDF6Pl44fxgPuQ+/J6TH02/jen3/BacO1b38HxMW1uK8dzqIXwdTVuP7MrMI52AzXtNuoH8bH8b6SmdnwJJ53RH5EYQXvuQR17LdsDmtfSGtgn3xDs0V3T5Cj1Zwf4lp9qjL7maTF+wmL5/6ZWZlq2cAa8gMbxf3Gk9/EvbiZ2bo774B4rIKeG/nnn4D4hvW4vxihOrTmOvT4uPbqayGOnv6204bDX/lfEJ95Du8hFG6/Ez9A/lZ+DefbGq3zugJa77q37CyqY45NFnEv372b7gPSFLf3KN673NSH9bbg45xwle96wZw8i+uMUh7zNjh/bRi21hO1r89f2MO88e3o0VgcIB+YOu3/6X6nmVmY4M88WgsmdA0j8h6NqRZ67KFEa8mIJzwzCxr0HfSWSaq/efK78QIc+3GCeZilNoQNtw1c27K03o0pbpCnao38Gjtz2ObOEs7r/avceX7UtQcG5n3z0nzeLoT+0kMIIYQQQgghhBBCCCGEEFcEeughhBBCCCGEEEIIIYQQQogrAj30EEIIIYQQQgghhBBCCCHEFcFl6+mRsaoFczr+zz35ELw2chp1a+t11JDzHL1kszUDayG+9oYbIc51o85dOInieqPkEXDw4AGII9JV3HINaoGbmU3F2K7y1DjEtXHUG49JvzUOUHMymyFt3BC15aos7mdmfoDn2dOP+rtBJ2oMhhOoa5n1SdO8jDptrH+XJe0/M7NyGdtZjzAunudjEVlrtVCnJ2csiWefBT79yKPwWlzG6zc6jR4fZyZRG9HMbN0W9KpYswb1GNkrYeQ0ag6u3Yx+J8MnxiE+cBC1Fi3Fx+XokechfvYl1Kctj56CuDKO5/XkQ38H8anD2C+rBtBnpMd3PSaO7MXP/O0o6nP2DaLub+8A6kAXi/gdAelChw3Moce+95jThu9853GIa9VxiGfKs3GtliKsucKMHj9mmbnx/M2/wzpw8y7SAS2iRuT4tJt3MY2bsTGsmc88hec4E6H287/5j5i3Y2fx/b/3Wax/0zOYp2ZmtQbWgs3bboa4EaFm5KYtWGP7+/Ca//5v4zUtU5qtHrjOaUOQw7w4dQLbffNtWA/XbEVPh289iP4pZ49jvUsC1NYfXOPqUuYKVCPHsI54c5qtXqs1eJP87D8zG+jZgK+xRjNpUo+fRX8NM7MxmpcLRawrJ46iN83qQdRf7Vt/FcQd/VdDfAPlw5rVro7n/lP4exybt78B4t3b8Bhb1mKOlvKk0UzeAyOj4xAPj7iio9kcjoXbbkUt4YzPfUsHIC3VgPVK6fOO4KuZxayLv5jkaYv1xvOZjOXnvKdy5A3TQTqw3FdBireC77MnCukqk85yg/rmZfKveeh5rIVffgjny1PT7rpq1/W4nrzrNqxFpZh0f8mfIfExzyIf12GnyU9seBRjM7MNHTievATbWcjgefeUsF/WkCfI9DTOQy++tB/iXOBei11bUWc9n8Nr0zGX7HHYek+PyviohbnZudNnnwDyCPBJa93VxTfLF3htS8fwuX9IRznEHPDJi6ZcwXni9Jjr41KjNWlIY7ke4twT05YhQ20cPoI+LjXytQuClFpDfbdxO2rn3/I69EsoduKc6yXYqDjCvOVa5var+zPHxWCuRnCtaCfNVKjZp8TMLMe1jupIjXxCuNZlu1Bbf2YGfQlPkt/Y4RE358rThyFe14dj6R+8Hj0APR/9Meo+egENlLCNEeWodfWbA/kRGfvaUbvXHML9xskY83x8BMdRbf0tEM+Mo9eJmVlHnuYV1mGvnTvmK/GpuRTC8qR5wex14TVM5GHdYm32JKWuG+nSG32mRvN0Qt6VFapTJP9uHavQC2+UfA3NzL71VfRRvW73Vojv+kH00ZqmHDnciZ4PLxxGL8qJpx+G+LZBd120yse+e+Il8l1lvzAP+76jG9efPIVENcxjL3TXGlXyt5wo4/2vKJzTuafav9JkMhnLzHl69ffhmO/IkC9FiH17tOae594DeG9jM946se0zmFOrh3HdVqf1y5E9vdjeLF6bcNz1zBpah+u6FxMcB8fufxLiuID+GlvJA2ZL3y6I/TLmT+G4621y8IvoITcd4l4827UN4pd9vNf5nbgT4u3kZ+QN4XceIB8oM7M1q9EvZ+O1eH9zbfbc3jUMI0MnxZVl/frOBY+nrj5cy4+M4rq7lMO+K5fcMZItYC56MY7ZkO7L+iHmdj4gj2LaU3oe5XrstiHO4M/qtK4LPfpMA+NsRD4idaxLGVpbeCnzE99Dqnh03hSHzfY0Gbp3nODeu6/fvVfsLOQuOI/K00MIIYQQQgghhBBCCCGEEN9n6KGHEEIIIYQQQgghhBBCCCGuCPTQQwghhBBCCCGEEEIIIYQQVwSXradH4EULMrsRaZ0nCWqDFfOof1yN3Gc523ehRue1V22FeCQah/issU4iatueHUKN0M4Saqh1OGJkZrkYz2OGtNxC0qXNkO6wT3rW9Roez2MZ74arUehFqGk3TtqZGdIynplGTbzuHH5nRF4KrPWZpGhwBwFpvZVRh69xXt/FcWv1xh97/EkrFGc1+Z59CvUaN5IG/cj4OMQbtl/jHG/1OtRbPD2E2rCjp1Ebf2bsJMRnj6CWYlDBIRsUMX7oya87bXh2D3pZ9K5CH5fNm7dC7G9CzcHDh1Ch8Vv3fQ3iwTW9EMeRe82eefpFiFl3vasbdSY7O0gXkfQ3YxpLU1OoTVyruW1YvwF1KAf6UcO8Muc1U69RTreAbOBbZk5L94nH0Udnx4ZNEMcZrEXV0D3XkJ5nj05gPdt/aBzil49i/EP70NMja1SDA6p35AVkZubV8ZoVS3iNB4rkYREehvD6a9Dj4S1341g6dpD8bwZdTchSF7YzMtT1fdPbeiHeuRvH03v+AWq0RiH2a7EX9XW7O/F4ZmZ/8EdYcw8dJX3jOb3bKHZ1bVeSM6MjlsnNtiWXwfMukNjwfE1cIGThbbOrdmD9a1Tx+pw6gnVk7ARqKufJJ6t/PV6ru16Dus87d2EdMzObaeC8HEYZeh3P47nDOAdvWIWvr19L2qhZvEa1hjvPV2t4fU8cw5q/ZhXWdNaZ9zOYY6yj7/Ecm7LWYDl41sU//zNpn19JMtnAstnZ/Okgz4diwPq37Onh1jqPNMgjXl9k8BoOj4xD/LVvfw/i7zyJGsczNM/fsoP8b8zsH9x9O8TbBnshTmidFJFWd0JeaOyTcHIE10jjlRS97pOogb2mH/Ns23rU0u/MYz8FVAOOkefV4Cr03WqkzDuNmPxo6Np0FmavRdJovafHyJnTC5rjWVpP5PKYI0EWYz/jtjepYI3MUP955NER5PD9AQ3S6gxe44kJ1CQvkKy+mVkvaW1Xu/A72BeEtaF98ippzPRCPFIl/6nQ3VOElAenj6JfwkukIX71DvT8yFK/JVQPM3Rt0vYUJLPt+GHMx0lK+9uFK0+NbU7zMxwr49pvsBv12tkDKZfBdVk+1wtxnKE1RxG1+IPEvUWwuh/rXy6P31nPoqZ8nsZahfTHa1OY9+x/kUnR8fY7yceugX01VcXXn6M8L9AxJ0fRu80v4T6sd6271ihkcI18es99EHvn3adotaeHlatmwfy1JY16D/vK89nTI+W2kI/HCNhP1MfPhKRzb/lefPv2N+F3FnGdHZZdL5nqNNaiI2dxT/Psnr0Q77oK9wu39mFeHnjkbyA+/dU/h/jRorsef93b3g3x9evQo6ER41q/RPWzPIV5NXEEa/zECHkteim/l8yWbrTetDkvjyRurUdgIV+wYmG23vA9gPFp3Av4tI7uzuH+3cys8+SzEJdG6f4Y7UHOkC/viEf3CTtwHqnTvS6/2/Xhzd9wN8TJKK7lI0rTRoI5ObER/Y0KO9GnMJjEfPBmsA6ZmSUT6KXmT4xDPD2NjchRzuzowPq7JYdjtVjEa3XmFM7fZmbj3XjvK0mw77ae529Uj31Dd5yVpb+vYJm5PVNYxzxKGjie2MqtkHP3PkGG76vi2j3j7NMxr9ibM/Z4rU9rkMhdy/t0nyFL93M6yafJi8nTjE4ronmefSK9tH0V1Y8MnVeG5lReIXfTvjVD65sxus9WobXqbCMoXoZpVH/pIYQQQgghhBBCCCGEEEKIKwI99BBCCCGEEEIIIYQQQgghxBWBHnoIIYQQQgghhBBCCCGEEOKK4LL19MgVM5aZ041skJ78atKxLZBmM3tdmJnd9eY7IX7La9Dj4+jQUYhfPIHHOD3N+rr4nSXSPO8roNaqmdmWVagpaaQN178JX09Ip618ehLiyTHU8stTmzo7XJ39tRtQm7Szpx/irt4BiFevwriYQf255556AuLhk2chLmRdLeSYBHhrFdS46yqd67soiswMfUdWkqPHDlpuziMmIdnSU2OYA2vXomZooYh9ZWa274UjENdr2H8xecUEWRSte/YF1CntIU3eJMHP792L18PMrKcfc3HdatTtnZqmNpGQ3tqNWyGenkHdxFNnMI4TVycxIX1rnzTLJ6bxGrNjQJKwjiLr1OJYKRSwRpiZdXTgz3IF8r0YHTczs0a99Z4e+Y5Oy2Zny3FcQ73MkQka1/04XryM62URUGmfqZCmP2mUhx7qoe57BnWW3/M21HP/6X+FGp/ZEo4NM7Mwi3qano9+C1kP8y5Lj+B7e9Hj4UP/dhXElRlsk++7dT+bQ63KHOVFpoDt9hOsX/e8gzxBEtLBz2OuTI2POm3oRLli6+4hv5q5rwhbK8FrmWzeMnM683WuydM414yR3nym4eqQ7tiOnhsPf+XvIG5MYd909mzE14cPQ3zqDNbOZzuwr8fqmF9mZmeO4Tx+5iRq5vZvxnVA7GM+PFlGTd1B8vjYdhX6IhT6MSfNzPIBabhmqdZR/Ywa2Pe9PeT5kcVqWCefqzzra5s5gvERa6Ge55URtVhvPJ/PWD4/561AfeWx94hHXhe++3s6/J4p8lk5cRrz7luPPAbxNx/GOfMY+W7xdJapkb+NmXmkQf7oU+hhlSUfOq+B2s9r+3COXrsR/Wz2H0S/joe/587zlTGsXe95+9sgvuPWGyGuVygPQ6xtpWIR4jXr0QPLD9xrUaNE66DcnPccqGVa//tWQydOmB/Mtscn0eNcHufQbAHXzmsGXU3/gV5cR3V0UKGnvGEfEdbSPziKa6DyJM5NA6txrW5m5pFvH0tUe/yddXx/nWL2VotWY50vk7+NmRktWa0R4g8O790H8dgQjpX+NVhTN29Fr4TeAo63MHK19qMQ23khT49GPcULp024ctXYbyeG3TXVN5/Evrx6Hc4/m2lvnC9h35UN83y6gTlYreAcm03xkZmZ5nUb1okc1Q2P9rkNWujUQ6zfPgt3j+Paw8wsoZ/55Os5Wcb62kPfGZJX1DStf7pmcM7Ystmd508P41ojjnAv1nHevJ0kSaoH0opRCMzmal0Qky8W7Z188uPwAnc/kQSL79/8gI+B748yPB7xOzxa41Sy7v2T8BTWjfFR7P+9pEE/RLVqdR/uz4MerHWZ7a+BeGTKXZD3rcc9/+3rMde/9BUcn0MnMU9HZ3B8zbBfLfnRehHmsZmZ0c8COu9g/n6Zs2deWcJGwxpz88n05Di2KcGasYo8Ym5K3FqXkOff6Q68XsfW3QDxU9M4j5yZpj3LadwvTNTIS8hw/WRmtusa/EwwgG3YuAnj+gye1yTNr09R3h8do/k5i/llZrZ6HfqAJB34HWvIp2ozeXhsOI5eiie//If4uo/51Bu7+4mQ1ul5D3Ou5zzvmno1xZthBSkUspadu3mQ87HGdudwjbaRvEc39rjnmiS49/ViukZUHtnHh/daHvv1eVRLaf40MwsS7N8G7YvKFXw9S/58ES0uquzlRnNR2lq+Svef4wjbGXi4OGD/uA3ksZOn+9HDJzFvo5R13Uqgv/QQQgghhBBCCCGEEEIIIcQVgR56CCGEEEIIIYQQQgghhBDiikAPPYQQQgghhBBCCCGEEEIIcUVw2Xp6FPJZy8zpPIYR6gFmSqgllgswDkNXo3r9etQXK+ZQA21tL2rzbd2wAeKja9Fv4zvXXAPxSwdQf94LXC+Lq7ZdBXGddA0HBlB/rqsT9VlX34iahevWoqb92jWo+btmjatD2ku+Ip1dvRDnScs4T1rH9Qbq1x05fAjiYwdRP/DJRx922nD4ZXxPkMXv6D5PkzBshPbcHtR2XElOnjhg2Tkh20YVdfO2XX0dxKUuzJnDh/G8zMwqVdRL9D1+HfUD61XU/CyHqP83uAE1er0qatYnyZTThq7eHRCvXoN64WEDtVGnZ7DNnV2or1osYZwx1PrrGyDvGjMrFcmHp4ClZ4C0Mo8fRT3/Q9S3nodjJ5fDHCqV8HhmZj19WANy5Lvz8uHZPItII7MV5AodC54eA6tQ07pcR+3RrgDHqOc1by9XxE7yDRhYi/13dhg1H5MpzImtq1C/Md+P+vBmZvUc+iOYNwyhT9qhsZO72OpSB9Z5bxWrYrseDzHpF8cxHcPIo4N+DyBsoLZzkGBN9RrYj5UUHeBaFfumo4S5Pz8WGo3WmnrE5i349wSkO5rJYMwt6+tzx3ghwHm6QXq22WIvxFNTqONb5DaQTunoNGrunnoIa5+Z2UsPfxni8sw4xNtvwnjr9e+HOCQjpz370N/h0GH8fP8a1zerqwfrYW8Hjq01qzHuKOB3Vg37cT35ikxOYD6dmUQtcTOzYgnbVaR5vJg99/pMubU6976fmD/n7eB4j9B4bATYl6fOuJ45L76Ma5DnXsa544UjpyDefxy9E0amcczXY/ZOwDyeODRizKnxb0G8k9ZmOzajH8bGPjyvAarH1Rm8pkePYy09etLN/Zt2bIW4RB4TM6TX79G6udiJ82Ehi7Vz6CyuVV464K53brkB1xo3X43r6KAx24aMtVZv3MwsDEPz5/KN9YOrNfLxmsb+X70aPaxmodylY3Z14ritVvCYXGM3Uc6s6e+FuKPbXdPwMWIeTyG2KUvrpIScJULyX6iTB0a15up1hxGuFaIGtiGs8zHx/bz+98lIIknIL8BxwzALQ15nu++ZbVvr13YXhHwlHCuLCdfLYhXNFdMTOIfumcS54bbrcM8Zz+Aaqz+Px1tDe9CZqrsmmSIvIPOwllVIAz1DnhI+rd29JrUgjF0vDEpTC3xae1Qx3kieETny0zlBbWxEuJZcU3TXlsOT6FGXkC9I3UNPj1biVcsLWvIxCbzHfNuH+s4P3HM1up/BHo1GHh4JbXR9w2vo1Wit72P/eGFKTpCXRTbC+Wj0kT0QT59Ef4SxzRiv3YWeENs37IZ473Poo2VmNp7BXO/qxJr84jGs8VUeP3RanpPbnNju+ONMij3aq835GiQp42Yl8b2MBXP+al3kBZSQp8BMiOvT0s7bnOP1774ZYq8Da9MTw+TJeQbzISGPxyiHed9HHi/7jqIPm5nZoQf3Q7y6F++drL1qE8SVEcxR9kudquDac8d2nPNLRXc/cbKCOcH18FSM67YDdM/omp03QzwwjOvhLN0X8fuwn83MKkX8jlwG10sD/rn6UPXde58rSRRH5s8ZadQqWHdeegHnqrMZzJHiLXjuZmarVmH/FbO4jsuRP1FC/pYdeVx3Nxq4vqlUqH9SjLOmfJz7q3XMq/IMebkZ7ffI43YwwJzpoXvoXuDOT5N1rGVeP55XhWr0cBlzuzaBbeR5iL236y3y0tVfegghhBBCCCGEEEIIIYQQ4opADz2EEEIIIYQQQgghhBBCCHFFoIceQgghhBBCCCGEEEIIIYS4IrhsPT0sTmb/mVmJ/Dd80lSzBLXFpkj728ysVkcNyTBEPbFMlnTySZOyrw81l3/2Qz8N8UsvoafHrt3XOm14zWtRt3BqGvXlentRX271avTw6O1Grb1iAbXisqR1m6Zqy6ppHDdYl5Q0fXOkiX/jzbdCfP1u9DrZvR01ns3Mnn7ycYhnpschzp6noV2t1uzrX3/EOcZK8dC3vmnenN5rD2lcj41jXvX07oU4jFy94IGBXohZOS9X2AhxjZ5DbrgKdfROj2Ge7ViHY+Oqnag5aWa2/qpdEG/eiHF3N+bd8CnUqo1J77ZQRF3TXdtRC/XmG1/vtKGHNctJ03V0BP0eJkifs7uEuR9ksJ9ef+dr8fiNFH1AesQ7MID+DIePzbah1fq7Zma1MF7QZp2p4zUdHkeNye7VWKsKRVdDk4apRTSuMznU7fXIJ6Rcx+px9ixqTBYNde178m61qVTwmBPj+LpPGo9dvZgjUxP4+sQoxhF5Pc1U3etWqeJFjxrYMbUKToF10r2//kbUpD9+FPv6mSexJnT1uJ46VdLftAjblMxpwSdRi3Xuk3j2n7ny4jFpogekhxvH7vh6+IGvQLxu21aIr7r+rRA/9ej9EJ/a/12IO3zMB8/Hazd88HtOG7IZzOs73vJOiPc89QTEg5veArFfQJ3fDGmjWoKeEmOn3d8bOXUQ89LzcRx09KAOdP8AzjM9Jcyxzeswp9Zuwnl/uuJqcD9/8BjEmTy2oad0roZXy64nyErizbnJmJkl1L/TNDa+9STqLP/t1x9wjvfyMTzX0QqOt2mSxa6Tb4t52P8eaewGpA2d73C9FbpW4Zy4Y+fVEN9wPc6RpQK+f4g0r08PYw4VyKPq9Xfc7rThnrvfAPGqLqqnk6gLPEK+FSf3Y19/71EcK0GAeXfihKt5vnYt+qHcuhM1r4O5tXqQtFZv3MwsCLLmz2nPB6xRT/WP1xdTk+PO8R5+ED1NeN2wc+dOiHNZrKHso1QgP70gwDbEodsG9tyLSO/bozpeIk+PHO2tAtKsz2bx9WzB1RwPaX0YkjdVTJ4f7F1VJk3sKfKCGhsZx9dHXF+ffAeeZ57OKzO3+PPqrfUvWgzOwUwO687pEVwDm5k9/hz6F737TegzONiH+wU/xLkhTrDv15L4/urr0KsrTtz5rUrXxyjHalX8zhqN9XIZfWEq7CFYon0t+XGYmWU8/Bnv56foOj9Iayt2u4xpHiqRxrkfYxvNzKpVrJ8JbTBqYXzea63dU8S1hnlzPhn1kOoIjdeIm+alrEPJW4L7yzg295rB27NcR/D4fpovQEBjvIjfUR5Fr4KhJ56CePIw+jNEZ3EsbX3d2yCu7XQ9UY/F2IYszbGFPPZDpUqeStRPiYfjL05qFLvXguxPzIv5As59ho1vVphcvmC5uXVNJ61xp6awBoyRz8F3p10fibExHF/jHtbDHkqxjV14bY6dxvcfo3sKN74O71Ps7rrFacNR8i0rD2GOTXTS9ayRB9YZrIU33XQjHq8xDnFXP65FzcxC8hc6eQx9Knb04fUfGcfz/D8vY+3KVHCNViLPwaCAbTIzu+FW/MwO8kMtFc75XvhOPq4sQRAsrNd4fXJ6lDw5u3G8neXBZGYVqutrCujpsW411oUTh9FXqy9DPj8H8B7BSy/R9aA1nJlZmeafOvn2TE7j2I4qmHclWjtuGMD4Nbegl0wuZY49MYXz9MZ+7Af2WJqmKXKC7uv2rsHPV8h/pVZbut/awvo2ufg5Vn/pIYQQQgghhBBCCCGEEEKIKwI99BBCCCGEEEIIIYQQQgghxBXBkh56fOpTn7LXvOY11tXVZWvWrLEf/uEftn379sF7kiSxe++919avX2/FYtHuvvtu27Nnz7I2Wnz/cffddyvvREtRzol2oLwT7UB5J1qNck60A+WdaAcbNmxQzomWolon2oHyTlyOLMnT44EHHrCf+Zmfsde85jUWhqF97GMfs3vuucf27t1rHR2zWqKf/vSn7TOf+Yz90R/9ke3cudN+9Vd/1d7+9rfbvn37rKurq8k3nKNanbRMOKsz5geoX5YjbUc2r9i+A70wzMzyRTzG1+5D/fHd19wAcf961BgMDT9/222o/3cDeXhkC65OWy6PenIeNTxDPiIMa5aFMWqgVUnDMUzxJmiwFirre5L2KXt61Bv4eqWMeoPVGdI5Ddx+yBYwD8KxMxB3Fs71UxzMatn9y3/5L+3Nb37ziuddsVA035/to+kJ1OJ77omTEG/auq3p8fa/gF4Ivo/PGW+5DXVEfQ+1TE8dRa+LWn0c4ufPoNZfPrfeacN0BTUe6wHqHK7ZgLler6A4X4P0clkHmmVHx8ewjWZmR4+iF0m5gu8ZHsK+PXUcddorFdQX3LJlC72Obd77EuqTm5kNrrsKYj+DeZHJzufq7DhsVc6ZmWVyecvM6Wf3rcJzO3H6SYinZrCv8qRBb2aWpZ9ls5h3uRx6VfT0YXtPjh6G+Ogw1qaOOumPd6M3jZnZl7/2EsT3/R1e0yzpBL/vp7ZCfGAf1pL/+yX0muknjclTw67uMkldWm8v5m4UYv3r7MApce2G10H8jfsOQvzdh1DP85obUSvTzGxiEut03EDd7XhOfzOZ015uVd6FcWQ2V+8zpAHqzDWk033mKGrdmpk9/71vQ1wgH5BsEfvmtje8G+LjG9AH4cBz34K4fGYI4qkzmE9mZq99/V0Qb7rhjRB/99tfxWOcxevZuRr1WEPyyxhcg+fUP+Bq3HvT5FeQxXj/IWz3Uy9iX2Yy+P5tV6MfxMZTqCnb2+u2gf0D9p86CnE+ey4HG9XZcdPKeje/9KmFOHnc99BjEP/Wn90H8ZER1zMnypAebYbmpwz2Rb6Ar2/pwFzfuAb1ijdvXgfx9Sm+Wbfsxppdm8Ba9N09hyEeKmObffJS6CDfuu3r8TsHel3N89PkdfDwQ+jJ8fxezPUXh3FtceYsrnfiKtatO27BNe/4lFtvJ6bw+iS0JvXm6sr8f1uac+ZZutOdY0tgCa2LT53AucfMrFzG8+/t7YX45QO45ukfQL+gHPtlUJyhvOXYzCxDviABjQVeb05OoB54LsfrBDzemjVYs3HmmoW9DCJaL07Qd9bJwyOO8f1jJ1A3/eV9uI5I2IDKzPo2oRdFg7xLvLk602jM5nRr8y6dII9jfsP1d0BcHsF1npnZ/7n/OYj3HsT3XLcT13V3XI9z6i27cH8Qky+aT3tKL3HHSwf9qmSQ5T0ljnnaMtpMGfdEI6OYH7wWCQJXb7xEYyWg9e3YBO55St3Y1w2eI8ropdCRx3EwMYVtNjOrsD8M5WWaNeDXv/51KxQKK55zcaNq3tw+1iNPj0zCfkZ0D8B3+9un92R8Xi/SZ+h1o3sb7CviB3h9vMD9fdwkwbXZcEj+RZ1Yq7wsXtOZGPeQJ/aRF+zo1yHO9rj11uvCtcA3zqLXQbWKtSyh+SYifxvP8d3gpEn5vWSuf4vfNmrdfiITWDg3/4R0j25sCvvlW997AeLhs+66rtSLfb1lHeZID/mbGvluDQ4OQhx14X3Bw8dxnuntctdUd+0kP+E1WFcKvXR9yXdrYhD3sD2bsU1//yCuy4+dwlpoZlYoYN5naS8WjOG6rZjDHMt29ELctQ77wSPPrZy59+yiCu61Z85iXnrn5en8/7cs786rAwXyWNm4E9fyqztxTCcl11uukcUxOTyJ62Qvj7k8Tfu7WkJzxVp8nawtzE/xUMrSnBfSrXqywbKwTPfIae+dyWGeHq/hOWVS5qpyDuvlwaEjEBd4rUnnlac25Drx/TXyBkvYa9HMPOobvi9RnPNDSZLEKjVs74VY0l96fPWrX7Wf+qmfsuuuu85uuukm+/znP29Hjx61J554YuGLf/M3f9M+9rGP2Y/+6I/a9ddfb3/8x39s5XLZvvCFLyzlq4QAfuInfkJ5J1qKck60A+WdaAfKO9FqlHOiHSjvRDu45pprlHOipajWiXagvBOXI5fk6TH/Gzz9/bNPuw8dOmRDQ0N2zz33LLwnn8/bXXfdZQ8//HDqMWq1mk1OTsI/IRZDeSdazXLknJnyTiwN1TrRDpR3otVojhXtQLVOtBrVOtEOVOtEO1DeicuFV/zQI0kS+8hHPmJvfOMb7frrrzczs6GhWfkJ/rOywcHBhdeYT33qU9bT07Pwb9OmTa+0SeL7AOWdaDXLlXNmyjtx8ajWiXagvBOtRnOsaAeqdaLVqNaJdqBaJ9qB8k5cTrzihx7/+l//a3v22Wftf/2v/+W85pFAbpIkzs/m+cVf/EWbmJhY+HfsmKvTLcQ8yjvRapYr58yUd+LiUa0T7UB5J1qN5ljRDlTrRKtRrRPtQLVOtAPlnbicWJKR+Tw/+7M/a3/zN39j3/72t23jxnMGtmvXzprJDQ0N2bp150yITp8+7TzRmyefz1s+7xrn9PQmls3OmpZ0dqNRZ28vOqaUutCspjvF2LNSR9Oi7zyCRkq1OprTrBlDs591g2iq1OjqwTZ0oskS+3iZmfkemViRA1VYx9djMr3y2eCNzNgiupz1Ohp5mZmV6WdlMmqdmUYTnolJNFYaHR2HeIxM6CbGMT5JpoRmZgde2gdxHznj3XD11oX/rzfO9UEr8m7d2g0WzBlGnjyMfz6XxGhct30LGpn39KAhuJnZI498B+IKGb0/eN//htgnA7BiCQ2dBgbQsPGFo2QuRHloZnZT/50Qh5QWfWRsdTqHxvLrN6A54tPPfA/iQwfxeh4/fshpw9jEaYjrdTQdChtoauTgYY4cPYkGYMeH0dCxHqZMnD4avXoBGoRF8exnomhlcs7swnl3vpH5tddfB6898RCZLZPxbljHMWxmVqujAVS5iv29cRMa8G3s2grx3meehfjwaayxXQ2Mh8ruON+/H69BtYp5VMQmWKETzYBXDWKi9q/GHFi/Dn/TIwnQVNzMLCbjq9Vr2TAR3796Fc4djQStW9dt3QrxTQ1sQ5B3C/+pF9FwL0PmsY05I9fwPFPnVtS6aqNuGW+21vkRXiuea6IY56IocU3/Nu14PcSjR5+E+MG//gzE+zbdAPGNd74f4lve+E8gHj65B+K44bqvDaxF49bRiXGIwwrW9GgS61J+FeZctYa18MwxzI+ZKfd6d+Sxb7r7MIcyAY7FQoK1b+To4xAfjcchrk3gvHPq+NNOG37kJ98HcbWB3zmTnFsrhOcZsrYi76IkXsinCpkeT9L6Y2wI60pHEeuOmVlHP86RPhl93kzG43fdfj3EfWTyl4sxB3btxpwKenqdNnzze5ib//vvcY48OIbntW0nHvNt1+2C+JZ1aFb/7Ucfgvihx77rtGH47DjEUzPYtzQlWCPAfgpozA/2YL8e3r8Xjz902GmDVd4EocfmvkFu7r/nxkir5tgkSRzT3nPt5M031js2LTdzjcfZmHxkZASPMY1rv1we54FcFmM+h0zOrblZeg+3IUOGmNnM4ubp/J1nz+A5HDnu3mjoovGwe9duiLnLp8vYDw1amxwh4/LRk8chHliPhsVm7kY2CbGmzme2Z63dTywGTamWXbsV4k3X3up8Jho9AfGpUbw+M8OYQ8F6HMOZUZy/VudxT9OdxyJRyrnmovkM7WPJCNen650nM/QNPdjG7hzW9DrtxRtRyphNyCw9xDXwyATm2FQN29hFpzW/55snQwvD8THXYLjBe5YL1Jbz+fmf/3n7yle+suK1zgtr54zMIzIdj9lsmwxlY/e2UOzhNfN9MgTmGx5k0O1T/3o+3buIMA+92N2/eXRNQsoLj8zUkxyZIfu43+NdU3kEa7x3zN1PZGw/xIczuJ+IydzXI8P2OKRJOMFr4RsVBcpzM/c+hEfv8W02TixauLKtqHW1KDQ/mj2fSoQ5dfIMrru//q1HIS6fQTNuM7Ort+E61/NxfziwBu9brKL62VXADWYyjf32zLO4RnvnLTe6bcjjfcLyAay3uSIZnWdw7RiQefNYFq/3m9/0Roj//hsvO21Ytx7v+bz9H7wV4g1dODZPNjCPR2s4lvKG+VIjY/R6Sr3NFvGe69ERukd0niH4+fctW5F3oyMVC+bum8U03nr7aaw0cF7IVNw11fou3K/FFczlYBLX8v0+rR0rUxAXyRh9zQDmQEz12MzMIqpVDayvUwG1qQvra5ChukGG4AH1gx+5daaYwfOq8/1qmvezWWxTRyflXR7jDM0ZxYI77/D+weh+TjY7+5lZI3Pn46ks6S89kiSxf/2v/7X95V/+pd1///22jYrStm3bbO3atXbfffct/Kxer9sDDzxgd955Jx9OiIvm537u55R3oqUo50Q7UN6JdqC8E61GOSfagfJOtIO//du/Vc6JlqJaJ9qB8k5cjizpLz1+5md+xr7whS/YX//1X1tXV9eC9lpPT48Vi0XzPM8+/OEP2yc/+UnbsWOH7dixwz75yU9aqVSy97///U2OLsSF+fM//3PlnWgpyjnRDpR3oh0o70SrUc6JdqC8E+3g93//95VzoqWo1ol2oLwTlyNLeujxuc99zszM7r77bvj55z//efupn/opMzP76Ec/apVKxT70oQ/Z2NiY3XHHHfa1r33NurroTw2FWAITExPKO9FSlHOiHSjvRDtQ3olWo5wT7UB5J9rBu971LoiVc2KlUa0T7UB5Jy5HlvTQ40J6uOfjeZ7de++9du+9977SNpmZ2Y03brT8nMZXkTwfEiM9MtIvSwJXf/PMGOrE9vWjvvzg4ADEm9aih8f+A6i1d+wIegps3bod4lUpA7deQe3aYifqtnX1YhsC0lBr1FGf7uQp1Ls+RX4bZ8YwNjObmkK9OdYZHhlF3wN+//Q0ajOePYtajBXSv4sTV0FtpopacIUC6vSF56Xl/P9PTExYdzf21/ksV95lO4qWmdc99kmfkzRDDx9EP42BAby+ZmYx6SPmsniuU1PYn4PrUK/49jtQ87HRQE3ek2eGIQ5J79PMrDaF7ZoYQs3HQ1OYy1PTeM03b0EtzQrl8Zkz6KcRpbTBD/CaB6TpmsnheWXzqCFZKGDc091HMfabF6RoepNMrEfXNzunaT6v+9yqnDMzq1QrFs7poJ44TprWw8P8ZgiLXW4ZL3VhuzN5EjHOYH9PjuI1nxjFa/iVb2CbejpJ87yGdWQW/I71G1CnvtSBWqT3f20I4loda0mBtKDPTmKtCoIU/dsG6mUOncTcj0mP8/hxPK/vfAe1+qsz+P4ZiivVFH3OLPbD7t2oGZrPz75en2trq/LO8z3z5s4/JA1mI23UgPQ3s53u/Na1Cb1oij2oqXv26NMQHznwbYiHjuDr173uH0O846a3QXysD+dLM7Me8nfwZjCPG1XK8xH0KejqwjaXx7E2NvLo5VUt4zrBzGw0wFqVHSLt0wA1zPtXo5ZwEGLfT9GcOjaNY3mm4uacV6fxXsVjDlXOaRNHtdl60qq8yxWKlivOamGfOoljfnIcdbQHqEZEOdK8NrNsgvPR6197O8Q/8UOYN/kQa8A4rYF66TtnZnA9+dX7H3Ta8Pm/exjikRD70StgDcgcQm3wAw3USA5fxPF2/8NPQXycNLLNzOpG+tIFzLNiJ3njkfWdT74W3eRP1OdhHnp514dr/SCOnwxpnM9bLcyneCvn2DiOzebOkfcyvLXxyH+PvTHMzHqo3TGZNPDauhxj7QkC8hFg/w3yfvJy7jyfydIxyLMjQ1r6uQz7iOA6ifvlKHnGZVI8HiJ6z+mTuC/ZvQvnhYj82ULSse/dfBXE2VWoac6+d2ZmYxOos+2TJ0t27ivDsLVz7GLENaxbY8fQC6+0HveUZmbFrbjuza/CNVBM652Dhvro0ycwH3Z1Y3zDGry+KfYONjmD4z4iPw32/Mh52Kaxaay/nUXMyTV9OIdnU6435/nJM1ijT5zEfelUGfu6Sn4cxSKuyYxykvdpZimeHhfBYnm3rDmXNMzmxkBC9xGihLwvyBPCs5R1NF2CxHkPaeOzGTF7xlENiElzPjG3znhkFuO0iY5hyeLXh+9medQmv7DKGNax9xLa63JOhLReIa8L9vQwqluWuH6NHp2XH1M81w/z17VVtc73AvPnfFcSOm/2kekdwL6dnnT3jy/sQz+NPQdfhPh+2lfl6J6C34lrEY98KcIazsd/MYFrMDOzWzZh3ViTw2P6PtYuo7V/1wDWlZeGsE499NwTEJ844fbDzBTObafpnttAH3qbDM/g+6t0v6Cb9sl9/djGk+M4p5iZWRffo8Ox8sYt6xf+vz7n0dWqvJuYjCyY28fmYvKLIt+6pIFFwyunzC3jOOmF0+RNSnnmZbFWlck7pk5zMvvHxSkuE6Pj+LNyGb+j1sBrlitQXQowBwK6/5ahr8xl3XqbJ48NjzznsvSddVrPFMnvpkDXJqI9aVh375/6PHdRPD13fzpxqvmFWZKnhxBCCCGEEEIIIYQQQgghxOWKHnoIIYQQQgghhBBCCCGEEOKKQA89hBBCCCGEEEIIIYQQQghxRbAkT49Wku+sWmFOU6zWQJ27KCKdwwi1wqYqqGdmZuZFqMnZW0Qt7oMHUbN++1WbIL71lpsgPjmM+n9796E2eCFFY+zP/vQLEF99zfUQ//S/+TDEEck9Pva9JyG+7/4HIJ6skpZc5OpfJ6QX3qjVIB4bG4G4XEX9Vc8jvfFJ7NfOLtQ8H1yL3ilmZhs2bIS4RNrR4XlinSELd64w5XLdgjlN2kaM312n7jx6AvXez4yQ94KZlUqkO0k6zdt2oJ57Z18vfmeCQzQh7b03vOkdEE+Num3oKqIe49Ax1MZ8ia7hrbfcCvGLL6K25tgo6q7nsiwOTrGZBaTLWyigbm9HN+rzd5C/DWvuZjPk2UH9ZCleMh7LFpLe47zWoh+742almZgsL+hvP/88+kgcPnQM4qdGDkKcLbpjZNe1uyDu6cdx6WdQU37Nqmshrk6hTuzjz+F3FkjCt9Dh6t8mhnW6EaIvUhyhtmhM2tCsNezI3VKJTbtsrA3MHh6lTtS97+lBTdaJUdKCJv+EKMQ8a4TutVi/HTXJ123YBvG87n2t5nrhrCieP/vPXAlm1naPyfPDS9G49zswx7J00DVXkU9PCXNm6OXvQvz41/8rxMee+78Q5wruHJsv4fWsDGPORQ2cz8ZG9uHr5Jvlk5eJT3XHnzjstGFw7XqIx8/gMXv6cG2ReFgvV219Hb4/xjm6Tt4KGwff47RhOsJ21s6OQzx5+lwcN/D4K47vL/gpfefhR+GlZ55+FuIO0pXN5t263qA6c/zQAYh/+3ePQ5zPYN7c+Rb0zTozja8/9jD6dTyzH49nZlYh77NcibwUSO+2OoS6zPc/eQJir47Hy/eir9a6VehhZWaWUG6WST6c60s4juvqsI5jI1/Cvt7xmt0QZ7bgeDcz27Id/RgqDfzOeM7Uo8aL2xYQJ7FZfHHrSZ6bXAV419uMPT34GIkz32HsVP8yXg/z3dxnzxTHJ4Q8PQLSZZ73k5qnWsWxFFIbr7sB1wlmZjXaQ7zwAtbUCiViNk/azuSfwJrXPNE3Qlerv1HFPV8ui8fIzH1HnLInahukxV8dRm+U6dO4vzAzC3tQIz2gdW9Yw3Hlk6fVZIILtxMz2B+HqPa9Yb17i+DmQVy7FzPYpoT8+R5/Dtea/99//z8QR+RzsHl1L8Sb1mFsZnb9VtwfjI7hnmTfEfQZ9Mmjh78zS345rC9ertBYvMxJLFxYMJM9myWUM17MPhVurXO24THVIp/qJfW3xexdQe/32fMjZX1JXiShz7lJx6CazafAvk18b8OcOcDM566hdbEzb1DsxbzHYY8Pvhbu2sxnPxXyBYnnzoP3TytNvR5ZkJ39zpFR9K4oduDa5F3vQp+1Rx95zDnew/ffB3GhiucTTqP3RJmucDiK6zS+/kXy+Hj6oOvbc+RpvOClDvINCdCTLjG8XmEB21yukK9IBfdAXuTW26n6OMRnD2M9jWO+j4Gf5zXAgsHVfBvoA2986w84behZj/fsRso4r+w7ee5+aFhzvRlWkomJZKF8TOKy2pIGXq8kxDycnHTHyLEpqvVs28NzCRWFSgWPmaE1GXu15Quu/2yD/h4hIh+RoIDHaPhYV2Zm2KQOw3n/2oU4466LcnQeOQ+/IxvQfXgf61CGvLli8rsp07qwzv5HZs5Nu4TWivFcjb94Rw/9pYcQQgghhBBCCCGEEEIIIa4Q9NBDCCGEEEIIIYQQQgghhBBXBHroIYQQQgghhBBCCCGEEEKIK4LL1tNjfGbG8tGc1nkVdbxyWdQKmx5HLbGxKVcPsrsDdUa9EDVgX9rzbYz3ocfHu971DyDeRtrFg6vQm+HAAdTdMzPb+zL+bGgcdQ/f+vZ78JjrN0N8dAj1A2uOhjDGmRRdzEwW9ePqM6hByB4dYYj6fFnylOjtRK+FDvKwWNOLr5uZddK1aMygHqudr2sYtVZvPMjkLMjM6ud1D6AWf2Z6HOJ6FXW3ZyoYm5lNzqDuZEBaen29pGtH2sRjw6T1TdeUZZ7rNdLZM7OBgUGId+1Ev4etW9FjoNHANj379DMQ53Okzd+BOvpZ0so0Myt14JjN5osQ+6QDzHnKuogR5X7Chg8pKn8B+TsE1JfZzKxOopfiB7LSrO7fbNnsbN5NTaKm5AyLfWdQS90L3DKe+H0Ql2vY3+E0jutTx1BTdXgIx2Qco25znSR616/d7rShRHkxOYG1hTXmMxH1O+kAj42jj1K1huMtcTR+zXJFzDs/i+/p7sO+3LYV/RaGjhyCeP/Lh/ELKFfSFMN37L4N4q1Xoz9UNKf7y3rqK03cCC32ZvvYHT80tyTNxpuZ59H1I68fr4g51EU5E5D27Omj6O8wPIxa8V3deG3NzOplnC9efO5pege2u1zDnCx0UT0uYz2O6jhnR4nrTdBRQq+uIwfwPMIQP9M/gF4JfWvQbywije3ERz3XoOTOsQ+MYG3L96LPyLaN5zR6w3rFUE1+ZZmYLls0V4u/8wh6euzdexjiDvJ+yufc/s6Qvu1p0hQ+3EBt2gLNRZkB9H3J+5gjTz2LbaqHbp3Jk1Z+WEZvtHwD272aviM/2AvxyRGcA3L0/mzs+v9MjWM9rLMJGY3Zoo+5niRYfzJ17LfeHpxDNm92a75HviIj1Cab88yZYt3kFpAkyYJXEftGOD4SVMuCDOaYmVlIGsTse9TZjXOL6xNC7SNt7pC8K+IUH5SI3hPS2q3K3kwee4CQ5jXlSEcH1pax8XGnDdxO1k4fG8F5O0NzMNdQ7kfWLM/lyFDMzAqOJwPVzLn1IPuutJOYempqGD08Mvtx3jAz67kaPVUGBrCuz4xhJT+yH9fuvVddA3FpADXlRydw/J6Yctfyw9S3P7AV+35LEa/fhgE8xtbNuK996WU87ydfxD3Pg4+7e2ne94R0XStUu2Jap3EO5Sh/4gbOIS33W7tE/DhZ8KgIyMeTPTti8jliPzczs4TnCqojHnt8eOTlRLmeeOx9Qd6VvjtOY/IN8fkY9B2ez+fFb19cCT6J3XqdOP4ntC7mz3DNj3nOrVPMNd71L+K9bUzvWbAYSFmjryQjtdAKwWxbQtogjo6OQ1wkD8h1q10f0EKW1yM4JiP2PaN+KaR4YAFUxwqeO8dXZnD+q5KPF/tWJnQtvIA9IHF/4hlf75Q1Ao2loI7HyPDYokT3qB9CH9dxMa2xt2xEvyQzs1034rxxagT7fv/+c3Gj2tq8m56MFtZvhw/gfq2rB/uCPTkbJbe/gy7Mg2KB9vjkBdvg+0XU3w3yUGrQHjRXcj091qzCObNSxXrboD1ILcTXzxzG/Ud3F46vfB7PIZtx60yR/BOLVE+iGvmlJnSPKcSxM3EG8/TEKfzORuTer3b/LIPqrfuJpugvPYQQQgghhBBCCCGEEEIIcUWghx5CCCGEEEIIIYQQQgghhLgi0EMPIYQQQgghhBBCCCGEEEJcEVy2nh5nTxUsl5vV+KqzrUOMzZ6YRmWvqaqr+XqkghpnvUXUOBsZQt28r331qxA/+eTjEL/73e+B+K673gxxdw/q+ZqZDaxeDXEmg+3cs+d5iHfsQh29N991J8Tbt6MXw0v7D0I8PoZ65WZm5SnUIOws4XOvJCGfijJqmJfyqD/nRdj35QpqNZ856aqFH5zAY05P4rX5gbfevfD/tVprPT0KpY6F65LEqG3IOrD1Kuru1aquTnUYoW5dRPHUDGoQjo6RZjzpOLPuc5yQFh/r6pvZ6bN4zJD0U3t7MVeHhk9BXKNrvH7L1RAXO9G7wTKuRmFAuc4+FBGdV+Cjvl8mwDjH+q3OebOytKvbzd/hzcXuJ1eejeuvtlx+tiZV6zhGN5DGfxDzNXdbHFCuNkhrtkEa82GE3jMbt6LvS0Ja4Ubas17R1WQt0zX1Spgn+QJd8wZqabI+bolyyK9SffPc6Yz1+z3y1Cn1oM9EpgNrdNcabFNphLTC6RxLKf4quRIes7NnA8TFwmzfVcqt1blPGlVL5nKHz8M80qt3tDRTPD1I85M1lT26fgl5AxVXbYR4MIM5xV5B0yPHnDY8cv+XIT7ywvec95xPI5yBePuu10Fc6EP98ePkM3Lm2NPOMV8+gH5gjkwzeW/VKqhh3k8+WZxSEelnHz/2otOGWgf6ON2867UQl8/TT23U3Hq9ksTmWTRXZfuptmX3Y19E5JNVKbu+WfyrO9kunLf71m6BuNC7BuIzp8Yhrk/jnBzSerJecXWAewJaFzVo3dTAPNt9FbbJ78C5aLyKnkpRhbxlZtyazxU4QxK5XE/zpJEeks9ddQLj6Wk8h1qKBu++Azgm+4rYd5m5GjFD655Ww7rXjg42rSfS1gRc33iN0+w7mrWJNcotcfMuIn+gKOJrSvM86fvzOoA/z54ePX3oFWZmNjpydtF21kkHnZY3jop5Qp0dkEZ2LuvOsWHE1w8PEs1dT/YvaCcJXd+E9N7HXnjC+Uz55GGMt18Hcc+mnRCX8lgVpg7vhXhkH35ntoR7gbG16HFmZjY0hPX15GnMiR++Dtd5q3tw3v6vP/8TENdpdJ2dwHXQ2TPuPvboMK5Xj5/GHByj2lUmn6fjx9Fn5rmXDkDskZ55lf2RLnNmvSH8+QBe8/hUEvYESBkj9DPP8cbB133HE47bx6OeamfKOpq9CZyJn/dBPt/baFJ/2ecpxdPDo/Ny3hOzDxO+ntB+3fN4cchtTGtzs3llLm6xp0ctCczm/AuiAPX9cx08r2CNCNKuN/nGcO3mFAxi/E6PfNZ8ygeeI2LHI8as7tE6ha5fkKHrx8cIcf+YidgHAddUnB9mZhGldSNxvUegCSn3A+B18iLL00IxzWMik8G+6+/CdUFX4dwx6pbizbCCFHPJwtCPG5hHnUU8l5f34bxxjAuTmU2uxfZ3ljCenMEFzMQ07+fweI3G4uO1s9v1i+roxoPMTGNe1BrkG0LrutNncQ7t6cY8zQQ8Ht1+WNWP46krT/fV2YcpwX4am8Exvnf/MMQv7iPfrLqbN1Hs+tgB86m+BHMP/aWHEEIIIYQQQgghhBBCCCGuCPTQQwghhBBCCCGEEEIIIYQQVwR66CGEEEIIIYQQQgghhBBCiCuCy9bTY/9z05aZ05pLSMM68FHTrtiJuux93ahnbWbW0Yef6e1YBbFXQy3pyQnUKT3w0n6If+dzvwPxnufQj+Om225x2rBu7VqKUdv94MsvQ1wncbi+HtRYe/bp4xCPniU97EaKpiNpUAYearr6HurLlafHIR4fQo3DKfKgmJpCze3paVe7uVLF8+oiT4nux89pwbEm8UoTZDIWZGe164rkQZDNYg41CtjusOFq88Uk6M4xayizHqMbX6jlF4a1MKcqeM1nGqhz2NWHHgR95OPis38GeWPEac9SA/L0yGLcSZqe7A/AedBUgzvF24Q1PbOZDL9h7tiutudKMzlZt1xuzl8hi+de6OiFOO+xVmmKFiKJHOYcvVt8vY/8FDz6PGv0cg4kKTqeLDWbsOcD5zYrp7MmOql/x1TLvBS9btYn5rdEHutt4uv9BZxL7liLPkrchjRpyYim2Weew7kkP+fpUauR2PkKE9emFzQznb53+gXjKEUvOONz55Lvi6NnTP5EPun/d+EcvMq7GeKOLvRmMDPb8xx6b02dcT2lzqc+jfPXU9/5HxCv3nIbxBuufgPE23e8yTlmbeo0xNPjJynGehvRnJsp9UNcRPlca5B+fVeFPJXM7M43Y7t3347+YMdOntN8rVWmDZ1QVpZGmCxo0G65Cv2hHnvkSYjr5OlhpIFs5taFkMWes6gp3zCax8fG8e10/CDEcenV3TZkqT520WdW96G2/q7rsI54BXx9//GjEE9Mo2a913DXRVEd86hBMfuDxVyyI3z/zAzqAj/3Aq5Ph1NsOc5OYg24ZivOK4W5ObZcdvvw1U4zLW2Ga6qjOU5xbK6WN9mIOBu6PE9oNF9FlEfsoefEFXeOYm80Xqs53UI/8Nn7ib3XyM+N18xpcF/Ox7HjRXD5wN0UNyrOe2ojuOc7M4ZzzdRh9HfK9+A+N2jU6HWcaxKqARNHXnDaMHEUr8fZvZiXB5/D7/zR118F8Z278PUiJfGmPqzXG0lb3MzsVjpG4uH8Vq3iWuPMCPpG/uYf/S3EXki1ktrUSMk5vl5LkBVfcZKkbvO/0+r6abAvpFHs7p3YB8RL8c+D12k/4LNviOOXQV+Q4m3AHh3s2eAUmuASr1DKPpD3RR69x+M8IU362HgNvHgTU+cU3vs2Wbu3iko5tnhuLcY51JnFNWpHsRfintVbneOVetFPaLqOXqMRXd+YvU7Y84PnHZpX+D6jmVnSYN9Pzku6/j7vUZ3JD4/P3jcpt2R5X5tp4k3TLD9i6oeOPvRoynS5fsTHh3H9mffwntD6/nP3YGuV1np63LhrtWXmvDoHurAm9PdhO+MY5789e3D/Z2Z2+CAubHdejfdpy+SBuPcF3N+F4eJeNFzrfN+9bxgEuO9hz44oXvyeW8Q5E/B9XvL3y7k51VHC9+Ry5OHRxBsqm8XvPH0WvbmqlKfZojv++BYde/vO18ckSaxSvbj7dvpLDyGEEEIIIYQQQgghhBBCXBHooYcQQgghhBBCCCGEEEIIIa4I9NBDCCGEEEIIIYQQQgghhBBXBJetp8cdr7nT8vlZrdAgQM3QXA411bIU5/Kuplwht7jG5LZN6yB+ffU6iBsN1PI7cgS1wp96/AmIn9+DHh9mZjt27YZ480bULHzuWfzM6VOoFZcp4OXa/+Ie/M7n9kI8PeVqwlbL+LOxMdQXHx1F7b7padKWq+Dno/riXgtJio5mnvSr+dHbc3vPnUerNXiz2YJl5rw7suQzwW1JOkkrMUXnPoowbyLW+CSdbUees4nvAetSBkHKkKZL4Pukzcf+DM0kQek7WcsvTdk6yOAYdjUI8UsDY11n1GrkPOPzZk3ndPg9Hv23dUSNhoVz1yEmTWyS8Le6R5rZKZ4erAeeLC4t6ujAss42CziyZ0rGT9EidZKZfVcW96vxHK1vzCGPTpu1v9O+w/kSPk+nX1ijlcf44v1iZpZErPGJfV2rzB6jXmttrYtqZbO58/GpX3h8sW9Pmj4y15GQah97L/C1SIw17TGnAjK36CigL4KZWT6P78mQNvfU2BC2sYb6reMTBzB+FuOX93wF4q6+9U4b+ldthbizE9cW+SJ6leTzXRAfO34GYu76XBfqma/ZdrPThi7SSN5/kDzLyucOWq+21l/h7OiYlWuzudHdi5ryawbRT2q8ijqw0zNuWyPSoa9PjmHs43rDL2COTA0dgjiuo5dFg8a857vjNJ/DPMsbrkkHerdAvGnXVjxmgG3s6+yFeHjmJYjr065+bYM8xaLG4vrhMXmUseZ1sYBa+lMz7FtC6zgzmyljXTh5CjWTs3N1o1rBPm41rlb64t5OF3MM9zPsXUFzA+u381zkTkZN29A0pnk8CTCPeC/F/hxDp7B+mpnVKe94rZfL4jG5m9yY/dqaeH+ZOWuLhLXTEw/+ezniplyKRxnFMfvwDOO+tHL6GH7e8VMhv0yaP7tWp8xvV+PeuNSDGvAjZdxTTpdxrIfkK1Imj8cgh/NhteHWuqlxrPG1Cta6Qgnr8cgY7muPncA5NkNdPT3D3jVuzb+cPDwYLw4X1qLsx5G4Jh704TQfCapdtC5OEuyv2NgLgeYa3qfyfYMUfz7H9oP8NNhnkD0eeI+TWkfg+O41558EtDbweV9KbQi4/jiGK7TWSGljwInHe7e5OO3ey0rSqFTNn7vuq1ehf22G5ojJGawBZxru/jFefS3GE+jdG0Xo0+Nn8Jge+y1SGeFx4IXu3i0g/0zPozWVYe1iz4iYPF6aXRFOBzP3PPLm3teD72iyeInofup0BeOHHzrsfGb1GtzDbN2MfooD560VvRbfs7vuqjWWz87mXT5P99Poflsn+URm8+7cMlHBPcZYFWvZ+BjOZ2POWpzrTLO9c3O/KP5J7HjDLF7r2OfQo0pWrbk5MzlFXiPkPemUIYrzRZwT+B4DXRpn/2Fm1tWJe4wC37Obq6dxnFilmmIymIL+0kMIIYQQQgghhBBCCCGEEFcEeughhBBCCCGEEEIIIYQQQogrAj30EEIIIYQQQgghhBBCCCHEFcFl6+mxacNaK8x5P4Qh60eSZhrrkqZpuzvaixgXyQekkEedUtYv6+vthXjdWtQwfPzpJ502HD6I2tGvue21EI+Pok7pN7/xDYj7V6Ee3Xe++W2In30OPT6qZdQXNHN1nqNwcU8Jlgd0PDuSxXWN0zwmAtL4bbDPRXz+/7dWH9DzgwWPhIA05VlfMyGxdS9wNeliOrdGyLp43J8YR6wJSaKP7M+R5ingaAxyu7kNrP9HxyySJ0sm4OO5/eCTfrij30/n7VObOA/imAU6m+tfs5cC+4jMC2rGUWtzzszM92IL5sR3Wfe1uT9HSnupvrHeLRc0R980YZ8Xyn2P+5I1kJvTTHvUIU1rGA+45DYwPHdw3KzNHhuNmJnvY71z5Dfnzstrud54bPMqxW6dxzig8/JTf1+imVr74u+PKae4O/ws9W3k9le2axDiwW0liHsHUW98Zuo0xqPDENdm0JMgrKNu6MTZfU4b0n62OIv7C/DvpuRLAxCv3/0G54inRm6EOOhBTd7gPO3+sL64RvByU56qLPjcrB/A6/VjP/RDEB/b/yzEjzz6kHO848cOQ+zM2z7qMocR5x0eLwxx3RQ2sH/82O2vqIoHiRLMO0s24jEyOIfGDWxTjgSo6xX0VmM9czOzDK21ckX2wkOPjlInesP09mG8di16zvVv3Alx3xp83cysSPN8gzzLwrn1TJpO/0qTJMkF63cz34hULwiep5t4Vjnf6XhWLf7+i/kNNecIzvnyPI5HZS+vQgHHDq9nzcxyWfxMvg9z21nTsjees7Zb+vqL13YXmnua6fhfXqT4Zi1xieP4DNLnI1pHR+E4xCM0/5mZVafQH6N/yw6Ii4Oo9370NPoyHTqObRrsw/VRPoOv51Ly4ejhoxA/9tRBiDdtx3klT1r8w2fJ96lKngP11ten5SRIogXd9pDHBu1vvATHtO+lJJmTeIvr0ruecOSrRZ5Xno/zZSNx/aIYz+i+ATcpXLweu/W2yc2PFNj3IyKtfN7H+qzfT98R0zm5mz1z/FSMPR4X2tDafWx/Z8YKpdk1SCbEulGZxBowVcXrPz3p3qvyCziGu9f00zvwMxWKowb2S4a6zW/QtSP/uNlj4H4gjNDvITbyLaT5saOB9xHzMa7BeA2QlnIJeSNm2JeL3s8+XO49O3x/YxyvxZ6HsbaamfVvws7r78dr03Pe2AlrrZ1jr96w3or52XXKJO1lMgWs64Uc7t+6u9wO58p/4OApiGsVfAfv+Z29dGqrz/98ys+a7KW9tHs+S4C/kvf3ZmY+/4xqURSTj1YB39/fizWd83B0lPyha3g8M9dzzPNwjzPv+833DhZDf+khhBBCCCGEEEIIIYQQQogrAj30EEIIIYQQQgghhBBCCCHEFYEeegghhBBCCCGEEEIIIYQQ4opADz2EEEIIIYQQQgghhBBCCHFFcNkamcfh7D+zNPM5Nt3FV4PENWXJkJms43vCxr8F7Bo2B2KD6cFBNPb5wXf8oNOGlw8dhvj4sWMQD51Cw5wv/MkXIF67Dr/j6SeehniGjMu9lGdabBgdkKl1GJJJkuOpuripsmPMnWKQU6fv8HwyMjz/84472coSBME583XyCopCMjAi4/K0lrJRZCaX4zdAyIaMTt/EbKKEeer7bn8HZJYVZLBNWbqmuQwbwdLnyTA16xiZu7A3OJvrRSEbuKUcZJE2cK6nGbrzmG000Dhp3kDzlRhpXiq+Hyxcu2Z+3UyqOWtT077F4T5wPr9Es65loYmx4MUYo7vvYZM3jLnuN8M1VDWzhE360q9Fve6a+a0kcRyat2C8t3i+uAa2F2FkTnOqM4tfwNB94TtpDEfO3JXSjxk2JO6GuJBBI8FiFxp8964uQ1yvooE0m1pzbGZWq6CJY72MBokhmVJHYRViNp/lml+vohn7qQPfc9oQZ9EItJcMpqOo69z/1/H7V5zwnPemVyfzuhCNB8+ModH85OSIc7haBc0J/QDPNY7xMzM1zOUcTfRBgp9PQrzGXt2tCY0Yx27Dw89MTWJOHNqPZpFdBczL+gwaZnoemf0W8f1mZvkCGgcWOjohXrVmPcRXXX0TxGtWk3FoD5pwFju6IM5kaC1j7pyaRDRPzw3PlGXhZUVz01v3Z83mn6XOwQybOqZxMXPgUuDjpZ1DJrP4NrLZMWKKeQ3L5upp8NruQnAtFc1w86k8gjW5OoGm4KfzWIcOP4t16NGNWFeu3dwL8e4tOCf3dGSdNgydwXpazGP9PTOEe+sDR9B8fWgc62utQXuDNuwBlhM/Cc2fW3EFCZtn8761eR3zeDOccP/wMagmxDivJ7yu9tllGt9vZub5tNfNYF5wq72Y5h6+WeHUAt4LuDmQJLz/5nmCF7V0AL5nwGvkiEzlnRaY8Y0Jx9R4oQ2tzeHpKLLGXB3O81fncD3a19sHcb+zRzLLn8W+KNMeJDS8/kGE65F8ne5l0brPaO2Zybh1xq9jrYoTXqtjHEb0Oq2tK3QjxOc1hNMCsySisRPhHiXhe0I5XCtyDkaUF3EO+yH0cX9hZjYRY98M1XFN3XmeKXy90dq8y3UMWK4we+2zM7jubsxg/+cSMt9OOV53BvsvojzrXo85kctSHaKLGFPdCXiPGrhrkozH97P4mPiZkOsGfSDDtZPWWLnAzf0s7RmnpzHvJmlPUyphbxaL+Hluk7eW7kPm0u7b071JOo/Ontm1Rb0R2uH7vuV8Pg39pYcQQgghhBBCCCGEEEIIIa4IlvTQ43Of+5zdeOON1t3dbd3d3fb617/e/v7v/37h9SRJ7N5777X169dbsVi0u+++2/bs2bPsjRbff9x5553KO9FSlHOiHSjvRDtQ3olWo5wT7UB5J9rBxo0blXOipajWiXagvBOXI0t66LFx40b7tV/7NXv88cft8ccft7e+9a32Qz/0QwvJ+ulPf9o+85nP2G/91m/ZY489ZmvXrrW3v/3tNjU11eTIQizOvffeq7wTLUU5J9qB8k60A+WdaDXKOdEOlHeiHXzrW99SzomWolon2oHyTlyOeMklisD29/fbr//6r9u/+Bf/wtavX28f/vCH7T/8h/9gZma1Ws0GBwftP//n/2wf+MAHLup4k5OT1tPTY5/8T79khcKsRhj7RLgngXGQ8iyHvSt81kzjj/h4UNYqbrAWNTXCD9w2TE+j9vSLLx2E+Kmnn4P4+IkTEOfzqJFWIQ+PKCSfhFR9edI5bNa3jrbc4lrHHKfp/XLfeBSfr12cxLGNjYzaxMSEdXef02dfqbx7y4/8tGWy+YXvXvRcycsiVQuVtPiCYHExa0e9uImXAnus+JmLEMumdrJunnMeFOdyrNXHn0/7Ss5N7FvWZHZ8fLgbEtZfpfGXoj3N31mvo1bm/HeGjZp9/S/+24rnnNm5vHv/P/l3llvQ4iTvAvZMeQXa4M0+c6l642ks1Rul2VTEx1tu/XKzi9NyX+z1tDZxN7Dvx/xn6vWa/dn/+s2W1bpr3/HvLZivdeyTRaL7vpODzetMMy131kcOQ5xTI3o9cWqE29dOq+gzseMd1CSHaBrnuSu13rKmK/l+RBXUEw/r+Hq9hjq0jSq+PyaPiYA0aM3MOtfuhLi05iqI/ew5T4ioUbVn/uIXW5Z3v/M/vm7FUoeZmR18GddA33v8IYiffx79SqZHhpzj+tS/Pmk/R+R7VSN/jCTA2Ke1n0+eK5nY1RsPjHxXSGd53bbdEL/5B94NcZX0ch996DsQhyHmWU/faqcNgxs2QLxx01aI167fCHH/wCqIea3G806ztYvZbF6cT6VCHjhz469aKdv/9/Pva+kcu27z9lTPMzO3NvH70vzxmuEec/FjNJt7grTPO95LVO+aeOItyxzKa7Mm87QzD9DhYq7zF7M28RZfDy4cO47s+KGXWlbrrkSaXw8nISDktXlHAfcTA93oV1QqpHjG8J6EdNVrtD8/NYJ774kKeQ/xfmKFXOrOz7uVrHV9pdxCP/Peiq0s6uSBGjmGp64fhs9rnIT917h+8n6Oaxl7gTpNMJ98WZMMKfJz/YzpO9hug/T9jebwJHG9u2L6TMD3R7jh1AQvw3tlusdA3xmk7aWp8z2aF+Y9O5MksanJ8ZbVug/997+xfHF2XVfsQ8+OxjSuYYMA1x4nJ/hamO09hT48lWFcd9UTGvMdfK+K7jmQv0N1EmtCkuLVlqF9jkd9H9NaMI7wPLxpzCm/RteOPF4yKd4KcUT3+WrjELOnB6cMe9HGfP+H9g9eyn4iLmFNDgYw3rL63PWN6hV78nf+fcvy7iP/5F2Wz832WyPk64NxrYFxtZFS62i/Hjj+GLQHpF1nwjHXOvLwiFL8bBw7IccfE2PehnId4vWrc/87pd5y39Vp7xyGi3tFebSGLubJTzPr5jrDfm6OH9xcP9TqDfvMn/2Fk3Opx2z6rRcgiiL74he/aDMzM/b617/eDh06ZENDQ3bPPfcsvCefz9tdd91lDz/88AWPU6vVbHJyEv4JcSGUd6LVLFfOmSnvxMWjWifagfJOtBrNsaIdqNaJVqNaJ9qBap1oB8o7cTmx5Icezz33nHV2dlo+n7cPfvCD9ld/9Vd27bXX2tDQ7G/gDQ4OwvsHBwcXXkvjU5/6lPX09Cz827Rp01KbJL4P2LNnj/JOtJTlzjkz5Z1ojmqdaAfKO9FqNMeKdqBaJ9rB+vXrVetES1GtE+1AeScuR5b80GPXrl329NNP26OPPmo//dM/bT/5kz9pe/fuXXg9Te5jsT+H/cVfnJVVmP937NixpTZJfB+wY8cO5Z1oKcudc2bKO9Ec1TrRDpR3otVojhXtQLVOtIMHH3xQtU60FNU60Q6Ud+JyJEUsc3FyuZxdffXVZmZ2++2322OPPWb/5b/8lwVttqGhIVu3bt3C+0+fPu080TuffD5v+byrIRfF8YIGfzNNWNZVTNNzZY3OkHSffXr+wzp5rCfv+FJQm6LI1SjMkxdCZ2dp0WNmWaeUtL5jx5+juR496z86rzfRFWZdYtZnZe33NB1oPoYXsJb0uf+f7/dW5V0SJ5bMadnxNedz4XMPUvxLmpFhrfwmXhbNfEXMd685+9GwpiMPlziiXKfrxVp/PJbS5JSbHcNpA+sAO3nLeckTqOsnwcMhk+ExHMx9dnbsL3fOmS2Sd0m80OZmOtvO+HkFfhzOOG4SvxLtb9aIX6rHB9PMx+ViaOYLstS+5eOlvT8hrWCPcjOey7fEZsdRq2qdF9fNi2fb64w/D8d0TBrNge/qcTp6m3xQ7hp63ZnPOF8ce6MU/xT6GUv4s5apUa2zePG1BjciLQVZy9QvdOEb8qg5yjNkPqK+r6Pma0L13EvRRg06SE8+R23KnxubyVx7W5V3maxn2exsP3b34Bpo0yb0nZicHoP4VIBrKDOzyhj+dphfGYU4DklP2iMPlQSPmTg+CZgjjZS8i3h+ozw7c3oY4kceQu+SBslJl3rQs2PXrhsg3r4DPULMzFYProM4k2uieZ4svsYNScPXWUek1HP2yapWq6mv16qzHiatnGNn1xyzbW7q1XQRa+lmLNUfqhlOPTVza2gTDw+mmSfVcsy5F1MzsU1LX3u4fZve7vn/tqrWXYk0vx78+uIeLtNVrBmTFVfj/FK5GO+1VrB9+3br7u5e8VoXZOvn9qesi05zVZb2bxlz63qS8CqF1oM0l2TYZ4Dvjzi/b8ua9e718dlrJHbvscAx2LzE8cNkHxHebLvHj9lzw5lT+RO0HnVk8B2jETx+mrcM+4Tw9Zwbb/Nr4VbVuukXHrF6fnbN0ejG9WdSo3VBDddcMzU35wYM+zof0RrLcN0bst+GR95rOdqH9dL9HcdnxiwinwL2HXSuF93Dy9Me2KdamCEzhmIRfQ/MzKIGeR9WsO+ddRqtwSpVbPPUFNXXOspEZVPWEF6W1924p6kdP2/N3Zg9fqvy7uzYtOWys/1cyNM9Vdqn8vXpzjf3i/LZp4deD9jf0qO85Ptl5OHh+24bkpjub/G9K7YJYfuikPbSEdcZ2uPwPtjMymX0vAmpnubJoyObxf2Gz344dA4Nrs8py2MvWnzenp8nGuzVuQiv2NPj/EbUajXbtm2brV271u67776F1+r1uj3wwAN25513XurXCAEo70SrUc6JdqC8E+1AeSdajXJOtAPlnWg1yjnRDpR3oh0o78TlwJJ+Nf0//sf/aO985ztt06ZNNjU1ZV/84hftW9/6ln31q181z/Pswx/+sH3yk5+0HTt22I4dO+yTn/yklUole//7379S7RffJzz88MO2e/du5Z1oGco50Q6Ud6IdKO9Eq1HOiXagvBPt4MiRI2ZmyjnRMlTrRDtQ3onLkSU99BgeHrZ/+k//qZ06dcp6enrsxhtvtK9+9av29re/3czMPvrRj1qlUrEPfehDNjY2ZnfccYd97Wtfs66uriZHPsf8n69UqzXnZ/M0k7fy0/4ikGSAmsmasCRJHNGfazZpUxS5f24T0TFYCoBfdyWAmsW2aDz307QfXjTOdzZ5/WIkbTyPJWLcz/+rf/WvbHh4eMXzLmycuyaOFE7Mf3bPOeJKeTX93nbIW/F5kRwL57ozNhzpt8XzMO0Y3Ialyg4x/KdzafJWfEweo/PyVuHcn2eudM6d36ZG48L1rpn01MXIZjSVqXPiS5cDcOSOlii9wbwa5K3SiHi80J+Szr/emKs9rap1UXhereO5g8/b0YlKk4+7NHkrHo8x//mrM9ukjHGWNeHP8PXiP/tleSuupxwnbl3ynD935n5pMl5JbiIOcZ2Q0J/Ye66mwsKfmC+8p4EyQ+dfq2jutVblXaV8Tm6qWinDe+ok4Rny3JWyrnLGoCObRnGTHGm2pklbQzWrTdzGiP4cm6Zci+gaN0jibF4e6nyqFZLxCvnPx5vIW7G8XJMF5UXJW9Ww3Y0FeatZibFWzrHnt9dRMuEx6vE88ArmP0eP79Kkp5xGp+BIAi6RpnuMS9w/LEcb0nCnlvRcnp9TWlXrhJkrNdaGFlwm1+P2229vTa1LzOb73VnbvYIx3nQObHYvwvl0szk1pQ0X8Z6lNWLxef+i5vmmH2mytmhyTql52+Q85q/3/LqnVbWuft4axa+iDFFC64I6yVk16u68FZK8lV9neStcv0S1JvJWdZK3IgkgnvPN3LV6M3mrhHSG/HhxeaskYtlgpwkWs7wV9VUzeauQ9gIRxUbrRC9N3oqTroESTucfM2rxPrZ+njas79PeyFFFxx8EafckmslbUV8EvA+lnAgTjjmHXBm9hL6Tl36k+uTKW0WXLm9VJ81dlrfyfJK1N96XLi797cjJpclbOdKo6fJW9bl94kWtFZPLZTUwx/Hjx23Tpk3tboa4zDh27Jht3Lix+RtfIco7wax0zpkp74SLap1oB8o70Wo0x4p2oFon2oHyTrQa5ZxoB8o70WouJucuu4cecRzbyZMnraury6ampmzTpk127Ngx6+7ubv5hkcrk5OSrth+TJLGpqSlbv35909/2vxTm8y5JEtu8efOrsq8uJ5RzF4fybnlR3jVHObf8KO+ao7xbXpRzF4fybnlR3jVHObe8vJpzzkx592rl1Zx3rc453bNbPpR3zVGtW16+X3JuSfJWrcD3/YUnNfN/DtPd3f2quwiXI6/Wfuzp6Vnx75jPu8nJSTN79fbV5cartR9bkXNmyruV4tXaj6p1r25erX2pvHv18mrtR82xr25erf2oWvfq5dXcj8q7Vy+v1n5sZc6Z6Z7dcvNq7UfVulcvr9Z+vNicW9lfsRJCCCGEEEIIIYQQQgghhGgReughhBBCCCGEEEIIIYQQQogrgsv6oUc+n7ePf/zjls/n292UVzXqx4tHfbU8qB+XhvpreVA/Xjzqq+VDfXnxqK+WB/Xj0lB/LQ/qx4tHfbU8qB+XhvpreVA/Lg311/Kgfrx41FfLw/dLP152RuZCCCGEEEIIIYQQQgghhBCvhMv6Lz2EEEIIIYQQQgghhBBCCCEuFj30EEIIIYQQQgghhBBCCCHEFYEeegghhBBCCCGEEEIIIYQQ4opADz2EEEIIIYQQQgghhBBCCHFFcNk+9PjsZz9r27Zts0KhYLfddps9+OCD7W7SZc2nPvUpe81rXmNdXV22Zs0a++Ef/mHbt28fvCdJErv33ntt/fr1ViwW7e6777Y9e/a0qcWXJ8q7i0c5tzwo55aG8m55UN4tDeXdpaOcWxrKueVBebc0lHfLg/JuaSjvLh3l3NJQzi0PyrulobxbHpR3F49yzsySy5AvfvGLSTabTX7v934v2bt3b/Jv/+2/TTo6OpIjR460u2mXLe94xzuSz3/+88nzzz+fPP3008m73vWuZPPmzcn09PTCe37t134t6erqSv7iL/4iee6555L3ve99ybp165LJyck2tvzyQXm3NJRzl45ybuko7y4d5d3SUd5dGsq5paOcu3SUd0tHeXfpKO+WjvLu0lDOLR3l3KWjvFs6yrtLR3m3NJRzSXJZPvR47Wtfm3zwgx+En+3evTv5hV/4hTa16NXH6dOnEzNLHnjggSRJkiSO42Tt2rXJr/3ary28p1qtJj09Pclv//Zvt6uZlxXKu0tDObd0lHOXjvJu6SjvLh3l3dJQzl06yrmlo7y7dJR3S0d5d+ko75aGcu7SUc4tHeXdpaO8WzrKu0vj+zHnLjt5q3q9bk888YTdc8898PN77rnHHn744Ta16tXHxMSEmZn19/ebmdmhQ4dsaGgI+jWfz9tdd92lfjXl3XKgnFsayrnlQXm3NP7/7d2xSitbFIDhLV5jYZFGSARB0ltpJ+J7+AhCBPEFbH0BS7G1SmErqAGfwIC1nSJWFhaCrtsJoufi3nsOyY3fB1NkJsVm8XeLYXTXDN39nOaaobk8umuG7vLorhm6+znNNUNzeXTXDN3l0V2939jcxC09np6e0tvbW+p0Op/udzqd9PDwMKZT/b9ERNrf30+bm5tpdXU1pZQ+Zmeu39NdHc3l01w93eXTXT3d5dFcPc3l01093eXTXT3d5dFcPc3l01093eXTXZ3f2tw/4z7An8zMzHz6HRFf7vG9fr+fbm5u0vX19Zdn5vrfzKeM5sqZTzndlTOfcrorYzblNFfOfMrprpz5lNNdGbMpp7ly5lNOd+XMp8xvbW7i3vRYXFxMs7OzX7ZKj4+PX7ZPfLW7u5vOzs7S5eVlWl5e/rjf7XZTSslc/0B35TRXRnN1dFdGd3V0l09zdTRXRnd1dFdGd3V0l09zdTRXRnd1dFdGd+V+c3MTt/RotVppfX09nZ+ff7p/fn6eNjY2xnSqyRcRqd/vp8FgkC4uLlKv1/v0vNfrpW63+2mur6+vaTgcmmvSXQnN1dFcGd3V0V0Z3ZXTXBnN1dFdGd3V0V0Z3ZXTXBnN1dFdGd3V0V0+zaWU/t430sudnp7G3NxcHB8fx+3tbezt7cXCwkLc3d2N+2gTa2dnJ9rtdlxdXcX9/f3H9fLy8vGfw8PDaLfbMRgMYjQaxfb2diwtLcXz8/MYTz45dJdHc/U0l0939XSXT3d1NJdPc/V0l0939XSXT3d1NJdPc/V0l0939XSXR3MRE7n0iIg4OjqKlZWVaLVasba2FsPhcNxHmmgppW+vk5OTj/+8v7/HwcFBdLvdmJ+fj62trRiNRuM79ATS3c9prhmay6O7Zuguj+7qaS6P5pqhuzy6a4bu8uiunubyaK4Zusuju2bo7uc0FzETEdHMOyMAAAAAAADjM3Hf9AAAAAAAAChh6QEAAAAAAEwFSw8AAAAAAGAqWHoAAAAAAABTwdIDAAAAAACYCpYeAAAAAADAVLD0AAAAAAAApoKlBwAAAAAAMBUsPQAAAAAAgKlg6QEAAAAAAEwFSw8AAAAAAGAqWHoAAAAAAABT4V/BeJRIHeGFWgAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1462,19 +1429,17 @@ "test example:\n", "true_class: plane\n", "predicted_class: ship\n", - "predicted_prob tensor(0.6398, grad_fn=)\n" + "predicted_prob tensor(0.6398, grad_fn=)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcmklEQVR4nO2dW4xc13Wm/3VOVXU3+8JLkyIpiTYpiVSkSDbtdAQD1gSacSZQjAC2H2zED4EejDAPMWYMZIARPBd73jyDsQM/DAzQYyHKwOPYGNuwMDBmYghJFAO2LEqWKCmULVmSLYrNi8Rbk+zuqnPOmocqIZRm/6ubfalmvP8PINi9V+9z1tlVq07V/mutZe4OIcSvP8VGOyCEGA4KdiEyQcEuRCYo2IXIBAW7EJmgYBciE1qrmWxm9wP4MoASwH939y9Efz85OeHT09NJW9EaofMKS78mlQV/raoDSbGpa2oz4/OYxegM7nt/XjAz8GNFrPBwvsKJZtGq0FkrO1fkIznkSiXn6LpCW/wsYZMoTb2QHD956gwuXLiYnLniYDezEsB/A/AvARwH8ISZPeLu/8DmTE9P49//h3+btE1sP0DPNVZ2kuNTkxN0ztwiD+jLF9+ktqJoqK0hT6pW8KIzFryIjZbB8hfX/gQGQIO6bvh6RLHSBPPYegBAq5W+tqIo6ZyVvUDEL9BGHs/ouuJzcR9HRvhj3Sm4DZ62WYev1ZU3jyXHD/2rdHwBq3sbfw+Al9z9ZXfvAvgrAB9ZxfGEEOvIaoL9JgCvXfX78cGYEOI6ZDXBnno/8/+9nzKzQ2Z2xMyOzM1dWsXphBCrYTXBfhzAnqt+vxnAiXf+kbsfdvcZd5+ZDD5jCyHWl9UE+xMA9pvZPjPrAPhDAI+sjVtCiLVmxbvx7l6Z2acB/F/0pbeH3P35cA4MjY8mbVW5lc7rtceT43XJ3ykU7WA3fp5/nPD6MrW12+nxRefn6gW7+wst/lobbOKj20vLLgBQlOkd3Pkr83ROSeYAQJtdNIBut8f9KNI2b7p8TsnXo9NJKzIAUFV8/Z0sf19MSsOUBADYupU/T0fGJqmtCNSVhthshK99fYk896PropZl4O7fB/D91RxDCDEc9A06ITJBwS5EJijYhcgEBbsQmaBgFyITVrUbf60YHIVXSVsdyFe1pfWT2rgENTrJL2363TuprbhwjtomrqQlu+7CIp1TT6SlRgBoNm+htskOT7hgawgABUnK6S5yyatuuDw4Oso1wCgxj2WVrTRrjF0XAFQ9vh700oKcm06LS15jY2PUFmXfGbhM2SD93G+ie/EKkoZ0ZxciExTsQmSCgl2ITFCwC5EJCnYhMmGou/GOEhXSyQIFeKJDU6a3VBedf+m/DGzjQZbJ1Ca+E9s89URyvPsGT6zZfdft1GZn+E79oqWTfwBgouQ7sXPz6USe0WCneMT5NRfTQbJRkAjDcloWN/FrbvW4j2UvuOZxrjSMXLiQPteeO+mcK1s2U1tTcQWoLriPow1/fhtRLoqazynra79P684uRCYo2IXIBAW7EJmgYBciExTsQmSCgl2ITBiq9NYnLU9YlNzhaYmnroJCbUE9MwukpgXjdcTaTVoOs+030DlX5rgs1Hvl59RWGU+4aLh6hcus9l6Q7NLp8XXsvsYlTPT4MQ1p20KQGFQu8OO1+DJicRd/POdPnk2OT9oOOsc2b6e2KGmoF9SZaweyXEMK5ZUFTw5rsbp1dIbu7EJkg4JdiExQsAuRCQp2ITJBwS5EJijYhciEVUlvZvYqgDkANYDK3Weiv3cH6prU26q5pOHsNanhUkc3kPLqFj/X5jmeyeU70rXrxm54N51TeTrrCgDQ4cvv23dR23ybX3fr5JtpQ9Di6fIol/l85zS1tRt+r1ho0o/z+CTP5uvOXaG2xSDTrzUWZIddTmeptaa5XGpt/vyoncuUk4HuVRIpEgAqS0uHVnBJsd9xLTmLzlgLnf2fu/sba3AcIcQ6orfxQmTCaoPdAfy1mT1pZofWwiEhxPqw2rfxH3T3E2Z2A4AfmNkL7v7Y1X8weBE4BABbt/HPf0KI9WVVd3Z3PzH4/zSA7wK4J/E3h919xt1nJiamVnM6IcQqWHGwm9m4WT9rxMzGAfwegOfWyjEhxNqymrfxOwF8d9CypwXgf7r7/1lyFlEGaiLVAEDDJLbgpYpJfADQNm4beelFalt48u+T49Vv8/ZPKLhU476J2jqBBLgALlFNzJ5Pjpcj3I9mnK+HOZe16h73cXJ6S3K8/TqRBgHgEi/c2d7JsxHxGj9maypdMHPhzFE6p9zEi2w2B3ihyoUOX6uCtDADgE6VDopWxSVWkigXsuJgd/eXAbx3pfOFEMNF0psQmaBgFyITFOxCZIKCXYhMULALkQlDLThpZmiX6Uyegmbx8Iy4Jijw1wpexybOpfuhAUB1/AS1TbXT8tXciZN0TneU9w1z8OKLdvI0tY3fGGSOTaXXxMF7lI1d4tJh5/wctS2AS2/VG7Pp4y3wypHVRZ4hOHKWfyGrN88zvXzsluT4+Vdeo3M6Y1x6m9zNMxzLoBCoB8UjF0kfvsp4eHZJ4UsnfeMA3dmFyAYFuxCZoGAXIhMU7EJkgoJdiEwY6m58YYaRTnrL0skuPQCgIbvFDd+FLQLbpTZ/jbs0w7/uP9X6reT4lTm+Y90r+e6ojQTL3w0Secb4tu/lOr3bXRhfj17N16NdcJVkvsPnsVnzQYLSlUt8HceDa14I/BiZSO+sb5vcSufULf5cvDQWPE+D2oBjPe5jRR6b4CmMHtl15x7ozi5ENijYhcgEBbsQmaBgFyITFOxCZIKCXYhMGK70VhQYH0+3GqpGef2uXj2fNgS15CqSKAAA1uHtjsZ28sSVi5fTtd/OXOC10yxou9S9whNJOlESxHleg64ixclGOlwyuhi00RptB0+RgtsaUlNw8UpQr6/ha3Vhnrfz6gaH3ERafU3evIfOKaP6bkHylUX3zsBkTDALkloa8jhLehNCKNiFyAUFuxCZoGAXIhMU7EJkgoJdiExYUnozs4cA/AGA0+5+12BsG4BvAtgL4FUAn3D3c8s4Flok42xskrdCunQlLW21Wvy1qo7q0wWteArnNdIapG1WclmoFWSNcQvQ63J5bazNZbQWkcPaLX62KLOtrgLJa4FrXhXSa9we46lcTc1tnSBTsd0Etip9bV3n5zLiOwCM1oG4VfO1Ym3PAKAhxuhObGROcJpl3dn/AsD97xh7EMCj7r4fwKOD34UQ1zFLBvug3/rZdwx/BMDDg58fBvDRtXVLCLHWrPQz+053nwWAwf83rJ1LQoj1YN036MzskJkdMbMjFy+eX+/TCSEIKw32U2a2GwAG/9OOBu5+2N1n3H1mamrLCk8nhFgtKw32RwA8MPj5AQDfWxt3hBDrxXKkt28AuA/AdjM7DuBzAL4A4Ftm9ikAvwLw8eWczAqg00lLIZ3RIIPK022Xxtq8CGFlXAaZu8jltTrIUhvdvC05vnN8ks4ByU4CgmwncGkFAMrgNbq0tK3TWvsERydtuQAuvdVBAU4P1qoIbJ1IxCTrsVjw5weZAgBoBdmUNXgWpgUFP61JPzZloKOV5bXfp5d8Brj7J4npQ9d8NiHEhqFv0AmRCQp2ITJBwS5EJijYhcgEBbsQmTDUgpMGoFWk5YnSuBw2SvrAnT/9zq/s/yNnL81S25nZ49S2dXKa2u668+7keHuUF7BcDOS1XpAlVQRFICPprShIBlXB50SykAdFD+swe5AcM7iuKGerKIIea6H/aR9bgR+FcSkv8qNdpiViAGhH6WjElSKQgWv2OAfn0Z1diExQsAuRCQp2ITJBwS5EJijYhcgEBbsQmTBU6Q3gMk8rkBkaIhvNzc3ROWfOnKS28+dep7afH/0Jtb3wzI+S47fddieds/e2O6ht6/ad1BZpKHUTFDb09FpFyk8ZFJyMZraCIpbscW6CrLGm5lljkR9l4AcT2CJJMbJFhFmA0fnIuAWZmwvdtC1SNnVnFyITFOxCZIKCXYhMULALkQkKdiEyYei78YxoR3V0NF1r7jdu/w0657Y7bqK2K3N8p/75p56itp8e+XFy/O8f+yWdc+wfnqO2A3ccpLb9t/Nd/C1bt1Bbp0PqmQVqR7xXz3eY43npbeFew3fcm6oXHI8TtY2qSUJOE9b/W3ss2o0niTcFaeUFABXZdo+UBN3ZhcgEBbsQmaBgFyITFOxCZIKCXYhMULALkQnLaf/0EIA/AHDa3e8ajH0ewB8DODP4s8+6+/eXPp3TRIgiSMbwgs0JkiNI3ToA2DK9h9ruvY93n77ttn3J8R/+3d/SOa+8wpNuLv90kdqijrd3v+e91LZnT/raWiV/qOuKy2F1lLgSJOQ4k7YCacgsslETLKqvR+5nYcJIcLywJl+wVtF1O/Xx2iXFsI4ftfwjfwHg/sT4n7v7wcG/ZQS6EGIjWTLY3f0xALyMqxDinwSr+cz+aTM7amYPmdnWNfNICLEurDTYvwLgVgAHAcwC+CL7QzM7ZGZHzOzIhQsXVng6IcRqWVGwu/spd6+9X4H/qwDuCf72sLvPuPvM5s2bV+qnEGKVrCjYzWz3Vb9+DADP9hBCXBcsR3r7BoD7AGw3s+MAPgfgPjM7iH5q06sA/mR5pzMYkdgK464UrbRE1S6j1kRBfbQgk6tod6ht/4H3JMebir9mzs5+m9rOvXGC2l5c5B95Tr3+M2q7dX86E/CO30z7DgA37NxNba0Wb2lU9fha9aq0LFc7l/lY9hcAWNTXKIK0f7IV5rZ5NC+QjyP3nemAgd7I21AFNQO5CwNH3D+ZGP7aUvOEENcX+gadEJmgYBciExTsQmSCgl2ITFCwC5EJQy84WRA5oQxkhpJkQ3UCOaOJWhoFKU8sAwkAut10QcSb9+ylc/bu5bYnTs1SW1VxH8+cPs9tRM47duwonbNv323Uduut+6lt505e1HNyknyByng24kI3yL7r8vVod7gEyLLUooKTUfcnt6gAZ0SQ0Ucy2MKWXcQazdGdXYhMULALkQkKdiEyQcEuRCYo2IXIBAW7EJkwVOnNDCiJdMHGAQAkgwoW9AYLC/ytsH8ZOSbrRQcAk5NT/ExRKlQgRUZFD83TazV37jSd89M3gt53zzxBbdumeYGiXbvShS937d5L54yO8noH09M8M2/Hzl3UZiXp9RZk31VBP7qKZNEBSxScjB7qJn3P9Zofz8m5aKFP6M4uRDYo2IXIBAW7EJmgYBciExTsQmTCcBNh3GFkN5NsmvankZ16C3ZULcpmCHsJcRtLuJi/NEfnnDzJk11OnOC2C5t4cke75Ek+UxPjyfHxQDHY1OLnqmu+xq/PHqe2F199OTk+P/8onVPV/Lq277iR2u6++05q239bWhXYsYO3+ZravJ3aRsa4uuLga4xgp55237IgKYsmwqyu/ZMQ4tcABbsQmaBgFyITFOxCZIKCXYhMULALkQnLaf+0B8BfAtgFoAFw2N2/bGbbAHwTwF70W0B9wt3PxQcDYOlEjSaqC1elWxBFSQkkt6DvRhnULAskkpIk0Dzz1JN0zqVzZ6htenITtb02y+dNbebyT6c1lhxvqnl+vImg/l+by2GdFve/PZKWAMviMp3z5rnz1PbqK89T2/lzr1HbU0fSNe86HS6T7dlzC7XduPtd1Lb7xrTMBwA37uTzxifSCUU2xp/EVrC2XKuT3ioAf+budwD4AIA/NbM7ATwI4FF33w/g0cHvQojrlCWD3d1n3f2pwc9zAI4BuAnARwA8PPizhwF8dJ18FEKsAdf0md3M9gJ4H4DHAex091mg/4IAgH8lSQix4Sw72M1sAsC3AXzG3S9ew7xDZnbEzI5cOM/bEAsh1pdlBbuZtdEP9K+7+3cGw6fMbPfAvhtAshSKux929xl3n9m8hVciEUKsL0sGu5kZ+v3Yj7n7l64yPQLggcHPDwD43tq7J4RYK5aT9fZBAH8E4Fkze3ow9lkAXwDwLTP7FIBfAfj4Ugdyb9CrFpM21loJAKxKu1kQGQ9AWGXOwedF2XeXSHbbwnz6mgDg9gN3UNv7D85Q25NHn6O2Hz/xE2o7fyktbdVVl865YTfPKLv33nuprTXK5B/g1V/+Mjn+4x//iM65687fpLapzfxd4amTvIbeqVOnkuO9Hl+PXTt5vbt9+/ZSWx3UjLs8xz/Csrpx7VZavgSABRIvUX3CJYPd3X8ILt59aKn5QojrA32DTohMULALkQkKdiEyQcEuRCYo2IXIhOEWnASXBqK2NcwUtU8qg5exJpDsojY9Y5vSWV7/7D4uSljwetoq+fIfOHgPtd31W79NbQVZqyK4sO3T09R2yy23UltrlGcP7t3/nuT4je+6nc4ZG0tn7AHA5kB6i+Sms2ffTI5HMtkNO3g7qclJ7kfZ4o9nEaRh1k1auu0Fz+/GWBxxdGcXIhMU7EJkgoJdiExQsAuRCQp2ITJBwS5EJgxVemuaBvPz6cKH5UXeL63l6aKHXeeZSxV4j7Kq4rJL1NusIcUoo7ZyVc1lPiuCXl4N9+PGd+3jJ2xIDzAyDgCFcz9e+dVZapvv8nVk1za5mfvO1hcAzl3g69gKJK/xqb1pg/P1OHuBF+c8cYqvR1Q0daTgMiVpIQib4Ne1cG4hOR49t3VnFyITFOxCZIKCXYhMULALkQkKdiEyYai78Zfm5vDYY3+TtF2ojtJ546TNUL14hc7pBTu7vZrv4tc1r4XHEi56FZ9TB7vqUeLEwiKfV9d819eIctFu8Xpx27Zsp7aJiS3U1qv5vYJtTPfrl167rQiUCzNuK8gueKvFd8eL4HjRuSJVxoKiiGbpx9o2Bde1kG4P1u3yeoi6swuRCQp2ITJBwS5EJijYhcgEBbsQmaBgFyITlpTezGwPgL8EsAv9rkqH3f3LZvZ5AH8M4C0N4LPu/v34WAVG22kZrVemxwGgbNJujoxM0TmN8UurA1muCOp+sTp5TRMku4RSTZB040E7rKCenJMED7O0JAcAgTqIAlymbJX8uhcX0xJQlPwT1f+rKq5r9XpBOy9SjLAo+HqsVAKM6JLWYQDgxP8F7iJGynRtvV6Py9HL0dkrAH/m7k+Z2SSAJ83sBwPbn7v7f13GMYQQG8xyer3NApgd/DxnZscA3LTejgkh1pZrek9iZnsBvA/A44OhT5vZUTN7yMy2rrVzQoi1Y9nBbmYTAL4N4DPufhHAVwDcCuAg+nf+L5J5h8zsiJkduUIKVwgh1p9lBbuZtdEP9K+7+3cAwN1PuXvt7g2ArwJIdjVw98PuPuPuM5uCJgBCiPVlyWC3/tbk1wAcc/cvXTV+dcf6jwF4bu3dE0KsFcvZjf8ggD8C8KyZPT0Y+yyAT5rZQfQ7zrwK4E+WPJI7miotyVy6fI5O21SmM7aCMmKog9exXsWlmm4gXVRVuu4XCn48DyS0Xo/LWk3FH5oqyHqrK5JBFUiATZCuFSlN7jzDanEh/ZEtrPEX+OFBfTcP6g2C2KJ2Y2FmXnCmyP+yGz0P0s+fK1sn6Zzde9K2HoJafdQywN1/iPQ1hpq6EOL6Qt+gEyITFOxCZIKCXYhMULALkQkKdiEyYagFJ7u9ebz2WlqOf3GWy1DjpD9Oy7nMUIciSZtaonZNTZOWTzojgaxF5gCxBBjUvQQCaYhleZlF8lqwVoGtVfKnD2vltLgYyI111E4qyEQLMhz73wdLnCuS8pz7ERaV5KZQEqu3pTM+b7r7Tjpn83h6vGwHhTSpRQjxa4WCXYhMULALkQkKdiEyQcEuRCYo2IXIhKFKb3BD4aNJUzuSNOq0fMJ6rwFxlhfKoOBkIOeVZboCYBlIP0FNSRQezAsKREbSm7PqkcFyMJkMAFrkmgGgCta4R9axKbns6UUkh1ETPJIOyQNgYdZbUCS0xW1Vm9umbtxFbTfffSA53jLen+/8z59NjjdBJqXu7EJkgoJdiExQsAuRCQp2ITJBwS5EJijYhciEIUtvjooUnKy7vKZ8t0hLQ1XFZQaQ/nAAUARX3QRaWUH0n27QLK0JpLwoy6tp+Otwp80lGaYaRX5EGWWRgtkERRRBrs0CDS2S+SK50QIpFSxTMZINg4y43jjPKtt2+63UdtPePdS2cOpUcvwXLxyhc8Z6l5LjdVfSmxDZo2AXIhMU7EJkgoJdiExQsAuRCUvuxpvZKIDHAIwM/v5/ufvnzGwbgG8C2It++6dPuDvv4QT0i3SRDdeyHdQY66R3R9tB4gHqqG8Rt5XMQfAaY258N96CHlWjHX6urVPbqK0Iqp3VpIZe3UQJPvx4IyN897mqgmQS4mOUdFMHqsbcxTlqi5KNmlY68eaCBck/2/nav/tAOmkFALZu3U5tr7/wErW98dLLaT+Cx2yUxEsRPN+Wc2dfBPAv3P296Ldnvt/MPgDgQQCPuvt+AI8OfhdCXKcsGeze5y1Rrz345wA+AuDhwfjDAD66Hg4KIdaG5fZnLwcdXE8D+IG7Pw5gp7vPAsDg/xvWzUshxKpZVrC7e+3uBwHcDOAeM7truScws0NmdsTMjiwsRsXQhRDryTXtxrv7eQB/C+B+AKfMbDcADP4/TeYcdvcZd58ZHeFVSoQQ68uSwW5mO8xsy+DnMQC/C+AFAI8AeGDwZw8A+N46+SiEWAOWkwizG8DDZlai/+LwLXf/32b2IwDfMrNPAfgVgI8veSQHyorITd0gKQTp5BkH/1hQBi2eWoHNgoSLhkghUWulyNZU3P8rrYv8mEWQMIK0DhW1NGp6XLta6EVSJL9XGKuhF/VICurM1cFjjWCNa5JcM3UDl9d2HNhHbQX4Ov7sicepbeH0G9RWVun1b5FWXgDQkIQiDxZxyWB396MA3pcYfxPAh5aaL4S4PtA36ITIBAW7EJmgYBciExTsQmSCgl2ITLCohdKan8zsDIBfDn7dDoDrEcNDfrwd+fF2/qn58W5335EyDDXY33ZisyPuPrMhJ5cf8iNDP/Q2XohMULALkQkbGeyHN/DcVyM/3o78eDu/Nn5s2Gd2IcRw0dt4ITJhQ4LdzO43s5+Z2UtmtmG168zsVTN71syeNjPea2ftz/uQmZ02s+euGttmZj8wsxcH/2/dID8+b2avD9bkaTP78BD82GNmf2Nmx8zseTP714Pxoa5J4MdQ18TMRs3sJ2b2zMCP/zQYX916uPtQ/6FfX/YXAG4B0AHwDIA7h+3HwJdXAWzfgPP+DoD3A3juqrH/AuDBwc8PAvjPG+TH5wH8myGvx24A7x/8PAng5wDuHPaaBH4MdU3QTwSeGPzcBvA4gA+sdj024s5+D4CX3P1ld+8C+Cv0i1dmg7s/BuDsO4aHXsCT+DF03H3W3Z8a/DwH4BiAmzDkNQn8GCreZ82LvG5EsN8E4LWrfj+ODVjQAQ7gr83sSTM7tEE+vMX1VMDz02Z2dPA2f90/TlyNme1Fv37ChhY1fYcfwJDXZD2KvG5EsKdqlWyUJPBBd38/gN8H8Kdm9jsb5Mf1xFcA3Ip+j4BZAF8c1onNbALAtwF8xt15qZ7h+zH0NfFVFHllbESwHwdwdbPqmwGc2AA/4O4nBv+fBvBd9D9ibBTLKuC53rj7qcETrQHwVQxpTcysjX6Afd3dvzMYHvqapPzYqDUZnPs8rrHIK2Mjgv0JAPvNbJ+ZdQD8IfrFK4eKmY2b2eRbPwP4PQDPxbPWleuigOdbT6YBH8MQ1sT6hf++BuCYu3/pKtNQ14T5Mew1Wbcir8PaYXzHbuOH0d/p/AWAf7dBPtyCvhLwDIDnh+kHgG+g/3awh/47nU8BmEa/jdaLg/+3bZAf/wPAswCODp5cu4fgx73of5Q7CuDpwb8PD3tNAj+GuiYA3gPgp4PzPQfgPw7GV7Ue+gadEJmgb9AJkQkKdiEyQcEuRCYo2IXIBAW7EJmgYBciExTsQmSCgl2ITPh/B3SiO3il43EAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGdCAYAAAC7EMwUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAs8klEQVR4nO3df3CV5Z338c99fiaBQwQhv0rEVMCqIDsVq7BWkS4Zs7OMlu4ztM70wdldp1ZwhqEdd9E/zOw8S3zckbEzrOxut8PirCz+UXWd0ap0kdAupQtWFxZdFx9jTSUxipCEkJyTc+7r+cOSbeSH1xcSryS8XzNnRs75euW67+u+z/fcOed8EjnnnAAACCARegIAgIsXTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEEwq9AQ+LY5jHTlyRLlcTlEUhZ4OAMDIOafe3l7V1dUpkTj3tc6Ya0JHjhxRfX196GkAAC5Qe3u7Zs6cec6aUWtCjz/+uP76r/9aHR0duuaaa/TYY4/pq1/96mf+f7lcTpL0fx/5PyovL/P6WZMune09r/JkxrtWknKTJ3nXnsiXTGP39X7sXZtI2NKVYvnXpz7jlcqnlads+zCbNBxmkTFFynKxbBy65AzraRzbxbZjxbKeScv+lpRIJL1rR/O3E5Fx7aNE7F0bG/e3lWW/ZLNZ09jphOF8c7axo7T/2vd//JZ37cmT/fpf//ueoefzcxmVJvTUU09p7dq1evzxx/X7v//7+ru/+zs1NTXpjTfe0GWXXXbO//fUYpaXl6m8vNzr51VU+DcKaxOaNGmyd22csh3orpT3rk0YTjhptJuQ7UAvszwpGpvtqDYhyxOXcWzrk6JpPVM0oU8bz00okzDUW5tQxn/tE/kK09iS334ZlQ8mbNy4UX/6p3+qP/uzP9NVV12lxx57TPX19dq8efNo/DgAwDg14k2oUCjo1VdfVWNj47D7GxsbtWfPntPq8/m8enp6ht0AABeHEW9CH330kUqlkqqrq4fdX11drc7OztPqW1paVFlZOXTjQwkAcPEYte8Jffp3gc65M/5+cP369eru7h66tbe3j9aUAABjzIh/MGH69OlKJpOnXfV0dXWddnUkffImnfWNOgDAxDDiV0KZTEbXXXedduzYMez+HTt2aPHixSP94wAA49iofER73bp1+va3v62FCxdq0aJF+vu//3u99957uueee0bjxwEAxqlRaUIrV67U0aNH9Zd/+Zfq6OjQvHnz9MILL2jWrFmj8eMAAOPUqCUm3Hvvvbr33nvP+/+PXZli55eYUExO9R53MO3/xVZJKiX9v6yaSBsTE/pPeNe6Up9p7HTavzZvSQaQNGj84uxAyv+3vsbvwaowOOBdm0j6fzFPkvpP9nvXJo1jpy0LJKlQGPSuTST8ayXJxQX/sZO23+BnMv5fDi8WjV/2NhyGUWRbH+sXfqdO9X8OypZ/dorA77KkpcTGL3tHWf/jsHTC/7mwVPT/8i4p2gCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYEYttudCJVxRCVf0qi0ZYmdKkS1yphT5x8KU5Wy789JZp/9pi7NJdB8zjT35pH8kUGEgbxq7NNkvTumUuPIS79pcxj/uQ5L3MSJJiYTtNVch7x9nU4ptx1VZmS2fKDKksThnjG45w9/5GolaybbPi4P+aylJpl1um7YyKVusUnl5uWEqxvWRfwxTLFv0UWy5DrGsvaGWKyEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMGM2O66oySqqwqs2oYz3uHHSlvGVd0nv2qShVpImpfzzw6ZU2LKs4l/t864tfOSfMydJtfOuNNVHH/pnzeWjSaaxJyf9M6p6+/tMY5cZMr6yzrY+iUsn2+oL/vlhSeNLy3yF//qkBm25Z8lBw/pM8s/qk6Rsd7d3bar+atPYJy+pNNXHRf+MyVLCFmRXFvs/v0XG3MBEyX/sZMn/wLLUciUEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAhmzMb2SNFvbx6Vrug9asL5x59IUqnoH61jzUuJDFEvA1HONHY69o+/iaZXmcY+2WuLVxls+2/v2mJUbho79k+cUV+6ZBpbsX/EU2bQcJxIKrTbIp406D+XSLZoqoHJ/jsxOWAbO2U4VPI1tuij/s6PvWtz0QzT2FHldFN9yXCsDCZs0TppQ8xP7Gzrk0z4nxMpw7wttVwJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIIZs9lxpVJJpZJfrlFc8s9Lcta+G/tnIBUMGXaSVEr5z7uy15Z552ZUe9eWV80yjV103aZ6ZfwPMze9xjR0f9qQZ9V51DS2kv75bn1ltsw7V32pqT4d+x+3A7EtI29Szj9nsNB70jR2Pumfe5Yqz5jGTvYN+I99qS0fMUrbMthKzj87MOe/SyRJSUMWYDGy5e9FCUu9Je/Qv5YrIQBAMCPehJqbmxVF0bBbTY3t1S0A4OIwKr+Ou+aaa/TTn/506N9Jw681AAAXj1FpQqlUiqsfAMBnGpX3hA4fPqy6ujo1NDTom9/8pt55552z1ubzefX09Ay7AQAuDiPehG644QY98cQTeumll/TDH/5QnZ2dWrx4sY4ePfMnk1paWlRZWTl0q6+vH+kpAQDGqBFvQk1NTfrGN76h+fPn6w/+4A/0/PPPS5K2bt16xvr169eru7t76Nbe3j7SUwIAjFGj/j2hSZMmaf78+Tp8+PAZH89ms8pm/T9jDwCYOEb9e0L5fF5vvvmmamtrR/tHAQDGmRFvQt///vfV2tqqtrY2/fKXv9Qf//Efq6enR6tWrRrpHwUAGOdG/Ndxv/nNb/Stb31LH330kWbMmKEbb7xRe/fu1axZtmgYRb+9eSgZYkpiQwyPJFOb9o0ZOiUd+ddn3z7zrzPPZuDVn3nXFq/Pm8ZWwvbrU+cqvGszxniiAfnHyEzuOG4aO2n4NXE8ybb2kbNF1JQG/fdL7tJLTGOn3zfEGZ04YRu7Oudf3G6LVUpNmexdO/DhAdPYyQr/sSUpnnu1/1wytrVPRP6xPZmiLRMoVfR/PnSGJCNL7Yg3oe3bt4/0kACACYrsOABAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMKP+pxzOVzqZVjqZ9qpNKOk9blwyhBpJihP+2UopY0+ffKzPu7b4myOmsaek/XPPeo90msYulFWa6p3KvGujzi7T2JPqJnnXFqbYcgOdBrxry0/Y8vcyx3tN9QPyz44rftRhm8tAwX/snm7T2NmPp3jXDvbbcs9c+Re9a4+32f5OWabclh2Xq/XPxkz6nw6SJJfwzyXMy3aMFyP/FlCI/Z87LbVcCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAghmzsT3ZTJmyGb98C+cZ7yNJim3xKor9o0QShlpJOpH2fw1wYuEC09hTUtd5157stUXIDCZt0SBR1nCYFfwjSiQpXe6fgdJX8o+nkaRE5L+egyXb67l0wj9qSpL6M/7j20aW+kv++/zkCduxMsmwPgOGbZSk7GT/aJ1puammsUspw3OKpBPlhvq07fwpH/TfL0XDMSuZnt406PznbanlSggAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQzJjNjquoKFNFRblXbbEs4z3uYKnfNpHIP1erGMe2oTN+2ydJ5dWVprF7+k56137YfcI0dpS0pZMVTg5612Yi2yFZOO6/nUVnW59sxj8PrCe25YGVpY2nXsK/Po5t+Xv5k4Y8xdi29t39Re/agjHWsSLlv565mfWmsZO2Q0VK+K9/ZH3tbyiPZDsOZch4iw3njzPUciUEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACGbMZsel0gml0n49sjxX4T3uiZO2nLRUyr9Plwz5UZKUigz5Sq5gGjuWf32U9M/3kqRUwpYfZqkeLPhnwUlSedo/3y1lyF+TpHTKf+Zp4z4pFW37vDDgH6xWlC34LF0eedfGJf9aScp4nsOSlI5tr4nTRf99XnC2eUfGfVhWMpz7JdvayzD12FIs21VIZBrbv5YrIQBAMOYmtHv3bi1fvlx1dXWKokjPPvvssMedc2publZdXZ3Ky8u1ZMkSHTp0aKTmCwCYQMxNqK+vTwsWLNCmTZvO+PgjjzyijRs3atOmTdq3b59qamq0bNky9fb2XvBkAQATi/k9oaamJjU1NZ3xMeecHnvsMT344INasWKFJGnr1q2qrq7Wtm3b9J3vfOfCZgsAmFBG9D2htrY2dXZ2qrGxcei+bDarW265RXv27Dnj/5PP59XT0zPsBgC4OIxoE+rs7JQkVVdXD7u/urp66LFPa2lpUWVl5dCtvt72FxABAOPXqHw6LoqGfzzPOXfafaesX79e3d3dQ7f29vbRmBIAYAwa0e8J1dTUSPrkiqi2tnbo/q6urtOujk7JZrPKZrMjOQ0AwDgxoldCDQ0Nqqmp0Y4dO4buKxQKam1t1eLFi0fyRwEAJgDzldCJEyf09ttvD/27ra1Nr7/+uqZNm6bLLrtMa9eu1YYNGzRnzhzNmTNHGzZsUEVFhe68884RnTgAYPwzN6H9+/fr1ltvHfr3unXrJEmrVq3SP/7jP+r+++9Xf3+/7r33Xh07dkw33HCDXn75ZeVyOdPPyaSTymT8YjkyZf6bETvbr/7K02XetcXIFsfR2+MfrVNK2mJhyiqneddWT7KtjZwt0iSSf6SJLRpEShou5pOR7cI/kxo7qVau5L/PrbE9paT/+jjj2icM9RlTwJMkw3rmE7Zz03ioKBX7b2dJJdtczvJ++hlrY9sxmzScbsmk4Vwz1JrPsiVLlsi5sx+0URSpublZzc3N1qEBABcZsuMAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMGMnXCsT0kmSkol/DKWkpF/BltZMm2ax/Guj71rPz7RYRr7w47feNdOzV1qGnve1fO9a9Nl5aax84YsOEkaLPnndiVi29iW7LhEwpZLl0j4j23J95J0zuirMylF/tlkCWebi0z73LoPDeebeR/675OU8bhKRLYcO8t2ppO2/Mq0ZbfYNlMJQyZlyXD+FA21XAkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIKhCQEAgqEJAQCCoQkBAIIZs7E9URR5R6GkDNETsSGKRZJ6e3u9az/8sNM09vFj73vX/veBfzeN/V//8Qvv2tmzrzaNffnsq0z1U6dX+xcbo3VKsX8kkJxt7S0zSSZsMS/W+JtUyn98a4RQHPvH38Qlvyit35mNd2XSsI2SLaHGGpNkrTeNXfLf35JUNMzFOuso8j9/BgqjU8uVEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACAYmhAAIBiaEAAgGJoQACCYMZsdZ2HJnCorKzON/aUrv+RdO/uqL5jGPtnrnzV36Fe/Mo392v693rU/2/1r09hvvvGfpvq5V/2ed+2cK225dJdMvcS7NpOxHe5JQyahNQtOsuWH2ca3JYgNxv55cHFx0DS2RVwy5gY6//rYuE+sqzmaIkt2XGTL30sk/M+JYuw/j5Jhd3MlBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIZszG9sRxrDj2izZJJPyjKlzCFpeSSPgHeCSTadPYl1xa711705Iq09izZzd41/68dZdp7La29031fa/lvWt7eo6bxp5/7QLv2vp6//0tSamk/+lRKvpH30hSyfPYPiWOi961zhhRI0MsTBQZ428M+TdRwvaaODK8hjYkzkiSEsa5OMM+tK69ZX2c8boiNkQfWWKSiO0BAIwLNCEAQDDmJrR7924tX75cdXV1iqJIzz777LDH77rrLkVRNOx24403jtR8AQATiLkJ9fX1acGCBdq0adNZa2677TZ1dHQM3V544YULmiQAYGIyfzChqalJTU1N56zJZrOqqak570kBAC4Oo/Ke0K5du1RVVaW5c+fq7rvvVldX11lr8/m8enp6ht0AABeHEW9CTU1NevLJJ7Vz5049+uij2rdvn5YuXap8/swf021paVFlZeXQzfoxWgDA+DXi3xNauXLl0H/PmzdPCxcu1KxZs/T8889rxYoVp9WvX79e69atG/p3T08PjQgALhKj/mXV2tpazZo1S4cPHz7j49lsVtlsdrSnAQAYg0b9e0JHjx5Ve3u7amtrR/tHAQDGGfOV0IkTJ/T2228P/butrU2vv/66pk2bpmnTpqm5uVnf+MY3VFtbq3fffVcPPPCApk+frq9//esjOnEAwPhnbkL79+/XrbfeOvTvU+/nrFq1Sps3b9bBgwf1xBNP6Pjx46qtrdWtt96qp556SrlczvRzokRSkWcmXCLy34xEyj/HTJLSSUMmVOSfYSdJkfwzpBLpjGnsOXOv9a6Ni7YL4o6OH5vqj310xLv2cL7bNPYH77/lXXvFnC+Zxr7qGv99WFVtu9JPpWy/gi4O+q//YNE/Z06SSs4/985Zj3FD9qKZ8z9/Io3iPCQ5y/iGrEtJsuxCZw3JM4T7JRL+2ZiWWnMTWrJkyTnD+l566SXrkACAixTZcQCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYEb9Tzmcr0QUKeGZa5Q05B8lI1u2UsaQ2xQbM6FkyHlyxtcLhcKgd+3M+stNY19+ua1+3wcd3rXFom19Puw67l9ryLCTpDffPOBd29Aw2zT2FVfMMdVXV3/BuzaXqzSNrcg/52ug4J8zJ0mlgv96pjO2fMRzxYd9WizbcWUY+pP6yD/Hzs5/MpGzZeRZqpOG6oSpFgCAQGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYMZsbE8yipX0jMLwrZMkFYu2iUT+8TfWrA8nS9SHLY7DMpeysjLT0LncFFN9lDDM3RDBJNmiWyJnW/veY13eta991Gka+9B/7DPVT7t0qndtTU29aeya2su9a8vKbJFAl15a6107o7rGNHaU9D9WYmeLGyrGxnrnfy6XYmPEj+X0iW3XFa7kPxdnmbehlishAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDBjNjsucrEizzwmQ4SUnCVnTlJkyJyKjNlxppw0Y6ZaOpPxru0/0Wsau7Ozw1R/5Ih/fXeF/7wlKZ1MetdOmTzJNPYkQ6ZeRco271LJlk32fsdvvGsPv/uOaez+/n/1ri2W/Pe3JE2fUeddO3/+1aax58z2z8ibMaPKNPaUyumm+my5f56iky2r0ZLDVrQdVlLkfx1SMITYJUy1AAAEQhMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEM2ZjexQVP7l5iGP/uBxXzJqmUfSMDpKk2NjSo6R/1IszRHdIUlL+9f/xq1dNY5849qGp/tJchXdte4dt7CmV/nEpmVS5aey42O8/j8m2WKVk2hZ/k0n578N01hZPlEz0edcePXbcNPa7bYe8a48fazeN/av9ae/aTMYWlVNf/0VTfV3tZd61tXX+cUOSVFftP/akyVNNY0fl/k9aUcL/uTNK+D13S1wJAQACMjWhlpYWXX/99crlcqqqqtIdd9yht956a1iNc07Nzc2qq6tTeXm5lixZokOH/F8NAQAuHqYm1NraqtWrV2vv3r3asWOHisWiGhsb1df3P5fzjzzyiDZu3KhNmzZp3759qqmp0bJly9Tba0tqBgBMfKb3hF588cVh/96yZYuqqqr06quv6uabb5ZzTo899pgefPBBrVixQpK0detWVVdXa9u2bfrOd74zcjMHAIx7F/SeUHd3tyRp2rRpkqS2tjZ1dnaqsbFxqCabzeqWW27Rnj17zjhGPp9XT0/PsBsA4OJw3k3IOad169bppptu0rx58yRJnZ2dkqTq6uphtdXV1UOPfVpLS4sqKyuHbvX1tk+OAADGr/NuQmvWrNGBAwf0z//8z6c9Fn3qr4A6506775T169eru7t76NbebvuYJgBg/Dqv7wndd999eu6557R7927NnDlz6P6amhpJn1wR1dbWDt3f1dV12tXRKdlsVtms7bs7AICJwXQl5JzTmjVr9PTTT2vnzp1qaGgY9nhDQ4Nqamq0Y8eOofsKhYJaW1u1ePHikZkxAGDCMF0JrV69Wtu2bdO//Mu/KJfLDb3PU1lZqfLyckVRpLVr12rDhg2aM2eO5syZow0bNqiiokJ33nnnqGwAAGD8MjWhzZs3S5KWLFky7P4tW7borrvukiTdf//96u/v17333qtjx47phhtu0Msvv6xcLjciEwYATBymJuTcZ2e0RVGk5uZmNTc3n++cJEmDxYIGi37TKxQGvceNPMc8JeGZXyfJkNb2CSf/sZO2aDKdOOH/5eCB/rxp7CvnXmWq//LvLfSuffXAf5rG3rvv371rj5/wz0iTpFKx4F1bVVtnGvumm24y1afK/N83fffXvzaNvXfvL7xr5119jWnsKZWV3rUfnOUTtGet/+AD79rBQf+1lKSa6trPLvodDQ2Xe9eWSrZnir7ebu9aJ/8cTUlKp/xzBgcMz7N5Qy3ZcQCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYGhCAIBgaEIAgGBoQgCAYM7rTzl8HpxzXjFBkjGqwpZqoSjhn5eTNLb02BAJJGNsT3lFhXftV5d8zTR2ZHztkkr6H2Zzf+8rprHnXXe9d23CuPYJw06ffumlprG/+MUrTPWpsox37eVzrjWNXXfZld615eXlprErDbE9vuf7KR9/fNS71hqVUzWjxlSfy/lvZzJljA6L/c+3UmyL4Bo0PL/Fkf/6WGq5EgIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEQxMCAARDEwIABEMTAgAEM2az4wYG+pXwzDVK9vR6j5tySdM8Cq7gXVtUyTR2seifZ1Uq2caOY/+xjZFdKpYMmXeSooT/a51CbNvOussa/ItjWwBfZKhPONvrubb3PjbV9xf819OyvyUpV+m/Dy3HlSQd6/Y/VlLGTLVJUy73L3a2tf+4u99Uf+QD//WMY9sJl0345wZm/EslSdFk/30+cGzAu7a/3z/DjishAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwYza259/+7WfKZv0yKLqLB7zHnZSqMM2jlD/pXTtojDQZLPlHApVKg6axnSGLZ7BoG7tkjNZJGuJYBvK2sUsl/+2MjJFN6VTWu3baJdNNY0+efImpfrDk/3rRmAqjKPKPtLHUSlLCECEURbbXxAlDnE0qZcuzSRjnYpm7NSYrMjytRJHt/Ikq/OedGPjQuzaf94894koIABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEAxNCAAQDE0IABAMTQgAEMyYzY4rS5crm/bL7hpM+ufBJWPbJmezU7xr48g2dsmQNZdI2DK7nPwDquK4aBrbmvHlnH+eVexsOXaR/PeLc7Z9GEX+WXPGOD0l5J8bKEmppP8a5fN509iRId/NsLslScWiIcNw0HYcJpOG3LOELTdwNDPyrAoner1rnXEfDhh2SzZ51Lu2UPA/vrkSAgAEY2pCLS0tuv7665XL5VRVVaU77rhDb7311rCau+66S1EUDbvdeOONIzppAMDEYGpCra2tWr16tfbu3asdO3aoWCyqsbFRfX19w+puu+02dXR0DN1eeOGFEZ00AGBiML2J8eKLLw7795YtW1RVVaVXX31VN99889D92WxWNTU1IzNDAMCEdUHvCXV3d0uSpk2bNuz+Xbt2qaqqSnPnztXdd9+trq6us46Rz+fV09Mz7AYAuDicdxNyzmndunW66aabNG/evKH7m5qa9OSTT2rnzp169NFHtW/fPi1duvSsn9hpaWlRZWXl0K2+vv58pwQAGGfO+yPaa9as0YEDB/Tzn/982P0rV64c+u958+Zp4cKFmjVrlp5//nmtWLHitHHWr1+vdevWDf27p6eHRgQAF4nzakL33XefnnvuOe3evVszZ848Z21tba1mzZqlw4cPn/HxbDarbNbv+0AAgInF1IScc7rvvvv0zDPPaNeuXWpoaPjM/+fo0aNqb29XbW3teU8SADAxmd4TWr16tf7pn/5J27ZtUy6XU2dnpzo7O9Xf3y9JOnHihL7//e/rF7/4hd59913t2rVLy5cv1/Tp0/X1r399VDYAADB+ma6ENm/eLElasmTJsPu3bNmiu+66S8lkUgcPHtQTTzyh48ePq7a2Vrfeequeeuop5XK5EZs0AGBiMP867lzKy8v10ksvXdCETomLBcWeuUYn+o55j1uRtL3/ZIkbKxk/bDhY9M95KgyeNI1dLA74FydseVPOmO82OOifIxUXbW9TFkv+2WSloi3gzZKRF3/GufFp1qgx5/zz4PID/aaxSyVLtp9tO13sX+9kDOAz1FuyFCV7dpyl2roPkwX/882av3dyqv/FQW29f+2g4TmC7DgAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDDn/feERtv777+hdNpveoc7/GNhJmUypnmknH8MRskU3iFJae/KYskWxxHH/rEZmazttYhlbMkWT1SyDS0Z4lWSSdt2RpF/vEoiYVx7Y30q6X+qxnFsGjufN8QqlWxjR4btTES2p6Mo8j9/YkN8kCQ5Z9tOSxKP9VliUIbzZ1qFaewvzL/au7Zykv+4hQH/Y4orIQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwNCEAQDA0IQBAMDQhAEAwYzY7LnJlSji/6aUtuU0l/7wpSXKGUKgoMvb0pH8+VcKQYSdJyWTSv9aY2eVKpnLvdZQkF/nPW5IpO87F1on7l1rz2lKG9ZGkouHYGjQeK3HS/5xwCWsGm6HWmr9nOBAj2eZtPZddyr++mLaNPaWuxrt25vy5prFTUda79vh/H/SuHSz4h0ByJQQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACGbMxvaUinkVI79YjlKh33vcQsIWr1IsFvyLY9vuTBjKY2NWTsKQl1IwxtnE1liYkv8+j2Pb66JM2j92xJqqZNnOyBg5Y56LIQZFhv0tSZHhWLHGDVlilSJDjJUkKfbfJxnjDh+MbTE/g5My3rXTrrzCNPYXLq/3rh344APT2P/vv/Z715YPnvCuLQ76P6dwJQQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIhiYEAAiGJgQACIYmBAAIZsxmxyn525tPado/nyqRsWVCpdOGPl0y9nTnX5/03Rm/ZUkyc54ZfUNjO1tOWlnGf+5Tp0wzjZ0wbGmpZMu8K8X+9cmkbZ9ks/5ZY5JULPoft5Fp9aU49s9sKxlzBnt7er1rjfGIilNp79ruyJZLl5puOw5nzZ3rXTt16nTT2O//19vetR+9/Y5p7JThGC8zPM8OFg3Pyd6VAACMMFMT2rx5s6699lpNmTJFU6ZM0aJFi/STn/xk6HHnnJqbm1VXV6fy8nItWbJEhw4dGvFJAwAmBlMTmjlzph5++GHt379f+/fv19KlS3X77bcPNZpHHnlEGzdu1KZNm7Rv3z7V1NRo2bJl6u31vyQHAFw8TE1o+fLl+sM//EPNnTtXc+fO1V/91V9p8uTJ2rt3r5xzeuyxx/Tggw9qxYoVmjdvnrZu3aqTJ09q27ZtozV/AMA4dt7vCZVKJW3fvl19fX1atGiR2tra1NnZqcbGxqGabDarW265RXv27DnrOPl8Xj09PcNuAICLg7kJHTx4UJMnT1Y2m9U999yjZ555RldffbU6OzslSdXV1cPqq6urhx47k5aWFlVWVg7d6uv9/4ogAGB8MzehK6+8Uq+//rr27t2r7373u1q1apXeeOONocejT/05X+fcaff9rvXr16u7u3vo1t7ebp0SAGCcMn9PKJPJaPbs2ZKkhQsXat++ffrBD36gP//zP5ckdXZ2qra2dqi+q6vrtKuj35XNZpXNZq3TAABMABf8PSHnnPL5vBoaGlRTU6MdO3YMPVYoFNTa2qrFixdf6I8BAExApiuhBx54QE1NTaqvr1dvb6+2b9+uXbt26cUXX1QURVq7dq02bNigOXPmaM6cOdqwYYMqKip05513jtb8AQDjmKkJffDBB/r2t7+tjo4OVVZW6tprr9WLL76oZcuWSZLuv/9+9ff3695779WxY8d0ww036OWXX1YulzNPLFFMKhl5xr0U/CM5YuVN83Aa9K5Nyj9GRJJShvpzva92JrEhjiOKbFFG1vq46L8PT6Zsn46MEpY4I1sujHOG42rQNvbAoDWGyf+XFpHvefM/g/uzLb1KhvNHxuOqlPTfzilVthieGXMbTPUJ+R8rb+37pWnsga6PvGuTRdtxmEr6H1ex818fS62pCf3oRz865+NRFKm5uVnNzc2WYQEAFymy4wAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMGYU7RHm/tt3MPgoH/sTLHkH1UR+Q/7yXwMUS/O3NP981LssT2GfTLasT2GCI9k0bhACctcbJEmssT2ONvYln0iGWN7rNk6oxjbUzTFyBhjeyynm+H5RJIGBwqm+oRhfYrGuVj2oTPG9kSG43DQcD6cmrPzGH/MNaHe3l5J0jM/3Rt4JgCAC9Hb26vKyspz1kTOp1V9juI41pEjR5TL5Ya9+u/p6VF9fb3a29s1ZcqUgDMcXWznxHExbKPEdk40I7Gdzjn19vaqrq5OicS5rxLH3JVQIpHQzJkzz/r4lClTJvQBcArbOXFcDNsosZ0TzYVu52ddAZ3CBxMAAMHQhAAAwYybJpTNZvXQQw8pm82GnsqoYjsnjothGyW2c6L5vLdzzH0wAQBw8Rg3V0IAgImHJgQACIYmBAAIhiYEAAhm3DShxx9/XA0NDSorK9N1112nn/3sZ6GnNKKam5sVRdGwW01NTehpXZDdu3dr+fLlqqurUxRFevbZZ4c97pxTc3Oz6urqVF5eriVLlujQoUNhJnsBPms777rrrtPW9sYbbwwz2fPU0tKi66+/XrlcTlVVVbrjjjv01ltvDauZCOvps50TYT03b96sa6+9dugLqYsWLdJPfvKTocc/z7UcF03oqaee0tq1a/Xggw/qtdde01e/+lU1NTXpvffeCz21EXXNNdeoo6Nj6Hbw4MHQU7ogfX19WrBggTZt2nTGxx955BFt3LhRmzZt0r59+1RTU6Nly5YN5QeOF5+1nZJ02223DVvbF1544XOc4YVrbW3V6tWrtXfvXu3YsUPFYlGNjY3q6+sbqpkI6+mzndL4X8+ZM2fq4Ycf1v79+7V//34tXbpUt99++1Cj+VzX0o0DX/nKV9w999wz7L4vfelL7i/+4i8CzWjkPfTQQ27BggWhpzFqJLlnnnlm6N9xHLuamhr38MMPD903MDDgKisr3d/+7d8GmOHI+PR2OufcqlWr3O233x5kPqOlq6vLSXKtra3OuYm7np/eTucm5no659zUqVPdP/zDP3zuaznmr4QKhYJeffVVNTY2Dru/sbFRe/bsCTSr0XH48GHV1dWpoaFB3/zmN/XOO++EntKoaWtrU2dn57B1zWazuuWWWybcukrSrl27VFVVpblz5+ruu+9WV1dX6CldkO7ubknStGnTJE3c9fz0dp4ykdazVCpp+/bt6uvr06JFiz73tRzzTeijjz5SqVRSdXX1sPurq6vV2dkZaFYj74YbbtATTzyhl156ST/84Q/V2dmpxYsX6+jRo6GnNipOrd1EX1dJampq0pNPPqmdO3fq0Ucf1b59+7R06VLl8/nQUzsvzjmtW7dON910k+bNmydpYq7nmbZTmjjrefDgQU2ePFnZbFb33HOPnnnmGV199dWf+1qOuRTts/n0H3Vzzpn/0NtY1tTUNPTf8+fP16JFi3TFFVdo69atWrduXcCZja6Jvq6StHLlyqH/njdvnhYuXKhZs2bp+eef14oVKwLO7PysWbNGBw4c0M9//vPTHptI63m27Zwo63nllVfq9ddf1/Hjx/XjH/9Yq1atUmtr69Djn9dajvkroenTpyuZTJ7Wgbu6uk7r1BPJpEmTNH/+fB0+fDj0VEbFqU/+XWzrKkm1tbWaNWvWuFzb++67T88995xeeeWVYX9yZaKt59m280zG63pmMhnNnj1bCxcuVEtLixYsWKAf/OAHn/tajvkmlMlkdN1112nHjh3D7t+xY4cWL14caFajL5/P680331RtbW3oqYyKhoYG1dTUDFvXQqGg1tbWCb2uknT06FG1t7ePq7V1zmnNmjV6+umntXPnTjU0NAx7fKKs52dt55mMx/U8E+ec8vn857+WI/5Rh1Gwfft2l06n3Y9+9CP3xhtvuLVr17pJkya5d999N/TURsz3vvc9t2vXLvfOO++4vXv3uj/6oz9yuVxuXG9jb2+ve+2119xrr73mJLmNGze61157zf361792zjn38MMPu8rKSvf000+7gwcPum9961uutrbW9fT0BJ65zbm2s7e3133ve99ze/bscW1tbe6VV15xixYtcl/4whfG1XZ+97vfdZWVlW7Xrl2uo6Nj6Hby5Mmhmomwnp+1nRNlPdevX+92797t2tra3IEDB9wDDzzgEomEe/nll51zn+9ajosm5Jxzf/M3f+NmzZrlMpmM+/KXvzzsI5MTwcqVK11tba1Lp9Ourq7OrVixwh06dCj0tC7IK6+84iSddlu1apVz7pOP9T700EOupqbGZbNZd/PNN7uDBw+GnfR5ONd2njx50jU2NroZM2a4dDrtLrvsMrdq1Sr33nvvhZ62yZm2T5LbsmXLUM1EWM/P2s6Jsp5/8id/MvR8OmPGDPe1r31tqAE59/muJX/KAQAQzJh/TwgAMHHRhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB0IQAAMHQhAAAwdCEAADB/H+G+rSTMQYKYAAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1486,14 +1451,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9aaxs2bbnB/3GnKuLiL33abK7ebv3qm69V65ylY2RsEEIbAmBaYwsjARuJFNIxlgyWAg+uIz4YEQZIcDfLCF3ZWNsRIFBCEu2sLCQDNgSRqbA1Kt6VfVe3ffebTPz5Gn2jmatNeccfBhzrrUi9j4nz8ncJ+89eWNkxonYEauZazZjjvEfnagqZzrTmc50pjOd6UxnOtOZznSmM53pTGf65pH7RTfgTGc605nOdKYznelMZzrTmc50pjOd6Uxvh87Az5nOdKYznelMZzrTmc50pjOd6UxnOtM3lM7Az5nOdKYznelMZzrTmc50pjOd6UxnOtM3lM7Az5nOdKYznelMZzrTmc50pjOd6UxnOtM3lM7Az5nOdKYznelMZzrTmc50pjOd6UxnOtM3lM7Az5nOdKYznelMZzrTmc50pjOd6UxnOtM3lM7ATyYR+RdF5M/8ottxpq9G53F89+k8hu82icjfJiI/+kW340xfjc7j+O7TeQy/GXQex28OneWbd5/OY/hu0686Pz0DP2c605nOdKYznelMZzrTmc50pjOd6UzfUDoDP2+RRKT6RbfhTF+dzuP47tN5DM90pjOd6UxnOtM3jc7yzbtP5zE809dFv7LAj4j8TSLy74vItYj8OaBb/PZ3iMifF5FnIvLviMjfsPjt2yLyvxeRT0Xkr4nIP7L47R8XkX9VRP5lEXkB/Kmv9aF+Bek8ju8+ncfw3SQR+aGI/GMi8lsi8lRE/gUR6e447k+LyO/k8f0tEfkvLX77UyLyfxeR/3m+xl8Tkf/c4vcHIvLPi8hPReTHIvJnRMR/Xc/4q0DncXz36TyG3ww6j+M3j87yzbtP5zF8N+nMT++mX0ngR0Qa4P8I/K+Ax8D/Dvgv59/+w8CfBf6bwHvAPw38n0SkFREH/GvA/wf4DvCfAv47IvK3Ly7/dwL/KvAQ+Fe+hsf5laXzOL77dB7Dd57+PuBvB34A/CbwP7jjmN8B/hPAA+B/CPzLIvLx4ve/Bfht4H3gfwr88yIi+bf/JRCAPwL8TcB/BvgH7v8xfuXpPI7vPp3H8JtB53H8htBZvnn36TyG7zyd+ekpqeqv3Av4TwI/AWTx3b8D/BngfwH8j06O/23gb8UG//dPfvvHgH8hf/7HgX/7F/18vyqv8zi++6/zGL67L+CHwD+0+Ps/j22gfxvwo1ec9+eBvzN//lPAX138tgYU+BbwEdADq8Xvfw/wf/1FP/s36XUex3f/dR7Db8brPI7frBdn+eadf53H8N19nfnp3a9f1ZjCbwM/1jxKmX4vv/8a8F8Tkf/24rcmnxOBb4vIs8VvHvi/Lf7+g/tv7pleQudxfPfpPIbvNi37+PewsTkiEfn7gf8u8Ov5qwvMclLoZ+WDqu6yIeUCs67VwE9n4wqO87i+DTqP47tP5zH8ZtB5HL85dJZv3n06j+G7TWd+ekK/qsDPT4HviIgsFvP3MSTwD4B/QlX/idOTROQ/Bvw1Vf2NV1xbX/Hbme6XzuP47tN5DN9t+t7i8/cxy9hEIvJrwD+LuTn/u6oaReTPA8IX0x9g1pT3VTXcT3PP9BI6j+O7T+cx/GbQeRy/OXSWb959Oo/hu01nfnpCv5I5foB/F4vJ+0dEpBKRvwv4m/Nv/yzwD4nI3yJGGxH5L4jIJfD/BF6IyD8qIisR8SLyJ0TkP/ILeo5fdTqP47tP5zF8t+kfFpHvishj4L8P/LmT3zeYcPMpgIj814E/8ToXVtWfAv8m8E+KyJWIOBH5gYj8rffX/DNlOo/ju0/nMfxm0Hkcvzl0lm/efTqP4btNZ356Qr+SwI+qDsDfhcXuPQX+q8D/If/2/wL+G8A/lX/7q/k4VDUC/0XgPwT8NeAz4J/DEkKd6Wum8zi++3Qew3ee/tfYxve7+fVnlj+q6m8B/yQmPP0c+JPA/+MNrv/3Y67Tv4XNgX8V+PiVZ5zpy9B5HN99Oo/hN4PO4/gNobN88+7TeQzfeTrz0xOS47DFM53pTGc605m+mETkh8A/oKr/l190W8705ek8ju8+ncfwm0HncTzTmc50pvuhMz+9m34lPX7OdKYznelMZzrTmc50pjOd6UxnOtOZfhXoDPyc6UxnOtOZznSmM53pTGc605nOdKYzfUPpHOp1pjOd6UxnOtOZznSmM53pTGc605nO9A2lr+TxIyL/WRH5bRH5qyLyp++rUWf6euk8ju8+ncfwm0HncXz36TyG3ww6j+O7T+cx/GbQeRzffTqP4TeDzuP47tOX9vgREQ/8ZeA/DfwI+PeAvydnyH7ZOYqIfZ7+Ofpwesb8Ue/+GpmvJSJIub4I5V6L+yNOEATJx08XV51usvh2+inGREqKqqIKt/pNXvKHvOyw5Q+6uBl3kj3jHf2koC87aUEpxc9U9YNb133DcayqSpu2AST399x0e7M+Kl+W/ipjI3LHY+r8BMf9+rJ58WpSlKSKAM45nHeICFVVUVcVAMMwMI4jqkpKNrZ2xzJ/5vuftkJf8VdptxxP8FcefzyVjp9fFmM+Dv29jCGAc06dr172c77u3c9QmnRXu8v4lXcRhxMHAk4czgsgpBRJKeX5oYvz5mvlu91iE5IXvYhQV/U0pjFGYorT+kx3ried7mFLXicGcvS8cnysPYssW1OudjT3yddUOJrXxyfpvYyjiJzdNX9xdG9r8TyOr0sv2w++fPep6p0XfdNxfPDwoX7rWx/d3VJZ/q1ojMQwoppABJdlFQFw7haPObrQ4tpfuDt+ue3z7hPvlNV0sQe8THa5e2xO+fxyL7nrjOPbLGUM+N0f/v69rcWrh4/1/W9/b77PrSMWI6mQ8odZejw97uXSw0smHmXPEwGX544u5DxVSOWeKlPfTVe+deHje04v0cny66Y5evoUr5bHbu/Xy1vq7SsetXWeP59/8lNuXjy9l7XonFPnljbtV0twr0ty/A9lzt95tSwrNE1F29Q4JyaL5nYdDj37Q4+mdOsus3yVdY03ad8xs7lFy/W6VCdOtJE7Tvzi+ysQ4/3oGQDiRJ0r8liZtaaQ3a23njz4a6gSb6r+zn1294mnuuOdP76KTtp8h/QNmCwtIgueML9PsvcX3Pv2PmOycEqQ0v3siw8fPdZvfed7L2vCW6WXd//t2f66Q/WVBLWvWcr77d/6/965FgFerfm9mv5m4K+q6u8CiMj/Bvg7sZJmd5MIVdfYxyOl9vhzecnCIako5uU6IiAOxNti9LWnbqus6HuquoYl8xehaWrarsU5R1156trbAKcRjSOQ8AJVbkoIShgNGHjxouf6uielxDBExjFO1wU4WiYFYJKTlXsCTE0/JYUQbcWpUtSA41OPQYBCpuSm/PnlYNT19dPfu3Wy0RuNY902/JE/9tfhnKNpGpxzE3hS3sdxNDAlRgNXklJV1dHxy1c5N8bEGAKqiojHe8/pEtRTpr/o4yJ8jWFgCCMisNmsubjYUNcVH3zwAR988D6qiR//6Ef85Cc/YRxG9ruew24ABe88zhlTLRv1Ub+Xdp+0xdo8j21VVRwLH+X4MlbH36e0GMP8o3OOqq6n6/zB7/6VexlDAOcrLh+/P3ehyFG/Ts8vbvp7fr6pKxbjmFCN07OEEFCgrlu6Zo1znq5rWW9WOOfY7W/Ybq+JMRDGyDiMpGRzIMZ41IajNSOC9x7vHXVV8a0PP+JbH3wIwPPnz3nx4gUxRfZh5BDG3ND5uVOIaEpTG2OMi2v6DA4DYoJ2iIGUkoFMi7FYAl0pznM/jmG6fsxzeZojpQ3DeG/jeKZfGN3rGN7F26ff8vuSuy/3G9svBHB3qWZgEOjiYnL8891/vFV61fPeSQpg+4HAtEfahwgoKsqxGpXXqi5F3FlFT6+W+t9oHL/1rY/4p/+5f2ZSngU1CcZlWQXFS0JIHG6e8fyzHzP2e3xV0TQt3ntcVVE1Lc7l5yzKjpIH3CSiiiI/Mb1mKurfQvY46rDTz/M5S9lLj1T+IssIy7kz7d15/2bau+Y+lkUf68neudzzyuekZTTLzM09qiYeoQbwD8NAjHbO3/2n/uF7W4vvf/t7/I//pX+DpEqIiZgK7xZUSt84FCGo0udjosKQEgmyscMjZSNB5r0yP6crcuZCdgFBnMO5ChFh5YV1bWMeUyIk218PQdmPiaQwRKEPMs24iRVMQqT1YpmTFTZ/PMrKJzqnOFFap9RSrjAfb6/cTJ3nyTTKSn6mUwPOAgorg5cBq/zR+jjZsf+z/97f97IheeNxdM5xdXk1zdm7FNxpzr6STBEu8lF5FRlgKbuWxwQx8NZVeO/5/nc+4A//2rdYdQ3r9ZrNxZqUEr/927/Lb/3Fv8rhMEy3AibZBmAYR8YxZPDnZUDiTN45nCzXqlFeNieys+KlAIDLw8u6n9cpgCZFy4U4Bg2W8Ohnz+5HzwAQJ3SXzdSfiAONaBjRFKdnm45PbmZtZb2VJpcHPBLll8D1/Pyv/EbKStWjS55efjkvpr46utDLjIILbiyyuO68Er3ztE1LXddZb4rZeJ0YhjHLz8oSM3NLpTLL9A7Ba9krFJzd/NlNuKtlhd5sX/z29/iz/9t/w+630IfuM8XM615ruXancznmy2903+NGvE4L7jz59Vr/iqNkiZMYhqDA3/Y3fu9la/ErAT/fAf5g8fePgL/lVptE/kHgH5y+UObNLivL0wuZHkLm7eYY9OGYkS83pjK3nXP4yhR4xBnjEKjqCld5s7C5eXPSlDIjUZyTuYk6b3xOmBaSywtp8vzJ62ZiMmUDKAqrKxsQuIUyW0Q0xJTdNAlPTIP3MgF5idwvrS6zp8VrC9ZfOI7LMaybetpAYoy3wJujjTD/s2yTc+7omJOnOvp81zFLIXF6Rp1lkkkfOJpozH2qs6A6Xf9Va+o1+/EUnHjVcTbvb/OK0+d9A9b4xmvReY+v/Pxbvp8mUxKdc3hf2XqY+u6kfarT2pw/62SNBGjqhsvLS6qqputaVusOESHGkevr58QQSdlLx9o49+USeKuqyoCXDMDUtf396MEDHj18CKrEEBiGnhAioyYkjAuLiP2TNGWgJk2b5Sk5L9maktB8LCK2ORx5FFqnlbGcFPTF/D8Ffb6A3mgtnumXkr7cvvgSkpPPevrl8m/VSUF46SGvUBx+qUnIi9h6YSk2Tx6AOLyT6RmXe+Qbm3bfcC1++NGHpDRmGcT4oCBomoEfJSLY/uWrGlLE1zV1a2CP8xVVVSPi8jmL/S2zKQe4DGSJK+zInn8e+yX4s9gRJV9s0ibm3yRvoAXckGUfniJMU1cu5LAjw8E821i6BC/PFxBxs/yUPx/bygS3AKCc2Mhb/zhew1Hujdfie9/6DodkOEXM7zPgtZhb2O+oTG32zuFQnAjeydE9bG8tHkJmk6xk7h7VPIdFcHlcBZN9FRhTYsz75KhKlKzUioGLFLFxgQ+IWN+6/AgOoRa7rwc652hdsj2VOAEBRWabJXA9UkjzVrqQdRee8HAiV9naK+vClOT5eo5TsPbLjeNyDMtcLPrFMc+ThSzzqvkze+0WfWH6pVz3COha3mEGZZ2TbEz0OO+y4ROkGBflNsA6r4Wl0VHm5p7Il2Wsln9P5zCPF5j+cfzLPJayaIuWfqIIqvPCLBziDemN16IIxj/V+CgikASNgB4DVIL9tuiEib0t2VXpz6XH4OLutzbOW0+ps9A3yXzLz+V+6XgcZMkH5xYv9jG5jceXfW26sByd7cSD6DRfUoyEMRI0TttlkU216Jsiy43Dnkcx0Gd+oNOnXtIbrcWPPv7OtF5udeVLvn8TehMAKaXZqJwbam+8kb5s9z1uxBucJUcnf/GZLzlClzN/MdCvdc2vBvzc1VO37qmq/wzwzwCIc1PLyoQXEbzLG7krlhI5UiptY0mzYFAUw/yyDaRYApXKOdqmxXlvQE9dmQdOdre0sxMxgz2aIhojaMJ5Bz7DBjrzew9UzixSSZSUN950YrmaFM00C6TOe5z3CELtPVVdzcxThBQjOobZ6pWOBdVTUOF1JrttBrcZ2R30heO4HMPVeq1Lz55CR2DO4n25OS5dXW9bh45vqmrhdacL8hQ0mhj5QmLUNAsWonM7UkqkYABbOeZVXXknM1i6u9xxfHm+u86VskGUNr+GQjKBga+mN16LTdtp07bMoUq23lKKaNJsiW7wzhFjZBzDUT8W0HMeagNwKMBPZuqbzYaPP/6YrltNHneghNDz808C/dDnTXKe42bxmj2unHNcbDZcXFzgvWfdday6jqap+c63Pubb3/rYlCnnSCHQjwOjBvbDwdZrmYdJDWgKkaSzxw+YFbmMnfcuA8CZ76A4cSQXKZ6Ky2NCUiBN1unc19ZXb6ZwvtFaPIcI/VLSm++LbzKOcvtiS8F2EuYXAJAs3IOW/mrv1uTJ/F1Tbns2P6uY2zsmP/iqQZxH1fZ3A/nT9D6rLF+dpy7H8Dd/8zc0DHsTwoqhg8XejSKZPxIjbdOhdZWBn85khKwgShbmRBOy3EOLslwUPTPl2tXFpKCjlk76WlYyFlZfRee/p0lV7lw+L3ph6e1jF5uVjjzvxDmKR2u53vzHkVpkdynKhi4+Yx4u1nwpPZdBjbLfRLyvXjJER/TGa/H7f93foM8H29+KhxGSrdWSlb7c5qXC7h1Uef9wTqgyeFdCsZQSQmHym3dC5XJXYnIlzDIqIkhKjOYSQ6+RQwokVaIKgQzkOah0MTaUsQBx1oOVg8oJTqB1QutspjROaSTPtaSIxgxQZfkIWLp5TDylKIvTc82y3Gz0WayDrAnPRlTJ08cu4vQ47OjLjONyDL33mkKgQBSTXDh9KIvjRNM+nRnTehEcDhW902P9qIlSdGsD5HyW9+u6oqqqyYt9CQapCgVAdEUXEnCSEPGI6AQMzm1bABhHnVJkapnGJ4vAZkATDBxXJWqafEHL8Xd3e5HNZvH3qCmvBwK98Vp03ivBobi5fYqBQEdAdWnFiWyu0wyYG7FgQ3fuAEug5c4WAuIWe265w/GuknROH+GmY2xNLKG+44DEu3WG0hDFxsupIurxYnqtd7b3hXFk6INFsCxZ7oKHijhwfgJEi54LeX9ICvpKj583Wot/3V//N+ri+zsA0zcDf16m+77s+2V6kTGMDP0w3bO8qmxILvrZkcHovmnRztOVu2j1S85dXkanL8tQH3vdvpq+CvDzI+B7i7+/C/zkVSeYIHS7XXNIx2zht8mxBHumK0znmOAhRwtVMKbrffb6qSt8U5vXDdPptrmxCFOZ3FUTqm4CZibRI8dDa2HsdhUkb2hTp5fRKYzFdrrM2F22ACw8nABRt8ATlteav5OXMPqX9vUt69xL6Y3H8XjDMyqAzDKEbQmElTa9PGTtdOIXxnD7vnrSN9PKPhEuj29gFytufcuFc1+0BOi+6Jjp/ncviKM/X2PM33gMEfCVP+pT82IzIVxyyGQRdIQZQFkKejMAtFhLi9vUdc1ms2G93lA3FW3boKrmppqUFCJ5kUwNOwU6nXPUdU3XdVRVxWa9ZrNa0TQNV5dXPLi8JKXE0/XKro8aeCRMa1IXY59OXuVeJaTLjl/OJUVddqFMKVvrmIDVL/LyegOrxJuPY+6zr05vYZP71aQvOYbHdOeIyt36yazcnPDASSfJ6vxie1qKk78Qeg055zjENv8zscvF3iIweYE4j/d19iJUksOAZUmU3rPT7+7JBb3hOCqaAsWTYHl1GxpDEoq84CuPw+HqmqppcL7CrLhZ9lCdjBZkvkrmw7KwOk+KR/686KZpWhx7AGUBH5kkfpmmzXz0bc+xWeKZ/syAQxGYIcsp057M7c/IYstbyjWL/fPozm46Pkk5N3tm6xfWJnnjtZiAvljrU+k1yVEQuU0LD/RiiCzeHSJi6QKcHa9Fl1JIDqJpX3gBX45BcWUqOyZZVZlBlaDm8ZMwCCWJm8ACcbe9BUo6TSdQe6F29rnzGfgRqAVq8gIRsgEmhwbJ8b5lI6fT56MfJlltwU2WctsE4WX5GTNKJrLn/KsGxOhLyagTP9S7Wn6Hn9FpQ/LU1ekZbiutxyfPYOkk62bFfGnEWiqeZX6T9YEjLx+Z19Yszr8MHChyTpk7pY1yNCZCBlZFJu+zxbZwJ80eleXvcr032jvefF9UzItHhcz+bAItPXuKUrk8ZwJZTnnYF9CpGvGyg8o9RHJ/y3Tq1Ax1U/9MRs28eSlzJMn0/Z13WnQ6JZ+P5sfK+qSYZ773DtRy/0zt06I7kmevtUVwk8HA2sesH32xDepLyTdL0Odlvx1/ya1xeFPQ5+hCApoSIed1tbWZve58CaA+PQ9uLYzXmEwvnUJ658c7bnIkOdw+984+fPlvd9FXAX7+PeA3ROQPAT8G/m7g732dE713VFWFiMN7T103eOfNeyZaw2PMilYWFnxORNs0DavVCue85QcJvQlF08YlxCCMoxJTwmnCozlvh0zhcJpAoy3EOChpiNZ7lUO8obT2n0dwOIk4F20BSWJ2i3S2hYmYBWNS6PMEyBPMOb/I+zNv7EeClZy6/830qgH9YiDllfSG4zh7OJV7T0r1UtlgwVA4VuJhjvc8zm0Dx9z3+LleCn4dwdvZKjivhEkQNsFaIAvX5bej19Fl9RZTugt8utVDi9+/cGwWANDpkW+AhL/xWjSvFc/swZPH1YnJREe3lumcu557KbyXo8u8t/VdT/HIh0NPSpG+H4ghEFPMG1hRIqAoEy6f772nbVs2mw11XXO5XnO5WtPUNRfdilXTEGNi0624XG+oq4r92NOHMbt3Wh6GlBJ7Na+fGRidRcJJfFKbQ9aUhfCbZqtLDII6nTyHUkxTXqspBPK18ggc0Zfgqa89R8709dCX3hcLvcmILtRjfOYhMoEBpjjGlO7aUd4tqC8vTsFCMStfm3HHeVbtirpqTJDzDSIVMUWGsSfEQAyBQ7/PHqqzF98X0JfgqfaPW+xhx0qSgrocKl4hKM5XltPF+Skdi6oShwNxt0VjgBhIcYSUPSZKhziz3iIOqWtc04ITXFXhqpIJKPtCS1YcpCgU854pwiIs4liRWUAcC55ZAqk1X7c8ZwYRjtSgOQHpvEMzHb807B2DBvNeYDJXCY/WhYJ8/2No9/X2bM7GzUJyFkm3Z718An6cZOAHJm8eh2aPU3u4pAb4oDnUK9smCjBkYWwKGaRMomi2Njo1L6KkSoEPAVwJJVTrqeKL4L1NDQN+oJmAHyaPn1ok57N0aPQmE6MkD5pyGF4BHVlM4fw55Q+phKAcgQjFO0tBPaIlc5NMCq1doxidXsn13mgcBfA+AwZH3LQAo4pOfmUL+SWHoJU5ycRP5yucAj+zLLwAJcWZgckVeSlfT/XI4GQFY2bD1wRPZaCgyBTHIoQeNehIvljiBAVakDkqwjvHuq3oaptHfQyEmOWZaHmqhOKZPwMHRTY/le95iTz4EvpS++JsTCy9s0g0NPXIAqbOazb/dUuszyxl7tPTvs3PNf95l1J+nOfx7h37xOhd+KDkNZVvU/S9I5BH5yvMl591LMU880MYsxdZQ9NY7tyqshxROi3Q+ZGEnGLEZ/651JNO2vsK+lLjuDTmvtacub1ZvBGV+4UQCGEkxcTTz5/y2WefEUIwT7yqwnnHo0ePePT4EdXC6xbuAouX9JKGHS/P123t4prLv191/Mva9arfZvrSwI+qBhH5bwH/ZywS6s+q6l945UlCtt43kxJX+YqmteSGQz+w2+0JIR4xSO/nxMAPHj7kww8/om1btjc3PH36OeMwMsbAMI4kVcYeVJKl92kcLqQc6uXypDfgh2Tv4ZAIuxE0EaoKrT1OHE1d0dQ1HvBOqSrN7rcKLmarXN7M8sY74Re5+8VJDjmrDEzKeYemPbGsz4XXQLFw3XLjfIXSvVxQy+O+CDx403FUtcV0eu1ZuJtY8CQwlGOXCXTNaufmRNB5gyvCHlm4O6XZK+N4E57uiUJK5qq8UBYEcuy9R7C4dlFmsE4nPP20f+4ch9PvThnaEjRaeoQcjdHi+FLZZdmvrwv8fJm1KCLUXUuKORFzzl/jsDBGm6fHx5d+XFKpupCKFaYAfBm4aZqGrlvRdSt2+y031y8YxoHtzQ19PzAOo4G6PnvRZDC4zJeS2+fq6ooP3n+ftml4sN5wtV7TVDXvP3zIw/WGGBO7Bw8Ifc9h6MGBrxwxJkJKhPKcURkOw/FY2QPkzVjMoDS5XptQj2IhmbmfUk4KrUktZCwnOS2J9uySaR7j1xjLL8VTb4/sax732gLbmd6A7mcMX00zrDC/GhFWzlNlM39Zl4cY2YVEyObdpVV+milvLql87SSQQ1eUuqp4cLFm3bW0Tct7j97jYn2B4ohaoTjGENjudvTjwKE/8NnnT9jpdgJqLYXwy+mNxzHLNo5sNJKjn4zfxLLvKd5ViCi+avB1Z/w2RDQGNCaGZ9fsfvYjQn9Ahz1pv4VUQk0zCFHVULXgPM3lBc2DB/i6or7YUF9dIt5yuGlW/ZYiocvKxNTGSdkoLV4qTULxSJjklvyeMFCCaT8rStO8m0qZc0fCkR69xM0NMJ2zKOP2rJNHalbuvHNfyMK+1L6I4Fw9yQaShZKSJ6d0lqA5nMe+Nw8emfI/TmFcE7hR+rEkVgVvN0ETiyTSJY2AEp31gypUuAnWUVgAPzn0T6ESxWP9VHmoKuvL1guNlyPgR7BcP8VDICYhJvucNE0h5jpVsp29zubXPEfKeCVk2vISBmIoOnnYCzIbQBdUEhrfxziKQF2XCg1F1l7MaTWDzWz5l2mOTakEZJZ5TrfUZTXSY+DH1olKtFQPSVGNeXFZ/1k100iIppCOY8gKedYjZJZvQ4iEEK2fT2Sx5fvilwnZmABcAS8GODaV5/FFx9W6JaXEdhjox5GYlH0/MgQLd2/rmqqqJtkmJUskPmaQqPThm9CX2xeL0UIs7BJT3ESy4pY3v1luyzkYM75ypygk87rMzOkY4Dli3Avwcvp38lVbajoc+3gWzjefN5teFAN2meaLZF488deJwebr5DbYc9s8GsfBftWGq8sLNpsVVeXYbhv6vpoLjahm0C+D19mTX5w3w2SIM7D7GjLhV5FvTuftGwFAb0BTQRhVhn7gxfPnDP3A7/zO7/KX/tJf4nDoaduatm2pm5of/OAP8xvuN2i7jq7r6DpLzJ/SS8CwrK/f/f2btPSO9fuFdBc4JPO7KK8xjF/J4wdV/deBf/1NzjGFzkI32rbF+4qua/GuAiVnuY/l+hP67r25tHVty+XlJavVChS2260lzVNAc8WeKIRgwoSI4p1m4Ge2TeXVCMmqd42jZfKrNBFw+GxtkarkbHGTVa4IXvP4F6vWLPBNcyArs8UDghMwYzmMs8v066F2pY9eBvrAF1YuKee8wTieuLpOC+AEHOFYzgOOQJCS5HnpLTIx1rt225Nr3OX1M31Tbp6/z1vg9F/x5jp6pqUUM11Sp3suv/sib5/T9p1u0HeBRnc945vQG69FWXhfJUfULHEnmapawR2z8DXbZc9grs1VVVFV3hjxOND3fQb8Yp4Divfz+lnOEZ/Dzeq6ZrVa0TYN69WKzWpNU1V0TUtT1SSJrJqWVdfhnGPddez6lpgSY0yEpIzDSJVBpaOHOwHs5rl0e9zK+JZql6rHVRWWQuGRqe41BaUvw1NnWs5qedkSYuJOp+DXme6FvtoYvh4VobMAPx4Df6pSOCADPyFNdZFO2du8Rx3x8eM73Kb7minLtXGCktxFUvZIA2PbumLdtXRtx8PLCx5cXpFwhFiR1DGMo4HbQ40AdVXhnHk1iOT8LV/UwjcYR6F4CWOAgBytRBOynSCavVes5gSShXBxLudYABKkYWS4uWHcbdF+R9q+QGPIZXxzKdOqgbpDfAUCvm0gNVRdS/GQKaDNXUm/j3bBzA5Od/PpLJl30TJvzENFTq7qFheyi5b0JMtrvuxzufd8n/ytyCI6r+wtXzwuX2Ytugmc0Ukhn7fEBSggOVxLcpUuVwp/CD6DQ7McOD+HWd+VUlpBl7l+KCABU1qBjHWZT0i+jMv94MTAHwFqlAob98abp48Toa2EJnv/dC4DPxkQKOprSI6Y8w8lXXhxL4EfQ3Km1xx8Unpm9kRSFcrhCfM8THnvnIqbLNfIFxsoX38cs45hyr114LzVCUmTJQleyKMiclw0JPf9HEY1tePo86kBSRbfn8oAOoE/6SjkXITMF47vkbIBc4lLvIw/TnL07V+mwjSVN765aWtiSsScvynEyDgKUQzArL2nqTwpWZ6xhAGTUZYeU/N9X3dHeNO1aN2XMuBZ+rLMuIWMJnl3m9ZYhlGOlI9b3ZJvcqosnzzNBP7Mv9s4z1zwVF8rHlKn5xxdv7BNmdt9BDLILIvOSBXTs6YUiVFQtQIsdVWRYpzCCsFCY+dps5Ct8zGW5jTnuV0CTV9Ab7YWX762X1vH0dvXeZUTRPmsWO7Ovh847Pc8e/aMn/305+x2O7pVy2rV0TQN77//Pn3f470n1c20L9qozmNb5n7541b7v+hxlmLOcRnwLzhxOS7Hc23aoZfi/Gv061cCfr4KlbZZ2JeFgsQUqSpPShWqmhOhgfcVdd1QVRVdt+Li4oL1eoMmZTgc6Nue7W5HCIExZGtJDJDMIkMUUIfDl4p1yCJpneTNklJ6VZhirZ0zi8EE2mSrU8rMKBXQQI4HUigbt1gpQuctrlZlrqCxSDB824GRuwGOO2gGG770cHxJuj3BpvbesfGVTf8uT5jpaosJ/LJnX27Ud4EzU6dCBnoslKi8itJe0KZyDFIARn90n2Vbln+/inG9DLx5GXD0JkLQfdKkDIqFBZTwL9s8joWJgqKfujtP72J96b2fFC2fAb5Sgne329H3PcMwLPqU6V5Lj59l6cVSfr1yHlE1N3UEnxQJEUmJSqF1HqlqLlZrQorElNj1PfthNGE1z5tUvNFkVn50bsUk2M8dpccfs1RhicLTwrvnVL3+uuhloM/L5pIufjvDPu8ELYcsfyy+HJ2veNR2tN6qVlbZgv5s6BlTnPajo9SS+UNSfd0k8l87lcetnGPTNbSNAT7f/egDHj+4pGs7PnzvPS4vLkkJDgOECMMY2HQV+2HkRVNxs71mHAdCDKQYiF/g8fPG7RTJFblmmX75DCrO8gxlQ5b4zC8z6OOcR0lT1RoXFBkSro+MNwf6py9I42B8Md8PX0PdgnOk/Za43+KahnR4Dy8J1zT4do3vNuBKdqGS0FNPuHsWHvNXMv1alGC3OGCBFU6gkmAu1IuHL3uknihm0/cl5EEmhVlEsh629FDKn25Nz/vfJ6c1JTqBPeadk/tkUtjMs6dsk57sQZN/LhWylpmlCuADZP+d2dIuWcFMKJE0Ja3VUmVWyRLnQgkhA03e+soqdtn8qCuZPH4qZwCVy8eLFCBJc9CK4rIHTFGwUwZ2iqdCqRBm41XaU/jJPK9SeVdIUTNvgRATUW1UnZtzc5b3++Q8Te359nceg1oOlrItp+m9eJIoIUSGPhx57pQxmeSThTzgcs4eRIjRPHImGahID16mysJtW0+FIAQKmoF3jrZpLL1SBnMnj4883c3YHKdxOQ4dYp4HR/uCPaTJaExRBpVz1F5Ydw1XF2szCHih7q14h1dlcJpzKDa0jeViDKGxMuEh8mLfcxgDSYUx2Hi+TZr4qFoOrAK4TDm3dZa2BNPxCuc6UqyLnO9cLiS0AFU0g3FTEiGZQJK53zmZoDLxQhNdF6GQ04GzHLiEEcqr4D2yUHgW7HHR9DwPxRKMu8yLBWd7RRIEj6PCScS7hso1JKK91DzTXTEKFWOqr0gSGUPIecduPeQvARXE5+Tv5RF3zMFxHBlHK2v/6Sef8qM/+BG73Z6f/ORnPHn6jP7Q0xwOtLsDTVPzs599wqNHP2a9XvP+++/h89oVsb35eOxe0sY72nbXV/dPZVW8Gf1CgJ+Z4VvunlVO1Aqw3/cT84vREqmWcJEp5OODD7i4uGS9WtH4iqHvefL5Ew6HA6rJEuENgSTgiNnjx+GpqHydhYuUw7TMXOJygjzvxV45QbTLJa8tDj/aZiKeqO6YMUzCUV7MJYGzyBxwLZBwOSymoD2KxjlJWEncNffVF4M/xr906tfpe5jdrO+NZoW8bC7l8/xdYaqLs2T24lgCB1N7pzdjzGlhaTq6+x2AUXFnnL/AdnkhK0Ge2ldWSSEje6Iz8xfnzCMFm49VdbwsTkGO5f1f5g10ClyU30/BqmW/nF5vuiZvhyYDXv5bnKPyNk9F1VyVy0YlsqigMD/rND6LuVdVFW3XUXmPr6pcFWxkt9vx7OkzDocD291usgCy6MuS/+u07wpw5BAkJjrxNOKpY8L1I6REq8KmbuhysrvLiw1jiDy5fsGzm5scfibEFK2kOyf3z6+SpPN4L1yEK8xvJkTGOLvGH238XxctVc358/LfY5rH9Zdvsz/TK2khTDiwDHQiXNUN391cclHX1M7RZUXjR7st+zCwJaDeo5UZIFRBo63fEE0AfMMKdG+digO9A9rK89GjBzx+cMmDyw1//Ae/xnc+stDPxw+vuFitGEPiejvSD5HDGHl63bPrA589fcp2d0MMI4ehZxh7C9e+RxJxtN06N3wBAhdlYLkvSg5tEnKOn9pK85KQKBCEalD8LpC2I+Gza65/9DPCYY8j4Yt67S2eR8Qh6xVus8bVNcP3vosMB+rViu79j2i7tVV9QRjL5Jn26BOAm8V+IAteIs68yGZ9yQACZ3lmJsv49NwneaW0hM0swiKcy6HWM6gxKXGnsFSRmRb9/VaKGgpUzgARrzqBPrVzeBHzynIFsCoeQea94zOgwvR9CVsjK/IG9phiqggljGeWIQMlU1JW9LJQrymhyfJQykLddU5zdWahdo46yxNVZR4eglWHcqI4ySFpWZfyWGiY3T0ipAX4pFObZ/kgPxOF71ijbTaagTRmT58Yk6VsyPn1+pAYY0k4LZMy6nJY6puGDr2KVquWP/knf83macpAVFJiLNXa1HL+qbK92fPZZ8/p+zFX4GpwkkPEQyAlA2lqb+EfTVPRtQ3OCcMYLFdhSrm6b5kXNge8c2zWHXVdZUWSnHQ+0tSeq/WKoaqwBM8mf6YCZiiMMTAGC9eJmkia50sGK4DskbXMk5kBxBQtX6oTfNXQOGFVOx4/2PDRB4+JMXJ9U7M/HIghsK9g6IW6qXl0dcF61QEWe6EqbA89P37ynOfbPWNUtqrEMCuddyWdvg9yGY+zanEyrZ0y/5N1NYhDUkXxYZt82SYwEypX0VS16SClyqOqhd3FXO0p/2enWN/OuEjmSTLLvSqzPD+HZRlJRoaW/GyGSQ0vcotKi/O5+T4ZgNWUskG0yiHCQMqVzqJDtMJLQyXQ+I62tjDCKIGoEaeOynlqZylH6qbFVxVhHInDQMRCWkvOrq9NJvxCYOT0xy+eY6rKfmfePUPf81f+yu/wF/5/v8X19Zaff/IpP/7pzxjGkaoqaSQq40/9gc16w2/8kR/Q1g1t29J2HU23MmPxtKe/rI13tK3EG742APQlkaJlE15z6L5m4GcZxlMU3jmXR8lOPmfAt8oNzvtpoAoItFqtiGOg31gy15vtlioj65REq6gtjBhtsSUhqZ+SLxacTCjoK/OGdAowFAVR5qWbjgZK5pecvHICRpU5Rp6C9E7ASbmGzg167c2wKKW5fxcT4O0uYZksVbDYeEq+nnLUCUhyCt4Uq+CpBLpEu5e/3AqNOm1W3vzKmC4FjaNzixyOCZKwiA/9inSXt9ApWPKqEK8ZUFlYit4mLQAocWK5bDTOZV0XtHyO2SrGBP64DCBVOa9VcW8OIdD3PX1/sHw7i0kyL7O5jPsR0JLUkh1GE348lszWKRATogmH2OaGsGoaHBVjCNz0h6mUqpT26MKt+3ZnHL3NXT+P47xu57wHXwjRvZUxXCpupcEwxVecHFs2F0HnCJtfLn3/V54WK+pkCBdMfQJ/TMRtnOeibrhqmpzvx3a5Z1VP6xyDE9Q7UnYDSDF7q2bhEmwtnEz1O9ow/3VkgX4Nnnms3MmdH0+ll7KdeSesuparzZqHFxd88PgBH3/wmLYoKl3HOEbaqmffBw5DBCraJjIMPau2oalrYgychm/cBxWPH6sQmq8/IST27DLlvNM5PqdUIxPzuJRc2tkVr5+QSP3IeLNj3O9wGqkwecYyBOfQ1cMe9jukrlldXBDev0FSQq96U8tPFJDSjLuGbfbAKGBN2ZfkiDUqWHul7KPz58KXtFjRb32e94yiMBU5oNzrmF0ulKtJfvxKQ3YnmbxgHgYFyPFi3jTeYTKcYxbqyWAG5vWzKPS8CHHLMowa2GLPnRYKLLmKlmB+XzrlYDrWBfPxuvCzEZdTGkDtlDrLL5WTKQytBOiVkJ+FpDpdZw6osf9cvvskrhd5yrCE3DdCUWwn5T83MS08XDQnMg4lOXn+zTmx3EWTwnk/5CvH4/cuMwBinWvyRylioYRk707g5maHarLIg6bFOUcMkWEwQMo7T+PNGNW2NZt1h3NCPxhYlFKy0Kk4FUcHscpzdV1N4JaxHRs/L0Jd+/zcPsufQlTmULvcnQlFUiTmPG0pzWF3VrVw3shVy7uiGrFIh4QXpcohsquutcI4Y4NoJHhg9FTqaRrPZVexWdUgJbLBWM3qhWfvHappklUXGtS9jd+SyrQvu2HJpVqeVzSH7Gnx1LF3R8kBVvKwghdHJZV5oaNoitN8LxEcFD42keMWvly24UV+oJfJfsvdcl5vmc+QvZdmhnt0A5su5bPaXn+Uh8H2CtEiBTicM3BIXeYNlP6QHII6G1c1pSk8eeKuykue5EuS5r3vzo3mJfLAV6QYA4fDgcN+z/PnL/jkk8+4vr7m86fPuN5uCSFOkR1V5Xn67DlPPvucw+bAtz76kGHocd5RpebVj7Z0OHgNPeKL6fTA1weCjiSa1xjArxX48d7x4OE6M1iH85BSYL/fMow9+/2Bw2HPMIzEEDI6nvLLrhGjMvSBvg4Ins3m0hLHHg5sLjY4L+zGnnDYETUhWEJXTYJoTdRIEply+gtkZbJswjEzWyGoYwi2ZIexZxjGnCS2J4ZxYs6Fiju0CIu4/bwxOrub3SWvroI6lyRbuRoQaS4vz2IhHs8tOR5sZvYjy/t8LbRAwI++LR/sU8nZUryYjj2AUhYcZ9e6o/ZnBnWXt83RffIw5logZq3JCYKdSLacLUCLSemBIkze8ia6Y1HfBeqc/nbXOS8L6brrt/u0gr20PXlM0mIzB0x4iykDLpGQExuXfDZ3gVimwMzj7HO/t21L07TmTYRZ3Jj6VW69n5K5HBszl5RI44hLikuKxAhjQFRpRFjXDQmlFqUV5TAOSFIOux394ZArermclDPfU7P/S5mn0xyYXeFNEVkIBnnxOXGWDBubv8ULMEMrb3P4cr9PnxbvZW6y1NUWv+vROV8fnzjT69Ed/Cb/O3tqMQlylQht5Vl3FZumphVhnRMNf+A3fL9RdhqRtsF1HThHP0T2h0CMievdjuc3N4RckS7EOM3hYyH4/ufJrLLcfu7aOa7WK9Ztw8Vmxfc+/oBvf/CYy82aR1cXrNqGqvKo5uodMSES8T7S1MrF2tHUsN972sZRefPofRuAwfKJprDrBcAkpWIQkLUX+34KITchveSfa+qW9eaKBo8+HBg/MOAnDXvi4RpNISv+JidoGtEeiCPDs6dsf/pTqm6FqgPX4NsWVmtkvTbZRI7zEC1BxUnclKyuZAPWLW9imLxAJQMXaOF9SxCnGGImVAgmuKGgCstglnIuR+k3dHn3U+HnHklKWBRkTx7N4Unl3oXH53FlPn4CSuS0iToDIba5WsW28sxFdJHsHa6CiJ/zGKURwgApZW91CyKTuqYkBBapc7+L5euZ+nauA5aAkEeoJuA1TuCMZo8Syw0ygzl2zXl+JIUgc22jNOE9SlDJoV3KmJQxKkHJgMa8JKapoMv6WvdDToSmrifcVbPyWde5lZqTY2e58+a6w/ucEiAjY6KQPKSYQ+W8lc5er1oeP7qkbjzjGOjHYQJ+QlxW8bRw+fceXfHgckNd1WYM897kz16ptTKvKCVXVLOcbDHLp2NKEy8uAJD1v04yrOV6KcUkdJI/YrAk0k5g5R2NE7q2BufZHQZSNCPc0A+kGHGKgYVACoGx7w3kzHMhhUBdedZdSxWUKJEqWP6fkJQ77IP3RKUNtrq0rLScrG3iT5DXZZr3rAy0Fa7ivdB1Dd6XitA6Ja7WqFO+pWI9L9UfJ461AHx0bt58P51lqRIuZn/M+6joUbD1dN7x1icnn+0A7x115efTFCpvHn1oQIgG8HnrniK7zmCTeZbVrqKqaohWZMBJIInCVHnv7dAXpce4L0pJLZw7RmIYCWEg5JyiEy32s/3hwJOnz9gdDvz0Zz/n6sEVq9WK995/n/dEpjyj7iQB/d1P8vpgzRfTa15n2oxf/8pfK/BT156PPn6IqpCiIf0xDjx73pOSMg6lqleYmLW9F6QexjGy2w4IPW3b8PjxBc6ZK9bN9hnbXUO1fU7QHWOIRB0JQ2aYzhOlArEysN5VtiA0IKls6JHkooGpMTDqAU2wPYxs9wMxKodDYMwZ0481q1mBdb6aBCy8om5WeueKCbO7ocbRdhk0e1uciDvZYjQDFJM95ojZTN+JTpUU7pvuAiSO8r4sW6WzR9AS+Cm5VorbZUn0LG4RX5vPXXpflZhlOWmH5s2QfF6RrauqsuztdY13Ds1eI5qBDM07rjALt3eBM7dBDvs+Ldp++ttdfVWArteltyjf5uz+ijjBn4AfKZrQkUI04GccDQTK4M+t8Dfns2XLrAl10xjo03Vs1muapqXJceNlPU8Wmgk0up30UbE10w8925trYtMyXj3EpUSVEm6ISBhAYOU87WqNihAqIVaO7WHPD9OPuH7+gv3hQBiHyavLe8tBpGDu2jkR7mIVZUUmj0GuUGJLsCh4OXl8ttKl7C4/a7SL0TtSfO6TZPE6mS8nipwcnXMGfN49msfNidBUjlocm67i0ablUdfRirARjwe6asWD5hGjE6rNiubqAvGe59c9nz070I+Bnz/5HBAOg1XAilnZWM6ptwX6LOfjctkISltXfPz+Iz567yEPLjf89b/xa3z/2x/Q1jWPLi+5WK0wRU459IMZD1ygriN1Jaxaj1IRQs3F2tM0jjGWEJW38DQ5/EiTTIDAJOSr+VGYp51ilT0VvOVCM6XTU4nx5FW7pn70Ibrq6eo1db1h7A/snn3KzWc/IgwHXOyReEA0EsdAGPYowiEm4gvL93N4dk1/s6darVh/9C3WH3+MrxukrpC6pgDaqjPYspQ5ihJUePTxIxcwo+T2kfk66iZv0aWiM1cPU6JYImgzXOd6QWXvnoCBcvRJVwsz8nCPJAK+Snis3HkJafKScgjW7BUjMM0ljynNM/BjzNb2hPIc5kWLKikMpLHPBr5ixBPUV1atTQTxHi8mokvs4bCzym4aTVYUQbRFXJsBRJ2U9RgFjRl0y7ABgFcDs0QTdeqpdTRvWY0TOIS3nJRlTk8qZAFvOK6Jl51qDIDNIE+IcAjKkPP8jPk38z7IXaT2m7vnbdE5x3rVHQFq0/4nZPncZICm8YR+YLc7EKMyjiYXjoBG8+qvvKP2lh/m4dWa733vfdarlqiRoCOqBvqMMVdR0iKrOy5WF1xtrqh8RVu3tHULKnx09R77b383V1WdQ22HMDKEYDKJljw6AlmfAMnAj82tMQQDh5Qp5Ey1FJyI5vI0Dug4UuIUnt/siCHQb/eM/R6HUpHovMcJhP7AIQwoQnQWqRASrJuGqmoYouKHRB81h/FZLsW3Qcm5DF0UwAdU/QzOTEANoFb10MDohXdl5h51veLioqOpa/qhZ39IUxn7FCKRtDD8CpTqdhlAmmhpfAYDaTk29M3Aej62AMEZ5bu1Bd1icMffiQh15WjbatZ9VGlqwUkEHRANVD7RVIIk2LtikCyePw4vnqZuaZsVTh2H6kDwEdGUwdn4VsTCJeijM2O/R1roDCkRxkAYBsahZ+gPDP2eGEJmzTLpmgo8f3HD4dDT1DUpKYfDgfV6zQ/+yB+mqjxt29CtVnR+9RoG+WM55uugo3u9Zrd+rcCPc8J63RIjDL3aootWmi4EywMSgiVlAlAtC2xeUikqYYyMQ6RthKbtbHC6jrZrCLGhHioqnxHwmMy6opoz1NuwOF+jPi/MBSpKFsxEckWsFEkJQhyJcSRGneJ0Z2xmFlcLQj2XZSwCkE7gxARqTMBDLkuWF8TSqjuRFotT6Y+l+3S5vTJLTbfEpXsifSVyuwxRmjxwWCw2mb18XE60Vp5vUlx1toJNj1aYrcjdi8pQi4khQhYyioK/8DQ6Om5q78n1ls+3AHyO2rJo21198jIGcVeI1/I6t44/bc89Ugm3LPtbSjNjLkBPSsnCrO7w9Dm91nKMlyFfy7w9t/MCvdoKr5jX0RgClTg0xlxqFyBBBHFC5SvEV6gTqtoTayvrjMIwDLmSWJqYf2nj1CbnJqAHmLz5bXPXI4ZevH4KeGVKAZRwy1vrYO6ktwT+lPlz3HPLT8fzSHkr7OFMb5WW8qApnpaPrnKOpva0jadD6PCWk6TzsK6I3tFcbugeXiGVp64OxFhxGALXu10urpAYx1xi6DjX6eLDPU0auf3HEpwULLxr3bU8uNjw8HLD4weXvPfoitp71m1LXXlTKseQZQYTdF2ummWJPB1d66zCUQl9eUtSWVHe5eTZBDPEyDLVb/HSoMggx6EKla/wzQrFE8bA6rKnajvCsMfVLS5FhIAr3pMpIVlhDLsdKQmuqqkurqgfPCf2A83lFRKC5QZSv2j03MbSYoV5rz3qs7JXGRubwrIgA0dZASqf874uZeLm9+njJN+d7In529K+u+bdW7EeZ+8elwGfZZJn8pNqTmItMvWGyY9lPBeJkMufmmXMKf9TygaoFI/6WwVIloS1VByyPEgRUjAP1/K5HKveXsTcthzKQs7lVSRBNc+MiJWAJyW7jioVAXfk9WuDrpNCm2XKxbZRwvAtZNTmfkwG/EyvLNqWlyz6pMyJ4qVyf2MoU4GO2VjHZFR0OaejOKHratquNk/H0cYjYrzCGYO1c4QpdGuz7thsupxAt0I5zpMmCKIWbrRqV6zalspVtE3HqjblcVU1XHYrK1AzjgzDQFKlHwf6HE0QyTqICFI1iK/zM0kG4dQS2eYE0zEpMctmKVrCao3Roh/63gx4hz3DOJBCJIRADGbkNv6YIyFyxS8FA36cpQGvfG1VCL3SYgMcU8rA0NsAfuZ5eLwCTa+aDinKtglqFO4y8yKbA85BXfmc1yXgXQaqS+jm0pOHrEtlfecupePYsyjzI13+doch+QQWeClIcAIEFZnVF6Q5/+5dNjLkYkVOFO8gurmnWKxfi4Iwz7PgPE7sNetby76+f7r/KIbbbVX0qGpeyiBoyYU12zPs3HEcCeNIX1U8f/6CJ58/5XDo+ejmxsK+nNA07cufyR5sbtGR7sisSLzs/PvoE51H7nWu9rUCP23X8Ed+8ztWbn30pOTY7Xqefn5Nf7CKP58/eUrf94Zcx2SeQKFnv79hHPuc56elbVdcXKzZ7h5Q1xU3Ny+oqpr1eo1vYH1ZkTTmxF2jTQYtDEMsFlIqG/wUMFc5xfmRyo/W4Dw5VKFbt1weEinBMESGYQZ+5ve88EVwLpdpxTxUnLgZlc8KdMphM6iiKaCa7ShaXEazt0xmPEvIo4AjqmQAyTaIUp1KVUyJz1a34XA/Y2j307liGWSml2s8TE3MwEEWQSz53ewdUxIoV77KzNHOMXe8rMDmWHBfeeraknKXZHa5dxb/zcnvxEElBvY0dU2bvU+sxKfOZTInAOOYEd8ikVsLqgi35XrHh8vR++lvd4WHLUucLj2L3ma4VwEfUwZGNeWNXNUsyONIKuEfOSfPEegjc7iALLYYkylt7XrvWXcrVt2KTbdi1TSEoSaMlpTUEp3KVGKyvETkKPeIKaUjXhxjjISUCCnR5EoFLq8553yR0kjZg8gSQ48MYxbMFom0S5y6iJiAXZ6nCFwoy3w5k9Kd16OKzl5cWYCNSae1cTRn3uJYlrnmnMsJACXnRrMcA/P9LWxuGA553N9ak870Fqio5gVorp3QeEfjhTa/6ly9xIuj62rcRYtWnuaio920iPfEYMaX/TDy9EVL7R2DZK8OXQp/euvu9/88M1VOuFitWLU1l+sV3/7ofb778YdsVitW3RpNFUGFfYoMTnNy9UAsZetdKXJADl81YMi8mXqGDP6+LZrXfIGByvdzn4pgVb7I+6ZkK7X3SFMj4gh7z6iRlALJCU3T4Z0nXjwkPPqI0B8Iu2eMLwKqIzAiGCBOisg4mOfCs6ds6wrfdiZDOMF3Hc3Dh7QPHyHeg6uQ7P2sWdE5bf1cWzw/mR7LI0U5K/Oy2MImS/gC9GEhO0ywkYIurfT5+hPscLKVvkX83IBDyCEdBmyERfOXcp8ugS8W8lCp2JXz25lsY0ZIVElxJI795OU9XbRqLIzLORwN2VEcTSMp9pbgOUUkBVTAJYdLOd1ydHk+OZCcullgCkQWA3ymyrbTE1v+PdJofZ4U8XmOipjXhSopFSCJucx4ke1y35RQr5gS/ZgYo3lNBDVQwvRrt5hZOs2n+6JxCPzkx0/yXzPwU8K4zPPcchnubg7srg8M/UgIkTCYTB4H86JLSUmSiCHixPHi+prPnnzObt+iJFSyl355BoFV07HqVlS+Yt2s2LSrnCeoocnrLIoSJOU5FkhZ3gkp4sJgpdTRSQ7xWekXccYnsj4xOgg53DXlPgaFVIOa0ju4RHAQQ2AXBvo8mYsXn3NQ1xWNdxPIVRRj773JUb5i066RqiGocJlgTBBVGTL/BfgP/sJv3d9AntK0Jd0hV1P4BRb+nHWHlKyoM+RxryqqusKHHGA4GYCNx83gLczRADa4Rx7/R9yvHL9Q/ll4/DAbAzR7OS6560y3F8EMLsmka4hY1U7vHE1d0VYVTVXhULy4KezUTe1cAlKlfxxN5a16W1KiRlSFoBEZ+tcZjV9aatuWh48eslqt+Pjjb/Hrv/59rq9v+PknnzGMP2cYR1uvMU6yv8vVh7e7HZ999oTtasuDn1yxWa9ZrTo++PDDyYHA5dCvL6RJtXx7QNqXpa8V+Lm46PiP/sf/OJpqNK5QrXj2+TW//3s/5/p6x5PPnjD0PaqmaPYxElOk780rSMSx3V3z9NnnVL5ms7ng4cNHNHVDt6rZXDasLzra7hGrC8F5IaWBmA6UJJZTFXdxmHMu2ZNnzPfdM8YtlsCMabdPyZNizicwJsKYJmZbNkHzkCADIZbqrwy8YJtnCCVfiilgMecXSilkRFIn4WsCKY52RQuRisHiijWVeN5ZGUfI3zN9v7u+v3GMMU0g0+SFIzLHo+eJniSRUjAgK9mzOxcsBKixygj94YD3Ym1VzdWWbHycN5fOqrFwLXFCGAPDOGRQSWfXazVUVzCwoc5K72rVstmsqKtqYuYpZQR4AuHcERvWo6cofxyDbmUjSJNgNwMJx6cdg0BL0Ke8loDH8rfl8W+DChIehjCBclbJIpFCIPQDGlOOlZ2r/ogrIIOfQE0p1pMigMSE84mmqnl0ecVmveGzi0suujU6BuI4snXOXL1ztQGLo/Vzgu1kMeQF+DkMAygcxkAfE84lVtmy78RROxtzS8DpiGays/DQw4F+GCYwytpfLKt699gBgoFTRfsoSlHRLmcBQK0KmurCAfB4rMuR6Z5LSS9bW/mKNgudTdOy2WyoqsrmaTQes9ttefY8MAyFGZ7pl52W8LRmy5xH6Lynqzzr2rNpHJsmVzHM66m96nj4aIM0Fc16TXe5Qbynq2oqV3MYAs9ePKetPIM3sEimGJqsRLzFZyqaclGf66rho8cP+PDRA64uN/zxH/w6f+h7H+N9RVuviLFmTMo2g9JzeGUyi3zjcx4fxTvz/tn3A9v9npvtln4YCfFtrL/5qZbeMHNIgCI6W6mnMtlTgJAgVYWsOlybiPstW42EOFI5x2pzgSSl9jV1syGOI9ef/gHP9jti2gPgdLQbjyOEBOLYDz3bzz5BqprDs885PH9KtV7z4Nd+HV9V+KbFdWukajPYbi4at22US+S7cD2FzB8FSr2qfLhM4ytLnM2Vvikh3CbxSAqTkUtvyTz5njJ/flvz0gG1mxucMvAz3U6Z1od5dmRDYh5T23ESPnvSWP6XUo0pTa809sT+xvL8FEAI8E2HjysL8yJQVStEIKQ9GrYT8KMx2P5TqyUBd97gHUmoOMQ3qG9ya8TkUc0KoSpOBZcysKaJMPaEfm9yV52QSkE8wVkOu4QQok0rFMtDk+dJzCEx9jk7r2MgRspl0yMllK/4Nx3LQ/Eeh/NwGPhLf/H3WQ5aqSAmrsiqee5FiCGHTkUDeDQlxhAJwzilZigeLc5HxAfatkZydT4RqHxNU9dmbHzUcvHgkrZp2DRrLrqNpZbA4XO4UvDC6AzsFGdZlyJKiCOu30/5P00PcdSi1JXgJBe6qSvMw6om5kjLtABJfa7ilkJk3wj9zjEMIwx7Um9gSHCO5DzeO5q2Y9XWtoJL34hDfYU6R9N1XD1+j269Rp0jeY+KeZaFFEkZ6PzX/vV/6/4GEph4jdPZ8U/nxM0TiJKNkA4DfRpvpc9DVFBT8L33NI1VbBqHHvLcP7rmLTkwA7gwg9CU6n2L9mFNKZzDFSM8x/uATvndCnpc3pT57Pk7A6HsHinrjN476raha2qapmHVNqzbmkFg54Uhg3dzauep4xCB2ju6yuO1Jq7XNFXDqAEXK4YUuNltv+qgvQa9Jg8/2ohu70q3riqw2WxYdR0pmldkXTlubrb8xb/4l3nx4jnbnTKEyDCGDAWYESap8vnTZ9zc3FghiBA5bHdsNht+84+OVkW8aWi6lqZtZ8P8tFedWide87F+AfS1Aj9V5Xn/gys0NWjcgFoZ02dPt6gK2+3WXDALeJEZX1TNiLJYdYAx4ZwnxBGL023BXXD5oKOua9brhgcPW6pKSDqQkqHzlg2/JIqeY5dDTgCVUqQflX6wuF1k9mARrUErQAz4CXNpyJKLJkXNQEtBektlIvs7qYWpWfytEoJVD7AqQw7NDGoCgJRcgrJYj6wtKVkscirXcWTwoTTWjjHd+X6tm/bM5jZJEXBh2lCXNGPiOVHg5B2jUzU3n701SuLH4slUQLcpJCdXe5vCAFHmhJAldGuus1asOj4n1PPeU5K1FSZYkvUuZcySeu2uRXknq3oN3rX05HmZe/oyBG6ymi6Ov3cASLPnVF4TxfssFuAnxqmKVkqzl5qN+Vz5bBmeMF9ap1hzEUdT1bS1VdVpfEWdK2QsrRnLuNv56/mqZe7E/EoLYZPcBkt2a1ZKN7XJlJmQ49CXfXoauve6HlZHMOxCGbG85GUdnMyit8XpF9e1/nNU3pL3lQqIdV3nJJDm7TCOIyWfEhzP/zP9MpCezJWTecQ8b0ty58oJlWOq5uOqHGpZWSUa31Q0bUXbVIj3rBpl1VoizKbyU3WPxT/MHE+Pb19+fQkvexndCoWdt6vp5Z3QNebtc7VZ8+Byw4PLC0Q8msxLOKXEGJKFZpBDb/KeIr6sfwCzqIcUpzwaYZGf7L5p6YWyfNQSApDFmrxk7Y/CRcGkdak8JEdyQiAxpmjVC32Fd1A3K9oVxDqwb9eIq0HMKDZ3bFZ21Ph52O/Be/qLC6qrK+phYHx/a0nyrcLGZMAp3o0v3+ssjMVuM+8BSyWleD5IbsqCiU9Pq+UAkYyPL/aPqWN06rOpH/MRC+fMe6ecfWm+F8u+mD2VlunPVclFQ3LYU5FHNE1AlmZF0/aySIoBYjAwJ1r+CXXOcvygiFY5945YXp8c4mVeQ9ltIwVES+hzhXmu+wJX5RDDBQA59Vse7ywAWe6+AOJQFzOAZGBEFANzhmihWyaXZqNnBoFKbrvi/6Jq3iCzP3buxaKw57c0i2P3RjFGXjwvyqtdvOQflEmmzB5QOJxUNodLkZWcIkJzeHuckizD4XBgu90xjpUlAc/ho20dIUHlTfuvfWUePlVNU9V48VYRrawdxJJoy5xHCrDQzZhzOOUk3iIOpxGfC6BUAnVOUxGc4HPJepUMPgrUTvAC0QlaV1BXSEpUOT+mLAy3JivnhL8wyTGIoL5GnaOuG1brFeuLTa4mWIO3lRJ1Bn7um0RZOPgsmOvEWOYDjlINiHlIlaIlRe4rekTJE3qstM8vWxqzfHSHRHck85ZLnFYAux3qVRjjvPnNOW8WG8jUpHKX2ePHueMUFsX7Z9KlFu08lcuBqbrfVN1LBU1CJYGU3nxf/0Jayqgc89IvpJfJQeWbW19ZNIlvajQlrq4uefzoEW3TcHmxoakrBu/MeWGpawGo0g8D4zAw1J4XL17w7OkzxmFkt90xjoMZl1L96sdden69TN/74if/0vQ61/56y7kLIIlhPHDz/MDQw5PPXvCzn33C8+dbnn7+lN3uwDAEU9RyqJedm6sSJCHEA5I8h4PwwlnsadIecYbEKxdsLh+YlbCt6NYXmUErsliZZbCHcaDvhZQi+/3Ibt+QsgWxLNymbqmrzh5CZRJ6Fql5mHIyZ2Bp6cxsC9c2pRg1e/8sPH6yoHYK/JSQGbuvXTolJYxh6p8QLAeL9VNuV/awSdmU8umP/9/3OpQF6DyywmVIvvSwnrSn7wdijAjQ1LZ4nHes1+uccG1k1/f2LAtmP3noaGKu9FbKWqbsNSNIbQrMqutYr1Y5LLAovUygSownZcoXXF0EA7F4PYW4bDJH4EVmysu/4Xap+LQAIoq3zxIAEpG3FpaglLmVgciY11up2hXTnGT8jo6YIJcC+EkW+E5yWFUidHXNuml4eHHJh++/z6rrUA83wx43DlR1Q9M0U7hXQf30pL1RlaCJfRh4cTgwxkQnjouqQSgefYkkZvTuY2bkYyCkuWJRsfgvx+PYs86e2f6aF3XKgFYJQ1tusMDkDTQrc7mPROYsoHDv/j7Oeeq6wbmKi80FH3zwEavVmq7tuLi8tPwtMTAMPSlFPnvyKdc3LwjBLJpIer3Jfqavh+4QdrIMCDD5G9Tes2obNnXFuq5pnaeZQM8SKpAgjrmypVmpcUpII4d+z+4wsD/s6fsDfd8Txxwuewfoc++kQA6V3GQL5uW647vf+oA/9PFHXGxWPH6wYd1VpCQcejO4JLX9QXy28vrKrHaqDGMiDSkDHz2qI0+fb9nuD5O3zxzKdN90DB5PCjZZAdDC1WafKifZY1IsqYjWDlKid/AsjvRh4MLs2NQIVI6u69CYCBcPGR59i7HfE7ZPGW4UzeBukSVEcjJfBzocGJ4/I/Y9208/o7p8QNWtaB8nOlcjvpr2sdsSdWnxUokpoE8Oq1hwv6KI3urllHMahkgaBmIY7RzPrGxWVc4rMgM9pQ+ne78l1EdQ6pw4eZkhYzIICYsnVoqVXlBc4f8akGRJkyVGCOb1PNXKUoXYo/GAhhGNAR0HFHDErJVVuFqoUg5x10gi5iTYlmNSEAMEYgB1ODciSUByzh+J5pWRvYDAgAUDiSxJtBQjzzgShhHE4aXGS0CdklzIYYkWLhZzEYOSS8Y87szzee6rvHfK7FE6VWc7WXhvYx2mqGxv9vmveS3O3unz/HHiLKG6OCux7pylYE8GClHAr+z5s98PPHt6g68KFzZ54OrykvrBmqqpqKRjVV+yarsM+ljoNdl7GjWP6KIHxFxa3kQ9q0Qruc+KPVdDIBz25qEcI2kc8hx1+VU8r+yZo1jIoqZEHPZIHPBEVm2FXqyISRm7xkpbO8emrWlqK/EdolVAUsgGNujDyPPrG/ZjmNZokWm05BZ9W7SUQUs6jek38jjkqmwi1JXti945/Bgs6kOTgVv55Z2nFEH34qicR8jG4jy2MYZ5njMb1o/NnLfbctz0E961RJAWOFYpHDL/cLpHFXDW7h6yvK5Jqaqarlsh4nLqjOK1W3joItfXrKAiQq60a/moRBydJD558slrDszrk5x8fpvSpqUWsc9t1/HovfdYrTd87/vf5dnz52y3Wz598pRPPn1iBaBy2ghzJsjJ8ZNys93x6ZPPudntefjjn7Ber+hWHe9/+AHvvffeHPaV+3DWGX756esFflBErCzzT37ynBfPe558+oLf/Z2f8vzZlt3uwPPnWysxqDFXFylhRVgIhyZijkUexwO73RYRz812xW73gqapUfmAR++31E3HerPmW9++pGk9VQV1Y+6ZJhgZiLDfH9jvPCFGrq8TL16Y10PxFnHecbG54OLiIltRa6qqnoSeZdWDGZ6eahcYe8kxuaYYMwEQMZVyrDlwyZCfyWoyH88MNk0ePwvgZwIy7J5m2Y8TcPBv/5v3B/xMPHia5dkKmJHT4lVlgpKFu4WY2O13E6jRNDWoUnvPowcPSJq4vtkSYmCgxExna1GKhDBQ8rUU4EdTJKYAqlQ5n4/3jqurCx4+fGBhL207A2x5tIpXy20q1oKcJ+nE5XwS9ibmLQugArMi3AH8AEffLz177mrHEox4a3l+8vyzJH9jrt6Vclx7MlfjtEg6rsebkGleTGBNyREEOVwvRtR5Kue4aDserNZ89Pg9tt/7Ptv9Dmk8zw5b9v0hx12bgGvG+7xBybzJW8nYhKTIdX/g05tr1nXDylc87NaI5LC7GElAnwJbjWx3ew7DwBgiQ05oGGI4GpNln8/Pl0XYsiEULyZMcNasHEvRBnKfIkx5j7IMRvFkKvcYhuFeh9I7z6pbUdctH7z/Ab/xR36Thw8f0bYtFxcG/IzjwP6wI8ZA2zZ89tkn9P0hW27PuX5+makoKhP4k/eBrq54sO64bGuuVi2byrP2DnXZ7V9zLpDQkySC1uAS4oQx9lzvXrDd99xsr9lubf8dg2YWN6Urf4tUQl2Fh5cb3ntwwcPLC/7YH/4ef+wPfZ+2qXn0YMPFpmEcE4fDwGGwEtjOg28sr5cVeKjp+8DNdsduNxBjz2F8zhgP/PTTZzx7YeBPMRhMRuP7Isl73YnoN3tG5nGcQDV7OTySFU8cJGf9snXw8/HAdtjx2NX4SmnFsaorLuoVXgWfIg5hHHpunvyE5zEShgMaemKwUAbnlCqLImm/Y/fJJ0jdoK5mjEK1WnP5fYVmhWtqqrqhapqpfbdF9uUne1anS5DEFJjifTB1tGmRiI5IDGg/ED7/nHBzYxWkug5paqgq5OIC2pZsPzsOFcv0ptUxX5ecKl0cc3UsE+jnstYF+CkA3kLQL0U6VHEpIKk30HUc0Vy9y0nx7FAIW3S8QcNAGgdifwBNuHQBEhFvY163uShCGk1exQCglPNB+jjio0fUZUt+QpzD4/GuBvGWo0dy9TAxsAciSQMpBAiB1A8Mu4MBqOIxzx87N7kZ9BmzODCXIJ+9ewvgo1lGkklWUgMHFnaVQm8DLwgx8vTzktvgWGqZP5sy7J3Q+AonQtc0XK1zWgAta9NAshgSIUXGELm+2dt6iuYZJOL4zkeeB80HtNLRyiVXq8esVys8ist8NKQ+V0dNhKCEkv8oWqEbM9KKldgmlxnPBrU09gzDARBCVeGqKsufVu1LgTEmAwMwwL/MUT95C8HlqmHV1hnIcxYWSA4Nw6Ifdtsbhn6fwSQDGMZD4maM5pGW1wNiXs4lX9JbocmqTkYPnYVXnswlJ0IlJou2dcvFek1dVewPPSFaX9dVTVM1ZsT3Vc6HI1TiaaqalKCqLYxOBIa+pw+JNPmrZcCk8MWiB+UPEzcoRtDiKrQg875bPl8+YclLjo6fqRj6VS1yJFQBbRqapuVic2HAVv3c9hOX95QJbi7rdI56cCLUTY1PQCWsWw+V8MM/+L03H6eX0mwMPd1N3pbIafzJrr65uKBtW2KMVHXN5mLDbrvjL//lv0qKkf3+YGHgu0N29vAk59GofP78BdvdnrYxR5D9dstms+Y3/+hv0DVmrO7Wa+q6AZhSr8AddpNfMvragR8wl9L9fsfNzZ6bmxu22y3b7Y7DYZg8WSavAWzqqpR45LzIFFQTQRPg8B52O08IDf3hQIwFvBG6rqHtKppWaTqQXLYd8jFVQJwnBAjRM4yelCQjxOZOt7louLzqLL6yttLU5oaXgZ+Tyl7Ll+UJKaUImd5jiotQseLls3xGnYpAmOwkoAbqWMiYvjbw87XRBFLNcHYZt1jCieKcU8aJUNfm2nyoewvrEhM0tGRDV12AIEu3qulmGVSx0K6SQ6iqqpzQORWd3AS4CdBZSiDczZ2WtISqRXLiPaYTTj13brl5ynElqeXYHCVNXhxffrtvMoCueObMc7D0bwmDmw7mDqReZqVUWbZ/PteJUHtH7S2R3Ga9QUTouo6qrvExWK6JnOxbSeadcNoH+e+EbeL9OOJFcnz5wh0/84yUTFCLKU4J1c16lY7WV7nH/DrubwMe87Zfzit9MYFTJ+OTvyshEMt7vA0qgGJVVbRtx8XlBQ8ePJiAn6qqGMeBqq4IYWS1Wk8AZEq/5DvUrziVEBoDDvJ+kkGgqvKW3LGuaSpv4V4iRBbWwxxqIqWqhZgSFjUyhpFhHBnDOFV4KVbn4za8XXIiNE3FetVxsep4cLHh0dUFde1ZdTW1lzxPyz7AxKfFWRJzX1W4UYkJxtFCwfb9yBB6dofBQN+SDOPWE351KuE0hSUc/bbkEZPMsHyfLoJm7CgI7DWxT5FeHAE1Yc05KlfhsYqmzeoC8TVVu0J8g/icA0ZGIGUg2u4bYiD2PRITw3aHv94Sg9IdDsQQwDnU660BX+a/uwUDTeFecw6z2dOnPLfMGr6qhbHEkXQ4ELdbA3sEA0pUcS8plnAa+vy2+KnXhC4CvhRIWRYpoE/ZC+djZuAHjUgO1clJZHJ8fA4HxnIaSRrRFCCOEAZbn3GwvwUkBVxKc14e2x3z/XPiWU3IdEzEqUNU8SQ8CmJ5rsqYmMd7gpwXSzJgpSnNBrtU5IDylPNdi+fT9DoCfYqnzwL8yUM0FbaZ5tZib7xnDqNqCd2PQJ+lOJOBKzDgR33Knj9uksehrFtAS5iNGZdijAbKRMu16cQx9BGSIOpxVNS+ofGNjb+GgpKZN1724k86998ULZD5CE5wKY94Pi9lgxXZ810kt93n5M7RACqTg2z+lUTNLof81d7jvGRgr0adB2zNFaBuacwsniIxRfqYCCX8KSOg4oSqclPBjPsmKW2YgMMi8x/zpLI/WoiXhTDVVcXgg3l2JzWPoJJPU0oGnCw/iTMQS1yuBnli1F38exfN+s7iuyVP1PnzsR4xf5ZJ55mvMH+cZeyUnMmx2SnA5eetvJ/C9+ZdRY50soX6gpKNlE4sp1hT5aiJ+xvLk5Ycy8Qnx74JF7gVNj59OJbRq6qmripSSjx4cMX7773HbrXiZz/7OV0GhPphoHhiLtswDCNxDIxj4MWLa54+fcY4DhbqOYw4ccf5XW9rSMeOAy/Zr15nG7tvFfBrBX5SUnbbA9ubHdfXW1682HLoe5y3PAQWhysWopQiIRk6bsy2VBUyHgpkLxpza4sxcTgcCCHw/PkLPvnZE7Y3W5wPXF41rNYNq7UBML4CJCASbMOWiK+M6a1WNUnXaLKksz7HhLZdhfOKeEVcBBnziOVcQQUAKBVRJAM+gCVwTPNqywzM5eRwxxNuZrggM8YBFM+ilBwpzpuUJdqzI8qSmhL13mfWvFdQmeC38sFMj6RTOc8QoiXxTom6ruja2iwubcflxQVjCOahMQaL0VVIY5iYdJ0tHLU42hyXvGobVqsW7xxd1wLZoyqH9YgI9cKzZKlElVHK/1NQoqVAbnmI5qSn00IsHjFSYshnEGjZL+VzYRTL5M6l304BnnL82wXvTHEqz+qirbeS8CzvDmjKDFsEvM1376spGbMmIBgEU1c1l5sLurblMidaW3UtXdvQtDVjtCSIk4cYRbSUIpLOfZ77dI5n9oh3jCkyxEgfRg5hJGmyKgc5ibfHUzvJlh17Pqt6qcfMOntUHYfhzUDPDMoe0zIP0+LLIwvmEYD7Fl1qnBPb4Oqc16ft6FrLd1aEHO8rA0O9p2kMuK6q2oT/8PaV+zO9AZ0MhvOerrE1c7Fe8d7Dh7RNw3urlu892LCpKz6sHOvG5rybEvRaEleJCi6RxsQ4BDQq19sDnz675np74Pl2zxijhQoUxqfcpa3dSUuB5nVzZDkRurqirj2bruO7H73Pr338IVebFY8fXtB1FXXlaBtP0xivWHV+qhIUUyLFrJDowHhI9EMghhHVwBh6nr245mb/gqfPr3PevkWbX3cs3oDKnrLY5LE95vjZKa74IoSojNtDfqZAiJZr8LOnz9mNkUMSxlUHDx4iVU0KiXHMec4qxdcO1Yru4orL9z8mjD39/prD9jkpBZxEhGhsu6qRqrEwIhE0BNIwML64ZvfpZ7i6od1siJsN4jyubnB1zWzht2co2RF1uUeqHD219YfOT60WhhafP0dvbhh3O65///fZf/YErWv04QN0taLebNhkPnacrYIjfvu2PGFFE260JMe42t7FqmYhBqpMVb/MLDAZtYo3BxrRNFhIVQz4ZMUoJJWAKSUNO3TYQxyRMCCaj0+DvWKC2EM4oM4jacRn2EVLcmeFKL2d5wSfGvMC857kG7xvwHnEC+INhNMwoCGYR27o0ThADJaQWkA8VF6ovaBecJWgjSOq5aTB5ZQFUlIb3OXxk/tmAoCyZ2wGAefKgVBiwO5zPUqWaYzuBn9cbqj3jsq7nDPF5Tl7LI3by+WAKkVdMfo5KmeAwsW649GDSy4vLtisW7wzqSalQBwN1BtHqyyqmojRQtdTUoJGgubiLk6oavOGl1JiXBPjMODGkjB95imiEaLJo2EY6cccyioFDAG8FLszlo3HkYiMQYlqxTG62oCSCqVbtThvPFYyYJ5C5LAf2A+BmJQhBEI2xnovb8/jh6JUvySMZhJS57FyMhc48AWQUls7Jcm35Rh1VJUnkQjJZDef8+XY9ZYhXUX+1xkUO2njXfzoiF9RIPQTAGgSO+fVc3vPzWsHUE25MutgqSxi0R1MB6m8Z/TZM2uxJss9CwCmySpLh6hUHuqqo856+H3TS4LjTo758nLoMQyYr7JY74qwWq15/4MP6Pue6+sb9rs9292Wn/z056SUGEab0yHmojLOkbJx+fn1DdXPP2H1YsXm4pLKV6zWK7793e/wYZazyXMLXkcOWg78Gz7rPex9XyvwE0Pi+fMtz55d8/mTpzx5csM4KFXlWG86VJXNxdqYWAgMY28DMgzs93tCiJhMW5hA2ZSFEAI3N6Mh0D9XnE90q4aYBjYXLZuLlgePGnzdUteC8yOuGkES4kfqRvEKvrIKYabLz6E7VeWoakXy8eos0Vq5f95uFp/LbyBEpswMKpP3SbH+QFFCS0+5BW+Q+T2jioXXHQ19mev5e3Mn/Xo8fk69lGJJoFmqKFDQavt9DCO7/Z5qGNhs1mzWnbnXInjnSTGy2x+4vrnJVdACYRhRVersYleQe+8MeFhvVlxs1jgnU06glAIhGGIrImzWa9tUjzw8CvhTxm3uXIvfNj7vpg1BpucAcpUSPbrWy/rmFPRZHnMXwLP0knpbZBYbj5YS6nGBIDqTFiRbMRW1MrNVrrbmvYU8ipDGkPsF2rrh8YOHXKzXPH7wkKuLDRebtcXIdh0xReo6x70vwB9FSaLErDBIlS354iybfttSOQdVRZ+tX9th4KY/0FQVVVXRZQbsnaNFaes2x29ny0dKExi4LB1f/raxkQlkXloApz6T2Uap+aGLRadwAJa/c/9J1o/a44qXW0vXdaxXGzabHJaaY77N+21N0sR6vaZtO9q2BRJ9//aEtjN9eSrTrvKei5wH7Tvf+pA/8Ud/g0cPrrioPe+3Na0XVv2Bq+0NVQyEcYR+mEBzcs60OAQOh5HkIp8/3/L7nzzh+c2eT19ccwiBMUX0yJBRaAmIvpq+yAtjSvruhItVx9VmxYPLDX/017/HH/vB91m3DR+9d8lmU1N5x6qtaHOlrouLCrx5uG63icNgAm+/O+Tcf5FxOKCM9MOeT5484dOnT7je7tkfhsnwYPaXryJmvuzZ3S2Pwak7RLPXCDjxiKsAxzjsef7ihmEYORx23GyfM4aBFy9ueH4IjEkYujV8+CGu60g3NxxePMONgdiAb7zlL3SPqdcXxBi4efYZ+vlPLX+O9kiysC+pakvK6izMQfuRFGH/2eeECL6u6R4+YvXwEa6qqC8vaTYuewLN4E/h16UvpSBAix9MycrPrlkJHgfCp58Rfv4JhxcvePKXfpvnP/kJ2rWMH75Purpk/fgx37q85MHFBSK2vxeDy9sEzyfSiO+vQTyuapA8Vg4Lm3KS8BKRrJAntUIgwxDQ/SHnj0uo5tByTfhcwl1SQnKVU/pr6G/QOBrwknIIY/JIrBEqCBU65Nx3MVDloJOULMeLKW4jcTgg4qjb1kLkvMe5CvUWBuQ0j4UmwrAnDgfzCht6dBwgRrxG6gwQNV6oavusjYPWE1XACy6a/BPGqTL9oqqXTnawKbSEyY62qMq08AJ4G+CdCFWdVZsjOXnhW5TvWzmhqRze5WfOgM1SVZUM+1glJ50wKydQiYVaP3xwybc+eo+ry0seXq0xESkQw0Df780DfxgXFWnNZphUGeNIH60iX+UdVdXNyXezx3p/2NEf5EhWVHPzASIaleFg3o0mprlccVWg9lA5VMCSZyRiUnZDTx8idV1TP7hk1dT4yuF9YhVqxhBw+wOHYWQMge31DU9vDgxj4MXNjsMwWv+8HWefqe9hmVNLFuM4QxoF8DHQx1FXFXVdUXmXQ/MXRWWyl1JdWcEARXI1OrU+z8CPheyXAj8y5zQqc/YVc/cuXvVy8ONlYA+3vrMQRWUcB8hydCyeYFjlsqquqELI+5wWuHjqKVeSOo+REHr6IeBqK6qw3qxfr1T5l6AjXfYlQN79SKIzTKhavPuEi8srLq+uiDHSNA1Xlxu22y1/4S/8JfbbHbvdnpv9gXEwQwzekzCA9tPPn/L02XPapmEYRp4/e87l5QUqcPXwirq2MGlfGeCc4nG157vpq4M/X9br9WsFfpRczrzk2hgDmgrSnhWzbDkKweM8U26WYRiM6cHCHS473WZFPKYAEQ79wHa7J8bIbnegPwxUlWccvA2IF3A58WW2wIgDr6ZsOlmw/JIUz2chZ0oQnZZS3ezpQYnzd0wxzmXpKVilMFkCx3ZelqLm7ySj9vm6Cy+VI3yzMKXSx8UrSsH5kjDu66GlF0tCp3wGphQzWQg16ZTkWbPVQJzDV5anJ3nPOAa885ZgMEJ5KFFzx3RSqhflssW5TKNzwjD0UzhZjDbXSkLeueNmsM1Jnkfl79yxZXMpLqTHi+x4wZ0CP3eBO+X9LoBnefzLrnHfNK2iLNAvgc78S1ZkUi5bq+aB4yymu4Amp4CXdzaObWOVvCxcMlce8FayXdxCuZQlMr+0Tsh0P5c9fqyEvFVriJorbqSIS25y3y4AqYPs+gpLq+LpuLw8aejr9f1RiNuttXiHZ9B9Ul5Tkwuz85N3lI1Pcf3NFgnc9LvloXLc2jyOuuDLb8Wvsyd9LcrcO0W3QRZZWDDXXcfjhw9479FDNt7xoPE0Tmi2jmoc8KOBlc6FLPHkxZUTiFqlGhjGwK4f2B56+jGYB8l038ViWYLhy4U6GSyOW31Kyt3ryYwp5sm0ahsu1yseXl3QNRWrrqHyZkn2vlhnhaoS6nq2xhqQmz07gxBL4v9saT8MA7v9gUM/WJgXS6vr/dPLhDFZdpuQARSDiKPaWPTDyP5w4OZmyzD27HPy+qiQvIe2Q7oOHXqSx8JhjcGZt0fTUPsaHxPVYYdvOkvom9SAPxR8BTkRNojlcYuWZDns9qQ6ULUrQtfj6oTvwhRapzp7gM75VReDf6Jglzkz2ZtVIUa074nbHeFmy/D8Of2zZ8SuZVy1RCe4riOOY5YZbvOG13Gd/0qkal44LiHRwj8cGCDjBEeiklLkPRJzGE9Mg4VphQz8kFERNIMbmr0zRgN+YrCkzjFATrRs909YaBBoCvbCQYocJYfOsUEas2eGCL7yaDRlxZK3ZQBjEdJFDi3TlOz+KZiXUgbqRMze47KYKaUEkJrC7BGLWnPzsGqaOUR5n/bxCQhc/Lj4W4T5ue6LpBhx5nvNGoNkJMpaULw/pkIuR08iR/+WcI7SdicWKlZ5R12bR23X1tSV5Qayqm6lim8OO8/eGaZ5ZL0lh6DbepmNURa+bcBPyElkS5oCUxfkKFWEhXrF6QlcfvhSlELVZmbC8pEUr/pJPilyuPd4MdXQqkXZM8eYCMPIMIzs9z37fpj76i0sxfKMSzlcp9stR3VxTpH9TmX2SbZeyOqTzGSAkOlkRQc79tRcPt+yv8pPd8l5R3vBy3T8Ze4rKe1crqTTJpRUBkokz60j3aF4yi9l8pPrSJHdzUCfcsJxn43A981XXxripEcHnfx61Cm8coIt+3w667aPmHnFV6gqV5eXPHr0iLZtuLy4oG0bQgj4fpiuOY2CKsMwMiTz2ithXzFG9rs9IYwmo+SQ5dcSaY8Y4sueS6Ynv8ur+quM09cK/HjvuLzaoOr4Qz9QPvjQLHUp+CMru6oBRMMwEGPi+nrLp5885XDo2e8Grp8fGEerzFSSIy8F0RgS+10gBmF7HXjx3KoWdZ0wDmbFqSUglbcNx42IjKCQ1Fxcrcdt9xOYPX5hsUmU38u7w8K6yIBREVJN0LJJMQtLRxMkf56/y1kaFu7Sx15BeutfyPla8rvlEHpLVaH0bqXtaMPHBPMJZOEY1CiWi/ISzLqtztE1DXHVWd6JHIupYLGsGezx3lB9cULXtNR54fV5oZaKVZrzQJX2Oudo6ob1akVSpapbfG1eRHXd5LKWypjzX2gy4DGEOdwwaWHYd4MGp15QS8+P0zCwlym/y1Ckt0U63T/bBpwgav5PJdZ3ygOgal449aIcewExnbM8Paq0bcPFZsPlZkPtPWHoGfYVKY5WkthbCem2bhjqYIpE0SsNxShoBviSXLPMLRNiTLyGIUX242j6jYDUtSlDJUE1ZS89BtYmTy93DHZpnrxLXnQXo52ugZXxvbX5nAgAb3UMNRFCydWSK3IsQKfp+cRaV1c1XduxWq1IMbDLffCSWQgv+eVMXw9VTuiainVXc9HVXLaeq9azqirWTW0hjQ5a73Ah4IcBt9+bZ4BTYpVQgSEKh+sDo8Kz51uev9jx/GbH/jDk6iXTlpfpZcLY4m89EZBfQra8ZQqrWLUN33rvMd/98D2uLtZ88PiKy1VLU3vauqKqPL4oZDnfRamAVTnoGo8reEJrVXj6URlvEhpGxjSw2+8ny3Q4qnr59ubzcTgSHIEjRQcQmWpB9WPgxc2W/XbPkyef8KMf/ZD9bju57LtcxaftOlabC8axZ3fT2J7pIOkIKVBLRV1bQuDVxQUxvk8MI8PhhuHwwuQAl3kVjgq1UuEJdL+zRLVVxZBAQ8LVtd0DxVUe1zW4ti6ahXkBZfVymfGmgBIaDubNkhIcehgD8fqaw89+zu6nP+Nwc8N+e8MhDGgQwtCThp44GHjiY8qgA7en4VskTZF+9xTEW6gXjqpu6bqNhcp5pXZqpbJTwIWD5VsZetLuhjgEQhgZxgMpJZq6ouvanKA5GSCjiTgOxDjmvC1Z6cYS7Q9jbwmwkZyI3OPzXmVLLloIljKBCYjgksdrjdOi3hdpLANVmkhpJIbeQjyGHWE4WLhRHIkacepRAra7ulzaPEe0xwzyLJGdsnHD8fcsdFrVI5Yi80e4b9AHrC8qf4dMXX62JNuCUDlovCXGrlzO2aFKKchSGlo5k+9TBhRAqJyFxNWVwzkhxpFxMA+f/W5L5R2Hw4HDfp+reJnRWzWHeeXX2B8Y+uyV1zRUzs3pB4ovungzhIp5M2tdo0npx5EwjoQECWehfSKWpL2uTf3VyDCa/BzVUk2PwYziu35gqCtqJ4xjb3tNbTKad45V21B747vvPwrUdcPNbs9hsPxwmgf0bXFUk0NNztTpm0nbmwCg2TjLURiXhd4YX9KcXzSGgBNhveoItccPIyr9tI7MizvnuVq05MggeweY8kWgtOrxWS+HS5fgz2lvSH4cM+ovjdsxxgkw9G4B4ExAV+4X76kqn43v9qygE4j5tbDbV06YU6Dny7Vouf3CjCuAUjctDx89olut+PZ3v80Pnj1ju93xk599Qvzpz63al1ooJEqe546EcL3b8cmTJ2z3e373hz+kbmu6VccHH3zI4/fey7qpjcGXpqyH3PISu6eF9jUDP57H711xdXXJe+89JgTNml6unlCSzGHu3H0fSDHxySfP+OHv/oTr6x1PPr0mjJ/BbrCS7ylQlmGZ58MQuX4xUFeJp58PfP5ZYDhEus7x3nsrnFZ4F5Em4lzCuYBIriWlbgZnltIayl3lJeY49FIFoIA8paSeHF3H9sqCFOsCJEl5gtlGPfOQnKU/K21zDHJRg8HU4KKszkpfUQDfFp0qxXKqAGdlwoABZtdTwXI3YZaHGKMtFhHL0YJ5X9XiJo8g525LgFVd5Qz8gq8rfEZzNSYO+z0hM0LIFqpFO7uu5fLyEhFhfXHJen2B957Vak3bdaSU2G5v2O12jOPI06dPuX7Rm4Um6uQ9VDwplgr2qQfP6d939d9d+YGO+vUt0BJIUTUX5iUQUjaPqAaiJNSS5rUN4r2VfA9WVc15R13XCLBZrXl0ecXV5QVdXTEedhw0koae2okpd03Nqu0IMTGmwFDCA0WwZANA5cD7rGjM/VqsZQHlEAM3fU9QJQi4trG1l12qi2yqOQ+WMIM9hUEf9/ltwGc5XrNnX/EUm9+BKas/J+N/Vw6n+xrFpJFxHHDiGMfBSn2mOFl9zLNnBq7btmWz2TAMB1IMvLj2hFDix5fXXgpbenTP16eXzd0zmPRqmvu88p7LruFy3fFw3fLeuuG9dU1b1ay7jsp5qrSiubrCKcS+p9ntSNFy3fTjnpgiwzDy+c0N+zHy6acv+PSzFzzf7s3jJ865AIqdKXPO3Jqy9+mtVt71+XS22P4s1FVNW3su1yt+/Tsf88d/8H02q5bvffQej69WVN7RtRVt7bOgmj3XXLKyu2JK1kWnxMoVcxgiws0+cdNH0mFgDAee39zw2bMXhKSMMS6sim9h7i1EhdlLd9ErIqgrYSJCwBT3bT/w2dPnXD+/4fd/+Hv8B3/+3+f586d88Ogh3/34QzbrFRJG1usNm6uHPBsHXrx4xqAZ+Ek9pJGrem0ljMXhKqHpOlvbzz8nPnMQAkFHglquPK+KSyOiAb0eifEGnCPc7JHn10jTMI4jIUZ8U9NcbWhkZbnfqgol52iTnNZZsBw2KScz3u3gsIUQ0Bdb2O2Jz19w89d+jxe/9wf0w4Gb50/ZD3vz6j3s0aYmHA7IMOLHZPuAP5Ynlu9vg1Ic2b74ucERamEgbbfG6yOk6XC1o608tQhBe4ZxR4oj/W5PfPGMsR/Z7XY8v37OGEYuLy95/Pg96lzFtBRSCMOecRxIMVgYeQ7FCSmQhggI/dDjd1tEHG3b0XUdThwqim/MkDUeBoZg1Z587alSCyJ5v0lZNU6IWgn4FHpCb9Ud+8M1fb+d9lRbpzWJkGVdy6OVRgvhStFlAy0ZCbKTRCXn8BEkJ5ydQ3QM9Cl1kfJynX5n2s3vjwz4qCflydozk3cWzmOJgKFxuWpwsqpYUTWnEagm407lnUW+i0OdVdSqvdDWWZF2jjD2DL1jvxduKjN094cD+/0+GzdzJTCYS0irMvQ9wzBMME9T1YgTVE2PUKx6oeUt8rktBlKNN8rYj8QEEYdKhXhH3VlYvabEYWeVks1gaUbLYQxcv7jmere3nDD9gVVX07U1Hz66pNl0VN7RrDoEWHUBcTWPHo58/uya5zc7q5I4zZu3I6MuvdGLIqwyI00Fx3eCGQhEcgEeMwp770Dniq9hHAmVhYBdXmxQTWx3e1uTMVq4cLCiO+RKaMW+OYWcskx8/nqGj9JgXQKlFLvpcXas28DPHSBS0Z9CtNxRg+nDFtZfU1XhWFZ1s6d3VVs+yGIMUY0IiapytCUFwy+Klor8PZDxG7teAckAutWKtmsJwYxCdVOzvdnS/MW/bJWAD+bRduhHUpb71VlUwdPra653W6v2JcrTJ0+4uLjgj/3xPzZVl15vLqhXOT9eNkC/ccNfhv3dw/b3tQI/zln1jsoLVdXkhMQFWS+KXczIXGLozZoxDCMXlytUE7ubfkJyLZ3HqYIm2ZPWQrjCqIyDvcIopOhJqcruqQZU2KIui1yOgZ/JQyctmJsuFCSZjytJABHQhYvQEYAkE7OaWIBovuciJGzheA+FYeRnvQX+lIpglu2/fJ5L990vmX5eLMSy+P5E6ZXSv4UBzV4SyhIQma9dfvc5tIGyCftqAlWKF5OvvOUwyVnpy2YITJWcZtCIo89WAcmEpFW3YrNZ433Fer2m61aT4KSqU1tEZHLbLo1elil9VXjXXWFcp1W9lr8fW47fFvCz2G5Ku2X2zDLgwOGy4ORQJIdqOe+zl83c3pLPqVSYqitL2m0uyJa80AzGkqsnWLLmhOU/OF1SeWFSrD3TfFm0O6kSNAtRkJNBz9UYbpEc9/HyfR66L14zR+N0B+B51+e7/v7qVDzQknn4laplRSgvwKHMXTJVgahqC7uTE97E/DgyeUgslWY56qsjBfcldOpRdaYTegUmYZXxPE3laSpnHnPOquVVOXzSe4fTOdDYp4jEijiAaECi5ISeVu1xDPYKcVkRcm7C6agfSRxy9HbE449/WD6PLWqfPVmauma9arm62LDpGrMsV356nqUF186evWydAL7k3DCBX5xQB0EkTWEVYwwMIWTL+vEj3D8Vwwe3loLxCJ1467IyUkyJcQwM48hut+f58+c8e/qMVe0J/QNSXUFKFpLgTaYYEcYMxUUsYXByYrzZeXyqqVsDfqq6tWpfKpPHiS1BU2wMbYgwZqW2PqBVjUuJeDiYBw5KCg0aG9vbnUN9Kalsm4NiYolo5nEhoOMIw4geDrDbk3Z74m7HuNsxjr2F+2ejgqbFu87hUQtWhjX75bz1Pkg1EcOBpEJKpnRXzpHCYM/szUvcITi1ylwSR4gDOtorDnuG/ZYxjIxNlc/N8m1OgpOyN3ZK5tmkRalVAwgULBeMpKzMOVKqc1ZiZmYumsOEyLx/WbFUsyxWKo5lA04OIYtpJMbBjhRbn5bjK03nTthMHury2cL4s3yykIwl/3bHjgHT8bL4e5al7ouKomv74LFiLjBVfnJO8JJD25g9d0/luCIPObC5PyVyzeHrzsLJU7S8kjGY15cmZ4plGHM1LyEXCJ0MnklLqGpOR5AHfxKlC9Nayi2Twco29aTFPEyeFwUoqkhY7kUD9ktlshy2FSLjaKF+w+BwknDMOTql9JMIjULXNiRx7Np+8tycp8RbAn6Y175MM44jI7PkZ57k1pOXdWR5/lkvqKsK1WRJoL1byORHHKfA+C9p3eKvE+PhdIRqgYjKr/PaeC2ZU2/Js7Y0deIpFvKXprkvRXae2jb3jctpGmx/ne9bEl//InAfufXh9elY+7/7+/LNbGj3eF/hvWe9WXN5eYFzQrfqzNs4z+/lVcq1QwiEYBE1L15c83TVWg6s7TZ77kGb4nTOUTvyuC3JIife5Cm/On3N5dzBe7UIDo8h2iSm6iELxS5FsYzlSRnHDR/fvMfV1QZRx9Mn13gHh4NVwDD3Scn5bLKy6iqcqxAqNFWkVJFSQwwdMdSWmC4o6gEdUR0pnbvAL6aJUjZVKKUXy7FWoSCrvIgYQ3Yul8XLzFNyaMycUJY5L7Tdwe6viZStM8aoRkqiQCXYZ1WQmAEfposIFq9qE7xYC96GcLRguBngmfvp7jua8OKnzbLOuZR8rig1u0HaJtfUNeu2xYmjbVvWa0s6ZvmhLAdAPwz0g3nhiM5xzz4rFjGDQQXtfvDgAR9++CHeez788ENzdXSOy8sHXFxc4r2nbTuaxlzpb7Y37LY7DocDv9dZAupxHHlxfcMuWwmWT7sEcpbJmk9dQE/BnZfGwC43rrdAeaZMQIqIJX6bNrpJuBSrCoJVy3A51Aswr7KUcK7CV5YDoKor20BQsyz2eyQFwtBb6VlVuqbmwcUldV0zpMigpqDthp7d0Nt6w9adJGEIAyENeHE0eFLVoS5vy86Bd6j3aGXVV4gVVMkE9QxU+ZRIkubkjHluHPXJ0UZ8DGrc5ZFlwuUkpc3z4cTj521aqa28a5qSmt92RRaWckBV+SnUa7trFjnNFsczizx33PANGveLESTedfLOLL/eCY+vNnz7o0c8vrrgw4cXrDz4NKJjok8hC3MmyDjMMu1XK0CpUssqWFLvfrtnU69ww8ij64GPP7xhszuw3e+53u4IabZ4Fm+BhZp99NeM/sji8+3nmK37lj/g0dUl711dcnWx5sPHj3n84IpVW7HqLAm7dxYwLYqFIWXlV9VykFRerNSxx/KOCaSMTN/sE89urvnZZ0/47OkLdoeeEEt548LV3iboKLckvQlszc+EQNT8XJoVMaxiUsy/RVULGbm5pk4j288+4fmPfg+un/Hs6ee8+OTnDH1PNQw03QbXrJGmI7UtSYSkwbw0UOq64XJ9mfnwlsPBxtYNAykcrE3JI8khzqNDA01rvPvmhr6ucXWFhp502OEqT73ZUK/XJtNULVLlalcp4lJEh5Hw/AXjsydoPxA++5z0/JrDdsvu6TP2ux1DNC/PMe85VdviuxV11+HqyjxKs/xSlBu9i8/eM8UYuH72mcmT2bslrjZUEghtR2orqtQRa8c4DAzbLTEEDts9YX9D6EfCYUvst4RxZGw8/X5Fir1dq3j8jAPjOKDJileUIrFz9TTBSc5pJ8Lgcg4eZ+PknEdRYrQqdmDeSjH0oJGx3+EqS+zvRkvyjCaG/poUdqQUEO1xjFnOzBJojEjscbEHl5DUo+ItE6YauDzJDZL903UqEE/QRVJn5vekuYJuQQoUk9k0V1u6b68fFsYGigJefjzev0uyZdQ8l1FyGoHacgTGhI7BnJwkAz+YkmzPr/TDyM12a4l2NdFU5nli3jxWwVZTKQwCQwj0OZdVGMcJ+Ilta7lK8cQoxGBtjCGH9GEh+Emsmu84RqtmmJQxJkaL6KQPEYZAjIFd33M47Kd7K2SvlpSfQdkfDgz9gaFt6GpHDCO1r9h0LW1tlXPXXUfT2bkX6xWb1Y6Y1Mq8p7fHV8sOU8ATmfacOdGUTMepFfZoGrq2zXkmK0KozPvpsEdTYtXWrNdWBVhVGUZLYM3B9ArN+eJEOM5FA9M8WoKbL6MZtMo8S0/ALFkeefrKZ57epIA+mTdauGfOx+ZKIQ/jGwUMLDzDLXQi52TKgTnlqvJ+Aqh+uel1ev82HcnuGTAbhtHCHrcHhn40r7/FflOm25zu0r5ICi+2O+STz9nc7Lm6+j0LY1+v+O53v4v7yCqyVpVVZF2O6nGj3vgxvjJ9rcCPiOK9hSvNyKKWfS5P6PLuQWtQS+hY+Yr+EKic48lnz6gq4fqF0PdWKjHF2f5gwE+N9zUiNapmrUqhJYxrQtUQR08KFgcsLoCzWGtltpokLdbQubqSLbTssqlAyqFhKoh4A3+QXOrayqaadd28lNpcltcACpnSmSCRAvzENKAaSRoJ8UCKI0oipt5AqmUo2CLZdMkBZHhMAYDuexSzBSkzYBuvEyvJdNN5cTrnqEqi3wXwU1XV0TkmBgtd13B1cUldVVxdXfHo0WOqyjMMA4fDgRgDn3/+lE8//dRCuih5acxbqGlbUkqTe2Nd17z//vt8//vfp2kaVqsVq9UK7z2Xlw/YXFyaNbqq8L4iaWK33bE/7Nne3LDqWmrv2O32pJjY7/a2kFMuRH4iTNxVpesuT5O7PH2WgM9kubpnmrYXLWCd5ooI1WS5npLGiQmhKuBqy/HjK09wgkuRlIRKPI2rqJyjbhuLrRaIceSw36JjxTgGiAGvyrppef/hQw7jSEAZxVysP3vxjP7Z56h5u1tIXUoMh5HUWzjTyjekla1NFUwQy6CPVpUBQcksnFJXuKrC1RU+u66TZkV1ssIsrKTHOTpKidc8Nss+nIDq0qc6deppqN/bJFUlxUB0jlRyWuVbzvOJ6VXVVr0hxJGbmxc52Ws+Pof2mAOiTN/e3rLuhHdvf3OE+rzdfni3aealkCt55Zw3Hz2+4gff/YiP3nvAVdew8UoVe2JQ9jHPs7qFZgXO07UtFxcbKm+5G1bexiBcb9l1L6iHkQ9G4df2ge1uz5Nnz/j5Z0/M62R/yIaUorYtjAvL+T+Bwrfq2J28z8kmu7riw8cP+fWPP+bqYsX3vvUh33r/MU3l2HQ+55KwLHnFscGUMlPOnGD5NLC8HLVAEiWQiCi4wJOnT/nhj3/G85sd1ztLkFwEjLcp0AozL1loKUe/+7KeEowhh34kJYrYCyGoKXDD4cD++VPcoebFT/+AJ7/zgOHigqfX1zz5/BlDiFyuL2ivHtgeWlWkqiKixDgQdiarNE1He1WhMbJ9Ibj+YHle+i1xuDFlV2qca8BVuLpGmhZiJD5/ThhHxDvCzYp+0+LrmvX77+GSIlWFX5mRTVTxMeFDIPY98cnnDD/9MXF/4PCTnzM+eUrf99x89hnbm2tGlIMmhlykoe062s2GZrXGNw1SmdEsaUk+WkB2JoXnbVAMI08//Une2+27YbVG4g1t2zF2DT5cMDYVYz/Q3+wM+Nn39DdbxiEQdlvG3QvL9VMpu+uKuqmJCiFl5TtFUiw5AxOaPbWdK8YXyYUQzINVNRhY4xy+aqjqxtobBzSNCJBib3Jt9OCcedKKhZBl6xqMOxj3ZkBMe5z0WdZV87aSGokrXKwRDSAGHiUEl4QwsYNZjYl5u02qDMnKQwPTfVUTUUeS5nGMFnbtAF/2p3sGftxyLWYqM2ZK+pu/iCkZcOncFN5e1zVt29l3IYI4YkoZjHSoCC7L1ynB4dDz7PkLDvsaTcEKaVWeOI6MQ5+BS5tTqsqhH9j3ffYEMlnRO8fYtaS4QrCoB/Cglm8yjCHv4WZIjjExjNFytCVlUMeg1i4ZI4GRGEZudgf2250ZGXOHxDzvvHfEGNlu94RxoG1qJAX22xVd08DDB8jaUilcbtZUTUOK8PByw812zxAiqR/RnFT6vqkAdsXz2N5tfagkSnRGSUwuYntn15mxuNvuaZom72mJ7c0NfXWgfvSA9eoBbdMgAiFGhnE04C6vTXLe0Rm0OQ7IehNa7u2zO9ByR7r7qsdGM9tUJjAc0zNiLpakalE1dU6BMRk1xdI2VFVlBXF8lfUwn73eZNLJmtp/LYa6WxLlm+I4pVLQ6xw63XRhhCxGl5joDwM31ztubnbs973l98neeMu9fDo3h18mhafPrnn27Jq2bYgx8uzp51xdXkBSNl1H3TSsLy6oM3hqyd0XnfBarb//AflC4EdE/izwdwCfqOqfyN89Bv4c8OvAD4H/iqo+fZ0bZi/JKUyrgD/LB9Sp3KMt8ratWK87vIusVi1tW9M0FXWdQ77Ekr/O3n8zKqwqGdljQtBjEGJwxJxUeorQyqCGkrOdpxwrjeV1seTn5XNua3RT2JiBDyUjf3YBdQLqEPWoF6I3YME6oXgKKYKnmDktvtyqPbgUsxIWEcIEjJTCjNZtx14k8/vR0vp1Efnkvsax0DKnjY1dgd9Oj5s33DJmsyJdGNm8mL13NDkWtes6Npv1BKCJmLtdXdeLnDSGYitKVRnQswR+mqaxUtfrNW3bcnFxwcXFBd5XXF5estlcTp5BJWSsriratrEcGxcXrDdrFKb7TsmD00L5/4rK/hecd79jWFDsPFUkczd7/uONzn7KY5Zz7kzhXSrZ/dhCDY4SJmtxaxcsltgsfJX3dE0L4ggOvFiFrjqXbxdZeEvla4QQ8OJIcZkvR3KFMBOGmF7L72WaIyUczS5+5wjc7iaZudER2DmdslRE7g73O6F7HUdlBhsn5Uh14oVz2+344mm3tAzNR05PXR7tlYLAmwgJt3Dhd5vueQyP+bUTR1N5urpm1dZcrFou1i2rqsI7C7uMuSpTVLWyk8ny2CSYvd+cQ3LSe99EqnagEk/Xrdis14g49n1P17aICGOIVMNIzHvpkp/PQy1Tmyc56s6H0knY8jlfT9c0bNYrNitTLJq6ovbm6TM7Dy0E4jyPyzx0eR+pnHn/WAJGC+vWlOjHkd3BKnnFKaypzNNiXJjpPuWbpTJ5tJjkpP8yU51CMu1kmCy0OR/BOBJEGQ97+psXNBrpb3YMu51V/Go6VDy4KgPfVnmrhKIg2eDiK5Sci0QcEdvfNFgJaYqMAkhMlhhfEmkcSX1vwE8FOMvpFvuBNI44VWhyqfKsAUtKSIzoMBD3B+JuT9huGW9uGIeB0OcQL5TolFjkAufxVbWo+JhDaFnwUOVlvPXe1qJ5YBwodgBFCJUjDHsqUYJPhNHKu4dhIIy9eWOMAxrCVCmLFK1kegykOJKiFVeLKRfb0zmszfbHnORZ52qwCYeIt7FIgRhHRC2PZPI5PUKyZNG2B9h1HEpKdt8yp6yvEi4MOLXKYjJVE9OCRkFyJmumaLJpPkawwicl5ZK1Uaf15TCJ1JMND5J5mpLl1NHyDGUvPgNys1eTTmE697sWX/7rfMxyDebvjjwinMkiVtEtK3wUBbLwbNt7xxBwAuMYCDlpd4whG2M0gz7kSoSBEMKUTBrNCRumKl3F0y0d/61lr89FLqbiKDlhNKbvhJgQZwpsyV0z88FS4VYnGTzGyJhLgPf9OHl+hKwEu8lga7lz6sr4dlJwEpb9/Vb0jNujV3aJwlzn/VMy3ytVZL3zOddPqRINmoG2qiqAiM8eUBksmQyB8y1eR2yxKWUhVHfKOVrCvgDuOuYuAOjuuVzWdQFuiwxvYVzu5BJZ/i3oGHmuF51saXCW+9f776Kjpzpxqyp99EpZ8Y7fXlfvKvJyjJEwBqvaNVh+zFRC50rTpm19FobLfBhDzCGeieubLc+fPUdTYr/b0Q8W9lWqpr2qLaey1emD3pHmma8CCr2Ox8+/CPxTwL+0+O5PA/+Wqv5PRORP57//0de+q2bXXdFpAcwCX0mgxTSw3nnWXUddJR48uOC99x4YqILw4vkuJ1TVCU1LKRHGEU1wc3PDp59+RtveEJIx26Zr2Fx0XF52+MpZldNcsCLlEoyQS89HC0EJY5gz8idIpbpB8pDDvczzJwtQefGJCG0Gqbx3rDcdq67GV57VqqHrarxzdF1F3fiMWLeIN++jxq9znG4gxD0pDSSNxHSwih6aUAamlLdlI58U0GnCfQb8vV99HOVYWTzxTDnO9ZAldQpARAbOsjcGUgqEWJhVVVvi4OwdtN6sMkizMQt2XVM3NVVdEULg0Pdsd1tCCHQXG9YXG8Q5+nGgHy2Z3ZRvpq757ne/y/e+970JTOo6s+g0TUtTtxOnUUo+qnqqEGCeQjXXNzfmfu3N++j5ixtutrsswCVeLXCcLoMZJCreQUuPn+WGf79jmPWCXD1CfIW6IoiVJNMpM8FkYV7O5yVqAyZiVbwEE1Zq56lchRfz+Km7lqZraNqG/z97f7IkSZKk62KfDDrY4EMMGZFZWdVd3We+uCBs8ACXCA+AFRZYYQGi+xrY4hnu6mIFIuyAJwBhgycAndOnu6tPV9eUGYNPNuggIowFi6iqmXvkVB7Zpw+gQR5mbm6mpioj888//9zUFbV32vejCm5fr7fI24aQEgOJ3iTV5EiRm4d7GMm575pKFoaR0I8qsBYiJUO0aRq2F5e0dU2zWuOaWoFXUNHbodeKbc7nNLNImjPin9goZtB4mRO9XLhFJEfMZAJ9ChhUptv3MH6erR/zF+RNTDeymDVO3EJQelpPjTJ+NpsNIOx2F2y3W3V4QmQcxrzpzUaJzms9gSwX5txen7iocmk/ak78Czqetw/JwpRe18TrizV/9fUbrrZrfvn2JW9fXvLqckNjLI2zeKOM0arK66qzSCVgIyb1HA+AcfrjPGAYkuCbFauq5fWbRHKOfhj58uEtX//yFww5jfXm/oFxDBwPB/b7PTElun6g73tlqKQ0VdOUCTle3gmUPchZw9Wm5WK9Yr1q+fqLV3z95jWrRtfcro9EJxp9dFar/lmD9WpapRRJQfd1K6LVqIzN+flWhffvDzwcj/zh3S3ffrjnw82OYz8whPTo2p44/meezb4pgYsloDM/zMCrAmEYZQXUVUVd19RNQ7Na0azWGJs4HA6kDm6++RPf1I5d23AcAn03EgX6YeAYhVA31NeXxFcvMM7CqsUMa0wImH0H3YCJidZW2PUVMY4cUkD6I0LM1dIyMCARk51Eul71f6whdA+M92jaV+yJ/R5X16xefkFbdPWGHsaRsN/R393R3dwQjh37u3u6hx3DOLI79Oy7kWCgs0JvwQTwVcNqs6VZrTBOU1kSklPfchsmWVQ/PllTn29fRKizPWpyRaDGBFzsYIwEevYy0HlPHAOhG0kxEYaAxBEricoZtquaGB1NW9F4lThIKRDHcdYezACCIWFRh9SmNJUE8d7hU7apxiHrVFlwI2nUssMpjKTssBedN7EWUkBCD5gpBdgYobER7xQsSmHAhEGBm6hsWOsibtjjnMFYjyViRdOETNL0Ih3TugGLgMmV460IJoIXmeaCGAWnxqCyDAhTypOzFo/av/n+/2eeYS4ao8zlRaeyHDJq55DDypl1L5KBAjfZXsMwYkwgZsfM5Br3dnHSknqUBIZRacrdMLA/9lTOauq15mudSCfFmKZAjQKfNq+BboqOJ3JaqOQ0rqAniGnA2qAslWFOTRnCSJ/Fo4+HgzqsKRGHbmG/mKkNvPNYR56LNvtOQjfo2Aoh0VSV2terFtc2Cs6KsG5bri4vOPb6nUmG0trPty8+QsuLC3zS2fq6aBolRAWjrMN6T900bDZrTGY2dZ1WT+u2m0nfzjnPZrOmCYFj1wE520NK4RNyVdkJjjgZa+faPjMB4czuKz7TJ0CAxVlP/p9BxuxzFpArr4UxpSzsXAgQdvI/p38L0EckqYSCgbquWK9a6qpCUtL0U72+/5nn9vt/xPGcFmPpHnWH1Va+u73l9kYrhf/mN//A3//mHzgcDrx794Gu7wlj0KI2y2DO1P6L7d1qUSeM5XDseH9zx3EY+Yff/hPWOVbrFb/4xde8/kJBRV/XU5bLD4OoyjcvQJ6Fruwp+PPDz/i9wI+I/L+MMb8+e/l/C/wP+fn/Bfh/8gMHQAH2lPaZTia2MXZCHksnIYK3js2mRpLh5csDX375itWqISV4/+4uAz6JYdCTp5QYR10Q7+7uSEmpm7d393z4cEdVVWwvt1xdXeK8p248TVNhLEguhVnyPodhUArrEOiHMaP2Fkm5epc4EAdiyMEXZsNPF/W6cdS1ltC7ulqz2TRUtefFiwsuLtbUlefFi5rttlWE2itQZIxgbMTYmBkPe2LqiSkwjDtiHEgSFARKygaSNKKxF5nBID12wMc/tx+NmdOzlmlKE+hRWDwzckxhkUysBIQUMjiVjRJnDWa1YtWo5kjT1Gwvt6zalsvrS66ur/CVz6lejQroxUA/dMQYuXr1ipevXysY4az+5Gv1TkvAv3nzhi+++GICg0pJ8iRpirSM48g4jhgDbdtgjLKN2qbmL/7il9zd32OMskr2+wMh/o6H3f6kLZ5otemxgF/nkcvycw6ozcyN5+vDci3W2bk0r0jhq+nWFmNWvNcSr87r5iGZ7UOuLOEz+OOMpTYeZ7USRLNuadYr2lVD21Y0zkFKxF7Jda8vLnn1xQaxjk4CBwkMceTQd/zh/beZ4q9RbzWsB8auV+BnDJgoWDG0zYqr6xe0TU273eBbFez2zlNVgSqMuKbGeY9LahibbIBOQshnh7WqZ1CYe9Yu+yKDdE9pOOX1CnkE2J2+71n7sYCpanSGTPsNIeCcP4mWl6OuKi4vL6nrisNxz+XllTI/DkfCGBEJEzBWPnx6L+YTz5f3+WO2tX+Rx7POxQL8NJWyX764vuS/++tf8uWra15fb/mLty+5XLcq9Bs1SmyNaAzaCGIsyaozdhgj9w8dY4KAZ6BCjKVdr9lcXNA6T7vd8ubLtxqdGgYOfU8IkY+3d7z/8JF+GHj37Tv+9KdvGIaBm7t7PtzeEYJS4kOpwnd2D7O5mjBGcMby4mLN169fsF2v+fUv3vBXX3+lEWPvOR4Do7OqD+Yzy8MZfO3UaelH4qipLE7AGcEah3cVzntiP/Lu4wN//HDDH77Vnz+9vyPExDAGZsO5HI/m5DPZN2ZhYQLm3EFhwoWsBY/BiqH2jqZpaMfIql2x2mzp+h66HfvdHV0cWfUHtvcfWPvM7rE1xjq63Z7dcaRqWhpviF9+gW0aSAknAmPADAFCwIRA62s225qUInYcGPYPmSFC1lgxWInYGDWYNgZIkEj06UAnR0zlGA53dA8vqNoVJkbqcnNDj4wj425H9/EDh3fvGLueh483HD7eMcTI/aHjoR+IxnB0hsEa3NpQNyu2l5e02y220pS1JEJIiShqN9r888TK8mxz0QINyvDQ7dHgTMCNe0iWMFjuj5mRFA0p+/QmI1RGhMYZqnWLIPimwtdgbMol6/eEGNXp9hUWSymnjGQ+Sc6n8qaitmoXh6TBR8EQjZ0DMSkzcgzE0GPHjmQtaTgQfY0AIQzEMKhG1trjVg4QYhixg2rXmCDYKMrsqCzeBox1eDlgY632QRakZrIts80ScmY1Bp/TIAqDDVQHcOh73aPEILkAinOe2jZ4FGB6rrlojAr3TrYo5Lk3z8giSG0kqTiDaKqXz2zlmFLWj8wBMudxRj+VlinQ2V+JAv2oQeL9saeqXC6NrWs0gMnBKhGZmAUigvXKdnPOYgrwY+3EAEpJGIOmdaldoQHfGBN9p4yzkFNW9oMCi8M4EHLZ8lXlaHxJ4Znty9oru24wOXALhJjYHwf6IdBVA0aE7nhkvVmz2qypa53tF5s1McLD8cghg0/5eF7bxkxh7Oziqg09gyKlnIEGClVAWzBO27RpGy4ut1RNzcPDAw/3D4whcHV5QQiJmNDUKL8lpcj9bjeBKSktqt0VMLOAO2fjDUqQ6yRGCNNVl/cuXV6Z3iMn5Ify5qU/kZnq0x4zX0vIbK1SBKew7q1xGdS3me3jMBQ/TNeMtlFtvbapkTxPsy/0rH7/o+MUP/t8x7INsxZmjIEP79/z93/39+z2e/72b/+e//Q3f6uVvLqeQ9frGJryB09POQ0F8tqQ/YP7/ZHDsaNpdjjnub+/52J7QYiaeVLVNReXl1PaVyEZnF3u6Xd96rcT8OepT3738VM1ft6KyB8BROSPxpg3n3qjMeZ/BP5HgDdfXk5o+iKcnN/4xIdlOgfeqahaVXmatqLta+raz+VeTXGaZ6dLmT+BPm86zldU1V5LPaI6QN576qFiHFNWqV8AP8NAnyM0/RDo+5Cv3TGJOovq+ogY1f2JTI6fglnQLIAfa5SKWdWepq7xzpNqoV9Hmjoh3lBVGhXBaBpaSR8zxmNMFhzDAzEHGHUj17svC2H5sY+a9cf247IPnT8t93cKeEwdlrt0sVDBgkWQdYKkCJOpTlKhrUoeDyUC473DVwrWpBSndK+q8tR1TUyRVU7j8lWF9U7LvGeau6aIebbbLev1eorqFDBqYpacMTSsmUt/r1YrqqpCRNhsN6zXa2JKeO++q32Xbfjk68vvnLaWE1Do9Pcnjp80F11Vzddk0XQtmFL3BaaIx3IjgpkJY0zJtlYa9JwKVqjSNkfxi5CcmaNs3mGbVlNUJBDTAEGBupl1lNslJU3vynpKaiCbDMzklCVfYazNFObZUJBy4eZ0LC7bf2kQlRs100dyytgCyJk3krN0r/zNZzv/9/VfOX70XJzOr18/GZKnTLHH310EAKuqoq5qZRvUNeOopYVtKqxLOfuWcn/fvWcvjZ9Pk33KerF8w794sOgnzcX5tSJ8b2nqiu265XK7ZrtqaSpP5R2ksn9m/NXoOlXSDwSdL+MQGSLKpkNIxuLqFow6F5WzNKZCAD82VE1DyKWMxzHQDz3d4chu80DnHce+VwakUcM6lHTLE+MllyDW+1MND6slYjerhs2qYd02rJpGq9JILjRl5mozKS/+xjBLTC1sBAtTtB50jeqGkf2x53Ds6fqRYVSx05TO9qVn7sdlH/7iF18xpY6crScKi8xahto+BQSaUxJsdlZcdlpjjEgIjD0MB9H3+BrnVUw/9T2x67ACaRyJknDIVOXSiOSiEno4Y6ms07FgPc5q1Uxj07xE5sXESMIkUXqzJFLsSPEIwRGPB8KxwYgQ+46UGQIyDMg4EoeeOAyaCtX3jMPAGIJWkouRkIRohGiU5yHZYyrrvqYupEljLomo5lMpJV6GxTP04Xk/vrhcU+IhU1zEZCBT1G5JKadPJYNETSExktUC0M85NdxUuNoAVoFaI8rKNqKJQ7Z8WPTRiFDKSNvSnyQFZ8q6a2xmuYMhMgniOQtpBNELl2IPh540DjouUsJKBUhO48r6NqKpSMYYTfNKIxYtrGBSFmAu6Wv5msjXZTPRXBkHLi/684+RiJNBU+AougoWJ4IXh5Nz4fgf34/LPqyX+iac2l5msTmZHGizWcfPLm0EKQU6RIEhVz5b9jdzep957YqZERli1mxCJjmSSbAeHu/N07mYxnxZWyWlfN6S+qU/KTNWlv5OilG/fxwZxhFnDY2rgaxFWtZOYyb7tgRA822r3ySCM4YxjAyjoRqVYVTS1nz2xarRZ/vuz/czzvvRcFL7bbKv1Ocpi9W8xuu2WCw/Jhvfe0+V07hKNbUY5/VFQd5c5S3fh9rjMptz5vvtODONYjl7VdvbZLsVwwnrR5ZPzNnnTp7BEjFZ5Ms8CjQWQYMiJrJM41qeyTkLqchb5IpuzzgXv/zq60+d66yVnuP47v5JOcUyhkDXdTw8PLDb7dntduz3B7o+6/sUbdapIuC8JpzYJMac9I2OK8AY9ocD9/cKIh4OR7qum3zNExb+k/fwhJ+y7LonMZPvMcrPjs8u7iwi/xPwPwH8u//wCynOFBl5XOb2mQU6qeXQy2JotRwphvW64eVLjVbvdgc224YYAyIDfReQpJtnikptHYeBozlirSMGYRgSznke7g/c3uywzlHV6gSVsppk8eRQ8nCFXPqwRPjz9WFQMWfd/FNUlgKgqvApRz1VezGnetWa1lV5rq+3bLdr6trz8uUVF9sNvvJsL1a0bYPzlvWqpmpcvqYB0ex4UupJjJT846Jf4pxVQw7J7/3zRfOWfdi0K8mv5Q1oetf8WDA9JDOgTC47K1OJvFLNoZSgt8bkqJ5QVRXr1Ypj12GsJYQw3dtSP2az2fDFmzcIwotXr3n1xRf4qppKjitgmKvdWK0OJkmdm3wTCChlO2p/9X3PkA1ZdfrLwqm97a3lcrvlzevXNE3DN9+8p21vJjHnefEttM85t1bHvn3kDJ+412cL+A/DDH7YcdKPm434ys+ogaBIf8lHB7V4E7mKTq4I4GbKqCUb6/kmYkyIKayubBhZB1WlkSyfEOdzqlXW6klwGDpuuz3dOLDfHRj7gTgEQq8snxRjTu9Sp6quajabDevVitV6Tb1qcc5xt3vg7uFOo27DyCEEdrs9N/e3udR5nIymefyqQOC8LjEt9kuAS+Y2nPq5jKG5E3/c4vvn9qEpqtM5ggOGGAPjGBjHEe+qU2Ml30vlK9brDVVV8fLlK3759a/YH/Yc9gfu7u4z481MlQi1OKG2zTgOyoKMkcPxwG63m1MX8ty02ZFVIKAARZIjk+HzNtC/kOO0H1XKuG0q3ry6Zts2fP32NV++esHbl1dsGo+3Rc8DbGZcWgRr1fyLIdD1AyElPtx3/NP7HcchMuA4SoVYx+tXPcn7HOXTEvEYjVT3gxo81lRs1pc0TcSZmsvtJSEE7h4euL27I0QVhN4fDhpZHgbGcVQwKJeIh+L8QltX/Ku//CX/+ldfsmpa3ry6ZtWoTkmMhZ6v2kLHPlFFS1MbqqyhZ62bImQWdZ6jGPbdQEgj72/v+ac/vucffv8N7293POx7xrhIvwSWxvLn6sP//n/538/IztIAX6LmxdYxeS8D6tqzWa8By3ajAYW+O5LGIxGmtdTbitopWKOsBPBhQPZ3xOHA/tuKj43Ftw3rZsV2tcK6CrNdY8YRQsQMI9KPYIRmveWSL0kpMISOcczFCgyYrHETh4E4DFouXDoMvVbbeqiImmfLwdVIP+qtDT0SRsJ+z+27b9jd3hD6kd3xyLEfGHMFoDEJyRiC1SV9DJH9w47bjx9pxwF3sVXbwVqkyvpFqBtd0myeM3102Y9//cvX8upyk8E57S9NRc8luwWClPQPQfUg0WqW2EnI3Fqn66a32EoRyypZquiJUSPzWkhBBflT1PRlyfswQO0itVX9lEossWj5KAyVL141KY0x1CRqIxOY6J1CUVGUJWQNrFyiNjktx0ZcpTacWIN4TXtqXcDTKziVAjZqsQtiAW9QwAhlYJlocDlQibOTQ2Ry0lpCqGwgOsnXm9CiCRGXFAQz8ufZqcs+3KxaKeBqAZEfOVOL4J63tigSTEeUxDgGYkrUxlDZGufsJMhe9voy05PIxEzrhoDZH1XXrDQJBmcsPmuvxCQkFByMAhICwVge9geGqPpK6kjq+JJY/AmonMU7myutJU0li5qmqfXXEtGCOL33FCP9IFm2QKsdW5FpjCTnVP/L6ngR9JrGmDj2OfXbOu53B4x19KNqyTV1RT+OVN7hzxvwGfrRWZfhsSXauzTGKChcZkepvxViIqSkOkc53aaqKw5dRzIwpsQQIsd+xPmRtvY0K91jnPfqAcriZ/ouFl9cfl0AdizZ+UuWzwL8KUjSInhoFp+fz5ofyz0uvvH0OxUMn4akLCCfHHyx1qhwc11NP1VdIc5hsSQXEQsPuz33hx1h/PNstGUf/of/xf9Kllc+v+fP+opPHk9uC7lI0+3NR95/+56u6/jbv/t7/vPf/ob94cC37z7QjwMhRRXEt7PW3ndCUhkcnK0LnW8xCXe7I2Ju2B17Li7+iRgj6/WaXwVt28IA8gv2D3wK9nkuYGw+firw840x5quM+n0FfPuDPmV0EwV1gCfkcoqk2+kn8wIonAKbn2+2Da+/uGZ7seLhYc/l5SoLqAmH3YBkAWbJZY2HNBBGwBgO+x53d9DIqq+pfKObdBYALqOmDJ5S1UtRcP3R28jXZgwlOUYgb+DZKUxjdsYEQwATMRbqyuC9wXvLxcWa1bqhriquX1yx3W6o6oqrqys2mzV1XXH94pLNZqV7qkcNfSNYH7FWsA7alcmsB3CtbjaQEKNpX8/ej9n8eJzOYqa/ab8uFu1kIGVHeoFVz5g1jINWQPDOsVmv2R+OGGMJMWi5QW8JIZfRFMP24oLt5SXWWq5fvuLlF19oGlpxWg05ouGmKyvpOfOmquU0wxgysysDP4uIi7WWVaulIStvub664qsv37Jarfj97//Iqm1VQC+n2Oi9K/hmDBNgpWNL73hKE+I0knD++w84flIfGmMWiw4ZuIwMefFLRiNVRSTZOKssHWdz2yqgVZx9GWOurlYAIIPqEThMVWfgJ5JyxTTJFk8i8bA/8v7uhm7oeXjYMfZDTu0aGI4dKSbMqPVmjTU0TcPlxQXr9ZrNZkOzWoEk3r37lvcf3jGGyK4fOOQKcB8+fiBEnY9JSslzJrAOTK4yOFdBmNk+s5MxgT5pFuacgDOYxkx57488fuJc1DmmYFTIAPXIOIxUPkwMqOUmpho/Sm0uGlbD0LPfH7i9uyeMo5ahzBXeiug5CIfDnvv7O8Zx5N37dxyPR2VTZuaVMWZiEBljclRSc8r7vlcNis+16//zHz+5DwFWTcPXb17z6vqSv3j7gl+9fc3blxdYBCeRFIKCr7lMs45RBdBDiOy6gWEY+ebDLX//2294OAz0GfhJ1vGrfqRarbTaSeVZ1TXWWPohchx0rFgatpsWDLy6/gLvdCwfj3sOxz0hBu7v77l/uCeEwG6/Z3/YE2Pk0HUcjypoqMCSYd02/Hf/5q/4D3/9F9SVp3U1tfeIGPpRkKD72TBqukJVWdrG0TROuQHOKdABWKMizmmMPBw7Ho6Bb97f8vf/9A3/6R9+x+4wcPtwYMxpxH+GtfQT7ZsFwJRt+2JLKHic9z5jcFZ3wbapNeDjK64uLrjYbhn7nq7bsaMAPxZvG2qnoE9dAglDr5WhrGWXeobjPa6u+eLrX7L9y19j6xpzucF6q8DP7QMyjiCw2l7QXFwSU+Rhf8v9/laBxZiQ/qABksOe8XhQ59JGrI2agmISYeyIvuKhGzne3Go0c+hJYSAcO3Z//D2HD+8JY+SwUyZWTFqFbpBc+jsJwRjVlrq7QxpH2x1w65YURkztqbYbbBYeL8wEY1QU+HvAn5/Uh5VzvH1xMQWklsxtNeoTQ9Z9lCikTOHw1tJY7VfrlA1himC5A4wwGsuFrRUot+qAgyGMMA5pSuuJ2YurHNQT0yQzNiiC5nndz/8M0JpEm1MhK+eofQUYlaCMFozgXFQBZsA5ZduBwXg3sXa9G3ES1IGMGuS0EiF0SBo0QIemXiIGl7yKQmcqnhY0MTijAsFiDMGWul2aRs1kM5cAyift1J/Uj7bs34sxUmIzxRgUcnpXpWlcJb1cRZOFPpdZLyWwnXcQlAlX7LSy/Re2D0Y49iPDOGCM4K3BO72O2lXUvsrBz9neCJnJA5FuHDG7HSJaIn4YRgBqX1F5Zdds1y1rp1wwSYIEzbWzEqlMUn0sC8ZpIDumkRj1XuvK4KtcNc5aXYtTospA5CQYLTq6Dv3AEEYisL57UNYRmn3QNvUM/PjvZPz8pD4UdJ0odnh5sbDTy+JaAnCabibKLMzsQusc2+2GJML9fp+Bn0gfAsduwFqfddZqrFM/SiSPBcmgHGTcXveUR6vOEojKb15e3wT8oDDoEzDI5AnNHJL5cT4y4LOAUkrqYTw57QJ2NaonV1UqZ9I0dX6skCTU1iNROAwdH+9u2A9HLWv/9PFn2Tc/5PgU8PFjjmUQt1TMiyHy/tv3/Kf/+DfsHnb857//Df/pb/6WY9cxxpEhjJnZZcDNbT+tGU9e7JmtbxWjCDFxc7/j4XDUFDoRbm9uuLy80AIXTZ3Tvq6omwbgjDTwOFT1HO2yPH4q8PP/AP4PwP85P/7ff8yHz/drY5al2Jf0qRmIKa84Z6lrT0pJK3vVToWTvZ0qhjEBEikzPKJGVlIgJl1wXRCi1+YsTIYpOrB09KbOzYLOZIAKe3K9+vc4KXinpOU3lfISEIKi0ZVuuOpIRULoJ7ZRCIG6rkEM4xhomhrnnIruWVT40yn44yrBWcF5vZ9UG7wYqkqrh7GkoT5rP56lkizQ61Ml+9NhO/vHi9cNE/sCgWgUPCFT4iYnewIG53sxxszUeOeom5q6Ut2HUhXEUICfEmWJ2dCYy62rsZXmnwWddUplsJYU/eTsO2upqoqqyqmGzqmwYTY0putd/P/oMIXG+vSqMmc0f+/x0+ZiBsWmrzcZjDIqEDeFzPLPeUWA6dZK4IIMdglTadgijJcwJKNRyiRG6f1JkJhIwBgCw6g/IWR9iZQ32rzJ24nR5hfpe25i6SVJdEPPbr9nDGECfvp+YBiHJ0IMM0BZllWRM3HyR594qsfk0ebwE4GNP2tNnVMG5/KwZV7pMd9XqeqlpT9rVqsV3qshOWaNIFeq7GRwTxk8eozjoHOuqqeqeSV1TMXSa5rsrBVataQ0gaJz+o05WxN+yNb2XzVo9JP70ALeWdqmZr3SdKimqqi9V6coR37VYcnrDHNKwBgi/TDSDSPHbmB/6Ngd+gz8BMQ6DseOYz/oegVU1mFtNvSjGroqX6ZOdV05mspnh1GB9xgDZeUKIeTKN0zgn7MOQaisoXKWdduw3a652K6pnCe7l1rO2cJMWtN7KY6vOlFaalZZl8LSMhhDpOtHjv3I4dizP/bKKonpR42m5+zHOQXUcMpkXphx5tTGsFZZqT6nNKtotWpvSNkjTAE7bBamzZVMJUEUJBli3zHsd7ixJvRdrjSi2nlUHoxF/Mw21QIFXjVOfI31Va7LPajNIhFJAQm5cISUNCVBkYos1t93iKtARDVswpzeFUKY9EdCUkH8VJzlRR9JEi173fe4qmLsOsbuiJMa19YY7/J+qSKak0H+3WnsP7EPlVEholabSJpeBw2GuGJjmrIfZH28nM7lbE4Ts3kclDFuDeJ0L7SLrbS4cMofKiBhSeMkC2/n9VLdfSZuuiQiyrh0JJzySPCiz8tnSoqClZxORhYFyLa1zT/GCA7VzwNytNOi5d8Dk6jRxLywGtSTsmcbfcz0KGO06q0Ri5V81WVbEt2vSoWp5+vHU8BnnpdTY2ehZiYNFGtNTiXPb5U5zXAC/uaB8Ohyl7GfhDKnQbTPJc9ZVMA5mZL2XtKK0pzaVeaICH0/Az8arK50BTRWUz0z02vpLenPaWBV7TG9j0nXcGlTT2vSybKl8ztpEZaiIzOOI8Y6yBqZyi6bU6Q+cfx022ZpwixdBzF5/qmVXHIcKGy8/HZjtBS9iGSfKwOOUooUqK1v7KKwiWExw+aL0GU9y+z+wM3lvH/yi3OqlyEDusu6TdNgW9z3uS/3RHLk2QtqN+eiEc5mW22ZNQGp3K8IYwj0/TAxDp84ftqaunxunjDFF9f/GBv4xFt/oBmYsi8Zwjildz087Njt9uwPmt6lEKectvniquXk1TPr/+xCym8xlpQxw+F4ZLffY53l2B3p+356zzJD5KnzlOPH2TLf3zg/pJz7/xX4H4DXxpjfAf8ntOP/b8aY/yPwW+B/90MvSChlBWXxKjx9a3njkoQYzQ92XlhvKnxluH6x4c2bF+rwm3sOuwFrlOEzjmnO8c/sIoOZyleqJs+YR1aaohCnwE+aEOeyGDNd6+J68y6mDleuXCAF9FEkH4IaE0Ey+m6AI32vxt7x+EDdNHjvWa02NE076dK0rTKTXKbiWgu+EqwTqspycempG8dm2/DVL15wcbnCe6hbg597+K+A//dz9KOkkgc6D9oSvTBmngzLSfKJOaWZ4qUqm1iS5G1r2pBz1CimKbJRNjYtx1ipmJmxmWmV2V557UxmFt+aU3REQzSzJ5VvQ1ME4zhq32cQSBktA0PlGIaR4+6e/nhg7DuQlKMdlhjKPc8GoYKPaqDNu+tsWDzZvssmOmm45+tDMMrCKV9Y+itHBq3xVIBLadJIci6XiVSUM2+gzA5+CCBwPB4zcyRgE7R1S115dvuO2/1RBYjpCbInCtwdd9ztDgxhZAwJbxziKvz6gk2zBoHKVdSupvIVr968od2qntPdfkf/Tx0hBH7/+9/xxz/9kRACfYgMMRJC5LDfoWN07pvHrb18ZPG8gJaJ5XhftuNs9f1gWOIZ+3G2w8mOc4iBMYwqZF0i5WYx/YzNkS1hvV6rAZACl5eBFy9ekmLCWnXiC5ApKJjUNDUqpN8jInjviTGw2Wy5uNiqoGLT0DbKGjkejhyOB8Zx5E9//BN/HP9ICONi/J+3+7+Y49n60FrDpq252q55++oFX33xkldXm1xitgwqdX6DmJxOlTh2PQ/7PUMI3Nw+8Ptv3nPsBr69eeAf/vSBQzcSjGUw2fFHAwjr9YoXl1e8efWaqvLEZAlJHRQNWGgqSFN72trnYErAGIdzhovtJat2hYhWAQlh0DGRhfGBHOm2NFXFX/3yDV+8ea0sl5AgZI2FfU9IumaINWAcSQxdr6WQK2fZtp6q9uj+oGPmMET++OGeP767593NHX/6cMeHux3DqM7JLKz8/WPqee2b6aSTEWtOF3KWq7vJAGzTKDOjbRrapqFpG4aqJllHsI5oHGIqhMzAo+jJJIpWnuzuGfc7gnPcCbgEVbtie3XF9uoa1xpidyDViibYJLhR27mpW66r16QY6Hd39GkkBWUtx9ipQ2zVMDbO4oasqxgSmB3kEskmjSoOHUasSVivmmtitdxEQoMNVfacqqzb6JLA/Y4xRczuwM5Z0u6Bar1iHb+gvtzq99YKAtmsUTQxNJ/TthHRohkZqJ7SWLNdeFKlKaacgiMkG4kkFVlPFklhAhckX6bERBo1MGhjoorKnmn6kXTU4ET0llhZxDrEecR6Zc/mpdLkvnfFak4Wk22iKiaqY6+srGQ4JsVkhhAZQtRUrx7aKjuFFup8Xw7BocC8RXKKSQarMnBp06iFETCEBEHUNo8SlR1vhNgpW1hhDo/JKkUxzSkpaWFPxwx6jFqV6FnmojFM2ovm1H4CVANo3baqG5oErcoi9MOg6bJZ58Nah6+MVgSd2EOz5Tv5LQZ9Pek+GUkUwe5RJD+HporUVcoFbAooIJlBnAuyTJo9MIZECGp/vby44os3b6mqisv1iu2qJYSRd7//HWM/agW/UUvHR0lT2q0w25pWBJsSJunrQxjBQj+Oai/EMJkyZd2K+XrcGNgfOgBcVbPaqDh/XTk269VypX1W2wZUAqKs51ZUXKME2yW/rpa1IlfWaWpTVXnqqqJtlX18e3fPqqkZ+h6D0Pc91hg268wodAXIUpHvlLL+41OASr6ionGZvchTHzHbZJyRGaYKTfncZn46veNTx+Md7fS92v8CEiedwHa94tWLF1xcXapWYK3afmobHxn7kX1/5PZ+x647KNj33PviD0EuTt4j5y/84EPdE90bb29u+PD+Pcdjx9/+7d/xt3/3G3b7Pe8+fGSMcRZCWSJMcvLw6cvMc/g00C+LSzeZUXsAhEM/cPWP/0SMSdO+fhWQNAs/+8pPN3BWGuIntsSnjx9S1et//4k//W9+/NeJRg6Awsj4NOijTrO6o5EkuvD6CjbbmlX0vHp1wVdfvWKzXoEYbj7uQBK9idMiVvSEYCbTkas4KZpvEKuMoLnzi3MeCxaY9UFixnjKyFDnvkSFZC7rhfIcJH9vRMGfUrZb36PAX2YNWZ9BDot1NdZ6nHVUdTOnXDgzRVh9palfTeO4ftGwWntevrokxl/z9suXNK3jyjYYO3XxP4jI//qJhv5R/SiZzXR65MVsgnNnrHyKak1GcG7bcr6k9GkRjZQlyFUTFsJzAjLlwWcxQmQCfpxzWOOUes0C3IHFho1e18SMkEnI2JQomGikJoxDLiE+EIM6MoPaywzjyP7hju6wYzgeQBKVdxiE0ZoJXJicWtEoy9wYOs5EZFFUfNGShik6pzjRiSbQs/RhObedhKmLIyKQnF6is1oZQ5Rl54uIei5tXhg9WAVUY9bDIiX2hwMfPt5yPHRIslTtmrqqeXg48vH+oJGFMdFlEdYuDByGjpgiwxDwxmE9NKsNTVVjrWO93rJaX6gRdH3J+nILArd3Nzzc39L3Pb/7/e/4wx/+qGwxlgt30Zc6x/Flvu9PgA+yiJoyzedT6Ffyf6fsle88nq0fyxVIppnHFCeNnxhjzrYrabX5fq3BGxX4rCrPer3S10vqHoXhlanoYWQYVSC/aWpiVMH89XrDq1evAHj58hVv3nxBVdW0bUvbtgDc3N5wc3PD8XgkJeH9hw8LPawfo+vwXx0w9Gx96IzhYlXz8mLNL9+85FdfvWXTKAMkxiK8q+5+zMLNSRIf7nb89o/v2B07/vT+hr//7R/Z7Y/cHzre3ykgpNW+ND3zcDxwOOxZtQ1ff/ULMJZVu8LYGmNVALQfRvp+RIBV7Vk1HmeNpmnVGqTYrje0rVZf9J6cyoDuq3l+OKeRYO8s1xcrLjctRoSx6whdr2M0BoZRBWLFFKlb4XAMdN1AXXka76BVFlGICv7shsjvvr3l7/7xGz7ePfC7dze8u3nIVaDKPrMYL98RHnxe+8ac2I+fjgrPjoB3llVT46xjvWpZrVpW7Ypj05C8V+DHepLxpDxnXWZlKAsnKOh2ODLk6pJyONLtDvjVmjf/9t/QfvkGqorx8MDYOMQmmi5hBo3mrzdrLtYNKUXuJBK6h1y9dCSMRyTruWgMLYtRY8CNCnz0R8SAdYJYwY0RZyK2chjRqHLIXeCMsgOWjpakhNzcMdzfk1YND2NPf7GhudxivIAMmMrjtmusVBrkcdVSUPb51lMR4jjkeZZLr9v5midNlcJGDlrwIxrLmFNnNT19IZhrtGKSTYLNJendMNIcR1xMuG7E7XuMCGGzIl6sSd7RS8XRNaTcRsW21P5XgMYnoSo20TBih4EE7ENiHyMR2A2B/RixwEtfYVyFswoA1V73MW/0vOoRpqKyTjSGVNgxeYYmMYRoCEkrT/USCEAUoZfAKEnt2NRgxGcZ6KzDIsKYwiTeHXMa8BjSs81FY5T5/tTrAJvNii9evKRtGoah57g/aDAqKmDSDxqYcN7hcJlZbCcjdtJ9YQZwim1vMDmdPGUWRWHtCHVV0VQh26RztS9ZMKk0cFnYXJYklmZlWF+94Bd/9a9pmprLtQr+D92R8dizv73H0GPMkZQUVA8haBUwNMgtgLUJ6xPYqKL440AkMQwjQxgIQQPhJZAKaptHETCBh/2BMYy07YpmtcI5qGvH5cUqg/PAc9qogqZ1SQFLwIpWQ7Q5/FtsaIvJdrOZGPl1XbNZr7i+vMB7x83HG1ZNQ191qsXUdzl4sQZjJ7Zl+bFJsFmREiYMZ4Z68vOyChWbsIBRsxIwk7E4+aAsGT5M/nA5nmKSyNkvp2CRXmCKAaKBlGibiovths12w5svXvHi5Yv8VTouxjBy//DAYXdkP3R8fLhj1x9Lxc5n3BenWzx5/G7Wjpne80PZVdNnMgEjxsj7d+/5z3/zN+weHvibv/0N/5//+J84HDtC0lRAtfwX1rycWA6cUOCY+3gJ/pRxlz8+n8SomPTtwwO7w4H2focxltvb+yntq648dV1xcXVJXc/6UpP/evLNPwAMe1Tt6+njs4s7nxySB3RBuoG5wWXR9gtHTIpjJnkQCM7Ni3vb1oxDpGkqKm/x3hHGXPnqJMKvlFXdPG3+lpwYKfP1LamcJYO6AFYps4Wm+5gc/EKfnDfnsiRlQj4m51UrAJRTYk56KELRNjIRgzravh9xTqOuxfGegB8nNK3DupExeJrW0fc94zjivJBS9WgBec7jJAXrKWP7ZF0r4MLp73L2k70cHSPLKIvMaV8lIqLv1mk4nWP6+wJsWawcZdSdpKqd3VNJlTlJ3ct9GcZAGLXEsIKLs/NqzHlbPzEJJ5Bh+Vp5mP82A2c/YLL/OUfZcIxZlC8s2jZ5/tlZ16fMFykbV36+bM8YE+M4MljHMI70Y0RMnFg4Y9Ac625Q8cQhhbmCmLEZyDNUvqZpWpx1NO2KttWUpCLAJ5LoxyFTNjv2hyPHTjVnMDk5ZKK5Pt2G89A42UIpi6xiORngPf+wfPKXzzrvvuvQLphTvdRhO602YRYGqz66vL64SXC0aDgBDINWOzTG4H1FVVWklHLarVaHu7y84PLyakrzatuWmT7cU7R/5vM+tbF94p5O2vbEPHqOJvvnPwyT0KbPZc6dtZlUMIN1ZOFKrVoVOXQ9D4eOh8OR+/2R+92Rh0PHvus59iNjmQdZcPXYdewPB2IM7A8Hjl2PsmhR/Qq0Gk3IaWXBGWJaiHTn+WRtrqRnLXWlP2W/LQCBm8T4td+1ipdWphKnDo0GMtC9cLEHT2wAm0EhmNoiRGUHHLuB3aFn3/UMQ5iMOMlje55+P9cYyXuVLhiLYMM5EGVOHzIjz1lZ0PF178coI0ZVgjPV12Rp32IHStIUrBi0qlYS4rFj2B+U/dcPxJiwTkGzMadtuZRwKU6RazcFlzTt3UY7a9RIXglLR6SEKRp1NqoOXDaA1RRIWTvRYp3M5bHQwIct63JxfQRiyGnY1hK6DustrvZZN2jUJogha8kIIvZ7HIefdpS04QJOx5SwYqexXXR4JLMr9bmCs9HkqnZ2NtGlOKQyV7M1AhISZgzYmLDDiB+CVlGrIxJFVZOTBsGW5GQQSrKbAa2MVdKiQ0JGnQfRRbVVIKfoRBwQxSLJZqdVzRFrZuH0CfgJkvtzAWZOnq0hRUtMas2OAiOGKIleEmPRtkwRk/T+J/BHREVURQGfkPep9IydaUwJdnAy7cq9VLnM96ptMQbCoLpXNq+5mvLOYg6bhV1ZGMB5ji8bJ9ulkjgZIyWwaW3C2cL4KSFlUcZRyRTI8gOQmVYGjLEaUFmvdW9dtTSrVgG7utaU7BhZMOAmO7Z4PsXBXVbKiylhY1QJhDRXcF1anJP3JCVlxhJL/5oZZPnzS8g82ZMs4Y0ClxfgZbILyhpl5nR9m6/NO0dVqz5SVVVzAJPMjol67wWQKQWGNDXPTHNEzoCZcj2fumo9Tm13c/KevDqcRArKviX5Xj519nNb9azFTE4hLoLOWZZCqxIrMz+mOKXvDbkCXAE/n9t2nXyF82v9AW7NDwN9Ttt56QeGEOi7juOx43jU6lpd12U5i+w7mtPxPvk3J039xB2YR08oSFXxG8AouzlXlTscj+x2e5yzHA9HuqNW+1qHZdrX45v+VErYdAWz6fHJ9yyPnxf4AQpWLhMaqsZAmQg6cfV95T3qwOTFUGY3YLXyvP7ims16TXcc+fbFDd45HuwxU85V8LTQ5ZMEMCqoh1iMKakuC6d20eZpwpNzbmxZBk+MymXKQllmWfxe7nlZstJM/8v0qyCm1GrI7CCxxGgmAdqpwpQV3KjG3DgaMB3HzlLVwm73wOHYgq0Yg6H+M6slnB+TI7lYHMomUxarme3Cycy1E3jAyWPZiIxVweGqqqgKk8c6FQ49HFQ3IFctEgDrML7GiRCzsHIp0V4qs50L/J0e81iyRjdaEZk2hL7vGbrjBOoZUcG/u9tbbm7u2B87jvs94zDoBhIz4+s7Jp81Rkutlj0/G9MnjspsNeboz2cEfvSi0PFlJ5HzMivJj2YxNVK+R61qMs9LDX0Yxjhyf9jTDQO2qqjaFXVdczz2HI6dtu0w0nWDRtbqmov1FmNg7R0XjQKWTdPQNI06QbYCq4DP/e6Bh4cbYgx8fP+emw/vGcaB2ztl/iSRDJIWQAOUIP9Un2RIJPfZshw1Ritx4AxFWFPXiNkJmhf40y35n+Mo8zAEBSdTdvyttSfgSTEMpiVv+lGXAliwcoTjseNhdz+lPlxcXLLZJOq6pm3Vqd9uFfgp2kHGGFISNuuecbjEO89qtaKqKkKOki81Fb675cwPeM+/3MOg2lVJDIcucr8f6Zxh6AKVy8a/1XV8t9/z/uaGvu95f7vjt9+8Z3/sud0deXd/0HLmIegOkktKFwCw63pubm41zS+pTk5TN6w3l2wvrnPE0+OcsiowXgXdc03rKIIkOA4DIQWsMdQeGq+pMN7bXP1o3t+MMQzHin3tsQZqK1RG15q2rZDUEqNw7LXyjBrwDoxDkmUMQjdo1cX7/YFjN/Du4x2/++Y9//THb9gdFehKT66RP/d4KdewADYn0GfpAJgJ/3e54ooxhqap2axWdOs1+9UK1zTYMGKaFtOuMFWFJWIJyo0aI4SIpIiLiTpbGHYMmP0eQuD4p2/4sN7gfEV//0B/d4fESNuPtP2AM5ZLM3KRq8N5X7O+ek0MuZqPQAqB2B+IwxFIxDgiPWAzIOKYK1lldkR7YbF1yzBEOlORKk2fimMkhfO0WcGJ/pgwko5HRhLGG4bDDn+ssamG1kGlMXbVP3r+/k0Ch17T8YdRxX6NBR8V0ElRiEEyU1kIo5ASudCG0s2sKfpVCtMUORwn4FIunb4fWd8fIAT8YaDedcr4GQOdCGPleWgDt6MQrUWDhVo8YS2JjQhehHpM1KMydHbHjt2xIxjYrVt264ZkIIaEyYUXnDlSYfFA5YXKZuaQSBZrFkwQTNSw6IASCMRA8IbBGQKGnVR0OEYMO3F0WIIIRwkMJBCbwQyXreIZMNHUMLUdSvrmGJ6vLyvvefvq5QTgTWBAtj+vr1/w9de/ZLPest/vufnwgb7ricD7Dx9JMWRQ2mYQOdD3HcYo2BVy2ppzFm+zHheGkBImqdZniJkJVmz34mRmpxKZU8/VvnKL8aIBsLpdU7VrVusNr9+85c3bL6nrmiqnIomxbK5ecPn6C/ruyDGNHIaeZALSqSOvdrLN6X9aBKAAC2PQNTyEQDcMjBk8ciTdw6cW1esOQcdQ3dR452hrFQvebjfZiX7mo6AY2eQqLxaAfWGuKPgsujb4nG6+ahu26xXXFxfUtefqYsvFZsXQd1TeMo49kuLMdHKOyqtotVZzFrqisbT4v6R3zXb6bP/ZTwE2IhPAMIE+yz0rPy1gwzlYUj4h05vIY6iAXBpoWdcNdeWJMbJqGkII+LqiqSpiUNHx+/s7+v5I3w3c3u44Hnr6ODKE+JkAvHy5LHfB5zzr+dllemqtwXmLr6ym/3lL5S1RlB082f9PnLGccmH5A6eA3wkck4Ge5QAQIQPoVm2Y3Z6YEvvjkc16zfF4YLvZ8Jd/9ZcIqkNVt6sM0nGicfup4ww7/EG74s8M/AgQETGTU55JeoqSTYthQezKx7RkZVmAADCwWle8ffuCcUh0h4E/vfqAdyo6uN8r7TmGRJKQF1xL0fLJ1vTiuZnOOw8GmSKRy5h/iZjP91TAIH1uTofDYsAwPzPlTDpI5YSdpNeKWFQPtZRNL9eaMDZgTMJ5YYwJXwm+Fu4fbrneN2AbxuiUpvmch5lBm4KqLgfbiXZN/kMBX5ZCy9PpTFbQTylHNpSi6asqOyGWECL7/R7vrFKDS6dYj62aXBJ2CfyUySLThlu+a/m9068yCzOTkkY2xpG+6zjs93nyaZpZPwzc3Hzkw4cbjl3Pfr9jHPoF8JM39bN2LxiYtQrgiZgMJpGjTI/BH2XS/Pld9n1HATmsWJz3WiEigx4mh8+LsLWInBhTZa3LHY2xMITA7e4ebx1iLcZX1FVNGCNhUE2Eru/pjj0CXDYN11ulPsb1inR5AQhV3VA3NRjDoR85DCMhBB5u77m//UgYBz6+f8fNxw+EEBgHLTUOTFXu9BrtYj2Rk4USyjqdmIettoemYJosSql/KaHtwnI6O9Pn6aDvOspekw2FJAr8TKlexmTheqGICGq6aB7vZm4PZQapQROTgqkpCfvDgdtbreTVNDVXV9c457i+vuLVq5dUlcf7mrpWrZJxHBkyGFoiat5XrFebPA40t/m0jssPNQn+2wN/lEnlEbHsjoHbhwFn4CGXA8YoPR+TeP/hI7/5L//Ibrfn48OB37+/5dCPjDHRjUvx3LKn6W8K4B3puw6D4eFhx/sPH/FVxcuXX/Dm7VfUdcN2e8HV5ZVWR7T1VMkPY6by4kM3IiliDDROaKym6TZNRd1UGNRBTlEH5867nC5qeXHRcLmpsd7QtjWVk6xl0dPFAZ1jDqxWMRpG4dgH+nHk/c2e24c933645be//5b/8rs/0ofIvuszq+KfrQtng36JUZrzdzw+rFERbecsq6Zhs1nT9z336zW+WWFDwLYtZrXGVBUmBawMWElI6EkhQAi4qOk1gsA4wm6PdD2H3/+B0Edwni5EuiEikliFjlXotAyzCbTWTFoD7sWbKVVesMSxp7t7RwwaBImjpkAb5/DOYL2mhTrrsJVTx6huqcRSD4ne1aRmIIZAtz8ydllsP2gZapOBH5NfS4cDMfTghGH/gNtXuNRiNzWmthhRgVzzGdyUlGDfK2t1GIrWC7gMBMQoxCEzOaIwjPoZYyXXNlfmjHUyrae5JsgEbtmU8A896eMOM2qaV7M7YlNiPwQOIvSV52YVedfDaC3GJLX3EK5jwud1ddsnmk5ZQv3hwLvDkRHYX7Tsty1YQyNCndvYx0SVEl6EyujrRgQfwUVlI9ko2FiUKfO+bw2htQyVYTCOe9uws54Bx0ep2YsnIBxI9Dlom0olMpnZ7WpTz9Z0eRzj8/Vl5T1fvXmlrIZcrdVYi82i6a9ev+FXf/FrLi6vuL+9pfI1h8NBA1UGUhyzxp0GK1MKdF2eD1lvC1T7x2aRY0QIYa4YG0JgShOfbM1sS2W7v9jOqlmlYTbJQSXrHBcXl2yvXrDebnn75Zd8+Yuv8d5nxnkA59m8eMn14cDxeOD+eMDvdsQ8M0p1JuM91mgOQghCSlngONtxMSX6ftRMCQtCwmZpjSIOXGzslCKr0OYU1YqqrtleXNA09bP138kx2e9Z1NxYBXhMZtJNAs9MlXyryrNqG9Zty8Vmw4srvb4XVxdcbteMfa9sl6FnpCeEkcI0r6qKVdOQsj6kNZ2y/QudESbQZwJpFsv+0jd8ZB8ufl0GRzh7JiWR8IRqd37oyWz2Kaw1VE71ltaZDVbs2CSJIQNc3fHA+w/vc2XWyP5hYOgDwQiDTcwKqs97nMEy3/n303d917V8j/1tZuaTFh9x1JUjjJYhppxm+t3XPYM+54VfZizi1NsvvxSdNEHEIaKaXTf3D9ztdqzqhhgD79+94/r6irqtaduGummo6gbnfAbJn/IzPn2tP9QE+mdg/JTjcSPOaT2LSTABKo8Paw1V7TEIdePzT0VVOaxTJ7RE3PQMpYR27s5ptJl59i7RuvL/8uvN+WszWKNO5fy3kyF7cgtmPs9iOswxrOWWKAp8yWLaiGZMGxMxUY0UY5WpkqRkU5dy0+lzwKzzbRW0+wkWUDGET1LCzg+zoG+arEK/YAYpKBKVVWNzSldGUapMiy3ltU/ouE8wnSZ6rv5GaZhlj09MBJF5A5ci4phLZWfHtjjXafHdy/EzbeQsHIPFH5eZYcUQOLneT7b68xwzu65cxALwyFF5Y5hIbJJBoHKPZZSertEZfMjpIkNuKx2KMke8mIelhYmaa6wjeY+BXOUmy1garcoWY9T0sb5jHAb6vtcy4VlceqnhtHzOdMUnLXDyeAJm5e/U8TYvqRM4sjhFGUWPloknvvGzHMv2F07AueUVzWmDyzRKTt6jpzP5PJzNKZnA2RJVa9s2V/PSzRWYASerDqG1bmICPQWD//8PbesoiXGMdMOIM4ZoChkvgVEG6+7YsTt03O+P7A4dh5zWFUUFV6XsLQtjlLyHlu8AGIaBw/GIH0fa1YFjd8yVMutsCBfttezEoRWBCkitehZFtFfXgKkKI5neHGW+tyiI11S1Qq03RqPmyphQpkRZ28uukJKWOx5DmiqWHbuBLlcwGzON+mQffWRv/zyI0Lx2LLwCzve9hXmW119rFwwCp5R85zwmO6q5lCdiHZiEEZeNSnWCdJEy830nFKiPiTiMDMcjOM8QhSHoxHZxxMaRZI0Ku44jSMJUc5lx52tc3agB7Sut5lP2uiRgik5X2QPm/cOi+ihRIq7yuCrl8ziMt1nl18yfy2NCTFlz0hM/xRbKBQY+Q7cKMISkwE8shTgSHhVRTjERMqgZE4xRQSCSycBPHtciEyAved1VTZ6EzSCBhAhjxISIHaNW3BojMkYVB/CaohWsqFi2UbdMglb5MwlMH7F9VOHoPhD6wAiEOhDrMFXE8whewIeAi1Erd+UfI2CDgj0K/IBN5EpTak8ma4goAz1aR3SGYBUY0gLxNteuTYQM/IQkWa9xaSXLZIULMyD0fQ7YjzmMNbRNrXajNQvgR9OY60orgtoMBk26LtbmdchkfTIFvWOcK489DvjMwIRO/ZIOJlNQ7PE+e2r/gL5nhgJmhtIy9XO2yZTBY6zDOo+ranwGYif6Ltnumc4rlDLlStgupetLWuPy+pnt2IkOXGyhzPHO9+Wtpak8Tf35gB8Fx9R+thSNH017TZPy8wJCKYCVtVin8h9VrpxY5WqwhdEMea0sn80A+MRcXpz5HKrR5pVHLuLyOk58AmNOPv/YAip7wynXZ5mqb6ZTab8UMWrVO1U9qirbYSbvoyFGUhgJQUW8h3GgHxXoCzESkgqzS8n7/NmPWTZivvHvu45PLxgmGxfGKICqoI/P/oSyku0yh/zJk+SH6ZrmvllaFKenKFUXl8/NPD6yTxmjwZqR47Fjl1PwjgdNQxOYGPE/Oup/bvd9x/HzAj/Ggmnyxc3TqaRRaFWRc4KbPk5USWSizloPdauVvi5erHjz1TWrTY3YyP1+hzta+i4Q0oCZGBW5FyaGzXdc7vk1PHpVFj9Mj48afkoTgVw0czLGJ8pHfq7Dapkalr/PzG1lTFJnAFGqeOWpG2ibinWr5YDbplItpGe2jkQ4BTqm12Va6KbSlMzgRlloC+NnmerlvMempItydiqNyWW+h57+uOPDOy0zW9cNTdtmQMBRtxswmQkUSxphWdRPGTPnzu7sKuj1xpLvmkGd4/HAbrdTA6LvCeNAPwzc3txwf3+v7+2VLiqpGKun7X0yFgoQNw2b/GQCjeYNaAIXPtM6XIAtI3YqFyypiHg+BgUK6COL53A2g4zOz1ESEgZ1+g87rNXNaNOuuVxvcdbROsc6i0dXziLHjmANqqWlkaphVNp/TIqUf7y/J4SR/f0th/s7YlCtkhDCQpdJUw5jShDCrFNBYSvFR2O3tMf0WIwloZgaFGNMJOVSvDbPQb5zgV64eT/DITPjJ4RMNy/Ro3zNPOGIlokq8zpbfowxtM2K6+sXSEqsVi2b7QbvXRZwVsO66DqBblwhxElgr5R0j1FmI3OZOvskZPb/O8BQTIl913Fzt+O3f3rH3a7DQK6HA0lGxnhEJHB3v+NP337g2PUch5EuRILkNSyDDWczd36a9xADhJjo+kHTgm5uiVGoqoqrq3sO+z11XdG/fImRiK88dTae1Aifo8HOqcaPtaoTZGxOqTSQyFpBQQsjjMFQWUHGEWs1RazyFmOhbj3r7HTMjGCl2vejsDse+e0fP/LHdx+5uXvgw92e46Di8FmSY5qz5b5/vnm3bOLZTjllButf5wedl9ZodStnYb1qub6+AmO4v7+hXW8IURk/oakYKw/W09iWqsz14wHBasoRY16jVSswYYjDiDzsEGsZIvRBW2ZMHQfp8MbgsNig++/64oq1KODfrDZQO2LuL2sMKQSG456xP2aASSs2aQUrB8armLHxgMN6S9MKCU8MEessVasaYaFX/R5BlGEoojXM2woqh1nXmMphslbUtCaXoNJnOPox8o/vdnp9MeYU9rkEsqSS6qVs8BCzo2+YfgpLQg3diBgFJh0Rz4iTRLsf+LKPVGOEIDRisMlQB8F1ARcEm3pMUH29NiXWkvACr0Lg1RiokrAdAz4zk1I3MPQ9I2rYb6M25yuEFwiVJK5Sz2UasSJ4cgUvDD5YXLLzTWT7ZEiBXQqMBu46YechOMu+XjH4mmg9bZ1wriGgItE9oilgxjJMtq/KUZ8ZRI/nxjMcdeX5i69eKqs0l0wuRUMEwBq+/eaP8O23jMNIdzhmtrhhu15BCmw2LVdXW6rK0fcj+2NPiIlDH3g4DLqXRa/7a9ZvKmWwFXx3GCO5THgJapbqmmX91LsuFRBne1QBnijCse9I1vLu3Tt++9vf5vTqNU3bEgUtq97WmDiSMAy5mlcSFDRmHo8iwjjGXMK8wFhkl8gokLSw/RR8Mrj86L3N15qB5ywq7g3UnwMwMAZfebwxtN7hjMUZR21rLJZApJeRKFrMZxj7OQCcNFhrRaispXaedVMr42foedjt2e/3hBgZRrX3x1DhrGOz2eCcZRgD3u6QGNVMWizmM9tDFpf749rgBOc48XULqHT61+z9Yq2lqRuqyrPdbHj96iVv3rzR9bttaeqKMAZ2ux1919ENAzcPd+yPR/ph4O5+x6HrSRGCCBhNLyw+5ec4zizOs295Xl9H2VsKil1dX/Orv/gVh8OBh/sdv/+n31M5x93uwLEfcyqvA2ceLU06Zxcv5IeplWR+XH5oXgXy82KgYAqCSYiJ292efhzZ9yObv/0Nu92B7cWWv/7rgTdvRy3u1NRTQPXH4kDfdfzMjB8Dtn60aS+FHSdwFAOLhRJjJ6wtZYfLVobaaMTw8sWKN19fs7luGdLI+4+3GGcQero+kEJc+BjnzoacPZajOH3kx/Mh+zTwM90raERuAnvKc3v2WWGpDVSYP0vgZ2oVYzJApECRc0oVb2oVul6vG7abhqZ1eDsNvWc8FDA4eeUMAJq1OwSTzAwIpXMKo25K3mlKUBGOrao5ZaQ3ht39Dbcf35NiYHtxwfX1C6WkVy2bqxfKEolJReeMMoSW4NSScXS6OM8zV6PSc7rQOAwcDkd2ux0hBI6HHf3xyDCM3NzccH//wBgiQ9+TsnEhi0pFT28CGeQp7TPtHpIjqWUMnI2zH7mh/JBDyMyMHJk0RRupMLDMwmk5GYJnbqWUxU6mYR1TyiWnyboOI5X1+Fevaa+uNTpU1UijrLQxJMbjkQnUtTr+uzByCAMhRr758J5v3r/TakDdgfF4UMNu6AmjOjyPAEnR8af9O1/PU8DPdC9wivLnOat3raBSMgZjsi6ZWY5/ebRC/HxHXjEyoFfYaLP+2CmT7tFVCrlv5xoVJU1Oq3Q1GAOr1YrtxVqB13xuBXVidvBLP6RJU6D8vYA+RUhyYgs8Wjft4jXzxHv+2zpSEnaHjpgsYr5h1dzr2EXTMIbQ0/X3hDjS9wO7w3Ey7oMs+HNmOVUft5eZ/svpCFGB3n4YeXh4wFrL9fU1+/2Ouq6JcaSuXBbs1mpt1hoqr2KRxlicr6jrCmdNIaZMEe+UI8whlyW2BgiB4WDw3nB10eJ9jbGGpvVYT36/OtcxJY7HwNAHbh8O/OPv3/MPv/8Tu/2RD/cK/JSdcuk2lXv/+UeMmRrZZMPxsekOJhd3MCZH9r3aB5v1ihfXL3Cu4ub2I+1myxAK8FMzVh5TedrG06AA6/jwgIhFbGRkyICqBeMQY7ViT3zQyloBxpj3YtOT6HHGYGJE+o7aV7wWS+tWWO9ptlvqzQtSDAq2JIhDj0QhHLW0c8rgj0kGg8OYSh0J68E4rBGatcN63Z9t7ajGmhAjx84yDFrbqLDLrLO4plKtoHWDrb2mkmXHWCv9kLHF598Xh5D4h292uhclWQB4WZkjKxUXcLKkRiSUfaD9O1f6wVgE1VrzjHg74klcHnv6PtCGhAlCLRYvUAfBdyPeRewo2D5ijWEV4EUQ6iS8GkdeDyOVJHwM+FxeXobAMAaCgSYI6z5RG8OXJL4iUUliJQeadMRQlCR1XLpY41KlfWosKRdC6ceefRzpTeLGR+5t1Ipj655QNxhf0VrDxkEw4I2hx3DEsMcR0HGh9rvTKTIFFz6PjdNUjl//4hUT+ybbJH1IxCR8vNvzj3/6PbtDj3eepmqVOWHgYruicnB9fcFXb1/SNDW7Q8fHuweGceTj7Z7dviPGkIun6HyTiYEmE3ADWWMkM6ddvmtjZoazNUxpsLNYtD7GlDh0HWNKfPvtt9i6pWlb3rz9ipdVreCN99i2UW0sYxgn4EemQE8BfqIIwzDSD0O+EDvZxFphz022H/laXWY/OatVXr3LBSB00mbgx1B/onjGn3MYk4PazrFpGmrn8LaidQ3OOoY0cogdY4r0Q0eIAyHP2Rn4gdo6Gu9YNw1X2w0pjFmXc8wM/oFhHKnGgHOOi+2GuvIcDh2VtdMcLyGVdGZjni9DnwKAyqh/+i+nv8/gW3mtOMcJZyzrtmG9XnF5ccHrV6/48u1brLVUmR12PB7pP37k9u6efXfkj99+w93DPVESQ4wELaWJSR4lZGQ/wKTP4W48eZfPfhTswKpeE8CLF9e0rWfoej6+/8CrF9d4axjGwO3djhR1fTVyCkqrFSpFtnSysQrjLS5c/hOG8fRL3vxPmQcIWjRhjJHbhz13+Udi4ttvvuXli2uaqqJ2lrppuHzxIvvDPOmz/NQ2/WdI9TqDIqb1MpOkTtotp32V5ydmbf5dMSGcN9SNJwRN+apqT1U7nM/VKWzZsJlb62TOyicsxTPwRcxZTy/ft3z/OWjzCZRzuXAsPmKmF+T0D8ygzyQOZ0qZd5vpqnYSb31caeqf53hy0C4iC+Vx/iGvdaVKlGoEhDEQQ8A6NzvxzGlW56kpn3LylxOyMHVKFY/yOGmlhMA4KBNoGEfGELIjG58+d7m/cv7p/3JTp++ZgmKP9xB++tT+/mNuMyhsHni8cU0ju1yjWczh8t7CCDJlbup9JkkZYNK3VZWnqSqlxdsCwugGLEkQW2BQyULeY2Z+KSBXhIvjguUz3cdT95cfn3r+VHtM9z6VqCligvMcnDbwBfNpeWifLub35z6Wy9MZADanaD02LmZA9OwkzMa5MbMouzFoBM55rLOZ6RPyd55+77LiTWEEiTDpfHnngCqvf6VvmD736Mb+Gz6U8aAMg34YQDLDLANr49hx7FWLYAiBIVff0M+yaKaz9lqMvXPmiU75PGeiBkWstfR9r5TjlDRa2HUq5m7IaRFZz8U5jC0pEIuvmheGPD9OL6looxijKRTL+zBWARNrQTxIMNlp0xSxfggcu55uGJRR9mj8Lr/sZ973TtYJThp82QynyQOLz2Vg1ufqM5WvcN6r5pq1RIQgoql1plT8UYihOO+6bk4nVkBCclUhtJsVIxCiiUQTSQb6caQzFkky7XcYsNRYpyai8xW+anScOI+1Ll+DXXxfMZWX92gm+0RQmr1Lmr5rXRaDRp0QEQV4bF1hvcNVc7rbZBdMrVjSAZ/3SCL0Ydazk9KSxSEXQXKKmgI+2UIzTJplpoBFU1cUpEowKWFIUypkysyhCZ9Pgovakt4IlVG9vToIzSjUItRjpA4RJwkXIzZFrCRs0tcQqFKiCZHaGBoSDYKn6PvMdZ4SBsRgk35+ShVFQObKpskIiUhyKgCbgj63xmUAX5kvWg0phzrL0v5JG1Tn7HPPVIMyaIBpPoaoOjUma9rFMDIMPXjBOw8oy7zynlRXNHWlqcxNTQiRplbtsspnVgxnvsPynpaVWJcBtPJeya9PVzvbGtO6iQI/EgLGWvphoDuqxlaf7aCUGU0x65UU2zVNINTZup/t6fJ3Y2V6wwRu5q+3zLZ40ZApe/fMop6/w34GtMAwV7usvbJOvSmPDpIwGg8JYnRzYDcHV6d0rmwfWmOm9XUqQiBFrytOgTKX04O8s7PGkZk9skfHuct3Yt9/ol3yxp2HwuKOF5815492GoN1XdHWNU1daxVQ5yipxmVcjKNq4w3FdxlGEsqsTJBJCfkLFhU5/1s7SoD2XDNpMlkmv+vchjg9Htk4snheniw6dGl3Fz2v6Z1SiuQIQwhacXXvaeuarusYhgFj7USW+HE3/P2d+LMCPylHL+HUH5rR8mLM5EFeNnyyUZCZBQk1RJPJuYkiuDZx8bKmXhsejhu+uLlmvWtx1QPdEFXAakyk4Rz9yd/7ZIcvjZjFUn/+VvPUiFj8TfK5TLnxJ95XHM3JcMyvPXneYnKkXE7RahSwdtS1pa40omrt59RofwzYlGOuImSmJjsXVp4WKpgYRLMAtMM5P4lyafnFx4O5OLmpMA4ytbMwDiYwZ3H+Rw5wOUdSuujxeORwPDL0Pff3d3z8+JEwjhwPO7rjkRByhbFx0DQDmRFym6uuydn585PFY95gmdvPApJR6snuYgGiPPchsmD85JzpfC0Z1TiFG6eNLeeZF4dvccqU+1NQ7Q/QKKixYL3h4nLD119/yXa1gRBh1L778OEj3xw7xhiIUQgIURL7457bw54xBI6HAymGnFYXKboPJ7na5UIWfSzMLJ/5lafAn3PjTVk91nis8bkXMsgxGerFoM8PT+FAnwCHnu04MxpENOWq73vGYcyGTwG8yuXMhmHpayj2kWTjz0yRhpIXbYyh8n4CDUJQZpFImlg9SxAopcThcOT+/p6u67DWcHV1zXq9Vtp45San3aDrwO3tHXf3d1MJzBR/aOWvf9lHSIFu6ODhFu8qdI3XfoopMIaeJHHWmzjHVMqi8QMPc/rftFZ23ZHbG03bSjFy7I7UlQp4Xlxe4r3nYrPmYr1WDYyhwQ4NzlmaxlPXbnKSVZxfz1VLFpHNcyYm4X43sD8OqqtQO1yloFLVVjTOMY6B4yjIMBJI7Lo9N/e3HPuBfhxy+WH9rmld/27b7TMfZe1UDZppKWUGfHQJnWGByenDqAD6ek0Sw/bigqvLSxAtnX5zPLADTFOzii0rY7D9gAtaU3tM0MlcP7REF0PSSH8SYRwCQ6/tNsrIkFTLSapAX/fUzhNtRcJQ1TUX9gUbr85G22xxLx1x7HOqVWZnOUfCoXwGjyYQmVwy3EASbBD8mLCSANUxisZi2paq8kp/r5Rub72nXje4usK3LeurS6r1GltVuKwzZO08xp77SAKHYJjKr5f+WwYEZAH8FMM+O4eCOs0uV4d0GHx+7hFqSXiJ2C4RetVcOgbhftC5Ea2wNkLtEpVLXFS6/l0E4TKoKPMmjGzDqALfWVUHI7yykegUzKsZaJL2xiuBjWRxZwQvmo5pi60iYGJSVBCNZo/AKILEUQXFDTQCa3GM4uh6y5AMUhkOtdEhbw3ROcQ6RAyVGNos8hxNIi2dY0riSj6ecY9Mkuh79TPKCIlSNIsES1IQzCSMjIQeorF4C69eXoNELrdrXl5d0NSeulZbdBh1/7+732EtVJXD28xPNQaxc3smKVIDcyCjuJsmjyedDaXUvYLeiWy/AkMfGWLE+wrfrsBYmrZFUGaPpMjNx2+4v31Pdzhwc3fH4XgkBk39K6wjYd6PoyhAZIwWDjCmVBZUgKXo9hRGUl1Vk/5RW9ea4t20OOcnZ9o5NwHEz3k4a7lerVnVNS/XG9q6whs3MX76NLKLNWOK3O8dQ9/RZdBnv99RO8PFquF4OGRNK7i62GINHI4dq1ULBkIMfLy94dBpZb1V29DUFferNW3bAFlnLhYH/twbmZ3671qRzjC42baWU//o5DPGZFaYY7tuWDXKvn396hVXl1fU+fe+74kh8LDba8nyY8e3795xf//AMA7s+0HnMxCx2d1WiLYIV8+auJ/h+GQA8hmPfOqYIhK0iuSH9+/45k9/5Hg48Nvf/o53H27Y7fbsjwMYmytS2smemnrWiK7p5fKn28h7+PcuV3q2SaunGN/GnIwVwZBi4mG3UzZtirx/9y0Xm5bt9oLNdst2u53shqd0YH8IknF+/KzAj0iiDwOT41VAsgmdNrmMrObDWuMpkZ1c9FDbMIMpiUgkIkbwrXD5smYMnkN/we39Neudlmi8u++U8WNU2VyzPs4H4OPmMlMFMH2/PJq654+faPITHZ+lI/jU+xfg0smflyCOoFtFwlqhrtXobpoM/NQ2Az86zT/HsQRRit4DMJVEL1t6cRKXnymiddba7MTkAW0WrKWCumeB3+n7ir0nxVmJE2izLOdegJ+Qq32dX/PyiCFMnz8ejxyPR7rjkbvbOz58+HAC/KQk9CEyRo18TdrZRu1XyUmhKZU2OO/IBWl0EeEpIKe+JbedKADyXayin3qUtrEuC4dCLsl72kZLjGACrBbXWfpXoBAVcnQwGz5GIFdFubzc8suvv+L64hLGCEMghoiEkQ/fvJuiWKMkQkrsH/bc3t8o8DN0GfhJM9MnnQI/hSpdHvPSi/55kUp5BkYaY/J7FBzRWa9pnsY4rK0mcEPH1TymJ0tvbqJ/VnwiJVHxvr5nGAcFTkoniszXXtbcyfHUowBEztmstaVVETS1x+QAv8lRMmViFWBNH2c9rxijVhu5v6fve4yxvHjxgpQi2+2Wi4vNVDIXYxiHkX/8x3+k6wdltwxaUvpRG/83dogouy3EQD90zObHEvI6XUce4xw/vn1O5nnekw95/TMY9rs9Hz5+xPuKF69e8vLVF1R1xeurK9L1SO09dlhhhoB3lrRpMTQaHfYe721e07XcNQIyBBWvTYn7nUa2rLdsrlasNu3kWKzWLa7XikfJGYJEdoc9H+9u6EdlRpVhXIQ/pxYxy7n5Mx4ToKN9tQR+Tp+VZKC02JMUaF2vN2Acl7m6GiKE3QM3dw9IGLFtyyYGVtbSdj3rIJgIg0BPTt8xhqLekoQcoBDGoWfo9sSY6GKkCwEB+sry4B2VV1UpSZGmabCVY92scN7RNltW62tiGDLwrvO/HwNDCIgsgB+ZHWAi2JAwubS0wyLOEp1gvWUkgbfYdYtpPK6qaC7W+KbBVh53scY2NcY5bFVjrFdNhpNazs93JDEcxuwwP7HvGnJaQG7nlLtWjJmYu04MXubUNC34JVQJ6qjAj+kSoVPg5xCF2zHhtcfYSAJrufYJQsRgWMXIOmhgy8URn9SOHmxgtAGL8MolNkbtvcoIPgWcwCoZVomSzYERN91PYeZKiKQYVHNbhDH/iESMRJw1NHgSFpvUje6DIQboWxh9LraCsjIkMQE/EehFkHxtpeDF0jZ8zskqIvS9piKaJSOt7PeS8CZRG92nQhgRgVVT8/LVNZV3bNYN15crKu9YrRpWTaVpVOPIu/c3GBGsc1nvLwe98riP056l9lOS+ZeiwJWMRZzJVvzsYE7MHVFds0PXKdDpHDEE6qYlJqEfA0kSNx++4e7uA0PXcXN7y+F4zHqTp2wDEU21LGnWCkQysfGqvMdbY6isVT0dZ6nrBp/FjhX48bRtg/duEaj1CgQ98+Gt5cVqw6ZpeHN1ybqu8dbR2BpnLJ2MrGPNKBFn4H53rwzkFDnsdzhJXK5XdIc9ldEV8fLigqqqeNgfWK9WyoiMkY8fb6iqHZfbLS+uLrHGsl2vWDUNiNAPkTEDozquzIIpAhP4kz3xJ1cmefxrCXw9/fasr2Sg9p4XV5e8vLqgbVu++upLXr58CXl9H/qe4/HIH/7wJz7e3DIMAze3dxwORyKJMUWK21vYoqUw/eSDmM+n7XwKdH2mjTl/QQpasS2EkXfffsvf/ee/Y/fwwD/+4z/x7fuPHI4dY1RgZyqcUCwIM59MvWyZQP6Tm1k+fs8hGWh9BHzlVMuYgZ+DJGIa+fbbb9msGvq+54sv34Is9ILmVvwpLTQdP3uql5TS6gUIUegx/1VzpU1eCI1ERBR9LoUc9BwZ+pBEkpxuYxLG5U23UiAkhkSTU75CcFqusFhj5XsnC+VTpDwzvdecN3px3Aual//2ZJeYXBIQOYMLl3GPgmh8bysqeGAKiGiymJVZvPYdQNSfdZwCAzP9OjsSIrlAWjH+5ARwWYJAerbH559ZX5l1saCZ2mzwzc29SGlJKQNPp6kuS2DgKeCnaAKlTPcMIajafU4r0h8FhpKUFJZzbQ0zgU4FPUhpOS70vTbfj975DLHP1yYUek0SsOn5VZpOjnK90xUWbRc4H8vCTHmfplDp32mBLO8t52NKtVRDQks+k6tTBBum3HFrLUa0UlvpjwLcFR0lZE7teipKeD42v28OnKDoy90p/60w0ETI0d2yDszVv8qGIWfTWJvn5/M+iyE9pV2leQ6YXIL+k9j0o2jCMu3SnM2dT6VU6l9nCrrq/pQ+tNbSNA0iwmazZrvdLtLIDH3f07RtLm0uWJuZemf3+BzHD4k8/dx9V9ay5WGe+MWYYoicX19ZO544/xKbfOIt09go12DI4JtWzNPqeR0i6igxAa85FQQ1oFOMigCbmI1JycvZYoLkeVRACYmq6zMG3f1DrqYUS6WZDIw776nqCsFSVYlxssPNo7l7ArRMOPXn7c9lqtepgTc/We56ZrGWTPteXm+s0/LozlqCMQTR9h5jpM9zyYZInRI2qXZJYmagAEzaM7JIfYhzn8WkNkKIZUwJfYwMMWCjI4g6oJoRolWRRBLO1/iqxljHmMDGhOR9uaTmT0vNbKxNtgkouO6MVoqaxJPz/Srb12sZ6pLqZRfBn0V7fY5DKGvh4/OLzD0mojdSynBgJssMyqcFTMppm0nZWyaP+TEKYxL6lOiSlmqvktAkUYDHJJxRbawmJqqYckpXwiblvlsjmYElVDLv18rsSdrOopWQkMd3VH5P09zPdnUJXInM4BXgxRBMFgTHIcYpiGmc9iPKdhIMTsDnZtTUL5mYw0vL4rkZzQVsma0Ug5ZV1jtWXUlL5R1RwET9m/eOulL9sqryU3Un7xJ1DnzUlaeuKuoqqNOY/Qkzm21zG082VBkRcrJElyEm5XmeqyU9swiMW5GpkqwAx+7I4XAgScxByk5FvccxB6dOHczSj4uLykdJnzRT8FY1fayyflyZj+70x84V0ZZpmM9/ZG0h56hzupe3jtp6nLGkJFRogRDvFKwqItbKRs5SAaMWu4gpTUwm71zu52qy24ufMFfJ8tR1laUfRmVXJq1iqVvkqd0MT9mf8zGth2evldXCWnPyemH6+FLAp6pompq6rjTd3mp6rkpSBPp+oMtVbodxVH3FlFiW0VhKGEgBNE5s3qdWvec7PrtNJSUgqYz34+HIfrdnt9tz7DrGoJkhKaP0ywDa6S9lXTrdTyfXnzLfl0Y/n2y8aU4We3zh/xqT1YQnP3dOrzw/FibGn3X8zIyfyDjen0bMgbL6GZNLFVIcfsfsgCzkG/PKmXIOskafgAyGrDeON28v6LuRlAL7/YHjYeDu5kgMWjI3RUhj/u7p5/wwi8fl30sUQc7+JoufJ1sg/5yzd+C8ythjs2Nh6BswThk9zhvq1tKsHHVrcFXE+AGsECXAT8kR/J5DK3M9ZoeUyTO3zhIgmQd/WWQnZ1Nk0Yr6u1aMcVME+OLighBGVuuV5uh6pZrGmDAxqg7MOGKntC5YMn7O9X6W1z0xfnIlr8Nhz/F4ZLffs9vvNR+86xiHXIFk8p8zzbWI6OVNsGzYqYhgZ2TAWovPpXrVDkwLX2gBjmWq78wy+TyLpZkcDTv35WRYL5z5bIyUw1kz9+MEwpgMLnBikFun5VPruqJpa42erRpsLbgmEUPk+vqCFy+uaNuGj7sd+4cdMQT6oed4OGiFqjSSoqYVSRyRmNO9luN70YanYMXT7fd4Y84ASb4XYyyrds1qtSXGQGd3jH1PjCNhPDvvcgkoT39G4KAcKake1sT4WbJxgl5PMeZMTqEs/W7zLmQo6V1+qvKxBOuFlNfchcYSCuyVObfb7RjHkfv7+0kgfbPZcHl5mUWEr7i6utTSmnkMam6zCg13Xcfd3V1OJYN5/ft0f/5LP74bqJwtsqW5+ee1xWl7TtMhPwlRc8+dtVT3Hm9EaebrirW7pPYWLwNxSGANAwM2VrpXOw/WYXI1GOd1HNXZqccaXKxweVzdP4zcPgxYa7m97WmaWsdYCpiqYr3d8q//1a9Zb1ccDj2/+8N7Pt48MI5BK3R0mQGUI5mnLTWv+Z9vThqUhfLYBpiXmWxsgpZkR+P/gjqQUopsG4Mxc/nhwVpGUTbAfdfxru+pge2hY9ztcTEqY8wYdcRNZsQYo+D5qCmfwzBwzAy9IYNFAkRJ9FGLLKxDpBFhJcIWuHLgrTJIBA2sNOstTt4QQ8DvHzge9iRjGIxlnAo7ZAN1wc6EogGnRrMFqtI0fVBwKIELghMwWJyrMHWj9+MrHVO5nLVMbI7n7slTDZOzP87AjxFl+E4mpI5xl6BKCphUEvFjULAmdKThQEyR3TDwTdfRpIQLI9XYY0V4HSJfxkRtLBtnWXuriXQ55U/35UiULM2cIt6qa+ckUVGCXJLLv4MTOwFWj2v+5SRmk4hahy+zfSAgODGscEQMlprGeFpXEdoLqmZFrCq69SVju8YBtTF4DCNCQ6QToRchGGHMI6OMgXIFn+NIuAy8ZXugOLxA0zR88eol15chY5J6QVXlcjVcS+UtdaWMnqaucFlv43B9zS/edOyPPcchsj8GQjYIU04F0lV1uQ7oPaZsT5kCBuYxkiQSktqKIQdMkkh23gPGWE0FSYLznkM/8OHDR1JK7Hd3HA5qL3X3D/TDiGHW0itgkoiWbheYKo0tS9fXztI4tQvWbUtdVRhr8b7O0gvaNt571quGzcWWi82atm3xdf1ZUr0MUONoreeqXXGxWuGto3U1zlr2Y0/qI12ElfM03jP6ComJ+4cH+q6jbWr+9P79VNFqGAMpCW3T8ubVF1xuewWaMwC0bmrWjaYuv355TQqBfhj4cPvAtx/vGEcVUO+H8dHIVXu67NNPLCBCdkzOPmc1hb7K1YwNTBUzLzYb1ivtj9evrrm63GCyaP+7dx8YQ+D+fsf+2DGOI7d3DxyPnYJY1tI0LVESKQy5+M0M/Ex7/xLMeNYe/PkOEcns9sTNhxv+8Ic/cDwc+c1vfsN//Ju/Z7/f8+Hmjm4MxKQe+ERamNrk/KyPg+6P42o/BibL/mfuB2cVnG4qz+sX11xs17y4vubXf/VX/OVf/gWr9Zr1Zvsjv+OHHf8swI8+hzmqMlfOKtWztFxyea7vWWBkANOCJjn0ImjC7Xpj+eLLLWFMhBh4eNhz2PWICIddByYRBpBQQCSD5qjDqdG2bPBz8Ke8Jy1eX5bD+xQAJI+fL0Cf07/Od7w8SsqFcbmkfWNpVnYGftwINpKkR1LgOQ+1b2xmQyyAn7LhlclEdhELsFNADZnzjSeGzOKOpybJAqLeedq2ZXuxJcVIVdeK0juNwMQYMVn0eRzGDGRkMUkpaPiYHdX4iP0jIhPwM44jh8OR/X5Pd9TH/W6n7IVxJGaqp+Zza0qiswZTUmKcx2XR27JpA9nBBuc8TdtSVXV20IMCV6a0KVPErTCY5spMz3wsmRx2yepY9MZZFAo0SjulpYlGJgXBRDmDo3VMW2uoak/dVLRNxWql4I8XqBKkGLm6uuDliysObc0xjMjdPSGqHkWXgR+VNc0aMiEo4DuJ7ZRbmu/h01Gox9vb9C5hSiPViIujbddcXFxllkOcI9c5Pa6AzblJnwWN/zGHSLFndS2Neez5IUcAp/L1ialonJ8NHbNY1ybxxmx0TAKIzIBpkjKH5vlUBBFLpa9xVPCm73seHh7Y7XaICG/fvuXt27fUdc2LF9e8eHE9pX065zgcDnz8eMM333zD/rCn73v97Ml6/C/VNPnuY8YGnrrHpwITz9AOAidVKPJD+aayJmo0OGFiz6qpSa8vWblI6x3EgRQ0Ej1Eh4wavEnGI0bXxapxVLXTCPJmTd1UGDH4WBHFMobIw+2eh10HRqObml5oubxuWG8rVhdb/tW/+jVff/2W+/s9q/o3/KH5lv1BwcJjrjIlmAkQsNN+/HONm0XjnUduzMwYVkW1vHYZp2kfKJChOjGqb+idp3IeYy1BhCElHsaA6QeqFOm6gXTsqFJSEeQsvG2yRgclCJEr/PXjQDcMmk4ChLzOxaiabM4l2hCpktAJvDBwtIbKlXUxYi006y3rekUMo95L0WUz0C80uQSDRFGQPju2y14oaTKCIENEYsLm86lGjgI/tmo0rcp53XdzW32Ko/0MvcinOnLpHxjLVKpp3nO0hHolapH6FPFDj40RO3RIp8DPfhz5pu9xKRHDQBxUO+mvQ+IiANaydbC2WiI9FeCNDDgtUpd9sTVLtVdAbCJnpGFlqk+DwlqWAuFPwA+RYDQdpAA/CYPD0GJJ4qhMRTQ1g61J7QXN+oJYVfSrC8Z2hROhjgGXEoNEKkkcJHFA2CEcM+tG76HUrv0ch2qCnu/yBdBr6pYvXrWz05fnrQIm5d0Jk8G1ylmoaxAYrhNdHzl2Azd3e8bwAAQd52W9kfPKvIsAWu62CfhR5Gd6f4zKNlegNhBCBCK7/Y5j32OM4ePNDc55BYf6jnHQan4mBEzS1MAql0EvcgGTTQlMTGajDB9vrZY8z+lem3VL27Z5LakwRkX927bCe8d6vWK73bK92ChDqm4U6H/mw2KosaxcxVWz4nq9UeDHK/Dje0uXegxC6zyt8wTnFfi53ymgVVdcXV2wPx6nUSBSgJ9XykhOSdvZwKpWHR3vHebFNW1dM4aAr95x7Ee6fkDoGLJPcXbBmFLdbGF7lr7PaPHZXapvVFUVq6ZW24u8hlQVb1695PrqiqryXF9dsNmsGUPg4+0tD7sdXd/z7fuP3N0/5PR7BfSttdRVTd3UhBQZJGUSwAL0WYJQkxL7v8xDgR8FTW8+3vCbv/sHHu4f+Pt/+C/8p//8Gw6Hg/Zz3p/Keg36yyeI0vP5y5Nzn8LwaaP/Sfc/TX8zRnDG0PqGt69f8uXbL3jx4gW//qtf8xd/+Zc5rXK9AOsfn/BJVtkPOH72VK8p101/YbGNPmneFp/mKR/OPHoCJe2prhQ1bRpP21akmKgbrfLloyUFme3piXv5FLDD2WsLI3JpE5TRxBInPEMMlx7m4pwG4EQp31ASxlM6Q4iXzKCF425t1t8wZUtPJCJWnlnjZwkYZLCi3NH3tR6wWCxPGTjlQ/Nri9dNZhlJLlGZDSxZvD9lod+pB0q61JkezLnQcwGEpp/MEAoZDCrCz6mwS8ycKw7LSgd20iNSamgkpUU1kuJMT5GY2VBcgmiKCGdzYdIr+jwL8lOpPCZvCBO746wvThdAOX1xCcLkeXJSbc65XN5U6eAlOFI0ZKox024pfbvU8EknhhXnY4QCSpqTe3t8zOZYQXgkX3sR7sNkjTFr8b6irmo16LMTtmQfnrXo2fd86u+fc4Od0zoUPJzTHWPM5a9FqKqKkvZaWD+l/b6LojzNOWYjkrPPledTemYe71WllVK0PHhDVdUZYNJ5E0KgrmvqumYcR5x1J87dIzjkyf59nuPxlDNnvfv5+vDcof3eb/qRl7K89tnJPQOATq5HAd+qRMK9pfGW2k1ujTpNRjT1hKKFldfLaCjkx5kllr/xfBPPkbuQXxpjYgxZd8p6mqqhbQLrVctmtUIEVm1Nc1Suw5jmqjVP4j2fcQqayZA+M1jOACBKwMuUP+obRNQuLMyA8mF1lNVZTiKEFDFRddCiJGwG4B26N5U1rDBuU07ZSilXdJE5RCXo900aI6I6QRGIBqJV57BUEpO8Byv+kvCFwSWadlTKOqSyPsv8M+/8c7MIRlOASiW/mCBGJCTwcfrsSXS2tIs5nyl//mE47bpPvemk65Y/03vKGCwOlShgk98XgdFoPwSBIIKVRJz2NckfnWu2iSlOwxJam69lWUyqvG3ybR4Zq/nR5JV84fQVUEZQ8CfmT0cxRFFNGoOyRQSDFXCiOkY6uJZV0dIMMi0uQc6u9bkPY+bAjE7HeX9Sm2RRunwaWzCx8YWJLa/7owb6vHM0VUVK4H0/V7Mq95tk+s5zO1+XpZyku7DrpkQcWVbDLD3AgrEbcrAzYU3IQRbVw0PAJk3LxMxz+4mWmeZSqVhV2CXeObx1uWS7y8CPgwz8aEWsor3ps3i/50Sf8pkPhSkX12lOnztjp9SskoJmILOmDMM4cux7XK7GZk3RihWcdeANJqapHyvvqHJbpMqT2pYqBFarllUGw2ISxjHmoFre55ATwF0vXh9TmpOGznVii709pfmUfdaqLEJT17RNPRW5KWOhFPDoh2GqfKvfaScWtfNagVVi9runNs3XVlxg8zmtmU8fS7/mu8fPU4vFma0ti7my8OnC5M8pi07tX/PodE+ZCp+46B+wQTx10jIGssVVdLWco2lq1us12+2GzWZN07TUdT2lUj467bxYLV77cWzmnxX4sdbR1hcAE6AzTYSJebP4yX+3xmiON2WRLlthIuW0g+ViV1fQtJCiMAxbhv4lx+OINYbjbuB4GNnfj8Qh5I3WTM52vpj8k8tU5it+1K6LzfZpc/mpjpD5/q2yBawzuQS9LrbeV1jrCCGx33V0XciGUzEgmAqOGaeaRlXjcd6SJDLGASMBawaMHX9ED33/URx1mxcYY60yU4qjmdkFZeMrQpBi7KTfpFl5kgGGmYGTRFRXwhrGzJiJ3iNJMsg0syt0AdSJLTDnGk+gim6046hlDAt7prBwikMqKEMhjCPjMHB3f8/tzS1d17HfH+j7PgNHcRLpKgu8dZZ21VK3K6y1VJVSYVXU1jMMA2CmdjJ5HFtr8gavYuN6LSXXmJziqPfovXvKC/3z+9Fo5RbrbGZ/uGkO5Z5D4lxh4mQAZMBAhKnfSxnRsglaazCiUYfNesW6XbFqG6q6wtceL4ZaIMXEet1yeXmhCPfdXT63OoAxKBiniuw5ZS/GIkqg88dmEdmiE5RBB2PLGpI358n5kOlGl/dbzld5jWKt12teXL/g9es3dH3HOPSMY6/RNTtHUKccfplnfVngT9kqz3+cgMUwAZkhBMYwEsLAOA7sdzs+fPzA0PdcXV3x9s1b2lWrwFZdY43LIrzlnKozUI5p9ZE4pdcaDJXXZI0CfgJsNhtSzj2v65q2XQHw6tUrrq+vqaqKtm1zX+WFTNRY3262fPHFF6xWK25vb+f7Wvz/3e1xvk5/4jNT//9zmDyPD/OEMQJMY+o7Pnl2B2cG0Q86Tp3C0rfeWlylTsAv3rzkL798zWbV8m9/9QV/+eaS2nvGITIMEQNUlaHyej39CP0YEFFWZugs0VgkQHcMuo9bZfUaI2y3NU2rUex+CIxBQY2bmyMfb49YA96RwcAVv3j7C64vrzkcjlxeXvDx9p6u6/n24x0P+yMpJfpRwZFHzVJ+/2xdP8NpZtmtk1Ng5jXC6GYuxhCS0PUjx26gH8YM7OTVxTqMdaT8PrII/ihqp3jjprTdZJmi+2OK9FnXoE+JgQWok68jGeVGOeMYMHQZFTp6z3HVEL3LyJPF5XLjJmoK0bpuqbaXqgeURkhqU02M1xR1vY5h1nhhBrLUBjAgETFagay/fWDsBvy6xTS1tl9VYVfKalLDp6wdn+OY171l3xWHaSpkYTkRdZaipmHU/rBWEJcwNRhvcJXHVS02RYbeYA8JGyJGAgxq1zprqWtPay2OiBg9p4JGMyBkYUJPij2cSupZAYlMmmb2Mqw66T9afY+VrMUjNgtAWxKGUeBBDHsxRLF0IdHLiGCI/UjyIykkggix6xiN8EAgmsSA8CBCh9Bj6HO6mLZu0UH6THuiNdR1PQUpzg9rbLZhTe4rbcOlnZDSskjJPGfruuHq6pLVGDkOEevu9JOppFQWOyJ/rylcq2wbZ8ZBkFmHqAS0pmDXpGOo1yqo5lnKAM+k25fPqy2aL7Owt6fUfbCitphIQqzWcnPW0lQVTeWpK8/FZsNm3VJ5z2azoW1qxOQ0VCxVXXF5sdF0/bbl4vKSzWaFsy4HcBzPfhjAqPCuBkSzLRoDiLIm26oGZ1k3KzbtipSEMYwc+iMxRdztHcZ71cbxnlVVa/87p3aedayahrryOGu52Ky4vtzgnSOmla7BSWiahs1mQz+M3N7vubl7IITA/rBjt99pcLJMzMV1g4JEIcTs8iyYihnpt9ZSeU9TV1Te8eLyksvNmrqquL665GKz0WII+z0fP97QjwPvPt5wt3tQYecxYCsFhzbrLW3TUjSbjDEc+45j6GHoHjVvKePOzwz+/Lhg9g9YJ0wB0Cx1XXNxscUAF9stm/UKyXtSGsdJsHk22D+BQi8AlhN+4tn757n46aN8wjoNfDd1zZdfvOLF9SWXFxf8+3//b/nl11+zWq949eqVsuiyTf19PXMut/JDWvZnUY4OBQAA5hBJREFUBX6MsbT1dt6IMuo4Rf+Wm4EwVXRRITE/LdAFfZ+An+lfnPpTxGi0OyWMQNeNhD5w835PXfekYNg/xBycWG5CMv0IEVg6jNOdzG81RnVBzOzsffpYnMWAsVrq2nnDalPRrrV0YtOsqKqavhu10ss45IUvbw4LbMxYo8Z57bDekIiMcczAT4+R5wV+MGYS4i0odIwRckUmQaOGuQNz1CRvoLnEq7IQZkBNT2tIkhhzVGMMYUJtywZZUlOmnkppAn6wuQ8yE6VsjiruNk4iaGHU9tASlJqaMgxDBogGHu7vubu7p+87DofDVLVoMlWMUjGVweNYtQ3r7QbndAOsKp+FbLWdyO8roE7MwonGMAE/zpWqSbNO0DxMPg+hvdBLrXNT2o+ITEBqEnOS4lU+s+iybCCV95cov76/RGWqyrNarVivVrSrVoGfylMJVBgkJVarlouLTR77DQYzR6gz+IMETFKNpaILlS9qMnJK2tBSuwhkHoZGN1pdt+eo+rn+k/eepm5YtWuurq559foLjoc9D/c37PcP+BSnyNEEIpknFtxpFf48Bu7pF5V7YQJ+4iROPvDwcMfv/+m37HYPvH37JZvVSuv+NIKpKixznxmTWQBFa4piWsoMgopS4CfmEEwo1Hq9ntIZ27ZltVoDcHV1yeXlZdbu8pSyzBqBUyN3vdnw6tVr6rqhbX9ftojF8fS2diqqOLfF6bp+evzXAvpMR7neJ3fv8xeee0wtkNDs8DjnaeuKpq748tUL/t2vv+Zis+KvvnrFr764oHKWw3Hk2KlDUlUK/ogID/uAFc2n70bDOIJg6PuIWNXyaVcNdatrz2arhmsIkduHI/HQM46R+93A4ThSecvlZsW6VSfjyzdfUlVwPB652K64ubvj7n6n+mhBxTxDMIRpnXjm5vrUsRx8T4I+zKycDOoUXaIYhX4Y6LqefgiTwHUiB76cU4BIdA6OkrQqVjZgnbXKEp32QBhTos/pI31K9KKwRsQQzeyAF3BpxNJnH6arHN2qJnmPDYIJojpPGExSh9LXLevKMabEOByJo2pJpCEQgy68JgQIWROjlJbCKMpsjZpYmlVDCpFeBHM44oc1frvBeYeJgm1aLUFuir7P5wJ+loa8WQScTN6jc5tZiLZ8QjiRUTUqrCxe0yuMGHxy0DRa6tuBxIB14IOjMgaS2gpN5WmcxScB0ZQSsUJh5Wjbl6ub/0/GkKY/LPZtyIVFmNrfmAL8RP2btQqqiQFxJLEEgV0SbgRGDA8xcYyCFUs7BCo/IjZon1vDYIX7KnJwiWANO+fojSUYR48h5by4H1b8+qcfxljqqpmi/8VekLxXq4aPp1SULGwgZReHyZGLYjODZ65SV9c1l5cVISZuHw44awD9XBgHZeO4mcG92JkV1Mkpj0kkazYx2zT5t8l+Re3BlDS9fQzKMIlBq9gao2XYK++yL2BnwMfmH5SRpXaPBZt0LFpL4z1tXdPUFdvNmovtGu8dm/VagTMMSSxJDG1bc3V1yXq9om0aLi4uWK0UYHDGfSbGj66LYBZMMhCjwI8DmqrCiGPdtKyblhSFh5ToR/WbggjHccR5x7puuGhXVM5zudnw8vpaga625epyo8BJW3Ox1kpmJv8IsN1uubp+wRAiH27uePfxjmEYeP/hPdaoHzKlY2bgB6MFDGAklviDmQNkpIikLOBcOZpa7c4vXr7g7etXVN5rZbFVy/HY8e7DB/74zbf0w8C7mxvu9nsFOlZrqqahbhpevHrF5cWl2uZRg9X+sOPjw00GGGe2+hSUkGV7/1dmE/2AY3YF1O6v65rtdosxhs12zWrVKjsLoR/HhT+fnvauJpNRYdli2xuWTNzTlpL8/+nZzOn7jEqDeGdZtTVffvkFv/rFl1xdXfPv/92/41e/+hXOe5rVGl/XJz7JDzmMybbED/jMzwv8YLDGUVILyqFb49J7WkTRjWTnVyl/GDNtwkx/MSRTBrVGlYrKvveWulEHv248de0Z66BpOdaSbGJRfXEB8s3pL5TvXdxJOWT6bz6W7X72zvl5tgOt1dS0qna0rYoWt62mQVhrqZsKX7kMXGRdk3xJhbXivF8IHivAUAC1557HCn7ka8+OomSROIxWESkSl6kYSRkgsyWpn3OnK78mJSUlTik+08ZtYBFaW0Q+SpUSO22G00YvWb8nb5gpp27N01TPodVrFPgZxpEhVwLQDVYBDTtd5pwSU9KBCrBjFwCEzTpImHkcCYIGlGRyrIvWEcw+A8yO7OdKu9W96TQVDYN22qJviiD3Mo1n+tviPXI2h6yxOUrvqauapm4mJptW72Ka62o8KF13Sj/KoObEJEnzHNQ5t0gXnQDh+WfJ6DIiGJMmJ+cUqRFKFL7cn/eepmlompqmbWjahhhHnPfYwt4q1JiyXsl899ntojgK5fWpVZ+VwbUEPOZvnllYOcUxRMZxYBwGwjjoXMgC2YaZ6aNOjjkxCLRvy3mXG1lZgzlxbIs+lxqmFU3dIAjeV1Na16wvdHof3vkp3WseL2kaY58yTso4/b62WnQHpuw65mxcP97Rpycij/7w/McnT/14zTx99h2nPHvT+WdKehDTLFEqctvUtHXNZtWwXa/Yrlrausp0eE39ipWyEpXxo06N97qvATjLlBaia6ACimXdRgRJNgcE8vXkPpn2hGSIUVRIFRAKs8/R1BqFHsfAZtWyWbX040g3jlMJ3uxOnd398/XhNIaWN/BEY8vy28/W0jK/0sIgmdJvlz95rhWtORFhousVFt0sVjKfe4Yl8rJV5mzer/K5Qq7GN46BflS2bIWlyqndSx60NapYZIymTvgc+S8VdhJGbbETx5Z5YxM7v1waIKrzJGMkhUAcgwrM5nQwte3MaRs/43Eysx4vUSd9ODO+y36kla8qo2qVDos3CSMWZ4TKClYWlZOs07QO66hQh7ykE4s1xGSV9WPmOVyqR832iH57Mkvln3ltjuSCBdO9zG6K5HkZjaZ0jRh6YzgaQw8cjOFgYASOxnDEKthhdEsWIABRhBHogQFDyD963jLWF3vgZ+q73AWzfmQqlV7VDhAKe/zcpjEnr5GBRWPSZLMhi/WJ2X4vwbopgJQWfVXevPhMMWdPfY356gtb3RhDzHuyjbPtswSK9BryKJgG5XJPm9OJJCk4WISdp/QuN6dvTdVVpyCrVmrzTn2Muq7xueLZFIi1nys8yWQ/s7y3ha1mjcVKflwUB5pSflJiCAEnCYfOs+QSY9PoPiSiBQiciit773IaW5YmcKqgVQqUGGtpm4ZVqwLQ61XLatUq8EPKouvzGpmSMBYZD1ksuZJ7ZhpuJXBp8fm7pspdk5+TJSQy49znqodt29KsFJBbbzZsthtSTAx9pxkFk1bj6fiYt8PFgFy29T/rkaGWH2wrzzZ8sd9jjKxWLetVmysER6zpKJ4A5HmdJ2WZjxNZb2kXTuw/vvO6xMhifJ7uFdbYqTpb27Zs1lrZdpNF0uummfwj/bxZgFQ//Fja7p86fmaNH4u3SvsvzoUuyMuc4MWiNn0uYQiz4z9RfMumV4x4k53AHMkAmpXl8qplXEdevtrwxZtLVquGMDh2dxHbB8ZeGDOabB04bzFW1fybVieNz4KTJY9fxGS2SGAYFFDo+5FhGMmzenE89iSMMdS1o2oc7ari7S+uePX6Al95ttsLmlarl1SNZfWuZhhG7m73HA491qtgblU7Vps1L1++5s3bazZbj/crYtKKIUg1RYae7xAsCWcs3mXdmqRbekq6uUST8iLn8NZn/9BO6XpjjPSZFlv0BUSEMGoVmeA9h67j0HU6TiRhjMNYoVQUM6gw8Dh0Kn459pg+r2jTeGIqdajORYn+zD0SU+Jht2O33yuC/+4DNx9vGIeB3W5P1w0ggrO6uThvqE1m99S1lvasPaXsPIvxq82Vqx9FZcUMYSTkKmTd0NGPPRU1jdQY47PRYuZJn+RHLH4/4jBGmT45d9tYS0qRmBkxE3CQ0qzPY5RtNy0swuL6MrHVZOfdK5Dz4vKaX7z9BRebLa9ffcF6e0GzWmPGEdMrk81iJuO39o66rqhCRbNqWW03+FCT4kAKvbZnZrPI7LWDUQ0e53XhdJXH5bLgYRwYxzxGxTLn8WdjLiVMDBBVh+b161e8+eJLtttLfvn117z58ivuHu745sMfcA81zkRcXeGG6gRQLKa2KcbbNGOYooifES7It1RE7oICmn1P3x/p+wP98UB/3DMcD4TjgVBVUHkqZ6irnOqXO1cgp8rpHB2CGknWgl/oI0yrr1FWAoDL2YnGWFarlWqAAE3bUPlaWYqFkTUB6urEr9cbXr58TV01XF9fs91eZjbekTH0kxEk5/PsybY4/V2NZJedXLMAbDVK5FwG2Bei1fNjZBjGnOb2rF32A47JVX+mwyz+hzmYkgMRRqNSb19e8/XbL1i3Df/u17/k3/zlL9i0NVeritopsLtpK9ZNleef4FwGLrJzFRM0o2UVDCnBECJjVKH22AcOff5+34CtECAawVUOsYa6dYziMWLox5FxVIHhYyd4B5ComjWv64btZkvlHL/66jV3D3v+/p/+wPubO0KMHIeRMeYI3+c0bIsz+RQ4yWwISp47inMUw34BbhqL8xXO11jvde/MrB9yRUusQbwGtUzV4Co1HF1V4Wpty74fMRwmoH1iEjiHzZV7rNOgkTHKwNzf3TMcDnzzuwZJUSu5vXjJq+srvDNQGZIYbDI0g1AFDZ41vuWqahljwCQwYkhhoD/sGceg62/RITRGo+mZgWCkMP8SyAijJdHR3dwzjAG/WbNu19S+ntMpntA/eJ4+PDvv5AyZXJEqp6cLOFE2UG0MrXF4oLGGjWh1KysRF0e0ZlvCiZbnNgasVwWdduVY46mS8LqpqeoGjKHHMuKnkWMyS9pFweWKUDquyoBOuh8jJDPrOBmxCrAJGdhXRy9Zh5iKCOwxHMUwAN8Yx0dn6DF8aww3aDrg4CuCc1hX0awbqsYjBoJ1CvBYOFYweB3fMTPQEiq2nEO3i9VsuoFnXd6MtTRtiyTJWou6z5e1XAOQJWVwBsnAYqzPQGXUlMkkjLGnOx7VjhP1RvSckU1bY/j/cvcnP7ZlW5ov9JvVqvbeVpzCa/frceNGRJLAQ0j06CD4A2hBD4GE9NpIr8ETf8FrIdFNiQZINEACCboIgQQdGu8JCUSWkRlxS69OYbarVcyCxphzrbXt2PHrN64dz0imy9z22baLtWY5xjfG+D4RkWEugxZuToUEnotIgp5r9DJglIMjUtEgIEoRVUiIfRuiKLsejmeOSAmryjaLVgJINLWUW8v95bmplWQeIYCjJgsvKPBKZOm3m45t11LVUhqz3XSoHMgkBzWdE8Wutm25vr5it91ijKGq6jljdw5yfoCmjGSiaWPR1grAk9VGDaI2qHJQaVEzLOVhSsh8hxGlFNPoGfoek/mfNtsNSSu2WtFsGpqqomscXVsvNq8xpASDj9TnEQ3c7DZUlSOEyM2u5eWLa0IIjNPI4KVC4HjuOZ57CdaHxDhIidEM/ChhrUxB1qO1hqp21G1Ft+nYXu0gJfr+zP5wzzBOjGHCOEfjHJ9stySlqeqK2+cv2O52VFXN82fP2W62nM9nfv+73/L2zRtMAbJy4P0SMxdnaA1c/+Nof9qFKEXOtDNc3Vzxpf6SaRxBJWKYOBwO/P2vf8f5fIY4ZFAu7496AXjy0QTMclGAjFUA1Oyvvvv9S1s+pPBn6VLe9dELnt3esNvt+Ju/+Wu++vJLmrbl5vYZ1lUzKD1z3j3SEz9pq/wj3fczl3opjGq55GqJqJyGlYgiQU4+1AryLR7mApFn0kgosgpAyqpIeXGh5NirG4XVFd4nbp9teP5iR1PXnA6RV20PKFL0TGPmJjHgKo0xis22ZretMFZTNxVNUzNzSCThEDoceo7HvMCTSCkvGSrlzh8DfpAsn9ax2dZ89PEVn375TFJJr6/pNhsO+x4fAsZqTich8uqHAW0WpaS267h59owXL19S1WCdpIdrDDrZD+JoKpJEr4xI9YYICp1LaoSpPMWEM4amMpgcgRTHUHEeRSHL58ldyM+8DwzDiPeBvu/ph0GkhLWmMmZGYAvwEIMX4EflSLJ64NAn+Uw/ZXUtdI48C7dMiCK7fvfmLW/u7hjHidevX/HmzVu895yPZ4Z+BMiREZAoUCnrcrjK5TKtNbfIYuKnfEiLgS+A1xSE/6AfB4ZxkD5YcR3NmVRAILy7yzzFGGqFqdxSHqVVJn/I6isFiM3fbdSi+JStydzHC8hWojFGG2rrcMZyvbvm45efcLO74tntC5puS9U2xHQmDVIiIge4xmuNM0ZKwSoBfprtBuMnwmTxo9Spq2GcnZjiYpXSO2udEKdVNbZys6MTYqmLl8xAuUkBEFRUwrSpJFrw/Nkzvvz8CzbbHZ9+9gkvPv4I11q6X2+wjSPgMZXFOJvBsYULYM5jKcD2PCPSBxnHPJrMO30GKWIIBD8xTgPj2DMOPWN/YjyfmM4npv6MrypoG5xR1M4QUiIgc1WrInOriCEyBTGgK2tQhShRVlKOlsi4F/QoZZ4R29i51KvMtfJYgNLSJBLbdRtub57hbMXV1Q3b7Y5h6Cnp9CnFeSwfth8HgvJBrI2QQBpNXVVCgGgtXU5vjyHmPUhS/kPwUoI6TZmY+InJ8t+9C/7oqf1EbYnSLhEqo4W02VnDy9srfvXlp+w2HX/11Wf85Ref0FQWHSd0FNlg6+xcpqq0ZNaFuGTRChGmwQdNDInzMNAPomZ4GCbOw0RC41VDVA5lDPW2wrWOpMHWhioKcD6cPH4MGcALaJ2oK8uz245NVxGD53bX4qeB71+94ZCV4YZpEsDJi52xgI0fok+Zz3714A9rIHhxgNMSAIlxznpSqgAy7pJU3hiUM7KFZdAnAdga7Ro5L63FVRWkhLMnKeVJJeNKvtcYg6kqlNa4usHlrLzxdKI/3OeIt2Iceuq2QRtLfXOF0wrlJPxjQoIRVBDuu7qqqF2FD5ItW0i6A0qybkkonaROaQ45S3lRUZ5S2RkSBUfo3+5Jw0DlA9XtM1wbJYXMrva8px7AtRWfFmClXHHMtqhJCYMQ6rba8ExpKjQbpbnVFodCR5/LgnPArMAxGjABpQKdslxph02Jm5xxgFIMyjIqKSDTKaKDvNeqhA1x5o8u256OIYNDIsnuc/BBynWK0l2ZBYqIJinDROJ1gruU6IHfac33SObP90ZzpzXJaKga4VrShqqusM5ISFYZApqoFcEZopVAgFMCIks/roCqVM5C9UHORBF1aXKmq5es8ZVC6qWDu8qGUllVWAloKYwSCR96jieRyy5ecwJIkbZxaA2n83JGlQC1UqCVzQCl+CUmO93GailhzOvVOiel8ZXsp6Cy2EjJOk8EP+GDBJp8kKwdl4GflITPcvIp94GUtGmlcAqsFptc5XGonKNrG66utlSVY7Pd0m3knC77kDaWuqnltV3H9ZWUapd+g2yvrjL5n7QphTLCpVlAGMmyzxyjCpxWObM8Az/kEtCccuVDZMpn9hlx3DVg64pn44C2Uj7b5MyQtnK0TTUTJGste+x5mKisRiN9d3W1I6XE8OyKYeyJMXDqz5z7M5P3vHrzltdvxKcY+oFjjjfOYtUgtpoq2TsaV4sKV7tp2ew2BO+539/x9u1bJu8lc8kKsH91c0u73dK2LR9/+hm3z57hXMX19Q1d1/H27RvhHzocMM6uMkmWsVKKS1HPnxH0ecogqMoLuoA3V9dXXF/viEEEB1QaOewPjOPAb3/zW1H0TqsqhSj+ULl/VYB5pTC5g1KS52W7usz8m2+m/GMVW1IKrBFOsa5t+OTjj/jy88+4ur7iV7/6FV999RXWWqqqwbqKOXHg4guevv3MGT9LdHfOd7xoa+g/RznyhJzj5ylP3ARL8pXM4ESuAc30cSUPV2UlIecMde3wU6KuJVMjhoSfItoIAlikwLWWjJy6rbKEYU27aTIaJ5cnEYAMIHhP3xdUNad7wjyA63kB2fE2Guc0rjLUjaNtBUhoWkfTWLy3dJuKzbYGlWhaR322eSNc1SeTMzFy15SAhlLm0cjjnzeCOeCmVmU1KxRZSr60GO3WUDmHNVmCNTuGU2bRv0g3pBjBMUeKMxlzCFI6pjNjflms2WBWIeRa5jSTH87WUM5+iCHMpk7KAI2fWd/DUuY1TvhpxS0UF86aAjQUkGGRvi7RjlUZQ9lU3vkNy9Wv73t12fN/pcxBPvPp23IAFF7Z+ZrmLBp18e81l8viMqoFbM2fUtJWy8Gpc7Q6oWawjYssv+Vy1Lz+5LC3lSVpUCoiadfCG1Hk3Oc1pmSdo3Pqcf4MifCVsq9yvbmfkyblxM+oRVZZG3OhPmVylp9SahV9MgIYOJfnV8w8VCwUFqsDQKZjFAMTeFqhvTISaVkba9Auz98i71nuyxq7qGCU+yMXy6oFZy/7VvGHVAb3SrZPed9ckvLAACxrpVxDeW45rBcAr5TuOOeEALpu6LoOYzQhjHg/LLxDcUYa5/4un1uub4luyTotfWCNpKpXdZ2lwy1dK8BPCAHnBqZJSuGGcRA1tFhKyS4BvQ/R1sm9T3fuq0cfLmeyPLJGyGWrTIjZNiJv65ydySKF+yHPj8T8WGXAMJVxKcaTIc99ydJxJs+1onaUJGLuk0LbiA0Wk1anez4oEgKQlKAQca2CI/dgjEEj5YJt27DpWvRgOPYj4+QvrIufv11+69LzGTRWS8S/lBy4rJ5TyhhKGZdKwhdQGeGHqUyFczVGiSNZWQsxCYGpEYEEU9Yqs3uUg3GSgUdKePJJloRXxI8jRutZPUgZI2S+GkiS5RFKsGJegzqXfVkwQaLnatl3y2CplFCxGNbpnf5JxXH3GuNF7v3CKKbMjSccoSRgJayWSSqRepUfyzUYxIA2KlHFhCNRKfmtVZD+CAHlQ+ZnjBcZG8UoCIDPXzYA5wwojSSG3Cs68y5JllEhY17t+QieprPd6ZFYRiLhU+FdzGWXFBBQE9F44F4l7vP3HVAckeyfHsWQ9+pc/ERCMbFka08C0822ToziMEVdggOXIysfJ335odbhfKZpLVw6WqNXgazlirINlBZneHleXT5Wq3MFAVaqSrIdnbMzWJDSbN7M16J1Xh85+8dah3UOpXQ+7wTcdRlIR0HwEgzzPuBydqpZ2TOzYmrmqvRBL2fx6sdk/yeW81rl7PVsxwiwvPAYxSTluhpmLs+iWFsCN8VpVtnu+jAZP7nMt2T4Xvh7+UxIolJY7MjFhi0IS5pfW+wiyUCbPUzJcrIO67K9l9WUVAabSMwKZhIa05n4GhwGVDWX1acUscbQ5GoAQPZwbVAqLrxmidmgMnnflz1fglJC0l8UgyU7rK5rkhZOzs12Q7fd0rQt282GTddhnaOq3IpTNGe8ZcB47X+W9be2UcvTTz2GK+/3/a/6EwHgh6+/4HhkNS918Y1XJYMPDLjlvfkPD+wjeU1abuPBZqbeefWyBsXmdNS1AK2bot7VdVnZdhmvi2t4p62/5T19lRYP8o+1nzfjJx9a4rAFcbpSie4UueZMqJxVCdau8GwSF2OBwjqfjYpCfqck8lj6UCsDRrHZdXz8qaI/e/xkOJ8i59PI61d7QpoIPlHViqrSOGd49nLHZ589o6odt8923DzbyoLMkrTeB179cMfrV/cMw4SpEj5NAiYMMWcRrSdVXvdGsn22Vw1XNw2765aPPtnx6efXWGfZbFvqpmKzU8ALXrzsOOzPNJ3m++9qgo+czxPTKBHwcQz05wmtHZXdsOkqUBPKnFFqfNoxVIoqHwTOisyjVwkVcoTDSnqoAjZtw4ubK2rnCAl8EGNB7w8czwM+RGb1A2ReBCQq0/c9+8OB4D2bpqHqNmhdVMAyEBKDWEwqs6WbxRHUGTjx00B/HoSkOBYQJjEMWTnFe17f3fHmbs/kJ/aHA33fE0ImbIu5RCeT/ChUVkJanEZtjBART34mpZbfi5MqDlImFs6fo7WZo7khJiYfsiEu8zfGQJgKL9GHaQVsK1LBrDYsozUYyZBYy9DPh0Q2PMqGWNafzapYzlhxFGJiCoHD+cwPb94Kd04MNEFkiWOK2RNRaGewjcMRaWPHlQ6izBM9ROmL037Pcb+XiLIXPiYU4CQarrTGVA7buHzuK5zJW11BMEhCtJ3BwV5pRmVo2g3X17e8ePEy19xqhrFn8iPKKFyO8KWbK5q6wnvP6XhmHEcBI7y/UH8r2Wg6LUTZ0/Fp1+T6RJKMmIAOEulUOUK2213x9V/8BX6cuL254cXLj+jaVojJMzeYyenhAPiAH4UIz2ponJAcWq2wOcomzl2p88/RMaS/19liDw3RC14pig0iRmldCymntZZf/OIXEm3rT/zud7/h22//gPcT5/7MMPR5LS6cQVVd4azLpVt1NsYtTdMK4GMNbdtRVzUmP65qKfFq6gbnHNPkOewPDMPA+Xzmu+++5XA4cDof6fshl/L+B9zWjs0M5C58bVebDS9vr2nqii8+/ohPXz6naxtqV3E8j4yjlM2WlGjjA2Ys6pRS5hdTYgjCJ5G0ZIdqKxlU1kHbaCYvvCFjiIweTqcjdyewznClIxsjpOxC7P7ADihgnpaT4NwPxDChVcIZ4ZrZbDb88hdf8fzZc97c3cO//TUxviGkyOTD7Nw/dZuBjQWXlOd/xPaVxLdEVVmudhsqZwnTicP+hnPjiGFif9eK/UTCEjApsbu+5tMXz2mco8bQYDEoqpSoUyKFgEETBy8Kk/cwDj0hJZwqPDQKpxWVyeohThGdBJGYBqa7O9TQc3z9mrebVpyZrkW1DSYq8AYfDQZFrRQugEqKrm5x1uKHHnU6oMeRED3DeMZPQc6ZKE6s8MyY0nsiLIBYgv2pl3PYVnTjiPUehZISqw8wfjFGTqfTAt5T/DN57BS0WmEUdEpxrTSVgpbILo3C0xOilKFHKUv245QB66UsOkU/ly5XMVAHjyHRRE3rpYxyQjFlwIwYUZkhVocgYEYBy/J61DFhMjA+qsCkAxHoEww5S36W6taKlNxc6vVWRfY6MiZ4kyL3KRGUolcwKtAp0XiBipJC1L2svGZQmimLHZhRMryDVmCl1EtphbYrUttV4GhuTzmYagmE6oWcEVFLvQyKzMG1fFYVU0vKQDSohLGVEK56fxEP09bSdK1kEirD/bHn1A+Mw0TfT6QkQHTlHEZr2la40owWlSxXZYWpDPYUtTHriujIlIVHPDFI9q73Ye4vrTWbVsq1Yo40Rx8kE8gI+Gu0orFSQh/DEpS0Tq59s92gtSEkxXn0F6XOHRpX1Wx2klnStMJDQlpJlCuVeQ+ffjWGIDQMjVGch4G2slQGnLYoFFOMnP3EmOJcyitk+BnIKUNv5EGMWSEWSMYStCUYi203bG9fsNtuJIMvj7HNgTKANlm6oPCZ92wYpey8cpIhBIlNWzP5Dd77vM4swzhKxvQkFA8RZjswBk2MAu4LufaGtmmo6wptDVZBt93kM09jmxZT1Vhr2V5d0XQdVVVz++w5292OmBLT5JmmkaHv2e/vefP2DefzCe99zmopP9Inco6n2Rz4uQIiT/09aYWAT97n7LjAfr/n7u6e/X7Pue9lzmZuqhKMuAhEyi9p68WOJIUUcLR819yVq/tSlAoRySr/9JOPePHslu12y1//zV/x1Zdf0DQNt7eSpTXbwsVe/gf20XxtP6H9zBk/EpVIKeHjAvYkgqBCRCRWkTLwE4opQMwlL5LXM1MLZoMBJJVZ2uJYkIkHBXHfbFpefNQwDpH+HDncj5yOAyFOHI57/ARVragrg6stt8+3fPrlC9q25uNPb/nok1uMFhLhED3T6PnDH2raneV8GjgNJ+4Pe8ZREaJnHBflqsItoI3CWAF+um3N9W3H9U3L85dbPvpkh7WGuq2pKov3hrox9Ocr7u9OxDTRtJrzaeTbb+6yolXCT4Ghl1p8Zzu6ZkNiJCmTYzhP1wrwY4zF5syjhHB/xCSOY2UtWit22y0vnj+na2qmEBlGL6mXIWLtHWqclxqQHeN86IzDyOl4IvmAVZrUdJKJkNJM0BzzfxJxMVCVmuNMWhgjfhoZ+nMmjU4zaHc695zOZ7wPvLm/5+3+IE786SSbdSbEjTnSLzaWGBSFsLiQ3CmtUUkyWYoKmPchS51ndDpHUVKZDWrJiFFKE1ISIAzhSFJK5c+RzIMP1RLCc1T4HfIg5wM9l+XkTJdZPjcbTEWhQOfqqaTLgWmxlcMZKd0IKTGFyKkfeH1/R+UcO2PQ1mASEi0UtA5tNaZ2WCKt6thaTUiSsqmVjL12hqhEpY2+xxfAdwX86MpiKifnvtJgVrLjecMPKRCQcRYFQEXdduyurnl2+wxtDWjNMA5MfgKjcLWkARt2xKZhHCeSNqh+kPKqYSB6P2csaa1zlkJcAT9PPIBq9SBJqVfI+2uJwG+3O252V2hg03XcXt9QuSrfT1ZMNAZlJfoXk9B0kqJEpNySraOzI1TUuZZoirymlEkVY/oy06cAPgvws0RGF66dqqr4/PPPqeua4/FAjJ5zLyp7CSnVLECRc07USDYbmqbJpVubGcy5vrqm6zY459jtdjSNPL/ZbqnrGqNNJpO2DMPI27d3nE9n7u7eAgpjfkBrzZs3b59w4N47kB+8lbOofKPK0XyjFbuu45MXz9m0DZ+8fM5Hz29p6orKaM79xFBAl5I9ohNaRQGBnMLYrKQX0kzJZ3REZ7I5ieVoRg/HUXHM/HqnvufN3SglD43F1JaEIhQ5lOIwl4hdjuYJMDgyDhFrFdvWYSpD27V89fmn+Jj45rsf+O7VG/aHg4A+QaLIH6StjMJlXuffiTm7ch0OKvwKlTVsM7gyjSf219fUlaU/n6R0JYTMOxAwJDYvXvDRX/6STdNSBai8KPhU00QzjSTviYNn2J/o+55h6NkrTUiBCqiz8VspKe+LQLCayck+kqYBP40wDpzevmW/ET4QWymsazBJw6QJ0WAi6KBE6l0pGlfT1jWTsfi2I/YnvJ8I4yBqXxlMEBUqldOUmTPIYhJFtuGcGP0ImbzbhyBZpB8Q+Dmfzg+A6eWblJY5XivFRmueaUurNFUMdCFhIuJ09AMhBsbgOY8jIUUCUn61WC8iZaZTlDItEgaFzZM8oJkeUzWKgRTlvSrFWR3KBgF/AAYdGY1kEx1T4pgz5StnqDCy4lMFVATgnsBRRTyJU/QMMS7YsAKrhMupSpGoEmMSR9srxUlrRqUwKNpkcEjQSFcGsu1glcMsfOP5Qdn/P4S7uQZ/SuZn+b6l7CuulGfnhxTsVmxbY6ysPxdy3EiA7rpt2Cnh+zmPnm9fvUUbw0n1jGPhRyyZe4bddsvzG7Hxq6oSB19n4Cefu7Zw/KTEue/p+55xnDifTxyOlexfOdPKaE3bSFas8F2OjMMgn2lMzjRR1LWjsVZ4aLzY4NZZ6qah3WxyBnyUQHJMTN4TQ8S6Cls5uk1H07TUdSNqXwlCyCWpWuWStadfjTFGjqcTm8rSTyODr1FoghUsx8fEeZwYQqAfpQwupERSCm0cNu8ryspEFgLmvLcZS9SWqA2m6dhcP2N7tSP6iTiNQMI0LVXXyX4WFN0okuDheKAfBxIJ5xxtW4nPkSQj3YeQPT7FMIz0557j8cQUpO995gkUQYOIy2V3202XM7LdzAvTbbpM+Fxx8+Ilu5tbjLW0XUfdNFjr2G53NG2XVcZe0/cHhnHgeDxwf3/HMA74LHyTnWJWCUf5vJof/IfZypmLzN/hLMTWx8OJ+/2ew/5AP4wUHmDJiFLLrc+/1v9QM0m7sGWtu6oENR8EdxC/SKp5LG1b88lHL/jFF1+w3W35y7/4mi+/+lL2lKbFWvfuTbBcwk8ZkbWwyU8dwT8K/CilvgT+18AnCDLzz1JK/wul1DPgfwt8Dfwd8N9PKb35I5dIKilxMRJT5vbJoM+SrPcwy2cVKVm9bkG41mZU+a1X/84OiwbnpP6zaR3dtkYp6DYVTeuYihKJ5uJ7S5RRmxwRNwoVJZWwajRNK3G4pnU0bYXWQhg9mrhK+1zQxCUNTL5P0rvlsTagdUTpiNYR66AKirpRdJ1jsxF0ua4tvTMYLdLnfT/QNEayTGKWdVMaheGH7/YAf62U+ud//hiuxjKtf/JgrAC4WUlGLWUgS1roKvUOeX85O0qWhLDYx5lkOGk9q36RxVMDwvlgjCIls9rIMtgSAtM0zWCM94EYJKNo6AchWs7lXQvHwoIel6jtUg5zecAlMhiVhLy5yJDHTNbJcimAMLsnrTLBY07fR4ClIvNeHIOiaLZazE4p9X/lSdYiyx43eyaXxq7OIbNZpSyXA6w3GpXfNztjimWMlWQ5jdNIP1r6oefc94QYqKuKlEkMyZiBEB6K0ShKEyJzr1PM6qQyJ6oSLdM697mQtrq6onIV2ojj1zSNjJcL4BcOJaXEsJqixyeZE2GSdPy6anBOQAC0IbKoYymVI5cYlLPzbuUqJ/M0aFQMBFX4bKQss0i3luwinnotlmmmHq7JJTVaZy4Bo8SImNXVigpGQQJSEoL2XGYRQrgAawQENHPEZC51zFNoneXz8Pf7nKmLKamWMkGpfa7wvqZtOzabDVWug7ZGANOigFiAn7ZtMMay6TbUGfi52l3Rth3OWTabLU0jUbO2EUdWa0PlBHAiKZq6gQT9MFBX5fMlk6iAJqSnXYtpPZDvDu37B50fg4vU469Rl49lbsiaa+qKLvMd1BmEK2p7ss8plEpz9EtFmXcoSEEcWpAzL8a1YZQWeylJOc3oPf040Y+Bfhg4DyM2BuHlGWtA+DdIagbN58suZwkLsAIqK7nk80QbnJJU+yqnwaMUepW19VRjOAP8qyfUvCaW9aFmSSZZdWtzU2vJYCMlKmepa0cM1azwYowFM0mZQUooYzFVjalrtJc9VEXJLpQSaMmcq6uKlKL0gbX4gChKzdt2mh8bBRm7w6SF4FLFKECS0ZLFksn1fYoYkjhWqpR9Zf9CFYDYzlnAJvNzRFJmHy7l14GgpMQ5RClNCkoCe8VYnwd7PX+lz59uLSYJKKz3qjxPAPBGExQELWpVUUnuekgCYMbcJyOBSGQk0usk94P0j1ixongGS9RdpQz85OdD0oSZlSfOQERSag59mpB5exIIjDNfcFZVk5UX8h6fkmIsFJkBCAIOnVLiHOU+hhgZooAcFjApl8MQcUSCUow5M7soy8W8Nxb1rnXZQbEI13bDw5ZL/J9sP338nCmlxZfnkNIKop65wlOeB3oGEaQkSsdc6Jb3O5MDjCGmlSKUyWer+CAl46coJLZtI/tR5eTsWWX5SFlWDqYWUCr3masczlpZl6syL50zshXMpdxaa1EjrSW7qK4slTN4HzDnYb7vUiYWYyLlgOi8h+Wz3RgpabeZj4gM+Gst5b5al2zfuZ+f9lxMizpXyGVfIck89RlkmYJkcKZyzblcHK1R2V+T9bAELq2x2fYRACDkM0kh3GpKpUyuL4EtW9VUTYOyFh88ox8FtKmlLF2rolIZAOFeqjPPWtPUdG3DlCsBpgw6ksTfcM7SVJkz1FrJtM9jZK0l1TWuqmiahqZpRPK7ygGvXLZeaDC894zDwDhKuXoJHJe1t3JrVmsFmEnfZ/v+CcewnNGXwa3l+XfH/LH2vr3jwjJIkmU5DD3jOHI+nzmd5Gccpxx8XZ3HF0DP0jsLErEAMKuj+9L/yVehsoNvMpFz21Rs2pbNZsN2t2VbApPOzTQLf7QV3/EReecLwGfVZz8FR/8pGT8e+E9SSv+FUmoH/OdKqf8z8D8C/i8ppf9MKfWfAv8p8D/90XuIkWnoiSng45RJ8hIqc4KiE0mF7DAGQvTM8ZGLsq+YZdPCqkPU/B9YFI7iQqf8vKs03c4QPXzy+RXWKYZ+or0y2Dox9BOHw5n9/kxIIUch95yngc1Nxc3UYJXG2IipEqoKXD034FqGs2WYbtAW+rPnm9/tSZwIPjIOET9mnhldsn4UVa1oWk3dKJxLaBPQOpLwM+N4VUWMSSgT+PzLjt21YX/fozL4Y7Th7es37O/3vHx5y4sXV2zaDmMTrjZoU2FNDfDblNI//XPHEMHoiD4x4lFaMlum4CUSkQAdCEkzTp7zOIES53fKpV4JleuLHdEHmWIpZZKzxdHw3jNpzTROQqyXEtM0MA69gIeZ+FApYNuJYV/cjLyRH89nXr95wzQJOHY+D1mBbcwbQWT0Iae3SqlMAeh0LnVSSqIaxpqcspwJolPC+4DKxK/jNOXUzpT5giSlfe1kO+1wWlJGpzESg2wiUgaXDc6VoyWSqxcbxJOsRQHLSr32slPMMqjWZkdN0vGNFY6PwqtUgIWYwSBlVM62kWhLMppoFPf9id9+9y11VfH2dM9+OFBXFV88u+Xq5Utqa1FGVPNSSjRNxbZrMdaQnAFnBTjRcjDFFDEq4io7g3rTNKGV5mq3Y7vZYq3JMokbqasfI2rKxmd2CkOMHIYz53Fg8p79/Z7T6cTVbsftzTOadkMkcRwH+rEXZZnK0m024tE2DcrLQW6amn4YCd4z9mf8NM21vcYYmScxK3RME8cfvn+atfjY8kxJwBp8JiOWNamNpWk3WU6yQjtHMlaM9myspxgJoxh/p+OR+7dv8JNHqzSTUrbthmq7wxgxfG0uE4tx4cRSSuGcm+fOw4yfd+eimud7yXQDaHI001rLl19+Sde1GfgVQEprUQ0TzqIM9tW1SJzm6KTWRgAg67IhtcjVuiwvL99fsgUtCUvXeZR23D57ncuClJSI5ZLB4McnW4sfvKnl9yVwLaXIm67m2W5HUzm++vQj/vKLz9i0Nc+ut1TWLA7RnN6f94z8eza8xgXAKiamQmFMxBjEKAuRGCLnfuJ339zx629ecR48v3914of7HucsQ+o5DAeMsbR1S+XqbJwr0OQoMzgrzq0zFVZDSpFhCvRjkEwWp7FaFGye314zBc/heGacwprv52nHUBCg/HjV96Xj1q9bXHmSgtoZ9LaVLKc44qcX9P2Zaej5YfcdChhJ9EMv+SJVTdpdQbchTpE4iIKMB8w0orSi2W54+dHLrHASiX5k8hM+AxZKS3mcE9IYNg5MULODaXJEv8JDfyaFif6NJvkJqzWTsTTGYJGARkSyjpoQqYJYXpt2S41iHAcYPUySkXgaJSor5UIGrzQBGJMYndQVatfi2hrbNAJyOYcyNtvpF1lbTzKOIUTu7u4fAQ7k9+gMuq2orSFai1PQaIOKERM9KiZGAn0VJMMHxZScAF2zfSq2QyiuhUR9gGy5FuXMKKAnCUYiI2I/TX5g8kCMtEOkHSM2JZ5rzVVR5XMW4wwexfdBQVCMSfE6Ku5CDhJET/Iy/8YQBLiKkcFLhqsBrhTUKlFpy7XreGYTkg+R8CkRjSZVhmAz+a5rsVaCrEprsAjRv07z3lB2oXVW6FOOoYxb+f3umVNAj3I+WbPYjPNPHiPJoHU0dTUHn2d6ggxEhhjZbcWxA1EvHEahCbi62vLRsxvqyvHRy1s+/fj5TOa8zpbVBcTWZX9FyoO8ZxhHhmHidJLsn5Ak28Vo4X1pWglwtW3Di/hMZMY7kYjWWko5rVb0w0A/RQ7nEaUNrqqp6xYfAqd+ou/H+ey2ztK0LZvtlt3VtVxzBs4pAboCtLyb8fN0e6oSgLUPnpMfRVlJW6oY2Q8Db04nztPEaRxR1uEaja4b3GYr51IpX1dkTs+JROJ6u6OqGrRxTD5yd38kBNhsOq5311llq6bOgj43dUd7dUOMgePxwOFwLxldRCEATpGx75n6nhACV9stGsU4ebSRoJT3EuDoc5lY4USzxnB9fcV2u8VZS1NXKGRuXl1dScZYVXHz/AXbq5vMWSu8mVopVIyEYWA4HXn9/fd8+/33vH79mvu7t5xPx+zbhCUQsfr/zBD/bnti2yZRSNQvjsj3gD9/Ups/S/yD+7t7fvfb33A+nfg3/+Zv+Zf/6m85Ho+83R8ZQ1xA90e+eN0VMa2PmHWg7fJ9ZUczmZ+0ris+//RjPn75nO12y9/8zV/zi6++oq5rnj1/TlU1M/fQw67/qV1R9s1L8OcnvpmfAPyklP4A/CE/3udI9efAfxf4b+WX/a+A/xt/DPhJCT8K8DNl4EcV0jOdZ4RJeXIIV0UBeVIu6ZHIRxmNIOAPgtTmrTP3nl11ojxvnSDBCYW2W7ptxTR6lI2EOHI6DXzzh8T+eCKkyHkYuDscGcPEse/ow5kqGOoKXCOpyhsUtqkZR8MwXYHWnI8TQ584HgLTFAlhZBrlwFAqcyFYhasUdaOpaoVxSTJ9VILks3qMwlZSV24daNVwc9tw97bmfBghKYZh4s3rO86niRgC+/svGJ4FXJVmorAXL24BTk8xhjKQmfl/EoM1pIiPAsKkJIa5TjD6yDBO8wRfk6qpTBTnQ8q2j/SNzc8rpfJG7ecfUsrcGydBsZVkiymtqLKC0wqUJaVEfx64u7tnyPLs+/2RGIXnodRL68zTk2DJ0qHcR854MZkMTxtQC/ATMnmjyDl6xszJM3kvoJASvqiEylkMWaWFCWtGJiXXEIIQsaEUokqZlSBW6DQwpZT+i6cZx4V0txhga6d7jiLA7LyrfMgAM0mlZAFFGc+crqyNpHhHpTgOPd++/gGrDYf+yHk609QVG6vxL55RKSup4M6QSNSVZBwoowX4sWZ2UCQaETFGiZRsTDMRtzGGF7fPeXZ7i7OWm6trrnZb2ZDHhJ5kYoQg8qiTD7w53nN/PjFNE3fbew7HE5tuw+7qhqbpBMwcein1ChPGWpqukchsiKhcD6+qimqaCN5zPlX4ccAYM3PJxBhn4AfgD//y3zzZWlx8S3lUIoWBkDOV8l+0pW5buSatUUaMuDRLnzJzMcUYOR3PHO7umcYRoyI2ZwXYlNBdK+nHSqG1cFTJHFoiSwVUfCzL57FIenm8Psjqus7AjkObT7m5uQEKkabsE23b0jQiLds2BezRc9aWUovcbIwp83ZdlvlIn+Xjx4C1zfzv6+tbUeYYR1xVr6M0T7gWP2BT64drsyI7nQrauuLF7RVd0/DZyxd89clHdE1NVRmczaIBqZA4l3LVKFk9OfpKBtpDZpHNlF2yp1uRek8pMY2RyUeO54lvf9jzm9//wHmc+Pbtgdf7M845og6M04CrHLdXt2w38olJSRaeyuentVKeVlupp5984HjyjOOEsxqjHVYrnLVcXwkHgrN7Xr25W3rhA45hgqIvsXqCFQG8PKlzXkRljZAykyBNBH9D3zfs7+7YdBspSfUjpxxICa4idVvYbkmDJyiPCoEwjZJ5o0Wtpn5+K/xzU89wOjBOI6dp4DQNJJWwJuFMzog0YK1cnbFFTUdjCaixJwbDoJB9wVribkPctLIXZM/VRil5sj6iUbR1i7aOYTgz7g9M555pGmGKhH7EK8WQy4UCwkkzIVm8jTG4psHWFca5Wdo+D17pxCdbiyEGDoelFvdhxkioHU4npmgki8oY+jnaPwn4qCMnG6WsSyuCEZtBo7FJi8w9sm4SzFnGErLUVBn4MVEyegBOKnJUUi42jIl+DKgAVxGuxkitEtdKUWtFpRRdZenqSoCnSXP2GmLiNAS+GUVtLQVPmsR+TgREjjwyTT1+GnEkuiTzs9KWXW145jR9Shy85xgDyihS54iVIVqHMg6D2G8Y5GcVt8qnFBcbE3PA6UnXYgFULqPhC8GxOJ2l3F5AtkLyXM7RRMkoiPMYXeQCKLGFNl3LpmuJKTFOkaoaCTGx3XQ8z5xpn3z0gs8//QhX5Yi/KRHvhQl65ggjzZnuUn685/WbOwY70o+efvSSqVpV1LWo+dW1o85n42azyYBQCX3D8Xjih9d3mfTWYG1FVTcwjsQovJfWWqocNKnrmnazYbPdCs9jVpuTDB+bf69UYaU97bmoJItzDIGznwRYNhNTgsM4cHc+cR5GPAplHNY4nNF0RZRDKwlKqszxE6QMvalrrKvR2jL5yP5wJkRF1XRU3U5oM5yjqh1KS2nnVfZRT6cDx8NeFD/9SMyqXr02nKPwe6Wuw2pNCJGqqthtd4QQOJyOHM9nSElK5XNQuGka6qaeA4Zk4Ge73QogVFVc3T5jsxNVtRgWBcgURbJ86nvu3rzm+2++4e3dHfv9PX3f56x42UjUPJ/Ve5GCbIc96Vq8BHjSj/ztH9bmDPcQOez3/OH3v+ew3/PrX/+Gv/v733A8npBwaMYIfgRiSavfM8ZbgGQuf6/vxOTM6bau+Pjlc3759S/Y7bb88i/+gq9+8QsZbydKsuWaf/SeeNhTy71e/nu5vp8K/vxJHD9Kqa+B/zrw/wQ+zqAQKaU/KKU+es97/mPgPwb46KMt4pIEYk6FlRhIkZnLoE9JK6GkHl52QUENS/kQlIHIA5rIaVnlfXK4iQWb5UNNwlhFShpXiZKJD2GOCBeZ5mn0aKOZxsA0StmDqxVk2UdtNMZqbDRUtaVtK4gqK3M5tA6MvUddKOmVq5XrVSrnKim1DOAqaiqvke+yVoCEuqlo21ruRfUzJ83QD5xOZ+qgqGqDdepi9vy5Y1g5J+CIkjTnmXcnLaVxAp7EGQzRqhA4ys2FEB+f0WRHUS5oPvjmH1UkLsV5iyXzS6tZQnaZBSqXdnnGnBUy5syhGFOWHF6pHGRH1RhNDMWRJfPWXJZ4zWm4OdqjQpbczAbcvCGz3mgvUe4ZcF+lX67toeW9y3x50E9/3jh27TuRsItU7JSEGTE/N0u5A1FL+n9KaUmTLofsmkBOFy6diEpK0nRzym6ifG7+UTrLJypRS1EKqzSVkXIrlcsgEwJAuFxClUTSAWMMt9fX3OYIyfVuy3azlZ3FJvQoZZfBx0yk7RnChE+J0VqJpIUoBoFZInEq34tWC/incrRG61xr7ywWuWVXyaFtjMZUFmusZDYGPYNmTzWG80x5eGqWQ3D9k0HZlJ2NMkai0CT9WJT0Qi6LlGyqER89U5bvbuqG4APGxFmZJqUFvC2H0hrkeQzoeez59fwr4JFzUmLVxDinkxeVEa0NbdtQZTCryunPUjJjM/ikVvtsRErT1uvx0glR87XlUqGZyP2h+sJTj+M/vF1spQ+mwmyoXGSbZDDXiLHS1I5N27BpW7qmyqUBFpdLn0tIRWh6lnWRyApIcaVkmL9mUX5c+jomGH2gHzznfuLcj/IzToyjEOOjhBfh1J+pQqB251xmalC6Am2xQeG0RWcJaU0iJS1SxznDTUCoKKpT4Z3MgosAQe6fr/kzxvCzzz+/tLoeAXzeHaz1Z13OQykDN3mulzKSDLLCXP5QSh1skrNLAUkrfIqoGFBlbQLGWilXMAavYUKyq43WFNr+UlxVxnDZnxdzOcVAnCQQ46eJaTQkbfHO4bOdE1QiZDtN571GUfZ4TVA60zqKDRGJBCVlVFGLao4yBlM54SFz1ayItFxIeqc7/9xxVNn2ewj4zOdBPt9SvsaglIAoCqJWpKiW+1BJCM6z/aOSqGgplSl78nxIcisyrkrKTlR2zIr96/NPAVqLup0mczSlRKsVnVbUCjYaOiWZUxsthNSRXMZX1mQxDdUCNpTgpBJeY2Y1Kq1BQ9T52nW2+VYZILqo6Bg1Z66Un2zUzRvEuyP3dGP4ycvnM7Dz+IIr58FyDqn5IldngdaiwAYI8Lw24Jj9FcjBhfUnqFISKyXLIgQiWePW5HKwbHMuRl+GmdJSlq4zeCCZumJ7L1mq8pbC0SgBD8kkatqGzWYDiDpfDEGytvVCgTHb62mlfptLeyXrx837T+FzLAOr9JKZzoOz/KnGsTIOW0n2kTL5+3Xm71TMPkVU6/xSBMxTelF3ne3RBEkIvo0WEnKtROZ+zOqFQ98zDANl5oiCcpSSuuzzKa0xTjLVo8rkIyHgqwHnHEGpVb8FXB5/rYXsN2TOTqNFHEcrUYdzOat+KZtbeMwUzCBbuVPJ2otMWZ3YTxPjIMTO4zBkjtK4WmsF8Cn+ZfnwtY/94Jz8M8fw408/v/jb+4CJnwJY/CRQIwOTRYWtBAhLSSOz63l53r6zT6TVr/yyYjM8BK5VPkOLCuqma9luN2y3G7rNRkoucwnfH+PCet8tPgoSrRCfiz//hH76ycCPUmoL/O+B/0lK6f6xhf5YSyn9M+CfAfzqr1+kXh3yIS/ZPForUk6zV4jTJ5t2gOSXA2k+mFThEKXwU+R/IfwyGWCIITutIxJHKun8GWVXCuvE4Oo2jpvbDXVTsb8baOoT0xQY+8irH45U1cjV1Ybt1ZamdaAamqYSziBrMNpRucjz5wZnavqTZxwkta0/TygVmSZRcJDMJvKpm0vSkkMri1Ym8/skUEW6NBsFSSazqiybruPjjw1d84y7twcOB8/pNDEME7/5zTccjyeurlt+8ctn3OjuScdw07ZJSKXJ0F2G1vJtFR4WpRQqnbKkrPBxaCMRg3M/iBLCgmsth7BcqBA8TxMpRoaqYhgGojH05zPH41E4eUgkFRcJ8Ows6kyc7L3n7m7Pm7d3jOPI8XTmeDqTEnKouUocn66jaVtIibOxDLoXR3jyhCAqIsLvIRtm8IFxnNBG+FxMBjPGSRTd1hLDkZLFLUpdioDWRa1GDIacz7Yg8XOcJvf/u5vxnz2O2+fPkrWZp2aVxVMOpaLAoSiAoxz+MUaMlbnpvYcxl39Zhc5RFkn5lnFAKYICVBJnIBuPyhrh5Klr9BAwdsTFRKs1HVltxjk6V4GCqnFUTSWHudWzkkTlqrmk6mqzY7fZYLShrWtqV0FM+OOAP00Z3BCncAqB7XHH/fnEOE28abfsDweqqmbXbbBaMpAqZ6ljRTKJZqqZVCPr2AcImbvHWUw2nFxXETJHhMuGVunXuCpNeIoxVEoJpYKsvHm2SIp6nDmySoZTP07EpKhrKXtV1ojqyzhBgil4hqxAc9gfuL+7Y+x7hsMdp7sfSDHw5de/ZLPZkuKWiAbXogyZi+tRw+FRsOc9huIM/pQyLmvtDLTGlEkT9QI0So27noEirUURJXhxSqXPLjqQ0mOlv5b9uOy18tjaiqurG5RSTNM4S74DnPqnHcef9KY/o60NB4WicY7tRpTPvvrkI/7JL79i27V8+vyW59cdlbNYI1LsSglBulWLUEIBwMasZCglhilncC4OK6is0iRA/A93B75/vedwOvPrb37gt9+9ZvSBwyAA0DCNhB8id/s91lpedW9pmyaTIXY4V+OcYbdpaJsKoxTOGmx2aGJagJFDP3IeEofTmVM/0o8j41Tq/Jf2FGP4X/2P/mvLxFrZ2TO9z8pWlJdoHq6VtfFttabJkfxN17Hb7ZAM1qNwyATP4Xzm1ds7+slzVbfUzUYybQ93HMeeNI7oYcQMwkdhNx0vv/yCEAPHwx2H470Q0qeJGEUhVAdPCiGfyUYcLqNxWQ0KpQj9RDhLKVkYes61cPhw+5K0q7AKMEKrZhS0PlHnQItTlk5XGBXZB0WaxIYYjOKkI8laaFtMXeGutuw+fsHm2S1201K1DcpmXg7SBzkXrXXz1BUjXc1k86L+53Bdh3GGpA29dXiloNiWKREVKBVzBhRAEYdg5ntMhawZUDGhQgFIEz6r2I2ZxDmR6In0ZCmUcURNHhMT117zhWroDPzKJn5lEeDHwsZ4JjSt0TSV4j7CKxX5A5IxEayUY5MSOmfwxiSCKMZaKqWonaG2GqsMg7bcaxgSnL1mCBCswWxrmqbCGotrJTNLnGPJFmMV0Pxj7SnG8J/+1V+k+Rx4IIxRPq4IVTwM8MxVA0k4for1Nc+1JBx4swOYg5/vXGf2GJ1zbDYdXVvPZckuA7gqc/MUaXYQWywVFUM5jDBaytif3d5w7gf25xG9PwEwTBP745mqcux2WzbbLU3T8Nlnn/DixXNCCLx9/Zb9/oCPSWzefF4GH0TdNitYns9Car7pWp49v+X66orddkfbbUrvAYtjrXUOfq+Cgk85jtebq/Ty5Us2XU13taNqK6yyYBxBGaIzpBxok01fHiqTs7h0JvfOn62VBWvy+VfRVjXWGHw/8MM33+CsZTwfmcaeuqrZXm25vr0W4K521HU1A6B11wFi/xEDKQiHWm0cwU/YwwENKwoJsWFqZ9l1rVyPXmgtzByoYlZVI2bV2nEU/wmochYzVs7xaRw5HY4cDkfu3rzhh+++49tvvuF4OtKfcmUEKQfp1/vlH4lEPNEY/pf+y//RI19QIJQ/vy0+ZCmV1HTdhpcffcR2u+V+f+S7715J/+wPvL7bCw/TPGfz3vTg3h6/OnmNcK9mXlGrRb2rrvjqi8/59JOP2Gw6/uqvfsWXX31JXdfcPLvN1RCyFz48t/5BPbHOIvipm+uq/STgRynlkAnwv0kp/R/y098qpT7NyN+nwHd/9FpVZFBnObKVKFJJNohB52iQnsGcwJyps3Io5tcUkCCreiVy3V4qB2uBJCJK+XwfGkUJRViMdSgNbWfZXXVYN9F1Ug5BElWu06nHuYk3r8/cvBlo+8hm05BuZSCt0aIy5BLpRso7+vPE6TgxjYHTceBwf+Tu7VJOMzsX6Az+WJQyOeU03z7CfzRnj6QcmbOWptU8f75h22mcq/ntb16j1Z5p9Hz7zSvu3t7z8qNrnr/s2GyaeRifZAxT5mlIEZ/JjIXgTw7OCKgg1m70AT9MmbTXYJ1DKZ0Vr8JK5eoS9FGQU44F+CmZOilG+mHgdD5L1k8uASyy4kYv5VjGGLz3ubzrkKPIA+e+B6XojMEZg7aibrDZbFjCbrJJTyzbYyl7Ikmt8DRNqCgEmTo72UISvUS/i8FXHGKFED9qvWQ9zYZGKV9cQ8yozA2wtKdaiygk4lTGrzjEaQHuinMnkWc3q+iU+yslPiHGTKKXD9pS769kjme61xwFFZBQGYNzlRjUbpTxMpFGaaRiXVEbS7IS7Wk3Ld22w1hDs21pNt1M6LvJQE3bNLRVjVaSLWS1JvrI+e5If3/O1yoR1SkE6rZl04sUe2Ur2rrFGkvXtDPwY63FJUvUkbqpGdUoUerJk0IUAsjKYZKoabmpImYFhVlBLC4qIkvvP8EYPtJSHkOJ5C3gj/eF10StUrbNnJUXk8zffhgJIXA6nTgeDgznE3c/fMur3/09wY80dcMXX0raqrI1xgsYU6Riyz79xwCfx4yIZX9Mc/pz2xYjaeEKel+kpszLGCOjH/E5K6H0h4xJydpZv2/1z0wmDGCMKGYYozkc9qIGtlJheLK1+AHbw7iW3KcAmlebjrau+OT5M77+/FOuti03m5abXSvnmkooLQaONQaXSyKMESLoRGIYFOMoQLcAP7JjzYT8JCaviFHhY+Lt/szvvnvD4XTmDz+85dvXd6J0ks8TgPMwyPdoQ9fcifqcc2x2u5mk2/stw9hIlNsI8KO1xVWidBJiwocJUpxBn2FaEWvm9sHHcD0A+XHJ5X1kBVDQR2OEIFKUe1q6rhOZ4MrhkwDXp77n7X7PGCLuxnF7JWWOk1Hsp5E49NhxwowjGqi7htv2mkSieVtRvdUEP3E+7TmfRtm3Ysis3PkCtQA/Rpu8J4IfB6ZhBAXjcAKrcU2N2+wwOmJRKCMggvWSQWSi2DJWGRrjSMpjIjBFohJen7NWaGtxTYXZbnBXWzbPbtm9fI6pK2xTZ31uNZ8pTz2Osn/Kvc8Wpha7zjpLVVeYukE7S1KKUWs8kkyglUGlfL7l875AVMWuEJ8+kUJCxQx0BzKhRCLFgI8RUsQnT4ijrDMSfcqZstOEmgImJXbJ8rG27FB8ZQO/dJFGJzYGNjoyqpTVizRvY+JvQ6IKWU3MGIJWktkTEjpXHCmt0Rgqo6naiqp2GBRT0hwTDElx9oohKHAG01WYrsFqg62lHE/nfaLYAHMg6x0vZ3ECn24tqjng8tjflGIGWtR8feWcWp0xq4OhZMoWE1HmiPgXWq0zpS+xX2ctbdvQdY0oUNo1UbLYBwu9AZJNN4NVMie00my7juvdFc72NPU9RhsJNvpA7AfJEtOGthMRhI8+/ogvv/iccRRKiMkHxmnC5mCUUswqtGNWA+vP50xK23B7fc12t6XbbGiaVgDJHNzRWouN9wjg85TjaIzl5tktbeNoNh2ulizPQvierCU5Q0pW1lVIIgZdQDUlmYpzNqPS871XtqK2NdZowjjxtj+hSExjT/Ceqq647W9BJVzlaLsGVIs2BldVVE2NUrro40GMkqUOhOyrxGkUXyfkLPeUaKkhpXmuzdmQOVMlxsi57xmCKM0GH5jGKdNDkLPFdM5WkvQ7P06c9gcO93vevnnD6x9+oB96hv6cgWNI2a2W3egngT5PfC7Oju2TtXeSYJSMRdO2PHv2nL7b8PzVW148f05diSLe67cS7FApzeBPYvE9f+z6y9eVDHmlEloZnDViR338kr/+q79ku9nw9S//gs+++DyTo1eS9PDBbvxPbz9F1UsB/0vgn6eU/uerP/2fgP8h8J/l3//HP/ZZKSVCyrw9uZSLlETpQglPTz4CZpx9zviZu12tplB+pAqQsgycHDKCyC/yUut/K5hRfzG0bE5tN1ajvUJ5ceZ8gHH09OcRpRLDIKBOShFr03yI6Cz1aZ2mri1t50gpZrUvJ6BAYF5vOTAvfBIx1xxnx0OcbLXcu9LzT9ls5/T64ujlci/vdXY0V5ED+AXwf/9zxxDIClbL9y4dvjxUiC0TUlYZQ4kToQQoSGsunRXos3bUSnmX1OaKLsVaeatwmaioZq6X9bUUx6NIpxtjJBqlFNa5uXyjlHAUh7M4mFoLT80MTK36PUYhgU4hCKllKS3I11f6SOX+oqSPx4WHJc0ZIIWbqHzX4hhrZR7ul0+yFst9rH8/+jgj1AtEB2XNlcNKsyyx2X9e/aDIKnOrlHmlMogrQEzKtdEqxllJxmgt8uLG0FYVbV0J8FPVNHWOwLqKJpcDVcUBVDk9PaXlh1XZU2Zt04oZLLRaItoml7fFef2UAWH+KSnyiQUnSPl1ojQkxTGLgp0WgCjFJ1+Lj7j2sLpX4TQKWfmvlywtpFzKZe6s0U8LH9Aq48YaKwSmRjhUVMplCjm7aVaLeDeD4lGAZ/38+m8X+8iDz1m/b3n9xatgdTaUxzHEmResnAVFRe/hay8fLb9LBmFJ274En4AnXIs/R5M5Kf1ZO8e27eiaiq6taSpLZS3W6llBT+u8BhUzcaGao/eyArTKvng5kTOfWwiS+RATDBlUFGBx4Nj3nPqBwYsaS9krSytOlsqlTFpJhqkbR1GECpZTZcUp0gpnbF7HliqAtUXq2kMWaeiHkWEcMwdbms8annQ/Xf9jsSPTaoleQJYqz7z08M15tIpzkLNtpHxxKa+IKeEnj58mUkoYa+V1lZAhR4CYCEiWk0UTMz+ONkLyHpRi0obCNpLKxc/RfcWFcl/x3nPaQwpiu0UfRMZ8mkApfIQp7ydjDCIIECNTUeVBFK6i1lJO7YyUFVaVcPq0Da5pMJVwIqiSenbR3xd735OMYznrl+xhtSq3s7PjpbNUeHlXcahKSW0k5XKuNJc2EwXwKcDPrOAhhlI2d3OWT4rE5MV+yhbzEuXNVrAS3sSAKKqNSjGIISWKbCkxAX2M9ASGKGvSGC3jnQM0KiW0TuhQTnoBfqxRaOvAWlKCkDRTVkAScCWBtTPvkvAfio2a1Nybq2t+2NNLqVS+tScbQ60kM0NrnUnp1/amvErN11jOmvXj5Uy5OF1SyagVXqeUJNjn/SJ4sR6nIgAyeVGPLRmHAk6sgBMlY1qy/Mt1lJIqk5XAphCkn3NLs90pAiWTL3bwoo4pt7NkYc72dbaZJRs5zX1jcoa3zQBeucCS7fnwPH6kPc04KqQ8zpgcTLRyhuWsznRhT+bxKVtqsW3ljuU5nftWLfci6pRqXlMxRoZxIJLo+4G+7wkpCsG9r4SGIDGr3AoIIweddTYHtxFy9ZxRPwcAyxrI17uUdWUVqQvfJwEihFB8i3ESom+tJMitlWYYB879mdP5xOl8ZhgGxmlk8v6dzNbL7TJPurXjVuzbJzwXy9G22AzqwV/XX16eVg+uU973mI0of129WEmg2lVCxr7ZdFxdX6GN5nA60zYSGI55HYu9K2+Uss7i21xeXbGLQcYtZduobRu2XSPfs9ux2+3ouk7Ku4xwx757bj2893U3qNXrHnGq399rs1OS0uX3PdZ+Cgz13wT+B8D/Wyn1/8rP/c+Qwf/fKaX+x8Cvgf/eH/ugSOQUjjOYAwmTNDZadFKYpAEpEREnqWTtLDepFZlNXkYnzXLEqxuPUvuY8mFZMumzKZMfO0DIdK3z1C2gNO3G0m0c2mRpvHFETYo3r+9wtaJpK4yNuAqqyrDdObY76UbrNFonrHW8+GiDMYrzSdSjFIlx9Ny9PXPcD6QEfkqMg/xMI/hRoa3Caosiyhwoe3wyJBxJWXz+rPMpcj4N9L2w/qeUqGoDOjF5IRpUKvEv/7+/A3gO/Lf/3DFMgC9OZZE+z/vHfI4WdDnJa+VMDYxBVGSWjU3ep43O9eoZrIlCPjgh9f5nYzhYi9WGYehnBaHRjwzjAErkneus7lPqO2MMKG1o2g7jKlwbaaPwfLRdR9u2c92tc44Yo9ToVpW8F6mhpxzmeSF6H0jjKIs0eBgz2WZG92UuLmpyOopDJHvfNIMQMRt45SAoZY7ye9nASgoosOWJ1iKJJQvlAdg2bzgqk1hjRKo96dkZUSCRYGdQUZMya5eAmRLtF0RdMoqk9l+j8+Fos3SlM5YpBMbTkakfSOMgajAJAXW2O4yz7K537G53GGtxTU3VZiK8SiTclRIZXJN5nmLISm0hMpyPjP2ZGBOjD0w+ZkLaRGM0Jho654iukok7ecZ4whOJZH4unY34DN5EIilJuaFPwr+AAoxa5M5z+WGKSajFkubNH76DJ1qL7wwoQJa314gqXt/3nE5njscTr1+9JgFNXbPZiIKED0upzm6749nz51Ji13Vwe4sfW1waUeOeMI60Tc04DpxPJ3AtNniMkgyaYsQ8lu2zzoCar/g9gONjz63nZSmjhAdp8hkIl4wlKQlV5TVZfWTN0zMbwsASHFgcXWMcdd2glaJtOpqmpWnmDMqnW4sfrGXjt0xNa6itxVjDJy+f80//8hfsNi2ff/SM57tWpNwrhTUek9WwamcfGPgCYPrg5fNVxNq87WuLyaWrk5/wAaYpcHfoef32yP7U85tvvuff/vYPnMeJN4cTYynPVqBK9m52wiKKYQp4H9FaONpMVn18/bYS3gS1qOdZbWialso6SsZbIjIMA2/u3nA+nxknTz+Na+Pp6cawLMG0+vfahl11Y5yff2B8zw6YqM5ppWnqmm7TEVKUcpG6mjntDvd7wjTx0e1z2t2Wtq6xfqRKEd/33H/7HXenb4jBM2GIygmY0ey4wRCnCTNMqHiQktAAU0jC26I12jmUtWib+TXymlGZfzGNiTgm8JHz3d0MAEymojIO7QP3fY85DTBNqHFEhcCYEufKMXUN0RqqbQt1hetaNp99THNzhesauttr3KYV1nWtl769tG2fbC0qpXJWhqVp6szP4mZ1QWs0lbWYrMJU8tMTMGUwzMeQS9kzB5MXIZNyJqVs46TCdbgCDJYgSyEtKLarRs9cmBIQQcEZxStEuaPVQpZQpUQTI22CicS/TSO/jhNHpdhrQ7XpMEpjKifjC6ic8RMBT1Z8U0L0PdksXZ8UPWRmTk2LZFaYukVn+WxtDLFwRonxcOn4qLVgxfJ8Dto9zVpUktWqU8Joy8xlM58hl6Woy1nFfIbNTxRgNo9EjALgCEDQ059PeO/Z7/dMowispLh4aed+5PXdPad+kMzbGGe+LuukfL6uHHUWJZBglFxTlTl2UJbNdsfNGLH1ibr5bnbQR+9JPhBS4u29KKb6kiWSM0NSjHg/EvxE9BMpeoLX9P2Z4+HINE1ZJVPNggm73Za2azHGzmvO5Iy/i2zmhzbjE65FbTTdRkim601HXVUz0JViAu+ldCsGlM/8VMU38YUnqYC5zNxIOukZ0HVWcnZUEhtmCoFXr9+itKafPGMUcubbZ9egoaqEIsJVItJS+JtICasC1ohya4yeECam0XOePOl0XoHq+ZdmRhhiWDKDhn6kH0YBZe1EUhNTBPPqDf20ZJNrpTieTvzdr3/Nd999x93dPd+++p63+/ssOT8tQcn5qzOqMe9aC/D4YFN9YttGqE/WQaPVny6/+h3c4o8DGevWNA3m+XNC8KCg7RpOpzM3//rfkEicTifu9wfe3u1zAD9z71ycyQVIXGxLqYQAZwzOaOq65pdff8lXX3zGZrPhr/76r/nF119TVU4I0a2b+/oiy/iiV37inb7nDxkSy/9/D5j0SPspql7/jx+5nv/OT/4mIKXIEIQcQeWDJUYNKmRkXqOVRO8ukHMW0EazSAsLuZdmTtXKSG8iZT4NOXlSCnl9pXkTSKIxRVIKbSNVLcds3Wiazsrf90lKjBLs749oA3Xr2G4du11N3Vis6+g6M0u0W6sxVnF92+Cc4Xwa2d+fGfuJ/jwyDoHTQcjDQoBpTPgx4T14r0QW1Rmk/IvF6E6GaERqWBHwU6DvJ4ZhFLnz0aNITJPJoJVkVqHgn/xXPgf4z1NK/40/ewxB1ChWkQ9SWvaN2X8S8rGQHeKS7VAODpUP3ITwRxSQt2TShBDwSojcxnGkP58xxhD8OB80fpo492cA6qpmHDuikSysmCPJSmmqpsYERywki5k/pGnbGWjRsET3nJV5GfNBEnMGSE4dDiEQp0wwF7yQOiZm+ezFecyZQxEBH5Okci/GfZptC53rPzXCi6ABpzVdLcSyuR3S++HcP3EtpgvgpzxX0qNlDeUXBwF5hOxTSkDIYI42BqWTRAFDYSpaZdcopAywRK6MRAitMVgjv4mRqT8znQcYJ2wU8uSNdVx1G6xzXF9dcX19LY5fXWErl51zswBjKQO+SXgQpmnK5YY909QLCDROjFOQncBVOCOlZI0xBOuy8pMYTkEnkhP+orJ/lPhryE6lRK8lgo0CbTLYp9QcFRYpegHEXnzxCTzRWsy3zEIRUyLOkZSBn3Ec6ftBOK6OYqRWVUXXdZnwTjJjUkp88skn3D57jrWOtmmwVzviVKOnE/F4jZ8GmqrCTxND32O7kRCiZPLppRzyYUTwIfhT5lr5/b5IznKPaY4azZmAcZVev5aNQdZhP/QZ+BGuJWMMLjpSm+ZrkH2knCXMhlHJ0jLGUjmJENV1LfwMH2AtftBWHEskYFJVTuTNr6/4+vNPudlteHbVcb1pcFZTuYTVwkNWWUNTS9ZDyPxYcxZZzOXTgDUyxrVbVKmGKTH5SK8ikx+53x+4O5z57vVbfvf9K8YpcBo9vvQ5SgyY2ShVkjHhA1MBG1LJfkWUnTI4UWXA3xrDpm6pnMsBCslim6aR/f6OIcvorpUbn3oML8BMWFS91sZtPiwvshDkzfNnyN4mjmFVVTRtgw+eqq5FGdJKYON8OpIyJ0TTdQJQhIADfN9zPA2c9fd4HwGDxgppfrVhqx34ifj2LVPUhKhIUbh5kkrCQWEdyhqUMbKPxyTOe8rE7jnzjxgZDkfI5dO+2VBVgA+kcSD1Z7T3OO8xMeBJ9Nbg64pUOdzVFWbTUm03XH/8kvbZDbZy1LsNtq1JKmcHwXy+rACFp1uL+UxxlaNtOyFddW7mG9MKrFrKR7LRme0iGTsf4gwOTH5iGEV8wwfPOI0CSMYo2cLrfbDYSnk7M0jJsgYcLqt9JWFotmJ/9AruFPRAk8QOdklRp0RDZEqJvw+R3/jIoDXnbiMZVUakwF1dydqLoDIO5ZlJFkgqElQkIICQdJFGa0etZX5aUwvAosDrrEIPs/DCbNypvB4eITjNXG5PMoYKlqyYLNUeUxQVpmwfSNCNR8+o5VOWlvL/YkpzVs353HN/v2ealrO1ZM4Wd2wcPff7E8MwzZ9jjKGqnZS5a03bNIRQshfNLDBjnUIbBzrRtB3bXQQtwUC5J+FUmzKh/eF4pqn2Uu6ZRVWUyqXm3gvwk3mjYvCMmdsn5DVc7Km6rmi7NsvB6xy40rON+jDb5wHw82RrUSlF3Qi3TtU0uKrOtvdEDBGsFoqBUs9VvjWlrKBa5uvimiRjJV6hpBTRWIOZ7ZLEuR85HE85aC0gZ1ULsXy3aUXBbRclAOmclH3VFaSEThNGecI0MY4Dw9CjzYg5HLOfGh7MK5WPBvEv/OQJmTJiGj3KJIzzKO2ZYiLd7znngHMJeB0OB37/7Td888037A8HXt+9ZX865nkYy13PJ026AFnmDlufwAXQe+Jzcdmu3zH3/jRc5480RVXXtF0LJKrKcXW1ZegHfJj44Yfv2e/3hBC4v7vPSsrwYALNdsgypVJORFFYo6grx6at+ezTT/gnf/NXbDZbfvHLX/LZF19KpUjxf5ZPnG/1R63dhyDYT2gXffsT3/OEhWc/pa2yBUoWTq51XZDIlVOQ/7/urALqzFkT+RVC2iqdMHd6WrJ91iijdFQEFSQtSolctDYJ66CqIIQMArVCLmqcvC4lOcz7YQAVmaZqkbA12YFPCecMVZWIIdF1FdtdgzGatj1R1w7rhF1+8hJxL6phKYGtFMrZ+aAB+ZxpmPBT5HTyHI9njseJoR9lg6wddePYbFvarmKzrXFOo81PRwF/aiufWIiJVXFy4WKXLaz7pefnEVg5cRndmjfmBTda6l5B+kHNjtoqDT5fQ0HAF46o8j0qGwG57junaBZ+GijqGsucmdvjNkC+hwVrveyVh+3Bm+XGy23P4J7OqgVGL0SSrqroskT107cM8qzu+dIIldckcmnful5eyZa4Tk2dfxCgLOn8W61+p4c9ko3mwkWTghA2146YoMqSmq7KKfYmkzqvurQAHbyzS+T/Mg9UTr7PAKQAPylKxl+KQUA/rUWlIRORkg3EonYVczZNIWCMKc77TUxFkVAuRX4vnF7AxXU/WVPLXc+zMS3OUUnlnqaJYRiYvJ/rzUWGVc8Eg+sSPIwF50ga6qah22wIk/BhSQqrnvfy5bRSl2D1j7SfAvi894ZRF3358PtKmVqRc7fWZjlaM6e/pySGdpnWZezWO1GJABcyY5tVxv6UyMq/9zZvx5LBs22bbLQ0tHVFU1VUzmC0mn+skb4xOQJd9qkHu/gK2ZB/rPcAX9S7hpHjqefucOL+2HMeRiYfRIErrT6rtAuHfnV2p7I/lT0qiodJIcqX9456mvevIpc9TdNCPp5BxD9ugf3p7WEG22Pr4H0278OlIDbSApau1UnKT0Kykic94UvJRowoY7B1I6BRt6HabNFuRNU1IZ+PwqCoUEmhtKFyFR7wYWTylmTWGXq5szLYs/6R65TSVuG1EH6LSTti0hDiLKGsUqJSYLUioBmdYcKh6grdNZhth+saTFOLdLuzpY6QsrvN5V2q9NnTDqJSQsjrcjbAXGqil3KSMkDz95fH876v5jWjlawjAJO0lOolZmWiAhrNJ+7KEDJoXHbInLI4ZD9LFpJLBdPAq4QB+gSHCJbEmBRDUngSpxQZTGTUmmhsVsgzK76zxcEpe8U86jn4Vv5W+kj4KPWsxrlk0r/rt8z/vgTrntbfu/jCdwEclRabUXh5Vipdj1zv2gOZn53NyuVsHaeRaRwF9FmdaaX8qHA/KuDcD9iT2DKj91STzyIkkiFmtMrzTs7XIhISk5QdiTpt4ZEsvk5WMrwEX8qFkmN08xlWfpd1Xd5T9hRrDdbZCxXLucS69M3qHj9sW583y/gJ8AgoPY+QUos6YUqSYS2dhNh/sy+gl/vSRWVJzQZAKgGHlPAhMEwTCcWQy75SSpzPPefTGe88MeayYtIK+Ft8WwHMMtF0yudWkj1DKCDkOtdzxxhLVYvvo40R0DvK9/bTyHweUrJX9hxPJ879Oc/DyJw3uAoKXrb1Abg8Vh9gVa7Pwssz8sHlwI8AHz+2z7/vTbJPLWVfG25vb7HWcjoPvH17h5kmZnx6/ph3L0ZrjUbAwq7ruNp0Ut51tWOz3dJ1G5yr5vWyXid/SitliT/p9le3PZeI/sQz8WcFfpRSOFPng6MYNzm1MRvaizRfApXT9Wb4QAJOk5fnYlSEWFQ8NDE/Tqk4WwqVuQrk+2N2xuSzlQozCOFqUDqyvQ48+0gzDIaqaWh3ihjK7hnRxnM8H/n2uyQKD7WogjlraFuHrSwYUFtDU0fGIeCnSNc1nI5Drh3P16cC9/d7IhOvXx3Z7BqaxmJsQ10LP5D3IyFMDH3gh+/3HPYDp6Pn97/Z8/bNQIyJunV88tkLdruWL3/xnOubjt1Vxe3zhroJPHkzokZgyORpSlQftFIZmMslFySmmZ54ncZ8WTetS9q00nMNcaWNROqzo1ZACqWEnyelRJUCU5RISlXVVJmlf13zaa2jaVtxzrUmreqjR+8hSS18iWCGEIotRzkQJGp7gTasjM5MFo4CvdB2ioJc5nop6LECnZRkv1CkUpmjLNZYXFVxtdtRNzVNVXN9fUVTNzx1izExZtnKx1o5NBKQQj5AMigwGwOpgESZbymG+dDVSWQ2haNcQzJztpPKu2wpCZv8xHkamKYR19a8qFuU0lK6sLuSEpVNKyohWoNKxOjz4akIxbA2YtCmBMGkmT8k6EhUkaiCkMqniQiE0ROQ8oFKg2sbfIgcg5R4hRAYw8BxGBnCyDD2UkIZIzF4YogEEmOUci+FODUaSFrPKdtkp/nDwgXFGRewS+ayZ+h7zqcjh+OJV69ei1RpARqV4ub6hk8++YS2aWmadpaDNabF1hpSZFMZrltHDBOm7nDtDmUsVVXNy2JxVPO/V+vlMZDnUUP1QVsb7+s1tP7s+aBdGftVVbHb7XC5TMlkB0cbKZtxzlIyV7QWI1qrYicqSAsBvzFCJlnVFZvtlqurq3/oAP17aGrmsdJK8fxmx19++SmbtuWXX37MJy+uRMa9sTSVOKVdreka4VuxRmNtnr9TVvybPQ5WO7kAqSHAlIQE9NXbI6/uDxxOA//i7/7AP/+3f+DYj/z++7cc+2lem8WIvVwfa1LWVG5l5VqWtyViiExpEgBEKaZxyuB/salzaZr3XOBMH3AxzvP6gaO7eE6r2yj7YbHaViixNgKqWGdpmoYQwpypGmKEpDgeTwzDyH6/Z388oZShto7ty48gJqakiaZiHEfOxxPnwxFCEAGGMQqpb91xc/uc5Cf2R+FRi0B0jXACKQFKUxAusBRG+UkKra1wbyhF6kem6IlKszdnvHZEFFNQ+KjQKVE7g9OOhMG3EFNN1bU8+/Izts9uMFVFe7XDtQ3KaLBGsikLsPiwj5+4WWO4vb3GWUszZ/moJeCghLIgzkZCVsQ0zNWiWikchhRl/ViLZF0kiw924etZ349axr1kxFg0LvPFOWVxSjhOooNoEduWxFlFxiQZ5PdR7BkTAzZ4AvA2Ru6iSMtPdYurGtBKMsdyUCxXupDIwH+eqCscatnjyQBKtm80BpVU8WFlj55tqEfaw3XxxE1sq1w2mueJAFwWrUpGcg56sT6b1lyi6/mms80mIFhMUvJ97sV57Ieew/EkGRtB5oPRFqUS4xR4e3/AGMXd8Yh7/Rqt13LfQuIupV7lsYAuXdvQ5tLiIfMDnftBvsv7HNAJjL6sEOHu0tqyBnVsPqvrKpdN1dUsdV1AvKZtqOuK7W7Lbrdjt9tircvOrJn7Y+ECyhn77wG4n6YlQpiIMZfMKIMymQohJfQwQpIyKa0MrqlkXqaS9ZzJkaeRGJNkEHaNlGc1NdoaMIaEFpoClfAqEjCElDj2E/7tHmsMMQV8mKhqx+F45HA8zIptm+1GgiYpYJLPaz0JyXkCU9XYus38qxPBT0LKHAKZ7X3mZFVKs73eYV1DQspup5gYp4nvvvuGt3dvJdssi5KM08TbuztOpyPjOHF/EtXH2Yd+0JQqtPPw42DQBxjNea4sQeB3L/B9735wbe8FiAoVwEJg33YbqrrhF1//BVVVczqf+Zf/4l+hlOZ0PnO/P3B/f8hZYsXQKOtHuFmbuqKpZQ19/dUXfPnFZ2y6jl/91a/4+uuvJUi/2eZM9DQHji9v4anWiVo++0f64cfaz5vxoxTGVJkQcomKFDy5UOSR/y0QqRh4WbOLkGulZbGADymfoYaUCkWhpsi2S4JFcUhiBn8KCJRBEQ3WKZSOdJvI1Q2Mo8a6iqo1hBA594G+96AC/XDmzRtP0zhunnUM/QR1omlcTs+WzZYm4dtIitA2NcfDwHF/pu8HpjFwOPScTj1KJ/b3Z+7fDvhN4vpmg6IjJY+fItMUOJ1GXv2w59UPe47Hkd//7p63b3rquubZsxu6646bZxt+8fUnvPzoClclNruAq554IedBU1k1qWRKVJnfIWbwJKbElCI+KdmE1eU6mA0ExFAqkU2b+ThmMsv8txiFC8caKcFAJVxwc+mFROncXL4SMrOykOJVYpRoQzIi8zlOE9M4ZSAiorMjmh4QRMthf7ntJHIJ2AxSqjloINZRyYZYR0zzp+Uad+GqyqCj1TSVo3JSYvP85oqu29DWNc9vb+fD/2lbmol+S1s70HOpl4JEIPrCRaTm8Sr3hCITcOdDLAnwo5VEdlVeZymuDKuUZi4uH4KoMMWJut6ybbdoY6m7jrrrJILdCDeJXA/EFFaOlJoN5lImmjREnYhaso8E9IlIYZY4gd4nfBDnqtI1NjP/D3oQMuYYmcJIH3vGMDFOEz74DFjJQR1SyqpE+ThNkjUhk93kfmVVSvRhW5mbqByRHAeGYeB0OnJ3f8f53Evae57vWhs+++xz6qbBVdVMYFoZTWMchkSoNFetJQVPUAaPJSmNdaWGmXn+/5gReFFK+AgY9FhbAJ1lHT1Mzy+PCwiktabrWqpK9oaF5HIhbF34guR74rw/iQIVMQOzRkvk3WV1lk33pw3Iv+emyFFOrbnednzx8Quudxs+e3nL7fWGtq6oDTgrAZjaWbrGCWhZknFJBJ9QUrh7gU9k+AWF9OWUYJoid8ee714fuD+e+fU3r/nb335LP0y8Ofb0o198P1UWxiOHw8V95OfSyqRNJeK9AEXDo2HE+dj64O3H5/Qa8Vk/LHvH5auVUmKbWEvlHFNVUdU1ddUwTR4/Tpz7HqPFgD2fe5yrqHdXNNfXaKW5ihCUZRwGvv/mO96eR2JImAjaR2xM7FzNbnctZcskQvQStLEWryXiLCINPpcoeVLwoDSaCm0qAePHScimURzoOSVD0IbBNUzZ7musFjlrVQhuI5vdFvfJM3YfvURrg62qTIpZyoZKts/SXx9qM9VGs9tucjCmzplV62zgTLRMBtjXLpYpgIfwiMgZJ5VZhXMqJLvYuKsjdC6s0AVUAZvMDPxYZXFKuOOCg2DL+wMjchYOHu6yQpgKARVknQ0pybpQCuNqjM3BV5OVgdQ64KoWcAdRKdKpBOaWzJ4Lm6bsy2nh2lxbPf8Qx+TPbWv7pDicesVRBXoe05jWSn9p3o5mctySNlM8lSTO5TCO7A/HTK474H2W4U4CphATU4gcT+f8yQIZQibY1galhVOqciIe0DY1TV1n4tiWrm1meywlGPKaj0GIf30WbjBGAliqZJeUC83f5TIXjXuQzQNqLjFTWtF1LW0rP0XYoIAFBUz58f5+wpaYic7zl6BygFmlhDbLGCqtculcBqnyII7jKGXJKhM019nGqaSEFV109zJfkdIC/BDop8DoTxkIjaTkcc4KtcY04Zzl6mrH2O+y0IimcdL3KSWUEe5a7SqMq0hKSmJD8tnXiMQwMU8qRGSo7Tq2V9eEmNgfe3w/4Pue73/4gd/87reM48jd/R3H4zFnJvmc0RqZguzdpHS5BtdjxaOQ0Hv/8hTtMuvnT34379yJes8/5kD0Avha25JIfPzpJ1xdXQkB9jjx6tUr9vsDMSb2h+Mq3rQkn8h1I9nSXUvXtnzx2af8k7/+FV234YuvvuKTzz7L5V0/3a79s9rDj7/onvdBfpft5834QaGVyVkixRBbZUmwdPnypgeHa3FGy80+uOHHvpXVNxQGdyGZW6IsSguhrHWKuhHOnpQ0KCP1tzZI2l0CYzNpbRLneRhGUoo0jRP1qQwUSBBH5LutU7hKUbeWrqsZ7UQ/TEL6SmQYPcfjACTOZ8/QB2IMDL1nnDzn08TxOHA49PRnSeczVuEqTdfVbHcNm21N3RhcpTAugg6y2XyAplVm/88RdZcVkYqcOSmiFm9qHp4loJkBu5w5UqJLpfOKoRcppUZiaK1VTUppVCJHdPKkknTNOJfglMjvuhUnNKWEzvKppHW5AtnBSfNmMhvoMAPDSkkUKIPEwoPAGhxZ/SaDPkiqqjV6Tu9t6pq6cjR1RWUtldZYrSQTKT79GKa07pPyW5EnZDZECzJ/eSCs12ExlC77KfcvEn0snmLKZVIUkG0+tDUmZ3GZymFzqZtxdpGGNwaVx35JZKUMQh6HZe+Wb1VLqnouwZzVNFIuzcwjg9ZZoUuieVMI+BTwwctP9EuUcLXBl/tez/NC7pgyH8YFmefP0nL/FMM2ZsLJfIlaaZSVrIjCH9K27SwfXdTIdM5g08aCrUhayPdREiXTGUSZh+EBMPOwPeQGgEuD4LHXy2ve57SvI0eJjA3niE8eGwUpLdxbKavrSRZIWHE+lDGFGApnl2ecesmcGgcSCz/QP9r2APewRtNUFc5KBHnTNWxyuZeZQdwZUiMx07iIcZ3KbMrzHuljo7P7VHjKIBufME6e43ng7nBif+w5ngfh1splhpdH9XsMlfcZTwX8KZHnx9578dnLxPmg9tgDg6+UMafyxaWT8pwsl6fWr7+40BKsUjNgWUDZQlIe1BJd9pNnHAfGYcB3mX9JgbYGW1cCVliDVwlP5Bw8jAM2BqoU6bSRte4crm7QRJLVmQmxAKQRFSMqZqciifpiqaqAvNehCEjQJyaF14lJFTbGQESIZCtn0M6inUNbJ6T4Ws99VU7b9bDNpV7vdUH/vKZYA8Xve1U5XZbZK87e6nNmQFxJOUkCnbKTmedA2S8vBGlXWaI66WwtLJmUBSBaQZpI1rH8ShGULudSJuNNKevl6plAWOIkD0AcdfmpxWq+cLIe6ZOUCmHz2o5f7KOLib686QO5mHKRS4l1WvaMhzdQbDgWe75YEIu/AKW8KCGchtYKuOCco6pcPh8CSg351tJsfxITIfsacQX8kJ9RSaFVwGuFjolx8nMJnjbjbOuWEpBhmhgzF0wodkW2j2N2/kMIM0DkJ5/5PqUZbXBOSp+ljDFLylvxeeY9xjxcAzLnU1ps4Muj5mdC98ohVB6WYJLJqspGz6APFJVexQWx8Mq2XSzgyyDuxR2pfAbm/g7eM40jpMg4DIx9JSVyyRKUQ7Eo/IZc+iVmtMrS3gZSzGTbwolH9pmMddRNQ900xJiYIgJGxSCcXM5JeVlKc2lv4fNJ6xvict09HLP1siz7WAnEfMgSvosz8uJ8fs9ukN55MLd5//3Rg10te20SW7D4IXOJ5Po6CjwAWXVPskA3XcfN9RVd17HL5V1t22a+rXUvvnuNP9bSj71mbRKUz19HkC+67/L7/9j3/szAj6Y2NZAyQWxxCheNczUf6pcQ0CwXrVeFX6szSa28vlnaPZWa3kLFp4GS0bGS01YR7UCZxPbGYKpWopeTwU+GGBXHQ+B4lKyG47HneOxJRPb7I9/8AarakZJH6yiS8FohvLUJ7SLNBrQxfPTpFmNF7SuqyDgNoCOvXt1x7kc22xZlDMErQgycTgeGsef+/sS//dvv+eab1xKNqmqubxqurrd8/ZcvePHilqYzPHvp6LYB9ATmSGB84lGU7CurNZtaJICdMbRO0PZxmjj2A94jJXIBUsikuPNhf5lem4rSQ1rMhphgCgGFIqiigiJgT1VnwMQ5IpINY6tKpEe1JsSJMW+6YwhMIcxOm85p69M00fdnARsSmOJI5MOa4jAXUuok4FBCYZTIGBfCYoyZ12QxGKTUa12XvAA/kHDWzHwblXPc7HZ0mXSxq+tc5gbpfGQczk88htLvJWumrAOlFEbZbCitDsWVs5JQJL2O/EmLKS2yqUoMGumHiDEinZ6CJ00T0RiinwgxEEjYpqZ7dkv0nrre0LQbIRatKkxVCTBUGUwt1xbWan/FsM7XUIjHPWTSbQ3OoGsHQWRsnZb5pYPGlbKeIOSmU0ocxoG35yN99Nz5I/vQ41NgSj4bYFlms8igxpSDgvI4qUTUkVgi5SHix0xI+DO0ch7EFPGZgyAEj1JJ1k1V0XQt1jo++eRjvvzic26ub+jalraRuWcNaJPL1xQ5bB1JaIISicpkKnleLdKxqEuAZyl1uzQOL4C/1esfOs8lQrs8vwCpC3hbOA8WQLEo/12AuWkhNI8hMI6SwVUIvQunQpjWBvSZEDz7/R3Be+q6/sCj9+e1Sx8tsW1bPn5+S9tU/OKzT/iLzz/larvhqqtprMEhyoUS8QQfFMOUpdyNrF0AHxMhp20aA84WU0TGJ8TEsQ/sj4FTP/K3v/mWf/7vfs/h3PPrb17x+nDC+8gYHjqBf777d/FxP0daz3va7MouG+e7d/fAD54z9MobL4xYebHNZUcJ6LoNm24jggOTKAylFNnv97z6/nvGc09lDLfX12jtsE1N++waMw6kt6/Yq8AQR16d7givv8PFyNfblmrbYlWFrQzX2w0xRQ7TGaZB1tE4krx8lxknqStSBp2WMsnoPSmMxKQYSfRI6cQ5WYagUERUGFDRU9eOF1eSqVx1Ha7tcFVdvA+x0vIZtASH1j3945DfP7QppaiqomRXSgZYjUtc5lu6tFIvAikaMQiUnkFSSBiWUvN3rPM5gFSAn5J3Iy8uSltrG18pKbUCiW0oK39U1uSS6iwUkT9jkRBXM7Xm+lKWNV3+neb/x3XGz/zmy/WsSJhyxfPWr96913ILK5vwyZpCyN+TOOvzPIKcpVWuSoEGowT0TClJhklekypKtpfwIUmKlWS4Z1GEaWToj5zPPUq/5n5/xEfJ4phGKWc1GmImY0oUwl0IIr4rgazkmYJkrUwxMUzCdbg/9SJ+ATOY5H3gzd1eVMKCBKhCiAStmMaRoe85WcP3P/zArzctKUaOh0MGfxRN23JzfY1SmrpusU6CPVXtcM6y221p2lqyZdXijV0EunJfqhmgVosN/8RtXVI2B2lSyeoIs7ohLkk208yHmcqVM3oLys9B9pgCIRkBzjLYQRaYSVqCjAmhIzFK1pVWZFLsRH8+sVfCkRiGkTCMWGO42nawbdFKMQwjwzDMGVkRUMZwfX1Nt9mgSPhxwI8S7C+ZTcYarq5v2Gx3JOBq9IxTYH84cHe4px97Docj9/f3+GlaZMlXNlIBYdUjaebz/sFyVKryP7V68gO3ZY+5CKe/t72zVeZl/OgpcHGELpl+wU+cTyf685nT6UR/PtH3Pd4H8eUyb57saVLe1TVS3vWXv/yaX/7F13Rdx9df/4Ivv/xCsmsLjcgq6/hP6cE/qbfXfNtlbEu1w5/YfnaOH6ucOEiZcHUmXX1k+B9MWZncKoM/CZKewdulA5LKJFo5u0eJ8lfZevOOtRzSuRhZ6YQyiVYbqiZLxKcaUk2MisM+cNxL2dX33zMTffXnnjcpUNeOTWfZbBzW5truPFDaQFVLJOnmViTEj8eB12/uefNGMgPu9yfu9wO73cj19Y66agkxcDydGYaeu7sj33xzz+9//5auq/j0U0e3dVxdN3z86TWffPoM6xLtNuKqREyekHpi6j/ASMqB1jhDUwkZXZeVVfoBJj9BiphYUNal69f/V3CJUmc0T2UnJKRl807I5lsnqeNVWmOsw+U3G+sEgFGaqCamvCH6FKXmNSUsi7MSYmAcx/y8yhKlK273Bw7jfBMs+2OJmklqdnFcy2G1cI8UdQXJMgOI1JVls2npmpqmqnh+fc2mbcVIUyrLoSbSNOTa0w8wiuX+sgKCkN7GHN0qTeW+mN+Voyfqnc8q6ZVRCQCjFJjZMVdLmYCfMmiSpccrR7PdkmKkqluappOUXmtQ1ol6WCUZQHI5WbWvAGs5ohq8nxWqAoqkNEkn4aSyksqsoxBh6gQ6GlLSpAjDKJEZD/Rh4jAMDHHiNPWcQk9UkaDDHFVdIi2JLJ6XDaFAASpSVqEJXhQbYvgw2XfvaymDF8HLdyskKlZVjt12S1XX3N7e8PL5c25vbzFaUsKFhwxUyYgyChNzCrXS2MyfENAE9Hy4lkyhC86dDAQtF5V/PciQeMgJBAsP0GW2XkJKecmvWbJ2CrniAhRlsKeQLsbINE0zP8IwDKL8FpOUzmTwZxrFmCzAj/ei0hFiFHnd/0CaStDUFc9urth2LR89v+Xj58+42nZUGiqjZkEU8nkZIowetJb9Unj2SkaU9L7VUFk5kQsxIki0+v44sj/1/OGHO/7d777j1I98//aew2kQA1WtyWR/BtDnQTTw6aGCh993+VDKLjMyMlvYy/k3myTLAXnRSrZPVVXEGDNHh5R6Hc2RkB2f8+nE/d0dKQRub64laIHFVJbKdDBaUm05Ezklz2k4crh/g0uRq8bwsdtRG0NTO+q0EZWZgxYFIzxhSqihnOsh73Vx1lSNRFSIpMkTUfikGAGvDL0KDClk8ueRGEY6rXhWVbit8PnYusZYOc1DLMVULFZhMdfmh+nDOClKsgaWtnaolufeaekBFJWzNGRfE2Bhfbl/LMvxsZZgCcKkYimV0qwMAplLEEchan7ziitnuZK+XUznB/NyZY8nKLGg5YMX5OmiT9bf/UfHZ723P/HCXGdcZaPs8hwpgYlM3i+XE4UvPglYpLOtoTMYADm73VpSTAzbLddX19RVxfF4lhJvIikGQpiEhsJk/0Pl4NicUSTZcAL8lMxJUU8cvShsre2uWQAjBA6nM8M4ZUoDyVwIQeP9xDSNDIPl/v6eH354hYKsZiY2dFVVbDYbQGHtwvXTZrCnaxuRLLdyxgtutgIWClBX9jVSDq5/iLW4mpcloJNtvwIExZC5JQFjJZtpPT99KGVwksks9yE2aUiROd1OFSJYLUAfuapBFwBT3iciOwPnGCUjKsi+Z63FKqitResM/IyTqBOHQEQqJLrdlucvXqKVEiXboYcUidGTUsAYw+7qim67BRRTSPiYaLqGZ9/c8ubtm5yhZWdKjew2PdinxN+Y//j+LpbfCgHY30N4/qHapTf446+7POvf87pVgLD8X2WEKITA0Pf0fc849IzjwDQOWdmr4AfybQop79q0DV3X8uknH/OrX/2STdfxyaef8tHHnwgxe6EVmQOYf+rd/8Q3PDSBH21lx//jY/izW7El8+Gdi3vnHF8fpJebeJksBRBYfNKUgYayuFfdmtRsxMof0vxYAiCLZSGOZIETc9TbKqrKoBTUtaVpxBBTWgnyPnn6YeJ0GrBWU9dCCqrKdyeBuJRJuErhJlEM6zY1PiTGoaRrTxyPPff3R2KKDFkxYPJSQmatxjlD01razlG3Gm0DSU1ERDI0+UhiJDCR0iWPy5/bVJLyHZH2Fl4IkzfGBcwrgM2qpGdGgNYfVoyXVUssahdrxzBPkARzHXwBVYpBnfK4hpSWQ3EdpViDOMuJulxMuYCL5ylByPkgKoo3ReJS6eXgW4CfJTNBz/8uZLSayjmaupaD1jqsKXEyISwt5XKEQHrYb0/W8hqYD4j188XgXhtmMgZq/Xz5lLmP87Ipyyc/uS53KunJYnQK0m6qCkLEOoe2NpdkCfJQojJLdAZUMksWIAup+FLmQ76HnOVlhGw72bJHCA9DSsLhlabIFANTDIwhMISJMfoZNLyIeuW5nEod8dJbrKbKct/Z0IgfCMB7rD00qCtn2e12+BBou46rqytcVdG2LXrl6KQUBQQNAmFFBSqnrSuS8CTlvg2kTHOagZ+4KIAshnf5taSrA5KxkB7vjzXg+hgnUOHrEbAnzFk8Ifj8mLnPy/MxFOBnnN8zDP0suzyOfk6dnsYgBmXwDGMvwM80cjweGMf3E6L/Y2iJoiSkMErT1BW7Tctu09E1NdbqWb1La3JIRJwPhUiwJ8QOropzqVROWwdQAqbKwwzQiwT4eZhyedfA/iQKXqLiVRz5x4CZ+X9/9L7+Qa04fh+4yR6YH80+8eK0zMZNeuBQF2smrZ6cQYLiWD2u7KW1np3/FGN2/CZR0cr7Tvk+sR0sdVMTg2dqakxdoVIkOYvPnzkXoqgcWLHCMuMZUAXli2mpB4wRooeidpgr+RZFTyV7PkVGepF/N1pnInmRBS/A4vpH+qacOavnso3wIfzNpaUHUyc9+nB2X9Zn4iNz7sE0+HEnoeyjq/fK+SvPPnzvOt9C5tX6BZePlVrl9FyiUStY8vF3X5ZnrB6px1//WIDo521qyXDI5d4yt7J/kM/wpTSsVAlA6VU1g9UZzCNnuGSQsJAklyDa2k7QWpQglRaQXWVuU5nry2SYe3Vloy5b41LGFTPQU+ynYo8Wvp6YBDg9DyJLrpSQH6coCmTee+FaVOX+ZAqYrFqp9cJRQyrJ74uvNPfqxTmvJLvkQ2A/s/G9tIfZR3Mf5jNflfWhFlW9lEu+8ouXPi5gyWpBqmznl6oNraQUzhqDNZrKWarK5bI5l583i7IxQi4u/EiaqgrUIYlib12LPDwClxudba4gwI/WGmOF7ykBJlMvWGdx1s2k4KXk/MLNL//IgBzpkfVXXnaxXsu8hh/flJ62/ck7wYVb8p53X3SIBAPHaSCGyN3dPa9eveZ0PnF/v6cfRimbzAFZWc/5rNWG3XbD7e01XdtydbWl61qatsFa92Dje+jX/tQ+fPd1l/c1OziXr1n9/bFv+ilb7M9c6gXGZFBldr5LyVV2dGcVqAWpk81bVnKGEwRmSIL2ioNFdsRySmD0lMwEIXoGZqgIstyQmCZaidpSASKKTmaKkDxaK5pOiNGCt8AGa0SG8Xg4czr1DIPi++/f0vc91mqurxu2uzqDBEo4gyLYGjqjMbXl48932FpxPk/8/rf33O9PTH7i7/8eXr16K9H5RrKH+mHE1Ybr247dVcNHn2158dGOrqsw7ZmJ10wx0J97YflTAa0neHKOn4RJAUek1tBa0Cqi0whBkcJEiqMg2FGiH+kRh3eOUq3+I0n2U8qHjUTyJd0yqiRkwUk4R7QxGMUynkox5bD06D3nacyKUWFRIogB5VWW5A6zktd6oV6sGSUZErLfiPyn1gLauLoW47gSfgJYTen83kvTLat3VRZnhXz205cvuL7aSQ1+zITR3jP0Z+I05UP5w1VPr4N1c+BjrtO/NPDWTnu5q1TeXD6j2Ad5rUbUTPZdapr9OOB1jkIpSFphm0ZKzFLCugpbVYuzmY37WMrqMjJfCAxDFCc9Jhh9ZBwnSGT+kpx1VYkEeUoR60IG1iAlUV4ZJ8/b/i13Y89p6Hl9PvLD6UAg0qsJn/eNuZwt5BruHJkz2mBUri3Pe5mUDOayIi9y6n56WhD28baehGLgaeDm+pqvbm9F/a6uaTcd1llurq6prCMF4RSbgoytVzDoxTFdnJuLb7rUXypTIZXsr8VgnS8tf04IeRzWgNojYM/yeUtpbskkSknAch9Cdnzz4xTz58tj772osMXIOE2zxP3QD9lRjkICGSTjJ/gSRRWjIXgpCTv3J7yfnnKwnrSV/nfOsGlqnDV8+uKWv/76C253W14+u2bTVFRWUxlFZYXvYwqJMYsk+EEynwC2XcW2E1JeH5SokCAy0rVseYQIg1ech8hvv3vL/+dff8v+1PO3v/2O3/9wJ/x0U8iZPv//3tbIRPlfOQjyJqsu7Fd5vCAci5MFlNVljKaua5RWwv9QN4yTnxV3ohJlxOPhADHSn0/4acRaLeBqjGhgu9nw8ccf059P2DgS/FkIgHc7Tm2D1xqrNC0aHSNNAoMhTCPpPOKHfeaXEDF4VCTRC6CTEmGa8D7i0QSjiMYKRjSMhDSSUiAU26CpaVzF1WZHXTm0NoSclVDCR6jsUK67E3IfXp5PT9ceZhgubTETVqffaq9dl8E8+MjlYVoyf94H/lw6a4szevl4+fd6ypXLufiId7pqXVKWs07y96YH9/eTmlpckMvr/PmcyIet5NYs/ItqBjWKGpYIhoCOYq/onF1X/I71NCjWaqkWEF9GC91AEM6qGCZCmAhxIiTJQqkax83VFdZKVs2mbVBKpN3P5z6fPQPDOMpaTWlVEl7KnMD7gA9yrk0h4PNasUaUbyvnQCt8ENDn2x9eczpLtr9KYn+lEPDDCT+OQvivJENeJwEz2qahqSrpoyxjLhk22U7PYi4lGMAqk+zDAAaPZBDnrCfJfoorGyHbl0pIy4uip7US/AhZEVarbKMVoBpy5E78jxJcT0nOxzq/b9tWXG0arNV0TcMmk19XrqJyFSZz6Qk/k6JpLI2SMqC627Lxwt10++w51zc3aKUE7Mnls6KYOGX/UyTgUQpnhPssJZEj32w2jNOEcw6dhWxUBhlVBnVL38n/3wVxU8nMLreeyPyo6cE+8Y+sPXJtj+5S+VZSSuzv73nz5jV9P/B3f/fv+Nf/6l9zPJ749rvv+eaH1zkDvAidKDZdy7brRL3rF1/y9Vdf0HYtX/3iKz797DOcq6TsOiVCPp8XQPGpW3HMfvQVF7bET20/s6rXpbOZjyoWNa+10bN2nDVp5ukpDkeaHcsUi1OWN86UhF8mv1+pQGHGX9ryXRqJjiqyzLzO70sJUkAljakUyllihOAbSJpx9Az9yDhOckjcRfp+wFUGVEAZYWl3TmNtzlBxhrrSaGu4ed6irWJ/P/Dtt/dCzjhOTJPn9WuLqyzXN23OCvIYq+m2FdurmpvnLc9etrhKo6sRTyDGicmfiGkU8mArZWZPPIQiF0rCafnJdMq5S6es/hEuoo6XgMoC+sxjlC3ilK0XcbxypFhJiZ/WYqCgtRBBprTIdrKkiE+5rlbSYJeMmRSzutNqrjy2XBYEfSkjKllGEqWUdF+lNdZKhgoU4Gf5vIePrVY0laOuLNu25ebqiue3NwTvGY5H/DgSYsAPPdMwZFBBf1BC2XzePbCs89/Wz6yck2IYlQNn/nsq72JOHy98KwpF8J7gJ4LXuRQBUBrjDMbUAlIYi7G5pMv72dFOOsvDKwWm1GFDmkRMWtQNIpOXg1AZK8SFIMhhJlpIJmbDShGjpABHPeKBk584TgP7sWc/9kLFaBNJkwGK0gVplqLXSmOUwioNCK+PYFVJSKyVRNyCXyILH6zlU6AYAeRzXCnFZrPhi88/Z7vbYZylahoBInO2GTPgEvO4J7I9vNop1WrdXAz6zI8DzMBKSsz3vThF+TXrTJ24gEAlnR3WjkOaP1OeZwZ+pmkiZJLmyU/CZZAiPgM8MUa8F1AnZeDHewGF+qFnGr2Q6A9jfm8Bq2TejuMgmUS5NDSEnwO8+/Oa0blkxzmeXe/4/KPnPLu+YtfV1M6KTLsRo1gr8CkSJuHp6Xvh6JGhNbgcTfYx4aPYh3n5QH48eRimxKu3J/7+Dz+wP/Z88+qO1/dHfIgC+syZmfMi+nk6Y70H/zzfeOmJq3lRLo/LnzJQVP6U3nmzNK0VzllxJF2FqyqckzKNAoYHH+j7M0bBOAyzDHIBkhSJpqm5ublmaGr64x37ww68JzUtQ+VIWuOVJSmLipHKR1xIBO048wY9yZ4WiWiVlTqVCFtEBDANIRFVIhpFRFQ+o5+Ik0f4NSYiAWLAWUdbtzhnUMpkJU6VlbyWpi67Q87ZD2lrPzI3fxzEKMGqn/gVD1Gsd77s8tmfBKCsjuGL/pqzzh745ivQZwZHHl7Eux//aFtAn+U9/z5BH1jbcPI/pUWMQEqrxF4oJfSxABlaY42dr70kTiyfmXu3YB1aYY0h5PIeObvkPCk0ztZZum1L7RzXV1turrZopbi/33NnNN57DkgmKtmemhNhlQAQILatz2dgiKKcCpL96pwTmwktHIc+cHd/4Hg6Z+8pinItCUvEEKXW3S6gsDOGunI4K2TD5awNqcwdCWAX0KdkGL3T3x+glQyc8j0xEyfHsGQ0Fv6+oH0O9EsGvdECApm42NAqOxqFgmC9eGUaaEC41arKYrWmaWratsYaw3azYbfZCEG2MfOccdahlYBjxjkRLAGqlGijSIsLMfAGpTQqZjn3lIheSmBTSnmcRYTCVg7jKqZpomlqKfWtKkxWW1sHhmXfKkFbHsdv1ZIN9XA7+GB76j+kvQNW/4kt3/v5dOKH73/geDzy93/3a/7Fv/iXHI8nDqee+9NZbPiVGmxTVVxvt7Rtw2effsxf/uVf0LYtLz/+mJtnzzC55HMJhH/ATvup58nqKn7qOvxZgZ8YEvvjACmQotSLqxQpvBiytWbpZ8iGhZgtMTu/IclPhMxhkes9g7CtpwIERSGu1UZSGEupjdIlApA3AKWgSG+SSKnUlqTVhiAy8EqJU2SzmhYYnJOUvpTBpnEQEtf+PNG3E9ZolLIXdeNyHfIjksFF3n4pB7JG46yhbSs2m5qYLFUT8cGy29W0XUVVW6zNNcrFckxCaJsDfTz1xFSAzZubyiBNiZYoJC1SK5UzLhb1totNRi/lT3r1uKTBkpFrpQV8k78vkbJ12uucKeADQY0SHZmmnPW1HAwyqUofyWfqnPprlJaUSlTmLJAZmEKefyXTIxumDzlM3ttXaqkrV7lfrDGSMWSljljKnzIwkDMWYkKMMaVRxbj/AE2p5VCHRV2pPH/xWtYbzMryno1YNR85F6BekvFSLN8hRMBZrcsaTNIzkaU2GlXWyqzSllOOY5z/DeWw9zO3S8hZKwJ4SCagGA2ZTH4FVKX8/pI16INnmqYMGGbeGLWkVJfa8LgqISqlhRSQi/XeouZrZHW9H7Q9mIvFGPJe7m0YB2zvMMESYkQbzWQsYZxymvKSrRSVZNlJX6mF0rQos5H3zwfATwFOlvKrDNiswN/CxxP8AvyEnE0SwpIhVPaCBRzK50TeU4SUWdZNTAnvp5z9I49DAYH8lDN+koxvnicC9kgZ2DTl92bQOWXFh8mPc7ZQKSX7x9wUiIJX09BmcsKmcjPgU4xkH4FJ7mWYIv0YRNDAR0qC1jRFTv2E0YqYshqTEqDHB5kPh/PE20PP8Tzydn9if+o5nHvGybMSkgMeceafoF2sqJ8LTHpfu7jfGdq5vNf08BWX73scEyilXlokuHVRZ8oBlGzXmKJ+uFLGKh+qUDhjaesWg2a33XG+viUFT2cd1jkMpfxVzSW42liSiUJkWdWEYBYZYoU8RshLY5R9OpTHWV1KxShcb0ikXSH/ZvKkaSThIJ8RM8AMcyZUWjszl939M7d8hoGcQxeG/x+7mssT9MdwkRlIKRtdef69byp20zKREuVMmr/xET9FkR6sxHdLQ/KIzB/9D1u5D8++D30Wpvm8Wfqw2GwxJSYf8H4ixYXwv/D3LLapXi3BgvakPJQJ7+OcEVOAGR8y50f+PmMMtXPUVUXbNOw2G7RSc+DIew8k4QUqfD1zxmsh3Zeg1sM5VkAYVcqYiq062zXZ6koBnZKo4pZ8OlX48TQx+mwvL2dfUSZdQD29fF/pinkNpA+yGBULNcKjIEfZ/PKv4ntIqY7slyRI1mbbcflsaw22KLwWugaVs8QRv8AZnZV39eyf6Wwcz6ARRvy44svkn9nfRMn3GLFti4qazskFhQZEawXJkFJER7G/lFIyHt4LDcg0MY7jnLW8Lil8t0SogD8P9k61/KhVFy5HztMPZFrt4I/tHjKFHvneFX5VXvL+3Wd5v8/9FLzn7d0dr1695ng8st8fRF108vhVANNk8NRaw2675dmzW9q24erqiq7bSHmXc1xwuS4ezjv42k/Z2x7jtPxz2tyHP/Gzflbgpx8n/tW/+1ZSg3NduMiCC7lZLqgQY6Gwaymp0Q3FkVIrJwQyYiuDPfT9XOYVo0eRqGtL1zkZ3MpS14LOm4xgi2NhSDFnjkRDVIWoKaGUhDdV5rLRWtFsNNrUTFPg3Hf0vahrHPYn3h7PGKOJAcYh4irDs+ebTKKmCv/wIvFeK6pB45xw92il6dqKqq7pNjWfffac5y92KB3BjCjtqWrz/2vvTWIt2br8rt/ae0fEOefem83L135fVX1fNXa5AwFCjBggBJLFxAjJCEZGQvIUZraYMEIyE8SEiSWQaoAEFo1sITFAyBYgIWNsAVZRlMsuV9X3vuZ1mXm7c040ey8Ga++IOLd5me/lze46VurmPfecOBGxY+1m7f9a67949KRhcxSsH/poIX4qoFa9KAEa7550zYnjqK5ZeY8kRXsrc1/yg2unNPmzQaEOhTkfe455AvcZZR15cmafSTF0S9E1cinYvGB2bWsgX4qZDV/p2z3dGEFQCODygpAvLwoSLTIpiGdV1XnSLWGvELJBDZBin1NgEkPfMvQT0Z8PfrzXg0iQKwNv/vSDt0peJ8cbC2/XZNE9Xcdut6Xdt7kyloCvkeAJzer1EMoKY8675Pt24wKX21Oef7YYywQ38iQxASm2gGTIJ4N+ZogkIzbOBlcIFaGy/t2sNzTrDZ4JeCsnK1EzJY0gaSLmjaqFcDOCfKWyTd/2DL2BfyWEVSQv8nnTW1gxVBN9VOKg7NuWi+0lpxdn7No9bbcnpj7jvwXASbkKWfbopYhqZG5/2ALqxvvXWVnxg5SnNyQxRdr9juA8Z1Xg6y+/5GJ9boCqt/7ucITcj4WUSVuVKBZJZbC3M6JsxNLXcnqtz4CaADGacTpv60G7rwA/xYAphvd14GduJugYdXOwtZ4BS3NwaM73Q3599X4K+FRex5grrhQbVjMwmGLmIpqqirxrMkbg2S9Ojtb88qcfcXK05ocfP+HDBxseHq9szsX65bYbaHvzHnd9ZN9GKwUtVkAahNOLjvPzFhElBAjBIlidVITQEFPiH//0Of/oJ19ysd3z9//hT/lHn3/Bvus537V5nL4m4s93UPTaq5E5YXz76t59mkvnX83RhWUDmSvxiXPUdU1T1XRVnbkebL4NpQzwek2oa1ScRUgqSLLS4CfrYyrXEOPAg3XNx08ekYaI7zt81+GSEvYdaW9Vu8KQ8ElxLnB8/JDQDQx9x/PzRNfurMqQ6xnEyPQ7KloCvUAniQ6LsgvDgB8sosFAosiq7dCLC9pnp7BakZoaViuKT2HaiNxmXr+5PnXI2TfdxgRMv+D704nG78zeuna0zL41j6a5mgI2bsDLO2XKnIE/862cHPx+uednGzadvb7+XUtfk/H3VZmn7L4JUSWvIWJ7CCbbBLF0qIvLHW3bst/vOT87p++HzH3mcvRGoGmaEWB13r5rUSDG2bPd7dn3kW6IbLuB833L+a6lS7lYiHhWTTNWbP30oyf88NOPCd5xfrnl/OKCvh94dvqcZ8+eM+RKk10uOBBjMvLYaIBQ29p6KTCmsXsfchVOi0SwdMkEgxH1C0bN4DTigODMoZVU6AU09giRvutyOnpP3w30naUm+VCNHEbGZykzO8+ety3vd6/bQmJspeYzqJ2jqEufLCXcg/PUwVOHQF1VrJvaOMuqRKyrg/ubONNy1IzzOWpfSOqIuZBFFTx1ZalbdfBG2VFs2qFHXcyOf+N5qoL9WHTZBBb5usbVNc45mnVNqDKgKFKYASD4zPejGegyW6Nte/q45+LsgtNnz3n69CmnZ2fsdruR3Nka9QLsTa78Lq/HL+ns527luqtDv9OVDi3Bbz9SVTk7O+XLL75kv9/x+7//B/zO7/x/XF5uefr8lGdnl1bIIw4UbsrNes3D42OapuE3fu1X+Y0/9uts1ms+++FnfPbZZ1RVNa6/Nz/Ityxlo/sd5I0CP30f+fmXp7aJirk0qBfqHLWime9HydEeISP0TJTB4w5LBMEh4hHFJvHtNhMbDqTUIZI42tRENVLLNTU+1HgyMW/eBlpER0GwSzUwwBkAVUiExfUIZnwFH+h7x3pds16vcK7n9Nkll+ftGAKKCE0TODpakU4kbwxL5JEBXiEIPmCh95lYqq4Dq6biaN3w+PExH338EB+UajUQqmRVwtYQqlyyebBNj6V3eCzqx1JZ7rqDikDtPUEy8BMVRMfNe3D2k5yjclY+2pd+mQeOy95JO9+UylS2n2AIutVfnEqgC0Dm7JjSyMoE2bLb70mqo9ezGEsllC+jFgjGAVN56/7O+XEhLQRuoKTBZW9/tD4V3Uik52Z8M2VT+6LFzzlHU9ccrVaEYJU+4tAT+54ul38U8kLkHOIrfNXgq+pOdTiX6+HZk1l4YGaPYMwthpxwCN4VZFxz2XOx4533BoJWFaGuqeoGJ44gs7KlWCg2cbDKWMkMoH7IbDtqqZ6qSt+ZsVL4XkrUH9mDJSI0KaAl51sy2bPmXP8h0Q09+65lt9+xb1v6XGoeAZlFAFoVMgMCU56nFOv/ktGfEvkDk3FyEyD42kXMo9f3VpFqv9tydn5G27UG5hR3etIxnrsArGBxl30BfsSR8Bn4sfkVVYJAcNbaIaYxV3oCV7L+Z4CXZkCl7VratjXQ5YCgOV4DyHQEfmZpVvl5luNLmtgI8MQCzmkev4ck0Qc/XB27MrvydS/rOyezDaATK0P65NEDHp0c8cHDYx5sVhyvquyZNuCn7SOn287SI7tE2w6oQhMqmsoM/a7t6VorN7tqhFUjhCA0jWPVwxDhy6dbfv8n33B+uePzL57yxbNTusGih9L85l6HS/idlOtm7u2HHvgJr3nrVDN0JDKGmFeZ3DOEgHd+nGu9d5YCVte2iXEZqNUJuF9VK1aV8ROsm4oHD45JcaA9P6e7uIBhwMmWFHfgIlQDvh8Ax2q9oTrq6LqWy+0ZxBwBGQeiDEQcQ04VGwRLDSQhKRFixMUIVn4CJVENA+z2DJdbvCoa47UHVqpOzVao8am+6d40rZNSFsFrn4/RD7d9Xw7X2+vH5PNzOM9M67LcsF5f72MjYTiMUVP29+S8KQ7V2+94fr5D8Oim428Dfeafvzkp0bhX+k5+jjEl9m3PbtdycX7J118/pW3bMWJEgKap2Ww2o0PTZ6qGpqlZbawyb9v19DExJKUbErtuYNf3JAJKwImjDhVHqzVHmzWPHzzg4yePqULgaGPv9X1PFRwOc0Ts9i27fTtGp3Z9NC5R347RHaUfjNEtGRRBSmo9wKwgQzLgx6Mkr6gzmow4ABrxvcsR5zH/JOKQwLucDuyn6mfCgZ1YnvdrEWEW3eiu2JVmp4wgjjPwp/L2U1dWrcz2duFa/xzT1UQM4MrPz+hD7LhQ2u9s3SvZC4VDkOwWM4e+4EOOyhwBMgPt6zpQrxujhqgtAKA8NSlztIUNZWeh2D4nRuLQ0WY+qO12y8XFBdvLS/qumxxRIwJ8y/i7PkEcvi7OS8rc8Ao6u0VG+gG+H7z0wrV0PFDZ7XZ88/VXXF5e8tPPP+f3f/8PuLy8pO0Hdv1wYI8LQlPXHB9t2KzXfPLJx/z4Rz9ic7Thgycf8PiDD4xWQvXqlP/a5aXb/D3kjQI/MSaen+4sRStZGL5zQjUCP4pqDqV3IN7KIKocAj8l9UXE4zCDqO862l2fiVsHVAdEFNUhM6w7NBmwUHha6oxkBy/GVZOjgEpIV/GkqmZ+kdJx00Q26r1igSPCeuM5Og6Ig9VGqBuoanBBLSJHJKcnCEMP7T6y2w7sd5bTCYaNrNae46OKzXFgtRaaFTivVLXiggE/3quV7sxhh2Xz6QvYo7mcNXefJiR5Y52imXFOppQmh1X6Ct5RKaxqjLh4lmM9n6BG7zoT8CP5vWIIWUiijqNgGAaSc5Qtts6M5rL58ZkczVLJ3AhMkAEM7zxaMorywoIcGla3TVBjaKUCkkbi0ts2+CV0mFmkDElHQKRsXlMGpSSphdqnXBb9dXhT5kYgc4N0bljrtBLMQR8tz5z5GQ7XnZkXUNGswzkQ56a+kMFdAWJe8Equ8xAtBLrve7qhH6tMFB3EK1WdSjn3lMmDJQMgQxzMk+e86T4pXZ8YeuN96fvOfnK6UErReJ3UvOXW3lJtzXRY+p1xRyUb44UokDmgcANQ9pqlAB5t35rnyQvhvGLf1lO/FmXM0chjrKRvRSWTWlvETxKXAeWYq/go3kGQAsAkC0fXkopZ2j9/ZozPpO86ur6bom0yJ1C6qfpZiebReLDhKiDTPLx9JJWOcSLLLGmfzEBLpjDpw378wif7PbTxesXSFKaQ9Kau2KwbNpsVq7oi+LyuZUvCih5YSk9SsfTp7LWNyljhy7hlbG4LAXxep9tu4NnZJV3f8/T0kmdnl1zs9uza3jzOehUuO9yAXpc3sIl4IzL1LVu/8jw624TeOgWMFrfOfk/vORHUGY/Eer0mxsjJyTGPHj2i6zsePHzI8ckxm81mjFQQcaikDGBP66dS0skDUYRQ1aS6BudxdYQ6GujeB1IINi9UFb6uCShV3dDUK4YUSXFv61c+7yCJQTJ5vwqSrDKlz/xhPiNRQRMSB1Lfo0N1WADioELQtFk4MIUPyka+PrkRzDi4ZrkfPfx7/tdBW66sk1evZxcd/7p66HyfN72e1u7x+3rDrebHNz+rzm/mpXYZhxFJt8m3rXVvYh0sG/2SLmfOAyvb3PcDbWeOwrbv6KOl2I/wWv7P+XakiSjRG/0w0GUy57br2O/3OY26y12g6NjGX4xKm8mULy8veX56Rgie3X7PdrdniNGcTTkKoVBXjBBPcaRRUoemSlXlvuZ90HgHzZ4qVAbjGpyBCOdl5rMs/IjGizn/USCocQCRN75TZBfjda3q2evQ6cxpO5MCeIUQWDUNIpL5bywasqoClS/ATzInV+kPY9AAIxjrnIyRTIobMxQM+PE4sWh9X6K/ZHp+BU+cfmTsQ0LenyUDyEUdcXB5f8lUJVEzoXd2XLW7jq7tiCnR7jtzbnaZyzCmsQDOfDG5ktA1e7/8Xz7Vg2m03OvMOvuWRer7yRzAmFsGV6Owbv/2/JVc+cjuue97unZPHAZOnz/n6bPnXF5ecnF5ST8MUwpmbmLwgRCMBubhgxM+fPIBm1ztdr1Zs2oay7T41sl6fi/f7ZndPgeW/dc8mezwOdxywu90/TcK/Oz2A7/9O1+agZmmlC7nipGkjGXWRw9JXpxKR3UzpBZv1YAwhvSYUwdEBpAeQTnaDJyc9AQvbDY1J8eZgb0KrBpjxF/VK9aNhfLVlUVlOHFGCpu5R2Iikw5K9iYbkWHdRB48gjgIVVNx8niNiJV8rxszmFdrA24EpW+hTdC2ia+/bPnm6wvaXcdu2yOSqJvARx+v+PiTEzabio8/9Tx+khCXcKFHXA9O8UERZxOADzmnPmWyOSuXlJHuOwZ+VJFhQJNYuWsBmsQqDxKPsA6Byjmq2lGJy8alVcJyzllIay6j3PcDbZ7kxooB2EQ2FtGUaWJIKbLdXgJK8FZpDQxQczgQpfaVlUwUd/DdaY+nJPGkMZdsZPSm5DeNm9VxwZsWilJBSERQ8eOuZg78FDCihA0X70MhX0qq9PtIcmZMDMOQwb9SwU6JOOgj4TWAd0Wu2s4lIsMmyLIiKJN7ULORPrMs8zgtNohkkMQQW9t0F7qpkurlfWXM484fgDlt37NvW1sAu45911p50v2e3X5HShmc0On+yZv4ri1E64mutdBlMA6nwiVVh5o6BFQtPSlGZbvb8/z8jNOLM9q+Z7ff0vZt5s0wz3qOQ6LQyhdIJCn0sUdTwjnwVU5zY57i9aYjfqwftd2eZ6ffcOED/jTw5TdfjHPnwTZlBpqW/p/Uon4sAiun12r+PMcnjxxeMHITjN0lv9DZ+SmfYaDUWJFxNm5uAg2YAX3X3+fgu9NHs+OvAE/TreiVd+YP5drLK9e+7YM3K6WN3js2q5oqBD54dMIPPn7Ck0cP+OjRMZva0wRy+o9HFbadcUAMg9D1yq4rzyvhvc3Fde04OlqZ4RssOjVp4uvTU775w+ds247f/r2f8Nv/6Cfsup7T7Y6+hJ+XEtzvyoN6A1L6uo6DIE+PeZItjCFy9Vs3AQlMRrKIM/tBhJOTI37w2Sfs9g85Plpz8uCIOAx89NFH/OCzH9CsVjx88HCq+JW9x9NYsCtYSdqNOa/U5jmNEUINdW2kz84RUaSv8EPEI4S+40HswTmGvuP07CmpMz6nXhJb6ekRdkT2dARNrIeBJg7Wj1zCOaUeemS7pT8/xZMMANJZalyusDOfq+bbh/mvO5XZPvoAINEb7mJcH03BN269ZhhWsWu+9eLj8VfTwub3csu3DyrnHc6Xh5uvqy3hWya6K/f3LQdfS3O/EmHxNtJkXeZvGWKkbffElDg9P+Prp085v7ikbVsutlvj2lHbVKNKCJ6L3XZM+y8VJUfHs1ilrW4wvpWvnp7SJ8AFhAovltqzb3uefvOciyrQ7rY8e/YNzjurWBrNDtzuduy2u5FwegTP1aK/rfjWRI3gQ6CqSyTglO6ZkvGcxgJOZOdoqZOXnOB8RV1bYYyUpqIYu12LcomqcH5+SbPaUNUVEqyqlDiBNLPOZ0BHiUa8axEpVcus+ITGhCgE55EAbr0h+EBKkXXd8PDoiDoYn2oVvAFgM+eQz9FRhdNy6o8Tf6gLHl/lCCdfjs9VYintdfi8by0Vm42nlRw4kCf8zCs0dK1RjzhHqHvi0FnAgfMEZ/uC2HUMnVV+ffrNc05Pz0fOtKTC2cU5+8s9sR+I/VAIXCdAa/bcJtsu38fVwS/XIBRez2R6KOU25jbby3zn6jultSlXqksp8ezpN3zxxS/Y7/f84R/9hN/93X9g6V3PnnN+ubMiIDlgQ0Q4OVrzwaMHNE3Nr/3qj/mN3/h1NpsNn372KR9/8omld+VMC00vAl2+w0N4oVy1EZTXMbbeeKrXz35+lj2L2UCS2U+xSpi/R95YTujsyMItBvwIlg5CKoSuEeeM96bdJ/ouEoLQ7hNDlwjeWSrVKlke6LrCqRKccV7ULliKCTMEeOblt82cebZ9UNYbA11cFVgd1YCVrXc5nauqFZfzN4cIQwftTrk47zl9tqfLObUGZggnDyqefLhivQ48eOg5OlYsUX9AZciRBYniwnXJkZIROjtxxOhAPZqquwd+YEyjGWKenHM6zmhUZmQ8+ECoKkv7ahpWmw3ee9quZ1e8Hc4q5ciQwQOKd8NApCldyzrDvh3oOgMGmrphnsZVhox3FmJ7NS9+jFZRNeJecmWoDN3bYsiN5efHxS6fJ2Wi4Xl0x/R4ppKTYyjuDEgi5ykPyaCEYYjZ05M3xZqs36WEixaa+zplbpQdhMSWATrbyORZ+/AEap4Ns1Pn3y0GTEn6kJzq5XHegfjR0C8pXP0Qabvs7eg72kzGu2v3XG63FhWl0/RQohxUlS4TGKeU2O/3tG1r19WSFy+s6oY61BhYaAvrdr9jl3+6oafrO4sQUkGSIIncXwrgNQEGiuZ0BzPUXJgZQTcAEq9TJg+wXW8YerbbC5xzV9YmGfWU91bTfeZ7LZVP7PVIN5I/z9GJxfgrxx8skNe3GYcvr5NV3o3cvEgevFsMs2v3NH9+d7/Yvk5xTmgq4584Xq949OCYxw9PODlqqCur4oU41DuSmlGb1BwaQ7SS7ikpwStDSoSc3rBeOzNuHTgvDEPkYrvn8y++4WK75ye/+JqffvWMth+Imoh5nni/nt7diR78fwCvjnPr1Luugj52rB70PzvA2e6D1WrFw4cPWK9XxilRWUnfDx5/wEcff2wcQPUq81eUiOlDuBOwDY0zrrNStEBTsogvEeh7tOuI7d4qB61WVEPEh8Dq6Jg4DPRty+7yEp8cTq28bSdKr0KviUEHm3tjpNKEE6XGjM6QItK3xP2O1FQjN1d5BjZE5TD4Z2zBDXPLHcu3ATSzvRO2Ppq+SgTFaInMcZVbT3cIjlx/PfviDdNSeWRX02+mLa1eeW+ElW66hVeWF6V8vUmZp56rKv1gfID7/Z7z7SVnlxf0fc++70Znbsq8cK4XgusmQCW/X8AZZSJ0TqpcbHdWaUs8iFWpE3EM/cDFxZbKO7pux8XlaY4wceNc0PeD8RTC1FFm4SQjuTHzjIVgNs1IaWDPPsZcwVgs2s7wmpzylfdOPhejUY3jut31PSotPtTs2pxuprDJkbNOjf/GZVtQRu62KYL7dehvPPdkcuW9gMPXjrq2ylnruuZktabyPkcETbZ6KcjgvRXiKdH3hR/URokdEypPtapH7lEfikN4MoJGEmc5BMDGv8cW5P3GkNPUnUVGqeZqsFVlX05KGgaGzigfLs4uePb1Mxvuzsq277d7hq4nDRHNUWElE2A+U1yfIq6CP3r9qDdg7tzlJSYKhTTyOl5eXvLVV5be9bOf/YyffP5TLi8v2bc9+67LVWPJ+ACsmppHD46Ny+fTT/jxj3+FzWbDw0ePefDwodnML2u3z8zJ6/f6fdt9Fcq7WwW92XLu2EbN8i6njcW0r5RDWNB2knnvWUb9tNtQmDqzUkJyzKDJg7BrYe/VSJU14UiEoJA8QYQQoKlsUku5ptNYTWx+O1qCL0tKQfGiDfYjCR8SFn+iuBxe73IwieXDC3030O7Eqn7tetr9QIwDITiOjgKbo8Bq5WgaCJUCPTECEkF7cH1+JAb8FC4f+y1WTjU5KClz3G09d8HQb7LmNC8cQx9x0jP3zAuWDuKdUHtHk7kJUCUOVj0hxUQfKqJMobZg6LrL7/iMvIOleRVOoILIz8mhgRHVPzBAMmCR5uDP+LaOhOEH3CCZaLbwCZV2paS4DPxYH5kWvTHtJOX0vXk0w/wpZuCz8NmklHIUnORSoGaMxxQhvr6In/GObgDIpup25QNuBTM0P1MZATGmL4340dRfDKQwoyblqk6aDZB9a+W3275jn0vc7/ct+65DU8rel6zf4BEXRj0WUC7m0OUCthnw4/Au4MTSirp+YOgj2/2e3X5v5b2jpYUlTYia0WeVbnKVL5nAEZhtzw6iS2Sc3w4qz70OAOjglBPRqGSy/KRGtnLlMOa1OydAk0m/I2g3n5/LCx2n6OnY/OrGJr6+DdrLXuvARLp2k98GWF3fdr4t+bY7ceIIoaIKlfG/+IB3Fmlo86fY2umN/21VO45WgcrnCLU8NzbBETx4pwQPlXc4B/uuo932tH3PN6fnfP38nMtdy+W+G6N39eCm3j/w7FXl1giL2WZYVa/r8UXzwgyY9d6NqVzmgLIN69HxMXVdj6Wdy2bRqsW4EdQdN5eKpRqQOTR8QCWioUIr88JIXSOrFTIMpLYnVj0JwdUrqmYN4miaNU21QlOkigkfbe3yqgQVvObCDLN2m20lVjWsCkjhJBodMHkeE0VU5lPV7KHNAaC7lZtAn6sRP+OcONf5ZJBeAXGunuzaBaf3Zf7GDfdzZaq6DaAaTegSMTWzQeyzWQ/VbwOmrrfhRTPgbeDP1aif1+UQKaTApdpVyRLwzpG8owoVR+u1RakOA+u6ntbpXIjAbAUbQ6UypoFH0aoqqaWfRwVStKg8Z2lBRrFQ2mjPuth5MdlrCtiqOaU9c+IBY/pdShZJF2Oi6/qxzPdE6FvibwpIImNqWgjFLlZ83vdYdUZrA9j4kRx1PUa9F6DJWXXVQlRcwCVm7bIzzCLi71iPitnHpbCLUXFYlWRVi9zI6SKsqopmVVPl9vt8vykmhjiAZkqHHMGDZuevYldRzTibzGzGTL0whgPlX3Pb9srPAcdlmfNtCkbIHEwxoqIMCOQAgu12x+5yR9f2XJxfcnmxRVVxvkKcZ7fd0rXduCfJqBClMvXcoXDdcVCUk4890JSUDjS24nXKy5z/tnlhxADyvNu2LdvLS4uSevacb54+4/LikrNcvasfrMqeZtoBc5QEgg88fvSQjz/6iM1mw6NHj1ivNzSrFf6GQjq33fPLzF83j4mXs4301j/KW1fTwW499Jq8UeDHOWHTVLmSSCKK+X2jlsVp5llGJlRZy+a7+JrHIyhTbCEwnC+FIkq/U/YXVn1m1QycrZXgHQ8feobHUFUO7zzrjeW4RwLRObTkMGTuHNvIGeo/xH4kp46pRaVDRKlXkSbn1Ptcql0Q0EiMPX0HZ6eJ8+fKftfz9OsLnn19QQjw6LHn+OiYo+OaJx8GHj4C5yPKJfu9giTED5AjmcayRWrRRlbuWuh7R0qCiMe7xib2OxQRY7hPhYslmcficrulbTNKnkMlvRcqBy4I6yZwcrymqmr2baASS3Fqgqfybtz4a66sI/kHgVBV1HWd+wT0vW02mrphtTaiPc2cQ9bPJsJonXOAzKosjUABOa0lTyZxKLo1jwAZBIpDtDQjYSIQlhIRNnH8QAbCcsUg772FDOYJRXMCsSrZyDBS3L6PdMMwcu0mBR8j6jw+vplqUIfpMSA6Ww1GvGMGfIzAQC7XGKG4QEYHUC5/Llg6Xp+5YKIypnoNJd0vRs7OL3j6/DnDMLDvWvZdS0oxp3rtUVWa4Kl9wDnHatWMuo4p0sdIjAO7ds/F9tLak/XuneXcx8a8QKen51xcbtm3e774+ku+ef7UDLqkDKqIFySKYbuiJB8paV7mdMoA1Az0sFBS8wbGnL4XZwDimxQjIVTiS3hgrzktVF+4gBRg6JZPv/Var2Ilvqb9wm1Xe5MX+94SQmCz2rBeNWxWx6ybDat6TdNU1OuKpsqVRjKAjtR4L/SDst0PXGzrWT+1ipibVeB4Y0b2l0/P+cc//ZLL3Z7f+8Of8bt/+FP2bc/Z5Z4ul4BX4VpS6vvx9O5QZuPmwLzTyRwv4EtxKH3r6fJ/ZW1pmobHjx/lqj8Dw/AxqlYtsa4svdllfhFBSOJwLnNvaTGC1fgOc6RkwqIBtFRCCh5itPPUDdL3RDxRBYaBgHBSrRjaFu0jYVC2Q8/p+Tnn+y0OZZ3XhQBUarG1hjcJkbxGrxqq4yP8ZoNUFeosAjSm2WbSzSDb74I+3KEcRMMi1+fJG4GTAgAdHHzLBbhlPvx+k2R5VnPQZ37l0qfmLVH59iS07yqj8+8tRP8459hsNmUrDkBISlVZFPiDk2N++OmndG3HXCfz3cNI/oswDANt3xNT4nK75fnZGX0/cH5xQTw7Q/seHyrq0CAMxOQYotl4SS2yG1FksKh9hLFql43FySY1Z5H97rqOtrNUssvtnu2uzXany5t+RpDBiUV8rhurwrVqGuq6AlVin6PqVenjQBx6nPPUTUNVVTgXwFeWBuwMjPV1IFSB0ASqpoJ8n8UTVJz3OPCvaUFWVfoYEa9I4dtxHu8qSzMPgdBYREwdApvKKnm5Efgx3Y3VO7ONNjpjkzfbVROoVfLKXhCMazYTOjtmcyo4pzhXCnok1OJcyd5qS+kKYQQRYkrEXAwkxTRGIPUqiBrn1DdfPuX5N6d0bcfXX37Ds2+eo4BzBmDuu5bz52e5cq0VYnDO7h8xp85kw12P8yubKuO8mor+qBRWR+MqTS8JSrwtKc9Pk/L0m2f89POfst1u+clPPucf/N7vcXlpwM/zswuGoXCEmi6PjzZ8+OQRq6bhN//4H+NP/ck/kUmcP+TDDz8khAofShrkzFa/8znsZc737XrQmaYPkuqvGfI3yxsFfgQDDYaoxGhhxpBBi3LXWu7b5cHISISLGqfGiA7pCFaO5y8hwuXdQaBzthnr6kS7N6+Zk8SqEZpG6Hor4efV59LFdookxTmWMXs1YMIiFDp7rR2ILSChUnzmg/KFBV9h6JTYR2KE/W7g4jyy33VcnrdsL/c0K09TVzx63HB0VHF84llvwKpgdPT9AKK4FM0QysBPLnqVyyna72HIaWfOI6L4O1axYG0jTZ0txkTbdgzOPA2N2AASTVTO0t6a4DlqrCyewyowhRwuaeGYmQumhHznCVqAqqpYNQ2I0HUtIXgYrEy3LVyZxG7OpXIV4Bl1N71P/iymknqY8kLR5wVuqho2j9wQSaPxrigqxVtjZ7WIk8LZY4v42CZyX8+nN+BOp7KdqvQ5BSwJ+GE4JGC8U2XKtV30HPgp4I/OEFdl/nxnRnFKZjy6fNT4gEuJbB15YEYuGLGQ5+KFKlUtLjMh275r2bV7S91q9+zbFlRJdY1WaQx5ruv83LVwxyS6YaAtlQ/yBGOVHyq8C2a4XV5wemol3M8vzrncXlgCkveoGCm4edQFXOlb5cEwjm9muh/7XSbqm1eaev0yLRalP+o0oZq85MJwo7zUvusl+uorducyHO7mkb6/0MRcld556srSfJq6oQo1IdSE4AmVJ9SWshVCNhPUPKNDVFaVI3iXPcsdbWtpx3UQmtqREuzbPb/4+ilnF1s+/+JrfvKLb2izAVpMpJGE/sAj+u4aka9Drvam6+ld4wffoeeNkwwhhJF74KDKTWLiEitLlyo+R3hZaoCQcplgFVvDzatsMauqCafkz5IVZUCgH4jblrhrET/QDEqNJ4SWfn2GrrdI19Jc7gh5M1thaV0+gz95WRg34yqCVBWuaXB1BT4YgTzjrGWbm2zjleBTeZX56xVkitrNgIbKwdw6C8LgZtCnvP8C8GfsKC8D1t9yzDza6IY2zC85PVPNaXV3O17fRuqXiFDXNapmV6WkOG9zHOpZNw08eDBGj48EzrnCrAEqbiwi0w0Du9a4Bp+fnpEQ2rajjxF3ucXFlCtDhStp0Yzgjzn0lD5vKIchml1/RWLSkYtku9uz2+3Nvu6MvxDAhyqnyuf2QqZWcGM1q/WqYb1q0JRonTD0xk06dJbu5j1UjVWOFW8OOC0RNDkyxgWPDx4XzL5Ohf9yBIGY2USvZ1jGDEyPhM7emRPDQagrms0KFzyVD6yqynRYorWAIQ502Q6cKBgKgJXnRXKGhJad3qzYhUxk0hZtVFqaZq+nH3FmA/u8N7FGDCQjTCSlYeT/1KhohK7rOXt+xtdfP6VrO55+/YzTZ2d5brbIrbbv2e/2BmLlIhpjeucssuhFomPEj4xRPkIBgN7S5PqykvtbAX9Ketf5+QU/+/nP+fzzn2Uy58i+73NklPVV56xS36OHJxxtNnz22Sf8+Fd/zGZzxHqzYXN0ZNkHOu1P3q7l8mLQZ/p7OvpltfdGgR/vheOjQNdHlIgblCFNIeKqMm5yR4JYrMy76CyvsXjPNPtfxkTww5Ka48NIYh57KzBhE8KgdJ2h77u2Y7vf0UcPbrAy2t6M5BAKuDTuhBGX8EFQdTgqrEqKVdnyrpQYDDjxKA7VQEpG6NYPlsLSDb21yxs5c6gddRMItc+cJYwWj5lfMkVkZECkbLy1zGPzgAI11PqugwxEjEhUIXOHTOhbAVmSJiRaZMzQtWiK9CHQbbdojPRtT+wsr1qHaCVljDRpjNBBS9itIehdZyGdfZ74DLBJ0ySapmdTJnng5tc63avCDPiZl5O2B1r6WwkrnXtZxum+bLIPfs9UURadZKU5+yEvMilCSvRDmiJDMkCSUFzKKUZ6x0p8gZTNg8wwg2sAwnTw+AwMWDNP8jyg1IKASmWNNIUsJx09X33f59LjVta+VN4onD1DJgNHrV/1Csk5+qqj63z2oiU4ACVLupOOEYNd3+Okpe97trsdl9tLM6r6LntlbB7C+YP+bKHZCfUlb6psYWxuEZ2ueTW9682APqNCXunjV//uO2w4vMS9vVldvZpcAxnMVGWIym4f2dYDqwout444JKrgaGozTq3ChVVsqTxsakdMGJfDYCDCbr+nH/b0Q+TLp6c8PT3n/HLHdt9lMPvqSpvvSg/v6p8Mmcb5QVqQlM3FlSfxUhE/VzdU5dV1M+8AhJ+DSjppaHzvCuA/zda2aUri80IfrCwpDmlWyHpjhR2GZFwTmvCrFfV6TXSOTd1wXNf0KRmZabL07SA5ndA73KpG6kB1dES12VCvN4TVGrxF+1ifKlVNZkauyuy2X6NJri8xB+h143v8SLGI7NyWq5jH4XszgObKe/Pjrvan+e+rr8vx35ZqNfaibGNO15oDRtN6duUss770cnp443OqWmRAoWQo63/hx1Fv3DDmAJ44QwXJZM7Zhsnpkgml1oqUEpvNiof9CV3fgagBC20HGJGz6wa8V7y3650cb3jy6JgQHFXlqWqzIYujawIMC0/hYCnopbLpMOBcJKUwcuiJyyXmveNos+Io8309Ojni5Hg9Aj+rpiElA/OHvicOA9vLC7r93qKC1htWa+MDW22OqOqa46Mj1ut1Thn1E7gw1+VV+/Zlxsz3lBF48W5MWfaZRsM7mQpMCGPJ+XnVM0RJalGrMeYKh3ntM7M6p6Fmm65UAh2nndx/DEkv3LJa6HrM/o0pz1258IXKzG6fj9cMlmUwsu8Ghm6g63r2+9bs3nYgZrqEgiullO3XpOOPgX053yU/AMXmnrJbuB7nZwPeMa+UZsc40Qk4usPptdjQLwJ/XyptajYfFmf8kMdRHMzhW5wfLveHKlTUVUUIng8//IBPPvmEo6MNDx89soi3usrl2u1ub76NF8BAL4sS6eHLlwVrbvv8tnO8jEvpjQI/VSX80qcN233PN886dm2kG5RdC0NUIw+TzLOTofIJ3CiRIGoAAeReVYCiCfk8mKhgzB2X7NGIHrbbgVDvqfYOlYHInlA5jvee4y4QgrBaOdYrhxOovKUkiQiu8gQJGWuqDDGGWV6npVoJPkfjKEO0Sf1y13J2fk7fR6J0hDXUG2FzUnHyaEXTeHxw5jVQATGyWNuAOqaqZ0zRSBl1V8UI3fIg19QT9bpX4VVERKgqj/hc4jmlbKalnLaXiH2HOiGljjTsESek/Q4ZekJV0Uel7dMYBqsxT4gxktIwAjCFUK/rW/b7PQDbfTsytDvfWWRTIeLKfWXIIMJk5JR+lKM/xr/zRt26Wj7HBLTkRC4gkwiX/KWcC22TuE4RPbNrQQkVtgpffd/TOsflvsX7KgNKBigMKdJ2VkIzocRMugdKShWvDfe5slGZRzZZpW+X75PRg1xI1sv3p9Q5ybxExs3knS9OBUp+eMqRYVWoaPueIYNA+33L5cUlXddxdnrGs2fPxxKp+641Qmc7EQD7vqdTKzc9xIG+7+1Zu5xn7xV12VukVgo8DlabaugvuWBH13V8+dVXfPP0G/oYOW+3dENv6VvejMCEEZhbSWSL9CpoWAmTl9n/ZNCugFBJC1H3Pymb30XeligC4lAcuzbx1bOWtgu0+0DqI03t2KwdJ8fe+H7sS3iBo5XwYGWEn2cXAy4pXR/52Ten/OTLZ2z3Lf/oJ1/we3/4M3Ztx9m2pYvkCI0r1sw/oXIVeLn9OB09rDJ7DyaHwvTe5Ewo5pyUeci+wbRDmUdZwm3u39EAn13LUiPMiaMu4D1WUKAWkBrqiCTBVZb2pT4wiEBf0XSPaZywavfsYo9PPd0w8Gy/5byLFjntBHUO11TUjx9TPTimPjnm5JNPOfnkY1xV45s1cQQbZGzxlPJdQPbRx/faPbI3AS7j474GcM6/Nztw/t0DkVtej2c52ITctnG6BvrccNYD/r7pBjm4TZUrx08r2xwinN6/uXz0wb28AIB6XZW+kibatqWQv9o1hOCMV6oKjqap7THo1c1eKVKR6QIEKg2sUkVS5ehoxQcfPCTFxNn5OR9/+AFt1/HTn39FUmG372wTOkScc/zw0w/50Q8/tlLjdcVqVWW6gkjfxxHgRCzV8uzikrPLS7qu54svvwI1Z2EIViil2JaKUFcVn378IZ9+9IRVU/HJk0d88PAkV7UKlraiaqXih0jbdnz51dc8f36GD4Hj4xNW6xV10/D48WOOjo9o6ppHjx+yOVrnarShPJbp54bnrek1jEYxmohQGWjW1IHghVWVQZ/g8D474r3iKxkrd1WZCiAlT4hhBNG6HAmiKaGZ0sGhuDwvxxhzml62vwerDJvKfCnGFeMqA8U0RmLfQfKkvibV0fZDyaMaM5gIwRmP7KA5G2CInJ9dcHm+pet6nj59yvNnp3mvMIxZDAX0iTES+4GhH7It66icEVuLz/sRYaw3q2VvOGkJtIQQuDx+p3lAxZJwVdLMZXu3cidjXkvmhlWE3u33bLc79vvWyt73AypqY10cTz54yCcffch61fBrv/6r/Oaf+E02mw0fPHnCg8ePCN7SP1PZEN4oL3ge3+NxXfvKbWvJLd+fL/Uy/n/7mnRVXgj8iMgK+F+AJh//36jqfygiHwD/NfBj4A+Af1NVn33rxZzw6EEghMh2Z7mPoHS9ReOIlM27GZQZkEUKrDDu1tNhy+1OM1BSFqcSulaOEVKEmD0cXZ/YtwNDFPwu4S4GQiUk59DgrXStOMRbmXdxFV6ChRL6JncYh5MKobLrjfwtgpEqO0QU1cE2n8nKmO/a1jhjJOIr8LVQrwLNqqKujYtBy2Y3n0szkXNeraxZUoauPceywNmHBpYB9F0C+JMi8n+/qg4hkyqL4hRczKZByuCPZr0qpKikXK1LVAnO46uKqMKQrER0mrFoa4oG/qilfBWuHQvTsqoHfc55Thkc6nNZ9dxk85p0HV3XHUwwNijmURjjYyKN42V6tgb62JM1QN3lagKTwTNVOD+M6jgw5PPfBcjq+0jb9aallGaLTUasNRHVDAIj7Y7MCLpFRP4P7mAsXpVrESp53JU+Nz2vQ0KxQ9Ao8ziUHMT8tErEj/FCWQWLIaaxdGkxSrq2Zb/bs9vuJuCnNz36YBUZAFIc0Gh6lxx+67ynamqq4BG1HOY5oWLM/FH9MEAyYrjziwvOzs8NeNOBqDETxHtcBnOTJohqWF8GdebY12QoXn8eY6TWbDLOPFR3NhYXeWvy2sbibTKb3W9c30vETzfA5XYA7fEoq2Dh8Sk5QmUOGC8QnI3LJnhWwSMoQy9sg83d55eX/NHPv+J8u+cnX3zNz79+RtsNDGo8ZPkx5P/fT9TnrnV4LZ3mirE7bqRvMDIPv3uYSjsdU4z0aUt+cMwcLLhyiatEv5ObzLzAinEhJmcFGAjmeNIYkXW0Ygt9j+73xP0O56DabAhxwIfAyXrN0DS0zhH7FsTsrdYJvRN8CNSbDfWDBzQnx6wePKA5eWBcb8Eip8c7y82bIn4O3r5qON/5WLx1c1Ju4AXdfdK73fwhAPIi0Of28x3cyndIoXrhhkvHA6/d39TTph5T/v++4M/V+8rH3Y0O1aKCC/m5opYmVJnNHkpKEzOagblBmO9L/KxoR64Am0NLAFitjUenbTt2+55ffPUMxFuBkGHAO8fjRyd8+smHOfWqZr1qEBHjdOyH8flIdhY9fX5KfVrRti2X20uen9U4N5CKG1J1pHaoq8CDk2M+/vAx61XDDz5+wscfPMwclzJmDvS5aux219L15mz3IXB0csJqvWa1WvHBkyc8fPiAEDyrdUOVU8YMgLj+fOcvk2JVa0eV3t1YLAT1IUf8BC+EHPUjuTDBlKFmYFDhGXUiOLX3VI2zMWFR6ZqEJLaXdGQLWzVH6xXifANpppuxa3kHaH4umZ5CsP3LGEmUI4c0G4duFmFjqUoD7b7l4sJAvsvLLbvdzkCpWKJ5FHTI0T45ei2TFYvK6IgW8XmTUkamXXdKzMs3PwN+5tOqZW1o3mdzt2OxtPoF88B3kTJfxBhHJ/+Q+TRTSsbJlClGjjZrPnrymKOjDT/8wWf8KFfvalZrmtXG9iVx4octj+ruZJxYX3zIrW/fDu6Xv6fe9XJ22MtE/LTAv6yqFyJSAf+biPyPwL8B/M+q+ldE5C8Dfxn4S992IueF4+MaRDnaVeAS+1bp4sAYeREzUply2K+W8NTiXUw5gkdvtACAK2GrhyapTVSa+QyMv2O/VavIlQ0dETUuBA148TbRIITcoyJ+DA1NM89dSjPwJ4NPKUE7QDsk2sGIY6MkolPUC1SCeqFPif0QSQ5WCWqMsV2cw10x9Obmz7QEM3LNWAUi+40q3ivA76rqP/eqOizP0KqmOZwHNGY92X2pGvIsZDCAnJ6Tc22jOmKuoGbxSbYIW9U1HW2PkqpT3H4KBC/UlXkynK2WE0GZTsZyKlW49GrUz+y93IVU54NpCssvaWyTTZRn/tL15h7BfPzcQ4vac7JymG6K/Ok66x3Zy1AqepUcau8M6KvrmqPNEav1av7o72QsTjO/3vIzhduPHkKdDbd5ukD5nR/cjZvA/OxjTDkCZxiJ96zMak8/9AwZ7Et50RxD22eItnk/elvwO2chvt6NBcKHaCXh25xO2HeRIefTSzIy5iEakCjeIvo8VoWGEUyaQLvySIpXaD71JLV+K6OH3fpqmkUrQi7H7MYQ2zsbi++jvAYn79uQOxyL3+2iN76vFtk2ROMo64aBehjYd3C5c/R9joirElUQmuBY1Q4vEIfIHquY9+XTM3729XN2+44vvjnlm9NzLncdl7vW+DJUxzVuuqP3WqF3psOrDgCYRTfYAd8K3l2LzLhVZjPsfBM2m4bLHDX/YIyYvna2QxBotClEUHHGJegDFG6hpoZ1A96Rmoq4D8To0eAhOERzWoazuTk1K6SuCOs1qwcPWD16RHW0ITRrXKhAcvRwWVMO0J28Ds2cO1PwzWync8d6nL8+2LDMwairCjh4ouWzct86S1WYHTktqFzfF9107luM3pvuYhY99jJe9mvVfmb3cLDuU6wkxjXyu8oBGDo1/E50OEXBM+tTMt3+rH9NH10H1UYboLyH5jFhbxaOwZRSJh7OkSgIisc7R5P5KVerhqauqes6gxkxl4wu1zebYbNe0ceBpq548vgRXW8RzWcXW84vtmN6fErKalVzvFlzcnLMuqnZrFc0TZPPPzXTOU9MgHgeP34EzkiSN5sNddNQNzVHmzWrpjYHWgiEsVouNm/lyJNCmzDyxGQDetYH7mwsOudYr1c0jXHVGRCVgR6meatEBarmlCggDkYbMtqSahV7J4LqMh5tDQxZ1y7/NgoCGdtWKs+WfiCaDGBDCM7bXjADCNPraPZk3jdK1kWVHZghVIRgEf2r1ZqjI7u/2Cfj/9FcJCZG8I6qqgm+IiUl+EBwRihbqq/Zvqzsm5gFBsBIKIpkipRpzwTGJisieVcm3JUOr8pNDnK4vvbJwYuZiGQ+Ldhs1jx+/Jiqqtjv9zx79ozdrjEA0Aveez7+6EM+/uRjjjYbTh4+pKpqvLeqlzfOW3LD/byCeXPgJD94ccMcfm1tYXwQN64Es7VpfsTL3O8LgR+1p3OR/6zyjwJ/DviX8vu/BfwtXtAJ6srxSz845vyywteRi13F2UXPwA7ZDfQ9xFYz+COF9gXSFSWVUGc5+DV7Qw4m82nRsklAErR7i8ARB9sdnJ1lhPA4cHxSUVWOx4/XxCcVVRD0JOC1tg1mqEipsgGOQzP6G5OF8+WtHoonxsT5VtnuIu0+cpkie5fLda8FpwGtPRcp8fVlx2oIhKMGrx4vUAcjXzS8v3Aa6TxMhTEXWRMx9SS16kNWInJEMsuLV9KhYkWONKe82SQnxJy2ZABe9uCocTOBogniYJ4XdR5clWdwj+TXAlTZyZJE8YVQN1dKQ6wPrStPUuij0sU+A00TiBPjYJ6eTCacUi5feTAgDgekzt4t0F2mhjLGfJGxpPy4kGC5sYk84eb828nqtoPSEBnyzV1cXtB3nU2yuc2zIDW8c1S1VWY4OTnh088+5cGDB9O9qt7JWEQp+W0Hlc8mpvUC/uTFL41vURYP1PKjx2d3gAyVWVvGlymTxwbv2e/37HY7gvdcbi+5uLyg6zr2bWvl1LOBYXxSOZIo32Pbtex3l6DQ9sbP5ZxjtdnQrFdWsev8jNOzU4Yh0rVGjCgIla8ILljFLVFCJhsXCYQ8fSam/mTRZ5nDxwsuTYGVxShKUWflBif9z/dZLhstWe5kLC7yduXOxuIdyBAH9t0OJXLZbrnY71AR+iHQtgPBOTbnwsmFUAV4cFTx5EFD8MJuv+cyR9n9wc+/5vf+6Bdc7lo+//IZf/iLp7Rdz7bt2ef03HsC3AF3q8MyZ803tPNIHzfbSN60dT/crN62oT4EIabvHr4et+1XPjiIbCgbILVUBwO3wefy7wmfyyUrbqUG7ESLJKMS6FqG1DHEjt6DbmrcusYHIXSBZvBoqKg/eIwenxCOj3j4qz9i88nHuLqmfvSAsNpMa/fYvFlK+0goO7W+PNH5M3wdY3EevTl/5tfAvevfnL07vZ6DVq9bJtoBu/C3DVkrinII/80/HdtwDaSab45uv8Jt3v6r4M+djsXpItk+diNx8YEDUOftYSR0LuBJab/OfpcNdhUCm8yHs24a6uDofV7ra0/wngcnGx4/eshmvaKuK+raUkviEEd+ymJcqSrrlRHQDjHy+NEjfvCDz2i7js9/9gt+/osvLTI885msVys+++xDfvTLP6CpKx4eH3FyZE7CYtPZcPKIGEn/o8dP6AbN9qwBBoUTqMr3ZhkOMto3Otg+IsZo0S2SqSzEnnRSGbdkWd93oscQAh8+eULlK9bNiuADXpSQ3cWi4MpWMCa0N+JmRYhi9p4FDWQn3KzQhkX5WLR4FTyrYJXCLPq+QpPS9x2tiBUX2Q90Oys00jnH3hmVQzo6MvAnBOpqIPYWUW5RNXnfEAI+WAerQ413gWqI7NYD7T5SVRFHw/HmkfHWdANDHzO3pWU47PZ7zvd7tvsO7ypWdUtfGReQC96yROzZTxw/ogWZPQRZiuOmHKuWURM1kjCictXutdo23zZfyLUXk3jnkLpGNfHRRx/indC1LY8fPWDVBHbbrUWG5Yi1X/7lX+LXf+PX2aw3HD844ejoBB9CHg8TB9NLYumvLrc1+9vevwkjmq1N3yeS6qU4fkTEA38X+A3gP1PVvy0in6jqz/PFfy4iH9/y3b8I/EWAx09qHpzUOK9s+xpXGYltcyq0vVX3km5sWi5RPp5p9rvsyMuRMypZufKbwz81b8iHqMTWQvv6Xmn3RtgVh0QcrMx7HRo2KyHWwqp2DCuP16lcKhjQY8awEJNghOtTxM+QhH2v7DqL+OmSMoiizjhKRASthFYT225AndgxOey5snAEoMTFzDfm9jxcvhcL5c4EuGVTf4iq/l+vqsNNXY1GmrgSqeNmnqAp9FNVkcwBNKSBmDQvwB4JFs1k+bk5ysIJfuRLMjVrgX4lUWI61QW7h9aI8AoGlrJ+rRJTqcY1IfWzFo396aBi1kGXmYC1CWA7BBLH38U2GvWi09eKxyBGIuQolHRAQOec4EN+7W0hDiHQNA0Pjh/w6OGjuS7uZCyGVUM+fvSU5DfGoXXgIb7yLKbophkIMj3V63OVSvaiTNE+hdC57/oxPa+U3kyaifhK5axyGtWxUoOqWvn1ONjC5xw4Md6gtmW33xMzh1DbGti2Cg11qK1/CLic4oK4DOJpBkyt7ROIqTidPHTjRqU8u9L5DtpeXhmJ5HxOuouxuMjblbsai3chVpGwxznoh55u6AnDMKbbenF0AwwKVTCP6fEqEIPjYtvy9PSCfdfx06+e8Y9/9hUXu5Yvvjnji29O6WPM8+t8c3jtDrjdenl35a50+NlnP7hmzF6LaHiJnX+ZU25+ljI7aH6dCQ4pNsF0nuledPb66kUlr1+2V5CD+1YUfLDy79HBepXBH0da1aS6IsYerQJSeUQjPljEDyHAeg0nJ9Qnxxw9/oCjDz+0SkKrFYRgKdVpVs1zZB3m2vO6DTS7Kz02q9WNz+i7R7XMAZ+bI5ZeLDO9Xjnnt37rhmdW7sO6hxz0jfkpb+b3uGLxXAF9yjW/T+TPlXPciQ5/8Mn8EJmid+ZlrK+CdzL1+ZJ6dRCNxZVhp9lJl0vEh+BHwmEvxicUQmDVVKzXDev1iqqq8vGQQpxVsJ2qx4YQWK1XpJSomxVHJ8fs9x273Z7z8/McIW027Wa94sHxEY8enlDXFcfrFaumBizCXjNJsPdGYCviOPENuDA+A1WLnPc+UxkcqDVHregU8VMioJ0bjeLs8DvYZ9yJHp88fsxmvTagJAS8uJGPp/jQRg6wxBjtM7e7s6rGuWUOrrus65CjcIpNXioNU/h48knGAiO5FzlnPEuxX1nFxCFOET8uEqXY997m2HJ+FxCJFsETapwk3KaiqYxjs2s7+m7IPDZGyo1zNPWKKtSkqFTeon9Mv8GqvJGd0uQ5W/Lv8jzQGejDdPz42UDKvER3pcNPPvvhTYd8T7FxaRyFjuOjDcGJjYmu5fz0GdvtNldUC4QQ+MEPPuOHP/wh6/UaHyp8lWlZSp8Y3QgH93+H9zyTcYjILe9/y/fm/p478Ly9FPCjRjTyz4jII+C/F5E/87IXUNW/CvxVgF/5tSMVZxEsVeVoVp56b0z3dS3kaETj0ki5isOtLrISLTFflApoMCPiHe8DCjygY7RCBmlSGvdtfQ9tm4gRtpcDF6ueqk448QjGv+NdwntLHRmiAT6aeWtisoGleFR8LsvYsm87+sGAiuI1SBm1HpJm7h8Qp3R9zxB7Q64TeLX4IXUT2fC8vKmlg3mSJjwgasCUApKG2TPQV9bhB8cb8yPIVCFiBA/yIy4RMQWvyWfBoo8S4rOBKc7C7rDw8IDLoZxik3v2+jnnxgoDEiokNCiC911+Rkofk1UTKU+35NjOCJ3nC//4S3Me7uztmR8Li2CSXJFrBhjldo/viHl0i2ElwuhJsxBVC/2tgnmCXHk/Lz7OT8eGYAZC3TSsNxuOjk/muriTsbh+eGLJ4kkpSeMl4sdSqqaqAgcL5rgpoHwwzlsj5pr7h0ipNJAXWO+p65q6bvDe5wi1gSEN9NF+Bo1GUCfTgmQ6sMiblHJVsJLKlwZ0AJccvu+QzspSD0N/UE49aTTeHmceElL2xFQh8wANOVIu95nSpwv2pWNhrzICEYonSacaruMXZiChWLWxK9xIr6xDkassHou8SbmrsXgXeixGIgq7/Y7zy3NijDRVBfUK7xypg3SpeAcxdvT9Du/g+fkFT09P2XcdP//6lOfne3ZtR9sN02Z8mjCvLMVlgnjVFrwZuWFDfyc6/FN/+s/oFSfL9S+8kkEpN7wuwFIBfxixAskf3Bh9NFu7y3fGr7u8kSMn15ZNXVnbnEAI5nUF2GzQ42OLBnpwgttf4vueynmaZg1NjTx5gjx6TDjaEI6OcHVTSBgg88FZekzmxZlts4tNcUDsnFfdsZgrd6fHBw8eaFmvyhpwwzeu/H03G4VpT3qo3+9ynds2LVcjv27+8m33pbMNfgaNbgB/XlXuSof/1J/44+py6ovkuUnG/YD1raLfoms4fHaagdCrw67YdCpkW83g8M16zeOHD2iqCu+E4BwheI6PjDC5qipCsCiEg3Nq5uyJOXojOz9FhLoKRG1w4nj08ISPPvyAOESGzGWyahpOjo9sk5tL0hevlLh5e5k2/nMnXTleAE3Gs4rNAeN5uKEXXsWHKLbwCKrdiR5/9Uc/0qqpM6+qAVeSnXCiKUdwyWi0q5aI1GzT5pstQN7VNozGu4idJ0c3Cs5suuCQwXhaJThc8GhkdF6KwK5tCfu9gXp9zypFcyarBRU4MS6hlKNvJKfZee9oNmuOBrNrhz4RewPXukxSPK/IRuWo1w2uDjiNuMrjqmBASPBWmQoygHgL8FPm/1KBVrODPtvXLnP/5LFxJzr8zT/9T9+dZTDaIbkdzuGDpbsdHR/z5MMPOcoV60pq4PHxCSFUiPN5Pcy6n6/V1+//yjtlDL3sjc53kLc04yVO9l0f3NxP/yL5TlW9VPW5iPwt4M8CX4jIZxn5+wz48oUnEHBuoKqVo+OAX8GgyvFZsIGxVXZtytV4cmnmTPxreTcweqfIAIG4PKgdUrhiMOCj6HcM9dPExEOjY3lETYwDU5PStQPeO9LQ0u6FUHlOjweOj/tpc58Bjq5PdL0NtiGVSBvLjSeDL4VkVrEIhSTeTqBWEjUNkfPtQNsp7VDx8JFn3UEVBF9Z2KXNSzI+E5fRCnGO4CucWBRMyJvWqAkfuzHN6e50KOAChhGUqJpSMjNPLlGnVLR8+aSJQTOZXQ6TRISmqpGktiAGT5DKIqGIiCREYNU41uva2PpXa6r1MSqOpxd76tMd/RC5bDsudq0BNKqQuWJ0SGiM+Vnl6Kjcj8b9eQmJnPVTNIfuq0FJXac22WNROSXKCgGfo1LSjJS7EOM5MVJBn0nCqxAIzmfCujBWjihS1TWr9YamaTh58IgPP/qEjz/55JoaXlWP9mxyznNhCyxAmV49lhHgKaCO5sE1bgxHYEPyOM8eNi3GkqNpVpwcn3C0XlNnL3Hft+z7PZf9lq7vaGNHj4Wcaq5RoCjdYBFBKSV23Z79YFXbJA2IdDjn6HSg6u2Y7X5HP1iYbB87+tjjvUcqIawtT7oikXzmXmoviV0cx04aF9AC+AgylCinDCTmecSq0s36/mx+MrvCoZmI8C51uMi7IW9Tj2WzMgyRy4ut8TKow4tnVTccH2149PDEeAV2BaC0ceNSh2rk2fk5X58+p+17zi73PDvfWcW9IRo3RN6Wz6lO52bJe4L5fKvchQ6vRfjMX38v0OdF35lf59rNjNe/6b4OaJrcwVdsHleQNOM0cxlcEoesVhA85HLUabVG9zuEiFtVhCGyaTtC1yN1Q/jkE9zjx7i6on78CH90lDdqeWOimh1WtvDGabuCpJL2NWvrjQ0ubXg1PRbnywT8250UT/9LW9ZvUK5Gq8zlenTX9fufRyTd9Fn5XtnQfh85jHr69nO8sg6dEOraQBUtwE8GC4HRMadmP/t5DnZJ10y5IlgGiZwUu8ZnEMJsSec8sUp89OQDuh//Cm3XmZ2Xy61/9OGHPDg5oa4q43nJ10oukpxF08ShY9BogIZ3VlUP8CGwXitDjATv+ODRw7FctWKVhp988JDNqrH0lrwJRsARpo2SkgtvGLAgLvO5zKJbhqG3NC6XI0jKM5nNCfN/L4P5vaoevXccPThiQqYFp8kImzVnAOTJS8Wcd+TqsyVSyedqaGXfNhZFFqY68MFBHQz4SZa25pLiXEQIuCj4WOGHGuLA/qLnYr9FVek0sYsDVVWhdaA+3lChNOoRqSwyShQV4wSqGk+oVwSFh1XN+uHDTIORiEPm9ektnS+lyH6/p+tazs8v+Pnzb6jPnpEqR9WuqFIPYpFlLs9ZZS9mqivVr4szN+tlRhNS7NwcdmGBBQcA6Fu0UQ+n/Wt2hvOeZr0GVT7+9FOOjo+JORXR5bG2Xq9p1kcjTYdqmYu+I2z9gmlvfqtvdoWYgVn575e5g5ep6vUR0OcOsAb+FeA/Bv4G8BeAv5J///UX36QiEvFeqRuHek/d2E/VDVS9FXgwZBRGR2gxUsrInSHvljefQRDcOMGXEusj+mO7U6ZKOwXxV1QdipVq7pNikXUR7yMiPd5H4mDRQCK5VHMmWNu3w+gZHZLmVC+sAXmTLMEZA71zVLXHVz6DTJnAOiarljJEnE+0g0X8iAgxOTO+nUURkduNeEuFF8GJocj2hL11BLWBHCVy9ryFnDD26jo0UEsx3peUpuiIVCJGUplctFQRJKrmlIFS5SnfO0IKwSYcB049Pk9AXuzYVRCOG4uUqdcNq+M1Kp4hwbaNtH2kj9Hm7UTekBsTPjrj3SkgoU4DtUTtlL4yvbbvlKiTIeqUokUYn73gRq9BSQkv0S1WXcFRzyokVBkAcjn6pyywJTDKe2/eoaqmblZsjo7nET9BRB7dzVgkpyjNQnjJeiufw2jojfZfeXLlsAMjbhYinV9M0T8O7yuauqapzVBRjSMh7RjxkwarvJDHY/FGxBRHIGeIAzHlwpUF13RCklzCvYTIxjimjSWNtrFwxk1FAj8EfFLUCdLNiQCnkObSO0YAKBZSwJI7niPZlCnyZ5y2bK4qVeGSJIauhzsbi4u8RbnTsfgqIiLZO2hrxi7sOL84o61qVCLNxjMQiL0ydLZuDe2ObndJHAaeXpzx1fNndMNgRQj6Ygwyzmm2ps4iIGZWjk2pVzacr7vR31Fu22y+CR3etKm+YtPOb3S2Sb3tng8Ov+GA/N8V8Odw4z3Nazr/jkwkxKPdNT+vCoTKonXCgA5H5purK+TyAa7fQUxUfcTFhNQ14aOP8I8fI8HjNmskb8o1RovuJqekjNuP6d6utuXaAzC507FYAJSrnE2vE/T5NvDlyt3d/O4V0OcwekUPfn+Xe7ryRjl5MQ5uBeBe6nwzSSnd2VgUmICLdHXOmj2jTLUgrjiJp0ggW++zDSsGfJZ9hsspPHjbqLikHG3WPH70kGEYDPjxZvs9ODlm1TQWmUBxF822NGrVW8eIthlQ7EMugJI3qqtSgj6Ld471qqauwrjZHUdPmbjz/mLc/GegdQpykQwmGRemqKUjjSGAjDP/jcDigQ/APrqzsShOqBorYZ9ySobD4RJT1ApT5bw5V2VKBvxIEiCTIM86yEHEj8u6dGXj6YzsLDkjThZs7qr8GL3TDT0xWtRRco4qRk66jj4TMQdSDiawiB8pOWne4Wur+LwKNfU674+GzG2raqBPNE6lar+lbVuih3qzwtUBr9Eif4rew5TqRUyWxaA62a6j7nMfL3ydqmOqXBJyFWP78J2wbV4wtbipWArHJyes1+vxi6WvGoVIAX2UkTPuu0xdLzFtysvc8CvKtGpfB3cOp9YXgz8vE/HzGfBbYjl/Dvhrqvo/iMj/Dvw1Efl3gT8C/vyLTvR6H8v3k8Nt6/zdd/FuXyS5W8hs8ynC6bMO4DdF5P/hFXV4v+Ud2K7c0u3yBFcBf/MuxiJwe3PfQa/muyTf6elcmUq6/TIW74nc7Vh85+QlXFxX3ngbs8Z33czeIO+sDqV4Kb7FFrkt0ge+72r2dvyWN8lB026z0l/Huviey8sBSLd9+e7u47tIHsd3pMPDRrzS83jX5KWaMj/ojY/jZSy+byLzl3LHY/G+yQ0D8DvCBd8XXZBv+etFR1/79A4Mp5cWEfkKuAS+fmMXffvyIe9Ge3+kqh+96kmyDv+Qd6ddb0LelbbeiQ5hGYtvWZax+P3lXWnrMhZfTd4FPd61Dpex+HZkGYvfX+6rDpex+HZkGYvfX+6rDpex+HbkVj2+UeAHQET+T1X959/oRd+i3Nf23td23ST3ta33tV23yX1t731t101yX9t6X9t1m9zX9t7Xdt0k97Wt97VdN8l9but9bttVua9tva/tuknuc1vvc9uuyvvQVvfiQxZZZJFFFllkkUUWWWSRRRZZZJFFFnkfZQF+FllkkUUWWWSRRRZZZJFFFllkkUXuqbwN4OevvoVrvk25r+29r+26Se5rW+9ru26T+9re+9qum+S+tvW+tus2ua/tva/tuknua1vva7tukvvc1vvctqtyX9t6X9t1k9zntt7ntl2Vd76tb5zjZ5FFFllkkUUWWWSRRRZZZJFFFllkkTcjS6rXIossssgiiyyyyCKLLLLIIossssg9lQX4WWSRRRZZZJFFFllkkUUWWWSRRRa5p/JGgR8R+bMi8rsi8g9F5C+/yWu/bhGRXxaRvykivyMivy0i/15+/wMR+Z9E5Pfy78dv+15fRRYdvv86hEWP90GPiw7ffx3Cosf7oMdFh++/DmHR433Q46LD91+HsOjxPuhx0eG7qcM3xvEjIh74B8C/CnwO/B3g31bV//eN3MBrFhH5DPhMVf+eiJwAfxf414F/B3iqqn8ld/zHqvqX3t6dfn9ZdPj+6xAWPd4HPS46fP91CIse74MeFx2+/zqERY/3QY+LDt9/HcKix/ugx0WH764O32TEz78A/ENV/X1V7YD/Cvhzb/D6r1VU9eeq+vfy63Pgd4AfYm38rXzYb2Ed432VRYfvvw5h0SO8/3pcdPj+6xAWPcL7r8dFh++/DmHRI7z/elx0+P7rEBY9wvuvx0WH76gO3yTw80PgJ7O/P8/v3TsRkR8D/yzwt4FPVPXnYB0F+Pgt3tqryqLD91+HsOjxPuhx0eH7r0NY9Hgf9Ljo8P3XISx6vA96XHT4/usQFj3eBz0uOnxHdfgmgR+54b17V0teRI6B/xb491X17G3fzx3LosP7IYse339ZdHg/ZNHj+y+LDu+HLHp8/2XR4f2QRY/vvyw6fEflTQI/nwO/PPv7l4CfvcHrv3YRkQrrAP+lqv53+e0vci5gyQn88m3d3x3IosP3X4ew6PE+6HHR4fuvQ1j0eB/0uOjw/dchLHq8D3pcdPj+6xAWPd4HPS46fEd1+CaBn78D/DER+VURqYF/C/gbb/D6r1VERID/HPgdVf1PZh/9DeAv5Nd/Afjrb/re7lAWHb7/OoRFj/D+63HR4fuvQ1j0CO+/Hhcdvv86hEWP8P7rcdHh+69DWPQI778eFx2+ozp8Y1W9AETkXwP+U8AD/4Wq/kdv7OKvWUTkXwT+V+DvAym//R9gOX9/DfgV4I+AP6+qT9/KTd6BLDp8/3UIix65B3pcdPj+6xAWPXIP9Ljo8P3XISx65B7ocdHh+69DWPTIPdDjosN3U4dvFPhZZJFFFllkkUUWWWSRRRZZZJFFFlnkzcmbTPVaZJFFFllkkUUWWWSRRRZZZJFFFlnkDcoC/CyyyCKLLLLIIossssgiiyyyyCKL3FNZgJ9FFllkkUUWWWSRRRZZZJFFFllkkXsqC/CzyCKLLLLIIossssgiiyyyyCKLLHJPZQF+FllkkUUWWWSRRRZZZJFFFllkkUXuqSzAzyKLLLLIIossssgiiyyyyCKLLLLIPZUF+FlkkUUWWWSRRRZZZJFFFllkkUUWuafy/wMOIm/SXxr/BgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuOElEQVR4nO39eZxuZ1nmi99rrXeuuWrvXbVrz0l2ZpJASCJhSFAToYHTfpDWI2qD/o6CiDYHFUWOTXAAHJpjH7sd2la0bRHRphFoBAJIhA5KEpIQEsi456l2zVXvvIbfHzXsuq5n7Rr2rnrf2pXr+/nsT3K/w1rPeta97udZz6r3urwkSRITQgghhBBCCCGEEEIIIYS4xPHb3QAhhBBCCCGEEEIIIYQQQoj1QA89hBBCCCGEEEIIIYQQQgixJdBDDyGEEEIIIYQQQgghhBBCbAn00EMIIYQQQgghhBBCCCGEEFsCPfQQQgghhBBCCCGEEEIIIcSWQA89hBBCCCGEEEIIIYQQQgixJdBDDyGEEEIIIYQQQgghhBBCbAn00EMIIYQQQgghhBBCCCGEEFsCPfQQQgghhBBCCCGEEEIIIcSWQA89Wsw999xjnue1uxnieYbyTrQa5ZxoNXfeeafdeeed7W6GeB6ieidajeqdaDXKOdEOlHeiHWheJ1qNat3GoYceQgghhBBCCCGEEEIIIYTYEuihx/OASqXS7iaI5yHKO9FqlHNCiOcLqndCCCGEEFsDzeuE2Bj00GMD+V//63/ZTTfdZPl83g4cOGC/+7u/63wmSRL7gz/4A7vpppusWCxaX1+fveENb7DnnnvO+ewXvvAF+57v+R7r7u62UqlkL33pS+2LX/wifGbhp3jf+MY37A1veIP19fXZ5ZdfvmHHKDYfyjvRapRzYiNZONcPP/ywvf71r7fu7m7r6emxH/3RH7WzZ88u+933ve99dtttt1l/f791d3fbi170IvvTP/1TS5IEPrd//3577Wtfa5/97GftRS96kRWLRbv66qvtz/7sz5xtnj592t7ylrfY7t27LZfL2YEDB+x973ufhWG4rsctNieqd2IjUb0TrUY5J9qB8k5sFjSvExuJat0mIBEbwhe+8IUkCILkZS97WfLxj388+du//dvklltuSfbu3Zss7faf/MmfTLLZbPLzP//zyWc/+9nkIx/5SHL11Vcng4ODyenTpxc/95d/+ZeJ53nJ93//9ycf//jHk0996lPJa1/72iQIguQLX/jC4ufe+973JmaW7Nu3L/mlX/ql5N57700+8YlPtPTYRftQ3olWo5wTG83Sc/2Lv/iLyec+97nkQx/6UNLR0ZG88IUvTBqNRpIkSXLHHXckd9xxB3z3zW9+c/Knf/qnyb333pvce++9ya//+q8nxWIxed/73gef27dvX7J79+7k2muvTf7bf/tvyec+97nk3/ybf5OYWXLfffctfu7UqVPJnj17kn379iV//Md/nHzhC19Ifv3Xfz3J5/PJm9/85g3vC9FeVO/ERqN6J1qNck60A+Wd2AxoXic2GtW69qOHHhvEbbfdlgwPDyfVanXxtenp6aS/v3+xgH7ta19LzCz5D//hP8B3jx07lhSLxeRd73pXkiRJUi6Xk/7+/uR1r3sdfC6KouTGG29Mbr311sXXFi6qf//v//1GHZrYxCjvRKtRzomNZuFc/9//9/8Nr//VX/1VYmbJf//v/z1JkvTJ4lKiKEqazWbya7/2a8nAwEASx/Hie/v27UsKhUJy5MiRxdeq1WrS39+fvOUtb1l87S1veUvS2dkJn0uSJPnd3/3dxMySxx9//GIOVWxyVO/ERqN6J1qNck60A+Wd2AxoXic2GtW69iN5qw2gXC7bAw88YK9//eutUCgsvt7V1WWve93rFuNPf/rT5nme/eiP/qiFYbj4b2hoyG688Ub78pe/bGZm999/v42Pj9ub3vQm+Fwcx/aqV73KHnjgASuXy9CGH/iBH2jJsYrNg/JOtBrlnGglP/IjPwLxD/7gD1omk7F//Md/PO93vvSlL9n3fu/3Wk9PjwVBYNls1v79v//3NjY2ZiMjI/DZm266yfbu3bsYFwoFu/LKK+3IkSOLr33605+2V77ylTY8PAw5+upXv9rMzO677771OFSxCVG9E61E9U60GuWcaAfKO9EuNK8TrUS1rn1k2t2ArcjExITFcWxDQ0POe0tfO3PmjCVJYoODg6nbueyyyxY/Z2b2hje84bz7HB8ft46OjsV4586dF9R2cemivBOtRjknWgnnWSaTsYGBARsbG0v9/Ne//nW7++677c4777Q/+ZM/WdQu/cQnPmG/+Zu/adVqFT4/MDDgbCOfz8Pnzpw5Y5/61Kcsm82m7nN0dHSthyUuEVTvRCtRvROtRjkn2oHyTrQLzetEK1Gtax966LEB9PX1med5dvr0aee9pa9t27bNPM+zr3zlK5bP553PLry2bds2MzP7/d//ffuu7/qu1H1yEfY874LbLy5NlHei1SjnRCs5ffq07dq1azEOw9DGxsZSJ3lmZh/96Ectm83apz/9afgLrk984hMX3IZt27bZDTfcYL/5m7+Z+v7w8PAFb1tsblTvRCtRvROtRjkn2oHyTrQLzetEK1Gtax966LEBdHR02K233mof//jH7Xd+53cWk3RmZsY+9alPLX7uta99rX3wgx+0EydO2A/+4A+ed3svfelLrbe315544gl7+9vfvuHtF5cmyjvRapRzopX81V/9ld18882L8cc+9jELw9DuvPPO1M97nmeZTMaCIFh8rVqt2l/+5V9ecBte+9rX2mc+8xm7/PLLra+v74K3Iy49VO9EK1G9E61GOSfagfJOtAvN60QrUa1rH3rosUH8+q//ur3qVa+yu+66y37+53/eoiiy3/qt37KOjg4bHx83s7nC+FM/9VP24z/+4/bggw/aK17xCuvo6LBTp07ZV7/6VXvBC15gP/3TP22dnZ32+7//+/amN73JxsfH7Q1veIPt2LHDzp49a48++qidPXvW/vAP/7DNRyw2A8o70WqUc6JVfPzjH7dMJmN33XWXPf744/arv/qrduONN573BuQ1r3mNfehDH7I3vvGN9lM/9VM2NjZmv/u7v5v6V1qr5dd+7dfs3nvvtdtvv91+7ud+zq666iqr1Wp2+PBh+8xnPmN/9Ed/ZLt3777g7YvNjeqdaBWqd6LVKOdEO1DeiXaieZ1oFap1baStNupbnE9+8pPJDTfckORyuWTv3r3JBz/4weS9731vwt3+Z3/2Z8ltt92WdHR0JMViMbn88suTf/tv/23y4IMPwufuu+++5DWveU3S39+fZLPZZNeuXclrXvOa5G//9m8XP7Ow/bNnz7bkGMXmQ3knWo1yTmwkC+f6oYceSl73utclnZ2dSVdXV/LDP/zDyZkzZxY/d8cddyR33HEHfPfP/uzPkquuuirJ5/PJZZddlnzgAx9I/vRP/zQxs+TQoUOLn9u3b1/ymte8xtl32jbPnj2b/NzP/Vxy4MCBJJvNJv39/cnNN9+cvOc970lmZ2fX89DFJkT1Tmwkqnei1SjnRDtQ3onNguZ1YiNRrWs/XpIkSWsfswghhBBCrI577rnH3ve+99nZs2cX9XKFEGIrononWo1yTrQD5Z0Q4vmAal378dvdACGEEEIIIYQQQgghhBBCiPVADz2EEEIIIYQQQgghhBBCCLElkLyVEEIIIYQQQgghhBBCCCG2BPqlhxBCCCGEEEIIIYQQQgghtgR66CGEEEIIIYQQQgghhBBCiC3Bhj30+IM/+AM7cOCAFQoFu/nmm+0rX/nKRu1KCDNTzon2oLwT7UB5J1qNck60A+WdaAfKO9FqlHOiHSjvRKtRzolWk9mIjf7N3/yNveMd77A/+IM/sJe+9KX2x3/8x/bqV7/annjiCdu7d++y343j2E6ePGldXV3med5GNE9cQiRJYjMzMzY8PGy+f/5ndBeTc2bKO3GO1eacmfJOrB+tyjvlnFiKxljRajTGinagMVa0A42xotWo1ol2oFonWs1aap0lG8Ctt96avPWtb4XXrr766uSXf/mXV/zusWPHEjPTP/2Df8eOHduwnFPe6V/av5VyTnmnfxvxb6PzTjmnf2n/NMbqX6v/aYzVv3b80xirf+34pzFW/1r9T7VO/9rxT7VO/1r9bzW1bt1/6dFoNOyhhx6yX/7lX4bX7777brv//vudz9frdavX64txkiRmZnbZZZctPrGZmZmB7+RyOWefa2VhP+eLgyBY9vvchiiKIK7Vas53urq6IOank5VKBeJisQhxoVCAuFqtQsxtTmsD91U2m4W4VCot24bu7m6I+ana+Pg4xGEYOm0ol8sQc98t/U4cxzY+Pu703VLWmnNm5887zwsWzwufn8RRg1tZHS6hjyS0zZUeUFNaOv0dBBhHUexsI475Ndyo57nfWQ4vxvPl8bWUdkzUD34GczWmdscR5g0fJ5+bbB6vx7Dp5l1Ub2IbCvgd3+balCSJNcu1ZXPObH3zrqtvm3nz59b3Ke+ofzMZvGbTnmzzNjgvogjrQJ3qQndnP8TbtmN8ZuQExJVZt9bU67jNTAaHG253PofH9eKbXgjx4UOHIR6vYR3xzE28iNpQpZpYyOdxGxncRr1Rh7hQxBqcJNSvKXnXqOE2GnWMF85ukiRmYbTueXe+nMsEnv5CRliSJBZGScvG2B/9fx63XGFuX9ksT0F53oU1wvfcWhfQaz6NmW5dwA/MTh+DePTs4/jxEOtM1sfxz8zsxNgoxNu23wDxYC/WjWcf+1uIcwm24cBl3wVx0HkrxL073L+EyxZxPAsyWLOjLB536OFxBFWslQEOl2Y0V4xT5shRjPXPp6lF5M3NL+vVafudd+5p6RhrN73SLMgsvIhfUhl8fhCFZo98uWVj7N988uNW6ugwM7Mc1bZCnu4FaI6by+HcxMwsl6U5K82j8xl8P0vXaIbeD/zl55JeytwyoLmlRwWX556BTzWerjWP6jdfinHKfVZiPEfG95v0QpNqfkT3pTw/DmP6fuTW/EaCr/F9bGNJWJ6ZsbtfeEPLxtif+OBfWq4wV2szEc43m1STsyXMgULgFkM6VKtTXk1U8AN5H3N3sEh5muBaR0Dz7qYzDzDrzeI+MpQWE3QLMlrBc7y9B8fDRgO39+0TpyE+MIRrHWZm1w91Qjxbwzyp1LFzc4Z9f3IS5xITdTyIgT7cJx+zmVkHrT3FCQ7UYTi3z1q1Yu/56X/bslo3uKt/sX4kHp6/rp4+iLO0MBIF2E9mZqXtmENTU7gOeM2NV0I8PTUJ8ckncU4WUk3o34/5kC24OVefxKQqn8W8rYzP0jfouHvxfHIbzaO1E55zmVmzQWshedxHJ63JJbSe4+Hl7YwZAc3rnAvLzKZHpiDOxVjTm5lz+4yj2E4/daJlte7vvv4NK3XO7StsYgcGPH5Rf/O9gJm7Xsb3yB4tcPEaJ5+PHK2hxjxYpSyYpY27F8NK692WVvP9tU2Kna6N3b5dtg1pn6GxyvnG/DbKMzP2f1x/cMVaZ7YB8lajo6MWRZENDg7C64ODg3b69Gnn8x/4wAfsfe97n/O67/uLi/g8EVspXg0rJcFK2+T3V/N9Z0JJF9NKx8UPNdb6/oXsg+OVFi7582mJfSF9t9zi3Fpzzuz8eed53nkferjT8VUUBecra3vo4WzO+f7y8fleW8v7K7bB+UDal1bYxgbHc6+t0AZbeRtLWde88/3Fgc7jwWaF62M1Dz2ccTZZqRZxHVj+ul9N3q0Y0zaz9HBnpfqW9tAjXqGdvE/uNz4Xbu1afn+p+1wmr5IV3jdbvzF2aa0Tz3eSlo2xuUKX5QpzNwa5tT70SFuEu8iHHo0GTpSzOfzDD95g1ncfbGay+FAjm++AOJfH9zO0eJlNsNbl6fMBba9QdCf3zkOPLN58rfjQw+ihB5+adXzosUArx1gLMmbB/DHoocfzmlaNsaWODutYeOhBC4HFPM1NVvPQI8cPNvEiXemhRzbLDz3oIcrz9KFHuA4PPcKQH3q4976tG2NLli/O5V0monkzP/Qo0tiziocePDjkEuzPnI/jV8F56EE5kqU45aFHcYWHHlWK87SCXCjhGOpncHvZAo5NC/23lIUHmAtElPtJwA896Pqs4+dz/IdftM9Czs274ooPPXCfrap1vu8veeixwroS/zVoylwi4MV5OuHZHB5nJsv3rPh5XmwO6PP8fTOzcIVtuvPRNa7J8UOPlGXHldfs6Di5vtJhuf1KH0h56OHzcfOcO+VvxFtV60qdXdbR1caHHvSHjh1dOO/Ol/TQYzVtSv3MCg89eBurWc/YEE+PtJ0nSfpN9bvf/W575zvfuRhPT0/bnj17rFarLV7cXDj41wqr6TwuFLx432zywIGJzL+A2LZtG8QnTuBfPq/mQQz/ZchKrOUXEucj7bwshfshT38JPTk5CTEXreHh4WU/b+b23XPPPnfeNq3m3C6w2pwzO3/eWZKxxWm3syiOk0P+1YaZ+4uJxCKKqfjQ5wMaoZz200DP3/dTCo3z6xLnhmH5RXZne3ScTs1O+X4ccvXC48jmaNJbwusnpBsI/kuSkH+tkkl52JbQA7lm+l9qrSXnzNYn7zp6OhcfNPCg26BfK3TRXxLMTuNfwJiZ1elXLTHlBf/Sg4/59ttvh7i7B//C6aMfxb+G9lKGEv4VGceXX3YZxLuoltzxEmxDWMe/upl49kmImym/sqhV8Tv86zceS3LO9UU5Qjd7Rf7lB+e5uX0bOb+8Wvxg+uvn4WLHWCHWynrUuqzZ4kjqOXMgvuFY+cEm3yA4n6H28S+tZifPQpw0piEeP/ssxH3deM2bmXX49Asyw1/hDu68GeLTRw5CPHUS548ZqqfdnfiXkpXKpNOGXAPnh0V6yOH147yL/r7PaqOHIa7OTkBc6sFxJ4zdv86sVHEsyhQGIO4auH6uLcnafp29PnO7ZEmN5RvPNTVHLMsa+7aVD97XeJ4vdowth4kl4dxO81Tb+A8kCrTZTMo8IeF5HC20Rx7OgTK0cBFTvfVoNdtbxa/AY1pV8/l+guI4pU7A992/RsIwZUXNo8VFPq08/eddxLwQSFvg2E+bmzmLY9RXS+Kct/p7/fWodc9ORZatz+VCP/1leE8H3tP7IeeEu58eeiixezsuzp+YwHr+jWM4DhToof12eljQFeH9SjNl/aSLFme9mP4sPoffqdRwDC5VxyC+YttOiKtNvMc5M4t/3T73Graht4DfyZFCgR/icfaWSKWETmuN2lxO3Nxv0jjPXZWbVz2I/JSfDSzDxda68bHJxc8HtG5Uo18r7NgxBPH2Pe4vV0erIxBP0j3tQ4/i/V8+wL4t1zCvR8dxnmf9yz/wNTM7ewzbYPTLnuo4/vIjrOFxnjpNc0uqt51duK6Y8XlWZlav4XF3F3ohHqFfYWToISbHzQbmWIbqq6sMYlabxu94IeZFOTk3/231mt3x48es2DF3HTZpbs/3BhmPxzu3LvNayYqKL/RTml38hwgd+NDD2V7aw4G0IrwMK/0hsntKqA0pXb7WdTAehVMVX6AFq3josdIfWC9sYw39te4PPbZt22ZBEDhP60ZGRpwFcrO5RXVeWBdiLaw158yUd+LiUd6JdqAxVrQa1TrRDpR3oh1ojBWtRrVOtAPVOtFqVOtEu1jf39DY3M9vb775Zrv33nvh9Xvvvdf562Eh1gPlnGgHyjvRDpR3otUo50Q7UN6JdqC8E61GOSfagfJOtBrlnGgXGyJv9c53vtN+7Md+zF784hfbS17yEvsv/+W/2NGjR+2tb33rRuxOCOWcaAvKO9EOlHei1SjnRDtQ3ol2oLwTrUY5J9qB8k60GuWcaAcb8tDjh37oh2xsbMx+7dd+zU6dOmXXX3+9feYzn7F9+/atehtLTVZZa48159I06JiV9MnYs4O131mPvlJBLb/V0NmJ+o+zs7PL7qNO+nTs4cG+JEyaRiEb4a1kKs777CAjr2oVtf66yW+gRCY+c23An6j19aNe9czMOT3QOI5tbAy1ONNYj5ybw7MF5ThHN9bRnuXvrkKbb3lPVfNzZHxVID1GNuCrkTb2ypeCo1nImrxpuulLYc1en3wQ/LyrS5mE5DHRIMMpOu5shjQHSfM1JIcj9kFjbwYzs4j0HBtV9ltZu7b0euVdqatr0buoWsFrio/V8XFJ0cDk65jNzkjG1/JUF/r7UYv96We+A3GljPWvWMTaZuaa8XKNvf666yC+YhA1dveSBv0NV14FMRvxluuuhu23HnsCX+D6xtcTW+hksd8aNC6E5AnC44aZ65PEWtCLgtNr0NBcv3onxOpYr5wLvMAy855MSUwau468O8152JXRzAIy4fNWNODDsWFgG/qQlWePQjxbxXlYreH6UbD5a3nyKYjHx/An+7liD8Sej3OisIFzw7w3im2ouVrEAWk3x3YS4i7So242MR4feRriehM9PZKQdLrL2CYzsxzNYb3gWmxjkMB/V8O61bpzUzt5eGwoK0xyLxHWI+/CKFn0o0voXiDmS5imCV6KTrVP102eah1PIWLaSeL4Y5APGnntJeEqTG3Z/4I1yx0zWdqlY+xK+0udF/G4QfcktI+A3o/JU4J7he8e0u+02SeU76vOzfMaq9TUWK9a9+zZsvn5ufZ0Z3G+OdCBc9ROMh3fPW8KvJSd/dhDV9It3mAnHvthH+8PzoyR90ER1wUSWsvI4O2ImZnVEvIIpPc9uk/alsd9VJs4bh+bxXWFTlqX8BJXSqdO3gZNyoESrfEY+TFmyJcwS9dng5ys/SLeM5mZlQIqHHTc+QUftDX4yKxH3s15g85dZ/kstpt9DNnGYHjQ9RicPY59VQxwHjZ2Av0yuouYtwUf2xDT/X5tDM9llGKJWz2LnzGaM0V1PC6fKwV5kTprmeT5EqV4KPV04/pYTw/em09PH4c4pEWgAq2ldHfg9xPywhwdIe8TM2tW8TOFHPtULL1gE0vI0y6NdVs7KZYW1xaq7AFBccCeHkmaDzJvA9+N6Rr1fCxWK5lp+zxmp/pRrGIhb7l9criir9qqXgJWMkd3+4H9jPn77j5W8sZeWLPzU4zYz8eGGZm/7W1vs7e97W0btXkhHJRzoh0o70Q7UN6JVqOcE+1AeSfagfJOtBrlnGgHyjvRapRzotWsu6eHEEIIIYQQQgghhBBCCCFEO9BDDyGEEEIIIYQQQgghhBBCbAk2TN7qYgmCYFHPi7XBHI30VcB6Y8426H32vuDPs6dHQKYCaR4i/f39ELOnB8N+GiyRxvvgNq8G9uDg4+K+L5IWZ7lchpjb3N2D2tVmZlXaRzabo/icWudq/FrWl+Q8/2/m6N86uG31kuX9MpKEfSUwDuicJqQHyN4MFrua584+6UtetLzgH58D1svlNvt591lq707U2yRZYGs2cBszo5gjtSppY5K2cUzammGaVqMjhUqeLfPneyX/n40gTpLFGsTeMR2ksct+KF6K7iGfM65fQQbzhGtTtYr9//RTqPfOuvlpOpbs4cHMTM9A3D+MWp7+FNaWoRL2w+03vBDiR559xtlHvYE6sD6bvxCOx1HMupOYRBG9H6aOTSvk00K+XZrS56vGX+H4HPlwug6d76+gnSo2J8VMzvLzY34cU512PD1YE9k958545GjwcuLQ+JfthXhgJ3oNNWKsIR1Fd04T16chHjv+FYgffQh1lwd3XAZxNot1qVHD7ZUnH4U4l9nutCHXgds8NfoQxNEE6osnPh5HEj8HcbOO5yYbYP316yNOGzrz2C6f9KTj5vT8f7H2i02K47fgFnHXA448yBxBab5g2fNh69T1KIwtCuf6I6E5qxfhNV/j2pcmyd/Evo2or3Ok7x9TX8cea+vjfCVLvhQ5310icEswnT8nRVbwCGTbwws5/WvUF+dd+NRv7CWV5q/Cr7EfnC053401eBitB/u2dVumMOe/GZJZwfg4avY/PoXeTA93uP58h2fQQaNYQl+APR2Yy1cN49jyrXEcQydY8r9AvpAp3niVCPOsO4cdXiI/KSOvglnK0/GZKYhzZfz+9q4dThsKNBcYO3sa4sNkc9XXSZ6mdK9dytL1yR4gnusr0pnDbTToO1FlLo6qa/edvRiiKFm8dnfsQJ+0XAnzozyF438uduvM5LFJiPM+np9tNG+rz+C5KfXi2kmR+nLmGHqWBYG7fhZQUW5WsV6yH6rvU92g0lgqon9OjvxPK7OuF8ZMcxziBnnK5ckPx6f1tI4C3ocPDtAcjXJyasT10A1jHnfwO8WeczUjiWMrT+K1tZHs2LFjcY2E+8at+/Gy8fyXlt8h32BQXSnQusdKHh9pN/5rHy1ovGNfkhV8Di/k1w/cRu5J9uy4EFbquoW3V7D+APRLDyGEEEIIIYQQQgghhBBCbAn00EMIIYQQQgghhBBCCCGEEFsCPfQQQgghhBBCCCGEEEIIIcSWYNN6etRqtUV99Qxp1rFePet3si572mcY1qzz6POsFdfVibqXxQJq9U1OuZp27HfB8UrH5XmoixiTFl9nJ/pzbN+OuptmZkeOHIY4Q1rShQLqHnokSriSV0A+hxqFYd3V5qzTa7Ua+4g4X2khy3l6rITbcEfv2NEDZG8K7M+Q0igooUZoTLqmcSPNV4S2sYKE8srXF+kF0vajWdfXYKKOGp6OtwK1IcjiNd8zgNdbLovXY30W9TzL027exTHpby5/KlpKkM0u+gL5dIKiCM/HbAX13mtlV7s1DFHPls9hgbx5OqieDe5APdswJC1TP1g2NnO1LCPKq5MnUOc+f8W1uIFJzJnLBrBN9U7ULv3kvfc6bciSzm8hj/WtTvXL0XZmD48Q3w8CzNO0caZBmsoJ6Wqn6aRvRVaU+iZ/FJ/6ukB9XU/R2X5+9OSlTS7rWz47V+OiyDFyoXgVkwGqKzELKcc0J2livRydQQ3jPOksX3bZSyHu73L9NJo1FPN+LsIaffQoenJUzx7BDZC1SSaD9ZnnTEmVvm9mGdKTbs5gm47OPgtxLrcN4zz2fURDaD0m/zaenJjZbBn1jAf6UI964sjn5rZVd7WrxSaEx6bIndslMZlPUB13Jlp0P+dMQLeQp4d58dw/MzPykDMa32KaQ4Upf5PY5Ol9yF4UFFPfJ+RVEWVorknzRpLRn98Ihjzzc+55nNPJbeb31z4xd+dd7EVDe3Bi8laMyTePc9rMMvSax/dNS7yjGmwouMG8sLtq+eJcP07FOOdtklfFd85gjX5y0r13+t/HsF6fmcL+edn+Xoh7cDnEvDr2VdDE+7cwg3lXK+P7ZmYh+fNFecyToAfHzJDOKTXJ9pbQd2SCfCBPzWK/mJkd6Mbj6KL78fI09lOtjG3I0fpIdwfewwQe9X2Ysn6S4DaqNHfIzc8d4pVM9NYZ388u3vMVCng/uXf/TojZ9rM8ifMlM7Ooin3X2YF9PbgD17tqdfJvJD+irIf9xp5llnHHnbyP107iUwGmsa9AHi3XX3cVxC++BX0o8wU8/2fOoN+OmVm9ifsY2DYEcW8/Xs/5Is7Bcnnsh97eXohL9PmHHnrQacPnv/AFiMermOe7XnDF4v9HzdAePXrS2cZG0d3dbZ3z3sS8dsVrEM7yW8r9BXtROOtfK0xveECLHA/clX0K1wqv07reiMt7sKaWihXLB3la0bjOvi+Mc24uYh1kLVNG/dJDCCGEEEIIIYQQQgghhBBbAj30EEIIIYQQQgghhBBCCCHElkAPPYQQQgghhBBCCCGEEEIIsSXQQw8hhBBCCCGEEEIIIYQQQmwJNq2R+VLYlJdJMy5fKwGZB/cN9EMck+l4XzeaYNVraKI0PjHh7OPMmTMQ53JoYlSpkCFx4i8bF8g8vdnAfuru7nLa0NWNpkXbtuFxdnTg+6NjeByVWTKgJCOnvcODEKeZ9Iw+hWZNrvneudhLXGPuSxs22FveYChmo9cK5tkVV+yGuHcAzb3MzJ556jDE05O4jbCJecNnLEOm4xGbeTmGxCnmUE18LZfF3O0fwFwNsthP5TKaWhfIPTGqkTFTSt4VCtiXjToZR4Zz+5wzVGpt3kXNhiXxXHuqs1gHqmQaVp9BQ9l6zTW78zJ4bKU8msCxL2O9gcaEV+09APFQD9aJ0fERiLMFNHwzM8uwYSnV0IlpNK+bIVPxwRLWok46hjHKy7Pjbs3lGuvTdwJqE1+ePLI0aSzicSOfcfshqvJG8TvxvFF9kiSWxJduvVvJiIyPjM1Eu+j87t6FBn3b+wcgfuCpx519sJkh11PRfppexXxvrjY0EzQs5bkcx2nnM6S60ajhNdpR5Lkc1svZqSdwe0Xcx8DuGyHOkfmomZnReBb07IH48utwfDv29DcgbjZnIa41j+M+w10Q+x7bspqNn8brwQ+w/lYaNE54OK54ZNpZJaPykIxAyxXXjHw2wjlu/cwpjBuTZmbW4LZsdtJq23rXFt5HK2qXc1jsuklmzU33XuxgN+bNwSv2Q/wvTx2BeLRKNTrL9zkcXrpG51ESWjRvkOyTATEfVkRjf4PnJmaWoflGhjoror4L6Z4xMK6vOB/K0hicybhO5ll6LWAzdLonjCkO6H6P2+DOutJMwCkvV0iJlYzOvZXuy9LuQxMcd3z6zNJzk0laa2S+OztrxezcPg9N471TmOuD+BW7eyHe1eHW5qem8Bw1YxwDv3UcvzPcjzkSkZl6SPcns2z+mzKP9mg8s5jm4jHmbqmDzNPLOMZWxrBfTtXw842UnNoe43Hl83Qf24XtrtexX+oNnO/kA9xJZwZzqErzWTOzmQyahNOt2+L9RL3R2nuJTHDOyLxcxrnB5CTOJV71va+A+MGHvuVsjw25y1W8L45C3MdVZBo+MjYGcYHWw+IZ7Nsgxcic7++adM2HZIb+whdcA/FPv/XHIb7xphfg90PMB74PNzPLFTog7uzC+6BSRy+1mWs25kEY0XoP3RO/8pUvc9pw1XVXQPyXn/wExDsuPzc/bdYb9qizhQ0kE8z9M7OEBkB3ekN1PcXInAdm16ecxw6+zqjupOxh5Tas7TsZGq8iWv8K2efcWedYeQ2d1ya41T69kvAaHI3BMc8t0/e6Yrvmvrt6E3T90kMIIYQQQgghhBBCCCGEEFsCPfQQQgghhBBCCCGEEEIIIcSWQA89hBBCCCGEEEIIIYQQQgixJdi0nh6ZTGZRz5n1OCPSOmXdZ34/DWebIW2TJMJY25T1V0+dPg1xNutqobLGfbmM2vxN0qb2PFSDS0g7rlBE/chSCbX/pqdRR9HMrK8PvUhKJdTB5L5r1FFzkLUZd2xHveyBfowbDVeTcmjnEMRTU7jNpRqwfF4uNVhr1tWWJR08+oJPecR6jPUa6lpesw91Lc3MLhtEDdBTp9D74OixSYhPnkTPlbBJ1wp5dnhZbNPANtdXZGgH6vPz09btg/idsyOjEFcnMA9jD6+VrI9t6O13S1s2h+2ulEn/MZr7TpIkNjXpamtuJI16Y9FvokbePo0K6sImq7gmYtI4zGSxP9gnKSIt0T19eB2/+ru/F+LT/2sS4gL5b5iZRfXl61mVNHm/dRJ17PdciTlRJD3cM+R9Uq65taZK1wd7AgQBK25ijY0iPIaYdJsT1kdNEZfO0PjENSBfyC2+7vg6XcLENEaWOnF82jm4E+Ld27ZD3NWJGrzlOp5L9qUxW7ssPp8LeYBsPGFUsCCa08JOaAq6kgq1l/J3OhNT4xCPn30W4j2790M8OY7zjdkzWHfKAdZbP8a8LV6JmuhmZvUIa5NleiHs6toH8VAT527jx1FvvDx7FL9fxGvBz7hKwWETx/XJaZxfWozH1YhxjG1U8VxMN/B6686gHnWU4LzCzCwokl8YndDZeX+qZsq8cFOxGongFTyMLr4NG+DxsUKb2bsgCfE8dUWuj8srSdc824k692f6UP9/dBa9vNh/zNXhplxvhb/KehFn5v6ZWeg0cSVfCfc4I7qemjH2TRySL0GI13ylxp4gWLdGZvBclrKut0KWPDwKOawbPIaW6PO7B3FumaF5uXsq087t+l573GZeU+D5tJmZR34pCX8mbYLSIjp7eq00PycvzvsoLTBOHoF7evD63HnAHd/yR9D/okr+T1MVvCc5MoPHzl4IfHcVlzGPvdgd3yiNLEPdm5/CuXN/Efeys0R5RIPT5BT2SybFF3LE8PpolHAbOfafSfDzMXm7JDk8qBItG8W1lPvQJm4jS83MJfM1O2ntGFssFBavm2wOD2RiFOcmZ0fQE7LRdMeVZozHniGvigrf29H6WncPzk+KBbxHjal7gry7ZtC7YxvE9cO4z4EubNMb3vCvIL7ltlsg7ulGPw7OjyBlXtfRRZ50HraTvXxr5H3i+ETSmN6o4/uDu/c6bfjBN7wBt0n+J8/NnDuf9WqL53a+nVtQWuEGgseWtGmD6+GxvMeH7yzyLb9B9tO4EE8PB/YyWWme53SE+xmnK6kestdaQmvHHo9/tI/AWftMacMGzLH1Sw8hhBBCCCGEEEIIIYQQQmwJ9NBDCCGEEEIIIYQQQgghhBBbAj30EEIIIYQQQgghhBBCCCHElmDTenoshbXBV3p/NbrcrL9ZzKMObZYFxkhabHJyEmLWFxwkDwMzVyeU21ksor8Ge3ywKNosaeOyClujQZrOZuaRWcnkJGp1Zh3tf/x8Xz/qfXZ0oN71ocOHcXspGoXT5OFRq6HubHfPOS1/9h5oK6z/vgpNuhUV6Rz9PxboJK3TAPP0xDie4wceecLZxStuRp+PG25DT5XoZajp+i8PPwbxE0+i5nmTNEV3DmNOXHe96ysyMYa669ks7nNyAo/jyJPokVOpkj8E5bEfUJxSAwIf2002PZab1xZeodxsCImdS4Ui+WNETfKNCKhsx24ZDwrYvzmqb/VJrB0vuPJqiHeSlmkveQGx90yYkukNDzuygzwd+sg3ZKKKOXBqehLi7s7dEPdk0fODfZjMzJrkA5Ihj5xcDvuJc5s9jrhms+ZknFKvsh7pQ1OCLdT5lXQ4NzuO9inrZFM/VMrkX7ID83h0Gn0OIhpKLr/iCqcNTz75JMRL/aHM3Jqdz6M2NZ/vZri8Z4ujwy5WJJ/kLJ/M+9gY6/VT8SXPHJ4rmJk1KY8mxg5BnPFwvpHPoq5yXwd6yYxP4HjXSfX29LPuGNuo4HjVkcfaNHXmFMRX7z0I8ah/BOMjJyAOyV/DSxmkmnXUzQ4oV+t1rK/1CMfkjiL2S5PG3EqMbbjiiuucNhw6/jWIG8FhiKv1uX5w57YtILElczi+bmlut5pa7HyGdJXXqNW80n1LkqT8jdpa5aCdNpOHR5OuL8q7l0Xu9ddFuvNHZichLpfJ74Z8AmP+2zuemGXwvsgRxZ57MeW19lMPY/PnvQMCOsyEXvBjitnAw8wCH1+bpjlSnb1ynDEY3y6Sp9k/fvWfIe6neZ+Z2Utf+l0Q5xOsj0UaU0sFjGMjn0I6TI/mjSnWCmbe8n+v6V5Ky/ulJDTu8PWflnKe797b4h7PNSKzwmfXmycmfcvX5/qos3cY3gtncax6hpYR/Lrrr1Bp4Bh7oox1YILuS8vkXZElH8h8yHmJcSPnnl+fTgLP98nm0c42yWsmh3l4oAvbeGMX1pnjZ3D+aWY2Po3fmZ2l9RPy9AjovjQIMM9oecXqJbwf6ci7vlkZ8lCq0zpP1ZurAbWqex43kiQwWxii6iHW+JB8KUdOYg7OTuJcxMwsons3soC0Qh7vJysV/HxXN76fL2CO8jVdTZmTJHTZslXvHbeiz9mtt2Ac5DGn6hFuoEAb5HURMzPzyYuExstmE+e3M9N4QQd0oWRpDKlVME8afF9mrr/iy1/4YvzA048s/m+10tq8C+b/mZlT+FeaU63GCsz1fVx5bFjL+2nrFo4/lGPvRsdJhkdZylu+XwibdH2m+MTyLQbPRny6L8pR7vJacoOvZ9qBnzrQM+mduZZfb+iXHkIIIYQQQgghhBBCCCGE2BLooYcQQgghhBBCCCGEEEIIIbYEeughhBBCCCGEEEIIIYQQQogtwab19KjVaoseGAHpjnLMmmusy23marfXSV+spwO1E2+8GvWK9x28DOKvP/IwxJMzqKPH/hxp7SyQxuAUeV1Uq6itxxppGdK6nZhAXcRiETUszczyBdQQjEmjt6eXtPupzUOD6AcxNnoGP9/A7ZVKeIxm7nFm6dwES7xPEr+1z+U8z1vUy3M09jkmDTr2OZh7kWPWfaYPkI5vzH4OpEvqeZgDh8dcH5fmI09DfHCQPDiu2gvxFQfRj2ZomM5hE9vc2dsL8XTN1SI+OYrXx9QE6j6eOoG5W67Tefcwb6MI9TeTiPqVBUDNjKSCHa1gz5vL3XZ4K8RLXD1C8iHI5smfg7QTvcjVIu3oQU35JulsdnZivTu4bz/E46dR176riP0/0IM5NFlz887yJIBKtSciTccGnY+T01gnXnDNtRDH06inG7M4tJkFGayZWdJQ5VPNOpMr5UKWxqIo5fNRtPw226Jv3wLYw4o9PCqzmJP9/Vh3Bgd34ucphwdpLDIzK9M+jhxBrwSP2nTgssvxfarhTz31FMR8rtJ0SNnnw80h1p11NrG1aXzTzJ+rPxF5pjRDnD/MzKJPRTVFpzogPdvuDtS1Hx/D8W9oO16z24dQ+3liegzifPIcxH7D1TyunP0mxLNURzKkPz1xuBfiuHIY4moZ6+/ICOqLbx9AzyUzs4j8F2o0hk7P4HGZh32dhPT5iVGI89uxX2enJp02xBX0IimTR5IFc21Imm32aqMxluOEx9Q4bRxYYX6Y+p0l8PzRmevyBGUVc2GPPODYmpDiQoz3QS/dhr4uVw7h/cC1dN9jZnZqbATioUN4vRxt4k5ffAXeS2VLOIc9ST6DJ8dx7hj57m1rnCaMvZQ2FdnZZnNRmz5LHh4FOt+Jcez6QMQJ5mWOvNu6u7DOFHPsYYb91N2BevFTEwcgnp50a92NV+GYSfYNjm8Wj6k8R2rQ/XqGros4Je0Turbc20TyjKDEd8Zo9gXlazfFQykm/waeOy71VGJ/pY3mC89VLJi/VSzkyQOihtdPmTo4SHDebWbml3EsqJdwblbL4f1GYnR/Rv0fstcMn8AUCxTuwjjiMYTzDu+VnxjFMXRiHOvMjk7sl2rgruE08uS7QzmQpTaylQt7x4zM4DEUaczuyLkd0UfjQG8nzQXiuXuxKEnxh9hAas3G4rXeQXWqEeLcIaRzl2MfJzMrreDBwZdkuYa1qrMfvz/ZxPlRmND8JyXnRifQi23/PuzrO++8FffZiTmToTW7Zoj9kqVaF4ZusUtqOEYHBdxHLofHmaFxJmxg3tdrmPcnTqG/Sr6AY4KZ2VDXlbQN7OuTJ48teY98pTYY32Lz5x0nEmNvprV5fKTC0zB+35l6rOQP5yw8Obv0V/ALZn+MahXPMfv5TNNcfWYWP5+UXa+2DA95WfbmwgsmplzOdWJe7t2L64zd3Ti3DFPW7Vdaf1l4l9f2lkO/9BBCCCGEEEIIIYQQQgghxJZADz2EEEIIIYQQQgghhBBCCLEl0EMPIYQQQgghhBBCCCGEEEJsCTatp0eSJIt6Xo5W5ho9PszMQtKO7iihbt1VB1GzzujzedIc3LVrGOKBwe0QD27D2Mzs5MmTEB8/jrrN119/PcS9vV0QP/XMkxA/9yxq5ybGmmhuP2ToOJIAP8N9OT6OXgvVftTy6+tFbf8iaVBOjKMWqJlZuYz6/4NdeJxBcC4t22CvcF4c2Tj250hpK8v1saZgwvp+pCWbNFAD0suT9nQG+7sRuZf0k0fxHIyNTkLc9FAf8OAB1Gvt790F8b88+DjER75+COKJsiuwV2mQN4lRHpJXSdCHx8GauwGJ+MWkyR01XJ8Exx+Fzpe34L2QJGaNNYgErgORJYv+LiHpvpZIdzkMSQM562q35rvwOxFpqPZ0oZ4iS+qOjqA2e4a+f+OV10BcCdz++vq3H4O4STX1+Cn0W9h5XT/ECelRx6T97ZG/Qq7o+gdFGdLXpOuNxxaumRnyBPG95b+fNvZw7rr7fH7g6MtTRR0fPwvx7t27IWaPqoTFxM3VDeWx5uxZ3Adro+7fvx/iSgXHu6NHj1Ib3HPJOVCiuUaphLrrPMambXMrkZz5O0vyc+eyWkft2UodtWVHRnHsajRcveDOTpw/9HdjHekM8Bwn43gOx0bq9D7Wpeks+rr0ltx6W2iiLrJP7RwooFdCOIm66RkP+2FbJ36/owtrXSnjavB6Ab7WNOpL8ojzqDYmPrYpT/vwErx2nn0O/dzMzApF9IrKk6b12NicRwuPYS3hnG2WGY1nPGvaTrVqZ9at69tprpYhr4mxbb0Q10gkORrH2lRjzyOqIxUWdjazGo1ntRVsRlj8uE41ODODHjr/Kofn6ezspNOGHrpmg2dxPvia3ejh0dGHdbxG2s6Pl/D9v58kv7cUkwfuGccrb0Fcv8U3FNV6bMn83ChDcyTWxA7puMLE9b3J0tiQZw+XBOdMQUz3GxTXaagp9uJ961NPo1eRmasX3oyw3TnSlM/SPUpIPj9cIzwP48C5rzVjW5cGbTOgNjhzsJX8GpcP57axwjaXarm3es43nnSYn8zNO+pV8tILeiHuCHHsypzEebuZmTeBY2I9h/f9cT+unxS6BnED5JlaCXAMbdLNWCFye5zn7k32cWQfF7rfaJBpw2SM9wtPVej8ee715/Ock67HQp49A3GfzQbfP1CbqR77vjvOd+axnbu6MdeHCnN93ai19m+ad2zfZv78+lFC57NJfmPHTxyDeKAP52xmZvkctv+GF94E8egIzkeimDw7aA7mseFKHs9NV6frZWHkf/Fdt6LX72WX41qJT7XOd7ymyIuhjvO6sOnOLXMevtZRxHYWyOOjQD5PdfJKmClPQjw7hXPs2Wkcb81cT4lMAc9NdUk/1cmDZKPxLFn0aPLoeuT1Nq4hqYXdnUxgSHWe/TcCWkyJuU1cx1LWqqYmJyGenkZfs5lZzMvZGfx8F/u80DFUyeMjn9IRTfJIPXYa53WPP4nrzxXyqwkN6+f+ffsgvv2lL4X4mmtxTcnMXdPhYXphXX8lS7el6JceQgghhBBCCCGEEEIIIYTYEuihhxBCCCGEEEIIIYQQQgghtgRrfujxT//0T/a6173OhoeHzfM8+8QnPgHvJ0li99xzjw0PD1uxWLQ777zTHn/88fSNCbFKfuiHfkg5J1rK//7f/1u1TrQc1TrRDpR3otVojBXtQLVOtAPlnWg1GmNFO1CtE5uRNXt6lMtlu/HGG+3Hf/zH7Qd+4Aec93/7t3/bPvShD9mf//mf25VXXmm/8Ru/YXfddZc9+eST1kXeDcsRBIH589porKEWkUbdanTVS+QZ8IpbXwLxi659AcSjp1Gv+OrrUMvvulteBPHOYfT42Jbi6fHM09/BdoaofdfbhbqXBdK0f/TRRyH+4pe+CPGZkRGI03ST61XUiBzciZqE9RrqIJbPkr7f7CyEHdtRi7G7B4+hVkfdYjOz4WHUau/p6YV46fn05+Xvrr/+evvJn/zJDc25lXAklVfSCzRXHpB17TMePneMQvxAhnR/ewuk5zmMeT3QhbGZ2fgsajzGpBGZ7+zGz0/jOT57BnWeR6Ywb0+P4TkO45SyEpDWKWlLryTJ51E/Jfy8NsHYS9PQJY3k+Dx7XXi1Uqm0pNaZmWVy2UU91Ax7FlHiTUyh9nqh192Xl8Nz0LtjG8QlH/Okh67j/l70HWiWUS/1B77n1RCPxKhHbmb27aOoATlG+vyVCTwOr4nn48AVqBOc68U87cjjMWRJ29TMrB5iPWNvJ9b8ZA+PPGn08tjDng9pY4+t0dNjM9S6jYH7BvthcmoM4koZdUxzedT3jFL6mj2pLr/8ctwmna+JCaxt7CNy4MABiOt1rH0njqM/hJlZb28vxDt3DkE8cgbH6c3i4dGqvPPqxxY9nfwm9mdUxbEkE+FYFDaxDpmZVSdwrtaZwbnYNPm4DA7h+Rga6MU2TOEcqTGN+tNj0yla36Rfu60H6+lwH+kwkz/RNGny5oexjVkaP+sVVzd5RwnPQ7WJ10uQxdr17OFTEM/Q3HDnII4ZvV2o4z5dxjw2M5ucxpreQfXTaD7TyjHWotgWas7gdvSR+PmD+yH+vmfQx2XYd895N122SR7nVRN7d0Ac4qFbcBxrTzKJY88M1cuJlDoxQc16OsRz+GgVvzNKm2hEpElfxvl+toH18iWdOL83M/tyFnP7XsrDSfKyqDyJfVubxjZXSAc/MdZJd+8pkiJeT34W5wbxwhxqvg9bVeuaUWjBvH+MR/4bzu2ZR9regTu+ZQxzzKdbeJ5bROR155EPQtgkj5As9uOTR13fno9+7WmIT87iNvcPYN3p8XEfDz+NHhI7qDa+4Xa81+7udHXuj49infnfT2Etu/NqvK+9Ygivd/ZLSaif2DslSDkXEXmNxHQtLvWVCee9IFqVd5nqiPnR3LlM6H6sTNd0dPJf8LsnHnK2t4PsDsqUqmePfQvi8QBrX2l4P8SFYfT5KfZSrfRcfwX2v4ij5e8h2fONK3jkUY2gu/Vsimcc+wg6ev0h3ac6iwY0CJC3pU9+AEns5t0oeSacquA9Tt/8OB/V515v1Rh73VVXWjY7dzyZAvbt8WN4L1goYr/0Drj7aR5FH5mxWaxFL7rtBohj8jk4egJ9KXcM4P1jtYDjThy73go7+rBdN77gCogLRaxNfD/ZaOI+auRtajT/bQZurYvpniZHc8eAfHozGcyhhod5XCzg5/voGGdoLmpmVq7gmBsn7Kd57rgXvHVadx97bl7nsVGrUxX47/zdNTu+5tjHkz07eBejo3i/ceQw5nFfH86jea3ZzPXwqNXonoTypqcLc2IfeeT0FHA9pzaD2+/rd/t8ktaZnqVr+MQYtruDfGK7aK54+AjdR43/L4ifJi84M7Pbbsd1+r5+7LvC/BqQ73NdPT9rfujx6le/2l796lenvpckif3e7/2evec977HXv/71Zmb2F3/xFzY4OGgf+chH7C1vectadyeEmZn96q/+qnV3dzuvK+fERnHXXXelDthmyjuxcajWiXagvBOtRmOsaAeqdaIdKO9Eq9EYK9qBap3YjKyrp8ehQ4fs9OnTdvfddy++ls/n7Y477rD7778/9Tv1et2mp6fhnxCr5UJyzkx5Jy4O5Z1oNco50Q6Ud6IdKO9Eq1HOiXagvBPtQGt2otWo1ol2sq4PPU6fnvvZ6uDgILw+ODi4+B7zgQ98wHp6ehb/7dmzZz2bJLY4F5JzZso7cXEo70SrUc6JdqC8E+1AeSdajXJOtAPlnWgHWrMTrUa1TrSTNctbrQbWtUuSxHltgXe/+932zne+czGenp5eczKHpGPa1dHhfOaynajVfeU+1OreTz4TL37RzRC/4BXfBfFUGfUDdwygh0cm52rz7RhAzbOps6hDOnbqOMReFXXbrt6FWtV7fvDfQJz4pHkZunqQ05P4dDSiviuXUbsv+p67IJ4YR83fSdJdn6zh96965Z1OG7bt2Avx5z53L8TPPHNOM5Y19M/HWnLO7Px5t7THzv/t1ZOktGspHQEe377LMEcO7Md453bUOt07hNp92/vd3B+fwlx97GnU4qtNYd6NNzAnjpxGPcGz4xjvHkKdvUwWNX3NzJ59FgezOuU2nys+dY62KfWjR/qu7KMw9yHyVvD4O+nbXo71yrtiR8mCBT8JatYs/UVDQpqd2YLr4+KTDmg2g/WoMkUeHKSJ6JPPS5jD67pRQ03Px0gD3cysNo3fmRlFDfOA5E337cW60LMNc/tjn/57iE9SLWtGrs59FGE72dODPTyCDPVDgH1dr6N+bsJ5lqLBm+rzcRGsV85tdjI5PBcZOjch6+OmUCSt96uvvhriZ599FmL2+Ni2DX0NhoZwol6ruV42vb1Ys0+cOAkxj7GOjvMm8fhg1ivvzoyPWy47d91FdH3VGni9Fgo43iUpo/LUJGrPlkqoJZvLoy/I8eOo9dxDGruzNKfxmnjNb9/m6t/GXHt88msj3foBmi92TE5i3InjeE8Rv3/qKOatmVPCrdnEvtqxYwBir4nXz7EzmJdd1I/NEM/NzAzOK8zMZivouVIuon505/xxxY7W+fnZkHpXx5r8dfI3eWYE/YU6A1czuJOu00EaC3Ycx230kLdFF2lrd2dxjO4hfeqhlEMuFfD6ebVP8z8sRcazWvY18/nv4Hwe33qdNhyg4e1VV6Lu+cwOnEskpzBHslSDp8k3cHL/fojHbrnVacOfPYKeAv/4jScg9ubHeVdjP531yrlm1DA/mtt3hfxVMgFeT92deI2zh4GZ2XQZa9HU9CTEDfLsyAY4v9lOnovTCebocyfxmv7y467e+BM59JaMOnsh9tkPg3wOztIcKopxfLz/KLYpCNy/zTx8Bmv0eA3voz7xDZyPvpl8Qu66YR/E7IVSrmKOTs+443wmj329vRPn4Z3Fc3Hgtzbvzj70efPmfaC8Go6POZuEuLuEx97R4a5dhA2858vRnKUvRh372eNoSnzmOcztYt9+iPfdfAfEU33o+WFm5pewmAU+trNBc29nGkX9GJPXgUexRW7eJU0+P+Q/RL49ETmJxHTNu76gtM+UGpBN8Jqu0DVejua+k0Tsp3V+1mPN7vCJZxY99a5/4Y3wnRtfjPPuIVq3mBzHHDUz69mBc/ezVRyjH30W+/JFlx2EeN9+9EX7zin0VugdwPzpyLg+MjeQV+9gH45lEY0nZfJFC308rrOjWNsK5MfR3eWu3yQZOjfTmGONDNadkHxEjGpPtkDzjD68ro6eJB9fM6s8+k3cBq0HFDqW5KDf2jW7OTeeeU8PNtjgzbFfR8rf/QfUhjp55oyMYa0bn8J7xs997rMQnyBvme/9nu/B/fHalZnF5DHFBmDPPIH19fIr9mMbyffldIjrb03yo2qErp9NJ3ly3PziF0N82bX4ndkqrbU0cR818iHh+Kkj2E9mZifO/gPEPXR95HNz569Wdcfn87GuDz2G5g0iT58+bTuXGGSPjIw4T/UWyOfzls+7i3ZCrIYLyTkz5Z24OJR3otUo50Q7UN6JdqC8E61GOSfagfJOtAOt2YlWo1on2sm6ylsdOHDAhoaG7N57z/3lfqPRsPvuu89uv/329dyVEGamnBPtQXknWo1yTrQD5Z1oB8o70WqUc6IdKO9EO1DeiVajnBPtZM2/9JidnbVnnnlmMT506JA98sgj1t/fb3v37rV3vOMd9v73v98OHjxoBw8etPe///1WKpXsjW9847o2XDy/+OY3v7n4cyvlnGgFs7Oz9txzzy3GyjvRClTrRDtQ3olWozFWtAPVOtEOlHei1WiMFe1AtU5sRtb80OPBBx+0V77ylYvxgsbam970JvvzP/9ze9e73mXVatXe9ra32cTEhN122232+c9/3rq6XB3k5fB9f1HrmvU2WSOdZeBYp93MrLuvF+IvfvkfIT5y5CjElx28HOKhq1Bjcj+9z9rujta7mWVJv29mCnVJOwqow9YgTfyENNICEqwLSfetq+DqAwak3zlGHh3bu3shZk30jhL6NXTX8PO9ddQTLHSjBqKZez7zedQYXKqrvvDZl7/85YuvbVTOmZklSzQBPdItdfT/ViPTSp+JInyhfwjP0YtuQH3xywZRV6+3A4+pQOcnqrnafF0k7XnntbiPYkLapkZamrO4zX96ahTiWhHPMevuzbULc/m5p1EXMWrS9UNeJ+yK4Efs8cF7dH0UfH6JLtGFM5Mkc289/PDD9trXvnbx/Y3Mu0yxcM7Tg7UuQ7ymevLoM1BI8Q+KSRuf9W6rFTwfjz3+JMTFIup8Pn1sBOLR6cMQT1RdffeuLGqkXnbTbRAPDe+HuH94B8Qf+9T/hPi+f7oP4sTD6zGfTxvOeKxYIQmIKGHfCPy8Txd4tA6eHq2qda2HNVwxLtD4VyV93Cxp3i+n/3puH9j3rFPKHh8Mj1XdNJ7t3o1eYGZmPpkrjI9PYpu4H5ZtQetoVd7NVGYtO+/pMU2eKDHV9cDDa7qjw9Vd5jaEpE/bR54d7Es2O4u6y37AbSDd7ZTfR5fJIykYwJ/p53PY7sDL0/t4DN2dqHm9rQ9rfnnK1cCeLeNx7diOHkkeaS3f+QrUvP7bf/gixDMV9FaYJa+FSsXV0WUPMz+Hk4/cvNawNz+XbeUYaxnfbN4f4Mw0jld/N0E61jGNJRV3XmWkSWw0x7EczpW9Jr7fSfcpWfIN6SQ/jUKK9nORiscw+4CEqEe9j/wRripiHm7zsU2NLN2T5Fxvkx7yGOt9APW/u6kelqgNnRHV+VtROzr3K++B+FtnMQ/NzKa+8i8Qn1fOf/6/rap1X7rvScvM58GZCbxeEtLiL3Xj9jNZdz5TSbDvphqYgyGNLR7tY3AAxz+er8zOYhsL29H70szsLGmc7+jCa2OAfJiiSdQ8rzz7MG7w4A0Q/uNzkxA3Y9KoN7OA+iYf4Tzt/ufwWnvq9Fch/uT96PnCtxMnxrE+jJPfkZnZAF18L7sW56+33HRujaAy7+PVqryLcz3mzfv4BaNPw3s7ilSH6JrvLeHYY2Y2WsH+rVOdKdA9/PAOHHPPjGNe1WZwveXZr/wdtp/8O8zMOndfC3F+L+aN143+C16O7o1pLhc5/kbYD3Hi1nyP7wfYIygmfza26Ijx+84c1rkndScbUYI1m1uZzI8bC2tQrRpjg+0FC7Jztf65KTy//gzWqfFGL8R95AtkZnbZ1ejDNZnQNUjrGoen0bPjuiuuh/jA9fshDjuxruzw3Pvog+Thl9D6Sp3sS+sTuKbXTedvfBLXPXL0fhy7eV+inGvQPU2VPF6adeynenUS4gJ5hHhZ7Mha0/VK/PynPw3xTTfhtVZrnNtnfX5MalWty0SeZebX1ULyMWY/KC/AY2+Sv5SZ2TR51U2M4dzw0CHMszL50wbkpbN/F64dFzK4PsZrXWZmtRrmZkD3vtuG8L5zHC2oLDNNXkLkjcxr5KMnMW/NzGZnyK95BvOq2iBfkAb2ZbOGjarS/UKZYl6TMjOborkDe528+NZb5vZdc+cI52PNDz3uvPPOZRdxPM+ze+65x+655561blqI8zI1NeUsOC2gnBMbwctf/nLVOtFyVOtEO1DeiVajMVa0A9U60Q6Ud6LVaIwV7UC1TmxG1tXTQwghhBBCCCGEEEIIIYQQol3ooYcQQgghhBBCCCGEEEIIIbYEeughhBBCCCGEEEIIIYQQQogtwZo9PVoFG4guZcHgfMmHIZyZcU11nz18COLpiUmInz5yGPfxFTQ6nw3RrOZdv/LLEBdLaE6TCdznSUkTdRUz5Ig5Q+aUlUk07HMMwIvootRBZmJe09VxrMzgNsfOoEHxwAAaZmYDNurFfpgtY18/8dSzEB86ftxpwwyZQrJB5lITn+XyoOU4JsirMdJd/iud5DKezbERE36+vw81Erl3qlXXhMr3cae5APOklMWdZCkve3qwjZkONPd6DL2GzMgYy8zsqqt3QtxsYJuOH0Vz9OYK5z1hg+oLsQPm09dGR+EkiS1J5o6ZTavyJTTky2ewf9m03Mys0cTX2MTPp3P+7cN43WZKaHjZoGt2fGwS4quvR9M4M7PLdwxA3NmLJm0naBuf/xIa6X7nW49CXKuiMVahiP2SSzFZdb2u8SSz6XFEzoO5AE0DPTJljcmENa0ibBaj6s0GmzhOTuL498ADX4f4hS98EcTdPb3ONiMybFvJ7LxIOcQ0yCi2XEaztTB0Teh8H894s5ligryUNRrdX+qUurosl5ubepbJaLlWJ/M7msvx+TUzO3jFVRDPlvGa5HN2xcGDEMcxnp+A5jwdVH+nJl0T8bBOBqYxzs2yGTRorJAx7Mw0mvp1kJFr4qE5cBi4hu5VQ+PB7cXtEE+N40B9ZhYNGk9O4hjc24nHXchiLRwik08zs5jm5mNTYxCX5+d2addNK/EyWMc9miPFdTJGTHGv78zh7VMPmWj2kQEzz8PGG5gDSY7uB6hsbMu7Rqt3F3AusJfM5x8gM8r7m9jvj1F5jHzc3kOUh6eLeJ9jZpahUa+TzHo7PZx7dAa4j44Ia0DvY4chzv4/H4D40aeec9pwbGQS4iCP11+0OAq3ttY+/cypRUPpyMPrJ/LxfMZTeG7irDufCWhuHZAprZ+nOIN930fvVx57BOLGySchvvNtv+K04WRpCNtJJqKdTazZSQ3rzmz5JMT9U5hTte5rIJ5puPcTfB4TysFiHq/NiSr27ae+jfe9UROPIa5jvyV1N29OZHBucHwS6+lH/uk757bXdA1zN5KOy15o/oKRd5ZMyKfQ2Ly3iePZUM5dFpqIcQwdI9PZnIfnKEfz5K4uPMcx3afOVrDvkuYZtw3T+FrmBJplFwavxDbsQLPlXAfeO2fJ6DzJ4PUZ0tzfzKxheFyRc3+PeRiQ0bnfpHkCfT+hfkubvQYJ5mqWPpSE80bmjaqt3t734snt6LRgIXcohzpo3Iionyqh29K+HX24jTyevyiPfVmkNbfevbiWdVMPjgmnx9GQOjnk5lxcwXbNGNa2TAnbOE3jbUL1OU6wrpw8i/ucrU06bRigOXIP5VSjjHVo5PRpiKcm0Dx9eFsvbq+/H7cXuvcrh5/F9dMwi3PFaPBc3jaa2J6NJvZ8i+fnZ16AeVene6+zI9ju2bJrnl0lw+7ZaTynZTLwjozmYJdhHQpDrHXjUzjXj2J3zY6NzJ17yEyB3se8eva5YxA36nhOKlS/Kyn9UKF7r/Is9cMMjhuzMzjOVyv4/fosHndIbYoa7hiZy2KBfOVd3wfxT//kT8zve8b+4oO/6Xw/Df3SQwghhBBCCCGEEEIIIYQQWwI99BBCCCGEEEIIIYQQQgghxJZADz2EEEIIIYQQQgghhBBCCLEl2LSeHkmSWDIveMi63CvpdCexq795ZhR17QLSTowC0gglnee//uuPQLzvwH6I/6+3/BRur+FqFiekDz4xivpyZ06g/wX7awwNoZZqdx/q7VZJS6856+okHjqCOoYzpKFdJ43BHXt2QLyvD7WkRyZQx21qkjQNY1eXtlZDrbczZ3CfS89vqz09lmaBs2dHv5N9JdLykgU38TvswVHD02GVCurcsYdKkMFLmD1X5ndKTSJvGdKF5sMMSIs6T1rDE6OYA6VuzEszM5+Ou9BJmucdqK8aVnCfSUxa/T5fX3i2Us/FCv4qC3qbSeJsbsNp1OrmZ+aOiTVaAzZ24ZTyU46VamRE/c9ao2fKkxDHjz0M8ffe9jKId3WiRv3UyVNOE2KSYj56BrVG//mRb0BcHSdfF/LwYD3/eo3rm1tzV6of/L7vaOqSnw1p1vs+aUFHrj7nJrKO2VS44zq+z+emXsdamMu5GveshbrSXIFziv2lWEuV/cRKJddbIUu663v37oX4mWeewTaQhu4KTb7kyXtmuflj7KK+KnTj9TebpSlq4v6dzvgEastu34ZeFhMTqCE/PoF5tXMY/abKs1h3wgp+vlFHbVozsyz5LGVI0zpHfhhRuLwOc5Zq/vZ+PCZuo5nZkaOocZ4keH1MjGGu//MTWH/JYsASakNnD2o/Z/Ou5vkseUqMjWO1G5/3XoiiNni1ebZ4cTla6vTRvTtRD/5VsyPGvGgEdegbCfm0kI7/rpjOR4LXfcHHnAizWFuGiu5c+ntpLhZVqT7lcJ71xQhzd4L+7u3pAu5znH1LErcNMc0nG1TATpN/SxzhNuqkc27s2UE+gZZ3fUWMrq+YfELMX3i/tV4yXhKav1CzEi7sNP41aA7rfN4sJv3vkPTcc3QuYtL+fur4Ydzgk/dBOEu18usfw/teM7NrSVe7OLQb4jNZnP/PXPFyiDPb0FPJSCf/APXD5KSrtX9mmvTAaQ4cVnEeEJB/Tpb830LKHz+L10W26M7rcnTt+CHWvpkl93ZJ6H5/I6nl+szLzV3LuT23wXvjpP8en8S5/q68u26QK2D7S+Th0aQhsVrFFxpkflEnj0C+x/Tzbp2JGrSTsadwH6OoY187gn4LQSfGmQLWET+L96BxWp2h+pgr4HcC9oijbYQZmi8GeH0m7PvjuUt0Mc2BuE4kNjfOJK1eO8lnLZkfLxK6iY3oWpmlfAgyKf6zNTzffZ04BwrJAytXwjigHOorYN8ePYLrFtnTbt7PZHCeNTqGtWobXUt8+zdFPggxzTRGaV1yfMb1L2I7oWqNPHpojej4Yazhh59GD5/qAfRiu+Ia9MTzA3fcCSvYD89O4PW7+6o95z6bb+3f0s826mbzfhAT4zgnO0pz4tNn8V6h0XSvEfZIDRvsQUzeFmWMK5UKvY9+GXXqy7Ds3k806ux1iDHfC8cN3GaDFhLZm5I9PmrsYWdmzQa+ltA+vIjGYPZL9bF2sb9RTPfW+3fjPMLM7OabXwCxX6Btzo8bPH4sh37pIYQQQgghhBBCCCGEEEKILYEeegghhBBCCCGEEEIIIYQQYkughx5CCCGEEEIIIYQQQgghhNgSbFpPD2R5vS5XM93VB/TYw4O1T1lfnD5fnkVdtr/5m7+B+BXf890QX3n5FU4bnvvOYYhPnUDtvQ7Sg+wa6IW4Z3AA4kIH6kXGbAiRogmbkAbwVBWPqzmNmnev2oM6a0995zGIx8dRFzGXQ93EWg3fN3P16BzPgjazkBmOAq+H7fQ99lpI81bgbeMLY9OoMTwygxqD3SXUzeuexfMz0Ec6pRlX5z4m/cyEdIGNfFeapDFvpGPfbOL2JsdR07CeYityeoJ8XOg7IXl0eBmKQ/ZPodK1ogFLGvyZ9rkt1Op18+d1fxPq7yx5rrBlUcplbtk85kFMGuoN4xhzIsjhRr/v7jtxBzOo9/h3H/uk04apWcyj7zz7HWwTaZ6zt0GTdJB9qhN8tmo10vE2M4/qPHsyJKQn7pOGbpY0eOsNzOOExOHTSgBf846gvDAzt1sy5JPQ3d0NcZqnB58PHmtYb5Vj9gBhzw7eJ3t+mJnlyetgcBA1dFlf9ciRwxCzL8xKviSXGoV8YvncvF9bJ57jKun/d/di35WKrl+UJXjNdnd3Qlws4fkYPYveQX196FXBNWBkBP02ujtdL4sm1c8x0hYenZjENuVxH8dOoB755AyO803ynjlOnzczm6G5W7WOx3l6AsfcqWlsox/guahX8JiaJbyWCimeHl1F8qHYjr50Y6Nz9TOMWuut4OJMzIChbvSsGgyx78zMqkU8fq+I+uydlMv927BvggBrR2MMPQHqAd4P3FvF983Mursw1yPycHi0jDkR0jxpkKZRu418RshfoddzvWQyHo6pfC91hDSxcznysaMJTDOD7zdo3J+J3H4YK+GBHC3i+Tu9UKdbPPaGlWnz5q+rkPzBItLvj6kfkyDlbxLZeIe+U/fZuw3PX5X0xOl0W8e2yyEeH3O9bL782X+A+Lqr90N8x6vuhng2j+ficCd6XH37MHq4TD1yP8Q3D7q669t87LuHnqJaRvO+gDwoOrrx2iK5f4vqOM/zQrde1YzupWkuES252JIwzWtx46gkefOSuYOq59Gzqmv/LRBPUV35xuiTzvaGd2Kdue3gAYif+dYhiGsF0pCn/gt8XHdgbf2AvC7MzGZCPCfmkea8YRyWJygmL6GATjrdB3sNV+fe50uSxkCP44B8QTK99H28NrKd+H5pO3pLmZlVB/ZAnJB2fjx/z5JErlfARtLwYgu8ufPIc9aQ6lS2k7xPAncp0ufvROT7EmJcmcbjrc9grSufwXyonZqEuGTufGZkBMf9o6fRu7LrKG6zkMM6M7gd55ZV8qk8O4rb7+zFfDAzmxnH7+Sz6P1LVmL27DPoY3GCfHw7aQi58pprsM0DuM5oZlYLyc8hh+3MdJ3baIqN74byqb/7e8vPr52OjY3BezPT2L9VWpyancE6ZGY2M4VzptkprDtlmpvXahxj3WD/jJDuSf0Uv6eYPGzZA4/XLYIEP88eup7jRUq+QCmeGB5Nin1aM/JpnwFfr7Q+GtJ9bY4G3df/mzc4bRgcQh+fe7+MHmSjZ+fmJ+VZd054PvRLDyGEEEIIIYQQQgghhBBCbAn00EMIIYQQQgghhBBCCCGEEFsCPfQQQgghhBBCCCGEEEIIIcSWYNN6eniWMW/hmQzJsMYsr8neCq7AvyXx8hpnzhZoJ0kGP//U009D/P73/ybEv/QLv+C04fQh1C7t7e6FuBmSJiXptkXUploNNQxLedTBzHa7+rWlTvwMa0U/dwj1AMdIB/rwEdQTrJI++akzqHl47CR+3sysStr7rC/XVrxgUY+SdSlZ69t5ZpgiF8xy7Kx/XKuhzt3EJGonNraj9uVkDfs7U0NR3sB3L+kcaSb7AcZ18vwoVzEnGpxnBdR3fcVN+yGeqLv6gE3DbR46jnrjAV2f7FsR0TUdkSa3x3HKuXDknOmFRS+gNnguBH6w6FmRId8d9pKJItKIjNx6VyR/oIh9XKqsI4nH3NOL53j7dtTSL/X3QnztNa6H0RcfeBjis6dRGz/x8DiihuvJsRT2/gkczes074PlzyWPC0mM29i3F4/r5LFnIa7MTmKb0kpZu+XrNw3YtzFff3Sq9u/dB/HANvQHyGTcWsceHdOk6cp6q3ydsIeHm3MYHz2K46WZWURj6p49qMG8dy9qmlcqqCs7coauE+qXS93iw/Pr5s17OOVIujsJSQc2xtrGPkBmZmGIr5H9muXzeE6zWdToffYZnMtNkzZ0uYw5s60fdZrN3PHnkW89BXEjRCHl/h7U+n74Cfx8ifwhjpw6C/HoiKu1f+MN+/EFGvdHp9BDrkx5N0n9NrQDj7NA49LstOvXViVfuZjmsMnC2JUyZrUWKtQ0J3rwucMQf53HTzPL+qhrnaPPdPh4jK/ejf40l+9ATeNHv/EMxFfdeBvE3bNuf48P4nEMkIb4tcfxO6c+9wDEvXTSb+0grW4avLIptSegehfQNbvLmavh9TpAetIF0n4uJlSDb7nZaUPxdd8H8f/7MF7Tf/mlr8/9T+Sexw2lUjMLFvqHfOo87Ce+J01SdO6NvO+CDN250vw/JN17y/fixy9/Oe6ziHUprKBGuplZbRav8SOjWC+/+fgTEF91Gfo/vKhvCOJnvoZ+cCOf/RjE/1x0J1Df9T2vhfj6nVdB3IyxZpeoLlVmsBZOHcHrZGoMv1/2UiZ2fI9SJ7+UJT4ejo/iRhPHlsxfh2SHaJUc1oj8NS+BeORJtzYHlTMQ98+QByDp0mez2F/79+Fcjj2djh09AfH0pOuVVk3o3pmunwTtFCzjUd4kuE2P14n42mm6PixRnc4jn3PyofMi7LcgwtrnBTgviLI47jeOo2enmVlmEK+fjm68N8sMzPmwxs2G4WrMxpLJZSyY9yrzaaAIaAwIKD+CnFvrAprozlbIn2EGz2+OvNbGT+Iaw6GHvw1xWMZzMWHuNTp9BuvAU89gnmby6CXU0YnHccd3vRDiqII59fCD2CbH68TMikWs8cUcfiYh361nD2Mb6zRnHt6L13+5gu8XzZ1jN3y8doYHeyHOZs8VmTjb2vWTv/6jP1lcO+H7u4jqUrPJvkvuNZ6wfwb5ETmei1xHnDkSryPiu36KB4pP3+Grw+PxyNkIzblWsBXlY577Dn2J16FoPdSnz/N6Tp7uaX78J/8viP/Pf/sjThu+9KUvQ7x9B9a+sdG5+6JK2fVmOR+baLVZCCGEEEIIIYQQQgghhBDiwtFDDyGEEEIIIYQQQgghhBBCbAn00EMIIYQQQgghhBBCCCGEEFuCTevpkcvnzuv1EDZRUy1xtFJd4dmERMw8Yy13+gJpvQekH57Noxbjgw+gVu4997zXacPr77ob4hddey1u42Hcxqkx1G1+6knUfd6/fz/E115/PbY5TYeUXqpUUQstJL26s2dQk3J4106IJ8qoaTk2idqo1Spq6JmZDWzbATFroC89V1EU2Rlqw0bieck5/TsSCU1IJy9xkiZle07eIayl16T+D0nXd6SKupXPnsH+3jmAXgxmZkN9+J04wf5u0vVSa6J+Y6WMuoeY+WZBHnWAd3W7ZaVGfjVPPYtbqZKPCGuBOzY97K8ScM+658b3l9dWXJD0TJLEwrC1Rgylro7FGlMoka4y6QHzNeU5B2LOwTXqeE4jyrMc1bedQ6g/XiKt0U7Siz+wH30KzMyif3kI4nqV9Gwj0mEkLfBMFq+/XC637Pus7W/mepnErNdJPkl9vaihe9NNL4J4YhxrEWv5p9nBOJ9xfEYWC4775S0EX9M+aSgPDeHYcg2Nj710bsbGXL3x8XHU2OWxpacH9Y/zeayNDM8bYsrR7u5u5zuPP/44xLOzsxCzx8eOHTgeTozjcTUarDt7aZt6ZIK8ZebHNda1ZzOmGvlrNCo4jpi59hDjU+iJMj2N32k2cc4yQ/rkM+RzUCqgz0HgjIDmjEf1ELfxtYe/BfHl+1Cb9jR5pzVHJiF+8hgek59SKvYfwJp96hTOHydnsC9zlPuFOnnR7MS83NaHud5ouLrrZ85iXyc0V+/tmNP1bfX4ujLkN8R+QbF7zTXJa6IZY1ym2vM3T+B1vR0tPGx6FhP5oS9/DeLbqpNOG75DY8bsrl0QB32o332oOADxTA2P83OkgV3IYI70Z8iEx8y6CtiGbrqGt1M/dVHuztLn+0j3vnfHMLbpx37MacNDdP189VvUuYvnt8W1sxCYzeuNs29dQPetPB56gTs2JeQpxf58fsDbIB3uDGt94z488u2pZt37ifAU5vHkOPpaPUFzrtOTkxBv78McDHqwrmQuvwXisRlXa79vGH1CXjyM89NPfOZJbMNJHIPHSc+/THmfRHij7EXufazRawEdd7DUIyBpcb1rlhfHUo/muHVaF2gG6JXWuQu9hMzMTj/zVYjHHsXxrD+DY0FHgHlTyJPXBY2XnSV8v1Rwc79UwdycIi8Cp4c98vCgupMN0OurXsMtzMbu+knD4/smnAt0dPXi5+voH9ao4bXjUaMSuidqTmPempkVKuhHUyCvO3++fsZha31kBno6LVOYO48B16UKzrlKlIO5lLUUsnezpIAvTI9hX/XQGH1yBL0tnnkMfZ7y9PlKit9Tlcbks6N4PpoZbEN3gvfuZ8lrIEf7PDExiTtsuN4E+TxeK+wxUZvFOVe1ivcLAdX04+RDeYrumfIT7n10lnxFOsk/JVnqMxq5PhkbyfSZI4t+WMutJaaR5o/IdcL5CPk7e2v87YBz/7+a2/6E1xBovurxXGJ5z1v2DOH18LmN4mtN8v5N6LgzVOOvuPZqiH/wjf8nxP/HD7we4s4uvM8yM9t/ANeVvvMd9MCpz/sSNlLWmc+HfukhhBBCCCGEEEIIIYQQQogtgR56CCGEEEIIIYQQQgghhBBiS6CHHkIIIYQQQgghhBBCCCGE2BJsWk+PJAktSeaeyRQKqCMbRajVmMSsB5gmknY+HfWF/SXLxtwGR1+eNIC//RjqepuZfWsItWkH+1Gj/NjJ4xA/8e0nIO4mzbOXvezlEO/dhfpn41OTThuefOpZ2gdqpLG0YqWGmpQH9qPu+mPfQe3UWg21Gy3FV6S/H3WGBwZQ47VaPbeNMAzt2WexzRuKZ0sk9lfW618JloJOYtQ77CXt0p4B1IScDjHvHn/4LMTHj6Gnx67drsb8jdehNvf2HszdQgY1HLsyqN9YIuHDadK+PDGBenozk6gRaWb26DNHIB6fIp3ZOufJ8trF7NsTkJZxJuvmXZak2H0Sb4zn9a2TOLHpmqtruZEUOjstmPeoyJNfUIM8AULSau3qdLUQWY8xJh1Q9gHZ1ovX5CtuuxPinu2oQR+eQo35rgzqOZqZdXShZu72vag3XpvBPKlOoS4361YWSri9DtKCnhx38479nhxt5Rrm7vd97/dC/F0vvRXir33zKxDnR/B6rc66mqxZqoFsVRUujF9JYinKxJcsMeUg+1/s24+63AcPHoSYx9xjx45BnOb1VKIc6e3thZjrBmvArgTPC3jsMjM7cACPi8evMun8Fuh6b5KnUppH2SVNkl/0y8qS5nw+ixOQbEDeTxVXd7lGnif1Omocsx9bJotj7swsbnN8HOtQdhvVmSn3Gi+T7xV7ndXpWqhQPb79zpdBPHoWtb/HSPs5k/LnSvUGHsexo+QDksFxYs8e1F1v0JjXWcK+r1XwuNkPycxscDvqi89WcOzyvLltNpqhmaHGdktZ8ZqiDnY8w8y9paBc9QLS3qb+OkYa8ubj+aiXRyH+RsoE9FQTr5/ZE6QBf4JylXwjMgGO23nDHJiguV45m9IP5GViHsWOHxuGGTqsEt2WdtG1Vfgvf+U04dRpnAdXqIZabn4siahtG4xXq5g3PzeNI9Lh5ttvH4/TD1z/IqPzlfh0PFRPE/axo5PhkecAmwV5ad475GWRjbBejn+NPK1O4ng4sRfjoateAPHlu1AL/InH8L7YzGwygx4eXZ1Yo79zDPO+VqNxgw7Lc9YQ6AOBO+7w1RiTP1Xin4vdNYoNJqybtzDvZK8CH3OIWxbmtxmTO4Dz4MqzOL5VzjwKcfcsvj87Tb6Q5FNQ6MS4mHF9s/q7cW5XojWYSpW8DajP2YOzkMNro0jzAt9P8Xig3vINjyupkadcHetpzJskH0L2AE3z7mqSP+PZPB3Hnrl1pthrrbdCV6lg2XlPjxz5SJQKeL0WnbHSPdCkhNvI0DYKJbzmzz6O9wfTp3D8HDuN58anS7zKZg5mFtWxDQ0aw3dftR/iAy++AuJygzzqaK75wu9Fz8jCzl6nDYUOvA+aGp2E+NDThyDuKOI8b3gXrv/s2IH3rMemcU2pN3LXPoZ2bMc20ThjYTP9/1tBEi8uznk8vjnnFOd1q1nTi/lDa1wI5Pu39bmfozpBMR82rxm595juMWVowayLPDWvuOoaiF9JntV3ft9dEO+7/DKI6zQu1VJ883btxjUj/kTf/FrySt6cS9EvPYQQQgghhBBCCCGEEEIIsSXQQw8hhBBCCCGEEEIIIYQQQmwJ9NBDCCGEEEIIIYQQQgghhBBbgk3r6VEsFixg3bh5+vp6IGaPjyrptJu5GmY+a516qHPpedg1rEfeIB3pDHkKZAuuPllAWm4PPvQgxEdPnoS4HqI+3ePffgriMMFnVkdPnoJ4apr0Ws3syWdQR7lJumq5Auq4ffupxyAeGMD3O0lnM4pI85I1Z81sZGQE4r4+1Iqr1c5pc7IW3Ubje8E5zT3SaI1Jq5g9B9KU+hLnuSJ+6sDlmFeDO3ohfvQx1Ft89mnU+vYz2MYTp6ecNpwewTwo5sljIMB4WwdeCz/4StSp7C7h9fe3X3oE4mPH8fyamdXo+gtDzCNH69RbQQOXriXWzA1D92yEVdTjjGmnC9tg3f5WkHjnLGTqXKtY9558YDJZ108jpv7I0mf4O53dvRCXG9iGR8i757Ii6oya2wQr9aNG+f7rroQ4RzquzzyBHkbjY5TrHXjcxV7cfiFFB5i9lmoxHtdIgu9ffx3qS09MoQ5sxwBerwevRf3pY8exBpuZ1adR8zpH+pML2pZJElttArXJLyX4uuG6fuNNN0HcSV40E3Tso6OoyTtOni1p1+nUFNa/s2exfnZ0oJ7tjh2od+uT4QpfR6thz549EC/1qDIzO0njdEgauP4Ws/Bgctms5XJzBYP1cjOk9ZzL4bXSUXL/TieiczTgDUI8Q3riZ0cxJ8qzkxBXG7i902OkT1525yQ7h1HzeJZ8fAa7Me+y5BFx0wuw7hRzWPMrdTyG2Yqrm/zkt3CuNjo+CXFI9fbqg7jPHf1Y2yLKS77e0q4N9qOKSWO5Vps7jlq9YWZfc76/eeCLcDUXJfkC0tzXYxcAxx8D46bh+ThWcetdracXX8ih7jlrxHvkaZXQvVJAvhOlDI7z5RzO983MfMdghubJjjcetikkrX0cLc2m63Tch90x1kjf3/I8F5hvY4rH4EYS15vmzQvzN0IeW/C4Isd2MsVPg7wlYj4e5/iW9zDxsjSPM9y+76dM7Kh25YtUq8bx/Jx+6GGIpw/jPWg0ipr0+7/reyCuX+l6TBwj/e9sF96TFOgep0r+OeyzlnhUtxLyYmAvOHP9FryYT+CS76T4H20oYWTJQv44vmV0j055Vk+5Z28WSdP/ildATHZSNnYcz/nMLM7dAuq8bB7zbKAD5/ZmZl1dOIbmizg3CGM8p/UyeehQbYsSHN8yNOb2Ft3cH6Bc5zWqJq0Lnab1kGaAbe7qxuOMmnSPGrljLHtp5fe/EOL6juvmPtdM8QTaQDq29ViuOHcdJSH2QzbE8x2QN1GcUuuyHbQGV8Lzz2PT06cegXj6LI4kTcrR2Wnyv8qk+ALQGlyO1kZuuesGiAeuRt/eh/7+XyDuJI+Q616B/kbJThy/zczytN7i07rfNS9Db4Us+XYVurC2JQnNh7+BXii1cdfTYxvV1/6uXvxO/twcuR5tnmVlHmPZu8JLmQ8481r2e6bPJ+zZwe9THNANXuIM/GZco9kGxPHgoHDh/mqBnj6s39sH8b53527MWzOzA5fjut8Lb0Zfp2uvx9zfth236dE8oUZeixnq12zK4wj2YRraid6yC56aBXl6CCGEEEIIIYQQQgghhBDi+YYeegghhBBCCCGEEEIIIYQQYkuwpoceH/jAB+yWW26xrq4u27Fjh33/93+/Pfkkyp4kSWL33HOPDQ8PW7FYtDvvvNMef/zxdW20eP5x5513Ku9ES1HOiXagvBPtQHknWo1yTrQD5Z1oJVF1TvJ3165dyjnRUlTrRDtQ3onNyJrE1+677z77mZ/5GbvlllssDEN7z3veY3fffbc98cQTi1rZv/3bv20f+tCH7M///M/tyiuvtN/4jd+wu+66y5588knr6upaYQ/n6O/vXdRjr1RRd3ZBx2sBj/T/CwXWKTU7fvw4xH39qDfOspdjZyeX3eexY6iDV6+hXtmenbudNhTzqNd3/AS2aWwa9zlKWvAV0kA7MYqa908eOgxxmqfH7t27IL7sKtTZr1ZR57DWKOM+T+I+qlXcx8GDByEeGSPdRDMbn0B9z1oV+y6/RMc7mNcX/cmf/El7xSteseF553nn9PMS1s1zJJhJFzZNjJ29FeiKG9qBOpVjo6gzeuII5kBPL+b2vstR73ZszPWzOXYEde5nplCzkT0jJrO4jadHUWv/dsqhJELNyN7tqB9oZja8Da+fhx9BXd9aQoKbLFno6CaSLiJpb7LHx1w7Sc8xYD3kuSKwoDndqpwzM8vlchbM+2ys5CPQTTre7NdhZlav4Tlukj57rhNrUUR6tl/8+v0QH5s4AfFPvfpVEJe6XC3S4R2Ymwl5cnjkR1MkvdwG6di/4OprIb5s3z6Ic7OuNma9hnn11Cms24ePYtw/gH4AT1K927ETdStzlNeF7RibmU2cPQMx+0NVG3P1LwpDe/KrD7Q07y6UyNGJNhseRl3QG2+8EWK24DjJ4x95uJwlT49qBetSmqdH4hQODNmzY3wc97l7N47b7AHC2qquYqsZ/y3JFVfgGFsnbVNuA38/YC8F+nScMuxciC1Iq/IusXDRD4vPIadVHOOAmcm4R8bnlLXWx8fQw+O5Z45CfPYs+eiQP1uFBMuLJdc76MprroJ4+rFvQ3zN1ZdBPDGGvldhHet1sQNrRI7qc6GIGstmZo/SENq7E2vZyWN4Pc3S/PDgPsz9Rp3HEOqHouvvwNkZhriNQnau76rZudp+KdS68+Kk4gpXHWltO/NL8l+IijiWJDm8ZzFztZ0T9p2jJiXk2WDkeXW8SnNa0qA3xwPCLPZX8JXgRqTWzPOzKjcVpy+X31ir8i5u1sybv4fxyNMjk+C8zamFKd4KPnsgUd8n7OHB54buUVjz3A/IE4bnyGaWJFibztDc2+skbe8s1oByjB5JJ57Eoj8z/gWIsz3uMoXXtRPiL472Q1yjeR/7L0akFe45nhucTyl/H7rS/eHSrYVz98Ff+MIXrFAobHytC5tmC76kfD/B+vBUE9LmVU3KqyCD7SkdeAl+gbqzPvrPEGfI+yKcxEYdncQ5s5lZvoBt2EH3FwO0phM38JyVG+xVQHMLw1qXy7j3YVkf76MK5G3oGcaZLLZhooy5v2MAx/HJafIPa7h5N53guBvnMPeb83Ulmb+nblWtK/tNa8zXl2aExxHRGDDRwPcTnrSZWVcZz8+eTlxXqIzi2sjsNK5VVSo4zy6xh+Akrk1FZdcnjf3iendh7evdi+e74eE2z57BuX2FfGZeUEL/v6gLrwszs2aC2+zuwOModGE+sE9vOcF5Ht+7JV3YzyOH+H7ErLcDry2vhv3Ss6Rva97cddaqvPMD37kHWDw29uNgj7PVTC547Yn9oGkOxes3fE/KVSVIG+fpeDzyvAnIR40tcG958c0Q///e+pMQ76T73L5t7ppdqQtz3cvgfIXshywK8Zou0ZjaWaB1KrZO4UHDzKZpn/v37Ye4t3eufmZS5innY02/9PjsZz9rb37zm+26666zG2+80T784Q/b0aNH7aGHHpprdJLY7/3e79l73vMee/3rX2/XX3+9/cVf/IVVKhX7yEc+spZdCQH8yI/8iPJOtBTlnGgHyjvRDpR3otUo50Q7UN6JVpLpmnvofc011yjnREtRrRPtQHknNiMX5ekxNTX3F+T9/XNPmg8dOmSnT5+2u+++e/Ez+Xze7rjjDrv//vtTt1Gv1216ehr+CbEcyjvRatYj58yUd2JtqNaJdqC8E61GY6xoB6p1otWo1ol2oFon2oHyTmwWLvihR5Ik9s53vtNe9rKX2fXXX29mZqdPnzYzs8FB/Fn94ODg4nvMBz7wAevp6Vn8t2fPntTPCWGmvBOtZ71yzkx5J1aPap1oB8o70Wo0xop2oFonWo1qnWgHqnWiHSjvxGbigh96vP3tb7dvfvOb9td//dfOex5poCVJ4ry2wLvf/W6bmppa/MdeGUIsRXknWs165ZyZ8k6sHtU60Q6Ud6LVaIwV7UC1TrQa1TrRDlTrRDtQ3onNxJqMzBf42Z/9WfvkJz9p//RP/wTGn0NDQ2Y29xRv585zRmMjIyPOE70F8vm85fN55/W+3h7Lzrs+RxEaElmMZj/FDjTy2Ulms2ZmcYTf2UFmy+UymlzlAzQo6uxEQ9Pe7k6Im2T6uH8/mrqamUWGbejZhkYxh84egfipQ8/QNvdDPLR3CGLPR3Oa0ydOOm0Y3knfIYOcHJl5FdkkKUaTpLExNAHNkqnP1Vdd4bThm088CvG2HWjmtdQgs7HE8KwVebfU6CgJyLDIx74iX0pLUsx0YvJO6+hA06ISteHoCTSdqpMB2HWXobnl5VdgDt3Hpqxm5q3gbWjU7iaZx544hUZa3k1ojN4/gGZDe/sxx8zM9g7hOX7k209iE8hMPSAzTDZcjCJ0QfLp8z4ftKWYn7MR4XxqJ0lizeZcsJ45Z3b+vMvlC5bJzRuZk9FYnWpLkEMj3WLJNREvlPC69aaxPzwyBcwUsU01cplqUHd29+D5zOXdn5pup9zt34Z5Mbgb6/S23dhvu3ZiDd3eg2ZqBboAR59z/0KkHmEbhs/gX4c8OfAcbjODfdvVg3V+YBBNA+MKnpvBbhwnzMx6BnshzlCuN+drXNho2pNffcDMWlPr1kKauWXafpZy5gyaUY6MoKE0G5c3yGiSDeF4Muz7aZPjtVl4n6G/KqpW0YztlltevGyb0voljunaCjCnLr8cTa9rdRwPK7NYbwO6jthIL/WQ1+YVvEgr8i6MQgvCBSNzarZzE4T9HUcpYywd/9gUjqEhGXB3d+E17dk4tjtHxoRk9NrT45o5d3ZhDc6Q0eDgIM03ZyaxDSk3fxAbmyO6pptxjK8tPU9mZhkf87BEhuw8F2w08VqoVnEe7qeYjwY0ZwpDnPP6C3ONJftq1Rjbeni+scJ1yxcDm5CzQfjKuzSnEETcBpy7RR04vq2ukHC7VqpPa6vRqytlq93muc+1otZ5Yf2ckTnVriRms+0mve/ensceXrM+zYESntzHfM+Cn/d8Ov90n+xxcTUzj+bWYUTmsGR6neTIlNbHexa6u7fKWAW3d8y9p8nY0xAfzmD9jTM036X7hzgk09QEz4XvuKy6JqsJrUN49Bl/iTFrYpE1zewXf/EX7TOf+czG17owNPOaCw3F95xTSsbGccoVR9+pU14kuV6IswfQSDf28JxGZ/D8BXQtRIl7/1Zp4nGcOI3zyRrNH3t7Ke866T43IONyWuuoG97jmJnVYtzGNJ3zGo+RRWxDRzdef1Wq6VEvHrcfuIbO2SLmQ9i7C7cxX4+TJXW5JfM6q5s3f08d1nEOxn0deNgPvf24rmFm1kOm8F4da9/Y+CTEA9dhP1QP4fpX+ZETuANqQ7WBOWpmVhjGunL5Kw/gd7rwWqnN4vmvTmCNCOtY470CzRtT+jUu07XBNbqA/VKltcxJMmwv0Jjf3Y95fjJwHyZU8FKzmSewDduGzt3L1yutXrM7N3VyKpdjXM4G4e74lqExMqL7B15AC7I0ptI9IhvHczEtZN31m85OPM44wXPq+7iPbIJtqNfKEA8M4PV1w403QDxTcXOfltisSf3A72eoKzPULxkybOfb2AyZlpuZTU1NQvy1r6H02c59+8zMrEz3zMuxpl96JElib3/72+3jH/+4felLX7IDB7AAHDhwwIaGhuzee+9dfK3RaNh9991nt99++1p2JQTwC7/wC8o70VKUc6IdKO9EO1DeiVajnBPtQHknWsnCQ+xPfepTyjnRUlTrRDtQ3onNyJp+6fEzP/Mz9pGPfMT+/u//3rq6uha113p6eqxYLJrnefaOd7zD3v/+99vBgwft4MGD9v73v99KpZK98Y1v3JADEM8PPvaxjynvREtRzol2oLwT7UB5J1qNck60A+WdaCVh9ZSZmf3X//pflXOipajWiXagvBObkTU99PjDP/xDMzO788474fUPf/jD9uY3v9nMzN71rndZtVq1t73tbTYxMWG33Xabff7zn7euLvdnekKslqmpKeWdaCnKOdEOlHeiHSjvRKtRzol2oLwTrSSqz0l0veY1r4HXlXNio1GtE+1AeSc2I2t66LEaXW/P8+yee+6xe+6550LbZGZm+3YOWm5euz5uTC372doUvu9tY11as71DqBNXIh+QHtJe9JqsqYy6bDffeC3Ex48fgjhXdDVAoyzqsiVZ3EdXH2pN7xnGNneUUASti/QhxydRxy001GQ2M5uujEJcKGA/DA2jjn6T9AOrDWxzLo9t3rkd27g7xdtkYhb7asdOOhc9585fvTbXZ1NTU9bdjVqwS1mvvPO8uX9mZj5r05J2LWv1eTlXH5C9KPJ51K3LFFC7b6aKOvh8zZ0cRa3MfQcw1wd68XyYmZ08hXkQ5FgvkPTCScLwycOo9zc5jm0a7sdjOnQaj8HMrFZBXV6fvBPyJOGaz5PynqNLi3FAviSeY1yS4gnA2sS1ueOK49jGKtWW5ZyZWb1es3BefzkhTUjWpK+HpP2ccY81R74fhQ7UjaySXntIuZyjE5Inj5BO0iI9c9r1D+qh62Xf7r0QX3bd5dhG8kniY0hqWD+nZ7CWzU6NOG2YmMbc7S1hnR/qwHj6DG7D78ScadDF0SRd5yprQZtZhrTzs+xfMy+G2Zz/byvzbvWwn4aruXz06LFlY1Zc5drmenaQBvoq5h8XC/uEjI+j38PoKObc8E700TIzK5V6IZ6ewhz0Axy3d+/eB/GpE0dxgw3MuSppV68Xrcq7MIwt8N35kZlZQv2fsHZ4mocKvRaG7G2BcxDuvmaT2kJeFd19OF4evArr2Fy7cJ/dvejt09nJHnFYd/gYlnqZmZmFpPdfpTHazKyzC/exazd5ayV4PRWKOG7X6jh/ZN1gPyD96rqro5tlfWOffXky8/+d6/PNWevaxDKGxWZmyfJvn2+jGAV8y8f3OWvb3qVKy/IuaS7OXRPqO/YtSMgfwLMUHwn2eXE+Q7rYnFMRz4HJO498fRJL8caj+ui0ibZhies/hPug7bM/X2Gb852QBMW9BOulNWmfIc3LInqfb3r4fiNh5xEzj47LJ08lf0k/lHqutsrUd5bNu/WsdV7UOHcPxMfiwGcg5fN8O0Zv18mvNCrgMRZ2fTfEzRDn+o3Rh2j7OGc2M/N4nCcfkJHRSYjLDWx0z77rsQ1F9BQcofExDFL8FTy+vjBMOsiDjDxzPLr39ujiichT1bKuR2BCY2ro43cW7x/n/9uqWlfK+Jabvxfle7mE/FiyVKcSmu+YmXX0og/BmRGci9cKeP6Ll6E3RbaG85Px+56AuE7+LL37XF+Rl/4wevp5e7HdYyHeR5dHKJ7EuX8H3QuOkBdBctZds+uk8xslOE9jj486+Ux6IeZYpYz7yBfwXOWHXS+bkQew7ysnyLtm4lwbG9W5OtiqvOvuKi3eK85M4/pYg9Z4giz2P68bmaV4SVLdYV8sHgCd8YvuaQIek1Pqc0Dfyee4FuEYy9fT2RG8T/3jP/xjiLcPo99fbz96Dpo5dmBO0aclOAvpuCfq1G/sm0XbKxbcucaX7/sniP/ln7+O3+may9V6bfX3xGvy9BBCCCGEEEIIIYQQQgghhNis6KGHEEIIIYQQQgghhBBCCCG2BHroIYQQQgghhBBCCCGEEEKILcGaPD1aieeH5s3rmvX1oMac76G+/DHSDo8jV3eW9cJrFdTfZE2wKMJ4927UQBscQp3R/j5s0+jIWacNfQOoGdhsohZfoYj6jTfdeAPEs+SLUOpADedDR49DXKu6OmeTpG3a0YlxXw+2qdSDWnK1OmlNk9/AVVdeAXESuFqN11xzEGKS0LNa9ZzOYb3ufn8j6d/esagP6HgKkLYfa/+l6dyH5A3T1YWfadZRG7FUxOeQO7bjOW4keE6nJlET8rLdri7l6XHUOaxRl3qkKRiTNu0k6VaOVXEDe/fgtfG1b33DaUPjzPK6vj4JBHJfBwFpgHLSkB6rl6ZFTBqCCWkxxvOayvHGWwc4zM7MWpBNL8cBeUBEdCAzZVdbPVOj46f6x7Unw1rPSYZi8rMhzeSx8qTThhtffBPEPYPoUZQlTfkG+Yw0Irw2Ch1YHxs50rZNqTUx6Z/OjmFf7envg/jQiVMQj5xFf5pyjXyTmng9zjRdsf0iea4UsqR3Oy+W6a1CUb1drCA3P8/a2s9j8np/fnUbxXBqahriRx55FGKu+RMTk84md+/eD3GJ/cJIr3VwCPVUO0tY82fHcdx/7shhZ5+XEr7vLercNuh68cnDI5tZfgw2Myc5u7pxvhiQrna1gnUmIn34HTtwbveCGw9AfPCKPU4TxkfxHPX2YK2KSa+/WMRzzD4kzSbWjMin+WrdHU937kQPj3yOxxPW68c4jLh+Yl9nsqRdnOLvEJNub8TeJPNzq3pj+fmA2BgST3/n1koSCxc1u3lemdAcy1tBS9wsxdeFdOmNvZJYeDtm7wr2M1re987MzCcvktDnOkPboDrCh+BRGz2eqEeutwnrgbMAeczfYf/FGOeW7MnEOute4t5L++ynQrUvXnIc7Ney4URNs4Vzt4KnR8w1gfvfzPyYxw7y2jI89pDG5HoBvSdz+1+Ezc2Qx+DoU04bEmpDgcbQiNZwZiepzT2k57/9GohrHvoURoE7l4/iixu3OGf8iHKGrmdHV9/MYr4m+UML/jPhxni/nY/azLRF4dxci2sX+0z0d+J9l3P9mdmhk89AnKHjzg9i3Qlr6J+RFGnNL4NxldYAr7vtMqcNxd3oSTGe4FpKhtbTZifx/oHndZlOnBdO0T1vUklbu6S1kTp5AzfJN4a8NAP2oCDvhAr58fTucj2Upp7A+95qGeNMdC5v09ZfN5Lt2wcsk5k7psos9n9CYxMtx1kYude4c49BY2JI5zxD/cv3qXzbmsvi+erIuXOyDOUqe49kyJuE17s8OgfffPibEP/dx/4nxD/xtp9x2lAPaUxl71/6PI8JKzlJxfSJJq/pmVmuiGsl/JFsZq4v48zqx1fNgIUQQgghhBBCCCGEEEIIsSXQQw8hhBBCCCGEEEIIIYQQQmwJ9NBDCCGEEEIIIYQQQgghhBBbgk3r6WFec1ELbWAb6kGWCjsgPnUSddcrFdTrNHN1RPvJXyPXjTprw+SNsHMY9ZJZH7mjA7vymaeeddoQkdZePoealB49gyqStneUYDw2jr4hCem1FvOoH2hm1lNCjcLePtQb7+vCuKOEWnFdHejxMT1JWtQRahQGgavT1lHEbSR03JXyEo3BFJ23jWTHttKifl4+T9qZpO2XJQ+GfODq38Yk5OtTf3h0znbtwP6n1Hc8PZIY4+29rh7jjVdiLp88i7qHmQyeD9bam66gfuNoBXUte3tRX9AyeC2ZmeW5rwqYNxHpJEakbRqSvqBRX7MOY6Ph+jskpBfP8sbRvE56qm78BhPFDUvmteVj0pnMF1Br1vEiSdE8jlnbmfdHOvZV3meezg/5htQjfH/n1Vc5++jtwzodFPE4cl1Yz6qkTRtk8BzPkhZ/GGBOBV3oq2RmVqRzmYswV2dm8LifGxuB+EQFx5Yki/3WIM+hIHJzJ2rieNQkDeXK9Nz1FUrnvuU4PiGO/jXpk9MYUJ7FWmhm9vQz34Z459AuiK/cg54QfhPz/vBZHNfPnj69XJPWaqXSdhqJZ958DWs6wzvVpQZe883QrevVKl5fs+Q5xeVxqjwFcVc31pEd23He1NuNY/LMjOuhdHYM6wTr949OjOI2atiGAIdk8/M4Zme4ZlRRv9rMrKsH61+NNM4Dyu0saxGT90lIvk08BGcy7nwnoX2EEbbbn/feClus+yxEO/DjZNGjIgjJ28LxCCSfhDRPD/L2SUjn3mOPDw9rYcxeDB57X2BNSHz3/ovnlj5vg/bBHlbOYaV4SMDnU4wN2NOPfQmd7/AgQN4MSdKgmLXe0+ZmdP7oM+A7soKvxnqTRKGZ11zVvhOq+2nWaUHCnh6cu+RFQdtoZiYhDvM4VhX2vAxiP8J7TjOzxvhJbBPr2pN/QlLHMXZ29Dv4/cF92KZe8upKua/yIs4Db9mQX+B7azcvMe/SfLMs5vtr9sSZ+28StdbTo9TXbbnS3Dkp8Dwgj/OVkO4/fc/1VmjmyMeMalkzi7WvRB6s27aTF3AJ3y9R/nQM4zqImdlUAydmTb7GDc8Fe3x4tMIa0DrjNK3feI0Ufwe6p/R43kbnP09jQki1rhnyHI2823xazzGzukfeJOyNscSzJay29j72+/71D1ihMLeW8P/9h9+B9zyeiHu8Huf2N3uoZmjtatfwbohj6r8Run/LkodHqYD921Ny59HVKt73VGidIWng9RLQWkhXB96z7NiO69eZAt7j1FPG4Dp5Gq24LrZ8V7t+ZPSFRujmzXffdRfEfT3oBXTtC643M7Py7Kz9v+/7jeXbN49+6SGEEEIIIYQQQgghhBBCiC2BHnoIIYQQQgghhBBCCCGEEGJLoIceQgghhBBCCCGEEEIIIYTYEmxaT4+OjpLl83PaZ52dnfBevYriYEPD2yHevh11v8zMpqZQ3zGfx+c9hSJ2RW8fak52daMOW62OmpO1GmoW9ve7fhoeaaF6GTyO/m3ot9FVxDbUm3QMRWzT8G7UbTv8neNOG15w3bUQk6yhdXejzr6Rlh/rZ2dzqEdXKGKcL7n+Ds0E+zqbxX3OTp7TUYybrdUHTKJoUa+UpVA9I61E0qBjvw4zs8hQi88jLet6giegWsf+bYSkj0uCq2MV1ITs7UEtQDOzndtQ23J6GnPV8/FaCHw6P7S9GmtA0vvXHdxlzJmzqH0/PjqBbSDtby8hnUPSEwxIb5ClGYsZ93muH2DfBXTc9fLcPuI4tgpeahuO5yXmz4sAs3SixzqU7OnBupXmPs2OWZOX/U2ovxqUh7UZ7JCIOnzHgSucNuSKdF2TDn3I2pklrHcV8vCYmsG4M4/b7xrAccDMrNSJY0EUYTZ/68FHIP7O6ClsYwGv6Zj0UOs1vL57UnyUooT8UahvZ8tzY0nUdHVtxcbiSjCvzWvAT9FcbtK4MD6Ffg5jedQOHhvB949PjS3bSJ/q1qXmjhBGsfnzms5N9uxaQefeAnfK6rG3D30kIb1oni8ODqEPVqGA5yei89moueN8QLr1Ph1HvYa1y/fx/XIVx8epWZwXFEivOs3rzGeddTLh6Cyhp1JnB9Yq1tkOHT1kGiNS6hXrIfsBtntBFzgxV8dYiK3GnDeEvxDAex5fwgl7X6RUdnrNc+oA1SHSe+dLOknYtwDnR0lavfV5dsk+Is6ARftcwcPD42NM8VZgHwP+DOnYs+9dQnMyz/EU4DamtRlfc49rSdxiTw8vjs71Cfud0Gd97u+UGQV7UbCnCucR+9WwIRR7rjQMx4nsLvT4MDPzs9+AuDz6NH6nTn6X7EdTI2+0U4/i9+leoenheGlmjlkJ349zDrDHFXuhJAlfS/R+iq+II47PbVgIU/wFN5KkVLBk3jcjpPlNTOtEcQWPK3LqkFmVrskmFUyvgec7R2sGAbUh34O1rZd8D/Id7ppBlmpX2MC+ztD5DagWZgp0j9uJec79EqXUiTKtufnsHUs+MH4e85bnaTNlXLtkD7xs4Hp61MhLdmc3XivTU+e22ay1ds3um08/Z9n5+XGFrs9MwAMe5lmOfJXNzHp6cb1sljz8XnDdNRDXqtg3o2ewzmTJIyVs4Pkcq7n+fL39eI9y1Y0vhHjn7r0Q792PfkSX778M4qGduCbXsx39VpsN1//H8XFaYdzmzHWmNyt5gqQMkV3duCZ+x13fA3E0v81cMaVWnwf90kMIIYQQQgghhBBCCCGEEFsCPfQQQgghhBBCCCGEEEIIIcSWQA89hBBCCCGEEEIIIYQQQgixJdi0nh6lUpcV5j09urtR6z3pwmYnthPibdv7ne1VKqjT5pM+cb2BmsuZLOsZN5eNaw3UZL762gNOG1h7erqK2nr5AurR9fainlm5Mg5xrgO1p7t7SaN5xtVJHBpELb4gg3p/XT24zSq1cWYa9e180rKOSUs1bKboX5MkZWV2GmJviZacl6L1uJGU6w3z5/0Kmh75k5BWImv01kNXFy9ivUXKuyzlWbVO26yj3iJ3XpU8BY6Pkx68mV1zxTDEnV2YV88dxe/45NcQkjZonS6FgR7Uxrz75QedNvzDF78G8aFnTuA2G6TfGS2vfRpH7OmB7+dStIhZXzVHeprZea3MFLn0DccPMubPt5l1Yvkai0LyN/HcZ9fcP6ynmA1Q35Q16ctlvM6LJfRV6h5AHfy87+qAhqTbG4WYq9OzuI9wButAZZZ8k8jjY3ISfWG6O3GcMDPL03HOzGKdPnYKfY/qTdLez2Me1er4fkT1LuDiZma+j21oNqhf5nV7ozT9XnHJwTW+Rr5U3z5xFOImafZ6/qXm0rE2/MC3YH6MicjLKSTPHPaISKOvH+d7vew90aAxlPDo85nM8vvkWmlmVszjHJTnBjnyccn2YZvDEOs166onTawNpRQt4oS0myPaRok8PHic4fqzUj2KUwZK/g6fv4XvqNaJ5wNJ0rCFvy10/TRI957ejx29f9cHxPOWv4VnH0L2g2NvBUdYO0nRZ2dPqYRc/9jTw5kTrdFrIOUe0KNt8H2ix/WF7sNiY0+P5ZvItXLuM9QG9sLwWuupgLtOFn01HC11SjTPo75KGd94E453RcweK8vfRHnGYxV9Po/rNWZmuZ3oR8r31tHIEWxTk7wr+X5kFOdh+f5juMM+dw0nZD8Nt2MoZq+Ttfn2sXfN3DZX8MxZCFvsIzM2NWvZ5lwtyOVofY0+63icpRxnnS7COvVthmqbR/UyKGJd2nE9et72ZnFO5qVM+6ImnU/yZG028chm6J62o598Q8gzt0b3xGFKP3RncN0pT/5uVfKca9K1Nc330bRmNDtD65B5t96GVC/ZLmamfO58hvXWelM+/tR3zM/MjYP9wzgPjyt4v9/bhXPg4ydwHcrMrNHAvOjqxu987vOfhbiYwXOaRNhX0xOY68Uibn9qCtd1zcx2778c4nf8wi9APLh7N8RPPf0ExFU65zm6Fjp6MKfYq9TMLKB7s5j9iZxLg8aELHt50ecjro1OE+zs6bMQ5zpwjWdhjYnXq5ZDv/QQQgghhBBCCCGEEEIIIcSWQA89hBBCCCGEEEIIIYQQQgixJdBDDyGEEEIIIYQQQgghhBBCbAk2radH/7buRe2zbB7Fvjo60JOgpw817goF1EwzM5udxUNtkDHB7Cxp60UYR6SR3yCvhUIBNdL8FH3AbJ40CCuoaVadQf25ruH9EO8a2gXxZGUKP0/ac8me7U4bcgXyPshhX/WQ30MSYhszpG1abaIeebOJ7/cNDDhtCEjrrRPtAqx/id51ter6ZGwk5Vpj0UOBpQk7SOPOJxE6P+VqYv3viKTzJiZQe69OeRmQrmWR8qqrC89fnNJfJ4+fhNijZ50dRdb+xuup3sA2DHajTuWNV6K+YKln0GnD6Ch+ptnA3K01sA0zFby+ZmbwuGZnsJ/KZczDMEU7tUn+MpVqel87GrgtwJv/Nxfg+Yk4aWLsqzQtxCRcXlczkyUPDqpvIWmNFktYWyzA79e4jWZ2ZnQU4kny0zh5+hRuko4jl8ULanISc2ZiAj09/JTz1teJ2sAke2/HTqGO73QFfUU68qghGXvklWJYH2fLeIxmZh1d2FesZbngNcOeM2LzE6/CfiOiuULIkufBytfzViKOIoui9I7j2puqpU6E5Jni0fyC7Z2a5PHBfhuev/x1mM+n+GkYaz1jm7IkGJ2hMdhPmzwsbRN7MqVMMNkPhT03/CyNsTTfzJFWdJpnB+4vbYzF485k8LgWzmcYytNDbH28OFz0DGI/jsQ18aAvp/lI0N8pejyXwHlwzLr35L0WcHF0vBpS2sDHQb4F7GkVOwYZK3hhEGnzIn4l4FpHx8H3UQH7IjiGK+RRkdJGnq/ycS29P0zW6mNykSRJfO4YuI47h0q1mPsmBfZUSSLWe19jfeeLw/GaMYt99CPN7rgR4kaCuRydOQSxH6Puu0c+rMnJxyDOdfQ6bYgy5DXCuen4p3CmbsQcn/92ef78pfThRlKbqS/OQZISegjMUlvKNPdIsaU0P4vzrJBqV2eR7s2o67P9+MKeWy+DOF/BuUpccBtRp/pXprlj3MB1iYimZdv34FqI10l+c03aXkrNZ19Jrtk8c6xUsE1T0+htk6V+zJInkx+6/dAkn4oGeRpHS/KcvTw3mv7+Lstk546hSp4PY8d4fZLWcVP8/up17L/eXrzmJ0bJN5c8O0u0/jxZwzaUZ7ANvb3uetmRo7g2MjaFax1VH/v4w3/xJxA/99RTEL/45tsg/uE3vRninv4dThtqtD7G4/pCny9QqWB9rdXJs5XuDU6cJF9f8rY0M/unL30V4uHL0WcpO+/7nfbd86FfegghhBBCCCGEEEIIIYQQYkughx5CCCGEEEIIIYQQQgghhNgS6KGHEEIIIYQQQgghhBBCCCG2BJvW06OzN2+l0pymX7lCemYNfFZTyKG2WBS5+l7lMmq116qk60x6xp1dqGGfyeA+OkkrPptFHbgwRP0yM7OdQzshnpxAXcNmDbXe4hA1CbcPoPZb3zb0y0gy+Pk8tdnMzCe96xJp9ecCNNgoZrCf8gE9J+tAL5P+7UP4+bzrrzI5PQ4xe7B0dp5rUybnHsNG0t9VsmD+GLM51lfktpA2bYoWeDGP38lS/2fonGWz2J+5DIpEBqzRy5KiKXKKGdKML3WhVua2Duz/JMHcDUnjsSeHbZgYG4H40W8fcdpw4hjq93UWyYeH/G44dbs78H1/Fz+vxX6MQ/dceB5rYeI2qpU5f5Uwiu2hh487328VrGPPtcSPsd1JmKYXjK+xL0js43XtZVjjmPxPyGvGz2LOjIydcVrw7aeegZh1KccnMR4gc5/BQdSZrJJ+6qmzmHdxik58tA2P64lvfwfiJw8/jZ8nncqgTvrUOazRmQzlYYq3SUg6olXS+IznPT7iSDr3lxqrUerOJMt7dvA2ViGpfUnTaDTNFv2TSIudvC18n66/FJ+JMGJvCfxMENAY6sjY07yLduFRG4KU8+PTRtlzI6BtROz5keU5LOnks6Z8Sq3guQDXIvbb4H1w33LMHh58buZ2id9xjmP+O9wWIbYiQRKZN1+PQhadp+vTozrEnoFm5noGOKMHe3zQ+z7O/X1jPyPURG8mrn8R4xnVT24S3T/w/Nb1baJ4FR57PI5ENAb41E++sY8F3T/QMaUOyuSnYuT35kEbWuvX5sexeQu1mH1a2I9jecuPVcEeH869Mb/L55QakaQMD00P7w/CANc/sjuvhdincxadPYptivB+oj52GuK4H2MzM38HtsH1Q+HjXr7vuZ+SaOXe95xcoutr/riTqLVjbHWqasG8EWqzhvuu0ngfkpdCI2XNbtt27OuebvR0iR2PTtxG0sTzW6b7roEi1jav4C6H8vktZtHPNAq5fuLnmyHusxKhv4ZXwe/nSrj+Y2bmF/Ezzlkl3zTuh0IP+vR6TfI3on7M8QTZzDxap8r14Hy1XjgX+24LN5RMNGuZ+fuGgR7MmVK2H+KpkbMQX/sC9HkxMwupP44fQ9/PfAGPvbsf93nmDK6F+ORJnSOvmkql6rTBi/Ec/o+Pfwy3UcKcOHYIPTwmR7ANn//sP0BcpmtjYC96ZZiZVeqYywXyf6ZbFmvSOv3UCPqS1GhNbmISj7s86+aNRx5mZ6ZxH/H8vV3YWH3O6ZceQgghhBBCCCGEEEIIIYTYEuihhxBCCCGEEEIIIYQQQgghtgR66CGEEEIIIYQQQgghhBBCiC2BHnoIIYQQQgghhBBCCCGEEGJLsGmNzJvNyBqNOSOViQk0Ic+QuXZvJxr11CpoFmRmls+hQVulzOaV+Pwnl0OzmXwODYZmZ2fp+7i/agWNYszMjh9HY6woQqOtnUO7IW6S0V2jicYyXb1oqhQmZA6Vcc1dKlXsm6xHxx2gO83MLJqtd5LZcA8ZGidkGjo6Oua0oVohQ83w/O9Xa24/biS5XH7RyLzUSebaZE7K5niuk6hZNkvG444fHpkZ8gdon16Cl2yOjNID3zXcK5B5umNwRgaKAZnJFrvQdHxyGs/pVx5A06QoxYwt8PA4BrrweoqoL3dux32yaWpCJnXNOuZJWMdrwcwsm+FrGnN3ujzXl81m1FYj85jM09hANpNgX8Yp/e0YAJPJd8PQRKoQYH8vXAMLTExhDa41sE2nT7qmf4eePYTbmMFtFMhI7uTUSYibTTyHHWTI1kjwmGo195w/+exzED/0zUcgLpOxXC6HNbVaK0Ps+2SSTPvzPH7FrEHHEdH5XbjmXUNPsdlZzRljD9QLMQrdqjiGptQ7DTLA9FLGtwwZOWbIADii2lcoYN1hw+6EnHh9miOFKXMSn8x6i1TbuB57VLPZPNKjeRj3Cx+TmduXHLMvMu+zTuaiPtWjhE3KU+pVRPv0z9MmNjgXYiviJ6H586NEkLDpMV1fNJq4tTHFxJhdqJ1t0C1+jNd4QnNLIyNe8905lUf3B34GaxW32ouptvGAyGbQbO7sHKNZkqTPoc7FfG9GGwi4n+g+jG5K0/86lO/dqJ3QhtYamSdxtNivbKbtmorTC9x3aZ9ZYZsenzNnrKAN0tjixyljS4BzAf5I08O5e2HwSoizhR78/BTex2ZpvcVJSzOzBt43OWMsj5n0de4G19B9FUbmK13zC3HcWkPpwMtYxpu71rMBzn9qZWyLT+8noXvcHUU8n1m6txqbmoS4Oo5rVV4Tr+H6DN7L5XtonaOI98BmZpU63h920/pXqQvjXA+ei1oR1wm9GdxHtgePMV9y2xBmsZ2cM3x/6XXiWmc+24EbpHv3mOamxZxrpj50Ga0n0Nql5Zd8h8ecDSaTVBfXRIo0bS6gj7nt2L4T4qjh1uWTJ9HsvKcfc7VQwP7JUffuyPVC7NOaqE/m3M2qW2hyRfzMU08+SNvEtau4irmdo3M6Q6bkTz39LMQ7K/h9MzNnik73YoUsxsU85iEdtoVNbFOtjnlcT+mHwHAfJZ/Wp+fXfEK61pdDv/QQQgghhBBCCCGEEEIIIcSWYE0PPf7wD//QbrjhBuvu7rbu7m57yUteYv/wD/+w+H6SJHbPPffY8PCwFYtFu/POO+3xxx9f90aL5x+333678k60FOWcaAfKO9EOlHei1SjnRDtQ3olW0mzM/SXt7t27lXOipajWiXagvBObkTU99Ni9e7d98IMftAcffNAefPBB++7v/m771//6Xy8m62//9m/bhz70IftP/+k/2QMPPGBDQ0N211132czMzApbFmJ57rnnHuWdaCnKOdEOlHeiHSjvRKtRzol2oLwTrcSblyn+8pe/rJwTLUW1TrQD5Z3YjHhJmnDoGujv77ff+Z3fsZ/4iZ+w4eFhe8c73mG/9Eu/ZGZm9XrdBgcH7bd+67fsLW95y6q2Nz09bT09Pfbe9/6UFQpz+nZT06Pwmd4eFGoLPNSQq8y6+mTlcg1fIF38gYE+jLehfvzU1BTExSLr3qHG3dmzrpdFvUYag3WMm03UlxsYGIA4lyctVZ90oXN4TH39JGhnc+dkKV1FFKTLkofE7OQEbRN1MRshtvnUCB73NHmfmJmjGcoJWF+izV+vN+x3/+Nf2tTUlHV3nzsnG5V324e3Lepv53KkE5slb4Us6ss5OodmFpJWJXslBKQty3r/mQx+vrOE+oIl0qH04pTLOSYNxxC192LSCM3lUS+wRPrkuRzvg/RYU3TXWcw0auA2sqRBmCMvlFwB22TGvhekGeql6ErSNd9s4Hem572AwjC2L/7jcxuec2bn8u7gXbdbMK/dGZJ2IuufeyRmm6aHyhryEenVBgF+J9+J57hJ1/ULDl4D8fvf/asQP/7Io04bnjmEfhpNykNu9ekTRyEudqA26bahQYgf/dZjEE9MYI02M+stYb0aOTsCcT3Avq2SxnWT/G8KXaRPTUcR11xdSo+1vMkJJJjXqQyboT34yX9sWa3LZnz5iAhLksSaYdyyvPvxH3m55XJz11Euh+MX+xNx7PuuZw77WBUy7HmE119AYrMrXQOObneakwuN/ewz4mrOLx/naQzmNqR5YqykL87HzTSb7PVF2tGkcx+m/MmUMzMgb62FNtUbTfv9P/9cS8dYu/l7zRa8Ui7utkdcqkSh2Te+0LJa11fKLXrj8DXLngENmp9GKd4K7IdBt4AWk154RNt0apfHFzHdm6WUOt+n2kReeTzX98gv07FCTNh7ADsmSVy97pi+E9BxOL4h1ASP7qscTw/2OUwpFwl1vkdz7mDJPpIksZnpSci7jax13q1vMy+zcJ5WqHWrmAOu6BfFubqCpwf7Q/E9TTZxx6owu7wXgReTj5ZHGvMJrgEFNNfnnAmDFH8F3ucKrm6un9sKn2evlJRT5wy7NP+J57eRhA2zf/7jltW6f/V7P2LZ+fWIgcEd8JlaGb0xKhGuQ8Vs7Gpm/f24/sVrV+O0xjZ2Cu/t+jrRL8On9TX2zqwGrn9RRwnvQbM5XPMp0DpghQqF1+AiT/fy5G3q+rWYTZEvLreJ55pNzmMaEwL2RyU/hGzGzftSiNdjfQrX9cqFc9sMa02771f+tmV59/JX3WSZ+fUinqNOkO9LQuecvffMzMIGr2dhf9VpTsuegAMDuO4aJ3xPQx6DOXciHXs4vjWp3TVaZ0jID2N2Br9fo/PXux2vrd37tjttiALsyxx5SucTvB5zBaqNHubRLPmKVMs0H0rxSrzusiGIh3dguyfnfXrq9ab9f//5007OpXHBnh5RFNlHP/pRK5fL9pKXvMQOHTpkp0+ftrvvvnvxM/l83u644w67//77z7uder1u09PT8E+I86G8E61mvXLOTHknVo9qnWgHyjvRajTGinagWidajWqdaAeqdaIdKO/EZmLNDz0ee+wx6+zstHw+b29961vtf/7P/2nXXnutnT592szMBgfxr3EHBwcX30vjAx/4gPX09Cz+27Nnz1qbJJ4HPP7448o70VLWO+fMlHdiZVTrRDtQ3olWozFWtAPVOtEOhoeHVetES1GtE+1AeSc2I2t+6HHVVVfZI488Yv/8z/9sP/3TP21vetOb7Iknnlh8n39SnyTJsvIB7373u21qamrx37Fjx9baJPE84ODBg8o70VLWO+fMlHdiZVTrRDtQ3olWozFWtAPVOtEOvvKVr6jWiZaiWifagfJObEZShO+XJ5fL2RVXXGFmZi9+8YvtgQcesP/4H//jojbb6dOnbefOnYufHxkZcZ7oLSWfzzv6xWZmk5NTls/PaYJ5pFnIevOHDh2COE2TjvXe8znUxevu7oX4xAl84jg2hrp6fEzsD3DokHtBZgI8zt2790M8OjqOMbV5ehrfz5EfxMHLL4M4SfF3GCN9wKSHNO6y5BFBfZ8jH4vpGWxjg3QXO0qdThs6SXPt4YcfgfiRh89p9Yfz+netyrtmFC3qKiYRHmsUoy4eSdo5urBmZhazqCd+xtGSpceQQRa/P1sjjWzDRiSR2wbf0Q/H9z3S0PU80kDP4D7Yh2Q16ti+La+nGbPnhEe+B6RbmRheb1nScS8V2HPHLKbroU4agtVyc/5zc21Z75wzO3/exfWGefN9wBqbrAHJ0wI+LjOzhHU7WUM3i/3J/cu+E7uHd0NcqeJPS0dmUzyMSJcyprwaH8d6Nt2oYtzEeDak81XD9ytN18tpqH8XxJ3krzEzchziMMLrizWx61W+vugYwxStfdYI9Ugrc947KJo/762qdUIspXV5l9jCqOF4X9D4F9O44Tka9O54xH4NmYDHEhrHWY7c0SunNoXuGJvxs85rtFWI/JTjWA72efJT/Dl4XGB/MGceQGPEwnx7cZ+keZ6hHTSargavo2G+gs9IK8dYIRZoVa0Lso1z152//PWXJc+zjLl1JnG8Dqi20fwmQzUgYW895+8eqd6mzO59NhqI2ZMD8di8hDfps48I36C424/Zc4Nrm9Nsqr/cJP4CxUHaXQ77hPD5XFKRF3wWLr/8cuvu7t7wWpdEkZnN9ZFzDp2FxeXHOzO3jq/kiZQ4ebQClOrsM2lmZjQ3t4j9asjLi46L5/IBL3/R9cn3THMv0vXkvE+h4+mBcL84Xl9p/exsxLmhnyNs7drJ3s7tli/NvR6XyW+2gX0dk+9uNmU+VPTpGmd/jCbOV3JZ9G/MNuh6pH1U63j/ODONviNmZp3D6PUbhHgc0SzmZDPCbfrkSZcLaB2jRt6mKT4ywSjN40oYN+i+2PNpTk35Uqf1hD7yoMgHrs+F0fyzt4h9HVXOrQc054+pVXl35uz4olduNottT5o4L2+Qj3JX0d1eoQPrRLWCuZrhNdE8riWHtBYchryehnk4Nu7KdHHdYC/giO5BYlpjqDXYmxTb0JxFw/ihxPV/biR4PXSQn2J/gMd9poHXwrGxSWwz1dPdg7jP/Qfdc99dohpNY0D//Pu1NNOt83DBnh4LJEli9XrdDhw4YENDQ3bvvfcuvtdoNOy+++6z22+//WJ3IwSgvBOtRjkn2oHyTrQD5Z1oNco50Q6Ud6LVKOdEO1DeiXagvBObgTX90uNXfuVX7NWvfrXt2bPHZmZm7KMf/ah9+ctfts9+9rPmeZ694x3vsPe///128OBBO3jwoL3//e+3Uqlkb3zjGzeq/eJ5wv33329XX3218k60DOWcaAfKO9EOlHei1SjnRDtQ3olWUqnN/ZXrkSNHzMyUc6JlqNaJdqC8E5uRNT30OHPmjP3Yj/2YnTp1ynp6euyGG26wz372s3bXXXeZmdm73vUuq1ar9ra3vc0mJibstttus89//vPW1dW16n0s/IyyXj/3EyGPfouayeBPXBr0c6KEJYXMrEmSMR7JktRIlimKcR912keNZIaa9POvBu3PzCyO8Ic1ddpng34e5NPPNfk4jWQdaizXU605beB2V/MkUUA/m0oiPI5KBbfJ++A2BK7aiwVZ/A4fV7jkp1jRvOTPT/3UT9mZM2c2PO+WSoLF9HOs2P3NdOo26Ev0If5Oyk9ol36dvu8Zx/TT8LSf5K4ob8U/RebPL9+G1f2wjOWtKI5YxoQbyceFccQ/20+RIInp/ERRepsW/rvROWd2LmeWyiKxRNKFyFs5kgHc3yH1F9WrKGQpMLxmZ2dmIa5W8Ge9ZmY1qg0sacbyYo06/XydDjSbxc+zpGCYUnNZbq9JNdY5bqp3kSPPwj+OJCmyNHkrrqmcq/NyVwttaVmtW0GiQDw/WMiDVuXd0rlRkMFrmMt83Fy7vJXvSEnh+wHVwpXkrXiES5O3ini4IqkTHs58f4Vxn4of1zo/SJPeoPGN6m2GfgLObaTQ+Vl+SONQPXRlZxw5D/qZvT+/k0ajNbXObMn5XFrbVfqen0StHWPnpmZL/9/9zHnjlCRdqTZxDXBqm/PtFbaX1oZVfGZtjeDjdvfobnKF76zwwlr7IXWutMJxLD3fC/PIF7/4xS2qdY0lzVtJVInlr5bZ7nm+4/ZOvML7tDUazpLEHecTo/sDWh9JSLiEJbbMWJrKEZda4ftzr66FFY+bX+CJwqrm6NTuhXBeCqZl87pq3XltAV4fa1bxXCYp87pGhtfHaBu8Blej+Qhvk+Jmne4fG+79I28zztC6A80lw4jmaSRv5QXL1xXPVS21kNrZ9DHme1aP1qn4jpTncdyPfpoAELXB6Ppc2k8L7W1V3i1dx/FJQttZ46E4Srlf57LAa0lO7KVsY9l90PlJuZ/geTQXCkfeaoXj5HVE7pe09WqWxGpQrtZJXrBBecj3D3ytNOl6q3OOWYpsFd+7GT4vWM2ahpdsspWP48eP2549e9rdDLHJOHbsmO3evXvlD14gyjvBbHTOmSnvhItqnWgHyjvRajTGinagWifagfJOtBrlnGgHyjvRalaTc5vuoUccx3by5Enr6uqymZkZ27Nnjx07dsy6yfxarJ7p6elLth+TJLGZmRkbHh5e/CvBjWAh75Iksb17916SfbWZUM6tDuXd+qK8Wxnl3PqjvFsZ5d36opxbHcq79UV5tzLKufXlUs45M+XdpcqlnHetzjmt2a0fyruVUa1bX54vObcmeatW4Pv+4pOaBYmb7u7uS+4kbEYu1X7s6enZ8H0s5N309LSZXbp9tdm4VPuxFTlnprzbKC7VflStu7S5VPtSeXfpcqn2o8bYS5tLtR9V6y5dLuV+VN5dulyq/djKnDPTmt16c6n2o2rdpcul2o+rzbmN/RMrIYQQQgghhBBCCCGEEEKIFqGHHkIIIYQQQgghhBBCCCGE2BJs6oce+Xze3vve91o+n293Uy5p1I+rR321Pqgf14b6a31QP64e9dX6ob5cPeqr9UH9uDbUX+uD+nH1qK/WB/Xj2lB/rQ/qx7Wh/lof1I+rR321Pjxf+nHTGZkLIYQQQgghhBBCCCGEEEJcCJv6lx5CCCGEEEIIIYQQQgghhBCrRQ89hBBCCCGEEEIIIYQQQgixJdBDDyGEEEIIIYQQQgghhBBCbAn00EMIIYQQQgghhBBCCCGEEFuCTfvQ4w/+4A/swIEDVigU7Oabb7avfOUr7W7SpuYDH/iA3XLLLdbV1WU7duyw7//+77cnn3wSPpMkid1zzz02PDxsxWLR7rzzTnv88cfb1OLNifJu9Sjn1gfl3NpQ3q0Pyru1oby7eJRza0M5tz4o79aG8m59UN6tDeXdxaOcWxvKufVBebc2lHfrg/Ju9SjnzCzZhHz0ox9Nstls8id/8ifJE088kfy7f/fvko6OjuTIkSPtbtqm5fu+7/uSD3/4w8m3vvWt5JFHHkle85rXJHv37k1mZ2cXP/PBD34w6erqSv7H//gfyWOPPZb80A/9ULJz585kenq6jS3fPCjv1oZy7uJRzq0d5d3Fo7xbO8q7i0M5t3aUcxeP8m7tKO8uHuXd2lHeXRzKubWjnLt4lHdrR3l38Sjv1oZyLkk25UOPW2+9NXnrW98Kr1199dXJL//yL7epRZceIyMjiZkl9913X5IkSRLHcTI0NJR88IMfXPxMrVZLenp6kj/6oz9qVzM3Fcq7i0M5t3aUcxeP8m7tKO8uHuXd2lDOXTzKubWjvLt4lHdrR3l38Sjv1oZy7uJRzq0d5d3Fo7xbO8q7i+P5mHObTt6q0WjYQw89ZHfffTe8fvfdd9v999/fplZdekxNTZmZWX9/v5mZHTp0yE6fPg39ms/n7Y477lC/mvJuPVDOrQ3l3PqgvFsbyrv1QXm3epRz64Nybm0o79YH5d3aUN6tD8q71aOcWx+Uc2tDebc+KO/WhvLu4nk+5tyme+gxOjpqURTZ4OAgvD44OGinT59uU6suLZIksXe+8532spe9zK6//nozs8W+U7+mo7y7OJRza0c5d/Eo79aO8u7iUd6tDeXcxaOcWzvKu4tHebd2lHcXj/JubSjnLh7l3NpR3l08yru1o7y7OJ6vOZdpdwPOh+d5ECdJ4rwm0nn7299u3/zmN+2rX/2q8576dXnUPxeGcu7CUf9cOMq7C0f9c+Eo7y4M9c2Fo5y7cNQ/F47y7sJR/1w4yrsLQ31z4SjnLhz1z4WjvLtw1D8XxvM15zbdLz22bdtmQRA4T5VGRkacp0/C5Wd/9mftk5/8pP3jP/6j7d69e/H1oaEhMzP163lQ3l04yrkLQzl3cSjvLgzl3cWhvFs7yrmLQzl3YSjvLg7l3YWhvLs4lHdrRzl3cSjnLgzl3cWhvLswlHcXzvM55zbdQ49cLmc333yz3XvvvfD6vffea7fffnubWrX5SZLE3v72t9vHP/5x+9KXvmQHDhyA9w8cOGBDQ0PQr41Gw+677z71qynvLgTl3MWhnLswlHcXh/LuwlDeXTjKuQtDOXdxKO8uDOXdxaG8uzCUdxeOcu7CUM5dHMq7C0N5d3Eo79aOcs7MNs4j/cL56Ec/mmSz2eRP//RPkyeeeCJ5xzvekXR0dCSHDx9ud9M2LT/90z+d9PT0JF/+8peTU6dOLf6rVCqLn/ngBz+Y9PT0JB//+MeTxx57LPnhH/7hZOfOncn09HQbW755UN6tDeXcxaOcWzvKu4tHebd2lHcXh3Ju7SjnLh7l3dpR3l08yru1o7y7OJRza0c5d/Eo79aO8u7iUd6tDeVckmzKhx5JkiT/+T//52Tfvn1JLpdLXvSiFyX33Xdfu5u0qTGz1H8f/vCHFz8Tx3Hy3ve+NxkaGkry+Xzyile8Innsscfa1+hNiPJu9Sjn1gfl3NpQ3q0Pyru1oby7eJRza0M5tz4o79aG8m59UN6tDeXdxaOcWxvKufVBebc2lHfrg/Ju9SjnksRLkiRZn9+MCCGEEEIIIYQQQgghhBBCtI9N5+khhBBCCCGEEEIIIYQQQghxIeihhxBCCCGEEEIIIYQQQgghtgR66CGEEEIIIYQQQgghhBBCiC2BHnoIIYQQQgghhBBCCCGEEGJLoIceQgghhBBCCCGEEEIIIYTYEuihhxBCCCGEEEIIIYQQQgghtgR66CGEEEIIIYQQQgghhBBCiC2BHnoIIYQQQgghhBBCCCGEEGJLoIceQgghhBBCCCGEEEIIIYTYEuihhxBCCCGEEEIIIYQQQgghtgR66CGEEEIIIYQQQgghhBBCiC2BHnoIIYQQQgghhBBCCCGEEGJL8P8HAnhJ8AYZ/7sAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { @@ -1505,20 +1468,18 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACNCAYAAADB/L29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9a6xty7YeBn2tqnofjznneu+z9z77vK59zzU3jjF2riFIQbIwESCiWESE4ICFRJCFFP+I+GMTQFgIJIMEWMgSkn8YxyBjB4NIhKwAQkQGiUiWQcT3Wtf29fXZ55x99mO95ms8eu9V1fjR6tX76GPMMecac6291hlt77lGH31Ur6pej1atfdVaK2JmHOlIRzrSkY50pCMd6UhHOtKRjnSkIx3pwyP1ritwpCMd6UhHOtKRjnSkIx3pSEc60pGOdKT7oSPwc6QjHelIRzrSkY50pCMd6UhHOtKRjvSB0hH4OdKRjnSkIx3pSEc60pGOdKQjHelIR/pA6Qj8HOlIRzrSkY50pCMd6UhHOtKRjnSkI32gdAR+jnSkIx3pSEc60pGOdKQjHelIRzrSkT5QOgI/RzrSkY50pCMd6UhHOtKRjnSkIx3pSB8o/dIDP0T0EyL6z4zc/08R0T84RF5Hul869uGHSUT054jof7vj998ioj/69mp0pJvoOBc/DDr24/tPxz78MOm4Ln4YdOzH94+OPPX9p2MfAuZdV+DbSsz8/wTw+951PY50dzr24YdNzPz733UdjrQfHefih0HHfnz/6diHHzYd18UPg479+P7Qkae+//TL1Ie/9BY/dyEiOgJm7zkd+/BIR/p20HEufhh07Mf3n459eKQjHelIh6MjT33/6UPrwyPwI/RHiOjvE9FrIvpfE9GUiP4oEf08JggmXX+GiP5DAAsiMkT0J4nocyJ6SUT/3XdY/yMd+/C9ptAvXxDRFRH9AyL6Y+Gnmoj+arj/W0T0G8UzycwymE3/TSL6GyHt/4eI/uA7eZkjHefih0HHfnz/6diH7zEd18UPg479+EHRkae+//RL3YdH4EfovwrgPwvg9wL4NQD/vS3p/gSA/wKARyHd/wrAnwTwXQBPAXzvvit6pK107MP3lIjo9wH40wD+CDOfQfrxJ+HnfxHAX4f0178L4C/uyOqPA/jfA3gC4K8B+D8RUXU/tT7SDjrOxQ+Djv34/tOxD99TOq6LHwYd+/GDoyNPff/pl7oPj8CP0F9k5p8x8ysA/2NIZ4/R/zKkWwH4LwH4PzPz32bmBsB/H4B/S/U90iYd+/D9JQdgAuCfIqKKmX/CzP84/Pb/Yua/xcwOwP8GwK5drr/LzH+TmTsA/3MAUwD/7L3W/EhjdJyLHwYd+/H9p2Mfvr90XBc/DDr244dFR576/tMvdR8egR+hnxXXn0PQvJvSfbf8zswLAC8PX7Uj7UnHPnxPiZl/B8C/AeDPAfiGiP46EcX++6pIugQwpe3+tmVfegA/x/ZxcKT7o+Nc/DDo2I/vPx378D2l47r4YdCxHz84OvLU959+qfvwCPwIfb+4/gGAX2xJx8X1l+VzRDSHmH4d6d3QsQ/fY2Lmv8bM/xyAH0L66H9yh2zKvlQQM8xt4+BI90fHufhh0LEf33869uF7TMd18cOgYz9+UHTkqe8//VL34RH4EfrXieh7RPQEwL8J4G/s8czfBPAvENE/R0Q1gP8hju35LunYh+8pEdHvI6L/NBFNAKwBrCDm0belf4aI/qWwY/ZvAGgA/AeHq+mR9qTjXPww6NiP7z8d+/A9peO6+GHQsR8/ODry1Peffqn78L2s9D3QXwPwfwXwu+Hvf3TTA8z8WwD+9fDslwBeQ0wvj/Ru6NiH7y9NAPx5AC8gps/fgTDj29K/A+BfgfTjnwTwLwV/+CO9XTrOxQ+Djv34/tOxD99fOq6LHwYd+/HDoiNPff/pl7oPiZlvTnWkIx3pSN9iIqI/B+BXmfm/9q7rcqQjHelIRzrSu6bjuvhh0LEfj3SkIx2KjhY/RzrSkY50pCMd6UhHOtKRjnSkIx3pSB8oHYGfIx3pSEc60pGOdKQjHelIRzrSkY50pA+Ujq5eRzrSkY50pCMd6UhHOtKRjnSkIx3pSB8ovZHFDxH954joHxDR7xDRnz1UpY70dunYj+8/Hfvww6BjP77/dOzDD4OO/fj+07EPPww69uP7T8c+/DDo2I/vP93Z4oeINIB/COCfh0S2/jsA/gQz//1tz5w+OuWnn44de087Cro5FfcuivcZfYB6t3njIjxI5e3RJ26knJKGNwZV2ki5mWSPsre2IgGf//3PXzDzRxs/3bIfnz17xj/60Y921uNIJTGYGcwezAzvPJh9vysJUKRARPKnNIjiGMy9+nf/7t89SB8CwOTBM55/9IPNH1JxN43zHXN2B8VcN8fz7vx685C5SJ2veSSP7W/Bg8v934eH34a8AyPfCz57+fn/9yD9OD15xKePPx2r1DjdrcuONEIvv/jtg83F0ydP+en3R+biZubj93nrlxtpYyzvrsCt8t5d2K6yaI80exQ3+ni++eqLn2Hx6tW4lHDLfnz0+Cl/+tkeffgmtKX5d/YKoydf3Io4ZP4mvGWPZ9/U5vy3f+v/d9B18eQ7P+xX7sg3750W33yO5vLFQeaimj1kc/ad8G0wuvbQJ7Y+UN7b6+H3w5uCNurJxcfuiT38df3N7x5sLh51jXdDP/nJT/DixWHm4uz0MT94+tkb1Gb3RKObk3xwtC9k881Pf3N0LgKAeYPy/+MAfoeZfxcAiOivA/jjALZO5KefPsV/56/+mwmfiRAMkRrAMQVR/hxPI4o1AFGwExPjPpMPI0TyGPyxNGZ+ksAkvzHF61xejy+m21ykkFpwSqMBKIBjmZGclEY5ddT3y7+cv5d3KRRfomy2RYP3JZVv/Df/0L/2OcbpVv34ox/9CH/n7/ydLVkdaUjMDl27gncduq7D4uoSzXpdDDiG0QbT6QzGVDBVjcn8FLqqBfxRCnEUKKUO0ocAMP/oB/hj/9O/vSmaEMBpPPriNoGY+gnT5fjc3ZxPAZxhgOCh4Hr59YCbApGVmmi4wK40O2h2YR7kpzwUGCo8mnnCmAAmvKIsq2A0GM7TkJ7zdWYCnJpJ7qpwmyAzk8IPPuX47/03Tg7Sj6ePP8W/+Kf/LWkj78eS9CgCi/nGjY8caQv95T/7zx5sLj79/g/wZ/69/8foPMp8fr/O4nLe7CEh5OT99P1nafA5UqetoFSxIm/Jfx9cgosFupi52+UGCNg+TA9A5goz/hf/xf/8riJv1Y+ffvYD/JX/w7/fK3+MxjdwaOTriGK18aoxzXgb9MHxEsHgwec4je0BlE+MPk1F9SnywU3ijX/D/Y30mc+Ol034T/76Rwebiyff+RH++f/ZfyD83nvc1EaxDvmSxu4O5tP4hse+c3ykqP0w1aL7b1nUXrQ//lxs/ygFIuD/9t/+T+x64Fb9aM6+g2f/yl9AlGFKYCO+tyquN1f7lDr0CQGkCj2AdjRgXw8otYAy382rTT51G9oimQFEPT6QL3O9RIby6VqVAk0hz6QhzJI+yl6K5A8AfvMv/MsHm4ulrjE2N45hSm5HsQlvarY/8kf+yK6fb9WPD55+hj/xZ/+Pm4VSv0+3LBP9tW3kkrB9Km59dh/mt8fQ6te/lG1um/34Asvb7vOW6g1u/oX/1q9tm4tvBPx8BuBnxfefA9jg3kT0pwD8KQB48smTQuYgeJbG4yiTFApY7x3CIMnoHuXkgYExZ4VMsgloTkRSAtBEpHKmkakV5TFUH/QZesNxBnb6FeUEaEWVmdPvGsy5XOIoHWmARAglCsyXi0WJA1MOGYniHQCiwHQpKOpZXeXclrxLME50Yz+WffiDH9zzruYHQzIQ2Ht45+BsB2c72K6D7RqwB+DFCsgpDXgPYypo08KBYCoLUgraVFBa31TYrefi7Nn3kedRKQFxustBgpePQtjhIn1x0RdiwjCkPM+AwXN5guTi0b8n80rmYgKK0xyiMD84vh9S7Tm+c1Qm+lwxzq/EcgpQlpDBtjivU5ukPItaExdzLdQh8g6W32nbytanW83Fk0ef5PcrK7UNQDiCPm+Dbr8ufvY9ubkhMQSwcV8tLQkEBSi5PWn/e0Y1BwrcjjzC+kox3bCeW4AeHvyeIImRorhMx5uJChWyd5dTmUWKgjHsIZvdai5+8t3vj+dSKttbSx7UcQz02fJMzrOfehP0KdNt8sN9qXxyNJeyiJ20rfzNd9mV+ga69Vycf/SDLDL2+PwuCnVO6+Ww/lwoXZtznIZo2Q00xg56fdFbXzezvA/QZ7QOo4Oj/8A4BLJBt5qL+uyjAvCQwUh5AubhGZbuXsmliBJBn7CeExWS99bq5sYfl72HnVP+csiOIWxWs5D20pCL0g1FyQVJ0kp9KImTeAGCggo6C6AL0XAH3XoulroGM/cV7V8i0IcL+Xbsvg96RLgblmKCUhm4THr2m9Ot5uLZk+/Gm+UA6o91KvT5nj4wLq9S8Tk+7oonB5N7b963fZqObp5SWmU58InxZ8vHeOxb75Iy0jBYeGkM/LnFsv4mwM9YE26yeua/BOAvAcAPf/2HDC+P+YQgC3YsD1NvxyeKNkSASvA8jTIALncsKUAzcWSomA+hr4QW5cb8SAewJ4I+ekMN7ZVVvLUIm/LpmeDC+zEroAB+wCRWPsQgJcKpggeRIO2KM5pOXAI/DsQCKSkKaYhhFIQJE0ORKMJEBPIA3TwSbuzHsg9/4zd+g32wLij74ba7VR8KbXUnYAH0vHOwXYuuXaNrW7SrBZrVEuw9XGfhnQMphbWuoLSCNhNUqzVMPYWuKkxnJzBVdVM1bj0Xn/zqH2ZS2SIlASBJAI3CahYMUlGlcFSKblG4TWKE/M40AH6kMmCKFmweccdJsYOGS5IZR+ZHOR/yDLmMYz3WsbQc5P7nWEcRF+/QW05QbkFQCYKx8ABZx0qpMQr/qpcHEwkwtR9TvtVcfPa9f4pBKrS0QjSdyELrePaULzcLONKb0q3n4g/+4H+Mxyy2OEzMqHDslFqGgMYtpbxt1jj5Os+RvixVrDB7Aj/p3rCeY8DPEDAafa9ylSuvfFZsgqSUAKGb2+dWc/HX/+k/tAntUv96m2VTKefctlI9aSltKPVdYffLaf/xMpBB74EiAPLGnOnWc/Hpj3+DTRDcmW5Tg1Ix7V/3rPBGK8nF3OE9ZCkeDN/N3qA8XUeUkENz/PH6pmW/t7bmuidjmpuBg1vNxfrjX2OlFIbzoGfhk6fKcJqmf6KXQKxo3FjaDfzEqsXChnLIDo1y25vupC0K/ZbNHwFr8l+S9VglWUpB9cWa+Gy4qwjQSgVLH4JWe/GuW8/FqGtsWCp/4DRcfyPoVYJf8T4zo+taWCveI3FzRCkFYwy0lrAR8hkn5MhaHJ7bQ2y41Vz8+Id/gKVc7nOpcjIWckVKM7g/ZkkZtfdhevn+5uOFIqMY3sf4/d6871dnnAaNzZtsXNpkcF/aaQtMvOdrvwnw83MA5TbX9wD8YvcjhULFEPNBBOuYcL+8lkdIlK2wOoiOF1c1aWjm/MlJACqtcgLjiO4XhclmLIujcA0Fhg6WChoJ+EngTvFfHxHKbJQBFyyaxEQyKtiF8MwQ0MdHZpxdVxQcoiVD3JEg9iAfFVyfrHyUAhwLRNWfXpxbaPdguEM/hhIGjOiXiTkDg3k75JjJEk0sfuTPJssf7xxsK59EBK8slFJQxsEpA+MZxjloU5cS1Da601wkUsnarq/MlReR29A2VtO/n9D7+GyYcxtZh/2lBJ7IeFcEqIGyxxRtcMLciYJY4rN5PlMQhEqz1syo+/mmepeTJM7R3lim3L8hG471KKTYpMAl4bDYdaQMhe2gW/Vj2ZZ9V44h/9+9GB101r4rFrBDqX7LVbr9XIyLRvG1vCqH3ujjGwLEZmNs4803Az69SgLFKKZiXmwHZfaoMxfvPASCaCT9Zm5b8s9r4Qavvhn8uXU/9pu4z2/irTLJNvDktgBQ5gP98uhGH7qeqN3/qXi0rE/afcbW5IM6lM9uq0f5ww2K8SDVDXSHdVHWIBbR7JbWMX3AJ1LaJNiZ3xA42pKqAE3G5+jmXI9L5P1ZSQzHRB7oUnbJV2IbxLrG9z70XFQIPdgTZ3rgDw/qmZ4t0xdyDJV5beXGObcsoORaUJTRdw+sfWTpuMmcNgbGM+rVLb1NwYtEx+D0fun3gWyoQr2IAKOUAD4AjCKJSLCbDqJnfOg0BvrE6wj+lL957+Gcg3O2BwZpraGUCpY/Kjy/a33fe/m+w1zsy+Tl/VR2mh60NU3vui+FjKbpcaQ3GD7bx95gbkVdGDfN7k3dGdgET8v7w77Jae/2Ym8C/PwdAD8mol8B8AWA/wqAf/WmhxjRGiYAIyA4VmIBBAFMODHkoOARQUXUl7IpYl+W61v8RGEvAz6AKNDZ+iAqZ1x8F1cvHeoqwE+sdwRVBPbx6X4keR8Gx/fzIV9WAWCSusRXS7F6mKHIAfCi/LJCcvsqgR9WyTpC0Hax+qmIoUONDABFWUDfY1jcqR8PQWMM/U2Y/NtcIOKkDN+Gv6ZPAgTQURpaG5iqhrEWrD2UMvDOQSmNytRQWkOZCmY6g6pqaFMFBn7jO929DzdkLu7/FiESztfDx1OakD7b0UheCj4g1Lld0vMkv2v2IGIYdtCwIABORnqAQqNVUBZOSvkq1ixhOFzUZETo7fXcUP/Z0h4U367Iv59uIEUOm/JmumM/lu06VtI2FfPDp3fwxu+MnwK3V+5KYXLbdZF6y/XtqZf/Nr1vnyJ2LnI3KpS76OD9OKzmXWo3lse3ge7e0jx4dkuH3q2AW/dhqfjuwsV25jFMy8CmOdhmufuUk7Eh3ppnuTbepg77qSz7UOm+NqhblBGCItjb+N9Od+rH3Ju5P6n8ffg9XKU6JXSkfFiu07DYqHghlKSyQ+rE7rJbyFjN9xZh0/jc1Id675HviN5QPB7HOiFa/MQ0BZgX+yqUo0iAH6WQvn+b9Yz3iYbrbvk9unQ557BcrdC2Lay1uL5eYLVeg72HtRbOOxhjcHJygkk9ganC9WSSgKBoRaXDdSzrnfRjUW4vft9W0Aej1/vSXbjcoTjjGI3LWtvvFynuXOadgR9mtkT0pwH8XyDoyF9m5t/a+Qwk1JoDofM6AUDltWWCT7vuwqKi4pxPPaKNhaU03+4NnmRlU+YZmHcEfaiI65MCxEbApowDFP/lHuOO/0rYFvnNeYL3wQyzyKdQWwOjjQuDDWCPB3kXgJ4h8OOgWNRhrVooctDKw4GhFaDJJ+MQBd4iAbx5P6a23bGLPLQEGgNlxu7fFrgpn79v0GdYVp6TsuyGNwaKcUIEGKMBrkBEqGczcVliDt5gDK0NprM5KlNLsENdycleSsFUN8f4uXsflsAI8irfe4+QLo2lcQmSertbJRqf8xE3RZ9bKwzWihxqsiAwKm5R+RYERguNFhoeKoSC1iJSFgLNUHArN7nHFpONepcXUT7rOdDm/TkmLvLPe2xMXFgWxUVCpKV0fw+6cz8mUC5/jpuC3lkJ3shlfBn+NtFh3vXWpb4BP92kOChDGw+x5gM1/X7gz5uKW+PllvMs/3vPtAc4dph+zExlW4ttKmz938au741Gx9Q+Ay0A/9jRf6M/bEs9vsEwEqptd63u2IfR1Usp7pd3i04ok+4T3u2WUs/+QBKKzY071+JuzGaLdJjrQ+iBP9votv1IJDpDv/O4KCtbvkhVyrVyC/BT7Obnd9sB0pSgy0Zn7BjGO5XvkvnnZb+/8od6FXklmRWiI6iwcxW0HMSgFhTl1WjBw6mb+n8EGMobffBu1xtJ3e5Bz/hlobgOW2thrcV63eCrr7/Gq9fnWDcNvnn+AhcXl3DOYrkUQGg6neDp02c4OzvFfD7HJ598gocPH0BpjcmkFjcwFa61hiKC0erGyXjXfrwZxIBMs5FVr6zS3dfEUj+5Pd36mU3znRuSD/wBbpRR3mxOvInFD5j5bwH4W7d5xkMsejzE0kfAHgXnFRwDnRfrH+HSMhCVJ2iSk7EUCIrDAO23FNKiUuwkxiCwmW0VwE8Af2JZyeIHYqHD8R5nViuWReF6CPwwB1e1vqsXosVP6epF6Llx5dbxIE8CAEXghwGCh/LyPoocPBQUMTwYKuRNkDLTksdAufNwyH6MNMaUx4Ccbcz7TYCeuzy/T57baNOEejg5y1U9B9+OPrYC8lQwlY+eYAAIWhtMpnPU9USeUiqP/WCyucc73LoPSxNCKl0jy/fqMd0A+my4EBQCSSFklMxLAjDnWD6ELFlocIB3GBU8KhJXR89i9SOzpn86R0/LKK6pvI8M+iQhZYyKYNUZwOGSjWBoPRTFwFQFytxA2nWwaNHYeBmpyi37cZsudJ+iUj/vbwcMxDu+vW16E366SQeRevo5xom/B+CzGRSyrE9xvUVQ2cpXi8m1nwvQFtqS/bYReZuTc27TjzsV2B7byok2YuSP1C3xs5J/vBHox7ubdeO34Zo3RjTGiiW7WNfBDyO68OCHwUsWBfTHy40K5635qaLClf8N5lzRdXunv4nSenbLerwZ3T2H4ZP99hD3k30sDW7Xj2VMmFJWzHOUil/keovMWkxq3lLPPo/LAzW71lCvsCw/DHLrsfpdLUKpqBjyYXOo5nfIQBZSWxOVmlB241IAtKZgxVNuU3MvvVY9qQ/sDy/bxPrf5v77TrvAkejW1dkO14slzi8usFqt8fz5C7x6fR6sf67RNA2m0ymsY6zWDU7PGsxPz2BqAXxABOcZxjCMEYMKKLHxulnTOLR8I9Trz17XlvNyA9rcTN6j26H2bzam+nxmJPMNS65IPTC5DB2xxwZVL5++P/vO594I+LkLMUSZs57gvIA+rdMCAnlCG6x/QCGYK0ksEgWdzNQkovxAsQIKYVVKivGAKAZWjq5eTGCV8y/L8hxBnwxQgQgxqDMoLL7J1DYKCALCeA7HT3MRwHrM4oeRYvpktu0ADoHWQrBPAXsQgB8Sqx8iaDhoEmc05V04To5QJTX1DeXDd0C7rIMi3QfD35Xn3u5jAyCCQx+DlFjvMEMp8b3VWgcQQYNA0KZCVdfQVZ3HYxBelLoZhb8rJTyUs+l1jiKfEEcZsQGkSqBPb8sxp0ttEQqQOFU+PCpWaxIsWacsjPKYKHFXnIAxC6NXeYZ3Hg6AAaMthN4ovGT/dKAvqcegePHrDkZYvJMAOFRMntw2G9fIKk+/5DJ9DuR+X5SBpt4S8pZokw+/CypBzP5k3I++7bxyFw8as67cTXzwDtuv3Puk4Qz89lO/trzxG8Xbw67qfd8m3B6mDTZGSX+ibX2mNxV7tG+9dozP20/vW5EK7H+/gxi3022rubu4PBD2b8G0FXGLWhyWhiX3QT7KwMShq5g2oDIsIqJVuOZcZAk8DTcq0048jffnJl+m8H8xcTdib43wyr1Bn8ErbsFxeyCPKsAeIjkABlRY/CBfE6BTzJ7YTlJQDE1RjsIUV+Y94bnvG+UAzh0uLi5wfX2N5XKFb775Bt88f4GmbbFYrmCtg/eMqqqhlMZ0OsFkMkFd1zDagFncwACG7TSipZfzBppV0lPfhSC3Bee5E91Vjvu2A4l7LLvDJ3b++laBHwbgiGBBaLyCdQqd11jZKlj9aLS+gmcFTwQfgR9FGfhhBR2uCYNo70FSSu5RAIiFxUkFFJh1SBdi+US0kwTC9sHVjCHKlPeRzfUj/PQAoHDXkwdDrDk8A9GQh1mjPNUrLUaeAZJTupgtEvDjHaLFD3kKSTw0dyDvoMjCKA9FDKMdWGlUALwCaiJ4tR9ye0jaFuh5X7cvYHPR/TbQWF22gkHlQkwqHAdLUKYCBSueumoFAFEKOrh0aV2hnp3AVLXknwSGfUWAu7yXAFGyW4MQ3DwCFPJJEfgpwA6pYAEA9fLsC1kyFz2Uj6fUOSiWxYfJwAchbKo9To2HIcaJ8jjVImRcdAzuPDoGHDto79K+UyyLmJM/eg7uLkwy4Tk9f6st3LNYMSJ+xOFLikdfAEkcQNvNMCWcM2Q58hTMEsj9PhTjwsLq7evdVMzZWIt3Sf0GuI1lwLuu+S4q63aTe+1+4M/9vO1bA382UFZg0Ep4N+AP30nyHEtOu34s3q1fXFH+AZDMrY8Px+DOPt/22+3G50bq0fNs35xE8UVqyrtD6YeGkm+TVyz728nVUpsSkPZeD1xG/1SvsGEUA0lzv8x9gZ+YUzoxGAEUGUzWvmXytkG6CeLdtg1SnYcYErHoTAG8ifFRBfjJMXnkBC+pRdyEJsj4V1Q8i8DXfZRhYiuEAMPsMXYq5ZHenCRws8NqtcaXX36Fr776CovlEp//9Of4+psX4o0SPFOUUpjN5jDGYDKpcXIibl6TyQTsPdr1Gt4YKAK8N2BfwVUGXhEIWvTUe6KdrJoGn29AHxLoU+rNh6a3bvHjKbp5idWP/AkA5FijczrF8nBKhRN9CMprYWasoFmDwpGDwngpYj6Joat4HU/0Crh2xLbldK94epco5QyCp3yyGAPwAWmLzD8rkQXSHe57BOAH2eImIak9Q8nUGuE3jxQsWGZyAfwAYAKxh/csrl7MYCgokiOcLROICToBVrmYtzWotwbiGrm+qU7f9ij+qW5FFXuBSsulP0g3pABSXo5s1wpECtoYCfpsjFzrPB0PLTaOvkeIYVAcboEI+sR3ybF7YiDyMdAna2EZ/ImjnSUIOTMoROsBZK4Q5KhOTR6VYlSKMdHALKw/K88wjsE+OGAGq7qy1GzRE+qLgSVOafXTW36K6+IY5GShE5JwzLMAv+SaR/IUcUhAmNLUGwL+HNrqpydwvrs5c2jXy7vQtlMSxmPUfLupFy1lCy/vuQxhE+w5ZD/cJqty/sfapautw3/7vMjPlMoUxq9vzLvHsG968G40Up9t7Udbv9x4e/vvW4ToNxkNu8DGkKCX/9bd/36ibaXtcZ83bx2QVLDw7un06M+5m2mY9lCVfaOePFAd7k5DuSa6GB2ybtHaJcsheX0sRbdyqpSy6eh6RkhuVcO69tOXv98sxb1Zb2b38+G0V9mZQYCe0Cb5GlBhjYxW2fnZHKYgaVlEaVM7WojLGx4tfu6LylO6JH7PEhcXF1gsljg/v8D5+QVIKdSTGYypQKRgTIXJpEZd16jrClUlB8SA8wlg3jl4Jfq1Z5/KuLf32CNNb4nZKnDstYDsUdZ4/oeTmfqy2f6p0Xv33QdtvBm9deAHyIAII5/w5VhcvxxruHiSDwcwhgmKNcgTFBSgAvBDOSxbibyLqW6+H//jeJw7E8oTuxDKA0mMHB/ySkfLx/gdA1cvufapU3z4i92dTYV1KDfXKA9cn8vn+GwEf6KyDVA4Fl4sHHRwX4sTN+QXG3aPuD7fZtpmZbPrt5t2wm/zzCEowwJRxIin0ynZRVFU7L7wKEu7715MMk0MCtWLjBysVOJ1ilnD2LSB50L4TwiJvHWcCGFYxtbgIFkwRTdKB2Y5v6tSDgSg0oBRMkO09yCKwkk2SU3ukoK2pHJzbB9OU6OnTPcaIoMDlGL7UHhv9IAeDnlyYGCU+ITcpwD95HJDgOthoNAPgL6t4GwvRg3et2YvwYnB3axnbzyRRnCwCR57521Wlvuf6jWkMQ61b2sP52IsN07jLSDtG9HbHwljM2RkNRq5PqAifKvUh111+vNvP0V4dOyi3zL31ZNBQuytTWPK/pEybYFWt6Qteo8QLEoO3boRvFFJJqG4nofCSlcvNbBa3bT6iRtAcVsJiGM5s9SbTuM63IgtLZRiUGapARIQNAb8IF1H169BkOsgz0TQR2pdbIKldSW8KyMX8qZ+kUcapQjKeC+necUAz7br0HWdWPfUNebh1K6PPnqGBw9OUVcVHjw4w2w6hTEas9kUdVVBaYW6rqC1gjEG07pGZTS00mkefNvptrXcZ2PyYLJsEtQO3ZaHXfXeEfAjJ3vFU7w6p9B5BcsaHRs4Fkscx1p2zhEsfoLi7L0GkRLfVYrMPVv2lIHJQAXwA4L4MQJIwE+M76MSWNMzEKVSaSz/5B7Dw7ME4vEQVzaAwQnHoXAMu8oab4rHIfXNFkIuMFiFeHYYs0dcuBSzgF8EwBswQryUiDip/sB4V/N4m6vXm9A+MS5u89td67TP++TITaGfwyleICXHJ2odxq4EkqTELDJ216/rnaq6mwhQGqXlbnb3CihNdPWKuEqsIA0zAiR9hDSLBMQk7ooBvFQhAakYWB3hVCwL9h6GLGZGxvXEaVSawcQwkBPtAC5ipFOyJApVQLLeCQ2ZAFskXLX3ApuKCXpAannCV08IKgGl4A7GoBAYVI6dz8aBYkr9Dnyx3iG9W/D5bSmKhyUaXA/AEdreolk5ZQlCGsb+LqFnv8DO+4A/I/Up8asekFOk35J1Bl+HiW7bi+8e6Cn0wj64f+P7HWb+3D6Hw8zZ8fm3ZS0OnzfN136e+4TKvxuZ6Oqlbm6L94Ov3D/dZrQmKI0o4QaHXip0capXkuZjWSi344KuEMWYojLR+qd07ZLVnRODGwsKnYGt4SwY0j4gbznic7YCmMWjaOKBGXkDsQR+yj8UVk8qzqjgMZA2ziiCSZx0EXDY4Bq0GYPAexw+cqS7k/ce3jtY26FtGzTNGutmjWa9Ak1nOJnP8OzZU5ydneHHP/69+PSTj2GMxPmpKwMiCnGbgv2WynNPK9Gjo8b8bcd+9qpeb61926BPv8yb6Ca+md33Jd/kGfSG9JaBn8R5g9IUAihzOP4cYt3jw6lanlWIpC+AjexmCohCpFL8nuzuJYxa1K4CuR+w+eDJigj8yJ9KbDPGZolVTtpx3P4PC0FCwON1PA0iCiW9gUDpaPm4e9Dv9lgHDuyc8yIDqQPHeEUs7+BjnZn6xhoJSKDDDepb0KFBn9vmcx/WPDHPrflu3M/jPP4u6y5BBUarkhASgYnxvbPsZnQ4kroUglEaM2Gch3u5XC5Ej/51AmGwLXZTX8jqmf5EoDQd9e7DkaNy9KgmElexCEShdJnKdaWoXG5oHAVS1Yv1U7ZFfqh00eKYbyEsyhXnH1Pf5D6MVgs9txcGDu7qdQe6f37wbt6xfK+etU9hffZtpTQvCtqm+MYfe8BK/J3yEB+eQHNXa5/DjJc9QJ9yjiK+SwHJ9gCofL29fiMtmM2J7oVKKKKvEI5X5WZQa7+6bu+hMfG3/+U+Tfx3q73FfA3/lmDOMH2+X5ykeA+zOrrD5NoU69zIHL1/vnKX/nl73G6sv3aVPmyz5Hp0wDpFOSt+S/1YyDNR/BhNX1j8RIULQDpApbiVSkjX5Y9bLe+3jXLamSauZD3XLXDQgAbWOzT+h9jWlPOjJM/IjC35WOk4n7h48Wzahfu2IwbvKZX8OblqeQ8fYv8we5jKYDqdYj6f4fGjh3j27Cm0VpjUFYxWeQQVcnMY0UU5cWk8/HrwJsvuVnWrl9+G8hsux7nSfQBAver0Qjzsfm6fEnfLY3eTG966xU/U9bK54ViK4We45iINo7e5X4r38USk9EklcxrmW7BMKgCfjToMg5cVysXoSyLF2hkXHTj/cWarNEhHBPiI+AnEngpQoMT0wyH0RY2pV9qh6DaC4l0m0tgAv20+96Hc3irPrRJhT1pIycZb9P7Fyrzz059avd/j1CiPJ+e+AB7rG4EOCoGt0zyNohcrsA9ALkmMLQDZ4o6iWasT5sliKUVQUOShA/DDxFkIY6TgznHOJbwlgC29MC+jjZ2Fm+jK1gPbBnycCNkSqLAIGgpeYrEXgKR7CkZ6G7qfeXHwLA9DQdrYPr9+OemgAQNvw6L2LW+0w24CSL5d1JMgbj0/tkMlN5X1Vung3ZAluO1Zv42+Z+hS3ExjnIbJxuDM+6O959m91mKjqHHZdnCnL/YU1/e0MVkCHGW56X6GGEWsLqTmEdCHgBDfJ2caHLpz/uV7lK7jo0ySQg6cUvUEwh5JmhSPBxK0OVv8KOi01S1CT3qnQsfqAc2lbD3SfNvk0ryxQCmFtJN6D7jy+0VxfVZKQWsdAjZPMJ/P4T1jMp2griWez2w6wWw+xWw2RVVLTB+toi4slME9pPtvc+0Yjqfd8V4LgHVLXv20/R+2AcljbDzXZ0the1Kh7mzky+W0u4Ua0G+zvqPp9vT75f7WgZ8Y5lgpsXwgX6hLAz9Riif4lP8NgJnsYEK59yhCIBH8UakMTlxQJeaY7wFxdegDKKF60YUjGT2WNUmPpldJpwGViZiLdwiWDoOBqkD93CnGDKIwuATyCQfbwwDQ4BhJKATMux+l7FAWPNvyum3+36pA0AXQl6MDDBhTTxbKS2yOJdBP3r84IBGglE9If4IhS/mFCCh2uaLsED0Kxf/YJzCEwsl4sgmUzX99tHDyDJAOzEkDZMLr6xjqGZ49vOtkzHtxk1SsoFBBaw6zj8OJYJCYVzHeVg+s4d6pXmmhK14wi37xGxXP5slbYjacUuYTxJLKwvk0vfRb71Sv23XRvdFwvvRWpvL+tgzi/D1orQ5PhbXPGNDxreEbIzQmeB/y+TsFDBxKi/s03xsDTAcCfUpBk+7HTYgGn8N1HbjNG9wsmt959B5C6n/TAVpUouTA27MeK+zw6osCoY6uXpHZl5UE0oZe+fNboZte9S1qc0MJeLPoQUVo9G7fCuWAFL2PeuyqKCuCOOV1kvbj/Z55UP8FKI3dkRdL1xy8EkrZI8Az4TRfiSOooDjypWJTC/lgCk2UwB9N4rqTN3xjscUmVMGEetah5fVYw/H4uE5vG55XabuQQ8iAb+9a+r5RGWxZaw2lFOq6xunpKR4+fAilNU5PTzA/meHkdI6zB6d4+PAMZ2cnmE4nqCqTjCvKQ2eyzrGL7qkfKYzogefEVuubMcaLngrV+zUanvHgEQJKHLavi4+WsAft+WwqtlzQdggEYz0TH6WYUWkFPVLivsvyWwV+Iv+MiFyy+sH27o1gT+90rsAk+2kjA47Dmwohryg0pqXC0qcU2VLLDRcuqcMYotZr7GEnc84uD0DuTUiU1ylt37c4xSmh3C6hdXK7pjYu/YG/fQz5kODR8Po+aL/6Fn2V+qjfr5kR5Pw4AhQc32M3QzwkxV2gDaEtm/VkBo042sKs4Xx+HYX4RTE6YH7vAGfFeRBDHcXcRizxGBGokTPmI+OW08FyXfMs55R/2tXqzT/Oix4jTcK8X1eG7+TCxbMMaI1Ut229QimnQisYmHz2dt3eEfXGXlpVhm81IszyYDGm/ENfjS4ly22r3Z7z6TbJb6C7xgh7F3RbUKa/F5QXoIO/1R0yZGAc/NkiPG1/7fF1N/92c+U2TKYP3O+9Tf8tdbo15NTLYlxKHN0bvYlZxct7Gfs5T+oJqmWlxtpmG/jThxhoyJgOTDoq4IM2jHJ3tGa9X+BnS87bumtrfx++fzmADVtwse0ljlma0P2Mwf5cLOWZMg3deB0Fa7HyLeb1Rv7xS38tTDJ5Wmfz+E8AD5V5ZGGlB04RpRPQtKIUpDm5enHOa1t79Gdiz1l/MOH6M5FAybuiv74EbsZxc/1IhyeRk6PlT1VVqEwFYwyM0dBGo6q0nOBlDLRWYlBRyGebEHvO+95rT335ZOuc2/b8tnWUhuk2RVnauAiXW5jV2Nq8U7LoVSLLXD2eOAI6bdznsney/sK9GZfbL7rk9dWJvgR4E72T4M5xMG/8Ab0GSY1Y8EthgvlaaPOV+4h3yWzHp0C8D46uKBTWCgqd47PLWCiRSQIrywLIAHnIaWPhzsY44l4eZc3zF0I+cqAcLcUikP4N9VSxDcvGiZDQ26f7ssL5Vln37KRtQn+xWG4bA/EeY+sifgiSoSIll65ehCzY9nfI8u+Ks4+w9z6BPwSdBYxBoHEQQJ5D4HXZMexvqAUQk1DEygLY+9AWHI7ZLSqCMFWGKHhkHGU3JIE9vFtIyCk5ZSAkZsIIoHNslMI8m+Kcp5Qxxet4m/vTN1fu7RMl4DveKD57smqRaGNglo2JLKP2yGOzoLKwvWuMvmrxLmk/YOEQNBSMbowtFtMG4YqSIFEiA9ufHYvHNrx+YxrsVPXrPXanLyTG+vSOq78hl2GZ72glHJS8rS3v3sbbhdIbqrKL9kp7+zoXWwI70oyAP9wXfu9zPhIBWkXeXYzF8E++3+fvmxndeGMLDd+eBvd3lZflxU374cNRPrziFkRjX7OMcejqboKwUkYhHudVqdQJyo2uYtnKe82bi97Q6oeLf4lIRKEkJ0jMFU8AUTyUQgULGgGDPMkaqgI/JwCGCJokP0MCTiLklqq1q0OoXFHz+I3VTht0g1QU7ImozCi8Xkr+Xsjk7zcxS4wfay2cd4iH/kDs38HswOFcaU6uf0K5d96dLDUUM3u/bRk+Y7eHrCJxxzAOE8eM85j76UcjueygvdfXPajXBoU+EHWDTeho/NlNcer2/fp2gZ/AuBRJcGZFCkoJQqlY/uAy402b7+G5HkCUU2H7EMnPFl/CJWXun1aBCJaoAj6kdM2Bu3pEu4dwHY9eZw6nFkno5SioxkWy5/pVdh4R4Iulur8q5fdTCKGGpP1ACqQVKERmT59RURiATG+LtikpbwrcvGvQZ9/696dhdkXk0C/JAq3HksuAa29h94TEHLp09ZLSCyGmBBvj0Z9O3AoBBrwHvJXxTqqYo0pMmePOachbgRNopJHLlADOwhdk6oWw5h4iITGDtAR8BmULNwAgHwQ7ktqPCeUpHE/sB6CYjFR+9O4hnkjmCUQMX8rk4Y/CFjAju6GmxSj+UwbRPjDl9SO00z6r6DBJ4kuDRMWL9IWHICr2WG+pCpQKt46rcvG3iwqbStp0qX03tGudOWApdwR90jOIcarKtWU8/7Hvh6R9AKPtQtWGZBNuhzbZtxLlnKCRuflW6KaSbvj9DYZd79F98ogPjKQ91OgvD0jv3x8BfFDw9nI8BJ56H31IACpNwbIn1yKIhwn4ibx9Zx1u1fhl2vGWuGmscNh0kC/3485YZH/3E7wLNK+MRXMoKqZ7rwt6G1lDvjhIn92/UNQzPk87upRA5JN+QPFUX4QGY5HtWHHKU3kFzSbc94kvK2LoAP6Y8EdAAH5CaVxUsqQR/ikwAaX1vFxdqWyckJqQrYx6eXKwVoox9NQxxs8haczil7k8zr0DewcETRRwYNjw54JWGnXlwtVws6SRe/fVk2FTd8PVa1vqojqDIOm0kVJ+Lzd2y59VHrYAHeAN34BZ9R4dvjz3PvYs9m7r4Lux+EmMmdIAjYg4UVbUgD4Dz8x3U5AbLaZUrgslFgUT793vVTErKvmY63z+EhBMrnoKfFDsOYzVBPxweiZmK4JF/kIlWplerITVy/tUtEF/RRtrj28LIL9L0bjvoNFvQtvcynrVuKn6FB2lcv2Hj/SApWHe9/DKMRhzVuVjMb1JhygERJ9z8SUPY5rzHwVXL8Qj6mOdg6DXw1qRiyiHcHwgtU3MGyieL10ZuVeMuGshCZOcpl3faziCP0QB8CAExjPS0JTTxtrF98iH/4WW48gDOE9djnXd0Rl3JaJs8TQADjaJC2UGPd5SKmPldT+mWgH69G6ND/7+Ur3vy0fD/P0VnrvQ7XnIPfKcAbhTgj79ZON1iGsHgNFj3OWH8Xzu41SvUV6+S7nrDck8lt+kPnkdHbYD9efMPVHJsse5/bZnRhT2O1Z1n5ba6KvU/IOxty39LcqO8Hee0X10Mr/70Iy9357lgasHJ0I41SuWM5iXQC+U7s463LmCJc8bXm+hcunioWvOm9NGbWhzau2VD/dlWrpjPjdRlG2kpHA9KCtdU3+8l9VJcgkVD5TXGxT5byw5/xczSuMmZkdZfgApEHmAuAjoLGMynuaV4niGd9pwftxmLp6afgCgj75Lv6GoH0AxjDe6N9n0ELQPp+pXfcsTvds0fvuWdNOYL9e88lOOdg9W9kmvzH+cPmNdy37bB2C9387c7l65ozWT/rCl/gVw22tYHk9/KH7TK2ooVt/8pXg288KtVs0DmW1MKr7Na70jV69MuydPX3RKDta9mDibnHyIKPYYXPGXg9HGFUH+knuXj9+lnH6EkagMU1pxvXfgtgWcg12tYNcNQARVz6CqGqQUoA2YJPiWB+CLo8liZ1I2UQDTYKEoqzDWRDe094dCB3VFuDcqhY+RvklRInl3x90TL47CiUojO1qyIU+cIJSoMEAVh/mlwjWiIEhBaJHPOJ9yWHWx8okmyuLqFecxQ6w7vGSqgvWMEos2xQqkdNrBUKk94kl2PuQZranCrwnYQVoEogGzyIX59C6K07iM3BnT+/CWDBBTCKmeBScfakGE5DeXFu6SVd0XDQbXXlY/BXHvuif2ZgWCI8crVTNOYyhLlUVevdu3kRC3raIfPlGxhvVB5vGGKN0UtrKQ3hLZz2cX4HNX3rrLRWs3bU/3JvV593R3sORe6F6VtaEaut8zN1co8/XEpu+BCNHVK3D4MkYchKcl1+hdy3b5Orx5uZ8CNky9pbS43nlKoAyQFYpD08bO+T7FpFcJcnRAR0jtski4K0X5X+W1pxDxCVn2kfuZh+YsilEc6hnTDwHBjdKDXgFArH1YhzVUpdidRMFSH5y9HSQJ4ga3BpJrvKLi0Jb4TlEzGU6GAvQaa5veZ09jpY1UkbgAyxkR9OEM/hzpXojZJ2ufrmuxXq/Rtq0c5R7SiExM4aQ3KgC+rL1+KIJU+c7l9/xZyENEN6pWYyX0V7Dda9NNK9e3FRd9J8BPPGUHQFhACmWzGKiRffUbbhiMNj+bTDBL4CcuAvG+CkxZqaTxERWxf0ih3PXvWxgXCiAIIIbyAUBiD985+PUavutgX7/C6uIcpDUmD59Anz0AKQ1MpoAR00ifVulsOhmdEqkMjIvIbJEWnp6FZ5HmQ6GhkH+T4vM26nAX6o/o3tqagnRJ5yakIdgm3i+7SHURDpkX9eGuFkGEk+KWDsPSUbaCka0oArScOBfOoIBmcQ2T2ell/gHwIe8YG4vhALgA/AS/cm2gjAGxhiIjrmABjFAhjhaxB3HwlYeCC4ud51hrmVIZKy4nTMFFiNNBZDHIdtqd9CF32YgL/ZX23OApQk9F+/HI370RJW3o9qBPHmt9PSELdJFNUQJ/4t3CAjIJGdzPg/pl3Dyqi6X827hi3iMNX/e2vK1cL8eUsp0WQwcGf7blf0NKDCdK79mgbHxbKbZuKYx+W4Zwry50nzW7Id9y/Uv/jNFgHJQae8Tm72EoEAEm+CH39hiLeidejx11GA6Gwdf9Wn+En+5IVta35/a1f4F7Uzxhdq/8k/LFuW5xCyYIFocU44gArTfDT1O0RAayToDonr6RS0+2EVf2uBbSjvcNnZH0Dw1iHXNMB1Xkly5cwUBg5ZNOosBBmUc6sVdo18DfMcIIAXgK08iXv+X1ObXNAN2Ur5w2o3slfnvZ8ntNzB7OeTjXYb1eY7lcYLVewdlO5L0wRrRSAv4AOdB3HGbfmlXocBSk/x3fKao2xfjcTwbpW7ftbrubWva+Wn4IeN2W3jrw0wdSkjaWqRioYfhm/r113cs+2KU5WN93Nyu02Z9V/jbUkqgMFzrcZplIukkMOkveA86BrYVv1rCrJZTW4NkJyFrAICmpqU5UNEqBnifrg1jXpJhv1KLflr3rcqF9v2mf+DpvoqTc5IY2+vsNxfWeKNJm/YXDhmKS1rIwslet34yoVKR6lmXFPKAkkiB5ckXZBjlZEspLwDUwUYGBkMdySg9QRlJyprENlAKRFgsbEuEoZxGV06L9kF0mYxGlGWVRW7lfyjfxusw/rhpRhqQosEaBLddcDYQhxCr2TFgPLx0N+7B3P5VaDr7x2oyc7Taud/DmW2TXRe7VoeyIIsUetKn83/jEtxgQuJEGGBeVC8/g1W98z21r5LaxsY+rV6/Im9s5dfswnzLNxntsz1fszDZlhfFXjW23md9wOB+SEg/cIqfsKndo5T5w3BiWcgcaWuHcJZ/9waLe69yiqL4YX+YzEMLvsyORXb0y3wrFhs24EKUF6UCArf3Vp9yCYU4U/26nPV+2EJOjq1evlAMLFHmdLPpkyxjpnZvJpZVoT2Q4KGVXr5h5jC0SE2SeRMX1aD7huZ4b/tZKF2XG9yTqHeueJKTCMofKfiICKG6WRRknZtlvy/zQJuAznEUoZZ4s7JUv288iCETZEjqkKTcJ4ybZPfThYWl8Dt2eu+6//g2pxyX24l9y+jOzTy5ezjk45+B9jtAUx2Z/DPPIJe14yXtkqG/Er8f4Sf/+RmzKsfTFAn1TPzNtrsB3X3lLDlTk847F1Xfn6pV0NS5mQel3igJhB3o/pCsafIuXpasX5UlB2b0rrTjheuO0r8jTOA8zFXFF5oCqMgwkYC07i+XVBdYvnqNbr3D+xee4/OoLqKrGo+/9ALANdD1B/eQZzKROqDnH4wLSUdUMOR2sfHFxrYHnpHjJX4jjzvEUpBxK912Nq0OdvLUtj8j4ymBnY9cxzdBdohwXKliWGGNCkHGFqpKjEokIxhhorfd5637dR+/m3zZUHt6W+h4pClxx8Wb0QJNS4qDia+nqRRxMoMO96IQuzlAC1Cji5BIGQhj3DJACqTDmmaHYQ5FHpQnTuoIG4HQNVBN0XgHOwDqxC4rnFuSRHgUWBQ5biMQquHrRAKygBGAxYt0ZNJg7Kb3yYFZZOQs/ks/8JsWE6D3LBWCE1Mb3QiODamiwis0km9STRgaCJA0XwIEQMTZfC8FyCEZvo1vWuCh+E2R4b8CgjaYLLT3WpMV7bj519/e9l7bamWUxaId6S+CHw9e/nfy4JfV9jwnKJZcRAW965n7Z/yG0sh157JSMx1+OwnO527nIZ6AEI5xo0zVw3gEs5wrcR5sRYuBcFg/fXJ1A/WMY8t0dGXKZZmP1v3NdxyjKy+Vys684treCU8rl5fdtT/c0n+zqRYRkZXto3CDH98xjqQ/6yMUm6FOMPcQ00dWrSLtzvIcyCvkdRNCIltMEDYIOL+9YBQvlWFERmHIsn/5fyWFQyC03ESNHhullMXihfHu4BoWHCpmx7M8Pk95U7Ud6/jY5yTpPsNah6xo0TYPlaonF4hpN06DrOngX4v1wkMU5breq/tgr6rCjRNxrJ95X9lR6Bo28Y1nmLbqx7Kvtj5Wr/Jbq3a34HTTQNXfIg7vonQE/KQhVBH4SABSFdyAynhjbI9KG9Q6hx8CTZUBg2lHBj6deISipHIOFxHsx01DDct5QiOQBMJRnKCfgTAVG5RnWWly9eonrn/4TNNdXeP4PfxMvfvIPYSZT8PICqlujOjlFPa0xeXAGhg5lBrevJPAwiCwAD5BKE1r8WzwQ3OTCIX7wzPDsw2cBdMTmPPSKegPdFfTZ15rHWov1eg3vPdbrNVar1cZ10zRYr9cpGFp8NoI7RAStNbTWUEphMpmgrmsYY3BycoL5fA6tNebzOabTaQ8sGlQKt1JkGRi6Ecbxz8Fsk/mteHoBAJSOdYgCxKDicXogCyBKEbQS2URxsMphH06X0+LqxQoKOixBgGaAmOFIgZXPh1sEDFZ7hvEeBh5To3A6mcAoQoUpZjxHxwq0YrQrhmWGZcDGeUARBArgbbQdD/700tDFa5XuXSXKxWXCwJ2I4CmH+IEL85AleoDy0WyawxH0cr5CLDP53t8j6FMKaP3AcGMDaNvqW2omvkhbPBfBFCrzFv6Vk2+WySl+UyygpwUNX0TAunhr6K5wAx0qePyWHPD2mOmGVN7/dWSxv58zju6Dhu8U1OHe0MxqZAoDhlLl3qF0b2m2aL5NiGPhZt59WyrskkaggU3l+C0vzbeiW432G+TtxDEGPDY9lvijhE1OMeKi7EcE5y3W6yW6tpF13fG9uXpVcV0kHuUb2cqn30q9MTnKZrfN0l3rwy1GCRXlbslyyKbLKVcYHG9Nn5KXrPl2bDpN9mSBU4rfByCR7+LalGckFWc7j1v79F2+MshDW9OMVwCywQwAiJtRgAbBkIA/NWnUoW6tV2iK+ExRRIlyV7weWgby4PMmKjkeR2Rpy8OxLlnXyp3MPNwkOzwv/fbQNplpbBBsW5Uyn9gKUCDLKKUc03UtVqsVlssFrq8ucXl5jrbr0KzXcNbBWw/4vNmqIC5ffZ3527zSvAGV+nlssy1z5DYtsH/aJH2/2ei/1cOZd76JS/7bBX6GnVLoAL16F+O1RNj7C0Xfpat3HVarcvBHi5/IxKM5V8+sq5hw5aKWhJTQw8m4ARJcVoGhvAe3DexygW5xjfbqAuvzV6imU7TXV7CrBZRWgO1CMF0xGo4WCQnoCvWgsIoTotUC5zr2dCfObVnomVmROuyiehOVAT137byP/bbNHaD8lCBnHZxzCeBxzgXmuIRzDuv1OoFDQ+BHa52An2jpI0ck2gQGxd/quoZzrgcY5bqFOiN/JrmW+r8Nx312XciAT9l2Od39ESG29w2sMaSRaSc1T/MAUT6nxITznIv+7DkfIplvnNIiZBR8lYHgrwwBfkjDQ0OxQqUdjGLAZ+AzDflCQEPYKYlVKoO9le/ek9l7fZkt76JwS3GClg9S8RH+GdsLHvGGPyjtcqfZ8sRIPXjkYK6RugYetakUlrOgmCPJjS9eF1mPVFWyj1Zg5SS63Zw41OlUI7V7a1RaAY7V/ab3uUtt9zqCfZui0CtwbDFH/15xVDaXzLSwsC3LjENmcF7JoMS46FGedyU/TgoLF2DDYWlEguh/27wYeZo37mx74r7o0KN9y5TfaK8ou/TSR3cHF44yZoD9/QA/QLTgZHjatDpL9aIt91HKXJtjYLg+9H8YmzfbWm6TSllv11NR1szFlidRcS/N8DqnGLhVbyyqvRIHleznfR/y6ZirV5RB+mne/Hqj7FgqlYdlIOgNErtHAzAhD8fUP0luID/2xI7E1kpuuKMiJZuj4iKpE3s0ftQ5qMiL0XMB4/voxDvQdmvYzW+xj/Kzu5/qy8qb5XAvzWaZOYTJiDX2tnpzdO+y6Gwnf0H/SboNI8nc/T+MTMlt/XR/q0vPVfu2z26pbu/+vmLvPVLJI/eRo7ZIB7cs8+7gz7ux+ClAivQ90VCJiCvDyB8Vv8UThRCsfAqQp7zG8A9AVur6X5my8iceWfLFEMFAgTyj4g7GWgF9Li+wev411teX6M5fwl9fwHVrNC+/wfLsAdxqibOPvwu0DaANSE9BWsnE9VFhlWOx0zhiFRbL8AeOujgi4+//SRtwOfnfIm21jtmDuq6DtRbee7Rti6Zp4L1H13Vo2xbeeywWC1xdXcFa2wN7mqbpWfw0TbNh8VO6ekUwRymFuq5R1zW01snixxiDx48f4+HDh6iqCg8ePMDJyQm01qjrGlVVxTfGNkGuXCZ2Sak3zdf9Rb9bUJoClCyPKIybBKbEtkI0IQ1HtrMPipML1x7EWoI+k9iwKfbS1gopT69YhnMIsqhJTuSq4TEloAaj8g6qc1BEqLXs3DkQHmhCWxM6D6wcY+0ZnoGWZF/Mg8Ck4EksjeKE6MvTYZHMWmQA2xgaHiq+V3jAA7AIlkoM2bkT9EreSRUOYkEoy0JaAFOioHuPWluJC+/5BMYqNBTtez+UjbbBWxhl6Ml8m4LwOyizkMV7yYe1o2D9tlG/3fSmuyHvmu5S363C1Q3Kyl7tE8d2L1kp5oZ4V0WCQlcYjE0afEawO2yGhLJiv8dymQHHHghH2bo080jWUJLta4KOEn1aI8W1M9a079Z5f1TIFqF3Yn1GUgV6U07fW3FuSHefssHYcbOU+yV+T/eKaoHhvSg13jnYdg3nOjjbYbVaoOtaaG1Q1XMoU+HQRJBTvcAka8qYxU+ZeHgvKsTxepD56FzL2vyWGu1JYS2P1zflN3yPElQtk2+yjTK+UZnXHnUdJFEjw+AQJEY2eZ0iFGpEUZkoAyH+HtMP+Wb4jQa/FVnlkU1p6wuekPhUpYCpFvDnRGmcBE+E647hO4YLYyfteXCRZ6xZ7FcOJ2phy+KfKyOfaTc48yWZoyOLcTkwkn6Vb4vsw7kOyVvj20QlADNWt5tHHLOE0QCQPCoEhEZxna0ClVZQKnqZiKdJHn03l5t5g4zLqMtcL65xfX2Nq6srnJ9fwNoOzbpF23aYTKbw3iXdphfapMj3EOE33oTuIgJvrXPvdpDp3+3rIVbqbc+Cvqy7/zR8N6d6IetX5cZbb38lcuqNv3waV1RJgcK6hySOjxyVKK4o4uoVno2nelGxcCV+yH0MKJ9KnSwVCITKATUxyHkYdjBtA14v0b16jqsvform+hLN8y/hLl4AVY31V1/gSmnYR0/Qfe+HoGYFVDVI1+Ieg1SICKYqtASTWBJFbZXisULIjVeAPyKoBNH22x9tLVFknm3bYrFYwDkXmNw5rLVYLpcJ7Lm4uMDr16/RdR2Wy2UCfkpwKF7zgDEPY/4AMnFiLB+tNabTKabTKeq6xieffIJnz55hNpvhBz/4AT755BPUdY2HDx/CmKoQJMrFtRjfgdvly2IljwnHrotbG7LKAUnrDPpklShPirj7JO5aYY/CA2AHZi/Aj3cAMxQ8NBWWcOTDCxB8kO48AawjTOCh2UGBMSWPOTFqZkychV6voQioagelHBgabAyIKlhPuOw8LjuJ90Oo4EnCR3syoMjSoiVVofzFRqXAdJg94OWNa3Ywwc1JArAzPBMa8uhCu3il4MOpf6wVHBdgR1JUQ/yvQhiiWO7huzCQmLFzGnQlbVsJCqsI+bo51gq/gT6PjqnKCATDsofXI3VLCkf4l0d/3rjeh24XWPjbTfsKbqULNBCn30CBGeS7DxEGY2MI2G0zAyqVjzSAaPP3cB3L0J7yyGKIlR8D3jp45+DhYdnBsZwSqKoKSmtQ8B1NVr7F/MsWCRGGvr8xQOUV6SSR5YMdRlyIUt8M63Wbkb+HMoNinNwXMRCkEfSVTYgMFvupUKhBSniLt3C2g3ctumaNq4uXaFcLCWzatfDeoZ6eYDo7xWQ6PXjViYDKENjLaY2bc2QweuK44vwbylvIiUsXmfjsRk/sNSzH+y9ausqXHQF3h/MXQDKrGylqk/XkvPep7tY0RDnKwiGHJAFKR5U7yzPlqV7o3adYnYJH0oB3Fk/RIJ7o4JoA6PCAhwA6RIyJAeYVQRPhUaXxqJJNX7Xq0HoLxwxHObZUCbaXp7Rx+qes3DZ+kqm/dm+2Ty+AfhjPsXM4PR/AqQh8ABJw691r3gVx+uNChtlccEY2q5Db1zHgwtrjvIdNsUXlpC3ZWJZ4okRAVVWoKwNShNpUqCrqrUe7qltiZxQ22Tx7rFZrXF5e4vziAq9evcLLly/grIO1Ds551PUE1jrEkCYq6bvfNjknWPzvK8vcCPoM9LiQLw0Sbt/iuZ/xOjIT751KwGdf8OdG4IeI/jKAfwHAN8z8T4d7TwD8DQA/AvATAP9lZn59U15JIS5vbBQY/xGmwwWgwxRdvQJDCtdDX1x5unT1itY+km3vKErqFzv87P9Fq4e8YBF7wFnAWfi2gV2v4NYr+LYBbAsG4MIJX3Y6A3dtUJZ9qrNkHt2+fKo3h/eW90+aZWElL9pkZsqcQZ9igQtt/iMi+uYQ/biLSnPj/dJnqxxrLdq2Rdd1WK1WWCwW6LoOi8UCl5eX6LoOFxcXOD8/R9u2PYufrhMTSO89rLXoum4U+JFo+LnssXg/MeZPjPsTAakYNyiaWpboflxreqcjFehmyYS5mJ0ptg+wzym7B+vDrAzFb/1fGcXQjJZo+Q0S3EjDv3AahQAvMXXMlpOSSMwh8LOHBsMAMARo9iDvQcRQ7KC9BSuPCoSJMgIIOYYhjxhDqGAF6V2yiCMCLSXBltPuf+wqxZzMr+V3BKAmuJ/FeUWUnh0Ky7FLKf+a355zHQMdpB83BYqxwdO/F2ufWqknGBXJC8unMZKmiwO2SFuAT6LvU/lAWUBZal64ENsxMbny4b2EhpsAnwPtfr0VflrSXu/eS7/72TtZQ40kL619MtSSfs0fZXytmJgizww3OM5dShZzYmTIAgCFjRDmEOI9ChWhDoS8VMa65cK4uB/SHlC+ifMphVDdolgAce6O2ljsSb2e3vupDY6xZY680QmZZX6xk2mzxnnN4wSKiHu2hXMWznWwbRPi+niwixsOXlyC88ELB52LipA2PYbOXiVXKl+m5KucX7lkh+PttFfXbUu0+/7w1wQYUP/uznpSGKtUPsG3qHvu69HfeqL8YeZiyCt9i2tyDgNRpizeMdVp836PlxZphjIHKIPWIrYHwAmc3dgJqDSh1mIRYrQcgsHggkVSGkO9tTN0Iiewp78+9t6u5O+9F6eixlRwIRoZ4NR7lkuZIQk9vbLf+ro4Tn3Qp8fPSoBgMPCZQ5RDBrxn+Qtgj3USSNk6D2cjCCS8KjwCQOJgKsrhIYg4n/ycOP8e858B62zQbVq0rfw55+Csh/cS+uI+oIbDrYv9F9wuw5Tzr7xb8h4eS57kUOqN9fG0OZvNeXFruXALz9yWz6GAuKE1l9wDNk8w3k77WPz8FQB/EcBfLe79WQD/d2b+80T0Z8P3P7NXrQER7mK7M/UCOMZ/e2Ja0kBFvaT0Wew4UzD3DlZBKh3/LBZAgVsn8CiZVEZJkaLZZ3BaIIQAtEFoic+yKKcmuIXY6ys0L55jfXmB5atvsLp4gXa5gG3XQSD18E0Dd30NV0/g1ku4diXlTj1IS0FKCWBDpELBEZ9XxYCWliHy0bkl1FkBiJZDhQVQnye/APCvHrQft3XvxlrQp/IEruVyicvLy2TN8+LFC7Rti6urq2TZEwM3x8DO0SooMsII9sQ8rbXpVK8Y5yfSmKAbnyGiVIYxBsyMxWKByWSC9XqNFy9eYDqd4pNPPsHTp09RVRVOT08xn8+glILRYjnE2NIAEQBKFicFMDXCFEZyOFwfUjGtxnT8UHg8dE5O5qI83UimhlZi4WIUo6IIWspJd4CYq7KXviBF0F7yqOBQwUPD4wQtzrRDDYcpd9B+DQUPbhpYq2Xe6Tkm+gQGhA4SZ9kWgpuHwjrwgfwqHIQvaV8KEi5FhIY4nCjGqBRQeSSuokDw4T06yM5dR4CDBxPBEQdYCEmhFUXV54WlaNdevKN7mIt7rSmlMJdUFQZ7CzCLNYWziMFvk5OWItlBjSA76TAGNIiE7xAizypcuwZYUqrr4IK9B4c5GptOhCKVhTRSWxfUfWlXzLE70Fvjp98qGnRByTo4/ZWRtYrr6LMVlZfkKsoAW4BlA8CJbg94hu88vJX7nXOwLLvLbJT45JACpbGhkPemI08Nf2HOj/Dav4IDyTcMwDuLrlnBuy7JIiAS96RqAqV0TybpyzxFa/Ig497F4QX9g1EUonojIFwxg50VEMd7OLuGdx28c+jaNaztgnvXCj7G8mGg0gpK1zCTGZSuYOoak9kJdHb1OthcJMipXtGYc5NV9PkbFw+W10Aa5omy1caW/iOgb6ZTWuBuoTL/1Njcyybp8iOKSlgS8/0Bzw5ic7+o8Bq9/cXR19l8z97anOTzlMtfwYHmokrATP6kEhFOskNUxePQHb8fn+jfK35IvwQL6XDbkYdYv0nQ8IkWl6+TWuHRRNSvpXW4aMWNnVgsmfvrIETWCJ0a41txj2OMjanYtpzyipvJ5RuluVm8Ur+dCmEwvXzBi/rWYt+KdTHO2yjL5M0FsbLyzHBeABvnOVj2SND4CPB01qG1DuxZrLGi9Y8Tixv2HqvVEsulWCTGzU+lCCfzGU7mc2ilMJnUmNQVlFKYz6aYTacBHKLEKst1II5B5x0WiwVevnyJ169f4/Xrc1xcXMB7Fv2WVIh5xmnj+oAuXX8Fh9b7C9q7nmPJ0rQrfBTYy+ZQTBAnjopzIK6xBT8EblZWb1u394RuBH6Y+W8T0Y8Gt/84gD8arv8tAP8+bgn8RH5BQaGMljljYE/sYkmjMvhTCFalAKhIF8BPNn3zSgYCB6UvWR/kQySgKHqDEVinL2L2SwLCGAaMZ7BnrC4vcP2Ln2F9cY6rb77A4uVX6NYrdM0iNiDceonu4gJGG9jFNdx6GXitA4ycgqQ9AV5BzijSBQYfjnbn2Dpy7DWRWCmQ4qCIGTD50LQ+nPDlSyXnGsCrg/bjCI3NoeEkj8GYnXN48eIFfv7zn2O5XKbr1WqF6+trXFxcJEAngjqlBU8ZvNl7vwH2CCLvAireD+4c/4bPxj8iwvn5OaqqQlVV+Oqrr/Do0SPM53P86Ec/wqefforZbIbPPvsunj17BmMMZrMZJmqSF9ueNBUWnyDNRuE3/ZWKOLbylIP2YcRD2WchLjLGUgal0IcEDkdNyDsoxTBadkQq5VEpB0Xi0kDhrC3rW9iuAXxwy9AaRMCEGDPyMMR4YBweGYuKPCZtC+1WUN7BtRaOrShO04eYzxzEPkjMWi0TdDglwwa3zzAr5DSutJD6BEQlVyxETiIWPzUL8KMIqEjBEOCYYbyD9R4OQMPi9uWJ0JHE/gEA5niSGJIbWVZwQxv2gZ97nIvbR09fMZHeFgXMgb2D7Vq065X4jBfAjzYaptICACkFZYzMHTJQyoiQTBoKweSbC+WoVF64XxcO7WWdg7cu/ZDGnxbX3GhVR2nX7M1obMfkDnT4PtznxfZugEO0VJFbwQuGQE+E1csTtsvVvBS74hoGZnhrwS4APrYTy1lGOKaWwc6jbSxsJ2flWUDcO7WGmc+hTRUEYAEgw7KeeE9yyimV7QHwc2j5xtoOi+tzdGvZ3Ik4SD09gTp7AqqnABSUNiClenUTqxef6tkbmwfaLUzZ4fByK0VBCsgnpUYgghnwDt538LaFty3W169g1wt0XYPF+QusV9dg7+DaDt5ZVNM5Tp98isn8IarpHCdPPkE9P02yYkEHm4tEgFFh0wyRjVNRHGUFPA2tyNyHKnif7+00otzSGWmulaeBjiUYAIZZooi3KSk6pdof//XFcqWCXC6/BkifirpQBn76defeXJefRsCfcme+GDMHm4thvZBLhXia11ZXr6J/s1VQ4QJW/BVP5Hco3hYQ0McwF8+KlXGtFKYVo1aEBxOFp/MaAHBtLWYNQTtGy4TWI8iKCMw16zfMAJNYoiBwi8KGfbw5mIKuE9fQouPCZnYqr5dPDBkR3iIIhb1RHidJHp5vRc+4iUrAh4sWitR5j7Zz8B6w1qHpLLxndNahaSXGWNM6rNadrEUAPIv3hPcOzjo473D+6hVevXwBazt0zRpts4ZShMcPH+LxoweoTIWzsxM8ODtFVRl89OxJ2CBWMEZDJxl1aI0metLlxSW+/vobvH79Gi9evMDLl9K008kUVVWjbQUgHzuA5g3b72DrYikzxO9vWLuQDycZnr2DdzFGJ0WlBQQdZNQsc/ZzOfA6eNCFdd/Mhi18M901xs/HzPwlADDzl0T0na1VIvpTAP4UADz+5Gm+j/4rUf+hIhHle5Q7tAcMUfEZ04D6kynsHPOugmM2YeBE9zBOO92Z6VNQ3l3XoFst0a2WsM0armvgbQtOJngsASmdkz8v5srkg3Ba1C9WMO2kcITEciVTExTXoZ2RlCzObXADoLlXP5Z9+IMf/ACboMZYAf1pVQqxMQ5PtOa5vr5O7lwXFxdYLpfpewz2HIGZzdO1eAPsGf5Fi59trg1DACmmj0Gm4wlfANC2LS4uLnBycpLiD63Xa1RVBWMMjDHyzoqD9RYHt4JCkOfNoNxFU92W7jQXH3z6/dweceilahR79uUYK7uaAkgafleEdMId4IFgRQLXga0E6RbQzcjJFuRhFMOAUcHDkEdFHpo8FDsADmALDjvnxFZiAhEgkXwEnDOQ5wgCl2r4aAuXZHGZKxyus6sXoX9UfQTC4nuBAMNIp1doEisgAFDkwzHvlKXk3DR94n47vkk/ln14+vjTkTG9WUpvWejt1sX65XninIUPvCvFJGEnirUisNaQAPQKFPTWaL0gTRF5UFSYYuDdWLUsTMs84OTCk3YdERQVIuT4Mf25M9Iuo9dD7pRApSiYH26HDLjjXHzy2fd6ldzpgnVDdWnkaqTsuwFeNFRqi/4a0UZz28cxx0AM0Mwsa6G3onU6J3/MYOuAAP64roPrLBgEp2QbRHQ6v+UNS6An/MV69wEfjI8kAHeYi59+93txpYN3PsR9iJobQ5sKzlkoZ6EUwCrs4PcabjDWN+6P1mLrt/5TPLjqO1OOEwf5YfegS3MqrxqpD0TY9mGjw4mFj23hugauXcO2K9h2ja5ZoFtdg9nDd7LmK22EH2sFbQyqqkZVT4HAq6KV4Ba601z86Ls/QDxco2fVgXAjDeowpjkmjIrwQDYqzGKGc7PHtUeaeANAuolC0bkfOK+DBTTRF3mljlRUOb/7ZhS3XhyYmLioYpRCU97gXjJAgIuezDNyelpBt56LkyefZtCGcvD4ba5e0p2FvEP9+0neTk+VwE/x8oFUmDMZIhE5XyuxJjMKqBSh0pJPpcQFTDOgUriccqzJZ88FjXKPDpyHNiiOgpSeepkG0Ce2Tc6H09iOhcWCs1JBHN3OdtKd5qLoGjfTNj6eloGQRsJgCM9wzkucnAD2dFbAnraLwA9j3XRo2i5Y+kSYAfDOwQWvgtW6xWKxQtd1aNZLrFeLIN8StFKoKtkk01pjUlfJVQtADgA9aL+0se18CmmxXq/RNA26rgNAqIyD1sJX45g9sCwzRreei2dPvivDZqSLqOSbAG4GOnJ6GnyKnu2y9WJwVSBVlFEur+UETuN5D5loW5KwKYlBNmNvM1yJd6faV07bs/6B7j24MzP/JQB/CQB+8Ou/wnFRiX+l8ijKUWbAqVt7A3pgghl5IWWQhIiye30B2vTiSirKJwoQktmdbEKE9AqAlvsaQRn0Hrxeor26hl0scP7Fz/D8d/8hmqtLrF5+A2qWUF0L7cPkJoI2BrquoCc1dFVDmQpUVSHGoYMIsXHJZHh4RNudjGMV7w0qMLBgNg4Vcjj85C/78Dd+458ZzKJ4vbvc6ELlnMPr16/x5ZdfYrVa4fnz5/j888+Ty1d09WrbNh3JXoI3JfgzVF6Gyl9p5gtgqzlkjBUQLX2UUj2rImstrq6u0HUdrq6u4L3Hy5cvMZvN8OL5czx99hR1XePRo0c4PT2FUhqmqkVYNRpnJ3NMJzUIHtrbFDzYBeWYQxRxCgPwvth32Y+f/P4/zHG++aQsFRRi9URcI4kKRNBGgzzBgFCHMUtKwBl2QLu4wuryNXzXwTZL2NUV4D3mJyc4PXsAozVmhnBSEyoizDVjSoyKGJXpUEVh0SJY9RG0ZijjkwSmieBZjnyfEsGyhg5bkY4JLTQ6aDAFyx6WZwWgCv2O4iwqx7DsAz8Kk4tZgKgQcFFDLA4cMdZgWDh4UmEGB9QouLJRodQdcl6Wffid7//+wRKzg/EXyJPwj0LAAyNaYLTrNZyVU3Rc1wbBQqy7iGSuGKNBpGCqGnU1ASkFrQy0FusfiZkt+ZPSIGUAUgEYrQJ/FuGIvYdbr7BeLQNQG1pLESbTOWgylfmotsdL2UXDVr930WhPKvvxh3/wD/VxOaDH324t1PWWyz5P3PnYjYAQ9/4tRRMOz/aU2chX2Mm66T3a9RLduhEAyFrAu2BFK7Z87Bya5QLdepWAd2ttsPI5ga6nUN5AOQVyDHgFDwfvdJpnaXMme3j3xn9pNfomVPbh7/8D0odKG0znJzCVgbMtbLuEdw7N8grtciG8SxtU9SScAqOhdRWAVA0K1nQCtOp0nQ+ooHAghLRw7pAY+48TyFWEa91CwjO8j751CPlHP6fcXr21abDxEgFcb1uwt+KK4prgNurguxW8beCtxWpxgW69TO5dznbC65kxnZ9AKQMzOYEyNUw9w8nDj1DNTqDNBEob2VATNOk2cu5OKvvxV//Ab7AGEK1DUjjuKGxGpSK0H0c3l6A0pxYvMaGgOEc5MzftAACJeSJlgWR3Wbxub9e6ZPthzSKIxY9UV06/jCuQonhiXhEPizi/H8vvysuzhOhAKe4uEl8L6XROIA+HKMGmvAsbwL6dSHygtNbf1jv7UdmHD374+8MBnFEfkDKVioJMwROL36M8nV8qu2NSmT5e904KRIo3WBGhDrKVZaBjAalPKoUHU41aK5xNNc6mMo/PGo0Ha43WEVbOQ1txNfLESNhm7B4OVo+IcSHH7FnyO3Ds33SXivkb5jRH3i0AUOyp7CIj6VVPiYoD8o6bCFuor2v8xp0yzjqjBEh2LPLIarXE5dUC1jqsmw6LZQPnGUoZKFMDUOisRxvi57SdQ9vZnpEog+GshXcC/Fwvr3G5uEbXNri8OMflxWuAPV69fomT+QyV0Xj44AEePTzDZDLBYvkZ2nYlYSJO5pjPp+Fk4QrGVPDBfWy1WuP8/DU+//xz/KN/9I9wdXWFF89fYLFYysnCVY26hshhxqS4pOqOctIhqadn/Og/mqf8KCAyZGA3UxqVnDeYfdfCNQ3YB2+XkFDXNYyfypqmdDpMKcO5jLswn+0abzE/bpUbQr24d+e+6K7Az9dE9GlA/T4F8M2+DyawR4XFpTikq9xdSAyKCj/gdA1EIIQi88paTUofFYyk3UW+Ff5UAHgUBVcCoGcCQJrAYQExAKqwsHara6xffYP28hIvP//H+OK3fxPd4hrLb34BWl9DubCTGfI2xsBMJzCTCdSkhqonAv4oQMOFquUO74pvKjYaKDFiRVQcsa3yX1rUMkR0wxC6ez+m2kbiwa/9adF1HS4vL9G2LX7+85/jt3/7t3F5eYnnz5/jZz/7GVarVQJ7IiLuBzt6Q2Vo+JkEVCAxwJIRDiPex7zKzwj6lLGCYrDoy8tLEBFevHiRmO1HH32Ex48eYTKZ4Dvf+Q4ePpITv2bzOSaTKWazKT779BM8fvwImoBaE0wMIhUGHFH+G2u7G+hOfRjnIQMhOkscLWF/KMyVVJvoHqUIldFQXkFpll1ZAqzr0NlWlJyrV3j9xU/kNJbVFez1a5B3oKfP8OiT72JS15hNDc7YoDaEE0eYQaEiQJsOxgShoqUkkFaGURsHBIBoSgwPwpwIDRgdNMgFH20oLFCnc2VUukI4eUzmRwRzmcWtKwI/FNuF5PQ+HZAvcfcELAMGHg0zPBgtIfjl9xUD4sjISwH0sP0ofRl6bmOq08a3tCtR8oZgvSjHhC7RtS3a9RLrxbW443AnllfwMAH4kUDoU0zncyilUZkKpq5AIDgvp14ABKVraCPg0HQ2g5rNQUrBaA2tDbx3sMtLLC/OBeQNc0BOaYLE8WCGUhqs9jsR4h3SnfsQSKpH/k6UFLk9Hi6uB3mMJR/hpZF/7hLkS4W1/NtMFH5hTm5cznZYX77G8vICYA/lPJQPpwEqhVor2K5F8/o5Flfn8N6htQ2s66DrCc7wHdTmAcjVAvxYDyYN5yyYTFhvVVr7hd8H+SCc8rkrplpBd+5HYwxmJ6dgP0e7vsaiW8F5i2a5wOL8BbpWrEMnsymUlg2CejqHUga6mgjooUURMdUMpLTMATURvqUUKACs1AvkwkhaIgs3ih4Y/TfNQmZyhmMP70TqUFrc52KWG0QivImbWrDUC3HcbLeGa5dgZ2FXF3DNAuw6uNUruOYatm1w8folltdXUr6qADIw9RSnjz/C5OQBqukJTp5+D5PTR1DawNRzaF3JuuQBthZZWto5M+62LgIwJMq0U8GrGeLmn1ouDvrI66MFS/iB4w4y5/REpdyW19kE/qTklF2pQNmNMg1ZjtMqUR4GxQ+UAQHFAmBFcEKHcSE4SEwvf8SA9nmNVAFQZMj66MKgKl3SgzguNeZc67zuxnqFJyhAJUWMhTIy34Bu348EKBO5qcBWEXRL3RLlRmQ1EMgbqpwsVaOcRuF/zupEeFcZMzJuFICJBqZa5PHOMVonm06nE8KjmcbEaDycGTyYGRADj1qNJ61G4wh1KzKKZwkibC2nPo7jQoFhIX2QT/6K9ZRrpth7wteTJL1lbfAlI4/dFfWq8Fm6iIk7P+9YBHr0RuvinSjwMA+GdRKf5/xygZ998SVWqzUWyzUurpaw1mN2coazs8fQpoL1QOeCTBgCOucXFKtk58LGmLW4uL7E+dU5mnWDF998hW++/greWWhFMEpBa4VHDx/g4cMHmE2nWK2uYLsG08kET58+wePHD2GMwenJCeZzDWstzs8v8Pr1K7x8+RK/8zu/g9/6zd8Km+Tf4PrqGlVVYT6bQ8arQlXVmE6nmEwmZcD7+6A368cgzySF/w4UeRgAkHciW3gH36xhl9cSp5I9XDC8MLM5wB1IG2hTQ1dTifuDrG8NbX/3kbi2SFWDXzYnxe5pEuUx7iW8Gwi0+6m7Aj//LoD/OoA/Hz7/nb2eCowz8qgY7X7ofpFxr4I5JfCnvM5MKabNANBglzRrsEjASMorXsaLODhDnYmhQNAIy7Tr5KSuZo1utUCzuIZdLuC6Rk4kYl+cGgKQDj792khwR5VjV8TlPy2Qpfifyi+EiAKtL3HLnjXQQNzbMQTu1I80ljfnX8sbUYnoug7rpkGzXqfj2S8vL3F1dYXr62us1+sEsJSuWeXnUDEpr3cpK2U+Y2aVJVC4zTXMOZfuy4leCm3TiAsYczoCHhDhv+ssJtMW1nZYPnyA2WwKrQgwGqyDYqJNcpcRJl4K8oWIvpsP3W0ulvkygvAax1AU6ZDnbEhDHLBRFUDNYBHHTLCQI969bdGtl+hWC/jVAn69AHkHtCdQtoE2BOMZFQOGCYYJiqPFmo84J+KuHSDArA5cP7vxAUweCKeD1eRhgq2cCJ0+vU88bSwCXllgDcI3SUDM6DOfjixFsPRDYMiBeRmWo1fDYfNp8UjybSw3P3IT3W0ujijwI6mAUK0ooPd/yfdFKRbrDB9O1vHBXY/Zw2sFb0WhJmZoJSCNBG216AE/DCgjvtdKKTit4IyG0hqejZyW5r1YRnTiDphcw1hAoazh9Oc55Ur37o+1z23ub1LS8LBHL959LhZ59/j3HiDOIKPievzZXW1VguchdcYHi3+HlHulGFtxQoSxxM7CtnJMN3w4IMEHnm4UmLWchNmt4dsVPDuwa8CuA2mG4hYGVkBydlBwwZpBiaUYyUYNQwXhMIDYySolNUAY51tb8Y36UWkDKJ/i+IiAGcZ520jdtbi+gq3wJG3gWca/0gbKewBiERRP+mSloYL1AFF0Z1Wh3Khgb69Z2UuyKxqsaV0H1zUAAEPCi7eNdQ7KfQzEzd7CewkK77sGrlvD2w5ds4RbX8O7Fm51Bd9coWtbdOsFumYpfWgQDreQDQRjaphqimo6Rz09FUtCMwEpDfYMzzZbJtw8J99oXYyxJzfmE0fek9dE0WUKDbicvojyW7aeoZSSE09mxD4tyopvx/21undqe9kC/WW7JzdEsTbahke5uwRcYnKxhO0fnxJXuFLeitZGeT0V5Ti6tlMJ/EQ0IQASIZP02w7OdkcZFVm3KNojydW9dLlPFXK7c0pb6AKFjBTfhCBtYIJsYYIblwrPxkNWKhV+U+LuFc5LSKCRJ5YTvxQQ9k1SbJ4E/IT+j5t2kTbE72LsZne/fgOltuD+db6BIg9OP+e+jqXudLkE3mAu9qhYt7axOR58epYYgtZ5NG2L5WqF5VKAn8ViKcCOqlFPOmgmOE+wPi5bDOcz8EPI3gcu/PlgYSJgg4d1VtzASGLSKa0wWa9R1xKIfrmUk4i995itVphOa5jKSLwfrdB1XQp1cX19jevrBa6vF1ivV8lNTMAdCjFLVe9U4nveGLuj3k+5796ofv01TNhN2HhwFmw7sHPw7ER2BOCtgbcVFDM8KShtgWgkEU30Aj9Mp2KF0jbG2Ngk6tVqUEfmkWeG79EvJet8eSO3n/9oRUZkut3tvM9x7v87AH8UwDMi+jmA/wGk4/9tIvrXAPwUwL98Uz5ldUQR88EXUtwIFEuQ1cSEEQQ5qUPBh/pAj4rgjyqsfChaBSFb8OTCkU/xioogQUeLn/BMNPUlEkV04hkTD/i2wer1Cyy++BzriwusvvkS7fkLuPUK1K5QKR/isRHYE1RtMHn4ECcff4zp46eoHz2BOTkDqhrOBKsEzotUjCcSlxgRGUMbxBNCoKCSpQ+HT9/fAQQwGC6/AuD/fah+HOYfxWoORyAyA+umwfWVHMn+4sUL/OQnn+P6+hrPn3+Dn3z+OZaBucVj28vTvsYseoauXEChCBa/j8X7AVAcr0gog6GJ+0qeCvGZruuSBVAMEl3+5r3H69evsVqtUBmDy8tLzOZzaK0xnc5Q1zWmsym++vIXePToEeqqwqMHp5hPp5hOp3j20TOcnp4GZSW92bDfUEzig/UhAQnI5MRksuTIYSspiB1QJKthRXKCl2aG0gStFUgRnPWisHUt/PU57Ouv0V1fofItpr6RIM5k8ch4TI3DmSGcGhGQKnbwrYNV6LlXktIwlQGREtPWygCKYLRC7aVmE1KwYHTs0TQWjQNaJlnovewOq7Qo9q2+YiBmJgBaB2sT2R2zEH5k2CW+ZCBHvhuIFdAcsgu69B4tUzIPto5zEGkOsZ60RnG882HnYmRcu5g/ZQUjjzGxIKiMAXvCbDoDn53B2SmayqBSEmOla5Zol53ELmkbrLoGzIy1MVhUlZzWFiyBQBRiBYVdX11BmxqkNOYnJzg5OYHSGpPJBJPJBOw9Ll+/xuX5azADVT2VOB5VDbjToDxQUtapJ7nvBcYUdNv0ZVkbz90DPx2Wm4WlGwU6GnwZft+31AJI7FMO9h15Qrwr/RPWAAaIKVgKsARoXi7QLq5hmzVefvkFLp5/DQLwYDbByWQCVoA1hE4D3rUw7jXm6gJEHmbmYbSHqQmnD1eYntZgZdGZOgCvGmvM0EGAEqZaAFwK8gEApkKBTcBBet+DyjeIqzIpVNUU8wdP4G2HyewEVTWFbRuwb8F2DbCFtx1W6xeQ2BNR+ACMNjDVRCyY4hwiDWUMtKnEaq6aoJpEq6AJdCUm7aQMyIj1HZQWlB6FcTt7uNU1mtUVnO1w/fobXJ9/AyLC2dPPcPb0UyhToa5nqOopCBLQ1Hs5kcu1SwF4XId2eYFufSWnma2uxLXXdlhcvsZ6GYI121biGykNMzlB/eQxjJlg/uAZJrMz6KrG9OwxqukJtKlhJqdSbyg5LScCiAn0pTQOAx1uXSRxI1YEkOe0deCLKRTFLPYSp0q+OERLK52k1PAfB9Xbc34XFNxIKVB0N4dYlpZKNlOwPNqm7MdWoaDAIINKSREOmRkvFj0EQHnOQCJckCEBchxcvQhK6SADicuSC+CPsxKOQNbUIIeD06YnEAOvclGBopFBMi49y5gVme8gc5HA0GjCGhwDvYuHAShu9AX3emT9Ih80AwAaTJXkRgoc4kLI0dwc5CcBrxWAmQZODaAV4WSicTaroYmw7oBV48HweDRReKi9WDbbNdplK+3SrDC1S2jPABSMUvAEdGB0YSPLg+HIgyHBISRMACDh0MImGAoLMWQ4xhEV8l3+JQJ2suEVN9IywBSfkCHLOXgucxjv4dq7YDIE4N7XxZvJeY/OWjjPuLy6wjcvXmLdNHjx8jV+Hix+WivBm0WMrFFPT2Eci1u6MqJPAsENLupngfeQglEGyhDm81M8fvwUXdehMhVOTk4lPhkRNIl8NZ3WmE4mMEahccDPv34OrQg///IXMFo20SaTCeqqgrUWr16+wMX5Ba6uLvGPf/ef4Pz8QmIINRbMBKUMzk7P8OzpR3j69BkePXqEBw8eoK5rVFV1Q+vsRwdfF0vwZ/86lN/Cv4EzMiReXCMWpm51Dbs6B7sur1Vg+K5Gt54CSkNXU5iwXpqqhqnkIB7SRtZMUToQLf2ScUmqS5SrwiQJiHwGVqMlIwJf9UG/SIhG4XswpufFu5sp+qn7cuxdXC33OdXrT2z56Y/dujTEXQYfwB4PpSSGhgpmkiowNGFGcarlTsigTrhWWZGnqNiLOYIUSZKpmOsigT9x5x+QCaopKpscZC+GVh5ayQI29R5T62DbNV68/BqXn/9jrM/Psfjyp2hefgXfNqjQoSaG14IeOq2gJhWmjx/j9NPPMH30BJMnT2FOH4GNhlMGPhzdLt4/EaQogC6KDJrSgqWgoFhBQQdcqwSBigHRb/x/wsy/cZh+DLkXgVc5LPbOS9A07xiXlxf4xRdfYblc4Wc/+xn+w7/39/D69WtcX13h1auXKX5DBFFKaxt59yGYl031y2sAPSCnBGmipU4ZG4iIUNd1z0InAj8loBSRdGZG27agoNS2bZuCU69WK8SdrIi6K6VSsOfJZIKnT5/i7OwM89kMn3zyCR49fIhHjx+Bqgnq6QmgGb6IOl5O5MEu/EH7UCMKsSOAAWUrFiIPBTnpyQCoKVr9KOhw2pNtGNzKTr29eo32+Rfori8wqTVOJwa10XikLJ4Yh6lxOK0IDyrAaAJYrOeIPLiqANRQpKCUQTWZgkiH/jJZSAs7rjI7GZ0HWifB+BoQ1s5i2Rp4UjD1BFrXwid0FLIZzoUgoSA5QUpL21uWuAiKPbQPgaNJAJ86jPuTEL+gA2DYYu3k+E+/XMO1VoTOELAYSgOmluiOQofpx8gHAUSLhjGAgIG0gMXH5FNAKVUZgDU0MWrF8N6imVSYGILtWqyvgEW7gPXAsl1jefFaAFp4RNUoBioEAM9edlxIgB+l5SjTk9MTnJyeQmuDk5M55idzeM84f/0aF+fnAICTs0eg0weAn4Ld46CQyJIJlr66O/hzW9BnJx2YnyIrRKmaWejYdyeP82O9PG4uetySMuaauRPyWBvmHhZuUbjEpcQ5j/bqGtevnqNZLfH8pz/BNz/7qcz7Z08xefwQrAitcYD2IO5g7CtU6hKVAR4+0Dida+gKmD9cYTI3sOhw5TXWbNGhEhcgMDw0HBmw0gBlxacUppLVQtJHDyff5G4TuwE1maGazQAArmtw+uApnOvQLs6xfPUFbLvEenGFxfk36NpGDopYL8DeBcuAGOPHAKoShaOqYCYCpE5PH2D+4Al0VaOeP0R98hTKVND1CQydhhhBwu9EbpBNLu8cuuYai9dfoFsv8fXnv41vfvoPQaTwya/+YbCuUE/m0I8MZpWcotW1Ikx726K5fIHm+gVct8bi1c+wuvwa3nZoV1dyomnX4tWrc1xeXYGh4PQUXtWYnjzAd3/lO3j87PuYzk7x0ae/ggePPgqxjSaANkGZjKezcDi62qLkWrm90/XB5iJBrDI8Q4LZcyE7AskqFAjKuHehvh7E4oCjiGBI4B+RzGRnh70HW1e43oT5bSqoAPz4KH+gP7dSLJ8B+FNaBiXFFFFZT08jKkuaAe0ZxATtGSpYqGuWqHhgFl9m50GkoKsa2oirXcsS58czo3MW1otrtNYKOrj+UWyLWJ8khnNR/8jXFEiH0z7Fguwgc5HgYSBxxCjEAOk5KinZiInKvQprSrSIEjAkgD5QcooWhXiBxNAh3l3FjEmQQB7WhCcThVoRHp5WePJgCq0UlmvgeunB7DBXCqeaoWFhOoum6cDeg9YNZl2Dmhk1JpjrGsyElhhd2Eju4GHDW3il4AMY13aMzgpo4xBOngJEhglKpuI8ruBdgI5kEytuBgkcJAMmWjyDAcdZLo8WFXI4TRj33stpjFluP/y6eEtyzmO9bmGdw/MXr/A7v/NPcHV9jVevL/Dl18/RNA1IVSATYuKoGvVshbr2MPUE1SSCAFmeEgBXGkWRhtIKrDROTx/A6ArOezx6+BjNpw3ADK3ElV2eEFnRe4fV4hznX/wC1na4ujzH4uoibWgpSCzUq4tLLK6v0bYNXj5/gYvzc7G29h7sAa0MHj54hE8+/gQff+djPH36FI8fPYbSqreB/SZ0WL0/0Cj4czNoMZR9kgWv7WBXS3jbwK0uYBcvwU7izDkvoKolhQ4GTAQ9mcNM5iBtMJnOMZ3JJqQ2E5hqKrJ0AIGQcIQIAkWfn6CtBxm00NR6IBCx4BwAgjUyEDfJsmcFep9le4wBPuNQ0d3o3oM7lySLQQxYzIVVjShy0mDoN06YgGnXswR9kAGRmDZN2PLZXPhmneIxh0WSWMe4u68gO//aOzl+tm1glwsZdI1YObCzQLAOUtGqhABdGZhJjXo2hZlOoKsKpCXQVKmM8eCznCAlCEREeWcincFN6J3McM80wBsT6BMXCImN49E0DZbLJa6vF7i8usLFxUU4tWuB5WoFGwCfGNNn6GYV75VxekqwJwI6kUowqPwrT+kaA5DK54efJfBSKmDx+dIFrHymqipordG2LaqqgnMOXdvi7OwsWALN4FwAHQ6rkO5NUdgplcUoNiZmE9y7ohAXcNEUlF2luRhMu72ARFUIUV4rjWmlURuNWpMEcCaGgYdOcKW4iDF7gA3iLBBANygvwWVCYnFFoBShtlJjQ4yKAAeCZh/cQTj8hXcJf+D+e5ajmllMhInDmGQfAGkPjnwKkrfzDOpYtuCsFX7QigBNLgM/XLmwi33gPkSxMJQMgLKmsAsiERYpdoVKieDAnuBMhaqqQABsZWC0AYxLx+SKUubhws5K5HcgiJASAVnvQck1UsEYJcfDa4bWwXquXaJrxf3D2UZ2cpyWT2+lOCUWUwnYz0eKFS0QF9fcOH3v7X67jdH45skhl9wttAcL2Mbfy5qNGPXvSI3bvxr3H0ufjDSngCiciWLgrLh42aZBt16jXS3BWsG1a3g7g1IEjzD/0UFxB00WRhFqDUwMoI3DRFvUqoMCoUIH6yswKJwEKG5S8fTjWMneuhoBnzCvt42NuxMngRBAApojOMveQTsD7tbQpga7TvhbbMVgsu6dhVMEpWywpLAAhZCuroX3rWwwaIKpKmhbA6QBPYHSFSqGgD1K3CkVqRAkX+YNe3HHde0Ktl2iW1+jWVwASmO9ukbbrMBQmHVtOOEPYrUTTiztmgXa1RVcu8J6cYHl1Wux/lktYNdyws1qeYXV8lpiL000YCo4JpCROEZmeoJ6eop6dib10gZM4tbmbQs4OcktT8jMvW4e429GScwcMsyw0RVj4onME04B9RbwnYx5UlAqH9iB4MbsXTjdNYJJMXgw6365Y3IqZ162jeNF2bU3rDkrSuBgVR/uqQD8KHg5MZNtXPwAL4CMZg3NMq+iSzMQNm1ZQPkUCJoBsEsuDio3Wb8+IRdSsrlys6fQLYlZ3EM5yOsxcHlCexWIDJil/bmYs5n/E0g56TdkuU4F8IcAaBI3b03irlUroNbhUwFGA04DnSGwV6gp6xMq6BLsRU7RkLKgGIpimVGmzY4LDMBrsWhkhlhIi+EUiGOswWJ8IvwGSDuwA7wVGUhlnYc5b7qncsLmFTMDzsnprM6B2MPHQ0q8l7hb0fLtHqk3lIqFWuTXPGm8F/euruvQNuLetVissFrJyVhN00IZiOeE0mmj2DkHFd+30B+GhRMouFuKm5WpKpFzSA7yYUaKYUgAXHCHdc5itZQA0l1nsVqtcXW9SMH1OZyqen15heX1dTr12FqbyyYFpTXqeoLZbCYhJqoa2rwVV687EZUcq1e/24E+QxVe+ieclO0d2EssSvYd4OVgEg8FxzYdEoPQfhJ2wIC9BgVgVFzIGUoL42etQRzikEGjp3Tk06OSCl78ihxBL7znhjfO9ta6d1kTbxn4iSSuI1Eh84VyxkmOj8BNVF3y4hau4woZmPZwgPSQHBWteZA3VYsjJEs/YMMOxsux0XPymCMsjs0KerFCu7gGv/wG66+/wPryEnZxAfIdwBZMYlZJWmN+eorT+Qkmpw/wne99Fx/94LuoTs8wP5ui0g6eACsRCwCE+CLxWOR4tHHm4GEnJda3aI9egMftk+TQlIQyEkbbdS2891gslnj16jXW6zW++fo5fucf/WNcXl7h66+/xpe/+AJXV9fFiV2ud3z60IJHjv8uLLqCxU0J5MRnSheemFdMM8ybiMKxiHJtrR19Ni4G8bosyxgzamI3jAnEzLi4uMBqtUL38CE+/vjjgDLLEfGTyUQU7AJQehtECJM/KkeFQidfuXdqR/R9N4pRAYgnn0RUuyaPE81wFePk6QN89z/yK0CzwsmkwoP5RNyz6goT40G8hrcCBMjmm4dRBFIGRteYVhIwWJkZtJkhnlyQTpuhrAbEXToGMFWMEy0C6pw6zNjCQ8HAQJP4RTsn5vkeDLZezJfD+0czfO4s2EnA0lXboOlaKPZofCu8gR2076DYobEOL5cNFq1F11lcXa/Qhp08yceBlYY3Ffw9AD+pQUZ3U2jjG2/8krmgUhpkajB7TGYyB72zEox7MoW3LU4W15ifPZZA0M0aq/UyzeN4VKrS4nsOoLAJYji2uLo+hyLGeqlxfSnWdKvlCuvlSnZ+SYQgU03AqgpCWoXJ7BT1VNwoJ7M5JpNZWpCZ+qccbb7jTbS73d7GQtwvZ9vi/6YcvVhQeuXxZrL0WfKlIdwTa8VBgQ2nQ7EHXCsnbbQN2uvXWJ6LxU+7OAc31/Ca0C4NVrWH0QDVDFUBWjnUVYuJYVTGQ3EL33kQV3BrB48rQE0xrzzqyqPDBPBTVFzBEmGpPNqiqSJvS7W9F8BnnBiAc9I2zCS7zKRRzx/h9JmCtx1mj1c4efr9BKx0jVj8UDIVF9dpbzNI2q6vREG4usbl5WXoBAOE08HmJ2c4PXsEbQwmJw8wOXkocYfMDGRmYHZYv/oputc/gW2WcKsX8H4F9govn/8CC4i75dOnH+Pxk2cgYvjVa/j1JWzX4PLll7g+f46ua/Dy1XNcXJzDOwdrOzgrR+o6JnicoqrnePLxD3H2+GPMTh7g489+FU8++gymrlFPpmCWMxHhGDFkLXmHCI3kU6venkITrT5ynIUc/46RxSxnW6yuL9F1LZrVAovL17BdA0MatdZQpGBIoSIjAF5YY4gggbyn4nZQz09Q1RUUNDwBXkXZLpQYQJ/IX1OcHSCBJhJvSZRLuZFdegg5jIJyBO3CPWfl9Fn2IL8C+SbXkQWQ0pWHUQ4c5DAd5D1iC8VOuIED2HECDYQXICIXsYKpfXOcINn0odG16+7kbYPV178DsBNQIrh7RQCItIaqqxRnU0X9IIAfAFBPTzE7fSwulrqCUhOAxMJeQ9JPFGGmFAwBZ4YxIwcDgNol2ss1HEl+p4gWQh4TL65wbDugawEwpgqo5hMZY2YKmCkYBMtiyezBaD2j89LGFmIH6zxjpTxWMRi5Fxd1ZkbnKRhuMdbOou0svLew6yu4bglFQGWUxNhKo2RA7OGtlc3crsNqsUDXikULOYt0WqPtWfy8VUpLVTzNiRnL5RIvXrzEer3G8xcv8fr8EtfXC6zWDRDAmShLMjOs7bBer2Rz1jp0zoUA96JFESQUiC7isiK5gMmpjEoxjK7Ak5nI1iZslgES9yecAkbMqKpawkhoCeDvnEOzXqJp1lDWQtcWuhLZFdrAB1fK6WSCujZ4/Pgxvvv97+JXfu+viDfBg7Me6PO2dIjb0X6ARrIQ3GLlzEWagKmHEwYdmDswt2BuAL8G2EOxnD7MALhZw3YLgBTcskYbXKOTmzQpKCMW6iAFZUw6SEFXk+BirWGqKXQ1AZESS1xlwkEu4aAmZhhuYdCFtVAFWDd6nMTIan15FQhrC2dMIAowh+7Rtw785KByPqHnirz4siNbFySEJig1FICeckCIpUEB/iCny6AP0koewZ88ePJyHpMLc7YwYDwixqPgkuaaBdzVOdTVFfDiS6x+8TOsr69hr84D8OPBUHBQ0Npg/vAJTj/6DqYPHuDTH3wfH//K96CmM+DBFFAWjhgtExSLWbEnBa8QFsDCQzfJ6kWQOqDwRyb0nL85t8d9EKeaZCTcOY+27eCcxcXFBX7+s5/h6uoKX/z8F/h7f+83cf76HBcXl/jq62+wXq/DY3Hx77t3RYrR6UvQJ7pxxThAJQhUWuQMQaBU9/BMGQuoHEtDC6ENE8PwvQR+SiZbvkcEiqy1yU3MOYe266DD8/VkgulsllzEhgz7PtF7ghylLlhH7s9orFgOqWRpBqDicNIVA1DB45whwUyNvP/D7zzCR89+jJodppMK85m4WV1dXeL1+StY28FbicWjFFDXBtXEQEGh0jWm9TyAYzMoMxcGK7hNIBmFjGB6HQDIqWKcGrH6uSSLGcT9w6CCJgMPQusdurANxtYFv3UAXmIesGf4poXvxKy5WS3g2zXIW+h2AWVbKG9huhWU67BqO3xzfoXLVYOus7i+WqJtWnjr4NatCE5Kw+oK7p6O2sxg3b7pi5RBqSIAUAaqEpN9bWpMpjNRPE8fwD96DO8sVsslHlxfwlqL66tLnF+ci8LnOnRdCwCoJzXqyQREQGfltDfnLZZXL7C8egV2FhotFDoAotR6x3LUJgvgpnSFddvi6uIc2lQ4ffgY87OHMFUNTc8wqcWJAlQlSYDRB9bG5J88o8YAkPGUb4eGdSgVpbvygrE8C1Qn4Ti8ffCU4E8CffofMaZHiD6BeIS3a5awzRrrq5dYvP4a7WqF7voVfHMJpwjtNWNFaxhD0DOCmhAqA+jKY1oDWnkQr+C7BuQV/GoB5yqoao55ZaArhQ4WxCeY8AQNCI7zca4BUkBY6kUpjcvrPYA/Q8tN2TiObSMn3AGANnNMTz4KYG2IDcMezrVwdi3AtLNwrgV7LwGx1yt4Z3H16iu0X/8TOLfE9eUrXLz8CrZr0TYrNKsFwIxHDx/g6ePHqOoKZ48+wtnTj6HMBDx9BJ4+BsDwF5+DLz6Xk7iWr8Buhc4Trr7+GVYvrqBNjY+/8wk+evYRNHng+ktg9Ry2XePl86/w+tVzNJ3Fl6+XeHG5hmfAQYOhoE2NB4+eYn76AKf1Yzz87q/jez/8MaazOT7++DM8evQ0CzHsQjtli4FkA8u9b0U7j4arPQgJlIwcV6coNXHOsDaubYfl1TnWqxUuXr/AV198jvVygUppTE0FTYRaG0xNDU3iDmXC4R7T0zOcPHwssSY0oM9OYIIMyAn4CXHiAAl0zj4onTGmS/j0Me6guAsyMwgWxA5RHNZhrmuvoLxYjSvvoCLwYxeAXckmj9JBHtcw8DDKB4VZi5uRZ8BbKO8keK6VYKoEEtcIFSyZgqKDYh7kORF5mgvz4HDAge/WWH752wIG2C6MMQYioFgZqOkkuEASVIiyLG0iY+DkwRPMTQszmcFgiro6hYIRF/QQXGGqDE7qCoYIc8WYKy8zoOnQLlsQGLPJFCfTGbRScophsECyXQcbAqrPpjXqmZx8aeopTD0FSAlwA3E7b6xFa6W9Ow90LNbGl4pwTeEUMGbYYEDVWo/OAxYO3i5h12v4roG9eoFmeSGHMkw0tNFIgySM/7R/7D18K/G5uqbB8vwc69UyWSZKbJ8NV6+3RiUH9xyOWWfGYrHAN988x/VigW9evMSrV6+xWK7gQpRtbcTuCgFMlZANS3RdB21aVF0nIKc20CH2S1VVoKoSC3WOY1rccKMHfwwZoRTBGDmeHZB4oNaKd0NdTzA7eQBrO5hqjnpyhs52uLx4Db66gO06VOsWuukELNBarFW0xvRkhtPTOZ589ATf/+H38ePf92OcnZ3hwYMHvY3xcvMcuF894pC0bzUTD1YAKwYrhicHjwL0cdcC/EAOYmEAXatgLQV3SBJgjQhKT6DMBEQaqqqhqzqAQDWUqSUO5nSOajKD0gbT+QNM5g/ERbmCWAoBAseGDZsaLSp0YAAta7BXYFKy+UvRBbC0HS0bIgCLm78grkNvSm8f+CnQuux6Ea45pinOFaLC1qcAdNJgjuAP0gP5ugSzi+/DAZbtiuRaswRvjTE9FBjWO5CzMNZCWSunj9g2mDjGLZJQHyW++JMQxHcyrTGdVKCJgdMEn04e0ojBSxPY1evnESegMlBR73gHGh8PW26/CaUqBpNIAWBkt8naDm3boGnW8rdeY71aoWnWsthZ2+u/YQDmSBEIGcbySf7GxeeYK9bQLassa1e5Y2BSvB6joTvYWN6loKO1RlXXMMb0IvFvA5nuk3o7bWna9F1l4geF3xRJIHZdxHcCxMomDsmJUThRNSbkMakrzGYCArSNLJKekI5Nj/UQsE6nP61MCiyJEHQ5wz2RI4hkHgXgeEqJxIcWM2xh7x4qKmA+CMpeAhfHHWo4DziIotU08G04hSgAP3AWqllA2QYUgR/bYtV2WF1fYbVaw3YWzWLVB346C68UOlPfo8VPbscxYu6fyJHSF9+55EFEsvNJcpR6BOrZGzjP6KyFtrKLWDcNVGfQ2eCqAUZVT1BPJkHjaMCaoJz0q/SWh3UdyK2lVhwC4VMMIuukPm0DjwW0qVBPJ6jqKhwbLe5gFN2/OIQRJUrgT1oKMrMq2qnXOoM0NHJ938Q9ZXYjvg7FNLsoK4v5yXh7COyMgV4J5s1ftxZY/JgETRYT6+C+4GwD1zZw7Rqua+C6Ft61ALtg5SugB3sLdtL/7FXanE/twj64WrKk9Qx4A4UOhjp4GBg4GHJwrKE5hjhVgbflQcAAohkt8e7WfGMatnexkUVKQ+k6CIwMIllvtGvhnAkn6nWwVszVSbcAaXjbwUxm0NVUXC60EQ7HEN6zXos1T6WxqjVsW8FUNaqJ7FAKqlCJrNIuZf65JpzI5+E90No1lv4a2lRYXs+xmNbQ8KDFBWh1AduusVxcYrG4QtM5LFcNlutOJBVNKSgz9ASmnssJXbNTTE8eYDqdoZrMYKpauIC3cpLZZoP1aJOv7Rycb0zU4xtlsdyTTYm5OMq+RbNaYbVcwCoR8DUpWG3AVQ1NWoCfEG8JSqGaSD/Wsxlc14ZyVeBhwX1aEB5xufFiMRDBH2mG4tNZeBc2IdmCWOzJPYVg5wDYa6TTJHyMTeQkbQSKWJbcdPhKOg6MEY0rtQrDyQvE6r1DDEOgOUiulOddAqzidQmkHZjPyhq+kGOebSd9BA6BuD3IV2CyOc5PPBiGEY64J/huBnINlNdQrGHYhiZQEuOFlYBi8OGwFZ90AXYWvuvk7UwFjbBvxcgHPoQTDZHcxgBSBKMIJm5Us8gynkNbKw7HrnNal6V8n7gch/cwFAEcceMjb6G8BblW/phAaU2W5ziMbQWxICLngK6Btx1828A1S7gmAj9dOlHpXQA/G+owczplq7MWTdtg3TRo205O9UrrVA6JwcWzKeQEKShrg0VQNCZQIb4OgxXFJSSte5GyDpLDEkgwZhXuCagqgBChqmoJnh+OZK+quDFQQRsD7V2QcSjFDZ1MJphMp5jNZpjP55hNZ9BG79RP3gcqqzkWfkOINy7F9Z9CjMkQq5OBeOydD/KAWN4EVJTDsA26tNdeTtEkJeFcvJP+c07mDBWeJ9rA1VORP5mhtAPpyMVETo46h4bE55J1Qol8TFHAyeBEXwILvxGSbtYztDgQr3wHFj9Ii4kHIR/pLuCPIko+qb3AWgH0oShAxUmGcsJRGgjZ6mcD5ZEPksUtY0WygBowpvCowHjIjGeQ6P0de7TeYckOD+FxRrL4NZqwNAqeCaaqoQLg8+TJQ3zyyTNMT0/xnQc1Hk87oFKwdC06JhkQ5lCYwEFhDQ0PHdxrNqWOvPtTLPqAoM+egpxLPTlgoPkchhiysHmXdiTbtsFycYWua7G+voRrVuCugWaLea3QzSrY1mBSKXinYEMcoBgHZBinB+ifzFWmGZ6uFWnoFiaAAYnLTWHJM4wnVDKWBNh4n8fXDcBPRNWHFkgx/k9d13j06BFOTk7w8ccf41d/9Vfxa7/2azg7O5OTvuo61XlXOYcm2QWUSSAb4JF5BeWTsqopoqiYKNcMTGFRhfGovYC3Hg2ctgAcTuBgYLNAwlKgqRjz+QTOadR1hWldhwXNoK4qKCIJujaZg0gDqgpggoCl3sf6SH4i6zrAdhJip2OwE95aK+CkDgELqQPcEo4Z62UL20hg7vNX57i6uoK3DnbdwDVi5WPXLXwr8WVss4LrAsBrV4ATt07q1oBv0VqPy2WDdWvhnUfXWLhOdsJ804nLmDHgyRx8oMB7d6Ux8CcuV4ToXEHpOiHxGgDE/9nQBDMzE0F/9gDm5DFcAH1d8EU3dYWqqkEEWNeicy286zCdTVBVgO3WWF9+g9XlFZgZRk9Q1TWUkiOdla4AKKyXl7BXr0GksV6c43I2R1VP0a2v0a5FOa1nZzDTk7BDMwXpKsxdUzB4JN27/+5RekAa//fBMvejEvzZrER2Ntn+vBCN3JYFtR/RKnyL7iwln/Uxp9KuIlqhcojB1IHZw7Zr2LaB907chhqxTOkWV+hWV/Bdh+Wrr8HNa6iuw0ntUT+aQRFwNjeYVQStAAMSlxEA60bqZzTgpxU8ERyJtaHhYKngrmGsAmiNuZpAKYbmGkuv0IHhWMMxQ2KGFe0TFOQcQPhwNOw16ckAVXMEfwBmD+c6Gaehbwgc1qpgBq4qKCObHxVNoMxM4oGYCSbzh3C2xaPLczz69AW6rsGrl1/j+Vc/R9c1WNsGv7hag2AxX36N+asLGKMxP3uI0wePobXCBEtMuAND4nStO4vGelwsz/FqeQEojeXVazz/+gSKGKa7gnYLONvh1cUlLq7a4EZSw0yn0FWNR08+wdmDJ5jM5vjksx/h6bNPMJ2f4NPPfgVPnn0iO+L1BDaukUjR2np9lMbpO5iLBKQajamystmQXX1OKgPtKlyxQ3N9jsXFa7i2g2vWYOdQ6Qqzqg4WNEH5J8Ls9AHOHj+BqSd49OwjPLv4HurJBJP5HLOTU4njoRRqJc/ZrkPXNsm6J20mKSUxnMDo1ku0jbjeOruCtysAElOvUoAihWk1w8RMoYIFUrS0V9oGy3tCVSmYykgdTgzMTHiqCxY/zgkQpIxC13YC/q3EVbeqa2htxFVfGahwdqgP252lXK8CmKTUBmN+I/K2wfrFT8VCyhWuXuGUHRgF1FU6bCEOMUUKGmLtNKcO5tEJJrpDjRZT5ZIFiAmgrWEN7cSNz3mLlW+Dm4eALZoArzX0bApDGhxsEOOhCBLXjGFdh7YjkFOwzoJasYr3QXFlANbKkeQe8VCKIG+uWvCqFR5DGoZkE0STxgQKHRw6v4RzS3huUSkLW8lJylMjMdSAEDMIwps67+CCXL+4FIu2tm3QXlygW6+Fb/pwqpf38F33VoGfMVemrm1xfn6Opm3x/PkLPH/+ElfX17hcrGAdJ1kgx5wiAUBJ8uvaFk47GC9jhJSCow42WOh5V0vcqwCOxUFThoPobJfcwUxVoTJywpZYRLsi/qlcG1Pj5OQMzltUlcHZ2Rm6rsGkrjCZ1GjWS6zXC6zXC0ynE3zy3U/x6acf46Nnz/DZ9z7Ddz7+GNPJFNPJdFSHeh8p61vb03AARlRVo5qfAL4GVR5Ue8A1IHsNai4AtrBdk+STVeMAJ6e9tezgOgGEvDKwrYBxEty5CjiCToGedT2DqqZQ2mD+4BqzsyV0VWP+4ClmZ2LlNSGHSjto8piSxZQsOuvRrFqsFh1YGdA0KCdEgBIZlZDwKERGmGTw8MY9QfYA9E4sfigIOgn0CZY/2atSdhuic5Mo4Ei/9pTxuIiENETFfcLGX5HNCDYkCPqUPSYswM9HAAx7NOzQeIuZt3gEhweKoRWwMARTKXgGzKSCqSeYzmd4+uQRvvfJdzA5meHpgxoPJxYwQEvXsN7CwoCVdLeFhqUaXToibgT4yVWMGFUBWQu8H81omSFHdB+oz3rEYUfDdeiaFZzr0KzXWFyeo20brBeXcM0yAD8O81rDzyp06wqTSsNaBe48GmdhXX+xKMG7CKLE6xjgrARvSmCmtJxJQApR2gWIQEwJ/GxzB4vAjyLKcWVG6hi/x5O/0vMFyKSUwpMnT/DRRx/h008/xY9//GP8+q//Ouq6xsOHD9PJYrvoPhg5QU4vYc7WVfkXobgDpNmLwgXGBA4zdqjgoNmh8iIwMtbwWgKcT324H46I5SBwGcOYn0zAXGM+neHk5FROP1AaRhsQCMbIMYsIT9ugCImMIQFOEUBbeMB2HnbdwbH4tXOI7lorhdOaxBQdrfhXWwe+vkZ3vcB6tcarn/4Mz7/+Gq7tsL64QrdYwjsHt2rgWjkWsuua4Fro4bkFswWzg3NrsO/gPNA5MRgCSwwFYgTba9nVo6qGOj0D1ZOD9+MmbUI7kbaPIuotMhkzDkqpMmlXo5oE01lmTKzFSdfC+xjkVNLoEMMKADx3cL6Dcy3qiYJSLbr1Ai/bK1y/tmDvUJkJqmoCpY24cuka3ns0i0tcXb2WsVNPoI1YL8SgtKae4OTRR5idPYRSFaqphalnkEC3AFFxtGlcH3rtlK8zP83tt60l70cXLfd7uPgGZDj2Jj4wtjPExQfn04l6bxFdSNDzMiaS4Ovyv0dwPIB3K/hW5kqzuMT6WmLOrK/Osb6+gHcdmqtztItLiXHVrIB2DQLjZOJhJlMoECZGBxlI/PDJUwB+PFrHMAaArsDGoFKMqbfw7ODZQtkrGNuB1BwzXcMoD+2nuKYarSdYNugcpWOPo9WbxB/qQhy9wysrY8Bi6glBgGS+lOc6UZmOBPQmDaXC2lATqhBzYv7wI+DT3wMwY71cYhFizEx+/rtY138fq+U1Xn/zBV6++hyuW6PmV6ixglHAdx6f4ZOnDzGpDNTZHLOzuZxY5B3WXYd1a3F+scI3r9fwnvFckbi2EDDRcuKf84zzZYertcTFm59MMZvOMZuf4rvf/zE+/exXMD89ww9/z+/DJ5/9AMZUmM5PMamnMry8g+1tMmwKt5zEYNp75B+SdFF6FLZK2xQVbk8D8FNxhefssL6+wNXrF1heXeLi1QvYpkGlK0wrcfXyzsM7sTCdnz3A2aMnqOoazz75FNfX55hMZ3j4+AmePPsIVVWD6wq6ruW0n/UazXKZYpn4MJ6NqWCqSkDY1TWa1ZWcyri+RLu+BOBRKQF+jNbA6SOYkwdimVVNQaYOm0AdtBZ5ZTJVqGsjcQhPqwT8WF0CPwRlPJgcWt/genUFpTUmNINBDcUKlY7x9zicDiXW7VE5VgqyrqjMlw5B3rZYPv9J2CDN4Y6j3sGa4LUK1hsyphmAJoNKV9BKw1aM6juPMa0cJmgwUxZaC+hTQ+IOwimgFfnQdi26VuKKVIowUQKs8aSG9g6GSE67TOdnebFAYIZ1FuiAaGoWA89HkA+IQI+MxSTTOoZfreFXDRgEZaoQk0ROYyNdoSOLlpdw/hrsLbzuwLUEpK6NQ2XycfEMsZppXIPOWXC7hL34CstLcUFqr67QNg1SIG8w2EkcIHb3H9w5UglyRBm+bVu8evUay+USz5+/wNfPn+PqeoHWegGayyO6EcUbCjzJo+takJU5yp6T/qBCYFgfLFlVOE1N6oGwAV68e1Awq8ok4KeM9+kTcAuYagITTsw7Oz0F4NC1DepKo64NlssFLi9f4+rqHCcnJ/juZ9/Fr/7q78HTJ0/xve9/H5988gmM1qirrENst5Z5HyhbY23n+BGaZ6iqhjFnILaoZhqTUwPFHVR7AVpXgGvDwQUezhEUO9i2g2UP7zu0XSeW/yA4VjIeKB0FI8VxUDZ0DWjZlGyWSzSrNarJFMZUmJ+cQJNCrR3mxkET40RbzJRFQxYvmwusLq7BukbFFUyIF0aGQDrG+xnKlZQ/dgqcd5NG3/6pXvGohBJ8ocTz0k9JfE0joQCACD3FO1kDFRM7IToDYX9DvU3ps4CcxBFmwIrpl29buGYN1zRga5MvHwHhOMocYFh2YZCCV5PvQK4B4KC0CcHkPAgunf4gO4LZ3Q1UfG7RQCIwJoJtAH+QrX5iBodVVKKS50McAtnt987mBYDF5UYroNIalTGojByNbpSCpdTCu0sq3RbCdbICEsRC3pBoY/dW1qW+ejPm6jVWpsjnnPIY/l6OuVJJHC5IWmsYYzCbzXB6eoqTk5MUiT+e+vUumXMCU4OC3x90RTrEsczBhFFAH8NOTKDZwwdTcTnVI5h+s4NzAQxRMQZSEKApu3fp4NJFUMnEVqy1guUXRNhx4eQIJomNxexhrUPXhVgDAWtxIDBLRH5iykGbnYPvGvimgVuv0S0XaK6v4doWzdUl2sUC7BzcqhXgh0UgsE6OLvfcwbOAQM438L4DM8H6aKVIEkMhKtBOgB+lNcA3WWwcinaXstmz5WXBaAoLBfk9W88QZH5oRH7T34VWSss7E+BZTOWVVahqAXjYdRJsNjxPWkNXFbQOrimVAD9KiZWRZ3HLi8BS26zQrJdw3qNqljDVBMpY2UGBEvNoGU15TSBCdIcdQCL9Nih2BHeJHgen1N7bAftdQRujktpLwfkigXnovzcP0g3Li7/LkdoSL8N1DWyzFsue9RLtegFvO3SrBbp4vV7CNiuJ12Tb4EYiJ9boACipsI7nTQ0CGPDhyJroiy/d58PJfhw2eWSSiV+9A8GCEAKOspO8QnDk8vCGFHya3YERvGixdVOyOMgKaI/LZZ6Kvorul8WYDmAMAFQemHiG6jpM5g8wPXkAD4VqegFdzwQ+sRbWyns7F07zIg/2GYTuGRKndd2noOxEAGsFr4XPOSawMoA2qOoZpvNTzOanmJ8+wMnZQ5ycnOHk9AHmJ2fJtVlOuwkB4FkiL/WXnWhpGIlGrt4OJQs4H78AMbAykchdiQcSpT/i4FbgLWzboG3XYGXlVEMieOfhOtnAkqCiBqauMb06wfXlBbquFXlhOoWta6iuhnETKBDa9QrtapUVSA79UtUpGLYNbpXeWdh2ja5ZQYLXCbjitYadzOBsB2gPrw2YjYgAEfwtQJL4qQLrjJ8U0wU3TGst2q6F9gaqkqDJGlpO1gzzgou+7fGf/UTBW3egt00c0Pl9wmYoc4jzEYCfqIwrFSKCMSSmX7DckVhINhzlruUe9WXIGINJrEKCmykH8MZ7eCUykfMuyA8+uDkKKEbs0ymiEfhBzJ8hLnUBMIguVuzlWHVi2RAjT2lswYlrEXkLxTali9qAihvtSS6REUDsQuweC3YdvG3luGwb3AjDKZ6JZ4XTycbidL5NEvCmQ9O2aFux6O462ZgTfhpWyHIhpLzKey8utz60a3JADaFIvNVwOsbZojSI08EWsb/Cc9TL2yfZV87tyTMhe61If3kdQh1o+atMhbqqUU/qQo+YYzqZ9sJFlKEm3kXYiLvRsJ7xswj1AiCujNxLK4yDSE7lUlRBUw3NCoon0K4GNMDWoFMqhRKI0X0AmXMicBCiG6CsUQGMibGciNKGGHuG7VrYrgEpgreduEqTQgorAYn2K/qQzCNn2zCPZbNTxOl48ldfMNvorYFcimL83JXezaleIxYtcr8QBEpZPVnzBEE+JkmTJgv46Q8x4BL1jYkpL0EBK4lLHRgMTwqWNIgdXi8W4NUl0DS4/P+z9yc/lm3Zmi/0m8UqdmVmXhx3P0XEjRs3btzMq8zUeyKhQwfBH0ALeggkpNd+Eg2e+AteC4luSjRAogESSNBFCCToIJQpEKBUKm9m3IzilF5ZsfdexZxz0BhzrrW2ubkf9xPm55z7eDPCjm/btvbaa801izG+8Y1v/O53XP7939Pt9/zpD/+B/f6Kru/BCG1TIxisqzT/Nwr7V6/59g+/p1nVyHhJuj7H1BWye4hsdkS/Im49rBsFkEyludRmvn8wWq5RR9+084qxSHIIiWgg4snFXnOGIRi5b8An958Ioe8Yx57+cJOFJTvCcU8cewg9rRNsbQnrhk8enrFd1ThjuDkcqauK68ORPqTZECgRQGNuMXemb81O3y1dnrxpiaD9VDbhnAoGM0PoLt2dk+oYi/dP3kt6nSXSpkDfbU2ebEBkZN85x3a7pa5rHjx4wN/8o7/hL3/1lzx4+IAnT56wXq+/V9D5tmbQfS/eBqjK2C9riSkmbekD3eArRtrY4SSykp5dvKEmYGPAhwFDYhiOdMcbLVk5dhxyjr2vPXWrAmkxRsYxIKCAkK3w3ufNrcIaSxSwSZ2CYx/YdyMxJUIMDJn1VVeeqvKQEsf9nu5mT0pCFxNdUvdr8A2j03LPUSxJLMMQOHz3HVcvXnPcH3j1+9/z6k9/0mjWzQ3heFADK8Sp7G5IKUfoBTGFpi1oBZqUnYAMMYgCZLoWiaacAlVdsd7uqDZbAL661yd5n20J9JzCI6cbcXZ+rLuzQr0CLbrqasTMkZxjtTpjs31A5WuuVufYeosVYXv+lIcPn+Hrht3ZE7a7x8QYcqnSihBGDocjXdchCV6/eE7fjzhfsXr5knq9xTlPsz6jbjc4X7HePqBZqeNZZ10Rm9l5WLu4v9v3nf/zMRbP72u3wbbpbfneNeCEQVI8eZggj2LIyBRaz1oFeY4XR4VFNakYesbQq2bG8ZpwvFY2z/6K/uaSGAL7q0v211e65o6DluKWBGHExKABkZRUO0MMs8Kd4qLTWuo84hxWhMpGnDN4b2gby7o11B52a9g0BucMVaVaKYJhiD1d2tOlxBiPBKlIErHJ40QZHJUpccKIpF6NrzuTef68Nhn+t8y3JST0XoBi2eIMWUdJD5CkWhzl776usd7xyZNPqaqKcey5+uJXvP7VXzOOPftX33D98kskjqzqiGkiOEi2JYgyVZ31NFWNiGVdj2wbBX4UbC+2kmUULYX74PEFT1dn1E3Ls0+/4PEnT2lXa559+hc8/OQZdd1wdvEwp/wYjaoGFXLX8cVp38+dlvtgCYP9uE2S0B81hT17aUzMkTyvik5LjAO1JJw17JqKx+dbXOpxsef6RRbWTZGuH7TUdtCIs4jQ9Qeu96+xznF5+YLnz7+iqmvOzs958OARVVVxtlpzvtnijFU9umFQe2Gyjyyr1YrVaoUxhjFoWm2Mke74muPxEpGIRdm33ntSTm/wviKtBJGsrSYBL4FoNFgiIWr1I+f0KVhLcg5xjjhGDld7bvY9+/2Bb7/5mufPX+J9xebsjLZdU9U1u3NHa4qLobNvkmqY3i275z0+Q0mMfU+x6jH6vdYpi1syc6YMM5uHYl3X7OqWyuu/G+NZ4/Ap4ftO09IbaCuvGoc5DQSMMgIq3fO0vHvuVxJXhxusNYSsganMmkBMas84EjbFDLKVogWnvk6OXs3QnKid4a2hcWpHhqiVARMwqlehgdn9ETvqOm5yii5RbZtc31RF8VE7q+uPDOPA8XjkeDzQZcARSSeARnmey0IgP0YrmpowB4K7ruP15WuuLrXgxOFwUHvBerCVgmGyBF0oPav7a9IKdREYy30lmeQohmqgGvrZPzmpMpzXgxQ1VQ8zCT2fSE+Asv4K6yfrGeqFRQyRcRw43Fxz3N8Qw8jF+Rlt/UvOzs7467/6DX/zm9+y2225uLig8v4NjdCfL8jz9nZ6yWbx39P3lr/r9PXq6xpVZLfOYAnU3tLWVosuJehubhCJpDRnfYiofa4C/gYryuTSOhdl81XJBjOBLQkkELtreudIQ0O33dKtGirvWK0t0qoXPqQDko50/cjx+jXH62uMa7D1Fle14DwYBYjEGMpKOHdIgWPfNrf+vBn3EwA/ecWd7M9bTn6uMHKyP5jFgJ7YFvPv+o+ZNpUirmWMdqeb3NncjUaI+QfUuCpmczSGYBwSEy9u9lx++w3xsOe7f/Nv+O7/+/9hOBx4/t3X3NxcEpMi6G2bSzHiQTwmwc2rl9DvaRqPOeyQV2ts0+Iff4q7eERqtkS2UJ3pwuQi1kgum8mEgk0PXphDLqJCUSkvUNFEAmpMldJxEyBy308vJcYcTer214ShZxx7xuMNMQyYMNI48JXFrBvkwTnDRkscXt4c8DkidHPsp/KLZfGeGFNGI5tlvOgxc4rW8qYmh7REWPI1FuppkrlK15JxIsiE3t9m/5SNZXltMSP7lEdzi4lWgB9JQtM0bLdbHjxQoOcf/+N/zN/+7d+yXq95+uwpm81mupcl6DXd00cAem43YwrwI6RJVX0BvhaDF6GWkU06UqWRVTpyli6pZFRapWg0n67juN8TQ6Dvjuz318QYqRqtDmWtzRTlnK4llto3VJUn1WkG/bQ8DCLC1fWR11cHQoz040g/jhigbRtWbYMkYX95xf7qihgTXYj0GX23qw22WWm6WsrATz9w+OZbrr75lsPNnle//3te/P4PxKAiznHo1BDMS3ARDFb1/wwuGsNCBZISEjXGzCVzy2H5/bqu2e12rM4uPuozfWu7HQH6sA/nf2VyPpfndb4APGYCuiZfCSg4S0oVq/WOYfcQ72ua1Tmu3mEEthfPePzpX1I3Kx4++oyLh0+JYcQ7i0PouyMxfMP++oZxCIzjcy5fX6qmRKP6Igr2nNOsNtTNiovHn7E9f0RV1WzPLrCrDViHNTXWVnmtsAuMpxgc5o3++jm0d7F9psW+ONPT63yPmbosMlOYZ2wo7ynFSZKIYQQScbymP16RwkD/+ju6l98Sx57D61ccX70ghJHryyuuLy8RESrrqJxqXjRVNel2OeaqQlME3Bhi8jp3rEXTmzxioDIG5yKVN7R1xWblaLxlt6nYtQ6MIKaw8GAIPcck9CQGORKkQSRixOMzK6MxKniaiETpcxWi+9sd326g3U4nLoDGXUffHndlr5NZBFnyUxZUILiuMcBqtebZsy8QhONhz35/zTj2/On3/57f//2/JfRH2vEldngORJLxxAz8WFvR+Bojlk09smsCISX6MWolISDhGHHUruHh48958ukvWG+2/Pqv/zFf/PLXVBns2WzP8v3N3qBIUi028nL5lh4roORPOQdTSnSHXsHLrA+jTA6tfiUpTSXCnYPKC42znLUNn1ycURt1DL710JtIDIFx0NTCOEbGflAgLLM+RMDVNVXTYJ1ju9lydnaG9xUPt2c8Orugcl5ThpMyUpxVAM46y267Y7fbYZ1VB8IYUors9685HBT4UaBz0MpEOKzzVLWmUxvrlI2U0yitMRCF5EcVmHUel8WoparAOUI/cnN5xevLG65vbvj2q6/5+tvvqOqGB/3AerOjXa2omzV13WrHZoHbeYjnkImx+p332CSJAj9mZvpYZ/HGQQYiZzagweQIcFNbdnVLU7fsqpaN9WxwmCiYscMAlTW00uINum7pCyy6t5CZXzlBnZgiVwfVshtiYMzAj7EmC2WbzCbK2jCuxjsNWjtrtO9RV9fCHLjOrLnKWvBW7dNxYBwGUkoMY2AM6uyGoKwzxY6K5mVijJrOniQRJRBFgYtjt6cfB7rjke6wp++O2e5OhWRPiRguRaF/7LYM5nZdx+vXr3n58iWvr2/Y7w8c+x5XNfi2xlo3P/dlGCv3ycTxKXMdVBQ6hGzHeHyl2i/OaxqkKXhAvoZhHBmGAZCpnLu1hrpuVMsTrYAcs58wjgMxZDA3M1XDOGbgZ48x8ODigvbJYy4uzvntb37DP/qb39I2LQ8vLiZgqay1/1BBnyXT53Y7NTnNyb9ZFj3b4x7jK6xJ1NRsTINNI2PfYcy3iLisQx4WwA9aVRubMwjytCoGbAoaoaYEKiImOUJ3pXOmaug2G7q2IVWeQIXYikRk6C8ZhxsFfi5fc7y6xlYrqvU5VbvBukq/36Zsh3pdH8tMz31RwiSlL+6r/bRqo8tmTBa+m+M9+vbisRtz8uinn1tO+Bun5tSkWnbgCVptdDDpkmpIITL2PbHr2R8OXF/fMBwPHLuOMQSNiGXnUL/bYYzHZO2UECM2qDBfGAaNfo8jjIHkwklVqmUfFEy9II/L/igDQkwZ+BPxtpjuk9NVIgP32QqwoqleOc0raAUkTfNKik9Zg3eWptbFsm1b1us1UQxDSKzXHca6Sb/nFHh5EwiZH9EMGpbNcgIOs5E8pSjka51ZPAugRSQ/t9xTi2dwmxV0my1UnsgJE81oNAmBpmnYbDZst9vpZ7PZaIqXr06YPD9lKxiG/nLb/Z03SZcitlSDSD3EDmQAAohWntEqdyMSggr9xkSMCRMSZgxZIC8Ro0KUfZ9zbNHUoCoGlGKpzyMl6IeeY9cRQqIfB4Zx1DkqMlGfD8eOw6Ejpkg3RvoQlGouNkfyNHc3JQV++uOB4aC0+dD1xFyuNIWRlBlFxpQkTrISP7OTvFx4Trtu8UY5ngmodt7nag4/fjtZEZfr6Xt+vtBgT0GfN897MmcX5y9RQmNy1TZXYV2N9y0YqOoVVbOmblqqZkVVrzDWUzcr6naNYKjqVqsBiSDGTWB4ihGMsgnC2GeDzDIOvRr/SQjDQPA11qWcapvmwZ8FHvVi583gxzai3gb23mb+nbQZk8ugDdP8mde0pV5QOWb+Vf+UMhCWlMovo1YqGjqGbk8cB7rDDd3+mjj29Ptr+sMNcRwZDnvG7ogk0XK3PmnZUmMQq/9aU/bIfA+iIGIyc7p0SgnjspkzVfo0OGcz7d1M2lGqj1HuxRLFlKJ8CxZTYWZoBTGlgwMSs7ZGYXB8nLY88ztHUpko8uZb+uFF+tMEpCxMX6N8CedUJw1yaoEIfqxZbc5Ybc4ZfU3dD3j2WALG6bMowZel8W3zTwmwWZTNjK2omxXrzZbt7oz1esdmoyldVVXTZGYdoNoftzT8flCb5uV79+if1USEfhhPgB8W40VizBWNVIPKGptxU8EardrlrM3pX7qDmpw+Ihk8QhKS90IdxklBF2uVLWKVkdMItEZLwCtjTu/c5jQQBTOU9WGdnUqpp5Tou46hV4CzAD8pJfq+o+t6YhKqqsP5BgekpI6/NYboI8Gpc2urGikl2oNWwur6ge5w4Hg4cDwcOXbKxkxJ6PsBXykbU7VNZLZrs6esU9RotTHRGMq9NqOBiGmNz/tPWXcmqYC8GM5sXZPFmyu8VcDLZTHB4peU5+NKoMOWQLOZBbwnYCbfZ2Z4JJn5wtljwKCVupTBI2jUS+d0soaUK/4VlhmSq5FmzZkxDIxhIEXVh9FnnuiGUVPgkxCiijUXgEJPo5U1Y66sF0X/DSlo+fFcgXcZ8Lyzo8v8/JH3yynYOmnnqB8xjkELx+TrNrnvzWS/y7xH5Hso7wMTeweY/BvyvEvWKmAXmYPzizEVwsg4KvAjKZGyZpa1Fu+VGq2FMBRMjlHLvItIBpbjxIx0zuKsYb1q2axX7HY7reLVrKibei5mUyz228G9fwAg0Klvf/KX7//wSRVrBUsK3IrxqktpBGO92nzOq1hz8dWZt93Zd2T5YvrdwAwGmTSnN1pLDANh6LDiVW90FE2tHAbMMOhcKulgNv+bwV8JudKvMQro5kI22BwtLU93MkvfAgCZQvR4/4X05wH8mDde6G/mjpt8rzZP5HkhLuebdXSmPM4M9oio8RjFEiMcbjr237xiuL7iyz99w1d/+JKxO3I43HA8HlRh31Uk6zHOs93tWG0vlK3iAqONmMrS2YpjcthocSPYQf2NMEIKRku8uxwRWVx/yfmdjPiFwzk5A+jmGQFXNpfJoLt/21ZEGMfAOAwMXcfYHzSf/XggjCMA3lp8rupQ1SuSwPrsIbvHz+iGwOX1nm9evKLrBw6HA1dXl4xjYL/fc3V1NS3cIcwpW+V+vdc0H2PMVCIVyDRLRdJT0mgaMPVFWfCLGa0FJW5Z23qD2TCRiaFSDHGXq0C4XAbUWkudS7N7X3G23bFerdlut/zmN7/h008/5fz8nF//5a95/PixpjTV9Z0sn2X7MRZxCzQkTV8yUQcRTE6kQbCi5WPtcIm8/pI47OnHG66HF7jYazWe7DcfQ6IbEiEJIQpiG8QIXYB9H0hJVPz7eEBE2B8GxjFR1xXrdct222KtZRwjwxAJIfHy1Z7nL64Zo5boHLOh7IpwYhKONzccb/bEmOiHkW7UajmuXePqFo2AGiQZhnHk+dff8urFS4a+5+bVa9IwThUqjJvcqTzPlC2hOftmXlYMOXqpqZhRLJgS48vAcTYEBYOpapr1htXu7N6f4w9tHzKi3gZI3P3eaX62CMQoGVtwYFqsEzbnT3j82YAxhgdP/4Ld4y+oqoZq+xCpd1gf2T78DFAQp9k84OzRM0q51hAVLJ4M0wwSpDgSBrh+9YL+0OOrmu5woF1tNZXiwUNW661GuqsG6wrIPi+uP36CSe6rN96QeT363s8WZ6MM0iJukHUr1HTV+V1yO7MBLGFAQi4FfriiO7wihoHLl9/y+sVXhKGjv3xB9+o5EkbC4UA8HkgxMfQ9fTeoE1M32DqPl5AIfdAotrW4HMU2plT2gTGOmnVnDTWWCovHsrE1dVXRNJZV69msG2pvaVY1VetVyH1MjEEYkqMfWrqxYjAtkRpVn7IKcBSTMJdRlZi0NHH8mMDPcvzc9R2L98zp+7I44hbOeucvkkQrgcZcpRK9Le8rrLV88vQzmmatkeX918j+SyR0xJtvGW++IQYF1IcYGZMKocas3SIZEHSV55Onn/Hgk89oVxt++au/4dMvfk3dtFw8esJmc64MFOtmodMpNfttfXCXEWtO/vmYAM/bWj+M/O73f8rAoaZhTDYkTEY/kqgqy2rlcNZwedMxBoMkT0XF1tUYVzOExEHUgfSSCCaRrCgTLaHPTiIEPX+UyCGnlKSrK4ZXL9V5RHWEIKeO5LLwq1VLu1ppUNGrHSoCY+gIodNniOrvOe/pYsXL61G1hNZbVqsNFqhToEoK/FTe453qtK3WG+p2pakyOfWrH0ZevLzk6ubA4djzx6+/4+XrK+p2zRANmy6w3Y40uwfYRoM+3tmsa1G0kLSoVkyCs+Zei0J557k4f5gB4qKpE7W6ZChAXk5dylW8FGSuWa/P2Kw3bNY7VvWatmq1qh2qT9auN2w3mk6cjCdZrUAJqF2QQRVdhrVimfdZEFgqrDQIMs0vESGMkTgqmJjSkKvCZ+mAknIeBmLIYM/YMw4acNP3R1KMdF1Hn8G+fsiBtcmOzWB7SkpqkURIY9ZNlEkHSv8XEZM1c/L53miZnZewiHVQnO4foS0Z+eOoFbOOXcdhf+Cw18IdYRyQEEj0jJNGGsx7/PzfZQXhdFI1uKzIhrppdK8SqxpecdBuKKBeStzc3HBzc01KMrHynLOcnZ1zdrbT7IwQiSFmEPbI0Pcz4yepdtRm1XK+XdE0NV989oxPHj9is1nzyy++4Gy3w3tP7asMphZ5hv9itrd4SNO/JYU6iKWPjmAUvG1sozpjzRnb809oV0dCMuyPHXYcYIiEpPZB0e4RyLqi2TYSBXXnvVimIHfEQBw5vP4OE0e8d6Sbhm5TqV7XeI0dD7r+33TEUedrf3il6bPW4/wl1tdgLMa1OSXRUbVrXFUrS9LVGOM080AmGOqN9qFz7+cB/Lyx4b/d0Hn/tjChZMEIkYUPZ07rp1jIlYQMEuH19ZFvv31Jd/maP/7pW/74h68Yu6NWqZFRH0IN1C4bATuaR0+V8RP3jPEIDnpTcUwWGw12NJhBF9mUtSiTKekkuZ6EWSy0y+gEJXrBSZRQY7VClBw9gDma90O67p3dKhlZH1VwsDsShp7+cCSGAe8r6qbFOUfTVLiqAet4ZDyf2woxlqubPc9fXdIPIy9fvuTLL7/keOx4/vw71Yg5HhkGEBmnyl5lc64rFUu2VqNr3uoQPhyPhJCrMqWkIFCOsKSFgV8iz05EI1kUt8hM91f6L2bx6hJ5LmlovnJKgXaO1XqdU49WfPbpZzx+9Jjz83P+2T/9Z/zFX/wFbdvy9OlTzs7OflYovEGoS8WtXGZ0AhgRrCQ8UYWb+yvi6z8RDlek/pJw+AYTugzCqTZPh6dLlaoJuBrxK8DS9wM31x1jSBz2N1xfv9bSit1IjELdVOx2K/qwxlrDYd9xc3NkHAPPn1/z7bfXjCGqQ5JF9HTz1ChqfzwyHDQH/dgN9P2gIEDd6tgzKhabEoQQuHz5iutL1SQJxwOSDSgVj51Q1WzXZP0eyayfnIJW9BWMzQLUZjZ6UokmGKMLOgZTVdTr7c8G+LmPUXgXI+92JK28WSqSCA5sg/WGzdkTrKux1nLx9At2jz7D+5qq3kK9xkhi9/Az1qstMYxsLj7h4c0lMQYOR6Wfxxjojnv6XqnoYwgaRYuRsX+JyBXe1xz3B5rVhna1zowfr6XgXZVzkBaI+k/ZyjpVOOTl97wmvbF+LHHr5R6xLM1FjlhjmHOas/OVo8Bx7JH+QIwjx9ff8fr5lwzDke+++j1f/+l3jH3HcPWK/vIVxICNCRtLBNlMBpKJYJMCpdFEjBkxBrx3eG+nddSVvC8zAhFrhWQgGqGxFcacU9eOphZWK8963VJVM/BD1h8dgUEc3dhy7CsCNdHWYFSw1hGwJqjulmT2RkykYZyirvff3nccnYQZgSXsU35/+9nmAKVu+Fo1KQMVxlBVFVDRthuePP2FgnpXf+L4+oIw3HD5+4HXr/7AMHRZGyYyxqgVTybbQceTd56nzz7jr377T1lvz/jlX/4tn/7irxV8sG5aN5MsKm7Ku3tCh/YUcz3tlp+w9cPA7/7wJ10RFgEaZ0tKdyQl1Xdras9mU+G9pb85ZhFtT4Vnayucq+nMoOy5NBIRgs1i9SI4W5ggSUVCBeLQs5drjBg667i2ThlXVpk/JehQote+0qCTsQbjm1ylKyMQWRfGlqq5znF5jNQvb7DWUTcNddVggCaNVKK2TpXFZa21NE1LVWsKk3UO4xzjGLi82rM/HOnHyPPLPdfHnma1IZiKzQDdKGwf9VTrkEVqPS6D7CQNaloLIWqAO8nbnsiHN+ccF+cPJ7Anpkg/dAyHkTEDPyaFCZjBkvXfatbrHdvtOZv1Gat6RVs1qqPj9XrbzYbteo2rKoJo+mORCyjpmJKrixZbwWX2kUG3Gyk2dMgpgF2k74JWSexG+k7t3qHvGIZeg1r9gb7v9Jj+SD+oZo8ylfX4rtOy6ykmhmFgGBWcSHFmHMWYq5iJEJIyeowFVxklGjhLvfL4Stn4QximohonRRJyk8JQ+Mjz9jYjtujrFBHn7thxOOzZ7/f0Xa/FIHImQUpAZt4UG37pQKeS0iWJoR+ylmDKa5vLKftCVXkslpgKcMeU/RBj4ur1S16+ekmKEWNsLvDiSTFoyruxmmoUNNuj6CdNgvcSqauKT59+wuOHD9luN/yj3/6GX/3yF1oF+GzHdrOmyCJAnuI/A9Pl47blTS6jHmYKuEYR+qjsXu8rBkk447Dtjt3FY+LY0w0j7fVllp3oMaMKPM/+shIFJOdS6+6kBSXEmLwfCCkOEBNiew5ExuMNzlmG64ablQI/NhyxsSOJcFBNdEQiw/6V2mrGYowHk0Ggao11Da6qsPIAyyaPPRWemK27N+2GH9J+YuBnaXDf8WA/9FQnTscdEelb75aOPJk7uTSx5AoMY695s0rZioSYDSOYhKcxVoUp6wa/1okpQUjR4ByY2oF34Gv9yaXhVNPA8sY9i8nUxPyrLK98voPTT81/X0bjRT5CNSGzENOeHF2m9wol3/oK3zRY6xFXkXwDRnXPh6jRtRACV1dXOOe4ubmeRNGUuumm82m+rGXVtmw2G/0O6/BW0z6SaI6t9v2cm3niHGmHqGO/6JtCuaVs0Ia8ubmJ8l7l8qY26yr4SqNim82GdrVi1a44Pz+ffrY7Te9qmmaq4FWex5vd+dOs3IXZow5QpqCnkvuesEQsCYkjEgbS2CNjTxp6TOwQUQ0PsaorpXGx4l8p6DaGRNcHxhDo+pGuGzPwM7A/dpoOaYsWjGG/P3JzcyCMkZv9gf3hoPMuyQT8hHGOmozHjuHYqeHTDwz9iBhwQXCV6gmlBElM1h/qGcdBq3elOM0t9UMygDGBPov25vSbenFGYll8Ph9a0iWyEXDfbSl0+F7H3/rsh7S3fc/7n8dijUOsx1cNdbvCWoevtFS7cRVYN1FejauwGTiumhV1VKMpigK4KSo9XcG9hHEhG3CGFD2SrFZQLPc9sVz0Xu6Yie/wQT+ihZWjlxPf+YSJ+I5UrzdOc9ffi6kgc3U7NGXFlGjy0DF2B2IY6Q97uv01Q3+k29/Q7/eq6XY8MnYdkiIugUtlXzEoKy4LV8aUDSWtkjKnw2o1Lmez41r0N3IWifeaOuO94CuovMV7ZQrZDLqLtbluRgnQQEiOmCwpWQVgU3F6oUAXaargkXJJ5fswnW63pXB2eYfS8yfP4+529/vy9gG5+NzERzn9/uysO1+BOELV4OsWkYCxftK/K4KXpUx0yuCPnoN5D64qvK+o6kYj4M5NaSolMr6cY7c7w9zZD++Eh97VNR+lTalezL1qjcFal/FYBdhEEmLBjRYvwhiTVjsTDRY446iMIxg7GdlqVmQJTzNro8xpi0X0FYoWi1YMMjndKuUUE4uxMa/9WTfPWGwUTEyTDVMcVlvmXxSGbkBsh7WOFIVQRS0Xn0IGfsBbrwwdYxnGMGmbaKTaEkJkf3PgeOwYQmIcBhWujomQgYWQtE+GGHFiwKQJGDGZEWOzRoyV0yXvz21FVy/GgBDBaDr5nWNNTj9nF6BX7mxA7UuS7jMhJsRGgmgl0WJ/ygQGZNFeEdUyyyMpmZyOihAyYJFiojt29IcjKUS6bqDv5rS8oe8VuOqO9P1RX2dASCvwjaSg39d33ULjp2ccx3w9c4rX5L9IEZhW3R4nFucVuFfN6pmVxHJ1Kf+RWamr7Fs/hRU7yzCkHGAqMhSlkpZWfCTp/qEO2elKpMyqnPIWgzKoUsLahPWCEat/TwFwuj5OfSpZt07PUTRkSvPO67Prjgr8lO9KSdPRc2qYM7nSmjE0dc1ms2az1p/1eq3l4avqtPjN9C25/39GgeX7arqrLMfX3XZYCXeR/42odpc1DutrDILz1VQtTfuRfN6Ffz2N7/xNRvfgE0RBBIyuYRIDKQwYsYTRMLqcLRFHbAx5jy1Bt1wxMwx6VyYq8GMCiCU5AUnEccBVFcZ5bAxqE2PRMhVL6OfWommWL969oP4EwE9eTE+MpNvv3fr3bfdgzFvW8jSV4xaYKqhKTr0QgZLKOZkfOUIl/UDqj0jXMbx6xeG77+iuLkldR1VZrHgiRoURrYX1BlY7qtWa3Re/5NFf/yOcs5pXLQPWCBsbqG3E+prq4TP87hFStXTnjxnqDWIdYjwLus7iZuTWz5KmquVsobz+OCbtSZdbS103kCLNSlMmXFWpATOONG3LdneGr2t81dDkijuSwR8xlvMQefQkEGLixYvnbDYbDocDdV1zfX3N9fW1MopyFYvdbsfFxQV1VXN+fs6jR49U2AwVBowp8fXXX/OnP/2Jvu+5vLri8vKSGCMhlQpNywFSomFAiaaZWYi3qpXFooaux3nH7uyMzXaD956z8/P8umJ3dsZ6s6apGx4//oSzszNW7Ypnz55xcXGh0a6qeiNP+qdepA0o4yeNxPGoZQZjUHAnBjUWraZJjIfXdDevCftLZf/sryB0NHXLWhSUC7ZCvMcYxxASV92BMcLLl9d8/fUr+n6g7zuOxxskJa5u9rx49RrvLXXtaFvNGesOPcdDR4yJm5uBm+teo1SiaQgi5LLEWXS7D8RcKSWMgRhiDgRodFKNMq0gpBEdpUmrYR1ySY9EIpJMFp6m0DsTVlJOjSGzG3Q9UfHnvLaYImxcHCDt4VKq1jhH1Ta069VHeJCLtXIxyH/q8TW3ch02rwc7UorU7YqUHmCNYbV9gKk0whFNTUo5tc6uMLUFidS2xrbnJIm0Y0cIqmUQxo4YehVMjWMWWIc0aqRT16cW57VU/Gq1wuVy84YCui9/3rrZfPyuklu/FHDqPbwiyQMzu6ozeQgdxwgnLJ/hsKe7uSKOI/vXL7h68Q1h6Ll68Q2vvvuScei4efWC65ffqSE89qSxn5yZNImOZicToR8GYpT5PaO6OnVmxHpnWbUrtusW5wztqqZpNDiyWkHbQlV5Hj3YcLZbUdcVm11L1TQYa+mkYgieMcDlYDkMMERHFxuG6El4hIhB940+RQWyc1BIHW9LMhXibA66fLz2bqjwVgjqBw+v2eiXxVsTsBmDVqdCEDymPss2TMMwJvo+sN8fubq8ZgiR6/3ITacOowZwHM5bxjBws79GjGUIw1wRNesJFeCizKHZZf7A9iOCPHe1kIRXN8eT8FoBBMhMGk2FEaqYqGPEWYM9jvjBYKLHUrPzK9Z1pAmqdxNIClSiQcMQEiMmM4sTwaiNIgaSlcV3Ly7OzAUuJANCKUVCzHoQdtBKU4DLjAMDk4CysZbYCf11rwyIqsJ6n3c8LUNsTE6lzkLMk9YT856ioMSoFTqNZXSrHMz0UDfQrBhtxevjSHi9x1iHd72CZ1OgUM/rvYJJQ7wjnegHtspXPPvkMf3Yc72/ZhgHrEl0R0cK2X3MKQAl7ioWjLP4usLXNcY7rXKVIsM4kkZlgbj9AX+1xzhHNI5o/PQcSopQCiMxjCrgG5OKLIswpsgQFQBT3c8M/Nwc6K73OXV2oB+GrN+j+iBJEuOozDyRxDAOU6rzVCUqKZik2j8K6qS4LIhSUlnm9EuRiJCwzlLhQCySLMElipOplYckP/eyH6ktpMQFi7MVxn3ctfT7WikAo5VjB/r+wDCM6hUtUiRdFkSGeX2KmfGTRHLqck+SpCB3pRVprdEqkKUSbwHGrdHgkorMDZPWZdd1dMcOYwzd/oqrl99RpDxk+l59Rs45Hlycs8taoL/85S/4za9/xWq14tOnT9ntdjhnqbPERZ5A8LOx8T5eu/sOsy+18P8FtUsEyyCWY1QdrnXVsqouMHFge7jm7GpL3zlSTPTHDtXY0sqjZNaPKZma5J0sBy2U2Kr/WpN0bsQBQ0SiZSQgsVKQiYAjZqxBx5+kwNhdM4YxX3RefIzDujXG1jhf0/dHfLvBVQ3t2UOq1RbjPKZaqdaeYdpzl01OXr17bPwkjB8pHhHwhrryEvS56/pNMTbnSO7p+C+LXJzMeMnnUVTeTZGWstHm9U2N4n5Abvak44Hh1WuOz7+jv75G+o7aOWKtFE9DUiRutUG2Z1TbHdvPv+DRb36Lq7zqphA1t3o44MIR62tWDz+l2T0iuIpY7Rj9Jm+FdlIUzwzd6d/5YtP0b4lgmlJ+9zbwU4Cie27GGKqmRSTRrDZY6xhdpYrpflAq7MXDLNTast7ucFUFOdKvid4WY3XDfP78AatVy36/J4TAl19+iTGGEDR6b4zhyZMnfP7556xWKz755AmfffpZ1srRWwwh8Hd/93eIMRwOe7CWw/EI45iF2W8BYrk/C+PHgooyGsO2qVmt13jn2Ww3rFZr6qbm8ZOnPHj0kKZpePL0KRcPH1JXFecPHrDdbakyCLRarSftn8Ly0cchU//9HJpBqEgkCRA6UmH0dDdKO7e5PKIBOb6m318y7C8Zu2uG/TUpdKxXAq6l8gZqEOMwtmLsB65vOrox8u3zV/z+j19zPPbEMDKOPYJQvTLUtcnRyIixGiEb+hLxEsIohCFHqrL2hIg69MXYIQoS8kqdS46eTBsgSo6qmrJf5uduUlbVFyIlIjkDFeovimpBTdNJAZZyZHkLw/yOZN2NbAtZZ6mbmrZtP86zLF/Lz2d83W6altAgsgVEy3W7XLbWNRivVWaSeGJy+nzcCus0WlPXW2pK6dMRTWtR4FKFV5NqbyTV+Yp9QEJExBDz5mucxzcr3InQX1kZlsGGn8r7nMNMcmu5+r61fGkHSK5UARnskYRBMCnmEqeRbv+ay+dfM/YdL7/+E9/98e/pj0euX3zL5bdfqSD28UA47jPtnewkKfsjOZ1MWd8UgNhr2WiQHL1Uxk+KFokWqZyyJNcNdWU4P6/Z7iq8g83GsFpB5T1nZxrpdN7TrBp8U5Ow9KliHB1jMFyOlsNoCdFyDDVj8mpXpARZyHYImvYnxpCsU6FpV+GaCmurHEX7uO37TbD3GWvffxY4BX8kr0MphQUo47DVGTZ5kqkZRqEbAodDx/WVAj83feLQKWtk1Spb1XrLGEb2hz04r4ZrYUcibwY1pmv9OPPo/Xrjh7WYEq8PXQ4Y5G8xVg3v7GhIruhoneAGZeGsxpGz0VAFjxUFfqRK1FWH9RWjRC0VbdRtCUQGUUc8kFSNSmRRtIMpfV9YCAMLCEmjyCwDmAt7GoM3Dm9cdlgczihwNbhBA5bGIN5lBkTxQfQcRdxb8vhR9gpZnFom2wkBWzW0D57iNytwFfgWqhXBVLzuRvYcMnDmc9pCYU9pqrTLWkXDfQiB5+a948njRxy6A8Ykjp3qslTOEnL/JjMttdP+bZzFVRWurhXYESFkhs3h+loddetI7lKDyDmYCYtS7ZKIw0gY+gkg6zKDpxtHjsOgwE8/EjPwc7ze013dTKDFOAyZlRNJomBSlJGYSil4TX2HnMZeAlIp5cpVpUJjTj3L/zWwSMEUTFYMd85irFZ8k2QJNiKSn4/XCruCZPtKx2DMqWwui4A799PaHYUdp9qgI313pMvsp7FUz3N2Kv4AZbgr8BpzWtgwDFnXSLKP0WYAVXU5bN6b1ZzUVMvKe50PYYCowM/x+pLXr18jIly/fsGLulFdUOexmXXkcupZU9c8PNc0rvPzM37xxWf8zW//mqau2W42rNo2X6sGO6diNnoXP0l//zTt9n5SLHxdlzUYJYwYjkmhy7ZpaFqHk8B6/5rtZkPtDEPXc2NAjMpaWImQFPSZCCjGTNW+S5VflR1RhhYINg2aLGEMYwqMweu4cIIv5kUG6SZ2rRz0TpJkCUYHtsWYGuNrqv6IbdZU7VpJIRhsVVM7BeoFSvHzH9x+VOBH/W2z+GUJ8pxuXNNnToJh80MuH7s98JUxn5e6/GEp510eWsYM5OrMGdmOgTQMpEFTWtI4IEFLVmuOct4lBY0aeg91hat1w3Btk4EOFc41krBWMAMYX0PVgG/AZhbM0vicWD3L1wsAZ0Kx8o/Mi/yyoOLJZvY+D+aDWhEXVJ2MlNNlqrqenDtXNbiqxlcV1le4zPTJHNKcu6jIZV3XNE1LSon1WoWRC/U85CpLu92Os7Mz2radUPEikpySIueb7Ybdbouzlv3Nns16zTDqIg6ZjpkNKIMuCg41ctqqoq08zjqlV242OO/YbLas12vqpuFst+Vst6NpWr2e3Y6qrvP1bFUssV3Rtu1EjV+maJxWLfseV0B+hHLuKPhjJFfyiUFpw+OgIJA1xKQbTMlJjlIUgTTir8w3rYghMamjbYyKLHc9xzFkwcEhswECYQyT4Zo1eYEARnPux35k6DViH4MGrBGNxE7AT5JJADGjOm/MF7WFcqqHZA0BM4nlowkYSUvZi4I/MwuszC8zv146M+W5ljk2oc+LpXhao5QN5KymP973U1x+6+0c+B+rvflVZdyf/q557xpJtDmFxxirGgFkNuYCxNLOtZOBbjTXIv8lc67ETsAPzk/Aj5URsRpxsUmHiMk0fk01OqXyz9f5vo74/TVd1udxtVzvP0ilTebROu+ni3NJghhVc2Ts6bsDY9fRHfYc9zcMxyP94cDY9cRxII0BolZEMaXscsnPemOPnueOgqqSiwwJzpHTuHLGs9P3nFOdE2cNy8wKdXQS5LQKYi7bnjS1YowQkq5PMZmTqa8inUVzY9a807CIirVb7MRY+nhtXjPe/gw/ZKzddezdc3xaD2QGZ0r0y5isW+HqrAnTINYtCkKcCkyXPu3HgcNhj3EVx+OB4/E4OVFmKW7LrXF318VN6+Vdf1/YOm+51Y+6skkOEGJyVD+vXYv7mS4xAbm4QRHenBig2fgyRqvSSXJT2oA60TmAkTtEZN6vph8ppQLma9PNdnLdT44382Y0ORss38PkuTG/ntdqTbsyBgU1MrsJ5rXWWjvbpxmEcnWx9eqcnqAVacSoFkopQW9zepcxWiXOGE31ihiMfftw+aGt9GT515hcdMS5fK+CiM1VO3MfJFHbM2tYdn1PCpH+2HHojprGYxzRumzPugz82LcCP8OgwE9MiX4cOY6aRpSGQBhGJGoFtr5XbZ5xHDQVvQA/pQ6YjCRKQYOUASGDiCWJdqAkoahkyxQEPh2306pnit+Qx9RiJJW91hqjAVFnNSgm5KIpqhlVTCFrtPT8T9GK3o1zbpKJmFg5Re8zlJQbp3Pq1rUuBZ3137nsz+xjzXtc9vlRvyKSotG0uJQmX6z0y7QCp8wmtxZjVEKirjyVr2jahvV6xXazYbtZs2pXNE1DXVU475RRhM7RU8DHvHUZ/Vm1hVl1q/THHQfe9f4dR52YbYtxnvs8iYI0yvhyGmB2Hl9VpFjldK9SvbKcaJHUVZbZBdtxTltnIhst1aK0Kqr6EZJ9jtvC28q4y0y8xRQ1EhETwFhlC9oB6zxh6LVaLcoktM5Po9HA4tvn3nmfpfTHZ/wUn4pirJXoppluaNqgpg/dMbrf2ODKYm/mk6PAgLXTPM3nVQfC5uMqEVpE8+muL+m/+ZKwv2Z88TVy+RwOe1oZqDYVkhxDEoakjoY538GDBzTbM9YPHuDPLxT4cQ5xVqOt3R47dOAcYfUAqbZEYwmmIeF0iU4lhUswxVPNvqhMF7+sSBBBAhQKoilRVrMYpPe/MBirjB9rtZpFESvbDBekGKnqmtVmg68qjQbUTVbUN7pZ5ucleRA0Tc3Dhw8Yhg0x0x4Ph8OEjgKcn5/z8OFDqqpis9lk6qOjRJ5STCCB7aal7zq++uorvnz2hL7vePHiBc+fv1DQIcRJrHndNqybBu8cD3Y7LnYK3my3W9ZZQ2i13tCsVtR1zcNPnnD+4CFVrSyfze4M65yWaK8rFUusqxOWz+lwNSf/vrOPf5TVXHASSKEnHG8I/ZGxO9BfvyIOHd5CsLp5dYdrjlEYTUWqVsT1BSKBwdXsqbHJMexHDi9fEBK8uL7hTy9f0Q0jry4PvLi8YRxizp+OGXTR8TqNa7LQbIxZlO8Uh0kstBAmkVr9WEnF0vlSNpZSoliyEZMPMWkqkZpKmqRRA7usInZyZCXDEWq8itXfsCAugVP6vPVgPIDmFZc1rEy+qnKsNy1nZ+uP8iSLwf8hWj/3fQV3vlvGsdFnJN7jTQuIVomxuZ+so3DuZ0otaAKC6m9FjD4HUxyRvGsaz5TKZCMmaZqvsxETUzYCit9rwVbz9xUtIZamxvuAP/c/P2cdtzJ+9KK//4lm0zLn3sj8Vj6dme4wjoHQ7Ylh4NXzb/nyP/yObr/n1ddf8vyP/4Gx64iHA2F/gBRxAo1VINtWDlcrOyCS9R8g971qg1TeUDmNEK8aS9toGfb12rNeeby3nJ85NuuEcwoMxRhJYpCDoRtVi+OmF6rrDuM8VTPiqg5MBXaL2BUpWfrBMwZLSoY4CikoyDfGmeE14gjO6/OuGsR5krGMLjNQ7/U5njpZiwdwj99x69TLZpZvyeKXeSG1zuMz8t2eP2P96T/CHK6oDgZ5/pqURowTfFVYlnAYAjYI3e//wFffvGS92RHFc+wG2vWGZ59+waNPnmBMqVw0g7N32vXv0x0/1TIGen259LKR2dUTm+3GhW9ijFYuVfmdzACXRDQQRHVXkndU2y1e2uwM6DmHIdD1ykgISfB5/EZJk/iuxJEhl/6NqAA6CEl0tyouqajYpAbjXI44W483+hqZEqywE8vHQlUpGmuM2rKZBVmXql7W0FQe710GAbSapjo2GVJxHml2SNVi6xX15hzxLdF6hgRhzLWvM6PIGIt1ef03BpuDXOke966YAq9vntP1HYfuin7oQUbO1g3b2i2mqqEfI/tuJERhPPa8+O45h31HZRxfuwqHYeh7jseDgkKYXCsQ3T9yal1KM2skTTaMqO5RTvUKMVeeFZAMaIskQjcQxjEDT2kR653T4nxd4StllvRjYBhCvg2nPyIaeMvVqSSSHUxd+/PpZqfVWnw1M3p8rXaMcyp3UDc1lfdstmvqpiKEwOF4w1BYNKPqA1WVZdU6qurjupK3i0mU4Ghh1u92O54+fUpda2rW1998zdB3dMPA4XggxKjVsPLf1XdQu6Fo9oCobmgGtGvvqLwyc5rKsW5UY2cpNTCOHYdjDowOR7xJGAfnmxWNz2uhKemiltV6Q7vaUFUVjx4/4sGDB6zalr/4i1/y+WefsV6v+MUXn7FZr7R4zcKf+Lmyud+rzY4sE2L4RlvuyG+xKfN/DAWYkSUSpz4EhkF0zTqKYy/gidBu2T54SBhaDl1PlRlZLmhIqASLC/A/4T4GvNPqfJYMdObrcWYKQRINk2+hjDi90OKTL2AJYFoS833pXJUkxO6GkMvEJ+Cwv6aqWzYXHfV6i3WqeWl9pdZxtmXMCQz17vbTpXqdKqDm1wunKW9Yd9nhM/K2ADYyBc+Q0yxkgbxlZkHpdEHHi8voXCWJVhImBvqba/pvv2K8uSa8+IZ09QL6I62J+HUFQBcSfRDwFXa3wT64oNqdsTo/x5+dYatac519rUBOd8D0R0Xz3JrRtSQMo9ZNUqNfUtZfYKaAnbB98usl8JNTyYzNSHMWzDRTH5mF93w/zRhLVTe5eleDiNJLU0bKnfOqTF42dlscusXjzq9ElPFzfn5OSom2bXn48KGK3qUizgZt27JerydVfufyvUmhngqbTcPTJ48Yx5FnTx7z5PFDjocjv//976msYRgHxlzi0hrDg7MzLs52NFXFsyef8PTRI6qqYrvdsVlr9Z9mtaJqW3xV8+DRY3YXD3De02631KvVe4M5P8cF24gCPyEMhOOe4XjDeLyhe/2c0B+xRhis8tGGMNInCKZCvCF5i0hiEENKFhMNN4cjr17e0Pcj312+5g/ffstx6Dl0iZtDVLHnLP6qholGQSSvhktw0+SIi7MqBqt/mRc1UwzZzDbKiE7W9TKTSVzAH2vnpSTmEq9FqwGyoCW6mBuUe2Iz9WTS0zcoO0hDlYimxGNcwnqH83neidU1qDBYgLpyuWT9xwF+ftbNFGAKnKnmsqpm+s8E+swghf5Nh8QsXGtKeB07xTWMmaNzRgScAnheEm6iuptp3U9iZ6fJ2InKW0bNTzdTF866yUDQ9zhDS1hIhKli19K4mJ1to+LNxwNh6Hj94jlf/eE/cLi+4vKbr3n5xz8Q+oEqCVXUeV/XDW3TqAZaXeHbCjEwxIE+DNO+JahAbOUsbaOVu852jl2ueLTb1mw2ler6NJamSTkimojRQDSM0SB99kqOY1Z797g64vyAtbWK5Pta7ysBYlW/K68lUWCMQkiQjGO0DdFoiWtTbzC+mpKiJf97v235vJY73u3vua89eX7IsnzecscRBmW8GQU+6/OnrJ/+NWZ/hf/2Jcn/jhTUaXGZKRWTMAyRmAKHF1ccjyOr1QZswxgiZ+cXtKuWx0+fTCW5Ux6D7xy7P+1Ee3czBpymJC0Zi3cns1mtEOgMNkUN9uW0rS6XEHfeUddb1YQQowq/YuiHAeu1YlNICR9kAgfGGElJncpJsNYsYh1mEaYwymLDGFzdUNWN6hMaj7MK/JQKU2AwvsJ4LVFl6hpTlXLCNdaq3bZqapqqwnvHbrthvWpx1tI21eTgJ5MLLWA5iGMQS7IVqdmRfKMFHwQt22XMYu/MzlNxiNNHAn72LxiHkUO/ZxxHKgy7VY2jUc6faN9cH3pCf636G8eBVy9ecnO9J4VEHJU9Oo5aFCKlRBBhzOxxkyvxajqrFoQp7DrJZcrm9Dxt5TatlGTyDNiEwgJIt6aOBkKaxtGu1FewRzP50WK8/oiQTJgrWUkixRn0mdysvNVaZ6gaR1U7jYc41TtyXsWFm6alaRouzi9Yr1cMQ481QmcNIWqwOYRE7Q2rxlE3dwc877vNYs5z9ULvPbvdjk8++YSmadjv94AwDD3Hw4HLq0sdA3U17Wda1j7NAGY+32q1pskB3MpbKmdx1tBWjnXjsdYRRhgzWDSMPcf9DTEHqp1JCp5tWnabVoGIlNcC6zg7P2d3dkHbtvzqL3/FF198wXq95pe//CWff/ap+iCbNeuFf3Ha3hc9/xm2sjctLv/trtFyQzs9h5ozMjOET47XvWsUq5URk+GQLN4mXLNh/eCCNDSsLq+oK4/EwOBU6HliyMo8vwtQ6p2h9nbCsHMIWEEgU2zMWeA9ZYkBg/ofzhR7doZm8sqdr10TgFOKhCERhg5jPcMYMNUldbsCicSxw9e1MqWdVk5WKCUXD3rPzfXHBX4kgz4scIzyp6XYc45gTK/vbEts0EwDqjAFphLD00Mp358/s/jXpqyDECMyDoS+I3RH0qh6CEjKA01duglwMlZFQ8uGW2WBO+c1EmC9ftZ6cKopIMblyiSZFDj5qIsOWdBpNWAn8+CePzA5PwBFt6SAPsuJc5+4g046ZTpo/1lNacuMA2u11Ch2jjItL+D0UrQvS1pUXav4ahFDLoyfuq4XivZM4JZyhHWieeey+Bm0bc161WKB3XbD+fluAn3GYcRaw3lO12qqit12y3ajws3r1UrLxTtHvVpRty2+UjpmXde4TCd9G7MH5rH3Rt/9jAAgEWHojgx9p9UFhmESB4xRxStNUiQ85lQLZWpldXljla4OIGjELET9GQPDODKMQZ2ysllzC/ibXpV5aXKUdWZhnCxjE1iwBIULeJANW5ET7Hj+psWcmE4o8z/LRzNd0HKHKs4TmRJvsr29oH9m2zbjRNMHjLVTfvl9ttuj6cPG1/dvELeP+KFstSljroBA88GL1+W75NZn9cMn18HymZd4i0FV+ea0k8XqePJppvFlThw8c/vQ5XW8/U/30opjphemI78YCu/83GIMly2jAKH5xIhRuCOGoPN8GBj7fvqJg1aGORXBP30ay21JUy0FoWjOSU6dIK8P+n2Sq3slckqLqFaXiZmFJxaT8uSxqr2nOV8WgwNxSHQkY/VYm9NRmL3gQo6dSbIm+9cm63DksmHZSpRFF913e79z3gaH7uNKFquqzON0GrNlLuRfVGdFK+bZqkGMJxMQFKBPGfiJykZJUZ3fcRxwznM43HB19RoM3Fxfcdhf41yFs/rz1qv7Puf+rX+WWyvAx22zVtLdjlexazRldAarU7bVEkIQyQxVyapXZd3R9SnldEPN0jEkWxyGLFNlhWS9/pCyLmVZ9+YNzuSCJcZYTNVgqlY3Kesx1utxuXw65hT4sXUzAT/WalVFZy2+afB1ReU9zXpLu17hnAJCdeURNBUzkXACY7TEiFaKK2lQi2q1yzXE5BfTODWnfsB9NBGImd1dnHtNVbV4Y7G4CfhxNpCTz1RvKeR0izERhjC9N+RgZMxrmM4nmwMPRkGfHLhdgvbFpZv64eRGTVlQJ8anyPy6RLWMUX2auq5AhHGMOBum+PDSH1jaH5PfYOYhY2zRVrKaGlW5vPwK1kouZuLxbvGTJR2c88oqE2VmWqvMrWkO/ATmbbE3nHM0TcMq2++rVv9Vpo8jpaLPM+tDpgKyLTZ+m/0R7x11VbFqW5xzrNcrNpsN1lq6Y6dZBovvN0BT11PVLWstLge5Yhadds5xdn7B7uycpmm5OD/PxWBaNmtN76py378d9Dk1m36STv/AdpJ89Bbz79Rae8s9nZqLk088v317b9W1NQoYMVre3dXgI9ZVWW+pwtqYfUozzyG0yrBWFDW4XGV0OkZm4KeEDI3MVuU01yeb17xhX1pmweilX1PmrgLIAaJTwfhxII49xkAMIy4qc1l/lqnr3z8mfnTGjzJwijN4mp+//PnwnUAmu6IIz1E2u1zSlzRv0jNqJ/hxwA1HZOjpXzzn8k9/Yry54nh1Scn3LDUHRAyjGEICayqazQN2n3yO357R7B5Cs0V8lfV7PCBYB9YrHStQE/BajytH1pAMPEmcjfbJQl10SGH7cPqj1Rhy3m2xDfiYS4LuJEXJ34gsNquin5Gn5J0XUcwqFfqrdD/TUukZ9Ak5z7og8c5l5pCZWRilz0QETyBkda6zTYs8eUgYAxdna371y89IWcAthoBBhStXTYOzju16zWa9yqXaG6q6xlpHu93SrNZY71lvz2jyMc6dJqV/FCdCZp2fj6H50/cdv/u7f0McOoabS+LQI2Egdh3EEbLgmTLosgNuHLbktqMbZx8CKSYOA9x0UavEdIGui/RDJIo+O+PQ/FZrKRoHJSpGmsUipZSUL2M6kzxmfZFiLDF91iSZF8zCoKNUXihrDZDniDd6joTS5E12ShO8wRydmYUG53OlMGOgUvq/6vfMW1VZ24w1WF+B9VRNS7tes15v7vUZ/nntPUCcDz3jXWPULP99y6o0bZ6n7t1d+csn7VYVyJnZIwRMZm2dfu5UF+OuO7x7Nn9U80qyQK7JDLZs1kwsuDcPL68WTjXKJsh9UJhwKY1IGJAUObx6zatvvmboDlx+/Q03372gu7lhvDngo7LcKmupjBo4WMOYo9y2R1PnROjHnn7sEElYF7XsbXECrCF4gxsS9AkXDKMJHJLPOKjJOlt2Mr6Mdfimxtcr3Q9WGyrXYsRTpTUuNVqJSlpcyHpQSfdDwRByudNkDKN3RKNOdbJVrpip6SlGNM00ydv79n7ah4yWtx07P9s3jzC3jrz9yQX4Y8zJeUwWnXdNQ7M5J2IZTc3rQ6I7BoYxMozKOCmpKRrZ1lTprjvy5R/+nuNhz3a7I4aRy1fPWa83fPb5r3j85FMVE3Za4ZETRPId7Z1/vruPPtbTm/KCzYyYGTMDLc5oRUCNfakNGyIcxxETBvphZB+071xK+JQwRqtDqkFvGBP0RkHNYGHMtmCQxOC0UtpATW/Xui/lKpVgJq0yXThd1g0x2LbFNK1qmNgKcQr8TKxYY7F1hfU1WKualFWd76nC5TLuu9WKVasaI48fnnO+22bgp6L2Ws66H3rGEBhiRA4jDIEghiieIAq2GpeZRaX/jJkAmFJR0cgpeHYfLSWhO4yamjUYSKot19iW2mg1WBUztlTW4GyPtYYYDYf9EWNVbycMaQIIYog5eGUWsejZEDEJtUPy+2WNTstdZmICFZZJfjsDVCxACbV/Mj/RWc62W548OUNEePnymks0LawfEsM4gqhIrSkw++QrMAHm1lnaVUvVKBNzvalpWp8dXMXHvfOsVxvqqqWqa9brLW27wtqK1TpgrKZ9YSvGcdC0KFsj/DiMnxJgvm0br9drPv30U9X0NLA/7Hn16hXfPX/Of/j97zkcDir6PGjhEDVqlTns7FwqfbvZcbY9o6prHj18yJMnT2iamvOzMy4uHmAMfPmnL/nDH/5I3/c0owaUjTE8e/aUTz/9dJKkWK/XWGOnldxay3qt73vvOb94wO7sjMp7dme7yQdx/sfpy59P+/6V/CRGaBaW5MIPW+50kvl0IUE3gDOCNSva5gHWr2m216zPXuOqI2O6xB4DIhFvJFP/DXVb07Q6LurKUxe2Y4xZXgS1QXKlPBsSNipbyFIEIrK4fta3xSzAyum1jkXITM5kM6fdkGQkjVp1+Hj1grE/aHElhDAMWF/jVztclauUvucy+pMAP6c/S8BmsRjm32/fyBumfDmmGBcmnzPNB5mU9W6ALBOBRVBp5YQbBuxxT+o7xtcvuf7ma8b9Nf3Ndc4TyxBLtmGiZFFbPM36jLNHz/DbHfX2ATQb1RIQo6JrSC4bpWrcITpG0ZzcKLpIL0EMvXELUlLAlp2TI6kT6FMAnzQZdUXYeu6l+zePiqbIpNHBrcckt1/enpzlwUguh6gAUlVVrFZ67KyunzL7Rymss+aKYHOqWwEpHBFjhN2qoXYXesynTybkXULU3GpES5bmNDQV+SocWDVarHOsdme0m606I01LVTcFCeDE6foIbuHHFuod+p4//P2/V/XkUsJdEl5iFnyOijaLpjJVTTVHOLUUFzEMDDERR+E4Cvs+0neBQx/pegV+jHNYr8KwCvzME9wU9t+kvozqIhTKdKaTG2RK8yvHSyzITFkC5nFlMJnKS46iFnbCMvivCH0qJ1gwksx86ondY/KGbH1ms3lLlvafyYknTqXBOI/1Db5uaNoV7frnkup14hpyH+P3naAPixXgjuPmWHaBZdLJX+ej7OJ1+VvRbFt8j2ied7prbZq+6Y0r+8maDj+ZxmAxbu88dgk4L4+ZgJ88fnMXyjAShiMpBI6vL7n89jv6w56r755zePmK7rBHug6XwGG1GlARpjfqiCKoYzIEBKHvO/pBgR9f6Y9xmj5gvMGJwY4Co2CjoSPgQ45+lmCHsVjfYn2DcxXtxtGsWpyv2FTntPUOaxxJWrzUGDGEWGGzw5gSGim3luQN4hTgib4mOT9V8hJTSNkCZOdtCjx9jGd/P2v1UjJyMm0m8HR53Ns+v8AtWAZg1EZyVUO9OWNMEKi5PiYOh0gYxhxwUR2PMKWO6DqaYuTrr/7Id99+zXq9IaXIzdUrzs4fUvmai4sHOFfpfuoz4ySvve+42Xfdxfsffh8t7w2LzpsAC4FsxFcZ+JHJ+QiZGSLjQBcCNzESYsKYiE2RwmO1eW/Q0u6OZCAYGK1ugQFhIINAzjCIfq/zNc5XCq46LZqhQU2XWRcWu2oxbatsbO+RrPejAIvu27ZusLWCPb5WUWaDoTYebxyVc2y3GzarlrapefTJIx5enOGdZVV7au+IMbA/7On7nm4MdK9vGA8dJgndkJAg07WdAD8ZOLPksu6iv9+3/SQZ+BFJpACIwXhPRUNrSpRcq3F5m5TtZFRsuw+5oltJ9SpGwWIsYIvUgD5LHQOcbFvzVFVHUASVcigV8JYs6Cy4T7FVsi1kTMy2vWezrvnksQI/KQRC3zOOUW2wNGatQ90/JVf71UwFUIa2wTpH0zasNiuqyrHbtaxWlTKKvMki+462XuNdTVXXtO2Gpmkx1tOOAaxnHEf1f6yfGf4/QoXEqW/vAH/atuWTTz4hpYSxlq7rubq6YvfHP9L3A1dXV1o5+PVrUhwz8KNj0jtPU7d471i3a7abHU1T8/TJU37961+zWq14+OABjx8/ys/W8OLFS0SEsWmoBwXAvvjiC/7JP/knrNdrHjx4wIMHD7KIsJ38nKKfZPPzsNk3MVlo+P9/2onj/s52F+gDxfKbLcHTsysIkqLQIThjaOoG25xjZaReX7LaPMC6hmM3Yu01KSW8zQx+a9msa9abFusslVfgRwTCGBjHvC8Gla/QkvCCnXQlC5+c/OyVxWWzLqi+v8jGKcBPtuNsdonGFBAJJAn0khiON1TtGusrYkz4esW6aucU+Ls64472vcCPMeYXwP8SeIYubf9CRP5nxpiHwP8a+BXw98B/V0Refd/5CqV9iXjP7+fXeaU1y/cXfNDbSN+JBGYBc/Pr6QOyOKA4BOW9lEjjSBoG4jAQh15V+WPMC3GBWxS/jzjwFfgaW7daIrhZYatqEjAubCYVv39ziM6XI3eOfZn+d9vYv/u5nmp5n4I/L79+AfBbY8y/5s99hhPwoedeXsvs3L1xMyfXM5ujt2b04u8njn6JXNw+i4im4qW0+FfTznxGZ6tMVTUo8JNypbAiuAVMhhPMxop1Du+rTG+1UwnGmWb94e1DKnu9pVXGmP8z9zAXRRJjr4CPlqGMWLRahJWsv5OBHw+4ymsgVAQTQYxSjvt+IIyBvh80vSuESaAw3+n83+VCt+gDkTkVpOTXQnbMzPTb1H8zLRqmilyTd8RsVN1y7Gb2jv7ujNO4wGKxsBic8fo3Y6lclQU8LVWjqX5Yg6lsZryV71DQZwya+21chW83WF/TtiuqqsY7x8vvvoH7motvf7os15m7oJa7X/+wNos4v+d6sABqlov6KfhTPijTu7PaT1475Pb9mcXHTlMGTw8xi/3DcPvj79nubS7CvDYsQZ8PAn/mYYhMLDghhIGh60ij6vv0+z3dQSt4hX4gDiOEMBUX0OIHOR3lJCgzs3NDjMQMoGu6gRoqCsuXNGZPMh6msscFBMgMBDsDP8ZV4BrE1IipSOKJ0SJiCPrl+vSNTIl9yibVSHapQqSaTbMey2xjSE43zOloOT04aqT2/p7he82r9xlkp/v33R+b35DTEb6AjG6dsgDUIrnkcUfXdQzDqOm8MWnFoJwCoWzcokKQ+1vm9TelxDj0dMcDdd1ota/DQcEE47DOly989y2+9dZuryZv64v7nYt3PiERSsCH5Uspjn3WDMnVLyO5YhW53HYBfvIciJhcWhyiVUZ5klIxs5iFWgHIYDC+VikBY7HeY1wOxBTH2xhs1Wi6Vy4/b51Gme0S+PEN1qnArfF1Po/BmMzQchZ8hfEq/GxcFoO2mjYp1iLJznOOMgcXYtN5n71dSHd6jsXmzXMSIIX7nYvgZi1ASuqoRbKDlRM1tI+txzplyZish2RsljMoIMw0OGb71+Trn4CfO251tvyLbshsq2jKCLmyGygrcbZ/ymetgco7mqZCRKgr1Z9BBJerkiJkNlm5Tv0pQSucsvB8VWVdHJfLsPvMqDdZi8TpOMiAuYiZS8ZjwXjVFLXlX6PHzqkm9zoX39aW++TEyM4gS1PXbLdbRITziwsePXxEXde0TYsxlnEYSCKTlERT17SrFc5pVd+mUVmHui7/KghWVdW0LpZOds7Tti3eV6zXG7bbLauVVgZerdY4ZyfgR+UstP9NBpNPA2F32CSL+/2x2jAM9zwX39betQloe9NfWMzH2XQ8OX6ZaVL8ZzWHDEkcSMKYSqsRxoiv6pzlkddeq0BcU3uaplLx8yx4r4EjS0o2B7LRrIPpSkzGhh02zyVf1XjfvAH8zBwCBSGLb1/UZchEh5TktCMKODzZbAtfx0z/eWd7H8ZPAP5HIvKvjDE74F8aY/6PwP8A+D+JyH9ujPnPgP8M+B+/x/nyxZd7uO0E5B8RyDVdTF7UzLS4JcBmEVj7xmkLJXP6mjQ7hGZZ+g0LAsOhY3z1ini44ebVc/aXzxkPe4b9DcOggkvdGOjGANbRbM9ozh7iNjvaJ1+w/uyXuPUGthdEp8buhNzn52PzwNN873INacrlO+2Bsvjr61Q2igVKPa/s39/VmTr4RxH52/t9hrcG5Pe02w7a0ml70zbUxVyF2HQyydQPmfk0DKTuiKTIOKh+j4hgm2pKy2p8TVvVGCD2PbHrMttKq9OoIVWrEZRTvXxVZ0e/wefomCmVMKaJ9eMtxLfavczFGCLXr14iMRLHHokRI4ItpbElZeBHWK1azoyhrr2Wx4yRJImryxu+/e4FfTdwOHRcXe8JY+DQdXlo5AVOFvpTOS3KmMKyEsYUCXGY2F0pZabP9CGTwVdtUujQywUwt3lryLnyZgn4aNqZc7oJV5WbXi+Nh3W7zhEgz3a1ZdVonne7XlHVtaZ31QoICuRSp1rBox9GxhDVMKpWGFfx+OmnPH38mIvdGdL38DHm4kl7Awr5eG0B+nzPpbzxvlkcMsPit9k/5d10cuT8l3zUyfcsDftbXzttkG9AQj+k3dO+KDm9kaxplN/9QOCnrI8pBELXIylxeP2Km+++YeyPvPzyD3z97/8t/X7P5fNv2D//jnHoNEVAUjaaHMkGwBAlZT0LgWiQoN+TYiSGqH3uHEaUOxuocsqIJVRbYr0G7zCbNX6llSB90+CrJleVaXTt1RNhRJ3cGBzdtTI7OwYsuu+6usF4MM5hWoepKtXwyVU0T9iYAoSIUCrbFGBmwfi512f45jPV9n0zUN7jmNMzvs97d0JQ2dZI48iLb7/hd3/3r7m5ueS7r7+kP3aM/cgYNKXLWsfZ2QO2Z+c466jqOpfCjTl6fo33njCOvH71gnEc+MPv/x0gtKsNz579goePnihT0qoB/Of5Lt/74ft5jkIO1kkGAfRNySkbWsZb0zKTUeFrEOIwMI49MvQMKTG4ilg1xGQJUYEhayzWaGW8ZK0y0jIINEp2tE0BSS3O1TjfKIjma5yfbZEC6mglrpzq5RzG6xxyWc8Go69tFiE2VY0pjmflsT6z+6xFXGbONS2pboje0xvDMSZsSgQiVVBx333X03eDVsXqA4dBxdWDyJQybbMNr/1aggImv5fnagatzD0+Q4OjMjvEzpo5Bk+INX3SVO2IAlcDNW61o661CptLyhSSkJBR7R/Jws2FkTm7K5KBoTJoZps9D6W8E6XJrp9SwyhbZtZHs3qd0SSS1WOs0TTaunJc7Go+/eRcndi+Iw0dfT/SH49cxz5fh8XmPc9Zkyu1WfxqhWsafFWxO79gu91o6l7rqes8LiYMwpCoFNyLlmMvDBKJEUapFeCzHlsZnBn1M3aZ/naPc/Ftz3exkBQAqOiEAlxcXPDrv/xL+mHgi8+/4De//iv6vuf6+prnL14yDAMxzlISVVVptS9jGIaBTm00Lh48YL3Z0rYNdd3gnM+p/GiJ+BQ5Ozvj6dOntG3Dr371K37xi1/Sti1t29A0LTZrnZZUR5fTMjHKzZrAi5/MnXiz5X78qM/wB14Tk8ZOeZ/bO8NynQFEC0iIgX60HIxTX9xv2Zx/QrPqAPBOs0qsk1z01dCuapqVjgtJMvn0nbf0ndUArwkZHM2yFBnQq5oNVb3COc96c0azWus9OHP6sHMwKgYFeGJK9ENgzJUA7RhwKqCGcTXkNGpLjhYsfwp58j3G0vcCPyLyFfBVfn2dI9WfA/9t4L+RD/tfAP8XfvAgkFuvCxqui+IM+KBondgFgLM0goEpWnL6enIXJINJKFJNEsKxZ7y8JO6vOV695nj9mvG4Z+x6whiJKXFzDFx3Wu70YtfSbh/jzs6pHj5j9eQzbLti2OwYsqCeZFp5uYCUEb203DxkoTgxeS8Z9jEZ9Ekz1Ru5w6WT5Tun/VHa+eMLgIN+5cd6hu9utyfnm+/deo4wqe/PC/0pMCjjSOiOCl4MgTCMurg2NU3bYJ1nXTds6hYDjMYQMrDQJ6XnYQy2rrH1WqmwqzVNu9Iy3Zn58647+ZHbKCL/Cv7855hiZH91RYqBMAxZ2DUzpzK4KklhyhAj7arBWsM4jnT9QIyRV69e8/VX33A4dgxD4Nhp/rSKKkoGfuaF2hiTs6MyrThrJcUhkTLwUyLOQKZU2wm0nQyrmCY6tCzp0ws0QSmheZwZMzG8vLNTZGjVtjR5w7deKfNVVXF+ds5ms6Wuah6eX7DbbPHes9luaTKVvmoqXNY7UKqnlm3dH3uGMaDlcRqwnvMHj3h08YDdZsNus4EfbS6+v1P5g9oPAH1uv3XqoBaAsOwBpRW+T+F7LMH+Uwd7WkXMqQ5X+YuYBfizgAnfvKrvBYXubS7qclYAHF2TPjTVa4r6iDCGgb4/kMaR69cvePHVH+n3N7z84+/59nf/nn5/w/H6ksOrl8Qw4r3FVyqcn4wjZP2QIUWGqAKnjOiPoE5cTp+2dYWjBizJrIimAeNJ7pxU7dTJXJ3hdjuc96y3O1brLcbZHAmrkJQYjj2hH5CYiIeBsRs1lSsmTet0Drtx2MZhKotdOU1ZsRYqnwEoDbCYbCcQmVi9BVCb+0kDIvf2DN9o7zvvfvj8fNcIfWPml4NFte4uXzznD7/7O66vLnn13XcMXU8YRq0qFSJVZVlvznj69AuNZm/WrFYrxnHk66+/hG81GBNC4PrqNeM48PWXfyClxGZ7xmq1Znd2hrUOU7XvLIZwD+3+5mJus72pv0vRDjCpDDAkJYIEhMQYRoZxIIaRkBKD9STXMIihl0iSiKEIvhqwHrEVhUEeckleFdxuVcenWuObDcY4nK+VHVfAnknvp6Ta5LGf100vBi95z7V+0piYxJ2NAW8Rn51STwZ+LKlqSHVNdI4BQxcj1kAU1cqIQUugd93IECLHMdKFlDWKFlaoCFZRtFm7rMxNslC7FbAKWt3fM7Q4s9VnlAEViyVG9YwihtEoM3CkwjWWGiGlgIuDPusQMV61c1KIudDLnMqtkf+EmDiPkUlqeanPlXV35PQvqjFqYCGAD4KxueoogjUJZxOVS+w2NY8f6j0dr6/pb1oO3vDKC8QBSYItrC3U3hGn7LC6balWa+q6Zrs9Y3e2w1pDXVl8Zi1PbkT2VZJAipY0CCYzAGPyiHFgI8YbrImUSbJgHd77XHxbu82CKWvMbrdju90CaCAxKgv76uqK754/ZxgGxnGk7/sJNPKVSnG8eP6cL7/6inEcVXh5tZoYQMpgVJZQCJGUEtvtlmfPnrFer/j888/59NNPaZoaCtjzRrutL5ftEnnzfn6qpsymH+cZfkgzix9uvb59RLH9p7kKDFiOZJa/X7PaPiDFAWsilR1IKVBVQlVpGmHdeKpGIZJ+DJkEkv1RMcqSTaBJJLPGrrGett2wWu/wVc3u/CHr3ZkCSBZEUydyEQUFk8YhEoMWNDJdjx1Vo0zsgMmC8yYzqJ3zql+ZmEGf4gK9Z8blB2n8GGN+BfzHwP8deJpBIUTkK2PMk7d85j8B/hOAh88e8qYGze1XOU81H7dMYTqhMspi4iysnPKpaZMx5ZhszJffp00IUoiEXtO7wtATxoEwDsRxJIRATMoQkVy+0dYN1XqDX61xTXtSKUHPPqenFAfmBJJZTvwT471c+yLNS/t36h+RJd45Hb6wcLk9G07an/sMf/nLX7793LffmBhBdz3nuz59e2wUJkZOxbJonnQBfnSXmui4yxLy1jlsZnMkkVmAOjNFChigIqMa+bLWadTM2uknd8Abt5X7ZfHe9zqK99r+3Oe4PTtju16TYmT0PgM/osBPNmolqaZHu1rTNK1GRWxOwYiRpmlo2paYwFoFO0r52ZjTKYw1GFdyXVVPSYGfksqnekuGrO9Tqi3oBSuVWG9sBn6SzGVPU5rYEuU5LRk+xpDptmambHqXI14rmkbvSZ9/Bn7OL9isN9R1zcX5Bbv1Fuc9m82Gup3LW1t1HPW6RQgh4hvNvRdsNuyVPlxXFd6ejqM/9xnuHnx6669vzp87TnDXaX94M6dr0W155uVhcuv95QZ+6/DFu3L7qDcPOTmnmQ2ru+0uTtk+cwrZO07+zvbnPseLzz5bUHXNPM4/APxZ0n2lALdSUlBinicx/6TslKkRYp3FVXndqxy2qRBjqCXNe+4IDOjrJEjUOdau17RbrYJYrRrqdauaYO0G36w1naBe4asW6z2upHdZTS9RVlZm4cSY2UQjaRy0GyJI0eiTdPKkJh7hohhCoUirsymT1t/UNzCJp97nM3z22RfcH8h69355cu9v+8Pyc7cPkjkFVtmNKmq6Wm84O39AGEfGrE1TVRUXDx9x8eARvqpYr2fgpx8GYlSGWNs21I2Wf15vdjTNKkfHs3bFco/83rstNtP3HfX29uc+x/bs8TR+EJlS9YvDJkV8wWStRRGKTuNkkRqDGJcryjlNdSx6NlaZCWI8mCy+bNxk1BtXZ/Flh/UV1lUZ6PGnLJ9s65gi7ky+XnKgFDMFPwrDYMlsxZi5Qt7039PPWTOzFfQ9meURFuc4eURlGbu1Eyz/ONu0NvdhWbPv5xlq4M5TUhJNjggLarvotMh9gkwCvJreBSJxqlZFSlMKabE5UrZF1EbKWpwpIaV8usiUvpWYteYoDGVyRZ/cGSnFnK0lWbpTr9vZnHmXKwp5r/ZS5e3045yZpDZt1okRDE6KfqXNVaq8ahQ6l8ePmfXPFnuzmBykBh2X2FxpVf2fyTPJDL6ZxfTmvL1vX+Nt9vZdgEl5z06V81QHqAgrhxCmQjKl4qqIcNO2Wj2NGUiaUsryeZ1z1HU9nVMriSmwZifZiLc1k33gtwd33nVfP3b7c5/h2aPP33V23r4r3H347N6WQWtOD3jr92RkYYIQFDS3otqdVa36PU1taJrsN3it5qXrlQVxxGgZveC95HUxzt9iHcapno+rGny9wlcVrm5xlerDil1sy4usBUtUhmKMuGTwxmFiJGKUFZnTfjEWW9W5snRO1bQz1ccUe+h7hs57Az/GmC3wvwX+UxG5et9BKSL/AvgXAH/xj3812WrGzJvN/N9lKlZRtc/HySIaLNmol4SInYGV6ZLKRrLcbCQvVBmVL0ZljPQ3KnY53lxy/fw5h9cvGY8Hhn6k70aNDPgVNBtcs2L95HMe/Pq3NLsdqyfPMLszqLSKQlowEaQIY57AQGXk5ZQlmf/GNDCXwE/JIUdRvkVEZTJi7WzUfexn+M//+T+fvuR7P/3BC5c+L5PBG58XY/1d+zQGpVWXnPqUGR/eeWyuUFGt1lSZtRPHwP7mRidZ3yPDAIBtGpq20Yoy7QbXbJQW66tsYJXrv2tT+cDbuud2H8/xV7/+K/mv/LP/iBgjYRzU+Jg8J0hJy/dKSjRNxXazwnunej5DT4yR84uHrLcXdF3PGCJ9P87jP1+SplaZxXzPhk8R9RbheDxy2B9UU2tK9SIbl9N0mR3iHMUpr5m+U0r/zLnV1lLVFVXls7heha88zmqJzqYAOVWF857KV5ztdqzXaypfcb7dsW5XWGdp2paqqsAaXOUnYLAYgjEJwxCmSMAQlIxUNS3r3Y56Uc79Pp7h01/+kw9DG28b6R/24Q96+4ccWtKzyjpwyzWfznDKBbrdBbo3mNvv3dtV3jr6Hp7jF//kn0paGJf57yf/cuv9/MtssE/rvyCiYSDlEiSqHFWuDdTZLqDyyGaFpEi1bqg3LcY73KrFr1uMc1R1i29XGCw2CGbQ/WbsBoZuwBjD9sEDdhcXypirKkylAZCqbfFtg3WOdr2mzqleVV3jqgoQUtQSpSmMdDevGfbXSIyMN0fCccjOZ40xFa6usbLSHHmnARhQzQ6JJoubAlG3w2k/LH2innHeM9PkfN7XM/zbf/ofy8IqhdNfflB726dn9/n7z7+0r1KSvMYK6+0Zzz7/JX135OLhY371V3+TAWxdz3xV8fTZ53zy5FO89zRNS9PUxBi5fP2am+srAOpcBdM5x3qzY7VaU9U1Fw8eU+WUPgUp/qyueK92H8/x/NmvRYIa81PxgWycJ1GbNDq0FDuRZEdKsQ3jNe0RXyNVq86CDVhbo468pZqAH0cyFeTqc87ViLGqwVMpq9S6nN5l7VR6mBysohj7ZtassSZNlWpt0lQrg8kga/mo5I9InjAZ/BCDS+ANVGKpMdRYWutYO48BLZ6Bpqz1zuNriCZg/YhxcUrv0n7KpY5NYfsKxfSNk/dlsJJLqXN/c/HswWOhPVfAJ5U1YC7kkCYgTK+xtkIyyrCxJub+i7igjB9CIA2BUn20rNUpRiRqupBE1Y/Uv8dsT+kjEjtd5KQHYhbAT4yBmPSzYxoZ04ggeKuMn/W6Ybut2awyo2Vbc9i1VA62q5pV41ROwjhszjiIxpNQHZ9ms6bebCYnVFyt1eSMJbLQ8MpgmLi8DxtNiTOigE9CbUTJQVhMyppEbwI/9+1r/DnNZKCvaRsePnxAzHZmjHo/poBfIsQUubm5pu97qrpiDPos1lGr5XnrOD8/4/PPP2McA59++ozPPvuctm25uLh4T2ajWVzXm+//XNp9PMNnv/pndz7D+Vxz4G1yuW4dszwWZvtPjJRZtPjrwl/QVTGn2ylYH2XGAqxTuYl2XdP4DZbE2a7m/KzBGuj7I33faRZD40nJEJPQVIHaj4QxMvaJQ+qRZLBVS101uKph/eBTdhef4HxFu9lRrdZgtP5GMiWLR6YMUROEFBVMduOoFahjpOk7raJHAWIN1tXU7Q5XtSr0X7cY7xWgnopZvLu9F/BjjKnQAfC/EpH/XX77G2PMpxn5+xT49n3Opec7RWtPn6v2RAGAhEWqlzEZAMraPgV5X9ynTJtIEQbOJlJGp0uRtemzITEcjuxfvmK4fs3h1Wu6q0vG44FuiHR9IGExuxWsVtjVlvbRJ5x/8Uvq7Y7m0WPMaq0VLBbVQiSDOrPxWUCffO9SnGyZL3Lh8BTDdCZRyoR3FfCH6bjy4t3dzj0+w7e2P9ve1T6wVqNZUowIi/ZpGnX7KayP7Pjb2lHVDcY5fNvimxYMDP3IcDhC+ua4ZgAAeQJJREFUSthxxI4h5z2rho91Hr9a49s15Fz5972BAkp9rHbX+e9rLrZNy9/+9m+IKTKGIadX5QFkUPHPviOmiLOG2jusNVNJzBgj292BdrNjyLo2wzDmvFczRcy808iUtWZiIuT7UI0fEboC/JRUryy6p2CuKZ0xXV4BiCA7cWkxvzKorKwe/WnbdgJ46qamrit1VNZr2lU76TlVVYV3nt12y2q1wjvHdr2mrZfgUNYkcMX4zh2GOsUxKssghMixU72MJIaYVChx8YF7nIvfP/nvDfS5j+H+hoNcTiyLTev2F735xbL47x0nvrvd43S9z31xCfQYYxZAzptgz/Ty5PNp2nMomj0kLAmPAj+VgQqjjk/lEWkQhHq3prnYYitHtd1Q5bSsze6C7dkDnHXYEWwQJCYO1wcO13swlgefPOHik0+wzhOtJebUzJKOYiattGoC9I01qss2RkIftDLN4Ybu5hUpBMabA+OxxxhH5Tc435JMopGYP18EKTR8VophGkGF58tSJoWJkRnEZum4FTvjHm0b89ZfPkJ7H9BnaRiZqUR7SonVesOjT54RY+AZv2AiVman2HnP40+e8fDxE5zzkyipJKE7Hui7DjBUlVZlm76mBGpyOq2uxyVF8x765G348709R4FcmcVk59ekrPkiChBEKUyCiBBUo8VIqYettqCvSckgUmFcgxVw1k4V8xT4UW0s6xukaiFr+diqBbNMNc/6PVMJ91lMVyagvOypGfixWmXGsABgCk5kZQI+iuNrBa3sZ3OaGJbKWBrraJxXaCllW9xo2W8vhiAmz3OHSWkCeizKKFSfe7lmiaZH5++VDPzAPc5F46DeZsdKJtMhZRtbiodpDM4K1isY7q1Qe7BGcCni46jB2RCRIcw6bPmcKQZSyNXDYiCGMQcjAyFmQTRbWMvZ+cx4W3kHEWIcc/W8RJ8Ghugm4Mdn4Ge9qmhbhwE2q4rdpsaaxLr1tLUjRlHGemYFJFOpFo+vaNetal76Clc3iFOtnmhKNS6zGEcms9LK3C3i1ZLtl4Symc3keJiip3jvc/H+mjEq4lzXCsIuW8r+WoyJw/HAdrfFVyp6HfLzjSlmxrpls9nw5MkTYow8e/aMzz77lLqu2e12H+gP/LyAnmX7sZ7hHJi4DRy+/TOzjWhPdpViPc62k0pLWFN2wkDMPrUzukwYa2hcRdWucFb45NGWJ482GAOXr19x+SpkX6NCjCdFsGbEmpFhCFxdHbNmoAI/1m+pmhXt2SdsHn6KdZ6qXePrNovep2k9VGF3vXUXM+kjCT4GZT7HSNUfCeOY79Zk4MdTVxucr0nGkVxNsrmS6XuOv/ep6mWA/znwr0Xkf7r40/8B+O8D/3n+93//Xt94evb3P8LcOloWL2RxgCyHQvlQBk2KU29AchULCSOh7xmOR4bDgbHviSFOeaGqmWZxdY3fbKg2W+r1Br9e41crjK8WmzAl/TvblTM88zbj3SyitrP/tgSIOHF6RZYHLjSCFhPndq/m7/4L4P9638/w+0BryVGnd3xC310aB7J8v4CDak6UClw6gbKCjFEatbXuROywgGcxJci6MyxAxOJELKnQSyPqrrZ0zD42FfMt33Mvc9FaQ9u2pBTxwZGSirUWZzpGFS9OKakx6FQDxAelnKeUSBjOQmIYR0KIDKM6Fct+9c7gvZ0qgpWHW6jkIqIbclWfiDsjQjLm1tzIV7fQAZIS1dOTZjR/Bn6stbRtqyU0M/BTVR7rXM7frhdMBI93njbndWvutzKBrJ1ZRGrMuQXwo19eGEdidCPwTsdbySxJfMy5+ObmqW+fzr6J5p5ff5iZ8qEAkFn894237zj8Nvjzvh883f4/fFb+4Hl8T/vivD8sQZ/T/WN5+B2QlyyPKQBoMaDyvDNoWpd34GpMpb1dbzc0uy228lSbDdX2DOc97WZHu1GdFjsm7Khge4gwBFUTdE2DqxVAL7pouh2XVBS93hQjBogU4fhE6A+E4UAKmlZNLHpd2UM1FnEWcS6nzNgMBJtc6OC0P8iGk+S1QmYEaAqn6BK0CMp8NNvm+4GOdzF0Z7unzOsPH6NTNHs6lZlA+apqWK3XxJgdmrLHWN1PnfM07Qrv6wygV1jrESN4X5NqPbfz9QT8TCxnM2uqvU9v3NUPxaS79U4Z2ne1+3mOoveBWQjKLyJrOvretL/MYgxOjnSpFJqZq1gzzYsyvpXCb+ffp3lTWLJmWsMXSzdzj2aiWZnri84pcYZSD0SMghqzrVVsi/K7mexWZTmlie0E+d8UVfpgocc3HVfOKfNDOnlWGXidhZCLrcW9zkUlxpfOWARSDVPaldiyB85sI+1E0eeEYMRhxSAOjBMVwF4M1WQNYk0GfiwuB7dictiotkFJddcvW9gqiQmU0sqliSQGG1WgGUSDZk5yFS6tKoSUoOicOl+q31pT5Al0MIgxM/imA3ux7s0bhJT1NtvS5Iptb/gR5TQLd+MtS9hHWlPn9lbb+8TPuvVy6ovTz1pyZUqrpd2rqlKtlTwHTysMy7TPATnlRlPpbPElPvSaf2btPufitGbdbZoujjN3v/+2PlvuLXm5mb3+W2t1HrApjgTpMRKJ4UgYjxgZ8XIk0uOtMI41IbZYQ85e0LOkPH1iklw8WivdiXEYW2GwWlWxXuHrFbZqwFXgPGJ9ZuLkqo25M5Y8uUmD0M7z02C0mmNel0tFSGNzpUWzCIItFv+ljf+29j6Mn/868N8D/t/GmP9nfu9/gj78/40x5n8I/B7477zHub6/ya1/4Q4wYfncZyN4gY8sTmdIuBkjzMGnOB5JhwOp67j+5kte/O7v6a9esf/mOd11RxxHRutIvsZUNdtnzzj/y9/S7M549Jtfc/bLX+DbFW63U7pkMkozz0HXNGVxTR4fU9jhztflJpav5daPGs3F4DAkjElYI9PPkjZX2r/7f/1bgEfAf/PHeIZLsMIY8+ZDea82G7wT+wchhZzXCJpa5zyQcL6aGD9Ke9NNeAyRrtOqVZVAJSr0p9W8NK3LOMeb29yb9/PGff0I7db3bLmnuVh5z9PHj0iSGHOVLmAWFRchxpCBuyzSmI2/mFQPqB9Gjl1PyCBpzJFSNUbcxNRyhem/AH6WVsQ4jox9rqaxNDzJU2R5/OKf0j92WvhkWgPLZm0mXR+N4NiS526MpnzlcqaqCZXfz0whi4rwFyMqTU70JBu9uJ5sWTOnJjqn+f82qbGbBP7Vv/x/wL3Pxds7a7G683W+Zaz+lGbI2x3BfxjGEfc4F0WYDM3T99M0XfR3Of0Qy6e+ADpE1AnJFOeUtPqQdZZmu8bVlqqtqLaN6vGc7agfnmOrimq9pdqcY51n1e5Yr860IlCI2FE1ePyrl6T2JQDNxUP8+YXOd6daJIiWCy8R8LE/Em96Ugr0xxvG7qBaQ0MHYQBJ2DRiJFcWtBWurbQyXruFaoVUDbFqCLbCGocLghm0YpeZ5qOuW4XRM7GgzLKncnlUhLHruK9neN9Nli9ujYs7HbK3nqc4eeRUZhUpPX/4mFUueXyCF5gSSDE0TYv3RdfNEguzylVUTdYQmQCMDCxlpvV72J7vee/v9ZH7m4skYhhmcCZbVIUPoYK7FmtTdtbzvymRghBDdgqM17LAgHV6RxbDRK0yDrKuj5aRUXCzBLbIe1fJklMHvvDZBcn5Q6WkuhEmjRpl0ghxAl+SftYYnCmaMLpHF7/BUnSCUi74YLF5j+8rBRxSGElpJMTETT9wHENm+g6Z+YICE3lMOZnZ/AV+KfdCJsyWYEoae+7vGcKIW3iCgkWj4bOGEXnLng3uRN7jTam+ZNX2cQljVbbBZKBFz6TqqgbR9SyqJqKkSBK1nawzE/NNA8qqsZZCJAW1o4ahxw65UMRoSEGvcd161o3LqV5bVqsWES3nbnW4UNWedtWgWKXHZN2oKJYkVvUV00gaO0QqbBwgVRjjMNaDVZ21aSzmfipBoZI+qFpMTBURU0qTzUhOdczt3ubivbd3+JTGWIyFZtVy8eABQ5aEINv8bbvKJmgJLGrws6qqSfz5IwvY/2htv9/DfT/Dt4A/5U9Q8IslAPSuxf/2ydK0Pi59YUkBRpUG6borQvcKiSPj8QXh8B0iIxVHKg54D2F8hJGAd5ahHwlR5Vv6QdfCmISbY2LfJUKAaFf4tQVb0Zw9pdo+wvmG6uwTUnuOGKfMuugUeM5pXgtZwln4voDwrkKcgBOsa7OuLZkpmNPbrEPQ1K5k3MT2KZpd39fep6rX/423n+q/9f1fcY/tDQBIJuNgijgsgIbinKX89rTYI8g4IIdr4uHA4eVzLr/6kv7qNf3L1/THXqlWtSPVKtS0eviIR7/6Jc3unPMvPmfz9Am2bkiuIUqOBKQC/GSmUHZ0p+ucAJx3vX7bz4xcFsk4dTLLD9O/t9tv/qPfAvxLEfnnd/Tqn/0Mb7NSyuu3smLKnP2eAWpyNMZgM11WSM5NwE+yWWdFwHmPr2qMcwoIZYOtlNiWGCmRyEKVtlkw0U61LN99QT8W0+cd7UYW+UK32gc9R+ccDy4utBpV2cTNAoVe4nW52pdMG702Le2eq6NlVBzIgoKlTLpkQuYCwCTP3RwpTDGnd52wFlQLIJavXPxhZoDpfRTApszxGfzJK8BSqNuWBXZxoB5E2Z3mSGdCwpDHzjwVyaNyWrCXbQEM2mxoZ2kuDMJ/9Z//1+AjzsXl9bwL9Fm29/ev7q/9Q4F35r55o5fubS7CDHbCvM6U+fY28OeUKZE3oAmonZ1MSZmJ5yz1qsFXlvWDHbtPLnBNRXV+Tv3ogYoGrnb4lQI/rd/QVltdH0PAhKCpWK7iiDoB1dkZfrPFWtWT8K5SZ6Y7MHSiKRCHju7mihAG9q+ec7h6iaSIjSM2Bq2wVzfUdaUGuKuw3mOcx7RrpFmpLkWl1GbBaUXtcXYmtQcEKToUos6Kplfr303p52xIVU3DfT7D0/bnj/A7MJ+7jnjrX944LoPhzkDTtlpVsVjkZSwV4xFdl5dsDl2LDcYqM3L6nmkcmsVruX0R73X9PyhGdJ9zUTQyrP2V07IogJamUlmbJkHgwl4zSYMiWpzAaln2ArDkKyu8cAGkgD2T4PMp62diG5g5VctmBpL2UVQ3p9B5TGF8FNurPAp9DhN3Nm+SJq8PppSbztVuAVJMhBCwBsIYtEqliBY8CQr8HPuew6CvwzgqoMH8NDPXaVLgSAWCLPYqBfjJTIt2dY9z0UzaNeWCkimATQY0ck/KRNHPVrXJmqFWr17T5jJ4J2R2h6Ok1Tmr96RB2Vz+nYjqrOUgmNNrCeOofZWSVtDrc4q9U9HXlBLeCsFomlzbNmw2Det1rXqETYOkiPdOx4WFyqvQsKbYK/AjgI2GmPJwkogEVeZPccTEAM7gyOLgxoKpwLiyi2gq3lRgJ1GEcRFy2emyX83AWW73ui9+tHbLB1GQy9LklK0wjlPFJYC6UlZjyvZ/YZN7rwyhqqpOSsr/Q25bDQjc2zOcMB+l9r2jj74f9Ll7x8g2j0oh40zCZ+AnxoEYjpAC4+E1+6vnxLHnePMth+uvkTjgTU9lOypvqb1h0+rz1BnikCT0Q2B/CIQk7DvhMKhvkkyDaxusq2nPHrG6eIZxNa49J9VbQOfhxPovYHPZHjMoUf6HLeAO4MD6eT8thTbMAlcoAu3CLaH972kfVNXrPpqZbvQdRk2hg+ovTA7ZCaCzPH7xZt7s7jq1gSm/NoSRcDwQjnvG45Gx7xn7gRC1Ig8GbJWrd7Ur6s2Weruj3m5xTYN4pZ4rwKCpHVMqS7n8E7t8mdI1gzxy6/UJzf8EFMoDvPDaYNpAzeL13MelM26lCXyE9rZJ+naa3gec+443jDWYtNDjeQO0MXO0JjskYrKjXp7Dsq+nqTOPnFs5yz/8Xu+hfRSwqUwGii1YKjlk9ORk8M7pdOWjeoSZhVTJGuMUxs8C+JnyxPN/BDWYjRoT1kTNTZ2eTZ7SAiYnwS7TxIqhW5g6rrB5DBnYm+zbPDTs9MYMapX7XBjK+YtTUdtfLjgFzCyLjchEpb+LLTZJOJbomZESGP+I7e5xWgDU7//Ue5/+HtvP21Ayd7y6/1ZAHlPQiZn5Vp7b8h95841ZP0tI44h0HRJHQhZiT0nFZ+v1GomBZrOh3mxwdYVfrXB1i60q1RhxXqPBucR0mrcckgHjLC5XRBFgHEeNihsDzgPquHirUefaO6g90SRS45GmQpKFUe/PZmqg4JBc2chVNTiPqRpMVVLJXF6HypaYTvsAQYzqhyyBH3PSXfNa8pG3xY/XFs//fe6iHHk6lm/vmZz89bYFZU6+a/G3O77evPFicey0eSztuw9rcvLq/uel7rczWFLuvYwjSYlklE2WRAMiWplJFmLCzCBL2a8W55uvPttoZnZgFMAtrJJFM/Mni7Wy7AW1Z8ziL8ubYjFvphud7Eq1X/O3p6BCphFCDISowlmTKK4ow/fEXl0Ippc91qLMJJnuj+nKit7NvFPebzu1XpiurUTV5y6Q6YDSHclAqf5VzHghrztGq2EpcCZMCs0GEKdHLr5cU72y3ZQSpmjFuIT1DpLBRoeLHlLCScQnrZhnnc/M6bIOz0zoKfi1BO9mD2Dx37y3SIRktVJrCnq5PmCklGTXwOj8HLQzjCmQ3akfMv3O8ufn0JYj6d3XtAwKzKCExVlNLzZ5rE/HL2xCazOb284g7X/Z7mjZdjbLNfHkj2++/aa/Na/zZUwjhqIDbIxgJWFLNowEBV4lEfsjY7cnxcBw3DMcblRTsO8YhwFJI5gAVgPPfR84HAN1yNX0nENEg9BBhCgyCzQbg6mssiizNpvxNcZVuRLXBOGUq353Py1+mfbsBZFFcj8tV1KBifU5v2e+d0H98YEfir81e2dThywWEikLS76B+dF/3wJzl0GR6bqiN2xi4nh1ydUf/wPD9RWvv/oTl8+fa1WRYQS3wlSG1eOnrJ4+o9psePxXv+Xxb35Ltd5QP/6EUDdKt0oma8dkdDjOApvzTlIWTeby4+WYtNg4y8IyMfaXx+aFGI38WCO47FQ7q2JVk+YlcLL7/ENvC0uyADnGGKJXTZ8CTGTJb0wphQqs1hs4j0iISN8hfa/CdkkjVVZUs2AmaX6YMfkhoMztY9/12Y/OLBJNL0l5MZtmjZlLHk5GBgXcOAVLSklbZbgJIaqRkJybgBlXQlMo/mKnCT1H3iU5ko3zApcRlSSCy0M/xkhczBHVYQDrraaY5CiML0bWtJYsFkgRQtYmAPKE0Q08xPx+Obeo8VU5cHmtitkmX1ruiitlgcrsFJBEhT0noVvBOov5kebkNG4WBsmycsrHbB/HFfvpvufHaCLMgubZUJJssM974/zC5OFrpDgZAjFC1NSq7vqSm5ffEvqe4+VrDsc9cRyoN2u2Dy405Wu3YfVgh608tC2s1uAsxjYYp+KyIYH0o/ZzipgU1dGtKurdjhgj/RA4vHyBsZbz7Q6/VfC1NkJTOYw3GLeFtUdioN84xgcrYhjZ39zQ7Q9EMYziGUTFSKvdBX69zYyfFaaqwVitamQ1oh0lTpX9kJQtBiGSssbWwoaAOQEp79PLv/2o7T4G7p2e/du/7vbvZf1MkhY21WRqLg5e9tHCKSwbxO1vuOua7rbz37+9q78+VKTsfb9QAmCVQWNMBhJ1rKUkDH0WDU+RGEdEIuNYGByRFDNLuZi4ZjbLzdTnZD6JAQIGB6RcGasErrzqR+QTFe2GKUjBcm8DmzL7dhofp6CKYFSgOShIG7NRbABTbFhr6BmR6AjeUXvBoFVlyCneMSVCUtshpaQVaMKY99HMLjSG6FUn0ICmHOULKcEZK4JNab6Be3uEAqEskvk9M6dxlZ3QwEmqF8Zio1Y4MxYcyo6zlFQ7cDklT/V1QKyChBbtU+1vx1JM22a2ugbE1F/wRZIgCeI9eE+ShB1bfK7i09QGW1ms94Ro6Dpd32NCWZEuYV2FcRXGCJLM7DcU/yMV8fuASSOxd0DMuiT6TFUzJGKkUj+pmA8IUwQ7s771ZKKC55OG2gnj5x9kK2atd27SdxzHkZQGHfMTI13vs8oMoKK/VBhA/2V7Syuo8/TrDOTcRcC/9eH8r+Tf9F+Hip8bwKYRKyNIJPVHQndNioHjzRX7y1fEMLC/ueTm6iUxBELYE8MekYi3EWc1vet5dcDIpYp1n9Vsz7TozyEFDhKIQG8doVLfofIrKtdo+vPmHLfagXG5cl6+amuZ5SGY/IAJUJ2alP9P9306q/LCbor+HAiWaMyiZ95vQ/zRgR9YoNX6G3C6gU1vlJfFwL3jnmRawZenK0hgOdUsjucEjCTi/ob9d1/TXV1y8+I79peXDIe96ntYLTlbnz1i9+wLmt2Ws89+wflnX+BWa2R7RqgqSlWRXCNOc/HSTMmab0wW/8q0gMgtUGf5t7lD5p/izKoOQt5wrCwMjA/Bu++vfVSQwixfFP0U1WyyRWBXymTIGZDW4pwHY6ibFrNJmqIgwjAojTvlxVwwuCLIZJYLzPvdz4fc94foBL1/rusPa0LR6lkMsSUoBVPZUqEoykNGdOaz5GGbFto/sGD9kCnFtlDXF8BPfnZi1MguomZTcEAyi0h0DkcJ+TsjMdu3CQPGae591vIBssiWGpVxikwmYlTdJwAyyzklYch6BTNom3DWYBuL87PWgxTDKl+gMQYrZqL+J8nOpeiiXIaRdWkR9bz/VvbVk8jJm0fxvqvCD/VPfyww5i1w6Y94BffZ1IkUyKV/dZ1IpJOnpVubTKxVNcDzH2PQ9OUYGfbXXD3/juF4YOy0JKmkxKrdcv7kE61gt1lR7bZY74nOEX2VQV+H4DMYpZVrpjmBzm/xDr9eYUKk615zfX2FxdA4z3a1wlqjFcS8U/p8s6I2FaRIWEEcKsI48tJbLg2MEa4GRwgW5xra1RnN2UMFopoGU1WQ1xiSmksppex86HpAAX5M0mjcErSQMjLMvO8yO88/avsRh+ddoI9eQlkP87sLkLwcMf8XCkvi9kl/3N5bzu38+mP0paBjPQMEJjv+Oh9B0rKSUyQG1Y8IMRJDmKqNmsyQ1RQtPbE6lzK/nqIIEQV/protGLETeDR7RNnAz4/jFPoxWedl7qcSHTaLn5RVSk2OwhurVlOSIrpuGFF2SIqOrrJZELqknJlJ3LnsqQp2KeATxlEFw63V0sQlKCN2EiUuhR8MOp+VNnzPzzDN55TiE1gmUH3qH8nAhVHwS20Fg02GmINICXBkO8xYZeDYzOTN/YfVtG79Hqd2Ocwa3qgNVcYS1mKcVwC2iEQnwfqEixlccBHnEsY6YoJ+iJASKWmKlrHKzDRZ57JM5eJQarUtIM7pZ2Z0GJOUleC8PtTk8tjL12lkwlSnDIMkE+izKJt46+cfdjNoAY/KV6o7leexBjYTErWDDTPwU0Cf/6KkeX3UNrGq3mmkvvsUeVwbFPipjGpsWTNipQeJDOM1cf+CGAa61y+5ef4t4ziwv7nm6uqSmAKGCEb9iWAT1gnOWl67DuRAVQeSfYhftxjr6FKkI5DEMFpPNDr3qvUZ1WqrZIO6xVRNvkpbsPe8di+zJWaYpgA4d1kjcvL61DebxKAxb8Cu79OlPwnw8ybSxcnvE5jDe5jyd/5RKIagbr75sOwMSgiEvqPf7xn2N8RhUNqWc7h2Rd22+LqhvXjA6uIhzXZLtdkq7dxXqjMg6CZ+svZpROeUGlnuaQZ/5pSwBe188XNyDGWxmQdLAbfmHNySNz1vaCd9+ZHbhy148sZvtz99errZ6JT8xxIBwyigMKejlkhu+VwW7fUegyF61Y4o50gpgZl1DAxpMrCWV3Y6Jb//Xt91xM9lcxBhYr4sqYLldx1mRWOJxUPJ/b48F2RDOEeRrTkZzwqIlOoJcPJpM1OoldY4G/Q2ZcnAYiwWoChHNtUeUY0ii8HL8qkZzDQjyndl+Cp/jxLuipC15q3rHM6GUx5HJcVNF/JsgGfHqdBNJYvGyzT2cp/llEMxFnPfBi4zmFi+bvn+n3XeO96TtywmP5cxvbzqt13rz7IJFHZdccaLAT85KWVsL5BaEUFiBjfHgXA8IjEwdFqcIIYAGHxdgwi+brB1g61mOrLmiFs0zSOzCXLamRQHSrKBMjFr8uqap1Ipl5rCyHA8kLLIbA50kVxSsUJZOMTZ8dFoNVhRkMhUHpzL6ZFmmu/aT8ugSJqrDUl2Qk020E0GNRaAht7fcq+d/vSTtR9t3nyvEfWOj9363AeEOd7vku54Bkt45+4L+dj9pmNVRDegRDYdYapcNv17Ys+drjtz4FEmsG0aeGae2/nX/Ho+Zp7/+dzLoInMM3G2jhZBEzPbfnZh02jq1fS1J3OCfE5JJqczmFxlU4Xny9amOkZZ0HoZtJxs1NP7vx2QLPczv/4IE3HqCBaDrTie5RC5YygVAejZzjwdenMVnSILWFLaM8FXwaC5Zvv8cI1RGyZp4FYDa1YrLTpHMoKbVJGUIYTR6okhJGX8SGIMKUtM5CIl1iFiNP3uhJI8v5Ri16SExKC2UQrKErWaHmPETZ8xkzC35L1nMa5PgGHDHZ3482jL4OnibTkZf2986OTgucosJ36asXYq717Gys/HDvp5tTfcOebpOL19MmRlcfCbD8qUYyQhSYGfFEbi0KmWT39kHI5qEw0dYeyJWZ9MU3LVRiigZspyEogocToKNkIUQ8RjUJvE+goRsOKxeAVffa3Vu4zVCl9YZLH2lluY72++n8m3OvFb3j00yxoGhQG6aB+wjP7owM/tjWbeNO469v3PWnq2bIJilC7pcFMcxQw9qTsiQ8/hq6958e//HcerV+wvXyN1hfWOzadf8ODzX1Ct1jz+y1/zya//Cr9asf7sM9zmAVQVYqtc4UIwMU40WZNSLtEoOR8XJoR8SgdLi9SwhfGahNOymZN1T9mii3tumZXLrUlYo9W9inAe/GyX4jfa+13nfJQ1OVJiLM5XGO+1LLgzREkYMWhGtEbOfNViN1WOwtlcoSSBs8RxJMWEr0ZSNU7gQimJuRx/b6PQ/UPp59tNJNGNPcY6nK+ykWEm4MuAghVAiXwWAKhQmgVNmYsxMo6Bru9JkqglacWQcnwsEcPyXHLVrSlXfsoGW0z6rP9TQJYsyJ1EGGNizCmS0QQGIVfhcHhXZRaOUOiVy6irtWBFzxNCZAxa0Wxi/MCUQonXahfW+7zgz5mXIUBMMY+pNF2/NTl2ZjPPsMzHsubdc1syJ2ej/x/qqPzwdjt18h9iEzKVnLzsG5gZP4Xhk/cYAVfGUoiEMUBMHG+uuXn1gnHo6Q97jtfXxDDStC3bR4+1PPtuR31+gasq8J5gK8AQk8nCvYKyerKhm0SjxSWyLyqcTEpTZZ7GW1LtlGl085oXl/+/9t4lRpLvy+/6nHsjIjOruvv3+s+M5z2ewbIwtrDRiBULhECy2BghGcHKSEjews4WG1ZIZoPYsLEE0iyQwOIhW0gsELIFSMgYWzwElsFCPAbGHv6v36+7qyoz4t7D4px740ZWVnf1r7Oqu+ofR+quzMh43LjPc773nO/5EUHgcujY9R1dDOhuQLYWWqAZVAZyCOhwgVwYT1ife7Yajddn427SmpE0musRM/dWXSO1gDozIFVCT+241xkOIDfHW/Lsz1fejdjcu7e/bzp4x3zR6q/nlPeBPveS7wlovU9srCWmcQZjS3ZJ8xhLFFLnmmk158bLdNYWalgdavwqTgAsIdZEA0GihWCVBSY5eBkyKWQ8ZVddSwrgVPtzWyUt8FT+upEK4iHH9l0JlE3FypEhRuw7qYBm9oeDeerQ6O7A6N4xxvtTeGKc7BhPbBACMZq+ECsXTS2o/c0+ds89d5f7NX1EcmvUN/BXBaiEKAZAx2DJP6KXuWZ164KFl4eSuZNKtNyFsklWkq+AyOwdU7PRKgaOVzdd3OMZ28TMZYPrgKY9Gfj29R5VM3IPNyOH1DEphG7LsNmRUmaUEcX7ZgFxysyoat103Jt3aRzNc14zEjoP7zI26CiRmc+xAXYk1HcJEskUcKgcf0LSYArH+lIJwdSspNE4rnJKTNNUbdfByZwLqfP7Urn/LEujofn3eVCaft6ee3v+mq8EIVtYpSqSD+jhhqQTh6vX7N/8mDwdGK++5eCfr15/x/V3P2aaJg6HkZQm0yPEOQlRC3lVo0zZD5mbg6WIuEkDN1wQwoBuBvptT4cQiXQ432C3gTgYKB8Cqbj3LTArpWS9W9bF3WOm1ND7IDA98e0+vfATefxQNkiWE35jHH3QNCLLLlJ3SrxXVcNvHNGra/LNNfuf/JjXf//3uPr2J9xcXRmZ1zCw/cHP88Uf/ENsXrzkmz/4m/zgt36LbrNFXryA3QtD9vAMFwXsycl3YsuCXF6ycS1v0OL6uSWRvetzecX2n1A9fELN6mVEbLdGy5Oei466u9oSLMHSr0uMhC7W2O2Me1xp2bEIxC4Su40pS562XHMyhHgakWDpSzVNoIGSDrOVd8VNPpRivHiGnj+ULqtySBMRCHTNDFy1IEpoxOzh48DNkbGds7m6j+NoYEgQ+pwhGDAkIZi3jxuwFv6lRm7oO2oLYsKyIFeos+SxEwvvkMBU0opOybgCYmTT5+pZpPWOUoHysisXVNBkgNVhTBbqNdlOmgAaLQV9yIAEc6fGDE/JZnznnJkmW0BCyB7KBl0s9SOmyLdj+IGACfP6cSjuZ0j5OH7XNpvgkxKl8s4UDzfVTC5x3Npwg7ghKYBOI2m/R6fE/s13fPejH3K4sZ2u8eYa1czu4oKLV68svOvi0jxXY0cWYXJVwWzNstGAAS5lfXJvyKSZVDLVYKEPUYQuiIE/ZPZv3/D29Xc2/rYbdDtY1hl9wRAuKrcHnn6UbgsbI92PMtB7SmHpuxoWqSlRQ8yOgJv6mdvH64YLy/7QAj6ffy85A+jzQc963Br5aPXkQaY6rSB9DYVWC8ayn5t+VXaPtf03g5O4wZ0dEMruFWvPEFvRRGw8101QB5Dc20Z9/SzhZ2oPbkDLYzDzBPCjlvbX+IosDClXvVg9/Mj4+lB809JCwaZpYhx926R4OFHZDSzkK/s7YXOweUIY2BPcKzuEVm9oPPjyQ25UNOAPDehzbE3JrClU0CdEI5QXcX4f3/yKAYnBNpCCWLp2cX2hZpC3sNiyM184cIzjsKvAoIFASscM/AQioh2qyjTC5OFVb68mxvEGqeWMJDBukWEgTJmczHPZyC4zlZ2a0reS0VepgXXa9ZbtLPaQzAO0eFUHKaZhaHQp16sE2/Caq66p1Kcjp/pd6cO4J3XyEM5xHI0MWLVm8eqcWiB4tsRVTstxLcudn4/nrhNzGcZxKyiSJ/LoXj5Xr3n77Y9J4w3T1Xcc3hrwc3P1hv31d6Q0MU7iDhvS3FosSjIrOSjjCIfRjIhDihx0S2QDwwWxN74fkUD0UK4kkewMsdU7czZg5vF3qx60WXHbz8tLT4E/srjiSAe+56r6+B4/rS3UvmmZnI9QrPk9dFGn86Tqn2+9a6MA+oKWphG9viZdXzEdRgAkRobdBfQDoeu4/Pprdl99zXDp4V3DFvoBDR3FbD0Ow8LBBtuRnXeJyjErRjmXxfXHoV6L4/7C0nyenwkUl/bmfUVhQSJ7sm4eWYQPBi8cb6At/NypZQ4NkuCAVxkIx/9swRf1UD43ejQnyA5uFHdm1GPrI7eHW/u5ASnq/8uF7z7ve9c5x8cfSjFK2TzFsmrNeIZ75bQcEKrGYl/fXttaMfdl41UyzSeGaEpRDd/SRv+w+hMcFGIGfpo9gLnVZZ4vxF2lo7tGF5dbKZ5Dt6ppia8ff59yYpwmD/fyOH/xdPQNR1F7PxGb4FMuZNZC1hHF0lL3Mfh1M1xYHKnkdgE/TqSAPlrrp/4k82g5XlDmHnsfZe3dC8lj9NOfBckldVbWRl9v53v/7J4FqkoaR8abG/I0cdjvSdNYPYe6YUBQumHwbF09hEBWA1qyzs/JrvjY2Pb1iHldwsGS4pFae46a508fLXtXjkKK4vdIBqxr4jAeOBx6CwF1L4eUM5MKWaLNx5RU1i14V9ZOKGvinZ85Or4wwJknkbLWlnp9ILkP+FjHy/10tQ+WU7e8Var2pLvIkm9PIHfe/9al76mH79MCD2limsG9J2fq5kIJoi8rYJ09fROpgDtljCz4pSj6l3P3hGh97yiFe1kfpV0jizeRgm2+hGbmnneQy35N+9hlGYoKXViEXB+qMQlN2JkvgpaN0oz+SgGuM8/drLuyeEarslWdNoNKnlmDF6txE852RjG143j1K09tVj5pA8KL7jH/XWxynSijeAOYR7PMamhtzObKUq8UncD7U+NFbYBgWx/i+gaMk10XBUtmomI8I/2GEJKnWBcLtx+FJE37Ft4qzwAT3Ktd6u9e5tnAAp3DCFWl/cXfoW3Pz2TtX8xn3+d6qeBlGdeFu2q/39f5rOif75vfVp3odM+4Bf40tCXH57Qb7/PIbGxBhRryGDpiPzBstuQuMk2jcWApEEznmbOU+n2rR6URqffDQDcYz6/EzriwJKJiG9Ul9qaQ7Z+0O7Qp9a1p6KjP1HE6F6kFp05ZoHZSa1E0W9330D0+AfAjPjmVBFfFRDJj/nYlLaVgQPMb+xebp/wkn3RR0MlIl5Ny/e1PuPp/fpfp6oq3r18jXc+wu+SLr75i9/U3dNstX/7GH+Kr3/rDdNsLNl98QfjiSwiRHCOqzoWQzdMH1Eg18+wCWEjlcvZzFZt0m+xdRXGvfyvw4wRthWy4vl/7L9Ok/WqU8+bdqUPiI1vrfPIhma/s/JN38R980YqdpRWOYQGcadk1Q2ZjQoTYD8iloikz3jCHEKSJ8ebas0NBiPFEAU6X/6Se/JGAzmMsFqpGaGzKQ3IlyX1sRJr6dLXFB56IeHpSI8gO7us8YDt7mpWu7xicIM8eRt3tTMn6fBc7+tRV5adIkFABl8IHgn/uOtsJ22y2TkSrNSuZ7SiGSpW2VDHLO5vCpCGQU+b6cODbt29AhL7riL57sxl6tr197qKlXEWcswQBzeynxNV+Ypwyb65GDqMRWvaDkf2ZPmiKYIyBoe+I8WF2hQpAeqyE3L/H3i3L3b67r/6cFJxzeP4s37X9dn4lVxXSpPO6Jb5meErSEophJxqhLDlz/foN3/3oR4z7A/uba66v3pKmie1ux+Wrr2wc7i4YXrwkdj0aIqOTdGbEd+3ncaReGCnrUJ1HMQLXSu7pRKGqDJLpdh0k2E8929QZ0eu45/rtGyPJ1MR+mswVOnTkYGECowSmsLNVTQr1KW48T/Nnm4S8jD4nVVDMTcdmg2U2TJt1tB6D4pn72XiG3epOTR/7vt3tWFOU+ev9y3Gfh3w+4/4ckqaJn/74h+YFl2xciIeXU7xZopMuF10DJaXMNE0U3pg5a41WDwKIhDjYg4p3hesoSefML4U3LuRESAfIy4yVxaNEsBDnLvraLWUFV6Ypexr2MsYdlskR29gShARq4A4hosEJaqMnzQiBiYjk8txmDixzAVo9AAtIkAFRS6hRubryzIMSghSuU6rn0jnHogC+BlcArLaBn7DQO7yt3Nsnhkj09jHPlkbnpuXbLIQCBqR0XWePcSJ8KOF9Xo4STq/mQWlza0Ci6+qu3mtq5zZru/0I+wPVqzjGiOZAv33Bq7Ahp8zmZs9hfyDnzGG/Zxw9I1VOzueoxTBAJHp4fHn7kqGVCnA15oy3UWkq16vr3Nv8+MQliNVtkWkcORwOvH79mp/+9KfknPniiy+qbpuLDbfKSfHudvu4tH+PQZ/TeuziXuI4QhY0ByRu6Hcv6YYd4WJH/PIl5MSPf/T7XE2JdNiT94kpe6hXgQgoNodFj+wuXvLlV9/Qb3bsXn5J3F4i3cAkG5J0zJsApaTFJl/aMTUNe/1bVJDTfaVkU7799qfqTpZJuyuQ9a7YlKU8KvCzgDD0+HNTdDnqLkUfLsZnrUldViqlIQrXNYgmi5lOif3VW7778Y8Y377l5vqaEDq6zZaXP/h5fvCbv0l/ccGLX/stXv3GbxGGDfQDdL11sqyOqKsDPwXoyTXNZSlP/ViAnztCvZbATZ4/L2rKROo7NdeVQVMfPdfH5zIRf6inzzEQcOIM8MVYQrBwoWSGiabiruwrVgUADZ0NXUeIYiFf04GpIQuexgMhR3Lfn3j+bSVh+enUO9z/+EOEcr1PVGFKpqB0Mc/KJszAT5P9JjMrtFLPwdpABek9ValaqtLOsxxkV3JMAcmM4+T3hqKstrv7McwZEoKEmklE3P0aoPe+r6qMxsY2u+fSzC3ebLeWEbGwwP048nZ/Yzt1cUcXrH/0fc9mGCx2vza9KaulmcaUuRkT+/3ET15f8fbqYADPZiAWBdDjvvsustsqff9Q0+37xsyHnHX7mlOfF+d8RqBPK6031Adfe+e3h3hXNWXEFzqbArMD02VtMABIp5G8PxiJ89Vb3vz0J+yvr5nSxHgw8s/di0t2r14xbDZ0w4Zue4GEQFILUVYcMPX3qXx0dSHJzSI2Z84q3g2aJ3IeCUAvym6IkCFuIvEQSFPm6jByuHkLEsghcPB5e4oDU+xBIgwbI0c8rtIGmLn1j8aY88+3QZ9yjq2Xx6FeBcz6XNbI2yInP374LVwZuCsl6kfLY4x7nSfdR5CcE1dvXhsHXFJf44wHr3i2dr1xeli/sr6UPHS4rOUxzouFec+Ie6aa8WCeFyVEoHRncU8cN4Jyhjw5WKJEfEOhAX76oPRlw0os7EhVOKhy8EyBWfHgCKpuJCJIDqgauEHlNfRyecbULJGxEv22Id+5djHTB44wxjJnUDCWOdxLxLKWPRxgIDNpYBnrjQdsYz22VziIE1zvaDyJWwOj2heNp7KUELHo+pEbgj5fVdLlUkGqaAjV4zK4fjPrRXO/KnbENAlTsrrsO6FT3wzrt3T9lpwzoRvo+gMpJdvEPHSWmWqaCCn5KzhvXOWybN5K82yA6twv2xaadYjC6/P919jPUYyPKtT1Lzm3z/X1Nd999x0pJfq+58WLF3Sd1e8q75Z29i5jUE78Np9xfL3Wc8s4tTOFrDaHETq6YQc5MXRbNt0L0MzV4UD46U9BA5oOpGCb0DADP4LRMkiIDJsdly9e0m93DNsLwrCF0KP0JCIF7CwlrTb4orwF1WpeGKxPNdj5/MYzcb4u5pm7ZU4G8P30+k/j8YPMLwvNqnHUDY5t7RYLad/0RIVKUXgqOGMLVeg6Qt8zXL7g4psfQE5cfPU1m1df0u92dNtdzXZS7m06ZMvf0wI33lhaJswGiKn4zQmgh9bd3D7X4+3M27xo6UOzh65QPKjIvtg5P8NctZ92Ur7L8+Wu3/yqO44vl6A5Q0zjgaVUhb9tBCmAom1BmRIX42xAZMuUUFKTGumwebMsB1aZhOZRestu4cPCvD6V4SwlwWjxYmvLUbqgqhFNVrdl5jFxBGbaPaX+rXc76vtLRcFqt+yUZifoNltFq9Fi6VRnBujjXYD5XzNpLCbXUpSSjSRX8lz1XcjYBbpohJQxFPfto/aVWS1LWRlzZj8mrg8W6jWqEDuvC9/h67rIpNCPiYeU6unyzpPaj/OX76O8nYyR/yR9eWnYLnguPgL8eSyxJSq5UeJ9viQEKNm0HARK48S4b8K7PI1yEGHYmDdBNwzmlRCChwRYuLBR9mg1BmvwZgOYVLJa1L1Uy2cHotSMvii2y993gaEzI5LNgIxb40Q4HNjvfYdM5pSjNRsNy/WS8u7qBkjZfa4gkM83lHPKWmn3mI9T19XWMJ+BLSonyWfeLc4gt9Xr5Uj5WJnv9r3G2HsKUu95x70fqvnKWhLE93Krcu99zsmaaylmRa9eP5fb18PSR/Hw5gwSm5WrkAhHMfJgXzeG3jxPhi4y9LNHSXDgpe8ig59vvDoGIBzGjsPYoRjYWzh5FA9ZwA0OLcauEMX0RSNPFRv/CbKXeX4349cQNc7ElKYKeuWcHMS28+z+EKPtzlsSiWgejM0a/aBztCz7vx06YYFR1PU29M2OlvlDF+uMa+7VzFDHm47CPERcz7L+YP8Xb2YFyUVDLUlD7T/x9QuvxKr/BHCOkdmJye8Xoi0hsUNiJgSlk0DuypyYqn4qsTe+zNgRov3VENBo3l94GbMuW/+4XkTy5zmX3seMOL5EZs80mLN6jePIzc0NKSXevn3Ld999x36/Z7vdstvtKu9P3/cO/MYaDnbXc35WRBpAQ46O18+LC07dYx6vSrEPjH/TLJkSFpsIMSMx2efhkn73khx6RjmwyTfmpZUUTTZOO1G6oPRdpN9e0G929MOO2Fnyi5LleFnoea7X4zLfZyy893yxzGP+BDmad+Znn7ZB3yePDPwYuVwmzGlkPVtPyY1ok2FY9Ao5useMgJQFo3G/EhA15F5UkWkiHw6QMhIDw8tL4qbn4otLfvDrv0oQYffNz3H5cz9PGAbk8gW5Gwz8yUpuXM6rglzcNBXPxiUNzuATRtUHdBH3XdzPTTl1pZ5ZwTWZlYjyd4EyqiGdOUeyCjkoSQOiCXUXUwkFXvv85OMnPTfvQ0S6npAMsGEqilkysmbcTbsFBoPFyXf9gGx35JwYDwemwwGRieCKloRA7Adi6E8+//anD3u/T+39IyJ0cTBSwWxhFEFkHnqKpYou/c7jY+1rCf9wd26/NgYL1gh11xIjY07Of5CSp5/WmvWqROvmarglI4jGlKPgAF/fD/TOERBQoqfDVTeUhaIKzX1+3tcvxom5vx+mkXEcmXIikZAA3Sawu+zpQ2TXdWw6312t4SLuZSSgYpnFrqfE2/3Ej7675iffXlnfip3zOMy7rF0X2O16+m52IX5I+R76ziMrIqfMz9Mm6f0M1dOK/fsB5s9EVEnjwfc/fEtE1bxVMfLUnEbQzP7qLa9/8mPGw4HDzQ37/Q0pTWx3Wy5fWkhXv9sSN1voOnIQUprQNIdY+1CrbvwzqAIzcazOWYpQSBOSRwSlj8I2WpjJq4sNr3ZbBGXcdowvdozjiMbIPhvYpHHgUN4sRHI0ZS2pkKfqd8TsoTN76tRw0wY0bkO7KpgM83n1pXIFhOYXndfazx0QvC33GQ3NOY2eVA69ZzviHvdvpXnOveR8sNPDgT5CH2ychOL9YAsBYGBs0uR2uVQ1tUAC4uAJqnM4QylvTkYLgIWTd+JGYiGJlWDhmcNACMJuM3CxG4ghsB16dhvLvtkFSzgZRBi6wKYARU042GFKTFPyJA7K6N5Lo4NAOSs348RhtFCkKTnBuxrfXc4jqpCmshtdeGjc3MgTJa39NI1kB36Sb6qURlLUw+NKmFeg740DEIqB/TDg/Pv5VxatUy5qcDwDXGYw2d9J5o3r5JxsklxnESF6cgh7gHOPAHWKw7wLQrT6TiTEPTHFM4PljOmhMSDZPRJcp9LQoU6+XPbKNWQ0KtJZltGogU56EM946pvCOY3kNDnw09nx0CHDhXtfBnIcULHcuLmEAlLqqtTdDPgW0O85SAFtyvtZNqgDb9684Yc//GEN+/rhD39I13X8/u//Pn/v7/09NpsN33zzDd988w1937Pb7djtdjUk7LPXQR5YFuCPHIE+LUpaQfb291a/cy1fgG6L0Jmdz4QYczlBEjCBJjZf9bzMA9vDgc31Nbu3V0bYPU7G86umzwzRqCS++MEf4OU3v0Q3DOTtK3LoAJtfRecJfYZkHk7kxLg7l3yCdO7ijVdgieJiWjh+3Lqqph+geJYmuV0Fyi1HIcFSxNrMrDAaECAixO2G0Hdst1suLi4sJd/LLxi++BKJkTFEDiG4Ymw7GLNWifXeNnQrA7lwopRQE60bmbPTyazEFqW2GpRVCT1WRpfdagELqWVSyRgA5FfX2Gl4iO7yOcg8+MRjMzOKTELN1qIZ1WTpO8OccaL0KQKWWrPvySkwHYwUVQTSOJG60Zj6u+7oqUW9c4PyAWr48RYIywwRRKz/OqAhYH1oDmk3j5+q92i1GC3jgS36XQh0RMtuZVjMPIc3xJf22Y4X4MfGf+vppv67g7iuMHa5LMhGKquUva95Mal4fB1HsgBNc05MaWLKE0mTef1IIPaBzaajk0AfI33wGPY8j0kt0xPKpJZS/mZKvL458NO3e0/p2HnaecMhMw783HSPBvx8lrKw+U7CpScv+9DR0C7GT8Hbx8TB6qrWwCK8K03oNKE5cbi+4e3r1+xvbkjTZAkLciZ0HRcvXjBsNkjfQ99ZqAZGpKxIxXDM0KrDbF7L3ENmzk5UdtHUQJ9kwE8XIkOIdAF2Q8+Lix0iMHXCNHQcxpE319d0b68szTARh+GxiduMiqQY14WC6ITUVOzvAX6aHfnbYV80xxv+kOa4Vu/Qp9A3WnnXaKgIxe3T7z2Ivufac28NWI7mge8nD6psC3N4sZoOWMKErBtZMoQiy2xVNFZMi7oV3Ch7ljoDh6JaiFAvgU1n3jDDENlsOmIIvLgYeHW5o4uBi03vIJDQx8DGM0ttusimCwYIdZE+ms4ypcyYEllhPyUOUyZn2KfMYcqkrLy93nN1cyBl5eYwcZgsBHScbGPT9F/1jH+Yd4iYR1F24CefAH6OQVVznrYyhiCghe9Oajj0Q87Tp7rcSTVrniYa/X0GfKDpezLr+ub9m2uYPJTEEFC8dAT1KAIPMylktGq0EUg5jm2+QfUYtn3xUE4BIoqF983Yq6UhNf7ZTOjwtOxC33fOj5jJoyUBEAGJEfOaiEg/QCzAT08W8/jJGIn0MeizBH7kWYQ8zWGas55WQr1ubm54/fo1Nzc3XF1d0XXG5Xh9fc3V1RWbzYaUEpvNhs1mQ4yR7XZb7/kp6Bw+N2nBn/ZYnSdPVM+CE7XaCm55BcsAKoqFwoYySCfA9KLuUtglYRhHuu1buv4NOU0c9gcON3tQZYjmUdn3kYuXX7N7+RWxHziEHQd3SMFB/tbya71tnpom8fjAj3OJlN0RPBV5ECWoLxIcVaRIA+4sgkj8pvN5FVjB+1FZyTUS+55+u7UOsdkQho1Nfp1legIxfxk32GZF0xfuFvXX9nMBtFoDuVVKj4Cd5t8tMKh9nzqrt0rd3PnNTMholupdUEAmqnL8uF3yeJf9vhNee96d17SHFF8UxTNxNXXlyr2SHA0+ur5ea4tziEbqZyM4k6YJjdHionPJGBZuA4+i3EIdmzp4n3xoHZ1TBNsxXPQxV2ZuRwe2YFcz3Oar53opY0Hn7/b7zA10ujzSnG6LQAF7y1O1GTOnwswqWXq5kbso6bwtW58VCPSxY+gt5XQXonMkLJwq3dsiWTYAUTQqOZWQF4hBGLrIdujIwKglhtgJP7OiGuk7eGiy9fbucuLYfeTB+uEn0nmegrKlDvz4CuIH3RtUrb+lcURzYkyWvSWr8TR0/QAoXd/77m1YrD2Wsc5X3AYLaXGPBcBCopIiV/AJOrGwriCw6Tu2Q1fJQcfJEsPvDyOH/YFxnDgkJSEkMfBpzgyk5vkgUjdK7FmJws+mTUFz2WSBGm5d36/UVmNozuCPLo43KFdzn3OOxyWQ9DDK4Lvu+D37+b0KOc+pS73sezyvTsXNnVrL/JSV/sgSgycJ0GJizBuTihAa/VLa3YaFWGUVfdbxTgMEyhjaDoQQ2WwGttstMUSGoWe72RJi4HK34eXFli4GtkPHxcYSJgxR6D2N+BCFobN1yzx+rIwpwpTM4Oxj4BBtLGySmtdPzvRB2HSRlDM3h4n9aGGj42Sgkap5tk4p39KJE7anGjD9OhWqAyy0lGZsm97UKsZ2Pyl6wgkd6mNFj8bi7d+PwJ+66cQ8N1SdaP4+q+5Kzeyjtumb1YJYjXS2ZOuqL70E22n98R3gQSzzkOsWlYen8lWW00uo7LxiGAAlM5+TBCoxqkRowvvq31ZHa0yFam6Ux7W2lxvqwQE7A3zik1hn3yflfdp/BfhpQaEYYwV+2hCvAhgt16LZHvpZBX+OvX3a46c+3zn/L8arLD4qM8UyElC1BD0Se7p+i4TOwtyTOXOEeCCGAdQ4s/oY6LpoPEGhB+l8zCzJnE+VR1meYDODLI8tbMIPD9C6j035IeD5IwM/CphnhYRo2QBULT1hMPfG2JyZpUxgYpOdI+AqZujXHcTaArYIz51AEIlINyAxM4RgO6KqhK6vhH25G7jBsnalDIUGbQn8LBXIqkA74X+Dt9jhcl5jnM67qHX1mBXuGhsmcISwlwepRv9kKRsTNqFMkglqKknOeOrteffzMeV4YrvvRLdAdk9co74I2y8CooQQibEnOIGoFMBnGkmHPRqjxYD2Sgkp8id45q6BkBN5GGzHPWdSTkxXV5a5SsRcbSUQYo/ICY+N76nhv+99H1zEQIsZLZSq2BR+wTK+KiuXNiEVmOtx8HNC4QtC0CwkzNU9uzJoSnI0DFbwnUMvS3sOUNzWQvD7urv1NI5+egP85Ml2UUXIKZIn52dy7ivTyy2EVLMiKkQsFv7ldkfnC/mLzZYhdEQHf8Bc3sdpJI0TGSWNiSzKfrQd0T4I2z7y1Su7z2FKvL6+4eYwkcbEzfU114eJvu9Q3TI8ELnznQsTH9Y9n4NS8gmmvI8XVfJ0A7Dw+FEHGKfDgZtry9i1v7mxnXyEfujZbbd0MdJvBsIwWMY68PCuYqzNhJ1VS2o7jYdsmHFjGbtQDK4RM2YuNh0vNxu6YAbpi+1AEOEwjrx+84aUEq/fvuXNmyumlHhzdeCajiyQtDCSiHEVjQfA88jUZbXGQTRladZgtHrfaT1/ngtKPc74jlJD1vy8Ugn1PmdfIMv9pPn/9q+nfnswOReQckdVHSu9tI+7C9BpPivLz2UK+lQzkXlIRJbZW1wPLUZzaEvX6oozL1V2fq6IgaZBhF0XeLHp6ELgxeUFX7x6Rdd1XFzsePnihXH6DIN5DITAdrPhYrupmwuDA6+dGC+FCEQyUXLdyKl7HNpRfJ0nFZKTKU94iKXCfpw4TJbx6Xq/Z384eAjYyDja8Zv9gf04kVLmej+yHye7NgtjDuSsTLEjpWCE8WmyTDswZ+SjmDrOFaRiHBuCkTzTWIbnlHfcs2zSml6i9fRMJqjYhk9uPcitN2T1JC8Uc8N1jGxgWMbfKwW7r5SMYBhnUva5IRc9H5BYuYEUszVUlaBKVAupDxqcxxLUWt2sqcJXqDAmmPy+WTrLbObh58QOciIzegY5ewFXdZBg8LypcGY9qaOVjvUY2OMebjHOBOfPKbNVzpnD4VC9fK6vr7m5MV6YYRgQETabDbvdzkKDvviCr776imEw8BZau1F/ZsGeY7kL/DE5RiBPXb9cU4/PygVEBvCshSpK2LxkFzdoTuwu9+TDjdl5Y2IaJ1ALy+zEsjXuXl0iwws0RrI6lUqLMdxTtG4a3AZ9PlrOcItH9/iZIZmMEKq3j4HTNtlZwh9HwWsMh4M/Be2ungBzozSmdFX+RIJNgBqIsaPbbBxZt9hWsF3JyeihHDGnAjLFMC6KKEfH7eQS6nUMAB15JdwCfGbltooqJfxtITpnXTB0PyBYXeUcyCGTsxgtQ+GRe2KT8bsmydvHZXaXLb87sFY4fjKmjJ3ytJAgxhGUS4x9JGdh2hsxaQiRaRjpUkKCekapFvhptNfvCf58arEF/QiZpgXJxD305le0DS7ru6JqwI/MsE1BunMG6rVzRg1Lj1raa1asF8CczOcGPx8sLWnbp2vYhhNF2vfWz02hhIr5WCu8QUhg22+I0TJ5DV1PJ6F6/NSdTd/xyWQmEkkyk8WtEAP0MXKxHQDh5jByM+4ZJwUmxnHPfn8g546+//Sd5F0leErKydKWnb/V/vkpCvUx4gAmPp8LDn448DOOB25ubpjGkWkczeMHCF3P9uKCvu8JXURidCJlZcqFO66sBTPgIwvwx+dMLZkpM6pNYJaohaCEjsvBeKpeuCcCCj+dRm72N4xj4vXba376+i0pZ/ZT5uDGSZYmL0fOICPzrvk81pbrZaNAt0Bvc5zmd+p9qJ+XWb2ac0pYwoOtj3prXoXlHPrOa88Je9zvoe+WO6qpna9PniPv/tyq++09z1Hk7ysi1DCkOduKUMl0g8wZo5hBATOAy99iwhtoasCPsusDX247hi7wxcsN33x5yTD0vHhxyRdfvKLvzAN1szXgZ9P3BgKJ0EWhKxx6kunK/dVIltHCDYZXXKg6cpZoGWkQkjjHJjCmxJgM4Lje37A/7A3gOYwcxokpJa6uAzf7A+OUeM3EFcqUDbgI2QmbBSb3aJgkY9FsSm6MvZxLmndXDnzTqaZ7f2zxeiobWFZnPu8wzzm55eSE6kFpuoR9thyzFrJl2dKU7Fw9FXFf2A3l8eJThbinZuMDpOoktc5TGQTEk0NIJKv1wZTVOJsUUjZQr5xjaKDbOf5dCR665adhF4dMBXwoXkoyh7dI8a4X8/YpwA88r5TmFro4MU0T4zjWfznnStZcwNnC5XNxccEwDPT9zAfa1sdxFMTPqixDvY61tff3n3dRa9jwKn1XKLaadJG+2wCKpBGmA2gmT/YP1Zq9V0QYdgN0g3l3Zqn3/aDeXXSQ2cB55zt+6Mg5x0h7dI8fkWwTmShBsoE+5TMe8kVGxf8VU02Ugr2FBvSpDN8Ut0t7Um0qycyxK65c1k6Xm6MNAk+739PyBDT3aT6rVkf208fV3ecBqfswpRzZUXfPEyE0Wbmajl7AMayjVvJcf9cCNM2Kbin240zId4Vqnfp8F8Dz3kxYt6+ogKAtjqEeLyFaxZNHir+1Tzaq1KRvVu9zgKGqhevklJjGkRAiUtlksM91a20GHm+V7+h1FiRld9TRY4npBGJ8lcz9xLDMFjyZjTavuQXAWrEvMb6CuX6bSU8qJGTt7/fO7Xg6Oa03AFTOzdiqj6H2Acy9enIOhUJkW0gvJXRVgYkeHhid3yeIeCIlH5GSgUBOln7+cDiYMS3JjWoQjUQxl/vdpvP7wvW+88wmkT4KUZTozorhATLsnbyj1P9O/qTocmo5OvdD++L5jdl3n7+EeeToeFv+T2U+fpgoOmf1KmMvl5CkRqn2Xamu71E1d/PCu1H6vwSWYAkyrw01CUExQsrfVLOGiSaCk9f20chjYxA2fbSQyBjIKXF9s0dVubq+4ep6zzQl9oeRKWWS74pXr1dmImnad6zADbS76i2vVm5AITOsuXVO6/UzP1NhYbTNmzfFo6gYc+eSGd6uB8rrtlPh4m+Vds1u7/OB3bc9vd6xSefe2Ld3lQQWc/w76uiWEn/7insVv7381ONKez6aNGOnPr9AsuI6q69nwY1iW1EpjHKlzw5B2HSBKMKrXc/Xlxs2XeTlixd8+eqSvjePn8vtYBw9XcfQW9hx3wUncfZ/qHuwlhW06SnuFVu9V47ANeOYcfjKOfuiFZkkFi6GRnK0LZguQMqBgJGfTlMiiDL0kaSwTXDINueMyTiDVDMpdSRfq1OaQbGkDTdSaOftUqdnnqeLbtD29GZdKDPH8VNbEC+rAyJHva94C2nV38przPpcyoXcuzEbdR6FUkPj7PtyxJUZqzkejJrALjF913qoJ7Hx9HNlSi93yz6/ls3zECIhHpl9EuZ+njMzmZDPt54gRRUrg0/m5vEz19lzkQJubTabmrY9pVT/HXv8vHr1ir7vubi4sJBNDwW7K3LhmNPquQNCdQ+kzk/Hk/1yfL2vNlpr6529Tpp7mfLvJOcWyRHc5i5D1wIFooOnM+hzpzTrnx4dOw71gqX5ch+5NabqOvjx/eXRPX6CB1J1EkkCWRK9JEO0cyLJZCEiYJObZCeAUwgltjRXTyDVuXW1QbJnvSkjkn0NmDMOKNm5BiDToY52W/iKS02NriyAn+Zz5UPgSElVd/0Fy7ZVgJ/WA6WAUuoPtdXEz7NS2OaszICRLx5BME4ke5njNe4B1Np3y12hS6c+v2uiuw8IUqcLEYgdRmY30A1b58rACOxSIsYDudt7H+osRbs/Z862FhAxsrychZQyZGF/vSclW+CGTaIbEkLpg94+ZYAL7g6OTTBllwbqzsh96uuxREToYzSC8GzZPwp7gTDHiuN9L1ComEv/tXFX3lFCNIBMhJQT2bOIiFCVOqu7wkUljMnHRChu6taJpZmwjb8KUrJyqhoHQyicTIR6z3FK7EdPe520ZmbZbXfIxrgVYhBC6FBVuixGLovt1qXDZGGU3n7jOPLdmyuur65QbBfP1oSIhC3bvmfTBbabnqxwvT/QxcTrK+H1FVxdB6bReHa3HfQPwO18a/lrFNDjn+Y58bz97f13O6EAvfO6+5TvXOd8BqJKGveUlhFm4Jlsnm4SAsHDEjebLWBkrrHrLQWvKjrZOpdVqdBGyeSFLy+VtF3dLQ/IlrELlI5EJ5au/eV2y6sXA10M7DYbdrsBQbi6vuEn337HNCW+ffOGb1+/ZUrZSWST7z7bTjRq71IeWY0JZg8JWy8LyOUgkKMT85paPtuN2uN64nMBflrQ5xj4aUl6z9iYnOp3H94Tz6DgnbzFu965qsHvOe9YPrKc77r8ke1JM/pLavI5TXUZQ10MRCwrVR8j2yESY6DvIpvBMnB1XaDvOkIQtn3P5Xagj4GXuw1fv9jR95HddseLy0sL0xx6Np7JS8SAVjzkOBROTJn1Uqnjw8dOOV4965brQjljNnBsUyyKotFus40dabDrJ/cCyqqMo/GK5ZS53h84jBNJYe9cQVnVwN6SEcxDjzSrecpmA4IPKTH5PGA8mlIBEs0wdLd1pI+ReQmUW/qV9fJZP57D49TDu8ybOYnrmELNpG75KRQNIGrEx8F1dEMBff6dplrnwZV289ayDUZVmcO+AAjVsMs+f1mIbDCv6yCEvmhnjtgBUTOikZSyhe0pi7kwaCB2QnSqjG6zJXZd01Z1+9mTAGBheDinlViyCvNK8k0GcbDzGQIWBfQB+PLLL4kxMk0Tb9684fXr1+Sc6TwLX4yRr776iq+++qoeK4BP13WVB+lnWnw5EVXrxxUBOnXy8WR/bC8uZzeHZ5pT5da1DbyGSIToOlaJwa2/2hybgrBPdrmFbr6D4+cdxW9Dvc4iBfQp9feR9/4EHD/Zd0gygUCUbN4+qkSxeGWjKUsgiSxlsUqNpxAL46YlKjsmcrVO5vwkYnmwSuUpmUowWe5DA6ZgXka3PH0aMKgAQyUm1/RStTTQdXHO9T6NDwPVpXLRPUuj5vpN208t4CNNxz8qYqNpPym570RpOxHO3RJAou1kqIinDZ+svdMEaQINVDIpsHjrUlcGSVBqOvsuzzRO5pXsC564EqEOcMx9sLiEFz4qMc/aLO/0cPrUEg2V8W+zl0ABXsukZ+w9bcCWv7rOCkBxBXZVp7r/hoJSFtCh2SUr2UIiUqPojqnbZxtVGT31cylAaY9y85QnRs8yllwZtfSxPYqFY4UwPyEIdK6ATtmILRXIYju345S42R94e31j7etOXyF0DNsNne/C7Twt6qYXbvYDkMh5YtMLfYQ+Kl0wz58Hk7tsNflwM+4x5PMbDZ9OiscPFGXGSSadYDWrATohBGIwQsnlmCtjJFF3o5nXojKGKtbTflGFPHqqdtskiSETg7CNyqtNdO6RzrmqzKD77vVbDtPEt6/f8t2bt+blo1I5hbLSPHfp4UMBZ9owGZ29m7SZi5bhXSzuc7zbXOuqvreHelE++/E8f34UWfq4f4D4fHus533QrY4vdnD95G2OR+UnnjU+1eML51Vu+2cpUkCiEiXQC2y7SN8JmyHy4mJwjx0jbu5iZLcZeHWxo+8iL3dbvnp5weAp23fbrYG5YZlJyB6k9c9tKgClhjEC+No8a5ZtxRVl0Pl1/O8xKbXGiHah3rOM2ZSybbqocjhsmJxc/pCU0XUoA34afi4HFcbRsqUmVW5yYsyZDEwZkm+8TZPxIcUHWRyFU2pXqS1pRkHrfa3qwLsbH+L2RtHlShMU0KR45mh7jzxn6arhbFVlnOds/PpSlsW8We4L5vEDHGc8FjUeRCWBZxNd9JlyP2/zEHskRFAjLhYHf1Ke59SUU70mB6WQ3JrhcTpt8Oeo336olDorwE8J4VJVXr16xdXVlfEt+cZjCIEvvviCL7/88tbmbrsmnXrOc6ivDxIxc9fNrRNyerK/OxlMGbfHc90SF1hcXSJDwOy9GJY4AWob4WUDypfeQup/GnA5sr8Xh84H/sygz3nk0T1+xDtACe8Stb8xJLIGAolYSMeY7BxxLx830AOpmqF+10X76TzDVuDFPucKyBjg4wS+Dswsw73wc5swrhZd8X9aPHZE56wHgncgO66FAdqRT3EAp3oTic7elQJk976oeJZ3Oi3u+JnOcqYQsLqLkqyugla3tce0rr5veNep4+9SyFtMq4ZD5OyGfkZTJk2p7rhouDF/lRBQ6ZzXqSzOrtSNB/J0IOfElZO5AYTY2b9gQMY0Tm5szR4/pUwgTqJnvDRd3xMbd88SH3xXHcGnWTyLklB20LNm8zJQIwrM6p4qnYVIlV2rOiaKkiEV3G+6nSlYWc1TLWOZQBRlyrZTqCh9b/W8UI7UiQtd6bT0tNkVLiHkAjpR54KUYPJBkwgesiUcUiYeDqb4SPFAWhqhU0pMOblyZLs+GUFD8J2uWeeSYJ4XfWcAYOhMCZimwNBHNkNku+m53G05jLZDtNlu6B6C3Lm14OT4hxPfPrCLnVrqHlNOvtqZ7vv+e5azHrgWvK/DPH5yBUN0NjDEiPuTzh54hnMIqo3CwrxrXDCeasy5sSaaK/ATScRgfF1DF9n1HV2wEEnLbALX+xuux4msyuurK97u94zTxH6amJzMNjEDPlll8dziXVMMQyjcEMW4zpVPI5exyTxH3wKRFseXnrbUd88z4NMEsM6eng+ILGjbc+94zh3PX16hc9dbcHPMZv/ilsc3uqPfPham0j5H7vrBvxyPslunPMJQFBTJI5E5IkncYEBg6DoudubBsxl6Xl5u6LvIdhi43G3pu46+j2w35v2zHczjp4uBzdDRlbTm4i+lGVXz2LtlUhSQoVSAlopovFX8v+XVtyvottdLu81ZxsKs35azhXm9DJYx3DxHynPVfs/Zw4VKopMsdKKkHEiaiVmYfB6YFAcolJzM8y+G8zaq1ro6Bf60lsNtQ06PrdOip/nXos8E3zSywPAGoPU+A2qezAW0kRmknptTqvFqYbkFhPHpmTawz87Kbb+QuYhGPxUo5OLZw+/KJoLpSrYZV8hwq9dlMx1ac5siFiRUYnMrX52MFgNUFyE8T1OKt8+xp46q8fqUzcxyXvHsueted9k8P0ugz3LkHAE1J6qh9dS7uzupE8Ofepg2155+Vpka2uWxjMUygNVnyJOPWN55/uGjF1Uv9yNsSD0q8FMdDARzMw2WcrtnsqxUCiqBREIJJBkBZ5IP8w5naJjmgVkhqnNRg77TTLaWm8c/ezYBhKwR1a65obWiTXVzvOtyCp4XSQN3jEIhu+JtO6ClUEoBn0K5jzaoZflebz0DUMvOV9xQM4ERIRHJ9DLRSTIAKNgCXerrsVS87xve9cF8Ir4wAqSppFosXCyW4Wna3zDub1BVwtUNIb4BjPhuKiF0YIuYqoE+aXRG/z3jOIJqTacZxLxGzHBfuriWJhMJxM2G2PXELnJx+cKIGWNks9ksXGOP3WQ/1UKQXRFLakrCpImblJkUpqRcT+Y1c7Hp+fJywyCRLkAXPTtXSuRxpLo1Bq0zd+Xyqe2lTKq266dwmCZuRgsvubzY0W968MVUgrXLNGZu9qPvHibGabLpWNLs6dP8FXeVt2GtIMHSzh4OXI0HBOiCudIL0PvnnLUSWoYYGLaBftORCGg3IIPtgBW4q+s6NsOG7WZAglRlvpOem/2WGMxAmBK8fHFpnhqeQfBBRKRZzW73pY9RyT61ivJQz7/ffeXo78NIVmWfxuXq47vmFHAjAmrbE6NOs+JS7YjGCwZX+sva40CIpXz0zYOcEU8h33WR3WCeB68utnxxubVU7ZpI04FxVN7cjLy+2TOlzOubA6+v9iTn1JqmXNe8Qnza7lwXULkANtnLtQR+ku+SN54+DtLUOji6zwz8NGnem3tkPEU8sxcR+G68Ur2Dzi/HoM+H95/7rNytn8e9S/bO0z+srLdN5nuXol7f4jntPW6V4nGGImgmjFfEaBm2Qox0/jnGyHaz4YuXFwx9z8Vuw5cvLxmGjk3fc7HzDHsxMPQdMQhdCPRdqOnW+66zEK4gBvrk2R+teIMsp3A391tjvwFpbPWbrf/ltQ2ssfhBq65cxkSdI44eHQQLxVZBY/EuUbpsYfHgIG8talvevm4mTZrM256Gd6YACQqbM8ZBL3X+ud4Welbbn46MwvpTq6dJeVcKalVBMQkg2YExTBcMMbi9Uzan8KyxtiFZksKYPl8SSsA4wZgK8GOAWgV7vIWmZOTDBXgwomXrX0NnmYjGMZM1WYbVceSgmSCB0EcjfNbs87dtFuT68s7VKIJKQEMH0vmmnfGjlDkXX2seycR4FKke4qp0XVf70Xa75fLycgHmlPo/l23zvMUN3Dv7ytHctTDwb93JzzkCwJvjsIjfObpWKmh9fMyhbrg9Gz6w3KOvnNGcfy/wIyJb4L8ENn7+f6iq/5qIfA38B8BvAP8H8M+p6k/u81CbEJ08TTJRLKhOJRFJ8wRErotZKMCP2OJz0odzfgIlhKssbg7N4GonpYEVIRIxQKgxxgHrPG1WqBOgT9HAffI0/kxlwhMX6IzoFG8fwZDPee3RY/5pirvPfEUpP1iY3IRo9vC44vmTZ7LB5v7jfgT4B0XkfzhXG95XPsTT5z73av+lXNyQzfgwt+HEYZwY93uftA+Udh6zpbxsVSZVKvBjYQwjU4nP9vKFEOoCe7wTUIGfEOi3O6Kz+0f3FFLVupC09/yedSEi8t9yprE4G1Meq59hPyXGDIcpc3VITNn69+VuICKWG8R3LEu606KIljFTlakysTbtNblr8WGa2B8OKDBsLAxLCvAjs6dQSSs7TonDmIpaaf9LmaQN+On6jtjNJNJWoMyYJnKaKtjTBeNP0K6jD5aSdhwn9oeJECNhUIIKWQIaInSdc2sZIBtiZzu7XeF6ENOlNLAbOrIOCIFXL7IBPjaBAcJ42MNDjMXjRaH5/tzUj48BsuZrP/Yu5xyLWrmmYAZ+Fp6P0jxZ53DlxRhrriueL/YvzX9zMm8fzeBGSOh6hhicy6fj5cWOGAOHm2v2NwemlHh79ZYfffeWMSWuDom3h6kp7QzwlN1orcBPe6zxXjoGfvJkhnB973mep533m3ec73kqjCtX4Kea1mXHPRcDNHHO+fRUu37M6Lsf+POBuuA7L3ismWIuRPl0XKR711xdVs/UjuoeP0EZQk8XhWGI7HYDseu43G346tUlm83A5W7D11++YjP0DH3HxXZLF2wc9V1sSJkphaRsHFWPH0p/rvn8jt58OQ8ce0OXs+d1834GZ2vWlPF26izzHpfqlSOuM5WoeSvO8c747dbMTAug1TZwSsIMceLqc4/F1mPKZLnhtvhhxq2OjjdIkGnhWngQ3YbRYmOYFiS09srMcTiHic2FOu7/KcM0zfN50VGrBaPG+Talyb2TA50YaBaCEGNAMkz2QJ9nE0xqmcO6koCj8fhh1t7Qojs5jYJES4CBkLUlgQYKVcayks+qoz6EFG+cu377WQdscs4PvC7eluOxePokmqllCfrUz7cuvQ0N1VsIt+aH06vOXaHR95CPUwFuy5nAn/t4/OyBf0JV34hID/zXIvKfAf8s8F+o6l8QkT8P/Hngz737VoVLxWEXMbUsBFv4olrYkuPgnmDdEPVAIb404GfeyfC/TWXUMC5wla+YiwX4USzdZYnx61B14Eeo+yTGeWDATc20tUBoDMBB1cO7CgUzlYTZTnMuBWk8fqROvzbZ+g7CEltqYnwpXV0d+EmWgQU1bx/nRwriHj9CXXj6TQ/wd1T1H/n4NlxKO4F+iFvjqfCuu0CRdzyduuNg2g+U7F4hQraFKftqVeKfC1Bg3iFKiAHwUKycCVH9ljLXo3v/tDNLi28EZ/Lv+t6I3Tzd5V0LyS0F7h3v2VyvnGksqlLTQlv8eEQ1M2VlTMp+SlwdRsbJYpqvD5NNf31g00fzCCj/ahlLreHusOKKhdSwRds5Mk+BwzShquwPI9f7Pd0UGfqOvusBIWnJGJKZknGIuMlNyUSRMgZOoYQ8EUZTVmO00DRldicPQIqWpaS6YIu5oh8mOIyZoIE+QVQPS3PlB8FQXcrcMhPxWtiqEAX6LjKkjpRh03dMyTunK81D3MEZx2IByVzjP/rxfVefV869xt0lJ0bTvZ8sJz7dLbfv24Ad5xuLYK74dZ3C1pQSlrV4eAFCyuf5eF06VGdwSDOiE6gSNFv6ZyxrTx/NE+Fi0/Nyu7FwlBDIaUKTsN8fuLraM6XEzc3IeJgYU2aajOy1yYkBbgSVkK6sc4at6vFTPlPAqTxn2MqJlvNHPWakZvtSaigbaOPxo9VrYgkUzcCP1U2qqmLNEGg3O5Nuc0qOvEPvobAtvUnfmVPkpOJ7H7nr3FtZyT5adKmXvePMU7j1vZGvM47FLgZ+8MWlp2q+oO87uq5nt9sSY8duO/DyYsPQ9+w2PUMU84IVHFCF6kIRii5a3sXWLcopnvnJ9N+iTx6DPtTzyzmndK72+sXnW2+oi8/HffKUHnJctupti1Zn02Wplx8UD41aTmSm3bqDrnOknGcs+rwxf6FZG11HcaOvqC2KOrDjgHIu84pRNLTGYtlUKhaKZrNqsiSK53FmBn6qt1CyEKyyUXbUuLYONFw7y5ZqTd356Ayg22+Fa6aELHF8j9oZm5bQ5rPU16wiIsxhpsU6s74930jb2zzgnHoeOQe48y7w6CmLl/9MbWgW7Dx+jutMjvrarcL4WXaveSyW43cAQMxdVppFou3v7UWLUt1qvne157sWKWmjs99z7j2lLWu7tn7gbd8L/Kj17jf+tfd/Cvwp4B/3478D/DXuMZBDCbHy3YJOFXUAI6CYO7u7o5drRJtUltSQieM6lTrzCOohPYsMJ6jzfrhKpQX9jqjGhaEPUFLI25d2saX0QVAnjsbSYhb/oNF8cqgTvM6ePnUHyEtrt29CwMoCX2vBz6xlyJZytwF+Apkg0IsSxdD/EDxld7nI5KPbsMj38dq5S+59n7J6Ha+MEpDYWRvGHukGCyuYEpOTpFrGA+soZXcEIAchdAb8EAIyBdcVnHRPjHwxVALGWREKIdaMO5vdjn6zrW7i0bPwHHsJnXrndwFobT2r6lnGomKgigISO8PJ0sj1lLkaE29vRn743TU3Y+LLMRFi4GIz8upiYLe9oAsB6SI9XV307R2yAy+x7lTlbLtjEzBmA5eux4nX19cG6mhmShNdjLx8ccmrF+Y+e5gyV/vR+JsIJC1zR4BgRIZXh4mr/UhrywURNoOlxRVsZ1/VuLo2XaA3KiZeEEn0pJR4s99zdZWJXUK2imQhaWCSjty5Iq/BuIrUdiodLiQKdEHRTjwtb0ffTRwmpStZ5Jaz1fnGohRayOPV69xG3PvvfL6nfWjZH0rRun3fhYFzprFIzuT9fnF/Mz7y3Kbtyl7nvgJ0+OH2Yl89giZCHhHN9GQGsTXjYuh56dwjLy4v+OLVK2II7MfJsxlmvv32NT/+6XeMU+LNYeTN/mAZenJmzHku2lwfdR4ohKHQZu9qvIJwcKbsSmsia/JzZrBnBn5mAmi8bmbgZz6neE/Y/SduAz9aif29/s6n29wK5ZzX7kXjcs8eqyc/Nvc4rfTW34+G0ft1w9Y4vkfx3jtM76voNkbyrcffT7s9VzvuNj3/0G/+EsMwcHFx6cBPx2ZjYVyxix7GFWyd989BlJgPiIfpq0ZLTEKhHSibR52DM0eGtAM2pQ/Z98ULzmOCeTwF987wiyrFwV1eDQsz65YRdrJe59NlznikTV+p2qoW9UznX9TrICv4Ghyk6MLuoSJCtPKebSyWbLvVm0kKX42DsSVrTEHWtWxQBbLzdU5pImQfZW1zuR2So6Befk0RsvNBBuMGnO0IK0LOyZKNUOwBn9dyruBN8mhcPWofPf7ngzulVE8TCXRd77xsaQbCUffiKHeyFym2hWltc1W0A1t8g7TyGPn5ycNhxOfoBZh0xnZc5fFFzjwWoaxVpffakXK82jtyDAPdfTegZryuR7X9tchtuLQcr3rmMWJ04gq94/P7ynj6+Kk73EPnPVoPaj3cr0ALuRfHj4hE4G8C/wDwb6vqXxeRX1DV37MH6++JyM/fce2fBf4swNd/4OtqSM+TlVq6Qzcas4MYAE6viqBE8ry+scz9I+0HmzHtKvXgrqIgYqzdtub6JKYG/FCAn3J/7wDSdlYHl8rldRr0AhjdsqeDdr8k0y+V0kUbR8um/PNzZN6JxEowp3WH0j0yopZsLmi2ukGra7EtqgVAWCzc//3HtuGv/dqvnTplLu8SpDgr+l0U/eXBRUGrt4+EDnEPr0qWp0UZKXxRvjviDVoIRsPx5CSCxHiLo0XEAKMQIjF29H0J84oed32bKK6tl7t2DN5Vb+cai7/0y79i9WFbjjZ0QmDM5u1zPU68uRm5PkzEGHi1P4DAZrB4b9+qNDDMd+JTKu3joVQCou7to+7tAySUMSX248SUkqetpXIpZH//lA2cmlJ2b7ricWWQS0K5SfDm4OSyybx7RISLBLs890NzLTdvo0Ghi0KfhK4LTFnZT3BzyHQERveMzipkiWjwdkpllIYal9+O6SgwdBEJEVVL5WuAlCvCTXOfYyy+/PqX5uMcLycPBYY85J0f7wnnkHONxd1XX6LJQA8bPVKJ6+1gQXb8P20MMj2aEX1hFV9LRCcDfsjOB5eIAheh4+UQGLqOl9ueLy+2hBD59s0V1+MN4zRxc73nzZtrDlPiZkrsp8kB3NZ/phRj/m4GTG48feZ/i1CvCtAoyTlAZo+fGcSpgE6ejZkFl09uzynHC59f8fJN9fySosnn2bO04S/+0q/MBjiw3CE//nRKThjprfdGuaUuz38ntCK3v95fab3Hmeccpm3dtQBmOX78+dbl52nHr778gl/4+hXDMHB5aZ4/BvxsbD1vwA8RqWE8s/4GkouiWDS7livGXYGYPX5yNq/30t7HukGD897SGW559xxdf0v3aPrNkZpzS07pJyGEhYlioU12pABTi/ILeFJCux4lFl1YzFuqYFfnasNh98Lf1OePUnehCdmQhiFL3XPJ5xDBPJWz5OWO/TExrYonp3GPH+cmFPVYhcV8YPNXmavmQik5FaBmJsVfvtzcVMWOqZ/VMpgWz3LTNy0TbQieFTI3c9/tmqOsKV7HTsVSNtpL/56tLkWa9m/uMbfFWdrxfbbGp5ZTOvxT9/Ypcq42/OKbVkdtdYa2Fy2n/3eUitLPZg7f5c/FCaOczVFPPbrN8tgd8n7QR47WpPe9zF2/610PuKNAiur362/3An7U4qD+uIh8CfwnIvJH7/sAVf2LwF8E+I0/8uta3AZnEMdc0EtdmDknCzCkegOVyajpJbfm5YoCzvh0QRttMitZPtxsq+CIq9zl/mKg1MxCruWUCg6V8tfO6L+E6grbdjo7J7S/yHxV3QHwzls6kkohoS7vVpR642kQKQupesYlM6IrcLVYe/Sj2/C3f/u3a7dbtEOz03Tq9w+RU4pLUYgCWD34bpFqRDVAHqyds5HYxRDRrPTDxDBOVXkyoNQ9eJyRP5dU3pqJ/cg0OsePhwIJ+IJaSL+0KlgxzmFdofHuqYaO774cu2S/r36WC/lcH+cai3/sH/4T3jmqylqBlkPKjMmyb0xqZIP7MRHCyMXYGRiTtXq72A7a3NdEpARpQnIjMJcsd1avsY8Mm4GYEtG9rbJ7AGRVQjaFZpqypZDFPOpMwTR3waSwT7BPQs4wjUqatPb95LtcdllwJduIq2PIoIlpGklT4u3NxPUh05PYT4lhsrS1N4eR/TgiWQgpEtRCujJzppd2fIuEml0jFnfrWQdu2+Kj2/AXfv2PFXpIq+177ODOM8hTgVc+XznXWPz6135Vt10PWMY8/72mc19scygUrxdobWQPS9Biatq/Dui9b2wDXHQWlvJit+GLywu6GNlutsRqwFL2Kei6nu32gpgyMk3gwM8+TUghWj/OgOJ/k2eWKQZHWSFtLrCxPk4jU5oMEM6ZnI03qHr8MHvzzMBPAXkaL5/mHOq1GdUC/Kh/1vma+e9Z2vCP/NE/rpZJsngTWW1K1QWWQFmdNo4Hocwf7rf7qSe/vuvKu2GduUD3gJXqbwWU+JD5ZAFsoOiULK/qqceVd6pqUEUK2vudpR1//Vd/RXdDR9cFOlHbfMwTeQQNs0FfvV9irF43xj1Zfmc2nH3tmZMPeKhx8+9dYjozqBTNeDaapPx+VLen9I1ad7AENE7U+RJ4el8faHUaGozOV6cgmFd90Xv9/CAeRl3nvLO04eVXP6/zHLk020oZbPz7mlm6ecVAvF+3jiyFmLZR6RVQyZbuOQs5WUZUiQ2TaNtH80zmTdXxtWbgsvmuAX6k1Odsv9hv3o/8FqWY0b1zVIsNUxWyovgu5yAx/SQ7GF5Br+Y1EYsaUDWC75oguZbldt84Vzu2tsbnKs8F6DmWc7XhL//mHysjxdeIFpbRuY82QPFi3TsGukuXLjpFo7fcOvcYFbpd0vn/grnUDEuLU2YbvJZBWVzc3qOW59ZtTnyxA4v7Lwo+6xPaPKDNrqfvvvlJ+aCsXqr6UxH5a8CfBP6+iPyiI3+/CPz+++/gHD8VPPGO4F4+ilTgB2Z2m4VHTNvQx3dv+1AlR54rUmWekJsZ3f5pmO/h/6Q9DRrDqlXE54qOzBw/nZgHUDnn6GnL+9pJzaAoi8LsjmnldwOvAA9+fqjKfutG6xkFjuro49vwlEv7+eV4Qm0VmWJLxyCVeT/3PTnvKDsoZiSUxbYoAQ0oFYIpHqo1S4KRCY9M0wjgXjuxUX/dc8iBogL8RA8Bq+CGfy7utgW4Ub9/IUU+BsuOQbM2ZOxYzjIWQ4dCZcI4ZOXtwTx93uwT1xPc5EA3Zn5yted6HOm6wDeHkRCFTYAumJt2xpTkAqwF5+DRUTmMI1NK5CBIFCLCdrdBY7A6m0bSOJKTMuVEyoksRgB9vT8Y+CMZNzXJUcjRQr2+3QuvD4GUlMM+M+5tLAxxoreIMLoh0nnYVxTbdQySGMINfRA0Z6b9nmk8MGw6wuUIg5X59dtrrvZ7ogY20tPToTmSkoF8UgzbbOM1ehhan2HoO8bk41EfZixaS953ui9n3zV/Pk8l5lxylwH0se3YhcBXu0vjiQrWr3LOTD5XGIgYPW1ytvmt7DQ7d1TORmCuORvRvxpn0KYTdr3xXV1uOl7tLLzrYjPw4mJHDObxNiUPzcqgyQyQzeaCr766IKmy99TtKWfeXr3l7fUVqkrX9/R9Nxsa3oUKiAtm8BZEaZwmpjSRUuL11VuurjMpJw55YhwPNpeTZ8Lm3GT7SomZALoQVs+eQDTADqhnMGuBIPutpnxvyWY/sg1VM4frt42+oW7Ul62eWek1XbFBaMq6Lsz6kcxhQcgccnz01MW3Dxm9t+eM+88g57LGisdCzonxsCelJqlC6UquxxnQ4nNuCISuc5D0FujxkWNR+PrF1suQIR8gKeNB5zbzluz7ns1mC8XDt+8tc5KYbiJSePAitt5GkOYdStsegT8tcFNEfE1tgYkGYbldtyfuUer8fYDiMehze95rjaP576zHUMtlZNCCBkG1W+i+KkJyEuQjw+fj18VKll9sCCtH7fdJUdGatYwCrnkyi4wiualeV3lbPMV0QeuiwRNXBBG0CQGj0cEr4IPNFwXsafVVm8/8AqnFQqX19RHECZ3VQaOyYR0kep+Kfo5tDqu3SeG8VJwYms4226YEKVXvbLAw9hCgi2ZoigNcKWdPDlnq92HWxVU+vXx0GyrUDl37i1C8NOTk3HJifqqAj7zrrPtLW5aTxwt20IzeBvSdTz+N7tyFxdy1di51kdsX17nBD7Ug0K3i32OFvk9Wr58DRu8AO+CfBP4N4K8Afwb4C/73L7/3aeWeLEH2QJ5jkxeFXoIhdzX08fE6MZffZF4sA3eoS0W5agvYnlE73t0P1+b+s0Nvc217+uL+y3c2TWd54hwodlyextOieaYtBFYDr3/yHUC04+dpw08lC+AvRqtvVYhxqaT4QCmf5bhKi4ECjOPIYTIjqxvnrF4lkxfMCpCqGkhUgZ/ofDYG6qhfW7x9gMXfcRxJHtbRAj6nQKCcc+UI8uOdiHx5trFYwbSSLQIOKbMfk3n9KEwqHJJyM06oBm7GiUNKTDnTNcae8WTLbMjIzD2TUrJ3lgDSIQKx79iIcf8cbpTpcDCjLM+7/SkbkeyYsvEDObyZ1FLCJ8VCtJKQEuxHOOxtpIzi3FchMCgMxQPQFcKA0qE2KHJC04SmTBJ7//2UmKZkHEI3IxEDdFSEoWvdsec6RKjefiUkoIsR1D39FH764x/BA45FX06bz/eTFfR5vxztop9tLAYRdl3v/cWM/ZwSI1KBn96PawMoB59/BMgpkkZBs2d4VAM4t33gxbYzLp/dhi8vt/RdZLsZuNztCEG42h94e71Hc7LQTLdPutiz7XrbkJkmunG0TIpTYjwcyJrZ9D2bzeYW8LMwU4IRnpY5cvTMiYfDDXs3bMjZgCtVEnMImOYZ7KECP2YoVaCn/VyVzOzZu9rjbTiYPfNcbaiqpMkyQ7bO5iX0ojmx7UPeAYrXVOMFEqIDG57I4h2gzwl9dCEtyHPqc7Oivufq+4E+t0ClOyaiGazLpDQxjQe7vhjZCEXbDhLQWLx+I4HY3vZ8YzEIu8E2k6qnas7kcXRDvak/TZ69S9EAQjdn8nJQFpGFpw8OBhbw53iz512Veuzt8762+Bjwp1z/Id4+pmjN4E95goiQNS6eqEcneXryM+k2uvgni+MF2bDP7VioVlW5snQwAU8wXI+J2Cag+u8lo6+d5BELjcdN2wytN3iZj7SQPuvSoCvPKIfN4HPPHp9pct1YnueQAiia5tEiWPPcY2nnbU0RJ6auLepGZp3Wy7wuDgLd3fvOq6Ou8ugyjuMZxyJQQQptvrecbtp0MI6M7GNjfjFizfPnhDPIO3Xfdnzdsr3nImk947gM5ZzFjU6PCD3+eLtkS6D9joubkurxT6fK8x65j8fPLwK/IwYfB+Avqep/KiL/DfCXRORfAv4v4E/f+6lF3qVrfM9L76OZyHEP+ZD7HwNC73vsfe5/1z319PEPE+W7H34L8IdF5H/kDG34ORiJd3Xy+7TbPVvuk8od79cDf/UsY/GBmvB9NXvLKHhu8q56FfjxD38fzjgWjx8gi2/fT2x4P+4YP7VQvxu4+hBY62Nl6U7r89/5xiKfx5z6nORec4yddLY2/BDF6yHk+/Sgs/S649c+0uMfdJjavc86Fp+KVCAaji2G98pjzp7vE8WIlDnnWCydUo6Pz3K/9/+caupJyM/kWHxOMo4jnLMNH3hZ/NxG57tnjM+jtPKYyoqI/H/AW+CHj/bQTy8/4PN4319X1Z/72Jt4G/6ffD7v9RjyubzrWdoQ1rH4iWUdi99fPpd3Xcfix8nn0I7nbsN1LH4aWcfi95fn2obrWPw0so7F7y/PtQ3Xsfhp5M52fFTgB0BE/jtV/e1HfegnlOf6vs/1vU7Jc33X5/ped8lzfd/n+l6n5Lm+63N9r7vkub7vc32vU/Jc3/W5vtcpec7v+pzf7Vie67s+1/c6Jc/5XZ/zux3LU3jXh2fpXWWVVVZZZZVVVllllVVWWWWVVVZZ5ZPICvysssoqq6yyyiqrrLLKKqusssoqqzxT+RTAz1/8BM/8lPJc3/e5vtcpea7v+lzf6y55ru/7XN/rlDzXd32u73WXPNf3fa7vdUqe67s+1/c6Jc/5XZ/zux3Lc33X5/pep+Q5v+tzfrdj+ezf9dE5flZZZZVVVllllVVWWWWVVVZZZZVVVnkcWUO9VllllVVWWWWVVVZZZZVVVllllVWeqazAzyqrrLLKKqusssoqq6yyyiqrrLLKM5VHBX5E5E+KyN8Rkb8rIn/+MZ/90CIivyoif1VE/raI/M8i8i/78a9F5D8Xkf/N/371qcv6MbK24dNvQ1jb8Tm049qGT78NYW3H59COaxs+/TaEtR2fQzuubfj02xDWdnwO7bi24efZho/G8SMiEfhfgX8K+F3gbwD/gqr+L49SgAcWEflF4BdV9W+JyEvgbwL/DPAvAj9W1b/gHf8rVf1zn66k31/WNnz6bQhrOz6Hdlzb8Om3Iazt+BzacW3Dp9+GsLbjc2jHtQ2ffhvC2o7PoR3XNvx82/AxPX7+UeDvqur/rqoH4N8H/tQjPv9BRVV/T1X/ln9+Dfxt4Jexd/wdP+13sI7xVGVtw6ffhrC2Izz9dlzb8Om3IaztCE+/Hdc2fPptCGs7wtNvx7UNn34bwtqO8PTbcW3Dz7QNHxP4+WXg/26+/64fe3YiIr8B/AngrwO/oKq/B9ZRgJ//hEX7WFnb8Om3Iazt+BzacW3Dp9+GsLbjc2jHtQ2ffhvC2o7PoR3XNnz6bQhrOz6Hdlzb8DNtw8cEfuTEsWeXS15EXgD/EfCvqOp3n7o8Z5a1DZ+HrO349GVtw+chazs+fVnb8HnI2o5PX9Y2fB6ytuPTl7UNP1N5TODnd4Ffbb7/CvD/PuLzH1xEpMc6wL+nqv+xH/77HgtYYgJ//1OV7wyytuHTb0NY2/E5tOPahk+/DWFtx+fQjmsbPv02hLUdn0M7rm349NsQ1nZ8Du24tuFn2oaPCfz8DeAPicgfFJEB+OeBv/KIz39QEREB/h3gb6vqv9n89FeAP+Of/wzwlx+7bGeUtQ2ffhvC2o7w9NtxbcOn34awtiM8/XZc2/DptyGs7QhPvx3XNnz6bQhrO8LTb8e1DT/TNny0rF4AIvJPA/8WEIF/V1X/9Ud7+AOLiPxjwH8F/E9A9sP/Khbz95eAXwP+L+BPq+qPP0khzyBrGz79NoS1HXkG7bi24dNvQ1jbkWfQjmsbPv02hLUdeQbtuLbh029DWNuRZ9COaxt+nm34qMDPKqusssoqq6yyyiqrrLLKKqusssoqjyePGeq1yiqrrLLKKqusssoqq6yyyiqrrLLKI8oK/KyyyiqrrLLKKqusssoqq6yyyiqrPFNZgZ9VVllllVVWWWWVVVZZZZVVVllllWcqK/CzyiqrrLLKKqusssoqq6yyyiqrrPJMZQV+VllllVVWWWWVVVZZZZVVVllllVWeqazAzyqrrLLKKqusssoqq6yyyiqrrLLKM5UV+FlllVVWWWWVVVZZZZVVVllllVVWeaby/wOM2XRc9P738gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAADDCAYAAADZT9PDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC11ElEQVR4nOz9eZhlV3neDT97OHPN1UP13C2pNSNhSUhIgCUgEiYEYxPHxGAbJ3ltY4y/EJJgE9uX5cQBTPz5I3kTO/ZrX+A3sYOdWGBjY4wYJAYxCCSBkEBjz2N1zXXms/f+/qhT1XXfa3edqu6qc1qt+8fVF3rOsPfaaz/7WWvtXee+vSRJEhNCCCGEEEIIIYQQQgghhHiB4/e6AUIIIYQQQgghhBBCCCGEEOuBHnoIIYQQQgghhBBCCCGEEOKSQA89hBBCCCGEEEIIIYQQQghxSaCHHkIIIYQQQgghhBBCCCGEuCTQQw8hhBBCCCGEEEIIIYQQQlwS6KGHEEIIIYQQQgghhBBCCCEuCfTQQwghhBBCCCGEEEIIIYQQlwR66CGEEEIIIYQQQgghhBBCiEsCPfQQQgghhBBCCCGEEEIIIcQlgR56bDD33nuveZ5nZ86cWfFzd911l911113rsi8hlHfiYuOuu+6y66+/vuPnDh48aJ7n2Uc/+tGNb5S45FHeiW6jnBMbheZ2otso58TFhsZY0QuUd2Ij0BjbHcJeN0As8Hu/93u9boJ4EaK8Excb27Zts69+9at2+eWX97op4kWE8k50G+Wc2Cg0txPdRjknLjY0xopeoLwTG4HG2AtDDz0uEq699tqOn4miyFqtluVyuS60SLwYUN6Ji41cLmcvf/nLe90M8SJDeSe6jXJObBSa24luo5wTFxsaY0UvUN6JjUBj7IUheasuceTIEXvzm99sAwMDNjg4aD/5kz9p4+PjS+/zT5YWfxr3oQ99yH7rt37L9u3bZ7lczr7whS+Ymdnf/u3f2ktf+lLL5XK2b98++53f+Z1uH5J4AaC8E91ifHzcfu7nfs527dpluVzONm/ebK94xSvss5/9LHzu4Ycftle96lVWLBbtsssusw9+8IMWx/HS+2k/C178Oeajjz66Yj6LFx/KO9FtlHOi12huJ7qNck50C42xohco70Qv0Ri7seiXHl3iR3/0R+3Hf/zH7R3veIc98cQT9uu//uv25JNP2te//nXLZDLn/N5/+S//xa688kr7nd/5HRsYGLD9+/fb5z73OXvTm95kt99+u33sYx+zKIrsQx/6kJ06daqLRyReCCjvRLf4qZ/6KXvkkUfsP/7H/2hXXnmlTU9P2yOPPGITExNLnzl58qS97W1vs3/9r/+1/cZv/IZ9/OMft/e97322fft2++mf/umO+zjffBaXLso70W2Uc6LXaG4nuo1yTnQLjbGiFyjvRC/RGLvBJGJD+Y3f+I3EzJJ/9a/+Fbz+p3/6p4mZJf/zf/7PJEmS5M4770zuvPPOpfcPHDiQmFly+eWXJ41GA7572223Jdu3b0+q1erSa7Ozs8nIyEiiUyqSRHknuk9fX1/y7ne/+5zv33nnnYmZJV//+tfh9WuvvTZ53etetxQv5uBHPvKRpddWm8/ixYfyTnQb5ZzoFZrbiW6jnBPdRmOs6AXKO9ELNMZ2B8lbdYm3ve1tEP/4j/+4hWG49BOkc/HDP/zD8HSvXC7bww8/bG9+85stn88vvd7f329vfOMb17fR4gWP8k50i1tvvdU++tGP2m/91m/Z1772NWs2m85nxsbG7NZbb4XXbrjhBjt06NCq9nG++SwuXZR3otso50Sv0dxOdBvlnOgWGmNFL1DeiV6iMXZj0UOPLjE2NgZxGIY2OjoKP5lLY9u2bRBPTU1ZHMfO9tL2IYTyTnSLP//zP7e3v/3t9kd/9Ed2++2328jIiP30T/+0nTx5cukzo6OjzvdyuZxVq9VV7eN881lcuijvRLdRzoleo7md6DbKOdEtNMaKXqC8E71EY+zGooceXWJ5wTQza7VaNjExkVo8l+N5HsTDw8PmeZ6zvbR9CKG8E91i06ZN9uEPf9gOHjxohw4dsg984AN233332c/8zM+s2z7ON5/FpYvyTnQb5ZzoNZrbiW6jnBPdQmOs6AXKO9FLNMZuLHro0SX+9E//FOK/+Iu/sFarZXfdddeatlMqlezWW2+1++67z2q12tLrc3Nz9slPfnI9miouIZR3ohfs3r3b3vWud9ndd99tjzzyyLptd73yWVyaKO9Et1HOiV6guZ3oNso50Qs0xopeoLwT3UZj7MYS9roBLxbuu+8+C8PQ7r77bnviiSfs13/91+3GG2+0H//xH1/ztv7Df/gP9kM/9EN2991327/+1//aoiiy3/7t37ZSqWSTk5Mb0HrxQkV5J7rBzMyMvfrVr7a3vvWtdvXVV1t/f789/PDD9ulPf9re/OY3r9t+1jOfxQsf5Z3oNso5cTGguZ3oNso50Q00xopeoLwTvUZj7Maihx5d4r777rN7773Xfv/3f988z7M3vvGN9uEPf9iy2eyat3X33XfbJz7xCfu1X/s1e8tb3mJjY2P2zne+06rVqv3mb/7mBrRevFBR3olukM/n7bbbbrP/8T/+hx08eNCazabt3r3bfvmXf9ne+973rtt+1jOfxQsf5Z3oNso5cTGguZ3oNso50Q00xopeoLwTvUZj7MbiJUmS9LoRQgghxLm499577Td/8zdtfHzcNm3a1OvmiBcJyjvRbZRzQgghxMagMVb0AuWdEL1Fnh5CCCGEEEIIIYQQQgghhLgk0EMPIYQQQgghhBBCCCGEEEJcEkjeSgghhBBCCCGEEEIIIYQQlwT6pYcQQgghhBBCCCGEEEIIIS4J9NBDCCGEEEIIIYQQQgghhBCXBBv20OP3fu/3bN++fZbP5+3mm2+2L33pSxu1KyHMTDkneoPyTvQC5Z3oNso50QuUd6IXKO9Et1HOiV6gvBPdRjknuk24ERv98z//c3v3u99tv/d7v2eveMUr7A/+4A/s9a9/vT355JO2e/fuFb8bx7EdP37c+vv7zfO8jWieeAGRJInNzc3Z9u3bzffP/YzuQnLOTHknzrLanDNT3on1o1t5p5wTy9EYK7qNxljRCzTGil6gMVZ0G9U60QtU60S3WUuts2QDuPXWW5N3vOMd8NrVV1+d/Mqv/ErH7x45ciQxM/3TP/h35MiRDcs55Z3+pf3rlHPKO/3biH8bnXfKOf1L+6cxVv+6/U9jrP714p/GWP3rxT+NsfrX7X+qdfrXi3+qdfrX7X+rqXXr/kuPRqNh3/rWt+xXfuVX4PV77rnHHnroIefz9Xrd6vX6UpwkiZmZ/Yf3/7Hl80UzMyvXW/CdQqkEcX8Wn/Jl47oxrVYT4tjHQx8o5iDOhPi0qNHANszXGhB7AW4vDAKnDUGC7Yxom/kctsHP4jZrTdxnK8ZjynsRxvms04bjs/idmRq+X8pju/M+tjGgh2iNJr4Q+xl8P0qcNlTruNOYPpJ4Z9tQr1XsQ7/+z62/v9/ZztI+1phzZufOu6Hb/6V54cJ5iC2G74Q5PLaBPJ6vXMa9nELDc+7TwQaUN5bg+/UIz2kzwf6OEmxj4Lt5l/PwOy3aR6VFeUWqdx7FBcrt/gweY5i457xA19NwH/YdH/dEBfNuvIptrFGbmTiO3Rc9fG0oj+dzV6lgZmbNZs3u/4tfXzHnzNY3717/B9+3TGFhfwnljPnYN4nXordTnmxTrTH6Swj+uwg+YzHlTEw5ECbY/0mKUqJzHJSrDS8PcS7Cuh3Q51senq+E3uc4jZhzM+Fcx9xOqGdiun6dfXIxM7OEt0nDrhcvXOOt6pw98G+uXPe8O1fO/aM/PmiZ4sBCs1st53trxsmxlbMsSakTuDn+fqesdT/T6Q+AnC1wmzpcN72gY5tXgbeshjcrs/Y3/2Jv18bYTT/zUfOzC3M7z3B88zwaH2mbq9Fj9ah2Gc31kjX/VRjlraXVmbXlCdeVtZK2fedq6Xic2AaPaplP54bjJHHnGlwOvQTrSqZ9aqJG1Z7543d0dYy993f+q+ULC2N8RPMqn/qKz06nWmW29trg7mPt23fGswuEj3M1x91pG0ynvOzUhrTvO/vkbbT/v16r2m//+r/t2hj7O7/5E1Zor8NalHP1Os6hxifGIR4dG3b2U+zHOVM2wTWe18LjLg3g50e3jkA8vHkQ4lwBt7dr+y6nDdWTkxB//q/+BuLDzz8Pcf/QKMTTtSpukNbzuWFs096d7l/97t2Lr+UHcBvPPv19iCvTFYg3D+P5Pz3+BMSNxjTEXkpOhzmsbY0arq29ZfPbai2yf/mrj3ZtjP3dj3/eCqU+MzNrebTGpDWiz+NA6vgmeoE7h3bXVTwGeMlCnamW5+3f/MhdXat1f/LIc1Zs76tFaxzOsYDneTxnMzOP1r2+0xX0vs9rOV4DY1533r6Z8bWT8DyBrx2638NTUR71uYmrmEX41O7AX3l8dEsX9z2to1PbgDXDWYkt20R5btZed9murtW6sb07l849H3uD75nSfDSbde+R8jnIZPC+A+cNzz1yBby3lc/iGMzrkdnZOacN5bl5/AqdwyaV6FoF76kODfRBXBrCuNbEz0exu/5v1mk8izGZnX4J6D58wDUAqZRxTPZTakBE97RL/UWIB9rjftSK7PGvPtGx1pltgLzVmTNnLIoi27p1K7y+detWO3nypPP5D3zgA/abv/mbzuv5fNEKhYUDjOgmX6GAE5wCPfTIxe5irNnhoUexiInJDz3CEL8fUTHkhx4ZvpltKQ89Anpokcc28EMPv4lJ1ozwgi74/NCDbiybWYGKQJ2qV2GNDz2CkB96YBEJUh56JDQSrPTQY5GVFkprzTmzc+edF+aWHnrw5M8P8dj8DPZvkPLQI7jAhx4BndOYb3Cv4qFH4PFNVzouKjZ+h4ceAT30CDJ8QzxlgUB5ksmu/NAjpJuwQYvamFIggVU89AioaGeyBfx4h8X5euZdptC/dAP6xfLQI6GHHpkODz28F8JDj5R6F6/yocdSvM55d86cKw7ooYfzwovvocfSa10aY/1scdUPPXghuj4PPdZqZcc3UKOUz1z6Dz2CVTz04GHXT1aeP3ZzjM0XCpZfXFNclA89OtTDlNf00OMc+zzHQ4/VtmG9xthCPmuF9oOEVotzjm6W5LBO5emPcsxsaVuLdHroUaQ/5iuVcM7V14dxnj4/MIA3GczMMmV8aFGkduazWBcKdFw1/ltLej9H2+NjMDPr68O5eqEfY+c79IeTJXq/WMB9hrQuS3/osfLNQ59vmFr3xthCqW+Fhx4r35DmMTmdi2EmdOlzfg89MNe7VeuK/f1W7F9YT3R66BGez0MP5yMvzoce/JDjYnvoca52LGdd1xO+b36Q/tDDj+i+Ea33fZ6QWso5pM90eujh3B8LaZ7MD51T1mKcy/zQw5nr8+f9le/Z+fQAI21N5F5PK/cdP/Tg4+I9OMeY0oaE60SHvl2NzNmGeHqk7TxJktQGve9977P3vOc9S/Hs7Kzt2rXLWlFszWjhSirSk7MML75aeMVVG/TzBTPLZWgiRn+dHtFDkWaDb6hh5/elTEhX+ryZWZUWWrP0i4ccFaPBACdyrTo+GVt8or9IvoQT4Kjm9kNIzSrRr0t4YRvxk9EM7mMzP82jc9FMub9whirk6TK2s9o8u806/1XQCqw258zOnXdJ4Jm1L16+yLnUVOt0rC13ssgPNfimqXl48zik5obGxWnlG7upwxUVCi9a+UFMK6Kb6jRJjmh7DbrT0UjcfvBo8Gm28Prhe8XclfzAMKTBy130uj0RU7mbol9aVaYXnq5HTfe6WYn1yDs/yJgfLPRJzG3vMKnx0h56dLgJx9vghxoJP9Sl78cJnr8gcX95k4vpF1002PODZ58fMjo34ejmJT/0SPmVhXNjz5mt8UNEnoDw93GfMU9ieXZi5kyc+cGlt3i+UxbJK3GhY2zWN8su/uV1WrvXCO+a47XeUOu0vXRW3kenG2iez3268jygG7iLNwpTV2sIt3v5fHMtzwDWo9YFQWh+uFA/+Nh4QcF/NOClXV4d+sOjh/78QLcjHudM2kNmDi/sxm8nnDHCbULHB3aht/IvOXyaaoTOuOO2K6DP5DM4h823//ihVfMM/xZ7ZdYj77wgSF1gpm2f6cZ1fz4PC3z6TuovXC9gnx31ke3CH8I6DyTOox9We37CsLtj7LEjRy3fvqk/PTUF3xkaGoa4NIh/zBeldH2riddoln7tPz+Pc675Bv1C2ughZInWAjn8i9C5eWyzmdlcZRb3QX/QlGzeDHFxMx7n5j48zi179kBc53XwAN4YMzOr0MOdzSX8C8+r9+EvQeIt+P3BIv76JKB7BqdOHIQ4G9Jf65pZxscHQs0MnZvM2e+UrWFm33S2kcZ61LrYzyz9AWLM80rnDzLpZnDKw+yUVq7iM2JDoK6PeZ3UroX8x6UdN3uBtW6q1rBaZqHeRM5DDdwG/2FkJu2mOT8wcNYo/EdxtK5yJob8UHLl/ZmZRfRHv/wrYXfcwff5nnqm4/2bVdy05T/e5NsFHf6Ag19pBXSumu43MnST3LkHtCwsp9x/PRfrUeuy2czSvK5B452zvosxbtbdP/bL0Byh3sI/xozo/pZPJ4Dv+c1O4y84jdYjab82CekPqJuNlf/INMySwg7dz+bYvcfn9jm3q0pziwapHYWk8uPl6J4dXWAR3T+tRm7eBDm6b9gkxaW58sK2otU8qG+3Y9WfXCWbNm2yIAicp3WnT592nuqZmeVyOcvl3L/kEGK1rDXnzJR34sJR3oleoDFWdBvVOtELlHeiF2iMFd1GtU70AtU60W1U60SvWOvv/DuSzWbt5ptvtvvvvx9ev//+++2OO+5Y790JoZwTPUF5J3qB8k50G+Wc6AXKO9ELlHei2yjnRC9Q3oluo5wTvWJD5K3e85732E/91E/ZLbfcYrfffrv94R/+oR0+fNje8Y53bMTuhFDOiZ6gvBO9QHknuo1yTvQC5Z3oBco70W2Uc6IXKO9Et1HOiV6wIQ893vKWt9jExIT9+3//7+3EiRN2/fXX26c+9SnbQ9qdKzHan7NiYUETk/X+q+QqXyZ9zyRx9TdZs8wn89iYTHLLNdQOC0mcL0/6x3l6n71rzMzmm6hhNt3A4yiSFlyedNjYRaRK2nvsMZEP3R/ylMhkLkva0BnqF6N+iSPUeWsm2EaPNGPZtMfMbLiImq4h6aXOL9tErbq6HyOtR86ZmXlBxvxg4RgDNtdmMyfSB2SDaTMzkkK0mDQGM2wW5JgHscY56QlSXrP5s5mrQRjzd9jzo0G+LuTT0qKq0XAMwVxNyDoJhM+RRmGzhW2ar2MbFv19lqC8jSPMQzbrMzPzI/aAwPer4eK2nK+ek3XLO++sBLtHWqWOPrxj9puiZ91B4pplM9lgLUceHT5d5wnpNw74rh5jv81APE11uW4Ys6YqH5Yj6cp65mn9sEYS7nv2QmB9/1W0gc2ZXX+VJPVzK7EeeZfzE8u2OzXmMr0Oks1cu9Z6dlbhWtCRtRpGX2ibN4aVdYO5zelboDxepuPrBas7yvWqdeEK3gqs28x1yU/JCse8kMZQ1mHu5G/kbn/l+puGo/W8RsPKNK3j5aTZF/FLbAzIc4UsxaGxBi+eo3yGzBHTPD2oFVnSO47b+sh+sPpBdr3y7kI4Lx+JNZppd/IbSt/fym1YD2PyC/1+p++s1csk7fOr94fq7hhbiZsWtS/W4qYReM/P0zo1xLlHrVZ2tsfrhQwZcg9lBiCepbVytYL65DEtrmvkc3d82vX04DnSlmv3QzxAuttbcjhX3L1tG8SZAnpjHDuBkieFjOufOboJTTpG+nFN2Th1AuIzZzCebB6DOCYd+q2j6Pnhm6u7Hhv6iNB01uL4bD/EvGg6B+tV6xIvtKS9BkpoDZ5QXee1VFqtW80cQ/QGvqewKOCyFu+y9ci7xDKWLN6lYh9D/izNoeIUQ2m2GYgdN2fy9LC1eXqwzk2qVRt7/LkW3hSv7McZ8T0ix7ew88LLp4Y7LpQdxktnGU1ztLDl3kPK0Gt8DylZZkabpNx3TGMj5nXNJnlZ0H0m9tuoVXE8NDOrxugjzIbdGRrPXI8OHAgiGmOb5IXRqKZ4WZBHh1dAb7yBEsZGnhYBXV+lIfTqqjVwPKuV3TbUm9g3uRx5RtMCoEVzh5hupDUpdn043DEml8O+DOnGetheR67l1s+GGZm/853vtHe+850btXkhHJRzohco70QvUN6JbqOcE71AeSd6gfJOdBvlnOgFyjvRbZRzotusu6eHEEIIIYQQQgghhBBCCCFEL9BDDyGEEEIIIYQQQgghhBBCXBJsmLzVhTJTbVrDFrTPQtIHNNLv9yLUSIsC19Njtor6YX1Z0rGMaZsk8Me+IjMV/HyNdPH6C6i1amZGVgnWSvC46hFuY5Z01oaoG3zyLaiwDwLZHJiZZYuoyxaT5l2edWXxbWtQ31eNNfPw8/kgJcXIyySgjsks0xhtRa5Pxkbitf+3AGtIcs6Q/r/vPkMMfDy2HF1yGf4KxSFtM0ttCCiOE1cTskJ6jKykF4TYpmwGt1EjXeAGafZyG1k73MysTiLkc7SNqIXbqLNGH11f1sJro1VH/WM/hxqGZq4WJmuAxu1+8lI0LTeaMBNbmFnYL0sdxh6+4AXYPj9NzzolD2AbnMskipilmhq2UOey6aMO8/aSe53uzmE7n5zBPJpvcc3F4sH+NB7FCRXl1H7opEVMbyfsFdNBEz3xuY1pO1n5M4seLnHQ3bzLBWbZRR+bNXoOrA8vxH10o83rj1NOl2nw+lxbN5ggDM1vjzmOGjV7erCvT4rmMXt4OB4A7KtFveHWQt4HX5eruU7Xt0/5evRT2sB7DGkcDwPWw6W5CHtFxVjTMzS3C3hebmZxi3V9scY32/PHFntwdYHA9y1o50qns7Ma74qOXhMdvGQ6bW817/Muee61Vk8P95j4E51zn5vp+M843XTh18pqt8Hruo1m8sxpy7YvnNHRzfBeo4pz1hZ7OGbdOWzcj+tKv0RekrTeODUxDnG+D7XAN28egrheY+8211eklMM2jA7iNhoJ1oB8i+avNO+eOIFtrE9XIO7zcO5pZtaYmoT46UPPQzx5BD075mfnIW7RoMDrqCL1Peu6m5klVA9bMa5J/OBsP7RonbzReBYvzSs9HgBdhwX8boov5At13nNJwnN1Xustxh3WgOtNGAWWiRYuihaZmfItAc7IKOWeAa9J3Gkq+23wPrgN+PmI8z4l7f145TG849yRrqU45Pdpf2njGK9Rqa/43qS7dmNPD4r5xmTF9VubO4P+nOEoekf5mbNjgr8GT9T1oNWKltb+vBZg34ioSWNRijleTN6vPGfgOVG9jrV9ZmYW4mwG77k6HoQpc5IM+ViF5KeR6yOPKZpP52iy3kjQn6PVwjbXG663ieNnSt5QHp9oun9Rj3CbfL/U6N5J6LveXVnqB+77s/cuV1/r9EsPIYQQQgghhBBCCCGEEEJcEuihhxBCCCGEEEIIIYQQQgghLgn00EMIIYQQQgghhBBCCCGEEJcEF62nx/jMnOXaHhWb86gfbzMHIJyfxPiyK69ztlfxhyCutVATrcD6YuR8UG/i+40EtcYqDRQbm2+6Gmn5Qgni/gLpx5OWXLlGOvlZfEY1mMM2tEg7tZxih1Grou5oSDpsCWmoeR5uxGMtZvJmsBhTyiedfjNb8mpZJFfA7+TDs8dZCV2dt+6xsmZkY+o5iAc27XK2kCdviQLparN8aiPBc+iTHmvUQbs4TbO5kzw1awxmKM9ifjbqyFLiDqIUbcwatSGm66tFwpQNOu6c42OBur9ejHFgbt4khnrGrHG+6BHRHT8DJAgTCzPt/dMlE5PYqOf4SLjtdV5zdCTxbf6432KtaPxAnTSOoxb2v5nZ6CDWwFIVz3GYYB1IfNKr5muB88rrrFfuyKzz+6xvSh2RdBAkj+n9VtrF1kEn3Wt7tsRhd8VQc4FnubZQbrJGrfPOivdiveC+Pp/qlNC3guUCyV329AjDcEmLlWutx54edPSsvW7mau6yrm9CdSLiespt4H04+1xNf631rJG+NH0+pHOUNXdyxz4fIXtwUOxRTXcqQMRjBo3ZsdsGxy+Mfc4WfUTSvN42GM+8NXg/dP4cjzedvrN2P421+4qsN45Eeerw1sGLpOMLvI+19VPad861zw3uLodW2WxRqrpeJA+dDOqiV8knMjt8lbO9Sm4rxPPk4xgmUxCXiuhvWcqgR8fE4RMQzxZIqz3lZM3QpTs4RGucfpxnR6SLf3Qa/TZmZ6YhHijhen9+4pTThhOH0cNj/MwExNkE1/dZ8i2MyH+jQW2cmcU25bLuemJ0y3aIwxDnr6WBs33p5dz7ARvJck8P1/9pZc8qL3V21+GaXOP41on1mF/2woWE51kXStrWElobe6y9T//fLfwoMb+10BZeL/I8jhsXpRxoJyeaDvYZFlG/xLQF9r9Ky/vQ8bvhNvD8deW5JNdCXn+m3S9L2DuWfUZ4vkv3UrhNjskWGfceOXjUacPl2/HeVoXu+2WXtanJZiwbTKPZMD9Kz3b2xkj4fDRcbznOgyCk64220ayTP22WEpHGS+eWQoqZTI7SIEvmv60qjifVGo7rFeqOehPHu0wG5wUJG8maWUD3Xhvk7dsif5SAPDl4m3yvhA+7UU8ZIymVcuRJnbQ9n/ne+Urolx5CCCGEEEIIIYQQQgghhLgk0EMPIYQQQgghhBBCCCGEEEJcEuihhxBCCCGEEEIIIYQQQgghLgn00EMIIYQQQgghhBBCCCGEEJcEF62R+RWbC1YoLBiiFdg820PDlOcOjUNc++5Xne3tvenVEB8P0MilkGcDb4yrZPYTkbnQNJmOV1OMlPM+GrtsLuB32N/mxDQe97yhwdtABk8fm6+zKa+ZWZ2NeygDmuR26ZM7VNDC7+fzZFpH+2ylOJK1AurrCA1sNmXO7jPMVN0NbCBeEpnXNlD2yTwoQ8bK0fQBfH8rGtuZmWV9OkdkKsU2Si3qMPKmt5Acv1p0itOskNnip5PFaoaMmsIOZlCOoXRKG3gvLWppk4xZI9pKpYHXX4GMCLMhmZY13byp0jPeIjm9Lh5Wt80uzczCMLKwbWTNBk/sC+Ya0LoNDthgm2qoT9d5TNtsUd9kmnTN+lg/o8Q1YGs20FwriPE6z2eG8PN04AEbuNEjeo+OMU4zQGVjcuOYoL7nXOBrKQ7IbD3VVJ7bid9ZNE6Lg+7ag/eFZrl2eYqpcDjHTce1etuwjSSlFWu9dp3z1Qv7S4Rr33kZmbPBIr+97FpKuXQ3lCD0LAgXWuS2i82zV47NXGNB/kzCRu1O3/D7vAcyNkzrMHqt5WO9zcRkpEu1zqc4R+aUeTJTdGeXbp1x3qdxOuZxm77OW2OvwDTz2qCTOXpmwex30YCwm3jeWSNzx4D0Ak3Iz4e1GqGn4X7lwupXp+P02Zg+5TtrNWRf63GnfnqV53Ojjd+Z+UbWMu3aMDGO+775llshPvr0cxBP1dAg3MxsdMe1EDdbJYgrVbyu+muHIN4+/zDEk8dxn80mmobnUgxCwywex6btmyG+8jo0YG/QmmZqHNfrQ8NoTnrN9bshPnUcP29m1uJ626xAPDMzA/FgCQ3aoxj7yc/h2rpJOZs0XZPVWgPXGBmaM8fLTIlj6+4gm9jy+r2ykTlfnSlTWMfAOWXkXvHzvvN9Wp9QWUltw8qbcN7vzmy6w/pi5aVyh62d6xg6bGQpd7u7noiSyKL22iaK8YQ6UzAeE+KUccU5wbwRnkOx4TSZhPt8rrh/3FrH91N4m87ck7fJY2ML9xHSOjyTYmTuUV1xnLA7zMtadO8kptp36uhpiJst19y7VcQZZ0D3R+FGFd+02mBazebSvIQNrfneVa6E9yvnp3GcMDMnz3g9kcngeFUjU/Hy/DxujjYf0z3VVtQwJpPBc56je708sc5ksU2cucN9I7jPJrahVnHbEAS4kyy5q3OeeTG+32Cz+xDb2KzjPhPH4d2sRdswGoaT9v3QOJaRuRBCCCGEEEIIIYQQQgghXmTooYcQQgghhBBCCCGEEEIIIS4J9NBDCCGEEEIIIYQQQgghhBCXBBetp8dAqWTF4oJeaUgadMUdN0LcaKK22LOf+oSzvc1jRyHedBVqnEUJ6tjlSCNtIMs+FPj5/izqmR2acTXSPNI29cjjg3XJhorYhirpm0UNjDMknBiknF6fxDPjCNtUq+JxZUlPMJtFDVnPZw1C3N5cec5pQ4u020o57Nu4GaT+dzfw7KwGX440IIM6HktjCrVmq2fOONsLtg5C3AxJb5Gk6Dheq2Rz1Ek0dDWwLCXrWLLmvKOtmqK7TjFr3LLeZtBAzw4jf4hCjHq6EWk5zqVohkcZ1HOs0j4yi7qQbHDQBcJw4Z+Z61WR8LNpvs5Tznmmhtdxk441yKEnh0/6jayQmKGTzL3L2qRmZhF7DDUxzhZYhxu/H9A5jSnvWALSSxECdjR2STuWtYQ9MlAJuP6wHwf5cLCupZlZEHEbeBxo/0eX/wShkPUtn03XQmWtWvZqWpXE/Trrza/O3WJt9S+J+bi67+nhKAtvQB6wrv7y6z0Ju5t4gW+2WC4cZXC6nlhP10vxFHC2wdLPVNt4rOlE4pNOcJTiqEGeHXFIerZRDuIWv0/61CUqI3lH7LvzvKiTl0Ir4Wuc6lLA80fyJ0vzV2H/ophrfFuDN0xzJekdG+H1cKFeFq5XRupWVoy9FI1w3AnPdVbW/08TpffoOxyzB5yre9/hGFzXAacNTlVw+r7t5dJdmXvb1J+zbFuP+9kTJ+C9r3zhUxC3YqwRX/vk3zjbu+yav4D41lf+EMRHp26AOCbftEPzYxBvsymI9w7OQpyLXG+8uIG9PT0+DfH8BH5nZHQY4k2bt0Kcz2EOBuS3uW3bTqcNtQr6KW7ZvAnig7PY17M1nP8Ob0UfkoERjI3WD+WpSacNHk0eWct9em5i6b8rVfd+wEaSeOm+GO13KebrM2U+0KE88jXdyZuC14i8xkxte4fpn/N2F671zn4onfzC6PvOWjrtIJyFzzne726xa1hkQXvNF1NNZ6+vgNrG3rELG+EYt5Ev4P2xiLwkJiYmIB4cRF+fkHwTkhRPj5ZrRgM43mD0+ZBOeI4m93Ed68yzz2JdMzPLhDjvKhbxPkZ/Xz/Eg4PoBTV1Zhrihx76BsSNOh73zn27nDYcruC9r01DeF8ru+x8JmucX18ogXlLvqbstcyVLKT7lWl+qDGtz9l7IpPFcTpL54fv4/I+fPI0brLPspk16vhaPSRPaVovFPvRk6pYovUG3a+em8Nxnn1KzMyydF/W9/A45+ke3Nw05khC95aNfTdWcROBPeSydF8+m11oE9+/WHGbq/6kEEIIIYQQQgghhBBCCCHERYweegghhBBCCCGEEEIIIYQQ4pJADz2EEEIIIYQQQgghhBBCCHFJcNF6euTimuXb+ncR6c5WYtSsa/ioaRckqHlnZlapoH7YzBxqgEUJPv+JogrEfQXUNxsiPcEwQG2+LXnXFyByROvRH6PVqkM8mMd9bi6SVhxpTTdI1qxRT/E1IK3SbB71U3OkT1cnk4lalfqthbpuAWkaZrPuc7VSEY8rQxqA9dbZNtYT9xi6RZRgXzRJN65WQc3Iiee+6WzDH0CtWSsNQZiQDmXgsckA9k3D0WCm/a1CN9/RdyfdvIg9O3gfju6oswfnFfZjMPL0iBPU3B2KUGt4JEC93Nkq+atQ8ocBahyamflZ0jCPsC/9dr/0wtMjCDwL2l4dXCYSzgny9AjNbS/7+ziy2RnM7QwNBQXSY/RCjKsB6XYb1q60fYR5rHcB62tSPQs81KFseFg3koR04VNkHT16rs+eDX5Avkr0/Yj7uoVtzkQ4DjRT9Exjfs3Rumz/X5dH43zGbHEYi1sr54sjr3s+/hzsFUQvdHYCWs0+O3yGj4suHdeDYBW7XGccTdzz6Wqq8SyfuvzS87qcd5lMYMFSbeCxiP1u6HpN8fRgWGfZJ7+hNWsO8/bCnPMRKoeWJy8Fj9qQpXqaoRrvnhLWw01r6Go8b5a96wiQs4cE9/3K3kQLr5EPE52vJQ+dTl4TG4HnnfOC7uS/kQbnonvNrdyfbvM65WXnNjqeRBS7fmsrb5O19tNw+4HmBuzz4ui94/cDmuNGLVwDNBvuXCOmdQ2vfYqlBT33VqO764ktAznLt3Wnt2xCb4uT4+gT8dwJ9AjMt1ydbX8cfQMrh1Gf/ftP45okGb4Z4r4Q25DkcC29q+8UxI1+d1I1th013/uHRiHODOHce66Kfnzshzk/j2vtMw/iOqqviOt7M7P5Mq4HqnXMib2XXwFxtn8I4nAAt7ljx15sw3H0BDl1DPvFzKxVw3YHHuZWq3l2TdOqu7rtG8lyb8p1gesIe3DQNR/zPMsZc6kG8PwkpR6vtUJzKdwIj4/OM9SV19IdN5hGl32JVosfLfwzS/Em4bkC+dm2UuagvuH6LkvjwMN/+3cQnzmF1+j1N90KcZN9KQtYp4IS3gszcz1VfI7puEL2hKR9svUl37N7+OuPOm04Qj4f1Rre++jfhH5EP/AS9Dy+46ZrIN61eQjio1NYxwaz7tzs0ONPQTz2CuzbZNn5TFLuR2wkoR8szUESyqsMdXiFfJcaVfKONbMc+81RbYvIg8Oj9Tzfw+Pan6F7rkW6L2Jm1iAP1vkI211voMfHzAR6dGRzeNwNnjORX9/QMHq0mJkV6XooFNP9NBapVTCPKnO4z4Du+XE/pa3tAjp/HOfa3rR8L28l9EsPIYQQQgghhBBCCCGEEEJcEuihhxBCCCGEEEIIIYQQQgghLgn00EMIIYQQQgghhBBCCCGEEJcEF62nR9SKrdX2k2iRrnqrgj4SWRJCLA24+mRzMeqRTdZQG6yYY7141pXFOAxQ76xBmrJ+xu1aj3xDWMI334cag40INdHKpIVaDNG7pEVac6yvvPAaasHlsrjPDGnBNUlsceIkasrSx22wH9tUb7kautNl1HjNZnAjffmz/VRdg1bbehBHyZL4Z8za+z72lZ/BnKnMPO9sb+YYaiEOXIYau5awrh0LkZKOdgftafbjSCNk7TzHRII0mB2tasor+r6XkndxgH0VU67uysxAfNUwaS/OYN5VyU8latH1ODjmtMEjvxrPFR5d+H82LekCYehZmFnoR+4+pzcpR9KKeCakvKJrzKPczSRYHzO00zp9389gH+UarmbxNtKJLIxsxW2exFpUJn3URkBa4T622Y9Jqz/ltDm69fSZDHU2a5g3cnT90bWTbVBO+W7uN+kMepxf7eOOM93Nu2ImsUJ7n5GXYoiyDMdXZhVOPp1qVUcdfa4zDheuWp049bXDHvnzadukPOby2km7n/WwHeuFVbFy3oOnB0nYbjRhJrBwqZ6sfG108pVI+4wT0zXrr9GoxSfvoTjFj6JI7R7y0PdjqoltiOly4hrOJYK9GlyPrBQc+wYax7mfgpX/BoqvRvZKMTNLqK8S8kGL21uJ/e57eizXuV+NN0wnOnl4XChOnUjJW2efzpymk88L94NTxTvEZi32LvExm9nnj/X6vQTnDvWZ0xCfIH+FMnlAmJnl8+ThFpAfxtaF467VcO248US21Od1nONuHcF+2rr7MohPkX+HmdnMFG7jga8cg7hWHIF4oA+1vpsxrs8OTeJa7LbLt0N87XX7nDaMDtH6mvTCJ46itv6zRw5DnC9iG7Zv3QLx3Ay2+cypg04b+gcHIPbIr2/fKHqVZIr4+djH+lyPsB5F9H5QxO2ZmZ08dhS3UcZzMzB0dhvVWpc9Pc4uY91hoNP4lzaPZi8D9oX0yBuPdtGgOhNRq0IaXNJst5xKtPIUpys4zeT1RCdfJ55PruKYemAztyr8KDG/fc+E58DOLQfjfnK359z5obnE/X/5FxA/8fWvQvzTP/cLEL/6TT8Kcb2F609LsEaYmYVFmqew/5TjWUYboPE3iul+GM2h7rnntU4bytefhPjpZ74P8WPPYh36ziPfhfjE4w9DvP869DvatnUHxCcPHnLa8N3HnsTvjOH9ld37z67t2atxo0nis7PhmHKE74E2anjOm023LpdyeC/Jo2JWYx8QWhs7Pj+83I/x+7w+MTNrtcjPNGHvX7qfRvcqqxXy06D7QUXy3Uq9d0INr5I3V4b8msfG0FvmVIL36Jo1mi+zH07o3slq0f3jefJkWayvfN5XQr/0EEIIIYQQQgghhBBCCCHEJYEeegghhBBCCCGEEEIIIYQQ4pJADz2EEEIIIYQQQgghhBBCCHFJcNF6ekzVa1Zva53N11DDdaAfVdMGSqgROlsifVczywSoibZ7hDQ7SdM8NHy/1SAdN/LbKOTw8+zHYWZWr5HOWkLbGOiHOCZ1uLkqfr5aQX26fBbbwDqcZmYx+YK0qJ1xnXxEaB99Wdzm6CBqnfqk1dhK0avzffJfIE3YRj1e9t+uJ8hGEsfJkg5gTJqPAXkKZEb2QFw7/C1ne+XDT0BcHEDN3MwW1FPspMDs6LNSHKX4aTCOrChvs4MWeEQazElEGs7kd2Nm1pxDneZrB3Ebt47hPiaPoR7gwWOoM3lmHPVzZ7Kox5ndfKPThiBg3x7KrY4eAhtHmPEtk1m4VmLSOoyNvS3wBGUS9xpLyPfIi6hWkFRpEOP5aNIHItL9L5Eu5dYUH5RwCs/hriGswY0RPGfPz+H5OOVhPWxS3Qhi3F6al4xHn0nIm6mfjtsjD6EZn7Q1s6gV3iRvFEdC3cxC1pukdi52XdLsbv4Vcr4Vcwu500oTUV6G07I0zeUO8vKsbxxTP3S0WnAK02rUjVf+DHsldDLQcLVP3RPOvjDcBscexfl+pz10xv0ObnS5lHDcZXuFMONb2NaD9Yy8gpw6Qp4eKZ3HPh8ea+xSf7KnRydPkAzFjZRxYksf7vOqPtS9f/TUHMRN1rgm3eCEYsdfbBW+JHwc7M3Ff/Pk8zjDWcRhircJz1ljL11jOQm6v/TwPG+pTzr56qzX/pbD9W7N21tNvaPa4/ivOZ+n3Hf2yZr0bmXhLIhoTVGdR4+GqTM4Fzx2GL3wJo4/B/HkJM71mi23Bmwb2w3x5l0Y5/tKZmZWr9M6boOpR55ZtNCrRZo7ZErYc9vHhiG+5mrUrzYz+/w3sC/izNUQtxJcCzeq6K/h50sQz/r4+VPZqyAuj97gtOHIsWdxm3PTEPeHuA7dumMXxCGfPg/7JQxx3pd4pL1vZrk+1A+/+gbsh2wfrkvn5lCPfP409uOTT2AOVir4+dDc9fyW3ehRV53B45idnVr679oaNMfXhSRZ8opjf1KuI46vWUpbyVbVxo8fgdiP8LraMoZ9U8hh3iW0RvTZ+yDFy5N9sJxK1MEfI21uvlZ4TORtZv2V5x4NGgNi9rZYRY1f1TjQA+IoXtLWj8nbkP0zfRqX0o4o8WntRp158+13QPzoF++H+H9/9L9D/Nij34D4DW/+JxBfc9MtThta5OPapDlPk+4pZAv4efZYzVJcb+A63U+pdV/+3Cch3rnncohfdccrIP7c3/09xCeO4D2o8jzWvmtfgbVy1769Thse/g76hBw4gvdjdizzgoq6vKCo15tLvhjleazbXEbYc47XCma2zG+wDd0mapXJXyPga35l30f2EfG4uJq7znE8K2hezZ/36V5lNsQ4l8ExOkyZj8+cwfnH3BzO49gXj++P8sKS98DjUuLeZbCAzhd7a89MTC98N159cdcvPYQQQgghhBBCCCGEEEIIcUmghx5CCCGEEEIIIYQQQgghhLgkWPNDjy9+8Yv2xje+0bZv326e59knPvEJeD9JErv33ntt+/btVigU7K677rInnngifWNCrJK3vOUtyjnRVb7yla+o1omuo1oneoHyTnQbjbGiF6jWiV6gvBPdRmOs6AWqdeJiZM3CuuVy2W688Ub7Z//sn9k//sf/2Hn/Qx/6kP3u7/6uffSjH7Urr7zSfuu3fsvuvvtue+qpp6y/vz9li+nk81nLFxY0Mr0A9br6yMOjGKLuV64f3zczG+jH5zsjg7jNWdL8DELUnKyRoGS9SRpiTfJ/SNHv7SvgNlmFjDXNcgEe11ABj6veQLG5Uol0MlN02nN5POWFAnmRkHdJXw6PuzRAfinkFZBQPFRELU8zswbpVTcj0m2Lzh5X2BbUu/766+1nf/ZnNzTnzBa087y2Xl6D9OOMdO+SPtSqzXgPO9sbHcBz2pxALVTrH4IwLKEWOGthdlKuS9Oqdl7psE3WLWWPiSRB7dqI9FxbU4fdNow/CfGu68cgnh9HncPnDh+EeKqMmuhl0kW0zXsh9LNuDYjIw4M9BrifKpVKV2qd2UJqLaaXx/KN9Fm6fCxIU0QNcCPFLMZ9AWoU+zFet+W5SYjZL2hLgH15WZ+rRZqZGYd4/sgBiLdu2Q9xRNcXS12eMNZTZU1JVwfYpzochnjO+yPcSR9ptBbJb2iacqgc4LWQJO6Q6rEef8z6tu3vtseUbtW6fJBYvt0fzQ46z0a+MVwTzMxJXEefmL1nKM8dN4cO0sXsH2DmenR08iVgHx/W4OV9BE7NcNsQURvoUnSu15j1rNnXgj0pWFc6RQvVqRns57Asz1tBd/MuGwYWtudsbPnlB04WYHQenh6sMOxz7zgavBjnWY/a3Fo3WsS6ce0W1Ek+MIf6uDMtagOVLo80d1tN/EC609nKswNnLsGeHKwj7FzjdG0krnZzwtc4i54v5na40IfdHGN931/SIWavC9erx+j9zprBjpYz542j976y58dq9unCtYM9OfjjXKNJK5oyjT37zMzmJtGj46knvgPxs099Dz8/jXMLj3y1eBxp0hgdJ3htmJnN0/W1m9ZKW9seA7XqgoZ6t2pdZMnSmFIYwLVQmMea0aK+v+HaUWd7n34ItdUbTfQIDDLYvkoO61B2CPtlU24fxE9V8fO5eVyPmJmVM+TRkcNtDvEaMkLd+gzV+EwD45A8YcJ+1yMwP7gF2zmE3ognx49DfPo4xuMnjkF84jTmMGvBbxpxfUJvuOYmbNNl2IYzp876qVQqDTP7fNfyzkvOXvrNFl7DUQOvtyDDniqkzW5mIV2j8xMnIZ44dhDi2sQ23Ece8yoKsD8zBXx/0xY8v2ZmPvnn+WQOE7kL3RWiFI+P87DK4Ho6cQrzqBVh349sRS8aCzqMlx085lZDt8bYKI4sansoRs4ci0LH0yPl76+pTjRpfXfznXdBfP8nPgZxKYPbPHUY15//+T/+JsS3vuKVThNe+aY3Qbz36msgrtBwGNGcKZvDa4uvtXIFx62RrDunmp/CnPruBHpyvP6tL4N4iPyM8kNYw9/2ln8Kcd82qlsV9FA2M3v5q26HuFike5nL7o8uzgG7VeuS1tliFzXwhARF7k9an2fduYRH95Mbdax9Ycj3vygJeE3DSy+65gtF915VQPd+5+cxTxpUw3kxzXPNFt2XbdIAV+hzx1ieU7EXCc8VMyGNMy0a18nri9dpceSuavg1njMH7fOZ5gdyLtb80OP1r3+9vf71r099L0kS+/CHP2y/+qu/am9+85vNzOxP/uRPbOvWrfZnf/Zn9vM///Nr3Z0QZmb267/+6zYwMOC8rpwTG8Xdd9+dOmCbKe/ExqFaJ3qB8k50G42xoheo1oleoLwT3UZjrOgFqnXiYmRdPT0OHDhgJ0+etHvuuWfptVwuZ3feeac99NBDqd+p1+s2OzsL/4RYLeeTc2bKO3FhKO9Et1HOiV6gvBO9QHknuo1yTvQC5Z3oBbpnJ7qNap3oJev60OPkyYWfPG7duhVe37p169J7zAc+8AEbHBxc+rdr167UzwmRxvnknJnyTlwYyjvRbZRzohco70QvUN6JbqOcE71AeSd6ge7ZiW6jWid6yZrlrVZDmrZtmteAmdn73vc+e8973rMUz87O2q5duyybJJZta9pmSBePdb4ikqAs7hh29rPlctStywygjlqFdEibpJnWaq3sBxCSHn0cu/pkzx1+HuInn3kK4okp1Lpt1El3n/QdfdKfZy3OXM7V5hwYQL2/nTuxX7ZsQc3J0aEhiIukQxuTr0gmh9pw2ZQ2JHXUk0tIyzibOatnlzRdjcM01pJzZufOOy8wW5S6jklHO2pg7AdD2IYA+9bMrN7Ac2q170PYIO+Y8PIbIM4ErLvNhg/4fnYVMtCsnxmTNl8rIUHbmLxM5s9A3Dj2KMSlpuvpccNuzKuZ00chfuIM+j+Uq6grWSYPnahvJ8SZkSsgrqdI/HmkFewIebe14VlbeyXWK+/CwLOwbWLBvgKesTY468G7J72fNDc3jaCe4mx5GuLHH/g7iBvHn4b49tteAfHuLahPPTrgDiW5EYyTWczVwQLqTJZ81H7eQrqUj2KJthOG2p8B562ZZUPsqyydm3IN6zx37QgZMgzR9Xg6xpyaSzn1iY99wxqfflvb0m91t9bl/djy/sLx+dRPEdUVLjtpfy6ReFzXabwiD4Asj5mky8neNTEdYyvNT4P9hzr4hjgf6KCpnKc4jN2cY6OKXJO+Q/us0twipiLOss8+zS2CNIcHbhfl4HLDnEqQ7hDBrFuty/kWtr3CHMVdeoG9ZdL8i3xul5/hD9A2qH/Jp6dE2tEj5IM2W2c9XbPLN2Et2jOK9Xf/DM5hj83iNio1ygE651UeA9KGKNLITTxsd4vHO+o3PpcRjYPs8RH4br3yqTD4XJPbY1VzdSmX2q7zzTvzvLPHvEa7jJX2t7xdF7LNTvHqNsoht4lqB68pPHy/UUUvtecP4LzAzOzbX/8yxFOn8cZFQrWIvbr4+syWhiAeHcCJxJ7LrnXasGsP+oNt2oaecYta6mk5m8Z65dzw6LDl22uggVHUVi8UUfpj9xWXQbx51vUOGhjGNeN4BufVSR96KfRdfT3E/WPopTBcx/M7ugu3N7zraqcNuQjXjLPHT2CbTkxD/MzpUxA3yf9ykNaI/eSZ1Gq5uuuHTuBrj0/i2jqo4j5bsxhPTR6CeGYa25zxsZ4Pl1zd9UOHcJ+NGDXQr77ybE6GZVp7nIP1yrv5uQmL4oUJ81c//zn8UhX9SzdvQv+MkR27nf0MjOLatujTvHlgCD8/jH40kY/na/wE+hTMHsC8nhnHG6JmZkEOc7ePPHKK/djG0tAmiL2A8ojmuOxnWiujd4KZWVTHvy7vownLs498DeKJyWmIX/MmlJny+rC2OUvSlDUNcz7OT8x63LOL42Rp7cxzecci0PH4cPeT0LGT9av1b8Iaf8+PvRXiz33ykxDvvGovxDN0bh743ANOGx762jcgfu0b/hHEt7/mtRBv3Uv+tA3M0TJdB7NT5IfK/lZm9tgj6Ic6N0fjQgmv1xb5UB47jPdj/vv//V8h3nv9SyDu2+E+TLjtthsh5rUbLghX97f061Xrivn8kodFrYb3jWLKoSzNkftHXM+qkc14//jEcbw3FQa4zWoZ62mL/DJiOqcZj3xDC+kSYBCT5yrfA/fpVn7ktIHNZ8jbOYvrEzOzmNYkRtvYOoL19SXXXQfxt8mYfnoOa6dHnkxxy10UOPnAvnhLX159FVzXhx5jYwtF6OTJk7Zt29nJ1+nTp52neovkcjnL5dxJjRCr4Xxyzkx5Jy4M5Z3oNso50QuUd6IXKO9Et1HOiV6gvBO9QPfsRLdRrRO9ZF3lrfbt22djY2N2//33L73WaDTswQcftDvuuGM9dyWEmSnnRG9Q3oluo5wTvUB5J3qB8k50G+Wc6AXKO9ELlHei2yjnRC9Z8y895ufn7dlnn12KDxw4YI899piNjIzY7t277d3vfre9//3vt/3799v+/fvt/e9/vxWLRXvrW9+6wlaFWJnvfOc71te38PNV5ZzoBvPz8/b882d/wq68E91AtU70AuWd6DYaY0UvUK0TvUB5J7qNxljRC1TrxMXImh96fPOb37RXv/rVS/Gixtrb3/52++hHP2rvfe97rVqt2jvf+U6bmpqy2267zT7zmc9Yf3//uTaZSl++ZKX8goYjy8dF9EKdNEKfmnS1GL/71W9CfP1t+DOpoT7UVYtI39En7cYm6eg/8cz3IP7yV77ktOGRxx+D+PQZ9EawhPX8OumU8Q91OmsA+6SiXSyhTuamUdSYvPJy1Mp91a23QXzzjehBEeRxe3M11Ok3M0sSPF99WdLcXqa16bcWdORe9apXLb22UTlnZpbL+uYvas1lMc+arDlXGMLvXnmns73qKdRjvHoT9v9QBvWPD01jm5ORvRAHpGln1Jfeai5pEugPSH8zpByJG5inO+uPQTxbfw7iSkzmC2Z2hFLd0dClazqbQ33WZv8efH/TNfg+9UvUcPWQPdJ3ZN3ERV3IRW3BRx991P7RPzqr4bmReZf1Esu1hU0TEmx3PFg8rBOB7x5rH+mfZuk6nzyGeTf32IMQX7kZ6+HVRdzHriK2qTyJupdmZkk/bqNvEH+6OtCHOskj/XjcO8j7YPrkBMRTM1hb8oOul1NYwH3UyYMoKeL75Yj8hSLcx2bSRN9EfghHqm7unzg9BbHf5DYs5HpSWdCE7lqtCwPLt8e1gMYz9tNgPd16Sl336bovBKgTGpKnR6uK2rMNEvrNUv40HX8Hl4TLYwed/MDxN6INcj408AO5hqvBm4tx/pGQNmq+hMdVJs378gz2Yz6LGrBeRNd/yrDPL/FhBdmz28iXF3Tdu5Z3yYxl2j4aXpPmWexdQT9nD9l0x8xC9m0hr61miHmYpS8MkqfHNUM4Fl2zF7Vrj512dba3BnhOJo6hRvmWyjTE/TmsVXPkI1KmOtPqx2OYK7umHvUYr4gajW8Nuv68CDXoM2Q2xJkd0bXlzIfMrFbGbVoLr/GkXTeStvZyN8dYz5ZdF1wX1rw1t5a4XmB81bka1itv33mlc5voMzHtw2Otdao905PoffD4o6hp/r3vPubsM67jWBDyHJW8B70MeTiQH8D+l9wM8e59V0I8uhU9JRZ2inXC575qF3a/rafdrVp39fUvsWJxoW0BzXH7isMU45z3gS/inMzMLO5H/fahq14DcTCEnh5b92+HeHgTrXubqIG+dSt6MdSzridjn4866PUSnv/qCHlvcZ2I8P1Z8ryqkx55PYvHYGZWprlDOI4LjE0RHseWDM7zsjmshWEBx+wgxGOcarj98L0j6Ns0PYvn9+Cps3Pmen3hv7uVd3GzYXG7zd/+yhfhvWIF59G7Xos5VKi7GvPlQzi/z9CEMGrhOTxC67utY2RaPIx9N2CYl/kBfN/MrErD7uRhXHc+PYnHtYf8bPpIv3+gD9dE0QzdN5qkRauZDdBcYXYCvUnCWVxXXTGGeZijcb1Gc96EPbHMHefX6uHRrTE2juOlMTCitbYzVtIQ4aWYeiR07FQ2rEY1/mWveQPE330GfUNbdVqfZPD4rh1CPyMzsxPfR1+CT/yPP4X429/4FsSve+MbIX7Jy26HOOjH6+D+v/08xH7DXT+GBWxXq4zryecPH4F4tB+vzSOHD0D8/e+jr2z/d78L8WbyxzIz292Pte0l16PX0/KpZ6Z9brtV6173D19t2bYnRYPmYB4ZIuZCPI5qC8c/M7NiCX1Y8gnWpto8+7CsnOuu/zO2qVBwa51P3mNl9g1p8j7p/hnNsTyak+XzuM9i0fWsmp/HfTbpnlo+g2uSbSRN9rJbXgpxleaJuTz2axS56wnGmd+2z3e9XrcP/e5/6fh9s/N46HHXXXetOFn3PM/uvfdeu/fee9e6aSHOyczMjA0MuJMxM+Wc2Bhe9apXqdaJrqNaJ3qB8k50G42xoheo1oleoLwT3UZjrOgFqnXiYmRdPT2EEEIIIYQQQgghhBBCCCF6hR56CCGEEEIIIYQQQgghhBDikkAPPYQQQgghhBBCCCGEEEIIcUmwZk+PblGtTppnbdPDBhqqJGTlVEnwMD779e842/viVx+C+MYbvgbxm3/4TRD3kQHuydNoWPWtx3Efjzz6KMTTU64JFj9j8jyyYvXQ2KUzZFLoGOi432Bjw/lyhWLs68OHj0P81JNo2P7AbjTWi8k0dLY267Thh+56CcQ/ds/L8Ttnppf+20sxBt5IiqFvfmbhvBTJyDwTovlPuUl9mbnW2V7Yj8aCtcwcxN48mrEVTmJelqn/wu1XQVz3sE1p5r6eY32GJkhBSKZ003jOi6fRrGsgh22K8ph3p8ddk+Ojp9EIL47RtKg0gGaFQ5vQvDI7diPENSpdrTrmrd9yS1tMRq0JuRbHbeM015B04yn6vuUXjdTJBI7NfWMyfePzZ2Y24JHrX8JG5HiMP/r/+WmIR0dQi/NxMjCdRs9AGxlGE04zs9GBMYizRTRkS/z0/l8kR3m6M4/vH56axM/7rhnXTBnrR7OK/RDSNVyfwevz8AQaE56YRaPXfBk74tsHjjltOHkCx4L6JF4/lfyCoWLcck2xN5Kst/DPzCxIMRJcTkJu2c8++6TzmW9++XMQD+fJqL6AJnWFLI532y7H2rbnOrzmIzKhC8jw1MysRWZrfC1HZEw+P0cm8wnmS5H+LCTTpDGhifszM/OqmCNZMnwrDuJ5zpKhmz+FbajOYxvZpM4PU2odHTfHy48zaWDObzSnv3mfBW3jwaiG8484outzGM1Hg4xb6wJKg6tfgvOJrcM4tmQMz8fYANauTT72/8T3ca532Rasa2ZmQRWPozKHpqjX7UBD0+IgGQbT5TddwTF0vonn79AZN+8qdD3M1XGMPXQMa9mZw49DvGkQ5xJsfsjG2o15N2+OPI/zmYTMC61tJho1u1vrzMx8zzff85f+G6ETsApn8w4+5Ga8D/oC66zzLjlO2x0bwPox9muzjucoImP5k0dPQPzYI9+E+NDBp1fcvplZQuuYVoD1LFfA62vX3sshvvq6GyDesecKiIMMGV7yusnMIuqtDMVn51Dd/Tu/IJ+zoG0aeuTAIXgvYzh/mZnD+IsPoom8mVkrdwvEYy/BOL8da93gAObHCPnEDvsjEJcCrI1B6F4IZ07g+Hb6DM5vPDJJzY7iNpOYTFrnaQ5WxbqVD9xz5tM43sygieq0j3GriWPoQAFNrIdHMceqVdz+8flppw3TU9h3jQjnzNWjZ/fZanZ3HTs8uNOKpYWTffvtr4X3Pvvnfwjxow9jnu2ruNd4sTgM8Z5deyHevAv7+/tHnof45ONotrxnYAjigIx7i334vpnZji10jgdwfhlTbavSIqU5Ow1xJcaxaVMR27C55K4nAroHMD1HtYnGzKNH0UzbH8L7JztvwBzyQ5zbrYZVDFVdoRW1rNVauHYjH1vFQyEbEjuTC3PXvUFMJsZUy4Mi9uU/+OEfh/iBz38G20v3DGplMrI3s/0vfSnEA0cOQ/zM93Ed9EcfRpPwm25/FcS3vuaHIb7xajQEf/QRvI9oZrZlNxqLhwPTEL/kppsgrk/htfZzP/+zEH/lIbzeT9ewNg3m3bX8Uw98AeLrtmD9zG/fs/TfUZfvKm/dObpkit1H64UMmYS36Finacw1M8v6eA3eecMrIB4dxPsYmRzWgAyvxzi3yfg8Sdz7TUGA2wjpHs+5DL3Pfh8/XyrhOQ1yOCY3UubjfD85pOM6eRLnAceP4b2Pq668DNtIa7tmA/fJa3MzM5/qaURrnHptoebPz5dXbWSuX3oIIYQQQgghhBBCCCGEEOKSQA89hBBCCCGEEEIIIYQQQghxSaCHHkIIIYQQQgghhBBCCCGEuCS4aD09Th39qhXyC7pjLdIFThLUK+sbQo3ly7e53hjfyKA+4LefeALiZ58/CLGXoJ5ZrYr6f62YNZVJw9BL6dqEPTc6iQKvDdZgS5FJdPbJ2m8eiS8ODaBG3twsaqOeOIb9MLoZtaqnT6OOtJnZzGn8zNFnUBcxqZ7VvK/UXO3qjWSkz7cgs9AHY0Oog9dXRH3AiRnMy6ePo663mdmcV4L4QB3jM+RXU5h8FuLZE+ivka2gBuHQ/jsg9gJso5lZ0kSt0yzphraqqOucPY2+Irt91Lo8eBJ1okeG8HwODKImr5nZ7Dz2TT/prO966T0Qh6OoddmK8XrKkh7nLL0fJ27yh6STWCd9wKixECet7nt65ILA8m3dxshpOuk30oVdiNxrZHOC56jUxP6PCvidLL9PupM7dm6CePvWHRDnQrfm5vKkcRxjbWk0MC9DqkXjE5h3MXXMjgHM42oNfZfMzI4/i/qmD30OtUknD6BGa532OV9B/41mjHnXaODnay337wiyLdIgJ639zNhOMzOLUzwqNpLMMk8Pvl480hkNSVtz16Cr+/pXz6D3wRefwHiIPD0aVTz/Oy9HH59b7/oHEF97ww9AvG0Q88vMbIq8t1rUp6xtOj2O5396ArWo+zLYD3t2YRuLfagjbGaWL6FW6cjIEMT927ANdfboyGK+PPsw6uoPjJA/RMbthwZp72dJj7WQO3s+W831nYd04szjnzV/Uaed2umTz08rh33RaLnXSCmLeXXHPtTcHQ3wmu0rYv/FVdzHcZrjDGbx/BRG3XPeNDyOBs0PZ+exTkzNoN44X/sRjUGtJtaM1ji20cyskMe5xWAJ86LSwLnEpn7cR38e9Y5b5LE0Tcfw/OOu58D8CZzv+TTfbLa9SuIU/d6Nxk8889t1jl0hEmeyTHP1FEcNx5OD5s7OFtlni8ZYSn2LIjznzSjFByUhXeQ5zKvp0wcgnplB/4XHH30G4hMTlJesq06efWZmm3fgXGDLTtRy3rx5J8SXXX4NxMX+IYi5r91MSZnb8dqHP7CoMe94uWwszzz1jOXb69iZM6iBHVXx3E1T3anOu36IuWHsjWyI87zNmzGzB2jdW2riNZzPYH/Uj+P4eWoOa4aZWT0hnx7SQK9PYZv8CNcsPL2uV/FsNahfavV5pw0hrXPCPvR7qDZwvKvUsF8mx7EfWjWMp89gm4vkhWJmtmU3zgX6R8hXJjjb9416Yt/6tLuNjSLI5Sxo69y/6s4fhPeOfv1+iA9/G318Tjz5lLM9bwQ9PXZchr48+65A34HRzVsgzpJXTEhr0FIePQJmZ9zcr9Rwvtgq4znqz+E5H9qM84DBEcyR5gR67Aw2sfb1xW4bSlm8HxINYR42E6x1M1N4Tc9NYv2t0jVfGsV+S79HdLG4eCCenW0Z+xQktL4gO02+NZb6IS/iL+E1zXOK3Xv3Qrx5DM//seM4NhZSfCmbVayPm67cB3H/ZvzO899BT46vfuFvIH7qafT8uPm1b8D4la9x2hAaXivHyGd3kO65HZlAX7WX3oS+T7v34fh8fB7r68En8X6QmVn16a9CnJvHPM4ta2Jz7bY0F4SfjS3ILpz7qSmcf3ozeP4yNP73513fnsF+rHUzNO8d6MfBwKc8nZnE/nSuYcp1nyejZuaRJ05fH9ZHXs816R55kwbZqXn8/rMHMIe+/zTedzQzC8hLa+9ezP089V3o43z1CF1ftTnsF/YRic1d27F3SS5D436wkGzlsnvv9Vzolx5CCCGEEEIIIYQQQgghhLgk0EMPIYQQQgghhBBCCCGEEEJcEuihhxBCCCGEEEIIIYQQQgghLgkuWk+PTFC1bLCg8VXqx2ZGpO3nxaiL+PKXoF+AmdmZM+gR8OAjqGU7N4/6kInTNSi85nssxIYaavE6+3WkwR4eMWkEs8bwwmsYR+QH4NFxV0mHbXMOt3kDaf2/6pW3Qjwz7+qxlqdQN/bJr6Gm6PDIWd3MaiNFx3gDuWHfoGVzC1p1Y5uH4L0Maa9PTJG3jGtrYCcnUCd7nrTnctuuh9gfw43MfuvzEJ966ssQh6SDd+Mr3ui0IcyhRuHUSdSxP3HgIYj766iLeJI0eDNZ1NUrDaCu5ezRg04bhsdQ6/TlP/RPIS4M74a4Wl3Z36BGmr3Tc9im+XnX5yIizc9yCz9TbV8vcdB9vfFSYFZop1NEtcP3+aLFa2Jr3dXg3N3EcxyWUZ/24EnUl/7WSdR4HBhB3fom6S+GPuo5jpJvgZkZSTPbU89jXk3Pkx41aeUfew41IaeqeC1lN6GXUxS5w9nBL6IW6RN/+0mIa1PjELPmZ0R61UlINTXTWfM89DCfgiy284orF8amVrNhZ57+lvP9jWJqfNYai1KgTfLNaqF+clzD9zeXXCHSW665AuLD33sY4tPjqJlcnUWvhecOoM/WV7/6GYh37dwF8Uv2oqa2mVlAc4NsDuvpnj178AukjXryJGqbRs1piJNX4fnfvdttQ38L8zQhD5cwgzmSFFFv9ZkncG7y0Jex5l+2HzXxr7sRvU7MzHzS0DaqKZllQrIZv7t/+1Kenlry9PBCbFe+QH0zj32Xjd28u3wbnoMxD8+5N4G1bjPp4/rFIYgzg9vw/QTHoqePYl0yM5urYS6H5EUSNjEnijnUBWZPpIAMHpIY5w2jBbfWnZnEGj5xGHM5rON4l8RYlybH8RhqEV7zZ2jeNnUGa6eZWRjSWBVjHLUnoOxL1Q083zNvMdfJX8rzqL9ZZDxxr5GAvsM+SDGN05Uy6mDPOx4O2P/zpGtfrrm6xa0GniO/it+Zn8acqJMX2iTpT0d03Nk+zNP9+3EdZWb2EtIM37wN63QY4vVmPl7jMf/tHfUr93xa5vBqy2MZ7fYcyutyrWtUa+a312UZD/Ph8stw7VRp4Dz99JQ7Bz48gTlUP4N+iF4VfX2COs7TBnysAfNnUK985rs4b+wfcOfCWy9H34ETp7FNE88egziqTeMGsljrWgHmB3sTNXJuzWcfLCOfEZ/WRdkEr7Ujzz8O8cwp8s2izd9y2VVOG37wFszEl96G57NWPlsf58uh/cmHnE1sGF5+4Z+Z2Y7LcG31L37+ZyF+9ss4fh7+Hs4/zMwmTuAa4/BjOE898MQjEBdH0U8jO4R9s5N8BW648lqIN23H983MEvL/SujeRZ7S5PABHP+KZax9W3KY29vIs3PAcMw2M+uLcBsxLfpPVjDuK2EuRz6+X5/F669/E/YTeyqZpYxNFwnlatMif+EctWzlNWwQ0DF4rg8oTyXYY8DzyTeERgaa2tvufehDc+LEQdxe7Nbb4hDW5CaNwf05HMuu7cN7IUeexbpy9Dnc56c//qcQP/5d9AQxM7vzlXdBfM31N0Ec0xqnxl4JWfLLoTnCNdfiPahX3ow+sWZm/++vfQXiwVHM03DZ+UtSzuVGcuM111qxtDDOzdP9Rp/G+74inp8wxYs0oDV/oYDXcLmFNaBu5HFFSy/2kuX7iHNzeB/EzGx6EtfKyRnM9YyH2wjIGOTgIZz3fetb6NP0/adxnD817s7lY1ofZLJ4YP196Bn4wz/8Woh3kLd2q47XDt+/rtM9BzMzunViCfm6DvQt3CuuVN1afS70Sw8hhBBCCCGEEEIIIYQQQlwS6KGHEEIIIYQQQgghhBBCCCEuCfTQQwghhBBCCCGEEEIIIYQQlwQXradHteKZtfW7WqT1VWX9ZNIHzLLuupm97hWoGXnFPvT9+Cp5fDz5HOpAz1VQ78/VVfQoStNdXFmLMUW9kWLSMKQ2DA+jJj5rNpuZBSFqv+3YgV4LBw6gXnWDtNyLy/w2zMw2bUfN30aE3ih9A65mXuihRp41UOutvkz/sd5l7efr95SsUFjQB+zrw77yAjwf2wZRA3TfNjouM5ucRd3RyUnU8MzlcRvFEmrOf488Pj7zif8NcTiNWn19U66fzVQTjyM+g5q7V/SjBuSJMh7nbA01GjMBfv4bT6I+7sAgav6amf3QP/lpiId3or5mmTw4vEHSOKe8jSK8HutVbOPUBNYIswXN0eXMNbBOzDcWthE1E3MVDjeWfq9pxbbmc8Jasi081kKC9bD2+N8723v+9Lch7ivhdTqVYGxF1OB94im8jo8cfg7i6Vlsw7597jk/dhQ14B959BDEtRaes1oFj3uWPCAm6NrJD5DeasutFYeeQV3fmDyKgix7eGAcJKQ/3iQPD4/8pgJ37GlSDUtI03PLrn0Ln2u4mpYbyd8/8JBl8wt6rz6NNZmQfbRwHNi6BbVRzcySCPXDL8uh5uexBo6p1QyOTwXy42iUUYf72HcxJyefRA8QM7Mc+WX4IfZ1voBtDIo4nvk0IwrJ3+fZU3iO+vvRb8PMrL+FfVUgDfP+AdxnQJq8R45iPz11FK+DqSrm2NAuV2e/j47Lo3pZqZ/t60rZnXlsJJdfdpWFmYWOnq+hnu2xk0ch9mjul8tQ3TKzXbtQk3ykhPOggTxef1u3oRdQOcaciUjbOWri2FQoYN+amYX+EG6zjHVm4jjq3j87gZq701OU25NYO6enMQeaVXd8Yx3g2TnUbo5amMu1Bh5njXxHciXMs4FR0tpvpmjwsmdCQhdUrq0vHXXfN8v8YOGfmash7nFdp5qd0tyYjn9yHD2rDh/ENcWZU89DPDeL57wyj3WjWsGYfbXMzGK6rkNaI/g+vh9QXfdyqPe9bSvOHy+/BvW+r7nuRqcNg4OjEDunlnyyEoqdUbvDnJ+1oNO24XwiOfd3N5L+QskK+YX6cvn1++C9G6/COvTkM6izPVnHOmZm9rVP4LwuIS+KabJjiIs4L6uR1V1lDuvIpq04Zoc5V+f+yFM4Fzx8EOP6LNYdXscGlHOFQXy/GuF1FWVwzDYzq9NcLySvkhzV0wPfwnG6cuI7EL/0cpxL3nYjrosH3WHHRvM0LjSmcZ/f++7Z/VVdj8GNpFVvWjOzUC/myavisjvugvimO14J8fEDOAabmU0dw7n79GG8T/DE338W4qNPotfM0cNHIP7uEXz/qa9/EeKdl93gtOGWl78C4tFBzKM929GLqzCL9fP0BI6PuV07IC6XcA00G7k68Y6HEs3tErrd0ZrAPPRI3z+hMZfnGpZyL8spbt2dvp2T2bm61aOF+XYzoXsnGeoYOqwwcH0gfBonMhnsO/Y9i6i2szdmcQTP98AA1sb5U5jjZmYt8o1JyNu35WMOhiNYKPbciGPj2Bb0u3qG1jDjj3/dacPfPI1+OQ/tQr+ba295Oe5jbC/ETxzAehzQXPXUJI4B267H68jMbPcP/UOI62Po3ziw7F5jlHLfcSMp+Bkrtn3C+kfwGmZfY8dzM8X3uFbDa7JBPi4V8kVr0niVpTVoiXxecjFeC2k2Y4ODtC4lvyI/xmvh4W/gePZXf4V+mMeP472TCvn7NSN3fGo28ZoskydSSB4ft78S54abx/BcxB72U0AHHoZuIWvVcc4b0Ho+ShbOVZzI00MIIYQQQgghhBBCCCGEEC8y9NBDCCGEEEIIIYQQQgghhBCXBHroIYQQQgghhBBCCCGEEEKIS4KL1tPj2SNTlssu6Hc16qijmMuQXmCMul+Z0NVtHduMWnsvvRy19nZuQf3UB776PYi/+E30TpirkW6dj/pmSezqk3VSok183iYeV38O9cyu2ov6gP/in6Nvwtbtrs7+zDTqpN/4AzdD/IUHUPv0K19+EOKoNo1tzqPe6qlpPFeNOupompnlSVe4r4hxNTqrJVeLXU3ZjWQwb1ZsH1LgkX4n6f8VSPN6eMg951tH8dgqY6S1HuM2snnMoyt3vhbizTnUxXv9K66BePYA6kabmf2nP/g4xDs2o5bw7u2o4zxDWqgRafHNVFAjcu9e1Cr+sbf9lNOGsT17IZ5nvep+zG0/wDgkTw8jvc6Y9AcrY+7z3PkKXl/zZTyuucqCdmOjHtijzrc3lpI1rWQL13ttDrXBK5MnIB7I4bEdPoaaymZms6dQH3r3dtTg9IcwB545gD4v99//LYirVTzn3/keakl7dK2Ymc1OoV5/HaUxHU+PZoPqX42ufdIvjwxzvZ5Sc8MM1thMBvfZSFjLEvMuE+Hnk5j1yfHbfooGb5zgNuIAr/GRzZsW2lJz+3AjefbkhIW5hZMSJdhunzR4kwz27VNl9BwwM9tTQ+3o/f2ksZxHregK9d0c6eVW6+RFlMUvNBJ3bGjEpFVKOvjTlITJJGouF3w87qyPxzR7HL0aYqrXZmZxyHrj2Lc8n0lapNVPeTyy/yZ8fwC1Uh9+DuuDmVkQ4nGFpGWbWabHWk/xh9hIbnrJ9ZbLLez/6QNYRybH0euiRRcYSUWbmVlhAHXoq+QDcugp1BP/1vMYx1n0qqhSf1RnUQ93cpI1683G57DW1WYwT84cxPo6P4/baFLeNiJsQz3CHGlFKVP3Fl8PHJO2PpVLP8DPDxr2Szkkf5WCezIadarpLdxJ/8DCPDtyJbw3HM87axfhk4dHQmuIiDSOJ8+49e7AM9+H+OgB9vDAc95sYI6w516ryeeLxpo4bQWBr9HwZAGNR3U6P1vIw+OVr70b4s2kHx5mUryc6KJkjeqYfEYcGe0OGvXn48Ph8VTAO/9tXQi16Kw35XQd5xaHJ7Ff5mp4TW/Z7Hp6lDysGycffQji8ix6B00N4ljRmsUcG+jHdXF1CNdzU2ewHpuZzZ/CayFL5zeKMcdaMR53kMVra5581oy0+7Pm+kJGFbxeT53E+W7lJM4NL9uC2/hHb3gZxC+9civEmwYwSWsNVzM8k8W8f+4Z9LloLvN/aza7a7wQN2OL2/PpGbqvEFFd6ac1vO1Cv0Uzs6HteK9h/yt/EOOX/ADE0w8/DHF1En3Kvvno1yD+/hGslce+iXltZvaX30M/m4GteA9nP/kPbd6C57Qxh/ci/Cq2qbIV/TSL/ejzYmbW34evBVnM7TjGeVeT1w/kX9qawGtpmNbimT7XTIas7y4WSw+7bNuAFdrekXO0lpuaw+snDnMUozeGmZlPA0nMtZve96joh9QzHu3j+pvQC+PL92PtNDNLmjgPy2d4rKN9xDhHKuSolo1gTb/91XdBfOLwQacN330U1+IHH8e7E2fons/2y66CeC9dF/uuxHtGp6fw+k/zAn7p7a/GF0p4HXj5s33rNbo7ubt875XW3/bNYA8PvjrmquTPQbGZOeuvOq3X2LYzSx5VfO93dmYa4oi89AI27DDXwyOhtS57zH2R7tMePoprwjL5Ns6VcR4Rm3vO2DeX19L9ZHTF90dzdA+hbwDXEzx3DUN3TROyySbNgRf7ulxZ/b0T/dJDCCGEEEIIIYQQQgghhBCXBHroIYQQQgghhBBCCCGEEEKISwI99BBCCCGEEEIIIYQQQgghxCXBRevpUa7VlvQQMxnUo27Qs5oTJ1EXMUrxgfBII43sMSwhzc2rLkc98lOT0xA/9uQhiFlvMA5dXbwS6Wrnsqh51iJ9+Qxp6939spdA/BNvRF3NvXvwdI7tpIM0s+wA+i+MT6MO6evv3A3xy1/2doj/5H/cB/GTT6KOcdbPUOw0wbIkgz62eQji5Vqp9WZ39QGjJLZWWzCPNZYDFkwm7T6f3zdXbzPwMU9YYzk2zIF6BTUli+SDsHcQE7uxBz1DzMxu2In+DadnUZvv8CHUw82SbmWTNOrv+dEfgviVr7wD4oFBtw0RaZTnS+TJ4Tx/RW3MhHqS+zXK4rXSX3SVTre0SKe3htffok9Prdp9ldRcVLNctHDtjB/Ha3LiwBMQzwV4rDMBaiWambW2o27n0Sae02e+jDqhX/zOYxCfmiRtdsrTqIE5FLPQrJn55GWRI38NPuc+a4PH/D4eN2vQhynFpp6glmyN/GkKrM8Z0T5I6zKigaOVxfeLRbfmBgnW5Yi0LHfvXrg+a2n6ohuIl8+Y1/ZW8Mg7gauuF+O5yedcDd44izqh403s+5HLUR9+lHJyYgq9E8qUc/M18uCZdf2i6BK3Fuvie3gu+gdQm7ZAur8xeRLkCvi+3z/ktCHIotbppiH0nNi1HbWmhwdRJ7/lYV6fbmFO1Qq4z8kK9ouZWcTXRp7yetk40qx1N++eO/6EZbIL5+HM7Di8d8PeHRBnEvRUefw51P42M/vmN74B8Zdnvwjx7Cx6KVTI+8KnOUvUYB8f1kR3IYspy3De1XFcZ9lkn+aPu3ai9vP4OGnw+qTDbmZN9smiehKz0QHV48FRzMOQxtRNw5sgvmI/Xs9mZgcOoffdzAxe09s2L5zPVjOyZ51vbyxe0jKvPSZFpK0+NYH67k+RfvyJo65v1uQZ/E6DdJIDx1gCc4ItWBLKwzCDuZ8JMTYzGxoagnjzFjxHx48ehPjMaVwrtZqYl6US5lWRNOXrjRRTHVpceXQxsHazsQ46xazbfD6cawvd9vSYHD+55E05X8HxcGqWvC+q+H4x77b1FS/Fdel9n/4uxNPz5Ec0jOcvobFkhnqq1I9zYi9xx5akijlTpclCi+ZtXjAEcSUmXfU6eSR55LtG/khmZtE4jhu5Js4FXvsPboT4LT+BXjU7h3EROn0ax5WIfLZKKd4K86TVHvjkiVQ6+53QY++4jSXx4yWP0BYdy3QVr9fZGvZ3f96tM7GH/XWEDif7EvQG3fsD6EM2WMe8vOKJ70B85iCueZ59Ev2SzMy+8sWvQPz89/A7X/k2rpOifjyOvlGch/UN4RjbT/43hT7X02NgEH1ERjeTZ04Lx+AMTwxojXPyOPozPPU8jjM3v+o1Thu27MZxN0rxYOgFN12xyfra/mqnyRf0u8+S5xnp/8+l1HyfahPPkWK6zxdHWD8D8gaKaZzq34S19Nqbb3fa8OjXvoDboHVvkXwGc1QDynPTEIcZHF+bdD/ospfc4LRhx+XosfOdBx6A+OD30H/4mVn0lZmaRC/Fo8fw8/uvRH+jVt31Lzo5jl7Ac+RLMTJ4dl1UmcdzvdEUiyNWbNfaRoM8Han2ReTR0qi64xuvw9m7qb84RN8gbwrKu3IZ95kUef7jNMEatHZmD8DpGTzHu/bimjKTwzb+/d/jmqhcnYY4Jk87M7MgoMcDdIlOjKP37MHnsHb90GtugbiUx7kF+0x67NtrZgH5fDpzw/Y9oXnq45XQLz2EEEIIIYQQQgghhBBCCHFJoIceQgghhBBCCCGEEEIIIYS4JNBDDyGEEEIIIYQQQgghhBBCXBJctJ4e/TnPcm29PJ9kvcqkOVejuBW5GofzZdSZ8wx18OdJH7wQovbeD1yFvgib+lEbtUGa9gMDrub59hHUgyTZbZsZP4NtnESdsuFjqCE8/Qjq8h89jrqjkwVX93lsz3aIs1uGII5Ik3BsC3p83HgF+UM88yTESYSaesMDqBNtZpYhj4iBAp6v0aGz36nVXa25jaQaNc1ai5cFap36pCcXRBQHri4lqzrHEXlwkH64T3kUkfBz7KEu3v/9xx+HeDBFcjmhZ5u1JuoYbt6CuqSjpHMf1PHzt70StS8LfZhn5Zqrr8dayjFrnRKOFGrCnh6sA006iY6etplHWvk58oAIw4XvVIPue3p87lMft1y+3Y9VrFX5GK+pyQbqpRYHXU+PXBbP6cT0NMTHJnEbU1PkdVHE+rWoS72IF+P7ScutuU3SC09IqzkXkuZqE7eRkKeOT8NVg/x+oparz5nPsI46xaSHy2mTI53JUh/qBHsFbFNa3tXouPKkw75p60JNrVZWr0u5HnhhcFZHk2qbT4Nunnxj2OfAzOzkHObtcaobIeUDe51UA6ojZI8yn2Abypu2OG3IFVG3OVvA8ccnHVF/M+o6x3nM6yDBfMkMoF9RoQ/3Z2bW72OO7N2G7bzpJVdDPEI5dXqcvAIOnoD42ByOiQGbZJlZlvSLwwQ701/W917i+tBsJJPjZQvbeZc0MAdGSFfbfDwfYejqBR89jJrFjQr2D/vVONqx5D0UsmkHy8iam/sx1yL2AaHcj6heBj62+eW3oH/bN7+B86zjJ0kH38yy1K5mRP2QwzzZsRvngjt2DkGcz2HuD5TQL2J4GDWxzczmSR/eAszdyLLt/09zRtlY5mcmLWosrBXOnDoC7z3+2MMQP/cUeiVY5Opch6THnSMN5JhyoGnk6deP8/VrrsVzvn3nHojzeddXYHAI61Fi2M4zn/hziLPU5vkp9Pj47qPfhPj2UcyRIOfq3DuTNZpnsY1Gwi+QqHXaGLpWzu3pccGbXhNjhaYVcgvH42dwPBwk38fWAI4lYcb1gXj9a2+F+PQxrIcPfA09dWrzOKYGWRpD51G/fJ784voG3XVsSHlcq+N3qs5cEGuVT9dJhnTxE8qfiPw6zMx27cBtvOV1PwzxHXdeB/HwKI2Rc6iJbi2ce4U+fn7zJjfvkxhr3fhJHLerjbPbrFW76+mxHF47xXR/JKa1VKXm1rp6yrpyOX4Vt9ko4ZzmGBm/DJMHyNjNr4B4y53oIWBmdvPdPwrx019Bj48v/f3fQnxyEs/HJK15qrM4Nk34qFFfS9GY9+ieSpijeyw0/JVy2A9hFj9/dALz8AzlyfCYO8aO7SEvLV77tstpl0udbRv0bGBgYa+DJawzGR/vGx2dwOttpp7y99fk4bjoA7fI/Dx6/US0voxoHJlv4nzIz+G9lH1Xog+mmVm9iu38zmPoH1elNU+OvHsyAR7X7Cx6nJXII7A44K4n+midc/vrXgfxwAjWpqefwrni+DGc68xOYT2dPIr+SJt37HXasOMyXLOcGse8HVrmW1jvsjflifGjNlddzDc85+xnxD4wXuDO5Y3ugVZrWDfqDayPmQzmUZbm2XyriqZg1mq69zjZ33SwhOc4pPX5D92zE+JGDa+VzTRP/Iu//ATEM2X3nFUrPA7ggQz243HeeQd6eGwaprUcdXUY4roz7Z4C953jkdy+l5wNVu/9rF96CCGEEEIIIYQQQgghhBDikkAPPYQQQgghhBBCCCGEEEIIcUmwpoceH/jAB+xlL3uZ9ff325YtW+xHfuRH7Kmn8Oe0SZLYvffea9u3b7dCoWB33XWXPfHEE+vaaPHi46677lLeia6inBO9QHkneoHyTnQb5ZzoBco70U0+/tkFubwdO3Yo50RXUa0TvUB5Jy5G1uTp8eCDD9ov/uIv2ste9jJrtVr2q7/6q3bPPffYk08+aaW2ht+HPvQh+93f/V376Ec/aldeeaX91m/9lt1999321FNPWX+/q0l7Lq7aNWKF3ILmV7GEundDw6jDXa2i3hz7B5iZkWy2bduCGmdBQPpiHnZNrYE6b5OTqM2XJX3AIuu6mVlcRW041n1uNjCeP4jae4/89RcgPnLgMMSZ/FUQz53GNpqZzU2gTtvlL7sW4i1XooZv1EDtvn94E2ozvmr/P4Y4jlFrrjznanD3D6De4yDF3jJhzLlKzX7tD/7efvZnf9Z+8Ad/cMPzrhk3LFw6BjwfPj0jjEiLmD0/zNL0VPH9mB47xrTPgPLqilfcAfGj30XN+o//n/ucNpRI1zBXwu+86vbbIK5WUJfymW8+BvFT33se4suu2o/bz7tlJSF9ziZ7lZBan+/IRJMOLeuYOrrSThMs8VgzkPe56G+wcFK6lXNmZseff86y2YVzXZvHayZpkTcG+eZcd+0Vzvamj6OO8he//HV8fwY1HAOfNP8pUXMZvK6zGfz86ROoh2tm1myhziJr6TfrWA9j8vBI6PssyO2TOGYm42rwFvJ4/YyOYH0LqU7v24t6uVfuvRziLWNY/wr9ODY1mq528/gknoskg7lx2Y4FPc5y+7x3K++8ODF/8Tpqrazz7GXw3Mw3UE/XzGxmHseb+QLqkE6XSaOXtFBj8pGpkX9Rph/H/eEBV+84W8Bx3c+Qhwd5egQ0BheohucypIlOGrxJwa11cR630ezHNo3XMUfKLRyTT03g9X+mjJ9v8d+qxCmasKQ3nrA31vLrt61Z2628K/o7LWzPtyLKq9ky9meFxtiB7Xg9mpnlG+TXRvq0rTLWGfZ8i9l7iLww2H/KZ+Fuc30+2O8hIgO3mqG+fzbEfd760n0QV86gPvnRg4ecNmTJEydHtW9wO+r+XnbFlRCXKJcT0sSutvCYTky4tS4K0LcuS953i14eUbJwvN0cY6fOnLZqfmEhMH7yGLw3fhzn0jH5ERWztIAwsxzptZdonTJMWtxbL8P5+chWHIs2bcE4k8N5cZy441sQ4vUxNX4Q4jpd9368sk76oQPPQlx6FH0Db3n5a5028JzVaJ7l0TXsjC00WUtbv62Vc3t6LLzTtVoXxlZY9O5IsE5l4mmIB8bwmi8NuPuJqjhW/OiPor775Ay+/9C3Hoc4LOI2m+RF1KTaVqu467cwxLoS0LhdGsVxOqDbDC2a54Xk8VEnj5BtI7g/M7O3vvlVEP/D17wM4maN5lwNzLl8nry/ctMQcw7OkveNmVm1jHr/rTruo5A/W/uefG6hfn/2s5+1fD6/4bVuRfjiIM8rnrebmTXIv9Kj9VeGll8Vqkt18lAlew3ro/srMXtlmFnp1hshzm/BdexeikeexnWqnZ6GsEr3Y6brOG+YSpnj1mlhOtvA+jpJOvjHxvEeTpXmGl4R23zNdejrdMVle5028F8qB2wSsDRfWfj/btW6MK5bGC+Mm31UI67Yhtcb+9hVV2Hd2qK8rFQwZ1pUR8bncQyfqKzs+cF1yMzs9lfdCXFfP56vL33h0xAfP4XztBLdC+nL8X1FzBf+vpnZ7t3oqxvT/ZvNN94A8cAu/PyhJ8gP7jm8LqaOH8AdpviXeTQujJ9GP5ztO3Yt/XezsdDv3cq702dOWbm6MAbxPQDHT4zvx/ENOTPL0D2BbIH8m+maN/IFadB6ju9VFWlel8+6vsfc7iz5Nva3cE1ZojG4RWPoVZdjTvzX//yfID5+Cv2kzcz+7M/QD27/frw3cvttPwDxneT1y54dfP3yufBC9zcYgU/3XCPyeW1/x2+u/vcba/qlx6c//Wn7mZ/5GbvuuuvsxhtvtI985CN2+PBh+9a3FibGSZLYhz/8YfvVX/1Ve/Ob32zXX3+9/cmf/IlVKhX7sz/7s7XsSgjgbW97m/JOdBXlnOgFyjvRC5R3otso50QvUN6JbvJrP7fwsPCaa65RzomuoloneoHyTlyMXJCnx8zMwl92jows/GXHgQMH7OTJk3bPPfcsfSaXy9mdd95pDz30UOo26vW6zc7Owj8hVkJ5J7rNeuScmfJOrA3VOtELlHei22iMFb1AtU50G9U60QtU60QvUN6Ji4XzfuiRJIm95z3vsVe+8pV2/fXXm5nZyZMLEidbt26Fz27dunXpPeYDH/iADQ4OLv3btWtX6ueEMFPeie6zXjlnprwTq0e1TvQC5Z3oNhpjRS9QrRPdRrVO9ALVOtELlHfiYuK8H3q8613vsu985zv2v/7X/3LeYz3MJEnOqdP6vve9z2ZmZpb+HTly5HybJF4EKO9Et1mvnDNT3onVo1oneoHyTnQbjbGiF6jWiW6jWid6gWqd6AXKO3ExsSYj80V+6Zd+yf76r//avvjFL9rOnWfNEcfaJq8nT560bdvOmoyePn3aeaK3SC6Xs1zONSq7Ys+YlQoLr2fp0czmYTRFGhpEA8BaFQ2pzMzCHG4kyKxskJIhw9MKmV4Nk7FhQKYtlaprBlQYwu/Ujcy7PNzn7n34JPOxR9BUcHwWjWN/YBcaJ4YN16Tnue8/g+18DM1kbt+JfZsvkjlbCY9zeABNeObnsJ/ygetQNTSMJkWFIh53vXH2/DWXOX13I+9ywcK/BShnAjRJYt/y5Nxz0yU8jw2C8X3yi7MmmZDHHpoBXXcLmlixgaqZ2YOfRLOto2Ra9MzB5yCePI4mVY8+/hTE3z+Cpp/7r0Rz2csu3+O0YfduvEZ37UFT1WyOjLTZbY/MZ9m4PCGzTDbHNDPzYjx/5L1nzbbhVDM6+8565pzZufPu53/yZ6zUt3AtVWpokGiUM7Nz0xAXc24ZnyMz9O27r6D38ToNQtxGicy7EjL8Cn3sy/FTrtFjs8m5S+eEDL5a/Hkyu2dj3UIB6+kIGWiamQ0MYq3ZvGUzxH0DWO+2j6E59tjoJojzRTRY9LJ0AafkXZNMxaamcXyqNRa+M7/MoL4btS6pNS1OFvYZeHg+a2TkWyenyjjrjm8+nY+ohKbGYY7M18icreWTEXMRz2dYHMKYTMrNzIIsHmfiY17HhseZ8bGeZmgeEJBxpU/9kDhVxCxHhs99NM3aRCadPhnfzfZhTvoZNNQMyEgv47tt4JpRIRO5MDrbpmZ0Nh+7kXfe0C7z2ib2AdX1Bg2ifoB1fSjnHmtfnupCA6+vmGodGws2qd42qhjX6xj7WddQ2otwmwEdR432Md3An+YXMnh+toxiv+3bOQzx6IDbr2FA11+IhonDO7C2xTnMs2nD6ymhvPXy+H4Qu+ciSciolcemZOE4PW9jap3ZufMu8P0lY8SY6nRYwHnsrivHIL7yajSYNTMbGcH6NjyC9aqPzTgz1CaPjONp+80WXhux5/6NGk/3ZiZxbhfROdpDx3HFdTdBPMxm6nnslyR2TY6DkOdV2E6aqlng3NSgOXGneXRaueObJ86H2rG3MXO7c+VcOTJbnDq16ljHsxRvH8HrNQjxejYza9Cabt8enJ/8i7e/AeLKPK4Rv/3MMdwgLUCcMTUt52gdlKE5UMzr2hbWuloZx6+ExsvNQ9gPP/nG1zptePXt1+A2qzjfbczgGNBq4LVUL+BxxQkZxdKaNFdMGcdojK16OGcKlo1di//9b//tv7VPfepTG17rVsJdGyUrhmZmPo/LtPilrrC5eZzTtChnWjSEBlQqs547xs7M4jYzo7iGvPHHfhLiKaqFzXnMw1YF5wXVGbxWkjqOZWZmOaozAV0fVVqvVxu4j6k53McktWH/tVif9193vdOGcozjRtbH899oXwut4GxbuzKvS87mgZ9gDSjQenFsgOYaMV6fZm5Nj2n9HkUYV2kTIzRHmq7hB2YoR1PS3ho0ft5+y40QX7FjCOLP3/8piB9/7JsQl8exTo1uxvpd6sc1kpnZxGlcWwd0z80fxDbkEsyPl972Koj37ML7NU8/8wjEU9PjThtyBTTKvpLafebY2XtIrWZ317EDg6PW17cwZiSUdzHFlmAOzM27ElnVOhuR4zYaTRxb6vR5zlufcj/0cbwcoPWemVkY4jZyEV4vBZqvsrn6zDStL2g8u/NVt0H8jYcxT83MfvItPwLxP/4xjKmkW7lM6y5aSzebGFcaOF42IvdesWNcTsbmi2Mw73sl1vRLjyRJ7F3vepfdd9999vnPf9727dsH7+/bt8/Gxsbs/vvvX3qt0WjYgw8+aHfcccdadiUE8G/+zb9R3omuopwTvUB5J3qB8k50G+Wc6AXKO9FNkvaTv09+8pPKOdFVVOtEL1DeiYuRNf3S4xd/8Rftz/7sz+yv/uqvrL+/f0l7bXBw0AqFgnmeZ+9+97vt/e9/v+3fv9/2799v73//+61YLNpb3/rWDTkA8eLgL/7iL5R3oqso50QvUN6JXqC8E91GOSd6gfJOdJM//D9fNzOzP/qjP1LOia6iWid6gfJOXIys6aHH7//+75uZ2V133QWvf+QjH7Gf+ZmfMTOz9773vVatVu2d73ynTU1N2W233Waf+cxnrJ9/6i3EGpiZmVHeia6inBO9QHkneoHyTnQb5ZzoBco70U0+/ZWnzczsDW9A+THlnNhoVOtEL1DeiYsRL0lYcbW3zM7O2uDgoH38wz9vpcKCDlmRNNKKGRQTy5Fu8MBwikZalrZBGmesae+TpiTr03uk5Vgh3eh61dUnC0iOLiJ/hr4C6vllPYz/8v/9a4gPHkAjn1e//uUQX3vtZU4bvv+N53GfpJu++0bUMm6FqEUdkB7d4hPcRXJ51CsfHUEtajOzeg018HI5PBf+Mk3Y2XLNdv/QvTYzM2MDA+55XS8W8+4P/+h3rNDW7edLg/XkEhJUTvP08EgpMmFdSuNtkDAlbZM1nEP6gMdCe2b29HfQx+WTf40eH1ft2QHxwe8+CfG3D6KHRzUiVTyqIJkUrf2rrkafj59++z+BePMmzEPu+4S0NUlC3Vqk1R+vQiOUO3fRQqJardkvv/uXNzznzM7m3anTk0v7qpEuLPu8cJ4lLdRGTKPWxFoT00aypMsceKSFSf0Zk0dAK0X/lkeWBp+0DtdXlvQ7Sd7fggCPwQ9TnuHTlxLOAarzEfV9q4q62yH1k5fBepdWBPiSLs+SJmhloS/n5+bslpuu7lqt+8H/6z9ZmF1ovxeQhwvpzRcL5L8R43hnZnb69HGIp8dRU9mj4hVS4YjIkyDJD+Hni9gnhYyrzhmy7xIpeLIufiZPOUOa9R7VnXwR25jPurrrBarxW4ZwEr9/N2rW1sqov3qM9FjHZ1AHmCdsuRSPiYh01ZukjVpYptHbrFXs//za27qWdzf/k1+ykP0N2vD5y9DRxp47rxoo4XeGqHaFVHfyedx3NqQejbGexhRnsm6dqcxjnajQOZuenoJ4YhbjfTtwnvR/vf0uiD/7qQcg/vvPf9dpg0+eOPUm1ccBnE/mt6G2c6YP535JgNr6dToXuZRzEZNPQaPJ3j8L11fUbNojn7yvq2Ps/++//aEVCgt9dOLEUfgMrwdGNmNf5EpDHffjzC9Yk5zykL1lHF8KGnOTgP2jzLwE69WRp74NcWj4/o5dKDMR0Pyfx0NXV92dV7ljKr2fdDjOdViCdtrmYlytVOwXfurHulbr/v277rR8e33aR2PHYD9eX82APK1y7thSJP+mYh+OLaU+3ObBo5MQ/5+/Q/32L37jexBXKjg3iSLXwyVDnlQR5Uw9Im8LMnyIE2xjifTi3/IG9Jm587b9ThsK5C80Nz0NMXtC+FS7eKoYsw9UhHVrZPOQ0wYjn1Cf5hrhspwsV+r2hn/xB13Lu9//3KNWKC3kRovmcuavvH7zk5S1U8J+lvQlXi8wCXs78foD82ykRPNqMytRGzyaq/fR9TRXw3M606RxnO47lMvspejO5UNKnDzV5D6a1/C9qWaCbS5Xae1GHjs+3zQysyp5HRqtg+L2cVbm5+wnbtnftZw7MnFmaT++U4/xO24KunXG6f0O42OL/BuaPp7fKnmh1Js0vqbk/VwF21Vv4jq3vw9rdIty7Gtf/hLE9/8den488f2nsQ2+O7fcvQfHbKM1aJMu4ID6OqrhMRRpXCkUsF+feQY9XM3MThzGe43ZANt5+WVnPUNbzaZ97W8/0bW8+z//5yNWLC2MIdU6XvM58oo1ypHpmWlnu1Va87fIa6LBY4XjG4Ih+xKyDWihkOI/R/2bo3VmxsNaN9SPHisReXywj9PevXg/7stffshpw9AQbvMHbkL/4Cha+Z541fG1Jg8sulZmK7hmMjObp3WVO1dciCuVqr3lx39pVTm3Jk8PIYQQQgghhBBCCCGEEEKIixU99BBCCCGEEEIIIYQQQgghxCWBHnoIIYQQQgghhBBCCCGEEOKSYE1G5t2kFsXmRwsaeyHpd0aku12tY5yN+5ztFT3cRqOB2mDzk9MQx7QP1kpd1AZeivswdjQvzcwPUDMwR/qPEWnzR4YaZze8FLVNWWczT34ac1VXI61/BDVgGxXUZatWUIctymCbigVMmcFB1In2SZObNWLNzBF4rJMfQLhMG67VuHC937WQJJElbY2+mPXEY9LuIw07L0XPPyAdSp/k19n9wqdtsKxoQvqBOdIYDUL3Oeb1V6ImZN+bXgvx1l2o7/fIZtSczz/yKMRPHj4F8cwc5lmr6Wpjbh4YgnggJM3dJvtSrKwTzX3dcjw/0vKG+4Y2urgNPs9doNaoWbaxkA0ttr6gc9wiP42ANXvN9ceIqUZW6uTJQF1TpJqbId+AhDwCMqHr45LQOcpQt5ar2IYa6aXm+rE+loqk80v90Ijc8zY7h/XHI7+ZuTJqRhrpVI4M4OfrrXSt8EUyKV4FEflBWYDbzOYX+jbTdH1RNpIkaljS9ufJkk9Bg/phemoa36+R/rGZNWjsCOg42SfGS1jzk69PPHcBeWX4IY49Zq5nB2vQx3S+GjXWm8ftcf1ukD5uELneJj713WSMfXU8h/0QkNdJi/K4UcV+4DGV5yJmZlnSks6SD5q3LCc9zs+Npt5a8rbi/m4GeOw8j0pStMOrTTznObrGHeuXkLxjMpgjWfYVCbF/g5RZc4Z0e0ukmxxzPR1EvdxMDs/BxCTmTJhF3Xs/h7GZWURzJY+8SFoV1PdvTNJx0rnI5Edx+z7ruKeMsazzG7NWd+scr288/cMjViwuzOPzfbhGYO3nhOoIy6gvkGLitnwbbM9G2wzDlb8fs4a54+bjellcduW1EHNtcTyOYvbsoNpE1wLPKxa2iXA7uY2ut9qFs9ptbsCuVyT2Aovb/hL9lHMtGkPHz6Bu+ugo1ggzs7BIPmck4M7a+GNjOEb+1FvRSPvml10P8elTOLevpdjFNWia8oUHUQ/8sv3oFVQsYZu/9k3UjG/R+Fjqw5P0/IFnnTbkqSY3ySeyVsZxuUSePVs209yBvBZaDWxTre6uYzPkOTc4PIRtWjaOV6rdndutBdc7wf1MRLW+5eNVH/lYN5whl+pnJiIvvQbudKLFc0OzRh/299AAjbEZ8ruhNUlUo9pH2+8r4vVZ40Q3M4+8YmbK2M6pGGOPxkw/ZM8k9hQkP7HI7YeY/NoiOpJMu+ZXyin3XjaQyAKL2t6a7LfBQ51H8/A45c+vowi34YwjNLZlaXgMDa/pgM5FiTx52LfSzGwTGTBEtAZxTFaLOC/7sTe8DuLXveJ2iL/80Ncg/pvP3O+04XvPoA9vjnKoUKDrgOpSQvPhE/MTEOebWEs37cT7QWZm23fsgvj0UfREO3jwwNn9p6zDN5Jao2J+25dvfn4G3qvSNc8eOwEXJjPLF8i/iD06qK6wt2iBPKo4b+n0WT/5cpmZRS3MuzjCdmdobR2G+Pn5OfSFZE+r4yePQVxK8cEIMrjPk+M4N4jJUylLecaeddnMyv4qee4YM8sOYt/wen7xfst8fvW1Tr/0EEIIIYQQQgghhBBCCCHEJYEeegghhBBCCCGEEEIIIYQQ4pJADz2EEEIIIYQQQgghhBBCCHFJcNF6eszOzVuzuaARVqmiJlpAGoYszcdaf2ZmW0kftdJE7dPpmWmI+/tRl63ZYO8L1Pxk3bZmighwSNp7OR81zlrUpjCLx1kawu8PDKIO25Zt23CHBVdvvOqjTmWd/BcaDdIsJ48I1sTNk35gvY6alKx5b2bmkS5wRH2VXaav7LEJxgbTjFoWtrXq2BcioTwjSToLXElIRxvaD7B/WRabM5fzivszarI+vNvfc6Tvt+cyzJtaHT05rrh8L8S3vewqiL/zvUMQnzx5BuLxadQONzN7+S0vgThPGtqtFul3Uk/4rItI56LPI3+HFL3xpJMG96I2Y6v7euPT1XmL2sKnff2kN8w5RHXDT/UPwu80SLd/anoa4oC0S/0mXncNqhMFuu7DvOtlYeTpEdIz9sjH4WfyNOlJT2PeFvLoq5RJsM3sIWFmFpJQ/ZlpzPW5CtarPMlOhjncp1GeTs+RbmzGrVd58svws5S8bS3ioNVdb4WgrcJrZjY/Ow3vsa8M+9wkkXuN8Gucl03SSG6Rj0+QxXOVI6+FhL5fz6b0F2lNxxF/huon6c9yhQhIK7URY455RgljZpkY91mrYr/MzGIORtRvTe579nGiHOPYzCxD+qgJnb94mX9M3GUvGYtj89rarKz/75M/UcK1LXBreDbA2pMhb7OAthHmye+EJpBcAyzh/nHzLk86vk2fazbGI4M4l6vMjUP85W88B3Ho4fYHh9Fvw8xsehLrJec2X5/NWRy3m5Tr7FOSIx+RJElZPlBNZ88Bz2vvI+nuvM7MzAuz5rX1mJ2xyLnmVvb6Sd2+413hfGLF7/Pcjrfnp32f5gbmY141WJCa51X09bDDgaa9y3Mzx+Mj1V9t2Ta76PGxEftaiSRJlo5/dhavz5jm3UP9eO7GRl1vygatQ+fncRsBJXJcwdoV5LEGXH3ZEMS33rgT4uOn3Vr3+S98A+I3vO4VEF9+OW5jehZ9CRqks37oCOrDT03hurUygf1mZtafY111nguy/xfVKsqDHHkwDQ1hrRsZdDXPy7PktTWHx9lcdiVUaxevp8fqwLwKaG7vRyvfSuJhvEXrVNcD1a0ZDfKoqNH9kiEa9wtZ0phnfzaa93j8N8C84DdXSz8/gHOPmMbYmCrmLHnN1GldFns8Lrr1itexHC+O+/V0I6oNI/Jia3kLOc/rT2cMYE+PlOPk88Wf8B1/KlpnkV9VyB6sPL6meWNys32en+L7LTbyIrYO4dr+n7wRPZZe+5q7nO88/OhjEN//6b+D+Ctf/zrEdcqhvuFhiKvTUxBPzWFObtk05LQhpHlcSB0ztszzI2o27fjj6AO7kVx7xXXW1/bLmp7GOW29Th47ZC4TJ+46dnoGt9GKsE4UaKyoN3AdWyrgPYMSeXnN0z0H9jMyMxsubYb4u99DH5ZcH7ah/zJcDyQefr5BXkH1GI8pm3FzvzaL97hnyc+5b8D1FYT3yQc7pDGY10SZjHv/hutEg+4BhO16PJchb9YV0C89hBBCCCGEEEIIIYQQQghxSaCHHkIIIYQQQgghhBBCCCGEuCTQQw8hhBBCCCGEEEIIIYQQQlwSXLSeHuMnxpd0/0lGzxLSI9u+Gf06ZmJXA7Q5h5pmwyMjEO/cuRs/30Sdu5BMBMIsa2aj9lix5OqdzVdRX+7UaWxnwt4WW1C3jXXza6QTyiqYuT5XZ3/f1fsgPv3cNH0Cj7NU6ofY87CN5QrqbNZreIylEmnim1kUkSdLlnWg49T/7gaBH1iw5CNCnh4kvccypGGKXLBPecHa6i3S3Y5IEzIISAfPI4150hCtNPB8mJnVKpjL01Mz+H4Dczls4T7zOTynu3aOQbxtK3rJeKF7zjLkY1AluVH2T1nUfF8kIEXPDOkBkoS9JZ7bhoT1Nl0DlXZjuuutYGY2X6mZtXWJgxBrR+CxTwHGUcqxBqTRmCW9262bt0DMHh2cV7PzmEONAunFs8GNmeWypLVPusv5ArZp82bUsayQPxDnCOuPp0mHJ6TtfPDUCYi3bEItzC3DOC4YHVZIterUDNbwZw4edtrQN4CangEl6+jwQo0tz7vX7kZy+PmnzW9r3NcbmEMZ8ijIF/Bcpp3veh3HowzlIOtqZ3J4vj3KjzrJrQbk15EjTXQzsxK10zNsU38BdUND0h6emUcd02aEtc88HJOTxPX0SMgHxsthns+R/rVH07Agxmst44wrmOh18hczM4ubeFxZ8lCKlvnHROStstF4uax5bf3WhH0nWHOf9In9FK3vrKPnjnESk64vuQ4EpOVcyGPuewl70bj97Rg4tPA7PtWNqEba36QffhIlea1UxGPac/nVThMGhqchnprCjVRp/plQcWMrvIj0jtn3Ik0ynL24jOYrrfbYxXPAbuB5gXntfEoc5wnW+yavmZS8Yz+amOZ6PnVoJ382t73s6eHCm4iMJkI0/nkJH9fKnkbcxpVbnE4nH40L7Zc0zuWP0m1Pj2zoW7a9dqzS2oiGM+vnuhO4Z3x2Hucbs+QXFRRJX3wIx9hWC7/vk879xBl8/3//zZecNhTyuCbcvAU147//1NMQxxHOf8ZGcP2Qo3MyO47rk5GSW2hGtuJxGfVVNk8eHYPYhiytR8bG8B5CkfTL87zAMHPmhoOk159bdg+AddxfaHSYgrh1f83Q9ZrWBlqA12q4Thuvkb8lD0WOPynXHfKQSylD1SZew1naZimP88uBPrxWYqrPcZn8btiTJ60RTg3jOrF4HN2tdZ7FS3OriNbvTr5QX6cdZ0Lb6GC7ZbxL9ws01vH4muIF3Ml5zNmlt3LcpONukX9opujes7v9lXdA/LLbbob4scefgPhzX0bPpe99H+vxicPHIZ4bx3limeaNZmZ9zr1EnNcNbjp7DyhyfMQ2llqzbGG7FPhkC5F1vJ0wjmJ3jB308R4A5wV75Hpl9JNgi8SZKVwvRD7XGdfv6dQpXNueOoNj4vOPYBvy2Zdjm1u05qF91skbLG1it20zjdOD2LnNhLwra+znTNcXjdH5LK6LQx9jM9cHJKD7fkH74UDAJ34F9EsPIYQQQgghhBBCCCGEEEJcEuihhxBCCCGEEEIIIYQQQgghLgn00EMIIYQQQgghhBBCCCGEEJcEF62nx/yZKWtmFvTX9u1BbbHhwUGKByDOZFL0vSLUG2uVz0Act/A7hRLqizVJe3pyAjXVSkXUbmQNbTOz/j7Uk2Od9ID05/pLqEM6X0b9v5pRXEct8L4UvfFsDrXdvAzqyc3NohZcYQD1WiMfddzqpAfuk7FFwMKa5vqfRNS35WWieJUua6EGgbfk38J6x6yl6bP/RuQeKx2aJaRlnbBQNungsX9DM8H+YB39ct3tL7aysAg154MM5l2QxTZMV/Gcp53T5YQpOolRHb/DPhQtY51D0nilbgroXLBea5piOPelY+nR/hZrxXaDfKbP8pmF671VI38F8kaIm+QLE7qCjKy3WCdfl74c1ju2zokbDYpZOxpzpha7upTNKupSBjH2+NAQ1pasT3XBY51f8jKhayVJ0bCdr6DeZsPDfhndgtfCYBb7hfshoo6aolx57LlTThvicBpiOr02MrQw1qR5M2wk+dC3oH3dhKRbGlPtq1E/Bil64wFr4nJ9pPPTqkxDzP5PAwM4rvM4v3uM/FfMbOsIjsMDebx2hsgboVRA7e9KHc/ndAXjWfJiOEFaq2ZmU/NYgyv1aYjLZdTM9cmDotXC71er6PXSJB3gNA38DHmOsdeJv8wrqlkn35INJkmSc+r28+tunrnfYy8F3obzPunYN8icolzGWlkgffcggzljZhY1cB8Z0quNI9xmkMVrw2f/mxZ93yO925Q/V/IL2IY8zf9Gd6BnQKOCuevTvNkv4vXVyuD3W0ma4jXrZFNfNxZyu9Vwx4uNxvfO+pYElAMJear4rPeeNqOg+sblz9XBvzCvCvbjWPgOeQt6Ky/pfJp3+Y5R3YpfTyVmPf4L9M1YD9+Nc26jy54eu7dtsWLbR8oL8foaIS889omsz00628tSbSoFeB3Nk89jmddPOVxTHjqEY9G3HkZ9+DN1N++HaP7/ha88AvHmTThOl2jdOzN+EuKAfEayVG8LWWyzmVlIvoF95NkxMIpzyz6aWwz14edHh3De4HvkuRS566rSENZDXtsVlvmGRK3u5h3g7Npx7ulSQ85NkHQe57ndvMxkX4gGb6LJPoQrtym9huCXKrT+btC4xte8+XgtFCkvY1qnNZqd16K9P3ttWtGS0Zfjn2k8vuK77KFlZtbJGsLrMK+LO15yK3u2LuyEPa1ojcoeHU5S0X0KOv8t2mkjJiNDM2vRa9xV192EHh9j+18K8TitUY48fwDi73/7UYj/9lN/5bThzBms2VmaK45u3XG2vV2e2x2detaKjYX5cUyeuewB0SKv0mo1pa00by4V8X5z1se11BD5ncyXcb1Wq+I1HdHY0ozd9deZk9jfFfL+2TKM41cxoOOie8V1WuM0W9jGqOGO860a+eZWMa408LiyPnm2kq8W+xcP9OE8IZtx738UyfeVvYIy7fsX8/Orv3eiX3oIIYQQQgghhBBCCCGEEOKSQA89hBBCCCGEEEIIIYQQQghxSaCHHkIIIYQQQgghhBBCCCGEuCS4aD093vbjd1p/cUErrUB6ZVlqdcza74F7WL6/GeJqBfXFsnnUZWOd2gJp4O/cvAli1vpLAtRMMzOLEtxnkbbJenSsIzxPeo/VGHVGPfIEyQZ4TGZmHmln1lqoGdkgDfNNxjqJpFtaQt22kDQL0/xVMlnUfms2WaP87PnzM91VrAytZaEt9EFC+nFGmq0+6+CniEhS91pMvh+OBCRpRLpvk0lIhDvIpWjtG0lve7mVn3V6dM490hNnHUvWUI9StFAdWxHKI1dRkLTBSb/Tc3Skya8jRRCU98namLn2cfidxF43gEzgWbZ97tjnJXK0S8mDxVwd0Ig0HLP0HS/BGlkn7WafkiYTcq3C/fHnF3aCYZau+yp5WHAeJeQX1CK/hQbVsozv1v0sDXFX7tgNcV+INZK1aOfm0JekSn4NBfKSuX4/6nSbmT19BPU5DxzCOI4XxpJG1R0zNpJiIWdhuz7HdM1zjnkhxjxWmZm1eCwhbdc+Oj1X70Ed7av3XwHx3j27IB5iLy/y/DAzK2bwOHKknxpEqI3qcS3zUWO56eUoxuug3HA1lyemUYt9chbz/PTENMRHT+PnJxrYURXyUmDvrihK0WMl7dqYrqVk2ftxs7ueHpYk5xTUZh1t1nANUrSfI8rFFnmexHSOGy2udZgzdaqnvuNh5dZbo3HdJ7+LIENzsSx5gFCbak3MgVaCeVdN8e6qtGjczuH1ZRkcxxsR+vSwZ0QQkpa0h/3sB27ND7Mr6/pG0ULcTGn/RuNbYn47f1xNcecFCONUs4u1+YDwGoE/38lQI31ewvNzahOtOUKK+fMJe6XR3tK8eLjvOm2DcfzbOvhunMsPaCUWt7kefiFrYfLEQavmFq5lL4djS46ulTimsaTlXiNNGm9C8oOqN3G+8vyzz+L7Ma5bv/fMUYhHxrZAnG+5Wtnf/95xiIt95PuYRy+gmTpuw0vQw+Oq3dgvY6NDENda7vhWGsAxcWwXHlepH+cKpRLGgyX8Pi3FrUnz4WbTXTOFBdxGfQ6182cmz/qllCvd9zBaYmWbgYsDp40pXqAcO3aY9B0q8ilThzU1KQ2PPJQaNBebnMbr0Q/x83wMMenep9UrHkcuFjzPOzum8X0gWk+Ejj+Le0x8/8VNkZX9MtJ8PXF7ncZj10fS+Q6vm2L2TqC5KZd46odqy11XJeRLEdG6d34e1wPlOnkvNHGM2LH3Wox37YN4pu6uaWZnpyH2aa3dt2wt1qhV7UvOFjYOL4nMa89rYpr7t/heSovmGpE7hy0WcF05VBqFuED3VbMh9u/mUfIUjNhLiNYbDXeMvWIPbmN6Bs9xhu5btOjeQZLFuf/O3Vsh5nUr388xM6tVcF0YZvkeON7raFLe8LorQzvxA/IQDFwPanfox75rts9vs5MB0Dm3IIQQQgghhBBCCCGEEEII8QJFDz2EEEIIIYQQQgghhBBCCHFJoIceQgghhBBCCCGEEEIIIYS4JLhoPT2+9OSEFfILml/FPOnJt1Afc2R4COLNmzA2MyvXUEd0tjINcTaHGmkDpPm5ebgP4k39qFVspKHdTFJ8DWLULAvzqLtWmUdNtFNHsM1f+/oTEE9NT+H2cqRp6LsaacU+9DZpeagnPk+agoUh1Ge1AHWgjbTUAtIoTNOkbNZJ35S9MZbpYsYdlRnXl77ArNjuxgbteiBL+v+ktThZdrXRcxk8J6wXzh4CHHvUn6xpHpJWJus9trdKEetG0vucuyw86rN29cp62KmvdZSzpuOmJnDh8sKV9bQXtsh9i+TabayE3c05M7NiNmPFtsbzbBn1G+OEPHDIPyOfovGaoWP1M7iNgLx2yqTfmCWvipA06cs1vIZzWVcbMyCNVZYrrZAOZZ5qcJDBGnt6EutdvYHX0o6xMacNA0XcRoF07+vzeNxN0ip97vAxiMkKxYaHcJ+br93htCGXQW3uU+MnIO7PLZy/xhp0KdeDuFW3qF1Pmk0ce9hHZrgP+3FsBMdDM7OxTajxOTJEuqKbcSy5Ygfqh48MozY4e8BwHUrzFbGE/BxoXHbrEGnycv31yDOJtIfzBbfWDedREzbeiv1Q34P643N0vc/RwFNr8DHhcVcqrhfMdBOvzypp29ZrZ7dZq1btc84WNhLPFqtvkOZBtYw46axxzblbp48EGdaBJa1Z9qYgT7h51rZ1PD7MsuR5w74ivoe53KJz2KIRLSzyCIfbz8Xu3G56HvOAr498Cbc5MILXX4N8NqrktdasoWZ9lOIZZ6TTax7OYRfPX6vRC437s3nXwcLD1U1P8ZFgTzf3O7x39kpbsbEuaV+guZpvPB9nDXJqs3MMzk6pCWm65yvTybPDmW522N6qfDm47xP8/25RygZWbM+NGhHm/Mnnn4I4Jm3vYgk9eMzMIsPr68SZUxBPVslTYBav+VoT12+DIzg2XXE1juHTZ844bXj6+zh/+YFbboO4MIBzhVYV522ZWaxl1+1Gv40s+R4cOol1x8ys3qQ8p/ntjt3oB1aew9pWrpG3F40Brj+E6005PT0BcR+1O1zm29RsdTfxPFtWLvh6c40kKUzxV+iwPlszHXyA0qtAB78h/g7Pp50i3+GcpC1jOxx3RDW+1qQ5KscE+0qkzY54CxeLRUsQZi1oez/yPJpPBXtJ8XrDzPXo4L6JeVyhZXvo5D2+73PnrmbZT+1u0XFmaZ7m7CNaOeeynntLtk61Y5q8fSfptlOdPAHrVZr7G86XvQTjoS07nTbk+nDNsmkT+TbNna3x9S57U3q1YClXCj75z1J/9/fhWBOmzGGLBfLCo3Ma0FjB67EMjwMZXhvg5/tKvD+zGo1PgeGaMkf3SqplnDvM+/h+oR/X1gW6ttgbzMwszOBxxHSNlop4jzyifqjVayu+z3PRtHldncdprhttT+M4ce8/nQv90kMIIYQQQgghhBBCCCGEEJcEeughhBBCCCGEEEIIIYQQQohLAj30EEIIIYQQQgghhBBCCCHEJYEeegghhBBCCCGEEEIIIYQQ4pLgojUy/+Yzk0tGpi1y0WqRsWcxi0ZpA0U0WjMzCwM066k10GynFeHzn8E+NI4Z6kMjs73bhiC+ej+a/wz2ucZnIRlqTs+iudrRQ9ju5545AjGbDV9345UQD28m47uUsztbw30+c+Q4xKdOojHe9itGId62HQ1sC/0YR2xQye7FZuaTeWmjhuczWG7OvWa3xwtjKOtbKbvQvoTMSYfz2L8zZJLbiN1niCEZI8+VsX9aZL4WdzARD2I2gCNjrRQzLo++ExsbS7KZL5kCUZvYe5aN8dhwbOG1lV3DHB8zcgBzvk4GYuxFm0sxBAvYRJ76YbHOJNHqTZHWi1YcWyteOCY22j09h0aO4/OYQ9fsRkNaM7PRAhpT1efmIGZjco/6u97AejlHZsFnZtGg9op9aBxp5hp+nTiJpphsEJx4dYrxHObJlNwno62njmMtMzMr0WcGyABsfBqNPUfGsC89Mj4L6NrYNEj1MOfWgJkxNH175c3X4T7axsnVMrZlowlrExa2FvJkbATbOELxZXvQoP2KPdud7W0awr7qy2MOho55MPZVTEavLTIr9X2uU26xY7M1vsa5DvE2O5nkJly3UgwY09q1nCx1RF8ec6qQoRpf4lrG+ywa00roWnJq/tlzUy6X7YMrtHe9SeLY4nat4/5zzofPSZOyPR5/OE/onDbITDSkAS0TY3/ncjju8+fNzBo1nE96CZtuYjw736T3cZ8RjVXz89MQD/S75oelAta2WarR5TmMh2juVqujGWJCfxOVDfF6jkM376otzOWI5kiL572Fh98dfP/svMKnOtHB4Xo1BtjOZzw2auy8Dfx8JwNic64Hn8zrHbNfj+Y2nQyEV9Fmj9vVyR+Y+8VpwcrXfGo/OFC9WzQyX8U315MoWr4EWvm4wwyuGXkOZmY2X0UT23oVr9m4gdd0q47ne3r6MMRju9C4/NgBXIP2j+522nDDD5CpaoDj3dw47iP0sAYM9GEbxytkBEtztCiD8wozs4kJnCtkDuHcctuOvRAP0tykSmbAAY3JYZbOFY2nZmdr2SI+rfX8ZfNfngtvNLElS0bPvHYKyWjXvX7d+Ytrfb7yOtUxme6wvci55N0x1hnnaavZgOZJCc8FqTa6i0psU5zSD9w3vA1eS9M2+Ri4Xzr3fNq44HziHFvfWCLft1Z7fG3SgfBdIDYyj1Oa2mm85BzM8ljIn+d84J2m7g+vW+5rNlt3ajo3guKAT3jK0Nasc87RfJbmWNPzuK6ul7F2FUNe8+Dns46Rt1kzomsrxLX4pi1jS/9dq+CYtNFsG9ljfaWSmZllstiuFhmZ0/TIikUci8zM8nky6Kabas0Ix+VMFufFVRqja3X8fHke7+ekrRebdN80R8fF98f8LM4dBjfhfdt5urdQKuEY7jmJahb4eFweGZFX5zBv8rT+6C/gPtjYPJdlE3m3DX1F7BteT4xPjJuZWUqpPif6pYcQQgghhBBCCCGEEEIIIS4J1vTQ4/d///fthhtusIGBARsYGLDbb7/d/u7v/m7p/SRJ7N5777Xt27dboVCwu+66y5544ol1b7R48XHHHXco70RXUc6JXqC8E71AeSe6jXJO9ALlnegmH//sd8zMbOfOnco50VVU60QvUN6Ji5E1PfTYuXOnffCDH7RvfvOb9s1vftNe85rX2Jve9KalZP3Qhz5kv/u7v2v/9b/+V3v44YdtbGzM7r77bpsjaRUh1sq9996rvBNdRTkneoHyTvQC5Z3oNso50QuUd6KbbBlZkFF54IEHlHOiq6jWiV6gvBMXI16yOoHUczIyMmL/6T/9J/vn//yf2/bt2+3d7363/fIv/7KZmdXrddu6dav99m//tv38z//8qrY3Oztrg4OD9u3P/HvrLy3omHmkH8caaQlpn+ZT9MkypO3eSkjDvok6eT7pmc1OT+D7pD+/ZXQI4sBPaUOW9XSx6xt11CnN5VBbLiHPCI90nwsFfL/ZwvfNzMbPYLufeAJ9Q3zSHr3+JXsgHt2EbWL9ujpppeZzrNvmaoiW50mXdpkO31y5Zjf+6AdtZmbGBgbOasRtVN597eP/X+srLWh4s5z4ULEE8YEZ9JKJW+6llPPw+Geq2P/ViLW9WYs4XZv47AsYRika8yHpiUeOLCkrUa4spul5rH1KGumOVqqrv+qRpnZEjfJI49ynfbp6unRtpFS1GmkzNsinotrWUaxW6/YL7934nDM7m3ePfO+A9fcv7Cshzd1vHRyH+DsHML71KvRbMDO79UrUas40UU+xSaKrkVG9q6AG5ARd588cIm3oEVd3+Zr9+yF+8ulD2Aa6NoxqxcGTqH3ZqGOebR4iP6HY1V0eJB+QnVSnDx88BvG+a9CbZHoO+8GrYp7t34Zamn1FN/EmUO7fnjqC+tOLl3hlft7e9uqbulbrfvveX7N8fqF/tmxBL5N+8gwIaVxIG988EqTN0pjrkZ58kCWvhJC9FHIrvp82dYlICzVm7x/HM2Jtnh6eozffefrkaAmz/jXVMvagYM1X9sHgYzQzsybmbdbHzyz3qZgvl+2W176pa3n30jf+nAVt/fqYdGID0uX2Qx4H3GMtZDCv8hQ7fg0UF7Lk+9OHeZknzd60DGk1sfZ4dE4adXyfPeR4PIyNdIDLuBjM+q5nHOvGz8xM4z7JSGN0aBji6Wn0/GhRngXk6RHkh5w21Brk10Zj7uJcodVs2MOf/MOujrH/4+OftmJb+zmKXK+5C+UCl1Lrsk8vXnm+6GjIB1RrzqMNvI+kg8Bypxqbpu++Vpyy3O6nSqVs//yfdq/W/d//8pVWyC3Ul2aD5yd0ruhcRGl1nXzOGrTGOzmJa8iDp3EO1fLw/YF+XN+FOfTw2PeSG5wmnDqJc6Zvff0BiEsFbNPevbiPDK03YloD5clHrT835LRhsITr0L4B9szASdfNL7sJ95HHtZxPfZ2jMaFZx/mvmVlUw3Wr3yAt++bZvp6v1O2WH8M1xUbWut/8X5+xfHu9WiUfz6yjpY6keTK2SEud62ed7l309WH/ZmjsODOBc+AWrf9GR1GTfqFd5Ik6PQ0xz1m5DtVreA6zeeyHgMb50S2bnTZ45PPpepus7N3SqbQ5HnRp20h4fsi+n+11bHnOfvEf3Ni1WveF5w5YX/sccL606J5dTL5qPNcwc+8J8PwmS+eLne/yGXw/S9d0i9YKMzPuDfdqlXxA6QQGNNes0nXQaNDcnfxCm3TuZqpunSnT9TvfwEaUaZtV8shln69meRriKMJamcul+Fzk8HoeGMD6Ozh8dp1dK8/bL7/x9q7l3Vc++6klT48wh/PiVsz3fPD8ZDNuLewjP+dONj58+8wnn5eZWRyD58lrr1JxvTyfefoZiHmNyF4kNVpfDA/jMZSKuKbpHxyCmP3EzFzPDT6uFs09uDby+r3RWHkcSvO9CmhOND09CfHpkyfNzKxSqdpP/PTPOTmXxnl7ekRRZB/72MesXC7b7bffbgcOHLCTJ0/aPffcs/SZXC5nd955pz300EPn3E69XrfZ2Vn4J8S5UN6JbrNeOWemvBOrR7VO9ALlneg2GmNFL1CtE91GtU70AtU60QuUd+JiYs0PPR5//HHr6+uzXC5n73jHO+zjH/+4XXvttXay/cRl69at8PmtW7cuvZfGBz7wARscHFz6t2vXrnN+Vrx4eeKJJ5R3oqusd86ZKe9EZ1TrRC9Q3oluozFW9ALVOtELtm/frlonuopqnegFyjtxMbLmhx5XXXWVPfbYY/a1r33NfuEXfsHe/va325NPPrn0Pv90OUmSFX/O/L73vc9mZmaW/h05cuScnxUvXvbv36+8E11lvXPOTHknOqNaJ3qB8k50G42xoheo1ole8KUvfUm1TnQV1TrRC5R34mKEZfA6ks1m7YorrjAzs1tuucUefvhh+8//+T8vabOdPHnStm07qyd/+vRp54necnK5nKP9ZWY24Ec24C9o0WUypFGXw2bXaqSZnXLdZOhi8tnvooh6YnFCnh3bUGe0QXqATdKK80JXj3W5V8VCjG2IaZuRj/p+rHfNeuTlMur2W4rGcH8Jj/M1d12H+8iSthtLVpLmJOtmZkhTL8impBhtczCP+p3RMr8BL7vQB93KO89PlvS1WWIuV8AX+sqkX52iiBzFeI5ZOo/kbC2hHHH8NiiPY9JrzKcMGjmf9Gkp9VlO09GYp/dZzt9j7f4oRRmaNuKTVh/boUTkOZFQI9mTok77rKT42VRq2Fe1Ol4vi9r4tbaG5nrnnNm5887P5Mxv60tWqP9PTKPm5nQL8/DZk6hzaGa2fxfqtW8rsBYtwp4NM6dRZzIsYZt37d2Jnz+DGr1mZg3SkJ+cQc3jiuH5aORQg/XIPObVzBmsscdOY30cGEGdUTMz/wzmwXOHT0Mc1UjPdAzbeOg4fn5TiHqRV+1AzxDWpzYzK+RQT7OvQF4W7QEr29ZJ7latu2zroBXbbWk08bjnTuD55BoxssnVO+7rx77Jkd6tT/qpXkBjRcgeICtrF6dNkAPSFfWTlf+uY806/LzLlK9zszp5eLhw7WJvBTymjOdqoUaUp+wT0lg2rjTafh/dyrskblrSFu73PK7zeGwRaT8HGfecR+Qb0SS9ce4eHr+adM3WaExNcivPu9qfgoj1biPyj3KMtWicj8iUIAiwH2t115Ni0YtsaZMB1lOjvGP/rzzVpTnyZ2vQ54eyKdcf6f42Zs+Vywv/380xdiU6+kykXLP8nY5+QB3ePy9PEK6JlJs+b9LZReea2gn2AOh0FM5xOv245iY4OGWa9tmtWheGuSUvKvabSlo4n4l5bp/mC0njWz7Az2zfRO/nMW+nKliHsn04T5ycxWv+zLGnnDZMnsabTddcjn5g+RwL32Po+TwvwPpaJP3xgUF3Xsfrgzrp3POyaXoaddWHR2neRtr7rSbmSyZ0k7K/n3TVp3E9UVvW1812/b/88sttYGBgw2tdGDUtbI9rEflBzTj+pJhDBRoHzMyaLfaYwvliPof9GeRp3U9jbC6hcT3BcSJouN4GGfJwCJr4mSr1P68ZuVbWarTGIY8Pb9j1Ngg8nLM6FpsdPD3WSpplHPvKOZ4e7XVs0L730K1aF4c5izNtH156O5tl7yl8P0q5acdjUS6PfZ+h9UKL5m2OZy7Pw9lPLnR9DbLk9cv+OBWa15V5mhfSPT06n02aV8ymnO+Q/BdGMuhdMxxjuyem0Gv29DH036xXyUPCI2/gvDvulMhDgmt0Y9n12mgsjGvdyrsjR49ZsbgwRvD9xsTY04O891Jcdgp59i0mLwoaryKqjXXy12Bz9hrNq/v73Dpz/NhRiMfH0cf18r37IOZrpTKH94QGBjFnTp4+gW2skB+VmXP98L1do7nH8KYRiNmTh+XIWjT/Yc+dtDbEMa3VKgs1v1Zjv7Rzc96eHoskSWL1et327dtnY2Njdv/99y+912g07MEHH7Q77rjjQncjBKC8E91GOSd6gfJO9ALlneg2yjnRC5R3otso50QvUN6JXqC8ExcDa/qlx7/7d//OXv/619uuXbtsbm7OPvaxj9kDDzxgn/70p83zPHv3u99t73//+23//v22f/9+e//732/FYtHe+ta3blT7xYuEhx56yK6++mrlnegayjnRC5R3ohco70S3Uc6JXqC8E93k9z/2JTMzO3TokJmZck50DdU60QuUd+JiZE0PPU6dOmU/9VM/ZSdOnLDBwUG74YYb7NOf/rTdfffdZmb23ve+16rVqr3zne+0qakpu+222+wzn/mM9ff3d9jyWRZ/qjdXPvtzlQz91NSnn8fW6/iTl7SfV4ekceDTT9uMtun8mJ1+Atqkn+6wvFWQ8nNYn36aHJP0UYt+/pxtYOx3kLeKW6yV5PZETD/napGcRJDlnwjSJql35+fpJ6W0zwxvL2WbPv3gKF720+W5tmTXz/3cz9mpU6c2PO/mK2ePh06XZUkuYr5M8g8ph8qqCDWS4qjRzyMTyqtO8lYJ/aQzSNEGaK27vNXKElznJW9F12PcxJzgnyo3HHkr+hlq5MpbVWv0HfoZ4pK8Vfv1jc45s2V5t+wnkFXq/1oZf47aqPLP6N2f5c7P4U8JZ5uYzCwbYyQ1VJ7Hn2RajPWt3MC4Qm1Ma0OVPlMlGZ9mC895neVVqhhnqM31insB+lRjParsEf3EvULHzX1fpbo+N0fXVujmXc3oJ9C0j0V5q8U+7FatqyzLowYVhRrlGI+HuYorP+DR+NSkOuCTTKUX8M/L8fs+S7WsQk6Gx59OijE8nqX93Bn3ufL20j4TU+1arDPnbJNHMiiOrNfK/WJmFvF36Lj8ZTV7UaqiW3kXwVyJxjv+Eh1rK+X88Pjj00+iPZ7q8e+baTxr8vdJhm818lZRtL7yVhGNCc2UyUaTfnbPc9IWtaFJNbxJNYA/H1NHNhvuT8p5DtuiNkTt872YA90cY6vLfsIfsQRaJ3mrlGu2U61wPr8B8lZJwtcPXQsd5K0i/sD5yFux3EoH+b5O8lZp8sRrhWVhFttUrSzIWXar1lXrZ6+peh2vr4Qk8GKSi4hSykyL5rncl02a19WpTtTp/aSB13iD1tr1Ol6/C58huWme23MOseJPh5zj9Xyt5rYhduRvaX3v0Xy1gvOZTB7nLyxv1cyQhGTg1tuY1ANrJC9dr5ytj6cnFuZ8t9xyS1dqXa1yVra1XkUJ1wbVZJa38lLuoLRYwoW26fGahaRKeB/8/RaNl7XQvTUVtbDDnTb4XIdWlrfi8h3RWprXK2ZmQaODvNWFi6fg9s5L3qpde7q8nigvl/HhbiD9aj6ueBXyVs3GhclbOTKzNAdIr3XYBq5FNbouqrRGZelVvi3B8la1Mua0mVlI7Yyo7iQxr4P5fgFKFzVI0pnlreqhK3VUz6KcFdfDxDt73LVKd9cTlWV9HrQ6yVuRDUHKHM65Z0fyVi1H3or6j+4rVfl+TQ1jlhZf2Aa2s0HjdK2+skwXS/qyNCBr96fKQ9H10+KOofkK3xOIaY3D/RCRvFUUrV3eqt5u92L7VzOH9pLzEpLdOI4ePWq7du3qdTPERcaRI0ds586dnT94nijvBLPROWemvBMuqnWiFyjvRLfRGCt6gWqd6AXKO9FtlHOiFyjvRLdZTc5ddA894ji248ePW39/v83NzdmuXbvsyJEjNjAw0PnLIpXZ2dkXbD8mSWJzc3O2fft25y9/15PFvEuSxHbv3v2C7KuLCeXc6lDerS/Ku84o59Yf5V1nlHfri3JudSjv1hflXWeUc+vLCznnzJR3L1ReyHnX7ZzTPbv1Q3nXGdW69eXFknNrkrfqBr7vLz2pWfx528DAwAvuJFyMvFD7cXBwcMP3sZh3s7MLkjwv1L662Hih9mM3cs5MebdRvFD7UbXuhc0LtS+Vdy9cXqj9qDH2hc0LtR9V6164vJD7UXn3wuWF2o/dzDkz3bNbb16o/aha98LlhdqPq825jf0TKyGEEEIIIYQQQgghhBBCiC6hhx5CCCGEEEIIIYQQQgghhLgkuKgfeuRyOfuN3/gNy+VyvW7KCxr14+pRX60P6se1of5aH9SPq0d9tX6oL1eP+mp9UD+uDfXX+qB+XD3qq/VB/bg21F/rg/pxbai/1gf14+pRX60PL5Z+vOiMzIUQQgghhBBCCCGEEEIIIc6Hi/qXHkIIIYQQQgghhBBCCCGEEKtFDz2EEEIIIYQQQgghhBBCCHFJoIceQgghhBBCCCGEEEIIIYS4JNBDDyGEEEIIIYQQQgghhBBCXBJctA89fu/3fs/27dtn+Xzebr75ZvvSl77U6yZd1HzgAx+wl73sZdbf329btmyxH/mRH7GnnnoKPpMkid177722fft2KxQKdtddd9kTTzzRoxZfnCjvVo9ybn1Qzq0N5d36oLxbG8q7C0c5tzaUc+uD8m5tKO/WB+Xd2lDeXTjKubWhnFsflHdrQ3m3PijvVo9yzsySi5CPfexjSSaTSf6f/+f/SZ588snkX/7Lf5mUSqXk0KFDvW7aRcvrXve65CMf+Ujy3e9+N3nssceSN7zhDcnu3buT+fn5pc988IMfTPr7+5O//Mu/TB5//PHkLW95S7Jt27Zkdna2hy2/eFDerQ3l3IWjnFs7yrsLR3m3dpR3F4Zybu0o5y4c5d3aUd5dOMq7taO8uzCUc2tHOXfhKO/WjvLuwlHerQ3lXJJclA89br311uQd73gHvHb11Vcnv/Irv9KjFr3wOH36dGJmyYMPPpgkSZLEcZyMjY0lH/zgB5c+U6vVksHBweS///f/3qtmXlQo7y4M5dzaUc5dOMq7taO8u3CUd2tDOXfhKOfWjvLuwlHerR3l3YWjvFsbyrkLRzm3dpR3F47ybu0o7y6MF2POXXTyVo1Gw771rW/ZPffcA6/fc8899tBDD/WoVS88ZmZmzMxsZGTEzMwOHDhgJ0+ehH7N5XJ25513ql9NebceKOfWhnJufVDerQ3l3fqgvFs9yrn1QTm3NpR364Pybm0o79YH5d3qUc6tD8q5taG8Wx+Ud2tDeXfhvBhz7qJ76HHmzBmLosi2bt0Kr2/dutVOnjzZo1a9sEiSxN7znvfYK1/5Srv++uvNzJb6Tv2ajvLuwlDOrR3l3IWjvFs7yrsLR3m3NpRzF45ybu0o7y4c5d3aUd5dOMq7taGcu3CUc2tHeXfhKO/WjvLuwnix5lzY6wacC8/zIE6SxHlNpPOud73LvvOd79iXv/xl5z3168qof84P5dz5o/45f5R354/65/xR3p0f6pvzRzl3/qh/zh/l3fmj/jl/lHfnh/rm/FHOnT/qn/NHeXf+qH/Ojxdrzl10v/TYtGmTBUHgPFU6ffq08/RJuPzSL/2S/fVf/7V94QtfsJ07dy69PjY2Zmamfj0HyrvzRzl3fijnLgzl3fmhvLswlHdrRzl3YSjnzg/l3YWhvDs/lHcXhvJu7SjnLgzl3PmhvLswlHfnh/Lu/Hkx59xF99Ajm83azTffbPfffz+8fv/999sdd9zRo1Zd/CRJYu9617vsvvvus89//vO2b98+eH/fvn02NjYG/dpoNOzBBx9Uv5ry7nxQzl0YyrnzQ3l3YSjvzg/l3fmjnDs/lHMXhvLu/FDeXRjKu/NDeXf+KOfOD+XchaG8Oz+UdxeG8m7tKOfMbOM80s+fj33sY0kmk0n++I//OHnyySeTd7/73UmpVEoOHjzY66ZdtPzCL/xCMjg4mDzwwAPJiRMnlv5VKpWlz3zwgx9MBgcHk/vuuy95/PHHk5/4iZ9Itm3blszOzvaw5RcPyru1oZy7cJRza0d5d+Eo79aO8u7CUM6tHeXchaO8WzvKuwtHebd2lHcXhnJu7SjnLhzl3dpR3l04yru1oZxLkovyoUeSJMl/+2//LdmzZ0+SzWaTm266KXnwwQd73aSLGjNL/feRj3xk6TNxHCe/8Ru/kYyNjSW5XC75wR/8weTxxx/vXaMvQpR3q0c5tz4o59aG8m59UN6tDeXdhaOcWxvKufVBebc2lHfrg/JubSjvLhzl3NpQzq0Pyru1obxbH5R3q0c5lyRekiTJ+vxmRAghhBBCCCGEEEIIIYQQondcdJ4eQgghhBBCCCGEEOL/354d0wAAADAM8u96HnY2YAMA4CE9AAAAAACABOkBAAAAAAAkSA8AAAAAACBBegAAAAAAAAnSAwAAAAAASJAeAAAAAABAgvQAAAAAAAASpAcAAAAAAJAgPQAAAAAAgATpAQAAAAAAJEgPAAAAAAAgYQDWU4UzUP+BAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "display_proponents_and_opponents(\n", - " test_examples_batch,\n", + " test_examples_features,\n", " proponents_indices,\n", " opponents_indices,\n", " test_examples_true_labels,\n", @@ -1573,7 +1534,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 21, "metadata": { "code_folding": [], "customInput": null, @@ -1620,7 +1581,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 22, "metadata": { "code_folding": [], "customInput": null, @@ -1638,7 +1599,7 @@ "1.0" ] }, - "execution_count": 23, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1679,7 +1640,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Generated incorrect labels in 0.52 minutes\n" + "Generated incorrect labels in 0.42 minutes\n" ] } ], @@ -1720,7 +1681,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 24, "metadata": { "code_folding": [], "customInput": null, @@ -1753,7 +1714,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 25, "metadata": { "code_folding": [], "customInput": null, @@ -1794,7 +1755,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 26, "metadata": { "code_folding": [], "customInput": null, @@ -1847,7 +1808,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 27, "metadata": { "code_folding": [], "executionStartTime": 1646014840238, @@ -1877,7 +1838,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": { "code_folding": [], "customInput": null, @@ -1888,7 +1849,32 @@ "requestMsgId": "d2d99bab-652f-429d-afd7-ba27ad1c38e4", "showInput": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2022-11-15 14:58:58-- https://pytorch.s3.amazonaws.com/models/captum/influence-tutorials/cifar_10_mislabelled_dataset.zip\n", + "Resolving fwdproxy (fwdproxy)... 2401:db00:12ff:ff13:face:b00c:0:1e10\n", + "Connecting to fwdproxy (fwdproxy)|2401:db00:12ff:ff13:face:b00c:0:1e10|:8080... connected.\n", + "Proxy request sent, awaiting response... 200 OK\n", + "Length: 2780482 (2.7M) [application/zip]\n", + "Saving to: ‘checkpoints/cifar_10_mislabelled_dataset.zip’\n", + "\n", + "checkpoints/cifar_1 100%[===================>] 2.65M 824KB/s in 3.3s \n", + "\n", + "2022-11-15 14:59:02 (824 KB/s) - ‘checkpoints/cifar_10_mislabelled_dataset.zip’ saved [2780482/2780482]\n", + "\n", + "Archive: checkpoints/cifar_10_mislabelled_dataset.zip\n", + " inflating: checkpoints/cifar_10_mislabelled_dataset/checkpoint-0.pt \n", + " inflating: checkpoints/cifar_10_mislabelled_dataset/checkpoint-20.pt \n", + " inflating: checkpoints/cifar_10_mislabelled_dataset/checkpoint-40.pt \n", + " inflating: checkpoints/cifar_10_mislabelled_dataset/checkpoint-60.pt \n", + " inflating: checkpoints/cifar_10_mislabelled_dataset/checkpoint-80.pt \n", + " inflating: checkpoints/cifar_10_mislabelled_dataset/checkpoint-100.pt \n" + ] + } + ], "source": [ "num_epochs = 101\n", "do_training = False # change to `True` if you want to do training\n", @@ -1919,7 +1905,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 29, "metadata": { "code_folding": [], "customInput": null, @@ -1963,7 +1949,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 30, "metadata": { "code_folding": [], "executionStartTime": 1646067341246, @@ -1977,7 +1963,7 @@ "tracin_cp_fast = TracInCPFast(\n", " model=net,\n", " final_fc_layer=list(net.children())[-1],\n", - " influence_src_dataset=mislabelled_dataset,\n", + " train_dataset=mislabelled_dataset,\n", " checkpoints=mislabelled_dataset_checkpoint_paths,\n", " checkpoints_load_func=checkpoints_load_func,\n", " loss_fn=nn.CrossEntropyLoss(reduction=\"sum\"),\n", @@ -2000,7 +1986,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 32, "metadata": { "code_folding": [], "executionStartTime": 1646067346865, @@ -2014,13 +2000,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "computed self influence scores for 50000 examples in 0.59 minutes\n" + "computed self influence scores for 50000 examples in 0.50 minutes\n" ] } ], "source": [ "start_time = datetime.datetime.now()\n", - "self_influence_scores = tracin_cp_fast.influence()\n", + "self_influence_scores = tracin_cp_fast.self_influence()\n", "total_minutes = (datetime.datetime.now() - start_time).total_seconds() / 60.0\n", "print('computed self influence scores for %d examples in %.2f minutes' % (len(self_influence_scores), total_minutes))" ] @@ -2042,7 +2028,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 33, "metadata": { "code_folding": [], "executionStartTime": 1646067380564, @@ -2054,7 +2040,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAEWCAYAAAC+H0SRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABDTElEQVR4nO3dd5hdZbn38e9vWjLpPaSQQglVCBACKEhoiihgQaUo/SAqgkc9L4IFFI96rIiCiID0piCgooAYaigJEBIChIQkJEMC6WUmbcr9/vE8k1nZ7D0lmZm1Zub+XNcke/V71Xs9qz0yM5xzzjnXvorSDsA555zrijwBO+eccynwBOycc86lwBOwc845lwJPwM4551wKPAE755xzKfAE3AYk3STpR+0wnVGSKiUVF+h+uaTb2mjap0l6JNH8IUlzYjyfbGLYWZImtUVcLSHpWknfa0Z/CyQd3cxxmqRdtjGeLcNuzzbUXttfW5E0SVJF2nEASDpM0uy040jK2U7KJf1N0hpJf87T76WSrm/meCXpT5JWSXohS+uhs2oyAceDz4Z4YH037ty9cvr5oKT/SFoXN4S/Sdozp58+kq6UtDCOa25sHtTaM9VVmNlCM+tlZrVtOR1JY+JOX5KY9u1m9pFEbz8Efhfjub+x8ZnZXmb2eNtE23xmdr6ZXZF2HC67zOwpM9st7TgacRIwFBhoZp/N7WhmPzazc5s5rkOBY4CRZjaxFWN0BTS3BHy8mfUCxgP7AZfUd5B0CPAI8AAwHBgLvAI8I2mn2E8Z8BiwF3As0Af4ILACaLMVnUwYrs2NBmalHYRzXcxo4E0zq2mlcS0ws6pWGFen0yb5xMwa/QMWAEcnmn8G/CPR/BRwTZ7h/gncEn+fC7wH9Gpqeonh9wIeBVbGYS+N7W8CfpTobxJQkRPvxcAMYBPwXeAvOeP+DXBV/N0XuAFYArwD/AgozhNPd2ADMCg2fxeoAfrE5h8BVyZivBr4B7AOeB7YOTGu3RPzNhv4XKJbo8PmxDQGMKAkNo8FnojDPQr8Drgt0f/BwBRgNeEkaVKi2+PAFcAzcfhHEvO6ME6nMv4dApwJPB27vwXUxeVTCfwe+GVOrH8Dvp67TQGXA/cAt8TpzgImJIbbH3g5dvszcHdy/edM48wY/6/jPM4jnOidCSwClgJn5CzrH8Xfg4C/x+FWErbrojzxTgSejf0ticu4LDFOAy6M014O/Lx+PLH72cDrwCrgYWB0zrC7FNjOPwFMj9OdAuyT6LYf8FJcRncDdxVaRo3FQNhvnqNhe/pyXB/dY/OfgXeBNcCTwF45y/Iawn5fGdfDDsCVcTpvAPvl7KeXAK/F7n9KTGcSW+/Tw4F7gWXAfODCRLeJwDRgLeE48atGto2nc9oll/dxMZZ1hOPAtxo5vnyLcHxZE5d390T3/xe3i8WE496WaRSIaV6c5nzgtJZsJ8APgM1AdVzm5+SZxuXEYwANx4szCPv0cuA7sds5wEagNo7rB3nmfat5oWXbaFPL7cQ47FrC8eTYlhyfm9oWCKX7+mPfIuDMxPhvIWxbbxOO60WJ9VN/PFkZp90N+EVcfu8B1wLlTR1DCu6LjXXMc/AZCcwEfhObe8QVdkSe4c4ClsTfdwE3NzWtxLC94wL/JiHx9QYOKrDSczeSBXFF7giUE87q1tOQKIvjuA+OzfcDfwB6AkOAF4AvFYjrSeAz8fcjcUP5WKLbpxIxrowbRAlwO3BX7NYzbgBnxW77E3aEvZoaNk88Y9g6AT8L/CpuJB8m7Nj1O98IwhWH4whXPo6JzYNj98fj/IyLy+1x4Kf5ppPvgMb7k9RiGjbkQXEdDM3T7+WEHf+4uG5+AjwXu5URdoqLgFLg04QDTmMJuCYu22LCDrOQcELTDfhIXCa9crelON1r43RKgcMA5Yn3AMKJTElcLq8TTywSB6nJwABgFPAmcG7s9klgLrBHHP67wJQCCSEZ2/6Ek4eD4nydEWPqllhG/x3jPolwQC60jArGQNgunozrZFfCwT+ZNM8m7IvdCIl1es7BeHlcPt2B/xCSyumJdTE5Z3t5lbCfDiAc6OrndxJxn44xvQh8P87rToSk9dHENv/F+LsXcb8usG00loCXAIfF3/2B/Rs5vrxAOCkYENf/+bHbsYQTlL0Ix8ZbKZCACceBtcBusXkYDceAgusoT9yXkzjJzjOdLd1p2I//SNjH9yUUUvYosE/nznvBBEwj22gzlttEQlI+Jq7vEcDu23B8zrstEPbDdcAphH1kIDA+druFcPW2d1w+bxJPZGg4nnwtrodywnb/YJyH3oSCxU+aOoYUXD+NdUwsuMo4A0a4lNwvdhsZ2+2eZ7hjger4+1Hiwbw5f3FBvVyg25aV3sgOcnbOME8Dp8ffxwBvxd9DCRtgec60JxeY9hXAVXFlvEtIDD/l/aXjm4DrE8MdB7wRf38eeCpnvH8ALmtq2DzxjInLvyRuZDVAz0T3O2jY+S4Gbs0Z/mFiiZCQcL+b6PYV4F+500l0P5MCCTg2vw4cE39fADyUr1/CAeLfiW57Ahvi7w8TznqV6P40jSfgOYnmD8S4hybaraBh59uyLRHuYT9A/oPlVvOW0+3rwF8TzUY8e08sx8fi73+SKKUQDjbraSiBFkrAvweuyJnubODwuIwW5yyjKY0so6ZiGEM4AXwduKSRfbRfjLdvIt4/Jrp/DXg9Z12szlmm5+ds5/X75SQaEvBBwMKcaV8C/Cn+fpJQWhtUKNZ822ue5b0Q+BLxRD3Rz5ZYEnF/IdH8M+Da+PtG4sE4Nu9C4wl4NfAZEsefbdhOLqflCXhkovsLwMkF9unceW8sARfcRpux3P4A/DpP7C09PufdFuL28tc8/RfH8e+ZaPcl4PHE8liY6Cagiq2vZh4CzI+/Cx5DCv019x7wJ82sd1whuxNKNBDOkOsIZ2+5hhHOiCEc9PL1U8iOhNLYtlqU03wHYcUBnBqbIZSOS4ElklZLWk3YGIYUGO8ThGWwP+FKwKOEg+DBwFwzW57o993E7/WEM7L6aR5UP704zdMIl+uaGrYxw4FVtvX9m7cTv0cDn82Z7qFsvV62ZbqF3Ax8If7+AqE0UEjudLvH+y3DgXcsbt1R7rrN9V7i9wYAM8ttl2++fk4odTwiaZ6kb+cbuaRxkv4eH0hcC/yYhv0hX4xvx/mAsA5+k1j+Kwk79Ygm5mk08M2cdbdjHG++ZfR2nnEkx1UwBjNbQCjBjyFcOaif72JJP5X0VpzvBbFTct5zl3NTy73QcsqNd3jOvF9KODhDuHQ6DnhD0lRJnyg45437DOEk4G1JT8RnWwoptJ8MZ+t5Kritxv3088D5hOPPPyTtHjtv63bSXK25n9drbBttarqFjvctPT4X2hYKjX8QDVeQ6r3N1ss5uQ4HE65svJiI51+xPTTzGJLUoteQzOwJwlnPL2JzFaHY/76n74DPEUrLAP8GPiqpZzMntQjYuUC3KsJCqLdDnn4sp/nPwCRJI4FP0ZCAFxHOgAaZWb/418fM9iow7SnAbnEcT5jZa4SS58cJybk5FsVh+yX+epnZl5s5fCFLgP45y3hUznRvzZluTzP7aTPGnbs8m+M24ERJ+xIupd2/DeNYAoyQpES7HbdhPE0ys3Vm9k0z2wk4HviGpKPy9Pp7wv3MXc2sDyEZKKefZIyjCCVUCOvgSznroNzMpjQR3iLgf3OG62Fmd5J/GY3KP5qmY5B0HOGs/jHCAaXeqYT7dEcT7puNie1z570lCi2n3Hjn58Tb28yOAzCzOWZ2CuGg/H/AXwocZ7Y6bkja6rhhZlPN7MQ4nvsJzyW01BLCVcF6jW6rZvawmR1DOAl+g3BpGLZ9O2lr6yl87G1sG21KoeN9i47PjWwLhca/nHC7ZnSi3SjCVbcto83pfwPhVkF9PH0tPKDckmPIFtvyHvCVwDGSxsfmbwNnSLpQUm9J/eM7iIcQLgdAKP0sAu6VtLukIkkD4ztqxyVHHs88jwD2jq8rLZT0sKSfS+pLuL97nKQBcSf6elMBm9kywiXWPxF25tdj+yWEe7m/jK9JFUnaWdLhBcaznnA/6qs0JNwphMsWzU3AfwfGSfqipNL4d6CkPZo5fF5m9jbhAYQfSCqTdChhI6h3G3C8pI/G0kx3hff8RuYd4daWEa507NSCeCqAqYR1f6+ZbWj2zDR4lvCMwQWSSiSdSBs9NS/pE5J2iYlsbZxuvte7esfulbHEku/E6X/ifrAj4TbF3bH9tcAlkvaK0+wrKd/Ja64/AudLOkhBT0kfl9SbsIxqgAvjMvo0jS+jgjEovBJ4A+HhoTMI20v9/tmbcDBcQTgI/7gZcTflq5JGShpAOJG5O08/LwBrJV2s8M5rsaS9JR0YY/6CpMFmVke4pAv519srwF6SxkvqTrg0SxxHmcJ77X3NrJqG9d9S9wBnSdpDUg/Cfeu8JA2VdEJMEJsIt/nqp7mt20lbmw6cGtfBsYSrf/Ua20abcgNhuR0Vj8EjJO3e0uNzI9vC7cDRkj4X95GBksZbeH3zHuB/Y+4aDXyDcKx8nzjePwK/ljQkTnOEpI/G3809hmzR4gQck9ktwPdi89PARwkPyCwhFOH3Aw41szmxn02EM+c3CJdt1xJ2rEGEp3yJM/BPws7/d8IDMy8QdvwDCPcGHyBcjnmFcAnsEfLvtPncEWO4I6f96YTLEPVPY/6Fxi+XP0G4LPJCork34f5Dk8xsHWHeTiac8b9LOFvr1pzhm3Aq4Z7ZSuAywnqqn+4iQgnmUkJCXQT8D83YBuKJx/8SXi1bLengZsZzM+HeX2OXnxub7mbCdnUOYYf6AmHb2LQt42vCroQrNZWEpHaN5X9X+VuE5byOsDPm2/4eIJyoTSc8zX4DgJn9lbCu71K4jPsq8LGmAjOzacB/EZ64XkW4zHVm7Fa/jM6M3T4P3NfIuBqL4TrgATN7yMxWEJb79ZIGEraltwmlg9cIT0tvrzsI+/C8+Pe+j4fEg+TxhFcg5xNKIdcTSuEQnjWZJamS8HbDyWa2Mc943iTco/s3MIfwLEHSF4EFcZmcT8Ptk2Yzs38SnhGZTFhHz8ZO+bbXIsJDposJ++vhhOcFtnk7aQcXEdbFasJts/vrOzS2jTbFzF4gPDj5a8LDWE/QUCptyfE577ZgZgsJtxe+SVjW0wkPoEF4VqGKsP09Tdgmb2wk3IvjvD0X182/CVdFofnHkC3qn/LMBEmDcu6jblM/LhskfZhwNjkmnj22xjifJzy88afWGJ9Lh6QFhKfD/512LG0lXtV6lfAkcGu8p+s6mUx9irI5idWTb8cgqZRwxnz99iRfSYdL2iFeOjoD2Ifw4INzmSPpU/GSdn9CKfZvnnxdIZlKwAqfslxb6C/t+FzzxDP/1YRLRVdu5+h2I9xyWEO4hHRSvDfkXBZ9iXCL5y3C/b/tfbjSdWKZugRdT9IPCfdGbyU8ZXka0NvMfpZqYM4551wryWoCft7MDmqqnXPOOddRZbWyglpJpxE+YWmEj2i0aY0/jRk0aJCNGTMmrck751yH9OKLLy43s8FN99k1ZTUBn0p4jPw3hAT8TGyXijFjxjBt2rS0Ju+ccx2SpMa+ytblZTIBW/gc3olpx+Gcc861lUwmYEmDCS91jyERo5mdnVZMzjnnXGvKZAImfEnoKcJXRVK79+ucc861lawm4B5mdnHaQTjnnHNtJVMf4kj4u3IqaXDOOec6k6wm4IsISXhD/ArWuuZ8CUvSjZKWSnq1QHdJukrSXEkzJO3f6pE755xzzZDJBBzr+yyKdWD2ic19mjHoTYQaMQr5GKHGil2B8wh1uzrnnHPtLpP3gGMtOu9jZo1W+WdmT0oa00gvJwK3WPj813OS+kka5t8Wds4B1NTWsaG6ltXrq9lUU8fKqs0A1NYZZkatGXUGdWbU1RkrqjZTVhzKMRbrbjcLf6EdmFlDre6W0x/Jfm2r4UgMF8ZpLFmzkT7lpe+LO/lFw+THDW2rfhqm01S/yQ7nHLoTfXu8f5pu+2UyARPqqa3XnVDB+IvAkds53hGEenDrVcR270vAks4jlJIZNWrUdk7WOdcUM6O2zqjaXMuqqs1U19ZRXWusqNpEsURNXUiAtbVGTV0dK6uq2VxTS3WtUbFqPQYsXLment1KqKmtY0XlZio31dCjrJi6mMDqLCTTOgt/c5ZWMqhXN2rrbEuydYEU/j/pgB09AbeRTCZgMzs+2SxpR6A1KmJQvskViOE6QgXlTJgwIXsfzHaujW2srmVTTR2Vm2qo2lTDisrNWxJXfSnQzKirY0s7M2N51WaKJeYtq6SspIjZ766jT3kp85ZV8s7qDZSXFVNXFxJhrRnL1uWrr37blJUU0btbCYN6daOkWFRuqqFntxJ6dyumuEgUSRSJ+L/YaVAvqjbXMGZgT0qLi6jcVM2uQ3qzsbqW0YN6UiQoKy6iV/cSiiWKcsZRXBQOKT3KipG05QAjQX1TfSJr+P/9/W3ptuWfhvYN/YbhupcWU1TU0A+JcW35nVgmSnRQvn6V77Do2kMmE3AeFcDerTSeHRPNI4HFrTBe5zoMs1DKnLu0kqnzV7JgRRVrNlRTtamGN9+rxMxYvGZjq02vrKSI2jpj7KCedCspZmjv7owa2IOSIlFcVERxEayo3MwuQ3pRVlxEWUkR/XuUUV5WTGlxKPkO6FFGWUkRxUXa8terWwl9updSUixKi4soKy6iqMiTies4MpmAJf2WhpJpETCeUCfs9noQuEDSXcBBwBq//+s6CzNj4cr1vPrOWpas2cCyyk28tbSKtRurefO9dXQrKWL9plrWbcpfP3y3kiJ2HtyL4iKx5/C+9O5ewl7D+1BaXESRYIe+5QD071GKckqSqv9dFP4vKw5JtE95iZewnCsgkwkYSNZ8UAPcaWbPNDWQpDuBScAgSRXAZUApgJldCzwEHAfMBdYDZ7Vu2M61nrUbq5nzXiVvvreOyo01LK/aRGlREdV1dWyqrmNGxWrqDDbV1DH73bXUFbhR0q2kiOH9yunVrYTxe/ajpq6Ofj3K2H2H3owb2psxA3tSXlbcvjPnnMtmAjazmyWVAeNiq9nNHO6UJrob8NXtDM+5VlNTW8eSNRtZXrmJilUbePHtVUx5azlvvldZcJiykiJKi0Sv7iUUSew1vC879i+nSGJon25MHDuQPYf3YVCvMnqUlWy5T+mcy5ZMJmBJk4CbgQWE5wZ2lHRGU68hOZdVm2vqeGtZJc++tYK5yyp5bfFaVlZtZuHK9Xn7Hz2wB7sN7c3H9xnG2EE9GdCzjEG9utG91EuqznUWmUzAwC+Bj5jZbABJ44A7gQNSjcq5RmysruWVRat5as5yigTLqzbz3LwVrFlfzYqcV1y6lRQxakAPTj9kNAN6lrFj/x4M69edEf3KGT2wZ0pz4JxrT1lNwKX1yRfAzN6U5C+iuUzYVFPL1PmrmPHOam6esoDq2vzvkJYWi5KiIsYM6snnD9yR0uIiJu02mHFDe9OzW1Z3Pedce8nqUWCapBuAW2PzaYQPcTjXLsyMV99Zy/RFq6jaXMszc5fzzqoNLFhRtdXDTuWlxQzp040Txw+nuraOnQb1YuLYAew5rI+/EuOca1RWE/CXCQ9LXUi4B/wkcE2qEblObcPmWp6bv4LH31jKlLdWMGfp1g9B9Sgrple3EnbfoQ/jhvZiwpgBTBw7YMtrO84511KZSsCSHjOzo4AfxvqAf5V2TK5zWruxmpcXrmbyG0u5Z9oi1m+u3dKtR1kx43fsxx7D+nD8vsPYa1hff5/VOdfqMpWAgWGSDgdOiB/L2OqIZ2YvpROW6+iqa+uY/MZSbpqygClvrdiq294j+jCsbzkf3nUQR+0xlOH9ylOK0jnXlWQtAX8f+DbhE5G5pV9j+ytjcF1IXZ3xtxmLeWD6Yp6as4zq2nDztqRIHLLzQI7eYygf2Wsow/p6wnXOtb9MJWAz+wvwF0nfM7Mr0o7HdSy1dcbrS9Zyz7RFPDN3OW8tq9rS7fh9h3PEboP54M6D2KFv9xSjdM65IFMJuJ4nX9cctXXGM3OX88xby3nurRW88e46NtXUbel+1O5DGDuoJxccuQv9epSlGKlzzr1fJhOwc42Zt6ySn/1rNv+a9e6Wdv16lHL4uMFM2m0IH9ploH/MwjmXeZ6AXYfx3LwV3PtiBX9+sQKA3XfozWf2H8mxe+/AyP7l/pSyc65DyWQClrQzUGFmm+J3ofcBbjGz1WnG5drfmvXVPD13OVdPnstrS9YCMG5oL371ufHsPaJvytE559y2y2QCBu4FJkjaBbiBUI/vHYSqBF0XsGTNBi57YBaPvv4eZtC3vJRTJo7inEPHssuQXmmH55xz2y2rCbjOzGokfQq40sx+K+nltINybcvMePCVxfzlxQqemrMcgD7dS/jJp/fhmD2HUlZSlHKEzjnXerKagKslnQKcARwf23llDJ3UK4tW8/Tc5dz5wkIqVm0AwhPMZ31oLIfuOijl6Jxzrm1kNQGfBZwP/K+ZzZc0Frgt5ZhcK6raVMOV/36Te6ZVsGZDNQBDenfjpANGcsWJe1Ne5vXeOuc6t0wmYDN7TdLFwKjYPB/4abpRudZgZvx9xhJ++585vPleJXsN78Nn9h/J+YfvxODe3fxJZudcl5HJBCzpeOAXQBkwVtJ4QgUNJ6QamNsur76zhh/+/TVemL8SgF99bl8+vf/IlKNyzrl0ZDIBA5cDE4HHAcxserwM7TogM+PX/57DVY/NAeAT+wzjihP3pn9P/zqVc67rymoCrjGzNTmXI61Qzy67Klat5zO/n8J7azex1/A+/P60Axg1sEfaYTnnXOqymoBflXQqUCxpV+BCYErKMbkWunryXK57ch5rNlTzpQ/vxEVH70qPsqxucs45176yejT8GvAdYBNwJ/Aw4BU0dBDvrN7AF294nnmxNqK7zzuYg3YamHJUzjmXLZlMwGa2npCAv5N2LK5l/jlzCV++/SUAPrb3Dlx58ni6lfgrRc45lytTCVjS32jkXq8/BZ1dG6tr+eY9r/CPmUsY0a+cX3x2Xw7Z2Uu9zjlXSKYSMOHVI9fBTF2wkrNvmsq6jTWcsO9w/vdTe9O7u3+4zDnnGpOpBGxmT9T/llQG7E4oEc82s82pBebyqq6t49L7ZvLnFysoLhI/OGEvzvjgmLTDcs65DiFTCbiepI8D1wJvASJ8jONLZvbPdCNz9d5bu5Hzbn2RVxatZtzQXtx01kSG9ytPOyznnOswMpmAgV8CR5jZXNhSP/A/AE/AGXD9U/P40T9eB+DCI3fhGx/ZLeWInHOu48lqAl5an3yjecDStIJxgZnxu//M5ZePvsmoAT248uTx7D+qf9phOedch5TVBDxL0kPAPYR7wJ8Fpkr6NICZ3ZdmcF2RmXH2TVOZPHsZh+06iBvPPJDSYq+f1znntlVWj6DdgfeAw4FJwDJgAKFu4E8UGkjSsZJmS5or6dt5uveV9DdJr0iaJemstgm/c9lYXcunfz+FybOXcfQeQ7nprImefJ1zbjtlsgRsZi1OjJKKgauBY4AKQon5QTN7LdHbV4HXzOx4SYOB2ZJu9yesC1u8egNn3PgCc5ZW8l+HjeXS4/bwKgOdc64VZDIBx5qPvgaMIRFjEx/imAjMNbN5cRx3AScCyQRsQG+FDNILWAnUtGrwncjk2Us5609TAThl4ihPvs4514oymYCB+4EbgL8Bdc0cZgSwKNFcARyU08/vgAeBxUBv4PNmlnf8ks4DzgMYNWpUc+PuNH716Jtc9dgchvftzo8//QEm7TYk7ZCcc65TyWoC3mhmV7VwmHxFs9zPWn4UmA4cCewMPCrpKTNb+74Bza4DrgOYMGFCl6kKsa7O+O4Dr3LH8wsZN7QXt51zEEP6dE87LOec63SymoB/I+ky4BFCjUgAmNlLjQxTAeyYaB5JKOkmnQX81MwMmCtpPuFrWy+0StSdwGUPzuKO5xdy5O5DuP70CRQV+SVn55xrC1lNwB8AvkgoqdZfIrbYXMhUYNd4//gd4GTg1Jx+FgJHAU9JGgrsRnjH2AH/enUJtz73Nh8eN5g/evJ1zrk2ldUE/Clgp5Y8nWxmNZIuINQdXAzcaGazJJ0fu19LqFP4JkkzCZesLzaz5a0ffsfz/LwV/Pfdr7DToJ788fQDKPbk65xzbSqrCfgVoB8t/PqVmT0EPJTT7trE78XAR1ohvk5l7tJ1nHvzNAzjutMneP29zjnXDrKagIcCb0iaytb3gL0+4Fa2dO1GTrr2WTbV1vHPiw5j58G90g7JOee6hKwm4MvSDqArMDP+370zWL2+mutPn+DJ1znn2lEmE3CyXmDXdm57fiGPz17GhUfuwtF7Dk07HOec61Iy+UFfSQdLmiqpUtJmSbWS3veurtt2971Uwffuf5XdhvbmwqN2TTsc55zrcjJZAiZ8sepk4M/ABOB0wLNEK7n8wVncNGUBfbqX8KezDqTEK1Zwzrl2l9UEjJnNlVRsZrXAnyRNSTumzuCvL1dw05QF7DOyL7efexC9u5emHZJzznVJWU3A6yWVAdMl/QxYAvRMOaYOb/qi1fz33a8wol8593zpELqX+utGzjmXlqxee/wiIbYLgCrCJyY/k2pEHdzcpZWcct1z9Cwr5uazJ3rydc65lGW1BLzBzDYCG4EfAEjaLd2QOq6N1bV85fYX2VBdywNf/RC7DPHXjZxzLm1ZLQE/Jelz9Q2Svgn8NcV4Oqy6OuMrt7/Em+9VcsYho9l3x35ph+Scc47sloAnAddJ+izhq1ivAxNTjaiDuu6pefznjaUcufsQfnDi3mmH45xzLspkCdjMlgD/Ag4BxgC3mFllqkF1QLMWr+GXj8xm/I79uOGMCWmH45xzLiGTJWBJjxKefN6bUK/vjZKeNLNvpRtZx7Fhcy1n3zSVkqIifv358Uheu5FzzmVJJkvAwNVmdrqZrTazVwkl4TVpB9WRfOevM3lv7Sau+cL+jB3kb3A551zWZDIBm9n9kg6VdFZs1R+4Lc2YOpLn5q3gvpff4cTxwzlityFph+Occy6PTCZgSZcBFwOXxFZleAJulpraOi69byYSXH78XmmH45xzroBMJmDgU8AJhI9wYGaLgd6pRtRB3PHCQuYtr+KHJ+5N/55laYfjnHOugKwm4M1mZoABSPKbmM2wcMV6fvzQ6+w5rA+nThyVdjjOOecakdUEfI+kPwD9JP0X8G/gjynHlGlVm2o44eqnqTO46pT9KC7yp56dcy7LMvkakpn9QtIxwFpgN+D7ZvZoymFl2h+eeIvV66v57sf38E9NOudcB5DJBAwQE64n3WbYXFPHzc++zeHjBnPuYTulHY5zzrlmyOolaNcCv5s8lzUbqjn1IL/v65xzHYUn4A5uytzlXPXYHA4fN5iP7Dk07XCcc841kyfgDmxjdS2X/nUmfctL+eXn9vXPTTrnXAeSqXvAkmYSXz3Kx8z2acdwMu+3/5nDghXr+flJ+zCoV7e0w3HOOdcCmUrAwCfi/1+N/98a/z8NWN/+4WTX3KWVXD35LfYY1oeTDhiZdjjOOedaKFMJ2MzeBpD0ITP7UKLTtyU9A/wwnciypaa2jgvvfBmAX/mlZ+ec65Cyeg+4p6RD6xskfRDwr2FFV/57Dq8tWcuPPrk3ewzrk3Y4zjnntkGmSsAJ5xDqAO5LuCe8Bjg73ZCyYf3mGm58Zj4Txw7gCwePTjsc55xz2yiTCdjMXgT2ldQHkJl5XcDRrx55k/Wba/nypJ3TDsU559x2yOQlaElDJd0A3G1mayTtKemcZgx3rKTZkuZK+naBfiZJmi5plqQnWj34NrSpppa7py7iwDH9vZ5f55zr4DKZgIGbgIeB4bH5TeDrjQ0gqRi4GvgYsCdwiqQ9c/rpB1wDnGBmewGfbc2g29qD0xezblMN5xzqn5t0zrmOLqsJeJCZ3QPUAZhZDVDbxDATgblmNs/MNgN3ASfm9HMqcJ+ZLYzjXdq6YbedujrjtucXMqJfuX/xyjnnOoGsJuAqSQNpqA/4YMKDWI0ZASxKNFfEdknjgP6SHpf0oqTTC41M0nmSpkmatmzZspbPQSv724zFvLJoNWd8cDRFXtWgc851eJl8CAv4BvAgsHN8/3cwcFITw+TLSrlf1SoBDgCOAsqBZyU9Z2Zvvm9As+uA6wAmTJhQ8Otc7eXuqYvYcUA5Z39obNqhOOecawWZTMBm9pKkwwl1AQuYbWbVTQxWAeyYaB4JLM7Tz3IzqyKUsp8E9iXcY86sjdW1vLRwFScfOIqS4qxetHDOOdcSmUrAkj5doNM4SZjZfY0MPhXYVdJY4B3gZMI936QHgN9JKgHKgIOAX29n2G3uHzOWsLG6jqP38Hu/zjnXWWQqAQPHN9LNgIIJ2MxqJF1AeHq6GLjRzGZJOj92v9bMXpf0L2AG4QGv683s1dYLv238Y+YSAA7aaUDKkTjnnGstmUrAZnbWdg7/EPBQTrtrc5p/Dvx8e6bTnl5fspb/vLGU0w4aRalffnbOuU4jUwlY0jca625mv2qvWLLi7qnhwe5vHDMu5Uicc861pkwlYKB32gFkyfrNNdw0ZQHH7DmUgV7fr3POdSqZSsBm9oO0Y8iSx14P3wn5zP5e369zznU2mbypKGmcpMckvRqb95H03bTjam/3vVRBvx6lHLWHf/fZOec6m0wmYOCPwCVANYCZzSC8VtRlrN1YzeTZyzhx3+H+8JVzznVCWT2y9zCzF3La1aQSSUqen7cSgA/uMijlSJxzzrWFrCbg5ZJ2puFb0CcBS9INqX3dNGU+3UuLOHzc4LRDcc451wYy9RBWwlcJ32HeXdI7wHzgtHRDaj8bNtfywvyVHLzTQLqXFqcdjnPOuTaQyQRsZvOAoyX1BIrMbF3aMbWnR157l+pa44xDxqQdinPOuTaSyUvQkgZKugp4Cnhc0m9i9YRdwuQ3ltKjrJgjdvenn51zrrPKZAIG7gKWAZ8hVEO4DLg71Yja0bS3VzFx7ACKvd5f55zrtLKagAeY2RVmNj/+/Qjol3ZQ7aFi1XoqVm3gsF394SvnnOvMspqAJ0s6WVJR/Psc8I+0g2oPz8xdDsAHd+4yV9ydc65LytRDWJLWEV49EvAN4LbYqQioBC5LKbR288L8VfTpXsK4of5ZbOec68wylYDNrEtnnbo6496XKjh6j6F+/9c55zq5TCXgJEn9gV2B7vXtzOzJ9CJqe3OXVQKw/+h+6QbinHOuzWUyAUs6F7gIGAlMBw4GngWOTDGsNjdtwSoAxo/sl24gzjnn2lxWH8K6CDgQeNvMjgD2I7yK1Km9vDAk4AljBqQciXPOubaW1QS80cw2AkjqZmZvALulHFObMjOembuco/cYQllJVleLc8651pLVI32FpH7A/cCjkh4AFqcaURtbtHIDi9ds9Pd/nXOui8jkPWAz+1T8ebmkyUBf4F8phtTmno7v/04Y0z/lSJxzzrWHTCVgSflufs6M//cCVrZjOO3qmbeW079HKXsO65N2KM4559pBphIw8CINH+LIZcBO7RtO+6irM16Yv5IDxwxA8vd/nXOuK8hUAjazsWnHkIZn561g2bpNfGSvHdIOxTnnXDvJ5ENYkj4U6wJG0hck/UrSqLTjaiuT31hKWXERx33AE7BzznUVmUzAwO+B9ZL2Bf4f8DZwa7ohtZ1HXnuPPYf3oUdZpi5IOOeca0NZTcA1ZmbAicBvzOw3QKf8TnRdnbFw5Xr69yhNOxTnnHPtKKtFrnWSLgG+AHxYUjHQKTPUolXrAf/6lXPOdTVZLQF/HtgEnGNm7wIjgJ+nG1LbmLesCoAJo/39X+ec60oyWQKOSfdXieaFwC3pRdR2HnvjPQD2GtE35Uicc861p0wlYElPm9mhktYR3vvd0gkwM+t0X6l4a2kVA3qW0atbplaFc865NpapS9Bmdmj8v7eZ9Un89W5O8pV0rKTZkuZK+nYj/R0oqVbSSa0Zf0vV1RmvLVnLUbsPSTMM55xzKchssUtSf2BHEjGa2UuN9F8MXA0cA1QAUyU9aGav5env/4CH2yLulpi1eC1rNlQzcaw/gOWcc11NJhOwpCuAM4F5QF1sbcCRjQw2EZhrZvPiOO4ivMb0Wk5/XwPuJdQ3nKon54Qqjg8f5zUgOedcV5PJBAx8DtjZzDa3YJgRwKJEcwVwULIHSSOATxESeaMJWNJ5wHkAo0a1zUe4ZlSsZnjf7gzp071Nxu+ccy67MnUPOOFVoF8LhylUgUPSlcDFZlbb1MjM7Dozm2BmEwYPbpsS6utL1rHPyH5tMm7nnHPZltUS8E+AlyW9SngfGAAzO6GRYSoI94zrjQQW5/QzAbgr1jg0CDhOUo2Z3d8aQbfE6vWbWbhyPZ89YGR7T9o551wGZDUB30x4UGomDfeAmzIV2FXSWOAd4GTg1GQPydqWJN0E/D2N5AswbcEqAMaP6pfG5J1zzqUsqwl4uZld1ZIBzKxG0gWEp5uLgRvNbJak82P3a9sgzm323rqNAIzoV55yJM4559KQ1QT8oqSfAA+y9SXogq8hxe4PAQ/ltMubeM3szO0Pc9s9N28lRYLRA3umGYZzzrmUZDUB7xf/PzjRrqnXkDqUOe+tY2if7hQX5Xt2zDnnXGeXyQRsZkekHUNbqqsz3lm9wStgcM65LiyrryF1ahWrNrBuYw1H7TE07VCcc86lxBNwCp6dtxyAPYZ1urolnHPONVOmErCkz8b/xzbVb0c28501AOw9whOwc851VZlKwMAl8f97U42ijS1du4ny0mK6lRSnHYpzzrmUZO0hrBWSJgNjJT2Y27GJL2F1GI+/uYzDdhmUdhjOOedSlLUE/HFgf+BW4Jcpx9ImVlRuYnNNHbsM6ZV2KM4551KUqQQcaz96TtIHzWyZpN6htVWmHVtrmRHv/x44xusAds65rixr94DrDZX0MqFWpNckvShp77SDag0VK9cDsNsOvVOOxDnnXJqymoCvA75hZqPNbBTwzdiuw5u1eC19y0sZ2d+/Ae2cc11ZVhNwTzObXN9gZo8DneKjyU/NWc4uQ3oRq0R0zjnXRWU1Ac+T9D1JY+Lfd4H5aQe1vczCJyh7d8/UrXfnnHMpyGoCPhsYDNwX/wYBZ6UaUStYu6EG8Pu/zjnnMvYUdD0zWwVcmHYcre3dtaEO4D39E5TOOdflZbUE3Cm9vaIKgMG9u6UciXPOubR5Am5HS9dtAmBkvx4pR+Kccy5tnoDb0SuLVlNaLEb4K0jOOdflZfIesKTBwH8BY0jEaGZnpxVTa1i7sZrS4iKKi/wVJOec6+oymYCBB4CngH8DtSnH0mrWbKhmd38C2jnnHNlNwD3M7OK0g2htMyvWcPhug9MOwznnXAZk9R7w3yUdl3YQrammto6qzbWUFGV1kTvnnGtPWc0GFxGS8EZJ6+Lf2rSD2h4VqzYAeDWEzjnngIxegjazTnejdP7y8A7wfqP6pRuIc865TMhkAgaQdALw4dj4uJn9Pc14tteSNeErWH3LS1OOxDnnXBZk8hK0pJ8SLkO/Fv8uiu06rNUbNgMwvJ+/A+yccy67JeDjgPFmVgcg6WbgZeDbqUa1HervAQ/oUZZyJM4557IgkyXgqF/id9+0gmgtC1esp3tpEUX+EQ7nnHNktwT8E+BlSZMBEe4FX5JuSNunW0kR3UuL0w7DOedcRmQyAZvZnZIeBw4kJOCLzezddKPaPsurNrP38A5fkHfOOddKMnUJWtLu8f/9gWFABbAIGB7bNTX8sZJmS5or6X33iyWdJmlG/Jsiad/WnodClq7dyNA+3dtrcs455zIuayXgbwDnAb/M082AIwsNKKkYuBo4hpC4p0p60MxeS/Q2HzjczFZJ+hhwHXBQawVfiJmxZM1GBvX2B7Ccc84FmUrAZnZe/PkxM9uY7CapqeLjRGCumc2L/d8FnEh4jal+/FMS/T8HjNzuoJth7caaOP32mJpzzrmOIFOXoBOmNLNd0gjC5ep6FbFdIecA/yzUUdJ5kqZJmrZs2bImJt24NeurAdhlsH+G0jnnXJCpErCkHQhJs1zSfoQHsAD6AD2aGjxPu7xlTklHEBLwoYVGZmbXES5RM2HChO0qu76zOrwDvENfvwfsnHMuyFQCBj4KnEm4NPxLGpLqWuDSJoatAHZMNI8EFuf2JGkf4HrCZe4V2xlvsyyv3ATgD2E555zbIlMJ2MxulnQrcIqZ3d7CwacCu0oaC7wDnAycmuxB0ijgPuCLZvZma8TcHGs2hEvQ/h1o55xz9TJ3Dzh+fvJL2zBcDXAB8DDwOnCPmc2SdL6k82Nv3wcGAtdImi5pWmvF3ZgZFasBGNTLn4J2zjkXZKoEnPCopG8BdwNV9S3NbGVjA5nZQ8BDOe2uTfw+Fzi3dUNtWuWmGspLiykpztz5jnPOuZRkNQGfHf//aqKdATulEMt2m75wNeN37Jd2GM455zIkkwnYzMamHUNrKisporq2Lu0wnHPOZUgmE7CkUuDLhEoYAB4H/mBm1akFtR0WrFjPhDED0g7DOedchmQyAQO/B0qBa2LzF2O7dr9/u73MjCJBabFXQ+icc65BVhPwgWaWrCjhP5JeSS2a7bB2Qw11BjsN8q9gOeeca5DVx3JrJe1c3yBpJ6A2xXi22Yqq8BEOfwfYOedcUlZLwP8DTJY0j/A1rNHAWemGtG3eWxsScIlfgnbOOZeQyQRsZo9J2hXYjZCA3zCzTSmHtU0qN4WakIb1LU85Euecc1mSyQQcqx78CqGyBAOeknRtbhWFHUHlpvDg9tA+3VKOxDnnXJZkMgEDtwDrgN/G5lOAW4HPphbRNlpRuRmAgT09ATvnnGuQ1QS8W85T0JM76lPQK6s2U1IkenfP6qJ2zjmXhqw+Bf2ypIPrGyQdBDyTYjzbbM2GavqUl1JU5A9hOeeca5DVYtlBwOmSFsbmUcDrkmYCZmb7pBday6zbWEMfL/0655zLkdXMcGzaAbSWqk019OyW1cXsnHMuLZnMDGb2tqR9gcNiq6fMrEPeA67cVEOPsuK0w3DOOZcxmbwHLOki4HZgSPy7TdLX0o1q21Ss2kD/HmVph+Gccy5jMlkCBs4BDjKzKgBJ/wc8S8NrSR3G2o3V1NZZ2mE455zLmEyWgAlfv0p++7k2tuuQhvhHOJxzzuXIagn4RuB5SX+NzZ8EbkgvnG23bmMNfcv9ErRzzrmtZS4BSyoCngeeIHyKUsBZZvZyqoFtg43VtVv975xzztXLXAI2szpJvzSzQ4CX0o5ne6xeH74DvfPgnilH4pxzLmuyeg/4EUmfkdRh7/tCQ01I/hCWc865XJkrAUffAHoCtZLqa0AyM+uTYkwttmFzuPQ8on+PlCNxzjmXNZlMwGbWO+0YWkN9Cbinf4jDOedcjkwmYABJnyZRH7CZ3Z9uRC23oTok4B7+KUrnnHM5MnkPWNI1wPnATOBV4HxJV6cbVcttrK4DoHtpJhezc865FGW1aHY4sLeZGYCkmwnJuEOpipegy0v9ErRzzrmtZbVoNptQBWG9HYEZKcWyzZau2wRAP/8Qh3POuRxZLQEPJNT/+0JsPhB4VtKDAGZ2QmqRtcCqqs0A9OzmJWDnnHNby2oC/n7aAbSG4qLwGnNJcVYvNDjnnEtLphKwJFnwRGP9tGdM22NjdS19y0vTDsM551wGZa1oNlnS1yQl7/8iqUzSkfFhrDMKDSzpWEmzJc2V9O083SXpqth9hqT922AetqjcVEsPfwfYOedcHpkqAQPHAmcDd0oaC6wGugPFwCPAr81ser4BJRUDVwPHABXAVEkPmtlrid4+Buwa/w4Cfh//bxPrN9fQu3vWFrFzzrksyFR2MLONwDXANZJKgUHABjNb3YzBJwJzzWwegKS7gBOBZAI+Ebglvt70nKR+koaZ2ZLWnI96VZtrKS/L1CJ2zjmXEZnNDmZWDbQkMY4AFiWaK3h/6TZfPyPyTUfSecB5AKNGjcrt3CwTRvenurZum4Z1zjnXuWU2AW+DfA9n5VZD1Jx+Qkuz64DrACZMmLBN1RldeNSu2zKYc865LiBrD2FtjwrCBzvqjQQWb0M/zjnnXJvrEAlYUrGk05robSqwq6SxksqAk4EHc/p5EDg9Pg19MLCmre7/Ouecc43JVAKW1EfSJZJ+J+kjMVF+DZgHfK6xYc2sBrgAeBh4HbjHzGZJOl/S+bG3h+K45gJ/BL7SZjPjnHPONUKxvoNMkPQAsAp4FjgK6A+UARcVev2oPUyYMMGmTZuW1uSdc65DkvSimU1IO46sytpDWDuZ2QcAJF0PLAdGmdm6dMNyzjnnWlemLkED1fU/zKwWmO/J1znnXGeUtRLwvpLW0vC6UHmi2cysT3qhOeecc60nUwnYzPzDyc4557qErD2E1R04H9gFmAHcGJ9uTpWkZcDb2zj4IMK97K7E57lr8Hnu/LZ3fkeb2eDWCqazyVoCvptwH/gpQsUJb5vZRelGtX0kTetqTwH6PHcNPs+dX1eb3/aWqUvQwJ6Jp6BvAF5IOR7nnHOuTWT5KejULz0755xzbSVrJeDx8alnCE8+d4anoK9LO4AU+Dx3DT7PnV9Xm992lbV7wC+b2X5px+Gcc861taxdgs7O2YBzzjnXhrJ2CXqIpG8U6mhmv2rPYJxzzrm2krUScDHQC+hd4C+zJB0rabakuZK+nae7JF0Vu8+QtH8acbamZszzaXFeZ0iaImnfNOJsLU3Nb6K/AyXVSjqpPeNrC82ZZ0mTJE2XNEvSE+0dY2trxnbdV9LfJL0S5/msNOJsTZJulLRU0qsFune641cmmFlm/oCX0o5hG+MuBt4CdiLU3vQK4ZWqZD/HAf8kPFB2MPB82nG3wzx/EOgff3+sI89zc+Y30d9/CFVfnpR23O2wjvsBrxEqTQEYknbc7TDPlwL/F38PBlYCZWnHvp3z/WFgf+DVAt071fErK39ZKwGr6V4yaSIw18zmmdlm4C7gxJx+TgRuseA5oJ+kYe0daCtqcp7NbIqZrYqNzwEj2znG1tScdQzwNeBeYGl7BtdGmjPPpwL3mdlCADPr6PPdnHk2oLckEa7YrQQ69GuTZvYkYT4K6WzHr0zIWgI+Ku0AttEIYFGiuSK2a2k/HUlL5+ccwhl0R9Xk/EoaAXwKuLYd42pLzVnH44D+kh6X9KKk09sturbRnHn+HbAHsBiYSaivvK59wktNZzt+ZUKmHsIys8bOwLIsX8k994nu5vTTkTR7fiQdQUjAh7ZpRG2rOfN7JXCxmdWGwlGH15x5LgEOIJw8lwPPSnrOzN5s6+DaSHPm+aPAdOBIYGfgUUlPmdna3AE7kc52/MqETCXgDqwC2DHRPJJwdtzSfjqSZs2PpH2A64GPmdmKdoqtLTRnficAd8XkOwg4TlKNmd3fLhG2vuZu18vNrAqokvQksC/QURNwc+b5LOCnFm6OzpU0H9idzv3p3M52/MqErF2C7qimArtKGiupDDgZeDCnnweB0+PThAcDa8xsSXsH2oqanGdJo4D7gC924BJRvSbn18zGmtkYMxsD/AX4SgdOvtC87foB4DBJJZJ6AAcBr7dznK2pOfO8kHi7TNJQYDdgXrtG2f462/ErE7wE3ArMrEbSBcDDhKcobzSzWZLOj92vJTwVexwwF1hPOIvusJo5z98HBgLXxFJhjXXQmlWaOb+dSnPm2cxel/QvQvWhdcD1Zpb3VZaOoJnr+QrgJkkzCZdmLzazDl1FoaQ7gUnAIEkVwGVAKXTO41dWZOpTlM4551xX4ZegnXPOuRR4AnbOOedS4AnYOeecS4EnYOeccy4FnoCdc865FHgCzoBYc870xN+YWMPMGkkvS3pd0mWx32T7NyT9opHx7ifp+vabk8ZJujSneUobT2/3uDxflrRzW06rJfIsh8oWDv+4pEZf55K0QNKgFozzTEm/i78vl/StFsbUonloT3F/6lCvRkkaLukvrTSuSZL+Hn9/QtIPWmO8bvt5As6GDWY2PvG3ILZ/ysz2I3xh6QuSDshpvx/wCUkfKjDeS4HfNjcIScXbGH9T45WkohjPFmb2wbaYXsIngQfMbD8ze6s1RiippLHmZrq06V5cV2Zmi82sLaqz/AdwQvxoikuZJ+AOIH7m70XCd2eT7TcQvkn7vo+iS+oN7GNmr8TmyyXdKuk/kuZI+q/YfpKkyZLuAGZK6i7pT5JmxpLjEbG/MyU9IOlfCnWlXpaY1jckvRr/vh7bjYkl92uAl4AbgPJYIr099lMZ/5ekn8fhZ0r6fCK2xyX9JZb2b5fe/5FlSeMlPadQT+lfJfWXdBzwdeBcSZPzDHOspJcU6nR9LLYbIOn+OJ7nFD6jWb/srpP0CHBLnubBku6VNDX+fSgO1yuxLGdI+oykn+Yuh0RMt0o6MdF8u6QT8mwSyWF+L2maQr20uSWb/5H0QvzbJfafN9ZGxr9zXOcvSnpK0u6x/VhJz8ZxXNHI8F+I058u6Q+SihXqS54Rt7WeMfa94/J6LK6XmfXLIm5Lb0i6Pm4jt0s6WtIzcVuemFhP79vGc+Ipjtva1BjDl2L7YZKejHG+KumwPMMeIOmJuCwejsP0Vdgfdov93KmGfSvvulG4OvHjuPymSdo/ju8txQ9+KFFqV9j37ovrYY6knyXG9ZE4npck/VlSr9j+2LjMngY+Xd9//Hzm48AnGlvvrp2kXR+i/xlALSGRTgf+GttNAv4efw8EFgB75bTvT0jMO+QZ5xHAvYnmywl1m5YTvlO8CBgex1cFjI39fRP4U/y9O+Gze92BM4ElMZZy4FVCyfwAQo0wPQlVs80ilMzHEL6MdHAihsqcGCvj/58BHiV8eWhonOawGNsawndni4BngUPzzOsM4PD4+4fAlYl5/lae/gfH+a+f5wHx/98Cl8XfRwLTE+N5ESgv0HxHfVzAKOD1+Pv/6mOpX19NLIfDgfvj777AfKAkT/yPAxNyYi+O7feJzQuA78Tfp9OwzRSK9Uzgd7nLDXgM2DX+Pgj4T/z9IHB6/P3V3HmK7fcA/gaUxuZrEsP8CPgFcDVwSWxXAvSJvwcRvrokwrZUA3wgbgcvAjfGbicmltnl5N/GxxDruQXOA74bf3cDpgFjCdv9dxLLsnfOvJQCU4DBsfnzhK9kARxD2DZPBv6VGKaxdfPl+PvXhO23N2G7XBrbJ2M+k/Cpy76EffFtwneZBwFPAj1jfxcTvj7XPc77rnEZ3UNc/7G/04Dfpn3c8z/zT1FmxAYzG5+n/WGSXiYksp9a+CTepNh+BuEbtD81s3fzDDsMWJbT7gELpeYNCqXCicBq4AUzmx/7OZR42drM3pD0NqHKOYBHLVaoIOm+2K8RThqqEu0PIxyg37ZQd2hTDgXuNLNa4D1JTwAHAmtjbBVx3NMJB6an6weU1BfoZ2ZPxFY3A39uYnoHA0/Wz7M11MJ1KOFkADP7j6SBcfwAD8ZlR57mo4E91VA476NwBeJowkGZOM5VNMLMnpB0taQhhFLLvWbWVD2zn5N0HiF5DQP2JBzQAe5M/P/rJmJ9n1ia+iDw50T/3eL/HyIuK+BWwslGrqMIJ2hT4/DlNNST/EPCd5c3AhfWTxL4saQPE7b5EYQTMoD5ZjYzxjULeMzMTOFzkGMS08y3jU9PdP8IsI+k+su7fQmJaipwo6RSQkJPDgNhX9ubUPMRhKS6BMDMHpX0WcLJxL6JYRpbN/Xfl54J9DKzdcA6SRsl9XvfkgzzuybO/2vAaKBfHOczMaYywonA7nF5zYn930Y48ai3lHBi4lLmCTjbnjKzfJeKnjKzT0gaBzwt6a95DhgbCGfCSbnfHa1vrkq0a6wevXzDN9Z/VSPdkhobx6bE71paZ5sV+atSa6zKtdx5STYXAYfkJGgUjoot/dbrrYQSysnA2XE8DxMS0TQzOzcx/rHAt4ADzWyVpJvYep1bnt+FYs0XSxGwusDJYe748xFws5ldkqfbAMIVk9IYcxVhvgcDB5hZtaQFNMxPcjuoSzTXsfU2UWgbT8b0NTN7+H3BhsT/ceBWST83s1tyhptlZofkGa6IUNrfEOerohnrJhl/7rzl28bz7QcinBSfkhPP+DzzndQ9xupS5veAOzALNQz9hHDpKdfrwC457U6M990GEi7vTs0z3JOEAyExwY8CZsduxyjcJy0nPOD0TOz/k5J6SOpJqJD+qQIhV8cSRr5pfj7enxsMfJhmVu0WSwWrEvfsvgg80cggEEoJh8eDJJIGJOKon/dJhGr2mlPH6yPABfUN8QCYr33/+LPQcgC4iXDvGjObFf//qIWH887N6bcPIXGtUaiV52M53T+f+P/ZJmJ9nzjv82Pprv5efX0J7xkaSvenFRjFY8BJsURff499dOx2HfA94HYaSs99CZdgqxWePRidO8JmaGobfxj4cv3ylzRO4T706DjtPxKeV9g/Z7jZwGBJh8ThSiXtFbv9N2F/O4WGUnRT66Y1PAd8SA3393vEffYNYKwanvw/JWe4cYRbSC5lXgLu+K4FviVpbOIycv3l476SesfLWxCS2j8ISfUKM1scd9ika4Br46W9GuBMM9sUS0hPE0pouwB3mNk0gHh2X58wrzezlyWNyRPrdcAMSS+ZWfKg/VfgEML9OwP+n5m9q/jATzOcEWPuQbhX1mhNLWa2LF4avC+WXpYS7uNdDvwpXt5fH8fbHBcCV8fhSgiJ/HzCfc6r48M0tcAPCNUzFloOmNl7kl4H7m9qomb2SrxFMSvO9zM5vXST9DzhRLv+IFwo1kJOA34v6buE0updhPV0EXCHpIuAewvE91oc7pG4nKuBr0o6nFAz1h0KT95PkXQkIRn/TdI0wmXjN5paBnnk28bHJLpfT7hk/VK8QrGMcDI5ifDQWjVQSbhvnpyXzfGy9VXxtkQJcGXs/1xgopmtU6gP+btmdlkT62a7xe34TOBOSfW3Br5rZm/G7fsfkpYT9tu9E4MeAeS7KuHamdeG1IlJ+m9gnZldL+lywoMyBd8bbmJcZxIe/LmgqX7dtosnETOB/evv+bnm2d5tvCuIpfE7zOyotGNxfgm6s/s9W987chkm6WhCqe+3nnxdGxlFeOLbZYCXgJ1zzrkUeAnYOeecS4EnYOeccy4FnoCdc865FHgCds4551LgCdg555xLwf8HoRNDlY2dHpMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAEWCAYAAAC+H0SRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABDTElEQVR4nO3dd5hdZbn38e9vWjLpPaSQQglVCBACKEhoiihgQaUo/SAqgkc9L4IFFI96rIiCiID0piCgooAYaigJEBIChIQkJEMC6WUmbcr9/vE8k1nZ7D0lmZm1Zub+XNcke/V71Xs9qz0yM5xzzjnXvorSDsA555zrijwBO+eccynwBOycc86lwBOwc845lwJPwM4551wKPAE755xzKfAE3AYk3STpR+0wnVGSKiUVF+h+uaTb2mjap0l6JNH8IUlzYjyfbGLYWZImtUVcLSHpWknfa0Z/CyQd3cxxmqRdtjGeLcNuzzbUXttfW5E0SVJF2nEASDpM0uy040jK2U7KJf1N0hpJf87T76WSrm/meCXpT5JWSXohS+uhs2oyAceDz4Z4YH037ty9cvr5oKT/SFoXN4S/Sdozp58+kq6UtDCOa25sHtTaM9VVmNlCM+tlZrVtOR1JY+JOX5KY9u1m9pFEbz8Efhfjub+x8ZnZXmb2eNtE23xmdr6ZXZF2HC67zOwpM9st7TgacRIwFBhoZp/N7WhmPzazc5s5rkOBY4CRZjaxFWN0BTS3BHy8mfUCxgP7AZfUd5B0CPAI8AAwHBgLvAI8I2mn2E8Z8BiwF3As0Af4ILACaLMVnUwYrs2NBmalHYRzXcxo4E0zq2mlcS0ws6pWGFen0yb5xMwa/QMWAEcnmn8G/CPR/BRwTZ7h/gncEn+fC7wH9Gpqeonh9wIeBVbGYS+N7W8CfpTobxJQkRPvxcAMYBPwXeAvOeP+DXBV/N0XuAFYArwD/AgozhNPd2ADMCg2fxeoAfrE5h8BVyZivBr4B7AOeB7YOTGu3RPzNhv4XKJbo8PmxDQGMKAkNo8FnojDPQr8Drgt0f/BwBRgNeEkaVKi2+PAFcAzcfhHEvO6ME6nMv4dApwJPB27vwXUxeVTCfwe+GVOrH8Dvp67TQGXA/cAt8TpzgImJIbbH3g5dvszcHdy/edM48wY/6/jPM4jnOidCSwClgJn5CzrH8Xfg4C/x+FWErbrojzxTgSejf0ticu4LDFOAy6M014O/Lx+PLH72cDrwCrgYWB0zrC7FNjOPwFMj9OdAuyT6LYf8FJcRncDdxVaRo3FQNhvnqNhe/pyXB/dY/OfgXeBNcCTwF45y/Iawn5fGdfDDsCVcTpvAPvl7KeXAK/F7n9KTGcSW+/Tw4F7gWXAfODCRLeJwDRgLeE48atGto2nc9oll/dxMZZ1hOPAtxo5vnyLcHxZE5d390T3/xe3i8WE496WaRSIaV6c5nzgtJZsJ8APgM1AdVzm5+SZxuXEYwANx4szCPv0cuA7sds5wEagNo7rB3nmfat5oWXbaFPL7cQ47FrC8eTYlhyfm9oWCKX7+mPfIuDMxPhvIWxbbxOO60WJ9VN/PFkZp90N+EVcfu8B1wLlTR1DCu6LjXXMc/AZCcwEfhObe8QVdkSe4c4ClsTfdwE3NzWtxLC94wL/JiHx9QYOKrDSczeSBXFF7giUE87q1tOQKIvjuA+OzfcDfwB6AkOAF4AvFYjrSeAz8fcjcUP5WKLbpxIxrowbRAlwO3BX7NYzbgBnxW77E3aEvZoaNk88Y9g6AT8L/CpuJB8m7Nj1O98IwhWH4whXPo6JzYNj98fj/IyLy+1x4Kf5ppPvgMb7k9RiGjbkQXEdDM3T7+WEHf+4uG5+AjwXu5URdoqLgFLg04QDTmMJuCYu22LCDrOQcELTDfhIXCa9crelON1r43RKgcMA5Yn3AMKJTElcLq8TTywSB6nJwABgFPAmcG7s9klgLrBHHP67wJQCCSEZ2/6Ek4eD4nydEWPqllhG/x3jPolwQC60jArGQNgunozrZFfCwT+ZNM8m7IvdCIl1es7BeHlcPt2B/xCSyumJdTE5Z3t5lbCfDiAc6OrndxJxn44xvQh8P87rToSk9dHENv/F+LsXcb8usG00loCXAIfF3/2B/Rs5vrxAOCkYENf/+bHbsYQTlL0Ix8ZbKZCACceBtcBusXkYDceAgusoT9yXkzjJzjOdLd1p2I//SNjH9yUUUvYosE/nznvBBEwj22gzlttEQlI+Jq7vEcDu23B8zrstEPbDdcAphH1kIDA+druFcPW2d1w+bxJPZGg4nnwtrodywnb/YJyH3oSCxU+aOoYUXD+NdUwsuMo4A0a4lNwvdhsZ2+2eZ7hjger4+1Hiwbw5f3FBvVyg25aV3sgOcnbOME8Dp8ffxwBvxd9DCRtgec60JxeY9hXAVXFlvEtIDD/l/aXjm4DrE8MdB7wRf38eeCpnvH8ALmtq2DzxjInLvyRuZDVAz0T3O2jY+S4Gbs0Z/mFiiZCQcL+b6PYV4F+500l0P5MCCTg2vw4cE39fADyUr1/CAeLfiW57Ahvi7w8TznqV6P40jSfgOYnmD8S4hybaraBh59uyLRHuYT9A/oPlVvOW0+3rwF8TzUY8e08sx8fi73+SKKUQDjbraSiBFkrAvweuyJnubODwuIwW5yyjKY0so6ZiGEM4AXwduKSRfbRfjLdvIt4/Jrp/DXg9Z12szlmm5+ds5/X75SQaEvBBwMKcaV8C/Cn+fpJQWhtUKNZ822ue5b0Q+BLxRD3Rz5ZYEnF/IdH8M+Da+PtG4sE4Nu9C4wl4NfAZEsefbdhOLqflCXhkovsLwMkF9unceW8sARfcRpux3P4A/DpP7C09PufdFuL28tc8/RfH8e+ZaPcl4PHE8liY6Cagiq2vZh4CzI+/Cx5DCv019x7wJ82sd1whuxNKNBDOkOsIZ2+5hhHOiCEc9PL1U8iOhNLYtlqU03wHYcUBnBqbIZSOS4ElklZLWk3YGIYUGO8ThGWwP+FKwKOEg+DBwFwzW57o993E7/WEM7L6aR5UP704zdMIl+uaGrYxw4FVtvX9m7cTv0cDn82Z7qFsvV62ZbqF3Ax8If7+AqE0UEjudLvH+y3DgXcsbt1R7rrN9V7i9wYAM8ttl2++fk4odTwiaZ6kb+cbuaRxkv4eH0hcC/yYhv0hX4xvx/mAsA5+k1j+Kwk79Ygm5mk08M2cdbdjHG++ZfR2nnEkx1UwBjNbQCjBjyFcOaif72JJP5X0VpzvBbFTct5zl3NTy73QcsqNd3jOvF9KODhDuHQ6DnhD0lRJnyg45437DOEk4G1JT8RnWwoptJ8MZ+t5Kritxv3088D5hOPPPyTtHjtv63bSXK25n9drbBttarqFjvctPT4X2hYKjX8QDVeQ6r3N1ss5uQ4HE65svJiI51+xPTTzGJLUoteQzOwJwlnPL2JzFaHY/76n74DPEUrLAP8GPiqpZzMntQjYuUC3KsJCqLdDnn4sp/nPwCRJI4FP0ZCAFxHOgAaZWb/418fM9iow7SnAbnEcT5jZa4SS58cJybk5FsVh+yX+epnZl5s5fCFLgP45y3hUznRvzZluTzP7aTPGnbs8m+M24ERJ+xIupd2/DeNYAoyQpES7HbdhPE0ys3Vm9k0z2wk4HviGpKPy9Pp7wv3MXc2sDyEZKKefZIyjCCVUCOvgSznroNzMpjQR3iLgf3OG62Fmd5J/GY3KP5qmY5B0HOGs/jHCAaXeqYT7dEcT7puNie1z570lCi2n3Hjn58Tb28yOAzCzOWZ2CuGg/H/AXwocZ7Y6bkja6rhhZlPN7MQ4nvsJzyW01BLCVcF6jW6rZvawmR1DOAl+g3BpGLZ9O2lr6yl87G1sG21KoeN9i47PjWwLhca/nHC7ZnSi3SjCVbcto83pfwPhVkF9PH0tPKDckmPIFtvyHvCVwDGSxsfmbwNnSLpQUm9J/eM7iIcQLgdAKP0sAu6VtLukIkkD4ztqxyVHHs88jwD2jq8rLZT0sKSfS+pLuL97nKQBcSf6elMBm9kywiXWPxF25tdj+yWEe7m/jK9JFUnaWdLhBcaznnA/6qs0JNwphMsWzU3AfwfGSfqipNL4d6CkPZo5fF5m9jbhAYQfSCqTdChhI6h3G3C8pI/G0kx3hff8RuYd4daWEa507NSCeCqAqYR1f6+ZbWj2zDR4lvCMwQWSSiSdSBs9NS/pE5J2iYlsbZxuvte7esfulbHEku/E6X/ifrAj4TbF3bH9tcAlkvaK0+wrKd/Ja64/AudLOkhBT0kfl9SbsIxqgAvjMvo0jS+jgjEovBJ4A+HhoTMI20v9/tmbcDBcQTgI/7gZcTflq5JGShpAOJG5O08/LwBrJV2s8M5rsaS9JR0YY/6CpMFmVke4pAv519srwF6SxkvqTrg0SxxHmcJ77X3NrJqG9d9S9wBnSdpDUg/Cfeu8JA2VdEJMEJsIt/nqp7mt20lbmw6cGtfBsYSrf/Ua20abcgNhuR0Vj8EjJO3e0uNzI9vC7cDRkj4X95GBksZbeH3zHuB/Y+4aDXyDcKx8nzjePwK/ljQkTnOEpI/G3809hmzR4gQck9ktwPdi89PARwkPyCwhFOH3Aw41szmxn02EM+c3CJdt1xJ2rEGEp3yJM/BPws7/d8IDMy8QdvwDCPcGHyBcjnmFcAnsEfLvtPncEWO4I6f96YTLEPVPY/6Fxi+XP0G4LPJCork34f5Dk8xsHWHeTiac8b9LOFvr1pzhm3Aq4Z7ZSuAywnqqn+4iQgnmUkJCXQT8D83YBuKJx/8SXi1bLengZsZzM+HeX2OXnxub7mbCdnUOYYf6AmHb2LQt42vCroQrNZWEpHaN5X9X+VuE5byOsDPm2/4eIJyoTSc8zX4DgJn9lbCu71K4jPsq8LGmAjOzacB/EZ64XkW4zHVm7Fa/jM6M3T4P3NfIuBqL4TrgATN7yMxWEJb79ZIGEraltwmlg9cIT0tvrzsI+/C8+Pe+j4fEg+TxhFcg5xNKIdcTSuEQnjWZJamS8HbDyWa2Mc943iTco/s3MIfwLEHSF4EFcZmcT8Ptk2Yzs38SnhGZTFhHz8ZO+bbXIsJDposJ++vhhOcFtnk7aQcXEdbFasJts/vrOzS2jTbFzF4gPDj5a8LDWE/QUCptyfE577ZgZgsJtxe+SVjW0wkPoEF4VqGKsP09Tdgmb2wk3IvjvD0X182/CVdFofnHkC3qn/LMBEmDcu6jblM/LhskfZhwNjkmnj22xjifJzy88afWGJ9Lh6QFhKfD/512LG0lXtV6lfAkcGu8p+s6mUx9irI5idWTb8cgqZRwxnz99iRfSYdL2iFeOjoD2Ifw4INzmSPpU/GSdn9CKfZvnnxdIZlKwAqfslxb6C/t+FzzxDP/1YRLRVdu5+h2I9xyWEO4hHRSvDfkXBZ9iXCL5y3C/b/tfbjSdWKZugRdT9IPCfdGbyU8ZXka0NvMfpZqYM4551wryWoCft7MDmqqnXPOOddRZbWyglpJpxE+YWmEj2i0aY0/jRk0aJCNGTMmrck751yH9OKLLy43s8FN99k1ZTUBn0p4jPw3hAT8TGyXijFjxjBt2rS0Ju+ccx2SpMa+ytblZTIBW/gc3olpx+Gcc861lUwmYEmDCS91jyERo5mdnVZMzjnnXGvKZAImfEnoKcJXRVK79+ucc861lawm4B5mdnHaQTjnnHNtJVMf4kj4u3IqaXDOOec6k6wm4IsISXhD/ArWuuZ8CUvSjZKWSnq1QHdJukrSXEkzJO3f6pE755xzzZDJBBzr+yyKdWD2ic19mjHoTYQaMQr5GKHGil2B8wh1uzrnnHPtLpP3gGMtOu9jZo1W+WdmT0oa00gvJwK3WPj813OS+kka5t8Wds4B1NTWsaG6ltXrq9lUU8fKqs0A1NYZZkatGXUGdWbU1RkrqjZTVhzKMRbrbjcLf6EdmFlDre6W0x/Jfm2r4UgMF8ZpLFmzkT7lpe+LO/lFw+THDW2rfhqm01S/yQ7nHLoTfXu8f5pu+2UyARPqqa3XnVDB+IvAkds53hGEenDrVcR270vAks4jlJIZNWrUdk7WOdcUM6O2zqjaXMuqqs1U19ZRXWusqNpEsURNXUiAtbVGTV0dK6uq2VxTS3WtUbFqPQYsXLment1KqKmtY0XlZio31dCjrJi6mMDqLCTTOgt/c5ZWMqhXN2rrbEuydYEU/j/pgB09AbeRTCZgMzs+2SxpR6A1KmJQvskViOE6QgXlTJgwIXsfzHaujW2srmVTTR2Vm2qo2lTDisrNWxJXfSnQzKirY0s7M2N51WaKJeYtq6SspIjZ766jT3kp85ZV8s7qDZSXFVNXFxJhrRnL1uWrr37blJUU0btbCYN6daOkWFRuqqFntxJ6dyumuEgUSRSJ+L/YaVAvqjbXMGZgT0qLi6jcVM2uQ3qzsbqW0YN6UiQoKy6iV/cSiiWKcsZRXBQOKT3KipG05QAjQX1TfSJr+P/9/W3ptuWfhvYN/YbhupcWU1TU0A+JcW35nVgmSnRQvn6V77Do2kMmE3AeFcDerTSeHRPNI4HFrTBe5zoMs1DKnLu0kqnzV7JgRRVrNlRTtamGN9+rxMxYvGZjq02vrKSI2jpj7KCedCspZmjv7owa2IOSIlFcVERxEayo3MwuQ3pRVlxEWUkR/XuUUV5WTGlxKPkO6FFGWUkRxUXa8terWwl9updSUixKi4soKy6iqMiTies4MpmAJf2WhpJpETCeUCfs9noQuEDSXcBBwBq//+s6CzNj4cr1vPrOWpas2cCyyk28tbSKtRurefO9dXQrKWL9plrWbcpfP3y3kiJ2HtyL4iKx5/C+9O5ewl7D+1BaXESRYIe+5QD071GKckqSqv9dFP4vKw5JtE95iZewnCsgkwkYSNZ8UAPcaWbPNDWQpDuBScAgSRXAZUApgJldCzwEHAfMBdYDZ7Vu2M61nrUbq5nzXiVvvreOyo01LK/aRGlREdV1dWyqrmNGxWrqDDbV1DH73bXUFbhR0q2kiOH9yunVrYTxe/ajpq6Ofj3K2H2H3owb2psxA3tSXlbcvjPnnMtmAjazmyWVAeNiq9nNHO6UJrob8NXtDM+5VlNTW8eSNRtZXrmJilUbePHtVUx5azlvvldZcJiykiJKi0Sv7iUUSew1vC879i+nSGJon25MHDuQPYf3YVCvMnqUlWy5T+mcy5ZMJmBJk4CbgQWE5wZ2lHRGU68hOZdVm2vqeGtZJc++tYK5yyp5bfFaVlZtZuHK9Xn7Hz2wB7sN7c3H9xnG2EE9GdCzjEG9utG91EuqznUWmUzAwC+Bj5jZbABJ44A7gQNSjcq5RmysruWVRat5as5yigTLqzbz3LwVrFlfzYqcV1y6lRQxakAPTj9kNAN6lrFj/x4M69edEf3KGT2wZ0pz4JxrT1lNwKX1yRfAzN6U5C+iuUzYVFPL1PmrmPHOam6esoDq2vzvkJYWi5KiIsYM6snnD9yR0uIiJu02mHFDe9OzW1Z3Pedce8nqUWCapBuAW2PzaYQPcTjXLsyMV99Zy/RFq6jaXMszc5fzzqoNLFhRtdXDTuWlxQzp040Txw+nuraOnQb1YuLYAew5rI+/EuOca1RWE/CXCQ9LXUi4B/wkcE2qEblObcPmWp6bv4LH31jKlLdWMGfp1g9B9Sgrple3EnbfoQ/jhvZiwpgBTBw7YMtrO84511KZSsCSHjOzo4AfxvqAf5V2TK5zWruxmpcXrmbyG0u5Z9oi1m+u3dKtR1kx43fsxx7D+nD8vsPYa1hff5/VOdfqMpWAgWGSDgdOiB/L2OqIZ2YvpROW6+iqa+uY/MZSbpqygClvrdiq294j+jCsbzkf3nUQR+0xlOH9ylOK0jnXlWQtAX8f+DbhE5G5pV9j+ytjcF1IXZ3xtxmLeWD6Yp6as4zq2nDztqRIHLLzQI7eYygf2Wsow/p6wnXOtb9MJWAz+wvwF0nfM7Mr0o7HdSy1dcbrS9Zyz7RFPDN3OW8tq9rS7fh9h3PEboP54M6D2KFv9xSjdM65IFMJuJ4nX9cctXXGM3OX88xby3nurRW88e46NtXUbel+1O5DGDuoJxccuQv9epSlGKlzzr1fJhOwc42Zt6ySn/1rNv+a9e6Wdv16lHL4uMFM2m0IH9ploH/MwjmXeZ6AXYfx3LwV3PtiBX9+sQKA3XfozWf2H8mxe+/AyP7l/pSyc65DyWQClrQzUGFmm+J3ofcBbjGz1WnG5drfmvXVPD13OVdPnstrS9YCMG5oL371ufHsPaJvytE559y2y2QCBu4FJkjaBbiBUI/vHYSqBF0XsGTNBi57YBaPvv4eZtC3vJRTJo7inEPHssuQXmmH55xz2y2rCbjOzGokfQq40sx+K+nltINybcvMePCVxfzlxQqemrMcgD7dS/jJp/fhmD2HUlZSlHKEzjnXerKagKslnQKcARwf23llDJ3UK4tW8/Tc5dz5wkIqVm0AwhPMZ31oLIfuOijl6Jxzrm1kNQGfBZwP/K+ZzZc0Frgt5ZhcK6raVMOV/36Te6ZVsGZDNQBDenfjpANGcsWJe1Ne5vXeOuc6t0wmYDN7TdLFwKjYPB/4abpRudZgZvx9xhJ++585vPleJXsN78Nn9h/J+YfvxODe3fxJZudcl5HJBCzpeOAXQBkwVtJ4QgUNJ6QamNsur76zhh/+/TVemL8SgF99bl8+vf/IlKNyzrl0ZDIBA5cDE4HHAcxserwM7TogM+PX/57DVY/NAeAT+wzjihP3pn9P/zqVc67rymoCrjGzNTmXI61Qzy67Klat5zO/n8J7azex1/A+/P60Axg1sEfaYTnnXOqymoBflXQqUCxpV+BCYErKMbkWunryXK57ch5rNlTzpQ/vxEVH70qPsqxucs45176yejT8GvAdYBNwJ/Aw4BU0dBDvrN7AF294nnmxNqK7zzuYg3YamHJUzjmXLZlMwGa2npCAv5N2LK5l/jlzCV++/SUAPrb3Dlx58ni6lfgrRc45lytTCVjS32jkXq8/BZ1dG6tr+eY9r/CPmUsY0a+cX3x2Xw7Z2Uu9zjlXSKYSMOHVI9fBTF2wkrNvmsq6jTWcsO9w/vdTe9O7u3+4zDnnGpOpBGxmT9T/llQG7E4oEc82s82pBebyqq6t49L7ZvLnFysoLhI/OGEvzvjgmLTDcs65DiFTCbiepI8D1wJvASJ8jONLZvbPdCNz9d5bu5Hzbn2RVxatZtzQXtx01kSG9ytPOyznnOswMpmAgV8CR5jZXNhSP/A/AE/AGXD9U/P40T9eB+DCI3fhGx/ZLeWInHOu48lqAl5an3yjecDStIJxgZnxu//M5ZePvsmoAT248uTx7D+qf9phOedch5TVBDxL0kPAPYR7wJ8Fpkr6NICZ3ZdmcF2RmXH2TVOZPHsZh+06iBvPPJDSYq+f1znntlVWj6DdgfeAw4FJwDJgAKFu4E8UGkjSsZJmS5or6dt5uveV9DdJr0iaJemstgm/c9lYXcunfz+FybOXcfQeQ7nprImefJ1zbjtlsgRsZi1OjJKKgauBY4AKQon5QTN7LdHbV4HXzOx4SYOB2ZJu9yesC1u8egNn3PgCc5ZW8l+HjeXS4/bwKgOdc64VZDIBx5qPvgaMIRFjEx/imAjMNbN5cRx3AScCyQRsQG+FDNILWAnUtGrwncjk2Us5609TAThl4ihPvs4514oymYCB+4EbgL8Bdc0cZgSwKNFcARyU08/vgAeBxUBv4PNmlnf8ks4DzgMYNWpUc+PuNH716Jtc9dgchvftzo8//QEm7TYk7ZCcc65TyWoC3mhmV7VwmHxFs9zPWn4UmA4cCewMPCrpKTNb+74Bza4DrgOYMGFCl6kKsa7O+O4Dr3LH8wsZN7QXt51zEEP6dE87LOec63SymoB/I+ky4BFCjUgAmNlLjQxTAeyYaB5JKOkmnQX81MwMmCtpPuFrWy+0StSdwGUPzuKO5xdy5O5DuP70CRQV+SVn55xrC1lNwB8AvkgoqdZfIrbYXMhUYNd4//gd4GTg1Jx+FgJHAU9JGgrsRnjH2AH/enUJtz73Nh8eN5g/evJ1zrk2ldUE/Clgp5Y8nWxmNZIuINQdXAzcaGazJJ0fu19LqFP4JkkzCZesLzaz5a0ffsfz/LwV/Pfdr7DToJ788fQDKPbk65xzbSqrCfgVoB8t/PqVmT0EPJTT7trE78XAR1ohvk5l7tJ1nHvzNAzjutMneP29zjnXDrKagIcCb0iaytb3gL0+4Fa2dO1GTrr2WTbV1vHPiw5j58G90g7JOee6hKwm4MvSDqArMDP+370zWL2+mutPn+DJ1znn2lEmE3CyXmDXdm57fiGPz17GhUfuwtF7Dk07HOec61Iy+UFfSQdLmiqpUtJmSbWS3veurtt2971Uwffuf5XdhvbmwqN2TTsc55zrcjJZAiZ8sepk4M/ABOB0wLNEK7n8wVncNGUBfbqX8KezDqTEK1Zwzrl2l9UEjJnNlVRsZrXAnyRNSTumzuCvL1dw05QF7DOyL7efexC9u5emHZJzznVJWU3A6yWVAdMl/QxYAvRMOaYOb/qi1fz33a8wol8593zpELqX+utGzjmXlqxee/wiIbYLgCrCJyY/k2pEHdzcpZWcct1z9Cwr5uazJ3rydc65lGW1BLzBzDYCG4EfAEjaLd2QOq6N1bV85fYX2VBdywNf/RC7DPHXjZxzLm1ZLQE/Jelz9Q2Svgn8NcV4Oqy6OuMrt7/Em+9VcsYho9l3x35ph+Scc47sloAnAddJ+izhq1ivAxNTjaiDuu6pefznjaUcufsQfnDi3mmH45xzLspkCdjMlgD/Ag4BxgC3mFllqkF1QLMWr+GXj8xm/I79uOGMCWmH45xzLiGTJWBJjxKefN6bUK/vjZKeNLNvpRtZx7Fhcy1n3zSVkqIifv358Uheu5FzzmVJJkvAwNVmdrqZrTazVwkl4TVpB9WRfOevM3lv7Sau+cL+jB3kb3A551zWZDIBm9n9kg6VdFZs1R+4Lc2YOpLn5q3gvpff4cTxwzlityFph+Occy6PTCZgSZcBFwOXxFZleAJulpraOi69byYSXH78XmmH45xzroBMJmDgU8AJhI9wYGaLgd6pRtRB3PHCQuYtr+KHJ+5N/55laYfjnHOugKwm4M1mZoABSPKbmM2wcMV6fvzQ6+w5rA+nThyVdjjOOecakdUEfI+kPwD9JP0X8G/gjynHlGlVm2o44eqnqTO46pT9KC7yp56dcy7LMvkakpn9QtIxwFpgN+D7ZvZoymFl2h+eeIvV66v57sf38E9NOudcB5DJBAwQE64n3WbYXFPHzc++zeHjBnPuYTulHY5zzrlmyOolaNcCv5s8lzUbqjn1IL/v65xzHYUn4A5uytzlXPXYHA4fN5iP7Dk07XCcc841kyfgDmxjdS2X/nUmfctL+eXn9vXPTTrnXAeSqXvAkmYSXz3Kx8z2acdwMu+3/5nDghXr+flJ+zCoV7e0w3HOOdcCmUrAwCfi/1+N/98a/z8NWN/+4WTX3KWVXD35LfYY1oeTDhiZdjjOOedaKFMJ2MzeBpD0ITP7UKLTtyU9A/wwnciypaa2jgvvfBmAX/mlZ+ec65Cyeg+4p6RD6xskfRDwr2FFV/57Dq8tWcuPPrk3ewzrk3Y4zjnntkGmSsAJ5xDqAO5LuCe8Bjg73ZCyYf3mGm58Zj4Txw7gCwePTjsc55xz2yiTCdjMXgT2ldQHkJl5XcDRrx55k/Wba/nypJ3TDsU559x2yOQlaElDJd0A3G1mayTtKemcZgx3rKTZkuZK+naBfiZJmi5plqQnWj34NrSpppa7py7iwDH9vZ5f55zr4DKZgIGbgIeB4bH5TeDrjQ0gqRi4GvgYsCdwiqQ9c/rpB1wDnGBmewGfbc2g29qD0xezblMN5xzqn5t0zrmOLqsJeJCZ3QPUAZhZDVDbxDATgblmNs/MNgN3ASfm9HMqcJ+ZLYzjXdq6YbedujrjtucXMqJfuX/xyjnnOoGsJuAqSQNpqA/4YMKDWI0ZASxKNFfEdknjgP6SHpf0oqTTC41M0nmSpkmatmzZspbPQSv724zFvLJoNWd8cDRFXtWgc851eJl8CAv4BvAgsHN8/3cwcFITw+TLSrlf1SoBDgCOAsqBZyU9Z2Zvvm9As+uA6wAmTJhQ8Otc7eXuqYvYcUA5Z39obNqhOOecawWZTMBm9pKkwwl1AQuYbWbVTQxWAeyYaB4JLM7Tz3IzqyKUsp8E9iXcY86sjdW1vLRwFScfOIqS4qxetHDOOdcSmUrAkj5doNM4SZjZfY0MPhXYVdJY4B3gZMI936QHgN9JKgHKgIOAX29n2G3uHzOWsLG6jqP38Hu/zjnXWWQqAQPHN9LNgIIJ2MxqJF1AeHq6GLjRzGZJOj92v9bMXpf0L2AG4QGv683s1dYLv238Y+YSAA7aaUDKkTjnnGstmUrAZnbWdg7/EPBQTrtrc5p/Dvx8e6bTnl5fspb/vLGU0w4aRalffnbOuU4jUwlY0jca625mv2qvWLLi7qnhwe5vHDMu5Uicc861pkwlYKB32gFkyfrNNdw0ZQHH7DmUgV7fr3POdSqZSsBm9oO0Y8iSx14P3wn5zP5e369zznU2mbypKGmcpMckvRqb95H03bTjam/3vVRBvx6lHLWHf/fZOec6m0wmYOCPwCVANYCZzSC8VtRlrN1YzeTZyzhx3+H+8JVzznVCWT2y9zCzF3La1aQSSUqen7cSgA/uMijlSJxzzrWFrCbg5ZJ2puFb0CcBS9INqX3dNGU+3UuLOHzc4LRDcc451wYy9RBWwlcJ32HeXdI7wHzgtHRDaj8bNtfywvyVHLzTQLqXFqcdjnPOuTaQyQRsZvOAoyX1BIrMbF3aMbWnR157l+pa44xDxqQdinPOuTaSyUvQkgZKugp4Cnhc0m9i9YRdwuQ3ltKjrJgjdvenn51zrrPKZAIG7gKWAZ8hVEO4DLg71Yja0bS3VzFx7ACKvd5f55zrtLKagAeY2RVmNj/+/Qjol3ZQ7aFi1XoqVm3gsF394SvnnOvMspqAJ0s6WVJR/Psc8I+0g2oPz8xdDsAHd+4yV9ydc65LytRDWJLWEV49EvAN4LbYqQioBC5LKbR288L8VfTpXsK4of5ZbOec68wylYDNrEtnnbo6496XKjh6j6F+/9c55zq5TCXgJEn9gV2B7vXtzOzJ9CJqe3OXVQKw/+h+6QbinHOuzWUyAUs6F7gIGAlMBw4GngWOTDGsNjdtwSoAxo/sl24gzjnn2lxWH8K6CDgQeNvMjgD2I7yK1Km9vDAk4AljBqQciXPOubaW1QS80cw2AkjqZmZvALulHFObMjOembuco/cYQllJVleLc8651pLVI32FpH7A/cCjkh4AFqcaURtbtHIDi9ds9Pd/nXOui8jkPWAz+1T8ebmkyUBf4F8phtTmno7v/04Y0z/lSJxzzrWHTCVgSflufs6M//cCVrZjOO3qmbeW079HKXsO65N2KM4559pBphIw8CINH+LIZcBO7RtO+6irM16Yv5IDxwxA8vd/nXOuK8hUAjazsWnHkIZn561g2bpNfGSvHdIOxTnnXDvJ5ENYkj4U6wJG0hck/UrSqLTjaiuT31hKWXERx33AE7BzznUVmUzAwO+B9ZL2Bf4f8DZwa7ohtZ1HXnuPPYf3oUdZpi5IOOeca0NZTcA1ZmbAicBvzOw3QKf8TnRdnbFw5Xr69yhNOxTnnHPtKKtFrnWSLgG+AHxYUjHQKTPUolXrAf/6lXPOdTVZLQF/HtgEnGNm7wIjgJ+nG1LbmLesCoAJo/39X+ec60oyWQKOSfdXieaFwC3pRdR2HnvjPQD2GtE35Uicc861p0wlYElPm9mhktYR3vvd0gkwM+t0X6l4a2kVA3qW0atbplaFc865NpapS9Bmdmj8v7eZ9Un89W5O8pV0rKTZkuZK+nYj/R0oqVbSSa0Zf0vV1RmvLVnLUbsPSTMM55xzKchssUtSf2BHEjGa2UuN9F8MXA0cA1QAUyU9aGav5env/4CH2yLulpi1eC1rNlQzcaw/gOWcc11NJhOwpCuAM4F5QF1sbcCRjQw2EZhrZvPiOO4ivMb0Wk5/XwPuJdQ3nKon54Qqjg8f5zUgOedcV5PJBAx8DtjZzDa3YJgRwKJEcwVwULIHSSOATxESeaMJWNJ5wHkAo0a1zUe4ZlSsZnjf7gzp071Nxu+ccy67MnUPOOFVoF8LhylUgUPSlcDFZlbb1MjM7Dozm2BmEwYPbpsS6utL1rHPyH5tMm7nnHPZltUS8E+AlyW9SngfGAAzO6GRYSoI94zrjQQW5/QzAbgr1jg0CDhOUo2Z3d8aQbfE6vWbWbhyPZ89YGR7T9o551wGZDUB30x4UGomDfeAmzIV2FXSWOAd4GTg1GQPydqWJN0E/D2N5AswbcEqAMaP6pfG5J1zzqUsqwl4uZld1ZIBzKxG0gWEp5uLgRvNbJak82P3a9sgzm323rqNAIzoV55yJM4559KQ1QT8oqSfAA+y9SXogq8hxe4PAQ/ltMubeM3szO0Pc9s9N28lRYLRA3umGYZzzrmUZDUB7xf/PzjRrqnXkDqUOe+tY2if7hQX5Xt2zDnnXGeXyQRsZkekHUNbqqsz3lm9wStgcM65LiyrryF1ahWrNrBuYw1H7TE07VCcc86lxBNwCp6dtxyAPYZ1urolnHPONVOmErCkz8b/xzbVb0c28501AOw9whOwc851VZlKwMAl8f97U42ijS1du4ny0mK6lRSnHYpzzrmUZO0hrBWSJgNjJT2Y27GJL2F1GI+/uYzDdhmUdhjOOedSlLUE/HFgf+BW4Jcpx9ImVlRuYnNNHbsM6ZV2KM4551KUqQQcaz96TtIHzWyZpN6htVWmHVtrmRHv/x44xusAds65rixr94DrDZX0MqFWpNckvShp77SDag0VK9cDsNsOvVOOxDnnXJqymoCvA75hZqPNbBTwzdiuw5u1eC19y0sZ2d+/Ae2cc11ZVhNwTzObXN9gZo8DneKjyU/NWc4uQ3oRq0R0zjnXRWU1Ac+T9D1JY+Lfd4H5aQe1vczCJyh7d8/UrXfnnHMpyGoCPhsYDNwX/wYBZ6UaUStYu6EG8Pu/zjnnMvYUdD0zWwVcmHYcre3dtaEO4D39E5TOOdflZbUE3Cm9vaIKgMG9u6UciXPOubR5Am5HS9dtAmBkvx4pR+Kccy5tnoDb0SuLVlNaLEb4K0jOOdflZfIesKTBwH8BY0jEaGZnpxVTa1i7sZrS4iKKi/wVJOec6+oymYCBB4CngH8DtSnH0mrWbKhmd38C2jnnHNlNwD3M7OK0g2htMyvWcPhug9MOwznnXAZk9R7w3yUdl3YQrammto6qzbWUFGV1kTvnnGtPWc0GFxGS8EZJ6+Lf2rSD2h4VqzYAeDWEzjnngIxegjazTnejdP7y8A7wfqP6pRuIc865TMhkAgaQdALw4dj4uJn9Pc14tteSNeErWH3LS1OOxDnnXBZk8hK0pJ8SLkO/Fv8uiu06rNUbNgMwvJ+/A+yccy67JeDjgPFmVgcg6WbgZeDbqUa1HervAQ/oUZZyJM4557IgkyXgqF/id9+0gmgtC1esp3tpEUX+EQ7nnHNktwT8E+BlSZMBEe4FX5JuSNunW0kR3UuL0w7DOedcRmQyAZvZnZIeBw4kJOCLzezddKPaPsurNrP38A5fkHfOOddKMnUJWtLu8f/9gWFABbAIGB7bNTX8sZJmS5or6X33iyWdJmlG/Jsiad/WnodClq7dyNA+3dtrcs455zIuayXgbwDnAb/M082AIwsNKKkYuBo4hpC4p0p60MxeS/Q2HzjczFZJ+hhwHXBQawVfiJmxZM1GBvX2B7Ccc84FmUrAZnZe/PkxM9uY7CapqeLjRGCumc2L/d8FnEh4jal+/FMS/T8HjNzuoJth7caaOP32mJpzzrmOIFOXoBOmNLNd0gjC5ep6FbFdIecA/yzUUdJ5kqZJmrZs2bImJt24NeurAdhlsH+G0jnnXJCpErCkHQhJs1zSfoQHsAD6AD2aGjxPu7xlTklHEBLwoYVGZmbXES5RM2HChO0qu76zOrwDvENfvwfsnHMuyFQCBj4KnEm4NPxLGpLqWuDSJoatAHZMNI8EFuf2JGkf4HrCZe4V2xlvsyyv3ATgD2E555zbIlMJ2MxulnQrcIqZ3d7CwacCu0oaC7wDnAycmuxB0ijgPuCLZvZma8TcHGs2hEvQ/h1o55xz9TJ3Dzh+fvJL2zBcDXAB8DDwOnCPmc2SdL6k82Nv3wcGAtdImi5pWmvF3ZgZFasBGNTLn4J2zjkXZKoEnPCopG8BdwNV9S3NbGVjA5nZQ8BDOe2uTfw+Fzi3dUNtWuWmGspLiykpztz5jnPOuZRkNQGfHf//aqKdATulEMt2m75wNeN37Jd2GM455zIkkwnYzMamHUNrKisporq2Lu0wnHPOZUgmE7CkUuDLhEoYAB4H/mBm1akFtR0WrFjPhDED0g7DOedchmQyAQO/B0qBa2LzF2O7dr9/u73MjCJBabFXQ+icc65BVhPwgWaWrCjhP5JeSS2a7bB2Qw11BjsN8q9gOeeca5DVx3JrJe1c3yBpJ6A2xXi22Yqq8BEOfwfYOedcUlZLwP8DTJY0j/A1rNHAWemGtG3eWxsScIlfgnbOOZeQyQRsZo9J2hXYjZCA3zCzTSmHtU0qN4WakIb1LU85Euecc1mSyQQcqx78CqGyBAOeknRtbhWFHUHlpvDg9tA+3VKOxDnnXJZkMgEDtwDrgN/G5lOAW4HPphbRNlpRuRmAgT09ATvnnGuQ1QS8W85T0JM76lPQK6s2U1IkenfP6qJ2zjmXhqw+Bf2ypIPrGyQdBDyTYjzbbM2GavqUl1JU5A9hOeeca5DVYtlBwOmSFsbmUcDrkmYCZmb7pBday6zbWEMfL/0655zLkdXMcGzaAbSWqk019OyW1cXsnHMuLZnMDGb2tqR9gcNiq6fMrEPeA67cVEOPsuK0w3DOOZcxmbwHLOki4HZgSPy7TdLX0o1q21Ss2kD/HmVph+Gccy5jMlkCBs4BDjKzKgBJ/wc8S8NrSR3G2o3V1NZZ2mE455zLmEyWgAlfv0p++7k2tuuQhvhHOJxzzuXIagn4RuB5SX+NzZ8EbkgvnG23bmMNfcv9ErRzzrmtZS4BSyoCngeeIHyKUsBZZvZyqoFtg43VtVv975xzztXLXAI2szpJvzSzQ4CX0o5ne6xeH74DvfPgnilH4pxzLmuyeg/4EUmfkdRh7/tCQ01I/hCWc865XJkrAUffAHoCtZLqa0AyM+uTYkwttmFzuPQ8on+PlCNxzjmXNZlMwGbWO+0YWkN9Cbinf4jDOedcjkwmYABJnyZRH7CZ3Z9uRC23oTok4B7+KUrnnHM5MnkPWNI1wPnATOBV4HxJV6cbVcttrK4DoHtpJhezc865FGW1aHY4sLeZGYCkmwnJuEOpipegy0v9ErRzzrmtZbVoNptQBWG9HYEZKcWyzZau2wRAP/8Qh3POuRxZLQEPJNT/+0JsPhB4VtKDAGZ2QmqRtcCqqs0A9OzmJWDnnHNby2oC/n7aAbSG4qLwGnNJcVYvNDjnnEtLphKwJFnwRGP9tGdM22NjdS19y0vTDsM551wGZa1oNlnS1yQl7/8iqUzSkfFhrDMKDSzpWEmzJc2V9O083SXpqth9hqT922AetqjcVEsPfwfYOedcHpkqAQPHAmcDd0oaC6wGugPFwCPAr81ser4BJRUDVwPHABXAVEkPmtlrid4+Buwa/w4Cfh//bxPrN9fQu3vWFrFzzrksyFR2MLONwDXANZJKgUHABjNb3YzBJwJzzWwegKS7gBOBZAI+Ebglvt70nKR+koaZ2ZLWnI96VZtrKS/L1CJ2zjmXEZnNDmZWDbQkMY4AFiWaK3h/6TZfPyPyTUfSecB5AKNGjcrt3CwTRvenurZum4Z1zjnXuWU2AW+DfA9n5VZD1Jx+Qkuz64DrACZMmLBN1RldeNSu2zKYc865LiBrD2FtjwrCBzvqjQQWb0M/zjnnXJvrEAlYUrGk05robSqwq6SxksqAk4EHc/p5EDg9Pg19MLCmre7/Ouecc43JVAKW1EfSJZJ+J+kjMVF+DZgHfK6xYc2sBrgAeBh4HbjHzGZJOl/S+bG3h+K45gJ/BL7SZjPjnHPONUKxvoNMkPQAsAp4FjgK6A+UARcVev2oPUyYMMGmTZuW1uSdc65DkvSimU1IO46sytpDWDuZ2QcAJF0PLAdGmdm6dMNyzjnnWlemLkED1fU/zKwWmO/J1znnXGeUtRLwvpLW0vC6UHmi2cysT3qhOeecc60nUwnYzPzDyc4557qErD2E1R04H9gFmAHcGJ9uTpWkZcDb2zj4IMK97K7E57lr8Hnu/LZ3fkeb2eDWCqazyVoCvptwH/gpQsUJb5vZRelGtX0kTetqTwH6PHcNPs+dX1eb3/aWqUvQwJ6Jp6BvAF5IOR7nnHOuTWT5KejULz0755xzbSVrJeDx8alnCE8+d4anoK9LO4AU+Dx3DT7PnV9Xm992lbV7wC+b2X5px+Gcc861taxdgs7O2YBzzjnXhrJ2CXqIpG8U6mhmv2rPYJxzzrm2krUScDHQC+hd4C+zJB0rabakuZK+nae7JF0Vu8+QtH8acbamZszzaXFeZ0iaImnfNOJsLU3Nb6K/AyXVSjqpPeNrC82ZZ0mTJE2XNEvSE+0dY2trxnbdV9LfJL0S5/msNOJsTZJulLRU0qsFune641cmmFlm/oCX0o5hG+MuBt4CdiLU3vQK4ZWqZD/HAf8kPFB2MPB82nG3wzx/EOgff3+sI89zc+Y30d9/CFVfnpR23O2wjvsBrxEqTQEYknbc7TDPlwL/F38PBlYCZWnHvp3z/WFgf+DVAt071fErK39ZKwGr6V4yaSIw18zmmdlm4C7gxJx+TgRuseA5oJ+kYe0daCtqcp7NbIqZrYqNzwEj2znG1tScdQzwNeBeYGl7BtdGmjPPpwL3mdlCADPr6PPdnHk2oLckEa7YrQQ69GuTZvYkYT4K6WzHr0zIWgI+Ku0AttEIYFGiuSK2a2k/HUlL5+ccwhl0R9Xk/EoaAXwKuLYd42pLzVnH44D+kh6X9KKk09sturbRnHn+HbAHsBiYSaivvK59wktNZzt+ZUKmHsIys8bOwLIsX8k994nu5vTTkTR7fiQdQUjAh7ZpRG2rOfN7JXCxmdWGwlGH15x5LgEOIJw8lwPPSnrOzN5s6+DaSHPm+aPAdOBIYGfgUUlPmdna3AE7kc52/MqETCXgDqwC2DHRPJJwdtzSfjqSZs2PpH2A64GPmdmKdoqtLTRnficAd8XkOwg4TlKNmd3fLhG2vuZu18vNrAqokvQksC/QURNwc+b5LOCnFm6OzpU0H9idzv3p3M52/MqErF2C7qimArtKGiupDDgZeDCnnweB0+PThAcDa8xsSXsH2oqanGdJo4D7gC924BJRvSbn18zGmtkYMxsD/AX4SgdOvtC87foB4DBJJZJ6AAcBr7dznK2pOfO8kHi7TNJQYDdgXrtG2f462/ErE7wE3ArMrEbSBcDDhKcobzSzWZLOj92vJTwVexwwF1hPOIvusJo5z98HBgLXxFJhjXXQmlWaOb+dSnPm2cxel/QvQvWhdcD1Zpb3VZaOoJnr+QrgJkkzCZdmLzazDl1FoaQ7gUnAIEkVwGVAKXTO41dWZOpTlM4551xX4ZegnXPOuRR4AnbOOedS4AnYOeecS4EnYOeccy4FnoCdc865FHgCzoBYc870xN+YWMPMGkkvS3pd0mWx32T7NyT9opHx7ifp+vabk8ZJujSneUobT2/3uDxflrRzW06rJfIsh8oWDv+4pEZf55K0QNKgFozzTEm/i78vl/StFsbUonloT3F/6lCvRkkaLukvrTSuSZL+Hn9/QtIPWmO8bvt5As6GDWY2PvG3ILZ/ysz2I3xh6QuSDshpvx/wCUkfKjDeS4HfNjcIScXbGH9T45WkohjPFmb2wbaYXsIngQfMbD8ze6s1RiippLHmZrq06V5cV2Zmi82sLaqz/AdwQvxoikuZJ+AOIH7m70XCd2eT7TcQvkn7vo+iS+oN7GNmr8TmyyXdKuk/kuZI+q/YfpKkyZLuAGZK6i7pT5JmxpLjEbG/MyU9IOlfCnWlXpaY1jckvRr/vh7bjYkl92uAl4AbgPJYIr099lMZ/5ekn8fhZ0r6fCK2xyX9JZb2b5fe/5FlSeMlPadQT+lfJfWXdBzwdeBcSZPzDHOspJcU6nR9LLYbIOn+OJ7nFD6jWb/srpP0CHBLnubBku6VNDX+fSgO1yuxLGdI+oykn+Yuh0RMt0o6MdF8u6QT8mwSyWF+L2maQr20uSWb/5H0QvzbJfafN9ZGxr9zXOcvSnpK0u6x/VhJz8ZxXNHI8F+I058u6Q+SihXqS54Rt7WeMfa94/J6LK6XmfXLIm5Lb0i6Pm4jt0s6WtIzcVuemFhP79vGc+Ipjtva1BjDl2L7YZKejHG+KumwPMMeIOmJuCwejsP0Vdgfdov93KmGfSvvulG4OvHjuPymSdo/ju8txQ9+KFFqV9j37ovrYY6knyXG9ZE4npck/VlSr9j+2LjMngY+Xd9//Hzm48AnGlvvrp2kXR+i/xlALSGRTgf+GttNAv4efw8EFgB75bTvT0jMO+QZ5xHAvYnmywl1m5YTvlO8CBgex1cFjI39fRP4U/y9O+Gze92BM4ElMZZy4FVCyfwAQo0wPQlVs80ilMzHEL6MdHAihsqcGCvj/58BHiV8eWhonOawGNsawndni4BngUPzzOsM4PD4+4fAlYl5/lae/gfH+a+f5wHx/98Cl8XfRwLTE+N5ESgv0HxHfVzAKOD1+Pv/6mOpX19NLIfDgfvj777AfKAkT/yPAxNyYi+O7feJzQuA78Tfp9OwzRSK9Uzgd7nLDXgM2DX+Pgj4T/z9IHB6/P3V3HmK7fcA/gaUxuZrEsP8CPgFcDVwSWxXAvSJvwcRvrokwrZUA3wgbgcvAjfGbicmltnl5N/GxxDruQXOA74bf3cDpgFjCdv9dxLLsnfOvJQCU4DBsfnzhK9kARxD2DZPBv6VGKaxdfPl+PvXhO23N2G7XBrbJ2M+k/Cpy76EffFtwneZBwFPAj1jfxcTvj7XPc77rnEZ3UNc/7G/04Dfpn3c8z/zT1FmxAYzG5+n/WGSXiYksp9a+CTepNh+BuEbtD81s3fzDDsMWJbT7gELpeYNCqXCicBq4AUzmx/7OZR42drM3pD0NqHKOYBHLVaoIOm+2K8RThqqEu0PIxyg37ZQd2hTDgXuNLNa4D1JTwAHAmtjbBVx3NMJB6an6weU1BfoZ2ZPxFY3A39uYnoHA0/Wz7M11MJ1KOFkADP7j6SBcfwAD8ZlR57mo4E91VA476NwBeJowkGZOM5VNMLMnpB0taQhhFLLvWbWVD2zn5N0HiF5DQP2JBzQAe5M/P/rJmJ9n1ia+iDw50T/3eL/HyIuK+BWwslGrqMIJ2hT4/DlNNST/EPCd5c3AhfWTxL4saQPE7b5EYQTMoD5ZjYzxjULeMzMTOFzkGMS08y3jU9PdP8IsI+k+su7fQmJaipwo6RSQkJPDgNhX9ubUPMRhKS6BMDMHpX0WcLJxL6JYRpbN/Xfl54J9DKzdcA6SRsl9XvfkgzzuybO/2vAaKBfHOczMaYywonA7nF5zYn930Y48ai3lHBi4lLmCTjbnjKzfJeKnjKzT0gaBzwt6a95DhgbCGfCSbnfHa1vrkq0a6wevXzDN9Z/VSPdkhobx6bE71paZ5sV+atSa6zKtdx5STYXAYfkJGgUjoot/dbrrYQSysnA2XE8DxMS0TQzOzcx/rHAt4ADzWyVpJvYep1bnt+FYs0XSxGwusDJYe748xFws5ldkqfbAMIVk9IYcxVhvgcDB5hZtaQFNMxPcjuoSzTXsfU2UWgbT8b0NTN7+H3BhsT/ceBWST83s1tyhptlZofkGa6IUNrfEOerohnrJhl/7rzl28bz7QcinBSfkhPP+DzzndQ9xupS5veAOzALNQz9hHDpKdfrwC457U6M990GEi7vTs0z3JOEAyExwY8CZsduxyjcJy0nPOD0TOz/k5J6SOpJqJD+qQIhV8cSRr5pfj7enxsMfJhmVu0WSwWrEvfsvgg80cggEEoJh8eDJJIGJOKon/dJhGr2mlPH6yPABfUN8QCYr33/+LPQcgC4iXDvGjObFf//qIWH887N6bcPIXGtUaiV52M53T+f+P/ZJmJ9nzjv82Pprv5efX0J7xkaSvenFRjFY8BJsURff499dOx2HfA94HYaSs99CZdgqxWePRidO8JmaGobfxj4cv3ylzRO4T706DjtPxKeV9g/Z7jZwGBJh8ThSiXtFbv9N2F/O4WGUnRT66Y1PAd8SA3393vEffYNYKwanvw/JWe4cYRbSC5lXgLu+K4FviVpbOIycv3l476SesfLWxCS2j8ISfUKM1scd9ika4Br46W9GuBMM9sUS0hPE0pouwB3mNk0gHh2X58wrzezlyWNyRPrdcAMSS+ZWfKg/VfgEML9OwP+n5m9q/jATzOcEWPuQbhX1mhNLWa2LF4avC+WXpYS7uNdDvwpXt5fH8fbHBcCV8fhSgiJ/HzCfc6r48M0tcAPCNUzFloOmNl7kl4H7m9qomb2SrxFMSvO9zM5vXST9DzhRLv+IFwo1kJOA34v6buE0updhPV0EXCHpIuAewvE91oc7pG4nKuBr0o6nFAz1h0KT95PkXQkIRn/TdI0wmXjN5paBnnk28bHJLpfT7hk/VK8QrGMcDI5ifDQWjVQSbhvnpyXzfGy9VXxtkQJcGXs/1xgopmtU6gP+btmdlkT62a7xe34TOBOSfW3Br5rZm/G7fsfkpYT9tu9E4MeAeS7KuHamdeG1IlJ+m9gnZldL+lywoMyBd8bbmJcZxIe/LmgqX7dtosnETOB/evv+bnm2d5tvCuIpfE7zOyotGNxfgm6s/s9W987chkm6WhCqe+3nnxdGxlFeOLbZYCXgJ1zzrkUeAnYOeecS4EnYOeccy4FnoCdc865FHgCds4551LgCdg555xLwf8HoRNDlY2dHpMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2124,9 +2110,9 @@ "title": "Influential_Instances_with_TracInCP" }, "kernelspec": { - "display_name": "captum", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "captum" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -2138,7 +2124,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.6" + "version": "3.10.6" }, "last_base_url": "https://devvm4165.atn0.facebook.com:8090/", "last_kernel_id": "ab436d7f-a536-46c5-9e62-1dfe64df9a1e", diff --git a/tutorials/models/boston_model.pt b/tutorials/models/boston_model.pt deleted file mode 100644 index 5cde6f70ee..0000000000 Binary files a/tutorials/models/boston_model.pt and /dev/null differ diff --git a/tutorials/models/california_model.pt b/tutorials/models/california_model.pt new file mode 100644 index 0000000000..9cbd910034 Binary files /dev/null and b/tutorials/models/california_model.pt differ diff --git a/tutorials/optimviz/CustomModules_OptimViz.ipynb b/tutorials/optimviz/CustomModules_OptimViz.ipynb index 22d88fde12..0bfe58ce15 100644 --- a/tutorials/optimviz/CustomModules_OptimViz.ipynb +++ b/tutorials/optimviz/CustomModules_OptimViz.ipynb @@ -1,579 +1,915 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "2ylZPub2JTMH" - }, - "source": [ - "# Creating Custom Captum.optim Modules\n", - "Captum's Optim library contains an extensive list of optimization objectives, transforms, and input parameterizations. However, some cases may require adding new features to these areas of Captum's Optim library. Luckily adding them to Captum is easy!" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "GWrStkUVEbOC" - }, - "outputs": [], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "from typing import Dict, List, Optional, Tuple, Union\n", - "\n", - "import torch\n", - "import torchvision\n", - "from captum.optim.models import googlenet\n", - "\n", - "import captum.optim as opt\n", - "\n", - "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", - "\n", - "model = googlenet(pretrained=True).to(device)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DffA7pFSFZY0" - }, - "source": [ - "## Custom Image Transforms\n", - "\n", - "If both Captum and Torchvision lack the transforms that you require, then you can create your own custom transforms.\n", - "\n", - "Custom image transform classes must contain a `forward()` function. The first transform in a list of transforms takes an input tensor with a shape of (B, C, W, H), and the final transform in a list of transforms will need to output a tensor with the same shape of (B, C, W, H). Captum and Torchvision's transforms normally expect and output a shape of (B, C, W, H).\n", - "\n", - "An optional `__init__()` function can be used as well.\n", - "\n", - "\n", - "Note that all custom transforms need to be autograd compatible, so that the gradient is not interrupted during the optimization process.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "hoyneR7FFTXK" - }, - "outputs": [], - "source": [ - "class CustomTransform(torch.nn.Module):\n", - " def __init__(self, val: int = 1) -> None:\n", - " super(CustomTransform, self).__init__()\n", - " self.val = val\n", - "\n", - " def forward(self, input: torch.Tensor) -> torch.Tensor:\n", - " return input * self.val" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2kjc9istEzVz" - }, - "source": [ - "## Custom Loss Functions\n", - "Captum's loss functions are composed of classes that the optimization function uses. Custom loss classes should inherit the base loss class `opt.loss.BaseLoss` and also have the `opt.loss.loss_wrapper` decorator.\n", - "\n", - "For now, the `opt.loss.loss_wrapper` decorator primarily serves to update the name and string representations of the loss function, but future work may also add other generic loss attributes via the decorator.\n", - "\n", - "Custom loss functions must contain the following two functions:\n", - "\n", - "\n", - "* The `__init__()` function must at least contain a `target` variable. The `target` variable should be an `nn.module` or list of `nn.modules` to collect activations from. Other variables can be added after the `target`. An optional variable is `batch_index`, which is an `int`. The `batch_index` is used to target a specific image in a batch of input images.\n", - "\n", - "* The `__call__()` function takes activations from the target layer and then returns a loss value. Activations sent to the call function are extracted from a dictionary with the target as the key." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "LQZECwPoEdET" - }, - "outputs": [], - "source": [ - "@opt.loss.loss_wrapper\n", - "class CustomLoss(opt.loss.BaseLoss):\n", - " def __init__(self, target: Union[torch.nn.Module, List[torch.nn.Module]], batch_index: Optional[int] = None) -> \"CustomLoss\":\n", - " opt.loss.BaseLoss.__init__(self, target, batch_index)\n", - "\n", - " def __call__(\n", - " self, target_activations: Dict[torch.nn.Module, Optional[torch.Tensor]]\n", - " ) -> torch.Tensor:\n", - " # Get activations from target\n", - " # self.batch_index is a tuple of (batch_index, batch_index+1)\n", - " activations = target_activations[self.target][self.batch_index[0]:self.batch_index[1]]\n", - " return activations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Custom Loss Summarize Functions\n", - "\n", - "In addition to the loss function, there is also the `loss_summarize_fn` that can be supplied to the `optimize` method of `InputOptimization`. This function dictates how the final loss is computed and aggregated before we call the `backward` method on it to compute gradients.\n", - "\n", - "Here we show the default summarize function to give an idea of what this function does. The default summarize function simply computes the mean of the loss tensor and multiplies it by -1 so that the optimization maximizes the activations." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "def custom_loss_summarize(loss_value: torch.Tensor) -> torch.Tensor:\n", - " return -1 * loss_value.mean()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "K45Xg0HGF3VH" - }, - "source": [ - "## Custom Image Parameterization\n", - "\n", - "\n", - "The image parameters that Captum's Optim library optimizes to produce visualizations is stored in a custom image parameterization class. \n", - "\n", - "Custom parameterization must contain the following two functions:\n", - "\n", - "### Init function\n", - "\n", - "The `__init__()` function has 3 input variables:\n", - "\n", - "* size (tuple, int): dimensions in the form height, width. \n", - "\n", - "* channels (int): the number of channels for the output tensor.\n", - "\n", - "* batch (int): the desired batch size to use.\n", - "\n", - "* init (torch.Tensor): An optional input tensor with a shape of: (B, C, W, H).\n", - "\n", - "Make sure that the tensor being optimized is wrapped in `torch.nn.Parameter` and that it can be called by the `forward()` function.\n", - "\n", - "### Forward function\n", - "\n", - "The `forward()` function has zero input varibles and returns a 4 dimension tensor with a shape of (B, C, W, H):\n", - "\n", - "* The tensor being optimized should be called from where it was saved in the init function. This tensor will then be returned when the forward function is called.\n", - "\n", - "* The dimensions of the output tensor should be named: 'B', 'C', 'H', and 'W'." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "Hm2HLX9VFmAT" - }, - "outputs": [], - "source": [ - "class CustomImage(opt.images.ImageParameterization):\n", - " def __init__(\n", - " self,\n", - " size: Tuple[int, int] = (224, 224),\n", - " channels: int = 3,\n", - " batch: int = 1,\n", - " init: torch.Tensor = None,\n", - " ) -> None:\n", - " super().__init__()\n", - " if init is None:\n", - " assert size is not None\n", - " # Create random input with a shape of: B, C, W, H\n", - " init = torch.randn([batch, channels, size[0], size[1]])\n", - " else:\n", - " assert init.dim() == 4\n", - " self.image = torch.nn.Parameter(init) # Convert input to nn.Parameter()\n", - "\n", - " def forward(self) -> torch.Tensor:\n", - " return self.image.refine_names(\"B\", \"C\", \"H\", \"W\") # rename dimensions" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "x_AK29oiH9Z3" - }, - "source": [ - "## Running Captum with custom modules\n", - "\n", - "Below is a helper function that will let us quickly and easily experiment with our custom modules from above. Random scaling and random spatial jitter transforms are also included in the helper function to improve output quality." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "id": "uQ9sEz8cG2El" - }, - "outputs": [], - "source": [ - "def visualize(model: torch.nn.Module, target: torch.nn.Module):\n", - " # Define our custom image parameterization, then add it to NaturalImage\n", - " image_param = CustomImage\n", - " image = opt.images.NaturalImage(size=(224, 224), parameterization=image_param, batch=2).to(device)\n", - "\n", - " transforms = torch.nn.Sequential(\n", - " CustomTransform(), # Add our custom transform to the list of transforms\n", - "\n", - " # Additional transforms to improve output quality\n", - " opt.transforms.RandomSpatialJitter(16),\n", - " opt.transforms.RandomScale(scale=(1, 0.975, 1.025, 0.95, 1.05)),\n", - " )\n", - "\n", - " # Define our custom loss function as the loss function\n", - " loss_fn = CustomLoss(target, batch_index=0) # Only optimize 0th image to demonstrate batch_index\n", - "\n", - " obj = opt.InputOptimization(model, loss_fn, image, transforms)\n", - " history = obj.optimize(\n", - " stop_criteria=opt.optimization.n_steps(512),\n", - " loss_summarize_fn=custom_loss_summarize, # Our custom loss_summarize_fn\n", - " )\n", - " image().show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And there you have it! Notice that only the left image (at index 0) is optimized since we specified `batch_index=0` when defining `loss_fn`. The right image is unchanged from its random initialization." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 298, - "referenced_widgets": [ - "5c666868d62e4862a648cd0df15155ec", - "389469a07da6435eb2a1be7ea55f4f86", - "36b86b673b544cc5bdb5652eb31cabc9", - "6d93392ab27048068aa8bb1d7ef01cf1", - "2c759e9a43754fc4963a9631cc7702c5", - "8fa32da11a2a4401a57a50f80af7be32", - "ba6b8e0c07074921a5faa7dbc29f3fe3", - "ea6b900b717c4e8f8051094882aeef1f" - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "2ylZPub2JTMH" + }, + "source": [ + "# Creating Custom Captum.optim Modules\n", + "Captum's Optim library contains an extensive list of optimization objectives, transforms, and input parameterizations. However, some cases may require adding new features to these areas of Captum's Optim library. Luckily adding them to Captum is easy!" + ] }, - "id": "3m5iQ2zfqV5F", - "outputId": "40b79b81-363c-49c6-8546-9b8ada61665a" - }, - "outputs": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3ee58c51e28e4977b0c45befa0511b4c", - "version_major": 2, - "version_minor": 0 + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GWrStkUVEbOC" }, - "text/plain": [ - " 0%| | 0/512 [00:00" + "cell_type": "markdown", + "metadata": { + "id": "DffA7pFSFZY0" + }, + "source": [ + "## Custom Image Transforms\n", + "\n", + "If both Captum and Torchvision lack the transforms that you require, then you can create your own custom transforms.\n", + "\n", + "Custom image transform classes must contain a `forward()` function. The first transform in a list of transforms takes an input tensor with a shape of (B, C, W, H), and the final transform in a list of transforms will need to output a tensor with the same shape of (B, C, W, H). Captum and Torchvision's transforms normally expect and output a shape of (B, C, W, H).\n", + "\n", + "An optional `__init__()` function can be used as well.\n", + "\n", + "\n", + "Note that all custom transforms need to be autograd compatible, so that the gradient is not interrupted during the optimization process.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hoyneR7FFTXK" + }, + "outputs": [], + "source": [ + "class CustomTransform(torch.nn.Module):\n", + " def __init__(self, val: int = 1) -> None:\n", + " super().__init__()\n", + " self.val = val\n", + "\n", + " def forward(self, input: torch.Tensor) -> torch.Tensor:\n", + " return input * self.val" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2kjc9istEzVz" + }, + "source": [ + "## Custom Loss Objectives\n", + "Captum's loss objectives are composed of classes that the optimization function uses. Custom loss classes should inherit the base loss class `opt.loss.BaseLoss` and also have the `opt.loss.loss_wrapper` decorator.\n", + "\n", + "For now, the `opt.loss.loss_wrapper` decorator primarily serves to update the name and string representations of the loss objective, but future work may also add other generic loss attributes via the decorator. This decorator is required for custom loss objectives.\n", + "\n", + "Custom loss objectives must contain the following two functions:\n", + "\n", + "**The init function**\n", + "\n", + "* The `__init__()` function must at least contain a `target` variable. The `target` variable should be an `nn.module` or list of `nn.modules` to collect activations from. Other variables can be added after the `target`.\n", + "\n", + "* An optional variable is `batch_index`, which is either an `int` or a list of `int`. The `batch_index` is used to target a specific image in a batch of input images.\n", + "\n", + "* The init function should call the `BaseLoss` `__init__` function and provide it with the target `nn.Module` or list of `nn.Module` along with the `batch_index`.\n", + "\n", + "**The call function**\n", + "\n", + "* The `__call__()` function takes activations from the target layer and then returns a loss value. Activations sent to the call function are extracted from a dictionary with the target as the key." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LQZECwPoEdET" + }, + "outputs": [], + "source": [ + "@opt.loss.loss_wrapper\n", + "class CustomLoss(opt.loss.BaseLoss):\n", + " def __init__(\n", + " self,\n", + " target: Union[torch.nn.Module, List[torch.nn.Module]],\n", + " batch_index: Optional[Union[int, List[int]]] = None, # Optional parameter\n", + " ) -> None:\n", + " opt.loss.BaseLoss.__init__(self, target, batch_index)\n", + "\n", + " def __call__(\n", + " self, target_activations: Dict[torch.nn.Module, Optional[torch.Tensor]]\n", + " ) -> torch.Tensor:\n", + "\n", + " # Get activations for target from input dict\n", + " activations = target_activations[self.target]\n", + "\n", + " # self.batch_index is a tuple of (batch_index, batch_index+1)\n", + " activations = activations[self.batch_index[0] : self.batch_index[1]]\n", + "\n", + " # Return activations for loss summarization\n", + " return activations" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JmrUOtGbZW5J" + }, + "source": [ + "## Custom Loss Summarize Functions\n", + "\n", + "In addition to the loss objectives, there is also the loss summarization function that can be supplied to the `optimize` method of `InputOptimization`. This function dictates how the final loss is computed and aggregated before we call the `backward` method on it to compute gradients.\n", + "\n", + "Here we show the default summarize function to give an idea of what this function does. The default summarize function simply computes the mean of the loss tensor and multiplies it by -1 so that the optimization maximizes the activations." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zhxtI_LjZW5K" + }, + "outputs": [], + "source": [ + "def custom_loss_summarize(loss_value: torch.Tensor) -> torch.Tensor:\n", + " return -1 * loss_value.mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "K45Xg0HGF3VH" + }, + "source": [ + "## Custom Image Parameterization\n", + "\n", + "\n", + "The image parameters that Captum's Optim library optimizes to produce visualizations is stored in a custom image parameterization class. \n", + "\n", + "Custom parameterization must contain the following two functions:\n", + "\n", + "### Init function\n", + "\n", + "The `__init__()` function has 3 input variables:\n", + "\n", + "* size (tuple, int): dimensions in the form height, width. \n", + "\n", + "* channels (int): the number of channels for the output tensor.\n", + "\n", + "* batch (int): the desired batch size to use.\n", + "\n", + "* init (torch.Tensor): An optional input tensor with a shape of: (B, C, W, H).\n", + "\n", + "Make sure that the tensor being optimized is wrapped in `torch.nn.Parameter` and that it can be called by the `forward()` function.\n", + "\n", + "Note that the `__init__()` function can contain any number of variable inputs if the image parameterization is passed as an instance to `NaturalImage`. Otherwise the init function requirements are required.\n", + "\n", + "### Forward function\n", + "\n", + "The `forward()` function has zero input variables and returns a 4 dimension tensor with a shape of (B, C, W, H):\n", + "\n", + "* The tensor being optimized should be called from where it was saved in the init function. This tensor will then be returned when the forward function is called.\n", + "\n", + "* The dimensions of the output tensor should be named: 'B', 'C', 'H', and 'W', unless you are using TorchScript / JIT.\n", + "\n", + "* As JIT does not yet support named dimensions, you can use [`torch.jit.is_scripting`](https://pytorch.org/docs/stable/jit_language_reference.html?highlight=is_scripting#torch.jit.is_scripting) to only name the dimensions when not using JIT." ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "visualize(model, model.mixed4a)" - ] - } - ], - "metadata": { - "colab": { - "collapsed_sections": [], - "name": "CustomModules_OptimViz.ipynb", - "provenance": [], - "toc_visible": true - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "2c759e9a43754fc4963a9631cc7702c5": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "initial" - } }, - "36b86b673b544cc5bdb5652eb31cabc9": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "100%", - "description_tooltip": null, - "layout": "IPY_MODEL_8fa32da11a2a4401a57a50f80af7be32", - "max": 128, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_2c759e9a43754fc4963a9631cc7702c5", - "value": 128 - } + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Hm2HLX9VFmAT" + }, + "outputs": [], + "source": [ + "class CustomImage(opt.images.ImageParameterization):\n", + " def __init__(\n", + " self,\n", + " size: Tuple[int, int] = (224, 224),\n", + " channels: int = 3,\n", + " batch: int = 1,\n", + " init: torch.Tensor = None,\n", + " ) -> None:\n", + " super().__init__()\n", + " if init is None:\n", + " assert size is not None\n", + " # Create random input with a shape of: B, C, W, H\n", + " init = torch.randn([batch, channels, size[0], size[1]])\n", + " else:\n", + " assert init.dim() == 4\n", + " self.image = torch.nn.Parameter(init) # Convert input to nn.Parameter()\n", + "\n", + " def forward(self) -> torch.Tensor:\n", + " if torch.jit.is_scripting():\n", + " return self.image\n", + " return self.image.refine_names(\"B\", \"C\", \"H\", \"W\") # rename dimensions" + ] }, - "389469a07da6435eb2a1be7ea55f4f86": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "markdown", + "source": [ + "## Custom StopCriteria\n", + "\n", + "StopCriteria functions tell the `InputOptimization.optimize` function when to stop optimizing the input param. We provide 4 possible sources of information after each step for the stop criteria function to determine when to stop the optimization process.\n", + "\n", + "The default Captum `opt.optimization.n_steps` function returns a stop criteria function called `continue_while`. The `continue_while` function takes 4 input variables every step during the optimization process:\n", + "\n", + "* `step` (int): The current optimization step.\n", + "\n", + "* `obj`: The current instance of InputOptimization being used.\n", + "\n", + "* `history` (list of torch.Tensor): A list of loss values per iteration. The size of the list is equal to the number of steps that have already been performed. The last value in the list corresponds to the current step.\n", + "\n", + "* `optim` (torch.optim.Optimizer): The current instance of the optimizer being used.\n", + "\n", + "All stop criteria functions or classes using `__call__` functions, should accept the same 4 inputs as `continue_while`. They are also expected to return a boolean value for each step to indicate whether optimization should continue.\n", + "\n", + "Note that these requirements may not exist for custom optimization functions, which can utilize their own custom stopping criteria.\n" + ], + "metadata": { + "id": "FfbTtiC5g83U" + } }, - "5c666868d62e4862a648cd0df15155ec": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_36b86b673b544cc5bdb5652eb31cabc9", - "IPY_MODEL_6d93392ab27048068aa8bb1d7ef01cf1" + { + "cell_type": "code", + "source": [ + "from tqdm.auto import tqdm\n", + "\n", + "\n", + "# Main setup function\n", + "def n_steps_custom(n: int, show_progress: bool = True):\n", + "\n", + " # Setup progress bar so that we can monitor progress\n", + " if show_progress:\n", + " pbar = tqdm(total=n, unit=\" step\")\n", + "\n", + " # The stop Criteria function\n", + " def continue_while(\n", + " step: int,\n", + " obj: opt.InputOptimization,\n", + " history: Iterable[torch.Tensor],\n", + " optim: torch.optim.Optimizer,\n", + " ) -> bool:\n", + " if len(history) > 0:\n", + " if show_progress:\n", + " # Print current optimization step and loss value\n", + " pbar.set_postfix(\n", + " {\"Objective\": f\"{history[-1].mean():.1f}\"}, refresh=False\n", + " )\n", + "\n", + " # Return True if we haven't reached the target num of optimization steps\n", + " if step < n:\n", + " if show_progress:\n", + " pbar.update()\n", + " return True\n", + "\n", + " # Return False if we have reached the target num of optimization steps\n", + " else:\n", + " if show_progress:\n", + " pbar.close()\n", + " return False\n", + "\n", + " # Return StopCriteria function to use for optimization\n", + " return continue_while" ], - "layout": "IPY_MODEL_389469a07da6435eb2a1be7ea55f4f86" - } + "metadata": { + "id": "_AFuQcdqg8Xx" + }, + "execution_count": null, + "outputs": [] }, - "6d93392ab27048068aa8bb1d7ef01cf1": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ea6b900b717c4e8f8051094882aeef1f", - "placeholder": "​", - "style": "IPY_MODEL_ba6b8e0c07074921a5faa7dbc29f3fe3", - "value": " 128/128 [00:42<00:00, 2.99 step/s, Objective=356.1]" - } + { + "cell_type": "markdown", + "source": [ + "\n", + "## Custom Optimization Functions\n", + "\n", + "While the default `optimize` function from `InputOptimization` usually suffices for most use cases, you may find yourself needing something different. For example if you want to use a [learning rate scheduler](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate), or if you wish to use an optimizer like LBFGS which requires a `closure` function [passed to their step function](https://pytorch.org/docs/stable/optim.html#taking-an-optimization-step).\n", + "\n", + "To create a custom optimization function, we will recreate the default `optimize` function while replacing `self` with the `InputOptimization` instance. We can then simply pass our `InputOptimization` instance to the function in order to render our results.\n", + "\n", + "Important `InputOptimization` Functions & Attributes:\n", + "\n", + "* The `.parameters()` function returns the list of input parameters requiring grad.\n", + "* The `.loss()` function returns the loss function values.\n", + "* The `.cleanup()` function removes the hooks that were used to collect activations.\n", + "* The image parameterization being used can be accessed via `.input_param` attribute.\n", + "* The model being used can be accessed via `.model` attribute.\n", + "* The transforms being used can be accessed via `.transforms` attribute." + ], + "metadata": { + "id": "uh1HqWb9ajpa" + } }, - "8fa32da11a2a4401a57a50f80af7be32": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "code", + "source": [ + "def custom_optimize(\n", + " obj: opt.InputOptimization,\n", + " stop_criteria: Optional[Callable] = None,\n", + " optimizer: Optional[torch.optim.Optimizer] = None,\n", + " loss_summarize_fn: Optional[Callable] = None,\n", + " lr: float = 0.025,\n", + ") -> torch.Tensor:\n", + "\n", + " # Setup conditions for when to stop optimizing\n", + " stop_criteria = stop_criteria or opt.optimization.n_steps(512)\n", + "\n", + " # Pass the parameters of our optimization task to the optimizer\n", + " optimizer = optimizer or torch.optim.Adam(obj.parameters(), lr=lr)\n", + " assert isinstance(optimizer, torch.optim.Optimizer)\n", + "\n", + " # Set the loss summarization function\n", + " loss_summarize_fn = loss_summarize_fn or opt.loss.default_loss_summarize\n", + "\n", + " history: List[torch.Tensor] = []\n", + " step: int = 0\n", + "\n", + " # Run optimization loop with protection\n", + " try:\n", + "\n", + " # Stop criteria requires 4 variables from the optimization process\n", + " while stop_criteria(step, obj, history, optimizer):\n", + " optimizer.zero_grad()\n", + "\n", + " # Summarize any non scalar loss values\n", + " loss_value = loss_summarize_fn(obj.loss())\n", + "\n", + " # Place loss values from the current step into history list\n", + " history.append(loss_value.clone().detach())\n", + "\n", + " loss_value.backward()\n", + " optimizer.step()\n", + " # scheduler.step() # LR Scheduler step location\n", + " step += 1\n", + "\n", + " # Always run final clean up\n", + " finally:\n", + " obj.cleanup()\n", + "\n", + " # Return optimization loss history for all optimization steps\n", + " return torch.stack(history)" + ], + "metadata": { + "id": "VVfP7PTHafox" + }, + "execution_count": null, + "outputs": [] }, - "ba6b8e0c07074921a5faa7dbc29f3fe3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } + { + "cell_type": "markdown", + "metadata": { + "id": "x_AK29oiH9Z3" + }, + "source": [ + "## Running Captum with custom modules\n", + "\n", + "Below is a helper function that will let us quickly and easily experiment with our custom modules from above. Random scaling and random spatial jitter transforms are also included in the helper function to improve output quality." + ] }, - "ea6b900b717c4e8f8051094882aeef1f": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "uQ9sEz8cG2El" + }, + "outputs": [], + "source": [ + "def visualize(model: torch.nn.Module, target: torch.nn.Module):\n", + " # Define our custom image parameterization, then add it to NaturalImage\n", + " image_param = CustomImage\n", + " image = opt.images.NaturalImage(\n", + " size=(224, 224), parameterization=image_param, batch=2\n", + " ).to(device)\n", + "\n", + " transforms = torch.nn.Sequential(\n", + " CustomTransform(), # Add our custom transform to the list of transforms\n", + " # Additional transforms to improve output quality\n", + " opt.transforms.RandomSpatialJitter(16),\n", + " opt.transforms.RandomScale(scale=(1, 0.975, 1.025, 0.95, 1.05)),\n", + " )\n", + "\n", + " # Define our custom loss function as the loss function\n", + " loss_fn = CustomLoss(\n", + " target, batch_index=0 # Only optimize 0th image to demonstrate batch_index\n", + " )\n", + "\n", + " obj = opt.InputOptimization(model, loss_fn, image, transforms)\n", + " history = custom_optimize( # Our custom optimization function\n", + " obj=obj,\n", + " stop_criteria=n_steps_custom(512), # Our custom stop criteria\n", + " loss_summarize_fn=custom_loss_summarize, # Our custom loss_summarize_fn\n", + " )\n", + " image().show(figsize=(10, 5), images_per_row=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Oi5-40h_ZW5O" + }, + "source": [ + "And there you have it! Notice that only the left image (at index 0) is optimized since we specified `batch_index=0` when defining `loss_fn`. The right image is unchanged from its random initialization." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 335, + "referenced_widgets": [ + "42c156add91d4acaadcdefa7d261363e", + "b6d1bc1fa28140e2839110ea31c62cc3", + "988add1d46364a21be7e3cdd25bfeea6", + "3a0e2b4a4437470ca73d21b47b2e50bf", + "40d83f16100d4d52abdae1bfd57b3737", + "63a94da5642d4e638d34090f1c039ab1", + "be7c4264ae594792a8d5e325ffcd73f9", + "fdf5702bc6a0416284af79696f1bb7f8", + "1c85d25bb99440a0aab08a49200203f5", + "3b7848513468421aac1d1e8547223825", + "5bb9a2c83c5a4dc8ad1acc44ca79d7e8" + ] + }, + "id": "3m5iQ2zfqV5F", + "outputId": "a4e73b97-8181-4a1c-97da-124c74ff4195" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/512 [00:00" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAEeCAYAAABL8VWrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzbx49kWX7o9+/1JuKG9xkZkb6ysnxVV/tuDoduOASFB5J6engQtNdC0L8w/B+00kqQABHC05PIETgaznBc90xP+64um1WV3kWG93H9vVrwSSuJAkRBmkV+ludszurge37AEeI45sqVK1euXLly5XeV+P/3Aa5cuXLlypUrV/45V7Fy5cqVK1euXPmddhUrV65cuXLlypXfaVexcuXKlStXrlz5nXYVK1euXLly5cqV32lXsXLlypUrV65c+Z0m/3ObgiBc/Wu+cuXKlStXrvx/Io5j4f9s/WqycuXKlStXrlz5nfbPTlb+d2+884dsNpcxhAXtpElalPnqi+fsXGtgTwbsv3pNqdKgWihy2TrDWcwQohArkaC+0mQy9YgTKRbTY2aihqtVEKUs08lrRo8fUc2opAtVIslg0BsgoeILC+r1JpXGOtlMHsHz+PrJAfcfrGGmLea9AdN+hyhcsLZ5jafffEujeYcJfWw/xnUTXE6HhC8/J1VbJVttoMQx9nBAuztko57n559/wxvbK1RLFZLJHAnT4sXuASv1Co/OjvHnU5JygKz4fPR0j3Jmk+7wmKW0QjqRZByaaBmd8aIAGZk1U0SOQrqLgJIoYGQyDEfHGOVlJCuN6/oE5xO2dlbw4xne1CMWI0RTwotUXnzxFcX1+9jjGbVygmxCZPeL50RmgpXaBlYqQtNidFUhaSSJZJH9iz7iYkz/7Bx73COpueiAUK/j9eaczhRcySCdEhmOzyhjE1p1mpUamqjgOg7FioKr1uhfDoEZYeQyn84ZvGyx0M4oqw2segPR0IhlES2TwR71GMcWujoipacx1BxhLNA7OWWvfUr3coznipi6QTmfwFE17l8rksgvc9q+xLd9clqBLz//loLpYOhTNNUkCHz60z4nA/g3H16nPRzSaQ3IVJuUN7Z59fgbou4ptz/4gNie4tsxM8/gzNO4vlkgUl1ml5fEYYSiJZH1PJ4royRhPDlGjj1MIow4JLf2Fp32JfFsRm/a5fTigouTHis3r+MOHWqVHLGiMrEdxuMRaUFha7WEuZjSjgzGto0a2mxcu8vHn/+ae++/xZe//ARnLrDS3OLmSoGfP/kt+XKD1vFr0hmTTLFIdzQj9iRuvn2H6XiGFPuIgsTcS6BKErWCwWW/g2GkMFWZyB4wmSdYmC7a1CatyKiGgS3KnL4+ZXntGq/OjsgrXURnyGQ4Qzd1ZLVOqp6hpFjgjpnO2oSuzka9zgSVuaKw++qMF0/3cbw5ipmkVi4wHkYIwQxZ8hHUBGvqCVJKwAsVdNMknU6RTWYIpzNeHHuE8YxKPkM2YzF1FvzXf/N3ANy/dZtrd2+STWeJFwELXE5efEqzvoSkLRMpOgtnxOvHT8lmLe7d22HizOm123gzl0ppk978BC2WKFSvsfvqORcX59y68S6LxTGtixN0M8v2xk3y6SSXl7u4osk4tpDGp/gKKJpBRjIYDD08SWXJipj4Aoaik9VEfrL7LQ9ubDHuyaTLSaLIYzYcohk+By/H3H+wxmg8JQ5FRFQuhlOmsyMatTV0wUQxk5jpNIWMxdzuYeau44y6CNGE0bDNq2cvubaxwrPDgJWdFSJvjjPsEU6HzO0eI0Fhu1imVMhhCxqtiU9KnVNNNzkeeTiLEaG3QFVjlus6Z89tdnaKtLyQbmdAMBiQT0uc2hrZxgYr9RyGpuKHEgs3ZnT4FYKxTiJqM7PHzBZzYseDsERxfZmvnr6ikNNZKudJGEmaWYGf/frnrBaXubA9FqJMIVfANEQ2y0XOhwPGF2cMBzZ2lGSjUuFicIBgLZEUNHRdQM9olHMlHu2+IuN3WXgqVjZLJm1iT2Zkq1s8231KupYEd8J00Ke38DBRMRUoN5dRlTSxIxDOp4yVgPbT1wiJIolSGj0pE7szBq0LuosEm/UC+XwaM2HhOAGf/+aX1AsG6ZUdRv0+piySSlo8b42406zSnXUI5waJXAEjpTI7fMXJqEPzzju0nr+goErkCyXakcmw8wRRrpGiT3FpjUg0OHr5NWurFQaGjjgNyCcSpKwksaoxdiMuDvaxRAV74TCYTPEjjz9+a4VPH52zdectXG9OIAmgwvTgC6KltxjsfU0cOpiJPJJocbq3S7q5ysNbGwQRvH71mvbZGeuNKnfe+5Bhe4RhmrRGLY7OD5letNlpFmmuPuD85BW+JJHI5cik0zzbO4eLIwRFRZZhtnAY2wH3Hz7gs48fs9RIoioillkmnVxi4h7hihZFRC5VE1/ysIQFJS2Hk9C43HtNIZPE8wT6wwULd4IVeNR3Vjnam6CYJmZGwbEHxKFGrVShZ0uUNYd4PuHblz0koY+2dRtNchmen3L8ap+DveN/eaxs3trhzftvILkLDoGNXII4yLDRLDOfDFGULIV8Fj2SkZM1FLtF7NkoqkpzKcdpO2ASxxi1BmndxBHSzKYqjl8jnW1RSUWUl5YRkmWS6T6u4+JMuuzcekBz6zaZfIUoCFjET3j39+5QKiUYtloMLs6IvRnbt++SFBRWbv0eM/sljicw8Up8dnCAaI95+w++y0A0CYYTQqOFntS4Vq/x8rBDpdrkxuYWG8vrFCsVZP0fqWbqqKkCojdBF6csGNNPpclGOZbCAgXNRhdVxl6OSFqQCNcoN9IsmyGRG5CaxtRNgUgSaKwn0YtrhGaOycJlKJ/RvPOAeDJi2h8QmxJG2UKXRQwxgZIvU0pksQwRgikp2WIkFthY3ySTisnpHik1RpJNJq7F6kYfLRgx7kywR5eo/j6TTsBQV4kTGUquhSslEJMSMU02LJUgkaBcrpLQDcQwIGP4fLE3RXYVEqKClYiRJYlhNo2YWyIdXycoppESCRIJi2TBIvb79O0UWtJBV5KoYpYIjd0nX2EdZjnUznBiFcOwyGk6U1miUrJYu3afrW0XQZQxpRxqDFJwgpY0MIwM87mAcplDStlcu91gy6nQ69tIZhWrvMJq2eL4yRe88/ZDBG+ON4P+RMHq23z/ex/QHpywsBcYioIqqYxmAqqRAdnGmzSQ1ABZ8JFmc5K1dax8GrvdpxyXaTZrjLdGNN98ly9/9pj7d9fwpZDxeMiiPyavZ1mvJZBHC1ZzS4zsKU7nmHTSZKWxxcOHb6JNBc7OBhjpNKV6njetO2AuIRommUyCQrlEYuQihDJr965jyTLz0QzXDbGyZRRdJhmELLkTctkapqgw7Z7ii1nGSkBmNCRBhK8ptIOIyVjh3sMPCKSYhKRgRQbCfM5ClMkWbmHVNZrJEpI/ZTg6Z9CD1XQaT03TcnW6HZ1MNoawhZLfppwByZDAnZKQXfJZnS1DQDIC1GQCTVfQtSSmlsd1h9RWNomVKZmEhplIcjGewX+IlXtvvsGDt++jSwqD0zZTHyznkp03HlDIreCjcNw+Z96+YOveuzQ3qwyGYwQ5gTOZsbK+ze3CTeyzlyTzDaTIppgyuXf3Bk6QYRFsQyCxUl7BlDUSukSiVuK8OyHtWNhySCCKaKFKpmAxjSbklJCKmaeazZDTYc8TWF1vwFoJI68QBQvc0RhZDIiCc954912kIKB90aXbG7K8ssZwkUSJstQrVZA1BFVjuVygP83jxmXShTxe0Gc6z1KtrmDJMmopSb2RYTTq42SyZEKb0L/gQqjxcKkIssRCVGkICoF9zmZhC+94hO/PkGUP04R6Xiay57z94Zu0pgMmgxFq4FMsJHndiYnzedbrRQQxYjafEy4c4qrBYJHGCHS8MGYwi2i3OhRyKxSvrTAURDJyyEYlT7O+hKiIPIg9KtYKRrfPLPYoVTKo0Zx7a6ukx2XG5SWm04Aw1lhPJBCOQ0g0Wc2UMBISgRGTs1LIiQJZ75RFb4ycKSBYGS6Pz7h27R6RELJxew079Dg9PSZ5+IqyWUHTVGpbZUQyhI6ExBRMncOJi1avkC7nCYjpdgYsl0pYhW0SYRdB0pASFp4ocNHtkIl83n77Pi92n2LGAqvVJsmqTcVIUhYqqFEKM5dHSxssmqtoLx9xY2ubVCyQTyjUKhWakcnxvoPvZWhWKiyt3cPxFaJ5i2TS5N6777D/5AXlQpHl5WUM0+Dp0+dsFt7ETGUZjIdcDnrYzoJmM4+gVLn+zvtMJyMcQSBURHrGAqNxgxMtxF0sSJhpdC1ByjLYuH+XWjLPIrLRNY3lYpZU0mBrvclz16O5uU3FXyZzUmA/+YpcSiFfymFQR02nMPNVBDXDkCJGUkVERRR93DBgEUikNJPG6g12btcwmJOQTXStzMVYI1XMwiAgUgR8YUpe9dheus7l6AzZXmG1WWcys9HaHXSjSCqqUVozKOT/KSlkxcUPhziuRaWcYh0VWfCYTsY4chdN8ln/zveYjlrMyq/Q/eD/nViRdCCdxJ2lcQ/OUTMK26vXWfTaxJHF6ua7BH6P4y+eYF5/i5Ie4i7GzF2PTueM85bL8ckp2c0bJJI+4eyEzvmYaVQlk8qhaM4/vVxiiUS6gCP0CHoiqpLCd2L6wxmuJKMbBq4jELkeihSTMHUQwV3MSKfy2CxQnCmGqCPqMOn0SFp1Vlc3ePH0Jf2jC1LTPrHR46glYKkqrcmCynBKMz9j7k+IrSmH3UsqSgIro+IjcD6Z8vA7d/FPzpGSO9iTNs5oijYXaJ2dQUKnHkHgetgepEQTV4Z265CN2w3C2RB36hOIMoO4z7OTPfRewMIZEpgSZjBjPQe1xgonp1+zvvkdWu0Re8cnbG4tEdk1FkoEkYjqe+DNGNtDhtMlri+BZijkc+uEToHx2Zj2xKe1+yVqsUrFlBGkkEGgsFTZorHcJA4umYkRnhxQMGVGHY+PfvxjDD1FKu6zWjHZWK9Ru21RLq4zHC+x7w1RDJ1MMovizshWLWqORmgUmfsRczfG9wR85tTTJeLCCM+QCASFxYWPmRJ4+fiIZFyksb5EKp8lklXefrvKq+dPWIhTQl3B81P4Yo5Kqs3JfM6mrrO6tcpFy+bsyWM+/KO7zKYrBB74no4binhBgGIPSKgJRmdTxKUlUoUkhr+g2zklmdNxBn2yJBBMBVsIGA5F2q+fMIoERsMB5YzF1lqN3BsN5Oomv/zxF8gJEMMhZX2KVdIQlIj+5Sn2SCCVzqEqPoPZgG++fERh5T698y7LlVU822e/+4KvLzrsXL/Os70ucn6ZwNCYBAqymcFxA04uWtzfWKXrCEzGPs01AcEIOXl0SXIph6ar+HZIdxJRbUDoptAZ4HoOXXvC/mTCZbdDr9vGbb1gpDjUsyIraZmLcwcjZSPPpswUGV0WCTWDgdelt3uEHCbYP5c5m8oIgoKpS4hqmvnkCEdQEPBJxh4F3UU0MojhnKRiIIQe7mjCNIqZJxc8vLVGYEZ48zEzJ2I4jf6Pe2NpfQXLSrEYdOh2jrhsi1StMpFeoVhOMVu4eCceogKp+ibPTo5wZyGjmYHjRyizMR9ce4h9/ozOxSssQyK3tYppLlDlFNvXbzE4PsQZDOm2XfoTmcRWAuX8kGK+gh0t6IyHXHQnRKqBHU04XgjU1Qyh4GMLEauVTZyRQ3mryNztQuBhWSm02KBUD0FJsl7LY4/mvB7t88atHTbNbb74/IykpTKaTOi1RsjBHF9I8OlvfsTd7QYzbIRkgnsP3uP5Z1+zsrXE9OwF/cEYMRZZTltkknUqyYdY4oK9swtEFZorGT59PCOl9mh3zjETOumUjmTJDIYhrq4xkAvE4YSlcoHqUg0xkSXea9P3Bkz7U4bTLqPBEUlnytqd7/H6k88x1SmqWSaMkwxcl1JBpzsfUaoqBK0J846PVNJ4dKlS3XqIPU+SClIYfo/IHTO4PKOX0OiNfMTECplcEpUZQq+LF0qEkwVGTkQKod0e0LkcUMgvoxp14u4lo2GH84HP62cXkDxCkiNyeo6ZmaXtaPDiGflakUgrsghmTPs9glgmt57GWqiUUhbFGqiGR6vtM76cU9+q8mffecC3v/k7Dk7aLBQVIZtETpcYtoZE3oTAn7JwBQLbZbue5+vPDlnbqJHJm8TCAm/qQbVJZjhEH08wkgqeqTAXfdLSHF01cWZDkpVNZFOHwYKEIvB0/5K331T4qnOGIAuki3lEwaW3+wUP3vo+lAq4aZl8XsWeLfjm9Tl3b98gFmzi2CHyJfxAB3OZ9KRDKl1nygxNjkkZMokb19jZ2eL5Jxe0p4dkkxGNRo2TywnPHz3mV599xANZopopklGy6LkKu6cn7F38kuvFAjktQbc95XwwZoKMaiWRPQPbHqKZBlUry29+/jHrd75DJl/D7h4xmnSIxSGtfhKkS/odhc70gjCeEKQTFIwSux/9BM/YIJUu0huP6Yw6rKeSiIktzo++Il/dwB2OmXXaoEKsSRwe77NTttibiLTmHoW8jBBWWNISHDgS1UyFTrHyf98hP/jBD/4vN//6r//6BwCinMeUMhS0BJdPXjIUXAQly+Gz3+DZEwr1beLCNZT2HhZtHNvGdT0UXaW4soOpjUglk5y325ydXDIc2piZHCuNDGYJNt/8kBiXafcAIQrIppeRSjkKsoLnz7BnA7xuh06nhWBExEESvCkEM8LQQwqH2HqKUesFUQzJYgXNMnn0m08xtjdoPWtx3moTBRGaIiN5Ex63ZcRozs1mjiIBvdNDfvPyS1ZWKtSrdaJYQSykMStpSmZEQWqxuVXl0xdnME9hxjqT+Wt6wwHjSYAQLxjrEpmqwZ0VjfEiSaA7KOkS86MjLGI2tzdpNjRmR9+QXk+zdf86WjxltPcNWc1k5kaobkiExSyOCXSDSCnz8G4F7cwmbcVEksgiSiDpRR6+VWDRd7jsnHP++jmHz3d5fTpGyOqsWW3U5DILRSCZE7i1mmQ2HTIPu3gLi9k4ZHLeondwQNeuEWZNrm826UYCfSdA8AM2Mgl8+5Tzy1MUI4NZKGHLAl893mU2d8kUEsxHE8Yzn7OBy+e7J8THnxDU3iZtiWjiDHs+ZRxa/NW/ep+Ja2LGEY+e7HG0d045ZVD44F0WF4/pH/RIRUkMXcXVbQZnI7ZX3+Lw+QmylCCOXdzFJXFnxnb9OknJ4tE3HY4vImwxj5CpM5RFTp0ZEzckWnRICBMay0tMpy5mEHDuj4lFFcVVsfsuucYDbt8xWW3WCcIenckhnUWf1kuPF61dijWZhjjleqXE5o1bTE9/wqd7IdNJi2dPnnC6f0jgiyhmjUoqwe5Bn8PBjGxa5v37W9z4o7/g889cnvzs71m9eY1GvUjO0tBzKR5/9ZrVapbOIoRAIp1Mgqlj9yZMQp1KrYDgzeh0jjgaH5JPqOiKwrevP2YRO3ixR2B3uZ1TeLU/4nLwmMxalUqjiiarHB3DxXGPm28+pJwpkTIzJEyLZOyTbGzy6otT5pMpqqGQKJbxMquIs1MymToz3yeBT1YVEdQ0+XSWUjrJV7sRXpCnVl9n69411PoautjnYOSRkCFt+ExnZ/zkx58AsF1rIGar5IoFmlmNr18fU27eY3I6RM8u0xqFvN4/J2umwD7H6rRYWS5RX9kiW14niDw++uHfkq3msTIGarGCWVyirOqcdtq09wbsv37JZD5DFkMyqs2p1CdTfofiUgErHRO7Ad3jBe2zL1lef4/vvL3N6fEL9vYfI8kzbt+qUvclIrOEMjlDdPokUhofvHebSEkQtV/iLAaoqkg2l+XS9nj/WpXqapWMUcF2RWItwfVbD/hP//Wf8Ojrl4jBgER5GSWzxPnRIfm8hufBV198gqgrJAyJfvuIaTrLH98t8vPPvyGlSGxVK2hSgr/56W+Qmg3UaEZF00lqJoqZoFErUJPKvJ62OG21mUznjEdjnj5/zUe//Qm3mmWO+g693iXedMDEsRCL23zyDz9kZWWb9mBCv3vA++smoGGft8gqMpZRRE1kiVSfRiNFZzRnJaHw3ns7XFsrE7VHSCxx78ObfPmLL8lkMiBLtAYDypUUSc9BKpeppZMIwYCAMRs33+QXX7+kWs1xOhgxCjwEUUSMilzGY6yMhCppVMQYc9Lls8efs3WjQaq6Q2THnD39isV8SO3Od/mb//Z/oHJzh3LCYppcwc2uY2WyvHz8S1zRJpDTqJZFqbREwazx7LOP+JO/vM8//P0/sLX2kFphi+ncI7daZH9vnxs314jFiEXgMJj02Xv2Lavr1ynVtzg9e4LkuSSUFHNf4CwY4RW3KFgbBG6Ebg+5kzLI3vkLfvnT/4litszK0haGkmAynbJ26z1+fXTConWCOxUIPZ04ENAiG6ta4eT8EnfQIXRcQjSyVobEbEycyGHKZ1xbKXNr4x5xt8MovUy9WuNi/xHt8z3sWKR5+49IldaZt8+olLYYdQbMOmesF0xS9RLuwOH2zTWGWopTe44Un9LI6lSTHstbK0hegBJGWHkLaW2HP7hepCwP+fr1OT2lTPONd2k25vzoV4/5i+/9GdHCoZCtsrN9Fz30GE5tzEyRQlVC0i3CKI8zmZHOiYiTx8w7fRKKh2bInPTgnT+5xujCpnxti7SeIS2YRJgcXByw/+3PiOIxvprkpDPhxZNHAPzgBz/46//HsfKf/xf/JSsbWX71yX9Hc63J9Ztv8PLVM3Q1pFK0SOkB/fYR/b2v+OC97zONDFw0ksksK40ma+ka996q4ag6O9e3ePvuNilLQlM1Clv3CU6eIPUHqGIOUtuUKmncy2Me3isTTkS6Rw6zSUhx8w4vvnhKpRhTLaRRgphZu0Nzu8bw2Uu09CbtowWmJFKrWXzxbQ85JXF0/g3yaIzfu8AeD6nk7qP2j1EaTZ6fnCEbJvXlOkoQkNYbnHgOsShzfnjAwYtdFo7HdTXgv//hKVbcw++f4s8vqS2Z3L72B2yWjrGMHGnJIBi6HB4P8eUEd+9UCE0RT4tp+wFHlyOyoUG/qPOwUafTHTAYyWjJNdKbOezEDs8+e0XWiPH9BYvFFCWY8KMvX/DOxpBPXwR0RxMSmoelp/kf//E1jt3l+OCSft/Bl1XMcpJwOENtfEAzGZErpDDTBpIYka7ewg3mtFwJXYLYMHFyeR4256xd20RLQC6jUMimEUOB/W9/y1wtcz7LIsYe9vEJQqfHd//gJsXsMt/8+/+KpBEwa7XwL8+5v5Vi7eZ30Hr7BHoWw6zQqK3w4M46+jCiO/kp7kzHXszw5ZiJYrL/5ZfMjDWYxiSkC0wzQrc2WYQy56cvuPNBnZW6Sq1QJZ1e5+hsj/TKDZy0zSdP5wziJJlrdWpvrHH68S9INK/hDSaIfoSSSCKnDF4cPCKfNEmnckw6LxGCM97/4A6dvQv6kx7/7kd/y7QdIYXLXPR1nn/0MX/xn/xrvr99k1zgMT57wenzX6NFFhvv/yWS7/DGu7/Hg3f+lI3r77K9XeXO732Phbug0x6wd3jKcbtLpZrhcvSCrbrBdNhHCfqUywLFzRKZqsXBJx/z4O77WOaEqf2KGbBaTDHtO+iqTbd1hoLEW9fv8Zv/+Ue89Ud/QDQbcNGaE3oaN9evs/TGLX777WfoyR12ajWyscB06lFeaxAqkE4XcMJjQnGOkcyQrxfwT/dpXLtFYes6pjwn7j8jCmZkyjUOT05J47NS0clXDWaxx/3FIQfBmPe+/x5mpcBZb8LBo12WOsd87mWwxh38nk1/COejkE8++giAP/urf0tmMGR41uOVLTNovyRb26KYLbHb22cmDakvp3AuZ+z6Gf7VX75FNltiMT7FHz1lu1KkuXOLVC1JZfsdspkChuDhSA5n/TGq77CUzVHML6HJBuJsyncf/iG+P6e3d8nu8zM6A59MrY613ODNhsqhKzDvddDRSeZvUF65jjfpIcwWfLl/zmTaY1mf4roKn7ZsEgjIrsZcTtASVF6+uGS3dYw5nfLiqMvhWYfFqIcyO+K/+Xc/4eHtD7EsGTMpYak+ORxWawrHu0dUyxalXJ5qpsDG0hKdWY+x3SdeukNh5R3QC7R7R1jRlGzPI5tL8eDmCjUrJGgf4PkGD/70Pd6+f4+aZRJ6l5zNTukm7vP92+9QreTxvSGnr7+hfbTPzrUtZs4rNoIR7/3hn7C5uUPJTOK2T+n4Nn/2b/8N7uOnFNQR+azM3M7SH4QUalUahSWefPuE337xmNFU4Ga5xA//4afsdg5ZXi5Q1GTkWYBfvc5vf/Exy9EFXzx6xLOTfRx/jDTqUTGrfPuzvyejCPhixFyArbUd7IWFKrucvzrm7KDDZAL58hZOq8v8/JzW6JK1a3epr9zk5YtnbJcl3r5dZGjc5PD1U4Znr0gYWbK+x1m3w0he4osvntE53CUrj3F7IrXv3mHR7iOndKK8RZTLMRjM+M6Ht9h9ZXPqumiKQzqcs3fs8OEf/z7TV//IFy+P0DQLS1V5/vxb8uM5zaXbjNrnFMoJJNPlo09+wtqbHzI9f0U6ZZDUZSJnRrd1xtPLLv/xuw8Ztmdc7j7BHXdI5DJ0z9o8fPMdOi93OZ30afVbDI9fMD18hqMk+fUnv2bYCjk67fLs/DnhssX627/H+S//kaWKxcrGDXL5On7vEGvRYufmFsfH+6xkZXZKKXr7F+TLCe6s5fnmy6+5WLiEso7pKdysVRkORzz/6nPyzQp6rcnLkzlnv/0FP/75NxhrBTLJCllVxh6f8vyoy3eWYdCace16hus3cmSyYDsLdp/OaVzXGSw6eHMX0RM47U85ePoYV9FwFzFZrUI6u8HEKvDRNz/j3Y1tsoLDZHBCr91i1ncwCiq2L5As3eLa8nXC6ZRPPv3VvzxWbt6oESoCe20IZwaNJYtnxz1GjouWKmNmqxwffUnkjKlmNnGrNRbhjEXvCCkK8LvPkHSFTXmBspixmNk0i2nW724T7P+KfEkmTNcgkSen2zzenfCHf/ouJ9+M6Z3u4zlHeFGH3ukZKVNhfAl4Ppo8RNfatA66aKUig5FEu32I7c8QNIP0SoHWsEW0iIsYk7YAACAASURBVCjrU26tJtnZLtISW9xauosS9FlK5alldCLR5WihUG82sIMq/iIknUyTsyrYPZXPHn1K7F0jkBNIVoVsrczKWpr7W0WOhS2KSzvE8ynO/ILYdMjXVlFzS4j2jOWVO9RrDVJ6xCSVQrLnfPa4SzqTw5516Z085XY5g1VdJq1eco6LO+9RlX02t++xGA25vBgxD9rICDgTgZPDfVYTF7SfHXDUPua01efyYsysM6VUzbCi+YQoTCYho1FIay7wvHVBufIey1mX1WvrFEp5FMfj4jLJ3//iMcfPd/n0q31UN+J6rcgrMcG1axs0KmV+s+cziUI0fcKvP/qUwf4updUtlOGEFBPyKRv8Ecf9I+Iwh8OEelVhZaWAkaswD0Lq2zvohSaqlESeR2jjMQ/f26acLZEtNBmMXaZujKJJDE6OSYo9fv/dmwhOyMFhn6evBvTdFC97X/Bg9W0uDg9QxSmphMxpx6bfndFULzmap1gEMTiXzEa7ZAvvUK9k6c0HaDnwVYfPvvqSjZKKmtbZfX7JUr7A8nIBPaVh1pd49Juf8/LXP6czGKIoCllT4ds5nD/a5+3v/Wekki6X5/t8/e0eX7/q82r3OTtpBaug0Giu0MjV6T39jA1rzs3VFDe2CzjzPqfHZ2STRczOiNO9c2aGTCpXwFTS7D3ZJ5hIXF8yiFyBYbfDbDLFcSVmgw7JtMm//+VPuF7MslXTOejv8tOfXfCHb1+jWatxdn7E3tExs7lN1vSZdUaookCslbFHPpPDQ7y5iy2dMz3yaD3/EtGdUCrUyOoVvOEARRTJp1Qib44QhqytrbA7G3D92oe4qRxBnEHWCpDP4IcjGuVlcoU8CTFk0T7m1def8+3eyT9NVu7e4qB1Sm/eIqnbTCce52ddXpwfUM0UWLLSWGpMtZmj3fGYnJ2QM2Oi2GYe+GhqimePX3OzUOSj//VHdIYLtEwNYeSw9/WnpLYe4CY0po6PK0qoGw1msxS//eoTunHAenmN9cISYeQx1dKsaRKL6ZQwjshV6yytbnM4cCknhsRWmdpGmURS5ejoko8++RpDrrDZlDk4aiGpGvd2Gry7adIdaewOS8zGh6QyBsWlNQQ1yUrJ4ONnjwkcj2QkocQJRnENeT7hxdimdXgMZpPK+husrq/z9fMTTKHIzZUK0/1veP7lr3h2cARGnRtNH6W+TG9hs3vQZv/YR07d4etvf8nP/pe/49PTCWPXQLclLp59jDYd87cf7dEsmzRXqli5NO2TIwr13+dovE8lv4kiZ5kJCofuHLvV5h9++LdQXsNRU0xnPoJns1qtcDBecHulTEHXySVyWKkSC+GSB+98yPZOBm8QYc89krkYLg54v7nCytvfoee5OGoSpbBJslDm9nWLF4MxK6UUy82b5OoPCSON6zdLuC+OsK06qpEhKQskrZBr3/0um/UEi4sTwnkbQhfTqGEJC/amIk92ParlFEuVPIPLGa9fPeav/vzPqaYyNLMVKtUy6UaW7/3Vn5NfzEllclzu9wiGHllDZ9Lapz+9YOGMUJw+6UiglK2xee86X3/yDUs5FS+5QugnmQwdZobBtQ/ep33yjO1ajVZ7j0cvXzGOmzz54re8+x/9OeejDsu1PFvNTQqZ62QNn5/9/EvU8jq3792hkBE43f0tU22VTLnOWBoiejMSySKlrbvcu1/m1pu36V2muPfGCjt3Nmg0tqgm8px9/rcUmyKl8grt/pDuqM1bb9zl0e4px3uvGY0zpIsr6Lkiw0UIgYawvsNer0OkqJTTBVbydV6cH3Kz0sBUI5o7D1CsMp3uJWbCZX3lbW7dWCeMx/QWQ4ZuxFohSXc+QJSzpAoZxpMpZ0fnlFIatUqJiZznouuSVlNUTJ3O6TOCXBoxVqgVA4K0yMW8x/j1Z2zvNNhvnTG6sOnPHcaCg6tMWdJSbNV0ehfHWHpAt3fKZ198+S+Plds7N0ioGWbDmFp1iTA8xe5NyOoSSTUJvommCeSXmuiOj2SlQQBDUtiobNBpXTBe9JE1AV+IWIQOPdtl7llsNEpUtAy6nkDWZURJQKtE1JUSZ3v7RG6fOPSYeQr5ZIKJHRJLEVYyxJQCNC/AiuZIhoNrB0wuB0hGEqVaoDs9gtmIpZzFdi3LStbEJKbXD/EdkdPBCfl0gyCIQZF48/3vEA7OyeSXCKUEjm8jiy6Nag65UmL1jXtEuo+VS6EqIr2zFvsXCyatLq9fvcbQVPLLK6SW18lYEo8+/wzRi5lf9hD8kHS+zGi24MWLI/7yT/8YL9QYTSaEkcPMTXJ+0iKlS/SHNqapk0pn6Z7bHJ6/YNqbstJcQ1dNxqMB5619Dtpdjls2geqSNFV0WWUxD5guxjgLBzmZR9AFpKSBkqkQajr5qMXZeMyif063fcZxf4rrxKynFbR0ChkbSwnQFBlfTnO2+zlps8p01qdoxNQLebTyMpoc058mCAQXXwnxlQSC3OBo2OGNm3cp1JaoLa+RSVWJbYFYFpHsAPfwNeFsgCiAH4h8/MWnvPngFkftU3rOAtsLCBdjzPyCzc0bBKkyLy4E9rou8zik0VxnqyjS74a4zhyZEI2I1WyCbr9N2p+TzZdYDPosRhNu3L3Hq719ZG/OwpkQahaykiMdSrQdm9hsYjoBSVPEyibIl8q8PPyGu/UM1WSS5VKaQi6JYGa4jKvUl6q8OPI4OHzJoH+OGI2xhDmb999mlDaoVWTWVwosV7Mk7EtOWjan0yluIGNlMqw0a9RTJuq4j1DfIpi4BK4LgUDG14m7l6SaJR7ttZh0xoiehCgZJFJDxjOVyWzC3a0VlEjky6/3kCyNhqKzEKccv3iCjM/GVg2pf8lqpUiytkLgB0hKCtUqMbl8iStG+POAtK6gKRJOFDIURBKzC4rNZTw5QlUVMrpGWhcob73Ji84Fw5aP7IlYKQ2rqhGPXGa2wFlrTiIbkW9YCKkc//iz3wJwbes+9VKDlJlgOh0znIbU128xHL8grRhocgJBsZCNHC+/+JzAGSDmCiQyJdJ6mvblJWN3jllssJi0MaddzFEXSZbYuvUWci5HOHYIZiNce8ZsJjINfIh9Prh7l0I5QyiFeLZDZzZmqbnBwdDFNDXiwOGsdUx5ySQf2LyagyQbJE0LWZV5+XSX4o1l5mIBVdIxDRV3MeXk+QFRDG/eLVNt1BA1GdcbYRESTCHUYm5uVNCSFoGaJFMoMJMdFr5Oo6iwmktgaQ599wK7fYGKR6leI1vUMdIqkmGx8+77nI36nC0GTMcuztRjPluwf9ZBVUQuJxFr9TxpWWAymjCOF6yV1xjYCwrJGY5t47iwlDcwNYG0WKBYKzOaO3QGLr6Q45vnpzx88z6iF9KoFllqLuPoBr0XL/hq/whdGXJ2fMLMCbBqBdqXh8yPOvx2bx+DJPVyiUzOZH+/RcdUabWHhKGMoQiowggxGCN2x5QaG4T9Ifl8nuVGmcn+Mw7OT3n69Clb926iSRHB5JRaoo0xOObrozaubCDFBgnZolgu8/q4i5kYkvOniM6I/uUFZ8evuVhMeePmO3z8yU+4mA9RrAT1QgVDEfnJTz8hkV0mV7RQVZ/5sIMumIwcF8mXyeUtUlkL2TQAk8m8jZZaZamUIZ81kA0NENDkESklSy6bJ5Gvks0WKSsum7UyE72M4rVwCRlHIpEoIkRdPj/c5/rODqpmEPgRqiyTz2roOQExEHF8l/FkznxoU6+usV6QObh4hZrKEGMw6k149u0L1Pw2k/GQZDbPdDSmddqnNze488YtXg1jKrUKjXoSUfA4OOySEC5oVDIESpJyKkMeG6/znFGvT21nBydOMxIl2v0h886IxvIyniSxurZDQldwnBmdwQhDWcLrO4RiSDJTY9i3Odw7ZDCdYM/bdOcLynkNQwmIpJjGzgNmkzkb1QohJo6QIxJNDCEgkmXqyRpCqoCziJGCmFw+yf7Bgsb1W/hTCVN1uLzc58tHu//yWKk1N9C0LIQimZxB77JNNpVF11REQYVYRlMUZHGBv5DJ5EooskoQyQSBjh9MicQEALKuolsJZNkgiiOsbIqslUcSXUQpRLNqmBYMT+d0BzNmkx6u6yGrKdKSj2BHTN0JRUskIcX49gJDGBCaCn4kMevZuIHPQvAZzmPqCShKfWpmgBSI9HshnbMuA0+n4w/QI5HBaMzE8aiXctiuT2fqEMcu+DMi3yYUIJFbIVswmPoBYhDijcb0TjvMhj5JS0WWQ6xKAatYIKEbEI2x9AQpwyS0Q1w/xJdikorCyPa5tVFi3JsghBGZbJYokad79AQjucx47pM2DVKqysnxBQPBZ2N5CcEPcBYubuDixy4XfR/LCFmgIEo6sSSyiF3iyGc8dQiFGN1SMdJpZDNPPpVCCMcs/IjIXhCGIaKuoWk6jbUGaiHFZNJj7AQspCSlQpa+HZAUIJs3SCUMvEhigEJO1WjPBDKpNBgyjqyCXCNZzlNrbGJaeZDTuHaMP+oRhAr9549QvRlStCCKAua+TG/mkEgInE09DNlD9MaMhgNSS3Xc2ZTzmcTQUZg7DoE/x0xXqFfTvHq6z2KxQFQ1kpZO2ZxxcHGEEUIql8fxPDzXJWOYjMUYeTRGlERkTceQZJJhxHH7HCeMEP0FYegxnDtcDqZYgs3m8hLL+RSVQhoRkcuBRyitIMYCg8tjbHtCFAqokkzOctlY3eTx3gnOLMAeTPCGbbK6hpypMPNEEmoFTc+i6xppKcSLDZK1MtF0QlL0SckxahwzPt+HpRxHr05RfJ+MHKMzJ8wn+fTTb7ndXEeVRA5aHfbbIxpLGeTxjItRi+l4TiKVoVyrYioasqXixwq6qKHJGrEkEEYB0XREWtJJJHVUJSQKbGauSyOTBN8hVgUUSUJGBjTqm9vYkoTix0jYxP/he3uUsPDtBcNJyFR0CBIyoqbx4x/+AoDvfPc9spkcQRAxXyxIICPWb5IOByQUE9VMISQSzMc9sOdogkNhtUEuV0XwBJ7vPmLj+m0CkgS2S+COcX0bXy4hZrL02j1GnUvmsyFRCJqSRpFc1lbWCAOZWBKw/zfG3qNJtsS+8vtdbzJvel9Zvup52412QBMNNwRBkCBjQkOJo4kJjbSRQh9AWy2khSK0kBazl0ITMyEKIgdDgCGAAAnTFujX/V4//8pXZaX3eTOvv1cLhEar4eBLnPjF+Z//Od6K4WWbxBkhqDotu4sYuUiyiGBqBO6C5XDJKhKJpAyLZUCv06Hf61MtS0zmKtFyQRj5eFFM4HqsZJFyWma4SPD9BIWYIHCxcjn8+QA1cekvXBxBZr1ZoHN2ip5WMaSAlCawWk45OTmnUa0xn0zxHRfTSqPpJpEX4cYJ9XKOzx8+wpLSpAwTQZOoVyrUciaCELNWyWFpEqIooVoNElkDIUQKl4RBjKyYWIUart1mMpPR8xGLyRBntEBXdGaXp7z3h98ktJeIQoikROh6jDsdEsYxtaJJGASEskSsKQyPj1kEMXasEcxWuKsVQRKjJCITf4ph5inm6kiRz7x/ge0EbNR3mDs+k3aXiBBBiUkcl1UiM5mtaG43MBQFKfGQkwmem+fz9hzTzCIpFhEygTdHXE5Ip0XMVBoxjIlWHoIg0Ny5QqW5ThQsUDUZS1XQgpiD45d4JMj5PKaRI/ATFvMZmShigcFitiSTMhGVDIGQwdRM8llodReUDR+REHu1wpv1KBYzZKQM3cGATL7MWrmK4k7wI5eBb1IUXPwowHZX+M6UyWyIYVUomQar+QxBUahv7qLJOr64pHW0RDEM4iRiNhrheiqKJCAYFqNFiCSoqCR8+OEvuHXlBpIkkEgi3twl9gUiK8vVtSa95Zztsk7sLBj0h4SBh5GVUZOEk/MB7nyOHPkYGnTaHXxRY+KBpsQkgctiFZOx8hy9ekCtuIkXjEGMyBglvKVILtfAX44w9Spe4DFzBvihzEXnkvX166TSgBCjyBr1UhH74By1lENLl9F1UKQFYeISrRKuXLlNpzcjXM3IqBHlfJpsZRtZ8YlWMJ93OTw+4OXhxT8IK79TKVxnNGW4mKFoIe6qw3giYlhpJD3zW/hIx4iShuBMmEUJmiRRyGTQrSwXcxfZKqBltxCDAppcpFhssru2Rb2sMpytcAwF1VIpZNPUq+uU5RS9WZdpIDPyZexYRFNkvPmIXOiiODPC+RzXnrPyp0ztCVGsEROQMhQSd0X/5JxoqlIy01h2h3h0Qq835HQQ4q3mzMIE0dCx5y3s5ZTecMqvfvJjhoHAk9Mz5tNzlMQmjiMO+zNmQ5/2q1PUWEd0QsRVSDFTYSOTo9xscO+t22Q3ysRyiOpNCDyXt99+m63NJms722i5FMvVmEYuze72Jo+eP2fUuUSPZSq5JsVqgUw+wvEEfE8kDiTiIMYLJmTK6+xd3aTXa9NqdbCXEaJmUS40aVZUdL2An5g4okyS15FSJpNE4/jijPFgTLgKEaOYWtYiKexRylnkS1XKlSobJYuCpTMxEoxSGow8/SDFmSNjZg0qt77OyB6TSadRUmn6K4fT1iWCYKKZIlaqiqRV8RSL2NBpbNxjGlrYSxh0F7RbXaaDC6atHuOLEzRdxtQSpGROJC7Y2b/CwyfH2A6YhBjJkkAIkc0rvDy75KQ1JEli8ikVU0w4uzxjbqRYJRH94ZClv0KxFFzBJnJ6BEmEvZpjmBIpXeDowW8oNdeJfIHQh2g1JXSG+FGAb09ZTo8IJA87hKPWhE8+f85eroq3FDBVgTBMGM0ixuMIK5YYd1aUUjPqpRT5bB1FqRGqMl7nkPjVcy5erXj02SWPP32Ch8X+9evcufEG69VbxF6ezoXPqOcxES2ysYOlexRlFyuaM1t2GLlLut0LtNWMtBigMiccH9K3NdqtA3IotFpdnl2c4cgheVUilj0WowFWqUiq3GAVmlDc5GglcNkZIwkmuigghQsK9V0sIUUqUnACh1jyyKUT6qmE7FqVyJ6TVyVypowoS8x8g8W0w3p1h1I9h5KKWK2mDC9nrHIm+apCfs2i72s8OV9x0ur+e92wMiG2P2LquhjpEjfWmwQxrOW3MLQ0iSISiAG97gnNvV0ajRqGquH7EbNViCNI7GxdIZg5KGqJMF9jms0ziyyOu33aZwOmkw6e54NgYBgaOTmmVCzy6KjLcOqTBDCbjGikVNzeCfGqw2rZJxJijFyZzvmAniOSiUIkYvrDIScHZ2SLFaTBgKB7QPf8mHZ7wNKH8s46USrFoxd9Xr7sMh95CLHGIoIwE4O3pH1+Sbd9iW33kaIh0swjbyyYLVf0wohxIBBNBdL5KkEo03p1wMGTEwbtBUoCvaNX7JYLxGOPgp6mVqtS21rjvS+/RrWY4Uo2QvR8ohiK+Qx3Nq6zEmN0QcJxZURBJ5XKsYxLjO2Io8EZJ5cvGPePwGlT0KfcqciklQhJTrjotzm/OCTDktzuBle3ypSsCpXmJkYxy2g6JPEDvJzJ1c2reKsVz18ecng8YGdzk4yz4Mr+Fo16CVVUcW0JlCpybZ3JYoZgaIzmEw6PXpIYOqVSmatXriD4DoYcY6azHE9VJtnXiEjj2j6rKGQWOYxHlzQNl7Rk4WoWZq5EtVyjXm7y5o37hGrAW2+9y92dfUqqzKTf5oMPf82167tEzAk8kUQsIqbKCPEKMZHo9nt0u0MGfZ/pWMJ3VqwV8ghen+WwxbjbYdzv4NmXFPN1wmRFf9QlnI3RghA3NrgYdGE5RxMtTDQUzydYTJjaPlfXb5AsbPz5EEUTyW3uIuoVvEDj5KiPLqbZWFujULZ4dXjCr19OKdTfwHMS4sAjndZZBkPSzjEVS2c+tgmchFzawrJCpu0u6XCAFYwZttqcn7bR9QCKezx51efkxXPOzs6Yh1DcvE6iKpy+POLs7AA9WFFNKchGzGgy4eLFI84PnnI5aJFIEhu1LVJqglYsYkpphBiMjE65WUKWU3TnApXCFrafsIpkJEHH7x9TjSOmCZTrVdbKEnlziqyBKSjI5QyCs8RSXDJWiCrBG2/dwx+dkggjeqMRncH8P8ohv5Ozsr5WopJTMcQlgdMlymdxWwfk0muUayUyZZlAzbCxtsOrV+9TzGfJ17KU1/KsFaqM2nNmPGcn00RWLOZhzFLSSZWvEwcmAm0KtU2KtRvI3go1fEkkmnz+xSn5aoVSrc5itiSOY0ZhwP1rNSaORxTY7OcCFgufurXJYHhGLpVDy2/hamXkyQPEFYhTmWF7xdnAZ5xI1PcaLEOZihpTS+XY3dshX87ym08/R89pZGs3MIwSiiahWgZKuUbv8CM+enHMa+tZ8lpEo1Hm7a9+hVKtiRPb+I0yASaqIGKZkGgFjk7PCGSTUjPL1l6Dzc1tRFHj6eGMy36KdjthNouw53M6lyes31wjuHjO+PgSz8riV4uEvQ77uXUOn3/EaJVh6mi0+lOOLy748pfuc3B0yY2dbXKmhKqqpK117MUcde02wnSMOO5jRg7lao6pJSHqNfyww0Y9g6ZGXPZ6MJR4+Jt/RU7fRIhrrCZTlv1nrK1VkQSVx599gTucI4kxZlFH0ySMTIbUwiHSE6Y+CFKe7a0t/u5XAwxHpdNp44zaRJMui2GX44efUdm/QzgbYLs2S2nFSh1x1OpSKt0iTZtOv8vU9ymv5dje2cDWNkmtFUhFOdYLVTbraQ4/+Fte/73byIW7XLx8QrDoksnnyF37AwYvX5HONVgKEkY4J+31WcyHVPY2Wc58epNTeosBqzBCT6XprdrcuvoVdurbjCKdORr1Yo6sd8nloyOiwQUff/ic85FK5fpbaMoFWjrLUEmRNvMUchnUtMKLiy79zorXrlW4/847rF/bJVXLoygyr77ocO2rbxIJLq6zIFiELEYxrcEzMo7K+eEx3eGUs/6cZ8djFjRJRifksxYiEaP5nIPhgm7X4c+/8ho//MVP0fM+qVTCuDXgynaD61+6Rqx61AspCsUCoaLxxYOPGHQq+NoWslEiXahQrpRIMaRcXuezT19yfH6G7S0xS3mat+/yxfFz1J2vIqYtauUM5WKKSbCkd/aMz49HTJYRtUyeWmUDP9PA655x82oReS1HoXGF2VjmZ3/9Ef2LV78Vl0AkSBSMVIlGbZ8rr91F751yNOziuAlxFBH6IXM7z0KM2W5s8usXA04uh8gpnf23v0b79CWvnj2lub9BtWiQVWXUTJ7XX3+X2CyzpiyoFkqgpjntd0lbFh988ZhSscH1rSpZI2Hpuuy9/ftc0SRa/QzbdYvFqM3f/eQD7t3Z5jt//B3GrTb1qktZn5MTI3ZvXCcMZTy3h2HVEbUsoqSyVm3SMNNcjGbcvvolVv6E8+5T6pkcf/v+b9i4eY/re7fZ2CyTtzzi+SXrb/4Z0fAJPQccLcva9h7vvX2fD3/1M1K6Rq6c4/HzA3qzOdffvst7X3uDH/zkAYJksL23R7lcQCbh1WmbB+0Z2ck5y0VEq71gOpnxzp5CqZqn+/CYVC5Ez2eR9BxaEjGJ0mTEMZOxw8hOkAtFrr12g7YdsTp6yMfvf4wtLsmt1SgVbtMOKjw++BAXiTi1Q6TmCcIphbLFojNAC2QaFY3aegOrvE9z9zYHrQP2d9fonb6k2++hFet88w++y7/9wff5T//J97h+fYNSIQ9RQr97wMOn51xppKjkNYTlBecnL/jgmcObd5tEszOGkzGJM2A9J/POa/c56dlUmwnPn31OOpcnTgSePfg1x8MpWU1gNg0YLGw8OSHSJR590ebezl2C7hlX1qtYhQy2AIkhMbi8pHN+xFyKkGUR3bE5efYpJBL/6JtvM+3NuOw6jLyEOKew1sjzeHzKu2+9TRnoHp7xcrhko1QgiTXkTIIiKuS1Cs3aNXY2LD56ecl2aZ1CuYZk5Zh5DvOLT1ll1glah1ytG1zZabK+uceytyCjKRi1IobTx51NOB308PQ5lpHCn10wi7N4Lsy6bV4++ZTSVoEnH32GEkdIcUzgB5wPppiVJh/+8Gfc/dIW199+k80ru+R1n1AwKJev0Dk+IF/ZwkgZhNNnzCYjpl6Cbpo0m9dYOvD4xTN29jf58d/8BTfW75HbS2PlU4grmecPPqZYqTKbjRn5M7xIwvdEpvacjatbhLkmW3mDZCXgrjIUMxtkS3kiJeS9OxtULQMvTOgnAk8PIrTxmFXcJvADJqMlZ63WP+is/E6w8t4f/HNytV3OT57z7naR5y+fkjWLaKbF4OKM02cvye2/yZZkMoxUEj9hNErodmMcd8KbN5vYFyFRKCFGLmIYsYotdqsQWjLhMMLvvyCePyVtQkWBo7Ms97IDBpMpp90xuuBQ0ESs5YK0umLLSCjiY0/mZFcGA1dk7ztv828/e8Zpu8WaEfL86TPSqou0uYeiS3TncybLMV+/rjM8m3CyCDgbr5iMWhT0mO/+8T/j2SEUrCVH5yL5SoXr19bZKubYu36dxt4Gp0OP/OYNmuv7xIMh094hQ7VIVTCoWmlUU2eFwlWjyUptohohKdlmNWzRPj5FEU22K3XevJJn66pBnDe4mHssDr7g9Zs3+Ff/x495436GZjXGWSyYeznO3v+A4vY+g94jqtWY+/e3uHZli1++/0N8UeXjT95nMJ2SxAGyP+G1t79N78n77N1ap+d7rGyRzdhiefxDgtUp+5vXOD855MXjh0yGQ9Lbd1kvZDl+9CusXMJyOeDs1QnJdEnKWiJI11jbNvC0iNPRgovRiETKcOIGFNMTukubg67Doj8DVaJkKUymQ/KKR0bxsJdLdkoqnzyYcuisGI9nEISUylmq6yqj6Us8UWI4i9ls7vGnf/hdSpUKf/uzE25t3iLNnMmiz3F7RTDMU7ISLp9dsGEFJIlGf+RRV044ODpku6Fix+s4joQfSMipHUxdYiUHuO0le8018rkUnz96zu+98R7D1oAnx5+S0gUKcoJz8YqboOE1SgAAIABJREFU1ZC7u+tMpR0a25ukCwqnnRajeZrAt3mjWeL05JRur4MYLrEn5yi1ClP9DiEaVkYmV7IYjmVub2zw858/pZ7PYCgeqrrgyn6BtKSiKn1IWdy6Wuf+1Tz5TIKahMj2Eavpgtl4RBAI5KvX2bl/h3/3l/83m3sNZr1z0prF9/70n7FfkHjwy1MefH7A13/vT9mv7zN8ccRq7nLn/j3e+fZXEFIai8Epl49/zce/eMHw6Y9J36vx+lt/wP7+HmKw4PEvPiVn7RG2nzPuP2QQqIiVG/zeV16nqKTJl5vcaNYIvQHn/ROG9orNrbf54V/9kgtfZnBqU9RTvPPlG/w/P/grAO7e2OX1d+8gKwKvHr7k5uYWn7bG3KoqLHpjBsMRxAFv1Zv8+viHvPneH6EsJxRLaQprZZLOBYWdq5SSCR17xXjqEwUKumGisOTi6MfMIouOPWUwbCH7Av/4n3yb84vPWS9dZTI9oTNuI6fWcaUF//L//De/BaZUnkKpzJ27OzjRks5hwiLWmSxGuJGFkr3BMp7z7t0v8/0f/IhmY5vt9S3WKmV2GzlKpQy9/pCT0SVVI+Gd3R0yG1dpmiI5C1S9yIsvLnn15BwlYxHkytTrdbzeJeVIR5+7XBx+zjL26I4dPvj4I+5cv82963vYszaL2RTBbfHqRYdEEHESh968w2fPHpN0jijevk4ULJAWHZaDC/7mk5dUM1n6q3MaN75EtrJPKpWjVs0QWUWEdo/07lVu330dxYv4X/6H/5ko0NE2a4yWNqvJlGA4QvLnbBTzDGYZvv7ml5CCU/pnz7h4NePVhx+wefM15rKIZYWgyrTmLr/+4Pvk5E1wFszGNpGfkNJMMsUKrYtDzk/mnF4GzCQdW4p5/OAxu5Uyt157AyObIgwjSCRqtQLZvQaFWoNbV3epFStokobnusgplSDbxPYrPHv0jKk94843v8041sjkizT2Nlk4LgvXJ1FSFNNbZPpPOFd3uDh9RX/cwSxUuHfrLb54ccF3/+AtaorGctjnYjAmTt+kc3KMlzZRtCyaJqOES+jNOJ2obJo3+ez9ZyRihJQSefL4kDCSeXb0IbOuTbOSQ1Ninjx7Qa66j+3P2ainOT9+zOGzZ4xOhzjtNsVozHn7EDOXZnBh8+yDQzJ5GVe26f/6X5Nf28EoNgg8n3Cx5Ot/9E+ZOCaVShZZSpANnduvX+W0c8Cb9/+Er3znW3SXC84XNte/+g1yQ5ub1+7gKRn2t9bJaBa/fjjGmcWsFQoMJy3onxOsROLSG2h2n2tvf42rBZ/2GOTE4LV6Gnv4KS9OF7ScPGdPHnP8/JiD8x5nZ8/4kzfuMSya3NowuVIpo8dw/uwTUrmQg09foK9URnOP896AzuEpzTu3OH71OSMnx2A4wbdtTFTGzgN+/2v/OX/1kx9z1BvRm84Z93r/IKwISfIf3ir8/4YM//l/9U95/c1bILhEy5jUdIktTZmGJqqSJ6fnCH2Znm1wp9DCkdfw9AZqOkvR8PjRh+dsqx724BLNn6CbMWG9xK39+xhbGQy5zsvLDvakwy0zYuT1CLNrXP7mlyxGNvbKxPEy1PU+z857fO9rWyzGExw7Ip3KUa2lOY6yCGGBX376GxQtxeu3r1NMneOHu4SDl7yYtikXGtStMr958Wu+ceebfHp+gJkxmY3HtHtjbNHiWzfTULtLo7DDyWWbw9ND4uWczStXubFW5NxVePLkhHa3jZaGN1O7bN5IM551kKIxSSqPm9tDty/YvfEWcWTjDM7QzAxmbYtR7xUpLYPtBPgrkZ4LYy9gI1iR2qryF3/11yw75+RUn2ohhZUtc9I9Jb/XwBu6TFtD1CTDjbu/j1eW8GyVRecRJxcjPNdns6og5cvklX1U+yXGehOdAO38EVotjdV4HV8pU66uqOUkdCnDw9aMBw8+5Jvf+AYLt0unHzKbp6hkwW+fAwnTsc95f4wTh7xz/wqzlcB5a8l0esT6+hq16h72Eu5e6fOTTyJeK+UwCiUWKAzaPWbtx3QnJhVTwEhJkAoRsi43dlJcXBZYLTrUqlky2QqaWWW9scH/+r/9HfduZqhsrpEyJFaTMR9+0qUatXn7W/d59arP6OVzxPGYfOUN/PyMtWqGB4cvUcSAci4NRhZRS3jWL7Ab9YhKRQZRzPToGd/9w6/TOl0xW7nE3pAsIevpEoX1HBlFIspukMqX8cOI8XSAZcL7v3rKeX9GSlIxpAVpfcbNvdssC/doXc45ePAKHY+1dQulnONq3cQL8mSMBFOIiL2A/sTGbX2CZFXImArTcIEdRWTMBtl6jqcnS0r5EGfeoX3Z5ay9wDBS2O6Uf/zt75CrbCBpMnE04/npBdPLCrs3TP7mZ3/NYBxxff8dXtvP4Ggynd88QyxvEcw62J1XRGt3ubnR5I39m0y9A/qtLtNehGhUuX8tzdPP3kc1Y057LifDFYkWkc7c5o/e3eJHTw6QVmOMVI5J7hru8QM2r7yJr0c8Px9gySK3iyL/3X/73wDwP/2P/z2B55LOVtnev8Hpi59S336Xzz/8e5rXd8lbBv50QWsCzS0dY2zz4OUhkShRLOaIkpA4NPnJow7fu1anXs0y9eacHjzhj//L/5p/87//S1ZqnlI2TyWfxczn8GSTX/3F92ls3WJmdzBTCvfuvkEhrfJ3n/yKYrqCpYCkCgRSQrKccPXud3j28AvWy0WsQgU7CLh8/FPeeucexydDQj/HcBHi4fOluw0OO6fk5TJnszm2s0KSAlJFCckuMTw/ZG4rCIZErZ7m1k6DL/oC65GOXF2SeB79syGt8xH/4l/8Ob3pjG5vSDQ4AinBy67RGgx47909Hr//AapaxolTLCOB+/tVJrNXVDL7PHp6gqap5ItpPn/5OX/4nd/n189PEDpzlo6LqCjsl2ucCafUggqNd29huQ7OeZeT4YzID3ntW9scngY8evCS8WhIfavMzrUNfvGDn/Jf/Mm3qdfXaZ2c8MnP/p4kvcMbf/p1Pv/lIYahoMoOcTBDr+xQdtqMpRRiTiclZpFdk74zwtQXBPGUy9kSKc5jKRai3qG28Rqf/PBXxPkKxbRJ1RLIFkO89pgPOkfsbNxl5TmQiOzWb1PaqvPx88fE40PShk6jvkGlvMGP/+5DVr3P2Nm5jWQJdDsdzp5fki1tEycaX34jx1I1iAOdLBnW6g2eDFvIqwlypGCvVMRE4k7d4eEXvyC9+1UMJYujx8ySEHcQE0+P2fnSd/CPf0Y4njGcRBxOHb78lbfQ0iY/+v5f4Msmm1f2uH9rm5xQx5OmDJcT+i8eYWkpqvt3+XcffUA5W+VORWY4GeFHKoKc43DYQRR69F55fOdb36LQqNAeDDj88BFBscQ3393HTGYspn1mU4dQyDHPlglmClfSPbormPomO7k0ZnrEyVJBCzW+cu8WG9vrnI6n/PSv/zUpv4RUkpHiFZG/QtA07r/+TZgfsL5zm5//4u9ZjofU8kU+Oxty/6tvEJpp7IfP0E2D0t4mmcjhUdfFGS64nl+xu7FBLl9n0L7gdC7jCBkOPvsbZm5IlN5AK+7yXjPFD370l+w311m6C9wkwChkef7kHKtaY1uRsepZnh4f8P3/6y+B//CQ4e/krNz/2jcob11ltVJQ3Rw7jT4SOuFghSJlSfINjnqXVHJ1/FYfKRwgazJSqoRgGVwtZgjlEHE1B12FVArZhV9dwqr/nLyuYQQzFHeM43nkiwWYDfCc6LdfQlJCsGqje132Gia1sowihWiGBnqai6FDbOl8/qBHs5Fjc71AxIp25xVi5HJw2aVSTJNSBFaOh2jU+emH7zO3pyDkWW9epVIs8ejTn6NZKYa2xPOnHzLoHhP5DqEg0qhWCMMleT2ksZFnfadKpZjGWs+TNmQk06C2ViNfKaHoClalSdBrIQYOiayTSAqBuyQJApxoShDH5EslMuIcZXbAIg5oNBoMewNeu9tAkwLaFxdMFzMkBHbyG6zCiEQyCROFVruNLcS0+x77V8usnDmr6ZyCbJFr7DIIZli5hFopT1qM8YIV+euvo8pVjNSK0dlTLk4vGcx9ctqSVGqdQfuS1vkUZ7gkFS7Jqyt+8f4zzBtXOTs+oFEucef2PQ7PhyySiGhok8mk0DULQUqhZss8ftajnrU4PHnO4xcPaR+9QJsvWCoySTQn9CaEuoRgRsjSiHavx27NpChFSPkmo9jguDNgMF7SOn/ONHJZuj1cf4WkWDRqFT794gua6zmOzns4syWWkUIp53j6+S/IVavkJB8lXhEJCelimRenn9OsZJE0nUQES49prqU5GXncu77O46ctpo5Aulxm68YGYq5EprCON57y2ecv+OzxS1qdPpP2mK3qGhkzR3OtgqDpnPR8Pv1igGNn6U4XfOXeNRr1LKE/Z0OLaA1WFFMhw/4Js0kbJ/QJ801u3bqBq1vI4W/DgQI6w9MJ07Njeo5LSZdQ44SClWN3a5/j/pw/+973OO50ac+nXI5mvDjq8MXfv49U2yD25yAWKZc2SBkqn784IUDFCxuoYszOZpG3vvwldrf20VMqP//wAYfPzxESk3pznXRB47MvLqiXxuhGk+p6g1ojhz8D0XE56l9gZbOUG03KzTUqeY3PPv05d964gataxM6cQioilRf56V/+CID/5M/+nIOTSy5bZ4h4jKItgv5LMBS0rIEiSIiexNhJuGw55De2GVycM5tPceOEtGRSuXWTmwUVN5E46gxZ2HNeu7fJ5XRGpbjL/kYZfzLh9NUpJ+ddLtsnmFqRm/fWqWZTZMUElkMmtsXFoMM7926ih9C7uOTVy+cM+nMy4hI7sOlOxsyXNnHsczHrI4cO6caXiSSHlT3BHszotFqUUnlqOYn2q0colk5jf5uy7DOb++hrV1j2DzESn2wqg2TkEHyXjYYB5RKThUsYRGyv18mXTJbDMZenx0gkOLHI6XCCPeuR14t0z08ZTmYsljMMLeTq/jrPvrjgpD1i4nSoVlY0axHdmYkSpbHDHrXKFoWshSmvEMUZe1/+Lo8+eYiuCpydnNDqdllfWydbKTC9eIUcq+w219iu5UhWPfS0SaV5G02XOO7OOLoc40cx23sNRHVOrPholo5mKWh6iNc54dfPW2xe2SYra1imiphOOGwd8/GDDymkazTWr7Jcreh3jrhSKeDJLs9enTKeLNHkiHRKxvVEHh+9IGOVUH0XVQQ5VvH7IZVUwie/+ohr1W3W1hoEzpyDBx+TytXw0jq1pIgv68iGxW5jna+/extfSHj44JCUXyBYBVxOW+gZjYuHL9m78wYpdUmoe/QThy+eH5It5fj0o99g5TeIfI/lsI3nekw7Azb2rzO3HTpOzEyEQtWg1tyhdfqKTGOTspGlJEpkDIk4mPDZhYM3OMUOJUIth6opVDdzSLHEfsmgNXKIE5F62sAehdz/9re4n9tANRyMrEqjWqaszJkFK9KejCDITKYBE0cgtbPGfhqGB6dYqSL20id0FmRS8PDwhLVCnZImMHMDTk5btJ885MXA42u3bzGZRiRRSBiFOKuQnOBhFLd4dXDIydklrm3jLqY8Puty686XmR1eoCg+hqjCKGDQPiCbXee8P6HXFwj0MpGV46w14jeffUh32CJwfULJIF0ocf3qLoPBMevXbzCwu6i6Qz6rIiYGw/mQ7es71NcLjGc2r14dc35+9g86K79T3X4c+SiygJbLEQsKK9sjld9iQxRYiWmWpsr2latYK424eYOsuUKRDEJ3iSvI5PIKBSWDukjhkGERJQxPTtncrzALRrQvzslbaRTZYjq1Gb96QSVbQc3UWYynePGCQsqlYuZplDJoRh7fXeB5PlM/ZOqUSXsiduCxpmYwFIk4DNDT6yynUySrgmKGzO0p03FIJrdJJIVsN9dw3Tmd9gmJJLB7ZZ+N6+/y8PERObNCoVggV8xiGjKd8zMGgkJqFVBvlqnWCwTkmS5d5tMYKYrxAwlRSgCflCAyABIxRtENvNUSb7WguXWVTu8xkugRanWWiYvjTdFLZdTYYT63yVzfRZBgtFjijeYU63VePT8ju1klY2nMQpeF76M4C1bdIaN8E11QyVspHCAXLSiYJlZKI14O8IMlkaHTurwkK4/QlSlpU2ORxPRbh6SlEt7SZ9TvIQcJq0BiENjMR2MqtRJCrJFWJPzlkPHQIFuyGPQ69NoH/N7X77AKZXq9Ltq0RxKoaKLISavNeDLAUlTkXIRCkcpmHtuOsL0Qd2pTDCLk0gbOCrRMmmWwwo8jBDnk1aun7F6pYrsiBTXCXyw4HUbcaG4hqhKzeUg2LRFWMwTLgJPeMWuVDG13QlmJEAUVUZZJSy5IEoI9Rq7tMer1CCYum/vXiCZLPn3axfd8KsUChUKDGTmC1ZSgKzMZdfGRyGQslHhJaCc8PTzCTJskSYKpiGw3yzzutVHlE+KJylkPdE1AUWQU0cVIVrgjETGV+W0GSjeJUim6M49hImPGWUJnjuN6JLJJv9PHzep0L4/RzAzpbImcrtKob9Kb+IxHAZlqFlWWUKOE0uZbbO826V+ccGNvg5SZYjCZ05pa5HNrlCoW3eEZnalNEMWIoo9snyEnK/xYZuhGCIsRm0KIn/jMej2klIIYZolUjdruGv4q4HK2RHQTvPkCP/RJJIvbe28gEtDtnhP6EbKi446W/143pouAKIE48piORnSTLJ53ila5RRwbOEsZb+zBcsraxhZHJ0ekhCVOvMJfyWxdu04U2VS267zs91l1x7ijMYOaTms2Y2vrOp7TIZMSKBUMFp0ZO/VdMvUqmWIGzdRI1ITFdMzJSYdiJYeZsRiPXAQ9x3ajyWy0oH/RoXpth15ngT2ZkAgBlXKWl92Qd+8WWDlTFMMkXZVBTnExkxgvx8ychNR8STAYsdBlYs/GUxZs7G9RSEmohsXYE1g6HdLFJv3BgHG7RTBdkM6WCAOPKFkwH/RwVQ1yRfRCloI2ZeaJ1Ne2GdkTdFNhvVElDmKcxCBRIkqFEtmygqhK6JHLyWBKvVRm4XkEnoOu6eTqNarFGvr6NlEkIMQanq9ycHrG7mvbqHERV8gT+j7easUykJCWIkEsEiQCy+WCMI7JN5rkyilkUcZfzRBEF0mTMSQRPVdgHPaJ3SEX3QTN0DDzGkHkcu9L79A66ZLOD5HkCMEy8aQIZzLh/hvXsM9HpFI6URBzfHRC89476HhUpBhbEJjYAo7t8/LghCCIWLgBysxh6dhMnSXFtIMaqQxGU1augJLWKKRyRGIKNJO0ZSGHc0zLwiisMRZ07FXC+OAl65t5itUstrpgdSqxu/MavlQl36wwH14SL5dUTJ3YTBifP6GcXSOWDCKnD4qHO4+QojH16j6kLaQgRBBEDNVhOT4nFCVq21fRZYNwPmJno8jL1hOCaJ3m9jU8JyBazKllMngjB3vcRjE8UikNTU8TZIuEnQGhO8QLcixsD9sOKIciQZLgDMd0RBkzn0PXNSa9NgUly2gQIldCrDiFGgokYki9WWEUjTg9es6VKzuYRoqT02PUaE69Uue010LPpJC1CJOQK9t7dC+O8ewV1VRA4C8Yzaa40Yzb10zM9W0mh6/oDLvIeszcnvD81Uvefu8fMRFdvHGP4Pw5R3GALArsZvKYYoAsaoiCQewlvHnzDt1hn5VcQPIn6NHiP8ohv9M3UOS5JL6HKCQsY5fjTszQT2NWN8mWi6RTItevXKGYVajfu0l24y7ZdJVMHBDMF4wXMzzfwRMFRFNDTWt4GtyomIRKju7QozPyWHgCkqQw6rSZuiKuYDAPJNwoIWVKZIpZrGIeD4uJrTCaJSzcBNHMoCQm2XIeVxBwXQdTCKkUtxCiHIVCEU+QmDgJi1VCHDlsrdV57fY+VtrhvPWM4/Mz9q/fYW19m5QhUWncIVPex7AK5FIGXujiApf+ioHdY+X0CWSX8WTKYNqjM1jSbY+ZDOd4Tsx8cIGaLbASDfBiBDcgDCOkJEGOE1QpxvNdZisPO5TJWgUEb8VkNMALFVKlJtWNXdJamvWrN3hx1kIWQxQxQhBCCsUUahwgLfsM+y6mVmRza5viZhFTc9kt1shLKZzJgPliBJpBv3XOaHjCon1MrlJhfXeXfEphMPUZT6e4EWSMhFw+hafn+Oz5ObtbBdTkt3sV43Gfg5OXVGsGsjsjEbqkrABF81jO21w+/w2VkooXeUShBKiEksJShkQSULMmoWERIxGtILBVKqUm8wXYQOh0Kag2+9tlQm9MdesatXKFcrqGnhjYsxn93gBDSuj055Ak6NkUoaVx1jmnsbtLzx4zWC3wRQVBNVgtRqTNEq6vESYiruswX/oswgIp0nz8sEsml+Pm1R021tZZBjpLJ6T9okvfDShtrnHt+i67zTIb62sMPI+xM6Lbb+EsRxTSEs1SBpQDjHjGF08e8fz4GDuMGIRQL0lEAWRqO+TWb6DnN4kjkYPjPucDn+NhxFk/ZLiISVIaZIoEnkCn06U3C2jPQo7aFxRyRV6etFAEi0KmRjGdo5xO8/Y3/4hmKY+o6r/titFjUobC7Ws7FNMm6fQMSffojOd8+sUFD58dMmmfcqWR5frNLdScSWc+IVwtUdWYlSswHA84Pzymd3GJVTdJV/NUKnXwfRaTEd1Wj/OTEft7X8JeJLizGaKoEPkq47P/P9XfaU+x9BSNegMzm2Vpd7EliRADdxniuQkxKqI348Z+BWfwElVwyKd1ihkLLaUyPz/A9mNiI8HMKGiaTG9k0+0t6fRnPD05J1YV1jYaZDMGt5vX2dvbxAvB9iCSUxhWESmZU0ibDHsrBssQOZNnZ2cfTdWYL2Wy6Sw5XUcXE2QBmtUGszBLf3SB64kYVp7qdoP6tVv0Ep32QkQtriFiMmsv6C98ZEyG7WOqW9vU97dJVzKopoQXLwkCgc7BAat+i8SZY8+W2DMbJ1lRKFdYJgILPySXybBWrxNLApVCjXptk+2tfTbXtuj05ghCgpVWaNSbGKk1Fo6FEMdIhoQSZbm4OONy2MeTU6TyNdoHT9GqRSTTwNBSiInKWW+M7U/xJAvBzDOY21yO5gR6idlSxpldEiwnSHFMPpNmbS2H7y9JG3UW4wh/PsOfDvDmNs2960i6SLga0Bn1aPW6LCZjyvkcb95/m8Fkjt0/R49dMpk8E1T6F2PuX9/j5vZv6xSSWCJypmzt3cTQVCprm2jZIhgqWlHnsD8mliVats1Jb8Rg5hBrBmHooqwCFq7NYjpj2htyedmh0x8xmrncuLFGuSZRKBs06k2CSMBqbDI+fkngiqiYZESR9XyKjbV97r7zDerrVXLFNKV8jmY2x1rdYtB6hppINEo5SsUUS1cgXIZY+TRitMTImyilPMsgJJXLcr2pIhgytWKOipViZXssJx4ZLcYVsxTKdTTLYhKElCspLr74gpPxJf3hhMFlj167wzg2qVolfDycwCNOQsQ4wJ3YLMUckawwnHRJZIF8sYgmiVxZ38DzJHrLOZEzJyNBrlxmq5FhHM5YOgM01cRKlZGQcfwV9mJMJldBT1ugqEiawe76OqtFH9E0kEWJKHZZiUuilAlihJVLkckESPEEdzEkET0UUWVt/TaKmkEUYzxnyounB8SezuSiS9EwMLUCSZxCl+Ha5gZJIBK7PkVDpJRR/qMc8judgW6/9g0Spc7DJ2fMLw/oCQnPj2JkN0TXRGRLYxXYlIsm6YzGtD0DARRTpnfUQvUSPvr8GccjD0XxaZaguVHls48eMezO0K1dhsNznMVLru5ZXN28ysODNsPxBE0CU07wl1OC6RirWeXkosdp55JEFVnbqRGlBpTSNQT9t8ljSZqjJROCmUvGbDJePcETsohCnZRZRa9Y+EObje0abX9OLFtktApiEPLq5c/YaZZ4dLLks88+5sNf/Ihf/fIT3vvT/4yNNYvyZh5N13CXPqP2hMtTAUnocjCuo0U+BU1CM/M8HU34yvo25xc+Rn9KTk+jl6ucffi3WOU8cr6JtlohLxyUQEOMFExd5PzoOdvXtjEVnWV/xuXZBa998w+5ODmjmnJYOB7LQKCSEhgNFnhCwsY73+D/Ze1NmiRJzDO9xz3cwz08wmPfMjIycs+srL1r6Q1Ao9HYCC4AhhiSQ6OkC8/SQf9BF5nJTAeZaQ6y0cgk42hEGTFDDEhiI9Dovaura69cK9fI2FePCA/fXQccdBvRjPoRn9ljz2fv+y7WVthcW+CN+2ukJZ2IlEacnGLM5niRJInUArl0jlCtsBAPmMXyJAo11lfW+OTlBYvLr9OdmKhayNWdba6sX+Hvf/kReWVKdG2V+tkuXkQhXV5B8mb0xh3u30xyPJCwnTlKaNK8tClcWcUW56SlAoLgEom6lIpFhOUS7b09Xu0fsphMUy3kCQQHXeqgRSdo4xF5xWZ9fZnNa/eZWgP2O1sQ7dLrOUSjOguVLM9PzxhdnHEx7nJwPMSV4yTLGSaTHoMwzaTXQhpNiUQSzCMJ9i57yCSI73yV3uExhZjC+toyoq5hDAbE1Tg3377L1q2bpMsZwsCgqCwy7U9JblVJaCHWfMrIhK31Gve++T1kZ4InxDjrznm0f4kZCOzu7VHJlImGMaRoBFsKGcyT3NheRNRV1HwBx48xGAt0JxaaFOWyLvD88GMsSSKaSOKMjqjWShy8aBBxowjRIn0r4ODymHg0xa2dFWKZIj4mneGQwVTg3WtJPv/8EVE1wsHZkIOTFoFt8lq1xpOHv+aj06csZiRWlrbJVK6jSBbZnSoaUa7e2iabTSMTJxZf4fOHT7n73beY9CMIRoeE0EfSVLrnUyzXQk/YxApVpFgBf9SnL5qM5ypX1jbIpGNY9oTT83P2Hn0KwM7mHcp6jsWVJfKbVcaDPkJ+jZWYRbN5SDwpsXVthd54hDYLuLYmctzwySyusb6zzm8+fUZ3ZmCPLU6dkWRDAAAgAElEQVTmPrFkjSvrO6ytJXjRNwlnaS4mQyLE8R2J5miAPlfRckkuW3UOG3M6pkoyl2V7NeDwYYvxqYcX2PjMaLYb/MOnD1lbeQ1B8rC8CclUjIVSlZmwiBYJ+fsf/xg1laJcyJKJSti2hZp3eXdni0pRJZJaxlbLyF6ddPo29d4ZuUKafmeCOZxwdS2Jb8WZtAfsn9fJZ2JsbmyQr+5wfPSUoePw9vd+QMuHVuMMuXuOVL5Nwm1Tf3aOH5YQxRzDocnnh89I9JoY5pBkMgm2SL/r0otm+eM7a3z44BGj9iuK2Sy1ag1rWOff/+//J7YwJZfN0Dg9pNVqUrv2Jpo/5sP3n7K1UgJNRkjqlMsFht0Br+04dI6OmVAiXSqwmBny+Mku1aWrXPbGZLIZHNemN2hy9/W7vP/hB6xWF0mm0uipJOlMhqura/zm73+O7frslCuopokzHCNkb/Dlr95no5jnqD+hPQdNS/DG1TKPHj7GODzDUWu0LocExoj1lRwT26NZ30NOLeNKKtbcIJw0SVXX0RSJarlKNJQZXrbpXx7yzhsFXrxocOtqlkxhhZEd4ez8lLzVZvH2XTJKFMM2aZ8f0T/dYzqfky4vsfv8CWktzmJOZyGfIpBU1KjGcb/BeUdASdqooknj8YDt62tM9SSXrQ7pbBUZmdP9l5R3bvF73/o+u68+JOhcMuqPOTQD9o+HfOd77+IrSxzvP+XkfJd5xGVjqUjn4pivfO+HHF3UOa3Xse05m+U8P7r9Lh8eDAidOEldIZYRaDpz7r/xFr5kEvo2c9smntT45ntv0g8clvMl6q1XNA9f0W8NcKUU7nzG9Wv3yGfSuJaENw9IJxS+fPGc3zx/wZWF2+wfNtk/uKTTHDEcN7j1ta+j+3ncGMhqhJSm4iRj2I05xskTilKUbKVKpFTAFGA7W6Q31/DP9ilt1SjdfRs5WGQ5naFrjChvr6LGE+gqLBY8Tjrn7PzeX1BOKsRSKRrDKY8evwD+mWmgVCqD4Dp4Rhd32KbXh/xCDFu6IPQ7pH2bWMRlRIqLwwFDYYAZTvE8n2yphF0pkrxyk62lKA4y++cmx89fsLC6SSXdoXV2gapmEGMVnhx1aTsTVCODMZkhD4+JT+pktCR3fviXfPzRh+hCiVQkTzaRREuozO2bdI5+STKtE4tkmBpRLvoOXiYgq0gcPj/mvTd2KBcTNNstzp68QKttUZ/NGexPuHvlCm9+/TUOB3M+++QxrX6D7doS33ytxOt3a0i1DU6OT3lcP6aorzEeRfBdlxtLKkuVFd564yvUBw0OTna5OL9AsG1Wr2zQNxv0B2eoySi+62O3DZKVNU4unrCUzTNvNpjaESwlxWy8z0QUiHtpeqMDLLuLEhXB81CDGQdujMUwpFIqkS4uMBiBlsqy8toa775+k2JOwBiNePzRBe8/+A3do32G8wbFaolEMk6rfc48MEhpCk+Pjjk4HHH28pLW3hExq8kf/dl3OD99zme7u7SnY9K6yEoixYWzypVFFdHVmQ9GTHsNlOQWstOm1YyQ1kVcz2I6c4hFVE5eTek489/9zosFQi3DUU9k8PhzFkvrbFQ1UlkNV/HwYja1/BLnzSaJ3C1MrcQwCHHdEe/ef5PPnrU5e/xTfKNOz+jx8qLF5Xmdb/yrPydv22hJkek8pHk2QbSGlN6+Tc9XGLVcjJmAK+kkFrZ5edDEnXZZy6nsd1Xef2rRPqyj6CJBOOaH77zHoDvgcO8l026bv/m/PmT1a3eQ5mecnw6pn08Z9Aw+f7bHJ796gDs7obCwQD6foJCY8nrV4bt/+GeEcQXDtEjFQ2oZoNXn4LOPcfUFjL6JHIlSXSpwfT1D/fkRze4hVnqZTqfD5PIVS+UFJhkJWy0zaBt0xgOmrk0qvcC9nQUCv0rT6BGYNr4pMTYjNBuHqCmfWFThzds3kIUpv/3s55z2Re6+vs16MoE/05GVDAu1HOVSgp998iGmkebwiwtsRya7XMVRPFL6MoXCJulSidjGCsNIgi9/vcs7f3SdvdY5jcOQjaJMNW9RH3TYXBQZnTSoH3+M6ZkktTglUeL9938FwNV7Vxk1Dhm2B3hhCpQhwmhK83SXmztXKeVrdMc+Zkxn/OIfsHyN1fIK9WaHz5+/5O3XbxCJVchEQ2qpZbzRkL3HD3j6wXP+4Pt/QS62z7rXQAoc+h4MwyiDxiH61lXyUY3KyhL5ShFn4vDw8y/4l3/8TarrNZ6/esHF6RGZCCyVdO5945uc1fuk4gtkKmtI2SJiwyNKC9s1ebW3z8nJMZbvs712DePjFziujeV6XF6eMOydUqssM1TgzbU1hqenVHMaN7ZXiHga/+GXL0jEZW4Vi+RiLqPJMc9efcrDl5ekl7f4N//6fyAagXxxCTOI88bKAs58yGXSp7CgYU/rnJ8/4t6dAt968/dJrW4ws6e42KiJKL4zorP/FC/iYKsREhpUMik2rv4+//irJ3zv2+9i1I8QIjGU4iqteUBr4PLDd7/Bg/09JnKK3jzgt7/8W76R7+HG3kCLLbK6tIhpu/z8UYP04g50PqC6VibiZFG1FcobN5Emc26/cY+fPNile3GI5Ur03DQPPvk59+9vcH17k24sSiP0yJRy/Fe//y0e7lkk10JiYZe37t/i5r1rHLRfsHbtFvlCkuPjA46PnzO3hpTyWcqrK/zpD94invTRUdgoVbl75wqN57u8d/0WflRkfXuFXCmPg8jy1g36g0vk+DaffnnAR08e0jI7fPWdr/Fv/u2P+cH3bjDpN5gYAh5F7KlB88VH3L2+iqdKPN19xEn9lNfe/gaoWf7jz35OOl+gcd6itX/JWjaNm5eopAJaZo6EL7KYUVi6tsCvf/lTRp0eRy8atEkzlxWKis/i9jWuVqO4nT6ZfAU/VJiObN742g8wjQbVWIrDlk00GrBejKNHb/CPn/yP/OhPfo+B5dGbm9iORdT0mbg+X/nauxh9k8XyGsubq5jajKKwyLNGk0UtQ6Pd4+XJIcPhBYvXtnj08wdoqsRk/Irx+Iy5LTD0a1TXs4RGjxvXV8mXK5wNfGZk2KhcJRRb9GwP05VwjRDjSYvoV77J9kKR/cNTWhMblyjCcIqRTFJ/+hO6YpylSoVkGPDRowf84LsLjMOAR08vSCV0VhZTiMKYiS/T+XKX88smiUSaiWH+/1O3n4gnmY0ntBoX5DJJtq8tcfhCJHTBMwUmAyBQmV0cwvIWtXKMfKGAnM0haDZVPU7GaWCOVWZDB3c6wvM9RpLK+ekF919/Ay0RZTbr4Hg9Pv6swZdnL1nOeyTyEvmNGms3dnj84c8glJDlPMMgxIorxDI5xPGEXn/A8pUNctocyZ2AFKf21tt89tFLUnENM12g2TnH6h5R3bnBH3/7Bn/z7/49Ey/g4KLBl58/QOm+4o//9E95+70f0OnvMR6PCaMpFjbKXIl1WNm+Dt6c7vkR9tQnXr6LoQd4zpjlzCq6EGJ2zjl69pCzscS17Sqir9F8+JSgN6RSzDPzGjS9JLHZEV7gEY3pqNEks7FC3KiT2Mwzq7cpZ5fRMsv83S8+5q27N+iPL7hxO+C4dc7ewQlXaklqN94i6bscffZjdj/8Ob3jXTLJkNfu3iazfA3bnRDMwenPcfsDlFmfly8M/sWfXmOzGiPwTc4nM2LlOJ/+6h8JrUX+8FvvcaVc4eTJPr/49a/47/77/5bf/NX/RDqfIFkqEU8VKaRUxMFLkpUaGjIBDnM5YCYlWRDjdCYNJO+YqVHHnk/J6Crbb99nseIzQ8P1ZaJhQFYSkEONzeUchazGrGFgdi2mZsCnT54w/fxnSJkqufIWigSi2aecu039wfvY6SJaxKa0tkLx2m0cL0o8FkMs7JBJZcjmo8iCyeC4Q2WpwL2vfZVnl21sUWV7c5E331rGL1Z4q1bj5PED6pentOtNuocNvv+j3+fTD/4DSnyFSlakUoqQXsiwtZVADFX6F3Um0zbdbo9WT6BNlV//wy/wzSHjXoNnx3UeHnUpZ9Jcu38FI1aisLhFPFPCcR0uX+3y6eWEkjBi3DlnMp5hByKiZHJ7rcTl00+RkzKTwGc0mSE4DqvX7xPLpvmr/+V/ZnVzjZ0330BMxGg8+AVadoeOGWfYnxD3fG6vX6Xw1T/A7J7QtwJu3LzGfDTii1/9Ct0eoCmLvPutt5j09zg+fs75yQH5yIgbN7f4+MMnXBgOmaREKjLl1f5TttZV1HBGTA0wnQlHFz3O6hZ/eO8qpjPCmYdcq1RhOuQ//uzHNM6bAPzZn/yX6HKANW/h+2Pu3XmP8avPsZfepX38isNHX3K4e0T7ootSyfLocRvB6qHqLtGUzMlhm36vgTDtIAYe8VyGwsYKmYUML/eeEFcEMsksZnYFN6KzPhvx/b/4Ez4/PMMcw+i0xbzXRNAsRoFMMDjms0efMpzPKSaLrCbL2KpFY++Ur37zDpVKGqPf5Ghvl7C8yMnlGT/40Y9Qo6BpAdmcRi6f4+P3/w/uf+v7pJIFrq2vsb5a4XnzjKTrUojB1sYGteUNusMpf/OTv+H+nVV0TSG1XsWJreBSIRVLUlq9yvN//DU/+BfvsLV9g6sra7xza4MLYUpqYYPp8ydYcw85HqW4kMdgg4HR55e/+oCzicPYjBCaHmXdpj9Xef3171BbqOHOf1ccOJl8iZLdZr7/nO989ztsbm6TVySWwxHRoI8RfknnfIBxdM6CHOVP/+WfIfpFBr0TDnpNnIlMDoVrBYlsMUm/OePT3SaZ6hJaymcyfUV6e5MPvjjgaze30YMoeixCOR+SjyfYuP9H/PW//Xfce+M+tUIRYR4gRpJkliRkI+S0n2Fmx2lftPjwl19wdAnvrGrU23Nu7dzn1sYths0ub93M8A9/+4Bu6xI3TGC7Ir3GGYY54uj4iNRqhmeHTWYTk6tbVR714Wn7kvHxY/KCQy1fYqlco6CZpOVF/uaD5xgzBzWnk6tlqdUqlNfvMJp0+PjRE5onA4K5xFickUyk8S52+ebNO3zt619h/eZ1OmOHekumIESI6ima3X1Ms8VKscreyzNW1m9R2dxiu1allo6TUSRWS8s45zP84jKPPv+U3Re7zGwXbXYIokhEhqXKIqKaZiZEefftPE8GEQrpEopq4esJbDmDNrPJpZr8p//1r5iGcfILaeKqQO/SQo3M+PLwGV8+OSYRT/D6/ZvcfeMGzz46IJ2Zo29uESteR8tVkDMTBCzc5ojqlav8+jfv4xoT/vwP/4D7d6/z4uwDynqMvm0z6A5xJzOqN5ZYMC+5enWHjw/P0VIxFrMKDx8+5S//8i+RnAm5TBkpnUbUZFaTIl+cdtD9BqIjoQkStqfQDyqs6YsUU4dEtDj9ixNePHnMwXnjnw8rghgnoedZWlsjXllEEF0kIgTSjLk1JAzmrFxbZfHeW9zZWceau/RHFv3ekO7lMU92m+weDLEunuPMz5F1maXVu4izkNNWk86oQ6/ZYNqf4blJbi0vsLmQpZhZRSBCMB0RGXdZWr9KUK8TK1YwnBAhIqPrcfrjOqbpomVWMT2L0PZICjJSwabk94lnS8RkC0mS8aNp2p1LYpKC0a3z9ru3uHbrOolMmcuugZ91ae7t0RuPaIzGXHSajLpnpBNxZM9lsaSzvrGBpKX5/NFzZodHdFo9SokFuiMDEjob168i9Y+47IekfYHWVGEqJEAJmTFCnFoMjRnJhM64Y3D2qk6ymubjR8/ZWVzm8qLDaDbD8i3UmMJ07LKxvkb9vIM1gWy2RLq6xGRscnGxy8XuS0AmlqkgpMssxCVioY3tm3SGBoOpQUS0ifkDslfucmJIaLEYxXKJysoWy+tXKGRrnLlTMss5OsaAVxfnXL2+g1xJ0jw+whUjxIpV1HSe40cfEouWMRI7yDGJXrOOOZywvH2H/aMjSus1uo0hMTlJpbBILpGh+Wqfad8nJg5xZ30ioUAmU8WcmljxNC+f9ClkXCqVOGqiRFav8fOPPsS0ZSYjCzWZYXFrG9szGbsqChPUxBaDuUJnMGJhYYWqbnHQkkkLEdR0GrlUQS+WefnBz4hXbzKZTKiVCpTSWbqXY5TWObORT8eM4M1DMnqC8laVB48f84PvfJdcMk194HM58ghFEa14leVUlLFjsrZTpLycR02oxEKL0cDk8PCAVHmFra0b3Nq5xvJ6hctmn9Fxg93DI1682ON4/4ipMWBtOU3LCRFzFaxAY9Cd0OlcsvTOOzjHzwkiMWbTKSIBxVIFiFBMOUimgaJpzKYGk4tj3F6f6o275HWZ+v4DLjtnCEmF7YzIwy8/Y2qmOT48xzBGZPIJPAlymQTjVgs1v0qquIiiJunOMly+eM69d27DyMIUUkzlCngJXj7dQ3Alqpuv4Yo6gRVSicO5PcUa2GhhDFn0sF2T+Tzg5YtdAFY2rnB9u0pcS3JxYZLEJ7NzA2HssLxQoriQR9MjxICFdJoTs0Gn65NIL7O2dZOoksIXEugL6/ipMsvVIqmIyy9/+yFRbQVJsumcnDMdjlGlKPnyOq7TY/fwGW/evA6izXjaZzaeMt71sWNJPCdEEeJIsscsaNKuO5wNBVxV57Q1oD8co0gBuWzIbAiqVGdiRVCUNCk9B1qBXCxJIanTMEZcjMY0OgbuwGb72iq/eXhJMB8zG/ZxJyPyqsejV1/w8OUur5oe8ZSKnrKZzZus3r2DO5iwcuUqc8fFCzxiCR2j7/P+T/+azPoam+vLFJc2mMklDn7+E6JqgWg6SvfsBIwRtVKau195jUzmCpfDJ3z86QPq9R4BUfyIQk5dw5rs0RwMmBsdfM+m4WkM2he89fW/oFxZJx1PoIghju0wKpbR8inW1u6gx6LM5pecdfbZ3W9w2W9SWaowGo7xPKgUa/RfnTGe9rm5tsQ0FJhGdCwhAX6PRKSMGrUppiVCd0q73+XXjx8RL2bQ4z71rsFwfMSwf8jUENheWCEwBmSzMWLi70zx0BqxubnJoHnOs/0uw24HwTHIaCr5tMA4EmG7tkU6VQFRpt9qEFzuYztxYgtVbAqEiCRVm3S6zMSzKZbj3F6rUEqXMS3YP/ic0+cdutMxpUSUYrFIvFBGkBRmzRlCLmQhnyQRFRmNp3x52CQvdnj85CFaYpFpd8S4M2JqhajFNe5t2Dz74hyrN6DbafH8rEV/oqBalzT6uyQFi1RUJCYLrG+W2dy8T38uIMdk5IiPKgsIWpxuW+TBs+c8/uwhwXjISlKmlkvS6boMrC6RlIBjB7hTiEfh0w9PEIUpiqLjBxGmswnmfEhu8zZS1yBVvc5s2sAanqBaPulSiVdHn5CJZamtlUnqMdpnl8yZs//8KQM1TlxRyWpREEMeHQ7ohQms1jnXb+xgzS0ePT5E1Ko49gUffnFBtpRnaA7oj5osl7JEwxK1TIx0dRFLsBnNR7iBz17HRbb6NM+PsKwI3ZHL4dnpPx9WSrUrbG3vcHW9hkSU6aSNZyn02ufoSZ2rr92nuLxEqbpCaNpMR3PwfSCgP3bQUxIzN0WoguEMMCZDmEeR5mdkSiWEIKQ/9uiNHDx7SjIhkvFNkjEZ27XxhAAtHiXqqkwkk0KhwtSX8ZCIRSVi8TgRPEItQaak4eLRG48o5QU02cOWcgjjcwI80LPIoUSIw8FRgyv37yOGEYxOD0WPoyViNOoDFitLlCpJErqIO3cRgxm+kiUadiB0cGyHwJ6xvbbO2SRAjcoIgoOMhz81mbQHCJ7IYGgw9ARsQuzQgWSGzmmddG0bQ4jSMjwmKCR3VtnfPyafzhGm0vhRFXNu4zkmmVQaxB4X9RlSokyuvIDozTg+roPlktXBCyNMPRlf0bHnHnlVZhoJkeUoMUVD1BIIiTSqnsV1QmaGQb/ZZT6esLJzl85lh5P951SrBTQlhuRJlIp5BnMXSdAR1TzxVIVYNM60fcHOtSsM3Ckp1cJ35rihRFRPIoQuSSlBRI0TKglMO2DQ7eBMesQlgbwmkE7GSOtxEhGZqOYjyBKRWIrRfMQ8CEjmSsSTJR7vv6S0VEMQNXzA9S0822ehUsITQmLlMn4EfHtMUjNIpTVGzQm6EqLEVSRZRnDGlLQIqhzHnrXRIxKxELz5gKwq0hiPiaUTREIXQbSJaCH4CrIco28JmI6FgoNiW3zx7CX140PK1RrtbgvDmJLRUyzkk+jFKqKmEzgBOT1NtVplLjgUFYMXL/pc1M9otjoMhkMCd0pEkfAUHduy8SczBGtGiE0+nSJXLtA1psyMKSFRorkaV1bLXJw8wexPQE3jhiHmqE2v1UdZrtJ+9RSjcY6iJdAXahgXZwy6XdYWrzGemUixOPnFGmEszVIiQntkokgq2UyMUjlNMlkmFH18VSW0fKJxjXhaJ5vK0O4OGE7HZDSPQBSQYzrZdIaLSQd3ColEQBixcR2LuTHh0bPfDZLl9Ry17W38iECnfsr6lfvo5Szh/ALDsLho9WkOBiRLFYqJJPv1M2JxiVxWJa8rZFMZ+r0WSwsLxBI6/tzAn40plhc5aDaR+F07blTRiKoasVSBqChzejZAz6bomi4z3yIeswisDFJChoiCY3m4vksQixJRktSWSwiCgjU+wZyMMecS4XTALLbGrPGcZKpIuVIlHtc4PzkhlysRTUfxHAPfmTOfTBm2e8TyBeq7j1lcSCOGAo4XQcwWMbvHhHIOXdFZrcQp5WIgxGmPPEatXaKaznAcMBtOcfstBoaJM2tw/cpdxoM+9XqTfnvAfNwnE9UQtBBdtEkpAkpMJKLKPNu9RI5AXEpgzywse8bWzjqSH2M6aZItlfBCh4lpEokk8AZDrmxsstecM5gOITSRCThpj9ELKhFBZDAc0uz3aJtTpFSBSnWJURcioYtCgDsx6bROkQSbaELjstXBmJrIksRyNkl3aDIaj1H1DLOpw2g8IUyr2K0OnrRAe2QgRwRiUQ3Pi5Jijjs3Gcc06saI1rBL4Ps4M5GZbdPtWuiZPAu1GplykW6nh5xfRBUSyIJEPJ5A1uK8fPISyw8IoklySogaGMynYyZeglIlyXKuTKvdZ2LbvxvXNU0mxhRJiVNQJCQhBCEkJil4nQE9Z4poz1BVjWhcQ1Q89ISMXshRypXo97oMh2MkJFKqgu05DA0XgSmKGpDJpyllYyhBiOOA4ccQ1DTJZIrReMbMnBDN5Rkbl1hGHzWQSSeqVMs6nz9+iaRnEXwPb9BGnM9oDGwK1VWKW9eZWQ7DQZ+olsaPJpCTM/KJRdK6RLkcZ3VthbbpE5FkasvrnB4+oXNxSlxOEA1kWp0Wcn6NTDaL77gYwxFXlit8sHdC1LPQIzZh4DH3IsgRjSBw8OwBgR8SuBNiSkAxUyKvOHzw8WMWcjkC0QcBUrECjYMOXkZDjUdojHp0hiNiQkgm6nPt+hXOL87xU1X6rsjhy2f/WVj5J0WXk8k4pXycQjzAHEwwRn1CSyMmQKW0wPqV26SyUeajOZetNs50hiQJSLJEPFnkynIMSQkYTAMCf4w97zEYDvBGL6m99j1Ea8JAVomoIko4oD0cYM96xBMige3gyRGmcorZSYPSWxs4/RnxWBLf8pmMDJY31hE9k5E/RpDiEHNxow6+GRJJZaFnE3gWoRAQjUAim8cTQrRcle4YRo0Lhpd1Vm9eI3QlZMVAUePkcz5iRGYYz+PO63hylG77BLE3QNYKbNYWWVjZ5tI9YTofE8cltE367TZRNU5aDjnoD/FEByuiMfcS2PE4bTskGc3RmXYwBAVZTzNwY7hSlq7pE81ksf0xU2tKLJFDz+Sodxt4SgkpV0NMiMwaF5jOlAXiZLJpIvEIrpAgrUUIlCyDickEF8ETkUQJUYSxnyYRcahpEv1hSKMzxPWbXJ+NGE5NEh5IjkcykyMsRjGmfeRAI1vdYTqeExU01KhIbXudIBaSC0xSERkvV2IaTuhcnpJJ5XF7Y/S0xngeMpnNEJwRubROKqORz2kkUgpKRELywU9lcKczUrVFdvf6zKeQ9gVca4au65QWM9hzGPR6tC9G6Okl8noEUywQK6hE5iKCr+I7A3wlyUIyxAlmREUZJSIxccdcu/MaRnuAFUwJRgHWfIIWtVCTRSQ7IBm1cADb9QlHYzaqV3h+tI8VxEknHPIKyE6I0T5mLsjcSKXYPxOZT8dEXAW1kiNdyLIqbnL84gW+M8U1Z3StIUtFlxkB5nSCMXcRlDhaLEK6N0SrFpGdPnFxBjooUR16Y7TXNjEP6viuiByNIcdUVFnl7NUp1liglHQQo1E8z0WQBEbtOufnJyzEkpQKi6iCzPHlEE3XKSVCIkqGSDxLPFmkPe7hhzNcMcK4fkTMy5JeqiLLM9StDTpDAzGeQhZCop5JopQmv7rF4fMWrYsjYsUqorbA0I5QyGbp9U0st4+SyBIJJDzv/40gSu4Y0xOQowrpVIS55xIXRHKFGL1ui+FowDQICFSBkQdpNUMy4yExwRn3yK8vYM6GJEUbT5TodztgW6xs3+blYIA9dLGUBHIkgiBEsR0PKS4Sj+apD0aM7QiCGEVMQmZdQwb6YxHH7xH4DlKQIF1Js7JQZNQPiQzHhJ7LXEzQbk0IVwOmTZOENiFITLEjIbNxm443R0yvIgkhmuRjiTambXHR6KIrImI0QUxLIioaXjrNWmeTyDxGIZOnks+TiMUwIwrvf/4Mweoz6rZx/RyBHzK1ZsjpPJnCEnoEdustOoMhyVSa4voGk3qdWLrCQrVMYDv4nkC/1eP0tMnd2/fZqumETkhn2GCppHEy7jB3XOKaii9IMJ8RF2cMZhYHe8+56EfwMZFiPrJgYZ5e4C5rzMSAkWUy8sAVdWrLGyzqCc53H5MuRZF9i367h1xIUNFV9o7rzMZTkCSkZJRiYZvT3XPa4wlC02BuGNiOydbOVXqfP6LXVTFGJomFDHoySa+zz3g2IBAi9OcSveJUOlMAACAASURBVIlD1LbZSGc4eNUgmtOp1GrEsmlSlTyJjIbU7kA0RaM3QBfHlCoVyotLCHoKwXJxzAmZpIIkQGMSwRyarN+uEjU9Li/beFJAZalIbXGZuNIlDBIEts141GVu90nqM8rJDMMgizEY0NTG6IJMOu7TcxW++t5XMLsjGpcyw77HbNRD9qb0rRWK+TSRUCSuyhTyRbSEwPHjAVGpiBV4qHEJPSGxdzjjuP6Mry4UmM36zAYDgoiHWJKIr8TIphLo5RLDi1OOT+u4BRFPjlKsXCFbLhANfLqhjxmKpPMyo7lCtbiEEhmgxm1iiRzTg+dk0mXySZ2YJDMQZIjGUGwXUSgxcuMk+jMioYtazlIpFZFiGpHxCEueMfUl5kGSW9duM+l3aHRbGGfnLCxmWV5dwOjaVHNldNki4s+IhlECIszHHsevDggrm1izGaPRFGse4AsWxYpKoCSJZgrYsSyu8v8dXf4nmZXFQpq85hI6XV51DfrTPjEhxlfe2mBzexVZ1SgnZV7stTFnQ9qtc7rDEbYrUMmlyChpTKOO2TgioeYoLN0mkkzz4cef0w8KWM0vSUgCy6Uy64tFjInNafOc0soS4WSINTYxfJ1+u8kP/+AP+O0H75NJFoiGApfnr1jaXMa2Xdxxj87gDEWwWC3kuBxFiZWqhINnhEqaUMyABYEzR03e4N6dDXb3dtk/fIXpCWTKq3QuxpQLAbvnFxj9DomIyPr6BoWFGm4wwplqEIrEEnHi+RVOLmbcystYPYN5d4hv2ehpheWqhCJGicgR7KHNbBJjYhcYDvqIizFOewaWO2Dmi4wdjbBnc3E+Y2UhzeXxkMblOZFYyGtvf5dWZ87ML6AtXiGe0vEdg8GoSaGygD4e0x2MWdq5wRt3b3K3HKd66x5fPH5Cv93m5V6DXqtOkgbN8z6btyosJmFlsUZsocI0qZDyOkQKm9QWikQyCca+QHcacNmZcO/NO3iANxkheB6aHmVhPcFPfvo+t67eIapUmVtRRt0xreNTvFDH9PpYg3OEqUlB17h+Y5FivoxaqLC4kiAaeigRkVSxwCSSJjIcMwsECnqWXLrMzItSr19wcXKELEE2ZSCJNparEk0X8I02VixFvpAnIkrYtoQkLpPN9lCSFYadLokY5PMxgoiIE0YpJsDrdQhcgyCYIroOgSqSTxUIBkM8dJBTKEJIWhWoGy3M02PceRvHnxPRdN5++y7f/tZ79I02YnYND4X6q10uzlr0Oy2s3hAlo5HQYjC3MOw5U2PIwAoxRjMsyyKMKOi5K9xfSjAOE+R0ASI2c2cOtsjW3bvMB3XO9rt4M4FCNsnKqs7hixHBrM84kNGjoHg2ge1TLarEpyHDeIaNzdvkEgrm4Ph3FrCi4zZPWV3VWVooInjw6vABljghcCKMTnex+i7jtsfei09Jr1xlc6OKEcnSbY0wmn1kRcGUIRh2MGYOji/SbXU5ePyM3/+99+i9GmG2LiksLCPGNfZP9tjb/d166p/86C1ypSqJWIZsIs7T3/49hauvs5xZQZFMiqUkS4sVbOOc82mEGxtVrImBaMkkYmXEYp5Hj49ZKiWYzvsIrsN07PLZ0zp/9MMfcXb6gsOnT5nMI4iRLKrnoGm7IGYIkxHwAkLfxYl4JGTIx/MMuz1sp4sYTFB9Fy2VZGIl0KIazrBDQgkpLqQYhRq22cB3A8aXberHRwxHPZa3tvni/f9EMl5m6sg4uLihizGN4jMnmb+DYcjkynk2tiuUMyrG0OXlRZtrt++SK63izH3O9p/z4NEecT1BNZVD90WyuRTV21fZXFnhwbM+vnjBzApIFyqs7GyQzRb5+NMPWNm5i6NIEEmQVIpkMwm0RBo1nWE2NAjFkGwxQV51OD49ot2r45ozyrky1YUyxuSM3ad7fNk22FkpUMrp6IqE5pk4rksit0ohmSOURNzAQnItFrUys0GbiG8Qj8uIkQAlIXHtm99jY7HKL/7TA/RylmQhiShL6Oki/VEEkz6t41POzl8xc2eslqtsLuYYjGM0Dx6hZlWkdIzTly+Jp0oI8wmx7ApCAAU1yu3aIi1zziwS48btLWxhxMzqklYV7mxeYf/0FZNRk9lsgihCKqWSytlYThabHgVNJxLJ40l50pkYlHVO9z743f1MXJyJx+qVKivlGpqi0fN1LrozTk7OaF2e8tZ33qF2/U2CzpxGu8fB2RnHry5oNg2+8dZXcSwTd9bBMtq0mnUG5pRM7TZLixpE0lh+krkfwVVlnjx9H1WtkEyGJGJzkC3CQpVRa8qS5uF6IpPZjNlsTEzL8+EoIC0aiLMWRrvHzNNJbL7OSlFFSGXQRo9YLuSp1q4ynhkMnj5ibkisbd0glfAZ9+p88eUu4swmRpG1lRpaWiGRS6HFUyyXkjw98fH9KNLkDD0jU7p1A0WJMjzdR5Rk3IhAtzNk0p9y7f7r5JIVnr74gvxCmVRlg1mQ5OWLF7z22i0sp09hQUc0Zwh9A8X3eHmxy5WCyMnRMZKokIln8W0RUy/wm998QaYgMzVDzo/OqR/v/2fNyj8JVr72+uuk03mOLgdsl68QU5awzAPUVA1RSWEYHT758AFfv3cLiQnljeuohWWmHpyf7fKv//p/o385JWK1ySczKKLM6f4DtlbuspgLGLopnpwMMAYDvra2wMD1eH0rgiw6TE0bD5GoJPGqn6TXecVb7/0hbjyBZw9ZTQQs7byGUq4w712wtl6mvLSMryQZ2peUPRj1+7i5a7jJPG7Ex3dELj74a/runJgukqwkKNRKVPUFPvjlLyh/+zo5xWZRz5CQ4/SGl5y0RHAPufPVf0WpvEBM8hEcg8AwyOSuMwuHaJLDchY28yHNiy6+EiJYGgPbomMOGI2bSI6HnsxQTs8x1DTDzpRov8fbb9zCaO8h5bJo2Qxba+tsry8zF9s8rh9xb2cLv3vJomyzEAOjO0HrTSlkDb7y7veon9Z5+uwYT1/m/Plf8198/1vMAxXDmGF5IaJeZLu2jBQk+M0nn+FHZa7sXOPena/x8fmUuCZiXv6WUnadIATL7fD2G1/ns5cNAkXi2q1t7HGHy709Nm58ndqN10g2PYJChlkAEUFldX2NqH+Jrq1zrVZgEgS0ZiGSVOLKmsaNlMLhboNYpIAzj/PBJ3v89P2/oz+r4g7O2VxbolzI4RhjRjObQIjTODqhu9tmobDKV7/zHVxJxRQ8vOAC2ZmSkeKUcyWEnI1o2MjDLrKWJjBsvOaIopYmIQ/I+FOs/iNiqSRaIo/b7eNFN2gfv2DqixhOC/xLEoLFx09PyMZrvP6Nd9nZvE86uczY8TnpHzAcdfnp3/4UV1ZZ26jw1beu8eZ73ySQ+ty78R06nSZSNKC2USVbSBGdpeg0nxPaIVHRRwwNzEEH24kQV+d0mx44DuW8xvbOOmI0Cu4Y08uiJVMUS1GKKZPDZ18S19LEixJOaHLWbPLs6JzJZM4b73yLn/3kH6BxgBwMcRWR8/oFZv2ClKjx5cFLdp88xWu1uHFzkUS8iJ6t8b0ffp/k6jLn8wmOLKElirSO+ryxVWBlISQaByMo8eZXVug6NmZrRhikCBwRu19nPu1wZp+zvZTlxcFLTl6dUNbSfP70d2+g9/78zzk/PMEZTLl5/Q2uXL+FcXTB0sYSrbnF5ekp49NzCuvf440by6h6nN7ggng+S6q6wvGrBkXRoGHWmY4NDg9bHNQHxAoxio6HJanc21xlo1QhwpyTzhOM4zE/+q//G3qTCN5oSl5UqCZq/PwXT7kR66GmFSZTh2Jhg/tvfpuD43OqUZPprIvjOnSNgP2TIc3TOtPJAFXJMw884iIsRWWKikR9eZG7yQifPa6jSAKr+Sjj1gluQmXFjjCdG3zx/DEPHj7CH08YzUcsqOu8ub2A0XrJ4ekRbVJEA5VB12ft1hvMbBFV9NkoRTkZhZQSInJGYmMxg2/0+PyjTznvzVi7fYvxcZt7N66QTPocnj3mo4d10qUcywWdo2GfZy9PONmt46kydQ/eeee7TOcKnVDkcW/G331p8O0fvEnvyadoeo5KZY1acZGEAOduyMPuHK13BsMmggR+Ic2rlz+l0Z9w961VRF1HFKMkJRHRbPLhBw+oRkLGi1naRoDxosm8+5i5E7JY20DPLVGIq8TmM54fjti6tkZBHFBRJ7jmkIvGAEvKc2NNYzh3GIxnDPqvsN0Rvpzmk09+Sb6zy2pKQk6XGEyjHHx5TDWf4cwyqfg6cjxBtLgAsRKPvniJmEvy/v/9YxonbTxHRFFTHFoCq/YrHn56xvLmJtVMGj0ImcfjnJ+PCAOPwv/D2nv1SJpgZ3rP5014H5EZGekzqyq7THdX+x7bw1mSuyJFUlwtxJUEyEIXgv6KoBthoStBwFKEllotl0sOOTM90z2uffmqrKz0GREZ3sfnjS4G0OViAepPHDznvO973lqKjazMejGNsb7J7OwBnu/y5MuvGbsBWi5LfdXkg/tV/tf/+V8geimuW5d0BhNipcbNVZXy3hbVVIpvvviUw5dfYC07nP74b3jjgz/B73Z43urx6PCY7vkF33rrHu+997tM5yf4M4dyNk9tpcJJ75KNSplPPz/Cja5Q0nny6XVW3Cm39ndpHT/hFw9PaU4t2tMJz45bvFEtooopnnTbiKZEplAmFpJMOk2krdcYXx9jX3dw5zFWnCVdKVCu5vDnj5Ax2MivcCur8ujZI158/Bl3f/cjGusbbJfr1NJVHl/MuRqcE8xn7FRT3N1qUE7l+OrREz68qTBdaFychCT0NOtbedIFn7Sj8mw8Yu+d36ecyyJEEXO1jGDN0BM7zHtT8qpIuBzx7PDwHw4r2xsb7G6v0WgUObq6QAoHFDa32dkukktpKFqWlTtv0p7N6TkSSqhiRjZqMMCd9/mTP/xPifBYiBm+ePwNj7/+CWulBDMNiu41G8US+5sGYdjmL/7q39G4W2dlEhDIGulajUK5iBT6vDrtUhcDipUVOufnNLtjhloeJWXy6ckl5dErvFwWO07gDkJGjsD22/e5PoshMElpadJmEmveoaYXWbhtJsYapcwmVSVLq9Pi7nvrTAZ5KkmNdKVCoMmMW69YLaSp3foQJQiJPEBLo+YLbJeqnH71kHRmQs4M6Y9dvnix5K3NMi+eniO6l5iZKoGgMnPmbN68jTa2cftNDjIq729leGsrQ9GZ8cHv3EMeKexvVAnlFM25jGTqvLu5z2HviDdvNjAi6LTaLINrPtxZYaWu43c9XCXL2Iv45tNPcKMy18MBogjF9QboJmevLkkkUxSKQ9774Z9gL8acHz2j12xxc32DezcPaF/H+IkC5VqVejbFZz/6S9699yavb61zcXFKHHpUV6tMopBVucKnj7+hXFthPPcZLgXWNm4yff73jIUUr05n1CtbvHfnLturZYzUksH5N0RijOdeEwkDGttl/pM//iN2v30P0V/w5dEZXz38Emd6yrd/7/t88vHX3P3oe8wjl5eXbb559JxF/yl3NlaoFu4Qm1ncSMT1IiItQSHIsiKdIIsuqq6iJBOERkS9KtF5eg7V75BWDUx/SWiWySgiZm2TaiNBxshRyKxTrO9xNQxYWS3w5Msv0bUcnlbm+VCkdQ7a5JRKPk3CSJJIp8jW18hUDzjvz/jlT3+Np2ZRJQ2vN2ByHWA2UijZGtlaTBCGuK7O6l6DW/tpBD/Fzt4+m40KiUSC7jJCl11WVhtMXz7BXra5Hvd59qrParXIk/Mxva7FajrF+mqOci1D3cjz8d/9Sz784C75lSzno4DHJz73b93nD958g15hzkoxQT6tEssuUhCSLKxgTkd8cdyjGShk1tfZWC1yedohePZvObye0V9KjGcuT558wcvMHqsrFS6OzzALGXKlBFI0o37rAPd0SJQs4yzAHi9ptducNDsA6BZs7u6RrhRpd1uooce/fXjCL/7uLynIHbRika5RZ3D5FWvZBv3QJhktqeuAveTHD89YCn1GQ4f77/2QQkFBiq6Roojz6Zz1ndeoZFM4ksLY8YnDiH/yn/9z/p//7X/h8Dc/Z3h1ynDUpTPtUtJTOFt3mZ89ZtBv46eySBu7yO4FrrFFuv0ZcmEVq7hDmF3l/bUNBrMRb775HTZ2tkjnVZSsxMYbH3CzmOLVixaFcpZEOoUb6hiJAt/fifjJUOf+vS3e2d/l1vo+RrZKJNsM7BafP37C2HXx8VmMW3z0/e/QuW7idh7gWn3O2k1+9puH5FWfH3/yMW9v3yNrJBnPPbrjkFopx0ZBYRzGZMtlzFQOTU9gL4foXo+zk2+QNR9Ziinl8/zgw++yvvU6p//2R6wXM1jXp5w/+ozY7fNnf/xP+er4CF+7zWR6Qa/ziOHYxQojxPZTREVHiiM8W2Q6U2mYIauFGySS60SSjjXqcf3qOU9mPvPhCY2dW1hHz8g7YxprRZo9h+XwARevOkjBBF/2WKoagm6iKqvk9DxBtCCfSXNnb48ffOsNMt2XXCx+K73nCiWq5RJZI0LIVfjeR9+iPfN5enHJwhuzup3li/acUV/CHb3ACgPap+ecffYpN2/e4OzZ3yBZCr//H/+Q1f0VrGjG77+5Qef4EDSPQZymORVYeFAqpCgcvMNg2ubBLz9h2LogDGE602haQ/70D/6UiXXK63fXefPGFsvBlIEls7NVxNjexxZmqPKCRiVFrvEmX//1j1HFNoZvsV1Ic6ORp+fLdM9mrL/1LtcXZxQEjddvvMvhdUBaPuNsoWKNLtAVi1RSQ56AlU5z/+CARO6AnKRzsGLyB//ZH9GVYnxf4M0P3iZfypDLJPnu2+8h9FvMs3kuXh0y7fSYnDdZHj1CMSYIGYlkJsNCFmkNWpw+/IxZC/7o99/jx49/ST4FqAovRzKwxmGnw2rKo3c2w5NzJBp1wuUpodggGS042N3CskKOjs6RHYtrNU86bbLAQVckEkYOpXKDjbKJlCwSqCmcmYcYqGQLOYbBC9yrl3zno7v4qsSLswtOXh79w2ElVyiS0BPErsCziyaB5FIqHYCYRFA0MpkE9WQOd3FJQtQ5vTxm1G2jolBYf53TyRL78oLaisbG3ialxh6DJexWTZ6fWjx8ccxKrcS9m3uUCmkKhZDHR00k2yOyRVRFI1c2mA56BHoWwczj+HNMPWAlL5JWmqzU3qRcrLFI5JFTSUrFFIJgYqgubpxCCqeoCRlXgicPPmHtzdcolu9huBrL8Yzzy3POnj2muvMaoTumUaliSA5xHJAovcabtzIsvCxDX2BkxUy7c+avLrhu2lT263hLHzkSyOkiNc3l6WdPKLEkKtxl7oEdyihamcJsRhAPWckq3NreIC1IuIMRohRgez7FskrXg0LW5LWNLKquk5ITVPwFaVnCap8RTq5pbK6zdvA+uF0+fr7ki8NzbM/j/utvE0gCs0WX8WjJ1UWPeOmyWynRnHXY3C0wd1Xq1X2k9CoXy4hiIs/J1SGIMxIpFVURcTyH69mcdMYkSCSYDl8hEZNI1jCSZWaOS3VvlTCAYj7HSk5i8OzvsZFJaEVev/0+YTJmEjZJyn1Or45YzofU1QglWyVIVHF9kdbpC6SpQ3U9RbJYJlHbISzt8+y4y/jlr0jUq2jJBPW1VbY31kEy2Xz7DS67IOolDMMgKS4pzK7Rt7dQCjVEM0O0mCNOB2RVlaPTJZFuspiHIIJsyshSjMsW8fgYP5gTRiLT2YTL80Nev/8WJfESoxhzePKEo5MHiOIUXa+Q15aczXXSpQqSrtCfzOm3F4xPHqGLIcl6jdpqlkpOYrns4E6GxAsba9pHkWUKuTwZ2SSQb/PhD15H0wIsx2IZixi1Ggc37+CFLZbNAYPxEk/UqKzWsQaXBJ7Mdz+4xbTdwmp32EhpDMIh9Y3X+fp8iIpJrVhjZSXPsPOQX33+FRWzTL4ApXyBcnYddJ/mk68Y5vYwUwlymkQ6CkgFMZWswtj1MNJVrE6LaesSo1yjkM9xdtFEtlwKuQqipDEaDVjNqjx4/IqTFy9x7BmBrjOSEjRPTwD4Z//D/8Tbt/ZJRzPGzadMO32y9YjpKGZ9530kwaR7fsTVtU1R7DKdzWnPfC6HMxZLm3t7N5n0xiiKQaHsYmoe6UQFM3+XkW0TLkZcXV6yGL5CCsaIRoVnh0+RPA1XXud6MkRXHN59bZ9RfZ+72Tlb1RU2N3cxBIH2s4cEdkxgz6i+8W2mikEmmeL19Q0atRx7+9ucd8+xhuPfSqGyyPTiOYmb7zDpn/PsaoRndxAWV5w87VH/9vdYXD3m4irg6vKcyfQaUU+TFS3ihE3erHH98pRJ65Kt7QqGJtFqPmVtq4rrZVh6KUQzBcGUb394Dy2zx9X5Bb3LM5iP8KZTGh9+n8aKyvRqwnQwwkhrHNz7NuuZBE8mDvu37iEh41lj9lZFTi+avFqscOfmPkomJpaWlKKImRPjN5u8fesGeWmEJvRJViSu/RTf++DbrK1X6Tgh570RwWLM+wf3mF5OmQk6nj/HWVi4lkY1tcr63g3Ozw9pt30Eo0oynye4vsS8+32MsEBSlUgqAWldJJOrsnNzhT//8z9nERv0PIPnVwM+//VnpLQcqYxFKW1gaiJpQ6WcyXDc6lFM+LSWFV67/Tq1QpXjl0PeOniHxz//K5ygxDtvvcmdrRp65DCOfDr9iHrtFqP5jFjzKK/oPPvNVxx89CHHFy6KlqZcrVEs11mMQ/yEiH3xFFGOUbM19GyZ1YLFelnj+aNTbCdkEcecdgc8f3aNuxzjzWdMLodkkEioKeaOyN3bBX79tEUxk2aGRHfhMRq67B3cIrTH3Lm3S01VSOfyzA2F5qMviOaXZPM5lDhCkVWWTsSTl1fcbmzy9OVXqLqLIExwvBGOPUewpvQnC/oh5NMaBUWhczqkvlrjvHlNUleIYhVRT7N2c4+N/XUMTObNDpGRwJNk5rMJyaRL+/glqVKGhbHH3FJQx5dIskOjrNHRNnlt9wBJNrgcTdnZbxB7MvmdHJ99+Q1PXjWZuR4JZUJVi/nmq4ckpASdnsv1YM56QeKTby44vOxScft4lkhkZChVFV4+7rKznecnP33K1795yMXRMdPZ5B8OK7fv3iObTjPu96iuV1jNbFCsplDiGQQOrhcx7g8QtRAjVULTZBaOQ2swYTKzmF89Yj6cosg5JK2AG6oM2kM2VgrMLZv5bIAfeywdn8ARyJtpdvdXsBc+mq6jZ0wwVWRZQ0vXUcMJznKBLEukCgZBFKOTpxt5CMEMTYwIFRPHhzidR/ZcRlMHKZHESGoMr47ZXb9BnMvw4ug5C3tOIqmTzpjIyTL5vIE0crgajBm6IZVUgeWojyMkEIUEmXSOci5PLpViJKcoawnmyyWD0YjhYIoz98kik1OTPB3ZTOdLwkBAFlQEd4kq6jRyLoYcY48XONMFhbLIWXtItVhn4DpE+AhRyGLqkjJ1xLlHvLhCiOeki1lW6tuE42uGY4Wj8z6T2Rx76TIeL8nnU9Q2DkBWcUOJIPKJ4wlSZCOnc5QqayQ0g1AQCGWBgikwj0QyCYWpBXGskNBUcOYEhFieizOPMZJFzEye5dAljlxKOY153yNcWCwmfY6v26xu7RMqNklTQxQXGLJNTpXJiFlKa2sU8jX08iainiJYLoligfk8xeH5GbKYpJApYegGw+szKhmF7lAhjNMoqozIguVsgisFpDJrGMkkmrREFyekDB1f9cmn8miSgBL4iAG4sY4qSlhuknQugZw0CPQUrpbH6kuIDPFiiXlvjj9zMA2T7qJPRR6imjJKKo+WyaNqOjlDZ9gbU9tooKczuJ7PYjjBHQt0ZwGltSqpYp5SJk1aTzB2A8bDLpIroUZTTCNBOlemVE6xfesALZNANWT0pIFpaJhRhKBkCEZXdHs2g4mH7YaoCqTMLKLrkjA15o6PEwpEiBRyoJlFippE2jCIJXBDjyAIuLVbpHVlMV1OiZwQNRYQdQG5sEN2bRPREVnOZswnHaLBiGHsEy0sOoMR3eYFrjUlV05xfHKKMOyQSxaRghhvMSLwZyxGPfpTB0cuoaRXCJQso5lD9/K3G9J7H/1j0rk8w16X1tkZ6/fu0Tw+5PVb9xFknTCOUVSZ6ahLvpTFDUyMhEG1lKRcSuMLJtPxkrf26uQyMuPektE4orhR57XtdfqtEb3uiNlwgCzIrK3dZHbRRIjHJGs1EvqCfFokX1zBm5l0B0+YRzKFWh5F1xiPlki+h5AosLB8oshDRUCLRWQ9IC10+dXTSwIhwg9c3OmIyB0T5j8gumySX9vE0ETs6ZSlF1M0RbAESmaK6aDJaNIhkdU4P3+BYxtc9dpMx1ckdIliucHTJ0eU62somgKiRDqtUygoTHpnvP/6AT/67IiR1SWWA2Q9Sb64wnjQBt9mNB4QaBJiIkn/6oyr60tqK7eYd/vMFx6ipBFMu3iBiajMUcM+jg+RmEIUfOaeSxyrVIolzjstOpZDcWOftLHGvN9jHLlMPUiYGbbX1qiurZBJibxc+sSBTVqRSesm3U6bt+6/zdCRWPgKZrFAvl5DMrNoSsDcdpAFG8/3EUSV3bUV+qMJOXOB5cmoiTzZbBpDWLAINUJ5xKIbsbQ03EjBC5csXRvHU5h0hwSxzGgxp91+hbUcMmk/Z+wuyCSTxFHM3HEQSLK+VSN0JsiSTiKdQZDgxeMHoGawRyMkwyCRSWMaCs6yR6WkEtgCvbZFWs5QySaxog6t5ozR0qNQ3iIWwfHmCDL0OjMyKzWyIUhCiB2GLJwQAQ0rTJHI5jAra6QKNTKpHLvbNeZOTOAEzJdTPCHE822ujh6TLL3Bzb1VNEHAChR684BR/4pYkymv1ElrApIbsJhYnF5e4c9DJp0zXrXHoKQxdR2WTeq7Zc5bM7qRjSgIJBEQ/YjYzOFHNo9fnGM5MqED4XKGEo0Z2gZ2NGazzfkPRQAAIABJREFUViJnCnjugo36Pr2rC46up3hhhOfOELw+UTzBbl8RpVLMxxPKuQzr1TzeckIuv85ht8/O7ioKIZE1Q5AcTo57vPvWLoGjkyxVyOSTuPMpWVlg4S6oV9dx52N63Sbj+fzfCyv/QWkgU5fRNRFHga2NMoxNHGeBJMwQlSxeFNMZDGmkari2R1oVMFWFXgiBPWTZ/a2DfbrwsCZNbGeBGXkEgk/K0NjfbTCYTjg+b5EKVVYLVQr1DM3WHEk1EGQVO1AoVspE0grO8BURBk4oMl26lIs1lrMBbi5P0l8QewKOZmIkEnhiBl3oE8YufmBhYlIsryC7Ki8XFzSdCUlRoZTJk15bpzmZoQc685HLOIqRBRHLDnCFNGk1TTFbQk+mUVWVOKgwurpm3Dyhf33J1XiGZzuUxYi3GqvYgxnysAtOiKrKyHpAIEJZgoSs4CzmzKYuvuORcQUcO6Z3dY1ZLjG3A0bDMRlRRTBEYl1CdOck0gn0bJ2UUWE+nTAYKPhLEU3QiAUX25rg2kmymTIOMQk7YOlNsN05ipoj8jWW8ykaAkg6WVODaEEylYAwQyz5xJKJIOnIYoKEZjAeT3DmGqapAeDbA1K5PJIXoiIzngyZzBao+U200ioZ2Wc6bJPSNZJqgnBpsVKoMsVGTOlYfsxs6hEEMpniCoOpzKDr4HkdgmVAMqGihwtS1VWaLz28OGBqz1kG12hhhN05o5rYIhJllNhBF31kTUT2A9RIQFAM4nSepRXR704xBI8wSCOrSTAUpo5Lp9tDsyysyRDZLOLNPIg8FKDZfEW5riFnLRKrt9CyaZbjCQt7QiCqrK1WaM4XLGwHPZYBmUx1hVwtia7LGKqKHGvo6SyCpGM5IYYsosigGgLZcopiTcF2BVQ5RtN05EjGn49Yzm0kV0ZQFZIpnXCyxJ31uPvOBxzORkzGfUxdRzM0fNEnaZj0l2PyckykJJi4LpPFjGwqh55SUMwJ/lzAEl1cY0lKrFC7+Ra6KjH1fOz5lH6/S28wwklmkBYTxn5IKIsoso6/bBH2YwqVEmnBZTq3sX0HM1em9+IaScmSLNaIxTzBcoHkNf+/uTHuzDiiy2Q4xzLSrB3c5rOf/JzM/RxnzQGiblBdWyMSFuRW1hE7Lgk9JmGAHbg8f3nIjd0DFK+JM5EYDgK6Yxsxd8573/9dehdDfN/FtUT0RBJBEdmvVhmFM2zTQxVzRI7I9fU1K1KCB0ufkT8BMcRUTFLFKoG7RE6k6LVa6FpMYKSYByDqGq3WOYaqIqgCgbNEdB3StRKhHWGSIldZZTwTWY5myIk5x89esr51j4QcExFgeQ5x0OPw9IibO1vMZ5f4uAiqSWTDq+MWv3/nTQiGeK6DKsWkkgLDTpK5FdMdt1itaqSzBWQhjWZmuPzmM6SwhOfbCAmdpWXRPHqCJ4q8W7nFcGqzXHhEMRz3LNY2ZHLaBD/0WboJ/NDEzK8wth3ElTqdxYRFrCIn6uhGGdmRsJwZ5/0BcahSTJfIZ1O4qoKnSkSqhyan0CQRX3RRFJFsWqdYqWOHEoIUEEYW6VIOp3dEKgWLwQI/FEkqAvPFkNarK+69Xsc+X6CZMfmkihcWGEcRerrK9dBFlTTkGAbjMULsoGqbZM0Og16HobNgPu8Q2G2ypTTLxZju5JxAWEVUTEpxRGOzwumrY0r5PMV0kVj1yTXqXDY7yIslesEhdMbMPYvAAMFxiGMJL4gwNYV8KsVgmqZru8i+QyiKeLYHQUCtmqNzNUfXkqh+iGRIqLGP7lsQJ1gtmcRJHzOdR4ggXowRlBTpcp3ToyZzu4uqa6iijqQJuPldWsMpsQ0jK2Ji+ySTSVx8FMlgNm7hzlwi30Q2ZGxPQvJtoqnNrF9moIvowpwZNuVyjfPDK7KqSUbWsZc2i4lAzoixxQzBZEE5m2J1c4dJ8yvsdAF3MSMv+2QySYZaGTOTRtBSZHTojSYUklBMe0zHY4IowoxiivkcRcMgaxo4yRzJ7Bp64op0LofohziWwCwUqWZCXtuvcm6IqEmDSAhoDSM00WNoqzTWV4ndAZPRBaet9r+XQ/6DLisbtSKrlTyVShlfjBi2zmn1fFRVIV9bIbOyju9qKFqSi3YLq3+O6HgUMyVWb65x0rFp7DRYeiPOXj1m3Dxhr5FDSPmMruHuaztosoY9mePPhiQKK1zav82fG1ICUczgChpJXSaZLTJ2REiWcX2Pef+Ku6+9wciesrJxFz/QcSMTxchSy9eYTm3ieR/PuoDIIopFQlFBJsXHv/gUtVQnlUiixRKaWaO5vKDXHjGWcpTLJtWMwczLcOONdzGTVdbrNfxQZDT3Wdg+6tU5z17+mFcPn9KcKvgo5HSbXLXIxB3SMLNExAiqgplOoCagoYwQzBVCVWJmzRjMpyxUHdMocnXynPWb95kHCTrXcxqqjGy10FZkUpKLppaQhCpSYKCs7fPswTPaPQEn9CgUFG7fqDMczcmnNcahhz/soFgTDN1gIK9zay3Hq5NnZPIFtESOhRUS2VN0Y05/sUKllidbyOGEKu2uw929Bt2xw6A3RhYgZUgI0ohUqY7tRISRwNyZEwkx241dOq7HWpygeX6FoeYwJYNp95z0msHTz77GTIUcvrrk/HKMoufI5GSU1Jx6o0qrdU3n8oposcAWFYYLn3Q6QehMcUZt4vGQupEgV9KJZxGhLmLIAukoQPL6GIk7iEhImsbUD2iPxjRPLjlvXpMv1Qk9E08p0h9bPPrkJwiJkEdffonlJRHSGhPB4tnZMZlIYDmwuR4OGDoBYmCTZcnLuU+9mMNMZDlpX+AHPrVKnWS5wu1bJqYUoyIhRB6hP4fIRnAEBlOLUAiIRA9BiVCSBWauSj5RJJh1WE48rIVAQIyeyiBENpY1ICnZaPEcx5nw3d+5z6ujE2TJomwalDMGybyMF5u0O33a3R6CXiCOJcLFjLSe4JePj/jOe+vUjBzpdAK9mCCRXCVdziOFIUYqi+j7TK/bPD19TjBweDm8olCvUm/cIJXOMxq85E7jDsWdm0iDV3THExZamlJjm0V7gG1pJIo6lmcSWB6G3+Ls8hSAeze/x7DZZeTPyBzUeXtrh8Mn5wwkgVZvjCSJ1FYLbL22RyptIkyWhMspzd6QB4dnvPjqAf/Vf//f8rd/9X8yd2RmQcx4saBz1mJz8yYZU8IsaNQ3apj5DNeLJR/e2iXQXa6GNhFJFhOH5uFD3t5bJUhXkZSYk8dHTHozqmsNhNIKWWVGSEA8nyFHEUY6gain+dvPzvjw/h6CZyGFPsVClv39O+iahCEFuI7L3LawAx/PcjmehLx2e4uzXovu0kVPJljNqZxdtrl357sYksdkNsN3QvJqiquFzc56g5Vigt4wZLKwEXWPQF/DDhUyWYXtcoHVfAUznaPlzNEDjXQ2QlyGiEFMGPk4DqysrDJrX2AUVhmPprROzlGSdfIFGU2tUKzeYjRfMJ0MqOdXsAQTudqg3z6lXq7x2u42ScXn+YtjvnWvzvnLl8ybF3iTAUEckagU+fUvnlGtZKhWV5lHMlejGW9ubyOmfUaDa9KmRuRMmLSPKItThpbPdtXgsrVAVE2MrMHjs5cIzTOkwh6+HiFj4c0WDPsxOwcJGqV9pqZKoaRTMCLs6ZD5fMqH73yPXLmC7diMRwMsy2I9K7J583VELSRX1DELOZRkkbR1glwo8emDDrVqjvV6mUq5SmZ7jdF0QOdsyWrdQPRtRn2LqFTHHVgMmkfIWYdSo0KisMLC1xCyeeyLcyLdZzwcEjoR9ZUGoRNSlUV6U5HCSp18IYcYurzz3uv0rs9Z0EcIQub9Aa12i1R1n0xG4cVhi9F0hOOrIBbIZQTsxhaf/PjnzJYioeCjqS6V/Dq3dtZ48OUhx9enzJc+hWKd7/yjDxEikXQ2SUoMMWQPx1vQtQI80uxWt3COnlJKJkkX8rgqLDCp6hKBXEeLh2zV07z3/rdZtM4o1OsIcwktkSWXy1IrprmcjyivrlFZv03oB0hSjJFMoOgpgkKVvUoB27aYDWYsJguMSo56pcH4qkspXaQ7cxgEUFndo5EdEKhJNlZWiGKPsWVjCxpPv/kNaxt3ORkvWSsrqLHDl4/+f/Cs3L37ITe2t0nLCx5+ecZ06VHezCClEkRiEoMEe3kZKaUST5ucXo45vh4ydx12VzeRyimOfvIJK/VNqmu7JAo1pn6IKdRonj0howQk03lyhRyKMuDnz474k3dfJ1yOCNIVbCWLO/Up7t2mlBiyGHmQCFksrxmeN8lv7GMW1hlfd5g5sJhf44yfk681uGzPmEU21nRAVjPJJQucTXwq2xmCbsBWpUgjXyKhyXRnL6hkyqCuM7k+RzN90uUCSb1BIcrw9TgiDHyu+0MGvUuc1hMe/+YV8qjHWViFYE7kjxiFEoRw60BhNo5QUmkcWaA9HaNbModtn/WDHNNgTLN9yXS2ZOv2h3z96SOMlT08s4IoOOTFHsrojFdXX7FTXWcZpFCNColMGl93WfR6/OrJKWa9iiSG9DtXPHv1nPfe+Ufc/NZHlAo6y4nLwg4gEWN5NsX6Jjf2b7GxvUkkqnR6C/ylQ9BxMMQQM5PGUzQ8WePG1i7juccgGHPRmyObCTLFEks7hah06bT7vOx2UCSXcjaBRwYtrBCMTzi7OEMsmKSrJgUzInvrDmkzYBg3MLJQrSkkDZ3LB3/N6YNT9lZv8Z3vvMXm/buMM2sYxR2aL59CoKI4bfJ5k+zaJq3hFcekqG7cpIxKQhaRU0kSiTX8YIEnGhSzAt5wyvVxl+b1EIUYabVIsawwJqY38xGWHhdnX5Cu1JkOXxB5MYVSg/27e1yfPaUdRbzqCoya16joVPfeR8onSQ+GPL/6Gm8RI6tZ1EKWu5s5Wr6INZwQeiGtzkvOrl6xmn6X7KaIulqk7M0JFz5LXyOTTVNQVIYTl0R+HyOXQUyFuBoUCiaubTO2BWR7iWL5iH4Bw5Rw/RnmYkYqV8MVTNrXfWTdQpxXWH1nl3EQoCoGW5U6vfYZ/9E7W/z6199gpjSEeIk97pGpFJgefoqRSPPwuP9bz5Ea0fnmE1pRFSmZwprq1AyVqhEw7Mww7CS2nMTMqDQPH+ENu9x4/X2OOhncyRG1nTexFzae7SAoOc6Of1tk+If/5X9HOb1gTZ2wLQn0JgO8xirZxBpM24STc/xZl0Qyzb/51/8H5vYGo34L1Z1TzaRQ13aZjs94/d49Du7eptdtMxz0+d73f8gvfv4xlq3w4NkDDg+fEvs+373/bRZOgb/80cfUVovsbJkgRjx7ucAbPCRIVrh1Y49CuYKeT+OwJGh/ha2v4YVzbtz4EMOscdUeYkk55ItT5J0a+qBHLWmyur0FRoqTv/575FoawXZonxzT77TY2d/h1soNrCBgOOuy0VDZqReYD1NsrW4xDx2OF3067TbWxCNQq1RWbzANLFTBYCtjoMUuz86v8KWQg1vrPP3VC2RRoJDPYaomn3/xJXcbKzRPvkaRTfLJFLqc5MTbYm0tYNZZMnF6DGY9BEXnzq03GImn/Bd//Ht8/Dc/YTq2KKQLePMZbXtK2uqiLAv0uiMu+y2mxMynU9rtU37vn/0Zlqkz9SRqyW3u7G3RPf+c1WKZpR8zXVwjBS3Wy1m+/uoxzx4+5cb2GposMxhMya+X+MWvn5NaLbGyucGtgx3WNutYZoJ+e4ZbrNA5uyKh6mTKNWaqyV4jwyf/5i8oyQWQSszcmGDWopquERQrjMdDTHnJaqPI6s0DwuY1f/YnP2RxNmN7Y5tSYZXZJOTwYsLtu/e5PP4Vmd0yjqjQPxuR9iSwz/jqaZfN7SqZUoVQ1plfH7M8bnE6U9ku5fA9hZfNHp3BU967fYeMUcIliTcNSBsJbr65T72UIrGxwzdPnmBZV0TSElIZqmaSR+NH/Pqnv2Y7Y3Jnd4v6zmtUNhpkZZtXT/6WW/fusXX3Nvm1PG/v38H2O4we/JjX7r7LWwd3uLe5SXn3AGvQxI8VdrdzFHMVZD2HWICL81fcePcfI3tDrLMLZscdBF9HclVGQou1u99BlWHc7zCeh+zkpuibFb7++O/YKadYKVe5HtkME2scFC1+9uOfoqsS49GCB08vSeZLFAn4+PCCq+El3mSKYUGtuko8e0WkZlBEFW/UY9k9xdQsromoGx6+ZDC0LAJCMrkkP37cIRyDEtl0ek2sQKDauMms+wve2N4lv7+GauqcX3V5+M3jfzisFEwfSbEhk+XOu9/l9OwQS1zh1v4NEkrIyctv+PzxI06vW6TyadYat8jkq9iLKUe//BE/+9nnvPPODxjaGoLoU6mo1BobuL7L1s0NOlOPo8MXeIsZ77/zEWuuxS+7Hd649z7CoEfQPSZflFGKRU6e+Rzcf52T4zMOD0/xZIVadYPu0qV2Y49lt0U4mpFUckhZA9fuoLSvkaUFTizTW2qMwxTlyhbR6IqWm+ayN2AwaGNoBZyhSffqmP07t8mlc8g+JFSNX562SDLn6cNjdC2mmksTzwU+/ebnfH1yiTOaM1gsmXgaCHkSyoi6kmTvzi7TIGApBpgZSMwGbL91l836lOlFl8gyyOfrpFSLqWdyddWjLqpoUYjrzwmdJhm9QXcK9a0DCsUykqzguALjZUBxNccnf/3vePHN57SvOwwskeePj/CTS9Ipk8vugNliTEqImV7IeOIYPVlg4SwYjTs4sz6CPyWzvYle0nC6T4mWMxQpwbj9jG9evWBdKqI5En6oYoUSxRQsZyK/+df/kkp1l6UXM572Wc/adFs/51/9zV/xuz/4Pu/euUE1pTJfjPjZ3/4Vs8xHlBSoJAqU8usUag1237jPrbe+zf/98Rc8O2/R6ffwnCFmHLB18x6//OZTsuUqqUSa2FlSqld5K7WLYjXRtGt8wSUgRX6lga7FlNcapBUFRddxgpDDRyf0F3lKso0XmNjzAH85w4lmdJpzWqdtnCCPVMyh5gtIUolIbiMq7xIqadarBQoFHS+akHAcHj76Dc1rm51VFTMhMJiLJMwVDr/6HMnzGEsFCqu7vHnndWr1Av5CwF1cEUU+WnYVMd3gfCJwo7ZJKr+Fr08J3DZ66FBL15lcH9MSNW4U2yw9h97Uwgj73LjbYBkqJIQKQSZHoEXIkcOMIpJZRTwfsJ4zkd0ZrZNjdncPeNQ54e69t4hkgVgwiTyTL372E6yFgWtPqTc2SKkRkr9g7+YtBP8pj2cmW9t3yNeyZCsKbxxUCU0HIz2kc3aBmCyS2T4gSOiovc/oG98jlWqy7B8jugOS2pIXh7/9RLmZjlDVAldDeHzS5lvvf8iDTz/n5OtPOLi9Q6QafP34DLcfsf27/5xyq0kuV+faDnkxmlO98TpvVkNetHw0sUlB8tgqb1HefAfZ1NnIF5kpIfVMibqZYmq1eepfYwwfsBC20eME9UqdW+9/j9NFlmRpjavHh3j2BDQRUTe4IUSUC9s8OPwplcYagaDT64wppTyuXnyM2biBaWaJA4Xrdp+vXnyNVs0zPBqwfrBBulZj6Ws8eH5MZS3kxePHWKM2E0th5qgk5BnZDZWnz89I57LUsinu32rwOz+4xbGcoXneA/sSo7aCkClgzW2aPZv84AXn5y1iL2SxsJkuQ/bK7zD2X9KaB9hBhlypwtpqGqH9gs9/85L/5n/8U+a9HvYyIJPPsL4i8nf/+9+yfuNDst4V65sahe0SgVEil99hxexSPtgExcOa9pkPeiCp/OTnn6LLJoq6RVLN4s5e8tXZkCfPLujHY/LlHIao0jvv8/mnD2hetpA0AbQtrnsO5xfnXI9t/ut/8m0K+V0uT2dMe2P8yZDBeZfDa4tEUmWnIiMTI0tJPnj3LcZXFyTMDa7lmKl7Sa9/xqt2xPYbHzK7/DWts2N83wNBJw4zmOUGf/d//Qv6YYPnF5dctU6QsUjYKtqsz9HZNW+9tk5SNzlvhYiLHPs7+9zbWGXiKQiEZMQF7aNXJEsxodzntd0NPAEQZH54+0OcF5/QmS+YFGXMhIYRSQw7M/RMibOTCUK4oNuaEoYJDu7d45uvnxCrJrc+eIet/XWWlsfh83M8bc7lVy8ZBwFv3XufaiJD//iMh99c8P5BgcOnDpmcRbas4GpJfvT1c0wB3EqRYOwymYWcd1p8/at/xUf3/5CffvoXNJsWa/UtNm5v0NUmRNMZzYsJg86Arw7PaC+nrK/LdB+fUt69T7K4TmNrF1FXubo+p/PyCef9kO+/v4cajalUc7zzvY9YOAmu4wTOiy9597U8NcNn0TyDaEwpdRf/+pyz6z52qJAqrWGs1PGOrtgslhlPPfqjCZoIBysrfPnwKf/0vRtM9QbXs5h+p8fo/CWqJnP++BGDF8+4eHrI0eExV9fdfzisHKyvsrWxQ6LYYHJ9iSWaNHIC7cszAkTW9m5iyCrV8i4be7d49ewrhHBBfbOKbUak9AojJYPkXdGbdnh+2uTkN0+YsIc199DyA+7fv8VOvcHJ04dIW/cJrIDIEkmpMtlkgjCSCSKHwsYKnhMw7i8IlhZq7JLMFJFDl6h/SL83ZjJo4QwOUQKPpR0ylRd4lszENxhKGoapUaVJx1lS10Tc8YzmaIGTFMnrIbubCebTEfNZTHcY883LE4ZLH4Ur3rpzm61snmDuc9KfkUsn0RWdpOySSIooikYYqCR1nw/e3GYpCEiCh2M5LOYR9+/V6VxdMpwsGQcFZgEEgsfa7j1++fAxy2nInTdWWSx7HL18ha8kmA86aPkdDNsmii0WYUx3rGAgUSsX+M3TFtfjIU7go2kF9jf2uf/mDikpwWAuIiR1Vjd+287a2CnQPHqBFIRY/TH9VoeNu99iTIlUqBIIOWI1h+9HXBz12H3jLfpHnyEUipQrZYq6RL87IPSXdBYqvbnFcj4ndny8RYBRqyKpG+gJg4XnMpsOkZcjNu//MQerDaJZk5Nhl5OzY/qPvuD58QuWk5jVYgLXh9nQwu+OWJyccjm7plJ7A3vUwx63UIQlsmvzotVh2TsknUqjZxro2RUKGYlUroYc2iytgHHfZdhfMPVHLPsD5IKCaUoooUM0HTBpn9KNIvSgy1qlQaWkYKgunm0hGDJTz2I/GxMHC8azGePRlGGvycbeezRuv0Ftp0K5lCctGXzx9BApvcFseoLIlJWkQFFTOLkY8vjop9Tzm8hCEdPIk0xIyOKAZSxjL5dIwPrKCrlsjvPLS6qVdaKhh5KqInpzjNDBSFSxrRmWoJNORCTEGdgBjpUjp7qI4jXrBzdwnSFTb0mcTVMSbV578z7bFZf/l7X36rEkQc/0nvARJ+J4f9JnVlZl+eqqtjUzTY4lRQ6HK2op7lJaSnuhFSDoD+gnCBAE6UIXC+hKgABBErmiG66GHMvume6e6a7qcmkqs9Ie702c8BG6GGAvdwlQf+LFg+97DYHIrD+g171kpjU4bnm8ODnk8ugCWbYpNlTsqUPHkTEtAzOVIZ01sdIGYRjTv1qg3X7M8vyS+XKOr4oo6Tw9p0zKmDFbxnh+gCCL+JHE8f4XAPyz/+pfQtYkimfklCVDZ46bSbO7vopl5XA9m+lixP75jH/y7h3+7N/+Pfm1OttbJW7WTepCws+fPUXIXufTTw/pzyISSaJ19JSPj74kU17FDGdMZmOCOOTuRp1sNse5bRGNz0npCcOxzZNfvmRtr8Diox8y1WUGYRpFq1BNFfnxry4o+zHK9j2+fPqc0xefkxXm7GwW+XxfJacmjBOP1riPPRqzW1jHU0U2PrgHhRpvumfYk0O+fbPM1LzF5WkTq7BKIZdHFkUuJjH92YCbks3q6nUSvcBCTuMoBg1TZDOb5nS/jRuEjJcR7UlMSmuRvvOIW++8z7V6iXwui5y1SEtjPr90cGWZciFmaPd5ftHHyjQIvClnpxOajocoeUSLAZ++uOS93/tn7H/8CX0/gVwNVUuTjIf4fsjWpsHIHePYAYaSolxKE8sWVjVHo3aL51/8gvawTf3+Y2K7ze9+eJdUJKBbWRRFwRAl9HSK8r37WCubTNo9ZtMxcjaNUSnQPXrJ1ZWBlMqiyh6KMGdtq8GOKdG9fMPK2m1Us8zEdjl8/YbVAojRBQcnHerZNdJahl++eMIyKtNolJjPp/SnESlZ5tG6yLx7RqW6xsgX2K6ZrFQKOJHKs2f7jJjy+IPvIilFxs0287MvOD15SqbkIfo2QqWIIAa44w5Tz2Ylf4fr1Q1e9W3sUQvdvuSy8wbXtFhWXV795Ak7m7u89fg9oshn/9nn7L3zHvW8w/rGDYxchdfnLzk4PuLdd95lfvKS/hcvaF/1cPMWb61ncGKXZVLg2af7jHo9VneKJEZI/02PcaywurtBWlaxL1q0Dw4R1TztZ0/wJBM3ASlYsq4pGPky/cMOVVVAqKpMLYHIgVK2wXLWo9c54LJziZHN8+7Xvo0g6pi5NFrocnD+nFa7R1WtUxVj9PUqlZ01nBBGi4jmcMHEG+GdX1DIpuhMY8RAZbW6gl/b4+3HD7kMBMaLBGnZIZhd8mqo81v//Lv86V/8NaFepGCoZAKbSavDnQ/f5fu/+JLT/ZdcnR3RH16xcDrU4gXC7je5d3ubtVqD5cLj6f7+Px5W1tZ2uHbjGhsbRa6OewxnA/zY59r6FoVijWUQI4c2qtng2csnjHttlguH+cIDRWbr+tuYaozrzlFjn5KVobbzgFQ6hVowuFYXSKl5ErGMVVwjkFx0o0S4nBNqClI6j2lkiAcdkCLS2RynFzatvoOgyVxbrdI7fkpzOiVOAlxvwmQ6RlLSKOkNpsEYEQPHDbGnU4zQQVNlyFToX7QYD67wvBHzhc/gsosXCYxDD2cWspi6TAKbWirBFCIkEZqtU1qDFoIioekqUhIgKQFBGOM6HlHoUK/X2NlZxXZdNN0lxCHwXW6kVWQj4Hhm4bnTNEnEAAAgAElEQVQhuiCQMUw0S2E494gmA1Ipk+FoxHw2oZDP449jFGXOYGoThgaKmEGWZPIph0Q1OO7OmC5mKFLCzmqZb727RbqcYeIFOFqWIFKZtSdkaiZxVEa3BEazBUtngWUkLD2fTHkTnQQ/cnACh/l8zLh5QkoTGMwSSrUUqi4RoZKv5JnOPZLYRw4C5HBOHC6ZOxCMF2xu3aBkpRCTmMWkz7B9wub2LQQv5ODVzxEUm3JeJ6trjPw2s6lPtV4kJWlkNJGMHhLO+uQaeWbDgCiJUFMauqoRLpJfG30LWXIZFfQyrlQhiRdUsgXOekNsN2Y683GjGKtq0Tw7x7TKWKqCI0YskggCiShwMWIB2VCRJBlRUohVGHeH1LMiW2t3WdgzJDlhdWOFUAvR5BVmwxHd5oDeQCSSKty7niVxE8S0weZKDUVTWQQB1UoOo5Bjvb7H1POwgyWOM2U5blJMEgQjQ65ex0in8QKXzqiNYdZxFw62N6VUSpFNSQzPT1HlhI3NIm4UsIwTnEgmiBSSeIKmRbizgFKxQHVljXS+QhBL+DOb3qjPWatLdxQwnBlc9GcsJhMcV2ZvLU0pKyITU0hnyDQqYCcohSxauoimaBjJCLWyTUbXmVy28fwpsiqQSdcglFCCgPFohECCKEjYswVnr58C8OjhY4JQQ1QUSqUMWbXIpLcgXyphx2kCJyAnJ2zt3UT2ehy2ThgPfZzBjGA+ojO4ItO4y7j5nFZziBz6mKpAaGXRwy637j5k6SSIqoZhGMRewrg/4HlfRRlfkqCSiBKWMkMU5ywGM0JZxk2WzGdt+q0zAlFh7/67HA8vKcYDbm5U2N7bYzEdYOQK5Asao16XxFlQSCuki2lCAfZfvWE+CXBnPZRwiSk1WGgmxYzC2AkR7AlmYpPKKtjjmGFgoqULhImEJOkYeprFzOWXP/45tXIB1xljyHBzZ4uz1gGbaYXF1MPXS9hY+K5PvaogqxYpRUKNloiigpzKIesqShxwdjagmNOwFAkdma1imr2GysHLfVKF6wz7A85PDgiQKVYKHB6cEgVTytkCWavAdOZydb6PqtYQ5Yhp/5KUZLNWk4giFyHK0JuOSRY+apKgWgrtYY/bt+/Qv3rDYtQnDBx0VaReMogNndnVBZWdLfI5A1OTyK7t0u5NaBRz9LsTZkMHAQmroOD7MleLgIuLK0xNI1fIkykWWHYvaWjgzTyGTkSYhBQ1MKrrmGmLq1EXxw3xQwVJ1SjkBNwo4ub2dYbnB5ycHHA1mKKG0LHbKIUqU1ui03SZTxO2Niucnx5y/+YmJ+dtIj8gY6ZQZZ3e0qF13qKWv46lGMxGHUbjJlqhhDdLOL96iZ7PkLHSRKMZRAtup3Is7DFRIIKaQ0nXEa065/sDBDdGTFmksiYyIcNul8uuwGK5z1bFQlUUlkikK0WcRQc1m2P12jpZU0b0Q+a2xdzzcOdTvHmb7nzOwlWpZ3dZ2S7w9JefkClfR8+lkWUJd+SxmHQRS6toYYgixYRxwnDuoKUSLi7OmA/PEUSDemOD9UaDeatPXUlTuLZJSjXJZWUyVRVRLzJtHnN2/JrIn5NKK2iZNKErESYS7ZHDvZs3KFoCsejhW1nqVpr+6zGKksGVE2wgjky2Sgqbtz/EyqZod6a8PDjm+Oz43wsr/6A0UCRIIMtohoykymTNHOPlhEixCBIFez6iILq8OD0mnLWwrAzzZcyoPaVaMQitKe74kqUbkNMtCrkCfmaFRlbhbJmgCDCdgqjIrK6uMGl/QTmVpzs+Ye6o+IJIKCsomk7kCSxsB9uN8GNIKxIrlQqvP25zIZhsbSqEcUxn4iIYc8o5sMwKC29B5LnIjsvUl1jbqCAs59h2wNINcO0lc3eBN3Xw3CVSRkFJCkhChqwlkotm4JucnV4xc+f4vouhqFj5MjXLJFJrqIGAOHeRpCX1Yg4ncEFNoWkxad3FTsUESo5SMc/yaojoBViqRsq0SKIpxazGUoU3F20EMUFVDMLAx08k2u0JsR5hxxYLR6KWU5nlEiI3Il0sUF9rEFgxtayJbml4Spbp+IJY9hHjCN8NwE8IooRUKoMgq8SRQMgCMfFw2y2S1QpqJOFOFywGY5wgZNgfMglN1hIRIQqIIg8VjVgUqZaKTEKfpSCx9H1mto3TG5MydKxCASubQrQsbFEmTFz2Xx4yT1wKiYBBCrVY485mkZNWyMLziYIIUY5RTYs18xqRkaF1/AYhZaHkChimjpEV8OcjPM3Gm88I4g5CkCaIJbrKCdN5iigYEbsxiixjaEUaG6uoogWRRJhExEJASpMpp3P4QowjJMSRgISGYloMTlpU1lWcpYsTBkiqgKIpSIHCfNBmkiREQYge+uiZiCjyGfX6FDc2aRQbKJqIF4UUihZmKY+8lNCzvx6Um036LH2YR0sCYYA8NInFBC+wGQ/66DTxgGDRIb2yhqJVudQ+wzAyZLIWnb6Hm2jEmogU+Yw6PquZPGqUUCyYGOkMvbHHF50By/EY21dwBA85EkhFKmulNH6pwNw3EdUBoTsnWqqQiVlfq+HOFCYZC0U3kROJOE6RyWUQYw9VlZFEicR1YNwkXdql2W2REkX8OCSMXZTI/3e6ES5i3MWUWImxTAtNFDAiA88FLS0hpiyipEymXiUJuty5eZPT1yMGk4BY1PDlNF9ZX2d49BklI0QNfbylTnmnQb2hsxg2ESyLlCEjRxGLMMHxE1YrBQSvgB/GeMspuuRgyBZWY5V+q0UqYxAJIdPljGJ6hcPOCc6sTVZwsTJV0sUs/c4VqmUgmzb+YoQlSpQyedzYplS/xc+/+JjYvWKlpmAVSjQnLrHmsNkoEQkqsi2SEh0kUyYjZHh6aXNNADERiNyQcDhHiGMur7q8dXub5cIhilx8zyFjbiGOuwTAYhEjJDoZXUMwcsj+FdtZg2YbBNUina0yHrXQdYtafonsOYiCgp5OU8ialMwAXY8xxQXefMhs0iNWDLLOgi++PCaXC3j4dh7Lsuh3h7Qvznjw7g2CeQ9VV0hJIknvilBQcSUVWTAxVYWEkKHjIWSLxEvQogAp9siYOuVqFlNKGGsGZlZBlebEfsjCXrBoDuk5AlvlHIo3YNm3iecBlZUi9igmnSmzsephKAqimLC6swmTNoaVxuu6iFKMrICHTDaVYTweU8vK9GYKnqhTz2cpb5X5+OVrRpM+TrxANETShSx1M82L41Py5RlaSsGZ29gLj937KwjiFaGZpWgZTBYhA09CFSRSmRTGskAqbdLt93Eu5lglg9u7N+hcBVye9dCMAnrNxFQsGrkqvasOejnPMtEIXRAWC1qXHWI1w1oelnFIJCSMZjbddo8kalAtlJGlFHasMJcEDFnCn7Vp3H+MpspESx8lCXBjibqmQT0NwyHj6ZJFYLOakVFlA7NSpVausZaqMV8s6FyOyRoKne6EdvOIbE5HUxRswaGzCLAXPs5wgFUxUJUlOVFHDCXCeMFimSWVBHjLOSPHQykVePrJp9TrVRR5iZ7OIEsW1rhL7+wEU1OJXBcnjpgnKnNFIS3GlPIqTpIiSVyiucO0HxFqaZzZjOmgQ3fQxfbc/yCH/INgxZQDhMhnuAiRMyK7tQccXX3B684ATZ2TUzxEK+TTJx/zB+/dJVVb57LvYDd7SFHE0c9/TD+y0fMNshubeEqai4tzHv7mI152ZlyNVZLIw7DmZBzw1RR6bBP7fZa2yKg/pCcL7D7YQ6bC5dUQ25miyEss2SdfyOMGCrO5h7JtEQgJ40kLQZoRNmzeq+8w7j8n9D0UUaKd5MgV1mi/+jdoRIShzmgMkd9FEiWiuY07kVGzMtlihqoE4XKBF0b0ZxqSBoHncNU7IbcesnNjm3nWRJ35aOMpUhDRyEmI4RCldBdhLiJ5AaqaomesYqUkhKiDGCT4soQri1SMBF0OiRSd/mxC2rQop6xfDwFKMFhUyCgOzVGbwXDE0hBRKgXS6RlJrFAsZ0j0PEKU8KwVUCnlcKdPWLpvQBZJ52QWl1PMooJjm5Qb28zdPv3ePtev1+k9O6C0UUBTUkjuAm8UsRRKjMM0QRzi2yKmKCAlHtNmH1EKKZUbRM4CP/YRIgGdMYtkysvPf4y3dZ1b929RLuWJvWuERoon+894+JWbSLMho+4MvZjn4b2vEhSmnH/yCcPxDGSBUiXL9Tt3uHw9RE/mBJEAUga1VGQlV+T1z79AGJ7gRRqoMbrtkUrd4Pn+a0r532A6OccQBRSlRN/RuXbjBvZkTuSKaF4IoUvMnFymgKOFyIKEESZYuo5qFqkVqiSSzuujz3CFAD1t0Op0CJcL1GBJvHaDiilTsUwEccpf/ugJkpCikCuBL1Aul9ENBc+bkrgLxqM5hixgkDB0HGahxtyVkJdNpp0OxRu3wTBon1xAe4By4yFGOEEIykiihFlMoaZLTOIUy8UcQdHRdQGJgIWrIqgFttezWKkEzxuyGIw5fvWUC0fGma+hFFPUzCW3cw4fvnufntjgbAQXh3+OJEC5WGIe+mQlg+rWBkmSIKGghgp+UsaYT4gzJroF0kTGmS5wwgO0Gw/pTTtsVlbp9NoE3pCcIfw73dBVg8n4knngIgkNjMycdPkGnrNgsxawkAWOpgKT7pDHd3dZX8uhCr/4dQtmoUoqLFNK+eT0MtnGjG5/ynzpcUMVKT/6Fn/1P/8PbH3wCF1KATJ6uYDol/haTuHCvM7FxRsGwx4zWaJ28zqC32f46hW3y3UKlQK9+QB34PDkk7/i1t4NmmOPedRiMxZZOD7n04j11QmREKAoJrpoYjtT6usPMKpN8uqU1XoJPZ/ixYtjlKWFG2TZ214nDleZTycsxx3eelDm/PRj1jI3mDsK/fkMez6kViiytruDKEY0KkXOhzN+9vQVX7nzVdzh90mVMiwO95FjBXP3HstI5HT/JV//4G3Og5BQkkmJJv5ojGg0eOtWiS/2B8RSQrpi0RVN1jIZ0tksin/CWsmiUtlmkIj0eh36oyGnzQGZ1Q221i18d87cjqhVZcZXActMGWKR6cAmSflUGnmycky6nuJi1uXkrM+1u7/J6eGAdLZGuEwoFDOsbNZpXzURApfK5k1Eb8RsNGDct5kedyFX4XV/wa3dNRKa9C77JEsTS5DYW6swq37AvN9l6s9YBA7pchl9fRev5VMwFWolDdky8WZjLnsej1YrCKb+6ySmpVHOb2AUJ7R6fVKNCpu1Aqq9QM+bHL52ESdzVjbKxIHPG29MH4FG/REjCjTqFdx2xOvegnDp8ft7e2RWVnn15HP6wwDNKFHOrlNOqcyrKlk5RzLzmWkTvCShYNV4cXnK/RvbeN4502mflLcgts8p3H7Mnd08B1/u0x4vcESRhWtzvwzVe7/LMnQZLqdMF3O06QwDibwmcXXZxR72COwZcmJwZ/MaR46Dkd+C5pz+MmY86zK6FLj16B385iklLU8pVSeIXbJChuPj11w++zmrWw02tjaopTOcXYWY1R2cjkFzEGHP3zDPXOAXCnRn54wnM6pCxHIyZeDFFB+WOO9PefybX6PZewaBj2C7eIsOpplg2HMOD3xS6QKibrDwbLS1DEE1JuU4aHFA5DoMpkNGzg2unj0hGB9QyuXIWv9hDvkHvYG+8ugG6/Uyo9GSN80x5ZLB9TsNXLvHYnTFYjHnyjFZsyyeH7RR0wa67JM1ZRq779CcDqncvoseR+SkLCk5SxDPefX6NftPTlFTNqriEsQj2vY5maDO2cGvmIyXDOYR43lA6LrUxDajgUcowdnlIYP5kiS9RrRs8ouWgB9E3N67iZ4qMpnH6IbP2p1vIS6mJGmVcbCgP+uzXs1RkQX6w+ecNZ8zHjcR/AVS4OAKOvmqiaNskcuXqKYCZLfLZdZifPqa3iCmIIx5e7fBd7/3X2CaZdSyjB3qOO0LkuEMI86g52zuXtvAjhSOXh0wmC2RUlk6z19yLtoUa7eI7DGD/pD5MuLm7hojR+P16Rm1UgGHgIE9Yts0UeOI2x88YDTrkg7BTFIcjRXAZRTMCCcHtMdDxhgYlVWCOGR8doksDRn1RzSbTVrDJlphndlYZ+PxJoEvIcUJWVPg5OcvqD24hijN6U9GtMYu/XmE404J3ID317fQlQmBDGK2Qqm2hp8I5LIq1ZROq92i37/i3c0Cy9GYlTvvMh6NWI5fs5gPcaRd9jbXCJQsZSlNLqeQSft4vUP+t//pXyON9lldKZFIRfRYJuu2OTr+Fd54wWw+Jo2A4CWMxiP63Y/Yrpk0u5dslbaRxBTT0MeoFjlqOUiuRLM7YG7bRHKCViqx6A2oNdYp1DKI0pI4chDkDEJoo2sZrq/ukk3rBPGvr2rvv3uPH77sIYo9tjIKjaKFnNOQbYmN9z9gdjFgIy1QzaTxPYHPP/+Y/+a//mPOOk1eT9MMZktYdlA8kf2nf0+6UOfsV69JtDxJqc4vfvgj1tfL3C5X6C+6KIaMjEj7tMfVs7+n+O5XUHtjhHhMf3DG6/0W6vpdBDlhPO2hST6aECPFKtVKFbwuasokUAp4oUYcRGiFAh99cYUnxiyGFzRWatx+9C7jk1OmrdcMFgKaqUISI0kJd7/yFkOpzHo+R3uqs/RdZG1KLhthO7CSStGdjKHbRJ8vkPQ8BVxaPYdG1mTc7hHGIrmNGl988jEA+XKdpCCRNg3KgYiamuLUyuSThIym07k45/LgGddXS7S7LnFs059OMfM5MlmDq+PPiOU006svUdbu01xC6+oNmdkV9x/s8vmnX/L86RGmmqbRqBJJPn0aHHzy1+zc3uLq6BQjSvjD732D1ukpP/r0FZYokl9bwzR15MWCF57Gf//f/pcsmy5D22IWK3SmLT7++Ce8+/AuYmRSqK6yjAwG04Sb967hH8w4Of0x79zcoVqpIyh5Urk1NoKXfHKRZup5DKcS/XHC0J2w+/ibvPizH7Cxe5dQkIi0GK2qc/lywM4H7/H0o79jjoicMimJHg3LIylnOD0fIq7sYW7tYaYtcppEKqkSZku8OjhiEctYxSpZe0J/DsMAMukGuXSWvJXi5nqD50/esPBkZkmOtd113np8j+sPP0SKhvR6RXarMzY2r7Oz9y7vf/CI85MjloJMdb1MvryBYBRZyiJf21hlOh8zkgacdJoMhjPSqkVZy2E7LkMEvvWbX6derHJ22sUX09xZf8R4ec5atUg+XUPTi6TNFJVsjsv2mGC+wGk5aEKa6lu7ZLWQN8MR02YbSfTQUxLhPODnv+ohBU0erK9RaOwwdBJePH+Cls5QbuySyplcDWa8OX7FwavP6DoyKxmBa1mNqe1heyCZFomZ8Muzfb7xG79FpbqBVchg1dK4qsnlr37EnYLLeOIS6CtkiztUEZHGLV7tHzCd+MhZi5WtNd7euYs78zn42V/zve/+PiurJpNpj8vmjPdvlJmmKmybVdypjWaZbNzco6AV+MX3P2E3n2MqVugtZebDEXdWVN59b5NlpkLvi18wfPWcaDplc6vKv/hXf8InP/qEnBwzmC457QZY6gqvxy7++SdI5irprMFqXaa2keblsxabqTk//unnPH16zNT2Wd/bJp6MODo45NF7X6XRWIckJA7nfOcbv8vzyzF63uLazW1uPrxNfr3B05/+DZtv/QblfJn+UqRYKPNoew23PeOdr77H/rNfMur2mfcEpp0Ye9JhHGuUPAdjdYudGzvcv73NtdUKn37yYwbeCl95tEmMSLcf4NgSy3lAobAk5ejUcjqOM+HZ4Tnwj00D3XzA5q173N/ewrMNzucTlq0XzPoK44GG6+vce/c2r57+kt29DYIggThClVwG/QMEB4pZkdT6XbrjJW+OXxNIEf2TK77zR/8xv/3OPVavbVDcWGOz0ODg588xEpsg9hj0+yx6lyjLLhO1RKJfJ6WpOIsZzmzObDhmHttk12/zwTtvU9q7hl4oUzALqLLMxkYJJ5Nm1htSUGKubVQQc3WwXfpxmulgwmy+II5iNgtlChtrTM86bFcXOLMm7eESoXwdM3YRRZNFLOPOl4ynA+ZJl99/9D4X04iUIOFNOvh+l2wp5Dvf+G3kVIg7bJPIRfzEpDsYcWUv2dTzVHSdYW9GELpksglGNYvpDDk6aJLS61R1mZ00VIp5Xl7t4wcet7Z2WVuto6cTlu45f/uTz3hx9IKVahGzUECUDZKFwN6taxy9+gi/PSZxRpRklxu5NKvrd/jaB7v03A7Z1Qz1xhol8zri6l2656+ZtVX8UZde94Kr9gXKrM9mNeDNZIrgpTCUPEgqrdGID3Yy/ORHL+hNfYy0RsZSeH3cY2lUubtm8eHj21xcDHj9ukmlCH/5r/9HiEO03ivGwxaJmWf3va9x++0azXGd/lhkS2tTyU9ZKCKZpz2+aI+wzevUcg4pbJy+Q3Byxewi5tXYwchaoIEbRXRGESlVwHYdJvaEOJIQvJhoeEH11h1CRUcxZFQtgyxqxPaA1UoFVIWMdY4pLknFEZK/4PVogDu+5PpahrPmkMOjEYtRmvT2b/P0ixbbRRcplePw9IqDly/4J7/zL3Fdidu3sjzcy5JLR0y9JaEqomerxJhk61UOT15wdviMP/mnf4QXKPzguI3mDhl0Rry+mND3FU4OPuY771cYjlxG/TFhoJNbecD5ix/xm7/7hzgnV1x0BiRmiu1rK3z2g/8bv1Bg59pjjl4ccfD6mKHnoThzLhYJwnRBpVBBjkOGrWMicYGUr6BPD8iLAo2ta2S2HtDsZXiwW+LTrk3PM5EQYekyPB8hqC6GGTMezGk7MBUjNHFAbySS1gfYyzHxsknsdGm3L3nz5tei8+F//q94VN8m44ecjXt0hSoffnWNRj7P4HJEqzsiTpns7b2FkjXwMxlevPoM151Qqq+zcf1bnP3gf2FkFajqNd7d2eXRw7fpZ6/xp397RC52MNSQUt5nOb7kyY+ecU2bcv3xH9A5P+b+7a9SXnvIX370kvOjc9arWb75n/4xJydN5uMpD9+6Q03x+P4PXrP33k3ypkPFUqlmNrC0GqdP/oJRe0SiOHS7Jwyax9xYLfLnX7zkzr1tQtvhxcErDo+OMWKTvz69ZHZ1zIf36qys1pBTGr4/5crVOTr4W6TEZG19hXq1QmAn3HlU4y/+j/+V3/yt38MZTXj1+pJjP8vWzkNetyO+ff8xSeAQ+VPExOH88IDmaonJxRG9y3M2inn2ttd55Tjc28lj5rZYz2lYtTp2ps6rsxY//uzvuP7gOkrjGkeHh7z45CP0xGajmOYHP/sJ3378TfSUxf7RSz7++494uFuhJ6+ge03agwkdx0PMprm1tcfnk5hyY4P+WGHhJUTBhI//8vvsPXybefs5r846nHa72Habixe/QstlGA7afPHDzyBWaaxt0N4/Ye9732JVFsmsqmRWdGTN5+zpM2aLY7byBa6SAltbt6jnGpxfjnnnQZrFME29kefk6pBACPna179NNPL49Of/huGsC7MW3sJn4ObZTEvkiio//unPSJsaW1ur1OolBPecWze+AYbCYavFq4MT3O6Y39pt8PykybPDl9x5uIU9HtA6b1F/eJ//92c/4dv/2T/l7q0d7E4baeHxzW9+g0+/+BuEYMHCt5GVFOXSCvlKkb94dQ4Hn+PoAv7kkiCY0I8d9p+84NEffIeD509J5UNKlkQ6FAmNiOZc45OPn1DTfLburrPxzi6raYOnr17wyadfoq5U2HvrGm893MTHZfjJ96k2KnSvupye7jMYdSiaJdbX8vzv/+crgmTJva8+Zv3uu0wWMu+8dw15eEqmvIlmGAiJjTc5Z3TwhI1tC8MyuDrpMBqN8Jnz7LPPUVMT3rr9VZx4Qa/TpH01RFvfgsx1arkygWowE0W0Ro1v/9G/oCbMOWhPSZtVrrpnvHzzgtiXud+4xqB7ys0b2wS9EUVN5T/6w+8QTJs4YciNr/0+eqXMZbfLi+ev/vGw8uDGDTbWSoiGjxa0+eH3/5bv/vM/4awX43oTVooRUmSxuXePj370b7l+fZ1YEHn54g3nXx5Ru/MBL3/5C1pf/JjpxTGebePZE+o313G6HYaewHSywO+NiYZT9JzLYJKl2+1TqhsUahYTWyBYGpRSl2zv3GQwlhj0IxwnoicqfO/r7zLN6ASmxCzwmUcRlY080/EQq5EhpZtoKYtEUAjGMeJqlYIqcnl1Ra2k8+juCoVyjt7ZgsZ2EXtqU03V2MpXwe7jp9LcXW8QuhN60xETz4VY5GdPzihNvyBIEpTFkqKiUy+VkGKgViMkzfF5l6uxi68UyRLjJAa7DzY4bZ4RSiLVlS1UIcXnn3/J4/dv4kYugrBAVR1sd8yNza9wdtamOx5hh1lEbYVCrcR3//gbfPSjV1y8eYUzDSll19i6fpMnP/4h1qaKpaapbZjs3q2xe/MaCyePYdmUimtYfgp7NKc1bCLZl+QzCfbMZjRs0e82GXVaDHtNVmu7ZA0Ro7BE0iVkwcAyljx9fsbOzgqj00Pa5x3mswUZa8bZKELqzhgOBphGjmqhhj+ycYMUD+6u8+L0ilxtlakf8Wc/+BEbtW1q2Qnpwjqv31wyGy7Yqa+Tf/cu1+7uInZOiMw6Vm2ber2Ag89sMeXmjToICnaU4CkanlXBWl3n6nRCQeqTMiBSLHwxR6JrhJGMHIkQ2mhSSDVdQhGuuLm9TqfbZuJKLDwJZxEi5RpcDnzmksvezTpbjTKyL3LznU2m46ccnC6wXRfZMDFrO4wTi4+eHLB24wFBZJNTdTaLmxhKllK1TrUQ4zpjJNVAVrMcv3wJi+fc2NvDD2f4YYSMQEZJMEWRO4/v8PrCwfXn2Pgcz6B13uc73/t9vv/Dn9LuTAmTEF9xcf0C89GUg/2nWJKNrklEicDdtTy53bfIr5S5f3eVWqVIkBgMfI9B9yW1/CbhtbskxTrZdJq7N9aYD1yUBRoAACAASURBVHwES0MQ4PJNhzdHl4jinO1ShvlpC8MUCcddJu0+w6XE9kpE92pGTc/iyCssgxxxf8JR89fbQH/0+Ku4zgA5J7J3/xqzlstl84jPf/iKg4MpOia3G1Uypsf+wWfc2buOPBaQ4gzIOqZms7L1DR5uqIhOHz9ZEkQ2yvycRj3Fww+/heQF5BvXKFQ3STlz/urPf8JE1ek0L3H7fWatIxazE27fvU1sDxi1beq1FOvrdfzQ4Gww5u7uFl4Ax1dtRrZNOp3i/lt7zOdT4myRgqiSkVQUM0XHSaggkFvbRS9X8N0ZwWyIkiuxrqT5ja/fpn15zunJEe3zQ2atU4peEyFOsfH2dcxSmfmgz9HHP+T/+ukhxYoJ9hVuXEC21jGzGn444Ot373Ly4nNmXsLSExjNHZzaKo+siGevLqnVbqKrMm7nkDuqzytPRRUdDl7+gpE9xiek0zzht7/+IaN+E1fSmA095n0X17Gx1m5yr5BhYtXojvu0rs7pDG3e+9ZXaZ+9YL1xjdnQwz1vUpwOefDODu3DLxh98YTDl0+ZnL+iEvn83p/8dzz5uz/lva9+l63r1wkjl0GnxUY1x/qtt9GNHAtFYLQYYy9t7n3rG4iSzuFn/w+/upyTzBIaUUReXZJ/5z8hrWY4e/2SXM4jVzfwRJ03Tw75oz98ny+7JyQCpJyExeEVG9tV7t+/R66aYXvtLcrZVUzR5+beCsPTUy4Tj+rqLXL5OkEAr8/hbz56zvLkDeE8QyoSKadD0mtZ9j0RRBXP8Ri2O8zGU2xP4/H7G3Qvu9QKJea+TXfSp3vV5trqBl1PZ3PzAe1Om1f7r2g3+/jzMeb7j8npGTb2HpCp1bEnLbKJjDSKqTbWMGUfezDiqrukJesk3hQrXWSnusXpxZTv//RL2sOQVDbL6ekFWirFYDCgdX5OWhK5963f4rgzoVTfYmV9HV1Jcfz0knQ1xf3VOovuEVvr1ymXqgyGb+jMVVrNQ9Zu36DdOeXN8TnTqU65uAPFbZavf4U06yOJCkp2m3e/+Qco3X30ROPp048IJShv73By8nO6L15gM8f2RoS4yIaOajQYXL5EtWOq69dYq+VoFFIEkcTPfvxTNvceUKtkaC7GDG2brCeiZdaJy0VefXnIeJnQHkx5s///Q8/Kjb0V9m7sUq7s8On+BXu7OwwWU2qFHOmChSOHVHMBi9DFWRjMJhNGV+c44xGuZpGzDLK5ArJsEJLgxEuCKKJWqNOfRUzaR1wenrD//ICnTz+lfdXGmHdwERDQUMMYU1gyRqSY0rm+tUsomvgJIPqsbVYppnOYZoSqmPhOiOvMSFcyTPtDCrKGIGvYsYybiGyWdFBSLDotattrVDca6JaFqljUNu/jBhE2CWGiIsYShiIzjnVmox5mrsbqyga6anF52efaWoNSJo2jRHgGaAWTSr1KaX2d8y+fQsrCDQUkxUKRUgxb5/zG12/z5Zd93OWEIBBYzgSUYIkUjrCnU0JFJqUmGBIEeobznkdjvciNAkiixDhImIVL3pw9x/dlcopAISORSgXE2MRKzGzW4Xq9zOp6hbSVIw518hs7zGyYRWPGE5/Y18mZWTBDXr94zTJwuDw+pdvsYs9t8F0UI4thCrCYEvsifqIzmUSI/hmXB6+InC6+OyEOluRSGiuaxerWCq/PTkkkMFMysTdhKCjc2EpjO0MMq8w8zHA6hSBSSc1bJEmalXyKSlbF82a0Rja6HHI8dxFiUEUZQ9VYMQKW1QLLWUgkgZGrkS5uEicRk8GMVSMkCuZ0xzaDqYcu60i6y6aVxrcDFEAJQ/zxiGw1y5vLIVl/yaw9YDr1ENJFBu6A+2WDwJ0jCTq+E+GMBywHLUq3NnlQX2Mej3G9EQVZZGv7Jo2KSu+ig+cIBGGCH9gkfsDyasjl+RkLOyCf0UnrMYeHJySFFaZL6LYHTIY94nCBVcgx7k/YurNL++UJYQApq0Desjg6bvO93/mQL073icdLtETF01KcnJ+xuGiSrV9H1gzCOGBhT9g/atIQYxbOBE1RCEIfx56AF2DlSiRGicLGKmurdVYKReQwIMZjNBxxsP+KN4dvGLZaRLMmnd6SmqXjzjsIgkCCyqA/ZemFxLFFWRcYz3q4dg81sXlx/uvLSqPeQMyIzP05l+dtNNXAcyQStUYURMSRj514nDgDspJE6OVoNs+wsiaN1S1sL0SJQ9JqwJcnAy47M0Zjl6VncO/+fV788imdiUOEAZ5EOPdZmBr1WpXDox5CElNq5FndXaP3+S85XzTZqj8gZZjEhLjulH73EiklsJkKmTkTvJSJnK+RmXrYsczN+ztIoYKZrZBurNNZJkSqwWw2pdOakE0Xqaxt0posefveTZzuAVcjjQgBTVORtTU2KyG1jbcZxyrDoUunNWC0mLBz620uO6+xdB3dzKIZAqZis1bI85NfNhHDOflEIXGW9Ocd/EmHiXNJEBk40wVJ4mOkDbQoxWHzlI2VBuLCgUhHkNKUchnECL581WK9UAFngaII3Hr4gHA0orq1Rn86Y9DtE0cKK5t3yKQNxlcLrt3cwpt5jDsDZssZ6zfvMp6q1NcKGBWdtdUGm/VrXHX7LKfnVK7fZjlrMW9fMmsPOD89p3rtHvmkhWUEaFKIEEFChsAPfp0oiQXEOCZIJAKtSBIs0WKVw/0jIknEkyVmgUtj+xrHzVMWoYfvhoCOWa6TycqcPn1Cx/EppDXSpkIkCExaPT696JKtlWkUsngkXC0cMoFDIWtiiQ5qqoheSKNkNOyhyyyVZq1aQI5kJM+nmrd48Og+L168Rk9CVtZ2KBky9YxJrlTjqtVGiWJaF69wEpHQyBAqEb/7+C72YEC/PyDyfZZ2gBPqPHhwjf1nB8jZMrYXMF1MEYU5j64VEOYR3ckVc0fDDX2KObh9+wbpOKEz67C6uUaUqCSRyv2b24w7PYR8jk5rgqgkYKicjWM838TKG4SCy3KZ0L7q0O8dkxJlzi8Oqa9soaoahUqd1a0d7GWPciXmWdujureHktJ4s/8lzYsjfucbX+FqMKBS0ShYCpFjo2Sy1BobXBw9o95YIZXOEkYRsecxjkxG/QXbuQB7fMH51Tm2a7P94Cs0tsp0Oz2WroMdJLy6GtE6PyQxMqxIaQI/5PLynMvTg38vrPyDDLb20mXpJSSkWfanbN3bpuWGrGc04sDhYmgzVnymgUs+naLX7xM4SwzTQC9VYbkgTGfwYhFFl8gbMmEispz/up9hMWmyXMo4nkToRfQ7PawVC0+UkcljFkzKFZ15c4okp5j6EZoVkS0pzP0ceqKQECAv/z/S3qvXlgS/7vtVrtpVtXPeJ99zbu7b997u292c6ZkmZ4YzDBJpUZBt2AIk+FmAPog/gl8EU4YBExYhiSORnNDDSR2m483p5HN2zruqduXywwD0m0hAn+D/tvAD1lr/NUUWLeQA8GPiaZ80NojSjCxMEOIIMQsJ4owoEVA0A7kgoWkWYmDi+5eUmmUErUCxZjA+n+JMViiSjC2BFvrEcYQqgKmK2MUCDSvFFxXCyCVfLWHqBkEmkSgyBENeH0mUGhvUDJnRRZ/hbM580qXf7SOlAXKqEAQrno6HbLVyDC5nRHKIXDARzRJhpKLYGjvNEobewJsFCM4SXTKYzX2qzSaBuERWIUpCZtMLBFGHMCDUBJa+QBJnmFJIMB2CICGsY0RZRlANBNlE0wNaO9dwVmPCcoHY8YjjjJxmswhWlFd5bEsndl3W4SlRbKJLA2b9KZViDsMqIqoGlZqElRbQ6xr1uYUXhgzmc5QQ6u0N1t4KSTG4GCUs45iCZtKdCVQlmYqyxCjJSFHGaujQnTo4Sx1xvcZQQElcyCTMYg0zkoi9KaWShFkok8g2frYmFQ3ylsx4JTFbzIiziFZzk8zPiF0H0XdRVZ0sjnHcMapfAW9C6kWIaYIkxQiij5pFROslzeYuqyDF8ceEgo+wGGNF13G9KaquIOpVVNlkPXpNToqQNIVacRNJERk5Djkho5rErNwYL4mZLxbgL6gXSmjtTeYnpwiIKKqFYSjkizna2x36Z0cYzTaB47L2I3QNiq0mTx9/TLVg46kTVt4axVEx5YCzGIrrJVmmYOWgWsqhRCndo0NCs8DJKkSSNDRRJdMi7HIbrVQHWUWRRAwpJZ1PcJMMd7AkHB4TTheshiuCdIhRhZotoS/P0Y0KhqqhahnjRUahAF60xNI8yItMs/8/KafaFqImkqUgSyqqnaOi7rIMl7TyKqG/ZhZ4zGcZOy2VfneObBcoNlvkrAL9szWiOWc281mGPqksoGoiC3/NuDcnWM1wHAFV81GiBC9KqW63WUcZu/vb6IZEYlmokoozjRBbdeRCHm81ZB3OiFUJTbM5Hy65Yki4qwV+DkRFJAlCvFgAzUZpiPheTOSnWJJGsVpnNjzCG3UR89uoWgtvtcJZD8gXGgjzNTkUVCFjlIpkxia17W1OHr3AUhRsW2VdKlArxcw3OqhxhpVT8KOQ8XgOxQ6ZOmOeBYjBEkECU1cIFlNOXI8Nu4yY9zE0BQSTBRL5YpPJNGDiBnirJfoyZO/6Pv5sRsmw0VLht2UCEUJfxbl4hRcvWCQmVqFArSpTbuQpaCbz2Zpg0SOJVqiFAorVZrGIGQQJ1+9cQVyUcMYzoqVP5K/Q9BwPv/qcTkWlVrAwD67yLJHIs8AbdjGqRdRmG98BZ3zJ0esxmpqjWcghkpLGArPUoOjO6DsJhqawXqzpnY3xLR2QefzwkHbNpFyoI5t5/CQlzgImsYCegJQkSLqMUirjL2IuB0Ou7R9Q0PL0p3NOu32utzqwniPnJaL1HEW0yWkG4jymGiVsNWReeTJCoUBJ07BFhcBzSTDpnR1RsQUsK8ciEX97q1hksTqHWEKSbTRdwlJEcrLN80mfNJFAUFl5Aey1CQSVWE5xVxFBlqAZCe5kwV77gLWQglVFETOUOEfoToi8lM2da+xuXuHivEdvNmThS0x6M4SygRR7xIEIgoxqa5i+y2xtI9pFhHVCGqwQJQnNd9jffwNNyCiXiwiyjB9GTHSJZf8IuVKiXK9gA6kz57OPfsFg/Q3Ga5+NSoM4iHD8FQWrwHqeUFFTRGeJ54isfB9/tsCwrxOaEl6yIJUSNMsmNfK4XspycAyyjWkWiCKJASnOfEo6GHFlYwcxVbFt/R/kEPEfAyueGzGZOEynU2qJx2Ixota+QhTFLAd9vN6U0RiceYQuLsjlMvLVEtWNDu12GTH57SCVuxojZyFlS6dm60yWHpkf4PoxQSag5Su0tt9E0WzSUodgOSFzx9i2zt6Nm7SLBRRR4Hzh4vojFDlAyVVYLXzAI1xMSRZLcAPwQtLLYwhUAlkhCELU0EMPVxxfjBgNTtALRdzlEvyYomqT0yCMR+zsaNzda7DftjFtgZUIRSVgv1LEXUzonx+ShQtu395CTlZM1xNC36eqGBSlHM4yIgxCchWFk1dHCMgYaoI/P2Tpe3z95SFJ2iN0loiBj4TDi94FizRHiMFyNsP1UoKsgLfKuH/nOkXVpi+0mIsmuprQNhV2N3cx9AKhLuCLBuvIwlnFBNM5mqKzzOBk4NMduMT+ksHTx2jZjJpaoV2rY5UtPAlUucC99z/g4No17r11lzfu3mB7b4vG5lXsooaYWpiF2m9/07hDZL+HM56RL5bQjSLlxj6dg7t09jawNltE8ZirVxqYuspkumbuKVRyFv3+lLmvcziIGQxXVIUQL4BALKHKCUtviuv7GHKBOFQ5H8c04oiyLKOSEvgOl6GGvNLRdINqpYShCkT+DFlNae9tkJo6y1gmWAeI4YpMjNAFm8liReaeIHqXZP4UP1kyGZxTZsUyFEhNHcXKiMMxFcvk2fkFucZVJL1EIsjIhRJ2p07/RZ9Pnz8lRaPcuEZW2OTp09/w+uETbt1ucetqg41GGcO0iVBRawaVzgaRKPLssM/jZz06lQpqsmA7L5A3JErlOo3mNrVykXanQe/1K4zdPYRCjvFsxPl4xs71K3z88d9R1UyUnIEnhkiCy0GjglAuEywvCL0FmqqwtdHgm/euMIsCklTk4nLCaOgjUkCwFETdpHZlG1nN4bkuq9UQOV4w6Y+JZivsaI4RzomdBfPpnCyNeN4fMuj2CBcOcpqgaBGCpJEqAYvIxcoXqLa2kUudv9eNg2tXMbUc+ZzF9RvXKBQrXNmsUTZ99vcqbO+3KdaKlEUbWQpxwyl2pYliFlh6Ls4qYC36jBceKR6Nts3GXo1EHPPwi0dsbzcpWjopCessINNC7EKJ/mzFe7+zR+dKE8f3GR6dohavsHHlfSZxwHTeY7WcEmYypcY240HAxUqkNw8IViss1shlnel6wdnYw9NipusF/bMedTHhRqmOrUDDDJCCHt7sFFuKePLoS5TKFpohYas6lqxBNmMS1QgEn+XggrKRcn2vzna7ir96xfbOVax8CU0R8L2Ii/OQwXTNg/tNYl1grCWEeZ16rUGt1iBbFxBdlfpGmXzJIllnSEWDQmef/tjhch3QnfbonzxldNnHWwXs1y0yQURWVcRM4PWTC0YTh0effcrccam3m1zZq1Ey5nQaFWbzC5zRBWt/TKFR4PaD38GZewydPp6/RpEK+KFEdz6gstNC00xePXtMEAU0d9rcePs2Wwe3KaVjzk5HzD0BclX0fJUknPHy2ccYGrTaDarVApqcEQZLAjWHl4SUKiammCGuI7JY4vlnX7AaLJld9KjkSzSqNVaTLit3inLwJhu1Jkpm4q4l1qmM1WhTkSTyoYLoa0STJf7pEUMv5NnrI5woIPEGyN4EM40pagbl1RrdnbLwV0Q5CdnMsegvKBsZKzfl6MVXXAy7XC7WPH15TrFgQ6XO5v4BYuywHp2jJfD06XOy/CapYOAjs1o7TLtHHD89ptTYolyVgYRM0om1PL/4aoBZ32B37032ru7R3OggiDmePHrM8WBIq75DSStRUmU0MeKk77JaZySDPiUdVCBZBxSVkJvNDCVJETKBQt6g2a5Ra21jGzmu3voGJAFCEhGvPcbDLqJh4sxjDjYtLH9BTVV46+4d8rLIxw8PGTs+vaHI1LNJtBLx0uPwySt2Nhose2dMT07wR3OGl5eUIwfDjplLClptg82rdyi29nj8ySf0Xjwjpyloag5TyXFQq9KoNZACFycdYlcUKtXCP8gh/ygbaH+/Rb2sIsQOduca5VqDaDllMjhhFQXYjSpvbtQ5fnxCtVVk5c0pF3NstGq4ns9k6tBpd7i6Ucf3Q7rdFYQ5xssLAr/JfHzIuP+K9XKCpdUpNRXe/+AW8/PXrPuXFDSJgzdvMQwhvHhNqlXxFktENGrNDXKWy/D4iLzRwQ1C3NUIMZxR1lXGwzF5oUVGTBQkuE7GOHQZv/iYQKtw0NwhlwmkcUDz6jVm3SUEGsHoJVXLp9OpIWodLs5PCbQ2qzCjmd/lWmeP3Y7MeLpinKUoeg4hXCEEAZVSm1tvv8eHv/iCkjunWG3j+T7D/glkKfcf/DNeHJ+gCxLrxGXsj6nqRbIsD9Nj7K0NVNUmmDmk8YrvfnCX47nO0RfHeI6LrMVI3jndxRp/kiHk85iKguCuWY0ddnYKLFc57m3VUeQqQSCQrcfc3baZOTr5nT1MzURXZfS8ji2XOTo/odwqEQhFrGaZrWsVDMPibquEVd1Ckmfopo5VrJGJE0wvJL/VoVBK2OqU2GvVKRt5yqWUy2efMuiJaLFAQRfxkpDDRz9mmcFSK2CbNtWihaBonJy9ZH/Dol2popk61Y02m9dusBpHeDsVrh/cIMwUpuOA/smCw8NzOvUaX3/xCxZBxnQxZe32qFYtCGzywyEni5jlYE406BJ6Pd64u4ehZcyOHiOtV0hZiLd2MdMZX730sK/eYrke05/0maJjWgaiAGtfJ+weUUZif+sORinhq1//it/9g99HEBXctY+fJnixjtbY49677+H2lpiiwpXNFrYc8bw/YKfWQlViZEtHyKlMR0f8X//+L/iD7/8RX3/5hCSY0GypVJs1/ur//ilW/SbC6iWD7iWrmUspWlNsH6CEIDer5HSBVrVAq9nB8Q3y0ZS3b79Lo95AL8q4osuzJyP+yfvbTBYjhKhIEhp4oYddCsmMTer7ba7Wq4jhksVqQL5a52LaQ11OOXr6hGF3SJqFVBoWGiqiINE/P6O9t4ldMHj+xUP02gappZIXbQZuAYwy+1s6P/rw5wA8+PY3cZcegRdgGTpX8k380x+xTnaZJRHTtcM68JDUKTlzheOvef78mP7lazxngBPkqPsey5LE86ddSnaderlO92iEmGvw4GYFoWhzvErwooRv3apC+z7x5UsKTJicnbC8PEIO+lRbuxgHd3j40a8o1qtsX7tNu9UhZzt0H32JstFGKrZoNGo0bQU5kOmFPnudHINHnzMZrJDMMq1igj2H//rT/8jGjW9g2Hk00eeNm1f55MuMT379n8gLVQpagaKVZ6vT5DQ6Ieyf8ug3D5Fkm3K1Q6fTxiiU+eFPjmi/vcdockbvckwi1jBrPjmngp0vcHPnKgU9j+d57O4aLKZ9DlcbuFHKeOEQCxkfPHiT//ev/4L3bu1w7/YHVE0LZ3nJYfeCU79ENH5KuXOD5m4Tu6Izn/kIFNja3kZ2JtiajiaYpMsMY6tF/4tf8cYP/pQ0XVNUA3ZbFT5/NqLdKPKLX/41hmnTbG2RKzboBS75aMKtbz9gSYizHjIdvuYv/uJD0lRiuhiRGiKLYM14uiCZp6htmYvBlBud60wnCUcXfYrynBUtfvCd93j28GMK9QoHt27SsYowdzG0lMv5Ka3ta1QqdTynx/PLU+TaW6hZxnzmMerOmV4MmM6e8+1v/SnPHj1mPDlCUWIa9RLj3nPEjX0KwZqOamGUyqwkieHxS4JKnbE4I+oOaElrdjs56httjn75G85jjc1KnkLzCkvf5NknT/DmC/T5JZvNGi8PT3k99BCaB8T+EXGgslMrkkkegriknM/wIocHb7/DTl1gOk+J0jKy2uS812UohniyhNvrE4xfkMVnZFqB5UxEXp9ycXxIudXk/rfeoViSODp9xYPtbV6PUkK5hKrohIsBO7/3PZp6F8XxmUUys1TDkHXq2zb/4ZdPeXnyFd3ektVaQTPLqKnLD/7kT8mFGi8PL3n64hGnrx8yWUrcudagP/eIsgSRENGdM339mLBiUKht0RsOqZV32G7doXfZ4+BmDafbpWFeIU5lJrMxy+EIszTj1oPv8tkvfkGvPydOVVQxxKobbFQqPH39OaG7ZtId8uzFf9sG+kfBSrNZwS4XkfImQsGgXoj46Q8/xrZyNDv72FYH5/SYwv0iYf+Cazu3KJsq895Ljl8f8saDDXrPL/nks4/pTxxCVIbLHpu776CtP+XGm1cx6jt4ic5i3mXzxg6TsxEHtw8w8zlsW2GjZtGScripSG92yVqWkWQJPfDw4ib3rm0w8Po0TQ0tTphcjpj3+mxe2WHJmHIhhxwKLLsT5pfPuHXlgDfufQtRkIiUFEeKOR/NeXD9BlHSRrK2iVSNpTvEvXwO9fcQkx5qzmDvdp24lPI3Xz1h8vCQ0bTLe602V65uk2sWmflrumdToiyhq1zFqtmYOcjrBht5i9fnl+RydSbLI2qdGrtX3uBnf/vXlPIq995rcPziHDe2qOzf4tatTRrCmp8e9cjv5FCVGc64T3+isrPTZDC9YLi8REuXFLU1BdNDjNd8+8/e5+HHn7DqPccIQ6R0hx93BX73ukk8XaJLAroqY6kaW80qztkl7ukUb9Rn1X/N8uwJ+vSYudri4EAkX6gwd1acHT9jfdolvfIBd6ox73/wz2jv3EI18mhyjtHXH3J+sWI8d+nPuzhRRKlyFb2q87DXYT6coOgZXjBmdHHCv/6f/xXdw9dk+TxDX+XTr874qx9+iNwWuXvjOpbTpd66wjwJOO0/4Xv7bazhF/zZv/033LhRpVMuUTIapKR0Upmnz05p1GLCLAHR5ntvXqNUKvDwr/4d5domvdWKi8kZlr3m809fUpAk+hevSGqbZKVdov6Ku7sbOBcj9h+8z/kwZRnG2I2M589nBKHP9d0yX/7kl6QzgXt3voe82WSvkjFdhBxfDBiMZ8wmU7zFiOVkzc9+9WOchUtZG9MoLHGNa1z//X/NkddlevSa/a3N32YCtDy3yzFmtUbz+h3GvRX+ckp71+LR0YgnJyc8/dVHLOYR/fGah49fkMYJ12+2uFg71DNIpz4nZ3OqDZtO/Q3O+yN66zGy7NAyJCypyvW3OgxenzFM8uRCCcuL+Wy65l6rw5PBK6y8SM1SMWUFnzw/uFcjWjnUtJhcrcxKMBiOYTULuPWD/5Vp95jRZMJ4NeNk0ufVk9+m+qm+iTPpUsxgt3xAYFcpViqcPv8NczHAm19QWHb553/8z+lat5kt82xf26G9vY8Q6/Qe/ZLd3/0jtGjATrtOq9kklU1mokF1x+TjL59xfW8Tez2GcZ/FXOY/f/gf2W7Uma9miMUKhcYWul7GMxe8cese376Rp10vYUQe9E6Y9F3ajX2s+7sE/WNW4xnTxCRWc8hs0rBUPntyzqJ/SG55yODEwbUC2u0d2tdu4oRTnr98yBefP+Hd/S2+/4d/RiAJfPJywJdnffR6QmPvFh/+5f/J/rVbqMUSzmpJOhljbezgnH/N/MUX7OU2+caVB7y1vcl8MUOtxayCV5xcDjg767NeOpTsFouTV4wXJ0ShQE7JoSYrPvnJf+B/+Tf/lr/70WesL77kuHvKLNN5580bnFw84YM/+ZfI6lOyoMs6ypgaFm/t7HL6879EKZY46Y3p90Y0iiaG/xkvRjHy5XN+83xC3zFoF0vkt7f56u9+xdbNGyz7fZ5/+jOOH33MduOA/U6LeF1isfI5et5n8HzAv/jOFU4nbe6/SjX+TgAAIABJREFU84DtN25QKG9gmXUa+xt8a+smhfIWlbLFypujmhrvf/977JU36V8+JtTz2Lkm44HL3370ayb+iLfufYuNZgkpsumNBC4cFWHpUSgGbNRs4nGfbN3FrEYIO2+SvnyMom1QvPcuuc4OQiqTZAatgsnu/pu8PnlOoFnI+Qof/c2/57OXEe9u76AJAnEqMpgnHHWXXHuwy9mnvyatNQlzFaJERoxCknjK7dt1PvnyNVKQUTFU/PWMneZdPvzZD6nuNjA1iU6tzu07DzjYfsDp8JxmvcYkFVi4l6jROX/2vT9mejGiqCxI0oDVImI+TREKCjc3mkwrtxkMT+kOxpy+7jJ69BWhbeJ4Eq9ePqFT1Lhz5w2KN77Jv/s//pzPL+Z855/+K4ycTij7ZFfavPzyBf/09/4Jvn9BuS6RyUtenzzj8OWMq0WRF7Mu3ukhhiZj7x8QhyJup4HXTWlXttjYvEF1+xZJucny9d/yjSu7eOuQtFHH2C2zmxvyv//5X3PPklnKBpka0mqaPPjGe+xceYeP/vN/YjB1aZYKFPWU8eySB+99HzGf4yIuoZqbzGcOz598/t8PKz/4wQe8ff82pUKRvTe+ST5f5tXjT7nz7ju092+SmjZKp0ZdKdCuGowvD7l4/Qx3MmO72iaYD5FsnW+++R3y+Tqu72GmKeNFH0OzmfoRYpZgkLCer+i+uuDeg02KYpVSQUI24LS7Zjic8flwzm4hjyVbKEYevValYTZI1IjIbjMZntPtv8ZJx2xtR/zqw8/R7Aqn3Vcso4hCq8XOfoHEbuHPJkxXMyxZoG5IJNGQ8eycWJCwDcjcJblM5truDbzuz7h+4x75Ro3V1KH/4iVR7zXN5hUml+dU3/oTdm/dYBl4/PzzzzioyoRzh++8fQ1VAH86JJiccuj4/OG//N/of/4rxCil0mph18o4g5A0lyOV6yxXS6qSxNVyhda1q/w//+Vz5kLInp2R0yvkqvts7G3yX37xE25vtHj/G++y0SwTxxm9YcLMCcgbOjcKNcr1mwi5LeJMYG8/5OOvY4JFn2H3nFHvnEGvz1ef91D8M56vBR49fMKwOyBLRZxIxNUrnL3qcvzihGl/QZwYiNU233irQ65wjdejEZfHzxm9esbh0xc8efpzPPEqopliV1ukcolXh5eMZ3OMKwfkFA8zzLDVKvbGHk8e/Zi337vKTz5zefhqAHaFt7/3h9zZvY6iQibWePToS7Jgyf2b+5QLa7buH/Dhj3/Mw4uUy4VOrzvlq5/8DX/0e/8Tj54/Ri5aJEEEcUiuUeJgo0FO1IiFLv4sxJ/prCKJvTu3OXUlco0KUeASji5RoxWlnTu8jrboXnyBKrjk9RhVCLn7/v/I02cfQWmHeLEmr8YI2YKvf33CH/7JH6BKr8jVD8hwGPc+5+U4pFg20fUdZsuE2WjO+dEFj77+nO93MkrJBZeXY9AMJFHC63f55S9+Q6nygFBQUIQhopwxjQ54/90b2HmNq2/e5J17b9Ao5ZjOer/dFjlzWKY+l70zZos++ZzAtc4eFC+49cbb3Lu9TbNiEgkq68Jtnn70X0n8ElfjKYW8gdSusmv1GY5KlAsyZ88OcdwExTSpmLD1zj2+/MnHHFy9QyJaDJcZC62CkFP47h/9Pj/64S+ZjmcUG5tUr73Flz/7IQD3vvOAqqGQMxPk8pqCnnJ8NuH117/k1rXbNOwW4UpA1G2K9U263UOipYsRuCjJgpP1igNlwnpwyWFyheFgjTa/5M6uxN999JDK1ltU6x2mwyHzIES6do9qeZdv3Svy9Sc9vFGMYdeo3nqTbbXMz3/y57x+kTJZDHl68ooff33IulCnub3Hy599zp3N29ilGn1nxJ1Ok8evvqBsOcxGIV4oQtHi6reu8t6NO3x0OuPFbIYWS9xp7/PW79xHFUt49S2+/vhvuXmtyAdvX2X9asLzrz7i29/8LnsH95ldHrEYX5Lf2seNdIa9Fbe//8cEixEnF0945U24GNgcHOxxv7NHpWBALmMcuXz08XN2ajKB1eCtNzbolE0MrcjdB7/P9PApK9nBvHGDaqFCSzMR2vvc3itTcc9xXZnYK5M4KqE/RKlbhOlNlOYWhi6SJ0JeBrzoP6d/HvF4lENVNTYLAkYy5dHxZ3zj/gZV+yZupjNZ+vRPe7x+9ojDC5fe2We4K4mdjT3e++ZdlI0GerFBpSbz5JNf8fTL54wGC8qEvJ5GvOgOSF1wB3MmR5d89YuHPPz0r/j2d/+I4cTh4mJBGis8uHsH1zEoV0Wc5ZzIrjL31gyffMTOVsCnXzwh6T9j+2CP6u4O04XDL3/0d7z53luMZy4HVw1ubKrkdZmvu/BgL0clJ2FXdxksAl4dn7B56y2uv7FF/+QV5UqL5uYNTL3A/NUj3v3Df4FWrdLe3UR3Z2TzEUq9whXDY2y9RyLnyUKXxFugqzq3fvcPaMxOMUsWK8HkYpxw+rJLJTfh8NEJj0eXuL5KUTDIpxkvu10W3S943e+x1SjR2d6ksrVHS2vy6Yefsfnmdcwo4+buHnfv3iDfKrJ/8A7u6Av0rW0MTcYZDOn2Frz3e9/mhv41Xz7LyNYuxcBj+dU5hy8+JMpC7m6/iZ4ZDC9GnL0+o5Q3eO4q6OUi127cQ85XODzvYgkK7UKN+/eu4E2fMTl/xrjb5aQ3RivvUxWXWOUO0TLAOR9RrN2gWqjxO7/3Hq8H5/hCiuet+c3f/A2jocfO1QNIBd6+/zY7e9c5H3osl5ecfvUQK3DoPXvK80dfMZgO//th5Z33vsvW/l30YovdrV0++ekPMeQS+1d3QM5YunParSLueMp0esJouiIRVdR8iVjVke08mxvbzMdD5rMz1t6S+UIlXvVp12vodgFFiZHFNbqqUrauMp4d8cGNDrLiswwygqyArE3YajbRGx02Dm5QsEvMLrqcPf8l9QffoyIpCP6Kip5ns9hhMp+hbLxJNV2yvXkdRS8znc9J3D7LaUpr8wp5M0QXJaTMwLQscqHGZNXHdyIMzcCyciSJQ7FZZh0WcdcrhqcnTPpD0kzDNgT2b9xma+9N5qGH7zm0NIPBxKG9s4WXrkDSUXUdSVcQYolCucbo4im6maHlTCJfwVstePvuLQJELs9GSDbYLZ14BXFxgyS4pNS+RZBqCJHLXiWlatcoV0Senri4Sx85WGFEfe7cvMZXv/gC1czhrEJmszkzZ8LweIYumZitCtVmC0PTCB0HFQupYDPuXlLQAgiXjIcDBEOkUs5hpRmGJqNqEpqhUSiUKdcklpchqh6hZzJyJJIKK1qtTSibWOVN1oKCF6VI6ByfdnFWHhslCdcXGSx9Vv6CvK4z8TJuNdts5Q1quQRDGSEpM1xhl7OXf4utSVSrBprp4ToLPns8ZOP2XfKVBkYujyJrGFmMrotoWsjLh49QxJidg23UfJtFdMrKkUgWC6I4RC7YlDrXUTPwkymyYqFpNUS9RmxU2Ng44PnxF9zbq2JqIZmUIZhFrGLI7Pkhb16/g23XWKYyx5Mxhr6iVRP48uUl9VKNZqVOodDBNmoYgC7FBOEJftLD8ea4/YCDTom//NFvcJdzru1vUK9aPHn+NYJWJNeyCc9fso7naAWD7UqJdRjxOw++RdG2SFSNsROxWgZsNQrUtmo0cnWqzRLVRgVdNXlyMaCoGIz6E4pWkWKhhJm3MGyRwcs+JXuOk86QZJWSWkAUZEZZgrIeIkcOol1HLbdoFATc6YRK6qDXm3iSziqUiAKFavEqz188Yj6P6VSuUM4ZzAYPefroawBuXt3n/p1b7O/uI6UGhy/7CPElviIwcgKmcUZWKhN5Mak/heUpxZyCldOQdQXVkBFCEcVssZiOmAzPcIMZlbKMKrXZ383hz1as04AwXrF4+RWynkfXBWazAXZ9G0kzGV4+x6jLXPTWFEybom0SphmzKOXO/n36xyccPfsNkTtlNV+RhBmdTkJuteQyEBGTEFFUUXMlrm9VWc66GP4cvVrBVAxSJ2IwmLJILnn27BAtSBhfnnB+cohq1SjsdVjFGcpgwkYtz+6VbTSjwFwsIeXzjM6fEGpFArOC47jk05jzVUqptc2rocdymVHVCtiFHNOshRP26Ow1yfQCQSxxve2zXkWEwZjhYEmycCgoIvW6TSIbOM6ayDAYey5DN0DJbSE7S3a2iuiSjxQ5OH7AyTqjsbNNbauE6yRstGpUWjXmssHxaM3g8AVK5IJZxi6XqBcVonWMWq9w2T+jbmhc6eQplGS+ePiCREiQJIHJ8yckSw9JlpmkUyp1EyEICGaHTPunhEnA9o097rz9TSzNJs5SRpMew2mfFJH337qKlLmYoUCYKqwCn3XsEWLSqeywPB2RL9QwTBNNlbiyfYVNy2UyD+gOJUb9FctRj9PTCXu3b8F6htN7zXRwBqLMW+9+wPr0a1K/QncyJ8tJpLrA0+en9C4OkU0Dz1NRMVCAtTfnvR/8D6CkzC5e4TsrkMAsa2xcu0sg5HHcMbPxGElIaHQqpKrG/HLKwd4GDI5ZTme4SpGtisjhVKXdaDGZxAh+SEPNIIiZ2jLbuTKPH17Q65+QiitaB3cIz8/5+bMz1l7EVqNFvdHkcjLm4y9+zd13/gB/PIPMYebMOLu4YOud++zdfJfzl5+hmRpSLs86krnZuc7LV4+xM6hrIsnaY7Xy2d5tU6q0CYIVql5guoo47/VptwqsvBBB3cSTMhQ7j6RYHD16xmZVxPNTojSjWKmiGxbOwuPKG2/hiyG2pZPKGYdnJ3z18dfokY3rnlDYrVLRbMLlmufnR/9NWPlHtYGyNEPUbJRKnVTMWC7nNDbfRDNNUASqBQtbUBgpRcQ4xsopyKJEmooIkk4iZ0iRi2TGyG6G4ggoOQ0p01l7HiXTIhBMIiQMwyOLVDQxR6FcYjRyEZOAWjVPKtSxkxq/OZmQ6BvYho6ixJi5jMnZEZ1ClXWYETtL8iRUcxsIZp6ot6I/DgiSiChYsZQT+pdnFMtlKiUJ0dBJBJVgucaMEjqVIu5KJhZSnDgm9sEqtJGDIpdPH+J7C2xTJktS9LJFrtamt1oiunOKlkC1s8Xx8RdsbNUw8hE51SSJE2JRQJ/6BPMTUsXEzpdIURhPJjihj+uvyFsKBTtPzrYIZJNnZ5eMXYn33rtLrlRjMBrjLB26PYftjT0S/5JCTsRfeSSZTqF2C12BWqmO57mskxBB1ijnVXp+Rr7SZDrog++jqwlZFKEbEb1el1qjCM4a35FZizJ4McXlGkmAZeBgWCXa9TZbG7sgx+RzIY63RpJVdFMip+awix0WUx/RriEaUwxxzAyHrVaFeVygPxxjGBqGGjGfzplnuySayDobYZsSuiGQ0wTKRZve+RRbtyjqBnpOQdJljHqAN9DobL3F8WxO7PpohkyrWSDyHa5f6/DFV0/xExlBM7D1mDQM0EUFpbFFvHZxvIzx3EULVuQrV8lQ8JMERdWwywXi85e8df86FgJaHFHIZVjNGmI85aCxjSTVMdsZcpIROi63bnZYY5ATbRaLOVGYkIUJznIByz6JsqTc1KmkTbyCgp3OWSKT2HlKWpPEqDMNNIRIwjJkEi2P6x4TEpCXLaSixnmvy/pXv+L2m7eYdk9xJzMazQ5pMGA5XlEvtqjstLANSCYTJosVaarieC6Hp11kNYdqljjY3mJwfUoWXtIbnOGFFohVbu5qaM6A5fCUVNbIBA2BjFxOZzruU6gX8ApN3LmA585ZOyuKRQ93cIwsWkRywmK9Yta/+HvdSOdjdDlFFmE9cxG1ArW6ST+UELExNBVTi8kQqJgmmWVQbdWZej7LxZrbW1dZjVesFRG7lKIww5ASMlknr9p4fsazxy+wazlEWeDy5JS9nXd5+OwF9UoRGY8s9FAln9VoSKO6Seqe4c0t8nqO+zd2iBenrFYOO5slvDBCdz2qisR8sqZi5RkPfcaTCbKao1muIEUqP/3oC2629jFDhzBMWK5jpEhmxRphPmKz3ebwxYr+ZIqV30IONV48u2AhrtjbbdC0OqhSSjIak9kC0aKHVTNQ9SKBkUcV54TOCRevZBzXIYpF1ppFzrRYrRZsbW0RrhMCb0rkOhydjRn0i2SChAhYeQtVlnj88DH7b9/jrL+ms9cgTRIWiyXOeok3f403HSClEQkCyzhlQYyUlqg0KmzVJBIxY+G4pCTkBYk4yJgGERXJoWhaROkVnLnKwYNrHNkJdb0EaUz/9IhgfoHZvM58NqPe6FCw18yjiOnCp12sYQs2Czlh7QukfoCortm8eZNkPGU6OCdn6iiGSub3ULWrHF54zE8v8aUeomXRbjU4Pl1xcCuP1q+ynIdghqj5PENvQFsL2GyVOemLDPorkniGEiz48quvuL+3TZDJaLki9VwLW7Y4nThUVZtM0kikFEUT2NjbwdZEhNhhNFqwVi10UUAIUvrHr1EKFartGo2SgC6mSLkC4/OXhHFM0ajBco3vh7jThPPLKZKWYJsaUa5KqiRIZQVRgmq5yP5Wk1FvShwuuexfQiyjNfKkvkezLiEikgYrXh8dIc9G5KU1qZFDyxcRjBJOeEmJhPkwIMky9JxKrdKgVG2T2GUEf8V40EfRJQrlOrd2t5H9gFt7t9CMlO5llyBwidOEiV/GP36KL5rkDJ0wyoiSmFRYUixs4QHJfEy7XqBUztFXAw5uv83haIkeOChOgKwYtDY3kII169RlMQ8oBTP85RRBXCNlEUtJoZXprFNwU+Uf5JB/VBso8B0QI3JFm/5sRt4sUGq1CBFQVZ1WtcV6FSOpOUw1T6Vcoly0yBs6ZTNHyRAJ531yBZVyvUqpVMYsSBTLZZbrEDwXMVAQ4wKiICIoLvev3iIQTcIwQk5cDCkgzQo4rsn56yEvX5xzftkjydZs7x/gvfqCKFgx90POhhecnD8ip5hI8z5JqvH65JLhxRla4CErBaIUht1zel2P0TRgslzRGyxwwjl5rUilZCFKCesoIpMqTGcqq2VC7+wUWc7otOs0S3mMxiYTH44G52Sxg67L+JpFvlhjuZKpVDcplSwUVSLJVBRFZ70ek6o2mt1C0SyyzCcWY86HXQJvjmXr1CubWLk254shhw8/4+bVWxgEWCropsXlfE0kx/jLNdfbFk1bRBANAuMaEzeivrVNkuokkoBdMtjZbNPc7yCoMvPLC84PXzPoTYgyjVRJWCyGmI0Gmawh5izyzTaiILJ0I3qLOa8vu/THc9JMxipVWUcKjjPi5YtDXpwecjkfMPUELucqflhnLVgUyy22Oxs0Gnmu7jQpl4ocd2ckiU/JylDikO7II/TXHF72WSYrzJJKp9aibnWw3SGNxjWsch3dKqFbLfRamyv3HqCZu4SSRUyKKnnYekhOFdFMGbNSJZTzLNag4iIvE9Q0RG/vkmtdQbbLuFlIIEpIygayngcpQzOgUTZJzg65//b7JFIBNS3Qtmpc2axTNUyqhSaxnCexTCTbwDJ0quUGufImm9UaQRjRHw247J4wGj9jOX3OwjsikyRU2aRk5NjbL5MWTa7du8G1t74B9hYj10DV6mRJgC7mkUsNSHO4s4T+fI2X+PyXH/4ls6WDM+6DN6VcK+EnEmevuqx8D5DIGRa1eok3tpukBOj5PNOlw8n5iMuug5zl2LtzHcNuQKwznIcczxYEoUfUO2M+GBHJJpAhrBckUYhqWUR2HVcqsfIk/GWImLjM5k+p2DKZP2PmXTL2R6yD9O91w1AknOWS3kWX6WBCqVymWL1CobhNrbpJUZMxgjF2ycSuFBDkPLpZwE1Chss5zcoGlpYn9GfYlTzViknJUJHVKnHkc3iy4uiyy3q5RE1EUtlGNIpMJzPq1SZGtibHgoPtJsrCY6feIEsWDEZdsijkWqeEt3qNlde5e/cWpfY2ej6PbQhMByGjVUxuGTDuDRCF9LfZrlXA+ckYNzTJVhNiv0sqLskbJqGb0Cga1OoFWu0WrUYby9BZjOacHV3ybHjGk5Mjjk7PcVczpMExSrykkFPJJy5m7KLqGiEBm3bA4NVD0sUpSbxg5PmsVysE54hOrU7spbjDAavBCV+/uuDV+RzHU8iVbQqtMugGJ+cD4nCJ64bEXoot2VQMC/wpy8WY56/OuLgcM5o7REJKtWawmi1InYSKZbIOY4ajKeF4xNb/x9p7NUuS5+d5T9rKrKos7+t4295M93izO7tYg90FSIAgwVBIEZDuxM9DRUg3UkgUIRE0AmgAAVg3a8b0TE/bc0738b5O+aqsrEqfqYtR6BJEBPUl/vHE7/++z6tE1PI5tNoashAgzEyEMIVRnKdcyrGxukS52iCIE5ijGeW0TDFXYzI0qS0t01hdQksmiO2IvFQhrWfQMnXS5UXklMFV5xRfCxjaA/qDLqm0wfLSPLWizOllj8OLIcfdFsPBBXJoUS9m0ZDQZJtMWiAWRUxH5qovsHVwzv7VhKSeJ28IILkMHY+k4vHk809o9xw8vUqmvk4uV+Hs6JCJmsUoQKWeI53UMVSdG9duUmku4gUuUTihN7zkqt8lDhUuX/4We2BRac6zudlkfalELp3HG3bQwj6GmvpGJGh7WBdjro5HTMMIx3MxahvUFtfJ52RGtkg+YdOopFioZUnoGn03wpdj0pqMKzmsbRhc36iR05Oc7u8wHPdZyqskUwpuFNAbm1z1LB7euEnv+ICR7SEnNOabDe7cvYUWyQxPtyhkixCKCLZNSQnoj864tnmfVLbAScekPTDREyq9kc3rJ58yHM0YDodIcUjBSDMYDymnMojCENwJqjcmq1qUl/KIxUWy1TxCGIBpk40VNjZWCAdXzPpTjk5aeOM+FT1mrlFC0DzCZApsne7IpTOd/Wc55O/1DdRYXWNzfYX1apHPnh0w74fka0UG4yEgo2kZXhxdkA/2GbpFAqNAtVlnoVnECxzeXMwyNl16E4tKOkclm2e/3aacVAlVAy2ISEsuSdUBVWR5uc7HN9/kxd5zIu81gdNhd3dEv2MSZZssNcuIgkPnbJ/u4SFzm6uUhZjSaoGpI+A7Lr475KzdRXUnLOQS5JIJDMkjIbrk6nVWbz4klalgDm16l6dMB5fkjRzVPPz28wuqZTDSCdLpEvlcg73TDp/87GekU1NqzTLZwiJSYhNXTnM1sGkoU9bW5lH1HKOux7u/8xHnV/sUUqD4A6bDKyaDMRWjyuHQQ024SKJGTtVp5DRSeZ9yrspnv97C8jw2bq6wvlaldfCYfLnO9RWNTz9/RaVQ4+HdWyRzGuOpzZePT5lPBOTEGHs24/XVCXNrTX75yaeouQdk04lvhEnZJoK2wP5n/4rKkk6+1CSdWyaZnSOVVygsbLJ9dEl/ZpFKZ1gsFyinhsz0JCenLcx2yLjT4aJ9zIkj4I4O+B/++f/C861t9o4vOLgc0hrD9paNXDPotLsEikSqlKVoaLzebbG7/wVBaBLGKmGYRFVTTManXB6/YO7mhzTmstTKGpm0ytFel0y5zKk7pbyxQLlZIowlHp0neff6+xx5KvWcT1OzSLtdlNkAP+vz253XeKZDMp1Bz+SJ4wR7Tx4zVFU8sUpGFrixVOAH33ufxWKVna8/ZSaOyBYLFPIGAiZpd5G2nCOv2Sh+CHIKJV+mXErx+S8e8/b7i/QI6PS72N1j+ufHvH2zxmF7xEJzgUqpSiqVYCFnk1YtMrkiX/z6Jb/820e82jqjWaxR38zhmgILi+tUtCQ4NvsTk6k15XYxZH55iTgWGA46jCYXXH94h7qUpLKygFouEesGs6lPY3mDmdujaKTxL46Y9Ee4iRzlfJrD/WekyzVurKxTyJTpD0x2nj9icXMNe7hLorFKplBBEeHcETm82iZBmZXNFfIJGdExcd0++eYt3DCD2bmk3z5FiR1WS3lebL0mWV+nffAEI1sgncvjuANODr4x2P7T//ZPcG2FQSdCjrPEZpvpdMCbD99h/2yHg9MtgtBjYe4aX18+or0dMHDGXAx6mF5IMlPk/PUJwmCfpGTz7KDL8/OYxdomYdTifO+I5lqeoqyS8QSWqgWsicTbb9wmVcjiKkXkVI1iOkVWc0mn53DCmKuZSd8eE4UhaxvXyKUNEkmVUE/h6BpjIUKaXfCLL7ZQxTRWMGR+bYP51VucHrzkwdoiCT1GyoSkUgK6ojN2DTqHX5FevYsnzlNe3OT2gzdY21jHDFwmYYdh95yUUSWZzuHaHTKpgBubt3F9ARuBme/iWhP8wwuW7nyb14MJphgSaTopJUHWOuVZb0Aw7JCrN4ijmGF7TKQuooplfNdGz4WMZyZ+IPCD9+7zcusxa5trnJ5vU62keXjvBktzVdS0weqN6xQqawhSRL6c59ab3+H1SZtU/wCbGJIlfNJMxy4rhs6o3+GNb/9Dup2YdnsI0gS9mOL/+vm/4OqgS9ILqTfrNDZvEds6pXjE2WWHXFFFFNNMJgqHwxPKSp39k+f0Lvbx3TF+7NI3LeZuL/PbX33C5lvfIrRNvEmf+c377G0dYo97vP1wkWyxRqwkkVWPlXSawIfnT37JxlsPSGYrnDw/452NTT7d/QqzXaDvt/HEPrrkk5BTeEHA0fEZc7Um5UyC8fCIv/r8p/zjH32XuVKaaXuM4IOkZDG9DP/6z/8lY7nEG7ffYjYecXZ2jJI2+MH33+HyaIAeRfjjGXu7Rzz6+gm/+6M/orpY5+tHn/Dq9JJIcNlcECg21+i+HFIp6DSXKjiIvD6yCH2Vo+MnbF5vcHg2RIgz3Fy7zb03bxN4IoLu0umHDIcOxLDYrMHuMd36A06fvES2+1iTNo+fPufau28SRikGvQsygoAzGvH05VeUqnm8cMp3vvMd0BqcHl6y/+SX2IkiM3vCrDuhN7RpNK7xwZvfQxYdXrzaYfnGMkkjQzGboqgpXJyalL0OUUIlW6ugJFJ4joAnqvyHv/2aiSuGAAAgAElEQVSS+5WI9pVDtTnHrQe3mF/dwPXa7L+wSAs9Niolaqk6/kxnuzdmrhQgJpuIfg+rf8jReQv4L8ysfPDxT9i8tUYUHeOePSFxe4PR1QVGOo+mRDjmAZJzzkwpU2tuUKgskhViUt4Yo5jkk7/6KY4ZsbS0yixM0rED5td0hkc2l5MBhtikjE5WdAiSE8S4wOVFG1ewsWwY+YtEpY/49lsN2qMu6xWFB+/e4vaDW1TrTQYjl59fjZjPqZREnWxxjuz6DW5eL/L0ZMqzR1+y/OAGUSrm1dFrTo6HTLoJ2rFJUexz+/ocN27fQAxjVOrc/+A2L7445MXzbfa3vuT0q1+g6Bl+8pNllNQdjtsql4MZuh5weXCGGSeRPQuxnCU516Bcr9F/9ZjFa8to4x5+5KKnauTzy2z1XhFe7lFLgGeJ9CKZY9dn77MdFm+/ydXEY9Q9IgqnBKGCNa3i5NZYWJ/nsycvMaMISZJIDfrkXZs7D2+CY9GLYkRd5m5WQIoDsskU7xQnJAyX4bjLyVdfsf9ii9/99rsk68uUV+9jVOp4ckxPr7L/N3+KMtkiHExpX3Q4abVQkhs08rd583sfEM46lJMZSnqDg60D3vruj9k+PETPraIbdbR0GqMk4p2dsnN2zBe/+Ct6p/t0piGH8hJv37lF92iCIjr40xHJhPqNtCnqYTsF6mGX3qDDacunfSHT7rY40yLev32bbLrCzJYwZxGlXJFe36eWTaBEI06vBhz3HRqrVSqNFeabd5hqTZr1FVbKJZBsfueP/wDNvkR2Q3KqghYEdHZ3MLtf8dZHb1KTG5zt7jC5POF6YZ6RJfPRtzc5OXZIiSmq1TR6OWZrOOPOfEx3MiO5tEhv1ufoYpt/8M/+hO2f/0duv/MDOoHC0cUpg+4ZiXSR/S/2aJ29xA8yvHHtOzy49S47V8/587+8QJRlDr58SvvsCQm5x+25Olb7mN9sjzCHE0IxoLayzL13f0ymMo+qp2gszOGZFtPOgNh2qZbLFJsKlUad/MoNlGwJdzYhTGX47g9/n5wa0+q7xLJHc15Dyi3gHO/y+ZMzrP1tlvSQmwtVkFXefmeD484YL/IZWx2mzghJSpNfWuLy5RayO8WeuFx0+ry8OOLeR/+Ys6OfsTFXQ07lmU4Vpi04vfwms/J7P/4Qo75KtlAkb4R0JJONaytMWiM86wxVDFETWQRZ5+mXfe6+dYOl9TKllE40cvn80QsqQQv99ges1G8yM2dc9U+xGKJKDteXHqIKLrNUjnEiw3gw4aR7iC86lIopxr7LxPfwnICvf/0YJRdz8HqXs5MOcZyjtnCfUsPgp//ifyZVW0IpLJDJJimlfWqGTljJYjWrrNUkBp0Tnm+/5MGtm/SjCgNELMsm6pnI1hQpmeCq1+TH33mPZ0++Jlc0WFiuMhkdMW0fcy+VYjSzmZ9foVCsMZq4GLHP5hvvo9drjC6GxKZAvb6Jnyuwsd7k06fP+Pi997i9uoIcTlldq/E3v/iC7NI3BlrXtYiSCYKBz+q9m4jOPoXMHEEocdXv8GL3gt1TleXbD5CdMY93T3h2PuLG6k2Ekc/eFz8nV5nyxp1FDDHD3/75IxbrQ2rZBu2dNk4igVQroVXqeEoSr7yCHB3z1s0VGvNzDByXZR0efvv7VPNr+GkVKVtAUgq8POxQq91kt/cK90rAtQYgXGCYNoVMnpP+iO9/+zbzS6skMyUWF5NUhIgnzzsUGxqW5dK+HNM/22Xd6/Efv37GwMuy1iiwUjIYXjn8m7/+klwhSePBt7BnM6zuBblczOIdgw05Yq4Gp8/2Ee2I9WvLpBtl/puPH1JZf5OsMuP44ojdqynzKx+y0/o5v/58m4NLG7c/w25fcDLa5Y//u3/G2fZz3HEfzfYop0qImSZ/9tePyapdassVtltdXh5fEfshDHs4yip7+68Ipibjic/ZLMGH393k7MXf8LLTBSGGWMJzA/o7v2UjJ2DLc9RLeRqLTXw9w+dfv+LwV3+BG2VIGwrudMRwPEJrVtm88zHafIo715po2QS261OWMjgphfc2dAJxwMHZhLMLl4QQ89e//hXf/9GP+fI3n7HfHyNoAtdXyvzkv/6vCKwhD959SDg5Z+LbnPkRP/8P/zuFhTzj/SGvX1/w8sUWF+f73LxXJ19pYgQDiCI6I4fuRGaudIekd8T5WObGfBHfD3l52uJVr0W+Xuf6UpGhNaJvj2hZJj3L5fL0Cbdu3Odnf/nXyIFAFAjsnvzdmZW/F6z84e+9x8J8mYOTAaKo4boystXCjgOGlsew5xIPLYTsDWxjimbu45htzroD9r/+mmpmlbUf/RGjQZ8CHRaMkJlbYyzU+fBWmZE9o88YMik26++QEmH74BGqY9FIQ7OSpVgsIWk2mewc/9tf/gLBEZHdGHMyYa5WZj264NxN8GrrgMnpJQnT4nBwSb26yObCbc5bPSJzynKlSWHpPsL4EGVyQceVuRjZmMMpRTXF6+e/5a8/+QzJNWkosJo3WF2dI1tUOJzoIA9RnQsS0yGhHTFBYmXZYPPNt6ktrFLMZsinJIJEhvOffoKxPsfe6Q6j7gk5LSZfK6LGFueOSmZxnZTiI7X3UaKI6+9/j/ODl9Rkk0Z1AbQKB4cv0LwOb2zeQDHypFQZnAkRLrn6PAnF4ux4jCa6ZIwQT4vJiS533v2If/uLPS6tIrZaxtYFFisJnvQkXLuA0O0Q9K9wbYtweMn6t/4QIZXgxs1lVleXMTJzdO0UheYGV5MYPZOFZECsTri7uUlivonSn+COPeR4QtYQyeTXOT3dI3BNsvkkcaoJSpmCZPPZX/xz7r8/x9HuATk9TSZbYOzHJGSdSe+QW7ffQ1GTuL7L2J/giiEPH3yHpfoyF90jrHEf2ZfYPe7DwjU6+09wr7bIaRoJJce//3f/iYsLia+fH6BpGnYUM/YdqmWZSecJWfkaZcFECaA7itnumWSKZdLdc2qlPhurTfRI5cknX3D7o/e4bD2lKjjoiQwuMrY3oVnReXXgY8s5CrkCVt/k+LBDLAoExRz1coHFSoXACjl5dczs+DFHz10Ky9/i7fubrN/IUV/NcP/aO5RKDziZmJyORwSxiDvxOHi1h1e+x82PHn6TFbCGuL1zzncf03vxiPTSPdY0jYFl4Ug+6QzsHu5RLiyz0lxHS3ukdYlaukYjI/L0yy95+fgrZvYVmqZQKjbZWG2QXd5EEZJkFhfZGwz4avcVlWyez//yMY2qQ8YcsTy/RLW5yPnOHtlKiVSpym++eIkvpZhfWWR5qchoaLJWe8DL0xPcMCSXTmIYKi+3vgBg843foWvBRf+K49Y+n/zsUwbdM+LQ5ZUZU1u6zg+/9TF6rk4w3EPLO7ihwPmVz9gWufPOGo+3D4gnIZPpGKlgMHf9NguLtykW0gQpEUVVKZcWyCcNIrPD+tJ9AknAnFrIbkzQbbP99Lc868Ro1+5RFSYUV5okywbOqE0wtcnN36V3csTe82fYwZTUXI2LiyH3H3yb7pNPMa+OsWYpwngR3/R5+6M7xGKOZy9e0Y8Npkqdva9ekVmroJqfYCsyyWyW7njCb55scf/2Q+SVeyTzGTJ6hmBi0z4+Yu/4gGqtzpMXn9F3ZihGkmYhycdvLvIvf/qIXFDAd9uMrR5DO+QXXz/lnbsfsLZWYX3hBulYQQtD3voH/4SD3d+QVsFY3SCXrYEVsr31hN/94Q0+/fPfstycwx4NGHfPSRZ1bKGH1D2mZdfYOba4nNjklxpcPNoi09xgqFrk9CxzuQKlqsT+i59hX/WRAwcpDePBCcO9LbRUjkng8Muf/R9cu3aT9aUsWnSIZ3kQebRPvmb9zgLpSglHMAgzVaYZDXtwRBgKpIp5JC3Jl5+2GLsWP3r3Q3Q9IsYlFD0cKWT19g9IVes4qkeuWqNSrFFURfauXnHnwbe4vSZij3rMZh6xkOTg0SVnTosXu1fce/gG6xt1zGmHrcMBP3v+NTSaTMYzbHtCxBQ/Dvmjn/wBkxMHP1LxlAhbnCFFE+4UNU5HIcHeC0oLTYRalWePf8ubzTG5+hu0JIVUQkESUhxNMty4+zbbz15y83qG977/u6zff5u0pFAdTOkrBtVClaJRI1UskW4WSKdUrr39Du3dfV4eTTg7nuB1+xjpNkbQ4eG9a5xaJlEoocQJXhweUPGGDA5OeLr1is7UR1HSVNMGd7/7Mf/3X/0F6cwSbz28ze3NCrI75d7b7/O0NSQSE0SzLv5synBq8OW//YRMXuF/+l//Ryb9PpVynVqlRjGc8PDmNfRyHk+VyBkCq5Ukpdwcv/nFLlGlTqW8TJycoxfEnF78lEys8Gr/BHllnjiXRk1CIRtRzK/wb/7PP+Wtt9/h/KrPwfExS/NF3nr3Pb48OUKrlMnXG4ynU/Ze7/yXw8r9+w/IFpuMHBlf/GaQaSoliF0bf9zFnvTxEwq5ZBIxEgiGM6yJiRV6RKV1Vh98wMHrRxQyizhhmbaZAEnjdrPCYe+CbDGDkkijxilygcxXR8cs1gwevn2X2nyBIJnkwtPotB1kI0FRdhBigV63R+tol5cvv+LmjTfIBC6JvMHMGdC93GVh/R7LzhE/3z4mk1BBTDBwZcRI5uX2z1nZ+IBkeR1BVul1Ozx6soNbzuCblxTLc6jJHEoqR75SYdazqObH1NNzDM0knbFLEPfJ37pLMnFOfXGNUE7guCGxG1NRVLYP9yg00iRCjXSyjJKrMlFzDEyFWkIhEEJCkkRChsHwBDWdYevLL2muXyNIZmmbHoLRwGvvU1/epONE7L9+zbjd5969DxGkKTuPfsr1G4skc0kCVAS5ykQpsvXpU5KGTiqbJZtWqWUgdq6oGLcgW+a4dcTIHpIrpMnoKUq1FMPuEYfnPc5PL+ieHbC19YLW8ROqhXXOdl/RvzrFcT3GUZJSBQ73D6iXF3EAM45oLC8QzYYktQX657vgRTAzGZx8Qai6LOSvMXZ8jHKNjJZBHc/wEx6JfIpickIozHCcKbHrcevt95HDETsvn2D3rzAHY/pTl5XNTYxsiqVGgoTgge2hSQq3P/wQWwRfnEOQfNoXFwzOjygIPXZOfC5bJ/xq+5iZJ5FJJtF0GUH5pr4eRTJKbCFEQwJCbCWFkQxRjSXM6RAEh3K5jDPxiOMcqdEZgq7Smkm0pjKlpshyqkwzvcbrrde0D3aQzDbheMb3f7iBmnHpTlwOWxN2di949fU2G3evk83KXF+7jhxLhILAxp3ryJ2XCDOTxUIeT4mxVZmMUeW4oxBrMhcX5/QmY/xAQpcL3FpbY/90QOzNuDo5ZjYag+BzevkSXJXkyhI3bzxEyyzQdxMU0gZfPfqC1fkmOxdX+LbDUs5gsZRj8fYtDg/PSC1t4osSw24Hx4mo5ItY/SHCeIogSkTIxHGS9jCgf3ZAtdmgMT8H4Yz9rS84a30Tsv2d979DpVZFkSSiyZS5rMrymx/gpBc5eLHF6XGLdt8m1TugfP8jKpUsM8uke9bFNT02Nqr4HZPFpQXSqoquFZhaPo8++ynT2ZBmocb2zhXT7iFW74DDqwl+ssPZVgdR9RAdG0EQSC4s8Na7H3O1d0mtWOL87JDYCtmYu8ssHpAxahQaRVTJpqR6GO6M33x5RBhCbygQuQq+GKHlA25fq+DORFw9SUFNU00JJKM+wmRMaaGGmK9weDkAPUMgaVxedri7sYF13KFlulz0u4ycEdlynuW1e5wd7CLlaqwuLKIKEluvD/FGXd5/9z5zyzWUSMfsTxhPOqysrJKPbUrqjOlwyMj06FsRX796TDkIKa7cIBdLeCMTP/K5tjnHOx/+mNTY5NAeM4pBkhT8yysKxRIUsmQSAtWMTEq2MfsHCOkCychGyoCCSVJwKKUzpIpFeqbF+VkH25UZtmxG7RHFTQM5scFSbY16Nsusb3J5aRGka1xuP0Nfq4A5oGEUWF3axAx8XF1laE5IyRpJOcvU9Nl69RQlEvBiaA2mtFstvOmYaiFHLV9m5ibJO2fYZshp3+fUMlH8C5zWGeevtgniNKX6GvXmPP6wjVqpkq6pTMly2ZlydXaJ7dlY0wmGJaDKPlLskohisskM1iCgXJFZqGqoQsjMdAhDibtv/YCnj3/L5uYqS7duIes6reMjQifB1t4+valNFCUwUgkWGwGNUpJxMGXSuWLYnSDJOgsbmwSSghheIOkVZoJA5HVJ2Ac4+piKUmV3KDHXbLCwXkOtyRxdHtAdLbE3OKWeyxLYefqzHPn5Ko++2uL++9+iJo4xNAnbFzk5n1LTQ062dzk72affbjOZ+ZDJo4pD9nomiaSMnsozm/qc7u1gpH0yzXWUmUCquk6ynMfIOJRzRc73dlGTKVK5LH6gMnXTrLz1FgQDxLBHLpkklD2kJNyYu8n2/jGDdpcwI1PPp5lP55kNJbrn27Q6Q9o9D8+xUGIHq9tBnI55cdAn615xvRER+wO+evr/w2Xl2q07VMqLyEIa07EIQ4lMPMMfXjCb2FieTC/sUM7NMRq0QRARRBlFSWMUV0glFaKZixwnmfkqHio5NUSJIzwlQUYP0MUIgoC2OWHguBTLRQppn4k5omuKOEKVZjLBaDSiYswoF9MYRhJJVYg1CdVYxfF6ZKuL6MkMxCCn6xw++xlKtkyzvog9dTlvtQmTGRLTK1ZXrzEZTSEMUJQEjiejxBKbCyWKWgJfVBk6Ht3WCXIQk01KqNk6YjKJG3lcDXoUKwsomTyGZqAIMmIsE4YCkeCjJwSm1gBN1VHTOTwxiWepCAkV37ZJGBoC4NkzRMUlkc0ThiLJdB7b+6Yye+3aDQYX+0wnQ/LVJfypyWw0RFazFCsiiaFFLqPRG9rYToJibp4XW0/xumdkl+/hzFywLXKagusHaMUq2XIZTQ1JZ1Kk8iVELcd0uI/oeMRSCkVTiSKb/dcHbKysU6nVEOIRnmshxiqbS7dw/R698QBVSmO5LqEkUq/WQdGwTQvVuiKRShDJAtawg+u7LM0tkS1XyegqauwQhib98Rg9GZPVZCRJJJUpUVq4Qa65ijUa4vFNclzR0hjFJrVqCUeT0GOX2POZTm1Mc4rjxnTGAxJChkH3HHsaIZEkcm0iKcNo0MNWGwRSAVtI4ShFrsYZ8rpNppBFkWQQddDzdK8GCDIgl/CmAyTBQUuniNFon48wJIGWn+BqaOGPW8Rej7ocI1om4aRHPLpEmvWpNucplw3aMfQmMVetIVenlwx7fa46pxjJCNdywJ4iRSHTWMHI5Xj98hWFfB4UA00vUCqWkYwi9VyA5QakDJ2EKuE7MzKJEC+Zo5iMUPQ0mlFAVWUcp0sqkSGVyZOQckSiiBtNON/dw3Zdzk9Pmc0CCtkcRibFafuMheYKL7ZecfP6JsFkQPfiCN1QqVRq7BwfUCuUcIIZpjND1nIooUOuWgQhQo18xEjARWV395v11Hc++oBMPokkASEkAovVm29gT8HsXCIELoauMl8u4UzH+DMPyxOIYhFNkdESClpGpljMM+qN6LRHjKcBernKSjXHzBE4v+zgmhaKmCBfbyIFPdRQYK6xzHTm4kcetVKO6diinkuR1H2CWQiuhO+FOOikZTA9C8fzcE0XszMlSKcRYyiWi1RTCSLBw3Jt9MhAEEU6J3ukwhBFcJk5E9qjKeW5DIVcCd8JUbVvdmeKeowVd7C9JFIQ4CGQzBmsLpbodWdo2SJCKJMWYwh8HC9E8iVqlTqh16MztrH8CEkVCUWBi6NDlDgmDj1SuSxqNsf+1jaV+SWmoY/g+UzHJrPJFCmVJHJn9CdDpt4QTdLIaDn0hIwkJbH8KcvFDK5pYU0sMoU0anYBy+wTaQVC2yYpaZTy87TtIc7Iprp0CyXbQJYFMkkbPS0ynoVoyQRoIrEvELsSY8lHEFVyBYMkSUw34mw4YuIFuH2bi8Mu6VSawHOwej2iqYutahTLFa46bQJzihSIxKKMkUlxcXiKKkJ/NOO83aZn9lm/tszpIKSRL6FLCWwvZuhGlKs6enYJuucYhRp+IGCNpsyvr5KtzNHIlqgV0wS2T+DB/Qcb38zGxDayBnEoEoYCnuTQGYzxlIhyxkDRs1h2TKfVwxoOSeZrGNUqhUKJXFLGCEfY1gitOk/C7nB6esFgNiFZTEDsIEQqtm/iSiqELrI7IBJ1vLMxjlZgrp5HFF36oy52LCAi0MgIxK6DbbqATLZZod9ukU0ITKZjRDmBpmeREhnEiYlSbJIQQUsphIrMyI5xxhfIokZO93F9kd7VGPPilNWlHF56nlqmQi4nIwkulunStgSisYWQTmB7MnIyT6ZeRcLBSEY8e3pKNSmRMhLo6TT5RIp0rkbn9IjiQolmtUo1lUEPPY56p9i9MSPbx3NnzOwpHXOK7ekYeYPi/ArLq6tMJi6ffv7074SVv18byI/xvRDZDxAcgakigjXEtzqMR2M6PZfhYMjF5YDxyMT0HEI5iZGuMWeksQYjms1NYkFA1BTy1RKlagFfVmnmq8zMGcHUxAsszv0Z9bkiquTS715xetqndWnhWz6G5OBObPwgJJPVmVussX77GvfffIgnJegKOmMzRBPTNOuLhPaY/YlIM5tClCNwh6TcNgkdcqkys9Epg/NXzPptUrLI2nyRmgDlVBbJFyBwcL0JV70hUzegY8qMnBlaQaG0WCadL8NkTEJdwx7ZhFMbKYqJRYnziUO5VGViCdhxglBNEUsawiQmk0zhigk0I0tCE5Ell2Z9Dl9JML+5QhDGRH5MwTColxK4Qciod0VOjimk00SCwOH5AWPLorF0i1mvz2w4JQpkIt9n0Lqg0SyRzNTQEhqyCH6oMXFS2PRQww7NnMZcuUwqU8DTM7Q7F8zGHmktTWNujuVrm6xfu8X6zQfE0phUNsbIKKQTCiUtwWzkUc5lmPo2UeSTFARCN0CrriBoM4xCFjWdQFBFFDWLN/VRpYhyKU8hKaEnQoSMiuBPCKYjIklDkHWy1XmaNx/iBiJoZdKVOlKmQjJfpVytkFAlXNfm4qTP5aXFZX/KQavLl799wdnRJZbdRvBm5NNpsoUqY0cnrRkUqis0l24jFea5DNLsdBVOBxqmXMJLaERKEUVfIJ1fICmLXJ73MCdjQtfHn3pMRmOSko7Z7hIoRS67IpOuTcabYr0+IzbbjK6ekFVsCrqArsRkywZbuz1OWjYTOyYKfFTJRy/IbD/5jO7xa3ZfPiK0RxiqwtXxOa6xSN8OsGMZgSRylIA4Ym6hRCWnUCqXSWk6QuRhOSMuu23ShkiukGBhdY364jrJbJlSZZ5UPos37nN5doQ5uECNxkydKdVqlb2TU1R3Si6pEao6B5dtpuMOnm0RmAOiyYjYc4kSIn5oY89M9HIB5AjPG5NICSwXfeZqRdxJm+HFEXEQM7d6//97NxxcZtMeUWCjZ/NEgYw0s1DcDvO1DMtzRYq5FFF5mbPnn2F1hwRBimQ6i2FA7/KKZEnHEUNCWWDiWfiRw63N29xev8Y0iEjoCVSjjppbolyvsdK4RrmRplFdwMg3EEQNrzeg0zpjbbEA4YBKuYqe1Dk6fs6oH3F1us9oMMacOLRMgUs7Tb1WR4ocNlZLVCtJKjkDI2FwfGzh21OGp1t0Wru0eh26Ew87jkkmVTKawnyxRFYQkR0LQwk5O3+KUFBpZKCoyhSSWWr5CicXLYqNZUTXZtzr4Nkm1ZxGJlfi5eszeufHOO6QWIlBVOi0evRtm8vhjKFpoiVhaalMM9dAz2Q42TtiHAQkUgmSmsJV3+blk8857F2RT0BRiklLIplaCce2cUyfhJol8EQ8X8QoNykVSvRnFubYAwwEMcVs6hL6AZqSodpoks5n0QsGmWoeLQZ7eMhwfEHHtok1nUrRwPd6JLIGCTtGVkqcjmZ8vrtDuzPC70+ZDTymfkSr26F1eYEuZymUayQ1nemwg2s5CGgIiSSWa9O9OMCVC8haGjWykWYD6nObxIV5cvUNEgkF0xxy0pmglypktQzW2RBDFckVsmjpIvV6g5vX3kBIJ6nW5sgVmyi6wVxOI5sSuWhbnAxmjB0HUYpQMhr97hGleh1zOmM8mhAHEelchnQ1z2K1zK31dVaaJQw5wuqbdCYBpVyR5lwJPZNg6pq02scMBiPCOMNk2gfPJvQjJo6MJFW4uLxCMDtE9oTu2TkXr08oGA3K+Q6LxRq2LQAOueSUYNLjjfvrTEdXHE1jhsH/a3LPyMxsm8L8AvfvvcXqtVWkpMjZ6RnHpz1Sfozf6xDNJiiySNrIUyiWGJp95KRCLgNq7DDuzuhaMcVynVkI07FPMqVTmc9weXzAxJGYOCqOM0YXRbJqmpnV4u7aPPm8QTKRQYh1olAgKX9TIhER0dMisqYQSwkiJYFWXiFjyCRqqwTpVVyx9J/lkL/XZeXBmx9RqpYYT65Ii1Vs0ePyvEWsTmj3OhztX1IxGrx8tsvKwg2Gwz6eIJAt5JjLhlxMUxSyCUJVQTUKpMplkvNlKpkG05PX/O0Xe5z3bOwwgaDneO/NBk3zK8LiKrZSxSHBzB7SOn9JZvEalhVheTpBLJNWRPKiQKmoYLoLvPzsU3oHzzDEMWmtR2HpY9p7z9g53UH3W9yv6zSX1/nFi1M67VNsJY0bBPhmiwznbG7m+PqTT+nMqugMWSiErN74FuPhgK5qowUOl2ESL5HjZi3LyB1SkAqEockkignUBHoyxeDKonfWAmMRNzJI6FlKxRzjyYQg8MkKMZGi4UYgIZITUmzbMYLXYWrNSKdrZPNz9MdtPv3bT/j+T/4QKbJ4fXRG1/JZXK7QOWuRXJ6H0y8ozy0i50vsvHqGXlrhwYMPCacOjYZOvlamP1N5+mKLec2ie/aaXquLKMrkq2VMQSYhTNnZOWfsByR1hcVajfV73+KkfUJ7cMnR8TFaZJPTQh7v7JMvzrGU1Zm5mH0AACAASURBVOk5McF0ihK4xJkkRv0aknTBma1hzUByQrKyjJYWeXPtPj23hyoGKKKBF2TIa5f0JhHpUgpfzSLkGujFMkHvisraGqPhAEWbQ0goRNKATHkO66zDwatL9rcOOTk/pzud4lBmMpxwKU54uLRINSNA1CYOJ/hOkjs/+CFDxyKdVhCjgBcvdqiUavSCEKwjSimFlJ7ECSLqq0t8/dkTjPo84VQmmIkoyFQ1nXb7Cj9lcNiaMbNlUmqK+PKIN+6soqUSuGTwI40IiXa3w+df79G9vCIIVLI5jdpCivx8gpXSPLghQ9tEz1fJ5gpoQYd216ZWU9m49oDOzOT48oDpoIcgatiuTzbTpHV0Rueqh5TOoxuLTC+3KNVzlIwSmqgQRj6KniQKVV6ffU3gmwSWQ4IcH/3kHyFFAUI6hdM9wHUciHXSHhQXQvqnLY5HHWQRctkKXT9L0D+nHkTYRo2Liy6h7bK43KCWHHP+2Ta+28WRRKRUFk1W+OLRLwB4/613CU2bwBPR0mX8kcNoeslU7JJVI0QpxVDIYWoqJ3sv+ODjD/B8g+mgjdPfw3f7iJ7A8Sxgc3MTo1FCkn1y3SO0soIraMiKQWN1ESmjsr2/yw9+/I94sv0l6WqdWm2VyJF49nybhz/8PeSpxeX5ESQ1nGBGv3WEH8Le3mPuP/iAUeeQQNXJLb9BcNXDm55z594b7O4cktZVrm8sczmYkPVt3KrCyVWLi5GD78WsqC4b9z7ESWjY/SlyaDMcXvGbx09ZUETeuHONjD+gc/Sa2cAik1llp9NlThFwoy6yIePHLjOzy8Z6k1++2KKckiinU7iTIYcHe8i2zMN31phaFvtHZ8hygoXGAqpWoTo7Z2enw6237nDn3jLVeoaTnkfCi5i2B9TLRWYzk/64jaTGSPKMdPY6dpigkNHJFDVasUclY/D8y5+TCCesrSyT1BOcn+1w885btC2V57/5cwK7y3QSMugr3LxmEJghKklGtoYiQla36YyGtJ4+QhZlRuYMRwiQEjJB3yE/V8ETXfSsymzi0us7DISY33/nTfrnB1yev6I3dUnVKrz77btY7RknJwOay5sszi/SLGfJaQHlVI6Z1ePy+IowEaNW50iVr5PyQR4f8+RsFzFbJIiT2HYI1hkVLce/+/lfsXHrHoVaDSGYwas9hto8r85dhq6P2TnBGVyh59b57//JH+L1xpxdXtGYq7C4UCRkwtp732HyxZ9x795DsoLH4Gqfne4Zxt0/YkXxkXSd8twGzflVNDnDxVmCdHjJadtCD338qUnf9Sjev8F45NJ98RhJSHJ1NaTd7rO6uEFkPWa/t4iUmidXbyCpEefbz/m9P/4eer7EIJCJCegPW3z2/DmrTR13NmR9eQlfjjhrXXCwtYvjg6aVeL29x/LyIotLSwipPPNLdfZ3viJwukjlKr6kgGvy5ht3mS9E7F65ZFWddCLEtvscn4452HN5750iujZFTVdRtSqD9h5Cd5fTsUd3mkaOZETf5bI1piAYnM0iinM5mosNqvkcNTHiH/7+D/iL//gXqPGMwPY4OTpl5+Xzv/Oy8veClfnNG9RLdQqqRlcz0SyVwI7otiaMRwF+LNLqmFjeEM/qYno6uhwg+xOeHadYu3kXsz2kGlvIfog99TA7Vzz96X/CsQ/w/QkLpWUaRhZh9oREHJDNZ0gV1pklDGorq/zBj77Hg7tLRH6FjeVVAtvl8MmXvPjpX+CPArY/+w1rN9/gxnKAEl+we/QKU40JXnzG4pvraJ6FK9Q4jdd5vXfA5txdvvuTP6a2cg3XkTg76XNw3iK0YexqiEGP494RO+enWO0L6qWQ9VSR5No9MrkskT3j6LyLlgK7OyC/kMdIqSguhKOQ+orH2fNTlGoVXUsQCyHWbILijtg/OcGMAjpdi+mozcwbcRgv8HbCY5QuIs6ypDIpshWBnBIRZlMcX4xJ5GZojEmELm6kY/gyYVInFYQk9CpuKGLaXb7/7joDrcj++S5X+68YjT2CXJ3J1p/x8NYC5sjClm2misZYqCClM9zWHBY+/jF3V27SOjzlX/+rP+XVL/89ddFj/a0fUowUFlavU755j7HZx5r1GHdfIQkBoRzTm844fn3EBx+tsP3pAbeuv8Xc6gJqCkb9FqlsgVnO4o31ZTbmN0gqMsOrHYZelrUHNS53+1Suf4ts4wb+NGDx+iovtp9Qrhs0GvM0mk0SqSy/er7Hjbks2ZrB/MYSWi6LbOR48MPv8Ce//y2c3h7drkun26LbOeLw8IyzjkOxucG11QxHW484fvGEN9eaqONfcXHYQjD76NmQQBwwap1TX7qJYvb44tdfEkZp0BMM/h/W3qvHkgQ903vCxzkRx/uT3laWd91dbaa7Z5rT5HCGHA7NCpIo7S64WlEXulhJl7rSDxAggIAErISFllqtdsUF3ZBDN8Oe7mlf1dVlM6sqs9LnyeN9xAkfuhgBuhJFQPsnPjx48b7fYx/Q798ns3qFD3rH9EYdEuGMtBCBFPAr7y5TXHsbbzLl/OgFjc45xsoFFugxiS/StVucnHc4PJzR6Qpkq0U6A4/NpTpnh7v0pz1+63f/CR4G5ZrOycuHdHe3SQtw6cZV9HyIMpLoWANIZknlEphKj9DPsnHlCrl8iel0RHfYZDDtMxu4dPs7fO8Xfoe1W+9TWL1GKEp8+uM/oL5wjc2lLZqtPY7OmlgeXP7GFbY//Jgr732X129fJa2rxIFHNW+yvXuEWJBI1WuYbkBe0tHzNb58/pyx4fP6Oz/gve/8KvMlmWef/2vuP//5BPHi7dfxHY+UEFEzQ/bOP+HJiwyCX6DX7HCwt0/z8IR83mQ8Vlm5nmdwPkHWRZYvr3P7xnt88Jf3CfsWUrDLwcEux80+QkVm//SAS/U0qu5y+Pwl+7ttNHOBo/0drmT6yOVNRtMQ1/eoLhUp5lPsPXiIklZJJpIQCoShxFw2zdZbt9EmTRYyRTJ6Erwe11d0moMsze4OrcY+se9iyAZlY5k/+ckHrL72Ct1Gi4VikasX1vGlBF1HQE10GYwtSnMlFlfrZJMmwnQeK6nyxY9/iprQMCs5jgc91havEfd3aR0/p5apEngaOyc9Nt9+jVKo0gzGlBdXqFfWyOhZWsExl4wtgt4xflbFKObJJjWKqSF/8Mef84Nf/y6+PaU3njCKNIS4wP7dD7l49Rovmw3cyCBTmCNZVrhw5ZdY3krx2VfbvDx5gW2NKKlF1NIC9x59xe2bv8bJ2T6d6Yja5W/w4GSHK6ubTLtTVG2ebCJD2YwZiwazkURlLYEgyjx78oDPP/uQteV1euMxV1/9Ptcu36CS0JHtMXESCuk89fQyxXqBfNZnrhyytpDl8Zf3sbWYX/8H30MrLDEYjPAOv+KDr18SITGZzSjOVyitrTBLpPn9f/tv2Nj4Jo7VY2yf4chj0nWNy5UKf/qj/5PVG1sYvQAjCEhWUjxsKTSbL7n56gUGz/cQOifMVUz8zYt8ce9LnPYRS0aG2zcus7G5QfPxMQfbO6RyKU5Od8kUU6QqNSyhwEk3ZtOIONl7yGdPHvBgv8FkkqS89iaKdUinP2P/6SFZWee73/oGZlJAWrjC8nqRfKbMeDym1Wmyvv4a1cwMs7RMUF0kMkrEpNk+PaIjZfGUOqrdY9zu0unGqPoGYmJIKqmQEaFzOmDcGfLKmomUv8GN9TfY2/2AgpZltbhFJpFkMwO/81//V4hJmNoO4+mUbE7njdsLfPH5PS5cuISRLpJLpFkuFUjp0OhNOT7vYKYSxEFErzWgOz4nPT1F3HiNaNglkYhJZCLc0Ql/9skBWQpMe2eMBs84b7/kfOCx9PYluvf+LVmpSH8yJlnI8f73fpt7n+7x2vvfJJsL8P0sx0dDdp/9e3AD1S5dIFOsIfoprDCNbD+l4Vh0rIiZG0BoISsO09QqqWmT5NT6eXSYyPHL777H+LnNUHQI/NnPS5GRxX5vghTWEE2NvHGVMIwgYbFxcw4jGvDvfnrA5MUZXnfKoNPhxf5T5vMV/uov/yVS1ETWhsxfrXDjO3cQ4x5a5haTgx8zbO6gCgIrCxtUl6/w+ZOv2czfJFvfwBWS9Lp9gtAjLY+5/+k99nbvE02es1lyeffWJb58sYdfXCNXzlAv5yknMngDh8ngACEMiQSJdFFHU21GzT0StSp5Y5meYBIrGoI2w45PefbFGXoqhyx7eIFA6EcE1oi9xlP8xgF/8+FDVEklDmZYoy4pMWK7cUatlMF1I4RghD8853i/RT5bYaso8GC3SzE7TzFd5ccfPeL2pRzBLEIbv6C6XqeyViGtzVCiEne/3qfXbdJp9xm2u6jWgG9955dYfPfXuf/CYu36q2xevkgqESAPX1C688s8+Mlf0wwk8vOL3Li2hpfu03MWSZXWePrkLs8efErY2eM/+pWr2I0T5tdvcD6KCJQ58skqFfuMnfOIt2+t0j58hNvYwYgdyisbxIbI7eIV8qkMjxoNHjUbuIqMkvFZNzVa6deQ3Jhx45jj81Ps3oCkPSGtgix5xPgIKKT1DDPZoGJkCO0zigmRNDJ/+n/8MR989TMKxiW8mY2nxqilFMs1k+FxHzVRwvUHjLoSYlClkK+xfvNdtrdPaJw0CJ0ZOj55QyAU6gzzJXqziHb7IT49ssvrbDc6DMo6UypMBz0MUeTy/CLfu7XIp2cWW1dWeXzvOfvHPTou7Oz1GMcVVKWD50eU0jlWSkWysYzqiazNQ6yVSWTmCEnwyWdfErTb7D97wc3b77B+42202hoHvQnOQZ/s5nUeHhyTFjok4jGjiUC2lMXudBnMxniTPtZ0iOXYlLWQUK+AlmXQP0eKHTLZNL6QonXe5A//4ofoSoXLW4usLiocPzulKebY0LJ89MVdztsdbMti72Cf//h3fpuf/rs/QXdCBK1AIEo4x/eJJZNv/eo/4d7hAMV3MHSVaSLHz376MwC++w++y7B/THPcwc8UWFy4Ts06YmNdYe7KCps3X+HVm9d4dc7h8MWYufoqLx7uEM58kokUR4cHPDoP8CQbwXe4UM6xkk1y9+4+p06B5bTIbi8gIcosqi7K4DlfDwaY+m2Odx4he+fgW/TasPX6FoPWgEtbc/zs46c8PRqyePM233r3dT59uI0c2jw9PscOZlTKaQ6mJQrChEExz+LSGnPVNRSSdMZPWXjjDsrTbZ4fusRiGsnMcyRkuffH/yO9aZLv3r7E6lwZN1DoWgJv3Unxk4+bbGaS1BcqrFy+xK033+TpwUds3Hwf1bxKr9+ie36INAsZt1oMJy2KbpfOccRxo4flnlH3Yh53jvHFgLnSGtncCpM4zdPDAbPDT/nJJ/cZzjz2TpocHJxSzWZQ564wGh7TaA25fOkim4uLPPjpPX7yyQfMrJAtU+HVt+5w+eZrZAOZ59uP+af/+B/x0Yd/RhCnEJQcg+4p729coHP8CWMhYmvRIGsqtMY+dvcYrVjBm/WxJhFKehG1tsG953cZ97rEis/n9z/n8dO7DDotEpSQC1mMwGFwdMqTp4fstyYUFheoXf0Gn338CcetGbILC/kSufoG7d4MaeZyYb2EHMeMeiPEOOC3fvBNnhzv8MbrbyHKC+iuSC3s4kgp7LMJJSEiV8nQcgZ8+fUXDPa2eeOdb2M3m5hpheLaCkp5nme7R9x79ILJZMibN1dwohHPDnZRJjbpusrDp0+YzyfZvHyZqePzR//6X/HKoo6xcIu4tMh522Y4DClVFvjBNYuPPplyOj4hVc2SzeUZtQbc3f2czmjA1397j1bjmKTiU83ofPbxYzJJkyt3XkfDZtRrYA8abGl9UpHHty5c4bzRJLdc5PJrSxhhm72dHSrzm+ihD/EMJJ/AF5EqJXY6IyTVYNibMJpY5BfmuVyN+OnP/pQff/CI+ZRCIvJ5vnPKpYV53vvF3yKdrpEsVnBm5xw9+5gXBzOeD9u8sbpK4DRwvDZG3uTa7W+z6p+Qy6XZWrlDEAg8fPyQhw+6/O5/9l+SS8/RimwsqYAmZ1lVm2hGnX4fjOpFUkaZsD/hwd/+FX/24ZfUsglau9tMGn2aJ8ccnv57KNi+c+cmmwtrEKcRDJ2sXiRKp8h4AcVkmtL8GpXyEjnliGL9KoYMznhA8/yc0/4pN65eJaVnyGkys8GEyWBANgtWGIGgUVheZKGaJldMMUxmMGciQqnI6uUa+XKBpJkgEjx+9pNPePPdbyMnAuprl0nLJtbuHoG+TCR4ML+ALokkVIVQUtg/mrKx+RqNnS/YeXrAbDKknhNYySv0u4e0/JBRKAExKTmiqsSE6iZXqhbDdpsgEol1DUcL8IMUz4/HpPIRpUIdTUkztAYcnU5ZKi/hJnUSRgbcmNHZOdKkj5zJ4sw0onCCJkcoksbZwXN2jxvYloPlBEwmNp7vg6lTWrhN++iY2aSFlkkh5yqMB32iEYThDB+PYNbDG7XI6yrG0lWOe/tsbM4hozFo2bR7IY2jM4RJl4XlC7z2zptUNy/QmCgIUpUf/8m/YK48R76UgVAhdkyqm1f4F//7X/L6hokS9hh0J4xsk6sXNvBGJ2h+Ey8YgqwRJxdwCq8RjI4JJha4M/QwIvChIZpUSyY7z1+wPC+ysrFCtryE64rIssvldBFdACGaIYkqgjJPNruK5a7SmEqYkkoce3SnTWbNA44Di438HN1Y5uXI4WTokEjX6A/72L0Oe0cdjvb72F2brY0lhoKGPznFcqfIsoXg9+iedflP/8Pf4WcPP8Uh4PTwiMjucPNimvbxI5482ceKfBRZxbNcWp0uWj6HKkxpPTvAVUUGnsPZ7j4VNYdqGKRDm0u1EmkRus0jdAMynkfYeoruO3SG8OQ4YOz6iEQoAhiaz2w2o9WxGExChtYAxdSZ2X3mjYCFUgInaXI7MSNISJTzEpPphNnMIpMUCbQM/uSMhVyOYi6LrObwgxReZ5++kMQIHRIpE01PowYqXuCjizFHu095+uhrDvcOGHW7mOkZiidy68YVzoctHjx5ysv9JoubVxBiF3na4ag7QM0myOVNtFHE8yObX/yN79Nu9jiYeLRGQxiecuMX3yclFEgQ0mu+5OiswflA5MFXHwPw5ivXubS8QDGVYzb1WV2eo37lIoftLqfnI8atFlbzhId7J3TPThh6P3dJeXKEp0Qki0WiySOKuRxL1SVsy6Y9HlNZv8iS7KCZJXYP+jTPR0wjmfTqBpcWK2TdA86GZ7iCgue5+NMjaqrMX//5j5GSK6Q0g3jW53T/MRvrW7y4/4KpUifMzLOyNM+FapoXnRZm7Trj42dsZDWi2Yiz1jm6XKC7+yWHrZjrb7zFYlknJ455ZXOFN28t47gw+79dQdNhGy0aczKEwfkh3QiEVB5ZTDJu9Dk8PGZz/Q4v7/+QznCCUV3m4q2r+LMWSmWT7QcP8eUIFwHP17myOc+k2cAsLYGxhJYpkTAEJr1jFGWd196+jDdr40/6P/8K3e3R3PmU62++xfrFFQRgbDuUL19i87VLDF+GlBfm8UYDJq0OfiKNZc+4c+cVHu33GE4mpJMCF1dqjKdD+v2A3YGJnswSKwpuLJBJllgIJ8yCDDunZ3SnLhktw82cDFqG/PIKugNCGOEpKr5eIp7u4J7vsD+KyZbTzFWTNNtdLly4wVuvv8qzh1/iuz2SCVCRqFTqdGO4vFojGreYDgdYUYKv7j4ln3BpD+Ckec758T79Rpvq1VuIcYY4nWD7sI07E1ksLTBzA7SswEx1GbsxO4+2efngK25uzePoDr/66tuMPZigo5kZDCWm5UuEjsvYtRjYIY2uRbM7wG+/QEhf5NMPPiOlyFy5tEptpcbXBx7fvHMdXyqSViWiSYvWyUskKcuzJ/dZX5mnkjaQ0xmE+gpvv/kmw9E5P/7bT2HSJp1Jkq+mMZ09AmGLs/OXOGLMbDoitvpc3azz2cf36Y4FEqbJ1JnRag9oNUYU5YjmWUDVOScQIs4mE3a2n+DXMpy87JNKQqQpTEjiKxm6nR5WWOJv7n2I3TpBc3wUKc102EOJTa7cnqM5HCAqEuViln7f4vD4gKlWZv9om9HUJo7SdBp9FGXA/tEZtUoaVZHxYxG9VCebTaLJAorksr5aZH6+gBNGXHzlEhcuXGI66JDLKMy8EY939v7/w8r1S1vUKgvEogH2CMeNcFovQBSwQ5+pM2GumqKsiygpA91Mkc4qJExouhqlvInlCrheSDBzwbMJ/ClT2cO3WiiZChIWdv+M05dn+IqBkdTJ1kwyKYNc3iBfzWJkalTqNYJZD0nW8UczrNMugaSgGhmiyMW3ugz7Q3odFznWiEUbwR4S6ilCScD1fNzYIBWek1i4w2pWpJoSIQo4fnlCN4T05IxUzkRK6EiyQFaFiRcQRQrWdPRzz4qeQhJ1eqfPcQOXhY0NJlOf4WBC5Fg09p+SSen0YpuCrqLGAt3+iMbZCaf9IdPuOVM3xgkkBC2BWdER3BRR6OCELoEfoEkKc0ur7Nz9FCGRYm1lFddzabZbqLHIwuo68vAAI2sydR1Ozoc8Pxijez/vQURCwNTxcKceSWI8SaLffMbapVs4cYLxyMGdWYx8SOZyzPpNLM/DskPccQiRxIunH5OvbbK+uU69mEeLfazxObKc5LjXpZg38JwxlmNRWlglE1qoUkwipTOzYyJfp15fZaMAQu8YL5NhZLs4oYCUSROPJniBhZzJoUk2ntNh2G/TPOlhlkySiTQTV8H2FSJRJmF4JEOPcW/CZDJkNLGZBQH5skIkQcFQUdNVFEkh8mEiZum12kyGAzK5BDEO9qxPs3HCOPTpNRskEjKKksAJFfqujC+m2Lp6ne39I3whSTZTZb5co2gY1HNJyvk0yaSOItkkxCGCJJFDIZIsRmOP5jimF6j4soFrt9mq5EkmfFKagqnpuGHE2HYplIr49oBYiBETWTLFZVCyuAkZWQyYzmA6g8gPKJbLDHtDqgt1LN9h7IWICRNVd/FnFqVcCSv0sR2XOIiYzSwcv4+Z1KjPLVMo1pFVHd+LSSYXyRYjRDGi3xnSa45JmTnsaZd+o8vyeo3CXB0EFb/fZqgnUAWZ7sEzUmmNubky5VyeIBhz0OmhSRGmHpFMpQkEg08//hsA3vrO9zGSBo7jMZ5auNM+cgyJfB3HkUgnkizWcmga7A0ErKlH5DukNJuM6hA5GoNei2ymjjCeACJ6JoehSwx7XSJHoFaukq+UMHNZDFFi2Nxn0B9QmlsmZ6ZRBRVRzmJm0nTbPlGqjl4ogATeoE8tk+Thk+fMRlMWl9Lk81kmE5HB8QGngyZl2SZVMPCEgJnt4g919punXL/xFpKZwJr1sKd9fDfkfNjEtyPSxWVGwYx2r4nfmzCZTamvLODNPGQ1gWU77O8+YzKcMuyEiPGY2B0RRxa+EBBMxgSWRG2+TK40hyBLeP6EWNAYeiOqaQVFUlHkEIkpsdvl3Epz6/XrdBrnRAgU5xdYXb/ExO6zUMuyOldHVTQ8QUAxZKy2x+Mv7jKyRgzGY2ahjKtkefjgSybNBv1Bl5zpUyvoZIws4yBEU9cQwxlBFNEdzej2bWRRpH3UIZG2GbsDpMgnLYFpaIhylkvXFnm+fUS708U0NW5cuoDmvMSNC+TKC9RKSVJaiDNx6Q1nbCzGeKKCkSuQNA0EMeJ8HKEndcbNAxQpRpRluv0RjutRLVWYNTtM7QFSOCMjC8hZkytrNQ76bSa9DpI3QcHDDVTG0ZS0nmKhWiHyI2a2x+ZSmea4C0MH21eYRQJu4OC7AxzRQLMHjCwBzchSKBRYKpTIJcd0eiFOr0XakFE1geGgz+H2U9a3lhhNA5SEzMSd0mi1KFSvYeoi7X6b8XiMqIQUiia1zBJffvxXjCeghiFR4BLGM0xVJGUuoJfLrF1Yx5qM6bS7LF3YYu+zL+m5SYa9ISnDYGFhnmypgOg7BJMhoagwDiw8ySdZLJFSTQQfSpU8mXSFRCKLLEt0zxokCnX6Jy9RIp8gcPFCj3KlQiKRJ5sUOOx5eLGKKsqct4Z4UcjIlfBVBcfyiS2H5eUSjtKlfXKKFxukjQTZrMw0tPFmPs39Z6zUi/ixR2fYxbWnTPo9+oGArGaoV7JMJwM+/+rJ3wkrfy+RoTWaMOh2QRJIOFOaY5twtI+bytGzfGaTMXkzoFiuI4UjPEUjY2YoSBqjrs5J44T5xSR9X8GUf16K6/ZHGHMaYRQwGbeYBQP8/gnOSZdIXmbNSOJMQsSUgiJC5ESsriwSKQFJNWLUHxBMY8RYYzbskowh4TUZd1tMZwKxnEKJXYbnp9TzaVJmkc7Iot2eMLNFlEggo6fJe11ERaMvqRwHTSRpSvN8SD5dADlEJaKgKIzLBVJin+OGS7PVw8zmUSQVI57SbbzkQvga/izAmkwRHAfLHTHqnhJmcsS6iu0GtAcjBtMA3w/xfJcosvBjCdVQSSdzlBI6grZMty8QjAZE9gxtvYgojglDFxmZEA0rkFGiiKJmoaR1js56WJ7AzFUJJZNsLoFariIKU867XVzbI5tU0LMJdEPF9T1Oj/tIYszCXA7LHvHum2/w9c86xGKILge4oc1Jw0LLFAmlDKKkIzFAjyfkdAlf38DrNFA0mVh0iUOHfDzFGXdYqWeZChqBI5JUNfKlKtVkgofbj1Eq8/iyihRHEI3xZwNmUkDWzCFHIa4VEs5cwtAn9BK0bZvYlUhkdNLJBI7dZTmdY9CVyRXSCIrMYOJwOpkhCgpJXceaioiCSTIpYkghTx88IKsnkQOLfFbGmco8eXLM8q1XMDMSRkrBR2Uc6ASRwEljCkKa1Nw8cs+hXiixulLh7MkDSqbITFEI1AgpGWIEIqKUYDAJKJUqhNMJSsYl5QcMGxNc30GVZIyEiVFM4sUK3lEbPTWH6MbkMiUkXSIUNKqpEl1ZwJRN3MkpIhIJ3GoCsgAAIABJREFUVSeQVIIgIpFI0+2e05vMcAMR0wQzk0aJuqBp+LMptj1l6IfocoxpWKyurlKbu4SPSqvbo3dyTn/m0XnxAk1QmC/XwNPoDftkUzIHU4trpTzTWKLdHZEQA9I5g16rxczqUymZFDMJ/Fji8OghdnEdkyzlWg0zlUY+m/w/x0WVCCMVxwPLsZgNBuTNLLpRJp0soEsByYxIsVLki5dPEOwOuhySTyTJqTLHvR6Ol0UPA6ajEelcDlNJMGifM/ZEpMjCzJlImkoYKyi+/HPgmcH6wjpMbOzARs0niWWN9UuXCPQ0oRYhmwa5Qp3JaEAU2WREDWV2jj2W8IIiWiRiDXYIKxWaowmCICKICoIYE8hZ5ucKnHT7hJFIKOk02mdEpogUO6iJBKhZbGvErNMlIXikzQxuso8igeV7nFsjMmoaa9Qhm1dIqiFOMKA3iZlLGjgjm+zSInGkQtxFiQVCWWUmh6SSAo49wOoN8eQAwfdJGiEJI4mRrDDzFNRkmlLe5KgyT2APcK0IdxYQezay5nPy+CWm6ROOTkAtoyTnUGSRab/Jp1/1uHFlg3I5jZHKEMkG44FLXlEpKDNOxh7tiUccxKzls5yHEUXVZq6cwB4FBFabXmKe6WhMMPUY2iGikqRayJNJiSilJVwjRTaZQAh6zCwbU9N4edLk0de7aLU7aIGGFs3QFJdRa8JCPs/LvQ5itUjS1BEFm0JepFBeRJsMfp6gaSJJNcGg0yQspHAcl2I+CzMLx7bQ5ZDuxCdKFFBCkbSZIZg59LpNQkeiNeyjZxJEsURETDKVR3Y1ZoYJMw/fC5Ajn7lqAbwFml+dUyjlSWYNLHvG+dEx4qDBeDJhOhiAmEJUZRL5HF4koSoJhjObpBCRCTRE12U0HNEbe2xcvIbQG+LOHKKkjFFbZzwIkTNpTCOBGAb0eiP2T4esbazyxfGU9plFpZrDyBVBGTKZeehanykCigxpM0mUrVAQNRRzgickkEORpCJhZBIIqsz5wXNkLwDBJCBEwkYx6iiyiDNwcScBEREWApEXYuhZFMnALBtY5x3CsU2hOkdzZpFQm4xnIaWSRi7h0+w2MTMVNALEMGQy6DH1XBQlwbR9QCNMsFreQFZ1JDn9/8khfz83ULkEgcCgOSAjqpweHDJN+rTaLSaDGa6jctJoYc/PkxEkBu0WguuQVBQk1SOapLlzewlbEAglHSdSaU4cVqpZKvUKpwe7zKwuohKRTMqkBJu5OnSO+rR8mb1zi6c/20a02pRWCmQ1i/YwwcRR0dUIazrF6u5SlXv0mw5GaYnFW5c4PXmOMnJJ5TUMNUQTQzRZRpd19kYznFabk7NjLEyShTqVxRRri5uc92Y8O7NwZh4pGVJJHZYvkuw8ZuwnyZVKGIaMbbfxZjNiG6KkiaIkCOwp3aNd8nmJw/aQBbnMcDal686wIoFGa0w46iCqaVQ5JvZHaFLM6zff55d+5XWSqRy6MsZQZCJR52AyYCUTEU77HJ01GU5dFCmBKUpcWJU5FTUePjnlrKFgZlZ551t3WFupIUg+V65dQkootCZdDrpnXLy4yeMvfkw4CTg92iWbTvDqG3fI1ctkNZGVlTqGoSPrApEWYTsRv/iD79F88YKHDz7jyePHeL7Ae9/5DWZ+QCIeEw4tvAjiCKZHB3SnPUo5UBSDpcUN5hdXcBSRjrbAwyfP0HSJYrGCqSrYjWNCRacrSpiyTT5fwvVVzhsd5ks+h9Yy9ZKGr7mk8klqhQLO1GGxkOHUd1koZUmlTZxYptWRcdwEVqvF3uOHqEpAMZ8g7rZYX1im0TzD9brIqOhiHoQCifwSyaSLllWYSWncOIlMjOQOKOsyC8tVEhGkEyKpDGx/fo/MosHh2Zh8RkEJfayeQzG7yrPegGJmgUw5R5DU6UwmnO88xEiliP2YuUwGI5fDUSWm0wHXbr6JffyC66+8yUK9SFqXQTRQxYh8Pkfo2iQkyBeLmIsXePzkJWslnc/+5k+ZWBpRqOH1zjBilepcmvPpmKys49sOh80GpqGzUs1glmtMZyFDy8ELPGRhxLOXT3n4cJfTwxa5bIX51TVeDk955+YmR6dHaIkSuy/2abx8xko2Rza/wfJSlvagySQS6XUtTp68xM1XuP7md0kmqgiGjqKKiLMZf/TDHwLw7deXqKeXcR04655SMBa58e23ePz5A4RYwbLGtNstsrUbTA52SOdsqrUkCwsrJAtLPBt3EYIcxeAAKVNCkyWcQZeD4y75+ha6IfJw9z4nz54w645RCitUyvMUozHCQpVhO8IeO+hpCz2MSZXTLGTSWL3njIdnCFoSdB3Zt9i48RZHh8/xHIv5xXliRSKbhJNuyGw0ZTbyAY355RTMPJxgQNFMUcyVSBpJVHnAu7/8m5yePsUZzVDSJdRMmelkQKZQwT4dgTIilUqhmFn8bI5Kqczrr1zk8OQhCDKJYoXUYpn1co5IT/Hw2Ql2v4eOTyWfZn1jnoO9+6xt3mQ8iDlsdzjsdYhsneuLBdImOEMYjx1OWydsv/yKaZBgIaXQsVPs7+xgtw9YXpln5/E9vvsb3+NyLmS9VmCuXiGfT5CwOoTzdX7xjTdIGCahnoV0nb2nZ0TDfdrDBn3bIRBcynmZ9y6/Tqk0wtWzpE0Td+rQPp+gJCo8/PojxhOTIJK5tLbEymKVr49OSdRfJYhPcScdxsMGE2tIKKZI5jf46rMPsaMcgeVjCCEL5RRB7KNJGpEvMJ64+IJIabGGInbZuvwKCSNi0u0wGbnMJJNATfL83g56ep65+iIJs47ja4juI2LJwHUDml0XezRA8ttMhid42jJbG5dxRR/X90iZaS5fvIXZtzhPGniizbTfZ9Dt44gBahzhT2Ki0irFhSU0WWR0ckyxVGZh9SYvD54izwZU0hpzS3U6py3u3f2UpasrXJqvYWg5urZGrIZYaoE337lB0tdRsjUyqxus1st8cH+H3vCI9vYuvcYJjmNhTQPe+/77PH74GfVyAjGb46gz5fEn98inF3DVgGTcYmNhCT1RYXv3lM16Ga97wMsTAWt4hsSUbK7Akmnwox/+hCCtUiovUS3kSGkBB2c90o6Fkc4w6jTAs0lqOulECnHqcPHiJbKJLlrkE0YJzkYehAkWC0kw66QSSWLX4rx5wp0bK1zZ2OLosEMmobK4sICeXUANbKJ0DdUOCAOZg9MmDx/f+zuTlb8XrGTSdcJQZjQe4ro+5dUVvnqyTTKhoioK08mU0WSEGcD33r1FebFIZJgMbYmwGSOIMR/u2KzPpwgSIYN4SC015lHjDGciM+scEhGhF+us3HyDt9/6Jvc6LVY1gdnLE4R+n63LFeKcSdCfMI4N5FBCEhSiRJrXrmrE62t0+1NWN34JyU9w+Pguy6/dJhPNuHfY597eOaddDzHSmdNDklfeITh+SjZTZxLYNFrPkLo90kqSvphmtZ6k12vRG9isr27y1YMfc3V+CS/W6E99ZmhUV1eR4yEf7jSo1uqY2QzBbMro+ABNT3Pa61CRhzg2WBMbx+4SKglOGntoiSqZtEB1ocz8xS30xSqKbtIeHRHLGYRkiYSRYSlpMlaTfP7pQy5c2qRYWECSVUL1nCC0+PAvPub61jrffuddbl2+jE7E3FqNw7MzIivL2WmT3ZMuOw2R1knMb1yQufqNJX7hN/8T1t96n1PJ4KMjgS+279J8sk9vKuDZAYYfsDy/Qfugh6/JXLt9kfnVC4SSwfbOAz6/u83lOZMoijEqFcqrixTKBqcDj8NZwMneGc29PeRwxvVXbjDoWownTSpagaGv4wPVZMgXj3bZWplRVG8TaTl6jk9nYkMq5NqVNWRPYOvyBSqFFJpvc3N1i7+4v49z9pDG5x8xOnhAQfV4+/LrLKaHbHfGJM2QMHTotEZMmh6OvsMVc8Tn28fYrkimtEBh7Rq9l5+R0jV6vR5EefK5ZWr1KnbrKa+8+z5Kog+FCn1b5ODBCxbmCjz54Y8wp0POTzqk9CLX1m/w9d0jlt69wr2vXhB4MwxDol7NcmF+lZpZIOjcY+BH7B8dcfhyB4+QoONz8+YC+16Vrp/DckWm589IJg7oPTlgeXEOW8/S9BN4nsylZZH7n3wG2Qq+kMBQYuo5ifsvW7QOjznbfUyn28D3bPKpJGauiGHO0+wccvfDrzh98Bj37IB2/4Tvfes1rl5+n1NidnZ32bv/AD2KWN0IOT+TMPMrZMs1koU8zdBn6xvf4rO/+iNefe0tirV5dB0WqjK33/uH6JUccwWVx5/8lHtfPuF0KPPVF38LwLu/8A5TN6TnRmjFKrduJaiGCqGjk1zQyC3mSSayvPjwEzJrl9nuTigsrVApV0kgMG2NEf0p988bfOPNTarrSwz1IocznbdeucKk0+WXf+kHLK+t0+ye8ed/9PvMbJtxskjrZEA2pWHkshx3JP727n3Wy+vce/wJbmihyj7xrIk1A215g5Ndh6XNPMlcms75hJXEkBPLYHNti7KRxDACYt2hZ6msZz3m3vxV6nMind4he/vPEZlgOWlOD2MePnlCzBTZHdN8fsqv/Qf/EDFWOevscXSyz3TiUStdRDTO+eKzR/hRBt9PEQcGsiPReL5PZ9Ijbc4h+g6D8Yj9o1Oe/c2fU6ovsnnjOwSVVRpjhdMjBz2XRURDiIuEtFmpZVmsLfB0MmKzUqHffUpOnBB7UwQ5JJf1MFWNZyMVUQ3AWKIzEtl5eJfNpUtEoz1C2yI0s4iSidaesLKUoiMXeHLvL9i8UOXyVhUzobDt5ygY54ROwJc//Zzt3UPClMHm1gqJxgHvvPdN+sdPGB9vE417VItLZBLnPHvU58r8NQpzZRRDJzvRmL9Zo9Xok/PbJM00mlFBt0MSgoRQyRJaIcW1RYxqldEwwijV0LUCB0dDnu0eMA1j0vU58HqcH9/nwu1vYfojOnv3Od37ivlCipl5gVnrEe++9ya5apnhyCNrp9mfjHj77VfRkzrPdrbZfbHDha05FuYEGiOBxYqKmsgzi8oMRyr93gMGbh6vfUp1Lkd5qYRsyHhSmZenh8QpkZQv0NpvsrO7xz/+7beQ5AKynCKhZTk5OeXel5/iYbBZTXG0/YKlxTQrC2nKZgLVrOF1fsrVfAHVF6nPV7l0+yaL67doffoZp6dHXL9zneXaHHG3x9NPPyS/PMfbNxbZWrmOKhlEkz7G5IwvP/mQ+Y0Vbl5cZf7yPGPB58mz51TeeQsXhUpmwnx9jsATODxu4xlplmpbzFcF5i9cRq2vMpFMUrHGx+cnJL0dnuzvMZkNUDUYzlL07V2uX/8mu88fIjtdMimJuGhCv8LX5+dU5pYxKnOEusnUcvjqwTFzosztV9eQTJ+Xxy94+ODvni4LcRz/v8KKIAgxwFt3XmF96TJylMaxnhMnkiRqFznpDxhP+mhiwNJiiXwhzc0rt6ikEgydIX2rS1XwefDhLnIyz3IpiYLHyAk49ZOUjJi/fvmc964ss1CvYZgZdFkjrZX52aO/prL8KmayiKopKCmoahIffPyA83tfsXx9k1xeIRieoFdXmF+9zk+/PGLw0x8S4RHW52huP+DtqsBxI0n2G+8x9Mbsbd/jpNXi2tIN7lSS6EqMkQ9QtTGzsxY78hbGtMN2T2ZMDd8FabTDD37tfV6e7jEZ2ERykVRlgUI9ze79H3Ht8m2eH4yYGRKSqqF5MkLoUlKTHD65y1h1kKUkjBTu7z4jnFuk1+6QTyuszm9Sq11kFAa8evkSve4+khQwm/rEgcDyQobjSUzro39O+sI7zMYhvdNjpn6Ha7dvkBKKvHr7GwwlEytwUJxz/pd//q+4tbbF5/vbfP+9O9x59Rpi2iSdVPj9f/XnrFVlBrGOUd1k5cI1FH9CMlXm0cNPabS7xE6EGokMwwET64T8UOLXfvsfoabSHO89YrT/EfbF3+XHf/k/cyNl4tkTLHdArazwytrr/K9/8gHq5i0WTY+EM6Yx1qhs3OGr5y+oCR3K2RweKqeDEXVD4fnJU37xjbewvZiJoOMncvQ6fW7cmOdkaJEQItRYRYw1FNXjSWvAD65e5ngy4/j4EKtxQlqCJ9MK37ox4cLSG2CWacxm3H/6lD/7n/47fvtX7xBPfMbWlM5wRLc/5sbaJu1mg7nNq6RqryIn8wT2CYPjHb7xrbcZj1q8/PqcyHYoluFw7yWLCzqFXImouI4v51FVleuvZtl79BUFc517d18w9iOUTIJB95hqeh1ZdPHDGa2GTX8SkV7KUU9H1Fe3aFkpMuGAhDygo6ksJbawGh9x5CQoLi6RSZWYdgM6YZO1Uo3PfvYl/f4pkWch+j4Dp8fu7jmXr96hnApQZFDTBV65c51xv8HmwgVCLeLciWn3Q1LdJl+2e/zT776DNz75+YfmicTR8x6fP/gbthY3kWIBVTPI5lPUKyrt3VMOVYOUEJEVh6RyJnL9Go9+usfqospRq887795icbHK/a+3+Wf/xX8DwH//3/4e3f4h57199KTMzUtX+HL3OWY6z+uv3kJwRxw8+YpRY8QDt8aF18pII4312jyr8wUah0f88Gcf8gtvb3LadahkF1HUNB88eYoZG3z/l38NmSNGnVP6Zwd0Trf5tOUysCWW5lZYMFMs1GtUL6wT2hZ3T1y8k8+JBxayaZJZrrNulnhy/wOyqzd4+nybQt7kxquXaaoD1o0r7D3awR55WL19fPuYZL7OyWnE5s0r7D17RKVeoFjK8fT+Q7LGEjeXTMJUDV8U0XWo5DVO+wOs+IzBtsSNKzfYXKsT+UN2BgL/27/8MXfeTCBaHvbYwglnBLLO7Xfe4YM//GNcUeTijRtcvXGNB0/vwtf7eK/+GuPmF4yOTjGEHL/569/kwef32frlN9gfOew/f4F/ts+rZRlJexevHvON65d4ufeS46ND1upFnp+c8fxIIJ72qFUUkrpA63jAj+4f8Vv/7D9nuL1NLp8gYaSY2RFdu83B+ZBf/dabNPsDMobBRrXE3Y9+xGw4JVG9jhAMmY06WK6NuFDm3YUrjI4+4ngak04XWZiro5Ty7G4fkDXTjEZZOsenRPY5i6sGp6ZA79BiOO5zbWWetJ7g0wfP+PrRE37v9/4HHn70gmlokStkmSvU2Gnuc3tlmdP9Q/rDPURNJ129hJst0T1uMtj7jHIuR25+HiGVpr19yPffu8q/+YO/JFmtkS1UKWQLLC7kmRzvIhTWGQ672K0XCM4UvXCFTx/2ufD6Fr3mB3jdIbpWp3rpDV6ZF/njv7zL69ev0u01aHZ6REIOrVLl4KM/RIgHeFKK5VKBGwtZHg0VxtaYl8d91ssZDCWkPexzMHBZulxhbeEqYiiB6pLOwI1Slc/sAdHeEc/PJ5QzJTbrCyBp/NVPPuLaze+Qyg0J7BH4IaZh0tof8NHjr3jt9i00zWbkTBi6BstikWauR0ErMTptYfX7yLJCev425Wt5gp1DJKtFe2pzZAmUzAy1C1WGTY/OWZ8LJZ3NaoIfffGUz1/ucHvrNroqMZVsgmTMcnWRmpGl1T0iqeSQSSL6EdGwxUcPvySdL/LqL71PUVPoNv4v1t5ryZI0u9L7XLuf40frEzoiIyIjtaisqi7RDbSAGDRsOAMxFOAFCdKML8FrPgCNV7QxI4wYmoEzAIwYDNFAV4vq7urSlVmpQ8ujtXA/rp0XRePlEEbwJf5/7b32t1aHF5d9/uXvvsnVqMTo+BWJjMzTV4/5s//lXwMQx7Hw/3mzsrW8TCZTZBbJXE1HKJKLZaQQ7Ama5CNrIX7jkO/84D/lon3F4UmX6XiMHnl4toKUmPD6eR9CBSsK6VlTGhctTotl3q3F7Fzbo7K0jSvpPDl9hSr3CYMk4rxDIZsgkRYYzU65OB4yP37Bys06iuLg2wtCL0kwtPmbv/hz7LGNIsokEiIl0+PdW5vE8xhleYnz3oJOe0QhbfLHP/wuzRfPeHtdwRA8JiOX3jSBV73B87MRhYJJnMjjeQt8u4ssWyQFG9PqYux+l+Ei5Pz8iMvLM7xFxNrd2xTzW8h4yIKPpGs0rs4o7OwwmrqogY8/mzNzbFZ3rnF4dglRgSh2EESXMJoyHl9izGfMjCyFTJo4iuh2rzh49gt8IWQwTdG5OqPXbKCoIW88qnNn8xYnszQrO1uEkc901GM6nVG7eYf8xhqVlXXmYYrz9oDx5AwlqXN22SRfLHDZWtCb+PiSgiTK2IpC2kiRra2SLugkjTm5hM47979PYe02f/+rz/niy48ZtA8YtxvoYY7r6QkHZyMmI4mkoqMbff7+x19x/3t/imwkGXRaXByfMOh02Xhzl6w15eLygjidRs9qKG6bi+ePuX7rfYRijWS1hKwLeLMuWT3Fq9enbO+VSZka1UKafM7g45cn/PabD+i1LpCjBtmcSbK6wVgS+J13bvLs2RmffviY519/xfDyiOrCZ3NZZj6t07Vs7HiBqgnkUxmGcoJ0ssBUv48X2Ehhj6ShoyRVGl+9Zi0vY/VOiMMh+Uqe9NIe1eUyB2eHWDOFkOL/3aXSwMSk3+pBlKE9hfPBnN3lNZqdl6TUNAQNgsglCkEaDYiNa9QqGfRFCz32EEJg0kGxGrDxNquFMmGoYEcxmZrOhqnxwc8+YG7ZeKMW9njAyFrQGfSQBAGnN8WKIxQNKoZLEPQw5hbHboHJJCYZx2wUE9R3ttDFgP/zR885OWnRumrTbl7Sm7Z5s1ygcPctKnmRq2aL49MOaT2DEMOjd9+nMH6C7UT0ojQOMZvFBF7mFmubJqlcnlDOMPUl/u7f/VsAbt3dInJ7RC7EFAlFC0OwWbn1u7QuznHmFoXKCuPIZhE7yGRZ9HtY/gJHS1CqbKDnavjtU0RE0uYaklpg7Lco5EsM+69oDqeIGFQKNepL6zjDKa5RYrdeopIKKSY9skLAwbNjmqM2815Ir93AcybkUgalbBJbT3N6NeDOWgpTDTlvjti9/m0++Mu/ZrOi05uNMRWP7VoWs7xOmBVpnp+h5KpInotqW9x49D7VjRw9R2Pea9PtX+LOx1Rig097c3Q/RdYUGdsTnrx+xUdPnmAlkkS9AzZvvIGcqGCWC1Q3Cix6LlPxjGvVHUR0dD2HKCT56GcfMzbKXB6+QBhP0dQMYirLoN/AuPsOS9ksjj1n3ujg9ufISoEvL69wfIkwnFEyFZKRwIc/+YrPX1ygJ3xkc4XeIkmrbxFHXd79zh5enOSdB2WOXr7GnS74/nuPaF08p/HFJxirKyhKGjUI8GZ95nGd/aMz/uCPfhdDF0CVSORzLOczNGc2vcMxvqSRypUpljcplK8xOjnAGjdI1QsI8phIGqMv18iLKxQrK+QSJulUjXxhlZu715A1gdVSHl0eIcgiYRTjuTOsUKU3HKAqC47Pmpyd9rC6M1KhyIOqTEJLI5UMVClAHc1o9WMcWtzeq+EXN78RLBmV/ukxE79BunaDH//DL7HEJLVruyTdBpIqkNfz5PIa+VKe+lKe7ZUEfrvDq8EAU1ZoDtuEks+N7SVQVTKZBKJZJFvdor65RWFlidYopFiWyYsS47lBZOapb9dIKSLvvP0QIzZRjBKOpzAa+PQdhYKhcXzVIxrYFHMZKktFyprOyuoGq2mJC8cmEn0SRoJAWadQySMPniHGOpEXkBagrgs8afSZ2yE5cYKoyfihyrQzpzt8SSUlsr62RZzJECl5cHTOj77ijbfeI+6OkAMPXZhA0AMlgVnZ5Iffv8XR0RGt+ZxMqcrbSzf45Y9/hDXosr1cQtZVRCPB1vYmatanZzkMu1OK2oKMGTINYrY3KnTPGhSyGS5ar/n62edcXjT/o5uVf1wo3Mo6smHSnwyQvSFrN9+jkk2gEBELIZoac30lizOe0+t7CMT0R0NOzjpMeiFdPIzCKu3JjN50xMyyCMKIjfUs37p/l0DLMhh0mA76GFqJrCKRLW8iYqNqKUQ5AUFM+/icTDLP0q3rJAyTYGbTuzjj6+NzFD2FqfmkTRVEmMwdJguBRMph5KU47dq05y6BpLFRKJI3JyyvGDRCnUmcwfYTXHUtSrUy87mF7oZEXoQuqaxms0wnPTKrO5zLCfrjKdPxAC+Y8tajH3Cw/4qN7W1y+TxBHDMaD9koFnD1AE0yEZnjIeCrOSrFFCNlk6Q6J2UoJPUkmUyBB/fvYm6ssFGu0Z6LCKpEvWJQLKR5uLfD2JmghRLJJNRW8ty4/S2cdoSbSCBYHvsvn7J/+ppZ4GL4MZJSopgKSRkqoR/TbE04vXzBermIoFTIFWvkimVkTUdNKKRUCKOYme1jLVzCSCSjZrBCGZSQrCGRTRrIkkIkRBSq12i1X5FOK+QKyyhGHtvqIEQSWkKjXsszHE3pTQOShSVmQR975jEft5CMBLIoE03GXIyaGFKKRv+YcfeYyaTH3I8gtECSKVXWMSSJYNZmNr6gvLaNpplMr04ZjDtMZyGKkOT6eoXh0TOmoUky5aHqAmFsMPczhJHKvHuMJAdoyjc3S7qoM3FFbFSiwCBhD1AWPcJwTi4pIQsaATmGizmhAclCGk1IMV8ERL1jWs0R/YGNZ3sEToecoCL4l7iCiaiaGJKCM+0TmyZrxRIxPnIiTSZXppBN0U2o1CSF3nBIiI8guPjulJXdWziJdfLFPMgKsiRi6DJzN6DVGtM+fcnCnmI5HpOFg5lNE4wsZENFTyoYhogowngGxfoy9nQM4ZxwMaJ3dc6vvnjMw61dhFTI+VWTxXROQjdIVDZwro7J3rrPqDEg8iLqJZ2dJZ+XrQghuqK3SBOoRcxsnkKphGIuk68tkc4qeJ5Ipz3m8PlrPv3lNwm2m5ubUC2TWt6kXtnAiSfs7e3iJzQiD4xkhnSpQClboNua4TgTlDBAj2xCq0+jN8YdzlhMWqxsrlGqVbAWFp9/+gVFU8KfNFmqbnA1HHA+GpLM1Th4fUwgcTiCAAAgAElEQVRkJLi2VeTa6iopNUuvMSZY2BRuruMNz1je2iCzvItNiqWqwWIx4/nBKaogIYsKimKQSa5x8eIJuYqJpAeUclnymTKzyMLyIkqGQqs9J44iSsUUq4U0Q39MKvUNpUgygVQoECoacjZEE1SyuoIXKnQth8ZsQDaSWN7eon15waDdxPJcYjPNSjaD4wc46grDdhdrNMDzFqQkl1K1Qnt4wdaShKHIWPOIpBmRM3IkTIlR10aMNVK5AoEmIfuXJNLLCIpCKIjYXki/Z7PfGfLGW+9zfXOJQkamkDWo11eIFw6So5IvZbmaeCximUI6w9rWEhfnNre2Vwl7PVKyyLXdXXTNpHVyxCJ0mSOiSApGJNGcSEjenEYnRFbBsy1m4wm6IdFqniLFIuLSFvNYIA5F6uky08Ecu2vRtALS2QxmSmYybWOOugxDjVg3QNFJJFVSpkjnsMWtnVWmdoyoGCiqTBjMyesBB60RSjAmUdlkMBd5/fKM2AsxCil8T+H4osOo3SS055jVOqvFEu1GF9XzKacLJCSZef+YRssil0kzsAbIUowQ2bQuD/H9MkOrSeB7yAQQLOgPWvizCWIo4soyWuyiqyBkDFxrSGussru6yXQ8w7Kn+FGEH6Sp72xy/Ow1c3+BKIlEXsizF8/ZzYg8PzonkyuSSefwrJDD4xaplEE6a9CZdzFVlYScpNfv0zl7zsqNbVxbQxU1wljifLjgqDHi3QcbzBYpSgmNoiEiCSKZZIrZVZtAT33TQK9IiN4MdS3PbkHn1cUpDjZyQiLWE4xjmfp6EmITNW2iJTQEd4Ew7HMmF3h3c5WxN2UWebiCTHco8eL0HE2oslswEBdzzpsjTgYBq9USOd1g6Lkcnx1xcnxErzv4j4qVfxQNNI9iDN9BCi3K+Qz15VXwZywWHlIcgCwiJBM49hWSV8ReCAynEybjOQEeCyviwaM7WIsJoashCRqB4yJPRhiZFJ2Wz6w3IvZ9jHwZyRuzEEQ0VWYynyN4kJAjplZIdm2JIBaIxCR2INPtDxkPx+y++Rsw2keVIixBZRZA5EYU1wr4VzqFbALPsHFwOTprce96kYYQc+7BPBDxvZBpd4qaSjB2BYzpDFFSSSd1knJMJzA5n6tc9S/QRI3a0grIHqrkM20NGQ0a5DIlcCMWkxHFm7tczi3ylSUcaf6NPRToqNkU14s7OG0by4oQUEmms5SKNcaKw3bJoDFxSJtp1vMm3XbAbBaR0kKUpIrvi2TSCbL5bb56+pQRpwy8Ds3mOWN3jOHkmM+PSFYkCpkB9UqOtGHQijPEiwFSsoCZrqGnkviIzOyQ7mhBPJ8wnU5wPYFFAJEgksgn6I16rJTT7GyvEDhVWp0Op6KEH87ozEM2yyLJpIDra/T8JGpGYNQ5Il8uoBsGleV16vV1eu4hV8MJhqIixh6OPcd3I/RchkbnHCMVEdoSspFFTek4pkauJIPtMfHHRG4PXV6wlIo4ef0cIQiYWgFCOMWM+ggpn1evDljde0Qqu0YUSMxsjZalMDpqgrBAjSUkySQSZeauQ1rWCNIKwXRA6E9wnBlerLK5ehMngqlvIpgFdEkA10cJOly0RywlJMaOiy3MUCMLwRUZzmfIxLjuCF2OSBZVAsuk6VkQ+wSeS8JMkcpVwJ9x2JgyaVv4gYWopJCTSVJmCmPlBkXfJNRVtEhAdUUIIi5HHvl0kePAYeE4uF5MHIiIsYikCghSiC4KSGHMzPJwQonj5ohSVsPxAub2FHs8ZDBVcRwRUXQwlJBkMkupWmMaqPRJsB7JDDtjEqpApZoj1D2KVZnp4Ay1/G3MlIFhgKinCCigJDRiNySKQYgF1Cj8f96NyaCLtrWNmK9BKDK3dARJY3r+Es/R0FJZIksidDyq6RSNyYS0nsHUQBJC4jhE9Bw8TWNuOaT8CQgLYneO37+iXK+T0CViFswXA8YjhZAkeuAxnI3xa2vgCVxc7aOnRTZWl3AuXrC0scVCzPLq+JzzRo9MSSf0RlhhgYyaxtR1pv0hG7vX8B2XRFImmckiGjniUUhSVlmqp5h4Q7SkRqGWQgocnE4HKbkgnS2RzufxVZFRf0Atb/D65IxEvoCilcmXTARNpBTIrK9tf/PZL1xiw8B3VQQtYHX5Js+bMl6kIbo2kbvgzt27nLb7FEs5YtlDiGVMM4mhR/jzEZOZRiyIFGtLGIbCrH9MOIa9zXXcwMbxbRbuHEkF1VAoFNKI3oBMWiaTyxPOIjrNMUu5BaNWm4QqEIcKl1cTbj5YRzWKRH6MGs4xRY2kpqEnv8F8G40Wq6k9UqkUkWDh9FxqWYMLU2JiX2FLAb4koHYOiBQZL1YZDWfMR3Ok6YJ+0OfookkyFLHNJNO5ji5MsadNQMCe+1hBiKaCrsZ4BMTeEKffIGNWSKQzmDmTyaBB1sxy8PoAX3JJGGXGXsw4dFDdHqKyxdHRKYv5iKQS4YV5Juk8ipthZl+REBewsBh4LuPZgqmv4y7aTKwhspAhlmIalz3i9U1CH0ahRU7XkZDpDnqkZIuV9RvMRm2mowGurWILMyI/pj+O6MhDbNfCcRzCUYDtOYynAdNuk3m/Rb5SI2UkYdJmPM1STaVREzKCJGA5HuftJnJaJ1AgchckjSRpzaAbjLhqXmIsrTAP+hRMDVlP4WMSxmOWK0UmboDkD9CFiGy5TCaZ4ur4FbY9IgjKSIGNHPQoVJfAmWILEYkEZAop0qkcg+aUYlKl17EplL9JbB8NuliDIcWlPWJ5ShCIyAkDIplGo81Vp8+D9S2SGZ/ZcMZkFiCHKvuvjnlj9xZ9d0Eo62j6/080ULZepZhPs5xNUbt2i1xOpetK9EdzQilEMmTOLibcvbtEbA24OOkQBAHFrIbh27DwKOVzlPMqlXoVPZOlMx4zGS0oL0H/ao4aKCBonM8HZDnhaCpi2FM60wXThYUS2xwPZbKFAqPBAWPLoTNy6A9sqqqBuL6N1bpCCRQCzSDMJVlNynjFdTwrZq22Riqj4oVj5lObdDHH01bIeGjTHs/pzx2Sgs7B5SFGscZwOEJQQhTNY7boMipscLrfJGiPWS3m2L1xg/rmbV79+i9Jp6pMx32c8RS732UxahOkdIS4QipXRYsDdMFDM2Lc/ArL1RJZDSwxCckEuqFgT13GzUPWcwZhuCCnS8iBz+v9Z/zol+dkpJDZoIWzmGIm8qxu3OVXB/u8+PJDmvMYYhlVVrA8m1Fjn4Et02ocoQkWkqqAWeXR7bucOSJ7OyvMAxfbCYgChaOLAYN+h/bpc/Q4JI4FvFhEzycII4vlcoUYESKPwPe4HAT47edESgrPniIHFgnZRtAi2lMLU8vTnYZEQky1mGGrtkLl+hYvPn5BsZgjkZQJYhfLc0kbBmN7zu7aFmZ1CzNZJCcaSIUdjOyIjBdx2b1CUBXq1RqTxiuuPv4YbWkdQREpGDJ6tODLl/uM4yT31nMIUp6UUaRUKJCs6PSPf4amFIh8l0A2sASdycJlJZNhaT3NZGgBMyQ1QE0m2bp5j8llG0cxSSVDMgSoozmif0mne8HytTqV9QqllRVSpSXymsGlP8d2s3jzOQtviKQL3L/+gNP9z4j8AHt8iaElMM0Urttl8MIicA7J6AFKMoeRX2dt4zZhukgtKTNwRMQwQIlCHOubPBRxMWDm2djjGYEdIAk6o34bI68gOAtyiRyqqOC6Fl4ccPTyhJUbu4zmKrPJhERS4O1v/zEXvR6fffYZ9aTKtb1dzEqFs9dPyFSufyMajp6gqCFCusCFW+T9Wya2ZbC5uUcil8ARYDSNkYIYOwRm5+hGmlKlRjat8df/+zc20M01k2J5iyBUuGpfYlkifv+Y/ssThr0ecuCieg4v91+zu1NltogoJIuYhRLZ1VXu7j1EFx1Gvk3jpEXg+yg6IC6QZwu23vwuw3mPbEKmasCs+TWKuoXmTzlqt5G1JK4b0ri8QigmSZsZQifGTGQIvTGDziv2v25w97ff5erlEzZv7FGq1Im8iFngce2NPbyTJo4boJgZjEIFpAJ6GJFcX2NpfZ1CMYsiCggRBK0RV1cDatt3SGULxAsPpzUkpST45FefI8kyiWyNUrHGWjZPXlRJqxp27JEs1SiW6qRljavLS+5/6x2uzqd4rouhqVRKZW48eIcvHj+lmCtwdWEjGyU2drch9BlpGpETYmYVMvkM2WSSkuRycNHne+9/j8WogbcY4LsT3MkIRJlqJeLFZ5/iKCkiOUn/9JhRmGRv26XfOEIKFqihgjVVWXgLjp9+yVRTqVczpHWBXqdLI9R4/MVn3Ll+jb3VTbLFLKEmEo8CVterWKHK2dURRiHN0t4Wc39CQc4y0w06zRZu8xCvf8l5a8xFs0upliCXk4j9iMhakJMc+pkaRT1Fr3VEsBh/k2dy0SK/WuTJLz7k7fffQEmYBLGApiaoptdJBqc0RgHn5yfEzCmupmgNztnefMDli69ZSqhsVNKkDYnjgyafHwxYvpbicv8lrbHDGA1HclEyGXJYTGYT9GQe3Sjg+zFK0qLdjvFElVgUkUSNlJZDVmJuPrzP8PwFnf6EkWXhOTNsv4AQOxw9/YzezEVPpsmnE4wmR5SKS2TdOVfdLm4ckEnKVCWXWarEW1tbLOwhoq6gpZM47hhPTmEvLARk6rkcpVQaz9M5HQ9onnWYeyOyVZPa+hLF8gqDYZtSLk8QTpn12liuiFpZJ1NMUF2vIjFj7gRMhwOcfgd74JFOZBm5AkVDYDVvUshmmS5iEraC6/sYnkcuk6BQrxAZGZR5n69PX7K1sc5KZZWkoBMOW9jKiK2lGs3YJlBF8mmTSkLl8Pg1plamI4JppPDmCw4PXgL/RBvo7Ud3efjoAat7t0hX1+hMbRRZYNJpkBeHbJUC5hjM5hL954/ZKqYpLBtEWQ818Nm98wY/+uSX3Nzbw0Dk8tURx8+P+OGf/B7HL58SjtrMZj360wG2PYflFep+msdnNlqyQqW4hirniGaHrFayXHQCYnFGMqORKm4z8lKMmXFxYqGqEVEQ0D6f8uNPX+G4Ovv7z1lIAqNxgDVSSJU2uAxtzk77ZPUiCb1MJKcZ4VEuO1QSFZKSy3i6oG/HSLkcZ/tNvvP9f8a038XrnqMLNivXNxGydZ48+4p8oQqqiu72yAxf8auDS+LKEqbT4bx3SduNcUOT2auXqMUN6rKEL9vEkghKHpJ1iqvX+OAnP8c5O+P5l5/y9MUBe9vf4Y37b9KPYx6/eE22uMHujbeJYpEPf/xXJM0E6niBklBQs3nSyTrltTSeUSW2FjTO9ukORqTKq+xdL+O7E7LGAEmOMNNZSoUyK3mRoJAmVAVIFymubHLj+jZbOQ0jt0LkTHn2xUd8+fGnHD17gTa7pJoPqNaXiaUk/e4VrdN9mAn8qz/8U3ZvVfjVJ0959tXnHL18TqM1orx8F3/wCdfu3gXZIA4ckqJF73zAu+/e5moYIWfrrFzfYvf2OpovMwp9KgWFWqVGpNc4n8lEQYMgmFJTVZZ390ikVWbenH56i9/+3vdojnt8+mSfp1+e0byck8qbeFePCaQMrqojTBekbIdSIUVn3KPjbLNoNFgvJLh3c4e9O2/Qc8pMFwqHL78kmSxRyGaR4jb7h1e895v3CJP3yJZKNMcCf/txjw++OCSRM0gZOTbXriP6aY5fD/nixRnfv38PMRhT27gF9pDxxReQFBCsJHZ0SissYuoaBT3CiRTSmTwXRwNypSR5Q8Oeubw+b7O6UuDgy79j7dob6LGGPZ/RmXVZ2BHawmN3r4xqaPRnDpdDG9FMUClWOD1vIDsLYi8mkNIs76zSuHjKytYqkZ/GdlQs20Fwx1TXNabuPpfNCwpLK6zurKIYPV4dTTg8k5mLGQ4Omgxbc9aLNa6On1IVx5jZZbRUjSkaz9o9fv1//DsA/ps/eI/NlSzz+ZCzyy6rhTzMexwJOW7sPSC5VKNraKyuvElxucCrs5h6bYVCWsSQbYSMydTp8Rf/5m/47fffwZ8sOHp2xPrSEmb1Hr0owrBm5PNrjPwM//Dpa0rLEte39wgnNoo8w8jrrNx5mzcfbvJn/9OfE+YlrFDgdP+Eoycv2Lz/HfbuvEWv0WH95jr1ehFDVbjyFkwsl5rb5aJjEZtVqqtb5KMA52yf4r23eX11xIc/+oDnn3zN6t4uG5vvMcyVWAgTXj37imbjiuXbu1ydDnn027/FZ6+ukHwHXQ3pRzajs2d8ddSjVsqzUcmgYzPoXlAxTQ4OpszpMuwe0Ox3GLkhDyo6D0urdFstyiWdtdUqpVyBhChyspjT+OpTxPmIeafLeDJHX13j4brKp1+f8md/8Vecvm6yVt3kT/70j1iRFKahSiack5UENE0mKqbZ/+oLdt64Sf/yHEtcZWqrOINXfPcHq7w8PiKtCazsvMVwFvLrX/6MWMyxYyZQ+/sY6RK5QpG8kWBypbL+rRtMrNe4kz6rxSS3N+psZDZYHH7J3TcfsFmpkJEjECWk4g5rNRXj5reQE1ke3L/NSqXE0dcn/P7v/DPa/QM0ySBXvkUidx2SS+R27mANRpR2lpEUEX8yZ3R+Sbv5EdeL2yQ1nXwCFrHImW0iZe5RyV+hCAZWHLCIY9BMMtUlBifPyQd5Vh5cJ07UiVyD22tphi8+p3bne/ziF7/GLNeoX1/FDhp4zRGmaDPyCyzmM7zpHClKce3RDjNVJpVLsHbtHqXVB/iJJcZCm+36DbZ279FvfFNDcmfvLtW9LQLB4fZbv08imySpyAgLl8mkSTVjwjxk+9F7ZNUki/aQKLHEbq7Me4+uo5RqVFaWMQyTi7M2g8uXvHVbpxMuY+SKJPFRWk3WbuT56Mc/p9noYwsaS1trPLi3ypOjK3JbSzz5qMnF4QHZXII7b36L5rlFilWOTj+g0elxfDrg4LJHr65jXXVQa0mKlSxiMsPY0zm/CPn5Rz/lN374h4RNl8y0R0mdo1TKbO49Igou8UOZcnGFpCkzmr7i4fUf8LPHV+yt1NFNk1a/w/6zx/90sXL7/m0qtTWchcK03yWfVGnuX6CKF0Sxx9zSWc/bdM673H24ib2Y4/anCOOIUZhjIqcJ7SFZZYGRMhF0nf7pS1o9ePud7zH2M3jGGmp6iaSus4jqnJ167N5+gIXNIh5Rqec4dpZYX1vn3EqTMdcwZZPQmyGlK9ScMwpJA0tRCaUkhpqj6ZuMnAROUOLWdp7Kmopo2oRnz5DLD2ich9y5uQTEnJ9c0jh7Qa1+ncTxa1LXKwx8gfk0op5JY8+nfHtP42wgU1lKkymLNLoX2EfH/PAP/4jdlQqJhM2Vt+Bry+R3V/O8+c4P2W8OuXnrXeqVGkE4585v/SFffPQYN+zjjBwSASwnNLZzVV4eXLGROKVn28SCQuQFfPjZL9ko2fzwURIzV8MatWmef4EdT1m9+cc4fkCmLDKYdrFmQ+pFjZETIEybCIsZWrZELpunEs6Zj2xy5Sqct2gMfUahQijJDI+uSCsyZrFKfnkXXzPozSeIuoauiqzoaYqrK+TKFdKpNOlCHrWyzf7+CXv1Amqqzkwr4coOz1+d8T//j/+aR9+9zdu3Ntgo53G0iE7jNb/+yWOMazss3DYZXWRn5y32gxbFosDDnW9zb+cGad1gOp6wXktQSgl0+z5EBURBIqE4bBcreEs6rw5P+OjHP6FzeUKhmObe7jadn/+YUI+o5zSW1wr4msCPf/UlYnWNZGRi5orMDZVFwqeYnGGNHfIpl4fvv4EiKzT2jzn58gukTIJ+8zPu1XUqpSSyKaBkBW4syfzNL/sobsxPvxzx+bMGk84hvfYRvh9yMOzw/PEXeJ5DfbmGMOtzMulQXM8h+AckFIFcto4a2zTsOapQwpdSiLFDsLCYjiTswCGfNbCmHu7YxvEdFkqI/eqItbfep/9qn8ifUaoWuLa2gx7qrFZ9np67dKc21nREOJsQKilwp5hyjp37S9x/9yE7Nx9w2GiTcASeHrQ4ffmM4elLmvtP+PDXn5OTs8S9S1bvvkGhtEQ4WjA+amIPe7z13bcwciVWV4rU8jJ255hKSkCqLGHnV5hKSURVxhQX/N3/9ucA3L52n3q+TBRBYzilezXjt37/LXxrwSdPvqZx1kC3Ar4+fMmJ3ycplZlaUxIpE9Ms8MUvvmI8OKD+rf+c5qvHtMc9jPISm/U9GvNj9j/8iNpynef7z/j8019hxDKlXAG57BOmSpxcDVnMPW6urzMdTpmgU8uXUbwQ0bNJZQxW7r1HfHTA0WiGKc2JXIFBX2Tw6d9zrbrMUB5Qu/6IbLZEv3HGJ59/xM3v/g6Hv/gx/dPH5OtVVh7ewYt6zE4D2nMJXRMo5OqYapb2wQv2Dy7Y2yrioVLbWENJZbjq2uiZG3zn7Rw/+fA52VSGXKXGVE7RGc94sAcpqcDm8hLXNjZZr25Qztf4+vKIdKHCVy++wpsMqJsGA9fl3d2HvL5sEWg1StU6+ZzJ8WmbgZlhsX/EH/yLf8G1Bw8JzCzDScjPPnnB5OUH1N94g+LWNhPH5avnz/mX/9Uf88nj5xTNm4zah5wff05vbJGqrZGtZbEWEV+9PmI46rK7tcTmXo2np1/yysuyREDnvMUHz8+Zig3imUvojtG0LLEbMB/1USsmq9sPOf7FKwa2T6pUxswWOHx9RvfSphUOqScTTAYDJpMJ9eUqnzz+Bfo8pFRQsIwaMyeDPnGoig0uEyqDJ884e/WMZn9EYFa59vDbdCOLtQd7qJkNTC1NXXPYyTgkUg5Hn/RI1CX8fJ7YqPH97Tobb7zLB5/9AxVFQQt88jmVd967y9Dv0TjtIXgTSrkUaiwwvuzx7PFnrGz+Hu/eLVHauEl9+RYPSlmc2SWBL2CVbpPXNIpaSLlg8P3rN/k3f3OC3ztD8AMMUwC5j9MakBISlErLNE/3mXcbhGGMl9jls8OXVE2V1+1TREmikElyfvYRVb3G4/M2J/uHHLx8yYvXz2gNz0moW+SKWfL37zI9O+f8i8d0pgOmvoDqR0iDS1ynxcRqMbNmvPfgO0xbJ/zm99/mjb0lSqkMlq2QquT46c//LTe3dinWH1LO5qjpPhUxx6D1a8SNt3n6659ydPAVneYxrefPqO7epvHqU+R0hfLuPbzkMj/56Jh7pWWyaZ8KCTZWr0Eg8tUHH2OlMtx9cAdFniGFDv2rK57/v7Qu/6PQ5T/9L/5rbr/1kKniM+u4ZHWF40afYlrEszxGvTHLmRlaLcGwP8OJZExVRRVVjgcG48YpqgS/95/9KyzH5esnjzk82ud79+8wD6aInkC5voGsJWg3LinX79CXU1RSUzTJRNbSqAkVd+KRLsao6QKL7pwwGKCmLUSnhCTG/PqDr1mWXXy7wVm/RT++xdnRr3lw/ya1WoWh42MFMW8/2KNlm3z22dd866bAWqXEwhb47PPPCKweZhig5rMsJgusBVCqs5n30Zduc/HilESyQqGQI6ktGNh9fv1yzM2dNDfWK+SSKgvHxvIFevsv2X30bYaKgSsIiHHMbD6nni8zmPqcWwLOpIsyPsObjeh1AyS/QSXssXPtBpWbb9HRTc6+PKIWXPD0rEmxUGS5sokbV+ikbJyvXyCkVa6aI4JYZ3X3Os2zPqWKiN+7IFvaJpk2UWlTzcYM1TWubyzR6wR0RnMmvo3vJRGcQ/LLm+hmiXTGpJBRKEgRU1fGxUSwhmi4RHhcjDo4+wc8P3xFppJibbVOzkwz6E15Ng5JTfrs3X2bxvkhCB5v/sa7/PSv/4LC+n/CaaOJqfdQmGLNQsq31plbHju7O8RRGUVLoqege2GzmTLZb/TI6SqC7LIIhyTo44YSUfuC0u4jhr5G4+ocpl9z2lZ5753v0RjGlJeybG2W0ASD4Rz+w49/iTUeYbinZKUR+XQJP37AhX3F9XXY3Kgi+R6NJ4/pXZyw993/ltFggD2ZkMkIrKyKTM8/Y9IQOBJNCvl1/EWS3sDBqNjMfJObW9dYuFMmvQGiu+Du3Tzz8RTNNRHEIdXVVXLlZbqtJqEjcPiiwTAWGC1sFFlha3mNw47F9aVVEhUHJVtFNrJI4YLpZRe3dUysLxCUAtOxT+fqjKQ5ozWLGNgRAiKRDCEximWSvfOIqtLh5PCETCnD5t4204HC5//wVxAbLG9VyKR1FFkhkjNknBgn7BCqGRazJs5shKAssb23RKzopNf2sPs2ducUgjOk9C3uPnxAZwSJdJYo9Dn4+gv+h//+vwPgT/7wv+Te5iaJrMJcsInPR/SzLktBnXMhwvMckkGMXywjSi4Pb77N1cmATueChdtGF6GkG7gkkWKXWA6IDJPYXKE1PiUlG8xtATmS0UUfWRqiaAIP773Ni4s2iTAmtiNGY4+3HlT5y7/9O2aOym++v0W+mOXofMq4ecA7b79Hp3PK4+evEaOIza110tfvIjWeETXhKlLIr6+TMDP8+3//U+5nF6T2NmgcnJNPlEmlSrw4P6Y1GPK7//y7aGFAtzek358SeQKrd/boHhziLkKmzhRNkaiZVZ43RtzZHnOvugpKlo5r0XK6bNT2OHk1Qt7aJO0NaV0c8/qyQWlpjd+78T4vWh9jpAuMRw1m0ya3Hn2f+Osjumqe80hEW/QwrRaWEPPm93+TDz8YUMy1yQohoQMtPyBXXeLh9U0++eQ1xaUylUqK6eCKD7/cZ3t7i/lFm63dbSJR4eDgiK0tA01J8Pz8glyiRD2TRcPjo0+fICRLFLMKS1t79BunNI+f8eDd32F6+ZSTw0uWdrdwFjGTwYxSLc3mcplPx1lS0yEuIcPFnMnFCeniDb51X0RL3kY3hwwHV7z40mJvNcnp8QW2JqAWymSTGbKhQLc/h+QIWb9Or7FPpZLlwZvvM+y1EDMyyQikSCJc2ASujaAv8aunh9xe9pCFiMlCx3JUiprNILR48m/WQqUAACAASURBVPHnPHj/u1TX7+EEIUf7H7C+voF+8QxrmmISuTT6Y45fTqlvbbBzV2dz9z3G8z6zXpfEQmBlQ+Tk6Qkt7RoL1yCbFFitCIRDjYPLl9iJKievPkPQberby2SFEsu1AgvLJpPIMRrOaTQ6RIJEeTPij37w+3z19Jhp5xJ3NuF0FPGtHYPnx8e0OyFDRyFSdGq1NPffvU//6IIb21lwPSbTBbMgIq+pNDoXtEZLROkc83ED++wZv/WDH9LpfkxiaZtB22fWHyNrATu/cYfgcozTPebSElnd3OHezhbj80M+Pzzk2rVrIKRo90Y43oJ7N3YIL8/4ShiR1YtslTfJJ4r0uxNeXH6OnYAdvYg/tei2hvQ6E/JrHvnVG3z0o08pX9+mN+zxt//rN0POPwldXlrfRJZ1nJFFaSXP0UWHWuzhyRpOLCBFIboXkVZclrN5LN/DsX1CGzRZZnk9R7xQcGdD9HSKZDbL6OgZWjmPZmiYWoqFEOJoAqXlFVzfoqCLmKUSgWDghRAIIaIkUikX6Y0DDD0JaoKxq1MpVHj98jW5XJn+6JzAGZE3NJxoSmbzGqImElkq/sxC8IbIvsPpJI07P2VjdZWEoTGcdHl5cobX9YhzaVJqHtsJGDkenqiytZNBCCV6V5c0GxfMHY9MdRN3eogsSmSDCd5sTGcwoD2cYCoqcW2HGzsbRGFEEAjEsUYw9/ECj+Vclmq1RsI0CQQZKVaRMnmWqyWqFZVUJk8U6cznI964f49Ff8FZ54JYyqEbFUKmPP7sQzRFYe3aJtPJjOF4SqQIBFdPyaR0AquLIMQYqkMp5VAorqAmUzihTt/26fd6dE9OaF51mWki2USaeqlOOV8ibZioEixsj/OTL4mnHRx7yGTaZzEeEgdjtnf3yCzv0Djvcfb6hFKpzHa5SKp6ne5syNXlBZ4fki0XuTg5IJTLpE2NaxslJMHn1eEB2eIyaq/L8lKKUFHBMNG0LIvBgqnoozojPDckcENkIUTKyYzGGr4no+oxsRoTiCJ2b86d97+LGqeYhzayHCCGPuPJjKPnZ6S0LpJUxJ22CcIpifomQfOM0to6OysVpvOAXnuC6gVkl2v4rR5qUiOtBeiqBcqE9XwOIazwqhuhRAly6QT1NYNKNkIQMpw2xmiCSCahokkxl0dXTPo21brBwg7pzTz6sxlJBa7dfYSsG+TqRRLpKlGcotPtMXYsuifP8RUFN1QZjj1Oz/uMj68YMaE18RgNJswnc4hU8pkEV2KC5VIeSTFJJtKs1+vceOMt1otZ5v1TsmYSAZF2s8ek2WE2m7K6qbJWzpJLyCR1iVIuQ1AqktTzdEYOgZojVdqkkquTr1Zx7Q7B2CKYdxAkFzVXI5FaxQodTDHCd0KmE4d+r8cnv/wPAPzWt75PMvHNDVlklvGtNmp6C8nrczn2mC9CDEmkrGdptbr0rw5RxAW6FqKoYBgGfvE6SeEMz5Np9Ib0B23yakjWmZFLmGzvXCOOYDobIKkWC1aRsTHzBebDMRcnJzR7V6ztrdE/6TKbjVkEPv1BwGQQoyfmtJuXXJxbDLpDEok8+fI1Wn2LfN7E8fPMnQlnFy0OT7qUCiX6sclyvc5sEiAgkkrrLK3VUY0p5VTMaOThoiJn0+jFxP9F2nv1WnqYWXrPl9POOZwcKleRVUyiRElUaEmt7hn1TLcxA18MfDV39o1/hf+AYQM2YMDjgbvd03GgDgpsiqQoZhZZrFN1ct7n7Ly/vb+cfCGgr4xGG/0nFh68a613ceVNaYUZMQaaLJMGHqPhBbe2VnBDCFMVxyzgqRqkKZqUcHRygVWsoDoOZhaTt0yGjoamp1z1eohpghCnCJFCPPPo9/YYer8NHxckqJeKNJZrJFoZkoxMCJg5M8aLCULsUSwo1PQ2170JmZghagKiKuJ4NrvP+mxtF0EvYtsucjjk0aOXOP/8MUJexp+rSFIZs9bmcDzjundEvd0kX2yTpglJMENybOJ8mTtL64SpwGC4wHUE6s11mus6855PHMskmUDkOdiDIaqUQ08XDLyM2fWAy71z9g7OubuyzBUKmZCgCw5FTaZSWkbXYjRBxwtmiFJKyZTRwykfP37G/nEP13FxRAM3FolSEW15hXTWo10M+Or5DlMvxLTK+NOM6o0S9izP9XiC4/v4c5ve7nMKpRJtK2OKilzooOlVsmjBd7//Or1Rj/pyA2cxxx2PkMMpsijguSmBE0MckjckqpUCqQZau43kXZGv63Q7XZr5LvO0gDq75OneCRIJxVxKMRdj94ckaYaUKzC6mJD4CxLRw8sW2P0ep/0JnZUCW6ttuvUaiSiRqxfRRYNR/4JgPsPQJMqtKl4U4Agijc0XKWoxluhg5Q1yqUKglllEKVkQUTAUShULO5giKHU6xQK9cZ+Ls0tmozmrLzzg3Xc+wk5dTq9d7KmNrkBueYmTzz+nqFXpnRzDoo+STpmEM452PmF9fZtGsUX/csz1xRBNNum2l4gDG1/K46RzLs73uTw4+ycvK/+sNtA8jpgHAZYkIggi+XwBbXrJPDJA1rDKRVRbJIqmVGSZIiqinBKnMLseUi6tkM+neNMhSrZCs5jHiBPOzoc8vL/C5GqMJySUtCWKjSVs5xnhaEC+XSUVI+LARfIjIquBF0u4zhRJCxBFBTEyWPSHKOkASBE0FyFJUASNuibgV6rY8xgpk1GziMViwP5XI6KVDmYhx+XlFHsS4bsjJD9i4Xrk8suYeYPh+Ao/CGjmS/ipjG8vQAVNczCUGbqUMU8btJseSzkT33GYBBmRkGc0Uyhs3ub0YA9F09FEnTBMyIsFruenKFKC6UeIgYCcqSCnVOSMilRAFcuMZzGL8x6hJKILOyhqRrFUYDR1ELjg9s0CzDJsIWDuuSBlyFJCMrexjBLu+ApDT8gxwUpidKWIqqpIhRJOYqBoIqZmYEkC/cUJSdBEEEREXSGWReZxhJPOmUwmmLJHFGV4oUuW+hRUk7jWxtItytU25zu7OIsFuWKd0eEeQR10IlRBJg5TptMpsVxmYp+iklIrr5NIJQSrhh/CqgReL0BdSpGFFNwYxTII0gkFLcNXEuIoIokCfEdAk0XGXkZwcIhZLqGZVcxck+3VLT5991PUskyWCfTO+gwmE5x5gY3VGm6i0+gso4oGmZAQZVNuFBQWE5vxzCWLEyq1GkZBJwyu0K0MVUwQpRRV1chVyjiXYOTzDCdjotSjqeq47hw3SpgNIvKhhWTJIMaImYqmiEzsK5C7RGFENpshFNYJ3Bn5oka5UCTJxvSvJow8j/7gDHnWI7Q0qqFBks3onZ2hLGySWooU54jnU5Q0JmflOBoEiOU1JDUkj4wmy1SrBRobK7iHPUJRRVQzvOGY/kUPooRyMUerWyIvpOhqgqhqCLGIbMSkQUq5UEYtlCiUCuQlAT9cENnXzAMbVc5QcwVSqvj2JV6SQykU8XwP13FI3ct/1I22ZRAj4Ho+giByaMfcqpdw/OcU1BKZaaKrEkkSUaobXO7vUq4UqFdLiJnOwosI8yqRLUPoUtYzwjjFv9jn9uYqY89mNrlm7tqEqYuWqAg5A28yhCRjOO6xmPdRvIid4x5GuUJH1ZBUidnCYzaZsWqK+GnEYuyRyxXJVapEyCwmPlJbZiaJVNoNpu4xvase62trjM8vMOMIQxPQciZqpYgl6rz8whahHTMMFghCiqzrhJqF3X/KcDQnbWwgiVUMQ0crWlSXyowPE2ylQsM0MOWMLGuiGCpSxSGYjcjLPrIhoqp5yjGcDo4RRY3rRUzs+yhBhCoIBFaDg70jakUTrVJhZlaoSRLXJyeEcZ44NUnNIqosoXsx3mjKVbpHzoAgHDO9nqCqJtHcQ5aLVCttEiQ8MUUtltCMNkVTYy7lGdtzMtnHEoskUkocxeQMi6opYGYGQbGGs/AIHIGNzRyWrSKPfYgiCtUW+ZpJMH6L9o0XCKMMUQiJVtuURAlFKOIuHBZuRBiZrK5JOLJGt6Gy8FyUTEaKBOzxkKEzoLZ0m8FXH9GqVtEVjct+j8wboOWXiDKdSagiZwF6OMK/3seZ9XDwmYYiUZJiBA61gkWhsgRGwPTgnGA+o1TIUU51hCBhEIsYlTq+YCCJMt3tDSwzxIllRqMBs3HAfJ4RpAnRJODqekGpIhEEIUkiIYpFNHFCrnEXJR1TdAQMOY+sNLl2PKR5gKLqmIpGUVdJtBirouIkRY6OT7AvJoiZh6j7xKGNIOnkrQ7F5iolLQ+RgJz6jI4uKBUtBgOXdq2CqOdxHRvZMKlJEsWaiE8CnkQk5IkyGa3YRoqmRIaHIGYksoA7CTDqKqGhUStaxPMLhoML+pMZq802UzXl4uiQAjI1cwnHnuCkGeJwRjwLcCKPhZggNNeJfLCEAqE3J46miHKElqtTyK2y1/uc7TtbXI/PuDz8/zym/P+HlRgZsZDDLKgspg6Pbq6w9/EBSlbE1HMYOigCZJqKvRihJSpaXsNNYnaeTxGfDSl1ZNR8CZKMdOFRLLb5fPeC115Y5vjoKYZlUau1iXydKBC5OLnAWsqTyBap55DNZqRLFU7PLxEzj+HMwZAkyprG+eEJm9sxH368Q6OQgC4zmcdUK7eZhi6p1aJkeTikDCcRV/0FW6s2nlFm58nHGEpIrWSwZlh8KvaQNIliKULMbEgSmu0W9rT/Wz+vXGRlpUzJNNDja2aFu8yiT6jc2CCdTil6Iq7c4fgyJB/BFx8/ZuPuDZRynTSKKBk1FqrE2WJEsHeJEBlIInj2HhVdJfR1QtVlPHGZzxXM6hJ/9l/+nN/9xgNqpQrj6ZCFe0W5VGdr+yV2T77i8OwEURCpFQvIkYTUeBFn8AvazTItRUJXVULht9PcmWhQKZdRhBgrljDFgFmwTxD2kWUJOwrwvBkiPnJ0hbdYsL22Tc+eEroDjEykrNWZhBb7X7zDWirQqGjkrS0q7SX+5D/9Z5buXfO9R98kqjQZ2mM0IcYorUA64uirAxTJoNhapbv5EobiUG13uewJtKwQU1zgxSmCqlDxU2JBwTBjwtDHnTh45xndusIwDhkMBlizgHJDJ1/KY1/06F8dUy9vksUJ8+kcZ+JSXH+AK0nMoyNubm1S07o8+/QDxEKZXOzy8f6X6EaZznKH8oqFe3JN/eYNwvmQIJ5jKDIFpUbPjbjwfIq1ZYaTC/zxlCzNMenPcdUF1VyLzFkwsCNkS+bR3SWKGuw++4TC6m06ZYGcGJKIdU4+fw8l18FAwhtdENqniKrE9fkJ3YLEYjRAUQtkKbgXOyhFi9mpy2rzBm6Q4oY2UTbjzJvxavMR88Uh9VwJq5Aj1jT6V1ccH/RQqmUuT4+ZX/eJvDmZILBeqWDIdZJgBEaCpMrMBirC/AzPMdnYvIlhKWRSSqSoOGczosUC39CQRZMssAjsCGf0JdWVh/QCFQEfwe+Dvf+PulExMk5jEdu2sYIhE8okaQiJyma3gVas4oQRB5fn3H65gbdwyfQqum5SkFxiz6UgDjmYlaiKfW7eaJAIKR/86ktaG8scfPiMz07O0PIWjXwRNTUR1RF6oHB4sI+9GFHOKXSrLR6fjek0a2x0V9B1n6vJADeaQ6yzfe8BV4vPEZs15IJJki3Il1so4RGeq7CyuoEmZ5iqhGoZmN4Fige67lJZ6mIVmhx8tM+rX6swnqWY2QzBH+HFKa5RphyJHE0uKTSbaKJEvdFkc+U+F9Mr4jSm1F6iVXCJI49AzpHTapQ6KuODHcodWJBx0o+pKAIzz6dUqDOODeZTD911aG6/TFVZIXh6TiJKTOKAyWTILFTR5jP2F20K9QqdVpWyUSEcJ4zOjriI9ig2uiT+iHASg9RkeDripW9/DyFwKVkiSkOjH1QZTmPaa0s83YuYuhdI2hB7aiM4Q2r1ZZr5Eq0CjJIUQdIIciX86Ywnpzs0isuYRYtYiSlWNBSpwvnkjNc232A+TbHnJt3WBksZNHJdLq/6nEs6+U6D++t5jhcqzfkVGQGasko4S9l/9gGngcgrWw+ZRzrbShHDsJiQ0W7M2X7l65xferhKDn9xwXx0xmJ2wdHuObkVlULzDo4v4TsLtErGYpIRRzMahkEazxCcgFZ5hWqpzJPnF9y/dw87GmCnY3KlFidnJ4iqydHeOUmoE0UaEyDNBPZOhzzoFAnCBCFwcQMbwx0Q5keIpTr5+RwtiolNAU0QSGOZ9VtrLFkVpChk5idUV5qoYYfAv8b2PMJgDvMARJF7d5boRnVmSpWB7aPgUmya2J+f0XP6CJFBoXUDMS9z9NW7bN16QEMcE84vSRIRJxLoDcfo1TrFvEU5zuiFAhPfIwlTLKmF4Cw4iUQ6FYuy3qK/SNjfeczL97Z57s9xjo5QIhDDDP/qlGK9iT04oVQoIkU+wUKkttFGL29x3XeJ7efE7oBc2UKvlkgUhVmscrtWpJi3uDrqA+/9kxzyz7KBKtVNCs0t8t0WpeyY7opA2H9KTqnStspUVYHzRZ+HW6ucz8fEkcPY9gjJ88PvfJPd0XN8Fw5mIf1AxSy1+NbXHvHzd/6Ge699n6R/gVHMI9VWcYQOs5NTxGgfs9MgSKsMhjEX/TMa23WmO79hthCICUmnh/iHH+IV6+SDGRkWmhBSyilU6zV6WZ2bd1aY+gFBcEKWxYhigYnnc9VPGJ18TtVKEaIFqTdjtVvgbBLhDwfc6xaIPIVZrBBXUoqizosbmwjzPpXWXXy5zOOd97l3W+WtxxOIQkYjB2fhYsouj+61kMIpL/3oxwSFBlMvRUgSzJbEVneb33n4dY5th3ECMRoH+9eUNjdZCvuEgkalZrG1bdLdULl992V6s4xgBjfvv8La/Ts8OfiS+nadsyuHtVaXommgSCJJELF79CG3Xlwjb8eoepHQqGMLdWjdI3JtSkYBUolE0ghUjbHbJ86WqJTWUCUdw7AolkrUFYnVjRqThUVFdylYeSSxTDi85HTYZz47ZD65JNe6RefuNxG1AIIFr770Gn65y2Ruo7JgpZ1HqW5yt9Jgaetb3L/zgLXVLsVSnvZkF7v1dbS8x+TyiLkbolZbCCdPkMQy1+fXePYMMVEwrDqJpRP25ugvvYwUjvEjj0DVqFZbfPCrX/DS7/wes9M+i+sT8jmFh6/8BDW/4LPdHYIIElXAXgQs9jzqwgVSY4mlZoLnSJBZrK/X6Z8kXHsx/S8/YD53cdyI0WjM3sylq8qcXPRZWS/wxut3eeXBXUYexEkZSgaZFNFtVFhtVzgePWOzqvHi+n28RY9qRaVSrfFs75SqbpOKef7unXcpSkVuN9ewewfEuRxpMGd16yZSOmU2OsWJRB680GZwfo5eKmEvTpl5A0JFY2U1x6OHD5GmB6i5AmJ1CV/O8/xXf0Hv+ojVloa88NEFjVyhhKCKPFzv4s5i8mWdTIiZzH2uYoN0esDd3/0PSLJI4vkEixDHC1ltlNArt2h2WpiNm4jFZRQJCvk1Fn7AfJggkyDLKgtX5aOP3wHg3//ke5zPA67dhHp3mf/4734fP4noFJY58WIEK0e9UuDdt39JTlXwnQYnwwFR6mCqMfaoh1Vt4UxCljdvEWoa/ShCb22yurrB++8/o9htUCx2UBORdPyc49095O4Gt+p1hr0BVqnMv/kP/55cd4nrY5dSaUD/9BA9FXj1xZcodu+wVKwgZhmJpWPl6pStNgNnTD0vkc3BGfcxFYul5ZtgSLiZQJjKzPUS9WYdQ0v41fMnvP3TD7C9C6R5iKnJFAoqFS1FjIa8+uM32X//U3LzAU3ZJw0XXM98DP+KTJHxU5kgEsAeM/3oLbJ0zlU/Iy1UUUSZbDziV7vHbN2+x7Odc26aBV7fvMP2jQccLYZsFi958c4dmlubNNotikYedyrw4vYS73/0DxjVNnLqguBj3LxJXhCZeRlH4wPsVMGorrN84wbttTxls8yTL97HFYrEok6yuKCiwrOvPuDs8JjYERFcH3F2xkp7g7ShoZsV3BDOroYcnJ5xPhzz7W++ygfvvMOnn3yBHGfcXV2lbOpMh88ZTQSEnEnv5JDz3RPsnsatbhWrUWXu+9iZD5JLXcm48+J3+d/+8i9wxzYryxskYsqTp1/y/Td/zPD0K7792l0UNSVXMFnqbvJnv+7z6v0X2fnlL9gsakSzOYfnY77x7W/in55QaFcg02kVKxQVnbd/+jbX43O+fqPGnQf3WG2VEYWMp6HId374Es/f/4IvL0bUCnXalsXhwW+4c/Mlakg82/sEpVSnvrRMpZyxumnhyHl6To7VvE6toDASRPKdLfYvvuD533/MC/cfUO4WuJ4eUS+1+MsPPmZ5S6V/dYk3HVGUEpqWSK4BJ94y6ze2KVs5iGWk6jKGd8D6nVtMpydUywW0coOvBlP+8Hvf4u/fO8Yq51CKEmEGnlvhie0QnB5zNI1YhCHOrM/sdB9nPKf94GVCxyM4OcUUE+qrVeLJAZ+/+w6WpZOJGbNZwGKeoi+v8O4Hf8P42mWts45hFbgcjNjZPUNVC7zwxjqD/pCJO8OPFzC5hvILHH7+Nxyf9PCChHy5Tnd9jaPpPjeWCgyPfIRcl/HC5/EHvwL+hW2gH/7Rj3nwcA01nbFx99u0tBbX5wMK+QUYAbMM8lJGp2DwyW8+Z/XFn2A21zk/e8bbf/q/88bX1rnd2USOGyxXuuRyJr8+OmPnoy/4nTfvYtR1ZhMfb5HQ3uyQeSLv/uyvufeNH5A6Nuf7+5xdz/nGCw32Do+x987Y+fgfuO5doJdapEGfghYxTTrUt7eRaytMgjJCqBGlCopcYUkvM5uLPO9NkIIB02DOqw/bFISMnG6iV6q4lolptWiWenxx5RJkOqpU5HA/QY9GdN54mfc/+IIPPupxfe2xtFLkk71P+FFrEyvfwfYipo5DFAcUVJFbD14iiTxMPWOlUWap0WQwcHnyvM9nn3zEjbUm3VaZRAjJlzRe2YhYiD5vffyMk6sFslBhWV1GsXs8fP0F+kePOf38Vzgnu2x2tnjrnQNu3buL614xHF6SUxzeuGsRBiJ3ilMmRp5Svky5VkZuFon7Kps31xkmKoqhYKZzJLvPIr/Mve4qhbbMZrdDRbMI5x7XCw/btBBlgWa9TewLXF8NmMQeUv+EH/63/z31dpdhv8+XH7zH8w/eY+3hXT78xa959uxTqlaOpUqH0VmfnZ1d3n58xN0aPDvf4VdfPeViFHLrm/+OlmKz+w+/YW2zQbddwT0bcTFOcFKbljBHq7RI9AKOHzFfCMjZDK9/jZa7QWN1jeaKRqok9C81hueX5IsBVrWIWmog5GQOD8+4u9XEtiOU0THp2Q7D/ogf/eRN/uqXv+TNR3fR8iJRMkdyAvRchlVqsflSmc76EtVqnUqhyN2VVdx8nWJJ4M79Zebugrd/vUOmrHMyPueb6ynddgPDAjEd0JIS/uztPqWmxXBYY3fvlN7lM168cxup0aCz8SKbN18iywYk6pgXfucP+Oytv2Yc5Lj/6iuk8znxwqPeXWJ0fsKDrRvsXoypllrUjDyxPaF87w2Wmw+46B1jj2yyIEAiond6Cf0r7r/8CudXZ/THl5hqyvfvbTKdX2Ett2llMbqioJabbLVvcvNrb3J1+Cu8xRFZkCClBpmQceBF2Ke7xIKF7SpkmU6z2cU3FTTJJ7IvERQNtbKMWG3y7t/+CQAv/96PufnqTW7cWEfJTN799c+wqh6PTy+4ms6Iwog08FDiIdP6Cst1E+f8kkpeQytY/N1bX/LffOcVzhKRveSa4SIm9Q2SZMYv/+Jn3LjX5OijpyiCSWmpidRUWVv7JlpvF7usEFEkc0WOdr7kL//+PQo37jAceWx2b7K2tkIme0jHU4Lygp++84Tnl0NmJ5ekx0cI4oyvHk95+bu/g9lpYOVFoukx7771F7z0cJUgcni2t4swHmHOp0zHp0xOrim32ySNZaRSh0arwt1bIpPTS1aXHhJGMQI6sZwjzulkF+/RefSH9HuPyRdyqEaRNFX5+ne/QXHjHl+99zMKUUxBkikWDR7eW+Fnf/wrvvXNBlv3lrCx2Tt4gtDrU3ntDb78ok/XTBAdG0M1+ckf/Rv+9v/8Ga9//RVWVAFtesng9IjHT/a50Zry8PU/YDtfJ8xcZp4Lbhm1eovR6Z+xsdmikPdx52f0+xMcsYYlV6gUAh597TVa23eZizlE0WX3rS9QyxVq9RvUO2ts3dnmR9/5Lm+9/V8JqZFKJtXtO6TVOv/Pf/ljdqcRS+vLKM4MRVcRczA6e59Cd5PPPvuYpVYNFQHXjukvFKq5HFa9QtG3EGWZ8XSMY/t869/+W/KWyM//5D9z++6raLW7vP34krzS5/kv3uL1P/zv2Bucczw9Rm/oFJUOp5fnLK+8wPajV4gDn8vDXVo3Gmy/cp/hLOL82SccX44Yi2VqGxsUlrZQdJUlZUwREzeqMbOW+fqrr5KJOSb9IzYqZe5udFjeXuHqvMhbb/1Xbj3Y5u4LLyPqJk8f/4bn7/6cl5t3WW0rTKd9prMYM9cm1ufcXbrFjZt1qnmF9moXpd3ib3e+5OlffYjd/4harQaSiqhJrK9oGO6C3qVLziiSzIeMD54w2TtkJrmcfPUe7Y1Vxud9+vtHVIyQP3jY4lb1Jp98fspk4pFH4P5Sg4d/+EeYScZf/eIf2D3aRbZUWt0Op/v73L39BvJiwqJ2g1x3maWGhTOVufnyd2gKGQfDOc+uLnCFmJde+SEXsxmngwmKEpOWCmidJbZubjG4GPLmt78NagFaXUapzrNPztm8u00gdJhOPU4Pn/Psiw+5ODv6l8PKnW99j87yLaxEJ183CdwTmvUaqVQg9BTESKRQa3GalGlU6piKTe/4CxbzEd/7g9/naC/jdOLRXKpSrBgkqoGbW2fJcHn+9DPm8wS9kCPLYvY+fIxhZSwXTXKqhBsHDKZThAxSmQAAIABJREFUBid9bq0/4q0/+2MiI+XiasB0kqIKZe6UdK7GNp3lCpKkI2QRpuyieQZBo0Vnpcn4eh9djqjVijw5G/Dw0S32DyaIkytiSSQ1DMzUZeeTXSobX6Pd3WZ5vYyg2Tx7/iXr+XWsxirXzz7l7s08j762Rq5ewz2+IPZlFobA9o0umystdFXBrJm89emEyeU5c8fl4GTIZ18cIqY95kpGpVDg+bNDjo+PMeWUNx88YPfcYeKavHC3ytr6Om6c44MvPsVxzvi//vIdnMRAFHXajQqvf/0uRye7jI+OEYp3ENUy7iLk+PCKSrVAfOqRGQaxaSDqJWpGk0JD48ST6ZRE0iTBD1zCeME8SimbDqZcRElFlMSlpIesdlvE84i13JwLO0QRIrqGgzM8495r38SLjrAv9tFcB0NMmaRzaoUCsVeirJfJrDLDLGUSzvjm6/fwJiM+/OgzFAOWm2VKmYLYH7Nz9Bk37m1ysvsFT798ghtl3CxXOBqO0bM5k8Eh84s+jGPK1pj59BC8iMuzcxazIZkf4lzPseoJ09GA5ZUbGEYbUdAxlTm/+Pv3yacxLGLW6m1WO0Vy1ilad53lzgrD3jnO6Bop9EgCj8HpHhs3l6h2mixcE8/LiBOHz86OqKv3kRST/c+eMtjrYaEgiX06jYiz/YCT65ST3iXjyZhq9RErr73JX//5n5IvCnTWirS6ecRwwC92LUK7T6xoRInAfOxxsndAZ/M7RO4JN2tVcrUmrqxxtP8cJVbQlpfQVZnYHzCxh0j5Kv/jf/wf+OqDf2BxeMxQjcitrrFc3+KDv/trVu/fpyn4xM6MTrnLemub/ugSQ06YOAMcRFytTSKXERY7TMcThEoXTSljlksIRoDdf8pqrkKQFkgSEGQZ0dCIVZXZ2YxCXeHoi0NUTaFQypH6Hm//7C8AqHTaiL0L3PEZI8klEmvIyYSV21+nbOpsdFpsrK4xDfoc/PSnxJu3eX2jQSmXYzhPKYk5hs1Vhs+OyFyZer6EoaXs7e2yevcbrGoxWbuOWF/HT/JMzscM9i+QblSoGi28mY0hedzdrJNf2mK2/zFVWcYSZcb9PvsHT5HaC0aLIksrDV7f3majU0bKZxhaAS3Okb9Z4dPPnnN+cILjeQyVBurFPlbuDmFkMxyeMHEcbr7wA2rNDdSkwyu32nTrFZDzDEIdrdkk9OfsfraHJAvIYkBwdc7v//hf8+d/93MW8wuWWkuoRoGz2YjJ7Cl1IjrLDbq375FfX0Yqlwh6NRpL1yxVN/jlzz/GDTxWtzo8/vBLzOiSKPGRFB2zsY4fi/zl//w/8e2f/ICFvsz+wR6XjsNEymEHOvsffEWrsIU/PyVIIuIwxLk6IrcY46ZFBkMXfzRFFQ2KnS2E4IifvXeInAUMZxHOxCWfeAjZiMAQ6GxscLX3nCef7fL50wv2zj/hX33rh7z13q/ZXM+x1tSoCiE3iiXuv/6I5aU6Z2cTQneKSoSgNWm0VrnZzbHzxQ4712MuZwucyzOauRmHRyOyQg3XT7E0g0cvbKH6fX7xya958Qd/iCrGXB99QTC/4JWXXybyYhLT4uJyB+d8F+niHNl3OXUalFc2ON17yv7JPlfuFM8ZkIm3yNq3uLN2E2eywB5d88qLG/QGp4QHO9jlOj0/YDDukXpj3v/8A66uz1m68TJJpuJ6IUkq86f/9//KrfY9Njs1YtFlMuohTAJu3v0BO47L1toWSrvGtT3j7PkeDzfK2NNrJuOM3cc9crkaN7fX8Q8PGHg2L229DKUuqS8hOgF2NOXTD3foLN/h070drvp9FMVidfNFbj54yO51xgsrVVpdC7WaY+DA+29/yPPRPsu369Q1gWKhgLV9m1SM+U//x//Cg5USa8tLiEj0e31Wbt1Ek3Wm/V1W1Tn6pM/oYkIm5rhXVcnKG+QkAcmeEo5s/Fhn4UB09AV65Q6m1SINRfYu5hQLJn4Nji5DckaHTrVGOR8SDQLmxQU1vcVwcMLJ8VcMrvv/clj5xmsPuLO2RMnMk1oyo6MBynRB0aoiIuN7PoVSifnplEpHoXd+QexoFK1V5nGMKBq8/8UOM2fI2PeYLhyy611KpsLB0WOEVMZfxBhI3Fur4SYumlliFrkYxQZxKHCy/5TiapXJ+TO8xZTpZIGiQKMho6gCjaUqopwnZzUwc3VEtYAfuVjlZWqmgWYaoGj4jksyPSWObDZLOUJ3SBTGWKrCWtfEHrr0R5Cr6sRBRuyq1God0pqFLkZ4iUIgWgShAIuQ/nnInW/cIVOrPD84wfEitm/d5fl0xEqhQaOaksl5gkxHVBVqFZN7Wxt0CnliOUZSBJREZtIP2T28oC1LhJeHFBDplk1y8jVh5xXura5R3rjLzLY5PT7ifOSw3Gny7GJONA/IBQvqukS9WqE/GmDW6qRiAUPMIyUqgR9RKYV0TZORJ2OPeswWE+aZgqzUuPQkqnpI5o3w3BFB5iEVNeKjZ4ROH1MUcMYLBiOfpW6D89EFjALsYYBHDqVSZ2WlQb5WYvvGLYrtJsPJHNcecmvVoJK/x/PjXV574/ukSKSBwEpng0QVeO2FW1ykJnlilDRl6IVYzSJXu58hJgn2fIE7dbGnc3auzxkHNa7tPpKYQJawWCwYjq+ZT1Jef+UF1FKJ2XTCYDBimBYYjGzUyT4Pb29gaLCwp0iJwObNR9i2y+hkTCRp5Dot2qtdWAxprd7jIpCxjCoyOld9m9k0ZPfwBBuJ2WSEqBoYtQ7OYoJl6DRWt+nbNoKgULZK+JMDqkLEC1/foNmuMncErq5jZFFjrbtNtZaDyKdcLiGbeY5OL7ixucXO0/dpqD5La8sYpToXvSk5b0Fnq4OFy8IeUyxVeOVr30DJaTz+4CNspw9yDkMukwZwfPKc9XqV7s1l4nDCYjFnNl8gpCNO4gKBbaKKIkkA+CGdQkhhqUsodigmDu6wz2LqUiivYbsxipDg+SFR4OHOJ/Sve4TRnKJocD3v4wY+giwh5iTe+du/AuAH3/o+JU1BE2LKOYvS1stE0wO0qyEZJppmQBrQszP8RKMkpkRYJEmCIcdYK6s0igu++vAUxblGyxJmtsfewQE/+O7vMfUPKFo5GmWDfAFSNcUdPcO1A8xEIW/lEUQ4Ot1l0L9gqXKTIJoR8VsbJ0oMnLmBaAiMDp/z7MlTPN+l0ange32SRplsPOHqcg/NiGl269TqdZrlMmHqU9FbVCpVVENifj2gPxyxtFrn7Og5g/GYVFWxah3OTq+Q+4douRo5rYxpFbGWm8xdhdPjCzS5gaoYRKGLmAastdb5zU9/zld7R+QsE8Mosgg0TkdnfP3F2wRSFT25RpdsEiHBbC6hClVqUoF6o4aFyvzS5vODPhTyHPaOkLwe9XKZSr5F5iY06nUaK0V2nhwgGDr1bpVyJY/euMvO/i5xNiQJp2RhhBQLRPGMi8d73L2/jS0puNEUwTvn7KRHLd/AubzA8VI8f46Wzbi3tcUnz49ZR0RVLUIvYjoccdi7JJjOOA/r6P453VYbo9Dl2c4OT55ecP/+PY4HfdJQxMgypMxGS5d45bVtPG9BzlDRBZHZcI7f6LJtaHiuyPMnT5n0LigpKl5msLSc5/iLt5mnCuW8xmpJAO0GR2GPH736kIPJBWbOZLPW5OTgOXVlTsVQSZzxP7ZoHBWeHvYoRx6FQp0sULDHc64vjunoEXZaQhPmyEqEZsnolkK3U+TpdZ87RYVmWcVQE5ASSq06tcBjZ+LQqrcxMxhdX3PpxlTzZT59co6W10lSn8vLU3w5YhQmLK3V2Ts7wR5cky4mTPvH+IKFFI/YvtFlvb2CpZW49hw+391nvatTrtZpFIvImcb5dUwlV2Vt5RaaKSIGClFs0ndivvzoXV5++Ta5XMSVG+AGLkXZw9DBkgoY1SpRpCMJArLks7t3SL1pcnKx4Nqd0G6t8urD11jbqlMgz1eHH7LUrdAtCZipy+R6RN7KmPUCmt0qJSNGXEzxRw6LwOHWjQ7+4Bw9PsWfX7F3PPgnYeWfFbDVECmoKqphcp1K5PJt/OEBRhghpCGKEmFJKePTC5Zv3UHNLEJSwkRkcG4jkHDzpZcpFhQEWcKZu4yuz8lyKu1ql3a3ixtIpJmEJ+pkmUMu3+Wkf0SlLVKp5CiYAufP9wiimCyKUSQRRUpJozmzmcjKvU2GnojoyxhkpEKIXsyRkdIsW+SUFmqWEc0G1IsF0IoEg3M8IUHLa+RzIkmSIFomo9NrukGV2JUJFjFSTkdXLAJMJCOHE0aEowVxGqCqdS7Pe1BfRzY1QkSOLx2urgJaN010fUaITM00MdU8hmYQzIecD0I0QaFebhL4Et7VECE6wQlr+A64iwH5whStlsc0qjSFCTNNJqibyL6M7VzSLglUazUqzKmqMtV8jkKxiGZJSGoDdzQkdmOCeAHxgtm4judNOfEdxDRAUHQSPY8qm+QNHTE+IHCHmJqGTo3JSY+KHtPr9ShUEsRExVAE0DTiWUQgmLihhV4sUa7m0WSP0XjIQp2gmmUqlRKJ7zC4nhFkPcIwots0yLISk4lLEvtopSK+oGCaHlZzFTXTsS/OeHJ6hCnqnJ6NCCOPFJkQhavAAUWibs5JZBXXj0myEElMsVSVUIgIxnOmgyHzxRxF1Wg1qzQzm0ZJZe7NGUdTUjcjMWuMh88wxASjWKZQqqHlLcprNyEcE/sFpqpD6jnIZNQ6K6g5m8FogGoIyJpKJGWY7TZ+b4icD2k3Chi6jiYlPH+8h9W75tbmJiEa5WqBfA6ELGHup9SWOzi950iyiVWykHUVO5pyY3WJid2jmSU0GyVureY4ta/Il1eY2zNq9TrFepdOo8PF5RmSKDL3PNqNIuVcnjTzkdMEw7SY2TNEMcRUUvwoYRbrRIIEvsREiBFxsLSMRUFjeD6kk9dQCCgYFqZpIms1YnFCzjDIBjb2+Bx7fMXQ9ilU15ikKV4m4LsxUW+EPB38o27oYoaXaggJlAKH8flTBqOA1HVwcxKplCAnGmookauX6GoqYjGPrGTgL5hOfJaKEus31pgcPSbyXRSzTKPWoT+1SQstcmFGGqXIQkhTzTiJIrZWysynI+xoThRNWQzPmEUCy/XbDCcOfm9ETtWomUWCWGQcXmPGIpPBnDCRKbYaGBokmcdwHhOHPmGQsXBcdDWh3N5Aiz0EV2EyCUmzOeWmycXwGEX2iEUP3wvQ7DytpI0pZ+iVBrHjEy0CJFFG0xUuBzPKxRqNdgtvMWHquOSKVeZ2QqbmmFzPUCWZdDHn6vSarGSw/+ySQqNLt2niuCKLNE+zUWR/b8bS0iqeP8VPQtzgt2Nyvj2B1CHVDEr1BrqgMTncY+XBHa4mfaJMIhNzaEaDkqbz9PwMSzBxxufUO3WsXIXpImG4EFhZ67Bx6w7h+QW9ywGzKKLQadHNVxmPxyDq6HmLQl6lVSnz3m8+ZluXiWQL1w6YTMf0ZzPqnTuc7I1opmdoqo5oFUEqcLz/Gb3eIywE0MFPBBJMzGYbMUmJBheojQ6KnsObeaSxSGzPODo/wp4sqOQtSs0GRrnIfHKMmvnkzRaFfBkpKbG7b9PKJ9TKKlIUoMpQyOtoYhnXnrEhuexfTshSAT1nshjFDC9GvHqnzTgQ8BYp/jzCndusvviI/rFPTsiRhR6XF33OzjM2trYpK0P0Yo2FIHE9tbk8v8AX69ysqHzy7ICrEwUN0PQc/iQkVBzKlkqhUEGUQxbBBFfSYSIT+gH1cgGlLCHHCfE4pa6V6C6nRCGksoJpmVR1Edef43k+g+kZYmRAotKq5KjUa8yupiSRh5WJZNEcZzCF2RSj+IjZ5QAkA71soakpkZgnZ2jMBZEImUw2yGINQZiQFcuEBydIOigqWJZCqZLj5HjAt958g0YzR+TMcZ05FVVhPj7lcqLxjU6e+WzObDwjnzPQG+vIoU6SpZSqXaq1CfD0n+QQ8Z8DK5JgIUp5UlEmDkSqrQ5yKY8fLUjTGaYRIaQRg8mYLFKplzsgZVxNz0jShP5syO/+69/njTd/xK3t25RLJeZKicFgTK3QYXllje76KnKxym4/RFBNdE1FTATS2MOyJFZWOgz3rxgNF0hqgbyVQ5cVQg/CQGDsiVz6MVd2yOXViIuzC9wgI3QmxGlA7AaYaULNUtC1Mp3qLQ6Pr/FECatuYZZkRrMAX9GIpZgk/u2zPC90OT0/RZtnJImFJKRIQoRATIqIrKZ8+ek+V4NLuq0atWKZ48NzJFtl5MJ4EZIJKQUzpWYkaGg8+eoJj496TAYOSSAj6DkKJZGtVRnfTBHbywwT2Dk548oFeXrF+e4u/d0vySsBd263ub1VIA5m3F+t89Iti41liaIZocUOm+stqrkKeU0gJSaMHCJnxOGZzwe7l1wPz1gkCZmax9LzKKpMt6KgZDFJNEcWEixU3JMhuqXiTycM+z1U0aVZyhgOrigIOf5f1t6rx9Y8v8573rDfsHMOtSvXqaqTQ5/Tebo5HE5iJscKFqAAy7YE24A/hi58ZfjWsMUrkSYNwoJEiWGmZ3o4083uPt2nT6qca+ec3px80TDvbBOQ/h9iYf2w1n89bigRSgopVSIvCwgORKMFZwfHWNMx9WqO2lKdq47P2eiC2XjGpP2KuGaTzitY7ghBiPjl89fIixaOI4NcopjMcHXcICBDu28wm1gYvsdCFUhoOlLYJ6uK+J6MaXj4jk06kaaYj3Pc6dC46mHOHeTIRZufsVFNsrG9hu8uEKUFWsLFseaYkYdjTslkAoqZGKmYQuTFkMtbzKdNtNmcWf+Y+fycVEKmurnG22/eJp+EWi1DoRRHUQPya1UW84iLsyuSskQlq5LMyKSWd7C0PMcHXZpXMzQ1xtaNGsX6Oi8bbdxQxBUjQilEEiMEAWb+nJvbW8w9GM1MtFjAne0kUlJEVEqIcoq1zR1q9TrT0Rh7MkdPqOAElPJpyuUksZhNzLXRCiUW3TZyGFJKZyhly5hBmpzrEuIzsSNmZsRiEXLVDTjcb6EMDyEwyJVz1FaqKDGBYrmCWlqjVF4mJkU4iy7+pM2i3WM46TGZuUymDu3mgPO907/VDTd0mYcqNnEC1+T68x8zGAhMpSQTd85k0ccyp4iOjSDOySQS1GopstU8Jjp7XxywGMis3Vwj0BI4skamVObe/XtcDwaYbprR2KXTtTDGPlVJQdVLFKtFDG/BaeuYRv8UTXSRpRjj8RVT06bduWbUPkN0Ruhx6F+1yOeWWK5uI8kZWqMFvqgwvGgxkwUUJU7oyvQ7C66OTgg8yBZX8PSAuTkksG2Wt9ZQM0nEIKC0XCCdSRAZC6z2OZW0ipnMMpn0GM0aTGdNrE4T0zCQVIlSJY4YOlhTG9uUGQ57lHbvkCstoWgZFtMJvYs9NFXh5798QWT00XQJPVlAFQoE4zGtWR8/E6cz7NFfDHBVh3TCo5hS2S5XSBTWELNFJA0Ur4ukhFy252SyeSRiWHMI/Dhnx1+wlMiRjHRKuVXShTVmqIwMmZtvPCJVrFKOiSQR8WIlalubRJLI8to2qq4Q03VS+RqyBpWkRtvuM7dmmL6NLYRIUhy1uEU07TAZT7m8uKTT6lKo3kRXPS4uT0kHAgldBF1E0HLkt7KcnTWY9bqYhgmKQrZQIBj3efr8a04ujxAQSBfKqJUSiVSC4/0G5aVtVopZFC1NOyxxPuiwBMxnA5SF+42uGUMK5VWmUpmAiN7M5rozotPu4c5NZMMkX11iaAQYjo8iiSSVGIWVLVJKRCVdQw5lOs0GXz37mlbH5UaqgFpap23GOG6Mubxqc30+w8pkKKVF+u0mV80uXgj5SGDUH7Gzu0YukUSNqUhqnOkkJG2IzPsW68trrG9tkF+pU928TzG3xs79+zQaY04bPRxCdpYLvL1ZZebIWOaIZu+a/rhDORtSXi9yenHMrNvD8qa44QDF7XJzY5nL5oLJVCKjZ8jmCpAsoqVqyHKAac8R4jJhJo+TXCKTL0MsSULzKacTuMaA68tX4EV0pn1+8N3vUKkuYfoyMydGNlfC8QK8mIHbbzPpDzECj3wtwea9bSxPxpESRMl1SCz///uQv0sM9OG7H7K0tMbCtMkGFhPHoYBNUnVJaD5yTOBqLrOYm8SZoVYLtMYjOt1r7r67QVTIcDNV4WDvkPOzBnPDJ1dewlm4vHjxGUMnQFBiJBWZpOtTu7HN9bxJOlchWNgIEZRubPPy7JJpt0VhZZN4EKILElK2iFbdpN2ZYjs+ggpTw+L8YsTLgz1W4gIfPT/m6rqNbxtonovVGdDodBk7c6rlHGkF8BwCKY4YatiSghqLUVguo6UVmi9fIehx9OE5yXIBObDIJ9Os3XyLT5/+n1Qe/BCvc4nbF8jGdO7fSpHb3CBh+lzZNilVZz4c8fz5Hr3LLovJnHd+5QnNXptmu4llTPBTGr/29u8RTyaoL6UpVTNoeozR5R4x3+Kob/Hq4Jj+2CEeL3Pvxi0ytV1uxFyEWMRw1OfiqsGryzbnndfcrHhkysvo6Qy2E3DZnHE0cQnNFiulBFFsjiYZlGMiShCj2zyjlExjGiajqcDY0NDSYDf2icZDYjJEosDccOidNomlZMzLAfnUgihcYJkumXiK5aUEkpwnmQtJpwWKhTRL9TUiOctHf/4XFLIakeQST6uUlpc4b/S42n9J+8WMwdUCy/aQVBXdCPnyq0+pVmosV7IkynmEfI5KXOXBnZsMAMePwWKM6o6I5wtYkyFq5Q7DhUU6nyafStI7PuHW7Zs47Rf0ZhfECwn0ZJ5eb8ajakAiaWG6MgtBRNaTlNLLXA8GDCwH34pYqxYoVtcx9GWiQMI6e0b83m1WKmVWqnWKtSqTwSk9K0G/b3B9dUHjvI0mpPjn//K/QkxCfzindzni7PCc8WTOk7ffpdH8jJLuohVWWFndxLd8fvpXT/nR7z7h86+eEy1cCmJIUpeR6mvIRh+jZ1BfzbC6VMeaTnj59acs19c46hyQdBzqN5cJQ5v23gmW77Nx+z63UgLxhIatZjFFjUzQIrLmtPQy6XSCbEpGFhwm3QG//uQWoTdHyYcY0ZiJPSFUNdyoxIvzEUtxjf5gQqc3R3Q8Lk6/pLp7n8vLPsPmCYI1IavFOTl7CcD73/175PJFskkVXZXoTV1Kxbsk8ylypTQIDp3xgE6YwnBGBIZHpCsQxRj2Fvz8079hu1bks5PXtAcThNQSqeIS1ULE3dt3+Lf/5t8wvz5GIqBcr7D76C711Tj/+g9+TCIj4oaAHyOnZSjpFSbdCaWtPIWiQq5cJFm/hbr5IcPeEDUmsFLfJl/SMcNrzpoWB68O2bx9h424T7lYIYhV2ftqj4KmMp8ZnHS6CFFIXJQ5PexgyDm2t8qMbIgCjdBwaJ3sI2l1/uhP/gAMhcHUoT93cFwNz4CDy6c4I9AlQApYeCYfPF7nr4+6BFOPs1afvmGRyGaY9joUV99jZzVA0gPm9pRu+5LGcQN1eZWYbiG7NnHZJavbrGdS+LU7bCfyVJZSTL2A3nBOFp+X531ihfuInos/vcJYXNGPLFQtT9I32X5zBdvt02lcE5g+d7dDVhM5Xu4doy0Msrk8UTbP8dM9fvbinG/fWufT1/t8/uVnjNuHPHx8i/T2exAYTMc6+Wqe3Xt1EvEyX33+M7ZWHNbWN1EjAdELqNy4jy9PmHo2hcw6eiyOGpOJpdK4rguRTRSPIwgxNFEhnkjz85OXXB5fo6RWEUIBSYxwnIA//befIaVzPNi+QSUt0BtN2Luasr21xODkJdNGC9IlFp7KeGqzcT+Pl1vm+utXJBSJrXqe1eUCsqKgezPU0hqj1pytWobdlSyKZ6MU4txdXWFoWCRSCRKpLHaQYHflQ6LYEYVECed8gCJ4VO5XEa04FO7w6P5dwkCl227RbhwhKCpdP01q9xaC26J5fs7rV9cY0xHf+XaNk6GJaZicXnVpt8Zsx3WG5TyS28CadfAVDSmpUUvYOBdXVH7lLR6sPcYw4jTbY8xxi+3VmzROXrEpGXTDiJ6ik6hVWN5cp7M/pnj7BlI0xek2EEZD3lwXOLm6IIglmLpF8HVUe0H3+jXDgz0yGxuIlQ08y0D2plRv7xJcfcXQDXnx4hJBKZFf2mTuh6ysvMXDnWUuX++jlzQqN5aJ/Di1cEBytcDx6QnmvEunccbh4TeHzn9SZ+XdD3+djdom0sRmSpF8VuV4KNE9vEYTkpRXbjAzzjn+4pj0Rp7j8xMm8ybZnEolvslEqPLv/vB/48XLU6aNBvFwytq6Tnzexs/WWEpXiUkjfOuM2GLO2u1tzvYOWNHKxGIqyXKRar1O/+OfoMQjKkUdWVKwlICp2Ce4HlC4/S7pyjqf/dVHfPnxX9E4e8nV6QFHJy3yyTSqHCL7BrImUPjgPZzFAv/sBelEAtuG8cTE9SbsXwu8VY9QcgqlYhEtt0w7vU3N9Xi5sOiNRZzAYTLrcnp4wK9++CsotRxb999FVE1cxcZNFFhcXuJtFjEvuzC3cBYLBCliffceUn5KcHnM9mqC7c0t6tXbrNW2+ZM/+TmvX7wgmlsYhy1i44Dv/+i/ZKmY5OsvjvnWb/0+xfXbdIcWe599iTTZ56+/GnExFjFVhUylyGalzrzfoPFiADmFMQ6xfJzNG8uMD06J3AraTGI5DmFkctRpoY/PebCxTefqlMgUSIsRGWGItGgz9+LouoASWvRP2wwaC1bvv8nnn51w+2aN5I0b1DYek8iss9e+ZiDmqIkRliwRyBrZYoXb9x+QSmSYDjq0O9fY/T7dxjVfHr0mJ9r8d//iv+WNe495dLNAGHr88nmb/qzP2tLbfPhgjYYzxg4MVtMq5eU0ktxkKV9EliT0ahGpWuay0eadB7fRSxFec4jRvSQmzXj//UectBts3K0yTTzCCFJ4nkWyIKPnsgzzd3HDBDccYBkjAAAgAElEQVQ2bpFOpzi4OmK5cJfNnR304hIjqYInFMlKEp8+/ym2lODFFz+n14k43R/w9cdPOd8/5bd+/19SruTJbyrkSiLjzjX/6l/9L4gTic17O3zw648oV0sMxhYvupf81nd+iz/9o494660nyJJIvzsiGS+we/Mmrz75D4jJTYqbq0i6Qv98wsqNN8je3uLFL39Cv3NEIV/mzXf+IU1HJmlccTItUy1voQYe83mH4tYjVMfkZ59+woUX4Nk2aWdKupDgJ0cLHlVzuOYlBDapXJHKnW1mzZfcyKk0GyN8sUIsUWcxadPb/5ydfJKv9z9DdS0Svs3J6dekapuMFhdMBkNi3hTZ7jLv7NOZLgCIYZLO6kynU/ZenLC8tsrae3eIRwK3b25SLtQJTRWpeUTv9Rnv/d6vU8zUefHyFYdnL/kf/ut/TOOrT3n7dp20ZZBgxqh3zSc/PeV3f7jLQBC5WauAH3DV6/K808WO7XC74HJ/JU8pVyZd2ya5/ph6torQ61BbqWIsPHwlTa5eY9V+Sk6QmJhDFpqBpAUU9BSJXJZ/+PbbVG9s02vCs5MmR909bi5H5G/t0j36irqeZHPjBq4Q44//6P8g2tqgnlni5NiivLrG4w8es333Fn/8s1PeefyA7//mhzQGXa66A9Z3d/iN793j9r0POL8+Z/vONonVZc4Xc1bjEvVlAavfZjwZ4PhT9KzGyp3v8Kgi8vrzz5Dr38KwkjjdAW89+oDGq5/xxsO36UzmmJ6MrpbJaGW++MufMxOazJp9rl6fcnHVYZTIUZRnrKlDFH+EE3r4fkQWn289eUjp4WN+sS9izmJUSqvs3H+EIsf4s8+/JJdUeH7c5ro/I1dIUrr/kN/+7g9Z2drBbj4jGQXIeo2fPf2M4eHPefq8QTmlsrWxhKxk+eQXr/nw23lqkcbe8zGGIJOrF6mqSWrVMp//8hmlWolsOiKhu/iCw5c/PubOG0UasR0mM5vOcMj5zGI5IyIIGb734RPe+dW3iBWTHDfP2FgtEEg9dMlnEOhEokM93kOXYPXhE/7w33/MUl5hq6iRFXzO9w754I2bzA2LiigRahqDQMBsG9j1IjlBZ+9wn2KlQmV1i54Vcbz/JcdXXS7PzhAzN9BSWeT55/jeAfc3tzl98RRBNNGyKSK1QKkY58HtOK8++il908UuJFBv1Ll979fofvpjFl8+RU1WufvwId968xaSa3HSE2h2Fb711i6rS0WcxYIXL74g2lxn9Je/4GdPn2MrGfRkmVF7gra2ybPzAa8++ksal+fE02m2drb4yZ/9z2wt3cau7uJLGQIbJiODs0abTHHBujhh4VTo9x2m3QPS9Ryqvk6UW8EbD2l89XOe/eTfc9wY893f/W2ePeuTz4j4jklvZGGFATu3nxDEEzx+9w0cKc7B63PGr75CW5epr7/L7Se38MYh559fcXlwgWRPaU0dvvXGA/LpKs3mkBcv/jOADG/ceUS+UEAKTAJ/hN00WL61y8XeU8bjc5REgJ7Mo8h5jp6fsbtzk5sb98jIRS5Pz7h3/wNuvvMm5SURJSMzMU2OX31JTB/zpFaiMfJI6EmSiTwdWyVMr/L22+/w9emnoMpoyTwLD7R8ieJOguOOjaTp1KtL7G7ep/LW+0ynEy73G5iGiZbOUF7b5dbjH1FSDObNBbP5jIAkufQyt2oSv/x3P0EUu2TKBdL5JJKi0B4KrFYLmL0+5VwZR87Rn7tE40s2duOspOOIi2uMTg9n7hBPSjQuhpz/9CMGY5ParYds3H9MSldotE64XSxAoBHTQ+LVEvnNO8RjEXlJ4fzokk7TZz40GDVf8ld/+j/x2+/mqJUiDve/YuRO8HQ4evqMrw9f8s/+x/+GlGyC3SMmTJFVi4+eemTjPsVSlrSWoKyLbFds8sUaD371DewLm3J1nXwuDbMuu5vbTK4HXKkC7SmM2zMYXKNOT4nlymjDHk7QZjHpMG2NmbshG1WZvRODGTkmFBkHORYzWK26rO7cZGoGnL0+Yu/zz2mcHhELVFYqC0ZXPRzbxmHGzDlHQ2PfXrC2ss0Pf+UJP/j2I95/6z7f/c7vsPf1DL2/z6U5JUxrvHF3g9zuEy56bV63rsllUywtFVASEt3uALd3gjHrcXOlSFYIcAcz0lqNj7/6ksnhFaIVoOOgxiI8NY1xvY9n2WheiK/pSLkM5YzIp58dc/+d70P7+JuJaj9kfWUd05gRJSVGypTVpTJxOeS88ZqUOOXVWZvvPvkQKcqzCFz8tE9+aQXn7AWffvGCfCBza+cud957h8pSjtCPI+kqB0cNZr0e9ZzGo0e3+bOPzinnRCJBpdMeMxr2iKkjqisrTE5eYih1ihWJcmKOMh9w2Z7w5NtvMm1PWE5WkDSV16MLrn95xrd++Buc7h+S1CL80KM/M+g2L0HWqNa2UYMs9hQsO2S9nuNH3/8N9r7+mMvZCoOJzLjbZtQZsZ6uEcVGLCSd6fk108OvQOqxUtrgo9MO5WTIaGHQNDzkVAlr1CGOwnxkYpgmoRhDUbO0Bm0A3vve9whiGvGkzvr6Ol8eqTz/+H+lFCk0eian+wcYrUNW72/zN2cnNF4fYloq5ZjCWjLN8byAlA+5OG7x1WELazKmXsjw6Ae/wUXzjKAfQ9VEWu1TzEmfzWIN+/TP+d5v/IiDg+cgxtFjGYaNHv/hoz/me3//H/PRV79kb/+aCJH6Wp7xIsCbX9FqdZlaPjNPwBN11uJFvhp36O61ubj+EilcsJpdJl24TTYFA6dOeeUGg/GIg5NTXKWMOAwRJYOt3RDPa3BxekajYXK49wXff7zLzz77mIkjUsmXKARzbD/BH/zr/52kKuBbHtZ0juzZXJ9N+Ozskg+/84+4c+chYRTy/MVzLo/2ON3/mnsP38V0J3Q6bYaGg5Ea0z6+5LRzxLjRRo/lSCbLWOYQZXeb6fkV/XSGqFinur7Lzu4txkaavCwyPmtgzSZ4ooStFwncAXfvvEGikCMUPRqdBp8//ZpfPOtQiE45bTns3nnI+nKFYDZgSS1xPe5zPTzny71zJjaUclluV9cQstv8F//8H5BeFmlNBxyfNsCfc37cxu11+d7f+x3URJGrpomdyfLO6hpPWzILaUR9u8Tt27tslOrcrmb55U8+x5wM8LyQhCSwLE85GJ3RPNnj27/2AVcXDRqdHnI2R38QkIxcPGuOf31JYIlEyjJS+5LTkYkvFQh1GTUZI5GMMzZkOlcL3nn8NketC9REilK+RKt3xuOdCp98ck55qYTrjjAXPVbqS3z8N6/Jp1VSeZHL/S8x532efP+3CBZ5/q/nbR5UV8mUKiytLHFjucIney1uqBnS1Qre8ITBeYtBV2Upn+Syc87W/QcsbW7SHFr8/MsrhpbG2492mdvfAAuzmsByJc3L4yb//Y9+k9PnT9m+85hkZY1FKOELMsu7D8jnIubXfXaqGom8zM8uJ+hjnWreoz8YIUQS9VqJWzeX6Y1mpIICvVBiOBxS03xuVkr86ecL3v7gTbKqTLWkU66pbNxa4Vd++E/54vmPaQ97vHvvFsl0hp5hcH51Rr/V4JNPPybqTYkmfTK6w9bNCmnbYDSd8PzgNULgUK2kiRfSXJsiaS1HdzJjOO5xfXnCwcHhf7pZ2V3boJhIEXkQiDqKewnJApPmiMiao0ommVScz569wpq5SHGP3nzA4VWTg6sJs5jOs0//invVIvm4hhKTqWZLPN/vowQiyVScVFpGUlwiDEx/E1GMyApjMrkN5EQez2rTfnmOkqqimyYrW7vI6QrXXZuRXSCjK1jXr7DsMYW0xN0bVe6/8z693nOE9Yfc3Shw58469e01xGABUYzu2KU5XjDxXCw5YiEKvHN7Cct1mS5kFqEOMYGsMKJx+IJu12Lz3hZiQUNLR6wXIAh8Krd2QJAZjsc0zxuM2mNqlQqq1WLi+ahqnGQ8g4zIdfOE7uf/keXHd7CDGa45RI1s1msJBs0LFkLAyuZjtjZ2yZdKOOkSubLG33zewuyccnF0Tq9lsFzaYvPJFqv1OM7ARnAiFFlD0XMsV8vs91wEJ8ts3CecXrGsBSxt3uR03iMvaSTCgMgaEyw6VKWQhhRjNhkyt4xvWv2egKAuGI6X8UOH09YYLxTIZ3Qkz6W2s8mk5zFtDBFiCXKrG6xtblNUAhoLHaQipi1jjk3E6YxRKHJ3d4PFtI3qj1nYFifzgEmzydO9JmfHB+wfnjDrjYh7AbPWFXLCpSBPiWsqgmSDOCQpC2S2FdyYiihkCJU0sWwBXUrCrE0yJqM7A/xgztwOmQ5FcsuraJMRW+s7zC2PQbePFkIsqFMsBRiXL9EyKaS4xmjUIVmqM7EGJKI4SmjjOFN8L2IpW6dSKTHxNUxnjJ5OUF/bolJe4OrL9JoNxt0Grf6Ewcwjq2mM+w6pqobqT9G8EF3Lkl5bJhh3KBRWGPozIllA1WKEgk0pk0DPbXJ2NmS5XqdUKjHoDeiPYXm1hjkyuRyMGZghyVgWa3TErffe4tlVj2I8YmNtifr2TU7Oj+mNTdbWKhjWBEE2iCV9jpsDtN4+qe0qhXwFURTwQ4m8Xufa7+I7MUZzn2Q8Qa5UwUtWKS2tkHF6dLodBgsTJ/QRcFhYJiVNwXMcgsBGifloasB155uS7aOtDdbKJbLJHJav0/Nc3rxTZroYUS1VkeMycxbkYyql3XephnOcUMF2HWbzPoenXzCcNnj77W/RN1yIB0hZBVPIopKltf+M3HKenZt3WF3dZbEIkZQUA0fCmBvYEgipOKVaFUWwWPQaxEhy59EDtu/eQo3nkNLLXJz8gu4U9KRGQRcpyBGKJpOorTGwQnKaShQ6zBd9soHJrNHFykqUchUKuRzVco7lSpq1+g6vLg6pqCnWCkus1pZJZ/NsVnK05wbZ1U2kMM20b9HuDahX4KQZcWNDIxvzCdyQmSehKxOqOZ3ltSp7Rx3MqcCt5VuUC+v84IOHNMZj9q8byIpAvVrm6Cyk3T7hH/39H3B9fMF1q4fpeSwVM4y8GXufPsMFajmRakrAXAhU1IilSkhq4zaxhAqBgRSaVEsJPjkYsrhs0W128H2TtVWdh/fusPrgAYOXe4xMEVeQiWshvVGT08sR1UIJSUoTihksTyLGmEqxxJ2NFdzhBNn3kUSRdsdns6rzxoN3mBdyxJQ0eV3HDq9xBkMuW11SqRj2aEbz6Jr2dZugCA0/hmkGDHuXWIspqewy9x/eRVJrbBWTCP6cdFKjkC3Tai54a7vMaDCk0e8zWkwR5YC1u/fQa3dIKnNSepXpdEp31KRU38QTLOzQp+N0sP0hMSw2V9aJoiRnjQnjwTVuAC4KC8fk5sM7xFJlLq67mLZKoBaZiTppzUPRSwTRlOPrISdXPa7bPU7bPjotNGlBf2wy90MU1ScXCCQ0n6noEyQTlPN51ot52tM551ev0Bd9xraPnkqTTqURUPFlhcGiy9ZOjVIpTcw3mF3uo0YRl69fEF+MGDoWTccnoet87/5dLi5PGXszLk8vGXZGBG7EwfEedx+8g989Y6lSJUxkubAFbu5soPtN5tMxrX4DzxfIZFeQc1lKfpdX7SEhFt3+gG6rjzdqU5cTBL5BLFMgVaqRzuZxjQnOoM3tR0/ot3qsb2yRLpZ4eXLG/cePEcQK4aBFWpOYzqY8e/Hy/9Os/J1+AxnjMZP+hDClojgtnChEGJ2gJQWmE5/GWYtstc58NiAWy+O5DgtzjumGVFaXSKcteh6cHF0iCCGSorFSWiGVeIGsRnQHHbTiNuXaKkLWJy7nscwWQhBDihRiroDsCtRWCwwEDydMgpwkJsuoRCj+kEHHxA4cait1ioUE6Xwc3Bn52h36oxmQIpvLUS4naR/ts1Zf5/jsCt8yiRERi0kkgghBtdm6+4CnT5vY0wVpwUcRfVTbJMzmsNwFcmRC8M2Uu+UGpPM7pBdg+xGuYTOb+4zDKcP5Nav330aIa5iuDdM54XRIqJSwzZB0KoXthwi2TalW59XIJylUYO4wNIYYQUByaYOcWuD6qoU7m+P7PnJco1BMoBRniFOBqKyiCCKy4NLqGqRiKr2pzkq5iDIH0RcwfBf5+oClkohtx1j0LZyZgeM4OMk0xvkZQiqL7/uEjocQCZiRgt1aECYmaDGHSjxHUU8ycMaYhkyr0SGXKiBJGq6YRC1WSIwiTi5H38D9/AW2OWXhaOiFPAsrwJgNeN5rEIQ+rprAGviEsQ2WUwnyqRyB63LWPEfQc5TyeSxVILAtotBCCEJ00USxZPRYDNGOQAtAiYiCgM36BrZ5jWUIWKZP4ATEszLt1hjbmKJdTbAFm8gy6c8K5FMSojHhomuzqrjk5DnWuAuFXRKijRIrsZiMsFwLP5bEj+mMjQA1KZHyQkQ5QpZF5i2HwlqF5Yfr5KINTDtkOBsTDOYMBnPe23iD7qnLaNJh1m8QncVJ+DYJVULMVphOHDrdDp7T59H9x1w2OxTSMt7comG4DPszlFDm7LhPv3tKYFsEUpphpGBEPoPmc0JfYj6dElh9KiWF9WIJKbXG2cURlbRCLJPDkyXKcY9h+zUTvY5v90jpCpqcYdTvMBr2KdSW0NMJ4sUK6VwGLbDwjQ6p7AqpUcBw0gTHRNFV0qU4wjwkno4RijqEHhHe3+qGGcnM5iGyJJDKJNnc0Bk4HubiioK5IJtNopbK9Cyf6XhGIpElcET8KMJGxpjMWZEFglCgklHQ4jWS2SSjcZOGCaY5YT53yFdShEiMZgPqpTVcc44YeCS0PLFkAUFP8vbjN2kdXqAVaiD7uM6MUDIZ9iM0WyIp2SxVlyln4whWj4vmOVKnh2vrlMpF5o7LeLignpER9TTmsMskXSVVrpJOpRkbJlen5yyVFELfp9McoY4c4uksltUjHteJ4xBLRwiVOEO5iGWDpipEfgzLE3AlHTVTIq/K5PM5LpvnWIsFkeMSCDorK/dx3B4L0yUl6Sxl0xSKaa77IUb1NvJCQdMzKJGDEA/wYyH+xGJ5JU1haxM9DvNRB2fWorJ5kzEJerM5TiQgpHPEkDhrjBjNAmJFncidoyQlMqUKSUyMScDKyiboCazIojscsbKUwTclvPCb0mu5VEEXfZzha4rJiGZ3SKPdZzyf4MsJ7r/1hKJvMDZt3IlPJZcmGfPpHc04HE+5X88QyQLZbBxRhu5oxKtX50TTIckwgeUtwJWIhj0WnYiNO1u0x0PCMCKRVEnGVZbrVfqLHuXaLbRsHsuaosQ01EyR8fE15aRKrrDMaJ6kO9TxIhnR8mh1+kwsi0oiTlrNUSrVODnpklJcDNf75mgSVTqdATvJHMJ8gDWbklGypGUZa9DD3VyillIIZwYLy8ByXXwvIDDT2JbK2X6HYeATyiIJNUaxJuJfGAwMCc8QsP0xojmlooWc97qs3NrF7HQJBA/fc8nlMnhODCKV6/aApZJILaljVGvgu7T6NlogUFpap5JJsxiP6NsxNL3ASgY8p4PtBcxdh+W8hipCNlNCT+aJQpGEH5DV5lw1emiiytSZo6samhwnkRMYNmxSosZsKqGGARkC7LQCasRubpOuFWDNfdJKingiReCtcnpxRUJRWMwmOH5IIqYQk3QGvkVoSsQlEcH9z8QGCn0X07DwvDkJ6YogvoXYOyKMlG/6G6MFvb6FGksgxTUSyRz4Hp4UkS9usLkqkJzf4OTgGYZpkM0UKKQLlLMB9Y0CX398RNGTSeRWcWM+GdcinYlzYSWIhQEx3yT0IL9SYtxv42tJ/Ah0QhKqQGRdMe/ZCPkK1eVV0kkN07cYHeyRjC8hD3/OQt/B9BUIRRzHo6rKFEt5xvYMRfGJI+D7JtPA5ubNDZRji9BwkSwLJ7BZWlrBrGTpt1qExgzBsTFsn0E0w7tssFnfIJsoEgQKznRB93qPxWLB1iMdV/SZT2b4vRnpmIu4/gR70iGVSyIlJUx/zNwLiVW2kcQ4o4OXjCc9XF1jSVERSir1WhKha1FNpIjlkygpg2A+RPRk4uU0OiHewmA0XHA+NolnlpBzIqlECWcRpze7xrh+xvLNbQYpD3fmIEUOkgCWpCB1OsT0Ap7lIYYOsqIyMhTscQc1pVDJSRQTOrKgMBPBPzxnZIzRM0vEBJ3AEQkclYycQhanePMRRFMkycONEmRCle58ymAwptkYIwUuldSUVk9ha1clUy8Qj5cYD0Y0zw+JSxoRCZRMEbQeoScRBSAzQxwmv+EbxXR8IPA8QlTWqiUuOuegpQlFl9BXSKVUjvaPmTlj7PiMeHxB4JoM7BT6msy4YTCyNTJTkxQmauTgTrsUlhKYgs94PmM+N/HFgIVgctgf83gtRSqjESFj+RbTSZzyhoKWjrFaW8c0PNyzc+ZXLWKqgKYlcAUdK6YgiiHGeAwjC21JQpUkHNOl1Rwy6x8zeus7tC47VIsRs34L17SQBJFCFvr9CQEO5VySIJah6wiEoYAxaKCFSewwZDAaocoBGTnG2u2HnOx/yVs370EiRWM652ZNZi7C11cest2lXiqRz6ewPYNgIbGYu5RrJcJYkqkjE3cWXF2eQel98vkaveGE2cJESWvoKZXQGpBKqkgyhE6I67l/qxuRlqI79/Eik81sns1yhv/42QElz8F1DRJKjniqxNmoTfvsmNXdOpKq4ZomTiCgyUWWchLHZy3SUkS9WCSeSRJOW+z1uuhqjNAL6PWGOIEEMY1UocjCGDBzDPRIQnACxosOKxubaI05UTxFr3uJ6liUtQS94zZrqVUU6ZL1ShVFEehMLhlMF4ijE+rLT0glUgzNPHLcQsouoagZuPiaUbeJRkAykWDh+lxen/L4nQLhYs55b0QQqaxWTAZOg538TZgayPgU8hKpRJX+dEoynSAuK/iOj6Dp5Ip55AicUGU8OCFJgCtZzEyoihtcnL1gYWdZKxRIaSKGMSERt0hkV3j9/BzblSmvlCgsFRkZcxRRYWW7TK5cZGKYDGd9wlGPYLXCMChyfHZAJhMnX1wliBSah1+zkUshxgPicoSgCBhWxHzWRjBcxFSeejlBu9fmoj/lwcPbJOWQqQACLrmkRCGp0Z7EEGMKI8dlGkQMpjZyTOTWnSpBd8Znn/yUvK2QU2LE4gH4Khf9Hj96vMp1e0AlnydVyrJw4cWzI+4vuRTqy6iKgjOeo5kdOldTNnc2mc8BT8af2NjzJkktwXAocHt5hbSg4DgJolDAdzxaB89Ib62Q39TIFdZIpRJ0B0P8QKUzmiCqKsXsOuXSDUJk+v0J5YyKncySLpUQYimazpzmSQOsY/TQIC2qJP0JzkxgYZbJyAGeY5FRQFMk4qpP1baRYllOr/qoNYl4PE5CS7OyU6TXiuG2LYS0S88dYowvqZV32CzlKG3vcj6fY9kG45mKJSQoxZJks1Wenx7hLQTWV1bILm+RMD0iJYmcLLJ24w6ZTJyjl/t8fTrkjY01UukYrgv9uYmsSzxcu8+w22SpUmUWxiByWIqDP2tz1QupZ3VUQcE1pnRci3Utz8uDLqmkjBzmkEMLTTZIVFfJ5NOoYRnrss24NyIhQWk5S0iBTw6eUy9mmLW/ma9Ix+OEgzGePcAXJSwnwLHc/1f/8f+8v1MM9M6Tu2RTaS4vWgSigZrM0+tfYg8nyJKCkinQu2iQLd/GLdrUl7ZJl5bwYwmujwPuVgXqaY9sXkVSJWaWyWWnRTibcu9b73F57ZLO5YmrIePLA/aefcnv/4N/wth0ySdC5NiCxmxA73RCvbRFuWCRySRxI4nGeMJnX55yf1Vj6e1v405tjGHEYqFxdPwVYe+KRClBYWkTMV7A8GWSokrcPIZ0mfbEw5pGuDOHadQnv76GpwuoXp58PIEUWEw6LWoP38ATfbqNOd3RAj/QKSa36I1mXLw+4fbtLTKFEpmkTj4eMosc9FQC0wPBm+KMuswGfQrlFAk1QzEvMzUNHB8EZLqNS2q7W1x2zlA6A3Y2yqzvljjcf4ktpZmYMcTAZ2elxlo1SWt4xtzeRUpbTNwMlhEgygrx1W2uYut8+PghvdYVU3eG5cxhNCHypuTTOrmMhTlwsRcukuyiqgKep+FHMZx5HyWVRilucnVlMln0efLu72DbIiPbpuOZNI2Qzhd/jZZyMfomqWKdyvoNZMNBkj2UTIbrVycgayQKBUTJxxi2eOP9Rzx9+hTiVVZXd7hVrbC5fZullQqHwyFGZ4wSqOTyaxiXV3TiETulDVLLy4h6isjySKgRSrZELbOFV8gSi+lkSZHILVMLX7A/nrOSzZFNxkGIsRiGJNWAi4tztt76DkavQffkBaGqsJA3udr/nM2dChYWY98iXkrg2A3C8nuYV0e05wsG/TGL/VPanRlx2cSbdUnklkhkCuhxjfjqJkfXM17/8R9yfNrEsCKKpRqVOze5e+NDfvzXP8GPLLa2b/PwjW9RrtR49vUr1Hvf4qu//CNsc0EYweGnv0SOJ3jn3vvsnz4l8i3qK1W2H98lXYwT0wTuv/t7JEobFJZW2L2xin/+NRtPvsPMMdBKVTyhROPC5vDsa7xchbeWczx57wMkKWRw/hWic82tB79HZ3hI1lcRAol4VuMH338bVdX4xZcXVJZi9IYmBwdtuq0rvtjvsZhfs7RaZOIlmNkKcVFATy+TUBfktRAECVVPkIzHeXH4Tfb8a2+9iaCKjD2TmW1RT6v4gx7V3JibGxtkC0Vmvs/gokNpvcr91Srk03TbV/QODsimSgTLJQ7PB5TLVTIJCVXw0BIFRrEqEg63NoosxiNs0+beG/eQa3H2Xn5BYxxgzydYnUOmzX0ulVVefv4zdMsiXS6ysbHOZq5M93JBdP8BFWxKKZFe65r9oya17TdZ3krw/pvvQwChYJHOS+RzRaYjj3Q+zaTTYjzsE4Ye2ytFltdrvD45RlksUEol9HqVpBxRvnmD8ysNOUwJLHIAACAASURBVLlDozFhMehTzco8O2uwcusd3t1JkRDn6KpLIhPjcjzjeO+c9zdi2DOTWLzKyo0HTLrH1NUhL0c+9XKSwbjLJ8+e02316A4GzM0Wvc6I+uYm9RubvH7+itVyhb1ug+vXx8jIqJkluoZEjXNSiTpGGLGyukOhtM7clqjnktx44wGX7QmylCPyE/RaUzw1xa37D/nzv/gLXF/C8WQWDkT5VWwVcqJL9+qS/YNDnr04pHU5J7b6Bm/dXyWdqZEiQBxcc/nimECfMDrvYI5GRFGErKcQlBRfv3xOOZ/m6fERw/EMo2uwuJ5hyAK//S/+KbfefB9TTOOHIaWsQOHmDS46M+7v7iDPTC5eHfL5F18wnzT5tQ9+k9HlS168+ArLHlMpJTAXHtPZnPlojBupiJFHTg9YXU7jqQVeXD7njXu32Lh1EzGVoXs1oNkdsLq1iRiLKFaq1JerlAoKJxfXzKIZlXSCmWEwnIzB9jFmA1KZHN3+jKKskokn8FWNOymBbjzCNS3W61mq+QzZVIbV1TUGQY2jzz9GlyICEWxRBbnIvRs36Bguhy9azIb/N2vv8SNJguXpfabN3M1cqwgPDx2RkZFalMjq6uqu7m0xPYqc2VkxS2IB8kSQ9wV4IMATD3sgSIAHEiTB5c6A5HJ2hpzeaVHdNdPV1aUrK7MqdWRodw/X2s3NzN0ED3UgT7sDDP+Jh+/h9733m2D7Pl1MEnGB7Teuc3hSpdGYMB67JOQFGdHEnzf4xz98k6QOc9cjla1w9OKE1RtlJl3oXNTxxgOSusXend/iz3/251zfyDEMfYbOEGExwBItjttzjFyJSj6NPRlzcvSCknPKo0EfU/DQ0nk60xmdscfu5k2+8/om//qrPjPFwPf7+EEfI11k0uhCIsNRrYqVKpHIFejYdS7PQ9TYCEeLCGWPRrvO0/8/nJWNymViMQ1v3kSYySQrCdRFjNJ8Ts7SiZWSBNoYaX2TgrHGz3/1C8LhgBvZBOPRJ3z+3KV6cUR/FrKWW6Fs5Xh6eMy331rlp3/zjCtbFdY3KwimxUTU2FnO89KZU33wPsvqjFJxFXXpTa5ul2mMPSbtNl7vJbp3yloStvbuUX3+GzTPwXE0xgsdz4e1pM5YGJMTGmyZIk6nzunLF0gKOFaa0G2Tixl0e0Pajstr37+H0Fvwb376BXfjQ5aVKVZcJLlR4NP7H3FxekB+tcK1y7e5vbnHpbROevUmP7yyw6NHn5K3PLTA5uSgRiat0GsdoTUvWLR62M0hvueT3LuE7JzTOPiCuZgjrqfIhB5Wt0VSt1GMHJpgE8ouiqly9dZVZMviwalHqVhihsIkWrC0IvNXf/ZzvHiK3Vf2WVndxVBieO0D1JHGE7fP0C8wcV0WQYimlZAdic7FEKtSAElkPJvS6Q7I4xJuFtDdFrJVYGQb9HoOl98oc1DtsyN3CVJpjrp9vnz8EK91SilXoXF+Sqq0SiymoSwmaMx4eAQH1SZqdEHMzBCpeUaRgJIy+eD8Q24tb1LQfCJxzixVxCrECBSfy/EhextZUoUc45nPxfF9dq2bxLZzBOGc+EIgJ5vYkoylbtCZTkjMRxiyxBiDJ6cXfPTgN6yuXGM8sanVx0ShyhtvbnHwok3WCFEWR6jBgJiugOTSnjvc2C/xxZcvmdohii4TqHOGwg6fPW/w9OWY2QSS2Rird5cob13FWK6wVKnw0UcnvPvecx4/PWdeO+bh8SH/4e99l/lYYuBKTGSBqHvK05dPuag32C4vUzAkxhfnfPz+F6RvbtGrDnE9gdxyFllyqR+e81/9l/8FCzlAk0ZcuX6F4tY+rcBE39qB+TLVxgJDE5DUgN7MpljZ5f6DL6g1O/SdNGgayYIDisqqZCJEQ378/vt8+tmXOH0XZybSq1dxM8ucTxc0+j3scRNF7lNiyhePnxDpIobqoEQjjqp9Ti5OIRrz/d/7LtNgQXs4w7JK7BaHJOIOgxmsFpdIxBMc1PscnnzdvLy9nGd7J8/O7grraxVWyiuoaQvb1ThvCbyon9GcnlKq7KHFoLS2Sa83Z3pxhu61qayscDYc8fvf/CYLTWCRMViYMUbnA6JanxhTup5KrTehNZ3S9B38hcdP/ve/ZiVTJi4oGMkExStrZCeP2br9FmcdaBzfZ9ysEpFipbxg2n/Bjz99iWtuEI8nSEUzhrUZW29v8af/3Z/Qbh0zbjUZd2eEhSL7uxLPP3/A+ekTxqpClF/BVJOsbMiYixbZzXuYpkJGCSjmLyMuJlzd3Oe8/isWdoeELhCLOUyaA/TgjGYbFkYZLbeFoqbBGXPv2u/y1184SLEUacvCkhUu3biGExmMBZ9Bp4WESi5TpFk/JkuMUjHB7f0iZXGIWD9AVWS++KufUbx9me//4A/I55dY9E+JjT7l1tv/Eb/+5FOuXb1FzNBx3QmGGrKXLDGYf0A5JfPs6SljZ8HdV6/gHZ6QzqwQhU364y72YoaZUJh36nzyzs9YDJucXIzQEilu3LnC9TvX2Nzb4ovf/JSP//LXSGae7P4+H733b7h740fsfP8e8azO5voyKVXiyafvscAnWyqwUi4zGbVxfJfLr77O6fOPefjRO7x4ccLjTz4kHkW8+faPOFhoDMSQaeuA/vlzjHjI3p0rLGVfo/r8Z1jZDVRJYtZuc3J4Ri+1TLNb51ZyjeOXj8FQKW3vMxn6LBshC9Mn4bm0z8958uBLag+/4j/9z/4R//P/+VNGgybdiz69agth1sEVR0jZO1zK51heLmCmM9iegjuSWQgzgtQe3tQnnI7RxAWuYJEtXcGRh7TPz5gNRwiazpctDcGZ4vdsvGSKjZvXuHLzGl+8eMz2epxMPs7tm8ssqRHCZIJYsTj+8ICR94x1DXYqaRB93v/kBel7P+Dl6V8TN4u0+1MeffmcD979mPL+Hp3OEY43YuPqZUpr28xmc0zd472DB3SGDq/e3iaTyvDVwZiWN2ApGaN/eogbXyIKNUTb4bkH2lxkd3mPhTlheSnO1tIatdoUu/8hBWMV0T2hslagsLxF4/mAQlziqPMEJJX1yirLS0uEssZfP/2C7No17r//Cb3WKa1WlbNq6+8OK1dvv4UZW2JSHbKUypEQ52yUJaqTKvNYnERhh6fNEMP36A4UOq0WZ90xTzsTdF1lSRuTzRQIpzb9/hCXBbdvrWHpazx/dEgpt0Iyu0W+uM7eVoHQmZI0Re5+64dU3TyHbZGkLhH6NToDj/RSjlR+i8EQvnrymNyWzIvDEauVbXJLm+jKAG/4PuPRGVfyWSyxgG3opEpp9jcqWFKK37z3Adn0Jex4nm5/zLg3RoivsbZ+lddu53jyoslnT55w0jlFT5vs3t6HwlUuyTMSQoiopFmo63S+fJezVovJoEGjbdNx5shpg+nJnJWMTjcqguQSMyckUx7xuY3mt6lWHZKFAIEmg8EFfkzFr+wzPRvQHlwQX9sgvnubh40pv/zLX8NsTMYaMmw3efGoyf2HYzb3d9ha/w5Tt4PdrzHxbEZWjtWKhduWqRRMEAzMWEQp0+LDTw5485Uci16Tth2xEGMk9BjBxKPyyhuc1S9wvCl+KoW6vUcul6R60qV8fZ9HD17QrTtIYgbPnzJXTORUhDQb0e+0aI9aRGqfUXRBojujlDCY9mucVB9zPmgSuCOmk4CTdz8Bb4JhgGOP+fzpCDcMSelXicsJZsM+tdopc2MdofWCzUtbRIspug6ZQhpdVXjZfI9KlCCe2saVUgyGc8ZVh4w8ZmQH+BLEyiuQSvDoq8/5/vdu0ZiGRNGMVFwglooziqdZLUqcHlXZXCqi5EuEiWXM+BoScdo1l5W1OGtby1iZErKQ51uv7CMlTXpnMxRjynI5RjaZ5qRa50c//CP+7Cd/QSJlsL6bwtBsPvvJx1zZ2OAPfvdtPv7gfe4/Paba9xgOx5ydzfnRvdt88OgFhw8fIo49Xv3uP+RsMkFOWjw7bNHtKgS2QTwU+PzDryhaFu2Dz9AkD1cwOO+JdF4ecfk736X+6D5bRp+VtIwcX2JZTqGtBKgLi5XlNe7evMPezbscSjE6L77i+994C8vpcWO/wNbuMh/+/Esu//Y/4dJujCsbV0jryyyCEr1wl5mzSWM8YOu1e19/3vRsZGFO0tKQcuuU1B4LKYSYRjat8puPHgLwT//zf8Z81KPdaeEqKt7xGd3eiEGny/Z+hbRlMalOaVXP+O3f/S3+x3/+3+CPmlRWMuxc2SdpJbixu0zNGzM56RO0YdKyeVb/lPNBiOOOWd/PsZaD5STohkHrUY/X91e4tbeGposkkyUuV+7RmfhMZiJhcIEsKWxtbHPp0hr/y09/hTYzubO/wmg4QggXrFeKLOIhs0HIt3cuE1u/yzCK0xtNEKOQ+48eMEvssbp3lbvrq6SmU/7ir/6G1/au8LzmUn30gGw2Q6pQ5OWzjxiMXvL+e+/xq/cfsLn1CqX8Ep988AvGUpq9m9/FCo959OADho02m8U1zttVJs0ayfiQnKkSRhHVXptPP/wIJ7/F7OUB27u3ufP622yubXD81QOS+0tEtskrN28SamnqQZz8lVvkEnHUqUBCKSAGPmLgEyxMvnjynI1KnmowZCJHqLqG7s/55QefcPayzaOzDiVL585mgZVcgmHg886Pf4Gpx9BiKvlKma3dy5RDnzfefps7917h3qvfoFjM4jhdstKIs0cv2Nj5NnIlhbDooDXOuLm1ix43eXLwDqN2nHTcQNcDji4W6L0Dbv3hH2D2z4nH4ySKOZSoz2Q+5O//6HfRlArf/uG3WNtI8Nl7f4kSy5LoTxnWqkQO9G2J580ps8FLvvHqNoV8FiFQieW2WLvxOm/sFKjcucOvP/4L1q99k/LSNs6gzUHzC65/6/f4+Ms6tfYI00xQKhWwBQlnMubKyhLLm7skllfxxAVnZ1+xe/l1tpMun1drPPzylNBx+MY3yqwkErz5g+9gyiYpA0RDZCarlJJJyrduUX/8lE5zjhtGxJIiV9ZW+PJXf07x9Vvce/110nKc88en1A+rVDav4LXPmfUD6rbEUd+l/tFn5BMW4ShH7eUITyygJ5bJqhGpNZk3ktcYx4bYEwctlNjczvCd7/+ILz68TyFtMRpMaDU6RL7PUr7ETvoa25dX0VSdbq3LqFZl2XRpCTlu3blH++KAvLng3rUKUucQo3SFi9bXDzvjagItnOBefEEms41s2shChXSiiC4JdC5q/Is/+xe88a0/5t7r9yimYNw75+ysw/p6hVhMRfYd0mt3mYZJXjz69O8OK29fvUbJMhj5E67eu8ZWNsdFqCPFLcZzga+Oqjw7eMZcyNC9eMx6tszNvV12NkqEnsdyIY5pKDTOzpEtEyOToHb8kuPamPJKhkBVQYZ+54z7n/2S7e0dCpki7YFN2opRLGVYyCA5XVb0DKalI2gGnj8icGvkxBQ5USOZFnhZf8n5+QlaIPDtN25SvvEWh9WnnAx8bNcnXHiMbXj1jVc46dmUSzKDUZfjk3PC8yPilo88GNKeXJBdTZAqWBwfH9M8aeCNXRJxi+kkYNDvEQVDXn3lh+jFLOs7K4Suw3gwZR7q7O/sUKuesnJjlyB0caYzptMFLzuwpKX5+NEj1MUMIwgI3AUvXjSJmTqt8xNGXsBMTtAeRhx8dkKitIqWWEJTNBKZMolsgXA+YXV5jeL6OqPOECU00MKAaPACGZnFvEdbzmKEFsHIoVarcutSkflU4qw7IlfeQVJjnFVrTMaw/tYNZk6cbtshm8ly+dIGta5P/ekF6cUILwjQ0iZKXKfbmjFOxFjOrzFzRvRHQ5x5hGotc/HkgoSV4rTxnJf9Kh3XRSVJdnmT65c3KG9vk14VSWUCslaGhZTD9BZkStcwFQNBVHGVGO3pBHExZWVtl1wmA6HEcOJiLZtfC9+jMaFqY1oiUhTw8ScfoOoSmBLO2MH1RULRQFeStLse2zfvIY5aOK0Z7lREjeucdmes3f4eIWmcKGIydOkc2Az7L9i8cYtKxkDBwHWg2+vw8OG7HD/qoQhxgmSawvoOV6/fZOP6bRbpBL2TFq3mMX7kEU9kCUSTo/qAtjQjHwtY2buKuXaZ+WTExsYaY+8MI53EkHyyCZObr34T0asRU2VkIJc28YUFR50Wb9y4zef3P6ftOhhpiWDuMKn2yRZMTpt1Rs0aC0kh0ixUNY47d7l/cIRs5ZDtAY1Gg4tBj7euZcCD45NDntXbWJLHkvJ1Od26dcHR1MAfOFS7IYeDgP60Q5jQEfpTdvdy5JIa+BGt6oDv/fAO7YMqsaSOlcoRM+LYE4f3PrgPwK3dHV4eHTPuT8mECk++fMHO/hau3aW0tsnIj3FSHVB0m5Sz26RLFksqxFWDoRPy8W8+47TlUE5LGAmD7mjIxJ5yff8yi/YJxc3rLLDo1+vMxi1iqTjeQuDbb7/JqHlK358xWoxpnnzFl0+ekzBgaeUGVjyGIgcQelxaTnHvrdd4PlLA7qFGDqFkkFQL6CGsXN3j5cEjlKDPWtGkeT5GlGZM7Sl31jYw5JBID7nzzW/y7senCM6Q7MYWCxQ8e8ZKNocRWGCpiJM5mjCEaEQytcL6pR2ePLpP15Wx9BxRJHLUbbL/6neQq48xcxK9aY2ZGFDYvMybb3yHw89+xjhaEC+mOW5e8KtPv6A7F1jPrFE7eIkdKxJqKeKaQRR4CGoeOVth4sCw16TTqHF82uRl44KMoXPWaBOXDNR5SL92xlvfuM2jgwb1/ph2z0FTTa7tbGGlKhQzGkePqjhKjGx+iUvFMuX1PMedGScnNR4+rzHutFhSF+RzCb5oVPnsdIQ1G7KRTLC6toGxtMRYsag+PmAz4zMhoDYLWEr7jLw5RmKHpwdfX1H6woK5Z5PKWFzb/y5fndZ4WT3l5OSYXqPDrDUilRcRYxlEXUQQXCJ7SK1WY26WuH/YIzSSdEZjnjw9ICDNp7/6JeKwDYUEXcemdtph0nYJwi4HD56zns3jTz063Qnm8hLjWo8OY/Sxx/D0JcFswKUrd+lQZG1rH9VKMJn4TGcLAmRafhpr3uThoyMumjVcd4Sq+Cwkga8efETz+RMUXWZjI83ljSzzQYKlUoCkbdNqe/R7bZxZG3ts8+orl3jnx39OWFhj8/Ia13dXSCbXMLJ75Ao21169hmZ4SFGXS9tlnnxWYxoIzPoSk94YUY9RXL/F4MnPSeoqnfEIM5EiHbOI+RGFlRKPn/2MTqvFdOww6nSYdNqMF8u4TsSlVRnHbjC3J/R6Pl+1LO6+chPJinEpH6HKKh5J1ss5HD/EDgf4LAhVGTOV4sbuKt1+Dz1mYggCJ+0e9eEUUxU5bzW5Uqow7bYYDcecn51wdnLwb4WVv5Vgq5pgpiSSQxlD84inYjS/uGDmBnTGY7qTMbtLK/S7LSIRJpM5qWGHpBKymhRZX12l1jrGWsqhxTSE0GUwlQgCl5uv7TKdzbCSMoKg484K9PpdZjMQdQNic5TFlIQYIacqDM9qBPMAQTfI5pZQlG9Bt0Z3ZjOqTdAtg0v7G2TVBJ1+jUcvfk4gqBixLPlCjmRa48VxixvWDt1ug9WVPNmESCmjEUzmOLMpz7sN5IzF8rJFPGYgq2vE6BNJK+SyGrKsIEg6WixFmMiQTUhIUwV5yyGVHjFYGAwmQ9Z2r9FvNvBmNvbMZzKcEUkRHUMmm00wH7sMVZ0okWYkwKMvjknlDUZRjF5/waLTotGLuLl/AyMcUc7FmLs9wmmH7cvL5PMp2pMZi7lBezpAk4cUshqTMcTNGN3uOZGRxrA8pFiSuLnB6SfvMJkL5P0FhuqRy4sI1go4Va6UYgw7aQQzRigL9CcqmbhMSk8RzIc4oYMtKljFVfxKmnAhoSppJDlACQPCqY0fSszmYzrjMfFUipV8kXiywOVLFTKqzEKKc95r0BlPMRagzhwSBR09sJn0+wSChxlXiEkexvousiUzcedEi5CEoRIXFQw5JF8q0Q8lAtslijxKmyWGJw0yoklG07EFHW8uYCgxTi4a3PtWkiizhtuPECLIpsrU3Sa+A4mCRULOEnoRi8wMMVZEF0NkPY7rh18LvL5Pt37BYJGgmGshiRsEixjT8ZSLXpd+q8qVG/vUntvEkjGs3DK5bR13fsRk1CGmplH8OMF4wnjS5c2NO7QnMsbExg0EpJiKri4Y+SG6EuF5cwxFQRJD5u6Qbus5vfkAu93mYHKKGjMJpRzO8YRJfJl5oLFc2iSXMnFHfZ6fTVleLpHNJRme1emMRszFNM+eipTLFtX7TVbKK5ixOYvFjN2rmwzOXuDHi1QvGsxJowkKnn1MfuUOY1Gg+byGtlvBlw1EU+b0tIaQzmCY86/dKyHAyhj/7+DwJXb276DLMilBwnMGDBYinp7guFZlPFXwPYlBKHHYO0KOp2mdniJpAVIyRyafxrFdIruHaOXQ9QghjJDmLvm0hGNPiCdElJRJEOo4UQrFFHn4+CWRHyOWy5PUwR+3SDVHzBUFCZ+kHsOehpxWp6yvqRzVGowu6siChBpLo2sJBE1D6F9QPznENBX0VB5TNUGS+PDjH2NkCtjDOlFcwZNU+s0W0bTH7qt3keU53WafTmuIF/dZyufYCFSUG1eYLWw6kymTscuN3R1yqYhCYhlch8ncZmHG2Sil+MkspEySsR8geQrBzKbdbtDo97GWd1FCn2azQ6/T4cbeGt1uQGltnUw+TiRFjF2ROFnm8xrt9jFZK0/SEjBiZex4idqjj5m7E7bSBgVDxPc9GvaE9mSKYoasWyaT9oyLRpOPv3zK9sY+xtynvH8LT3XJmhKmEeAbOVT5gpN6E7yIueDjOxILNY2uJBH6pwz8OIeLOX1vQamc4dlhlaSqk4jrTN05fWeBZAlkK5fJGTKnbp+MlSObX8F2Pc67LTrdHpHqI0UCgSgRxQxyK6sYuoo3AEWRSWd0tnIqws19LhqHnFdF0rqOoCrMLZ3j5gmxyGbl+hukljOMhmNGxoKVrWtMBmdk1i+zt56nP/aojj3iiSQKKv1hFycbZ9IVWAynTHpfXw19OWszW7gkjTTZShY1GdE47yNcW0URqwThFJQUUnqDfFpDVVTs+hjVyuCECmcXIyw6KGkDNRZjOLaxTIVioYywMBEEl2TlEpl4ROgN6M58hpMx6dU9NM/GV2U8UWSxkAkchUIhw/lgiCHmkLUU2UKSQlHl8ftnVG5eIZZLI2sq3W6Xi1GTK7F7aPEsvWnEqD0hKTusrSeYKEX8Tot28xzHDXEXcULRRMokOT89INBkwmSFuKigRiG6kUcSZU4/+isEaYhie9i2h23FuHl5D0EcM6rXCHQDVYrjODMUXaY2s7FSecLUHLP7727++VvBSqCqyHGNlKGghBK2FHBeu8BxRCYLH1+SWM6VyVlTpsGMYWvGRb2DMF9QLhWYDGwCd0ZhuQyBx3AwxJdibCylEWSFZCpD3IqjaCYxM8Pc6dObzFhNmtjTHvbcIx2PQWaJ0WKMPZyRSZnEE3m05RtEhsDHjw9JSDEyepxMKoehWFTbjzk96VPZf52lVJJSKo6hC8znIx4/esigX6XeVPDdiFImjbxcIldeZho5KFacmBUnZVkEQoYla4hi7qNoU3RdQVQs5n6MXu2CZCIJc5FCIo2myAg9h86gRa5wg/7zl3iBg+P6OLaPKU1p90T0ZIJpo4czjggNld5ijn12xq2V1/EWHuOJizPz8fQVAqOMoUIyazLojZAWCsWlFcJIZNZ3UOMJFpFDJKtIiSTzqUgYJtCDHpI0Ip7WyFlLzHpJRr5DGFn4oYtuwFIpixwUiGY+ljgiVUjhxiwG9gxcHyv2dZmYLtlIUoAoR+RkAzGTZvb0CMuPsGI6qhzgDi8QNJVFOENTJVZyZVY3d7DyKTZWU9gtF9G3kYMYnrPAHkgI0Ry2kkTegDCYgiKgqhr5hIWxvEGoi0zbI/QQ4nqMaOyiBxGxuE59pDBy5qgiLK/kaT3vEc4EkqkkiiYwxGeBwtiTkCWfWHoJPWPjenPQCmRjE4LJGLGQwzIyaHGZMNsnUpIsJiNcH1AF1FDA0HSKhV1CL8ecDk7fYHzRper2aU87hNMR2Zt3iRsyMUlGCQUEyUXHpZwpMHdSjDpDXGeKosYwLZOLwYz++QWIErFEDs+ZMJiJ7CkKc3eGHS1QVRlDiTh4eZ9gHjHqNqn1u8jJFJkNEcUdEQRpNC2OKhp4kwmdxjETJ8udZB5TCpkaOumiQkCG4wsBky7JpRLr5WUSoo0YTikli5ycnhLTJAaORyzpE4/LTFs+shQiyg720GHUdRDjEpIpcH7cIrmzRyRPiPwFggKqpf5/lpw4K5Ut4kbsa1Fd6FDrDBBkmVm7j4pBMW0w6MeodVss5Ah/HmGIYCFQ2Sgwbs4Yj8Yo2KTMGKGm0m0PUdIW1eNzBDVBLJFAjuURhBTFxIIHXzxn7+o+cTWBqobICZdyoUjTcZh5XTRRx/cCWoMJ8VTAyfk5kuszV+LMoziyGmduioj9kPPTJoliEj9UmHgy69vrvPM3EXvZEqPxBa6n4qBxcvGSJSPBys42nRefIXk2YuAxHPdRYgnkixbGxnWIfKZBk9mgjx+J7G1VsASTVmtCqEikSgXiQZemEyAOHEyrhCYpjLsOtZMXOIrBlbU9tEWT0LbRwpC1TJrWaE4uGceUFvScKeO5QjqfIXJqyMEQTbGIp+KgpUln0qyNqgy6DV7bWkKP67QnPjMEnp1UUU2R1USOXtRnOHJ5fnyOJEnEbcivrzKaNVClBWJo07VNYhLEkjnymsx4MKDeGyEnJHIxC7k4YzyLGAQe8/EYT3KxBz3y6QyBJhJMxgiTANFaJWamiYIuTBtklguUEllO5iMWdsjZ4Vd4roduyMgxA1ePoaVMNNEkLjkI4pxsQqWylCe1dptf/fglQrjAGzdIGFiB1QAAIABJREFULS+zsraEfXGEJs/JLK+TNQ3EuYCQkSmWi0yPz8htbRIJEzTTIKVZKKJDsZzAcR3cuIRr6HgjhV6ny3TcoNNW8WWZtJKgXCxSKGcJ7AULJUbclLHUJIGeZSFZmKpF+VKG9nmXUNRxZz5Vx2MzM6Lf97HSAr4/RxIhkYiRTUq0Wm1uvP4WxuyEeqPBScPGaUxIL+/A3KAz8hg5IvgmY0djaSPJ0fAx+ZxFygwp5BQU1SEMkwSxGAndIlzMmYcunfmYcX+MYZTI6xqDTgdRDUkWNTJmlpnfYOJFuC7IZgazuEpyNuDxR7/g0pXLDGYWkuQTBV0mtsPm3iZzN4akR0TTBSOvizczuJrJ4As9ahMXRZERQ4FG18Y3XFqDAZVYhlxGJNOq/js55G8VA127+jrZRBpxMSVfvk3Ljvjl5wfEYhpGPI0vJHDcCX/wj/59DOcIQRAIBRnXF5jNbT764AGFmEE2t0IQyPRHLlN/zm+9dZf79x+RyO6x8GHm2mipFHtbG4Rmmlw+x8LtYE/GTGcK4/anJDMpmtMFhhggLOb4XsiV/T067adsX75C72zI04dnnNXbvPnqFoVXfoATRRTEMYtRg3bzAn0R8N6vf4NetOgM4wx6ENdMbt68xNbtS1Ru7NIbnqEZOogK1ZMDYlqenVt3MMpLyGqMcLbAaXfwa0/Q1Bih7eINZ9j9EfZkiCZLfP75E+KJAs3uFHvqoUkyzsQjEGVOJh72IGDm63RnIscHLzHnLpm1G/hul8XMIQyyxHK3UEwRJQHRtIquWSQyl0DIUasPqeQN4oUU61fWyC8lGHTqKELEs6ZCZWuXRMpAVQyEKMVo0sCJBKJ5RHY5jZ7IEoYZ5Mgj1G9yVn1ClKog6ikWkzGx4QX90YRay0bN6+jlJHJSQRzVSAYi9ScfEyzGqGkFwZLotppEokM6nadgRqSyy2RyK2wVs8yFBXNNxpAclnIZLDPNeBoxx8SVZWKyyurqJlauzAwd08iQNhWcIMSKbLRwxsx2GA9dZE/gReuI0XRBEKYJQgt39ITJfAlF6GAlTRKmj657dEKTySTN/tU8cgQLx8GeRwyjOOnFBDWfpd2H8XDBeDhi1G0ybJ+ysrpKbzDF0iRiokQUKJT3vslGDo47bQa1Qy4OHnF2cEhCdFFyazx98An1l/dhOkTzFjSaxxzdP+Z7v//vIQse/XYV1/O4cuf7BJHGV5+/y9nZBeXNXXYvX2MxD2iN5mxnLZxZn5k9wFvMUU2TYfuCRb3LyXRGd+jiTOdIgkDl5jWaZ2csZ3Tqh0c8evSQi1GHV+68xqLTwZ1OKC5tsrW7w+palpg257MPfsXlb38bVRiRziTJLm8xsQO8GQh+gCmLWNkY6ZRORTE46DhoXoOV7S0sRSKYjbB9h5JVxpnMmcsu8biApgu0h1Pe/fmHALz9915h0pkydwLUfJr71Srz8zMEf85ycoWN9RLlioI/9HC7Ml+16tzc2yUeS9MdjNH0EYGWodlwEeYhxUIKK5vlpB4S5TVa7XPOj9rMHB9Di7FmpbmUnlCfqFwuKbTaTQ6PDhg1z1C0NJ2D+8QqJfADZu4IO+qheD00RaNQWaPXdHAcHzVpoKSTqF6S7iLNuHHEYa3K2XjOci7NUXfMla0iwUyj35/RH3SRxBAlUSazLFL98j6SYFNes1hZyvHgicinjz5ENFYw4gqFYoLNzW3iokE+aXHWqzGaDRECkVikEYYt2mddeoNTXr+zQ6FYodqRmQwD8hWZt197nVbrglanQ7CAMEqztrbB+OiQeu2C3shGUVU2ly2kWJLd9U0mPjiLEeP5mPYMLpkS7396SqW0wsJI0A1FRl6IFnpIsQSVKEPMULEySUwzzUH9GZcvvU23e0y1NySaB2SliF4wxxsHbF6+y8bOJTRJxBtNUKwVynoPa/MykuKwtVamXNng86NzbizFsZUSgdZh1K1iBBF3b73CRd3moPExzeMm6VQORJHjwwP2TIGL6gs6HRfPdwl9n8gRaB4esry0QbaUJwoWyGoSOb3DQUtlFEQ48wBB6JGOa2xkypgyPLj/AYoaZyqkGUYJhguZi/M6C2WAaVk8+OQDnNGItCHhBXUyhktHiQjcBt5shiQnyKZW6A7OMRKXwBTpNB4jzPvcvXaHu1cv8dkH93EimXJpG0WSaZwdILtx0rkx3cP7qN4QXdfQMgVkTaJ37hOWMjTOLvAGVaJZk8lwRqs/4I17r+C1u5xfjOkOFyyJEngXGILGWNaYTF0EUSK/vU4USExnA16/eYktc4IWDOl4BmJg0lEjzuodCGQQddw5jI6OmAUz7q5tk4zFccKQnhewk18GqQ2ZLfxRn81ygbs3L4PT54NPH/Da9WtMOh7Pj+o8fvGS/suHrOd9ArlCfv0WphgjrYhs7G3SP20wVbPMZBHX6TDr1vC6fY6adTb0DL5qoRkWnWaHB59/BvwdnZXNchErnsQlxoX9nEF7yFn9K27uvsbqyhrZVMitis4/+6//B4LmgG9/7yqvvbpNuZRiIS/4/itX+cmXTWQpYtgfMnMWlNfXeNZos6Vr6AmXWn3KRW0Gfovqsw9ZW9mjELfQ0xkS+RTJWMCTUyhGT3nrh3+EHM9z3hzw1cOHPPrkHf7pH/89uv069mzBcDbEXUy5ffl7PPnsl5y9bCFMbfpORHXgMLp4wn/8n/wh3/3uPyG9sk5xxUSOz/nw2SF+8yU5ZcJGNkHJLLCYJzizYziZNTr9A3p9l1G3x6R6hnf8kuxmjsePnuDrGdx4Ej1TIpNY4v7jF+hKG2U+Imn6KJHLfDilUrAYiT5KoFPMbRJ6IpOOy9re7+DO5+zuZbAnCsu5MivLGQ6aB6z6PZxpg/zSFqY+Rwo6+EEc1/a5SKdJ4zKy54xnGilhiaDWQDYS7N3YRM3lGXkxWmczBP+C4UwmLg4YDZv4c5dsNkmYidG6/w7ru6+y8OYUrJBKJs79zzsgZCleSjKeRQxbNQS3y97ubQ4//JjNvS3SRgJfjDMTc+ipW2zlClz06uiZBLsbZYpJk/N6n5PDGsaSyXIY0OhHHLc9OpMZJ+MIed7n5tU9BCuOFINcUmQ2j1MsaoQXY8REFiFvsDBnHLdnhLKDnMsxHnSJcJA1CW8Uo1S5wfDwJ+zc3iRIJ+n4MQKxxPlZg3/4g2vYw4iLCQS6xV4lz0VnwOOLc46eHzDuXbBwJsgLiayq89Mvn6L5M8bdBiwc8oU4h/1H5AWVpUKGjStXuPbqVbZ2i9z/6jFXdq8Rt0Y0uh5WwmRrf43o0neojyyev/cuqh4RSgGCElHI6zRe3Kf+8AHX736LpGXizPrIlsjtcoFHjSqOJiPPZoT9MfbIZ2NpifvHPTxlTioaIS9sBjMfM8qyv3+Jf/m//SkJdcTOlUus3/oelVKWnf2ryKtbPG27fHz/KWfPDnjz7nV+9If/AV/+/M9ZKm8RK+wRWRVKO+ts7V/lF//Hu4hayEKKmNtTlFaLqTPh0t4mB5//GsG3MbIlRtoKz158TKfnEs+XaE5s2h0brxvxmw8+AOBOYYk7NzZJrRRoTn1WdYFsss2LukMiu8to5nJ+fsC1yipnbp2kLRLMQ2r9ObaQ4PLNu3z07l+yvLLKtFnFDQ30wiqXbhQZXfS5uVrhxhs/oJLPYsoGobGGPTlkZWuDbP4GL4+GRI7KG9e/wZPBKblkgWxhjYNzm4tegGkUEKUV/v5v/T7DaEpajbOeMVnKKIhyktXCEp3TJksZgZA5g8kYQ5KJmSan51WUmMDy2gorlV3kKElWdWg3jsnmKyQTJql0lvWr91DKc1J+iuVykm69wbQ/Ym01y7Lh8+sHj8locdL5JKP5lMcvX7BR3OWBnGQttUvc95hMB8ykKWvJY1Q9jbiAUbfF+tYOt+7do9p8QXvQohyPMAtFOkOPk9M6k1mHn//kHTqNGrXzOivZPCvZParnFpF0SugZGHGBlFVkNbvJ7tI6W2sJ8uYyxUKCqLSPXtokl1cJpAzXN9LowoBW9Yxuo85oZoOVpjU6ZfDsS+JxlUA1mcwVZs1z7lxaZtif4/UmGJpJ3MwS2ir/6v96B0lVSGmrCGIRUU5gCgKbWQPNXOeVa5dp2lN+/cl9Hn34GZ/V2/T1Ob/3+/+YStpElSLETJqknkKwLKr1PvmMSBQP+KJ2xhfvvcOtaxvk4jaVRI5sZoNIz3Fx1uZ7d7JMVIPl8gazaY+Tlw/oddsMWnX++Ld/n3n7nPT6Mon963TdDM3mAqE+YnejTE63MCUNLW4Ql30Wkz57awKbS3fZrLxGPqfi2s95dNTg9W/ew0qYjPsD+u0B2uoO5vRD/uInnzK1NBb5FWyhTP98RHzZxFjIHDYfk2LAjgYtd8Cr1+/xP/3858zFOAsjhpnQuVHK0RgOKW2Z/OTd9xlNbNa3y1y7u06r7uCdt2ACrW6X/tRG9Hyatcd89PIB1/aKVCyTYW3IJ58fMsfBdGwmYw+tpFIo6pQU8OctBG+Hz1+8pJzNIPebHH74PucTFS9UmIUKumhTKZoUcikO6hccLnLkBg+5s51Gcoe0BzM6coEPP/0Fw6HPWe1DgpmNoUskK/DmW/+A41qH7Z0VahddHtz/ivPTf7uz8reCFSWbpri8zutXX+Puq7d58azDZjLBOBRImFOurHi0JiLf3SmzlMhy+PILOrUjJM8lciGTUUkoKudOgFXOcf3mHpv5VZz2GYe2Q71zQS5jcv36LpevXqeweQkGNg8bLTqtAd5wjKws+OF3bqMv3ePxYRszprF7eYtrr98hvV7i//6L55TMFOrKBpcvrXJtKcafvPMBp80+3/vuW6h6DiGySacG7L+xR7r8Gj/98EP0WJlMXEalR6/XojPe4dfvfc5ciIgndHLJKUvqV3htiaE1oCJnSQUjTM0nll+h2pmxv/3m11JeQSEIpzRrDV67vIQQ6vTHU6YzCQWJZFyhKxeISSmeNXv0PQk3CL7O9CZPcBYCjaGCPW0jqB6KFJK1F2RzA+qn58jTOWF1wKQ2o7EQ2N/SsBJztGCKP3MZd4bUz8+5UIdcWl7i8KNPePrsmMHFOSmvjpWv8EqpyOdnR2xceY1YIc9p95yctItbWeL8419RSiyoZDViUYTd63A6j+jVu6wnQxJpnYmo8LLeJJ9dZ9R/TlvREOJZUrpBPKwjRA0EQFL7jCYB7UGIK3iIeof6Zy940fe5aPUYt1qMWx2mjSOu39gju1SBWBl7GtE+Oafdjgjmz0mVd/DFBd1Gl251SCmd5EU9xniRAmsDT0pgOz6GaiAKbfS1V/GNkLkgIEkKijhhaV0nY1j4ToNZLMCOSYztKTM1oPbVM+T4LnhDAm9AZCSIFjY7goTTcul3mnTqTZqHQwZujsgKCGIKg06PUXOI4sNbN8r883/5JW+9fYskfRx7zGgWcmc9zpO/+QnIEWpqiclCpNVqUX38KWZyi0CbMfL6qKpKJmVi6DPqi2W2yyWe/PpvMGUPJfR4/vljMjtlxvMF04nCRM0RxtKkNA0tk+PXv/o5v/07v0MYpXj+osvDzx9RO35BJZ/jX/3pf0s4aVEp5jEsiz/5X/975orOm6+/gZXO4doT3F4Nw7vguO+yvmfQqZ+RVEVKxQx2XEGWJozmyzBvkS5k0HQdr3uBGEuRocCzcxs5vko+tYY0cfjVB78E4B/80R/x8NEBJ80GudUcteeHRMdn5FZuEGoGojclF81IFiSS8QSNgco33txHNXUazRba+ITG8f/D2ns0SZKgZ3qPaw8PD60jMyN1VpbualU93T0zPQ0MBnK5AHYJW3Bpxgv3xiMv5IU3XmjGO28Lo1ysAIYYAqMwsqfVdHV16ays1KGlh3TtzsOY7XEJM/BPvPaYvc/3fhav31mnUK0SpbJM5yumz47oTM5YxjepmBqtyZzHrTad0WPW1gr8h//t35Ar1kiUFFJFB4QrEGVOmxNmDx9x//6bvPWNd0mkk1yd/Jrr60WeHZ1SKtSZW0uePX3J/r3bLF6d8NXwK/rjObEWU9nIkM1s8fLXD3j7zftkhQnphIAXrvj06U/49Ysvef3WPTK1fVahyuXVlC8+v8IKkqxlZfL1awTBksl8RHu8IinPePODf4G2EAj1LK5uQtIgV69x8YPP2N9c0F/NOOt3Wa767N06RBjF/Nu/P0NyJgyGIy7aSz649TuUGjd59uiC561HyImIjcYWolThj17fYh5NKWoJpo7AeDzgmv+Ep0fH5Pfvo1a3uLo84/joAYPViKFW4vGP/y29bhtxOiIdLtAVn+m8w8j2yMpzbu3cI5XOcdR9wdWoxZ/cPqBjZDk96fP04RMm4ya/9fWbyPUCRw9/xcvHv+a8N6AzWRKOxvzRn/4zXPcp9d0q2JfY/efMQ4G/+NsXuLOQ549+ytbOPm+983X0QoqhanFz7XW++O6/ZhksyFQ3qSTXycpzXlyesC4suRjPaTsRqXSKvCYhZjdQRk+wwiQnvRFHTz7B6b5kaGlIvs6s/wglHJHLF5jIObaqNjubd/j8eZOLs1NGrZcsxBmn9hLni5fopkZ7OGFuTdnJJmnc+QN6z35GMlOl1x5w3hzQckwC2SRyV4xlk68+ecDVxSvMSoKNXI75csWD5z1CNU8tn2UnE3N12uO333uLMPZJOjFLW6DtxaytZ3j03Kao58nmDFZORGu44sXCImdu81ff+0vu1W9R1gMIpqhKhV/83fd583d/m//jr/53ZkKG2Kjw4tWXdIMe9cQ7lL0YwRGZhjASAzrdKf/Nf//fsnJ0hgh0Bj0uXzzjk0d9vvkn3+Gr0ysieclC8IgMmTvXkjz48iXZtEZi8ybV9SwbhRjFyNN8/opvfuMmPz+a0vJcAgM6nT4puYQZCPz+h39EulAglhUq5iYr+xzRLHN2OaZ5dkTn8oher/uPh5XGwbfZOrhHOh/SevEISVlj6A9Zq5ex5wEPv7wiiOa8fv8aobhgsnDQlSyakuJ8fEZ1c4eAmOVkxWI4YWpZiIbOW3ev42TW2EzmEXWTRSQTeAKSERFm1ijmZLIixKHCMNDpdi44a0coUshs3GMxX5LQk1SSBr6c5Hs/e4gceyiyyCqElDxHXnm8/9Y+J6MVshZRL+qcDR1WTpZRf8Djh0/4+Gc/4tWTR2xVanzjnbdIFdIkhAjHlYmiFI3iBpVsjflYZnbyHMtaYPk6M8EgGakslzKer/Dqqs3QGlPIiuj+CatFzES0UXSZQjZBIZtgtJyTSJVYD1wsJBQ9Qc00UFmSrB6S9KdEuocuBaRiF1N3GY4s7uV9uqM2gmlQ2l6jWjdRMlvMLY/+q6e4ywBdTlDMJtm9do3OxYj+xRnifIEQgaUkWNgha0UdXWqhGwbzRUyvGzCaaxTTTYx8EdMbEayWuILOes3k488u2Ng7pDOL8EJIyLC0LLYyBv3cHvmcTkZYInlTHEWmoPhE5iZn5wF5LcVaFmTa1DJpNm59QC4toNFhMrjg/LzP9a0qte0tZEngvGuxmEwoyxFKIUnkqUxikcePnnHamWOFGYatPoNAIy8lWM0nJPSIYi6FMJdQ00mK61lmaoFQUDGVgLwRMWx6HFQl+nody5ZRPJ9ySuSXH11yY/M27vglBT1FKbOBJuusVxW8uIFWcMg3dshVDkhlSxxeUxgNZfAGYDuECCwlkcF8wUFJpjPzCBYCBBJIMWFSo/PyAtELqGxsk9u6RXZtjyQ2y/GAdm9Adr9C2khioJAxE/iTDu3xGStf5vjlKV8+OaITQGzUSPRO0TYOiIMYLV6RTQVIM5fK3iFnz35Bq9vG8x10OWLqgxWr1Ouvc7hdIq8lSAkpPvj6PdqWRJQqMm59RUqYsVEpIye2UFMlhOEly8ERo1GX2cqjXN3CSGe5ap6QlNN4sYgtahiFPbxmm87VM3bW0rgLi3DaIk2Hv//kN9dAf/q7v09CV4jJEKzyZPweydo1vEzA1A2wVzaB57OITLKVdUIWHD1/yGA0o1yucWu7TGqrTL89ZTqfYq/mJFTY2l3jFx8fE887nLeatFot8FzWKyUKJYnbb/5TAjzszgpn6LEKHarJiJmeYP9eAz9VZDQaEnSfUk1CcyZyY/+A518+wvJ8yjcPOf7ixzhxgnImInZWqLpJOplBnZ1R2bmB742RSrs46TKBqrGbLfDmG2/w8qVF6E4xXZuqqlAvJggWZ2zsFhDnS4xyCUFP03t8SexGfPLkiPpWndHghMnwCs1IUDDTDPpjdu+9xZdffsngqsNavsZavoYnNNjJh2QzBqlMhkRC4bJ/jNseMlwNqeWqfO31N3j9+g5u84KELNEbr7jz+j3iUMGxY6q3bxHlN2hIPd54Ywd5OUVc2VQrVSJBYz6ZcuPdd8jVNtBME1EM6bfPcToWqfImqyDPaBZhuz7bmQyuHPH5Zxa2ZoAImuOgJSSm/hxX9BlZIVKySLZYJK8rGI0trCdP6PX6XLzq4Ps6r7//NXKxhRVKhJrLwp3hrywa2RSauOLd+/8EM5fBD2JiLyah6vzos49p3LlFZyiRK1UpqkmkoUu2vkvzxRGF4h6BEWNjI4k6N3YP0Qt3qRUGFDausRITuIHPB/feIamItHorovklmXQVUazRe/mCP7lZZf3uN5j1bK4umwQK7L7xOv2rx3hShFe8TjFbI6kkuOz8Znbh7f0GlpehXMiT1gVWkz61/V1m1hQzqbCxcUC+XENMKajiglGzB0mNQlbFXowZT6fs3bvPr37dRHeviJFIGCmyuRSaJJKMIqbzDvW9EvWDfdLlDXrDDgk87jQK9EaXRKKGj4CYiNnZWKM/GnNjex8nDFmtZqQJWNMTfP75J4x7HebBEo8QyUiSajT4+d/+HVt1n7cObpHQ1+iOYtyeRTpfRpr5NM+Oma6GkJSp5FN881u/C55AbWuDxWJF57JNSggwzDX0XAbf7pFLSySyKc4dD1URmPZdVF0km1Jx7DmvXp38J2HlHyTYZuQZec1BFBIcXV6RTKkM2i22ymukq2WCyMOeOvz60wc0ymnu3roBUcTcmqIKRYZTG0ExqWxmiOwpvrPk8qLJdDpCzxRZLhcMbZdAHCOsxhDm0JMyo1UfQ1MJIp/laICarpNI6aSzKgkhyWqx4MXDh0yGPUq5DO/evcvCnzAZLYidFXNb5tt//B1+8rNPuBzNKZcMsoki65kC9vkJycBmq2CyVHIEKx8/8FkpsFnO07UWTMYrBn2Hq1aS4o0atdIWtiBx0W4zm/ZJmS5OnKTXv8D3HSIxImcmUUSDqeOzVqtiRR7WMkSVddIJhYy+oqRFnAgagiCRlSOqWshYyrASZvj2ClPWkB0RL1ih6COyWZOlNaKaX8ePfca9FnnB5vjxEVFYRTAKaCkFWZfRK0XMyiZ+Z8jGzjoXx6d4i5CtaoVAExkORywmApoioaORVlTk8IrYiqlu5Wl98pzQnlDZMlk72GAz5TAY9VGTCmEcs1oIlEp1+u4KLVkjWC0QAgkpkvFnS8gbTGdjcqqOEtm4noCe2SKR3cJezTDUFLnGIYKUYhRcUK/XEaUq6WwGX1EREdB1l0m3zXgesWg+wXYU3EjBXqzwwyRuEBEEHoVUkth1WTlTxESAniuz8A3KBYMokHCnHtOZgCAbzByDMBhR1mMk0Wd8OUSxEwyHx5TTIaViAknTmS4DrMGU6loOT98ho8kkVBVUnVALubcHV7Mpvi2ymDtM2x0CZ0IUhNhxTMIPqVRMjLTO8asTkutZZKHG5rUdzEKV0XDKo4nNwnJJ1u+ynxRBkJjaNkp7yNU8xd2ddU76DzhpTxgMl0jynPPeJWtaCjf0CcQVqgpJNUvHjnAGl+RzKTTDJEQgofkU0nkKa1my9W2m0zbWakEhqVLfvM5AGrC+VkfM+IT2gvbUQ5MuMFKbaLkShUIDIRzi+hKLXpdc2qO6tU9u5XI5uGK+nJHLG6iihyEvqSQtEsUqUSjQv5j+x9z45NkpxQREsoIng5GSOBsu6A5OMZImghex8gKkjMLpixW5tT3SqsHC9okFiZmXJogtoiBmFsjkUgo5TWVqKbjRknI5h6ckKMpFkrJKRheRlRTNqyYhDnHoE0QBzEEzElzX5/R6IxYdGyKJpBCTyxQYtU/I6AmsUCDWEoSxjGeHVPfznJ2fkzCSrGybzsWUfLlCMlXCbs4QwgFz18aPluyWTbZ31mheXuAuYOLZiGmDYu0a6pVDpzVGElRELQ2iiZlP0Lh+je6DL1A0lVLBZBkMaM77FJ0icezz5OkRiVwFLVUDKY+3jBCkGIUrotQGticztGbM7ZC86BMl83TnHZSXT5n2MqxsF12GVKHI0ycnJM0ilfU6K9/Gmds8G01J9iesrD5SPCVVllGWY66iGdgLOlOP0WhC7Iy4c/uQ8YszokyVQMmhaQpVbcm08xJ9bOAFMeuqD4HLPHBZjpacHD2mdneba3t3kNUQ1DlW20fo9MkXtlGNgGphCycSOLu6pNzYpZQ06Lz0MHTIF3MYmQqvpcvMWw/QJYFxf4itLNirb5NKNfDmM5T8BhlDJV706Y+vyIkS1Uad5apLwUyTqa4x0G1OhyO2S9tcWDZ2r4PjQhiFfOq+5PXtOsftNrHtkC0oyLKBFAvYowBvL4uR0skaaSbWjF/+7KfsVfJUSxWSGymcmYXnzskZHrOVjRIIjE6f0iibaIbI0tC5enXJdi1NIG/Ras6xeyGVzTJ711/j+OEL+i/PuXNjh0xhjclK5OLJS3qtB1y/u48QQeA7EEfIqzFrjQaOs00mW0ZR8xALSH6T4bzHWe8CXRNIqgmqlSq1yiauN8BydRIb2zDsk4lCdFVhIds8a19ybz+JJslEskpkaITmNbbfT7O0Llm5PqIUkkmG9E9iGre2kJRLqkYKydRQSOCKOU7bF6yZJvPpFKtnsZhEaLU862sS2XTJ1aMQAAAgAElEQVQax07Sn1rMXYtpHJASk2yVZL48Oubm9RsEe3v8Ld//T3LIPwhWDC1Al33iUEJMlFB1mSAI6Q8XrG9oXLtWZjGW6TRbjEc62YKOIK+YrzxUMUW/OURN5ilUa2hpjfl0Qrc5pT8akkuNUXWDIJQQZQk3dLBGDuKwzdxuo6TSaKqMIcWIiQypbArB1MkaAqoU02y2aI9nuEHAtcYenUXE1HJwFwGer1Bfq/L96RLRX2IvQjo9iUZewOr5pIs6qZKBXNvG9cpYrsjMiciFHvbSIXBW+K7CSMyR1jOkVZ1UysDyZayzS7pXAy6WM+bTCwgWmKkCii9gBTHZtEmoahRSaZbeiggBRZXYXqsw6U2JUgbFwCMr+UiKSCqdZzFakE7lEHCQfRclWhIJc1IFg6WlU0pmWbgwHVtM5ys6/QHlcoZMvYGZlzGzCkomTXc8I1OuoIgxGcchsl1MVUSrlAimfQZ9Hz8aky1VKOVTnDx6RFa9jaKlGbky4dTBnCxptwccbifod0HXYghEPFsiDMHW8ojLEGKFABBiEfCYRTKSt+DW3gHJVAiaTKSvM/VyjIZPqaRVtIyBkSyQKTj4egZBSuIIMUZCBiRmvs2g2aI18xicPUNKb+LKSRauQxyKhJFCIM2RJYVYjFBjFy0dICllvEinns8QeBG9lY0XyMhqisnQRlQCcjkZiOkO50ixROSOyZoZkmpMLEwxwhDfF1C0MVJyH1MO0VWXpWTTHQqUtmQMI0eouEShzcKasbQsLqY+JcMnDHxK1XWMvMnks1NiI8PWzeuohkY47+EPegReSNJIk6tWSNoDbAVWoU9n2MRPHyL7cyR7zspxmDohCTGk3R+S2lonXMxRhBWaEhJ6Mo4c43hzzHwRTUtjhx6iPCeb0KklfexgRCgkmHsL7GUL85VOulYma2pIxh6z2ZTppI2/aiIpedB19OIOKUdGnFm4IijxklSuSFqzkMcC2B6aaxNLPluNHCl1RTEjEYppBt3Jf8yNZ5cX3NysUy6nMHIiCc1ketFh0LK4sa+QyhgEQZJ8sUzvokMUyhQyBdLpiIUPzbFNImtiqAOmsYakZ4gwaF5ZVOpb3Hptj7kTES4FYh882SeaurSvhmhpFSOpIqoi0RL6lks1E/DpyRWKYVIs19ByZfoLmygWaTXbDKYLtEilMHOJSSOGSyIvJp8pYs/bdNtdVmqGLX3AbCVQMCAkYO77+GHEbD5GEhVS2Rz+JMBylmjOHNtXWbZCZHOK6PUQY5FazcQjYndtjWbzjGpBolgsMR7MkASdQibB2cUxxe19DKOEYMf0Rg75yopu85L0Th3XB8+eU06XuDo5h1SWQf8Kf67iFGuoQhIl9Jn7HpfnXRq7BhklhTe6JBOZzIwUpy9P8aYrRFVn5S9h7qKpAo4X0JvY9Ho9dM/Ci66jGBAh43grItFFNmRGoy6qUCRjeJQSKQTJRFp5uG6IazlojkdCkzDTMigBs4GN1T1B92MyvoSYSBH6Ad2rE8KSxna5go5MQtbQtBShqCJGMicvvqKxuQdewMILmQcC13bXOW8/Z/fOLcS5xXg+xnLnMLiiuvcNlssrPC/GyGZIpjV+/snH1LP7nHQ8vNElhVyZVKlMdzSihQ1aCtuTkRdjNDOgkEtxPrQoNhw8JcLIJFh6c1qtNjvrhximgLiaIcdLRGlG4I3QBIGrzhUZbJYTm1AXKBSzJOIkekpGiTRiViwnM2a6zLXqBka+yPTqGGs8wxdlpGSaXnfF7f0yATFm0sCXBYLIJWckCD2bfK1OEMN4MEKKBDKKgprVOW6N8GUDXRJIyVBJZjhqnVIplhHVgIQR4RsKXmQiVrKY3opCPo0RZrHmNpPJnO3tCnU14IvhkJeXA0wtIBEvCQRYxDLFlIGRAmu2wBovSW8mef7qiqiUIww9xDj+TVUcxYSKQ8HMM44l2i2b3nAESRk/nUaIZywmXbxoj1j9/0aRf1ANdPPeexRr2wRhzFr5GplEGkcKaI8dBFz2Ngxu3GqwvpPn0dMRY2tEiIOiKywsH9eaMuiPKKaTiIqCK8iIkkJS0Xh+ckmxUqdcqJDLFhHMDFNboTMYo4YW/eESPzLYPjhkkVBJyzpzWUOKHHRFJF+tUWw0+Kyzwh+eksskMLJpfElEsCywJqztNTCTGYRIYWEt6J6dsjQalMppQmGOksqQqu5i5qtkYo3hrMPk1RWGLLDWqLG7e8B+pYS7nKKkFHQ1h7OUefb8kqev+shKiKmbrLwEcyckkmwOKilezhzyBZPpckkUORQKKocH1/jhFw9p7GxQUZcghszVJOlKht5A5OBgB2HZIhmPSKkecSwjChqJ6jVsOwBJxYllXp1PMNd32L69RqVSor5eplTIEtk2D5884KByyPl0ztZmnUo5S385Z33zGkZS5uz5U3r2CDWbJJcv892//jF3D2/g6QVaA4swkIkcmYdPjtm/s4ZjXMdeWiiShKqonF8eU9t5n1lvSj6dJBRiVpGPmjEIRZ/9bJ47t26yvltHz2ex7JhOb4wtRETzF0wHHXrtKaOhiJVIs7uWo+N2CRwPe7ag2+4wvGpxen7Cy9MzRuMuc3uB77mYnScE3hJDGDMeHyEqDrlsingRoBkp1GqJnWIKJZBgFZOKYWgVEPunJEqbqLGMsFgQuQtOR332ymVkV8Zzl+BaZAQXo3FILLnoZgVJM5iFNlfjKwa9JdbSxdTL5JIRZsZBTvrYE5+zno/uLbGmFkJKRkoLjJ8fYQ193nnnXVqXZ5w/f4jVPiOTzbLfqKGJA8YDG1/SQYL5eMzh/gYXVx+R0/IMxlOGUxtZq2CHOtWihORBTg2Q4whrHqImNGrr68wHK2zbYeXaWEuHXt9GCdu0mgM21vdRYrg8fsrxyXM2928iiiJ+oGGmU+SzCZzZCl9Xifw5rpxlMZ3geSuS+9cwhIjm2CaMQqbTAAKJjCExmnd44846wcomIo+i1RCVDD/4yd8CsH24zdruTerb11mv1ckRM7WnhGjs7dbY29lga3ufXPUOaipg1LpgOmpTyCcpV4s8Oz9n485d/OExnieCVmEVJRl2ztm78XXeeqOOP3WwOyOmcxsrlUK5PMdV08RE6AUTLaUQrBacDXvkSmmenFxQLVfZ3dkkVzR4+eKIzNod3EmH46NT8KCaLzFbLpj2z1nLljCMMrNVQG9iMZ2PWI8HDMM8t966QbpeJlSSrGyZVu+YbrvI669voSQVZqsFc6tLT0gielk8u8di1iUhOGyV0vzgRx/x4dd/m+/98N+jqCr18ia17BqanyBpeCzmXXxUFEEiQUyr71LbSHD88XOMbBFVDslIK27v5Pn+X/8lmZREMB6RL1Ypbe4Suh62HPD40SOS5RqxLuPNe+RWffY3b1LaytB5+hRHrRKZNZaDLv7KQEmoyPVd5q5NUnTZzhg8P12hmmMUciwvzlmOe6wCh+nlGTM1T1kZYmYaGKkKZirBSgzZrNZIrWZcjc8RdYNycRNJdVhZV5y22xyfdDlrD5kvZxQNieePX+AFaazliFkgsfQlfGfGi+e/ZuwEbNezxFGKWZSnj8pruw7PXl5xeGOT0bBDfzTDRcOOFqwSO6Q0hfOJhR1LaJLGo88/Ymf/gKPTMVl/zvZWmd3b+2TTCo9+8Tfs3P+QWXfMzLqCaMJaqUFnNWC3usHpYIgXTkhmBNL1HRLF1wmEPkcPLzFEjSi0eX78kIxW4KJ/zIdv3udq6LBYLrm3WWT3jXc4612ytGUyegbJ9Vn0W+RSIrGaplSGXmfMeGER6CKxusu/+s9/n59+8gn1nQNkU0eQRLbW9nj06WPcYprl5Jx+p4kzW7GZK5Hdr3J5skBIFnAXMxbWiJnjc/rgiGpjm4RzSeD0mS6WjBYi2u4e8mxAYpVA1nJ0en0uXj3nww9u8PKjjxivAs7aE1aTCSYeybzJycRDFAXazSZffvWUs8tzNhsq50OV0cPP2WzUSORSRHKI43RZeBEVJctqfMlksWDliwiRQKZWoNM6BhSmgsDRxQVnz/5/+A309t4+QqjwxUmbWmbK//rd7/Nf/9k/5xvvXSNdqPCqFXP0+Cml3S2u74mk83XytUOK5U0Kosu1u/ucXlwiZXJE2MiST7G+jb2a89q1ErGvMcXBkRaYwQrfG+PaM06HMyQtQySEnHZO2Np+G9PpkRN9+gOX5tTHlWMOiwnuX7vGfHJG66KJG+RB2+F7f/Wv2d+s8Kp1xvOjF+w0anzngw+Q1DX+8M9uslhkkYQpdhSyjGLyps/Bhs/cy7Fd0oi9FP0u9PuXfPLJEYdbJsfHDzg9ekXnfMRqKKBFEc52iXJjHQWRSqHI7vYWT3/4Y9787TfwSusMHj7BcGx2r++yti4yHrRwbRNZLZIyI3LmgACFXEogGXYJXYkoUUI00+QEC9+4g6rmsSWNxdTCm89J5MtMOhcIqkLh4CamkcHrd+kdPaB2610efH7Mhqow6j3H80YcrK/RPX5IrlxFYcLB4U0ixeT56QU3NrcpmH1e/uKYXiTjJbJEgonvG/yq2aG4UWQ0tBCjBNl8mUQtxfThBdsHNlMnJPINNElG1Vv88e0N6q+9zl/++/+L1uUxkh8jhQbZtTkHhT0cxWcwdhkMVtiBj7q5z1vbZQqFfaI4jS+pJIomO/V9Pnl5SWU9jxQWiFYiQmijFrK0jx4i6ysK8gpZ9vDFgJqWxhUlVL1ARojQ7CWi4zGzNc5fXDHWC2T1ORm5T4IrhOCMrXKFn/zsU8ykgqiERHqMmNOpFMvcuPFNppZFq9tiPvEo6Wu889oe7qJLt9MmtnVmPY9Be0Aqm0STU4ysMdlqmnKljKGkCbQEH7z1Hhftl6iLGZG3ZOIs6c5tKvUSdiKJo5l4josWLNnayOCxyVAuIkRLSCRJZDfQjTrlmkZZEUmWTWIpz0rIExgGm2WPxYuHWEoZ2xtjaAK18hqCJPPpVy/ImQbnpz22GlX+/F/+E3au3+bsOCZbKJBI6agJEEIHfzAkSICYyJI0k2TyJWQ5w/B5m81iyLPmCjwFUQbSArbuU7D7VJMR9mqN+u23Qc/yyd8/4MsXHwPwh3/2L6hWN7CsKaetc2o3GriCwnatyOOTc171R/hyRCo8o3n+imjlkhaHCM4IZzElZer8cmDQnliItkM+ZbBeyrKZSTCYfcHzxy95cnzFxsEhd197jcTS5dF8yrNPHtNobLGeV8HqcfH8iGI1xd36TYJJn0wmS6vT5ec//YhCdptcNOK0e8HOxib1SoVYsKltujTb13HlLq+sDq6aoLF3h+u3XmNhdTmobCEmply++IJXXz1gENt8q5EjnfYJxS6hEuKh02x6zMUl+eQ5a/Ua0aiPLMUU33iDs6OH3NrfJBebDCcWg6GFZ6347l/9z1xFGo1qCcM0cecd5t0j1ooNMttlRH+EmIgoVMrky3t89miApyb5Z79/D0+Sib2QyF4w0yLm5308/4Tr19bQ9ByOrROvRHreks8+OeG1b7+P52UZXoxIyjPe/b1v0fv1j4hWLoE7RkLCTGxx/85tfEXACQOkpcVGOs21/dtMire5fPYFRVnBl8cM7Q6OBN/59ntUlRk9r4hhmsSBTnfg0Fv2Ocjs8Af/xX9Jp3dBpljk+p19GpsS3rJOorZg//AdditVlGjBs+YL+m6Xf/4nX+PLL04JQoNQStEaTCjoLVZejb/+6RP2SlV2N9ewQpfnRxe8/d4BQe9Tml0PwQ3YzAbc/9qbXM8m+OhFj5QhI3pzBs1zmo7Db/9nf0xnpeIN+khGDqN+SKGyQy1bRg81ShosB5cMhhZktojEK86GM0R/zsNnFwws+PYHv8/r7/0eSuczmrMEjfUyWTPJ0+M2r66+YHQypZDooORlssU064UiPhqf/upXbO79Flt7Wxi6jNW85OrJjxCSO6T33kZYzEivXNJxzNnqHB+Ny8c/QnFkiuUi2VISqz/k4uicnZs71KUCg96c8/4I23e5/dotrtwRkhPz7GjAZWeAoDoMV1mOTq64cHxczyGR0cisZXny1SdkC2XGnkU965GUZQSxyDtvvkF6NMBPahS3GgiZKivfYH5pMVn2eW8jgWBr9HoTLMcjXWggvHiAp5lcdqaUt7a4+9p1rtcKJEZz7r7zBkZul4SaY9QZ8OLpo388rLx2Z5tc3mC+XDJxFpTDGSkzya+eXDJoD1lPxhQ2CnhtgYWXQC/ukzGzpAwDefsezeacw5sSpmiSNEokMmuEsomZVRm4SVxZoJhLk9Sz9GYaZVXEqbxGwogpFHKU8zWKWo3T51+iZNK0A5V6SiYZx7w8nfCTnz+gOTymVt7EnttYc4uZPaSSFtk5vElk7lJTExR0iMUVQkqmdXHB8SqNmK4wnS6Y9QcUjRq6mKFxUOLRg2ccd65wghE1zWFnb4uToxYbmT1ykUC8WtGbOHxx9DPs2Zit9Tz1ikJKtHHbbdIVnc99k3IyzSwoIRpV0kmNwBDonq2oVdcpJSZook4Y72BKWTb3X+PULZMol0kbPgnmhEaJ+kbIs2GAaabxwxJz20Rwpxi5LdL5A378Hx7w2S8/ptc8IhPP6D36CU8vp7SXEopSQhFMJuMBXmCTS2T5m+/+gqOjSxQhzWb9Dh//8gFKbLFTXVI1QnRdYRiKfPWsydrtDxi9fE5SSGOqCkK8ZAWkC3lCZR0Rj3zCZi2XYC13m8fTmMEvfkC8IZJMlZhPJU4HA7Y3b1AvZshUDtio5ig3dIzNLHfL+zwZtji99AlnI+K5hTt1EBIC69UMVpxiOTjFnV1gLwcMTk+5d0Nh1B9jptYR9CqCkKOoF5nbV/zqr/6Gz1+1cKQkspnltN/mXmXOvP+ARj5CXDVxooBw+2s8+urnfOO9d4gEn+l4gBTF1NZ2OfGh/fz/ZNyyWUwW+PESV3M46eZ453fepyOnkSNYL5c4vHmbsaJw9tNfIJkrEorPwe4+W+u7PPjRj9l86zaf/5ufcjy0yFVqfP399/mdP/49yqVtLocBWT8idFbYsYCcXscUwKFK280jiRppxSGlWbxz601cI0kqVwHbRo1czITM2Ysu2YNths9fYORcFNHH6UwxTI/1wwPefPc+68kZR8dP+H9++hVrao5s8mds71yn3Vty/GpAszVBMWXqNQ1hmkLUdIRoRejPmcQ+P374iBv5LHpapTee48/hRqlBKVfBylTRsxtMhldY3VcQrvjoy9/8+IjGDplEHlmIGPdf8vDplywvQUtUWUws/LmHu4rprea0lz5rpS2ymQNGcZ1XEwNnqJApOEwvJ9x57x6VsojVe87nT77irUaKrrfLciqQSwWE0ZCz/og//K27bK41OG0/4XI0JFWq8jvf/iaxs+Qv/vqvOYnvkRNmbBXSHNz9DplMzNJeUasVkFIrkjmdRCLHZ5/9FPPWFpJUJK3lWbRazNqnvPW1+/zgBz/m8Fsf8PAnP+DJ0YzOPMni/AssRJaZd+gtljihQbW0xodv7lHUMwhXl3SD65TWdsnnM4zaXe7t73I0OSWfyVK7tkemsYtqFvn2G5v0P3vI+9/+V4TBAEGMSeR36LUv+PbXvoFhFPjs0QlBILNWyNB8+D3SyZirxAH2qMOt9TRv7JbxOl0aO3fw0zeo5fPMV3N8KeLw5g26R236nkUjmmHILsV6luLaNj/8aMI5S67dugeRTrwKMUSwa1WuPvkY1XWZ2GMsMWZgB/zyh/8OQciyu1vkamDz8mTCqLdiPV3g58MUm5ltlvIE2dQprR3SuPUhgirzv/yP/x3m9j0qW9fRogC3fcT1+3f4xc9e4k2+oDMbMHWhlEiTrr7HjrHk8O5v0YkMBpHNxhrQu6SQq/Dhe/fZqWwSzCb4k5e8+1tfR3LyTLwZrmpgJFMIXsiDTz7my0ct/vxP/5iO1WIY27haRP/kK9YzNdpnJ9y+ucfhjU3KOQm7f87nj0+49sY9mp0Wmwe3ufnWN4gUjUyU4fKH3yNXzlEu5SgXi6CadJvP2dh6jQ4W1UKeQjFPkJR4+bLFci6wCMuE0xhT0ylv1Skl17nstDntHZENILJmhKHAa9/6l2SiJnE+ZjRq0m2eMWr3USlz+NZdPKkArogYS4hxQBxapMwid24f8ODpr0iaKhv5NMqky0buBlf9lzhBjJFUqGYlyuoKVhabtSSxO6I7GZAzQu7vF7EKBe7vvM9o5GGKOgdbOzS2dvnbX54yUUU++unPSWUTZLWIaj5k+36etHaNm5slkju7TJYh484UTZa59+f/FaPWpwxGAoqmoWgCC9fn4ZM2xZXFonvE+fPHHD17TnvQ/8fDyr23v05j/zUqtQYfvvMaldoh//cnn7Och0gKSGmBRnWTnqojTtrYnshsMmLUecG49WsSioCc22e69JhaHVZWB9GOuTh9hT0VWLabfPmrX3L01VekVZmHZ2dkwykbpW3MdBEMnTipsNY4ZOZaZCUBP4YVIaISo0sZwvFL2n2fUMyxcpawuuKffvMDHp5aHFQUHn/6EafNPhNbwm51yTYq2BePGLVW6HKZUqaEPzxipmdZXByRyCQRBBdrOObseMlJd4iCz4PjMwJ3QM50SJVi1PUii/GYwHZRUgXCRInRUuW02eE7H7zPzkaSh1+9YOkuWGvk6J2PeeO9D1naTcLARcQlYUZkrl3j2eWMjcYaoi6SyphkikVszcDSN6jmTEYzjaUXo+khmaRMsFzyvb/5CyarkOXwCnvUIRQEUpHFzjf/gPv3X2dnp8rudpmD3Trj6RQlmLN7/4Bieg1n4jG4OmGvohHc+RaD0zGelMYwTNKyj7M45271PbzMGF1JMJkOmXkLbrz+Id1BxKQ1Yn9NwdBNBEmjXlqQjq9YajKp6tfYaNzi5uEmbxwWmTX7fPTLnzBoX/H0lz/l9NkrSBSpbjRIZyukFRE/slhFK2ZByPHFOc4s4Ojj76N4HposoygC9Y0Ky/GCUsnETObRjTyIOs3LLoPZgpPWBbN+k1zGpFKvoyoiJ+MBG3kFVygTBKBJkEpIaKksJc3hwVmbQE7hygme95o40wFWq8N05FIu59k/bLB/fYvsRpG25bCfKeFLIqe9Dk+ePkUKY8Zjj6++ek5aS5JNp/A8l/OzEaPLFsl8kjffvkWhmmW5nBI2WxQ3sqxXr1Feb2DZC6bTLjnTo66ZKHXjNyJzMc3OtR12b98nU2mwW4kQjQJqNMSdT+gNYwoNkfPHp1RvvEMpqZPPFUltHhD7GuvpmCfPR0RigF5eR8nVuTj9jChZRrQWlOt1qpUiacVj3v2Cq9MuoxdXDNqvmFktIjyK+SrXd97m0+OntF48QzV+454p/oDAb9K4fROrdUFSSpFIVBk7Ib/89Ce/CZ3/6X+gvr+PGwtEbkDed8iUsqgpk7PLc1b2nEI2za3SLtdu7uBYAV4iQ8oU2EqtKGtzjvtNauk1gnmfjfIamWSJH//dd3nVHPLaN65jz+acdh2644DtnE6ytkXr0iZbzTJejlnNVuTVCnE6i6DU2d1uEOlZglSBbD1FMZ+jmksQxS6RUKBg5lnPJ5D0XQ5Fi05/hqmFmHpEHIYcP7lif32D6ekJ5eIe27uHlKoVllGew/1NlhfHNJsDlDAgqSssxRSm1GR9+x5XkYmgqdihzfmoRXcg8/69u2hqhC5Cr9XliwePKJgef/PROUetc1BC4ljEtpbU6iKinuSqPyLyVAwzT6AaLEOTcn6DFw8eclAxWPoJHp8vcZd9unZAMDinuLWBGAb41oLJQsGJXWIzZh5pOOMBs/YZzXaH1/dN+iRYT4Xo4wHFOKBaUemNf8JY3eO030dDJokEwQqhIHBw813eOLxO9+ISLZ6zUdVp95ds0WXsT8npVRJLB6/ziqW9RNJ07lyrsuyPGZweM+xcsQwlzi6/wu4NSOrr7F1/m/XdWzhRhlzF5NUoxOq+oHl8RDwbU88bpCu3WXQGDMYxq945oRiS3L1FMWNy0nY52C0Txwr9icdZc4zYPcUomBxfXKEXDYIwwpmF3H7tPZ5ftHjnrdfxXIHeq2d0r06ZF64RKGkSwxOUpEa9nsbH5udPnjK9ekFC8tiuKEiiiB+5xIJFlLuH5MzQ1S6ZVIXIjYkXPd57/1uslVPEcgI/lHB8lcXCY3j1JW9+/V2a/RmuWkJRNfKmiGQofPzwKwhyoNQpmiblVEQoOUiJiDW1giT4OJpJlC1T3qwgT23+3fc/4qJjowkhqq7ipLfIlwyqWo/K4deYd+dcXA45mvkcP33A/Q++QyjXuNZYR5WSPH81Qxs6GOsFXFlgZ7vBbNrhk09/xHg24drBPnd2Yqr5OoVCHcUs8fLKIxsu2Vtb4+qsjzW6opDzePvOOoPmA2qNN1iraBhmgvFkzstnj8iaC7Zuv8vMs0ANmK6mvDpr/eNhpbq+TyjKTKwx2VSRTx884vDOTdZrdeoljUI6ZimoJFQfUYoQ8BBjF1H8jV2veRHnlydEqyGCIKCkcmTqRcqFKsedNggegprEyJTIFgusbe6BGrC0XXzHIVjNCZwZckJEV3TCWMCPRMLAQQqmmHKC09453txFVDxiZ0BoDQg1ncHxA/oXTTLlMqXNMqmCSbq0zeVZG1PLoRkmST3C0ALMQhaB36zxvnx5zPmrcwLHY2e3TjJlksoXEIWIKHCI/CUpcYkQzKhUMyQ2tpnbGsulj5QU8I06O+sig04TMbYppFMk9ByYKqrVIWFIzPyY+f9L2pvtWJpg13nfP49nHmMeMzJyrqrsqmpWdbObMy3QFGnZlGXIpgXYL2DAL+FrX1gm4BvbsAxZMC2RFqUmm+zu6qG6qrJyzoyMOeLEmedz/nnyRQG6pAnwJfb+1sZeazkinquzlAqYdo6dvVXMJMI2dbRSGUEoMo8NTDHPPAgR3BuE5SVLd8JytmAu6QiaRmN3i+r2OrqZ8biwseUAACAASURBVOijh5iNW5R1A4I5YjAn8xa8ffsKbfNTutdDiuKSSilGzSe44y7m6gqXz88RUwUtZ4Kp0jpbIiQJ5n4FLc3jew6xELC6so3Tu0IUYGNjBUGWSMMpdtwljCyW6jrF8m2qehlTNglkk8ViTunwIbs7G9TW1jE2NgnLFbJljnH/CkkwEJIFhiyRN6v4QkzQ7zMadnHcMSkRuq6jJVAoZKj5PSIhIVMkkA0Wy4SwYuLN5syHPYrFBvnqCl64oGGKZGGCqUwp2Bk5S8ISfaytO1i6xukyINVVcsUK5cIGF5evmE08hiOfWeAj2Rb1rW2i2EUJB7RPfkqcBhR1iTVbplg0aezdpnX0jlyxhExGOJmQRgp2PcfUUxnPfCbDKeHCRRMNLq4jdve2MewCspRDFnV8b0oc6vhLlVxeoVaxKFSqmJUGoiKQKRbTUUAQq/gJ+M4QbxaxupFHFFPkVMVxI7qDFovJNUkc4nbHHOzVqNca5O069+4/ZORskORF8qqCIGQksoiu5ZGNHKV6Ayn18f0lzjIiWBpcnLzFlCOuL7okaUTRFFmr5JErDcJQQgocKpU8iiXRnXb57GffhMJ99OF3cXyPaDnHisENLaxKgdiTWWmUqJcV5HBJvNCJzAivc02xXmDpBhy9u+bs7AQhB2WpSLGhEyHQ7c2YDedU8kUmqYukRSAJECVkzpSL9injIERVSxipgC6J+GQMxglFzWR1vcpkNMBfjJDjOS+++hptuSBMHG4GEb3+kMAdsLW+wtUwpOWC33qHbUB1b4N5lJA6HtViGbNaxqxayKbEwksQU5FZe0m1piCaRRaxiec4DJwZ6+Uqy7FDFMQgiBRNA8WQGbsBN6en9K7aRLMlVcuEnIIZmdy9XWE+X5LGFqXSOtc3N0h2k/bMobtw0RSBqqUQZyamJWEbJmvrNXzNYprK2JpOLZej3iyjxyLd6xazxYLVjW0WhkTOn1GubTDvdVjOF5S3bqPZJmcnX1IprjGbhfSdmCkqiqmzvfGYVUvDdxckiFjFFRS9jOoH1EoWqQqinpIlDok3prl6iDPtImoRkSYzR6J1eUzr7AzNsIi8CCnTMewSVjPP5OwSs1THLOWxqzUkzSLNQg42FFo9B/f8lFqzQaleZDHqIkgNdEnk9KpNKM8ZeQtOriZkokw8GxH6oGQSBVulXjXYWi9S3thkMvVYLD0UbOp2jYLoYVX2EJY+qhYQJA6TZUJvAol7xYPbB0y7C9rXXTq9HrKYsbO+gxdm1KtFNF0njH26wwHtTsCH99f48uSMgl1Hk/N0BiGniwHq8gpxOSAIHBbulPliiq7mSBOJ5fUzCrqGYiiEQsqkM6Kxcp/tnTqKZBDOJ3i+h7J6SGrlGJz8kkTNEIQAKXaRY53tzU1crUTJzpFTZUAgkRQqZZVicY+5t+D66hQvmlOuWoiJzO/9w99B9FVUpmSyhy8JjMczdhpr/PUP/y2hE5CEPqQhIiIPH95DEDT0SoPBaM71ZQetWGRntc7F0RP60xhNLWBKKsPOKRN7lZ1KA2fWQcxcJCkhEnXmSQXFdLluDwllg9HC5/To5G+Flb+TG2gxWeBMFhg5mdmkz/nlgIfv7SLJGqaYktNhphnYcUxQa6KlEUqUkAY+jtdlcHPNeNKhlLdRSuuImk0swUq1iKQlzJ0QvZBHt4qk+jfW39BIcEcOzswhjRIyVUYwdIrFGuPxDA0RUZUIJZmo18KZBxiyjOvNkNIAK5fDV3QqSsIXpyM++bU7rKwXyIQAsgruMkC38shqipQFIMREdoFCIuLIBhI6llFBUSSsgkFdr+B7U6RSjtjPEL2QaDnBiEOqWxtEuVV6gwjPCZARkW2TSSoSLUbUayZaLJLOBpTX6gzeXVHb22S0mHPdXhL5ETU5orSjoegGar5AIkT4ooCg21hSRLDQEfUJiuITpg6LZcDcTSk2NqjZMuW1HQzbQor6pNV9EnfGNM4IAw8xWmBGEwwpIk1DJoMFftynUBRRLJ0oDVglQs5VEMQ5CQsyuYier9CeHPOe8buM/Ck5O0+1UMX15hiLLo2NO5RrZfrjFs5sSSrmiLIi1eZtDKGMmMRMpnMuJzMsrURt7y5lcYlkyvi+S4KKfyOw8EPCcIksJhiKjCGKbNaatMYO5VyVa3eKoEAhZyEkAoYpsERDIEaQJFJZJkRBy9lYmkBoa8iGBqKAGIfYps4y8bCkCQVTwTC/eVajVMORZHJrc/zZjLygk5NsnsgSswB8PySezri4aqF//ZIonnOwV0XXY4hmKKhIIjiRQM4SuLVax1ME/EgljTMiMUaQ8wydIVnkYyAQWQaKHjD3J2yenrOye4tKuUbgRbzqtZgu2igZrD2ooGo2IBH4KUggyUVyuosYFhALHmo24uJsCIKEO+kSSDVc12E2vcJSFJI4T2OjBEJK4CyQ9RKl+iFbYsQsesFw2EdSZ0i5PNXcDro2xS7mcb0R0XLCwglxFkPG0zF7qyYbB/ewCjYr9Rz5vIKXZSTegiT0mU1aJJKAEg7+w9xwu10k04AkQ0o1olTCmc4oqDVqawZRlNEPM65vupiWjLZwkXotpk7GZB7ginne396lmlVYZlOG7TPCmceDOztUSiv8zeufUVstUbTyyKoB7pLpuIdSLpOFMWmcEgUuThKilHZx5z5xMCNeTnBmEwa+yLB3gxqs0FwvkCtYJGFEEnt4icPlNCMvQ0qMoetUSzUGCwE38ilXdPSyhKdERKGPpYeIgkmU6BRUcGUVNxaQwhBPt1h4CYoqIScimqJRVAwuJhdMJxlpquItHPQ0olJQOOsG7B3cplhOGEwiojAhS0MSscDJyTtkSUSWTQRZJo1TVDWhM+iQt8t4voCXZMSqTJgZTGcL9vcO6L9p4c4CMlUnFiTkLETLIvJaiF/WENQiuplj6ToQhCCmJDoslj7TYcp2aYd03qOoRAQlnfEypNcfkokFVnbyeO6SREjxBAk/E9moakT5HAxT5u4EwUpIFBVBV4iHffrzEoZuo6oysiZTKcrYu3tcuhb5ms10OWUwn2MIATdvEhShyXg4R6+W0XUbMbMZzRwqBVDSMYpoMYtSWu0Ouhyy1yjTvupSKdnYBQHFyChW94mliPzAg3GPvGZRsSsEgy+Iy3lm2YLR1EMUBRRVRwl8NFXBj0KCKMOZzUnxyeerVNd2CBJw/DaKkJEisXBiXP+Uq6FBpx+yu5aiCzHOzMMTB7jOmJJWIUoVlr6LH8WUd/dZzufkFMjJHoGXsXBjDLVAMW9iGxKT0ZB5GhDIJrkwRezNWAgJG6Uqs+kY15lRtIv0ZgGr62XyayWuL6+YzqfU8qDaBarru4yf/g2GLiJoVXLFPDWjiigIiPGMdvcSX0jRcw30vEm2HEEqMhgHiAWNvFVCMCWKpSKj6QxD00gR8L2QehoiZRGhViJDxdQMzERk1AkYTH0unOf4iYsgC6imzWqjzpcnIa32GU4QUi3vYBdq/78c8neL21/dY297j62dFQxhQG9WRXDf4McSgiChSCJ6oQ4zDVYKVEtN8noBOfZwu19zcXGOYRmkokkoG/jIOJMI3DHT+ZTzsw5pEqLoCp5g0D29wqjXECIY94d0B1OmkUTesMgsmcHV+Te9J5nKUK/w+rPPUNwF9to2URijKAr19TXW9w7I+TFvZgFrzSZ5XUfKMqQwYuP2HRx/QRx7CMI36txTBLYKBWQR1lY2Wds6QMuV6dz0aeYKCJNXeFKJYtnGUFImozGoJQS9RDWSqRdUcoZJtFAJgy5Wc4tqbkjOtMicJfHgipqUpx+YxKrFs6MbXp21GM481qoHhCWVklUFRSIIfZyFi5uJKKaFGxcI0xZZOCf0EiaLiLHjI6k5Pr3ToKCqKCiUynXaXortDQhEmUkisPR8UndKvWoiTs8Q5YzTmyWdQQBhii4LNArrLCWTnHmDInskWEimxWjc587eB1wevaOQK7K9f5f2bI50dsr+nQeUVjRGyz5LL2Bt/RExGs2tTWRPI04H9GZnnJ5cUa0eEKg+waLPxcVr5uMRNauJZhQQc3kmowVOFDFzY5Zzn0aujKeYpKMJbhphGTr1fAHyFlJmMBgNqdpldLuEJ6gsFgL1epFkcESpVmdj/4CV1QYVOcFLRRRtSVkzsFXQbA2psUtAiU6akSQxWgxq6EHQZ6ooTJyQJJMpVcqISUT3+DXT4RX1epmH7/068cyhP+hzPXHoDiOGb77CiiMCUQCtRqZUuZ6fkzgaI2+JbeqoUo440Vgyp7hqMj0ZYJYLqLqI43i8Oeqx7DxDkBTUsoWom6SJTLhIEDQdUxGoWiC4Y8RwjqqmOMGYo5cXxKFAhIIgheSMmFrlgGZtncbDPTr9HpPJgigW6Y5j7t+WCPonOF6CG0QkcYqqFXHdEHSb0aCF43ksnW8WUmljjVQUuffofe5969tUVptMp+cE/QvqZZVRp0u328KdDBG9gL9++haA3//eR+RUHVHQQdbw5kOmg3Nq+Vsk+phElkiocNY9R1cSLKnO1U2bJApprKxROXyP+++/RzGX4/mrF/RaZ1iKx6M7G9RWH3J89BWmVqVgNClbNUrFCmapiiZVKKoe54MLOp0bCmHM7nuHnF8OCJYD/LmPH8R4ccDaeoWJWKVWqLJ+e5PVRhUDlbOFz7DvcNd2kfIGVq6KnlosZj5aTaNphOQLGhPH46Y/hGDOSrlE52ZEwdBBFsiEBDWT0YsVEtfBtXIIkoSWxQiRw4ujt2zl6qzc3iGVFOaOR2845Wris3Vwj8nYJU1VssQh8LuUNu5w/vLHVISI9Y098qUVwkwkcDo8ffYUQVPxJw7LMMHPUpzFlKN3JzT3t+jddMlQUa0aTixhLm6IxBDT8Mmv5DArVdxJRBb2kax9KsUEVXCQYw8hCAilAvPWF7jxkmK1jLNc8PLpU6JA4aPvf0Q4mXJ2dkJvukQ0ixxuNRnJEokXMV2GCKFHXge7vs+apRPnDGSjQiinJDgU0pRH37rP86MJq2srjEZD2q0T4kWXV58fs3L/21yevMQNlkiCQUHfYOB5KIbDquhRMvKkoo0rSBjpmJ3dLW76M4Q4wl8OmE/7iKwQ+V1iUgpqRMEsIAo6485b3pwfs7lf4MkXbyFI2V6tUVopYea36Rx9SaqZlHPfwKuzNEmqJYp5nUHn9Js4hUhmsfTJl0OO2x1M8lRrVdLQIeqfc+fAIPNNrModdKNKGCu4EWys2YRCQpKo3wjs4ZRw6HD74w+5bj0ny0SuLl+w1BSSYpnlxWvEfhtx6z631m/TG3vfOD03TZ58cYaqzbi9ucZwsWDpL9lu5FDye9RXJPybUzS9CEYNJ1XZqebxQ4HL1hFvrlqMF2CqJTZKOSxtTmPvQzKxCIGLIviYmzsUchVuOseoWYYkmyi6hTgfMOtesvvB7yPoEpkwQRYWlIwSp+1r+ufniPkCw0VC6GWsVwqc3AxI3T7FvMJGYx135vDVV1/9rZeVvxusfHCf9YMdTFnm+uIl9qOPSBOPYmETWTAY9rp88dMfkKoieS1F8mSEOCLKPEa+zAcPvw0FnZmbMptOWYx9pvMGz57+jOXoimiyIAkzvBDCNGJ9OyFNt2hdveSme0YULigbAv2TSzY++FW05TU3xzf4kwklxeHk7AJPCbn//qeslr7JIxFjna+f/QWWLGIbOpo25fnXz/n852fUth5y+vQNYjbgvD/HjW2KpW1ubx2yvtokrVXxBJ9pouNnGrY+Z9l5xf7hFp3BhG6Y4cka5byOIRZpXb0g6I9wroYoqUJzbxc9jpi0XnFfH5CoOgOxxDC1yVovqGzucd6ecTT28bMCeWMdyy7wqx+vEYYy1xdntF+/wW3fUC7leXfls7Ymo0YZYa/HuHXNzXBB6nmoCUx8j6vLFr3+kFCR2K4v+N7dj7ELGipDStKSgpHjZ60SVSnko0e7fOuj96nlVIbnR8R2iaOnb5jOn7O3UsGUG0ynJr62QjGpoVZsotEAb7pgNPEQJIsoTQiCIRM/plpqcmt1HzHIk0k5Xj/7EQ8+WGFyfYI/nfH9P/g1VuoiUfsp09QhSQw0oUJOzvPRo1tIvotYruPFIePxiOt2n1ftKf3La+zNHGVJQMFgGooMO2f8yqcf8IvPX/Lhe48RsojW1RUrWx/S2FxjtSizu/c+mSAQuT0ebJVR8w38r37E/qP3STSVWDZZ2/+IMM1hFirI8RIl+UZBx4rD3ZUm7FvMJgaeWEIVM26XAv6T/+o3mRx1eP7iLaomsLq9S2N1i+jsOZ/91S84HjiUy1soqsxs2SLu3zDPFG6t7eIOL4iXS5QkQwvmrKoi5G1a4wlaHJE4Hl+8PWVN9Li9IzNJVglTDSGKMOOQlVWTYW9GFM94N5zws6ev+NG//0v8UCJGpVHepGLJ7G0Vefj4ELl2gF1cpff6HL1coFHVUNwr/vIv/zU3N23WDj5ia/+Q9eYqOVlh1LlAiBZ4Xko5Z+JNFowub1CmA2p1lamkk8MjmXU4/vop//7/+TmzeZPCmoOIw/bte5RWdrkezPjsy2+++u/95m+xtrLH/tYmm+t5ukef4RWqvPrlDzGqDTZWGlT1lKNBzJ2NJo/v3ieJM/T6LfI7j1Bkh4kU02n16LbH+IFIRJ5paPDi2VfI6pLbH/4qCBbRYkBN6UGuhhSMWKvk6Y0nnPYczicy+mjEx9+v8/Zrj2q5SLEi4SVL7FqTLVXGjxKeng34/MkzTk+PODx8H0yXi3jKyVWf1mDGfLFgPXYorOY4yXKMRz1uTi/pd+eExQp23OXF8x/xyaefMksDjq/e4M9a1POb/OBv/k+aeZHOcYfT42PGwWvOL1tE3SvuHq6RzyUIkkQkVrnzaIUo0cgbFlrQQ1NALGzQH6b8yp1tjtwRzbVtNnYaqBZ89cNXZNGE9x8fkBkS5ZUqpWqF68GEW4ZJ+8blwWERL5wwHPVYLxVIpICp2qRU20BVS4hikUyr0HEmfPr4P+L881/ijUKq9W02D+7xN3/xA/7ZH/8+8fr7HPWnXF9fYaYhtx495PpHf05pbRM98VhtrNPcecjlZEmaFhDilP5Vi2q5zMraHscveuzuqmxsv0cqaVh2ntiP+eynT1hr3CI5+gl90aJgWqwaOnGcsvnwHuU7e1zMXbabG1RlhdHNObdWm9wp1miub3LlLpktfVbzDZoffYvwuou+/5iaIqH6CZErIMZTrp+9xS7M6fUTMmz0vM1Q0fCylI8e/iYX3Ws2V6u8d3AbUyzRGZ4SjSdMrq/pTmaEisXG2io/f/0zYnfGzoNH3KrXsZ0Fg7NjJDXl93/3D2kUa0zcIV4wo2zn6Z+MWT34iM/bLfYaeUqWzHmrzb/8V3+O16hw8s5htb5G3i6gWiLlisObiyklXWFw8RIxjVEFjVFvwnc/NvnJL64wrDKClBA6YzrHR/zW9/Z58rxLYhisbW9jWTm+/OVzvNEZP/x8zsq6wnw5YTq8IVx06J60+O77D+mMp6w8+i5KpcJN6zW2ZrH16bfYUiWcq1MWo0tEA+4/+IQvPv8Ry3abL56/JBMMdvduI+RlXn/+GkUWKOsap70BPzvqcHUlcfjwPh/94R+R2DGj61f43RaGXGQ+cpENaJQPcTvXHL/4iuOr9t8fVggVRLWIUl3j4sxhTx3xybd/g854wLOTt/SdJf/w93+D3Qf3UIwSYrGIakOxoNDcfcBCK+DLdfb371KUA+TRMcXREVnYZZqmFHP38d2Y0BtTswSun70gX20wmib0b3rMRiOSLCFfzeFPZ1y3DeaGSGpGpNMRo9EZv/e7v8c9XeXV0Qkvzt4yHp7S9Be8fHFNRYv5ziffI2ev4McyB/fv075sI68XObz9iN39W9i2Tf94wLOvv2bSGhF2XXpvn7C8OaZmbzCeXBHMLmlUSpQlHdWNmE7GfNa+4JOP7zMVtjkTm1wKJVxEDisuWiKA44KhYAgxtucxj0W2V5v8iz/7ii2zSd60WUo+jZLC9VjgF3/z57x+9ZLWzQ3dToezl28pFw1CVcUZ9+hHPu0oYDa55lsfr/LepsXIfEiWz5C1CdHCQVItbqZntCORklzh9sZ97r73mDU9oOMo/N9tiT/73/8vvN6C7/6D/5rirU/4H//kf+GP/8nvIjsGQqgiWyWedFS+XbqmYJYxDBfddjGUCTVhwoMP7lPCZHB2jRLPEYWAi96S/Xs7NDcavHvxV4j5ArX9RwixSKmUR9Q19m79CpvNXXStyHnP53/913/Fu+NnFNw5m2bGw/0Kj97bwIkS6sUFi+sLZCmPboqUch7vrR/y9dE5a/t7BP4Ux/MRJZlgccwKJldihBBINNfW2TrcR1YhujwjEmDhyazf+pja9j1enbxkmZp4uk02HvPk6IYvj3tMFj4rqyqL6zm31m9RXKkjVkoIxSrvFSscvP8YRY0JMo/paMj0/IKsfcknv/mP2Xj8IX3f4/jymm5nQcm+y1Yjx5v2FXtrOe7eWqVQ0XnZajGINDarClV1m5yt4MYTWldDpGWbH59M2a3mseUcmaiB6VEQxszjIu7Vgs9++Gc4s2u+/71PqFWLfPy93yapFBGTGa3TM55/8ZZNM8RXurz5/AXlUgWrvkJl7zb/9D//L6DwmMuuS+/t1xw/+QndkyfsFkOi0iFh5iKQMnNjPF3EONBpXczZXfuQgiQy7h+D4vDxb30P287z+U9eIWpFcuUamqbgzGb85c+eAPDf/Ppjjo/e8Vc/+SFfvfoSafcTZKfH6rc/JNWrzEcTpoNLYl3j1w92iesqXrWGryrMhjeMzl7Q9PvcFZdUG+vkmmsU8hV2tBx3Hx/iY9N53SFn6Rzc2WC1WuAnf/5v+NXf/jVeXrzj+GJAlqTsb5rcW7uHK0042NBwfI9uf0YYhNTXG/zz//l/Yn+zhhYJFE2b5moJNWxxfn6JKDeZLA3SSCWvW5R39vjlD/4d+w2BRKqiSmUsYhi9pGjuc/jBIX/x9Al64nCvXkYQc3zwfolJ5DPtZ1DJ09ypsWVbhP6YT3/vH5PK60Rum8m4y3XfZzAbUakKjFoj5HBJv3PN67evqa1Y1OolzkYCmZ9xcfyGi5O3fPj4V2h+8iGv/+bHHFTWYDon6Z/zBx/U+ep0zsP3H5F6HhMvQC2V2D+4xbjXQSAhuDqnUcvRWMsTBwOitsrL4y5CdMXerTJSweBla8h2QaZQKuIMbri/0qQmSbQvz+j5LmK1yXHvhuOTl1y1z1g6U/bXtvBOf8STL1t86/uPaW6vsvBCMlnnw299zLP+FenklzitLsu+QyE3o5or8EpT8fo35CsKqRRz+vUFlU/+W+7zhGC5RNBtOvMFr09fYVYzvngS8PriNY6XUWlus7GzwfjpX/DzVoLtzzjMzVGEEV1nSKTaqLbD4iKmcfCQXD5F8G4oFrZQqz4/+OwF/s2SWCgzFUzidIAh9pjbVb79/hqepzJ3DA7v7rOzZvHs558zOTniaadHR1LZv3Wbsr2OKhR49dpB87rkmWPlCvzOH/4j/of/408ozQ3e3bzm5OYUKcvYu3OXx7VVBi+eIlUltGaZQm0VTVTJNbf53/7NL/ng/iFGpc5Zr8vN2y+RV7+DbQdMrmYU0hGWOOf5yZTu2y6BIHBne4vIE0kli1sfPCQa+PSX1yzfXePOxkiSgm02UI0YffIaT44ZdocUQoNHK4eMRm/5k3/+p5y0ehiNFbbvfpdc8QE/+H//NZ9+/JCnX37Be5/+Bvfvf0CWSXz+7op/9p/+BvPpBE1csgh9giTFUDyevDpneX7Bp9/+iIf3P0BW8rx48Yr//r/7L7k+HrOzsUXejBmOujx7e/H3h5WH791hr1lFWyyxCgXC2Yg//3d/iq4oPLz3gPcf3sXvvuN5t09eKZEu+wjOlMifcbN8C+I2gibgp2DlShSKJaaLDrM4RA41RDFB0kKyJGDannOwf4fuqx/iFjZx3SXpbIC6GIMfMis2SGbHOKMrclnERsHk3UWH3/zP/oiXX5wznryj2chx/8G3Ka/v8rob4OV1SKpIskRzXWVzzWCCx8IzGR9/xejmhMliTCQmfLpfpD1tc+HnqW5U2Nws4fkC5W2R8WLGIqyhRR5ZOGUSJby3XqDX8ymGErdXN8nrKRdXT3GWMWciHFQlFDnHfBgzaC8x7AaXgoW/7LMMQqJMQpdEosEbmtuHdAdnRKnIcrJkMZ6imxnT4JQlqwRLHydIEASZ9UKOsmJz1h1w8+4IA5ftusH7uyYHtx8gr99GFyssgwW/fP2Mf/Gnf0bn9RG3Nzd5fKuB0n+N0ztlPLhByOZ8UJARy7eZOiFPjk/5+etX7K+VOW2PODo+YX1/i90Vi42cRKN5G5EvELwp5RUBL3YZd6+x41Pi7U9Jg7fUNjfx4gRvNicnGzzrHzG6Ebk6ecnz02MCUj5+uIuYk1jb3+Jq6vH0os2LN5d0LwbsrqxgFep0uj6T6RlhOEbTc0hrVSRB4Lj1El1SsYu3WNl+wCf3LL78wRPqjz9GiUvoWpmSXWDFVule/YJw6LD38Uc4/oyzd2/pdAP++gc/Zmv7Pu12SJzEaOoCx7/m2ddD6oUVuoMeqqFSqlaxK2vEUYGvP3/B3cNbjIYKV5cLxpMlpf1DpM2Mn/3bX2Krc0whIPMj0pxKWUy5nbORxBq90ZKpF7L//ndQZZWLF+/IrVWgUEM0a2zUcsy8HqVaE0ExkdI5ihySGkWOXn2G74148/wHiAjEcYmTC5dGU6RZrlAq18hrIVt3brH78a/yxZMvuHoz4tPvfoe4sIafFogcke7Va7Z3i5jJnMtFF8kuUmze5iy1aIYjlEzGLMCsO8UbeWysVllPLQQz4adP/prXL45otT0GrkaeMZ988in9xZQnL9/x1dMjTi86HF9cAfDp40MK+7cpVKrkkhgrX2Hj8A7zxZyww/R7jAAAIABJREFU85a5s2QslMCd8vigyr/8Vz/AnwdUSwKGMecXP/4cZ+gh4XA6dAhljUwzOe8tCNJTWj9+y62Syna9QZgI/OL8DZ7lgLBCPRwwm2eUVjf5/m9+my/bAvsP7uHN+ySLKXquQu32t3i0Av/0H/0xzps2eq1BrlFBFiUmg5Rf+/h7uJMRn350n/ceHKDLCcdf/SnvfecRt9fWeP7TZySxx+rBOrn9QwSxRLFUZ3P9gGTqI8bw3d/5HhdfveTB4Uf0bt4hziMkCrj5JsYoRlw3+Prz5zh9j0Zti3sf3Kd73mKjoDMJCiysCkqpwMaKTaVZ5XKS43c//QRp0UYXobG2QWoF3JxkrO0YLJ0Bcj6P3rjLs/MCvtBDm/6So6XAeNwjnXbxfRm7sUK1kqEYa5QLZZJY5+ha5Oz0r9iUFNb27zHTcywSKCDRn8YM3ZBEjlASBcGw0TZXqIomg/Y7Hhw02b97H/QaM1fivcfv05t1+f63HvLVjz6jfdrF1PJYeYkBOhtyAUmuM3BEZhk0tzdoPfmMB59+hOzlmM2WCJrIe995H/f0axLfZeTZ2GpGGi8ZeyKPbv8DosqA3tU1q3kTW0mZLoesru+xe7CPJM7JFJNxKDBxAwqorH/3t3ny1RdEfofx0mWeFbi12mS9tMdi3uLjX39MuWaxnAyYuQ6uZPPRxjbdk2P27uyzc3+fX7w+wksswkRg+9YW1VRHWij0PYvW8QWqHmBoAqX8Kkq+jKMueHd5hRUnXAYT7jz+iJ2DQyxLYDPn0VP3yOdD4tBj0PNodeZMx6/wrzsEnXecz8/QGbEux/TGKYVozh/9k/+Yz3/yA96e3eD4MrfWK3zyB79NKhVYhi6WaZMQ8Pr8F+zYCVG1AdMzNKuKXaqQt1zy2ZRYkLmhgJGrY5ZrCAWbFStiXo7ZbuxgGS79SZfOqMOdPZFZ9R6iGKLWbOoVi92KzWZBobdY0OoFvHz6jqkfYlQqmOU6lbUi9d0DwvY7svmUnG1T29mi3+4z7jn4SJw5Eq9bE65PXv/9YeXRvU1qqyXmsoyfMykmoOzskio5HCdgNJjQGsRooksag5ilyISI8ZLYc3jbL1LOi4hijjiDOJqjeD2mfoCp5dFTFRGFJBUIXAd3OiLIlRFcl3CxIA0CpCwgsWTysoS36LKSt9CUHP1A5/Z3HtMsNOiOuxSKNpIg02/3aV/3uHv3LrfrdV68PuKsdQWCQKOyyrTd5yZ0yOtVMqmMbJS4d2ebUmUFIW9QtxV0RSJNEpRoSrUgsVKuEiQqviLgZzKpKyN4GZ5Yo9VrI2Y9DHFC0da4tXsLoj5H5y6KaeMEKf2Rz97aBpGa8OL5SxJBIDYMEk2nYAqkacJosiT1Zli45FUJnzK9cQdJC5hlCkGckvpLYq/HjjnlZuAT53MUihXKdpVisUFttYadqyOkEkp2RUFzWKmuImgGugxvX3xJsblFc61J7Hb44qiNnOnEoUoQdQmlFLtY4/GWyge7EtWNHVS3RzC9wVtMCMc94sinrMroRh7LyqPpGn4Us75zn5u//mtKtoEl56kUm9TXmry9OOLR4R5zzcYqFtA1ncU8oJF3kCOTRNBpFAwsQ2PiRvRbZ7x7N2drcwfZziNbRWTdQow8aoU6zjJD8Cb4UYSXaURimXqzRLd1xEp1jc3VKrW8iBQN6J0+IxbLYDVpTULeXA04Or9Eyj0gChTcJCbw+8jBBCuC9shhsVxQ2NhHSkyaWpF7Gw2uB8+RjIReq4sfp5SrBerrFa78kNN3T9mNx2RZgby9SaO6ztSbsVcMSYIZkeUhKga2mKOcTZFlCc3OkCgShiKKqrGyskbn5gJFgIJRoFirkVoanUkfcWLx8tkv8EWNleYOQhTz7tVXSInDyu273Dx/ymI0w1+G4Pus723iizrlss7K6gqqGNO7PuHZ81eI7gxBzrO2tc/21i61ahXDNGldXJCGc04uHbxEAC3m4vqEVvuS4czFny25dfiAnf09luNruoMuvtLElBzKpVWa5RXyQsJPn78EYHvrEMFssvBD2t1Lbm5GEHu4wwlWfQNRNmHpsL+9hllY4bMvnlPNK0iywmIRI00nxEKJrTvbWOU8QeQwn/RQ8TAVmPXm3Dq8g5SX6Lg9jvttmE0JfYN0OSTwp8RpyMRNiYd90mqV4SKm1XEY96bIzoK1W9v8/BdPOJ5AqVnAyqmopsnhe/dh/JZZ28HKJSixhxqDvbXJ3PEYHLv0Q5v6ZpNSNc/JTYqeE2haFj9/8hXdQZtUiHHDmPFNRtsqUV7V0cWUnC6zt7fF3b1bLEi5uh6CnKCYkPgOJ1+95NufPmAQ5Vg4C+QwpaaXKdeLHJ9eIxsZhirhLB1aVy3wQxLNZuXwPpkXIwk2iAqec8r55YThZM6nH33I7laJfF5BV0x0I8fw7JibXpv+eM7p+Q3Hr55wd1Vl8+A2xaLGaXtJe+Rj2LCVTuhNLkntHLpoIokqfizy4m2HKPWolPcomBa6kJDXJQ52b+GHGq3TK0rVHJs7W9SqTTRR4eTz16zv1Dg9viJ0MywR/N4bBr7C3u4D3KlLFi+I/SXL/oIdecytxx8QSxrTi0vmlzfYusUH3/8unfO3rJVr+KM2sTehULZwgymxkLJwXSQ1ZRYuWUQR9w/vcz0fY/s6fU8FxaCRU7A9l+dXDmZNp3M5IHBTJESmNy0O9+sYFZPezQWKKOO4EV+/fMe8e0S19IjJco5lW+iGzGzUIk1hZbtBp79gZyNHLidw3hpwcTai03GpNctUykWIM2I3RFGhl+zizjvIsYSi51FMFXXWQW7u0CzIbB8esLq6i6qXCZKEg2YJN63SuW5jVVYprG2QqjFLbZv26yc08jnsLCH2PJxUZb0k8dlXl3zr1hZyvkSuWubO3Vvkq4dM2ye8PZnhJymqIpCTM1JTRtTX0ARYb24iCyqu72FubHJ2ckVFNijpZdyJx02rj++nSEGCqCzZWdOpVwxUUSQOUw7K67x8+iWxaFGtrWKZJsN+l2BwxVY9R4DF4eEuihjy85/85G+Flb+TG8iPvymDK1kV+p5EcX2bVPVIfYHIjZktQ1RFJ3ECXHOOKDTIvBAlnTINHDLdIXYz7FyeTBBIJBmpWMbo9ygWm0SLBeIiJUwF4qLPrH2D3WhgxwG+khIpInEikUkqejZj4LhQbSKoCqEfsbJ5h8HVW+btC/KVOkIU4w0vmUwiSpaBIsRUKgI5qY5sVLm8HnLx9hLr9g62WUQ1q6h2Dj9IOXE75C0FVXYZOi6OG1LIZHqtLpW8jaVCobKKt/Tw2i/oL6dU9ixCqc4i7BGFEfnCNkEWUhIzukaVrivjzR0mS5fFrEetZFI1THp+DGlIzrDJAomlG5AsJxQUAQyZIIqQhIgk0MGbIJk14lBAjn3KRsosiRHzKtvNdWpmgaKuESPz9nqA1I1RZAtLjSjniqzX9gi2EvrtG/rTALNRx7bz5BZ91u0avbfXxN45jZ0cTc0k9KBqqhiGTDOnMkkFoqVMGosIgkYySJmWElJviiipSIKKlFsnY4FYqBH7OpARCTOYhKxXm6TEbK2vo4ginhPQ7y9xxzA8f4WU30PJYjIpoGCkOG6GLKssEoeSbZIJObwoJRxdkdYrNPIBPc8l8B2SeYepkrGxoVMMTay8hJ0DSQxo3QxwswqpqNDvT+g4McOJS+g5BMseqiii5xTkNCIJYhbjJWVdoNKsg2JgIaNKGb4XYEpgrGwwOrmhpJhYhg1qSklbUDQt1vU8J10Zx49BSSgLIYKcZynHBJFEUVcp6PI3p9iiRW1lE3/sosZTckqenKqSCiYVLSJLXSLfJxU0xCRAU1WESEbVc2SRg5AtKNRt6vUqipwwG9wQpBnZRCZfKPDdX/8eneGSXKmAs3DwggVmPmN77w6TIMUUBNIgZRHPkKWEnG7RMy1evnuBJK1R2ayhqRrhucdSqhH1R+hRhpSl5M2U7RWdr9/KREnAYJ6ysV0ib+pE0fQ/zI320iMfC+QtC2W1xtjP8663YLVUIc1EhGiJgUe9ajCauxzcOaQku/gLl2WsUVtbZT7IqBQUxmkOYe6iZz4b9SYLN6Bcq3xj3Zc0coUSm5nExduIgpFjPLwhJCOKA4a9AbasovtjEsMmVy2x8BaMB9f0Ots8f3tOaK9zO1fEzslEsUvRiDkPXPLFIp4bkIQJsmCSCQVap18iuzZqdY1UkOh1JrSPbwhWTJRykcCboysiiqIznyd4wYBa+UPm7Svc2RRLWBB0TUY5k8AJUS2DnB6i4LMcziFwcCIZ2xRwxj5i7CHKCtVcDtPpEMxtppMJNzcDHC9gvaYxd4bUCh/SU2z8pUfoj1jMbhj0B+ys1xHSAESBRDaJ05BCOGU4FtAknzR0WS59IqfNeuM7LEQFPRVRswQxjVj6UJBVTCNBShJk3UBWdKQgolJfw8zJLFwHYeBj6Rlr9RyKrJOrbPD1F1+wtaJi2SK5nIok2iTLp7w4OubmokWlWKFRy5EKJifXXebXJxTtPOvNfRx3ycnxFWIhh0dAISeytAzifAE1XyTzXZzpHE3XEWQZ1VLQDImLt6cUd1SW4xmKUCZAI9WA5P9j7T1+LEvTO73n+HPuud7HDW8yIzMjXVVWZVV1tal2bHbTAMJoqAGlhSQI0Gghaa+NlgI0C2ml3UiCNBhwSInUzJDD7mpDdlVXdfn0GenCR1zv7/FWixI0O5HA6H/48PsevN/7fD+deDhAVlW2VneIYwt7fMGT8SETI8u11T18JcIslMiYGp41w/VTFkOPoadRFDLIUUow6FNuqhjuiDgDWiGPEDikyYRyfR3DzGM2TOxgzGwyZtGZYAQRbuKQBmt0TvuE3oLY99jeaRJOz/DClMizSQMXzcxQX91hEZlIy1cwNBHLchlPPbRMHkFOOT84oVyuIOg59EIJs9xgGkLByJJGEnEooogyZV3BNyUqpQAjX0ZWDFAVBvOQ0VzGcgNqmTILL2Q6GKCHIWJBxR8mKJrCaPR1P5kvZ4iELBdf/Rs27txl2uliOzZRFFHM1zALJRLfZhLbFEo1dqolnIVN/7RLa6lCgsps4SKRoOo6zx/2yL9eQjElYmeIP+n9nRzy94KV/jRl3ZLZymUYDMbIG5sEF59RyTcQKiXcWKSo+AzGOllZYOFpRIGHFDicOlOu74b49oKKmUUhIBRlvGyVjGZSKRfxzJBYSYhEmVj08ed5jNglk8sy9z0WHgSRjpDoRKKHpuawYxFZCGlmJcKRy6L9hLA3xklkCjloVTUyssGLZ4+QY5dv/sF3KC/tMhoJPHx4j5cnp7x77Tai51Gqa2ilPK+ePiRMBmwU6yRRxCxwSVOFnFrmovuY+TxkqWpQ0nRUL+AibRPpIXmjTWH5bdpdEXvm4k9j+u2nbOVEmq0d5tMp/ZmN5c951XF4b2ObK0tNJudTYiHBlFOsKeiZEtH8nNzSBtNIZxzYlIwpVb0IQUpJjpl6AWLssVzROA105GrKVrlAUVMQlBhHDtjvRODNWKvWESo6AhmiSKBZzTMwHJYv3cGNYs4GQzRP5d0ffpd/ffaneN2XlDLfBCSG4zbWIs+T45CSeY7aKKMZJTQvBaVMeLhPz/EQ4wmJEyAaFbLXr2G5cyp37xANQxy/i20PSUcCd9/9ES9ennM5k0IaIUgJhbzBV08MeueHFAsmgX2KJFoU80Uam+tgVvns+ZeYukxGr+IlJZK0ipurkMkHJHYLwZuixwtU16c/zrJx9R0UWcCNLXwr4Kht4acVtNTCGk+ZOwFEAaWMwYNPfkmt+gPsnkguG+P6EWf9M66tbnLr9h6POgGlrEog+tw/vmC32CQRiqxuZVE8DdvxmY9HrGgey9tbdPs6+vCIs84hY9/lSqPMJCqS5rJE0xhNBdNMGLk5ksAib9wAeZ9aTqOVC9HCCdl8kUwwpWf3sG0HPVMmX8zgxWdUW2voeQF3ckEsply7+ybvvLaDKCfkqwWG1oxAgEBTWcwDBMtiefktfvnhA+LUYe/aCrduXeXR6RTNtDl4+RTXs8jmDFYaOxi5PKfDCTtLVcTEJfFCSlKeTP0Gx5MPMeWUQfuANDBprtbJmAJLZZl75yJ5a0Yi21yE/v+bG9l6jnLNpGGIqKVNpuZlnv/mIXsr64T9+0TOnEy2hB/aOJbN3u4204tnuJaHKCmkpQI1Z4iRzBmNFOJIoZYvUirVmEzaVGpVLqYL0EWWmzUypXVOhjZmrs5k1iYRs8gICGKEsbTJumThFbO4So4ueS7OXE5fHpIvVYk0BVnREQSB1LMZHr5kLjfJVGTmzgI7TpHkGH+xwB8MSZslsuKCcT9gtrCxO4+xBhmijSrLxQZZZCRJx1FyCNIJe0sV/vwX58xGbQqGQmg59JMFOytXycpQyWTIqgIL36aYz/CqbbFUyeOJKaEUgeFDGFMWPeqGyuePXnDRszCry5SbBkdPRyTDHonnYi1GzByLwcBHzQis1Eucty9wg4gwFcmVFHaEAFcssbuURdA0NHVGZGVx0zKdYYTRKNGsmahWzHiechBq7Cyt47siqqqRaipKpPGdt3cZLj7h4vkZ3YFEvVam3swxHM1IJFBLJt1JlzAOiTFYXm1SXsnx2y+fo8Y2xaKCUa5QWruN/Nk/Y3Ryj+t3vsfaxg52EDPzYCCkDJ7vU69sUV5poVdrRInAojNiMpsjhTal5VXy5Ryp5DKduyiBhtMfklPKSNkcsihycTiiVsxwEPR49+oG4zF8fuwzmM5YzsdfT4q31lBzeRBSFs4yZ30PFgmzIE9ktMgrEg1DYWfnBtbhc5qrG+iyhOfKZHM5yrUqSZhw6fI2p4/eZ3z8CiPNU61LVDMSrxYJ8+kE1+mSCj5La1W0+WMEIcvMHxG4DmJax7zzHeKnEy7ELONeD2vUxg08CpUlnHSE6A8xDBk/dFF8g7XKJgXHRby6x2g0xkt1FFEiI1m4mSbXr+Xo946o1jP4bsBnj17RXiTU44Abu5u8aveYzyy6YYI6Vxmd9xCXNzmcnuLLErlalXg8xj17SeatKzw9Psf2PLJmFhGZrp9iODad0Yibb6yyu76N5k75k8e/4s7vfJfTZ4dMR0MEoUxra4uPfv2Yo4lNaTXhyeMHPP7q3t/JIX+vZ6CsZpLENv3JKzqHz/CtGFkVCaQssWSiKRpJGpBZqiFMImxZI2fIVFSZKAwxxRzzdM6SKuJbATPbx8hIeOImUXpMqFcoF0voQsDF4SGlwjJe0GU8jXAt6+v/MrIFPNslXth8/1vvIUzbiJHD8uYG8vCQarnK1bdfZ6Mo06iWaV55jdtv3MbYWidXaPDy2Qire4rBiAsvT6EpMp6lhEMfOY4RogWhNWKzdZ2nLy8ILR3TKFOqFslWVS6vVzGXlpGCOR998AFPH3/J1laZ1t1vMH+54NWTZ6xWcuSlmBePPufl+RTRndEdCzQzEXnNw8PFNQpUvRzD2ZzmTomsoTGbSkzrtymrGpOjT5hHIVacEgsyoiKzmsvx9OQE05DAjfBmFgtrwJWdVazzEMPqM5ifMkxC1MY1btz9BjevbLDerJAIIp3RlEf7+/z0X35EWV/j29+4xcx6wP0HH/DF5wekvsHutSUm3aeoooimqEiqwvNXpxw+69F1FaQoQ0aVUDMxtrVAXjFo1l0a6yvEconIrLH65i7i/oi84mM5FzQKCUvVJnHuCtlKi5pZ4ze//i0vn/2aaf8pSuJzbalK7tYdHn/1EVNnSqQVINsgVScU5CnaYsiLVy85Oz9CiAKq299m57UNTmYLSC2MMEJ2wI4UbKdGsbxKQfAZjPucDUaYgsHRwa8wypfo91xiRSfQdM5GM2rRlKW9HV48P2GWusSiQyGyuX7j28z8Y66/82O81KTTHjE8P6M3Tzl79mtuXr/CwveZBQFeFHP4xX0+Oz3CsyIkeU57MaQ9j7my920uojNuZIvkdfdrVVfLs7lc5PTMp1avIiYyS6ZMxYwI9JDdK3v84tOPidwBnuViLSIW04DzJ59wkspc36ij15vkayvs1FdY3bnNZDFhqZanUNzm6qU3uXrlJj+794Sc53Lljbd5fniImMhk1TK/+ugDri3vIkkB/c4B+UyGQmWDB92YkxeHfO+bq5xcDDh99pz+8Sm2ILEkvuDMNbiza7K6vs7AMvg//3qfcjZBVU3e2CwxOznk0edPePGqzenFGQD/4z/571iqGZycnfPFwy6zecj2ZoE3ShH+rI9kNtDrexwdDCkXJD7+4APGnkM+r5HTE563z7jaVOmKq7SPT8hrMqqZ47MXx2Rtl7SaxbEWdDoPOTh9SnuSUjNC/uJvj7m0vMZWaxtNFBkNT7nx9nfJRG1M2eD8VY/Qj1lZr3Pca/N7P/kGDV3n7OQ53dMzCFSE6hppXOfJ/kckfsigP8cJBf7oP/0j5ChDt3QL68UrAl9G0Ktojk0mTrh6ZRv/zCevFHFJ+ZtHn3BpKc/JhYiiaCiaRKaYobTSYjrP8I2lLcYHz5gpZeL6LoXaBknniJmRZavcoj/0kPUqtdom9x8+gFKe9fVV1ndLKOUCs1BHV6rIKzV+8Re/xSiZzKwhnfMTypUlvvX7f8T+z3/B7TfvYKgKYuiyvb3Jzvbb3H98j/x2DikVCCcu44nFpy9P+OGb36aw2iRnKKhCSuTYSCdPWdl8m+nYYmHPsYIIOVNha7nFL//5n/PGlVXmoYZqVNEElY9/+hfoosv6zi49L8eLtsXhaR8xMCjnFswvRKJ0RLZiIJVrnKcFGmEPQa1TazQYD8+YTrpUm0ucHpzh9zuE2goOMq4sk+ZLbK3WuffgAX/wBz+iut4gJMVe+BQ3SpwNqzgX+1xbalISfaaDY3oxvPZai8wwYjw+J4lha/sqr/34mzx7UmR7r8rzV+csejPs0Zj9030uK3XstTLFdEJ/pjCLsty9vYoliNhRhGCfMu75yEmZvY09pq5It/2IXVOg259jZCq8vbfHSJDQMisY2inNcpPl1iWqrRWGXsglXaYaRGQUk43tXZobqzx8+oD3fvwOvacfI5tllrc22dnbobHSYGdlCV1J+OCTL3EEGUR4+eGv2Nq6hKh7NAoBw/GIs/6ISJJYbxV59PGvOT4dIltTmAc4loGqjRkPQ9SCzMIak0oBkqnTGWa5uVTn+cUnyCIsGT71tMf4bIpZN7m9lWU+XjAeOkwXMYGq8Oqzv6TQWOZ33v02m1stvDRiNJN463tv8Tc/+5BivYCeX0YvrlBdanBzpcHodB9bz6InAtZoyv7BAfDvuLPyu//g93ntnbvousbySsRcEsikZay+x2g0Ye5O0FIfXa5QyKVopkYiSCyCCNvrUkw0VNXGmndQsxkKtWUCV0YPhxh5nVI2C1pKZCgYlRYDd85GIU+YiynWs6i5PNNAYkeRuLr3DstZGydMKFTK3Ngts74us5SVMXyVIAVr4XN+dM77jz/gm6vfIHXOGDkJn98/5f79l3z3vQ0uX30HXRXZ+dE3yCoByuSCtbf2MFWBiQ16Y5lWXaJlRmiRiCgmPHh0yKT/go3ta1x//YcI+ga/+dP/g/pGifNhiadPnjNrX/Dm7hX+8X/7X/Py6VOqezv0rAhXXaW6+U0E22F8+iVvvPYmzWqZXr/D2Bryn/0n/4jD8zNK20s4kQKBjZks0NIY0e2xcfm7PL//mII45u7VIrf39kilGps7VxjLEYkiIGkQyg4Zp8Ab2xk++fQpBUXDNDQ8IeQ//8Nv82c//w2P/vJ/IKuPeOcbr/Hj3/k+5uQVA89AadU5OD3GcsbksirWNGLjzTU2yzc5O2jz1f0nnLVH3Ll5Fz8xiV4FdE5ddFOn3CwwHMUcWUMGZ5+gzNsMZjajUCNXqHN68AGD+Qsu39imsXUHs3oD5Cznk33WzGV21zzuvPcD9GyFJ7/+gPbnL3h2NmBt9TYbG9fZ2Xud5Z1tROuURRJg2iKi3UeVQiQ1xRm0odAio6ZEXspiYeAvUgTrGYk7Y+pXGVtPSCUBQ1bIC30seRlrOqVVU8EZkU8c9tYb/O3Hj2hT5PHnTxj3F6zUCrx3d4dC6y6XW0u8v/8U1deJeieMjn/DW7du897rZcqtPF4qsb16ibs7Wzz//K+QoyrzikDgjti5tExtqci/+lc/5d/71h/y9OkvaDV3SSWDkR3jxybT2Gdw1Gfi5hBEkWYjz6Xtdb64fw9JbPHoqw+5/+XnHL88YjpZ4MZjvvz1h8RBShBEKFmF0lKetUqRk/ZDDp8f4w1nFAsaWknEGtv8o//ge/zFo33efusOy/UVet05Tw8OMadPEeMNVreaYMjYSYSuwdHzHr/7k+/w5aM2cRpiGBCGIZWKSCcq8MGTr+glJrWtG1y5tMOHH/4tAJtNjQsrx7PzMefnX7CzKXPe7zAfJWxd+Qav3bnOzqqAM++Cus6FWOG7V++QUuLe4YjF+QWOVKAWTlEyLRLVwHcG5AZPMGIDI6diNIpkc3U0tYCPw2E/z3/5x+/wxW8/4MXRK4bOnFjXOOssQE14/1/+iiAKGM6mPHz6kp+890NOPt/n07nMw3v3qWQzvPvtbzINE/75P/lvePeP/xgvVZjbIUmQwGxAMD5FU5Z4/WqZXK3GItJJfHj9UoZ5ksHTUuRKSGUlw80bN4nHfWoNgVA2CCSJYrbArVqLhinx/sdtlGt3UBIoRmMaOYv5TODqt77LP/1f/3uubeq8dm2ZjJmhWKrQuLHJoiPy1//XXxH2B9zdamKUbb7/k/+Y3m8+ZnX6iiBeQL3A27t1zr58xs6Gh5ekxKmP74fsPxgjFxyezJ5z8lmHeB5SX11h773vcevWCtV4xku7z4v9B4wvOuiCSd8KcTfKbG/XyBsFRgOXo9M2l1dT6tkJL0cynnNB4E2ZRAre1m0ueiLl+JhWVuL2les0mxv861/8OV7tek6jAAAgAElEQVQCWOfkcjChSGeaonX3aY8lLl3aYBFnCNwJ7YtD3v/1PVJ/QOPGD8hlc0ymY+yBjT6VOTm/YHm7hifnuffpL3l8/zn9YYXEKRDxMZd/+B2WV5dplAs0yhXsQGN7fZ0Lb8buu7/HPPA5PXvCd7//uwSzj/n5T3/LtaUyb1zZIZvP8ttnT8jmWjx69BAhFEj9OYI3R4zyrKyKdCcSRv0OjUyJrJYwUDzGi5fcXnud/Ydf4KoxSrFMKObIZAQ+++3nTLvnoClEWhkyLXYuZ1ig8OvHL1HzWYS6ykKySPYt6jevUyjX8XovONp/zLxn8YPX38UtNfnLn31GvbrKpe0mGd2l3T3h+s0r/PyrBxw9vMfMziIZq+Q0HWV8jhstGPsCqVFCKpkUlmJuqQn/4L/4r3gydslmCqyWmxRljf3j+/zw9Tu4wxFnowgvU0Zd3mESVfHmCxTFBGObtatvceXNO5RbJtqSxjtLW3zw5DmPHt3n/Mk+Fy+6GCs55tMzjMoe6xtr6PKQTz/833ny8Anr1SUse0KkFejNfZ4//f+hyFATl8ibJq1VneGshCIUiKtVmo0sGVMilhRya7uMejaZWgExnGNmM+RLdWLPYdrPI+gp9WKDMEwYjUb4QcxUS6gpFiPLwRdlEiWHH5jMrRmNqkE4k3FtAV3NsdNYYtZ5zr//H73DcJ5w7Wqd1fUqc0+hqeR5MOlw8uQJZ4OY89GAweQAKc3zb97/OV67x7euLbHa0vEMjY54lc8++IjN5Suoc5v2xOJg4TE8OmHY89nZgXJWwLJGnPU6dEZdTk8OeGfvOlq5SFEz0QObeHFK5J3y9PmUW9+9Q3FZRm/U8DOr/OLP/gXFSolWkpBV6ySJQOAN2btxk4N5yHjyhObKMoKzYHR0wEWoYKopYWKShnOMZESOBUVJZGrmuP/qIY1ShdrqDlqmBOM2x4JP1n9MeXUVc+k6emEVPfUYdiY8f/QEubbCFx2PoW9w58p1huPPefMHP2H97nsY6gpn3RyfvEjonB7w6W+/YvHsOd9595vUNzbp+xHbe5e5vX6br87vcfvWLteu3UXPbfHg6IjZ6JT61csMhs8QUhchVRj2IirNCnKgopSq1JeWqdaXSDJ5VFkjmxORSxuoqYYqJ6TZmNmFxft/9SsuTjVefPQh/sUjrl5b5ur3fsLL4z5ytUG2GDFfHPPk0Zc8f9zGKOzRWlolpynMQpGpkOHqrWvoi1dcv73J6XhMb3xOEg8ol3UWXg7n5Al1U8ePRBzPoWqkmHIJb2SR12zcSGbhCSxmExJB4R//8T9EU/LE5U3mCVwcP2B+/oji9mvk6zWYTZAMkfLVy+QKZSrZmH7HZWAniJFFLp1hVqv0YwvJLeL2p1gzi1TNceO9f4jde4VWrhGGPYr5CqZe4/z8jLVai3du75IuzhmMuij5HK9/6x2eXsypb3r86Hs/5NZrb7O93WK5mrJsXqF2a5eoc06iT/CTIaP2BZ1eh9duvo4b2ZS2r9JYv0K10CJfbfFXf/VT1vOXOHh2zsNHDxiNjtjdLHLlxjbPFjrts31kJcv2pTtcv3qb086EeNzlYtChe9Hh/LDDbOoilSusej3yWo6KmkN2F3TPn/Jw/yUAexu72K6DgsPOapMrN95lNaczOBJodx4yHXaRfZO1fJ6BL/D93SKffvUFL46fUC5EvPfN16g0TT45canpCjlFRVFy6IUl+n6B0/MRs4MhjUqD3cvbrJoaR8dnxNursH+CKsgEScR8MeTyTpNZ3EFKC6xdv8HWVo0102fQDum7NtvXX+et3W3KlTpPuzM+/OQ+rWYGKTTQPY/5cEq7N0SUHcZRxLLi0CoWKOdVdNViODtCdjpsv77L4ZMzNMOkuryCqJnM2gc8Pgk5O3hFOaux1KjgJzGPH95jZSPDsydfsRA8MrUytWINyZkgoiEJKmcXR8znHoVCi+5kwN/c73FprY6fxhQrK1RKdWbtV0ycHM/HrziTXbLFHNvVAl48429/+5iNq+9QzGU5Ohnz7CzAWLmCas65NHX5we/+mNLmDqGsks5nHHdnBN1jGqsbGJV19FyBnDilkTisbe/w4aef4/SeYfhzCmKWME0w8zscHT1ElOvEQon5dIR99hF/+Ac/5tmrB6j1TQZBwtga8s7tTQLX5a29Wyyv32bt0lW2N5dZqxZYKhRgekzYPmYWaRRWr/O7732bCIN14YAXTz/FT6FezbNRCWn7c6Yv3+c3nz5kNJrSyIncasXkDJl3v/EDBn2FL379OfOZw/LGDgQxv/rVXyNXtphO5wTeDJmAwwf3UForvL25zudPu4ymM7I5lXJzjV//9b9gdeM6b1y9zHLGRhVG2FmTjXKRL4cjqoUMteYafdvjZx/8kpXWm/imSXmnytbmTZrFLex5xC8//hnf/cHv09hYZXn5EtZ4ysPPPqLdt3htPUNeCbhyeY9CoBJ2PYLd1zj6xQtiKSJMdS5d2uPSpVX2jz/Ef/I+t+98Hzk55eXThxy8GFGpvcnazR0WHYNcM8Ng1mMy7aNkdb7sHnJ37zLfvL4K3gw1jbi0vE7fN/mnf/6/Ic4D3OGUwLNRtIRiLsdnH33IxtvfZ6Osk8En9WzuLusczkSyORlZVMgWilTrNZarebJnQ7r2jNLWBkZ+FVmrkS0ZvP/FGanr8M0bG7z45CP2P/iM7cIqk4XBRxdndGIROZyz6Bzx8uDk3x1WMvkCQuphjbo4QcQbd9/i4vgRguAyHY24eH7Mon3IcDRieWMTFREpSImdCNsXyCVd5kTkyxsgSfieh7PQMHM6tigRyyKGoCHEEjNCtmpNzoYxpUqLbEGnVEqplnzSIKXW2CTfbBL6Nna7j9+ecZCUefnoU+SpSGcwIvFDykaVUaTj2WO6kxFmY4VcrUWtUicriFiqzsnRISwsdKVALpNH9k4hHtHtp6wUVUpFHTNrklF0sqnNhe/hezKHp23O+6cYus/llSIXk4SSFqKKKb4Dg66F3izw9MUxtVaLQX+ENx+R0yXQN9BDj5oUkGSyDCdzvLnFeqVJtDhGkwywpshxTCJnGUlVXDsAy+HNy9vc3C7TamSJ8itkmk36vs+GqeE7AUmisb58GaG5jKiU8KSI1XqeVibB6Txndj5jf1akJDpcHLd59fwl094J167vMezMePPONdZXssilGkl+E82aMXc8VtZASkIUwcGQpoSLDvXqEraisV6vYBRKLFIJa+HgD8/QVBU9I0MsIIgi+ZJGLKXo2hLjUcS0P8CfdlDDMVqhyEbV5NnwjGkYsYhShpaF7SX84M2ruPMu/bMOs+GcjKJwbXOFfHmVyBTxIpkwEZHlhLwa8vKrZwhalVjJ4tsO3nxOrJioRobDJx9hVOvEkoIkZchk13j87CFX1pvYfp+ZHVCuLPPuO99ivaXw6eGCQqNFo5ChlldQMgrHL85ISg3mZ300yaBQLlIt6pQYMT465uBln74zot3v0hk75Fd3acoSxY1L2N4CTRTJ6zmSTJ7erIO4OMDM18G1iRZ9zEqOpbUMf/onf4FsqARqjmy5yloty4sv7vHtGxvUlnaJ7D6yHFPfucnSaos06qFokM8t0ygtU8wXOOrKbL3+bRrNCpVCASH0GI+HDFwH2X3F0cFz4ghSQUQxTBrVdQw1SypAUcugxjHjzgn3v/oYzxsSpXPESEBVNBQzi1YoI+otdPeExq13OBtOOO4MmYcKR/+Pgrj75tvU66tUK0vkynXiSEFCwZo8olmXWaqUUTWDC6a4E49Z/yXkfJaXq2w21snoVSYzGykrIoY2zmICkkRr7zaKHbBzcxvRUBjac07OT5n0h2zs7LF//x6vX1knLkgMnDnewufKtU1GXZ+ttQyVnIEQR8ytCWcvjnnnB79DLZtwcfCCo+MTxpMFGdHgzt0mF8/PaW6ski8a5I2Yre0mbWvBRrVEubVEbzji8PAYKWNSf/tHmJaHlhgUiwVUQyMCfFckaWZ589ob5EyB0bjP6YlDUGyxtlxlNp2RK2jkDJE48BlEBsXqOt12m82ry6yttDBTg+XLmxyf7rNWK7FWz+BaU148f0VeN0BROX5+iKFWyJRqaLUmRu0S07Mub/z4u3z0yadEEbRqDVJrwXDWY/eN79A+7nHRO0AQHbbqLebdI9TNtzjvTZH8GeXURgtdHg1tejOfnY1tRnbC0A5RVAEzVyD0urhxFt1UqTVKlCt1eicj1rfW0awFHSdDoVpje6POYDij/eQZhUKKJQqctiecvLrAmfaIkxmZrTfIigZGLk8owOHFBUfdAZcaClNSFrHJdBHTGQwZjES2tup0XpxRW91jbfMalayJ5SyYyBrS7IC1rEQkhDxun2NPE4JkiO0abLS2MIiwpn0cSceSdSRNIEYmSANmYQhKBf/0AYXV13DHXQbzIYtEwNQqNHeW2P/VL9BaZdQwJuj3mA/Pib0pfjxAURXsucOwd8Rk8oJK4xKtYpnFoM/+ixO8KGX36i5bKzVU4+uzdH729bRUUXKoaYBqVHD9Mx6+eIpjzTElCVEwOXUz9AfPKG2s48cyk/ECy3MR6ztsrqiolkvTLNKqNZHlLHbgs9fK8+G9DqdWQiLlEH2Do/6YmllAdftkDIFAShk6Fg1hSmCWGHSPWfC1oh3Oxwy6A8qlBpNxByuwGA5P6bVfEaUhhqrz4YefUaoaLMZtht1jBE0kWvTZWdul0qxxNF1gywZXdm9jFMtMeo/5xltXyWgSF+0uL18c/X/Cyt9rwba0mkMvKyyGPbJNkbNX+8RRRIqKLIQoqcd0PCafW2P07Dl2o0DWLKIlEI5H9AKfai6PJhkkSCD5xGKKP+8RVxWSYIEYG3iBwtyzyaoGTmxTrzYxPInYFfBCi0Jzg/6LczbuGvQmLhev+tgzh2r9MnbXQxZlRAIkWcGNEmb9LhvLyxwENhedDglg6Bns0ZBWaZX+2UvMioGWusiomEt1LNfFUFfx533seYyXSCiJgFxuokWQRAnFVgtBqiKoFkkasllX8ecJgeqTOh5mKNBo7BEHMZ6o4ER9MpkMpVqV0fiA+WjArTvXCdIEMUyQ4hh/MkMnYpDMiacDSDxQZNLQIQpiypIE9pj5YIGXVImqd1H1BbX6dUZOF9tJSZWUuRWyutKiYw0JpwHFbBHEmGPHQfQM3JnF87NnREGEWTDIVzRKtTxba0VWdy7T92dEixBVE5iNPMyy9HWxXiaPby8IEpvtKxu4wzFDO0tYyeP5HnPbRjUBV2K6cPECC0GRUcZTzItzlJpJduUaiuvieAleFBJ6NlpTJlMsc31vCydSmA67DE6eMegMmJgiiWuTIiFIGqqukG8uY8dDDEHBcRZEzoI0ChjGEm4k0juf0tjUEMKE0SAgDmw2X7+ME0LsTRFEiRgNVxrTKBgsghHdyYxS8zKbm9uYeoZBJ+DVwQlulFIwsphZDTWncOn6HvmcRCRkSVCxIg+3PyFUxwgLkDMG+dQgZ1bRFRVzOuJkbqKqC2r5Iqo9Jhqd45oiG2tLLDpDtEwVGR/iGaLokDF0ptYEJZejlNPJanB2NqCYLTG0YpazeV6MpyycBfnlS0wDD+weqlkgSrI4YQKBR9bM0H75jM2tJv3REHcxI/B8JuOAtfVLKKaLGxhIegZZhdm0w/mRjWxCRlaQVB1BNQkJWNlYYzx3SJwpSBLVpSU2d7Z4dP8hL7tTkvmcclUnn11mav3bSGk1WhRzMo43oTf2WVgqd68UmfoCRbXGyE8YDZ7jygLd/WO+871vo8ge9mDMdDhB3lzGF1PqpQwBCZEokSoC5/0R04tTbrz3Y9rdUybjLoEX4BtFVLfPdk7CMFNKep66XwM7ZNjuYw0CZnjM+zN0XSdr1Mhv6JwdHLNS0/C9OZoYUM5kKLTWsa1jjEyKpCSEToLtREznHq1yg0Ug8uL0kPncQzUMqkUFT1R50umzUimSLRiQhPjdISftKWJ+RmVpF08pspjPILVYr26gayHV5gZJ6CI4KVYS8ejFMeVshpwas720iiyq9LszlqUS4rSPoN5m3J0wGk9IZYn6eoPJ3GWpWEBVZBQjQ2DkCbwAU5M5Ojhm7ISU82UyxTJKOsCxPIZzF0lXMKUMcRpz1umSN0v4ap6zySG7ZYUgcbg4OWMWaJihRz1rciGYLOwJqT/GyK4jhEfkyneRhQm6CkGs4MUaB0+fUcmpKF5EMr7A8iOsicdsMePJU5urtwrErsNwMETIyzhTG7Hm0qwWIZEI/IRYSrl5SWfmTzHya+RCjcAJUF2PrXqNQPIolwqIqULgJsRSgKiBSYynZnBTAykrUxFC5gczDE0nUxcJ4wW+7eH4CXG6YHyRUN40MPMmLFLiNCajwY3r3yS/0cSaiiSCTCarUsrmuf/JfWrZLBlFwQmmJLLP9tYmYWgxd+fYlobjy3jzBVHscuPKMtawx2jcYTCasLxxhb0b14lSi9OLU1IPYiOH7UdMrZB8kOBLHobis1zKkCBzMPBQhJRO94LmugiKSi5fpLXmI+YyHB+8pLRuIpk5MnkFZzand/yCa9tNDg5OcYICkhgQBxZDK8VxFO5c0Th8eo6mKig5EzH2WfSGbF27xacffcnN3TyJ79Ke+GQLObZaOT7ejylnTQLfx3VdPDvg6OUFlVqDcWdKkIQkSspgOiAnqdTWNjm3BBLJIF9KWeghoWUT2gm+neIHClGs/J0c8veClWLdpLZaxxViZMHi01//LbW9axSEPLomkM1K2AsRA5HR/iNM+RIuIPsxae+QhVpnXTHQxYRIVNG0DH48YTAdUchl8VwLLxFZOAn94QTyIRltjqzM8RcJrq2AXCaTFzi/f4/VK3VCK6E3DukMZ6wJMQQm3dhluZkjlSXasyG+bZM1V6kUGzizOd04QtEyzMYJNwoNyrmEUlnADnv4c2jU10i0hPLaFexnZ4xGY/xYpGhq5FbfYEMWmHhDytU1BEXjtPuSbneErnpMJhGOPUPEppQ1UF2fqxtrdOYxki6iFbJouRKJf8TR+THm772LPhmjhSmh5zG1p5SMGmM3RE/Sr0NHE5GCEUqhSKWgEPouB6cDRCti2QwR0g6Xam+x79gkioooiLT7bQwvQpa76G4Wf+HhiAnz1KBRLlBMXC66fZorK9Sbm0iGhpB6LG0UQdE5H3mIVkA1M8FONepZg2enDtd2iwRpiB057Oxe5sXwfeKgyllvhO8nQEq9IZAptjg5OP/6chQThDgm73roKyZqGiCLGQylwQKNoWNTsBb4U5OGUUDImozkAGFsYsUav/3yGdmcTGlphSQVifwAR8oQBh2SYUhq+0SOixckpEaOUBLwvRCCBYHr4dsJihoRpimaUSJ2ZyAbxIjYky5LpRoX8z7jmcfu9RqNisnJ0WMe3D+g0awzH18wIYtpZllqFbm8e4XYmqE0iywsi/F4zsxakGmY6EJKZVmlKZhoZg4xDZh98iGv7KuUgg43qxVMQ2UR9ljMj9m+vs2ZuEFsy8SKQBA5BIMeaXiHUr1K5CQU8wm6GHLSnyFly5yO5mzHKWNHYD5ymHXbjA2XhgShL+OLPn5gkUQu661LHL38kmbpHdrtIWHgYGoSagR6ZZe1lSxn/RGpKEPscnj2gIvzOZm8SkaJMbIboOYp1Co0WutoeY1X00/ImTrNpQYrrRJPPz1GLq4S+h7rFZOSmWU4+7e50ciaCKLHZHbOSXtGHDSYtFIGboGsV8CZDzhuH1LRy4xnI0or15nOzuk7Y/y5TT2rEc9iDBRkPY9girhRxOHzfWbtIwLHZT4d41oWaaoS6hoXvce8d+USvX4bcnXqxTp+KcCeR+QMlWF7xtzrUq1WqV7bYu3GBh/9+U/Rrm1iZgvk8zmyqozWyvLx3/RYX6sR+B6jwYz+0EHPztnducxo5NI/2kfV8hSKVcR0hNM+4MlkSHWpQEZLSGyfdOEynMzRh8eMSsfouRI5s0xc9qgoAaLvoJtlkvGIDApKvow//Qpv8oqiKqHMfCxS2q6Hc/gMtz8hTgWevTzAtjw2Lu2ydmmJ2SczqiUTSY6JDZkoTrBHZwhpyNMvnlAoVMhWlyBfoKSHlHpdxkcv2Li2TV5dYzgccXB4TqO0yqR9REyMalYJFiHt6Yza2nVa2yt48wl6GpKVJdIwJI1kwkRAFcF3FsS+S0iEmlU4PDxGvVojm6bYp12GzgghvwoZnfYo5Ru6SVCIWDgSxWKBxdmC3ukZ+maLEIFYUmnUq+xkh3zx2CJfrYHkkgo+BSNDuVXk0eEJja1NhsOERb+HQ4SaN1jKqpzGSzwfBTSbZW5u5njQ/ozJLGF9p8CiP2Bh2SSpRBRY+K6AM3bIF8sIiYDt2iShS7l1jaIeIdWXEcmSUQNkKeXpx19x9zvv4HsSYeohFzMs1WqoQkDbWkAwRxO/bkoPY50kdphOTpj6UwQ5IJdXyZUKdGceC2+EOxdYv3odOeNx/uKCUNZYuC/ZqFbYaNyk7QgcDS3m7Q7a7BTz1tssBhMC26ZQylPZbHHy83u0kxalrVWCNGU06tE7ecJb7+7yLx89YWNrnWjRw3cGjFMDVblGMTdEMU0EUUKVZRJdZGTBjUoFUcuxuZRjMnA5iQOu7m1TNkyyeR1N15EEFRSJvF7i49MHvHX3MqfH5+jlrw3GUf+ccqaBFcUsrJRkESFFC4bDA6adCcQqr/bPv4brUPg7OeTvZwNJUK00aVza4/ThlyxcDcc5xzBWcCyb7vkz7HHEeD5mpWiwVF1i0nnJ/pMPmcsKt8oq49QgX4BczkRVFZz5GYdske3OiXJFZnGOzsCic3HE+o03aURzdLvLQfsMJ03ZW18hsY756skJV2/cJZZMZouIycjDTTVmM5eLwYT1SonQCTnuzanefIPn+4doxgZatoSiZ5BkBVkyWK04+PEFfujhWkMCa0I0FshkY4ZKA1WLKC/VqK+sUCzVyS7toGkeSiZDOg8Znw5pX0xRUp2PX91D9CzkIETMGDgVk6efP+b4+JxqfZkoAnvs4M5CNu5+n+PffkmpoqGIKZ3BhPPRhLWdEu20iW5oVDZ2qTc2Kedy6LmAzZ1drr52k2pth1DJEJBSlDyS9JSCXKDeqpIpJmiZGCER+V/+5/+JG995Dzn2ieSU+XyOPxhy/cYe572X3Li1R31lg0jJM7MllLTMXElwpwsUUUdLcyTkES8vsaTGyGmKGo0Q44CMrlPIJszFIlM7onfyhCgV0PNZFHHEsllFYIoixEzHMyQZrr21xf54xsH+I2JBpJAz0HSBWRiipEV8e8Sf/bM/ofPqMb6zQMvVubq9RttX6Bx/RWtlhVy2SRQYFLMRBc3ny1/8jPLSGkl2iUBQuFae8pvPPmN96xbTMMWdz6jpKdf3Wtz76gOKpsI8FJBzInpRZBGJ3Hv+jNevvIMz6dHSIfE7PDr5CkYz/ug//D4b16+Rq9RR1DyBq/D0eMiXD46xx3OWMxPWy7DZWubujTc4f3pEqnisrOcYDyZ8+cULxopPraBSXGrgz2IaO1VaN5Y47oyIgg6GoqEszjh9dcyrl21C36FYWeHLe6+ohhH5bBlyRRaCx+GrM360ucr9SUpGz1DNFfDdiEJFYWX3Nu3jU3KqTLVoUmtU2FzbZWhmWM3KJGKehRvheAuubK4zmoz4v1l7s19JEuvM7xcZGWtm5L4vd7+3bu1VXdXd1SubFClSomak0XAkjsYYYwTDsJ8M2APDbwbsV/vJjwYMj+0xMNaYEjmUxK3Z7GYvVV3VtS93X/PmzX2PzFgyIvzQwDyOBWj+iYPfOd93vq9/3sdIxZlPHQZnXSJqjPXNFdrDDNP2Ob3aIWf7rzg+3Mexp3z//d/j2e4uN6+tk09q/L9/8RdIpPjv/vv/kSsbmzx+uMvJ4QHV7JyffXgXgJXFRUK6gad/LWf9/pVr/Hqnj6J4SJqDJkNa1dFEjz/8wb/g8Wd7TNwzFtZXuPn6e0Rkl8Z2nfnYIpiKhFUJSQlQLBMjIzHaGzHXo7RnIq2uA+6IpQsyuy8e0G7YWBOYWjKuVuK1t9/gzrUinhBCCHzmYZ2xHCPpDlHyaXQhQjSxwBSB3d4pe40uWuCSW1qj1wvhWxalLKyvFTjtdEgm0oRnIQbnNju7Jzw/fsFrK+v0XYl8LsGk2cXsu2TXb1OopJnNROaDMaYNLmF8Yc7TdpvCXOas2yQTC1hZybG2uc7l1euIqsewPuZkt05/HkbMljl5+oJZAAYy82mdaEInW11mMbdKr2Hx4sU9iuuLhMIa497466eFwZhcYZliOkOunCdZiKLIU0x/REmJsj/oEAgeqbhO1FD5248+o9E74PaFG5TiWSJymGw+zvob3+X222/w6199hB4NUS3mqBZKXL+aQEtVePbkS44PXuKaNulogtJykoGnkB4eMOp1sGwfQdQIaVO07Bqlq79HNSuiiAqZZIlLl6q4rkVrmqffc5CDDjF1huMI/Oyv/hVyfJ3FvIpZe86ofQixML2pS8kcEbv5BmpYRZyDG8jIWhgn7BCazen3m4SsDpr9db3C3s4+S5evkAASgoMUCjMKV8jn0uw+2+ON25tYQYhnBz0OjoecHj+hvv2M1jTB2WmD051dOqcdFpdypIoVHj3YIhlJkE0msacmy5sXuXZjle6rLoVylmQuzXTg8+LJNolwDzOUwJpN0SIqUiTK1m6dsKxzfek6KVWlkIhQXcjhRMOImsClbAIxtk4yEZCR2rgdl7duXeXgxKGzf0yn2WQ4mDBtuqAIRPNLTHsj3EaTWb/HNCRSWLlEYx4hGA+ZDIZ0xjYDW2ChUkW2m5CKM+s3OT5tsntqkvbmJBSF7uyUuaNxeHBOf9TmvW++yaQroEt9vnx6QPe0Q1qUqC6uUrm8yf27n7O6FKdaWaCUq3BlKU8mpvI3P/uQG5Uqx4enHG3vU3YcJgvDLKoAACAASURBVG2H65fj9E9eMA+79KZjjv9jeFaQDFq1DnsPnhAqJvnON96jmt/g2q3rBIrP3skR7V6TpUKSdGWV02eP6Z5baNoq5WSEjx9+TjZtEBF0TEGk531dm11/uUsldkREjtGwHA7PjzG3n7AUn/PkYMxoYpPMGKQSIuPxOSIzGk97LN5YwLLb7B0f8tVOjZApsphTKOVWGdtTLD8gmSxjaDmMaZfRbIecLhHRAgShj2oe0bPGjFo1At+ilM+Sr1Q5FWH1+nfoPHuCTwhv5mBPZoy9MGZbwLK67D1+wfbeDkOnTT4HtZMWr73xAa3pCYt3vkHlytvMbZnmoMHl1Uscbx+SzyRQJYdJ74DVgsHY0qnX6lx77Q0i0QSNRpf9nkV67QarS2d89vHPsVpnRPD48sku25/cJWMo9DWDKxdXefNKmbk+oLrypwhZj0QsjCuBh406HyPkqkR7XSxdR43GEQKB4bBPu9vm6vVLLFbTfPm8xtHuKcZ8jIXDk19/we//8R/SGbUINIFMIcfo4REXv/Uaz/eahMdhNF8nEokhGDq/vHvA+spFTpo97JmD77p0Jw7bxydQP2Hqq0TLReaRNF89n3FrMcn1995hoi7Q60yIyRHeefMDxo5HIrRF+epb2HoCR9EIKQr377/kz//sXVp2nmIhiyZLzIZDao8/4f7BAe+9/0cYuQ3i8QzxiEyjX2OlmOOiFiWZNBgNzni584SHe8f8t//Nf8lf/fg+S2kDHYX52MbwB3z35iaHjQ7jQZtbb17h0hvvombeIpVa4189aRO8OmW9mmZzPUUq4tKfjvjhN29Sm4bY9vN05yKafYY7OuX2W+9y/+P/h88fPqY9GFKtLvPGGz9gIMY5P3nGRrbNaLDFQe2I1bVFREfi7r0RZ/04y5fvcPPN2/hhn8ZEJ0eTUXhEYqGI6Pmc3r1L9RvXOdgdkDMG4IyxJiNCzoB8MszO0QGb194kkimiZxbJVq6gGSnMg1MePbnHdDQkm4lSWczTH46xhIDJYMK0/oqzvS2Oztu0gyiDUZhyasrGa+vEcmkUXSabiiHJGj+6+yFit06qUGEeyTB2ZLKLH/Dxh7/EL+VY3ihSrqxxfG7w6cc/AWDj27eIzWvEPJeQXOXHj54QNeb8yVt3WIhGyaSzVFY2uFopsf98j+pGloMTi/FkguA1mZw3WSqU+ev7+3zy21+RKyW5cu0qZ60+nz895+33L6MZS1yoKKxm5wTDOe8Vq3zalvj9d27hOya91iHMzjjsdXEPZ+weHbF1XGMu+BQMiQ//4hd853s/5P/40b+hd/4UZT4hJadRXZ31fJKWcQWTEMkUqIrDr377ilvLCX7z4U9YevMDjEoOReizTB/BuIrn1VjILfHqsMnTrT1Ux8QwdIx0FW3cwp6N6XXPaZzuMRnnEIsLTGyTg47JLJSgnF/m2cv77O91GUQm5KIKmirhRSRuvfkmRqfHjz/6mLWbbzMOxXm0dUyunOHFqxOU1Qqnh9s4nTMyvonea3L0rMn731vmsGHRaB7g213yyVUOP3nK8mvv0bM0hOkY37IwxQzp1Qp/9N1vc1Hr0zg5pjkVEQsb3P3i51TFDm7HI6KtMRgEHB9tky+oPPjkLjfXrrJWWEAOi3RnQ6REkT/49gf0zp8xbo3Qwy7ZnI4aWWLcnGE5e3z65BWDVpi0kiCentInwfW0TU3qsbhSJGnkODic8M//5E9xAon5fErzbMTElpHSeTJhA9/pMFFGmIMekahMdiXHVnfMyZeH9MUC1y8tkgokjp62OBVBESxEZ0xj5qNnK6RyOZ48u8dEMFktFhAyUbrdPuGpzbX1BRrH21z8YIOVq5tkc0l836V2ekx08S2OuodEYgKdk0Nm/QEbm1eQHZkHD77k3r1jJEFEC339SRquxPjRp2ectyzkkEPcd5CHfSxtyNFnLxHEgGFvhu06iOEpqnXKlTe/weevYGzWcWcmvqsgqSEUu8PjvQPE9Crrqze4vLxBTJeZWHVabgdLnGOEwXcm7PYa2PJ1RMGjv/0ItVJGzeYJ2zbXL17i6dZDOiOR/Vc7YE9ZrWSYM0ERbK6vrNI4P8CaDckkUkzGDtFSkZ12B3k+ZKkSp1DJ0RuMqK7dJDU4Z2MlQywWRdUSRNKr/Or+Nv/sB+8zjLi0Dh7hdmsIiTypeJZJdI1WKoU8G2AeH3Fw1vn7w8p//S//K/7Jn//nlK+/w52NS9z3DTbzAhJTxicHmCdHBGGV9YurPN/aA6WIFYgM+w1C7Sn+fEoQUfHlLBFZQBMd2p4ITLlbO+DG6xcZzQOOjs6ZNJssVqp8UDTRjDRzR0KyBXKKgu0nabRDXL6WBnGB8chg3B5hzSe8eWOJ/vFvCUICHdvloN9lLiWRxK+Nk2ooymQ0ZTQck4zESekC5cUMaT1GSFkkUrzJu99+h8+/+CUJq0vztEEgqxgZnajUww9JHPa6SMllFMlGsoa4YwEvVsCaTZDHXU5evuLhJx9z9OI5b71zh8PmiEQSoqk4lhyiF9j0OhbXb9yglO8ykePcffiMF4/vcef6OhdLfe5+9BG3r9whmy0ycCaoRYk7r7/FQk6jXpcxm0PGrTa9oU0s8Ji7HYywQlyUyCcLLG68zmLxAk5I5Nc/+y0vX75g1GmSURQS5RQjYZVf/t9/zcnOGamoyMZGlJA8YS19jc3rqyxtLBAxYtiWzfJikW5zTjUp4AdTbN9mMBnz4tUxx+6U7UePWK7GESZtTrZecVLrYoRtDm0POa7gWTZRUeTa1WXmGY36QYfQ2MNVJI56bT769c84PtxD1/MY6QXWli6QSeRoN5s8/ewjvveP/4xf/u1PGO8/x7VMhJRBJO5z8d0/JRGNQNhiNOhh9vosGD7NUYCaT9NzTBA9UnGDpJKkNk7xWtHmYHeXSDxDrrSIaQagC1j9EWag4skpTuoNXj75mM2lNXL6kLqi8cm9h9x9cMjQS7K+JiIGMXyjwHuXU+QUn/3jMacDhb/9xc+5cf0m125dZX19ATHs8fkXn5Lp7XPpvQtUbn+P6MJ1jPgaydAmmVKYV1tllq9e4sWLL/j07ockLqzx2mqCQ7PA6NRn9dJrZKt5mrVtJq+O+aN/+WdMTp4z7pwhRxxSSxG291ukC5dJ5fKMei3cyRDJ9xkPWmzV7iGEEsRUn1A4jCMk0CJVSuqcqShzeHCMpGlcuFhhI+8QFRwSa+vsPjqmP3FQ4gnyuQL/9Id/TiW7RCRVot48YTZo8d7rt7h2VaNvjWHvFbXOiONGnfOtT3n+8hUAv3uxQK8fYTzPUC6UuLN5ESk6p7CyyVZ3wKB9itiv8WIS4mc//ivm1phqOUOr2eeLB8e4sQJOKEfFaJORBfrNFo8ePqd5NuG/+Oc/ZBSW+erjnzIehtATK6QXo+z2okSrGYZeiMOhjC+VWMmvQP8RV9//Fj/9+Bekc2k0Mc6zRyecz+qsSDO+94N/TDAdcVzvUJ9JLG6sUm81GB2dIuoa2eQii8kFlioB2+cuty+/xVljynn7DFe0iKSzpPwm5+aIvjUmW1pl4+otQukQA3fCqhHh8W4bK+yiRQKiYYUr63mSqkkoSHPp9iXy8YDjux9yNBiQSrvs7MyxjQJqPoeKx29++jnV5QV+/1vfIp7Nk8gaVKoxzK7JN9+8hWKEuLAgMWkPaTYdXv/+NzmejqidnBNVfVaXF5DQ+PlP/pZQek4qWcTwnlCprlEoXCRmD8nmDXQ5zi8++RjPyyDLKWZenz/+5i1++uu/RidCQgvjixNGTLCsEIJ2gS93n/Lq7JyzKQR6muV8lGx4yF/95gXHvR4DS0JWF3j9+jVe3vsJlxdu8O61HLY1YPu0iSuU8ZQqHn3aMxg6BvWzNrVHf8PJ0KeUchDyF5GkBGFFZBj0eP7V59z5R7/LvV+8xPMqCEGC0UmTSa3D29+4QSlrovodnr74intbT3nj3dd5dDLAHh7z7Xdvc2ljlelszlePdpHp8ZuPf0sxmWPW7tBudFESm/zuO2/Sb/R58OiAkdUknpFYqKyxEPVRtCRpx6S6vk75yi1CcoavHrwibh8TypRp96Y4IZn8hQW2X31OJuKRr8ZAlwkSWbxYjtbBKf/ZD7+LXkwQmtt4jWPc81O8WJn/5X/6H7is5bGEArW2xc72HruvXiC6McyphRqekkkqGDkdO+5zfO+MrB4jHfgY0TQ2Gv1GE3l+wJPHL8imJEoxlZViisW1JT67t8vy8gaOnOSdb35A6codTmcx5qMml69/h4f3fkn+2u/gRIqctHosXbrJsBVwfvoSJZYmV9lAjmZ5eVrj1uU1tkcme7UGjusxHtb5zc//dyoxgaaygGr3SURFcvk8USXG2WSfhpFBHTxgYnmc9l0atbO/P6xcvPwmpdIiWgiePmwwPjsgU0nS743o9/t4cwfJdmn0GxjZDBZjhvaYwIe1hPJ16t/lBfpndZpDk850jtWs89kXT1HiMitLi7SPxtS3aoj+iH/yT7/P3pOnzM5MtHAcxAjNgYOj5UklRPxOHUuAZr/Lyf4xucJF1nMBw1AIPxzDFRTcUAQ3vIE563BrQWTYGOCbY0opnfXLN2kPTSL5PPHsEqIRZTQbcvByh1QqR+HqDSqraWTG+DOTWGoVwhFiUgIjZRAz8iipVYJchaW4wLP7j8mWfbKFAppuYNkOcihGOJVmUDvFI4wYTSEny/RmIYb7j8lFoxy1J/jCjEpBY9J1Wbm2ylGjQ2r5FlMvgjWZczmfYzl+kYMXdexYEcv16ZkT+oqI7OrMJwJmd4QbhAhHNKIRmbQUZSIKyIILtoNjuXiSQmHpMlu7nyOMR5SKcdZWC+TSabbOxlxYWebV1hGB7DGfW0wHI3zHIyuO0HJ5RuMBJiINR+DeV88R5QTVTIyBO8CLZ4jmllBmJpNBDyG9ioBDLpXCSMRpzIYEto0/GCIqMq6oEUkYbKxluZCvMlQ06rt7dOtPGNRfYXVbRHSRo9M5rnuOMwuQIkkyxRKaFCfhe2Ae0q2dMez0EfDJlLJMD48RdZ3d4yP63Tae4yNISRRjQLd5hFEo4Uo+teYxZ2dHVJdkmuM0ttln4/I6YUngwWefUVjeQPVmLGQTVFc3WNrcJJuOsbtzzsnOPQwtSnjSRfE8ioUyiysLRMR98nqeRs3i5OCM5tkxExzU6YTzkcHjp03GpyOkoUf9zKQ/1kkuVBEKIgsLOS5tXEIzipjdCUnZQLbrFCsqEcMnsMdEysuUi1HciY0ihskXFikt3sA8aXP5UhFzKiPJIpbZon78GF0Vmc9jiGEdEwlVTZOP5XCwqTVq1M/aGPGAKBZOq02zPUGOhrj/0T3ScgDuFIKAyvIK9x/t8+zeXyKGA1bLCUrFFKcTi5/921/xxjf+GClloyYTLC8ucHG1wl/+6N8B8P6dC4w8Bc8KY9g+I6fG6CiCYJ7g9VoMZx4dV2ZdthCiS1yvXuRoZ4vRaEAkpmNNJxSMEgfHj0inq2iyQTikES8u4s7D6FGdWGmFerPNeNjjzu3XEE4bXH57k82FImllQjktsr55kcTKJSbNPQ4P6yxUFklmS4Q0g8sXUgzqRzSmMlMrRGFhkZXNMs2dx2TVMEIkx+aFLPNhg62vHmGOBsQWLvPgi09Yv7SKEYsx7g5pnG5zbkHEtImFJfIxBS1k0W00uXDpGo9/eZdCGXKFOIFuMFaivP3WHWZ+j+NBH8G2CYXASxlYyJi1Lu+9cRNNmlA/2eJgZ5+VVJm1Kwts7z0jUHTCOHjjBoNmm33PYufhMb5jYc4FHEEGy+HVWZ3FxQrlZI5MJousqtjmjJd7RyTUKFFhRECIgWly3Kxx9zePkWYx8osygTDFng0RPRA0g/b+lJmWYWb2kUWBRKrIfm0fW56yWVkioUislvNsrlYZTMfMIxrvXLlJtShRXayiR7M8f/wEde07lHMScyEgpEQw4nGkkE/CbfP85QMuX6hQSFaIKEniuTjF5TLuzKI3cLHbHSLClGxS4NV2jczKLZJymOryArlchHjEQymXCOIlTMejPpGx5zLZaATVVyhEJeKba2zv9TnZbWD3TcKKQmppkbeXNkjncozNGY7tUohFGU4OGXkh3PYAzbQQbJGuF+Gktkvr6Ig33/kdFGtC52iP2mCApwrceusGRiqJJMB06tHuzlnbuMBKYQHBdZgHKczxjHbjAJsCdiTOQn6F+XzEJJgxEUEILEbTIblsie29XSaTAamUxtpqhhvvfp+u3yShSji+T63V5WD7AMf3iFavEhx/hTUZoEWTrK9dYTjeJR4r4ipxNtfXiaoS+6c1ll97g8cf/w0RI82gfsi01SOrJlmoRun39nm8c4yeShLyR9jDc5pdj7QSRpBcglmbRqtFx3S4dOUS7dY5J+enLBVT+PMpk0mHUl6j0xJRF9eYjUyiEQNdiWCOLCoXrhIae9QP+4SdMPZ4wnHt5D8IK38ng+2gdsTZ1haBbrCY1hEDcB0f2xnieBOQwmSLCbrtLqtalDPBRnamKL7LNLC5cXGNSCrKmRkQpPKEk2nGdZfcwhrD83NMN4TrWkQCl2TaIKlMcNUKQjqKo8iImkoykcEe2/SmJpKeJoZISvaoJBSycY2nBwfkCxpzRwHHQgn5SLKFHAqYmh3SKQ2PJGJUZxCOUr76AbLcgukMnD6KN0PzPeRInrHlElE1wqk802aH7SePmOsJ4uEUw1YPzUggq0kcT+R04hPoOuORRX65TEycE67P6JszNjaWObzfB98no0hoMZjWa6wWdVKrK3z1yy/wcSnkU+ye1mi6NrOZzbh9giTEiEsa6kTgeaOFnl9E8E2y2SiGkaETjHGHIEcKeMoMywsxGtmIUhfJOkexA4pFkWkvhEgYMSJSrz1F86bI+VXiCQk5ouEEIWLhFNFknMn+EY3jgGQ8QkzW6Dc6SKqFGAlhh3QGlkt7ZCOk0viOjyBFkENZNOZookWylGTs+owdmWhMZuK6TBttPGdOW7AppGJE4hIZRUeOqEiGh9P3cEcz7JmDaEggC4T8EFlRxQz6vHnrOs+fHOL7gDWjZ/WQ7K/PpfY8jKZqxAwDNSxhTcYsJ5KcCgd4M5O5J+CIGkZnTCpWYDgdEfamJKQAMRXHNBPEFA8x7JGWPKLpNK+/+QZKNsPpizZFXSKSiCErEt54QkzRCG9cxjAidO0R7alJIuJzczmPmF/n7KBFr1/Htiy0aIbX19cJNbd5uFVn3AMzHOZENZiRQ2mGMcomQT/JYkahYAiEJg1ELYSsyczOJQTJh5CIrGQxJxapVImWdEIiv0A8W0GPFslWS8iagDAaISMyc8a4kx5q9CpLaorhdIgzD+EFYbqTAYPplMnUQZ2PESNJcANsp8+ZKWC7AorXIayn8dDwBJFBq8Pp/hFBJM3YnOGVFphrGXqdBsVEBiUZJRlaQ3AlBD9Ep9//93MjmtlA7UwwRzNmwYRsWCOc0OhNDhmet5AzZdLL67S7HZbX8+jRCMKxRjwSRc+V6HR6nDe+ZDzTKeUiROJZkqKEHo8SYHDUHGOocxYyKhFJwgMSyTkhd8b+aYPAEZAlnd64jxw4HHY6VCpREFym1hzNSFLOga2J1McmETWBGI7hWSKpXBZDUsjKEtbJHtOZRaB7nPUGxNUTcgWdpbzK/lGfTqOPFJJR43HqtQFxScRyQ4xHLvX6kN/5VpzzcppiUac2GDKyfTL5BcYTi2c7x6ixEmIAk9GUsWAhuxPUSIqpM2E06jCbzBBDEqmFKYFkMLW79PY9NM1ACXl0u1021y/x4vwxvhNHksNIGjieymIugeCm8MIa3U4Px5xhKAKWH6AqcVxryuGrU/rzFooWw5l0sd2AmBIjJAeMGm16rVNsaY4pKixkitj1JqIikdnYwFVcMoaEY+l4swkxPUIqlsL0OwRoCKqBocaQ7Tn96ZhOu41WUWnZM/K+h4CGLYZg3kM2XfKJGN7AIWCIjIAm+uiByXgyoueMUUUZTYrj2nNkVeXBg2fcXI4QMxxCfphh8HU4ZizkMApJ1E5PsYZDitEoMVVnYTVGIAbstSdMum3sUJhkKUFKlEAHXw5IV1KERZ+z7QfIuQTV1ctYahs1FkdKpL9OlD5pcONSkf36FpH5jFDIR3IC5nGVT+/vE03KSJKLrswYzUZk5svUZjaRIPV1mrUTRnbTZEsVzl7skJU0mud7aIZOYXGVWatGSVUYKgq2MyKVLbCwsoEh+5yfnRPPLJANhtjCHEmQiKfytE0LdxamXC5Ta3Xonx1Szo+IxTIsRBc5Gg2YuHPCcoRsskg2KiGoAlHZZji28RSZVEJC1bJ0zusslUp4nR7ZQp7V23eoNbv4Vp10RmeiF5m25oQsjZygcu/oKflEHiNw6XsCgWgQU3VqgsO4N6VoxFCkKeGQS7WSJpbJM6odkcgYpFIJ5qIPX/yHOeTvBCv2pEurdoitJHjnQomBGUKdOwiqwEgKcHwHLa6Q0cskwhKtuYocBik8ZBZWWLpQwvM9gqxGkErhR+L4szIbyUW++vkU31aYW3NUSWB5oYw7NgmpaYxckb45wQYyWgy/d4IzdZkmCsRxSchQymoE8pzThkU8JiFqIdSojCNYaKEz4obMwJqznNVATzCRDFxJwCgvI89MZp06ocAiYcho8QhDYcakN8CVZJB0ZoFCq3mGpU+YiSPm0hjL7RNRh0hegoN2FzmVxO70MC2FiStguh6CZmKbXfzQnNl0yKR3Tmg2YHayR+7W95ipIlOzSzB3mKdV9MiUWv0UYa4gm310RUAM6QROwMlwyDuvvwGtfar5JNlMjkavy9CbMfE0koZCWPRwLJ9mb8R8fI5iBvihCTIuetgnFHaw+jX0UIVAyqAqHjN7ysg0SYgZesMhCA71kyF2UiSXjGDOoGsOiHs2ZlDAtOe4rk+yWEEcDxg5Dkk9gm530bwxSj5JVFRQGjJSRKDX6zDrjojMQ5xjE0lmMMIQlQJ8y+J8MKTV85CsAZIeQU+WERQgOsA7n5Iux7mwscrBUQtr7BB2HSyrS2PWI5a6gCQLRCNRYrrOpN9j7LsoQkBclbHEMKbl4PhTxIlNNJVi1D0nrYskKxUsQaU+1CgbPcZBGndmAkku3X6Tnq9jKnHqXZtkuI8SmhMaD1mplgkqF9DMIXNLwBz1mQ/7dBs1ep0w/XGfsDRCj8SIJJbI5xYYYDJ7+DkRScfXJCxVwvVE+q0dBoGF4JqIuQAxYxIPjQgvlAmHRQj7TKcugeQRCmsIszaaHsNDxkjnCMdSjGyL/HIVR5ijKiPCgY8ScolE4khqAkMziLphZgOTZq9HozdgOPBxbJOcGjCxfRxHwA4EZq5Ju+5SrkbxwhCWVQJ7zuH2c6KSiFa9iD/sMiOBHyRIJeZsFPOIioPiJXBdj/5wxM5x79/PDYcY0djXkoGriaRjRay8Sv3cx/SmxAyR0mKR3amIIXicTRoEukQilUPP5Gg2W9hBg9XVOwh2E98X0eNRUoaMLakcvnzFStJhMZMibqQZDnqE9Bmnpw2eP9vF0DPEjBhhsctKKkxjaJJKRrFHM6zZADVWIBmPMlZ0GDfRYgZBEKZ/3ieaizIPacTwODk4gVSSzGKV3mTCsNngndeqSNaI0fkZs/GU0lqZfL7EadMlpBs4jsJwHGARxpoMUDMxkGL0hy3M2ZRqssTZ/hm9zoDN/CaqGKE/GtHt96lGQ8ipKHvHh1j2BFk3yBSThGI2MzuCpog0zxrMVJ+oFqHd6PB+LEtc9zBtiEphYrKP5/qUUnkcy8C0HELzCYI9Qw5BIm2QSERwWhEanQHDQGQ9lSOVTyPGJGZzAWuuY801JrMBjXadRKFEWPAIhUHRBKRomEIyTUFXud86xZ7PGUxdgm6fuTRl0JoSSkv4E4nAA1EMKOQLDNwWvYmDoXnYgYgjfB1nMbYgUyoyGfiE5QGKJuBYFuOzGYHrYDsmEaNAIGkMph6p0hLNTotBPo02PEcWDDxUcEySskWv1SWYNMGZgpgmnosTjXvEfY+RDIEWwgmFmJhj5H6HcShESsmiRSU8I0TDrCOEsiRiKZq6jKPKiLpG0gtzEkgsra9w/8GnlDNFKrk1UiQ4GJnsvtiitBBno5Qnl9FRJwPm/TpPj+pcTywR12y0lEw4kUGLhuk2RjSbx5ydnlFdWsGIZpgPJ6SMNKN4kmQ2wsJygcW1dezegHtffkp6vUrYiCBpc+KxOInEGk/3Tui+qKEuJJmbFuP+EMftkcuX0ZUIKd/kvD3EnIlUihncfpNwPIoaTDBFERuPkdMjlynjhQuUSlG69QG+JZKIFcGb0m+dk8vk8AdRErZAyAozqLWQwgGxRA67V2c6BduXsRARYy5zO0SiKGFPpkzNMSktTUpX8BGpLMXQjRT15v9/keHfSQZavXaDRDyB2zpn4A052u9wsRJBjRexXI9e+5DmsM/1d6/jTEcMRgGjsYUvhlm7cJWLKzLdtohtWzQbTRrNIXKkwthskUgYlIQ0Z1tNTNtm484lkrF1Dp7epapLuJ5Os+NysHOMqsJGdYFmZ4roDvG8Af25xcE8wZWFAo+PhyRzBqlCBjESwe3sIytLqOkEsu8jRVNkyktcqWg83t6iIFk4zpB4MoqeLnEyz6ALNlJqAW0K/doptm2xeeNdPFXFtUdcvXIN/ABn5mLoEdzpQya2QiHhMxzNOTo44bz1kmI+xL0Hz1haKTELFNpTk96ohTUakqhkuffgAchhEsmAhNbhSiVM46BDdfFbXFtZR/DDTGYu5eUsqeoa8XScjdUFNFVkNhkiCSKZxApPHrwiEZmSMiKEZJXz2QTLDxgcnDI2VcadKbPhGGFus7lSZffxId2hTzXl48y6PNs5QHUFtk6PCDFn/8ThvGMzcX3mapqDxhb6NEbHchE0l6gO096cteUEtV4bf3qKFNaQYxWI4Ox3GgAAIABJREFUhHFHPunVIp3mAdOZxdT1OB92scIxDD2PMx/Rnzg0zrvUtw+oNQS82THGcpWQpSO7EkZEwpk75MvX6Qw6HBzsocsqq9UlVBEOjp/z/p33cWbniDIgSbx49hAhEWV2dkbbD5h6YQgkoobOQsZgv9egktJZLBbJFyrEchVGc4uClkApFthq9HhZ6zETItT2Trjx7TeY7uwytS2Gox7WqMnm1TVO9qZE5RnFVJxqLkdUU3j4xSd8+XSLm5cMEpEU8XieIBTmiwePeHoi0q41iFVLvPP+Rb77wRWy8Szd2mMqi2/jWQ2M0BGR4Iz5eMhZvUnBG9EzJ5iTAM+yMRIWelxBCHm0+iGSmQxOMOPw/ICrC+uYMwdN7iL5AxDDECkTWBoYAelClbOD+/TOnuONO1idCfuHh+TzOcTZIVZ/yHgg4NltfGyUfBFvaKL6Pq45YHf3KTfefB3fHnFl7SpCWEVW5ly9nGEuJEhoIc7qPQ7PTmmbU6ZoPPjwa4NtJpegurFCKl9h7kjE1ATTjEy8f4aSCCMVMkjxJAuqxvlXX/Jo5xHOfEYym0QUXR598RO++cYf8g/+wXtsf/Up9Z2nzHptPCK0GXH65HNWinkmgkZnOke3JzRG5zQGYRg1GfQbDHtNIn7A5nvvcP/FC+RRhKrkkY0GaAmVCyspPvzVS8zxmNzaGvF4GKd3wL2nz1GMPJOBjaMqqKkCET1HVJAx4kWyksfO8216vTHxZIKFapGokAXBJK2nic8FDMknXIpTqx3x8NkhZhAiZA1Rxx3ceh3Hi/DGrSy+pTA3ykzkJDM3zOWrl+nXXtFvDZFUjWw5TbaSZdzOk5ByOLNjdF1G1yO4lsvZzhazjctcidvM7BARQyOqBDRfPGEiL3P5YpphY0immqF0ocrUDIHsk1EGCJ6AlKpQXtlgfTFHfRwQMcKImk63N0NW0qxfucPEH/K9mzl+8ZtnpKMqibhCt3nEzm8fcdSaUWvsoukZeuMprw6fY/pjXj0f8NrNDURHAb2IVlxmoZDBnzdRPJejmYsScyllXPAFnIlL2/fIxeNk0xoJI4oazrK73yCaMrC6XRKqjaLOmYVkEpUrXKxkqPcm9LptQpJCtrpO2PEJJXW++vIz1pYzrC1liERFhHQS96hDbP0mX3z6GCkWo3ppg3u/ecbW+RELsTgxX6Pd7jCa9bh+aQE7nUImS7vb5Hh/j+lozOWbr+NJIikjT/foGVoQI5Yso2Z0tj55xY13CzD1WCisks8vIKoyZ+M+X33xgqVciKQskY2Dnhizs9vh5lubWIKK7M3xfYGxI6BG0wSZAtVyDlHoky/nyBcKzO0h9daISXufiR/Ds30kxwWge3yKO9+jVT/CTSZYuPYat669g6TO6I5HCL5Co+5w1hzSn3UQggkvjk8oui7uzKPbajHp1Pnd77zBs5bISW+MFxKon9V48vAxnqCTryRYzC1TP9gj8FwCWeTp3g4ffPdtnp6ZuPME/U6TUbdBSCmjFWNkCmsI1hbn7R4HJ2NODptcu36FZw2Toj7n/KTL82fbnJz8R+gGSktxcrJKIapRPwlx9XaZvefnOIJDUoCSlIHFTZJCi+nMY+4NCUsBC4sL/OAPfwdBL9I43sIeNQhkiYgeIzEc8+TRr0lGYjzd22NuDYjrKo6vs7k0onfUxR5F0XWBckGlnE9TOxmy+vo7JNynTEdNZC1GaXGDT5+ccDYZoq+9y/lhjbk5I58vM3IVXouOaTg9lMWbhOJV5jaMJxJ5XObdfRK5EjPbZ2IHrNz6gPjSa/QGdeSYwMrVS6xfvYaoS7iCiD1x+NFPPqJz3qB73uDLu4+4+vpNvnqxhxQ2sMwaotUkrxoYK1fYXLiKIAe8e3mVuAa1QZNv/sH3cAa7ePKUnmkSE8OsZZOEyxqXrr7O5uol/HQBtVCktLpEsrDMk6NzNpJpXrW7OEMbfxzwvDUiFHW4c3ODqTOk1zUZTTwCRcHtnXDp4iILSzc5My0aXpi5WuHxg3tE53W6wxaheITsykVK5RX+9f/6P/MvfvinLFYW2X/2knJB5Y07C3z0839Ns5UmUs7Q7w4wezPmponk79JoWBQrl0lHFMIRH48+QrtBUM1Q++KUVFxi6CgMXZ1YPE2/PcHpvGQ6nGPEEsSrVZTFRYzZHm70Kpm4xNyf02o22X2yxYvzE473X/GTv/gxxdJFrly7SSIbozOFP/iT/4R+J8rT59vENInN5Ry+MOGbN95lPFd4+OQu+cic9y7muJR0WFiMceviJUIujHt9jmuHPD3aQk2nefX8Ew5PTgmHNPL5KolkkoPPHlK6tsFSKUG2qpNfyZBYqHBva595bcrq6hoPn7/ENPtcv1BlobrC6uZt2lOfxskBw36fsCCxlivw6csm11ZvooRDiCGX2aRDf+8x773/XXrDGemEw8pylFhc5aQ2/HrDPh/TmodJ5ssoYZHazg5CfJl8LMHA7uPORVTLpEyPYewKjrNH4BcZW3HwZCKiQz80JpPYpHN2gBS49Fs9nj16yavtLVLJPGedMaWShhcOaIzGTJwQOTVKVo+AlGT/3KQzGHHnUpGjrsG1q0V29uqITgu7f8pHv32C7UK3OUKLnHP7+kXevHGdlObzb/6v/xOA//TP/4BSoYCOQCSY0/DDlJUE3dMWD58cMun10Bjx8GCfKxdyRFdv8t71Cr5rsVNrUlkr0jqd0J2MyKQECkUN3VBwPIOwmGds2tRrDUoJlVJMYf+4Qd8MsVyO0tw/4dqlKxRKeV4dv+Kda8vczGb47ctDetMB8XyMhZUCP//xh7x4ucMf/vE/JJcp0+l3OGrWKBgXOK+/5Gj7KRubVwiJEke1AyYhD6mwiCtEyJeKCKqA6Yxw3BkfPv6CaL7A4+NzpGSAkdZoHwdkojrff+db/PVHP2U0rJGIRohG8hxPt3nv5puMxBQH7QBvaHLNmJNOL3B+/ynF279HrT3GD2mkCst89vAxhtpk6vuMRjPOzppM7Cm//8++S0p0uX31NqfNAYEoEdOThGci2XWVfDaHJ5Z4uT/kq61T3GSE1KVv8eu/+nfkl5ZZvbhCJKnw7HCLgy//luTaHRTdYznuEjgdvtrfZb2wSOvhc7LpMKmlC7RsiVc7x0QjMRbKKa5UL4NWxDe7pJwG1y7eQS6VCDvQdVxqB7tsffYxdx88YTSbsVGNY/YgrafRAp2X948ZIfDe1SoPnr7g5blFrT/HmjXZuJbFVWQsy+TJ4x36/SmXNpZ5/quf8g+/f4P7z7e4vLqB5/v8/IvfkqhUONlukFla48bKFS4ubxJPl7n/uEY0keWzn70gnQgx8WGvYXFhc4U3vrHJakZmbzBjGouipjKMTj2mR31u3X6d3v4rEv6EUk4jWk3xB997j9nDv2FgqUTzlyhVS1QyFk8bIzyrTr83onm+w97xE45bNeRIkaVrWcITjUk4xpOjFg++2uGd125yMkvw4LPHGKKFM+zi9Ae8+85tPnv2ktcyKo8fN9m69zkHX/yM9pnFtfdf58pyAUOpcnpywKvtF0xaPjEEnMS7zDpNdF1mZHp8dv+MSGGTH3zrBruH+zjujGIpx+rKKubLhyhLr5HWbMqby+Q3LqHmV+lPpuzc/Rxn+JhEwqecS7NcLJPJaYQLF6Hu4fg6Q1Gjh0xIzvLZb59T1F38doeV9RyrN1YZWwHfub2J3XjM8w/vkTCqXLt5i5WVGD//+C9Z0jd48tm/hXgJS4yw8/zB3x9WbpaLlJQQw1GbvgaBHcXyzwhZQ6LKiELRZBELOapgT1xK+WvcuXyRD66kiYkddj4/4v6X9+kLMRYqFZKGyi9ebZFeXsSe9kglIRFPkc0kWMrPOepPOT1sksqFCIUiSHOVvC7w+k2d/+0nv8btWhjxKEQydO0k+XwYy5FpnG5z5+ab5HLLdPoWFy5cR1UDJlaVfKqMEQSI9gQpJfP/sfZeu5Ym5pne8+e0ctx77ZxqVw4dqhObQaLEkTgaaaSRZdiyDAzsA/sCfAk+MnzoowEMwwYmyMJIY2pESaRIsdnVqaq7cu2qndPKea0/Jx8QmEOPAPkmXjz4vhfvU8tYRHodW/DIb1yjuPkWrbNLxHFCddGkurJNJKkMxmOm/QlIETEmd997m1DK44UZlhtbHJy1WdQFpIUdvHlAIFoYV+/x/jv3ef7Z31Fdu4pvmeRqK9zYeoep63D7vRvslkpcu32VQA550epjLv2AspFh0s9y0O7RGTp4jo8UNlkVFEItw2TcZDScMJvNKAhjCqLM2aTPZJ7QHQfM7QAt9DkbvMbKrNPtvGF1fYXVkoF78hWeWuasNcIUBNYKColmcjhXSQ9fMBt0qWzmePXkK15985Sz0y5X37nLz/7mx6SzGf35lPHwNdPJIXZmnbWKhOVNsSp5zOVdCivXWFioMujL3L4i8mLgUrQUVosyITE7O7cZh32MhZuc90Z0Ts6xXGDtFtc3tlDFDI5vI2clyhsL4KgIlsl/+yf/HEKXg6dPef30GZHq4YYmYf8NQrEOuSUuOxO+/Nlfcv/Wu5hCzMmrU0q6yOKCjis5RJcDvJyD2w0Y2g6OplHfvsmv3/8WfnaB+x+/Ta1cQvId4v4lkhIxK6yx//ALnCiHkZhUnCmZ2gLvvf8xn339t2RKOVQhy9n+jB464vAFGX+Pzx8fMRmkyJHBJ3s9iuWIoppSWK4wmnQ4evECZ5Ky3xygNFKu33wbWZDx5j7l4grNJGDv+JLvXN3CH7Rp98bo1eu4U5epPSRT+NWZ3273aR6ccvudRYJhB0kVwU/IGxYLtTKJ7ZLaErI+Zf/1mFbPxkk8js8HSMkURVU5Pjzmzd4Bo8GQcqlGfkEi8DQO20dkJZelUgbbKLNxcxNTqBBqEuPplEF3hhSrLJVk/us//kNCVSdyQk7PTvjFo8/56uefACBLuxSzNZJpl+MnDxhMJty8dZ/O+TFrazV2djap5SoURjYH7RNu3nmfk0FEzrK4u9XAjmuY2ZhXr8+YT2JCa5sws4g9+pXxfHPR4s3Ra0ZewijUsCON3/lggYcPW7iKRWHRpFqUqFp5vumoNI8eQ2GR1a27yFad83afvCHwe//yjxhh43eGhGdt0pGL0FjnxrqFVyui6AmaCdmcSTp32FaPuXg1IPA1KqsNVndreHaH56d5qmqfrD9GF7JoUoaVgk8mV+F//V/+ZyoLK6SRTL9vM3ETqoV1XvYC9h79PePmHr47wpYzyLU6f/Hgc65et1jJRyiKwsAT2ckrVFcb7GTWyUsByzvbrN26x2DvBd7JS8Y9FyGUKOUriLrBpd3nnY9+l//9X/2fFOIRO8WY64sGNVPg2Y/+lPr795k6At3xjGGvTTrsUFu/wZff/Iz5HL55dMrw4IBtscnhoMPu97/DfOpSqC2QLxTI50w21/MopSVeHzzh2pUamYUyp6HM0XEL3YwQFAerbDJyh3TsFo3tLJGxzkKuymw4wot6JIzISxLHRz1uvvWbRFKTfvuQNHS4fe82l20fK+lwvtfknd06d+/uMBJM5tM2LfUe04uX3Lq2y0LeIBocMpKH4DS50bjBxWGLr1++5mTQYXd3A90UKMWvuXLjPlqhzGTWYni8h+FViX2bQbNNp2sjoPG999dRsmsUlkvsvXpKtpCytbVIOVfjb75+QHNkkS3oxEnKNBLpCxmePvglv/vbP+DDD/4ZkWoyc0EMDUxF4+9/+ZzVO1eIBBNZ1cnVCpzaIM1TfvO6QXZxmfrWNhvbDaaDS4ZOlmlaRHBD8qUi5c1VVjdL3N3a5Ec//xHu9IRCrU525SqDNOR7dxY4ChUaazs0FquYKoyHI778yS+oCBM+OWviOAqWqFI1BbZX1wlGHYbzACm/gj+fM9t/RDYc0T4/Yrm6SqfZIpJMzOomzTdtOvac7/3m97FHz5GcCxYN2F6ogJ5HGp8gVJZJUPCGDr6TMsuUSUf7DLQi3fYJvYsDErXEliFT2y3Sjy0mGbjsH3P+/M0/HlaqmzfQ6w1iMWHSPkehjyiVkL2QVmvCwzdjnl7MicdzNtY3EaQBU29IZ+jQvhzzk588YvP6Ve7cuYnjyhyeT9ELFqk4YaH+IcHM57J1ydTps7Zc4dadb9EwPCiUCOw248EbLsYXJILC7eUcb333Bzx+fczDJy/pjUf07TnrtbtkihkGF2dM7C5aXsHtBIRqkfdvZbHtMW4AhpmlLo+5uOhQvXoNM7eGGxYZj2PU1CNjCATpGKd1RqfTodMeMD05482bh8SKhmLbqFkLtagxcy852T/g13//DzncO+bF48eossx7H7zDfqfFV3/xH3jvt/4JbqTROeswaZ+zsr7Gl3tjjjswl5aYigZTPLrtSw5edxg1E+r1JTKSBNMRmutw1p1SL4CRMfAFndHcZ9a9QFIMBrbH1fUiGa2AJFtkijI3NxZpnj5FlS1Ip4x6Z7QuexilMh9X85xOInJLV7CydcLhhP2nT/nhf/lHTOIBp/tNSobJzmadQWIzP3+OPffxZhfISopiFplNYyq1OuLydTavXCVnZlGEFKNoYkoGl5MRYqJi2yEzP8bK5yAwuHH3HcQQCrUSlcYyOatKoVpm1HmJaOYompAtFJFLG2SkHJl0xLffus049AkTWMiXuHV7nb/9q08pTlosV6tU63X0fBFTtJB0mc8+/ym1sslqXaNaMVjeusmLv3/A46MRqVlHlEQIPQaDMf/+P/wcbTTipDkiW6kR6xkeH/W498EOK4WQlUaZKBzQ6vY4H0pkyhYHvT4f377KQtUilysgSgaPfvlnMH7J+WGfj777a7z77e+TXb6Go5rsbt6iGB6hhx564pOv1qjc+2221nd45517lHQb37PxnRjJ9wmmEbfu3aQ/SrAKBay8TLO7j+rYGOav5tKnrUucUYdsOUe5sUPfL0IQ4QYO08RjQkI2VyB2+rTPThHcAdNhl05nSK1oMHBiOs0mnuMRxgqykqWcNzlrdklsB1PRyVkamYxK2cpTVjO0LueEo3NWVjbYuLZNrhpQW63y5NMzPC8g9gdkDIlydoG/+LM/BeDqTo3F5UWiOKTXPiOKp+yfzJD9GK2QQTMMhERlIlQ4vLjks59+Qpx4jDtdTvfPiRWdkppQra/SutinYqXc21nm2u5bTEKV0UCmXC2QhBH5TIbf+p0fMBiEKHEbOUlQUxFNz5FfWsUee7hOgLZwBTeQ8D2frK6w0djEnpjUlIDEtXF8Gy9NEHWNd3evMhQ83ONLdMUgs7RKq+syfPWCa7t1Hj7+Cl3VMNQS/+4vPmOtUeOHf/B7PH/1GkXOsrK4SrmkMZydcNFyeOe991lfqqIbebpOhl73JaurO8wHXZbufcDa1evk/AHDw4dsbRQYzFLmnoasGhhazHGzw9mrfYKKQW/YJZ4OiAZtvtm/oFo0eX40IzV0Sgs1Fup58uqIz56+4YObtwlr67zp9HlzeIxtp4h+kVtXimihh+/PmU7meMOI7WrEB3/wL1k1SwSjNrKu0bj1IdnlKkGQIvsi+STB7zYZX55RyRU5Pg4BB0nIcXQ85vBkwNruDnFoM9k/JwpnGEKGnNzAcVzWlzI8/vF/YGo7SEoGTa6iUaAzHFITx3SP32CICoZk0r2cUCpU+Plf/zW1lUXU2jYYDUxRZdL3yJhTLCxqlRq2n9DqB5RLVxj5OTrzCYO5wHjm4M46ZFWHbx685Nj71dK2GrvI4YC4aJEtmjz9+in58gp1U6KkeCTZCpINiVKgebFHdzqiOwuY2jEnrXPe+u5vcNncp3vZI3J9SnmVkrnEjx++YDGfcN7s4IYRSysVqgsrWNMu2d37qGKIJrmYso85PgO9zMl8imQU6J/3eP3oJV4MqXtKIWMwGl/SbZ8xbPWIY531q2u48yGl2iZekjBxu0imj9O0uH29ijlvkykWCA2T/nTABx/tMBl7SJGEqijYns/lZZs4OKGazxJNdZRYpKBnqVQanI9byI1bqJkVlnfuk8+vIvghq1WVfq/P5PgFM7NBq+8w7vS4fu8d9p4/IMxm0BWPaZwwikJM+ZJMIvCTn/0dt77zMbVanUxuAbWwweef/j21lVssLVURYpnWcZPDVy//8bDSWF+nVClgqSKlyjKpmMUmJY1E5kHCDIFKZQMj9HHmUyoW5DMlErFIvzXHqlS4+/Y9xEyF1nDCJHBZ2lpjfnzK9o23OTxpE7k2jXKerbVthscvwJtiFTIocoJu6mQLCwxGIOkWw/6QwLeRNZNELSFZWYadEfmsyiyIUSSNimIQ2T47u1vYkzaiBpKcIkQRxFCo5DGNGA0RSTaIBJOxLWEqI8JZD2cyZtB1GM5iZoaJrhi4sYjneIzHA9xpH9GzwfMRiyvopKBJLK6tsbV2hecvL1ip1ZGza8hyBn8yZ9rps7qxzcGpS/f0kkKhiKxJeL7LfDiFOCXwVEwtInE7xMEENVfFH5yjGzKhbOBHAlEQEwQJs/4ZkiSjpjqpZCDqGqkggaow6Z3hSFXicIw9aDLpTygv1HjvrW/z4MnXpJpBGKTMukNUIcv6QhFBj2gdX6BLMrV6FQeXy6aH58wxdQlF1RFFg5yWJbtQobG+RdFQyWkCWVNCViXywSW9rk2YBNhewMwJsR0fxBjdSAj9gMiL8f0YN0mJE5l40GLuRzjzGEnLky0XGVyeMnR9lrdW8JMUz/OICWlc2cJzHKo5jdHEZzSbkKQu9UIeRVH59IsvWN2oUMikJK7DdCiRGg7Fxvs4yRzVSjAsA1wFzdQpVQ2ax1OCOEGxTIr1Bj4azRfPuX7vbUhCkjDFNMtU8hKSlCLbIXEEoedDMGV7s45WqIGWoOaXmToC560Bp80hWSthPmvRnYwgTSgW8pSWa/jiAhuNKtPeOd7YJZzHTCdzcqUaOUNENySMLIhqRByHuDOPTn9MplRmMmhjzwfImko2X2CaWriDNslshBgFyLKKqBWQgj7jwYTAHSGIoOsZoshlPnd/VUQUBaIkJUXA1GUG/RmqKaEoKflihmK5TMa0KBSXOBraNIopimgTOAOEJMIsLiJoMplUQsxooGnMujP+8v/5cwA++o3fRi3kmc8dgplPqmtoxR2ySYpcreBLBuNpwCxwqddLeIMelmkQiTqxnGOlWGYwHaEEHuNEw8yXkAToXpxSLudoN3vgBGhWHiNbxRnEvHr0CTdvL+F5MoO5jxN4aJqAn6oEc5u8rGCkAbqUYhoKRROCSKQ/6DPrj37lrMpokNGIWheIchGZlFwxi2ZodFt9ylLCSI44Oh3Q6w5pddo4UYpmwNbSJoPRkNrCIovLdQIx4tGjJwx9mdrCMmkU4Hg2cwLUvM6NxnVk2ae8tEwKtC/OUGOXyXxCsdxAN3N4cwenM2Br/Qpue4pVlBk6CU6q4KUBk9ZzDLOBYzusbdSw8hlcL8UeB4z9EOZ9JomFHEdoqcPYG9FpDigVVAaJxPLKCtVile5gTM6aUV+/S3/vNZIB2UoWIY2JowmLhQU8J8H3Ii4HY467E3Q1T2Iskdc9zi66pELM7tVlFtaXMTpTqksNdClFTjwCd8p5q8/Cah77wkHRsmQsDUVIsac+SkXFHkJ1Y41qNk/JMLHKZU7ah0RxFiWXIxUiRFxkKWE8M9gtCKSiTGvSxo9tlmtlhLnL2vodzLyOMxrhjLoQ2GQ0Fau2gJ8IWJJMGkQoisn21S0KzHF9A8VSkQlQRAnMGsWczF4bZHFA7EUQyJRyGcyMQuoKzKYOshigKxFyrKBqZWajSwr1BrNRCF5ALiOwvFwjsedU62W6rRb2eExW11hd2+Ki4zLuXbCgCYi+gBNIaDmXnDfDCUMi2UBIRFRBIVNb4HISUdccfEFkOhnhTgaIoY8c6vjTN8ycGZEqIisxRSMgX8pzftSmqOfQzRxm3sC0Yk7f7OEnJqZmUW5UKNfKmJpOdzxAzWXwnQh/0sf1pkRSiqxqhLiU8hkC0SCVQgQ5oNedMZsPOO7q1IpZsrqMpUpkrTLjsUS3d0K5vIoQxgQzG2c8Y3GtSG1pF7wWo2nA2VmHw73n/5+w8g8TGWoi5YyGolgUrCrzmQz+CamdYhgqi1pM3SgxG9i0enNWqiKyAQQRiS9z9d5VyJTpdEfYgYesQBK4GFqVaHhCFM3JGwK1rAVShpMXX5ErFVgtrWKaZSw9QsDCD6FlD7CPDygs1llYKpP2I0Ix4ZXbIz/z0Y0Chqgg2j5hlJCGM/YP+6xfW0TXFGInxpcM8rpGag8JxZBYFoiShKEP0mhMPJvjJSFxoKDJBnGxRL26wnn7ElXxCKKYKHYQVZHVhQonr19z7coWG4WbGLrBZDxn0upx96N3OTtvU61UkBIB35eZ+zKaB+5gAuMRipDB8HLIwRgnmKJKPXqdKVkpIm8a2EkNZA/fmeKJGdJIQkoSnERACTyS+ZA2JsayhZI1IZRpDodYZpmLucTUdYnGHhoCVuKQGAZiNMd1ZkSBRDT2WFvfJJiMkVQTQ7OQUUgFGUs2kKwc6myCalSQRBFVSFmsVREFMNOAxE0QVRVNTPCGPaKgRdHKMA9sFFNHigSmwzGGqXJ+foJiNBACEOSE1NSI/JRipoQnCoQhJDGoQow9bRPGOrMQJElHkCRcIkS9yMbuIpE9Z/LihLjXJ05L6Jk6lqJjFapUl+to8YTxWZfpqA1LRUq5DexkDnqCqFiUUFiqlIj0gPG8yXw8QNRh5epbtDpzTpoO9zzw3AhNFCiXs5imRkmwOXiyR7lWRdVAEjy2tq/x6jRD/YpE88yj1x4wGc9wfGiKQ9JURUhFsrqJppvIfp9U3WA4nNO6nBCMx/hOwNSLyGYS5FmfWi1PIHgQ+jRKGV704LzXpT4LcB2PxHWJHJfJdEaQhkT+nGA0IJPJYBZURr0ZOV0klgScRETRTOqqzGw2oFqwgAQ7VEjkACFNGM3zOZF9AAAgAElEQVQc/ACCMCEiQZRkEATGzpSsPSaS51SqWSb9Ezq9CZK+RnnZYHk1IriEJFcilWUCr/2fckMvLYIo4nkOEydETATe+nid1vMjhqMJYRoQBwF6VqZgLrKwUGMapRg5k0p1EUWSmAceBUPBzJSYuQn7R8d4w1O0Qpbp+BjFEanu3oBMhf2vj5h3mnjRMqmi4CUy9shFSS4Ql6/iunPW8iYz28EDFClDHCqkYchJd4wZJKSiRCRAJiMx60zJqsskuomkpEjBHDEKuXL3Lf7q6WcYOZPJcMbgckSxVqGc1em8ekGtXEQ1ZCbOFMMUEZU8ZjFAV0ViD1JZoFjRMAqrZDMqprWMI8QMuz2GwxGFpQZe65jADihXJURVYopIvVKja57ij2fMHQnRtMioEoaSEgUQhAGzSR/N0Ilik+PjEetbZU5PniFRpJzNIBmLTC9eMw8mNC862KVFtrNVCprC2fkpo8RjdnlCt3eBUsyDJDHo9SkWBOrFApenXTwtz1AwOHd91OaUq/cSpDiPF0+pVQx2t+oMHI+57ZHdqDJrD/GcCXE6J58FXTNZ3H0H0ZmSMMNzJ4SRSWMxz5uXc25uXkGejUldD6Ne48Xpc67fuU8QT0idHvPhhJmTIUnzZASFsejR6nXImhpLywZeNKWopkhKlrCcQfXzuI7E1E/JVgyU6QhVjkgTjTDVMRQLWdGpVKs4sU2ASCIoWIlAy+kwGTtYYoyVLWBIFvVinpLZoPnmgGymRKRJJM4Mu9OnsLbE1rJJKAWEQYg39xj2bQpZhVhVCMdNZpMZpBqGUWYcayhBH10zkLwxkpIju1DGtFz0wKNl2yjFCmpOBHlGnIRctrs0Gj7NZhchETGRaHVtjKLNYDAgsIro7TY5UyOTM3DmKXboY1giGU3CsCDC4GlUJGiNKNwskGY0ZiL4wRw9CHHtMVKg0R80SRSRbLmElOiYVo7sYpVgGqKr4Ici3dYZ5VKG5jRDRquSM3wUVSRX2uDZ7BJB1bG7E+ayQODNUYIhxeVVdFPi5bNTxq5OEv/nOeQfBCvruSyb9UX6CMSjUxZLO1TFIv1JRCxKiGJM//CMNiJLS2/TD5p0D07wHYlSeRtZMvjqZYew/wpN0lBjmbPPPqd0//s8+sm/xagUKBoxSQytWZfSQhUnTRjOFsgqY2L7iLl9ydW3f4uvD07JlMu0fIvxyCUetxHShNWdD/BPf0q+oiEJHgNnhJeW+dmDn2JJOSqTJaRKETWvks+FHDw+ZGnNYCb4zO1z5n6CbemMhyMmXoRoJmzXLVYLedxERDQzLNYWWcgIRKlBa9zl5Oxz8krI5f45I7+ObpYJvZDDzlOc6R7TaQ0pfoE/rOPPUhIhoTt3kedtkEycwQw9UtHTPOu+ypcn52xtzenMS6iijhjGjNKnxGaeZcHBiRxiV8edzLjoHPP25iZ7p0+R8hliuYwiJeipQDB0qGfLqKcjTjszSCSWciVEb8aTB3+O7k/J6lkEKYeHRzaXUFyucHlhY2WWMLQUXRVJhSLl/Iz5xMKljKr6FPMxmUqB2J3SPzxEWa2SoiG6Yzh/TstUaCwso7s+OU1FzUSYEoDGcBwgy2VWFk0WSgqWZZIkFbKVGmok4s5GyKaCTIISx2zpIgV0mu6I2I9QUckmOqfOiFkiUGvEqCh4ocCrF0fcupLw1t1b3L6+wqjdZNSLkdKUX77okNcec31thTgSmMZQrJhMxAyWoXDz1xa4ePmIZqvFkxfPubV2jfjeLV4fvKF18hJTMSlXN/C0OoXgFUkyxEg9TD3DNBJ48NOf0D6fsfPB20TTIXEQo1s6C0WBi+MRZrnEtaU8lWoOxcjgz2FlU+Lk9JJRc4Q9PidKfFK1yN7eG7bXHLIDj9SUkZUEXUhArSBkBTxfIPISFC9F92HuG8zbrzHyWTq2i6+YlBSD4ZsTos0SkzDClSqkjoPgjijlS+hWhenwOa5awdJATG0Gw4AAmXgeIxUKeDZ03A4De4x3foG5kEGwt0lRCZQSYbCAKutIw5d4aRFNLJO3MiS16n/Kjfmkw4qZxw8nXLSPyUoyN9ZkXryMGb78CjEak6uWKC7e4Ytv9sgnPp0w4Hoxy1Im4PV0ipWLWdzeYfT4lMHZAZIwo7La4MGzC9zePhvZKpYaIlgJZj2lUniHL796gZqtoKtFolCkdzmgvirSG7a5f2eLF18e0xv22NpeIK/tMO0NiaIAq1rHdxz8YZt6pcDWzfuMulO6wx6ypKNKEomg0bh5H/mbr9hctZB3lhnNIi6PX/DtG7/O4eNPsa5c4fT8jDMv5Fvv3eI73/+IR1894d61KsNphot+FjeRkJAYpWcsFev0+y7uZEgJD7Qyu9cMfvKzl9y/o7CxXSfcqPDy8pQLr4k0ELFtg1Isk5M0nNwtCqbCl4cJ+z9/xPtvuWytr9K6eMwHNz6CGzsEtkwoa3hRjaLmEi/lieYddN2h0+zh5wwaJYPDaZZ41kUu5OmOHKbzADGV2VhpEBkKg1GTxZ0VioaC1t+jOZtwI3lGO9hicf0mGS3l/GzI5ckJp50TquIlzmCCJGnUqgU+vmZCUsJft2iMe5w1bbpOxGKjQk2NeJ3rIMczpgm4qKwnKhv1Ta5vFdEVg8tDiYPzPuf9CQVanAyreEA+v4A/93j69SGl1QZPXnzByMhxc2mNhfIy7V6HV+2nvP7sIZIucWVzndgXOb/o0Hna5drSFhedLyiUF4kMi4gQJfX45asXvLu8yetXZ2SXV2hsLWHqJv2oRiF3ipzXuBhnmU4FctNT8rckMA3S5CV2kDByI6Y9l87ZAZXVLY4nDqmcZ21pjWLJ4t/+6f/Fd7Z3yW6+R9B6gh8NSSwdRbmJl/VxYhORlCCc4U26yN0eVz+4RjcIOHl9ypXNLTLVBb46O0LLiFzb/ZCObeO1mzg9G6plypaCWjA48V2uqT7KPGQwT1C3vkWl/wViMeW8O2QUzgiTCTvjNr1JiUpxlUl5FcebEU3GqNkYVb5FbzoglS3mfQ+/63D9RoOiKZOpVMkpMi4CaDL5vECmGDJzXGQtYSypuFKGeg7++qef8se/X+PpqyaaVUGM//O08g96A23s1qmVBXJJD1kZ8LTp45w/RM8skAQxk8szEqHERrmENjpjNtLJLlxh9Z07qKtVlovXyEyPiWIfJ/IRDZ2Nazf54q//DdPSDU5P++xu3eX6rTuE4pTvf+vbFHPXibxzRpNLBs4cVxDQI5H8yhWqWY3JJMK1ZTSrjrKao6IsMTz7nPs3F8kXVXqzCWtZnTevP6diwo3ta1QLWeTERQ1iLlo99l48Y+/yAiQdTcqz//iSSG5wdPCQcrWIJxaZxSUK5Rp6bs71ukRnKtM5f0z/9BmjVkjr9CnDfovQCaiv1llu5CiIPvY84t2rZVK1QJqvIugiljilFpzTDgNklliwBExLQjRNFD3PnQ/uM/VS5Fgn9ecMpmPOBjL1xKaYExFVAUiIJZFQzfLs5QUIA8Q0pBBESN0h52+O0bMRXz+22V2ckZE8ZF1GqVfZ3L3Li4s9Pnt4wYfX36Oar3LU67BcFZFrayiCTzh6TV0es1WUIO6DGDBxF5E1m6WSTVFz+ObFAWuCTbf/Nc3TC45fndDtDsjUSkiOSXv/KfXr76IZJcQgQExmPHh0xNVyQmnlHXavbVIpZpkNXLSSip6B168POO365DJlbq/WOD5ok8tOGatZ0mhMSXOpWDHtWZtFeZHKwjqhlWEy94mmQ3bXJX7+8BsW8/lfdUncIbIzQY4XSRYK/O733uP1QRtJBzNf4KiZYTwe88sf/YyFMOH27i0Wq0VGZ4+4cf8d3rmt8+SgS0nX2FjdRSvv8GLvJ3xw8yq331pjoZDizOdctiYIM4fQk0mG5zildXbfusm710qcPvmM9iSgoOssZiSENCGVZBpry1ycHVIQU0R3yMwLGdo23vyc2tL7iON9fDvCV7KMhEWOZg3kdI4w7KMHF6RRQt8VOBrM2VrI8fzS5+j1BZqaR9NTps4xkQZR32Bw3kcvlpCzGSQry9L2Bs+epty4v4mu1hj3BgwGHYpr64jJlI2bV+i6HU6aUybDiKWixKu0Sq4l0u6c4xCyvbPOP/vOW7x8/YSeDfW1JcYHrxk2L3AyOj/6d/83AO+9dRNnNCIIYzZ2dnn7zocMzAruy19w69p9SlfuMtKyjFsJujVmqVBmc+MKw2GHvb2vub69jet4vHi2h+g75E2FRrXOWmWLl+0eJ6dNJp7B0PXp9pr02pcMBQW50yVWVxDEGXEyIBYNbu1sMWqes3DrGrNURM2XKTZ2aPcyLFRdcrpLsWyRK+SQJINPH73k5JtfsLOokNnaQNJLjEc+Z/GU9lmXrGRRrjVYrNZYr5ZZaywRUaft9Xn+8pKiUaSeyfD8wQNe9xxaX5+S293CCyOGrQ4n+wcMWo959MUbVEkEJUu9XmZ3LUNy+obQj+iOfRxZxWGOHzTp9EcMQ5s//vht9DQhns+JXB9toUTtzluIWQEjI9HrN5l02/zmux/w6cjnyvYuR6f7+HafjAGZepXxtI2OgS651DSNklFEzi4yGvhc2bCZOnkKpTyNJRnD6PJnf/tXiHkFXVyBpEmpmHLv3nssLWYpRRHH5yf0Om3cZAqWi5P0CfpTvnvzXZxxDl9QEXMpsezy43//E8LA5fbdWySGxiyckS15rJY3ORum+NY6j598ztHZN2hLRXp7D/EUGTVRcGSTbHWZnfoGX+19xd5RwPatZd69/11Wl3YZTX0evTzit3/n27w4nPPwl79k7E3Iry/SfP6YH37nO5Qq13jy2Td88eCXjEaXvH9vi/W1VR58dsQ3B4eoao5abpFes8n/9N//D1zoJvufP0Ob+WTIMUuWOQkTLl7tsRBZjMZNUs1h89oaTviarep77D99zc7SOsvlGsHU58bdO1hCDmOnQY4hUuQiqHl+8O5tumKF91brpPMRYCHKC3RGIUXBJ5B2KGc8Bq0W/WHA+jv3+PunQ1a3Gtxc30XNLDOfpdSjGdXvfYenn/0I06qze3udD7+9xXfvLmKMLVbqCqePW6ysb5IrLzJsTbDUDr/9wbuEBrinQ3JOyJXFKrt3dxhcvqHba3J6+gZ3NqSYy3H91rfwrQo//fG/YTico5pVspUG4bRNtXSNP/vkU05aTWaOzsXZlD//1/+KeavLn/zBH/BmElLSXRpWzMiRuFLOUKtZjM/OqOQkXGfI81f/PxRsr11Zp5QzceYug7jIdeMcv/I9TLeJPx4xi6vUFpc4OH5OGoukSxaOa2MfX5KTx4RnHp+8dukFAXGUICUCCTJ2UuaPf3CVa5vXMLQCx6dtPv3sS77+6jlqtsPaVo5K4Vd2yPVrH/G3zx9hjGc8+Oyv2L6xQbGisff8AVIw46Pv7fBs7wTUq4jqEqokYDf3UX0PwcyRyeYxDYlUdHlx+Jqf/vgXNCcWo94Fo9aAac9FQuDJ0S+oNrYohB0WqjXWtnZYLOmMXj7j4VctPvnkx0Qzm3ppg8WlTZpHDwmUHfpzh7XtO6h6nqO9V5jtQwaZPNnshI43YjwakEx8utEieBPS9hn5hQJ+JDFq9VHSJkmUIik1ZKuCammopkpKlocPP0HO5RGSAN+fM3cd5l6KnYbMT07QbJvAsfFEEX15g/raHfKVEn/zs7+j2Nji9o27bJfyrJZ19h+dsZnTaF7sY+UUfu3Xv8uDpy22r95k0NpHyGbQdRkxdogLDQajAoGaonsqDAOCmUu+mKf1ep9IlQgmHoaUkODz9cEhSv8VT5IGz0/O8Vwb3/bYf32KE445abcRBB9FEXEii4mXYVMc0/PWWFBybOTKqEbCm+kZ7TcDFm7cZp6WGR0/JIli9NpV7KTL/OApngqhIiIHAUkQc2TWcIZnWJkirabNj79u8XQg8b3vvcdm5NGXaty9sUrG1InskIoQ0Vjc5+Mf/pBJEvP6+Dn9yYzF9Q84P3zI3qOXfP/9XTY2lzENAz3w+Xj3On/5f/yc1uFLTk97xJRYXbtNvZFDLlW58vGH3F5dYNZ8wxdf/QI5n+XWt/8J2bhLYXWJQiaLnqb0ghQ9yrHfPOf5aMhcUMlklylZ1+i3nrHeWOLFWOXRqwGTix53cxFZZULxxn1CxyASQtx0zsyzcZMQY/wCBA2zvoIbGHRPbbKWwHTmoC+vI0QTAj2PW9lh5g+YGjL7X77h5OApWSPH+tJ1vMkQMfFxegHB3KBczpEtKPR6M/7knzbQVxYQKyXKhomlGYwzBfK5BRpGFU+YkV+5Qrlcwz5+xl/85U8A+G++90McXyey8lTWK7Qvv2SjqpKt36IvxEyRKeQWuVbVcO0uv/b7f8TZZ5/QPTsl39jkw/s/ZPzoIdtbm6RJjfL2FuWbW/QEid7e59z+1j9nYWuX62/fpNpYo9mWqFYlHHvI6kadnK4RhhLtecjZi2Ne7zepaL9awo0jmbOXxwznJxy2z7j8Zsqw26PXHTLpB5SMPP/d//hf8PAyQlLzeF2JoJNw93qR5kQiO5vTORtipBGq5PLl/kscEfDauMMZclEjLBr0Yh11MMOoV6nUTWa9DtPuCFUssL77OyyuVXnZvuDyzRFhv4kixxxNSyTSOd/99ne4slEinzVxIpXzzgWNfJE4jtlcFkmdFmfHp5QWrrK+3MBQZLrnY6rFJbavX8cvCNzeeYvp/if0xwHFYoNKziScPCNrxTxtjpkM5piLq8SaxPmLz6hmAr5u6yxslEm6fWbnHQRE/uid9zg5TtHkSzrNIe2mhzv3WFYTHh4/4976W2SCIv0Tm/Z+i/s1kzu//bu0fZ1s3qRUKiNIBc4HCVsbV+lpJXS5z3R6AtGc5VKVQUsEcwHHnlARLW4t7XB9d42Ne1c5+MVXpO6cvfEFnSQgW1nGEwosZQrY8xP2Dt/w5MUTep0LfvDRO1y7eZ39Z/+RmpJQUSQ0YPXD36D7vMXKUoHVbYOVlRKlwjKBvEHGvWTuRlyta5RLOUJSvFGfi7TAq1cvWcyImFJKr3fK3vGnrC/laCzARaVMH5F+z+H4WQvVkZl3DxmkFTZu3AArw6PjAU9PArZNl4aVpz2JOTq+oHX4Er1RxZ93ePjlQ+SNuySaxaRzSazleXF2gNB9hFXOsru6wvVGHX884p++vUPz1ZjX3TZGdkCtIuCLOywZKYdfP+HWzjqTWcgXn73gx3/+Iw46bY5cnXDyNWlNpel7HB+eYJgJ3/QN1spZFGHMZDji8sgHvczqis7LI4fScp5qPUs2o1JZs7hebvD5cY+iWeGj+9e4fXebL/bGXJbgw5UsVxspDetXA5c5w2T3/lWmQcJls4OglZlOfF598mMUdYs352Pef2ubjmfx9esWl6ev//Gwsr61SWN1ieryAqWNqzw9KfDReyscuwYzMUeloOK5fW7s7tDxfbJBgp7ERAI4voAoSQTZgO2tRWpZiziwOR8eo/swS1zah49wZhcIakSlscidzesczKcs6DLNM5v2SMKoVNlq6DgkLFWukAghk3kf3bR457u/zngwptlUiPwOBWNGNavwxbND9PoKh2dzqpUMQjRm1LvATuHN3im9QR9BMVG0EmIq4U7ahK7AZNyjuFXEM2p0hwLN0w5ft216D/+O4tpdsuUGsp4hSGROL16ysbrE1UUZKwiwZImVa6vE9oibK7fpBIsoyhqVzAZFrYpzvk8i5qnc3EGOImI/JZMrcevaGoHdx0491iwfXRSZTQVmZ+ekFQ1En17kUSgukrfKHF/s0z++oFgxUAvrFBvrrG2vc3V3EWk+QcGgsbjBqBeyd9DkVeuSx18+QPB1JMnAUFPypoqhyWSsIUUzZNQRKZfryEqK7UzISTpGoc6g8xRBl5FVGTGOCJwucmWDnGVRELNMbZfmaMDc89gfpuwuV6htvU1OkzEVgcLiDuPzS7J6gJArs7FQY7GYBSGl0xuysbnE3tkTHG+K7HkU45iNO0v86b/+3/jhvSX8RAfFJGcKeL4IokSUWyPpdtCFiFzVwBR72JHBaKBy0W4yns0IwpTuxGNrax1REDl484bJZErOCNlZmXPr3vvU5D7rjXWuXr3BcqMK83O64wgjDhH7h8xePibsnyJmAoaOQ3lBIxZdqpubZBY3CSWLOBnjdR3CMOCbTz+ne9JGpsRFkqfutrj23ofMxYRI1ZEVHb9zyePzESWzxCzKklM0MoKD7V1S3r7O4ek+04FGEGr4iUjPdhmM++iahSn5jJwU15fRFIXuBIJ2D3Nhnfk0xokTlEaJjFWm2e6R5LZQMip6Jg++zP7nL1Ecn/GshVFaxEtTOuM2ARIr1SvcvvcWgiFQzuVZWdxm9eZHSIJHRYqoF8tEqYSbhph6QD67xd7FYzZX8ojpjFG/xfFhk5/9/JcA/OF/9ScM8Ih1hVJlg9OWwFtr63SGQwYuzD0Rdzpj0t5jFmosrBg8efySjF5ko7HGN8++4cXRK+5d/ZhJOOKic85kOGGtvsF0UGZ9fZvu/gOUYETZ0lmtl5HVhEy5zoPn+yBJmKZFFEKt1uDue+/hzPsIVkixWGC5uIIsT/ne7/0LXG9KtbFEsVLEyqTUjAz/8SwirypYqk2tKlKoKLx6ccRqeZ1CNeH4bB/Hc8lX6tx5/z5HB2fsvzmjWs7Q789pDXzK16+yVCsSFjW01CCNYzRTwMwLHJwfs9RYYa1WZXdjAz8SePzylN/6jXeoLtzi/Owl4+mMydDH6dgo3oyF3E2eHl2wunmTYv0KZnGZlXqd/PiAh88+J5n4uLbHcD4n1Qym/Tn9vQPsaAyKjChIWFGEXLyKNT6ksLGJIEOUhOQ31vno1g2OTmymzX1WVkvkiwX65zZb9XVOVJeHr0Ju37rF+mqJ3uCM86MDapVdbPuSTOP/Ze09ejRNsCu95/X+8za8yYhIVy6zbFdVG5Jg05NDDiViBoJW0mz0Z6S9NgJGCwEjYTTg0PSQ0+xmd5fNqqx0kZnhzRef9693WrSg5YjA8D9cXByc+9xz1rGKKtFywBev+ihln863z5nNeqRyTiJmjDqvubtX4Z32Kievjpj4AkGmc310webdOxz2Lkh7V5iOgaELxKfPWVoahqLz6PWc9fYmD3Z3qBsSouCRl9t8tN/k/GxCjsN7H35IqHk8+rbLG29+wEyMOby64emTC4bnl+hlGyWfcf7tY0RJY3V7E2Xe587HH3M8zFjf2aJQLoOQE2cxJ0cveGOrweziGi+VMatr7GzcR21qZPmS+xvb9F4/x5vdcO/BLpE3Y/fNtykXTdzTFwxOOkj6OvfeP+D06pBUSAhzlTAU8RcpQphgWzIlM2W0WKJrEhVH4dEv/g5dsvj9v/hvkTIHAQNXFvnWu+LV16+ot0tMUpXLsxHuLGT/wQ5/89d/TaGxQWu7xuXhCwRvyW/+zo84evkdmaDywZ0iFalC06hyd2+DcJRjrm4TXbyi74FVaHKwtsJATNCVCqq44GwasghFVEFjchEwSl0WwzFNvc18NOPw1WOCxRU3E49adROnUOf4uMfl8Rl3NwzmVgv37IxgcIEkepTLBe4ePCSOUr65EQlYUFVissWAJ4f/DGLlB7/xIbu3dgg9BSVvY1hF5vGScAZ6LqBLCXEgsLK/gzadEXkBQeAjCALF6gqn169xijXaJZFoGZAEAturTS77Q+wsQE4FQrMBxQbtRplWcZWtPQnTWWM2XOJN5+Qp6KZG4s5JhBaKo5HLJkFcI49FitUmqbfEdnSiyOfm5pwgWaAaNpGXsdbUKNsmcm7RG03oLXVkQUFXIyzTQNQ0xuGQUAFfBKNSQ04hm41YdC8ZdC7YXrcxyg1kQWAx7HP84jGDzoj2So2WVUMWEiTHxqrvkI4ueX0uUW3vIoU5iRcSxy523mO2mFBYW0f1BhTVnErZIornuMRkEchShuslzJchgRRyNbpBiVWWbgyeSzDt0h1dk4UBoWmwsbdNa3WNcqmKQsbl4SNmoyWL/jWeHyArAoaU8NUX3/L9Dz/mcDIlIiHMBIJc48F7t5k9/45iGTTJJokFgjglTEVKjS1en16TKClKnqLEGZmUYMs5lqSS5gmuANMkpzNakiYp3txDJaRVkqg16qRmE9W7YjQest7aRAAyIaFYVBl2zjB1FdW0EXOfJPXJFAWtVOD543PKFQlVz0lEkYmXIMcukl6jd3xNnHhYBQWzYDPNihQqLbRQwM81dM2kWihRrK6gWTVU9xsmiUJuVnGKFWqmxtnrR3ReH9I5uuHiYsCwPyOPMvRiGSM7xExiDMFCt0vIRQs3ClCFIXu3HyAaNmkSIgZT4sUIjZBp75z+eEmEgWxWUUsNBCFiMvcQ/YzpPKEzj8gziUwz6M6mmEKGKqUYps5Ge5NcifBjFctuQB6x9Jb0Pai368Rizq29HXK7SK7oaJnGbCoS5T47+ys4mkXBLGM5FZbJDL1Uwy42kU2Lydyne9XFFGTcLKJQtDEkAcPWKbdbbG7fQq+ZXIxPUcSMqqFSMVV0XSKVBSSliDt2SUWdMMrovj6kGPeh3EAMI6Qww5/OODl6wa++eAJAZXUFBJlWpcxq1aLXGxEthvi9LlGSkKU5mqhye2uV50c37LaKxGGKXa9iVosE3pyLq5fIzV0mUcgiiAiDGKKQIHeYLV+QyAJyoUWYwOj6CQXbZnTZZxkIxN4UIRnQKKWUKg0u/BGLXEBPFJQoIEh6XA19bu9t8vrbr9hcX8GuVFhEKW6Ycja8wL05IkhCguWSaDYFQ0HPUyp1g64foAkWZbOM2nTIE5U4nNBebSEZFeJcIvb7bKzvkPp95t0UQ9JpVEoUyxaX/XM0rUWhpuGR4ycZFcvkre1VIs1AEE3cwGOxDAg90JIlfXdMZslYkk+auOSihCoX8dOEIBfRShq6Y1EqVdhabXP9uEOfPpaUY9tFBEFmMoGFjPMAACAASURBVOgyzgvsrZQJ85g8z7CsIuVyjUe/+DuuTq8IkymWoZOnEmGYUnAshkGX2XBBSTeJwoz50me1XMAs1Dg+f8163aZeNREkgdHFEdr2LkdPnlOwMwRNJcgE7Mzj/PqSfJpjmzr1gkm7aFKrlzn89jFGe4PecIw3n5L5E0QhYJokXF/OUVWBcrlF7CecHz7j9eWIipaz2WyQeSGqJKI7DrZu0b+8ZtzvMou6pFmEHMtIPhRWBfIooWIWSRWJZeazW2sy9WzmN1eMlxEzD9Ikx9Q9AiVlTRbpxCpzf4qQLqg225Tqq/ROhkiKweDqDHc5IdN03FGIXmrgzRd0w4is6FBr2Dz/+hd89MOP6Vy8RrZ12qtV7uyscHt1k0EaU2tvMpFUluGcPJzSrlQIU42KaXF5c05OjKbBfHxOOoe1kkNuWbQqZeQs5ZdffsYk19mtaejFJrKa4jgaouDwqnuBrEpoloQgFfFClf4sQJcCZpMYV4mQJZtqqUK5bjGezlktlJkNzzi9GiLmAiuVAoYB6eg7/NhBFSOCZIYPmLV9wptrZr6MISe48xmBt0BVQsqbm4R5kf2dNWTN/PU5sFQh9F3ERGdrbw1dEri5uuLp4eF/Uaz8kwBbq1TBabTJcg9vFFJbKdNLoKC5SJkIoo5WVxjddLGFmJkuksYxSpLg2DKSaCLkFv6wTzSPEGMTQ3Qo1suUDAgjjdwoYFo2NUtDMwVEb44rFzAdHVmMyQgJc51oMiGz26haCV1wMPQEL8mxspyKGZGIBW48l+5kgm2pEEW06iWyDLwoQZRkhBQMy8CSFOJcJJVS0myJL2RkioQiq4SLnPlygODNCdwpRcdA0kzkuIsk6giZS54u0SQHUXCQ9BXCsI8UZoiRiqaVOBvGbGo6iReRCRKyraIFCtUwRJN0DKeEpYkolsBs7CJqEtoyx12MWCx8fD/DF2PCJGU583BzCXG5wFJjglSkVq3hKyKSEJAEM5aDmJCIOF4yGbpM3RmiWqWs2xQUaJZb2IUCqqYynmT4aYJTA1UrIKURjpERJAtiUUMyG0zcCeEyo1zaIBaGKGKAkCmEuUFNmxFmBt1oyShJ8QUR1SniKHBxfAXRlJXaR5RaqySLBdVmiW+fx+RRTBgmeH6AE00oqFOuT59T236DRFjgByPC0KFYL2HpFt3ulFbLBMUizBRMISSc+ehuH7nqICoqoqJRcBwSPyATPFRVwilUqTplFMVkNHOxnYSiBUrRAmQePz3j8NXnWKZN0R8S5AYYRcr1JppdRpQVFFNFkasg6ARDj1TJSWSfJDVw51Pi5Qg1comihMCdoeKz0izjSnV8pYguiehShetOn7pVwEtUFqlM6JQR8ZkEMYIUkyQxoqIhqwrSQmB1dZ9wOiRF+3XY2c2CWVil3BB+PZ+qjKnqpGpOoSgja6tEsYRjKhi6DoqOJ+iUqpvEswg3zFnOlqTRgtLKKpmvUHYKxMspmSSgWDZF3eG484xUFNAEgTT2mE885GUXpblKLujYqoaQSaReTjiJWUrPsIo2YSSQJxnpbIySuP/f3piMr6naZaqGhamBkQX4QchyPEdraBh5iCZobGyuU3n0JTdXAwzTxiwXUG0Fw1JQZQVfgqXrIqs2uq7SG3TBEvHdKaJYQwpkgiQkiWOcMKV3eYFjNvBjkTATUIsqkilzfnFBs3mb2SJj7neJ8g7LRYVwOmE6GXB2eUF1dRvZrnDTvyCfnKGqGoZuIkkaWRZjOAZECwyzSqG2hriAIBa4PL2htrJO/6ZIoVBFNDUCYUT/5jVS6FFXHc6FCEEIUGUNxaqwurHB8OKSKDIQTQNZFikWHLwgorzWQtaLDAMfOfUxCwr980sub25488OHRN4EAgXRaNJZxNTsDMFooSQT7KJFpdykVre4FC+wt/Yp+RGaqJEEAUGc07nucvBgHTFwqRXLlJwC8WxAbzxESMAsVACRMI7wxZQbd0Gw8DGEGCEJSEMVIZOQHQc/i1hGIoPBgJQc2Za5vbeJUVrhzJQpF2zQTeJcw3Qc+gufzjxk1dYpWDqVgoNhm/ynn/yMOwfvo1gqUuSRCDDNDRadMbGrYdgCCCpxphJlMpmiokkBp9ddVE2mKAi4wzFCVKFd1zg8viQtCwiSiiT4CBjk6ZLZXMSuVhlM+gyuF2y9t8FiPEcraVycXKJpRSpFiyT2UIQU03bw1BStWKRmCGhyiJgoTPoupWaOohtIssx8NKWUZgwWc8RgzDTTsBWLpgF5OKWoVZgNXcpOiGWoVDSHLEkZjD1aG1uoSxdBkFBNB0WLyPsJw5shS3dIGquIWYH95ha90EVSTMoFg7KpsJQiFk8C5HIFSY6JAp9KvYqU+Mx6QySrjhSnXM8ESgbkQcBsMqZcdtFzC6NUYjZPmbouupIgphEXJ+cMJ0tsw0TRHcJUIBXmBFOX1VtrSEmOH84ByJQCSmIiaxoxKrIoI+cpg9EMc9xDNu+TqwsswSCPBBaTJQN/yWZJx0BgNAvoz73/Xx3yT3JW3vzgY7bu3sepFZl3OvhCkfXbu6h5hpDIaFKZWrvGk5/9FZIBmWOiKWCKIaqTs1Z6h3EYk847CGFEFEVcjDu8+e4H2K0ms0BDFWMqSkRRllBLMZ/9x5+RAdW6Q2Wjhd6sIRsCo9dnmIUyERJJEGGQYO/tcnLyFCt2SSMJNwjxEx9SCT1TWVlfIYxElvGCUJqj6xV8d4QiK7hyHT8OCb0hea6gSBUKhoYOTEdTur0+bjDg9p1NOidPMcUYRUqxChbN9U1U0aRS3UQtNfDdCBWVSsFmPJ0ww6ZQUYlyGbNgU63ouIMOm02d1NzFKTSQCg6JCroAWpoTuSHu8Ij5csQsjBjPIxTDInKnTBMJScyRBYFMcFhb26BEwGLiMut2cQcd8Ka0dtcJ/IjQVslSFTH0MJiys73PcjmnbWscXQ7IcoG7W20yEhwjIY6rkC0QVZlcKzP1Jzzvidxt13DEHEOUQTZZSlW21kxufI2X44jObEYupewf7OBUSozOzsgy0OptBNUh7k5INZmziytkw2a1sUrBslgs+6wUPI5f3RDKKlHaI5rckPWnrG+s8OL5LygKFpCgGFAoyqRhyOzVGZsbBkW7hGKYyLpMQ03pHJ7Tu45ZxAOscgG7UCEaDlnO+jgra1TjOWVTYToZ8JOf/A2T3EYqr7JXNKjYICsJyzhj4oEYGGgrOoGiMx3Ombw+I5dFLKPG8+Mxy0GPfDomdV38VOLi/IqDOxusNpso5RpzVWO6GLDrlFkKCpM0JstVVKnALJcYd/roisFo4eK5U4LlgPH0AivZoNwoIy5fEps2vmLhjW4YTxI+ul9lOp8z68+I5j6CkKNWFWplhZOTjEyKUYwUWZER9QoCFovLAYP5BFVJaDcL5JUmWysl1HKD8uYuhWoVQ5LIw4hJ55Tb2x8ix7/uQxpPeiTLPqQauehz62CXwA3wJ0vqpQJZtkTwL7EKFrNuB3c8Is8l/v6z7wD4sz/8DdqVFophEMgC086E/d0WJzdLKs02miCRuTPqmxa6e8LRIkYQJCqOja3KXPVu8OYBD9/5HpOLQwp2iXJ9hcmiAzLIWpvRyYzMn+I4Eu2NW7hjn/7g6tddYKU2anMDoVQmT1TOz8/ZqG0zmLhcjwYE7pKSZLG10+bl1THPj66JUFlZW6dzfkm6nPDuw/fZ3t2ltbKKbhfpd0dUCzKyUcYPTOJU+rX7MR5T3mpwdTJAU3TSPCNKE9JUZFVNqDXvE9sRkjAgJyQ1mzRqm5w/+QVnL0fUbAtHlZlP5wiWwq2NPUbhnNEyp1Cu0lor8PTmCLeT8O4bu6SxipAaJLHO4TBkxz7ham4TDQIss0phdYXMEpHcMZVbDygU2oSzOcliQq1Z46Y7RStIaI7N1soWlpBzffIN2/ffJw1FVtfXadXKhEnIabdLjsjYjQhdiVs7TSoljTDwGKQRyzBGkjQm85zRbApixMHdD2mXa2T+iHqxiem0EYwCQeqxtr5PZjrM3S6JYaOW26gpfHvVwbbrNK2IRruCUWkSxDbLhcve+g7jhUupUKbVbtHY3qCxtYlo+Dx78YpckFFEjXAZcDWa8Pb7u6RqAV8sMxssmV11yfUmth2y7M+Z+1NOr7vc9Fwsp0JjtQIbFXqn31GUU+qWzrw3IvR89h6+y9PXr2jX1rm9tY8ez5mHGRfXr9nd28NLFwSRS1U22KmoDDQDR18QuSLZQkRH4tb9Ha6ejjl7dYJVthFCmd7rCV8ePsILoN7SCU5PaNk1mqs7fPboJ8w7Oo12BV1PmY9GuMuI2w++jz9xSQo2mi6QRWNEKWNz5wFp7xqlXsQUUxzDQpUkYrdPJrXIJj6xYhP5MkqUUBR9bpYT3njrI9bVlPPplMFgiDRZ4jQq/Ozn3+KKKZu7B2iFKjeTJeN+h6F8i9/40QeYSh2JnCyeM13MSLIS997fxS60CScTvOElib/EHfnYxVt8+90XFOwCLafG9LTL63GHW9WA/mDB+fUl51dn9Lu/jj34rzoDff/jH7G1cR8osNqCV0c+mh5T2F8nVUOG54/xBmPEvQMUH/TE5tatfVrbK/zsJ39LtaLQefb3HPzwNwjkGp3+GKcm8MMf/xELNyCJPIazJWcXHc5ePUNZr7Gx9zab9+7jUSKhzGprg3GUsHn3Q07Pj7m5/I5g3sU2HUqVA56dvODB9z4g8yYsBl3mU59RJvDJ/X1WKxapFFHSZOpaCV+qcP/hQ86nKUsvRHAXSGFIpok4xS2sVZtpd8oiWKIXFTbaDZ4+OeaDgwMCucX11RC326WtStS332GzlnE+SKltrlDZbNJfTPnbn/4dqxsNguefsVpMsLMF7lUHs1BgvSmxiKYYagldcZARSaKIZFri1fAlL0YyfVclFG1o7SN4MUWrTNHSkWQNVVPZrud0RnNOz4dEnkVvljANFtjWAstu85sf3KNZMTGEFD+acjnvczIYU1gOuPXex7y8vOay2yeXVN58a5/g2WekxXWkyRApdMmUDDdNkdMGJ8OYNJ6QhylZKKMIUCi8wX/46luWnVPMcon2zja7jkQYDVmp7LJy71P83CBLZA723+DsusvHuwes776PHPSIJodEyZzLpY/Rd5ENidzYIRarhNESP5bIRZHOq3NS26dRdajnOp///HN2GjP6oUmlWqJerpKGGv/4qyOU+VNOKFDf/T797pBnj/6R2dLnxdeP6D15ztrOHtdnRyzGI37vz/8Nv/e7v8PF42M8VSJRAxaZytGwxsmrnxNHAkpzncuBxvV5h2X/Kb5ns72iMg+vCUcz4sWcxJ+yHIe898MdwoWLmGUE19d4JxdI5gb9NKemZYjTmDCIWGRjgvgMTZcQvDHz/inBzQ29k0u+fvoEzUo4f/Qlb3+6jaWXkRKLQrNNQYTjocJaa4XY0VjIAX48Ro9j/vE//wNFo8qwf8V4OCIJMqLFGd2LIQffu4tWsbGaG1Q399mrC6ys3+O6/5SGU6FhG8hZwMVlh996+Dtcvz5CL1YoWCm25pJnMm5fIJsFZFJG7pikQsDg8CsWuUVi1IknXYZDiYFvcbMMePTNYwB+/C/+FWZd5eL6Fc8eP+HOH3yMO5mTpwnbm9skUsLF6ARx1ieNLT740RtkcUoSRgRuSK+/oG95bNsOuSiz6PfpHj9nmc+4s7fLo3/4BXl6Q8WSqGpgpzdkYcoff/wjYikgKkTIZXBUhd5X5xyevKRtaix9H7Nks7u/hh+5OBWDVnuFW3c2EaWcl4dHhOGcf/mv/w3d0QVPOz16g2sWwzNOXhyyYVb4T19csru2ymQ85Xo85Y0ffsjrr76g2N7ml0dPyMOAnWKZ7XadwqrGcJFTtwwWsxTPzylZGf3DJ3z0B29zebOksAxYKxdZe3CHo8sJX/7v/zdfnn3HrWqTSjRjcPQV9eZdSkaNeHTBTVyiO0noHB9x+uI7wlmXP/3D3+J8MGSajcEMyHIT//AnXD56xe2H9xnPprjzOb/56UOatRaVjSr7ayu8fvmKr58/J7KKpH6JR4fP2dMmGLmIt4yZjwdUbB8ZgXZNZ+J7yIrO3e09RGyEUEJ0BHbqNVqOiJDNuZiE+EKJSaZzM+xgSRkbxTKuKzOedRCmL7i/84CV5jaikDCZH7MIZRq6QLlW5uLkBn/q84NPvkfNbKOvlnhjv0h+/SVXL7+gs4xZ0auk8+9obz5EmC8JvBDfLjKeX1He+oSDnRUG18fUxIiP3zigsL9KjMdgnuNoJsXmJpXNbcqqh6aWedN8xKuOi+e7NCyBH37vR7Qe/hYvn/xHtCjj9JvHHD35htW2Q0kboqlbTJYX3HQ7FB2DH/3GQ9qf/Hf84hcveWujQKtWIY9Cro9OiQSdYkHlybPP2FovoZvQGXdwbzr86X//r3j9vM9wPANvgTDsMe+POLm+oqyHmLlGvFxy3evwyycnJG6GkJ5RkjyUdEGSeGRZzifvb7NUW3gDsO0mgmrQHQ1YkWUuhAveqjUpKxGVpsXmvT3sdMTq3R/y1asnvNFa5X7VwtYCDj7+Ayo7FUajU2pOCVuQMPKMRnEdp76Buljw5Kf/DmlxzU69hqVplA8knj95/GsecX8TZ2OX0CsjJhYb77Q4fj1AtHXUoopITklMyMsFCitNampANLrh5en1f71Y+fS3PmHr9h5hrnE+jtm8v46sakizBeOLCZNZys6OivDiS4pv79Eqa9ycv+Dpd1+zubZN5+pzfvjn/yN/+Zc/xzBK/N6f/DHvffwhX/6Hf88X//k7SptN1pshB+s2Owc/5MvTIQVFQRhOyZZzwnjJKJxQEAWuTkaYjk3ZtJEkmd5syuPPXrG1ukZZTbmYe8xTFUXUiacd/uV/8zEvZyHDUEDJRYw8ZhHN2Lp9gJttIIgxkilirzXZ/fAhzeY2g5tzHG2KKakIoUHoZbyzodCdz3j58gJx2UfMfC4mPtOjzzGqa5RWU9ba6yRLk7PDBSv33mL29V/TUm7I5AWipVBoNUGPaW++T6rXMYopvh+wmKlU17Z4NpzR1F2WEsjKKpqwQRKH/MH7d3n//T+mvWfQ3jIomAqjc59vejPUgoNp5jR329x7+w3ev/8uViMmfH7C58++o5AlrJZb6IVbuMOIWx9u87NHx9iSQclSCdIFO1vvMO9+yVAt42m7aJUVyqZC0E849a7YW7mDN3hJe1Vm76DE9Pglv/Xj32a5ts/V2RW90yMGZ6cMhjHeNOLV60u2ViQarQTkEd2rJ3xyu8yj4wGNdpVelDAIRHRBoyHFPB5dMLuZs7g5Jpq+gvSGaOEyHftcX/b4vU/exJYEvnj8CmNtn0Tf4tN3PiW26gwGXfqvv2Q+OMQv/YA3dsvc3siwCyaaXaOsB1zMXd69vcHKxl0ccw93kfOPn/0fJEHEwhXZVM/YXGuxsr9LYVfmeSdlUczBj1AXMyqWQXnnPqOkxihK0LQSa1aJckVH2XTY/ej7XB2HOIUqg9kco1hic/+ASFTwbl4Rpz4brSKqCu5iRjwe0xvECOKMk8shx9cdrscTEnSWC7h9y6DPOoWVeyiGztNvv2AZ5zT3Dnh5/Euy2Yzwesr102tWHJudW1UuXz9imbn050Mur29orn6fUXzK4MUplqSxqqvYwYLHL0+4uIi5t/su5+cnnF58y2h6gRAbPPr2p3zvx58S5DlWScKpFXAjG+/1IwaCxc56g7IoIGceaSGmKVZ4fXlKEK+DKOKNLjj5+kuO+hMAHj44YKVooYkimSCwbpX4X/7n/5X/6S9+i2KliZoXKFGgvxwgvPkRLx4fUi6s0e9P+OKLL+lfD9nY+oSylNPYquMUFVTRQ0umrCkrCHaVebzg9t4tdlbaXF2cczRJuJgVuLk+ZM2qIUU6j086/Nlv/5hnXz5h84cfIMguWeBT0Cr8D7//Fivrd3ny9JCf/+wx02XK+vYmwWCMsZyS5TmjfoQULBD8AY9eXJPWLD5+/z6DKMAwYrYbEmow5+GDd/nsr/4tH3362yhCyOXZM5ZhwDtvvcns5Ir+IORqsiSRdFrOOieDKebcp1UxGEhzTryQ2dSiXUz55Td/zXbtgOraKnpJRsg9XpweY+pjfv+3/4zzwSuuB8fEKtT219Eyg7E7pCKUUfMi086Q0eO/YvetA75+fkabnLWKQqEo8uS7J7w++gXLoMzLS4ncaqAbDrOTSyj2kOoPaBsGUSCRGg6F7S1uzkUWw9fcee8HbN6poMlzphenNKwSn392wmQ24ujJCyQxZvtWg+n4hEXPp1wy2VovcLn0eXo54IOWzbPnv2J1p8lf//QlV56AXipQDKbc3fsxj5/8iueHXyIoJlLu8OyXz8hqEr/86t/z5OuXdEOZqSzT6x3x+Vdf8Kd/+K/xFznD7jHuYo6hmOxu5Tz6279EctbpnAwZDRaEecKdlkQ2UhnevOIHP3qPve0NwmnAF1+ecu/hCj//fMCvfvoFN8eXuEFC5Ii8ePWCr06PWMXFKu8hlfcJI5+dD/6ERCpjmlvc29tjtVLn+mjCoPOMo8sOrz/7OXK5jrNew2qIbO2+wXH3JTt3PmV0eIZ7/B0rBZet7z9k+Owpr6/P6FxdoIg5xVYdt7nHH/74z/jHF19x+9491m7do9TawTEtVodf4jz8feLYZBalRKmEE9l8dXTK5t032TtoIGYZ/d4NI7fL/sH3CDSRXnMbWVaIpz0uzg9Ry00effZ/8vG77yAIJc4WPsfhnHCUMnh1QrNewzBVoiBmOc/xEwM7/JKVN9/mpj8m08ApKziCwnPf5PzwklsFn6Zp0Sw12NkogtGkH+ZYjSKyY+F7Aao/489/923+3d/+PVW1jL22xygWePrVP0OR4Vvv/5By8zbBEvTRDeXGDp7bYzH2UJKYoipyPZN564OPkQkZducI0YySFbAQI3JPJY6WvPv+73Nw5y2SLOb580OmXhWj1gB3TBqAIJWQNJPHL5/woGVw1TvCKDuUayXkLEbVVpGrNeq1BqI3JAiX+IqJpsdsrG3x+OkLVpoWuiownsxZa9So7z6gVtOoEiOmHp4kozcfsJyZ7L6zwcMHB7zz7lvs3LqFmMmkk1NevrzAEcA2HRzLwFZjnJJJMrqm3Ra5e/c2d944YGffwrZXuT4+xBA7yIsBaTBCdgLqYp+vf/oNlXYTL1WJZmOMcErrrT+g1z1Cq2wTuSqKVkQ2ZZ786me887DJ09dDXM9HTEUMo0J9623KazpiNOPbo+9wey6Cq+KKsL6xwsnxGUKuYaYGmZ9zNZ1ijk5wFZvcaRHOFwzGMyaZyIYxBcFDziwCyWQRO6RekWI+4mQa0hkm+K7EycWQV5d97ty9T8vM+Pmjn2Gada6GMZ8/uSDGpNyu0NpcoWxY2LKCKAjkukKjIJC7HtXmBrff/pSN5j6Ll5cscpP+0a8IW7uo0YiaEVJcb/Dy6gxxClES4wkCeS4jpxrDQGQ69ZlOr/AJuBl4jAeQ5w5vbTXI/DFHr6dcH/WYDhdEdpNE8qhLNqPLGE1M2Nkpc+vt93G22tx8/S2/PBuiaiH7zYRbJY+DmokxvWEcBnQXLrPFDDUMiDoBo+mAtrpNLvlkaoClitySx2hqQhS5RFqCUDYp1lsUFQexvUrRTHDMBlJhlcBZQTQ2EZobZILA8ekV16fXhL0+0qLHd8+ecX15g2jpiGJKngQIaYgt5EycbXY++oQ0Uwm9hPW1FnsCfPHl33D/1gPITAqlEm+9t8cynlBefcibH36Mjk2zusHO7Xu8fvoFFVtic+MdxJJMEIWEroC53mTdbvDo9IaC/WvIURE1LCWm0DYQMw05fE3UPUNMYffjB3z5y2d4YUyr0aJeLaFmMDwdI9sGp1dL1CxhMPeZLCWSpMCrq19T/bvvvMe9Nx6iSTlX5y+J1j6g9+wbktYG/XEELCjWA1JF5+/++m94b/0Os3mI7SS880aL+/v3GITXjJcl4v4x4WTEZOJzfjFiY32fq2RJpaiycAccdfoMoha1lduUK3Oat95jbbOMY0WkoU9n+JQf//ZDvJHB7kaJ9VtrhEqJV5+/4N/+X/8bD966R9kOSJMAdylyd/M2346u6J/O8AeXrLaqvPPOAx5utfAnS9462Oblt1/RHVxzNRrx2T88Ytxb8Cd/8UdkowGBm7EMBK6OjsjEVc6iGU57gzDOkSQLp77O6bNf8N3jM2KtzGzgoycK2+0mVrPCN4d9FmJKp9vnu8eHPDu8YK29h5yb3EwuuHfnIfv7D5DkMlcvb/jxb9xleDGisrmPs1pF0iHsRbRXFPTaLg4ZF1dDDk+GzF2BxvY9ehcv2NlqY4o+iT8BUaCcqeyv3gLNoF1vksoSL0dDPt49oPnp+1yePOa6n6CLJW61V5jnq1x7LymaY/YO7rG7v4VlQf/EQ1AsalWVi5MZ/mSEnC85GUOglCmU1xHLbWzLwFAy9IZD/+iI5y8HqKaCP/NIYoH2wT519zWBUCfLQm7dPmB7u4WjRRzsfMJqWSbxDfpJRNxYRV+7zeXPH7G6LeMmC6L5Ai1doIljUsFjZDe5s7vBzZXL4fNTgsWIT97aQzEUtjc2efOtu6zv3sZwGkgZ3H67xX77baKlhVWxKZYT4mmXPE+oNcuYRZ1vv3pMpzfi9kfvcjVI2N8+wClUCAKJUWeANxzTqtR5eOse3z57wtyxqd55h43b75EpGbtv/SZbzQ1iPcNstBG1Ct/97CeY7TXebGvoWkaUpfheyPjmitKPPiDtPCd2Q7JIxjYrNHZaPPn6cx6++RGPn76ke/aa6eUJw8s+Wb1J2hlx/OgfUFOTUrlKoSIyF3Zo75V4dTqh0/NwHIf11Rp/+dlPud9eZ+vBR/SGYxRbYf/eBjUx4JcnZ/hZQmmlylZrn0Zhl6hpU04G6EqZzc0V5osrrq+fE0UJ3fMvOO4pVOWAui2SK3hLUgAAIABJREFUBENevXxEYeUWy4sJLgWW8xlXx684fv3PkLOyvrZNu7lCq1VFlBN64xtqK6v4s5B4MkAOBzilHDkTGZ9dEM86TNwBXp7wxs4G2srb5KSkpAhSThTG3FwNaa2XKK2UaDcruHOXy7NTrjtH6OZtTEti784d6hv7KJUVskIN3bbx5jmD+SWJ10dMQ8hzQh+y+iq5kGFZIkEQ4S1S2rbJwRu7jN0EKQpIBJUAHcntE+plZKeJoiokksw8yLk5m1HxOxh2ASFNyTKdLM/IsxuCOGQWxEiiTOSBJspsrpQ5Hvrsr1UJykW04goFu0BBTpn1lox6Pr3ZhGKzhlVtEhstrPZbzN0ILTVJs5w0C0jCKV7mcX4+wSg2WCYVpFINu+WgiDHdyZCXzx7ROzumf9NnMJuCmlPXU0S9Tq1gIuYhUTCBeI5g2+xur9KqSKiKTJyKTKcBT4dDNHONUi5x3e2gSz7v7dcpVNf426+OMKtFvGWP0FsgJhLebMhkdsVG+y6u75HmOabpIIgZ3W4fMp2VzRaRkDD1fBTNoaQm6FKDH/zoh6ysrGIIKo5gcNE5xWiUkOIFBVNHUXRm/cn/+znmISQJBT1DEQRmSxhMZgy7VzTNjFR2QLApmiWKVoOVNzd5/eIF426fwc0F06VLffs9PKHB+vY2imziFExqzRq1lV3GoxmtqsySAHVxjTDv4gkS/SAEpcWz8yN8pU5GEff6BgyN7iQia9+CpEdFjVmtrdAbLbgcZ7iTMaqZo0gieSiTiGWQJaSiQlpYIdRqxKKGYaSYushwOSROFNLIw18OmfUDitmMUegDKlkiICgKakEnJ+K9Dz7BqBh0LpacH50y7H/ONMoYLhbcuf8GoiyjqhLlooVmWqy2SrwcxGzubOI4GvNBh4d3N+nFFRazIf2zQ8Qko9Vo0FYChFRga7NFoWSSaxaqVWR3pYgSnnMx6BNfnRHPlqSSRFpSuLy8xJ3ESIUirdU2tm0yHM3QZYuulxHMMzLJIkxh0L/ksncBwI/vv4GQCVx2ekwnSzZrOwxOjijaIDo2kmoSLTNeHl+xjHuUTJOry2vc+QxDUWm0N1lpr9Ib98gWE8rVNVqrB5iCztibEgg2opDRaLaoV1sIcUK9ZJKINnJ8jTu9oTeeMYlEitoamnfJxdEpZm0Vu1BCTaZMjRLjoUt5+x7r9RobKw2cks5N54Tmisn+3i0EZEynjF6oMBUELo6Oaa9uImQzDEUjTVUG3pSddo3tgxWenM6YLZfIQoRSKNBaf4Ngdo23DFG8BTY+shZQq9kc3LpL10tp15oUNZHR4Iy11XWuX73g4w/eZ6VZp14vs77R5u72HW7trvP69AVtx8ExBFLJw49jfvDRAxS5wOvjMybDHnIWoCkRuWZAvUxvPKcXaUiVNvdvr1FWPQStzcHOKsPxiPFwSMPRKNXq9Gcxi8Epku0QRD7j4ycEQkw07XHRn1GxbdIw5vh8gCglvDh8RtNWyCMRKYMsynlytkRG4PatHbxhHzn1qToajYrGy6MrPv3wUzx/gZ0m2EnMoN/h5TeP+N0/+SOW01MIQmxZxREzuosuiepwd7PBSrVG7IfcjGY03vw+/cvX3AxvyJIEjYw8mDIdLRmNXSTLoKHrWE6B2CwTBQbTzjmxp3B1dEGwHGEXRAprVaRCHXHximEkoRSq1KoV1CDB749YYJLORwyWM5ZpTK1Z4zQqU3Bfcz3o8vr8jPF8ShbOuTn+hrc2dxhMzpELJsVmlUq5QNSd83dfP2VtJUErtrCLRarlmJK55MsvfEpqzvjymnGnS+TNefPWJl/88j9jKjYvzo4R0pSCoXMxuuH6ZkLw8hSx1CJXUmQpoWhUWQxjpr0h9VoD2RCZeR7DbsTa1jZvb60TTl6BqaFaNkVJx7+ZorKk0xmxWIyIwjmZ76HMAsSmzfUkQeqe4g1H3Ex9nIKKMB+xtbaFKGgsZiO6/Qvmo4By2eLLzw/Zsn16PZfBDA52azitFU57Q3ZaNWaLnP4kQlEVzi6vqRZaLL2Yar1NEIY8efxfdlb+Sd9AC2/BYHiFbkhIWoH5ZExlTQElJ1cgCQWMOML1QnrdHpIaY9RWMMtFpEIJK69AkqIKM2L313CobUKpruG5IySxTqYouHmINx+wd/ttQkvGWtlF0iziDPIsYzKbsFy4zEd9pPmAcD5mvMxZilXyxYxGu44mpEhuimkvcYo1VC1D0R163iWJoKGXC7g3Z1glB1lIGI4jlq7HfLrAd32E5QJFK2DqBUbjCXGyoF420DQVEZ3YnSCKOQQxw+sli8GY4t67SLqHZRQQQliMFkxCg9JWi+7ZCFVWEPQCvlKEMGMWCOhZRCbEBMESbzEjj0SmvQHmZpNKq0GUe8T5AiHPcK+veXF8ihyMiKKUTJApxiabhQaGpqArMUEeoMsyO2st7HqNJM1JoyWSbFFtVJCtgG7k0u1HmBUDVUoxtQTLisjTEGSZZsHEDfuIto5uF+hNRghaxoOaRDdaIiGg6BbDQEKPMsYX55QbBSxNo2jZ+Gisl0sI21Va9VU0BEJSjHoT8UbFVUWqsUcSyaSKg5hqRJMpFSsjUhQMBcIwJ4pTxCwiysGp1FgsBWRRoNGyIZWYdK64uLxhNpoQBAmG3cDSS8TOBpmtUirESFmE66a4p+eUchNz+xaBEhPdxLhBjKxazCMBQw6Rim1S2WERpIhBiLXuUJtXWaQ+eZiyEBLG3pSe7zHP/h/W3mtXsgS90vu2t7HDu+Nd+sxKU6a72rLNsOmGRsMBSA2GECAMIOhWj6FH0L2kCwlDqmfIJttXV3d1ma6qrLQn8/gTJ7yP2Du237ooYXQnEhi9xMKHf631rxLyrMu8lyKkInHJQjIzFFMFWUMzHGQsklTAVEMmgxm1YgFDtRkKMf7Sw+/5EMdougSJTyoayIqFqUcUKwYaX+6zTK9Sxt0+CD323tikGa4hqBmOmUeIAoLAJ1UcppM2ebWIIEmIkkDOyNB1lVrRYtzvEIcus9mETucCpiuq195i2j8iLdq4gYA381DEEUoakrpT5p5H5EfIywnp1RmKrRLFE6Q0IllMSWwVq1RE80UyMYWM/2doMsYq5P6LbqQzj9l4Qihm2HaZcDyl4DgoeopuyDi5HCDQvrgiV5CZLGes4hmpB+OpSSmRySkKm/Uc7ZnFdOEjyi7rjQbHkxdc377H8cvHJGaEXSqSmSKjq3OyYg27pOLORrjeCssu4UgSCz8mTZeE/pzUVZGXc0YjnzfuvMNw1GFru06jUMRYDHn6uMd24S1cd4GWz2NaFtHK57yzZOPmHpNRTKm6hbkKSLMZtUqJs26X+ysBq1gkTlOyUKJYU9E0hdj3KBQdZMVEIiZeDghQ2L22w29fHyFGOioJ7mrO5Oo1D+6tk1MkrKJDiom3nDMYjdBKB6SqjbuKWMQTOrM5qm4xni2JNZOlt0CI5+QVA6eR48XllJyiMFhMmS0lirKKnSsz7ofkDRk/DBkO5/SGC1TVQBFUrjqn2Ksew4JFkqSwnNOeHLMjbGMlFqaQIUoCvmZiGCHuuEvp7rsYVo0kTGi1p/hRzGAyxXJsajWH7sAnzGSauQJ2tmR+fobotVEUnTTRcMdzVvM5BcMGMU+hYGBJKktvwiSRWVdUrm+t0R5HXHU8hMQmdD1EVScgwspioqXHLE3Zv3WDn/ziJ2zsWdSLBWJEiDKy2GD56imxL9OdjMkXVBRDZ3DVoaI2Gfc6pLpOEgesEh8lXPHi+RG3vrtOIIoslwFCmCJULcREZtS7IJBNrIJMEopE/Q7ZcoDrRnSGU/LNlGIxR9HeZu6dkYigFfJoegXLstDMFbLgM2ufEtT2KeYsgsAlk2Bj7x7Fz39Na9RhtEopFRJUFUrrGzx79Zpy3qE9HLO5lafZLGEYRTS1SBD7ZOkSP0yIRYNCzUELAqZZws76Fgs5jyDbZCG43im5QMKQDVRNJM5C+oMeDadEvlpm6ikUCzbD9pzeZQtb38WxbXREUjSiJEKMFxTyVa7GY6KFS3sgsvBFQkxmq5RStcnORoSiisiySKlQwjYMjk/7FJsmF49b+MscaRT+sxzyL4KVzDLpLRb0Pv6UnevvIItNuoMJiugjOiZRXMEdDtCcmEAIEawSB3sHrK81eH4+Qh71MNQ8ZSclCCf40ZJ6rUaapowvjpgrIqGsUtzZpLQsYlk9RGeP1nSOJLiICQhJxmTQJ1ViVC9iPpjSbrVoDUOENZFds41Zv4Ou5PG8AN3uYtU2mPsLatVdXn4RISoClXyezrDGZq2Ors04OvMZtaeEixkoMSeeTxwJ1FQZMVsipnPy9jY5XcXMQubBnLWag23pvDrrsrgc015IXNMDpOhLeOrPA3x7A0WY0wzWkNAIvRRRT1AXE5bDK8xCk8CbMvUWTGdL4qs+Tt7npD/hwb0qq+WSdmdEoqtIk0viKMaPY1TFIItl2q0J4e4GSbQkMwQ0U6VcqHJw7TY5VeTy6pTBckJeMyiXbDaqNl9JQj55fMakuoWZzyMScD5ZYgun3NrRuJHLmGUllpJGZJskuo4gqgwGpxAHiJKM73tMvYSHt5tcXF3ROS0gBxFbTom55XD/xgaJo7KaRhB7hHJINw1RmhX6zz6nUmsS+B6aJFOtrfH6aZvr5QZTxyDwEuJVhCQnVHWLWC1AQSO98kh8iDKRwHcZfXpCMF/SGQ+w82tsr1/DUVWytQLD2QjJSZH9hHl/Qr/7ioePvgmJwm7VYZEvE4Qykj9hOQppexesbV5nOBoxm/UxNAVDCdnfWuN5q8/SSzj3IqbxBXoGZsUhdQ0WQ58QnzgXUMligsxBTnScVEQyBVLNJE514nDCTqnC0HZJww3cScZkOODZeUC+VkESQ2RRJEPFjn12mk2uLk5QNQUxEHBkkcw6YGv7FkF2ReyvyFULSJrMcjhjgcnV2Rnf/1qNZ2dtojSkubXO48fHXN/bx1zPUarnGY8CDo8Oackuv7d9jQ8+/IjajS3SzGbcnnPYPeTgloGTKYycHLNgiDiZUjS/BKk0XVBSZOJBF9eVyBcbJJ0FQjDAyhWZT8eIqs7uzj6896VunI3H3Ll7k2ajROb6dPpL5FIeqZxHSRIKcopWklm5Y+r5OlKi4VRM1CwjEyUGbsx0MqRZLDDS51y1Thn2znlw5z6mGXHzWo2r5wnd4zOSRUyjfpunLw4x0pDd2z9AFlSUUYtUFUkmLwjLFXI1kyya4vY94lGEf/aSgz/+d/zi1//ESH+IxTqRFyPJOcYziceffMj27h2aZQcxWDB+fc5bf/1tpl+4hLZDqiywrYidYpP/9Ue/4Gv/SmG75nBJymgsYwsJKktCUja3akzdDG+xQkt9Pvn0MXZxn1HnnHNvSbVe42B3g/7lFzz8zrf4+Fcv2VVvIckprYszTtsLDmdgaAazWKLb9zhszyhbBZ4/e84oMFF1GVMU0dUYVbUZzi5IrxLi2RJpEZGEHm0rYCxI7Ogtun2VxcTFWyacTmMWLJmMLrBkCW85IUghEHRUVaC8dYDDlFheYVeK3Li+RZYO0YUVdmmN9Z2btFp9Omc9clJMZxGzin2Ka1W6oc9Vf4G91Kjkcxx+9hFSKSZwKojql/9fnFyZ5797SSI0KRRFVClk6A2xEoeiZqFpGu3pnO48Y6dUJXj1guqtDTzXQAm6uEGAG2t8+84B7338U2zBQlYLCGmAGftI9QaJYhMJK3w5pVIo4BTqTE9aLK0pg2HGzS2R9mjGWW9CTpzybDjla2WbkyOBOEgxUp9hf0CjXiTAplSySQsSQiyzkQJiQi/WGCxkUHsUyzpCeZPCbo1vrq1zNh9T1UwKdh5BsGlNFmw2BKIsorFTw6iZTEORhVThK2++wy8uDnGKe2hWCcHQ2SlvMwrGXNte44c//A0b63k2d64hauv48SfU99Zo9V7gLhRk2WLjWoVwNeWXhz3erdWoGGXS1CSMA0JHQzY0SiUNwSzi+TPccQvRKbNTaKJuFBmMJPw0oRp2cac+iubQH82xKzmqdpmcY5G/scvff3DGxnqJnqBh2gk5AV5eLbiRDLm+tkOre4RlKtQ1BU1SsB+8hamcsPAmqP0Ud9L7ZznkX2QD3X7r98lZW0wuRzgFiXy9RiDM0GMFPPA8l0na53c/+THfe/cGjbLFtHXC5fPHbFUKXI1hfX+XlycvSKIuBTPCW2qMLjsMMovmxg6hpGI5Zd6+/yY//fSMUuJy/uI5s/GEpRvjr+BmwyZVZBJlQpAYBEgE2ZSr8xnlZp5YXsMomqyCEfPpiO3rD5i1n1Bv3CGOA1RJIJxPOHryEdfevEvv6DnR4Ip6WcUp6hy9OMTe2qPk67j+S9bWazTrG5ycPOfj311y1u3xtU2HlZIwUVPsSo6fvndK4uSoiSuCcQvHMrnz1rfJpAIvPr9gXriGH6nIiUNeqxMFE6TeM2ZTn6eHv+Kqd8Z85XM46hLaOngxen2dxvYG5XyOJx9+xuunv6OeM4nSEKfRxC4UmXQukBSZb33vO1zfqlFwGriLhKdffEZiqtwo1kicBDUOOXn+lH/48T/gNCu8e73OPI54eTRisUqpbVTQG5tUBp+zpruk9VtcDCNOn73i0e51to01OlYOW1UolbbJOZswP2MwP+fZaYe8olBf3+b6/Ud84817HOxsMzqeEEU+iTBhEfZoLdsM4xUb7S5zGTa2b7JbKSDNn7LUgVgnQWI2C5ktYuJMJp9rUNYLrGZddtbXsJ0CXhxzsKmS36hjGAYRc6xCibX12+zv3OWw85RPH1/x/o9/xqp1SkWKUbQCs4rBVtQCKcGydRxVIBlPaR0/JrYecvTqN7jTOStP4bKXcDlc8sb+OkFnxrDbJkwSirUdrPIBRn5OLm+jUGWxDBjPr6g2mvTnkF8rEacqYqYRRimfX7a4XnS47D4hdhU0RUZUfbrtLu3xEsteJyWiYhrUDZUsXnG+mFOtbrKc9LENqK+VcRp7fHpapSroCFFCMp0grBaYOYfC9k1s1+PlxTmNWpF8tcEgtonSiFZ/hV5tcGe9xE7dQTc0zk4GfPSrv+ff/PXf4MxddFHCrpUQlYRnHz+mWtym7DiEgynhNKCydZ+FYZNdXrJQNxGsCpZjY2gRJ60Z8uoINV/BalQp2xbicMJHL7+sLhtOxvrt2zTXt8hJOv5K5khUqbsR48MPWY07rCKRx2dtHjz8HruOTihoqEIFUy4TaEvuP7jG5z/6zxTqEvbaAXrlDpqk8ssf/ZB+HHD9zgPG85jJYsXdt26yf/OrnJ6CvSey18gjRCLvffycq1fPmHUvsfNvMFgItM6uYN7nP/yHv+SHv/gx48kKZZVjOYsZLCMEYYNP3/8Jjx7doGjZeGnK1XLGqPOE//jTQ/6bH7zLLz75kNHSp9bcplmtsPQnpFdzLtuXdIZnDEZt+sOEP/nuLbRM53Qy4cXjp4Rzl+0bN/jg2Sfc3a3TaUc0qhZv36nyjTs1REHlk/desa4nlGo3GIQ6l/MJ79yr8NN/eI9g8QphNScNXGQhxnZSmnmbk8NT1KCPaRnEOLRf9vnLP3+IMo1I5jkO9t9ke7NJ//R9Hj68ReHmO9Q1H0tSsXUNXZrydCJC7KJlZazSAWGqMxyNObj5A/ToNbXNBkbeBMXBTy3ieMbyKqBzOeLZq3PmywV5x8D1Aoq1WyxPzlnf1MGUGC7mtI8/4/Fqhz/6mz+g86LL4bM2V60BWhJyGcrc3jG5u79NsBLwE5k7d/dRJIcnQY/V1OPGWoP1Rp2zWYgjjPmHf3yPXreDULExckXMUGYUTnhQq/LBS5dFlDFNU/oZrCSLSiLT768oKS4P9x3u37uOdedbjJMxymUXM51RatSwnQJHn/yWzb1vsRIsfvZP/zureQdRt+ilJaSVxf7Nr+FZCr/76CmzScgb3/8DXMln49YWVrJCTVWyKCUJZ5DY/Pb9p8TzJY4ZIwRzekdnvP/TX7N195t89vP3yEsCWrgAf4rRXKM1tEjlGL91QrFcp7h5nVn3kGvBipJZp79YMndVIgpsXN/k9PUrfnt4gjztcG+3ydrWPmduhQEDLDHi5OwKL1mRz2ns14psFQJ6wxYkMeeDOXFms7V+D9Esc3H4OSVhxu8ulkyzMmvre6zlI2RJx3MNkiAlzgQmMTy/6PNnf/LvuJg/Y30jz8G1G1Sa24znMybhEHnp4voir49fcvb0MeJgxtp9jXlH4KLd4eE7X8WwHX79/i+B/8rMymoyREsn7G6ZjCczJkOB9d0aObuMO4m5fHHJ8OSY7377W4j+JfM0QCuUydfXcJM5zaaMn2ocNPbJN6/jWmUW8ZQ1p8H6/a8imAaSAf6iz7Nf/wbMHP3DV6jpilrRIV+oEutVhpaNFHWo7mzjlPYpFNdxnDxLYqazLUxrgBotSIKYVWTQOY/YqepMSyFzz+PiaZvJyYw/+es/ZTiM+PHf/SOTkc9HnzzhyZPP+OqDTRr797j65f+C6yoIicxqNcf1l/z7P/km0wTWC3nqB/usbVyjJG5Rvv0Dxu4lb+6X2W3kkRK4OB6higrr5hK7qJMfv8DGRS810SOZX50/o3X5jKupyNjX8cOEHDFhqHD39luIooeZyyFpOS6OX1MpFKg2q/zpH/0hlq7ByuX3HrxBpDZ575d/h5q4VKo19g+22Fu3ef/n79EKV1xfs8jbKaX1Mnv3HuEOlnz4zKXfGXLzxh6P3n5Eudrk7Le/4ZNuwP7X/h0X3TGqrPDw9m3WzBWv2hFOdsy9B7dZBTGXpxfc3NlBkiTevH6Xk8sVrfECLwoQE5XPf/MZsjDk6PI3TNKYRC+iiwLT80vqOwdsWiJOboZkTMiEjMXjEEkvMPFVXE3DMlI2RY9EVHCBB3du0ZtZLF2BvJwSL8fM0hwfnYbEiYLsyyRzH0/wWI2e8PSDX5GNOvQ7J/Qjj63v/gmKmqOVXCLm8jgymOGKyE9YWOu8+PR9MqvBZCoQ+iG1dQul8gAlvkS0CtRkCU20GQl58vkBb1/foh/k2LlbpLRexfOL9HvHNJrrzCKRYlHCVDIIfDTZ40owQTC5GGfM+23SZZe4XGQcuQzaHXK1HEEaMA5chFKBBw/v0rsSKK83iBMTzaxx5+07rKtj1i2dmbMkTgM01STv1EgnU0o7EvXiHp3hgl6nheItWC/eZnXRQl6/z+nTz4hThc1bb1G0NNbyEv/bf/w/8CiA4aFKF9hxnudXlwy9FsP5iHy1hLmxw8edmPjsFVKtyB/ddyjlfAbugoteSNMosKpeY3LxinvX3mB35z7decBvf/flaeWdr3yF2eCSydUlkS/xy6cnvLO2zqNb2+zu7CM1thjoOnlFgJFMbGRcdA7pTQYEic+mMecXF3OCQUrZFplEUyZSSP3adcRgjpmkjDSB4eKcUecZp48/QJP7vPmV2+gLkeMXU04Pz5FGR/heyv/wP/3PPH78C4TZawpllWx7m799/7e0gk3e2nTItBKeVkVQ85iLY7737gNaoy6pZRGOI6T2inv7azSvldkoNXj/kxcsh11KWszazjaXlxnL6AnXHj5i7849qo0qWbpEr90guHjBuOdTcurIusF554L/8d//AbPeGbffesDO/gE5pcr4IuQfP/mI7XWL/iyhPRLIoXC/oDP6/Cl3NlJuXNugHaxxORURswlf2R7z9KRM4HWxdQtfsRFyeb5+c4+f/W6EkwtIKgs+P/qY50fHbF37Fh8/jeledHnyxTOqO7dR8iV+/f6P+cPv3iU9fMzNbz+gcXuDje0m17e2WSxaBCsJMpfLp69oHV8wmy1RhyVmVfj9H/w+5dslrIJEWTN4540HVCSXczzUwjWePT3j4/feRxRU3jrQOHr/Q5yiw95WjoqV0up7/NFf/imr/oJXwytyzoKNhkYm1LA2aoQXP+Nm0WbperT7LcL5BVUxIJd3+MM/+9fUZYPVwmcia5jlA8bBkq8d3GYhTrEKFtfrDc4+/TuOnvYp3ihx9+EDhlOf9z56zlIw6R25PNrb5OPWMV23j6pMKeVWeH7A1x9VkCSD0GkS6XW27HX+/N/+GcePf4SVqejpCitLUTyTg3f/FfHLz3l8fMh01MVQDKqFLQaf/o47D/a5fvMGqn9J4nWRVJWis4MtXuIyYqe5RWn7Flp9C//oOV7rkLe+9wBP3MQbLxHmAzbuPOTX733IF50SN3dtao5NtkwJO1Nuf3WHfE5FzGSeHJ5yfnXMnT2Nd3d2SXI51hWHi5M27UWAX67xsx99wvU336agCxyUDeJFh6cvfsN+Pebuozf4yT8+IfN9VCVkkng8nUtcs1Uaj66xzHREJSJlwLPXj3nx6jGf/uw12/t3Wc3GfPyrn/F//u3PUMvrvP+f/hZV8FhfdzByBp+/bvHhp1eo1YfkXI9J54KnTz/j5Pzsvx5W3rr7PbbrN3AXc1YMqBebjFMTxdS4OD3i048+IjVUlMEzJLOGL+U5PF/y6nWf3ZKNmObIq23OA4sUGUfRkHNbbN98i988eUl6fszg8COmvUuM0jaBLnJj/y6F9Tq+pLKIJGJU1OyC3VqJXjvidLpiiIxSqHF7Q+P52SnrtS3cMCAWRTTDZDA55aDZxBMbxIses2mXobvE9QU+Pz3n6Mlv+cr33+SN+weUihWedeHoyXNayw4Pb15HlCKSaMztmokeFVFLEq9PX3BxesXpUZuXrS5msKAkqqwVNRo7B9R2b2FV6pyfnxNVHDqHJ4SqgeyIKFmL6aTNZyd9ep0l8XKMmMxJ4hXLyRLbTrl8/BmBLxAKMn4SorpLhNEphfUG/WGffLGAYdv8/c/fZ9w+YxVOaVTexF3MGHQOyQj5b//mv2P95kMGly1GC40gtUmThItuwBvv7jPuDjk7ucQbXlGSXBK9wDd/8N/T81q0zg4p2Qp721U6rRd4KXz1jRttVmMIAAAgAElEQVT86lcvyJY+93fXSFbQjxTee/Y+tw5uUklTbG/JnRtb1CoZ//TFL5Bv3Of6vbfY29nENEAeeTz1V+hxSkFU0VKD5UphsZixsELO+yNSL09OLeAUNVarHPs7Npcjhb2qTMWBVZahlou0/Te4s6ujBC6GBrqVMRm1eWN/l8efnjCfTjF1mY1Gk+31bZw1j2/deIsCK06OTvns8XPap0cs4iVCJOB6CaV8jULOwJudMGmd0/UDHh7k2Htwh8rNu6Rqjg8/+JRMTNm89yZpZuLNI7I4RDZtLjpdNksK89kA153ghQHPexHPPviIV2cD0myEFC9RMom83WA1k1kGl2iJQiKLaGWHrY0Nrp4+o2CbVAouQq7EQtQZXJ1Qj9v84tUANZpQbTbwU58vPv8Nil7ArO5w/vopmw2NSqPAMslYHD0msA5REw8ym8ys4UUho5e/Jb9To7p3B8wS/nJK4HvEm/sspS73igfkKjXU0i5BqDN9/SmNfJ1gGXJ+lhB4KkKSMl/26U4tgixH4+4fI0oaSRYg5Qx+9pP/BMBf/dW/pdy8Q5pYJMspd28ZLMYhtWDJxyevQbW4u75H68XHfN4+o8iEtc11Go0DClYdEWg//4K/+Nd/TLGxh2rYKIGHe95i9/Y9FoseDXuN+Rgy0eSN+wckfZ/M3uVs9JxizUK3VLrjIe9+5x1+czrn/OqU7evvUq7ts5gNUQ2R79eW3H33+4x7fTRpTqUu8uEnT0i0Jovlgl6goJoS2xs2ldwmJ4su+5t36SUuqpxhKyqppXPeesw7d99Bmli4x2cEgw5WvgFTm0i54HIwYW27gaLEfPjrn7OYD5DNa7jPPuLxk99xNmqTaNB53eXmjSaj5YC1Zp7Y9jnLRuy98S5z8wYbOwdo4YibTZP9rS1+9nGHstFArBSwGjkSOWI4HfGs3aMgnvK97/45w89eoQQiWxt7rK9tIShXHFR3WW/WaHdOeH30GkVf5+6NfWrFJsc+NKw15PmUwxe/YHvvHnJR53e/fs3dmzd48ObbiLkyP/zoR+TsHBY+7390wrCXkTer9Nwly8hjEcSkbkgpr3Pv7gH7G9dwXQGnksM26ixSkWkMOUzak9fEBtR2dhmdDHj6+UuO3CFlz+TvfvhPeIJJUqzT2LrFo+tvYW1UuHf/O7hJyovjU3rdCToycV7i8d//X9y4f5vwakgwnjJdzRn2B3znK29TsgwmnosrGQh2hVn/kv74nOG8xzsPv0KtqBFGPnblHTY2rjGbCMx9hY1inp1ynkhS6J0/5aQ15u6jB6xbRSpGDqtqstnMc+rHfP+rD7jqzJitUvau7VFtrrEqRkwGPfzCBt2owPnFgoopIktFHn3tXS6uxnQGE+LVknTwmvxOiYJVZTgdQ94hzdfpXvT5vW8cUCuY+P1zGo0G+WqVz54+J9AlFrGE46hYush62WG7XuEn//kj9mt1fv7pc3TbwSSg9+Ijijv7RLOQ8cnHfHB8yUq2eHT7DVauwD989AFbt3cZT+ZM/YxEtVDHC3LqCHcywZEHTM4OOfrsBVES4SYO9+9e5/YbOyzCGElz+Ivv/x4/+tuf82f/5ru8vDrBrjoUi2VST+JP/+KvkJbnvHX3OvnmHr3ZiidP/n+oLm/ubaIWTJZxREWU8NKMcq1MvBrRuzpj0m9TyEYolRzG+iaemxLGAoImEYcDQsVko+yQJiK6mcMq1dByDv3egL11neV8RqaJmKUihlNGlB3ytsxwGYCckc/pNIoFGs0SU9/GXQlYsoiQSYxDCdU0qG/u0r24xIsDosBjNe0znU0REonq3haHL58yumqjJxmilCKlC6bTKeV8mdCd4Lsj8orB6MWHXL/xdfYKIkIaMA9UrpYlXrZbdC4v+OY3vsJmDnLZGMuICFAw5CrSlollKEhBQuxGiNU8k2GXRqFIEq6wjQKV6nVOWguC2RlYZbIoQpBVNKeMU6wiL+dk+Ty6EJBGEVEUYihTrkYeX7v/Nq9OO/Q6LabdC4LZlAfv3OPeG2/x8Btfpbi+iW0ZOOKMiSex6B0TBAHefMVoOKMzHBFHCxqlDWItw8iX0CyZjBmGZHPRecVgBJvVdfZrNgYTzjyXmzs5ZtMMqbRObXMDp+iwSjOOh1e8YeqMhRyCJKNIPiejF5yOA/I7N7h7a596oYYYJAT9c9asAEkEwfMp5UxqBQtHlejOY04vR2iKTE4UENKIVQp2qYI3HbG23oDExDQM6jWNhRsShxm1fAU/lUnCOXI4xtSLxH6AMJ1S0EKqVYdKs06uXKK4vc/R9IrOVQs5DKjndEoVnbEXUqzcRZAMUiBLQ3QBMr2Bbek0DvaZTANarQHd0QwvNtgomVy+/gJTK6FoNkEckPkirZlPIQlYCRpJkhB5U0bzPtEiYj67wptEZJqOUSlQwODzw08Jel1UxSCNIQkCSALKTpWcJCJU1hl7HtP+FeJsyfWbNznsnrO7d5/m+jaKIJC4Hrfv3OX86iXt1pyDnTKKlNK66KNaFvN0xnalSjUvs8xSzqYecjqj2+5RrRS5OL0gbzvs7d0kjEQCuYwc5Hj98gnj6ZC569K/miKtunzz7W+wlHMsZnOWS5/EapAYNTbWmhi6RRhGLGYT+pcv+Ph3H34JK3/zN5iRizvtMk0j5OImehogWirudMpwMKYzcznYv8XN7W0Mo8ok1ZEEkWreoLC1y9OX58hawtlxh/4YgkRFEXsYqYhR26R/PsKbdCg4Opt7D7l8/ZRW/5jADVAVh1WYMZrNqO9uYmo6wtyj3KzjSwnD2YCHt/bQVhmGU8O2bEaux5PjUxpOntq1XY7OjtkuSBTtFDeaczW8RCxW0K06umkxHvfodFs4+SaeqpFbc2CxwtMMXCNH4M05O3vJvetfI69MkASL6SJh6fdZy+c52KqjRBmhtcY0VLm6aGNX1ikVm3T6A5zmFpaTI55PefbJxzTXdfR0yWE34XwaEyLw1oP7fPz4C8pWnpITkyYrNFXnzftvcHTU+zIft0pJRZnZasnR2SG1nMLQz0iDFrKUsbG5w5tvvkP79BVvfeM7fPLROb3LK/zVBCev40sSw/4Abznm4MY+mq4x7bbYr2tc+Qr7doX+YEmlaHPrxjqyZqHFA7yhSOTOUbIITYKZN8UbSxQ0mfm4i5jMif05L07O2Cxsk4svWfkJtiVg5xXiIObrdzY4uN4kXQXIYUIcZozDGHpP6M1SRr1Djl9dICg5tq/t0j78gO21JpP2KcetDvPFDNGfE4cSom3jTcYM/BVpFlBQoegUwV+xVWkiGQ7TyZhRt89kuuSLw3OquSWjwCWWISYhdCckscRuxUDD5ah1TnfUxUxdjnoj5uNL/EnAagmKrBAEYw6ffUZRbWJISxRUhIVHNO5wNTrj9q2vc95p0xlPUBWDUq5CKuT49OiEq5aHt3BxvRmr5YxKpGI1bY4vZxSqDZZChLsacKMo4egyTy8v6Dx5im07SJrJs8+e4SUeqXnA7loFq1hEdwqUK19ujaXTBcVClet371Iu5pkPpihSmVLDoKol2PkCOSeHiY+1PKaydZdQnfD8sEO/60IMWRLw4O2bDMcSF1ce6dylrMrIusby6hX9nsujN77CdO7x4ugSN1EIkxGLwSnx6IrprM1Z65jD1yf/n7DyLwrY6raMon85XCUV6iSZynzSQxRT3JVPJAqsEo9FUOb5RZ9Nu0jetkGTqJoF5mHIJMgRBl0UNSTxJfyoiiBnJJMluWYNMXBYJSm+YCNF4KUpqawjKiBlKdmiTQ+bxUwhtR3ymoqdQOBmuPMJkqhi5/IsvA6B75H4AYNWl6GzyW0hYDZzWXqgaCpLd8bSi9jc28CbLbmaznHdKQ2rz93tBpnl0Oo8QzYF8kWHeCqyzHRssUqvN6OiZdTXGjTNBq+nAouVwtFEIRFWbKoRJcHEymkk0ylybg9dnmKqCrook44HVLZ3iCch4hwsxyK/VsGfzbn0QiwtZjaeoRgWKiaj6RCnvEF72Gc16bL0xghCQj5fpFgtcv/OQ2qbdRaLiFnmE426dLsD8MZs7m1QLNqMp19+P9RzTdqdNkniUzJ0RL1MLFeIxnOyxKNo2DQrJoqyZL6aYVdtmkWBdhywldeQUo9gNiYKY4qOQFPaRtLLKGT4y5Tn3RapKvPtRw9ZqzQI5z6TXg9vuWIRixQ9D9kQydsmumWQhDGLICFeLrGbW0gISFmGJKlEmkBFbKCQITkGmi6gsqAoxKT5HKlUxrRXSJlGtsoQhYxg5VIqmEiiRWLK+GJIbzHGGXWYiTGOrOKU8uTlHGlWZWEO6PcCcrqJLK5AU5GsMrNxSBSq9Po+ZCmz+QRvMKVqVZCFAoPxMarTp1JbR3OKRMwoYTF0V2jxkNiSULWIbDUnngkMr84o5NZJywWCRGG2GrFRFHBlFSffJGfKyEpCrBsUqpuYQUJnOsOSFJq1Bo6SA7NM3dAwZRl/NCJezSkVHWQtIy8nZM0ircmCJF6RCTFLNJobDzjrD9nKSV/W222DVWRi53Isly6LbouSAmLQIPNTlpcx88WA1WyJkWZIuoaiG5SqMrubTTrZmCCcIQYCeT2PXDSJw4jxtM/KnxLMW4xbJ/+vcPgJomRgFwrIYoIt2ZQ3zC8vhqZMOggYtxeslcvoAmxv75G2WyyWQ8bukigCu7JFlEVM/IiUlIKuU12rMn7Zof71G4Svp1h2AdOAwdUpsqnRG00oOQbL/oQoToiShEF3SNlaYFoqaThjOp7T7fRxN9aYRTWs0Qq7kqfkWJjnHkGSML54Qc3SsFUZSYRQAUyJnJAxavfQxIC1YhHPNlANEF2J2SqkaKWYSgGilEH/nHbnCj8WEZQ8JBmFnMajNx/RcEocnp9hyjKKaZGLJFJNZmu/xmw2wMqpVBo1DEkiaGfkchaL+QSHIoEg4kcRsRuRs0uEvouseriTFSvPR9YdTMHAW65IRIm4YiEZAmIvY3zR4e03Dnj99Iy1ukWjsYblVFm4Y1ZhwOvjlxhkJElE4AeYOpQUkc9fvEC3i7y67KOmfZLFlBv7BbLenMvRkmo5h1NUcf0xbpBSb25iDDqkiCRiwiIAUc+TiiNsM8fIM/A8j9Bf0aiUaa7fJFu6jGKJcSZA4mDJBkk6YGd3j9PBDCmTkSSBKAk5ny/xpyMqJY+NzSqSbBCtLlgtF9x/96ucfvyCxlaNVExJ3Dn5LKA3HiDJMkhgSilqtmLSCzhY22Q46mJHFrGUslIk/JVPgkioqBRMDz8JWbkpgjfFZYVRv8loMiIWMwRTYewHZHLGpLNEzVs061XmywEXl68ob26QBRPEnEqnP2MxGJP6E9Ik4YvXL/Cmp0SSjqmprGKPeZhyOY54sKWynLWRxJBipUp96xrD4RBplWKslQimYwhWVK/dpT08p1nKMWtL5MWI2PcY9VaU6yWWsUfFKCGRMJmMGI77NDfXUAQbhRm2otIazXh5dMyDe3nygsvSNTBrFbzhmMHFMRXBRS+t8/Tzz5jFMkalSU5SiMMF2TJisRhiinkwZVAVhMDDylcRkhUbtSrDUY9g4VOsFTk/foUpCpR3m2SRixCu/lkOEf8lsGJoGo6qYgNpzkKWDaazOaPxgsCPkWSVuaAzHkZ8/vlrJATyloGtGWw2ryHFK/qjCYtVj9BrEU6vcKcLnHKe3uUScgUUO0+a6SwylVTJ8GNIgOUipXM54Pnjj3j/V7/k/OULZv6KRZohSBIlOcPrdukeHWMXSuhyikBEmMlMuzPGMw93PCZ2A/xIYB5LuH5EqzOnXC6RRinuUmI+F5iML7h28waa7nE2HtNd+ghCSMOecXu/wVt3b3Hy+oiLwRxPqSFZ++SsIqkcc9H2ORpmXK0EvCAgaPdQRJ3hJEOWTDQ5JnYvsJMxpd17aLpIuWCwXjJoWhlKOCXSIZ6MWLkhspRhiDGDzpyd+i5fHD8h8fs4jkZ1c4et67dZLn0i32PavsIf90iikEDMY9omilpCMy3KG+ts7G2xuVbGKGywiCbM+kviyRAZGSV/jYUfsLVxwFY5Q1cmLKMZs1hgq15FSTOcYkRZH6G5r4mHT1GSIfsbVZS1LcqlPJYukmUCfqCTZjKSlBKsYmajCdPxhGUs8bKX4nfGlJUUXU4J4oC559Efe1iagqIXke08TiFPo+AQRR5r9RqBu0QwIgI5ZuqG5HQJs7BOKDlYholdLCAVi0RJQC4nk+oKkWXhyRnzxGUZR/jjE2pqiZ16k1KzgVxpIBc22dysM5ueE3tT5MhFFhJSVSULOoSJwKIzJghWXwKBnrLjZCS+TGZWmYYu85WLqNrk14o06xJhzsBfTFmMRkznS6L5nNjrMR2NkNMFpiAgxBKjRYdrjQKb1/epbWxzsH+T+/cecf3uO6jFdeT8Ou5gSl1Sube9x8bOAV7gUhINtGTK5PKEYa9HKIscX55QNyts1XN0JwtawzmKAqsoZL2yx6veitbAwxREbtRsirrAzfu3CcQMOYlZ9DtcXbwiy3yWl+eMF0PMXIG8UaGk5dnbrFFqbiGoGqaaoNsKsi6jBTNy4ozWRYuLyzYX50e0rk4ZTef/RTdar4/xAoVceZPtZoOGJqEbGm4ckuoSxUKRml6kc9Xi2YvnmJZOVQ1J/CVngwEXrWcc7O9TKlQQbQNVd8npC1SjSnc8xvVC1FwOvdQgSOH05W/RczaStY7qFNDEDC2LkWUFfzzBn/fQCxpSGsF8TjJdcNaacDJJ8d0VXphiayrbtky3e07v5TOatkGSyriRgKxZbG0e0NBVosmAeHTBVqXEG/fuIykekj9FWElga1i6iJXEJMEKUzE565/Qc0USMaZWVbh9/QZObZv3Pn3J+WSIv+ziqD57B3U26zqz2TmlsknesRHjmMwPuPf27xGGGu5KQlUS6gWVkqHz6ugSFRUvGdLuzZmPI8JZxOlhCyUL0DSZZTojUVPypQprlW0ixSaaTYm1BmpxDzeADz78DYko8+Gvf0qtCtsbRXKmSujNaKoqaRCimmWev27z9PCCRZByMZxgphHPzk/JlUQULeDo9IjOsINkVXGaOWpbNQTbYpEK5PNljPwcqwRmbQNfKZCqNu88eMDa3hZadZ9MyzPyNCYrByu3Qafd4qyzYGXlie08umVRzTmMpDJTL0Q0da7d3KNRURm1niAaRRSrQL54g4Pd26ztXEMo1JFFD3/lspI1VMVAkxQC3+P85JBaIc/J5SvcWYdMDpCLGrlijrVyHl9pkpMyrCjCCDJsUWTaf03fk5jFJtXaBo31TZayjq2bRL5GmqkUHAVViVmuIt7+9ndBHjGPRI46Qy76PZIsoWbXeXryOZE3QEoTkjhg4Y9woyl2ocbNm/vkcyqODEVNRnDAX86oyCmasKQgQkEt4eprDGOFRq7AzvYOtiKhxhHV+jplu0GtEHDe7bKaLfCHPc5fPadoGNQa6wTRjGG3x9XViN5kiWAETFtnnM8E3ERmOJpyfNoCLYcvivRbS6rrTRp72zjNDWr7d+ifL6jkVtze1LGNDM93sYQYvbjGozevgwA5XWe3VmLTsVhNI4LUIq1dQ7I3kEXrn+WQf5ENVC6XqBVqbFY3EdUJw94F1/e/wdHhIZnb/r9Ze68eyRL0TO85Ps454X1GRHpTmVm+qqur3fRYcobkcjhLgsSKogRBC0kQAUHSlfQrdCNA5kKry5VIrnYFLofD8dM97aq6urxJnxmZGd6bcyKO1UULeysB3B/xvXjw4TVsFiPMJiYdx8OeDrizs4qmBDS7NWrdS9xRndRkRDKdwYxV0MwCRk5h7HisVMo8ql7iTnrEnDlCZ04k/Hqe+9GXzzl6esKbx6949PgLLqqvmQZZ4ipgB8wHXcbtN1ycdojFo7y6rGJoIoQi3a6NMA54uvcZZjzP8PyEYa+O5U7JJDJM6oeMuwKZaIb1pRzXdkusbK7y6uw133lrAzGd4bg65fWLOp7vcitnUo61uXvjCs7c4/WbM97snRAPAq6lXC79PkvLmxRScebTI6ZeQOH2+1x0esQUAVW0mAV9tNw2ii0xZkhpdxdvZlF99hwvusH9nZBx32LtyhU0QWR42UAWImyUrxA454TRDFeuv8f773+H6ze3ePzFSx48+JjLkzd44pxowiCfylBez5MvF/no+T5HeyeMOm1CAqrnJ3znW+9yPNLoDEbg2yQiPqPJiPLSLv1aHVHzkJExwySVzCKzqcVZ/4x4TEMSfWRVZWHnGoqcYmN9i//1b37M3quvkMc1ohOLtdV1IppB4+IAWU0QMRcY9iek7DbuoMvAmeB6HWaDLrWqzWkTMgsbRFWZoqaQjxlE4yrqqMV8/JJsUuHl+YDOYEokqtKJZvAnMgIKciRKqEQJfRV55rC2muWkfkGwEEcwRZKGwe0rt1jZKKEpBWKiSCSeR4zmmM8chk+ecHru0Ggdc352RL3Rw5qLlFSL1d1VFvMpLk9O8ESZm9/6DouxAo3XR/RdmyvbZSIRk37X58aNLWrVRyys7TBXQxxk3LlGN/AoL6s4vgkjh0K5RHmliNc+pz2Y8OEP/5ix02VuqUTUApWVKOev9xifvsTUU8T9IZ3WKQ8va8T8Y87aE3Z3lnA8k/oswrHt8uqzh2S0Iq+ev+TG9gYLRpT28Tnl5RyD6msymRyhf8FJ/ZSTi0vWKxPORw7L61kCW6RjwQCVnZ1l0Oss7/wug7mE60wpRmXe3tjlJz97QmnnGqpXp3p0yptXR1TPj6hNOrRbFplMiDtpElgTNEniuHr0tbgIAZWoQtKMYEsaPiIPPvt7TkczYoFAKZOhuLiAJ0cYVo8YGxXOTl/TtAUcrUxGUvjw7Zu82etysP+YeDSCaRb4/OEpw9iA8fmUiCnQHF3S7NRRRZO575HJV1hcKnP15ib5lWU8Mc162SCeWWZtOYeZWiahx1iKB4iLSzx/9GuuXkvSnJocXw5oNC9RfInrb73L69MquuTihQGzUGKzlGV76w5jhkSyOq4HzWqD46M3FOJxtrffYeSN6Q9GTIZjZMFh52qZo5MexeiUSCSEwGPW6fDFwz2m9QbliIEyVxGNOJGlArEpXFogk6bRndE4O8Hpd/CTd1nPuhy/OaE/D0kuVoiWc3z28W/wbJXLkwNcPUUunyUX1xh0u2Qqu5xdnNF7+hh3PCUWT7BZLvMvfvKQtzaXCLM5dD2KOxpyebyHJJgUl7LkVmUIPWRJJJk0GHZm3PvBnyJlNDzLYqFUYO36Lo+e7rO+fJfzlw/IFGHuduk2+iSi9xAbz6lsr6IxZjDqMBp2KHpNsukhUiKKKivkc2lK5QVUXcVQ5viGS/P1G5YWy9y4s0Y2OcA77fKsO2B76zrWZQe7OyGfLRM0bdqjQzx7jj0ImExhLuhIgoDo1NGFGY8ePaV6fo6AxfneY5L56zi9GQ4as+mU+agJqTmi5TMaTNiv9XBGQypqyEpS5/PffEK0sET15AjNDqgkkmSKCb589BloKSqlIopq4Hke4WzAq5dPWStHuGgMmTYvGDkh3sI2OymXYXfE4fMRk94Z2ZjEammF0NG49e1baGaFUElgajr5WJT8YpmlVIWpbLKwsMFgrvPkVZXzhw+488E92t0G2WycTGYVVc3RrV2gJ3f45V//Db0gzTxSQMvmKK0lMeICb+8u8pvffobv+5SyKXaWyoyUENm16M5cUoUS6ewC6VyF9MIy9cMGTc0g4Y9xRg5E0tx/t8LroxZ3rhdYqpSwO13a1WPUbISsFvAH3/ousdwy7V6TUb/OQrFAZTlKevkduj0TzfBJxyAYwn7XprBa4OD5c8Yzl85owvHxAfCP9Kz84A++T2F9lYNui0xCQh8MUMsbTJtT2rUGl/aQ0nd+n/h5Gy0D0WgOQ5UxBZt2tYYmzqlHE1SW8mRXdtDzWwihiDAf8KJ2RCKaxJmLOKFMrpKjNxhyZktkzYBe44jG5REBLrnFFRYLBSKCwaDXoV17Q6/+jFk44OTlG1K5VdyZijPXCANo156gmXH0hMGwd8Go06Xb7FPtNdguxumPZlinTxk2DrB8C620Qq92Sbch4Fxc8uHbd/ned+/jTBt8dTrkZ58/wzdSDEYqcdngva0MmcwqT09esnb199leLLGY1ijmS6SvfMCbf/2/IYhxJopIZ+bT7ViML89wlBwJZcJ06NLqu9iOQMUbMxjOmTsRYsacydRmJMTJvnuXVudLfv1vf85/8Rf/KYlklocPn/DFT3/KvTsV/tl/+19TzK5RLlfQoyat4RzfHmP1HMqlMkuxCJLnct4dMug2iElrLG7kWUvKpGJgZCJ88O3f4R8+fQ30UTWfRDpKIi7TfPIz7KVb5FO38ZqXeHaDQJoz7tgcdjtcXibQw4BAHtEOxlhajt3NFJvxFEK6hGaGzGdjao0Q0xkwbR8Qj+koQgxfKxFm1zG8JsmsjDe3kRMZJF1BF0e8dXWNEB0zZSBaU8KZi+XJCIrBcjFGTNcYTc/JmDNWcypTZ4isreDEuqQKGtZ0ijOasJMR6Y4rbJYTRLNZRmOJ/VenfPHJLxn1BJz4Ela6TKq4TaW8Qj5jMpooPHr8DMMUyN3/JsbyDv3GiHj5Bo5pIQyOaB3XEUKL7Vsptta3WNy6z5uLR5iuxmospJK2mQgFzo+P8cVVXDxUNYImSkQMn8273+Hw8SFnn3+E6FRB7nB61qR68YY/+tEP+fLZC3rBBMUQSbsuj8+HyLE4r14c4vbOSMs91tIiv3N7l+eHj/jt579iruXphBon3Rbdx28oXt8lUTDY2VxAjedoz+PI4SqTlsvbG2/TNj0COUT2ZE7nCktCG6vp89YHt0jrKhdHh3z84gt++Bf/nN7xS5BKXHZcPFFgfafMy1oNXYxxsFdlYo3xggmjQY1mpwvA9775Te7d2SUQfQ6PT7myukqie8qV3dsMPAczIbK+ke9TwX0AACAASURBVKaXLfLZy0+5vbFBXFtENXVkY44iRvnbn/0KTyuyubZIMpMkGpF5uxRjeHGGuvIWN5Mq9ZMq7dMq1xMK9/70n1MQQjTZRQ4DnEGX0cUJVVti8eo9Dn779wwnE/aOzvni89e89f532dmOoqs+ncaMYqrI7sY6n/z6Hyitxvnokyqbd79JyYyTmIzIbWzzP/71z2hctklESiQTGTRFxm6OcVyHrKly2hlxefya3vkrZvMZfVvhw9/9fRxF57x2SmfoIMRvcfDsK65tmYRGnqVsmrVSjkqpzM7OLvdu3+LlZy+IKBILhUWMSJZ/81f/A+dDnY6vkI1HCWYy9Y6PuaTzw997l0bbJxuRMI2ARNbk7tWr2CMXORhw2ILLscLIVggCk6bV5N07eSqZEu2LKk+fP6babPCj313j5cfnnJ5ZjC2NZn/EfvWI1Wv3sUcvSESXccYWquShGdAeTshne6zf2KV13uT0ZMxw6mOOfsHy9ib/8ue/4fCkR9zMsru1iZ5MknQlLHGLgmyR9MeIowGtyxq/evGa733/n7Ki+bTqLU6rLXQthq6VUTbzuH0b1e6STZikiluMXYsP3rnFQMjQcOb4soQu6fzrn/wfvH7u8/3vXSO7uYEgifRqNfphDAoGqgib6Rx3b95kcfc2z59NuZuDP/nDP8fRC3jpq5C6QSQ0WCwFVPLLnJjfpNmuY4+OSOzssnE9yb133+bVV89ZjKXYXSoSTyssLLzF69Mz6kOIKRNSpoJp5JiMLL79nfv0Gi3eff8dtu6sQHyEIUo06i79ky9IRrKkM0lkw+fiosVHn/2SqFCnkk1xUT3grHrA9rXbWNmrPPvsJ2xcucrJ2RnnZ4fcuHqF07M9vvuj60h6glxCQfbqVA8/BcvGSRXJuQGG6VEf9vjs6TmvX5yyvG2SXV6nOW6Szhm8f+cah7/9DbduZYiZFY5PmpRyUb731hqXry+5kUtQt6McHh0QOnNSqTR9x6a294bWaMaLgwd0hzaumKYz8Zm0Ovzm8z0KKwl6sxHHgx4d1cZrNvnhH/2I5ds/RFGi1M5PODp4+Y+HlcLiJuV8hc1shulUxoqbJJQOs2GDyXQEQsitNZ1Pfv0Ff/Zn/yWt82NanT6+qpIqj4ld2eVbb3+XkbhKYyDQaFzSaFfRjTjXtq6jzCUikQihJFJrd8ktZ7F7bUzfwZN8AkNHUKIE1piNa9dp9lokIwq6ZjD2ZCTJ5/pqGaO4QSKVJp9LkEmKzKbH/Mkf/ZC3rl5hZfc9Vrbfo1JcJTLsoRTSmLLK7gc3WVi7RkRI4bdqbN3/Hh89/CUXnS4n1QuOj8+Z+xGWEibmxgfM68eUMgFXNhKkUgZjX2LhrT+kehby1cWQi8EUxXE4ODvBFGDU65NWbRJ4xMMY6+vv8pNPPyG7k6LbPCWnzLi5voATL1J//Rlb77zLyUDAUdLE4wlGJ2+ITOrs3nqfbu+Ux4+/4OLsAD3i8enRmPXVTZYXi0iKi+gMybhTnn11QLP9mmIhipteJMgUyeZjVK68zVFrhnPyc55Wh+zXJwzqTXr1Ce9tFzGXCpQLG1+/MoMJvhqjmE/S/uoBybxMNFdBT6yRyJWYqms8/+pj1tczbKytsrJ6hXxpgZ//+AFPzk+IKQoxd4QybECvAbbG4jdusHktj5qsoCUyJNIe+wdnGFqMaCpG8/yYSatLXC+gp3M8OGry8LRJ29JQ/ICE12Y2b6ENL7HTMexwTiZikjfjzIUZIj4L6zu0pklSiTJLpTLDucjy4hqvpxO8sM+ge8m01yEqqCgLcegfUtBNFgs5DMOk2Z1wMapzZfdDkms79J5dcvLxA/ZfP2Lv1QMqkShdYwujkCIZDwmmPT4+qhEzIpy3p5hiiCGrSKKJHHG4tx2nN/eQ68fksxmSK2uMXZvmwGZ4cYgsOCxnS+S0MsOmjN3tEK0s8GrvFYP+gFTc4K23tri0K6j1I37wznXmmQg1q8/w4gxfkCgUiuR27uKML1HmHa5ubfLhD/6Yv//VbzlpVjHdLAklTyEdo1QU6Gllvqx+SkbLkDdLKBEdJ+yjFd/h5Rf7WJMB/VYbQRBZ296gfnaIkd6hsf8Sx68TKB6NpoDV7hA4DguVEqqmIqkiiilyfnoOwD/5z/8TGvURe69OGQ5GjPtdFr75e3j9HjvX7yPHyjx6ccnLj1/x3uoKkXSW/V6X4lKCu1crNOpNkqLO8fEbDDNNypcoRuIkrr7Fv/ibv+K/+8v/imprTiqe4N71Kyytr/Lbzz8hmVlFcvqMcGnNxoynXRYX13m197e8evwKNbPI1uYS1xcj/PSj3yJ7i/zixz9FUXVqzXM+f/WMe3/+31AMWgwdi8ujLxGlCMXNWzTar2mc59CcFvawzv7+Ac3WiNt373PlZoaz/Q7TbpuUGKGYSJNKKsQzO4jqmL/7h1/Q7vYoV8rcvX2Vh70J3772DoNBl8fHL6l2jgi8Ln/188/43v23Ge19xcr2FcKowV71GJwR//1/9hechSYbJZDFCaPJgEpEZRqY9N70qFSyzJwB3XGH/OYGhxcStVmdw6dPmDVPEP0ObmzKpFnHMW4Sk2yUoM9GXuYH9zY5G2TZeGeNoRXQ6PUxlYB3theZBQr/0//yf3J9fRUyq0x8aBwd0jhTGdU6GKMelfUtNE3BGfVY2X2LLz9+yftXbxOPr3NwWOWLL34Ffov6aJGE3+Zl45LBLMSaB+w3qtzcrPDoszdMhQHK0hp+ssDLwxN8wWR4/piFVApL8rGCkMByOK++ofr450iqgV0/J580uPX+fZy5TDojk16/QdSQSGTKaMVbdGcO9rNP+Kf/wZ8TkVVO6g2O601Wy3ket6ooUYWxZ1PQReTphH/zy+co3QZ37yxTffHjr6sNFra5u1HBlCo8fbNP43CPsexTn4+5ODmmNbhkt1CkbzU4G804b/fxh+esbW/wr/7l/8xUytI8H+P2Q3Q5zeOzJsWyzlnPoKJrLC5kUGI6rx7/it/54Lu82WswsxxOLy/ojgeUSgW+f+s6QTxCfzTBl2TMZBzHtkjFNKzhJd2T5wwcm0Gg4zkpiqLKaO4SmGkyiS2m04DD5iv+4O47vF3YYZ8ZgZfEG/k0qntYQYvfvPH44N4qVvMV3qDOZDDmyUENbbXEuOuwoVsEgUxzopMMZdrzOYcvH3Izf58Pb77NzY0MinPG5jvfYz44ZKmSYcEwSUZMfD3Bu299m/n4nJHfRg8vGLWOeP7i8B8PKx/c+5BSbhVr5LJVlHn+6AE7V67TnIn0xja+PSIQJnzw/jadXsBkUMdMqmQKCRTHJmaWGNXOiIszQhECWaJohIixNJ88PWU4bYA/Rgw8XFdmULdx1AS9izNC10WTIkT1OB+8d5/JsEdyYZVg2mDudJESBllB5nwgMh45aLLLZNikfnlOJpujkqiwdOUupupRzOhsba+we/cuwkxEqOxwurfHxJ7gqwLNZodQEojFNbKxNIYZQ45E0LQIa1GftZUswWBMp37OcNBDj6bRkjpf7T/EdESKiQz5dBJRc+hXX1JcvkpzquC7Q6LqlGTcotndp7yxwlzK4HQtDM9HF3zsmU10cQHZr+E4I+JGlHjExJ028GybyuIqW1c2yS/fpLB2laWdHJsrm3RfPuT0pMXQGjP1Qwaexup6nI3b9zge6PTrNdpHh5wfdkhpXxepjYZ9tnd2uX79GolUktdPfk6Q2iY8/ZzpTCZQoqhGjLGTQAtciFikYmkmPZtmcwzxbZ5Xe9xcTCEqDr1ek9pFm2bVYxw6SNMZSjyNaI2ZT/r0VSiklmi++RnDywuciUvgSozGPi8Oz8gXtqk1z2k3e3RaXXqjHsu7m/z4Fz9n5lcoxWMkMklcM45XP6W8ssBxs0+pkCUZTRMKJmaxgOzauG6PUiWHoYMgyuQKu7y4HBDOGpydtBiOpmhSSDoiMur3GIcxfHdC7axK6+IExe9gRnrsHZ4hR9fRMxnUdAxPAs9t4khT8gmdmTfl9LLJ85fn1C46tE6PyTpdmo0hguyTyam4ro4ZNem2BnTHLooaI6FHiMQD+kcXZMMopVKBZLqIokYwpSGa2Ka4WiCZWSUVgaj29Z3MOjbbORtRlplPZ2jzOVlVZLFQ5PH5BemoTLmYJ5XOYs09Xhy+ZKvs8e793+Pl0YDjsw6qELK6YTLovESPa3jeHG8yRrFdUnqab3/wLp+8PMLp20hGglguSyK0iMRd6menpAyV0HeYzEMsJc6qJjEKXOxhHd+df22En1mcX9YAuHrlQzwsSpUob9/dpWv7rC1cYzLew1AVzltNDupH3F43ufSitA/OEV0RXQR7MuKi3iGM+CzIKqs7K7hCSK3Totc9p6DEWVjJMRpUca0mM8diLOi0Rw6jdp1IQWIhm0EM4rw69Xm9/5S0aNCpzYhlCgh6jN5MxfczXMknqVdblNczrK0XKaXSHL58hucM+fY3vksmv8HE9ThvnuILKjfvbNOqPUVPZ0hILn7/kgf7+3TmKdIxg1QijhCJ0pxaHJwecHdti08PDsnpJsvlNMlEnLktsblYopDJELg2peVVzMQyrSbk4iLt8RzmHZqOx/7pGRcn+yykUySMFK6sEonFmIzHOIMGOytpItEoiaTAZaeJaRhk0gUePTtHsPocvNqjVCxQXtsglyuQtKd4YxdZc9gsJOgNOxy2xlStBInUHLknI8kBG4t5Mpkk3blPIqJz9+Y98Cb4yIRjG3Uy4dbd60y8AacXI+xwgj2zmI7gsD5le7GAkw5pzn1kI0q5XCKXjqF7AoetS+qzGQulMguZLPXqKc2piyUqJOIxQl9DRaCYkai9ecG3fucdBp0TLg9PsWwPrVJg6nuYWpLzxoi7d2+hmSaffvGA+ytZOvVzCkmf0cDB6oxQRi1SmsLNWwWMQobXtT4uIQu5JKaeoDWpc+fGFglJxVCi+IKMw4ByLkd8ZYv9V0eUlpa5cnuXUBN5/ZufM+o0yBdSbJfXSMQL1FEYVOt8cKPEs8MWlZRONgq9mQVmiXa/RR6F2bDHcNajbnU4Pa5x9+41PCHgsl7HjyZQcxWePzlgWNtj6eptmud7GKrK0vIuE1II9jHJdInesEc6mWZjeYVCNsmb6oS2G+F0HMGZzdEdm0gg8PTkgO3kHCtIoKbyGPEIacWhAPz09a85ORsTxcQfdGkcPSciyqwUNug7bXwxzbDvcXl6RjwbRY7Hv24L9zwIBXRdIJKUqEQUrm/e4GI4wolFERMJrGGXYTBBpsjS1hbWdM5gEKBEV4mlQppnD4kV1hlZUw4Pjzl88+8hDeS7I4JwihgzMSopDFnGmtpEVJPF4iJeRKV+ccHVrZu4Mw9VkNBEDUHSUcIoigCnrT6eJBDPy5RSJRYSRarjEYocQZY9BoMRjjNCNKIofgjYNEQd3+4huha6ptNuXGBPwXKPUT2LwJ9hdyY4tsDUMVH1GR2hj2kYpFIZukOL7njKm70G0fgEI6KieSKyP+XK1R2iU4dpK0er2aLTaaDNLUI7INDymF6XwAuxHJ/BqElXjdPZv0CLGxSNZRQpwJrb9CYtpACWShmyuQyRuE6gyiTXNhl5BivrS5y+uqTem5JORbi0EqQlUGQZLZLAE1Xac4fzdpXrb23Rv7BJ4OCP2wwHEwZuwHv33iemJ/HlGJOZxtwTKKoKiuzQLxRxhQSxaJxEKkYoG8iqRdw0MKMBij3DE0e4vsfQDUnFdVKRq/ihwsSaoJka5Y3b2DMbxQ3A7eN5CVwvx3RmE8mqhMYy9mwOnkVcVFFEiajbRysVqL48YDyZMZ+JjAc94jGPuJZmMh9xMROIayKprEM+qTDvxpmoKlFVIxEBVdTw/BiTwRRnbCEGEl4Y0J4OOO3BYJZBnk+JLOYxDRXLbhHRZayJjWQLGNaEaGIBJZnCkUUi5ghBcsinI3iOzGDoMpqLFDJRLg4/ZuSUMOIZTENHNgSWZAG7H2He3ccNHdxwjorDZNQnIsbxxm307DZKdJmZqnJPjfG6ek6ndolsqOhiBDFVZqmSwXUcZKfBeBByNJsyGfdRFZXZOGTUbWONR0xFGW8UIZ0qUj855t6H36dVe8kk9PAFk/lkQikhUMkk2Xu5T6fRJh5XyTmgBR3m4RzRHZMKHXKmClqatjWk7+iYrRHKgoAVRKi1A9wQNlMm84mLEVGIGz6J5JSnz49JFsoURYfAXGIydBm1BuCFuO6c7a0C08s6girjzB3OLs9YubHL6rLCpNfGcUEORXJGiDu0KRkqPVHDCwVEScINo/9ONyIITMdTRrLGTDbRM1GefPWKpUqEi+YFvd4YE59poNA8PyMuqCykk+iyhBRKVPIVjs5OUSNzhHEbWZLB9On1aqCH7L98gTueIWkybuDRPb1AT8eY9xpIcorxDGzPJ58V0dUY56cdipU8k06DyXSCEk1j9abouzKCPGc4miIpCsLcwxQCYtEiI98nv7iC7c0YHBzgeDaHs0O6vQnpjImZ1kEQSHbmFOMSgSRzft5GMjVS5SKJrEyjfoEziLGcm5JPF5h5MofPnnP3W7f5Yu8Vg+o5yUwca+bR7va4941NXjx8QiGqEVU9klEIFpNEI3meHj9nYekK8wHY9hw5GkXJLLL3okEh7mLmNCzLwW4OMAKFQkbDWtimvGKg6SqBOyechCSLG/S7Z/RcFzmSwNREuuMpcmgwt2wSmQSmLDMZT5hP5riprw3e+50JgiuTMlSyKxVmkkqoCEQqGaxZH8EDWY8i2R6O6pJXTMSUycwaI7lD4rrOcDghJCSVzKKbKbR4gvLOW3zy+BXJnMRkKpMIAwLRomtNUfUC/eGIxtRBMJOYeobA8em7NvN+E02B/mxAqKroUZVANri+tcZsYpFMFXDVkMl0wmohT3M4IzNykCWVXm+MPxqxUl5HtgLqrT5lTcGTdIY2ZDRY3shQHwxw3DmaLDCf2xyeniF5HUQ3zVQwaU9FwrHFrD9hZWeXpu0j+RJJMSBUZFqRGKE7ZjEbIxu7Qic1YubZCGFAqSBy9Pw56XyMzGoJM5lmZnsokQRTy8Iez+j1xsiKSiIGcjJCbVAjHerYgyZOMMPRJKTcAjOvRzAPKMcNEoqCKYRY05Cp46AlNljPZmmN+7SHUwQ1TySmIvh5khj4dgvHsRAjEWxXxe9d0B/KLBYKRDNpho6FGAM9twL9NqGUJBhbiH5AIpHi/Pyc5VKCzHKRKSIntSGSrxGzPSxRwnGnyGpAIqUTRE163Sl2IJP1PKyxx3ga/H9yyP+vNJAgzAnFKa5gMQ0l8oUs7XqdhOqzWkxSTGeZj6DWVTATEUxBQgsFNAn0/3djguQCtqwRiCGyJDAPDKbDCduLi+RjaRTRxAllXMFFVacodgM5GmVOyHQ+xXanPP7qS3BcOmdvmNtTvJnL8KJGvd1BFQIi2ozZuIEqBpQWFhkNbQ6qR3z5bI/XRxc8f3PKwy9f8vzLp8wllbQWsHN9h0xhAXvm4jkO4SSg1vaYTOZ4jkvoeYSuw9h1efrqEldwKK+WWFwuIjLFFQWurNwhnS1jaCGyZ6E4EivlDZoX5+SjAhE9wZw0k6CIE7/LRV0knM0xYjHUbAEvkcEWfARJoTNUCbwI3tzFnk1R4il277yDFjUYjOd02nVG7SrzzoRWs0vx+lts3r7B6sYmldIypWKZiZemeV5Hc12SmTyZ5RUyiwWkRIwwEsdM5qlettl7tc+wNyC9eh9TdlCy6zi+y3jUZzSwmPQ6RBQRM7VK1wpxnICYIuHZfTIRm4kAvaHDzI8gmTEkbUoy4qCbOoZsMZMkbMkkhoM0b1Be3MQoraOnkhiGghaJENNS1C9O0SUNTTGRIjq+qrB/MUPXS/juFMmIIysq0nyMEU8watXRw4CI62AqPrGo8HVHSjxOIpnB0HQyiQzpRAbbGVCKKdRrNaJmgky6jBkvI0QL5IsLqHoS3TTIF5NkFjKERgJXilEuFYnJE0TXIvQlFC3NYnaBqJpmOgnRBZPV4hJ3rl3nxs4q16/eQoyn0TSBcX/C4V6LTqtOr9Vk1O2gBnNwukx7F3gdm9CeEKghVq+KPWpizW26ExdJMjC1DK3TY9r1NtbYRbRtRHFOYyQytB0kGURVoeNJ7HWHaJEKjSac1XpctLqMpx6FeA53FOPFiyfkEj63riZYXBZp1KrEUosovkcmXiaaXyFIJBnO5rw4bFBIy6QSDgnDJyLCYDaj1w7J5yrMBAVXihA1DBaMkM6oS1KDfCaDGdURNBlBjfw73UjqLpoQMh7OuKh3URizX32DLsbotHuMewP0QKczVdCcAXpSRVEdCD0EVDKGiebHGAtThq0msj8lkZDxFJlh6PLy1T795gBRMhAUnX7jElkWiGR1fC+kPQkZeQGZjMfacoGBM6ZYMgiGdYbVI9zJAGfcxQqbiJpLvTNlb/+Ser3GrZs3ycRSHNfOaHaqhP6MRMRE9X1ePXtFRMuiqTGURB6jtEZlYZ31fISp71O9bDK1Z2TyOdZ3rnLYrbGYWCBpKGhaFIII00mP7rjFSe2Sl/uHXNZrDEdNpnYTF5VJu85ZV0CRNFbKWTZ21hDNON1Zn5jkMGqcMR72EYwEvp6l251y0bFQDJPxxKJx2WB1oUAml6VcqhCJaSSTEeJxg74kUd7aJBoxGc9sTMNkOZsiq1jUL4dM3BF6MsHUkxgM5mA5eIJFvVmj2Z0yHLQQwimGqVK9aCCKMqmlFIaeRAx1kARyCQU7ohBFoxhRiQV9gukZkiAxsefogsdCMoESgjXzMQubBGoSRY2hClFkL8QZT2i3LSKZZR5+/oSRaxIrr5FdWCDiOTjWkE6/RbGQpD3uM7QsSgsLnI4sbty4TW8ioUdU5JjCWIViIU69EzBqz0lLGrLj0qi3GYwsClqUVmuM5UwIsBAFFymUiGkO0945yXQSzwu4OKtxVm8SiemEWo6Zp1IbDqld1vAvOywslemFJgu5AlEzihZNkckvYYpTijGd7Pp18pvXSeaXiGkZdrY2OT85I5z2Wa0skzbjTFoNfHdMJFam3e5jRFMoRpxADEilZOKpNEf7+3RbDca9Bp1alZPjMyLKlAhdrmZVbixXWCyvETHyrJZyaJV3WCpmwO4wGQ2QzByRdIKV5WtUSgkCBkxDCyGRQohl6VkjTC2DgkssEye7sY3tOIiixMybMg2crzeMHB1Vi3FQ73LRGZIsLODPHerVKq6kIM8NWr0W/fYFvjdBN0MMY0a/YzP1UoS2jSEo6Mq/pzTQj/7oj8mmMjz79CNivTqCFtCrT1hZM/DlAcfVY5hA4tp1UlKfeb1JOhOytCogzzq8ft3lg3/yJyynYkzQeNO2efn8kFkosZEvMpu0KC2WKCyu0Rn5dJtHWIMIyViII8MwkBlbX9PqRkZiJht4vo01HTB3fRLJNHpugZipkXA6qAg4gonkNHny4BNiV+7TP6tyvP+a00aTuVzh4dMjkgsZFosL5BeTiHGBvdc1vPMGzekQSUyABFFdZ7Owy4JSo+nLxMM+kt9CcJvEJJ+b7/yITGaLw70OFxcHnF5UObkYIXpd9l78GGfoUljeZGVlh3SySJiPc96J4s/rxKImC4UopYJIRvfoOjk+/e1HBNEMZmmNxa0t7t1YJrAFar09DC3OQmJGLjZnaOd43UmytF4mn4sSienYiLSHM9zhnKPDR1wc1JGzUdRsHAmRqyWTL5oWL588wR320X0Bz4b9TpeFhEgis8Xzl6e0OwNE0cVqHxOVZpSu3OTg4JJ+o4Y96nLed7FjBmY0gaSVcfUYlhAiImFKMvvVNvc2YiSTUYJAYt606J68olyI40764Dn0LYmTlkzU6fFs/yWr29fo2QHDmYOgKIwdKDhnKOkM5eUrhKpB33Lw5yrmfB87iLFyY5tYQiOYtBHVIZqZRZvOiSSzOMRwfYhoE558dcaDN1Pee+dDrq5vkEuk8RFoNKqcdWwSpksmHqApElaQYPfWFcYzm6yZZuhO6PaHTGpjvvj8VxRziyytrZPMrpBIZFEkj4ePH1BcWMRS45iRGWlDIxMrkEqWKJQqjFpdKhtrRGSRYaNLvznjvWsV/tWvv6ScViilShhqgqkSMAxiBGoBQp+cGSOhSjjeAEfO4QRF2t0xtpFjf+Lx6+cvMCILLMY3qHZCXC8kbgisFgIq/gRFTVEbvqBYVImldHQzxq21DWzf41l9QHsoYHsCoaQyHQS0pzoXjad0Tg4pZItsXbtGaiHDg5//kk7rAiFRJJZKEY99vbvabDdxFJ+kGGLj4/oO0nTA6fklAN/bXSa7ViSbi5Kw24xrL1i6tc2CozIejGmPA0Z+hO3NFIsreUZTm0nzkl5vQr09onb0jFvvfIPZrIcQS6NqIoQO3VCnIq/y8nKPXNQlHjcIJIGuPSSwU+hZmeZkTDa9QkTLsnfRpnlyxtr1PGJ/jBm6xPUIqmpSyC8yc8dE1Dy9UEVSXHYWY/zuD36Px5/9AjOq8MlHP6bTGFNauE1mbY1U0uJb3/x9rEiILLp4lsOnB21CX6QvQ053SaQSDKYBj796A/mQ93dyyMk0U0FAMEUKawt0W2O+sX2T2ukBu3fuUFxaot9ucPmqzkLZ5GQUxTBlTNNEkqJ0mg1Wy6uU0xmeH76iN5mQiMYpxkV2tuJ8dBEyeNNFm1oUcnH04hpDa86TL/+OWq9LJruMICT5t3/3GelEhKFisK1aKIKNJ7lIQsC/+sVTShmdwvYOXSegN54h+gGFqISdvcXg6AxxNsTqd6hWL2hbXZYXlzjvdsgnlwhdkXbtjIg8YvO9H9FoVOm16zizEaqeRkjdpVNt0+/so6sS8nzCuNnhZL9NfDFPNhHnrcUK034bezZk5+YirWmTgwfPuHnzXUxFRhItonEft9vDi22wWPkG+UIR0Q+4PLmkY+1x//q3+ejJG6azIhopPgAAIABJREFUIeftFu2BxTsbK2DGeFbtEfddyrkosVKeVwOPH95dRUqn6Ux7zFwHBIWJqOMfHZOMCyzv/oDe2KE1HrJ47S5+vUtXjbGbNcnrI1R5iiPp9FunvPuNb5JPZ9DyaZTsAno8z6x3iUuS0uoKycBl1Lmg2jtlpVRGz5cZ9UZUrRid0ZR+fY8nD37NSmULuZjgG29f486dW5RLywgTh/vbS/zDz7+gT0h+ZYeomebkq4cUlreYxUMKsU2MaJqpK1Pvzbm/LaEv79A/PMJmSHkty53tLZzzN5zsXWDXGthmhG4YMBhNuXPjbUrLO3z4jRuc1pvYvkw6mqDx6CvG7WcIwoTqyQk9S0dILqMnLZoXQ2KZu3RGPZonL8FqsrKxSOvC5/LgGCMVpTeZ0htNgZDRvEe9OqVUSLC2WMKzLT77/OsyyX+UZ8XXCojILOdiCKV3+Pj1IVfSJmaphO2McTrHFAyT/+g//jO+OnrDcaPGQBax1Qiz0YTM7g9w+hCoEdYrOW4sJjGUOdGMzfNnv+LJWcjZeYPh5THmfEpma4Hzwy6SZJCJJ1nNJ7hSSrC0eZO/P3iNM6hRWrxGbqGCbrisrt9HGX7JoCczEnVCM4qgCJz3bdYySd65eh9DrVNZTLOxvkHoXVCMzPn5j3+Bnk4RNfIkQp1UUCObTXHt1hrt6iNkKYYn5nh8cIrl69zdKbO9kyGu2CiijhC7zasvTni814NQpZiNs1hMk86YXNou169t02vXef7pz2gfPUdxx9SPPsZsjbBVjY8/+iXtsyMky+bx48f85Z9+CJ0+GcBRAvrCnKA9xFhIMD9rMoos0+5O6Q2mhAsrFLIx+s024mxCgMbM1+j3J+y/OSS7sYCjp9FU6B/ts/fJZyjFVYL9UxbTsHHnbaxA4PkXv2U9l+Dxi6+4emWVmDYmm0xjxpY5n8/55MEbdgsJIjEFLZchkitSiGV51nf42//9rwgdnyUzz2o0RUiTxuUljY7FfjfP+LJBMRxy6+oGJ9NDpv0IYX8fJRKQXMiwtJKlP9nHb41wzQXU5AKuGGXQn3MtBa32iJuLeeajM1qDGk075OBgxO2tGFHDZ+bNmYYivpFA1mO4Ewk9k+eg3sS1hkQI6PYivL50aO//DMmIADM00cIMHZ68eI45s3n8VYMneyf02y1K+NSbE7rnJzQnA3rtLn6njW53YSWGoCm8ePwFndojjs+fcNRucHP9Gg+fv6H2/CHpbJmtW7e5ef8aq8UYP/30t6yubWMPHEAm0A2OpnP+8D/8S5IRgePjIYlMCTUq89mXH/E7b9/i4I3Ny6dPmXkDPENkKOjExS7uaMKbvRdohXXk7CpzXyExaKDqfVY3TdKTLnk5QSp7hYOj5+z+3jbpjS0qpQyNocajUx81NqYkGDSHZQwD8hGTjUyZd97bIL+UYjowmIxFzk971GtTiis3EMenSMUN5MEh406Xi7M6Z4ev+P6ffpfJdIG+02Aw6iAFM2KGwN7h17ByY+V9Tk+bdFstZFXhZKzz7a0i+65PX45x49Y1vvfeLi+/esKnB4csle9z595tBuMmT588IJPbZOfWEkul6xi6QGDEcfQsSiAwPPycze++TSaw8CMJlEiKjYhJfG2HTm0OU4HlYoJcVEAe2iRknaP9R8ip26xeu85iJY0wvuTRF7+mvLLF7be+TXlrgZ3taxQyV/m/f/krFrZ+n9M3v8Ga+JQKWRYLAvPmC7psMbZb+KMm/nhE6Ibk4mlOXx1Rm7UpF9J0T6vMTk+5v7pIMIvSc6e8qFYRzpuI7RqN2RnBPOQn/9dfk1h8h0FgYY/6ZEnwql9nY/kH9FsPsAd9lHSF8s17LIkz/h/S3qvXtgQ7rxsr75zzyfncc3O+lUNXR+YmQRMGZAomHwTDlhwAw4D+ge0HP1qSaVqUBIkim6HZubqrK4dbdXM49+S0c1w7rL322iv5oR/8ZJqw/sP3MObA/Oasnz5m96iKnYmwevEGM7l1PvzhT/nJF894Z76IYTSYm1W4dnmRSGaVYbvGC73KRiLFpD9FUAP88R//DgWpw9hVYXaRntnD92yWVi6TFhReuvUmx/qQ7bsPSTkdfuvVGWq6SdMYc3J2yO233ubKK28ip4o8PutTe/AjTEFgfmaRQkolk5iSmy8wq87w+Af/llB+juXL51lbW0buuxwJZyiJ13ixf4jtqISCCexJl+vXt3j+2Q/pSBZ9JYgnpRCHMpbi8LvffZtSaY7DwxNePDyl+tzg3qOH+OYZM4szHB+9ICA5vPnKVVTNZvvRGa+8fpGWbtIe/cq6BtUsodY9nrc7TFwBFZ+kJBBTY4z1MsNhh9Nyi/ppj0HXRIsn0Aoqnf0OXVcgrDik5SnobV5dvUYjnkRSQ7TaNbqDOo5iUTk44qefnfDkYA9NmeB3O1TuPkfvDHjt27/Ok4ef8rg6wPRF5iISdE44fn7I7/3hH/Lw+Jjj9hmBuMblC5f4o//qn/Delz8iFwpCMEPbC3Faa3BcHVE8f4GFSIbyaZXd4x2SMTB7BvHQFQzH4v7eJ9TaB6zOL7HfOObu/ofsnx1yVhugd230vsnD7S4vjna4ePsNDDlCJpbklXMbxDMFmo0Wf/rn/4ZwMonb79B6fp87119imFD54u4h87NrKKKB2XzCPCJLr73BWA5T2/8Ky+njhhV02+Glt96m2Tzi3tMDpoEEoiRS+fJdeod1shOTtJakK494Wtlh+6vnfy+sCL7v/7/CiiAIPsB/8Z3vsLWyiiupXL56mx8+rFF98QuuvfE1UFV2nj3i4PFDbp3bZGk+hBhK4zgCyWiA26+e40/+z49589e/zfMHf8PIEEjk1lm7uMpQnuV8Yp8ea+zvHVE+2GY8HDAY+WwsGnz8yz3GXgRR9lHtFsnQBqWZOudnV3hWG+OEcswsbXD3/i8IjE5oNboUUlusXLhFablE68vv0/cV7OAWhlPHdYdMhyatwxZvvn6bnX6MTkWnsBQhOadwenBAzvBo+iMUx8YY2Mi+wmI+RzMscV3W0WWTABI4QUZuipXVS8xcuEw8JNNsN7FGIzQPar06yZhEKi2wc++Q48qQkRokVkqRUhfI5CIE4gGebT/ji8/u405CBMe72J5MaS5LcXGBdH4JhSyd5lOe7dTQe8+ZXVpiYf0CkViCWKREtqTSH5gkNI2gpmL6PsFkHsZ9XFvm+GSPdq+H4wZotQZ4gwq5zcvY0hBh2CA4NBAiCzx48RkJ2SHoF/EkAT80JZef5+SrH3Hp8m/gSQ59y6PcMHh0/wmFqMjVt9dxh78CzWF/yGo+TyhzDl9o0GhMOCyXUb0xb28UuPFaikpzgqZJOF6EVtfn7KRF1G0x8OfQRYnDbpChB4qsY+zt8jvXNpl09yiev00XmRcnh4hjh+uXFxjtHRLPKpjBME48z9bVS7iDMZ0XOwRWVwmFQjgji+PGkL4U4L3v/ZKtjfOsrAbQVJPGmcFiLoY3KlMJOiiuhmsGaJsCzrTKpZzCjx8+xpdmiCpJYopK8srLxHt3maiL+P0GQ72PbjkEsyI9R2UmUCIXN6kdv+DoxRGpVJFYJIwUSPO1t26SySQZWQJnXY9HT/aYyiI3r2wyKJ/SaXaIL60iiTK/+PkvyIQ6zEXSJJQAjtmgevyI0PJtPn9qIQR9ElGfmOzgewbJTAbPbKP2TIKBPNHZC2RnCxzaVQpyi1Q4iRiYwXbDiLXnsJSkVLgCoQQTT2I4MOjXKixGHXbNJAHB5OjkiHK9Q1CLEqi/x2I+gJQr8fDT53TqYxbOX+fpswrBgIWUijFfCJGIxGh1fP7Fv/zfAPij//a/QQ0kcU2DkDuiGC6QLk6xxmCoOVzAtoZUByJHLx6RunANZ/+YWNgkkhZong4Jr55HOq4SLRQpra8jaipP7n5KJOwSljRyco9kNk80W0JRZbb3d8lkFsmoJfZPXtAe9kmmF5mJikxViV5mmUrlGafPn9E5aLGWm+WP//Hv8elRi+bzHVLZNEtXLzMZjvjpj/+ClXyM4cjgqDJlPA7z1uVltEsZzGoLa6qAOiGcCpHJ3+D47ke89MoG3aFFWBPRDYdfPGoTTxssOBOmQUim80hClNppj+37PyM7d4Hz5wOowRi2EGNgweHOPd565R3+7F/9K86vZZGFAIdnA+SUT6w3ZpwusrW5SK8zpdu0+N2vX+f5yZDKw+cEilG6/TYTy+DcK5dZnrnIDz77nAuL8zQaJ3jTEa9dusj/+r//GX/w1hscDrqIGCS0MLHQEhNVpNLqMtEbxNEYmjotv8X/9M/+OZ989jGBKbw4HaBoNpdWIxQjq3y08wUXN27z+RefM/Y9kjOz9Dpt3j6X4Ps/OWNstti8eIV0boYf/82fsvHyN1GHI6IxB31i0Bk5+H4AbdTl1/7wd3nw3vv4kSChVArBmGJaDpploUZcbDuImCwgF5I8/tf/F3f+0T/lb9/9Ae9cvEo6qLJz+ISgNqWoZPns4WccjaLk8gmubSbJZxbw6mPO7F9dK44UiwSjIdT2MU+/fExjGEQQTaxOn4gQ4OqtW2zLU86HRWwnieHpDHqHDPe2saY2pfV3OGk8Z6mUpt8x+Nm7j/jtV78OJY2RphATY7hTkaFjcf5SkF69Tq0doN/ViYaCRBT47G/+Nf/9P/8f+dlf/5C5K3cwDI/jnT1cccLNi3f4pKrzypJAd2RT7ngsJ0K4zYeEl76JPqkQDsuMen0+/vAzMuuzzJku9UiKK+tR5hJhTusCPz94wKX4HKWCipZdJhDJIzouz4/uEu6F6HebLN++Q6qUZzLocPTsGbv7e3ipFCuZWaSxgTOqsb4U5qtDk7eurfP9v/oFmZks81sbfPSozT/57/5L6ve+z/O7ZTrDPn40TmT+GtPOc5bWLmDV6uzsPeS01URLzPKP/9E73P2qTL07oiAKHO8+489/8ncA+L4v/P82K1dWLpHNlehJLtsDHU7r5AoiimrTr59hd3u8dvUGYUMnOGvTbXYZNNv4nklyNkX9tMzS0iqxUom5UoZ0PEzLilGvnvDsQYXy/iGxeJJcKc903EQUI5SbVeYXUmRz8wSCQRyxj0uaSDLCYbuPr+VhKtLYe0Z31OY7d67zeKfMzMpFCqU0ntlk96DGSdsgNVuklEyjuhHsiUIiH0ZxhnSMLl6zgRaM4Ws5BhWL4FQnlEuDLaFYCmEXVKGPP+4yV8iTmF0jFJ8npIRJYiCHYNhsMdZbtMunDLsNPHeIGgvw4Ic/ot3qkiwuMbN1icL6OWKzm/zyYQW9rlN7cUxcDvDK9StcvrTCma1Rb9RQUhnymTgJFY4bNWq7P2br9bdYXVtjtrBEKlkgXsgiKxKt9oDJqEFdH9GbyETiJUKKiGBNaTsuQ2OM7/tEYgGK6XnEoI5n+QyPGoyaPTxVYn1jmU5twOLCLJFQFHc4xO82KcxodIQkjfaEpjHmrN3GnAx55eoqi0tXKV6+ga+GiRaKSJEwXz18SK8/wPJMopJPSpkwl/KYmVPodWDc7tOs6WhqkGwsSEbzmcoi5bM6yVSSkejiayLhUJLWWMM4eICixRCiGhPfwvZMItqEuKTQEqYMG3WiwRjFfJFR7YDU4jJHRw2y+XnsqcJJdciLuk4yFyBpDlm8usTC0gy5bIlgvoAa8tFDMvOFHJ6YZuAEGNtjdnYPOdkrc/3mdRayCZIBB98d8uLePpIaZjhN49gelhRFiJXYLGbZ0FSWzhV5/Ogx/bFDbnUNuZBhYflVcrJFT2/z/PE2jf0y52dKzM+nyUVyWNMa7VYHZ6QzoxyxuTXHD//6L3nncgnVsxiYA9yQTP2kRvHSTWqnbbIBgUxIQRMlZjUZVZkSi8lMDBPPMpDsNtX2CWpwnvlUDl9RQPOJJERmFvL0hjb2uEfTFBh16titHXqDOgdHOietI063n6AhUSosokZSCKJFtSuiKA5aQCOQzWJFoxhDh1wpw7mFIvXmkEa7j6aa3L//GIDzl98iFWgxk1fJzW9x/94DJo5Is3IChoRlTpiKJudWZhmNbFTvGevLBaKxBMOBizPwWVrIMr94mUQqj95yMfs2t2+voYXWaTQfMxhGefS8xvZOGZwIPUOm1m3gigpVfYDpOsQjAtVqBUcoslaMUT3ZpXJwiD3o4ydEqu0y3qBCOiYiYVI52mHn6QMmAzh/Y5mBa5DIJNjYWESOynz8+CmXN6/RbY/o93Q6jSbbz3bwZJXd8j3syYhOpcuo2SUTnXL3cZWX1s5REx1a7SnN4xpGa4/br1xn+dybHDXb7D08Zvuzp+w/fIqmxdAru4hqjIkVptIe0hu02VSTHHseW/MXOCyfYlgTFuZmKGUyPP/op1ihJLJmIsayJGbPsTEX59mnnyMZYcbdNtWjfer1OroFdy6d4403XiOWjxGIB+kZY57vHpAqRlCHDcZynHhYJKbZqKJCxwrSGIwYlEeUFku4isuz/UNm5xbJKQZ3XzzhbP8MYyKjJgq8dHGDg3qTkGMiCnXwPPq6x2lH560bMxhDn0S0iDG2cR2bzcVlBkGZ08++IFRcYOqK1E5bnB71WUhv8dUHP6Ffq2JZBpIgoU5VavV9vvGd3+TTn/wE0Rqi+iPk6YCT7TpNAnRHbWQ5TEyWiIku0UwWSY2jRobsH7YJoDKfSVDTu5SfbDMzG0GNpZBUBdF3UCyD27dvMK0+5fMHTzk6PsYZ2WRCJYYTn+KFKJoYJ5tJE02mCEdzaCGfXNDmqNzD6A7p1Q4Ztfd44/VvklLzSAGb2UyKsAzmWCe9cJ5DQ0Dff8rQGGH6NrFChnOXz7P34iGvXN/ii4++YCrJ5FcW2T/rMbdR4NmLx+yfVWicnjJs1FFFGVmTyeUS1CcmjucjaEG0VBT97BQnkUcTJPypy2SgMxp2CISy3P/yM7RUFDeUgEmPxPSU+fk5PnqyzVxyFtMycXyNYHwRKTfLUm6Wf/sfv0c+uUggGKFrDAimU6TcHo1TC1MQsGWZoKqyGBV49nSXiX7Ck3IHWdCIxXOMghnSwQCpxBwxwaY0l2UwHfPlV/f+XrPyD4KV2dIauWyRZCrKIBzEqXS4cLGI5Q6RmJKLRvBFlaAsomXnUSNzSJKM7Zr0fY+Y4DJ0I7THMoowQfZGNFsTItIBk0GQXqfKxPUZjk06zTNSiRT9kUo2nUKSIaAJJBNxBsMBiYxC/biDMRphjLqMzRHhyCxqOgI+pFIzTG2PRquG7YzwRyMkVSMRCWKNx4xGEzLFFU5On1EoRjFGUxQliuKrdBp19EaN2fkcrqcg+wEkQcAWhyxHAqxcXAG5iCxoBDSBYEJC8Ks0uuCZOoJvoYgOqm/hjMF2DWKJAkPDxpp6CL7K3n6fyaSHxJhxe0qv06feqf4qPGkVSYC5+RIhWcbo97HsLvOlGQKZEhoSjhxigIA+aJOQodZs06h3MMc+juMznY6JBhSOT49pt4aMxiArGrGoSmvo4Xb26PRFBEwcd0JvYNIdDnH7OoFYEtOdYlsDPHuM7gm0Jxr+QMcSfOzRiKggsHXrFkRyVCsNjEYXceoRViSSUQnLcuiNQfRsoopLJhogHo0TmA5wtDCt8pCuIWBOXTTFRgjEmUwsPCfMNJBGCidQBJiMTgkFkqAEAA/RNYnINvmwgOn2GYsB7JGNpgUJhgI4voutJTlrjoiHQ7R6A5q6TiEdwHJsPEMmmAqTTSWIRuJYiAQEkUa5DraDoQ8xeh2ssc5sKcNIsJDMKPpojCu6RMIqrfoARR5TO6vAVCei+iQDMqI5pqdP2en1CKIxX5gjm8ox6HYIJUuktACHZ0MM08R3DcoH+zTrhziTMMGIgjOdogg+c4UMU0nm4ZefE47KRGcWEWIpyqfHeIMJycVzTNtVMHtIrk9IjeF6A6bOiEDYR3QtRMfGs6bYrkFm9TyxcJxgIk4wGiYkewStNuXmEMUcIWspguEggZCMrMqkS0u4gkvr9Ax36qAoKpIqMWx3KRaSDDotLB88UcUb+swW0iQX87QbZYb9Ecgajhrg6f37ALz9ja+h+A5BLUA0nuTZiwNu376OmogjR9MooQCBgIyHSM+XCflDRCVBMlFiJr9IIBqn0W4jSiHiAvjDPo45wA9IPL13j43LcUY6uMaYkOQTicbwRImzWotiPvareqXlILhTHE1l4EgQcNCHOrgW8bBMNDHH2NaoHJ4Ryc0hJ+I4gkMynKBrSGRSATwvgCwr2Ewpt0xKhSIiEFBDCLYJ08GvllelJM/PTgk7Y6pnTfTRmK2NGcKJOdq1Gloqw2joMR2MyagCgUKWyt4OyXCURCyFpAQYTybENIdMPEeicA7XnzIxW0jOiHxmAT+YIRrVSKeKzBVmyMTD9Lojcvk4ZV3HciZE4gkS8RR6pU9EloklE5yc1hkOdTRVI5Wco5RUOWt2qQ5E+r0u49GIqR8lG1ZREnEq9RayOEHAxrIcEsEUvuNgjxyUkMfA0GnW2qhTm0q1SjCXZVwvM+p18DyX+bkkX+2UKWo2kiMxHU/wfYvVK1cZt6tE8HBNh4nooIRFkr5NfTzA0oeImSLOwMLp9BF8n/z8Ikf9FqvLKyRTArY9otmwCCcyWP0paU1m7AzojwbIYozU6nXa+iGLqTiFbJqQ6mMaA/QJxJMhtKBPr+cheBquaVM+fUEmk8KLrzOxpyRSYYrFHKKvUQxOqVTbhHILhJMRRNHFs2zOXbhOo76P4waIh4J4zpRyp8PIcxC8Ma3pENGaEpNk8ukkE89j57DGuPYMMZajZ3p0Gx02L9yiebLH6vocoaDCxDIZ2xMiSZXn907YOJdhPLBRgklcUaBa2WZiTpEHLRZWtoiEIkQDQTZXVsgtFPGCYXTLwzAlrIkAlkn9xT6xmXUkd0BAglFf5/DklGRwHt+sEc8Wmbg+016XaafD6UjA6rdY3bqEMp2gyC5uQOCk0SYdz+HTZ2mjgCxPMYcDApEQJ3v3ODntIcWy+PiovkUyGqbpRkgqTXpTiUIhzsrKHLNLm4RUmYjv0ujsYzlDypUyT55s/72w8g+qLtuuj+NJqGqYuUyYsqYQCxcYuRMk10GVJBq6hS2LJORVxHgcxDBW12OguxSkLN1Wk44tIyQs0gGHadcgUxzgJ1PIioJh1ul0fcZTH89zkV2BwchnNGwheTbpUBLZ01HVANlYlEq9zMR3iWVKZCNRDst1ZjIpTGOAMRIQBZeAOiG3mMeWfKZTA0+aEIzIiFISW1JIpgroGR/Rs5GcEam0z+OjMfnTMtGZGQRPAEkmGE0Sl8P4osuw3UOUNLSgjKdoiI5DLJNGtA3CQRHcKaPuEM92WLx0CdOE1v4Rk2YLMdCmNkwQitvkMiEsV6XWHHB6eowzcrn19nlm82nWF0t06gOqnTbZnE9+aYv9ro3S72ApGgNRYmL2yUur+AK4QghFCoAzpd06Ix6A/UoF2ZRQ4zksUaJeaXLWcXArdUaiSCxi4EoO/bHLwd2vWM1F2T0SEWWbgDdBFkUaVYvh1CWveIi+SzYeIRWO0hiCYZapHdVQhkN81yESlVleyiA6IfbOhgRiPuAwHLnITYeL8xKWHySSTFIfgdmbIIkSquKQyJQol20CkQCSFsCcGBSCQ7TEAvZgij6wiLsu6biIajuYwREhN4QTDmE5Nj1dJ1Yo0mn0Mcc6EhlGpkHfGLFUCLHTMmiOfZSeQT8xwfc0Bn2dnGSQdBX294/wpwaCKxCQgixmkwSCPZp7Lp3JmEDQwY0pKCGfgDwgGrAQpiKS7aGicXJ8hq1lGVg+F4ozxMNBPNsgiozvtOmOXQYTD18UsTyDxv4eihgkU4hyIbqMN57i+xpSZpPDyjZxTaIxNMgnEqhIdJtNFtMFzEafZEChN3Kxxxae5jMWTDwmxCcO4ZCP64tYho8miwTlAYKcIxCJoak+wnjKuHuKIhWJqSEcWUNLpAhEs8QG41/lSAavU6ff6WAMyojOCHsqoUguDmFsf4pv24jDKWpEwtRmGE2mxOIRlFienv3/FAxTUTD6EXodB0lssbC4SCGbI7+5RvWkxrDdwvcEbFQCQZ+YtsHYsLEVh3hGQcoUsDo6Y7OFIGaJaT6uN+X4xRHV4y+58+3fxVdPiadDpCIBkukgR/qEcDTPqN9Fczw0TUUKJYgXU1QqdY47UzwfookEnqYR8DRGgQiWF8R0VIJqEDHgIekuwZiP3tJRwyWmVpeeXmbsFFhcy9M+2yabnCGkgeJJhGMB+rUe+XCeiV7H9iQCkRgBWWVtKceHLz5nZbaANLVAFkkXFhn2Jpyd7rG09DpSMAaBIJYIGa9FKJZh4MkIvokimHiKhJwMU5SyjJwua3NLRFWFfqfJ/lmPr3/jNhl9SqtfxRq1GUxcun2B66sJdMkmmE4zlaZowpSA73FyVkefgquW8CYdRHFKMjOP1W0QWF2n27pHPBciHA3iCjKjZp35pQVOejbdXoOBOQRP5HjvBD8a45Wlc7hnh3iTM9xpm7reB0nBCgfBjICtE4mHuHb5Aj/4D1+wXMiBqyDKDpLkosoCojnF5FfTvzQdI9sDHEkikVERSwUKGxuEOaNRrdBs9MkvrLP3/BmXNlawhg7G2CQYyTG7scXR3i9IJpYJJaMMRwL1scGw2yabCBMXgmgC6J0hnfaIydRg+fZ5zhop+u1jUvMxMoUMDbvH3sEuQ1MkV0gTdSSadof+YEQsHUOpQXui0xY8fBwmzgDbFgjFMkiBIZKgENBiROMJOu0KR60Jcf0UK7HMYOgwaA8QJgLisMvcrbfxjDajF/uUGw3SoybNepeT6gm5+SKDoUC71iIoexwctblZCDNbSNIzYpjGhFguQSCd4uhgl3Qkz9gYMx0N6Okjoloc0RVwJRdBcLGdCYPhgLAUYGttne7UZTjQGfR1qoMBVWfCYiJIuphDNrqMpwYTxWIy0OnYPrfu3GLo9BhNOuDqQS9rAAAgAElEQVRb4BgcVPZJBLeQlQDYfeypgemrzCzPke53MXyZZCxMPhsmUUry/Ok+gutyeLJHJlvEmv5/V5f/QWbljXPXyOZKnOGykpGwqkMsL4WqBWjWWuxvn7FUuspx85S1+WXO2n0sY0Q6qDKTLnLSKDETbSB6A8ICyJ7GeCJi2mEMqc+FzQw5xSDIFDWxSLfRoVv+iDEeZ6ctansVjNMKgm+RnFtkbb3EaGjiopAtZEhJZdxqFUUOclCpkIyK3NzI0zw7YuPV77A6X6I9GKAEguSzObqdEUsLcXRnhjg9fMFDjIS5enWGpwd1dh7cY22rgOpPiEgu1y4scdRUKJf36HSPmQpRbEthUq0gyXkuXX0JJ5YmEJEZjA0OKx0icY9UdpUnu89IJGQcz+K02WHz5k2297tcXVoimRiwtBphcXmJF7tjVNK4oxprq8uYhkO32adYiFPul2kYBejXcbs1XGMAoRjRwByxmRxLqwuEEmF8+VcPBTuNCoOJhOpZxFMq7VaZj3/+PkFvyMOKjqrBoF1nMgEpmGRQfYYUDvL0xQn2WMe3XaZTlclYYdC1UHIpoqrMyrllMitLfPrpC/pHX5AsrDB1dSqNKicnpwy7TbKJBRRzzKXzM9iTPqflCs2uwfqVBfSmSWqxSCIZJBYOochROs0jXHWTwURH1SxwTeyJRS4sMK49RHFymIKMrWn4kkyv0WZmPkpYExGdCY5t4wgasfQC47HJpHyXK9e36JoqeycjHMvBkmXOTk5IpaMIQgRdn9JplwmNn7B8/hJfPv6KkTUhFMsSjyyw+/Ah57QOmY3LiHh0G1WODg8QRJu1+RzX37iIZTqMpQRWskT1+DFLK0W+9sZFKq0hu4fPGRkVzr/0EuK0zcOvPkCLQGek0+p32drKU8jdQh90cYZ1akdtBqZIdD1Hq7FD79ETljaWiCVljO4Z3ZMyVy7dofb8CDGQIxhKIIkKk7FJKuDjIZBXHURNRApKaEEJyw8R80dkZrYQZXCnBlOjT8/rMrf0BpmZLWqWgy+7xEIKohvgo/cekFGnzC5FiUYd7IlOt2eRLC3w6WefUDp3k3hQRbaHTJjwaPspR+4a76wWiednkJMFFFnli/d/DMDrt2/iTH1ajQ4jfcA3v/EtHt19QnFtDnP7CdXD53R9i5s3X8U/q5IorhKxbRqH29x9eJ/tvsob16+Ri48JqCn8cIKpCOPKCUtbc5SHCRq6jilKhFMpluYKfH7c5dqNl/jqvZ/jTQfMLi+zcfNtIskMQucEw7Sw+33GfYfeQMTV9/DTHleWF4mJE/CG6GaPd3/8cxaLBeyxjhzNgzlENbrMza/ywfN9smaZerOKJ0yQRDh4VmX76Eu++8otXpz1WTl/i5tXrzJuHPOkfEhRG2G5AqPGKSITIksLhDoTAhs38VMO+zu7VI4rqIrGuZkZ9lsVnj3+nGH7jMHIwiTEheU8vhKkM57QN7tUa2ecnjWoj0RisTiry+uY7hlHu7ucHTbIb8wxqj5ir9Xn6ssvIWrQbBwz7pxyXLe5cfMlIqrL2DSY+gLBkEyvXCEZneXp40cspUMszRTxlRg/+uATfu+3v8PRcZWxpzMRHGw/iKbGuPPqr6GFJCTTIJqIEC7NMJHm2dosceQk6U8maMk8mdlNFNGldvAVbSdCbv4aVreNq7dYu/k6Y13g2ZPH3FheIyB0aQ6OqA4MvnnrTX721SckFYVkMExSixISRNrDIdnZAEcnOunZBc6dW2cpE2V4csThwT4dXcFXJUQ5iqpkiGYdhg0J37WpHxzTqHXRbQmttEREm+AcnVA7KqN6Hpo0pTk+40nTI61alHe3aR/tYI8MpFCa47M93nn7Grsvjml1e7iKTLaQwaoeU7h1G6/cQU4mGcoirU6H165uEZtbAtdCIoDTbTNtVhh1fOpmh0xkhWgwSMNwqI091hZzPPr8Q8KRFFo6iz0e4Q5MEpmL9EWZXD7G3sFdjuoDGmORptFDcrI4+/fIZVaYTUBE7GKORly8+QYHA514MoniyfiuSzAR5vrlGyAp1Oq7GIZL35jQHHTwxyJ+PMlscZ5y44yxL5NKL7KSLyGk8mi+y/aJyVm1x2RqEkxGmYpjvvnaHxBSXUb6GWNzTCi1SDoVQ+2OEYgi2jICLo7S46d/+z5yYo7n979iffNllECau59/8PealX8QrBRnl8ilcszF0yQuXuLgwSeYvSPKbY2JVCA1u4Qay3B1Zh27/SMSToWZhACSy48+/oyFzQtYVph2e4ThKnhBhXTUwBjHOexDvzzCNEf4sockOGSch1jWlFdee5Wrl4ssrARxtClf7dZZ3tri4MEDotESF66/zNb1i+h2n7OdfWZf+nXm1hbA9yk3dFZfvsrf/buP2Fi9yrR6n+bRE7r1MusRm4NqCKF7l6AWxO4PEIw+pcU1UtECel+hVT9BFwNIuTnisQjarIwbyZGSSkQkH1ns4Hg69QdN7u4+ww+qnNYNfFtmo5DhxZNDql+8j9gus3D+DqWNNyjMX2FuPkSstMiT07t88sVXGNMAydImhuOQFY/5wXu7jNtlDKPFxLXpdnzOLce5trFAYbNIfmmVaGEJN5rg/GyUsa8zV5wlrIZRHAeMHqdtm6QaQAxNqRyW6TWHBGJJdu99iOTL+EyQw+v4robVeYEaljg6mBLMr1EozWB4KrvVHu36ERsreTKRHJH8ApYUxxEj3HzzOlF5nbF+RCjm8/obd7h67ToPH+3h4KKEdXafPWB5Jcnrr1+lmCrx8UefERUDfPT+A9Jyh82FGNm5LbTlczQkic1igNoAbNFndVHC9R3yrsuLrsHFxRilmMDIHDIMqfR3PTbf+R2Oj6v0T/eJibBw+z/j+z99l1evXeFR12F7t4tmCdy6ukAg7fHyjRsIdo75mQJzCxHGwoj9Ro9Hz+/yX//xP2Ph/OvoEzh68RmnY5OOMEfEdwiIFrl8jnPnLnAtH+Tw0RPKZ2PIXmJ24TwXCimu3lqg0YrgKBkCXghnNEUUZF57+w7//v/4E87d+TpRWePNV17iu7/xa0RkH8N7gqg1cMYqugeG2EWcbPPyyy/xi+99wWvvLJOJK4iOh6xEMSYqUUWHsEAg7BIWJ4SmU4zcdSzPZikxYKx7TMkhp7dw3TwRbYQvO4y7EybDIV1zyP1mkEI2zW6rTSxsMS4/5smH3+fu/Z8jhjb487/6GY+f7qN3OswXSvzOt/6A6tQkNDDwcjkmkyZ6p4o+lPj6b/4OYTOBJw5odKfISoBCMci73/9bAG5/+zZhRWQ4MqmbLnOr8zy5+wE/ff9ztNGI3MwK8cIWxpN9BKHCS69c5HR/j0AyT25xlQfvfo9YchGn+TFmrYvIANPrsl3u8rXv/CE7X/yUtdULzGZSKPi0mgZq6zHbtSNUb8KZn8UKZ7lQkqhX9jg5uUt1r8m0NaaUjnLj9ipmfJFmt83+9jOIFihEkizIMs7MOT5873tMvTRvXl3gytVrKOllPnr337M+k6Rda9DyNJRYgmgiCQEZ5+QJ/lSn1XTJZRJEQzKN5pSlQoGmLuA7CSami2H00TvHEFQxx31OHzwgatTJRkUCmSyBhMZSKQ2yQD4hkAoKhAUZxw7jT20qe0+4c/NlCsUYlt8kmimgTYc8/fKXOEYMMbOAlkugnh3z6PF9bt98C1rPGZ42cA2ZYFihFIniOw2iC+e4fH6FC6U4mmWS3PotNs9HqJjwYLtCvzfmytosx+0OfjyNIY3IRsPkQ1kWCit893d/g8c/+ZRfPPicimPjey5Ss87O/fvkpBm2H39CQRigaDpNp8JJvUYydJnjR1/QGJpMAllGnsq99/+S12+9xdpSjnA8iEaYteUrvPaNb/Cn//P/wm67SbQvkVXChCMhTE2i0hVpNT0icyoLaZdkTMUIp9kZevzaq69zWH/GqRglmJlhLp/hwYnO+StXONw7JiXYuJbOwOiRihRpNfoc6F8yt3WFYDSLIGqsn9uiZS7RPvyIt1//Num5FXRBo2UKvD67gkeOZ50uxVyYcMDl+cER/dMxSQY4+pDLW5tc3bpCNjLLB3/3AaeNArPqKYpiY6MwliL0w1Mu3TxPdnGVemWfcbuChk3F08jNX+Kl5WVW40kWZleJpIsc7TzkjVtJWtUulf3nxAWRCzMzXF5b4njQwfDT+IEXWJ6M62cQPJt7d9/jt37/P6e0eAHdDFDvj7E8g3AswZOPf8jNt3+fzcsXuf7STa7duEF7/0suX77Kw8++YOfpPlo4SHG1QHs85Mq112i2P0cYFdHkBLFMlJXZFVQhxlH9EZNwGk9NoUXzKIUse7XnhEIyc4sBIvksbiRG354g2BYbN19DsSqMJz329rc52D/4T4eVGze+Qyg1z1Gvw9zsOp+892NcK8+tr11jfjYK3Q4zYZuNKw7He11a6jxKvEAum6K4ukI6XuCjX/wFl6+tc+HiBcLhLIenOrP5Eq9eWePw8GMePT5m59hF96Mc7g3Y2lhnuyVxvDfmbK/FwOjzR//DP6X7os6Dzz+ibTvYwgh/dEhlp4kozHH+0hwB10Z2TEKSjzqOMZsPsb33BDknMhibNMsNkjmFafVdMmsvMwmIHE1EjgYew/oJrf5jvrG+yUpOZikZIx5M0hFD+I1Tzt28RpghXnCME40ixy+RLM2Q6x6gCkNWcyGikSBnA5OkYFJYUIgtnOdslON5dcB2eZdPf3mfRuWXrGZuEY4s0B+LtNpN7lxPIEZlfv8Pvkk8kSXmR/ENm/eP79PYr3D64BF7E490LkcmEmT7wTMePtthbfk61d37jEYN6nqPB/tVLi+k6AzGLF16g4E1odGuY/T7qLEpPUdmc6aArnex7C7RhETLgkiuREGbIrl9fM8lkkyzdv0KR4/uE1EkcuvrqJEojUqZD/76r3DMHURpE7tvMurtI9Pk9uXbnJ4+pxLWSJsT+savprat9JjYwjzxrE1x4yptK8u7X9X5mw+/5NVrN/k3f/FLLD9OYW6GZGBK/2QbV9eIeIdcvrROrdJjpCuUkhuUIlmGeoNJr8a5jSv4SpLDxgAlIHLj7Ztsf/iY0MwsW1fXKM5l+OrRKfmN8zz68c/ZmJcIpUBQbNZiMm9ev84vH9Q53j7g6fvfQ7AqvP7d7/La9dcYO2GGlWPu33vCsN9leS7E0fETEsF1vHNLhMr7nH34Hj/76S95djqkuBjCPPYJRJpE0hJKOEu93EOJBcmVSsTjaYbTDk9efMKXH7zHKVFeXhA5t7CAO5IZtTwCSpShnySTjpLKLWD0DYy+QUCLslAQOH66T3J5lnQ2iqSIjNwJmYhONpOl46SJJmRsgjQ7ETaSU6r9KOFhj7PeCY7nkgjncIIqB3/3l+y1YuTjJpl4muXl23zrm98iVChwZzNBaekWxjjIV/ee8B+/9ydkBk2yqwWm7QH9rgR2lrlwDmMuhDUd4CdLNMchTEFAUHQ++fFPfwUrxbeR8JFDNsVijNXcEoPDL0jOJlleP08xlkYbDnnWG7AyE2Jg+4Rns6jJAooS5cqFOK0nTzi/cY7DnQMkz2cuP0OpUOSH/+5fsLIQ4sFei0AoyOJ8hkhS4dhe5Jvr3yKWX6FVP0CyaizNzPDZF0dk42nW1jbpTwyGro0YSTKViqwvLaEFZYqJOLbv0/YVrly7xa2Xb/H+X/8QT50gKg6q4CNoYXp1ndSFBOFYFskLoXgCazMSg3iOULTE3LmXODlrsLe/T34xx5/9yb/kG9/9A5qV55jDGr43wZMCpJc3aNdOWFzeJGiD5Io4ssLfvnufueIyd15+h3rHojcWyZWWuXXlMqNOm5YapHG0gytFKK2/THbUZZhKc6IfcufGGovBCZpeRYzGmUvOczQxaXVMHKlPtKSRW79NKhzn/qMdfNlBGdRp7W/z9OlT7lzY5K/e/x4ZvUchu4gWn6WlT9ESMQ6rz7havEpClfGnFnq7xSdf/g3BRIG2vkvAM6iWexxVx7x66xw7ks7ZzjEr0RmG9QHVsxabF29TzLskcxqqMmVxdY2FuRmE5mPOX10nvrDGYP8Rzc6Ict+mUqmxeTlNxB3x9Vc2mIjw0cMdfvSTn6NR55tvfovDRzvc+/gzqsdlZBO++MH7GM6Q9cUM+YjMsNJn73mbQi7I/osKi4sK8eUrjBwJs99mqRThxcff47WX3uDgwRdYVg0CJrsv9nhrc4WUafJI7/PZs21qlRrpSIifPKyQn4lTsKZsrq6TyaSZdBqMCRPbeovb18/TN122GyPaosAr6zKV3fdoDhUK51ZJZlQC4oSNa28wmYhs737CB+/9hJDmsb5Y5IO/fI/z67ch0ONvP7nP548/pdrbRSrNkMouMLRgosyRWNoklI8z6NeI+xl2dt9jca6A3g8ynaqsLqTYr1octs9otXqclZtMhj1yyohszOL+YIrkTJl06zRPD3jx7Bn3D/s8fPoZ2kaK9ajJ+UyUuBpk+2SHO1euUdk7wiGKEBCIJmVK82l+9OlDfvMbv02lWeV45z5Mmty5dY7q0R4BK8bz02N2j47od0wiyjwDZ4jeqHPnzmXMkcPu9iGnZ6f/6bCSSwZAlDHtKMGpxeDwlEI+RS7pYXb20CuPyIXH3CvXUU2BkDxl2mjS3a/gWQOSKYVUIo1hKrzYrbK9c4RhmHh+l37PxhLg9q3bvPXaK+SyRfLzlxGiJmdtn1ZlyLDbwvM6GJMoRvspQdVjY3OdRDhJeb/Jk0eP+NZLL/H07nsoaghjMGJ/9xnDQJvFTIinL2oo8VlC8UUS8TxByeLQCjGfX0FpVbh6bpUbr92iz5TvvPIOP3++j1GvEYtlyS0sEs/HOKp08OpDGmMF5DDRYISQKjL2T0gERXQtSF13aE8c/IiKYLg42hxT1UKyNURBwQsGEOMJvv3dd5j0DLSASDoESTzG7QDrV9dJ2m1Ef4oQD5BYSPHaxVlaQwHZ9qmfVrFMG2Pq0RmOSGbyNA8+IpUvMBhJjE2ZYnEGwRmwcfkKRr2C6lkExSnWuIbpyhQSC3T7fYIhF0X0GeoSqHMEpS43bl8lObdCZnGF0tICMS2KFNBxxlN006Z+1mZQbhKVxmCbpLQhJLNUam1Otw9RxmNi0QjnF+O8cus6siZRq9U4PijjuSMMp4Ct65RbOiPz/2btTX4lSbM7u2Pz4GY+z+5vjvdiHjIiMysrsyqzJjKrWSSbbFJsiQDB7o12WmkpCNC2d1oJgoAGBAhqEKDQLakoNllkVRezqnLOyJgjXrx59Hk2NzM3t0GLFKCd1AD7T7ibD+e79/7uWdJMp9neuE3W61MxyiS+ixLOKZsyKUsgV9MIBZ9FEjANAsb+nLUNhcHZAdVyiG/lcIIIJXIpZQa0XYc4XcIN0rQvLmmfPkZyz7nT3OHi/BGFWo5INri87PHlpx8hKi2uVwo4szb5QokgkvnFz/6OzrOPUDMFRGlOpZnBSKm0Ljp4kcuk5fLmtU1mcUiSErhxq8Z/9s/+kNbjQ446Y8qWhRiJhHHMzWur9No9bt64g5wpI6ppFDGNYde4dfUuR88fsnvwmlGwJFPIsFYyMAwJLxhTLGWI8TFsmbWtBoPhgGWy4Pqbm4x9DyeKyVcrQIJdNFjJa/jjEYmYpbB2i6Vh4o2mtIYz8hUduygxDoe8evWK+rrG7fotZkEKP1YICTg9O2H/qxfYOQ9TnGLEJ1QKMje+/Uccpesko4DStetkqxaGBQtFZWQW6X36lDtv30BcxISzOZ4z4uGvfwnAez96l8liRCjpZItXOHv1GG/Sxcg2WEQmF+MFu90ux/3XTNoOr/ZPKNgGk3GPs84ZleYKxfUVvnryiny+SeHGVVKrdYxFxM8+/5zvv/8DtHSK0PO5PB/y+nTGYn5Jv3dEp39OOqOwUraQvQGd3V3KK3kOe5fMJgJKYJAOQ1aLPQyjRnw2YjSF1nmb4ckxSipDUZHx0haKFHFy9JqnTx/iTTwGTpskUdh/vIuER76aZhakkEdLTDvm8PkzUvacfEXj/HTKne0GvdEYSbGpr21SKWaJBhd8/bhHobbKl5/8B0b+mGkEw0nIyrU8yVziafcJniuTT2VZrxtc2Vnh7z/6JavbeQwxz2S8oNs/JVMT6R/2KI9aJIaFmqmjpSuc9dvMvCXfe/82Xvs1KauCpNV58vhzfvnJr3n3wQ62JiDJGrOlxnAusbZe5uDLF5Qaa8iJT9lQ2Gis8fjp58yHrxCMJkGi0el1OD19RaawxtqVGuHonHnfY31liwdvfYtXR3N+eH2d2w8+AFkiEhMUXcH3fe7WU2TKIkGnx6svn3L6ep87t7c5GbRJaSKXl6+ZtYaIYwdLcvEEn5Hj4isrCGKZQrbKztUt7r79Q+ZJB99xqRa/qeOoFaIYcyRMZqcnDJYw9qYoTHj/O/e4PH7CiROQMadUGgqFms14f48f/Pl/jTPoU6iuIGoZxpMl3jzCjxNSlspgfIFkZVDMNNOTPaqayYe/f5tcoUmn0+Zg9wXD/oixplE0NObpOrOFRzpesKWrRGaB53vPeOudezx/+hzHX7By7SqPfv0QKV5wvd5kOJiSljWqhTzxRp3Z+WuWVpF7t1fJVpuY2S2+f+cdji5bTC8+59bqJmlVZO76zJZ5gtYuxdw6t27cYW2tQYTLp48fkcs3qNZuUTMDqqtVdDOLM4ioVfM8fTFkvZQnGg4YzF3Ow5DzJ5/zu9//U/w4h7CM6Ls+uxc9zncPEAZnuELCaHDIye5TLo5PMAsGUeSgjjRwfbJ2DT/U+MVHf8fvfPhbEIR0+z6Bs0SRAsyCSyG2yRVTdDyFbm9G+/KC09Pjfzys3FhfoWDrEI1p1CUcx6OuLihVYhbLHs58TGPzCr2LkFI1S28yIFhKyGqW2czB6+8SpdcxhCnj6ZC+s0S180iSxuzsjKETIMgKURgw7rbpnL4klbGYOwMsTSCfNcnl06xt79Dd7zBxNZqrFVRNpN0bYetLsgWNyTxhtnBxZl2W3pDR2OPagx/z6DefUVtZIaVILKYDnChifXWD1ZUtUIsM5yIXJ21mrQ5GvkF3KRN5Gv7MI5gPUKQEScnSPj5Bz2VZhHN8f4Ig+LQvL1EiFSelIioaAgrLRUwyGpPLZWn5I3QzA8iEi5hr2xtMx12OzyZMZwuk0MNSAkRZZz4eM2t1iUIR3cySSWexDQjiAn7QIgldFEVG1lRSto6zkAjmY9xIRFEMNE0jEiI28lVcNSCajwkSkRAVCQ1Ny2JqeSI9RJMCNFFF1XPoBYMHV1YYBBkcVyJYQBSECIsZ7jyhYaosYggTMFIma9U6StbAUoJv4txFFSWVMB8vwC4yPX+OEEaIcUQ2V6K4cY/RICSyGgxbr2k0NlhprBGHC5ZE6JpNoBokkkMcDQiDCRlJAbcHapVUpYlkGCxdB8IJWhxTtG28UMCwCljFFQ77AXqqycCd0z7ex5kMCMKAKJhSt8u8PNyjUrAhWEC4oFTOcTn06Jx0yOcsIkFhEYSYYoRmpJBEHT1w0VNpdDODoUhkEh9Njpn5UGhuk6muoFhZVutbPD05QyqsUCjnyGbTqKrC0/YZ6aJAvVIDEpbjJe7Ax1lOacpDRkNI/AnzMGYaCiwElStv3mbhDSBK0A0Vw/pGqrZYiujlMrbgkyQqsppFVUwyypJUOo0zW6AbWVKZMqIk4Q7OSdkyl+0LYlNlEQiMe3O6E4f1WoH1jXuksyKSCQPH4cWXr5BNi73jZ1zsHrGMQsxcAV0tkm/m6L94xPnYRxAkBNlmGNlsbNVpP35IcbVBIizQbRXNyvCbv/lmDHT91lWsXJVMfhXTzDHoXNJbxMRaBksREImIdJnmZpHnz864vr1OLqUx7LS4OD1kNHXwRiMKuTSiOgfNZjaX2Hv+hIv+gs2bG+QyEkksEicS+bRKNpshE3TRUyqJArOZQ/ukg6RkkbMRrlqiVilRyMh47pjhyRxFH7F/2KK+WaecsVG9mCSTJW0mjOcxehijYCIpeQTZYPPKDULBoWhU2Vq7SjpX4+BsjDfoYje2iH2FerOOXSrSns6pmCajwGM87RLFCxQxwBJdRsM5N954G28xotJoUKhUkVQVdy6wUsqyfzLAmy1QRYFCJsPqZpVu+5wnz1+ik0M3TFAFvNhkOhiTKudZXVlFViTGrs/MU5hP5ly5f43xeMhkFrEIEgo5nakj8sGDHV712+y1pkzGHjkx4LLfYTtbJxQznA16tJ0x82CJ329TXClRqjaRRQ8pmKAtA+axhqdCSpRw4yzLQIJgQa5WJvYcpiMHd95hGc5RJIW0lWMWw8GLFsVUGkuKSJsipc1r2KkUouOwe+JzOXaJFSg26pwYq5RMm9FcQRBNdNtATWt0xzqCHNE/O0MS0qhyEUu3aG6v8PDFAdvNHKLdwDBylNIatjJn/2zOekmhe+IgqBbZYpbO63Mqm1eQdCgUq6TtErqeQxB0+uPnpIWIGBsrVcTSUiRBRLuzx1vXG3RnIuPFlEQMSBkGPipqKk0qVcAZH9M+36N1NqCxsYI4noKh480HZFIK5VwBb64wuTxnppkU8xXymRzLJGYih4xaF5jZq1SKVQIfZmMPlglTZ4IUHhPIOcJFBH6AIEJzpYSWqXLeesXc6eMuFgxcgVSokysJpJOAZRiRiBrpXJ20laaelli6MiMvwo01hEjBnLe4+e5vU6qkCYMpyCqJnOLg+AIx6mKbaUzRYOF4zCcTpDikuLlBzjTwPY/U/5PKe/Zyl2otT0HPM16GKKaClU2hplJMAgEpidEEh4wi4YynPH/1nyANlNYgr86Z+A6GphNJHulKmflyThQsSBspnEBB8SXGSxjHESQxbijgzBUmbhdZmlIxXTRdJFfU0TQVU7c58c5RUxlGA4fxoM90OGTUe0Wm9C2ioEuj0cTWS0ymHoqloOsFMhTRBRFCj5SmUmAhVOUAACAASURBVKluklgxoSozHLSQRQ/DUFBmCgcnM1LSEtnp4zsR09EAJVuhvHqN4WBAaxxy1uowGw8pZgwePv4KvbSFl6kxar9gfn5GyILa1g3auk5a8xl4E9wwRDUT5v0Zl2KAalnguSx8Fy+W0Wd9Mn6acCkz1iASE3RVoGBJfPnkgpljEhOSzsjYBQtZSTHsd1mGMqKuQSIShwlBJJFWVBxdRl+pIKZyWOkMlWqJ5wc9AhRcL6CcE7AtmfEyRE0Z9MdtwthFEA1M00Iu17CDkOFgSCll402XIEukdJtYCVFkhfZ+F3/hoxsmmWwOPaMSRSaOPyBjR5gpGUHVsO0CeqGBf/qEvC1iyyaqVsRVFmjZNCeXDq9en1OrV6nUSyh6imUos5x5zIGanJCxFKKcQW9yiKRWQBPAHyEsRsSJhxjJSL4HRkwSy6SUFKHl4/pD1gs5uqM5QuSTzVmQaTAdxgjdCd3+BaI/+8Yumy8T+AntaQfdThFGIHsTUopMsVgjiQ2eew5FSSVYThGSgNVqnaWps5gFtE8GKLMlRtrEVBRsowi5hMFEBtHGjUV6fZf40RljJ6DREClWC6TEgH53TMeZcf/eOqLg44wX+NMlQrhEVyQ6rX0aK3d5ORoynYzwxBGYFmpORzR0BE9FFkMUXSQWU0iWSCGXY3H5AsOqoAo2wWyMKmaJ/YBAkDFMC1lVEUKPtLhkIUsEhkR7GiD2fPCX5FbqGKKBoi9YRkOIRCRBQLHSFIsKQzeDpCgEgkJ37BGdfM2N99/kMByznGeZ60siM0IWLEq6Sn6jzqA3xEyrpHMFvMX/+6TMRj2K+Sq2omBKMZWVPAPJRCtYpDSJ0AuIlgn1UoH9YhcrlaI/83A8D1X8RhSqegE7axu0ui9Z+gGJIDGLVFYLFdxYQ154eL5LLApUS0WmcxlNB6NUQA2XDDpLeoHCxs4VlstzFoGElTOxbJnQdekPZMJ5j/F8imVrVFJ5UonBRZLgxT5qtESQMuiFOqZuoIkui0AjLfbIp0sU8jkiRcNSDYK0ipDEVBorKIaE689IhBAn0okMg+7xPkkCmphCCQOMooqdViiVy9SrTURBxHfPyOdXiMUBlfwKkT8iDmd0OyLzpUhjY52vH+2SpJdopohsqEznEoJp4OgGraEHscdy6VOzbMKSxcSRQMsw81oEgcfWWonbV9aZBAKtgYe/0MmLEsRLjk9nXHnQwJ9LxJLCcDZiOh6ihwHZTJ2sJeH7LqgSaStDlMRM+hPsQg6zbjHuDulPpjy4ts7hpUN//xGZRhojo6AJKqZt0505jFsxlbRFtiIRixKJVUQLh0zafVzfJJYXCCmRyLRwZlDRTIQkYDQ+ZxFpWFmbi4MulapE2jYQxCK6apLWIxLNwlBUfCUFS0hpJkbK4KhzgTt2UPMal60ZoaxiaQKhYNA5e0KpfhXfC1i4AWIYkVUNEiNmOvFQMzkUFSRNx9y5yYvTxwynIqf9MYkIipkjViIy3phMOo+yjAlmY9qdSxxH4er8No1qmWGUkE6l0EWB+XiCli6xPNpj6jqsF4uokcrMCdHDiGrewp07DPsakR8gL5Z025dYBYOBlGPsOZTlFFlZwos9ZCvPYOTw6vglOU3BNAvoYgriBG90hK9UiY0YxRKRTI2LixPSxpJEs9HFGFNSkBOFwpVrzGYdbEsCYrLZDCUzy/PzDifdJ+TTA/JpAzNlsyBEXojMxyZJQ6JQKbBYBCT4FItVHv/mC4oPvosXgl4sk0pbBAuBQJ6iCEvS5oKFqCFqyv8vh/zH7axsl6jmDcIENHPO5fGAK9//PsfHLZi6NFIZjo5GxNGClz0fLa8wnbucnI5whAJqVWd2GjKaaui5NMWKjrFwqeRK7AsGd7avkFFVnNmczmxCKDmk0z5nvRnNeomsbXHRmnI5G1LWJbbrZSxxRjSbIvoShWKZ+s4qz77+HDEKUY0Usp2mlMnwm7//iFtrJsvp8JtWOiLN2irz5nU+/ulfsL/7CYk0pbpdprizzsmjz1FFDUETEHSPWFzgz5fYeRHsMhV5yDwKCBSTlGGRdC5pu3PSRpPTZ3ucnV7gyQpR0MNNdJQkx+E4wRG+gbTxvIe7kDESi0xBpFEv0aiskdIVKht5qgUTdI1p6DBzBqiuQufoFekwRq3U0Svr5OubbKyu47sD/PYR1bV1spaFqaqkbJNB0CU912g7fWzFIKvLiKqHpAlMvRMysYYXaUSKimmC7CY83H1K1G3huS0MO0WluYNdaTIcXvD5x7/k+ppBuWCRCDKe51G8cofWxSmGGTG6HLIcB9y6u07JjJEtkbGfIRQNJsMeh199hKpMSaYBerPC4eEew/YZ640Kk2jM5eAcUxJxu5fI8YJaMYswcymkBDxpSOuwjzcFK1vCyBrUkpCPjg4xypuIegE/jFDSCS8//imxE3Dz1h3u39zhznqBZlHmbBGwc6VOouroYoToOQwuu3z71jXCQpFh64xoOUVMYhZzEbMUISsiH399ROhMwBvhuzN0s0a+vsZqvsqr7oQXhye0zy45PJ9jDYcUwwHXbl3DnbY52vua9du3ef/aDvPZlOevOyyWPpWSTj2f54uDV7zxxn3++tevaV+MyOkSG1tF8hmBQc9lJb2BIHaRDJfaynVGbkDVtJksEwR7A0kzIRjiRQWGpy/JNWrMnRHB0iWVsalkyxyetmlrKbzZHKffI4xCNu++QVrwMAWHx4d7+GOPeqbExlu3KS5PWLn1He7dvoW78Nh99YrL0xMUq8gymnP95nsIakLgD6lIMaEoYjTruL0xqmKiyCnG3QGf/PybS5TXt1cwWWJEAUVLpbmpMgoKNFcLqEqaYA6LoUc8j2mulHi5+5LuIkY0ZGqNIps371PMZZATE9dZIKsZ7HyDUmMHa3aGUr9F66RLq31GsJyTShdonfWYRzPExja1Uo5iJo2UzlFcbSJNF5zuXiJGIEcqupCmdusKcqIQLWRsPYOsGkSGzuV0jCD7LJ0JXpLHUU2kgsLdzTL/9u+/4lYzQ+iPiaMxmhxTLa9g1RT8s0cYlkV/Nubi7JRw0Meor+LKAm7LoVbZQtdSHB/u41dX0JWYzukFuVSRxcTn4uiEH/3h7/Dw8d9x+1s/oJaTcfunnB0dUF29hxN7XMmWEXRYiCFRDNIyIFcv0X99xKePjxlPZlSNhA3dw2/YREOd5aSH4/rM3ID5aMqVms6vj4aEo4Qba9s0y3UGowDVzjGQRuQtC9OUUCOfcNjBE8HQFXRdZR4ojN0INwhYqVooS4FYFkjSGSQrhWbolFVYlIt0j77GvnKFSrNEzpaZLyXMpUfNtul4HoOlwlLNoxgm/f4+nd4cAY2aoVK0dDwpJtl9yjSZkbFUBu09JsMuumIjjfYZdQ958M5baNkMkikgqiEnL1vcrRf59VEH0RlB6DMSFAZqlvjwMa2JSz+ZYooelh/gLHUipYvsN9l79YyXz7+ic7ZHUVNYX21w2pVJmQGRMke2VKor27THYwob73HRnxINHebTJZeBiOXO2N65i+MFTLo9woWPbuvEmKRzMdVsifFgytQP8CWJ9iSEwGW7lmXWv8RxHCRBJYfMTsPmy/099HhIylCw01lsWSRdSbN3EpJKLylbOinFZO6FHJ4e0hpeEkY+aVlBDUOWcwcln2JwdIZqVkmXawiGQbvX4tUnf8vjVpfN23fYKMSslnRytSrzSObs60+4PGmzXMZUK1kazTx9weDs610sVSZMYhamgFHNsV5Z45PPemRyKrev7jAZd7lonVKuVTj+9WcU0yb7QwG7skIqV2U8jlizU1TyOrEWs99zeLp3wvn+3v9nZ+U/8oLtCvX1NZa5CoevRvzgt7dpnwSklx65dIHIaNLvxqzuRCzI4o5jJDOPUasy7vaZd6Y4SppIMdAWQzLeiHKqiljV+ODWTdJGivZcwDVzXH1rB0VxsbJbKM6AzvkRL148Zdg65w/evEk4OmfQeUbGbBBLCpeTl8h9kY4cY3kS9+9+l2vX76GmDD59/ZJ8ygDHJVEt8nmTjbU0pZt1ovEuZlPhgx/e47c/fI8HtzexGXD/nf+S3d4uWd0jXy0j2TVaXZ+JkrD7i58SKWXcwZJ5a8aot8BcjJHuvsdsMWK/12HqLkmTYmxtoZVM/ubnTxmdXCD3usS9Ib3JjN5CQHEcrlXT2KLAbNBGWB4ghzBx3G/Mx+0Wg/1jWu0uU9Hn+hr8/KunjGYilpYlisYc9s/ImwYVOSCSVdwoIBmfYEgZUsYUT8uhp9Ioeoo4MRhfHIKWQ0BiIdtkNJmaHDJIDEJB4sXLZ6zc3OTuW+9Qb1zl4eseydLDudwlXd/mxt27bG3U+OzxCz68sUoah1//+39Pux+CvUV7JPBX/9O/4eob6/zkR/eYTE54fXmMsr5JIW/x3vv/hKwlsb9/yMFFl/lSRZrI3FnZID08wtCzlFfXWVsvYLkzzhcSkprHyloUCzaZVBp3WebZV/8n737wJ8zNJgOvR7/3jIPDFvnUNj/5nTUqeYHJ/ILL1jHaJOKPPvwRpqmjhEMIE0bTgN3jM2LRoKL12Xs2JJttUCg1iAMXq/uQk9M2P/jxn/LG2/dY2cxjppYM2kMsaYP/5W//ElXTubNW5rs36nzw7QeUszEXYZqXswlffP2c0/1zrlzfIFtr0jrqcXE6QBI88pmIqg2z5ZCHr044b7fwIoVSrcGH718lfnJBXY1JX7+BpFqoSwlTTBDyt5kEA3JOCk1VmAV9usMTNoppvjo+4+xsyoIlShiijBcMZJtE2uP4RKWQLGlYCpqs8YuvTpj0e6juHMWJ8EZTBv0egieTSef56Wd/y+EXe0xmcypbV3jre3/Ap/strlxbod85Rc/aGMUMrfEF+8MIe9Dl3t03aMUiramDPHP49KNvostX718lXbqFKWeQxh1aJ0NenL3m2dd7zDstSiWbrRvbzDsOv/r4rxkIcPvaKmLo0znpUJdzPH70cyrrW/j+iP3Xrzk4PELNWxz2DjiODQz3kndv3eXm5jaXR0+QKzkG/TmrpQ0unQgvFLiZz/L6yS6ZayvcvFEgcWKePDnks9fP+fDbTQ6nFr/zRz9mefaK0eEzprMhe90ZT15+wmRvQhYJ2+kgtl/iTC8p3fsW683rDJYyWm4DPdvkvHdCEi/47NOHHB/sU1i/ytrWNkpvl7d+8p9z+su/5MM/+gliCM5ln2q+QnNri998/Ii8OqV3dIwUCjx48Ca9vSeMWaU/ctj96gteP3/NoOthzywGk8eMM7ewI4eo63P+yuF09xG/9f7bfP3zn/Huux/QzOfpXrT54rBH78UlkT2AKI1o1jAzddJ6nlNHQZ2cUtyymDkzzJTJ7/7z7xP6L/CFbcLIZto5Y+HPya1d45/88EPm5W2On/6K18ct+pMZcbJk5sX46YDDT5+iKAmy7yKMHVL1FMWUycmLp5hmDUtVEeKAo96C04tj+ucXGFKaakrDdM65+NXf8s4f/haP92V81cNMfFQFgopBI1VAqdxAjgLMdA49U2EpSNQbC/rdhFAoEfo+BgYZs0ZkDXn46BPOZxPevHafKBB4sf+a29/+Nmv3v0ezLDIfTsimaxSb15n5AscHMs7sGbNZn3avh7t0aW7n+fmzDulcidq6Tq/jc3kwIMWA9+7d4qf/5m8xNmy6Jy8YHL7EFiMyaYl5fhPRGzBdROjZMo1qlfMvv8RbBjRXMlyeHiFIMrWNdeJpi4e//gKlfhVBlhi4Lp3JhFpKxc2nOd47YKVaQy8sCdUxSz/H6/45OUXn/btNXh1P+eXTCwQ75ONfPuSHf/JnuMuQnfVtbl+7Q6lUpvPqEzqjmPVmRK/TxZnJVIo3UUOV375fZnzuIFpFVN0mdmbsdcesJAeo6++ws16lmNIYtvp8+vEveOPeCll1BaNYJJVNSJIJr06HVKpLsorE2SzCLuS4slnHlAVuvfcDXL/AGzfLlA3wL9o4p+f83k++y88vJ/Q//b8I+kPGvRFHJ/8JFmyvv/GAlfVVbDVhKerUlwGRFSOFPVB8HHnJ6/MDnvdHKFYJ1zGYDzrE8yPqa1WcQMEe7zKctRhdnHG0d8wvXr+idXDOJ589pDfq0hsf0+8/pn/6Mc21G1R3roPosrp9m7e/9SbvvZHn1acfM5idUb2dB33OKOzhazFv7tTISFmWKZOzi3386YisksWbRETaG0SdE466I5TSJo2b32YR+Zwe+rjVJauGRPv8JXtHrylnbyHPE6xlDU9bZeYk6JLEnfu3OZ7MSCUBx5ctElUn0UJao5eE6fv4zhGxaaN4IRW7QHVji+PuC/YPW2RXb7AwFfKr66zeeJMnp1M+uH+bt7/1AFWN0e0sxbVtzFKNINBon71geDoicSNytsV6tcI77zQY2yu0RzoGPqYyASNNLnuLZ3/3D8y5JAzHyIToRo6zM5d0vYYW2UyHYwaDHgvPxZIsWrMWObvOWjaNljFpqTKic8Knf/83GFbMelpFC4Z4432qok/z2lUKWh1R0GhN27Q6h9S7c372+V8y7Z3wB//Fn3H7zXtI6hTXfcEPf++7PNxNePLZM9ZWNvnWt3+CYd5D7Hf5b/77/xniMW88+D537nwHd+6w2ztnq2hwkDjE6QJunGLvJObRMdy5KvA3X+9SWamzDCNePtol6Q7I60c03/4+heoKwXxE7Hb5nQ/uklr2adauogguqmhiWhskmTr/6r/7bwm6c6xcjvVmne1Ghc2STb4Y8rOvWnQXZyAKiLJCYql0p1V+91/+Vzz/7CHCxVfQPWPpadz/4F20kkR3IlIKWtRln5yeYnb8Jepmgfv/9CdMhRITwULN5lhF4vXDv8NtjVm9dRUr7eFNT3FDC9U/ZXCcobz1Djfv3KSZF+i/+BUL3SK3btM+OsUoraJWN+mMXbbXr/PipE+6rDPyPNxARtdKPPvsV3z2ZM5lZ8jLw3MmgoXW2OHFlw/JVu5hCieU5RS+XuVALHB+OuVi/xEbRY+7733ItQerqOkBP//ocw5PZ5QCkYWVQUwJWLpPwfB4/8Eb7B2c8sk/PCJnNckZWdr7z3l/u0mfDIenR9hWBUtLcXT0mBdffgzA9++9x8Tp8ep8j6PhiM1aipWVq6jyFdaba4jMuTh/gr/0aNx7i3e/+yO850+YzQTE4jrC8oC7V3+ff/e5Q6Oss5FX2c7pXCkVWSg3CFoXfOfdVbqSzydthzN/g9TIIV0xEWybnLSgIo0w1SFrt9/m4Ue/JpksqDfTVK6kkNMLOi+e88fvX+Nnf/XXTJYLxolIezykaI7YKd1kYSTYBRXBkOj6C77Y2+XPf/8+3cM+ZqGOHAYkowuyekTk+fzowweo9Q1m3RFBu02h1uRf/Q//I9/+wZ/x7q3rTFsv6Ax7uLlrvDj8BOeyB8MFRvkafhLw6ot/y8nlmJNRn5urBezKJoXKOvVigdiU6SYp/vj7d3j46Gs6nkttp0qzKlNcqfCiMyJeq+Gi4jgRs6XD0lvijCNuXDeYOwNaZx1sVeG9t69i5sbYapP5OKHXu6R9+YjSzKOShUcnl0hygqEpBF6EUNrBlw7IY3Fj4z7FrMlkfEDQl8mZK8TmBkZGZuXqOs3t63z9s4ek09tcXA6JiyWy2QypROTw+ISVQo0vHz/h+7/9PmLK4nw4BjXm/KjPPJhz/2aTMBY56zr0WhOevjrmXnxJUroKionoL0i6E3ZbPitX73D7eppl74yjy31ehyPWb3yX63euc/SLh7RGIa5kUMgXKLgOtfyc/d0D3N6CvFogo2dw5zO+e0Xmo0fPyWRWWL1yl+bWTTRD40c/+T2mB/sUjISVRpmNrSpGWmA8ivnwDz7EPT2jWauzvnMF3VBIrV2lMB8zOX7K1voOdx98i/raOmdHffaeP+cy8IicGZomIaczZPP3qWcGvH3tFs9fnGJl87xx7yrne8/IrWzxx7/3z+lGsEiK2HIV1euSkfMMvDGCd8FKXWctK9D9+DOab32HzWzAfNzDF2PGicJ4bjIe9omlKeFiicKEyO/R7/XIrW/xya9/iV0U+ehn/46zk2OKpSpHv/kFE3WddCrDr7/+lPNxG7uaQy3UeLZ7Tqpwi8vTPpKncKW4wdtXNznqdshqc7KlDezlktxyzmajyLNHX6DQx96qEXkik86AjnPGOCzgvX5IqbRGIpRpd6YcHO/+42FlZWOL2voqjY06m5sVTi4X6HqImV0hEk0WgU9l4w5nU5l46mKYaey0iSrLOH2PzUxEo15HNFySbJm4uIpiBWhRSFRVsKwymYyCLEtcdtPMlyo3793n9SeHGKHJdDjnHz7+kmjQ491vv4GRqeKOfeRAZjW3TWntBu1lQM6+ijeeslgoIObJ6VNmxpBo4nPjnfvkKgX8cZ8CA6qpKcU4II5LOLMU3Y7Ap0/6fPqiQyGVkNUEvP4LDl9+ycOvL7l/7xbLeZetnXUcLcNQLJIp3qAuuEyUAtl0FtWuYmbLmJrIMkxY3/oel3svuX79Pros8PrxbyiVrlGqCHROz6mU8phGhDc5Iej3GPdaZHMNQr5xPGxslUjVNCQjz2r9Js4koLdY4kkma+UrKOMBD19/xEo9RyabYzp22X30ire+d4vhxKfbOUHVBGRJYj520JQFopbFzlZAiZEBxV2y++wpdvE61Wyd9thn4ApoRoHGlSIHj54wCSesr5VYy8vkpJClUeGtH/8psaISKzlMRWWllGd1c5v2uIeZfgM7leXVwQu++uxXTE/2mEcHfPj9txn3EqatM6bdPSRpyQc//iFeENDy6gizAGc4oef5rG9FxMs63/vhj6mpIinDItVcx4v67Lzxu8RCjqP2iFFvgLhwiZMx+ZxFIZdjGApEikEY+ZyfPOcP/tkf4eZs9o4vuOj3uey1uDx6jRR53LzS5NbOPfrdAReHB6SWS9ZrWf71v/4ZwdljLucmo1BGTc7ZP+hh5G2uVDa4+uAtzEaJ89kFHz0/5vGjXdK5HIIpYNkJZjSh99WvkCtZBpdnLPwiptwgk2qwjEMkHx49OyKprlMuiqyVVVbXrxJ1LmgfdbCrBRbRhPF0xIIcMzdG9oe8fj0hHUoY8wkXRy85i1SePpsiBjOkRMeOBFL+EEeVOe31WEYSq2sZht6I5wcHFDIGN5suN9Zucbic4IcBOTGHLpgI/iWNu0W2G03s1BqjucUXL17y9f/xv2Fee4+KpBHESy7dAXNxyazjETeLcP4Idz7FDcbE/hlPPv8agJtXbrC1tcHVW7doXLvJ2Szh4y8+4Sc/eEBfFDEyGe5c2QJR4h/+4T8QTh0uBucEvoMeQ5LeRNMnhMMJy4VLGMac93r8xV/9FdPhKRvFEtP5hOnUYzoM6HUcfv+uiFa4gVE2eP7VQ1rHPerNu4wuhmhCDqmUpuNB7Cus6jkOvICzwwv2LgZMrVXsSomrazZbjWt0lzad832qukEqkUiCEEVLWFm/hREdI08DOmfnPN074PlRm9vbtwkWCkf7R7jjU/x5l+k04l/8i3+JLsw5ffoFE9FgIOV58vqM5o1rrFRLFOs72PoAwlNCw+bNf/rnSJKMf7FHt9VnOBgQxj7XbpTZe/6S7avX0OwQRZOZuyHdaY9BZFOt5EARaeZSbBVTOIMu+61L7l57m2pRwXMFJnORuZRQaazy08+e0D9+jq4IbNRqbOfLvBoEHO5NeX7yEtWQWF0tc227xGR4ii6v8r//xf9KezgkDGSURZbYd7l17wpvvXmHkeswPjrB3z9hJpf49oNtfvn5E5L4HFlTidQs8byNlxQxswpXt6+TkhOYjwhnDh/8+E+4tpNm7+EZiiBjpVSG7RarjTyKKqOlFSbzPksi7GKRi9ZjAlUmrVh0Rwum/R5Kfx87HPJ6z+e80+bajQaWFjLunFFKyXz57Ck7a9v4TkJAiGBL1K5sMnZlmoKCgINZsrBqZQJBQxRSlNUsbipFsb6GZmR5fTzi7js/5pODffrjEMVOU66Y1MoJf/3ZC+riHmEicDEeEosRO80K8fycw9MBjY27+G5AHMbIgoA7POVpX+Lc6eJOHaaTNmeXuywWDolscvjslFylhnexx9nXH+MKJXb3zrh/2yS/c5fOQGI8EVl/8z7tZ19xcXJIvbrGEpX+xRnu/mOad39IlCpwf9Vmjk2gFilW8lzMDtis17j54B2uX7vBztYVzJTFIJRoZ6scf/05YjpPodrElmWCyz2mQYNKNWKjWaFaLeIQ8cv9XfzTYywly3SxZBTGzFQZ31ziBhl8d0gvspm4fVy3jTd3cXyHb39wh/nUZ7qccNk/43D/8B8PK1tv3Wbl+jqlXJpcts6Th4/YufcmrYszZtMpdiqPFMPr/SlBIuLEISEBqhBhxi7zcACixELRmMUqE3dB4A/JZDOMRzPyRRVFWyIkIQoioQbjkUt+2aOaVZHDKbPuIZlymu037jMYuMRag0AuMg1FStt3mQQJkWigLKYo/oil28WNoXfZpry6QUZRIFzgLaeMpxd0z0cIjTt0L+d4voyRKVMslxGkGdJS4NnTrxDikJVGlUbdwrZsnOEMUShgpnNIQsT0vMX6zjUSO8/+1y+plyqUSlUGs5jL0YBss4CdKoGgs1i4CGJA1pLxeh4LUcIdDeieHtM9O8VxPMJ5gG0n1FaaVBoVUhmbWNbxRgMcJyAIJsTEREufZHpCdaXGxfEjMmoKO1fBMAxEd8RoYSArMcOTA9y5x2IxJ4wneJ6OIS6JDQNNVXEdl5OTU847XRRVw5/ETGZDUqpPMy9gGQrB2QR1ZZ3tnU2mswkHx4dUbJF8volRqbJYCEzdKd3RgKPDLuPdA0pbO8jyCJsJuqLgpKoUcxpzP01jbYfpYsFskWAaFU5O9/GDmJSUUEjFZCwTQ08z9IbcvHKdvf6QRNBYAAvmrDayxMsF3sIhWEpI27WKdAAAIABJREFUCtg5kUrZQlwYeJ7POAYcH3Ueotll5oevmC7nZEQIJg7u1ENPmYxaLZJUmouzc3AX5K0MVjZPbzDm7maDrbUqKzu3yZQyxDjki2tcHpyStuvMwpDWaES3PyL0Q5LlOScXPeaLMWrkkRJhoeocnYyIpRzD4QK/30cIHFL1Ms16FkfSsJQlds5CMNIMLmfgj/AjDy9dwPNNhEUKU08xX0yZz7r0z4/JpHQCUeF4vGSpGLT2HlEoFrBTKTLpDIaZxvFnyHLC7PIUXZZZxCqLUEBwLkGu8MadTSbTCbPTEW57ipSGrXsfkCATKRbtvsNoPCZTNEBIYW1sUrdEVDOFZX3zmzs9nVEtNkjbGovpJYnbRpNjvvzkEQA/+t53mAYCw1lAFIlMXIGVzSrbZQspGOGP+7Q6F3Td57hTDSmbYWPrGiuNOqYSMxx02Ny+Sih4yIaNqGj4scBgvkSfD1lEU67ceUAhX0AJfeJpl2o9TygolHJZiqU8+VKBZRTTcRdMvJCjrk/n4hTPnSNZJQS1yeHjn7N55x1EMQLfJZwHnJ7vcfDygqHjosYa2XyN5vo6pYzIT3/2CwzPRzQtLuY+kzDi/rUmmSggFkJG85DY0NDzOQqFJn6qwcc/+wsCqcRS0FFFkZptUy3q3F5tUNRFkiBCM7JUG00G3S79swMyqSzZdA1/kdDpd8iUZGSrTKm0gjMaswwCgjDg8OIEVdSxRIF4OUIJY9TERLMyrO+YvP3GB3SnAwJnQYoAQxoiGzVqGRWbBWVVpJbJUqisMQ8vGA+GfOe772IbBTzPZ+IP6Vwu2H25izE+IG9mWcY6Q3dJPh2zulMjm2myv/+KXuucGAFrc4fECrjeWMMQXSQpxvddzl7sMuiMuXltDUuJEUUZb5FwtLuPWTNwlwVa/XPmCxFJs1jZslE0ncWywgCXhaoQo7B0IorXb3H45AsyaQNBTRA0HcWs0Fjf4sXzDqsrJtVqgVohRcWSOD485cZOnf2DVxxNfBwhRBBdlNmEVveUQn2F2WKCaupohsHUmaIFI/TEJVJFet0eZ60WczlG7vZZbVS5fPkVGdtElCRe7u5ycjHizXfeRVTyiEKMpkgsEvjk8desKvDGm7cJFRN3ERG7M0qmjiOaWFEPTZHQUhkQNAatY269+RaFXIWo3UIKQ+xCDk2DzgyKV7KMzkcsewuUIIR4wNiPUYpbpEsaKVXg/2btPXosy/Mzved4f/2Ne8NHZET6zKos391sSws2iR5BgxEwojCSgFkMoJUACdBWW30AaaONIECQRsCMxCGJJofNbrbvcllVmVmZEZkRGfZ6e+7xVosiuJwhQH2J9zz/9+D9PWWcMnIj6uoav37yEd12E7u+gWFWyKMYwoBRAItpQF5mFKpEJJZQzLmzc49w8ArH0WjZCo6SkgsBC9Hm2++9TegtmQ6HpFHKzTs3yScTzPY2opoRRiGuH7IKA5580UMvYGPPIcsyVqsYsog4CLm185BlZGKrIt58xBdP/39YA8kVG9muIIgGktbG6qxjVbt4wXMyN6br5CimgxKeojoKi7CgyEUUU8C2YRHrX8nxFAlRKrBsEVG1yUoowpKcnCQVkAqJatVi7o55+usR39y1EGUB1TBoVzpYloinrBEoCopqoxsCpBmZZFHqLRRyJENDUCXCLMH1FTqWRaXTJfLmJOGKMPHwvAiZnEU/JBqlNBom3UoFq1qhZmQUscRoJiAZGkq1gm7kDHo90jQmWgWYQoywHBMOzgmTbZJCIpzNCaMAN1oxnQ1IwhzfH+A0d/GmPnmcIIo6kduj9A10HK6CFWXko5DiGAGqbSCOc+rtLiUFQVyiigqzsCDPl0iGjCLrX00Cg2tU7U1qukGeiKiSiqzKZJKCN3WRoynTYQ/FbmLXDBQ5ZLKQ2NowUYSYOAwZT6dcjJdkeUmWhKDX0VIDTc4RyozSm5InU/a2v4M/XxC6HoqsMA08tjOfwtpFM+dEqxg/DAjCEE0wmM6HFMmKqmGwbjcRzRuY4TmffXLCe5vbyI4NSUaaQe9ySHf3kLaTk5cCiiLQMEuSocxqdMnxxRT13gNsU0PIl1Q7O1x//HM8ySGPVlg1G6PZwA+WmHmBKCtoSUnpuwRxTJA3CS4vWMoqG7UKQpiQFeCbBtNpRDFZML0c06k16TRrSKqG75fcuLWOolYRRBvXHTJih3p1nXHPxV1l+POAVRKR5hX2tg3qjsXjLyaIyxmiJqOYNWS7wixzSUuF0l+QTJdkqUPl4QGYEttrG4RhgK6qgEJUqBRSAZZNjEaZapSFiBoHREnIcDhgPr5mqusUuoNb5FT1Ohvra+wc7GKZVWqmgylJeOc+uQRCCqNZDpZA3dCRUousvsZwsiBbhSxHAeO4oClVqO1Y5ErOuD+gf9EHAW7df4CvNxArCmQFNctGlQRkf0q7rbKhiaT2BsXwhDJ3Sc3a3+dGECwpNZW8zEkCD000Wd+scXw1oG0IlLnH+ahPJk4oswZBklOrV6loMC1iyv6ILIzJ05hqs0NZlOSCwq17FsHp3+KWLokkIhQplppzZ6fGOBS40RRIJlM6XZOkonB81Od6co2arNGfhiTTBWJDI+vGJNMAxTCoba2jLTwSNyCMUlapQKdaYLe2EJQ6oahQljnV1i7p9K8YNhroZU4hA3JJkUV4WYRu1ikKcOwmlm2Q+QoLL8CUdVJBR4wCLFXGqbbxxwN8OcedJ2TqGpW1CpWaTPzlF1Qdi0LSkCQJQwZLFtBFHdMx6C2u6Z1foCoFiqkSrBL0Ll81CzqI1EHSwSjZbu1RN2Wehl9ZeB0JxuMeQXhNR9F5FQuEkoiflsxXEbP5kjgOaHcOsbU5o+GS6XKBG9RpN2wc4wGl0GARG0RCBmsmy8mUJDkjdefkSYZbghj5PHs54gdvv81sZjFdjIjzCJEczx9QrX3AeDyj1hbRGw6y0+Dy+pRGZ5tlqlHGCZImoskyQbxAlnSOXp3S3u7ScpqIqsLGzh2Em2eUmY9Zq+PU2shindZaF9mZ0O189YFM5ATdhjwLaXXXed1fYK3pKJpKlsWcvDpCJcXf3CCKJexURMsTCm+MZliMXZ8kWiOMQgQV6q02j3/xmO/f2kQmQBG/EuQeP79irdKi2tymCMaQeBRxwPXVED8WePvmGh1LYWhbrDwdNQ5wzAp65JHO5yiVJtVGnaJQWPUvONhZY9iP6Z89Q7HqWGvr+KNzNjst0CvI0RUACQWr0ZjIUhGzgvPhlIaiIhYaTn0HxJDSdZkscuwyhiKHyKMiOhxdD5jlfeYbDdY22zQbFQzHRvc9bK2KaUtIYsk0VMiUGq2tDmEuMJnMGQ/GVJ0K79RqrDb38AWZYjlHki0kTWMxnjPpXbG+t4GT5oi6iW9WWU1WSKrK82cvMdoHhKnIKsj+oxzyD2pW3vqt73KwfwdbNNDtJla7g5T4TEaQrjz0Ysnmza8zOj+hJiYkiUwmagiGjGak5HKLQvSRhRnVisr6WpN2zeH6YoKg6mhWHblU0LQKZn2T6PSYi9MBjmhjdTaQnTZFYqJ5KenGbRLrAJmImi3T3dgji3O80mTNhmQ0Jgwhlqp4y4R33t1iFQl4UoIXrvAmSwJXoLFX4/RFD1nbpdFpY9VVVoXIltmmsZZz594BiaZwNl8ymsdcXYwo8yk4KstJj8X1BUW4Qjc8Lq6vqQgCiaMzXg1YXD7BFkzyLKbIPUwhpwgiFqMZWTihpaUUyylhHJEJ4ldCv3BGbMusAh1DKoiimDhOqEsJI1/Eqav4pc5oFLOcuChqxkatweVljzSXWGs7FJQ8eT2lVVFwXzzj0nVRbAfH0pGLlOvhHLlepV13GPYvOLnoM5jE6KmPIEtUtvYwpBJZ0BAlg5YD57PXvP3213n24UfUVYG7t2/yZBxz784hJ/2MekWlolWoGDVaWzaVxhpH1y6hnxP4EaWisbaxw3LS4/zl5wiGjkSGlEck4YpKZxtJdyhLlcUiJy5i7EpEpzA5evwJQaHT7nao2CqaIiIaayxefcYsLIhWl1SqKla1yevTPo4hUFvbR16F5NmCeTLide+CZq1Gf5CwnLvkQkkhS8zdlLQoceQEXapSszUqaoZdJFSbe1wFK3KxSjRbkQchmmZQphF645Ak0yhjBUm0sKo1bmw5vPXoDczIQpEUVFVFkWWS2ZK5bLG6usCxBCSlQDA1auu7iGKE1s/IrTaaXGARYzhVxpOXyHoTSa2SIRILKXERkc1irl+fMbyakmclUR4QCz5rzi6as8WDh1vs3rvP9u42zYrMMk2JCgmzMPAVm7RMsISEzdY2zR2Fp7/+nDLLyGSdWLEpCovJeE51S+P66THxbEy1ZrF75x56GNJuVuiN++iKiCWXhP6Sattif73LchFgBmNqekFmavzkxx8D0G1WubN/yEa3QSElaKpCnk745GiAZtRBU/CLhDS0mA+GSIpNxShIYh8vLCiFOv7knMXQo9NeQ5JEEEVazSbz8DlWaxM/zhmNLinzgN2dA2aJwHt7TT5/9pI4GJMlMVMXBhePacoHLOWIPI5oajKbZsHLzz7m1ttvsVJkNG0NTXaQJJFad4OHBzabuzfJGh1Cb0Q4OkPqHHDf8ejbm1RUCzlPCdwZRy9f0drbQRZ1rntDWo6FI5ucvppw67DNO3fus5j2KNIVgigSZQqDsyN63pJn5ym1zU1a2xsIms66LlHdPeDV8RGzyQAh9dhsONzZu83ry1OWwozjF88pxZJqo0HvZMydm7eZLUcYosVadQvbrtNzh/iTnHwxZea5SE6VVHPoTVZUHY9FP+PJq0tctUKq2XijCZ99eYVQivj2FhUtpKbHFILEJIQf/P7v4qtVMkFDVXSsapVVQ0K76HPtL5DSGLlQSGKZMAzoX82oVURenJxzPh4Tlym3d7ssioDt7TtcX09R9JJq0wCpymqxpNVd4+R1hCEGKIrP2SRA8GZY4oTHj19QtXQ2Oi2qtTq2JPHt9z9gcPIUw6jQXdtgs9WiWMXMyxxdgMGwT3/WY5Us6TgVyto261sP2diusdZoIGQGL0+O6FoOfhEQDXNa1Qq1moA3uaLdXeesN8RbSTg1jc2NCk3F4RefvUbZ0IiDFNNRcN05F8fX3Lp5k8N1k+VoSuDN/i7HZUyrQXPPoZjGzILwq7ssOsiizeV8Qu/6CtOp0my1qVbqqIXJO482+dUvn/D6/AlhlhMmMr3elDdvdzHrDbYtCKSYfhTguiWjZMzq1WtGi5zFMkMsdHZbmwjNmFpYIGk614MJK3dJ3VLRjSbD3hBNXJGUIqqk0TBMMqXJk988IUtVam2NlWBxubIQBZX922/zyReP8Xsj0iRB0hW6tQpBpcX14JpVf0azvkGj3WY6OcWRZTrtJqILmqFQitC/CjAaVZ49+5zNrQ1enJ/z+NkzZoPr/2Cz8g+Cld/73j/h8OAhfpYir2ZsbR8w6w+RRY3eLOCzsyn1Tp13Dze4uhTwkwWKLWLYFv7CIzx9yf23b3B/f5tt3UL3QlYTF6+s4KZjFuevMRyTgwcHvPHWLicLEXnqEiUuG7u7rHU3KQUJV7Loth2WgoXd7iLZNdwopkx9KtU2yuycMhLJl3Py0RGapWBu3mT2xS8w/YAyKVhGIbPFgMFqj4pl8o3fep8be4c0jBZbisLCavHv//T/5vDwTSrtu5TqNqvQQLcyXjy94Ou//QeIcpUwzHAcicO33+TxxycMe9fc2FCxCo+Lo1PWmx5q5iC7v6GQoMgLjNxlfzPFSyZcLyCNZ5T5gqJcohZjDnceYm+aVIwujWaLak3Gm1wyWExIFhHVIsUu5+RJj4vr16ybBdd+yOnJAIOcpi1gWCmf/vzHXIwuMZwNxEIho0as7LF6+QVnX45Yv/2Q08GYk9Mzlr0hsthAbwt41wMqlRLBnxNfT+jsPMCpQugFdG8/oHH/G9g7b/DB4T5uKeG/+ikzfxPRqqG1bRZaF0k1+NrX32Hfkjn68hWfffqccNTn4uQlN24eEqZ1jKqNphvkhcXtb73LxcufEvo5DUtju12nYTd51fNo7+5Tdm2mvR6F57Ner2FbKlGzw5e//Cl3b8i07BypLLnx3nc4Ogu5HHnMowWyLFO3atRsk1oh0L39HherY6bLIflyRbtIeOONr+F98lNuffMOa5UlhX/GwBsRJhHJpOTsk5/SuxrhlxqCXaF3/CWNzk3uvvMOzZ1t1jabdBsSpXfBX/zVz5jPKlw86ZF7IZ2Gw36zy8mvf00+O6a5W+e9b7zPmw++xtVlxjuPHqLLLi+untFfefiJgLBa8HIisN1Q6V30SUsDXTbR3BnT6x6rcEk4GVKGBWalTefeG8yqNfY7De7tHiIqDcJSJVBEnK7JvY1d3OEFfrGkZVl07QZPZqe0w4gzd0G4WHKwtc5vfedb7Hz9u5gVjeJnf4Pc/To33viA7Vt3mOYVfnr8mv12m25bIrx+hRDF3PvGH/DF89e8ef8DXp1/iK5K2M0aXuHyN3/9KQD/9L/8z9itmXiza85GFzgVAzsPsESNJy8XLGYxHcshEQ3evbvH1u4art9l0fcpQg/77ju8fPw5O3dtVkenjPtXZKVLS/H58Jev+L1vfpfpeESWjnHdPl++OOXtP/yvGH/6E3r1TV6fDPCGK27eOODwYRUhTdCaBVttFSGJeP1yyPrOAdvbd/nxX/+QVRYTIeEHEeHgQ37071+yeWObwh3TqOhs7m8jxVPshsazpx6UFdZNnRsVEV0v2Xz0Dq9++jmOJSFYFrMwJlwOefutmxx54J//hEVRA2edndaKtBzxxvv/OUU44/5aSUNZMbg64fXHf0lrfYdPf/0zzl6fkWQ5drPBKAuYXLtsbDzAD30EqYlQdgjdHrdu3qR56wGWsCIJpmRpws3OLp///N/w0SBgp5pCDrnS5PbDb6Ceucj7DpG5jdU20NSEwktYr3c5fG8PpVswmXmssgZa6xbPP/+QLx9/zPnzHk5RgGwxzCWK+S/51qMdoo1d3KWJbZrcvNOgtreHN59xenpGll5Tmgp6fZs72weY8gRGMaWSEc/mTC8XLAobfzrDT8as2RK6bmHUNrh77w0OD99g9MtPaB1+jc3te2hFTtR/RloWHL9YIFx9giYmOO0agmPxf/yv/zO7RkpjT2c6uMKfhehKnTdvb6EsDVLJR02m1BoGzfU62iLCPbxP/5ef0ajHtNsahlRSBDNGozqNzS3utVoo7oTe6StOLwfc2Wnz4acvqVZthNhkMcuZphGxXvCws86rIGQ0W5BmPqpdcJ0YHB+79E4/pXnrJkWpc/TJS66nV0ibm5QRdLvryIZJXorsN9Y5ujpiOqlStQScmoxWN2js3KEQC9JVjsSEOIyI3ZxwGjB6/jHb1T123vkGZejhTccEpcL84ohDO8VZb9BsbrK5e4fWjdvEwYrNh7t0t3ZptKoImsoiFsjcnPMXM+7c1RmHGkkqsm6UdG2Fu3cf0ut77FYSjHKBqoo8/K3fZyUFhIsJO90mWqvN9XzC049+wr/8b/8Hthod/vbzJ5wfHSN7Kw726lyefkit/TWslYsfXDNdXDO4GvzjYeX9/Tt0DYM4XJGLMZpSMp/lXLw8YxqmlE6D9OiEllyje2+LSX+ImMnU6lvoG/v84bd2EOIVFdknUxRGpcrpzGNrd416VmU2HDG+XuBNQuq6zrs7VSZpG1sXkMuCJA0RbZGteoVLoYlCQZIsUVKPriwg0cSIPyVL+6zmp7jFnKJpc7jWwj37nOaNA3JzgxdXEZ9+OSKMbDRV5p33P6AjxHTsgrX1OqWxxZOf/Tv+1X/xX/PhE5/XH/0NydGPEWYugnkXuxhSqzc4PT9hOu/RaupMr8ecjXs8erCBJhSEywhF0al3IXcHzEONJDNQhBJDhVkI3jRATIdUK7dIyypxKfDw3feZnMU09xokSU6wmpDEHmprk4+fuXQ0kCwVSREoCpGZq5AoEdEcalqOLq2IEXCVfb749YA8ydhoGlRNE1HKWIaXjM+u0Gq3SAofsVBIVivmV0coqYcVSxiWgdLoIjk2tZbCg12bJy8u6GzuY5ga/qKPPzlnvV5jdPEhtx+9y8HtBqZtEMU6aaKy2Tb41//L/4QvXdG6/QY33/se7c0OhqKz+ej7VPIZyXLIbHLCYvYY/+krjv1DRtMVx7OA15MJ8/mIuLINacqGVsNsHKC0WnhSyovXCQdrm9zY3eHlp0f4kUlr5xF6quJHLraVoksO8WxKvLykuQaXA5/R6Jh310xy2WRSiAhCwt9+0SNqaJRXEqkvoVe7tDcOOB5MubiQCE2N1o23UZUM//xv+NaDR6y3GvztyYRFf4CTLalkPp/88ITYuORpv2CjVkETRC5f93j66494PPF578F9LFvkRneddbPK1fMvuB6eo7Rv851vf4uiLJjMxnTWKiz610zHOfff/wA/DlisxhgNi5PTSy5mE3RShnmM2enw8PABP/x/fsmbD3f461fnvJgE9C+uCV+fs1m9Se/8YzoPb6OullxdD3g5m3K7qfL6N6ccrBV891vvsHnzDqtcon/0nPEy5PTllIoUMoknzBOPu6bOy+Mv+GBvm5eTKaJVwapX8YMpG3qV6fQ3bDVLbDXAUiVMscW/+fMfA9CobLAk5mw45uTFAE+V+O1Hb/Kz5xEHlZAP7na598bbbGzt8YtPfkHmmnz865/jKyaN/QcIrz/h9g2ZH/75Y9a+fpfO/QcYjT2mgoE1mFLoPrrY4uHtN/mD3/sj/vCP/xl/+Zf/G7kfoCdH1KwqCA2ur2aotUPy2c94PVKYjRNsSefNmzusHzT593/1KTdaAvlqyZah8s7hDUZqh+hc5M63HrAae6jaOlZ1n8XRCY9XDe7cWGc8u2Q0nTMKYSxJHL3o8+j3/4iK3UArEgzBxzZVXv7mM27eepvTZZ2y1CmmYy4+e8GyNLHFHlVVYJKmzJYB4sLnuL8EeZdHN7f47W+/yzvvvk175zb62gFSdM3JR4+xuyKbt9psbDfYXq8hqxEW2zx9/gnBKoVS4cvpx3R23mBdith58yGuKDJ6/Rz16Fd880/+hF/95N/x6vNfkYsG9Y0Ddg+2sKczzo9TZkefISsRcjEmPPkUSa7wJz/4Jzw/f4VYrbOKF7j9L/juu98m6Nzj5C/+nLVak1t3b9OoO3z+N39KWU/5o+/cYmf7Dne277Bt2hw/fU7T2cNvd/BnExr1Nq2NXcLc594WfP7FJbXdLnKZo+YptYZOnozZfeMt7t/cgEzFm89IV2ecPC+5pU15uSiRmk28rMqz45Qr/4Tdr/0u//p//79YNzTeubfH/o0WF6sRP/rFE/LpHL1+i0CqcXx2yc9+/je8uXOff/7f/HOau7cwNA1VKdA6a6zckLUbGzTklPPpkP54wnqeYa47vGdpoNdpHBxiVxUYPefurs2f/tlHfO2D+1QthyDKGI9ntAIPihXvfPd3KPsz0jhGv7FGNHrBhrqgt6og6BayKLEaj/l//+zfMs8s3vrGdyjKCYuwYLkSUb0BmhswPD/lYrAkNxX8NOTDn33Ct97bx7Uf8uBGFVPLKRKXoH/E8+NrKve+TWvbQc0Tgjill2Rc947pCA6fffYrlEWfLI8YZin5+TW779ynUAr6Vy/ZbNS4ffMef/nsMcn5NYv5j7hz7zbK9kPGgs3FFz9mR8gIwhTZqOCYKbbgI/kmqiTy8mqIoYx54807CKbFX/7sp/yP//1/x5/96JjtNwzqTR1/4fHixat/PKw8euddcrXgk+ePCeMqF/4YJa4QJTnRtIc4esnWdoenC59VvGD9/vvs3X/AzdvbfP2b7xEOh/ReDLnyc7I0pi4lbNgqo+OAzvs3SXBYuivy3KXR1Hj9xTO+8c3fBnWGWAxwjIzN/RvE69ucPvsFTbWgbrZBajCPBWqlizvOcMdz8izG1mtUtRb+9IqdR1/HEH1+8uETng/GiLbObkOlo1bYqbaRtBxRgyhZ0Ot/wR//7vf54cefUS4u0WsV5M4GkhxRuk9px19w4+5NBMFEKGsYWpd2J6WqlgRuSl1WaRgqsqmz0veZT1qUaw5G7qELBbLmkK0SEm9CZeOAuRfgmBl7HZ3pdY8LeQ33yXOs7jam3UATFERB5NPTY6JgiOWOMKoGkapz9uKSSqNNS1twenxNXm9T37tBU9P55OPfICkltYZKLpQslxHzUYZ+sMPi+Bijuw7IeLMJy+EVpigiSCqCk6OnX+kLlEqFl+cibx5uk/ivCfwp651tNjdu89mTpwzdFYpp8fL4Y7y5i1jIhJ7LR2czar6Aau1AphFFMfNCwNZrfP6bH+L3rpmPlqSChbN1n5w64/5zDg9aNKIAKYJYr9Mw5sj1Cp89OUezJWRVoiw0bm/v8/qzjzk/P6KiN9DEDKGYcfjobbxVzvOLgLX1Gk61iqDZeBKIGDTrBaleIpUmTcmh45g83NpAS3OSwiVJA1ZxwjiKqcQhre4utqyRLq8wOOdgN6NUQy6HY3YOu9zeaZErCsezBV1rgp932coWXFxcczUb4eYxE6HJIrxCsSW2HIearRKLMYtCYK3TYdg7JylyBDTCUOHXn13j1Gs8P3vK9sYGupSTphHjuUfcm5B7IRISh7t7bLcbBP6UeRKzujzFe/oR3vkTvOkZfjBjcPqSwapHJVtQOAfIlTVUQlbzMeu37vDuTZOoscv5IGf86poNdYwwW3Lr9iFeOUbVYswiZHFyxjt3H/LLcY+OaFKzbbKyZDaYYEoTskVMoFjEQodEWmPsJfzVD/8agH/xr/4l7bpN1Wlz4+4H3Llzh49+8RFao0NESKvb5NbBDvFsSH59QegVHO7U6NYDiE4RUpFGtYYXd7h2h4xdl6oi8Dv7DjNVRWrViQ2dYaByMc4YjgYcf3yEL1bZXbuBOw4IkpD2nQ6tX+V4AAAgAElEQVRVM+JonCM723zwxm0a9QZfvF4wXgwx2yUNZ52sXJIaGXLd5lG3w2pNJE8l5OVrzHiCP+vz0fMX3OoYXLkhjC54cLDPnbsPGV5PiRSLO60KoeAQLYZEwYSlbfL4w8/53ve+R7KakBZTBDmm6TQ5XOvy8+fntJtVhMSld3XJ6dDj+//sXyBWc7TmOmEhMly4DK9PUU9+xOG7P+DRvbfwwhVyJKLHMp+fPOFXv3rCD767h+3OaFga1VYNoTD5+a8eU9F1Xp5cM+2NsUyHrXfeo1XROf78DKGwqUgq/mTI0+PnvP3wPl+Q8rL/jHwSsF9r8Y1vPiQMpjy4/QZ+5FO3wRASkjDl5fWMjTJH2zrg2WdPubw4wnQkvvVbv0//Vc7XvvsHHH/+MYv5ilx2WLoz9u/s8eOfnvLo3g6mqjOfByDJ5GqVVRySZzOGK4/L8YjZ2XO+cfsD/s+/+DM0qUZYeEgVnereI1Z6zkFrDVdts9lsUjdAFjy6jSZHH33I/sNH7G11MaoWhaxTDSu89c238HOTlZEyWq3w5ilb9RZNOyFH4vnFlHDiwTxjMpW482YXP7T5pBcg15rsbWyhhzLevM3Z+Bn1tW3GgxlXr3tkmYwlK+jGJj/75Bmr1QrX/eqK7c2DddxJRm/icbDXpF3VcWceU7HBYX2DXKtQM1Ucu4ld36W2vsXg9ZdstAoQayx8h+UkQZtc8eKiT1nd4u7DA1CqaGaV3/vd24SDAOSE+UWfUqhQ6A6r3OM//Z3f599++Fd8cPtNNNUmTEOydM6DmxtcvTrm29//p+xWm6xZLRqVTS7dIZZkYa+WBGKCX8SMBmPGF0v+kz9+nzxvEsw8ksDDVKBmauReygyoqBrDacBk5rHd1Lie5Sj1fVqKx4vzM06ur7nZaWI1bB5/9hse3LvF1t4Orufxm19+/I+HlWa1iiHbSHKbE6+gqaQslyW5sKRZkWk7Dq8uL/Ezi8O9TYwyp6JrVJwGaagynIcsliPqhkBDUpFzgXnkIRoGi7JCEiks3RWR76OXJbVNiTIUUPOIJIMIm5waeTynbVjMYg2llKgIPrY0ZBr7xKsc3QRJUsnRECSdrc4Ovr8iKi2OpzFJplBXLJqKxXI1Z7w453w4JihBtStUzTWk+ha//OWvsOSSdqdLxXGIVwPm+SVSu4sg7pAUJpJuI2gOk4HHesViGQjYtXWM+iai0UYpHCylQC8jTN0G3SIEkjQjp0YtnuLHyVdeGD9mOZ6jqWDoBdP+lNgP0U2TSrNBSxV49fKr31pBLrOYx5RBwL17dxGZcdpfUBFFuqaGpMn85Bcfcf/B26SRiJ+BIIhUTR250qGYDyhVGcewkeOAdHqNIqms79xCKFMqYo5ZaWI2dthUFCz/mp3777C+f5tKy6GUcmKhiWb7rM77eL6EIklIZcLKzbl5a4tlCZWqjJcIuKuAcnXN9GqAn2usIh9JKilij3HvnBwbrbVGnOVUGya1VgVR1hjPC/TUQaruUJU9pNSjLFQco0raMtDnY2QKRBFM22Hr5g0m5+fMooxayyT35pSzAV09YjkMkcuQqR+yiCAIC5KljxeDWwy5WGWMl9CbZJwMPMLAoVOJ8Jchqyhn6WfMJgHpakmt3qDbsCgFmdibwOKMVJB4fTkgGV5iN+p097ts31znxu0bvPHgLcgb2A2JIE6ZLTJUq4rkz5E0C3utjmbYiKJJUkjoRY88Ar3eQDXXkbQ1/CRicHmEZFbJzSr13R1k02A6nOK6EcurCUkRYRYxjgiyJDGYjnHqHawc+ldjvMmIMg3wY5m3uxnNG11M0cYSShQhZDwYkpMjdGwOb2wgxD7ucIgoSMynHjV1hidZlEmMFixQoxnuqE9rrUJEG1WvI4sq8/Gcv/7RjwD45qM9Rv0FSZzTrhtcfjnh/OqYdkPj/oN71GpVpv0+i/GMxydDLocepakSCRClMaaRsX+4SZkW5PmIji7glCVHJ1eURcDstE8hqoQ+4Mc0JA/FLNk+OIAspRQNckS8YMzORhN3UGIpNqaUM5tdcvT6C3pXY3aaFllcUqk7NNpNNKeCJ1eRginRZY/YneEGC/wsorFxSFnE1BQZIYkpZJWoLCmzgHu7FYpCQRYGhKs5/cGSlyeXCJnKD/7odzj54jnz6YT5dETv6oKyvkenCeE8QZCrpGj4wZKuVRKFY2TRxHUnTK+vWPUm6I0up36EN71m7LooeYqdJUSugl7LCCKTGIVZXDJeuiiyzxdPT/negwNu3HuIrNmswgivSMilGoOrAdVOl1xKCBIXQVCo2VuQu8RKzubOTcxam95ogjfsYTZqvDo/pRArLP2SycJlfXefqP8F+w+/heSoxGXKYrGCMkTQqyyGU3RvxXyZ8nqcY1sbbFd9opVJq9kCUUM2Ldq7O5hJStnM0f0Vmxs7dDZ2CYMU/6pPqtnMZ0M0u05ZyFy9PPo7x42InoWUyZw08TB0jb1bd1HsTa7PjnE21gkFnV5vQSmLHD89gzhmvpjQtG3ubm/TEATOIh8Dk8TtkxUiqVlHaeqUAhw/O+Lq5EuC0Snu4JLBeEHt3h02Nmv4SMTxiDKZIZQSnc4Wt7sxR+MpnRs7NNe3kJQaVned7fUmw2hGo2ojSjKpKLC+u82TL79EXk5oKRFCmRIUOVbVZHc7RfUKwkIgEVJ0NWHdLnBlmdsbTWrdBnqlSZTKvDjusdFpIWYRialTyDmWI9Pd2+bycsyjt+8zngcMRisiL0ArI4okRWxtc3v7kIvRa/reEslwqDeqHD/9lHsfvMdgEmLrGrf2W6iyTOy6yJLJhRchiiob9SaV1hbny5jdahs/E0FTsCwTJdUovBWBI2LrIWZjF9NYI59O6GcaUtVkMHBZjAacv3rF8+f/4WblH7QGKjSd0qwii1XEvGQ0ijAsn6qaoGkKEjbTIGW9UXJ92WN/vUUeqsyGMgkBgZuiNZvYQoiUeIRZQWnV2WooPHdLVCHB1A2ivEqBTKe7wXLcw5J0UsmkKCX8+QQhllk3NISkIM3H5JmAZskIAKmHVEIpO+iGiqrq5IJCIWWM5xr1rVtERZ+oP6ZUJBaJi5uX+KMFviwiOQ5v73R4+vQJN3a2EYIRZCFxJDH1ZCo7+8QUYOgYho4QC6QehGqDVbxCMUtkpwJ6DRKVekNhNUkxKCEpCNKCNI+g8JALk6U3J0fDCyKmeYmCgT65gOYewXxEGCVIsoJu6HSrEk2tYObnqHlIGhdEaUaauyiFRnNjA0sUyQuRGImDbpO1do3XZykqIramoOkKhR7S1zXWdYc8yRFFkc2NLqHWpCw9tCxBqTfIUIk9l2a7RlWwsCpNRMsgTmaEcYim3aJS32SZ2TQlEz/xGXlzkjhELDoo9TpluURIMgSvpHSXrNIATW2SmgZZJpClAUmUYlkpVXuLXC6Q1AgRCU2wka06qlrSWjeQQhmxFBBFif7wGnGriq4IrBYBuSCgZhLeYokhlohaldVijh4s0EhIwxwlE+lPMgZRimBUEUuF4WKKLxRIikch3mAZhviBh6ILtNWSdLnANEUSrYrv27jLnCjw2DqsI7g9Yi0nj1KKOGM6CsniiO39NsbGDfRGA0EsGY6m6GsPkE4HBEGGn2VooshaU0HGYDifUnWblIaCQEm7KbB8HVJXTYLIx3YEDMNE03QUsyBOMyq1GpWKjIDAzAMl90nTEF9MaDsKmiywiEMUOUMOI85WIlLi4qg51aqFsb9FqzolwqJYJUgU1JsagraNIBUE4QJvCskyoYxySmVFEAcYeoYs1kmLEj9yEaMVpmkRTqdoG3uIckFZCEiy/ve5sZzOCYUWgliwXF6jihZxvMSRYixHJs5lxoMUMXeJDZn2toNoiwiGhq236FQKlnGObkHXXEeIUiZDl5Oez34rZDJIWW+s45gqqiiRpT7tdhNVMwj8lFBKKbSMiqiymrncXm8yHHl4K5kEgVarSpIGdOrrhGVIlGeEsUDupsyuT7i3Y/Hk2Zes3CWqaWOpGkXgc7GKeOf2Gl7/EncyIhXAXmuQZy6+uM5ieE2aqcjVdTaLjGHo460ChrMR/eGIoohxHI3Un6G0c2qtOmkqIOcidbXC6dUpSy/l5qMNSiFFFhIgYRRnFKrH6Wj1VeYpEAYhaeBy+HCLMFSRlAgvXbJ0AzRD4+7dfbTNm+SygWyn1DWo1hwmowGNiohS0VH1GrVGlUqjwfBqTLepMZhXsOsdtIrDapggYXF5fYnjrFGoDbJAJFNsKmaFLF9neNUnTXI00yZPVpwdfcLune8znS9Qlium85B5WdJe2yNOLpDyOYuZSZKFKIbAxk6HRRLi9voYOFRUE922Sdv7DI5/wdruA7LSRtEl0tCj9GbYqoC7gkYlpd+b4a9CbCegbO/iywYNrY6aFqRpSJImTDONyXzB/ZubjBcJq8BntZziezFlEpEtByiiAIaOaKhkUk7sxrjD10wG12hNC8GxmeQljfkQdc1gEUyRpRzN1CiKgvr2Ht7JL9DUKnkUk0smtrNJq6EjiU2Ko1f0rq6pVr5azBiknI3nPNzZpxQKYi8gjQRa9Rtsb91kMlRI4pSKvECUC0zqtBzrq2OrZYDrFkxnCdNRQF61ULUm/mqMoRUokoOqtqmvC6ybDk97J8SpgYxMkWbogo8Xa5w+f8oo8FmkIeqsT7e1zWC5wC0jSlnErFjU17tMMpXTz4+4f79KRS0gXrHopaAsycSCqpRyPp2SSAmOKSJJGlvrdZ4trvGrIplc4EUps5VPZzHn7sOb/OrnpyhBTL5K/6Mc8g+Cldr+Ic7BDdzRkk1V5uyoZKcuIUoqYRgRr3xkq0pDCfj0yRGN6vsIukHoxRRGFcFPqG52EUIPP41JJIlKY4t6skQVBZJsRc2QwWrT2qqw5uwRpeckiU6SZpTJkjyeUYrbLDwXJVfIRB83tsnyHXSjIMhjIjeHZo1qu0XFsTi77mE1d1hOl3Q3u+SRwOv+gFnkkkg53doW3nDEdLmkPxzg2R3O+q/4zm//DoNXY8LVlFkgMwpNHnT2GC6PsNZVokCmnJXocUHetnj1akGz5SAbMigikmyhbdukwt+9mHp9pDBCznKELCDy5/SDCEEsSFKIcoW83mW0ekmYJ5iGSB56FKc9JFEl303oVGWuvJwkDAmDhIvBDOfiOffNNo12i7yQmMo2pWDwwVv3iaUc2TSoqSqOaZDqEqUyIbEc2o02VwuXXCpY29kkNLboHf2IrmZRmDdIRREhmiBWG7T395nMFiT+gCSbk5UlmtWgXVvDfPs27Tzl6PVrLlYuhuLy6rJPtbJFEqWoSoxlqKxEG7mpYfg5pWQRBBKlrdB0WiiFhJHm6OttotWMKARZqrLW1qlbM2raiEQ2EMUKoqgxnF1jjXNyMubLAEFXMfKCaW+O7jhkK43p7II1KcG0HfpZhmKonExjlrGMIztokowrakzSEqswWKuus5DnoEGrLlMzfcJApdEOyYoKZaERBiazVGfpiqhxn8yIWKY201BjMZqy3lrjg2/tsdKqJInIsjfh7NkxwkxC8s+JJRsEGVVNkaMIp9vidf8Stz9Hr6nEYkEajzGsFtFqhpQlKIKHpnwFm1tbHc5feWw2VdYckVUgkBUKmpggmTlhkKAZJokA45XPdsOkWA44iRu8tWGw31RYa9bYu3mTZbHJcjxmsoqgDKg3ZG4+uoXvLhi8OufF51+iiBqmplLEUyyjznge0IpnFJLIIvTIlyvuvr3N+bPHbO+UxCSkpYJkV/4+N4JUwtnsEGUxE2/InZv7PL+QaNccZoshq6hJmtSx7Dn7hx3ubO/Tm/aJCoWKvcZGXefp8Uscs0LV6tI/H3C9GCLqVYhcCsuGEhoNG1lRmI0XdO027nAGmcjcnSKqsN3dYHx1zhu364yvA9xSo9DM/4+19+y1LDHP7NbOe5+zT87p5lu5qgOrAylGSZRlQQLGsGBjRh9m4H9mY2xjYI1t0pKooUS22GQzdHVXV1euWzffe3IOOyd/4ADzzRIw/hMvFvA877PoNHfR8z6FahNVGDM9ucZZBKhKgN07Jvvgv2UVOawjh2aqRcao8uTZY6xsh4WeI5RkcB3iICTOlDh/e0nloMDLC5dCKcON3RaVHYNP7a+5GswYbmbM7DWlfJb9vQ7rXo/BJsW9h7e5Pr5CX0c0atsch13Gs5A2MRldpVTOIgs+Z8sBt1ttng8iiqqKh8TA3WDGM5qN+9hWmnA5wFBs/LREouT4+Fv32aS2ePP4N5h5iYMbHXYqVV4++YpCTkBIRZhqET2do1A3OH79jFs3voH8ekC09lHyMvVWBzsRmM1G7B98Dyt0sAKftFvBdyPy+9/mxa9+ThRBdbtMpZ6n9+gIORLIFTMcn0+Zr12MQgpJc5m6EktniDPT8NwVaTVmUy6zCG3OHp9Ruf0xuaWDGscU83XU3TKaLFJu32K0uMT3RtSrBUQlwrcVpobDJBRYTB3i/pITqcLG8/h+Zw+JBaEckmoU6K9ltnZbVLYrDMw0o+6E7vmAWEhzt5JAOEUqHiIrCgQWi4VITg8RQgtfkim0dmhWKgxfX2GddFlZKoruoagZ4sRE0GOSlMnbcx9NrmAPx9jCGiWzR1aUOF6oBCOP3mpFUM9TLxWZnF0gCQa5Ww/xR138cRfZszEijVSskm7UcRYzmLsk0YZATKGqHmq9wfLtIwaDANtSqKbBHq1wUhUSP0KSJaxVwmg+44/+8BZvPv0NeuJhlmp4ocJy6lAmYHx+inVxQnZ/G0FWGY9HREEOOVOid/UWQRIR9CKbREPMlUi0DL7vUdYE+tMpL67HRJHE3vuHxLHPejZgbc0IcxKlvX0qrQPSjy7ZxBpj64zJck0UwR0cOimV8+oWxcTHmoz/WQ75F8VANz76Prv7N6hpMdPBKzq5Mss4h5aSwXXxZxu0vI53cURrb5fryzmKbrJ965Ago+Ok85T0MqK0AdFHQ8JwVF5cBBxPQiLHx1RFauU07U6DfLGAJubJldpMj9/Sf/EMazbnZnHJKr/PxfPHuO4MUbQgWjCcCAh6haVggZZC0zOomkloZuieiOSKYFCloGoo4prfPv6ceq3E3cMdXCGkUiyyXSlhqBbZQp2/+d9/TM7USZUKaIUs2WyK6/MeUq5OaEis+yGJLZKqKzw6ekXO86k0WriJiV5usvfuTfqDFd/7aJfZ9RBBcBAJUPwIM21yMpmSRDEzx8KJdVStQsaMSDIGsdUlmxWIgxDLUwhKdxh2V1yNrnj4MMNmteLps3OG4y6FbJ6HH+3wxfOnXI9DNokG6RhxewtxHFAuHuISk+TSVA9vML9Ysr/f4GpxQbUsUsgm+Pac0nSFlYFOLsc8Cck1dnjw7repZhNW7oSTSUi8XOIGBrbSQUkVqYRvkYwMQ09Gljw66ZCKpDGRWtQLedRYxtuEWJFEWK6RhFmqisjaClD0AvlSjUIpz7UVUZcszmdXpGo7FGpbqIKHfX1OKVtg3F9TqmYwUimiWKFzs0VVDhkuXRbugmItzXa7RWJniSoxtvMCTyvgRBq+oJJu7XO2juklbQqdGt3JhM1swh/c3iKbbVApl3nTO0Izy7SrWxSkgOHsArm6x/DqmsnCoDty6fYv2WqkePPsS9IlnevBlMGgRxhsaG3d5zs/fI9y8wZ2EDAfT5lNLGS9jtr/gvce/hC9lLDyLHrDFb3BhPaOx7vv/xnDlUu6VSNJ5fndb7r8j//mL3g9n9NQDbLFAlrWJK2mqJbrYKXZv9tBqNzACXSi6Rm2Y5PYIZ1KmkgSWfkRPiJKPoVv+cilKi1Zo5QpoGQLjGZz9m+8SyNjYaMws0Ys5xfodsxi2qO1XcUKNgh4KHICaRVrLeGtY05O5hAmpHUIpRX9qQ25FKbWwUlyuEIa23b42U9+DMCH77XIajK6nEFN77JJciRJwvfu3ubiakq/O0cQRMo3OzzYu8VhaZtEklkuLRaLJUYhhySp3HrwAdPzHt4sIFvI0v7A5J1Sm1Qly4uja3K6RF5JuDrrUi/ewZk+Zdp9Qjy5ZLnyeG3r7KVEfvzpV5jbt1kMzum+/C2D7ivaN++zGF7TO5vTlDLofsh8eEVBtlFtAXsZ0rh1yO52nbwisXAN/uA79/hyMGH/nfeQC3WGq4DR2OGdfJrm7btcnV5QS0cUVIuz7jmHd+tkam025xeUChk0M8f1YM0sdjm8eQ89cXApUts94N0P9zClEn/08W3i1Sm2I5JW02xXTaRiBXu6wV0v2Grdp5UvUdeg0bnNzo2bnJ6fs7ITCqUtWp3bOFKdyLPJ2iOOX31JMZ2hZKTpvvmS9m6bswm8u/v7/ZDHXz3hpz/6vygV4ObeHWxWBFOH+XjJTPDYurGLPQxQIxM9mKKKDqGRYo6JHkvE0RhNNUhpGqKUYq3eRU671PEJNyEqEjk9ppD26S/X1A9+yCT2adZK1CttXnZdGre3mCQCgfP78UwzpyKqIt/+9n/H0dGS6/mEs+OXeMs51XITofoOpU6H//DTX5Op3CBVqDKcjzFig2rapWTaqDuHNPbvsVtrYy9D7uxtc351xlYpjeArDMcgp1S27++wVExyxSKr0ZDeaReBAumyzvHbE2r7tyl09tl4IpOjLnfe/YCSMEAxdzg6OmU2XdDYfcCTr17y4Z0Oak4hX6qQxAK9i0uGG4NJ9zVmLiLON8lXb1AvNOl3j7nduk0+KxInU3R/iuE5rJUyiX2M3R+zWPSx/Qhf1vBTHs+erLiZzdE/PaImm+zmMvhhj7Rc4bM3T/nLf/1vWG1snj79gunilEQ2yMkxK63Ejd0O9ZLC3B3Qd6fU9+/Q0lLoioQkpUDMcnF1wQ8ePEBOpiR+mdBOkP0lDw926dx/wP/5139PX99hsHaZbCaEN25RkUKKuw/YRAnhYoUcimRu3Wa2SditGgwHIzRVol6qUMl2GEUSy1fPuf/xR0hpgZPrU148fwH8V3ZW6jvfRksVsTZd/KXHrrxmmYSEnsjMlZmLCq2yTiml0vMFWqVDUmJI5Pe5s7fPOzf28Ochs+GCjevSX3T59It/oKcdcutwj/p2lWw+C4nI2t7wYD/kt3/772l0PiRQJDRDpWLk+OyrC/YPPuTiq+fEYQbLlZmuLW7v7PHF11fEgsF8s0Q2VGrNNqlEZ/m6S7plkaqYuKrK1JVwZwLJ4DUWS/SqxmFrl+38NutY4Pr4hOPjz2nXM+jhGiH00ap7aIHMO0XIqx7W4hLHn6LoKubsDGdwCimXSqWBJBuMJhO+c7/DJ7+ZoBsCQzfBtTxMd4bvDHFSJS4shdVmjmYEv3+fK9/HHw7Qq3d5e/yC68EQxdS5/TDDf/r3/4Fv/sW/4otHb+ldTKgVCnz/mx/SrrT5xd/+nO3DPbR8Hr1cZevGQ5YDMMxjlrMAPScREnF9MaHTNpiKKjldxRcKKGqJarGMW0ijRCLm7dtE2RxmqJJdR4TpmF8/+Q2JMyBvFGnVtthub5Ev1EFPMRxazJ895eT5V7y+vGatZvnW4Tt88vifODisoORVXF2BVJGb+RLHk3Pahyl0LWC9XjKYrKlkNWwKPLz/LdRlhGuHyM0m779X5+hojJgNmZ6ucNwErSojTl+ycSyEwMQv6qzcJa5l8873/ghrNmLgNRl1LxEjCU2vsbZlzv0Ml2+nLIZLJE+ilVPZK62ZDWziWcL9/V0yWRlB8sgaCg+yOb62VUrVXcJUlnqrzYd33mU9uODw9gOuLmYYqQNS9bto7Rts3zig3VEYHB3x+POnjPprZDGNLEZ09uGqP6SZr1HQsxDH9FYrRvOb6IaPEM1w5l16Z8ccnVzyv/3PP+Ls809xw4CLhcRs7pMLRlwNjxisl7xz/wfUMilk0cMWBSJmBGYVL1G46k5wYpV8tYUyuMIvtLhVrfH+e00Ke9sEuQY5U+Rv/o8v+Gq4olXKcOfOOzTat7l4/hXTKMfq2SmFtETncItaqwlTi2WypFHIM1+MGPSmTC0Q6x3GV32i3C42AT4LkiRkvYBP/7N1ee/G95gvFyzWc0JJw43zTP0pO+099MUQt3fGqvuandUJZrvNz3/5BeswwixmyKgSg1+9wFJNBkddBn6BXEah5PWY/OK3zMo3SDYS6YyCWkrhhhHhyMO8fwejVufjd+6xffgOkgjzo9+g5faZuCESY9TZNbookOrscVi9TUpJ8+5ugWUujVRv0ewc0B2tiYMeZ4sJlpgHN8BMpuwcasycMsFXP8IZBIRhgpxyILmk0bnJbx/9jGTwlkwco4cJ6chhrOxy8uivicxdMsVdiFQmgwFZecXZWCJcXNIuFUiiGf/06x/z5Wen7O5X+fyXTzjYex9Dy/L8+TEXRwL1hscnTxfksxlMM4OQyWHnBf7T33/Or//pb3n8+ClnVwuiWOL+XornY49797Y5/vo5+/vb7N95wNVEQxsuyOzfojv2GU4dNvMVyWzCVg2O9BqNTA1/cIa0OuegpHPj1sf8x89+wU5J5+TqJef9SzRR4ts3bvHTTx7T2dpifHZJGpGD1i5R4FAyQ2aDV3jCBi8WiEKVnCkRyy2e/+p/xZlck3ZshGDDTJxyv1QltAUONZHuIOZ8rVC5VcYNFoy9KxqZCsEiwLds9HTEex98g0x2ipFrslttIiUugbrh3/3bP+fTT35HcedDTr5+xGX3iGkU0H11jHDzFkWjwFV/QKoUc+d+DnWxoS4uGE4mxE4aOVsis9Mm2y7TFBu8dno4zjWJP6aSlnh47zZnbg9ZCXj6xe8w5IRULk13NabZLFKsbLGzs00zXyKvShTNmHt37/H20x8z3sQ0lDWFcMBmfM6oP+Ov/qf/ns8+e8RoHJEudShvNRiffsk8Z5KVM2hZKFdEVMnj1bMef/ZnHzFxFY5OF4jVNuntJkngcPXVC7757XfpnlzQ687J5yp86727EE10zsMAACAASURBVAq8fDtgdHLF0ek5vX4fMwkoKAsM9R7H1zOi9ZL56JqL0RmlqkxxO8Pzo5itIhSaOTZGhenxnGZB5FpUuLddYqccsdtM8YPb79OuCARLBW98jikLtJoldloSV0+PyJZknJczlFgiIGS2HPPtw326ocyLF89xFzNmoxGvjo7+62FFFWPGl695/fXneJsFlhH93gq5GFEqGBzsbPHqeZ+9nfuklDVr+xQnXBDGAr3liB/98ikvvvopzuoUezlBz5T4w//hr/j44JBnJ6+I/B6xVMDxDGZvX+Atrti+8w2WsyumFz3Wc4uNlBCky7S8KcP5Bb3xEidYo+oWn312RK4V8er5kiDKIokqUuRSTmXpqianT39Fs9OiVs4T+z6/O77i+uVjlnYJexORS8lIWsTj8wF53eIvf/geld199NpNrFSHt47L7Ts7BL1TFsKEWqVMLpOmPz6mLWzAELESAaW+RXp7l3yzSTKTaTYWlMKIzWJAKENU3OHVpo2eFghi0IQyIgZ+HBPnyuQ//iO2m/somYR8LktaUllcDknt36T37Jd8/NEWW1mTaLGgtznj5m6dqHWD8WhMNp+ikJdYDt8yetMjY9isTno4SwvbAY8UWiqLcrHEWSw4qOSopDzCoMf2dplzP0IXNRBTKFkN0hbr02eE64jtG1Xu3HmIWdvBV03SksTGheXyNYOFR7l2yO7eO3iiyvXMo5gVufj6S9xlF8laMH9zzqtXvyBXyPP82RtOX/aY92ZE/opNKBClNda9L0jVW3QODtmvZZAMkTCE6NrCdk7YOKfMZzPGXpnd7JSjc4feaR9WPqlEZTafMPJUHn32j3hJk8vLJa/enLBRVGrbbf7swwanrz9Hja7oVEQqhQar2YRJorFJdJaey3oxYj3qE+8cYoZjNsEOuiQjuBOm02uU2iHW4iukvM1sqWEEEbfLItX9dzj/4ifMp6fkSrugtJg4KkkuIl9tEffO8NM5znsDhr0J250HCMPHdAcDtu4cousZ1tMVk+E1+axBNqfQLO+wGF9weX3K5Txm+OInnPdVcorFxA/oDUcMnj3iy09/w8nREfPhBFHSkAUXcXNJXktTKeSIlxfEcUwUSmiiQqVW5NadEoq5xU51H0vMMBFMDvY+YjEcEffOiTSTq96Sq8GMVKuKFomMhws2ao61p+GHCoJq8vUwhSQ4iFkFwVORkwKhmOEX//DXAPzpn/whf/bH36KWL3D25pJSK0X44hEmAl/2LVwjxcHhHkr1Q1bdC0olgzuHTaqlHI4X8fRtl6UzJRvqjETI5HJoWpo34yk7O3W2b27xs3/4HU8fP2YxXVHdeYAezzl+fY0zOGG+mjPfLNh4NvLOQ1p7EuX6FkdXLuO1RFrT+Pzzf+D9GwU+uTaYXo3RpIjaToF3btdYNN/nTrvC5s0xjWKazoMHfP48JCWNefDwA1I7OzjRlMTdcND5Ab89ecXHW3cZnV8RLVxEQSWsVkEO6Q7X7BYrLIMNvhpzY7fD4PQVOw8+4Pa995D9NPY8QZJy3G5UedW7pHl4wOdffM7nXz9ilkQE+SIDV+Re1SFT9dE0G9Fe8Pbla7aLAqlE5Qc//C4//P6HNKsZPnn6lPdvHFKRE96eH9Ptdxn2rwCb3z15xWj6ks06IpUt0GnX2asVefNywGCypF5sIMoK6YyJIun8Lz96xAfvhXzy5ApDNqlVymSraYqFGg/udZCMDJnaPrIcYK1ekd6vUo9V9t7dQss1cVYR08shs+s5adNindpnK9WhUC6TaZTpVPb5/NLh7q17HH3xCxTVJ1tKc9Fd8qtPniDminz50kJI6xTaRXxB5usvHxFqBo3CFhXVI6MEiInKz//u56Q9gbcXb2iWytRTBVTLYiubIEcrvvjsF4TmDtOlx/nRObHQxNYhJXkEsk8gSCwWDs++/oLXqxMEz6Gz9y5mpkpaN6mVy4zXHt/5079gL99hvkqYzl3aqQwf397n0s0zePlPXPRHJNk8nfu3Obu8JqUU6JFhq1Qh9BXO5gG5wwN++atjlOIOmrIhnc9iRRo//fF/pNr4gNJmxW8ef8XL0ymRUOW7H/0hOiJnX/6GnBFQzKvoeMjeGvnuh9gzUAoFxKxBOq+SMRPOLi4pVhK++a1vIQQbJFWmcftDdLvEjXd36ZgmWrVDqV1guynTWxVIBpDGo3R4D6XYYLWY8uXnP6N6+IDgNz9BMtKMHJ3zmcbFKuL5//1zTvyQUvMGUkojiANCv8SxILEQTOTDFk4sEtkBhYLB9biHFUasj5+gZxQWnsObf6Zg+y+ClbyWxxQgJTgY2QxDXyIRSohmFjFJUJwNh4cFppGNpibUCi0ioUB/7jMfDtkrZOi0D8jXW2R3b5Ju7SG4MO+uURKbwF4QBxGKLJLPpvD6V0iCTqLUSasRumIT+GuUzQDENaX8LhejKRfDJQvLwEdmMFoQBQ7eaokae+TNFEmuxPGXPyXUW3jERDH4XsyrZ19jjy9oNvKQJOhKBUPIYoRdMnmVTq7MwpKZCwXmgslm45CKJoSZEmpcYjpZMl2u0JQCwnrOG2eBmr+JZpYQooRwYyPJa/oLi/5sietU2UR5+pHHOvKJLZ28qbGTTkhHLtbGwUkEtrdaLASZHBElLcHUIkgSrK5NIojISYy9WqDqCoe33+H19ZhXwymZaplG1YTE4bI74IPdEm/eHmOkU8iSQBS4uPYKexjQ1FzqjW0UzUfWfZSMwenE4katRL1YISu5eKshF5fnvDntc+fuTcx0DSMKWAcii0BBsOec9xPs0KaQzRArGr6Y0CyIxJKCPx0Sp2sQB8wGXY5enbLeXDI6H7KeTLFtkTBOUCQXTSkzn9nI1gAlVcBd//6oqQWDeWyyuX6FrUTIeg7JVzg+ek1K3eL1fEokqhhpnWwxRW1njySlEiY2Whyj6T6NTo737t/hxVkX3SuQb2ZJGzKi5yH4LpFo8Oz4KxLHIaWplNsdqnfeRXNlmqVdtuoaogGioVLI6hSdOenG+1zPA8x0g2qzTaZSYblxaDQlVnKNMIlAlFA1DYQFOb9LzlSQHRFDNjGLRVzdobpT4/697yGZGoljE4QxdrHOO3fus17OiCWZVNojrUT4K4VMuY6upDi/PqOUL5OvNghyWQ6KWbLFFqIhks3o5LWYspZw0N5nGVnUyncRBYgJEIUQ0V0R5FpUa1UWscNysiRZhQjNOvWtXfSKTP/8isBO8B14+ewNsZGmneiIUsDK85itXRbTNWLWYDDcIKgVVFUlbcqI2Hzy078DoFQ7pHVwCylbxoti9tIhc6WNVtuhXK1z0K7TruawEovN+IxlUuLlyRkLPyBbKlNXYXD5nN32AfrmmtngiP74nIyekGBydf6G7WaNer1Kqb5FY/se1dQCOfIwTQklEbAcl3nk8WBnl/3WLv/093+Hi4WaigiWfdLxilmSJde+zb3DDNnEZ3E2QU4rOIUq0+NjZDZkqxUErcywP+fiqk/keMSBji4kmFICdkg4s+kh05uu8SILtBAxl2EzdfnGH3wDIQkhThM5IavpMTe2DzCzEmlBwAp85GyG9s4WCivm8ZLd7bsYiMSRwNqTEeIch1sdNFnC89Ng2WihhdG4yfHlFC2Y0tq/xcaOOXp1Tvd0gCQKBHJEfzFC0GScAN4cDVD1NDnFp1yt4blzNssBsiyite9y8+4tDCdmNrGY2SIeBqY2JCdt44gSkiJgmhkajW3yuzukjBxf/PZr0kJCuWKSrxZJRwkiJoap8osnl5z0xiB7pIsunmIgZzrMFxckio2gwdTe4Ng2ph/ixw6SJBB4FpYzolisU1QcCiWB65MXDK8HmLka4WJMlPi0CxXs6RWOvcLM5mk3TC60XeIoYbtWIJ/LksgyzmbAMNhwcemys9WhU23RzJXZMeYsDQ3JtcmUOsiCTMWQ+eOHd7l6+ZzVRudWUUE3JNZewKg75NatOyyOf4eartFoVNluF8kVDeJMmZ/+6P9hrXvYsYBlu6zGQ8Krt8R6jm+936GWzSLrCkpGJh3q2NMzUuk0ciIgui7BrIvnd8nUbzFf9ujsNWm0dtCMDF44Y7FW+OQff8yNG+9QyTXwPZErG4o7O6z9iLy/IF5OiNZLZCfGSFd58tknaOU6CjLFXI5ypYDvWKxXY2Q9IAo9oiggSARCWyCyF3z07i3G8wnT6QxFSKgXHJaDBSlBZLx26I16bJwRFVOimUmIDZVQT6HoCqVCjkqrydqscqv4+9Xp2PNZrGcsvDUP3/8uV2dv0RWRVL7JdOnx5tXL/09Y+RcVbCPfIvRlElXEcSy8UCbMhOi1FPm0RFGKKZSKLGYuZT1hMJKZOjYbd8F8OqVWTFEr38TM57BVBStOWM4tXj35lFy1TFpVKddKSKLG+LRLrp0j1gyW1hIsC0lUSZdMwn6Xja5z0DZIpRTsEazmMYWCjbeSKZZiEnvGehwx6KYRKi3mMfiLEagW+D6hE1PQPDalCnYYktNBl3xUKaKgy1wPpyzqbeaDHmEhg1LSKRtr0jJcODZtWcXQMiSCRJg4uKksqqeQKe0SuCqrYIORcgiWHv2FRxL6iGKZxDAwEhlT6WFpGs1KGcNW8IlJxQKhNca56jOZzygrLmG0Am+FFEXst5pM/QjV9SmXyxRrJcxcCucsoVIqkKsViROP0I1J58vIZgEzm0WVFSZjF8tzkWMPZzJkoZSILBV7ukLSQoycymYTYGk5YI5rTVnNJ0wmS2ZhCjIZpKiAt5ZxvRBHWRDiECQiuVQVUQTbW+PZC1QvRRyv0TQVVTdZ9EesFyu80GIxHRL5eSRVIRRDZEXDMLNEqoyZxFgbEd+y8KIRtuuSGwlkZYOBs2QduUiChxElVNWI2fQaezmmXc+z3elQqjRZ2z5CWiWR0xCuKRVy5JsNUqrMlhFycvQKL7wkn9Io5xsUUgHO2sMORHKxRLNSo9RusVJU8pGGahaJ4wFKJCHEGmocY2SznFgxyDWMVBZVN0nEHJoYYpotzHjOeO2RJCKGoUAQkQlATBlkzDJ6LBDaSwbjNbaY52o0I5mOEZMIlCydVp3B5ZC6WSGUXBRFAzNFJldGAlLSGU4mTRh62BsbVUkjV7fZrTiU1nkIInzbwVlbHI+W2PEaIVohqQnSak5qOsQrHVBMx6j4uJslqhyjqyLe4gpRylJqbrHdOeb6esF6GSJLaV71E2oVASEKKOV1wkRh1F+RRAJLy2MxXlDJygRhhOf8l1Z/LPgsJwsEMWS56HEZtkhpHrHgUTIzSNGa4XiKq2fYRBsWY4v5fMRy4+BsBBp6EfyQODIoZnW6izP68zl3tnZwiQjtNel8DcU0SZQUhmhzfXlKZ+eQi+41kiAgpdOU5A6L7hgtlSO2fDKVNCICwdLgwcNv8+jFFYL2ipWcQo0EUBRCPUV4fcmqv+DmzT2UfJmZF1Np1LnqXWL4YM+HiIqIIUrIzGns7fL08oTUf56CT6dARufi7VN2HjygVMwShyJJIKKmyjihxK2iwfHRBVohhaT7XC08yopKLr+PmdEI1QQjbXIjmwXNoP/6FdVqllwmQ2i7jO0VupmgqjquoLGZ9kjiBE30uH9rH1lR8QKBu3feZzOaM+rO0AyoH7SwBxfE3u/7QbPZioGoUdov885WnseD12jZFHoistmskEmolMqstYgoUSgX8rTKJhIJF+fXqJFFEsu4YYokkSkpCe5kztWsSryYkdUUCju3aFQV3h4P8awZUbBitYyRdJFq4waR4hL4ayaRi+esUcUEM238XsUS2ZiyyapeZ7xxGS7WlKMEU5IwNYGlu6A3meCIS6RoQ7F8F8/JIhopxHSaVGwwXGvY1pJqvY4pyOQFEVlXsK2Q+s4Bw3mP+WTOauNiCBEtySPlQrXQInA35FLghy4vTi+4e+sA210zTJY08nmyxQLL2IA4QQhWuEEJM5uCBKaDCbkwZoPAuNdnq72DoRWIezbzyZSd3QZiNo278nA3M1xnRb3SZne7yNv1iILskylIuFqG2XpDGMWEukmCiqGbCLqEv5HpX/cQrDGBLOAnEstNzGo2wyimOLh5H9fzEOIYEYm1E9Fbj4knBvfvRKymKxYb8GWNcLUmWzRJFJnlso8dR9SbDbbad3ny+IipZLB0XBa2Qxz7qG7A/vt3oDthg0McaFiWxKI/xbVFLHWAk6oymFtYIWTNInKYUKwdcOGsYWMTrux/lkPEfwmsJEpIICc4SIS+T06CjKFhCBH5tEClZuK5Ilm9QiKKvOn2uOgd41oXOP6S/maOIzjIhoy9njK5PiX0bRarK9ZRgKBolCoV8hkDe3rFzr0m2UaeOBwymc6ZWTKiWWVhC0hylkTyUTQVSTMICPDdFfl0Dlk30DWZKHQZjQcMutdozZus5xc4iwGLwRWz/iW5nEGq0GC+DiiYAuWci2m4KHqRycJiuZyxmo9JpgPSmzEF3aJULOKHS0RtTq2YoVmsomgxUS7NTvkW6VSBJFZxnIjZesHlyYjzF6+YTDbMwxWRHFHU8hRSWawoIErVWKXKuJk8ai5NTnSZvD3Be/oZ3uASd7UhdH2yssvBzRz1SkJGCqhV6lQ7OwSJh5TIfHDvJuVCgThSkaUMW9s79H2ZnZ1dtEwGV1TwkxhNWOO654w8i6PuC86vepydjjg76WMkCmf9DfN5j/PrLlfjJU6iYebrTNcho6HDbJPGngd4wwHzjU02bVMysySiTpzEBJ5Pvx/gzMfouTwZTUITRURBRMDFmm2IFBEkAVH00DTIZItoGShmdNxEIfQ9Qm+O7fSx+9eIwxcookS08VhOxqw2Qzr1HCEDxHjNVjGmUUmDkuKiO2DSm+E6Il6kECcpPFvm8qLP/bqOuznh61/9lEX3GtPIkqRyxLpCKd9AkVWKxQKlfBa8DZEmMnaWfH3ew1pYKHaAvfFYaWXeji4w8yYpM0UUg20FpFIGYpJHFz3ESIBYQxBlxNghk6miaTr5Zhm1mCaUQI5lBmcLfvXZJ1y/ecawP2K18TB9n7dff0lOVkjLMUmkIqo5qs0ckeMQRRu2m1XCMGQ2HBFOF1yvBcLEppjLYRgGsWqyEPM8Ph8znLmcD6/pLTcM5wsm4xFumMZfL+mfj2AdYBgael5CXHaZnr5BdgI6nSaKqWEDpc4NricRY0HEC2OKaZlONUWukCJ0JHQJIqtL4qyJnJjN4r8IybJ5BewFy8sjuqfPeDsCU5iQOH02yzEn56c8ef2KdSCwcEMia0azmEF0XM6enzIchsSxhhuKBKkcsWGSKAaCXsaXZHK5HLYbYvkCge8TTo6YTNbIZoaxLdK1bOwkpJgqMJzYvDp+Tb1QJqdlkUIVVclRO7hHOa3Aust4MGXhR4hFAyv0mL89RnICcrk6spHFjSMypQKVvMZWo0qsOqz9ANuRSWIfKilSrGjWCtSaHbLFOoaoE4cBz16cEkYhUeyj6DrNnUO6oy4KEoPpAs93Wa1HvDx5SqjmEaUqYbBhEWwIJCiZJoWSxODoGbPhgKwKmWwGX07jLFYUikX0fA17MSNY98lkIm6/d5v9nV3yZpF37r7PTnWLnJym3WxT3c2xCSQ8x8L1YjauxGzpsZjNkJMNayMh28jSquhkWGO5BpVOFjMtkS+VKFWKZHTY9AYMj95i6htEyWU0GfP25JyF5+JaM/pTl72czr3tOlv792gefhszVyJYjymmDELHYzaakNMNQt/CSmzsxMVTE5SsSSNfRVhbxLJEtJHZ3rnJ1s0DnMDDkDUapRZOEJOQYHsuR1c9nrw8p5FMSQsbnMjDijz82GeVmOhKhq1WDQGN0F7jrYecDm2yqTJxFOOtZ0xnU95e9vjiyydIgUC9lMFDJi1JVFWBOPRYLqaE2QrPL6+57PeYWw4zFzzL4uadHXJJhqpZpVGqU0jlkTJpAt/jsy/ecD2bs/JCpjOX6WxGpl4i3yihaSphAoGiUWneppKRSacL4KzQoiWmEhIFoKoiB/ce4iUxkZyQKWQxDZ3VcIjVP2LtLwhUg9gosklgPJ1w4+E3kTQFX4Z54HPZH7PyPPozB1FRmc3X9HpTZqMVk941ia4wXm1YbtZsNmMsa4QbZnCTkEEMaqFAvlRH14qEjkBh+wDdzJFTQQkDZpMVXz9/w/jZG87eDHj5ZsB1d4GzCREjlW63h5prMHZiJqMJ1mL2z3LIvygGau/tU6yU0GWRrU6bYrFEevd9gtk1WGNEKQbPRQwVfvr4iM3oEm/eJbIWbJdT5BrbGIUUS9/n6PVTJqdPOSyI3L73p2wd1ji67nM9dBgM5mxWE+7d2cdIVrQkgziMcHwXa7XmTXfIB3ebDCyZ476H5XqYmocSqtzc3cJzHXQ9jZlLoegxV7MN33//fZaLCY5ts5pPWVkWVqrOur8hL654736Lat7E92V6SQm1Y1A++YpNdhuNEMldsZBbZEo71La2yesy4mqJ4Efo5TYb65K9XJP+ckOmkMHzXZ5+9YrZcs6rX/8UW6uQiAF4KxLPRa6mePaPn2Fr+8jhhmDdI1iPqOYyjK/eUqtL3Dj4mJ39G+zcaHBwUKZ7ck4hAycXY2Z2QqKmSRerPPrimO9+Yw/XSZPNVqlWcqQ1m753RduoYEslFM3AFByY9zkeBTR22oyXK2rFMikzh6NkqN/7A4LZlAdtmS+/vuBiDnqxRUvTmPRWPH7xlkgJcNcjvOkQPZOmYrbZRB4pxfm92TRQSKsGcjEi0XJIaoVi3iR2p3z12S9QEh2pImL6HpKUYKQ0yhmTdk6gfxkSJRMkQWcyHHN18oJ8Ns/L4zfcv/kNoighSRwE1WMhu+jl91hnBD689ZCz/oy/+/zXGHmT/rM+7e02vpbm+nrA6fPXbJYbtjoFNENjsR7Q0FV8J+Anr0fUSy066pTJ+TMETSdTaVEqNfn105dcvHrOoy8fUZYE0mmFSRLQv1wTVXRaNYNctokdQnfexxcV2p0yk8EcJfCQNAM3FpiePKGxv0MhKxE6LtNlBttvUC0knC3OUZZj9ip1xCTFbLJi0HvDljZgJUT0JkuGGwPblolnPR4/f808kJhfrzFUA1VXWLsW3ibk4uuXjOdjLt6+wl2NKWRVErnARjHY22+hpzwKOZXtTov9/TJL5swmAWa9gx1qLOY++VIJLbTx7DHXM4XhImRhQX+RRvAvaVW2Mdw1ajBBEDyCdB13IVHUYiSxT97IkJVT4Cz49RefAXDnnQ/Y2aoTxi7j8ZD9Wp7W3g3WrsvZ+ZrT6wVL36faMei9WnKrEfDB9/+AbKGMN1lgrpbMhTmdB1XO3s4IfIVyrY2eaTIYBwiSRDYjEUgFrHWIOH3F9/74Lzm+HpBvHDC7umT89hVK6LL3zYdcHz36/UfaxmdpLfHCCePBGf/qv/mQg4//hEatQ+L7XJ8fcfr4MVdqnm1Tpz+cE/g+mZREt3tFRw9I71dZGSZpvUJeNrFWS169/CX1rTqpbAnbCrGWGwwl4OGH3+fxy7/nemXhWiFhHDMObbTBU45GkN1p4Cs1HMsnI07Zvv2HPH/7c+KpS63WwHZifvXoFW/ma/7k5g5PL7uUGyV299tsdzp4S4NzIcdHewqJUuW0N+V19wo73+Ab2wekyhquaLMKJ6x9i9kQtHQPp+fR2u2gpU0a9SoffOMekZ7FSET2b95jMV3ijLp0jJh1rkWmvMXZ5QWCKiDLCs4y5vnpJYfpNE+vPqWsacxHU568PMKJRMxSm7TV4+DmbYxCEdtzcASF7aqJv3CoNxvMlwsur06Zry95+vOfYaUUvnP/AfdvvsNOvU1Z9AmDIUGjgBUl2NMekmNTrzYpKBKl9iGffvmKajpFs1ZDLZTY2tpHD0Wup0/xnQ3rzYTr2YCzns7hg0PCiYebyiCpPrE94O35JUmUQXc2fPTxXVKZCi5ZcrstjHmXdTyg0axRqbRIp3OkTZW4usPF3OLyiyfUczEpPeHqZMqVFfLe3Tr+tUQ112C71qFTLOBsHiFdzRnKGvPZlMV4ghhCRVJ5s3hOcWeXYBTir13UjMbuw3t8+TefYJZMzO0miagwuLrk0dEjqu27NFs7rPwVoszv43TGbG3t8NXTF6S9EcV0gXZri529Os5yyhdnF4g5jVqjTuJv6J485bvf+g7Pv/oJO3c/5nIMYeBR1NdcnF0zFULuNBpcXa3oXozpnXc5fdslnE7Y3q7z0Y19tht1NENnsVlQ29ulNwzpmAmaJuBGLuFqjLvSKZX2sGyBqpwQL8f88tFjcnce8PbVb4k9BT8SGC1mDP//EBneq9bJKzrLIKJ6o42deoAcJrRbuxzeu091e4uLnkUI5BBQ8ina9+7y4R/9KT/4079E8HS6wyXPXwxo5be4f++7XNDh8vgJ3/pwl2Jmym4xj0SVR9ca9vhT0uMEP3B4fNpnvtjwoJInX95lMF+xWvRwkhS54hbNUotRd8TDWyVask+kClixix+71FolxFqFpRugoCALIoGzYfrmJTezKv/u377HWjtkJTXYhBa9t39Lxqkwixwe3j3gvT94n72H75LL5Xm5HjGdbPDXU6p5kbQZMV+M2KkUiXJ7vLtdx/VkXMvHiDb87Cef8ld//gHd8xnB3CYjBmS1BU+//jXf/ePvYE9PGE42GMUGOzv7RKdXlNod/vJf/zkr5wRlsyTj6lzOI/pqhvmmyel6iciCesZna6uGPX3D4bvf5Hw8QpdniP6C8ZXLD+7f5OvTOTczBeaDM667F6w8mXx7n4bZxwv/X9betFeyxDDPe+psdZba96pbd1+6b/ft7ume6enhLByOKIoSKYoiHMk2DSsOhMBGhCRI8i2AgfyDJMhXWzFgI4EEyREkUcPhOuQsnJnu6fX2dvelqm7t+zmnTp0tH2j4WxIH9p948QDvFiWTS2MYOQjSjGYjtsuXOW2ZuJEYUgTsbo/mxZzFVB5ZZVg9sQAAIABJREFUkTk+eEbE01goXkYILCLyDEdJMp/0EMI5kRC6XQtDGbGS28AVxrS6fbqmj1IqEVN6LKQuEY0nEWQNLZkjWlnlcd1j0j8gb+SxxmOccQtd9vGTi2QKOrsPn9C6eE4qJbGyvMq4MaM5jpAplij4LqI9IKWEXC6Wia2v8qOf/orrG1mqiymyq0us3voap6Mk9+5+yHYuixzXsCSJUqyIIYw52D9B31zGtmaMBzaelqH24md88pOfk42lmI371FpD6kOJ+rxPgQqNnoxqzZjMAi7EGMsFAROfYPqA6soa47nH4dkJqUyFyYsDHNEmVHVODl/y8NMP2X92wrp0wn/3P/0veMtbZFbWWFzUEMJn/PJlkrVcn3wqQ9p1Ec0BQywuLcZ5/c03uLAnhEKUydSh1e+ztFxGLm6SKuTYurRDfqGML9pUUhZv3fgWbvcZ79y8Ri6/wsvTGR+9/wWLhUWu38gQOh7ZhMHiUorAH2CZGko8ytJaGj3uYU9H9E+HfP0rr3L3878mXc2QTJfRVY1QHHDGVdTZlGQkRAgKzMIcXR+ePPz1N9C7t29inZwQseasbe7QGvdZur7E0XHAYNxmZPWwplOiVptL21uMfBdfKDBT00SKabS0hxCRmM5hISVSMubkVZty2qN+NGDj1R1evbGFooQgzUgsZzhon3LvUZe0bnFt5wrF4iVOD6ekNJfl5bcQpYBLl5ZZWH4FS7hObd9kdTHFy+Nzvth9zLOXD5GcAf/o+3/IJ7secdmh0WnSnJ5gh01WkgWqosa95x2MyJxo6BDLxnj1d9+lur6MevYSQ3OZm1Mu6k3uPnvIs49+jLGwzTduf420B36/h+fMOJuaqH6CtOoSSA6GJrCULSCUk1zPF/j84ZekVB1vPKN70eLWlSX2LYvf/973WKyuoClxPMujebxPJT2mnM1hzmv0BhaBH2NzVWR39wG3b7/Hz3+5R+N4SGDNmUzOOXsRcGmjgCsv4IkRCpU0l7cu8auffMj9sxc0H/4Sx1bIb1xl6+1ryEaUXmfA8fERS5rGxfE5P7+7yx//53/Mv/ngR1wrLBAYBYRCnvUry7y5ssjQesg4ojNNGOwfd3nw0RNePvmUr75xjbFa4MXTj0nG46xu3WAQkfn6H/4TvCef4YoFnp8MOTltEo1EqBvLLGRT9KcS56f7zK02xVyMp6cnhLWXzII5Z40OY2tAImpy/0f3cZhx/eZtiIT02kPGfY/1yyvc/fQvWEyUqJ08JB2LcOuVWywvbvHXH73P9771mxS1Ertf3uPjD/+a5tkeC6/9Bmk3oOH5qAsx9LREr9bhaX1GIjCplBdoDMeY/Qa3ij77vRTTCw/LaSPoPmN/yGm/htmf8+HTh6SzK6iaSEZTWU7Fya17kF3i7FBBnJ3TGe/z/OSQs902g6mItHiJSCRNQY2TFgXq7R7f/PbX+dP/+X9jKVFlPprQ73WJprP8xWdf8LWV17m89lX6kRQd20T1ZljdKOe1nyJPM5j1AbYjkty4xcb2Av5sxsnBAS3fw5VUNMlg+51V8vlVDswOeSNgbk6wpyb/7DvXaTsGZ8ennNfrzOcmcV0kALR0CdkcQTwOmkZEVXA0g5iqMxX7VDWPKzevceWtd7n0ynVi8yZm7YzScpLrizmU+YwHL/4TtIEuLebJl7MomQyxhIxny7xzfZVoSqB2csSjjx9SNzVy65dZ3crjK3k6nSn3793lz//yr9AjM548r/HaW69wdS1PShnieC843nvJJw87DA/OyWguqwshO4uws7LE53WJeF6geGWLUI3zxadPCLIi1yslBoDi2IjDPvZoSH61zKWFNczQoTudIiVyFNavIYYiGVnAX1j99QZEq8fs7Ag/5vIP/95rDAdpDNGkdfCU/nmdd15/Df+0zp3LO3R6LnvjCLWZiyRcEBNVtoULMrFF6labrj2gZCzSdFK4syGzcEwQ8dDdEelZl62rt/i7939CQhgR2KNfD+SFOtvX1nGVEoefP6CqG8ijJqOzF6xducLbb+Z4cvcpCT1Przvm4cs9OrOQnaxH1Bf5yuuvEo1UOT2HhjXgja/eQUisMLFqTMMoti8j+mOecYmiYtIe2ii6QEQIaFwMQdHJe0W2Lu/gT03c+ZBYWiIXbiJ4DZ7Va1y7/gpvbO+wk8uRlG3a/TmppRVWVi7juy612iGKEKXTOgO3QJiucNDocHB4QEoLyftNmq0+hubgjU3m/TGSZ6GXt7g4P0F0ZxCVsAOZ/oWFMXpOMZnBnUeIuW3CqcnISlG4tMbuwyeULy+xsbhOIq7hKTbVG9eov/gEu9nlbHTIWddialXQqreoqCpv/eZ1Hn/yCYKa4NrN26zGFIbimN945w2soU8splPMGsRkn+Z0zEJ6gYv6KaGvIkYN5vMes5GDNe1hd5rYswlzz8R3BozaYxwjwaRxwfKra1QrKWLdFk92n7OgRImLAq2Gz7A+RLYnyPKEo0ad00mZcNrHsUb4AsRSMd772u/zVx836F1cUFAcfNvmw/sW/+1/8yc092q83L+AlE6QNqgNTNJxhVFP5+033+Pk9JBW45ClfIx5OGEhpyJaLeYmRBMFypuXkcMMH3/yQ1Shz7N+mr68SGH1EvlkEdv9lPOBg9lzGPUtJpZPLJ2jff4xyYSFYNYYjwc0+yZH500sE66+us52PqDb79OdOJQzWczOC5bW1qibMwQ1girMmHdaPNl/AMCrd5YxkmkKy1us7rxCNKUyrY1pTk6pbpYpGSoZIqx9/Ws8+ugeG2XIlfIMO12GJ6fsFLNMPYO+lqEYnZFNphFlnVrjBWuVIj//5WP6tRZ6fpFkMkf/wUPOzwNUo0GhkkIxMnQdOBqPiWSKdCfP+OAnd/G0DFoiiuSdMRk0mI0vOE8vkcyUyOk58rESN27eIplJ0B7NEX0JVSnj+wkax5+jXrmFFTbo7dWRplOyepRAyPDX976gFBcoLixSb0w4OBsiJ6v8wbf/Hm999z0uTp8ym01wQ5XhWGE1NqczMpkEBlanRlKPkl/b4W/+xb/k4b1nCJZDo91haLYp5kTWFi/TyW7xYvcXHP7yHsPmBWN/wicP92iaJiUZfnq3x3QgslkqsrG6hPncYTyXefb0BemMSnW1BEKUV7JR4pffYdI84+ThQ/Z3dznt1cnFihTKeappDSWpc1w75ac/+pjE1lfpX7xPqXKDZClFebHE1sYOz5o2Y3cXzx2hpnJIRgo3jPzaDrrIEJ030UsV1har3NpaZGGxSL09QwodrpayJIQQb2yhRdI0dx+gxXXiyxtkspA3PHQ0Ytko8fEJC+trLK9fo1jdBCVEccakEssIcpyNO7fQqlVqvYDCwjWEi5+yXbmDrRkUSlV2ljYxhz6beoFcpcIskiD0fexJm9bUJoiEDM2AxXKO5c0V8ssrnF3M6PcNpKuLGHjExRTWVOXwZAjmmJPWC66oWdr1Nsf1Lran8sbtJfRMhL5rombiFBZXqCxv0Om8JLKwwnpU5q23blNZXKDTHXJw0KGUCMhmV9FTC0ytOb49ZefN2zwZj1l2GmymI7iM6UQ80quv8H/95CG33lwnXymgpyGRDIiHPg92P2L07EuE+JxEVicdEwjdGvMKyP083/+n3+X47JTmWZ2NXIKp3+R3br/GEIWr+TQLqsOwt8fRo6d883v/mHatjzg7JyLM8IUYpzWbtbUVTPOUeqtGKpMjn1vg4WePuHf3Y5aWLmOd9TCHTSxnytjSOeztMQySWL0DTg7PaPc7JKsi5yOJSiJGPrHONHTZuzhh/8XhfzysXL1xjdRCgakYoBTvkF8usSFDrd0mCKGyWCVaqbK8nGOtmMGcjnEnQ/zplOHMZibILMRmrG6scFa/4OX+CcuFEu+9c4etq+uEsQSdkc/5eQdzVCcWn7G2tsDEcWg3TayBRTwRJZs0SGsi5x0bxYijxBIQkckkArLy/NdetiKSS8lUDYl6J0RWBWZjD822UOwhqhSwur3DpVKZvjmgf9HGnwtE5BjN3pC0JnLUrzPTdVq2ysUwwiwUSGZT5IwYg/oIZ67guRLWsIsYSdPwo5RTBWLeAMXvEEpzzO6UzUs3kaUoG9U8+biKObU562j0m+cUS2VWExnSUZVMVufqjsbRXo9Bu8/h8xMCD1KpJP1hA6/Z5qgzZKOkEUsYzASJi2aDjD8nGl8l4XikVINkTENVBI7OBiynNNqDR5zUTukNFeKJHWKCTX9mMRi0mAsa+YV1NjcvIYk2w6lMubBDyvGJiiDk8szVHG9vxDk/q9OtHxAJ5xjJOLP5nI2VLK4u0B6adMY+DgGSVKN+fsGVzR2apkdECJFEj/5oiDwcMCWDEJVRA5eoO0HwhwiuzKB5imoksc0Zs8BGSc+JlgV67SnR8ILVlUVissDg5Ii9Z3tM5Dnvvb5JdvE2mcIWmiFxcP6QYd/hVz//KXJ6ATeI0jppMWiMKSRVrlRyHB8ccdGq0bg4p3F2gotEIp/DntbQRYVwNqfbqqMbl2h0jknG0ihKGiUSRQvnuGqEBL9ubq2tXaZYrGLEDdLChIP6lJ2ddax2E9+18RWBl+cvsf2QRSPN4ckFsiRw4/o2t3/zdxlNQMslaB3c4+GDexwdHFLWRB5/8RnD3ohUtUi+kidpxDB8kfPDlzyvX9A+OaScklldWURK5Bg7EvOJx6jfx0dB0eKEvsjur+6xuLlMtrxG/Wgfb3BOSnGRDQVzr0lMCMiUt3BSVfqhhm/aVAoxRo02s25AJFRJJDLksmVqg0N2bqzijIcErkYgZOi7KslYDms8pBg3ifk2kj8iENo8eP5r0Xn7q68jiwaemmCua9gnj8kXl1iM6QxadTzTJZNaQk2UubSzihyJUzvrISCSSsU5ePGMbDwNSoyLpkOjNWJOSPXSNn/zFz/g8p2vYGHSH48ZDLuE4YxUepXFjQ08MU7gOCiBQ6WYZHl9lf50xG+++RbFfI7JtE/j4pTxVGRaTLE4GFCaD0im4gjFKsePX7CQWWDB8AhEyGgCBTmkPp5x9LSO4kaI5haI5dLIUYmRZfHiZw+JGSH9gYMgiZRKGuWMS1TMIhbTBDObZ8+POT05IavZCOqc4qKGOdOoLiyTKy7jeBqaZrC8sIJCFCO7SLJcJbdQpphdwDy5x0r6FQRDxQxN5q7Jre1N3nz3t+j3u+QSOlo6ia2pCBGHa1e3KGZldp99iZbQ0eMFzo9NJrpP+/Q+bjhFlVwSahRNzkC6zNmjLxlYYxr1EwJ3zMZamQ1thGAniS3ECQc9zMMjzNM9DNVDj4m4locz7uOZQ6KRCIV0hXG/jxcrYloephXgI5LWAuR4kbPaU/x0ibki4jNDDAOm7Ze88d1vI85VZu06zCfE02kePfwEwS+TzKdxoiKB4qL4Iz7/bJ/ylXeJaBJFVUTxZjjWiKzZQ06skMg5xCM2s/aIvad19uo1ZuoamaspfFlEjgi4kxm12jlfeeMGp2OLg+MJ9c6EwbjHaHLGH/3RP0QcOzw6e8Lh0136xxckUwWuX0riJstMh0P6kSi51U1ev32bqLbE2YsHLMd8jo9azCczri4W6bspqnkBXROYWU1wQ9KpRUR9Si9SIC17SLJI1IhgZHRcP4lhnxPPLdM8ajF3BIx4Bi10uLJzHevkUyajFJ2RheM75JNpokOLG7e/xkTKEchRpsM+Z8+OKZbWCB2Z6eiCveMXOL5DJlMkE7/Mj3/wYwrZJN3ehKkfEs9mmU08tpaqbC5mOTiocXHRQ5VEKsUqp+cntG3IpSosr2wRTZY4bsJqRabZb9Lt2zjzPoLfQw1srm+sYI9P2UgncPFxXIdcIJARBC6sEXFZYeJEOK11Od5//v8KK/9BbSDLmeLOHXRBJ6FH6IyHdJU0IydEVSS0mIrkeAjtFg/PHZ4evIDpkGxM49LqdQShRSGuUl4oIkUNIngIksDdxwdsLWTQjBSh6+OFDjNrzsPTCa+XLWZOFNcyEUKIxktM+mdMtAjxGAQhEAlQYh6BH+LHdcZOhEq+QCWroUVFdg/OcQIDIfDIyAJOKootayxFFey5g2OOCN051tRmaAXEEga2aBFV48TjAkpMwVZieIFEv+liTnrEFBFRBV3RiURTdH2dUjbD+cUIw+kjTppY3TGeoFNKxIilXyEa2FijAb5oYY2y6HKD1bTKihEgiQkCOUXMGdA46hJVFSQpQJAdoobComigRDdRWgc83H3MwtYlSqU08tjFHpwzGz7CEAoMBhau4JFKpLhcCgjTGVLedUSlx6Dv0RsrSOIKgtlFFceIeom5FKczMikm0piyQi5hMGtKNLpTfGtIIr1EqLkUCguoMYNu54Jus0EunWfSsZjl5kytIV6/C9MOljRmpJQ4rbUZuGMSuoA/sxl1GsRkmWA6I5AtBHuO6IeoisB47hGXRYrSiE4CIr5KQguI2C4iIflKCrwxg6lN03Fo97poa6+S0KpYIwMnCEHwKCozOl5APl+gVM7j+AIjK6QRRmDs8rNP79Fo1nBmEyKBiyhJZGJFXGdGoVBlNp0xMy2iBAxnTQrZHFUjRq3dJ3Bs8ok0RnaDTu+CpZUl3PEIazImk0syr0tUijoHzQmSIyHKKqJgYYgeUqATmVssba2jKg6e7zHqmIxsn7FzSKKQQ4gK4NoklCjdvWcsr+1geyajug1hFAmZcmWJS8tXaBzuMhh2sSMy+uIK6/EJH334KTeuXWE0mDBuN8HJMJFFVmJREuk80ViT+dik9fIAO+KynRdpdnoYhR7pVJ5CMkNCDrDbbdqNNikMUtkYgRwyDUcsr1SRxBltXyMIfEJvhj23EQOF7c1Vagfn6LqIJ0RoNcf/Xjd6M4OldIqoKOH0+4wuOiztZMgVc/jCnMHIwRcT+EJAWk/QNEOMpIdiJAhElZkvcdQZkK1mSKY04oZG3FCZmRJr6+tUF5KYAx/XcRAVCaWwzflJjZtLb/PJF49QrBGaIhKmshiiw2oxgWD7SMGEdMRlqqa48C7YXlhDffGCVHWdiZKkM3RZKWjc+/hHSJUECS1FzkgTejP0dpuo64An0h/NcR0bx5wTBnWy5SxeKBOKEvGIQ+DNqJsCjeYLLusScbfPUrFIPqZheC36UoxYPIsz9NDTWVKZNNO5S2jopI0kcV2g57gEUgjBnMP9x+QrWVYqy9x/0kLwRTL5LNnKEmbrkHarzeJKnoyuM7U9xO6Yx/3HbFy7TKqQxxMVJpZJKe5yPJ3itU9IJ8oYmSWS/y4cWbcciISUikWmPYeIEEHX4/RnEuOLCUuFEHvmMpckJrE47ZMLNq8t47ljSrk0QjzNVEww9RVikoQqQ6s3hIlHNKkRyk2yizqMA3yxRzjvI4QeycJlumd1BDFBu19DQEI2ktTnM5rDIV95NYNrdxn2LfwgIBYRiSfT5HIWfqgRuCFiGKWSKTMLu0xMgfrMRkFlFgExYZJEQtZDXj6vU0yp6BLYgc/FyKZeOyFmaZzWXxJIICsRCrEsUd2me95CU4vk1vJkFR1PStEc9FDNGabgoUQDxNDionfBxPLRXY+0miRjgBA6jAYtUnoC2zzFDuMMO2fEEjFSJQ3XkUnmcpy1jsgoNkZKJ15aIJjAIF5gNBygY4En4o6HoIWUZI+7/RxIPRLpBAkjwWQ6w4hnscYj4rmr+MEUazYjiMZJFlZw5kMmowdUi2mIxlFTBjMhQTWbQBWzmJ7LbG6jzULmQZz9vcfEKwVMG6LROIVKmrVL1+n86H0KqzdZiIpoQog9PqNQ8SnrW/zqyx+RKq8jxhS80Me3oRQ18NaqhJMQ2ekhBgJCqKFZTfK5LLKaoJgMKWUT/88A8v8LVtwZISF5I05OcxkObNqZHIGoEoY+k6nJeGzR7TicuR69wZio56BqKoVEjJg2QdJiSFKCUi5KNJgwsibs7h8iT3pEsyVSyhwxp2LNV9g92GVvMGCaNIgQQY2q+FKaVv8B2YUCubzBdOgSBi7ReMgwUBj6v35rXYyqpPU4juDjmF0m0wKVgkI5FmUeSzIeDohOWtizEGFmERUDFMlBlyNkkxnGU4uFRBJDDMhnI4SpKH1TYNJ2aXaHLC5XiEWmyKIIWhEvlEhFVZrDC2x7hNzv4zRHhNmAySQkXa3iTDyEaJRUQaEYiVNNx8lKcxbyCtGEhukoDPYOmToiEVkgXYiDEuKLPrlMhSC7xKo+4MVRB9WcksvFWczFGM87SMoAhCLTSYjl+qiqSD4b5SKiU6zcJqc3icoXmIJFNr3E/GIOQgRRVrDtCecDE6UUxchIWH6PMTFsV0AcDTDkHmf+jKXNywShy/OHXzJotDHFIScTi7iUJQhtGNUIuufM5RjCWoqjsxqKMkYwI4S+hyha2HKahNdn6o0JPAlJ1FAkCTkYUcilycbm9G0PKRBJ6Tp+KOPNXRLZCnPPZeCYWKrI0toSfvoSrU6Eo8NzpuGcdEHkysIi81mGlXQWyXfx5SjJcopZNIMcBHz68T1yYgRN14gEoCkCcS3FYHJGMlvBC9uI3gyVCJ15k0q5wHIqjR1xmZsh+WQav7zFUMhRzBVQCVEEh3hCxjZirG8s8ovPH7AUTyOKHvZsSFIz6A18AgFWN6v4/pDBRZOLJ8/RMlkm3SNKK2+wvLQAzhBz7LDsD8hmk5wfnDEdzZhH4kixAjEtzq2dbUQm7D15yaQ/ZbHsYkhTZCVCZesKs6f3sQY9oqrK8rXL+FaXselTWNkiHJuEgx7DQZPc7SVOJg6DXhNNT2JEo/hSFNv0kPUEznSGM51ghnOagxavX7lDv/8SN5LAnHUIzB4JQ8CyIiwsx2jtgWFIBGoUsa//e91o9wLWynHihoE5Nem1B8wDka5tocgysuwynZtEZiqt8yFzWSaWTjAPJSami5Quc9TqIE2HlEoylVIWVdS5OOnz6p2v0rYbZFSVqBohahgI2TInFzWSagAzk4gfEIRRZnMwpICR43DRsIlHTIyoRDVXZGiF3Fhc4Lh2zlxRGNoOw6FN9mqRv/3Xf0Zau82qKyALAhFZJKYbyJrBDB2z2UdwbTR8PDeCls0hSyKyLjPvdRm3xzTmWTrjLqvtLlpkRHVhjYhYoHfUo9sBNRMlkAJMx8Kyp4iyAFERTVdoTW06gwZCJCAVleieHiNXv4mmTonYfRR/jiYrdIYjTh58SFRLEkTi6KqEEviMR2MOO3X0S5sYySxWIGDPbDKaiz+OEEFEFWTSuRViyQTh4DlRKU5+aY3l5TITTWA4sZnYGo6k47tnhKM8tuMyi+sEepLpkwaanECMGBRSeeZKjO5UABl0VUWbDUlHJcKIg2s7THHx6y+R5uD2u4TzEZKqIysJkvlLnOw16I2G5DNxIrEovcEArbRMbkFh0B8TDAeYloejxchkMyTUEd2JQHMMsieTkDXUwirzw5ec90LCSIiMS1T3yKLghh36nQiJf3cpYU1nKEaKWv2c1exVrFiAGXooUYN8usL56T6jSZtSZYUrl8qkohGePz3lZdtEvThknjQQQolZ3+ZFt4FHle0k9MYBsiygRGHmWGgRl4vGkKmaQXTiKKGMGcw4PbdYVUb0W00E3UXTdZJpg4Dmr09U688oZg2iUZ/ZfEIkkaVRO2Ewy6Kq5xSNHLqapHP8iL7jIrXOSarLGDpE1ShhUkPQDUbiEAObVCpDGE0x92fMzDZfvbZEbZYAsY3nOlhTF88LODpvERn28Wce6WSKdL6AnEyRiWeJL1cRhh0mgwY+Y9YrScyBjj8PKS1kEaUI5nAK6MwGHiuXt3jw5XNkQULXNSzPZ9YfUF5apzE2yRoq2bj8/8kh/0E20MqtmyxdXqVS0Eln1riSW6DlCqjzGZLrMLLmdCwf359x4/YlLm1uMQ809s/quKP7FIoLSFqezonH5OIUc3BOp+vxne98hZrpo1zcxRudIWkyS5uraE6HJ2c6nmCBPyeqaMRSCabjc2KlqyQNFSl0kBURNZ1BK+q8fFhjo1TFs6aMrDHdicmjwzqem+G1rRyL5QzFhIQeTDg53aeUXUDzTSbTCStLaa5sL9KbigymHpNOnTDwiKkKaUNC1yNMHYPSSoreSAJ/hD0fUhvZrK5XODmosVVQiUxbWKMpPr8OSzX9Lfz6M8zmBWZg4cQjSGLAzUWbiClQupTCyCeZjGd8+dmnWOVXmFzU0FIismHgh2nG0zSj0X12NjZIrVxHk5I4UzCNAp4UYevOt9CFAC1TJJpMY9stDjttnIFEKaNTPzil3Q1IL1zjdlamuf8ZR8cTtLBHDBt/Cs/2H1Px+jw+cbBmLpVyjOVFlcOnP0EMUlzaWiIuyeRiKTRV5fPdT/F8lVg+RujpTM0ZduCjFXJkFBdJFlAUUFwPQ5MobpcYDBVupALMuY2YlFHTCpoUkotYiKk0UkbhuNbDtiFfKZPMiny52ySdlEgtbiAoCnpg8a1332XqqLw8POagdsJ4MiYqa1S3ttEMkbPTGsPRmHTaYHutyrW1VV5bL3PUt7i8vk0YCRlNhkTmLqOZj+tZjMkS06OoWAx6dZJaCb2cIparkisVyGUMlIiLGtMoX/09zNYpt25ssHO1SiYtosfjCPE47YcPMYoJJp5Dvd7FdgQuBidsXLqBMxugRV0SCZ3uyEOUfHK6hu5qzC2TIPDJJHJIRoLnjw+QsMnkRaJJjcZY4PHdLxm1XyBGc6Szi+TTOoJ5wqMvHvHdP/hnONki+F085oTxNN9+703qd494NpG4eWOL6zc3qF5epLq2iBBRyeeT9AYBRw2TZ6cNXtZecmP7Ghuv3OG8+ZJuvYbZnyHHcpRyZe49OWVJL9FqX2D6FjevXyeT2aZhfkZeyICSQIwliaeS/OyjLwHYWlxnfaWCkU7Rt10OHnxBtrLBTz58n8Onz+hdXGBNLWbTKBeDOoWYR3Ps0W9cYPeamOkSMXFOrVXDF3yGAxdsbqYqAAAgAElEQVTXhisbOWpjnbt3PyCqa8TEkLTokNM9YkvvII2O0DIpChubZFdWKRQzXF4s8af/+kNWN3boDT0s26ZS0di68w2iusagH3K2/ynDaQs1U8Tt2phWwJuv3ubx47vs7b/Ans5IZ/MctU0yyzvIsk21qFAuF5lR5vyLT1gpCTiuT705ptWfISsqQn6JOzdKTF0YBgKjmcVg0OXe5+csV1XUQKXXadNuDQn8OCvLBQp6lD//yx/x7MUB7twhn4yyoE346HGbkj3BNwc4kxHdxjn1k13aHZe337rBqNumfjGm3bFxR02ufOUOYrpC/2AfVZIQZIPD4zFydom45LJQibNZXcAdDPnpj39M9fpXyJQ2mXshlhdihgkmfoJS0KK8OWfgKBx1m5j2gJwa4fLqEq4b0BJTTHsXPLv3hNNnx7x1ZwvTNWmdtLj22iZqWmCCS3X7DT784G+IZ2WGqSRePE9E0LAHDVY2l/jks48plwvEkilCH0TTobRzg3GnQTFbRQxzjN2Qs9k580lIvrTKvQePOa+16dSbWO0uG8vXCPp7HLemWLMuo3aN9tE51mxKr9Pnjd/6KvXDZ7zcPWIyCbnz6jWSeQVhqcxyaZWV4hKlXAI17tA8a1ItK4RzCUHXsadTOvfvIW5UqO09ZjCa4Qtp8KLQ67GUEej2HZ7XzmnVjkmrKle3t+lMnjLa92nKMQrJFEtZnahg8uH9IwanB6xJFmYii5xKoeLx/GAXTXDpziAj5xHUKGFKR8tv8uzFPpmwTxD4uFEdc2YyPXrM2cBiaSXGo706pVKRWNrgyfEuhajGJ8+fkQhtjlpT9s+aDNt1InaDbM5gNAuYmufIuCRUA8HrgHoJZdRDdG1UTSciG5w1T4jrGeJSnYcvn9Jqd0jJUa4sL/HopElUT3Fj5yb2zGBkCiwuJ+geDKhWlnj25RcUkwbZhMHe0T4Xpko5p3H3lx/g2R7t9pDHT3eB/8jMyvJCElU3MMUMl64v8flRG68xZHRxihLxKcYTzEcD/tEffY+fPahj9o/wNAGxuIAWUbBHx1SKAuaoyZO957THA7757jbDySI7N+9gpbNkll7DiJU4O3vAlcyU1779XzENfB49ecj+4XPkqMgr175B/fgeTI9R9STpbB4jGnLy8oj1zSuc1+7Ssh0mVoT5yEeMR/kv/8l3eNw4BjHAM2N06zovj1u8snydIJzwcKzy5ZHNo2c9hnOJyzvruMqQSXvIeBhn3EjhHkm88tUysq2Qmp8xbOxhjsdkcynOuvvkkyWU6YSYoJHMrhAtbjGfJlgU96gPRjiagjkP8SYRbt9+HcHxaVc2yIkzzIsBJ2dDHG/O/d17vPPODhlRIKnGiGo6zcmASXOKJ9ymLPQopFW0RIG5pbBdytKexxG0ItN5n0CcUKqukBMMbl7d5k//xQ8wNBElrvDx7gsevNhjJV4guLRBbD2NWsmQWVjgm9eu8fmLc6qlAuW0TWB2GXU9Nq69i+A5fPmDDxETRUTVIRJpks7k0NUM9aMJ9uScYe8Qz7ZYyqxxdSeF5np4sSUy1W2iep5WbcTVG1+n5u1jJKokxCryXCMS+ty4+TVqQodWp0luuUJuZxM7laH+uINlN/j+d/9H1orLRCM6/YHPT374AbqxRSJr8t433ub6228ip5M8/OTv+NXdL1hOFpknqjx/3uL+r15iBxpCTCVXKdB+ec7Z3gG+O2R9S6NvTrh24yvgq6j5FFouhYFApPGS3Pomgjwjio6iLUN+BSE4pjWy+c7Xq1SyE5JxBVUt8eizR/ztv/oz9IxBs9tGRiebqPDo+VOqMRVFCdC0PF53inPeJ6WV6bqniPKMmq/Qb41pHBzz2e5dWidt5uKE9c03WNp4jXgyQ1Qc8if//f/AX/38bynGNERBJlAThLkqJEv0vQr9uz8lHy+wur5FdSGFNZ3TmTv84R/+Bj//8OfcfbLH0Aw4uv8CzxRxp8eU0zZXNxd57foNLi/m+Mn7XyCEZ2SXL0OyghdPkF7MMOo1OH86pu+a5C6X2Hl9h4Vcgecf/RxDCxkqIblclVhEpXG4x0ePfp3q/6//+T/HbnZ4fv8uJ506YeEVMlsGJ8c1xsMh6USC9YUS3rBOemWBfqdFxJljpFOoqRiz86d8//u/x/P7z+k3J+h+QGRu8/GDlzz55Iek8mvkqzEs36AxSFBrSzSe/wjHusKjsxrtThuCCXrC4Vf3P2Jupzl5epe1jQ3Wb1zDlWWefPAZH378txyOdCqLZVwtzrNah/nJId/47d9FDDxiwpBEfpFY9Qqryy7L65c5vvs+WrbCxHJpHO0TGZ3x2mu3SK++wYvGEZl8mfLCIs3OOfnlt4h6R3zx+C7FhRRrpSpyT6OcjLH51beIT/uklq/ScTU++OCHPP7F33F6POfd915HWb+JmMsihiNax2M6seuopSyPLvp0x2OEwKNHlK3VJF5kge5gjDuzKeQzvPl73+WHv/gZRvs+5c1LbK6sovpzHu3d560licKN73F2eo9nj+/S7Q0oLG7zF//mf2XnldskggNaR3tEEXjt1Rt0HZ3zeh01v0ztsMngpIEz7nMRcWk8aHDr1a9jtpr0By1sb0z35IjKcpHW3EMKQ1aSi2xmVznZe4YkOsQiKpmVFcaqygSBjWQcpDOkWAKz/oLFnIihBHzyyX0+v/+AqH6Vex/9Cssf4OPiNj3e2yoxiK5w6co20sFD1PY+miHz85dnBIaBK4msbO2wfeUqmWKa9x9+SYY0B2eHJBNFKsvLpBYLWGqc1m6TB8/PCQc9ji8sPn7Z58OPd5kc72EoMQI9YKSlOOk5HD14xI3rr9JOGtxayDA936dfPyFbWeTG73yT2aRFaNbIuiExxWAkKTT6kH29TO/eR1QuX0VI5ui1JlSTr3DlW6/x6emUTKFAUu4wm7xgFJbYyVziyeGXhFEPNZkn6kpMP/0rVjc2EBYy6Pko0mRKem5z+9Yqi9tXkY0Cl197l97JU9p7D9lYXkXSPK5svU7NcYl4ARklTi5WRLKbmNISH/74p8TLBcaWxaNffcG15R3ee3eFrrHM+XGbenfGKBQoJQd0x3NePBzQ6U+ZzeZM+n0az1/wh//0v2A1mcaeDEkndCpJnfbjR/zg4x9Tqa7zynaZqCpheSHJXAFbm/FycEbfSoOv0W42OTj6T9AGWq9uU0ok8cw2Hzzs4HXHXL61hTMfoCYjpJfTDFyff/kXn1ItGpyPJtSPzxns79Fr9wi7IlsbJV595ze59bV32bnzBsnMOjXznPGTP2PuxugMAuqNLpOLHkcnEU52v2A551LOlNhe32Z7rczHHz+klBFx5E1mlkYkCInFFVQtSyIaYaW0jChIeIHE1A1onDyk82LO1976HRwpSyQaQYyO2Ds75Wp2ny9PaqiRgPGwT709IHAVgtYeV4IOye1bCJEEgRhFvL7Oo7/6AfrpPmpK5cqNbdYvbeOIMdKZBZxIFtOzGUc8xj7Ycxl1tYzjjSnkF3B8BRWRkujROnnED74M2I43GbS7OKGEoknsHb3g6+98l7zWxsilGU8tJoMeW1cXufbGZT77yb9lOB4wHNlIUZkbb60QBg3UQKHpqtjmjIgt4s2zTCM6Tthh9coyUlplIgckigbfXsnxxfERWwtDEk6JpCOi+Rd83s1wszJHTmeR9Syp0gLpfIbe3imr6ytMBY8eTTzbJCfnWbu8zf2nT7mSczibQDK7RnVpnakypliI4y5mcJnh00YzAlYWLlMbH7NdrBDNriEqY6JGQDK7ScQesxYJ0Usiuwc9Tk6HxHWdr9y5xcv9GUXnDDEy4ujkJV98fpfpTMZIy7SOGkwbM2b1Q8TpEdmFZb7zu9+gZaXQYjHyK3lyG2VmPhzu1+mem2h6j1g8JBVLostZPDVKfDKm8ewJsj9m0u/y7OUJt++8wr3TkGKhSikuIwsjLH/CypXf4nJ5kVgxTam6iKbqNM6bvP+zA4qVOavZDIenY/ZPz2l2TolHVSqqQyIbIxoxaTabvKi36YkzfvsffJ9KoYAx19DlEYm0Sym/zDzw+P1vfosf/vJ9vnjylGfPTjl/cU4wHfG9/+wPePj4gFwmx9LKFWLxRdadL0kslNg7bBKoDiNzxMGLFl8+PsOdmnQaB2h2SEZQiDIjmgpono959OQuYzuCZY7xZhckUzJXXr3GIJxTSaXIFUtoaoTRo1/w2YMJ1967wvrqBmlpjjTuMh9N6ARjblS30bKrmI7HaGYxIeSTzx4CYCx/lUpGxA+7nLTOeK26RHFq0jcTvH3nDRaLeRr9CbuRLHuf/4DrO29hKBF8P0pvqLJX63O5EOFHP3yJHtOJposkS8vcvLlNoapBJEk1XSIZDJiPGpycz4i292GusZweEtNV5qbL4OiUyEQitrBIdHhOIakyHQ55/myPfDVJTza4vlKhEs+iGjly5WV+++bXOAoi/M0H/wfXX3uLW7fepJwr0B8pYLkkF5eJxRTUeYtSTOD2O9+h3xuxVogxrJlkk0tsX36NV2+9wQ9/8K8wh6dsr9/gYq/N0W4NPVulbsR5Z0PHKKzRP7zPuH4fNS2gSyl2rpXonbbJpnoI2NTrEBNm3FnOUbvoIzt95IiNlojx9utvUdbLvP/5jxkHSRa3tjCSCv/n//7n/OM//hM++/knPN39jLZpYwpZQj/DvFNDmk4w4kXGZkAqnuIbb93hk717vPP6Kzx4eMbKxjqXr9/ECxL09p/x9p3fZXz8GY93d4mV1viNb/990qaNli3w2S9+iutPKSxUyRaW2G2cIbpVstkx+8cmBw2LrjlFEafUT/aIvvZt9j/bRWmOKIlRJoGATYrl5BXmco5EpkgylaC8kOH3X32Pq0sa66sbqLZJPAyorm7x/mMXdfIR7eN9YokEEdWgO7XZ+u33ePyrv2Sz8hqaaGLNXRy5xI2r28wiMd56c5N0KU+v06V9eExVVwjtZ1QKeYRKkmwxxnYlwfZqjhNnyJWFVyhdW2feaRHWGly5dJk3vrLN7vkEVQi5ubXClevXsZILTHcvaNX20P5v1t7zWbLDPtN7Tk6du2+H231zmLkTMANgMAOAAAiS4JIrUZR2vVJJcpXL3q/+6P/FZbvssr216/LuWkXJ3CUtkQQpRsTB5Llzc+i+nXOf2H3O8Qe6yt/WqpL/i+f3/t5QXcXPp+kj0e7YBIHHWqaEUd3BH3fpHT+le/SE1vOfokYd7peXGJkql06aRjNP8+SK0qbE7moFc6ESxzJqocj197/Lmze3ePzo74hchbQiISoSh7bJndfv8n/99u+Q3CvWNjZJpnM8+fwndEKfjdfuMD9o0/eWUFJFVgoRTxtXpFeKfPeddQYXVxSTFf7L/+q/5v5HH9IOFE5PuhRSEts3apTXqzQuPG4uz3nSiyltVlnbqFEsrxClt3h21sbrPCX2Apz5FF9dkFtb5+HnVxQLYKbSDPQSV75A9+qIpdo6z3/wQ1a2b1IqrzCdzHjx4tE/Hlbe+c5fcvvD77F84wZ76zWCl0+wwzz1epvTswuuGh02Vq6RTWl894Pb1A8viCdjqgWN6nqeStqjG8wZ9Gwa+49oHnzGqH9J/7hBtrjF2mqWlOqRSUZUdoqEiwlklhkPO8wln0Cc0e3VUUSF01aHlJlmYg+5Gk64GCyYTmZ4vsLJsEcu9fsBNxSVkzYs+i+58/7XUece82kbZ3CG2T+guPUtJnHMQXPGUnmFd9+6x1q5jKRc4ShVQlejUK5hFVLUz17x+toyyYJJ+/Qho/4xvUmPgR+RLSTJMSQxvmDe6sLERgvnHLxskvIvOGp2yCQiMpaGFyu0gxFGtkZQv6C6s810anPx8glfu10gVFeJogk/+6LJySjBTMxy8vIrdL3IH33/+5R39zCXNggElYuzfY4PJuzu7JExVCxVxrRMDMuk0W3S8qfsZtIEvsHUNgimChdnNq6YxrJb1FuXnI+ndMggqSlyyQEZq48TaHSHc3rdPuLcpVv3qb53g0FjSsrKoKeT/Phvf8a7OyJJfYnl3deJRZHxsI2hLJjnDUR7Qs7KEiWWcESDaDalmFSYWiVMJYmsmKSVZarhCk7viu33vsXw8gwl8pEzIq4Vk2iJiF6S6v098kmBi9MTzps9/uW//Au++rsfsvLetzi7bNNoNvDRSK68x/GXX5FNu8iix0ZtmTs3brBSK5IxU4xjh6w/A8HEjS2CkUuhWOPl+IRI0pnMNSa+iKIrYC9wnQ7LqzVG3hw3kshlCljzCcMgopZLoGkxQyfgrD6m/fwpa8sDVkqbDOYOyaJFubxE59LlwRsZ1KyGKyUxUiXWd/fYeXCfbveE3/xyQjx0kCIf09IpVsoEbpfu/uekcmtUckVqxSzLqyXqQ5/xWCIl29hCmoEjMOnV+eWXP+Xte7fZufsu/fEIU9e5/9ab5EsZRFPAm8H9d97k1t1dCpUcVj5LOR+yXrnF7TfewJ+L7D+/oH3eRstlWFErzCOPcNYjdMaMhQSdehczrZAVAqadBnPPZWVtjVS+wvHTT6k7GvHggnHjjMcv2xyenwPw7r09hEREnJDIpXWC1hW6tcKtvSqH55e0xxPShQQFbcLe6gfY9gyEJvNwynQyYnB1QcZN8rX3b3EVGozabRSnw+rmMqWVPdJBg+Nml1wuSza7xFlnglVKUbtWRK1UyacKJBWNse3yfP8RN9eWya1uEZkJ3NmAVDTj2//8TxlOFBhdYIkdfHuKPYSNosXL/f9I5zBEXfTRRBGNNPPzDrKV5+aewbQ3RPFDEnKSmWsSVreYRzIHF/s0pwGnvQnHjQP++R98nWghMJw0GI2GLEKRSBTpnD7kyeNnFK9dZxyoCJFMKZmim3xAYnpFWM4waPeYdnwUKY2VSvKiF/BHX3+LdEYjW8pQqVVI6yoNfwFzldLyOqNOi9MXz8lmqzy4t8P1a7u4noOVzCApMt3OGUvaGMXSqKybVHSNFCp910GJBfK1Kt40oD2c0eg0GfVOaB88oqUKtA4/Z7YQkBN5RM1CyJhk6fKrJydM7TmimsBKZEgFHvlygvS1u3QGHoNBF3vSR5Y1Ctkc62sbpIMLNKHLYFhn/9lL9KSGkdZQFY1hp8vp0QFnjVM+fRXTd15yflFnnjTQdBlz0GHzzR2KyRFi4g7BeIApx6xubuP5I8ywymSxIDEfw2RIGATceettNiop1mSD48MWqmqxt7VMan6Cp2/gR5CWRZbLNVKFdfp9mdW0T3ck4gd9vEEPXdMoXd/m7ORXnJ3bjBoNriYeR/0JjXaTneoSl/UGH775gGFvQSyYXLu+zbjboyMlab58zObKDdK5ArNghmWssrx+j6WlLMcHdZgFbFfLbN3c4uMf/WsEfQNZUhjMbC6bbcbdHlZmi68+/Xs0IaR+2WQ4cbl9a5uXn72g1Yz5+p3XKaVzCIKBbK6ynFrG1FLY3SYaPilhiCUOWL97E+/ghN3NNRR9CV9JcDno8/Lzp/Q5Jr6aYnlj5o7PyJmjWZCt3CWhedy5fpPlcgZFdwjDDr3GGZniLao1EXfU5PLpC5rPn1LcSCKnKlz1x4S9C7TxJSxsMqkq65nbtFtH6IbLxG7z/NmrfzysXNt8jfWd62RXl+m2uuSTJunVZZxOF0NTWKqWCQdjxrMuZiLFYNDGtAwSiRSj5hFra0WK1Q3CWY+FO0ORLbKFFXKrmyAsaLeviPyAhK5jWklUvcryagXbdbk4qWMPHcrFFfqjGbbnUshZLEQP350Rjm3yBRNBkZmMZwhBiKZJJFO/v6qenZ3yxtv3Yb4gCjwCx2FYH5Hae5/Ds0tQKhTNLFkhJlzYqIllriIZMVjg+lOC2KNYLJBIy/j2GZGiMo9c5qKEkt8hQYbpwUOsxYR57BEEIf44ZDrpoIYhRAGyooCksBAEZgvQrCpblQKeM8LuXqJEHtb6Ju1QQwkDmrZGvlxmd7NIISnRa49RzASmaKMLDrroY2oSlZU9OhO46u4zHvWYjh3GwymmqlIu5Yn8Of3ZHHshoJsmW2vLJJcK5A0FNZVkjoI7iakkssz9OdNek97VCCmWyGbTzBngBiGe2yRfyDMXDDqDgEIyhSnEqKaAltWxnZBh38eZjUioQzQ9jeSNYRGjSgaWYaJNZshyjshzkSMD2VdhPCNraPjLac56YzpdGzDIWAUunp2QLm5QrGmoKQkXHUErUllfZxGMWd5ex8okSGcNNE2hPw6Z2ScMWg3mUYZgnmQ6i/E8m1vVEv1Jn3nvAtHMIhkWdveYoHeGWKmSVzPE8wBCF12KOb885ta1NUJdQdGTGEYaTVERVZl8JkU+m2DievQGU8bDCc5gQKzaoAqMhnN8HyJBwNIMWATMBAPPjRFFhdzSElub1+i2LnEmCZBCRtMm/d457qjJ3LERtAJzyUBTQ3JplWKlRBjOOTk+JZlLkkrpJHURQ9epbF5D0SrImowW+SR0E1FL40kqm0up36dAVIOrXofj0yMujvsUrZBipsQgmCKaFplcgVnviLEdICFyfvCY9uUFUSizvLlH88UR+fUVlspJZp6PpBhsb65w0jjm4sUBpNZQ44jFIqTnhewf/T66/OGbD8jn0hgSKIHP1JMQixvkMwa9mUemWGBrrUj/7DETsnRmApP2Ef5wgqGYrN1ZIW1msKUAWdFQogAp8lF0gZnrYuh5vvzqjP7EwQsFREFHzElsLW/Rnw4Z2S69QY92/YiRa7NbTjPTZSazgNBeoEXQHtVZXyrjzXqEkszEFei0hrza/xLDkFhZeY2VlSqqoWJ7I4JJn9BSadePmHTbKJqIi8Anj16xEAOcaRd3PCJYhAQLByGaUqtuEg9sZvOAeQzZhMluKY+R0/EHHbKpPK4boVsWlUoWb9Rh0H2BWSighyGGYpAuFNm7sYUcDGnV27j4EPnocUSltsnZ1THdqwn+PETUInLFBNvVCsV0hkG/x6DtspAyxKqBLrggJhDDKZpk4C90fMVCSBks9CSGIiJMbURRx8xkyVXzKHqGQPTJpsvkTJl8Jkcqv0YxDQuzQK99jh+CqOokMxbFWoXuZZ1kbR3fmyEEAXIIurRgEcBSycDzfcIgJp6LKGaGa7du4jgxgj9DCGLiUCKIIha06DQnZCqbqIk0kqAgiyqxFHNwNefmtQ2cmYcXSMiqxVV3gqZqzOw2rufgOQsCV2AYGMiyy+XlATN7QDahkUpYnPdtupMJemmDhKLhChLDWEY3MuQyBhNiZt06ras2kaCwtb3D41fnmIJAubZOdXODbDaJErikFYUgdKjVduh7HoapsL2cJ/JdMoUKw6lNTpKQFI0gUQRBxchFyFKS6cwmpckU82mShQKiO6C6usTpWYvRbEY6a7GztsKo3WUU2VSWVMyMhZkrYmoFokkLCuuUVJuT0xM6U5uVzW1GnQ6yqHDVaRL6YwwlQreSOM6CtCiCuc5Fd4HjBOhEON4EwYiRgwSyEBKrEBsKViqPoZgk8tDv+EjuFCua0WlOWV3folM/J2VEyJKKoVosWRbla1VCI4EjJojCKYRjdNXi+u4NOvMRHbfNcq1K4C748sv/tLLyDxsy9B1i10HwQ0aTKav5AomKQWkpSTBPkCgU8JptnKnLo4f7iOIEzcxie9A7OWW+u8VqIo0y7bCwChiZNTLFLcKMTjy6YOa4BILJzFOx7SFadhNlMSWbLSLMTwi9AEvLE8ctChmJTFLEDRa//ydrGktLOY5Oj0mqBZwgwnUdEgkRLSHiijmGFxeUltcIkXC8BY6UZb87Zjz2MRNFJr0Jw/ElnuhTXb9PQhmhuxNcJyDSQmqJHZqugx7NSRbT+J7EQk2gqCruVYDbnWEaEyRLR9I1vLlGqVLAD5LkZZeJEzAeeXiBz0JMkhZV0qUkh8/OiL052dwSp0MYhCFTJyBhSlTSEWuZGCVV4cvZOReNS2ypj6lKJDIFqrVtcss7PDro4Dgh4WKOGIkoQkw1m6VkJjgdXSEoKtmcjqjIbJbzGDMPqV0jGmWYOD38eETGSnDRdcnKayzcJqY4wcir2KZNydSxB01SpSyndkCjP+XtWp52O8QSmwj+AHkBeigynIFYbyJnS0T2FXoMimJBHCCEAYLvYooy86lPOF0QSzHG0gqHgyF+skKU8DACj5wr01JDxHRI2tIIDBOjZFH1hpwcHaDlczAeoEmQzFsI/pz9yzqZpQyLiYZkpBjMfPp2A82S2MromIsZi7RKpCtIogIlk7NHL7h2/+u4Z20ShoAkCjhOhBd5aFqWwWxGIVnFtLLE898rLGupBJ4/pTcNsCc+0dQlDH2cuUR/PMCeyIzdBYrpUEtnOKyPKQoioqgwn4tEV0PmwiucyZxc0icUF8wR8UOYOiP0yERYyuN7EfFixtQP8GZpSsUirVaddHWVjCEiiwpYZYq1LZ48eoY4HVFJmISixtXIJhZiIs0jmytwWG8zHHaY2x7OzGPWXzBTLuk7HWpbt9lYu4E6v6RnR5xcHuAOmuiaiZmL0TQRZ2oTSxJYKrFm4Ew8rjo9WoMJi8gkKXqIsoZoZTDS/++QYUpSyUkSXhSxEETWttdQKst49oRMziKdVBAXPt0BuNolXriKvkiQ0KC4VGD19Rt4HY9HT39LPr9ONmsS2hHDfp9o1GNe2GOxUDm6aNEZD7m+to2RLjDrDWm3GtiySeDO8L0x1XyR7nCKpFlYoo5mWUSezNPHX5F+y4BwQccJGcwWjGYDjp8/4aOPvsnemzuYskSvf0yrdUQ4EZlOhziTCTureSJBoDMbYi96MJKYiSKqbqFKBlG0QFjMGU8cpCAmDNNIlkQmrVMtJhn0XTbXKkS2R+DFYGk4ks6qOeZLDQZXV5STGTTLINJisvkMir/CX/3Nz7FyKpWMTKKQYR4rTKc2ZmYJTQrQUwr5fJaVhMmTr54wcCcIoYQXLIgEl1wqiVe1iuYAACAASURBVOuYDC+/ZKkgMnEjRoGNIUWk82US+hyrUmA8FRBNk2zGIo4SLJovKVVfQ8pmkVQdNZ9CFQaMY4ON1TzdmYCsJFFUCSNt4ChZ5osIQwwwixniUKR+8pTayg7hpMk8NhCULIamMJdE8pkcnuPgTvqEQYgoqRRyy5jKGe19HT2ZI6mChoivmgQLOOoEfFMPkFJJZjOfaDwmXljY4RVpTaTRmyIvJLKmwfn5CYOuzSK2ycgSohjgLDx6chI36JFXRSQhZtBvMu03WaluoSQKqMMR7dGMWNQwkjmiBdiOSEoJSKUzJKwkqhAx11RiWUKQ54wcn0zGQhLn+LMx8twnq4icyEkmswk6EaGeBBncRZ/GUCa/lGHhOvR7bXKGRqWygcwMfzZGkXXK2TRry2kePz1Dz6TQ0xJpVWHma5x3xmxYKi1nymWzz3Bio6UKKFJIGIHrOchmBkHREAwJV9G5OGpwfW2J4WjG1XCIGgdUExaZ1SqnF0fM7Tmlgk4Y+8ymY2w0MtIA23Hot22sjETakvDGKqlrBa6cFzizNIKqoqWTrGzmiXMSQT8AycAXXEJxAZJMLEbYypgwZSIYSURZ///kkH+QsnLvoz9kZes64WyCptk0Xr5CNHXmEfQHHoNuwJ2vPcCNBXr7J8TuDNf2mQ7HSNMuUrZG0GtgGQbpShmrvEysZjk/OWR39zo7O3sstBLNoUOv8Yx5POTkq+dkUgVSSQ3DUnD9AEOYU8wHLCVKXJz+PktfWN0mV1zilz/9Mdd27iInkhjSAiGY8YWrk/ZUcvaY9dduMfXGnLx6jJFS+e1Rg4rkMmh3OLs64bR7QXc4xgxn3EpPyfojsstZ9FyR7uWCul0mX0wjuwfIRgHZLBC6LUYNn8p6EbtzhihqSNky4somueXbBHmRWEtgTzyal00uLlpIVpm1TIH21SNGvkSUrBAaOUbdDtNJmaOrE1JRB33u4I9tnH6T4vY6peUyB8fH9CYLUPIkslXm85hr1yoUl/eQ00to2Szl5QquFDH3Zgy9gEqpQiGdwHeH9Np9puGMRa/J+bHNeCKSKRQob65waXvcfvP3ZlN/2MQd7yMWNV4rlVgqFTg/OuFq0sGXpviHTxGTNezxkMXCJJzZCO4MOdLQ7CGJXIwpuJjZIiHQP3/K8nqFqzjkZvk6s7NLFqMx1Y09zpJZzjoj8hmLXCGFFtn47VOqr+3h+lPeeON9hkGCYX2Ad/Sc3ukvObtswSjks99+gjscUcxmUVMaq+U7fO3DeyQrGawUaIaAL1lcXD1Dc0fcePMmbgiu77K5XeNiKrCz+wYvn3yJZICaTuD4MdlEinbXJIx99FQR1cgghjLR2MbIJhl3jrB9mdiVCNtjzl99QaWkIM8MLoYRfuxhSQ7CsMdVPOJ6IcbVLNzAoN4Y8eNPf0rGyEFUp5wNqa2WWd7cJV1chVnIILhAzm4ShR71Rpev9mesbt9go6KyfusBcwwcFLASTKY24+4XzByVhWjhKjqBEpPxJ3z2xWfgyERhh41qkXuv32dlJ4vdaPDx05eUJI+8mUHRl8gXq6xsVznbPyS7vM7azib5copmv8Evf/EYLSeR1EQmVwMaJw2OLi5IlW8iuSFJrYcix3hhRLs/4MX/00T5h99+n2RygYNLmDL49oPrVIqbdM5bSNIAf3xO/fCCy2CbijxGE1KsX9tm/fo6S5U88TyL48Ow/jv6kYE0j0kKC0RVJJ00aJ0/J1eq4PoTPHdAuZCkVrjGV7/6P2iMA+R0gWQmRVIX2LZKPOm57C1vsl3KkMtqhJpMYGT44uHvWNhzGt1LJt4MSdUQPZF0ocbqRpZJr07j6CnNk2OGI4lPv3hMbX2P++9+jWF/RPPilPffv8VqpoznQZDIYCVKmOjMBx12X7vJqN1l/2pKZClkljKossLP/+7nbO/tYhZX6Y8nXLS61Icem6srOEqeo88eI6hpFpLEzO4SRTIkbjCadRjVeySIqZQzDFyJw9aCdz/8A66vyswnfSbNIcspg//h3/57kqUaxZqKtxgxnfTRJZmylebl01e89s4NnP6Ag+f7vLo45+31bcqrWazyMt32gGHjknDSZjod0au3yVgZ9HwNM5dDV3z6bszk/CmKKlHb3KKYL6N4IYvGCdHND0mkDfyLE8qlLMlyjp98/Cv+6E//mPnVCzxbRjFkgnDKwZOXrKxUUVSDQdfmvHvJNBhSWSoxS61yo5yh3W9SSUdkEyKTOYire/izR1S0JE3fZ+oP0YIRxeVNGufPub5ym+7VOcJiRrWWJlsWOHx2ysb1+wihQSjKREaManmkhBShe0nCiGF0ybz1Cmc+wlLSTC8vaA5m3L7zOrdeu0NrPGbSfE5rPGF81eRg/4zTozqB65DbWOfg5UOWMsssp0ykaM7xZYPO6SWLpEX7sImZyxFEU8aXT1EXIpKscN7vsF7JM+iPefTqhHRW5dmzQ64aHZZTCUr5MoZqInotxskKk/4ZQajhDx0GnR5H4ykrWo4v/u6HLFJV9m7fYrNWYnjVJ2Et08WhWtogsbTOQjcYOD1sV8d3A/LyGa4+R1J9smrA+vZ9fvxXP6Q7uKC6sYw9dXj6+CUNZ8BGWufJx09ZXy9Q26oQ6xat+pjeuE2psIVRqFG/6tHq9ihubZMwFDoDkeRshh5JCLKOowS0ehMSsk53EsF8QfPigpcv/tOlcP8gWCnt3UIuJPHCKblozsPTJvlcidZ5j6uejR0uMMYvieZdsuGUILRILsls3NDZvvk66VCmefQZaiZDf67QHtro3oCSpfCzn/6CFy++QhY6bG2muHb3TULPI5fN8+L4HCmlkKjmCU2TpYxKbesjDlrnoKgkNRGcJrI4YO/djzj51a+ZeCGxLpMuJHlw91t88eN/xUDeoHZtiU63w8HzS3K6TOnaJu3jCxL6gHtvb/H9P/mn/MEH7/FisM9nBzY33txBFSPm/T5ZVUJbXyHheTx5dkjg+EjTGX5rzNLtN3A2NzBWbjAVY4KFjiJs89TWuLYk8PMf/BX65SnVbJra3TdJlZcpLCk8//UXtO0ZY8/G0DS+/0+/zxedV9TSZd555z6FjW0uHYG/+eUr/NGcf/YH77G9s8qDr3+XlY3b7D/6irrh8PKTXxIYeSJxgWmpVFY2qBUs9FQBR0zxyctjfvvFl9SPTzkny+zghJmao1Be4d6tFT54rUBy4bC+VuO//de/pjMYUFzNcev1bXYzBv/jpz3++t/9iONWByWts1opUpYSyEoDc57DG/QRMytQXqU7fYGajmmNk5hyDrndQl9MKL/+Bpm+SFpIYooSkWwwN0t0pBwvZY2zQRt9cUk0HILt4Dk+P//dJUa8Sac/5vTpS3r7z7Drx9jTCWa5RNrQCcKIq4nHfmPEbCpiGjn+t//1v2ejuEpaUCnpKt/74BbxpMnFUZ+l0g4LUydYjFG6l7z/te9weOYh9n6BqAmklndY37lH/bjBxvUVeicvyBYqJBIWOD2WdYPEssuiM0EQc3SGY05b++xsZZhMq3z56DmmnCaZNplLYwbNZyzf/IBb73yHxsUFK+vLfOM773D/Zo2Vra8xm0jIepHm6ZDGYY9IyPJ00mdT02EypphaIWfmiIf7pNIBJ6d1fvGLj8kbFknf5uKTnyCHKm9/64+5/sY2nc4IbWHz5nYWY6WKYm4yMiXubmyiqTrHvS6L2OLBu+9jJdZxh21mToexN+JqLFIQElx7fZ0X+0N8zyFXMKltbJNUfQZP5zy4v8FFr8PQnvPea2+RTQ343WefsHltFz2RgDjEn9l88ez3rv4H3/qIre0NVsprLKU3Ecwtjn79Mx4//JSFrrG+9Rb3H3yHzTdz9DpdKtVNMqWY6dWE+rMeQ6XO5auvEJduYIUZpv0j+qMnWOac4uZrLJoDwmnE5sYub925xXJywY+/eoI/S9CY9siFDmnJY6TE/PZwzvp6Gllo8vmj53TtiNq1PZ4cvuJ0/5BjZ8pra9f46ME3ubF3l08+/zX3//P/jGhyxsn+JY2rKaKW5/7b32LiOmRFiYbXwjADbqwtkzFWeDSS6DTrpJ0Bzw6ec9Q55fUbZfRykaGfp3+6T8nQyZoZ5oHMg50tfvHsiL3rVaQ4YOpJdGwdYfAENbHEzXwV29AxrJBreZFFJFK3O7xz7zWu39jDlBW83oDtlTKXiyKTxiO+fHXK0J6TzSVI5HUOz664vn2HYi1FZmmZpJCAs1Pe+uPXeNF6wf7zkP5ogKyOMXFoTAWaTx/x7NUV3cEV9d4VB5ddPnzrAb96csI8PGXZWuB7Pocdl9dW1zh60aR5Nqa6voE7G3O4/xy1Uqb58x+xu32PipFmNJlxcHJOMjTZvrPCk8sDXj57hVKoUdm9Q8WEP/4Xf85P/+rfkUpZFLeqJBJJBo/P8RtHJMtp2ueXTESJOFMmlapw8su/5c//5HvM+jNGsx6KkiSd2SaePaO69nWsaIKr5jGWS6TyEdHVGW/c/ZCcY6MXC5iGRSIWSSbTSHObx1dXUL2FIKaxAouivMLHL17xzXsPWJhlQmnOpH9O5/Cc3khhL2UxbZ9iKDGra8ts7O5y8PAZ9z74Lgt7zNSesQim5FICax98D1H3KY2byNIMVANJKeC29om0GN0wCVqXBLFOfvceu5s7fPL5p5Ruv4VuxcSKRHvs8ZPffUXr5UO0dIVnv/4Fh+0+biLD7kaVnLVBPLlEvnaTy1EDd1TnXq2ELAj87vGAq/EZ8mKEN+1gOxP+m//izzl+9DFhJuLGtSW2VtfwxRJ///IhzZM6f/mnf4nuO3hun0RRZ2uzxsnjM/zgkOyNHazSKvE8ZnryO6q39ngoGSgMSKVUCqkMWn9CS5D45OkznMFTHP8CJaGyvv4uG5qG09ynUlnBG4acvDrn7OLoHw8r7+2V2SomEFSTRCaP3DonmJ6wXN0kcBe0jo+4tfc6Y7dJx2tTXtsmKRkMz7o8e3rG3ppGlFfIr99kZ22H7ZUykRVRn4q8eV2mXNpGVVaZuhk6M8imp/ROxkzGLRLCgrwGxbSA6BXwvEMmoU4uoZHJWMhWFtkLufIMrmQLTVUR3AWzoYcvTEDJUpAnZDfWcYMOs+Ehi7jCcqVCIlVkp1hgEVocXnS5OPqEd+7ssF55lycHx3S7Q8zkEqVb71LLaviaTLW8hLWYIYoByZ1dcrkb9OsBcyuD5U3xzo84fPhb5LnLrDXi3hu72Nki4vIO5a27nAhFnv30f2eeEZAEj5yWAk/j3/zgB7yxtQp2j9NBl1b7krwe8hff/zZbJZX/8MOfc3Jyzlm7gR2PuHGjhjqSEUUNBgOcyYJgLiMGHk69TsM5w+nHLEuwXsyQXV1lPWEiLCTSSYXPjp/wo9/+hv/wH37Cr3/w33E6TfFuzeO1uwWadp2f/fZXCE6EHHncfmeb5dQy0nTAuP6cqe+SnqfQsgnWVwu4M4/6aYcgSrCxvkLw9CFL1hLm+i5xZpPZJcjSnGTpDr5u0ZmKXI1t2n4LKpCdSuhjmY2sTkLRGM1SVLdvkYuOWNosMT0/ZDyqExVTXPvgz9hcismk1ti+VeAb33qL977+DRx1ic+++Lfsvv2XnD/+il77Csf3qB+fsnX3NUo7S1zVn+N2R0iewjTUeegUKQVP0Gq7zJ0IPXJZ3sxwaJfRvRYd2URNl5AXC0RnTHp3lYPDHkcnDSrreUS3x/mjp9QXGjXjHHvcIRZl5qZOZFqYocny/e9wcPICOpekzTxyooQTe6QKBiP7nNW8z6x/Sv3sJf3OOVrmJptLMk9OTxkOGyTTc+68t8PeyjJRYpMP7v8JIy3DLJVh560HiKki436Lk5dDVssZkpkU+6djvvjdF9y9kScfGpxedmiMpoCENJjxy3/1P5NaVRjVz5hcDYn8kOr2MlsreQ5ePqZ/eczMnbOIDAqSwLPLYxwpZnWjhjP3cSZdolGHax99g9PPnwEmqVQGiYD66QseHbYAyG+VMB2ZUdvntDvAdJs0+jNq27eJvS72bMCCmN2UQTgLEJ0RekqhO7yiNTinVFnml7/6CW9Zq6TlgPL1axT3HuCPVZygx4/+/f/JWknBUGR6vS4vT55SzD0guZXm6vwV3thnNPKYBQ5/8Yff4OO/+Te8/c6fU964jj2Z8+hXL5EqWwgJBdWbo2sJbNth2OmTTm1w+NlP+d1vfkNr5DGcC/iiQSGfQ7fOqF4voPnw4lWfr06HpPMKnYOfsr20zKNGi8rKJjevvU5zJuH2fW7fXGZuhQiTK9r1Yx72uoy7XWapIkuKxGaxTFLSGJxekJcX/MX3/wkPn3/JSm6ApSk8byX53aszVhmwlosYzk7pxUnq1Pj4q7+lPB1x7W6eO2/cRowFXrw44dNnF1xTYev+6wy+fETjeY/uOCSuhmRXV2m5y7y9scburTfIbt0FK4tcP+HB166zefMmnm+hiHlubW+zpjrc++gjMumYOFOjO1pQ33/BefeQna0lPvxgD9frYORy3HrnG2QSS7j2jHuv5ThZ+PRmDtFwgG1foVXX2F4I5Lb3iPw+/fOnjBWT85MZxY07nPevmLhN0qmA126XuYgN7l1P07zsIgsF/Ak0G8fU7t/k4x895tHlOXkdNnImqizw609bOO6QW9/8Fg9urpOPXBonTXrZHYx+zDBbRfUdJN/BdwN6F33qLy+4Udkk7s1oj2ymKZPVN0rQFthcT2EYcwQD+q7L6fklWXtG7u0PGAVjRh2YTyXyGZmN3SV+8L/8T5yNFkxdDytTpLD1Bq+OzngvLfLx8waxXsaUYtRFE8taJrd+l7DXx8wlSVs6ij3g2atHZM0ivveSsrFJNVNlq5LnzRu7aOldvvfhd1lZTXJ9a5ON8g4aJUaTE47bL8lVsxStFIq4xOUsQex5fHL+W969vopsO7QbdY6vjvjRb/6Wr73zx3idGT/64Wf87U++5OS0TjaIWStVafYe8rQHWu1Nbt75gLg/ZeQHbH/0Z2TcAXoUEKoGzUlEPBZ4+/516se/4bLR4bLhcXra5Jvv30BHQ8nmSSbLWEqScO4wlypc2ku4589RDJFJYLP/8v8HZeWd9z8klykwOG9wbWeXLx4+p5xJYFoGrusxGk0Yj8+obJeYNAYsWXkmY5vTRgcvFrAKLqt771BIVxl5OhcDCc+3WN9Yw1CyLCQDW4jxwhlx/5z9n/2cZuCQS0mMFhbNgcD4asR+q06/51EIBVASzEKNyTRgPva498HXmL36krVEhIBI25VZ21wikAocPnrMdi2BEQnMRhL2XEUJuswHdULBxxv3GF2ccXzaZmXtfdxxi+2qRmQk6XswbZ/yH3/2U6qGBqk1FhL4oc90ZtNuf44ydpn0Llj4EWKiQHZ1lRvlFY4uDug2XiFoZXpTi4dPO4zbLixkiimPvdUqkZzguO+gSAIJfQlrMaRaM5nNYupHPbT+S6o3Nzg+OODu/TexBwMujk5QckU0oUYnqKNkqqTSMpo0YzAeMbDnuJ7I5VmfOGdhZJJYQYScCpHSWUwz5PraNrVCBVnRWLl5j7XiEl/sP2UrnyYVTRl3Wxz1SjSOXhIoNXb0LqtpjXSyjGA7tMws570mIkNMeU7WUNEljUhJEgpJ3IWDIIMQgTcN0UtVkskUzW6HYb1P4M2JTYXJ4Rnb5RQZu4lkZfHVFE4wp9fsoMZTRq0ugm6hGAqR06ffOqV93mLudvnis1dcnQ8IfReBCV9bu0moChTXskQy2BOXtJ5jaiaYXz0lk6iwtrpDOm0x7p/zxorCRBO4PG2giBaqXmQ4AZUmkt/DXCpQnLcQhgfY4Zi37t2h3n5Ib/+U5fUNBBG6lxeMmnOSa7cZ2wu6no+YTaFmkjx6/Iy3Vu/wo7/+ayyrwnA85vDZQ4b1LoGYRulfMXZs0qUqe6/dZXV1mavZJYKUJxRaGGGMLBdwMttc9R3GwyNcPOZhn3zGpLqygxtMECWZtmszGLXxAgczYZHydPqJiPbROTu7W2RKBcb2gEn9M2xnzMB1ubn7OmtbOyTzGZRQ4vPHjyiVUzT2LzF1k3QhS3MyYXRxzEahxPOjPoEvklIUYqdHppRjPqhz2uwh6xpD2+ezxyc0On0A7n34bZZSKXxJoRtreEObdUWiMR0w8DQEq4SRTuE4HX7x7ClBr0UyZ5FNWtTKFdZv3qWUWeXk8oQvG10yS1U2ajVadpd5fo/NBOx8+4+QslkEQyO7fYPTximVWpWSM0RWswRCktgOcMddWM1w0ejjDwfY/oyhFFJLF5D9IzZrN1EyEadXxzx6+JSFIHCjvMne9nVCWUQ3RDIpnZkbsyxNmInbdFoOoTMia87JF4q8efddmvaInUSSlJJE0RRKNYlff/wVWiqikDNZuDbjiUMQxiwWPmZRw9An7D+54NVZB0oGe3evETW7xLkaZ60xjj1ntZKndm2HP/tn/4Lf/OYhzrjM8KzNxeOf0er2+PC9r6Fkd3j6q+fMWjMKyRxZRWX/eJ+3Vq8xcOb4SoRhBKSJCeYL1ljQ93t88eWXdE4OubVRQLv7PmHniF9/sc+Lkxax6lGqhnz+oomXKnF12UGWJFzfY+hGbNx6i5PPXxCaSer9LqKgkxItjr76Of1eA8m1qa6uISMyHgwR5IjGyUtsYQUzK7NSKbKxvkt+uYTdaXHZ63Hy4nNylkFSS3JyfEVeN/hd3SUjphBVmUlo07MHyBenOPaAuys1quvbqOkqnithd/aplgvMux0+vzqg7YoU9B3MaMGj80+p5U0Wpomj6Ex86DUnrNSSFAolSoU5S5ZFOF3w6ad/TyGncPqqTSaRJJGoEix02r0W3/7WN/jRj3/B3vouqaBNKSty64PvoUgiS2uv8/rtJJuVMkkk/F6beaJKR48QgynpdJowntMbj7ia67z55gdcNJuo8oSl8hKVlW2MRYSriaxUEmRSBhNCTkYTji/r5BIzitkKp0cvmXghSBpC5HNmg5RPIHsqsmhgqCq66NHMQNooUkvr2OMzvHkXxdIZTxPk50P23vgWa1vXsMwUvuux/to6ojBntbROKhQxJAkvDGicPkf2fdLihEk3RlGLpJM55MWMaHjJcaePMQkp6znWihVqKzUOnj9kqFaoGsvMYnheP+PLT35LdbNI92TItRs10stFOoM+jx9+9Y+Hlftrm5RVk8B3iA2HcW/CrNFCVCTm0YzA7yMgsJtJMmx7ePaMRquD5we898Y2upFjeXWJme0ydmwECcq5LM7sEmcaE8YBRCEyoFkSS7kyyaUVFtM2pqQixTKDsYNhmiy8KctbKwSRx6jfxR5MyC5XuOieYc19UE0CMUJSfQw1z0ljQF6TSBRytAYOl40xhixT3Sjz9OUBURiRyeRY395m8+Y2T558jj3toegGkpVBsxJYClSqNVJSgqvuGbNBHcGboIsB0iJgbWMLVJnYzCBYWSTDxFMEDMHFYkZx7TaxZjAYNUkn00jqAm98yHTqISkKpaX071NU3S76IkIrlZFVAUsMSFoGPT8gU5LQ85vkSuvklteYSCapZAI5lmhNRqQ0SKgaE0/AYU6sRqjh7x333W6TVuOcme8wDWXSsQCxhj2ZsfDGXHvrAaI459WLI5pXLaazgESyQiJbRTEX+LHBtNfHd3U0rUy2kqE3VsiYBbKaioLKIhLwWVCpaAw7PYgWGJaKqafRxTJOPKZQKXF50iKceCwWcyZRQC5lEg8alGsmzYnP6eUljfpzDg+f4ks2dqeH7YzJZBW2d6okNYuzFy8Rswn8hYaqKsSCT2swwO8JTJUuCcUibyhUCylKtQ10LQA1SzqZw1nYjKY9tEVIpZzhrG6Tz2aQlCyymiCfNfAtE8NtsbxZJZiM6fdGBILItde2ODgeM+ovMJMWXhzTczz6hwekawX6oxjbH2HPfQI3oBqNuGo0WF4vUcpLFMpZEktl+hMBZ3BM+9UlohJhZXJEZoqmbdO/esUiiFlbLhFrOnYcEjozLs8bTCdtKuu30Y0sYqQT2BFO6BL7E9KpFEIsISoCqhnh+jGHF110LcSQPALbwZ55ONGUSm4NWTMoLJksFnPsqY+kROTKBXav3cJMZHCjkMFkgiwbLK9u0p32UWUTxxvj+FNS6QxJJcVV48X/zdp7NV2Snel1K33myZN5vP28LddV1R4ouAYGYzDEkDPkKCQxGLpQ6Ip/SJdUhCIUupBIioBCgxkMbAON9lVdvr76vDve5jnpjS6aIelGo4kY7R+xY+13P8+7qGg2/dkCL41ZX23w6cPnAOzc2MB1FkyckFTUsQ0wK0VeX4/JWQ0qRZOCEmCHEvMoQHKXOEsZx0sRcybtjbuIMSRKShwuKdkmSQyHTy5YKyb0Dk948/5b+EFAfzhADFNu39wk7IboYUS1YZO3ZdI0ZPXuKpOxiJkmLBYeKBIrqzUsTPSciZnXMYoWdt7GlCSG56/ZeuttOtcviQUJ1SiSs8o0GmWa7Sp+lkfNQdU2qGk6+FOOezOurq+omSmKLrLwHC5OjlEKJZTpmNRskrkiuVSiYKksGLO9eovJuYOVedStGENNuOjMKKk1BsEUS1HRJIWIjJ29GzhBxLNPv2A5i0mSGYLk4MV53vvuXRRJ5uDhQyJTJ7/aIO0eEhQtInwmkwWGkUeSFS7Or2mttPnNowsGM5d+PyQWC5Q3N/CDJePpmPFFh/XVJnfu7FJtVvnq7Ardj2iWVNJhn9gP0KtVRDdBIqKUzzOYCSznMYLrULMMwrmDpq+yyARSInKGiKwKjGYptmUzH3TpnJ4ymc4xG7sslx7LaEy9WWBjfQ9FMjk7PWIy9rFLBiuVDUTDJFNlcqqA5fYormzRvvEu09QjWE4wo5gjN6QqlHDGj7mcifiuQR6JYskmV9YZX1zgZgGJoJLTbbY38miyyDKzUMWEEI1I0rBthcpqE8+ReX05ZRoJpIgoQUShnuJAEQAAIABJREFUZOKlC9rtTdzllGUWQDHPXMnz6pNfsLfVptRaJRFNBn2HyfKc/OYemRdTVDXKRg7bKrHMZAajAL2doqJiaGVEzeJ64nJ1ds43P/gAJ5ZwY4UwURg7PiulFN8Tuej1iAQJXTGwMgEnFKmV8ix8kWixJJoPCLwe0fic/Tu3URZThGCBpiqUai32d99j4UJxpUgmqeT1HI2iycRPKaUxghJiWUU0JSCanxJMpojFDcbLKwrFGsgZV71rnhxc4voCSsni+PAC1w0pVIq0b2zx7NyhaCQU7SLZ0sNMYtbXq8iyhC/Z5KoWy8WQk4MXvHj+Dy+FE/9fSeX/cYLpkCxw0HMKg/MXFDSB+WyBO3UgWGJqCRXTpnPUIYpies6AVI5ZX6uz3qoQJhYHzw7pnF0TzodowhzdyEgSj7nrMhuNWE4mhGGEYFVp3H6XarmIZOYRlRTdiChVdQxRRy9aIIfIUoCc+WSRR0LI4OKIQq1JkOk4fkAUefhTD8VUMHMpZ9djXl9OmPo+Vi5CEzVa220atSJ2pYLZatDaKFC2BSI1z8yPCJZL1CSkWCzS2rtPKicE0ZA0CsnilCxeYlXaaO0V8o01tFIR0dCJU5nJeEC+VseotEBXKddN7t1bZWXDZnOvTaxV6Y48pqMJQhqhFS2KxpxFFLJwIzQpplGCXC6HT45MtnA9CVn+ehRdLNgs4ymqaBEmEYPJhOFkTpYJkKQIaYxZUEgCF2++IBYhiSWmIwd3HnByfMz5yUuCWRdvPieLQ3KqxtgPuJpnjByNcDagvnKbupoxj8uMfBvHS+kuXZqWRUmx0PUCqSAQBEuiJKJu5dD1DE2RSfyAYOkgiAmZIjINBJaTEZE7JVjOWU6m1Asy2WJE4CWMugMuz864ur4iiye0d1u0mjmqVQPdgDRdIIop+3vrrKytsbm/TaFaIo4SBD8jVBXSTGZ4NSRyfPKGQs4OWKlblGybRJVZZiGpmFIuVxgvl+QUlfbqGqogErsLcqZELl8jyQzyZoFIsfAxyEKBs+srklAFucx4HuOnUGyUELUY2coRCAmWqVAQU6w4YnVlhe74ktbODWRTIl/I0WqvY5drqNmC7tJDlE3cOKLnjJl6AbPrBaIoUq61qe/tUF6vo6Ye834HRa4QhQmSqBOHCd3LE7wgxg8gCSJURUWWdcJIJBUigkmCm4WcXpxwdXaKO/PxpDq1lV3qzQqFsoWkCSx9h9FoiqzrzKYepZUmkpox7F0wGg7QNIvMkFF1AVGOQYXYsDk6HRD6AoqVQ0CAMEWW/m/HR0VLcRYLnOWMvLokEDzmaYTnjdGZoadTkuUU34spFmsYtVUUzUbMVCIvots5J5hcYRYsdlYq6HLKwvGwpSJJ9wAvyrg4PcNbBIiJzKLXZaVQx1Y0XMVCz5u06zattSpGXkYQVer1OnlLIZ+XqJQshCjBi1XQFAwUKqZNe61BvlxALqks4jFCliFGGYm3RBAczGqbwXBAfzJFNm2qzSbubMgicLGyGMmQkTSR0Pc4vehRqbUYdEfMhgtyZoVydQUpESlYOomXx3MUNFVlrVVgv11nMJqi5kukmUshr1PKW8iZzHIRcHj4ijDwSbIBsp1hr63TaNWRtAIFW8WsVNDzCqrqI1kGrd09Dq4u0CwTs1BCVEyQTFTdZOxFeKFAu92i0apw3OkzvjrHjTTKNZucHJMsHHwnoN7K486uSOZLht0xztTBkIBwydrOOlEwRdXKSFqBMIsx9AKVao3uYMrRqxOC+ZRaVUcomCiqxdp6HRmVbm/M69NzBoMpIy8hin0211cRs4xBf0CKhFWsslaySMKQwA1g6aN5IWaxSrO1CkaeKPBJPQdVFWivr+MnMUEWYcsmSpQymfWRdJWb+7fxkRmNxniLOYqYoMoekSLgaxJoEMVz0sSj3dggXyhRrFcIM5HF3CF2l+Q0FXfgsd5qEPsRVnOb+tY+QjKjf3nCi2cPGY8muJ7PzFvSn48Q/RnpbEhvMGHQu8bzlhj5Ms16EyGZkbMs5n6Rbj+h3+nTGw84OzqkXKjheSLLsUM2nyCGEYJcZugMyMQUQcrw/DnX5+cshh2UNGW6GJIGcyxNIlco4PX6FHJ5vGCOrhuUy2tUyhu89cYmRmMVWckYT2bM5lMkMST0UkRJZOgMCFMPRUox1YRiIaZQr+PHCqIUEi4HuNMedtEiFU1s2yZVUzRbx7RNwniJbOZwx6eM/QWqDCuVEmtr+8xnSwolEyOvkaIRxf8/uYFu7K9RW68jWTrpsIuQqSRAzjCJ4owoSKmrRX77/AVKLiPKw/buOm/s7zFZRBwNxzz85Ak6RYr5HLm8RiQZFMt1nKXPojdkEfoEsoKol5EklcHxJ7iKxPV8RpL5bLVL9C8XUK9C5wRVUkHUWSw9vFmfkmFQW9tl3O3T6Y4ZL0UqpoW9t8L5l7/mcuATpArVap6b6yqLns/3//wumxWdOBG4GozoXj3nx9/+cybqGrowx+138WcOuXKR06BMuHhFvlLGNmtIooKbLLE3buAoTaJURZASkjjEm7goVyfMzAKLRKM7naNrOXa29nEij43VJleDDDVY4swczkcuqZXj/ZWIs7lPwZRRkiWZ75DLMmr3v83Lr7rYusm8c8xycsHW3hqvDw6QyOGTMhgMmc5nmKaB7IEkKASCTxwnWGaRtfUtSuUqi9EMWco4ev2UcfcUKQ4ZXEwwQp+pM6a5UQNZ5+S4y8mTz1nf/C4b8hDD3iRvFfCjMY+eP+HBW28wH44wygJxNMGdT4mTHCvVbWb+CCkTiNwZvjsjUVOKm9sMHJP5yWdEizlelBKJsFnKUCToH3oMe0PmS59IzHNrrcqP/+pPaecyWts38fwlz7/6lP54yZ/+yQ+oWSVE0yCKMxI3oWYU2f/gAWlgc3l8jLfwEURQchNWd99EGR0wFTR0w6Jm2RiayOHVCWsbK8iayfT4CH/SQSpbaJnG1dUSvVDFj0PEOEKPYobeDDGKcScikZLHyEFZXzCeedTvvMew84qKbbBqm1TzOWZWHUPTiIw1pvMpsRsjejGqmLGx22AgKLSaawSSj5fMKYg6x1/02L5/H6NiUGxUKRQrJH7GsNdj/8Y36Q+OUXQVUUxxFj1SrYKmN3h9eoQmJYiiznKpoS1HLH2V0eKc+XTJchkThAKJXGatYiHrI+rlDZIsYTIfMuqEjJZTrl8dg5qxGPeZDXuMXAfNcWmsVzg/71EsGNRqZUYLnyevTlnPF+nmZKpWCdFN+PThCy66X2dW/s1/8c8IszyKLtCqJfSGMzQvQEg7WKpDFHpM3AxfVXAlA63cZGe9TtPKkXkuh5ePYXiJp+RolC0QNSDH9uomp6ePsFvbPDo+QdFKlAtVprM+elrGquq8HE9JEwFdVVFzKpPONaEls7q+T0Hz0PWEQDJwrmecjU5prW/BeIAz7jPPwKhv02oUiN0ZsS/jz8YsxyeM3D4b9Q0++vgJB696WJUKlZUy11fH3P3m+6wIPnqpQeBr9Cc+ncClXrrB4cUhzbzG2sYKqabw9MUh5UKBk2sRzUoQVYVSfZW1G7c5nTm8u7/LMp2ycD0UFEqGzbNrByns4C996isGcrFCoFSp5QVMZY3aVhUnKmFmEYVsRlLaxMpb9F6f8OaD76GYFmEYs1qtoZVNzNTHMPPcv1WnaAZ8/tmnFO0yWgCFVo5nXz3n+ZMXpFnEnTtrXI77TA4XDCKRSJHJSRmVho1dqPPi9UMKjR1qrRqqGjPuTEhyEk+/+j3eIqSSE7HyIudJgjzzuP/+AxAkIiEjUwRkIaY3XuLO5qwaGmevnnJyckSpvs4f/eADyODk4Jil4+DNxiz6HUqbtynkyyyWDoozw1B0crUWe/UCB90XSIrNSruNLGRMZzPyRZ1Ws0InURj0J8hChiYnnBwcEFl5zHIBU7oimg/wJh5hrCAooGk6jWKekiIhJB6u5FFyDEJRwOnNaK5vsbu/S1WKOfzoN5yNExp1g9SN6Fyec9p5zY31e4wvHvHo8XPc5ZhF7LPMRErlNnd2FNy5zdGJw2w0RnAHxMGIw5Mjvvvufc5fXzO5PCUanyN7S5TSHihT9MxD02Ucd8mzx0+ZuAs0S+T6+pD1is3tm7eobt/m8LpDxb7F1eQQZJlEKuClBlV7QSiqrBdrvHxxxKvDZ4ymV5i5KrItMnZdWCzJ6UXs+iqZdIlurBPOPJTIQQoDqnaRBw/eYNGbYZZ0KiW4vX+DSqHKy2ePqVgJh8eHiPYqxaqBqEmcX8eMx5es2nWaDR1RrnPdcXj66KN/cLLyj4KVt++/zX6tSC3s01it0DvuspL3cCsWiyTD7U45uhpib1ZYTXS29irYms6o5/G0PyEKAr7z4FtcaRXM6hpVu0y3f0nkRgx7U8xanc2NNSoFm/F0zJrpc3Q44vHnXzC66OFMMyZLg2pF4MVXj7meaywWAePZjGEUUioX+fjZjDSa0B1ek2gChUabKFzl9z/9d3TjCt+8ucsPH9znuw/eZK9d49dHlwx7Pa4vXiG5AVZsMZrb+PGEfMlEL9WQtBzLOOF4MOEmPud+gQ0tJM1S4lwZs7rD/OMPGQ7PmHa/QogKhGOfycUX2BtNXn30U9aLt1j2erx+fMynvzukd3VOMY04/+r33L/borC1wjATmBwfUt5YYTlNeefuTdxFwLOjIXOzjeL2WL2xSui9YBHMWGQyA2fKZPgFN/fv8uiXf2C9usn21i2m7gzbUjE2tum/OsQybQQUTl9eEoYeu42E2madzC6Qb92guvkugpnnw09+zuVRj35vxHbF4sHNdT4+OMe7PCBqVbmVK5NXigTGGq2d97k8uuLWvTVMaYEfZaRKjlZVpe8mLK8+RtBr2LpEUZcQydEf9mnrRbqf/AYvA3OlRHvdZDKTMTbWuBiOmTlX1Ftlvvm9H1JurfHo93+H8+ol3asJqlli5/ab6F6VD//mf+XJl69YkpBlIv4i4vDqGLG0z7Zyit2soOkiaZgQJE1Onh4gaz71XBsjBn98xfDiIVWrzqS3JPWXVGyJctkkSxKknIFY3kaeXVNrGdTXGuRMG3V2zMPHlywVgYmzoHN8wvXJayotnesPP6GeMzjuBDy9nvF6MMGZLXjnRo3L45f0T/scHx7x8KvPefz4KT/8N39Fo7bGrz/8W9zJjEKuQqAbbFkW/WhAElocHXS4OO6hqEWKuzcouEeEaYBolsgZBiUJjnrwg7d26PWO0VMgjHHjOZ7p8PGHH6HM+xSLbRZzl3HnlHfvbuAPx2jzOf/bT/+eq8MrNhqb3Pn+ByjpGY3cBrqhoFZuUNv6BjfWq/jzObGe4+z5IbsbbdqtImfnL1EcgdV729jlHMvhBCVx2FmV+O2XpwDU7/+QzfU7xF7Mw88fUk8kBAV+9C//NWZllRcXU16c9vnLH32AFYAmihhmDjkvkuox3iKicOuHbN+5T71SZjabcn55wXDs02jdRjdtZueHjGbnOLJHbfc2RcnAf/UpcQaCItAddDh48YK9935ENbykWrnFxfkZznRGTlD56vPfcWe1zMrmHv3ra2SlxErrFpdPP+b25lv8/W+/JEyXOP6M/nTKcrEgm0/44bsPWF+pM0PiVd+FSGUcdLjqTBASn5eXXZ6cXJIsl9y5+x7uYkHZLhMux7jLMVgWnz/rUBcdouYKuzd2yJULHI1mxEmRQj7m/MUZzy+6OFFMySqhUeS49wVRXOWDH/4YLd+md73gfmuFn/2n/4VJ2cW5Siis3kJf3eP44y9Ya1h8//t3eNHN8LyMgiCRzT2WQsLTl5dIqcfYczmfBsSJzo++scvPfvZTvO6EOE7I1RqU2zfYLrYRLAMlNCm3ijQ2q1QbeYzeAf/9f/gFvV6OoqGyOPuc80e/RCus89GTF3zzu3dRchonlyNODvu81y6xd/8WHz98RXBxQcWWaK2XUDUVUy1zcXKJ475mzarwxuYb5JsViB1ETSJn2bRv76JuVenqDkyWZMYNRqbKw0efkvhL7t+7Rze1cM8+wXEl1EYF2S4QhwK9x49p1atMbZto5BDNuwThGLO6y2DZoBbp/Px//wV6dZett97l6ZNfcT2C2mYJt3tBxAK5lCNXbnBx+CFdXceuyfz2t3/Pr//ml7jjmKDYYKWxzX67QqVewsl0zmcG+ze3mA2uccix9/0/RlAkXv7+V4y7Hp3Lr2isrRJOj4gWl5hWnr/6F/8tZl5lNJggFyFXqmLnGzQs+OjhM1rNHUJ3SjnfpFlbodzIaG98h/nLp9zd+y6ibnMxGjDod/mTb77B5KrL83mVJy8OePH8Uzpnzxm8uKJsyoynDrPlKYVKnnr7DgdnxzRWb3Jj7QbOcoQYQT7Oc3o14PWrCMV5wsbeLtbmKqM45hf/8UuuIhM969HeuMvRyZS//fUXPL2a8hcP7pAVtrizlkfL8kSuSI4+W5nLKBP4w4vX2KpM7Az59LOP/+mw8r13t9nfaiHoZSalIm/bCuH2u8wjA1HQUHMqV/3X5Or7VJsmjucTuiCjoZoSFXTkYhU9r+GOHaZDj2JtlY9/9Wtau6s0qmX8ZcZ8HiLLGR++esGD9/8YKdfmne9+wIPvfpvtRgMjHXFyPSFwx8ycGBmRvbpKba1INnfI43LvwR/TXt1neH7G3/zyf+Lf/vV/RWF9j1tv38P3Ojz78pdcjJc8aO3z9h99i8HFJXpljdq9+0TlgE9+8wJh1mc0HDBfBij5PM2VEv/hJ7/l7Y0VDvp9ZLOJbZZxB+dcnnzOrTvvUdnYw6iYmM08pZv7BGsrbGkW14qO1TbYudtk/UaBy1cvcEoW3bOMfndCU3V5qyFxeiWwUtvi737+hEZ9SbUkYeoa00GHDzZzfP6rn7C2eZvC6j1SeQXvSuTdb93DW5YRCxaqEeF0D7h+/AWLROCyd0ireQ9DHOC6l4xDkazfozOTGTsB+/VNVswS/mSAOr9g4sz4F3/xbTTDZh76BMmEH+9WeePP/oTHn3zJtR+xDB10Fug5g/HFM6xymcyqoYsB6mLI4CLCbxtsbX6H08tL7JJFuVln7geMhzETIYev9JDSEFuVKbar9MwCjJ7D9Rm6JSJX63ixzPzR/8zuH/01QTSiN3PxZ2NwZkz8Ek5lwNubK8wWS6xmm+bWBmdffU6jaPDZ6YiKuUpzdZX2fovt1Rzewe8o5Fp0cy3mcUCcxmRGjfn0FXfufo+FP8KPT5h5FwynS7Y3bL785Jx1yWE66DMZOwgouFrGeBziHD+ibBqUijKS5jEei5zOpiyoUzAF3twp8vZ+E3+e8fNf/oEsUfjB9+6xtr2DYtXJWxo/+fdfMHh9QGnvLUQtw3MdNOsmysYKmVzi8IsvkfwZqhIyCaa0Nlc47x8y6I7p9oZfm6N1BTlX47NnX5Jr7nPcOeW0f8HC9ZgfnZCp24hqSuf0ikDQsFf3mPf6SI0d/vDpT4klhcpKi2KzjpzqZNIWu/urPH/ykKsnB4SDPmZTo7XdwF9GdM4vkYs5pHKbVN3iyZd/oLm9TX+Qshz0CdQco+odHv3udwD89Z/+gJ01DV2O0CSb73z3HXZvbvP74+dcdJc08kVu1ov8zc8/xPG6nD8/5uUwZtrpYcyXVFrfYnL+CUdHv+LhF19xNsrQm3u8/713aG1s8Iuf/Q9EwxGWpiC5DoNHn2GXNL5MFCIvx37bYK2pk4kWhcTCNUR645h+/4LUsNBXbyPN+qTb7zM9HbGzbxMnEU8fnrKzXeEXn3xFqfUmt27vsVu3qZLgTCL+u7/8Y65DG7NZZWd3m5vbbUqFEN8Pefx4yunhMf5kgYyGI5hMpxd84+a7nD//iMh3EAydJK+yudnCl330ccLFqxecHR0ixgJ33n2b7rOnZFGBd/fWqOUSLjsnaPUSlVrAN9Y2+eyL3+Iuxty/sY0geEj6BOfVU0bLiCRyqOkJ3//BN7CLNs9+/zE5S8eUE6RkSYbH0bOPkJH41jf3efDmFne21qmV1khTnWX8mnf23uTdP/tLmnsbDC4f059kPHz4Oza2d2gILpYXIEYGSsUEyUX2Omw36ohqnVBvcu9NC71xG9PepiKNKVoRuZJGFGcohbscDjyuug/R8zLVSoskERkKKXZhndtvfYC98yZSuUFRTshXA0pRnVdPjjh6fkDnxUuEUYf779n87md/yx0zZaVVoDvz+LtfPePu7k2q6xpvvPMe8+sB/tUFOgumJZ2KccR4pFOzQpQ0IpzHNCoSP/qTH8HiDHOnBXmV2WSCis3bd96i1w/JxgMMu06jtcmtZhF17R0uzwLGFxc8eHuPH/zwDvlWRtWWeO+tb6MXLUqtHYRExzk5RYo7fPZixntvrDN+/Yh2zuKv/+W/xiz7vDrpUdMyzs9eMhUz5orKZ3//U26UDd7+0bfpX4uMu1P8aIlQaWC1bIRlkZiMznTG5XWPbJ4gCQrj4BptfxdRERiPxjw97ZCW15kvQgaHv2fHgnt33mDl9nsML68wDJHC1j5KbZssVyZMlrS1BYcHKnvtFnltjSyQ6Q1Oeb3oUG68xw9/8Bcslz5RlGKXV6nvfpv5/DHR6VdcDzSU4g733/8mP/7WDT75/f/B8PSMKHXodCccHJzx5NlzFnGR37x+yX77NsHkmJfP/8Drk+t/OqyoUh1ZKJBXdfy+x7/76Jz729t89egJF8dnZFFElpNYKxQRptcs0wzPj1jMXKa+zPbWHvO5S6pKVKwyYqbw0bPn7D64izIZc94J8BcxQhoRZwEbdoUrV+SNNzbQkznO6IJZOObVRY9BFLBVrmCaGuVqldWNfXJli2dPDyi1b5EkEidHFxwfd3hje5Pt9/YoK3B2ckJGnubaPSauT3ujzJNHTymWVlDUMr6XULVybK3XMFfKHJz2sXIliqbNRa/Du994i4GgUSwX0fWIOB6QiS4rb36DRegQTBbEepVMrSAFOlqmsVLfIFByKEaTQWdI9+g5f/6v/kuquzdZnB8wW1wxlxLmoko0GHHr25tUhq+YpxZ2pU69oHLy6oD6/VvMymWqzS0mM4+lM6PdLvObTybkb5bRTQXH8whElcbOTRJMtiorBIMzXr56xdVVD1uMWd9dJzJckmjOydPH/O7Xf8enX/yCYsHHl25z3DfQgpAwWHA8HHF8NqYsRDx4u0UULojmQwxZoH3/LoPnj7n9ziZlO0PPluSUhEa7jF1Sca76qI0tVpp1TEtjokhcnEy5+xc/JDt6TJIuUMoFGq1dbudDuj2Z3Pp7+GqRoq2w1wgYnJyRjY8gkDBNCy/OM5pmvNW45u69t1jfsSnVK7jdAb3XJ6y++x4XLzs4zgBn0COII9zFgtMvPmZlZYusHlIpb6ALCmkQkiw9bMFgUFRhdogslrCUEivKglL1NpM4I1y8wqhsYrf2EfMWl/OE5WDCemWTSqPJ7u4u3/7Gd3nvwXfZzr1k7+23Edu7WKUVTNGm52v82//mv8YvrPP50xeMFymNjV1uvLVL1bjkutdBCQKWwynudE7mXvPi05/TMhxq23Wqe/to5VXiUCVXknn2s0f4ekrZLKLLOWZRRmYUuR5OaWoB3eGc2TAgGzpMBodMZJ+z5y8o2FVKORE96qMgcvXiKYkUs7v/HpZhES6n6KZMsa4TzV6yvnUDq7XOyF/y+R9+y0azTrVU5+AoZH1jj3pO4uqz3xBaRf7ZX/wZzz78hJxhsr7exlYCfvXrr19IbU3inft3uHNjm1peon/V4dOverTrOomk40smsZLHysvEcQ1vcclcFln4Kf4yRFMd2pvfoRQklOpVlpMZTueSqp2SDzK26wql9T1Es0qk1BFa77B58wbVnMeGmLCYT+iHEVRKDLsdms0GXXfGm/ceUCnv8PzVGWk658EPvoU3ecbT16f484C3ttZ4+8E71HSZ7VaVFbvC0dFr/vD4Y0pWjs+DHCX3CcNEonc5wOucUrMDvMNrlPIGezdvs/vGKu06mLMOG+9/k/nUY++du1AoMl54zPsTgsWSP3r3ezx8dUyzWWBjfQVElaPnH1M2N+lNHnHQu8KJU9qNJqV8ESW3Qd5skaYu/eGI46sBdrXKs27ESFplt22gaDFXgxFnXx7w0UMP0wz47LNPGE+GiIpCmEg8OpnxwQffIx3GvPzyS7786gmH4wBh3qNzmVIoFZlcneEuU8p738Ccv6L1jR+xdKYsnZh5LDNPE6Shw5UXUS1IrG3skSgC591jvvj9I/S2xfHlgLoW0bZsJHQ+eXVNLshjaClaaxMl0wlHHssshx0uiMIJy06XjaKJkQT8+pefI9rbNCsyjz/9LZVyhbWdOno1ouesc3vF5my+xtXCxpMsSlWDdjRmPgr43U//E5ZYRs4X6YQL+t0JjdV9JB9IMqLYx099RpEI8xG/ePgpYpzQrOTZ3GjSbq7wyecfks09QjTcIMBbjAkXDl8dXXJjs0i7ADmzQRLZRNOIg5lAu1bjN18ectwdcnh+wXDU40+/vYbnxYRGiXJpG02r0OkMOHz8lNrGA5T5mOlSot3a5+07b9Pa28FVVB5/+jHXr84pWwora00GE5Xf/eETyoUMIS/iLhYMO30uumMKeRUtdRkeviQLPNrNAm/fqbD0YfDygGWaAGVW2jf45nvvEIUZ3UXCo/NjXn38kLQ7pCKrfPHlcza/9S2y7h/oRT7LzIXMQ8mKvLNS5Sc/+R959PQZkm6SNzVe/OEnpIUG/qLPYDFEFWYY8ZLZLOHH/+qf89vPnvPmN98lXSYIwwm7psTheMjtjSrO6ApFUpkvYl6+fv1Ph5X7t9+hUW0ydmYMFzFWdYNgMSWWDVbqFvurBs2NTRbeAiFxCFWdKBVJEcnnDWbBNbplMZ2OiJc+SQwBImX/nMdHh7gxzJZTXHeELvossgA73yQSQ5yRy/XxBS+++ojUc1mrtijaJUqNBqWajaqJ2Tw4AAAgAElEQVTGDAcRr1/3uHd7myz2uOqN6M8jbt7YxMzbDIZDdFFltd3ELhc5Pu5g5STylkCSiWgaKFLA6HqEXrTIMEiFANdNGMxjPFXD0oqE82ta7TVMI0cm6oRqlfbaGss4RjFVBMlkNnE5v7gkiyQunvyG3iBAEDLyqkBO0nlxFaCpOs7lY9ZXVihVaziBy9X5MVIYUCoXEUpFlrMFwSzk1r3v8OTqmqIQE8QmvlqBnEXqjDg9OSVWNJw4YXl9Au6EXLXGdDhlMJyz9JZ0Z1NkVWOtscr1VZd6xcCZlpgvYnLFIrfv3eHGrS3qcY6uktC/uiAJAioFG0OKmM6uWS21qdoehZxAJuboOSoL6etGjC0kCEAgyfhyiqps4MyHGPUdMkljsUiYTwSELOHu+2+xGM7wDQupuIJpbyDVinRnAVM3pFS20dOA0fEBoWSgazFibZMgishpAStNUPIKmW6RTQXCZUSGjG4WyeWKFDY2KOYNGrkcQgreMkbBYL68pFEtIosKiiQiiymxP2DRv2bjzjeYj1xSf4EQO4RpQjeIiJWI4fEhoioj6l/D4Bcf/5aVXAmn2+X+e2+zur5JOPfQp9e8uJ6xc+ce0/6Y0ekl46s+ghzhqCHe+QHezPs62JmL8QZjyvtvUstpmEoTQVKQ1RBL85AKFSQ1wpIUhHiGFA8wJY/O+RSzbDBaBoii/J9D1QOW3QOG0yUoMpevDum9PmDcuyBVIsZjAUU1MAUBOfYQ4yVqsuSyt2B3fRdJNCiU8qxvrVBvtMmZRUaRSjxxWEYBviiQIREqJv5iBlFEvqwy82ccHZ+yWSigNhXGw7P/7D5pUN95g5/8+/8IwDvf+YBi8wazecb1eY9xFHE5cXnv/j6ZaDLp9+lfHiMJeRxZQtYkNsoZq40qZnWNhefw2UcfIwouqZJgV8tUGhVcb4LvOJx0Q1Jizs87TGY+a7ub6M2UdB7w/NU1kaSim2VST+HVi3P2WjKDwYDJ9WuUzOONWzfZWCuRLjLc4TkF2abRWkVtVznoL+g+eY65tsfh2QXn/S6xIGFqNmu39nDOjkmK2ygC5OWEyvoNotkcy7RJ0jmJnCHoRXRri0wySeSIixfPIQiQMpnl3KVhzfCnCdPrCSutFrJd4HI2Ibl4Tqv2BoPFgF6nh1WwuXX/LUSxxNnDXyEIASfHZ2iGzdrWNp2rHsPTp2yuVaiWJeLMII1N6iWJvAqtVhOBGVKlidbYplGvIhtlpETENPNcOwucRGFnYx9KNSQ5Y+fWTQq1PJkusogiVmt1THuTXLRAxGI2c5iOzrl971sMRi7NahWtUEXRLSw9h8GC1fa32GxJZImJmSthmTqd6YQwCDmYiOysSRQqNomkkI5OGMcSlgxWtUKhYBMm0HHcr2Hctln4XVr7N6g0V8ELiUIwZZXCik73/IScAu+//wbZfM51nHJ8+JCriY/vBpQVgVY9z61bb9DpevhBByMvkyvVuBwnlBYu+2++TximiKmK7yQ8f/4Kdzpic6uKKYO3dHBcD1STZtPC5BRnNkM0i0SCSKfXZbkMkJYuXx0+RpdlNFUmlkJKcoKmNEiNApG/REpC8qpMPi9z/+42sZLSWGmQGQmdaYfMlSjVbURMTs7G6IZIo2kjKnnSxSWhN6RWtyjkSxSrLVZu7vDmmzc5OTsnMWoUyivossh8cMpVN0TUVO7ubZHXVBJFYkJG9/SA7vWAYDbFNk1iNLqDBZbmcdMSeH52zvrGOrs7a9gVi4vpGNmfgFqjWjUQpZT+aMxgMmfr9l0Ojzs02yus12tYpokraKzbcDqek7gSvutjlnO072wTmTZy6LOzt01zo87EmfLwy8f/IKz8o9xAhpYRpz69iYtd3aRdqvDs8cdUV1eotgpUCyGuIOKYKkluh1oUMBcjHAkUIeO61yGKMoTUoB8uSYQJWqHKxdEZl/MlBVdGllPCvEbBWGEeRORzE669iGziMh4vGM0DVmsylcoWvVGX5XyEKoeYWsqgK7JMJIQsIU6m6EbGxtoqN27fJBFTRtNTKnmNKPFJojG1gokkq/iRj7vwCGMfQRLozTMWySmyWkKSCwRMcBMPSy/TH3msVXKkacgiEIhTBUk3ue64pLkmo9GQHB6iAHkrQ5E8rtwJhVITP5qiGhJFO8+rgz5ZNkYUvu6vI2TYuRwrb7zJ8OSY/K098jmJyWTOyJPZfnOVUW+AuByQVzQE0yIKIybnXXY3ixyfXWKVyph+iBwv8c5PUOOYhTNDkCXyUogsirh+gOt6LEYCi3mOUrmAVdDRc3kWs+uv65zLAaocoQgGup6jXst4/WLM+WjGatHBMvLISg5nNKG2skv3sk9ts4CZrxCmMVf9Ie3GKqJ6TbQQEHSNGJ0kWVA2CwjTa8RiAV0RkDSDSIXUsAjiBE1WiAKHOPCIhTxpLoduiyzEDIGQsiXQrFvMXJ/RdMTgAoZeCIaIaVtIgcDGjVUGQkw285jNXQI/QjQ0JBKCUCQaHKMIKkIi4LsL3MmELPKZzn1ip48iBoh6hRDoD6fIioIsROBPiecBfmdIbm+F6tY2K80acSZy1nFpSjGx1ELNDAy3j5L2iSwZWZQ4ePEZcm+EoZfIySLxMmIyNRDWapQKPTIjjxZrZGjkVA/DbiElMxZORjSfI0kROTVH5moEYkgSJbjJkiwTmS1cwt5rsuY9Ls4umPaucKcDkjghERV8V8K0JCRZQ5FiCGaMFyGG1USWiliWTbne/PobSFFYuD5BZOBMu0xmcxZRjF2pcTgMuV/PowojppNrvCwAWaVcLnLZ71CuqST5HIKqsZwP/697Q8gX6C0ShMBjMY7AWhClARcDSJMES9NQKmVGU4n+5ICVehnbKqAbFkGmE2UlpuEljucQTzw2brXQimUefv6QfF3h7HJKrV1E1hRMISReXHP41ZSGXODKjVm1cgjLlIuz10wDh8SQSeZjUhKoFDDEOddXHVxvhOvEFA0L1w+5OD1nOvOZHhwib9/DJ8CuVzCKNoqXsG5X+DLQ0WczdDUDDYbTAEwVLclIUpGxF+EnEoZcJnNGFFoVJucylmVhKCrBaIQupizThEazgCQLyLLExkqLRdKg3jCIcs2vHUeTGb7jUKvV8EYOfvkQN1hSaKxRr9Q4fHZIVQkx0yWKbFMsVckXCuhpj8W8y8buezjOKZ5eRs6bTN0JxaJN/7JLLtXIF0zUchFdM5gjUK7ZpDmFxBURIg8tcZiHFkIyxo1SFl5CHIWocsgs8VkmAmquxnQ4QjcMmiUbM1slmkxZ2S5wMu0yXQiomkDKklI+x+lCxyACJBJVoGBLnB0t0fIZVmWFeRASxhFmzcKIZS5nEWZzC7tcAAGcUMHWDBbOnI0bIq26giJL5JWIpQr97jmRqCJkIdPZADlSuLt9l2F/gWVrpI4FsoIgW5iGSKwmyJFKFoukoUqYqEwWERv1VSzLZOQO8MIlmZzHsOuIs0vKaxajzhRvfg2SShSN8dwY35RYqRjUlZilG+LOPYbjHJk3x7ckAsdByWmgariOSzLtMp9PKBUtLDUh8F38+RVLp4Is5xDVgEQ2CWWV1ID9N/b4/MMPyQngBx5JJLLaqhAnIfWtVdJMQxJMfG/GbOrjuhPaG7fYXm1xdNlhHIaIrk+pVEJPfAK1hmGX6A7mnJ5d0967ReQ5qLkSYhihRDF63mJ1pYTq+BQkGSGLmTgO06mPqOjkNR27tc5O08I0bbxMIYg8Xjx+TkVSmHeHSIZMLEscdKbc2W7x+99dcn+9RRB6RFH4/8kh/yhYcZYTxvM8fiizkW8S+gsm/R5mXmVZrjM2JPCGrFdrTPW75Mev0NQpUQDJLEJIbTpHp9SrW0w8n6nnUVwsGE2WRJrO8OKafF7AEKtMliIeCRP1nFBVkV0fJafRvP0OJWOG0tjh5PFjTg6eYagp2+stPE/5mtBRSeSERj1HJb/D/vYul/4AM1/CB656PWxHYKPVRC9aPP3kBFM1EZUMXxRYZHnm56ekhgNSm1hUMK0Ei4TL2ZL9/TbnnQ7OQsEycqxUfb56PeH/ZO29em1LsCytb/m91l5re3v2Pvaee841EddFZGREZqTtysyu7ioKqlV0S/3QCMQLSDzwV0CCJ9RIDUgIRBnIKrJM+owMe8Ncd+7xZntvlnc8JKpHqqTmTwx9c44xx9x/6y3Ozse0iz47Oxa7rTppkrCWH3NQ2eJo0mWxHCMFIYctjdfDU2Rkrs9Pfrd+39mmdfgen16MCCONrLdEI8AVU076XbTyHi8+X/Jor0Tsp4w7A6LOgH/x/T/g7Me/QghjxIxM4MQsjp9Sut2knlmwjFOySoLnOnRvbHKFGr3eCNt32W5WkOSE0+Mxk9PPGQV55OUVe3ubpGoWJ0rIWCpFq8hSjbke+9RMk5KlcsuQiLMNTk4v8do1DLFIGsF0nJArZkmlMu7QQW8UULMaUnZFXsgzvfyCKFXICA6SEJBKOllU0rVDs73F6dVXIMZs37qNe3WBquuE/R5q4qHJBYQ0jxI7LKdT4rnIta2RKj4lb0WlXMIdDljOF0R2TOAHJFGA47lsbrcYzH3kYACLBakHopxDFjLc9I6ZTy9ZTrsokkK12sTSy5y9POdruwWMjEW49ggHA2pKEUPT+P4P/zlxNOe8O2bhK2ilHdp1gUV3SuouKW+ISLU83c4aoz/E1wyyVQURH3uZYEt1rl+PcKRrarUq+UIVTasi6zKJBohFrjybla0QeWtUQWB/t8pvPngBogipgoCOnOj0hwGtDYPpzQ2huyaTURBilcVwimpkEOZTtGwBQxaIQ5vOOuL2fQtXVjjcbmGWCiy9FFYLxvM+qi9hpyKTkc1iMkXfMBiMXMxbB3SCPovhCEH0KRkaSrvBfDFiL19Aae0TBAmdF7/+e91YjKfMShNkQceJE1iP0MU8n77oUMuq3L+7TWOrxV/97VPcz46QCw9YCLusXQkhmKHmDO59/YeY888I1yNELyB1fGaDNff3t1DCM9ykQb3dRI3GdHuvOfr8nO+9/4RqvYxpFVhP+pxePcNsVXFyJTzPo9m6haRaPH/2ES++eE3zzj3ClU8QzVn2+wznS9rVPENgPhrT3s7RVPLY65BovkZxZYRsDmd4gWVI+DmT6cUxRSPE8WVMK0+4HDEd9TDECfVCRL2wR3TnHtvNAlrgYPd6rGyD8hs7FFo2y/kCKw15tL/Pi0pIxZRRgxxHR3lWY4fuq2O2mhvoxgaCcEaunEczdGLPx8qoWHqL4dSnWJGpNEokSoHrk2uuhlO+Yah4rkBOS5HiOR+8/pKd0m280GHcvWHzdhUsi5OrDhIemqnRGZ4TDlYYaUSxrNA57pA0XNw4wR7O0aWAQqPKq+OPWKU6qyBm3b3Byiro7RYhGoP+U8qLd0ncPvPYwBEyrJwFzc0NkkYVIegwm46IBJlWc4fwky9xwpjRzYjZakEiRSSJzFsPHvPxq3NMqYS9WOL5c7rrOW+0t7GnY4JAYOvWAbEXMu1cISce06sXZOUCu1sthqMBx70ed9Tv8sFvX/Dd93aIxDazhYe3tClZMnKjycuPXyAbKcV6Dt3M09g+YK9mMp/2mYYQKhKVcp5Wq82v/t1P2D/4Q5S0x/jmlIQURVNYOivkXIP3bj0hmQx5/vKC+fUct3aL+dknOK1dsrKBaliEusyri2uEqcvUc/ErJpVKid1cgWHa5fR4TC1fwTJtFKPCKlZwCNk5vIfzV79CTBQmvQ7D2ZhCJeKqE3H7vV2kwYir3oDZOkQ1Sqh4lMwCsgyrOMFPZOpZi3LpPuKOSVjaYrUMScVT3GiNufsW3csvODgoYo/HHD0/plAucXt3AxwYvvyQwEuJogRdFtFEmchxObi7S80dMHF8+j6k/ogjx6aGwtJzUHMlpvM1n394xI/+q+/yl2HCKo2ZT20mE+cf5JB/lA1k1J6gmodYaQZt/JS03aBoztAMnVA0ieUqh9uH7JZ1MvoWN+kcsZihUaySzlWKe7dQozzPnn9MygrTEDl9dQIyzOY+4byLGMj4gc7Ic0l1jztWEamRZ6O1we7eHu3bO5QtkXs7W3z0f/0YZIHmZotWfYPQ0vhX3/02T97/DqmSISNImMDFSMJ3fd7/xluUm3lWi4SrE5uJM0FMFwyHI0wjT6G6jSBrnDz/GYePf8hxd4mfTohiCd9VWcznRJ7Hb7+65HQREKhVDEPDlDqs3ICyKBOrOdp7FSRdpDdesrNziyTIUMxksbJ5nNmCztkpu7d32HzwiM8++Quc8YxQzuEIGoOnvyL0LB6995BR94z5Ykyqq6jNLSZjn4sjhWpbYLEeMutdYAUdlOo2BS/i7PKKL1+d8+zkjJv5NQPXZ8MymPgufiQiRAmSv+B4MGZ/s4Xc/5Tx4ILFYomMRH8tshh3mC5WJO6SfAYKGYmvfvOUu9si3/mDf43v5RgNfeylR3u7xednl+y1y2RVldhzSUKPbD6L417hxE02KgtSVcV2A1TvjNp2hulqRmj7INpI4golXKKaWeRQZBb0yOgphpAQzMZk9IBwsSITG6ylACdxsdc23UlMmkT83oM6j5+8w8ZGkzSNmA66/OTP/09WboaqMSZczZgsQlzTYjIzuPnsSzQhR5iW8AOR1OkjNA1Ur0IpKzIfzwmmSxr4rDtn9M+PEZQqq4nM5XGf46Mj2hsG3//+e5Tr2xwdXyEm8OZOi9moiyJ3+PDXTxmLFVxBJQlmNBsqe7ubvPX+H1Bp32a+TLm+6hN5AzJiFf38Q5IoQjVyZEo7SKU3uKPNuc50qVpblCURIpehkPLmrW1E/5r1OqLSzNDczJFVdV4dzWiWZbIZEWf+O6+4kvHpjQO2W/d53DSJhBlrb06UyuiVbQTyHLz/CD9e0+lc0zu9JryYsIwDVm4PSVPRlQQ/tPnypMuutuDmaoZ2eJ+Jn2HWX2AxY+/dt7m6mpPLtwiRUVQZ3cjzf//VTwEwU4W8mcNxp5ycPmc8lHjv7e9QM45JUwvLqlMp5wGRupFQ3ztk6anIWQ3BCHn64a+4tbnF9q2HBEnIeHDDzcuvWF93WFBju+nQG09x5xOU2KZowGAOj3du8cb9+9RrBpWswla2zMJ30G2Hy7nP2fWA6aBDKQuPf/RDBE1h2buiaAXcPmjy1pMH1HSL9uG3yObbjIeXEKzJqyHu9Blq2qaWm7CYe2QUk3Kljl4ugW9yPbDpXA5QFn3K4QgtmHN4eJdCUeZXv/gpRTNLpd5mluicnk1YpzFixiQOFYK1zXJ4ydJ3iKZr/vaXrylXt9m6+yZSqUHv5YDQfoG7UkmsLTRdIafYHO7WOTqdsFiGtAsNMoKAs+qwtE852K7wp//zXyOJAoVmgTQTM5/1ebS7g6ZKBPmQrKYTzl2uL16yU3KZXgSsgg6NZhUpY3HZWfDu7iE9Ah6VMwjeGjsBW9JR/T7vPbzN8xcDGo0qZrHBYB7x4uIptx494eyjDu3WFvlWCbIihpDn88GIH2zuMltc4q0XZAIFNazSLw94sl3l08+fcXpxw2iwxh7HpIGIXMry0Wc/YTzvE66X6LZN6eFDNgObV+MZHiL5bI6SbvC684LzgcqtZpnbm9uIacrS8yndfZ9u7yXJ6go31kjCCYl9xHzVZ3vrW7QqJplIIA7nON6YwFOwBRhed3l8/5CtnRKVpo6ZVfjyo3MWV0ecdse8vphyOQiZRyaic0Ma59nae0hqCggZgZyRYy1nyK5HqLe22du8w+HtXRpbRYYjmUpTZuvw22RzFU4vb3j26jV7ewd8+XTFwf4Wvmyxmq1J5xMebjdpWjnOPnuBWa2Szecpl4toegZF3+HV6w9wzsZ8+fKU8XLKXruGLeYoWnO0WCBeLxCSGDfRcOZDPrcNNhHpjqZM/RQzX+VWTiIeTLE2DQpWluPza/7u42fo1V3SeZelWqCYbWJIIkIa4MsmhpZiSiqvX79kOZoQTz1GNwl3vvmAYfeYm9Gag40C260SS1VlPzMgU3nC2TxEbW3jxBFf/vp3wfx/r8zKVuOAjZyBnlkwNvPU1w5ydZtcWkT2h6xmX/DqqymCOubDp1fsHD6mXN0kn8/xve9+kz97PuR+dIKlioTLCYNuj2lsIjgOYuiQzWfQpCneesBwDNm0ShCPmTtLvOWccD4iGvd5OVyyGJ7x8bOvMEyF9maD9q0divU6reYDfv4X/47JQGQlbTDNFkCyGZ9/xbPnX5Ip36FWUSlZN8wim/5FRGPjNrY9pje5YWHPaeSrHF87JF6XjFxFkyTkjASlOkIhopTdI5wcUbKqGPkyvuJx7/03yMcC6DGxN0aIIgSy/E//+9+xK7n82WfPUJOYRmsDdfM2f/PLCXeLm+ze3uM7/+QPUXMKX371C159/Jxcfsne40NizWA4snEWHk/u7nP52a/Y2qkgVcuMzq6YnxyhagLNzTLR6Jz58BpnuSRyvN9Nn6pFKyPjKw+ZeB4je4zn+DR9l4l9zcO3nqBvHZBRdSzXx9x8xH/2n/8J//Ef/0tenJ3x8mICUo533ixxdXbKZqmBzYzybplcq8YHH33JwcEtLF3ifHKB2dyitnOPyWzOOm1SL4rYESSKhqolaKJPmC9gSikeCiIRglohzLyBe9mh9vZbrOyAkheh2R7TpcNgLTE+eUHpzgMO3/4uzY23UdIGOSVle/8Bn3dgNugQrkM0MU9F8ynf36OSrEnVDaztEq1bOkVX4Ozqgkr7DhdXayQvhx7CqP8UawGCKGCvenz51QWDmUJ24wG/PBnTrmyRM++wXGfI5HSevNfkG280kJQtussbJGFE6Ay5uO5zHW9yp5Zn/9332bnzhJ1yETNy+Pz0nBcvJ5y//i3u5AYSEJUSk7lI6p+g7v+A3JMfkCntoUkaluLyi84JbxUNTl93iPUCZnMXWcny2VfPiS9GyLvv8+Dxt6iaRSYXr7CMJen4mrt37xDHNrISUihmqVWLpKnHKlphq2tCxUBUN6iUcjTqG4xGW5T0PIktcH3e5ZMv/4bp9SUblT3m3R79YQ8/dWk3ND76akW2baEsXsP0BCUNkIsH6LW3qWd11FIBAR8zC1pW4c//t78C4N/8J/8SI18gIiBjhjihTTeO2dt4E6nziqtnn/Dq+IyDnQJSTsOeTjh99VtmveekyyGZWGL/oILnz5C0EqFnk3hjStUMiCEPv/d73FYcyhmR/sTlpx+c8/vf+gHpww2Of/kzPGFF353xxfMLvv2D/5STq9/y6L0/5Ou37tK2GgxnEh8+e8bl8SVZ9T5FVWfWmfLiywt8KWZ7S+Pz4ynz5REEfQRvgTOP0WcjTjINdjYLpPksl7bP+PySNxp1nJMPeee9e1S2bhHoJjNm3HQbfPzxzznc3+Hqqsuzky8QSwtcx+Gt5gElWeX67HO8aE3r4DHjhczWva+DVcb1JkT9V4g3L1j6Np991uPW975Htb7LuDfi008/pD875+tvvMPo6As8QaRYLVKwChy9dvHsiN///g8xKwGXr44Ynkw4uPstXh6dcDWIiclTqdWIhZDz63O+89593nzymOfHPdTSPVRzE3Hp0iDidRSxWyrxVXeIWbb49sNdfvGzn+DJ93jy8B6pnHJ+dcHN1SW3d3eZTx3qBY16JiJJQtwwRfMSZs9e8Nmz11wtbQrZNrfq2xSLIZNpje71B7zz9a9Ra9xBFIqoYsCeNcM1Ktze20SZLRidXtGZLdFNi2FawRdTZtc9kuWcvKViyzrZ6gGL60tenZ8zmvjk0NH7f83G4x8QKTEb7SL5WgU528AKdJa9G269sUtS1LnqDxjNFtx+5z6//vwM9/Ir8qUiXhKwno+Jbq4Jyg3UgzK+VePWTovfe+8N/vD33qGSL6EXa0SzEeuLE6RIYOvgTb79sM4vP31FztoglZecHH3JRz//FLNRxxLqVMoimZzIYnTDtHOFtd3m+w836aV1NvwuO1u7lA/eYeXaXPVmPP4P/xhJjBjdnONM1rRzh5hSl04vYq6XaO80qW60OJ+pWC8/4vD+Q/rDBS86PXx7yW0tQVESHjx6yI//4hfU9YB7t6uUmiZnn/4pd958h99+csLB1g4PHzyhtbPP508/4mr+mj/8J3/EvH9DJCmUanVKfocvP31KJDQRDI07j+/z4OEOJW1G8etf45Of/oz8w31G8y7ji+e0FI+ffu6xfa+AfJVw9dvXPPvwY7rDi39/WPn6196lUikzGg0oKQFi2WTbFNGyVZIkRg1s7uzu0ZkFtN/4Pl7XgVmCv/b56a//lB88uM3J8AYpjFg7LtPVCs+e43ohBGPytRz2wsFbO5RLEuPRDXK2RFkrE8cBsQAZNc9s0kPGQ84YjHoLJMFk+9Z9zl91qFkXLPwVta0i+7ub3Ns4YLeyQZwv0cqbnJ31ubxZ4oVZarqEXyjz0a9/zObh2+RyJeIgwpGKlKwRcXqHzb0ioiSwmjisb/pE3gx3MkbfOED21/g3F6z6NjNnTZKpESUCop+yWNqM3BU/eu+HHHc+ZNNw8YHpYA6DLg8PZP6H/+W/IwwcBhdfsOy9xhACNvZMnry1w4cfPOfply/RlZT9nTouPufnv8VXN5mLNZL5FCMIULP36C1sagUPQxURvBFq6lMsb2EHcxZRQi5OCKcjEt9GtUTkgoCQugxH1/ihz2iucL0q8/a7d/jksxOqtSabu5sopshN/5h1d0wolhHmfXYefJ1KdQfBF9AyAkkyR5a2yDUPKOgmeuqQtWKWV1+xv3+fMBFQGZFNemSSAE/UWQYZdMtC9mXiQCLQBWQrZfqyx8bBJm5+C6/YQLJETp9+Slx8yIPH32bcdTg+PeV68JpkdI3vy1SVhNQPKVlVGpU6djRnv7hN67ACko8/nbLuzljZMfrmm5T8M/xSnqzsYeKglhpMSNEy20w9kTTMkJcEzGSIlka8/VYJze3RrhSOcAwAACAASURBVFnUN1pI1gZGpkr34oacluHsLGDqqOSaBXZqKYVmiZMbm+MXrzg7eYHrLnn34X2K6Wse7zzkyl1xcnzO7PKaRj3DG3fuUN6SKUgVGhmduimTUxTeffI289WMt+9+nZLZRkkFalmHkrVD4/A+u7fqCKHKauxiL2ecH13zB7//B0zTlHJRRdUUbD/l7bs1HFmmUd8hlylRkg1KokCcygTFTaxWCdIVi9GSaW/JfDpgMneYruYUGnXEvMnSdemfXLFTiBHDGWeXU9BLlKobGILEzfKcnd0nJM41mmYipzqT0xv++u9+AcD3v1kidVOUNEu1uoVZaDFlhllpcO+b36RYrRLOp1RbFc7PQn7+8mOiWReEHIHSQlZDemenlAtZejOXyJeI/YR+95w/+Tf/Naev+gxGIcfdETbwzrfe5d52jt9+NOLRky0CKUYWLZ7ce5d1cMb67JrDg22eX13xxckxnj3m8UaBcqtMb/KcxptvkW/tI4kySabI6HKEWdIIBkcs3YSlWMOIE04XOl+71+BquGKxCtAVDb1Q5ejTF3Bwh0+Ouiz6Y5QwIZHz6P4zfvRH/4zE93HCgETIoMRVKtYtMtmEj88+IpMxaVTaiEnC8PNjSnsaJ91nzBwRU8uyUyuRq91HVTXsKCRyhxC7hJHM8YXNP/veE5pvPaJzecMHv/41v/3oYzIISIbNMIhY+BLjhYObhhSqWfxgyb/40dvMZ306IwWEMo8PS/z1R68ZXrsEacrVZx+w7DyneqvA55MRo9Nzvrw6RasekDOrxPMhdx/c5vyrr3jynbeIQgcpDinlLPKlbbz1Nc9enbLWclxMI/pDl1a7jW/eZUHKYDkhXxFoHhQwNnf45sE+QrnE5MomxqRUkmgbl0yje/i9T+jfjLmaubiiSiNfItPcRej/nN6Fy62929SqWfrdY55PIrYqm/QWUx4//ibN/QPWmkCaqkSRyY/efoTfW3B13KXTW5BKWdzeAMMsc3V2jBb51EyDYLngu28c8tOPXiKFU7L5Om6Y4+OPXmAdPoLXr5mvTUYBdCcjBsdHeMUGf/lnf4mux3jZCq7VxlE1+s4nrNHY0iw2NgoohgEo3C2rfHp9juFfE8oZkDNU8kXutLfpDKdc3wzpjEacXVzSvThGiCI+vbzh7YrObz48odfzSBKFEA9TrSFUGwiLDqV8gb1buzx5uIFZKfKzv/sFMS6qWsEJBa7mHR49+AHHHRvF+4pau8xUUPjqekbqb6EKAy4mUwbTCZ1xn5U9RZci4uYmdV3hZuLjZDyMosKu9R57D59wcH+Le4dvENgCJ5cjLv2YD//0JxRMhZ2NOpNVymQpUMwY3H/yPrYi0agazEObq8EN3c7/D7Dy9juPaFRLuKM1q2XMt/749zh70UOTYsxiBilvsRqN6QUmOUnBtVcs1lOCaM3uVot19zW1ch1J1ElEBUFW0NEwdYlNQ2fl+giShGGZaFaWrz25w/7dLcrVDaplC9NUCaSEXMmk+7rDy/NzFtMFZlZhY7NIdWOL1bJPHOcRg4DlaETn8obOaMWdnW2WSURWjwnGHUZXV6iVKuuZz2QwZbO5SRzHuL5NwRS4vFnQ2t1kNenhJS6CISIpMB/N2XryHSxVwndtFoGHrSgU8/vcvDomcs6JpAyCapFVFAy9RK7icm/3MbJWQtFMJEXg9eufcauYwwlThhcXrJYRmlFhp6ry8M1demuXg3qFNFWYBbB3WOfFRy/YLeUpNauk8z7RdEg2nydfNLkORAqigVFpoFTboFXYeeM7VFt3EZ0As1Kh2N4mX6igi30aW5sI8xjbk7ByFfZaG1wcndLzXH754z/j4sVTJGfCdiVDdaeO4gsIuompl4gDGWdt40+PWEsF5sM++c1bZAyLOExxXLBKBTQ1RMqAVdDIZLMESZZ1VMOstkgjFd2so1klhDTGQkIxDFaxjhQNIOjj+iGV2hZ32zVyRpGjkxuOjl4x7J6jZAuY1bvMnZQ0U2Ti+nRHHfL8v1cynotRKOOHAbPFGifRmY8uUGs7BG5Kq5ql0jAYeR43/YSc6SOXmmQVjXrVYOuNFu3mNvXmPbIFi3Jjk5xpIrkBji1zeuMic0y9LNHabGIWN1gPbLzFENdOST0bRTRIhQIXvQGToIOhb1LZbCAIkMYOtxoy3cEKdzUijivkrTyFkoVUMMklKtl8gchPkEQZUUhwvDXb9Tqz06/wbq6Z21OceIQkTMhnLPYe7LJcugiRgG5Y5Et5nPGI0v4bZAOXZK0AGbB0hIyM74RopoKluoh4LJ0lpzdnyIZMobaJlCwg9pAFDTktEkhTjMhlNHbwkwRVjGkYMeVmBbXcwJAWSOGEyB0ymw/42c8+BaBZ2aPQuIuqZlh1zhmv59xu6KQeqMGa/s0FZ1cXCGFEISdxffSajTsPaO/fpV2vsVMp87KzpnN5zsG9+1SrNRCV39mmCwctD76k0trdo1wtc3J+TCCDMgt5ffwCSXQpmBmiQKDn9Lh+fsPBzl2mswVpGlJvlIhTmb29XTqjiP2tXWRBoDMcEApDtuoNwrlAmsZo2RxmsYrR2uLV6y/4/vvf5Oz1Cd2bEe7apyBBsVFHtEya7SKhuyDwfXYO7zFWVDonFySuwGLhE8QqRqHJIliz364grgXK5Tq2s+CLT3/NaAUmHqqkslev0SiWyeg12jsHzMfniJ4LqUjgRRC4bBQ8OrMFO4dfo5TLYGQkFM3EaBxyr1HH2r5Lf+Wiq3lyRoXZKuS9dx9jCjqRHJCu10jhmkxRYTkO2T68RaFSw/dX6FpMo2zRW9lkNvbQFiPUNKZoZag1G6xFmWq9zmA4ZnrVQ4xTBEXn85d9Dg82yWdiqo19Ui9Acgbc3sngCwlGxkYVItIYpuMl1xfXjOwI9/IKzV/iiBJqIc+DW5tEsyG/PDohm83TKpnULQlJCjATmedHz7H2tpALZeJMgVQvE03nnL38iHbewMrp2N4adz6hhMtX169pt5qsEFk4NrY9I9USNlq7HJ+9oqDnae1uohcynD1/xlT0yUkOZrGIliuSxhHBtEehkCAtQ8q7W2yUc1iJwnoKPjqpEPGH/8GPyFdKOK7LfDikKEUYUobffPkcWUjQMzqalSUjBHRXLnEScHrW5XLYxxNDWtkcsRlw0G4x7F8jKiJWsUgQR/zgyRZukDJaD5GUGFlXCRWZkgD9VZcgVpEllfV4zsnn56ylPId3H1FQZSq1LdqbG2xUTC7O1kSWys3RJ6RyhjCCZDZHW604OGxxOZhTqVVIPZ/p1TVK4hPJAdPzFb1Bj1qpxv7GPt5syvmLT9k62EUKulz1OswikTuP3mDPUrleLjDTGE1RqRdK3Ko0kUp5RqsRcWwz7A7pXl3THXT+P2HlHxWwlc0s2YJFNiMxHk0pNduE0WeIiY1CQsIamLPZ2COvhsSijhSHqILPchWiJ2CpEePUQTdzbKJRSa4Ze2vSIEUK1mgZHV1XyagCO1ttGjstBFFAlTQEQcQHkiTiMvAJvRXFZpPq1haaJoGRw3dUtOIGmdQhsl0c3yeWE077LkLGpNJU8JYLhuMR150OouvgxBKpKoOQEiLiuDatvXsMOldYhgRIRHFCIsiYGZ1COc/6ZkUqCWRKWYy8iZjGrNyQSlVB02SsXBZDU7kZXFE1RRamQixGJKKHL9oYuTx1q4zq2+QzLRANMtk8EmOmi5CSJlM08iTxmsnaI1jYNIu3kcKQrDvHRyDNVrBKVVQxppC5hRqsUbMphpFB0/KI+QL0E1ZthYzhoWkBSeTi5h+ixQsGsolqFCkVszSLMlmpjZVZcjE0ub44ZSWHbDby6EHIrgnTfIVo0SFNPQRRw15FjNYOBdnHdZdoUoIauYReiGTmWbgrihUTVc8SeibICzSlxCRUaBQNEkkhiXx0BxJ7RZrNsph2yWsOBDbB1MGLs6RqgLNaoaoKtdYOUMfMG5imTCIoLENwZQUMi6Wi0rvpsHYVxIKDoIQouQLxTCaybToTj5zsEysqK0FiEUBsltD0DL5SpNQsU89HlOsyilwkI8qkaUgcTYgTjZSEwDOQZZWJF+KmK/RoRkZX0NQA3/fwfYtcIY+uSERxyvncJac8YiWUUGdL6sUi1l2J1aDHaGKTX4dowgi/VMFzdVRFZO4sUCsWy9hHl2I0TUHGgJtTxGCBM0lIyzGKmSKYZUq3dC5Pu7TqRfoDGS9IyetA7LDWA8olAz3VmUYiczEktddI6YzIGRMpecLAQxBsKvUi4cohjFKSVCVwAqLIIxUUXC8lX6kQX1wixDFJEuC7E8R1BlO1sZcrFG9OJvbIxv7f60aj3cLMybhrh1SFw+0dGrmE3nTB9PWAheMRaRnOh3MqUYIap6SpTuh6hN4aL1/HcX2yqkoYRWSyIbWSjutvMemP2albDNYBURIQekuWsy7zYpFKJctV30ZwJPQ0JtZidKlGplxl1LkmcBwUMUWK1sztFYpxn7JmkNo2yOLv+iqsHJ3pnKZmsKaEqMTopoSSq1DP64wmHcLUQdIEMqZKrZ5BUbK4cUSxUEUqzVjPf1erPlwm+Fd9yvk8mZxFNqOxdLrMB2NGZQg9EbOskjEUMjkDa3MLfz5CzmwgsUJRUkTFZLxeU6nkOLq8QFcMolAiwKFUUnjWmbM38KiZFq3tPdbChOuBQ1wtocYJZckgW6uhyAo3/R6zZYgseCiSQJKsmMxcJmkO33PBzJLOZ9R3d4lCh+ncpmUUYPsAUxcZTmdISoqeK3B1tWSvtsnf/uTHlLMmVrGEj4ic1YhiHylVCGYO7mxBGAbI2TJNw2A0HaNnVOJYZO2mROEMN3iN119x784m5ZxJxtBwEp3X10+p7xxSzIQUpIQEnblmgb+kWN/EXSe40xFiEpIoGWQ5gSRGkQWWnk9ESjYrkbo5BGHC+fWA0Mii5GV2DAsEAyH2GaxdClbK2nYRRA8rp7NYXnNrd5fBaM18vCaNfQQ8gtEAJTEQ0yWpJxEHARExTv8aRY6x3RjH84n9AC2RkZRNvKCPaJhMVj6qFWEUTE46AzY2N9nMaYjdAdJihIJHZzpCz6VczLuUSgXMagU1V2Dcm3Kw/wa/+PTXrOd9RCmLqGosV3MWkkswumbj7rcxLYP1dMS62yexXaTNHeJZj/V8SF4xadbyvDrvYs6nRLHOaLxCW4fIYYIuyMyWEkEYIYkiVj5HJokIE5+lF9Kb2+jYhNMZ/asRcupT32xwdP4ae3JJZ7BG1OsUuIN1d5enr44JgwhTl8hZGeRcjrPjc+SNHBITQkT8VPuHOeQfAyuiZqDlCuQKFnr3iihIyRckNCVAcEdIYY9cIU/5bhtvtcDz8+iSgOhO+OToNd+822Y2v8EOlkiiScnQEUoZ3IXEEB8jKyOJKoYqUskLpGKCLirI+gohiVGVHEU9y013hpEVUYlp7e7T3j9Ay4gsQhHD0PBlA1NTUHImVqQh5hv85sWag7qGWKxgNDy03oTjF08xNJ8QhVhNSVMJJxBYrD2+8WiXX/3lT/ja+28hSTr+0iN0QsqVKpHdZT6ZEqYBuUqGZrPEcryk0KqwsV1AFn9nkWSMDKveNVlfZpZeIUkivjvDW49pNvdY+xHNuoi0s4Gi6KQxjHoGL6/6WLHK2gkxdBlVUpldjtndfcB0fkUwGCEnAoV6i0J5A3vZ5V6ljTMdESoRVqlIu71Jd3VDsArJlgpo9MjEK0RZgOwD3OsPiSptmuUChYyGJIe89+473Liv+MbuPf6PP/8JL776nC+fX1OzDB49KOEXTJSohxRFpKmF48kslhPad8o4iyGit8RSEhQZupOYvCmRl1RiScMXZCIxQNJU5vOI7VaBdZwQhWAZFVxRJlj7RKseo2mAECXEjk9ntkCu1MnoE7KmQbndQs/nEOIl4uAlG02Fk3GIUSggZTKc9K5YjWdcdRXCZMTOrSaNdgtJcjGsCpedK5SNDDNbwvY1REnHapbIqFk8FLLlAvliisKcVE0RnC7zySWenxKgEykFDLFK2YqYiAXOzqcoyTXbGy77WyKRmkWMTRTLQxU9jDTmsNKmlN7haDClc3pGtaZRKde4up4gSCKENonrsJ4tmKgimbVKks+SjEVkPSUOHELbJ17FXD39HKllEisWcmijCzpqaZtwueDyk3OePNzD8WW8oYeUSNS2tnnpX5Ov75BVs4QrgenKwV7OqTclVtMB01jHW/nEvstmM8841nCWM9RiG9dxmS+6yGKMu4qI97dRjQWyooEgsg5c4tUULY7pTF2sNMAQUhQv/Xvd2D2o460mzH2PbHOTRw8eMb56jipMCT0fy8ijtYv0xjbH50PMQpnFeEA4jwgzCrMkC+6Kg8ePmY7HKOGUsqFTUHVW8YissyK0PQa9LmniUCkXKSoWspWjtdnGkhJSN4ZMTC27yfqWzbBzRCRbSAKsxmPG7oJVkpCTHJzlAiNv0aoUSNKYD15+wvZ7e4iKRSK4CIqHKUi8sbHBy6OnKJZBM5cnq5vkaybuKiYrwmqwRhVkcoUsc2fF6PyCzXyJpT8hm89j5lWC6yuYTjk6cwm9CnJBwipmOXz0hHrzFq9/+mMSP+W626FSMqiWRF6dXvP1vQpOv0dG14nDhLWgE2UruAScX46wNhVSKUuIzfDmNZ2SSE2TqMQKsiQTZRRylsKz11c8aav4YcJ0teJmuiKcJ2T9EReXXXJen8bdh9gRnD79lHvtBoKqsvXgMdHJKWKakIQ2aSDSvxwQu2uUUoFUVUglmd39DWz3HHshEQYjJqsZsqmBsYsYR3i+DqKGpqpkVQNVLRI6E74Yemy8aXKQM9GA08sZH3Uc/tWffAun+wHeyiFQqmRKbXTniieHezz9pIcVhcjehNEsQpAiDu+9g29PsBcBelbGKpisUMgWY5x1SBAtqBZTtmpFZLHKB7/6BMW0cCOHy7MJshSzvdNCdXsU6reYDr5kPpsRpiGpJBK6kEQxwfCKCIMklZALHtFsDdGaLz59ip2IkKiUjDJkNph6A/a39wl9Dz8WEcKU/jLgjVtl7u/UECs15uMu0ahDb7imHoo8n0x4sn+baq1CqspoosbIyTAed1n2++iFFjE6s+EIp1BBC9bUixZGtYKRk0niBe58xWDSx4hgOB3is6ZQ2WbNEmO2JJ9r4AUr3MjB0EwUS+f5zRxJ1VmMF2TLWbb3NrATAW8cEadzNsSE2J1xeQlbh7u89fAx/+2//e+ZjeakoUAtnzB99ZLk3gZVVWfhrJCISbM6CyHm6NUJ337wR8TDHhlNRTPMf5BD/nG/gZ7cYWtzH03bxPT6VDe3CQwPI1oj45PqKpFRpfDmt+hcfYprx5CESMIaJZjgz1Y87we09t9EjiZ409dkKzXWRoGMERMrKaLgUChobN8/YBXdIHgOrmyR+j4ENn4cczxIkFnztz/9nHatTa1YIIhiDnf2iFcduqd9VG+AJDrIGY2aXqPSqDO8viZVFBaTKYPLG8ZDh1M/4H5LIKcpdG+WdHs2elaj8+pzer0z/CCGbAHFzBGuHIRam+7giEnnijSNkGSDNMlhFRu0GtAuWwwWawbzCUJis92usH24jeIvEFQTQZCIZhNefvQZxWyeMI6ZI6FkoFm0aGx+g8E4odTaZNLrEcfq7zJBoY1YLNMqBwy7Y8h45KqgJymKUSabiYkTl0ytRqJb9G6GCJHGdLZicv5rZtMuYaCgJSW8ySVp4wHvfv17lAQbKbYJVY357IZ1qvLkbpOsUcJeB0xGQ9qNEqvhhPaj2xj1u0wHS66/+owkXCEKWUxLJEUkcRWU2CBf1HjW6dCq6cwTE1uRcHWFhZqj1/V4/6DO0JmjywmVgkaumKORrRK+/Iy1rfPxBz9jOOqzefCE8vY+jSDPx6fXrH2H0J4i2VPubmzzxdEFuwdtNtuHVAsKq9kJP/v5hzQ39zi6OMJUQRZzRFEG3fRRciUWyw7DgYCVMdlrldnbrTObOjjdEVvbEqYWIIkxqqbiLW3C6ZLjQczC8xgPxwwvOlR3FdzFimwuwh04qEaO/GYZ/+Qr0uo2t7erdM7PeP76ksv+gkYqoRdCvJMugpVnOJ4x7XR4dGebKMzjhz4rcY8wlPFdm2USUWvUWU9cavKC48sbvnx2wvT0hCshg5UOsb2Q8c1z8qbEm197m7/5u7/koPUWrc0sCTGKLCHJMhe+x+26RmpIzEch3lokiBQuXI8n9w/54ucfMHd+N4kKUsr88gv23vqPCOavMJY9lsseK2eOsnYZTZYYlkC79gB7sWa1nrCxv82Dd77B8UkTXU+Q0xVze8nRcMlnn70AIK9vMFssQDSxrNuMh33OT85x/JDtr73Hzv0DGuU8jdYd7FfPOXj/a4xG51Rree4/fAyCRDr2ePD1t5n0ntOfTZn6Mpqk85vnv6FSaVF78zG7pSK79S02Hv9TKoHLxJYpmRnUBPr9Ec+Pj9kwcthxFjm6oWVJ5I0s8yjPs57Brb09VqsOxfwW+VyDMAr59Ke/IE1XhEaVcq2OpQboicPt+h7i5BVHwxWP7rxBSTVZ9abcnHUJ99tYuTqf/epXjOcTSo0Wb915xPNnH/MH3/8jwsklvfmCjJTlh/sPWSLSn/dQixXUSCQMYtKsxtdubfKTv/wFNXmXm/6S1doljR3OO0fsHe6ip7eJw5jJdEwURDy495j5+IJEzLG7tUmwXDO4uiFVs2RMldJei8nVOceXHV6cXzIanXD7zSdUsBlPM8y6NyTejGKxSMkX+Oijn/Pm/Rb1ahMljHBnfV56AZbTodXeRiAD6ynx/Ay1fZf/8d/+N/wX/+W/xl65CIlAs1plNbNp1KoY1i5hRiRUY3JFgwfb2/yvP/0L/umdEqKkE9kCOVnn0aO7SGWND/7mNfLqlIwIUawxmNj8P6y9V69siXmm96xYq2pVjrt21c7ppD59TududiApDUVSGmlGGmMEA+MA2IDhX2D/Ad/4buAr+8I2BA/sMWYoaSiRItVkk53j6ZN2PGen2rtyXrVy8gUB+8r2GPKf+PB8+N73e+J6gqU4Jh4/xxISpIpFbq1l2Wg0SeolXn3pBvWtPcJAY37eJRXH3HvzH2H1pkxP9omnE5JaFi8l8GBi8uObK1QlD380Y2FE1Lb3+Okv9rm3o1HIBQyGBr2BQ6GSpnLnbSIvYqsWoGkzRDGkUtyhupRidDFE10MaKyssbzRIN9Jkbr5FSfEIp23OWiNanT7uYshuvYkogjUdsFqrIKWSjByb+81lvvj8EGvyjJOLHqKcolptYo58MtkMf/iDt+iNRzz8/Avaz8/YfuVlPvv5T5iOJMpJCyGhMXIVZkbI/b17SMqU49NrzJmLEgQkvSlMp5RurNLcukOmcZNkcZWFKfDbX33Jm1t3cTWNRBxTyJcprKwSKGMuXJvv3f99nnz2GedPvkKLLF55+R2at15BsxZoks9ypczG+ipRNoM6mPH55x9Q0EpkMg0kWcEcP2Rkx9zYWefnv/gUNw7JF3NIkcChYvNH99/lkw9+xbJsk4zmfH10CvwDMys3Nt+kuvoCcUGj/eDXlOsFaqtVumdP6HVbBGKG8saPcSYBD7865/D4IfNxC39icPWwy/snJ9Rv38RezGlkq6xVmnQGp2zev8fg4pJmrUZBElBCCEkhXg+ZOzNy6TSiVsIVi9ieRE6ZctWbktGTzEMVIxLIlnTy8phM8SapapXJ0UMGF1NmUx3z4CvE4ir5nS32v3jK5fkFghaxVNUQHRXTTTO0NKzpDMmfE6ky7aefYGtFXn5lk1y+hO96BN4Vvldn1B3S77RZ29hidfMGhqXy6YdtBv6cTreHKiSRBJHebMTQ05kOPUazMr3r57SPDjCHFi//8D1+8N1/wtFiyk6jhGQJXJy6KKkS67UtJCJCtYEkaUSzEdNWH12+ZDCUuLW+QTrK4JkJ5FqV7UKaTCpLXEhjWT3iWY8sCudfH+EffkDsQyzHuIqMnyzwwt0dXr33EqPeKaVigVjI8uhgwC8/O+ZG0uTxkys+/PaSKJti494mh+dX7KwXubeeobp+g6uJw7cnFziRwMbeHraTwAxVNElBCCOedebk1jf4+ts25coeGTdAnE4JBbhTS3FOTBj4qJKIEsSEc5OJc8ZX1zGS/ZQX7r/KS699j+XGElouxefXQ2qJOUPDZzj1mM0szts9dr/7Lo1mmUFvzOnRCacHpxhtn8ru9xj4LlVJo5QIyOghqeISmFmuzvpoqVvYQkyg+Syv1/nmo1/y7uv/FLWgkkhXSIg6mCYzqchlZ8RsMsUazIiCCDEl8ejLz9ByCnL/mmKtAkmZ68szJq0j7v/oX/Dk2TNEB1arZSrlLJ/sP+Oz9z9igsXb771KtbGJHSoM+kd8uP8V33n7v4TQpFhJUV0uoakiYVKk9fCvae8fkxh1yeFjaVkkTeLg8QFSSiWp6RTzCXLZKVHC5+jsnOadlxgG0O3NMMYOO6/cZSW8ZDyUmMUZ/GiKLve49cI95j2F3HIeq31EsLCQpQy6JBCO95F0gb6rsDAc3JnJ2JLZfveHfOfVt1nLLiChQWkVrdFgPrJ468UmcSpLnFklpa+ScRR++eGvACitLfHG6ytUywm6/R613WW+c+9N9ocilaVleq0Lfv137/P0+ZA33r6NHySppSqE44iLwzZWGNIOImb7fZZyNubcwg+T/N6Pv8v91IKRF/LZB58Sej6yFHP6+AvOriaE6oLF9Snl5iZKscqg1+GVW7sEi4hQCViqyvgsOB/1uNvUmaLyxkvv8NKLK4Siy8PnPc6CCE+weP3uNs+OzgnGPZp5BYpFPnj8Mau1bfxEgYVhEJkdlLDPFx8cspxPkM8XqC81SCs55kOfN378GsPRnNHslNFkzHxiYJg2C2lGLtfgve//M5o7W8wFhcfPh8zPDnn/yy/53gurLNJw2L7m+PCcaILj4gAAIABJREFUt976Ppef/jXrm5ts3l1HyqUYGxZhd87a7k22Gw3G+5/imV2WVovs7FQxxp8ynORo3ttFVZMEvRHqvMcPvv+nHFr7JAWVZLJIfekGd3ZfJnd7jc54SNJfYiVfYK1cIKUW+PI3h9y59x6NWhJiH03VCbwE/+q//1949a238a0E6vIGEiKLyyuCQoaHn5/z5WgAboJbjQZ7q8s8em6wp4k8vZpwePoIY9ZDS2ro1TX+zf/wP1J+4w10ySOT0YhEl9H0mu2lCmEyjStN8Q2D/kWH/cNzisU8v/i3f82Hx/tcH1ySVbPceettfDXDR3/1U3Rxxp1336G5tY7sLKglm8wiBToX6JUN6tsvUKo3OLs8xy+u84MXVvl3v/gtliZT21ji4uEx66UqKxuruG6EFuVIOhKzs0PMhc2XrU8YThRaQwHXtLiZi/juS+/xk7/5LVsv3MI1BjTrRd770T/muDfC6HxFOhvQarcxBmMKkoCcFrmdkPnt02v2dpZJFTI860549vgJHXREd0QunqMGPr4vYVgKd+69Qac7ZzSfsXrjBm+89iZ3anvsn7WZuj6b91+luVQgdB0uRhavvbROVslhi1NECZJCiI7D1s4WR6fnKOYlB6en9Cd9MomIYuUOlUVMShKZkya3fofM2i0+O7viZ3/x32KdnXM+MSCbRUllePz1NfuH5+xtrRMraZr1DNvbFZTVTfwwxSQWyRfvU13awXZ9nhx+SwaTR1/9FTvbbyEXNZ4Prnj69PwfDis72w0ajRqVSoH1nYjZlY2+lCabiAidGfZixM6NFb7sSMi1Zf7oO/eoJERGc4vae39Mt+Pxw++/ye7SCtlEzNiacDjzsScTtu68S2z1idUAB4nBmUl19zZauUFSVykuL5Oo1jAUlZwyQHYEfLHGy3fuspRJc/X8jAAP4+kDVnJVNu69ipauMe0MEDfLDJ9/Tr2QRdE8pFQa5DwBPu3WkP3HX+LGM8ZGj/5kxHQR8PzwKSuNZWQhz7PzGccnz7BGx2RUh9nVE+7cf5G0ImNPhoDL3RsVlutJEkKBQG+gl9a50dhkJa2hmkUuxzbmxKBYXmbn/hvEscqF1WM5K9Dbf4S7iEln12k962E6Aqslg2opiR/4zOcGRdXnWqqTSG/Sf24QihZKUcLyM6SFiPnkFN+ckUZjMQr59NOnJM1PuA5yPGlf8PxsyLAfg5imVlDpTy+ZuxOedCNaY49qVuQ//MFLlPINNHFM+/khJ998w+XRc3Zv3sFG5On+NV4kcXY1pDd2uLGzR8+I8DIZUqpOFMY4uEglAfNSpHqngCmoRCmNKJXH9DKQEFHdOb5n0u+36PR7zAwfvzVm6/aN3zl4ajVCx6b7+DHmk1+gFHSkQCRdKJFQBezFEGMyYKeaxFd8Ktk8jhPz7HrKydAgnbOJDQtTcKmmJW6VUjSLSc4uIqp1kX7/gIQc0Sg3WS81qWYkHj/5itfefAUl6uNYQ0RtjenZNS0rx9iZMw0KjGYCo3YXJ61i9gUMBUICFrMRs6mBVHqFhDLmo5//JbPRhHxGZWVJJa9O+af/4j/ASr/K/vU5YWBS1CSuz8/JyToeKs1KipWVDMWyTiQofPzgl7zz7ttoWppADzCiEc6ow0qhzFyo4Ywv8GIfLVMhn10nsDV6LYf8jReoLi1jO3MuOye8eHMPP3OPn/z6iuXaLihp2nOTpZxI2pewUhZCrBP4AYt5l9lkgmD2iMSAW+UC5aVl0utbNPdWKdgt1m7f4Omly7BjohgGFdnn3kvv4c4ekNMSOPEcMemjZyT++id/C8B//uc/JC3VODsd8WT/G04enNDumPzhD+7RP9infzkkU1hjubbCVfsZ9du7LDyfmWshyhbr+QUDQ+GdV3XuvfYusRcwH10g6iIfnvvsP5kwsWa4UoCjRPgJgW8++y1K7U02yhpXkwuG5oi1tQ168oLW/jOUtXt883zEs+MOVTnBq9//PvbC58NPP0URRbRUgii2uHzwKa+82kQMtlkQAjK4adxQYXbYZv/kOYatkUmXWdnYYGlrnavjZyhENKo10kWFnnHJbz59Hy+f55tff4llGExnE8aOSJC5yX/xx3+GVkry5LjF4w8/wJ30uXFzCycIWM28wP7F18R6hWaxzkY6gTmf4RbzZPUyp8f7yOGUlbzAk48+oXjrHl/87Ffoy3dZ+CLty1Ms2+PT5zpLyjn2wQNarR5htsQrb73Br9//K1zH5uD0Gsv3EZSIhdXm+MlH3L/3LpLZIdQVDC3NJJDoXzyk0ZA4OBrhGSO65+c8+eaIRjNN6tYrvPb6LrEgYhlzBDy2NldprHhYnVPWdtYYjIcc7e+zslzgy6sDYkvj5orG7dUq9XwC1zwnl32NZSnD0m6ZrVsbrNbK1BSV3dff4XD/tyxXtsnklhFkmcm0z+ffnvDGK29gBh6hopHIS+TKIaLeoFLTaDkRqj/DDCW6QgHv+kuyJZfOyCcZ2FxcHvPk8JCip0D6EZXlJpNhB3/mko7zvP7qD3BLFX7z60dMZ0cgmjhywHkMqbUXfyfbDUxefmGd+6/cQ6ltc/78E/7kR/8cggyNtZdI6nm6Zw+5u13mN/uf8ML9P0dxRNKpPEvru1RLYOWLZMspiqUV2ictBgf7/PH33mE8eo5er/HhFz1yzW1efPUVekd98gWTeNrh1dffpVCu41hz3FmLp1fHjM7PWa6WCY0B/fYll70Jp6MZotdGkbKY8yHTSZf+cMCD3/yG3/vDP6Nx7zUK5TILw+TkrEdz4wX2v/6UWbbGWr3IUj0Lugrk2GluoohZJN+jf/2c1sVTSumQ337zLXfvrFOr6Mxdla6hoxcbFAsitt/Bbj0l6fVxLJuLkcLu668jdyWqhRHpfJPhROKbB1/9w2Hl7t077G7vkE0VOW45rOgLLLXIaDSEOCadznNxOSSQS+RruySkJH4s4IYe3bNDesaYZUkknS3SD3+nVL9+NmClbFMp30XNVgm1FGTSZNZW0QWV5WqWer2IbzkE8yl67HDw8AKj3aPXG+BbC7JJgRvbS5TLS+i7tzntjRiM+giSTH6pien4tActRpdX+DbEsoYTB1w/O8IgQvWHlIsllla3yZWqDM+PUYoVMnmFqb3AGrVI+AalWp2MMyKRVBDjBXPPw1VlUkUZddFhZMzYSs+RYg9JDJBSMWdWAjewWa5qrO1WaWw0KeSKpAKRrw4eo9key8sVSvkyiUAiJwn4UUzHElHlBPXaMrX6MqOZwaI/Y/HsgqiYIF3QSaoyfjijKAwJUiWEhcVs6mEvbDLCnKHj8azTw/NcJL2OLGn4kwvOr7qM7IjtzXtklSy6kiShapj2M5q7L3J69pD5aIGoKuTrJW5s3uFWc5fG9ipPj48Z9ecUC8tkdjZpz2RwQlx/yjy2mCPjuhUuwhR5PSB2Q4pSgC6E2E5AIbbQMjpFTaTbvqTf+11zYJHMEM3OsXMKg5HLZOAS+qAmdZBEXDvEcjwE1yURxvRjFTmeU8hs4bbbeL5Ftppno67x2YefkVF94kiinM/TqGUpZiJCFJ4PnrFS3aReL1EqJUglRfYPT9jZuc3qegbH85kbJpP5Bccnp7i+jeBZEDnEUYAQqxTTOr1Oi0rzPpP5mDAOaNTq7OWSuLLIsDfizu1N8rUqE0fAthckE1UsxyAlOkTGEHPcJaPJuJJPxjap6BnEpMLcipmcRtS2CzxvTcloaXxzgrkY40URcdfkztYeh/uPmY4jnFAmysjc2HmBb3/6b3n57e/SmU9pWyZKeZn6yk3+9t/9DdXai1wPFwyHBmkhQT6bQa83uHtrk05vhuhF5GKR+WjAd97+DtlGhsz6Hj4Bgr+gmitjXx/Qafd49myAJDgUSqDnFFQ1Ac41yeQKklJAJMFsOOTnf/t3APz+n/+nzJ2IbK7Ia2+8xWw05noyZxy7LOQQV45xHIN43CJVX2d3xSEpGuiCTUaRSeaXUWKFIHOLg8sHqKLA9sodpNQSsRBiOzHLxQR3lsuslZaRtQbbJYl4bLCxt4GsRCxmLhdnDu2HX/Di/U08f8piapLXs2w1q3RPj+gHOrPeIaGcxnUWhMYpgjRjp3yb2TxAiycoqsQskDh9dEpFi9Fuvkh1qYY37dJvnRAgsZcrcWnZhLGLT4jnWMSTLssrG6QzDZbSASEqSjLDUjWBM29hmyPU8IrqcpaAkIMn+2QLdV58uYYcLGg0d9hZXWGnUSSXUEkuv8zlUYvFcIiWypMpr6CoHsW0wcRw0coZ2rMJnc419XjKa++9hYxHXlFQ83XidJmFMSbqHLK5voQzCcCNkRUZtZBEGo1Yy0nMPZv5wqV71ad7dkU1V2VhXLOxWqB92WPmhOhrTSYmNGsV0uaCJ4cH7B88pn9xgeKmqe5tkC/t4g0vsKc9HDeg3R0Qhg5pReHm3V0uujZH5w7bd15HikYIHDMbjXG8BD4SUTzn5NQgdnuM3JBIltDTaZaKS9yubXDiQyqaUVsqg6hwdtTi7OuvyEVDen5MJpUglc2gpROkvSlhusruyjqekGVshwyncy4uByh6CW9mspxKUVAVJBwEdU7Lr3Ly9Qds3noJX1AZjccIvs1M1NCVIYWCRrm0jCqpjLqX/Oznv2Lg6sxbRyw8E8d3cQ2Hk2eXbFRryMkUvatzxrMhc8/hsqeQKFeRPIFocEkyAbWVVcKFTatzTd+ckpRT1JbqpDJpfHsKwYgiMsfjPq32BYHRo1FUePXVP+DR83MyioqzMLHNBZoU8vKLr3NyeE59+w4rlTK5nM40Dvj6s8esbZboX14jhwZRHOAjs9HIY5gG773xEp99c4Ax6NCQTQ6ffIywEEkua9y//xKlfAlrvmDUHSEUy+S1AsXyHp61wDc6lJIq7cWCm9UaUmBDuUJpe4/7t/d49MVj7q8sMxegc9bh+MlTnl9d/j/Cyr9XwBbPJHQNAjGm1tjGOr8kNl300hZCMoM3uMQaesyDBXGiQyTLhKbN1DIZGi0ET6I9NlFHE2wtJlI8kikPzwiYTXvopRypXB1VhGxCRbMDPCVi0F1gjkYEjoWsCsRGTG9uoci/80YYVkDRi6jJKZKVAtF0zqDTYTz30GQXrDl3XniL/SfHqGKEKPgkVY3NvdvMLy9R2SSbyVEs5IlimKyuoCkJzNkA1+qhuDaakkC2bczAQkxlmUzHhEkHMTJxzS6B4BGnUpjZBoIqEDgx46FLLiMQCDMi20VKlnHMmPFiimjM0a0WaCtMDR8FF9HPEGeWCDsTNFGl1ekTuja1jMJSPU8is8QXFz9DjIsYtoDoimhizHBxhaXrKDMDO44RFYV8KcXzbsTcC6hk0jiEmMEMx5twPe5S3NxE0xIYgzGR46LldDKlDZ6cdDnrDBnbC3K5DI3mGvVinmAW0vY9gsUCMRKJFI3QTuE7z5kbIUpBR1QE4tBnMp8RZWOs3oTG5jaCGGDbBlKUZGTa7CwXWQwMNClNQpgzGbRJVxQMGRjPMGcacqyglUpYVoRmDKltLDGwLMb9BVMDRM/k2Umb+TRgr5QgXS6SyhXQ0k2K+TopxaBUKKFks8wEmVIiQFCGNIol7LlNLpenUFExzBZJvQYZDduPECKJ+cTg0ZNHuLZMophCjjy0hEZCUbEFBcMao2dljLmJ6UqIxIi+QZQYMrcrNJdKFJIRqmDiI+BZBp99/BlOsk6ulCKZrqAoKt6gRz7jIlkaERFRoCAmsiTKCpGmMhcEJmGKQmGdfCww7x5iD0+pvf0DhFQZyTUJzIjROMbxZTwhizcekC7nKRQrzBY+xsjg4Mzg5dsQEyErKrKssTBcMkUJPdbJBDFxFCBpMkuNBqX6CovpMcZ8wmA0YDaeY8xFHF8n6repl7YoFksUqwUy5SLTaYeUYqMvrgm0Jmg51HTx/xwbk8GM2F8gaUCcIJUpk3Y6pBXld4H22QRvNkLMlVmtpkhKaTxJwnVtpkaAm8+RSXc4PHyCkhrhxDKmHKOXfOLIpVhWKShFFFxs08ARZC5PepSqeQ6eHCKmdSSlgC7PMS2TpaUig4NnVNJVRCnJ9WKE2VtQuJEgEhM4w2v6ZgIXDzlZZLqw6Hcn2PY1sQSykqGclvDUDIYxpphUkdISE1/m9GrKvb11WufX5LMSCCUSeoPGZkTKG3LSmrOcypGVTPLZBM1Gg4v2AZnAIpsrImu/E3dmkz62ZSAJeerrd0DJEkoiC1KIBZ3u5Rmyt6DSbBCLIp3WFbn6Ku3rE3RFI8bCC+YIElTq2xgTm2R2GS+WyaopNEVgPA9IlWq4XszKWpPB1MQRBJQoiRTJDP0Uc2GClhJQ7RCnP0dIrtDuOGzegGQxA7GEkFKwL23Wm2WePfiWq8Gc6cRFmRuMrs4ptxO48gqiJKFoSbQwRPJtkvWbyOaMs6sFl32TwLUIzT6yaHHaHZJRigxbXUzDob5awewb5JUMWqZALq2TkQRCccFF7xolqZDLNkjJv4MbQdKR3BaF5h7B43PsjIpiGGCPSbghZhixVUyxmDkkJZlaJUtiqUmuVAZxRFYvMjOvsZw5m0sVri/bSOEC0ZwghzGyq+HLKgUhJiFmuOp0sYMpehamc5OklsYyhkipLKFvI0UBsizSmYwppBtkNRk5kycWPDxPpHv1iJV7W4y7XaqKT0oT8EULX9MwLJd6JUu+WsbxDJ6dTsipoGUyIAmML9u4zoJUMYdSWOZqNOPOvTsYlxfk8ilSuRruYkq1VqCxusXB+QXx+gppTSG2odjYYDbpMJpI5HUIfI/A93h2ekJ9fQVJDIgTOrOZw6gzolbIUHQdFlICNeFSKmqsrq1gVIukbZFaKYmoSEgJBSkpYPgTBGeKN9EJYwnP9xGtOaLmkfQWBLkN/MWcWAUhEf/f4sf/J1gJbBPHWRDKUKukuD6VSNgzymuvYk11Jq1rlFDGdDzGh1+gJ0v49pSF2cNL6MihQdcMkEcz0vmIguYgrqj0TgzE1Cm53DZaskgYJ8h4Iel0gkf9IU7vGhYTAtcmimFjY43OQqGey4G8hC9oXPcWJIQJujMkH4v4ks94YjMx5uhJgWyqTLIcYod9bGNCLOZoLK+j92Z4tSZyDIrvocgyqzdepJ4U+eSX7yNaNomkSkJTEcwBlpYkIWWIIxMZh9hysRceZiVNIZtkEGTIawWEUMMeWeTCObY9ZraYY4+nRGISJxTQ5Zh6GpIaTGYThFghqSXxZJmkLFBQA0Z9k7a9QMpKVHWB3NYeX376AQvLR3BNBEkmq8hMYoH+uEfGj5D0EE1L4icKSKJIJEgk9RyB7WD5Jh4RaV2iUszg+CaWPSL0XRKKSrV2l5/+xV/ijieEgcNyrcnNlW0SqQwPDg74dt6iYEeIqMxNG+m8jz9tgZMk1HXUQCSKbabjOUUhi2HaqNvreL6Ab3tIks+lO2LFLDKcumhykWI6oGufonkBYn4ZwRyRVhKQUnAxmVg6jWiOIkK1JCCQxLJkdNug019wffkL8q/cJ9aTBJKOqKjs7uzim2ekSzkEScUixpIShOEVq+Ua5/4UJRWipsB3Y0rlJiNzjBc0CHyTQXfMoweXlOvL6KpNPi2SUlREVIKEh2lHlIpZZvNrAilJ5MTMu11OlRHKUsS9aoHFYoEWeYRhjDEZcnFpEhQToCokqkk0XSAazNFIEGXKeJKCEiYRpQxxFQbTEUK6zEJIUcnmyAYRkvucsdHFUQMylQqSF6PEEr4Bl0dHCIVdOpcdVhp1iuj0nl1w2T3BmEdYsz7JpIwgqgRewGQ8JyF26CzGZAMTKRURa2lym+t4xAz7Jo7VZmh4LGwJ3zKQ9TJZHdaaObKFBqnSKqlSGdv6kIXrosQzbL+IkCqSyhf+rx3nuoeelzHsGdNxh3JtlyheUFUkJkECnySRouLoWTTJwwnKOL5KfzKg3bHYqnikUhHj4TFr27vMRmOGwwN2vDFRvkYUW6TULJ61wPQNbFweHV3xnWaefqtNsrZGpVhkpeRjW2WiKEdCSJBLZ7HDiOvJFCdQaaoCXiCTEjyIJWZRms36GpFg4hod5oFP6DvkFIuVG1ucOwKzkyPkUo50pYgnyzx71GblpQQIUChkyGXz+FKeKJNFNr5lPjjDF1aoFEMatQy1So126xBZ0gmkJVwjRAp8GgWFq8mA/qACcY449Agin1CUSeWKtK7eZ69UoFQt0ut3uX5+Qrx+i+uex0ahBKJAQrSRUhFaeZkvn87YWZcgkSWXUtClGMtXsfUsra7B3p095vE1i8mUcKEThNAPM5iuT7acRE8rqKZB1xzhxDo2SdKVJJLlMJtOCLwpkuBzcnmFJRfIFpZIaRJ2YGB12xi5NMgaQlIkq4rslCQGVIl9g+cH5wRyTKkiYw4PmfkJ+kYCvZFDCkGIYkQxTyYVkRZkEoUyeV1G8UxGE5vjyTU3y9sk0ytE5gABn2I+T7pZJ7m0BV8eE4YCnukSDwYEokuiIeETk1QCdClASyrs3dzGdkRakxmmrDMVU9gqLNVXONz/mmqlRGh20eQ8STWLFfk0dY2EmOe6e87MH6E7PpYb0NjeICnayOUtzGmHwDIQfA81IdAazdjcSyNrWVIiZBIqg9ZXCOICc9JB39pAUWG0mGCJIhPD4OXcHtlKgbNWm+FgRG13l0hVcEIHPV1ElZPo2QJqrsnjh9/w9mu7fN0+R9BSqJkkrm/jhjbN5QpPv/kWSU1QTKYxByaN3ZtIfg8ngoULoS+hhhGDboe9vTu0+kMqS1UcJcawuzQ2tiiaE07QmPWvkEWR4lKR5WwD5+sT9IKGoLqomQRynGPmuxREh+vLNj4msWRiLea03IBSwmMYxSQkmVwtR7qX/X/lkH+vM9DW1k02d25TKpc5evoVq5s5FtMxWq6MFWv05y5u/4zU5hYH3/yK2WjGYDRg6oQUSvfw/X2sSUSQL5KOYkrEJColvnr8mHVBZmVrB3uxoNu6ZNgf4joDTvefo6lTEokQUcsgZRts1GUSaZHV4i20TAVVSxIDX1yd8sHf/QJj2qahz6im08jaCm5S4y/+5/+J5sZdjk4vODg7pXV9Re+4Q8L0CNMe3nCBMrPQI4FMcZnX33mNsy9/TULX0GpLpMpZsgkHJVskWbvJWtEhrarkUhlW62XkQol04S6Smied0MknXNSww0efDUgFLVTSTEZ9ZN9is1qmubnDXEwjSTOyxQLp/BKoOq47ZHu1Rndus5xpEItphoaDPh8hFXw651cMhh6qaJFQpkzcEdWl25y2RyhSkliQ8OMYTwzIZItctc6IpAJZvUBSFBA9k++9+zaFfJKuKVHJy9TqaaRMisUE/u7Xf49iOexuFrl14ybNlTuktSRXJ+cMu0d0FklsRyZYTDnqHBFGGYqVNI49JHAsItMnHE0xry+JlqpgWMh2iOIFWJMep50nLEYOUrYClkRGSrCy1YBkiWy2jK7KVJtlnNjm6dkFgryNlkvws7/8S9LSnFqtRrq+ixFn8FyfjNBDTeUxIo3ZIkLsT9HlMYVmFWs+JytFlLNJPJKUQ5eeecEr3/tH+JKLY9u8uPs99k+P8IYL7ty6Q7vX5uHBEWftKaMoQWj3qK+uIPgeru0RSEkKxRKjRZ9EMsL3PUTfQ4l9JpFLWq/w6OgavbjEwrA4PTphsoh46dYeQlqiJlvMO8+Y9S7ZqS9z9rxPqVhCkbMEYoqhE/CsO8C3WizcCqWlJeJZH3/aRdIkPtk/onojT9JdMJ97eBHoqkd//9dI2dtYswBZLzDseRx8ecXZ83P80WNurVaYznymIxPfMBACi4vTY2TzkGpdo7BRJ7u+SXV5h6vrQ07PRixsg4SSZaWyyt2NBvnYYu1WmW77ijCRR8g2sKUEy0UVo33MvRffIk7W8MQElj3nb/71vwbgn7z6e2TSRaYLn/nC50c/fJvDwYSzx19zZ+82t+/eI1WucPz0MSlRJ07oRP6cTvuaeb/H/aqMmi8jV7ZQ9E30VJpGIWY1b5BfXueTbw9Yk3NUckmyuoTqeySWygRmzGvvvYEmCkSzOUlRwUpq+LNVNvYKzMc9UsGIF1cTtK5mmILI4Oo5d998jep6k5Qm8p03vs9GNYXR/pqd198jXWiwmM5wMSnmJTSxyM37L6JJMuPrHq3eiO2NJe4WEixvrZNMKAihj42KisvujZf58uufUtyssXZrD8mbEbUH3P7un9KVBeRoDuM2o9NzPEsgbtzkyccPkGKTVEJFlXQCySHOqjiRg301xp7McB2L9qNj6mtVmjdWCWKRyB4hOm3MSRcqr9L7+q/YunGHZK7OzBLo9oYM2w8xuz6x0iSaXZEwz9GDBWM3JpuOkScz8ApIgkIiOeLk7ITGrdusbq4y7g+ZnrcJOhMM3+H64pRpyyC7VGJtb4XmVpOJHXF7c5Nsc4nn55f4rsJ6Y5t7t7b5/Jf/jrI4Qw8MKms1CuuruLbPQb/H3u117ITE5o077K6tEnfOf9fq04q4wQxViBD8EMcOUTduEiorKOkAx5zgjefEc4t4SWd+IWF5PsvVFQr5LJIe40Q2r73yCjNDIZEVGc8mtK+76GkPw57z1deHyFoeMZ0nk9cpxCP2z2es3LiBlNNxSjUcRYL+CUtrdQbdC5L5LLIs4ExHWL1rKOaQzB6KGxE4DvOZy7hnU03JPJv0yCRW6Z0dklRMNnbqkGviWhdkhQTN5QaF1VsEmSZfffQ+recXrDYbFPUssQMaadYaezw4PSIRDGg2XySXrZBLpVgr6QihgICLHwv0xgKtroHtzUkLCv3TfTbW1pk6Et3RkCicQabGbV2ntxijpQpUcmXW81kalYjZIsnMsKmUFJrLErm8wHRgEFRyyEoT5gamE2DGErHn8ejpV4yVNZp1HVGIsOc+4SQkWaky7l6QSTnkCxKaKOB0bVx7gCMVyedrxJFJu3XOweE58A/MrLzz3u+vEsxhAAAgAElEQVTRWF/GsNrsNFbYnxrkG/fwplO0yKGaVZmc7VOu2yzVd7juRgSBgK5LzL0hu2trXB19Ql2GmaNwFRfRy0vY7TZCVqI9nNDrtbi4uuSTh6eMOh4/eqvJrZLE/Ve/y+1X3iSXifnol495OPA5vxyjxTFLpTTN9TI3qlne+9EfsaxC78LlrGdjSQ6vreQpNEocTGTC+QVpz0CybU76R1BfZ3qZY9I+ojO9YmT0yI7P2f/siv/sv/6vEESNcNFFk0JWbr9N0hsStz2qmxskimnQk4RqmVU1xcrWFmvZOZEn4glpCsurfO+9lyk01nCskEmo0hvaHD98xhdfPCVREXgyniOoNoF1QTA7ZKkU8/DhYzL5FaYzhYU1wfOuWNh97t3cpt9tk3IiVpcrbN/YZHNtjX53gKOYnHe7mJ5KJlNiYyWF7XRJjEXWUhGaZpMvSWyulJhOZ/zjP/mPefDxT5nO+sjJNKqa4Wd/+VPkeZ/NzRfxxCSLKGDsjHl8esmg1WN9Z5NcbYn5ok2r9RRRllnJzZhLRcRsncV4yrRzhqCMmF8+JZsuoebKhGJIt3/FV18+4OKjhxyPuiRQSVfqaNUyqixyY7lJSleQVZnj5wMEW+Dd3V0KSYlpKs+f//Mfc3hh8IsPH3Lw5AEvlVJs3bpD7CaJ80tEjoDbHnIx7PH4+cesrrzMSrFIIZmBUMbzfKprLnFlBXMakyntUm3ew7Jcnne/RhVLPD/rsHCGTMw5jw47OJMOcvI1XPeC1ZxOIZdhSoQ9z3D55H0ivUgpnUaWJVx8GkUJ31ZIxRCFEZPhACXy+MPvfQdHSPPivS3iyKG6vkF9bZ3Wgy9QSzJrq3skmnXyK1nqDZmVQsxZ32PRf05MEjmpoOhpolhnPGjx3ne/z/7TK2Q5QbFSQErnOLOXUWODvuMg6SHD7gmnTz5CN7u8/e6f8c3HvySby5ArJ0loc5bCCxRvxp0f/ieQiikUa6jkef8Xv0SPhxy2i1TrEWlNxLVdLiZdRokRKSuC6Yj5ZZfpVQ/P8ekM+7y8uc215yCpKRAynLRsPvyb/xWAs+GYtDpjNeOylAxpD0YEvsN7t19hFuYZWg54A+LhPi+89AcMrlsEchZr0MeZtfF3dvH7Z9hulacPv2I+HyAmCzjKTeYRBLMFHbfF0cUVve6cbDbFbnkTKZ1gEUs416eE8xFypcw/+/13ML0+07DC2XULW47J794it1xErbzAxppOsWhQSgnkxAI//9tP+PtffUw2f4th1yCtiuRLaX72268IiXjnxe+CnuT87JTr6zaFapPWl+/z9nt/iu2NGbTGTIcOoery7Ktfky3f5ebmEpNpRPtiRkFLkNptkEgm+Jv//SesNOus3ngDU93jonfN9u03GLh5ZMUkWLTonT3ik88/4NbtBjWxwPJynuXlHPWlCvX1G9y4vc1Zf8TTx1+QTiapVNf58tFTlKmNImh8/Ohz2pbP1A559vVHvPT2HyH7GtcDi/vvvMfGi/f5+sk+fT9BemmXnTu3iBSB616fo+M2g+4VUrGIYCSwZY9A9RDiBfmMwb17L9Ny5mhKFSWWSAou7y5XWb+7R2DGfHNxQjYpsFVWOO485Pq4TWl9g6eTAbgRdVGjmMsx6fdZXl9nS0nw8OOP+PjLLxFrS8jBBWHZo3vxgPHZJfYsQC83eGE1xb/8l/8NChXEdIoomcQPRPLeiNdfqdIfntBQVVQpw1guYRTK5K2ADw4PeHTUQfJ8GgWds4XH9OyI7/3gzyA06V8f0rl4znAokywX8QQRMSzgx2mSkspmKslpuMH19Jx37xXxTIvZ3KFQyFD3U+ze/z7HH/2MmeDD0iaJ6l2GgzFL63n87oja5k1KK8sI4pSMFvGXvzxjL5XAtWL2L1pcTtu883uvsBiNCQrrlDd2WCoViSyDn/z9b0k0TDpfHPDa6z9gZM4473eRs03+t3/z36FJDW5ubvLS1g67GzcRKjt80zvk6bdPSGnrnI9MpKTM/ZvrjNtn/OjHv8/109+gJXQyaRVJs+i4Gl8dW9zfzbBaSBEvbDwz5IU33+HTr7/GvXrKXIno9/q0D065XsDa3RtkhgMGjss3Dx5x+OQxkhQyXbi8dW+TE0tn1Fkw6znMlTqv/OAe33z6d1R3Xubqas7+k2d0Oq3/H2Dlh99ld32VeGhyNDV56eabnB8vcAwfSXOIxAFX+1e88Sf/EadPDshWlhD1JJPZDOuqi75yG0f0SEUGgqcBOpE6Q7EDRv02z65cmptl/uD7t/nz33+bd16/z6PONVezAR99cchvf/UbWgef8WJjhdLmNnJqjevzS46en9GeWaznsziTUyKvhKZXSGZTuLHPZ8cuQvFVPv/gbxHmF4iKDymRtOxgeQLNNOSkBTklRogirgyf3Zdf4Pr4AXl1RqVaIl9bQ1J0uqcDCm/+iKJ/RibhUcoXaFRXWF7f5nq2gugJJPQ0+UyCUlIhX63SvTCx3QnTeYtCOubOdgVNusR3FLRSgnqxQlrLEDsx1kGXau1VhGiKEBokhQma4OJToWrFSGkZW4nx5TRyILIcdBgoLifnDlNLpJTykIIpT49GXA0t3vn+60ztIVagIKeKZOsNtOoOP/3p57h41Os3EeUSV50etnHNeHCGmsqwkq+zUltBT5cYnYaUdpsYl89ZWt7ANBdMxx1urywxHU2J9QrG5TOSbkhKkBl0n9PIqAwnUGrs4HUXdJ4e0Wo9xcek5km8c/8dEqUiauF3T/VawzmXD/c52b/Gsn3a/T4ff/2AzmJGtT3lyaNHTEeHFCWfslRgf+Sw3FBYe2EP37S4Pj/j+vyYhN3Fq99BncTklssUljKUa0lKtTyLqc1avUGh2EBLl1ksQp4dnKEmQgqqwtllFz9RAymLN25j+x6K1yFfqKAUKhhqms7cYv/zf4VQXOFWRsZQc4SiRNq3OOn5JJe2qTbWSbptdpcU7uwsc9m6ZJadEhoKpqQRAElFYe/OyxSTMQR9CstFFPn/IO09eyxPrDu955/DzTnVrdhV1dVVHaYnD8khh0HJK0vC2lgtFos1jH1jw/Yn8MfwC79YG14vLBkyoF1DkEQuKZEckhN6Znp6OndXvlV16+Z8/zn4BQHDr9YC9CUOnnPOc87PYD6Jubpc4g4H/PLHPyFqXWMNJziBjZp1qVUyXH/2lFJxi9gxiCOBRCpAbT3k4HYWaTRi2hmxHFpoko4vK4TTDsl6jUzGQlyeE/Y7CFKJ5G6DTc3AqO8RCQa9qyMOL59Sq2WZTjrs7uyhaU0cT0MUPTbSe2ga7L3zp+R27pGs5ignY4zCCv/xS5fWo09xlwt0AvRpl7/96W8F23/5z/6Uu7sHiGaBXphEkHcwdI87B2nOB22Gk3O8oMe1LzC7eE22niQTBghRRLbe4DsffZefPDijlHTYqjbwFiNOzl4xWDho0zG35AghtUlhvU6UUvnyZMLWGw3mL4/ouhMyiST333yP9z/6Pv/z//Z/MCzsMht59M+fMute4MwjCptr9HsLTj7/Fe2LBehZytt1jIxEftlm4MC9O5sE4YIXRxeUi2+wZuYQYofzw59TzMi8+9Z91lfKBBen/MfPPuHzpy8YSSmMQpFqOKPx5tsM/IinT5+i5/JUmzlC94JXn50wWE4QZzNUQUIJQgqqgJbPkjNURocfU6lmwcjhqWX+9X/731PWIOXbPDk/4bLTZTHzeDkRubO2w9H5Q9579/fJZlaZT+Y0s0ne+egHfHP5lHff+xY5e4Daf8ndN/eZuxaXoy5rJRUjtpnNXBZKFUWYUqo0SMkKK1mVorkkDK5RmxuU09s8P35AMyOxU1ihnLxJWtmgfXrC3f03cCIBVRbQBIEff/qQ9jLk+OnPCeN1OhcTXj1/QbF8wPbKkvLaB8hamnypyFIU+enTI5bLmF1tycC3eH5yhWvZvHmzzub+2/yHn33FjXwNLZ9FzOdQEmWeng2oZ7fYXr9L7/qQebeLESo8f/UbXj2/pLr1A457Ng+ePOf6qsWPfvQBlfwm/c6Ck2GXMCWhJGSuPnmAM4OVnRsUUgkiFyJBp7TbxLLmHD9rs75uYi9eMLx6TBQJDOOYNV3FczUSZpHpwubXn3/O+x/c4dHjHoooIAg++URMLRvzya9/zr3v/D6lvZuMXn1C7+iQhZNE8BOcXI8Q812Ojlvksln2d7Z59PE5h602f7SzSrpcxdXTLKIIaXnKnRsbPLpIMyXEkCQUdL4+vWY7LXJDElHVgKvpkOOrU6bt1+yV6qRWItrHHdY28uxsFYk9n5OrCc9ezVDiFGIwJpFWKK7uo0zTTLq/YMQK14MhbgxqsszwckFSfw7yCuvrW1TLefSsylIMGTy8IHfnbSp7B+yvVKkoEl+9uuatN79NKg3re++TyyUJRZ+x7zPr97h3/7vImkIxLRDYYx4/ef6Ph5WPvvdDSrU61+MxabVMrqFz/tWvKcojZAMmookeGUxCAckd4C9lJDFBMaFyQzrjcHDF9v6HvD7uEFhD8poPYpbl7JS19X32D97CRGXcmTK2FjTVEaOJwFolTzaXxzSLQI1DX8M5f4HmLVnd3aLerCPOJ1w+f8n52SnRfIAjx2imSSmVo5DK8sWLjzGVc6KEgROKKCjs3HyT6eUS25mhahHEImEAghogTccsHY319W0yq2uEZophb8lmWuBo0iKVVRASaVDSCCTxoxwZXSKQIyJVA0kiCG0uBqeYfsjzL3/OsHXEcjD9rRzb3KFQqtG7nDJrnTI+O8ef29S2d5gadUaJIql8BV8x6M4X9M8fk1BUzHyJR68umMwWLJcTDs+OsOMC1Y0DgvkVsehiJFOsFBtI7ozZ4hJfLmImsxQyEXl9iOhHjJYab39nCyPXICCJG4S0Ri2M/C4NRaKpx+STBoKu01leIFoOmr4kXyugJbLISoFlEFMsV+gOHMpp0LIKgiGTFwRaowXvvPsOa4WYaDknEhVyq6vEk3PWb26SLNdImGmmlsyXJxYJJsjjFkZRJVZNjGSCeiWJ5LqMLIHz7qfkzBGVcp5EdQtXMygLLhf9EUkiJsMO3VGH5mqDs/aYO/f3yRg6idhCFV2CRJpiqYkFOFSZhxq+EJDNhgwcgfj5F1wAQjRH9GaEYgIlyrNkhKwqTKcDYm9KPatRMGu8863fIVx5EwOXnCZQrFXYXUtweXZM0nPJpTVi3WToiEyXDldnCyaejOt6qEGMZPl0jq9gOWAhOVyNYuaSgphOoAcyn/zkL4mnLn64QDSzaLFAon/G9toOarQgFh0K6zmSRR3bmpPZ2iKwJsiRx9q6iaQ49IZjNtcbPO+cU07EJOIAU5MxMwliRWFz6w7WfAaaRu/qgtbzbwhHbe7deAt8mZPxnIvrKwgctnd3Sad6bG+v88uHX9Lvj0ibKRqrTdCqbGY9ylWTWZhgbsVgTfjZL38BQKHSYPft22QaecbzEVfDOeL1c3LNt1DSaaQwxBs4aEqJvWaOq2mfYmqFpCkwn57zd3/zKb/3wSb9joWuZMlpGllNwZUF7r19l/PxgmIpwdyKaF+Mkbrn3L7Z5OHnD5BDGT2bZBrMefXqObfevM/J18e0Tj9jrZ6hmi+zHNu4gYNhnXKw2SClCNiLJdedKdZMJ6mmydcLdJcqXSeABNRSIIWQWW+i52oEToLFyEPQYs4XAs9OTsklRG7UGqwWyyhSTOfZa6pbRdYTDu7UIrJhvbbK+cJElkW++5371BIyrdMjfvL5Z8xtn/139picX+IOezjjMaHtYI26uDOfw15EtZKhUi0TSgZXpy36Sorxq3O2bhTxlz0GF5dIaprfnLfYbmjcunOXWrlKOlcjyq5QTcgoegnNLCEGLsH0Grt/wenhBRXN48FXvyFaeChyjijZoCCm0fwBw9GIZLZAKltA1lWe9OaMXY98pchsOcYNlmiGyhvbO1xeTVgoMqoG/qKHNx+RNBOExR3Gw2t6yyOs0EaSJFaTEoI+p9vzefLkDEOVyOXTXHRsgrFPKS9zcnhNOplkdW2FdDbF4NnXJAq136YqZ6GykgA95sHjHn/yX/4ptm9hZjMU8usUM010acGjL5+iLMesrdWxF0teP3tFrIRMQ52b1RSRItEfjhj2eoiBzUfvv8WDL48R3DbDo2Ouj64ZThz+cH+XEAdh0cEhxMjk2N/YISdFxCs5mB3Tn4lEYpJaySCbqZHbukmKkNiNSSQT5PMaogAbmyWqKxvsVirkdB3bC0k1imzdusOjl8/xAhtrHhP4BrVmmVx5n2cvP+Hmzi6L8ZDTk1fYkc9b773LV0+fMlu4pJMJttebbG5s8/NHPbRAZexarNZMJD/g9PWAuyt5PNFl6J9jyCGFXIlkYYVzX6W4mmYyWVLKa6RSMrPZiE8+/gIjuUWznuHouE2318Gx5swuLQS9RrWocXR6SKd1CpHA3t4BeaGD55eQ3BalrIkuirSePODaS3D0xQNOroecnpxwfHjEdafzn4SVf5BgG8YhEQqikieWDUIrwGVAqKZBKBFRprpdot05wgs84nhJRomRVBgYBUQ5w+DVE9aqOcQ4geXOsY6/wcgpWEubZMIiKco4vsqr1pjZ4RFqbh07VPEDGVXQyFUSTEZTOouA7ZpKHNskRIFcNeIiViimNrGWLk53yHA8I51KkdU0up0L7m82mfkiXuBB4DO4aFNIFpg7PXQlRiBGiXwCHyZDiYphEUg6ejJPQRJZjGWc7pxkPCYQckhKGU3OIIQacpQkNFWEsYOk60iKSGgHWMsJsh2Sb+wSCAqT0ZjB1KLk6rihh6Rl6Q+uMASRZKGGXm1gv7yitnWX6fUFznyANxrS648J3i3x8uIEzxPoDYf0hYi1yh6ZlMd0fIKh+khSGlNNoSg+rm9jJCswdBGUJZEOnqKjiAa7+2skVJ/h/BIvyqIl8qxW9+l0z+nHS5JRitloRDRvU0tHXBxOiDSJXCijiQEJycUNp9z/1h9w+pd/iYqComSIFIVYX6AaAuSyLAILyfDIixKeoDBKrdE4uIukKlhuTChK5BIQ2RFRPotptRjPMyz9JJIYo5gOcjSjqG/iBRauoJNVoFjQmGGSUMGzpoQCIIr0lhZ79SLzxYSsERKqoMgJEoUSji3gORqyaaJKCoqkIgci3qNHTGyNQPERQhlJADMVoVZzhG0ZNV0nJXtUsmm2N3fQ32qComMOl/QRWCyXTGdDJCGiVCrQu5gjqUliLyCMAzZKJnkzwywSEQIRyXOQJQ8/l0BOS6iE5Nwl0rwNfoAT5Fjfe5uUek530iay+yiuRq25Q0pekrp1i/bgCk/TEGSNlBBwedampsxRNBHfszAVl/WywHLSxsg3EYMxrqegqgkyuoFiJHj18ox7d24xHbaZ9jsIkkp+8za2nqO4leDRg68gXJLN5IitkNet5xiLJTlFJlHIkMtlCX2J0bCN7C64desW+VBjMprQfXn1/9YNLRjSujhFMnUm4wGmqlO/cYAQuyyHXcLZkrScRpF1YsFBmoY42QBFkpDlFKqm4dgJkkAlIRHqBrGQx3E8rF6Lqa4Qdq9IZCqsr6/R1UOu2m3aXkgzWWY2Dxj0rrA9qFY38adz6rUmDh7WbEzkzIknRXIHt0nMJpw5PewIMkr2t9d/KxV0Z4a1mBN7PklFR88JxCakZJFWZ4k19UhqCQqFNM21Jm9Y1yh+SEo3kESPKOhz2euhzxvk9Tpm0WHph3SWAe/dW+NvH71gdTJnejWgs/ApVMuIgo1jeywcC0lX0bQESVknZUIqYSPJIotJiG9o6JkEGztlXhw/RHTmPH72hNhbEMdQq9whfv4rzFKFw2+eIWtpBEnBm3WJhJhZ64z1G3dxI5GlKyIqCXIJk6xZpCL2EAWJqR9j+3B/o8b5hcC9e3WsyGbmh8S6QO/ymGIy4qp1RrJkEgkqtrXkynJIGhJHrRE3VmRKpTSWKSHpAaLkcD3zKKRSRJGMNYlxRj4vL45Ya96lWq6SSgnYfsDp+YzaakBg1Ji7j7kcGCQmAesZAdtxEJgycefomSSxnMCWoLqxTyjnmYxesL62SagqdK+HDC/OOT4csFIosZlbI/YtlopMEIo0ylkSa9ucHh4zmy9RNQlv7hI7HuuVJNNpj2KhTiFb51X7nPPzNtOURirdRFRklpZDtzehr0iEUg+751Apb5EpFLDHFqLgkhZD+t0ecbREJcSfhfSmFiv3CkwmEr2TLqqikKkaJLWYsRJjlioMh9cosoWZqaMlk5yevOTg7jaLcRtdkWisVWhNLRa+y9XUInJCsqk008SMaOGgqAGKFJDNWqRNlVK2jmlU8YMxrVaHQrmIPR8xGE8RzC5Sv8eyXMG0uth9Hy3UMeSIRj3P2s0DDOs1edNi5GoEUY6NmoOeqaMYJtJ0hKKo6KqEKi6Iigrnwxmrkwmu5zKa+aDmKHttzmKVO5trnJ8dYlv2/y+H/INgZTybsbAdFM3ExsOf+0QEkM4SSAl8WyC3Wmcxv+B0IqHpAgnZJfBdbDFNtbzG9Rc/4+D+bVDS9DodZsOXrO/9Dsuxy+DqFVIph5FOklU0BucOW7WIXvcSN04QGyaSGZNTJbSNm2hFk9l0Qjh3qJU1Vm8fsFKo8vXj1/jXXZZzl6U9wlIjzESalFZBiZYIhkqEx9HFNZlyDdkwiewxuioiSBqjwYJYMYlFBUfSkJQEuqJgGC7HY59UoY7rZonDEsgZliGYqFihTFYREaOI2BcJUCCS8TyH0soNJFMjvjxl0B1iD8fMiCGXJ5HKktQ1jFwdy4uwx0P861Nml0dEwQIlDEglM2CkuRhck8tt0h/NmNsWmdouafEVrfMrRFGimCmgaybjZZdIVajXVhhZJzjWDM/TQauSlArUawZRJGBPO3giaGaJpJZCsgf0hABR9Ul7LqY4JFUuoKk609DHcXx830aILbTIp9JYIZMWCW2bpCyh6FlG4xmZnIHtiyAmSKRUdMMlWPg0bxyQW1mFMIknJRETOuWUSDywcaQi8eAVwszGmRssfBE9N6Ysx2xvvs1Vt89sMiBcjohVhUWqTEOJGAkz1ESKTKpEZzhhY3WHfqtFJVVFyOcQjSSykWGxmAIJBCkmmVSQVA1/KRLbNsNIRQzmxGGKWJHRNAsjBaVcCSlhkkvkKFer1FZ3KN3Y5uHDp8SjcyaDPqPxEN9bMPdUDnYaiPKcycJGEn0SWkhGM0jls6RdCRsJQ4/RUiJGLoFopEjMfUSpR7BcsJyCI8fs3H2Hc1lFbdng2BRNn9raCmaiQ1StY4gwmirEroQupxD9GCFpELgu9kJCU0xWSgJHrTFblX2W7RGibuBFOmGksLFS4enfPST5wW1Oz3tYC4dEroZWLTIIQ2LRIA5D6pUMNxplrIGN7+ucXXRYv3kLo5BBIGLc6TIZDZnYPru7G6R0jcCUGfx/KspKuYC/tBmM5ziLJc2ajpAuYlkzOudnSJFEpdwkQuZiNCKllVi6MbquY6QbZMpzji4tmqk8CcVmHLl4qkLGyONOXpMqrDO8viZXgkK1wDi0OLs8IbeyQq65RTC4JnAXqFqC0HLY3KgimdCZDgnsEYbu4oQqjb23GP/k/8ZGI9Q0EFWSpoKQzhEv2+iqRLT0iSwfqVkEIcLudehdnBKioJdXiAQZUxXZ365ijSGWVRbOAiWw6bkSuVmIIKcxCnmiwKLf67FaM3HcJcdHZ/R6U5LpDO+9cYd5/5RFt401X5AtNclVGuT1FOWyTO/8a27WV3g9E1i6EZLuIpkCpjdmHNmcX/dJKSG5RJJAiNgs51GiBEfHZ9iyjJrQSEYBQWmDs6Nn3NleYaFrLOMMWdNEFQJSyTIHWzJS2aRnWwwvr2E7Tza7hisHOPMBPiqeoDC9vqDWMPETJrpg4CMxspZ0+tdkC6ssLlrI9RJaJkcgS8wXU+SBh0QZVTCxFhbTnsVo6pNWC1QrWfK6jOs5dAcTUkkXo5JiHpTJ5HT8GEZjl3xigRP7LKZD5rMrUsb6b9PtjRSbWyIXx2csrAWBNSX25zjTC0b2KZKWRlUjBM/BiKGUSBIisLe2xiQWCWIwDZ1Qipj3ppy9OqSYNxnPTbKVVVKmxvW8y+lgiBuaROkVgsmY0ajHwLYhn2f0/JCUnGUrZZA1RaYjHxWXeDpgORsTTHvgQRjnsd0IKba4PhzQaw8xTIMVKUFGVplO+qSViJ4zQ1QDxEBlNnTpdo5orDS4On9JOptDSWTAdri+aIGsIwoCs7mD3RnhKRLVTMAyDJGsObETIIk6yaLEUWuAqRlIYgYrnBNNZsAZKc/mopckvZzheAYjISCTUdhYXcXMZNEjg0JGxponmHoZ0pkFRlLBlWKyikk+nyFjxIwHHXpTmf5yjhKBOHVwY4VEpUluOkHKrPPO3U3SCYH29RUvXr38T3LIP2gNVF3dIJ3PoRsCtj0gKavML6+pb9/BjwSGVyc0yjnMUpqLyzmFdApJBc9bUnBdKgWJWZxgNLdQYpmUouIHM773o3+KGydYXn/KNJiRKCb50f0yBwcbFDNlzntnSEmDIIy4OGphpkv84IPfYT4fMl8s6Q9chgOFW299REKCy9YJeqlJKltFcAVOh3PeeO8eo8szgtkSA4msnqSeKzCzx2gljeFoTEJTSKR0LqczciWJpbRHffsGxVyewPE4Ojzk+OwUo7CP5SvIoo4TS7TdAFMRiW2ftXqMMJ7hzpY4moDtxaTVkGA5R0/qiFKIvRhizybEUoznBtxaL1ArZAgch2mvw1TI8fnnP6VcFjFzCbRUip31GnbLIk5KNFZv4zkegW9RqGcJZzDz88QxrK3kMZMKR50pq40KN/MKQk7ECkGVNNYKWVJaClU4I1u7y3gs4HkySDHHrS8wlzZLV0V0HcqaQiVR5PU4YG/rAFGcAjaBrBCIKaZDHy2dIwTGo2syRZNssURvqC1Sy5UAACAASURBVKDpNjk1TyK/gZJK4ikynmjww7dv4AguUWMHtZgj0GT6XkwxJeJcTAkCAckdIbgDFssxrVc9QjT2mlvojOmNOrw87RH0FiSzWcJ+DyWnkskU0IQ0rfaAmaghDq+4sZYhW6sQpStYkUZB9An0GMt1MHWDjK6BZ9OaQufwCxQJIlQCwUSS04TWDLO6gWq9JFbTmMU1qrUKRhzzm48fcnR5ytXFCYQhuXyVSFBxhy1ubaVY2iFJNWYtKyLMHTqhSrWZIJnw0LIplGSapNNj4iskQxiGEmNbwrJdhGCAqilYiswNZU4jZ1KqmmRrApmVtxhYM0S1SBwY2AObxfWcN96/T9uTsIZd0NcQlSyK4FGrl6gnJJ60u+SyJWJRwhF87ryxjjGfkNRGPG5ZuHGOUq5ENhUzHo95+bALosXtO+vs3Wgg2Ra3PvoObUTUMGAyXNDv9LEmbbSUxsibIS59Xr44YtTtkZIEfvqLjwH4o//iv2FrcwtZFJktHJLJMocvHhHGWYbDMXpCorhewjMzPD0ecmNvn/lCwExkMFIaj578mvlsSvPWGovJgO5szEJUSdV2aBRl8uk61jxCMCIcb8LwuM/cgv/sB29Qz5SRNBktm6TRqLC9VeT+/QMOv/lbys1VNpp1ktGSUWDyx9/a4ze/+Xs2t++jGEUuun32N5oU1TLp6CVRMsVoajGdzGjc3EXwZVqPviAQxqSSLoVkQE6P+ObwHNP8bVNjWR7TiU0kl+h0NUorVcTFBNMw0VUNZzrm8+dP2UhqqJ6HF/pUamXeuXuL9Uya89NvGF9Y5AsmK8069ZVNrAj+4s/+ijs39imv1lDkiOvWOV98/YJv33qDi4suzRubVAsFhMDjpHfOrVsfInoagRwx7h8z7ByjZnJU9+7w9MURd7ZUDFFG13OU1+pIjkXsB2Saq5SaBTxvxqtXzxlYInfXb/Hx3/97BCNJobqKLCk8fvqCtKyx9eYd/Ms5o26ALZrkjAXHvQXGVYvi9hbLWKDduqZ7eI0zt7hVr3HWa9M6P8KZ91jbXuF/+K//JYrQI3Yc5jMIkKg0ZbLpGhupCklZoJgvoqMxvRgT+Gdc9gXm7TYppUClskKtXmAxuKD/8inGSg1nbhOMhsTWlMeXU9788B220yLT3pzTsz5j22d9e5XVG/f4+S//mg/e3qNayDLrj7g8PsaaDpknMuhKEUnT8D0bw4rIlZLMrDbR1Ofp02+w3Tk/+PBN1psqj1+12Wk2wJsS2jNy6RT1UoF2f0pGE7nsTug4MaTTbDdyVFSHx599SXXvPm4Q0T0/5NatXYJpm6tvPkNJJ8jnMiSFmOWgS5St8vgXn2AaEWetS54/PkSauSSkGL1QI2+Y+LGMradQ6g3Kbo9TKc/86AzFkemOFnx92iITC/zJ99/h4esjImRwfdzZlNLtd7g6PsF0BqjVHMPI56I7Ia8UOTqz2NlfpXXSoTOwsEMfN54xisF0R0SLkLValbWVCsHS4oufPCStelzPfMyUSTGXQFUkPKPGjUJEMq9TWt3A9mM+/+QT4B/prPzu733Iwe49gpnB6Oohi9mcgw9/l+uexXIyJGv4XHVbtM8es50OGIw9QiwSSYmJ1cTw+px0T6k06si6jO1M0SKo197h0a9+jKJNWa9sIS81fv2Tn3GQdXj0+JjtN3/ASmGHbOYG5up9Lttd/qd/8+94p7zGbG4zmvWx5xc8+tUv+LN/97/zor1AUgVk2WfhzXjWuuZ//Bf/nIunvyI2ZVRJRrVcpGBMTVO4DEpI+SZLy8Mej9lYqXJ23OLuWwfUi1mSgsb5izP+/M/+nOzeBsOLIWZ9H99PELox+YREzhO5mAZMbRNFswgFm8lY5GYlyyRIYBRTzK8uWZz18Po248EpvjZh5cYeJ6dTXj1/jDM/4d697/H8XKFWynDr1h5JrYBvh7jimPj8JTtv3+f87JCj46cosc2399Y5vOxiCUuqkocg2Cx8FzFUqYhTDqMa9tCiUUpSzZjMOjM+fvmS0BsxGi1R0xLZcp5UqsJqfZsXX3fI7uxSEZfY8wUnlohcrBKcPSchJ5AiBcHMsRQlzl8/oLG1wY2Ddzk5PEaLI4pmjCZ1qDarpG69S3T8Gl1SKJTKNAo6zXSR+loZfzYiCubYnsdiGqAOrnl99TX2bIonqgSKi2lM+M7de7Smv+TTv/sNvYsemhKxupVm9fYBuZzIzfvfY3P/gFSujB0EXI3OWUs6pFY3uLf9BpMgS3cO9woqT69aNEt15qM5gSsiCwqK6POr33yKu1gi6gUwVUTBQrFHSCmNWDMwxAQpwUMRQuaBxMXhl8zOHuDOLN56+zbrd++hleu83QyYqU1ELcQwM5jJDKJqIMUCsmrQH3dY27lLRjGxBm1OnQ7bNzbRCzdQhQz+vM1i1mJsi3D4HCW3QNRKFJs7ZFcP8Ar7eKU6KzmBs+scoyAm0F1EfcHVVYvBYkw+XcILB7jzPtbY43W3z8a976DGU+KJSyKKKJoK15MpRsJhISiU8hskJQ8x6rKyWkVPNXnwi88wVmpEfsT4qo3jDYkXMwqJKv3FlJOLM5b+ku27uzS3N7iR2aS6UeO81+LJi6/55vFXXLSuAahX3kHSI0zFpVHIsP39j7i9W6fXek6qAJs7a+xu32S/Wcch4sWrhxRLSVzZoTNbUE7u8803f0VWEphGA1xXx5tHDPofI1sD0hmDxVKn3Z7S645IJFSy+RwNzeHJjz9Fk0VqK6sYeoqLFz/m68/OERIGo1afRX+Olm+gV4oErTNCpUrWTLJdS3OjbvLXP/4JN25t8LAlc/riFVI4Zn0jT6NcRfH7VEsyA8/EDVXmi5Cnz8d44RhPNhkJOu2LKePOAj2X5U//5AOuL6+56h/xctjhVesCqzvkD771OySKZcrpPIv5CMeZIGkS6doGvbHEyeCKcDxEDj20lIoWR7y2Yx49ueJnf/8Lnp60UHNl/smHH7G46JDNhaRXt/FlAUE1ubn7R1wefsPLJw9QUmkcyyaVTfLtP/4hV6+v2X/3TzgddDm/mtK3YWQkyMwWzPQSR69+hpYukyk20BIC3bBCMTqhcLMJkwuYDklmymzuv0Xy3i6/+fmX7L/7Hrfu3SWlpxgvJO6um/S9LMqsx/L6grSS5r/6w3/FVdhjNBxze2cfU5NIqTHf3TngKPSwXjyidSVyOnRo9Sdcnw85GQ1xBYNqro1nGjhKElWFijflcnxNvXaDSnUVLakzt7q8/PRnvPOn/5rC5IqDW3ukSmtMHJFsZkRSKTEP0riTCZagsdDLTGcuSiPBh+9uMfMETBxMXeYLq8S1IzCbPOP3v/09vvvtO5RzGocPn7OMfIrNbzHoPiG11kArVDh+/ILB6ZTszQ+xo4jZ1MaLIhzF5/Gjx+x/eJ9Zd8a99+6ydesAXUqw4o/5ZqKj7TWp6yqNSoHi7iY9z0ZyDGbmXVZvVvHjOcNFl3Qlgzu4oHDrP8fHoV6ustZo4Mtz7jdcuh0ZOymQzSlslFQ2MgrO2OftvQ9ZrylM3AVLo8LGnR9yW2qhigF33v0hnZHF4fmEzlwmKKZIFSPevrnG0vEJHJtc2qSwcZP+2TMuzq748utnTPUUjbtv8Htv3GNzs8HR+QXC9h20WpX+dMivvviE7e/8AaWkTCo9R/FDzl52+dlPvyQlpvhf/+Y/kD/4iN5Rm+effsbrs+N/PKyspqtoqSJBc4Ubt27z6uFPWcp5Utk6yzDiajhip7bBxv37fPmrb7izkUAh5uRsjOu36RhJdvUMmwWD6cjh8GLJzIv5wa7Py6nK/tb32T3YY2cvxe6KysMXA/LldQ4v+3x29JJvXj/Ebn3Fj3YEqCZ4aTmE8ZS19Trv/eD3+KN/9h3OJwlevWwj+TFJxSclL/CPO7z/nSJuroDfHTObjFjIAvWVDeKMQCUVoY1hYckMULBVj9v7f0i7t0RMBpxcn/P09IyZGxP3LMyb77PsXpMNR5jinMGox9WTv2GFa5zeEYHtkEiZrK3ICBdP6S8cnr76BGc2pLuccWzNqFYLEMPi6pRB95hivcrGnfdpz13eKhWoNFNUVnM8efaMzz95RC29zjfdK9bvfI/Jy0eYgk9jdYV0ocjxxQWClsRezik1DyjVNomtK6z2OULhBt9+q8jMjZiKMpWDFaqVmxSbWzS3mtRWb7Gytk26mOaXX74im7miffoZ3rBHJm1QW8+zECY0xS4f//LXLMwcScGlHk4oltc4fXpCUH8T5/QBijBF0kDzwG8dU9/+IdagTyENSc1l1BuhyQaz6xfMQw3RH5CQA/KFBmXhhPtbNQxRoT24pD+PiMQdZq7Pj771A7KbB+xt5Ujmy8xpoDsL3GiI6+icvHhAZPdImwLD6w43dw4YXixw4yFGRiGTz3Dt+uhGBcGPkLNrqHrIdNLm+cmAt99c4fXRa8pKDVGICeMAUTZIFTQSozF6uYStyISBT9Jeks8Z9GOPcvUW15OAXq8L8yuCpcVGrszl6Qu00COceVhjDyUHT49f80Zzm/7JOZavU1q/xTt7Tc79AlUjIqElSGd1EkkDwQLCBfOjNlolCelVAqOGasjsaTb9aQYnlojmE2I/QlSK5Fpz7u3UGC1iakWDRlYhoQqI2TW0xVc07nybFycneIFFrZFDFF1SiRqDixnTUAFVJZtWySZn/N3D33Bn913uvfNt8uU0c2vCq5dX2LbH+cSmtvYB7735Pndv7uA5EafPLrnz0Qd89Y3FwdoG9+7sMJdlHv76UwB+9MN3KNSqDOcWj5884fzZc0rJIvn0HkGo07vuc356xsLMMT1vI41HdKY+/jygJOvUqhW+fHzO2x9usVvLMLUGvOqcM7VFmrKHawucHdlkSwH1FYnQURDI8vnXJ6ysJdi8vY8Ti/z85z/n15+f0tieYWbeIGOUiEOfs/YpX7844vkyT8Y5JZVI8eR8yN89OeP3/uD3+cXjJ1iDCSsHb+HoFfqTiDsbVZ4fvyCXLKEna9Tq22yurLGVh4GY5U45R9UUcaOYgTOl2/6Czz/9Gdk0HNw8YHdlnZVchlRao76xinR1wUl7xMiPGDlw2p7iGy6LUCCbzbLfTGAoMp2xSLq2RnD9lN/5J39MSZZISGkQivTGIXNpRly8gWkI3Fqpstdc4XJ0SfvFmC9evyS3v0MQRcgIrG9tEPandI9/TWrpcauRYTWv4Fz3sYOAsyeP2d68jYrDsHtIt9+FOIc7llm59T6XvQFPXj7m8wc/57OvPsZ8+iVmKc9nDz6lN22TX0lycXJEJMp0BZu1fIlksclS1Hjx5W/IV0JuZBLUVkFRUzhSnVMzwUpJp3bzexipDLfu7rGztYZsu+zcbHKzWePoXGClWmMj4+C3H9NN3qRw5zbJTodctYyR0dHxePv+93lw/FO2Vg6Y94ecXTyhszzBEGuMnTa7K+tcWTpi0qTRkMFwOX92SNmK+PLjB1ycHDMaDOm3ewyP2/yLf/qveNY+56Q15OR8zOt+h299710Ov/kZ7++/w3C4YDQbsLVdp+RX+PLv/z072yaD1imXrTFLN0Uh6bP5/u/y5C//Fy5POgwGI8azaz57+hoh6PPhB+9S17OIWorINMni8H/+23+DVkijeQHCAlJGkZWb2/z13/wNyVzMWkHg7PiKswuHO3d+iJTN8OysQz6vkS5uIqabLCOXztUxS8ugXs0TZlfwwxD79HNet4+5nMz4q7/4v0hmM9zc36baKHI5mtM5esTK6h6KkcUZT7EuT2kkPYRslnbrgp03NnjvjT2KQcBf/Ns/57Q7wkdjt6wQdDtcvhzg+k0++PCAYQQ7iXVy5RXK63ne2DTwh33+u3/+PcRZDzNXYezHfPPVg388rFSam1TX66ytpslKWY6GGTZrWfLZBM6ox/z6iurWHs4yxeX1K0L9tw+RcrFLxdR5swkPLzxe9ScgJ9hsrLCzWaK5e5svHn8Fbofe68+4fvGMODTYv53ELJVIJR2K6QSKnOF6oXI2i9m/97u80VzFMJJE3gJx0sLQ85yNFEr1Ne7dqWMmdTr9ABEF3UyQXfYwUNAqG4j1bexAwPZCZtMhjqaSzOfIJpK4oynTxZx7t9cRzASzScx87OCFU2R/gLv02V4r/NbFmc/ISi6xY9PqnNBaLBEEkchfMBldMJqLpNZyjHtX6Lk6qUydUrpEc3OXxdkDajdW2Ng8oLq2AZrC4LiDK3R5dD5GlyMC18WybdqDLvc/+A6BGzDpXjFbBMRmhtKNdU6+/oT1gkQ2ncINPabTFoF/TZQ5YP+gycNPf4YnZ0lmyhi+zeZWg2xBY+Kmef38GZPuJQXToFwogepyvdhEEyTSpkxKF1G8Gc9ed3n7W7/LZHzB4fFzXl1dssDjje37CJJNbfddQimPdd2j7LQp3X4P3dDR9TyKoBLNp4iTNoaQYuJaFGolEkIfedYh7E4ZdixiR0AVbFbKabTI4eTlY54fDZjOJ5S0BEMnYrFwMD2HXCKPJeZw5RqmZBMEDv3RnOHQYiopZDIldtYaoKawxQwrjT2sxYC17Q2i0CIOPAR0VC2D6EzRjBTdWQ9FU9EVFc+bUyyuYTlJTBkC2yIMIlxB4XLicff2e1xOl0Suw/C6z/MXJ3T6fZxpj6hYpKYo5AsJ1EYKOwiolfZQrUuSiTSRXGI8F+m1W6jiBK8/oS9kWQYSzsJi0m1zfHqJUkmyUFfI5pqsVgrUiiq2aKAmYTAKSSsRku8w6A/I1iNOL2NEZ8CUBH1XYbawkecjBF0lk9ZJLheUkwnQNT57/AwxqZEov8/08hnu+BJTl7jRLHD05TGtyYgwDinoOqv5LNWKyf5bb3HzzgGVbI7XZ494cfoUIZZYXD/ll198TVqXSOfSSLqKa0/4xX/8OQB7W/voSQ1DEahls6wd7NOejUkbEqPOCZEfIWtZnr58ynLm4Mcz1PoBgibj2H2CUOJOs4GaDLkYGuQSq2yv3iRIFbmwWuSa2+SyCsvFhOloQtIEOYho3lvl68ePsZwQXRQppxVW7u1geAmURA4zlyab0SgbkEtVmfROMc0iWVNjPmrT6V6RXNvhZrOGP21zuVyQSMlsNrJc9eYs3TkjS0JVDdqXLc7PDymW0jQaFV48eMjLszHZjMlqPU8QZ/jemx+SSu2SbDS4bHXoT2akb2yQsmKs5RBS5m99p8EV3ZNr7m7dRAptHK3G0YXE+eUSMViwttJAVkL+9osnjAcWUuChyjPiokWrdYosmiSjFPPBgpPTK66GPis3Nvjo3U0uRhOSisJOvUQqdvn665cU1t8jodjIhSJLJcloMiVTLhK4Pl0vwBEkhtMlrbMr6tk0R5ef43YGFFa32bp5j93VHXbuvsf6ZgUniNmqFCmlTSQE7u7c5sHDc7zZCCO/Sso0acg2G8k5V70ZWqaKJGQJHAl3brG4ukS2Jnz19dc4oz7ZhI8uLxkPrnGcKY3VBlH/EiuKcQMDM06z4JKbapHCzU0wdARZRdGS9J8+orT1Fp3Xj8k3qij5FcZzlc7zQ77/vfugZ4jGZ+TSAYmUyvD5JXv7dxAqKag0GYwDOpdjyuUiN9c2ORsP2WzWKGUVkqZPtWwQTAfotQobN0yIFSYDj1enp3TmZ6i4rNZXKNfLVNbWSOWK+KNT2r3XXFoGu7ubVCvl307kPv2KG3dv86237nO1WLLwAtKSgSlmkUIJP50ltkdU0gr1fIbRwKFUew91dM5QLBJHMXhjXl21yGeS1DcbnD7/gkJphXylwrB7xrAtYlaLjK/PmF12CV0XLZegLCts7d5By68xn8/IJxTevr0J3pyZleP41UMKlTLJVBI/CJnPI2a2zHe//w7XR5d0rvvYEeTyDQJxTjxt0W6d4DoTzIyAnAv59K9+xvqbd+kNLSqpNAVV46w3Razs8PDBc0r1bbJZnV7nlAdffP2Ph5WNtV0KtXUE3UQeX/DsOmStWWE06eA4c5KJDIKYwhZUpp0ziqUSlm3RH/Uo5LMsrOD/Ie29mi077zO/38phr53TOWefnLoPutGNBohAUGAmJVq2VBpNeWZcZc9cuBy+jcu+mgvbcg1dnpmSFeiRKJMiIRIgiNTobnTuPjnsHNfae+XgC0zNpawqfYL37v8+7/99nt9Dolk4HpiyQMUSUC2Z414b93LKO9+4yfJKFU3TQMqI8ibDqY0Y2Jh6C7O0j1JcJXB6zOcZnaPnXHQ6X+W/c3lePnrJPFQwcgo7VdDTmMk0ZOK7VMQJovwVrE3PGZSLCoJhMhpH6IaCKCsESUyQROiaxsxJWN+uEIUKg/6AybCDFLqkoouezFEkyNKEJPFwFj3Gw0vm9pTJRGHqqcSJQNGQMJs1Tkc9KqaErMkYRg5DK/D05QkLZ4SIRr/vYk9tVCFha32biTulUt6k3GjizD3GvQFS7HP9lWuYYsCLkws0TWd5qY6oq/hTUHIlcqUlXG9BmsQ0V3ewistMLh8jySb11g0K1jKxH+E4fYRUQQwTAt8jISWIY8aTkLj/Equ4gi5nOKMu/ctzSuV1Ak+mmasjWnnylRVK5SaiFHPVHeOMLlDLW/h+xGI0ILTnLNeWGYwnhKUCsTcCp4shRUjpnLwJiR8RxSlRLJN44KEym43oDC7o9dssHA9TMVnKJVjLZTI/4sXxOUGcUanW6PX7FDQHSbcQE0iQ8LKU2dRla20bezqDxMFPfJA08vlV8jmBck4nCRcsZgGun6EVdQpWjkF/QCELCYKAMA4pmRqqkWfYPULWFXKlErqpI6Yh9WoFJ4bzJ3cp5VRqZZNG1eLawT5GPMITDER/Thx5pCTkchprBR0Cl4G+RiyZ5EQP1XSJYhF3YTOdCQyvhvTPz5gNTsiShFx9lVypiakX0HUVPa8SZwqh3Wa2WDCbO9hjG380YWCfMR5GhJLDXPCwpw7uIESrV/FHc1BKKDmTWBXoz2Z021P299/Fm7tI0oAgmOL5AbmlBolkUirtUSiXSOUYJ3JZJBlVVeVsOOTwyReQxSw116k1N3CikHzBQlIrRFmMJPmoksdf/+RvAfj97/0BmplgWimrq0uoRoEXj+7hxCnRyGc6CxgsPBqGRLQo0qg52L7MfGaT+nNyWo7Xr+9weHbCyWkHORKxJJEkbFPbukHcHdJYX2bhLgh9h/W1Kpube5y0xyi5CvlqmRiRfi9i3B+SxnNCL6Jat7BKGikCBT1Pv31FtbbOwp4wtocEhLiLkOnJKWY+IS/IlAQRS5bJ5SwWUxtHyOEGMaVcQquqEZFjJmiUpJh5CJmhE4sQzCYgWFSKNeQsQpGgUi7SKJZw+h2WtneorWzgOAHtiyHj/pSVVp1xpBAiIizGZHFAJolUTIdn3T6LyyHOzMXQZJbyOoIzASOPaNVRCRhPBnSnDqJZZj73qOXh6PAFjhPhRTL2wiFfLnPZthEUj8Sq44Ya86sukpHx2s3bHPfaCN4IMVwgyTo3N7dI5n1s3yDR8wgo4Ce0nQ4FcY7dH1MrV8gpGvgBkizT9jzeu3kTe9zlqn3MbD6mXCrwtDsiSKfUVq+RaDp26DJ3Iy4HkIQ9KpUaiZgx9GwGsYc5F7mczVGNGr32BcOzQ9LAxTdE/CRHwUjpXVzgTMaQRpwdnmLmWszmMZPRgEHngul4QkydzdUVnp2NcJMQLVfEUEuQQrm0glaRsEcd8AMMzQTDpFjd5qRzQWLPMfWMNIs4OWyjpGVqmzuUcyWOX17R7g7JFSqs1opkYQ/XDomCBFMxyGsmh4MRK7tbyJJFtJgSBwmClKM7arO8tUxBsTg6PaUz6DOazRh3RqRmSDy5RMoEVN1E1Q10SeD54xec2w7OcExZiaiWDXw1R721iuYlpLJBrmAhhjOifpuKXuX+2QNcIU9RB03xmAUuYa6JpmacHZ8Tk5EmIZNBn5EvYGUZsTujVGnheCJXvRlZ5LK3tIUiCfTnPoJVIpcvoM4HiMmMWJfZuf4amlIk8TwK2pzJMCFniBi6ggzMZjYX/QFXTo6inFDRPfw45fC0y5dfPvx7xco/KA1UKRfR9Bz9sU/BShDCOa6bYtsOkgD5UpkgXKCbCoYkkyUKoWgSmSVio8h45qJZOtWSSl4MsYyURJXpnQ8oZAIFTaNYLhIWDebOgEhu4Kc9NKnGeJbhxDaqJLJWiOlEU7rDAQERct4kECucdk+RdAmvv2CaaViaTNnIcPJ5NEvhZc+nXs2oJgv0OCTX3GTU1/ETgyQTSYwIwQjJBRr0J9i+iKaBkNhkwQhVkggiDTMfE0x6GLkSKCJeMGfhO8znMWnkM4wGqErKxsoyaRqyyAJaBRM/yoj8Be7Mod85IQzy2Ed9ojQjb+koRFRK60TegqoREycyMTq6amDJCYahMDq7wiw3KEgpauYzGQ6pLq+RyBqpnmK4IGQamrGMoUP76Tk7N9/GKpS/MlulGqrv0B04NMo6a61lIkliEUPmJXi+QLns4VkyrpAShgFmY43wZMhscI5jFKi31ijkDO49+BQn8jGTjJljk2QiqV5hNl+gCALOpINRqiCKIUJORlNMFEmiaKUM3Aw3VUAEVf4KIrWwbXwC4jRBFGUMUybLZhQLCiI65VkBdIuFJDOYT1gqqgTzDkZxGdW0yKUmkqiTxKBoMgN7SFEWyQkZoWuztFFlMrDxwim+n5ChoqgpBbOEpCpUzDzDqU2SBuTNOkkYQDxDVGqIkkQcRMSRT7mgMkkF5tMJRcug0qzQajYwzDyhtETOz/AcjUUUoHg+9aJF6LXx1BXsWKYoOahigKGmhJmIVqkwvXSZ9sd49gQ19cgXq0hGE0uxkIjwfIe5rSIjMJraeI5Npzdn1nOIR1OGTh9DFRgmLnIQgCOQ2TpJKJJ6ecLOnEZDIhFFElGlUV5i0PeQ/Tat3SqmHjB35sxiHbVgYsQmcl4hwsN1Q6IwonN+QT/2caYzW4ombwAAIABJREFUlprrGHKJ0Iux6svsrjcYORbuwsGdT5lPJv9pbiiqQKGgE+Fy0b5EYkawCJFzHmosoMgamBJJvCAnCTRWVlh0XKQ0RUpU5tMesbGKJkaUDRfb7RAFY0r6guXl73N0NCJOVYIgYGHbOPMKaysKoqxRXq6iqjHezGFsz3B7RwQViWrRwx7IOHOL2SKiqkTkdZlKrch4Mid2BYQgY3F5ghRrSKZFvVRHV1QIIxQ9w3fmWOsNhFCiWjJYLsDMVjhrT3mlXKYS6ISaiqyL1Jt1uu02FUtFy0qouoSoKcheDJKCp4tYqoYoFylWV9lQdNIk+I8eGplAWxCUJaRCg9n0kkXgc7BS57TfR1JCBAxUX2RlfYWR7zEaj4jDENnIo5ZyMF9w2Ztgd7oIWpkhKlf9Gd9+9w7nvRNQZNJEIPViBH/BpB+Qrm2hiwlymiEKkJMkxFhmd/sOp5OEWSSQuDEFUuzBkI4ek2YZQRQhiiZJInHe67C+nqdayXN2PCOJ5kS6yUzUWFrf5OrqBXMgTX2idE4uJ3PW9Xh9v4RqqPRHNpPFlFhIWcai3x/hNyuQichZxCIcE8xqRJWAphfjTqeEEShZQmduE5w9xRAlvGRKGNmoooTW2vyKU3PUxSwoGEWVoqiRqhK6KtLr95lctNETgUKpyFA00PSUKBgy9Q3CuoKWkxnbKUslHWeUEho5BCVPrlSmVqmzs9bgmBlXnYQsFCgJKfmiRGHtAFnOUSj6zNsOTuhh5jUODlaRJImzo0OG/Sv6c5cokWjIAspKkWTWRavv4Gcqth+TN2POTu8SL7/CXlmjWhAQVFjWVWRFIuoNODi4BYKLO+6RBdDcrtJ78ivKzWWSgkW48LAnfazqPsftY5LIJ9M0Fp5H6Np4ahl51KZZ+urHwYs8AkGkUbAwDYPeYES+XkE2TcTYZxqMEKMZWXUJq7aMl06JHZuCbGEUNARnTK1RZjqd0h/NiBUVfzalurLCdPyAnGSiSMb/rw75B21Wvv2977O2s8UiSaldf53g4gQ5VdFNGUWAxHcRcgEtQ2I6GTKaOuimxWpri0y2QJfpTaGgiyxXLcqlIomkU1FbpF6fYfuC1J9hGAlWUadZvoaWK6KW9/ny2TEP7v4Gp/2YneWM5u230M0KtaUihUIeITXIijW8YZvToycI4QxVirFyKpaxwtKNO/z2k2csN3QUKSYIQ1obTQLf49GpwoIGWmOJfC1PNp0y6s8QzDWaWyb+pMN8MEDIGQQzlVzTwPRBSiJk8SvQlpxKHPddLCtAFxZYlozVKBFPxqy9uYo498gyg0l/QvfwGdWKTGdg4SzarKwUqNbLBLHA/cdH5IQRo86USJJJkgQ1/apsa+vO6/zsJ7/gztd/B0OM6F+dMAtiSnWTankJL+lSkDwMUWQWCFhFkST2qTWX8VOf6WJMQsKtmze4mE8wa9usLNdYWmpQq61Qqxc59Qzc/hlJOMaUY5aX6tRvvcL7f/NTGvWA+4+OECSJQqnIF/cvee9bv4OkNUnNPEEmkSFT0ASW1/L4/ohCWiBfqWE0K0i6glbbI85mRKV9Fr5PEtgYKqRJjGHGrG+ssruzg6xIPD9+yf3TCesFk+1Xr7G7doBs5Ok4E0w5RZMquG7Iys4y9bpFvVRg85Wb/PkvfsH+1hp+EFMst1heWsNQIvRikZcvuoycSzQFrJyJIMoU0oxZEjId2NjeDEECUy+CFxNmAstLDWb9Eb2rPo4fY1YK3Nza4+7LDvO5SxK5hIHD+dNn1FZbvNKQyPQ6gWaQKQL51ORkcski/w5lv0tOHIMaosYJ9arJyvotZkFMkIToSkK9IOKpLWJrBSXWyRkpmpZ+1RXjxFz6KeP2SzoXp1y1z2mPeqS+jKDn6I5nJPOANNIJyDEaXeAXN8G9RJ4NUASTfGWDqmHy/se/Yrsq0lrfo2JBpSBQWHmdk88/ZugcY+RVippCRQQjWnA1mbG+0WB3+x0WgcTR0TGd42esLhdYXW3SqLdQFJPJaMbje/e5f/+rF9LKaom9V29iOxG/+KtfEo8n5Fb22V7N485t1jeWuXlzl5999CvWqjLWtdtU8yJLRgE10Xlx/pCgGLBVEFnfrDEI5px1h1TlCmKxiS9V8ecz2i+e0Dk7pz+JiNyA/W/eptsdkoQucmyjxm3ypoPjZGxtGPTaI168GHDZd0lkh5IuUNlYpbJSJIwDRu0+zXyRtw7e4ul5G7G1gV7OIcQel+0Rg/EFG5s1tuobRJGA7XpsNoo8++wpIimpUqRRsmgtNyluXMc7fEYYD6nU1ujPZlwN+3iJQKOxzpftz3CGc3w/otgosfXKGkaUkMu32FnLM5pOyQyT+loLb+xQbZS4cfM6kuLjeWOmcxu5UqdZb+C1X3Dy/JKCrrGz00Ks1bi+mafdHTI4brNSK1Ct5ji/GrBca1DfWKFe0dESCXE+JQvazOYxz18+Iq9aKOUWQSIwOz1h5Chsv/ktikaALVhIeYtmQ0NZyPQXMqWlMpHvEWR5fH2FUTTiznqJu48eISsiO5u7bK1u4rpTvv7GO9x/NkEzVRJ7gOyMKCkp9qTDu+/eYToac3V5id0dULATKo0SzVKJZ8MBe9u7XN/fIRUiJuc29Y0akqAQpTqaaiGKIi8uj+nGferuIa1buyzvbFHMmQiaT0vIeHjcxp071GsGpYrMk8dPuLm/yt99/AV2P8XMIKcLZPkSDW1Mb/KCVnOTck5FkkSEyirLVZsHn5xRreQprLTIl2sIXkRjaxdVzCHXN8gvVym1LCqrFisr1zm9/yGBolMvrKFkIv68w8FmEztQyfwBbjLHXYTIQcqr2ypodYa9AUKphmFYqELKLBjQng7Z2nyNH/7geyimRb83IB11EAWIkxHvvHELQ8mYz0OcrER9e53jsyte3UyYZmW6k5TM7rHU2uXl4Uvu3HoDd26TMxX2r++APeTzjz9kZ/8GBwebSFqMn83Z29miO5gTWBH1Whk5nWPbbSZAOh+SygXG4xm+00dTQDXXeX7Y4/atJSr5IheXQ3q2S2WtSVV0kOUy5xen7G7tkiUpv/roN3/vZuUfJFZq5X1a6zfZuXmdk/PH2PMxNzdyPBl4BJ7HqragMxliGA1eBhny6JB8GKDrZSjm+PjTl9zY3WXd6lGuNVnERR6+/0uulVyKd76PJy/QRdASBT8Uufe0RzKOyLwBzfUCa/tbSEaDex2XeLKM75+wtbGPWdukHaWIksWG3OUP/+t/hlEtMfE0On2Bq6sH3P/yU66/sYVU3UYRNfJCxELQeHz/EDFMcewp7eMj5lc99ldWsa8WDEcXvPbWmxxfDnn+8oSGrrKRK3NxeJ+pGqJZRaQ4Ztw+RFDWiLIZvVHA5tZ1tg620FfyrBy8zYp0n2giYGkixYJGaalGsbVFsVjjR//ke1SLRaqtBvXtJRZ2H7napLzyJvmCzOXxc54/foKcy3Prd3/Ay1/+B+b2gsrOPs3da8xPjtEVnXLxOptry5x1HfoLiYNX3yYQN8hV9hDKBun8kHzmsrxyHbFp8uru22Rywvmoy6A3Qpz75LUFplXBX/TpHj5lcHHBdOwwu5yyk5dovXkdqbjPyFnQ6Vxwc/d1gvo1PvjsGYIO/Ys2wXjK125v8/CT99nfXcM1m5S1iIKhMDJ3ePb4c+63qwznAwgiPC/lbDolZM4bt1eJx2ukw0vc6YIFO2j1PYIg4+LuZ3x59wGKpPD127fZqAjcHdq89frr3D0ZcP/4kqEbkM9tUCXm6tkHXJxcUa0ssbO3jW5m/ObeEQZjmGRIisEi1Ti5EsjnPAbdCb47J5UjdM3ElEqk6pyHM4drjSKGoeMnMs5CZmfnBj/98z8htGeUykU8b87pyVMyz2N+cczpQKKQZSiJi++BGu+y/sYdgsWMhpGgqymyIlAqlkmVMh9+eMreRp5GXUCVQ6KFxLGkIdo1MnWGJgl4fsTxrIMZ5eh0jxnM+hwddxiMxihygBxPORz0WS3mWCwigsjHzMUUiiWs9s+p7b/LUd+gPRbwQw8hHvJPf+8dKmWJP/npXQ67M9Z2dnn11i3uf3JEa02iXsjTfvmQZw+/IJCqvPnN79FY2SbKFizECKGoUVmpIEjr/MmP/3cePTxhPI8pVExaSxI//au/A0DVBCqVdQ72b/Ld995iSfPJ2XPS1WUcv4OiJJiqgbGw6cYZZ+2YVn2Z5pKJoDmcdwa0n55w8iylL9Wx8nVUQeJvP33M9PSE6994Ez3to4kacq7CVAr4zWcDfmdfYb25z9ZGi2JOJJw7GDe/TVHXefXNb6HHC+RMpFzf4+03cohGmY8fPWDdWqGg5klNndfe/X2OhxcI3oy9cg5xPOTi8IjuYspr7/2Av/jxn5AYOufnFzx58owzx+XTjx6hXFvh1f0GXhLwxeEJH9/9gtcKDfRiilXbRhEiAnfO2WhBJ/O4tnSAYa6wcGOOnx/y+QcfkxklktmANOhQv34dP4r48td/hyMU8KPyV6bvsEz7qsejJ58w7V/xw2++RuPam9z//BMsb8ytmsVa0eK3v/0lX/v673Nn9wa5Ug5Zz7i90eDw6BGIDZLV6wzPrhgeH5GaCuWdlIqxxCCOuBi52M4CWQw57l2SK+hcXd6l336CkQ6plw0u/CoHDYP1cglVK5JGQDxnbbtKJYnYvvE6jfIyVm0JTBWvc8yLdgdnZhO0n7CzsUNt9TY///kDTOGS1tf/W0r+KS+PH3Ex7NBomNilZWrNb7C/Wid2x4SzIXXDZKpoNNda/OovP2L5eov8ap3LsxnCRKVSWiLWHNbXNlirraDKJl8+OSFfXEVc3CUsRii6ixrMSAUTfyYgzjwUv8srb95g7eYeTz79BcbtH3HnnU0GnsfnD55y1hlx7dZ11LjH7OURT449Zu0jCIakuQJnnXP6Tw/51ptVLEFGjVT0JOPky19wY3cde+IzmYy4mo84m3scHUact+9z4+Y3yLIy1bV9Dr7+Jje2tsjZBuutlLtfXOGlMuvrdW5aGcWbX8OM8yyOT1FwiCOb3/ziMy7dBe7EZ62ucHF6TNexKV9roUYpH/7s75Clr1g6DU3DSC3OUglDnZGLm2zVLMyCxThUWMs3CLwZ+eY6hqITulN05ryzvYQZdchtFHj88JyTzhQ1X+W7d95kkVVpuGMMo0G/P+bw2VO6z59jeDFrb36XsHfC8STCk0X2ixPq6jIBbWJxDX+U8vzRUx4ePf7Hi5Wdg7dZJAEPn37EW7e/x+G9T/ni4ZhX3nyXNPH57fu/Qg+WSJZMcr0hSWYwFKCXeOSFKm9uFMjKFn/5F59wenpOkEyZCLDeFNnZylMrlSlYZdIwZnJ1RmU5pnntJpkck6hlVN2gkgsQcxtktDETl49++5jLZ0dcMyVEuUjz1g2cwYBr1++w2qyRzrsEAXzzYIvDzz7h8vQMU9HY292jslbgx//mL9ndeZWoaCEkQ+rlhFd+9B3+73/3rynX11m6fZPID9DtOSuiQGXFZBQGtNQqpqpRqdW5ee01zOEVTy4HXNtcotSoERcVZkbE/ecx3XaAnVZ48uSE49MObiSgZRaR/ymPf3aPJ49e4oxHWAjUl+6wtHHAv/pnv8s8Fnj88BHD4Zi3/uBfsuKf8/DeBcvXt1leb2LPHP7mF/d47a3Xuer0SQyF0TDBMOrsvLbPx7/4MxJhRDSLiV2BJFGJkpThJKJZUJAkj6oS4ccSD/opXz49RpjOibIyqgH15hqNxh6+fU5XiqjaFnld4frBLdZ37/Dlk5fMFzNeeaVKzqrhT2Ls4ZiR32bz1k2y4nWOnjzlsyeH/OrzR3z2iw85Oc2xUBZMxwFKYlMraLSqWzjPu/z5X33K05OPePH8Gaok8varTRr2l3zR0fnWv/zvSYvLjPpXXL64y1QpU87JbOzucWt7g9VGHQSTySxjMfuSDz/8kFtv/T56zmI06ZGrLBOML/nZL56ir2SYBRGmVywe/Zz65jpZ4hEkU7RAQEk1XE1EGju0cgqO63F+0aE/7CLqIdu39/nr/+d9VlZqvPvum3z/O+/yh7/7Lf6L/+zrfBHKLAc9YqtIrMnMfZtfPn+JcP6Unb3XqJcW5KsGZrmAlE552s0xXYS8fHBMuz8hSBVESkz9KaWK/hUVOFog+EPMJGSUSRQFkdF5Fy1Vib2Yi86Y6vp3WNlrcfHyhBv7q5SrJu1Bm1w45+D1A85PTlANmzToEY7abByUGddu0Tt/TKVYZ6lUI/V8zl/ep7q9z+sHd7gS1qhde49rb/+IrLqGmHn8L//T/4xWXKJSrLPZLLO1kuNX94755//571Jay/HunV22d/e4CEz+5t/9XwD88Pu32N9r0B91+fCL55g7v8NvXYv1nEzL1FFChXFvgSDB1rWvU2jUsac9Hn7+CS8ePaV18zYHN95AqsbsNFWcyYLTkz5WOOA7P3idpbVNKq0tFu6I0GmzUa3wrT/+I1YrBxw9+i2no5hYrrNaqfH4l0e8+/vf4E//t3+Nk2TUl8rk0xH/9i8fs9LI8ZsvTmnt3MYothiP59x/9lOeP+vy2vU3OB1ekl9b4rX3vsvCNZke3uMHb96hf9GlkCuyurbFRbvH7c0N8oLFB3f7NC2DDTXk4c9/zVu/90Pu/vYJ3eEVCXmKlXWqjSJHPYdyNqOeE7FCD8F3EQyFW998D6vXRm99g09//RPGozNWb36NySjmuzf3yY1tcjmfSlmhVShSXNhMaz9g4ri89soB8sou9/ohX37wMXLpBhcXF9RaFcajKccXU0Z6g61XDtDqDZZLBgU9I7+0itp8k0f/4a9594/+B/J5k6WKiYWA24uI1RLffWuXWm0PKYhJIg07KDA//pRnA5er/gWSpCEikcURlpFxNSkw+uzXdE7aTIZ9XC8ksW6yLn9K5eB7zAo1ZlMYH5+Txud881/8dzz77DeMBhGF3dfYvfMedXOT/rMLclsFzh5/yeXVIY7kIK1qqKnM6XHAtW+/id+b8uSjTzk//pTvvuJw78kztr/xL1jMYp68eMFZ75xv39qmOy/yo//yn9K9snGmBTI2kJKQ69/5OofPn6EUNIKpjd+fsrl3wOLqObP+gKB/RV2qYQplzi8O+aM//BFXwxQhGpPbPcBa28FwegyOXiLny9iBBvMpk/4lJ6Mp7/3hf8X/+m/+gmbrgK26ytrSGrncJo8//Alfe/drfPedHc46ZwhpjBwL/PuffEhzZ4VqXsCNhxgSFCSZcj0j2XyN/fwpzwbHOB6oQplCqcFZ22VV26Jz3CNQ15klNT7+5eeMTu7xe9//Gh/de4FrR6yWC7x9q0Vrt4bqLPObhx/Q6b5kHHk4ooJ90SG30kR99iFTIJENwmnMj//sA/Ktb+JeOUiJx2I8pn/VYyGGfGNzG235GqHkUFlaZ39vn71Kn0EscK/dpVS+yUqjSBpG/N1dn8ZSjdvv/RChkhEWPM7HZzx98PQfL1a2N7dZ3dmitLJO9/mAYlNEFFSc3pSryyPm4oLN/Vu0NJWff/A+h0fnVPIat66tIBgJ/8eP/wwlTvDDgO29ZW5cW6OZL2HU1jh+fEj/3l2SZEZurc7ya7/D+s1v47kjiGTcaZ/Tpw94+PF9rm202F7fpr3wkIwWanOPRbkC43MuLm2izOHT3z7k/OklOiaTQp5fv/9r/tUf/y798YLT4wsmozGtjesMrkLeaLosVJU0S5BkjUCrE5ydYhSWKDaWyJIQL44YBQKvrDQw7GPmsxk+CS4ZUz9ANS3CJKGxX0UoF5jrFqPMxJvMWJ5dMT1+xEEjo1VX8UMXu33Kg4cD9LKJZCokYkySeWyWMh5/8glC41X88YLJ+IrJ4hy395L2AFItoF7QsDSFNPBZzDoIosX+6oLRvIhFm6LSYTj1mS/a3F7ZI1+wmCYCYq7EztYWar7A8fGA9399H1GwaFVXuLbc5Nq1DYL4ki8/fsBkAT17wGTxlIMbZUb2CmriMvKnTGdTJpeXDE/voTgzjN03GfYn1JfyrG2XmLbP0XSRRx/9il7vhBSZfKHB8sYKOzstWpKIJqT0B13a5xckox67+xL7q2VWljbQCyVG8zmHL56zko+ZpwvqzSqmLKJqMqGkMhsKTM6f8PAy5uTkAcPuGQqwtr3GvfuPkVOPQrVMyUqJnQ7v/837FGoFCkULOh7FwhKJnuPZ2Rl7qze5ms5JFwFivowgy8S9S4bKjIIvkBYMnl1N6HZn1GSN7797h+7ZGZXNAy7afb747HPuff4ps8mI9aLK61//IZqUslSzuHZtj3q1xVHfxev3EcsSakFFkSXChcKLZ0+ZjTNWSyEmLqkbEIsaQbHBK1qB44XNdNJhPlswWWjMrh6TGSYOOiftIwbOGLVQY9h/zrqZUdxcwnEiOsM5oprjB2+/zV99cJeDaoOl5jbVeh2rqDMeZZw8b3N9e4lXt8usr1dQixYze4TXfsYXR+eYYowUzrEnPabDC3JiwN5r38bun9J+/pjzJy+4OO1zY6tCbftrGJqO7cb0Bx7Dixm//OmfAvA//jf/nMrSDoKgokUOl48e8p13v4FWy2FHIY9PL7n//BTDXKY7GVAxRMxUY3dtg739Pc6uprhP2wxdGXIW+eUlrt26xtvv3OTXD37LyecP6d5/gaiVUerXGI51Ru0nTKdd9KU6hXIJXRBJ7BAt7eMWNli18jTKLeJFwuDiilo+R1mY0Go1kWILHJeGEXP9+gatYolf3e9jCAkqM7J4yK2tPfY2Vvj3f/lr6jdusrqzz8rSCtcONhlMxqyt+whFk0kyJtBE3vvBP2HpYA/FPaGw06CaFwhmfQ6fn7BrxLx+o8Z4MeHZ6ZTYqnDw9ddpP+6z0TT42YNHTJ0+S3mFPVNGGvSZawNyq3UKusLCSZktVNa3r/H//u3POXivjChbaKpGc2mJ9dvfYn72Ce+8d8A4W9AZnDObOsz9Is7Dn7Kxtsu8NwZRJAxnDI4+YvfWu5x/8j77rxxweXLOoNulslIladTpnF4yvDpmkolM/Sl2+x5VGYzVPO80C9jtUzRdZvNgmyToYa1e4/mju6SVGkahiJKG9IePuPdsTrlcxO5PqNbWqW1fI9IlLMMlzmw6VyfMZg7TsU2n30FTReL6CqV6ib2lNXaqG+hanfNIxRRkmmZKXpMoNJcxN/fpxRmpcYfb+yWOTi9JM43dzVfwwibjURchTQijkN7pCy4ff06zVKAtlVGLDUBj6nnMwgjTqKMJCUm2wcXVCVkmYlkKedOjnZWJPZfNazvIoo2SdWmu5oiDMt/55jcR8gUqjWWsQoEsTZjGOfYNj7W1W6CbpF6MPhlSN6esvfl7POuKlKol2hdnPPjiPu98623uffER6zUBubZPa2ODpYaFE4Ck1fk/f/xr9EXI5noNNSfx8NEJd370B8xGPZbXDRItgKjPhhVx8M0/5lHbxspC3tjcYqdVxk37fPDJB5ydXfDK6i0qjU0qVo1lSUKSXGr5BoXVW6zu32HYbfPy0Se8+93XKK8ssXVtg8vDK/zxEC12GHcGPDnpkckiD748omQZbG+t4OeaJFaV/OI/Vu90zpl0rygYGTe3lvmLf/unPHj4gMHVhPbZgIuz43+8WLn+xjusX7uOaRh0uqek/oBF/wjXnxK5E3Cn2O4I0YroXHaoFkUOblyn1tjis4/vEutlVi0VRXTZ2llleWUJf9yhUCli20OKtSq1tRpFy0SYhQx6h4zaFwROSuAuEASBXLGBs/CYpjLheEG9tUapaqEEY0pawDR0SZOERDQBgTRxyZUlFmYRr9vmuOeQRDElJaOsS9x9epdmqY4sxyxcjzCRWapXefTkMXv1ArmKipjFSEn61fn1BstGF1dpkEklRDRURWK/paFkPvnKMtNYoTcYMTk7JQ5zOMMORTOhWiiRSBqzMEMMFDZvv0m9UWNno8DWZoN8qcrJeUDPT5g7Ce5iysKdIsQphpxHiCMSzSKSJBwnwJnHiLkSyvwEofE6s0kHd3rG3JkSxDJvvf0Whxdn+ImOkMnkLQOjINO7OkOwGuxt1MgKJfxMIvZdzvsnLOdUUrWApcwR/CmxE6Gjk4tnOJ7MPHBxFjZ+7FJqVSm0lhnPXQanRyReHyXz0dIi3vA5VjRn89U3KFQaJILILITQC4nnJ2TRmFajwkqtTBTZfH5yRLVYJC/KbG5uUygXmPpjIkunrJd49uAl5ZU6tdUWmm4gOFe88e43WK03Gc96CIpKo7lGtVSiM88wlQjSBHvYZtzvkMkiuVyBp599xvaN66RCSufsmMWwxyuv3mYx7TAe9FCFFCGLmDg2aRhz1p+SsxQWCwlBVNHzMp1Bxqef/4offvcOrWYFw1Dw04SeJ7HodklNDdIJdiIwySxWVwwyHPQoZq0kY6oWtqvx8nRGs7WGrBkUjAhfUlmIGpKUUijmGMUSYiyhkCEQk6UR5fomllFgIavkLBNFkZnPFzSbLZoljekipJw3sAwDXcuxu73L2WSGM21TLGpIzIn8PgVdprW2g5or8OjxU2LJpLG2T5hoWEWVSqWGN5sSZgYxBsGoy9KWwXyWp1YxkdQANAG9ssZMLCBrOTRNQZBlRBECd8Tf/OQvAGitbxIFMn4cIxoZK+USHkPi0IVFSDB3WfgL/Cjl1p2v89nDY8TMZeHFDBYpWkWgO+4iE7LeXMGymhhmhUZRJ/RD9hpljOoSEydm0B6SeBOsXMzCd1Glr/qgdFlnrSEz86cMHQknTlhdW6LerCOoJTKlSuRNMVo7HD9+yenxcyaLIc58Sv98RlzIY1ZCavUSzcoWqlzh6OU92n2fG2+8iqnKjHp9RrMFN/Z3ePToLufHl+ixQM1qoJXqNAsBv/7gY9Ik4fT0kuFoykotj+K2yVU36J136M5jnDQjihzk+JL2w3sU9jfw5i6iVsRqrpENz7DlCuptkfqtAAAgAElEQVQc2oMpsqmwtFqmPbXZWy7w1hsH9Ntjnj5+SufqjL3dJW6sVyltbWJPx6iyTKVaoWAomHoeIfSQ8jJWSSena+DLHJ6c08hltNbX0c0KYSzQG3Rp1VuY1ZSyXCCREmTBo67B9soarhSwsXqTsTNHlHTK5Qpq2Sc9bTOSEuaOhyEpLDfrrLZamNoKPadDTlp8dX/ELrde3Sad93h81md76Tq6peP6U3x7wc1X19DyDY5PL9EQSLOEo06Hs+cXGLVN8nJK4trMXYfxwmMyGlMqm0S+hSaraGKGO5lgjwdUq3Vmw5dYZolmLU+lLDOYLlBVDyUOmE2+4mchpbx6cBt14XMx6qEWIxzbxpu71OsNjq888kqV9eUy4/4UZx5TaayRz5boD3pMhucMxg5hIpIzcjx9dgaywvjiDEFVSdIQb9HHbFQYUqD77BGJMCNGQMIi8X3shUC9UkLMyuRMkzALefDsHEExmF0Mqa/VUVWZSa/P+dkxupwhW1BSNRRJIpczyZerfPH8Cak/Yrm1hKyLzPyA7jSmO/XonJ6x0trFqhjoRowsxRjldWz7ioE95ejwGZ2jl2hZyo3XbuEpCVa+hZD2UPIWqVJmcvmCrpMy8uYsVwuYqsZ0kdBdQOZPMfQGXx7eQwhGLBdNVppLlIsa55fPSDyXfD2HFy84fvb3Q+H+QWkgQdNBlhAyn1otx1VnwFZF4PnlJTPHR5NEAtVmNh0SeAGrjTp6vojtx7QPz9l69XVKJZG1tSKaYTAYDUGcE3oLFFmkslxBk1LC6YzYnzPNXCJ7jlmoIOfyFPI5SqLKeX/KcNjDyARm4zaSomDJGXKpghmOCAKRaq2AGIekbkbeNLh5cMDp558RiwqVmope0Tg8PkNObSRJREwDEBOSLCWeTLCsCgIuaRqTxAKqLLLcyDPLPK5vHnAR22SuQhxBnLoIooheLhAJRdJgjuCGaF5CPo1QCjXqFZtFphEFMrIoYhYMRE0hi1MkKcYwTHJaFRQTxm0uLx/Taqwgq3nKzV3KlsK8f4hsVJkMBkRmAatQQTVEkmkAFJiMPia1h6iyjqpFeIuEhSiQpAmyJBILMX7gESzGVFt32GqqjKMY14sJFy5+GDHJdKxGnXjeJm9UUKolZtML8pKDUSmQLGT8TEZSTao5Gd+qkEw9/MhGc2XSnEq+kCOYxRiVGppu4dsuUhpRMnQG3QmyuCBXrmCoMroIsWVSkTbwydOfuKTSEOSE5XIFuVwlm9lE9owwSElFFVlTEcWILKdRUQuU7GVkQydfLRK5C4IwZXVtmcH5Cd1el8APaG5v0GuPmPT66DmZqT3hqn2FlsUs3AVREjLzMwwzIY1D2v0Rq0WdvuNQsHPEbkDeUFheKXPROcPLRIgTVCWibGnIUo227SGKJfrjAYrg4oUJkuawXtLYXG+S1DWy2TGdiwGjsMjcCTFqMatLZaIwI3U9hCjFUEQkSWKciNRNmVQt4LkJ4XxCJAmkmklOFzFyGmkmMpuGlHWVKIqIYxVVsVClCHyfwJ0i5wvoUhUhZ5FlLomd4U4d9l9dZibFuH7IwrEJ3AVpopIodfbXl7l391NUWcIqVgjdIRNbZjoYsrZhYZZrYFUxCxv05x6+G5CGNnmrgCqrIAj/aW70XZH0YoJmZhRWNba39pjOhwSLKZPuGClM2GyuMIpNVjeWiD+7SxiE2OMREz+multEyWvUaivkFIV44eC4LoMJ5PQiuhiimjU8wWY+GzGbtamU63hZHj0T8RZz5qnATFMZjuY4vMBXNBzXxEvhfGLjBxqSF7CkN4iFY9zEIwtE4os5mVrh2rVl5skIqdBAy9UZD0d0egPW9w5II4mZPabfvaTnuDQMCUOsogo2hlIkpy8jpxlPXxyCksOzF0xnI1RZRVeboBg8f3aBHE6R0QhFhSBWqJpwFMS8slxEiVYJhTyhuYReW2acVulfnZNrlimULPL5HErfoV7W6ZzY9K6GDAZ9BBGE1CeQ4f9j7b16JcsOLL3veBfe3ojrXd6bPrMsWUWy6ZpkN80IxEwL0kiAnvWLJOhxRkJDgzajNsPmsOlZRZbJrMysvGmud+F9nDje6KEA6a2bgPQn9l57rb3Wl/gxhqhRWl5HlGQ6F1fklu/x+NPfQOyRqiJZK4+Yq4PpUGlAp9XH9gWSxMfQJYwIjHIGQ8kQTC4wEsjKWYJEJJNboj8NSNQcceoz6J7gGQnW1CObL6EkAYqqEgKqZLK0UyK4npMRLHqdAc5ihGnc5PGLDrqqUK0vEQQ2SeSRBjGFnEnHXqBLKiN7znAWMwlTMlYG1/MYhjZyNCbwPTRfZClfJWdKhFFCsWShCBL+ZEyv10cz1zl+3mZtLYOlx6iqhFovUDUk+oM+iheSUcAyFNJkQpKG6HpKY3mDxD5hMQrQrCaTl09YuVFFDj0kVBJBwQlkpqMBF4NrLN0jTEUkWUWXJeJJi3ZYIhoMKKwskYgi3SClXKvx8tmnrJoGsh9RzhbJmVV67T5LuQyKVmU2W5AkPpEYM19AIUjIqgqWqZL4AYkXUClZ+KNTyjf2sB2VvGZiZTIsUonx+AW5dEx9b5NY1HEWCQkGt/fu4bQX+FJEGLrI+KRKipSxKIV5HK9FEoUouo6uqUwWAb32hNAr4oY+ciZLQcowm0yIHJt5oiPJChEJ89mU7mRBNZeQU75gLsXIuDEsZjPqlSzVaoFCrk5xrUzo/+sgwz/KWdm98yaFSoE0sdla3uVo7PKNnTwvPz/mstNHtAxWGjcwfIGj4wuqlVVkw2CyGOINejRzWZY2lrh19w3GE5vzsxPKRZPJBPQkwVJ87F6X2cRGqpShsIwhJOQqK5AxSMQEMfbJrm8gjDqkeYPj10dMB0PylTqutYQaJyDlqOYF8lkFPVfCypRpShFzOYeWepQqKkoly1E7oGmarJRV+omIr2iIosSiPWUpV2Ya9Mg09nA8nyRYsFwtMJxesrf2Br3hBaomICsizsIhFhQmioYT6kTuDEkEM1+nGfvsbK1SkhYMQ/BjyIoiimHy+vNHzL2Q4WDGbBZhmiW+9ad/gkbAWfcZBb2EYpZRC0UqFYnh4ITV1R0mZ8foZharVMCfXxMmGTZqFqfnh4hhhJUpEWdqPPr0Kfv3HiCrEo4UEgspRiwjSiJaponvOSzldEoZHVHRqJfqPD+fMHOmtC/mhFhYJQtn/oJEzlBdzaPKkCmvks3WiU5eMInqSIUMM8emUl2hWa9Bek4pUhhpeVrXHTrXXZQk5uZakcFwSDWTw2rsMGhdM+i1yZdq/OirX2dqh5y1RxwfvWQx7NHMlWhWt+guWjRr66A1sAOwnRnDnsP1+BJbyCEqGcq1Evm8yrwz4LNnh7x1t8a4c8lkMCJNBcq1PAfPWxQKBVarBQbjCf3ZBNUAy6gyCF1GEwFZV5nNJpy9OKJa0+mMQyQtQ/vqipwq8tbtHcK4Raa8jyYWOD05wrWnVAsWZSNh9/Z9ZFHgvOfjTFJyUYKhumTK22hLy5yfPefobMB0lrBakGnNr9hbWsfVNXxvhhzYZK0CI98kly2QMxKi0CNwHGJ3wfmwhVCsY1l5vDjC82KkUIbJaxw3wqjtIcsWvmcTeT0yYsjR0Oa9vfuohRqpbhKEAufPe2zu30EuRywZKYYcM5tNmU99ehOHZr3KcD6iXCxQW6rimQanrwXwe0znQxahgqCUMbUM1VyELOWYDI7QZA1JytEbOPzsH76Igb7zw/+eeOKwmA0QszJWbZvNyg26gy6Hrz9HSQW21++QlHeoF11EZ4hKQuBPsRcjxvOYB+u75DZu48+HOPNr3NmQeS/iYtyiPRqT10wqtQKyJXF5fk1GlPCVNW5t1EhSl9FsRrsX0D8+wih6yBIsehOePXvBB08ekSoKZnxFoXkfVRPJlfPk82WyHmTWK2yurGP7IAgKchIy7Ryz8BLW7rzJ+WGbyaBFGE+YjIccHRzy7Xe+glpViDNLaNYS62Wdv/39Y969vUcczslnRPKWQRQp5Lc3OfjgGY1lC0mR0LJ5Ss1VCqGMJ1qUczq1Yo58sQJSDklQ8VGZTF9w79YOOavEdJpQyZQ5vDzi8YsO8/EC3dQoLy+hmxU+f/kYOVUQI4Gl2jK5TJZB+4r1aoHfff6U1smAFJlYUVhIAms3HqCFPY5fDzh89RkkU27e2qbTD5ACBVGRSYIZYhgQugkvLzps3v8Wx48+QVQ04nhE+/oZn7+IyKxvYiYJjfoagibRHre4uGyhreZZz1VJ0ixOKOKnInNX5Lf//Ij33t9DkGKMREMTDVwtwsLk1ctL3rh3k/FsRHtoky1ucuvtfbonhySuTZzayGlEXjbZ2L2B4CTkrZhYCagvFdnbXmHhzUgyJo8//CI6HrSv6IxGrL33DmuFdS7Oz6mJAeVSES1jMR2cQhpjFRuU8xXkCDJWnsLqLoPDP1AsFdClgEhSkEyTKHH54Pe/IjVlzGwRRRWYTgZcXJ6wvyoymY7x5Dxrq03cIOGoPces1Hj9h1/y1ntfpaKo6JqElNOR9BxFr0WxsU1ncMZoNGJhJ4hKhky9yfD4lLwWk1VlspaFVcojaDG5XI0+OpqeRZJMpoFEuZBjdv2K+/u75Ivr6EaZYkbn3Qe7zKbgKjHxwkMMoy/uNTngTnMbRZFY37yHnNHpBwNsSaP9rMPEdemNFwheTEY2kJfusFILSfRNosWCfEnDsODi6IRCtYoRpFjFMmlqcD2Y86pzxY3lFQI3ptLcp1leYtId8uHHn/yLzsofJVbuPHyT5XIVaeHhFHTyffj08W9QZIOMqeI7EyazEb5VIGuU2a3pxO4MP0j50ne/y9F0wTu7VfoOWPkam6u3EeIV/CDindtZWu0BThBiVSuUt27QP5+Qv/EuZ69eEDltpHhKEkYUS9vsrBvM9RJffvdd9nc3GM6GDPsuZqXGZnWfpYwFmk6UyXJ3e43Tz/6e0ekxQbBgPgqwpxKNN27Rnyn88sMnFEyZ3eoSpRCe/+IfsZoxWyUNq2ISuwNU36ViLqELMJ7ZbG7WMNMh8mJAScmjl2KCqYuWtJktJgznIybzLp6RJbj+A72kghbOUPwxk7nN6/6Yb94rYosKSigR+1Mmo1ecPvsEo1RmN5fjfJAS+hOMeED3csJsNuMHP/wfmakCZ2evOX/5Gamckqsu0R4PufPwqwhmhoUgoudqXPTm3L95Dy9UWMpksZDoDBzI36T96pfY3hRVKRAECrbt0qjlWalbPP3ocwZeysXpK84f/4q1lSq7b36Xy4+eIYgJhmjgT1weH31OtfiQi8f/hOKm7N64RXNlmcHBa8L5ORdXfRrNHRZSlrHngn2OoUaYuRWmRx8RBjaGWUSPdT768O8x/XPW8jp7D29jlmscHrb47OiAh298DUNbIlZEJFNFMjJMpw5fu7vP+cWCVvsSS4KqaTIYXVPIb1BbydM5m+J5DtlsxHou5fPDPtXtNQxpijvp4U9sEkdCyNYInR5O65CTo1Psic2NRo0n8wnzoExlqUkUpMhiiij5dK5dvvPv/j131zc4Gl7QckMktUFNLaLKA3Y2bnASlxmnChEeM2BzbZkP//N/IldaotHYpmjpBPE1P/jW9+n7KY4/IGifsGj3uB4rdF912b1/l3Ce8PLlx7w8eszUBVWvk0xauNOUrFVEUwTc2RWWLhKWa6zWl6htN8hlZRTHZiAUSCcuwWROOD1H0CW02grFOCaSFfTgGEfIM0mLOJTIl1ZRhQM+/emvWNq4jxzP8O0riuv3iEMJOXzK4yevcD2RJIF+/4KyqWGLCqtrd8gUKsiWTIDN3//lXwLwP/833yMrjDHzMvnlTQ5OJ5hyzG+f9CiIFrurDbJ1i48uL5GvPdS5w6IqUd6/xcMHX+Gd9RW+/MPv8w//4X9h4jsYuQLNtR1qt+/z67/7Ryp3lzFt6PYcZonE6p1V5O4xT07PuXX7DkpGRxIhJ6Q0NmDnwX+LlOaZOj0iacHy6jJb+3fZkvs4kzGm6qDKHknoISkFuo8/5uXnbRK3x6J9wuDsDLVQ4ZPn5yw3fPyTS/xkhFYUuWlucDUTaBpzxHKWs0GHVu+UUgFIBHJmnWYyopa7RS5/C0UFxR6QysuU3v4KeXMFqT9n+vopRtPik7/+G5SsidNpkZFSqtUsn378IW++aWKpyxw+adNv91CNBF9JUDMmb7x9C3HWx8iouGLEz37yt/xP3/oendYFJwfHCKqJlikw6g/4uw9/z9gRWFWhxBRTCDGyTa4vD/j08QE3V8vcu1Via3sZhAKPXz5mOMphCTOcVMWT8swTePHsN3z9/Te4vr5EK+oMxlNev27jZzQiVaESjehHIcPpkMWow8IZsaWt8+iDAz47PWUybeOOWpwevOD733iLl1MJZz5AU3QE2WTiRHhxiY9/8bfcr2wQayaBCMp8QEFZMB4u2Hvzq/izLv1ei77jMZqPeNXv4h4dMu6HWHqd1dU1siUXIZ/letihVNqisXeX4o2bXLUDxFwWo/0C1RBJtSJTR+H41THbusCnry8YX75Aziqs39nmwZ11tkoxr0ZzjuYR3txDdQME12V29Qn7KwaBViNQNqks3+DhGzvE+jJV/5iun3J20efi8hUyQ969+TW23n2H/tkrxv2I/kzBS1X2mxp/85OfMBVqFPwZ7mTCWXvI9XBKYihYhkBq1Fjd2qWxVmPujck1c6TXMdVNi5PrDpf9CatbNRpqDqWaxVyqIqdgiCK6odNpXYEWcHzUIiNFiLpFL7A4v7jC8aeU8vv0Z22ePnnE8WGXna/9OdP2cwLF4N29BywGLR5/8nNE3+WdB7uMxlfsPXyT9XIOaW7THga8Y2pUVvaxp2OScEG1bHD33haOqGCfdXDUgMks4PXRJS9e/sujcH+UWLn14DZ372yxUs3wh5//lu995+sMow5WTSH2Zywuu5Q1nT99a5/X4wHDmYecK1JslJgOjlGCOrnSKoW8hs4E37tknI5pNFf46PgUJRmRKdVJ9RyD7gVbW28wvFiweq9KafttjOINhCjh6nLKIkrJZw1SwWEWxszSInYkcHA65PNXrzg4nrMIEwzN5tFPfkc71Lj31juE0zFRHGIoKc2L51SaVa5HI77y3pdZqxTwbYcrt8D3fvQdiuVt/OomgpFDNEss9Bpl+ZzEF1iKuviSiZdrEOczfPgS/GnMWWdGc32P9bV9ZPJ0+10e7NQZXh4TFWrM0yzzScTy8hq/+OXHfO9LN/jKt95k4+4Dsks3WV1Zp7B+k//1//hPjFwJI7tOtriGatkM+inb+zVeHFwTuSlSqnJx2uPo4CO+8o3v4zEhVjT8SKJ7ekK11mDWf0ylbnHZGnHdsREklYPWAf/2/feIyw2OLro8//wZBy8/42efnPPZb/9P/ocf/zk4QyoVk/tfeZ/6jZscHL7i8OVrpLnE0WmLi9klP/zRLhV5QXF5k0hNMAOPvDOllAuYzx0qa28w671ir55hrZznxXkPvfZ1Hv/hn3n77XdZ3buJaMq0+8cQKdz+8tdY2dtDCi5QiKhuvs3yjTXS8Zy/+i8/R4tHbCxlWFtbRjALDDsd9upzVlfWGU0DPvzwQw4++QmS1kRfqnBxfkAQLijX62zdv8fRhUBVtIkFE7WyimqWmJxckwxfsLR2l5gESzcJg5jnF+cIC4flgoY3drmxIVCoJxyNF3T8DdLnf0mm6tPI5Xj7zh3Wtlb53/7yP/PJvE1ZE3j/zZu8eXeP7Y0NHm42efmLXyOUVMr1JQr1HOWqQUU2OO8+5cnHrzm7HqNUH5Jfu4/oXZBfX+Xx86d8+sHvSCWXlfUmjUoTYTHG0IschUWmVy+wB69wzYREsth64wdsLa2TeDZ6zqRx7xaGpdDwRwyTmHxdp1YpYMoZzpwY//RTFuoG1eVbrFczNPUJUXCJ2rjBjVoFYbnG4fWUTstmu5ql606pNBu8+70fk4gRC7dLfbXKzz6es7+Wp79wkTQdU9IJOmP+9q+/aAOtr1fpiz5KtUG9tsXhwc/51tvfRFcUXC8lSRfo0gBd8tjevs3p6JKHD25geiFHT17ydDTi4Bef8M5NhezSLWrFMiU5gfmCr767we69b/Nff/Uxcl5kb7tOIZB4fOTg5+vMgjkvDw7xHZvd3Rqvf3/N3P/ij87GzRX29zfZW1njqw/v8rkXM2mdUlzdIZfPEY7bHH92SOGHX2ezUWNrtYJLwqv+hE7P5sc/foN45CL65ySqgVW9yd1375O0e5wZAWdXC7KxQTNTYOYEtF8dMHNDvGKNWeDS7be57ExRZUjr62TsPo+e/IL2pMX62g2Cns5oNOA4kBDLJc67Mz769Usebt6ksLfE//4f/4G56+NbZYJMie1awMrK2/z+Vx+QKTUxsw28aUz/9By93OQnP/01e1sG01mbjx4/5qjb4v29fU6618x8h/WHd9BKOX7z03/i8vWInQ2Tr3372/zueYcPn75E1+Y8uPUWpWJCYuSQy1VU3cTwY25aKW6hxMx1aB8eEtoe2zfv8sP/7vsMj3Mk5Q4tV8ZzEnRJJ1/dRxoPuBQy7C7l2NzMs7lb4O5GnsvTJ9gnMbXmMo4KjuRRLxg4DGhfjrn9J3WeHT2nP3HYuf+Q149/xvv3v8w8nlLMFqkWV7G0CpK6zdffWiEqLDPJVZmzYDo4ZdwRGL085Tvv/xlR4nH1/GMGn/+B5WUNQRxyb/8Bv382xR32qNBHiKFr1IknLkpuEzdSv1hXdhZUau/TtIYYvoedyzOWJeZXF3zWGfOjH/4Q59UvOTp6xXDWwjLn1A2BsVvnO9/9DqKSJZMtslSpcvz8I6r+jPWdN3n0yR949uwJ1+1ruoszHLnI3Xe/QSajY5S2qC6vsbtyjdEKuL4+4+27NxmMOnz66e+ZHB/RfXbIn33/uzz69cds37jFmw9vIU7OyezXef6r/4roZ/j8s8/45A8fcfTqilzZ4j/+h5/wox/+gFEgE0gpG2tZDDR++qt/ZGfrFgtXIMGnUQ54MxPTHZco6zISI4Schl7M4F58zObth3x60GGpaHLRveC0dcZaRuWg12eas1mtlCmX63hhyPGLJ2w1V9CWVjh8ccJSUyERpnz80dP/72Ll7noFKxfRZcRqoc7h+e+wCnnCVhcWc7ScySIuMLOWmF2+psSE+soSufVb+FGRve1NCqPfM3JO8eIJqqxSkJYYjK6pVAts3foaVuMGqlEmJ2RxnVOa9+6TSkWc7jXzq8+xpxdYdQFdlCiYFV69tjl8ec2sdcTw4pyKGLD2zrt848vr1Esqg1FEfnkNMRbY3q2DkSFBIvBdplrEdOwwXRgYVfBjG9dzEM2Ext03OOoN0RwfJQVVl8nKHsPrPhu33+S8fUx7onA9DHh9eQBehJhJiUSF8WzOuHOBOr/mRrNIPi3hq3nmjk9Gl9lereI4U775nT/j8uqabn+C79iYikRqrZHRYqREIRx/gZ7XTJergxbvf/+rPFipM5iMuGqdEEQz3n3vS2wuv01zY4PnBx1WGptsNTcIZiHLzSqXvTm+L9DvDvAXIzQc/PmMqSpw+uSKnKlSrdepVre4tb9HZXWTR4ddQgHUXI5UkhCHLerb32I2fE3z3peoNBusljPcvfGQy0uBs94APVZZrpdQszKvL/vcu1Xn088v6U8CXl5NWEQSX3vnIRfHf8/97Rs8enXFy0dPkaZD3ru7yZe++Q6D1gm/+PknXLSnSHqFpUoNu/0ct7rHD77/I6rLTdRCEcnQ8WYdUr1GO3DwhBqNeoPdnTWiwgbvv7nLcqWAYcLuzgZrK+uMxh5/8qUt6tUchllGEzNU6svc+eZXkRUJq9GkbKlIWHhBgBf2KZRW+caf/jnj+RwhzVCt7/Hg/pvsiVf87vkZXuEuR09e0OucEgpzzJnPX/zFD+ic9nh9MmbhR+hyxPmjDzlmgTSHGBMxThHSmJku0nl5jq/tsV0wsK9PaV0fklsvsb+5Tvf0gOatdbLNOzhxhcvrK5KoxWBkUFqzUBOFOLFAtWgqAt3BiMrSNv3zV7z46CMe//IRo+sphb37bK4WGffHnB6dMJtN+Nb3f4y5bJKLL/Ftn+PjNhddm829m6iuxlmmRCE1ySoiguhzeX7E2M+QuDrD7gABE0nM0W+N2FxbZjHsY8kpqR8wc13OpxN+/Xd/BcBX7v+AVJO5uDzh5PNnfPdP3kUxRUbzIabmEwQ+nc4CzR5zvsiQFX0uj54y711iij44LpX1m3z86UeoSxZGNo8oaYTCgI9PU8RXnzCedkgnbcJpjzCfobjdQBg8p67rzPsdpuMRXqKilNeYXfR5eO8tFCREN0aYhfzNT/+ZGw/vcn08pyQLqKlPLGmU177M/PQTFraIF3lkrTL1ygaLIKRillBEEGslZrZPMpuzsVvlL//LP/ClzTqEKpYmkStKqHmBj3/+gmZWpWRluB4GhKnAl3eXCIUGR6fPORx0IZBpNFep3lzDi2H5toxae0BDGrIue6yW6gy1PElokkgGhbVtMvk84WzO49+/xhudEyrrBP6I7nzEPFiwU4AeGVrPP2H9wbssbe+xfWOPh2+8hy3r5GST+UJkZ8WkVjaZJWXK9Rzj4ZiH+/uUlzfJLjUJVZXUWifotXl19TllUyCX+MTzKdrKJo+PXpHNWKjZBlEUMe68ZHjxhP6r55i5JqZhUs/JZIU5Ry8+QFqpU779gNSNUaKEyI14fj3lV6cLbt2/y3Bh42k5KvllthST/+uzR6xIAx7evUcmdx9BLDGbnJGr7mBELmevB0yDObGUoioGtjThzYfvYMkONTUik3o49px+a0i5lOVo6LFeqOPFPh1vzv7qXR5URf7p0Sk5ppSXl4kyKwzbM77+9W9zffUZet5Cq9TRSxUMMSJcXHDYviKzepPzlwdgz/nmD/6Cjb09jn77O3571r65k7AAACAASURBVONb3/4eb919yKjv0NR1nh6ccjH22Wjm2FguEJPy7OiMlZs7/O7JM/YLNb753pe499ZNep0r+naA3n9B5+wCVZHIFPOcT1RMBDqzEb32jJkrIWWWsKorbG5XGDkyqVLj9LzNs2eHtIcxx4ddPGeMYUrUtnaorG6Ry+a4995XeP3BrxmbdWbXz6gbKs3aTX7+V3/NRlbh1fU5qxWNjJkjEspsNKqsr+tMl99BOHmMHM7J1hqUSxuc90aslUrsNPNsrWxzY/dNys01/vDbXzM8PcSKY/w0IRUjSmpIYMnMzk/pz8eYuQ0Gg5Anj/9/ABm+9eW3WF5tIsYRm2sFZsMpFdlHUi0SI0MkCCT2mGXNQ1JFzGwN1WqSilkQfbbKZU56XWRVglhhMU8ZTB1qtTpaKYtm5nGdkIXtEyTghmOCyTWz6yPsTofQDVEyBoqugbbLydEB7YHD3I+JUo9mTkIwFERNJGPqBEmEG9pkBZHLwTl+4hA4U0wpRZVVXl/ZdK+6bORzlNcryNksKBl0pUBue4OcsCCX07DMkKziU1QEFFUgdlNOOhJjO8GxPUIHVvIlSvUK89YFpm+T11WMchnCIRdnJyh1FSmFQhpQEm1iKUFTRCIhYdJzWYQicsZiOWMSyHBxdYGbqDheij1z0QoWteU6j54f8PSzV/S7AxQFVlcLVFeWOR16lEoWSaLihDJGrcxwcYVqlJi2bWIiZu6U6+s29+6+TevFGZKls3C+WPi0TAPkmFKxwXTqIYsiievgdC6YXRwzt2Ukx2d9ewUpdpjNZrjZdcLeiO7hU1abFYpFA9ue8eLFCYV6ESNrkCmVMEyBMFpw2R6iJzbbzQegiBTMlFq5gJVf5sXTzykKXWrL26ys3iONUi6PPqJm6TjpGkqlSuv0kPHwipAASSjw7NNDqo069VIWZ3JNu3tCeavOer7APNU4OemAF6EIIv0gQhMTxtMx1WYJyZBJkgg9iYlVgzsPt8kXm3iCjJzR2dxeo6RAaJaI/AFxEjMezWifdygVNti49xZm2MdUBfRcjiAW6J518QpN1rZ2yBdzkISMOldMO0+wKgV2771PPZ/HkDVcH7pdm81Gk6vhgMG8DaJMLldDVov0RwvevXuTuSgiTBbEU5dJqqPl8mytlrk4b5HN5DFkEa8/YGnzS+jZGmIUMPWmmIUc21s7lIw6djjDm12jqlW0TBFNS1DsHp89OmR//zZoEqLkIUsuM3vO2eEZ5XSEIOdRK2uY1SVEyefGrXs8PbziqjVm1GvhLYaIisrCDcgvVYg8AUlScP2Is/NzHv3qpwD8ux/8G1RTI6ubrGRLDFpd+lMYjrroYoDkOUhBxMatW0win7wImXweUTNRMjn2b93h9VkbIxqTr2aZD7v0Wh0CtYg7tYnmDkuFmELRJEh1Bv2Ut966xcHhS9596w08JQ/5JVa2txhfHrK6/4BstcSkf0arM+RqrpMAGxmZTK3BeBQwcxeoOYFsro6VzXDVPWezYoHvMe4MaWSzHC2G3F67Tb5Y/qItGAVIkoQUyRx3rlkuF6nmLDwn5PXrHl+6dxfPfolR20SSXMLE5tyGZwcveOPeVxCEiN2NFRpFg3BwiTeecdW1efv2TWJ3TJgoCFqNs8srMppFEHhsyD5ZOcWJY8ZXV5jKMsVlnUD1CT0bM41Y2VijO0hYunGfneUNnMmQ48OXvDo4JpNNiL0cN29tUs2r2NMx3eGIpdIGkjtC0LL03QXt3pDWqw6L0xd89uQRqW+TzcjECDipQq5ZZUkrs75kggRiKlHQi2zvbuG4RZxZwtrqGjlRJ1mAXltDMC2UxCZxphQyGrWlBtmlLRjGCNkFkpdiRDFaEhOmCtfHl5QED1EqkxoZ3MTj+vKcWFGYXZ5yfH1OIR+T1RJCx8cPUubDBR/84QknF8cgapQq2/SigEkScnRwgFEoI+EgOS0Sb4pYL3J8NGe9XiGft/C9Bb1Wm0Xgk8tqJKpANitRMDSkxEQMI570PUq5DJpeQNcspGhMs9ng4NNP8byA9a01YjHi/PwSJVen0cyRyecYxzGe52L6C4LpnIGZIER1QmeGFwwIogmJmOX27RsU7AQrVyKWdZw4xCgo7G/fJmsYvDw+oFDPsr+/RkETuWhFTOZ9zs/bWJbA7nqVnVKF1suPef/r77G0XGM09uh0+0Tpgv39JZ4dPCMetNCzORQrTxJFrGytEfseRr1BMLdRRZnqUo1IDvGmUw5fXZGOL/Aih2mU4Kg5lFSjfXKA505od8Z0+zOCOMEejvnqO2tMvZTQ7uPM5rTDGtv39rg4f82NYhNZzXN21eLFwb8MMvyj2kCSmUfLLoEzZTKaYORqJFJCTpPwlYB5rLC6MmMxGWOVNnEEFdFPkecuZkFg0jojkg08L0aJbATBQy000JQ8qhqwsBe4tk0UuIiJROgLjHpn6EIGzSxi5ktoxSLoGoORQZwKmBkBxdQhySMLE8JYJxmd00liUkXGC1x8T6dcrBFFEt5iTkZK0UyNYl5lfu5QKZpkTAuEDKmsUm5ahNMxBVFiLiXIuokUx3jDCXkloreQGc01JvMRQRKBWscLxiRDh0K9TjJfICQCUSwRpyHkDTzXw0g0ojShPQ8IZJlMr01SXqda9YkViYltc8Ul+doGo1lIrEm4symRPae+u07gw/nlkMlwSOi5RJrGfG6TW1Fxzg7JLxcI4gQnTtFlA12KMQsGw6MzZmFEIonk8jqD9jVOIiL7HrEQkSY2YnJFyctw2rPJWAaLgY0zmRG5CyQtTxBMyeYNiEYE3gTXDen1B7AYkDcFNDMkkxFRBB1L1egPQqLYZRGI5EwDS1Fo92eomSqD6ZAg8chlFVRNpD8Z0+5NWa+JFHIGWjaHJMd4joyiyUhqQr/XJk1AlTMQaoSRxN5GHSubx9IEhoHHaLKgGEXM8HAnAf58xChxcWyBsT0jNVXS1CNtzbBDlTBUCVGxzRLTfpfBKCGIQ/KlEhmzgqwrnNo21XKBxXCEHbhEqc7Yj1G1GfPWObWVdfTKEhPHw04OOD+7ptFYplgo4dpDXHeI2dijutZAEASkdMZ83Gc0cpGUIu2FjCSbGGWTUmWFjLWK78S8PjrmSoy4Go+R5zM0KUtzaZd43mHh9vGmC2ZSH0WWSBUdqbZKrWRRCOeoxV3SNMKIQ+ZXPQJk2hfX1AomtaU6ulXk6uQQb5biiDXGizPENCJnaSQCGLmQMA6+AK1FCoKukMnVvwD9aXPmkoTnTImjCCtboqQpIIrEgo/te0CChf//nBuDRR9NNcBLmcchsZIhms3oOjECIlnJRMuJ2LFD1rRYTBPCUMf2YgjnaOIFRqZIvbxDq9VnYU+RNRW5mIFIIDGWEIyEbEEhJ2XJzQwmFy2ay1tIhkkUjxAShYyWZe7aTBZjkouIZDoiSERCHeQoZnB8RFAskgoKulFD10IGozOCVGXYGRBtbpAaAmo+4dbOCifPDnAQML0ZQhLiRyKX7YDbd27zz39wEFWVEAHHjUmcCL+kYs5LzBcRCx9sJ2IR9IlJKBXLTBcnxHhMJg6D8wsWqY4TKASTMWM7JkxMDM1kMutzfSZANMUrabhzsGc+9XyOpa0mstQiiEQKmkkmr1Jc2WGl/4z85iaalOC5Kqqg4XsjRhOTNDbYXKuyGAUMxwFhLFGQSrRjg+FgiFHSKQgOXuIQjIY0azUqa00kVWMwcwgjlwfVB7zsHLKardNQHUh1PE9mda1J4kw5PX6J58aMFzNix+HWG3d5fnWILkJq5AgiH8ceUy40WSrrdESHW2tLONOA0LHBCMnGKeWKxelll3wgkCYxOC6L9iVZQ0TRZDTdQjVNfGKSkct4PkLXM8wWYwbDIZ6vMvMnrDdrCEWD8eAMJfVRFY2x12X8NKRa2aJUyiImHpJvQxpzdPiC+w82yCsSzqDFtNXBzK5xY72ELCjIYYQhK/iSz+Wgxcz2yFQKaH5MmKbYfoiDgpqz2Kw2mQcp18MhkT0jClw2Vzf4DJeCplKwCizcNr3RhPXV+9RKeVQMPjvr4QYeOTMhnxiM5j1SY4tM/jWGmCBHLoJmEQozcladmfMBer6OYjTJ6gqiGFAvlfBVlcxIpmBFpPKEg+efkV8tkHNFhEIVOwiZnx/y9jtv4QR7VDIm/dYRI8dG9ByMnMXl1RxxbCMXK7jOgsn1BKmgs3Zjl9bhE3rjBboioGo+QTzAEkXWNx5yPf4cb24zmfucOxM2ewlyboU4BidO8OL4X9Uh4h8jVtJURTIqKPllum0fq7qCndtBtwpYuoWRKbG+U6YTGxBncVMBN/FIQxeckM7lEZrg49oBgeNiKTGrK1VIY+TIZza2CcIFsuwjpxGpG7NIQMhUya2vUdzZwmpsYzVvkcghGzt73NhdZm+7wvZqBVeBKElhOqR18orr42OmnR79yZi7W/epVvaJkxxTXyFQNDbXDQwxQivksQwTwZdJPJFiRSUa9oichLEdMI0NbIpMHAk8l1DKYfsO/cWYURoT5Mv0p11652eo1TpJoYYdicwGEwTZYmltg2gmoEcSoaBxGRnMYxWChHmgsrlTY2ctj5YmXM8dRD8hTi3iyCGJBpBMkQQJMTEoSBb5jIShxRCHLOYh41lEiQHe5Iow6BFHQ+xhn5JuErlTYtFmPrOR0dhYr/Pss48RKjm8hYeh5xFlncGwTzRfcHl5ip7VEJII33VwAamygVXSkIsyc7vPdDYj9BP0xYRJMKC5tY5iyUhySDGvs7u7gWdD67TL9XkHZxaSUzKs1YpYlQbH7Zf0pwOiMCANbVy3xfLWMml5jUFvRL93imIkbN65zVyIKDYgHJ1TrtRoLN/EkOrY0xnf/NY9DEvDXiyIUgXdqBIPIwahg2j3KRkOITO60w5x74zO5QlR5HD49AnHz5/Sbp0ymPVoXbf53S8+4IPf/Jb+VYvI9pkOFii5MkoUY2lZihmD9eU8t242iRlz9Pr3HJ20CSIRw8ximBaqKVFSE8b9EZ4vIpsWhZUGG/f/jPL6fYbtAf3+Ja3rzxl2npPVAp5fdNG0Gnf2brC8sYZazKGZIkE05+e/+g2nry8Yz6cksk9OjYkHIw5eHZAkIaNBm5lrY61vkhghelVhdWuZ5Y1djGwZezHHjXvU1uoIusF83EbwbbKZIuPUYG13l4nt07vuMhu6JJFBRtPZv73OrNQgEhMG1ye0jo9JUotf/+YjlvQp+UyKaWkoukGqaDSqefA8RNHHdmcE/oKS+f9Wl4/alywmXzxwDoddqjvbWJkUB4u+reJKZaRCk3b3CkUwcYDWOKI3cul22nz64W/Y3tqkunuT64sxs5GPaWrI6YgwTIklnXFkEUs6jUaBuw/WefzJU3Z3HjCwA0bta7zrC/zekACRFwcfcfTsc9xphKWblMwAu3vCeafDxesDYt/G1MvISZOLqytevD5ADhVmkYZnZMisVGnsLVPV8nhSwHB8gW2P8CKB3lzCbJbZWN1GzpaYJQKpIrGzWePT6xNytTsQRARxFkEqUZFD9vduM5lfM511uepcc9wacDJOOHddNCHlst1iMHFw/JRYkrCKOabjHv5oyLXrcT7oMGudUa8vk1uWEMMJWiiT0ctY+TqCmGGjkpJNR9j+EMXIsLV+gzdubeJFMm7sE7oeUztiGujIRoMkDAiUAl7oU1IltqsZdtZzlFd2ef9LX2b//ttkirvEiUnozxBiiWcXL3Eli0qxjpErMJUUEFSWygqlgsh565xX/Qvmypx6JsKddYkEBSu3ziIQubw6xW0fEcpTIiFHpVFGyWeJpYSCMqJesSg0yniqwKTXIuy2KIgJmj1HzxdZqTdQzAaRVkS0JAjmFKomD+9ucmt3HyFNefXyY5JWh1uVMl956w3UaEro+cj5FRw9y8mTE5orddI0Zjqb4/g+Rt5kPp8RCT6NQg5vtuDV6yPOWieIWYnNgk7sBEzaF4wHLUaxzGePnlNYqmNW19C0ApqcQ89UKJkiilYkjAUayheAw0Wckq0ukzWbiJLH6o0m+dUVXMnCkGXmtoteLTHyICQkb6QY44hPHv2KK9uguXKTnKgxbY3oLRQKNZ1G8walqk5AxPVwxmm/RWCZRF7IZL4gn8+zubpMwdL47W8+pdGosHxrH9NU8T2b4WJOt9Umt7yJJqhki3mcJOGy3Scja3SnCdWSTr65iaCW8QceQn9KqWJRri8hWWUy2Tx5UyQIemQNmaltIEgyvpLHl7IY2Jw/v6RW3uNibjMKbWIx+tdNkz8qBnrnHts39ygvb7O1vU2lVCP2+siyiya7GMKc+cLGyNXQL9vkmuuIhQqThUvn1TE7tyt8evicgpxSqK2jldbBGZJfSmjNJOa2j6ZbKFaRSQyyN6BcTtBkD0WUCEKJsZMgxgJrG3nKq3U2Gw0KGYtZECGOVC6fH4IocNHqYTszqsWUt/cS1poPOZF95F4XVa8QlNa57rV49vvH3Nh7SHO9jp+4uItr6moXsdLAEFPUNEMwHSImHrv793HCFLt3TitZ0PcWiIrOVnOZxqJNZvtNPvnZ32KlEwqmShyqmHqGyauPqFbKLBeXyRgyhumxd2cfFJXe5SG1gkqj3GB37SbvvP0ugjxGyGi4x6/xbBu9VmXn9k1qRpX+8IJgMUKOIvKaTr1UYG47rGxsIEtVBkfneOMBzRvbXMxtXv72AN8qUS1niMM5T19eUajfphp0EErrlLOQMQWETJl5fot//2+/wVSyqORgPunz/PMTxsMxS6FNR6xSt/LMhzaTsced3TcZqtesZzdZrdZ4/fKAl4cvuP/GG3QnPlvVPNXNdQajDkevD5iPRtx7sMPkbMDd/TdZK+pUswKNZoH7+2sMoiqTozbzWZ8gmBJ4Dk+vrvjxV+9xcX5FbJSZeAHd7im+N2KqTrDHKa9evSJ059TLeYxSjkqUR8nE5Eo5AtEilS32N2v836y9R5NdCXqm9xx/zznX28y86RMuAVShgEI5lGnfbMNpikNSHFKhYUgx0kJaSDv9Cu20UwRHCgVHUohDkd1kG3Z3dZfpQhUKNgEkMpE+8+b13hxvtChFzE7DCOo3fJvni+/93mdv9yWyrCDqSwiej+jPkAyTxufnNMZ1KtUrWJbAoN4l6vc5EcDwTQ4OtlErVfSsAdMTqsubvP7BNzjeaxApMq7dxu68RIoUfvRn/znllEoyMSESbCRJZa2QpDeD9Po1HDskUmIkZYp7/IhXr19nOOiSThZ48fCYB7/5kn77lKZzyp03bpPLrpLLLdDtDfnFP/6Ylq0xV3EZD5qU5lbYvHKLKysr9Bv7uN0BUwdePD9n1GyQSVgYZp7VxSyF8mt06qe0zk7oN9pg9Vl8ZYVUbw89rCOpBq1hwKe/+gmFuQ+QCqusLi+TWaySKlfISzI9NcHj549o7Z/ghTpmboGFYoIHJx3W5xaY9BziMGBiuewetNl59JWQ7I9/+PvMZwwKi3OsvnqVRGuHfU9EFTyifkAqllgppVhaus55fcjmnM9KZZ3losl8SSOzfJ2NokhrKHHabmPIEtlEmUDaxA2anOx9xGp6Ecl2GQxadJwJZyOB7OJtpLRG5HaJgz52MMHw+rjFBGaokcyYCLHE6GxAu7VN6pVvs1a9ypePPufsuIEuVAm0CoF/wp//6Q+Iukcc7zyl3u2RmZ9j7En8y2+8R70xwdRU5ktJ+q5Nx7cxhFPWL75DRpUo6LB+aZPB01Mql66xuZjia3eusHJhgeNxQD5TZWfnPtbYZWPtOsXlC0ySKlIiwG/UefNrF4hnY5QoZK5S5rXNb7I+p9DWl0kIPpoUouTySHNVfvnjj9jYnEcsLdK1BM6Oe1i1OuR1jgYx/sRjdl6j3zpjrEasZtIEwwIjy2Ym6xiFMqWsxs75L/mT737A/daYnq9jBwaCnKS4eInP7/6Sk627lPNlNi6vkSjo/C//9694faHKpRur4Mo0zvo06uektICnp8ec9AWOzx6ysVHhzlt36J+2ODlu8HS3z9z6KplCGU3PEAozhqdjIsdnd3cHnxFGWiCIEtx57122GyLvfOsdfG9Cv1tHVwXm1t/gpx9ts5ob40oqvfGQaeeIfKySMef4/PMP0Yq3Kc4vUsk6LCeqxHMpwoSJks5x6eIaS3NVnhzJrJWv4etZdrdf8LTRoqcKXN4scXQ64PqNV1m7cJHMwiJGIUcUTclmE1QXLvKrzx/QqR0gBQGmscxa9QK9nsUr62+xnM6ihR6RNWXU7DHLZnnw2Ydovo1sGEyUBPXaCUWziG8YDGOHhGBQDlMcfn4X7ZUlTh51effNNyiX08wmU1RLY7t/wqs3LhHbExZKJknDYPt5n1I5h2M1Wc2VqVaKhPaIvUePEcWI997/FvX2A5rDM+r1Gs29cyb9kLcvrvFkb5fBySGZXI6FG2+wt3vG1c00ezs7LOVTZGQDwYoopUParoau+oj2jG7rjJHdYW4pTWBmMOyQWBbpWSE9WyCTKfH6u99mb+uv8MwQTxJYXqvyx3/4TaJ+jWLKxG/UkZQh3cEJe9tHwD8zs/LDH32TlbUVWu0hkjbh0dMmPT9JqJnkSzmWizpR4yVBz6adytOzREatMYPehFos4m19yFz1CqXyJfIVmWwuREms4Hszpp065bkctmNjO1MW1woUL36XYraEKxbpTGxmkxkmGqEUoQsRoafR6hzQ6LbojyTO+xMmmWVImrx58yJrK8u4go6lufwfPz5Ccqb04hRzlSKvFHXsccjWF3f5L/+7f81ESOF0a4TDHmf+VS6WfT7f7eEEJcZiSH02Zuv5gGBsc9xuYrklhACqiYjNhM8Xjx4y8mw+uF4hlS0ShBGy0yfSZqTLy1Tnkzw4OuG01yatAP0ecTrFW+sVfnsQ87Am0B177O49ZDCZcPvqLU66TZq9mEnfxLJjFq/Nk0mmWVhMsHplg8LyFYbMQfEqyYSGFfjMrS2SymY4fLJLMlsiVH3k3gmz8ZTRZEwcDcmWl9k7OSSfmcfpt8CaUsxkyS5tgCfyt3/5V5xuv0CTZK69do03vnGH6rU73HrzOuetCWNPYRbGfPjJj3llcY0xFoe1Q7YOWhw3Apx+SKsZYhTGxOMeaFkq1U02F9f4xUeP+d73r9A6anI4smj2ZkSnLdRKBr23Q3opx+Vbm6QLRSbdCZcEnx//48c4RZk0PpJnI2WS3Pj6W3Do07LGyDKkDJ1sMk21vESoC/S8iLRXw2/sUz884UnT5/r122w9+Ix8OUt76vKyNuDsrM1g2mbzu39GOTrEs3YRky7Fi5dQZgFW2MAc13Bb5/QbTfqTAByFpasleqdT5hdUFEng/Mzlwf4ZvlolnB3TmfoYWpqCkeNRzWEtq/F09x6mquH0AgTX4Gs//A6Nk0Pk4oSdrfvU2jWmgoBLnoVygRur66TmVhALWZTyPAsXb7JyOY04TbBy41UK2TVmjs5Bf4YuxQzHBnd//SFR94B0MsZOaPzd3/+MxcKr1Hefc+P1Itffew21ssq9+/s8vrtHsZBDyRdptk6Zdk75+nf+jC/CAtOjT+kfNoicFrJk0ZulWBEtTvfrzGY+zqDBoN2iNU5weTlLp3XCYCTQ6k8ZDkcE0y67zx4A8N//139Bo33GvYdfcP/BI54cdLFabV579dtcW6qgSjO6Vp+ly1fp7JwwFWYYuTlsYmaey0oySUNTGT1/SWQGzFUz5OcKjJQU3Qe/YfPdtxjWt8infFIS1B7ucfm2gTCa0L7/JRdXL1MszbP94CGIOd7ODams3KG+/wyNKTffeY3dvS0ubKwx7Gzz5lu3yGUMDg6eUN1Y4YMbV3nZnfC81iXQi1QW1pEGfYRpj72DY+7e22E46iLKLkKg8Ozjj9jbthl5AqI0JWXGaEqCkTOk4cGP//rntAYTetMp9fo5799+g7fKKq4/wLdGdM86dI+HVA2HP/izf8O9L/cZjVsUExrLWg5nWGd37GHMQ1KvMOlNmHYb3L78OoUFmcOHLzh++QKiiHS+yJCAqlzh6mYRXdQxCgYT0eG3v7vPeTPkuz/6DmI1QVINyQgCcazx2y8fUEgt0D3dITRF+vaI0+37aLM9soUr9F2Z4sYyCiG0Btx59zuEuHz56DP8qYQkyyhKwLjvIV58lfs//99Ir98iF0vI/RbJO1+H2hnDsxaLeY28KeJZfR7c/wRVjvjmN75P7PRIqwqOK3N/v0dq+AJNKbAk1Vitaqytr5NPrpJSJEbxM26+/yZzUpl4JDEKTRbe/Aa1bkAgeJTTDtPRgOOejHn9Mn//l39J9+l9nuzv83h7i0nvjP/iR+/wydPPeXrS441bV9gs5yj4Dq4zIqv2mcRJgulXp9F0JsvagsHdRzN8L6K+d8jc2nWqF9ZJyy0uXrmGuP8p/chCKCt0QouXJw3SqSK13c8xtSpxqKNncsxVC0x7pyxefgd3OkUSAwatNqPumNu33mXY3uX1d17j8OgLslJAtbTMJ6cjeLnHaa3FXKmAFVv0nQGpjMbp8S8prHyAWsgynE4YTy2SlSW+9u2/4Gz3I36xb+CM+uihj5Hd4PoHr+EpJa6vXoLeKRUDXt+8jGGm+eS3O2TLIU8enLJ70sQyY8LlMoqs4XgaWrZMuWKQTPk8rPf40x/9Bcf1Btc2Flks6mQMASkQ+Nk//DXPTrKcdGXevXWHG4sbbH34EPIprl1ZxpazzNQ8teaIg2f/P3wDVTaqBLpIe9xn91mX1cCiPGdSNHpMz3d5cW+b85rI9l6Nk4GLJ2oI0xla75yUf4ppzrNheOQXFpHjFM4opGvXOanXmWmXGXemRKioRhKiGD+MODo+YXvnBYPaMcHUJpZzSJqJohvUX7yk0bOo93w6nSnZlEImEaN5XazZjPPegPNmi8nLA95ZSRGYJlhPCWaHNHsjDmoqueurmJ19NE1jPAoZOiqp9TnOr1JHBgAAIABJREFUvtziyuVXGQ2mRAOJfJhluZygFfUwWxHLSwqS3EILO8wTkDHKtGcRX/9Ao9n1ca0EKwsVHh6d8u3vvcXBwUuaPYuluXlub17i5HhKa+yQWljnwpLAfHqKZ/fpz2SuLhX44vFLisvzTCdD2s0jLl6bJ6wdYA8OmWgbTPR5Qk0kL/bQhDH5jILqthj2XbzYYGGtzMHTzwljj97zZzRbA0ZTl8DyOd95QFrX2H98n9GsjaBLGOk8gpjjx//2f+LCxQpy1kRNmqTNFEomhT2r48RJ/GkPnAA9DFnPznjnD/4NQh/Ojg+4+MpNbn/ze/QBNRlz0mzQrfnM5+ZIGgLPTx7x6rU1Pv/FR6ytbLC8YFItpyhWlkCP+J//z0/4/T/4I2JPo9ttMVUmONfexUxtkIp9sKeEskGcWsBzPB7ufIY/7hLHkMsXSKWzHB810eUWouPR69uMFBPSJsq4xcvjLoYccHY+RolDiikJSRW58bX3uGRqjCcDkqqEHis4Y5Ef/sG7LCVM5I1r+KKCoUQsFjQsQSUYBCxsLqG6HqoYkClrqFOV47GCkEpRnEuTSIvEasx8Psf+wR4bSxdZKCTJLK2hLV6i73pMzEtczF2hVhuQ0Itc2tjkjRubqLkU3ZnKX/3V/872vXu0X75gdLzNQirPpD+j3bU4Pj7lYO8e9eMv0FOXcTnjzttXcMSIdv0E52yXCxcW2PrkCVvPfknDznBwPKT+YoslMeTP/+KHNFpnfPjpAwQ1y8atOzR0lRtlhVtrV+gYiwgkSAshqXJIsnSJo0FIu/aMMHJJmCmSyRQ2KikxII5Oca0a03aD1lGTeuMrx0d28S0msYKSX8MoXuX4+DP+s//hf0QJO4S4ZOcKXLp+iWIhwScPPkRZuUnSD/Hb+0zq+4z64Po+oVSk7Yo4E5/u2TmPnn/O1Xe/hVP3yF+pMosq9EdplFyKvdaEhcw1brzzKr44oF3bwet3GUVTFqrXyWkh61euUb10DRQZ08gjSwJqpHB41MQaT1hfLLO6ssj23udcTBgMOxZLpQobxSSf//xvUJIVFDmkdXTIeDpk7IxxJk3mb9xBD2aMbIGhFXM+sHn8bIff/fRvKVbmublkUiwuIChpTAOkRBcnknl4dx9FCFmvpnjn5hrX3nuPn/30F1y/dpHO0OLwZMR+bch5POPaQp67v/4HulJMbObQ5ALtsxonJ2fE0ymvX18jp3kwbbI+V8E2NHpOyNKF65QKi6RSFdLLayT0kPPz52QFH23Qo3a8x8e7W7x9+T0effTvubK0RsqHYDzFU2TMcoVJ7LGcnmM8qDO2RbTKW1ApoAYWFy9c4uPf3ScIQm69doVaZwtRK/LazSuI/SHxeIbrQqPR5NJr14mlESeNLgVDZz6ZpVEX+KP/9r/h6b0HVCqXIRaxLBc9s8jl2zeoZFS+PPoCKVIQPZWz9oBurJEUdPptm6uvv45ZKfJ85znt2mf8J//ijxiNu/R6R9ijIVKoMpg53LpawZQ91q5dpLh8kSA2OXv4CXXb4NpGipXVdRKlDLHk4r88pKevcev6Ip39A5ypi23HtLoev/+99wiae1z75neJRIHZrI1RiOmfNiB3kc3XrhN6M1RBYKk8xye//hmRIGCNE4zHHZxpjenwjK1mj8nOCUeNXeY8gVJCIVMSUbMWn7zsMDpv8Nb73wHfovbyCevLG6grC6TSEQtLWXQ/wBpFNKUct7/5Tdz2kBdbH9GZhQhyGtMZ8vjexyh+yPvv3qCSlwknTez6Lol8njCbAgGqi9dYrG4gxQGNiYtgjVibn6N8Y51bb9/ilfklnv7y51itFiXdR/THSGYBV6lSe9HkT/7w9/npT37Nw7ufYk+mzCyfX9x9SEnVcdsvufl730Xxp5zu7nA8dDg+fMqVqx+giRF7T+7x9P7ntNqdfz6slBY2MZQymi2QknUKVRPVtzg5PqFX6xOM4HQg0ogSODYEU4mEEKMpLt1eHVU2KV6oIioGgRAzCR0a3R75wGGmlSmnDXQzQpImiFaf/cMRsiER+SqZcplUsYQoyNiyRv30HF8LsMIYAEX2ODk+xOo2QSvijDoYisb8wgqCMGC+PEdfqrC4MI+iCMxcm8zSGs6oTTzzWLu0hjSbMmvUCFWHMIwQJqd0JiaCkSOSQrrn+5jzlzk8ekq9N6S6kCNl6mztNChW1sDaw0jOEYxdpGBMLExJTWw2Cmk+P25z49XXWS4UOTs95VQYYqoa+49fEosjMuksSwtXuHLtEq4k4IRJesMhIgGL+QxFdKaLSyTlAmLeJKWkSIsZJCPFQlpn7/AYJerjhz5hbCMLIyxlk8HWQ45bNTrdPqE7I2MqaOY8nhMSyB65hcsk0yUCe0zj+JwwGOONO8SBgBBEzMZ9dnZeYp2es7u/zYKeQI59rNAlv7zKk/sfUmsPGI0ThHECAZdK2mNxfZnRWYPy0hWmwxnN01MUReLma2/gBwn2Ww0SqsvivEl+Kc/zusXiwlXM+QqPHtyj122zuLxBQkkhRilse4dAUlGNDKYo49a69HseRrGApi8jEhMJQ+SFPKlAJhYDnCiH7TnM+h3GZwG2piBndNKRgiZnkPQCyXyKzUzIdBbQ900CwUAWRXSmbG3vE6Wusry2SDgaEM+mqBK40xbrq1UODlpISRM5Ad6kzcQfM3/hddIpgVLWRDdSX4VnpZBMaYWAPuOpgB8J+K5F46BFKpGif7iNLY0prm1gpPOcbD9ASxZ4cO9jLl+5jpFMohsKS9UiW0+2GNgWo2EdP5hhZFPMLS2SqO/zfP8e2UBiPKjjTOuAR2L5BhdWVdaWSmQWlmh3xhxsH2IqHp1hl9PWmKWbb5C/eI3YSJMRZAaBgSfoqFGP2OlgeS42KQ5qPS7OlxjVdphNhkRhQFIWEewAWZOo7TUZ1DtMhyOm1pR2uw7Arfe+jqHFaKFPNha4mC+RUGPCoEteVkBRaPkOjbMz+v2AuDND0gS6kxG98YT8Sp5hfcq771xA0GJUIUbxXTRvjLD4Cperyzx98hBvNCStiaiGCmoWJRgxqbmgZhANA89xEOQLXL9zh4QuMrBVTvoTznqnFGUYux4Vt4ZreUwilZEoEY+aRFiMmg0UWaGYNyjkEixUV8gtruJaDp7lk1RSiKFOozXj6+98n7E3ZbW8SracR1AV/KFHJuWydPW1rwrnQpVBb0C9vcertz9Amlj89tEJqhDguCEvmg4TVeH0dBc3VCnm5kFS6U67XFtUubC2zt5ZkwuLF8irEoE3RiwtUU45fO3N69SHEmftIVYwQ8+bJPU5GvtPOG1b7D7boXb0Ei0RIA06XM0tMHAdBpGLLakYchFTsnH7U0KjyHg4JowjkqUC9rBNOZ1mMJ5wcrSPPxuQSztMvW1SosfhizpIKkoiwXA6oj3qkxXGpPU8JUMjl8+QKsyRzS1yf/eUD968Rq09ZhyKDByffrfO+s0lvny+R6koIcVfLa2+MsaNJWbdGeVUmlGYo0eeRL6E3d8hlFP0DjvkMkVkMcIat6jXeszNrfDkeBdNKpIwKsiGQdXQafZ6pPMp2g2LVHaBy1cvY/hDFi/cIZIGOH6E4LnEbsDpVCJr5MjrCr2hRmfkcdYdcD62WZw3OGm0eXl4iuQrmHKS6dChVvcxyyZxd8TjF/s8erbP0c4psafw9X/5J1SWspRLGVRkBBc+eP0VXuweooZt0pUsaiLGGrR58GSP0vwq496IZuuc/tTDEUw63Sb+RGBxo4SgpwkRcF2fQXvCQqKAUS6SCC3iMMJ1fUIELq1lGSfm6NSO8B0XKZRQRY3Vy9fYv/8ZZ10Jz5rRHbU5atfwxza5jVWymRhDSZBOpJBlkd6gwfW33mTsGHTtKaP+AKs/RNIN9NwaIwHmKilyZp5I0AmzOm/c2iTSdQqBh+85DL2A6WhGznM5dSa0Bw712h7N82Pa3eH/J6z8k76BtLGLPgrQ02lysspoHKONThkOxjgzHZwEnj9AVARMSSPyAsJQxJFlgjCikk8Tygnc6RgvCLAEEXsUYGeTSNM2oZQFISCUZoytGbPpGE/WyRfnQIZYACFSmdh9UtkUyYRIMorwPR/PlonX1pk0DhiMQkI7IBZnqOGEVKbI02cvmX9jAzNbZDyN6A9OWcxZmIqBj4rs+8hRQOAJTM8s5osGrbMXkK0y6hzgOGNkWaMsOMhmmlG7iSLPkzQMxMQ5gm9RnU/QbrRJSQKp4lfCwfy8z157SqMXUaj3cGWJQX9CqiJzYX4Du+AhaX0mVkAgziiLE8ayz8JcHrE3RJVMAsXAnQok5BBFENCUJGqsoiIi6Cn8aY2AGHsyIcRFUJPEnklGl2jHNk7g4oceggf2zEZJRkwmI0oVjUI6TdrMI4sebjQlrSkYKQ1RM5BQCCybUXOCosQcNc8Qu21MTSAixpplabVa6KkFZFMAycWaTXDGFhnbJBklWF/I0ldCWmGH2J8xHk8pzBXpj5ukjBxIOU5bM87O6nz3/e8hGVky+SJRICPpArNhHeyA2cwhmU2iag5C3GEwsEiXTcTARxBdBGLiWCAIBZxQwhJ0BDQMOU2YKuEsJBhNu4R+EjmyERQBSdNJaDFC4GDZNnGURtVEVDEisC1GQ4mUHxKECTQljZ9IIcg2xaxA5Mdk0lkUVcGZTeh3PdoTl1L7BenSOrphoisGcSzgBAJmJokQC9izLlHgAzFGQsKftTg4eEpubQNdM3CmfcbjJjnlAgvL6yzPL2CUc4RxwFLSpG8H9CddVLdEVvFIZUXkrIg7GpHTTWqtU8ycwsLyAgm9zFHbJVsJGfeHLOZWcA0BLxWzsVrkxJHoDieUBZ2EqCOFoBsqopoldkckNQEvTuPYEeHMQ3ZajMQFTLOKotpYzoTpsEmxkqDdnDKdfjVf17Vxg/8QlEvrAYqUQIxFiqZMZXmFs/4p6XwGFAiiGbHlf5XJWMhRe3bMcThi6no4joLQmKE7Pp3xlCQJhESGQLUR/ARJWSRvaCRTBfxBj9F0iGIWUAorZNU2Zzs9cmlIZATSC2WSkcFkMiDu9jiZSriySEZXaLR7uP6MI6uPqJcpZ7Lo2QyLyQQ1O+Dx05+QzWksricxCkUOZwI5PU0oNHGigHyqQC6bQ07Ay4NH+JJEpqIzEwIGU4vIGrM4v8RwatPp28xnAwppCU3RCRyRk5e7CAkd3xDxzRSinGfYmxGGE0b9PklFwzQlCnmTqRshmBly2XnsTh9BEkjoJtlshkktxqisEDZOEJPzqIkAz3aREwPa9S6VFQk58HH9CC8wKaWLzBwBOyGSyGTJGykkR6Z2+oLlVz7AsWfohkoseIRBjGZscOnqJlv3HpJM50AU6fdHpJLwuy93kOIsm9duoiUkRoM2+ewK/sjC904JwxhZ0xESEpNJGzt0OW80MBMZUCUC0cXMaNRqNqowJvBMCFTEUER24KDXZE0PkTJpwljGFyJc20EMBkx9F1EKOD18SbqYIJORSelZOqeHFI0CCVEmcl0E18VI6KT0Aoo2QY6muNMxvfEQQdLQvB45M8dJf0ykKGRkDT03hyI6SGqBgd2gM27hizFGscJgaqFlC4T9MyJxTEgSx5IJwx72NGJgO4i+jRx42JZPuZxFVByicR/RsxBCl0iICX2fQs4gv/o23eEU0RMplpdZJEMgZYhSNiAiShICAsPhCDGckBFyWA5Ylo8gw8pKAbtVR9Mvo+XKyKMT3H6HqedQMFKsX1rmyd0TSpkyhVKOycii1Rqx/+KAhVeWmQUSfuQhChGqrlFNxbTHIe7ghHp4jIdIGKoYUpqJazOchoj2CDGM8LUCw2Gd6WRCNldi2msxHo+plBaI0kVI96gfHGBWyujZHKWsQaAVUBhTyhQQ5nK08yme/Uc45J8EK/MJhZW0SZzNkoxEzs/beNYMIVaI4jRWpBOrM6qKSRC7zNQhceThWi6apLC2WGE6nREZ4E5h4sWETkDTiUhNTxjjoISJr0RNXoSixPQnYwr5BfzAJxJiDNMg4QVUV1dQbQekGNuyGccT0vkFzqU+/ScWTiThuS7eoEVKNnn88Bmb797BDbL0RgKjnsDygo0UgWJq9Jt1vJmPL6fpNj3mMyG9jkMxO2XUPKTdG1LaeAdheISqVxBp4FgOGTPJajWLNBhSvFjlxaPH5JY3SObmmM1ckgWLx+MAORY5OTpknNQpFjIUUwrFZJbUZplJ74TzzpjG+TmDehdjKUlhRWVuIY8fRdQ6fUJfYnVQw0zMIYgpRFFGxkGVHIbWjHxGw69BIISIskIUZtCCOqmKgXwYo2oakqDizAKcsAUErBQqFE0ZVVEJZZOU4RL4Bkurq9iBBn6MEJiEsQZ4FGyXs06dlOSQlkUmbpPchVdI6xJhOMZISvixwv6+Q+lsH9ULWUy7VNJJ0lqRxkGf89ophWKBpVySfH4ZK87y4miPQWdAppDGl0xWN64QxD1scUL78AQ9mGANZVKmi2t3mbowEnWS6QTxeR8hmUDQk8RxAn8QMZZiPDGBGgYk5CRCZoGp2ESvdQnHGqPphGQmIClpEBhYks401ElIHmnVRcJnJKmUK0Wk/jHDyTxKskDSs7CdHhkjj+VErK5fxrY7NEcDxlaCbidiOtwif32dABEh8CCKmMVJgqCDLkkIsUU4G4Agk60sMht0Gfo2K+Y81mBCu3GAoihoSVhe2yThDskWCkSagR6GvP71b9M4fogfVEl5Z0Rug67TQi0muH3xdQ7apyTyJrnCIqpQYPpii9rY4ez5FtXsAnOJAGXF4K23rhO0TQajGYN6Cy0UKZTzRIpJMZ1CGHQJZB1ZS5EIfGaTLkWxy1YzAq1AwhjiuhaOMyKWPIaNOgHgCj5O6BN4/wFW1GCMnkgiyAkSBuQWVOovZiTkEgEuShyTliRCTcFPevRyMo1WG1dOIiZyNM4nXCxLnDQmZMUUjhUxdiICKcW86SBZTSoLi/Q8H3s2wpVEKtkcOd3mwKjR7vVRbQkhYbJU9Wmc7qEOLNoW6LkMlVyWk6jPbNTmeX/K5uVFlvIm2UySQrmCZadw4g857wdUbYF0AHe393j/6lUGrsfU86kkDeZWFyBl8dnzT7i8/iZCKmDa69Nr1/CtDnKhSq/dwR24zGVjinmTtFNiUGtR7w0olCvoBR09mSAvaEysCWlVxRv3acUOiUSCpKbSswLGvke+ssD59lPkhMlcqUpVCbg3CTgeCAgimNkSkq4jT/eIvC7ZXJ7FjEdgqozDDGRKCJMR/VBCSZkkExqmKBJKDoIskV29gHu+T2zouO6YWbOLXnoNvbhM0jhnZSPF1HWZTDx0P8XTrY955XaFbM7ElCLwNDRtiaOjF6hmjbErYqaTGIJD14ZCqcLWznPmMpdIajKiEmCUS5ycTDDsHlGwiO372LaNZMuIXoQdjBgHAikxxPNmdGyLajLCHp8zv7JBq1ln7EksrZXJpPPYgw6X1q/SGJ4zmTYRpwFD2eRCdQnHOUQspWm6E3b2j5kzNZTeHtn8OjIQeRCFEhlDYGQPiKQ8ohYj6R5JU2VlOUujOyVpKpQKBpoYgxgjR0nU8Tb20CWR0VjP5pgvl2gPfIyMy7D1gmjgIlguCCFSImb79IRkSmf16us0Pr5PiE514zKVtZj7919iFgqsVZeJ3SnjfptSuUKnfULj4JxkLo89GhAlZC5dW+Xkt79Dnq4ykyViUUaPYyLfZv/I5WtfS3BkJMmaOtmsiRNC7axNgEqpIGNNHSAml8vScCAveDys9fD6ZwSeQyBomGoGv9Fl2G8wGU9IiBGqJGBNLAbn2/RP2mSDOQb9NpPZmJV8iZN6H88LsISItAbpRMRU9XFzN8hKd1nMKRh2kf1s/j/KIf+kM9D3//hPufX+e6TTSSIlgzk8wVc2CEOBOLJxFYtGWuKDlauEdocoISD5PaRxjThSubCxzOR8D211k6nj0W2eMRNnWOdbDHyf1GISAR3fVnFjCSXKo1QWGJ3ZaFqSVCqBGltcql5mOhHwJAk31An9GH/c49H9p9jiGYVMmokTI6sFUuk59k4OUOyIy1eg40QM2nX0eMort97h0Zd/T65gcXhaJ4h0dF2n3nuOnI3pHfZJFBRcSWAUqHSHLqXY5ukoRaN+QFK0ySsxmUQCV4RceYXJ6SnK3HVGvsbx4y8QJZ9CJsGFoszK5hJLl6tUFjIIscLW/d9x9/Fn5CtlCrkyhqqQyQaEky5nwz5x4gqjnkPr/JiJb1OMxlx951tYsoqZSmCYAmOnwXx6DWm4j6TqzKQSU9KEQUzoDUklDA73zhAEkZSZIJmQmVguF5bmuH3rOsl0ltHE4/SshTs9oLh5k0ysIYop9JxJecng8noBOz3P97/7DiuXlokVA8sT2agusHDxdbJxk0yyimLm8UUJzw9ZLzQYzCa8es0AZ4Y1ChD1Cn4sIOkFJtMenpbD0QsEiTTOLKK6coWzWo/+rIdkZkmn19l9cJ+pUICpS2AP2T/u8Px4xvzGHOdPz8mZKqncGrYvMZ1azGcqdC2JCg4TQhzHYdwZcHZaY6mqoSRlOmfnpBI+mWSCICyRX0+wPaiylJoiChaBkEBLVhEEl59+/BGbN16jsjyHLCUY1ybYgybFaymIFyjkVSRdY+gIWKfnzKqvsFJexJl0CawOSjzFCwNmnXOaU5kwPU8QC1gzG1tMc+PqFeqiwWrJ4PBon52XNbJqhaW1DD/7m39gtaSTUOaZDEJqR89JVS+zOVfmwsYFbEXjbDij22hRNRVeef/rFHMrjK0Ee88POPziIy4VXIxJjKpGmGWJsTfFjXVufvBd9MIimp5gOGmDEpFIZ3HjNFEs4ikKvckYezjAHtq0JgrT9nNSZgLHGiNZE0wpIJGR8LsBSXXAYBQTAbIAOBbdYR+AleV5Li4W0XWB1nRKIT3HsFdjkIzJjSdUlQyJ1AJ3d44ZntV46603kARIlisUV6rk9CG+FnFn41X69oAXB0/p92vcuL3OXNnCGZ6y+9LGFAIW5kyM/BwrSYFhrY4bjdh5ecDznVPGVsSV9csEqsnqeonz8xqDk2NSocPvffc2T3b36LbqLGTK9EcCHz065NH9T7mxvkq2vMxBo0ejV6NV36X5+EtuXK3yuD4lrZjMFUs4kswnRx0urmTZzBTI5IvUTo9pnB6RSJhMRZn1gkGykCSpiLQ7I7542aGoJLnwjR/geSFJM4vb63P8+YdMoiGvXHyDJ18+wPd9xhOX0WDG65fKeHELY/U6y7JKNZclmzfQ5R7ngcZkGOGN6nSGU0aWx2pBRE4Y/Pkfv8OLp3WOuhFKrsLV9So/+9Xf8Ad/8H0kTeFwZ5t7n33B0+eHbF6/xlntMZFkc3zeZjiZkislaLTOeLG7TRiWKGYTZJM+EUNe7A95c/0KybU1rMYO9cM9GoOIYXaO/S//Fn19BXNxhdScQbZsUl5+m15nRDLzVZFo6ARIQpJkMs1uc4v+0xNKr71Dz7doj89IpgJ+7723+PXjE9LzGkeNHof1HjERRVEhcFxuf+NbnPYtbD9mLl+mcR4iJQSSCYuD5oCx5SLLAs1JyDsXy+SKSSQtzcRTcUOdS2sbmDmV33x8lw9urpMWdBrNIRNxwKw9RQpz3Lz1DpliGsOAStrkJz/7gr36NuV0xMrGJYqLlwgElebeQ2RjnfL1t5ifK5DL5DGSc5i6TdHMcnn1Anqxgm4aJOWYaQCHpy3m5CGqmSdfKqApIs2WQzJ6Qlta5tKlK4wGDqORyze/d4dRfci//bvfsDwvEMc+ETrz+QU6h9us3LjOeeuUpJpgdWWVxfV1zvsJ1q5cwG90GE46nNZbjAYWX39zhZVqlaE3Y/f+XdzZBL1Q4Teff8Gbb32Hx1s/oTI/z81X3uDG5WsEoUPVGLJ9/JL2bEyspElqBZJOmy9+95jF9QXyk0OCWMVPFRCUGsPjI9bnK1x//zZz5Qy9+in37t/jW++/yS9+9XcM+z6nbZuD8y6nZ8fAP1dkuFRlfX6eTDLLs3/8DanFAp/c+wJBnRLLLjPLJeEbtM5Pya5XWFpYhFBiYkcsLi8jjRrcvLlGqzVi6oEfS3R2D2n0bd6++jq/ufuc3e2X9IcOjnEBTJHL2Sqe4qP4MyTLwfUlnp2PCWbHHHQcGqdtzs/POWnXOWm0kLtT5isJ5ufWqBZ0yimLlas3+Ox3T7i0+i4EI4aNJvY4YO3CMr2hRmiusLIyR3pxGQcRZ2+Lb/2rP+XL+1tcr1xgdfkiakLj5OkjDDnmT75xlUfP90inRRYWTAxTpTcJySZTzCYDXtb6NK0J5SsVPnj7DX53XEOsXGV9fpnIEth6Uee43WLp6rdRpx0efPaccbfFyoKJOT/HnHkROZdD6Fr0u1382OZqWWZQmieDgB2NCXwfJVIp6Gn6wzGjfB5XNvEtCXciM3aTVLWvavZz6RLuZMhoNMaTU6yWklwsyAx8l9HJGZ47IrMxx9c++FcsZgfY6QxmIYkVytSaNmGzhtk/52effEZeGlBM5wiiAh/fe8ZZ/QsMs8qgC52+iyF4/PCqBEWD+VfeITx/zs7xMcMgZH1pmZGX4vUrRX5z9yHdo0NyisirN1/Dmro8ufsL1IyCmcsRxS6d+jb9XsSTsyPe/s4dHp0OmMQZ5ivLfPHjf8/6apWZYbD77C6ON0ZPZzne3aYTJIlPtpl1piRtm2Q4pjdt8ujjXWrHp6xV57l07QPWN99hqZpk7/FLxM420+M2SmYFJZFnenxEazjiL772Jo2j+/SmIoFnURT3ma8aZNbepR/oxKFO4IlEgY8uSuRSMJhFGIUkijrCs2p4To61hUVEZYYxbaMREPohza0tRp0T0rpJOlfh+q232bh2nZ32AUmGnDXHDHybqWDhYjGyQrZ3zzja+5wPf/1jdnf3yCeLvP36HR7vnvB86yVHv/s57Z0d8klwGdFlAAAgAElEQVSBy9fLHD55wHf+9R0ubL5LZU5Fz6UJUsu8rMOL3TarGxqaUmXaaNF4/ojJUKJQltnbe8bFuQrlREjecLm0ViBuDJi2X+LEEsggqAqCnKa6ME8plMhVVljLi6yXE6TLZZ5uvwRg+dZbSFKGbnNIrXaKI6lc23yVUDLYfzngcDSkp3kgVAiEdQZOzJyqIw/qzI63SZLk+WzGcb+LMw2ZX6uwdrlK2Jrx+OMaT1o+y4VVWv029f+3X+iv/v6nvLH+Adn1t7h69Qrvv36D25c32X+xjT0ecy4rHHddRNEknynwZKcDJydUl1cx1TKC72IaNgs3LvHZT35C8toVPvjGa6wvF7GmNgNXZv7iHdYrWV7uHDETIpJ5gzkclCgkcestmp99Su/oEE0QWEknidwRhWvf5WW/w3F9B0GOufX2d9iTNTpnZyx4PTonj8nkYv7Ff/oD0m4GJVDoOAG6JHFp9Qqvvf5N9gdjNgOB/d4YY2kBL7KZ9Tos3fwBx/sfEsZdXrn2LpWMhD85otbXKEgeXVdhv3dEqahiqCKfbu3z9vfeY/vjT3n+uEWt18ITHDKKSiC2yKyvUt9+QVGqUM0W8YMW9+6/4PfefZfm4TNE3QPBxRm2sUfHXL3zBpr9Bf2hzGwswKiL32ryg/dv09s5wMxFTPox047Jq69U+Ov/699R1RVGPQ0yRZRCDm+m8drmN/BSU3qdELfZJBEooF7iV7/6S25c/waz2hlTklTXl3j7eoW9LRHVbeHbCYobV8gnZWb7jxEvbbD98JSXtRPMeo3Vok5pc55e84jSym2Mgk9p4QpWq0lz67e4sw4vzhzWNuf59OE59764S691SKl0lY31JaZxyOOzR8TWOUGny+ef7vKDm2/gBxKTicW4H+IMhyRosjj3VV3AWibNswcvuP/0gI4dUE7N8Yt/97+ytzeiXKmgF9c4tfLce7iFFk74wx/9V3zy8IwX29sIdotXL5R5wpv84WtlTEVg9+kDHt79FbXDZ1y6eBmttMDSQoZsrkqqUCVWPHpnz9k775Pu7jI+O+X8bMTYVlhbOcUexSzmFslvrKBVlxCzVdTMMs5pg+PBmKi6TmBWcWcmX/vOH5EMtnDPuri+zNFBmxcv62jXVvj0Nz9nvvIWopCgnCuwvlRg7YL8/5D2Jj+SHfid3+et8V682JeMLTNyr8zaWcUqLk022exNUrdaM21Io8UzlmwBc/HBBgYw4IMvvtknnwzDgO3DGAPNaGak0bS61eqV3WyyyCJZxarKysrMyjUiY98jXrwXb/WhAcOHsSxj/okvPvj+vj98+N0//m8wvBqKniO+UiJWTGHNFTRxQULcINKoUR95OFKJt1ZfZeuVVZz8LWS3iz3o0663qLUbfyesCGEY/r/CiiAIIcA//ZN/xntvvU1Ec3nam6JdfoGw9XVOL04RvRnpiESn3uVwOuHVqEFq9xrmYsq4fog87rKqD2F9m6xaodYbcNY+R3SG1JsB+7VLovkqhfUV1q/scu36a9y6uUzv4IyhOqVdO2M+sVCNHKLjQmJKUl8lIgiMbZu+5fKKnuHf/+JvsCYBw2ETIxWnUK4wGdSRhAj3thTmlS8jewnkiUVHUZDokhn7aGEfT4wwtQX6zRrp+1+n/Nm/Zl92yOSXECz44vMTvvH736V7uYcbZAhnIgk1ZG0lpJqcc/rC5pN+g8zWBtur26zESzQQOe1Nefq97zGZnCIikYtVeeX6DTzzKcU7t8nHc1yeDzk4qBGTF4zUBLXzCxJun2w5Q7RUZuFqaPElfNfl1vUVorEYoRhF1PJYwhxVitPrmUTCOYvJnIuTIfHIMeZY4vLoVwxtH9tRCRYCfT/kzasljp0ohdIS1SWVpagNtoNjW1wMh4R+QESNEYnkcPw4pYTHOByx9+Ax7dYYPZnjra+9wd17t/izHz/k9It9dne2yGcTPPzhj/jG7ZvE7r9OpP19NDXAFwv0uin6zQNKN9ZRE5t88P4el7UOa+sVbt2+xVn9JbfvXuHJ0SEnx+d4pk2snGYnlyHwU+C0OXp5yP7RCVt5ieEsQWve5o3dVxFkMO0BO4kczy2fbGAxcRQGc4+pbRN6Lmanzu17r7N85xbO2KFXP6U3OSAejXOrfI9YUmKve4m8GPLlpSSHiTd5/tknpPMLrq1vk0+X8MOA2eQQcxBy71t/iOBFsG2TiT3k6LjPYWdKrXPAjVKcdLqIkchzoyxyMrUwDI3OwTGBM0SLiyhGmsHQRjQ7tAZL2M4c1TDJVw12S7cIHBkv8Agln/OLMz78xYfcKBeYJJKcPXnMjav3KKytMfSnnO8ds7O1wocfP+TOTpVEKorpuVxf32Vv75eMegql3V2i0RieGzKLZWi1a7yWTDHUVS6PLxictTBKK9hGhtz4gOYkJJ+MkFIDOq0Rd+9V+cWDnzEdmCSMFaJ6Escf0J2MUJIC1jwCsoQo68wnId//d/8KgD/9r/5LrhSWKRYqhPEsf/Ev3+err+f5Yu9jhmdjMskES+UUJ0dNbqyvs/Hlmzzbu6DWH+PjsCwuiGZWuXs3waOnXQI0FFmkUX+JjU9zanD7ygqj5gVntQ6jMMWNuMK3vvs2niBz0rpkPl+QNzKIkS7J7F0u9p7Rah0znY6xFyFtc8H21jWubV8nxoT5sMZFo86TS4vUus633/lTfvLDf8NFs4OspUlFfK5+47d4+fO/5t2vvo2qZQgWNiuZMT/6/gu6is1X7++wVqjSrM/5V9//mNW3r/N6dQXBG3NyeIQ9X1Bd22QmxDl4+pC37yzTFjM0m2PGz59z3G5z990tjp9fspnPkMum8WWZ/qiNwBYJ3aNv2SjRKMlEEsu2OHx0zJe++w8w9AmuO6F+eslHf/mAzdUk+ev3MNIKi/kUbzImJS9476v3ef6gz/svj9GiUC5lSKYSnL//PcRb32DaqLF25TqpWBy31WAluUzTXvC09hjX94hrcTLxPEIyR39aR7WHRBYOK2s7RIsV/vwHf8Z/9rXvoI6HqNkkZqhw2R3zZP9z+heXlNd2Watm8HybMAwpFpd52Db4x+/scNA8YzYb4FsOvhVi6ANurX+d/+6//29Z3X6du/duYEQb/M0PH3P4osX//D/8KYGxRGM4otWp87KnkRVF2p/8lKEFyeIqGzeuUr5ZpHf+lIWrERXKZJUIwWLMJ8cHbNy/wtPv/y2EAds37pHOZXj24b9hJOrIzl3OBpdcWy9QXV2mHUhkhucIuQrti1OyogVhwAiNf/SbX+F//Dd/zjfevoMSppj0baaDDvGIRMsVSCfyFAsGITbNTp3z51/w7d/5B+w/O6Q3MYh4Dmo44wyR7nGTiBHjlXUor5RJpJeILKZMTRshVuHFyRHdkUw6VeC1mzk+fPgAHBGZFp6WRfBjREYTzFjI137jt/joB08hUSAQTczWU1bUMqktHd0L+Lw1YBpEWF6qcmN1hYuXn9EL09SOn5JQDba3bpDayPBnf/6/sLl0FVlOMOoO6A+aePqCmKvz3r0inX6Tft9CiZVYe+099h5/RtYX+ax5Rnb3BtXCCrFWA9t6Qj77NSbWc+rdKY++OOCjX/4MgDAMhf8Qj/z9RIZX7hCNpGg3J8R8HdWfUZvbSM4Q0RxhTWbI6SixeIaXJ0+IxDKsV5fZKGeZnB2TzinICQFHTmCJIoKqoEZiXJyfo6kGUmixVMpRrq4QT6awO132aiMePfg57nhA6CzodlsI8wkRPcd82Ge0CFEliarq0WrXSVQTKJJDIgmSGsMNUmyW0kT1BbX6iBt3XkPW03SGFqtpldVUCdcZEMlU0JbSpHIC1ZhHbxFQvbrJaDihvLVLtLTBk4M2vqLx6naG4cgmtLpkEiLLG2uManv0VZnNG2+xvHGNmKHjz/pYc4+pr+PNQ4yMjhpP4Ms6vjJlPm5wVOsyHXVQozrZlTXsuMxqsku+VCG/ucnMcziv1RhYAvJkQsdcYM9HONaEwFvg2R7WZMHY17BsBzMUCUSJrCbg6SKqIoMvkUsXyRk68cAkV8iwsEzw5jjzEcNJm864hdkfMjVnGLqGFDPQkzn0WBbHd3DMDvsnF8jhBG/hYDkK0XSBvafnqJ7JcrFMeWOViBHBGnSQLIXS/XXS6SRzJ8LCcshEJwzdNHdv3sRIFRhetpEsk1ImTr3b4t7dmxw9/YDxfMZgMqdRH1AtF1i/ssLJyOb8ooU9mpKQYWyFpI0FSiyG4nq0mz3arSmqEqfeNSmkDRa+iChF0SJJ9Gicr7x1n6ggMazt0WufMxj2mHVHrKerNO05pqIzGJsMJzZNR2aOxmzSYr16HVUMGHVrdGuH5FWL9OpraIkiCxQcMWRmzXj07JDheEC2ILNcqaJH8yycgP7kmKiRQCQKOAiehTsxGU8sckWduNMjFC30iEdU1wjEBLX9Mz754hkTu8tsOkSwPSqxHOmVLF9++13i8SyO2+asfs5xbcHGqsqSZzM1YTUbkEyqLKQ0taMJoTWmvFlCjYAaTZJeWqOSUPjoZx+xpBsk8nmMeBzXcXj26ceo1phMrEBjMqV7WcfqX5DLz6i3bFbTKpHAQ8slkZIxQj+klIjRrY8oVK8RLGzc+ZQg9Dk8+HWz8ie//1XylTIzy6V7UWM5r7FaLHLzztvEMhm8aJGFvsGVa1s4lxfYUZHLxhBJjxBfytEZSCSXrlJUfRahSlRMIIdJpmIOTQ5Iei2ubJQY2yad6YSIFmHr7l3aPYeDo1NsKcbQC3h0+BjXTTDa36dthUxMhYUtYUTjfPc//SPiYY9Ru8unz1/iKHFWdl7h6fklX7+1w6Af4joLYjpUCjqvvfkak84F7+zsMB+3aV826A3G9OYmzdolshwnqiXQYknkaBTXc/joh+9TzSuIpoMsiAgRhYm3IDQFJosOfX9OIBjkdYWyMeewXuPGRplyskKsUMBPxLEVDfwMq+kCVjKGEcsTlSJMBj0+efwZlZ0q1uE+icQyw0afUe2Cu6/cZG2rjDFfEPU6+J6GHi2xUcnyxbFH4+Qp8txGD11k0UNQA4hGmc0FPNsjsCbM+01Gwy7tYQ8jk0BWdcAkEY9TXFpnNuvy1u3XePniKZOLGr1el7Fnc+PaDZIxFTud5dnnn3L87Am+M+W1t24iCiO2KknEXJ75wgTbo5C8iaCqfPLsMb41YNTt48581pdWuXr3Jt//4U9J51e4evsulVIKxe7Rn844GxrI0RiJTB5nNObglx/TfHaKsfU69YPHpFbWSGTiYLVxzSZHD74gjK/QvxwyG9bxnS6qK1A7PmSluENB034tV7RdEukSNzbfZr7o8+7rO+wuJ0lFJRKJJEqgsLVVodkcoqsqshZh7PtMtZCVeAT37AWWI0MoovkWJLL4k3MCU+bg5SnDXo+soROvVGhaSQaDGdN+nVw6xvb2DdKRDGJsgtfrE4wHDC2Pi8GcvUeHfP7xYybNHoVklLE9xxJ9dnbW2f+8hycESMkrpPMlYlGf+aID0ipqaDPsdtnZqpA2QrrNY5Zv7tBrX+AJEeahTMKIkhBD3v/FR9zdvsO0d4KRTpAq5dETAsKsgTbtkN2+TdIwKC6FFIsiMlmurl3hlbvXOO20sQKJTLHC2uY6jcGY1fIqlXKcteiUYtAhLkk4kQITLjDS66haiuFgwOGLvb+zWfl7DWzjhogu+YwmM6JilGS+gHcywljK4AQBi1md5XSKCfB0bjHtdBFW19BzBdy4hppTmE4nRHIWhu6iCB6hESOWTOOZIb43RVc1DFkFa0zLVggZsZxJEwQBjguS5xGoEZq1SwwpRNZMRp7DYNTFtC36oU8xnyWaSCI7EoosUd65wbOH32M89Jn0F4SKi2N7tHs2pjLBmXRQtRj2cII375BWDfJCyHn/nKVciaig0B92kGWT7eoKM3nIZAqSqDAPXZrnDWRZRY0ayJkCtpTBcn8t0CMa4jSOyBdy9HpTQsZE0wqVYpT41ffot7tYZo/ZuEXCt4lJc/TcKplYlnkYJ5oukysPGc/nWPUW6XiCuS9Qa0yItE2SeRspmiQcqOgxCUECAovAHzBqjUhGQIrkkB2TSBxymTUca8Dzic5kNkPzPJyRy7BtYcdlEhEfUZ6DHGfeMQlnLSLxDKdnNUzHI0qc8sYOmcoWhWyaHz14n0LmGomSQeiahPac9Zs7pCIFQkXEnuqIkTKK7OGbE/Jai9ZsTEZPkc6l8GYzdDlgnFrmZXtObxbFEWZEJIlkIkNCKdMeD7CaTaR5E11doGpp9FBDV00E08SyRGQ1QUaDmW0R1yQW8wBRSZKO6hiqhCQJ+LFN3O4n+L5CwlAplUrEYvfpN46ZDrss39zBSCdo1Rq0m23ubtkwDCjHAmajMQvTIqZnEBNxRCOFI8iIEYmIoGI4BkY0SpyQ3qjGSI6RySjohoYYRBk1a6h6Dll0CWUdRxTwXB+BGI3OECWWRRRkAkFDT2R5/vEXVJIRrLmG6zsYoYAhCMxiOieHdWojD4MoqwmBUlTGEHSevjxBmgvEohVURSOce6RWqoxa50TCOdLcIRLNo6kyoj3n5tY655cTrq9AMpUmW8izJIqohLS7QxBVAlHB9kTchc55t0/ldhXDkZDiSSQjDskUlVKeRTyOqkWR5RS+EPt/mIFg3Jlz3niGH8BaYYmNlS2aF+ekAw9Zl5EMAdf2yad1XuajdC87qLpOvryEFtMZN0yyWYP6cIAtSiycBZPeiOFkyM0bGTpOC08FRNBlAVUTcD0ZTfKQFAVvPGBhDQmDBemlJXr9PoVchD7g6CkKpRSVmE5PDNDSMWiLdEd91JbC1c1tZqMQT2kTLyYRxy6KMyHu9KkdnZBc00mXUuTVOePehEHNJJ3JschsExgS570ukiCyupIjYcQQfIEXjR7JlEwo+9TbFno6jS8XMGSblAQRFjhqwOad27hji1i6wNRaMOr1mS8CjHiJ5LKOqkWRfINurYHnBnz1zduIeNTbAd3jZ6gaLOUSBP6cWsch7zjEMkX0wMB2RdomCLM+Y9UkEdcIfQXRldH8kGddm6TSpJxZRVNEwGWhR/AklXp/iDWekl3KE1El+t1T8ks5CpkIQjSGkEyCKCC4LvF0kcFkxGjeZO7HiCR99JhIe+hhujqU1ograXAErGBOb2xRzYm0J8fMrAgzLyQalRAiEn3b5eT4lI2VDRrnL5gNZLYrCbY3tzk82qNzecm+H+LNTKZmwMpqnllrn0Q0j20pqIqLZti0uyNi8Thmx0bxBdADxpbJ/vEl0/458pUQI54isF1k5hSrWVQ1SS66wAoG+F4a2ZdRwiErO+t8/vgZkuLhSw4zc8KoNeAUl7d2yzh2mrmiYy9gMZ0z8xo4oUzt+QMq1Syp/ApOIk/KEHn86QP0WIpkSkIOLbrnp5xeNMjvFImvOjTP5synIdFojNzyJqoSRZajpBMpbIaM7T6NvSdokkdrEmNCiOXOEKwe40YDPSPxwS8GZIwr2J6DLwWI8SUETWFteZmnLw5REyskUwlUcUE8JuMi4ikytiDh2iGONSWYHFBZucb+6TFrxTJiEODNReKxPLlqghcHJ0ixLOV4gVwyg4iL70KyskTQmzFqthhaM+Ixh3YP0uUUznzIYuHg+4v/EHr8/4cV/AmS20Gxh9gWuK6EaAtEIkXEUMIbdgltm6VyjIhmMOp06DQ7aKk1tJUCgjJmMXeJujYRIQA5JBQkCoUkZjfAcT10TUV1HcatJm58g4hosry6TqPTxxrbxOJxhCDAnB+jKTIs5kzHQ3qdNqoSUuvMkEKVqJFAVWRihowWSzPpjognygyHJqoCsjejORoRzyqIwz6JeBZ70seejBFXSiQXNp3+Ebe2voTdHdA+e0laddmprPD+i1Na7QmZtIxpudT7x+SvZElG8vSnECx8VElHU3S8YIhvnrMQduj1TETZolyNsruxihtdRVdPuLhwsSYjZNsiU4gT6Ov4noUuCySWykgrG7hOn/OISCDnGM1des1LvHn/1y6k+Bx6JvmCgaiIgI3tdOnVeri6j+XFiDhzpLiMmskjdYbYRpyoEScuzQlnc6YLgYnnomsyg5mNP5viTQNCUyWStOi22yRSOQQ5T7KwzcrmFspiihIT8MQErhxizrrogU155xa6kSRqKFgXQwQ9imgksX2XhH5Ku1tHS+YwUlEWSxkERaK8tcb7f/1TlsqbJNUhMj2iQoghJTg/3SNuB6RiPopsICtF0mqM8XRM3DlnERhEYnG0mIo1nSC7JoEDoaBgJDWWUgqCDycdE6fTIL22STKmks9nWVrf4Ze9E1THRQ4FkskY3tBg7HpsrWRh1EB2WgTegkg0Tra4gRtLEDg+qu+jCy6yGKJHVJYLCeY1j9rllJ5ziSKGxKJLRMQ43fYxWsxG1SMIgoSgaajSgnF3TmcaEhcDRElBFiLgeixCh+1ShhMnDrqGO59RbzTJriX5xUcfs5CibKYiFBI6WtSn3vOYOiHVqApKEtOVCNwZpZ0N+tNP8CcdInICwbNx/Dl4Ljfu3uKXP/wEZzIhEo2QSKZYKZXphQpOEKBpaZQUCJZCqwemG9AyDQg9dFciGspEMlnUcpWK7DHvm4h6AVmPsPCd/zs2JqZAczAgakjEtyoEuDw/OqDUv0RIZVCQECUPMYwziwu4A4liIUUupaFIASt5mVQ84OFeDS0fZzr0GFz2wemxvHyVRuucgS2gGWnKhV/nSDizqN7IIkVCpvVjrGkbQ5XJF9MMm3FWcmmiYoeh44Mq0amdEvge0VyKpWyCSbeJM7zk/t1v8uDhQ7ZuJX4tVkQgdAMmzTNG4xkH7QavFNdIpdPghQxbLapbV5hmq3h+h26/jeQ5bGVzVFdLGBGDntXEkwQ0RcSZe5AckY4uoXktwtkMRw4I9BibhTW8kyNmjoM7s1h0e0ymE8R1FS27xqLfw3FsptYMTxLZ2apy+eRTEks5uvWn5KtFMpUVLvdPeNE1uV+NY8TTiKaPPZ4wsES2wj7GSoXoxGexUPHFCPbUp9cZIyQcysUNZASQZCLJFGK8xMGn+ww7dSorbxJRRNr9Y1aW1xiMehjJNKIUoHgCmpRkOJ6wGMwYnp8jxnNk8jliEYfzlsNsEqXnpShZFjFJg7hBb7wgao4x3AEzoYAaSxJLJTCdMSefvSCu6whywMXZMYoqUcjdp5Ctcnerh2LIdC4vmcx8Am2J7FISf9IkWchy3JwwdkMMRWVq+qRSeayOS7max4g4NJpj9uuXLMkW8/EF0WIRlChe6GI6M0JvRDGbZr97jiuGGEKKlNdEScX47NlLdm/kkRQRf2oTTPpYgsa4kCQVTxESYW679G0Pc9DGieewrAFL+TKxfIyu57MwXaLTOhN3TiEVYzYZU6/XaI+mbN7eYay18WMarqyTUJOsrWYZZCvYtkkkKlIUXBTfpvnyBdlMldOmiS5ZNIZTFpMequUjxBsMJwIxTaM1mkHEQ1ANht0WSxtVJpMhcbWMH8i4ssNSQmMwGjAXJebzBQxtXN9F1QRCrUSvcUhON1CR8BcGqaUUgRby2eMDKlcq6HEd34N+s8WgM8DxTSaWyWChIokZItEI7fYBmaU1Os3HuKGAt5j/f2LI3+sMlNECoose0UWPOXPqz/YJsqsk1AyxMAq+wvPjc95+9TqN3pha7ZJQcclXYlTKJZzzPRxNQDQl5mGKsZTHskQMpY5qrDEXxlTSKpEw5MX5kGRuidmkR28uM5x0CUWbaCJD0BiR31lGsByaUwtPVikVskyDGWulKk+P+miejCSlsYUU2nxEb+9Tdr7yHVTdRwx6KF4PzRuw+caXaJ4eU0onWTeSbKbzLC2l+cXBU66uLqH6Ei+PLmg2x5QL64RBks8++Jxu55SULJFWRZAmmF6OjFql3RdJGREyCZkwdGmctIkkLD54PKLZ6SJFoVjNs7W0xs9/+DHHjQv8OahaBq2wTmbjPgLw8vEBOc1kNunSH03ZXttgtRxn6PiEwxmO1SIMpsQXUeonNU7aL5j160wHfezZlNBxGZg2J0f7BJZJJKJgBSLnwxluJM0wDPj2O/dJRDyiukQyn6NjOmiJTaZ2ivbLGhFZJ1NZZe/FS6p5EASFwto6tufyYn+PZy/2yGaSlNQpET0E1UGJaWTiZboX+9y/sYPvuYzmNvMAoks5TPeCgifixDKE1gRBNwhWb1JWu3zwl39GYvc1dtZXyWsq7miAoYbUGs+5d/0NglQKI7tMMb/K3J/hT1xSMYliIkJME5A1lcxqlcuzA8rpDSbTGYahEE3EaY4c9MExF80DrmxtIqHRHc65HHZIulH8ucbeQQtr0EZcDFFlmWuv/hbD0Tn9Thc1GyNeziPrSTwziSz6CCGEnoW1sDBtE2nR5qPPG7gKaHEBUQpYmC7myCEQF0iWSX8hIAgWcXlE6A65PDqguLJKazAlv5QnF4ty+OAxyXQM152hpOPkS2nchc3ekxe8ul5l7+KMW6kIg06TFxdtTvoLRguH33/nCqubeU46fVrDBVqshCsr2KMh6bCBGI0yjxgs1AjLpTRtR2W7KjM9O2ZhuxBNMJo7tC863HjlVTzPAEll4QnU6lNiiTyDvsJwVGc8XzByJMaBSn88RRJcovl1FkEMz9MIbJ8PfvJjAP7gv/g9dm/eIZ8tYM4GPD9+xKMXLXZ2N4mLAioWsmYRGB6nRy1eufEmMdVnbnVw3AE31vK0ZzK/+Hd/QRDVmY08FtOAfHmF1790j2cvXuA7STY3r7G6tsJ01qWaS1O+uUWj1SUqOni+zUl3QKZYQRlO0bQVMvqE2bDJo+ctvJTO/Sxcjm3c3phq0uDOzSvk1q7xxek+u/fepPbZU4TxlEI+z0yEUBNZ20pw9vg5A0vHSeWZLQ65WS1TjWs82avj2As0wWZUf4k9MSlkEgRqH29movg61eUK+vwBd0o7/OyzPV33q4UAACAASURBVC4uW8SSCW6+cge7PaayvsNF44yCniamSZhBF8d1ubl9jV/+xT/n+d4RszAgiOl8+KtPcCfnrG1lubwcMwtVRN0gLgrU5yIr2zkERszbA+ypg5AQcYZN8te/jma7+JkYfUHl+PmUpYzJwchnIYd0Lk8wp220bJT40iuIrS4LpUd+aZVUtooRL9C/GHPZtUmJNm5oYzoa5kzDGp5gu3PE4YLLcQ132iIjqlzZfhV/OKHXGzM5/gQhXKAkC1hylo/2f0WvPkZe22X3ylXWUmkGZ6c8/+n3uPfebxCU0ohaCkWJ4rkLIkGSV9+8R768ylT1mMkRTDfBF4/3efurb+CJE+xZC8+2WMxFGLm8GHuomST3Xl1F9xc0TppMAoWr1yrc2Vhl99Zt0qkUC9Pm9LRJOpdn8+odZo19Jv05U9NiZF7wL/7tj8ld3SWfSZJPlYkpUUJ7iJgoclzvYY16OELAUJFpSRpyd8xg1OHdV79ER4gy7vWI9erUhgKvXdnl5798gGsLDCYuVhDhzS99k/Sayq9+8CNiqzlMRac/mqOFc/baEp7fIyUJaEYMKZZgIUMhU6Rx+CNurGUZjTuY9oL1jV20fJw33vpjxtMeiCGhO8MZndKtHdJERbBFplOFxUIgsD0OH3xKOpFh6rVJuAIxs0dSHnD7na/wxaMzctVNplObVCrNlaubpFMavZ7PeddGGl3QGc2pD11ml3X2TmvkI+C6FtVyiWtXb5KvXKd+vo9pu5wfXZJQE7iWzf7RAfAf+Q30zXvf5Ob2HdRshvjuDczDZ7z2G3+AGUawRlNieOTvV/jpxyNeuWawuZyhmkuhOCH1msnOe1/Dmp7jLBwMTaOSzlDOF5jFbhG26ri2SHfoYAs6N27f5PL8AUbOwF0IrKxsk0+UmdZa+MknjBcy0VSJuGRiT06oN15Q8VN0RzXsQKV49Qqbq0mK9Hn/0XMOGxfkt67j2BLhvENMm7B68x1KVhtbHnJZHzP1A3zNZtF7xGYC3v36P+GHP/hrPnm6h1bI881/9Nv8r//8x4wWTa5XS8QTMSaeS29mUlJF3q8fsXNFJ5LI44oR5IjN9lqZeDzN2toW977yNrvXdlHmDh9+/2MedvvsGAkKlTXixTJBROLo/ADDL5BfjWGFLqFioOh5zkYqJzW4uZoiYghYwyHzwRwrovPk4AuS4yHt8ZTS2iq57ArNExPJOmLkpIj4C2wkZqKMFNPZ+eodbpYD0heXWPULJqaLKcZZkmNsLm3hjtpkVzNM3RTHBw7VnE+heIW1qsH1W/dRKlfpRzJY4zrhdEolGkFURaqVAkkjyocfPubazg5/9Vd/zuruMiury8QMg9F4gNBr8VLbZDo4wbFD9IhBRhepmWlydo6YsWA4OMX2IVvcxBwes/bOb6JPe5DJEdcTKJbDcyvC/eU0QTyKosSI+DO8wQknL85457e/hSKVKWxXEewul0ePqc3H3L71Lne+8RoPzxwkb0Ex7uJLcyKpAaTztBovqBTjbO4USa+onFw2ef8HP+GN997GmU2RfY+1K9t4uVXK1SKJTITxxSVWZwgemCakU0n2H31ONLmMZUVo90y0lTze6CmdS42Z2SKctpn3Bxw3hqytJgCP6zsltITGUbPFLz99yoqssFjKEU1vc/TpM46/2CddXie/vcXVUpJZ74x0Os/q6gqbWyW+9Nt/yGV3ilvawPcFfGvIbHyCN7zk3ds3UFNxFDmHb87wpm1UvcT45XM2Nq9xfvyY5y+PGA1t3rlxh5edL9h7ccz21SLhwsPuuawtFajVX1C+t0zn+AVGpEgqXkRyhpRKeXrRVWLFdRbJFFpKJBW2+eG//ykAmpJnMg4QRZfKqsHtN36bT372fdSlGwS2y6A/4vC0w4cPj/i9L/8n5DMy/nhGfwbD0EDSFT744UPee+sqoZohKdssZz2ya1W+9OZdzInPwp2SlH2yikpOz0Ii4MGjKa2DB5yeHdOfBORjK2SGA777T/6Qnz36EbNeC0nU0bMVIrFl3nhrh1981CFX2GKEz8dnByRK22yYn/PgscnJ+XNSiQjLy2tchgJP398jubBJLu+QzySRrRGN9oj15VtMOxMSqTTMhyiyzsbbf8CvfvUpDWHI+fGQdCrHxu4K+UqCvWdTiss7HLRalFJLyIrAfuMlKkkefXTIyo5DVvGIx3OkV64Sl0wse8TS8iqynMQwiuTzG1TKWzw7P+RFU2BnrcDr966Syyf4xacPse0eYqjQGoIQwmopwZ1rG1w8OeLDl+fM8IhnYuQzMTRd5NmjR9y/9Sal0rvsrFUo5g1EV2I7muPHHzzk9mvvQbKEKQkEkofuKRw4Ae33/4zlzU0yqQyL0ZDLBVjTAfe+8ntkslsstCVmWoxqSuFF7RBX6RPMNU6OOzTOTlhLulzuveSP/vPfp92vkwkUDFdhMB3zre/+If/yf/8rForGRrnKej6P4LvMFJnGyRxnNkSXplQyIdfWDO7dv0Pzox8gxK+TqFxjIuucdBtkBJ/rr+0iD89Zi/uMFj5Nz2Czuooujug6Kh9+8CFnZ2fYnogglVi/cY+Pv/glP/nlAcK8j+o0Oa33+ae/+18zMgVyJZ+YKHN50uX9B3vs7uyiDV7yzCxiRnXyhTxXV7ZpyxYFw6bWPKU78EhGV9i69hrRWxvoC41XtpNceeU60aSOY/dx3TGtYZmMUGMzmyYuLYh6LSrTPjeLRbqzgJG+jZmIoOVUVvLrHB1+jp3KEuCDNSMqh6jxCAw8Hh9NyWdCCobMYtDh8MVzfEvny2++QWjWubpWolpaQorq6NUYV3cqSI7FaCiTiiYoJTQefPgh2fw6vpgCpc/cDTjvOnxW26f3Ysqof0J5d521qyusbxbJF9dx5JBv3vsGH37vr+iZJh3LZ3/vgJvVERenLWLZLa5ev4UX+Hz88KP/eFi59co2sZzCYDpEmed5GQzxl64gyTqt4TmPL55iCqt8Y22GCrT7FuetLqYQ8vbv/EPGFx+QKe+wvJJjMulwcXaI5C2oGAL3vv4aidI15guHTrPOqDlgNVPlpF4jqiW5PH/JoPmCdGzOwJSYtRtcHHxGUsgQ0xIshBHIHi+ObbZ3voYo+UwnPbzQ586bd/hnf/wbhBGBK2trjIdTnjw5IhRN/ux/+xd851u/gyOAKWfpmHGO9+s42W32P/+AdqvD2FWZamW62gq1T/+GQmaTtZUiw24dRmfcynk8qQl8+zffQVu7RaG0RCUfJ20kGTkR9g9PeNlzofWM8cnHHL74gpfNHitXb3P99WWU1AJRaOFPanT22hCEXApJUqkksVgUwTVZHDzh4LMf0O8PEP0AcxpipJZ5+ze+SSxn8fqrX+fK9j0ibpIISXbu3CZYWHz7q3fI7a6xdb3E5vUChY0l3J7D9coVIuqISLUK+WUWnkh01OGvHx5x0ZhRyZfIyD6GMmP1S+9itn/GYFjhw0cn1M5fktR8rr3+Fq9evcUsFsc3IpzVWnTac+698VVi2VVur1ax7Bn9fhfbtIipKQYUyIoOrikho4MSZ6oYmMEpR08+IGX5RNwJlUKEW3dWKG3eYH7RQi5fJZJSiMSyRJIbLOcEDMHiSbeNPhsx9iWmmQpvvnqV0eWMakHk0eEj9l4eMpmNqCYDavvnDAXQnD7q/ADFHbBc2KVUynFzY53Yyhb1ps/LmoQfu86yJvKjn3+f1zbzZFJFLClFfeZwda1A/cShNxrjRyOgRbDGC2onFmOvzf1Xb3BWbyHoaSpbN9k/axBzsoxm+5ydN7hs9ZmHMmvXXyOb1GlcTmk15hw8P+Pi5JSYLvOPv/MnfPLiBesplcZ5HWvqcn/9CvnkMvv1z3nl7tsEgYijJjCWt/F+/n/g55a5eLiPkulTKLpUEzrpret01Sp6dEaggJJZxUhvsTh/QjT7OvPeMc5kRL92yXTQZf36VV4cHBITVKqru3iejDkfEig1YstLFCSV0dhBL2+QzqRITJvYSojUfso07BI6A6zRhIPjAU8++ACA5dUNxJiMpgekRQFhPOVsFiWTsCmUcpSXN9ja2OX127vMxydUizsU5BF6OMEzTQbNOdFNhU7rhJ3tCj1H53AUIZZP8PO/+gl70z6cj1nMBfqmQH8asHM1zvOLJtc2NpmNpwSSwNZr13GSIr/48z/n+nf+IVq6iuLMyC2OEDUde1zhuP45suaRwCJnz7EmC7Lr1xjYC1RLolpcZX19lawic3UjTuJahcZogihrxJNL+H6U7uELPjq7IKn3qdXOqXctkukCqm1ydtIgvZQmVypRLK2zlNvgi8cf4YunDOcK/c4+cWnOq1u32D895/q2wuioj+nqNEQ4MMdcPvV549X3+Pjp+5QLZVLMWZw/YTFbkN7YpN4ccHS0TyQSoVQqY7seUWkZ0VxCUmyqGyusbKximn3+z598xO++dp/7b7yHOxzT+OIBTvMRX3rnPS4GHT7e+4j9vX26zTGSpDKLiGRjEh1rRtjbQ12McTF49Oghv/P1+6wvJ4mpSSRRR9BV/EENFmMmRx8ycHokVImYZfGrX32PSjHDK/EMK9duUKkUycRjeJLO69fvMG9f8slne5TKK+ze2iCSdPif/u3PiebWuJ5RmAx6tDoj/LnH7PRHSLLAx589pj5YcHLc5/DhMRu5Mq3zOi8bZzz7/JfY52fcSuX4vd+5j286aLFNfvKLR5x0A/TsGsx6WKLD5tZNdne/TCq/jCxFSJKgvvcppjTiG/duIgY6rVlAdrPA9SURNZHlZnKG3bWZWx6lahQDBU8OKWyWuFIqoJkjekefcHe7QuvoM7be/i1UJYMi+gjijKEl8eiow9Pzx1j+OvZ5g8GjH/PZ/nMqr1RpNhb0u2OSiSyrm9cIEhmCIMAobrNEn2RUIHBF6l+cIYwOuPnKOuVIkkI8j6YZDOw5aiSDK/VQRg2ICBQzOd5a2aV8bYtPHv2E1Xu/y+HT5zR6PbRKFaZt5tEk7XYNP7+FWqkgpQ0CuUTq7g1+/Lc/4N7uKr3GBZ89+DkryShT2ePdaobV7U1CL6RZb3HQaLCdXeavP79gZh6jiQGZiMLOSpH1298m5gvE3RaNyZwvXp5zevR3D2z/XrBSSSpUV0qUt6/y/OHnfOd3/4iTtsR4dIysQ3llnU1xSJ05Dz76jPWbSyTUOcKgzWopz6PzMzZ2d7jsm7iqQn6lRCm3zAenLfygwMunD/GsITFNRfJdpp02oW2R1mJ02yad7hBz1mR8ckqz5ZEwctiSgiU6KIqHYw3IqFl2X19j9+o1NqsrZJfi9KNZ/vYvnxJ2X2KbcUJHoriU4MZrd+g3FLqTSzTPJ2+oVJfi7GytM1IkZDXF6ekl+VyVtdI68/4APXObXu0ZackkLk5JiCGhnyBYe52VWI6Xl0M01yFwLWqzKY15SHVwSSQX0h1MGAxnhCEosSoRw0O+7PLyxQndiybYHsnqCplqEducgh/w7Mkee5/vs7q0xepOguPTNpn1bWqXDQadHtdu30GU4Hh/H7wRtiISyyXZXs7QFT3ym9tIkoCgyIhiBEMx2CxVOf3iIUfzKTVrjhTTWVleZtia8eLgc+7eeZNIOgrBAs1fIAUh69UytcaQMPRIF2JEdJ/jD39OLq3RGnVIiiUKqSLl5WVihRUaiwA1EicZ9gknIyb9Hv1Ji3SlgqDEGI472K4LsooseLz84b8mKYposRnVjZskizeYhmlUUcMO4+Cq6FGIR1QMRSPQZbrnFjGtjUaEZEQgr6mEwTZEelitGk63TTEpsr1eoFjaJl++yfDwU1C72O4Q25cRoxWUpSjNh5/w4LNPadXbhNacaDBB0BR277yOO6ihxRyEZIxRmKNdN4nEFHIpGXU2YNYf0B6b4NjIZZ2LszblXJK4LrCwh1TTBm1ngVl/yXA0Jaqr5LIJBFGktn/Ok4NTTHOGQxRFT5HQRc66M6azGZ1OjWB2STYuIhkpfvq3f8PLZhtjPEaUEswtuNh/zsCbk9e7DEwd3e+j+iMkRSGuXqOvd8lmdhDlJIFpwahDPKWTTRc5OHjCuHHJcDTGFSXymTTGfMbF0RE3XlnHcky6gz5xQ+V+OcJFd0qhVMRqnLCw2iy/+wZeZ8TyRoVxv4kR+KS0OAI6v/rRDwF451tfYTmTIJi6dHsu6+s5FNljo7SNG7j0BgMa5xdcPn1AdmOJuDPjpOPw4qJBf9pj9fptjp+fMOiM8BcBGUOjmgffes7JVGRVCXnvt95lEQqMJn0qazIP95pcyRdpmj6FjatcvX6HYipHeXmdeushETFCPqpieTaf1/tYwf/F2ps1SZpgZ1rPty++7+4RHntkRGRlVmZVZlV3V1dXb5JaLaHRCA0CBmMwMCQMgwuMC8z4G1wwF8DMDYgxodGABqRG6paqt+rqqsqsrMo9M/bw8H13//zbFy4Ec8cgM3F+xGuPnfOcc7LsvnGLSn6dafsYNZ1i8953GKyW/PThx2STPoos06gVaBQN3IXNuS9Rr24ijNqkFkPysc36dg5BjpkIBu4ippDOUcjnaE8tymvrvLlfY3dvk9nEZTEPKBaKXBx3+P73fpvR6Bo9LVHaqJNfqyL4Gkpmi5ngU8hUSRwBZ2pz/619Hn78A7540cHxI6IkJBIiridtMsISedlDsh3iKIPvG5TxaTSqZBQdVfdYjUdY7RY5wSLWdtnY22Fx8QgxsBEkg7Ersnl0h+raNtVcge29A7KVGu7Ko+hDsxhQNXNYrkiQ6CgJXLw65nLcZjj2cESBTq/HxdkVykaDd3c3aI0VilkVf9pn0O+j7dxgvfoVMtkec2GddDpFKScRezHVUoWfP/mUTOUAxQzodV9z9rRLurLNcnpOOq1SX9tEAF6++IJ8ah2tucfp2Suyvk89Y5CvpznuPadaNJlHc/ZvfoVCcY3pvMdwcskf/eg597/9DpVMAVMycJcTJoMXJNEEIZCYRxOiwEVaLFldfMYKhV//zrssYh3H81iv5Hnv/j0+/PQl5TUDJ9KIxByqoaNqCa6YxZNU9vbLqO4MezJmtozp9Sz0/a9RFC1MRUEVYrxph9GLnyMUSuwXcsycAEFWKNXWSCQJTfSoZnZQtABXkFkmOcTUGs9efkh9b5exFWIoEtnAY37R5hdTlbWsyoNPfsnCF3AxGY+X7B3WcQWFfK5AfnMLP1G4POuhahm+/t1v056dYbWvcSczFr0O9MZ4tUPWNY1e/xW2NUM1aii1LTLBknq1yknrGeVqkTffvMPDz79kM5VCurkJWhbBE4iCmElgcfn0gloG3nrrDtvNbZTEoNd1sDyfwO1z640D/NWC89cvOLm4+NfCyt9KsBUyRSxRIpr0yG9vMuxckkQlxCQkcn2IIkplmWdP59x5413ERGVhjQkCFysYsLO5xunLFxTKNeR0hiAQmYYazVxERiuQztcxtSyr+ZST8XNKZpVAkRgOeqRVkLIq04VC4CUohSb5bMBw2sIb2ORTEaYusfvGGmo8Zza7YIGAGDjo8TXlkoieWeP4/BhCn0ZFw+mPuPnWEYPrJ+g49EfPWEUJNzdvkMpV8Q0DLVOinCuSkiMuz58iFg64u6mRSgKERAezgFRcQ9MjPMVkuxhgpE1iySQtROhSiLlzA2k5JIpDPEDLlHhn4wi1WuL8wScsvTTuxGPcmVARVfBDprMVjighxzLltW0GZo5w9px3v3KffiLiijKxItK9OEVSfNq9c77zK99nOF0wmZxxKQvUdjc5vzyllksTCTG255EsPFj6uJ7P1cTHTEsYkcVsEjJq99g7OGC9lKc77mAaCuWdTS4vXtDvqFTzTfR8DjGTJhYhvxUz7bVYJQLT4JK4UELM1PD9GMVIIZsh3aVKLKmQDhDDhMU4JLdVRRsWcRZLnOWcZc/F9tJEsU/zxhpComEPbJIFmM0CeqmENFsgCCqJJIEUI8VpGmWBMFIYiUUIBKQkxI5X5E0dP13DFh2ExAM7oT/qkMlUELPblCoekmTjxgqdwGP66AzViSnV9tloaghxjBMGpEsJSXaP1vlz1FUWTUkR2gFJUUNQ5qxmCrNRyHCeMLdjtCghsWxySYgRegRIiJJJplCj7tuYB29iRaeUSjWMQoGXLz7HUBWERMRZLSiX1ymUasxmF1hOC92LsEQR08iSK+Qo1nIUqnnev3fI9KTH9TRCy+pU1zbQBQlr3mJjJ00tV0fUNCwxx8oooskavucjBz6mlKBkNAwzgxd0yJg6E09FlUuohs5kMMZRJW7evcVsaSMkMVvNKul8leliQCj41Lc2GHdaTIdTwrmHLC4w1TVK2QpaysRduQxfHP+r3KiqCc2ChiWpLGYJURKxclckWKQKGew4IRiMCESBywubpBYxdCVWqk4iyUx6K1wxy9HtCoIns9PcI5uFn3/8AsnTULa3aXdGqEJMJaUwPbskkupEuoE+m6BECYnn40wDLtwJqFkK8Yp2O6I9WCFQZmuryYvHD2jUqyySFNY0Rr66RgoXbOazBPMZ5UoWkoTTi2s6gxGtyKNRzXLjxk3s2ZKlZeNaLp3Bimouw2TSor+USGVLbNRy5BtF7AsHT/BZrhwCZ8ELHNIZn+EEgjBiY+OItCnQO3/GZvWQ1jxi0u/jiGNk1SRjGFjTCcXdfXaXIVJiIkgm2WIaxczghT6N9TqDpUhiGhgZGXcRY3e7kCsz7PapZnMUKk2WqsGbRzLRqk172EMRPJxVhDOXyRdMHj48IQ5EYr+HICTkswVEVeBy6jNrPUWvrIPsM+gPqVVLlLd3GM8GpKolrJXFaNwhU9O59h3WmzXEaMnZ3OWiP6OaztHLLJhPW2iFTQI1hSJIOKbBeHzCtDfj4N4+5UoOP1TxpwGxH2BaI1YLkaWis1x52IqEkqlgBxqyrlDdWiOXKzC0lkTJkuGwR/XgFo1KGc/yUNJ7FEpZ1q6fYls9ymWRIApZujGHuzssLJ/OeYtSeYOxa+M7S2ppkV6/zbMHn/NqAeWcyvpaASlwUUKVzuk5kp5Hlkxk1UDSN5BXbYoFlf54gTIboSYCtVqD804XI1T44vwMJTGRnQjJtylu3WX95iFnjz5l2e+wVl2jtL7LwxfnKHMfozilkE8j6zkkTcSIB5QL+0Rhl+FygS7lMXQZIZvwZvOQKLpELuQJ8iZSKks+U6bZ3OCk9xGzKMPw6Uvw5xi+QzySUU9UltMxtXIRuaISYEAc07rssHtYIDc1IAlRgwGz3gjbmuM7LpVCgUTI0Op4JIHO+sFdEtHiy0efkVYzVEsV9go1nkpDWsenvH3nBmEcYy9c0BMuT47Zrit05zM0KaCUkv4/OeRvBStqOkucxKymPSrrH/Ds/BijDKHvkngeiepiCxrLqcfBN27y/OQ1rqeRKq0zXs7ZLDY46VyiVAvEsYrnqSRKlvWyiVHMUl+tMet1mNodrPmSrcoBtmThTkesF3UiU2PuZhFLHpFoYq8uwZ5iKiL5VJ5CWmZ9t8J8IbGctvH8AMmLqWPx3td+g6uRS3p6TmR5uEubFw8+pbj5FuVMgdWgxXC5ZBVD8fwcv64wF0XWNzdIyxlcyyJJLEJ7wH5JY7aChS+Q6AXKlTWyegI5jUZFwRYkgiRBB2RFZKEVsNstxMhHNdOIqTLptIFRriDls6ihThCruIs+nesRWh7cOCEMfKq1JtlGla5vc/3ilHcOP+D8ygJRQ9IjOv0eWWVKWlBIEpGMKeJO5py9eszR+gesZl3GoUGgKdhehDdx6AUWWcXAsgVSooQXOAxnQ4adDoff/Q5ZJcfp8ROEjIJa30DUZKb9gHJOwNRVQgQCFKq7t+l0nlDIlJEFn0CO/mZlez5CKFSJExtfy5DgEXsJgeUzOu+S2l5H0UoEioM1GzC9HCDLaaJkhW40sRcBkd9Bz6ZYpUEvC0gqOEGEI3jEikscZdlsJvSHBgZ5kgjkxCWONbJSmkmiYpQSXG+OFcywZlOyGREhU0dTZ+iyjJKAF/koXkyqsYsQZ8koLr5vMZ/LIMcIgsNS0FkEWdJLGXG5oLGbZjYZMhnOGCwSgkhGlySiCKzpnHUSVtaCRDHQc3liReKgVuFEM1kPUuTTJcQkZmWFVA62iMIYggUpXcZQBDqrCN8esFvZJqUXkUKXlC6TTQncuPcO9w63eO6nGdgJiqlSLpoU4zETt06pYqClSgRk8QOdyXJMGhXbn2OGAaoAsqqyWgm43pBqvczZkysEIYWp5XAdgaUYsre7hxMYyIpPOauQypR43l6iFhuEWgql1EAJZazLCUoalrZNRs+Ryhos/RmSM/tXueGvAiRZpVxOk0lJuIGP64RMAxslLoIYkTJV4koa9CZiVsRZ9hEEUESZfquNZkps7jSZDwJMI4emiIRxkXDmIxgyj758ykGjQFpJeHnaoXKzzqA/wLTnGOkA0XGZ9Ve8bD0jX9igmCowsl3CEHKaSSFr0Hn8ElVz8AWVyA0Y9q9J5xIyWZ3BSKVQKhF6HueXLeZBiKx7XJ6+onTrNrZi0g0cDDeiO5hzJ59hZcgMpw7xasmuVkcgYNJpIRaySFGMF7q0eh0qaZnri3NWAbiRTry0mfZ6ZPUG1myOHCX43gwto5BtNJi1F+T3D8hmTinkKyimRJTYlIrrWPECIymRG0aUKilKVYMxWeLxnIU4ZRVGqGYWPVejt5JYMyxevnhCmK4jCyAkK5RIYdLt8ezLZ9SLZXD7pDI65WoFVVcYT0JGs1OKigqSzGq5YmNri1Klztydks8XoeYzKF6QrNostTV2mxpW38P2VeYOaJ0eq9IaRArFlM50ZDEYjlBzOv3BcyqFDIoaI0QComAgZnRWz88omwKKECJ4E2QgU8qipyTmUUI5myZTLmIWymRVEzeJcXodmo2bxMEIL5yjZTPkNm5z+zBGigXmwQoPn1RKplhfI+tlcNwVgudjLwPsOKC+ffLtFQAAIABJREFUXkR3F5ycXjGLBJr5JroqMBosyKRMeqM2XuxgZvOUak1K2TKx3WWxnDDyBOLplPVKhZ3dJh1rAb7HPNZJOQHhdEUYw/77NylnC/TyBeLTExxVJkiZ5GQZXSgQxSt0o0LKNJBVAV2PYG0bSZggehPGYxtP13GkiL2NGlgrcsuEyDBRs2nMTB1ZVwgXUzK6irWYoUgB2VKG00EbL7BIKwGZ9SqZQhnUDIvYxPnpJ8w3FDJGBjGwEN0uihdi+wn9iytu33uLpa8wG87JpzJs3bzN+ZM/Z3R1xSpTIpfOsl9o8EUUMw8jJtaE+WxOvzdCkWUUSUGWUkytFZFrE8fh/yt//D/1txoDHTXL7JZTlNMmrpWmLWmURZ/xcICqaNRqNTqTNrYso2cS+tevaNTW2L9xl9PTMzKOwNFBgf5kzHI8Q09EKpV1hgsZIROiL8b0uy9p984RHZFGYx2fMWnBpiQliAksJJn0RokXn1+xGHTZqGa5ffeAw7fepKYqGMU0nrZHXo3QhYQw1hAkg6Pb36J1fsq7N/fZrpdZLWd8/vQRs6nHZqPGq+sWuRt3OHznGyw6V5xdT7jq9Xn/vbv4aon+KiGXFnGsDJVghJXO46gGoqmTLeap7RyRykn4yyUrd4ptT1itXFZJgfngnHnvFCEMETPrRLktRlevaS+uKeLjiiq5Zon6Vplxe0G2XEXW8giCgUhI5EwI51Oi6z5XEx+SAkngkeAjpbMse684yN3k0aNfsLFZpVnPc/zwI8KFwNpBiccvHzC1BQJbxutP6btT3JVKnNHQEljNA3pjhzhccXj3HnKqwcXpS6xRByX5v9voB4c8evqA2aqP5U1ZJT4zJUtuq8bh9l0KjTWMXBFRhNDqY7sRYjxls1rDcwL6/Snj/pTu9RWZ0j5iIBJFA5bzS0bXbXTXorLTJPaLePaKkCWx7OBaHploRiLnce0pwapP4AyJ3IBKdcX1LCSjKORNi3Q2Jl24hxIMuFr4NMw8GVND1mRKhRy7N9/k+vwlq9kx7qiD4jrsVYq89cE3yOUaPH3+nNbVM3rzOTOhSOIHbGRD2raDLMuoSURGDrhRSPjksxbj7ifMR+ekkxlr6ZiVG9HzVihTm1W8JFABTSQRbA42jzh5fkX1YJ+MDix6pDMptppH9BY9SoUigpgwnc2YDixOjy957/1vUi1XMHwJ7BVRPEbb+jrtLy64dbhHcy2FJthY/S41dUnlja+wsIucdS06/SnWcEL37BmRMEMR80iRROy6rGZTrroWqu+SrlW5OrlkZbsIagpDKyFrCxa+yvbaEegSq3iBmTh0By6Vu2/T6nZI5YqUSw2WoyWk8kz9IVlBoZJWKeVTKLrGD/7ixwCUDr9GoVSnVKpSqJRZ+DPCmczSyDMaSPgLB1OYoyd9bn3vH3FQrXPxsoU7bKGHYxwhoZqO8IMQJ3BxliumY5ulbHB9OWa3ZvH8qo2GRRLbHC99sqLL9LhNIkoc3dihWqjQ6izoz0Y08rcpNzcoFw1MLcCypzheRF1PMY8c8EOy2RS5RglXiXl89QI9Ednc32Y5G9E5PaZYbLBdTPHgy+c4qzndboeFvaSwWWcxnnFoVnFKWyhyjBA5DOMUkhjjXvySfL5BRtPRUgZhrkQqKJESh0wTibP2gLG1xCgWefaqhynZ7OzcppJSKJRL6OubrOKI8/MRl+1n3Lu5TxS4PH11hqhluXGgI84VsrJFIZ9CTRVR0jl239jhaviUTGodWUphzyyc/oDVbMZPP/8lt+99k0qliaHmkWKVLx48YmQHVDIh2UIRs5hHMSBnlNlsFjENjUHrjNVyQanWoJJWmIwspqMlhXSeaqFMuZShN/2So8P7zOUYbJHQTUjiCE1KOFhbZ3tzl62jNzi9OOfhLz9j0Rpz2evz/d+6T9fV6J93mLf7BIJI8PoT9t4+JJvKsFZJkcloBLFITg8ItQyZ1RJ/5ZNNZTjY3eaqNadYECiXb3PROqdzfYVrrYilFJqQZaO5w6OLHr5tUzUFOr7L7duHlNeLjO1z5LRIoVoBUePwzZuIgsRePcVmMYWU6HRnOpbsIWXSdK96mEaWjbUSuw2FyMzw6Y8/omCm6A1cpGyOw7f3Gc0slFSO5vot9lSNwI7o2TGH6wlX13Nuv/Mu7ZcvGU2GiArcq6Yw1Q1EXSKRI9zQI5YUco0bjJcXVI0GyXTKZbfHaW+EFGmIqQb18h6XT5+j+gLlVJa0KTJyL7HOhty9sUZtY5P1zVsUKwd8fPmEjXSWnNAjlkwiUUAUPTxpneGkx3LcIy2LRK6FZc/YONikWCsyuR4RLnzyWpZ6KYcf9Hj3q+/y5OcfkUnnkEUVMRHI5lP89BcvOPjgDnO7R/fFcwbHp8zmC97/1j0cJ6JUb3B5ecmXz55z3R0Bf0dnpVEuUq5to2SbPP/5n3C0W6DLAZLokymmkHN1RrMsv/G1FGcnr9hu1NjY2cKOI3750af81u9+hb/88CkHjQaGJuAFFkoc85OPviBlzcnkm+SyZTKCSjie04ssBq0xMxskycB1lswnl3z9g9/kxfNn3D+sUmhoBKKDtRiiaBEXHYkg+yZbOZPdnV2at99FN8r8/n/xB9w/2OLBR89xnBU33zqgcuMDkvSY7vEF37j/ddYq+3R6Kx6eH3Nbjti4/XXs1+f4Xky2UmKtkKUsJGAKRKJJo7ZFYe2AZapCZf4aSmtkJn3EwIMoRIhCBFljcPFT9m+/z1yWWJEhp1f4Sn3Cx49esrg8YdbqIARTcgXY2trg2ckV3esFQSzQGw9p9fuI6Qb/wX/6n/Onf/VL9EKCUciSSWuUhCu0rUM+/PKEQs5lY69CQMzLZ5eI4xBvs8h1d4A9WpBMphhhglZ7m9evTjnYquJfrbh82WbuLPiPf+93uVhqdDo+G/U1UrpKv9di6U/43u/8NgoxQVYhCUKynst+wSeeGZwff8YoKOA6K0TJJ7X/NocZg0IuwyePl/zih0/pPT5hTfWZaQ5Br8zOUQHBP2YyuqS7VBmFG9xer/Pk9QPSGRdNipn3bOQ4zUSyyCsKmmKREiw0Z8H15JLnn59TKEzwBy3a/WvaMwvZ03hydYnXnvLo4ce0LltEoYCUN/mjH/wAsddBElfEckxsmkSpAsPHl0ydM4LegEw2Sz5XIx/JBN4JW+9+wOk84ep5m0Iqw3vfvceP/uS/o3v6nIVcoGJssJo5fP7qOUMnQRlb9C6+ZBQumC2nOMMhihvwauogCCHjxSULb4KcEmgWTJ4/nxIor7l/sMVyZTEa9TmsG2xtHfHwi8c4zJg7La6Glzw9maCFJS4XQ5a+jicb5Nfq7N8+RC2v8bTrIsjr2KMlp1++5NFnX1Jqlnn4ok5aCHDjLovhGf6ww9Zhilc//QUnr7vsvn1EOqMxbJ0ynJ/wO//uH7CYVLEWZ+SaZUqbhww6S2bDh/zmv/UP6F5/TDFvouUqXKwiatUS/Ue/YKtZxc1tcDwR+eyzZzx99ACA9//t/5C3btwgWlo8fXlMfucmD55P8I8/4dtfOcAo5nh4MmJ+PKUz/wUvri9YjAakUhprO7vcvPc1yre/wf/4T/8E1+oxmM8Y2ws28iG/8r0jlFUOJ1LZWN9gZ2uHcrXE0/MvOPjK95GVDLl0lpXt8Prygnng8o9+/3f44Ycf8qMvP+J0MMDUalSKaTrDJUn6JjY+mXyOrfIG2riPEdv0liKBt6TdvWI4m1AomnzxesBe9QbF/B71XJqqGuOeR9S++qu889UjRm2H6XTBJBGxi03+vb//q/zZn37EKIJqs8nWxjo5QyW/U+f+G7dxF0NuVDTqa02c9Aab8jXm/d+D9kN++MnnzP2IjWqRf/Hnf833Dm9yeHSbk26XB8+e0O+0KBkJeuoOrX6X171XuGqepavz8V/8C779679F8uIZ49NjdFUgZWZZ9F3kyinyqkQ4H/DXP/0hJ9cXvP32HZa9JV/54IDXT1/x5u03ubG7x3I8ZxYZKP1LLpc+YXqP+s5tattVvpgMeONgjf75KS+/eIhlj8gXdJzXPR73DOqFDWpluLmf4v79Hdbe+QaKkfDkwRNOZj6z0RAtWCCZHlI2j9vqUCreoBLZFOOQQn6HRtZm5K6xxGdJzGipMhvlydQKeFcWj89eIvgTNGFFLCWsbe9hFGVW3RmOt2J7f4s339jn4uOP2Lmdp/P8Am92imP5LFcSBXmCubHN6nWX6TRDPb/N/uYu6fIa0/ZPCNpjpN1b4MK806PjTDHLBb55sMPYXTKfX2BPTpF8i9zaAfbSRd+ss7G5S0VP47SvMLSQtWyRX14NiKwFTSVmNyvycNqFaMzDkxWNXJ1fff8DDo+O+J/++gGx4eDJIp+en+ONOlTDJW4c8Kf/5w+xWq9YGBLdWUjoJrxxVKC5t8Uf/tGPeP3iS/KlOqaZpXdxjq5u4656yJs3mfRfMr1+RJK4fOd3/iO++PEDBoFPo1ZBFwWsxZLD7RKprRvMjk+INLjsTTg5X1LcuovgqKxna5yPiswsnyAeMREEZp0u+XQWQXBAClh4DqdXA97d36UhLriZL7Le2Obo7a/x/je+x/nrCa+eP6J85yZyMmPSa/HytPd3h5VdQ6NQSGHn0nQvIxZKjUrGoT+1MNQU28U009kZzwKD7xy+w6NnFyyWC5qFAlvVN+gIfZyTSyb9FTPHxvWX2FdX/Mo37iBrTc49haAzwbnu83puU1/fJ2vPOLx1j+VKYeEJmPkMf/xH/5xv371Ftl5np5lis6GQ1iOGLwNufO83WPkCg8vXdM7PWHSuKAsj/qv/8r9mJWnEcchyYXF63OL65IRv3VzHimyi65ccP/mIV88+RZh7fPf+ByyMQ64NnbEVkUyuWTNecPdrf5/+0uf2rW0y6opyKuKdN95ALK+jODJy3UQs6oiqQ+B16c0jagWZ86TK1voNKkaa+eCKq0mHG3v/JkIlj1nZotef8vTTh6iLKTdvfguzGNG80cAwBTRZYnPriMeLDo/+9H9h/3Cb3VqGYNTm//iXH/LO7fdI5+dMWz2WUwnHT5AKLq2rMZVUlvOXZ5QjC0NKuPAE2p1Lbm1Y/MsfPCPWXPYPy7xxsMfMVRk7NurknIywoFjUqG3UUSWZf/zf/A/MTy754IO/R3N3i2XY5/rsGf1Ao7n/NUxrQVZVyGZTSG6f1sQiVcjSWK/w5vs32Lqzx2QG08tj5jisEhlV3SZycnRPzymXy7TGF+iSA8shnj/C1hc8Oz9BwsDv91DUEHQVCxPL0hG9iKvXx5hGCTNfR9ZyBIsFqu9zY18hf7jFwf07NGp1Bs/a3Ln3exyun1Lcu0VzY596YwOxUMFawkwRYWONYilHSslh+wV6s3Pyao31SoFwEhCEDn5qiZtUmM01OhenLII2Uk6kUG9iTaYs3JirlUndNEmLESIRtVqdQnOH5xdzCql93n7zDttbJV4/fcL3vvMWppQlTte4PG0h+i7f+s1v8/rFU77xzZus6UV2S5vsbOxT3GgSCilES6a9WtF+9Zqrxx/z5NEP+Gf/7H9lVzT5x3/4T3l9fI0vpDDyJSbPHrKVklgOHYSVhZ4uQqrKyY8+YnNrj7ku0X41wJ4kZIobGI19Xn38GeW3DxBllddnXc4vr9lcr+MbOoMp2IFP2OmTXL6kqvR4+2vbLHyb8WSMPzxhcvZLnj3+Ba3rOQC//7u/y/Xzj7iczJB2v8KXn3yK5zv8J//ZH6CKMZHnUilVMdY2eHmVZdLqsr6+zt69N8ltFTj7/M948tHnfOXNHaoH76GoKQoGHN084mc/fUo1PeXewTdJ+TKDTpeBY3OjUOanz20q5pBsRWYqxLwcrmgkJuJMwDnpoGWLrNer7MgBw0+ecW0OmHXOySQ+RQns6YA//vABW9/9LfyHnzP1LCIjRa62jpTLEeVUFn6K0HuFoGjMgzwPXjyg0fD47//JP0cwDOo7N6hXqkjdU/7yxxP+ne/fofTmAY6VML7uMJ++5s//8kMuWxOWC4/Atui2XnD6/CM2ynv05h7Xref81nvv8e7BPs5yTFELed27orC2RrN2g7v33uTw3T1a0ykNbUHTW6JlmuhyClMIqO9uIqUVOoOAN75+hJcodOchhaNNFmczPG3Fy9MFvppifbtMsxbysnXM6WnAP/z3v89C0RkvbHZyWZKBzCSY4GszFBV0zSWbWXH/7X1uV3cw5AlbB3V2drZR5BQfn1/y61+9y9XVY67HQ56ezPny8Yzh6RUXL9oYsozpWMShSmlrh1/7zdtcnV+ztFKUj24y9GQuly6WsEAyakhyCdMo4E5UXEcmU5W5YU7Yr26x9cG3eGtbw12s+PHnc6LAZW1zjZezMXvlJjumij+75Of9Nq9aDkF1j1BNowkhRdWh3szykz/851jlMmZeRpcFXMeibZ/R+/RLwo33kIcrTmd9eoLNVtakf9pGNzdwp+cc3b5DvrjNqy8uKN54g8NGjoZpctF5yemkjZOYlEcTnhz/ksuwzlajjpquMAmzrKtpXES+/v59Pv7or2ldtShmCty7s8/eV98nby/QgoSbO+/wzte+z8Fbu6y655yNHJrVHda3y+zdvsHe7nd4/OUT3t1rUC+X6DkOE8fjcGuHoz2N2zf3eP3FCY1GkwSdh794zG59DWXcYa+RJimtMYlTjBfQj1W8ZZ/YmrFRTxNHc/xowgfv3eZsLvEn/+S/5fDuDrfuV6nUY3DmJGrA/eYhuVINx49xIpHywR1+49cO+cmTHpWtD5ANg6k953FrxqDXYvNwn3Gni5pIzJcej5/+/3BnxSjUkLQUkh8gFYvMXp2S2n8bxcyRUUQIXK4dkUPFRlEzHNzaRA0tLp8/xzNSfOdb3+TJT3/GO1/9Nvtvfw0t12BwNqSyVWTYsrl9f4v5csJ0teDuWzdo1G8heH2G8yWhrmOW8qRTGoWMSToa4Uoiie9w3Zpw3vL47X/wD/nJowv2slNEMY9gpPDEBZ88e05xNaK4s0ekV8kXVSr5Bc6qQzb2CWZLPj+e0FvFlKsbvPf2r/Bp6wnjlYJ/9QmNxKWmZ7BtBWvuUs4VcHUDo7SBkW2wtCxcaUS1UcUPZIJIRkwk9AiC6QJJXdK5anHy7DHD6Qgla+LNx+jNdaryHNko4Hsxy/GIi+41rrPEyKgsxhNCG4hFWu0vefLJI37z2+9R1Qq0BxOGgcTNt75L9+d/xvpX7xJ6f+NB+I5PXpeQDJFWf0ohXcV2YlZBgm6aTKc+i1mavR2TlFlHkwrk01ly20eEtkAk2liTU2azAbYbkCZiY72OriuslDTtdht/PuH+7TcxszlOhjGWYRHJPmEQ4SYqt+/coTtfIUoqWuAxvmrz4Y8f8uXDL9i+s4fd6VKq5snXakSJyWm3T2c0YnNNJ3FcPCvE9WX6doy7cmlFEoISoUhgqAbZcp2f/exL3NI9Bq5AlMhktDKxukPVlOjNE6ylROfconU1R84YrFcieuMeRqQS+DZ27IKaQoiy3Nlep3t2zMXYZopKqZLl5v4ef/6XD/g3vvt1ptOEk+6czmxONpXmqneGKhhUS2V0VObdCS9evmDoiURErEIfOwyJ4ghrOea43ydx/kZG3WmkqGRMHr9skdEU1m7f5q/++E9oXbeob27wzq07/M//2y+QBZ9Y1Zl5ArGUZquxixpVuPfOLqo3xAmusbwxghfyxl6JS1/n3Xe/S0pLEblj5LBHPZejNelhhwazvo2/lFFiFUkYcTWYsWyPIXaYuAMixeFX3r9P6/WnjN00ze0G0WqBP5tRbjZoZOHZjz5mZ2+HRImx3CmxvWA4X9B58ZydtTKb9XXW1vfI15r8+MNPALj7wXdZz6eRxIDL7jmTs3PkRpXccsxl6xXL2EbOKrjtFpKgsK4tkcJzBGGJLKdR2WR0+YzHp31EUaOZzrFVqhPrWSwictlDTgZ/89RQTqVY+RYPPnnOt++/SeFon4ETMuwvUFc+15efka6lkBt1TDWmpAsU6jWi6lt0T3p85cYWWT1F67rFwxfPSDdvkBudstvcxMylMGUR3Q1JujasamiBx0V7ynTskjIz3Pnmd5m0bLqnbe7c26WZDZGdKYNlyGx2yevejNk0xHGniLKPqeURJQEzaJMvWnR6lyRJwuHeLk+fPkfVChilXdrLkGdXLS6u26iRztbdr/PlX/yEZ5dtlvMhuSikmb3F4VvvsBwvWOkeS0lj4UsIiwsqEeS39/j84THObI7s27x+dkJjR0XG4EZRYKu+Tiq/zjBSaA2WZEwbqd3BEkOGxFwMbWqNJj/54hOGM4OT4w7z8RRFNBiPVILJhGXs0nd1lk6MENkUS1kiK0TK7qCFHnnRI58SCdIFNosKGkvGrVPWcnn2N5osrQW+YzBS0tTTGnH/lGR+jWnoLCKfwF/hCzpiEKDEQ0S1R3Hj6/z46edI1hX5UplqY42Nqokk1Li8/JxbzV1cS2cVKYSaxKDV5c6tN3jy019ydJDncH+PWmkXRTBY5Gtkcndod44JQw9RlpnMZ9R23yGxh+i6hVbMIZtVZsuEyfSS/YrByeWCQkFlow7pVMhHvzzj0rLYruYZtvtYsynpHNw42iG79R6CHNEs6piCQOyHBFUN0QoIQgVnMUeW5sjanGx5h2d/9Zckyojq9gZytkp77vDk+DmiE7Fz/ybDBcwGHcbdDi9bS5zliLxusn3rkCQcIrhTDKXIX/zwQ25tN3nw+BmylEFTJdDnXEZ5VknE/htvkaukkRSXhT3m+eeveFMv8ToICaUKjdI+zeI6P/zrn3GzHGEHAY4XsljOSWSZxv5tuq97/O8//REUVdSMgp6SEbWA/usWd+6+g2/PefjoM15enJCvGLxVz+CaMvH0EtsocjkJOH786O8OK9u7axSKGeIoJlcu8PzR53zwa38P35cYda6xFz3e/eYH5PQVnz19RVLMokgGoi8ywePGToNh+4JOb8YiEEkEFcm2kPMKwVyluFknVhUiQcBbrVisAgrb6xhmiVxRJqV6aE7AXn2dwBsRExGFMZqpUaln8OcxZvmAlAYpvUI2naNYyrG/fcTVYMXFsy+ZTbv4kx7JcoFaSnPdjegORhzcusn67h5KpszSh7Q2JUrp7FRNasUaGTNPWpaIFR0xJVKspNEVCUkR0bIKWcHGjQp4iUs+lyKdSROLKohw/ItPEPMxWdVEEHW8OKGuhzxrTZmePKJ12UIRLW4eNbh579s4l68YrGz8yRI8CVVOUSwYLL08zfUGlmfRmU4JopC9ZpqzizNUpYCs5FktFxBY1Ipl/FHA2J0gixlCOcKJfVYrn3TWYDWZYWRjSsVNdDOP49ssp9dMO0Nu3nwTgzlh4BDKBpU39imV1ljFAatZD0H0MIslfCoMVinqGxXW1ooUigVy+RK1Up3WqEUln2Nmh5wcn3B9eY6ugaaYGOU0RrpBwZQxdIXQKPP04QOCRKZaTiG6IYQiETozC1bWHCNbIgw83MBBMqG5U+flq5CporDbbHC0vcHWxjrVWg0hiRBFnanVw1BiKpkUUiLRWl5z2T7H8EM8f0kYu6RkgZHngNUhWkxIGWtEkUyn9TmaZ+OKBmZBJ51O4fsO7atzfvX+TS4uBhgYCIqBkjKRdImXJ1dIZp1KPc9qNSeXTtNc38BDZqtocjkacnT7iPp6GUEMkQQfU9MR1ZhOt0tWl1grFZGMCnN3iWksKGgKchyjCQa6scZxKBEuLXR3jBRP8AOLeRBh5gx0SnSGXaR4hKFHiKKCP+mTDkzCOEMum0NAwvZWpKspYi9ibNn0LR/JUFhfK7JezvLivI0vrlNfF4msGfZ4juUu8XMKbqfP2uFtxsspo2EXXVKo3H4LkxUbb7yFZBaYujFnvRGfffQZAEd37lEp1EFQGM+GLCYdMqUs0nSGKCgs53PG7RZr+XWObqS4bveZBj62LDH3Qs5ezyjXN1nZU9ZzJbS0wUwKORn16J0+oz0yUBWbUkYm8Dwev7omldFIawWWswGB62MQUGaMGS5Zu7FHbxCxUclTL5gkvo+SMnEXI7ZzGq6SRc0U2WiUWK+rNEtlrECgWi9RL5Wp5IusbZTwkoCkoOEsR9QaDarb+0y8iMSNeefuAWs7NeLYYzTp0xv1SdW2ePNom91aAzkSkOUUmWqNk+dP2FvboNSoMxy6aHqRO2/fx9BVZtac2LGRZQlCDynxOXj3fbLFLJ/91c/I6RKlfA5Fkgn6TxHTdXzZII5jJvMF0+WIbEZAFdOcXDnEjkaCRCCCKBvMx2O60zF9a0U2rWEqCaPBhEYtg7tIcKIU8yhBNVSa9TLzhYg0vWbQ6RHjoWoiiiiTM9NUm1Uuez3Gywjb9nAdj9BNeHp8iVy+gevbhJ5FyhA4unuIJKh46TXiVAUx9ojcKWKmSEHXeHTap1mtoSgBWkajvL6NJAawmjAzN4h9h9ViTHts4wl1/OE1pjdl7gQIWp71tT0W/pxcfZ3JYExv3MVaLfHmLnbvgkqmytKaoMQOGSOHnqnRniwxw5BcY53Qm1NSA9JKwig0uHmzwvj4ErOoMJrOsOYhzbVblMtVahsbPG8PmQ2uce0FaqGKFxgspwlRNGfuJ1i+gG0nlLfeoHXW52B3m2DeYzkdEBGgJgHWaEChmCd2x4juCs9yGSwXNCt7aGkTdzSg2zqjPx2RyzWpqhlsWUexVugGpIsZitkszrKNmCvTLKWIEoXpAi7Pe8xWDquZxfnVFaamoykmolKiun7I02dfkCgew8GYwXTF1I0Z9xwONoqsRA8ZlShwcf0ZmhCx8hy21g5QU2nSuRKalmc8nCKGArV6kY1aGdeaY83mlM0qRkXj9eszyjkNggWObTFbeuQVmzCzhSDI5DI5FqMBjz///F8LK3+rbaCltaDTF4gCKDoO15Mer5/8ku7IpXt9iiZY5Jt1ZuPBAv9BAAAGRklEQVQzfv7xl7watqkZOVTbp2MPSJwx/fMrzk56GMWXVGsNDG+J0JWIZ2lezVpEgsB8NGZ4eYXnC6wf7CM6EVE8wFuNCCY+lXKV9mCIE4aESGQKOvmSzqPzczbuJrzypxiSgSJLqIZAtVjm549PGD3/FCOroSGhiTLmVonLU4fVoo9aKCNqPt2RQ28wZSvnMpEnRNks7XhC4gtokY0l6YRaSL1VII4SElFCz6XQ3Dlj9xmx6vyNYCjJLFcrvNWcJx89IXe7QkarsfI0Zl7APJ3wxekCcXaO40U01vLIN3fIiVV6vT6XtoMeiejKiFQmT7FmYi0kPn/8HM+fMl/aqLKIbLc5Hk0Y/vwBqWKV5bSDGNss/6927GRHjqwKwPAfc2RGVmZluQYPha3GNLaaYQEvwGPDnpaQaMm47e4aXZmVc2REZMzzxI4VDUJCUIv7Le/ZnNXVrxOnBMsIBw9ZSun1lqIqyOOGs/Mpvu3iFzpRqKDqFknm0yYOTWGgGhJFOMc77MkwcNUOvYTtbkW6X2GOh5jPnpPGG+La4P27EyxLp5NlFEXD0gZ8vP/EN29/wTYoWTw8UMUuz6dHFEXD/ecrrKMEf1FgmAaJMmW/ugPd4lbS0fMYqW5oJA0nqsiriLpXsfsabdAx34zw/JDNLmXfREzLS6RozMbSUWQdZ+fSVg0L+wZL0znSJxy8ki/RmjjYEJgOqg7aUOV4bGO3Mp+LiKGkoh+BX9TMlt+xHo3Rzt/ypz9ueXF6gev4rG6vuHo1ZrPYINcdtdxjjjQUtSPKc8zIJTFLAs9GawoMVcHPMpTcZ/m45uL8lOiwhTZHKjPaSqKmYrt3UfKEMsl52BWkpU/gbAmUEKnTUNQd+szntpWwgpALLaVrHNwsxE5r9qHBVK75cfnAs4mMZR1RNTrpes6Z/oJAKkjrKU1bU9Q5u3yCFAdsAh8/rjhJLDoafDfg08MWZfCBopKpwhTfjsn7BmP9HG3tEf/lz+z2K3x7wdQ0CEbPaG0Xr72nzCscx+NhsfzHv/HD3/5KZrv0tNiHFa6zJK1KvKJncnxCmobEkUf8ruZVKPHx5o64rVHWDsgzvMeMX//qtxzcPVLW0W4MAqnGC0KqzZxCOvD1a4PDsUGSlny+3fHmZyd4u5SmdBlMJlhDhUHt0SQF6ecbbu8S0q9OOR5KRL5Pb1rYe5vSUQmUKcZgxMkQ8t0O3zhntnJ5eTHBMgwkQLckvqw2xIpO5Czo6En6nvl6z0TTMN5fsv4wJwhdXHuH67qMLyWmUkKIzm4TkNYt5nTA9dUVZtczOAx5eHTR9RhjdEuV+dx+uaPLGkbTc+ha+rZEPXlJXcQ8bhc0dURZZaBKVLsPjOwKY3xCk4XsXJugiAjOjphJLrNFzvn0jFYqqKUCXTPYz2ekfUjeSfiuw7Gps/cyXr45YznLaHWLRi453QypLl/w+FhiRSs2i0ekowFJPMDf7/AdBz+yub69JisBJFSpQ2ngfr3iMtegCpBzj+lQIVcl7E1OwIS2aan3dyilz/TNO0Zyy/zHOcM2wVBzZKXlyMso4z2ZZ+OOapQspPQdDmnFfFlzXDls5ZRUvmN6seGr11+z9u4Zn77m9vvvSfMAFQ2j0yiCR4Kox28StsuU9dJncr5k43pM6xTD9Qj9PW4XowCL0kKtFtz/cM/Is9jsD1SVQZOqGIaEc3C4n92Q20vGQ43nbyO6xmC/Slg9hPTGkKJoqbKSsjHYXl+TJr9jv7olTkJUc4jZS/iBhx0ciP0dRRhTlQ2x8iO//80fKOoIf3aFEzg05hE/P1SMm4ZVmWHmId2gRx6ZDGSXxeMNSycnXl6TlBqrXcj6YYZhGWzn9xRlRJ6nHE/OQJtwEXXcfPqIY19Do4JqgmmQuSXf6hFRnUFrUFcFXZtyag1ZeQG/vKxJmhJZNel7md3mkfFoxMXZEVkYsNotieKMVxc55qXOd99+xPvmPW2esbU91kFJdAL68wa5qxjrsJ19+bcdIvV9/9NDSfrpoSAIgiAIwn9R3/fSP3uX/9eLCIIgCIIg/Cf+5WVFEARBEATh/01cVgRBEARBeNJErAiCIAiC8KSJWBEEQRAE4UkTsSIIgiAIwpMmYkUQBEEQhCdNxIogCIIgCE/a3wEt4w3CQLFMkwAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "visualize(model, model.mixed4a)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Other Custom Modules" + ], + "metadata": { + "id": "T2AJzaGTZseI" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Custom NaturalImage Modules\n", + "\n", + "The requirements for creating your own variation of `NaturalImage` are extremely simple. The `forward` function should wrap the output in an `ImageTensor` instance. For JIT support, you can wrap the output in an `ImageTensor` instance inside a separate function that's wrapped with `@torch.jit.ignore`." + ], + "metadata": { + "id": "FIsFUiGPZdRm" + } + }, + { + "cell_type": "code", + "source": [ + "class CustomNaturalImage(opt.images.ImageParameterization):\n", + " def __init__(self, parameterization: opt.images.ImageParameterization) -> None:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " parameterization (ImageParameterization): The image parameterization\n", + " instance you wish to use.\n", + " \"\"\"\n", + " super().__init__()\n", + " self.parameterization = parameterization\n", + "\n", + " @torch.jit.ignore\n", + " def to_image_tensor(self, x: torch.Tensor) -> torch.Tensor:\n", + " return opt.images.ImageTensor(x)\n", + "\n", + " def forward(self) -> torch.Tensor:\n", + " \"\"\"\n", + " Collect the current parameterized tensor and wrap it in ImageTensor.\n", + "\n", + " Returns\n", + " image(torch.Tensor): A PyTorch tensor.\n", + " \"\"\"\n", + " image = self.parameterization()\n", + " return self.to_image_tensor(image) # Wrap output in opt.images.ImageTensor" + ], + "metadata": { + "id": "xAKSiqg1ZccC" + }, + "execution_count": null, + "outputs": [] } - } - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "CustomModules_OptimViz.ipynb", + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "42c156add91d4acaadcdefa7d261363e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b6d1bc1fa28140e2839110ea31c62cc3", + "IPY_MODEL_988add1d46364a21be7e3cdd25bfeea6", + "IPY_MODEL_3a0e2b4a4437470ca73d21b47b2e50bf" + ], + "layout": "IPY_MODEL_40d83f16100d4d52abdae1bfd57b3737" + } + }, + "b6d1bc1fa28140e2839110ea31c62cc3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_63a94da5642d4e638d34090f1c039ab1", + "placeholder": "​", + "style": "IPY_MODEL_be7c4264ae594792a8d5e325ffcd73f9", + "value": "100%" + } + }, + "988add1d46364a21be7e3cdd25bfeea6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fdf5702bc6a0416284af79696f1bb7f8", + "max": 512, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1c85d25bb99440a0aab08a49200203f5", + "value": 512 + } + }, + "3a0e2b4a4437470ca73d21b47b2e50bf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3b7848513468421aac1d1e8547223825", + "placeholder": "​", + "style": "IPY_MODEL_5bb9a2c83c5a4dc8ad1acc44ca79d7e8", + "value": " 512/512 [00:12<00:00, 41.83 step/s, Objective=-32.6]" + } + }, + "40d83f16100d4d52abdae1bfd57b3737": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "63a94da5642d4e638d34090f1c039ab1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "be7c4264ae594792a8d5e325ffcd73f9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fdf5702bc6a0416284af79696f1bb7f8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1c85d25bb99440a0aab08a49200203f5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3b7848513468421aac1d1e8547223825": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5bb9a2c83c5a4dc8ad1acc44ca79d7e8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/tutorials/optimviz/GettingStarted_ModelPreparation_OptimViz.ipynb b/tutorials/optimviz/GettingStarted_ModelPreparation_OptimViz.ipynb new file mode 100644 index 0000000000..ea83ff0146 --- /dev/null +++ b/tutorials/optimviz/GettingStarted_ModelPreparation_OptimViz.ipynb @@ -0,0 +1,469 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "GettingStarted_ModelPreparation_OptimViz.ipynb", + "provenance": [], + "collapsed_sections": [ + "3MSB2RhA4h8E" + ] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Preparing Models For Captum's Optim Module\n", + "\n", + "While most models will work out of the box with the Optim module, some model may require a few minor changes for full compatibility. This tutorial demonstrates how to easily perform the suggested & required changes to models for use with the Optim module." + ], + "metadata": { + "id": "QVpft54KA-P_" + } + }, + { + "cell_type": "code", + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import captum.optim as opt\n", + "import torch\n", + "import torch.nn.functional as F\n", + "\n", + "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")" + ], + "metadata": { + "id": "KD5InqKt3Hjc" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Model Layer Changes\n", + "\n", + "The Optim module's layer related functions, and optimization systems rely on layers being defined as `nn.Module` classes rather than functional layers. Specifically, Optim's loss optimization and activation collection rely on PyTorch's hook system via [`register_forward_hook`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=register_forward_hook#torch.nn.Module.register_forward_hook), and functional layers do not support hooks.\n", + "Other functions like `replace_layers` can only detect `nn.Module` objects inside models.\n", + "\n", + "\n", + "For the purpose of this tutorial, our main toy model does not use any functional layers. Though if you are wishing to use your own model then you should verify that all applicable functional layers have been changed to their `nn.Module` equivalents in your chosen model.\n", + "\n", + "* A list of all PyTorch's `torch.nn.functional` layers can be found [here](https://pytorch.org/docs/stable/nn.functional.html), and each layer has links to their `nn.Module` equivalents.\n", + "\n", + "* The most common change that you will likely encounter, is converting the functional [`F.relu`](https://pytorch.org/docs/stable/generated/torch.nn.functional.relu.html#torch.nn.functional.relu) layers to [`nn.ReLU`](https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html)." + ], + "metadata": { + "id": "3MSB2RhA4h8E" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Tutorial Setup\n", + "\n", + "Below we define a simple toy model and a functional version of the toy model for usage in our examples." + ], + "metadata": { + "id": "QGIfQki3Dn2M" + } + }, + { + "cell_type": "code", + "source": [ + "class ToyModel(torch.nn.Module):\n", + " def __init__(self) -> None:\n", + " super().__init__()\n", + " self.basic_module = torch.nn.Sequential(\n", + " torch.nn.Conv2d(3, 4, kernel_size=3, stride=2),\n", + " torch.nn.ReLU(),\n", + " torch.nn.MaxPool2d(kernel_size=3, stride=2),\n", + " )\n", + " self.conv = torch.nn.Conv2d(4, 4, kernel_size=3, stride=2)\n", + " self.bn = torch.nn.BatchNorm2d(4)\n", + " self.relu = torch.nn.ReLU()\n", + " self.pooling = torch.nn.AdaptiveAvgPool2d((2, 2))\n", + " self.linear = torch.nn.Linear(16, 4)\n", + "\n", + " def forward(self, x: torch.Tensor) -> torch.Tensor:\n", + " x = self.basic_module(x)\n", + " x = self.conv(x)\n", + " x = self.bn(x)\n", + " x = self.relu(x)\n", + " x = self.pooling(x)\n", + " x = x.flatten()\n", + " x = self.linear(x)\n", + " return x\n", + "\n", + "\n", + "class ToyModelFunctional(torch.nn.Module):\n", + " \"\"\"Functional layer only version of our toy model\"\"\"\n", + "\n", + " def __init__(self) -> None:\n", + " super().__init__()\n", + "\n", + " def forward(self, x: torch.Tensor) -> torch.Tensor:\n", + " x = F.conv2d(x, weight=torch.ones([4, 3, 3, 3]), kernel_size=3, stride=2)\n", + " x = F.relu(x)\n", + " x = F.max_pool2d(x, kernel_size=3, stride=2)\n", + "\n", + " x = F.conv2d(x, weight=torch.ones([4, 3, 3, 3]), kernel_size=3, stride=2)\n", + " x = F.batch_norm(x, running_mean=torch.ones([4]), running_var=torch.ones([4]))\n", + " x = F.relu(x)\n", + " x = F.adaptive_avg_pool2d(input, (2, 2))\n", + " x = x.flatten()\n", + " x = F.linear(input, weight=torch.ones([4, 16]))\n", + " return x" + ], + "metadata": { + "id": "X79d0fh_3LuT" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## The Basics: Targetable Layers\n", + "\n", + "The optim module's `opt.models.collect_activations` function and loss objectives (`opt.loss.`) rely on forward hooks using PyTorch's hook system. This means that functional layers cannot be used as optimization targets, and activations cannot be collected for them.\n", + "\n", + "Models can easily be checked for compatible layers via the `opt.models.get_model_layers` function as we'll see below." + ], + "metadata": { + "id": "UjEdNgauOdbZ" + } + }, + { + "cell_type": "code", + "source": [ + "# Functional version of the toy model with no nn.Module layers\n", + "toy_model_functional = ToyModelFunctional().eval().to(device)\n", + "\n", + "# Get hookable layers\n", + "possible_targets = opt.models.get_model_layers(toy_model_functional)\n", + "\n", + "print(\"Possible targets:\", possible_targets)" + ], + "metadata": { + "id": "uEPS3SOqcl47", + "outputId": "fe01c649-97e2-4565-db99-96ced48ce15b", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Possible targets: []\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "As you can see, no layers capable of being hooked were found in our functional layer model.\n", + "\n", + "Below we use the `opt.models.get_model_layers` function to see a list of all the hookable layers in our non-functional model that we can use as targets." + ], + "metadata": { + "id": "46YGHAeRdBmE" + } + }, + { + "cell_type": "code", + "source": [ + "# Toy model with only nn.Module layers\n", + "target_model = ToyModel().eval().to(device)\n", + "\n", + "# Get hookable layers\n", + "possible_targets = opt.models.get_model_layers(target_model)\n", + "\n", + "# Display hookable layers\n", + "print(\"Possible targets:\")\n", + "for t in possible_targets:\n", + " print(\" target_model.\" + t)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TlZ5UwiVPptG", + "outputId": "169fb32f-3648-444c-b89b-db9f5cf9121a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Possible targets:\n", + " target_model.basic_module\n", + " target_model.basic_module[0]\n", + " target_model.basic_module[1]\n", + " target_model.basic_module[2]\n", + " target_model.conv\n", + " target_model.bn\n", + " target_model.relu\n", + " target_model.pooling\n", + " target_model.linear\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "We can then easily use any of the targets found above for optimization and activation collection, as we show below." + ], + "metadata": { + "id": "iHTSN71dWh5o" + } + }, + { + "cell_type": "code", + "source": [ + "target_model = ToyModel().eval().to(device)\n", + "\n", + "# Set layer target\n", + "target_layer = target_model.conv\n", + "\n", + "# Collect activations from target\n", + "activations_dict = opt.models.collect_activations(\n", + " model=target_model, targets=target_layer\n", + ")\n", + "\n", + "# Collect target from activations dict\n", + "activations = activations_dict[target_layer]\n", + "\n", + "# Display activation shape\n", + "print(\"Output shape of the {} layer activations:\".format(type(target_layer)))\n", + "print(\" {} \\n\".format(activations.shape))\n", + "\n", + "# We can also use the target for loss objectives\n", + "loss_fn = opt.loss.LayerActivation(target=target_layer)\n", + "\n", + "# Print loss objective\n", + "print(\"Loss objective:\", loss_fn)\n", + "print(\" target:\", loss_fn.target)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tiD7qBzlQ6Zw", + "outputId": "674df320-9fb4-46aa-8bf2-1acd534a7a61" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Output shape of the layer activations:\n", + " torch.Size([1, 4, 27, 27]) \n", + "\n", + "Loss objective: LayerActivation []\n", + " target: Conv2d(4, 4, kernel_size=(3, 3), stride=(2, 2))\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Visualization: Redirected ReLU\n", + "\n", + "In some cases, the target of interest may not be activated at all by the initial random input. If this happens, the zero derivative stops the gradient from flowing backwards and thus we never move towards any meaningful visualization. To solve this problem, we can replace the ReLU layers in a model with a special version of ReLU called `RedirectedReLU`. The `RedirectedReLU` layer allows the gradient to flow temporarily in these zero gradient situations.\n", + "\n", + "Below we use the `opt.models.replace_layers` function to replace all instances of `nn.ReLU` in our toy model with `opt.models.RedirectedReluLayer`." + ], + "metadata": { + "id": "MlGvyhd0AalX" + } + }, + { + "cell_type": "code", + "source": [ + "relu_model = ToyModel().eval().to(device)\n", + "\n", + "# Replace the ReLU with RedirectedReluLayer\n", + "opt.models.replace_layers(\n", + " relu_model, layer1=torch.nn.ReLU, layer2=opt.models.RedirectedReluLayer\n", + ")\n", + "\n", + "# Show modified model\n", + "print(relu_model)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4w34RcZU_DrU", + "outputId": "596aef9f-26d8-4e87-fdaf-71211e29699b" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ToyModel(\n", + " (basic_module): Sequential(\n", + " (0): Conv2d(3, 4, kernel_size=(3, 3), stride=(2, 2))\n", + " (1): RedirectedReluLayer()\n", + " (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " )\n", + " (conv): Conv2d(4, 4, kernel_size=(3, 3), stride=(2, 2))\n", + " (bn): BatchNorm2d(4, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): RedirectedReluLayer()\n", + " (pooling): AdaptiveAvgPool2d(output_size=(2, 2))\n", + " (linear): Linear(in_features=16, out_features=4, bias=True)\n", + ")\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Circuits: Linear Operation Layers\n", + "\n", + "Certain functions like `opt.circuits.extract_expanded_weights` require using modules that only perform linear operations. This can become slightly more complicated when dealing with layers that have multiple preset set variables. Luckily the `opt.models.replace_layers` function can easily handle these variable transfers for layer types like pooling layers if the `transfer_vars` variable is set to `True`.\n", + "\n", + "\n", + "Common linear layer replacements are as follows:\n", + "\n", + "* `nn.ReLU` layers need to be skipped, which can be done by replacing them with either `nn.Identity` or Captum's `SkipLayer` layer.\n", + "\n", + "* `nn.MaxPool2d` layers need to be converted to their linear `nn.AvgPool2d` layer equivalents.\n", + "\n", + "* `nn.AdaptiveMaxPool2d` layers need to be converted to their linear `nn.AdaptiveAvgPool2d` layer equivalents.\n", + "\n", + "Some of the layers which are already linear operations are:\n", + "\n", + "* `nn.BatchNorm2d` is linear when it's in evaluation mode (`.eval()`).\n", + "* `nn.Conv2d` is linear.\n", + "* `nn.Linear` is linear." + ], + "metadata": { + "id": "KJVG3KDC31dy" + } + }, + { + "cell_type": "code", + "source": [ + "linear_only_model = ToyModel().eval().to(device)\n", + "\n", + "# Replace MaxPool2d with AvgPool2d using the same settings\n", + "opt.models.replace_layers(\n", + " linear_only_model,\n", + " layer1=torch.nn.MaxPool2d,\n", + " layer2=torch.nn.AvgPool2d,\n", + " transfer_vars=True, # Use same MaxPool2d parameters for AvgPool2d\n", + ")\n", + "\n", + "# Replace ReLU with Identity\n", + "opt.models.replace_layers(\n", + " linear_only_model, layer1=torch.nn.ReLU, layer2=torch.nn.Identity\n", + ")\n", + "\n", + "# Show modified model\n", + "print(linear_only_model)" + ], + "metadata": { + "id": "hYbm5Cg34She", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a35a33e2-04c3-4563-b139-ab28127b4f90" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ToyModel(\n", + " (basic_module): Sequential(\n", + " (0): Conv2d(3, 4, kernel_size=(3, 3), stride=(2, 2))\n", + " (1): Identity()\n", + " (2): AvgPool2d(kernel_size=3, stride=2, padding=0)\n", + " )\n", + " (conv): Conv2d(4, 4, kernel_size=(3, 3), stride=(2, 2))\n", + " (bn): BatchNorm2d(4, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): Identity()\n", + " (pooling): AdaptiveAvgPool2d(output_size=(2, 2))\n", + " (linear): Linear(in_features=16, out_features=4, bias=True)\n", + ")\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Other: Relaxed Pooling\n", + "\n", + "Some attribution based operations like those used in activation atlas sample collection, require replacing the `nn.MaxPool2d` layers with a special relaxed version called `MaxPool2dRelaxed`. This is also extremely easy to do with the `replace_layers` function like we did above." + ], + "metadata": { + "id": "MXXUIcEBk7_k" + } + }, + { + "cell_type": "code", + "source": [ + "relaxed_pooling_model = ToyModel().eval().to(device).basic_module\n", + "\n", + "# Replace MaxPool2d with MaxPool2dRelaxed\n", + "opt.models.replace_layers(\n", + " relaxed_pooling_model,\n", + " torch.nn.MaxPool2d,\n", + " opt.models.MaxPool2dRelaxed,\n", + " transfer_vars=True, # Use same MaxPool2d parameters for MaxPool2dRelaxed\n", + ")\n", + "\n", + "# Show modified model\n", + "print(relaxed_pooling_model)" + ], + "metadata": { + "id": "fWjY33RKkFi8", + "outputId": "f0e0a0d9-fd1f-4857-ea60-e8a2127607fd", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sequential(\n", + " (0): Conv2d(3, 4, kernel_size=(3, 3), stride=(2, 2))\n", + " (1): ReLU()\n", + " (2): MaxPool2dRelaxed(\n", + " (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " (avgpool): AvgPool2d(kernel_size=3, stride=2, padding=0)\n", + " )\n", + ")\n" + ] + } + ] + } + ] +} \ No newline at end of file diff --git a/tutorials/optimviz/OptimizationWithTransparency_OptimViz.ipynb b/tutorials/optimviz/OptimizationWithTransparency_OptimViz.ipynb new file mode 100644 index 0000000000..5c73dd2ed7 --- /dev/null +++ b/tutorials/optimviz/OptimizationWithTransparency_OptimViz.ipynb @@ -0,0 +1,4425 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "OptimizationWithTransparency_OptimViz.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "370a9f4d87814515a51144d26a9ca8b3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_fbec190edc884c0aa2342d4c278bc7c6", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_11f67942024d4e3098a9e7d88b0b144d", + "IPY_MODEL_58498c78f5a046a8853c954d6bcb264f", + "IPY_MODEL_2db7e08b9242423c85928c537e7f300d" + ] + } + }, + "fbec190edc884c0aa2342d4c278bc7c6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "11f67942024d4e3098a9e7d88b0b144d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_05f2bd3ad5f14f698bef478c33eeb2b1", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_7efa32283f78475c994a3c20011f017d" + } + }, + "58498c78f5a046a8853c954d6bcb264f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_97e90f93bdff4cdb84ed7616f9b2fa08", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 512, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 512, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_73adf96fa6c84b608c2a6927a5347414" + } + }, + "2db7e08b9242423c85928c537e7f300d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_4afd2911641f44278eeb8dae71721be8", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 512/512 [00:25<00:00, 20.20 step/s, Objective=-940.6]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_a6fa5361b97d4790a7ed78c928612fd6" + } + }, + "05f2bd3ad5f14f698bef478c33eeb2b1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "7efa32283f78475c994a3c20011f017d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "97e90f93bdff4cdb84ed7616f9b2fa08": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "73adf96fa6c84b608c2a6927a5347414": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "4afd2911641f44278eeb8dae71721be8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "a6fa5361b97d4790a7ed78c928612fd6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "a98966a99b5b41bc8559e8046b96969f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_3f4c72541ad84ff0b05071d020cd2f0a", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_5de4bf65e4cf4492aa2f35bb7bcd5167", + "IPY_MODEL_c0fcfadc6d1e4596b9b3a88f1e6d0a0f", + "IPY_MODEL_31fe21e26c214532aeb4844f009e92f0" + ] + } + }, + "3f4c72541ad84ff0b05071d020cd2f0a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "5de4bf65e4cf4492aa2f35bb7bcd5167": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_cf4af50e246443a8832eb622bd2b0ddb", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_c615948ca593466fb2602d98da4fb5ef" + } + }, + "c0fcfadc6d1e4596b9b3a88f1e6d0a0f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_911b842b1d374479b06b272674dee5d1", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 256, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 256, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_8520b5deb27740d997b4a4a05fe6e493" + } + }, + "31fe21e26c214532aeb4844f009e92f0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_cdd0fd17c90c4a6a9c51036ddf9cde78", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 256/256 [00:09<00:00, 26.77 step/s, Objective=-2799.0]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_9f56ee00c73141fb8294ee315a94f718" + } + }, + "cf4af50e246443a8832eb622bd2b0ddb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "c615948ca593466fb2602d98da4fb5ef": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "911b842b1d374479b06b272674dee5d1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "8520b5deb27740d997b4a4a05fe6e493": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "cdd0fd17c90c4a6a9c51036ddf9cde78": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "9f56ee00c73141fb8294ee315a94f718": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "f7c74f1afcc044d089932873da46fb0c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_550cd2bd52134286b76bccbeef7abcb1", + "IPY_MODEL_8cb148d2cac34c0dacac2470bf1e9425", + "IPY_MODEL_c86de569236942e49689347e283dca4c" + ], + "layout": "IPY_MODEL_c57371c34d724c24beb4349ed2d537c7" + } + }, + "550cd2bd52134286b76bccbeef7abcb1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_969e4090581846f69cd6bf3bf8ad89a4", + "placeholder": "​", + "style": "IPY_MODEL_4bffb6e24fd04f9bb81df1458ef1591c", + "value": "100%" + } + }, + "8cb148d2cac34c0dacac2470bf1e9425": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0de0fbbd2d194cd386a0bd2b018828cb", + "max": 512, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_767f518665f34f4ebf5f9498ff2c9f19", + "value": 512 + } + }, + "c86de569236942e49689347e283dca4c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_46e8522957ac45129b3aee66cdc47f08", + "placeholder": "​", + "style": "IPY_MODEL_f06233ce85924fcb8bba14228f4325ef", + "value": " 512/512 [00:12<00:00, 41.50 step/s, Objective=-292.1]" + } + }, + "c57371c34d724c24beb4349ed2d537c7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "969e4090581846f69cd6bf3bf8ad89a4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4bffb6e24fd04f9bb81df1458ef1591c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0de0fbbd2d194cd386a0bd2b018828cb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "767f518665f34f4ebf5f9498ff2c9f19": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "46e8522957ac45129b3aee66cdc47f08": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f06233ce85924fcb8bba14228f4325ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b9b1828c563c4cd184f26fa5590b3f5d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_03a3658f7c2e499f9528d3376ac6b203", + "IPY_MODEL_6717308b8d6148d9a9c8747164b791b6", + "IPY_MODEL_53a11c21782140afa93165abf2f97e76" + ], + "layout": "IPY_MODEL_b91e276e9fb24ebb804eb5605707874b" + } + }, + "03a3658f7c2e499f9528d3376ac6b203": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6dd3c9c30bb246cdbb364456cd1bf5e8", + "placeholder": "​", + "style": "IPY_MODEL_5017968b4ae742d5b8320942b325e707", + "value": "100%" + } + }, + "6717308b8d6148d9a9c8747164b791b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_92994846e32f4fd4a079444319362f1a", + "max": 512, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_35d3a18dfd08421ba1543031b5fb8cab", + "value": 512 + } + }, + "53a11c21782140afa93165abf2f97e76": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3952b6f664e94cf8ad7edaf249a17d1b", + "placeholder": "​", + "style": "IPY_MODEL_b6e7d16af29a4e43ac54a249e843d973", + "value": " 512/512 [00:12<00:00, 39.40 step/s, Objective=-786.4]" + } + }, + "b91e276e9fb24ebb804eb5605707874b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6dd3c9c30bb246cdbb364456cd1bf5e8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5017968b4ae742d5b8320942b325e707": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "92994846e32f4fd4a079444319362f1a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "35d3a18dfd08421ba1543031b5fb8cab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3952b6f664e94cf8ad7edaf249a17d1b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b6e7d16af29a4e43ac54a249e843d973": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cee03ddb22f84eefa613c6446234c6c4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2bb9a8610f0e4d8b91d054cfe9140801", + "IPY_MODEL_f825760c27ee4b80830654f3c02ae65b", + "IPY_MODEL_fafbc35e64814fa4b13e5da2f643dddd" + ], + "layout": "IPY_MODEL_5b9280650f144ff882e0d329ff4cb5bc" + } + }, + "2bb9a8610f0e4d8b91d054cfe9140801": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_084a58aa0af344a2b2a3fcafa838811c", + "placeholder": "​", + "style": "IPY_MODEL_f1f53143baa94a89817ff46acece5054", + "value": "100%" + } + }, + "f825760c27ee4b80830654f3c02ae65b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ddc620d6a2c042789bda344dc94b5017", + "max": 256, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1ed5c534ec334eec8d144f912e6beb23", + "value": 256 + } + }, + "fafbc35e64814fa4b13e5da2f643dddd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_84afeb12ab79493a8aa8e3040323216d", + "placeholder": "​", + "style": "IPY_MODEL_0dbfdbf943244faea948bfafc16c4a2f", + "value": " 256/256 [00:06<00:00, 41.01 step/s, Objective=-2563.6]" + } + }, + "5b9280650f144ff882e0d329ff4cb5bc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "084a58aa0af344a2b2a3fcafa838811c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f1f53143baa94a89817ff46acece5054": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ddc620d6a2c042789bda344dc94b5017": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1ed5c534ec334eec8d144f912e6beb23": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "84afeb12ab79493a8aa8e3040323216d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0dbfdbf943244faea948bfafc16c4a2f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "97f8059a1a0f45f795ed677e3b7a653a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f98ad01cf3d473eadffe691475b39fb", + "IPY_MODEL_f71ac5cdf889431297f604518614ade8", + "IPY_MODEL_022f04c4b4754a90a4910a02d3386106" + ], + "layout": "IPY_MODEL_96c9ebb9cfc047198f97db04c7be8b66" + } + }, + "0f98ad01cf3d473eadffe691475b39fb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cb9c56fb447945a3b9c20f52b8bc6748", + "placeholder": "​", + "style": "IPY_MODEL_f90c6c3c80cc49a8846396e11d739b96", + "value": "100%" + } + }, + "f71ac5cdf889431297f604518614ade8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f540a3f6f1dc4f169746510dca7b3691", + "max": 512, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_55af60abb1ca4831bfdaa12185303e79", + "value": 512 + } + }, + "022f04c4b4754a90a4910a02d3386106": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40cc1ffd1c734f9e800e8a40a234512e", + "placeholder": "​", + "style": "IPY_MODEL_946a6ac6a24d49e39f3248f9936ef592", + "value": " 512/512 [00:13<00:00, 41.13 step/s, Objective=-1352.2]" + } + }, + "96c9ebb9cfc047198f97db04c7be8b66": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cb9c56fb447945a3b9c20f52b8bc6748": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f90c6c3c80cc49a8846396e11d739b96": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f540a3f6f1dc4f169746510dca7b3691": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "55af60abb1ca4831bfdaa12185303e79": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "40cc1ffd1c734f9e800e8a40a234512e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "946a6ac6a24d49e39f3248f9936ef592": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "95d38ecf0e3f42d285b3b72179601f70": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_323d89c37c62400ca33f194b44ae74d0", + "IPY_MODEL_baf6d0f46126420395bd64ec76a704d6", + "IPY_MODEL_0c99c38f17544da997a575538dd2e5f0" + ], + "layout": "IPY_MODEL_4d3ba63fda70437a9bc0770e6214f1c6" + } + }, + "323d89c37c62400ca33f194b44ae74d0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_99f161d1f27144ec8721c8dd6e841da6", + "placeholder": "​", + "style": "IPY_MODEL_6742449d54ea4997b5b85082b7d12efd", + "value": "100%" + } + }, + "baf6d0f46126420395bd64ec76a704d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9ad0d9e48e7a4a7ba7f66cec35a8eacd", + "max": 512, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d7c6b875af764e0a9aac393bb539acf3", + "value": 512 + } + }, + "0c99c38f17544da997a575538dd2e5f0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27d1bfac70e64b04925375e57162aaae", + "placeholder": "​", + "style": "IPY_MODEL_cf4d1a9836814fab81ca7688a66d5fab", + "value": " 512/512 [00:12<00:00, 39.01 step/s, Objective=-1222.3]" + } + }, + "4d3ba63fda70437a9bc0770e6214f1c6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "99f161d1f27144ec8721c8dd6e841da6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6742449d54ea4997b5b85082b7d12efd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9ad0d9e48e7a4a7ba7f66cec35a8eacd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d7c6b875af764e0a9aac393bb539acf3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "27d1bfac70e64b04925375e57162aaae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf4d1a9836814fab81ca7688a66d5fab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3f4b2348efa0443ab3c29300b85f29e8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fe953f251ac24f8b912db5cf4f9864e3", + "IPY_MODEL_5601082b45ce4996acd41e91921243c2", + "IPY_MODEL_82e4a1dbe4944e28bbab6ea2e8ad5661" + ], + "layout": "IPY_MODEL_3137aeea1e504d1f842dd8e65667bc70" + } + }, + "fe953f251ac24f8b912db5cf4f9864e3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e306b531228a441491fbdfccb9522fdc", + "placeholder": "​", + "style": "IPY_MODEL_0317501458264f4e822b3486207f8019", + "value": "100%" + } + }, + "5601082b45ce4996acd41e91921243c2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aeff5916a0e140e3a254d2bf7e2fd60b", + "max": 512, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b3d9810d08b4ce190d7c3a801a345e8", + "value": 512 + } + }, + "82e4a1dbe4944e28bbab6ea2e8ad5661": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f06b61f3847b477487f4359bf855c4d1", + "placeholder": "​", + "style": "IPY_MODEL_55c305b5b8ed407f972fd2b775a5d18c", + "value": " 512/512 [00:12<00:00, 40.96 step/s, Objective=-2751.7]" + } + }, + "3137aeea1e504d1f842dd8e65667bc70": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e306b531228a441491fbdfccb9522fdc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0317501458264f4e822b3486207f8019": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "aeff5916a0e140e3a254d2bf7e2fd60b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b3d9810d08b4ce190d7c3a801a345e8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f06b61f3847b477487f4359bf855c4d1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "55c305b5b8ed407f972fd2b775a5d18c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Optimizing with Transparency" + ], + "metadata": { + "id": "dnzyC1T_A92P" + } + }, + { + "cell_type": "markdown", + "source": [ + "This tutorial notebook illustrates how to use Captum.optim to render RGBA images when using models trained only on RGB images. This process is known as optimizing with transparency, and more information on it can be found at [the corresponding research paper](https://distill.pub/2018/differentiable-parameterizations/#section-rgba). As we will see below, optimizing with transparency yields important information about the saliency of feature visualizations that regular feature visualizations miss." + ], + "metadata": { + "id": "Vp2ArO9T9wZO" + } + }, + { + "cell_type": "code", + "source": [ + "from typing import Callable, Tuple, List, Optional, Sequence, Union, Dict\n", + "import math\n", + "import torch\n", + "import torch.nn.functional as F\n", + "\n", + "import captum.optim as opt\n", + "from captum.optim.models import googlenet\n", + "\n", + "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "model = googlenet(pretrained=True).to(device)" + ], + "metadata": { + "id": "Tz9CVl-TZ8Ha" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "In addition to a visualization function, we'll define four main helper functions for this tutorial. The first function allows us to create distinct checkerboard backgrounds that let us easily see transparency, and the second function allows for the compositing of RGBA images onto backgrounds. The third function allows us to quickly view RGBA images on multiple distinct backgrounds. The fourth function simply allows us to graph the loss values from our rendering." + ], + "metadata": { + "id": "JsPKNvxKTehk" + } + }, + { + "cell_type": "code", + "source": [ + "ModuleOutputMapping = Dict[torch.nn.Module, Optional[torch.Tensor]]\n", + "\n", + "import matplotlib.pylab as plt\n", + "\n", + "\n", + "def visualize(\n", + " model: torch.nn.Module,\n", + " loss_fn: opt.loss.Loss,\n", + " image: opt.images.ImageParameterization,\n", + " transforms: Optional[Union[torch.nn.Module, List[torch.nn.Module]]] = None,\n", + " n_iter: int = 512,\n", + " lr: float = 0.01,\n", + " return_image_instance: bool = False,\n", + ") -> Tuple[\n", + " Union[opt.images.ImageParameterization, opt.images.ImageTensor], torch.Tensor\n", + "]:\n", + " \"\"\"\n", + " Helper function rendering results.\n", + "\n", + " Args:\n", + " model (nn.Module): A PyTorch model instance.\n", + " loss_function (callable): The loss function to minimize during optimization\n", + " optimization.\n", + " image (ImageParameterization): An image parameterization to render.\n", + " transforms (nn.Module or list of nn.Module, optional): The transforms to use\n", + " for optimization. If set to None then TransformationRobustness() is used.\n", + " Default: None\n", + " n_iter (int, optional): Number of steps to run optimization for.\n", + " Default: 512\n", + " lr: (float, optional): If no optimizer is given, then lr is used as the\n", + " learning rate for the Adam optimizer.\n", + " Default: 0.01\n", + " return_image_instance (bool, optional): Whether or not to return a detached\n", + " tensor or the ImageParameterization instance.\n", + " Default: False\n", + "\n", + " Returns:\n", + " image (torch.Tensor or NaturalImage instance): The results of the rendering.\n", + " history (torch.Tensor): The loss history for the rendering.\n", + " \"\"\"\n", + " assert image().dim() == 4\n", + " if transforms is None:\n", + " transforms = opt.transforms.TransformationRobustness()\n", + " transforms = (\n", + " torch.nn.Sequential(*transforms)\n", + " if isinstance(transforms, (list, tuple))\n", + " else transforms\n", + " )\n", + " obj = opt.InputOptimization(model, loss_fn, image, transforms)\n", + " history = obj.optimize(opt.optimization.n_steps(n_iter, True), lr=lr)\n", + " if return_image_instance:\n", + " return image, history\n", + " else:\n", + " return image().detach(), history\n", + "\n", + "\n", + "def create_checkerboard(\n", + " size: Tuple[int, int],\n", + " channels: int = 3,\n", + " tiles: int = 4,\n", + " colors: List[float] = [1.0, 0.0],\n", + ") -> torch.Tensor:\n", + " \"\"\"\n", + " Create a checkerboard pattern.\n", + "\n", + " Based on Lucid's checkerboard function from here: https://github.com/tensorflow/\n", + " lucid/blob/master/notebooks/differentiable-parameterizations/transparency.ipynb\n", + "\n", + " Args:\n", + "\n", + " size (Tuple[int, int]): The dimensions to use when creating the image, with a\n", + " shape of: [H, W].\n", + " channels (int, optional): The number of image channels to use for the output\n", + " image.\n", + " Default: 3\n", + " tiles (int, optional): The number of tiles to create inside the image.\n", + " Default: 4\n", + " colors (list of float, optional): A list of colors to use for the\n", + " checkerboard.\n", + " Default: [1.0, 0.0]\n", + "\n", + " Returns:\n", + " tensor (torch.Tensor): An NCHW image with a checkerboard pattern.\n", + " \"\"\"\n", + " assert len(size) == 2 and len(colors) == 2\n", + "\n", + " square = torch.ones([math.ceil(float(d / tiles) / 2) for d in size])\n", + " board = torch.tensor([colors * tiles, colors[::-1] * tiles] * tiles)\n", + " scaled = torch.kron(board, square)[: size[0], : size[1]]\n", + " return torch.stack([scaled] * channels)\n", + "\n", + "\n", + "def composite_alpha(\n", + " x: torch.Tensor,\n", + " background: torch.Tensor,\n", + " gamma_to_linear: bool = False,\n", + " linear_to_gamma: bool = True,\n", + ") -> torch.Tensor:\n", + " \"\"\"\n", + " Composite an RGBA NCHW image tensor onto an NCHW image tensor background.\n", + "\n", + " See here for more details:\n", + " https://en.wikipedia.org/wiki/Alpha_compositing\n", + " https://en.wikipedia.org/wiki/Alpha_compositing#Gamma_correction\n", + "\n", + " Args:\n", + "\n", + " x (torch.Tensor): The RGBA image tensor with 4 channels in the format of NCHW.\n", + " background (torch.Tensor): The background NCHW image tensor to use.\n", + " gamma_to_linear (bool, optional): Whether or not to convert the alpha channel\n", + " of the input image from gamma to a linear format.\n", + " Default: False\n", + " linear_to_gamma (bool, optional): Whether or not to convert the output image\n", + " from linear to gamma format.\n", + " Default: True\n", + "\n", + " Returns:\n", + " image (torch.Tensor): The input image composited on top of the background.\n", + " \"\"\"\n", + " assert x.dim() == 4 and x.shape[1] == 4\n", + " assert background.dim() == 4\n", + " assert x.device == background.device\n", + " if gamma_to_linear:\n", + " x[:, :3, ...] = x[:, :3, ...].clone() ** 2.2\n", + " rgb, alpha_channel = x[:, :3, ...], x[:, 3:, ...]\n", + " image = background * (1.0 - alpha_channel) + rgb * alpha_channel\n", + " if linear_to_gamma:\n", + " image = image ** (1.0 / 2.2)\n", + " return image\n", + "\n", + "\n", + "def create_mosaic(\n", + " img: torch.Tensor,\n", + " background: Optional[torch.Tensor] = None,\n", + " num_tiles: int = 4,\n", + " gamma_to_linear: bool = False,\n", + " linear_to_gamma: bool = True,\n", + ") -> torch.Tensor:\n", + " \"\"\"\n", + " Composite an NCHW RGBA image tensor onto 4 distinct backgrounds;\n", + " no background, checkerboard, white, and black backgrounds.\n", + "\n", + " Args:\n", + "\n", + " img (torch.Tensor): An RGBA NCHW image tensor.\n", + " background (torch.Tensor, optional): An NCHW image tensor to use as a\n", + " background for the img input. If set to None, then a checkerboard\n", + " background will be used.\n", + " Default: None\n", + " tiles (int, optional): The number of tiles to use for the checkerboard\n", + " background image. This variable is only used if background is set to None.\n", + " Default: 4\n", + " gamma_to_linear (bool, optional): Whether or not to convert the alpha channel\n", + " of the input image from gamma to a linear format.\n", + " Default: False\n", + " linear_to_gamma (bool, optional): Whether or not to convert the output image\n", + " from linear to gamma format.\n", + " Default: True\n", + "\n", + " Returns:\n", + " mosaic_tensor (torch.Tensor): An NCHW image mosaic showing the img\n", + " input on different backgrounds.\n", + " \"\"\"\n", + " assert img.dim() == 4 and img.shape[1] == 4\n", + " img_list = [img[:, :3]]\n", + "\n", + " # Place visualizations on top of custom or checkerboard image\n", + " if background is None:\n", + " background = (\n", + " create_checkerboard(img.shape[2:], tiles=num_tiles)\n", + " .unsqueeze(0)\n", + " .to(img.device)\n", + " )\n", + "\n", + " img_list.append(\n", + " composite_alpha(\n", + " img,\n", + " background,\n", + " gamma_to_linear=gamma_to_linear,\n", + " linear_to_gamma=linear_to_gamma,\n", + " )\n", + " )\n", + "\n", + " # Place visualization on white background\n", + " img_list.append(\n", + " composite_alpha(\n", + " img,\n", + " torch.ones_like(img[:, :3]),\n", + " gamma_to_linear=gamma_to_linear,\n", + " linear_to_gamma=linear_to_gamma,\n", + " )\n", + " )\n", + "\n", + " # Place visualization on black background\n", + " img_list.append(\n", + " composite_alpha(\n", + " img,\n", + " torch.zeros_like(img[:, :3]),\n", + " gamma_to_linear=gamma_to_linear,\n", + " linear_to_gamma=linear_to_gamma,\n", + " )\n", + " )\n", + " return torch.cat(img_list)\n", + "\n", + "\n", + "def composite_alpha_only(x: torch.Tensor) -> torch.Tensor:\n", + " \"\"\"\n", + " Visualize the alpha channel of an NCHW RGBA image tensor.\n", + "\n", + " Args:\n", + "\n", + " x (torch.Tensor): An RGBA NCHW image tensor.\n", + "\n", + " Returns:\n", + " x (torch.Tensor): An RGB NCHW image tensor for the 4th input image channel.\n", + " \"\"\"\n", + " assert x.dim() == 4 and x.shape[1] == 4\n", + " return torch.ones_like(x[:, :3]) * x[:, 3:]\n", + "\n", + "\n", + "def plot_loss(\n", + " history: Union[torch.Tensor, List[torch.Tensor]],\n", + " figsize: Optional[Union[Tuple[int, int], Tuple[float, float]]] = None,\n", + " title: Optional[str] = None,\n", + " labels: Optional[List[str]] = None,\n", + " axis_names: Optional[List[str]] = [\"Step\", \"Loss\"],\n", + ") -> None:\n", + " \"\"\"\n", + " Helper function for graphing losses.\n", + "\n", + " Args:\n", + "\n", + " history (torch.Tensor or list of torch.Tensor): A set of loss values inside\n", + " the history created from the optimize function.\n", + " figsize (tuple of int or tuple of float, optional): The size of the graph.\n", + " Default: None\n", + " title (str, optional): The title of the graph.\n", + " Default: None\n", + " labels (list of str, optional): A list labels to use if graphing multiple\n", + " history tensors.\n", + " Default: None\n", + " axis_names (list of str): The names to use for the x and y axes, in a format\n", + " of: [x_axis, y_axis].\n", + " Default: [\"Step\", \"Loss\"]\n", + " \"\"\"\n", + " assert len(axis_names) == 2\n", + " if figsize is not None:\n", + " plt.figure(figsize=figsize)\n", + " if not torch.is_tensor(history):\n", + " history = [h.detach().cpu().tolist() for h in history]\n", + " for i, h in enumerate(history):\n", + " label = \"Test \" + str(i + 1) if labels is None else labels[i]\n", + " plt.plot(h, label=label)\n", + " plt.legend()\n", + " else:\n", + " history = history.detach().cpu().tolist()\n", + " plt.plot(history)\n", + " if title is not None:\n", + " plt.title(title)\n", + " if axis_names is not None:\n", + " plt.ylabel(axis_names[1])\n", + " plt.xlabel(axis_names[0])\n", + " plt.show()" + ], + "metadata": { + "id": "GNdef32udfDh" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Alpha Compositing\n", + "\n", + "We can verify that our alpha compositing code works by displaying Captum's logo on a custom background. We also show how to load an RGBA image using `ImageTensor`'s `open` function." + ], + "metadata": { + "id": "hJ7H4h6x5O8c" + } + }, + { + "cell_type": "code", + "source": [ + "# Download RGBA & show test image\n", + "img_url = (\n", + " \"https://github.com/pytorch/captum/raw/master/website/static/img/captum_logo.png\"\n", + ")\n", + "captum_logo = opt.images.ImageTensor.open(img_url, mode=\"RGBA\")[None, :].to(device)\n", + "\n", + "print(\"The RGBA image:\")\n", + "opt.images.show(captum_logo, figsize=(6.5, 6.5))\n", + "\n", + "# Show Captum logo with alpha channel only\n", + "print(\n", + " \"\\nThe RGBA image's alpha channel (white represents opaque \\nregions, and black\"\n", + " + \" represents transparent regions):\"\n", + ")\n", + "opt.images.show(composite_alpha_only(captum_logo), figsize=(6.5, 6.5))\n", + "\n", + "# Setup a checkerboard background image with square tiles\n", + "background = create_checkerboard([max(captum_logo.shape[2:])] * 2, tiles=4).to(device)\n", + "background = background[None, :, : captum_logo.shape[2], : captum_logo.shape[3]]\n", + "\n", + "# Make black background tiles blue\n", + "blue_color = torch.tensor([0.0, 0.7071, 0.7071], device=device).view(1, 3, 1, 1)\n", + "background = torch.where(background == 0.0, blue_color, background)\n", + "\n", + "# Show background image\n", + "print(\"\\nOur custom background image:\")\n", + "opt.images.show(background, figsize=(6.5, 6.5))\n", + "\n", + "# Composite logo onto background\n", + "captum_logo_on_background = composite_alpha(\n", + " captum_logo, background, gamma_to_linear=True\n", + ")\n", + "print(\"\\nThe RGBA image on top of the background image:\")\n", + "opt.images.show(captum_logo_on_background, figsize=(6.5, 6.5))" + ], + "metadata": { + "id": "hn_zkqFQ5OZn", + "outputId": "68b4bc28-6e0e-4c1b-bc9d-ac31c899a481", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 592 + } + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The RGBA image:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAABsCAYAAACPb8KhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOx9eXhU5dn+fc6ZfZJJJntC9o01hFUQEVRcQERFUaRqqdRai9Yqn/3oou1nq79q646KK1oU94rU4oosokAUCNn3ELLv6+xn+/3xzOlMQpKZkABR576uuQIzZ3nPe973eZ/3We6HkWUZAQQQQAAB/DDBnu0GBBBAAAEEcPoQEPIBBBBAAD9gBIR8AAEEEMAPGAEhH0AAAQTwA0ZAyAcQQAAB/IAREPIBBBBAAD9gqM52A4aCWF/NSu3NHIBgAFoAJgAaADr3RwOAA8AAgJB3QO/8+C0TAC00Wk5/84YGNirO5b6c5P7YAfAArABcAPrc39m4pAyRNUcG4kkDCCCAHxSY8Ronb9vyiN71xft6ANkAYgDMBBAJIBFAPIAIAEaQoAdkmT5uoQ+Gld3/Akig2wHUAmgHUAmgFUAegDqAqTDc+Veb5rzL+DPwaAEEEEAAZwzjQpN37vm3Ru5s1YEEeCiAWLGyKB6SFAEgFqTNx4KEeoj7YwCgxlAmJ1kC+q9frPsaIe57WAFkAugB0MF/u7tWaq7rAHDC/V0dlz5VUGefK4zt0wYQQAABnDmcdU1edtoZy19/FSxWFIQCWAQgBcBsANPd/z4jzQBwFMBxAF+BNP5vNMvW2PQ/3WBnWHZ8bncCCCCAAHzgrAh5oTSXc/x7qw7ANEhSuliet0i29sUAmADS1kNBNnjDGWqSDNLebQA6AFgANLFRE8rZhLQ8AEcYvbFBf9Nv7AG7fQABBPB9whk118iiyMiWHp1YX20QjnwVBmASgBkALoTHHMMMd43TBAa0sIQCiAMgALBJrQ3RUmuDCkAXYzRJ0mXXt0GlcbHBIY6z0MYAAggggBHjjGryYmuDyfbYb6+QOluz5N6u5SChGgzS2FUgYXs2hPxAyO6PE4ADQCcYtpMxR7ylmphdarjzr58xKrV0dpsYQAABBOAbp12TF5vrVFJHixpAotzREiO21M+C3ToJZG/Xgpyn4w3KYqMHhWvqIUuhcmfrDLGhxigUHWmFStUGoJVLSHOxJnNA4AcQQADjEqddk7dve9rs3LktDMD/AJgOUZgFinFXomLGg+Y+HLw7SAKYbnBcHoBPwDDvGe7+W5tm7oW2s9W4AAIIIIDhcNo0ebHxhJE/si9WqCiYBVGYCrK9T4Anien7Au9FiANkA0QhGcD5AAz8t3v2y51tNZqFy+oYY3Ag3DKAAAIYVzh9Qr62IsTxxlPTAFwDYCnIqTpW9xvN9mO0Owc9gFTQgrWI/2qnWjh24IBqxoIWLiDkAwgggHGGMTfXSN0dOsfbz84S66tnihUFa0AJTjEg7X2suHIaAXQC6AY5RrsxuOBXgZy7BgBBIMEcOkZtEN2fSqjU9app5zyvyphWrV3583yG4wJhlgEEEMC4wJhq8rLNopU6W0384b2T5b6eGQAW4NQ1ZyXCRQAJUwEqtcjoDCKAegBNAFpAmastGFzIawBEgWLuzQBYyLIo2y0qSBIHen4OHg6ckbRVOW8KBD5BOPbNN7LDxmguvrYSeqOT0eoCWn0AAQRw1jFmmrwsCKzt+b9cJZblTpPam9dCksJAWvOpCnmH+3MEpLkfVs+9oE73k7uKQFw0ivCX3P8eDAw8wpgFoJHtVp3t6T/MkZrr4kCZtUmgeH0dTj3SRwTQCY2uig2LeltzybXf6q646eApXiuAAAIIYMwwJpq81N5klNqag6X6qslSa+M0UEKRfoSXkUHC0g4yv7SBYTrZ+LRcRqdvAlDApUxq5OKSykfTVtlu47i0qXomOLQDACt3d3RIbY0WkEnJBCAcHk4cfxcoDkAkXA5eaq7NFk+Udwjl+ZVsXHIPG2Ry+Tw7gAACCOA0YUw0efs7z810fvR6NgR+A2R5MrwogEcAEWR6KQPwOYC90Gjzg/74XB+XOpkHIIFlZUalHnWDZd7FQpYZAKzzi/e1jq2PGwFcBiALwCp4GC5H+gwSABEstxNq9b+Mdz+8Vz3r/PrRtjeAAAII4FQxKk1ebGkwCLlfR4sVhXPBuxaDqIBHek0JQBWANgC5bGxSnSp7fj6A4wyn6mXDo52MRjumjkxGrVGSl0RV6mRJs3S1CKAQLlc3n7PLJVv7YkEUx9EgZ62/YAGwkMR0OMVL+cP7OqTuTlZz7sWNjN4YsNEHEEAAZxyjEvJSbYXJ/to/pkOWLwVw7QhOHZBghKMACgC8wqVN7jXc8r9nLLlINXmWqJo8yw7gqNTXkyuUHt0jW/uSAawFMAdkevKGP9r9NABTXF9ur2OO7JfV089pCwj5AAII4GzglMw1Um8363j/hVCxrmqOWHzkNwAmAkgbwSUEkPN0LzjVEe3KW/ZzMYlNACrZyDheNWmGOOJGjRH4w/tUst0aBCCVP3Ygg//6k+kAloO457XwPwyU6IvV2nL1jAUPcBnTmnRX/az3NDV7zLFlyxbN7t271aDdjAHkRNeDQlEBD3OnEsJqZxjGctttt/Wdf/75zrPR5gACCOBknJom77RzfM6X4XJ3RwooTNJfJ6sM0txJMKg1uYw+6FP1zPMLVOlT+06pLWMM9ZzFAkhoHZXt1mb+yP4GuBwTIQqRIKesCv47ZSeDd5r57/bEyg6bHeNUyFssFkYQBBYehzO3f/9+w7Zt2/QAkkEO6WgQmVy4+zQJ/UNY+wB0LliwQJ2VldUHT8lFQavVSnq9PsDvE0AAZwGnpsm3NYX33bf2Abm7YyqAhVBs0b7hAhXk+A7AFu1VPzuuOf/yJjZqgoPR6sadEJD6ulVyV5vW/vqTmUL+oUQA94KSuxLgW8grcf42AF+osublGH//9D8YTjWuntNutzPr1q0LLywsjAI5nxMBTGloaDB3dXUZ4dm9/HcB8DpdgCeEVQQgTpgwod1sNvcCKAEJ/6M33HBD7R//+MdRRUUFEEAAp4YRa/JiU22o1HQiFoIwESTs/ImkUWh7+wAUMsbgAjZqQjGXlNHDJaT5bX+X+ro5qa1JA9o5aOGhKFaSmpTn6Z9E5TEPWRiWc7BxSX45c9ngUAHBoQKXnFkjdXf0SY01+RB4J4AwUKKVZpjTleQqLYB02W7tEI+XRbHhUX2sOdLq7zOfDnR2djLHjx9nAYQ6HA5TQUFBSlFRkeJsTgAwGaS9G0d4abmhoSG6oaHBAloUWgFI+fn5oUeOHNEA6FOpVI7MzMwOvV4f8FEEEMAZwIg0eVkUGOuj964QCr+bDpdjA6heqj+ZohKotF45gLvV51zUalj/QA+jN4xoG+Ha/4nZ9tJD8fCUBswGZbLGgEwJYV73awVVeGoBFe9uAHCAMQRVBN33XBUXnzoiu7HU1sRZ/vLLMKm1YQaAh0FFTmL9OJVMVCxbCrX2Bd3VP8vRXXPrtyO591jjvffeU99yyy0GAFcBWGS32y+RqJ6uYopSzFGnksim7GAUc42kUql6tVptO4BvzGZzya5du7ZOnDixY0weJoAAAhgWfmvyQnUxJ1aXqKWW+ilwOWaCMkT9MdEIAHgAOdAbC9RzFneoJs6w+SPgZVFghKNfx0t9XWYAmWJZfhic9jiQthkFMi0oxb118MS2KwJGKUgSAbdNWZalbP7QrhohLLITQAU3IbVTNTG7zVdb2MhYUb3g0j7xREW9cOzAF5Cluehvox8KlHUrSWY47ecIFYXNzt0fHlNnn8uz4dFnlOOmu7ub/eijj0L279+fZLVa5wE4B8AU0EI5WKlFGUAv6P3xoN2Yxf0bA9L21e6Pd/8z8OoTQRAgCAIHYJosy0HvvvvuF9nZ2fyVV145Ln0UAQTwQ4Lfmrz9ned0zg9eMQL4J4hmNwj+CXk7SDD8ko1J/DbowVeb2OBQv+zSstPBWR74xTKxqngKgHUgoRo+zCnemudQDyYDaAbtLF7TXHZ9gWHdxhx/2gMAQvFRreWh9TEQ+J8BuAckHP2hQ+BB9vmnwLCPGzc+aVXPPO+MmixKS0u1CxYsyOjq6roMwH0gs5cGQ2vsIiiHwQIytXUAqHP/xgLIAI2DINB7SRjm9sr76AVwy/z58wv37NlTqdPpAmRuAQRwGjESm3wqKP47FqS1+buVPwCWO6BdfmMplzq5y5eAFyoKNa49HwZDxnxI4lSptXEByBwT7b4v/Lz3cMeEgEI+bxaKDtfZXnjwUgD7GJ2+UnvV2lY2NGJI4cvGJgr6n/+uQzh24Bs+50stiEp5oh/t4UBCNRPAEgDfgExJpx08zzOPP/741CNHjiRardZrQMJZD0/JRYB2XL0gnqAiAHUajabtt7/9bV1iYqIDtEg5QNE0wABN/quvvjJu27ZNMZ2Fue8RAWAqPM5ai8Fg6Ni4cWN9dnZ2S0DAn15UV1eHPfbYYxfxPB8CD/uqC8CutLS0jo0bN7aexeYFcIbgv5AXhDgAM0Fb++Ecjgoo6kKlLmZ0+s/Ucy9oUE3MHtbJKjvsrFhfZXB9uT0KwHwAF4GoBoL9bqdvMCCzghFAjFRf3eGqr84C0MMYg23qRct7GUOQndHoBo3VZ80Rovaiqy1w2Er4Ywdc4J3zIEmp6C8wBz0V1G8TAMyUeWchzoCQdzqdTF9fn2r79u1pOTk500Ax/yZ4NHiFM8gBoE2lUlVqtdqvABQYjcaaa6+9tmXmzJk++XdUKpXmww8/VBaxCQD6JElKttvtyfAUirFqtdru6667rnPy5MkBU81pRmtrq2nLli0LHQ5HDDxJfVYAZeedd55w9913t2m1Y5tNHsD4g08hL5Qe4+xbH9dLHS0zQVprtJ/XbgDwtfbSVXvV5y/P42KT7MMdLLY2aOzP/yVBams8D8AvQYMyHIPbiscSISCtdr1st15je+ZPr6rSp1bqf/GHg8MV61YvuKyVm5jd69j29KdC0eEeAJfAkyg0HKZAliId257+2vXlhw2G9f9nY0PCTttEe+aZZyK2bdsWVV5efhPIYR2G/u9dBLAbQAWA9y+99NKOBx54oAWAjWVZV2ZmJu/PfVasWMFPnz5dBFAMoBLAkeLi4qDbbrvtNafTmQXgPJDJpwtktgrg9CMMwNWgcakoZr0gRa35bDUqgDMLn0JetlnUYnWxGbIcCTLV+NLilciKLgCFTFh0vSp1smW4E8SWeo1UVxUsVJdMht06DaS9a/2411hACb9MhCSFSfVV2SLHqcTaylLWHGljzRGDLk5saDjPhobzjDG4CrQVPh+0IPmKSgkCoJKa68JllzMEAu8ACdoxR0FBAXvs2LGY3NzcTHiqWam92tfNMEx3SkpKkcFgKAFQkJ2dbZ0zZ45jpPeKjIyUIyMjFZI5K4AunU6nzsrK6nY4HDzoue0mk6lPq9UGmDnPDNSgAAXvZEUJnjEfwI8A/phrwkACLB3+aapKAlAZgC0gzWHog3knY3/p/yUIFQUT4bD9AzQo/bnPWEMHWlhuF+sqKyx/vZ3XXnpdoX7NnUd9nLcbQCkoHFEP3zsPDajfs0FO6U/df8cU27dvV69bt05vs9lWArgBFIk0sG2f6XS63S+++OIns2fPbgXgCg0NHbNdxbRp0/gvvviiGRTCuh8AGIaRg4KCArQHAQRwhuCPkDeAYtLN8M/h6QJQzoTHHFdNntnHxacMqbUJVcWcWFuhkdoaz4XDlgVisVQScEZbi3UkYLz+6iFJkbBZzhWPlwqu/R8fV02aaWEjYwc1W6gmz7KBYbv5Ywcq4LQzoAIkw7Vd0fRjQYL3tNTZdblcId3d3ZNB7y4S/aNoOgAcnzt3bl5WVlZRcnJyd2ho6GkRvO5FQwnBDCCAAM4w/BEwIaAKSv4k/gCkle5WpU05Yvz1g8Nmdrr279S4Pnk7GBQeOQf946zPJiIBrBHyDqqEvINFhnseqdFExvYMdqD28p+41Asu6xHv+9leqc3eA/8ibRjQzsiF02eSigf5ULJxctjpCQDbfvrTn+658847807T/QMIIIBxgGGFvO3Vv+ultsYIyHIWho9PB8hM4wLZ4r8Bg0o/7j8HtIBMAJlKxoOABygSRgfyDdwEGa8DyB/yaIZxATjk/t818K+UYLJs7YPj3c3BXNq0Pu2lq8bETt3W1sY+/vjjpmPHjqUCuADUt0qfugDUz549O3/t2rV7Fy1a1DAW9zyTKC8vVz333HPBoigqpjHFOa8FhYH2gRQNG4CO0NBQ+4YNG5xms3lMzFBPPfWUprKyUgtSBEwAYleuXFly0UUX1Qx2/Pvvv2/Yt2+fHhQh1m++rV69unXhwoVnOspIIZZr/bFH1rz11ltRBw4cCAGgjY+Pd/7mN7+p0ulO5tCqra1VP/XUU5EulysIZNEwgpSzXtBYa1u8eHHfqlWrBlUEh8OuXbtUO3bsUIPGsRGeXbcWNJZ7AHSEhITYNmzY0BsWFjZi7qthhbzr03f0IKdiCvxz1DgB9EKlLgCnHtZ7L7ucLERxMoCLQfHUanjC+bwfxLvI9mALwMA0egW+0vN9nacBxdLrIPK7ZN5V6FVsZCAEqDXF4FRmiILd3ebhhDyZa5x22bX3I6Oqu0MzVkK+u7ubfemll0I7OjomgLR472fnAdRmZGSU//rXvz42Fvc73XA4HEr2LAOAPX78uP7ZZ5+NFAQhBDThkkG7zWDQ+GsFsYh2A2Di4uK6165dK+v1ehGANNgk9gc8zzN2u5157733gr755psg931jAExOSUnpUYS8V3tZAOzu3btDNm/eHAKKSuu3a8vMzBTnzJnjhNdY5DhOUqtPrfqZw+HwHu+My+UabAzKoPBWW09Pj0ar1fq6rDJH5OH6zuFweDv0lfNE93mjXkx4nmdEUfSe08o9ZJVKJapUKr/u4XA4lHrP7BdffBH96quvxgIwZGdn961fv/648ozuvmQBsPX19cbNmzfH2e32SJDSFAFSLJpB40wrimLrFVdcoQRRDDvOnE4nI7sr0+Xk5OifeeYZg/u64aAdvgEk8Fvd9zgeGxvbtXbtWqfBYOABiCPpU1/mmmyQgPdHu5YBFDLmyCLDbfd1szHxQ0Zo8AXfhjre3ZwitTbOBXAuSCNygrhtygHs9Wrf5aBMykwMvtC4ANSDnJ/73dcBKMZe4bkZ7Dyn+7xiAAdAceIsKFFpgvu8EAA6x/svnefa/7FouO2+A2x49Enhf2xImGz49YM2sSyv2b718W8giZNAJF++oIYnWWjoncLIYARwIejdDUQngKdB4ZLjHm+99ZZx06ZNJhCddQqAGb29vaGiKEbDQ0yng6dYu7KbVIjpHO3t7Y4bbrihRKPRVAP4/NZbb21ct27diMMHX3rppdjXX389rri4WKmfoAMJbQPI/HXgl7/8pb6goCAUNIaSAcw4fvx4GPrnJfwXTz75pP2tt95ygsKNWwB8uXz58po//vGPIx4LH3zwQcSjjz6a4L5vJIBMi8WS5HQ6Bwp6A4C7CwsLu5cuXSoyjM+pLQM4Gh4eXvviiy8eiI2NPSlIoK2tLeS22267t6Wlxez1tQRgR3R0dNWLL75Y5468OmVs3rx50ttvv50GYB5ocQdI022+++67911//fU+lZaqqqqQX/3qVxdZLJZsAJdUVVXpQGOoGiQ/vt6xYwceeeQRHYjyIwPAEqvVGu50OsNA81UDDyMrD/c42759e8+xY8faAHxiMpmKX3zxxWOJiYkn9VV3dzd32223xdfX108AsLixsTETJCuUtujhYXt1ue/haG9vt69Zs6ZQo9FUANixbt269ltvvbXTn77zJeRj4OlQX5ABtDJqTSOXNsXFhgy9rZD7uo1ieX4KyM5vBiCCU1nZiOhSMFwhiIpYaV+iLLicckdLEmRZC4/AVjQFK4AK6I2FbEj4EXgiVSJl3mWXO1vSIMvKhFTOUyKAKmAIKmBNYcp5LIAomXfa5Y6WFLj5WKSmE0mypTtDdjkPY4gYb1XqZFG29dnAMHXw33/BgibkWCZFqUHhkjFe38kAHGq1uishIaEsNja2aQzvN6aoqalRuTXQ4Ly8vIiDBw9GgxbcDABzQTvLcPhp1nO5XK4jR44Euc9rmDt3LltRUWGNi4uzGY1GvwXPiRMndIcOHQoFmfD6LaBtbW1hhYWFhu+++y4hNzc3xv17uru9IRgiWqy6uhrV1dUSaJFoAtAWGxurLS8v7wbQzbKsLT09fVjqC4fDwdbX1+vz8/NjDh48OBWedz8FpHEOpB5RAZjS19fnOHToEPyADKAjJibG6nQ6B93Nu1wu9eHDh7Pr6+u9c2gkADnx8fEtLpeLxSjDhGtqakwHDx5UlC9lbHcBOL569Wq/FkWbzabKycmJ6+3tnQhSLhm4ubWcTmdXVVVVcEFBgebgwYNRIOVrCmhRUUyCQ4655uZmS3Nzcw+AppCQEJSUlNQyDNOVkJBg6+rqYtra2hgAQV1dXcacnJyJtbW1SQBmgQI1pvlqO8/zriNHjihFe0pnzZrFVVRUWOLi4nij0TisVu9LyM8CaVD+QAZpo9/CdyRFKoCfgzoRADrYyLhS4++fvpcxBHfCo40zAPKlhuMTLY/8Jg12q7LoKJma7SDe8nvUsxd16Nfe2wMPR0qeWFueYX3kngi4HEnoX7nK5j7vbs28JZ26n9zV63VerlhVNNH66P9oIPAZoJdwEWjS7gRtz4ZCN2g3EQnK2PUFDegFO2RJ/IphubGwkRpAJrBEr+8kAMeSkpIKP/nkk/ro6OhxUaBlIDo6OtjVq1dHVlVVJQNYbbfbp4GyrJWMWUWDGgmU3dIkAJe+/PLLH73zzjv/eeutt/ZdeOGFY5IQ9PTTT8e/9NJLc3t6ev4A0srMoLk10IQxGBjQu5oAYPrOnTvb9+3bVwPglaCgoL0fffRRS1ZW1pDzqaSkJPiqq66a19nZuRQUwKCYI4YqbsPBv12mAhnAQR/HKH3szV0kgkxUSjDFaGECKU/TvO7TCnrO0KFOGgAWJCR1A3+oqKgwLlmy5Dyn0zkXwE/c91Mozf0Zcwb38et6e3t7brjhhqAFCxYUfvDBB3vefvtt1f33368HcKUsyzO6u7uvhYc5wN/oOqWP0wGct2XLljffe++9N958880TS5YsGTYPydcNIuChEx4eDCNzk2Y0cQnp9YxaM+iqLdttjFB8WCdWFpoBJIHsqDKARrDsCSYopJsNMg2MyOHl7uBOgKkBdbays5ABtMAQ1KCaMrtdNTG7lzWFetu1eckQ3A0Gjeg/CCQAnYzR1KqaMqudy8iynHxeUAfIpBEKEg4mmecjhLyDoXJXW4dqyuxBo4ZYU5hdfc6FNWJddZdUX+Wzy9zPEw4aUKPG3r17tYWFhUEul8uM/tqjDKCJ47j6sLAwITg4eFw63GRZVnd1dc3r6OjIAE3mJHjoowfCBtrFeRcuURzmik0ToLH7X6ZMm82W4XA4FuzevbvKbrdbL7zwQoterx9Vf9hstgybzXYRyFQSgf7cTnaQ0iLAo0goZh5FICvmJo3T6YTT6QSA+Varlfvss8/2trS0dFx88cWDTmRBEFQdHR2RNpstHDRXfUHpD38hgcwGdvT3XQ12Te/rDrSfjxZKPymLJ9x/fbHAemMw3x4DIEgUxdjOzs7zQaa4KJBwV+QjD3KAygPPgyexTGmDQZZltru7e05VVZX2gw8+KMrJyYnq6OhIBu3sJoHGiDI+Rff1rThZOR5sHLMAIux2+1Sn03nRnj17dnZ1dTlXrVo1pCLgS8gnw3dUDYHlZN2qX5aqp80dcuskdbdzts0PRMh93QnwaPEiqJB3LobeAVhBGrILnhBFEUARGxGbb7zjL32MIWgwx6UDpLEPtBVWsjEJlYZfP2hhtPrBzusF8JX7vEUAguGwifZX/57ETZ5lC/rjs1WMWnOSYOAS0/uMdz982LF9yyWOt58dqhu8oQL5DaLh2Z2cMv70pz+Z9+/fHwnaSQSjv4OqBFQsfTwX6zAAuAs0EZQ+GQrtICZRKzwUyFrQBE3C0DvQcyRJmv3ggw+WJCYm2g4dOlQ+BgVMLnN/BkMngDZ3+xTlR1FylAQ8byi8Src4HI6Vv/3tb++aNWtWwb59+yqDgoIGE7Ja97X8m6enhl5QbsW4qmo2RmBBFCpxIOqNwcacIkcGBoRkwPO+vKEFcGNZWVnBjTfemCvL8gIQvUQSTt51CKAFtAa0kHgjESePYxa0Y7hEkqQFDz300AmGYTokSRoysseXkI8b5AEGAw1khvGRDi+rIcvJoIkIeDo0GKTNDjWp9QBmgBYdBSzIBNMHhhlqJdeCOiliwHnxAJqBIb1OOvd5ysRhQH2VAch2kKNmOIHc7T5G2a4OBdZ9zKgnqNtjHwcaGAOrdUnu9lTgNFEojBEkkECMRP+FT4mYKQWNtRMXXHBBx9KlS9tBioGiDXEADLt37w7//PPPI0DOs3jQoqH4ZBRNbpZMOIHRL3xKO12gRScfxOZZduWVV3YtWLCgz/2bIiT0AEzbt29PyMnJiQE5lsPRf2FWu/9/VX19fcr999//4sKFC+3XXnttP0UoPj6+969//evu/fv3V3344YffghYQhcYgCsAK9J/nDgAf4mSBMhSoID1FeYxnBWE0UBZaBvSebACKtFpt3a9+9auymJiYHrirnCknOBwO9rnnnotpbW2NASmCSnKjch0AiJVl+VaQKS4O9F4k0ILZDuDI4sWLm5YtW9YIGt/9EhJ3794d/fnnn8eCAimSQHJM8YsoTtpJsixbAXw51MP5EvLRfhwDdwPrQANoOKhB9rRIr+8Y0GAOgchzsigyDNffNi2Lgg6Qp6K/M5EFkAjIXbIgcENIaw0d02/LzwKIBeQYiMJJi4MsCAxEQec+z3sHwIEEfxd8b0F7QLVsfZXQ40Avzl+b4nBgQO8rDv23r0qYWZ1arT7BMMx41sYk0ODvhFc4LcdxzSzL1gH4HKTxHFywYIF948aNg443URS1e/bsMQBYJ8vybEEQUuBhCVU+00D99C489MmnCiXM0A6gQ61WHwCQB8+qsesAACAASURBVOCzSy+91H7HHXcMGh5bV1c3/ejRo5mCIMTJssyBdjKKmUMNGh8Xt7a2Rj/55JNvW61WcaCQj42NtWzYsOGQwWA4unPnTj3c45bneQa0W74c/eewU6VSfcQwTP0Inq9GrVZ3Y3wrCKcKBiQnZAASy7J2juM6AHwbFBT03bp16z7Nysoa1A/3wQcfBHd1daUACJYkSRRFMR79zUGRAK53/1sJ+OBVKlULwzAVALYvWLCgbOPGjcWDXV+SpJA9e/aYBUEIlSl4JBSeua2YqdJACs4pC3l/nSZ9oAgRX7HeWtDAS/L6jgUwV2pvjrI+vjFHPePcSt3KnxcoP9pe/luYeLwkGk5HFPrbrhkAYVJLQ6z1sXtT1bMXNelW3DywwpMe5KwYGCGkFxtPhFn+sSFLc86FDdplaxoAQLZbOdurf8+QaquyIAqXwLPjAGjCTQQJcF99YgOt/L6oAhjQxD7JEXQKYECLWTj6C3mXWq22PvbYY9a5c+faxiop6DRBAGnrKpCD6QiAPffff3/RwoULW0AakB1AX1JS0pCL1Zo1a/h58+b1AXivvb39wJ133hnc3t6eAo+JUBGAStGU0aIGtKhvi4+Pr960adOJ4ODgPgDWzMzMIQXjnXfeWb1s2bLmDRs2NJWXlyeBOIZSQGNWERZhoIm8BtQfuwe71hVXXMFnZGRIAI5bLJaGu+66K762tvakED6TySRu2rSpbMKECX45jdywa7VaITk5eTyPndGiC8CnS5cuLdiwYcM+AO0qlao3JSVlSKfmCy+8YLNardUAnvrwww+XPPPMMzIo1DtyiFP2h4SElG7atOn9uLi4FgDNSUlJQzKyrlmzxjJ37lzn/fff//yhQ4c+B/AXkBLnrRROBo2RJ4a6ji8h76/n14X+NsehwMGzLVXAAIiAyyGKpbnTmCATJ7Y2dgBgwDsZoSxPI9VWGOBZCfubIZx2Riw5GsyGRvBia6Oy7ZIBWOWuNiNIQxoolGXYraxYfMQkRMQ4Va2NDABJtvWpxJLcTKm1IQO0xfIm9GJBneuPk9QFWvh89YdiBhorRkA9Tl6YeZZlbbNnz+bnz58/3jUxCWQWMAGoNplMBeHh4QfmzZtXvmTJki5/L5KSkiKlpKRIAGobGhp6tVptBUjBmAyP8AwRRTGsvr5ez3GcOjo6+pS5dcxmc7PJZCoCcCg1NbX66quv9mtnMGnSJMukSZMsL7zwgtVisbQ0NTVlybKsgicnhHO3OxRAVl9fX1tNTQ2bnJx80gIXHx8vx8fHCwAsXV1dnMFgiMEgNnSVSiXPnz+/NzMzc7gosR8TZJAi1B0bG5s3ffr0I0uWLPEVTQQAcM8nC4DS4uLieBDFdhxOFvIOANbIyMiyhISEo4sWLfouKSnJp7ksOTlZTE5OFt96662y+vr63qamplZRFIPhEfKM+17DOtLHihyrDzQ5fWnyHMikMFjsfQSA/xHyDrVb7r/lOAAdZJmRLT3PgTrpEDzVqRiQAM0FdayeP7JvuVBy9Dr3tXgA/4YoOOFy7gBpRgvdvylxyScA9PGHvrxIyM+5AYAdsiTJfT2ZIK+5t30U8BQbGTZe1g2Luz9GTNk7SoSDXrq3Jt8G0jTHnOnyNMAFSoQ7COCdNWvW9P75z3/uDg0NHY0t2AbgLZDd9CLvH5qbmzUrVqzIuuyyy3Rbt24tPdUb3HXXXTtvu+22ZwFYVSrViNv6yiuv2PLz82uvvvrqZy0Wy2Ugk0scPPMkFMA1O3bssO/bt++DJ5980n799dcPtygpO8TTXYvhhwAJQFlmZmb+9u3bX42MjDxVmokiAC+DfEADnaVHAXz64IMP7rzyyivLIiIiRlRP4R//+Ifjzjvv7FyxYsWhhoYGm/seigxKgw+H+FgJeQnuFGYfxzHoH27kDQ5ACHgnJ3c7FVoBgJIf2kCRIUoEBUBb+0KQDXcaXM6pssuZ7P6N9zqvEh5ebeW8IlDySSZcjgzZ5UgGCWQZHu6IwdoeDP9okP3tj7GEMrEHavKKU3Lcb7UjIiLkCy+80JKZmWkDgLlz5/KxsbGjonvQ6XTixRdf3FJSUtL+7bff9vtNkiSmtbVV3dnZOap5YDKZbHFxcaesGUdGRsppaWnCsmXLOsvLy2vz8vLyQONcEfIcAKPdbg+z2+2JNputHsPnawDjhwdqvEOxkztiYmIswcHBp8TGmpycbF2+fHljbm6uvbGxceDPFgD1ZrO5MyYmZsT+n7CwMNlutwssy9ajf9Emv8JhTwvN7SjhHZIkA7gJxE3/G5AHW7ElCqCwylAAD4GEc4TXeStA9t273ecojibe67z18KSB+4ISlROD8Tt5zDjZJv+9wgsvvDCmO47w8HDxtddeq/3444+br7zySlkUx6fFKjk5WXr33Xdtr7zySsGtt976Mmh8pg84LA60G/kCvoV8AGcQK1as6F2xYkXv6tWrLe++++7An3vgCfc9VbhAlgsjRqiwjUchP1CAmtwfcEmZjepzLtwNALIgSK49HzbL3R1q0IQYqMFq3R+ZS53SoJ59vsLzIAKolTpbU117/x0DUfQv2as/5/yYQmqqVTneezFUnXWOVTVldqCgxmkAy34/1r3Zs2f3PfDAA9U7duyoP3r0aAvIqaZoa2aQw/jbIS8wNGSQYqQQogVwGsAwjFLwXoOTo9xGC8UvOSKMRyE/EEEAgsCy4FImNetW3Vak/CDkHQgSe7qiIEtB6F/iDFCIhFgWXPrURt2q2/qFjAmVhRGu/R9HghwZ/kAe8HfMILXUq50fbglh1BoxIOR/3JgxY4Z1xowZ1tra2ga3kA+GR8grGdj+ZLYOBhc8ZskATg940EI6kqzi04rxLuQlAMVMRGyB/ua7m7nYpH5OEf3ae+3iifJW+xtP7oXLmQ5P9IQMoJGNjj+uu+nuai42cTBnigWkEWXAE1rnqy2NIFv+mE4SLnWyU3fdL1vZuOSAgA9AQRVofMbB40A1gwIP/CUNHIhWUMBBoErX6YPSx0Ox5p5xjJWQV3glfJkylC2jvxEIMoA2Rm9oUU+fZ2MMwf0Gp2rSDJHRGxxguWb0t6vLAGyMIciinj6/l9HpB4ty4UEC2x97vHLNHlAkkS/42x8AAMZkllQzFtgZlhttopLStz94Ta2vr4/p7e1Vkoa8CbmUpCflHQAAOjo6wt0c3t8XdIL8SN6OZ4UGwScJ/BCwg8bveE6I+75j3PXxWAn5YJBD0ldiiQukoQSBKFt9QWGabMfQnaYwy3kPfO8QsqEmtgsU5pjsRzsAT8q9ko05HIJATuKxSHLyFzJIKESB2EN/0Hj99deDHn744RBQglokPHWIE0HmDBM8ZGFwOBw6SZK+H4Z5Qi1oTH8fQl8DGMfwJeR5+McmpwUJNl/bEwmUWeYv1S1l/DlsEXzRYRMXkwguIe2/WrlQUaARa8qDIIkDs2EBQC/brUah6LtgNiZB4iak/NcUIpTnc2J1sR6SFAv/7ZsSSMD7E9WggX/9oaTuj1XIhwMnx+Yb4KG+/V4iLy+PbW1tVcHD3hd15MiR0Lq6OqUyVBgoeU2how1yf0Jx6lrv2caQTtKioiLDnj17QufOnds7BGlZAAH8F74mvs19jK+kiiAMUt5sEPCgxJwEH8cp4ACcI7U1hdke3/i+ZtHyOsOv/lwHALLDxti3/D1crClLgCTOc7fBOwImTGqui7E+em+q5uJr6gw//91/65naXv5/BqmuKg6SdCX8F/ICKJSzCr63YkZ46EqHg1K8ZKySppTapt6CIRYk7L63iTEPPvig7sMPPwwGMT1OAnC1JElm0HN5x4Oftgio8YTHH388YcuWLVP37duXO23atBEl1gTw44MvId8CT5bncAgFbZN9mSdcoOSkNB/HeUMLIBqSuFo8UV7r2L6lDAAg8JLU1VoPSWRA5dMi0Z/N0QKgD5LoEKuLkxzbt8wHYJd5pyh3dUyBJKWBFgZ/veCS+z7+FJowgfh5Bkb8DIQIMkWNRcyzDNolDTRtMaIoslu3bg0rKCgI/+lPf9o5Wv70M4WcnJyIL7/8Mra4uHiOIAiJIBNfFEij1+Pkd2eHh9bXCg8NcSdICbkA3+McAgWSJDGCIDDfMx9DAGcJvoR8I0hwxvk4LgxAEGTZh1BjXGCYMhDNgCJohhuoDEjIxwBYKx4vrRWPlx51/8YDeM99TI1XOwAScr0gR6lTrCyaKlYWXQcSgC4Ay+DZ+vszUdxmFaYOYPyIrpGV4ue+IIEW0g4/jvUH7RhAiQoAgiAwL7zwQsTEiRMjr7vuum53Uetxj/3798f88Y9/nAPgFlBJvSB4hLR3zLDsrlVqA1EqN4Oc6q2gcVAOYKYsy4vPXOtPK74Xi3QA4wO+hHwNyEzhswYhJJFxvPv8JP7gF536G+8qYgxBJ0XQcLGJkmH9Azah6HCd8z+v7wWFL/pjumFBuwnFqQaQFhwCmszvgBYO5Z48qFRfL4i9bzKIW9wJEoBR8J99kByaOkOt/sa7qrmE9KbBCoYAgHiiwuT410sTxfpqf81RAoiiuQWjn7gyqC9CcbKNnwEtOp0gITiuhXxxcXHcn//856tLSkqmg6rpJII0d+8FuRZkOisPDQ1tfeSRR4oiIyMtoHfuAL1rJ2gsWHJzc8MeeughSNIPwoTdDgrTGxXlQwA/DvgS8m3wlOgbXuOVZUYsOxYjd7XFy9ffXsoMESapnrVQkB22LpB9OwL+CXmFoyEEHiEvuT9lAN6CWsMwemO6uy0u2dp3BJKoAnAzyDzkb3HtwdDGqNV1qqx5nVxs4pCpyVJfl44/vC8ZouAvP7zizPW3gMOQ0Gq1stls7gsLC+vu6uriZVkW4XGYK1zzsRjn5oqOjg51ZWVl+I4dO87leX4aqFgM0D/81mYwGGqNRmMhgKNRUVF1y5YtO5CQkDCkb0Ov1/cwDPN90oCVMNCTEBwcbIuIiOhWqVTjerEOYHzAl5A/Cv81TAZECgYA+zA8l3odSPuO8jpnpGBAC4QdAKuevfiAbs0dnwEAHHZYn/ydKDWdmAqqyj7aGqq7QeyIvhjqQgGcD/+Ln7tAJGtVY1HEe/PmzR2lpaWN1113XVVXVxcPj5mNAxX3jgXwNs48O6Zf6OzsVK9evXpuSUnJHJ7nL0d/X5BCLFcM4OWbb7659d57720FFcHgY2JifmiJZCEgM+VJPqP77rvPsWrVKmtqauoPYlsSwOmFLyHfDHLm+QMGQLTMO+PEikKNHJPAcvEpgw5CxmS2c5NmNkgt9Q1yV1sjSKM/teINWp3EJWVaudRJXVxMQqvyNZeZZWC0Opt4osIBWVKqro8UTgB2Ni65gY2Jr2U02iEzBYWqIk6qrTRClhPgf6UnCWQ39psrfThMmDBBtNlsDjdbnQEeIc8AMNvt9uhDhw5Fp6amYtKkSadKqXraIEkSV1tbO7GxsTEDtDCrQEqGU61WW7Kzs4/pdLpCAGUzZszoTU9PH7ZK/fccQSB/mPcc5QE4o6KiXD4EvDdjasA5+yOHLyGfB9K2/dEyGQDT5K52g/WJ/w1Vn3Ohw/ibvw0a3qWeNteimphdZX/9ia9cn72rBrAS/Uv7+QMZQAcbHd9o/N8nqtjg0H4T3rj+AZtQXtBmefD2Q3A6JuLUdgztAKp01/4iTz3vosKhbPFSTydj23S/QWptiIEkLoB/dMQAafLFIPvqWMEGYA9oh+P9zGF1dXWJK1euXLJ69erCrVu3fj2G9xwr6AH8BORD8c4xaA4JCTmxdevWB1JTU+u1Wu0PtdaoNxJAvjDviLVeUISXrzwTDhRqmoGAkP/RY1ghr718jV1sbewWDu+rBmnbvjgzNABMEPjpEAU9aHs9KBi1RgbLVoMm9mz3ud41DH1BBlAHMHWMSj24bVKl4kGa8kjt8RJIayoDsBOcqmEoAa/cCQI/FaIwEYOH9g3W9mbo9Cc0Cy6zcmlTxtKB5gRVlo+FhyiJAwBZlo0ul+v8wsJC9oknnvjuwgsv5GfMmDEutvw7d+7UHzt2zNTV1WVG/8phAFDGMEyBRqOx/NAFfFFREfvFF1+oCwsLY0G+JO8dqBXkcPYnNj7AJx8AAB9CXr/2Xgd/9OsO4chXhZDlKRheyCvhjqEAFkCGBsMIeTdKQan4y+ChFPZ3cIqgmPsKDJ2cxIPCQJP9uB7g2bEoRZmPAcwrYHxMKlnWAJgHYCbITOIPMVENYwgu0a26rY8Njx5TIc8wzFFQBqgDnkItAO0wrsjNzRVyc3Pf3LRpkzxjxoxxEaGxdevWoHfffTcMFAY70IeSC+Ar+Cfcvtf49ttvVffcc48elGcxFf1zLXpAY37cmdoCGL/wR2vuAXAYFJ7nD/QAlghVRXOsT/3ByB/dP+RColl0hcuw/oE+NibhDQBbQLZpF/wzD3EAZsntzXNtmx8Idu76oJ9N377taZ3j7WcjwPMLcXLxheHgAE2kv6lmLNhpuOtBmyp92pDao2PnNq395b+FSr1dF4LC/fyNu68AkI8xDoPLyMiQnn/+eftdd911AsAn8OQQAPS+9aCY8w3wRK6MB5hANujBFkgnTs7k/aFiAoCloFKXBvSfo82gxa7lLLTrVBANKrQzLtgYf6zwLeRVKhtjNFVDrekEabi+JpoGQIbc0ZLMH/jMJDbUDOnwVKVOFjWLr3CwUROOQm88BDKtKAWwfZkRWADxsq0vmc/5MkIozTVJll6NZOnVSO1NWv7ofrOQdzAKkpgG30yTMjwl+7rBcrWMMXgXlzyxRHPeUp6NiBnymcXSXD3/3Z5QOO0ZoHhuf5g4Zej0TYwh6AQYdszND9deey1/wQUXtIeFhR3TarUt8DBTKqGocQAustlsaZ2dncbOzs7TOgkdDgfT2dnJdXZ2qrq6uoYyZWlxslBTIGIU7Jrd3d1sX18fK8vje43o6urirFZrBGgRjgK9K4U6m9doNF1ms7lCq9WON03eO7zVO8kxFGTmPeWwXZfLxXR2dnIOh0MNGiPjOgR4PMInaZUqY3pr0AMvf+L85O2prl3/ugSkCQ53nsIAOQnAOgC7AOQMdw/9L/7QIdVV5Vk33bceduu5AH6GoQt+e8MAYiF8QTiyP99SXfIlAECW1FJr4+WgLW8C/KMu6AE5Wh/lEtPK9L/6vxI2NMIf3u0lIJ9CFHzTGACACwxj1990zyHVtLl7GJP5tIQzXnTRRcf379+/5eGHHw56/fXXo+FJKAKoX2c88cQTP3/ttdfmAHg5PT299t///vdoypMNiQ8++CDkwQcfjAFgDgkJUb/xxhuH09LSRmJ60YOyk0c8wVtaWlRr1qxJqqqqmiBJ0ri1UZeXl2tvuummxIaGhnkAroenlCVAu5jSK6+8svCBBx6oiIuLG2988DzINMuDnL0KpoG0+HdxiqXv9u7dG3TPPffENTc3XwDgGvTvlwD8gE8hz+gNAhef2sOYQttA9u14H+cpNmA9KGLGOMyxAAAuaoIAMDZV2tQyqa0xWGqpPwYaLPHoX/5s4H0Y930yZVufJNv6lBJ/apA9Mxq+V38HyP5eDpY7wcanFHGpU2q5+FQHo1IPqfpJXe0aqb1JJ1t600DRIDof91HQBzCtbERMxxDFTMYEISEhzpCQEGdYWFgVaAKa4SlJpgKgam5uTmxubpYBZDscDuPu3bsrk5KSHGlpaaNeeAoKCtQ2m00LICI3NzeupKQkBYDObDaLLpcrHyfb152g9zDYDi4M5Ege0Y6jrKxMW1FRYSwqKspqbW0dii+JG+l1B6K2tlb73XffBU+aNMkWHBw84gSlwsJCXX5+fmhRUVG2zWabCA+5nbLDtAIoNpvNtVOmTPEnH0CGh7vHG1pBEAz5+fkqQRDYKVOmjJXTfbCkPgZAhMvlijt27FikxWIRJk6c6Pd4dzgcXHFxceTRo0djiouLp4Kc0JEYRxWXvi8YCf1sEYAPANwA/5J9VBgBARgXFScY//eJVteBz3bbn//LYZAzdj6Aq9G/Qvlg91FIq84d8L0/TtxmAAUAXmb0hkOG9X/p4iYkC8MJeABwHfg8yvH2s6kQXJeBEqD87csSULKYP0RnY4GPQUltz4Js8N7hnWkgp3R6TU1N9RVXXPHIjTfeWPPSSy+Vj+aGPT09zC233BJRUlKSBOAmd+bqOSAOmWoAX+JkUrZm0LsaTEs9F2Sv/xz+01Tj97//feynn36a4nA4/gqydQ9chFmQEjIq3v/nnntuwtatW6d//PHH+fPnz/e7fQBgtVqZ22+/Pf7IkSNTHQ7H30ELmrdiZAf5VR6D/2NGBI0zI/ovmtG9vb3MzTffHHLeeefpd+3aNVY7N8HdxhD0z45PbWtrC7nuuusuufzyywvff//9vf5esLGxMXjlypU3NDc3zwZwLdyKyRi190eFkXRaEyjK4VLQhFHshQPhAlDLRk0oUk2fv5dLyqzz9waMVidzCWkuzSXX9gIogig6+MP7eLm3KxakLZtBuwPv+yqCXNFQfUEETZYeAFVsQlqNatKMIgCVjFbfy5ojBEajHUaDb+P4I/v1YunRyXA5lsDTF76ghGXWg4TuGbGrnnfeeVar1dr60Ucf7WlpaekAmZf0IO1VoT0wy7KcZLfbVxQUFDRv3ry5BhSP3Q6gNzw83H711Ve3azQnh5G2tbWpd+zYEc7zvAEkVMx2uz2osbFxks1miwHZlyeABGk4SLs86T1dcsklvMFgsG7fvr2qp6dHDTKzKe85wm63C2+++ebSiIiISgB5M2fOdMyfP7+f07quro77+OOP9ZIkxcmyHF9RUTHdbrcng5SAwZhUVSAz1qiS0Xiez+rr63P861//is/NzW0FhTlaAHQtXLhQyMrK6qcxl5WVaXfv3h0EYILL5Yqqq6ub5XA4UkECXjGpMSDheSwiIiL/qquualu0aJG/yV8yaDEceLwGQJDD4ZhTU1Nj3LRp09HZs2fzCxYs6Lf7aGxs1P3nP/+JFkUxHKQ9VxoMhs6VK1f2mEymwbR/ARRIYEZ/mzwjy7LBbrcvKisri3juueesDMN0sizbvXz58t74+HgeAI4fP6777LPPzLIsh4Hs+DHt7e0RnZ2dC10uVzJo7IxbU9t4x0iEfDXIq78WZEpRNGVvyKBt92EuZeLXhl/84Z8jblD6NFGVPs0O4DvZ6TgsnijfJ/Z2JYDs+1NBQn40HjSF76YCwHuqKbNrDes2Vvh9clOdyv7q38Mh8AsA3A7/edpFkGmoAkSTcFrs3wNx3XXX2VasWGEvLi5+o6WlZRLIf6CY0xStS+EEujMnJ8eSk5PTAdK2jwGonD59etvSpUs7NRrNSaaI2tpa7d13351htVqjQIJ5EsjMdj76h0LKICEmYJBF8dZbb3VdffXVfd98801uT0+PCI/mzQCIs1gsEX/6059+CVI0Gjdu3Ng5UMiXlpaq77zzznBBEOaDFrOL3G3xHi/emqZi1usVRZHhuFOmllgsCMLCRx999BuQRrsTRN1R8vTTT9uysrL6tTMnJ8ewfv36eHcbZ4F48gfamhVn5ucJCQnHnnzyydagoJNJ/4aADNop9cDD1slAyWMBLq+qqppw1113lW3YsME6UMiXl5cb77zzzmye56eDxsvbMTExhYsXL7aaTKbBosFcIMVFed/efWwEcF1hYWH5HXfcwQAoUqlUZWlpaVWKkM/PzzeuX78+U5blqSAf23mgeR6D/qyjQEDYjxh+C3n1ORfxbGSc1fmfN/ZLDcftAJajv6NRAlDEmMzHddf8/DU2IX3UWZyMVifrrv1Ft9TXzQP4p1h6LMK1Z0cC6OWbQWacYJA2Npg93AUP3WwXgBpotO26letOMGFR3QBquLgUv4WtfdvTOrG2IgWicAuAOfBoxP6gDcAu1exFBZpzLrJxielnjFxKp9PJf/jDH1ry8vKcDz300P02my0L9P4Gc25rQRr3QrgFYF1dnWP9+vUdavXJJqyOjg610+lUNFADPAVKTsUE4gI56rtAE10HD90FBworDAEQ8fHHH3e3tLR0g96tACCksbHRKIpiNGh8xLqfTQApJ1bQO0gAjRflWefm5eXF/fznP5/AMEwxx3FlGzZsKJoyZcpISeNYUPHmOPf1rQC6t23bJh49elSEp8qTtqqqSgcSfrGgvh4sQ/prrVZb+Pvf//7LmTNn1mm1Wr/Hi9lslh566KHu3Nzc5kceeaSc5/loeEyeapDgTgEw6bPPPmvt7OxscveFGkB0c3Oz0o9md/sOg95J9RD3Ex977LHGQ4cOlTz11FNfSJKUgZNrRkQDuBLAIlEUex599NG+bdu28QApCrIsK0VgQuAJYmBBNNxloLEhutt+qoXMf5TwW8irUiaJXGK6xH+3t0Rqb1bBaV8CjyNPAiBAo61mQsML1Oct/YY1mceEV0Q9e5EdZJdsd6nUatfBLwyguPcJoEkfAZrIgwlbO4iOth1kfjjGGILq1OcssQzFqzMYZJeTkbs7WP7QLpPU2pAA0sBi4R/fDjnPWLYLGt13qvRpJzQXrDjj0RHLly/vzcjIsDz//PPbWZZtBTDF6XSqeJ7XwVMMWwmxVIMEFgCgq6sL27ZtO5XbKlqkEp5qc38G5zRiGMFoNBbp9Xq93W7vBk14ZcfIgUwHkQAmFRQU9BYUFHSDBLcLJESC3L8rYYciwzAOg8HQJElSh91uPwFaOBTmUzWAlPr6+ph//vOfiQC+VKlU0po1a46fgpBn4KHm+G9eRk5ODnJychRHKDB0DQOlFKQEgNdqtUVms3nvypUrS6ZPnz5ic9I111xji4uL63r00UdreJ5XgwQnQP2Y5P7MLCoqaigqKjoOWpj1oDnlHfYsg/o2DEMoNAaDQb7++uu7w8LCGl599dVcm81mcLlcifCYBAF6lzMAQJZlfPbZZ0M1Xfb6OFQqVbtOpyt0Op08z/MyAF9JmQEMwIgcGQynkvVr/2efyUEk/QAADRtJREFU1FRbZXv2/sVyX08KaMUuB8uV6n/222dVE7OLGWPwaclMVM1YIAQ98LIF5FSqBHAI9AwDucYVSCANSgDZw20My7pGIuABwPHu5lD+2IEIqbN1A2g7ORH+E6rxAEq5tCk5+nW/e481R47IMTeWyMzMlHbu3GkRRfEbAOUPP/xw1jvvvJMO0rAS3J+xjJnnQZrYcVDi19cgc1XDYAeHh4dLb775ZvvBgwe/u/322+/heX4JyPFuxsnhqYrDNAL0npWFyhtfR0RElL7++uuvVFVVWX7961+zkiTdBlrAvEOBlcI0yufUyPKGh6/wWjtIY80D8MnGjRuLr7322oaMjIzR+G4aAfwdxA0VD+qvgaaySJAA9l7kB8IMWiSGHRvnnHPOiT179jzz/PPP17zwwgs9oCzwqOHOGQJdoN3XtsWLF1f84x//yHn88cfnv/HGGzMwzmshjEeM2FvNxST0MJxKBU5VBppcIUxoeBVrjsrjkjKrufhUn5mxsrWPldqbaBfAMAwbHW9ntHqfgpcNCpHZoBBFIzztkHq71HJnm0asKU+R6qqSQHG/iSCtx7+kJ3fJQ0ZnrOSSMtoYTnVWuWLcTsBeAL3Z2dlsSUmJFUCSw+HoqqystEuSpAMJJGX7roSgDlXMXdHUlYVUKdRh1+v1trS0tHqWOIryAeSbTKbjWq12yDDAyZMn83a7vWf69OmFjY2N0U1NTUphmRCQYFeDhJUS+qhB/2ScPpDW3JeSkpKflpZWOmPGjNKgoCB7dna2vrGxsbKlpaUUnoLfisntvxw/p4BWkA082N0eDTx9pwQGeF9bKd7uBI2PPp1O15Oenp7PsmwegLzs7Ozm6dOnj6rOgMFgcGRlZVU3NDSUNjY2FoGe2QRPhS3Wq73eEEGLjhPkR+oA9euwY9dkMjlnzJjRmJ2dXZGVlZV//PjxcIvF4oCnX4aaNzzctY4ZhnGmpqbWGI3GBgDHsrOza2fOnFkbGRk5GZ5+40H91gsK3fQ35FcJR+2GJ2tYcj9fL8Ymo9riblMrPCbLbnd7RzP3ZdBzW0Ft9ztn5FRDknoAPAXSiJZrL752p/aKm3ZDo/MrRZ8v+i7Y9tz/JQKynlFrVcaNTxao0qedNQ13KPAHv4i0v7kpDS7n3fCE8Y2kzxygl70JQNXZFvADcc8991TdcccdxwF8XVJSYrj00kszent7E0Hbam+TWBCGzndQJk4HSEMvB2mQeZMmTWr55JNP8vR6PQ931uoQ0Rn9MGvWLPvu3bsrN23a1HTffff9G8Bid3vOAwmqqegvLCSQ2aYdFOq7n2XZrx555JGmpUuXWoKDg13R0dE4evSo5Xe/+927jzzyyF4Aq0ERW9lw2/lBgqwZI6eaeAdUivJiUJ+lg3YEmUMcrwjOSlC01Repqam1n376aW5wcLALAK/T6UYtcKZPn87v2rWrefPmze/87ne/+xTE8DkH1I8hGDpowAKqc1AJ2jV/CdqN+eW/Wrdu3f4bbrjh0KpVq/bs3r07GeRYTnbfezB0ADgCoESlUlU8/fTTuxYuXNgMwKVSnTRn7CBNv8r9+Qr9qTuGgx2kbHSBxihAwrMRFD04Ftnnx0D9lAvPrqgANK5Gk3+i0JIXAngNI3BAn5qQ1+kl9bmXdMpWy3EAX3NpU2oYvdHnA8g2C8vnfmMSSnPTYbcuAaCXXS4Vf2R/sNRwvAlABRs1waWaPOusbclc3+5Rw24xAkgXyvIy4LBNB5mkQkH9NZKsyyJotOXqmQsbufRpo67+NNbQ6XSSTqeTAAgTJkwQfvKTn9Tb7XYH3GGw8Di3dRiaj1+JqOoDaTBN7r8nUlJSekJDQ/u02qFDUoeCyWSSZs2aZV+7dq0IIrLrdt/DDBIIA9ug/F4PoJRhmObMzMy+4ODgfv6PefPmWdauXSsD+A40uStBwi4YwGGWZStjY2NHtFOcM2dO99SpU2vd16wCLXShGJr91AkSpM0gAVcaHx/fERYWZtXrfe9oRwKTySTPnDlT6cdcuOmKW1pagj7//PNQSZIUTd6h0+n4ZcuW2U0mkxUUHdQM6s/mkJAQm9Fo9Os9arVaQavVCsuWLTuRkJBgAwm7SAxNWNgDcuo2cBzXlJqa2m4ymfq9g7lz5zasXbs2F7QjCnK3rQVA2eTJk/3yWZjNZn7NmjWNDofDAU94qQygJzExsVutVo+67xctWtSg0+kUYkRl99YAoC8pKemUfXEGg0FetWqVxe0k/xYjEPLMmeTzEJtOaC333ZIhW3ouBvBneLbK/wKtdq+oFy7tNf76obPCNij19TCWP90SJDWeSAaFis4BsGjAYf52rgTgYSY0Yn/wQ6/tYyNi7WPX0gDONDZu3Jj697//PRXAoyDt/7947LHHNmzYsOGJs9OyU8PXX3+tXbJkSYzL5QoBLZxtkZGRfQcOHGhKT0//QdM5/9hwxjLIHP95I1KsLomTnfZfgmKpFccXAwqLSgIQL1YW19pe/ls+GJSBUzfolt/oYCNjT9tKJBQf4VwHP9cAmAreFS93d84DhcFNBzmNTiUutwBgjmouvma/KiOriDGGjAs63wACUJCWliY8/fTTHaIoWkBmLrter+cjIyMDjs0fGE67kJcFnpGddpbP+TJSLM9PA3AFyLatgUeApoPidqdIzbVlruZaIwAXNNo+zbwlYExmAYAElpOYQWK1R9wml5OFLDMAWOF4qc71+ftGkJ03C5RCHYGhQ92GAzkgOa4SKs0X/7+9e4mJqwzDAPz+58yZS2egtFyng4xFqJCgQpUYI7EsTJumqTHeNo3GaLRLI4kmrnSh1rgyMdGkqVtdaKImRq0uTFOtUWmLtEJaCpQCrVMugjBzYOZcXPwcD6FDpaVnmBnfZ0MYEm4hHyf//33vp9370BltZ0fWThKijRSNRs2DBw/O49qpWCoynhf59HeflaePf11lXr74KuTT8WohQ06OSDPkk/Q+ZNLTqSNvnxKB0J8ATms7O8aDT7x4bj3fj60n1dThN9usxHgNgHus2ek45AVZNdxM85v9vYwA+Fjr2PtLYPeTPyseBpAREa2FZ0Xe1pOKNX1VM0fObTOH+hohn5R3wG0rW8lpM4vAWWJs2wvW2BAgLzEMZUtlmTk2LCCQhtsy57TvZSPgXpaqAAK2ngyYg/0tVmJ0G+Qmpzhk33u2HuK1MgFMwh8cUSpqTqvxHYO+hpbJm/xcRES3jGdF3vijO5L68I06e3HhObhHIKsuEMkiAHmk0wFZyB/N9PxkGf0nDcgOhitwx9UTyN7j6oc8Vy+FvFzaARuVtp50BmeW/wNYTyZGCsAHan1zb7jr3W9FcFO+5X0T0f+Ud0/yhqHa8387yx5KkD3Q7HqcIRJ3UMPIwDYygGxB2wR5tLIAOSyTrcj74GapRCCPZMpu8EdZjTOYMQDNP+q76/5eX0PLkIhsXhQ3H3RFRHRLeXkmr0IWVy9C/p3x841kQA5XfC5C4ROhZ185plbHin7RNBEVFs+KvBpvTAaf6Ro0uo99afSdHIbMoa+FnAhcbz7KRsaN6pB3BGcBdPt37f9RbWy5qJSwTZKI8o93RT5ap6v7DozpM1NJ43xvL4Aq2LYN06iEm14J5H8+9PKjFxNCJKH6LgI4DiE+1do7J7T2Tg46EVFe8ryF0v/wY3NaW4cO4D1rOlGTOnLoEejJJgCdcEOw8t0i5AXvV0pdw/nQ013fCNU3AYEJJVbPS1YiylueF3m1utZAda0BYMC8ejmhRutqralExp6dvg2y48VpmVzrTtZccJIV05DHM1MQyrTYWtWjxurP+Zrbfhe+9edcEBF5LaeLcZXy6rnwa+9/kfnth6P64bc+gkzDa4Wcgo1i9aTDXHPijM8AOAHge7EpciH88juTSjSeZoEnokKR0yIvVNUWpVt0NVaf1to7FyDTBQ0Amq2naoz+U3GYRhjyCb8UuSv6TophCsCkiJTOqXe2XhKKMgiZnDeMUDihVER1JVLK9kgiKhg5LfL/ftGmVtPX1JqCjMz81basT6zx4bL515/fayfn7oAMLLsbMs8mVwYhM7OPK9tuHwq/dOgoNL8pFIVFnYgK1oYU+ZWEotiirDwVePyFHqQXRwD0ZbqPxcwLZysgc2xK4G7y2Qx3S9DyLp3rcSIQZuAuuJiHnJqdBTCpPbD7khpvnAIwqmytmoFPY4EnooKXF0UeAJSSssXgvgN9zvvWXxMhc6g/BJndXQN5dl8FdxepYy0992nIydgrkBuELiy97QEwBoEBrb0z5X9wDztl6L84l/IrXyPKS3lT5FcK7HlqUbtvVwZysXE/gG7IJ/cg3DCxtWbO2JCXqc7WI33p7dzSaym1roE52nQ9zt/LAK79m2MYHeWtvC3yamy7pca2W5Cr5AC57otoo5hwF4XPrPjYqovJiTZaTtf/ERFRbt3IUmoiIiowLPJEREWMRZ6IqIixyBMRFTEWeSKiIsYiT0RUxP4Bt82ZR9fH2CcAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "The RGBA image's alpha channel (white represents opaque \n", + "regions, and black represents transparent regions):\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAABsCAYAAACPb8KhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9Z3Bc53n+fW3vve8Cu+i9sHdSFiGKsmg1KrYlRx7FdMb2eDK2XCYzaR+cjCf5O84HJ5ETZyRZTlwkS7EjO4yoRoEiCbECRCMWwKItyi4WWGD7Lrad9wPf5zGWKLsoJCHp/GYw0hDYPWfPnnM/93OX6+YwDAMWFhYWlo8n3Ht9AiwsLCwsdw7WyLOwsLB8jGGNPAsLC8vHGNbIs7CwsHyMYY08CwsLy8cY1sizsLCwfIzhr/ZLDodzz+oruVwueDweFAoFRCIRlEolhEIhxGIxxGIxhEIheDweOBwOAEAikUCpVEIkEoHH42FychLJZBIAkM1mkc1mEY/HkUqlEI1GkUwmEQ6HEY/HEYvFkMlkwJaTsrCwfBRhGIaz0u9WNfL3EpFIBIlEgubmZpjNZmzfvh0GgwF2ux1FRUXQ6/WQyWTg8Xg5ryNGf7HBTiaTiMfjcLvdmJ2dhcvlgs/nQ2dnJ8bHxzE4OIhYLIZUKnVXPyMLCwvLnYazmvd6tzx54qHb7Xao1WpYLBZqyC0WCxQKBSwWC2QyGVQqFVQqFaRSKYRCIbjc/BGndDqNdDqNQCCAWCwGv9+PaDQKj8eDYDAIv98Pt9sNv9+PsbExBINBjI+P09exsLCwbGW2tCfP4XAgFouhVquxbds2lJaWYufOnWhqakJpaemmHIPP54PP58NsNgMAysrKcn7PMAza29sxMjKCDz74AG63G/Pz82wYh4WF5SPPPfHkeTwexGIxGhoaUFFRgSNHjsBsNsNms0Emk0GtVkOpVEIqld6Jwy+BYRgEg0Hq5UciEXg8HgwMDKCzsxPXr1/H5OQk4vE4a/BZWFi2HFvGkydeu1QqhVarRU1NDbZt24b777+fhmNITP1un5darYZarYbVakU6nUYsFoPJZAKfz8f8/Dyy2SxmZmaQTCaRSCTu+jmysLCwrIe76skrlUp85jOfQWNjI06cOAG1Wg2FQgGpVAo+nw8Oh3NPjPztMAwDhmGwsLCARCKBubk5zM3N4Ve/+hWcTifeeustZLPZe32aLCwsLADusSfP5/MhEAhgt9thNpuxY8cO1NTUoLS0FCKRCAKB4E6fwpohi41EIoFYLIZEIqE5A5lMBp/Ph5mZGfh8PiSTSdbgs7CwbFnuuCev0Wig1Wrxne98B01NTdixY0dOVcxW8NxXY/H1yWazCAQC6OzsxJtvvonXXnsNMzMziMVi9/AMWVhYPuncE09eJpPBYrFgx44dqK+vx7Zt22Cz2WgT00eFxYsQj8eDVCpFSUkJDh8+DKlUivPnz2N0dJSWXLKwsLBsJe6YkVepVGhoaMDJkyfx0EMPQSaTgc/fnMNtpMJlozsHiUSCsrIy2Gw2HDlyBAKBAG1tbZienmaNPAsLy5Zj0428WCzGjh07sH37djz99NOw2+2QSqUFNS0VisfjwdzcHAKBABKJBAKBwLKGn8/nQ61WQyqVQi6Xw2azQa1Wb8o58Pl8SKVSnDx5Env27IFYLMbw8DC6urrYMksWFpYtw6YaeaIxU1tbi23btuHAgQPr9pxJhUs6nUYmk6H/zWQymJiYgMfjwfT0NKLRKKanp5c1rEKhEEajEUqlEhqNBlwuF5lMBnw+Hzwej/6XaOCs5VzJ6+rq6lBcXIyLFy+Cw+HA5XJhYWGB9epZWFi2BJuWeOVyuXjsscfQ0NCAZ599FlqtFmq1et1GPpFIIJFI4Pr165iamsK1a9cwPj6O3t5eJJNJavSz2eyKBpXD4VBjzOVyqXzCrl27YLVasXPnTjgcDtTU1EAsFq+70ieTyWBubg5DQ0N45ZVXcOXKFXz44Yfrei8WFhaWtXLHE68ymQwKhQK1tbVoaGiA1WqFRCJZ03swDINMJoN4PI5AIICZmRnMzc2ho6MDHo8H3d3dmJqawsDAwIbOlcfjQSKRwO/3g8vl0g5Xs9kMpVIJnU4HgUAALpdb8ALF4/FgMBiQSqXQ3NwMv98Pl8uFYDBIlTBZWFhY7gWb4slv374dzc3N+Pa3v43a2tocCeBCyWQyiEaj6O/vx9tvv43W1lZ0dXUhHA4jlUohm83SEM5GIQacy+VCJBJBJpPh+PHjaGxsxB/90R9Rhcu1foZsNotMJoPTp0/jv//7v9Ha2oqJiYkNny8LCwvLatwxT14qlcJkMmH37t247777YDAY1lxBk81mMTQ0hJmZGXR0dGB8fBxdXV0YGRlBKBTCwsLCpicySfMSCfdkMhn09PQgEAggmUzCYrGgubkZJpMJNput4PflcrngcrmoqKjAgw8+SHcLU1NTbIyehYXlnrAhI69UKtHU1IQHH3wQTz75ZMGvu73BqL29Hd3d3XjxxRcRCoXuanMRCRG1t7ejo6MD77//PkpKSvDss8/S2P1iCvHuGxoaUFdXh/HxcTAMg5mZGdbIs7Cw3BPWZeS5XC7UajWamprwla98BdXV1Wt6fSaTQTKZRGtrK65fv47z58/D4/EgEAjc08EdDMMgHo9jfHwcv/zlL3H16lVcvHgRJ06cQFVVFUQiUcEhHA6Hg+PHj6O0tBQjIyPweDwIhUJ3+BNsHkKhEAKBACaTCVKpFGq1GhKJBHK5HMAflDtJCWs8HkckEkE4HMbCwsI9PnsWFhbCuow8j8eDTqdDaWkpDhw4UHCSlWEYZLNZahg6Ojpw5swZdHd3IxwOr+dUNh0yXKS9vR1erxeTk5Oorq6GwWCATqcDn88vOClbW1sLjUYDi8WCeDy+ZY08yU+QhDPp7JVIJCgpKYFSqYTJZIJCoYBOpwNwawe2uIQ1HA5jbm4OAoEA4XCYjlxMp9P0/1lYWO4+60q86nQ6fO9730N9fT0OHTpEY9H5SCaTcLvduHr1Kl566SXq4SYSiS1pBPh8PkQiEaqqqmC32/Hd734XdrsdxcXFeY08SRLHYjG88847uHz5Mv7xH/9xy31ODocDnU4Ho9GI48ePw263o66uDhqNBjKZDCKRaMkCQCAGfHEPw+zsLEKhEPr6+jA9PY329na43e4NV0WxsLCszKYmXsl4vurqahQXFxdUSUNke8PhMHp6etDd3Y2bN2/SQR2FwuPxIBQKIZFIIBKJqETx4uYmcrzFTVTpdBrJZBKRSASJRKLgZC557ejoKMLhMLq6urCwsACtVguhUAihULjia0lzlUgkQkVFBfx+P4xGI8LhMKLRaMGf+U5APHcynKW0tJQmm4uLi1FbWwulUgmZTLam92UYBiaTCZFIBAKBAD6fD9lsFmq1GkKhEOFwGIlEAn6/n81RsLDcJdbkyXM4HDzyyCNoamrCt7/9bahUqoI6RbPZLEZGRjAwMIDnnnsOPp8PwWBwzVUzGo0GRUVFdDRgc3MzNBoNzGYzFAoFtFotPZ7P50MkEsH09DRmZ2cxOTmJtrY2DA4OYmhoaM1xYx6PB61Wi23btuEf/uEfYLFYYLFY8r6OhKicTid+8pOf4PLly7hy5cqajr3ZCAQCSKVSPPbYYzhy5AiOHTsGvV5PQ1EkHLWeRjaygyEhmmw2i1AohNnZWVy8eBF9fX34z//8T/j9/jvwyVhYPplsiifP4/EgEAhQV1eH7du3QywWFzxEO5VK4fLly+ju7obf70csFivIwHM4HBQVFUGj0aCqqgparRZWqxXFxcUwGo2w2+10uLdYLKa17cS4kIEker2expSbm5sxOjqKubk5DA4OYm5uDjMzM3nPJZPJIBwOY2JiAu+88w52796dE6Nf7TPweDxoNBrs2bMHXq8XN27cQCqVuusaN1wuFyqVCg6HA3v37sWePXtoaGa5UYsMwyAUCiGVSiGVSmFhYQGRSIR+LqVSCYFAAIFAkHP9yU5hMTweDw0NDZDL5XjnnXeQSqW2bI6CheXjRMFGXiAQQCaT4dChQzh8+DBEIlFBr0ulUohEInj99ddx5coVOkqvELhcLpqbm1FXV4dTp05Bp9PRxN9yEM+TGDMAMBqN9PctLS1gGAZerxcjIyN4+eWX0d3dXZCRB25JLQwPD+Pf/u3fEI/HsXPnzoLF1wwGAx555BEMDw/j7bffXlWO4U4hEAhgs9nQ0tKCv/7rv4ZEIoFQKFzRYyfJVVI14/f7MT4+DuDWNa6srIRcLodcLodOp1sxvCMWiyESibBv3z7U1dXhtddeo+E7VsyNheXOUrCRLysrQ0NDAywWC8RiccFb+ba2NrS1tcHpdBZk4IVCIRQKBfbt24f6+nocOHAAZrMZJpMJYrEYQGG16qv9jUqlQnl5Ob74xS9ifHwcDz74IM6dOweXywWfz7eq8U2n0/D7/bh48SJEIhFOnjxZUAkpkVOoqqpCS0sLLl68iOnp6byv2ww4HA7q6+tht9tx8uRJVFZWQiKR0JGLwK3PFQqFMDU1hd7eXoyPj2NmZgbj4+NIJBJIpVJIJBI0n3C7Jy+TyWjoTKvVorKyEnq9HvX19TRZG4lE4Pf7MTExsaKoHMvmodVqcfToUahUKqq+mkwm8e6778Lv98Pn893jM2S5GxRs5K1WK7Zv3w6NRrNqwpFAPNWbN2/irbfewuTkZN4kK5fLhVQqhdFoxL59+3D06FE0NjZCoVAUepp54XA4kMlkkMlkMJvN8Pv9aGxspEngUCiEeDyOTCaz7OszmQwikQj6+vqQTCaxd+9elJWV5RjMlT6bUCiEzWbD9u3b0dPTc1eMPIfDAZ/PR3l5ORoaGnDixAkolUrqwRPNoEQigZmZGbhcLnzwwQfo7u7G6OgopqenC9LfIQnxqqoq2Gw2hMNhlJSUoKSkhA6KiUajCAQCmJubY0M1dwGlUolDhw7BbDbTpj4iHZJOpzEzM8MutJ8A8hp54oFu374dJ0+ehMlkKuiNJycnceHCBbS2tqKzsxPxeHzVvxcKhSguLsbBgwfx1a9+FVarFTqdbtlY8WaiUqkgkUjw9a9/HSdPnsRPf/pTuFwufPjhh6vuOnw+H0KhEM6cOYNgMIhjx47RRqHVqKurg8FgwIULF+jCdycfNL1eD6PRiGeeeQZNTU3QarU50hOZTAZnz57F4OAgXn/9dfj9fkxPTyMWiyGZTBbcnJZKpZDJZHDz5k24XC5cv34dcrkcL7/8MhobG3Hw4EGEw2HMz8+z4xLvElqtFo8//jjkcjl1zEKhEDQaDbxe7z0+O5a7RV4jLxAIoNFoYDAYYLFY8nrxpLJifn4ePT09mJiYoMm6lSAhGqJi2djYCJFIVNCOYaOQ8ku73Q6tVovm5mbw+Xw4nU7EYrEVFyeSjBwaGoJarabjAPNVpcjlcvD5fOh0OqhUKiQSiRV3DRuFy+XCbDajqqqKTrMSCAT0/AKBAAKBAHp7e9HX14fu7m5Eo1EkEok1H4vsCKLRKKLRKObn5yEQCGgXs1wuRzweRzgcZpU57xICgQBGozGnWTGbzdJ7nuWTQV4jr9VqcfjwYVRUVBTkqZIGoP7+frz00kt5t+UcDgfFxcWorq7GP/7jP8JoNBZ0nM2GJAe/9rWvYXBwEKlUCj09PWhvb1/1dWfPnoXT6cRjjz0GiUSSd+chFArB5/PR3NyMeDyOM2fO5N3lrAeBQACJRIInnngCTz31FJ3QtZi33noLZ8+exZtvvgmfz4dkMrmpu4pUKgWv14vZ2VmcP38ewB96JlhYWO4OeY28VCpFaWkpNBpNQQnPZDKJgYEBjIyM5PXaSHPT/v370djYCIPBQCs0NjqLdS2QY3E4HEgkEhgMBuzfvx/pdBojIyOIRCIrhi1isRgCgQAGBwfB4XBQU1Oz6rkTT99iscBut2/a3NvbUalUqK2tRWlpKQwGQ04Vjd/vx8jICDo7O9Hb24tAIHDHDC/DMHTXw8LCcvfJa2FUKhV27txZUOMPAMTjcZw9exbXr1/P29lJwjSnTp3Crl27cuqs7yUGgwFPP/00+Hw+ent7MTo6imAwuOzfJpNJBINBtLa2IhgMFlRpw+FwUFFRgWQyecdCUkVFRTh58iSam5uXlJ2OjY3hF7/4Bd5//310dnbekeOzsLBsDVY18hKJBHq9Ho2NjavWpwO3PLZkMon5+XlcvHgRLpcr78F37dqFnTt3wmazUYXHe23ggVuxbLFYjMbGRjzzzDP4r//6L3R1da3498lkEpcuXQIAnDx5sqBRgiUlJQAAhUKxqXFqLpcLpVKJsrIyfOpTn4LNZqPXNJlMYmJiAl1dXWhtbcXk5OSmHPNuwufzoVAoaGiMJOdFIhHS6TTC4TDi8ThisRj8fj/i8fimziQQCoUQiUQwGAxQKpWwWCzo6+vD6Ojosn9PhN4UCsWSXRtJ3t9NSO+Dz+f7xFfWGI1GqFQqiEQiLCwsYGhoaNliC4FAAIPBALlcTjWdhEIhrcSbmZlBOBxe0RFcDT6fD4FAQPtMyK5bJBLR9yQNpKFQaF3aV3mNvFqtRmlpaUGJmoWFBYRCIXR3d+fN3nO5XNTW1uKBBx6AXq+HQCCgybvFH2TxkO3lFoDb2+gXv/9q7fn5XicUClFeXg6xWIx3330XPT09K15gUiqq0WgQj8dpd/BKkHANwzD0htlMI69Wq2Gz2dDc3Jzz2VOpFBULu3HjxqYc705DumfJf0k4TaVSQaPRoKSkBCqVCgqFAgsLC/D5fDShzOFwEAgEcu6r9QrEkfuINH+VlJTAbDajtrYWwWCQGnlynuRHpVJBpVLBZDIt2bVlMhm6AC2+F9drfBff7xwOZ9l7kGEYhMNhxGKxgnaR5LzIf1dicUKfvC6TyWzaNLfF15Uch7w3OU4hkHnPXC4XJpMJFosFUqkU4XAYIyMj9DMu/g5lMhmsVisMBgNsNhv0ej2kUim8Xi8CgQBEIhF8Ph8tosh3ny3uCifOis1mg06nQ0VFBaRSKWQyGXw+H23cnJ+fx8LCAq1iW8s1XdXINzc3o7S0tCDvmmEY9PT00BjvahUaZOHYvXs39u/fD6VSiYWFBQwMDGBgYACtra23To7Px8MPP4zi4mJUVVUtu9AQ79TpdOL8+fM0tnz06FGqc7Pc6xYWFjAxMYGbN2+ira0NiUQCXC4XLS0tsNlsaGpqonIJBw8eRCaTQVtb27LlfyTZ7PV6cfHiRdTU1KC2tjbvNRMIBLRZaLWdwlqQyWS4//770dzcvOR3c3Nz+Od//mcMDg5uyrHuNDKZDEqlEgcOHEBpaSm2bdsGtVoNk8lEhenEYjEd1k52k0SYjgyD7+vro53GU1NT6yoftFgssFqt+OY3v4nq6mqIxWIIhUJIpVKMjY2hra2NOkUtLS0oKSnBtm3boNVqc/oSFkN2GZOTk5iensZ7772H0dHRdd0Ler0excXFKCkpgcFgQFVVFRwOxxJDL5VK8dxzzyEQCBRU1cUwDFUSbWtrW7ZIQKVS4bvf/S40Gg39t2w2izfeeANDQ0MYHx/fcAVZTU0NysvLsXfvXnqccDgMr9eLc+fOFeS0qFQqHD16FM3NzTh27BjEYjH4fD6Gh4fhdDpx4cIFALeKMPbs2YPKykq0tLRAp9NBq9VCIBDQOQtcLhepVIreZ8FgEDMzM3jzzTdx8+ZN3LhxY9lrxePxUFRUBJvNhvvuuw9VVVWora2l5yKRSKjaKylhTiQSiMfj6OnpweDgIN544w3Mzs5ibm6uoGu3qpE3m805X9xqMAwDn8+HqakpJJPJVVcymUxGlQ81Gg0tvXM6nejp6cHVq1dvnRyfD7vdjoWFBTgcDohEImqwF5fsDQ4OoqenB9evX6cX1mAwIB6PU2+ceC2LJYAHBwfR3d1NX8flcmE0GhGPx1FaWkr1WBwOByorK3Ht2rUVa7wzmQxisRjGx8cLzl9wuVwYDIZNbYoSCAQoKyuD2Wym/8YwDBKJBObn59Hf3w+Px7Npx9tsyPZVoVBQzaGmpiZUVlZi9+7dUKvV0Ol0BYf1kskk5HI51Go1JicnweVyEY1GEYvF1mR4xGIx1Go1GhsblyygWq0WUqkUxcXFMJvNaG5uRkVFBXbv3g2VSrVqtVg2m8XY2Bg8Hg9mZmYgEonoTiQWi+WVviDeoNlsRn19Pf3u6+rqoNfrl0hu8Pl81NXVFVwmyzAM/H4/otHoirt5gUBAx2Uu/lyXL1/G9PQ0uFzuho28Uqmkzhe5t+fn5zEyMlLwosjn82G1WlFdXY39+/eDw+FQba35+XkoFAoIhUIYjUbU19ejrq4Oe/fupSHB1e65SCSCYDBIny232017QhbvAmUyGaqrq+FwOLBjxw7U1NSgoaEh77knk0k6tMfpdILH49GCkHxe/apGfseOHSgtLc17AsCtm6GrqwtXrlzJW0lRVlaGL3/5y6irqwNwq9rD6XTiu9/9Lubm5qg3zuFw0NXVherqapSXl9NFh3Rqzs7Ooq+vD9/61rfg9/tzlC07Oztpa73D4UB5eTk9fiwWQ19fH5577jnafUle19HRgerqagiFQlRWVqKmpgZHjx5FRUUFTp8+jUAgsOLnCgQCOH/+PAwGA/bt25f3mgmFQjQ0NCCRSOCDDz7YlG2tVCrFAw88ALvdTv8tm83ixo0btG9hqwxouR2y6JWUlODzn/88GhoasH37dtoxSzyotUB2SzU1NXjwwQfx+9//Hv/7v/+Lc+fObVpDUFFREXbv3o2//Mu/pINiyGKVbzHicDiw2+3UgM3OzmJ0dBQvvvgiWltbMT09verzpFAosHfvXjz00EM4deoUDUesNNyGx+MVtMskMAyDDz/8cNW/Ide4uLiY/lsmk4HJZKLFFBuF5D8aGhrocXw+H/h8PpVsyAeXy4VcLqfyKIuRyWQ4ePAgdu/ejS984QtQKpVU0ryQe47kXk6dOoVgMAi5XI6enh68//771EN/9NFHsW3bNjz55JNUOaDQ6jpyjSsqKnDw4EH88pe/xM9//nOMjY3l7UNa9Qh6vZ7KCeeDYRh4PB5MTEysuGpzOByIxWJoNBo4HA4oFAowDIOpqSmMjY0hEAgsqchJpVKYm5vD6OgouFwu3VkwDIPp6WlMTk7SQRWL49qpVAqBQABTU1M5N0E2m8Xc3Bx8Ph9mZ2cRiUSWvM7v92NwcBBqtRo1NTVQKpXQ6/VQq9XUq1mOeDyO0dFRzM/P571ewK2bTqfTQalUFvT3+RCJRDQ5tNh7XPzdpNPpLZtwEwgE2Lt3LyorK9HQ0ACHw0Hlo28nFoshGo3mDC4hCXMS0wRAY9NEKbOyshIHDhzA0NAQotEoIpHIhq9HZWUljh49ipKSEuj1+hxtJxKSWXzdSZiHGGQSblocI9+3bx94PB5aW1vh9/tXfJD5fD6dWkZE+VZjpVj9SmSzWSSTScTj8RV354uvMeH2+PlGIdeJLJ7Arfslnwrs7ed5e46OeNgWiwWHDx9GdXU1jEYjRCIRNcCpVGqJNDp5HWksI+dABAt37doFkUiE3t5eGI1GlJSUYPfu3aipqYFer6f3ZyaTQSqVQjQaXbKYL3cfc7lcqgl19OhRnD59Om/586pGvqSkJG9VDYFhGDidzlW3Tjwej8YOiRefyWToEO2VPJZoNIrz588jmUzSEsVMJoPe3l50dXWtWJ1C4rG3xwpdLhdcLtcSA08IhUL44IMPoNFocOTIESgUCmQyGTgcDsRiMQwNDS1rGMLhMK5du4Zjx46tfrH+f/h8PoqKimAymejuZCOQzmSDwQCFQpGToCIdrVt5WIdUKsU3vvEN1NTU0GuyErOzsxgZGUE0GqUSyCKRCEajEQ6HY8Ud6J49e7Bz50709fUhFothYGBgw9fk+PHjOH78+LK/I1LWkUiEOj/EySENeIshukpf+tKX8MQTT+Ab3/gGuru74XK5ljWyIpEIDoej4Od0PYRCIfj9/i031Wwz4HK5sFqtsFqtOHjw4LL3HLEjtxeEVFZW0u9rMSKRCH/8x3+M7u5udHR04MCBA3j88cfhcDiW7DrS6TR1Dm+vzrHb7UvuYxKeO3bsGA4cOICxsbG8sxlWNfJWq7Wg6UDkRs4X5xMIBCgpKaHyv+SCKhQKKJXKFR9qiUSCbdu20bJD4NaHLS8vRzgcXnElF4lEKC0thV6vz3ldUVERvF7viscTi8UoLS2lDw4R+aqsrEQ8Hsfw8PCqBjkQCGB4eJhuV1eCZPg34wHlcDiwWq2w2+1LpnVls1kMDw9jcHDwjkkobAbZbBYzMzMwGAw5Cx+pmHE6nZibm6M39uzsLK02SKVSdDatTqeDXq/Hnj17UFRUhJqaGuolE09ux44dYBgGY2NjGzby5DyTySSi0Si6urowNTWF/v5+zM/PUyeEGAmJRAKlUklj+AcOHIBOp8tZmEle4rHHHkNpaSn+4z/+A/F4fIkjFAqFcPbsWQwNDeHKlSvQaDRUxsBoNOKRRx7JCQkkEgn8z//8T8HlfiTx6vV6t7SDsBHIQsvhcJBMJhGLxagSa39/P4LBIJ1yRiCSIWazGUeOHKHNjeR9gFvJ+j/90z+FzWaD1WqFRCJBNpul9+7169fh8XgwNTW1bEMiqf65//774XA4oNfraV6EhIBqamry9iOtauRJFUM+AoEAlaRdDYFAgOLiYhgMBvpvHA4HCoUCKpWKGqfbDahYLEZ9fX1OMpHL5cJut2N+fn7FhJBQKKSaNItfZ7FYYDabl10cSEjJbrfn7AB4PB5KS0sxPz+fdwsaDAbhdrvzjtAjO5tCY4qrweFwYDKZYLVacz4XSTSPj49jbGxsS3tj2WyWVg0sLnv0er0YHx/H22+/jdHRUXz44YeIx+Mr3m9kNOSpU6ewc+dOlJaWUpVQ8tPQ0AAul4tf//rXGx7HSMoL4/E4/H4/2tra0NnZibfeegvxeHzF8timpiZUVVXBarXSBYqEOQQCAXg8Hh544AGYTCa88sordDFbTCQSwaVLl9De3g6JRELvWw6Hg7q6Ojz88MM5z/DCwgJ+//vfY2JiouDPNzo6WnA1zkcNDocDoVC45Du8cuUKrm2nZB8AACAASURBVF69ijNnzqyYh1MoFCgtLaU7/aKiopxwkMFgwOc+9zkAf3gOU6kUpqenMTg4iN/+9rfo7+/HzZs3l31/UiasVqtp4p882yRMVV5enjcHuqoFLzRpEg6HC5KkFYlEqKurg8PhoP/G5XKxe/duGI1GXL58GS6XC93d3fT3Wq0WJpMJRqMxJ3bN4XCg1WphsVhQVlZGqxMWI5FIUF9fv6RCSCKRQKvVorGxEZOTk7QpiGzBGhsbcezYsZyBIzweD9XV1QgGg3mvSSwWg8/nyxsr43A4kEqlyyaC1gq5HjqdLsfIE++SVJRs1Xg8cGvr6nQ6wefzUVFRgevXr+P9999Hb28vpqenaXNTOBxedbFKpVIIh8N47bXX0NbWRh9GEiIkBpAMTdkoo6OjcLvd+MUvfoHh4WGMjY3RWb6rGcbh4WF4vV54PB44HA489dRTKC0tRX19PTUWWq0W5eXlePrpp3H9+nWcPXt2xc9MxmxOTk6iqKho2RK+TCaD/v5+DA0NFfz54vH4ls7lbAbz8/M4c+YMuru7ce7cOZrnWy2pGYvFMDw8jB/96Ed0IFFVVVWOE7uY8+fPw+l04vXXX8f09DS8Xu+qiqyRSAQLCwv493//d7z99tv427/9W1it1hynsLa2dsW8FWFVI19o5pcMyc630vN4PLotJXA4HOj1emQyGTQ0NIDH48Hv99ObnCSpyEp4exiC7ARSqRTddjEMg2g0CplMtuygcYZhaGfowsICHRnI5/NRVVWFyspK2Gy2HEGvxYOvC7ke4XA47/UgYaDNUgSUSCRLFuZUKoVYLEbDGlsZ4rUrlUoMDw+ju7sbbW1tGBgYKDiZTd4nm83C7XYjFAphcHAQIpEItbW19L5SqVTQarWQSCQQCAQb0tbxer3o7e3FpUuXMDw8XPDOIBKJIBKJIBqNYnp6Go2NjfQeJMlYkUhESzdnZmbA5XKXXeDI8PpIJAIejwez2bzi34VCoVWrxD5JkDBbIBBAZ2cnrl+/nreaiEBmSzidThQVFcHlctGmqcWQYTv9/f1ob2/H1atXCwqXZTIZuiiHQiH4fD4oFApq5DkcDgwGQ95E+qaoY5GmhHyePI/Hg8lkWrb2Xq/X4zvf+Q5NqJEKhR//+MdIJBK4dOkSnU7F4XCQyWTQ0dEBl8sFiUSCEydO4LOf/SyAW4btd7/7HRYWFvDGG2+gvr4ehw4dAvCHumTibR09ehRPPfUUrR6oqqqCXC7PiY8Cfxg2kq9eFrj18Hq93nVJ9m4EnU4Hg8GQ48nPzMxgdHT0jihdbjbJZBKtra348MMP8eqrr1JjtJFYcCwWw69+9SscOXIER48ezfmdUChEY2MjxGIxnE7nuo9x+vRpPP/887TaZz3n6Ha78fzzz+P48eOw2+2wWq30OVGr1Th58iTi8Th+85vfLBubXwzZId7pWQwfB7LZLPr7+9HV1YWf/vSn65aZ6O3txQsvvICioqIlydL29nacOXMGp0+fRn9//5rnKSQSCczNzeHSpUuIxWI0LAQA5eXleUOwm2Lks9lsQa22HA4np9xoMTwej8bliawAcCtuOTMzg+7ublpBAdza2vf09GB2dhYNDQ2or6+nidlUKkVf53K5qK42eV1vby88Hg/12ktKSpBIJMAwDNWOWO7cFQpFQTLIhV6PzYQ82Ld78iSO+1HYajMMg0gkQh+CVCq1YbmHTCaD6elpzM7OLvkdKUvbqBIoUSJdL8QLn5ubg9vtRmdnJ0QiETXyPB4PMpkMWq0WdrsdExMTeY+3VXSgtjokTp5IJGh4ZD1Eo1FMTU0t60xFIhFMTExgbm5uXfkfcn9MTEzkNJwVWg57Z3RuN8DikiSGYfDMM8+gv78f3/zmN2GxWGgsMZ1O4/z581Cr1fj+978Pg8FAq2gYhsEjjzwCp9OJ5557DkNDQzTRlEql6Ou+/vWv0zbwfJCqHLPZvGUfHo1GsyQm/1Fjs3ccmUwGbrcbXq93Sy902WwWsVgM3d3deOGFF6BWq1FRUZHzN1arFUePHsU777zDhlu2GKFQaMUYfjAYpOW+6yWZTKKjowMymWzN9/GWM/K3G1ClUknj4FNTUzTxROK3AoEAarV6iQcrEokgEonAMAwmJyepzgN56En7d6HNXos15zcb0rVHar5ZPrmEw2EMDw/TYedEMwW4tYjX1dXhypUra35f4g1upiIny1LIrkAoFC6pctso6xV723JG/naI6h/whwTX4t+RSVKLR5wBoEJCwK3F4faSMb1eT5uGCoFc3DvxgAgEAqhUKqpKyPLJhVRCEdEyhUJB72PSgV1IZ+tyJJNJGpZkuTOkUiksLCysqav4TrOl9/XZbJaO4PN6vUuSIvF4HD6fD62trejr68sxxJOTkxgZGcHw8PCy8dhIJIIrV66sqAO+3LlMTEzA4/Fs+kNCJHI3Wq/N8vGBNDctTtJpNBo0NDQULBp4Oz6fD2NjY+yUrjvIVrzGm+LJE12JfKEMsmUstAKBYRjMzMxgenqalgEuJpPJIJFIwOv15sTVicpkJBJBKBRatsollUrB4/EUFI8n7xkMBgsS9yr0ehBIE8ZGG5XItf0keGpEj5voeZDmENL0RL4DwlqUK7cCc3NzmJiYyEk8ExmE26UQCqWQHgOWjbEVr/GmGHmFQgGz2Zy3sSSZTGJoaAhyuRyNjY1535coTc7Ozq540Yiy3OIbf3EJ2UoPdjKZhNfrzZFKWA3Sck+6MVeDCB5tRpNToTAMg4mJCRiNRuzYseOuHfdeIZfLoVKpUF1dDYPBQOcQ2+12qFQqKipHvgOxWPyRSki73W6IRKKPROkry9ZmVSOfSqUKUpMj6of5mnqy2SzV8igE0vGn1+tp8nWxVy4UCmlc/vYmJdIYpFAokM1mc2LdPB4PEokEFoul4PgmUa8spKqBnFe+60Fa9zerSYkMyViMVCql0rcfVYiHTtT7jEYj1Go1nQyl1Wphs9moHC3J46jV6nV7vfea1ZKkUqkUarV63ePgWD5ZrPrkx2Ix8Pn8vE0Vcrl82fFmt5NKpTA6OpqjO70aPB4Pe/bsgVarxeuvv47x8XGMj48DuLUA6HQ6FBcXY+/evZDL5TkVMFqtFmazGWVlZRgfH8+ZZyqVSmG1WvHoo48WbOTT6TRtB8/3YBFDlM/AkLDSZjVNkdmmiw2DxWKBWq3+SDfGiMViKBQKHD9+HDU1NXj88ceppsfievA7WQG1lSguLkZ9fT06OjrW3FjD8sljVSM/PT1NuzxXQ61Ww2635w1PJJNJuFyunAEe+RCJRDCZTPj85z8Pt9uN/v5+AH9IhHI4HExOTlJNbUIkEkE4HEYikYDD4cC+ffsQj8eRyWRQV1eH8vJyyOXygrPg2WwWk5OTBQ2aUCqVcDgcSyp+bieTyWB2dnZTap4ZhsH8/PyS0BaJTxNdm0LCTVsFvV4Pi8WCXbt2wW63o7GxEUajEXq9nsoRLIYMVSZSAaQkdW5uDiaTCZ/61Kc+UiGblVhOF52FZSVWNfJTU1PQ6XSwWq2rvolWq122jPF2kskk+vv7UV9fTw3Najcqh8OBSCSC2WzGs88+C7fbjfb2dgC3dgWvvfYaOBwOrZAhQj3ZbBahUAjBYBALCwuor6/HZz/7WczOziKZTOLTn/403foXOhAlk8lgfHy8oOoaMsM2H9lslgpvbQazs7NLJFGBP+gDGQyGj5SaoNlsxq5du/ClL30Jzc3NkMvl1Egvrhkm/yWCUUT0y+fzIRQKYWBgANu3b8d99913zz7LZvJRWaRZtgarGvnR0VGk0+mCZhByOBzU1NRgbm4Ovb29y1bQkK6+8fFxtLa2orKysqDQDZfLhVQqpUk14JYXrFKp4PF48Oqrr6K+vp4eM5VK4fTp0wiFQnj66adRW1uLPXv2YGFhAdlsFkajsWD1QZLQdLvdGB4eXtXIK5VKVFdXFxyOSqfTGB8fx/T09IYfXDL9Sa1WLzHiHA4HpaWlmJubw/Dw8JY38larFY8//jiampqwe/du2O12SCSSnAXZ7XZjaGgIAwMD8Pl86O3tzammWlhYoNPtI5FIXqW+jxKzs7MYGxvbsOQDyyeDVY38zMwMHdFXyKxKs9mMoqIiOJ3OFcsk0+k0HShNpkTlg2g0qFQqauSJ0mB/fz9+9atfgcPh0DbwZDKJ69evg8/n44tf/CLKy8sLHq69HDMzMxgfH8+rPSEWi1FSUlKwPjxJ5hY6wGE1GIZBOBxGIBCgipMkYU605i0Wy5YPVwgEAuh0Ouzfvx8NDQ3Ytm0bgNzyWyLoRXooxsfH0dbWtmpu4/bxbVsdEmZbDqKVs9UXa5atwapGvr29veAHg8PhoKmpCQBw7ty5VTs3x8fH8eqrr8JoNNLXrBUOh4Pi4mLE43FwuVy0tbXhrbfeor/PZDKor6/H/v37NzxD9ezZs2htbc2rUKdWq3H48OGCh58nk0n09PSsOE5wrfj9fkxNTWFoaAipVIqG2cjwCYvFgldeeeWuq2MWikAgwO7du7Fr1y48/PDDObkgIix38+ZNvPDCC/D5fFSzn3QZfpxQqVQwm83L5oyIdC1bWcNSCKsaea/XW7CO9+LJRES3YaWbMB6P02EdU1NT0Ov16x7ekM1mEY1GMT8/D5/PR/9dKpXSyhUydX2tLCws0HN1u92rdrERpcDi4uI1efI+n29NWumrQZrDJiYmaAURcOu70Wg0MJlMVMVuvZKqdxIymKWyshJKpRJ8Ph8Mw9AZrjdu3EBPTw/V1843pf6jjFwuh06nyyl9JYvZ4lGCy7FYMZVNzrKsauQ7OzthNBoL8jLJSDVSw5tIJFYs74pEIhgaGsIHH3wAgUCAJ554Ime0XyEwDJPjud7+wMdiMczMzODSpUuorq5e145hdnYWQ0ND6OzsRE9Pz4rXgTRfkXmdhcgRA7c8+Zs3b2JsbGzN57YSsVgM77//PuLxeM5nJjK1LS0t6OnpwYULFzbtmJuFRCLBF77wBdTW1ub0GHi9XoyNjeF73/seJiYmPrazRhdTXFyMhoaGnIq1UCiEycnJvH0mPB4PNTU1qKysZI08y+raNfF4nA6lLsTbFAqFUCqVaGpqyhuyYBgGw8PDaGtrg9vtxtzc3Jq2n2Ru6fj4+IqxyVQqRSss1gJpnurv78cbb7yBycnJVRc6Pp+P+vp6VFdXL1vat9y5ezwejI2NIRqNbmoCbWFhAX19fRgbG8PCwgIymQyNy8tkMhw+fBhNTU0QiURbKj5PhltrNJolonH9/f24evUqIpHIx97Ac7lciEQiWCwWlJeX5+xAo9Eo3G53QbXxbIklC2HVpzyRSMDv96OnpycnFLIcpNxRrVbjwIEDqK+vz3twp9OJt956Cy6Xi5b+FRqbzmQycLlcGBwcXHFxSKVSmJqaWtNk+sUDfW/cuIEXX3wRIyMjq75OKBRi79692L59O6RSaUG196Ojo+jr60M4HN50I9/e3o7+/n4kEokcoyiXy/GZz3wGe/fuhUQi2VJdsHK5HFqtFlqtFkqlMsdAdXR04OzZs5+Ixh8+nw+JRAKHw4H6+vqcsuRgMAiXy7UlQ20sW5e8rlwwGMS1a9fg8XgKekOJRIKWlhbs2rULMplsVUNCZqH+/Oc/x0svvYT5+Xkkk8mCDD2Px8OOHTuwe/duKBSKJTF9sVgMvV6PQ4cOLRm+sBqJRAIulwt///d/j9OnTyMWi63qPZKF7f7778fu3bsLrrsfHBxEV1fXppfBkQVqbGwMb775Zo7KJpfLhUQiQXNzM7797W/TypWtgFKphE6nW1YKYmFhYcsPId8sbDYbHnroIZSVlUEqlebstrxeLz744ANMT0/fwzMsHJPJhKKiok2bYcyyPvK6cqTBhIRT8m0DhUIhKisrMTQ0BKVSiVAotKKRJLot7e3tiEQi8Pl84HA4UKvVVDNnJcikpnA4TCdCEQ+HJBqNRiPKy8vp71disQcfCATgdrvx7rvvwuPx5JUMlUgkUKvVqKyshN1uL0iJc3G45k6EH1KpFGZnZ3Hjxg3YbDaUl5dTVUyBQEAnDPX19aG3txeJROKOluORckBy7yx3TUUi0RKjRshkMhtS18x3L20VeDwe9Ho9mpubYTQa6Y6QlI/Oz89jcHBwy3nyi8tbyX1GnmO9Xr+ha79YbXSrhRg/KuQ18j6fD2+++Sbq6+tx7NixvNt8koSsqanBqVOn8O677+Ly5curHsPv96OzsxNf//rXsX//fvzJn/zJigO/FyOVSlFdXY2f/OQn6OrqwnvvvQfgVineww8/DIfDgeLi4oLCJ8FgELOzs/jhD3+I/v5+9PX1FaQJ3dLSgp07d8JoNObt+AVu7V7i8TguXbqE999//46VM46MjOCll16iukKkoQi4pUu+bds2fPnLX8auXbvwwgsvwO123zE9e1IOqNFoIBAIcO3atTWFXojY3HoecD6fD4fDAZvNtqVj1CKRCHa7HXv37sXnPve5HMckFovB6XSip6cHg4ODW0qrHLjlVPT29iKVSqGyspL+e0NDA3g8Hn7961+v+96Sy+WwWq341Kc+hZMnT+Z12FiWktfIp9NpBINBzMzMYGpqCkVFRXmNPFF5NJvNdF5rvmPEYjH09/dDoVDgxo0bqKysRFFRUc74s9uPw+FwIJFIUFVVRRuLgFtGvr6+HiaTKe/qn0gkEI/HMTAwgLGxMfT29sLtduedoCMUCiEWi1FeXo7a2tqCpWzD4TB8Ph/8fv8d9chIx+fQ0BB6e3uh0WhoaSufzwefz4fdbgfDMGhuboZMJoPL5VpWyXI9EM9Lr9fDarWitLQUYrEYmUwGXV1dS4w8KVddLr+i1WphsVjWvO0XiUSQyWRobGxcUS+Jx+NtOJwgEomgUCgQi8XWtSMSi8VQq9Vobm5GdXU1Fbcju8toNIqbN2/C7XYX1A/AMAzV7rn9PKVSKdXe36w6++Wa+oiUhtVqhcFgQDqdXtP9zuPxYDAYYDabUV9fj/LychgMhi01cemjQsGZt97eXvzmN7/BU089VVCzD5/PX5MAWDqdhs/nw9mzZ3Ht2jV8+tOfxr59+/D444/nTChf7jhEtGr//v05/15IhYHX66XDky9duoT5+fmCQgNGoxFlZWU4fvw4Dh8+XHASs6+vD+fOnStI6Gwz+L//+z+0t7fj+eefx7Zt23LKO8vLy1FSUoKKigoMDw/j//2//4fR0VEMDAxs6JjkAXc4HHjmmWfQ0NCAPXv2YGBgAMPDw3jvvfeWiLJ5vd4VQzn79++HTqfD22+/XbBMNXBLgbO0tBR/93d/B5vNtmQR5nK5kMlkG9b9t9lsaGpqQldX15rOD7h1rYqKilBfX48f/OAH0Gq1OY5RPB7H6Ogo/umf/qngeyaTyaCvrw8ymSzHkJtMJnA4HKhUKkgkkk3buaXTaYyOjkKlUuV0x5eVlUGlUuHYsWPo6elBa2trwe+pUCjw1FNPYefOnXjyySepY8Kydgq+ah6PBx0dHXjwwQdhs9kgEAiWNaDJZBJutxu9vb1obW2l0sCFwDAMkskkQqEQjRWnUilYLBbU1tZCo9HAbDbnHJcYcuKh5iOTycDr9SIYDGJoaAijo6Po7e2lVQv5DDzZpdTW1qKlpYVei3xks1mkUilMTEygvb39rsVVo9EofD4f3n//ffj9frS0tEAikYDH49E4uUajgcPhwCOPPAKv14vR0VFMTk5idnYWoVAI8Xgcs7Ozy14XIkMglUohk8mg0Wggl8tRU1MDs9mM5uZm2Gw2iMVi6HQ6RKPRZb+nVCqFaDSKoaEhCAQCFBcX0+9Zr9cjnU7joYcegsvlQmdnJxKJxJKkNflurFYrioqK0NTUhJKSEhiNxmWVVMluZqPNaI2NjUgkEigqKoLP54Pb7UYkEqEOw+0eM5m/YLPZ6JCXsrIyaLVaGlLjcDhIp9O4ceMGurq6qLpmIRCJi9v/nsw5IEUR7e3tVAJjMWKxGCaTCTqdDgaDAS6Xi3rqy3n/6XQag4OD0Gg0OcKDJHR75MgR6PV6RKNROpMhFArRBV0sFkOj0UCr1UKtVsNsNtOiiZKSEojF4i0datvqFGzkh4eHMT09jWeffRaVlZXUU14M6U68du0aLly4gJ/97GdrPqFMJoN4PI6rV6/i2rVrOHfuHIqLi3Hq1CnU19fDbDZvqMqC6N0MDg7itddeg9vtxuDgYMGv5/P50Ol0OHDgAL72ta8VrNNOulEHBwdx9uzZuzbPNRaLIR6P4+c//zlqamqwc+dOagyJ10U0gf7sz/4MkUgEfr8f7733Hm7cuAGXy0UnYi0XihCJRKisrITRaERxcTFqampQVFSEw4cP58hJMAwDrVaLdDq97KJIKq06OjqQyWSo583hcGC1WqHX6/HVr34VHR0dmJqawtzc3BIjTxacffv2oaWlBUePHkVRUVHO/bLY0yRhvVAoBA6Hs+776r777sOhQ4dw8eJFjI6O4vTp0xgfH0dfXx9isdiS85RKpSgqKkJLSwt27NiB48ePL4k1k2Tm22+/jRs3bsDn861pbGYgEKB6PeQzkz6Whx9+GDabDf39/YhGo0u+V5lMhubmZjQ1NWHnzp145ZVX0NPTs2JPRzKZRHt7O/2+F19jmUyGz372sxgYGACHw0Fvby+dy0CMvEwmQ1VVFe01OXjwIMxmM8xmc47qKPDxnxVwJyjYyBNP6/z584jH4zhx4kROojGbzaK3txcjIyN4+eWXN6WLk9ysqVQKP/vZz6igGUnimUwmKBQK2O32ZePhyWSSNkPNz89jdHSUKvgFAgGMjo6uydiKxWKUlpbiS1/6Enbt2kU94kKYmZnBu+++i+7u7nXHbtcLwzCYnp7GwsIC/uZv/gaNjY04ceLEssltkUgEnU6HQ4cOUQNI+iVW8uSJB0q6naVS6bpCIMlkEu+++y7m5+dx8OBBiMViWhrL4/Ho9l+v1yMQCFCPMJ1OQ6VSQSaTwWQywWw2w2KxQKPRIJ1OY3p6GtFoFDMzMyguLobdbqefdffu3bBarbDZbLh58yb6+/vR29u7ZtE4LpeLqqoqWK1W2O12RKNRKiKWyWTolCeRSASxWAyZTAaLxQKdTrdsh/SFCxfQ09OD9957b9WGv+UgVWJerxcDAwM5chYCgQA7d+5EaWkpampq4PP54PF4IBKJIBAIYDKZ6HXUaDTQ6XS4du0a5ufnMTw8vOzxMpkMpqam0NfXh3feeQeVlZVLciAmkwmPPvoojhw5QmclEyMvEonoEBiVSkWLGLhcLvx+P/r7+5FMJpHJZLBz5851DzL/pFKwkc9kMshms+jr6wOfz0dLS0uORk06ncbw8DC6u7tx8eLFTdMVicfjNFwgEAgglUpRUVEBm82GsrIyupVfztjG43EMDQ1hdnYWk5OTuHHjBsbHxxGJRNaUdCLhIKVSieLiYrS0tMBisRSkt0OSZ/Pz87h69eo9m+ROtF5++9vfwufzoa6uDnw+H2KxmA7DJiWWAoEAVVVVGz7m4tLUTCaDWCyGWCy24rUnImQSiQSBQAAqlYruGEkizmAwoKamBqFQCIFAADMzM0gmkzCZTJDL5TAYDNQrJ7snj8cDv9+PsbExiMViqnwqEAhQWloKs9kMu92O9957D9lsFiMjI2s28kSFFcCSvgySCAWw4gwDcr4krEfCnX19fesKJ8ViMerYCAQCGI1GALcWS4fDAYfDge3bt2NychIjIyOQSqWQSCQoKyvL6bJlGAYmkwlarXZFh4Y4Y5OTk+jo6KCy4CQkCNyqsCqkL4PcMwzDIJFIYHZ2Fj09PUilUmAYBnV1dayRXyNrymQwDINz585haGgI9913H0pLS1FeXo6BgQE4nU48//zzuHnz5h3rTEyn04hEIujr64PL5cKlS5doh+ByDw6RJ0in00ilUnTrvNaqAlLv++1vfxvV1dWorq4uWFAtlUrB6XTi8uXLeO2119acmNtMstksIpEILl68iIGBATQ2NqKiogKPPvooiouLUVxcvKmNK6lUCn6/HyMjI+jq6sKFCxcwODiYM4rx9vObnZ3F1atX8a1vfQstLS101N/t5akkYarX65HNZulCtZgLFy7A6XTixRdfRCQSAZfLxVe+8hVUVVXllAKTwTTkZ71ieauRr7w2Ho+jv78fnZ2dePPNN3Hz5k1MTk5uKHczNTWFH/zgB3jiiSdQVFREF/TFGAwGqFSqnEX+dkjPSb57Y2xsDP/6r/+K0dFRBINB7N27ly4ua2F+fh7T09P4xS9+gcHBQVy+fBn79u3Dtm3bWHnldbDmdHUwGASfz0d/fz+y2SxUKhUV8SJDNfLB5XLpLoDD4axYOnc7xNu5W+3tAoEAQqEQpaWlcDgcaGhogN1uh1QqLbjpiYw8JLHtey0PS6ZmhUIhcLlcRKNROBwOzM/PIx6PQywWU9XOxQ0oKw1zJ546WUiJ9C+ZNzsxMYHh4WF0dXWhq6sLIyMjq5YBplIpBINB9PT0wGQy0cEyJBwjEAggFotp6aNQKMxpxgmHw4hGowiHw+jq6oLT6YTT6UQ8HodEIoHL5YLT6aQDv0nITSAQrHuB8/l8CAQCtPNaKBTSa0cSkIvfe3EIh+QigsEgurq60NnZic7OTlocsBESiQSGh4fhdDrR29sLi8UCpVJJJ2yR5/D2RY3kxRYWFmioLhwO5713FxYWMDU1Rbu5dTodEokEvS4rPTfEASPDXkji/8aNG3C73XC73aitraXXLZVK0QKNubm5gkt+STlqIBCgXcPZbJaWM29GR3UkEsHc3Bx8Ph8NWQYCgXU5l4thGIaGzKenp5c4NKsJPK6rJikYDOJHP/oRqqqqcOLECZw+fRpnz54tuEWfxNGJN9Xd3X1PPdyVMBgMKC8vx3PPPUfL+NZSxpVIJODz+fAv//IvBQ0Av9sMDQ1hZGQEFy5cgFQqpV27dXXEQAAACQZJREFU27ZtywmJyeXyFfsdyIPj9/sxOTmJgYEBTE1NobOzE9PT0+js7KQVHMtVmixHPB6Hy+WCx+PB7373O9x3332oqKjAwYMHYbFYUF9fn2MsstksZmZmMDs7i97eXpw/fx4ffPABPB4PIpEIvS8jkQh+/etfo7W1FZ///OdRW1uL5uZmGucPh8Pwer1rlpp49dVX8dprr+GBBx6AzWZDRUUFzGbziiEvYjhdLhcmJibwzjvvwO12o6OjA8lkkoYmNkoqlYLX68Wrr76KM2fO4Atf+AJ27dqFgwcPQqVSrVg0EIlE0NPTA5fLhb6+Prz33nsYGRkpOH91/vx52uxXUlKC48ePo6SkBLt27Vr27/1+P65fv46+vj4MDg7i3Xffpd/D7fdLPB7H/Pw8hoaGqJLtYumO1YjH4+jq6sL8/DympqYA3DKeU1NT8Hg8m9J9fuPGDUSjUXR0dNBdUXd3N7xe74b6T4gseU9PD15++eUli+Vf/MVfrPjadRl50vxADMTo6GhBH4DEtSsqKmgpH5/Ph0KhgMfjweDgIE2w3CsEAgFkMhkqKipQWVmJpqYmlJeXQ61W0yaSQunt7aVGbzOmP202ZLoW8YInJiZoaaLb7abJbbFYvKIeP6moCofDmJubg8fjwdzcHMbGxmiCbT0Gi2jwZDIZOJ1OBAIBhMNhaDQaXL9+fck5kN9PTEzA6XTC6/XmJPcIkUgEDMPg6tWrmJqagsvlglQqhUKhwLVr1+Byuda8UyRSGFevXqUjCdVq9YrTyIg+vtfrhd/vh9PphN/vvyODQBiGodexo6ODyhXL5XKo1WrqyZNy5Xg8jmg0ivHxcXi9XkxMTMDr9a5JO4jcT2NjY4jFYhAIBDAYDOjt7V3274PBIIaHhzE5OQmPx4PZ2dkl3wGJ9/N4PMjlcni9XkxPT6O/v7/gnAURLEwkEjRnyDAMgsEgAoHAplz7yclJehyyeyPy0BvJxTEMg0gkAo/HgytXrqytymhxouP2HwDMZv6IRCKmoaGBee6555j5+XkmkUgwqVSKeeWVV5i/+qu/YsxmMyOVSjf1mGv54XA4jEKhYBobG5kf/vCHTGtrK5PNZnN+CiWTyTDf//73mYceeoiRSCT37DOxP5vzU1ZWxjzwwAPMjRs3lnzX3/rWt+75+a31RyQSMQ6Hg2lqamLuu+8+pq6ujikuLmb4fP49Pzf2Z+0/q9nxu9ZCZjAYYLVa8dWvfhU1NTXUi+dwONi5cyccDgeKiorgdrvR1dWF/v5+TE5O5pUX2CgkrltfX4+ioiLs3bsXVqsVTU1NMBqN66rL7e7uRnt7O86fP4/e3l524DLLliOdTsPv9yMSiWB2dhbxeHzZxiiWjz533MiT8kMS3/7MZz4DnU4HoVBIDWhFRQVKS0tRV1eH/v5+yGQympACQGO5a9GbXw2SRORyubRmub6+Ho2NjXjyySeh1+tXLHVbDRL6cLlceOedd9Dd3b1iJQkLy70kk8kgEol8rEcostzijht5nU4Ho9GIP//zP0dTU9OKIkNER6S2thZWqxUnTpzA3Nwc2tvb4fV60dHRgcnJSfT392/ofHg8HrZv305b7h0OB6qqqmAymaim+Xo1MsbGxvDLX/4Sly9fxocffrjlJGFZWFg+edwxI080oK1WKyorK1FfX4+qqipaVnY7pMxMLpfTIcYkmTs1NYV0Og21Wg0Oh4NkMkmTO8R7Xg4Oh0OTpTweDyKRCCKRCA0NDbBardi+fTscDgeqq6uXrSEulEwmQztpOzo6aAMWCwsLy73mjhl5uVwOu92OU6dO0RDIShUayyESiSAUCnHo0CFks1k8/vjj1KAPDQ3B4/HQdvXp6ellwzhCoRBGo5HODq2qqqI7CSJoRhaAjWhixGIx/PjHP0ZXVxfOnDmz5fS+WVhYPrncMSNPRLBkMhkUCsWygmarQZpIlus+XFhYgFQqpd5+cXHxskaez+dTLRUyPEOtVm/ocxFIY8bg4CDGx8fR1dWF4eFhqlHCwsLCshW4o0a+0KHWa4W0n99L0uk04vE4fvvb36Ktre3/a+9uXlKJAiiAn7eJhL4WJlMaIW1amdCyTasgiP62/oHWLdoUBCGuRGghLqYPLJw+zKSSGcW4zFwzxBaPe+n1Xj4hHEc7v526mYUcdOZyDjKZzI8Ymiai4dK3kFfd4IeHh7i7u8PGxgZisRii0ei3+1EGWTcqpcTj4yMuLi50pXKpVOIxSSIKpL6FvJQSlUoFruvi7OwMkUgEnU4Hs7OzurcGCH4/9MdbL+12G67rolQqIZvNYn9/H7ZtQ0o5wCskIvpa349QCiEgpcTOzg4Mw8D29jaWl5exvr6uS7CC7vX1Fa7r4ujoCMViEcfHx7BtG7Zt8yErEQVa30NeHXW0LAvVahWxWAxvb29YWFjQU3ETExM9b7L6QTUrtlotSClRq9VQr9dhmqaugw1a2RgR0b/4uowrhMDBwQFSqRR2d3extraGZDKJra0tzM3Nfdl06DdVZ3x+fo6TkxOk02lcX1/DcZxvV4YSEfnJ15BXjXitVgvNZhNXV1d689MwDCwuLuox6KmpKd9CX7UYep4Hx3EghEC5XMbNzY2eNKxWq5BS8ngkEQ0VX0NeUb+Uc7kccrkc9vb2MDMzg83NTSwtLWF1dRWJRALxeNy3a1Ld6tlsFre3t0ilUmi32wx1IhpqAwn5zzqdDjzPg2mauL+/R6FQQDQaRTgcxvz8PCYnJ/WSz/T0tF4J+nhKpxv1XKDRaOiBC9XN/PLyAsdxUC6XUavV8PDwoAeYGfBENOwCEfLA7xMshUJBvw6FQgiFQlhZWYFhGEgmk4hEInqLVOnlzL26PfT09ATbtvUUn2maqFQqsCwLnufxpAz9l3oo//k9oqAKTMh/prZCT09PcXl5iXw+j7GxMYyPj+sysV47Z9Q2rFo9Us8FhBBoNpvwPI892tSV+r5YlvXXd45ldBRkgQ151R9fr9cBAM/PzwO+IvrJ1EatEAKNRuOPz7oNkxMN2i/+1SQiGl29r1ITEdHQYcgTEY0whjwR0QhjyBMRjTCGPBHRCGPIExGNsHd2vFrSAF6txAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Our custom background image:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAABsCAYAAACPb8KhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAD2ElEQVR4nO3aMUtdZxzH8f+5xwQutEIhN5vdlCyWLBccQraSgEPpOyg45F0EHJq3UHDIq9BSKLSbLhIwjoYO4pLYRS4Rot77dGnHqx5I+nj+fD7rWX4envPl4WJTSgkAchrUHgDAlyPyAImJPEBiIg+QmMgDJCbyAIkt3PC8d/9fuXFwEK9PTmrP6OT5aBTb43G0TVN7yq1Nrq7iye5uvJ1Mak/pZHN5OV6urNSe0cmbs7N4urcXH6fT2lNurW2a2BmP49loVHtKJ1vHx/Hi8LD2jM7K+vrceLjJAyQm8gCJiTxAYiIPkJjIAyQm8gCJiTxAYiIPkJjIAyQm8gCJiTxAYiIPkJjIAyQm8gCJiTxAYiIPkJjIAyQm8gCJiTxAYiIPkJjIAyQm8gCJiTxAYiIPkJjIAyQm8gCJiTxAYiIPkJjIAyQm8gCJiTxAYiIPkJjIAyQm8gCJiTxAYiIPkJjIAyQm8gCJiTxAYiIPkJjIAyQm8gCJiTxAYgvXPdx+//7/2vHZfHPvXqw/fFh7RiffDofx64cP0dQe0sFFKfF4cTGWhsPaUzop0b9z/ffFRXz/4EFcllJ7yq0NIuKv8/Peveuzy8ve9eMmTbnm4LQ7O/05Vf/aWl2Nn5aWas/o5LfT0/hxfz+mPfqIv15YiD/X1uK7xcXaUzrZPDqKn4+Oas/o5PHiYvyxthZfLVx7J7tTrkqJH/b34/fT09pTOtlYWopfVldrz+isbZq5d8RrT83s82/58pom2vl/7500iIhpKb1639NSYtDDdx3Rv3NdIqLt2bsupUTp2Zn+T5/e8234TR4gMZEHSEzkARITeYDERB4gMZEHSEzkARITeYDERB4gMZEHSEzkARITeYDERB4gMZEHSEzkARITeYDERB4gMZEHSEzkARITeYDERB4gMZEHSEzkARITeYDERB4gMZEHSEzkARITeYDERB4gMZEHSEzkARITeYDERB4gMZEHSEzkARITeYDERB4gMZEHSEzkARITeYDERB4gMZEHSEzkARJrSilzH756927+wzvq02wWl7NZ7RmdtE0Tw7atPaOz8+k0Ztecn7vo/mAQ9wf9utvMSonz6bT2jM6GbRtt09Se0cnlbBafetaPiIhXjx7NfdHXRj4i+vUFR8TGwUG8PjmpPaOT56NRbI/HvfogJldX8WR3N95OJrWndLK5vBwvV1Zqz+jkzdlZPN3bi489Cn3bNLEzHsez0aj2lE62jo/jxeFh7RmdlfX1ufHo15UGgE5EHiCxm36uAaDH3OQBEhN5gMREHiAxkQdITOQBEhN5gMT+Af1+spSBMgUIAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "The RGBA image on top of the background image:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAABsCAYAAACPb8KhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9WZAk13nf+zuZWfvaXdVL9TbdPfuKGQwwWEkJFBdJpChKpGhdQdd2hCKurq3Xaz1YIYdu3PCTriU7pGs7ZFoOhmxJpESJokQQBEkMliEBDJbGDHp69t636qX2vTLz3IfT1ct0d3X1TAMzA9YvoqJnasnMysr8n+9851uElJImTZo0afLxRLvfB9CkSZMmTT48miLfpEmTJh9jmiLfpEmTJh9jmiLfpEmTJh9jmiLfpEmTJh9jmiLfpEmTJh9jjB1ev2/xldK2QUpkpQymhSwXwTSRlbL6d6UMZhmkrd5vVqFS4dXEMsP5PK97fWQ0NYZJoSN1A9PpwTIcVBwuLF2n6HRR0A1yhkFOCCpC3Jfv+vNeL//U3Y1+n/Z/N2Rtm2cnJ7lcqdzvQ9kV/3ckwr+LRO73YeyK90olPjk1Rf4hCnfWge92d/M5n+9+H8qu+LNUit9eWLjfh7Fr5KFD24rHTiJ//7AspFnFWogjc1ms2SlkJoW9FMeaGUUuz0N6Dqzyho89JuEs8M9ZG6EspxfTHSTb1kchGGEp2kHW62e8Lca4z89IMMQVXScu9I/6WzZp0qTJh8p9F3kpJdgWmCZ2Jo0sFLDTSez5cWRyHpnLISsV7EwKyiVkIYfMJKGQBbOyasnXECuP9WjVMjoZSEzjzi/jTs9RdjhpmQrQ73RyzOXm0WgPS/4WEsEWsk4X434/aaGR0JoerSZNmjy83BeR35Rla5rIUgkrPo+9tIA5OYo9/Dr2xMie7E+zq2jlKkY5B0B45fmB2vEA8wceJ9nRz63eQWYCIV51uxjXDZJCbPRZPUQulSZNmjS5P5a8lGCZWAtx7OVFqpfeRCbiyOUZZLmELOaRmcRHekgtczfxJ2ZoHRui4PJwOhhlpr2H0e4DvNfWwbTXz01d5+HyQDdp0uSnnY9U5KWUYFaRlQqykMOKz2DPTWOODCGXZiEb3+R++SgQgDufwp1PEQBszUG3N0x3qUSn4absMHBKm4THR0bTyet606Jv0qTJQ8FHa8lXylRvXccav0HljZchuwj5JLJYANu8LwK/FcKu4swniI0O0TZ1hUP+CDlfmLfPPsdwazv/pacPa5Pnv0mTJk0ePD50kZe2BZaNnVpGZtJYt4axpkeR8UkopaFS+LAPYdcIAGnhqFoY1RIO08ZfKnJo5jaylONxp5Ok10fK6yOl6ZSbVn2TJk0eUD58ka9UkMUi5QsvY03cwnrvJaiUHhirvRH0Sg5PJccjb/4jh/2tnJt+jLcHD/PaoZO87nIzZdz3IKUmTZo02ZIPTZ1kpYKdz2GN3cCaHsO69h52Yh6q5YdK4Nfb6ELaOMt5WuOjHLHLGPk0+r7D3A5HeM/np9QMt2zSpMkDxp6LfC08UpZLWIsLVN57A/Pd1yEzD2Zpr3e3ef87vH6vjhWjUiQ8dwP/8gyHx68R1AyuajrXPB5KNbdN033TpEmTB4S9t+RNEys+hzV6lcqr38ZenIfcIlh7F3woYgcQkRjCF0A4nAivf1W9J/N5lisqC1a3bTylIo5qGVe5hH9xAnc+uSfHoJklHAWLU0M/onvsEpmnPs+1cJTvtUR4eOYpTZo0+bizZyIvpVSlCMolrPgs1uRNrOG37mGLQlnEhgM0DTQVtig0Da2jFxHbjxZuRbg8iGBo1XpeSiUZy6vFXN0yCRRyuMtFPIUcLZUcXruK27bRkei2jbAtNNsCKXdl5Wu2BbZFx/wY4WSccwcexSk0LgSCFHWditYskdCkSZP7z95Z8lJSvXUde3aCyj/++b0nM3lC4AlhHH8cEWnH6B1ABEPo0Sg4PQjDoYRf09Rjhb9fWOAbmczq/zXbQpMSYdvo1Z/DY1b4zeUl+gpZBuKzhJZmic6Oopcz6GZ5qyPZEUelyNOvfIMDbb30nPsFXmyL8Y8dsXv7/k2aNGmyB+yJyMtKBVkpY8+MYU3exF6eg3Jxl1sRoDvB7Ub4Q4hwJyLQit5/GNEaRevuQ/MH0FojiDo+77Tbw2yluu3rTttmWHeRLORJCoM2h5MuAZHsEr5iDm8+jWaZCNts2LLXpMSfS2EbTo7MjjFq6AyEwsQdTgp606Jv0qTJ/WNPRN5KLGPF56j88BvYE9fBMne/Ec2AYAfavkM4nvgUxr5B9I5OhMu96qpBiLoC3wgVIfjr1ihaSwTR1UuPbXHIrPLpqXGOLMU5/t55vNllHIXdz0QCqQUe+fHf4cg8yz6Hmz/r7GbY57+n423SpEmTe+GeRF5WK9j5PNatDzCvvY9MLe5e4IVA23cUEYqi9x1Ca+tC7xtQIuz2gG7cs7DfuT8LsFa2mRCCUU3jtdYot5wupqvnaMskObIwhT+9SDA53/imAd22aFuY4tjVt3hCfwKv7OKS10e5GV7ZpEmT+8BdifxamGQZe3EB8/2fUH39O3d3BJqOfvwp9P4jOB89h3C5wHDsrbDXIaVppNC4Ee3AiLTzWHcfB3MZ/tn1YbpHLxG4Q+QbOarOuVE65sZIhKP0OLzccHtUVuxDFFq5qVLo9m/c/NxD9D2bNPm4c3eWvJTIchlrepzyD/4Ba/zaLvfqAncQ48RZ9P1HMY48ihZqVa6Z++jDtoBbukHc62d6/1FOtrTwVPcgJ6+9S/vSrCpV3HAil+TotSFCiSXe+cTnGfcFuOJwPDQCaFkWtm2Ty+WoVqsUi0Wq1Sqlksp1yEtJKZVSIu9ygWGAw6EezQzgJk0eGO5e5IsF7KV5zJEh2I3/WjPA5YVgO/qBR3A8+jR6tF1Z8PcZKQRLQrDkcjPW5ibr8+Np6aB9eQF/oYDPLKNbVZB2QxZ9x8IU7lKRI/lPYjmcjDgc96+f4jaszsqkXBV2y7IolUpUKhWSySSlUolsNkupVCKfzwNQlJJyuawGLb9fibvLBT6f+qtp6rX1f5s0afKRc3fumlKR8qsvYY1fhfSMqiDZCE4P2sBp9IHDOJ/5ObTWNrRQGPQH0/K74vYw6XAy+olf5MgjT/Erb71MJDFPIH6bRtrfGqUsQWnypfcu0NHVz0uPPo18AC35QqFALpfj6tWrzMzMcO3aNYaGhhgbG8OyrNUBQEqJbauZjC0lczVXTS2MVQg4cQJ6e+HAAQiHobsbAgFoabmP37BJk59edqWuUkrV1CObxp4dUzXgG81kdfkQ/jB673716OpDuFwIh7Px/dv2au/XWlNvLEu1AbRMZLVM9/Iyp/J5bMOJ1HRs3cDWdCzdoOhwUNYNkrq+uvBaj6KmURSCW6FWbKeHUx19lDSN/ek4ullGN7f/7rVKlnq1TMfyHD1uNwOlIssOJymHo+Hv/GEgpURKSaFQoFgsMjY2RiKR4OrVq8zNzXHt2jWGh4eZmJjY/cadTigUoFqFUAjSaYhGIRYDr1e97vE0LfsmTT4idm1CW5PjWDNjWEMvI/Opxj4kBFrfcbTu/bi/9DzCH1CRM7tEVsrIbBYrPoudWMaaHFUDztIcMh1HLozxO1LyfwhBITJAxe2nEG4j7wuQDrUw3NnDeKiFvwsESe5i9nDJ4eSa4WDpmU9zcmGWf101CSxP41+e3PGzmlUlMjbEmWKKf9t9gO+0d/IPbZ27/u57iW3bVKtVrly5wrVr1/jDP/xDxsbGsG179WFZ1t1t/Pp1uHEDXnllzU0zOAiPPAKnTikr/8QJJfRNmjT50GlY6WpWtDV5C3PsOrJSBLuBRUjDBQ4P+uAR9H2HED4/wqms950iaKSUyGwGWchjzU4icynsZByZTmHnc9hLC1AqILMpZCED5SIuwInAyC5hlXJ4K3kCLjehlA8tNUfM60eE21n2+FmMxph1uRj1eLc/CCGwgQow7XDi9ocYGjjCoCY5mFlEMysIub0gClT1Sm8hy+DkdfocOrFIGwmhfeR16G3bplwuMzc3x/DwMB988AE3btwgHo9TKGyu6y+EYP/+/fh8PhwOB06nE8+KOFtS8k4ySa5SAdOEVAri8bVrYv0gsbioxL9YhIkJ5cLRdeXHfwDdV02afJxo3Jy1LWS1QvWDd7CuvQ+VBt00Th/4ozjOPoOx/4iy4BtNapISa2Eea26GysvfUT1g47d3/JhA4souAOBdtyY8ACA0PhcdJBGJcfGxn+FHrdH6Ir+CJQS3NZ1sqJXImaf5FDYDM2MYxRS6ubPV68+lOPrBGxz1+Tg6cJhLurgvIp/JZLh06RL/9b/+V65evcrU1NS27zcMg6effpru7m4CgQChUIjOTjULKdk2Y5cvk8tmIZeDq1eVyG/F4qJ6vPee8s9/8pNqgfY+u62aNPlpoGGRt5MJrIV5ZHJORdM0GEqoH3kE4/iT6J3dKoJmB4GXlomsVLDGb2PNT2MOv4lMLmDPTkC58S5S2+1BSjUAtFZzPPpmjtaWDo619XG1bz8zLVHecXsobOcvFoKMELzldOHqO0BAfo5H3j9Px8LObhthmxilNIOJBX52ZpKp9hjLXl/D3+dekFISj8dZXFzkpZdeYnh4mCtXrpBKrbnbPB4Pp06dIhaLcejQIUKhEIFAgOPHj+P3+3E6nRss+bxt4wkG1/zvjz8On/405PNQKsHSEiwswKuvrln1/f3Q0wOtrU13zUdBbeZUKKiBGFR46+HDan3E7W7OpH4K2FHkayF2djaDNTcDuSRU8jtvWQjQDfTeQRxnnlQVI+sssq6G8lWryFwWc3IU8/ow1qULap97hEDiKGVwlDL4U/PEQh2cSKZ42ePlitPFdYeDKgbVbZKXSprGbU0jGonR6fLRN3aZ6PKsqndTb7/SRq8W6cwmObE4TyjciubxfuhliWsRMUtLS4yPj3P+/HnGx8eZmZlZfY/T6SQUCnH8+HGOHDnCs88+SywWo6WlBZ/Ph7FF3HvWtnHq+tqMzrLUI5lUgjI2BrdvwzvvqPfYtlp8HRxUIZfOxhfcm9wlpZL6HVIpWF5Wz7lc6ncwDCXyTT727GzJSwlmFevmMJXXvo9MLDa0YdHZj/HYpzFOnkNva1clg+th29jZNOb1Yco//Afk0gwyswiFTP3P3SOuXAKjlOO53BKPhqJ0P/Yprra08b/aO6nnhBl2u5lyOIgcfwYZjrH/8is4G5hptM2N4y0UOBONUvUHGPmQw0cLhQLZbJZvfetbDA8P8+abb27wvzscDn77t3+bY8eO8YlPfIJgMEhLSwsOhwNd19EbTU6rhVC2tqqommhULbA++ijMz8PkpAqpDIWa4vJRMT8Pf/qnyqI3V8Kc/X44exaCwft7bE0+MnZWGNtClkrY6QRycUa179sJ3aHCJfsOobW0IZzbJzpJKdU+yiXsuWms6THsiZtQbHDGcI9oVhVhVYkk4/hLBY7HJ8E26Q6FSRkOMttkb+Z1nbymMdXaznS1Sp/DjaNSBmnVtehdpTyaXKSzmCdWqXDd/eFk+NbCJJPJJPPz89y8eZNbt26RSqVWI2ei0ShtbW2cOnWK48eP09/fj9PpxDDuol5QbeajacrX7nYrQQkEIBLZmDDVzIj9aCiXYWpK/a1RE/xGy1Y0eejZ2V1TLGJOTSAXpyEzt7MvXjMg0InWtR/no4+rUgU7YGez2PPTFP7iT5GJecjMfuR9YPWyisR58tVvsr+tF5/jeV5ujfLtSHvdz73evY94KMzR91/FaUmMYn3XklYt4DRLnF6ax+lr4c3u3r38GqvUwiQvXLjA+fPneeWVV5ifn98QGvn888/z5S9/mePHjxMIBFbdMntWN0jTlO933z4VOqk2fl9LVzRp8tPGziJfqWAvL2IXGqzbYjjQ+g6gdfaulQnebtu2DZaJeWMYa3oMmYwr98xHLPBK0iRIiaNawZ9Lc3DiBjNWlcP+ELOGQXYbYVrUDVxONwvtfbiEIDqdol42rEqSkoTzGaKZJFqse++/EFAsFonH49y6dYuRkRGy2eyqwHd2dnLq1CkeeeQR+vr6VkMk95zaYKHrTWFv0uQ+0YAlX8CaGEWmG1v8FG4PjrOfRO8baMAPr9w0lfPfxRodgfRHb8FvhT+f5sx7r1CtFCl29PCCz7+1yAvBlKaRcXm4cegMwusnMnMdseNUWNKeWCLvCmAcOPqhfIdUKsXly5d56623uHDhwobXTpw4we///u+zf//+1ZDIJk2afDypK/KyWkWmF7GuXFBulJ1wByHQhtHXj9bWAdSf+lvTE5jTk8jlGSikHgiBBxC2hVHK0Buf4BPD73DxyCPc2i5LVQgqmsbb7THKlRzH3EGManHHVoLh+Cid1QIHzj5NTyNJZQ1SS3i6du0aX/va1xgZGVl9ze/38+yzz/L0008zODhIMBj8yEo67xm2raJ1LEuFbhaL6q9pKveQy7VWDdPtXptF7MH3rNXwsSyLfD5PqVQinU7T0dFBa2vrlp+pVCqYpkm5XF6t+1PD5/Ph/qgXoYVQ4avNxW9yuRzlchnTNNF1fdvfEMtSkUqVytpfy1Ln0DCUS7K23rRbbFs9SiV1HRcK6lq2LLU9l0vtx+FQEWl3cR3XF3nLVFmm48ONLdS4Agh/BK0jhhYMb7/dlW1Z8TnMG1eQ6UWo5EBsUbHQttW+6w0A6z5nSYkENGkjJNtWjJQAQiCFwBZr+6t9TqsWaE/E8Y5dI9I7gBFpx9wmrNLUNEZaWvHkolTdATRp1xV5AfiTc7SaJXqrZdr3UOSllJRKJSYnJ3nhhRc2vObxeHjyySc5c+YMsVjswRf42jUn5dqjWlWx+JWKWlBMpdZuPF1XC7xut3oEAms3Sq2I2l0uONYWsovFIuVymUQiQSaTYX5+HpfLRcu6Amy2bW+qD5TP5zeViqiJvqZpqw9xt93P1p+r2t/trqtaOehGS1fU7sfteiLU9rX+3AqhqtWuPHev11rtfN45UNbOl9ZALaTaNmoDdTqdXnVjbvgN119vtq2uuUxGCXA2q64/01y71lpa1uoxre85vd25Wr+PalU9slllsCQS6v+VikoYDARUJFQtp0HX629/C+qKvBWPY6carU+joR86hb7vMMLjq1tZUpZL2Ok01tW3sd56CZlNgtuHdugcemcPxqFjKwdgUb0yhL04h3394tbVLl1etL6TaF19GIdO8JN8jtFikROTtwinFmkfHUJsMUBYTg/Z9kHm2rsZ7dlPWddBypXPLdA+9j6u7BJGKcevTB9m0OnhL9o7SW3hgjKBK4aBKxBm6tBZ2mauE53eOfTTaducSSWJBVsa7ie7E5VKhZs3b26Ig6/h9/v5+Z//eXp7P5zF3j3HNNXFPj2tLv5r11RY4NCQEigp1XvWC4y+rrm7rqsb5XOfg64uOHZMWV13QTabJZ1O8wd/8AdcuXIF0zQxTZNqtcrv/u7vMjAwgGmaFIvF1fM/PDzM5cuXN1TzXE+tVMRnPvMZ9u3bx9mzZ2ltbaWzs3P3olgqqfyEVEqJ0OysylO4U8irVXj9dXUuG91Hf78Sslhs6yzlUklts7iur7MQZD/7WVK9vYRCoXsW+cXFRZaXl7l27Rq5lcQur9dLNBpl//799PT07LiNcrnMrVu3+PGPf8zXv/51TNNE0zS++MUvcvjwYfbt27d2Tc3OqtyCn/xEXXM3bqhzZ1lr11tthmgY0NenkszOnlUJf21tW0eRSal+n2wWRkfh3Xfhxz9e224t8sm212ahtev4539ebfvUqTVDpgHqW/K5LLLYYENuAVo4goh0IHQDUW9krVSwk0vYiQVkagEMJ8ITQO89gN7dj37ghHqfZWHnCuBwqdlEpQjWuibdK5/TugfQ+w6gHzjObCrFcC6Lo2LSaThpmb2JUS2tVoxUFrxO2elhtq2Hsc59XOnZT0k31MJrxaTTcBCav41RKeEoZelPL1NJLuGKtG25ziCFIIsg5XCRbGnDn5hu6JRpUtJWKtBSLjV2jhvAsizi8fiGbFaAcDhMe3s7XV1dG6zOB4qadWNZykrPZJS4T0yoDNqREXXzXb7cuEXu9aobMJcDtxvT46HU1raaB9AoNQEfHh7m4sWLG15bWFigWq2ysLBAKpViZGSEiYkJhoaGuHTpErdvb1+KwzAMIpEIyWQSr9dLV1cXhmHg8/lwuVw7W6grNaVIJtcGw2xW/Xt6evN5siyVIJXYRQ+IQEAJynbn3DTh1i213xpCUD13jkpHR+NdxupQc41dv36dpaUlAFpbWzFNk1gs1tA2LMsik8kwPj7OG2+8AahEwHPnztHR0UG5XMbKZpWoT0zA3BxcuaKuuRs36tfqymTUuQ0E1PnwetVjvdDXZp9TU+r837yptn/p0s4HX4tSK5fVABKJqAG3lp9Sh/qW/Mwk9vJCI6XTAYHW1YvRN7BjJIW9tEDlJ+ex5qZVmYP2QbSe/Xh+6asIr3/DidHbvoA1P0thdgq5NIVcHF/ZnYboOIDesx/Pl/93hC+AcLu54HTzF24PRjjCkdQS/1+pRHRxgvDs9dXjrHrCTHXs4z9+6ouMuj1cc7iUD0WC0RLhRHKJ/xedtrmbRKZGOHhrmGAygbunH+qEhBZcbq539+NeGqcRW9mwLfqW4gRDrWqxdg/cJ4VCgVdffZXLly+v7ccw+I3f+A3OnDlDJBL56P3Au6FYVNbo8DBcuADf//5Gq73270YpFODb31bXpGGw9Fu/xY1/+S8ZGBggEAjsySFns1mmp6f5z//5PzMyMsLFixcplUqr1n49TNPke9/7Hrqu8+d//uccP36cz372s3z605/mxIkT+P07NIKvVpUovfgifO1rGwfK2mM95TL80z81fq0JoSz47jpRYMUi/MM/qOOooeuYzz1HdXBwz0Q+kUjwt3/7t1y9ehVQAQRf/vKXOXDgQEPbqLkyq9XqptcqlQqTk5MsX7wIf/3XSoDj8Y3Wez2mp9X3v3BBuVf+4A9UdndPz9rvcfOmSgr8kz9RRotpqu03QqGgznFrq7L+n3tOPQKBHWtA1bfksylkscF6MQI0fwAtGNr2ApIrN6rMpbBnbkEuBQi0aAytowfh8W7uEKXrCL8fLdaLbRbXibxAtLYj2mKrAo+mU9U0CpoOTp20y0Mm2Iovu0RthUAKQTHQQjoYYczjZd7hVO9ft7+kx8tCpAN3Jk4EcBUz+DNO+islzGqVGcPY8jtmdYMhf4A2p4tHGzllUuIt5vGUG5wt1aHmaywUCty6dYu5ubm1/QhBR0cHsVjs7hKdPipMU01h5+bUhXz7tqpHvxUtLSqrtjZlXnG3UakoK6mWxg8bkoFuDQ/z0ksv8cUvfnG1Hs+9no+RkRFeeOEFPvjgAyYnJzcknLW3txMOhzec93K5TCaTIZvNrvr4a0xPTzM0NEQoFKJQKHDmzBkq9UpA2PZabZpMg9nh5QYSGmvU/PD1KoZKqVw2pXUzUl1HbuGiultq/vhSqbSasV0qlbZ0g9XbRu2x/rlEIsHExATf//73Gb5+XVnxy8vKrQJqTae/f+NaoZTqfJfL6hqtBQTUFmXfflu93tqqfpvlZXj/fTWLWlxcm/V4PGpQ2KrUx1bXcSajBoobN5Q1f+KE2kcd6oq8vTiPnU7QmCkv0CIRtLY6yUO2jSwVsRdnsIdfV8/pBvqBY+iDx7b14wu3F+PEY1iY2DffUU9qGvrAYVW+2OUCTd90s1YdDuLtXfgyC9QmdFLTSXb2M9uxj2HDQVlsng4XXW6u9w7iTs0yADjzywStEs9lU0TdXv7eH9yy5sy8w8FfRNqIev18of7JUl/BtginEniy2wjZLikWiyQSCV5//XUS66bjQgh6e3vp7+9vaIHqvlGpwA9+oPzFr79e33o6cAA+8Ym1yAOPR1lFySS8+abypW7BD37wA86fP09PTw/hcJhIJLIrt81WfOtb3+Lv/u7vthSbkydPcvbsWfx+/2qy2fz8PFevXuXq1atMT2907U1OTjI5OcmtW7fYv38/v/d7v0e2u3t7IauVed6iVPSe4XIpd8GDahzcA7Ztc/v2bUZHR3n77be3nnmFw/CLv7jRYrYs5WpZWFCzzvXXaqmkZlUnTyr/+e3bqgLrj36kRH49ra0wMAAHD27unvbWW8pfv558fq1s9+go/Ot/vWOJivrumrkJyO3suxOtMUSkG+EO1LeKbBs7lcTO59Y9KZGl4sqMYZsLuVzCun0VK75uMdGW2LMTCIcbbIkwNu/XME0iyUV8hTVfoZA2weU5Aq4VH+MWx+swTdozSfwrsxgB6FLSl06y7PIh/Nuc1Jql5m8lFTuELzGDo7x9aQbNtvGm4rizu/CP1iGTyZBKpTYJghCClpYWIpHIgy3ymqaskzstk6NHoaNDuQ1qlk93t/K1G8ZaKYVaqFtPD5w7BzMza4tn66xM27YZHx/n+vXrnDt37p5FvkZvby8tLS2cPn16dQ1kcHCQWCyG0+lcPff5fJ5nnnmG8fFx5ubmeP/991lYWODatWur0SPz8/NUq1VefvllyoODWMeOrX3X9bhc6jw895zy1ZbLa3VqFhbgH/9xo8vG5YIvfUnVEGoEIeDIESXyD/K1c5fYts3kpKoia1mWEtrubuX/jkbV/0MhdQ7ujPobHFTXV1+fEtx14cqAmpF+7WtrvRYSCfUbHju2Ju7t7eq6bmnZvJDa1aVqP12/rn7LkZG1goDJpNKv2dk1i34b6rtrFmagurOFIMIdaH3HwL1D5IJtYWfSyPVWh2RF5PPK0pdydaBYrUxZKWNN3EQuzq37nI0dn0G4fSqpat3nauiWSTi1jK+wNqgI28afjOP3+tClREi51ndVSjTAZZlEMyn8pbXj1KVNLJNm1hvc0X9e9oXJtA/gyifrirywLTyZJZyNdtiqg5SSXC5HJpPZFGamaRrhcJiWlpYH11UD6iZqbVWWU+2G0jR1gx09qqyicFhd/Cs+9i05eVIJ3dCQsqKGhpT4rRv8Jicn6ejo4NFHH8V1j03khRAYhkFPTw8DAwN85Stfobe3lyNHjmAYxpZVPEEJ+cLCAv1IJDMAACAASURBVN/85je5du0ao6OjVCoVbNtmeXmZdDrNT37yE+TyMtb+/Vs3RHc6lSh1dqqBLZtdc8eMjMALL2wW+S98QQ2EjRIM3nWM9oOOlJLZ2VkAdF1HRiLYR4/Ck08q63rfvq2jWGprRMmkEmiHQ81A1997S0vwN3+z9n9NU0bKsWNqgHjmGXW9b+duOXpU/Zbf/77a9u3barYq5VooZzyuDKA61M94baRWDYDHiwi3InbIcJWmiTU3g51YWnvStlQrwdmbVHv70aMdaG3ta0JfKqm1gdnryNw6MZQ2cmEU2ymw00lEIAR3NP8wygWiY0P4N1SylBilNB35BP9bKsEHvgAXV+q6O6XkF7IZji/McGDkLQKptSYYmm3TsTRHxOlG7OC+qjjd5AJhWnbK+JU2jmIKo5SlwdXtuuTzeXK53AZLvre3l97eXsLh8IdTumAv0TRl1VQq6gYYHFQWysCAupECASXsO3WUqln2R48q8VtcVD7Ml1+GFd/ud77zHUZGRvj85z+Pz3dvdf2fffZZHnvsMX7u536Orq4uenp6cLvdOByOujOnWinn3/zN3yQej3P06FHee++91fwGy7JUFMjcnLLku7uVb3i77yyEEmTLUgKw1eAihBooI5HGv+D62OyPKbFYjH/1r/4V78di/F13t7LePZ76JbF1XZ3Lc+fUe/1+5WYcH9/6/V/4grqen3hC/U7hcP1FU4dD7eOZZ9SAk0yq9YLhYfW6lGq2ukNvhvoibzYW2icMh+r4VKdODaAs9XwWWdq40CiTcWwk9uw4WCbC5VRCJSUSoRp3c0eyhfokSEs19C7koVwinEnSnc1ScbppqVbQrMqm+HqJwCmht1ohXSwwa1aRQuCWkhOJOIeW5wkl5nGU1rmVpMRdKuAuF3fUY0vXqbjc2DucDwEIq4qwG1xh34FKpbJhEQ8gGAwSi8UaC8e739REqq1NXdRHj6pmJLstT1xbLAyF1E16+PDGRUFgZmYGTdNU2JxlrSYi3Q29vb2cPXuW06dP07YSntnItlwuF06nk8HBQSKRCKlUilwux4ULFygWi1SrVRUu6HAod4DTqSzL2nfc6jvX8gOKxa0HQiHUdu5x9vJxIhAIEIvFeOKJJ8jU3DM7UTvfTqdy6/T1KRHeKhyyNgAcPqx6Hff3N3Y91wbu9nb1/r6+td+1poVLSztua09qvgq3BxFq2bmErG0hU8vI/OYoAJlaovSXf4QW6UbrP4UsF8G2cH3ml8HpRj/3eezJa9gjKwtquoF++jm0rgGkZWMOD1F98xX+z1KRX7MtRo4/jnQ4ufX452mfvkbfdRXbLDWdTOwQqY5ecg4Xnxq/we8Ov43p8iAFxKav4C7lV8R8Tc0FEke5iFHZeeArO12kfUGqH2FJXSnlqk9+vbumt7eXM2fO7ByK9yCg66paZSwGx48rIaplEt4tTiecOaOmvetvDtZyCtxuN9Fo9K53cfLkSb70pS/hdrvvaiB1OBy0tLTwMz/zM/j9fiqVCufPn18NFSQeh//0n+CXf1mJRCMF32qlHprUxeFw8Gu/9ms88sgjPPXUU9wql3eXQ1Cjo0NZ6C+9tPm1p56Cr3xFGS3R6O7bXuq6ug9OnVLuoPPn1fNSwiuvqNf/23/b9uN7okI5y6JcqTBaKJCv0/3Jnc9zrFzCWa2ic0eLPmlDPoMtDHDcRlbLIG3KYzcoB1sYbW3HUcoTSAyot2sG+WgXhsdP3/gtxMRN7PgEoWoFt4TK/BRmqIVg9z68moVWUouvQtdx9R0j5G/hYC5NX3qJ7sQspsOFFAJ/LrWaOLUBKXHmU3SWc/yiz4tZJ6P3jNdH1OPFudPMZoUFy2Ikl78nMbNtm/fTacYzGcx1QrYM3AZeLhaJ5HLbfn63VKTktNtN7166gKTcaJXsRVli2wZNY7GlhYt3vFSSktfyedpzOUIeT92s41yhQKZYJLVFKYBbwHkpN2Z87hIpJVUpGfX7mR8YoPjOOxu/QzZLRz7P/moVn8eDs571ZtuU8nlSTidDsCESzAE84/Hcs4tqPWWvlwtCsN78kVLyfrmMXSjQks/f8+L2dKHAXLlMdp0Bk7FtrlUquItF5hu4touFAjdKJUbXxaZLIVhwOrntcPAj0ySvaXz+bs7NSoTXkNvN7B0v9YZCHBwYwNnejt7ogvcdSKeTclcXy9PTvL/eWCntbHTuicjPFAuMJZb5f+bnGc5vv1C7L5fh69kMXaUi20Z25hLYKxE9Umjkflhmtr2H//65r9AebOXRsFpksITGpa5ePIUcX33hb/Cl43hSMzgAh9A4OVJB69mP99OfRx44hHXgFKBE3rtvkGghR9/rP0TO3MJONNKj1SKwcJsnIiF+Nharu/5gWRWsfIaq09lQe7/3SmV+Y3YW614sVstCTkzAzAxynRC9XSrxTibD17drsn2XBDSN8z09nHpIpv3fHx3li0Js6PaVsCz+zdKSmjHslJSSyUAyib3F+/48neZ/zN55a98lLhfy7FlkzVpbx+Omyb8pFDjY1UV7+/ahyrZtMycEb7e28rwQrHfgBTSN/9LRwcGurr05XmAWeFrXWR8MagP/MZVCLCyspejfCwsLyOVl5LrzP16tMpHN8j8XF1WUyU4UCrC8jMyvBUOYUvLdfB5SKf50dpbfikb5h7s8N1JKng8G+eYdz3+mpYV/e/gwbW1tdz24mpbFvGFwPpXit4TYVdvQvfEnSOWmtpF1d27VomUa3q6NI7+MI+dBShj1+rne1QeAQKB5fXSVCziyCxjFzMrz6nMU04hSRrnOgiE098rihNDQwmGsSgni05BJNlQ3Zv17dOoXXJIIrF24dwO2zYlqhRnDwcK93gxbxFNL2BRWea9YUqIJgf6QRFxo2xynDWtZonf5XSR7sWy+gsOh1iUOHIDTp9diooF8Lsf0xAQ9sdiO510XgjtNho6ODnp6enA5HHv6u21nmnwY192mfdyR3LTDm7fdBqz9hnd7biTQ2dFBf38/MzMzq5m1YuU+0e/hfpGo86xBQ3q1nge+D5ujkMRZ8CGRjHm9vBFuASHQpeRRy8STWcKRX8a4M2u0nFUPCZo/iBbYGNtuJxaxl+Yge+/hi/eKX9qcqFSoCu3eRb7Jw02tTPKBAyqTcnJyVeSz2Szj4+OcqBMTXY+Ojg4GBgZwNpuof2h0dnYyMDCwWs/oQeCBDreQQmOx/xSjg2d41ePj6jr/rwXc0HSGfWHGTvwMSz1H1qwpoSF6T6D1n0ILtyI8m+P3hTeAcepJtJ7Bxg5GMxD7TqJ1H1GljfeQhKZz3u1mvNn7tEmNzk4VjbHO937z5k2+/vWv1y14Vo++vj6OHTvWFPkPkd7eXo4fP37PuRd7yd5E1yDRbHvnOasQWJqO3ajvWQgKwTbS4XZmDQf59QuZQpAWgoThJNfSSWh9DL0QCF8Y4W9BOF2IrcTT4UCLxpBLjVWMRNMQoTZEILLzfGmr+tp1KAnBrG40fl7qHONeNch40FlfG/zOv7ZtrzZPqdWQWV5e/tBdB3tKrQH6ums3nU6vPu4Gv99PS0vLnmX4NtlMIBB44M7xnoi8u1wmmM9gWPVDtixdJxFpJ1BM0tbAdiWQ9/nJ+wJrWal3IKSNo1zCMDdOjWQxp7Jotxl5hG6ghcLYW1j5W39AoIWjKlR0B5WX5SIylVyJ7/+IEELFlyeTH/vEFVA5AaVSicXFRfL5PAsLC+RyOebm5kgmkyQSCS5cuLBaqK1UKm3KBH6gCYW2r9/epMkuqF+gTHeCtBG2WVfWDKuKq1xC2yE71hYaebeXsqOxqYwAPLk0wWyS3mqFRaFcGwiBkJKIbdNRLeNPx3EV1lk3UkIxA/kUslJRxctWLKLVJKtKGXtpHplr0CoSAuEPILw7r45L01QJXzt23hFguMDYo+lzzZ+7nmRS+XV3U3nwAWJ9R6Bay72lpSUSiQRLS0skk0kKhQKJRIJCocDS0hKZTIZ0Os3o6Ohq7fGHjjqx8NVqlWKx+HAkuDW579QV+aq3Fc0sYxTrN/F2lkv4c2n0nSx5TWcpGCbqbSwxR9g23aPDGNkkv3T4Ed73B/nhisjqwOOVMiczCXqvv4m7XFwbiGolD1w6djqBJlsQ6xdezSp2cpHK69+DzGJDx4Kmo3V2o7V37uwOKRWRqWWobhFvv2GbGvjbwLNHTTwMY3ONkcuXVYTGl760li35kFHrkXrz5s3VkrCXL1/m3Xff3VQ2dv2/Hyr3zC7IZDIsLi7S2dnZ9K832ZG6Ip9v6cBRzODfQeRduQSB+Ch6pX4ySEXTuB4M4W/AGlZIjEqBYHqRJy+/QUc4Ske7al4gELgCIZzCIBfdB5klPNma1SYg2IYItoFuYKcSmOO3VUliIbDGb2LPT0J2CSoNlmjVBFowhOYP7OiTl+lF7IkryGK2/hs1HRGNIcLR3cdFbUWtG816ka+tD9Tqfa+cg4eBfD5PJpPh8uXLzMzMcOnSJRYXF7lx4wZzc3ObysK2tLRw6tQpvF4vHo8Ht9uNYRh4vV6mp6f57ne/+7EQ/o/zANZk76kr8rnWGJ6MgX9xrN7b8GSX0PNJHOtLAWwhJGVdZyTUQptPWfKS+tomAL1aIJiu8OzQa5yMdnOu/zigmme/dvAYmqaT6TyAphm4V0ReaBqiJaYehgMrPkfl0rtogRDoOtULLyKTccgt0WiEsxAaWii8MiOo0xQFkKk49lgDLb10A629G621fYcz0dABKoH3+7cW8VJJheI9BNUEa+cxm80yMzPDiy++yNDQEBcvXqS4Lqv0zlyFaDTKZz/7Wdra2ohGo4RCIbxeL21tbVy4cIEXXnjhYyGOD3Ql0SYPHHVFPtnShmlXaKSqhwZ8Lp2iPbnMd8OtlLa4ECvAiG7Q3trJxMmfpXX2JsHlzQ2n70TYFkYxRShewpVV7hVb09Eyy6SDrVw4coqe1giP6A6CbjcelwfjzNMIr5/K+29jj1/DuvxjLIcDgUAm4lAp07DA9x5F69yH1tqO5qvjaqpUsBJL2NkdLPgamoYWaUeE6nd2aRifb2uRl1LVtE4kdmww8CCQTqe5dOkSP/nJT3jppZeYmpoinU5vKL722GOP8cwzz9DZ2UkwGKS9vZ1QKERfX99q4a9aH1eXy0U4HK6zx4cLr9dLOBx+oCI4mjy41LfkfX4ceTerDVDrIJAcLOYpF/J8P7S1j9kSgmUhWPQEWIgN4kkvNCbySHSzjG6WVxdYpdDA6SNuVrlw7FFsCdFMGofPj8/nRx84DLZF5a3XsKdvI+Pj6nM77m0zWmsnWmwQ4fUh6tTmkWYVO53aVGVz+y+mqdaFjUb47ITDsdbFvVDYmKqfzarU/AfYkq0tsOZyOUZGRnj77bd55ZVXVl/3eDwYhoHT6eTQoUM888wzDAwM0NraSm9vb91Syi6X6+GygGtZuFvgcDhwu90P1/dpct+oK/Kj7V10l3McbWBDQkLf4jxFhxe9PVa3VsViIMSrB4/zqfmbdOxcNmZrpE1w/iZFq4CQn+WVrl7+qLefP2xv56uBIBg61tQo1pv/hCw02PtyG4zDJzBOPaXKKdc7pGIB8/YN7OXGFnOFrqPHutFDd18BcQNut4qt/oVfUIutKx3psSzVfqxQUA04HtCkK9u2mZ6e5p133uHf//t/vyEe3OPx8Pzzz3P48GGee+45IpEIkUhktWb7do05HlpKJdUbdIuwT8MwGi5n3KRJ3Tsj7vHhc7mQQol4PQQSfy5JS3qZsG1RlZICbNvw+obPz7FQhGxLB95MAt26m5hyjarQmTMczLjcTLvc5AMhRDAIZlVZ3W4vVErqsVucHvAEEC1RtHDrtvXyV8MyyyXshVlkvnF3jfD61eBRvceysOvrW3d3qzrTaweoWpH5/aqZhKY9kL55y7KYnp5mYmKCeDy+urAaiUSIRqOcPHmSQ4cOcfDgQVwu1wOVVbjnVCpqUF4n8j6fb7XRyE6hk6VSaVNvgSY/ndQV+YutEarLDfpwpaRt6iZWIcvpxz/BLcPBlW2s+RnD4O/9QdoPnKHD3cKRi9/Fn17Y3ZELQSncxXxrL98JhMg67hAtw4EIRzHO/QLW7cvYV368/ba220VbL9qBR9H7DqJFd0jfMqvI5BLm0AUVtdMImoYejaJ5ArC4R/HcLpeqO51ZN3uRUjUzWF5WjYS7utTjAaNcLvPCCy9w+fLlDYlLzzzzDKdPn+bXf/3XH/w+tXtFKqUG5nUut8HBQT7zmc/Qv113qBVs2yYej7OwsPCxWGhucm/UvVvGdZ0Zb4Bk5wGK/p1juY1KAW8xw8nlRQay2ycZSSGwhGAiGOadWA9LkS6KwbZts1q33oZGurWddGs7ptA2fFYIoR66jgi1Ijy7LO8pdHAH0Tr7cJx4FC3UsrrNLbFtrIU41uI8FJJQ3dknLzr60fqOgstz72VY16PrymXT0aGEvFbaVEplGb7/vuoVadtbugLuB1JKqtUqhUKBa9eucfv27Q3iVKu54vF40HW9/m/xsCOlcq/F46ob1Dpr3Ofz0dPT01C52maYZZMadUX+pm4w5guz0H+KQqh+s9hauKM/n+KJ+AxHk8vqhToX2o2WCK/0DjDfMUihtQcp9IYXRqUQLLd1s9zejdQ2dvxZvcB1QxUoqxcRsxW6Ad4Iet8hXE88i9a6vc9crtyU1swU1twk5JcaaH4u0PYdQz/8OMLtRdRpQLJrDEMJfE+P6pG6vklBoaB6UF65oroGPUAiUKlUyOVyvP/++1y9enWDQB08eJAzZ858vN0zNWxb/TZTU+p3WtcUIhAI0N/fv6cNP5p8/NlRXYouN5OxXlyJKRpp/euolNl/7R3ipRwn+gaY03SWt7G65jWNvMPJi8fOMN7WwRcSs3iKWbRqYceocWHbxCauki/lOX74BLNOF7PrxyzLROYymMPvYs+MN3DkAAK8LYj2Hlyf/hX0vv1gOLatBVMTeFnMU33vAvb0bbAbEE4BWnsMvWefKrdg7lT+YJcYhqpi+LM/q3y7tYYKlQrcuqXi6V97TS3C9vbu7b7vknK5TKFQ2GR9CiF+uhYas1nlprl5Uz3WiXwwGOTgwYMEH4IwWECt/2SzambZDPe8b+wo8iWHk5lQhA6PF7kSSlnvVtMtk0h8iliwhX2VCnmnk+VtRDIrNPKaYLizB8vh5JMBNYx4rQpIC1HH0hRSEkzM02Y4GCjkVSi404VhWSvCW8DOpLBnx1WJgZ0QmrLgAxG0jj6Mk4+jBQKIHS5OaVaRxQLW1G3kwhQNlOIEoaOFwmgt0ZXF3D0U+doCbDAIhw6pqBqnU/l2LUv55aen4erVNbeOYaytZ3wIQlqbWdUEfKum2aZpUq1Wt3QxaJp21zHhd+77gaUWMlkoKJFfWFC/FWqgc7lcBINB2tracO+mqflHgBACj8eD0+mkUllXyqNYVEJ/L+e+dl6qVWWkPOi/4wPIjiI/6vbwhz19/M5kjGO+CEYpjagXCSMtjGKCgaVpfuP6B/yv7n2Mtce2fbsNvOl0cSvaAb/0zzk5M87PXX4LX2JqNYN1mx3hKKbpipv8X9/7BpOxfQzvP87xYo6qx4P5/lvY81PYEx9AdefIGhHpRbR04vrFr6J1dqNHog1ZH+boTaypMViehHwDDYBdAfCG0XsGMfb1K4Gt7FDj5m4IheDkSSUYTqdy06yIBhMT8Fd/pYqXxePw+OPq/R9SGGKpVCKXy1EsFrFtm66uroZrrtT89eVy+a6E2rZt0uk0mUzmwRb6lT6u3LgB3/2uKiq3QjQa5atf/SrPPvvsA7nw7PP5eP7557l06RLf/va3V6PNmJqCcFgZG3dbY6daXVtLeuONu2uy/VPOjnd1WdOYd7pY9oXIhtsJLBVx1hF5gcpQdVXLtOVzeHYq0iUEeSHA4eRaawdGtUJ/bB+dwqJVE3hyyS0Ln6k2fxbOSonuxWkMAXg8BHPLWE4H1uRN7EQcynnVDnA7nB6EN4DWNYDW0YfevQ+tNaKic+q1+LNMME3s+DT21G1kuQh2A2GQvgCirRvhDyJcH6JFZhjq0dWlbrIrV5RlVSioQSWRUJE2gQC0t6tHW5v6zD3WpK8lNZmmSTabJR6PMzk5icfjwev10t7evknk67lkcrkcqVSK3l24lmq15cvlMrdv32ZmZpuku13U/d8Wy1Ln1DB2X+a5ttBaKilhn5hQ4ljrQ+r14olEOHb8OD09PQ3nAzidzk1rGMVikVwuh2ma2La9ZwvYuq7T3d29WtZ5lfl5NaPM59U1tZuwXdtW12oyCePjys04NfXQVlO9nzRsui3EBrhyRuPkm9/BWc7v+H7NtnFWy+g7lttV5IXgvNvNtZ5Brnd086nJUc7MT3Pk4nfxZba36DWrgnd5gv7kFH033kITUEaAba1M9epHkGid/WjHn8Z17hPofQMq+7SBG1UWCtipJOYb38Mcfgt2qMBZQx84jPH4Z9Ai2zdi3lNOnID+fnWD+HzwwQdrJZDfeguGhpTY79+vKlWGwxsXa++SWvnfN998kx/84Af85V/+JV/+8pc5d+4c+/fvx+vdmOXr9/u3TdW/evXqqj96N66K2gDzJ3/yJ9y4cWNzPfmaG8C8xxyFfF7NkiKRu7NY83mYmYH//t+VyF+/rkRO0+DAAUInT/L5L3yB1gZLM2iaRmdnJ+3t7RtEfHx8HKfTSS6XIxwO180Q3g26rtPV1UVbWxtCiDVL/rXXlFvwySfV2k9PT+MbrVTUZy9ehD/7M/UbPUARYQ8TDYv8vM/PB22d7PMGCTrcaNXSlr55S3eQbuvjVuc+vt/Vx21/g4tEQmABGU1j1OnC1drGtG4wf/Ip2jMJ9iWX8ObS+FLzG/ar/i0RtoXWiG9baIjOAYQvgBZtR4v1ow8cR4u2IdxulaBUz4JfiX6wZicxr13GXl5oTOA1HRxetHAbeqznw7Xi1+NwKHE/fVpZ7YmE6h2aTqsbplxWllI+ryzR9nZVkjgaVVaY262ed7u3tMIsy6JQKKy6VHK5HPl8nosXL7KwsMDo6CgjIyMUi0Xi8TjT09Nb9r7UNA2Px8NTTz1FMBhkaGho1b1y/fp1LMvi6NGjdHd3s2/fPgzD2GTV2rZNtVolnU6TTCZ58803V/e/sLBFHoZtK0sxFFJrE3fL8LA6P48+qoS+tVWJfa3i551Gg2WpwSWdVlmt77yj1knGxtTx1IRM1+HIEbRjx/AGAg1HF9V8+HfOlpaWlnC5XIyOjgKqVZ2u65vcP9VqlVwuRzabJZPJ0NHRgd/v37Z+va7rtLe309JyR5i1ZSkX1I9+pGaTn/wkeDzqXDkca+5Q01TXYbGoHktLKk/g7beVBV+6i0TGJqs0LPLjwRCver08GYjQmVjEaVY2WckSMB0u5g6c5a3ufv7o0IldT/szmkYGjettnejRDj7bvY+DuSy/dPV9Oqav40vNN7K0uT26gX7oLFrXAI7Tj6OFwugtjRUIkytle2WpiHnjCuUXvwW5eGNfTHeCL4rW3o1jYCVq56PA4VAi/dxzqmfo2JhyC9RKBkip/MA3bsCPfwx9ffDYY3D2rLLuW1vVjXmnwKz8rqZpkkgkyOVyJJNJpqammJ2d5T/8h/+wafo+Pz/PrVu3Ni7OsRZB4/f7+dVf/VX6+vq4fPnyasbrxYsXuXLlCl1dXZw8eZJoNIrX691k9VuWRbFYZHx8nKtXr/LHf/zHXLpUpxpoLR69Fq2y3m2zm+v2tdfUufsX/wIOHoTjx9U2W1vVub/THWSaStwnJtRv8Wd/pkT+TnQdnnwS7fRpPH4/zl2smbjd7k31bWZmZkin0wwNDVGpVOjo6MDpdG4yaiqVCvPz80xMTDA6OsqTTz5JT0/PagmJzYep09fXRywW22wg5fPwP/+nStDr6lJGRDSqDI7atmoDXjwOi4vK/z49DefPfzjrVT9lNO6u0TQquoOR/SdwefwcvvQyjuqaf0wiWOw7xlykiz898gi3g/de9c8GLjucjAeCXDt0glhXDwcPHqO7WCRaLhEq5HFXyrSklhErA07A5cZduxkMh0pkcnsQXh9aKITw+tG6BhHeIFokWrfg2HpUuKSJvbxE5eLrmNeGIL8IZmMXoQhHMJ76rCqcVics80PD41Ht5H7915XlfvGimg6vW+ADlNvh3XfVewIBJe6GsakOfQn4dz4fYSEoFAqYpkmlUiGfz1MoFEilUuwWwzA4evQo1WqV48ePMz8/TzyuBtFyucyLL77IW2+9xYsvvkh/fz/79++npaUFh8PB8vIyi4uLXLp0iXQ6TSqVYnJyEpfLxdNPP004HCYSifDuu+8yNDSkdlgowHe+o1wJU1NqgOvpUdb4bmPybVstbl+6BD/8oRpcXS71O2ua2q6mqf1Uq+qRzSoR3Gox8VOfgkcegaNH1VrJLgYdIQRut5uuri5+5Vd+hZGRkdXBrlQq8c1vfpNwOMxf/dVfceTIEU6fPr0awvrGG2+QyWTI5/PkcrlV104gENi2kqemaQQCAY4ePcrv/M7v8Oabb3Lx4sWNb5qagv/xP9YK6DnW3QOWtWbJl0rqfBQKajDs6YGnn15bJ/rBD9RA0KRhGhb5nNAo6ILx9l4iQmdw5MfoZhUhbaTQsHWDxfZ9jMYG+EGsl/QedKyRQjBjGMwYBlc7u+mwOxm3DnIsk6avkKczncRfyFF1Ta22HnT6AnhXblDhdKF1dCP8AbRQC3pHJ1ogCA4nokGRXY3IqNWmSS1jXr2MPTcO5VxjX0QzEIEwxqGTaG2xHcMy95xaTRuHA86dU9ZUtaqmxIuLa4lRpqlEJ59XVmYdTOA7O+5WrLoDdF1fbeSxnTtM0zS6urpIp9Ps378f27ZZXl7GsixM02R4eHj1vcePH+fMmTPEYjFcLhfT09NMTU3x8ssvr/5mTqeTUCjEI488QmdnJ729vSSSSYYun0PMwwAAD1NJREFUXVKiXKkoUZ6fV4JTrSrXVjC4e5GXUsW1b/3F4NgxJVTDw1u3hRRibeFW11Vk1Kc+pazfQGDXIu90OmlpaeGJJ56gVCoxPDy8uhj+zjvvrL73qaeewjRN8vk86XSab3zjGxsKwwkh+MpXvrJlDsP693g8Hv7/9s4tto0rveO/ufI2FMWLLhQpURdaoWRbdlx74242bo3Uu2mTBrvpPnQL1MhTu4sCBfpSBH0rAuShAfrUp766LYoCQQtsU7QpXGy2mybeNOnGjr3O2nEsS9ZdpESRFG8z04cjUnYsR5RkyZJzfgBBXcjD4Zkz//nOd77zfT09PZw7d45cLsfly5epVqvr6yC5nJjttEJD0E1T7Pc4fXp9RvTBB1Lkt8iWYuYc4O/iCf7bsuhPf4P4wiTtU9fJJoaZTwzzV8dO80mkg8IuheItKiof6QpXQ+2YwTaMWKdY4B0+TCM+/fWOTl4JBsUbFEVY6msXjmIYwje+RReSWynjFotU/uttnMlb2Nf/BzapgtXE8KCOfBN9aARj5CiK+Zh3beq6sFgjEXj6aTFF/ugjMT1+992dL0LeQygUaqYDHh0dZWRkhHg8TmfnxovOiqLg9/sZHh7mtdde4/333+fixYt8+OGHD7h+Pv/8c6anp5sRObVajWq12hQiRVE4f/48J06c4Ny5c/j9flRV5aO7d0Vah88/F5Y0iNnLu+8KMR0cbKE27xZxHOFbVpSHtx0KwQsviHMzOiqet7uQu0Y4HOall17CMAymp6e5ceMGi4v37xm5fPkyt2/fxnEcbNumUHjQcCkWi6ysrGxaCD0cDvPcc89hmibpdJoLFy5w8+bNrR20oogZTDIpNvN1d0M6LTb0NW7Gki2xNTVWFOZMD/gt7nb0oONgrswzGY1zo7uPz0IRxgPBTZsxHYc2x0HBRXEhp2vUlM1PXl1RKKBQ0B/+2nwkhvYIokMA3LWNVc7CLE52AfvOTZzZCSgttxZ2p+pg+tB6+lG7e0U++sc5SBsbpRpTZk2DcFhY7pYlLqRyeT3ipF4XvzeeN0BVVfx+P4ZhNBf7GuGQ0WiUY8eOMTg4yMjISDP3+8OiOhqWfyAQYGBggFwux/z8PPl8Hp/PR7lcplwuk81mmz833tfW1tYsDuLxePD5fIyNjXH06FGSySSmaVKr1fAmk8Jv3ggjLZfFz8vL2w/Pi8WESFer64uq5fL6TQTu7z/DELuOTXPdFRaLiR3IqZRw0Wy0DrJFDMOgs7OT/v5+xsbGcBwHn8/HysoK1WqV1dVVisUixeL90XKmaTbPU6NPN/Ldb/R5oVCI/v5+Vstl/uWDD9bHTrksZo4b4fGIqK5GjeLhYXGTy2TE39vaxLlSFNEvliXGbyQiZl6tRgk1ZgdtbeuRPoYhzp3vq9OIt4rX66WtrY1UKkVwzdiMxWLNnEvbpXFtWJbFwMAA9hYMkW2Z3CWPh38+8SyHlhb5VneKC31DvJXop6y1JmC99RrnikV8dh3NcfmHcJipFn3je4lbKuEs5yj/+B+pX/8EsneED77VuGp/BCUSxzzzbbSOFgqA7zWhkHjE40KYvvc9IXYzM+KxuCjC+ebnRZz9BgMrEAhw4sQJkskk6XSavr4+YrEYyWSSYDBIIpFA07Sm26aVga7rOpFIhDNnznDq1Clefvll5ubmuHLlCtevX+fChQv3WZUej4ezZ8+STCY5cuQI6XSa4eFhwuEwXq+3uUBrmibas88KH/zly+I7XrsmZjGXLgmxsaytb8H//vfhlVfE7GB5WWxA++Uv4Z13Nn59V5eIxEmlhKV66JAQs8buY1V9JGNFVVUsy+Ls2bOcPn2aS5cucfPmTS5evMjExMR9EUz3Eo/HOX/+PL29vaRSKTKZDNFotOUNbENDQ/SmUvxNOCxCQ69dE/3x1lsbXzt9faL/4nHhSuzvF+fh3p3Y4guJYIBoVNwAenrEDTHWYj0GwxB9fOaM6HMQ7YfD9y8E74ChoSFCoRCZTKYZOJBMJrEsa0c1DxRFIRAIcOzYMd58880tvXdbn1pTVG54vOTb2inG+/isrZ1SC1/AdB36azVGcwv82u3P8NYqqE6dqVSGCaudW6EwRVVlqWFx7jHN6JlqFSe7gDNzB3v8Vzh3b0J+AWoi3UKrqH1ptGQata1970Imt0JjUJvmulXv8axbO4WCuKDyeTFlvkdYdUXhtwMBetas7mg0Snd3N7FYjGAwSCQSwefz4fP5tmzBNDbpNKI5enp6mhdJV1fXeiz2GoZhcPz48WaFqHg8TjQaxePxPBh3b5rigu7rE98xEBAump4e4SYIh1u3DBv4fMKqbOzOjESEaPsfUvErGoWBAbGg2t4uhL5huT/Ccd/od9M00TSN/v5+/H4/iqKwsLDQFCLbttF1HVVVm9b/yZMnicVidHR0EAqFWrLkG2iahqGqqOGwMAxsW/SzbW8s8vG4EOvGHg3LenAWY1lCoE+eFAu0iYR4bTQqrPpWUFVxHKq6fo4bM9tH1PehUAhN0wgGg80x2ui/ne5UbqwxpdPpLb1vWyJfAf7XNME0efshpf42wu+4/GapyNOTt3jppz9GLy+j1iuknvldxuP9/H3mKOOGh6XHmczIruOuLFP79BPqn76H/fP/2F47ioLx9DfRj3xDFBzR9f2dYKtxAQQCQnw2wauqvN7by9gmLoWdfGdVVZsi39PTQyaTAeDVV1/ddpvNmP+GJXfq1PbbatCYAVhfynb6gx9srZ1dGh+NfsxkMmQyGc6cOdP0v5fLZVZXVwkEAng8HizLenRpE9rbhZjG40Kcv/vd7bcVi4nH8PD221DV9dlrd/eD/99h/yuKQiwWI9bqzGKLbTfCYqPRVlJFrrO9+cNWLTPX5XilzEAhz3c+epfE3CT66jKqXRXZJG99QmDuNn848wVT4Q6u9wxxsz3MZMBiQtU2LAr+qHAdR6QKnp/FWV7CvvYxTm4Oe/Im7uL05g1sgDp4GO2pE+jDR9BiHWLRdz8LPGxvgO9yXvdda3s32t3H53ejfmxsPjNNs7mm0rgZPNJ+f1RtPYp29uAc7daY3Um7u14YU3VdDNcls1ri8PIiJ65/TKCQQ7snnXBk9gva5zXis1MsdKcYUj38TFUwdIMl0xQhmoqCo4hiIzuhueUamrm73VoFZ24ae/ou1Us/wc3NQn4bAq8oYrNVMo1x6nmx4HpQ0sJKvlaoqvr1yM8v2X2RH6uUGS2v8vs/+zf6Z8axlmfQ6g9ua1ccG6OUpWOySHDxDv1WhBV/iFv9o+SCYcY743zqt/jPttDO7siuiz07g1vIY9+dEH7325/hZqdxS0u4yznYVr1ZULtTGN/+A/T+NFr/EIq8iCQSyWNm10TecF0sxyZVyHN4aZG+uQm6Fu6i1SooGyQmENkr65jlOma5iL9YpO7JYnn8LBdXCLk2bsBivFrE1j04mo6jaWulBNejEfyrJRxj7Wu5rkhU5ohnt7IKtQr2zBRuPo89eRt7ehzn1nUoLbZUtm9DFBWlPYra1Ys2kEHt6ET1y+o9Eonk8bNrIp+s1ThXKvD8L97jmas/J7A8i1Yrs3lRDYFWLaDVivRezZJUFDKqxjlF4U8VhaVEhmI0yUqwnarhYSVgNWu8Hp8NU22UR6vXcfJLuKsl3MIyzmcf4s7dFn74tUgabHstY+UOstv5/Hh+709QkwMY6adkFRyJRLJv2DWR112XoG3jr1XwVsqoTn1DC/5hiHzxLtqa60QHPEAAMHKzBO06oZUAdd2g5PE1LfnAfAB7zU3i2jZuqQjVsqgUlZ2B4spGH7d1VAN0E7UnhdoRR02k0KId+z+KRiKRfK3YRZF3CNTrGK3UPN0igewkgewGWfvW2J5HfYuYfghEMX7jFfSnxtD7+vYus6REIpG0yK6J/Kxu8I4VZGl4jMlQhBO3rhJdXsSav91MJrZdHqud7LVQE4dQEwNo/U+hDx9GjYpardKCl0gk+41dE/msrvOBblFJHSLX3UdHzUEz7+DLTUG92kwNfHBkURR/UPxB1NQo+sgxzOOnUHx+kfhMIpFI9iG7HkJ5QzeYUjX+7/gz9JRG+aOePhJzkwze+AStWkSrH4CqL74wBEIYv/48Wncv+shx1EAQxR+QWfEkEsm+ZtdFvqCqFFSV2XCUmYDFtXKFsqbjz85hlXL4VguYlVVUpw6us08se2WtXJ9H5Jxpj6OEYmiDo2hdCVG+T4q7RCI5AOy6yN9L1jB5MzVEd6KPI0dOcnpmkiPzszx15T2CS/MYpSythljuKpoJwS609GH0o6fQh4ZRIzFUqw00fV9vYZdIJJJ72VORdxSFlbVsdzd1HTPSSU4zGC8eJrySZWRpFl+1gr+8iqe0hFEp7dmxKaEO8FkoVhuKL4ASS6IlBtB6B1GjXajBIOiGXFyVSCQHij0V+QbLisIVTedKrAsl1gVDGbqrFf58cpzEUpbUzASdX/yC9tlbe3ZM6uAYam8G/dAIaiSKPpCW/naJRHLgUR5WtxHgjcXFPfOdWI7N6XyeYGWVUCGPPzuFZyWLW1gR+d2Xl6Cyilsq4CxnoVSAcr6l/O6OZuDoXiqBEFWvn5I/SMUwyQWC5EwPs14v8/FBiqEYaiSG4vWhtof3zC2jAb4DOEMouS47C4bde0xFYTvlaVaXlyktLvJPP/whkx9/fN//fuf113n2Rz96NAe4AQ6irw8aPkXhoO39rgGVA9jXb8RiDxWQr7Tk/2KLeYt3TMd67U+3VsOt17DnZnELK9hTE7j5JZyFWdy7X+AuzoBdFpWa7sEG3C/59W3dQ93bRj6apBSMshjrIu+3GO+IcztgcbUtxFVNY05dG5IuovDwHvGC38+/JhJoB0joVxyHb925w+VqdfMX7yP+Mhrd1rjOKgoL9TrvGQZTX5rh/VYgwJ/t4rXycbnMmYkJigdIfDTg7USC7wQOVg6nv11a4o/n5h73YWyZN74ih/1jcde0hKahqCpaZzdEY2jdcZEWuFoRFn2tCvXKAzln/jqX49+/VLPSVTVcVaduenF0g6rhwdY0Vg0Pq5pGUdMpHCCBlew9mqbh9Xp58cUXOXz48H3/+/LvEsl+Yt+KfCNEUWkU2LU2LxAO8KuZGX6Sz+/WYUm+pqiqiqZpJJPJBwqRt7e3P6ajkkg25yt98hKJRCI52MjwEYlEInmCkSIvkUgkTzBS5CUSieQJRoq8RCKRPMFIkZdIJJInGCnyEolE8gTz/+w5auFh909gAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Basic Optimization Without Transparency\n", + "\n", + "Below we'll start off by performing feature visualization without any sort of transparency." + ], + "metadata": { + "id": "U44pk7xERQ10" + } + }, + { + "cell_type": "code", + "source": [ + "# Set channel optimization target & render visualization\n", + "loss_fn = opt.loss.ChannelActivation(model.mixed4d.conv_3x3_reduce, channel_index=139)\n", + "image = opt.images.NaturalImage((320, 320), channels=3).to(device)\n", + "img_channel, _ = visualize(model, loss_fn, image, n_iter=512, lr=0.02)\n", + "\n", + "# Set neuron optimization target & render visualization\n", + "loss_fn = opt.loss.NeuronActivation(model.mixed4b, channel_index=373)\n", + "image = opt.images.NaturalImage((200, 200), channels=3).to(device)\n", + "img_neuron, _ = visualize(model, loss_fn, image, n_iter=256, lr=0.01)\n", + "\n", + "# Show both visualizations side by side\n", + "img_neuron = F.interpolate(img_neuron, size=(320, 320))\n", + "img_no_alpha = torch.cat([img_channel, img_neuron])\n", + "opt.images.show(img_no_alpha, figsize=(10, 5))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 367, + "referenced_widgets": [ + "370a9f4d87814515a51144d26a9ca8b3", + "fbec190edc884c0aa2342d4c278bc7c6", + "11f67942024d4e3098a9e7d88b0b144d", + "58498c78f5a046a8853c954d6bcb264f", + "2db7e08b9242423c85928c537e7f300d", + "05f2bd3ad5f14f698bef478c33eeb2b1", + "7efa32283f78475c994a3c20011f017d", + "97e90f93bdff4cdb84ed7616f9b2fa08", + "73adf96fa6c84b608c2a6927a5347414", + "4afd2911641f44278eeb8dae71721be8", + "a6fa5361b97d4790a7ed78c928612fd6", + "a98966a99b5b41bc8559e8046b96969f", + "3f4c72541ad84ff0b05071d020cd2f0a", + "5de4bf65e4cf4492aa2f35bb7bcd5167", + "c0fcfadc6d1e4596b9b3a88f1e6d0a0f", + "31fe21e26c214532aeb4844f009e92f0", + "cf4af50e246443a8832eb622bd2b0ddb", + "c615948ca593466fb2602d98da4fb5ef", + "911b842b1d374479b06b272674dee5d1", + "8520b5deb27740d997b4a4a05fe6e493", + "cdd0fd17c90c4a6a9c51036ddf9cde78", + "9f56ee00c73141fb8294ee315a94f718" + ] + }, + "id": "UNnYd0cEtOHN", + "outputId": "76811ff5-48ff-4d42-81d1-0faf56aceaa6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "370a9f4d87814515a51144d26a9ca8b3", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + " 0%| | 0/512 [00:00" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Looking at the above flower and car tire visualizations, we have no way of determining the importance of each part of the visualization. For example, we cannot easily tell what part of the flower is most important or how important the car body and ground are for tire detection.\n", + "\n", + "This limitation of feature visualization may seem like something unavoidable, however it can be overcome with some clever design!\n", + "\n", + "**Optimizing Additional Degrees of Freedom**\n", + "\n", + "* Feature visualization can yield a ton of information about a target, but by default is unable to work with some of the additional degrees of freedom that targets can have. One such area is the importance or saliency of each part of the visualization. In the case of a model trained on 3 channel RGB images, we can view this additional dimension by adding a 4th channel for alpha transparency to our image parameterization. " + ], + "metadata": { + "id": "NJvEZRQcSCr6" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Alpha Channel / Transparency\n", + "\n", + "**Optimizing With The Additional Alpha Channel**\n", + "\n", + "* Using the 4 channel RGBA image parameterization allows us to see the feature importance based on opacity. The more opaque something is, the more important it is. The more transparent something is, the less important it is.\n", + "\n", + "* The optim module has been designed so that using RGBA images is just as easy as RGB images. For example, `NaturalImage()` handles RGBA images without any changes, other than being initialized with `channels=4`.\n", + "\n", + "* To render a 4 channel visualization using a model that only supports 3 channels, we can use Captum's `BlendAlpha()` on our model input as the final transform. The `BlendAlpha()` transform performs [alpha composing](https://en.wikipedia.org/wiki/Alpha_compositing) which turns the 4 channel RGBA image into a 3 channel RGB image." + ], + "metadata": { + "id": "7GB_ASIOafYx" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Basic optimization with transparency\n", + "\n", + "\n", + "For basic optimization with transparency, we use a simple self balancing equation that avoids producing too much transparency or too much opaqueness:\n", + "\n", + "```\n", + "loss_fn = LossFunction * (1.0 - mean(alpha_channel))\n", + "```\n", + "\n", + "The above equation's alpha channel portion can be performed by using Captum's `opt.loss.ChannelLoss` objective with a channel index of `4` for the alpha channel and `opt.images.NaturalImage` as the target. This is demonstrated below." + ], + "metadata": { + "id": "sSknEhony0hd" + } + }, + { + "cell_type": "code", + "source": [ + "image_size = (320, 320)\n", + "\n", + "# Initialize NaturalImage with 4 channels\n", + "image = opt.images.NaturalImage(image_size, channels=4).to(device)\n", + "\n", + "# Set optimization target\n", + "loss_fn = opt.loss.ChannelActivation(model.mixed4d.conv_3x3_reduce, channel_index=139)\n", + "\n", + "# Use NaturalImage output as target, and collect alpha channel for mean()\n", + "loss_fn = loss_fn * (1.0 - opt.loss.ChannelActivation(image, channel_index=3))\n", + "\n", + "# Blend the alpha channel into the image as our final transform\n", + "transforms = [opt.transforms.TransformationRobustness(), opt.transforms.BlendAlpha()]\n", + "\n", + "# Render the visualization\n", + "img_basic, history_basic = visualize(\n", + " model, loss_fn, image, transforms=transforms, n_iter=512\n", + ")\n", + "\n", + "# Show visualization on multiple backgrounds\n", + "# The backgrounds are as follows: No transparency, checkerboard, white, & black\n", + "opt.images.show(create_mosaic(img_basic), images_per_row=2, figsize=(14, 14))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 824, + "referenced_widgets": [ + "f7c74f1afcc044d089932873da46fb0c", + "550cd2bd52134286b76bccbeef7abcb1", + "8cb148d2cac34c0dacac2470bf1e9425", + "c86de569236942e49689347e283dca4c", + "c57371c34d724c24beb4349ed2d537c7", + "969e4090581846f69cd6bf3bf8ad89a4", + "4bffb6e24fd04f9bb81df1458ef1591c", + "0de0fbbd2d194cd386a0bd2b018828cb", + "767f518665f34f4ebf5f9498ff2c9f19", + "46e8522957ac45129b3aee66cdc47f08", + "f06233ce85924fcb8bba14228f4325ef" + ] + }, + "id": "c6eh8j7Jyz-n", + "outputId": "892702f7-6b67-481c-c2e5-910bfe7b05a2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/512 [00:00" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwcAAAMHCAYAAABsWCtPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eZBkV33n+znL3XKvzNqruqo3datb3a2lhRaQECAsCYSMbbCNdxsbDxD2eIlxjN84jO0AG3ue7Tf2jJ8dDOCxWYyxwwNmEUKIAYSE0ILUWlpqdbfU6r32qlzvds55f2RWSbw3Y/TivYiBifxEVERV5a3KzHPPuef7/S03hXOOIUOGDBkyZMiQIUOGDJH/s1/AkCFDhgwZMmTIkCFDvjsYmoMhQ4YMGTJkyJAhQ4YAQ3MwZMiQIUOGDBkyZMiQAUNzMGTIkCFDhgwZMmTIEGBoDoYMGTJkyJAhQ4YMGTJgaA6GDBkyZMiQIUOGDBkCgP6XHhRCDO9zOmTIkCFDhgwZMmTI/2I458R/7/f/ojnY5GdufxeXz+1HJDHtJKU26pEvrCCKAabTxWQOF1YRSlCqxNhMQlWzvLTE2sIKlUqRQMb4VY+zDx1BkGJFTpolTE2W0GEBRqpcXIrJTIQSAtE+w+piRs9YzjRXcVoSBBpPSVIDB2oB0zt3cLYXs7KyjktjKkXN2kYXZTP83OB8HxuGZEKy1uowt61KWTqSboqJU5T28IpFOqsbTDRKqCii0+siRE5U9CmNVDCtnGbeI2llSJMipcELPSZmRhmZqlOduZoLZ84jsyblgsAvFnE2QfoRQXkKKXvYdBGbrqKiGkJonL4EyMBl4FKk6GKzhON/9Vlmrp7Hnw2RZYFU4JyH9K7gk7//Xzh8xQ5mr7+ZMKjTvu9RHv/yCSYmppn/tR+EnqD96GmyjQ71Nx6k9fm7cBhcUsatNSEMENvGMO0XWH7gQURVcabd5UQn5QIaU61w5uIy1iUIYxgNfSajgJKnWMwM1liqUuGHISYskmsPZ3KqRUPdCqJOjx4hxg+wkaIVOLpRle6FReI0pxxphHR004RLapKVbk55XBEKjRD9aah6Pc4tJthahfVOBjLAt4KKy9ixs86zJ5Z5Yd1QKo1SdAIvc+SyxroeZy5OyL0y3dzSiEJ21RqQjnPJ9gIne5rdkSHAkeSWOEsp0qF9cRU9sw0/VYQlD6/kYU4nrC0m1LalpMUNXAaLy3DyYovr9j1D+AYo+K/nQx9+mMneSW6/dhR16MdJ7j7Co08ss78+jZ9moDR6uoF3RY8P/PMf8/O/+j7+9M//mieOHuPAAcUv//IIHzTfx8O/9hFecbvHob2K9VXDN4+mxHM+339VSJB/P1/53DOE8QIz4xLZmONc6xYumy5yvvsYrBYpRaOMbCsTjnWxtsGRB9Y49dij2N4CpaqiNjNLsXiI+FunuCNuUO2dxZlFYumRRFcQRevo8VlONE/SiRfJXAphwNR0idrENPc9+TA2z6j4iiKW3kaTXrlOHGWIrkIkHZrxOotxB6Ui5usVOlmHsZJPKHw8rSlWNCb2yJIMKSIm5rdTrNUxTpG3Y1QoCcplytUqGIfptXGmSTgzBn4ALsALJUIAFpQU2M46IioAEhfnuMyB0KhQkmcgTYpJLdZYsl5Mb3mNLO4SViX+xBTtc8ukGz1kEIAyyE4KyoHy8SslhLO0zlxACijN1sg7MatrGegCYbHM6tI6joQd+3bQPN9ECA/tazAZQoToOKWTbkCphNY+KjfYLEH6BRwCpEDm4AceYS0i7Vp0NSI+nwAOr+rjlX1EanFxDz1dJM81Jk/RvsAPPdKVFBUqzHqCiiRSbV7tJUjonN3A5j0yK6AYEYyW8IsCckd6fh09XkbVIqzJOX/yFO/56z8C4AMf+ABjY2P/33ac/0n86Z/8MQ899CAgkFKw+Tk+AocQEgc4a5FSghBYaxH9AxAIHGCtxTmHFCBEf990CIQQeJ5PmmYI4UC8uKd6WiOkxBqDdRYpBEpJ+k8vUVqRZRlaK7TqHxdgCIoF9uyZ4vtedxnz28YQegQZXY5zkJ49ij+2DbopNs2xpQpesQCbT+vAGQsOhCfBfftr2mLzs4wG73eTOI554BsP8K377uft734nI40Gzrn+e5dy672/HI4fP8573vMecA7rHEoKnAOHA+cwxqA9Ba7/OjafRzgQUmKsRQiBFBIBOCzWOpwTSKVw1uAcSKnx/QJlL2KptYhWPqWwwKEdV7Nv25Xc88SnmJ3ey/ddfi1CaPLc4klJIB1feehr3HbzD+InEq+mETmYVUPaMoSThjzsQaJYPG/J8xZTu5bw9gg8dYiPf/gxXrVnlfm926Gwm+zEMhefbTM93sB1YkQxRE36JNVVvvXEP3Hj7f+a9//un7Gednj9zUWuvGmOB1t7+cqffYg7fmKK+VHNyTNrnIktarTCtZMjePYWvvq1p5ivrFOplcj9edrZbmarHkvJC+hWhWK1RFiR6MgiXEjednzoLz/M6EiVybkpauPThLJB+uwah3sVgvUljG2R+EUWleThlQd4bPlpOnEHa01/vmMxzvTnhzGDqeW+fd7gkEicNQjRXyf9eSKwm+cSkFL2vxCYzbkmBc66rbWolEKqftHK7/3e77Fz166XPc++m/jbv/lb7rzzTqB/TemvF/GSsRP95TgYV629wTGuvzYGYyZEfwylFP1rlLPYwVgZ0x9vsXmRGhyPc/3n4SW/Hzwm6J8v5xwItsZ+cz2LwXUgzdJ/8f29LHNw5aX7uGnv9dhWgvM1JBtQiwkmK9h2h7xlyFUFV/cY0Wv0zq/gxiOWyuOsREuUCz7lCrR6FxibmUXrHp7OUCJnfKqE9EJWXUDDdqAwghd49M7ErGNp99YYCcq0rEP4ijDQyAxe+4oRCo15/HMLlMiRNmC06rPqW8gV1UhipcYUSuTFEsakjI0ElPKM9aU2WS9F+j66XEYUHLvnR8mUohf7KGUplnyiSoHl811GpkboLbVwLiV3OVbCzI4RatNTbL9iHwtL03iuR8lPwTRxeQs/9ClM7kTQxuUVHBZd2oZUDazaBqaNyztAilQWl69wJi/QffxxwthROzBH5YoZTLKM8i5HH7uVsXaHXVdcTmNmN62OYPKRnL3v+HEm33gD57+xTNzeRanmUX/NJdz3z6scvGmU3rGL6CmHv20S5qfZeOIxeq6Cq8UcPX6c8NwKtpNzITN4CByKQEFFaWqeRznQrGUJnpL4SjNSKKHLJTKliZOEycBxmRdQK41z3kh62iOPPC4EGZVGlaBe4vxqh1avQzeNEQqKkUbXBOM7fcy6wxiNVWC6sLdQYiWoUjWSJPMIhc9kqCl4Po3ZGnrKY7YxTaHniFcSFuMCaT7Cjkqdc70F5qNZ9hbHuaRQQQfzZAGMeRFTgaPuZygMzUzQk11qc10KmSSwsCoD1oTP/FSCmChwqnWBxKwzOV9EH67xXCK4ePwIcytfYM90hfyONyDWVtjjOsysW6IrruHSdceOegnP1zgXEVt4YvUe3vHjO7n91mv4zGcf5MyZFYRp0msJfuYHJM/sLbLjxhL75zNOPd6l8LzimluLvOmaW/n0R7r4BZicrHDwsimmL7mJT3/zWsYbj1BVdUYP7YfSOIzA5dOKI19f47F4iciLKM0dZGzXHJXqDPFzjhvKbW52ZRp5ESvKtFWJdX8bYTiPrs0xV59irXuBJGtDICg2FPXJCc69cAZloaokRZEjoxFWpeSCzCiHdWzeZSMeoRR3iXA0KiWcUlS8FM/lhKUiI3MzLJw8i5WaXRM7mN29h2JtBJBoqeh0YirViPFd8wilyHpdjO1S3DWFV4wQ1sdubGBSgwhCio2IbOEiMixgpcL2DC5xSO0RjBdoP7dIOFLEZJa03SPeaBKvbWDyDK9owC+T19vknZjcWJK4TVEpnJTEscMrFdC+IK5O4owlaBRwVtLuCLLcI8skC/kSM7NFxidG6ZZzvKCAFJKk1cWv1nCrHVrdVaK5CaJSEZlkJGtd4m5OoVHBWgkWwmJAZaLcF0IqZH2kTVjwiKoBXqQQWYr0FaIeYqzCWIPU4ClJvpYjCj6dZ9eREXiRwPMV2vcgUHTObOBch7hjsGGIHiviFyU4kK0EV9a4UoA1jlPlZ4G+ObjllluYm5t7OVvDdx2f/Pu/48hj3kDsw4sf8tkXvCBeNAeAMVt6tf+YcyilwDnkYDPti5++iA1DH2stUgq0loON1uB7Hrnt+zLrBL7nMTMzze2338bq6jr33/8Aq6vrhKFPo1Fj28w4hy7dw+c/+Wmunxrj1huuY/eBWZQuIYuvARTJ+X349XFEq0d2fp206SjesA9kXwCAw2WWeCVl7ViHicuLyGqIEOBMXxgIKbZMw6bxAVhfXeNbDz3M5QcO0nvhNN93881Mzc7inMNai+f7W2P6ckzCgw8+iO/pvhGwDjali3M4ZxFCobXCGocYmDZnLVL0TVrfMPSFoxCibyZ0X2whBE4IJAqlA/ygSCEoUpcS4Ry1qMzeqb3ceNlraPbaHN59NVfu3E85koAC6SG0Y3pyjlduP0yAZNX5SAfl7RaXa9ZbLXLdo7GjSBeflVZMr3uGicJTTEzvI/jpPWzzV5jSiqKqImcuZ6VsGRuPcEKACejYDZb0k+x/2/UcvPH1fPGfH+XU2acYLRu2T44wd+MsLzy6m2tv284lpSbZVyF0gv2v2sE149dz9+d77Ng7waG5CbbP7yb39/PshUl2FE+QqgojwW6SyKNUEtQ0LDzf5czFJjvnL2V23w62XbKbYtggP5cyNbPM4fUiDb+INQmdsM5iUGKyWuFk6wzGGZzti1DrTP9n4TCbBtrZLfHaNwYghcIK8aJhdv3z3P+xv1601kgpMXnfzCEHx8oXi1C00ijdP8833XQTVx0+/P9miX/XcP9996Ok7At6YQdT9SXjY6Hv3AVOyG83BwyCELZvCvRgDfSvWXJL3KvBdUpIiZJq6282zfNLn1MgkEIgpcI6u2UerLUDM/HiWja5+Y7v72WZgyjK8cOMNIHqeJGlZ5cIR6qEjRrWi0izGGLItMD0HOniMsYUUS6nLDVeL0UWPVaeP48ulSh4glKQUwo1Qlvy3LJydoleq4M/niFEgXYnxylNMTLMFwpcaMX0gIIWjChBVBes92LiZhNpUrSW5LnFFxmiqCiPhWSdjMSzhCVFo1LB9hJ8K9FIMqlIHeRJwmikKBY0G72YyANPS3wsrtei2+pw4NA4sTSkKqRnMnpxitSWXiejvXaKYmkETxaRWUbSWULTgV6M7YUIeqA9ZHEWFc2BtxPlbD9pgMBYQ4pHEErmf/InefCd72fj0WPgRinsaSCiDJTl1T90Ayf/9n6ypiVvSExWY3JslJm330r3+Abnv/4CUaPK2L7dtE9ZTh2f4vBPXEbzia8Q7hyjePluXKlM++km46+dJxOnKa008S/2yJM1ltaWEVgiIaloicwtrTglMTntTkrgabo+RFpSJMPEXTZaMVE7gKLArzWQMsUgyDOBsY7CxgozYzVcmmNsghGKshTEQpEow2rXsr4QY/GQZZ/USPaPVFiMPSLtg4GiH1EoVXn6aJPxw5exrVpmqlTH6wjWLyR0z6VMZ+BkiXjtCHPFbUxlIdlyl6nxFb55KmP/xBTNTFMIY+peBy+BC5Uao7sr+CdewHVXWWkKTscFZqZgolriniOLpL3zdL0ie665lGuvuYo//oNR1F/fydjeb3LHb72TU4tVnvvoQ4xc+Cq1113JoeJeREPgAoFrSbrnmzz99GP8+O/VcRtPc/mll3Lm1FlOPf8wH/6rdf7sqge45tbtZNJx8vgSF19wlP2A1+6qEW9cz11/9z50ybFjfg/VuSsoVw+g09O0L3yRicmdNHZEbBQc3XiDccZ49JP/zHMnnmdyZpLG/isp7LkKVgWdZ/6BfWkXP8mRrgnCIQixbpGmmSdyCWOT44RJSNxZI8vXeWF1gTYtZBoTeQUwkAJB6GHWL9DqWtRIiA40UbnBZFRDdi7QTXMq5TJpZshFD6scTo2wnJ1CJQI/iHA5JM0e2lc0tk8Rn3aQJNg8wwsVnl9A6AoyrOKHHuSObqtH2s5QVYkbLZDFoHE4YTGZACf6+5DwyBfXseUiwlO4QZTGq5fxAWxG+/wqoa8JSiG9Vpteu4cciZA6oJd3ideaqECiCj4idyTrHWRUplQoEHcd3bU2Lk2ZqE/SO7eILFXwPQeZIU4N0hNkRQ02RHka5YFEov2QbHkVPaFJY4fQAhEq8DVRUdJccmRkFAoKpQ0yM0id4U9VMZlFWIfyVH9jSS3Kk2RWYixkGyku18iqRocCqSXhaBmkRq7GZAZckpNaAb6iOl4jibtk7RSLRHnRy94Uv5sRAoQcZAEGAt8518/WMNAqsu8ctozDQPyzuSF7GjEQO8Y6nB1EwwEh+mJICoGnFUoJjAEhLMYYpOhHT0ulIgcO7OM3f/PXOXLkCTxPsbi4zNraOkGgOXjoUt72Y2/j6FcepNrJWTuXsDYrGR33wLRBVfEacwgFJknJzsekpxYpXL+XfNWiKxKhJKbn6J1OWfrKCmO7fGQlAATkg6htqAcSwfV1CrCytMITjx7hK1+4m7nZaSZ8DzmI+DOIAm9lXAbj950MwuawusH3xm2OeH9slVaDoe4f4QYnSyjZFzmbj21GX53orx2pMCZHCI3vR/heAak8wkIR7YdsC+sEqkxZFPGTHq+cuoHLZ/aTb0hKwuEjSNB0KyGvfOVr8E6vYtMuG2s+2leU64IglCwdaeO6i2SViKnrt+OY5pG7fbzPP0rt8uPc9pO38/zDbVqPPksYnyK4fDtTpQmoDqTehiM5t8FG8zwHrxzFds9y/Q034L54htNHT/NocIY3Tke84tYrWe0GnFxcZXXZoz5WYn91ho32If7bnb/P7J5RgtpVhNXdpHkDkS3QW3+ckfpOClMB3Tzp+52W4ehXHuL4UpM9u+aJ9l1CMD5HvtSjffI4jSQlbwuEMEjpo0RO2VPsHz3ApbP7ePLCk8RJjLMWYyUYMJj+egGMY0vIYgdzR/VFKoAYzA/bd80oKVFSoFR/vhmbYZ1D2E2JKgYecGC4jUXplyU/v+vpxxUE1r2Y/eqbcYexOQKBkHKwF7lvM1fGGhwST3s4LGYQuJAIzCBQ0fdYsh+0ADKT9U2862cNN7M1fZMg+0ENIbcMQX9x9sdcyn5wyIj/n8yB9iNKjRqubPEij5nDu/EnQiSS1skW+apBmybp80ukdRDjNZSvKeSSQsmgnSXrrVEtTuNVBQW3SiAyEIrWyjK9TJB1U5JOi/YLbYTWuCQnRjEzN0IvE4x4TYpZStFXjEeCJ+5fxRuXlLShVAnIraWbdHGBZmZnnUqoWLvYIml3yS72WN/wqfuKUmOEwvYRFpspnW5GURiKBY9MpiAsWmsQFuMcvlbMbSuhKmWKIyUCm1PG4GlHGPgIiiyfepJKY4Y4SXFpi1JNE42OYFfOkq0eQ5c8VDCC8Dog2kAbIRKEr3C6Ri+2rDQ7jFfHCGWZq977Gxx73x/RfPwpCqOO0be+CelHeOZBZg7M4aPYeHCJpa8L/IO7cdZy4i9Po049Q/32PWhPc+YjLV69Zx7tRiB6FXJXHTVfxjUTGnv2oHek9BaWaHYCnluXnIodDo0gZ9L3KUtL1zo24gwSS92TNIWgUQ6oNXxEmtPe6NBrxSwXfE60mrSdIBgp4AtBZhx7tOapYydZuliiUChw4xW72TY3isi7tPM2/3jXMR47vgHC0pjwGC+UGIsatFtQLjpWLq5RUJoRZ9CrKR0kt954I1jFYtOjPF9h5rISk8/CzimPT3z2o1xZq7CzdZ6FzgpPdlN+5myLV/p7KO6bxC0mFFuWMFnBW3+MkX1v4OwLCa3dM7QePkfFbXDL9lGki1h86B/YEx0kc1/l84+c4cjI9fzum/byO++b4tkf/CkK+f2Ibspo1kaP1ahf9tO4O/8Q5W8gb7gZc+TrsLpC48Ah3n75bdzzS7/FdX+ieccdv4BcP8ffnnwQZQR/+sEF3vtvf5Sf/ZVv8IWTCQdeIbntZ2tE8Ri/8akvEJYU0sbs3nkt9W1v4HN3P8fByufZWb2KcPIyHvRmCXTI4eo4FzKPux6/j9HSTq67+bWsbT/M+aRMtPAcB6OLLC3PsjvXGD1PLiJyVSUsbGelNsb4pI9fV0RU6a6HLJzrcGJplWKzQ83TFAslvMgnsT1OL5+llxqEyXhu8Xl2TEwxURkhUYZjS+uEhQpq4wIztRKNyQlsscjKUpurr7oBdfE0Sdqk017Hiyp4qow3UmNmbILuSot2BwoaCrUCUTnCZY6slZBtdFGjFUrjoKzFdbvkuYcOS5BaVCCQWqCUpbfQRoki8cUWsh6Ap/BqRWSkyVdbBH6AiVrQi0FrglqVihNkrVWKYzXqUx7tjR6djS50LI2xIk6k9FaXcX5KoVCjODtKoxQinCLLLPRylEzwlEdUKkCuGdk7QbASsXJmjY1TCxQCSakyQmOqhswMxDl+uUCgfFwO1gVkvRS1ntLLY0TFp1gt4FVL4HsoDHY9Bl8gQ43QGpNa2msxI5eWiM80wdOIoodVAtvL+5tN0yKSHN+BRdDtWlyo6Ugf2QMlDMI3OGm/4z7wPcEgIj1I6m9FLnH99LoVIKVAKYG1/Sj/ppFg828YBG6cGETgQCqJpzUmNyglt/6tlAIpNXmeoyR4nqJaLXHJJfNcfvkuVldXOPXCc7z3vb+B70f8x//0Yf7+k5+ife9jjI3P84af+ynu/8iHOfuJf+K18W3c+sNvhnwBRNh/JXFO/HSX+IxFbx8F41i5a5mRGwp4tZD4NJhTMLeziioX2RTeLhuMh9+P7mJzkJq4l3DPZ7/Elz9/N9WRIsmZc8xEEYHnbRkDOSiDEELAyywvcs5h8xxj+7pECbFVOmKsQSAwxiGkQgqJE30jIpAwEKVKS9RAjyql0EoTBgFZblBKUauMUinVkNKxbWIXjz92H7987Tu5mNY4v3aGsw/dyw3bbyINu8yYBuVYodbOU3IJ1WgHGwst/B11el+/yHQ9IKwUoJfSPXGKyeI2TPdePnPXMteOvolrbn4N429usH7qFmRyFJdk1G2C2DVH4Brw4L0Ifz+84jK45+swVmf8cI1qay9n/vSvmP+diLe+8XaWvxFyupXRbXb55iMLvOv1b+EX/vBrqNUNXv/GCldevo1ms8Y/HH2MbbMN6DWZm30FHTPLxQvn2VU8TiM6gFfbxmOuyDavQEUIzq5d4K4HHmTH5KXc+MM38Iys0EkU1XyDSys54ekp6ipAegGJ8DFBSC+AC2qNP3r7v+fffeJ/48ziGdIkptPrsNbZAGu2zld/DbiBCHX9UpVB6cumMLVbpWAMBCmDUiWBUApfQb45jxB9ATtYOGmWEWnNizVy33tIKdFqIKEFYPrXj83s3IuR+34WxRjzbZF+kw9KEKXsC/3B//Q8Dz2ozHhp9iDP863nemmpUD9j0H8tbpAxcFsm3w5ej+iXc0mJsy/vWv+yzEF+LkVeKggmC4DDK4ZgLKbbIyw4XN3S2WhSFm0KE7tZPNHCpSCkxkpBvL5CknbQRY3L1mg6SZ4rXJ4xUpukIlI2eh1IquTGoKQjqgVcXNzAnjGMT5SZHy/SaWtWWwmrKmB0LKAXt1lqJrhAIwPZHzypSZuGoNogbET0XJN4rUmr2SWaKFO0/RNRkpZ6RTJSL2LSHJdCFHlkGVgjsMKB0wQFjwvPnac4VkdJh+cpkD7NxR4ytFRrY4QaZKARuoFXrqArRbKkhQoydK2IKvaQ+j5I/h7iCs7fCUqBOEApugo/mOWxpuHqoI43WcHJMuvfWsO1n6H+/dcjoxpCCeInniT+yJdxaxpROkjxFT/B2pNN7j36EK8JqjTaDdInN1D3P0eh2CT/TI25d29HTnj9E+lLhKjizh9DtS5hNX6KFXOBNhsYFEJAS0AsvX75lMvBWuLEMlr0mRSGbGGFbi7wvYhX7ZumGEHBgWt2eGF1g4XMkGnL7pGIJRnRdQUOlEJU3MW020TVIs+vtKgEVRpViV/yKfohYkWxkvRoddY5sHeGuBjgqTKVyW3s3L6bWTPFyjfX6NTHueTwHGNTVULpsXtO4JTjrQd+nXEs2Z1HGLvvCRqnT/DF9RP80uQU+Tf+Ft+bJvVGWUOR5WOUn3qS0nHNvc8sct0b97JdNVn65sN84r4v84mV0zzywZ+ndP33c3M9xOSCeNVRGZMc/uqbSO5+Nc9/+uuE+0eZ/ZUbWX9sg6lHAkTvAvYj90D3BeSVDexO2PiL/8hrpgKKl/0k8b//c2782hPsuXyEg7+5l6x6kbf92ic4/0SHvGPYW65xQ6PIT/ziU8hM07GKH/3pSxmdN5w4+ggbDy+zVtvN/XsWKBzehvAmuMQK1LHH+alf+VVSm/KLbznIA+UdLPcMI4sPceDJe7mqejNzbgVvuUbL1snDBq1ijXPlImJHDVPKuXi+hZ+npHGbVrtFwRuhVCoSpYssr59HdgKiyKdeLLDSa6JUTKlYoNU8x+raaZSAUPuMlkPGiz7bZsbw/BBjJdURS2/tNM5axosaHUCpERIWQ57+xlH2vWY/uhQSFIsoCVnPYNpddFlCqMgzRxD4aOewrQTSlNpcDVEqgjG4zOJyg00NuBQ9XcZlOTZ3qNBHF0NcnKKCkDzuUZwYJ222MTbBLyiK45OYbp00cXSWO8S9jDTNsJlgodekVvQRuk6eZuQ00VVHZfsoS88t4RcbaC1BBhgZ4KTC9yStZy+Q9Aw6zrHOw2SaeKNL4HkkWYrwSjjhY6yHTiSdxYRSUZHlDj/18fwyqlFGNnxM2yCEwmkfm1tEBrogUCVJWSiMcUTbKkglcbklbyYIBSQ5MgdRLJHmhriTIjQEQiJsiqp5CBWCAL+3+rI2jO9+xFY5UH8XZfDlsH3ZgrP9CBsOlHxJ5Jr/Z8m+Uoq+xnUotVmzuxn1s5C/mKHwtGZ6eoT3vvf7ufm1Uxx98hi3334r0zPjvOFWn8A/xO5d0/zcL7ydO972w4wIhVKO6449jT3zHNUsxdkuaBB17ngAACAASURBVB+7foT2nU+ijp4mlxOomf3oyj6S1YTTC+cof6mIPjwJp0EebaGLOennQrzbiqAG7zs3uFaMkBlivAbA//lHH+ORbzxCEnexQvKOX383O/fsAQHddrtfIuUHeL7/bWOxWWLy3+1pGIxdZvvju2mvNns2HLJfTjTo2xgUXGOsxfCiKFJKobVGCImyoKRC6ZBrrnsFC4sX2LNrL6+87ia279zFajem+tkihZ2THFgyzFHGdDQzRQVPn0WFCSYoEaceIgXvySUKoeTYeI+Dt+wmXFrlwpFneeTho9x/cZn/8J9/G+Z+k1/xFDZzkAmiCUX0/r2YYztY+twzVK6fQ1QqpC9coHBOQW8dPv40dNYRO8cw+Xnsg59n+84KeuJW8j95D2/cuIj/xkPUbt9O017kT/7LRzDPnCXupuwK5+icy/nYp+5FpD6ZDfj5n3kN+Bkrz56hfapHUJ5gZXqdsH4lZRsx6QxHvvR1PvbxT5E6w4/80B7u1WNkyjJx9hjbFppMNQ7SCFPcuSJdSthqiVZoWQ1iwkrImu3xq7f9O4Tt8PGvfpS7H78HBudGSblV7z6occEN6ugdFmMcanCcGETH+2fb9R8bGG8hBcYMzINS/XKxzWyekmitCfxgyyx8L7LV+uMc1rxoCDbn+db4iH6GZbO8xw5EvVIKjULK/tgwyDo6B0mabvUGbJqwzTIuKSRCCzzhDczBi30EA0s3yHbarUydUgql5KAP5DtnAuFlmoNgzMOrKEAQjkdI4TCrjs5yTrbagZ6jMDJLt5nSenYBz9NI32CNI84V7TxC+IbRMUmvWWB9rYVNMyJtSFo9VlcWWFxq0UwNVjm0hixxFDxFo+ihsGz0LN04RzlHVfgkXkoSOyZna3R7Kb00IypHlIoaCLG5xLZjSBLCUFCvBfg6J806CK1QASghSeOcbs/iaUu3mW1NXM8PUFEJZzIUINsd/FKE9kNkVKLcmMK3g9o8CTKQqEAhPYf0ynjVBnnnOUT3NEKtIYPWYDRXMM8ehVIBWT6CKBzB06/jcGU/zpZARmz7pXfiyiUufOzjpD/251xz538g2P9u5No78FoLhOOHiPYdZOHZNmPNi7y53CNoHceue3hFTTV+gNK2GyjeUoYRiVAQn7Zs3J+QPtBk9A078C+N+Kk/3s/BLy3x2X/6b/zD039IIhSJyegag3KWCEskHUIrWi7nxJrD0zlCS5Q1JIs5Y35ApVxmx47dxKeXMetNQuE413KYFgQyZn3V4JKM8+dW6El4YSnGL1V4w22vQmY5y0sbLC420bkj8wLOxRlqdBKEIAkkXReQFyYpXD3CvkqJo+c0D5+yjISOAyOS2QMhO5uCRQTmjmspXXGA0fuf5zN/90+898LXeLVX4HClRiAFGYZ1s05ImYu2woH1O6msvp7OrmlO7ilz992neejXf5/KHZcgQg9w5O0uSWeJ1smEM//mg1zxmd/iktoMzUdP0btnhekfvInH/u4PuOpHKvCJ98PFNmwEyKMPMRIVELe9lfyfPsDF8ycpz8L4YY/Sdk33kYy1b25weHfIu37xAMvLKb/01mcYcSGjr/5FLhz5GBMH/g1PPHo/5+75M26crnLvxmG2HfphbHWO8W8d5dmvfZ4jD95F7jKunr2Rx655OxcXC/hPfZ0dboPDt/wcX/v7O/kBdZD16jZyFbJRqbDeKKNHDKNFyYmJIkmSU7OQ+Irnm4qzzc/RWzrOqK8w5EzXRynrkIutnGebG6TGMKklCEVqU9Ispuppso6hKSucOpVQr9YoFyNI2xRcl6MrKYQ1tpWKrK8rslaLPVdfRiojSpM+bj1D5BIv0oQjGhX4uDxGyZC8mWKEQAURfqDBGwggqXHCYHODy8Avl+iebqFLAUpbhJL9UGYYYdBIX0O7gxQGyBHGggV/YpR0sYkMYlACKS2F0BGEBdIc2hs9CvUKQTXC8xUyifGxpCuL6IkpMuPIOh1MnFNtlBA6QtsmYTmCMCRHkC2uEAYR5UYFrxSA9rDWYlopXjlEex713aPkJiOcLhDOlrCpJesmeEGOLCiwCqyFNENEqh/t0wqifj0qFmTRwzYzVKRxnkOE/SbYwPUDIVkvRQkf0+tHtfAYRHD/10EItkQ/sCV4NkuCNhsCt1oSxEsb+ga1+oN69xcPGAgoIbeadvvRcYHAUCl5fPivbmbP3jaSJ9i/33Hvl2/Erq3SW7kHT5zmlpv348QVCBlj8hCpI0bf+W6WPvQXrD/wMC6LGf2FdyCr+xCLf4dWZby5cbJGnfhsQiFR7J+T6N4CuBpaxOCt4ZUm0Qc9+rVPkC058rMGupbCayqYpQTnSd583Zup9SIefvrrWOHzkT//G97zn96HFJL7P/1fOfnkEwTlCpXZWd7y0z8LfGdjsDXmm30Qrj/21rqt5tXNqLF8SVO0HAz6VqmKUgipUNojUD5S9eftRtdRG9vNzLZDzM7uYW7HNi7B58DBKyB3iPMdNh66yHP3Pc/6M0+xv1xgbqqB0JLc5BjbQ1hH2wXMrz6IaN9IPBZxzGtzRm7w/t9+B2JPdUvtubRH1k3In+vQ+sjDTP/hHYzrEXpnzyJNDW96nEX/rUxc78MnPgE2go01VG+NoD6BuPZ23Dc/SjPboH61j38wRBVAnOxy8bPPcMfrZnnzW1/LFz/9EI8/dJTpyjy1V/4sZ7/1Uarbfowvf/KvGEsvMDUyzfPxQSZmr8F6RRpPn+LxB+/kwSNPYYXiNYdey/Ed17GxKKgf+xZz9XFK4RTHHzpF6G/Dm5giV5JWPSSrSsoFS8ODTpjw9OlvcWhuB+PTlzB29iSd9BmsAWNzkP35vylordgsFes37+eb50/0m/775XcWBlkEQT9iLQd9PJtlMlIplO6LYYdDbhnJ71VebP5l0/TSH7u+CWZrTgXaI8szcmP6GbOXNAcrpbDYLUOxmWkABuag3yy+WVb0UkP20hKlzeUphMRJi3D9npzNS5wxA6MxKKv8Trwsc2CFw1kQmcT0FNbEpMu9fl1uo4jIAvJexvrCOq7TIZwKyXod8rhHlmRkuUV4ZTprG3RTSe40mdAkxmJbG8RxzEackdjBHQoQ1CJNo6DwUJxZjqmUfOqVCC0lBd/j6FKXrJczW3BoTxFKR+hL6pWIOPfRyiMIA2h16HYNQoFTEMkMkffdlxzcUUGQg/aIAkk3zgCDL0ApTa/XoxL5gwujQ4j+pqCFwIkYrEUHdXQUocMQXaigwgY6rOOVFnHpC5A2sS5B9nP7yIolP9ki7iWI8ZjiQYuUEzjRQJBSnJuktHOKsKapZR3sqbuJT36Mop8jax5C9tCrParP3487W6HQewHvwA0ky5P0Hj+NDRxeaR051YFWSHavYe0bLc4dW2VkxEMEISL3CTLJoSvH2L7nFn4iuorWuZQf+413YbImjoxUCDwkY76iY0HhaCcpeerwrU8QBJgwot6o8UIr52KrjXWOWrlCvewzUfN55uI6QS7otEF2Lb7vEwQVqqUCsfWpqIiJkYiCLrO4dJ6NVpONxSZmI6ZSKWE2ulx8fpHxXZb5A6+kMBEwhs9s6lEyinMrluaTKXvmFKORppVo1qYrJLfv4yev/Vfc/Xv38cmFu7Cdo1xKm1I4Tr0QsNTJodShXPH4zN1fwnRexcG3/hB/c8crqc1sQ4QahKH3tbuwrQWqr70RN96g+H+8mtXf+FdU3/YKSgdysrPLuCdXuewP3sLxd3+IWcYIGnVsexEefwG94y24pS7JRoeNxZToUEj1+jl65jDv+sCjfPSDt9CYfzX1sEmShVx506WgKvzuH/4O/iVv4gsf/s+sLF2ks665kLSYf32PN++f54Mf+jobx+5n7cyTnNgQTFfrXPpv38Wzz7XhzGmuni8xITO++OC9vPIV13HmaIPyeI31tkSOeEzvEtTmAnI/4NiJHLEa8/yFoxxfeZRjzSdIstN4rsOoLDM3PkuK44lzp1jorJNmCUopOt01gigkUA6ZJcg8oUxI0OuxEPfvEpQXFJ1eh6VOgh+GpGGDrNOmpEOq9TojM3USp8llgF/S+J5ABwqpFd5IERdrlLNka4AVKK2wiUUFIaTglMVmFuckMgqRkcYbNbhuAhnYXoqNE9I4xqsXML0EMoMRCqtCHJK8naDyFs6CVy1R0Yq8UkSmGco4WufWQRVAhZjM4NIOqlSlUCmBEiRxjJAO7YeUKiWkEKTtmKzbI2mCX0wJR4qUdozjeRHJSgarHZwMEH6IV/bxyiEqVOioikagqxqhBDLSSD/HdHLwQBZUPwihHChIMosuerhOikkMSIEu+QgnwWbIgkIECptbXCfHZuCHfl8ACIEYNMSprVsdfe+zKfrdi97gJeL2xc100zwIIbYalN1gM3W2v9m+VBRvGgeHwPM0URQSBAEOQRQG/PZv3cDsdIZyLTAJSkIxAic99NkV0tMJ/liMN+KwroTWIVLlhBOj+NtGsEkBXxloncLmG/i1CWSyhAgtOs1wJ07gzhXw3Ary0gMkT+aYhTaSDFmJEdUcYg/zrKVzPIYaVF4RYS5kyLrGxZZtV1X5gb238PrWdTQ3Yj7+D//MxQsL3PWJf2R0osGr3/ojTM7OIrXXv/vSQAj2y0f+x2JO0L+LWG7ct43ni8PXz9aIraNfbKaUQmDp3/Els2m/4TtQBFHE9u3bGZ+c5LWvfB3Tk7vwwirr65KJhqQWato9SzJbY2ysQu3QDCc/dYa7jx3hjcEJRhrb8MMAoxXdngEvIax5fOUf72fijmvZ8+bbuPrNN1EYH0VIAEvy6P3I0RHCiVlcoULw87tpv/+3Kf7smwimFsFohNlB/ZYdrPzlg4zU5xGpw50/CwVQU9fj1jNMs0NvsU3lqln8bZdweqnEp7/6KL/7v/881ckrKYVtbv/Ra7j5hyq0uwlfeeAedu5/C5/76F9wfqHLsxnUsyb7rsm4YqzGf/3CMbaff5SnnlulFRe4dMcEc2+9iRfOdgkWWlyxb5zOxTUurOfMXraL9tkK3XAdbRvokYzKpIdfFqx12hx94jgzhXlOP7NMsqbYUd/NXLWK5xKeWzrJqfUVcmPJ8px8UKYiB+JXKYkcBEXBocXAHEs1yMz1PzxLIHBSYB14qm8ItO/hBz5SasIwwub5luD93sSx2c20aRKkGBhd0c+evPTuYHqwprbKgQbrol/9KF/8j4NMJ7xoqrcanZ3r9/OI/h2gcpsPTFp/1Ddf12b2op9FsFsP9Y/7v10c/we8LHPgVyOCsSIChc0d0ghU0ad7Zh1pDNoT5CZndWGJkm8RK+sILci6hl6z2b/9ldNstLp0RY6vIQh9cifpxW16qSHDYnEY1++ND0JNqRSQJxa/l1LTmkqoyF1Gq5VgU0PRV3hSoKJw0FFvqIUenVxitaBYL1IxCVmeEgV95+Ryg+/7KKlxxtHrZTgpkEoTJxlZ7vqbsgBhDEGgiWpFPNVP5QBIZyFPwSV9R+cH6KCE8guoYAypagilQM7ixElcO8e2UqgNJkQokGMauWJon1/i4tlvseP1I+DHoLajvYT63ozW9SFP3Nthl+ixcddTYK5A+j75epNe+xnCzOL5I9igBXEb2VlCX7yA89bwX1dAxAHx557gS0eOsnJmhcuCUUbf9gN44z7mokVMCIojPuXZMWZGZ4jnU95y87/mzvvvJG4/hXSrOGdYTS25cVgHHRxWCkKZUUhi4m6bc8uCM23DRiehEASY/4u79w6S9LzvOz9PeGPHyTObM3aRiEQEigQBCgRFUxQp2wySrUD7JOvuJB7Lll13J/tM3l3dVZ1d9l3ZPoWSJeooOUiUKFEySVEkAAIkCBCJWIQFdhfYvDM7qafzG55wf7w9A1BO+OOqTvSzaaa7t6vn7bff5/f7fVMQUG/XqCO4sjXAeIGz4IyjnxtUBNIk2P6IoQVbWoZZzrh0EGhUXjLobtFf7WAKgy0cUysdws453n3rJ2mkEeWmYtgDGyqGytM3HrFhMAKSQNGaikimdvP+/+5dPP75hKfOneZyfpWjosf+xiHstKRvzzIcGqZsk+7L51n7+lf5wN/9K4gkAg/DYQntmMCuIk9/DnH8w9Rv2Yu4Yw2pH0YlKaLlsU9eJtl7irmf+EHM7z9UFXlK4dczcOewF87j2oZarIj23MSwdT3nnjrNj/21OW5754cIajO4ssCWCTOuDfT5ub/xIby6g3/yz7/A5uoqPtbUDu/mhnsWefLznyM4l3P+6utsDraI5+q87e5b6BZN6tllpg5IajjyQYqfvYHNcB/h4pi4lRHsa6HrHpsMubwV8NzpFdbPPkxv/TLd/grr4ytsmCuEuuRtszWCKKHWlBSDMaNsC1kOMM7TrtUZZQNckRMKQ4qlpqAWOowzdLIRm1mX1VCQaMEgs7RVRBIFiChBN6epTc9RDkHPBtSaMaGjgqQ9COOrqX8coBXYfsVbVonGjkrc0KASgR04TOEq0VwAKINONKYowDmcL7A+xwsoR+OKDlmUCK2RQlfuDyKEvAAUOgggtJCVWOcpMsO4FOhUI7UkUCC8AhzC58SNhDJzKCnRgSSQE/GeBqk03lmkc0hrCYIAqTQylGA81ilwEi00vnDo6QgVSbyXiKgSa+I94UyI0xXcLCOFjCVCe3COINWgwCmJxeENSOeRiar2AwfOeJyZsPClRgiPMxadBtjSYccl5frgrWwF38dLTFCD7X3xjc3xe+kzvGkCN0EOtsXKrhpECVcJL5XSLC4u8s533sVNN13PPXdDnDyJy8dImSMm2mChJeF0AoOc3uWzmJWc2h5LUrsZwQJKZzRvrNEZx6x3DU0k5fllTHwYIQaQ53g1QrYd0kicHyGHOWKjRPa2kE2LPBZAobB/dpknXnqNxVsOsPvobmQg8dYjI4nPPUEE0/Upphba5OOSD3/8/Qz6JatXV6nVU7a2upTOs7BrF3/wL3+TZHqK2+65i5nZue+Zdv7HjzI7jYGbiFHF9oGdFD4VReINO1MpIdKaZqNBFGic8xjrqAeC9z34AAcO3cBiey9Wp+RSYANNicAMq3K0FmqCmkLUIuK/HKEf1jx34Rq7e8ssihb1xjQucWRulbwvmI9a5E+/ig/2sXDvcZiIPovCIqbqSHMa0buEaN1CeGAKbhyC/QaqnuLWBZw7R1Brk773Hsy3nkXvnkYMBJgRmCv4K1fwbUlcT1GLdzEsWvjBNX7gnfs5eOO7kbqJMzkzaQpoimKA13fj5XX88mc32Np4mXChQXxgHwtLCa8+/hD1TsjJ5ats2jGzR+c5eP31DEVM3XRp7a72TKFbyHZEKerY2YIwCRF1SVgDF3rWe54zZzM2XjnHevk6eX/A2mAZVE6jnjKTxthgDyvjHv3hGIEnEJKSChXY+SXYEfhvf1jchAOvtSTUGmOrgrQSNssKBdIBYRDRaDa5/777ue7oMRbmFrGZqT6b0feXQHlHfCwnjkATje+b6UbVv9u3C+Q20sB24S93BjM7ImPBjtapQtvkjrbgzTanO89PNeiQshpoePcGZOH/3GN3Xt9/vjd4a82BSkJ0PQLn8ZlFKo3YkbSDF2BKi7cWGYaMOx3qu6eJREpRDFG5I8sNpfMQGqJIEUUK4zy2CJFB5Xsrhas2QOFRWpLUEgoxphZIYgmRAqxjNBpRk4paLIkCiY4CLGCLgjgMGI1zsnGGVA4toR4r0sgxzAHj8brq1LyvNnIcIBSlMDDx4PXe4/KcuBEQxCGmNFjjkcYiTIHDobRBSFm5YyiN0A2knkPIOgiJCI4j7EmcuIDPHX7LQ00gQoGc1+jQI4uC4WurnHno6xx5T4SIRgg3or6vZPauY7zyyAvYFzfIXxixEo5oF47YDCiy89R23YG2G7jZKUTRRQ87SL2Jm5PIxSns84KHvvwNTi+/wtxSk4V376d1Ww0CR/ncMrI1A40ILwUq1MTT8MNH3sWTzz7L5vB1IhRSeHqFRXlP7h3FRBFvnGOUZawbx6C0bBYeKSOSUFNPJFE9oGZD5usROZUYMiuhtJY40MRakXU6lFZQWsfIGwg19Wad4UaHoj9koz9klOU451hfXyPavMCxmw5z9/0fQM3NY4UnLSDwgl5uCTOH0pbQgzYC4wU3vWc3SZ7ynWfnWT71DJ2NZTZsTtIImd7VYv2KQBcB8uJpBv5l/Cffi0jm8ZOaINh3EK3OYE//MepADVG/mfR9Ae7aa5CFqKSGk0N6v/9tZn71ToabM4xfv4rKBqT1Nt69Svb6WQZJm+adtxDdcR/j2b2otSEf/9AtqKTA25eRBmzfY/sZOt7gwffciMfxypl7yPMR51dPUk8C7LWCx/7kIWK1wOpwAxtr9h7dy5577uHFS5YZXbA43cQu5+TjlHjPUV67OOCWExFSa4hGbAzGrF/oc3mzy3Mnz0P3ITbLFYS0BJFnZj5h6ehR7tm7yNqKRQWS0fgym1kPU+ZkCHIcOTDOxyTSkgSKdiskqWu2RiXWj9kaZ/QymIojjJVEFpJaSphOEdbmiGozeBESxgFRLSCYnFveejCVeItAIbWsrj/eI1U1jcI5oEIRvHEI4cGCy2wFY2uBtx6PxQIyCUBMPOFDvTPV8UWJ1yH4AszEmcM4XG7IhwXOSoJmg6TRIIoDpCvxTiLR6NCiohiJQwk9aWxsxVl2FhWESGnQgUR6sCODVw4hA1Qa4MrqEmoyRxDbytKuPhHpyWry5o1FpRphq11GxAoRyuq6m5WIcLvBkXilKku96nKGkArbzTHFRCSoZdU0CA+lQwhQWkAgJpPT7/+1jRpsgwQV4Ct2uMDbj9mWI+x8z4QKz7ZIdufOnS8r8aAGIQnDgL179/COd9zNj374g9x443E6nWfwVOcppsDjqkZQKlSrRig9oj9iuHae4aBg/y3xZP/pE+2bIVzeS3mmwF1cwZxaZXO9TituIbIBiE3C+SVkr8QlTRj1UWaErGWI2QRRi/HnPE99/STdjVX23rtEvDuAsUdEAt8ZIVQIpQclEIEkSgJuP3acly9dJg5i8v6AjeVrdDtbbK6s0Nva4uLKVfYdOkgURcRxQpy84Wr155sEz5toWULgRdVQ7SAvby5ItkGcyW1pHDPTbhOHAcaUjPOcVGumA81dt9/MeCjojCrtTRRrSieQxiO1RDmPKBxKSXbf2iJSx3jh2QbLZ19hZAVtXxK1JLVmTH9VEEeS7OUXKWfG+B84XBmgeA9eoBd3w7WT+O4riLqGYA/hO2q4/ilEOIUING40oDg9Jv3ELRTrDYp8FT09oZvl5yhXz1DWFkjvuBu96+3kjGm2So4cnkXoDOwawhX4scXbnCh0XH98L3jL7bfdxSOPbRLGOfVAkV8b8tJ3nidUi1wd9GhOpSxdv5/Z40e40nW0tWG2VSO/NIaohUxqdLoli/sD6kHCSJdsdQ3dawWra30unF3FrK2zmq8SBwLdNsxNN2lOp5ita4hxjSCKccMhaRAQ6oD1YR8vJFJWdKHt92y7d67ezm0+PDsIk5K6yruY2HgGOmBmZpb777uf++67j1vf9jZqjcakmKXK7IDKqvctcOL/Iqw3kK9tWlB1u9+xGZ1M6idr+ys5oQlJpXZQA+erBsNJB76iFymhdlCDSuzMhJYk30A7d4RV7FD6dl7Hzu3fi1b8f6Y5cA689QjnUMKhYk3Zz0nn6ohAYLMctobM7ZoGYRj1FKoZkiQhSRNGGz1W1gZE9YRWYokTBaIkz3PiSJHUE1R/jHQC6SyRhEgrkkihjCfQktwaAgNCK7TwTCWSYNIcWFehAliHEyHDzQ4mKhjnY7AlsfYkCkg13nnGAwORIgoVaRKRj8dYIdBRiA4CAuUQeFxZEogAVxT0u8PKn1cIfFxisKhAoYQAm4EXSNVCBgsIkeBFAeImUM8iapeQNsevjgEF1uOjHNUQtI5oRFPzlX92gfrRx5hbWq0cRGqzTB28k3fOnWHj154j75Sc7z3Okdk6s806UVyQzh5Gbf4p8dw78V2Dl9dQ7RHyxE3wcp2Vf/cK/2bleT48t8j7P/g+kp95ALtWYDobsHEJb1J8EVYdbQHCew5eOcUet4pXBkGE0gHCFhR5QSEqu7IwVESBIi8ty1lGO0xIm3USoVloaBbrAh05yDxz7QSkYmRhUBgS42nP1GmkEWsbPcIgwEqP09CYSom0xPT7kw28ok5YZ+lnhsfPX+X8P/yHfLoxzS1338/UTIP8qiMQgs0cWqkE6xlllvVCEBbVNOP4A00O3nQLD/3pIk98+1WWs5dIswE/cc9d6Jde57snn2NjeJ4DA03x+gvEt92PR1CvKUgXcYPD+KiJ638eVdtALJb4rsAPOqiog76rzubvZtQv/F/Uf/bTdH5lA/PyCukdNyJGG4xeyLk2rnHo4x+ncdON1GVA+/BeVPQ4ZP8KyiHl6gZmY4TPQc5I6H0Tz9v4hZ/+KCq8k9/5fIY58yqPnNxivZtRlOcJ0ya7Dhxi3y23Ipo3U3eCZlJDdwSla5M16gwjgUnWmbv1BEXPc+XUs7z44lVefW2Dje6rSHcRrUOiKKXeVMwt1Nl7Yg/Hf/gHuHFqnoe/+Bqda9e4bC7z2rBDbgw1HTLqd6hrSV6MKbVgqtGgNtUgboaUWR8tC5QoyIxjdWjIfICKDKLWIK5NEagmUtaoLU0RxBpTVAMBIappiaqFk1KuKoSD6Rhf2AqBG1tkK6ycT9QENp1cnLEOvEVKh0Ph0UAlTA5ijR2W6DTCZDkuzxFC4iRIFWFthjMZJssoxgV5WRLVW8y268T1Gn6cU3QNthTIIEHFNXIDQhtw29QKMGUBo6LSJwlR+bV7Qb6RI4IQFStEEqKlwI1LikFJOhMjysmFW6vqyVxlX4oTle2pVpXuIKiEx3bgKkTOTq7PQiBjhQwUrrQI6zGdMUVWNd66HROkIISqMhidRwYKXQ9JZPOtbAXfB2t7o5zQufZSigAAIABJREFUYLalKTuNQfWoNwR+VT/4Zh7w9078xPbvnfuUEsRxxD333M3HPvZRjh8/gXMl6xsp4fw8QdRBlGPIx3gC0BZUF5kKpg80cMBrT73K9IEZWlNDnM0x0TzNpYjm2mlGX/sGxcqQ9dWS1rvvQY9G0FtDNvYgG+uoqf1wpYcPezAVIxan8VcU/Ucv8bWV03zi2I3sak0hfKUpcYMxXBsij8zgUZWrigJfOsYnl7GqSzutEamAdqtFOj3Fy99+gh/5Gz/Nw1/9Knk2Zn11lXqjwVy4uJNF8D2k6glFCOl3Cv9KZPlGJTnp06rPq59QMCbHNo5CgjCoBMpa0oga+FzyzFe+wt33vofGzAIqiimLSlg5tp5mrMALxoXHWUsoqsZw8W0RMwf28fifNlm+usyK2aRpPXe87Qji9TVOP/0Svr+M7ya4zgpq4QAAYSiBNj5cxLsLUD6KCG7HNwR+4KA8j2gmMB+SP75OuPFFwo/8LBu//jmSmUXUrgV8Zw1zesBgdJC5j/4YqtaijceLPQh5DszDYPu43gXcOJtoWyLI9wE38Ym/ci/r2R2sXH6JwStXeHa4xtrWmFF2lnqzzb6jR5k/cBwZLZB4QRpGiJ6nDJrkUUKOQyc5U0dnKIeejTNnOPvqmCuXO/Q6y4hyBZUEpPU6U7MB83vqzB9ZIlmc4YmvfoOLpy+DCkFI2rUGU2mDfpGTW4uSktLYnea6EjBvT8S3rTorXnsUhjgPcZpinEfrkNnZWd7+9rfzqU9+iqIskROnHzER+ntTueqI8K3Z5/7/vSoK4uQz8CZ0YDujQFJpMsQEIcBPnKBEhTwGOtjRNlWPr/ShuOq5jTFVg/0mhMAYg/dVI6wnTW1laeq/R5RcvZgKhXcTGpGUavI63gJsAKhPf/rT/9E7P/OZz3wa4GMf+QjXHbkORgZ3OUNKQd7LIAwQTmA2BhSXVonbAVtXOoRxgTQG0+thywzdbpJvrhBOQ3suAjum3+2y1RkgvKVfGLrdIWNbcf3nmhG7ds1QWEPWHVKWnsI6nJgEz3hPHIfsPbBINhjT644Zj0rwktKrCSfaAhVkqQNJmATUmwmbI8N4OEaLyl1CCLDGEcQhaT2hXoupJyG1WFOLw2qalOcVChFopAqr5N5QoeKUKNIIpVDJIrp2ABnOIFVUwfekCHkAdATBeZAj3Csl7qJDxB6UR+KIY8OJdzX5+//rOrcdukpscvzQIXp91MVLfOXhdZYLwz2zin1zKfHuPcS791N85/do/NQvYs9eQ3S2oMgRSZtgz9tgS/HPvvQhPtX4KHd95ieIf+YOvIT87JjlT/5zmn/rR/CNFKE8KpRVYIcpGf7K36M0jkwaglqd3XN72NdIuNjvY4UACdOthKlmXBUleGygac81aLYkceiw1mB9SXOhho4iFvbOML1riqmZBs0kAhGxlTtyB31TMiwLxlnORrdPZjJaMyk6CWhOJTRaIUHoKUqHKR0jZ3nu0WcQNub6G29i72wIhUAEgjyAfOTxOQRSgIJHv9kj1ZqiFXDgupR7bm1zdLrBqWcv8+grT3HvBw6zq7bI1qDg/KVXOHryW8z+tY8hcDg7xJse1GLkgWOIztehpfF6CREPka0MgPKUo1nzjD7fIXjXHoLWHvSu23FHbkUvtSk7T7P1wE/Rvu3tJK0GQlq8H6Py36yev+iiwpxwDqI9okITXurjxlfBvcydt13PoWPv4/ceElw5/028SlmcWmTmnr/Kkfe8n5tuPMHUYJ6t777OvsOzTIU1us1ZLqgG3a7jb37gELEKefIrT/Hlr/8hp84+TlFcJU1n2Lu4m9nZefbtWeLWd97Ane+7l+vueZBu2eTVK/DH/26V7zz3DS5cPcPIZPRMwcAavC3wdkRNOxZqEbO1iGGZ06g5VntjrnaHbBYlfesZGE83z6mFMfv238DSvnmcTtkyMQdunUdLSRQEGCPATAb8QqClQIbyDXGXdbjM4XsOwgBZDxCRotwYYrqjKlyprIoOL4FII+MQnVaNgUCiIonLx5iyqIJ/cLiiRFIivEHhGG/2KXLD9JE9zB1eIqqluLFCOksQhETNJkErZrTZAULssEqwFc6htSCsx0ivEQ5cKfFGYHNHPnYIlZBMtyj6HjdySEdFodyVoFohPvM4I6pmw3mwDkGlG1CxQgSqQj2sp9wyGONAaYSxSAUyrHJ+i1FJsTystBdCoJsxeioB77C5I0wqcSBe4EvY6nb5tS/8BgCf+tSnaLVab3WP/Au1vvAHv8/Zs2dQ6k0WnH+u0KhEgG9wdLddWr4nvZRqOieE2Cl0KyvAiusbRjEPPPAADzzwXqQKEFLRbE4RhEeR2iJVH1wf1vv4LQPJdtOSU2tJWvvm+KMvXmD/0jXGPYuwgjDrYa9c5NxXXqQ/HnLsQEAcgZ7fXbmYnHme4L4H8Rc3YTAC4RG1NjKawnRHfPtf/z1+/NgnmP4f3o440cYbMJcGjD73DNH7rsc72KEmeyDLKJ/8Or2+IReG2x68jxvuejtzS4scedvNSCnZc2A/SRKTj0cUeU6SpgTBG0XN9nG9euUqv/3b/w/ATvr0G5aK7BzH6u1447Ztf/ZRntPtden0uiA909MtisLQKwxXX7jC4r4DLCzN0kh1VUQKgQ0kLgfhq6FVWXrOXSiIQ4lNJfuPhhw5nNAMA1ZOd3j1ynluvn8PzWia5c0OZu08s+OrxLfeXh0SX4DPoDaPSBMoT1cJ7WoXIlhHJAafeXzPETYc5WPX0G+/AVXbj1w6BrNLyEaKUxcY3/Zxart3o3SFoAjWEfZb1Tlh15FhhmpIVN0hGMHGGpgVEOv8wK13MvaH+M6pktdf+y5C1zi6tJ/Zd3+QozedYKk9TzwMKa72mFusk8qQjUadq7ki1Jq7j7eRSM48dYE//dIjrF46i/c5zZkpdh+YZ2qxzf6Di5y45zCLRw+TzuyGoI0Ip/jqlx+j21lDCUEcJYRxQqvR5FpnDclkIi22i+JKg6CERCuJdRX1eK7d4s6jx7jS6bB/70F0oEiSOh/60If5xV/8O4RhSJHnFLkh0iFSqB2OvBBU3bqa+F79Be4Pvv61r/P0U0+/cX4DsJ0Wvf3zSJTShCrcoQdppSq70iBASTXRP9nvsTOt8iLeaAr8Tt7KxFpZVpqG7TRmT2Wwo96kedh2bbPWvoGSTuhf1tkda9RPf/rTn/kP/Xxvzcp0ZDD9AtstKVbHSO8oTEkoI4QQBAtt6lMhw1OrNFsJzz71beZCIJEMAovRlr3XH6E9H7C5fInuxpheJ2OcZcy1K8eT+fmUYKNDPjIMtjzDaIOBdOReMioKxoUhyEtyEyCFp1kPeOT513Gmilh3E2Qj7g9YaimGY5idS/HO0e9neAkHDjcZd0vKlmJkNMXYMh1AaQxqMKZZD0iUJYgDwiQhDBSlyaqPQRzjVYBKEqJmjSgMcBZKLFJP40WEM0Ns3kMmc0AEIgS5AMH7QR5AyN9E3vgi+dMDRl+yqHmIrxMECxZxtcs//dQU/+f/uMnd9xYcSq9QPjli+ZGMrgj4yb99lGTXAnLhI7B1K/6lLsmv/jzlt3uo7BTqfT+CWW1QPr+OuJyhZjf5qAyY630ZfvUgvjuPfyBi/H9sEogbsY+O0LcpqAtMUWCyAi2GTP3UJ/nxEwt8KJA89s0X+cK/+hL9jTO0JtMgqxWbvYy1bk6gNWmUsDQdUgs8o36J944g0SRK0JaKS37E2W4fVIrJHb3OgI2ew+HoDUZM1xo4JRkYsIWl29viwL5pfDMm1U1mpOW22gz77kz517/2PCuv5cQNxSPPbfL85jlO7N7LRz9UY3MV5pSiHit0rZpCZAPDnfc1WX2kR7Ol6DYNYeyZPrCPX/hfPsDDv3OS//5fvMR99x6hfWCK2XOO9XMXMWc/htr38wgyvB3iXY5wA0RzPxSXkfE9uPoeSOY4f37Mb/3jJ/nxUHHwb7eQzRFJq0d83QyivhfnpvnK3/kHfPhTB6jN18izF7HFi9QaKfnqGip2iE6B8DmoEiKgJmG3R/Yt3q8Dmwj6BK6H0ooHfu6T+I0z3HRklnQqY+XCKhefOsOhd9yCHRpecSmDIOLEPsVfujdmWml+5n86xQtP/guabkisU2TQRDcS4qTBqiwYxpKtLc3T31pns7NK3lmn88pDjLMBxhZICqQSxEKhAUPJ2MDsVI3GfIOpmTrN1NNoC37wekvwyIBTlxwrY0/PWnqZY3htlR+tS+YPL9CYO0TJFGakiLTH9MbEjQiR6ooYbsGXAhFScW+g0qM0JSIMqomksMhQEi01sP0QOxjjtnrI+RaqHuEKUxVEwmMLQ7E1Ip6rgw4IU4EfZhSjkqCeMlzbpNZQBDph9li9YvYohxMWJ8DJ6tyWWKQ3uLGnHBuK4TJ4TRwrVBTh4xSRNnDrI4br6zgkYRQRxzH1dowQEYlUBJFGTyuQnrJvyS+WqGaKNuDGDpoK0VCIstJS2G5JiUemEicqKpKsadIZzfDKkLw7RkeKOA5RiaDYMDghK8SgkSAChe1nEFRahGxQErVDVC3AlR678tamSd8Pawda33EcegPe3/H+tuzQjqoidTLZtt8rFNwRA1Lxiq2rNtzRaMTnPvc7rK9v8kt//5cASRDWMaUF9T5QBxHycbz6LvbSZYqnBwS7JHpWI1ROnYIf++BuvvZ/n+eG9xn81hmyM5C/KijiKW751B2oxjy0HoTlFEoH9wf4lQJ6ryF/4D5cD+jkOCvQRyJuzRXBq9/E/94C4gPzuNzhnoD0r9+OP13AvkqU7JwH7xDSEd1xN9cttbhxboqiNLzyjW/x3T/5Em5hhvMXzmGUo720Fw9Mz87wjnvv4+jx675Hm/HmtaPTYHIM2eZEO7YhhT9P51JKghQ4BBoYDIZc21zmvh+8jssnR5gk5+HvbvHK2oBDSw2OHVYUmaRVKoK4ekZnPUZAcDCgd6ag1pZksSWSAYvH55k/2uD1J1b4p//yLD/8gUM0ZmOSswNGZ5+jsfUryNYPgx+Bq0iwkEOwhHBXQL0dHx0Gruf1l1/i6pef4qZmjdZH94LIiA4IvFKgZ8nXM848t8pNH5hDhIoyexkpC5To4rJVpHIwHgNboArQonIbawrIDfgVYIjyEImcZrvJ+3/yr+O2LnH8QEIpR6xf3WKwGTB/ZB6bW877iALN7fvhYF1SjD2f++N1vvoH/5YTrYgoriFrNXQzRMUBm9JSpJLOumVwdcBgVCXIr7/yLPt3HyGbX0KUm8R+zLjf5aWzZzCuolBvR2cJOXEqUpK5mYTAwEYvwwuFR3GtW3LbgdvJ4jG3v/1djHPHlatX+exnf4tP/MRPk/WGpM1aNfzZtt6tmKKTk4O/0I0BTDDKbfRggj4CO5kDWlchfhVLtELJwjDcERnroMpH0UpjXGXFvy1gfiMY0FVZEVTp04HSOFtdw6wxOwFo2xczKeTEaapCcKx1E/F4xa6RUrHtIPafW2+pORBOYHKP8RAcTPFKITdy/KhE1DS6EaKdZBAMOPfyd8i9wPo+kSsIS0Pez+mc3GTclAyDCGsyApmhdEEUSA7PJkRRg+8802cwyNgYFHSGY6bThMU9KfFUgHUaaw3OZwgBkenzjhN1zp/vcGWzZFR6ggCs0IxGlkYSYbOCmZmIA7un2OhZrG1TuHWSeo3FmRbCCDYub1E4h+n26HQG7N3XZipu44RiNHKEtRQVga4lk2uexY3GZHmJ7WfUl+YZr29QDgri9oBkpkRFLaSKJ0cvAS8R1PHxJxGzJwne+XuEwUXOPpNx/hEHNcdf+gjIdMTP/qOD2Md6ZI/1yE4WlE7w3n1HiH/o1xHFNL5MEalGtoa4586g/UXkf/M3MV+9jH/+GjJM0DftJv/KYyxbxyIvwCuP4v5JG/vLc8i1P6LUdYLZBHc6xydjXFBQbnr0gwvEd94NsedPfuNRvvzFhzi3/Dje5gydRSnLsIQSj/GekTGMrEOvO5p9w+G9c+yfb9CONRtjxwuvLpMqw1Ck2MBirKM/HFEUnnqc0pxfYGq+gdSeoshxpSUbSqQvELU63peYLGP54pinT63y859IaRczXLi2n2smIAs7uHSOr5+OWQjggoQgr+wFQ6U4OqOYFx758RYXXijZXDaMNjKKcMzRRc+D//W7uGXtOp5cN5x5NkNPHWDFbdL7316i+T//BqpeINQk1QdA9aouPX8OoXZhszaLe0P+1ufewf/+wX/EP77rKDQXkfoo5CVu9FWMPcF77p/DrjxFMVcjbB7AiJjV1/6UYB2SfA29UOJzg5AeoSVC6spNxyvEFpT506Rmk1turPHYxZC5dsoN+w7zzBNPc3E5I505wA233svmyjqy3WJx0TPbEhycDqmlil/++hbPPfFZytEKKmgQx3NE8QL9vMvaeIVr/TXcRgPOJTg8jgwZhMSH9xAsv4ALIlwm8ENbJV5ai5aaeiSZ210nqiu65ZB9821OvXyJ6brkhoOCqTji1LLn8ZUS5w2DPOOzn/8Se952C3dd18bkIaYHUgvkSFEUFln3qFiitEJEYPsOGQtQ27ZsHhl7XD+DelRNDSMJpcSOJfnIo7IcoRU2N3gqLZTp5iAkWSev2GqhIGqGqBiyrRHJdIIdOUorKAZDTGHR9SZRbBiurpFd26LbL3DO0mjELB3Zj8nHE8qQpBhbinGGHAriuCQIFfWZBjKpE7VrhHFI3jWosWZ8qktuEsJmSBAIpAF5qIXrasSSIqhLhPLYzFKuG/RUAA7KlSE2lMjpiLAdIEpDfmWMFJ7aUlI5YQgoR56oGeOx5D2BtB4lPDJWOATluKig745DBhoZSFT8X0Zz8D0e614gxQRun7gTCba/r3i9TKaV1r4RKiQn3ut/3oNdAMY4pBSYsqSzucHq6gremQlSLLBWVvoVtQupPwzpHbDvT5D2Ka6eGjEcjElmQvbfDCru8q6fu4vy5EWef/gKwWrA4cY+Dt94Per4z8E4AB/DEjAaw/IWwvaRD74b981VfMcjdjcQMwLz6Gn6JbT7X0N87QT+OfBk+NF5RifrNP6rW3AXCnzD4AuLVwp9JEUt7EJoz/KFDb75h1/g9eeeIRsOyC9eQqicrtZsDoZkxhDENUZFydETx/+9us17j7UOrSrUYFugWlm/ih3/9m0UZhutqULkQGm9I2b1QBIpHnxng9kH9rHeu46hkqg4o1A1zm1q2oFgw4AyHqQk1YJ2zdME5J2a9YuGbGAwrsBGlnZdcvzBgyzeNcvpoWBzah9TC1cY2JeZ+vITRB8OQI0nb7RCCANyBN6CPQlqL34s2HfnD5K0buCxX/tVPrj/A6CboKYRZQ9fDtAaDt2zj7JzBh1dTxAdohxfIR9cRGUebS4gm2PI84mBQgCkQID3GkYCa55nqT3P0b0xL2/ETKUhe6eXeOo7TzFyCdPze1hYmmHYGyGSiIWWpxnDfE0xzOGbp7v88RcfJdvaYCPaw/6ZBUQYspUPQA05v7qMuZSi4zZelFhKUILadUuIsxfpOsnymXXWeltYk5OkEYOhq7RbSk7okwKtFUko+dgPHWVtpct3X+lQ2IQ4alIUhtXhFrccvYEPfuBHabVniMMatVodl8N0OkNpy6rpZWKvqQTeAAqE9Xj17+ta/iItv51dwCSTQ6mqQJ/oCAKlSaMaoQyoRQ1GZsjemT3s37WfqJHw9CtP8w/+7i/x2d/9LU6dfpmtzhZFUV2bjS2RCIzzb2oAJtreiRzcOFuZIwj1hnBZbgub/c7nTQo5CbJjR7+wrXP4T623pjkYOdyoxBU5pQB3uY9rJ4hRiddAQyPaCWJPncbSAnn/GnLQQSch7fYUqRljNi5TFilCQ1qLcJEgGxjKcowuBOHiPLsXB9Q1ZOOSUTdnkGX0txwkIUhBFAgSpclGhjjUaG9QGup1jbYCXxaMewO6YUi9VqOXeVTPoZXHFg5v+5SlQGeerDNGWg/e4AtXBdw4z3hs0IOcBFFlBg9LIhuSD7YIE42KY0QQYJVgUHjyq8toHRHXJ9CNKwjqBxEymAjbQryv4W0M9HD2CNR/geSOb3Ng7/NMLV+kc2HIn/y25UhrwJ4jy7jT0L9qudZTDNM9LNz/SeRgATkV4056/EqGWBog925BbRHMOuqH9sOxDHvmFHbkiX/mXg489VnC0kH+Cmw2Qd6MtldI/Z1wpUCIDCcyfOIJZxOCPRGkjtHzPV5+9glePvcUg3yEZCL4BGqhpGJ/CJTWKCSutLSmE+bqIY1A4RyUhWF94Kkrz7XxEBGVhFoROMlCKyINY+rtlPpSkziNSQPN1EyC84ase43eMCMINbHOCbJrjK8NqF0VNOuSpRlBXMBgbBj0clZXS4K0er8KJH0v6VjBn/U8x2bADAvuOBgSTQmWL0jWLiu+9bWz3HVilcb+BW7Z1eKmD95F56jnmV9/mrdf8oSvniY6VFST6kBWXBc1UZDmHriGlG2iVpvUX+RcKMiTm4hUG2QH2ztHef513O6Ixg0haw89wuLutxHW63Rff42Tv/sQ7/zLOeWTI+SdAr1bIuoSggQf7KIMZrBiA78+wEVrNI3inoPzRO/7BPlGB6enue7m2zl8RxORLtHxLY4cC1lsREzXNI1QUxeCrSs9vvybX6AYfhvvBwRyGuMk3TzHKkEPR2mmqIUFyByvBEGsmF2cJlsYIGYibjoc0R8FvPqq5cILGd6B9obIBnS7A3a14YbDDWamPYeimGWdEc5JUgPp0CM3BH5UUHrLaxuX6PS3KnvRTcH5k7C7BrWGIjyqCG0lLqzG2xPawoT+53ETBa+teNPWV82bLcFXwt14oYFIZDUdLk1VjCiFTgKMqAS4LreT89ki8QSRRqSavBxSDoZ017qMh4b6LIjZZsWxTkLCvEQUjlg6okaIj2N0oPAFeJtX4mFn8YVFhYo8N0hZwqDEZgI/UtAF3xNoAWEgkQMo1jOy1S6N6+rEh1qImkSIKu9FqAjrHOWgslsmqK5TFBYZa2TkkVpNXIkm2gMEshYQCoWua2xWVDkQY4uoBRXn2zjKzKBii64H/JcSc+D9G9C5EK5KQJ4UqVqKnWmfc37iXOTx224gb/rDtlmF2JYxi5102G0UIS8ysvEAU44JogptygtHqDX4EuMdSu5GJh8n2HeY2fZJmr1LDFe7vPrwgOnamHQJ3DWYHUqcb2Nax0lvfy9kNUgUvOpAW0StgOkSggaYAfLuRbjyGkQOMb0LHe5j6rfnELmErVOQRwgZIl2XQMzAugFb4HMLkUTOKkQiQUF5JefLv/VvOf3is4x662jpkbGmOTPFkT1L3P7Od1NvTyOVotFo7KADby7bPOwUJNuBUNVRq1CbnbA5Wd2qtSII9CQcq6JKJHHMe++7gVuOz9AMBjRzTbseMohLQizeOezIMlCeIHRIPAWCIY5BKbClZykFnzmO7VKMC+h0JINLJXaly+EjAfFSk6NzGvuDN7P59DUuPfsCC9cy1PrL6KkhBNFEuG5AFBPBpUFwAfQuAt3A11ZZSUJccAxFhJBd7OA1fCEgnCPcFTH87kO0HzgKwtJ77STja4+zeMJjX7+KPJYgGnH1eZazeLEXK5t4OtDv45I1ZkPPLYdazDTeS9EfgKpz5IYTyLCJDepYHbGwIGlGmlokiZQkdHDu7AZ/9m+eZ7T6OLgRNR0zzB1WWEQpkVbgmKMdjSC0CA1hFBDXA/L6iOHlHoenYkKf0OtKbA7tXsHpM2fBO5SoaJBpHBLHGh0IDt8wz7GjTVqtJt95YYNzVzeIRUogUi4tX6ZRqzE/NUPRDxhchIweMzMtxLSv0IKJeJdJADDy++titG0Zap1DSYXwEGjNTGOa47uOs9Xb4sDcQe664U4Ww3mubazy6PnHqamUEzdczyf/20/yh1/8Ak8+9SSXrlwiy3MoKqrQTgAaEw0mVbNgjKk0CkLs5Ie8WUdVrQm9SSqYCMm3kYXtFOz/1HprzQG+4s1Jj3WgpmOywqNLt4MC2dKimgHNXfvovzaCoIGTFi0ktVpCVsaIdh3pHGGlOEahUQaKrKAsDI16iDIpY5UjR4bCGYaDnJqwqFqEEhoMJM7SbMbI1DOdWXTdM84dWdcRZJYkDcFZhFPkmausTwWMrSVppdRChRmPKXNTTUqtJW6GjEeV/7lFVfBxWZIPS8ZbY3QgQTQIAg1aE4YN+v0NAlkShwWuNNhshMvHpPOXEDpEyrSaNLsI75q4cpNybQUXHiVqv5dmY4na4lM0519gOM7ovpAjz2Q0OwH9EjpOMRtNkd53N8Jo1r6ek+JIzQr++VPIH94Nq9+CtkPsuRk1XycPW6x89Zsc/vj9TCdHUC6galD6CHeZQC6R+Ku4c13kzTWkMQhVoK6fRzYVzsKzX36c86deZDDewHiHxJEGkihVlAiUFERC4oUgUoo4jqg1UsalZa03RghFf2joFIKe9az1xkSJZXaqxky7Rpym9HtDwmZMa2GetFYnFIKwrqjVA1Zlxu75JrIYk5YFrSRAJDHrg4jRuEURHsRnC4giIkgEDZOT9xUi1dSEoB3BnkSwUZNsdS1YxclrnpkwZGF/k/p0SkftYvlij1fWc/b0NdP7Ymp7D7L3fQ9y7dIjmGe2mLEl6UGJnpYQOMTEphJpgAFCDUB0CLTlgz85T+fsJeLGDEr2GF84Tf+bF6HRIawV1A71kNlXGT5RY/zM60yPr6JcHQ4GqNkQOSXwYYh3uyD4IVBnKK6sUF4eI2JHvaW56eAMF0YRrdndCN8inUtoLbRpN6bY7BnWshHF2jrnO00WdMrqhuNb336dy6cfBr9BIkJCEU3ETiO8l2SUaJUg1QgResJmg/pMHZ1sUl/YYk8j49bjji0CBkHA2RfsxF/ZVxvnWkk7sZzYI6jPQxAq1pahs+rp9ASbaY256xt0nriIJ2NoDRcfP8lVsYtm+yj1YUQQxRQ1qlX/AAAgAElEQVTXLGJeoLbFkolANUTlzGO3Nw8PucXntrIKLh3eAraikMhQEcykkw29Cu+DSvAmI48sXTWoc+AKgy1LvHXoJMTHIV6N8b6sHq8qbUI+kKiyJMvGOJMR+hLlBSYboVspblwgZKXbQXrExObYS4EtIK6FiFJg+wbXF/iuxHUDwroiLBVuUJJf6NKhT23fzYi4aka3gV+Re3zh8ZlBNqPJNM3hC4cLJAiPDiW+cHjn8LnDGocMQ4KGwhuBUQE2A1sa3Lic0LZ85aQjPK60E6vT7/+1TXeRcnuz3GYoVH/vyGgn0PqbJ5PbG6ygqlm23ezc5P9v+/SLyX3OWC5fuswf/dEf8Vc/8jFAEWiNdwHGZeAKTD4CvUBUu5cknSVufxedvIYpe+SrA+zKkKBI0FIhdErUmCO47iAYGH7bkEyDHG6AGSP2aPzoVUg0TB1CJHWK1SF26yrpnv0k88dgPQYZgh0gfA2l6wi/ie+WiP+XuzcN0uw67/t+55y7v3vv2+wrMIMdGKwkQYIiaZiQTGqJ5FhVWlhR4tiOXE4lJZflRI5dVkkuW1XZZCVlxaVYMuWKtZIUBZIIwQXgAgwwAAaYfaZ7eu9+9/e+dzvn5MPtHoBOpOCDXSX6fOrqfvut7tt9zz3P8/z/v/+CA8MEEXnISRfhlmnRN194h5vnL9LrtbEiR0Yuc4eXePijH+bNC6+yePAgi4cOo5TzvRODf6epay3v6ViKd2mA+zps+b2SIyFKU6UxmlolwPccji9Nce7sEqEzYDDWZGmLIptGESF9hXLAMZo8VbgehAhCD2oexLkgzcu/1rUONH2XxpSD7yrGVtPbzrjdLZg/IvEnQirHTuDYcwyzNzHXN4kOj0pfjg8IjRD75s4UbBchx1jjU2llnHnmGPHWTapLdUyxQbZ+kWKrD14dVUnwZoaQvED6zgCxepHAWUPSREzWIGwgAomlBuIkcBeIXXR3Hb3bQ9Qkdc9lfqbJWFUIqk2MjqhOOtSrFYR0GGWGJM8pBiM2xiEz0uP2asYr31rj1uXXkbrNtBcROAGFLsgzgzCaxBYETojnjyDUhI0KXqBBtnGbPe65G44uOiyfmOedywNuXx0gtGRisoWyBYPhiNBTHFqqcejwJLu9mNsbQyYrESaoUZmT1HRCvKURwqWdFQwu3KZxMkSoOm7m4PqKvFdgQ4N1yhvMOiCcvSH999FWJNg7cO+57aWUSCFphk3unruLj536ATrdLkcOHObsibP4uw7ehmQmb+LOOtRbdVpTLZJkTBiEfPNbL3Hl2hWyNMVYi5LqTtLx/n31PY2MfTO03J/OlQXEfkNjHxdcFgnvoRS9j2v8vooD6wKewGqFGRv8xSrmag8tBYUAkhyblN2y2uIi4doWuhhhbA+TZniBg1uvIesh9AY4QiNci2MVaJ98mJMPRgi7x48WOUoJWqFiXGicLKdSK9NEx0NNK4Co5iA9RTXSIAtCpSlEQJEKqAQ4UuIUCmE04zhHeIrBSFOpeVQ9GOaGYpyXjUhhkYFLnhik56I8d+9wYNCZZjRMqE42yKyLKRRCgotLNk4RvkSLnMxqdJpgE01Uv0DdCUsk5h2ecx1d1CgGF8n1dYp0HuEsotihMr3NIz+ccUn0GXcDqqMM7Y8pBEyKFOd0E3sDBn+a4jw0oDK3irl0G9aacP2L8MEZhCkQE2ewxw8w+vJ5zLV1vPrj5biziMGmwE2UXMILVsBNkYemEekAqwvUwQAcQbFj+OKLz3NzfRmDxZWShqeQvoMTlpQUQxlao7VFOBAEAVpKdoYZPTIc4ZBmgpF2IZekiUZJje8qFpeaGOEzSGJ06GK8kMR69IYJuhsztxCx0tOcPdnCjy1eb0wgWoi5KZpOyMbtOt3BfYzzRbSokYfQGPfoiQrCNVRdj1lHMtsA1VK8sypQoct3r2TguZxZ8DkSGsJ7TvL6F9dZWx7QuZ2Qj8Z4s5p7nv0kvT98HafXxbmaIgNNFEhklTJJVgBOeQNaOwI9xvcUf+1nF1n/1gXiayPEsEtydYNko4e9dI38eB1xVtK5/CeYtzPcbc3p+z1QguDJaahG4FaxZoLh8ABvvTLBva0+DEYUCYiiwAvGzDbHBP42xw9/AL2haI8NtptRMR2auaW7s8NgFLMuJbuForOmef7SAGO3EEIQyf0O/BhlRlhcrEjxXU3gG1TDJ5z1aMwLsvFNpiYTTk0NWZpVKF2hPmmptmC0XZprszxnlIJLTt3P0DMFqz3Nzq2cnTRgZ+STuhPUFpbwLoUUu29jhMv5r56nvu1x9p4hx6N53OZBhjvgbFp0XOYJ2IpAhhIhLbYo9hCjZWGguzlGGkSgkH4pYxBKIRXl/Rjv+QNc9S5ZQyrQGoxFOgKdaUxRYLTF8VRZZCBQrku15RBEFp0mZPEQX8B4METpotQMm4Sks4NfmyEdDcsxsivKw3mWIVxFFmt0HkEh0akl72jkQKF7AjsuDXyOhLQzIt5a5qa+xYnD5xBRqb8uix6BzcBoiQolNJ2SdJZR6k5Tu0dskiUiVVjQmmKU40QSxy+neM4evtQYTTHO8aoeOgGnUpKcrAGTmT9j9//+WmLvwVhqfMtS4F3l+3soHqLU9ar3HFhL5n5J+GBvelA+mPd8CcYglXr3Pa1lZXmFz/7OZ/nUD34c5dXxPUmaKrT2ENpBJ320tui8jnIWUaJPOCVZaIzYeWObzVWHWcdQOC6+MAQqQUwF0Ib0OznBsxnIAXYwhm2BGJ6HUzNgXERjEdNNyXd72CBBHbofm8WQjkvjqygQfgVZG2B9g5yNQA0QdRC1UgOtE8O3X/g2/f4QIST1yUkWjy1w/KF7OXrPvVy98g7jOGZzbQ2tNZVqlZm5+T/z+u83gff11/uhTtLakpSyVzTsy7z2KjkmplocXpphfmYWP5hChdNUGj6jboM8PYjVLVAu0rH4SUqiPISShAoaShJUBNYV7A4UyhdcXNFUpx0mmjAz6yAO+2y8OWJ9NWG0nZOmY4KJORrnPkjy9iZyuIXaKvd7uZ9pJNkrEAosBdhNQFFvVXjkmcMMV96k2E4xvVsUW6sUO50yYHFhAWYEoxt/iL3SJ4wk7kINXAfn6AnwaiADMFN0dqbobGoOzPYgHWIKkMkY34up+GM8L2Z26iimIxilBkdlhKrAzw3ZeEySZmxLh1xLrq3mXN4akZsOypXMBV65T9pRKb+yFitTokATROUeW5tSuMGYNNug3hpzcsbl8KKHWHbY7iXsbBqyfs7UVBNZZBRFQeBAqx5y6EAT6UrefKPLxJRie+jhT89xuBWxerlPtrVFriq88+Jlkl3N/OI8M81p3EqLtJdTBDlG+pjClpkg+zK+3CCcv/jTg9KaVHbtHaUQlEZjX/kcnTzMY4ce5dzcOfJGwdziDJ50STodaj3J6cph5BMNvMBDWMGpE6dLSZWGza0t8jwjLwq00dhiPw9E3pEEKSnf9Trs/zzvkUjur/3iAPYkYf+v6cKfvd5XceAoUx4cjYMeJZh+QqUq0bgk8RgxzPADhTfTwDk6yYHBHDvXdijGMW5QVvhZIel3e/ijHioqb/RcCBJVwQYGPShIB5o8ztF5jvBgKgzJsoyi0FSBcZrRTwqcuRqalN6mYncjweQZ9arL1GKLUV+yVRhaMxGd3Yw0jskLjc5AmA5uzSOJAjzPwQSaXj+lcBSpkWSUmDoHjcDiVFxU6JAUBqoRSa6RwxjfLxhrTVANcARYR2O9gKIQdFfXEbu7RFUX29rfCHwsLrlYxJl9ALv5AjuvfZlxluGG0GrOER5oceyjXUZbVdR3bxCvbNCwI7RehjEU72QsVDPUxg1slCDvewj9q/8MeXaImANO1RBGUJs+zH3/xU8T/8LncKf/Cnb4+5jiMtgdAIy8gTz0g6gfmoYFD8Y1SCVmO4ZJh95rA17sXOdW3scRkqbnce+kzxWp6I5iWhXJIC0YJgblKMYanMJgOgOaoYexgiTTZEaBE1EXDsIrcBXUKy6LBxqMYoNbmaVbpNxevk2nV9BrD3BVweKwzlZfMr8EJ+eP0lhSmExQNB5GiAlUI6V9XSCHAmesWV1rc3m7y+R8C3fX44br4wqXCeVyaC7gsSdctJUETsbNjuGV2znzIubcAXj6Rzye6oSk2zlby322tncZLTSZOHqK5sO3Gbx1G2czwW1YPK9ErJWFwV61riUUEmEEThEzf1LS/cPvkl9JiQ44LD4XkrcNG3/c4eUvQmQFxx5WHH4mwDtWLdnkziJC1jDyIXAfYH0n52/82I/zp7+4QPXpGZwzPsXYJ2lb0tV1Tk4/waJYY11V6G2k3Lo+5PV8zHjo8plnajj3PI5SIS/e1qzOwaFH6qxcfIz+1hcwQCF6KDvC1Tm+BRnUCNwOS7MLhAcncaYS/OhtmtGIQ8egqi31acO1d0YMtw2nzwVc+nqCsZZsbMm15epOxvXdjD88P+TIQsBa2/Lkjx6mvtti+VKF7mCW5qmz5N9ephpWeSUesfbKN3nk4tv8pzMPUj/1UWx1kkqjQDZ9bOSW0pBOhg7LoDBGY0QAVkjS2zHpygb+XTO4cxVEoMApvSZYQ5Gaku9pxJ3QK2NLlJzJcqQvcTwHoS15Ysn6KRqN1OAHVcKKg9GGuDckHg5QQYjrCqJ6Dd+1yCJGD9p4jTrCy5HSIS8K8nSMTQ1+0GLcSzC5y+DmLkXiYLOQCRsy7kl8nYHJ0J2crHebzvAV3lG7/MjHa4hIlMSitCwCbKBQnkW2GhhtEGmBsWXxYDS4jRoUKcJXZVKmsag0xyQFmRQ4wR4WVZQpp16gcAOFTcoME+E5WOS7vpr/CNa+dKhEsAnEPvmEfdlRGZ51Z1IgxZ3OnL3z/e9OGPYTSJV8TxGxl+yaJQk7m+ts3HqT2QOnsNLde12AFRP4DZdx5zxbl5fxQpcgkPjRQdxqROVoh9W1TSruLoEs8PJuORnIwG5q6vMatbkBUyH0R9gvfB2ODqBpYb6JMJLowCJhuIT+0i3EwXuxa9/AprdLc61VWG8ScfwhxN0e1ASCsMzPiAtQgmw948Xda4xsQaNS4fSDD/DhT30Mt17jj373szzyxJOM4pjvfOtldne2OXvfA3z8kz+4d6X/HU+GkO9mGYh9c3J5QctrbAB558Cyf30dx6febPBTP/MTzE+3MKpCFi6gVYSsOBS+hMGILCsYjUYUo5xqK8DpOaw6DoEV1F3FZMthbqGUTZxZsuwMLaPtnKaTM1eH449IjtzjUPQt3Y2YbKgpJqqE82cIDjUZ34xxBhmea9/VwJfdoPJ3MgqsQlrADKlNCeJvfw7WegR3TxE+PIXupQwvXObWi5LIkcycqxEebeE0mqAirFgA0cKKexDuEm99+0t89bf+KX/nv34A98Q8YiHEpj7ZIEGNe8zVTtGwfXrSZ7CT0tYpWapxpcOjxwPkwkEOCsW3tjX2XIX52lGal++hu7mLdgWJaONrQ6gLPCTKDfHULodnD5HVXbzaLlFlh1qQMTEp8bUgqBRcPL9MPlacPB1yfrtPIB1GOzn1WgW0ZfV2wmiwhhdKLA3aZJikTk0dpjFzjHBScv2Lv0+t0uDrt9us7fZ4cHqe5qG74LDC+gGFHGNVBVtVe+M5XRq0hUR48v/T8P4Xbe2zCzzHw3cDPOmy1FwqC4OFcxQDQYCP0wXRK7DbbZxhj4WZKT70mU8jXYnODFvrW8zPzPPMhz/Kt1//LkkaMxyNyPLsXZ/AnvdAIEpli92nR71bBEgpMSa/c3/tE5DKDU0ilXi/JNP3VxygBSQgrKByvI4a9VH1gHiUEdYU5A7JsMAZZIi4QOSS+kQTbV2ko/GdMbs3L3Fzu0clVJw4uohf9WjvdMm0wjUxW7tDrHAQucaxhkYUELqA6xG5LkIaiixFBALV9Ll2fUQyyLGuy8x8nenpGk5Uw/FT5qqC5a0xK1s7pEnGdNVluiYJq4r1zZgiyvFDifIUzbk6UV7QakRIa7FFTq9jcQKfiYMTGG3Q7ZjRaIxjNK6QePUa9cUWjdmInbU2vbUtRr1tinGBl6eomRmSvIm98jncuXtRzSMkScGNt69w19kFvMVnOHA4wQpJEu/QXXmZ8UsbTD14P84kJKNN5EBSFQ6jxCN/q416ICBZiZBPPAbZd8j+4S8jdy7AqoKvKNTPj+DpBogIe36AN/0M9mYP7S9CMYLCYpwRzH8S/1efg94Ys9OHKthqQHJ1RDF0eOXbPSbEBEO/jlKWil/ljTgmFkPicUp7WLJ3lStxXYVSLp409Acxg35C5AY0wgqTjYhaY5r+8g0ybfCFRzKS3LwxphaNGTghV6/16GebtLtjet0M5TlcvLFMPByT8CTBM/dyaPYwt7qaF9/WbK72WLu4gd/RyGQHna2h0yHNQyd5848/T5LXSEcDirRX6tDlDLmOOdVa4pP3HGA7tby6ep3b2y/SsDv8Z4t1nnruENWTD3D0sUVOT9VIRiBO/GXG7T9g6r6Q3mCT4XKb+XFBtABqUiCccK9bHWGdKnk/p/1L1+itAYuSuR8PaDzWAjWB0inTVcNjX9dceqHgC7+nCW/l/Nw/kPR/5CruqatU/8E0cmYDnJxJcYbPNAR2sQILn8EvYlzVwj2gSBpv88bvXeDilU0+9qEniIIheVhFzdxPx5vndzPJ6XXDA3e7fPxcyKcVRLLKZ7/5q/zSE7PY/r9l3jPlWBoXVw4JggH3332a/ql5pg8O8IIOhZY8eqpCFHXxhce1GDozhvmHBPU3FKtVyYGHa1z95oD+bkGRlyepPNG8dj1GIPnD37y6tynlCGNwBczWJvmVX/inDL/2BjsXXofxkNc31rgreZ7axCGS7ZOIVgN3zsc5ANlbq6gnTiJrHqg+tpditIs8UCdfKQhDF5MUCGGR0sM6EptnkGTgB2WKMBa0QUqDW4/IEoMepbieg6p5CM+gtxMcMvxWlTwRCNfDSIEyAmcY4zo+kzPzmHyM9EB6ISbpMl6+gtUVBrtbKOXgB1X8qI7RksbkHKsXV0g6MaE7R6syg8w8bJ4ThQq3GGL663S6r9NmlY/P/TfIiiipLRqs2aPlCIv0gdRQbBfoNC/3wAm3ZGILi9YKoUFojTKlXyMdFShpEcItk6JTjbEWvxGAAn/Kw2bla3AE0vk+eBK/j7UH+SiVU2a/aybe87U9udb+U509j8Le99/pd9vyPcriQd6RIZVFR2lsdhWEniJPU37iZ/8ev/vP/waNpUeQbkSWxCTxiMmpOuHkQxycuRdjJb3OTXqdW9QGI/zZk3zo6RMkX3qBnDHWSLJhiN1JkEdc8lUf7j+Bffkl7FdeQGy8Ce+48CUX8fMp9sBHEGMB3QIZLmFNDHPzYHJsdgsaNTh7Dvkzx7GJgXYKVYXNLKZdoFPJ1kbBA/ecYqfjM7M4R64lv/Mbn8WEBZury3zra1/FCX2qzTr3PfIIH/rox74HEbt/givxsAqjC+7It/aKAqXK6YwuNAi7h2mUaAvS9ciLgo3dEbe3DNHEAplscnvLodsTrF7foTZU2KxDEfcRwhJMN3n9u2vEeY14u08xGpW6FFkhTXMeOTLFM49NcXMz49LNK3R3rjCnejx7osGxjx9CzZ5i7r4KOB5auzD7MHqcUznyGIPRZfxOlzArcKsSAoUQ9fJ/Rc5gRYjebpN++SXSjRwOVGg8dwjVOgiijpgaUqnC4cmc9eeHvPQvOxz6yxVOnemT/+7ziOMe/k88hrBdBB/mZMVSXVTQaEH1R3DyPrY2gagNsRs7LF9e5vZag/vOnsRxxshqCxM0GciQVwpYHMDBeclTNUUkYbR0gEfv+TT/6y/OUWz+EWermgEhGRmOinG9lKOHD2COLXFgokOmJb7jslAPqIQ9XFnjWi/ngWcXGW5rrr/SpSgSnnjuJN/9omF9eUBaaAZ5znasETj4nsKpHQc9ZuP2S7jF16kqWJpu8Yt//+/Q/cKbFOubOGPJ1rUtJgcZ7uQEtcEsYphhpw1UClApYrGFnAz3sg/+Yu9Jd7r4oswPiJRPxYn4q4//BCdmTpHHhqqsUIkkIs+w2z3inet4gctdJz6ECh2wYLVhcWERLHR6nVK6DuiilPDuTwz2u/7alJkTUPp4jDElnUhrpFRlgvKdiUF5vwHvUo14f0bv9ycr0qXu3PUFQkl0LJFTgtAqTBxjpSGaqaOaLtmWRTUrBN4MxXCTpLvO2vY2b1zfYKLmsLQ0iycdBIqJ2QnaN9cYd4eMuiMcX5XEgsAlqFgcDcYI4rhgkI1xA5huuKyt7nJzI0XGGQeWmjgiLEekxuBPVdACKg04caBJmoyIQsvBhRqjrZhtAb1OylxUpV4PyHNN6CicZEieZlin1JV6uSAdxQwLS4GhWa+QDGOKojTy5t0NGocWSdc3Wb2wTLcTgy3TYOdqs1z8h/+EytkZlocX6Q7GtCYkT/zYQ3z3X3+DQ489gK1IfK9Hxe8wfyhEa0n7179AbzGg9cHPwJwh+d3PsXj1DYov/DreL/89qp9xGfyLCwz++GX8bgeVanzvCBRDzP++i1x9A/GJeTj6acznJEyPKWYexn3844jIxWykhD81SZoJ7PkMKYYkNztkUuOdnkOv3eJ/+pN/wb0PfoSfVHdzfeUC//qdt1hL20ipcVVJ+ZBCEHmKqbqHysB1LL4y1B0HTM5g1MGIghPHFsi6IUHNo1atYD2HiysbiGxAJ87YiQ1Bq16m4PqQDrvkY4nROW9+6Tu88advMR45DPsFphhhjYsnAqCBIyPCwKVak2x/6zJPnZql64R4tQWkI4kHMRuXd+j3NlgZXuC3zl/jx548wd+9f5a1yw8z7F/gq92bXP7tmxx0vs7ilMf8yQrND84z/dQTVCsPI7JVphYbdOM1zt9YY/rVGHfH0HjEpXrPMdpasruyQ321w+01wYmnXaofBH/Ow+ZnscEzmP7voyZHHPjrz7H0czd5xr8fwoNkO/+GP7p2i3M3YP7VbaJfqvKV9LP8yW+P+Ue//lfxTx8nz8Y49Xtp/6s/4ML/9Qd8I5zkyGd+jolLX+aFzzuc+diHOXrsOM2oQtj0+YCFm5sF/+cLIx485vOhu3wcFz4Vgv/f/SQv/94BxOrXGA2XGQiHYOp+Fs5uEWcd+tmIaNNwbFpz18Eqbd3m8zcN15TD6gZk1xK4PCa/kZN0DOkFzXM/O8XtrZyrrydsX85IMoMdW6xQGJOWhny717lH8Guf/s+5e7ZO9NwnKM58hNGFDYZXL7BrFK3hddJul0S2UH5EMOUTPnwQ+80exaCNikY48y3UwhzCywmPzyICr8R8ZpD2E2xa4DY93LqHjMopVtZOyTs5SmYgC5QyqMDDSsgLS54VaCtQWjPY3MWbmMFYTdobk/RikkzgFyme7jEYdCFw8d0IM4zZuX4TFcyUGGUNOhjiTs3gu1Ok3QEVFSBkhEpDsiInKwKk1dhuFzt8hSxeJst6SG+BifmF0qypy4LAdgqKrRzpgFyUpY3CEWXOQUVgXMh3C5Sx6H5COOsjI6+cjmiLKyQmz0g2++UBzpV74Wv7Hg6BkZJ0WGCtxub//wa174e1T9IUQiDsu7p3u9ddE6L0Fpi9j/We4W+fqW50aVR21P4kpcQGWktJI7EWBQhdILSgHgY8dOowP/3YGdK1Nhff/hxCx0RTNSrzs6zcypk6fhLjWFzVp1EvEJU6ZmeT/peep9cM6B/8CK7u07h8BX/Yw7z5EvJTP4D3UUvyf9xAXFpFtgfIsYOqnoaiB791DZ6bg0M1UEfLYvKsxSyFOKfPoncLCAXqjI+xAm4l4GTkWzE0PGTTJ+m0eeniWzz4kQ8yOz5O495jfOvtt/nGb76EJMP3ygJrqjXBM88+y6NPfQjX+XOODHcCz94tyPaxsuwFlEm5X/SWfwddaCpRRLM+wQsvXuJzX1wlHhSQJxjtUndCjGgSej71hsJ1C5JrV3n03im6SlJ76BDWGgbbCbs3+vR2Olza7LH74gb/yScPc+7EIqMtSTy8yWu9G6z/1gVmwj+ldTCicnKC4MQBgsVTSO8Motik1ojoD28y2F0luN5FxprwWIg7/zC90RA72EKubRPvCiYen8Y7JZBBBTiHZRKrz6NqKY0Pf5L6By5xynsc4QwYvPI8N178KksvjeDbL+L+whRf/sovo7IWH/jbfxs1OYvJY2RwjN5nf50bK2u0Z48z89iHiLYv8tpLLqeeOkO9VsHzXJY8yQkD3ZHhC2+kPHHMw69KqljONT0a/+XDXPpaE3/9PN1Rh9SbwpuqU1vqgcpYH92gYQ2HW4pq5DOkzfkdzcVuwWos8bb7sD4k20hYXGiwfrHNT/38PVy80eXK+QHrKwm9YcF4u6BQPqQDhFFgyqmmUAE/+IGnqLoFSz/0OHYlJ7vWJl3bJdOSoL+F3klJ1huoqoOa9nBPNlATIXwfSIqAdzGmAooiJ1M55w6coWIjgjwkdGvIXKB6Oc7uDYpOBxtrnJk5wvna3ptAoXPSdoKLQ1j4TDUny0b/XhCaVO9ODPalRPthgvtTgP3PF7q4g2t+b44IQKE1OisnEfuUpT9vva/ioHNrl9GJAbWFJia3oBTKFWR5KckRnosyOeb2AN/30K6AiRAdNUDEeMM2hycmsFWHoDnDzvqYcdJGqpwCS1gJqY4zxoUmFWXsduQCQjMY2pKg4issmiQpiAQEjmEoFY7RrC73uLbSp1p3mZuO8GYmuXKjS03mzMy3qE3XGHcHdK1PiAYPiHNibSiMQXkQTNZpSo/uqMAajeNJkmxMvTnJ5OIsjuPiDfqItE/g5HhyRLF9gyJuUxQJWZKSjTQ6HTNuv0G9ITATh7n7A+dQtWniIuHqeMCBp2d5+/xXSK5t09ke0uul6GHOhGM52apTvVhw/uoX8VPNlHObNZ0RvPoOC//qReS9x/F9H/feT+Ac/FFUPUe8eJneXdsAACAASURBVBPz9t+FdoL56jJi49tw9Cw8dJz0G28x1JC8WiF4aJGJ546SXk/IVzSOTiiWf5+s4qGPnELVBbXZgJ/7gQf4l//3d/l2+xJZsoGyIxYjHysyhCtQToBXcXF9hcg1gzTHByYjF12AFhbPc8iF4sa1FfzIY2qvYztKM4wrWduIqTUDZGDJ4oSgVqG62GKwLRkmEhnU6a6ukw43KDKNziXWelgMhWwQKImwPWQBjpmnHrV4ZctS8W7TTHaotxrMz87ywRNPIQ9/jEs3Ut559Y95rX2JcNLnh56BynSVB64Ldl+1EI9x1Zgsjem+k7O7NuTUByZQlYigeoSFiYNMTr3J8PBlgmHE8MKQf/v7l/AOHOHEvUe4vrHF51c0v/JDdYIjH4NsjBUV4u4G3/q1VR77m38N1XyOJB8jVITnVQinF/nQb7zA4L/SqAhcO+ZcDDM3Olz4x1/mkc/+GGbnN/m1//63iW8ZJqeOsHj3NAdrOQ/8xC/wuJ5ARTWG1qGTaLzemFYI1Qq8oxOe/4Pr/M7/vMpCr8vPnjxE+J1vcCxP2K5WqU0cY6nqEM808VSBnTrI4mRC2Nlm68YOO4M+l7XDypJi5Ttjxjdz9FqG6mvCUDB5wMUbWF7+XEyaC2qVKkeeqDFOcvIc0k6d3U7OsN9DZ2NmJ2f5H//R32T+eoVL/9ufMp34VMwUtqhRkxEm3SIrfJRbxegcZRIc0yJfFSjPEN07jY0WGLUzsuUhUw/PoKyH1QaUohhbTA7ScdBji2q6yNBFmBKLqpWhGOSoukA5CukoCmswogBP4rZCxjtdCmsQwwFogR5lFL0BZrSL9SLc6Ra+SMiTBD1IsDIET9Hp7RIql0ajCRJuXL9N5Ce4soHZWie1C3huhOvWCJyQcSdFdwc42ZhBnnBDT3C19QQf/Vu1Owf7fLtgfHlI0cupPlzDFgY7MkglEJWyOECAlgUUFhkJbFE+HIQjUZFE6AIjICtyinGKW/cIppu4oUJnmqydokIHJ3BLtn//L3aX7v0uIUqJVNlN2y9MLc4eNvMO0lQKtLF3ign2HvJSKpByH1RUdtv2unB7mXF4QuIowemZJh84OsdHjjRpOEPUZJMjp09ihCKzOVoU1OuGtZWXKNY2GPSGZP0UUo3vCArrkt/YxZ++ScsMcLwOo0Lj3tpBXViB2SbOVAUx/WFk4+kyC+XSEPudfwxWw9ffhrUmdqoF83X09W2yArK4wDtaQwYOul1gehZJjl35OnbpGKLRQASaKBA8fGKaV67d4uVLr+F882s0Fyd57gd/gIsvv8iR+x9gcmaWI6dOMTE1jeOoP1evbPcMB/vTl/1OpbWm9ILsybKkKA3/rutQb03x0DPPsnNzk831XfLxLkXmYnWAlYLMDZkIJDLr4BQRUVjDb7i8tiloBrsoO6LSqnHwcIP77lpA1BWr25or51/ije3r3H/I4ei5AulFHNiRjN+xSN1FeT2KeES8nDDa3mHqxCS4Ea53konJCYpalWLqBk5aJVvd4cXPf5EDDzxN1Jhgd/ca126O+dTPHEM1/wo23cGqkOHtLToX28w/9SlU8ABFcRfKqSOkpXJXwqFf+jzZP4tREwZJn4eSIaML6+z0BLN//b/Fxs/zb37lN5mqThEunaZ1cJ5WxWV26VmW7qniRj6jAjJtCFNDqMD3YF5rfu/LaxRrXY5heWQuRLxxmVlpWPcdpibnka0qWcXBaI3baFLVO3SurVPUY2jmdAKHjZri7eUhydoYfbtHZDXNisPC4Qh3oPna8z3yFI4tHOLMEZ/ROAPrkPYmWN0Ys7O+htSGu08e4Uc/9TSVrqL9Oxdx/AaOaiGNIJAOIh1S5C4i8DFJCpFCVUPkXOXdjvb3g6aIckYmKXGic2GLm+0V1kdtFicNddfDDgRyO4exJh6lrOtZ3KVDHPqwy77fSw8Ktq5uIgOJaCqeevQpXv7utxACgjBgP3V6f9/yPK/0Iuwf8i24ojzK50VRomaV8660D74nU+S9PoQ/b72v4kDtEXryAqwu8KYCCgx5kcNeRYPJURWJTXKEzcm6ffJkiNGWcLLBQniQVBcMdwd02z2KfEzgWXKbkQFZlpHpAm0kVroErkfoO/huhoMhLyxJYUnGhizTzEUu3lyVmYpkdTdjs5Ox0s/Y7mUsFAZVcWk06zSmqoRRSGEETlNxeWeFRsMhDBS6MKRxjtAW32ocV+A7DiiB5wqEtmRJRjTlYtMUJTWOr/D3yH8WiXLKi5yONUkvo5Zbwqpl5if/EurkhwmmjyC8kCAf4Qyv4cavcvREjdFEyOzIUIw9yCao1WeYrOwgd64ht3LscobemmBbHcIde7Q+/zu4bz2OevBR3KeOIyfqCBeK3/tfKJIu0tXIcQ79DmJwkVG3j/9QhN/dxg7b6GttOr0tsBHRaJu0vop77yzh/CF0bQGjBNbNuPueRfSXvsnKICHRGa7IqShQtiDNy7A5B4tMBDorCJSHh0LnFieMUJRmmepEi93tNn4twmu0kK5GJAVamVKfV6nQzAs6nZRRJ8GvQLVSJ1MRqYjw6x5Ii0orCDmDEx6g0RQwcGmGHkW+SjxeJtEG4czR6dwgln267QJn3SMI6iyHV6i84zAX3ccjD97PSn+br926yua1V3l2MWUi6XP8Pgfv8DFU6zjSn8P1E7Jc4DVLTbEdjJAWqpOP41WfQGXn8epDHjs6B56B7DZvv50wq8CbPYOqPYMtLMnVy4xfu8qxZz+NjR5Ei1lsN8cIja47eNXTzH/g75Ms/g94Pwzq7gdorlmOPP4dVuwMV77yVQ6de5SjzYR8skVw8hSjiQnmG4dZ3zT4IqN9Y41Bd5u4s8OrXcn6ztucmZjh8OmHmL5fszsfsb2s+Y0/+eewu8bI83CnpqhPNPEQbK7dhnASN4Pd5Q3saBecIcl6zE48Jrs1ZnQxQe8WuIUh8gRRoNCeRz/N6e/m5AXEvmG4W5AXGimr2DxG6JzQzVmacPnhh2c4FB2kf/UtxM4QkfYwJkHbGYSq46RvEovDRGoAoY+teeh6Rmo0fqEweIw3DMY6hC0Xm4BT9UsTrRQItzw4KwUmKbAWdFJ2w80ox2a6PFgLhc0K8lGMqLg4niyxea6HPz1BJCQ6KUg6AwqdoOouvgxxqy5Z3CHPxhhtsLogHQ5xvBpBmFHkmmE+RuuEbm9IR2VU6VKv1khSh1xYXKGJsgwvHmOSS+wWHZaNoeM2qU0cwD/lYBLIO5r4SkLe18iKpMjL+004pYcRZ68xa0r/AaY071kM0pEIT2GVA5kFVXoOhOOiQhcAUxhMrnEitzRkZxooSUv/Maz9SUGZbmxKJvieMFcI+z1Chf2i4L0Hkn3KkXhPZ27feIgQuI7CV5Inj8xyz0SN0xMhc1M+laceQy4+iBO2MELi6pgi38HJVpicaZCFAdXEoBMHqSMcP8TKmKx9C8dYwh2XzDlAbKuIbYH35S8gF8+hTh9BTNUQoVNiLr/xZcyog/RrkGpIB9hiG+0JxCGFk8To3iZZpwPCRzgKJ4/R4S7qxAGc1hTWDbAYBJqZhQbj8ze4up1QZBsckBl3z5zmyb/0LI3ZeaJajVE8YvW116hUqjx07tE/87rfwS6+h65yJ/VW3BE0YIzZ46wLtBU4fpPmbMh44GB1FamaeGGDek0ihh7TNcVosIzWKYmRWFVjZ2OTsRyxuVIglU/kVml4FWoVyYEjJ7n/3ElutPt87fW3uaVv8MB8QsQutbMhsnUf0ptHuBHCkRirkL6HRWLjPjKs4UWP4gb3IPQa0utyMmhRndCMdm6RbXZp+aBqDyG8B0H0yJevI3oZjVMfBO8IVlRh7GFci/AdVPU+Knf/LYrjv4L86CSieY7GSR9X7hAH87SvXaJ5+AwHF7apHbkLOz2DrNaJvBaDocARhnanSzHqkoxyuoOC3e46xydbHDx8nEgZhvWI3o01Pv+l55G7HcaVEHeuhec0MGnKMB2j3TqBK9lY72HjFJ3mJP2EoY3JK33iq13y3YS6MDQChygIyL0Ko/GYrd0BaSbobxZIISkKQVSZQ9kRgRgzUctYaPicPeihckhvdwhHINJeGWopagjhouI+uZzF9UdQi3BORXh311Cz/h7Rav8G/Q+wQfx7XPv/81obpND0ixjXCt7aeJtWMEmjWSEceNDfIB6PaWuJbtSozFeRkwKbWYqxId/SVKIaYg/CcezgMaYmJtnt7CKl3JNHlv4BaQTIMkfBinf3bCFKIIbaIxaVQWvlBMYY855iYH9/+/c0OfAqPkjFsJuiRxlTky3snoZVlbABhCMQvsLEIxC6pHYYg/IdHByCxgRxu0e8uYWMYxyTgTZYk5NhSIsCYwq0EWRYYkcgHQ8pIfAEw3FJVhiPNYm2zExHTMxXca1FDAyZSemPczxlcNY7NOYn8SoBUilsku51fgTSlVjfITGGNMkZa0PddZHKoovyNY4rCXwX1/XRtsDoHB2PsNkYpQqskuQ5aKsRSlKRgqq2RIHg8Jkasw9/gObTn8SJ7iPBpSi2cfUaFbOCkprW7Bz1xcM4KsTDx6GBGxps8jXyXoVqu0F6q8JO3Ye8yuVL36Fx+VUmb8eElRh/IcarncBcvsz2xteoFkk57q1MYapzxJ11wKE4chx3nODkHnlfkO3uILWHs6DhUAV5z33IiQWc3GW03ue1b7xK3t7ieK3OZlRlZbjDyBTY3OCiSYTACI0qij1TjCWoeniOQ6o1jnJwHZfAUcy1Aka7hiTOyQpwnADP0+gioRmERH4FVcSMMGjhUQ0aTExPUfSqjHJBpXqMyeoEtXAKz5mj3lik1oB4N8eRgjheo9u5xaA9JNN16psddnsCm2uScUxv+zbL+Q0CBMfnepyOThL687SzhG+++QLe9R4//eOfZOqJGsGJY6iJ4wh3BmUG6DSliLuYpItIVzFJD9FJcb0GMqqijuScPXGCeGuFKy+vsrZR8PhZgRt9EKEOYZKSsONWHA48+WHSbojNBTIbMrxykxjLzCc+QNH4UczkP0E+fggxP4dyUyqfOMaceJKVzZusXJli4exDdAdjNkcJW9blniOzPP+5b5AMErZ7Q/LBLk7SZqgDknrKdk9y79RF7qpZ5qOUV1WP2+1XqdSrbHnzNGs1dFBFImnnOSZX2GGbuN1lXAxJ3Zw0UBS5gbUUp1PQCi1OZS/gRSjiVJJqiVUWJfZwwe1RmdjoCBwV4ytN6BgWwgpnah633xmSbPnUwkkcmcPYYrMR1mkhnHlsoTGmjybERD6VWYnOc/QoJe2E6FEpGQrqfonhDByM2DsIWo0QEumWtBoKixmVplw9yqAo9yHhKkxWUAzGuL5ABh4SKJJir7hVIHKyIiPJEqTr4zUqyIok725RZGnZHbU5xbiH8iNkmpEXOYWBJM1pD3ZITJ95p4KqHyG3CXnWoz/MCWOBE28zyq+xbHKuCw/mJ7n3ydnS4L1ZoDdz0uUhwrWoWoBNygOqjATCEdh31S4IY5AuEJbmNKsotbr5npFSCNyahyNchKuwe0nRJs1RvlNiT1ODtRJTFH/2A+D7aL23K2aM3SsO5B1S0b58SEixT7wtP/8ejCmU5m3Ne/GBoKTE9xRPHp/hgwtTHJ2vMnNglsrJ+whPP4p0DpBqjdVtFG2E3UVIS1SfJmzNoIREWB+Ji1A56Mvko2nsuIlZd9EyQlvF9sp1vM0LRGsSJ+qjKscROsJcvUFy+w28QpfmwtYShVfDjHuIIILZCKkLxEihOzkm0QhXIhsW0/QQS0cQTojNLOPeiO72DmHdZzYK8RyPwThnbXMd77Lk6Mlj9LNlpJLsbm6yvbXF/NJBHnzk3J9z8bnTrXyXYmr3HAjiPWe+PR+HLNHZ7c0tKuEE99x/lko4i+83iKoVahVL1tF4rqHXCxn2h6SJpdAunhjS61lsqom7MZ3hGstjTUVKOjspZ548SOTMsNm9zuWVDpXdmEeffpjo+CRq8m6EvwDCRdgMWxTYYozJY9AFNs8RRiJUhHRquJM5h2YeJG2/wM71VZI04f/h7k1jLM3O+77fWd717vfWrerq6q16nemefSFnSA5XUZS4gKIpWRtlS8oCKUaQQFYSw0iQQIKTGLCC0HJsBwjiL1ZiwTJNWRJFihIXiesMOcPpWXqb3rv2qrvf+67nnHy4VT2jOIqZQAkkHaCAKlR9uHXq1nvO/3me/++/eq6C0E+DaM67HHaMX++ij53DZHOggixTkmv38Lpt/BPL2OgHcUv/C/LCsxAsIE8dJ+wcB3uGyWSX4Vadw4+/nVk6Y29coIRHMw65/MobjHtDtscJuhjhYXFak/qSnJDVhTWO+TnTqOCqvUt/dIO4GbMbtlhoNhh7Ebk1zIzBGY9ROibbS5k5S+I06UxT5CWYGVE/41A8p0Zq6WGtzzTTpEaBJ9Bohv2cZJRSZJYw9gkDSdWb0ggNJ1tV6iLj2996mWNZl9W4TWolfp6jRYH0Q9A1XDm/VwUnF/DOVZGLHs4YkPrgTfIXft2ncjmLdI6kSKkGLVTpMKMpRdmDgU+ebLGbWba1T+VMTPtsgDGWbGpwU4fZy6hUY1RVYdQ8YFQphdaKsgSLvQ9GmBO/DnxPB/9r7v6DTEgB7k3U6Z/qErwFAvDn5jnQvqJIc/rbCcUooX44xvNASo0wBqEc+BpTFFgKnCfQFZ9ASwyS9O46EoE2JaFweKGmsJbEFighEMaCVHjSQWmhNNisIJ04pHZEAQjnKHNDmpWYwEPXQ4QSZIXASFDSEomSVk0x6Wc0mjmzWYnILF6WUgKZhbgiyFxJPssoihIVedQ7VULfMckNws3xnaE/DzwzqqDIE8pZCnmCUJbMKoynSTODDGOWqj615SpBN+aBj5/l0Af+Nk4s4YQmyScUyU308CuY3i7e8ruZzBxx/BS+r/HFCC0HCPsiqG9Au4KqnUItn6V9qsVKe8p3spe4+obk0Ogi9c+8RuWl7xA+/hFmf/hZNmaGB/wWarmJPPk4xfID9Ne3WDwtSUyf4HBGePg4kb+E3Ungdop6+0micytkA4tLZ5hhn8nNTb78r79JZgc8dvgxtpMe/XyDQWqYlvMgufv/EHaeGqyknFfotMbk8/ldT4Dva+peQbOuuTuaMe0NiaL6nC+f5tSCiIpfQyeGouLjNdt0jixT6yySbYR4SUncOMk7njzJA6tdKjqgrhVpKtgYO/ZGOUnSJpmcpb+dMBluEC07Xr+bICaOcrrNYHyNwWyHIkl5YeObbH9hjQcefC+nuyvMTj7CZtDj+C//PVQQ4/YjznGGkhLhDVDRLlLtQqWFS66Tb3wZM90gONVFyE0ch0nWtumvjRkIuPC0QgWPzsNQxilq4RT18+/C5RIxHSCCKYo3SK98g2SrpPnsacauTrl4jtI9gNnexpVT1LmztFY+QPmdz/HF3/59xNs+xN72FjdfvsZOtMnJ7hG+/PmvMUjuMclSrNI0mhEPHIt45hMf5ru7D/HtK19mMLhDtLfHlXt9HjlzBnvsKDa+gAyqpFlOkaS47lFY77OzN6CtFynxyF1GYByeLij6Y6ohHF505FawN4ZJJshLB4FERRrfedjEolxGkUlMmYIT5EVJPVD4pcdWv8KkGNOMH6ZabJJNU4wZolyCqkpc/jTh7EWk75EqhwsFqluh3BoCmmKc4zc0uiLAGqSv51kAhcUJsT+y4FCBAAlumuOsw8xKXLlPwIh9RADCzCuX1liktThjsLMp07Ud8sjHCUGa5qRJgpqMCZcXMM7MK+sKnMsRLkfKDBFoinKKJEOrCOtS+pNdksxSq7XARtT8EDubMe0lDJKUIO0xs3tcJmJUX+bcE0d58uMtknsls70Cb5DDZIpsaKT1UbnFefsED+vupyBbY5GeQFcVoqIpJyXOWJx12KwEJJQGr+bP6TTO4YzFFgXYcp4bZ9189MZYbFb8PzoY/6Iux5v4UWPtnFaFu48nPXiKyX2Sjt2XDX+qqo18E6u4/z0p512DKPT5wUePcaxSZemhQ3SefJz4yA/hqOCQ5CZBFPcQ2e35JTM+S5pbomAVJTKkmCEYgLsL7jXCRh0Tn8Y2u8RLIXlrzOb4DXbvOerbLxF89hW8R5+BqEvx3VeYDS2L9WU4tADHH6f0ahSTGZFMKYVG10v0kUV0IXGjAmYOebSJ7tQxyTyDw05Tppt97r6xwdJDhzlzZJlrdxokKQx7O1wcbPLaxecJosocFxpGhHGVlWPH71cj/89rvkfznAMh595E9g2RB/t/4AE/SJOVUoG1bN68zNLKWZ55+hhHlpcJtcYTkrxwDFMYTXPa5iRZYplNM/LpmOCI5vKtnCiFaX+T3u4mg/6AdFbylYsvko/GnHnHU5xaOkbmjdiLpzQ+9h/DvhlaiH0vCWZuhGWGFD5CVHDJJcz0VZzpo5sdEPfArVAM1plOh+SxZPFsHdRxnCuwSYk+cgHhR1A6RJ6BzhFik+y1i7jjR1HLVXIbYttvx5XP4IY3wfNRh08RBWdw65e48u1v4c6/k+Gly2wOBaqbIo3k4vNX2Ni8wvaswIs8ji75PHBmgdWnnuHyeIXLN1+kmPUZre8yHcx44PwJzJFlSn8VFfok05TcWQwOBgnbPUtTVplZgTaSkARlZhR9QWAUp5Y8NgaWSaowuaAQFmIPrxLQtAGpnzERU5JRQpH1sUYxNUMOLdRo+w1sHvDy5VvEqydYjiN2poaWslT9Eqqa3D+CG9/BKE3wUAd9uDoPoh5nqKb/lnfUX+wlmD8mpAAtJUpIamHMA9VjHDExbmeDfAbTfMS6iEgWOhx+qkbnQY+8XzLpz+ad8TwDK5Fosqxga3uLJE3wPR9rU4SdeweQcu57wlGakn0u+T597U9RTedfv6VjcJASf5Ba/v3s7vdHKyoNyXaP/rVtpIyZXRtSf6iGF3nMbg8QtiQ+2iQdDbCZwPg1dCMHOcFlFukLkiQhbEQUm45KLSK0mqI3RnoVhJ2hAwEeFHmBzUqkgd7akM5ixJ3dFD8QaCHRUpEkBa6wTGcZaZLjTE7oC2aFh/R84rBkoRkyGI9Y352hpyWHj3aZeJLagkJNCrorTcJ6SJkZhBMUwx6hkXhK4CuDZ1LKmcU4xzhJ0aWlEnloT2GFIKjUaRw7iu33MHGD6sk2tYcfQdffBWIR43L62Q6Mv4cdvcwsy1lY+RAbrkJn8Ukil+EGz1NMvoRQ30aIEaq7hEhSRt/5LCZdJjjyME/8tZO87W/8Ct/6xH/B9+68TCcZUbv2FXaufJXbrsKzQZN89b3UfvkjyHqE3hhw+F3nGP7BN4nJEHWNDUA2QTYbyHc8gvAUJsnnIJfbt+l953tcv7zDBz/xKTYiwcbExxBRyaYkOz3KMkNSUvflPONASYRS+FrT7USkuZmLu32hl+UFhXF0Di2SyBlBYbFMKRAUFoxXZbG2wEKzRieHwgsgDMmdjxfEhJmlu9CmVatSjXxA8uLrOXevW9ZyR55kDK1jKCzWlbTv9PCWH6f9eEK+/hrTzYBm7XFOV6vcfv03ULMYJeu8evUFLojD/Ne/+Hc49xNPAg7jLEVpsGWGzWdMJmMqyU10rQt0UUxRYRWx+Cyzz/wTpNpBVxTjV3+brBKydK7Je67scmcNlqd/gqc+AI0OEh8BlKZKWt6F0R7uxjfoPtfExiF7X/g7dN75n6F+7FdIv/5fUvbuIvMIsRTj/62IhWMtrr+2xxe/8D/yto98hHPv/SBbv/U5/rv/9tMcax3nZ3/x4wgEqrlE5dRZgmrAnULzs4MNdvzjfPX33uDS6+uES10e+Olf5WViLsSONIfx3hDR38UnYRo/ShFH7IkeNbY4rDcReo3hbkHpWxrNnHvXRqTjHCfmXT0dgt8JmK2nZEmKloqwHtLyu0w3d/BVQWbnYTCuuYx69kfQG+dZ1E3Sfs5k+goq3aOma+h6nXR7B69ygsqJDs2VCqLqke+UlHvX6X7846R7OSJQFDAnQDQB4zDDDNUM8ON5AqTL9s1Y0s1TgDWIaJ6boGoexSQln2S4uEqeGkQ5A8+gEAS6JNnZpfQDCuOQzPCzHWTmkfZHSAqCKgihkU5idM5wvEOlDsmooMzA5jmRNw8bu9rb4tGjZ1hoC7TYZrh7lV62gzUBr9Fi4Ld4//uf5qkPPUbiStIrEwYbGYuLBu94BTMypLdmyFMVZNPH+SAiAdJgk4JilKECC6EPSs47L7kB47BFgd+tYJxD+AKLnXdPZznS98Hz5p0FqdHaYP8KGZLl/sXfsj/bLudV7HnmBfcvrPNxojntVEuBVPPj0hhHWZp9UtF+6JmQ+4ezRnkB/+J7m/zSf/5TLDz1LqLqcWCe7D4rZtjJVZy5h1YxKj7K1PmE0TJKGMzsKrjvouUVEBMIj4EpSN74N4jwHGHrDMfee4xj7/xR1n7NcKd/lYVRH/uNzzCcWqZlkxPdZezjH8b/mSewSYFvLZ4rKTf3ULMRhGqeeeEpZK0GYXWem5GX4AR2e5vxrW2KTHLqbY+ReoLdI5b4xMNEw3WSfICzCcJaWp7BKEVYi3n/Rz/Os8+9H9/339zst1YfD8wbbwk+e2sHwVq7b6qcy4WyLHFJAmIMmxssLR3BFRnCFUxTR38P+nuWvlWUmaGHYCYsKi9pDkpU+wjNc0PKrTWc9Oi2T7KqYevS86i9CsgK3/jaC3zgfWf54Z/9OZpnuxwIFWMcOIMpC0yeos0YGUTgakixiQhXEOmQcv15hLiF9D2ym/8It3iKQ4eWqM/WGPUE1eIKwnsYUa0ipGYuLhXGjiCb4XYv0fr4gxSTDfLbv0+89F7ku3+J/OVfQSQJmCXk8UXkQx5BPWbt4j2++IVP8yM/83N04ynXXr/Cq1fucbS9xE/9xM+TJzleexG/XgclGVvBDzbH9F2Xr/+by2z1tqmcOMHKOz/GTaFZJaNUFWbDCapIuS8g/gAAIABJREFUMNYxCgJm4QXGw+ssVwVRMGU0vMlGfwM/brH2xi43b4yoNyO8aoQILWFsCBYr7F7rM0v6RF5I+2gL3x1meneDyJ8xMSG+9pCLJzn28HN86sEqYmvG7G4PO9hCuRAZV/AiQX+4R6ElK2eOoasVVOTP82o6/z88IP4c1wG9zFpLaUossJtsY/I7KHLKmaJfRGxQZ9io8uSPrVI7FzObpcihJOtlRG0Nix7ZbsJkPGXX7HFz7RadzgJ7gx42Te6bhw8MxsaY+6OSCPemYN/v0jnh7qfEH5Q+DvxTBwnv7k9Jif/r9X2Jg0Fvj+iC4/QjXda+uIH39GH6N0bEVU3cibCTIbNL13BxyXav5NChOlI5nEkwaR+TTCCdYkROIDIU8wpf5ClGkxlBXRFXfRqHapSzhNHWkFEvYWkpIKr6ZEnOei9jXDq053G0FSMmBWML24OUsrA0GxWWT3eoRIKHnjvJbq9g7btrjAcTdF6wtl3QWFHs7Bo8HVDulNTylHY3hDxlJzMEGFqdKmGkkVpQKljfS4jjKmGjjqcdnqfQfkxpBcVwSu3IKtGjH0NHXYSOKIkwNmN7do3+xa/RrveodSqohbeRB+fx8pJasAOzz+HiF5CV2yiZQAakMcXrm1z7rQF7r92k1X6Nhz7+JNnDR3n6X/06z5Tfofzjz5B+7tvk3xMEj38M/ckfJnj4LOWWof/SHcaXttH6Hp0PvY/B5YJ7/+oiQe+fsXBBsfAjH0RmS3DnNuUkoRgLrt64x1ZpOP7jz9FdXuR8M0RUfD71cz/JePijvP7SNf7Rp3+VnfWXafsKHSimFpLSoZ3AKM3hhSoFCu0F5KUjQ9C3IUVZUvV9rHXILKfq+4RxzJ2NbXaDOp1WRL1dY5qV7G0OyXRBq75I41AXM+izeSNiugt7A82lbw65PpE8+f4FfGNoDVPqk4xJv8/1DShefR6/HFKNYoRskmZ7jO6+yKMrj/Dzts7/vvYiN2ebRHGF4w+dvl9BnGSO/iBhZ22P/r1bqPQih7tNtm98CZXcxmdG1fZYEDcJL0D64oTJnqX6rg6iLhheGrO7Axf+ZhvT+xIyfhKCk8AC1gbYEOKlE6SX/hATKLQeo80WlcaI7Pqvk96+xeJP/CzlH/4BZvMK+pyAtTHizC/zd3/nP+LVT/4Uv/Mbv0sU1omjCsOkz/O3N7m9OeAnfvKTtKYVLn3rJku1Ot/b3eNLn/977KUJ6tgqwXv+Gu7Ig3x3t01yb53byy1cUaBR1BZWWD59mCfrIeux4+aORY/HVNO7+LOX2b3V5/e+tMf6tWS/Ig3WmHk1YgyqNEQSCmUpC8ssM0zLKdrTLIaW2djgCkc5rdEaP8nRIy32XnmJTjWn1j1NOTlN1odcenhnTtObORae7aCzGen6Llk2pfHcO+jvGPxIYacFXsMnXI4RNT0POYs9ymEBsUD4++hEM6+aW2FBO6RwIOejcXmSMtgdErerjLeHlLMZcVPTOrOIFDkmSRjnJUGzSvtoG5Eu0H/1JXS1QrjUwLeWrDci2d0j8B2xV2DDKkEck09SrC1YXKizfWuXJSnZ2bzK+p3vMJrtspOM2LGajA73hOLfe+xJoq7HG1euk3+7z+mnV9DHFxj1MkLlCOsazznM5gC50EFgcPn8YECA3wpwtsDlJeUkA8V8/HGYQF5iqwF4Yt4ZsBakREb+vJOCRGqBMODUvPpk878anQPxlg8p38T2uf3ArYP7qzFzcaD1PL9A3O8qsG9cBk8LtNZorfG0wvM9ao0Gf//X/yErR46i/QjrFKUrmGS7TO6+htRD6q1FvHgZI9p41hLKBGmfR0WvIuUmgtk8pyKPKDdusPH5G7jB92g/9j46713CRo6Vv/tzHDG3sBd/n/Lbt3CjNurCc8jHH0AudTD9kvTeLma6i64Y/JXDpNuGwR/cIZx9lcoTR/HPPYRIfdxoBLnBJLCx2Ue2a1Qf7BBGmnqoWVyRPPzo20mnT3H19au8+PzXyCf3OHH8BIdPneHUgw9Tb7bmCcl/RufgYJ+FeHPEgX0KlHN2LtZ4i8HbWCwGV2bk6Yhrr3yXf/kbIZVamyg6SqXyIOuJ47n3nyQbj2mXmkZiGY4yru1aspfvEJUJzVqFWS4oJ7skRZ+zJ0/x8ZN1/vnL3yVNB4TRMWrdOjB/WZmBJMkZ96YUsx207VOJfCZ7G6hiDU1BZG4ShPdQbUNxe4NikhM+8gR5MSXp9UmzgMUnjuJmX8PVHwDVBAKck+A5dKVBuX0FF8Vgh0g1QugdTO/3Mb17RO/+JYqv/q+IqoYmkHjoxQ/w0V99N7//yZ/hN//hv6De7KDDmEHS59ora9zZnPGjP/YeRrcNNhugteL2cMR3v/Qv2c0M/vnT1J98BzSXuZU3SPZG7DYiXGkIdEhzoUanEbES+wy1Y23cJphOMMPbvHHxCq/euM2oKGksnSCsjynLnNnUIMZTrHKoIqPhG9K8IEshGWWQgxcHnGg4gjspRakQ4xotcRS9oNi89gabboOXZq+QjgseV4/w7qV3UB6t8j//4W/yn3zoP6TT9uY5Nf+2Gegv/NJqnq1TlIZIe0xnI7yyYLBzjat+j4mJyehy15O8/4ka10c3aF6s0WpU8Tse6/mA9Rsly4eXiTs+l197jWt3r7N6bpXBoE+aphR5Me8S7Ittuy8M5iJ3XtARcD93RcD9M+JgrG8+JjnfY2PMXDTYPydxEAcSXyiskjRWq/Qvb+G16xitUZUM1fWoLK4wurGOP9tGYBD5HuVok2LURynJsDfFmSmedPhxjBECcstsVjDcmnDyuGK23SeqenSWYmSWcmtsmW71yAVknsZECr8SsLzaJDMpwfYEkzpSHeKCOrX6IifOH6fUEZG/QTe2lJFg5HxKmzPbMZw63MCrB+TFFFNMSbYydjdHbGeOZqtCVTqq9RAVBhTjIVoYGt0K6TghMSFlVKdSaeH5EWGzQdQ9jw6XcdIjNxNGs6vs7F3Gbt8h6p5DRDGpV2Ncdnll5wrvO5QgxSJOb6BUH0kKhYEZ5KMb/PNfHeMZyQM/0OXsc0ewI4m/dRF37AEKUUU8+3Hip36caLKAzCaYhVOk1x39m9tIP6H1aJ3s9SYb3/BZ/tQZWh89xiv/023+6MtfZfLCdY4vf5Zv3hqSF46zy+eJVmtsRwm/9ek/RAcxn/zYv8/hcys0lyrEFY+n3nGWf/zEP+Xa1Q1ef/l3ufTiN0mTKb4SeEXOta2M9mIFoXyMFaQ5JDnsDQs8MnCKbi1CC4lzCpCsdKtszfpYrRiM1hDam1c4RiWTSY/GmeOUac7eep/prmOahfjhjBORz2I+pb1koWIxA4Nux/zwcy3+9Wc2uLuxzriXo9yc/5saxeevfZeX/BY76ZhV/wiPNc/iFrx56Ipz3LmR4aUJS4Fg9bHj+JWz3Nl8gzPLKwi7TmE3keUV/HEf8/Ia0xkUnuDi92ZkR+vUTx/iAz9X8p3f3KH2UwHNhQmen1MKR+Lm1JvtW4blo8/gja/i0hsUeQJujPzKXepdn/E//SzBU6uoB45jsgCrIzylkEFEGL+TUkzpJRukQhOfOkNy8xZ3br/Ir/0PLzGf1TJ4OkIKRU1I3vUf/BLt1XPITgO30GTyzTHuiRobt4egBWEcUtiAb39jwD3dob6qWG47fC1pVw011edbV18n3e1RJsV9VrwUCh34SGFpHFrAm06JTI4xknHmIcc59QXN7lpJ4SQNXccMPL7zJ1f567/8Tr7yuTc4ubfHA6eOs7R8mGTi8/rrmzz26GPE0uCFMNudkRnwT6wgojrtpxaQ0lCOyzmrPzO4oUFGIeW0gP0kYXKHneVQWPIsAwG64oEn5px/W+JXJGE1wNOO5qEYp6rISgi+RFYbyGiAnPUJAk3QrFCMoXJkhSIxjG5vkvQ3EJRE9SqyqhjujWkuBIRNyIOS2WzK3mCHzemAG0WKZpeiyBgWGXvGUoqIY4Hkb//4pzj7yDnsvSnZ5g5ePaHYKCj8Ke0zdZg5VCDxWgG6oZCLITYrMbN9A7IP0hc4KzHOzUcjihJhc5QP6IB8c0jpS3QjmI9Q5DlmlmKLEl2v4xKD8r39k8WB/5fjQP53LWPtPoXoT/8+dj+bAOYju/vxaADcn4oXc2EglcSUFmPmJnelNK12k6eeuMCn/uanOLR8HKk0WTEmKwak6S7FaJuofQJfV8FvsZsrJsUWxyoGKWsI9lByAC7ZT/ousMnLPP/pa9SPNlj58IM0zj6MiBu43RuwfAFHBfHwR/DOBlDMDeUuamJ2HLOdCV4HdCWmHFum9zwqj3U4dK7OnX/2PLe+8ALqO9epLi9z8+om5dRw9MxDcEyzdWvM7osJQbXKY48/S61bJ6xowkDy0GNnOXvhBMk0JU320NojrlTRel4ZB/6tvZ2/sINqJfsYRXlfoCmhKI2djzWU5b4HZA78cCTkpcEa+N6Lz+MHFeKoRRQ9z95ol703FmnVapw78QhFklIWKc+ce5Dbb5TcvLGNGDKni5UlW7nl6uYlLsY1NiYFz3bPcry1jAsOCC3Q2y0IXUmrqtDtZRBLTJIR3UYL7BKlG6CNQUyG2O1tysJitebutW3EoRWq55ZpdKesf2udE++MCKoZQjkMAuPmSeOzIdTaJxHJZVyW4MoRJLuIjSsEtZj0819CP/ocSIdTHZzU86qu8KgtfoLrd77JcHdC41BMfGYFd/ku3/76N/nG81/HljN8pYjDmNjzWYoi3vu3fhYZBqhWFYdPulXAyYitzQQv0kRhwDCRrPVKNrVH1HEsVCAtc3wzgtk2g71dlo8fYzhKADn3XEiJ9HyEr6g2DlGvTqkupIzyiGQCOsmpLXhsXkooRJWV6gmmGz7XL96jcrpgT/T56sU/4kd/6GM0a11mvZI/vv48X7j5Bzx85mH+m3/yq/z9h/4BZztneYtj/S/Nml+y5ySueXXf8f6lVWZW8mqSIP2AIwsen/zrT7Ny+hDJjRFpPmAw2kGlIWVpOHR8AVsYbOB49JlHefi5R0hczqmTJ7mzdncefObEfXP/AbLUWLNvhN73Ibi3dBDEAZhh/mQ7KHzc/1lrvy8B9v15DuIAGQUIX9K5cAhX5Gy/uEatvYyr+POxjGLGLJnRONZmdP0S0s7I0gnZdASzGTu9hFbF0loMUDWPrDS4sWHQG2NsTr43obI4V7qpUKjlRbQcUdOGvDC0A0FQ94nbFYJYUfUisjyjUWQs1hX1Qx6yUbDzxk0ub/R59HwdGwpWHmxzWmnWb/eJWi1meUZcOKJqQJEqbq9NmI0ydieGRiNkODO4cUpQ5uTTGXdvjdjbS+ge7RAtdhFRjVJp4moDKssIHQOC0mRkaQ83XKcpVhHHHqKc3CTwjpGXU/qj5ylKQb3yU1h3FSEShEkgTzGDjGRbsvbZFKcd5z/RYfXJJXS1jq2CeeFl8kpIWW8gZwKzeY9s9CrdH/kY/V/776n/9H9K+12HyLcsZjMlftvDaDTJtTG1J5uc/OkfI6qF7H3mt2hNZ3z8F3+Q/+rTX+OVtUsckVWOrEY8+IDmy39yk9/+rX/Mw8cf4e3vejsr50+guhXa7QZnznjo9g/htWrcefUik/V1PB1w+twSnW6NTqPGYJAzHGfoacZOf4YBvGaLIvTmlbJijhGMRYyxGVuDIfVKgGcdpSmwrk5hAvQ0RwqNKEtMmWDSEuvgUEtSVY5O7FNtaoqGZPONPcq+JTQFnegwXpThsi2y6V2QlokJWU9H1PwzNCqH0fows0GJqJRculRCS9NuN4j9KqXLGWRjWoFHpaKQsosVFawJoJ7gyTH+F8Z8/vmcIx+ssnLkIVz1MN+6/B3OPVNl96ubBJ3PYI8liMq78cQJ8nFCvSPZHkJHBPj5BDfcRqQ5YkXi3DLFUhvdPYpYXqU0HYwMqZsJ1nkk+VWSYp3CZpjUp5GWfPC9H8B2Fnnh619h7eYbuNIhixLJiPL0T/LS3S1qE4Enm/hIHl2MuLfVZrnVIO76WOeTzQRLNcss8rh3F7Kh4fQi6FCwtVNw+XtrpMMZ5b6R3/MVfqyJ6j61hmS8PaVRE3h48/GyKGBiI26PUjzfoy5DZHmInWmdq5tbiJbmgaefQH7jixQq4HbusZcZDp9q0b9zmXi5hVWW+hM1TFYhvzfDljm6PkeP4ksoLC63mH6Bq+y3WZXZD6oC6UmKfD4/r+IA6Xs4LCYx2FlO2k/n10BtkSoEpZFK4qwlSx02DCiVBW3xQ6BwjCXopsb2ZziTzjMQMoUfRywsNJChz3QyoLe+x8bmkGEyI3cZDa2YFCUTYxg5UF7IhcVj/I1f+HkW4+OkicTIkOrSEs2uQEYtwqCGLTR+ZPGqElVXyLpC+CAK0DWFM8wxls4e9LWRvqTs53PhEHo49kdoKHFZDmpe0ZXaYQqDSaa4UuCcACVBK4JW9P/iePyLt5RWKDUvDoi3dArs/l6J/ZEX5+Zdk3nX4MDINzcX2oMJq/1LLAik0oRxjVOnTzKdTgmsR5H3KLIJQdBF1ReQZkia1nB5j1wkCFUh9C/g2AU3AzuFYohJUvKBYPJyH3VIcOSDDxB2V7B6iJl+F7s3wygL9UUYFpTDPiKM8btdsq98juC5jxLX65ihRfgCr6ZRVlDsZITHIhY/9mGCz/8eduMWwULBgx9+jN/4jW9z/dYVjgV1mgsezU7BnZsDbsQv0brWYvWRU8h2BRVp4kqE5wXoqiZUGs/zOaCc/Jlr/+IhndsXWwep1AfproLSmPle3+8jHFQ/CwqdMejvoPWQsTfE87fJsinFdJ070rF57xrtWheJ4pvf/SLTIXi6w9On3oFKpph8TCBLJjLg1c07FEXBbOkomZXkqUEJwc6OQdcUYRAipcW4ElNm85wjXyJooIjAlggvR4gZ8ork4gsjjnx0mWrjaSZJybS8TWe1yeTVO+jGFxDx+0AfR5gIV5YEkWAyE1RlgMhvQz4EckTTx3EY026iK4dwfhPrIqxQ+LbAIdkbvUR/so2THiaqsmgVH/rAM+Rhhd/53Jfo7TjyQpImgnExxVz4IC+sb86NsPdSGp7iaN2nNwo41KgQNjVlrqhosFVHLmFrKLGpI8pnvP7SK1x+7Tq1sEGyOyR3El8ZompAmmU4ZzlycpnJ9ojDhwJkFnCoGuN8n2HPcHeY4tciAheQ2SNs70SIWsKJ84rGsTYrzQVeuX2d3N1hMBjS723hO8GfXPxjMqYYOw/N2591ecv76c/5wfD/0ZL7xgNPS6wBIUIyqak2GqyeO8359z1NpRYy6c1QgabR7OBFEpRHQ3k0qhV6g20KURKGIV6kyJKS3d7efmi9u08mcm7/cw4IRBYn5h0Da+2bUIl9cXAgJA5IRvYgsFDK+1jh/7v1fYkD6QV41QgQWFEgAqguByTrW5R9jYskQhf7XGlHVsxpRRiLQJHljiJ3yKpHEEhUsM9jnc2ourkxOB8BHT1v/+eQoGg3PVwY0BsVOFPi8hKT5hQe6NBnrZeBc8S+oxZahFdy49YWly5tcri1TKMZ027GVDyNywyuVmPtzoRaNyYMQlyZIeSUes2H2BFXfaZZSbI3QXuCIsnZnZV0o5JcKUJP4SQYW+BcSWGmFGVGlm2T5hPSfAQmwJQ5k3xKxeZY65iMhkx3djh/7p0YWYfyOkrOqU6mdBRTyC/n2KbkyZ9Y4sSTbartFibvgLdAfrhgcu9lwpOPobwWTueI0TXKl75M/PYnUK0AVQ+gqJBndXQcYb/2u6TnfwThBzQfPA83rjL5nOV3N0ecGmesPnaKW+tTbo2GJJtTHn3mOD/w4QW+/OU+ey+/wK3RJo/ePMVjZ08SHV4mWu2y2GgxXl1lurtFPh6BlHQWOkQ+pMZgtcCrBITap64iyskUZUosAbkQeIGkGQREpcMbbGNNSaI8nC+RUmMsgEc5muHrCJwhCB21tqa0lqZXEtgUmzmK0pKME/qDAbPNfG6sUt6cyOi3UFKgFSyqgIVmG5G1qZQFgxlcujrkbDMklYLFmmZNgbKWpskph5t07C537/Xolz2iSkjNy/Azha/OYI6sM3l1iKi/Bxc9RCF8Yl+TjV6kkIJkeAe38XW8+gyv/ShB+ADKTiknfcZrI4LhjDBN0KakEAGm26Vy4TmClXOI+iGkq1LmORu3bjC+cYvpeIwVEokkUpp0VHBvY0jFVnjkkad46qm3I7VHaUBrg+w+S8aQiQkxWUxUSvZkhV5RhThCCIXyFGEAHd8StiWPLSi2xyVpJrh0K+XeyzvMJiWmnBudPF8Reh6e1nhCUQkCap2Mheqc1Z7liiITNNoexc0xHV9zfuUEm3uCW5t38AY++csf5fSFFb70lYh001DtFHhVn+pCh+2X1jDJgO7yYeLTXVwiSQtHCdhJiahLpAKQOAsFEkY5wtsHzyu5D7lwuPE8adurh4hA72ch7BsPoxBtFNloStCO8aox0hM4aRBJQdBp0NQlUUPibIotZygtELrEr0ps4VHmEudpXBgS+SXTvV0G29tMeiOyWUpWFFRUSVd4TLISi6DuN1g+tMp7fuCDnDx7np2Lm1A5QrQYEwdVopoEpwnaITKXSN+iKhJVU8jqfCwD6RAeiBJsZjGTjDLNkGEIws7JTYB0FuFJVN3DpWZe1cpKhLM4KzBpiVAeODvH2R2Mrqrv5yT4S7DuBxe8Fd3HPg/c7RO3xP2D94Dm8WaY0Bx+MaeCHHQWHEVRsLG1zd5ej7V7m3QWqlSrAb6nybKU3OXoMkUHMZNRH3xBZ/E4TgZgNhGi2BceDjMz2L0Maj7H3v849dWjONFEuAhBiKxH5P1b+NXWPPRO5DAd4sQU7/gxRCCQnobcB19DPsPdfQ17+ClQmnh1Fbvc5N7dKa/d2GD57EOcefZhtrdGrO30sFGV7uEmpyshd9Z63OxtcXe6w7nVFRYPdfHqNVQ1wJOKMIrujyzMt/fPvlSIfZO3RO7v55suZOfm++8cCLUfzHTgSXCOIkuxZYmnC/I8x00H2LIgS+Z+osl4wFa8DlayvbuBJiIMm7ymHLJIEaZAKM3AwvmHniadFPSKMTc2NmlvLNNZaVA4SzXw2AIqTuCVGWQTtJ0w6M+YmiFxXMF3BmXrSP0gtl0nizeR8Xuw6gRCpngywJibWKUok3vI4nuoyhjpHUHp9ryDJxLSvSlePkOaGcJZrKxh4y7BoYdQtSWcquDQmLJk3N8j29miUD4lklhrIqkZ93JuqykLSzHvf8/b5zUBN38OKlUSnDiPVCMyG6ELjZaSofAZOh8RekgnEYEgDiHS80LCSk0yTS3TQczazoytnSm+9MmyhM3tTaJAEMUhxhqCSJOOMg53IrqtkElSoSg0pXOUwlCOchb9kNULD3Lt9YKt/nWivZJ6+jA9f4/tccFWuUE/GyM0BL5kb2fAtc1rNDv1+ZjL/d7dX64lBXhKEimPs502ITG+FxBFLXSnhluMWVpdYXRngIp9ojgmijVKz8cWVeTjq4B6s0FQ8/CqHk45imHG5tYmZVli9jsSuDcv/I55kVUKue9JPvD3uLe8NvmnvQfuzaTlg3G/f9f6vsSBcAKtJQjLeDRB+Zp4QTG6vUU2FohaiK77OCeZbPchrAAZ2hk87TBFSeQneEqiPYnAIYuCoCxZiAUpAmENttg/xNI5JrV1qMKsFDjpmCUGU1h8B9YWsJNxc2NGt+0jfIEKJUpadrd77PYnDPtDDh9pUe+00E7R7Fr2koJZWmCtJJ9ZbGapVjxUaajECj/2GY4mZPuHelaArAQ0V1rIOMBJB5T7h8WMclrihCSdTelPekzzAufV2Vlboyh3ObWywOTuNv2kR9gwPLu4QuESrHmVWAyxQFFKsqlCZAGtd/osXjiEdD42CXGujpBd5Ioie22DWFp0p4rJhuSvbWDvFtR/4dcxg5KitDgRoMMI4U1h+BJq+ROIUKGjGNls0KuG/G+XRzzwxdc5fnyVzvEGG7cL7m5vU10f8tPvq7OVnOTVS9f44pXnubl+lem983QPHeOpH3+cWIV0qgELS21m0y5JZiidYDpL6Q1GaO0hdQQ6JKiE82TMaUKSBAjlEVRiOp02Mjeo27uEziKcjxQxWkVoFGiPfDKjEgp0EBFXHQttjcUSWYNJJ/TShGKWMe4P2NnZozeYUhYWT/n40gdqZKxQuikVv8axxXMkgwlytMbeMOHK5T2OPr5EdVEhtWAvh6y0ZKVhsShBw2Rk2ZzmhH1DoktC18aERwhPnqL6tgF26UPM1GE8b8Kx5Sa3rnyTbkcxvpPg8ku4cg/cXbxmiZlJ6sGYoQswdMF38/GC4Cjq1FPUVt+NDJaxBFBasqLPq1/8KrdeeZVZWUVXV3CzHULto1zJq1euU7m5ydvf/TaOrT5IpdWl2gyJGjG6kEzzw2wOJZNc4fs+t1OJH4cknkfRL/EChx9BPi45QsLRmmVXWG72DXfeSFl/tY9F4UuFEhB6PlpqKAUudZiZZHGpSlU5JqmkQKIDyaF2DJfv4cmIx8+d5KXra7y+donBdMzdP3qD879whrx6hN7AEXpTOh0J7YhBbrGDbUTrPKpex9oEFUtcLhi/tk10oooMPKSSWOOwGtw4R7QjhBAoJUHPL8ZSO2Tgo2JvPjlWgENCEOA3Yoq9BLM3RTRA+QoCD4tFhgWeNjSqEsGYIumRjHoEnqPI569HFwHkJcJXqFCSj6dM+xskwyE2y1C2QDnDIc9Qt3CXgoqK6LROcObku+icfg9b9ySTnR6tQytUGxGh5yE9UCXEdYXN5nsp6xJRlYgQXFIgpMWVdv85WVCOE2w62xdIc2TlnC9vkdIgPB/p1JzolBVzqpPSIDQq9MEZtDfXVtY5bP5XA2X6pto56AS4/UvoQRVtfvEXYt5NsAcJyhzcY8V9AXFgXHbOkec5Gxub3L79Bjvbm+SmRtt20X7IeLhHWYzDLS7uAAAgAElEQVQ51Gkx2etRuj263UO0ojqWHOduoGQ+F2dGY/IAKUKicw0Wlh6EUlHmIUJUkbqFa3rY6TbCGWQtxvUz3GQTvAz/8Y9gU4u1gPTmoiOfQnIX2Xj73FuiA2hWWZc+X7k5YvWFa5x84CGoNbj7ep/N3QlRK+DciTr9IuLm9DY3Lr9Cngw5X5xm6dhRKlWJxqKk+r7Rh2/1dhyIs3kInZ37XngToyiFfPNvZB2lze+PaAhTUBqDNSVl6SGEIE0z+v0BxhismWeuZMUmr8z25hcfpfH9iDBucfLYQ+xsrDPZvMn29oCN9QH15Rp+Zf47jEsonKNqLLGd86ryxDDKc2yhCRFIOjhvGbl4jPiRHUz0LDkSP8jxIsV45zKVuke63sfvvA6ijwz7KO80OI/QS5nZEC06c7ywALzDiIWT+O0zICKsm9OximnK5sXX2Vm/R7h0Cr+fUpEFtcCjLHIu/h/cvXmQZdd93/c559z17a/3bfYZzGBmMACIjSBBkCZF0RK1UaRlS1EpSlKObSVlyaqKVU5VKmRsqZTFqdgVObKVlB1TLMdaSFESJC7gChHEOhgAgxnM3vv69vfufu85+eN1DyCVRYFWrJJz/uru193v9b39zvl9f7/vcm2DybU+jz95jonZaar1MpWqje3ZqAKiosreEIRQFFLSzgWWq4iUJB9qLB8iDKNI0/BhwsroFJrNUNI3E6RyAvIOwgiGnQ6xrRg6Nr7v4VlVwn5O41gV21aQKLQSqIqhJDViJcKrVThx6gg3b1xkEK4x6hms3QewFwWhsCmlktGgh/BB+2VW25v0gwFW2R4Xvwdvvr/0+OCPjzakAEcJmr7Do/PTWHllbPnqu8S+T1c4hH2FiTPKix4lrzSuo41GFgW2N96HauUaVkmBC63uHs+/+AKdbpcsy+4KiMfPuL+PiYOpubrrADaeno//n4QZfyyFHL/3DhyK5Fug4P87t6IsRochRV4QtvZwKxX0+g6lGR/fVkjfRfkeW8sh4WaHxryFVfaQRYYwOU6phopGSDKE55DFCSbT+DVvDBzKmiLNEFpQZAbbMsw0FMiCTiciiRPiQpNLRZjljAYFe7dGWNKQNiSq4eFNVUiCjNZqjyIrQBnsqodVn4DcBqdP9+oyWazZ2+ph6QLHkvg1j+EwomwJ4nycxiy1pNCSDMH8YoWFI5OE2XgcKoQBZRilA5KhId1aoR0EbPcH7IYB3TjntefucGahzN4pn69+ZRvvSJVP/NfvwnAdS8zSylZxVB90ThwKkkBRec9x6ksSZWn0SKBDm2IoIG4R9Mu409OgbIwl6O11ufnCVWZ+8adA2FiTPqPtmCLxsGMQ5g7OJ+7HPlQed0bTiEGes2zX6KqMb71ykxevbHPfhz5Afa5J58YWL37xVc72J/m7/+CjfOE1j6e+eIlrdzqsXr/IhY0bnH88oXT0HHU7Y3q2SaoP0d7ucuPym2R5zGiYUvZ9fC8FETOKIXc8bG2TjmJKvkejVkW6TaQtEM4KfhpSrk8hZZUiFTiej3ZtssF41FuyE5wsgkix1CxjMljeHNDtJrQ6Q/qDPiILCcMM4piZ6XuZcD3SImVj1GWlFeCKlMs7V6nIlBIhyji0bq6Q9I9SnquxHRqOuoJOatgLLBZLp+h5h7j3/T6HeiGdjRVGww6B9xDrrYzp2hzlJzSxZyErVSbLklFxlWTRIx3ldL4ZYZ7MKUox8dYWtVO3kdZ7sESVuUceRejT6OAOJh3gzXwQ1fggQrhgIE9zRt0ha1ev8/Vf/QwX3Sby+OPURZ3unWtEpsOhZsYQxSgY8IXffwrxxReYWriHx993HP/wBHORYOH4aZZEhdC3GS44OC3FohAMYkM6HGtvtlLNxuYI4UpEe4fUnyD1fdK2JBm5JIlh0bHRtsJ2POJCk2YFjhRE/YJeo0psLILtLjM1eOBdM1QPT/Lbn7tC28DsyUWmwhGWyIizHs9depojyTG+9+EH2Xz5JtmwQ9pJKJYqBOkbWO2QIojId0ekmz2CzQ7eoUNsf+U6kw8s4i3VsZoeuBJtAUqikwIpzZgeYwS6AKtW3rd3KygySIcpRZJjVWzcmkPSyyn5LjIryPoR2s4pJJhUkxRg2YIiiQi7bXobO8zMVkhHAWmWUEiBdMC1I5wiZW9zlSTt43sGExVYJqVh5dSUIAhzqlJTVVWWZs/SmHqIZ79VcLxkePjcMSpTVdyKhbQsjJI4rkLmAtkEuy5QZcAep/zqLAUMRZAghEEnKTrNsHwHk+UUWYZyHVDj8TFCYLIMZVvk4Whs/+o5yLKH5yjcmouQYx2CEZI8BRP//wMcCCn3XTnGiaLA/jiefSs/cTfYTOxbl7L/sXkb7VlrjUHsJ4pqtC7Is5S9ndtMz9fRdsB6b0C7P2T1zhpuWvDudy/xB198g3d9z33MnJ4G2ggcEr2OrSIKDVkMxqrjHDuNV5EIkY+1I7FC6BzEkCxxUM2FcS2iBKPVFYrhLjPnT4NQyJJFOsggU6h8iHBS1LtOIepjDYnJUga47LkTbNJl7Vuvc/HyNk9+/CM0p+vsrC5zeXuVxoUZPvKRH+XySZuvPvMGl8MWJmgy5R9G6hjXdvYpQAcBBt/52uu3dS6FEOOcCaP/2GNSWW8rdsbBTlqPMyQwmjxL3yZ6NvsCSkFRaIwu7ibCBnqIVBLHOGgNOlNk2mayPs+tS9ssb36L+xfOYUcew60+RTCHN1mml2iWXEkrMsTGpeRME6smMycs6nFG0NmlYI7ISEaJoVyp4J/TxLZF2fWwTUJY65LVLfI0IXx1E/EEFIMBarSF3VgHeQYpPGonHoF8D5O1EEIh/TMI9yj7nsjjyflwROvWClc+/zRXSxPMX3iETgTJ3jqpjDk2mTGUiq3dHp/+zFeoTB7mzL2LXDjfxG2WmMglE/NzTKNIS5KRq3AjwaSQjFLIgpwgEGwHOXvDHNsC0Rsx8n3agz0y7zjOTEi08kdM6xHT9RphmiGkRb1aY35mlkZ1kp2eYtC3KNo9jh6ts3RihsTYvPjNDVpYBFaBsjKkDAmHLXZvrnH8sTM89MBZss2IXrjN7b3b9OMBw3A4pkAi3jHF5S/d2t9TXAsmfMnZqRIruzGd1KMVdqg0JpnIFli5NuLUqQmckoPlyXGTRkhsaeEpF2NpjKPJLUMYBLzw0ov8w1/+RZI0vhsqONZDibvOSFJKLMvat5J/69oVRbH/M3IcEXAAxKVEWWpsPGH03STzP2u9M3DAuCOFUriTk4i9PSonZlCORFUd0jhhsNnGL1sU87PEeRcnzhB5ghApjmeYOt7E6IgiGtLvxHT3AuLhkJm6gxGKlaBDPUlRnkLZAhtNECe4vsTNILIUWkM0itnr54xiw6QHuQK3UsHCY2dlB7cMR12HI4tVumubRLtdKiWPdmuIkAo5GBLZYDeqZK6kyCImD9Xp70UwStF+ZZx6nGSIPEcai+H2Lr1RjuV18esVrJJLq9djeXXIRi8lnyyTOZAWCUU8ZOG4x+yRlP/nS9tsvhHx4VmL+z0LVz4GhIgsIQ33iAYRSSwoz5dxFwtE1sbIKah+BFNYmHiT3DvLc2/6HHPaHD9yEqVeZS/6Ci91cx5YE7iPjIUmdklinyyhpnKSb38T970VrOYkSJv0lS/zzNc+xy9f3sZvHCca7ZBZPq998zlKlo0SDkEs+eUvb3HoyN/nw5/4MU7f8yh/8MwyTz31Kld0xK2Lf8TZY0dRKsHKh8gihpJN4UhmG2UsbMJUEg9jbGJ8z0OnNl6thGMLJmpVmjUfV2p8VzBbqdEbgjsKqTUqlGYm0bnFXtSlUfKYaJSwbE0Y7LC8tkyiamhRopsZ+u0ew+GIKAowWUzZm6CbJ3TDPhvtbTqjbfrxHogSju1RpLd5MyvIzIhSe8TlO5Lbz67yS9/82zRqEiQsVh2Sps2LtwM+88WUX/ienGgzxTiz2AvzmCJn/dYuzYbAzW5SEmUqHKHkLTJs3s/5D/xNrn/pHzF1v6H/fMLg5ZSZd/t0bwxpHLqDO38fRg4RziGs6mNgVcb+ssIj11CkhsG1Dd586kt8+l/9Cl8KDIWCX/hbx3n5SpPf290mGLa4stxFTS1x/t4my8u36HS32V0J+NztP0B4R3Bn76XkvoY1eRhZm6NkVzh25iR/1JZMzkmOzEoWlYUjJPrxEs9taQaqRGvbI3plSLIs0EwDHntZzIwtsZVHblsYIbAq7piGY1VJY4FiRMO1WGzO4s2cx5ivMkpCvMNnqe9pSu4riCShPnyWa1/4axxZ8oiLW8TDgEp0D/bWLt/3I+fIWor6ZJ0iyAjbObGsMXFPlensOJ2NXWpNi0pzHMwjTI6qClRJUIxSTFyQJ5DHBcYWKN8aUxdySEeCoK1xKikV22bieIXQ13RudwmeX0VvblCetal98DyVRoUijmhv9dh9c5Vwa52mXMRkOSIpyKMhdgmckkMW9fGrEc1Fj2KYsgX0Ao29n0CcO5Ckkq20xe7aRY7qOice/Tjn7ytz+MMnsY0hDgx5JnAsiawLCqHxSgplAUU+5pDqgjwKx5acOqMoxoWqcA3j8jUlHWksobEqDsoSkBfj8DcMWgpUzUN5DsKykPtuF8IVY3pSlICR2HXvuz0e/wLWW9Sgd7p0MQ7TvGtXevCAkFjWW9aDZl+PIMS+WHX/6aQUd4GEFOMCwJiCKAopdMZXv/kcj33fo+RK09nbIxoOKJUs1tdW+Oy391i/2eZ9TxxlSvoosYAxCeiYIl8mikYI5Y9pO6UMTBdjFtDOhzBqB6RNJhbY7VvUuIW31IT0EnuDZZI2NAcgZ8YUDOlI1KyLaffQw9uoRgPhuAAUaxf5w+df5oU7farTRwl6u8RumWee+gYT5QpJYuj1I66tv8F/M7XMhUd+grmPP8rT336DQdplt7tJsrHM1Ll346jmO5oajO/SAYDYB2V3LWMPJjECCfuTnLfAm7Tk+JrrYv9rb00qpFLoYmxRXBQFhS7276lEYZELCcKhXjvJRP0krdaLJN5xCnUvn33l9zlxY5qHrz5KcCXn+//7R/BcEFJztG4zShTLnYzXNgs+eg9EnQLhT2LZgijKGQwifA9svYcjSrjCRlgV7NopZo7/AO3r/we1M5MMnmnhLbp4SwKt+7i1bVT1OIYQ6RwG/wxIB3Ax+5QrnUO4usfys8/y/Ne/xh/1BJkN/+A/XeBf7I64HrbZGAzpXe/jLS3wPU80+Mo3L5H0t3n52Q2e/9YAq36ExtGjTHrrWHNz2LZPs+wzN1NneSSZmoClGcFMITg55xBaDjdHhoGwGLQl0c4iSQq5WMeoOolj89i5WW7s7rLb7xNk0E8Mk3aJMIJOb8gh1yIJNGns41Vn0GlKp9vhxH2PcOv1NsPWWOQsd17jxS/n+BM+X/jSb9FPQqrVKhP1OsuskJmMRr0+Llr/otbbXLT+/Za4+3sMBlvBTNXl2LTPF1ZuU2if6WqVCzNnqS+epjRXx5qOmH7kFMNOj8Ia2/ErS6AciVYaIceBi2EQ8Bu/9Rt8+jOfIUszijy/Cw7GFsD7jYz9oZxSf9w1rNh/7wghsSy1PxkdA/ODa3yQlHwXIPwZS33yk5/8Ux/81Kc+9UmAH3jPhzm5dBRLgW0LvNlJGO5RhBnFcEQ6GBCNIoTJqC422X7lOSxG+FWD3zDYXo5ygSQlaQ9JhmPXDIVBWQp/0iWybIaZQVkCx4bBMGEnTGDCx604dEaa3U5MNMpZnHB5ZMlh9nCdU/cfImsNaF1ZxdIxJ49K7n98ntmTpwnbQ4KtDkk3xPJt7KbH/IkJFk8ukKQZu7s9dlohu9t9LAntAnJHkBSGNBW4wkXkMe1WgC57DEYRna0Oe+t7rG71yWzJ/FKNTnsEvmTycIW5+TLz84bVakhrI2GwmXH5pQGvvKj4qZ/8WQST1C0F+Q5yFFBSFcpHL2D5j4J7Emn/EEU+wc0Nw1detPjaH6S8Z67NyQ808CYExa1vM3jjVcIs5ejDe9jzj4H0xp1HCQkVBpPvpVR7D3g1hIJf+p/+Of/s07+D9mwuvPc8ndYOFStF1G28mQm82iQi8ciiPb78csp7JgqOzk5iFg6xUZtk/cqbfP12wJ03XyEME8KkoB/ldIYRR5qzY51ByaHkSZQoMLrAUZKtQDI5VaXsVhgliu3WkN31VUbLN/AtD99ysVUJy6pShCndWy/jVg8zCiP2+i3CMCWLEpKgT6u/y24oaHc6KClQogApSJw6QRrgiJwsbjMK7hAnWxRFjCObfPzM+6lPz2L5JxE0IQehu6wMX+Abn5dkZ09RrXrUXEHVExybcfjhd1X5X69JGr4i68fcvrnD1dt3uPeYwO2tM71kY5UX2W2X2VjPafge/XZK7WjMM3fa9GIIBoobr+RcuRRw53du8sy/eYnRpUsMn/0WnUsvM2DI7s0rBFcSfv9Xfp3P/pNf5bP/+tN86bnnuS18HvzxjyKrx3j6C6+xUMn5yPvOoaoPsNbKsbMBo3BAffY09dlprFKEsKewbRuEIg0CsniTPLxN0rnB6vNPs7f2DXb2qty4GbHR0wSWwhXwY4+V+OF7K7zvjMv9760w8Z5FegtnCbaOkra/TYRFjsCq1ZGlMoNWh9mFJoNA0Nkd0e6GrG8OaXcUH/uJ/5Lf/L//LbnOefeJe1D+NANjs7t6lRDBoDdJstejYSzmJ+eYbDRoFCGuqFE+voCqWwSrA9KdgHJD4c9N4B6q4E16eDUHJfYpMkkydkLxHGSaYUYx+ShFFwbiAhNG2BMlhKMQcuw4Y1lQqjuoskscGp7/va/x3B/+LivXv46/c5OFxx/E1Jp0ex2iVgcZxVQ8D6tk09/bQUR9kjxCeRm2F9PutHErBjPqUatkVFRCw8mYbWgmpmEtgI6AnSiiHe9SOwT/xT/8z5k65hEPE4Rt48gUz86QLsQ6o9bMwSqQQpMN2gQba8TrO9hSo8o+ptDkSY7RGlW2sKouRokxDTPNgLGOwGQR0rWQtoUoBKYQ6DjFpAnOVPluUJxm3LU1umDY6/AvfuffAvBzP/dz1Ov17+bU/A+83vlh/ju//VvcvHEdIeR+IJe824l++29RSu6Dg4NCVNwtYsX+rH5MbSnI84IsK8h1waAfcPPNFaI4YdAJGHZGGDIe+Phhet2ArRtdnnt+jTiZ4tGHvgchSjiygSl2kHGE8g6jyg8g1RlQx0G+myKXbO4JVlZters2hxZ9KjM5yjUUm8+QhkPspqAy20eWTyKkg5Lj15xZDbLSMSzn0Jg2Bvzv/90v8uLFVynP1jn76FkMMUdmS6Q1xcKJw7heg3RkiLo7PPtsjyfOVqjVp8gn59gMhjz74rPcbKWcv+d+PL86th/dL/z/NK7yxsYmn/71Xwexn0xtxrxnMVZH7mdOHOg4BBKBEgJl2WPNQZHvhxMWd6cNBnm3QLpb1OwXeEoqtC4w2lB2m5S9KVzboVFKWR5dwaiIhr/ETGkBaTJWt69z8fkRzYePU7EVrgW+LZitKs7MOXxxD2Z9STxI2NrtMYxGzNQ0dtyn0lRgT9LpCdIEbKFIE3CnyryxsY2UPqOWYO92wu6NLp1vX+X2N15F9O8QX79MMmiT5AlhZ498V/PaF77Fxd/+fV760te5fH2VTn2KCx97P87UIX73c5f5yMMNHrrvBG79COtDiZ+M6Ad9jp99kOacwm8ovMoEZd9CC8WgFxFne2ThHr2tDa5fusL69g02gibXNjJGZmzoVncEjy3ZPDJt89C8wwP3udTuaZBNLjHKl+huXCe2PKanpzn10CPUJmdRSKamahhZ4fbNVeLUJmzF+E6T+sxh3nz+NZI45vrKdebOXEAWGaOtDbT08NxT/ObT/5okDSlEQZxG9Ec9+sEI3/cZjAb82I/9debm576r3eDPvf7cVqkatKG7/AL14jbHDvt85coeTsmipGOKbJcTDx/liU98iOmFBlIrbM9BmRSlxjS7JEsQMkFT4Do2n/ofPsXnPvc7dDsd0iwlP7Ap3f/fP9iniqK4qzUAxkGWB2Fn+8J/sR+OJuXYavXAurTQxV2RstaabF/A/MlPfvJT/66/8p1NDuJxF124NkWUUaQBjmcj6g467GF3B1SLEbm02Hn5JiYe0ml30LHP5KEq0knJLZc8iUh0TpanYDKUKwhNxsSRBeaOCLJWh6Q1IhnFGKDs2ei0QCIoa0O1gFCP3Qsn7pnBKgrCVp/dzRHZIGJ6QpBXHBanZ7j52jKD3QCTgWUb7F5GYgKWjs4St7tEvR5pEmOExJ+q04kjXCUhTsdk1EIAOYFO8Xwb5dnESUaY5ogsQaE5ulTjtc0BhTQ0qiV847D++hqXXt5hdzMkGeVkwfgAvnz5Oh/86Pfxu7/ydyjPP4xdljhHE4SYQzhnELgYEzNY/Txf+2qPQafKTK3G4UcCjr5/Adv/Cma0TZbt4s1L6hn86r9c5u8d+W9Rh34eLY4hVA3b8/E9h0GQopyEV/7Hf8TVZ54hQOAUOfHtG0ws1Fg6NsO1V9cJdrexGw2W7pmjtXsf2ytv8I9/Y5W/OXeWhYck7ztjY6JjWFHK2tUW02FEpbDIogK/KAjCnKCQzEzOkpViHC8gGEYQJix5GgePJIxJ0xyhCxyZEkqXerOKnZXIEgiSiGGiie0m3Y01hOUh0biyi6/GU6R+mBKGV7EtH9udI7UMZCF+PkR5JXAriCig4RzDs12a9RoXTp7j+GyDq8lhpgcav7iHUe8CF9/cwIm66LkH+MyvDfm/9r6AiDe47/wC//Qff4zoTo9PRILL167iFSGLky5nTx9mOy1YOnycklJstgp8YeE1bKJ+hOdM0bU+xuN/5V6CnW+ht5fx2z5Rdoy1OGKqt8FzWwU7yxFZ9ibe1++wFkJ7pOgF4dg9RnpU5o/xkZ/462xu2xya2KLvrHHx9TfptPd45Ow5ms2H+eLnf5tR6NMP1nErNZzyPNLvkesGlh6SSYtCLyEyF2l1qBx7ElttEXWfJ+7XWVvL2Xg24aIzxzfm5phqNjj8yAKPn6/zo1Mu73uixjePvJ8vPLVI8vy/IYlvkw2iseNK6jHYHOH6NWZPnSFY2cJrD5lhkvWV13Asm4pOKS5f5OQjHyC67zzLL76IsBu4g2+QmSWGMiaxPDrdaZKJCvPlGtIVZO0u1qRDtdlEpSnoBBNYuDWPIk5ACZSvEFGBKiuQGdoWZGFG1h7THp2Gh3IlOgPhSVTJQgQF4WaMDAdYx2HnxTVay3doBdu4OsP369iHj2BNNshEyqg3IIszZhozVGZKZMNNBoEmNxKTZqggY+KQhwhabNyJKTUtnElDTRpMqjGW5KileOk1Qwco8gxkwuysQAuX9Q2BZQy2JbH2aZm2FBihIRkQ99YJt1pkwxSv3iBOA5ykis40Rppxp1VJhAWyUNh1e+xgJAzkGSYrMDpHOQrp2YhCozOBznOy7hBhCUym9/2wBRSQB8mf88D8y7EOcs4MY5tBIxVirObjoFlmgLzQ+4eoeVutINDsH7JqbAIwps/vp+kWmnZnRJIVlGtVbEcgVE7heDz1a1dJwoQ8H5slfPmZb9BLQv7+T/01nMoxpPP9qAkJcgohJ8AotM6Iei/x4nNDGuUpJio+pfIIryGQ4jom3qAwbbzpiP5uxsVv93jkw59GNv4GmCpIB2VZGCNJc41Qmt2vfpm9JENWq5QtiRP0mVmaYnKqwsbzt+iYVSYnprjngeNsrZe4ffUiv/uFDX7gpx9msWKTHmlQr5xi0m5we/U2jeYsUqp9l6HvIEbGIIwh3/dRF+LACUqO9RH7oOCguDdiDBAwB3Qv7g6KjBkDDMzY5OSgwIHxZGecia4BjTYpSdZiGEbk2qdcckhMishWOXvvEr1OizsDzX3zT+AeOs5vfj6k9cZlbFHwoQ8u8sMfPYIZpDyWC8J0CGHIfN1G+D6JgVpjEltJOgNNybVQEopUo1SNWDzMmfMzRN3nUIMIGddIiykGaUot2OS1LUN/2EVdeQFdXGRnqNnuanpBgidLFG6FQ+fP8PCjD9CPbJYafVbtO3zz21e579QCDx2bY7J+lD/83T8i6lZZ66wyMdPE8hrIUkJmSrh6RC5t0mIBO4vxXUntxDFsNWTYuUrf1HjhRsBLhaJcqjM9VWGhWeL4hToXFlz+6qTkgQdrvLFwjm+e/lmCF79NmG0Qt1KySGIXFdJeRqlcRrouDX+KQ04NRpKrV17F91wmkyHusM83vvxZsr5mWtXRtofTe4NBZxtMSpRn9OIRg3iEVIpzR46xtr32H0ukAXeFSRiMzjF5yunDFtUHqxRI/sponpvrhlZoIBpiyYTmhEeS2jz7rZc5f+9pamUXaSmyIh+7z9keOo/4+Z//e7zwwkt0ux3SPNsH12Z/EsB+I2C8LMt6CwggKCj2JwQCpRRKSrL9qYM2GmnGAFtJdfd9eSBq/rPWOwMHYR8TDMhNhWC7S8nXiJrERDEmShEmxy3n2DWPYtgni1KSIEW1cmyZ41cVqcyw0owsy5EK3IqD8m0sC3obQwrXYbQTM+pE5FlOqabwtSHNxvZyvoCKo5AIHC0RmSZJMgItCIxgJBRhZCgPJWqzRzKIiGKDwELYkiQxBK0RZc8m1hBosCs+Fd+mUbbp6oAsDvA8H2VL8qggSWLwJDESEUckUUJmxknJtijo92JMYShizd5alzQ3bN7uMeyl5MMcNDTPOLhTNtqpsm45/Oz//GkqXpO//bc+xvFDNjJvk46+zBubI6691iK+fZnG/PtonDiOVdbMTya45YvAKlGvxfZmyMBomudt9r464DP/5HXqk/+M47HN4kOPUX38SQYDwW//01+j48P7Hz/OdHQfE89q8vXOOBwssBnohKmqJvIMedGn3c+xJmfwtyqs9RJev/gmpWmX8ycPo0i4+K1rjIRgbWePqhugUkkeaZJEo1rah1AAACAASURBVLWmbM9SqpSo1C2MUQShZmGhSmQpgiDGFGOP9ijLEcai1R1SLTnYvo2bSTJl45Rn0IUkHqVYwiJJArTO8R2LKE+xrII8i/BURslR+AgyYSgsRZF6zE6WKJeqNKsVDk81OHFiljdf2cF4ZY5XK8wvubjVGe5/YJa9SxErszVeubPL5uYqYWSITINf+KUr3Dd6g4V6xsz5U1jlQ/i1MrXpEk1H4jourtE0o5jtfsHyWpfB+uucf/8j+Okk5g5IDhOWDjFgimrzMKfj1/nsRYvp001OKUHY6zC4tcmT997Lt169xvf/0PdxIxL0tE+9PMGdG9ucqDYR8ToT9x7j9bUqdzbbFMWb3P/kx/iZ/+oneenVHW7euM0wCCgY4dqCQiuyQoIJEck6ReoQUxB0XqQxbeGXq1RGa1h2hHE17WCTjZU5tm/mrG4cZ+XiDPPzdSZna9x7bJb6957mqdmfpPfy6+TrL2DCGyjhs9NqUfIjDp+8QEib3TjD2Wtz+emvcaTp0d9LefXWDq38EoXl88jkPEGUsZdtstodsqRg1nGYlEOma/eRuyFhGFFs7+EvTuLPTCILm6wTELQKEpNRnSvhNhxMZijiAqMTrElvnIBcdzGjiLwXYFVsVHWcCyByTTYsiNsh4XYXHIU346DKglLZoeH7+JaNde+70J7NMAhBeVRnlyhNTNCYUOSDLfy5WdLdFJEH5EaT7Asiy1NNZuOQUi1HpjmOY5CuQtcsjsw5+Cs5ejdjYAo6RY4xAcrzsesuaa4peQ6WKzBSooxBCE0aJnQ29kj7fSzl4VoSXJ88DdDZmKcrlYWw5Dj51hRIS4Cw0Pl4gqCjBGGPE32NBlOMp2yWZ0Oek48ihGGcB8AYUwj1l9Gu6LuvHMYd5gOPbziwLX37kkLsu4CMz3t5UPaKu7Lku6DhIIj0gI4ktCbLCnqdPnOLDepTFbTIIc2QEo6+exLll8msOdYcxf/2uc9TExY/+YlP4Dsx5F3idIPWIGR7s0u2dYPK1JPY1UnsiqZUHiHldTDbZNEO/W4EJYFVh96tgEtfvk2p+hTT3V2qj30YOXOUQXvI7ZdeZSBzHn74AvNP3I+6uY6TZwyH67RzB9mTHJpzKIRmFO5iuxWOnD7KcG+Lld0RW3duMn3PcU7OLDFTnmFl+RoLhx5AiLfTF/4Mmpcwdx2L9jEVB+Sit1/Pg8+1ACVgPCjY50scBKft38sDQCEPnKP2nVfEvgsVQiNkjpQJQkiK1AIjePzC4zzxxON0em1ev/wGr915mgvHJGvLrzDas3CqR/jGxYCd9iUeLimm5xXu8QV0uYZdtnHLFlU5LrgsDGU7o58aRv0uJguYPjKHVVQwuwLp3EPsO+DVcdwyk9k2z922WDjRoKpj4labYpgwdWwG6+Y6H7j/AjeDAtur41gurXbAfMnDJHs8+eBxXry2y+s3ewxjxT3nz/FTP/VB3rw94urNNYowQRUCf3+/j3OBJESPtkgQpIWg0AGLSzb1aoVadwOrVhDkhm7SYW2jxuqNjBubi1w7XGFu0mVmwuNMzaPx0BJP156k+9oy4c5rCDEAFGvbLSaqKe991xPcvrbG6iBh3imoOxH1msAOPabkDK9uvoqnPJqTM9i2YXu0xmZ/hyeOnOZOd4d2kYEYA+3ljRWCMKAYWxT+R7LGCLYY3iDvvkqjtIxzrkomHI6FNtL3uHqlw0aQ005ThChwPIdjp0+SGINWcl8obOFZCiEM//JffZpLl16l1++Pp2f7lKUxnWj8rFqPBf0HjkPA3ffAXbBtDhog+/veAYjeBxkHLCTzJzfD77DemVtRNkRkMVI1sEqKtL2JXTjjQyVPEFqjXBvVqNOcLpFFPkFP0G8H6DSmMlnGqiqwBIURqJKHU7JxyzaWzkl2I7JORNiN6Y8KclMgPYEnIU6ysWuCNthyPIoUhWbQipCWJjYS5SkcYRMlOVYqaO8OcYHUGNASkWq6QQLDlG4vIHZcYmOwfUW96aCDBB0lFFKhc4VWFoXUKLcg0RqTGpKdiDjJkbbCKzsI2ybUUC57DAYBna0h7X5Kdy/BcSzmT/lU64rSmTJ52WUYuvSEy9Mv3cEevEH1a/MsVQXOaBWZ7bK8HbI2NBydeZDmVBN3OsX3BjQbu1CsYqRmfVtzpQOq4nD8kItVHUDF5oWtl3nj8oiZ1Q0aq2skiSB49vf4cgSP/fgvMle7wNKwx95uB0zCkaMe0eYQu+5ScgVJnBEFXbRv4dQmKEa7vP7GFlPHj/DwufuZdnaYkBZRrcSoN6KwUzzlUiQWo1GIyAsGngNCYiyFVgrp2FglC9tRuIlLFmnyNCfPc5IoI40KkkwwMTGJci18G4Tr4btN9tZakBUkeUqqU2xVwnNdsmhEnOfEYRff9fClpOLZREZjbMHcxAwTUw3mpqssTVaolGyqDZ/FozWmSyXqDQcpDZW+oKIyknTEEREysiuYI1MsPHIPgRfRs6oszBZMHZ4n9ZoY1wXfxrIlnVGOFSds3+6xsddhO+4RZ4KHSz7xICa5NSRpLqLnjiCqM4z6BYVKmbv3DBPDgkbVIT6accNZQRUBP/hDP8iRoyc45rl0hE9vr+Drv/mHlCq3UUWG1Vzi7L33MjMIWFndYHOrzbkzE3zoA/PMNSW376zT7kcURY62yySpjdbDsQ1NUaDThDS+xSCJ8SbOUjJdSqUCr2yh3Iy8qBIONcHOMm92t1m+XWF6ep6853H8hM+H33OeN906m9c8hpsVstYqSWsXEwT0N7YIB0NGach6J+ClF0YI1ycVI251hki7Rd0rIYqUxdoEfatDq9emX0gaVgXPM/gLk4zQiMGAbG+AsCWW7+CUy+TDgPbVLbQt8ZqHcIxCxxlxN8SfKEFhg60QvsKq2ujYAUsjXEWea4peSNLPKUYpkpwoirHSCfy5KofuP4vjgihivPvuJQxStts9JpoN/FoVaVVwqjZSJFSO3YOxM/rtVeLBiDyOqYag5kpMnXDxqwaRq3HehCdJSjZurjh/1mKlldIPC/Y6HZ79vd/jyb/xn+GVFdtDiaUEjgJBgcgLkjQk6nfJioxcSgyaOBqihMSx7bFwU9lgqfHOrUBY45GxzjV5klEkKRQFmAzLszFpMRb/SYmR1l03HpPlYwoNoDNN/h98cPCdTMy/e23BO3kuuV+oHugJDorWg26l2DdRPHjqA1tA3jI5uvv4WDxrUAiMLrBsgVty8EoeOQmNpkdjusTk2RkKq8TINOkmDpfurOIFfabfPI0z3MXPWqh8xCBIaeUWR5qnaE6UcEoZthvhul0wLcDQ6xZsJDDZLOPWwa5Y2LUzrAxvcufly0wKD2t6mbw/JL1xnSuJ4pGPfpDDD55DpTnR+hrkI6YmJ4h3h1QXp8l0QTaISKOUvFFlcuEQg/VrXHn9Ng9OzzNdnQNb0Sw3mJyYecd6g4NifuyIwt2L/laRv3+Z98PRDjqXet9h6617vw8u3rKPGlMI9+kVBu6+pgM+trQEQo3taV3X4a9+6IO8974nOXzkML1Wn3B3yPXXX+Xmm19nNBIEUY3jDx1n5mgTLboEnmC64uCUfBJjg6cQ9hgyRplG5jmd7YBeGjHKIhxXMm/Z5HFOvh2Qzx8Gv4kxHkmaI5WksTBLNZV4NZtBfcig1cUzhsfff5S5xUNMSNDCY3e1y/Ll2wgVoCyJ35zlwrkaW7sd+nFBqxtxaKHJB+ZmqPsZ260RUZxQYDDCI0CSywBlBCLV5FFCMNpldRBQXzjHtBzQmLCpVwzVPCNKXXpFxnBvj2tRl51qicXpJieWJlmatXnf/Ye4Lnx2VgrC1iZpe4d4p8VwEGAXir3WLsNcIPHJDahKlVBEyNzBZBpHGMhjlvvrjMyAtIiR4w4FSkl8yxuD60EPXRzc+7+g9e89pjhwNDPodBedXkJnl7BKPfxSGVe5LB6WvHFzgOsoeilsbW+xdvkyRx58mLnFWbbbIwrLQkqQxhBHEa+/+gpf/NKXaXe6pGm2r6k5cPWSb6PTmT8GAv4kze7AiU0bjSjG3yd4KzANDqycD67Dd54CHqx3mHMgEJZEuS6VxRq99QFFHKMcGyEscBTKq+FOzbFwPsBkCZ3tXUaDhCzSJEYyW/UwwkXaDspR2CUb24Z8EOEITdgdInIBQpIXgmiUE6MY9BJqtsAUBmkMUo69cvu9iEbTIo0yPF/hlhWjosAqNHmiKVcVsgxjs/SCLA6olRWhHouNEAVlHzzb0BqEBMMUf6qEzlLyIqdQkooPUTchjQzZIMV2FLVJH9ezkFWHKJXY2GBGxEFOMMrJhcSvORy64HPskMvIdtja02StFONvUVrykH3N719+mnh5AOsDpmzBRK3O4fc/zJnv/RGs0VV0/hplO6Rc7FEUMbl2eX1ZcEv7zE/4OGXF9BmLCx9vcPNGm+sRvLH5OvYfvE4pNvzYnOQ5U2dgF/hLs0wdnmNoCxzb5dSZMlciQ27AtsApC2xjGCY7lBaOkyx3uL4RM317xIm9mHRQMFcrkYfQ2R5i4ozCdzAll7jfQ2SaQb9HYgTK8xFSYFc8QgTCAq/qY3SO1ik20O9FGDQ7nQ7Cr1D2JVIJXM/Dq5QY2Q5R1EFm8XhTMZqJao3dsI+QgmjURRYVKqUaFc9BJxl+RVGfmGR2ssH8fIWpWR8zlDzy5GHmz5XJNwzJdk5vOWb0aoS9dptmtcFp28daOM3Eh+d54D85QtNo+tsLVEoOUggyI0ikpBtCb2/Idici2dth5dItUvqUjlRpnHkA15To9EfonRFD7wilxgXmq2Ve+voLbM6d4Md/8CyvfvZFhqlCHp+Fc/fy3Kf/F37mgx/lzhvLnDg5wcnZGlcjm5qq8tIrz2Idu59aOuTxRw5x30PnuHh5h43VFb4xaPPTP/ooNeckU5M1bqx22dpawZE+QVQhzqtkWoJOUKoF0ibu3mHUE5RqFmlmU9cO1aqiWi9I61OMohFRskMSt2mvxDzdEjyxPcOTHznO7IMz3Fx6gpVbc2xcepowb5P397h56ypoCweDySPu7JZJvBp906JUxKRowiLjZm+THzlxD42FBvHV1zBhjBRVal4Fp1xl0BaUe0N0XJB1h6QVB8uxKEzMcGuVyuFZhKUxJkcHAWl/QHmhNO5C6RyBxqo6SKc6bkPKgixOCXf66BSU7eBPlensdvA0uFNVjj/xEDMnjxINe5SPTbGz2qMz6FL2XCxfIbXAFDalmTm8egnhhIRJi6S1QxiMmKkaRCEoLSrsqj3udRYKLSQUFnu9jKOHbE4dsknigry9w1P//P/k/T/+0zi2YCRAZAZ0hp2GiGBIMuqgR1vYvkQohyxMCEYhrsixnKmxVkBZaGHu0iqwDDrLyaOELMrH+6RloXON1AUUOVIK0AU6KpCug3QsiihBOQ5CQhEXhN3ouzgs/5T1pwn+7haHBxX6nwAD/05sYN729Xd+qL+lIdjvYktJUeh9WszByxkLjYUQCPPWgfuWV7jhwJPfiHG3T0jBQcZykRfYjk2WaYajjPJEiYmpCmfvmaJvbDo9TZwPMXZAba4EgeZLt54huHyHZjhixrGpVaYon77AwgPfA6OrWDLClTGWCTEmQeOytlvQdepU3SqeyqgflSy96yzrK3e4eV2ws34Ra+0iNa0535zkWj5DoGOaM7P0yi7akni1Bo1jNZZzQYFAyoxqSZJnBd3eCvWlEwQ7Fpdv7DJ3bkhpMgADJw+dx7KsPwEOvvN9OAAHd+lDBxMXo+92MZWS46LlLoIwd+/H/pxg3NjAvDW1OMii2H8FYzeq8eNKSZRSSCnwfJ/7Lpzl7/7M30ENbOJuih7Bkj7EqfISOxstytU6wtnjoUcFD75nEUfPE/YjrMp+mOn+35lFmjjIGUYZUW/A7s097HqGN9PAmZpGGYswktAZEc3cS602ixmkbC23GE3M8NiFGa596TrSaUBzniTbZfvSC7z3Q+fYvL3HseNNYl+SOg5WCldu3cQ+fZ5GEfDwA8c4fHSG9a0hO3s9epHF97/3JO6Di6xsh2zt9mj3h/jSpR/6DLMSqVEoO8S1xnS5nVtrbO96RIcFmXZp1hQTFYdytSCpV+nHGUHcJxnGrIUFnU7Kg4drPHBhktlzdVYW3sXaygQ7NyWh7pO39rj25jWifg/fVkQjzTY1ZGOGdr7DRBbiei6uVgwHfW7FHVI75f9l7s2DJbvyOr/POedueXN/+77UrpJUVVJraUndUqsXdTc0NIahmcZAG8IzeGxiPBHYnhg7PBF22OOZvyDsGNvjwOAhwBDAgHugaXqjpZZaS2uvUq3vVdXbl8yXe+bd7z3+I9+rKjUGBMYezvvjLXnzvpvnLue3fJexYom238OPQqSSOKYNOkKj8VP/A4Bb/h2PO0F5gk7apN47aHEZWfLQ0iSLBQiLUiFhfXef+dFxHMekv3Ob6y+9wOLDj2BIEPk8icwYdFv02012trb47d/6P9nY3MQPAuIkJknSO6RjdUjzOfIBAd5/L+oj6FF22HA7Sp4P75t7Egoh7knQ/wr50QfrHIzPkVgVov0elpNQeewCycVXSWsH6KyAOTGBPTaLMTVHYXqK0doOpWs50qZN6ocMmj7pnD0kNJccsn5MuDdgEHoErR5RmOBlICybMdckjTX9IGS/FtP1I9wpizhOkaZmdMxian6UXrOHSYr2IsKBQDoS05b0DwKmZwsURguoaRdTSUppyPGGxHAcbhwk7K12GC0o8gWLZKCxlEIVc4xWDYTQBDojSBP8bkzYF+w2PdycxUhBoSxBpiRuPk/Lz2i3ferdiACBUcphlzVULNKxeXb34frz19lbrRGnGakUjB2vMHOywsOfO87m9T223ogZzytO/dDH+OnH/wnh6ldIojfQuR6ZkScwcmThGjUv4d0dj2NLi5yecGgMbnP+sw5fvb3J4+csfvKYQxIndPsxhasJ9X3Fv/jSR7ldNLlxc0CnmxI4Fu78NN/61jZV22BypgI6I05C3CWLopTk3AG3DgQDL+Pm1hpvvPoy5y4cY5BXlMwMs2zQ7YEXgTYlfpxRUNAd+FixxC4kOEUXs1gicas0dw4QQYAReBg6AWVgFR0m7SKbBzHNnk/Hi8mZBkvFKlGzjUxDkqhH3jQoOnkKRYemMKlWRhmVBmQa27BwLQdDGARZysz8FPlqESUUZiYol2xKSxamY6Fj6L8SkK36uM0eEwc1Ym+PmeJxmmMlPvJEher5HIUwZbcdcnCjweVClTFXYgjoBZp3ah7Nt66w6u9w8+Yr5CenOfPERznx5OOcGTN593ZEfr9Hc2+XzvR5lvMjVM2AN7/zJoMHn8H6cYNrN7bYOciYiwssf3iB9WiSf/wf/3dkmeTjIwZPfOajLP7Ij3HfU0+yt3uTHAaIiJdee5PjzWX+7k/9MNHOSf6X5/f4k+9sMjk9RXlhnnMTHnJlEXHwPbYGVcK0Qr/fI0g0sjCDao0yOj7P7q0XCdtd6m1NQ9nkbJd8+SZLpUVOnzhG6tj0Ykmr02Zn/V/xp995mNcufoSf+dEpPnWiwMbocV4aq7LxmqL12tcZpAkls8qIVWZEhVRnzvDGQY9I3yJWGSu9LUgz0jQkPdhl8dkv8u3rK4TRADsIWWr12XnjPcYmT5FFGZllIPMFzGIOIz9spZYXC0w8sYQ96aD7IdnAx7USVN5AVVxo+cNg0xYIy8KolIg2a/TrHaJeQH6qQm6ywqCV0a+nyFgwYpqYE2UmZitYpmBQa/P2y2/z0FML6MSnt9VAqQzzxDKUq5iFAmY4i7V9iSQL6Q08ihWH/KiP7YZImYElSYUkixSSPJdf2+G1TY8LD+U5PWmyfTnENQIGXgcvtRk1BM0g5aDVwNheRe7eJsRjZqZAvpjDMCSyACk2ZqmMKuQhDEgCnzT0iT0TlSuhJGRpTBqHQzU2yxlCjtIMHQUYjoMQCh1E6CTGqLhk7YBw4CGVhbQdUlK8VueDrxp/2Tgqu7//j3e/a3H3ZyHuBgj3aHr/dZsIR7G9lEegoqNkQLzvmI5ce0mzO1VsnR1hco8clUHIIwjL0C05TTPSVHPj6jb2eoOR2RHOPHmGE+cv4PdS3v7at2m1OwRpinAsFo/PMj01wiOP3ce7ZoDu7DExMs782U9xfvJjhPtvorLrCGmSKZdUCLK4xiBOWGsOePDsA7hGl1TWKC52eWvjf+LEdJ4nvlTGI0V3PYxuHuwH+OKpB2mIlHYvpBsl2JMzjC8f55XXX2R2ZIRS0SEYRMiShenaJGgMs0Wt5DBIfbbrW0x0xjm2eD+uUzkkA9+bcP3FQxzimjnquui7wc1Q/UneqYIKMSQsKyER6ggmMTxjR19CKEDfIR4fGTilekhaFhjobMgLsR2bM6dO8i/+m/8BQxr0rvhwEJLtNik1Qz41+yEeu/CD/GnnDWYeX2RpeZq8F+JH0G9F7IQWZXsoc9sKNL2mR2+nyXbU5frKe4wvzvPA3FkmZkYoGZK9doLdC+kd1Bhoi4rtEHQ63Hp7m/j0McxHFCsXa5jNjKlz04wUKhy0cvz6P/tdtFZ8fMlg4XPPMDE1z9zZE7TaHVwEmYj47utXOX/+BM9+5Bhex+eb13u8canO6MQ4k3MCp+zjHrTQ3Q22rSLVrMRes0NatFCFcVyrytLCPK+/8m0ObvY4uGXgunmqFZfRUcWx6jwPnJzDlyb9SHDQ2GZv93t8e+sE76yc4QvP5Zket5jOL3J9JM9u1WX/5RdphDFnTjxBIWxQKdrkJhd4Z7fNIE5InISJsRFMLwIvxk40m36fx4+fI+fFbHXbxFGCI01sY1hMGfgef9uzgyMInE67RN0XEOkLw3vCVDh5FxlBv2uwfX2Xc8enmFrMYx+kpP2EMGriDfqkyiZPxkEv4KVvfIPvfuNPuHr5PdrdLlpnpIeW7FINr+8s404H4UhqGRjKNHMX4niveeOwI/r+e/QI4nekTHQESfozOMs/Z3yg5GDr0iar/nVc12Z+ycGaGKe3tUW2cUA0ENjTM9gTOcxTc2hlkj/2Ie4Li9SuXmP/9irdfp14HcJqicoUGCokiX3CQUBJxIRpzG4oKI6V6A9ithsB640+22lG1VHstjPGJhxyWjOIM/oS2phcvDlgomJQGbOJ0OzuemQJlIo59na6CCugUHCIHYPEzjEwQJJSncxBnNHvJZhRyE4rYGLKwMkZHAwSvCgbVuBQmG7GeGZRmLQplB2QikYnYN9P2ffhYK1Lz0sQpiRvaywyRk+4bL+xw9ZL6zhhzIgaznSQUxQWLJ77zBwv/skObZFgHJ9EuEU++9H/iovXf4nav3mBgwfGOHH+UZ4cPY7ff53Weptf/LceP/Zz/yV6/y1efOHb2L7PT/7CLH/8v97ij14O+Lkv2szcr5BtRTgQrFxMKVNiyjH5/LGAkTmP/y1ICFotPvuP7ued39liZb2BIRUjJZNJJ8K2FHHHwpgqUwl6pH6Tq6+/Q5j16Q0gig3MJMP3PPwwopykHBstEEsYG8nTqPUJgz5ZltHrJUOTqyiiVutiYJC3XXKOJD85Rj43TiFep9lpYJtFLKfM2uV1fCQT1TGqpTJlU1G0HbBMojjCt1zKY1WyVGMmAVkcUYszyrbFyUoeUwksQ5EFGn/Lx/Y10abH7X/dZXN/BSO4yJj0mak+SvmhH8H8qRFGYvCl4LWvrPLKN19lubyFeOQzLJ+zEJGivdGhu7lBNrhMFtwmVDkeeOoLPPvZB1maLRM3NasveIi1W7Trb9McH+HRB6c4M51na7XDd7dv8k8/8wUMaXO93eS1V9/mIbb43Bf/M37rIz9P/fbfIx0E/IEn2Lu6yY8/0eAz/94Frq3cJNp7HZ1YzFYKuEHGN3/vMj/79x/nlx55gBvrbS6v+2hSJvIaqzBCuGHQvbFLmMszgknU7lDb7uOV5yks7rOoz9Ldv04yaEHqEQddDgYZ/YMD3rv5OtPjBabGq8yMjvD4J2Z4+9Ilajuv8C//1cMcO/0ITz11ir/3+BSvPPKf8G+9Fu1LbxDrNsLOYRsO242Y81PH+N7Od9FBH9PWpFKwFvf41fqb/HL5H/L5Z36Yr774h8RRRNkFO42wozY7a7cZf/Ic9oSDlAHh1ha9gz6jF85ilQR4PXQEIm+jSjm0ZZH0A4LdFpgm5BywbCxH0hMu/fpNqrOjFKfzGBWDRCZs1zNGKy65osXNRoJUghPjFoyNc+pzT9O59irp7jaDWh1VLGKPzOJUhxV6tzSJbdnkjIxKSVA5bhH5Hm5Fo0zQpkEaS/o9wd7NkMYgwVSa8dMWx48XOLmR8vXfb/Jf/OfP8diTX+S96yUETdLBCnH9Fj/ysfMsLC5gWh5Rp4lRHaM8PYM0c2SZJE0DlKWIu33ifgCYaDPByoGlHKyJEkJaQ7WGKCHxg6FztH0EwTCQQqM7bZAK4VhkaFLPR8mM8WMjH2jB+OuN71uMvr/DcBRFfl8A/9cZ4rDilmZHleZhUJndU4GT4jB5EAyNg1J9JzhV6v3/f0iOPVyg5ZDcJ5UgjRNCz6ez12Tr0m3GqlWufv1VZhzJkkpJHEkyYjMyX+DJ88u8/OIKkeNijy7gTJ/i5PRT7He+TefNb9I9f4bTufspmIooukHQ3ud3L2V88uP/mO7GH7G/cZNKCWZOjnNlY583rrf57CcmyNmQ2DZhYtOpHWBojStTHpsIaSuf7faAYuLxA1/4GO88f5m17SaOZVLSAbbs4+ZKkFqcefxRCNuk3j57GzcZH1ukmJ9AKe7orH+QcZQYHE4WR12Bu2nh0fzLO2Ct9JDAfJTAHXUclFR3CORHQdHQvE6+75g0miROMISBkRq8+cevY79RxjwQlIJtqoUClcklBg+eoPIDI3zce5pMKi5+fYewfp2x8Qxx8gRjiw540N8eEHfr6GCfLG6TGDYPP/Esj31oCteQ+G1NsxZAeEYF9QAAIABJREFUq82gu01vdoYHZgsUTMnqwYD31ur81JPnyLTkrY0mjddW+LTxEOeeO0ft3IfZufQ26UHM7zcVnzpT5/7ZOc6cm2W/0yepr6DjHPPjLuGBz4bscO6hKb60OEmtFbB+EGPnYKroUiy4RC2H3kabqGAzMVamtdfjoAvh2Ajl6S5PxxfYufUOYtAjiQ/w9mOub6UclLZ55XsxD94/wfjEOKfGK1xYqrB6+wZ762/zy//Hozz56DLnzlb4zJkZbi6P8q0kYPfFlwhlk9lRC0cVCQYWjywt8513UnS7wfJEnmaWUG/5qBQcy2YvbHNt9QpJEqEBrxuQ6Iw0TQ4lN/+WM5IPqw06C0nDHUwLhMzAMElDE7+f0NoP2G8OKLiKM49OU8rl2Vvt8u5bV/jyP/wJvvSz/ylf/sN3uH3zTVr1TQa9LkEQEcUBOtMEQYhS6k7yOxT1ujsvd54/9xRdjp5uhnEXfgSHcKFDON4dDoK4yz84MkOT8i+f9w8kZfr5Rz/O6fnjGLaNZWSYaYPm2/tEviA3PkpubJQMF3O0StruIktFnNkSdi4m7O6zurpNyYg59swiByttdJRhRAlyr4fc6eHVfXJao7sB9abPgRehxFBqbKYs8L0YxzUpFk0KeUVqpPhJhj+IiLIEP0mJNdiuCULQaXu06gN0mhAmKY1+wu39gLeutZGmYqKSw1KaMInohSG+TplcrtDpBux2Y/woxZACM6c4aCdkSmLlLTq9mL09j/1dj07LJ0xi2hG4jsAwIUph0Is5uNmldalJFibEGnAVY6dLPP4PTvHwk+d44eV1anFEc62L7MzzwGP/AXbvN/iV//Gb+DOSE498nvPLTzMnNfvXf5tf+Of7/Pgvfp6zSz/AS89f5sqNd3jwEcXCSU0yk/DySxHFOU3swq4neHsnZXApJbzvAg9OnmKmMk0cJWxsrXD9UpOx3TqPP5EyfyaPWsjTdxVxP8ApqKFergu2m2IZgsTPqK23UYaBEWboFOJUEWmDMINOP8axc8gwRkZDHV/SFH/gM78wR+ZrTMMizaAbxLSCFGmM0PZTms0uyRERMw7oeD28Xp8kCdFJSDTo02i32G130drFICBWkkxo+v0mnWaDNJRUrQLj+QojTg7LS7G8GKOb0r8YEL/dJWh2yZlFqtYk1dJxiksnUUsO3XcHXPzDTd792m/Rv/xllqp9Tv77/xHLT09RQLBydRshdkkrPjecCezzz/LEuU/ysSeOMdq1qL/e4a2vvss3/+BXuL3yCiR7zPzAF1g4+yCkFlcvN/nTb73E45/7FI6w+faffJO9nTVkoYK5/DQPfXSCd/6wT9u7QSoszL6H293hxHMfp+VpZl1JR9nsdfOsbXa4evVbvPjNN/nUhx9B5VymxhwqeRuwKFXyuNVpHlgokPbaJJGB4Y4wMlWExvfw3IeYefIHEeX7CRILr3+A0D4KsHQ2VOEIAvrtNvX6PuvrO5yYSHnmQzGqt0ltd4cr15pcerfLRyZjfuqLnyA8Nk1tf4/drQ06icfiqODh8VPs7V7ES2JSmSNIFV2/y0kBiwOH56+v0PM8jCxDpym54jjP37zBtNtm/Oxx7IJDVN+l+fbrtNZ3KS7NYjhFkiAj8jySzBvC2Wo14l6Hg/0WfscHLbFLBYQCZzQ/7FJKA+XkyITJoDbAKeWZX87TvtrC6aXklElsmZg5hWMoNl+4gjjYxESQq4xRHKsCGsNWZIlPe/8qUtcZqybooIvdj7AnJcIWaJEj6OfYvan5+lfqJDLjyR8us3jKZieJeLPVxzdD3n2xwSvfeJkrb/4pK5dfo9feYn7eYH7OIPU7DDpthEiQKkGLcAjHiyMMwwY97AxIywZhYDkGluOgbBekQiqFVBJ0ik5jrFIeIeRQu3/IXx5aWmWauJ8QDmLitk8W+AzSHr/y1S8D/++kTJMgIAkClGlyb1Kg45jorZfo/eovMXjrDZzzjw7l9eL4Lub8HhlRjr7d+/twT9x98c+O3/+93+P69esMdfGHhkFH8n4603cIf0qpYeB/T0B7RJY9Wpgz7hJghwGrPKx4H1X4hvtLwpjBZo1CzsbLNPZogYVHlrnw6Q9xbPEUb6xu0DY0u6vb5OV9TFdPov23+JNvPo8x77K8/INMFxawkk221l7kd762xrOf+wnGC+f42gv/F1puMzuXUahkiHLIW5eaTM1DLE0avqLWTon2UuyFRxnPFclZBYKwxdbOGu++fpmqt8uJ+wNGpgp4ZQOfmCyJMW1JGPkMpI+SIceXz3PqxGNMjM0dkh/VHY7AX5a0bW9v8+u//uvAMPgfdl/0YbAz1PaXRzChe87pvalHlqXDWEwcdmqyoSeHUuow6BF3trvDEckyDKkwMbFjm/KgxKX1dzk1e4Zifozc7CR6Lkff8SgcFNn41gH7r71Muv02o4sFpj/2GKPHCjhasLXeJlfo0bahXRwlt3iK0wsnObtcxWoJGqseV19Z4dJ336C+eQuDDuNPPcPISJXAF9y80WD1Vp0HPnIKUxi88AevEfS7FOYmqR6fZ3bG5eYbNluNSyhzlGLYpuhC+cQiKYqxnKIhFfvNHLfXdrhx/SqbN/d54PQC0jQZKRiYUqGUgeM6OIUSy5MOcadLmjkUykXK+RQ52MLPLbHw8ENk5RM0Bxm+7yF1iI3ATWPMnCButWnX99jf2aJR22d5SvPIhRj219ne8Vm5FdA6iHlwQvLsh88gTsyycvkK2wd1UhGyMG6xVJ6gu3WFXpBgFcbp+D4MujycLzI/f5Zr21vDIDVLieIILw6JknhoIOY4/PTP/AzTM9N/4bX173ZoUr9G1HgH3X4DVUgQBmhGCPsG+xs9Vi5tUSwrLnxinsnpAptelyZ9hBvi1TtcfvHbNLauYJkxnten3x8QJzFRGBPFyfC5cuf6Fu9LqI+S4aNnoWVZGIZBmqQYhrrbDbiz/aH7+D16REceCfcS+5M0/ZuRMpXGMPA2LBNlJgTthCyIcMdnsAujoCokvSLha03UpEAcn0Y5MYXlGUZax3Ffu8FezeO+tTVGRorYJRtZ7xKvhqTdiFKkwQCjYuHmBfme5EbTJ5YZeUvSCTSmThBaEmaKdJAQtwKCOGXUFcxMWZTLFlGkGYTgDVKCTNMbRHh+AghCBCUFI2WDSKcIW2JoherHjJQFQZgQpBIRa0QGfqppdyNyOYUfaPxWQJhBHGsSBKbOiNohtuni5jW9XsSgGTHoxrT2QzIvBSVwp2yWnzzJyU+cpa822LlyjcZKiz4KWVpk7tgU56ov8erK21gTFtOTy1yoLjBvOdTaA76+rmnFkhOTF7DVCl5/h1o3YzvNyJkZC2MatQBBQaNsGDcEct5CPWVx4cRHWW8HpMDpBx7hJ35ulpdf/a+5upnSuxQyOp8yWQ0ZcU0OnBxmWeK4YOynpB1BFAt8P8MxEsJIUyrbWLaLGTvkfIj9gCRRiNjHizRxFA6JYaYJlmL19gF5J4+0HQrSpFxVmDmbzm6Lei9iZnaOrN/DRmMLhac9WkGPRqeJbTqYhosyTCzTpFQ1UZlgu9EhUyZJrMEqUizPQlqk0YzJpQnS16h8DlnK4VYN5ObQpM1csrFGBYbUxI0BN7/xr2kGHba9Gg3dwP3QQ4z8yN9h5sOj3N4N6W4nuComUwrDGeXMyDhTE3n8RsLa83VuvfM11tdeZ6exTctPmSlVWfeXeaQ8Sc7JU99NuP5ej4L0sedytDp9nHiPXFZDdWcp3hjw4GNFTj73WRq//2X87oBa12Jr18f2PE5dWOTll77CzLH7WXpwkl6vyY3vdbl1Df7Jf//bfOqHnuXs+TlGSjYuCUoKdm2LxJhm/oSF0+jQb3cI+gHl+0/i19eJVrY4tXwfx5Y/yc76Mte+81XS5goaA5UG6DRGJ5p8IrDjiOurMWaS40MLkuOFW1zeqXFz7TK/8ZsP8NjVWZ55aprJTz7E6yVYubLNxZ0tOrzAJ5cvcGXzNptxj6b2EUri6Zj3Vv6YWIyzbBSZKY0wWq0S5yw++dkn4dYl+hvXQXaRtiQu24SDGkHQwMpKJFqTKQ8lI8giwlqXrNtH2RXSzKbbSxjUAkrLU5RPOKhSHtGLGWw36da7tJttph+7gK0g5ypaux5+I0A1XCZP5Yn3ulSzHlFuhOKxGcon57HLeaKBR+DXcaqa0olTxEGN/de2WesOeObv5JGmDaKEtx+z+l6Hl1/uUVQZ1XNlZpZLXNvo8fa6z+1OjCU19lxKdyUkRINWJAYkbp/dzg6luQnc4jQ5R6OkRxYaaLeEaZcgAWkotJJIpTFUitB6qG1v2kjjUM8/PeQi6JRMg1Lcxc8rhbYlOomGakZxhLAEwrDQsfVXWTH/7DgM8KVpkgQ+rRvXqJ48NSzlC4hf/ybxS99E3FpDplsM/uU/x/2Zf0Bw+wqJ4dCPUmqXvsdDf/8Xhwua+P6E4AMSY/Whssc97xDyLp/gDjwFSJK7uvlHMBg0MESz3GnHH1IYhuZzcug0msQJCIHj2oyOV1FCE1oG40ujnH70UUYWRvBEm3DvBo3NOj07R37mUY7PVxjP32atu0ZutMBY6STz9giOgAMvZrUDfe0yXlhCsEmn00eoiK42mTNSqm6KngiJzICC4VB0FfmZWapTP0S+OI2fKnJGxqmzT1Jv5bh65Y+4tNrkwBJMTHvMuC6xlSdKqigrIWfbnHQfZHPtHYrFEsViFSnVEU6BuxPwl837UH5USnm3Q3CkrJLpQ16AhDswibskz7sBkbjnHB66wR5uejdBuQupEEqhpEExX2J2cp7zSxd49uSz6GmonqpiuhIDA1lrkXt9lXp8nbBXwzf7lJ77MOMfPkt+Okd3kBG0EwpWSopBwc1TsHPkcyaxp6lf7bP+1qtsbV6h1h0Qk2OmWmHHn+ZMvogQkkY9pt8IqVgRRsXA80LGsm280EM1+hSaKZUTNic/eT/XLv8GB2nAzrbJsb2YBTQT0yWuvVVj/vQp1LEcB3uKjRXF5RXN//6bb/Lsc2eZni6S1wqdDhlHfVORqRKTcwK3FxIOfGJpUXHHCbt10vUDHjy+xML0R7l5fZqbFy8Sbt8i0SbOoIvWA4oBOIFCBR43Yg8jKfHY/YrtrcvcbGxy6+oEBweLnD9T4qnzUxQ+/RDvvneb2uYB37t1k/qCz9OPPMObr79Nw+sRZAGGLchEn1P+Nv3RY9zQ6+yj0UKTSUlGRpokQxW1v5W4onuKGllKv7ZNd+0iYwsZSBvNKFE7YP3qDnsbdaolAzUzSXVsnHevrXOr7xHoFGUmFJcF+5FPFKUYeYXsJ0gzQ8TDDqTKxB0YHnfge+qOQSBHgf1hd3PognyXnJzd4R3cw5virlTpHWLy0efRR0/GvyFCcn5+jPxUiXS/Q7TVIA2ahInG7PRRXbDHi9j3zSPdQwv40ALhYJQWKC/6LE98l93bHbrvHTD6kMSpKLJOQtKPMMIUOxGkgwTTKGBP5BEVn25vm00/o+0JTFtiWAJfa2r9mMRPEPFQFmtqymXpRIli2cbv+CRCsb8b4rcyBoMUqVNMQ4KUGAhiL8RwLMycQjkGmWEShBG9bkCnExMGKVoIMq0J/AQtTFzXJA5TwjgjiIY3pmUbpFHC2LhDnMYIYpTW6FhDKjBsSfV4gZmH55k7O45Nk7U390n2e/hxghqpcuZYnjOTXbbWr7Ky3SFtKqbnP0IhXyHLEurthNdf61Ium4zYE6zrHfbjPl4EUSwwhaDsaOzjEBcglpATBoW8S7RwgdHyHC+9tYYjC5ycn+fs+WWe+/mf4/lf+zXi2ylelDBaycjlY4r5IX7fdgTSkARKQk4hhcQAEksRKAMhBYkczoFCMjoxQnNzi54Xo7MMaQwdRoVlE4UD4iDFzhXI5wuUChaOTGn0GiQDTez1II5BCpQhcBwT4dvoJCFMNalMcaSFaVkoBCkKI0vRqcaSCpXPkcu5uHEOx7JptHpUpI0suIhMIWOB1gqJJKh7RK1tZLpN1q7R33+b26kgtsZZ+NgFRj75GOVHTxC6kmA/RnodCoWISBoIy8V18xQCuHSlQ3Xva9y89l1qBxsIEopOkYLqkj9+HsMsE/YkB1sh++stpvIx8xOKzRe2EZ5PQaaIQY/NlTWWOuOUCgrHOUbY36ETh2w0DmhcXGPk0bOMzp3B7ys80yM/WuAHPv8sl5Z8vvGdVxHfepVi5WnuP73AWMUmTlOW8ya+PYK0DJTlULNcZLFEOCiiVI1uu03U26Y4WuHcqTGWSp/mlZcmaG9fQkQRSTpcmEU6JNtmWcp7aULkGSyWIp5aijnWj/nOVsarr3QwRY3l5RKTT9/Pe5OSb7x4m43mBvHUWRwzoSRStBIEyiQehKwO6nhGSskY4OaXmCxMMLo0yeS4SadfJon6ZDpE2C6RJZAFRW4yR9Dfo19vkzRrmDIif+wEYXdAVBtQOj8PKofXTOnve0SiizufR7oOSbNHd2uLbr1DcXqS0qgJqcYwIet2GGw0iaOA5IaLTgTSKlBcXqZ8YhJ3uoxWEssxiPotLNfEKk6zpsu8e22AGcTIikOKSdiMufFuj2tv99D9hNHTDu3JPO9u+ly56bPTiUg1BJmmuKg4c1KgpaYzAMfOmJwOkLSRpk1xZAJT+2RhQhSayDDCMAVxEOJYBkIOTaOiTGOYCoHEMtQwKT+UyiNVyNRAqOHyQHaI5NYZOoqGYkZCoAyJtAQ6y4i73l+wTh7CQ+JkKHmqjyA58i6nOM3gSIlmMGDw1usYjR3yDz2CsF2yRgO9V0d2PVSk0Rcvkrz7BsbYKHGjRv/qZRob62RpilQKjfg+3vJf3DG4e7j3BPQcdgtEhrrHgOuIcHx3u8P3Hn7WIwM1fc9+joa8hyNhGgrXtSlVCpgqZer0NDMnlxmZcEi9Jo2DPZLBAJ8EuzjGuZk8484Brd4eW50+umsxOnYBUypSnVE/8Njc6FAuuuRUid1sj2YcY8WaNBsq9TlmijmtiJUmQ2CqIio3i20tYSmL/VaEVc5TKIxy4n7Bwy2fK6+9gHezT5oIym6MU8iw3RStUwylmaxM4VfnKBVHsG1n6Mh6CEX4oJiiI27C0TwecToOZ/tO4I8Q3DU5u3fOxeFrRzCO7I48451E5TAYOjpHUigcy6Holjg7f5ZPPPgJxowJFJKg7pMmNUTsoVsN5MEeB5FEFEeZ/MR9FB8/jTM3QoIg6SfIOMRxM2KpyJkWyjCRgWZjI6Dcep2VlXfIBk0c08B1JXnLJze/gMQkDgStekTcD5iqpJRcQetaG1emVFRC1hnQ3O3iLI4NRSBGztDvZOx3PPb2Gpyq98hPVihNTJN0MzwRMzkzyuRImdXxgFeurOO8dpPnPnmWSsFhSLvTWEBs5MgQSOHTMy1k7KDCHIbRo9/ziLwDJoo5Kg/MM1NxuHJplNr6Kgy6+DEQxRBEJKGCKORiHBIt5ZguRZTyKdudhBu7EW8F0+SsPqfnZinn4HJZcu36LlsHG3xo4TzlfERgp2CZSMMhavcYhH2q5PlQocJlmZFKTSI0SRrfYzb4/+P4YI+QYaKb9oCITr1N/eYKwe424ycdtFYkg4Tt1Rq93Q6m1LgTRfpugdv1LhuNPoFIyQ4v/OK0zcIUhElG15f0m2U2Vw3ee6dJlsk7ngZ3EmR9lFS/n4R8lAjESYLONFIeyZRmd+VL4c7P358oDCVU73YZPsjUf6DkwBkrkRvJ42/t493aJI76RH5I2muQhRZSVrGLk8iKBVlIFmsyLZB2lcKMzbEnP4p367dorfmMLPeQRUXWj9A+GJmBozVRpJFJBcOZoeB4FKx9sn5IHGeEQpCaEIiMlh+T9hMcpTEtyfi0y+hsEcsx0FmMH6ZggTAlWmVIQ2K7iizMCMKUbiekaioMQ6ANAYkiHGiibkivm5ACQkm0FqSpYDDIKBQUmTg0a8mGa6M0FYatyTtw0EjJYo0lJbYhKVYdnIrFzAMFTnxoHsdKqF29Qf9SC981SV3JzNw4c2MpMtnn4sY+7b7BpFVmbvYhTDtPL07ZawtuX/YYmXDIqRF29D6NFPoBNHuCVBu4EkaWFaogiTBJRQnXPY6uPkm3Z1KyJnGsWQw1zvio4gs/81PUr62zcuU92vUeSTekUsqYXErxGxmOMFGJQZZoMBVWziYNYpQNsWGQJQlJmJKGoFKJ6xrUgSBJEFogGbbxrZyNIVL63RDDKaGlItOaNAiIggEFw2XQrGMph9i0iJAgFZaTI4siMi1BaQxL4OZtlDDpeD0UGSIDw1DYlkU+Z+JKsE3otftYFZOcJdFBTHiQEPshmSdp7O0hvbdw4utIGdGX49yiwukPP8rxH32EykNThDlJpxmTDyMELXQxwzYczCzHwJe0+iFp5wZ7a18l6u+RkxLHKqPzY+ToUR5bxkwdvCbUtpp06hucf+AkwXoT3epiZQ55mUOGAdvbt6nX72dE9nHNKfoqwY932es2uf32Tc5+9CwzJ0+ys7pHvTZgkNicfGiCp59x2GjWWNkKefW1VRzD4L5TCyghmHQVUdHElKATgbAczHCE3paL79pUVJ7d9gFBt81MtcyxhXOoj42yuVFg8+pVBgf7pH4XLw1JdUZBpxwcpPi+iZ6DD80rHp8NiOIat1qCt16to9Jl7lu2ePpUlcjzuPzmLa4P9nDtgLmcYlIaNGRCGkQ0M0EYdykkHgOvhEgyZuYmQO8SxSEqk0jTwSjkMcpFDJGhipp4f5/W2grdm2tYSrMwWiIcZAwGmnKpgOEWkGGItzWgttamcraIQBA227TrB4RewszkGFZOkvZjsnoXuVdD377FoL5DZDio8TmqTy1TPLFIfqaIctWwQ1iw8AZrGI5CmgbtSHNlN2TJBFnOE0cRq5c7XHynT7OWMrlg05lyWPdSNtYHNLoJQsGIA64U5EYkT50W5IoZrR5kkWDM0hj9EK16GOYAgyJJKkljTRJGxFZMkt3V5k80JAgsx0GbCi0BKRFKIQxAWyiZDavcydC8S+t0qPYUhaSxPFxgJMo2yMKQpP/nJAeHi6UOI5JLq0hpISbHkZXS0LRNgJYglGYIxAHCkHRrk97uBs7sJMbkImgTtINMDVSckvZS0msbWM+dhlqNpLYDqSbqtpGOi+k4h10HcbdyPDyav7CSPcTUAgyDjyzTpOkhnv2IeHzIPzgKaI9+Hwa1+n0KIcM93d33vYgny1IUCjmq1RKFEYfjZyeZXlgi7u/Q2dtiUO8RODZZ3mBpYorpXBvf32a726EX2IwbJarl42iR4KdQb0XsbQ+YmBjDFC4HaLoJOIGgF0rAwBRQGXNB2aTkMeUMSi2SZAZBoFHCQKoiShrMzszzkY89S9Dts3r7Op1mTNKLmEBQKuZRlkPgN1EoSoUpbLswhKYdYvsPZ/GDhAjDbeVRFfQeAvMdwsFdv4P3XVuHHYQjKMSd3O3w1SPX6iGEWnNv0KSEwjRMbNNmqjjFyepJgv0AOTBo77fIddewdI9MpASyTM0qMP/h00w9N48xniMRgmiQYiYJEh/tgsIkygySQBP6Eam3z/7qy+iwTd7KYxYqyFyenJFSHBlHpoKwD83dNjoJWVweI6574EXYRomKEaMHPs16m6pXpiQjSuUlBn6bZthhr9ags9NidK7KyPw0je0e7QMfNeEwM1bi4UqJDb/PtZ2Aqcs7nDszTbXiohAUDEFiq6H5XALSsRmEOYKuhchZFITNTrND0OwxXqly5thJyuUxbk471K4pBvv7BL0mWeARpxHlBOqDAB2WsU4KFicNRvMSM4ONruTSu10unJ9jvpwjd2oUy4jYvb7OamebwojGshyCTBGpmMzzaGeSNGqzaOTw3Qp9UvppQJrGmEq97x77/3zou/f+UZX98EL6c7aPybImuxvXqG/cJBdHCHuMLIupb7XY2+wBktxokX7BpRZGtDttegIcS+AogW0IcgXB2RmJYac0Ohoduuwsl8gZkpderhFFGVofQhSzu8+gTGeH8LxDydLDw0oPnZMl6n3wo6Ouw5Gj+BEv5y6fR95zT/4NEpKzMEYIjcxJsrhDNNDQbON069iRgSouIzY1pAbMOmBA2M+jpMCanmDsJ/8R7pe/S6t2i2jFx+mbpO2ULLMwVA6lIwxhQTCLHpwiNnr0zBsUjICqpbnYi3EThTAkWZoicoJBCqNVA3c0R2ooukFKvROxfatHP8pI1FAytVA2KZcNqAcctFKIwE0SnASSBPqDFC0F3U5MrAVaCpSUKMSQROzFdLyELM2wDJBIPA2RkBTzJl6tR/8gJk7AkIpKQVIat5l5aI7SaMS4A639ATsrHYTOIK8wlMmpcYdet8a1gxqtYOgFcOGjj7E8Ok3ByrE/aLHeDOkMJKqRwxCTBOwTxQ6NFlxa1/QiG0coTk8JipaNQR4jW6BSfZpKdIraZsanH3kYw7LRCHLK4JmpBfin/4xf+m9/maz/HqbeQ9k+SWxQ3wsgHHoGhIkk0RJpQJxoRmSKMGHQjcDTyFgihcmg38cXmsxQCAyGy8lwcZEFG1fYOK5D6AeEXR8jDpCGYrTostvo4eRtkDZ+apBFETnLJkk0wlIICU7OoFDOY5gu3Y3toayj4SJQmEIxmrdROiIKMko5KJcNbBuSXp9gf4DXCwlDk51og1xaoyQ1sbHIhvoI226FZ3/xLCPHh9UYr5sidkKmiiF+0icslciMClnH5eAgpdPq88D41/jVr20ypzSGW6YjRxAskXEbqwPFKCNMUvZ3t/E6V3jm7/4o73xljZOLULbGyYt9sjRG9DcRjRYLxYi8kSBlnlDkaQcH3Fzd5VkZ4bgJ8w9ME9/ucXV1l99cvcWXfugh/sMv/hD/81cafOvVb9PudVHuKMcnS2ApKrZEh3kMrSnmBbvthF4yy35D4Uzk6YQGt1dvsfrmBgtLk/z8z56mUzrHH/ze19l55zWWazLXAAAgAElEQVT6OzcZ9A9IQw8JFEQGA8mV2xGdruZTD8CPPZBn83adP6gt8vzzq2xeEXzygRy/8MwMv+kd8N339jlftFkwTESYsBt4aMfidiDoxwkDIva7u2w1bnPBfYbMC9m+ssbEzCJaO1j5ItWlebJuCa9fQ9pdus1bbG3ewszlmPF2iH2HTt+m0OmRN2xiZTDAZqPWYvz2PhJN2uzhaRPh5tFSkqUJ0XZC+PYa5o013L11/N4mkjxGeRpzchxVyiFNCUjSTJJGKc1eSDkRWGadQdqikWYs5RVGMU99pc3z3+lQ29eMTOfgdIHvdDJqew2yQCBzkpKlmS6k3L88vKaXqhm2lXFyROK6EseWDLqSWzcD/KCFVZ7BMksk/tDELEk0luOCmSNOFCka01a41QJJlg2hGsoEJQ/jaQtUhkSRJjFpEkGaDRcdUpIogEgcYsoVQplDrsL/8yoJWUa8e0D023+M8G2sT34Uzp0FBNoSYAN5NfwfBkjTwapMMli5TnLtPaSRQ2OAPYpUPkL6SFFAeBNkbUh0Hl2axk72aK9cRJfGGF8+ibLtYSXmkFwn5J93jHfHkfb9URBwNNLDCt0dvXCOqm+Hn/EwKtX6rlLI+zh7RyXwNB12NQ4rcY5lMjpWYvnCSUZGY8ZzirX9AV5vMMxrXAtLWJwqGOy1tqn5XbzEIi/KnHnwEap2HkOltPw+jX5Ks2vgWEWkKBCRJwoUa1HGzYbkw2kOC4elksIyqwhmMDiJJY+RBSmel7EwO4aSFpnWFE3F6clZCj/xJX7n33ydstzClG0KpQqj5WXKpXlu3P4GcRJjWXmkMvj+iuVfZdz7lizLjkBCoCHNUgTykCtwdB713aThcH7vJGAZCOT7VKYEhzTnw02klCA0aRrTabXYWd/E8mzMOE9r0EQnPSJTEtnTtM1FDhyX8z87Qc5VpAjwUpSXUHQSkjQkybkonSPqKoJeRhQMWCi+y+++t8m52TyekSM0xpC6TJZ1MPpgp9AJMhrb20gds/TAg2xfbDM1rinYU8QiwAhD6LeQ3iTjuYS8kSLMIoPA5KAb0tzrsiBSDCtj8niF3q0BN2+22Nlr8sT90/z0cxf4tVf6fPXFN9FSceG+OaoFC9QwCM1sC1nJcIOEvifxtUHv/6btzWMsy+77vs85525vf6/eq33rfbp7eqanh7NwEXdRtkQxMoXYEhkniiI5gO1ESBDADoLACGIhRiJIzmoLSuQltChYtijR1EZR3PchZ+ue7pleq6u7a3/7cvdzTv54XdUzlBRTsnWAKtS99R7q1bn33PP7/b7LL1R4Mx5bIbx25QEFqTn7WIF3vWOZZ59d49OfW2L46ksMtm6R9HbQ0QApLE0h0QcFroRj4pOW82ck73m8TO/BAb+3c4KvfvU2F495nDtR4PilRV6UA7754j1+YKlJ1bok4z5h4pBWK+yOFGkakpGxVmoxQLOVdInjcIpOK/lnSj7/zONobU+RTZvm00NXIRz1aE2LR4+Kw3tYqjLGbrK3d5veoMP6bA3hFpl021y/2kObEpX5CpOq4fokZTjpoBOFqgSUxISFimWu7uA4mkYhxXVyZpcCPLfAhRMljq3UeOG7ByglHhpOPBLma22OtDdamyNBspTy0Wy9aU0cJgOHgv5pd/LpGtMPG6gZa95S3Ph+xveVHKS7bbJTMe7KCo1n30Hym59gUWeUcotK+nDrGlHnazinn8X52RWcBcGdLypMaGidEdQvzZB/5BNs/sp7OXE3puKXkdoBXUTJOTIO0GoJVX0nJigSm/uEhacpOZ9lK05xlWVrJ2YkBAcxICXrqx4X31FG+hn37hywu5dwr5OS7Cc83hD0CoostwgtcR2XciOgcz+joSR7w5wot0hHEKY5NtY82EuoNgLqgUNQ8JBSksiYbt/gJIagJKnWAxwlmYwzoijDWniwFZJmkkqzSLlZQGDRZcu7f+gJQpvzYOcu2+1dUgG2CZ3+mLnnLzHs3WKQh3SkC6nLPEWePf6TzBRauK5D0n+dwa2vo0fQKpWY6ACrmhgTMNnW7HxVcKdX4sxMhac9zchp0fKWmbXrjIcewVydWvMUxvXIjMZqQ5ZrlHJ5crbMf/6f/QRxdpa49yr7m2/w+o0dSmWXe3dzZpYElXoZk1miUYoXBCTCY3y/R9wLcYVLwQ0oyJzdjsNEC1y/hOt5SAzS5hRkzuLyAoMDSCcJg96I8WCA1CHHF6YcatIQ65RBahCCMMowOsFRitxqfMfDdV10ptkddhgMezSrs8w2mtQqdQp+iYIFvxyQCUu9Vicxgs5wSCk0mIqHr2ZoiiLLtgbjs4Rhwj1d4HXmefY/nWVh1acQgE00xVEC+yPCwgTnsTIFu8bGpiUcpJxoJgTBG/yfv/S7mMRQLfoo9zgjeY797qucP7nC2lILLRWjJCdOxhC26W9qPv63n+Lvf/y/op6uMOPPsJ/dpzTYpPNaj/jGZ5mvKLoDjyS1JJlh2HOwXgU9FMwu1rj4g0s8ebLAL3ziFr/8pXv83ffO864fGPD6ynPsbIz57U+/wH/5tz7EtY7liXlJcb7ATMmBroejJvTrJZY2ITSK5mzIwdoSt16/w3e//o/4B//4r/KOM2v8zY9+gJ1L87zy6hWu3txg84WvI2yGtJZKniMtDDrwO69YOsct6yeX+S/q8OJeynfDVT5x/RzvmXyeH710ioVim3g75FYnZBSlPOYFzKgiUTJiRrgk1jLMhvTTDfziAKvneL0fUmqlhA92ESohWG0g5wKymRqd+z0mTkZe0LhOhJNt4uWK+7c63N67wZM/+kFmTz5BsOZSjgVR+z5yrcHyDz7BcmjRu32kSdFxRnS9TXJrD7GzTX2SUhBrjIMm9aeeJcNh61af+rxPZcZnMNLcfvEBz/zwKoIt8sk1sskdtAV/URKPh3zy/+1wtQ315TJiOeDabsyrX+nRWFYsrXuUjKEucuZcg2dz6nVYqECSWapFQakm0NIQJ5Z2L2NhTmGVg3ADhAhQWQHhB0g/QHoBpNOuyOh8mgBYjfAk0pVYY9BpPg1qhYvJExAGE8foVAOCbDwhC1NMqnCdAiKwyJKHv/gnuBUdBm5pSvqbf4QzzhDDHuYPbmGvl5EXF+BsEVkTHLyq8ctQXJSo1iL+e3+cBy/9PWZfvIrs7qFvt7Fti3BOYWQbE6yjGufIdkKiAWT5LNLc5/q/+VUmeca7fu5/pjS79FD4a7BG4xdK02DikGryJ+x0jyqCkB9usha+t9lSnlsQb+q0yyPdwWHAIpV4VIU7CiSmv3McB2Ms/d6Q3Qc7/JWPfRjtWHYObjGIRuQu5I7mYNxl9ex76R+8yJ6jGYsifu6z6NY5MfN2fMfF4pIMrhG3txEjh5lGhcQ4QJlEw97rQzZlwODpOg0/4YSTkqlT1NU6vlnDmgqUivjNBlJ4DwMBOUVxhWG+5PHxj7yfmZoDJuHevdfo9dsEfoHl2XdxYv0iSh52yP7++Mh/0hBwRPux1h514D50RplOoXiUpB0hBBxVPh+maFhhp92TmfK+j6hOD2lJxhpyk6G1S2/Y5/PXPs9Wd4f/5kN/h2pQxi41KUVzJIlgYFx2i1VO/FCRUklNPeRTgxNmMEnInAy16OOaBjs7GZ4wLFQi0vwBX/2tzxJ4EWUcKJ1jNHFJx21OnFmg1SyQWYgzA+kYOxpDLLn0vjk+9bf+KUvzZxkFW6hsiNdpM3kwJtu+xvpaib1+TGegGYeGaKhAephY0Jgr8IG3V/naKzHfuX3A524M+OiZEu+7FHNr7ilu747xnDbPXlpiEsNcSeBXXKwrsDLFUYZCUVHvWnIheG+5QG92njcuX+fKC1fZHryLp481+NkPv437Zyrcvn+GO69dZfeFbyBNiNCa5miE0bCzIQgjzZnjGZWlVf561XB5J+XW8Dj7dyUXZu/w7NnHaBUOSLcnXG8PKWmYLzdQ0mImHWbcCklqqGcxi55hrtkAY+j3BxQc9y/GrehNRQE7dWBAt4dEr9xHBB7Bs8enyYGFaaOTP/5Wi8BkW5QqZbJWC1ntkUVDXvzKbXZ1nfnVWQ68CZt729y+s0Oj5bG0UKagM2pOSs3LCRxBsWipBpDlmlKgkA6k0uD6FteVOK4iiR+hldaKqYvT4fqwh03RDlHRR+vgzc3R5FFRxB7lPIcucIdmDFpr5MOE7PvBDr4/WtGJFbzFOfZevcU3fuv3qeyN+NCJD+DlB9j0HjaNYfBF0iv3Gf+v72Pmlx7nzHsld74dc/dazsULVZ76DxfJPjnHINyj8kBTD5o0qmuY7oBcLhGbbZzZgGT5Kfb6NS63/4hb/Yizc4LjNcEesJcbRkDRsTx70aW85BL1DGE3xhmlnC4JwkWfgzClNSdZqnnEGez2Yrb2DTOBJOrHTCx0pUUqi3Usk8QQ+OBYjUWhdYpQknLNZSbKKRUVUWaZDA1CGEajjN29kO4kQ7mCRkHhmhxpM+qrdSgo9HCbu+0JtzZ32NkYMG7nyKbCFsqUoyHjKKZ/PybpCJqlMj/+wx9nbn2d1HFwiBjH99gevk6SWKqB4G53SFoqIMslRN0lnGi++52Q8z9ykacrHp9PLtDJV2i6LebnlghNhYLnY/TUmSKMNUkqWJypkIxDdnc2GKcdkoFhElYp1Q2FuE86mVCTlqoSqFJAVqmQjDTDfko60VhjyEXOOIwYxVBZclg5VufOq1tkiYPvOLhotrr7DHcGeOUyOnGwqcE3KbnJplaU7RxhIcwiqjMNZusV+n3N3a09FDV0LtEmIo4Stre6jCYJvkpx/DlUyaM0W6VVq1M1gt3tERGCeBjh2RFuBk7q4gqfqoC7/ZiWP21QtStcrltL6Umf5z/osd6Q5Jkh3UmpbE5orAheixxOFR7jbjehXs5pBQYv7nLzxm/w7XbGe4se48qTuLWnKGdFNk2XCe8ma2QYUjgYIva3cBkzVylQ7AV8MHiaL3e+QeausVx7nqrYZ3Jzg1EvoFV1KBdz+mNFZjSX23e4uxFxbL3FzV1D10tYOLPAL/zNH+P/+fQ1fvE7V/mJJ0rMr53ilTjj6msv8Y9/VfC3P/IBkhlF2ZNUy4p+7LO7m/PkzAD9AzP8g085/PXHF2jW77Dd73HuzBybN36Pr26u8PJr7+Tpd65y/u3nuPBcl0+X29z50hu4ecYYzTFjqMY5t7TDluNSbt9juC55qtXk/Pgu326/yJcerJBkz/BM6zKf628zh+LZmo/qTLgTwrtLc1wezXM7G1AgppnNYw6avPjSbXYnAypnV5i5+Bhus4oRKZN2h6QK82sB+qkmWdYh2enT7tzl1tUOv3tnRKUYsBgvM1NbYlTI+dYr/4ZT7/ppFp85TaNSQCWaxFFMrj5AWYfa2+oUNnL0PYc4rGFn51n/Gx+i9M55Hnz+Ft/+xmc5+dxpLn3webyi5u5LX+LkmXO4J19h55tfI375DmdmJYvvCfjilX02OtB6rkWhUWRnI+Sb3+iw8lerPPUgw3M0ay1YawoWZ6DaEAQlKJbBdyWuC1YaxpGh07OsLDcpzy4gnMMKuEuchxRIGeaGguthxLT7uKd8lHJJw5hirQJYTJ5gkpQsF/jlqbWrTjS5zTE2RyoXVfGxUYJTKwAeySRCDFKIJn/qRmuFwm+cRVSq2N59GPaxt18j73YwO8cJPjbL7FlJZzMj7BtKvsLzHZqz64w3ruOkAsfOQkHAYIRxl9F6A7FSJA1qdHe7bGxv0elus7IsmS+nvPDJ/5GTH/wpeqMud699g7/ysz/PIXv9/z+AnXJstbaPXv7w7B9zQnrzoZwmBYJpQ8ZD3ayAo4ZpubVIphux0Zo8F6SZYTKMuf3aFexMkZ3RDu32iDg32HKA8UqUkwGhiRluxOSRx1JzkWfOfohyvUYKeKSMkjsM032M9SgFgl6cgAjw52fgXpHhwLCzp2kee5YVz+eaOUtqqwSqjOMUMcLHEZLcZkgUSZpirMV1JCXPx2sqXNdBAOfPvo9Df/XV5TMopd4yn3/egE3n+s3FWjDmYUsL9ZYK8dTx6aFY2U5RhkO6BEfvt1P6Lg+pFXqqG5FSoqSDkgptDGmecng/3Ni/yS/+4S9wvH6O9dYiURzjynn6NueWc42/e/K/pqIgzSyinRKkGboMPS2pO7O0Rxn1isWxFj3eZ/v+C3z5yogfWS7SnvkBiuVjqPQB4WRCKGYxJQ1WQ3cM4z4uOWXPxUtcLrXO8dIbr1BeuUS55uEbTbzdJx56zLcUxUJK6LlMkpSbewecH+TMtkpsdw2Rl3PpiWVOzNX5zo0uv3F7jw8f92gszfLtbpur9wYYo3nHuRVMUeJK8ANJN1Yk1tAsJuh6iV9/0eFjZyqk9j6za01kFrJz5Zt84+YCr926wLPPrXPhqVMsrS7xSitj8w9fwB8PGauQ02lC2PUZZVXawsPbu83musOlhRZrvVe4cV/z4oMlonPHODaj+Hp7m9PLDrVxSNaJ6KWWY801dpLjtOMdmtZwbs4jqU74zO7nAEhM/hax7F/MsOSbB2S/fZ18bHGeWkI6zlEWoHONctSRJuYQ7cqSl+jdeoNSXsFdDHBqCXf3B3SiAnNPH0NJydVv3+LeYIdjzy9yshPhqZS5uqBVhXJJ4PkSxxU4nqUofRzHok3G5VeH/KNfvk+vn5GmU1TTcRUWyLKcXOe4rkeWZd+DHDxySrNMHaCkmK6JQ+RX2GmF41CzYw61VQ+RTsEUVXD+VKT40fj+kIPehKw3wiQxkyTiC8Me7/NmCZaeAm5jB32sM4O0D3C7X4WtFfLZKvOPu5QWLLe+0OHUeyus/Oj/QOnl/41yVSDzOvq+AS9Htj6AjkNEoUc7/zZbw9tk4zfwBNyfwId/KuDalxKuvJZjBCzNuMwt+jQrPv0oZOwYHEdQrjusLBTo7Ib0tKWzOWESGoYhdENLw1MstnwyIbDKkmSa3jgjdyWzMy4yl0SJJjMG3woik5NkGk8p8kQjwpQ013SjHK0EQlscR2I8SRZIkAYZpxSqda5ut6nMlol2EsY7MRQkky7UnwxY7W+z9SBFx4KZapVz84+xeumvUSl4VHyPLJ+wtQt3bgS0qkUCT7Lfvkdk5vELNUozJbJ7Y1789Jif/kCALH+E9xWOYWwZYX1cp8KMCKbVGzFNgiqBoOJL8jxkb/8egTck1h4T4xEnliRVRMMA5QpGaQE9VBSNg3Q9JoM+OnPQiUFkgkIgKZR9xGwBr1JCqQZK7RNGE3LroHyPtOzTGU5YmlnECgUiRpoUmUh6D3rMV6tUZur0Qs3BcECmLY4VxE4Bmyc0KjPUa3UCz8MmKYNel9nGPGtrx9GUSEPDQdjnQWQJE4GbGzAJNocCgobKKBQMTrOIR0KSCyZFn1EpwE0N+YxkqSqxBtzYIPKU3I9RVcWZlRUmPWjIlGZRk5uc7XHO7//BfWadgJnyBZzl99BNoLv1MtUsZHF2lnpBUVCGne4m4/1NxFjj3c7wnnAwSZmm8cmjO7g2ZsF5kt3LrzOQa4zlJm68Q1mOkO4SM42TZFe+QOXYEicCnzRxSMYlevUi7/phyxc+c4VXrgbkzR7MzXP8B97Hy998mX/+2c/zNxrvw5EBXkGyOOOCLfCFq2MulGP+zg+3+IM/eBHlu/ylD3+M7Ec+yi//L/8TO6+/xnh7m69++Wmu31zl1LriP/nIf8v1lU/wud/6KsPBhBu5YUEa3q0sr3XGPHWmxYONPSLfsFQr8q6lIk8N9vjCzZe5WujyzkaNSSLotDWkLdZcQ2WywyU7oSkb7NlF3jhYYv63Ii7+d+/n3E+eo2xSjCvIzARjhviFIY7IcMixjsvCpQt4l1w6V1+h2cx48jGX1YUia2sC19+F/C5xuI8zO0uhEJDiMN4PiR5MKJYUsmiRhRqy+QwZ+5joDgiH4EwNp+bRW6gyqc3SdQIG5DRKgvNPtLj1ld9kFG2xe3uP3IUTT/uUj5XY/qMJ8WyZdD9m7+YYk2W862mXlU7G6bpBHHeYr2UszBjqjSnlp1KRyDRFJAY8gwHSkSJuW5aOzaMjcGZaoGbJhA8lRRT3KFfmUCbD9RTWCLAaqXK8soN0cnRqkK7A8UpY64LNAAmug/BcjhyLjMDqBJ0WkUxQfoB0p0nE0TAP6R7WYrRGG43zoxcwyRyMq5C54EhEPEBs34ZxA+tIqouSZJwz2c0ptTya/8FPwOf+CU5rFvZ9LCHUFLL1JDY/h8n2GZgu4/5l8u5l7LjHbrvApY8u8eVfv8uX/4+/jx84HDt5AqMjlOM9wv0Pq35vSRLskSPRoTRBiOm/I743GfgeytCbQwNjmNqgCjF1WLHiSCT4x1t1gRaCyM1Zmilx5XKXhIRMTbVsc6sFlsc32diJUHjM1Rc5sXCO+uLj+I7CVw5ZHrO57RBOKizNSFxHMJr0yf0irfosg9oM0Tjj7stjnlgNEN5znKUB1kEKDyldJOrhNTNoq/Fcd2oHaqfakkD5R3MEYO3UEvNQm/HnRQuOZt5atDFvsVY8ciuy9mi+jdEPxcSHlVA1TSKOKqTiIYIz5UlLJY+ci6Z0LzFtmvbwb+RaI0ix1pDphFE0YHuww53ePOM8JUxSMgGtE0vUSw7agEhyTB6BtLhFlxmvSJoISkoglSHXhvsHIde+fsBqtUa59QzF1Sfo3O+S7T+gJiOaM2UKrsARhrC3T94ZERgPuW9QLYkdF2gZl+GDGxTzFYruLMPLB4SqSejsUddb6KJLo7lAvVZH724QNGvMuwqTOESeDzMOZ85Jslf3uH7PJa2OmTu5wkFnxEtbHSDjvc8cRxYkSgnmKg5tYbndzZhTMR+7VOHrX7vJ8toMTz23QPvEAcMvfpXt164w2Nhlkl1iabHI8aUSH3z3X2NveYWv/9qnGe93eSVKOFXIOeUa9rclxy6us3dri3s1l0bd51Ip4dR4l5t3UraLY55tzTJ8sE84LGLzCjUnpt7ZopS/RsVbZWSbBOkSPzjf5G1/79383//8l9na2Z7eI4fwnvi3B6zfe88d3jNH58ybkg0BJtbYexIOeshJCoMSeZwjAoVSktEwRLgSz1O4joOwlu7dK4jyXcKojBV93HKEDAqMNjRycZZJd8KkPWS+rFlpFWlFIQu1HOZK1Pw+1YrC9abmLa4jIR8A6ZTeoxXtvTFXX+sSxwYhFI4zXYfqMGexlixLH9KL3oSCWANCHa0nx3GmSbY4dAqbljeOehsIgTh09nqIuB05kX0f4/u6GmmckyY5mQqIZ85jKDM++Ca21UMsLiGa56G6gvFn0NEdep+6Snqvi3JzZFmTpBlhJ8YGX2PbRoyzaUXBBIrEDYmXZ9kqGczjZZLqTdqdL9LJI/aM4S+/2+XWhuHunqEfG3JrWW1J5s9UcdFUSgF+PUDMuLgNFyOgulKlvlJB+w4Z4DgWaTQTLFqBxhJnlnFiCRNLGhsGQ0NnkDCcZPQGKQedlF6YE2rNaBwzClN6YcoozsgzTRxqXN+lUXWptwoEZR/XdSlWPGZbPoaEN65u0d4bkaUabS2qYKmmmvZ2Sr9vSccOxeIplp/+GHm9TMN1KQiHOJd0dmK6NwYEQvLYhVW+9vuvcmdb4zZWaC6ukeWKly+P6G51IetRRFCURXxVIlAFfOXjKgdHSozOyLKILI+J4wk66iAl+I6kEBSp1Jo06zNY4TE7v4Zwqii/BrJEGj8UZ+cGo3OU52FR5A8tX9NJyt5uF6tKqEIZrRwybSkGRYKSC2mGjiOSJGKcJHSilIPukF4CpUaTQuAhgCjNOOj3kSQIZyq+TPXUjtFzPWZqJaqVBoEjUUnIuN9j56DL/ijCLxbJcs1kOEYBxVIBr1rCOBK3aKidrDEKBKIsqTY9nILLM0sulUCgUovuG6TjUVxr4NYrRKnEaEmj5lOpQRRtcv3KHzIcRpxwS/jHzjC71KTi9THxHXxXEddXKBVLDHtjwhgKskgzFtx88bs4qWHGe5JAPUeBVUQqeTBMOTkRnPK2KXlVZpTPvCOo+XCgJoyzIaqoyCou2cRB7EmKKJaWmixevMBm36GWjFmUGW5Qo7Z4hqsb9/itz23Q6ycoC54DlTKcaCqGnSH1CizPl5lVVfxOESFmeM/Hf4oLb3+KC2dWaQQRUfcee/d26XVDSvWnef+P/xDrxxZwfYcOgsupxosSdndGLPkxQaHPTtzjjb2Ekmf4YGkfT8zTGVbQWlEPcuoyYiWQtI1DCYezRJylQym5zb17f4gyBfzFZb5xZYNrmxuE2TaOvIXr9ZDxDYR+g9acpLk6D/Vldu0qleee5eL7l1j5wRaXD67yL//Vp/jSZ/6IetChuVTCiodOENoCOTKIMGUP0SggWi2MWyLPhiSdK+z+7guECNRKhfrJY1TnWzi+JNUxbmWLhbUh7mgCqaG2XKT1eIPN2z7ffiDxKy7JKEPrjGLJslSGVZuzsgpPzmacaBgaFYEKJLmSjIUi14AUU+jaQpxYrt9IeTAIsdU1nOIyyq0hHR/pBWg7Ih7tkgx3MfEASTZ1KpIKv9RAuh7SUQjHQbgOyhUIqzFZis5TMp2T6Zw0z8h0jpYSZI7OUtIwIhyMGXZHb9lUAfJUM9wfcf/KBtRcxIpArCwg5uehVsd6PmawS/zVPWyqkZ7FKkueG/I4Rae3iFeOYRwP6ylMYMlLCdlKlWFDIdaKJOmLjAav0h136JmUi++scH8zZHt/xIPtXZJ4RLNuyKLvAlN6kbXmT6042iP3j+9NHDgSNx+ZFR2Wud/EN5aCI/6vefg1dQWZUpAO3UGw0825Vi+xtDJDOBlx/e4dBpMJcaYxwuC5hqrO6bQjemNBHgVU6uepLV/CBi6BmjroJRr27/QJdyIalTqrp85w+eW7dCLFwtxp5mfWmEwcXry8RzzqIUyEKySu9FDSRQn1FsGhUg5STs8p+cgn/ZFQ+JAqJd90/PRo6HAAACAASURBVOj3f17kYJoMiCOKEEJgj4TE4ug1R5fh4fybw6Tu8CJ8z2d4JLB8JB7X+rBr8hRZ0EaT5RnjdEw/67Ez3GeQdDHKsDC/wNufuITvCEySk4xShK+QZRej1BRJQFAsKoKSZDzaor11m3yccqw6g3P6ODOtAjLbQuQHuIFLVqkReC7hKCG3ipoqUuhkdF9+gMwFpeIqjneOgqmRDGCyp5kfWRaCHr5XYcGVrJYUhaKlrWIyEyM9Se4rzFgiQ0GgFI1Gidb6Ane6MGsTKkpQKlUolKvc3u7x0uv9h/fm1La44FoqjiaaJJQDS7PhU8w9nCyg2pjn0nveyfnnz3Lh1AJFMSLsdui3xySJojRzjud/8seYOzaPKAXsZJZ7/RCn3WVwt818NYbggP3ekF4/oxpoHi/3UXKW0aCI4wqKQUrVS5kpeUzygKL0WRN95uwexeE9iv0OF05d4Kd/+mdYX1zDczx0OiQdbZEN72Ly6GGiaN/0xVuOrZ3apkfjEZN+b2rveUixOQQVD2sIUoDyMInETPZI799m/No2mbFM0pxUH7IFJXk6pr97BWHvYAb3SEf3cCsRqlhmMJrljf0Mx4dhZ4fM7FMqxMz6hqaIqTcFS+Uh9aKZFnCkg8Yhsc5DFNLFWkGSGiahJgxztJ4G+1IqXM+lUChQLBaQSr4JLRAoJVFKTte0etS3hUOK3sN27uahtsBYc+RkdEQ7eoi6AUdr6N82vi/k4I2rr7EWNHCpEak6EfD5vdf4yJMXaRw7Ba0ydqyxB1XMSJPd3iLfqEJlHlMuMLPqcXB7RJQekFQK6Eodoz10YYT2i4xWStjaDJPCkE5/g710k47WzHvQXHL44osJB11Nri1KClbnoTLrER/kjPcyjIJSw6FYUghtGaaQStAPA1ilBI4E6UussMSpIUwNcW4RCooK0jAneZi0YKeCMzJL2QNyw2SSk+Xm4X0nMBpUYZp9FgMH4wq0wzQ7zFLSJOPBRo9hL8Zog6MNroaVgmCzLxgNJa2FE5w48TzHlh+j6AuqnoMrFFsHQ7Ye9DC9mGrVYen8WX7vtzdYPntA4Fcpzy6hgjt0opRP/s42P/1Tr1FrriOcJo50pi3pEQibkecxUTIhThKslTgWTB7iKUNMhus6FEplHKFxinW8UgM77KO1JE0seZwSKJfIZBRLAZ4X4Co5bXZmp2jCaNjDkSUc10Pn053XUz7SZNMmR/lD+FVJhKPQWpNaibQPOahAqnPG0QTpKYSYNrMzeUqWgJIuBc8DBP3uAHJFnBgm+bSzk80ztMnJjcZXglLRxws8oiQlTAyqLLF1F7fk4AQurbrPmbMevpx+VoOZwm6+B4FAjTVBRaLGOVJY9HhI59p1hHBYrVdpPfMMaVRgHI5Js4RS5STV5QUCzyVujzHRiLLJ8a1PurPD6Otj1s8e441Yc9CeEOdXiKLLNGUDK8uUVBMhXCSWUuBRXj/Gd1+9T+P0OaqtAp1YMuonBL6gsFzk6Utr3N/N0fmYuN/DCVLOnZ/n21/Z4BtXX+apxxtUSg6VmqQcKNbmC7xy+WWiYYn1Y3X2N7bZvfEGftly8Z0forxzl9H9bXqJYJxoRDTk/q1XqM4tsX7yDOlgjO+8zva9HbbijCWj2eqFSN+wXJY4AvaHAbcdj5MBrEoYRCO0zQlcj6pvmfQ1Re95RvkbzDBglpjMTBiNUra+cou1j59k7JZwGJHZMTltHLuHNWOEYynNzjGIDfuDiJvaZ9HNcGqS2ulFdl4f097Y4eD1Lo+tt/BrLlpYRG6QnsCtCHQaol1wPIk5XSCrj4ntHqHxMZklFGADSW2+gR8I0miEpIO2OzRXqkyGEcFCCr5k5Ba4/GqHTGr8CNxEs9wwrC7CQlOy6BhWTrnUC9O+H5mriIRiIixBmCO0gGBqqxrHglEMOrVIm+OXlnG8BjrJsHpMFFvScZcwbDO3tI5yarieh+OVcbzSww7KGbgSjAabTzdXm2KyfNpIylHYZNqgLBsn6DhBlQPSNMGkGSY15G963v/aJ/4F8/PzzJaXKJkydy6/wt6165yvLhOs1pCxh5mAGbiYcU6+2SE5rhCtIlZKhDKM9mLS9j6ZtRS8AMeNMaUMXQ1IWg6mWiC0XYbpDTrhAybZiEZVUpyXvPLdAyaDMUmc4TgB1Uqf8fAy3/ruPu39EVGiH9ruTj+v1g8DeW04e+4cx46feMv+Zf+EPAEO0YO3CvsQU9Tg4SuOguajgPWwKifB811qjRILa3VURfOdzVdJU0vgKTwEgYB5T/FgqBiPPY6vn2dl/izN2iyeEvhqKrjtjGKiXgzDCK9Rpjg7z40v3OHU8WMEXoNiqU7P2ebeIOKPXrjDj7x/BcdvgfCn/GI71U8YnfPJX/+X5Ll5mADZh8mSORJZP5yRt/D9jZ4+/w4n61B7cYg6PJJrT78dBi5vFnFmWc7P/dzPPZrbI17zIe/5UR3SHr2GI9ElvKna+ZZr9CgIOjx+sxOSo5wj5OfwfKlQxhcFhAOuU2SmPseJk+s4ampRazwHJZna+EqJkwLkmDQDNyfe7RA+aCOEw/xcjdL5k8QjSzgcYHIHv7xCoVFBqSlSJtKIqlI4qSK/OyK9ljHzVBNncAp70Cce7yJtn7JfR6gCgaqhDfjC4FQDvFqVmzcGXJxfpFh1GexbbJTjKIFXcjm2XmfjICdPM9LxmLLn482XuH6rz0s3b/HYsadoNVyUAwVfUi8q9vf3yJMyKys1JvsHxHsT/HKBk+vHKCUT0oM+vVyRRhkqGdDfn1CsN1g+fY74HW38Vy/Tvb/LwShCJQmdnTaqamnWPYYRjKMCwnGY8SUzUjGJhgjlUCgUcBJLNnAJ6m8jjm9RVWPqNmUiUgh9iuNLvOc970HnmuvXrzLu36YcxMRhj1CXWFqZ5/72hP2DIaNxAhaqJQfPh0ksSKIEN89pFBwWF2YonbjEwX6bjdt38BwHpQSNep2nLj2N7wTomiXXu6TRDnnkIpIMnaVEcUY8jMi7I8plh0CGhL07lEsxOjXYYor1AzqDjHv3BqR6SDbQ2LDNbCuhURVUA0XV1VRaJQruAKRLLguk0iW3FkenGNHEuC7G+FjZ4tSZCj/zM38JbUApbxr0y0O3IUuaTlGDt2hy3nLvH7oaibfqKzjULTyyNp0+G6ZUoun56WJ5443r/Ovf/Nd/7Jn45vF9JQff+c63qMSKs8ffRm3GQVUL/EbnAae797j4xDLFEw3EPmA8rF3AOhPG9+9gZwWF88eZOV7g2u93COMKhZkGcq5FHiYkgx2y8izZsSKunmd/9BIPBvfZIyfE8u6GYCOE2/s5YaQRFpSw1AKDYzWy6LN7MARjqFYVrrTI3NLvJPSyDD3KkLkhdyTCe2hpiiXONZPYoI3FDwTlQDHopyRIcv0w+9TTh2Cj6ICBOMwJI4OUgoIvcV0HAolxpsIvJQUGw3gYY11Ld5IwaqckY42SBqUNpUzSKimuhgqdFTh24m1cevLtLLuWWQyBF2CE5fYbd9nZ2KWkPOarAU5znvHoNfyd28iWi19rUJqvMO4M+aefafPs2y7zxMUzVOpNlFvAGAeLIc+HhMmIMI4I44Q81/hCYmxGybOEUY7rCoQNEDal0vRAuSgVo3WOyTNMZgiki7ApMzN1rFC4jkIYQTwxoA35JMIJPJQAz5nyV4WVYD0sFkdMhTAIDyGhYAFHEccxSW4wNkcpg1TgKZfMWKS0kCfkJiN1fArSJUljojQjkEWyfHp9HN+QJxOktASBQjkPN3ghGeUGM84pOQn+vI9f9VFln/VSQOu0QhqDdMEGFh0ZrBEo16XmgVcVDNsJNktJD2L6myOUP0NzZZ3ZJy9x/cvX6baH5NanVr3I2TMtpIJBd4CIetREjlZlKplh+/c6rH90jdX2aQbR66SjIYm+yVifw229m4poEnUEI52w5Ls8eeEiL3zyFZ57us2FdywQtxS7g4h8O8NpVnjyZMD1i8ts3d4lH7SpEHHsdIMbx9bZev0bvHBtn2q5wPlTJYpVh1K9QJq3mbQHNFdm2T5os3nwJZ6YNLA7z1Lz5yi2Ulq+IYljxlsTot4GXt3FTgqsnzlHAU1Bx1zbbNPVBpGkDPYM9ZJgseaiiz63exlBtciJSg9Pt+kbg7UeEsUk1CyqC2yyS5kJJRHSQnM/aXP9M5/n1E+ss3r6DFbfJeUekdB4ehPhG4RfRQUJcXbA3ihmY9hl7toBqpGyVn2M08fHDF9P6KfbzMgJws0w2gXN9P0NQT6Y8nGlNYSlHgPvAT3VI6yfZuEdZ8ARDJKEUs3DcXKi8Qil9nBdjdeYY5LnBMd9hhPN/RsRDzZGnF3JyMOcVs3w+DqcOS5ozCtqgUN5NkBaQZ5DhiTVAiMsapKiiwH7RpJPNGHP0G5byj40Sx6+W8PgkeqIcTRk72DAaPMerVKZoHKeQrWG49Zx3DJKBQ83AInjCEweY7IMk6cINFOM1KI8D52k5ElCOAoRUYobZCRxQh7mCKtQwaMmaL/yv/9frC2t844n38Ox2VN84XOf49ZnA+o/+VEWzp/HVw6iD9oqcl0my0dEd1MctYTfKINjGBxMiDspzqRDtrSC9fuYYk5enSFtOVhToNe9Sidp08nHWJlwfC5gbxJz734bk4QIY5F2gs322du5xW/+q09x7coWnX5EGGXk2iIspLklyzVZlvMvfu03+NGP/Nj3s639Ow3LIe0qJ8lDuuM2L9x8A5tJHKMoWkXFKhq+x7UoQJg6Z04+x/GFNRqOoCTAUdPAu73XRWaCslS4NiM2lk7ngDMHDzDC4pQLBM0S41HG73xjk0tnr9KcXZ32lJFFkjjnwf0t4njCL/3iP2QymUyriMZgtEHr/Kgb6qNP/wg9ybIcpR7SpuwjSpkF3tqBdRqk6/xRIyaYBinPP/88X/ziF/7C5/3POt6MEOnYgK9wENjcIpQAV6KkJU5T0n6CECnDe31G2xEiqFNeW6R8bJm9z99k0o8Qok515gTzc9O1N+mHuHlIyVU4ysPtG8Zfj6h/pEZjY54kdEkHe5g4JdFnUPUFiqJIN01xTcpaJWBubo4bX9vh3Pkxc8crDEaaZJhhhoJCUGSl6XJ8vcZee4DIQhqepVYvca9VZePGVW7tnMFzy9SqCt9zKZR8ICYLU2Zmy+zvX0WMD2jZGUx5nrLXwDZy6gVFPAxJ+iHZpEtecSDxWX3qOQJSNqxhb3OPXpbCcEi4IWjOeNSCAn1jaPc0br1MszzCoUNoFIICWNChQ7VwngN5QNWLKYsUxIQ46RBf3+bUe57j4//xf8TP//x/z81Syon1gDS6z0FvyGR8jJcud7h2bYe7m12iScKxxSJ+zSVMa6RJjD8esVbxePzJ05T6mpvXb/O53/8DlpeXqdcqHF9fY3l1jVq5jjEjTL5BzAQqPsFCmTTPaY9CzGjCaNQmDi31YowwEdYJMKqMbEGnb7h3b4/tzU1WZyP0aECzlHGypWm0ChSKPp4jcIt1hJUYI8hFEYSDQKP0GOHNEcsAmTcwcoULFy/wzh94GiFA22yacFsz1TsJ5wjV+540evrTvycB96c+9al/P8lBd9jl9uZtZpuzfODDz2LDZ/lnX9vkt7/9JdyFWS6uL4LnorouijOMnC56/w0KQx9PHadnFYVmwObLI1omI6vmRMWc7q6lK0qcfHyGq5c3SbjHlu7TywUFH+aPSV5oZ+xnllxOYTObWzr3NfH+hNyBMMspOhaMpTuChrYUjMONrZASBtcXJMIiKwqtJOMoR2qLzQ1pbpFCYQsK11UUPUWSW5J8elHqRcUkseg0IYk0OgOURXvgVSWFhkez5GMDRYIhzqZuM2Eecn9vzOQgJZ9MLUDJBNVZn+3dlGji0Jxd5ckzZzm/vEzWjqhPUuRskSzT7H/9CvHrWyw25jh1vMLe/Qe4viK+fxMpahQrisa5VZJvXcdz4Vf+2RY/+zNf4/GLCr+g8VQDKSSTuMc4jki1Q2pyonBEP01xfEVVKMK0iFAOeRDgFgssexnjyCPTCpWG6DQkFJZRHOMoh0ahxijLGYcJSZxCZnC0h05zxukA3y9SLhWQSCZRwky1QdnTxNaQZTnSGhzpUigVyIRFOQKDJk5jXOXQqFdRXpFxlBAnA1AK4Xg4NkcLF2tyqo1jpCNNHE/ILZSLVSoln9xRFCoucQR7wxgvyoiiMYnTwHegsFAgWChQrnsEJZeCyqZ2eUIirEEGAtFwEYHCTyxkGa7r0rvZZ+PVB1wdTSjOPIlz+scQsoh7cIfi4D4EDusnTvDMhQpXro144/K1afIxs05XDrGpYadzQG1/nnccL3HcnOPynU2+G32LF50KP/RjP0g8NDjdz5MfTCirmEtzhterc0y+9S3s2XWas8tMJobxq32SbU162uP59y3xWeVzsFnCyhHbOyP+8juP8cmbbb5yexfXcXHtMo9dqoHnM/PYBzBxxkQrhkEdfew55p75IX71H/4T2lGFD7z/BPX0Dfxwn6BWwV0+xcb9OwyGs2RFn9UT6yzVBN3PvMDuwZDQGtI446XbI55YVzy26jLen6AqBQ5kRmI15SwkisZc6Vf4kdYq3938PLNijqrMKNKlQE5PJ+xufop858eZdRW7JqCdFZkrFIAJnsjRTo6SMTK0qL3J/0fdmwZZep33fb9zzrvf/d7ep2ffBxsBkABIgCBMWRRFLTYtWVJVmJQlOVYsSx8if4pTST4ppXIlsZOUrcSRS5UqJY6UWKIskuJikiIJLiAxWAeDwezTM7133/3d33NOPtyeAURFFboqTMnPh+66t9f7dt9zn//z/BfU7R2+/lbC0k+e5UfrL7B4VLK563Dxi69xUmb41RqVWKRSLqVKKWsWt3uaiXTJ4im3f//TDK7fZNDsIk5f4Mzzx4gUvJNMudBx6UYRUijyseXw6dOYeoKdKDSr3Li8xUtfv8LxKMXuw5HHFe9/yOHwiqDRkrihQ61Zo4oNRgXknkesZ9vEQ26ODAKKxhzfurtPOYBiW7B3V9MxDiUNxmWFZyoGuWZjFLN57QZXXr7Bf/xLn6Tee4QgnEMKDyFnPFWsRaKBAxcKA6YC6fioELJsOPuYVAilkL4/c1Qrc6o8IZlmgKSs8gfn/eHmHH/zmR/l6Q89TSozPvNixkZZ5/pLr+MfXaS3EuEphcg8jJinUBPE/j7u0Q7IOoUUaLdid9Bn2TeYhiaPK7IcKhXSWAq5e3MDr3aPflXMwhu7gtoxlxujhH5RQCBRhSGPK7ZvTdjTG1hdopwD6o8xVJXBkRJHgbWCqhLfJyb44ZeUCt+t0Qgs29t7lHFJ4VpkFBFFIf1xRZZGHFk9xanlFdpBiKw0wcEWWhtLfmOTpg2Qi6s0ey793R2Cus/03i2cpSbt+S55ukyVpXhOxZe+co33P9nAD8/iugvcuL7GP/6tf8p+f5/pNH4w9b8PELAHOQ/2vjD73XAyAwfpxbzn696lZd0XGT8IRfu+ml1u+xfcoP6q1MHiAWtBOrPJLKVBeHKWhSRAaounHPBc4jsDbt3a5sYoZeHoI4ijj2IqjXtvjSgZEC61WD42x6FFj63tkrW373L6SA8nytEMMKlmfDcmHNZ56AM+i+oMa7enbGfb3I3qXPjIObJYE/9ZQqOc0nIKVpuC3Uad9PJVxOFFWl0PlVZUk4pqCqYruXC+ydcuSbzUI9caVRqeO9Xj03eO8/L6kFBKTh6uEbUdhOcTLZ3C5pocQew1qR9eRHttXv7G64yKgKefWsIbXkVaCNtNrBPS728SpF0KX3H88cdxHEWRVwzXd0nzjHJ3xJWLmjNPhvRqFjXSSCKmckZdrJcDBvsuOmlzdLHDxsWXaatjOLbElSlUBfnOLoPvfRn9tx8l1jFlCdPMYITh1KmQM45HYTOee7bHhZNNXru4zvUrm5xcrTOZX+LcseeYX6pz5+Wvs/baa7zyxjvMOd8jiFp0ex0++tdf4OFHHqbeaJGUFdVwgP3WJcqiIF1apX7yBJ0jHYS17BnD4YbL/NIJqCbIao+otoz1Cyj2QR3l9u03GW/dY8UdIEYwfzbg5GGPVsvB9UMcr4bjhJjSYOQypQoptEDZkkjmCLeO9lbYnjrU7SqmqBMaRaM+o0ZO821AkJUFLgGBqiOlg++HWCpm9r/3n3kCa98TZPZDPut+sIRkF+4Otrn4+c/xzz/zB/z6E+f5rz/8Uf7VK6/y0iuvEjo1Dj3zIdwXziPf+C7uVo3BeMzkSkpvfsjKCytMz7S5/C82eOaDD8HT70fHIyb3vsDt0SanTzssugNuf2mH/MaEYGJo9xRvBYKdy/nMEs0XtDzoufD2wDAeDfjma7s4vqIRKfLc0t82NB/pcO/bI1RmSZQgCB3aLZe6EOzvGXYyQeRInAjc0lJUlltrKWHkEvY8msqiACXB8SyjPY1TV+jckmcz0V/QcBGhotFycR2PEklaGiZZRVXkZPuWOClJd0uqWM88wK2ivVRn7XtjtK1xfvURFqJ5qr0J5fUBwakaQtcYbawz2FkDk9KYazPwQvbuWjqn20SNKV4l8RyBmqsx6DXpHJPsO5o39zPK21eoRwMc2aDXPIomIMlSJrEmLxyU9Kj5AQqHUTzG8TxUVZJnFXml8HxD140QWcLecEiWlhjpUVQ5ftRgfW2HREiyokLnBaGE5aNNNjcLtJQ4rkslJaqsqDuCZrtJfzAhGQ1QusCVktD3qDXa9PsxOrc40qUVebiOi3Bq5EWC0BmmSGarODy0DtizNY62WrhkZDrBtQlOBfnUxc4tEISzADdbltiqJMAjWlzAlqDmQ8KGpCwyhtsxLTSTsYt8dInA91ELs62HULOtg6pVpHdSkvU+3/rGy3zn1Xt0Vz7Gw09/lKTjc7KyvDhap18YTh2/wGM/8Ty6tGy8vMNP/9RTbL5xnZ3rt6i5Gb6ucJ3bbL11jJO/EtA7eY6lry3RNT/LZvw1PrfU5OHbn2Gh6jP06pSew9LclJOLNX7npe+w+tP7XDi5SrfX4VZP8J3fvszc0Q/wobM+xWNtXvV8dq6N2Nld59z8hEeeXeG1L7zKNelw8sgCy8OSbiQ4caxD/9/8MZf3z7N85lHOLz/MH33hIj/7kRErZ57hN3//Mk0v4+R8l3YYUZOWlp8TqxK32iAp2vRWn+A/+fUT/M+/+S9pV3C5sIxSDbcnhFPFqQsrjC7vsVmFLDgd8tylyIYc96eYZBNjxsy7j7FuImCNRTZ5SOZ8lYoXf+vbdD42x1a9TyGvE9TfJPQSdvsZrXxCM5C4eYAfCMo8IetIfv4//EXmFhYI1IATKw6PPe2jTUVy/Tew3Y9inPdRmQ6ZCIity2C8y1d/74/oXvoct5MBKx//OD/1n/86kQuvTEoWS2i2/RklJxvT8ErcyKE0GX7N4+U/eIXrr22yonPaLcHCBz1+9KmIKChxfQejBP20YO/ugCuvlnw1EVwaSx5f9vmFMx4dt2C46vE//Mk9HpcCNZE0mj7nP9hCtub54pVtPt4tcRoON966zrc/96cUa3t88tf+Dkcf/lv4QWtGueP+VOmAS64E1s4CHLVUyLB5YL1Z4fqKPM4wjkW161TxLjob43fnKE2JzRLKac7OYO/Bef+xCw+ztzvhf/29z9JyNP/pJz7Gl1+/xJVJRu3VK+B4dI8cxmv3cO6uI3YC9nf2qK8ltGsltV5A0osYbY45/PxjOKdPk4mrJMkNMtWnu+jSUzn9ixvoeyOajiBYjrinFIO3dsED1ZIckZJ2KIm14cPnwFdNPktC/EbGeDprYrWcbZMl/HmK8l9a9r2beODP04v+XWrWYM8I9Hmes3uvTxan1GtLtGqLtJp1+ms5VikeXn2YyAmw0xy0QbUUGAeTF9y6/AZCuATtNoljGY9h8VgTzxsjcwerNVngk871WFiSbFHxT377T9nf/L8YjTKSJKcsNGmSURQFMBNhv/dRGXNfPv3uve/Sp+wBFck+4CvLAzHzAy3AAT3hvoXiu5dLPKDa/lUuIQS4QAGy4bwrTAessthRRTlMef1rlxhN6iycfZql04eJI48zGr6ytUGk5lk6dZbFR1cwhWV0a8pzHz/L+sV1dBHjhQWOFahgwPjtLvO/EFIXx2iurjCupozNJq+1PE7cfZXjzZBRrDG+pN2oWOi4fPpbN/jVF55iruNTOxmxdzdl5/U+tfYSJ3uS4bGA7XXFeJxSTVPmQ3jkoRrrb22x06jRmwvwI0mkoNv2SV+/xL3qBBeOP8RgELO2sc6HHstoLZ7iX375NufmPDqRS+g4eEYTuYYMjar2SPQix97/Agurx3n5Dz5NsLPFa8OK6cYEnw0OnzpC59gS2dUtksU6bXeJZGTwTELgjmBksMWYZuthNktLrVwjEnv0KLizPeLOH92m8eEmK8vLrMyPOXsow7EFu8MRYV0w1wioH2qyu+6wtyFwl2p86lO/woml80jR53P7l7h1w6AnJTp5lR/7qU9x5vQK//bL3+JPP/+nzC0u88HnnqcTNuje+RZ3bMa5n3g/S0/PJvY7lWVeOjRbIaYsUNLg+RLlKLQtcUOfNz/3Z5j9HeZkTK3r0Dxd5/TRDo6ToJwILQRFVqKnY/Y2Kt4sHd6awI+stjjftDieJast8Y1Lb3FGVWSey9zh0zS7R8irAbujuzTrPWr+Av3ta/Q3r0JVsnBslcXlsyjhHQAD8Z5nrjk4+eUDofEPq34gcLDgtOioAFFmbBiHf3bxVf7h3A1OlgVit2A/XuXIiY+QrXvoU4/gNHwWih5rt17nxldus/Jjv0H9pI87KsnWryOdD9LvLHOpW+fcYylVLWYj2eSr10YMdyoiV6IiuJJCaWGSGKK6oNcQNKUgyeDuxSnvO+HROl9DKJds31BzM26+ts9gx9Bs+cTCoj1Frhz6g4L97YwwUtzaqgBL4Cuko+hPKtzU2adS2wAAIABJREFU0hKW+Y47C1uzII3C6wjGuzlO10VnhjI1DOOKtLRs5R5Ro0SnJa4PbigoSsX23eEsVG2qQUpqywHNMzVu3s4Z7RuWznY49+HTNA81sLqgd8QBJyePh/yL/+afsn3jOkuNGovzSyyfPMoXr94DvUOrfZi0chmPRkwGU+YOBQzWJggHLl+foBkz164T+j4yEJTZDpO4IE1dNCFe4FJTHv1iwkg7THTJcJww2h5QxBVKgfEy4slkNoXTCoVmrtugyDP29mOyUlAys8Vr1lzcomRpaRnr1FCuIgxcGqFP4Pmk0xKnyhBVhWBmRaekyzjOaPiC3WlCFEaErocwliTtz5JbsTTCOqYoKTKN9KDth1RlgHE1tcDFqXywiuZ8j/7uLrV2i72koi4ltchDhS6OtOQARcpkL8bxIPAFlWuZFB7eIAWjcXyF4ysEUOUl2faQvTfvcfu7L6EG13h0NYNFTf2kwV/uUI63seWA0POYW1hh9bEGo62CQ6suInKhlAh6mF6HWv8mmrvckNu88ns5K080OPn3F/i53jJf/HaHc3WPV165x2rrEOp0m3FesHt9l/lnH+F83ufFP7hKNQ059/wpTh/rcegf1vjd/3GN9q+t8uxKQP18yKd1xe03mth3xnz8R0+ycW3MtSvfo2GvsnLs5zl5uIVuQZ7s80SZcGtzymfHu/iTlzj9kZ/l3/zhv+XnHxmTTFx2Mp+tQpHt3OJYlCBOHya+NCLf2GG7v0/fl/zcb/4dvvhf/R5Nk1Fqy72sQO8O+ZhjWDq/yo3rOwzwESoi9APauebz+/f4md6HeWP0beqihScirFiiLrZ4AZc/vPp5PnrmaVi0xKHmGosMnA1WOwb2S/S8T1IV7JWGe3WJ5zrMFUNUtclYG5onuvzkrz2MShLW39inFnyaS8MXceaOY5ptvvHONkvxUXYvrlE/cY73/+qzLL3/A+RujfW0xG72Ob8YoXyLk1f4TkHdqRBhAPIUn/69l1i7vk3kZBxakZx5rsXRYxCFAi0UVSGYDDW3rma88Z2Cy0hONT1+qSkY3cz4Z1+a8N17FbkQ/OzTNQ7/tTZyxZA4MPXqHJ87w0/Nf4CdJOF3/tvfYuPNmxxdDvmZX3mSZ57/FKHfRsqZ7uZ+wybuvzWzCbQRCqQLgDUlRZxitKaoMqpqdhY12i7j1CHO0pkLjC/JjSWZvEs76QVzGCOwQjCIDV988TV+5kibjSrB397EU+dwewHVRGBXVggjh9VDNbavvMPEifEbx1nfv4PXryh2b4PzMPtBg3QxZG7BUsmMcbXPd9/eRZUQRh6lX7GdV5RGM9jPmTsSMF/3cCoo8oJsa4MLp1o8/PT7+Ef/5cvkuaHKZ/QWoyHWesab//+1R53Bg0prtne2KKYaPwhZPDbHE489x+Haaf6XV36bH3/+x3j8ofMYLRCU+BKQmqrMGQ1GLPTaeH6ECF1GpmBrkGLtPs2VFbZGKZv7OyT5iFbdY3tthBMqNrfHjPZjsqSiKjXGQFmWWGtngmQOtgB6JlCEdyXas9wI+8Az/T6gmPH2JX/BBf09mo374tf7Ogx50Jz85SF6f7VKeWqmw9CzcCiAgpJf/tVf4hef+wSv3bzIwtIKx073iI6GqLrPdLiLrEZEjQ6tpTb1rksx1XR6EqMcZGqhvohYauIOhmj22JNL3P7jkpX3+6w8U6dja9zdarPgSW68tMX5J89y+24fq0PyuKD90CFOZRPe/NIaZ58/Sn2+xtLhGq1GwMtfGVD/iTaPtR3e0LBrNdv7FeVuyZPnFrh7t+Lqm68SqaOE9eM0IhfjQZVMOKlLbu5ljEY7NMWI9tIjXH7tHT75WMl4VzE2imFWESV95oISlufJ3t6nyvcYTgVO6PPE3/t5Lv2T36WXDzFpwa2NXbQQnPMkzYcW2bu+xVQ1sE6XiDamP+XGnW0eOv8h7t16kbZaBqcLrqKuhpwULhdf/g4fOPE+njxzCu1PSeQ2oRiwNJ9QJFPubZQIF2zT4h5toYOIhRAEE3IEH/6xJ3n2+RY2S4i3+4T2Iklrkb/3y8+zV2j2JiWtwqP/9ibdR5/gsaceo7mwTKUcysoik4KlpodQ4FYGV+nZBlL5IBZ55WvfIJtuUQtz5lZqzJ9s0GwJXFeg8SgzSxrnDHcLtu5p7uqCo80GPxelbL61xWeGTe7GdXZGb/C3PnSCzvkGhd5hEH+eRK7Qqp9joXWWcTFhcPsWV773TRrtihMPn2du8QxKeghm2SPvlUy9K8+2P3RA/gOBgxf+7i/ygdOPcuONy/zhv/5Drozh80OHFT1lL9/GfPvLnJRTFv6z/4LBxZR4sIvnJdSaM0eN/d0hc0sh74iA6OotTg3HzD10nvOPPcLevW/SHF7m6nduIJKEwNdooRlj8AvYMZZ6R+IHMDUwSi1dCUvLcOiCIVguKKaatXc0b3wt5uKm5fyii1SGwvGQro+wkmkqKOxMpOw4gjg2jEYFRQHTSYnnSyLPoCOBRFJoyyiGvDQESpAYy6QwVMbi+JIwUGSFJk8KXDVbb9vCEk8LkmFJPtEzMXQo8WseYRQh0gq74tJpR+zsXoNsSlfWWHB89JURoswonAAd1HCloVIZGxv3OLIoGKUN0jRmPJGkZQnCR6mA9qJAKk2WwP52hs3GSM9Q6x5nNKkITImpQGuXXFtsLUIZTan7BMKh5tcxTYPwE6zrsLuXIoSHcHKENEhdYApJ4PhUwqUyBWHNI4oCkAK31iBfv0dRDglqAaKK0EWE47gM1geYLJm9CDkBxvEonBBfhZAk+FWBTgyxkGhjyIsK43o0owDP88BTKA2OFcSTCfWoi/BrGFNhvYCiFOxOpoR4mGkMIkA4Dm4oqTUUNV+hnZDRqCRQEpvlSK2J5uvUFpo44czWqyjsAf96yv6dO1x5c59i9w47g3vsx32avuCR1pjk9f+NQn+c7+4Jet4qS2cOM3f6HNN9y85NOH10Eew6kesinIphuc6hpdOIssGd5CWuTnzeXzxGuNPhG//q26yeeZp7n70FS8dx5BS7cZ3peIfd0R4Pn+lwr7fKelxy7d4O7tUQrzNP3XP56V9c4SvfKnjmsYILR33aT7X4XMPh61++xdXbE1afP8UdYu5sbPO9L3yX3n/0AmNTYt/3LI3pGt1Rn55uY488x5e/eZvtMuCQc4zKHaCm+8wVY9qnltjZjuFaymL7CKW3zSQesmh7VGtDPvTJQ6x9ZYNL2xn7pWG/LHl9d8qH6wnd0CHPdvGKAFN63MldPtz6EFem79Cgoi5rKKEwomDinuRm9jpPiDprr18iON6icULhtQ1jGzFYH+MvaHRiSLcL9G7Jma7lSN3iZy9hp+8g3ZDIKfHnepSFT72mmMYu5+mwNijY2JtyvnWIl/dcDv3EC0ydPsXqMdygh1NZdjdT5msK4YIkRdgS5Xq4nQWMucrdr32Re7fXacmc7gmHuQseh04aPKsoxwWT3GMjdblzt2L3CjzyfI2//dRpGn6NmuuidcmPZynjJGM8gvU/vcXll6YcfbzJ/FEXPYmZ3L7GMGjyxh99B39zmw88M8fjH32W933gU/h+Cykd4D2WjwfWlWAxViOkg+MGGFliypwimTLdH4IpwZYz4G9LsmJM0AkpxhnefEjpVlTZmGo6fXDeP/wf/DSBcLj95nWuvXmdzZHHG9shi3mftXhM9OWCZjXB//BHyLYqksEAVIz1ZsJg3/E4ffoYfywjWpcvs/LXPkZrrofQ88TFLjJdZ/PKdSK3wKiEUsRUNkflli2r6R4JCeqSnUyjcsORjqDVheZyhWpk/INfPMYXP+Nw4+0R9ZrHn70+oNTmYLJ98CDs943OD+6qqoo8zzBGU683Dj4i/53ZSLNp3uz6x8mU3/nf/ycEhsMrR3n46JNIXF69/RKLqys8977naNQaGAPC2pnrv7DkyZSw3qB96BDYisFoQH+wS3e+jVEtqipnOo4RwsVxQpLRgGSUsdzpUuSaJM7J0mJGmRFqZmEoJdpoDgIGDhyaBJbZ/42xHFi92oMcgu9zBeK9QWbvuXYHF/C9AmGl7ie2/tXeGtyvB1NWCUIo7ps1mjLnyvUr/Hc72xRpxvLWHE8Vu7wg+qQLZ7idB5xYPUW01CNY6pFNLelQ0JurgxniBwFxtYlRFfXDy4jSZXt8jdulT8uepP/OhN2NMd3VZYav9JFnjuL4BeX6LnE6Jstj5pqS7XaP7byisbVH25Z4QYTrKR59tsHLb5Q8cQ7OtBwaXsiVUPHOrTGL/ZxTTy6y/p2Y9XsJzdoOR88vk2Ph+ClCs0uziMALQSxx7daAgfZYEEtoZx8vneK4An++w3icw3pOd+kY+5MNpBZ4VYCwE87/wsN0P/sml27tk5YFe/0h9254HFc1ajVFOb2JVzZJExdRRBxZOczOxhXqCnyvBiLBOg1S12cwvcwJ0+TuxXcIjtcIlg1COZS2jp8MaNQ0zVaL3f2Seb9ErTjM1Q2evYLUd1EiIApKhDuHqSXU6j555nB8fp7diaFJhNOI2Bj6zD1zmKk7pd3s4TgBprLkaUXdn1mTSUoEBun6KE+jyy1Gt15lb2edubAkWoloHfKpdwzSKnSWkpURe5nPaCdAlhXHHlI8tniM0A3xpeRIlfK+siQtDfF0germBv2d08wfX8LYdUj3KeiTqrvce+NlhjtbLBxdZunIo3R6p1HKf1fAb83sufz93ssHtqY/zPqBwEF3ZZ4jj5yhsdQmOlLnD37/m2xeewdjJBOdsb+7Q/21i/zC65+mduFjjGSK2c5mh/F0j3ztdbxDH8TqXV7Z2eexPKHdipgcOszNmw7HRxsMru8STwqENBAYxsIiSqjVQLmCvIRcz2zPSgl+A6LI4tmSwVsF179e8d3rFX0leGrOYeQIZOgwijX92ynb+wVlVqIilyzVxHFFnhmqajYNcY3FdQ4mQZWhKA2lASMETlNiEk1lzUz74Am8QJAkBW4UYiqDObiS+bTEVBbM7PeOmi7KCMrNgmbo47ZdbFmxv76OrRVkQZtpUKOfT5DplExPkaGkkpKp1LgmIbQCESp2+jGplVhXEXgBSpb4QZ3KapQfklYOw0zTVIIiK5gkGZWuCBwHKUCikY4PxZS80pRpQVFoHM/FjZoIbfGcirLUSKnQBuK4RKUWgcHxXXxrqYUu9XqAoxRIg65K0jiZNS5mlgxaFprpJMYBXMfFUe7se5Yak5UYDYEfYQ6AgbEVQrlY6yDw6HQ6mKLAFhWuVYymBnRBPE3wRYDrhSCh0hV+UEPpCY5nQfkkuUbbnGB5nlhrorZLECqEBulYVCPEuB5KSaqymgW7pRnpcEQ5KVFK0VtZJomHOK4kEpZ4UHDzzh1ub/5rXviFX+Z6/wJ6e5tmkSBxCDqSwAcju/jqGoFbkfUOk0cepqyRjVOijs/a1uuk2uXw2eM0/ZTtu32Wz6wS25xBMWU6GdD2mmTTPRp6i9g/hF+rEYUgSJiMImqdJqcuOGzsxhhVsnIq5IVzDTYv99jYzagfl7QOzTPaHHLl9Tf58PoHaBz2WZvrUrz9Jeo4XFh+jEulw+s3v8cHj53irbtjek3JSsfBH28xmMTMNyJGQ8H2NMalQbfeInMKRJwj6ocIVxOWsj7+IEcbw05WsLa5R7vXxLMF2AQXw4oj0XpEZSvqskmJASFB+ewSkymXyoxh4pHtC4pmg6DusdySjGOIdiAfVqztWfZSwenjLd55J8ZztpGiIBASVIkQBUJVKEdSKY0fzFG6HZAtEnGaJ7s+98aCR46epDW3hFdZVJlSkwlO6FOaHMcavNDFlT5WaJLpgDdevYkqczqHXRaOKOZ7kroS2KFFteq8ea1gfzelGTr8yE+usHocVhamqEAjCRDKZcFpYuwSRabZCsfcuznm1Ttjrm76nDsbIMyYzSuvsn1lDXyHo2ce5cJjn6DROokUzsxP3xQzfQww63DkAQf1wBfmoPGz2mC0nWl2FNiqwuoCa0s818z0FHGBdByEq3EjSW2h+eC8l82A3vwiYbdB99gSb75yh50rG4hKsZsk6Ot3kfNvcu78PO7CGWzhwcBFYbHpCJv0qTXbiHKdSzfvcVoXiHaTLOmQ9Peop32Gt9bJshw/KsjdigQ9c4drClzXZZoZMmNwxey8dwKB62qkzVjKE464lmnbx/jOAc1FzMwIAKM1eZEzGg3o9eYfWF8C7OxsceXtN/A9h+ee/7ED8d999w/4d2t0LWVVMZ6M2B/s0Gt3+PhzP875M+fxfIfl5mEuHDZ0Gp3ZZP09eMVaixvWEAZWTx6nKDL2rozZ2N4gygZYB0a1JnFekRUZ49GInY1Nxv0Rk/6EySgly8vZRgiBle/afN63Nnyvs48x5oHI8f7U//799j7lSMr75kJ/jp4lHuCMd1NYtT4IWuK+e8r/uzXiX5W670p1/29trWWSJMRxzFyrwyhJ2NrcY6u1zvaNPR7/G3+D22urhCrH0xVCStzQ4iqBcSIc1nDrHoQ1qsBBFD7luKA+F3DrxiXqjTrdlS6+UzLZTeidmCMucmq9FpEr8KWDKRNCM6TwF/ADD0lFmScYFeHXA5ZWJBs7OQuLisWag5nziPshO5Oc7iFFv9dmtLvDzvouh47M4dcV+/Ua9s3v0pw/hgjm2K4K+nu3OTm3zNWthKVmQFdMsVVCUbrUQ480lvTjFM/pICSU5FBqaB0lPLPL8iAlG6XIPGWws0/b8agdWcaxMcZOCVSE67nYPMYag3LaVKbE8RwqZYhFQRWEWDdGTkfkQ0FZ8/Bdh5qrKEqBn0qELBmOc5QXMjcXsLef4Dn7CKHx5AhhC6woMeo+sNDUojlKPJKihWc7OE2HUSE5NjeP7/qoyiCNxZMa6SgqW+Fai/JcpNJYW5FnEzZu38QXFfVDDRpzLvVI4QG2sMigzY21GJ3EdDs9egtdmm1NLZwg3BxhIwLpgahjrIcuS6bRlDS9y62bmqCW0mpajF5jPNxg7+Y1aEb0Fk/Q7h7HdVsHLkTMhj6Yg9sHoJyDwYS1iL+Q8/L/bf1A4GC8tcvO9g6i7vOhT3yEYV/yTTNlcnvKNE7pFzlf2trixB9/msd/4zz1M4dIXIfprVuk8SZqsgvWkpT73EsSdoZXWSqP0O80GdeX2X7pKtONMamoZlY2IeRWUOWWdkuQllAUUEnwIoETQdWSWAnZWsWV71VcfF0zET5P/vVHieo3eOeeYTgo2N6q2FzLmKYGhEVNoco0ZWkwxuIoQTNSzM25tJoOvicp9cEBKwTKFRgJrjNzNnKEwosURkAQCoJAkiVQlQatDXmsUVLiegLlSWo1j8BK5MTiui6VUpRZRTaeMiocMl8zreVYL0JnI4SXE3U8KgOFsgjXENiKIi8YT1MqKfCEg+c5KD/ACx2UmTXFmXURlSCoLGWeQ1mQlOBJie+CpSIrktnkzGriJMNUBsd1EYGLHqdY4VAVKVpXaANVJTBWY3SBG0RI18WVDo5UREGAqyz1uk9alhgh0GYm5s2mCbYqEV6A7yo858DX3ViqvMBXCuWFMxsvaxC6oioMZTH7t1RK4YUhRpWUaUlRVegiwwpnZtcqHTxXEXoQBD4mGeGIAoMk0RVZVtAyLeKiIghdHKWQrkQFPtp3KQqNrixFPpu0lnFCMojJpyUL802iqE0+HlIVXfI44c71Na4OLaKoeOj8MtfeGmP2PJpeiFAKN5QoDI5soZTEDRWB32NCiiNSat053GbKXjFifRhx6FiAKjOcSNFs1omcOsnqYZwiwZYFNqlYqRe8PRIM+znpYMLSMcUk96myklNnQy5fKrm+bhmbiuPnPR493+GVG7sEQPfwAsm9bW699hpXv7fFE8dOs2EtVS4JjEZM+4wGfXwnZpUh39neQ9geva5DFIZ4wselpFPT7EzAWh/NjAompiXahjjzbZbHJVEJe9Ocwhhuj8YseQGLgYNQGkyObyTDYo3IaSNMi4Ee41mIpMvAGRHUFsjsgLoaUzoRk0Kxu5Eyn+eIZsQkqehPLKPCwa37dGoRV/fHuIGPkhmOzBA2QZscIRRWeDiuoXAUtdYyPblCOp2j3Qzo65JDnWWk5+MYizIVdT+nVAFCF3gKAsfDkRllMuTa27dY34pZXHDoHnOYW3RYiAQqNwgEb+9I9hNohJILJwOe/FAPIQrINrD5GGM9pBshRBMlHcIaHPuAS2/OcrOfcudOgVOXPPVEi423bzGdFBx/5DTHzj5Bt30OcLBYKl1iTYxiNgUWaJANjFUPQqPuC0ONtVjloAIfbImxBZhZE+wHijIvsdJSlAmVSVGRpLHUfnDeT3b7tJsdwrkWR9oRVoVc7O+TbIYk8ZCb4zFcvU7tpRoLH+vhLtQprEV7HkoXkCdY22CabrC1PyRJbkP7DFnUIO4HDK9cYbq1QxZV6MBQeIKskthC02p5xKUgjWeiUTcUqJZEBworoNydcu+dAVVcsbQ0h5lbRX53D6UtnW6DW7ff4RvfCMiLnCSZ0m51D3ILoNFszmw9tcaisHYWQjQDBhZrBT/oBsFyP1TOoKTiqfc9QxDWeOaxZ+i0ukipED2BseZBMukDu1AAa/GCAFFWLKwskWUZ1TtvcXttDUdajIJoYZm8KCjyjPFwyPb6JvF4ys49STpJKUuNua8bOBAb32/24X4zf0BDu+9D+h6tygO70/vg8r5Q4fsa/T+XjfCe+415N9zs3ydw8P9Ula6w2lBiSPOSrUHM9c0RzfYCq6st3hRbtKWaCfHVrC+QgBAhCIPT8DHWJ7MVQlaETgOvk7ETT3DqAd2GgzQV0pdEkY8KHZZWl1A6h0ojlaYXaq7HkmSiiQKLE1qENZhSs7Tscuem5N6Opd219OqKYwsBV3cKQiHorLTY3dtgc73PkXsJSxfa9AGvAC+vKM2QNB7iypyeTHhzf0jLnyNUDo5wcYSDQ0UtMAxi8IRPUZUkeY7INMaGOKvLLG+ljO9sE49T8jRlZ3OHdtSi0wzRNkfqFFkY8nyMF3WxpsU02aLmR5SuJvMz3O4iVTQlkn0yFZCkFXp/SlgvkGGDokgojKZSIb7fRpceG+MJjuchZYKSMdYkGFsihAPSx3EqrHKp1eYxqkFZhdSkS4ahG7UphEAYi8IglJ4lzRuNIwVKKiSGPJmwv73BaDhhbiGkthjQiBxCBeIgcf3OPqQl9ALJ8lJId7mBIIVqCzRYUwOnjlANpLBI39I+Ion6d7m5GTOsGihvnrmgznj3Osl0zJGHHqLRPozrtpht5WbAAKoZdcjOBgAz0cz9jeWB0v6HWD8QOLj+ytvILMI71OPZx4/y1EeOEyTv43vpPuX6mJ005dok5ne/cIm5M3/EkU/9A8ZnlxncXiWZjNGiR6U1G7oktYaNa19h8WaFWHwe1Vjmxd/9P5iUJeawJA6hrMAtJLmyyEgS9w2VskhfEDUFK0cF45ZgkAq2v1nx1UuG1wvBhbNNfvrvfoJvf+6fc2k7Y+1ORTzQVKnGGIHnSUycP5iKKEcSBJLVnsupMzUCYVGBQ1xa9EHanJCQxjNhX72pZiFDvmKvX9JdDGfr1XIWFJcmFWVpZ8l1riCIFKHvUPM9wiCgSCRaHLxYKMiqjEwDSuP5LnEREzU9vFCSpSVprtGAci072xOwBqkrbC6wjo8buOjSzmhQJQglkRJGJmaaTvGEJZPejNZjDHkZs7OXzYADFRaDVALXc0EGJGVCXkGaTsjTBIBGvY6yBdb4ZLnFdUMwCp2D8AWho+j16mQIKiMQwpltwpTEUZYocGlGHtYISgMohyovwZGUxqCUi3Q8HCyuykmLAgMMBkO6vQ54PqP+lCTJScKcbtRC5xkGjRtE+I0Gru9S5gG6tGjHYD0PPJdc53jKkkwKVCGptRuoQJKUBXJiSWo+RVZRZQVVUpFPNZNpzMrxDoWoaCwuMtmP2RlqbpeStHWYT/3Iz9FsLTCdvIjneTQPn0W4UMYWFSj8AlQwj2gOEOmIadFGVLssHjlFnH4D2gtMvGO8+d03OPPoGVorHapxRXPe4cyRFZqOZH3/Du+vN4lOHOXb38p5+aVbyLTBj68+xHJ9yLiqkRNw+GSN1y4WfP3Fgs5Jj0OnIjY2XAITII93mA52uPyNiq9+8QqPfPIko9hwbOVRJjub3Lx9h7ha5/TSUe5efYNDumR/M+H18RzLS8ucXJhn9+5lTjTGdFZX2YrHbO7skA9c0kRQpCnz8xHhXIsqtYxLQ5Fr+saS9EcEy4u0HUlRpdwpCnpa43pLlJVkaHdxZYZ22iQNyfziKr3JmMT0iWoejpsx3NxhPck59lSNioyhDAiciEO5Yu9GTKA0TjSPLG8gxBgpCihLhFRUNgSrSMo+ieuRBR3GG+usxQ1OHj9OXOQ4Us2a58Cii1k+gGsqvMDHcyw2Txjt3OHiN9/GdeHkOZ+oq+g0XDqBQzzJEV7AV14f8oHjDh+4UOfQUoRJKlCzzVgRZwSuh6MybDxB+ZuIeg2bD5BhwZOPg/ZK3rw3QYdH6e9N8Fsuz/7I85x55JGZk5qp0MaQ6phADEEEgMbYFCECjAUlFELMJklCCowQGOUh3BxdVCBnnHAhFdY6VEkGjmQ6npKVMY7r4tXeXVHv39mmMi5hM6DbClg52WLroS5Z3qeeGfbyjKtrW8gvVHyoN0/zgx8lW+4Qt9sYz1JZH1uWbJQZuSnYv/t1oqYAp0eRC6589UXSYoI5EdJXAqkVGMilRIQekzjD+hYvkDRbHt1VlzxQpAXsXxrx0s2CEoejp4/QeegjND7/EnpScOzsIl/92p/w5S99BiEUvbk5iizFVBrpuJw5e4Fnn3uBH/3YT1EWU4p0jB82Z/ZH/ODA4L2llMN8b4Ff/LlfQTkK3/MfTOwtPAAG3/86PgN0AsdxiGoRjuuQpTnXb9xGmIrcWub2RvT39rFYtDZMx1OKopwoCYUKAAAgAElEQVS5HGmDrmY0M2EBKx7oCcT9pv8BBehd//P7Pxsr3hO0JB/w72efcPDe3r9xPxzt/i/OA3Dx7uP594Na9JdVpSuMNuwPB6RejsWlPZfw9//mj+MFEZNBH46v4LRbAOgShCtwtEXUOohyjCkK8tKDKqZ9aJ40vkh35QxlLtla22H+UI+oF1JOKupdxdGjy8TjIdPpiGXXwzu0wDdfSnFeH2Mv1Dh0okHoJhh8KqvoLUreumwYJhWnzjp0ug6dfUGAz+LhgP0bPhvXxlx/p8/i+TZZaakdfojhaMLeaAtNwkKzy+76DZao2Nu0TOsR3WaPlu+RjHaYC2PChUPsT7ZJ45R8DGUOOs9pL7RpnD9PoRXZ2hZ5UjHOC/K1TaJHzuM5BVkSk2ZTokogG8voVDBNbiFVG12rUXZ9/PkFwvFlUr1LI/Ipy4I0GTEpSzrtFpoxqazTqXcoJ5bdvQGe0kh3HqnfRIgEbIIyGis8DDUc5ZCZMaV7nCJXxMmY2IbMd7okeYFwfaw7a6zvZ38oa1COi8Kg85jJYJONO7dwXMnSsToqkNSCAAeoyorSerxya52nT9c5emge3/ewZQGiwlqFTkc4ykPqfZD7COWCE4DeRjgJJ45W3N42ZMVxHP8sZXkHrxVy/MzDhPUmM7RuZs5rtsQVOQgPawsOnCewB650f95i+IdTPxA4WBtuYdbvInZ2Gbz8RbICjj7+YZaOH2Gcjyj3SnSZsZWnfPa//z/5kWPnmXvfc4jeElddGLxT45NPZ5zouYwzy3e/co8qfJFHP7HOxc+9zCTT9B5WVF0o+wI7EgShQK0q7mxmZBKcOoQdmDsu+MQzivXdkisvC/7kK4adocP8uRryuZB/9Jv/mJuXDNPdEl0axIyKinRA+ZLAFThqtppxfEmr5TLXkRxrSzylaC4FZI5gkBkmmaWwFfduVgwHBTry8CMXL3LwS4lX87h7bXIwha6w1hK0fcrYEIQSxxW4rqIygklucJT+v7l70xjL8vs87/kvZ7v7rX3pqq7eu6dn5ZBDUuKuhRK1y6FlQ5CDBDAM54MRBIjhJEY+JIAT5HMSB0FWJIZNwYsoirJkDkkPSVGcGQ5n4fRM9/S+1F637n7W/5IPt7tnKMgIo0BJmAM0bqPq3nOrgLrn/Jb3fV50rU4znDGSk7omjEK8txyMUrLjlOP+hHasCAJJbh3TqkSlJQtrCYcHU5yfsfxMYcBVdJpdchcggghkgDWCrLD0RxMWWi2W5uYIrGfYG7K70yMJNEZpglDQbDeQWISEIA7Qqk4wHVFoT+ktBCFJq003kbjSkA4KglaTonJkacZwkqF0wJ39EcI6SutR2s9SD2WArmmiVoAMYgKhUJVjPMlxhWFYphhTUessENcjGnHAXDtGVMdUlWXqHUlDEcUJUWs2oRpUGeQpi/UmLi/pHw3Y3g948tIl5hbmuHX/EK0E7XZCe74JHjrNiOGxRCagI48oU/JhSrzaYTTKCQKBjmtIp1AdRev0Ek4FmMKS5CFpcUQqR5TxHH/lV/42z/9bp8gKweXl84yLffLpEecXFC0jKA+gcyZkeXOJ49ERO8e7bMYr3L/zgKDTw9st2tOKMOvRS7aoSUmw1EZkhwS1OnHYQIenOD5uMv7hP6L2M7/JpbUhN+4UvL2vaFzp8fG9b7L+xf+QB86ykgg+95SmtyGYHDlcLDm3PMfUGrJAk66d5ujsz3E8eo3Du8+zETXZGw2Qd68xB2x97Jf4B1/9X2j0HvC3Lq9Q37nNu7evcufdiHuqz6/90rMov8XKcsW5WohQ51DBCa7nd7ny3Wt84+Vt4uMJy1LT2Vjg9p1jPu08DV9x62DEciNkKZS4wNKUdW5U95FecTK02LDOnXqLg8VVDuqea7eGDLMxmwc9Lq6GXHi6hX1ylde+eo1f/HhA+8M/zdV9wRvffIvdt3f5qx+NUdEuxeEBUZAj4ofzzyBERRYz9mD3mfhD7qUL3N6+w08/+TF+aCvWooCad7gy57DK8dWUU6HkgaozHyukyznY3eWH33yR+VDiNjWdwNCJIQ48VVUxHSleemfEF3/9PIvxLvNNhShyzOCALIlxkebqYckT53+ZzvEB5e0/IjqTIGsCezhhvGt47VVLKgJ+9fOar/yL19laCXjiUyc5df4U9WgO4QW2KhkVBaHKcPIYJ+OHU6k5KlPhcdRE9HC6NPvnXIkzJbYqcLbCVCnCFmgqrM8wWLRMSWoCkytMXlGm2ePr/f3DXd7dP6BTU5yer2Od5tzTH+aN3V2CapHlSR9XTDk42Ob2//xlLpy5SDy3RtZc4mBaMdj1rKkJp9ZDisLw+jdf58laQBUGvPf2WwyLgqWnE4quxOx5YiuJ4hBRV9w+OmCqIWmCmofVE4qLawGD8Zi9I8kffidj6Fssnllmr2V56/Xf5eyHtzi8NyQfpBA4tJrJDmUATz3xIZRwjEZ9nn72Sc6eP0dVDLj19h8RBDGbFz9LGLce3grFj0zA/00F76NJuxACpRRKKaIo/nNe9/B5H0TjPD7J+wFrYRgRBCHOeQ4Pj1ASkILjo+PH5/OANYayrFBqJjP7EVSp82g9+1m89zhjcdZiLX/md+JHtghCfMDgLmY/62wjIGY90+NwtPdf75iBc+1DstFMrvST3RyUxiCFIC9mUltUyEgXnPjUKYwRnFtbQTsDJqfdkFQCzASSZUVrsc3QZZjK0ZA1hvtDZH0C2RatUc5UJLikTaBANSIox6iwTqNTQ0ch5UiR3/8B8dMf5+LigLs7A35wfcDRFJ5pw9xzn2PkPMXxLk+e6EKYkE0qCDVrrYTYSUQiWVo/jRyFDIf3SUfLLAYRB5MRYu8BS505xt0V/vjaG8i9+/z2s2e4/e51tu8JdqVlpVbwxIcuIDjBfCdnfq6OPL2Mkwn9os/ujXt89/t3eOHy87RUnXF4jcmNHbasJ7YTbt84YmNZozSImkDrGofZXaRTrM3XGTfrDOYXmSx26MUV99/apz9+wIXtu6w9McfSxRXMXJc7L7/OM8/WiLZ+ids3d3lw4weY49t85pk5kHvY8X1EbEBYvFAP/SMhrvBgDkjVlF6mKIqCzYU2u84wp2fqhMoYSl+hsDQljGRES4MzlsH+HYbb79IIFX4pJCInDmK0zLClZDyGB4cjPvP8s4T2+iwXpDzCmTFWt0AvsD855sTqX8Ht/QG4e6hOG6TBTfcphpb33itZXG+ga9d5863v01aCrU9doFbvzMhEHowzGOdQosKLDC8MQkZ49AwsIGCGG/jL/7z9WM3B577wBOsrG1x5ew+XznEYKBi8jQj3WV7xdGWE3isoveEqOc1/8A/55N/3bDx1Gn0pQOiM/+aNK6jPPMvuH3wHl6fcefkeX95+QDm0hEuS1Z+O6b08JSsstASTI4M5KKmvQ3decKoLT6wIntyUrC04vvPH8OWX4RCNPpswqEv+9KUj1GSmKxMaopamuxqwdabOk08vceJEh7WFVQ77d1jpGDbmBO3QEaQVAR4ZJGQmpl/G7E8E9/dHvPfuPgfTWVKkMJbsKGPaN3SXmkwrx/g4w5lZzm8QK+qdkCJx+KlHGI+XkjDSJHGINYrssOBAOrYurlBf6iJEwGB/wv7t+xzvHhNKSWu1S70dkcxrXNRG2zGD0ZiRKvGyIogESa3Oypl1onqXw527uKIkCUKacUI78FhpieoxiRlydDzhwYMeOw+OcWHM3Poy3XoXrKAYF2TTDClTVheatE6tM68ki2uKdJjSOzxiUkGnFTNqJVRKUVV2Jnsae25euw2hZWF5iYZQeFsBhsVmTDoGCk9uUlJrKQtLkRtEZfFKEiZNdCiIA0FNKXxZ0Wm1yAmhcqTDCc4p6oubmCAl339AJ44wZYYMmjQW50iqjG7sUb6iOdeg8BVZlaJTwXKzTjUdM+hNSJoL2AyiANqtOgfX+2w+WyOJatjUIMMA3QixxpI0ErJRDz0XsdJYYXljnp8Flp7fJKiHjHPHvTvXCa2jdfIipXUUB3D6IwozAM8KjShjLSzIRcnKhacxWUTYmJBVOV6HnFxc4nYPnokNeRCALQiFJuq26Pg6//j4c/w7keKFc47zl85zwy3xlTcz4uc+R+3geywuPEkl2iStiGYz4PaOY6eS7BxIFlqSshCE8y0WPrnJ3f/xS3zpP/tPee4/+nvIWo9mXKB7nm995WssHklWTn+BP3jnG7TDDBNWjHZ3OSoUL/9XXyULa1zQhqfbmvNzmmZk2BvD0M3xizqjmCupaU/DS8bNkK/3xpwPEtZJGecB/SpiWacsNCUvHvR4IlI05ze4HzX4QVXy3uE1itGYp78Y8OBFxbd2S/7kbsb6QcbPXe/zuV9K+NI9wfMbYyZ3+jx45ya7qePiszOzutUVlnKGYdTgHpIoyriOcRmBuMlcXbN+boWrI4nQjkLNmnepBcrAQrvFwVHO+uockoJicJOif4VJoLk1nvJrn6qxqiOyquTeg4JdI1g6u8InL53mvW+8yskvfoHG4n18/iZmCm98bcATv7DATz3zAve++zJpErL60Y/ieQs7OSCbWA7uWeIcppXlvddzzrYkxX3PmdMfI9KKcf8uRdmjEouE9RFUN7HhAj5oY0xEZS1eVnR0iPMSyUOcqUmxxRiBRLoxCIvxGaaY4rOMbDwhUAJijarAU5JXJYMyf3y9/1+//L/x17/424yyKf/4xVc4f/FJkpNzFKLH0pmYZDtG7k2o/JT7BuL//p9w7u/8DiuXIUkLRvmUb97N+GfXD7lQMzTHE+784Lv4WGDLiuhkxPJTbR68chNfCygKi+kPscbQWNEsdT2nm7A1H7LQlChfcu+245tvSobdDo3VVaaVYbzfRxagsahY0dxscP7MKpfPXeLMyQs0m3UiLRhO77HafYYkmCDd71NNCzZOjpC6Szb+XSrzYaL4LGHY5S+ENP1AE+H5UXnNj08UmU34rbHYhx4J62ZJBELKx0nF3gFq5ivBzwzOeI/SjwyMHmftTF7mHm4LxCzLAGZ+jA+O/B/5CKSQ7zcbgJQzX8JMrfa+p8UY9/h3lA8bhw9YGH5yj4fbEI9HKsGzzz3Fv/8f/B2klpgSDt7bYeOZFVQjwFYOm0q6mwI7Ba86NMIM7VKcEjQ3V3GZIm6V5JWhniSIJOZ4DOuBo1QBmBIdxDRrMWmxyFujp3jBFcw1j2i/sM7tLObaZELljvjE8DZxbY21pWUcnuP+gMFhgVhYoj/yrMdgI0F9vU46Cjl45R5v/Ks+G7/48xRySKseMB5M2HkwYmGq6W59lm+89g3mOhF2OqK/P2V7Yvnen1xjqBt8pGU5sxQz1xZI5Rlnmkov87kkI7v7NTr1BvFKhD2OeeXmfc60T7BoDjg63kSHgvm4IqrD3uA+W52I+ORT3BGaq/mYnd19bGPME79T450vad49Smm/Mub87V0+dKHFxY92eGlH8uzyhNHtN9i++x4ysixu6NlgXU1m/kQ5aw68M2AnuGAB56docZ9WY4mJbHFQzJQfRjrC2kw9oaUilIo0M7SaCdZVuOk2xoyZAuNqyhObTdoqIS+n7A1ybNSgtnSCU6uLHFx7jac+8ddQ4vtQ9shT6O/kzG0JttZ+icN3XqSxepqoOQ9cxVfb2NIy6RW0ZIA0JxHVPN3wh9i+ZX7+ebw1FGUP6xOcCFGqQDHEqSaIAGsFHosQEMkAhMe58jG97i/r+LGag5v3BjRaOc31NlcOmwyv/JAbuzlnI0e9E1IZze6RZ0tookCx43b4o//uv6Bf0xSrmqc/0+ZEy7H4s5rta4b9W47s2JHEko1PhuxeLbllM/pYRGqpl6AtnPwkbH5E8EIJC06QdBT7VvCf/5cl4XzAUSDY+HCMKiXZgSV3mrxyvHBecPJUg3PPrLG1tcVip4vmgNxnZMPrnD8FrUZMI0mIggjmNVI4PF20qWFTx9CNycsSW0UonaK1IAwVzgvSEo73p/hIE4VglKA0ntJDIARJq4aIDLVOjBaabGLo9QtqWlGMUqIkZP+u42DnGKVDklpEN66zdmKR6VEfk6bYEKQQjKYD2vNNmt2A1tICwzzFeE+33aJdS9i/cReXTnDOM/U5ZTDGLi/w3Poch71D3r3+YDalUiHNxSbDccn+Xo/hYITMSkRh0d6jA8Xtm0dsnFuiZ2YR42VRYIUhCTXZtGAyKWi0OzOMVqzpNDts9w5oBjXGvRRpKnxVIQWITotKRLS0YFpZKiuxSESkkIEjqrUpspzxJGNm4HBUxuKVIg4MPlSYImCae9LekE4U0D1xitxaXDElSQrq9QSv5vj+D19nde0UTkt0qAgjCHVFLMfIJGBxWSG0RQUxOknwOqK2bEhTB4HBlzn5pMAhWNxsgZkS10OElggkwUpAvV2nMR8jpEBknjTdx6saoUxohZ6jCPZ+4Fi+oJi/GJGKDsMfdhEcE6pljFYMK0+7DloZjsd95usdbGBodyqaOiQJY1RQJ6tXZDl85dobhLdvcGLlSc6c/ijuQsK//ParbNSepUqPiJqSubYiEYriuOL5zZhMSm4dKU4taJ5eDsjPbHAtfgpp53jvpat0apa7omIy2GEjCLhnetx/8zbnOlB6x1TkxI2K4TDnQZ5DljPwntd7nuCORwoIHUz8EV3l+GwIpyNJ2lT8zUsRf3o/4Ov3C7Yrydmgz1atjYnW+GfTuzwRWroLES+KI26pkuN6DTfp88JzLf69v/m3SP52yt7ed3n562/w1f9pwIt3Cqa/b3jut1oszj9g8GBKPRJsRiHrn7iAzQaMepak4Ui0AyupJIRoQtlge1hRKENRxtx40GIxytm4fAZZjBBiSiAc0mZk6ZTD2inmtEI4mAx3efDgGvu7fX7+uXXWFkvs7SNefFCi1jv81CfOEkaX+MN//i2ePrNGrfPTyPgl7t/5U179+oTLl2OK9uf5ziuCk/GUubltZHoT70eYqWe4a5gIOJp6Bj3HYmlptEI+9zc+TrNzgTw3jLIBlbV0Wp4g28YT4GREv+hjqgOaEpqdFQIVoaTEI7DW4TEo5bFpH+RDXbyYGf69MOiaJAgTxkf75HmFrCuiKMLb92lFaZbz0p98k1MXnuT8R3+KMCt5491tTi4tkab7jMKKpCbo2jpFFHJz8irTf/QOO8rTONVl6ewcm42SX/6ra+xcnzA6HiP2J3Q3ayxcbnC0O+bVG2NGomB+nBFlljiGlWc1CycDzlaGxGtUM+HmvYrX35ygWy0Gieb8U4uUx5Z8KChkjCXlo+ciVj+7xNqpSywtXKQehUgxwvhjTFHRndfEwQFaSYRIECQI0cb7FsIlSN1CquAvdAN93Bg8evDv36w/2Bg8et6fbR4eP1OAtZaiKH+k2XCAfPgSKQRKCkxRPTQYP5T8PPYV+Jl23r3vMZj5U+TjDcMjs/LsbeWMcMRD7KmfFf7yz1b6j/wJzEhGj4LF8LM1hH/sYv7JPTwOITRBENButVnfXOfs+TMzIlNp6R3fZcMvE+sIrTyF9EweQHNF0DgRkNkaVa9AiJRAN3FakZqCVjKTiJSlIIxCnPQkDUNEiFYBqIBUVRz1B7y+M0Yd3GU+TDhRX0Daipu7I54YSFw1QSpDoxaTZwV5f8j51WVKqdibSDY7kqgdM+nOs59sIUyT7fe2aUYxV7ND9DSjaS2H2ZAHb73HuUXNyOaYMEXqKcN+xnu9Q4TdY8d5IlGh8ASzTwt9Z9kIDZ+f00w6NRqrTT71kSb3Frp8/+V9HowTLnUM9cVTjNUCB6M7bDQK4o0O36nuctxeZhgbQj/giScW+PQn/jqf/8iIXv8bvPEv3+bWq4e8/HaPSTrh0i+fIgrvovWUbj2gMT9H8+TT+OKYfOqJmxkSjxcRTkgkCYoukyxFhp5pFnE0DmkFls5SDV/lIAqUsEhXUXlHGrSpSYHwkE336B/fx5UZFzY3aDZK7MEur/ZKNrY2WFk8TVW2uHXtXZqNJaQ+h+AH7O72mQ6mzC+vYcLPcPd+yEL3kEDfRJg9vDvGlpZ8lFMGdcZpTHbvderNNs3OFovntpCqS1Xl5JVDSkEYlEg3xXsFUjAtpigcodLoIAGCmS1Z/Fil+/+t48d6hyrdJduT2Kln0dUYF9u0JnB/soczUxYTxeWLq1x5r49nTCOG2/0cP/WEueDF3hGnz8Lqz7d48mc15g8loz3DYh26NcOhd0zulrRDR30F1hbhwockK02B9Z6VBcm1A3j3uufermN/QZO0A2pNwWjb0Q0cW3OCE6cUJ1frLDQlS6uLxLHE2AekB/cwNiMUlvm1VRq1gDiICPUSQXwWZJvS7GGM4Sgfc2Onz3u3j9neTZkUjlonJowlxdSQjgx57nChRicBZeVmWnutiBshtVqIKQzaQ6QlSgnCuYR6q8b4cDLLH7AGZXMCHLYoGU0L2qfqeByFmK2ERVkSBQJhBWUeETcijPIzfJUx5JMMN5lyvHeMikJ0GACe0hlGkym727uYyZRIKUqvMf5hOqRQuHxCFMQkcYCKJM55KiRxskyYJLRUSDFMsUWFLHMKU1KmKeXEkwclMowIYo3TjlOXt5ju9cjLCpeDMTOKRVpUEEkm5iGNSCicEHjjZpHjgWQ8nQXOZWWFQyKFwBQFSgcEQUQpFJWpkHmKiVrEypCVFY1WExVE5B6EKzh1egu8ZFoWFKVCBwLlNINMYAY9GvUWgYxwLsB5Rb0TEYQBUZKQT3PSokTGilYzBC0wPsTHgjjWBIEkiELieoKQAlN63vjSNuFwkxNPLTK/vkCMYCFw7O0Y2lsS1ZC0VussDZdxXmEnMbuDjPZih9D0ETYjXk8Y7oxxcZfWyjxhWhBGEfF8Qh4IBofXWV96igdXb2Pv32RNhTSXT7HSWkAsbqCqlFB6vHBMbclUO+xBxakLiuPXLEkKDSGZa9Wplp9m4N/ieGcesTAhcgMa4oj+2OJEwho5WE+ezshMl7qKYEtzZTdivDPhYFzRLwzDalY8qIfm18QKXrOCq4UjSh1vpY5f7AbEJ2u8spdzVFjG+YREHrCSJBRxxY2FkNcODHf2+8wvV/z2b2xysR2y871XePZnf53u5fMszv+QC2e/wfe/8i4HV0uSWyUrlwOiT26RJx3e+VdXkaJL7+42dDSh1FTTaia9aAjSPKBMoUaHUi6TuxZJkNGtrTEoHcG0oFOPiGsxufNs7x2wsJ7QCKFMJ1x57xb3b9zg+S3H1pYnigRv3itYOhGw8uQF5hc+TO/wPW6+eZ9f+JV/myDZp6zuUaUT1NDiY0ExNdT7N6mfLYm7BiFSfGZJC8/NbXj7jmdYSOY3Iy5dSBA6or6wxmHvLqOJwrmEJOngk0Vsdgvb2GA8HYH31JSkFnVIwi5SRgB4W82IRNYgMMhIUBUW84hnLz3GlXjpqGyJV45SVuTOzAYb7v3iriwL9nd32DqxTs3M88dff5H1xWXCtQajSY/DXp/EKM63uuD36bTgnaM+SdNT3D6gfxSyfEJz+fIC9fYcV752j5qGxbqmEaUMyJDKsd52dKRheSFgaTmkWZ9Nx5v1Btd7nvs3c/b7nmG7SVhr0kwU/Xs58zXJ2pKiczKkWW/QjDXd+Q3AIc0NysrgfYaSAc3OR9FqgpIhSrURsolH4fwE5yCMn0CINhDg/Mxc/H82jftzZULvf/Nhsfx/5bWPJvMOa8wsa0DOKnL3sGi35pHkxz2WCT1+dCCEnW0SEA+DzHi/gOcDNkYpHjcVj5qSRwSU2QbAP/YuSKkeok0fSY5m/oRHSNMPxqr9ZLcGs0NKSRAE/MZv/iZf/OJvoZTClJZrX9vhyvYNLoUfIqwFBEIQCc9o7KgvaVQiqHeT2TTbF1AGDMYFjW4DmQ0JQ4gCRTmtcGFMkASQGVSkEFrDyJMd95CdLQ7SW9x/81V2hlN2BiOk1Hz+0y8gipKpyVCyA4FGJgmDUUGtUaKKkMhCLZRE9Tp5d4mhOaQ6rhG2MmKGeDskKzx4xYqssK6iygVdJdg8EXB2M2DrIGF6p8duL+dwVDIuzezvwJUIU1JFipergPC4oraXsTIX89R6nY++MMeVt3rsTqf09B41UdJuNDCNjN2lmFffnTA43ObcxTk++ZGTLNcjBjevsPnkZ6m35mj86kXOPfEGu1evkT6YEu+OaW3EbH34Q/j4OmbUA1qk/TtQb+JsCabCS4HTGmcTbOWJxQKZ7+CFJlKOJIhIDQSloZ5ECB1QFIYyN9QamlBBVeTcunUVVe2xthDQ7oBSgu39MeubcywuXCIKu0yG9zi4e5/zX/h1hDjAmj3I+ojC47XGGU0wfYdg3aHCCbgR3hZUlaHXt9zfm2ClYm6pTqeToEJHkHSYTHbIS4kUMVHUBKFxbogPupRlifQWrTRKRqgPbApmKN7/DxiSG2GGKY442J0QhjFMjxgOPFU2oihzZKFpA/d9wc99LOTSCwF9lSOlwVWe6/dL3nvT8SD0nHguotYSDHc9SQ2evKj43ldKdArPPA9nluHkCmw+KXA5THYFO1bwRgVXUse4DNDnlwiPjsinnosLsLkoWZ0XnOgK1uYkQRQwtQWDqkJTkEQWGcZEskt77jSB7iCcJB1W3L12n+vpEXvTY0TkOT48Zm/3mKOjKVXhqFJD3IzxwpMNDJPMYw1IBaL0RLUAzMzwF2iJrCyiMIgoxBZgpUUIj7OCylgq63AOfJojtUU5iXGa7LhPicVYT+UsIq/wocSKAGtnuFHpZ/In7y229KRZjrUSrWKcFFhnwHsCHId7PbT1BEEDKQOKymKrnFoSoEVIQysCJVFihsFTKqRydTAltTDBqIogjIiaDRgfQVlQpB4vJ0RJRa0eUqtFCB3j05CGbGAyw2QwJZ3mSKWwSCoh0RqUDPFO4bUmCmeaWSX149W0sdVDkxwI5yitweuIKIqIggjrHAJDrRGS1JtUhaFIU+IopLm8THeakg0AACAASURBVDrOMEWJswbnDIV1ZEZA7phfSghCSWorbAGlSUhaMUlDko9KTJYT1SOimkaFCqk00guiSKGlJAjUbG1vPdXQkN7fY2P5BCdPr9HsJoSRoN0UvHdUYkRAlAiCJCJI5oi7mv67febWGySJRhYeZ2NcTeIXY5r1OjXVIIxKolgR1zUtFTDJexxc32d18xTNsqCY9jHbDl3VeGN3xFJoOdkwYEosis5CyPDAcTwWtNcU9ZZEGIiVprm2iRjuUg4Nh1XFQlVRUznbwxSnBd5V9FKBdwYlDD3j0YHk/EKX7lJIv6joDQ2DY8PxOGfXGj4We07OKVwp2BtL7kwEVweGBMvFRsC5RHHXe3p2JnUpK824IdhebLN/OKDSjtUTLT798Us0B3d59bXbfNN/jyde+AQntz5Nt9shDr7CG19+G1VokqhD4/QW43LM9W/f4N5dyVxjg9DfoSoLcBIjBLpQ+KKOH2niegdRKPLxFKk1U7EP0xUILZUoyUpDVlQUdOjUA5T03Lx5ld6tm7SqnK2tRWrdDtPte7w9NTx14tOcOvkpVNhiZP4UmXm6SxeR+h7ltE+eGqpSIBpt0uu3WFz0JM0MdIavHGUK71yx7PfA5YK1lZATJ2MWlhJyWjgP4/GIfOqIoxqRqLDjETJsgBAYs0c9WqRZWyCOF1Aqnn1mbIqzZoYSFrMpaGVznDNIQEoPwmG8wVj3PvjCWJyxWCN4mDEMgPeWaTrl7p1bVOmYctrDNhKysSFPU0JnQTh6aswzzzc58USNhfKIRlyS5paD3oT7NwzCW5Y353lXCgSWRizo1BR/ei8lmTo+9mzAck2yuKhpdgK88ZRjz7FTXLeWvcJRBl3U8jJBekRRGE7PhSzNSeYailaiaSQaqWJKNyV3UxJmKFQhE7TqEMULQAdJQjFNGU77jIxmYX6dRlwHFtjZ3yWOEhbmlh8Wyo9K3b/YzffPMyD/OMeMUjLDRkv/gYRi//5k3nsemxH9QzrVTG8kH/sJ3AfikX9E8vSBRNX3zcV/5rkPyU0f9F+8b2QWj5sCKeVjCdL/HzoDJdVj/8iJExtsnNigd3TE7/3el7n50gGHxREyEYSxRmuBDTyHA4uTGqUEMggJkhpCa4rDnNp8RBwpkDXQAqtnsI4w0IQyQAYVUgpk6NGxoCgL+g9G9LKCdhjRDCRtJSmF4vf+8Ku4fMozzz5HGJxjMJrwYHuXsqiQSZf5RUEcCoyYAUDaCx1UmZJPLBMBbQ25zRiPMoxPcFXO0VAjjSGXFTYGWdecP7FAslTjcJRydFQwGuQMpxnjKuViWLKxmFCliqOhZjL13DuoqMi4sJSwtVRj93hCYVNkMcOSZh3JwcI8u9mQeithfWORc2c20Okh23fu8ZZ/kzPnn2Vx82M0Ol2a3Ro7P3gbioAw7LC0vsCol3KQThkONLVoE+UnOKdneR0+RIgQb5r4XBPEXSapw5UVSEXhJ1A1EHp27cN4KguWiDhQSDx7e/ewg33abWh3O+ioTjXa5m5hubz4URqNi1R2RGknyErQ6pwEHmDNFFOVOBuDrFEd3aHREshgBCLDO0uRWQ72CyZTkNYzvxzTma+RxAlORjjvKIoptnIEkUM4i6s0UkU4PM4NiIMuWicoFc8aAg94A8R/6RCAH6s5SAIPomCcj+jYEZiC3emEtjRUOHbHKZMsRZ/S/MxfW+XSZxxBbYSzGZOh5epVx/+wB999qeDzJwNUDDIR+EBw6qLm4K5DH8LSr0meeQZWQkE68ow1qIbgWgp3ChgHNXSnTUyDVr5P4OAzz4ecWpXUQklNSWxuGFaSw7SHr8NyR7PSaZM0z+LdMpNsnp39kPGg5PDeLlffep3v9uC+0QT1gPJggp/mhBLqTY2pPKuNgCJzpCkUFUgkyitsKajP1QmdwBuLtBabVnjj8KEgG1d4MdORmmLG2TbGgtbk0wohLJGSIDXjvQNsGNNI4hmFghKngFjj85KWcEhj0DjMozWuE+ggQmlNJSxOgFISFSjyvMJbQU15wkghpccbRxSqmTmqynGVAa3QYUQUxRztjsjLgrgR4CuHFIIoUDNMaV5gSwFlAcqgY0NTa7LC02xExPUu+SgDA8IJ4lCRM7twJloiCPGo2ZjLWfJqRipSSqPVrHhIqxKlYpT1eGeIAk891tSSmDxN8d7SrtXw4YwEk6UTJAkTa3AqwM1schhjGOcleE1ETNhqo0ONzEqM8YyGOXGsSCKHkBAqUN5hjSfQCh1rQCLVTMstlUICrnRUg4LV01Brr7NwboEokQSJJOnAeK/AuAQVKsI4REcNdBwSNlM6m3V84XAuwlpLVY4JT3Rohw1CH5DEEXFdEIYCmQT4wHP9W9/j/K//NO2aJD3YJzu4hVVz3N7dJ1pqzlCxtkJqz0I3wmfwzh2LPq2ZBoIg99SFZGmpQ6SfIN29yjB1BEqCdeTTEhEPGBU5eRlSF4aJt+yNwfXguS3N5mbMchIhc4kZekbjjJcPRvxKR3B2SaKE4nYa8OpAsbtf8J1RhhsWnIglc06Q5x6H5fYk42Kk8Z0GLhizmGievbTIifXTbO+8zTERd3/4LtSXCeo/RWvhs1z8nKEYjzh+o08lu3Tqp1icK5CNP+HOTsz8x89QHe1QInBaYYRCpCGiiFG+hR9pTGkwWUFlHX3TY64E6hZDxSRzTKaCuLlAEEJe5Lz51mvE4z3OLzdpznWQ9dO8/dY75HPzzK39LO32hzkav8eN/Qnnzi8ShxHe9ZkOMqYjgU4USjVR4xHts3OoYIrJJ9jUcbDt+eEbnk5TcHJdsnQypLsQIWSNUpwg7fexVYc4MDTikkin+DLHNtcBQy2saDQa1GpLaDWjWzg3MxxbY3mUbWWdocgniIdbHkkB0mKFJ80zZBAiqfC6BAVeShDvJyQLPGVVcvP2bQ72d1nutjHOMDUpXli6iUTHnuik5+lfOMfy+YckJDdmOim4e7vk298cc+XNHp/f7BJ1FC5wyFBRq8XcvpFSO4Jf/ULEqbYkEIKytJQCZBSyWwgOncQkS4RqgdgmNOw22sNHLjdIohk8QiJwpqJwikmxg6gJwnqbRryA0hvglyiNIE0TslRyvL/L9uE9jkzAs0+eoBEJ0sk17uxc5+TaKRbmVt4n8fy/dHywIH9MEHqEIn30qB4V7v7x15xwHzzLw0fxo/9/1Gw8bAwemY5n2wb/I+d89LXZ6R6dW4KYyZt+tDD5ye8O5MO0aCEl9+7d5ZVXvsfR4RH/7T/8r6mmJSc3TiGD2dBEaYEKPelRiRMhgRIorVA6Ai2RYUlnIcIVDsImzs0a5aATEcqQQGpUrBHaoRSEscAHnluvvUtQV7QXF5jrtmk1+1x7cMQ//ae/S5WO8c5RViXOQzYZkzfa4BdoJoISEA5aoWJlvk6UrjDZ2yWVmsgKyrKinEzwMmOUTsiyOh2ZcewcWV8gFZze1LRXG5w/UedCFmDGhv5oxPbwmI91YHFR403IneOY7QPH4eGEK/0edTFgfjGhUQlS7zBVxs5RymatBu02xjlOn2xy7vQy9foco8EtxkTs3r1Bq3uCheUNguZzLF2MZnXmzQFOdEjiVZJ6DxcdMhjH1OfOYYfvYrSeyWp8gvIJmBqSFj71uKrCGUuFxbuUugFf81gqqtJhnCKMaigFlTXcvvMOq4Gn22oRJvN42WH77hVMd5lG8+PooMEgGzDMK5ZXlmeGfzcgTy3GKWQQIgghPyZemgN/iDMpVW4Z9S37O4ZaHLC4mNBeTgjDCEcDK+aoshHetQiVJdAVEof3IU61ETgCVRGECUrVZ8hWANz/Y5eoH6s5GA5LFmsR6/MSZz21+Zj6YEBpDJk3ZM5QzAX81t89xUe+cBbBDbzPcbZCtz1PPan4d/+TiCt/b8rbb+QEkWP+lMAFsGMltgBnoT4v6GwKykN45TuOxfOCjXOa4wcKWwmUWYXpCtH3vk14QfO5zwQ8dVnSCCWiFGgn2CscV0c5F89rNudCGmEXIS5Sul9gMi54+fsv8dU/eJ2r13ocDismSmCdJFjpYg8OcGmFkp6kqcBGVFZwtD3FGEGZOpSd6T51GFKFAaoRUW+EuDynGEypxtWMEDGtKCuDVAJnAetpdyJ8EaBqMeWooCg9lYE4EoyzinrSwEuFcyWTcUVWFNQXoN9PidohtixnpjEv8E7QTFqkkx7CTBFaU481SRRgvSRoNJgMRoiiIKhFhJHEVZJKKJrdNqOdMeUkhyAh1HXCQLL97lskJ5cRlUZMc0wxJS1HTPoZxSAl0g3mOjVqzYAg9FR2ylytjvMNKgGjrMQ6SafeAlfN1t0ypFGvYypHmZe4qiKzMKkEwiuaOiTQIZVzlG5EiGBclrTbMZHKUVUfS05TCPLM4fSYyWjMNLcU1lEOK+TBAe2oTSgcqYMiLwlNRRA3UUEbGzaoL8QkeUExKplmhrQ/wZeapNtkrlmjTA3p2CC7/iHibGbgU4FEB7Mk0Co3+Krk8m88gZIaFSiCWM5M1Q3JYG/CeL9OZ0nRXlD4zZh7dyQrHz/P+N5N4rCFUwHWG1pW4qIGNV1HNQJkBLouiBpgzZR2O+HNG2/w4kstLj+zyGI7pQj2aMeSC6carCQxjVgglcCLWQjM4omQJ1PHV28aiAQnFwWrDei2Awq9wfDmq8w1DVnuyHoVNWXw44yJq6hJiVSCSgiEVGx4eOnGHt+8mnF5IeHceoOLWw0+/XyX+rdyevUao/0R6+c1Gx+OOVvXDN5o8PvXIt698y67oiIIIPACvOE7ecXlnuW8Lnkvtqw2BR9bc1gR891vbfPa07/Ab557noM7O3zt69/m6V/8FM/P/ya1jw/51rd+j61Rjba7iKt3SDa+hWpt0Kj2GachpQ7xGIQPcFWCywVibpPBmwdk9S3kwknye4csJReR2nE0mrIczm4uoyri7KKimpYc9R9w5/57XO7C+hNrhC7EiIv8k3/9L/i7//HnOb2+CRgOj4/5+jen/P3feQohrlFOrrBzo8ekp7h0SWF2xpz+1M9QjF6iTI8gyznes3z/FYOxsLQqWdnQBAGgQky0Suafxt55mWR19vkSVFgfEc6doeAe0iqW5j5OFC4ihce7DITEljlVWVKV+cOC0uCKdHZB9QVVVWB8jqdEKEdZDJCihsmOcMpjrMcag7Wjx9d7Zz14S+U9kzyn7FnK7V2MWWKpHtAXhvVLy3z6b3yEE+e3gOvgE7zIaTQEp87XUHMtrvzve9y4fczS+YAi87hQkQlJNjKY0pM0FEk74Hi3oNcvaM7XaHdjBiZClSDFh9G9Hsn2t0lOtXn+uSYLiwpnQDmJc5JpZTgqp6wtR7STGoE6iecy1p6hyB27eze4cX2fW3f22B4NmBhDo96l1rzN1Xfe4sata5zd3GKhvTzrrAT8RW69Pw7l6N98PA4LeFzse+Ef6vtn+TDvF+Ae7+z77/M4A088biZ+9P0fCYrepx69bzy2hEHAo3yEx+d/tKn4QK6B9w91+QjEQ/PyB/GoP+n9wSMPhxSCr371D/jKV36fyWSCeUghvLt/m7SYzLDAGlQA44OUYlwjmFfU2wrhBelU0tiapxr0CcM6VoD2cmYcVwFahohIzoZS0SyUU2qI65IrP7zNhz71PHeOtqmplMPeHt/+k5fxQhFIwYsv/jGv/eD7fPIzP8Pnv/DLVJXFO8ndQ0c/9izWBU0l6DQ0mWwyHN8kjHIOjsfocUZNVDDuMy7H1FUfryWVCIiFpm4s33v3AeKtMc+fWWJ9o8vqZoclUaN7M2ecNEh3dpm73GLzcsxWFTB+MM87d89w851/zbE0yCaEleU4m3LlaMRJSjaDklbdcHa+4kQLysJx970dbp76eT63fIZbd+4wMrC2sUE3eZ5gy3PnlX/OyTIhYhPRMATzGTJeJDID0rKOk8Vs00Udb+t4A6K2yfTmffzSGZyoYTNLLegipGecF3SDiNQFODRxIDCVYZwN2T28yamzi/wf1L13kKVrXt/3ecIbT+rTcXry3Dvhxr1772Z2YQPLErxbZBCyXSYIJJBLUOU/7CpctkuFbEtllapkqeySbKtAiJJZBAhhL3gvu1uwsPnmHCb1TE/n0ye96Un+4+3puSvh8tqAgOePqemec073vOe8z/ML39/n21mMkCGlMCt86ZmK7//RT5CnPUyo2dqdcn3L8tH3XSL4O7jmKqM7DXGck/UiKCsWLjyGrX4PHbbxzZzRbsHOVkUIgt5CQm+p296JMsfJUzTuFG70OvFCpzWN8xWoITLqYzlAhohOfgEpNAJ3dJ8J8B6pB/9e0MHfUHKwF1LOpF3yvGJj44BIzPnEYznP3ppz86DdYB54YsDf+q4nQDxPCNsQCji64fJOxAP3ZXz0pyxP/s8Vbu5ZuSBZeliy3QhEDKGCM7lmIVdcjx0veMe7vwJyGEhHEu0TxNYdxLWr9N/bJR1avvU9ApEoRCMRWrCP5PmB5T0XM04mEYoM17yd7Z0L/Jvf+rv88r/aopoZTnU0DoFY0uTnuqSP38fsyzuUr9UE4xF5e6PbyhMnMbKi1d8jiDOFijVlaUkUzEceM2tI40CsJSGRRIlksl8xmxjCER86UoIslUCEnRt0HBOlCqUjkjhGNB4qS1ga0um2xhtpHBFkwFWGw4MZOkmQKkYpgdaBwjjW1/rMqylpv4dHUZQNhS0xQtLM5/R6aVtNbzzWBnTk6HQjxiahGY8pqgrGju6pLlsvvMj6wjqmuI10rUGcUYoqaOh2iYVm67Cir2NyFVPtTUmzkljk7G5uE4xGqwjjPNM6cHJxlUgG8kThtWXuG8alR+uEnvJMpjWhEQRrEd4ziBRr66e5M23oxoLEVTSzKePZFoO0g8+HTDOPqWZ0oohBHFFODFmnQ42nEobZfE6epZxYXmGh06GiA7EmSgUqidsNcWbRwxwr2ooCOGTkSbUkGMfUOIZDiY7iY0qIDwEhA+lSBolCa9V2FiKFTATREC5heObXDxEMuO/tCQunNUlPsrMXWDv3IKYyUBpkCIjeEipV2KbtRCVdTTwQoCxu7ti3I2SSsXHzOpXfo78QYQvoJTWr12/QPXOSNMuwMsdEAjev6Q5jeqcU37Mm2NnyXL3u+L0tw4X7c3YHgubmCSbXX0JXIxZDyox9FCUTI1nuCyJrSUwg14L9SPAdmWCjjLi5V3Fjp+ILL44YLqX82KUT/Pas4Jktw/SVKWsy8L6Tku/+UMyH7/N8+PSAJ1+bMCscBMWdWbuR/WLp+fhBl7OnZjx2RnH/ao/5uOGPbhjSCzEsL+BvHeC3rxJufpZo5a9z8fJ/QdL7CnvjNbrjAZ31M3z/j/4sG09+iv3edbpnTzK5ETD7E7qLOZ1GYvPvpHz5ObLuZRLbZ3Z9m11yHuj0uGav8gSHmOYsc5kTZIVSnqQT8S+e/DRLcsTpHOLueTjxQT77j/4+T3znJVYufAyVnmJrtsHO5DrfcuFtrJz/acr5v+TOC9scvjlDqBR/dpV0HmHETeSswNaWrVuOV151bOzB931MsW8EzT7o1VVE/zLz5iy7WxusXvwWBuEmjdnCiASvExJzyNpyDy0VOlLtECka0ARnsM7hvCV4Q11M8LYiTWOyTGObQN1MMdUc0xiCNeSJo8CS5Zr53GGrGqylE9+L7qTWxFqiBCgB3jUo6Xn91ja9R08hMsXi+hLvu3QFeAO4TmD/SLaSkCU91lcz3vn+KV/4nW2GXc/JKxmd9YRCKGQWaMaB5XiI0po9NeF2NeG+mxUh7hLNFabsYq99lkxC/ugFkm7FpbMKJxK0Byc0MxkYdSxnVxboyQjcAOcfZ3e34OWXf4UvP73P/u42Fxd7HIgUO4i4cvkhPvr4f4Cq4Jd/8Z+idcJ3fui7eeJt72g19n+e2J2jH90WgNr3Q6m3+AvQGjm1DxV4dxTkC/5Y7vm/bYJ21yzvriv0PQO1cC8JOBZVtV2EwB/HVL9nxHR8uf6S44qkkjjvUFpjncM0zbGrNrRV5jo0OOGII41OIC/HvP4HCQ9+uEvWU3QWJUlHUBSB7tIqrnFExoMSiLgt5DgHeNC5QsWthM85z8QVJN0Ov/q//yKXHznHcDBgb6diVhq8K9CRRhWaNO/w3LPPsHHzJtPplG//xA/wvvd/C00l2Nj1lDZwYiVmoiLs9pCDW1dZtAoZJJUbI8WMSe1YW5HI6ZSBkNhY0SSCb+1GbM1SXnxjjzdf36OzkLC+3ufxk2d5dj7h6Wtzyi9tc3koeOyBhPsfynjwvOfBUxf5ynOvEWUpVRUz37WUaD55p+J7xj3e+44eV+5boJtlHM4tr23VJOua0O8QagmHmzAEvfw2Fhc/isx/n+l8Ad+PWT39AP3egPnNVyiSm0SrjzC7/TRSK+IoJ4QOXn8Qu/Ua6fBRyjnMbMVc56zGMXt+n4uUVLaPDQEpPUIFhBZ8/voLnO96ujqgOw9QVym3n/0cl97/GGnvEYJIGBebpAoeWHsbef8J6vqrTG7fwY7n6OEa9FZRIcazjWgKnKvZ367Z2WmwLnDlck5pBWZiSIaX8PoSVdOlqOZ0lt6OZAfrdnEstN0lHGmSooQ8RgSHII/vfxUt/D99hP/U1zeUHJTzA4oK0tjRXY5YkBHDRcmS8JQ5XHgk56/85HmgBmqsc3gnCaEl1NReoELDj78j4bUTDa+86Nnf9Jze8XzzguWfZOAcpAbu1IKnDyVvvgzT1wPf+wPwTBQxeqNi83ZDUgUuDhz/4ScU/cWonUsQgS1n2Wws71hTnIkcoUopJymf/8wX+K3/41/zhomxOqKJBbdyzfLjPd73WIdzi5ovf3WPL//BNZzx6FgSaVBSgFSYINifeoIXdBcSsq5u3TSloTqYI/OY+QxKKVoaRhDMqpb9rGNJS5yTuCAZj6DbgcpYlIfOIG4dmWcVrvEkaU5XWDpLXaI4wjUeMy0pgqXvGvysIU4j4ixGRQn9YcrSoMeNjYSmaMBVqOCJVYQIcP78BeI0IkkirAtYImwxZX71FXypKJzBS0McHKGo+c4f+HZGdUIeLzAaTTiczjDOk66uceZkl8mdXfpojINy2uCawPbOLmcvnaVsjkykdEKSdVhYWkUYz7woKBuLq2usaZAioKWkNp6lLKIxFbUHpWNk0qHB0c/bA21eVlhrUVkX0clYW+7RBE1RaUIQeOWxsSFM7lCkA+bzGdZW1LVjPElJe12sVJSjA6bxAniPsw6VZYRIk8Vt9Szq5DjrKOcVumkYrvTRsUYJ2dIqgOADkkA0iJG6pcNI3XYVEG2l78G/cYI7v7FFeRhhS42MJdmq4vQARtcD+aKm6qWUxpNrj7KBbFGjepokF0Q64BuJKzzN5JBuP+HCfRfo9XKCCNiOYLk/YFYrZjYlFI6eLugqQawVaTDMJ56Z04hUsrQa8LXn3FBxekGyfeIC7k7OQVFQmRFLdcONIvDOVXh+p0ZHsJRCKgI7U8FeN+HkucDqocMZSSU0h1bxK9d2+MkHc/76h76NzcM3eGnjBq/eLvmnn6v5thMgluY88fYVDnYN27tzmtzSHMDcC37zcxv8tZ96G4+/DaZyF1de5Z3f+xHGX3uR1eq9DC+tcztsc+ePXmHvCYfD8fAP/iT1pqXZCiwsNXxJDjmMznJxCBMfUbo50h6ibAKnvgm5v4d1S4ytZ84YHRT5/CR785K4mHB4oocPGc1c4KvAQpryqReeonrmBg/d1+H0hRM4k7P7R59hd/UxPvzx7yTpX8Yjub65z1M3HO/91h/m+Zd/k/58gz0L3Xeso1zg9nXDw+9/B+Xseez1gldvGLZuOVTt+KZHBPs3PP0TEcmFR9mb3sf2rR7ztODcWsWQ10nEHVzah7iDjD0ymRHJiLzzONAaBBIUwdfgSgiOZr6POUIIS+Uw1ZjG1jQOpo3DhxgnPLWbMp3PCVEgzzVJoglSYa1lZszxfl8UJY2SZKkmTdpgKdKSIODVm3tcemiVxeUuYIC6JSH5BFA4FA5Pqko+8fga154+4NZGSbJdce50ydllTX8gME1A1LBlIm4cSq5ddRQjww8/Cs8WKQfzHUaThhOdiPsGlieuZERxijCOChiZAictpzoxA1XjbU4zz3j2i7/O7VHGWC5TIajjjJt5hxOPLvGB81e4uPQIoRT843/yj9BC8z/+nX/IibV1tPqzp3/8v623zgsc5wPHHgRtVRvVUqnuBu93B4q9D0fPOY7Wj19XCI6xpncbI0rKlnJ1d55A3kOh3sWfCgRSveX7d19PCsKRO/LxyMJf7twAKSVKKYpijpLq67Cud6VUeSclzWMApvWUn/3kf0JVBH7pwj/j8gOXEFqiu5J+CuUokPYkpWnfJy0C+ECUgMo1USQQBFwDrnYUBwd84au/zcLCgDdefJX5fI6xhk6nw/7+HmVV4ZxHaY13jqqc89DDj/DGq6/y3ve9n6Alg25gwUM/F0QusL24RH3dsVXt0i130dMJ+7Oax8+kPPXKHovLEQupRRjP/ixivLDI2iXP4laFJ6aUOfPC89St23zzxT4f/on/iL29z3Nz6xa39ubsfu2QK2sgFhQPv+cJxrf2Gc8LRsIyv+XZdzGf/K03+emf+wjDwR512EPEa1x8zwcp3nyF/OGHOXPfCtPt15hubtJbfoQgJBc++FeZjzX9BUeda7ZFF6NXWU4llYuw4QViaxDpEqQPIcop3i1ReIMTc2IfEdUJ86pBm4r5MMMFRVUbOnHbDXttexN/Y5uz51fIFs5hJiWzyZhq+CiXHn4I1ACCZ2N3TB0GnDy1xs7eCyT1PoVK6F15mHpaUpQRwxP3YZs3cPtjNvdKyp0JWe7or0SUBxXJYAG98lHG09PMQoSIavrdiozbKLYJ0SqxShDKIbVByw5KrQEVgfzoI6iQMv1jP7t/Vusb2hHXl1IWFxIm45pZqLl0psukaigJLN6fcvaxzaI6DQAAIABJREFUAYtLnVbbGjyBFOPAOE/pYFx6VONQQvKO9ypGu579m57yZU/uPVq0um976JltGKaveqpnIUmht5SgiwSzX+N2HCtriu/6kOL+oSCg2J1YXqmgiiSPrCScyQK2sITdiqc+N+X3n015rl6lPhyRDSQPPbxA9tCQaNnREwXNS3Ne+vUZvnEoyVEFICbrxCRRRJxopoc1nUFMnEZ4L7DW0ThBNMgQjcV6hz1yKE6ziF4H5iNB42i9DwYZaZpQ7BYENFE3wptAOW0oXIVvAnGicc6wKkA5Tz2fMy8alBM0TUDHEbawVFWrzXfBMCsMZlpw5+o2XmviLKKTJ/TT1gSodBphJQRPUzeUszkyWMrJnLy7hgmSECxBBUorGK70GRjFvGyIBhEdEmaHDa6cMR5LjKkpJlOs8SgBaSxZGmrM7JA00QzyDhJBVRtMMSa2goNpQ3AG5RyJCHRihcw7KKXB1OiqQoSA0BqjFIfjQ4aLfarDgsY0WNfgfUPW69IIzbSxNDIm78Ys5IpaWZrqEOsk/cVFvLVkiaLX6zDaP+DcxVVqJ9neGJMMOvSXegwGKUZH7Gzusn4iRUcKrWWrv807JHmMlgrh2hpZSw8JyCxqq0DyiNyhAHl0QAYYXEn55p84SX1o2d9pWDyXEHcEUSYYXgiU80CSCnq5ghBwJtBZUKhYcPdsLuaGZ794hzQ9x5mTPXpdgfcNaaI5f3aFPO9z6uQSmRD0o4hgHePRhGGeY4VCeRATg4pj4kjineAPP1fyPX+1y4fevc6nXoBRUbEYO4YdQUgUz+157htIxiZwUHkSAvcngZFt2HrNM+goeolkMbJcjGu+smP5+1+e8KPNG6w/+CjvffgMD5/8Q3aE5dYdh9u2nF6dcKYH53sZ251lfvu1V7BOMJ7vU9/cIX3beZYfOc14EvHZTz7Jz/yVAf3eHar8HMl4jb03X0GbXcp4QL/XIR0c4JRlt044F63gLryDEOWE2TbW95mVOXs3A287eYqd25tkeh0vuhRWMGlqDg9fZKXzHoLtIuU6ptZkkac/SLhVlNy4+hTpskKJM2BX2J9Inru2z+ADP8yJ/ipKjNi4fZONSY1cejdXFnNG4nE6+Q4ZKZFyRKrLyZWURL7E1iu3efXZglBa+oNAvqZYORmBzIlPfiu3DmBjVKI44PJCzaIO6KVlkuwxrDiNE4tomZFFkiTpI+UQAnivcGaGMzWRjnCmxNkGL1SrdXCO4O2RNl1RNhZTz7FNSV01NEGRhQbrujTBUTsoS8Ph4VtkRd5hgieUrXGQjmRbqUskXgmeeNd9vO999yMwEByEAda1VJvKBhpjUKF1B37bo30ObjXU1yyzfkVfR2RC0Y0DrqipZM3s6oz6dUuyHJHkA/IwpNjcQBYNJ88kPHQhYpgpPBHTsuC213SihJUkpac8zhjCfM7Vr23y6ugsm2ONr/dYHA546MGTpKdXyHoKXd3ky3/wDF/8YsmdrQP+u//y77K2euI4MfiTdA3+NILjEEIbxBNQRxr4cAQ+CiHgCYjQyo1ajbw8/rlC3JsRaGlDR5X/AMG3XglfJ/25Kxm6G+C/RSIkpURKceSJwN0xhOP/Z/D+aOj6bjvi62VVfxlXHMVtn0S0tCchBWmW4l379zzvEEUt7vall1/i53/+59kb7+Fd4Of+87/Fe97zHj76bd/Gt3zog8gIUiEwDSQZSHWEsQ20M2X67nWEp556ln/xS/+Sz3/hiyipGB+OWiqeabDWYpsaddRxCCEwm80oy5LpZIK3jtp6/tO/8WOUQSC9ZDr23LrlOHtBcflsl5tfsOimJlaW3oJE5jEv3vY8dC5na2bYn0ImPetJxbg+YPcpz8JqQh6VrCQlBMX1OzW/uqv4vrDAwtmP0Mmfojz1GnNbM5oY/M6clZM7rA4bVtbXMD1B8/zTzOeCm1tvYrYvkKyfIOl3mGzNef73v8h3fHQFpQ5JlxaY7GiaaYFwJV7FZGlG1hSUBLyPWYj6TIZnQMaE6pAgTzCebZF4wTBeZD45JNJL+JDTeMesnjH1hs7yKXxIEAwwJtBJJUkkGFcle6MN0mGE8KcgLHAwnjAqIrJzb6Mbd4AZ+6NdZmKBTidnMUup5WniaMQiKVqmdIYrCBkQ/nWKnWtsXd9HhYp8RdMZ5OTdLogVVP8jHMwUB8WEXlYx1IZEKWS2gIoexLECIkdJjZYKKROESI8+Mx4pk/Z7/LvdwT/L9Q0lB500Is8kVS1YWsmRWYSMFWv3O5bOpVy61CdCUJkJBIuQGRaFDQ68IxaGce2wpefUCc3qwGG1J7KBL1y1RJng/h6c6EvGm4Hxc55YwHveI9FZzrUvlIyuGpIGTi4pLt8/JNYzJiPL1/YcWVdzua9YiSVRXTN/0/P8i4JPPW356qZm2iiyyHDfuYzBScP5kxUH04obL03Z+ErBbNcArY9Bm9GDdx4nPQLIMkVw7UYbJRqdaOxcUBUGGofQR2YbLlDODYqWTx31U5JEoyPdGqcYh+zFaBnQsTgi7ngCgryfkvdzYumpy4raudZwRsZIpZgdNkjj8MLhlMSpGFE3bOGZHRaILIE4JVU5XsQ084qmidH99MgcqUYFS7AWleQkiSZN2uHYJgTyKKYKislkwnw8R0sFxiJNazJVTed0khwGCeWkBGvJs5RBP2PnoCIR6qgVG6hrBz4iqC5NPUYJCUGCFqRZhJIekcfUtaAqS1QIxEIgnUHQoloFhiwSBBUTvCDtJEjZznvknRwU1M6Tdjs4ZUiSDuRdvKlJI0GUKISUNM0cF8cIG/ClRswiZCRIexGlU8xrgawDkWppElJptNKttla3DHEh2/mI4znwcFQ9Ozq8fQAvAjIRLJ2OqXPRdn0qS9JTiFiQLkqiXmgJFdHR4Gho3dWlaGMs23iKuWduJI9deYz+yR46sTSuIk0Fp08tIVWErwPjYkp/2GfQTVpzotpSTKcIq+lEEqEDxilmhaF2cALon8v5QkcwCRIhUgpdE9mKSIMPgg6tsZER0ISWcLOqoXCBwnhE8Mwby4VOWzP+4qsbDArJ6YsXOXXy+8kO/i+GnT38WcmNkeVcApdPxSysS97/6Dq/+7XbWO/50gu7XHz7ZR740AMgnuPMYM7BvuSiaojSkuVljb3vNG++8Sz3P/QhXD+j2hEoUxE1cxwxNsloqlV6wwvceHOP7du3WetpNCNK1WNcTFCDE0yrDrf2RhQ7G3RiSegEDscNK4saFUXMnedwXjE9rHjn8ion+hHVwYRZI+k9/AGWTqwhxSGNCbwyGWCSlHec6uEaw2SmSRceoaMtsr6KtPvgAle/usPo9RmVCaye0SysabrDDv3eOkaf4Pao5nAq6A8MS4s9Vlcuk8Y9ZGeI0qsolkB0UUTEyqNUiifFh5Y41tQVtjF4pXGmQkYxeI/3lhBafar1gaAA3yrFnQAhPUkWE+Fa6URVEbxHS4+SXxc5HlNprPcIL7HO01jQXrb3aHA0dooUFiH6eBQutPetFA21MbjGYeaSrlQMFPjg2akb8l7ClYGmn6Xsbk6odw2dXHL/lRzkkI1b28zvFCwnghMLHZYW1lBiTFWWvDkzLPcTFpOYTAaEKbD7ntsb8AdvGm7bBmMq+mrCyrKgtxizvHDI3mjCM09v8Przu2zcsSRpj/vO30+ko+Mq+Z9s/emUzu8mKN63/gR3g/dWGtRCIo6TACGPsal3CUP3fpVwPBcgjhIBpdSR30ErH+LoPW719v9WFyAcyYmOguW7v5u8WwwhHD/+62YP/pIuqeTRdZDkeU6eZyilGB2MQAiyLMN7z+c+9zl+9ZO/ygsvPk/TNIQAV2+8QdUUbO3e4eqNN/jxH/trRCnIuN1P73Z3jvJ1oE2wfuM3foNPfep3ee7ZF9gfbRMl+si8zhOCJ+DBcjwz4r3HNA1NCJRFiTEGIRVaBvqRYD4NjAvHrAz0BOihRmJJdBcpBphQopkSxYEgFH0E9XHs4pCiYSlRzCuLQnDo21jmRE9Qh4hnn3uW3sxy4vxF0u4ayfx5VHabcDLi9mHJuV6gvwrn+33e/cRFfvPTzzMzQ7709AYrF+/n3OqAPNtjuT9nNo1ZUY6Emv7igKZuOBxvsbB4Hp9ENARSZxDeEoTE6xhr+yT5Mrevv0wo58RaI0SBERllM0N2Vjicw2h8gBEFiW7P51lhWejGIBS1D5TWUpeWC/1Fsjyi3N3DyR752kk63Q5C1DgbuFn2GHRSFlOFd47aaKL0LLEsEc0tBNvYomCyvUu1t4eT0F/qk/RSkmyFKD6FlyuMC0fdQL/v6HcWydNeS5qLukg5ANFFkrTwEwFC6BbeAkiZI2X05+JC/o35HASBl5q0m5DHGicdaFg93+f0+Q6rixl4qOoGGxRxFFOGBONrrKtpnOfQQDN1aC1ZWJLUJyXdZYkpNEsnDGkZePn5wO6hZ/QmPHBR8K4Pa8ZecfOLFfMNyzCB1VOSQSehmI554arBJpL1zHMmcsS1xx46br4S+PTTga/sd9mtA8Os5J3vWUD2A40oObh5wMb1mtefq7jxssUHUJEgzSRRJNECtAjE0ZG8KFZUlSeipRl4AtYEmsq3rcKjG8y7gKlayZBXLRJTAM60kaB14JzHNQ6dSBQCrWOUFuTdjCxWhKahaSTmaEtwwaKEwBYGbwwBh4gVKlE0Vc2srAkuoIVEBoGzUJtAPSkICnLlsbZGCkeSKAIaW1t8U5N3M6xtkZdxnLJdevb3D2mmJbHUSBfAe4KQNI0nUzFCKpAN3rdYRCESisIQCUvlapxXhBC3kjIlibVC+PaAiuKYJM/aljQeIQJSSYIX7fOsQUWaZj4nmAop2murVISKBFEcEbuAl4HgwXmJyhKsa0krQrSD4kKBk4p4Icb7msY5hJBYp6FuSJwmxSJ1W20NSJBHVCKlQcjjA1WqdlBX0LbS/VEFRxxVg7w7qvZJEAoiKdBLGle3LtKCljqiE0WcCUS4Vw2M5FFi4APOeaqZZX5okFnM+Qvn6K50kbnEiQYtHXmusS5wsLWL8IF6rUYt9ojiiFlTcWfzgLnK6GUZkfHoSqCEIekqMuMY9iTrCx32sw4mWIxOGYiKlYFgOg90AwwjgZUwrgNKBOJIYn3AW5gcURPPJoJhFJhMp0xuv85hmtHLTzEPbyfvPsUwntIQKKvAuGo4ndZ83/d+gCef+zVsgJdvjXj9jsGxSJpHvO0hSblXIMprpIOIXsczHaZMd3aZnjPESY8mXWmrQKWjjDQQsVecoH/2HHX8BgfFNVQ5wYsMFha5urHFyW6M1YvUIWDLTXyIKeuAqGqESxEiovaendGM3CpOLcToJGNawDzqMLhwmeV8SsDw+ihnjwUW+innB4LxeEKeZbx2VeBqR6eeEdfb2KqieL3BBFg+n7B0UjMc9siyZaQ+w0EVcVhMWBieo7cAvYWIuHcC1DJS9ShsjBSSSAaksARf4mSOcQZna4Kt24FUETCuaAMaHbXdtzZKJGiNcQ6cQyuJsRIpNSJJUC4QeUthHHiLCKCVJM3i4/3+rlb9LhM/hIBzgcZ4UgcbN0a8+eYOS0srKKUQIsGJGOcLvC+w3jM3AVc3xFHM8lpKL/IEHbG/C2vrHfKy4o2XKt68XiHKwH3nM05e7HMwE9x84Q52VDO4mLIwjIlUSt3scXt/hopTFqOGrghIE7Bzw2jL8ZWrCa9WK4RmxqlFzflTA/IBWA7Z2djizTcPeOGZAzZvVqRZj4986KPHleA/eWLwp7nuDfjeMyi7Sy8K+OPZ5XDvsW8J1OVbo3zavUWoI0SpbLsC/uvQqPc6DHcxKCG0TBR53FVoX0sctRq+7jnH6y/SNfz/vsIRoSlLU975znfS7/X42lNfA+4lVZ///OfZvLPJZz7ze9R13c5siJYSdGdrk9F4xJ2tTVaWV/j4xz/eFqiCOE4MEEfX3Hs+/elP82v/6td46qmnaRqD9Q3CtuehsYYQjobOETjnjrtJdxM+5xxNU5OkGUIEskjQSQWdDJwPRASiWLDUz7FFF+8rgp+SmylLS4LDkaWvBFmkaYKnrCxKWuJE0niLaRS1bM+zpUSSxzDe26TctpT9BRiewIqHiDNLFo2ZmnYGMjdTVpcXed+3vJt/8wcvY0Xg6Vdv8d7DwDmZkXU0584JmvEY4TaI9TpJR+NxNMWcpufQUYrXPXCS4AKWNm6ZmT5ZtkQtzlDPCtIoZUkkhDRne3eHtW6MlRHWzXG+wgdNbQPS2pYoJAS1d8wrQ+IVi7EmqJTSl4TOItlwkUw3BBzbZUKtcpYzTUc5miagVMTWDlhjyO0e0u3iygI/bnAIeqsD8mGXJF1G6ZN4sUZhBJWZ08lPk3YakrSL1AMQHYRIMF4de5ogPEdaBYSIAXnURfj32zG4u76h5KCwYHRMkvVQUcmsqjC1odNNieMYvKKuA94pjOhSWMncO2rjqauaw3lg1Ehk7RnPIV9TLEcw6EtO1hGnVhtuvez4pV821A0sLcPbH1S4Rc1zmzWjFywcBpYekZy5Aq4quXW74uWtwEefSFjPLWJusHPJ/hvw+dcEv3dHUakuq0sVD50wfNd3rPE7L+4xu2l57qWa7RuW6ci3+E8Jvb6i09OoTLW8+UyT5hqhJLYKR7g/gTWOorSUM9tazitwgCK0swgh4BB466FsaIQixDEqihBRQlM2NGWDiRVxnKB0jE40sY6opyVCCnwUtYZhweOlQzqFFK1ZmFSQoUkJTGtLOanoDjqkaUJMQNQVjfTMK4u0hxTKEGxDksQsdhYQWrG1cRuX1wS1AE5ia4kzksIqitGUYKExNZGANG4RbV5IJpMSawLGtm6b03mJUI5ZUZLJNgmQOkdFGc4pNIZ+r0MzK1BCkicJOu1S1HNE04C3pEmMtQpjBc5ZUAFfV+BqgvCoJCJJYqq6ZmFBIkpHXcxIkpgo6dBYyaQBUU/oJn10nGCVpJYRabdD4hyV95TGoYIljgRJFqEx5KkiyxKSWBGlLX1ISNXOEyiJCG3l567uNoQ2AVDi7tdHB7Zt7yQVtwmETAQq0URHB7I3jqAF4W6lry1Vtk1CHzBNwBlPMTVMRxUqFXSWu/T7XVQ/RWiPsBWhmmEax2Ri6ApBMS6Z9iu6A4mWghsb+zRZzoX1FYR1UDqGHY9VClNphl3B/avL7CwMOBjNSKOMlf6cWlj2C48BUilYkOB02xHZM55lDT5IyiDRkWBj6skzx8Pak6maeO8F5nZM89j3ECWBvP4aj11s2LjWsHnHcGZpzsd+8HHO/i9Pcmu7YFZX7B4esn8wZXF4kksPS+Yv1fjJV1ArCVouU9eHrEQPsTEa03MpRfccOKhngiqTxLrH9ckCa3KB/OSjmPwmLz7/HB8Ob0csRby6+SLRaors9+gOGmxI2J7mlPuKS3mD8L7tqFGzszli0bXdn/0yxQxPwWARGXt0PGFml3lq1GO4kLI+kGA9czrcf6rHk7/7h2zt7bLkCrreY4znsaUO+fmUM5cFschQYhGr1yjDgJuH1+gOznH23BWk8rhwSFWNqJxASsOkboiDohsndGOBVhXECuMU3jQoIqRofTeMaQhKgbMEZ9pjRbWVcGeatggRR6imIgiFiDJCsCgloSlRR93OIAVxdk/PKsTdBEEeV4qd92Al1npefGGTfi9meTkhzaGuK4ZrGc4VON9SjgqjEcaxuJpSNH108BRTz+QNz/owY2PbcPOT20yrwMUrMcMrCYc+YXz7gMNXJkTGsLzWob/oMfWE6eSQO2PLOy92iMQcGoEtFdNdeG1T8kc7ETpfZDXd5JFzORceOM0bO9tM9vd5/eVdbrw25+DQotOMS/df5md+8ueOuf1/YVa4NzDcgkn88e94dyj530GIHlX5jylDR/8u2zcRf0wcesvMAPekSvCWjsFb/gzB444oSHcf4D1H8sd7icWxS/NfpOv4/2N570mShCsPXOGHf+iHcN7xmc9+hsY0xEIwnU75pX/+i1jrjgL09opKIY+D9aKY8/prr/G3//Z/w8WL93Py1Cl63V4roRXgrePWrQ2KouTv/Q9/j2vXrmGNe0vn5e771xaLCKGVGFl7PP8QRdGxtKs2tj1gaM+p1aEmiWH3sEGINkG4sL7CzVszqBPStM8gmmJFze5eQZNG9LQgCoC2BO85aCwrMRRO4GVbbd+ZeNKs4lzSoMU+avMPaczbcacfR+mE2HyB+y847rwyY743Zm2h5MpjFzl3+Sy3b83YOhwxmhxSN+voZMDKSUmzOceVz6H73SN4jSUmYVzV5D6myrK2A9pInJRIkbBnUoYiJl95kO1rh9hGsP7gWcgEN3bepH8iJs0SojhhXnhGdUwzh37q2g+vEJimoZhVdD14AbMmxi1eROUZUnmkMjQu52aRstJX5Hfp6yqhm2peemHCwXSPNVGALYmFZa3fIV4asLAmEb6HkOs4sUTtFJNqlzhdZ7h4GhdKCBXGFrgQAEvjPTooEt0i3ZEJUidImSLQf6731TeUHPTymP5yjtU1zWGDkhpXzJjtGw47ChFJJkXNYl+j40W2ZzuM6zlFVTOZNdwZN0T9iOgApiPQsWRtQSAOA//wF2bc3/GUh4FpLbAhcLAJr/1zx//6fxY8/B0140PfGqZd0Xz4HZqdjQOe/h3LJ/7jDgvCI6bQTBTTPc1vfM7wu5tdJq7hgfg2H3n/AhceXeXXfvsas8mcV696yh1PNWnNyOJE0htozjzUw5ZtoI/WOKWoCofUouWHO0ddmlaqYgLBC+JuRGUtMhKo4JGiHRhSIjA5NGgtCVbSVB7pHNlCDsZRVw0ojRWagCTxHu09RVHilEA4j6fdsFSSEqqGIlZ4CZ2FHt1OhqgdkS/JRESsYiIdkXcjklQxN4Y0gkltODg8QCDoCkVuwFYNVWNwdYNPO0ipaArHaKdmoiXFZE4n6WJMwElPnEuWF1MOCsdoNGVWGvJBl36vQ2zmHBwcAAGRpnSlJIsypNLURSCLoSIipUMcddBZh0pKPBWBiEQHmqLBOYEXMXMXyIzg5OJJxpMtAhaXJFidMRpN6OhbFLWnrkuUz6lwTMoGYz1r+YA8UVTWgEiIswGLS0v4+QhBRnlrj1hIdJTQ72giF0h7GdWkJEk1nSwmy5NWD4ZAa3lcQYW3VOo8IMLRwXm0lytQWrTvGUfVOgJCgjEOpSTGOIRvO1FChPagDWBqTzF1QGBeWSa1xQVYOzGgKAXziUcLSxwM0jbEMrC8vkI1nlFZS20NuRAth14lpFHEUjfGTxumtqQPLGZt9cn6DpdPLjA72eeN6jYiSOTJJUYv7PDBJcVTM8/VeeBcJLi8oplW8MaBJdPQjWEu4IYT6FihnOX3p57e1HMmnnHf8Crrq7+Je+9/xavVjOH8JisX5uQrFZPbBwxf/J/4b3/qbfxn//g59qaCnTvbvPi1L/P+b38XZx7pcBC3ruO+ukUspqTLOdHyKqdcyc1r29j4LHGeY03J4cFN8vXzvHp9zruQJIOHKKM7vLazyZ57gv1uygs3v0hycZnFNMVM59zZuE33tYwPnM05KOacTiSNcrx6e8bs9W2avQJ57mFmItDpKgaLhqhfkOZv57NXZ/SWOpzsCvqRQArFykKf25MJ3/YjP8iSeC9N8xVK+wJCHdKLVpDMyVwN7hTzccT+yHLHL7A8iDlx+gPs3flDpKyJ45TGal4+2GY6n3G6HzE92OdEb8R965D2LzCf30DqAUrkeJXgTY2ppkidgQhIZzC2bCM3IfHOo6UmKIdREeCQvoEjGKVRCU0zpq4LDBCiBKOS4/2+peaJ42JwCK1XSwiBsjJsbh7y6Sdf4fkXNjl1esjm1g4/8uMPtx3KtCFbhChJYeK4cb2mk8d0A8xnFbtX56xlDdNdx+5MYgRsPGP4/VdHLJ2Z89j7crAw6AkunxmwPoDpwS22ro554l1nib0hVArbpIz2JS++1vDV3WUaWfK4fpp3f9OjVCieef455vNdXr/lKG4b5hMLSB566GF+5Ad+4i9mMHv3evu3dgW4l8SIe9V6cRREvrXaD6106zixE+LIzfzec1r35K/vLMC9ROE4QRDtzIi7m6Bwj3Z0d7UUo3Avpv1LuoQQJEnKuXNn+YVf+DtcunSJJ598EqUUVVVRVdXxDEebMEu0Vnh/b5Yg0BaKTDCMJ2N+6Id/iJ/92Z/jYx/7GMvLK4QQOByN+Jm/+Td55eWXMda0Qb+7e/09xjZIqY66P8DRa95L4u7KuySBVn50l6jUDqvDYj9i2NM0dYMpPOdOLBCmEZORRMkuonee6Ytv8k0Xcj5zp2Zex6x3NKcWJVVpubFZkKSSbgwjLzh0Eh2BMoavbdcsTSzr2ZzFuqIzkPjz3822mdKtb3DiikaNxpi9N+n1Pf/1T3+Qn/vvPwvZkIO9LUa7i6ys9xisDygjhwsabW+jdITqLBDlHTLfMNovIV3FC0HdNFTeodIeOweGK1ISdc6xM7vGyFse5CSzWPLSrQGrD3WQ3jEdT9ncm5Kf0Dw4jDisa1YTwaF17I8r6p0ZtmiQK2conaWbCaLUoOMU1Bo3Dg39XsQgEi2xTUdIoLCGR9/9LjriPmrzCo47KGmJZB8RSnRoCP40dWGY14oqxHSyHt3+RSaHz6LjGCkiKis5qA3GNiylCfPZLiv9ik6eIZPTRHqZvwiduG8oORiuKdbXU8aF4JW9PfbuTDm50iMbaLRSOOMprWKjmNHtCK5tV0yKhtJYqgaKuWLnacPCquTVzxq88Qy7kjRIxoXgUCu+6bsTOg9nuKLh1jMFX/qMod6FL/0zh+jAuz+uCTrwO/9gTnFCcukM+IOaORpXwKuvOP717xpem2vmas4HLws+9u51diaG/+1XbnDzekExBt9APxWEWhD3JefenvM933GOzX3NrVtTdu4UlKWD4NGJoNOTHIwsvWGEcwHrPFkk6eY924DeAAAgAElEQVQRbpCDE4jSIJ0DZ/Fzw3i/wRjQzhNcK0WR0iCspTGaXMUooRHekehArxsTCUOqA1XQxCoi+IA1pq2ui0AsAunKMnGkMFXDdFTQzCxRrHGRJh50MRjK8Ywsz9AKGCZkaYRrAkoJalPiJSih6eQxxf420tMmB9tz9Mp9LC0uk3cGiOAwxYymnLK/N6bbTZjmiu5gAfF/U/fmMZZl933f5yx3fWtVvdq7epue6emZ6dm5i5tEURQpw5ElJg4SxXDkyJAcx0AUBA5iIAIEBIEF2ImRxIKcQIBii4kjxrJEmRTkiIuG4jqcHnKmZ3p636qrupa33ffues7JH/e96h4qUphAcEbnj0bjVdWrW/e+e+7v+/t9F+uYTDKGee2O874XH6cRNJkOE6bTlLQoqZzkzp0RyxsbhIGHH9bTh3RSobwIZyxCtQijoI5Ct4YGHrIokJ6k0ehgMOggQHkxYSjQWpCNcySCqsgZFTlpDutLqyx0F0hGfQ4nBdpvEgVNjNNUcY+GM6i1JfADpJSkIwhjCb7GWPDigCAK0J6mqtyRoE/rGe8HwM6LptlDMrMIJZCBRChmUwZwpcNUdSfJOQdS4azFCgGVoZoJ0crCEsWKfr8i8iCflLjK0F3QSHwaSvPy9bvkWtENJNIXTHWLbgCD0T5Rt8nUSLLcUJmSu/sT1rsQN2M8XU+cFjoQLDn237xONd7g1puv0ltvcfr8Iwyn+5Qm4dWi5MPHMy6WJWuUHPcqDpzlcgYrDs50fXamllHhaHvwiHJsG5++3+K5zpib+wU3M4ccFKg/ukQ8/Xme+ZG/ySBa5tq9NzH5PZ7ZErg048Ofeprjn72C1YtsX8v50m9/i/d8+GnuH6xi7IigMSYb38KIE5x49BSvXPsscvxzrJ05y+3Lh8jRlNUTLV48eZzf/l1DttWkJRVvyoBbXozzQ+65irgVcm/7Fm++0eHc0+fQzR6T4iTb3/4cp37qZym+s890mKNSgZ9MKZJDGkFIHmoSYYg6lmAholCn+e3XDmC5w2OeQ1nBtJJkTnJYlSw1W7TUkKk+Tbu9xrL4MJIx1tygHL1GxTLTUUbfRIxaMYvDA5aXVnn90r9gY/VdVMIwzTM82+XFJ95LUha0goBAJwTlW8j0GsMk59LuddaaIb3eOZwWtX2p8miFXapyiq3qhGhjDU4UCAxKlJSmqoub3IAFX2vC1iJFWVHhUaDRcQieJtm7f7TfB6GHlLUrTmksWsmZm0sNPLK8QiY5+/tjnDPs7I35J//9t9k63a75y1VFu+tTVY7YGW5cH/LEmUU8LyQxMcsq5COfXiI+0aPs3+PCt/Z47cKEgzdLfvfVffSqx49/coXtq0NGt4Y01gNWFjUuHVK4GJML3npzzMXrjjtZwFT1+cSjgmfPPs+lOwe8dWObe7sHTIYGSp/lrk8ydGye7PDih85w/qnzf/5P0j+PNWP71OwdMdtT5ExC4I7oiPWX304fmmtE5uto/3nb+1ukqDumMwukB2nL8+61+z5XI6WZ6xfm3ev55PTBIfzF1hsAxFHEZ37zM3QXutTUKUv5kIOXtfbIFtZai+d5Dyg+lUGpmbW1kDjryLKUX/mVv89/99/+w3qCMyvkq6o6oiRZ+8C/Xsy+x9paV1KfVve2a1pVBsiPaCZK1Zba8zW/Hs5asmTK+OZNFraW6Y96OJWTVT53qoxnTq1xqUx5dmlEUeQkVOzmjo6TnFjtsjsqaThH5BlCJeibBsN4nfNP3ODSmyOEcbg7uyyOv4A/vcjm+Z8j8Ze4ff9VWn7FSgMUFaeefIxzx79J4j3Ore9e5VrTsLD8XibpGo49vGBAlpQEwVlcINkbXkAUH6CzvMrunTFxx6PV8vGriDevOKpFnwC4JzwmQUjL5CQ4fF/zxvU7nLyzyYmNHpXXoz+F+zcu8aGnX2R6Y0Q6AecEIssxRUrk+VRakElBM7TIsE1iYnYPMogD1mU9OS+RZBZKHJHv45GRy2Uir40WBTDFuT4m38bSJU9TprKL0Y7Y5IShx87e11jsPE1hEjACT3fZaq9SOYcnFUu9FG3uomUX7Z/4N/Bp/8HWDwQO7u0NuLt3CL5Gao/jZzfZv3OboBlDIbB5XWglqeHOKCXJHUkqKJ2HMYpi4DjcM1x8acp0v8L3JSPtkAa2jjf4mV9Y5djJRVbWnsTTJeVfusHdn7nEL/wnOyQH4BRcvWDZeK/m3PMeN18qeeE9isOxQA0V3/hGxcUrDtmIqHTFx5bh+Xcf5//82i5v3RhipeXUmmanMhQ4xlN48ocb/NBHN3n6xGleuTJm9+ZtGmFAy1OICoxQSC0opWRpNSLNDOm4oMwtWimsUpSpQSuBpwzSV1jhg8xoKEU2KPEDiRMCU4LNLdk4R4SStLAE1uLr2kvftx5JWpEJjZSa4diA0Ph+hHAlWWHqIjadkJU+eW7JCkujpfCaDfxmk2wypZxmmLwgCyb4rYhQaKo0ZXyY1u5KrbrT6AnJQsdnJVVUeUUVCJbWVxhNHDd2Mggb6HaE9WCapySjEUoUHFtboT8VTMYTyjxHW1hf6TEeVZRyiFYaT4e4MscLHCyGBN4UpRs1lUdqYs+SlJY4CPFUg2HWx/d8At9DZAWDZI/dwxG9pocWHtZIDCVL3Q4HyYSGbtabKg4tPZa7DdaXlnCehaIg1IpmHNOOIg76Ft3STO+PaS+16S1FdDo+YewhPIndrznRUtXiZTGzkDjiW8u3o/c6HKoe9epIzYRmAjGjF8GsNytBCoVz9f8PxoZACtKJodHQNGJJVVYgFO2GYHKY0R8W5NMc7Qxr6w2y0YiGXxKGAdZaiiqn09EsLy/hdzRxbMlTiy8c6TDBZmNO9BRSpqisIDUV0of1WFHEKXsXX2ftsTbK9olsQS9YIhu0WGvvc8f6rBhJGUkKX9IpKxYnFUW7Fof3pCSrBIV1NJ3h/KLhlf2Mb5iQkx2FlxS8clhxGEs2XxrT3PsNTn/6hzh29gyXbko+852b/HRe8czpP+BX/9Ff43/4n75Ckk549v3H+e7Xfo/zT57gtcM9iomk0ZXkZp+dWy/z1PEPcvVwyJU/hsVNj8zkXPleQXuly9kzmj++nfPSfoEIHCdPnMKc/XH6+yXjdk5VWoLKsLK2Ql7lHF79PMX9p1kcCURPc6eSuAGMb03ZvjfkxR95hHvNBVaDHB0tcb9YYlyklK1Vno9L8AMcihKH8iqaLc2SqAh1CEIjCChooGybtFpkNFlncPsPqMKASepTpBlqI+Cbu4c82X2Bw72SyGsRhYtMKbnw1pd59xPnacWLRLqFdItk0ROY4Q6N0V2WOj0kJVU1BRnhqwaD4T7SDPF8hbEZZZljnEVoCabAIrHVFCixwpEaxzBJUVLhtdu1WYEER0W39eBRkOfFUdE47wgbaxFWUBYVxtSTqCwv6A8nIATal9y4lqClQCrH4LBi41jM6MAQBQ2Gh4pmM+TsuVXe/8F1lldXWFh8Euf6fODJK7zx5kX+l39+EbWjsRouX0458XybUFoGuynHjreYZgqSgFe+c0haxBDFSC/n/R3LmdPP8oUvfYthPiEMBMd7MYcmp5jC/qDkh//tEzz12HmOLz+LdfX+8c7SGrx91Tais+Ti2Wtuhg5qmqM7KszfNglw7sgoYV60111/cVQ4WjfPPZhxxmYg4WGAMGMlzQ5GzGxPH5qifh8weeeeyf/npZTi8XPn8IPgSGNTFCXJOMFU5m1jkXlmRFVWlGVZa+Zgdo4UUkqyPEcKgbEFZVnwsE5jnk3xIENBHA3ptFQ4arew+QRIzTQicmZhW2tIZq5KtiJPZ5OgGb1MiHq60ew2UayRD+7QbrZw4zWickyvOWTP7LFSRBQNhwg17TxD5AVVW0OZ0FMhWeGwrqShDa2Ox9W9Ia+YVc6cDtm9MeCt7ZKVJGPx4CbhwW/Q+/gn6Gye4/KtS2zf3eV8mdDrfpX/8u/9PJ/5X/8PTp5+jKXjLfq7r7O4uM7uZBeTK/xIMc5uU7mcle5Z+mnK7lvQWVOMxxnpBLwoYHVJ8NbAcDk1tEJYPfkopCXT1GJlhcksgTUsLC1QvH6ZKxe+TrX3JI1PAC3FfSRm5BgcGCZJwcmzPfpeRFcVGNVlXHik1kEQs+FZUDWrwwgLyhEoQYRFC11zi1EYfHABVdUgL7qkg1dwYYd0Ogu/DeFwkrESPcZ4MCUOWqAkWVUxHt1ldaGHrzto4YGOcHhYFIp3xvrB3Ip6a+i4TZb0aTUCROxhjGF/nFJITUf6ND1Fp92lGDv6B2N06SiAwUSwt1NRjhzV2FJkAoXgeM/jA+cXOf6Rp3BrIW8e3uILX70Ig5yNNclj73uBn/mPvsb//s8GLK0rVEsyLgSXbsHTT/vEgWJyaPnC53OGicTEklxU/NjjTTZbmt//8j3uH6YoHzwHu3sW3RRsnPLQTU28GXHlZsob37oEgUY5yXg/ZTwuKCqQvkD7Hq40ZFlF7sBVBipLYRymNIjcYCqBpxxSaZyUGOuwKLTniBoRYcsH48hHOVVSUWmJyQqMUXhxhB/FVA7QijgKME4RqQpnBQhJUSq0p5kUGX5m8LwS5QTNSOMMeFGIEUBhcUWJK3PQknSQMUyyOnOidEilag5/GBK0u6SVIuq1aQAage/HqJ0ht8WQwfgQlQW1e1CZoYUEqahEQbPRohHEpOOUwcEh2g8QVc5wnBF4df5AYUD4mrgboQCtDWU5Ja0gTyumlYaWRyuS+M0OCnDSUTnoLi9wf3eEXlimsIasKKAAW3iUhcD3PFqdkEALIt+jvbCISXPQIQtLiuIwJ6ckl4YwdIisJIhjjK/xmhGdhQZ+oEnTnN1JyqNbHaJGgKfrca7n1VkVtZUgR+2YOgxIYKqZjR9u9rCsH9jOOKwElESpmjJknKAyFk+BMQ4LZNMSl9cP1GxSICxM04JsmmEqix9poqaPDlocO7POKMkYDYfg8trRpsrphBLpLHHgKE3GsJ8zGBxSDiUbm10O7/cZj3KMdaSBo92cErQNzaUIt3uFZrnDWpiSbDXZGS3SkQPCZUuRGsppgVQ5Irbs7qc8GipMU1FQg9rDSYk4KHn3imS3tExKD9nUbAUlt3cLDktH/9I+9z/zEs9+8hQvPLfJ5pZi/7W7/PpvHnD+wxf45I+9wPVbCds3L3NupUQ1jrHW+Q7XEuj6MdYtcLPf5X5D0Sl2aR/vUd4a0o082q0lvnPR8sxzcP/iPdrPK3amsHNosFXAauDxj3/9DdLDPXa+9zW+3VDkYQuRjcnKC6AmPL2xxssXrnPn4h1Uv8/jZ9YZxQuca2pMvMohMdlYI3LBak8hkSRoJOArh/IVsYSuDuk7x6g0JJllOjFkgxHJ7VcQ995kVE1xTY9WI6ETVgz3QjpaMfYjbNjm8rQkKzKWFw2PbjUZ2x26cgMtOwia+EGLhWaE65RYJ1CqhRSavDSMJ0NUlaI8H1PltVuNqgV81lqU9phMD+sUVjzSNK0FjK0WTtQFfFlBWZYURc54Wjy04z9UDFELHMFirUMpiRYSYRxlUXOvpYTDPUN7KSZuekS+IvQ8ZGrJckUr0pw/tcSZs6donngU1Q64M77FF77yNZb8khOPLNLbfJ5PfbLii1++zupWjGr4XL5WsN4UPH5qAS1D8qnlS1/cJWg2KH3QvuPdCyssBJqvfOs1JqYgigSmEAwzCDo+6yciToYxS8unuHUnY3x4mxfOP4Ov41q8fcSbf+esuR7gbSX3fGxwxDiZawxmL85es7NrddTsgLcJGp2ozRXmdElzRGup3ZDmTY65UxG4utEhXG1OATV/++iw3APB7V+gZR+ibvm+zy/+4i8ShuHR16qqoigLrLO1tnCmM6gpXnXB7vkenvaoTFUbVjhHWdXmGPPrV2sHHig+vn+ao1Sdr2CsxZQVdgYghHiQvaCY2csKg7UGY8yskQXioQpuPjkQUqCFwo8jir0DIibI5ZhsqcnBrqWlO3hroIYxLpsgvBQbFwz3h2w2YsqOT8NqptOM8TSjeTjh8Q3NYVEyLTp0joWkgwnbexP6ecX41cuczAu2fvR5Hn/sEZJRg+T+LldfusfJ5y7z8Y9/jLvb95mO+qx0PZS/RDty7KSOrtdkUrQYly08CaEZE/aaFNtjFhZihqVPf9+x1IO9GyPe9egiO5OKcSZpoxGl4/df2sP0D7j76stUvmbn3gFucMBIvA7yE5zstHnj6n3S3RGeydlY6ZD7Eeu+pPKXGFsPW4IQimYoEUgyZJ1rJEBLUesvpSJ1jsw68hLKwlBOxxSje4jRPTJnIbI0ggTPCcpUEwhJrn0IIm7lJZ5f0g4FbV+T2xGhaNfiY+EzawnwTqAUwQ8IDuIgxJOagyTn/jint9rA8xVpBWRAYkHmBMtNQs/HSo+wGVAZB2mB8CpkWOA1KnRhWVrzOPviOi9+5FGCE01u3Njjza/uYW8XeJVlJ2mTtBY4ffwxnvtoxmRwj0F/wsFuhY9gfV3ze79XUg4sV3Zrp5iVps9jJ1qEXY8b1ycM8hQ/sJgMihyihsQYRxgInHEM71YkkwnZoaN3soPKLKNRRVGCUxKpZS0KLkuEtVgnwJq6S2wcZebwFUSBT5FVFFmJRSKVxPM1OvbwQ0mgBGVVjxAlFl9pCk9D5TDWkFdVLRasHKKsIFA45GyTtiilZ+NGQZZWVJXA8zVB6FNlZf2AKwuctTgtAV1vEmVFGCqcF9ViaFELm0zlmAwTGs1FMi/CmgKZpuSpISlKHJbxJEHKFF+ADwRhQNBoUFmv7vIHIQqP0bhExzHZYJfhYIzWCu35KM/Hc4oKgRSSLM0o8qQGWZnBiBgpIGx10GGMK0vKMkNJQdCMsXe2SbImRliMMygdYAJJkRYoIdGlxFMSTypC4RhLwTQtsDZHiDqKPmiB9iqk9sD3EBKMs2SlZZqXHAxyOr0GnZWYMPKORsbCOISW3zc1qPm+Qj7UTnPUD2Y3f0DWwuS545gQIJ1AWPA1VEAQSmxpKa3F9wQmq+p7RDjCUGGcQgUaC6g4IF5sIwOBr3OcUXRaEb6r0KFC+xHlZEKZFaSjETeuXWOlt053LUR4gM1J+2Mm+ZRG26JFQdRQTN7aZnT7PpQZYU+zgcJbfJb93csIkeNHETawyMhnU04ZJCM0BpxB4+gEitHIEIwr2lIgpIZAEzYCPKNIxiU3JwZzeQ/3ZcczcoNH379IVOW4FYk3vkm81eP0Y5uoUPP11/6Q7ol7dJfXSPMBk3HJpKgQrYB791NWeiX58D5Ro8s0aZH2fdZExbe/kfL00212L77GPdmgqWOOP73Od98acvWrX8SWU5LCcnDvgEpYJC1sOebly6/zvqefp+oL+rs5bXI8X9FcXSHwAvbymEkZ4PCIGh5NT3JgBA1Xg79KSqyUtIWjX8LESA5GUwaHQ5L9XYrD61QmJYwkVp5AywJfO7TfJnUhgRmyP3F4jZxG16MTLrDaidlsd8ixaEpwFaAQTuJJn2bUpSpzQCGFRAuLEhYl6y5yUVQIV9V6F6lwGCpT4GxFZSUy8PGlxWa1c41Qmqy0tQMSltxZRnl+9GmvU8EfdIdr+8s6IXy+rHVIWxeghTXIQqCDCmsFRSapCgi9mMppltbanHzyLCceO42LQw4P9rlz8TZ6Z0jua24raB9bYWvzWc6/uEU6vstwNGCSKTpNn8QFXPvGBDc17JeWODf0el0WF7t4vs/u/T65S4gjSZXWrm1BKEE4GnGT0loOtsdoscpyYwHfm4uvHyqs3wlLcNS55qFp5BwQOEDyoFlxxP2Z/zvTSD0oRB/oBBwzXvrRNz/42x8uWOeAYj45snM+PXP6ywPwMn+XI6DyF2TNz4dw4qgIP3ny5Oxvro0xqqo64vs/zPuvl53ho5k246FMCpxFzfxK5zQhNwdV1LqB+VRnriWp7zdmlNPvA3xwpHEwxsycpsCJGnw8TDuCB58fh0D7AUF7E3G3jxQpYTOmMwnQrScY7l9Fex5WxrVuScKCGDGcDvFEBabEVx7Sd6TjHN2f0vIkqCZBMyQOPEIVkI9z7g1TxFs3EU3Bxgun6a0tM5ZgYxCTa3SWexi5weCw4MbdWzzWXCRqbpCVI5JxRuGaWKVIJgXNqKK0CXEckQwCrBN4znDjhuXM8ZCdKzcZex2WF3wi67h+d8yN772OkhWjMifcS6jGAu0iiizhxt4uZzY2GR06iklFOzC1a2KziZaacelRVgo1O8eeFEysIJC1M5gREk+AB6QGCiuZZBnpJKWYDjD5EOcM2lc4tYoWZW2FrmZTAJczLQXSL4ljTeiHNAOfpufXuSWU1GW4RKIQ4gcqyf+NrB/oSPLJlCzxSZKCO3dHCFPW4WClQ5QCnVmEKom7oKWPjhsoP0BnJaE/pbXgEE6RJpbGkse5p3o8/sHzdJ97klv736G6dYPG/oAT7QobaPbjmP6h4bTrcPJ0l+99Z4QpCsrScu++48Jlyxtfr2hqaJ71afoxK+0mm+sx10c5N+9nhE2BSAXTKdhKEHcl+dSSjx15aelPC/JCEwY+ZQlZYilLgdK6Lg6FpMgNylqU55C2Fp3igBIKU9uY+rGmyCqqokb0WksCrfACDRjyianBQ17iO4vAQ/leLbZ1hsJUSE+RjnIkECx6KKGRCpQQeF7d9VOeJi8MhRUEUqICMMLV9BRrsVJiPR8noapyEI4oDnBxTNiIAMd0PCUfZAz6fRqLDeLCUqQ5djhGCc20UhRFRVEatHYorXFaE0YeXquNQYNVKFWPA4NGGycEydQyyQx+4AiVRDqNFNQJx15EkRSk05Q8r8XHMpA4F1MWBUGgEVioCjQGoRRxQzEpSlACTyu8wEMGHtozGOtIpjmKgNiDbFpglGYymZBmBVGrQRgHoAXGVhAEGCuI/HpsnqQFaWrZn1Q8dnKBTieotQUz0IexR2bUNWWovgfmo/nvpxodPbYluPJB2FC9vdd2gFrVzkRSOCrAmXpTFxZMYfADhdCiFjkLUbvMeArpaeJGQCibCFMRBB7KlviRhw4jxkWJ0CVSwPBggPIiNiYRncAj0DDOpiQHh0wSg7Q55XjE4cWbZPt7WL/EeCXHwgbe+gnCfIjJE8qyJC8NUdTkeG+TN7a30S5F5VNkniEtZCbnbr+g5TlUZLFYcq05tqQZSs32pGC3LEle3mVvmmGWHueJs6ucelaw+/otpuoa6+vLRCtP8jufu8zN/Wss+U1665uUkzHDKiVcmpJc38Nu+STju+CtUEwaVNuOzRMZX768z0f/Ssy3v/AtzNIjLGyeJNQ5r711QNvb58kPvsjyRpeFxZNMRz6HJ57h3o0/5sqNbd577mmygxHjgwFxz6IXFmi2F9gfOBJb0zK80EfEPjjByAkazqKlxDhBljoSa7k0GiJySbJ7jelgn2JyAGWf9sYKE22JXZu43EEIzdAskRtBlY2YtidEeo/N3ilW25u0gxVaukkbC6aPsxlVVVJVFltV+H4La8FVOch68hppSWbAo0IJSVnVrkNC1fYarjJo7THNHJ4vEdJDulqHYK0lSQuwOVYISmfJnTn6RM/YdUd86LoLWpswOBzWmVrsOtPl1DodwWRcUuQWpSVpaogaEcvLXU4+8RgrZ19E97oMR9eoDq8TTvY5tV4wEiEDcpKRoyeX2Fhb4Ht7CVWe4YRglEuu3qm4c3VKjGThqQW8ssNCZ5lWq8FBMmF3mNBse7VjXVXfo14osIWgnMI0N/TTPo+fOc+xtbOEQeMhl53/z8/OP/cleGAdCxy5D4k5EDgSDT8ABg8sTWcgQYqjLnb9JjMh6+zvnauX3ff3OeDIJUnMv4/6Z2t7jAfHyJHf0fz8/cWYHczPST00eEAsM8Zw4cIrfOhDH0Zrxc2bt7h69crRz9QUnwfC8LkYvKosWhuYTWLqc1GDKjOjDx2Bg9mE6ui3ircfV20JPH//+aRnpv+YXet5RsXsS1gszv7pNpdSeajWMWR0l/RwG2tKVjaWmRQCb9wHYSjKHBAEQczC4nFubd9ByQli2sc3JcY3DM2Ew70xUWjwWpbShHh+wPJ6k8yP2B1q7k8mTL7+OmMsJ9/3JMtr6yxtCZK7VyjdHdY2nsGoDe7c3WMwuUckQjqLDfbHA0SQI1RKnihcR5GlMdrvMtlVhDjisOTyQcr545rXvn6V8MTjxL5PkRfcPxjTVglb73qcY48ssdRZgpFkuNlnNLjB7uGQsxubJHtjbJnRjCUqDvGDiFFaZ84roZGeAi1xCDIgdDU9y1oobU31OshLqAT5aIcqTzFFgpQWvxmTSUFEhF/tYWiQmwjrDJ4tMGGBp1J68TFiv4svQ7y6gwcuPYL3Qiik/AsGDm7cuUujm1PkBlM6bl/vc+bJRp0KXDmKSqCtxzhXtL02zYZmNLWUuSEQilYnpBVrlFZsnFzmuXe/m0dOv5tU9bjlLtFOK376RwVlw+faxMPIRZ44fpbqK/+a/o0peztTulseVaHYuZxy/2rJk095PHMuothq8ujSFo0y4sLVu5hbGc2lkH4/pRjVG5gXOQ4GlsUYxgcWbzmkmCjSSuM1fPLDAqkUYVh3mPPKMkkqsrSk2VBUkUfgSUwIJrfYqcEkBptbknGOKSooLa60lAUUUuLrWiyaTQuwFn8GGApr8bTCaI3neURhnby8c3tAHGlCJ4haMYHn4wnJLFWBEkmS5FBZyAuErWoq07QgaIS11aqtcCWkaY6nfYZJQTFxdApDGCqUcHihREjLwf09FiIfkVdUBSyuNPBKeGOc4kchfhiitUJKSxBKRNhgsRUyujehKh1S+USRz/hgFyti8Es6XY2S1LkCnsQeDEi0RFuJRONriYxDROCz2GuST/poZ/CkQGmLyXJsKVk/dYy9gaNyHp6naEhwhSTstikmKUVeYmxIRghGIVAUFRjZwgvaWBfRTxyhFKAdxlIailQAACAASURBVBmWmk38IMDiQFqihZhY1haxzDo29UhW1jH1vkTw0AMWQNZjYGPcvGlUd/DkDEQI+9BdM+MHy5qqZISlKgxy9l5VVmcfSC0Quu60KmuRzlAlGdrz0aIiL0GrCCVyzDghWGwRBAGTAghjIs+jK2FrbZPd+3cpVtvYlocuUwKXkZgpk2HNM797/RYHt+9STIYUtuDw0h5nn+yyHvY5+8KLlIcJ+3d3qA4OWawKFte2+Oh6yNQ4TD5iOh5wd69ia2HMdT1gf5gih5bMZEylYGvDZ2mtw3Mjj9f6Cdsl3Lg65dKvXeKXf+l9eNmQzjHNcrcgj7bx1TI//Tf+Y7519R/wyheu8aGf/Ek6vUOq6CbXzAFFJ+N+4SGiVa5c2WVtpDgVNNm7OeaZpwe88rnfY7Df5+TyCYZXbvIHX3qJj/z4OTZ/+if5m5/+IBvNAAVcuzOitbDJF/7ZJVbCdYqsYrL9PYp7r+OtneHM+36cwx3H4U7O+oqi0ZUYH5JpjowCQiVInKTpwE0LDvoZrw9TXt65ihw4WgffpBmn6N4SYuUR2gs+V3emnM13Ea5P4loMqpIiNSzYiq2TE1znkDA+QydYpqGXUULVYmbRoSoT0iyhKAxSB3hhC/IhZdrHCYFSARJFllcEwhAE0azDaxCitqDUXhODQlJQUdbp5nlK5RTTNCWZDPF8S+UcZWkI/AdMV2MtcyKEmBdU85tg5l7jZlO0sqz3WOMceVpijcUPPYQTJJOK93zkFM+8/xMs9M6SmYSRu00kCn7ovYpUtBBpRDc6TiiWKW6/Sv/egOF0zNYjy+zeG3Dn9pADSs493uX0sSZ5b42T8RMkkyn7B7u4QUbUajFK+pTTOj8mN450YukEksF+n3BtA5d3WV4+zfra8SNgUK93FDqoeeZqzv+fvTwr2O2sN/WA7gjzanGuF5jTieYTADejqTB737niWc6KUCPqBsYDCtPbaVZ17T8TQz/cPRdyNqWYH+M76Dz+Gcs9/B9Xd4fLsuQ3f/M3ed9734fWEV/4wuf57Gc/+yc+Ikqptwm4HwiKa/c5pRRKaYoipyxKjDVv+8X1tavzdObXa6498Gfv7axFSnV0pPPfV1Zlfd3mttqzaYa1Dz9zZod7dC0kRVmi104x3Dnk4NY2vU88z+Fb/4rV84+RHQ4Y7t3DpROaEqLFE5xfisgrB8V9JqMpyThnsTPkvrzH4e4B3mTCqBiiWgHLWws0j61wthXxxnbO9Tzk7oV77Bufj37yXag8IewFNKKMUu2xubVFd2OT7cN/TfraZZ74wKdpda8wtAmF6VMGKeNKo/wed7ZHbIoWQSWYTnNObCZc+c4VsiRhUzu++53rTJIhTz2/zubH38uPPHeSePZ5vHY2YXkp5ptfPqDrdSjykvTOJaTviLZOsbixwSRxJKOK3oKP9gUVDlNZ0ApPQIYkBGxe0c8q+lnOrckIMXW0Rm8StiQ0lvDiBZQv2E1KjlcDClISF5KbCqqKhjR0FzMIEgLPI5AxSgY1xHYliAghAoTw+f8rz+BPWz8QOEjGE/YGMUZoGm2P3sYC/XSAlprBOGM0cWz6mtJ55H6b8fYIGTeIQoEvLItrC4jCcO6ZCB20aS4sMxUxSrZ4fO1HcT8VUN3+PHuHllHQowgXGE+3Me8J2eyl/PFXM0YDwZl3rfOxnznHW5duMhAZf/U/+DFa0RpFcch4mND0N/jsy1/h6s0EL7K4QJDnDgpYXYU3rjpCTxLkggyHdRXF1OG3Y5QncZEk6RdMRyVlVuErqJwEofG9AC8QlK5gOk4JwoBG1+cgMTV6dw+SJ60UpCWkgwJXGnCOUlgyC/FCE6kETmhQkrw05GVJ4Ncbd54VtNdCGp0OorLs7+4gtcA3GpEnNa/d89HKQ3uaEkPhDCLPmXdwtHQI5zBaY7OcLBVIr0EQNvFkTrOrKZxkuz+lG4csLHbRgSbstekt7CFCKPOMKknBVVSyjUgHWL2EwJEnCaYwmEmJyABn6TRbaO2hNChhcVVtydr0S+KFNYwNKA01VcgWJIXCVRVm3EcJh8bhS4cOIlInQDlEYaEwaO3TbEZUVQWdFszEvmWRkKSKtFC0ez6rnTZRcxGv1UG1YpSnyIMIqSSVkmRG4GtFs61YlSULXa/OM6DuuAoF4JDUm6+Yu0YcoYPanlSJB+Iw5uCAOj3b2rrTI4WYcXhBzLjg2pMUxlDmpg7QK0u0BFsYlK9QGqppxXBvTDUSBM0IqyS+FlBaxv0BQdMnHVnGhaGsHGGsWOqGPHm6x7kthS8nNFtNfCOY9hVZJRkdjri5vY21jt3+FJPlxLJC4/ji1+6ivm55z6kbPPv8BsfPLGEeafPSl67w5Hd2ePy5nyDcOMV4YZm4pXlW7XLt0n3Oqdu4vTd47btD+ncygmnJ9p7jrfGApxZiPra1QLQWsRvAN24k/N3//Os8shnwwqdWeewJTXMhQYsLLGef5wNn/w4v5Z/nc1fus9oWOH2MSyPNM890+fxnvsSHPvaj2PI2F2+MuXF/ixNpTn76Sb76O7/MX/7Iz7Fzt+L1N75No3Wbj/2lv8sHn1ojUA+6wo8f7/BL/+kH+Ts/+1v8yj+5wFc/f4F7124RrwQce/E43Qq+84U3ee5TZxg0I5ICwryi1Q4JA0GlJJ1kxOGoz2FWsjsteGXnCu9ddOiogffCp1jsLdELA7yi4rXxlL/Vcnz99QN29h1RI2VjYciVoMXGi+/nw2vnuG2mdEhRNsNUU1ANqLcKjJnRQHTtfnJ4eA9BOvvszZoFUtNqR5hshI8hCETtQlSVOAQ5kJdFTV9DMk4rDidjhNAIZemttLh3/z7JNJ1RGx6iDM04z3NV6pxy56DW3My+Ni9hnK01TfMOpxQKrXx8FeEqH2RMLjRCLtDrPIc838aO/gWDQ58iPIXnNanklPJEyGZb89WvHGLJefSxczzyWMBwep8kKHnhhU+i9CJFsU037uEVi7x25RVu7ezhxwYbSaYTnyhwNMKcy9slkR/QLjWPnnmW9dUttPY4yg2Y39vvEIBwVODPzmNd//9Jys4ctD1c6DqA/5viQkqBnYmNy7KacdflEchQch7K6B7Qg8RsAsWD0LS5jWbdzZ4fhXoIaL0zzuGftr7/HAr54DMQRRG/+qu/hhRQFiX9fp9+vw+A1vqoAJ/v+XMtgA49tFJU5kEOwdEEQNaBl0cTGB6+v8yD9GlrKMvqCCToWWK3mwEL5yxF8SChWsi5q1GtO5B/CigTs3s3bne4/vprDO5tc3DzGr/+3/zXVGmfdz/9GqdfeIH1R9oMD1LuXL3I+uBNVs/+JKq3QtZ4FyteyTEzZtgfsfnePRi8yuXvHrDYH2OSguF2wSC6w6nlJT5w7nHkZou704zt+2N++9f/iLWNmNPvP8nyqkR4Y7R9lbazeMt/metPvMo3b++w3mlykLfIpEevJbnw2vd45ql3UWbbXDlcoTUNaGlJ3lng61/6I/7Kh/86b1zss7dzifWtFs8+c45jvUY9r5lNsR7danJq83l+4hPn+MNv7XI5uU06GrL+9AaLm11Uath744CTz/QYaQ9ZWHwlCHyJ1nUNFxUZwywlreBemnKQjXg0dig/QJ58D504IhI1ZXxY5nwkhOvbQ4YJtNoZKhCkjQZLq5ucaC5yaAo8CnAlztahbg6BFN4MHLzz7p8fCBw4L8QqhdYlvVXF2vEuyZ7l2vaIKFD0FiKWFmJ2t3d59c4VmovLNDxwTmAriZpYtk5tsrSwROIcUbxKpHvEeoGwEVO1tvj9/ClWVnucGl+huPVNrrxxl2c//Us8svWHfP3zv8Vbr/e592afqOnRah7nJz50nr/+X/xLTGUokxIKQ6/t8d73LTLcXOb1r95nejcjCKG5INifOhg7zIJg+3KGNYJmOyBYDkE4Rv2cIvEoJhZpII488ARZaVFJxTQx5LnDGTFTlzuGiaOYunqUrTSeBiEVwiqEV/MC665yLXLVgazFx1IjUGS5wSRpXQhIx/JqRKkcVZWQpqCchw5DBvuH+LLuAgSRh6drMOJRYRBUkxzPEwgqnDE4HWKqnNZCi8DrgNSgPKQXEDc6dHs+1+8cMOnn2LSiyAV7/SkNVXLi1DH6wz6ZLLBBgK8la0tdqnRCaS2q9DjY7dMfjPDDgLi5SJFoqjIlqTJ04OMFmtBO6DZaBCsrTEWMqBSxDvA7TRqR4XBnn/2DjCIr8CVEgYeKGoTaQ3mKINYYlZKNx9w83CXyHZtr6ySlBKVpRCFBGGONpHO8w+mTq3hRE4ytNSOxxI8Cdu/2YbFFs9VEOEV/WDDenfKJF9YolEK5mk/4J9hCzN2J7ANqr5tp8ZyrwdHM9lR5EuWruX7vaJSMc3XCHtSaBSVQoaqvX2DIpxVhDM7qWlgmBQKfeDHGk64WvTmDqyqEVnSObRF7gnI6ocpKKiOQUUy71UY9ssWdN6ZMB7s0WgFeoPAakkonjKZjRFlwdzyuU3ax7BamFpNVlspWXH8t4XfeeItjnYAXn1zjE3/7r/LtL97hN775JvHwSzQDR9RuEDVbnDi3iB1uIHiB0z8ksOkBV1+7Qnj1kChL+eM7I+7pCU/2NY8/u8WH/96nGaw9RdFa4199+Vv87me/Spy9ySOPLPOBH/sxxru/z+L9O0TRGkGzgwkqTugDvnmtyVM//td4+XNf4vn3/7s0d3e4dvfzrP7wz/K9z3yWv/3L/yMXf+cbXPreF5lOK154/6f4kafWUEpgLKQlYBxagh8IVhcX+bf+nef4x//VP+D67Ws8/YEnOXv8Ub70mbd44kc2uLJT0m4VBKFDNi2qoXEDR//qRab+mKtOsZ+NaMuMv/G+d/Ot7QlrUclyd4VJ5njj3n2md24jLl7gH936HgO9QRJG+HHCiZX7fPi5RZ7vvIem7rCl2miboqqUIhuC6yNFSZomFFWOlApPh6AFRVF3nepi5IGzTJanTGxBlTuUVkeg1KCp8hznSgR1SFroByz1ljFVQSsEoRRpnuF54GzBsHjQgTwCuKruVCqljlxu/Dg4ErMCFHlxlDRsjEMIizUO5xRKhLz7gy/Saq8QyBitfJTXwIh1XjdbNGRAvPc9sr0bFGGb1Uf/PcTSFTbP/BrXbwzptnZodnpg13jhzFn+/j//l2ghmQ4nRMKxutBg4/girfYGF1+9Sj5KWFqO6HgaUosdVrhezJvf3eGa/j16nQ1On3j0/+0z8t/Ymnfv7VxrMAcAb+vsP7Qe1goAUomjl+f1+1xE645enP2orTVvD9OYHiQnz3hl87DHGZ2lrjfVEb3FWjejMf3FWKVlNiWp14NzVAvtx6Mxv/C3fp6XX375yG503qmfr3m3XojaHMO6B/QhY2pq8RwoSFlTcJ2zRzSj+hFRh6fVFNV6qjzPn5hfrznIOBKKuxp4+J5HZUxts2prm+E/awkhuHvrBt+9dIk72/fYHySMxkO+cX2PrZfucnarw5MvPM6Jj/4Ut64c8DsX3mBp+DnidozfaBO3OyystbGTHlK+m0c/pBjt3eTg5i2C7fsE2ZhX3rrFI3HMiVHM2fe8i/Mf/wnyxirGb/HypStMv/hVOuE9No+fZu34WYrJ6zTH+/jRGoGOWVQJh1XGrekCJ574OBe/9Q3Ov/Aprlx+mVS0kMuPsH3hKv/+f/iLXP+jt3jruy/RXNri0VPPsLUUH13PspzdB7J2fmo3Y158fp3f+p9/m/1kwPnFcwQm4valIeuPtdk+NLTiOstKBgKhBG5imPT7FF7GTavJ8xG9OOSx3ibbk4qONrTDmHFWcZBMqAaH2N1t/nD/Fom3ShKEtMZDtnoDzqwvsxqeQhHQkR6RWkTyzpoO/FnrBwIH3Z7h5KMhcRQhpCMzEwDaiw2G45KDicSFGlsELDQUFy/eY/NMl8VewEKvw6mtUyA90iJl4KDpQLuKxAy56ywrMuDp5eeYOI+w22Nx8Qz62IgLF/fYOP4YP/mf/TD/2z/8Gm9d2CXw+/zoT2/yT//pl9i7ndWOGaXDB9zU8gef36dv4dl3eeweQn+7It03jKxgfVVQBJrMOIpSIH1Vi4cDDzLLSi/gUECWSQpBXWg6wWR3Spo5hFYEsY+KA4rcURQV/xd17x1kWXbf931Ouumlft093T057mzeWQCLBbDEkgAJEBAoEjRUlsWSyJJKVtG0zT+cLZWrzJLLVS6JKpUoFSXLKjGJlsuiC2YmARCRIIBdbM5pcur4+sWbTvAf93VPDwiyYPkPrs8f86Zv377vvRvO+YVvKCcW3W4SDG8dItDg9rccrmx0ok3cEF6nkxnGWvpxQqdtkDKjtoFpUWDLmllhgZIZjrqo0FGGxpFGDeSm22pwcdY6XFlT5YF0cYlOv810d8B0OKWuaqLMcOT0GnEcM5tUBGsJ3oLI8e0UKXqoWhJjyZQiloZiVjPMZ/RWl0FIltcOoSOFq0u8CAzWSyJV46M2IU6IexlBp6xv3SYzXYTT9HsJ7UwQaY9UHS5f2yBb3yReiRvXaF+T+QLnNNOyqYpIRZNQtBK01uxOLGklSTuaopLUEqSRFFXFxZs3OX3mXtKVZdZWFwmV4+vfepPj3YTRtKJrHMrMz89wjPaOk8cXOHJyjYBkVAQ6acRat8/qYooyCiW4Ax+aj/1qjAwQ5hhdH3A+YCuPwoN1uLJJEEzWuFzvATC8840EnvdNC1nLBudKk2xIEYhj2ZA3A8SxQKtmItdKEhZT7CzHBE+UaKxzBO8xKuBrWL9+nYlIOXxshYWOwfgSkcUcWjuE7Gsm+YTpcIgrRxzrKVxfc+m6JRaCEofUTdKSzzwueKwHIQIjD28OSq4+c5s/+rt/wNnjgbPkHDkGmgQRdegeO8PO9QG6VnR7GTdvT9Cmx8q59yMXL7H9+uu0C8ulqeVK7vjSH1+nv/11PvgPf4KPLK7wn3zqHnae+EFubTzL5be/ya//iy/zyR95lP7xo1x78yo9nyA7KwymnrXVgm+N3uD0/Ue4uHOZWf8kxYUWX/k//wum8iE22ou88saLFDubPPGhx/np/+zHkNIDiq2tiu2NJkFrxY6eKuid6XG4EsSDDR44f4b+0n28+mJJyK7w9Esp548t00o0uqUpfeDSxSkPC5iYlDemNZ3OImcWV6Ac8tRT63TWPJOtFs89/Qz54Aqq3MAwo20E9/3wRzl26gKL7Yh+pllIFJFpnLA3prskWlNWk33in/N+XkwIBOmRWqMjiQglRlnQMUE20sgBQQg1uJy01aIupvi6xNsSX5eUtacSAkkNroEqaKlopxnKS4QoGRczhPIkscbVAetmd+5/JTDmTnCyp73eyDPeTW6VQlJbi/KNvKaUEQRJXTrKsuR3P/tVfupv3ke83KUUDicgFZKjyTGqpFFiC4vnGecVr7+zwYlTR/jEf/hpfumf/y5X397g7PmYU6eX+Noz32ZrvcTVEOpAWytcXnF74ya7AT74eJ9LGzHVpmW8pZEq49hRi1k4zvLKKo9f+H7uv+fh74AUvcvGQR7AXoLw3Tobe5X+u/622afp7Ii7tgnEfhDMARnSO0pDc3IsBzqle9wE2E9Q9vknQswTh4MdhXfnaNBDzfyt9tHdB37JQRhOYDadURRFY1AWPCLsJU9iH4J68AAHE4MQDgT9c0jpwX0aE7rQ8HW0QmuNlE2yVRYFZVXivJ138nQD+9pLBPZ5DhIERJFp3uPPSA4OJnwf/pEf49EnP8Krr7zMv/xn/4xy0HAp3765ydWdEd+4YVl6Pufhs4HzeszySfDWYLpL6PYSxXaOtIqknbC+OSUyx+meXkb1rzG99hKtyYR3BlMu78xIdp5leSPl3Gfey6k046MPLjI9fY7h+A02rt/g9p+8zr0PniJbXOH2jcusqIcoQg8bctppwWvlbY6fOMyV7ZvU99zP+OKbXPn6v8O172OcZLz60kuk1vLE+07zvvedQsxJgdOpYzoOaA2R9MQ6oNqGjgO9s8F733s/Ui2xPSgo5ZCLNxVHl1oYI1FGMCsDs2nNIQKFMlwrHAtZh0WTYEvLzVsz4lagKA2vvnMZkW+g3JRIWtLYcOzCBfqLx0gjyIwk1gKtNZFqo2SE5g6n6P8v43tKDhzgpKOqC4a3RtyaWuzUIxRMLRTesDVWrB3vkFc5q0d7LLQSusbQkopiMmYWHEVZEDoRwt1GBUESYjqqRR46rCbLbFioQheZRHT6Ke98/Xdwx36ER07+VRZPb+Lf3GDz1pS33rzOPR+8l4/82M+wXRtwFlMPmG69wR9/9vOoaclrzzgqD7WX+FjiKs/tocdrxywPqDhqGObOMZ2Bs4EidwQp0KlGycb1uLCB2dSiEtHAWZTGK4WIJMoJdBSIY9VMBF4hRGA6rvCla8xinMOVHlTjutvONGks6bQjUIbSCYgVxXBKtxMxzkvqylLXY5Qu6XRTqlkOrsYL2XQGaoeraqRSGGuZjMeUVUUQzHkCitlogo0cWkY43+wfvMPSVA2dcGQLLdrtGKOah8vWJUVR0IoC0uY4p/AhYJUgSiMSpZg6R6ubkS6k5HlgZ6txtY7jDJUmqFSglUNKx+Jyn0leE7sK7wO1d1SVoAoaW1c4YQlKIrREiYB0loV+H+FqZKhQqgm8UQmTQY4UEUoLFjotlI4YFyW61cYWJcVkRll7PJrYRPR6bdqtLv1+l04SU9lA2lNkiaKfacxckUjMq6R7vL6msTNfROYFNO+bRXe/8rOnBmEUOprrkdcWL8S+46VUTSCHhGDn6hahgWzUlUNKQRQ1OGCtmwUDH/C1pcxrVKyQvjGUcsEh8PjQuHQHpUikR+CaqpS1TKc5eVlQbu9SBo/UEXGaUaoBkVEk2rI7mjHKS2xwVD5QzZsbkWxodGUIFDZQTEomV6/z0fMtPvmJD3Ho8KN4schoItgc1ZxWI6Z5xrRIMKIm7Sbofot2cZ3TD9xL78WnWb884Pp2wW60SHzoEb7whznDxyUXjkR0pODEylkW0hV2Zm9xfdTiUFnz8HKbYnaD0c0tVkTKi5OS+8+eZdrr4dYjlmPF4bWIF5VnWhYc0ZpCdxmLNjqOWTnUXMhqVvDO029x+OQKJovIB7dZ33yR1rFPkxlDqXt0tadfDajXL3NxW/D+x9eo45TxpEKWOYmEY85w3Q2YOAdW0goVURWYFhKVwGzUYmfXEqWetd4RDiWH6bdK1ha6dBeP0kk1/bagnXYxpoPzJWVtmc2G1BWI4FDzm09IiZIxJlisd3hXYyuL0YIsa2NdjncG6zxKinkQEjcyiBLKssTZGuc9XvhGwCCvkd5SW48NljBfNIsqZ3c6wXuLEJ4gHP5AsCnVnjnWXKkFmqTEN9TUECRBirvMmrwPzRwYGo14poF0ZpDKocQuWkQYaRAiwhKxEGXsuoBP+kBMsXudK5depXPqhzmx+gP0Tn+Tm+9cZ3N7wPLRBU6cvYcL7/lRhjWY4FBuzGDjMm+99CxmOuHpp6d4CXHSQaQGV1mKXQvFDq7K+dGP/TUWeovfZXF+dy7WB4P/g8pAexj0/Q17L97j51XJ/cq02IfW34G67F+z/YPPIZDhDikZuENInsOcDnoc3LXfXQ2Jd9Wwe3PxPKC/60of/NDzpGyWz6jqqkkM5iTivVcIBDGHoM6DvKqq5rKi8oBPBHsidohAs/Y6ty8DvHfavPdYaxHC7UNYpZQNdBawziHmHeg7/BH2ZUyDb5K8+iCv4TtGCI2RqkeQ9RZ46NH38rP/zX/LZDzm1//5L/DOzdvsFlN2iptUvuCHHz7MI49+iKx7ClsnzCpN7QKHKKnqxsk9FTWmnRGMp3X4OP74SZK159i+us2NQY44dI5hdoZnXqvZPSk41TNEWrPSP4cMK9yKhwyLlLa1nOq3qSeXSENGLjQbReD44iplliF3BYfamrQbYbViVtf0pWRgOuBzTGzIsma+cbVn6/ImS0f6+OCpJpu4UNDOzmKUYqp6nDKCrBwxnBl2rOTMyTa1Mvi8RtSBGIEOMPAFpQ8oL0mxuHp+TZWgLDTjPNDOYKG7QstYWhG0koQk65IaTRqB0VkjTIJAyYZL8O6cZf788T0lB7a0VJMcFzxbGyO2JjDZsRjlsUKQW4VVJdlKl267Q6etaaeaWHl8XrJbbKLapiHHpAFrB+AkqTSkQjDiPmbCokWElIZgx5SDy6zG64RgKORRXNIiRILpzHN1Z8aTP/pBFo5+ikWV0dGOyO5ye/1NKBf4yuc/y813hkgt0G2NSATeV0yHAXD4IGjHAmka7GU+rfEOxqMKLyUmVkSRahQ/lCBuxThPIzkqFbYKBOswRuGDaTTx521bIQRRrJub1s+x6fPg0JgYE0VkiSGNFaVrgkHlPO2WIk0NhQ2N9XlZIqmJtcIHMEZS1x5Xe4JtFm1tDJJAOSuoaouQTSVOKBjvjsgyj44k3jqk90RSohx4YbHC0e20MLHBlhWV9dQO9HhE71AXR6C2Du8FdVkTJSmx0UxHxbz63VTA0ySmFRmE0njVENxcmJPgopgwKSjGI6qgUCYmjiVSRSDBGIMIjXOrUREGgc4ilKBRgMLNJRptIwepYDoeUI3baBGwtaTTbRFsjncVIkRYH4hiTdrOWF7u0coSEtOQ57JE08k0sboz2cJd3fk5+Y87/wjmAbjH1o1MGfOFVuq5epFvIEhuH7PbHNuHQLAePCAkzlrqys8J3Z441WglCN7h5lClclbhnWsMcZzHuxpBQOom8QzSk3YyhBGYCLyvsXXBeDxmNBlSTkYgFbHR+NpTTEtUWdFTgXVbNQ63rjHEairAoGjUleU8ami1NR/9xHE+/pGHeOjDH6JKzzPeLjC3btEOMxb1DJtJorBCWzmEEVRZzOqZBzHyHsTRUyzennB0aHGmR3z4YZ7byXj+Skk9sZw0lr4SKNXm4Qfu5eL1nNlgxEraIh7eJJsOaYseu5e2XEw1mwAAIABJREFUeID72HQd4rpLlCpakaDVPUK2WXLlS38IskXc6hFFCqNhlpfceOV5Ih9oqZThZs7mzZusLQHe8soLr1JNJyQdgcpvMRtP6S4/xkra5uroJt04oKKIIAS5nbFOhdEJqUxQVHgvCSIh6QluDxQibHHPquJ4J+FQZui1BcuthMIVpLGnpSSGhgMkhEZrjfYFwTZGY0IqbKiQsukQIcDoeO6yXaOkxkQtQjGjLmf4YAlSok2MUBHO100HTkqsFNQuUNoKLaGoarwrGh4DDicclTYMRyNKV9CIe3tC8PsVOGi6AlI2sNA9da5w8N4OTUeVfWWcOdFyz0HWWWzdQI6UAucniJAQCYUUiooVagEmSG5v7aLqIcoP6aclRV5j26vIlqEykoGzjD08cPxBFpYfZyoVXRWw9YjN9RMEn/LKa9/k0is3afdiFtYytFGU9ZTxliWEXbQp0dpgtH53V+72zjFNQO59uCswnO/0HcF42C9qsMcXOPAVBQ2ZXMgDCd8eXGn+j5R7pmlz0Eu4Ay1rtu7NgwffNbwbKd37o3ZzD449/saB/vCfSg/n3y2OY+DAvQ77EKG9yn+TlEuU1lhbz7ff3X1gr9AT9roGYT9xuOMv4fa9E0LwKKn2OzvhwPsdTNj2Og/MIX5NoerP79w0ijueWzdvsrsz4PCRo5w8fZrXn/s2t37/8+SjEYcOZXz4w6d44OH7WbvnPZRyDXYHmOkEZUsyWRC8xIQFUlVhlUIkhjjpIjiGWFyldWpId1JhusfwrVNcLzVXBxZZOZZlIJIKE3VZWcnYHVeUsxkdk6Kn6yShRpWK2TDn2KmjDEnJSIgEpHFK2lrETnJuvfAsUW8ZhuMGRi2aWGm8tY4WkkiWbG+MwU5pdxXeWm5euY2oKyJR4iebIBfIusfomoitfEjHCERo4GGFr5kKj5KaSGgINT5IhNJIKRjnAhHGHF/Q9CNNFklSI4mNwnmLURYjG0lSSBDSvOtIxv9vxvfGOSgsfpyD9BTzRuN4kDfqK6qBJVQiZ2djiRPnjxIJS2wkwjqqaUGZW1azJYgVLghm+ZRZrMm0pnYDlDzJuhvRFj3iKqfcusTOlW9x332L7PoxNzdeYHdrm6oI6FaCPnICox7g0pZBtCLiTBFkC7+4wn/00+/j1ckVCn2N6fY2tS0h99gpuFogPYioqRpLIQhCUleNW21VOEws0FKgtGRaepCSOImoao8wGu+gHNX4ukb3UnQVmuqyC/i6qb+prJHHLAsHdQDXBF9aQG0lSmlCAFtUlKMSVzm6S01woKWkDhIc+OCwZY2MItI0UA1n1NaBF2ijybKESAnqGryTBC0QsUZrj502V2pSWYSHTMpmcQyiUVYwBqUkeVEzHZeUFXg0oaoIQiGVRtOQsMqiJkrTRmbLFdiywEmPDYrFXkoWJxR5TVXPkN6BtLgAg0oQec9sMqFGEKUtStfCSA0mIjItEmmJohitE5T3uGBptQwyQJ1bXDGlLnM6sSbSgsFgC6Nh2Tp0q0/bKFwwKAXdfos6RCRpSrefsbjYQgOxaRK21CgieUDJw8E+mQCBUHf9tE8I3GsNh9o1JkJKIyT7LspuPlF7F5rqqmhIY7ayeOcxWoAMVEVNXYXGM0PPq1FVPdfU9lRFTT6rUUYjEQjvm46KUUgF2IBUkHUjdBYRxZpQW4rZhHy8Q1EMCb6A3OOUwBUFVJ64qEisZ9lovA0IHEp4jA3Uc5UmTzPZLnQiHn7PEf6rv/sJHjj5YXZLz5Xbt9m+9BLi1lv0FxXD7S1yvcpyryBSllk+YzY0dNoP4Xvn6Dz8Xtrvb5MJQyoUpQyo2zlX3xyyftODSrhRbxDLWzx+7jDXVYtNtcTNjRGnpxOWfYn3hs6VglujTeozp2gfjgjKUJYJaatLazDkq7/8v6FWfoC1TsRyW2KEZzge887Lz/CeDz6JrXNuvPkmu4Md7nvsSRA1X/3CFyk3LyFWV7DESBG4cP95JjeuU/rLREttMn2IqYOLoxuo1iFaKsYrRQgFRBkm6lOJiqA2OL865N4uHIqmtBDoMgO/gQ8VUXcRKTXB5fiQY8UKAUeqAnVdIRuJIRyeIA1lmRMlKdqkSJHhbIXzoZFQdeDrHLwDpRBCErSmqiq8pyEEB4GtGuPAKDTJfZ5P0Y2hJ5ZAHiTDyYwkBldVCCUb74MDhGQp5yZZAkSQeDdPCIRAinBXECPnibJSBwLPEBqiq/eMB1NGkxGL/YxIBTwOQZ8xJQkxOzeuYPwmi/3APWdX2JnsMkinjHZziiBotXqI7jGUOsr6FHSsyCJJwSLtQ10e//AR3q536e9G5L5gVhtk6SkngbKUHF88wsLKMkmczqEZ3xkafhfYzl/QuKvKL0QzQd0VeB7Y8eCYT1p3mZ19535zgir+QPAb7gTGe5lACDTGX4jvCGz2qiZ7ScG8onrXQd49w7rQ8HO+66UN+8Wfg79eXFzc588IxD4PYK8rsHer7BGSQ/DU9R0yMhyAhe0lBgcSjeb3Yn//fR+FeafnO5WH5Lyb4P3cO2HevQvc+Sx/XrIraBIeay1b6xu8+NxznDh1km63y6l7H2TxW8/S6iY8+ZGH+an/+FP026cpXGAynTDbehnthkTGURQjarlIJ8sRoaSeWULZQoQ1VGuV9Nj3k56KOI5ECUHuPenUsrVdsrMbkMpg6wG91NFvtRmLmJFos7ObcaJqI6RGTEriGxMGkyH+6Aqmr3AogkqIk4RyPOHFz32OpcNPEvclnVQggicvSgbrNzh25jxlXjK4cZPWQkbcO4xzNW+/+gZqeAtkh9oGWm3F6qEe5c4OliFRL0MGzaTKmdoCFWUkQjXS8KFCmhZBaKyvCWrGkW7BkRgyWaCDQThJCDUhOFTaAZr7QqKRovU93q3vzvE9JQcmQBxHhFZDPHX1lElZNtJxkQQt8cKzfXmdt7opS6pgqaPpxZpIJEyLMflUsHAoISjB1vYWdTFg4WhGmgqOizeo/Cqu7nLxtdfZefNFslbFG90nOOVvc/uPfomdF69TDqF3bJX3/9hP8bk3Yg71aqIq54rWTEMgqz0f+r4OP/tf/yN+69qrPP2rv8Ltr32b6tYYnMJkiihRCCXQicIDVeVxKOJEo4wGpQhRjA2Ng23cgumwRMUaHetmcqVqJgbvqccFrUWBzCLKWjHdLRBYogR0ZgiVAOvQImC0xFnH9rDA2kCYdxXKsmZrs8ZoUGmz0GadFG0kcaYpc0sWSeq4cUsUUmOSmDSJGzy6UOhYUuNxShEvLdFf6BLIaEUSKkeYVeSzglnlCNScvP8cW1vbjIdjXOUwKiFLNCuHWsymFY6CSEIkFFmUEKZjvI1ROOJMI6RjXNSknT6lc6iqZLC9wyxY2mlMHgxOK5aPrCJnJdZJpGq4B/VogCJhWJcsHOrSMpDPcm7vTsjQaJmSJgoRKbxQgEbojKXDy6zvDBjVGl1BSzvctCIxGq2ajkxpoZVIuu2UGoWiwUu3YoXWe4oqTUJ3JxEI847B3RPt/qIpG+iQTPQ8EWy6T1LN1SL2WvY+UJce63zjiOzvVGTLvMTbBuspBY3raF0yG+UEIXBeYmuPrQLlrKQVZ0SthJoYcLg8Z7o9ocynpH1BlnRRSUSFb4LPrSssxp7R7pB8mtNeMvRXUo72V3l7MmFneImHF5Z5OQyJ64pIBlxZcrWSlMFTukYn/8MfPsvf+3t/mfOnPk5lX+LW9jPMLl5h2W2zcCTHSsFGMuPE7pvceO0rTKaKgGFSRfzrf/P7nPv+n2Dtwse591yLi04x8YL3rAVOd0rec95zq07ZuLhFqhWHOku8/doup9sJD505yfW8y/CdhFuTkuzIeR5bfi/P/MofsPrE93EiGrMk2qhOm9bKkG9OWqztpJTXXmJhIWI5WsGOXyMuD7Fy8ofYyBWbmyOE2eDo2ha3NyviQ45ub8zIFdyaKtbuv5eHTj/C5vVrfOOrv8Lpz/wdbs0cWVHTigIr+hBWrzDccLT7U1rVmBBp8ihmuFFyIXqRD5w9T379IqkytKIeLrcU5gbdhXMYEXC+IEiP8CmOgFGSTrbELASsHQEVSkBZ7+AD2No1SmTaIDG4aoKtxkxGAyJjUDpqEo5gKCtLUXuMMBTFNs43HYNWmuG8I05iKqsIskkwYimRcUroLuKxqDgB5ah9AeIOPEFriTZqDlcJNKZPYt79EPMnZt4dnKvaON/AnfbiLqmaDuvNyxtcun6Ffs+T9FOM1vTELWq/QF1qFvoFdjxlUCm20zUWZcHGS7/M+jtbzILmnqVzHDvxJC/vavqZIxpW3NSKqvYsRfDg0gIfe+RHefMxzze/+H8zeP0KbjjDKMXa8dP8L//9PyDLMpScK+vsP+fvrmAW5vH7PJoV4Q7ZVxwI3Pf4wnfK4HMjLb4jPg+NXwfcwTp75zlYFW+OLff/br8CfifCnW+fv2G424fBe7fPPXm3nM29zxHpPSGIOxsPzu5NbnAnMdw7x8YYtNYNzh/uTg7mb9AQjC22tiil5lCgeUlJ3PG5+dPnJDRcNA5e03mCIBuvg73CEuHO9dRzfoKdS9JKRGPq6d3+8b5zNN+vuVZxHPPB7/sQDzz4AG+9/jq/8au/yje++FWSdspf/4mP8f0ffZxu5wjWbzDJr5BUPbLOJbCb1DhcNKafT9i5VlGVKVKl3N5JuLi1zJGHfpj+8fs5eijmzULQiWEphrXEcepQYNcZhreHdNspOlSMd2Ysx4Yjy8tsdRPG10HHPTr9Lid7Yy5/+QWWHnmIFTcmkR18FogWCoo8ZmUzobz0OourhlRO8eUOJqS0Fs8zKgWj3YJ2b4co8cxyR9SSZO2CrUnO9lRxz7330Er67G6uc+mt5zj84R9kc1LSiiq0kPRUG0vKdBxIWxWxzanSjNwpbJlzSt/mxNIK5fYtTLuFChJva0I8IY6XkIDHzb2VDzxn7+Zu5Z8zvqfk4PDJFkk/47UbJS9dGvLjH4owu5rL1zy3rtVMdz1K5OxcnlJd3uGx//LTrC32ULXDTkb0k01m2SJ1kEwHO1SVZWt7zHO3r3J+acTh1Wfpy4x/+/sDVpMHuP++93OrvUaxcIq+ucwv/h8T1q9aolMt0oePUo0e4S+fXcG2F/jSS46Zc5zsWc6YKT/zi9d48Ee6fOtfPcXgjTF2EiEDmFiycrRDaykiLywyOBIjSCMNwjPNa2QSo4xiZh31rKbYneJsio5jahdIlMaoxiV1VoHdmZKkUZNsRBKhA9W4gQOYWEHVBP+uahKJmbesncioZzWDsiaKFHErIVnuMh4M6PRjpk5QzSzKg/ICn1t8adkZeESkibIYpQwmi/FCsLsz48iJJarSMakqyqpieOUWtBN2xkM6/Q6dtI3RKU4ppApk3TbXr29Q5BXWNcz+VAWkCAhXUk+HGBVjIoOUDlc4DnViQl2TW0dVezAJWbJAZAKzrS2kBKUVeRHIRxVSlERrR3CtQGZiilJQW4H1NY6ItUWFURmm08UGT7DQ6QbGgy10cpgkbdFfXiFtd5jkTXK3UxtkEpG1WkjnEHXO0WM9RuMZO4MJN9cHJO0WR0+d4MhxzWIngso1zoPztnJg7lws9h5cmPuOclcVcb9F37SSlVLUtWsqa7ZRRPIBpBdNZ4CA8J4oVijXBHneNkmHNo3CUkgbl+eqsLjKEmSg0o3xyWw4xdWeJIlYSgx4i8naDQdhMqMYFxSzCZGJYHsbvdgnjmOMUqi1VRa6MTq27Cy+gq8tYTTEjydUE0cnyvjoyZMYF9ieFMTWAYGB1HRFYFdI0IJWFHN0+R5OHP4Qg+3X+Nwbv8v5rOC+UzUyr5kNR+RVzVJVMp14dAnttmKaehJj+M8fjvjff+O3+faXHuM3z67xfT+ScP/9gm89V+CM533tgm/fKFjt9YjzmvVrN+iIb3HxxgLnpsfp9yRHzyySihEifx55/0cw3+xz4/Up8uMf4MWdhK13Sv7mj/4DfvJ44F/943/Lt2+/QrsbePa1K3zhp/8Jv/hL/5Qju1f5R7/6O/iFm7z/0WOs3n+BUnhSb8ieWuf7P/M3cPowW1e3ufrF38ahufCx99LRhu3hddzGbVy2hHnoI7x98Q3uuWeXSiwxah2nJiDHF/lLXU3v0EM8+9uf432P3cu2X+K1axPE8G3aZ1PWJt8iaXVIooxW+yRpb4FELxD8jNqOyeIWLmphXU5d7SL9jOACUZQggqDKZ9TlGPyMarZF1lpBSo8IgdpLprWlzEdoY3DBUtcOpSRJHGNDRJ4PSZUgtPtEUYScBxNBJXQXYnZ2bzRa3MEyLSpubOX7832WxSAEdQgYDe1YUsxqqjpQ1QEOaqy7QBTH88B1D+ogKIsaE0Vs3t7l1acv0pEV4aRmqTUlTQ2Rz/jac7d4+PCTREcfZUu1UUmXxbDN3//164xzz9L7j7Bw+gwtc5IziwbiiKduCKLMcUQVTDaH/MJzQx794HGe+sLX2bguiKuE1DhOHTvCz/z1v0O73UbOK+DiT4WH75aQdj7CnXi16SLMA87vaG7IBvM1h5YccCg4QDTeg6TMD0vwB3X55wmDlPtnQck7Ccj+3+5VqkPY7yLsH1sA3PHGeLd0X/bGv+/VXVpaotVqkefN82Dm0rcwT9zEHb5A01lrVISYdwCaDpva95RwYe/87X2w5j/WuX3+GjTH8MGTJilVtcd7cPsNHyEEZi6rug8lCuEuCeK7T0DTzRFS7ic8aVbTbbf55H/wGd554y2iNGV16TxpvMJkepuruy+xpMe003fwfoOy2kHYEakdUxUzdC2Q7Ra5XuLIYsaxU4FvP/01Xnj6DOEex0c+IPFV4NLAIWXgWGx5c2A51u9QjmpsuYkOtxlP26wUS3QziE+souwOQha4hSPEZ3psXyngfed49u2KJXOa9z1+L++PHU9/8XleH1yhvRTx1S8/x9JrN/nkpz9Fazrk97/wHOnqNg/dc5aks4gToGtB9OKAj/ztvwZVm1uv3KLavoZKDWcunCFBsDvZxY1G6OXD1L0FNge7rB4qsLTJk2UKW9H2JUdSQRSvcPWFVzl970m2yph6OkSJKXFP0/Wb1BVEuoOK+/PTXwAOoTv/HnfiX/z43kzQRiXVJGdExYqpeX3LcLk2XL82ZbRRUhceECRlTXwm4pWnX2B79RDLq8c4tHSclcV7sXabLzz/PEdPr5FlCZu3Nnjt5ZtsD3Z46EnDaGWHB0/2qfwtrlSvMi0Oc/Vf/Gs+93tfZDCZILoRvQsfZu0Df4PptzV/qAzTI/D4hYxW6pE2R9UFDyy1+PIvfJbJyy/hJ7eRvkZ3OySxpHJghw7hwUQGh6JwkiIvKHMI+Qzn2a/6SunId3OyLKV/qN1AOCYVrrCEIEliQ5SmVNbjZxUEh/c1SS/CCd2Q/XwTZOosRgvwUlAVRUPgS9qYWOGCRaeKyHhmVQWuIRwFASo2qMpT1NDppUil8EFivSKTHiU8uzcHpK2EthS0jMFECSLLONSLoHYYadDKoFTKcpLgRI2e1OhgqEuBJBAlBjceUuYZeIc2JVFqMK02uvTM6gqVxmgivA3UHopijFSKdq9LhaMtBe1eo/evRMHObJerr0xIsx5xp0+UxERSI5M2o+kIWXvKytBqx3SijF3vaGWCt199i9FyH2USTKzpdGJa7ZjxrCJud1BSorTApIp22yBkiyANWM/S4RVWj66RBLj4xjqnTh1CqabSMm8azNvhzQ/7C6+4a5llv6IEDcbUaIIAX3uEsNRzZSohFHuumEJBXezpVTekzaqomA6rfRfkKDEoo6lKhxTNImPrqiHHe08+nKAmijTV0C6JZMBSEmyJQtNZ6jVKFrZm9/omzoOOPEoblPYsHjlJPdxhsDtl8/qUrXd2iHHcd/4Im+sjutvbTKeBOgSWZEQZKQ63YuRai/vPnuLx9x5md/Yiw3yLJ4+VIAbY0ZSyLChw2MKyO4U4DRx/LKJ9eBHdOYoVRynGGf/puVM8t3UP1/oLHD4U08sE6YOaw7rNV7814lSvTZVETNspdWx46tmEH+hs8E//3Zc5+0Of4oGzRzHVNW7dusinz51Efvq/Y/cf/iwPPrLMex59gvYFz9GjbUws+Cs/+zHuecrTXWjTPXKaXK3y+S+8zYu//j/wt3+8R++BJ5jmJ5g8P6P49m/ymW+9QGf4In9LT2g//AGeDVM+v/smrd551geP8Adfe5n3HCsRq2e4mabEb/8u73vi/aQnHuUbtxz3dTXHJpvowRVEdJNr77zNo+/RXHzrs7wlO9S9I9yzGFHe+BLh/AUW1A7RTKGKXUR5E7HSB52BL7CuwoYK5zzWx9ROUU13KScWk7YQUiIFZFEHURfU3lLWNVJGDbCjrhnubNJbXKCqcpzQOBHhiNBa0G53yYsJXuiGN+Q8s7rGhaJx9Yw0Za2xPqDjmCOrC/vzvUkNR86scOa+Jdo9xTN/fIW1s6sUuzk7myPKMqCVIpJw7Z0NnGvmTKM1Sut5NbkhJvvQwpUJ12+U2MEux8QOh84lFJ3AwyeP4cJlJmTMJoorf/I0v/mlz5F7S7TaZ+3cD9KJH2XzzYJbSUq1pHn0rGqI1GWNabU4vxzxe597ge3Xr+Cm25xYXuSHHvsEP/jB72NpcekuvHbzPP+p+vG7cOzxDprIcA/mKOVc5tSHfeZB0/W8I5e8/3IX7GSvEHIH+gV7ULG9oJ+5gRoIvyd9Gu76RAdhY/vE6DvEhHfHOBAriwM/f6ci3Z/1eX/+53+en/u5n+PXfvXX5l4EzXYpJH4uRyoPGM055/YhP945alfvk5j34EdNLhfmClTN9j3/hDAXuQBQUuGcvUOADmE/GautbQpO3iPnML5mHVTf/YvAfnIH8263dRilWej1+B//8c+zfe0SWa+gqNdxfsbJniaEHWw+pvYzrC+xdUFZO3QEi+f6RL2zYE7j/RK2avHxY8tcmy6y2YnotSSRgm5LEQfNxZslx1sxpVboxWV2BprJVpdTesxvfOEp7v/oxziuUsbDAUpaTh9bQ7z3k4z/17/PvQ/8T/zgvV2yWNJqaYwIPPqx+1i+WLGwvMx7nvwQRaV54/WrrH/zN/jEDyyhVx+jGLXxbwy48cYbfPnZd+iOX+CT3YC79wGemV5nZzwli04yGB7mpaev8/7TltHCCWw9I5tc5fSpI+juYV7Z9TzQ1vSGO0T1Lt7uMsq3OXZScfPy57mZHqadLrCgCuzkOjY6Tb91P364jah3IZGQaIR49zge3xnfW9r8vXUOupLDSw7Z9hw/2aNIDer6BHlMIypL2PS4KpBXgWu7lh9Y6eCCZjCWxK02y92jTEXEybOOvKwxXtKLVyj6Jc+/ss1nf2nC6VVYXbbsiAFXZhts7rzE4O1dxlsTQgLmUBsROozfzLhc97j/iTYPHTWs9BrMbOEStmaWt9fXKfMh3g0AjzAxMgqNoofz6LrphCsnqEsovScfW+qykRCLUkkjS9qoMSkjyWcV0ajAyKbdqzWI0mNd42pry5py0uDLAarSga2IpMREuiHviabSPJ05rJBkmcELQVE54jgmjVOGgyk1DbbX+0CZO0JdoeIEIQNGC7xsFG+kd42/go4RRuHxqNBUxX3whCqnt5ARiQitOwQfYStLbAxBaIR1JNIxtDVlZSHETaLQbdHutpA03APvm2r/ZDSivdCndjW1bSAoJlLk0yFxnGHriiyTBNEQrcfTCusjpGk6HME3XZRaOKTIAUk+2kSVM4pZSqQk1Tjn8OICddkGMXdqdb4xKekYROWpS9vIMBpLLSLaC4YqjpFOkqUepXWjDGUEofZMB1PiWOG0mAfzc9zx3qIp7iQBdw2xV32aO1nODc+UUdRF0cAtpIAgmzbz3OxOigZnCqLRiRcBWzdSpOjmnBmlEIlo+CPCkkaaMlgwkqhl8IVjOiuIXUyZ15TTmuAUOs0auUshcXUjbxucJ9SWym6hF1q4vCLfHiOdp5UqClUSVwK1s40bBcpSIINhQUBmDMcXWmyqihtTR9W1lN0B29s7lPkWS6sDBuMRflaDDZhgMKmgrktaHYOULd5+zXL75jW2b97i8sAQJ6/xxN/6K9xzTHDNCt6YCJJIcnNoOXt8ldzVXLtc05KO84ttjt9zD4Mrig8/8X28+tpFPvfUOySrh+le+En+53/jWf/2v+RCMeXi7/0ynWrAsff/EPm31wn3LxP1j/HSV57nvY8d59w9Z7hhFZ//+p/w/Gu3eOyk5bGHznDrtWt85dd+i+vbI17cmnJWFnzxjVfJr71NV3r+KpaousX6s6+SRA+wwQVm+ZA0vcLh8xHnj63x+VlE8voN8nqHSl+nJd9mzDVOH5PYepveScd9foKqL7FU1Zj+DHn1VTh0AvIpTN7EyxYh34RjT+DqHIQjVBMCDmMaeWGNpqgBoRsCrWm6mkoq6qLEe0vQCqRHi4qskzVhpFRIHaF1hBQCbx0oQW0DZWmplQMJLjQVyxiHNBFGZMhQ4KVE9dL9W7+/kPDEx05z74UV0kxz3+Onubq+wcUrE6ZUFJslRS0IxnD6sVNsvr7NdFYhpSGOE7RS1LYmzSIOHzvK4uISNy8N2HIjthcFb72yxSNrluVlz1UruDJ+h/UNGF2dMtgc4vua7rFVhF1gPO4g4x4nj8YsLigyI3BeUYiY3VngSj6jqKbYMEDKiI88/iRPvvc9LPWX0UrPH+93WQD7Z4xmnrmjTiPuAszPKcB3dRXmWgd+DjeZB6xBcKDiL1BzI7O9ysgdCOW8ai3VXTAIDhz/rk7qXZ+1KQiKu/d614w98vyf7cLw3bcXRdEoAkmB8Hf4aXuSoXtJwZ66UFChWW/n/jd78qMNyV/cUY2aV/L9XDzA+b31Yi/JsPv8BOfcAcJxmKsu3SE0S9kkBvt+CN/9BOy/1kWJENDqdDh573m0Mc39cuI4ZfUOVXFJlIAaAAAgAElEQVQd77aJ013yckSoi8ZDQcRI0yUEjYm7CJa5eWXCZONFBgPJIE+J00M88PHHWGvD9QqGlkYe3MJqr00VHOvrliMtOJq2sIuSclfznguP8M5Lb3NxpuieWkMvrvD0HxfsvPw13hcbrn3ldzj3oY9geqvU45qwmKCzLm9/9Sk+8KknaS0eYmdc8txrF3nz+eucPyE5fOIwb3/l81x/4Q0ubUx5dr3kwbjgpaefYevFP2HNCE61YsTkErNXn+NC+hAbnKHON+n1axZXOiy0W7xZKVq3JszWZ/TkJohNnBrR7wic2yVb1Rz3I2I3IaVGxhVieA0bIuRsl1AUkCxB/xyid/b/w138Fzu+p+Sgu7jMoSMLKDfkWGdGiWHpw23ePtvmmS8NuPTUGLvRKFRsrVsOLS9R+ojCaspSUas+uqVoB02Wl6TSU4gh29mE2aFlrj+3Tj2tuHJpxm4d2MoDk9k6oRQEZYjO9OidO0y/s8Ribjh9ocW5kxG0BFrCjcLz9o0Z15+9zvVv/BH19YuEqkRHpoH7SIstK0CiE4nzlto3vgTBBarcUlW2IYK6+SQp9zJ/gQ1QVw4Pja6llEglcLYhmdqyxlYN5CROFASJUI2cnghzXLqUBCVwoZnQrfWEop7HpwLvLUVhKavmcyokQslm0ZcKpQTBeWzl8ChUZKjqQNxKMSqgpMfXFlvWBOdJZYK2JXGSIaTHi4CMNGVZsNBrUZcKO8uhLpEejBJUOkb6QGEFRht0kAhbI2UgoHA2NBwA4UAqhImw+QiqAolH2kAdwHoBKIyJUGhqB1VVEbxA6RilI3Aea2vsnMwdR4bERHgR6LZSprN5siYlSjaYfCMNtnK42qKjBCcNW5OSMgiOLraoZlVDjp1MyCONdk1CJZjzOwIg5B0j0QNYwH397rtGmLfjPd45rPVoIxtJO7Un+SjAO3xlEZG+s5aKZhFWkUTVkrIKSDxKCdBN29kGGmdmAloLZFBzfoNECI0NYK1DmIikF6FwyFAgdIR0JSbUSC0xiaIcVUQiJt/dRJYTNJbUQDcOFOOal28MkaHLmsg4mvbJZJsy5GRxxLn7V5APHKF93xLdlZKqvkQnmxBEThCWMK8m+lpSWUXHaLaHmvGG5Y0rlps3PMOtwBsDSdKaYr/4h/ylH/sMq/21hhQfBCJWKJmR+IrjhzU7W5KXbgYWU4nN+ty4fZGknHJzPXD59pTucJdy4yY/+cj7OL78Xl5+9hvMtnaJhCHIBia4dTtw4YM/zOjaizz1m18lPvcIH3rsGN/6vxzv7CzgvvwyLz7/Ol9/5y1qrfnZH/84q/eepHrht/jK87e5smWZRJJqNqDmNg8u5syWF6lPnOT/oe69gyzL7vu+zznnnhte6tw9PTntzOzMYHeBRVgsFotIAmAmAqNkQjZDySyK5VKpSpJlS1Vk2ZblMs0gli1LJEXSMimCACkSRCAJEIuMzQm7Ozn1zPR0evmGk/zHfd0zs6DKKMs2gfPHTL1+79733nn3nvML3xAdOkS8b5ZcpORfO8v+62dRbot8eoCe2aKxdYFbF5rctD0WZ5vMxzlNclJliWxFoIlbXcWrmljuqaC8ibn5HDZuYJ3DuxEohco0WqXIuFZVI6oV0KR3OFdQVg4RAnHSIghVdx28I0laKBEQcTzpEBicKfDOEpQiH4/q9cYFRPBAHbCYYEEGdBwjCDgR0Pr2tX/o6H6OnDjIoUNt2onl4L6IpRlPEmVU44rhqMt43WKEIJluMjfnSLMKJh4H3nmU1sRZwsL8ImncYkCOjQJ5I2HjuuH8tQHnL17n6tCyOg4MC4GtFD5pMHvPMvOLi0z5lIVIs7ycsWtGI5LalfmqDVy9ablycYML584yunUTUVmq7haL09Mszs0TbTvVbn+pb7Xo9T86Xh2E37VM3V6jdmK/29Xlu2ROxQSOdMcJ6lrGpDhSv6iGW04gMa9e/257QtyJa7qD9LCtegSEb7Ia+f/bCDVHgjtUuO66BsKrH9ev+8hHPsJzzz33DXP6ao7AjqToNryO27C6+u81lEtE2/Kxk+A+yJ3OQp3u1c/Vrui3pVNvnyfsfNRteNE2z8MHj7N/zcxv/y5hIpDRz2u+WzMlm6oLbz4EZBKTqCWUGmHLFQJDgvD1pwoa72peiZYp4zyh2Cy4uDJmtO5Y34TrA006VVHtep6H3/h6ZpVgFAQWgVQKKQQ6CJamJd0h9AM0ZCDEGWsblpavuLSiuDGsSDtDdGl4+NgRDkzv4fwLr+AKg5yedGmkoBgIDt3/Rlafu0yybhHTc+xfbvP1gefWYJri2Zd57tkXuHrmMvHULN///W9keWkGdf0zPPflW4w83EgklZLEUYOjexz50ix+sY2am0G2mxgvMJc2WOqvEkRONVUgZBdG1xkUKX0/YKbTYUpsooUjEh7pIaDx3cu1sIPwBJqIYPnWUyv65u/Tbyo5kM159Nw8TeeZa+Q0lWRvM+XI8ZTcSNY2oVzrEbwg33JcuDzkvtPHSJJlnJzDyAaNdoN+KWmmIDAUISVMj2ifOkXnwoCNnsN6h0NBkhE3m+TXV1FLM8iZDmrmILqxQCP2TO+JsNJxpQftUckrVzd48dkrrH3hBaqXHsdFXaRwiMaEvONDXTaLZO0W7GtZSjdp6QlJrbWfKLxgR3dY6QgVCURUG5W4iSzlNtTEVw6DmajS1MGiUKImviYpphghQ6g7EEpArHCuPr/1BkJtwmWkx1YG6wLV2CCEQmiNiBQqToiVxEtBUVhM5UBGSBnjrKfR0IhQ1dXkQF2Ndq52VB7kYANCWSLdJFIpg9GQmZkGToD1FkGYBCLQyBK8MxgnQURoF1DU8p1KxlhTO5/qRCN0hFOK4MEYT6Icyjs8AiUjkiQhr2ozJ4Kf2MNXeFQ9v8YQx5rKBaqqRARBa7pD7gVx2qQoRsgAKgAIHIHgFN7WGMokSYikYjzM8ZEgjmJ6riDxCa4qqPIxItHoRsTORjZxcCUIggSh5F0QI6DeVHeKZZPEwDissVg3IQmqSRA/6ToHW8+jVBJra08EqK8poSRREjEuK4Kr9eCZtJyFELWZjTW1BvYEyx1FEhlF5LmBINCpJtYaLTxm4LAqQkWSrD3xWkgFkW+SJhHGDoncmFAVJN7QTiTjquTa5pgTM/Msp23abgHFNJvVLXTQzE/tYfGtb2W0q81WcZ2qN6LVuUHhPVoJnI7wQeAJGGfQwVNYzWbh8fEU6VKbqhMzv7rF5pbly3/5FyzsOs3p12UsTrdwISJLFRsjT2Qids1KoiA5kwsuy5h2s82azWhZQZmPWVu7huk6vvddp/jwj7yParaN6HRoT00TN2OCSLj5vIOW455j38Gff+llrp79MqffNubtP/yD/D6O7oZjfb3LjcGAnguc6MzxMx/+UeLXHOXKFyzF/us88dXLnD17lnarQW+jYH7tEp3+K4T2UcqlU6znKe7FLcrPPUaVrNBZTjASNq1heWGO/qZhc+yIq0CcBHQzoFqCaJwg21OY1XWi+SmYmiHoBXyS0V19jmjmINZUSOmROsH6qIYCeo8SDiEiBA5vK6ytKJ0kjhQ6buFxeBz4hEhohC2IdIzxbkKUt3hncN5SVWXNdRFyIqtosd4SZEEcaZSQk2RfouVtpZR7HzjJ/O49NFqOKT0kEopsuUlDZQyEorsu6K13qUpFt+85sGeRXUHTbs+yvt7jxo1V4lgTJTEnTt1Pe6qJarSxFHhdMtUasNIrKMYlpY1BZohYYcOYZHkXanYXsrkPLRKy2NFogxGBtQLS3PD09R7nz66zfvYa48uXqPQA19tgdOsawtodydK7AUTfJtnBDu813AWLuStD+IYqfs2ADWJbSUjskK/vGndAJ+8MPG93Cbb5BHebNW0/DgD+dmJxh0Xat9C4g3ex/XDSbbm7S3xHZ2QyD4PBgE996lOcPXt252w7nYM7eB7bEqV3kZS3505O5iXUpNRtCdntpMJ7X3cNdj5tnSD4HR4Btzsek2s43LFf3E4OJp2jVykc7XyzEPDjAnt5C3d9jCsrXDtCHlhE724hdW3AJvQcUowQIcNNJFW9kgQkPtRxjwoC62JGVYHQc0QzLRIVyKKc3CieefxplncdYXnXNE2tKRCoSDDMBdJJlqYkpYFeKSmkII4T+jaiVcFWb8jo1g32LlU8+MAy73r0JLYRMywkWauNSiNcIRhc9ch2YO/RN/OVx36D5MYWex88zrH9izzrDcO1EjU95NYox7iIY8v7+N4PfSdqcY6tl3tcFT1uPn+BwaiHSDRy7JldOc/0PccQndfj0jm2RoLRYEj1/CtU2RaNpQZjZ0EFmlmDMveMjSPpBpT2yKy+LqSRyHQKP+iiOh28bCLSRWQydfd9+202vqnkoJAN8qhBITVdp1hoaPoeTqSS1z+8zLVek62XzuM2C3zl+M3feYpf/4WHeMsDDzJmhosDS7PRIYshShO6VU4/i4n3aPbtPcCZzz7N2nrB9OkZWrNNQjpHX+9l9ZNfID64G7Oas5bM4ZZj0FdZO7dAdkNxvR8oL23S/+qzDF96llBcQ0Yx+Lod78YVorREqibrSa1wFmKpMK7EVwalJXoqIRKCOFWYwtZSXQKEVnWFTUdU45JQeYStF2IhI4QPE5WIGtMeaYmMJq0+KTEqwjuHnOiYeiGR3uOtR8b1DRSEpygNobJ4ImrXrG28p8BZ0GnCqCwYV2FiWe/woSQSkwSlqvXEA0Cs0UGQJDHd3hjbHZDEKc22JW3AaJQzGJdUziPiFN2QUHpM4WgnEVVe0Go0sT5QVQGhJalXSAeOWrYzbWToRsKwGBN8LdslfKDR1Ig4RhMzzgPr67fI2h1iHSNFrafocdhqhCoL2lmDYHKqquZmCCKcjGk2FFkJZVFb2FsEsXSMcvBW0u5MkeoEVVkInkYrg7JEaGh1NM2mQkWeqCEwMpB6Vzd8ULVkpwehRZ3oyckifpuuzPbG50OtyGKNw5SWMJFnRNbJnhDUHQlfu2dLEQg7MKLblTcVRYhQEMJETzzUXSa8JU0TbAWugmBd7a5sKgrr6fdzOtMNElVzLJRO8KaFERLVaJPM1nhWfE4cWYQYk3USig2DGA2IyjGZAm0se7Tmte0ZWnIRNZrHFzG7rMEVU9jnNlh7TZ881+RRgvPL5GGNPF9lygdEFFOoiJAGmpmle3XMrr0KfWCaE51jmPQEq8Us1eVn+cKnLvD0M1t8+k+/xMY45sQb7sVnDapScqvnMD2Dbwb2TwsO3d/g8S5sjVs88PA7+Ny/+R2u37yIkpIThxf5xV/8IWQmyDy876d+GJ9XuKFhLCIe+4U+7/uFNq98smRzbQabe/KXnqAav5e9fox/5QVe9/M/CfNLmDO3+IHDr6P58NvJbw7Z/7Z/wk88HHjgE5/iqX/3m7z70cN85Avn+avnv847t66wUG5yY+A5/2IP8+zXiV75FDfnEh45eoxESYZbgeUfeA8zw8vE119i4xpctimrTjFlSzre02CKRjKG2SX03FGCPoiRDTZXXqBTNMEakqyBd4HxaAWEJo0zVCzwtkQoDUriiLBRo77efL3WSJmQpAnGCYqiXnONzUGAjFJAUpVjpE7AVgitcEFSGIexQ3RUoLKEyltUVHMFtLq9FZx48DSthYxKblIhyaKIpBPx4HSb/vxeVq9r1m5cwG7k5CNLuHeJh/Yf5sQ9p3npzEW++vhTJEmKjCLe9d3fz43NdYK09PpbXL5wlkTFXMgT9p5eYHpmkYGf5ca6Ye3iBaYOHWRwNaeMd6MyjxtvcnM1Jo4kKzkUq0MufvUig5vXwAxqCFNuWHvlOcr+xgRCcTu4/XZUCtk2ufKvLthPqtm3FYfqAFJuV5+3tfilnFS8a3jqTq1/pzsqdpInt+3OyJ1dgld/nu0qyHbgzQSuNNHd51s0+dqpoDNpm/zHYzXvPU8//TSbm1s7RmRQw4JuN1omAbuoFYWqqiKKIrbVoLbn/U5iuLzDIG3bRXn7OQI7x2wrFNUStreTQyEESki0jlBK0W618MEzHo9rzoh3r2qAhNoHwRjsxRXKPz4H6ymhMvjMkN+zhXjPQVwrBSVw0mGJcCxg3SZJkNhIYJRHaouoYqrRmM6sRsztZW/jNCOxl6IwjNeucOaFFZ55dp3Pf/EMDz50nJmFKYgUhRAMCo/LPcrAkWnJGMmNXJK7lOMnT/JXv/1Jbt06R6c1z71Hlvne958CVQelD37fO+uYyEHeFVz5fMWxD8TceNFQ2FnU2suY6xGNdoddZovquSc58rd+hHPPXCCRPR44/lr07oOYfsXMvT/J9x71vPyHH8d3V1g4MssLT1/hiWde5p2bV/DuNJs9w8b1En/5Jur8k2wsZbzx6FHMMMfH07QP3kNmtoj6Fxisa3LbJrWKhgKNIIuWiNII0ZpH6kVksgzxPN/YovqbHn/9Pf7XjW+uc6Acc0nMgtxFrKYwEcy0FiltxXsPztJ6n+JcMcvmr3ye4AWDqwPWXvwy1aHdLB06wPx0yrpRzByaY80KBv0hbiCIRl0e2hXxr64mhKjD0sNvZWu1z5XHLmAGXbLv+y6KP/lz/MDhL32Wm8nXWJtqIJu/gV/dxA0sMJHci5rIZDcqbRLyLXSS4kuLLR1WWFQCqqpozTSRiUTJCKE9USbRHY0XCp+XFL0SGUXErRhrPflWiY5qLwJvPEoIdBKjlKLRiUmamkGvJDhHpGtISH+jIkoDQtdQIKkkQUrKCjIpkd6idErW0Oi4dkUsi4JGKhFBgXOApbIG6SxEgvGmIWsqQtzACjlRMvC4coArSlwcTWQF66rzsHIMS0sIBlOVWGcZm8CYiK1CEEgwzkGIQDhyY3HlmGA97fklElm7rMZxSr7VJXhozc6x0e2z0S+RY4PAETVn6d68xaGDe2h1UgQehjlbvS5RWdGZEYhEo1Rt7DTOx4y2RpTDAYPGFHO7FplOY3SASKXYvKQ51cG7AmJL1GzSnFukd32VWASy6Tad1hTWRZSlRQnLVJaRZm1CXNJsNpGxpvCOxCu21ns0l2exI1PDeZJ4grGtN06FrzeOOwKK7Y23/k/U+RoBvMAZh3MB4kk3SIIJgkGvIG1HpGmM1ho7UXWyLmCtp9nQuKrWtneuJqNVFlRUm6dZYwCPSiTVpmHkRpS5wrYnFRwXsDiiTpOWFERxjFQBKRwyCIhm8VsjbD9HCYnTDYrCMFgpSUeOh+KEzq1VGm4XynSgBGPGuOomg/GYz//iL7HWarLnLa/l3g+9hT8/O+CNuzW2eIHcNFgbVJTWsbxrHrM4oqEV6fz9hMYebHSQWB5mcPC7+Jk33eA3f/2jfOXxL/LZx0ac61YcP3Wc57cyfviAxB/WfOWL63x5bDi1L+b10lD4PjNLMZ9GYGTCe9/9Bn7tl34R7wATCEHgAdcPmLUAEt77D6d55TFD1BR8/0/8GP3Lh3juM/+KL33+f+BpA6YKvKOUPHr0IK/5qQ9x4EN/F28Dn/qJZzn84Xs5d0HRXHyUv/3b76U9n/EPBHz05BsxVy/w+gt/yil9lk+85Hj5YsLJVs7e1+xmOtlganYG2dnHV75+lt17uuw98UMcvO8WK4Xm/IbkqWubrFy/xeuTMQeX7qdBk8zsJ2scAWlp7tmLHI3xxkIa1w7ZDBnc6qF2H8N2h9Q7ZIZIGnityA0EM6IqusRpE6UlHoPULYRMGA17CElNStcanaY4JGnwYARBJ3XlMY5JrSSKstqBXCoaWUqWKezw9obRascspC2iKEapeYIMNJIFKlfxroV5Nr5nkY10lov//jGMF5x7/ib/3Qffxv7DJ3n00Xfwkz/904yMJ44TBkFgsmm66zdZbAY6Bw/zK188S5QscuyR9/DkUxe4dnYNHzVoP/ouNr7wZcqupTr7V/RmO6QzGhUZzM0e+YYhyIgAqGSOuDELvuLm039O2b8F1t4ht/ptOIRAqNtE320oyV9X8d7+d9ugjDAhK7NtoFYfsR3Ib5c+wgTnfnuEuwL721D1eg2szxV2gtX6zWq+gVSqDkT9t073YPu3j6JosqbyDV2U2+Ga2PnCw8GQn/3Zn2Vra+suiKn3fodvsD289ztE5O1EQSDAizpgDwHv6gJQGcpJ1f82F2G72r+j+vSqy/UuYzMh0HHdKW+1Wvxnf+vHMKbik5/8JGtra/S63duhXgjgHLY/oDx/AT72BfToGPQTyCu83cTfWKH/9JO8onPM/DSHv+vN6CPTXOstsLuVopMmRf8MveEttI5J0gauWdCQkpnWKUI0TUssEjfbNOdfy94jA1TnCT735GMMnvUcPXKU9vQUq1XEI1PgFyVffWbIfFuyvyk4FAzOF2RTmt8tBHHa4EMffJj3fedD+BqRs/NVfA7eBNKW5Mj7EtbOetJpyds//AOsPfN5+sOX2Lj85zw39JiR441W8OjbHkB+zzzte05jR44zv3qTXT+0zOUXHbte/z4Wj0REiWL23SW/96M/zzvOPMOJUzPcVHO8ciWwuhI41ClZOLGPyK+yvLSAixJWNtZotwumF97OzPImL10dseY0hYd8POZkJmk39xC7BlPNfTjVINiCVtz4T7qe/98f3zwAUNxJQvqGJyd6j7/8Ox/ize89RCXGdKIe03qB837EIhpXbrKWZzx1fS//9F9+mupPnyFUAqUE83PTvOvtb+Wf/+I/Y5TO8CUneVOmGfZKPv7R/8C///V/wetPZxz/73+DX/mxv8OwMOisTTCB4dVVxFRKvCigvRd3MxC2hgg/IDQ90hWEIsPHLSAQRRFJZ4Zkapbixk2q8SrCl8hQEYmAylKcN2RJQLfSCcHPkLQUaIFFE1Fhxh5ravNQKkOsIdaSKJI4E/AeRKTQWTbB53vKfo5OFElTE5yndIqy2yduxURxVJuqCYFME0QcUfUrmu0Uresg0eQFLelxPlB5QZzF6FijZYSONLYSEDdoZYE4DVjvGA0cKoBKBLMLbcZOYEJd2fZlztJ0m/5gSFWWZJGk0WyQNDo432BufoEzZ24RBVUrLsURKtQbglm/STw1j9aSWIOQgcFmF2ljXGuK1Vub+Enl3FYFrUxiBn2mWxnTczM0s5QkipBpk7xwrK+vEYKkDDAoDMNxSTOL6TSgXyqq3COtrLkeRcnBQ4eJG5o0ixCRI0iBt4rh6hBLxuxsi2HuUFFCmmQooVG6ZLopmWoK2s0mWauFbrbQ7RkW2opmq0VwAh3FJHEtR4tKUFlEpFRtICVrw5waK1pvfjUCyONszUmJ45jKuJoIXN8gE7fMOkEthiXFuKAx3SBtxATnMNZhSwuVIS9qmJBSChkJghCUZUmcaJS8vVGYPGf1yhp+4JjePUdrKqvVjmQNdRO6dkvWeJSkThKkw/SusPnxP8AOxmxeWKW43iWrPKOVHjMuZa4EVTYQhUfaFkI+gudpBuI6X/eS60mBeehe4h/9AFezJqeX+sw0bnDjzGMkcYpOG1y7+ATL+zr0Lq3RvTqmygPGthmrg3Rn34DLLHNTGUc6MZfP32Jzs+DeE/dwsfUdjIYJtzaHHDvq2Lx0hsf/7HMMzn8Zr0qWlk5TlG/n7/zUw7z/Bw/RRFD0HC+ONdeetYQnCqbxLM7CdBlY+kALc8MT7ZfEUyBDhRkO6PVWePIf/CT9+QN8YWXA2eF+Dt73Ln7xv3k/vS9a/t4//jna6hD7Fx9C6KOk+6b4hT9awgHvvv8vuHHtn/CgPstDUxHpbMK/Lhc5dPgeHjno+eoTZwi9LfZNR3zNxjRn5jm+VLH3PaeYPnQPurNIlLQ4Nn0UlOIrm8/SjBeJ0z1YPY0NJd/hb1Ke/xzjtVvkuSVuNJlbnEfrlGH3Fs3mAlUOIW4TtaYhSfHW4V1Jd3ODwoGXEUJJEqkh0pTVEIRFTHhSOtKUNme1dwNTObJGhtYSj6vNCxnTySIG5Ri0RMaSm9c3+Ln3/Q4AX3n+37B0YBYlCxJliWWbLZ/TRlPZdXp2gc9fdfzW559k8xOPIUYxcWR57fHjfP93vpdH3/ooTje44gVHY0V3WPHHv/8H3Lj4FCdOzjPz9h/l1//n/4k86zDVmGJrtcfGZo9krkFnSSLaBxheqIgGPYgKQmaJ/Zhq0KJsTqGcpakjirXrnP/KZzH5GGdKpJL87r/9Lb7nu75rJwD+dkoUfu3XfpV/9I//ESDuCGBvJwPblWRgp2JfP1lXobehKdvmWQi583rn6g6BnPg91L4HDu8dr+YV3KnPviNhynaHgMkx7ATHBHjDG9/AX/zFX/5/MCv/D8ek+l7fO/V3VPHtWqiAOukKgcFgwBvf9CZGo1FtSHnH3N7ZhbrTLdna2uPAO4919g5lorpLYI3Z+Y3ufK6WKK0TiDuTC+cctSKVvEvpKIpqJSRjDK1mk3379vGB938/D772Af7uz/4c11dWuHR1hU6nM4HOeuzGJoPf/D3SbolYjWBrhLC7IdpN4CpVus5qljHaI5BvPo05cpBCKxaaJa14RH/9HDppkOerFMUNms2YYnOd4VofbwLGL1HoQ+TNA/jY0ckS9qSKV86v0UwTOvO72Yz3U5aK9UHJ8X2Brz9zkUvPvshg5Twhduzbc5Lh+AF+4sMHObA3QwUwZWDdSDZXAvJFQ3sGGhrSGLLjEX4QkPOCSNdddmcK8vUVbv7Bb5AvHuGJl9a4Zk/ypnfcz1vffID+mTH/9r/9Q2bnDrD3+DFGRZu9r894+G+nlFXgH3/4HBuX/z7v3WU5vCdjozPNl9xu9h84xP17PZ/91OMcaFe4RswV0aA5Nc+BuZLFN7yGtL0bGTdIdIPpuIYPnR+vMJMsEFQLJxQNITkRt/iG7O9vdNR38sc++jE++MEP1n8J4a/9gN9U52DVeHo2Z0r1iETB0L7MQbmXwCYbomJgDErc4Md+6uf5PfFHmCcfJ2z26I4qPvEXX+HxZ36c1qEKGpkAACAASURBVMHXo+79Tj7SHVPdfIqNq09CFhN/z/uJZ/dS6gNUN85y8D3fyfTJ4zz9a78M2W5UVtJ+4DtZWpjCb95i/fJ17NQySgwZrHeJjCJupYgqpzx3ker6NeIkRScNBArlYyLh0KnEJxlRKjH5mDhOEDIl4LHOYSqL8wFvJk7HJiADRGlMYy4l3yjwviYlB+cRVYkpJ4oDqta1N32P0BKlJUEI7KTy6QlEUpBlErxHp4rKOpxxqOAQ1tB3gSiKydoZBImpBMYFZMjJUoUrDf2xIUkidBKTCMAZXCUYDlO0loxHFXlpmZnN2NrqY0pL0mwQNxoIISgHY0xVMnAl+3bPEYygMgIvIpIsRuVDqpl5ynGFzQ2FBKFqtYu4kWK1IEljbFUhvSVRAV9YQlUiyVDe1qZjWqE0MPRMtToYERPKnJaWNKdSxr2cRpaSNiO6PU+/V9QKOI0MUsnCwhTCjjDDHnkxJvcCxRStTgc87GrWZlCe2ntAViV+YRoZRRgT4weBFENnWuH7Bp8FZKRq/kgAk3uqap3m/AwIUHGMUBEeiYzkTmbtQ8BZT1U6TOUQOBAB62tPBylrDK83NRI8ThV4RagqKm8QAkxlibOM0lpErDGVpaoqtAWhIgKCwdAg8EgZavJ4VTEej0mSGKnBCYFBkWiNjkFKU7tsOyD4CfFMEbV30XzgdWx89ON0hKc132FwsYeO5lGuoGc9qRPEoXa/xl8n+AGFOkomL1OKjKiZce9+w94kcG6l5MLaWWZm28iyh+2u0GxE3HruFfLKMlqz3FiB1d6QoVlnyjzLhTCDidKa+Ggtylse//JXSGY/z2v3nKS6dp5P/VGPqcxytJHzpO7S60mGg7OkapOonKUTHWL1Vp///Cd+l3cefogTb9iP64FwEbKTkOzyDH7lKZofPonvJjgkQxexcjZh5S87LB7/h5xIz8PWs3zHI6c5+f63oBLFr/6fQ2bFAf7+r/8oB07t4gufLvnUx3KuXg0c2Cc4oo6yHtp8LQ9cCZZTMuHUPri2cZVPXu0y6o9RUmJo8dB997C83/DMmS7rf9nl5PFL3He/4cCJe2jHYzb8Dd49Z1DqCn0Z2JQZISRYv5fe9HE++9mzNGzO3tkB5XCTmfk5sD1s0qS1eByhmpTWkucVVZmDs8Rpih2X5MMhwVj09AzWOJyryLImXtTXa+kiRJQy11nCeFfzm3yBxhBpwXQ2R1X1aTRaeOlBBVrxbS3ung/MmBGNqEQogw1bzLCIp4sVUJlNDs0s8GPv/EE+kh5g9NRXCbfWOb865F//wZ/xh595gvmjr6N58DXMbQy4+vXPMF6/xOLhXTQefAfN2V2sx0exKxd55Cc/wOb6Tb7+zPOEdJYktSyfeIh0+grGOsq4gdEJbrDOxRdeZM/hY6Sp4OqXHuPKM1/BjEeTSmsgOIOA25Xxb6PEALax4pN/xG3oCWwnBRN5y0lX4e6C/W3IEGIC9wluRzEniupANkyUjcIEnlSboN3dbdmBttxBepCvIt9um8oJBMhXuyl/C4wJbl9GNcQ3eIetTN0kVgomHg/bUKGqqnYO3Yb/bEuOCiHuCuq3ZUldbTeNkgqp5F28AAApFbd/F3YckaHO56y1dz23/Ztvv6/WupYsjSKajQZlWXLp8mU++rE/5sLFS3zogx/gl3/1X979vZVEJjGy2aYaChQeJRJCsFB1CSHHxgdJslss/8h3U80r8mAohWRcSgaFx0YKN7iGoEILGK48T+UsVXfM6nXB5niLUJ1DV5or7KJUKUYItKmIokDcbNKa2cOxhX2UK1f4yJ8OOLZHsKuxRTfqsnYrYmP1PFPpFpH7ALHKePH5Df7kD87z0D372XN6ehJLRagFiQwW85lN9KPzhKEktGA8lgxWIsYX52gf+XGW0jWKSwVve9dRFk7vYtAXPPbZwEJzFz/4P76RbDrmc/9HRX9gGQ4hjQX36HlWbYtPXF/nuHccOCA4vDuwunmNz19cJy8qrkQxC3NL3H9wN+1px8WVHt0nexw/LFneu4tO2kDJkpwB9zY9St5kJHZR0SYKkr7N6UTZHT/Qt8+a9M05JKspMr2fOJqmEFdYkClCpJShZCbShEyyHhk2n/gMp97yOob3v47eVs7giScZPPk4gwsXSAc5yeXLXBdNtChxLqKzfJKTj3wQE2X4XOMKybCIWdh7ikd+5r/k87/yv6Fn9lBefp6Fo+9k36k3MzpZ8vhLQ7L9hvHnvsKewwvs37OIziuu4Lh56QJeemYXZ0m1x5UF5XhUVw+UIGBRIqC1REYKY+ubVIr6hpdRhE4ECoH2ARFLdKwwsaQ0Dm9r4pezBhVHNZZwbHC2xp2rKEKlMUk7AQE6lnUlJwi8cUSRRCRRrX5UVQRniCR1MuEdlXVkSY3xL0uLMZYklkTSIrSgLA1FbtBaE2caGQkq4yhNveg3GzHSB3JjSLVCQ008RFBWHptbegFS0SSyDlB1oF1abFGQJjEJgsoqjHe4AKiI9nSbrbJETRZHHUnSRpNet1eThb1HCSA4yiLHlYaq0uAdZVVzE5SsZUbTVpPcB9qNNvTHQEGiI6bbTWSokzVbOSojyKtAXlXEscJXfWQckTamUVGE8QGhA7kRLDQ0MkqRUhNHEWmiEd5QFjnjVUN7ehrVqlWmbAgk7QZBgLMV4BFRDDKqVaImi7RzHjshF8dxzSkAiJMIP+ksEEBJCCbUxitJXLeUfQBZc0TG/SFeSFwIGGMxZYWNJDoKGGMoqroSpbUkzSLy0tGcaaJVhEwUIgI5kdUVWhFFuta39gGcJdgcN9xCtRuoaoWVc1dQ6wOaUQOqDu1dpxldfYY8QEct0IwMkc8xfoOxW2dDtLksJS9WG1TnnmDw8U2GRw8zQ2D//hM02oYwvAixYLa1i4FYINh1khOnOdJvc31zzMrGLcJGj5g2G3nJwCT0u4LBVp/QXSHp9/nq1Ys0qwHF2DGMYnqdDq2lB3jozQ/zZ5/4GIxX+NzH/4KmbnDqnW/kAz/+Ni7+9qc5+Kb3M/fBRbKZhLSh0MEzuJEx+vV/RrX/vyB+3X7GM4ortyI+0Z9hwRxn6pXPcKpa49hiya79QEvwE/91h2uf+F4O3r+H6d0ZD70vYflwhut5zLLi5/7FIu/v/lP++I++wMWvfo2DBy+yeuQI/mIXues1LB3dzcy+OeaWprlv1wJT7ZxjXUe/u87NG6/wzHNf5/KlF9i7GMG9A04uZHSijLZ6DbNimmFY5kVrmWWL6UXI1wu28oJG3qZhBKGAZgeU8ARvoSywo5wgIpK0TXAVIq67bHkYUeZ9Cld3k0Ji6uswOKyrMOWI0hqq4HDBIoUhTRytpFWTkpHIUHMYnLeUdnR7UxAtlJjGM8SGEU2ZgdA4r2jJGKsFG4M+fnPEQydPMNh3kFvdETe/+FVWL11kvddltRzTvniWhp5C2oDt7GH3nmPs2neKSsUUgxg7UPRsyv6TD9DSKV/94hM0pncxuH6W1546SSdtstq3nFsbYskZXb9GtjRH9+sX6Z/7OnbUB2qohhRhO6begeR8243AjoTl9uOa3Fo/3HFP3gns73zdNmmW7UnYOW5HY/8udE3YaRjcDadkgp+vBQhq7hR3ve/2qGkIfjuL+JYcYgILFRPivcAjpPyGxPFOR+Q7E7LtYL0O9LmdIG3Pibw9z9vHOOdu0xwmHfltdaJtfNdt7gdAjbTYPq9SikhHZI2Mmelp5ubn+emf+kl+6X/5ZS5fvszVq9cwVcXRo0fYvTRT/w7eEYwFHxBxQuM9j7LxkS8QNzVRvgnO4qoexm9S6Bni73gt0a45rB8y6K2xmm8xl7TQnRmUWMb5EiUqUjqUNGj6LmrxCNMHNevDEePhAD8uiWnTLQ19l7G15Rj11xBbawy7G/TOvsJsGFF04dy4SdKZZvHgg9x3324+8qdfIxpc5PFPP4N9x/20FqZ46JHdjL9yhvkHXo9+Z4JuKKJYwBjMwFP9u9/FnfwQ+nhK7gLXR4pzeZNOtUjjhac4rLrMzzuSjiBpCB56f4PhPfcxta+BigWv/W6JqSBUAZEK3vf3Wty/9V/x8Y+8TCe6xMLhisHCXrg5Qs7fw/FHpshmG8xOt1nstIhjw/whS1mM2exe4uLFF2lllnbbIecLllsdNE0iFFZoSjJWvaMZYuSEy/g3X6/YtoP9vx/fHOfAm1rxhwzjMxJVYvEoIiKhmNWwv5FzMN3i6nnNvtOPsufEEvmeAwxOHGMw7lN1HWKzTzVSzN1zlNa+Jab2LLO8cIinCoc3QwgOqzRTi7t48+6H+dL/+r+jp1qMzr3MrXOHOLjvMK+57zDd8iaj9Abl7hZx8EzrmNlOm3BoGZuvY0JJaypCK49LJTIOmKLCVIZ8UNamX3Ed1LnJwiZ1jevWSUTWjEliSRiVmMrjK0eSKHxVE1QDgSA8OhboOCb3Na6cieawNxaVROiovukJNZkwUgIVSYKqtfF9VTsqCiVJ4towIziL9xLvZS13aAx5LskSiLMUW5XYyiKVRCdNZCQxQlDaQBwpGplGa0VVWYK3OOcx1oLQWBFhfAFlgemNUNaidUKcCQIe52GmUSccspJQudr1V9fmLGmsaDU0haol2qIkJsgBQkX1+xR15c5JMBYqE6OVwJaeIOrzhsqhAKU0WatDYyTwhUGakkYikcaztb5FcIYAlE5SFgGhoahGaFWTsyOolVhSibMOLT0BX2vAx4IkjRDSESUKZypcVWJNUld5dN1i9s7VmNmqQriAjALBSyauNThfy58KWbtIEzzWBqQUtVnetvKQgmBqwnKka9+N4GqvDGcceVEgk2Rirle7ExvrKMcl3hlkkqKiWrFiPCoZV4GFmSmErxBRLXPrXUB4BTJCKI1QtZwqSuJ9CXZAyDcQw1cYr9/CXhvg4yaNTMG0ZaQzCl2A1JRaImRBXna5GRQ3xTpXGXDRdeldzbn5uS3ayvCWIzMszt6H8EOKdAEXZ6RJSbb3HrrlABcfpbk0w37vmS5GlLnlNZGmKC2DUrLeF6ytDbh15QLXnn6OS9fOMic8lVDkVcrITTPdOMXW5q2JikfJiy++yMLefdz7zjfxjkf20/utVRoYlo5pmnsThBS4kWPUbrPxxc8QnU+h/26Ge4/TdW32vSZGDab4/FMZDVXRfOE5wpf3cPD7Psjr35bC2YOgFM57pqYd++Y3Ofsnj5Ht+W5OvyPjXvcWBtESf6k73LjyUWZ1mz2nDuOOnOToyaPM7Z4nZBlDH3Hj+hrLBySL+9q0ZmBzLUL58/TF83S6I2RnCqHnif0Shqusljd4euUye3ovsLi4TuX7UAiCkAxHQzKV4ompxgXg8TagkIAmThp4E9XXZVRhIkXpKkRQKBkRyQhCBTbHGcc472KEogwWrWuFMa0ThIgJvkQQUbkKP5FfuyMkxRRjgp0hyIQQDDJYnPBIEaGCpqkcM7pgxve5eGnMsfseZu/BJrd0RvfGUYp8TBAR0dBSmYRDJ/ajWk12H9hNK5viUmHwpo8TYJRi79ISu6ucZx5/mqSRcOPsy6wdvIeDyzN0WhKPpjcac+jIHhpKs7m5DuNBLeNKXSEP4baZ1N/4/vufOO6mME46BhNuwI5qEHeQgO9olNwVuovb56vNtm7zCHaOvkPq8y6E8U7iMDnVqxKDWrDh9kHbZlvfimN7zuRkL76TX7Y9qqq6C9Jz57hTEeg2GXxCR5Py7o7CX0c8ftU5trsad55L7hCma96iFIJmo8GJ4yd429vfxrvf/W7W1te5vnKdM6+8zCsvv8TVq5e479gCfjzEJzFhnOOLEoQiTHVQ9+zB2DFWFPheQTUuGHrNKBvQaQmuPvUE3cEWAzlCLMTs2dsmjsBZQYgXkLKGZOtomcKOcdF+2lMp2lWUpsQbx36pKIxhZDRrfehtbtC7ucL65aucuXyO3dohQsz6ViARu5lrLnNrfQsfAqYqefGZl1m6Z5nTe+Y5eaLDy1/so0Ogsz9CJXUX3/UURkvGX3qCaH0KWb6RvDWLkxEzexVqlPLEZxJm58eop59mKolpHT/B/pMRN/NZPCADzC57hpe36D7VRz5yjP0Pava4N3ArX2bjzNfYsleYSTvMHlzG7znE/n0LRI2UoBRjC5ujnLlFgfJdVGww5Q2kuE7FNdJiiMgWQOxCM8CGLYZ2i5vjLgjL/tZJdNQBotsdvm/x8U0lB6Nyk7xaJ5O6XoDUsM4qRYQNAhU8uxuOB0/O8yf/4Wn2NA6y58EDxG95F+V3vIeBH3Pr5S72ylW42mP/G+6hc/oQ6VSbKRt4ZaXEqQ1IoT3TZN9ihxNBsnzqQaqFlO7jj3P2a8+z+8Ax7n/gFG96QPL8+XXU0d2sP36FrrxFZ98ci/NttjoKQ4oPDmMCAkWSpQgtMF1HlXuiWOI8SFcrB2E9aIWMJFEEaaZIs4iiLJG5wxdMNliw3hGcqxMBFUgyjXAe6wPWB8rC4sqKtJ2QNmIINYlVEIgzjRMeRR1wGgleSrxSNFsZsdKMh8UEKuAJwRG8JS9AJQlJolAmggA6jUjSGKTAOY+QtyVT0yylMI58s0sc6uRGRhFexgRKvKuo8gJvPFEESVAkDY1SGqUEKg5EvjaKQwh0osnzMe3pDmqmSb+MqZxHCpAqQkQxzsJgUKKNRcQT4m4o8VFEIAbh8Y46SHeBmU6LOE5otz2RNVAIdAS+rOhuDUiyhLSVIKOEurIPlbE4I9gc9IiNQTcbRDoh1gFnSirvkWkGWVLjQfGkzQRtBEoFrDNIp8gyjTMGY3wdlDuH8tTqT04R1G1S2A7Od1IFssYhtcQh8HgktX61t7Y2o3N129+HgC1rCFFpDHEU7eB+hRDYylAVOVIEdKtBlmiqsqTXKxkbjdAaGSzWeypTUeUGVQ5oqGWC0vUmV/fIwRrctZfJi0vIq2dI8wGjPKcqHdoqNtZfphulyJYhp4u1EZUM9EXB+bLBqthioPr0QsH6qGT1Yo/jV1YZzAtuXXqZuOpjdQObZIxcl3Y0zU2/n41NyJqO2bl5Fnbdi9HTdKoR2tTKNOPKsL7H83JnL8NrJRuDm6yPhkTW44PHlIGt1ZILT/8usWojCCQNiXWGK2fWuXdZoOSQVy5fZPrSHFkrIZpVCATVSsL6yLN87vdRpSQcm6L5miY/8Ga4VTR54bmHOHfmBtWXzlI62PfI69haKyjVHNVYM1zLyTeHrL18mc0nv8SNq+9mqpWSxIID9x9i9sr9fPbLn+LdC0P2vvW9+FN7aC4ugMxY7waeW+2xcmaTNwvFrlbF0v5DHD6xAGiuji4wtxGIbcWV1ZxcrdJXT/PFm1d56YWnOTMuedtszCKORMcQoN9TRI1lynHAjLpI3UAlDZIkpaxAhoCMNM7W2GWla/8TDSgd1WT+qsLmOeNxQX/QI57q4EUgiROyLEZGUFR1sm9CoEZFutrfO+id9d7V5TWk8JOqZI6UBkmECwEtHAvNiP2zDf7yM1/n9N7THDiwwIlHHqVQgWFl6G0W2M0e+Y0Rx+5bJp6bYi5NUA6uDCwyvvV/UffmwZJl+V3f5yx3yz3fXq/2vfeunp7u2ReNZiRmBAYhIYGBAANhhyKQreAPY/4gPCIg5LAtsIVChgApCHsQCBstGCHNKg3Ts/TePd3T3VXVtVe9V2/Ll/vdzuI/br6le0Z4HIED6VRUVWbem+/lvXnvOb/luyBbAe1mzEotQnY7nDx3Ht8MGK5t8uJ3bnB+dZXzR5aIQ829XU/yAx9j99YUTpxmPonJJmPydIqZdeqEgO3tbZ57/jlgL249jM1/58P95XkPcn8oeH73W6unh8m7/ruD9MPjUFX/e47vsb0oCt739NOzqvMB4+Cw7r3Yq0bzTj7FPjTonZnF7LmfEZQrGNE+9KWSTnsXCfmdOPvDx13p8Vvws2D2UKJx/MRxnn322T/gWPckOQ8O+LBfgz/02vfiQP5BvJF3dzz2xl5wfxguVZ3D6hje/b4sy7h06YkKJjrja+zJi0opZ6Zoct/R+N0OyPveBDOYlXWVk7GSs218D9gWvPN9hzgyYRgipWRxYYEPvP8D/Jkf/wmiMOS/+Et/GecMX/vyF/j1f/k58iLngxcCyrdeJussYicZ5STDOI0NQ8o5wbQ+wJaGnIKBn3AvzQmCXdRrL3Pz+hW2Rn3C5QbnnjpH1ponHe8i8j4+7oA0M+GCgBELjCeWJPE0GnM02zU8AYEtEcYwGg5YrHt2223uxQuYacSd7Q3ujIc0XEnpLfmgZDC8z723v0on6SAFEBgG/Yze1pSOTLFizO2bG1xciZELQaUqWArspmKyaekOfhuhVnAXEubONjhzCsZ5yItHH+TO5g3yZ15HtZokq3Okgwwr57CFxuaWYpgxubvJ5OYm4WNnSWKNUnDuqVXWN5a598Z9nugWdB58HI52UXENayW7U8v9ccGwn3JeSpqBY/HISULVovSCabFJLfMIm7E+GUO4wW7ZY23Uo7d7l8vTbd6/+sPEbhFTaIwBY/egZLIyLDy4Ot4xw/j9bujePwewtP0biHfPBfs/6h3TzOFY5vqNa9/znjo8vq/k4G6WspmNmdcRipQiLGmwjvFzFC4it5qhCVnPSh74k4+w9vWrtGsP0LJLdI7Wef98m7fffxT59CM8FcPUezadp7SeTmp59dlNTJgh5+Y53mpxLJCsiSaf/vGf5us3n2FTfYH83h3u313jvhM8dbLFVD9G/mzAUG2zcfUKcjfm5PljjHZ3MU4gI40IK6yl0hFOA2pK3Ikq4m1RYLLK2dBNckqlCEKBSw2lsJAritQgsegwoCgcaAjqEm8EUlSuuZNJRhwIpFD43OLLEpwkjgKCWogpBcIZpHSoWshoa0IttpjMUEzLqppMQJ2QOIqwhcFkDolDhx7nBSKWhN0mOlG0tEYa0FqCCimylCzN0UmAogq+CwQyCEhzj9QOjUR4jXQCLQNsCV57nPJM8gmjdEwyCul059nayWiFYG0lk2qMRYR1wiipZFUbLZKgQOUZgStJvKcQMQ7JIHdo7wkteJfRaTfoT1KSUOMpKa0lMwZvq0l1uNnHoojrCaoW4AtDMRiRZxmthS7tThPnHEGU0lloMdzOKCYZHk9eeArpaEWeleVmJfU6zZC6RpMAU1pyY2h0A0SoiWsJeVEymRRo1cDmFutElXBJVbWdERg80lfOskFY1W2hIvsZ53ESrLE4WXWBtKwUO0QgUQJM6RBK4GYdG4/DGirisvMY5zB5gc0K5uYSnLOk3mC9RwaKoBZTjB27/T6tuTppUVBOJ4j+Jtlgg8WLH4KVZXwUoEOF9BZz5za9X/wf2NjusdSG9jSjJh3WFgynfd6+cw2zPEdtzrA96TERISPZ4I6IuS22iUJDTSlIFVGhKUtD7/ff4JlXrvLV9rc42Y7oJhqkYLsUpEowv3SG8Nx5nJ5nMinwrsnWwHP5xRfZuf86N19/g3DSJxAhQ45y5mgT/YEn6N2+R//egMkAyrTPpPdLGCdI3IRmc44f/8yfYGH5ffyv/+Dr/Fd//RT/6t4z8CvX+ezG3+Ljf+r91J4OKXuerS8FDOwpjrFNlOccW+qz/DHJaFowPVrn5/7+H+d3/vaY2tsNjgRjdr7yK3zll3+bj/ydnyfwD3PvpW1GO2PqnSaf/Nn/htdfGCAvRHgP91833PlGhrFjfv/ulCtvWE4FAW/d6GGw2KzEbNxn4dEuz20HTN+c8NipKefPjAniCQ92YhaaTXaHln/2hbu8Yddxc4q7z28SbDmm9ywvdCUfOhby+HxMNy6IwoLJlR7+tEerOrWlVRrLdQJpKYoJeX+AjBsIJDqsEcqAUGqyNCUIQsqioMwc0xS2t3vsDnZZjQOSeocgqFNYQ54NkdKQtBOmRUkpJUXusWlGfzDan++XFx6l1QD8brVUKUvANo4FnHB4EVF4hah7fuTHf4jbb2zRrR8DH7NSj2jWavSaHeSJFc6+F0Z4hg4S7/Gp5bW7KaqTEXROc66WUJcSukv8yAd+kFd3bvGKEPRv3eX+YMK5E5pzCw3qSYQ0CbJ/mfd84pN84JGLXDh14h3rlBCCP/8X/wI/8zd+ZuY2e6BFv+cYfAilM3vPrOLuqoVYyUqFx1m3XxA4XOGFA/y9P/R79xfnvSBvtu0PEvwQ7CkBHSjX/PRf/2m+8pXf+36W5D9049lnn+UHf/AT3+PkAnsdj0OqR/vV073vBz8LxA8KKHtjT5b1HT9WiH2oj3N2XzFJyiq43lcR2idfV4+dd2it31Htbzab3Lhx4//P0/P/aVTXaQXVtaZSPVK6EqHASz7+8Dk++Jd/FJu0kDe+yPb/8T+x2zeULmQiWwyCeexql023NSsmNunnMVcGfb5x9QV++KkPcet3f5+5SGCkZzpZ5+2tq/Rf+Bq2XaMbKBbaNZwKmDgotabdOYNePcVw0sDN1s3hJGVjbZ3+7l3eevlNlmRK5tr4cIHVlYinf+B9rN24zfpbO2TjOqPtKwx2bpGXkpVyl/bSMj/+E5/mzTsxX/jSPd73Hs/nr34T9dx9fsb/ZRaeaqPaAnPPMf2mJrNnUfkAOclYPmIwxyEvPbYT8dN/+1Ge/bs9OrXrxDJj8MoXWHvxVU79xE9BucLu7apbUT+7wsLjZ+mt5YilKvzduGIZb+QMsxHP3S1ZbXqOhpK7clghd9McV2TUVxLemkDaz7l03NOsp0TaMJ9ExHGbSWr4rZffoJi7w+5kyMadNcKppbde8Nz8K6irE9bfHrN+P2MwLMlTi9IhaVbs84cOzyXG2Hd0DPeu371rxM+SezhI1v1+sj0z8RMzA77Zz9aBRmtJlub/r9fh95UcvPzsfUSYs3Oxw0fe8wG0iMnLr7GdZihp8a5Lns+TZ1us37zNbnaO8ZEGnU5EOYGXvWP+iCZRlVa+U9CRHozjV9cKkvEWKogQy6u0HN0RhgAAIABJREFU5trULQwRFGXEU5/4Qa5/7p+QX1/nyrev0Hj+Np/5wbM8ttRGXnqA8ahg8JZnZHrsTHPqkcdNUzKhETrA6oDCgRlluNEYFUvsOEV7EA6KzFRux8OUoBXhlWC0lYP11FohTinMtITSUmvHBPWIwklGW0OKYUnucopAIsMKsx7GMSYrSHcn6EBWykM1hS8kXihqdUFRGPLCUhYgvEAbz+btPuNGjUBYEu1o1KqANitC0JqFxTmGuz3CQBM2Y5yQaO8orSEfjGjJFloEFIXBpCnLZ45jpilSQKQF3uSY3LO01GFrWJAXGc1OHYGizCxmWiLzMSMU4xSEBVtWeNJ2OKa2OI8vQ5TXRAqE9rjMMtreZfXMKVqJJheG3JbkWcakZwh0SoEi0I5aLaabxKhAMeqljAYDGp0FSlOpAVlfYqTBJJqVlWN0OzVkkOClJGjV8HmBUoJuK8L7gEma4fOMehIwHATc6W1x+sQp2p06SS1AKUVDSmScUEs0KEkSVAQxUxYIoCw9OENUS5BS4URFXPPeE4Yzwhoe7yylceAd3lcSqBKJmPkaSARxPcQWJcJklYJSKBEiwviQoCEYDVM0IJQkrMfU2zWktOSlIR9lbG+l5N7jwohSxdSbDWpJAxUZTBRCXB3DS7/+WyzMH6FeO87KE0eJdobs/ptnePnrdxkKx+KFGLUcsiYcu0MH0rNOzuuDNaYGaidazK8mSAJ2XtvCj3d59EKXFy+XjIlYmQ85nRS8fX9Mb6OkO1TENdiYeoaZ5qHTdVpPHmXxgY+wE1/kwSPnCTcGvPalL/L7X/9d4nREMgcf/vCjFMURZBGxtPoQd8U5smsv8tN/5T/nShbwwkvf5vK//zKT2wXSbFI6y2f/zj/mPR96HBE6HvrYSfLpmOEoJfQ3uHftOm/8b0uonwsod2DTOsLg76PEOvGfOk70I8tsT0b82n/3O/zX/+7Pk/uSzrGMxYc6HPt4DRVf4T0XIPvNv42bf4zEJtS6p6k1P4hNSy7+yWWk8qyPPOdrm3xm5RbjjuAnf/5neebbA177xtdp1UJUYugsa37qr3yaYGGOjoICwYs7G9wYX2VOnmCzdol8+i/47//1a9xJHeMtQ7lb0jol+dgPRCy0PNfXHMNrji++kZJdzunqEReOLiNiy6kTNZTzlKMBKtHEkSTNMgoiwnoLJSLIJmSkZMajqSBtY+PJgpiVMxc5G4ds7O4Q1WImaQaU1OKAerPDOB8wHQ+wUULpPQ5wh3wOZJlwv7dOGDqWO6eR4jjWvsnEmMoszbdxTpNmG7y1dpVhcYLVbkRTKSYFTPDUaoJQVhK0Xgi60jPOPZfHlkYxoR41qR9fpZ2ECA+pBUfIY+fP8VtaMbh2nW9eXWN+dZU/ttJgrhZyYnWB+4OMze1bDNNiH5//zir3HgRewIwA6oz9rur7fhVuDx44G06Iqgu4vyBTRaOOg0DWz5bsveDXH7gU7+3Owe77H+zg8x6oDQlxkCj8p8cj/0cY+zmSOEgAmFUuZ9AZf6jyXh10lbFVicF3dy7gXbAlMeua7j+dwXdnj/eIvmrm0uu9r4KqWRV2TxkIf1C9/8My9oK+YjrBmRKlI/pXbrHwyAV8WeLWB4xevsb2i8+Qjzc5dbGBOtNl93pGkXlSLFsMubPTx3U19QtLFNYz3B0hk5IPHz1Pc37A2o0Rk2SO95xI6AYFGxu79O9M6Q5qmCMNrg8lc+2AlWNtklOr1JceYaSOcLqzyOTufW68/i2u33idKKvm+0/84JNM+gX1qEPYPELPNSm27vFXf+xjvDGCF194hZsvXaaORE3uMC4K/pef/zm6KwlHH3eUuWVnbYP+rTGJfovdazv4yw52JOUupKUn6Pw1hB4Q/tgy4mxA760+N76xwdN/40Gs9zQv5HQfP0L92BA3WWP1fkr58j/FtS4RlRI9fwatjyGUYP6hBO88oxIe7gxI67vMnezw+J//DFfWM1576TLL8wmFyjh1rMN7Lp1ExRGxAMMR3hoN6NmSljhLpM5SlF/nl198hp6I6b15CyFKjiwlXFoNaIaem9uGYjlBuIB8PEaZjDEGZEiWlZXsrqj4JkopmHFb9jgzVReh6typPf4L7M9TwH6C7LzbTwz2W41U/1XKWILv55L/vpKDhy/MEycBv/38HX77TsYnP/AYD9dWOBErJtmIu4OSm/1NMBu08hbZ0hF20pQo3WW55WgGlroP6GrB0HvqrlKNWUegO545+x02FxdwCyvEQUyQlvgk5Mmn5ohrgn9z4nEGm2Oym29y76uf59mP/xQPh4p7K13a77tEb/c+d1++y2h3xPnFDvlGj2x1gfaRBhmOre0Bo8wwnGSoqUFpTYVxqSrwtrA02hovPSrSCDwuq9qBUlRBoAwl6dQwTWe6+Ap0M0QiDtqmzmK9QytwCEa9jCi2BHGECjQunaCAWpLgTU6gq4qA1hqRTSnHI6YSVD0mKypZ0jCOqc21kKpgvlNnMiqYDMYEWlA6Tz4pqScJSjvCSCAI6fUybq+tM9rsU6YlsQpJkhpJo8bEOLbWdlg+vohTuiJLRwKfCobjklrT0p3rMOyNwEOt2cDrFlvrfdr1hCKFqancpSMB9fY8ZWmZqJJ2K0HkhmGeIeOAiYdus06mW0yspBgXaJuT9kcMjaauQyJVwygFOqCmIu4NNjmaVB4GtsxQtSZxvUtajul2FKH2CAddUZmLxXFIXiouLB1nvLHByElqRyT1do3cQjeO8dJjsxyhNDrUqMDhc0OSBHhbLVpCeCQOGWiyvCAzVGRxqGBgwiOVQmmJNQ4ZyMrVGMBbyiylLKqgwRZl5ZQpKkUjKxRJEhHicAV4Y9AxlC4gG2YoGdFshTSFIFASGWnieotJAe1aTL3ZRKp5zNHjrD76EOk4heGUtTef587XvsLb//7LXJ4Y/lrk8dqz8BfO09uM2LlpmFJy/eom8WnJndfHlMdSdroDxqMUsTIiiEKuZSMeeroJ7QU6c03O1gqefPEN0prmi29lvDSO+fCn/zh/6od+iKkrObFwmhtZwpFdyzO/+jo3vvN1jHiZR95f5+IH/gx68eMkqkMt1kzTEW9dvsHp7U0euxjxq7/0S6zdH1HrrPDkqQfpLrf4ty+8wr/+9X/JyHb5vW9tEwl47PEGC8cX+OLXn+Pa3/sF7K01du98Dt8fEBcrnBQP8LnyPL8btPnJlTqt+ymf/+V7fHB1juLOiF///HXEdJvR8AbpF3b44Ec15/7Wj+FrP8FoXEf4EYPRLuv9jKPNBqGD529mLKeWt771O7y89jLLn/kpPvfP3+a/fKJD568+QLywShB32S0V/+yNAduD3+HPPXgJNd+FIueiCjkZrzIefoMf/dHnmBxxtN57nEbLsFTu8tSpGlI4fqLtiRZizIMRxafbGLVCMzhOejkim1jmTi4T1lp4V038hUmZThU5E8wgA1mZLWbecvfqNZJQUTqDDRUyibAupqBEBhEOjfEG6yXTccFbt98maSrm5pqM0wm5N0xNzu37vf35vl1rs533+M72DUxviwvLqywFc3SUJi3G7OYjRnlJIjPev/Qoz1vNTp4hlaauA2Kpib0kETABYg+ph0wJgsiw4DfpLh4l7HaJhUQaRxhKTq/GKA3BufcyHTzP+rUrXDu1xP2Vh5hXgn4jpnXuGHc317ixOWBlbofFTpMgCPahJJWCGPvcnv0Qco8huteZ38PayxlBb58kutdd8DM5/0NQl0PkUzGr7r4bO3xgTjbb7wA9w+GeghB7JOG9V/9o4JD/Q+O7sdTV+awSJ1WdPiGwnv2uzmFSNRyYgiEEzs7MyLzfJ2MzI/Z6e2D+JeR3JxN7sCl3iAuw95nEu/b7wyR3WwWApoKVagVY6meXEUow2tim9+bzrF1+iclmj8d1AQtnGD1Ukp6W9IcZ/WzC0GS0VjQvPX+XpbpgEs6x1tumt3mPufkmC90jfPATpxkUEXktIGl5PvXQHEUY8ty1EYOgy8d/5E8zf+QoQioaSZue0XSn8OzvvM3u7qtE9S3OvWeRpWOfQjbOEsqYMBD0R2MGu0OOpBNOr2j+z3/6a2xuFqyeP8MnHztHvtrkmVdifvEX/ybjUnLvjQndjmZhPmD17FH+x9/4BXZ+7UvI7btM7nwb0RME+RwNFnluuMgr7Tqf6gasv5LSfzPnxHKCGRS89EqPuJ1y58Zt8nzK0qkG3U//KOjHyfKQSEwZTVIKHPVAI63n7sjStZ4rL32ZfL6BnP8Q33yhxydPxXzg00cJal2kDLmfe/79+pRJfoePLq9iazF1b2jIGonM2dx8k7/7C59nehpOPvYgS9FdjoclJzt1Qml5sg5P1hPskYRX45S7jwpayTxL9WX+4T/5v3j1zWsYd8j/gkprpJJXP4DI7btoVy9U98KhQsQeam/P78TNoJZSvVPS2OMx9sCl+w8a31dyMO0XzOsWc0dXWC8CvnFdstldZCUYcVyBdhYzyvm/f+Me4erTrKycQW+NyaNtpq2YRR8wX+ZsqZB5Jdjxnn7uGGSG+TKDyRrdc09TX5pj4i1Xbm/RPbGMrWlWQkH9Ix9F3ryCW99g+/p1fufagA+faXMpVkSnmsSPP8rrvQmDqy/gluZYWG7hmpKtYcYEB06QT6fIJCIOI1xpsVlVvVGBpNasE9YEtnQIAYXw5GWlmhPXFUVaEVrKrKgIqaoKJk3hqM8llNMSZypzGSUceWEJ6xodenToEaqqXJWloYZjOi7RUhI3I1SgMHlJUA9ptWuoosDMTJ+MVAQ6qipOpSMrPaHyNNsRUavGaGooRU4sLUGs8ELijGO5ISgpKbWAIKBWb1CvxYRaEljDhYsnyPOc0vqqzRRqkrqlt5sRJnOkhUVGIUkSoHXCeDwi0iHTIgMESaNFkiRgC4owJvBTmm3JtN8nm6aEAqbGoGsJo7ygyEeESJQEHQo6R1aYbo0grmOKEsoS4TS5sKycWKa1WEc4h7UKY6Cc7OK8ppeHtExRyaUKCIVA6oj5hTZZVtJoLdBu1ajVBEp7kjDApiljFSCyAqkN2mli7SuuhKywf8JZhJvxSHwFBzKlQTiLRc7MWRxBLPBSVouc81hfEbalqIjq1lZVKakUEllByZRCuLKSIPUCVIj3IVI6AilZXJlnOsiY5BWWNwo1YTMiiDSdSCOdB2er7kqZ4tINIhWhOoLo6Ye4nd3jyuWv4dY9pi2Jf6DFP/1XN7lnwbckZWQZnvZEWpGc8UyzlOnVnDRVRG2JDy33C0GGQ6cZa/cj1oOQJ492ePrEJbpnd7nhHOvbN/nNf/EbnHzicS6/8jZvPZ9jNtcZ5VOapzs88NE/x6ULZ6knx7idxujdKTd3e9zpbbG5u8sppcnCPvrBM5w92WGw0ePVN15FlAOOPflhrtzr8+bv/xvuXNvm5PkHufT4T7LYDtEtwRN/8y/x+v/8vzNeexWKKXdMj3l9gk/oiH/kPT/3K9epx1u0zYCP/unHuEfJ3OQVli8dp1VfQvS3eOuFdZ586qPs7ioCXbJrWvjOEscXI1IjiSPPksl4/l//c+rzIT/8U3+R1/Rx/DN9yqMNhqFnEjQrVRwx5ZMXWpTTC7w5CihcwcVOk2K6zS/87vO8/hv/lt2hQDcjpq8OWOgITi9FrJqAF5/p8VxHcnJOsnLxNIunP0Kt+0OEqolZNmS7a5RFjncC7wRlUZKVHh0FTMe7lDM5RithdzzFmIwsywmbMVJVvAFfeoo8ZGJKhPF4oXDOkGUZ4zRnmGaIKGTiqy5oVlYiCHtDCsmDR5+kOznOerrDNNNI3WVspjjzNtLlZGPLrXuSIhEszM2hdidkgSYKBZEXJE4ysZKmEgw9jMqq6lW3JaIYcPzkY8zPdxikBcE4p1GPQEtaSrDw3kuMnv0Wk7V1rt3b5NXhef5EM+SYBt+NcKdO8/qdO0yml/nj73+IVr1OGIbvgPpUC6bAO1sRTQ8RbxGHzMP2luNDKJeDyv874UQ4XyndeL+/n5jtJ/ZIrLMFe68bsLdYC3mwQO8lFdWi7b+vKt4fhVFBF/aeHCgk7XMTRFXw2uvcvANvL2EPYL2n6uP93rmZQSfEnlzowXejlHoXx+LgC9yDUgj4budiVSk7CScOvrs/BMO7yqugUrwrwGZopbHFiLjbgJPHoLdFMB5Ay5D8wJ/lmZ/7bwmORbjEkdUsWaIpp465CwHDYZ9+f0igNSeeWiSQlrt+xNzRmAYWZESexPhWjVNz50mODNgArlx9g8b2gLnlFUy2xp2rBru5wVgali+ucvzM46x0uwS6Q68M0JOCtcmIncmUsiiZl4JCT4geOcsjps21t+9w+e2bCGE4+5H3sj3MefOrz7C5VvD4Bx9lafEstVghY03yZz7C3X/8eeTkNvlYkpZHWYw6PNRUfM56rv/iOokfcOqo4uTTi4y8pZXdZv6B0wRuGTfq0V+DheWzZJlCacvYNohabaTQWCrz0YYzvPnFL7H68Hm6CyuslzV69wtMKySTnkIlCFdSDz2PzCcYM8+tXGC94Uytxp3tLV769su88vWvsDkJqE9q7L6xzvGm4Gi7TiOX3Fvb4nZNESlP+/gFHr/0KJeePEqoY5QQ/NjAc/0f/CPyopx5bMwk1P3MWI+D5PYAImm/m8rkDyCM1Rw1k3eedQsOq2M5cdBl+A+N70/KtN5CRi3MoI/fHTNKhrzluuyKlDywLMQBxs1x78oLxOIeFy4+BRu7dGTKkUQShJ5YVK6BO5kncA5VlsTZFDcdcPHRJ0h6nlpDo71ga2cbluc41VAkAi6efYDdxRV6O33y/pDLX/4yL7f/GOe7DR4IA7YvHGdtq8/127d4+0afB+YDykixNR0zKcZQTjBOEDQibFZgjcPOJiIhPEJ6jAUlxH4LWupK8955SCcFSlZux95Vqj5KV14G1TaFkMxcEWcIL+EJYomOBDqsBHDSoavMrqxFSIUzVdBJ4SBSNNt1zKCCrMgoJoxjoijAlxZHSLMdk01ScuuRViFcQSMGb2dITucQ1lcBtRBorQhDVekFxwFJHCK9xJmMUDqs9WivSUKBagfoaLGSVdWqsmxXAagAQ4ooc5IkQOgQ5wXGOOJAMdduMBlNyEpIjaC0oLynEWrwQdUOVFUVzyqNj2JkWGOh6whmygh5mlEUI0qhaAWwM/C0GwlREqFKKsiXhEJKxrknUIowUOggRtUb5JMxaSmp1UNCrQhmGbf1ntEkw+icWFT3i8kLstwRhg6hHKAQ1uELh/EOFQYEAUgHDlVhDq3FZgXpxNBcqKGVPFj88LgZ1g9vkDhwVWuv+lYcEjBliQg0UmtA4IzDOUMcJZShJLIWoTVJI6HejCk9hFrgTKVAI8oMkee4LEWIXYYuoz5/ggtPX0IFP0b5/G+jb9zjq9+Z8tybE3YDCBcksimwxzTHH2tyrNS89vIUk+c0QkFcD4ikoXNKcHcjZzryRHHEqJHw3Ibndu8aKx2J0Iaaieiljhe++BXMoE9+V9FsKs6//71cePopzl48TxK32FgryHa3KYpNpsbSSAJWomWkhq8+M+Dcg4+wu27Y2rzPaLRBWYyQ6zcZ3enxyIMnaayuIOtH2OlZuo2SceGYvglbU8VQSkoKHD1CWRKKW5zH8Nr6Dv0OLJ85xu/dMcz/yy/Q8JvMrZxibnEF8mOU5cNMnresl4LwSIJ1IdKFyDDENS33bgyp37tJMm+5LSPEJObsI22Ovi9mUwk2Jo703oClpuf8iZiOTwkbHYJmExlqokjw2tsZX/vNZ9l6fQd1NCB0iicixbE6hKXh268MePgYXF4X7Ew6XOxc5Nz8IyStowRJjSD0BGFMNtylLAqsAScyzM4uYRzRCGMKFVYIFwyNxCP1PDYdESYRIqTyl5CS0qSMpwalAwSWopyS24K5uSNMyimjqcOHiqKELIOyVPvzvRBQj1qsyhClYt7cvc04jpkL6uR+l1ALymyHazfeIJtv8OCDRym3eszLBs1AoBRoUVVtR7lD4yvZZFPineHkkWMEqaRdU5iiYJhm6Dhgbia9/NTqKltL82Q6Ynenz5VrN1h74AyLccCxSLFxbIGd/oArm9t8+VtXOLtY44n3PFzhbqtIEDHjHBxU6sUBlnuWCByuPMMsZvd75MBDgfweDElUDrgHMKB3VpylrBrSYhbQvruvcAgIU80Nh6Axf9TzA7H/VxxQtQ8dvHPuIECfJU+Hg3j28NH+0Hv3IRFVkCSkqDqyh8i/ez2ZwwHUOwi+sA+xcIeqs9ZapNwjH/+nH3sSqdaVVVLgLFiDcB6pBdPJBnF9ge7qMoE7SbmQEYbz3L11i1t3t4ikRHcVrlGtsUdPzXFCK1585T4dnaGjgLgR0q5DrFO2hhOUlySxJfWWb9+f8vaO5HgnIlIFdd2mv3WXtTs3seMRbiui0Y0498jjHDtzkm63ixQBk7HFpGNGdoRB0IlDgjjCupJvX5ly8cIZdtZz0nzEzs461uY06zFZ70nOXlhFL1p0u046dWgJpfUU9xVToSiFwJIRiiEqMgRil3NYrt3qUzuTUDYbvHEnp3XnFkltSr27SiCbuM48GEdx1zOyoDsB1ipAo7TEaUe+awgHfaKliFsmoi4jVudjFoKQoYTt3JNvjTk6p5mvCxLlkFGCjkKklggteP3yGl995g22bveIT8c0TMD7Ys1yYslGE9Z3M450BXd7kiRagskp5mtHaTaWieMY8Hzwwx+j9cu/ymAw3L8GnHPMlJn3uwDev2u+2e+6iXckBrNX2Jv59vxH9roI7HF/vo+KxPeVHKBi8jJiPPKQG1wK670tUtPDtAYMFtuUtkPWd0zu3cDUFO3VNssLDZYjzUgJxhIS79ic5MSmQJkpZTamLCxLZx+i3h3ivGWwMyJPh5hpn6I5z1gFvOfYCtdPrNDfuIdLx/SefYavPHqezuMPslQLWV1ssnrhJHevPsq9Z1+hpgqMMeyWGXnax+cjEBDUFFnfzsrFVO0A73C5x5aSSIHJDbZ0eAFeSPLUUEwLgkgRhBKhquq8q/rQ5LkhjmXlkzD7o0IJupK1lFWPG4FHAWZGTtXBnrukQIchUaSI45jxKEVKVSmQBIowkJTTgtJDNwwpc0uaZrh+hnApWjmckgitkQi8N2QlWK8RUlXQFy1RUUBYTzCTnHQ8JEwipA+QfkZ+DgLaYYKzhlIFqLIi3llRScC5PMMLTRBX6irGlDitUVis9UxGOTiNlBFKKOr1GEOAdyVKBXihEFpjZEiRGdqRol6XSKHIMsckT0EospHAlQY8dFWCkgFSabAQhpoiE5Vvw6y7YnH4PKMsFb4W4q3HFAV4gdEOGVVVU8IAW1ictzhFZS4jKj1vjMGaHGEKhKwTaonTAiMEZk99SEqycUGShwRJWEHPDpAHlc+Ft3jcAcZZVkR1ocAVKY4IdHVTVvKyAqUtOpTUhEIGmrgRUk9CcmNnN7NF+AxcihKVMYwvpzhfYsyYpaU5lj76AXa6d/l3//AuLz03ppiDovCMB45QKcKJR87VCcYpylvaDcvCokJEJaG3PHZGElvL2panNI4y9VzdNLw6ucq5ZsJc7GgsLhBEgt21HdLbm7RknXOf+s946oc+xulzDxCqhHtbIybTKbErKbWhU4uJVBPSktvrN4nrp4n9PGnvdSh7LM6HrN8vmWwNiGWNJ54+zykdMshDtIO3Xh9Sb4WMNi3RqQdohpr07m2Ca3dR0YChM7y/22K5IVmLQ6YKXrs55Mz2q5z+SAsnBUGrTdKeI4gipp9/m/5uRqTniHWA9IKRtkR4phtjApFz9ImL3LxbcOfeNjUdETjDKF5mMC2xOz36U8/NsE4znHJsZZX5lTqdUHPXwp0xbFzZwTtBHDgeW5acjhyBh/HMrO5YPWY37qLnL+E4Sd4PyGp9dFaSzHfQUYeoLpA6xxQW7xSq9KgoohYKNILCO4zNaSpNREwWBZVAgTSVCzKKNM/JpyU6sAhpyU1O4SwhIWEckJpRpbJWevJCkJWHq6dV4JUEMfNJl8W0TyRDpBVY10YGCdbkbG71GZt7nL30PuJ2TDcKCGU1ZxRAiGe3MNSwWJNjrMF5mF9cIZnkIDz9wZSyzLBliAliCiF5qtvim6dX6Y8s5WjA2vUbvLU8R2N5nppWLLVjFo4scnNU8vz1HUw64fFLDiEqwyupDhId4+x/MPg73CmAg9a8EIfgQfswJHHQMZCHQtNZC2Ff1Wyf9XxI19wfmJftvxHekRX8kU4QxAwCIQAvvuvw3v0dCFlBi/cTNg6Cnz1lISEOqwtVRmtCVkaiHNq+33rZSw6oOhReVImyFAeEzr3fVyUZ6g8Vz6OCWlnwlSS4kHspV4l3Jc4W1GoR0bFFBnrA62+M2H75SyQnJIMixw8VEkcQBcQLc4TliFAWxElJnHjqNcd8S3JsXnH5dsZgBMoqpnnB3R1LOu3Tq9fpxobGylm8lQy2dijvb9GWbU589Ie58NhFWo0O1sIoLSlMSeAdVlmacR3tNUWWMxhM0OE8oa0x2rxBMymZ6wq2tzJGm2MCGXDmkXO0SoF0Aab0bG8URLEkGzuic6chTJA3t4h2LKIxJbOWJxcSmkqRdRVTHON7U8zuGssfqoMAVa8TRTEUnvLWgHRqCKMa2gkM4LRHBI5yWqCEYeHiSW6uO/LtETI1eOFJowbT3OEmU/pBiHWCJHB06g2a9YCaktx3cHc7Y21tDF4wHzqemNecEAXGOTJniYC5uMUoaBN2HgbbxWaeYbnLjjUcO3GCYydO02532NzcnilUmuoaYK8mcWjOEe+6n/Y6cLPk4YDcz0Eb713X9/6t8h+rczDqF6heSW4Cgu4c00mD4bdfZuR2KU9F9FVEZsYUeYDoTSllwJEHz7GUVK2T0sO6cxwVjrVsyk4xoshHZEVGJ1mGIODC8Tr9qSHPC9xwTLJzi2ul2L/yAAAgAElEQVQ6RCw2eWQl5mtnV7hxu4nbHlDuKL757O9zdn6eS8cW6CrJA8cW2P74h3iz57nSu0pw9zpK9TH5kDIdEySVpGaelQQBCC1AeKyxkNlZm9FjjcfZ6sQVWIq0xBmLaiiieoAEyrQkLz34qmVdlCVKCJQEqSVhHFZKSVJgCk9RVjr1esZbCAJNHFfBv1CKIAxJ1GxylLLChOUFOEcsYqSv+AXltEBaj7SWdDQi0BYTQr3RJohjhJbY0uBchpABmRNI6anVNHEtxEuJKXPKssRqSag0wjtM6TAGAjWlMTeHmzoCWeKdJSsKNBZkiSky4maTKFQoLzEW0umUshBMJwX1SBHohEBrOkvdyiNBpKRWgNIIJSgLy86gT9wRrByZI9AFaaEZlxEagTQVnGc0nKBVRJzUMEpg85KkXsdHAcoUUFrKSUEaGOY6TYpxjtAC4wyTicG5Cc16i3azRekVwgvKPMe4EtXQoKoqgvCVehDWzKoKEmQMvoIEeV/xTYIwwRjIpwVaqYqwvK8oAXluCVSVoZvS4L0nCCXOVneq9yW2rPCklkoSNYwSyqJAh4ooqkjUgQYtIYoDyrKc4acdzhuEllWAphLask1pM/JpSp5bvpOt8veembAQCi59KCacwPYW0FBQaq5eDdhd30blBSdPSE6ekxRThzKOc6ck8w3Jt2/C1ZuO/v2URi2gyDyX7wxoCMfS1DB3LGf1WIP7N6F5YoFLP/nXeODkSbQtWB8M2ehvELcTks4i0tQJhaefGV5a73H/O9/m05/+C/z6r32T3tXLzMcFSw+cpT/OqUePQqNBUGvz4FwDHUZkGfzmN3b40GMR3Q8dof2RZdTgw0y/c53hb/07CHJcWePJB4/ywdVFnt3c4V88+xpzYRelNLbVZlxEmLBL1D0CoxJx7hzu2RsE02VkkiBiDQn4XslSbBmfPc2S9lyo36P33DW++MuvMF7yPPHxT3JGwMoJx/10yrff3qY2H6E6S2w7wWkvGUpwrS6LZx9h6+0t9Ljk4ycFl2+nrE0986cjPvX0PGvXQs6sPsB7Hv0odVOgx3coNyRD0SRqNhFBiNINcBHCF1hREssOytdwhAhfGaRVpHhDqD0yaaCExbhqrvUC0sJDnlXdzkhV0ARvuHnnHkvLXUQcY2xO6QQlmtIF32PmFzSCOu9ZehjrLOu9dSbWA5ZJ4cgzxaQ3ppSKs0ePUpcCQ/UZjPe08RhTMHAFeZkBklgnCCk53gkYFI7hVKFNDumILSGhFnK2FbBw7ij2+j3Ix4x6PV6/fYPlWp2TrZgFBaePzJO5gLsmYCcybO7ssjDXQSqFDgOckZgZEHe/Qj8LXPeCyIPi2ax9z0GH4aBKJw4F+7Ogcm8/DgrchzsUey37inhcPdiDwiD3Kt7VOIyF/6OdHVTY5u+CYsF+BiblHhHyAOJQbd4zCTsc/FRB/h6XZI8cLvwhiNYMgvEOsvne53DuUFLHAQF6FkhJWcGR/jD4M7zDfA6BdZVRm0DirMGUGXHYwNoM72BaKq6s5/zyr3yOpajkkT9bp7wiGRuwKkAWIfe2AnZ2tlBqQqQlcwua+UVJrEpWFhWNKOTN+7B5P6WclsRxTJ4bXr+5zmLgOSoU9blFlucj+uuC2mqbcx/8YRYiTW5KxmXGtEgJYk2Y1MEEaCnYTkvWhmPGm5t84LH38nu/d4X01nVOH2tTa5zEyRrt9sOUSqLCmJN1jVSKfs9w+27GidWY2oMtkgcv4cY5xWu3MN+5DUGBLwNOPzrHyW6Nr79xn1trm3RDhdQKlyTkhSKJGqggqjyM5iR+1EcVraqbGEkQHpFBPYB8fp42juN+h1tvbPLK2hgzF3Dm/DmOC+geEVwfTrjVczQaATKqMUEggVQImgtHWFw9Re/+BrVRykeOC169vMXURhw/0uZMq81oN+LI/HmOrj6CnA7Q5ZidrW1ur22yevQYQmlOnjzJ5sYmZVlWna09rgwz6eFKa3p/3jrMz6mun9m0BvuyqHv31mHFLvaSaQfvvkW/11Cf/exn/8CNP/uzP/tZgOUnz5EstlBRQDS/yI3nXyUzuzROt+ieXqBwcPWVGwxe7iPkcZ7+zKe41G2SSMHYO0IPWjjcaMh00qM/SSnygkQ7ZL3J+1oJw7iJUBEREoqUtY273NqMeOJEm7RMefN6j+2tbSwT9In3kr78Je7rJeZbCUeSkPMNxYMrIbcePEJvmDF55QvkO+sU4wm2LPC+oBxOsc6RNEOCuPILcHmJFB4zKjCFAyXQWiBx5FnlJBrUApL5iCAJZ4RTW0G6hIBZt8H7ykgtjlXFCVABzkGRWfLMUhQem1t8aanFGi0sgaaSywwkRV4grKmSDmvREgItsYUhSeq0Oy3AMp5OmU5TTF6SZSUqTkhUUHkOiEqS0xQ5oyyn9IJ2t8by6hxhIBhsbJKOUgaTnG63Tqg0gQeMJzfgvcR7hStLQimxxjMaphTZtHIpFhqPoJaE1JMAXxpyoenvpqSFx5UO5wNE1KTWbJKEmihqkWUlQRQilWQ6GrJ7fwuigACDDiCuBdTqMYHSRGFEWA+R1u13HIyzuDIniBNq2rO1uUOZDklUSRJEdFePQ1AjCiTOSqwBLQQyrBEpT9Rok8SauBYQxAHWC5JajHeeLEvxvsRTyeE5gioxALRSVWggQOgQHUYMeiV+D+fqHbY0pL0JzguUFnhXeU0EgUbpoDKiM4YgipCBghlUzViDCgOYOdpKLKGWhEGAkrOFUXi0+n+oe/MgyZL7vu+Txzvqrur7mOm5d2bPmT2AXWCxBEAAFAjSFCWREmkxRIcVNOUIBoWwJStshhRyhG1F0LbClkTapmWTCMGCJJIGAQIGcRBYEMdiFzu72Gt2Z+fqmb6P6rrrnZnpP153Tw+AoKCwFQTzj+6KqlfVXe+9zPwd30Nikx7paJe4t0f3W88zcmWi4RqB16Fc8Vlpp/zdf/KbrF7r0s0d4xXDpfeUeMdfa6GON+ntadaeW2HnpSFzlxSP/IjmyUck7z6heHDB0WxYLJaTC5q6FfTfNHzkgTJ9IalXPYajwqejpHK80R7D3YQf//XfJF88i+d5dIYRqzt9TjdbrPX2kB2NCkLeWu3zxps9JtIWv/DTH+FffOaLuPErnLl4Hm/hHOu9CnY8Q7N5jq98/rd47J0PMT0xjzIlnNEcPz+B5wKqc4pyUMC/ZL3M5E88g37fk5z70GME981wcydFIXj/JZ/VL/635OECl37mfZy8+ACNyUlEKojXM1ZKCWLWw6vXkLUQtIdMNY2mT/10haBRxSHZ2ky4+dpVll/+fY4/EXDjSy8xNTWNmpukMlPlxGKdpbMX6HW3EdUmZ3zF/RIuHJ9j8v2Pc/mr/xo2Et5Yzqg+WKMx5eN2cwZ7kps8wn3hEuHtDNfNcXkBw2mdOYaINFJ5CCuwicWMc8gFWScDKYmGKdgcTxu058j3K0rleo1Bf0iS5RihyKwoNgtrkdrHuBytJYHWDPtdJqcmsEYSExCnKcZlOKt47Y9eBuCjH/0ojUbjSHUKojRmbCOuxde53l7hxs01tm4OyOwM737qEZY8RQoYQAtQOFySEGcx/cQgncFThczkycBjrEOUVARAlka0h2P2Is2JRkBqUm5sJ6TRHqpaRlan6d56g35pksVqyISnmAsErYbPaLbCle6IL/+bj3Px/Dm+8idf5fbqHcCSxsk+xv1IZf/gKx3ZHI9Wjw9MqO5WsYt3CCEOuwXfW2y+e+xB+/9ulZr9yvW9sIBD/DB3oS9PPvkkH/zgB/+0/fqHdqyvr/Hxj38cIeT3QiA4eo7FEUjXXcWno9X9u5r/8q7fw3crsLCfVNh7E4sDQrOQEiEFWutDLwJjzH6wdS8UIwh8/vbf/ui/71P0fcehSZoxOFd0uVw2wqRj0n6HeGODHJ883cPTY5QX8vryTf7g2T/i9ZdvsjmOGd3q8uAzsyw9epza/Dy5CVl/4xVWXljl/HubPPFEnYfPljkz5TFfh0opBZmzNFMj30yojx2Xlpo4rZioV9jdHVIqKwKGiOEueWR55y/9V6SVBoEQdMYpWWap+z6DOEbGCulrrm0M6e1ZZktNHjp3mm++fg2dLXPmiUcY+pP0owaBXKBWneRrX/oM7/qRi/iqBFahPUVzMkShCaoCrSTOWLz5JuETZ1AXTzL12AJiuszmesLiYshisMn45S9iKzOceP/9NGan8XwfFxdx19AziIZGBT4i9HBWolAEZUXQ8tBeAZHutFPW33ydwe4VJpY0q6/eYWp6CtGoUqtpZlpVGvUGURIh/JBZJZkHTp9aoHGszJ2NN3C3h9zciDj+jiV862BoGcdltuwFpuUkbn2MJwoBm3qzzqn7ziGMREjF4sICb799jd3dXaw9ck/vLyhKisN5dXTdOPDlOEiU7/Up2U8crDvsQB2dk9ZYsrRwBf+H//Af/tff7978wRySM0m9MU84O0EWhEw/EbP6tSusf2mdFXMLUQ6QsgImwdczPHVikXbZR0cx/ijmTq9HbTak042ZxBBHPVLrmCg3mceyYzUOjQwcs/N16jqnvzMgFOv8yUtjpuebHJ+oMFg8zo3UECpDl9Osvfws//iFZ1GNWapLS0ycmmJ08yrRs58j3tnApmlh6BVCFgnCZoAnQbkMN7aH5Ki4l+CHAptRYPaNONSdF6WAsBkSVgR5JyLuJeSZK8ywrcAkBcZc6AIilI4to2xMrRFikxxPa0ASxbZw30UgA4/MZphhihwZhE5xOMJGlalKgMkVaWbIohwH+FXIB0PwFGleuA8bI6jXqnheoXaUZYUijzGWOM1IE0Ol7BFIQ9TtggXtBKrsM39qnjw2eL5PmsJ4ZBlFRTtzWgjGRiArXkGkJqHbG7J4bJJ6STNIE3Y7PXpdj7RQfCX0AKkxuUMGPn5YJo0dE9MT7O3cwuYZQuQF5MpYSvUyiTXc6YyYsAJPSpwVeGGZ0ThBGYnnByBy8nQAwufkmVnSQcpeO6ZWKyNSVUQiViDSiLpXYTwqIEahr9D1Kir06MdQHwxwXlGhQAqU0GBzrC10zZUTGCNIjcDLcrQEVSuB0AhlUa6QLPUrPq7lg7GYKMOqon2dJjF+tYLSHlLmCFl4AljnGCcgTIpNBgjtg1Y4KRBeUREQQiLimAwHIse5HCnqICEfD7FmQNzdIutvo1xCcP7djGNH2JrBZG3izhZefJXzjT2uqOJ6XDztoW7lvHG9zW4Gv/R3p/jof5hgMkd9JuD8vMelmmMcZ8SxIbhtCMewbhW1YwFP/9UyH/unHbL7Frm4lJB3Cz38znaMSHLe8x/Mc+7Cw8z4JZ5fscgk5IHyBJfbt7nUmMGfrvD81QhXWeKZ95c5X074nS98icreP+dHfvTvcHN7kdHugFb9FfrJ57h+51OQBTz/9S5zczkPPazwpaQ+gnVtqYYw/voaiZOI4w3SYcTzO4bTDct6H06drjK8epv/6/c+xwMnpnj4P7rE1vEQ3Qro3epy+xtvsnPlORYf+jLnPvJRNs0keUlRKXvUtSJLLa8njsWyJldlvvGFL/Lpj/0O9Ybl1ItvMpdGfO0LbzB8cZFTFy5w/5mHuPPcCH8+pLa9x+tzDR6Y1lysW36i6TH96z/L7/36J3CZhhVDZUozP1nD61rU1g2Wtw3OP8mxE6eRlSpuO8b75g6VwFF7IkCEHiKXuLEh6yaEk1O0Nzbp90bIMEWlFrTcNzuMSXtDnAyxUhFlCbv9mGEvYqqh8ctlrKqT25Q0HTDbmqA3MGRCM6SA9tRKIT7qT9sCCL2QWlIlu225s7HLjVtrdPtd5loXOdeqsZFlVDNDkmSMbMG3GiWGBoWXSsX3qEtNHcfA7a+DWjLVLCFMRhyPcHmftzZSmrWQxyarBP0FOkmO05ptM8PbN17jH115jUprhtm5iYKzsLtL8tpldlc3+Jt/7x8wHGxSaTXob++iPY2zBrVvFFnsiu4I7p17NtxC2uNIK/67W+9HSQT7gf8+IvgQTy8Oq+P7H3nweUcwAffggw9x9X/exz7PyxT8MjjSEdjv0hQBfgFaO4BYHTAzpCqq+tYegQlRVFCPnrcDtRW1L717l2x595iDofavSUH0vCs169jXkN9/7geBWPz7G/s4c5PhTA4uJYvHkI+QQqAnj5Mb0KUyJu0j2KIurrFQWsMFCiM83vfuabxhzsbzy5SmyjxzaZp//Okd8jSnOTHBiabPpJ+R5RHGRehegk4lHZdx4tIMq9cTPv+NdfIz9/Po4pjRqsZGKe3BgHKouPjBi0xPzFKTgld3HfNeQCAd28mYuXIVJTVvrWc0J2aZPyFxyYjv3HyLyvAPePiJv8n1zRKh36Pub9HpfJsXl9cQwwrX3oy5+DjUqxLhIM9gpB2ehuSNHnYiQISKLLZsRYbJkqQzhoWzIW+9cJX29TXmH5ph5n0nGFQVc6Gmf6dP79Y62fAa9WPXmbrvL9I3NQgEJa1QQGYdHeNoaEEuPT7/L/+QjbXrzMwqZm/kTKUxz33rGqPJ4zxy+hS10gy9tIyuacrDmNuNgPMVwYy2fODELOd+4cO88MVP4/KQdHlEsxFS8xRyEBN3rtJpnMOJaTqRY2LK0bIBahQjfIk65vHw/Q9z4dx9rK6ssr6xgZGFiZ7Wep+7yKH878GtflCmsHa/y2DtYZEB7nJ3vtsj5F5M458+fqDkIJyco9laJBQBO5HlzJl3s5ecZGReJ776JmZjF2FihFfinf/sI4TNkHNC8/ragLe2hzxxvkE3NkxmQ5b7ORWhOVaCUOTcShTncQTWMBP4ZE6x1WzSPDvDzmc/xfJjP8FinjFgizz0OD77OPWzNW5Nw9Ynv0DW7+FMylA6tn0PWQlxJiPPBBiDyAzGU8iSxjqDSwyZE+SZJUtzXGZwmSNx+5U2v2hJ2tyhSz5hQ6FcTjIwZMOULM4BgV8r4ZTAyw1ZYgh8SVj2UFqjjCBJDJWSzyAy5GnhOJwmOeVqiFQgsgLOo0NNtV5h2BmRGouwDk9rbA5JluKUopxGlFtTlAJISh6jUolkMCIZRSjn6I56KC/AUQSkUkI8zPCRZC7DDBLAIqQCHTLsj4ijDKk8giAkDDxcZun1Y9qjEVb5mLHG8yVKCWamSozjlOE4wliJ5xsC3+JphUxTWvt+CUiJ9AO0Lsyk7mwNUEGLipeR5ClZlqJCn4pw6JLCZgYhNdJTuCwnGw/xhYcXCEq+QmsP3wsJdUB/e5uw1KQ2MU0wYYgHfVyaUas1iKMEYx1q/zpLpTFWkMQptboP1uCHJZTex8QKTZrlZMMuYckjNeCcQkqFyzOSAguEXwqL6yk1CInSEq8kkUiyZH9T8z3CBR+EwPMkOEWeZ+SmqLZXShLlSphMFRJ1AqSnEcovJnaWFd0Bk2JtTpZldIc9GlOTeCWPfCTwghDZrEKWoLdfpNF4iE6vB06S3dolu3GVX33mNF9+8xYfejrgetvw4tWIaD3BA37j1zaozgh6OzCR5pRHgqTvsMOUpO/YCyWJ9tjblNzasGxspJRnPR4Ke9y56chyg6prEifYvJVRv7zL3wpgbxix85qAUPHI0yHvVtO0ky53ZI2T52tMC0Hevc0fX/40/d1v8Bc/+Gt8Zvs8d268SrbzEm54BWNjjteqdLJjTNan8LRPFFuyzOEChROOzeWc6rlJqiWB8gS+0ryz2eONl1b5oxfWad++joqvM398j0d/9idYvXOVWe88t756nZuvv8a4/yrvfWKASgPGV3+X1jmHCZ5EqTm0FKgQToQBn/jvP8FXn32J9niDyvQEw84GX1/Z49TjDRZnTpFTo7t2k6/cvM3Ck/8xc5WQl774ee7cXObL0QbNap+5YwYvXGVuaZpaM8DsdLFZxqgvmO0JPlCSqLBJz43Yeesb2JUmp06/C+VPM8hLBGFKcL+PCkM8z5ClSaHbnkt86e/zZiwiyLE6wmaOfq/L2BhiIPcE1UpANdSU/cLROBMCoXxUucFEc4psMCI1MB5laL+MsIrRqPP9QxdHUSiRkheXb/PlF15hc3ubeGzwmw3e+YsPowQsasWr2xGhhrmaR5RbaibhTmSZ0h5VBRbLrhHM4vBwNLQmsoKgXiFMxvSWbxIvPcCss3REh1LYpFoOCZuKmSmPb37qWYa7XYwZcU06/HJIdbJBPfDoDSFLRqggoNRqkKUxNs/I0xSh1HclBfuVZ4q18gBZci/h7+4eehf+wj4f4e4+e+iHcCihevcjDqreB5r6B9nFgUHX4euHSjp/fpME54p14mhi8N1Jz4GqU6GmUiQL9oAjsB+zHJrVUWi+FwAje7cyKg6UoQ6Cn7vJ2MF1PUwYDjoRFNwwuw+5OPQ2+KFIyg4quqbg9qUO5fvg2YJbFq3j+zOMx6MCFXB1lQmT855HHualvev82KMVXmlH3Pn2bUx7RKMiWb6+xdRSwMaKpZlHqNRiTIxNR2SZY6xDEluisyfZ7cfs9Q3NOZ+T3iYbtx3Cy5DNEjsrjtXlHtXaCu/+AAyinO1lQe245FjLp6IckUnYEz7H5wNqUtDv3GF95wpZusLFh/4G3+xOsrN2DRXfJOrexpcZD85Ost1colYuAYIsLWBhdn+aDPYc4clqgeBQEDiLihK21gZ88/UuyeoqgdrgxH2amQcfZtDfoL44x8aVLVaWr1IP2ywsDgs49s7XKE9rrDyGEhKJwFeCmnB863OXefb/eRsmHX6jzGanQ1tbTj3YZKl1gtiUuHX9dXRlntmTT9BQiiuvXeHNW5t82WwxN5kxNRHhe22m5o8TBB52bxsrJS6BaixZqpfxwhr9NCLYXUezCHYC64XEVqI9gzev+ZW/9SuUwwr/x8d+mzTLClNdZwszxuI2OXK/FJKk4iBxOFxX9hPoI8aKcr9ICf/ut/sPlBxU6jXiXLC53SctNWk7j8F3bmPyRagohNlCVQMaH/wAj5+5RD3QXL09Zr09RtiUdJzSi4bIeMSSD92xYyADvHpATad4gzZJpcJ6pqiEmmbJY2GyQefSg7z17T/mlr5Iqup4lYy4N6IS1DnWmOTUf/afcuOVVdovfp1k+Q1MAswtEJyZx3z12wgjkT5I34BJseMMLwDp+0gF0krytGjROxxeSeIkeFWfcrVoRZlxSh4bomEG1qBUoWpk8gybSwJPQqCxzpGlhYxl6CtEKEkig3DgBxL24UNKOdJBXFSyhMIZSZoa6s0ynq9wUmOlQDiLTBzjOCZKNTXfEsUZQktKoUKZEqMoJxqllEsSJSVaS6QEJzVJXZMmEZkSCAq5Td8r2rTKKbA543GCiaFaVtTLASaOadRnYdQnxpAlOUoIypUyCYLhyCD9AhvvK0EpUFjpI7OcJLPUp1qUyiECSNKccTwktwolcsajIePBkDyJcVLQrE0SloOC+GP34TR+EVCn44h6uQxakePIrEXroCAXKldAhoRgmOds9QZMuIxaY4pSpVJUlFyhjFcphyTjBCMLabBD1Tup8YKAaGzQXtFFMKnB5iC1Jgw9cGUkRSm+IFOCh8DzPZwTeCbfn7jFRpTHMZ7wyFwBHRPOopVASEXRZyqyfmdzzDgjN2O074Eovl9uUrRUOAm72xuU6k2ETotqkRsDKVmeoyrT5GtXkUqT+Snd0NKduI+ppMXf+/njNI9rnpQ7fP7TN/n2zja5dYyBh96hef1rGVsvpXy+n/PaacETD0gyB39wXbDzUooRmjhWDNZASMUOsLmXIQOwqaXfM3RGhteuRjC8ic4WeHypRDuGN28I4qDEwMHEKGXCl6z0l2nvvYWsB/ylj3yUzd5JBpef51S4g3c8oBufxZ84QTaqUe32eP7rH8fe+BbveOIdnPrgO0mkplwVhMfA1xrnHElsaHeGtNxtvvKZr1KKl6kPRlhh8DPJy9+6zJn5Erde+A7xzSF+1GeKlJe/+ja6HKNulGnc/BSL979Nv3qJ13tnyHd3Wfvyb/HVF26xvt1Bl6BUC3D1GvFCi2s3BjSjPWoTEX6lymS9wvz6v+LFK7P85NOzVJ88ydomXF3rc3PjDtGtPY7d1+LWrTZnjoUEnqazmzIc+lTEEsf7KToYUilpmsLHvz0gCNbxF85hXjdkJkUtaqTUeLlHEo0IhEJWa0SJI04NaZqRDcZUpqv4nkfqDhSCipZ64BfCCNLlOJsSZ45RbpHOUK6W6e90mKmXsVqTGUM6/t6d47BNjSDNMr6yErPLPFmtgr9UY/7++zgzMYsn4cZeRpJlhEKSZjDOUkSeMe85+rEj1T6+lITSIJMxue/TNoKyp6h6mqxeZTQzye1rb7B5/2m03yQMR4TSUQs9PFHlx37uJ3nt7W1WL/8J4709rPaxk9OoxSm4ucU7HnyUW+0VVpdHCCAsh5g0PcTCm9wc4tDv8guKjfdAK985hzPu0LCsOBF3k4YDRaSCl+YO4ULF3C4kru/G+He7EEdFVg8qfAf/Q/Hk9wcs/XkaztmCCyMF390dOegYHH7HI/wPxN0uw93ji+De2uKaHe0yFElYoRp1SGHYf11wlzNSwIgEBwpKhVKRO/y8g+Thz3IUf18Wxb08xZoUIUxBThYSoUJsfxMhFM7LGVbrEJ+gSYtf/NElJmc0x8wW//fyHjvjhNwXuIri4fMBaTdm85Uthrs+C/M+CxM+iYXndiS3X+5RazUYtR3JAELfowNs7I4IaopBL2Fte0x7dYRjh59LO0hb5aF5TWZgvQeZ0qRANS1gixuDdZKkTa0xxcLieQbpDNHb1zjbjMhNjX71LJXpU+SxT72f8PwXPkn+1v0cv3SWyolJrJB4HuhGIRhiLaSZwWQJMuvw6leuMaHW6CU5YUVgRjmbt24yMVFi+8YK+Z0BdZXCXpe19TvIUo5YK1OZf5bWsXOsuZN0ozJpe4vdy5/lm5c3WNnsM0MFVS5jJiaJJ6u8fmvETNql1YgIGw0aOj5KdW4AACAASURBVCHc/gZXlpu8+/wkT56cZ3svZ71/m62dDZKdHosnp+jeWOfB05Okw4jtbkonCqA2S2sY4wU5lUYFN86Jx3v4VR/ZmsDcMShlqFYrTDenmGpOFpxF68jze7tiiANJ3n3VrUMYHoewyYJbc1cQ4ID/VBRC7oU//tvGD5QcJIMBo26P0dBgXQPrB6ighuzXCUqK0uIppp46y/yjD3E+nKSfWNY2dxHZgLmGxaZtqnnO0A4oey26Nsc4ge97YIakmWPr1i5qsolp1WiEPtPVChOzx0l3nufmyjaKMqFzVGczhICFY+dJjs/z3sXz7Jyb4daLs6xevowNBdIL8I9P4uIckggX93AU6i9BzQccUjiU77BJocbjnEMGEicFqqQIJ3xkyWcwHJMnKTYtMnvlS7RWOOsI9513RWKxWU6eOVAGbaFUCTDC4falLJUH2lOY1GCyHPx9fHFQMFBVUAS8icnJM4u0Bu0JROrAV2QmJhomBL5GS0UWZ+TGFaUq5eGwCOHwdUHQmZ4K2NpOyW2BWZNSYingO87kKFcEu8oCmQEXoTEkcYTOIkqlgFBpTF7ApjwHgecXevzk+M6HcojQjiTPiUxRCZRKYZIUk+fYJALpY51BGIMvBX4pwEpBq1ot7j7rkJ6P72uMzUkTW/gXSIHEYfKcODN4wuAHmkAYktxghIcKK2TOMB6n1BoGk6f7C38xaaTNwTriJD7chCwO5QeUpQKpCiiUBUzx29NeQe5WCpNT8AqMxbqDDcvdzeadw2Z5scflOSYXZEla8A50oT6ENVhXuLRiwBmDzTNwAuMKedMoycBmGFFIxA7GEe1+l6mqABNh4zZm3CYbWzLTIs1jfLOOGe2iZZNg8SzxboVLiwIZDFDBgOVZn95DNabmy5ybHlE9XmK2atm40uPNl1NubEnaicdo0/HiNnRvWUpeToCDSFKqC3Y7GaPEIoygVbFMlWBTCNoDw//2v/w2F5/8EMdOPEqjPsVy19GXirmJGrNJRhJbrAxoTS4yUTlB4C1x+dVnWawnlHSDXl8RDQxh2RLZMozaLK9cY7S2yeZ2h4d6PaZmTvLAg1PYiQopjm4vprO+i3/7Cp/cfYMLrYTLV1exsaRenaQmq4zeusZOXCY4vc5Gv4vOa5T1MdpJnxnR5vqyYW6lw8r1m2z7Y97Ye5lBe529V7/KnX5MYgwajWlOET6yRLk0SXz1Cr3cku51CfyIcjBC93eJuqtcfXOKhYkS1SDi0dOOs8cajKc0g7Lm9mBIf5BRCyXlhkYGmms3uvSEZq5kqdSbSFEjG3SwfoI3FFizQNbOyGc0cgpETWB3hrggw2t5GBGQi4wkyRmPcpyfYozEUSiVSMDDIqzFYpBKY/McZ2zh1ZIZEAa5j4V3hf0mSvjff/F3jtxavr6+wXYvp1KdZ/rkKepLkywem2NGlxjljr3+iJrOqXggTFHtS1xMWVXYsxlOKLQSWJuQO0dnd4Rfr6Kkhy8EtSCkUm0Q9W5xqzNEp5qKb/G9YkNsNaYoN2t8YGqBm5OK5beusNfrokqaaqnM2YdPo2o1XH+jwG8bQ1gOcLZEmmRoVwhOWO7OXfYhJXIfny4Ak9vvCWyPHL7/Xu4Gtdx97qAzcSSrOPIT9qPge5KCH4ba9f9f4/C8uQPo0N1T8X2D8MOOSwFJchTwzaI7Iw4D+3tTq/0OBOKeZw8e330Pd02l7mn93Pv//DCYoBV/XmEphCvIh9gsxeQCkwcYk+GJXdKkhy7NYfQcKqlxXx3QEVNBj7PHmsxM1phoesxPp9Smq5TsFP3bN1nvp2wPyqxMQ283582xYns7YzoaoyMfbRUukOx1xwzSnGggma5JqiXJupMsb/b53X/9b3jymb/AXOsY/VTQywEpqYc+jdySZg6pfWrBJKH2sbbE28tXWKxLSl6N7Y7FCIFfFcRKQzLm1u1Voh3DmWHEsc3jNKZaTM+VsRUf5Sz9QYbd6zJub/LqzgaLE5K3rm0RUqOiW/hpTrKywzAZ4y22aI/bVEtTWDNNlqeUojFbKzmTW0O2V7dZT4Zs9ROG7XV6y69yZ6vPKM9gr0pt5izl07MEfonR7R5d4zCdNp6XkGrHyMUk0S5Xl1eZb/jM1nMaNc2g3iSq+bhqwLjt2GkPqQSSUt3HItlY79J1jvmGhxIt5EChkwhZ3kGPBEJOYsZAQ/DAxHk++NT7+f3Pf5IkTfYVvQ66j9yTRB+6s8M9cMcD/kHx9JFWp+PQdPGetexPGT+YWtHWDuXpJkJUMHGMl4E/s4A/SBGmydSFM5z/8ffysJcTWsmNXsQ4GzFbMxyflIyiPjIShMIyzHUBwSlpPGkxccR2v8eda3uEe03GCzPYuUlO1Cs0SlWCVp3uTh85GFAvx9SPg9+q0pg7RXec8fDpRaLz81RPzJEkEe31ZVjfITg5i93rkm8OscMEPIdX1qhAko5ScKaoqHuu0AYHnCgWJ7NPNEULTJYVFQhVVKMFBfFUCUl9KmCQFLKeIitaomlWdAtEakBJyPb9EXDIQOFkIT3ql3yE9lCeQvmKzKQ4IEszRGbwtcDzFTUZ4oeKZDxiNEiwvkYLyWiY4ZRHqaSRoYdwOS535M6ipaZaDWkrSZZbtJJIpXFCk1tLEkeEMkD6hZ+B3g/ew0DR2WvjkTNR9gg8j0wIMuOQTlLyVOEymGakOFJbRytJZhw28LBKkRpLNI6JoohkGOOFhfeCsFAqlShXfXLnCEOfUW4oVzRaewghMVYwjjKqQQmcRCER1pFmGbnIqZQkPjDILVZpfC8oqqJJSpJlZNbhyQzP8xCeJkkcAoW1poBHWEeOwxeFyoXn6/2KokA4ifYkQSnAK5Wxdv9a7E9NqRRSFJhXmxYYVuscNjNILEoWrqx5lOKkQiiNdJI8TUCCzS3CuX0ddIHvaXKb4lyR1AiXkecZ4ygmSlPanU2qTuPnXey4gx2OsWNNksVkXouyXSFPRzQqLUrNGXbHgpLp4e1uMk4yzjSPU3//fcydFVT2XmdzGPCOpzy+eHvM7ZWUcd+x2Td0b1oIBMoXhaa2tJRKgkA7xruGSkmTRJaKEDRaiuF8wG475zd+8xP85XbMM++1HDt5kWONKepCcnLCoxQZbuxklGpT1IIWuYn5xuXvMFh9lYX738vOEFa6PTpbHWplg/MkjckScX6cm+u7rL79Mtc3Njh38n6S1eOY6VmkNOzuDRmsrHNy/TKfX9viH/zMwzy300TnNSrlFk4YykNH++Y2i2en8I416I4W2GMWb34R272OEDG3byT0bhi6Zpm9ZIOtzjKZrxAViecEuYGxytGTkorxOHZhimHYQA+7mHjAKB8S1UsszAz4+ivXaJUs9y1UuXCizoOLZVxd8eb6iNKCT7ud4Kyi1vQohxl9u85eXqGW+ERDyTh3+OMhoTdCruXImiK7XYOSjzimkY8pzO6IvO7QVYruY+CjbApOMe7H5Biccjgt8LzCSC/LczAWJ4P9NrNDS0hzS7yvHBRFCUYanJDsS2IcjoNgyzjHII750u01POE4OTNN4/wCE4sN5iVoJ9mMC232yZok0IY0K9ZDTzjGVlH2LcG+yIM1Gb04YmdnTJDEpK06U5USJa2oeAF+tcxed4Q3gIlmTFApI8OAcqVFnhouLbRYnH2aVqvK21deozMc4HUHnLx4jhu3bpObMZ4HpVpI4EkcOcbk4IqKW5EQFHPwILg/4LgehZp89955lFD83VW3Aw3xg6D14Aze8yn7f8MeoIcOguDvPfLP5bgnaIEjkKuDI8QhqfjgCxfnVN6TDBz6BBWHoKQs1Htw7Dul3U3C4Mj5PtLpOoQoHSRidxOH77l4f8aJQTEOEhWJsDEuT3FZhk0lxmiMKuO7HJGOqDQUqW6QWo22Y9RglzjLuf/Eg+iJGrVaihzdpD/2efSJOf74+grtdsLOKOX6qqG9nuFCnyDQuHFGoBSlQOCTE3dSqpUyUT+lNekh50rksWSvnfCvPvH7BNVJ7r8faq1ZWkGIUYJmSaJTx1ZumCg30coxjMYsr60w2ltl7vRjbPYStnsJJhoS+AInK5SrHr35BV6/3WX7tbdY2thlYXGGU4sNTL2BEDmdXkLY2SbbWePVnR5PfOQsL9yp0ahMoStlhB3iDQ0j26a5NIGcLtE1E4jqLL6cx452sNGYzRVB/1ZOP7vDbm+dnc4aWdlHTypKuWRocvBSwqqjITWLJxsMyjV0d0wSd+n6mrjkMVUf8PLNt9ipw9nZCWYnqkxNVzA1xXZvTDBXZn2jT61UpVbXYFOGK1t0jcekrZOPJZVIE2QOqcaozTaiWcJu+biy5PyxM4wvvYfPfeVz9OgXCbM8cr86hznopB3KBu/PF3d4yJF5eHeNg/0ugnD7ZOV/+33/AyUHNo7JRyMyLUjSHmtXLjMoL+LVAsJ6lbBeo5p6XKr6vJJY9voxleOTTFQcZZGyNcx4aXWXp+fnWM7HnJ+tU614bMVDZGR55flvM1YN9l5+mcaJk1x69+OcfWCR1nSZY++cZ+elXbb3OrQ7YwbhFB/50dOsruU8mErubGb4EwELZy9y/ufrfPO/+TVMb5vg1Clcb4CgRx5YdMUjmA5JdgeYfSlABwhP7pOcwCY5whdEA0PcjxCmWI50oElzUzgo5xbPOZrzdco1jwTItcGq4mTn1uEFgtEgIgg9Qg1J6hgMU/yKh+8JAs8rdPY9gdSOLM9IogTnMqqhj9QOLQVh4NOaKDFMxsTDmHwcY3KNFZokE9SaVSYbAb4EnSSMBgndUYoYG2oG0jhDaIVzAukg8CDODVkGE5M+6TjHWoP2FBP1Oir0ydNtbCoZjsakWUYpqOB7JYTnk7mUetXDjA0CQ5blVGoh1jjCcguET5Qm9KMxnd1dZGZwoyGhVlgr8YKAivIo+ZZer49BYESlgD4Zg7QZZhgjKhoTBEgdoANBVTs8T1KuBKhMUpKOKE7J8xQpPYxQjGJJpaxAFeZ1aEGUppg4pVIvpF6lAyUsoe+hhCg6J0qRxAZpRMGhEOAsOJvi7D4nQiogIx0YlA6wWVIYoeAQtjDRU9qR56boRHhFVSvLMpLxmHK9hFMe2GxfbUPjeSFSarI8phJKknGKzSOkTRgPe9SHCePhHr5o4wXHEKWT5K5NXa+TDiQ2PE15fpqS1ozyDOc3mKy9zd6d66y1p3jg8R9n/r7j7Ow8xz/5+pusvLDJ4x8q0+8ZHAoRgbteyKZqI2hkEDY0XkUhM4fOipv//KImGVv2upaxE/zUe6p843LGze2EP/rMF/jWN6/z9I9+mJ/+ub/CwnSA3ROMtwY099vBO8MO3167zjee/xN++a/+l3ziW4bNO19Gj9+irmJCWWHmscd4x7EKz7454O3nvkX3xhu8ma1y9doNnns+ouTPMNLgh4JWRfNWNeCXH32cf/7SMg//2OPMz99He3XAla9+jZZMOVu3fOvmFS7+9K9SLz/I8p5EK8ftKyf4a//5JX7zv/sSo5e+RsXX+AvnGWY7dIVHteXQdZ84M0SDEcPPfht54Sx/+a9/iM3dDrPhJI6UrdQyDJrU5S2mH4mR24aN7Zy3XtzDH21jRl0qUcZ7j9VYnK/QTjL27nQxPctfetcC3Zf36O6UIDKk+YjUzpGpWTzXRiRrKH8KN6piTIAoG1zZQkkS9yOyEHIczhTKPyqw9HpjUgWB1pQ8jVOOLFcop8htAX2zDhIrSVJLpgVxlpHmCc4Jcifp9Qffs+47isR8td1mtxvTbAZcOjFD1KigrWJGCzZzyzDOKE9XKftAntIfW9b7MRdqVdZNzPlWmUQ4xllOMk65tXKHWJbYuXydxfvOEizNMVcvUa35HDvTZPfGkLV+n3ZmOFsNWZpu0BtZzlnJ9rDgaZ04/zCpLNP9yh/TGW7SWqqxGCQMwxSWaoilGuOtNsNOFz9QxNYgnSzW+SPdASkL/L8zB7CWu9jdQ0188b0uugewoIIvuy9KccT74DAB4EgAuw9VcocHHTnXR2A1f16Hsw6hDiJz7lYpi1f3X5eHKk53zeeOuL8eeXxQ+ZeHev9FgGPtvvP8IaxiP6nYl4FEHpFUPaJsJEXhjSOPPHfQyfmzHgJQOsRkHVCTON+iGCCzLjYB6x0nmGjiZAmTgNAeJa9L1L5NpzvLIxffg1fKWd18hedev8H2G1e59KOzpLlHnjvMjkC1IVASlStmcZQWi+KeynNkmpMqyX3Hyoz7kp09y+x0hQtLE7z55phXlwf84ac+zcsvr/LM+9/LuQsnCUNF0oN8nFN24EzG5rjPrd0NVrfW+MBjP85n38oZ7LxBxXSoSUslaDB76iRnmgHfuD0mty/S6XTY7d/mld2rzH8pIawu0PNzGnVJo6qZaZT5Kxfv40tXt3jnTz1GrTzNnWtrtJd3KMuUqUrO2xtXufDuX2QtqhDnApsZBr153vXhOX7/Y6/j3XiV+lQLV3NEWZdO4DM1Z/Aaddr9PuOdVdqdHv79D/D+dz1GZzBgdqnGKE/po8i0psQ2EyfHqI7jRifirc0hKoog2qOcZjww2aR1coZOr8tgrU09U1x8ZAGzHDPelOTROrmZwKMFqgJujM16yKCKG/lY4XBRRugFKKlwxoEqUCoHxOSDm/WwGXYw3Q7XjnuT8+I9B6/9u5UhfqDkYGmmTjn0ub7ZJalktB49RnYtxiyv0nrqaU5fPMnJMljfZ9HlPHMy4PV+xmDUZWU4ZL2rqU+U+fadAU8/uYSaKNOJRuyurvNb/+J17LFt6GxyHFW0gjbWudLMaYZNjjUucaX/ddqrV/BnWrQW3sv5oMyt3hbXa3O4nbgw35mtUpubJxdnYfgy6fVlph8oIeanGLy9y3jXMNxL8TzwSgp7UAWODdIULS/pU2jAGocVAmXAV4LKnEe8Jxi3E5LIIj2JKBemaDLJmJgIiQcw6sVoIRhFOSJzeNKSq8KIx2SWPHHE/ZRaU+BnjtB3SGvoDzNsBq1GiHAZSimk55ED7Z0+Io/otUcF9r5ZwQ9DdMmnWStTr2rsKCWzBWSn4TniQUKuJeF0A41A5AZpLZgc7RxOaHY7Y4QoOiBxljPIc7xxRq1VYvPmBs1qiUpQQvglMkyBe65XCUxKNExwuaVECc8KRrmk5Aw6TyHLcZkljQaAh40dYUNQr1YJSlUkimQ8QOU5kdOEKqfaqlBqlnDxmMlKHT3ZZJhBFOcksSGwIK1FVhqkeVLIOXqaLE9pb24y25pmaamF8DxCX+NjsaMhne01hqJCudnEL/mEZb9QEBrEmKSPVWUQEq9cQmuN72ukJwplJy9A+cWClycxJjH4jQZZEmOkQmqNcBlOmkJXvjcskgojwSv8MLSGoFEhTRLG/RRchqcVQVhCBT7JOCF3OSZLMPGYbNQjjfrIfo92u8uJM47g+BxCh5A4lCwTxxa9+yy98RRh+Qw73Q5bvRd58LEltu0SZnqVpQvPEFQnGG+tUtpb4+//1IN8cvNFvvaliN0Qnn5PjWcerrK1KvmfPrvGu09oUl9ijcOkOWkuiHLB3LzHKDI0JzWypNnddXzlasbS43X+gpfzR2+PuH7zKv/yY2/z8d/5DbQEtGK2OkXYvA9bisjtNn6qOPeuX+XX/9kdNpY/RmVuzPxD9zP3wEd4tH6c0olFvvi7/yd3bl7FpWPCKcjzEj//c/8Jv/2P/gd+vhFwzcUsnF/g3IUzvLCRcH2pwcZrb/Ar73oKr3mMtROO2uwJln/j7/DUU4/xvrGku9fm+MSYRnOWT/3hDX7xl56CmTI///d/kv/1115F2jK/8Mt/nS+//WG+8sYa25/9pwQLknNPTVEXjjd/b43R+k1+43/8JI/8yBP0z7RYnJ/ngckJ/GCK89P34dk7RKMBe1GVO52Yq7dfYe1tw2u/u8Pbtzp8+ILDzyztlZh2nPPKygoX1AIyucCkeIBpv0nZjLDDXeA6GousBVi/gokykje2cQ+HRefSSkyU4DxHKQiwzmBEjicsfq2K9AXOGWzukCiyfW6CEz5QuG1rC6kpZEa1zYmShEFi6Lajexf9/f2klyW80F4jcCn56i6bxxeY9AQTGoSSNCWcbWluxAlxPGKUWIaZIAg0Vzspl063iH1FNh7xndsd/uDKNm6yi+x3eIeUJFFMe9DD1zmh8JkpHefb/Tfprr7EzIVHadVnmRSSnThiJajhOimtmRIqCFFhi8jMUxnfZuvWMj/z9DtR4Yg3r77Nzp0eq9c3wFnCuo/wBck4RSbgPHm3M5IVRnAOd9jCZ58/YA7MMg+q3BSVfyE5ohXuvifQx937e9+//i7G/ZB8vI+PP3jfD0MR+//DOCqzeIjtP0yiiuDGWMMh+8Ddy00oVIWKxwf46OJxUeksHK/3K+z3wIHcIcjoaH51wDUB9h2S921Kj8CV7A9JQuYAbI6qTmKzAgbsRIWcHDG+Qpw28IMFdtp3UL6hPj3ByE3j6ttMHXsUISV5b5d5z/FTjz3Elf6YF7+4y7BZ5qc/coa5ep3ltTF/+OIV3neySux5uCwhzwqVvlwopufKDMcRzdkyRgt2ho7tzHL8iTne8+QEX3x7h5cuf5VnX3wOgaaiQQQ+F2aOU565nyTcxkUd6uE0C/d9iI9/ps1bb36GxQua5v0PszC9xGK5jqiEvPDCc6yt3KFSz4mtYbo5y5MPPcAf/Nan+YVZn++kMRefOIer1diNLFtNj+3hmJ89e5Z+7qFqk/QqHoOXNli68DAPJpJxb4+Tk3VurRp2OhmPP3YMV9J8+G88wv/8X3yN991/josXn+Gt3fdxeXWPW5/732md9HnqmQsMr+9y+40d9m6/wW+tdPmRpx8jC8rMTUxzKqjgewGT4XGkO0mWjrg/a7DZ32Jr7xabK47Ln13h/+XuvYIsy+/7vs///z/55s49PT05bt7ZgLDALqJAggBI0JAt2iQB0TJcsqpcJbpKdskluvzgF72YfCAfKJUtQeWiZImkSBMgiUCAABdpsXF2dmdnJ8907r5980n/4IfT3TML0MV9sEVTv4cO9/Y9fevcc/7/X/iGN4M1Pv1EwOj2gN5Gn7ExdNo5UxwnSk8zHZwkEQqV5dAbABvVWjIdQRTg+gVuK8UTVUPS7fEafwxUB1T3xD7vZr8QuB9aVN0L903hDsQP9p57FyXxuyoOdsegC4W1YO6ukF69SdH3SLdg2C3JR5bASlqeZFPDNRxj44hlhE0UurQcylPeiG6w3DlCO7J886VrfOlLf0ix/hfYr2+CFfj/+AskS7OMVvt898pNfuWLn+LKzBzj2nWycoNmOEVzvs165vFm3uGTyzVWd9eomYC2qjHxYoL5Jyg3vwldTZnN8PDjdR77RB21A697NV7/4VsMrgwpxhqtHZiq0x/VoOjZSgtSWoSnIFAYD4q8BF8Q1Cr1HnxFqi1ld4L0K0k+zxP4AZTOUI5sJWHqCbSzyNijFgWU45Jaw0dIi9MWFfvIxIfSUY5HRMpDWZ9hb0IaBMRTNfyWh+2C51X4YKUg9B2eMOxsbJPveNRbTZzzkT4QQGl8PK9BLFNc6TBKICJFEPp4oxGDbopWmiCuYZwln0xI85y5mTohjiRW4HlYqfA9h18WSKUQRYnLLHnhyLOC7HaPmaUErwSXWnaGfZwrEDbD8wOSxMOfrvwOkiSmMIKd/ojFmYh6lKBMSZrmZMMBgYRma4pifY3Nt9aIp5qYPZ5EEHj4jQCDYzJOwRpEEBHFNRaWfaZlyWDjLk76JJGPspY8zcitZOboHPXYJ/ActijRxuJJRRQGjAdjrBcTxBGBJ5DWUYw1jop47qlqnO2ERCUxnpLgKYQFjEFrjdYaaSpMtTMZtU4LLworHDMOXOWyHEUlQob4gcL3AZEhyh6iKCjGKXm/y2Swi9Y5hw9N88YL14k+/B682cOIUqH1mGwyoQgUYvFnwPQYbaxQrwW05s6y+/or3Nxe50N/+1d54+KPuPXSD7ETjT8/xaRZ59P/8Gm6//QV3kxz1tYcX+2OGKyXPP1YQn0npeEEtibZzCV3d2AhctRbYMaw2XX4UcTiIQ/dzVh9bYB4/ATLh8fUTjtWVgvWXx3jeQ7lC/J4Cm8mx+LhNZ5l6sFfYHPYZOXtz/K3fuXTfOAjn2Vp6RRl4bh5e8jta112dlJiv8W5cx/AhvDGle/QvVXwT/7X3+BP/rffYvH9P8WjzzzJ8cPTTN++y//wj36bhWd/me9FRzne7jDVgNlmRP8Xf42v/MmfceG5B1i/mHNYprTrhvaLE3YubPDYkRNcaid0G20uf/0rXB1f5VP/8/9EPBDIk+9ncvtlbo4nnLkww3/y37+HP//qJS5fSXnpG19j7mXLlUCgM8lmv8bxCx/l8PljtOKIp843+dADbT534SmEGfDqf7PF//4v/4IffPVtnqjN8rPPPcnbt2/yJzf6vDDwaeWrPOzGPKTmOayO4fnHkOFDWD/AyARr/MpROPCIz8wjVB8XFARxQiFz0qKHZIxUHlMzs1glKZRFq8pEcDzsk+UTiCJKKiGBJAiYKIXSBm0kea4ptEN6inbznSZojkoRwzeG487jUneb8UBys18QdRyLsSSUgpGFLVdN2yIVkgUV36FjS26pbaaTGYQ1/M7rN/napZfYXHmJ7IfX8Y1H69f/MXUXs7WyS94d8PhDJ5E1j83oNsVkm5ORIIoDdrTimo75YNtjfTAhJiQSklZUpza9xGTruwQ7kj+/k3PyGMzIFncjePzpj/HHv/M1ZpfqBDM1tm516d7qoXONUoJ8oivumSewe/yDA1lLUZEinXsnXn4fXuSkQFh7QGjG3TMlEj/RzdtraCtxry7Ye9lfhnT5GxvinhLQ/V19pQTOCrS55/xarY8cJOfGGBACeV+Csx/3d0X3PQv2jwMccMAOpjv3cwvug3nt8xHuN7iT/7+qyDQiqCNcis0nFEWBlT6q8TjCjsl27yB0UQAAIABJREFU1+lMT+NMymTlGoNsyMnHf47bNy6S311HBjHUQ2zS4eFPPcvOl/4C4WtW7mrW8nXySc77Hpwn6u0w5fvohsdKX2ILmAktUd1hJorVLWg2WyxFlqyfsf7WLvb8ec4st2ifFVx5ZUBvNSUMQAaKUW2GcHZCmddoHXma+ux5NnoZl1//p/ydv/dZHjjzBEmYkOaW/iBnsJ3SG5Z04jYnzzzA7d1bZKMxyiT8g3/yRb7/B1/m7Ed/mqUTC0SeRFxf51/9/ssce9/HeFvVaAUercgRnDvLqt/k0mvXOXZhmd23MxqRpr5lGV0tyBfGHDrb5lYY0Ot0+L1vf51H8tM88MGPkuQCce7DbL3+A95KRzzywBFOnD7CxSvXeeXWkK9/7Y84u2S54gS9YcDQzHL6wfewcHiWpu/zwNEmjy3PEhx5EPNwyvrHhvzJd17iW3/8Kh986DGOHZPcuXuXb98ZMZ/7dEZdlCqZC+ZIvA4iWYDkKIQKK0KsBi0spbCU8p5CkZCiKhBcdV/Zfd+C+yF8vBPSaO4j9kshq6nDfuG+9/p3w7N5V8XBZKzpKJ/ZmTprk13sKCOYOUPeXaEcjJj0J6S26oDEVjKgRtPP8JCkTjJtS/J0mweOnAU/ouYVNI+04MkHcb/1ZahFBL/4WX7p459m7bWrfOOVHxC0pyHsMHfIYd++g+mPQUQgW4xEyNxwE6/RIZjN6ZEzHhlS5SDYRec5XiZZWKjz6PknefrIQ4wKw4k45n0P/Q5//uqbXPxWn61LBeQWPwR/zgcB5cBhtcOVIHBEiU9eCLxQ7WHnq0mDKzWjsSNpKMwkQ2uNEQ6sxY8kHgKjJCZ3uMJUijiugjEJDHHsI4RD52V1rF6JOQL1IKIoNLnW2DwnigO0MgS+oBZ51Gs+yoNJVuJySz/zME4xNd0gChUORxCHlELSJGJiCtIS0ICyKM8jCiN6eYFvSzQeRVGRd5VX4vkKL64R1mqE9Qjf98jGJXPNOmkpCMJphPTp94bY0rK7M0B5HqNMk0RRpdCDz+zULEU+Ig5j4lpIXIvwrSN3JZOiZDzZZGIEWWoR0mdS+HhxBxFOwWSAzjVBI8L5IQ6fsN6g3O3h+VBajygJiZIYV0r0sE+WG4zOKFyT0A9wKibThu5YU68JslxX0qkO4sgHLQiimDK3mDJDR5Y4CnACyskEPwgwNkMIhxdFRElSjasLvQdDsDhjKvM530MKwXCS45VFJVWrFNZYsvEYFUV4nsPqHKcr7oPQOb6tJGZrPqg4wFc1tPbQkzHv/eAT1GZOIJWPK/r4QZ/pqTF5FmCUTznso6I6XtImaLZJpjrUe7v8X1/5EefO1Dn53ONIKfCER4khmXYsvbeLHHeJ3AS9M+atbkE9lPRSh7YN3E6JLwyttsIJzd2tkn6gkC6iHHlkpUH1DMvS49XnV3C54+RUxHMn5pn9u08wmmkxNfsIF4uQVqSZ8RcoRod45dKYN77xP/JLv/lb/OyDx2kmLYrSY2OQM+gWvPTd71E/NMuJqWl2Bz3Gk5AnH/85Hj59gksrPW6nKYcOLbAdz3Dzypgr371Glq/SvXaDM+YpNgaOgZA8s9DCve9hzhxp8YYVLOPTkAFmt8fpZz1q5zpMkNQ8R3L8PHb6DQabN8nTbT77zCG+OvgAu9d6DFdu8NYrW4zx+dgv/CrPbv+A52+M2LreJ89KFhuKp2uCF25scft7JQtHFvn6lS7fUFtMnWjyy590vGfmIY78Vx/k94/9K7ZeWWXTLfJTX/wYD1y8w8xgnfraLMXNiHKnw65YphPNIdsRfi1EW5BtQXxcoR5YwjRzVOChzQgXWTzhYzNLOjBVQqQLHLZSJioLsrKgKHO0EOjSVKIHrqRIMxAekecRC0NhHVJIIt9DBOYda/4+DXSQjnn51hX85hT5xhp6nGFLczDi9hGkwqeuCqSThMaRuBKjU05ML2AQNKQmOjqDvF3H3OnhLc0x/7mf55MnHuC7332F2zt9Fg8tIr2IZt0yuPQ2stBAgCXEOMlsniLDiKip6WuDUIpcalJGdHcH+M2IQ1N1zi0+jpwWnDid0lmY4kPvnefizhv86EddtG3R7IToPGPjRrXG2D1VzKo5LRBKUpaVeIWrJIj2cs09daH9/HOPMLDPSdqHyBy4I++fR3Hve6Xhfy/ZlbLqbldQmb9kAvE3LOQe/OqeKytUHIF73Urh7sGxDliWVH+3z0G4HyYkqKQYhdgjju8dV97XHYW/pJi4j/uwb5Ym5V4xYu6DFh18+esPp4fgDLgMz0+RwmC0wkmJTseIqIkK60i/hV9vE6YTXn31KsuHOzQebiOlQgiJExY/NMxeWCVgRMP1Wbs14s52n0T6dCclpTiGW9siqUlqNYUWBevdIbtBncC12OxLinFOPNbMiYAX/+IabmR55GiHnzl7Gu+DM5h6gzhZ4JaN6ISGhpyhO0y4du0Oa69/i8//o3/I+5bnUV5EWUJaGvr9jGtXb9Oc73Ck0WZtd5NmPM3JhZPMdVrc7aXczlLOzHbYMAG99QFvX9uin66zfmubJXGcyxPHciSJ2jXU6SWm5hvcFpLFtkQUgrhRMvugwp+JKIFYCeoPnGPzRyv0N/v4Iue5Ey2C8YP0mqtsr2/y0pvrnDhznGfe959x4eEbvLg5YWe1T+jB2aOSRPhc3dll9fUCd3iW52/u4GLF3KLi8aOwFC/yuWc/x/M1ye51QSEbzD+ywNI5mBeGaGcGe80nK9pIv00YJ9Dy8OsexkDZLBg1LKN1h/yhBAXCiIPp2/7ycM8VeX8+t+8h4tirGe4rzqu/uD/2jQTl/1vFQSN0NP2SgUnBTqgvtRnd2MZm2+SDa+jhUTyzzHYeIJFMiQpfvp0OGEzGzDVqbB45yubOLnk6RIcxpw4t8vPveYQv/f5h7GDAEx9+jvNHTjB58yb5eJtJOWAoffpFn7K7i1OO5myLuekZtjc1Mat0/MNsuBHpKCIIYD4psPkLOFviwogzC8c5t3CeqLHMa4NNjnl3mZ3RvOfhgIemG9x8QvO9yym7r6QUuaXoG2zucLo6qcIHo8DzBV4o0Fpg/eoTsIUmnzg8ZdGyUpkRniCqx5jCIY1H6fYIJapKJnEWTwqSQBL4ArW3YCV1n0nNw4sDvFCCryr1o0yTpz7WCLxGQhQrwijEGoHRGbVmTH+gsUKQpSW2KFG+wE8CAiyjYQ4IgigELEVeEoiKlChliBAeprRkmcZog9EWP/KYaU/hR1Glf1IYQhVRqzXwS0MmIpwX4oc10kmOERrrfKyD0mqEqt5jEMWINKZeT5CewwqHUI5aLWGSltg4or81rJQStGU0HDMZjYhMRVjWpSXQEPmS2K8gL1r6OM/bI1pW0B7PC7BlhAgSPGPwvL2bLQfp16nFDSwRpXUI5yp+hiextgQnEc7hJJXrcRAQsDdNijxsbqgUssWeKpEiH4/xpIeQEiUEzlMoVZEtfQ9MkYOzGCVxVlNOBkhhcCZD5xMsBitB2AInDLrQSGtxxQhbTPA8qHcCFk6dwE8O4fI1bNnDDu7C+m0wJ4iXF9BFB4oMPRqQ73Qx0y1Euc1hv4ZLEwqzjtWbTHTArjlFfaPL9Pw05e1d7tyecHstg6iCVYhYMUpLQmMIlaWcOIY4/GbEcMfBRFOUmlwbhAZhSppFwVJ7iqAUbN8ZsTVeJY1Sau2SNZNzVyU0vDlc6rO5vsEjH/8QH37yMaYaCbKwbG+PufLmLS5+7884f8xxe+wjZ4/QWIBE+8wEc0yk49r6d/DqIcfmOhyeTnh7a4srb15FTPmkZgdTlpyKJTe7Bb93e8L7H+yQNwQ7W5pSC/q7fSJVcuQDR7kShjxgLdNAvREik4Dh2oS3vnuRZz/+KMnhWaz/PsKwRrl+lez6Gq/+6bf5+c8tc+T4Oe48aljf1dhCc7adcfSJBmLtMpmyJH4bT0cMB0P+9R+M+bX/4hxHpkM+9dxnuDF3lfTWCn7/Nk9+4FEa4TP4vZiiG6IHCV5aIypjVADeTEiQCKgLZAtER6DLAelgBCbEyrJSu0IS1dvkWQa+QHrgA8IZLEE1dtaVfJ3AVRrffkC5Z/6kPA9fSZRSOCUZFsVPrPtiL1l2kSRd7TIebTAZraGLNtrGpKbaZGpUTrQ74xRroRGFDFWL3UmG1QXWVzwxO033+FF6h09gi4yPX3ichVoT6Up6g01UIsiFJDUF6cYG0VxEq10n8kImqSZiQE012bQZLqvT8AUxQ7L8LQqTUYYRx1uHqYk2PVGSxYYoHrF8NCGYbnGimXBlY8Tbt3bZvNElnAkY3BqxdrlHnmqQVRfZWhB6L9HH7lEH7kFWlBCVog77Cek96Uy3/9geUfCdE4J7RNyDccEBdOYAHfw3NipNdXnQvT9I8J076PRXfI49UjH7/I4fkz3l3vmyUlZn5j7zCCFASlXBhA5I0PK+47PH7RAHhcH+gd8hlSrvFSFC/tWJ0v+X4ZzB6REIVY1qbYYoM0ReIsoAVa/jl3WEdZhRHy0r+XTpJnS8EJ2HSO5S2JzC1sjdDIHKaM/NY9c3uXNni83dES50GF0iajHD8YimsghjSFNBKSWq1qK/BV46YVhqCm3wy4o71ylgce4Icmy4+eYq5c0JQWMOvz6k61KuFj6dYIbJMKd0JY8+/RiPHD9KFHhYbdkZ5dy+vcrK+l2OzCq2Sg/ZnqGZFIQyoe5HpK7gbu8yyVSD+UaM9BVrwxF3N7vIKY+BGWGNZTlU3OkVSBzHOwk2VgzHhsJK0uGIoOmR1CI2lWLWQUNArV01TDd3hqzeWePMiUVqMy0873FC8RYuW2d86ybXM8EzTx1heqbO6qGccW5pKcOcb1nMQ+TgLjYUhNMNTAGDnSHfWhtwerrHg489wenlJ9h266jRGM9M6GrJQ08/RZDGmAcDZB7huRBf+BCAbPlIDwgChB8yfX2BVqfN3Y3VvcT/3jV7f817YC64DxuCd0DkBPdd+/u8nz11sHdLwn9XxYHLU8pRnzxPCSIHM03Mm7dxriAfbTPsrrM7zkjrCbmvmFECrXyE9PGExCpHo12n7HbZ2t4iCGZpt6b5xJljXPvMz/DCv/v3/MyJ0zRqDfzZFslMyPZbt1FKsT3aRacpKmkyPTfHQqPGa69u0Win5OSMbR1Rhoiskkote5dxWMKpBucWz9BMprgxXmd1coVjXAG9w8kZR2vR5/wZhbdg+fJbKfm2oRzYg3Ud5xCeJCstgTA4vxrxyEAgHGRjjfSq7nBRVB+MCj1U7GOcQaAQKDxfIgKB8wUYSxBU3aKyrKQGvUgRRR7tmZh6PcZzErlHbnbaVQUJPlYJjPQohaouB89DBR5hJIgin6IoMVgCq5Bh5U8wzi2e7xH4AmH3Rr6exFiN74V7VagBDE5YsixFEKKRaO1Q1qCkJArCairkK5RQ+O0GURTTH0yYmIwid0hjsc5gBaAC8BXKRFjPw5iU0lUmbM7zcb5Ce5IghtBW0p5SgilLLAIrKnlWgwIk0kGeZRjhIUOBZxwWQV5ovMDhxQnCi3BlgZSSUhsKXRBHDSQKXVTwIA+3ZzgkKrlDWyJVUEnI7d9BzqEChecLDBXUQgqBKTRWW8o0RQUh0vMrMpuzgET4Cj/0yPMCYyyeV02IMAUuB+c0Nh1V/AJpUYHAyaqrhlJ4YaUmpQKPqcUZovYUQoXY8Q7F6jXKnbtIk2P8GqbfRdktpNIIlZNbS5o2aSYtTp9apDfaxg1XMIyw8ijDYUir1mZ1fcyt6wOu3p6wNdLMz3sUpcVKQexpIq86R2Xp6CuJmvgUI4stLb6zzIWKqZka02nKvPM4tHiY65tj7u6OyLa30WVKL7pKs+Ox7i+wm99Gj3qIwPCJT/0KZxsJt41g0LVcv5VyeWVAvWlZOL+E6NY5dOQIuwbGoxyvtGR0Wb/+Gqce+gBHlxaqxXbzNt3dO9igjSlGbKY5S8rREYar/Qkdb4bXMk2nXWeUwU5a0JGW5HCTdW3op5qJcERxStIw9O7AlVcuc+ahBvOHTuH0WQIEsmXRa69x40ff47XFkgcer/HoqSMcM4rt3i6IAadiReNYg83hkFZgaLsa4w3Ft6+nXHnrJY499BSnD52l5k9xN3oJbqwwe2iKoHkcqUPqsoYwIS4TkFF5m7QUNBTCB7DVdToOIK1U1cpck6c5ZVnihSEmdOjCUGpdmTzKCiYUhgGZyXHOVhMz4VckGFFSFinOWXxJta4oRbVDvTMEkEQRJxYOceX6RQpbMhj26E/GjEtDTSmMFNQllFIhhURgcUoQq5BiktIdDaDZ5Ggc8cHjRxk8/TTXXnuVj07PgfSozdTh2pjJ5joOGBQpejQgPnWY2WYbXwi2xhNqsaZwhrENqduKcJimPSaDa2g0jU6b5eZhSuPouz4TNikmA6K4y3LD41zbZ2FJEiYlP+gPiEqFLBLyiWbnzogyraYhB4ZB9+9/3MvpoYJQHZygfbzv/kN77Tt3j5p877mD+uAeTni/0/cfQwgpK2iQlAfJ//2EXyHk3vnZ+/2+LxU5+B5uGu4zkbu/yw/vKMT2i679Ig6xX2a5fT74Xhyc+XfEPrzpry2cA2dwZoJQIa4Y7SEkSqoRRwhliRSDasokcpwLsS7ED2Lm5jv0h5tINrEixLgWhfYI6zHrm9us3djg6t0uMnC0OwHalFjpUVMT4qDiIqZaMlQ+bpyQjy1ZWRKjma4l1IOQRpqySMDi0aNcubbJYLNLoQuisIRoQtjxuDmpMdJ3KLMh80cP89QTn2Am8NixkI4ct7YLdiYlSSKZPtRCjEI6nWlMVqJKh0STlwM2797k5NlHmKpFbA3G7PR32BkP0GEdigmD0jJbE6wZg3aOUARslJZGHDIpwXkeSSgRDZ+Bs2TaUuDo1Er8mk83zbh+Z5X5uYDZziyb+hizRx30NVn3FitXX+NSUHLugYd4aHmB3aykLCf4smBZOaL5hF42ZCapI1LH6nrOazcHvHLnDWYW5phvHWVUT1lfX2Xn1gprIwtRg06jwwPnH6GZtFB4SFsVvaLmIUOJwCfA0R61abQbwI+tK9ybBOy7Ih/A5w5wjPt/+86obpGqAfGTd8D/c7yr4qC/O8Tb7GMCQbtdp4wUMrIVWXWg2V4bcn035cK0picEsx7sWocKEqYSx5Vhj+OR5fT8DC/v3ME1QpJ6neV2zBf+7t9m7flv8d44wSFQi206R2bY+v4l6lj6/S2MLonqh5lqLdCWjrW1G5x8us3N8Zi+WGZOQjEZ8sraGuVOF6Rgeukoy3NHSZ3mYvdVfPEGU2KLsR3RrlsaXslcaGk/orj2kMflH5WV5OQ9eCPGOvKxxowNxoYV5CZQCOkoRpbOUkI5KSjGFSlV+GAsaCGxxuDFAUFQOeoK46GEwzcleWooc4fnQ+SqsX57OqEehthxiYfAlwKhVOXOG4SMx2McAmM0nvRRSY20MES+h+9LskKjLSgrKLXGWIuWPtYKRKHxMfjVHBtfOZyw4CRSCoJIEaAwqSb2fXSeM9YGooBGzQfpSIc94rheJZFxgBfFGOfIRuB0Vr1PY7BYSqORJq00+3MH5QQlBSIIwPfwwpC8KJmdbyOzDJOXVVVrJcI3SE8gw8pt2jpBXlhkWYIfEcc+0kjKXDOZTFDWEccB1gmMEVhsRQB3Ja4Yk40SPF3gKQ/lS5wnKEuLzg3I6nFhLK4oMLmquqq+RGIRvgQUzoLJC9JxQaVFWlSkdVu5ERolCP0aMogphzlCaFwg8JWrcMumrJKB0lCOx1hKgnZSJYN+DRUENOJpnGuAUtTnj1TjYT2iXL9O+vYldJkSP/oIIjhM+sYLiPpNXD3Ba04Tu1nGuw3i1mFKP6C98gpeXCIbp2jXniLYdDz45CL/8t/8c169tMt4omnVBO1EsrJrSceOhXY1ySqNo/AU2vNZWxHUlE+zI1kM4WQ94PxCh3MmZbtfYxwusLm7w6KyNPwS5RlGUcGxpWleD+rcWV+hN75LrT3PR87PMqUEXxs6rt4wbNzReHGLj3/kZ7k1Sblwbo7p0PDylS67/QI/GiPVGmbdceELn2Jm6RAvvfwSf/H971OobmXAOOyzMczYLCwzDcVHj/q8udrn9saIE4sRZRhiOm1SHeNEQezlvLUJvUjj11Lac4rujYSNlbu8frHBe549x2itwWj+NOGyh5ieoNPX+d0vfZsrKz2ee/b9nD7ZYXGmx8XekM3dDbzFRaLGAFXewFOSY0cPceK0z3d++DVqS1MszC1Ra8wzvfwkNX8RIX3MZITzfbxQVBuDlJXs8X59qvbnwwKhqfDwXmXOVeYFeZpR6qpzFiYh+ThnPJ5gKCEEF0mCyMcvNYUucdZQAkiBdRqdj7F5hsLhrEAqnyRu/MS6L4SgEcY8vHCUr0WvQVCnv5Oy3suYn9fMBj5joKlgaB21IMIWBUNdMKUcC80abw+7+ElM5PmcW5gmee8Fvrx+h1OeT+qguTBN4klcv4+PZZiNEFoz01pmKm6CLulPRhxajNgsCiZiihksvTTl1u4uo91NnJIcXjjBdDLNzWIDbXo07Dp+uY0fZdQDiMSE820QyyFbdyOuXe4jAlh4oEM+0fTWJujCYfSewdABNn0vuRX7I31XTYH3Sa17ue4+lvd+qt++2iDsFRT7bXHubfzO/vgm/zc3DiYo+91O9qBZsAfdEvcSe94JBRJCvrNQutci5d7B3EH3VOtqSrz/f/ehRPsmaPdi/wOqao/7Jw5wX4Hx1xSV0pUGXIV40BpZO4QVHiiFlHOYnTsIdxcXNPCm2uBaaFPH96cwAsLRClESIOLjRGKBpJBMzSf84Vde5823NjG2YHkhphYGbA0N6dhyuCOxpaWQgkIEpC5mbU0y5QfUpgXHQ1hutznUqNMxGeNxnYk/SywLTjYcPhYPTRHmtObamDxhsHmVCWNm2oucnE6IcKwWsLlt2RxZZmdmODE/T18bTs3XqHmGrdsltiyRfgZ2RLlpOf+pCwRRwBuvvMmV1VuM5YS8mILBkH5hSGLHiYakKA2bw5ydScFC06f0FF6tRuEZjLAoDBsjmPiW6UZJY6bGxpbm1sY6h9YjHjy1SHczxps/jj9tCesGc+0qX/3T79DXhsceeJT5liT1crr5BJkPUI0OYTBAqT5+ZFiu5dQSx1f+9CZvvvUq73/fMayLuHS9y8vfv0ihS77xre9y7OhxfukXf5kTJ08yPTXN1NQUlQ+u3JtaVj4s0ld4nl9B8KQ4gMC5vWljxT2wGGMOYHzVdbQX+/X1fROG/XXs4Pd3eW2+q+IgatRZXF4kqAXk/S5RXHKzJUjvpOjNMeXqLdJRl/W8xjCNWfQVg3LERlFQGEc7gpNTPmu9gPZUk6NJm1rpWBvepuGGfPa//BBfX1vh47FHc9BDjHO8hQ5b/Ttsrd4CFEk7wq8J8nJMqbs0/GNsXxfUaiX1csh4e5X19YvVCY59jh55hrHVWDdmaSahGdVYkF08bxpf7aJsgbKa2UOCf/ZrM/zCb2xz+3sl5U6FSawMKCqsYmlB5AalJF6sCBseQcdj6tQUN763hskr23gjwEY+cb1JZqoRu9YOX4HnSwIBSI1fVK64QiqEVyW0npRkGztoEyCExI9CJIJIFuSxYLypCWs+2oC1ldZ5kReMs4LhaEIkJVHoYaxHb6Ap0xwXQqMW4gvwnEAJQWEtYRgxHKcI1QBRTRZUECBin+be+yydxFkJhWZ3p0eZZbTnF5k7VMMJiwG8RshgfQWkIpAJXhBhXUmmU/zSZ1I6moGiNBpjwfc84tAjDCOi3AdlCP0amWcZjQtcb8zM0gxlUTAuC7SoeB5SCGphQGYLnFakaY5wDh9DPkwhmcdpS+ALyrJEWwFCMdq8TbvZJs81QSsgbsSVv0Cp0QjISoTK8bwIrCYfjoiSGl7oI6TCU9XeVKaabFQw6me0mzG6tGCLCgcoBBhBPqlkY612FYch05S+pFaP9gh4unJ0tR5ZWeCylLg5Xd3PTiOVIIhrBPUa0g+w5QBXThi+cZlSlciTc5TCIibXaD5zAumOY9wulhgxrhPdusjlF68zCpc5dtJj6tiHCVqHULZH53iLQMEH3tvi+t1NBpMKa72dQc+A52C4a5mOHYUvWbWKIK/RWYqYHQ159j1HOVf3aHcHsLNF4/wp/v3zU1x65RYXbMp7paYjDEtTGZtnl7lUWsbbN9ne3GQ4njCzbJhpRShh2R1pTGp5/HiLB09UutgBmyRexo9WVhgPM850Eo4tLvLHz7/JU5/4DA+c7uB8uH7pEle+8w3aDx1BuJD09puo3OILgR+HZP2Ql3/32/z9//Yz/N7/+RbJYsTskTrJQo1J0OQhX/DvvnqHnzoriZoJcnme4MYqxfYKly/P8MjZt1nuHGbDHWZXHMGeOspS7Tc5/NAG3/+ji7zxwmU+9onz/KeffYpnZ6fIpm6x0/1T5qZjXAv6tmSkN3lgcYqPfLTND278H4TxLPPtp2ksdJCtHMU0Re7hqQAlqBICJxAqQKh7Xc9Ku9piBRgkLlDY0qIiRSAiXGZJxyOc7xjnBcNxhgocYeAhDNiyIFaWKAyxWAonSK0jLTN8aUiLIUktxvkhBZKJLt+56AsqvxZnkS7nUDtm52qf4u5dxseWGOaLDBJFoRVNT9K1OQMNJY6GD1OhZJgrmrWYaS/ClAWlzZhODJ/4+JO82u3y+EwbNRrj1xKIa4yyAbuDXWpxh04zxPMcxuY4VxDINr1taMSWYDJmWPTZGXZxOKJmjZOLF5joFCk0M42IVtBk1kwI/Ba+2kQ6jcRw4UjE4emT/Gb9Gm+9MaLoGlqHInRp6K+lB4o41abKgTypEALlScq83EtQ9zvj+1utPTAZ2ocW3a/z/4581e3r79/jLvxlXe2/SXGQoNt75Ech5Z4zQRX7eGfj9hyo74dJ3Hcc+Eu6n3sJzyKyAAAgAElEQVTfK6326mdjNHC/GZrD7hGb4Z6iS3WO7x3xx/HW+0XGf/hwOJPjdL/61WSozsPgNLbcAS8grM9S+mMwj+PcCCc7MDbo4Rr90ZBRLmm1W6jOeYRSJEpTDwMk8NSFQ7x4eQNfSQoE3Rx2jcR3MNwpmW44toTHjkkI3BSHDifMjbZ4/1OPM2NyvH4XqXuo6ZO8td7g0qUrvD8qmHGGWmiIZiyDpaO8tN7F6T7rO1sEkaOeWCK/EuQYFA6p4emjNTp1AViibEIgS650dwmtY76VgIOru4Innn2GhU5A7hw//PYL3OyuMX16Cb9UdC/fRhpQAlQYkPb6bK90eerJk7z40hathYhGO4AwREvBjHN87/qQDxwSyGadZGmaMBsw3F7jrdUWZxa3ONJpsy1myMIW8vA0h5uOw6c3+eoffoeLly/ymQ+9h3PHj9GpRWi7zji7SLvepBArTExOEEoOH2/yS7/8JH/6nRfQ5XM8/fjDrNy4wbe/+S1Go5SNjU3urq7x2qXXOXHiBJ/8qZ/mC5//An4Y7HGRNMYYnLVMJhO2d3Y4GAxURBwklay+sSBlZUwqhDzghu0LJVRXFXseHz8+/+S+5//qq/Nd3RUfeua9PPHsE6xvb/KdHz7P1UtbfPBvfYTv65fZurZCtnKF67/7O1z7xV/g8VPHeVMb5oI6XTPmpss5owKUrDGSL/DQ3MMMB1t88/I6a/2CTz51lgtPf5LRzg1uDKaYW5zjExfO8y9eXyHbuUWgBEG9xsLZs8jpGW6vbhD31lHEUJaEky36Xp+V9A22X/pjVL2GGGk+/dAio/GAyysrqOlV3hffZtsNWBmnnE4MC76l5luUswSh4KNfqPEvvrlLvmvBgZcogo5CRRIxAT3SGOeqbnkOmdNkr28y6OUITxKGCj+SKGdx/QF5v8SaAbWajww8kAoXhdSUxGsm6Hhv8/cFNvLIx5qtzHFoPsFQUJYaoy2TUWXEFUqABM/38JBI62jMNkkHE0QhQHoMC4MzlpnFNv1iF89zREoS+aCMRZQFtShifRcilZBrUFGADBSYAiU0sRcQCYn1JNoZdgZjemvbCC/GNFISwOQl4+GIfJRWF2eWszaZ4CchrXpE0w+Y9Eesj8aUeUK/NyaOA6amJX5SUpZ9shxUrYHVGbaYEElHfarDyp0tcq8g1xoV1ag16nhJTD8bMtVJ8IQjjhXpaIwuChqtJjXp2LFgvFrlBussUvr404tkwzUaUwsoWWFftbWgFM12nXHPkuc5pfBQQYgvFcbkFKlE1STFqMChSFPDYFAy3ZREjQA9mFDkY5znI6MEoXzAIkpLkoRYIzFFjilzhLV4YR2/ViNIpginm+higCksZrTJZDKhNT+HFyV4YYLyE1w5hhJGr73InUt3aT44w/zyabzGPOVgB33zO3hzxxjqk3THJWm5xcyD5zm+ewO79CG0b3n9tS2seI2HH5kiaZ3D967x8INtGl/2kSIliCWlc/SGcHTecSQ33BCKVSGxTjK0DnWrz9//wBzD13aY1C3JUsSN9hL/y5fW6Peu8vkELuiQGStBlvRNwb/Zuckr1lDOSCa2REpBFFfJQKYLzlDywHlFywehNLdzgRsMubYWMskWOLcQ05J9Xr32IjuTa1x49u/Qrjt++8/e5s9euEY52WZy05IkGRMv5kpZcqYsyZzHC2KKc//g5/jq1ye878JR1lswCgWbUrJt4Iteye/cfZHv9toUiaEW+QTTGXbFMLl2jRdvzTFTbtLsPEhz4TRb4Xm+/+p/xy8/8006R77P9766ze/928t84ytv89xPL/Kr//XTHJOvMMjWqXvgRZK+UxSiQE3VeNQKQp4nLwV+8CiBf5zhYEKa5sTeCFyG0AY90URzC3hJUHWSXOXCbQuDzkvGvQHFKCefFGRpjhOOsB7jR6CjiCiNmRaKST4mm+Qoq0B4WCkYpwV+FCN8hecKEhTj7pC8yEnLEhEatB3TXdv4iXVfCInvhcy2FnnPI48x7r1Kd32T3u2r3PBh7rGHONxpsW4sc17EGybDCWgqDyEkuVjhWH2Z3nCLm7sjAs/n1GyHhYVTZOkOa1mNc4vz7Mwvcnd7gM0GxEoyvzDPkWPHKZWHG0+YtQWe8HDWEhYjdv0xN9Yus7ZxlaQ1RTLWvHepzdZwm1W5xXSyRsetMtS7TGzKUmSoexqPEuFKOo2I5547xA///CXSTYuX+IStELmdI3W1TrgDgvDehuscZb4ntXkgiuO4ryn3k3H/k/Iebtix9z/c/epG/xH4HLh7ifsBIXKfrLHX0Xd70Ih7L6rqqwMTtXsP/wSp+57vgTw47L1ymj3ScdVhrSBMVfIkXUVm1lofTA32iZ3WWsryxwrj/6BRjZSkakAQk22toIIBwq/kWYvBK4gihTCidMsYAy7I8VoJjWKL9pGP0Nu+w423N2l1FFOzbWSQoGSXI8sL6NxRb/l4kUdqLNsDy9lFx+HJmB+KFiNCSueR5yXB3XX+8w+eYPsH1ykPS3Szze1xzAt/cIvB1ojPtSyH+w1CZzF+wW5a8PydPq86g1gKGFnHlHJ4vsVZS+kMh3EkS4JQOQoco9LisoLNoY8t25yc9UmzXe7urjG2O5w4+TiR0vzz17pc3l6j6N4hDkrq4ZidqMYdbZi3jrVSMmp3mJqd4u0bmvMnO+xEMFGCIQIPOOtKnu/e5fW8hgo8koYlSgrynYzdWze5fHyKdjZgpn2Mol5nVZzirWyKnz11hZ///A/48p/t8Nv/+nlOLL3Ks+85yjOPnaQjXiQtrtGMArQvKG2IcRNUFPOxZ5bYWP8u7c4jfOZnf5rTp0/x+c9/sUr8naPX63Hx4kVWV1a5+Prr/Mav/zpWONI05Y++/GVefvllbty4werqKlBJ+8I+t+C+WwnwlNpTIbrHoYH94np/irYX93MTDjxA/urq4F0VB9978RXWx7sgNaKTEOiCt59/AeNPCOZnCJtHmXv4Ed567Rb90YhPPHWWTedoKcFxFfPNuxOulpc4t3yOazrFrxWopQZRIySxHj0Srl0vOfaAZsOOuJpOCBptUt3Ae/NtGlM1ziwvMy9juhvbNJanuJmNWbEjnmjn3Nrtcv3mKsUbq5DnPPHFT7NOxuU7K5w+OcsnFs+SZzdZsVD3Z1kpdtktx8x7huXQIUn5ewsB/7YJQ+VwOdjSIoQlnvLIM0tt1iNu+CgLRa8gKyX9cUHSifEjSRhL4lgRBh6bN0egNfWmR7MhSeoVlKZMFU470nHOJLUICxMs5U5JM1IcnZui25tQ5hphK9fdTMvKm8FTxF71GmNB+g4kdDoJnhVooyjSkqLQDAcFYSMmqdfxncCZHG0cQnhIAjJyhPAJg8qyXac5ntPM1OqE9Wn8yKcwHuVwTJoNkFHIqHSQZ+TXbtJptQh8n0wXxLFENqeRmYfUGZHToAuycsJMPQDfp9aqU+iC3UEPa1NCP2Bqdo7e1gpOSgIR4MmYAEX9+GF2RhvUXAHOkadd1ndyglodacfEoQ8qIoxi6s02RjhW+2OslUzKnFoQEHkeUjpMaQlrDWwpMJnDheApgScl1oKTVZfVpBZR5NhAkSpR6Z5LgdrbaKS0RD6Me2NqnSl0XCeKQ1ASJyXO/N/UvXmQZdld3/k559z97S/XyqysrKyqrurqbvVCI6mlllorQgJhQxgGxhMEy+AZhhliJIiZmLEZRjjG9h8Gw8SER2CzSQZZbBIY7VJLtNTqbnVXb7V27UtW7utb73rOmT9uZlaWQAaHHQM6ERXv1b33LXnfvef8lu+SYWON8F28yMMWAq0MuhAoP0LnBcVGD+UYhApwXYFLj0K5VCZGcJojSKc0q7JFjNVd9PYWyY1VDn/Pd+FMCpRriTc6fPJf/zkvvjbP5Fu2eO65J7l5ZY1Dk/BPfvZBHvr+H+Lsb38Eqxq0D7ex7SaXr1uGF59kbfWLfPgPXmVzO6ZWcxDAympBUHMYE4ZkzCUWIWmqQBeEjuVHD3tMJCnJAcEX1zTnn9qm6G4TuBX+2fRJ5nJDZZhhdU438FhozbCVnqEIJGJukpNTVd54pMV7v/NeNuJ1nrv+HHUeodUYQ1mPfmJRxuCNjPFAFXLlsNa9ypWF59jYOMsTj/19Thw6zOefW+CV3/9ltl7+OgiNUw0Zn23Q7a/w5P/zYR764E/wve97KyOR4NdfMaw5Hk4D/NTiuIKpSHC0KPjZcyljCyvot41z6dXz5P1l7n1wijPzXbavXOf2GZ/6G99PPFzAvbjN8ftezz0/eA+/8SuX+d9++qc4fvICL79yi+e/kfD105LnfuIp/tU/f4yp8EXI17E2o+mJ0hBRWtxI0Ol+nbQQ1NojJHYWzSZFvk6egekFxFua7aUhtfEOtbEWfqsK1mClQGtL0h1S6Jh+PGB7q4M2KUgLhcUPSyNAVQnxqgF+7pPlCbnNCNAMigwvdOlmpkwqTF7ylCoVHCOxVqGEQ8VTyKnRu+Z8sVORVUpRDSIeHpll/dgqp6xPNDZJbWSUa4tbdNOEhw+Os50XTDmK24nhld6QUfpM1SZYNgluYHGaVTzr4qBIjGJlreBgZFnLYgrPo1ZroQsPtZTQmqhztDWCSjTdNCX1Jct5xqpNeSgyvLzZZ/7mCv2ri4SO5T3/4P10ipSVIufI6BGavkNq1uhqSUVNs5Yu0C+GtNyCSFlCct5UDXDqCrNekOUaN3Soj0d0FgdkhbljaGZ3/+0C2/dDYXaq/3sQld3dd2QG93ECy0Va3JEzLWFHYi/J+HZGFe0Sko2987cbY3biFHFH5WlHgUjsI3FYo8vujLxDYt59z/3vL6TYMYT65iRqt366I/UoSmM7Ye7mLOz8CFhr0VrjKLX3nf+2hlARQgVlhmQMXrOBzjfL7oGtkOo2g2RAszZBZ6vP5ddeI/ILTtwzhn/4JBtnPscv/trH+dGfej+V5mGWlzV5sUy//wr/5o/+gkpN0WxIkqSgnxuq9YA2KYOJFgMzTj82KCuYiATvPRIRDIeIGcWf3h6yfKqD7QvafpMfn7uPidzi2RwjC9JalW6tSj+5Su5p/EOzmMVv8MjD9/G2J95BJ+2w2FukKucIoxBtyvOshEVFFaYL0EqyMVxkffs81uTcP/sQo40Gp65u8/zH/yVbN65Ta7WJWhUOjFZZ7Kzxh//uM5z4b9/HsfEWt4dwas3SkZL3hGBTi1ORHHAsvdTwx+sFo5vbFDMtXnjxAhNNwdFDo5zb7HLz/Gkmj/g0T7yTwcY8UTrCydFxDt4zwq89OcI/ff8P8uM/fIkXLnRYWDV84WzBl19+mZ/7h2+jIp8szctkhi9jrDRIvwUWzpz5Io882qLRHqOwmpKGYzFGo3U5mWxubvDUU0/xrne/m0qlgjGaOE7Isow8z4njmDzPy6SCO3PL7vUNJW/1bp+QO4/7L+e/DLGzd/Gn/mNDfehDH/qWO3/pl37pQwDHHpil1goobIZyBcQpSWqRMsMYSOKYuNuj8vCb2FgBRw44ECrGXMOILDgaBbheRL+3yHjol1CRoqCihww3riNDl27eJ4pG6a2uMthcpnFwHKMirl78Gk61TnPqAQI/QupNBiZDjla5v1ZjVVQ598yL3PrqU9hsi9Y7D/PmAw1efu4y7qGTMNlmNbmGTl4j9QySHNckZEVOpg1SgCcsgVQ8e9Bh/TVNulYqDzk1RdB0kKLE5sudCdBxXNzIIwggann4FZfIV/iA6ecEocKrutSnKgRVB89XOFKiE41BIhxJPNTEsSXNyiyv1orI0xTPWnynhKNU6iEZimKQgFI0G1Wi0MdREmsMSkqKQYrNSiKvlArHUSAsUjg4SlBkKcJqXEeW8pzA2nZCxXdRSqGkwnckoVT4ykVJl1BJbJ6hiwIjXVzPQ7oBnu9QCyPCIECq0qlZCEuz2UZikUIjKLBW4zoK8pQo8nD8Eu/veA6e7+K6Dio31FyXIAyRQpFrS2EFTj3CC0Oq9TqOdBgOEza3eyAljXqVIjMo18MLPJSjKGwJ2cqGBcN+D2kNrlK4UmHMjlmUsbhhUC4G2kKel8RiP8APIzzfx/UcpJIUuSaPcxyn1Fh3vPK7u4EiqkWYNC1dkB2FcByEI8Aa8uEA6SgkpSoV1iKxoAtMmmDzDFtohNEIrdFpRj7o4zdGUH6IsKXrtKD0wMiWN/AmDuBOTuLUp5HBNN044F/9m6e5NL/B9OPv4Mb1VVYWliHOGdMeD37PO3DbkiKqcPPaKou3hojWJMsrX+N3P/4i80sDRsZL+TU3Emz1BMcnBTay3LCKbsdAYqm7Do/kBe85UuHpVc3LHct8XEV6Yzw4Pc1//9ATHEsCmlMzuCOT5LNHWL73Pj4/0mL7+CyNBx+gfvQkM8dmOX74IFNeg89/7vc5Vp8nuXKKwvexbkDaS7h6cZnxkYDl1QVuXPoc2eZLRL6gPfMEB6fuoyhifuf//iVuXTpFFnfxQo/msWkKjjNYOkfRWaN67H5ah49xrOlypCYIxyXzjiSqK/KKYFXCSrfL8q//X6yOBNQP11i9contWzcodII6Mk3/2lXSLKNWlXiORCiFtRlzkxO07j3AM587g+dUOTJZ5VAzZ37LgWGbc/NL3He8SbMuUCR4wuJ7glXhEgAVx+C6JRXM6ipZssr1c6/hFwnKCorcEMcpWZajVIEKFPnOIpFrTWY1eTYk1ym5SchsTmpi8qxLGvfpm7IapJTGcw2uZ7E2J0ljrLRkeUZvOCAzOVJZ8nRAmqY4nofnuDtzW8mrefbLLwHwgQ98gEajcRc0xlUON1auMkgzur0OmYVgYppOHzyZMOq7hEJTlzDiOXjSJcm6tDwfXWgca3B1TJ50EI4iNilh0KC/uYqSUG3WKSzcWjlPWGsxOnoEXxogI5cWJ/I55AesGI/nvv4cS1dew480c4/M8fqRJmtLA9T4DB0xpJfNo/NFtAJsgsl6GJGUATgWJTRKOtyeqHDzpQ2K1OKFLsp16K0My5b7Dr59F5Gyp9svdwPOnW3c2SeV2ssG9tbefbCiMjYVd8GV9rD4UvLGN7yRd73r3X/9qv13cCwsLPDRj37kzoZ9wccunGivK7CfOLnDE5B/CTt95w3ukJt3jy8P3O9ovfuSUoVopyOz70vsGkZJWf5Od5I3i+d5fPCDH/zPPgf/6WPnWthjtgtMvlWSkGWEUFWU10K5IUFUpdPpEscxNs2QeU51YhSnWkP5kvVbC2TaR/qC9Y0z/Omnv8ziyjbHjtUYHfPJhCLTiqNjCgLNmSIg3ohxTanoc2+Wct+BJuc2NOe7sJa0aFYnePDQHE8ce5BJExJMTUK7RT53iKXpCc5VPBY8ELUaZ59+nsfe8kZ0Zrhy7jxKrjEWbBIvXYDqGBLFoJ/S6cZUQ0Wn32Fl+UVUvkgQtqg3j9GojFIUKR/+3V9mefUyeTykPd5ibHaWzE6wefs86eYah173IKPNGm1PMhYIKlXBqhBUA0nsCHrW0llfofuNL7PejGiOhVy7fIW0v4HxJKpdY3PlOkmRM96q4kkPhMCRMF6tMDZZ5yvP3mBmbISZhiJyoZ96yLzOlY0VXnfkAErGSAoUIKQixsMFRpsefhDw9adf5WO//2luz98mz7LyPhey5A/YUgGq1+vS7fbY3u7QH/SJk5g0TcmyDG3KxGBXvneXa7B7Y+1BF8VuEcPelVgj7k4MyuRd7O0z2pBnZcfsQx/60C/9VVfn36hzUOQJUmT4vqTQBS3fRTcV9b5AJTE2z0hTRWfpMlHjJNfX+kjpcHgsYqrqMuFrAu1wNfVxhhlZkSCLhKpNcP0tbPoahyKfodkglX08P2YyG9AIjjLaEiSiRbPtUhSbrK3dxG+N045CRiPFM595hlsvfoNse4HaiOTNj0xw5blLbKcOU1GB62Vs65S2P0m/9xqbIiPQGSNOQSYNaz3L8dByoKV53Qm4PAI9F5Cw0/XF8QWB7yCQYCRWCkxm8VyB6+0Yo+UWnRZlazN08PwSrlPkBTotIC9Ih4bceihfoaWzIwOqcYwBAylQ8VykEDi+hxv6hGmMdVwKqzCmrHhjQBiBKQwKi+OWhmWFUFgh8GXp7lnEMTrPEa7CUy5SSbQ2CCUpbFkVdFwHTwr8spRTGvVo0GmCtJZK6GPwCTQoX+FKB7Ejh+gCUgW4GHyZ70CRJDrTmMLgOD5BGECu8XwHRGkIlucFWQaVRg1DWWWVrqawGZqMei3CV4JBYXCdAM/1cZVDYcoEyAhJZiihV7mmUQlxSJHWoqxBmrL9L4wm0yBMTqgteaYReY42Bcopb1bH85CyVA4osgyKZMcMaecuEiClBSVxfY+0N8QIgbECWWjIS4lUYQVFWuCqkmSm8wKTJXieAp1TpCXcyfMkwoUiyUl6CdG4xSQJ6CHStQh8jC7ItjaI7rkPS0ERFxRDyeaaZk2PMDZteN3hAywfG2NteZFA5xw6dgCsoDIi+dSTN9ieX2Nyok2l2mVY3OTmZh9dWIrEkObgVySzh3zaRyy3bhoSJG4kaOUwZTQnPcFzSznp+BGOHTrObF6lkineOFPnsdoE8fyzEEJ25ACvyZDPr3U5u3iZqckaY0GN7USjV7osDjMqdYfb66/xmG4j3VXcwofOArpf52DN58Lp5+kOlmm5m4yOH6Y58Qh+814ynfOJj/4GN84/z7DXQ0YC1XawiWJr+yomGyKVYnvzOi++dIEbYpojD4zy5imX6zkYFzILvVuLnPrjP2X17NNMv+HHmapGXCdjcXsdWxii140hfI9i0GPl2mWcEz7NsZBsc5GrCwf57u+YZPHSURbiLYRXMDYxyfveNMrn/+RLnHv2JucePUy9EjFRq4DuobQlFIa+NWRG4OcrePYynnsM5SiqI22EBW011nFxGztuxzImHXaxyqOQzo5qWIq2OdIDbTOMLEBZhJXoQqKNRZOhrS4TUZ2TZhn9JEV6gkLnaJPvtKQFRZZRaEOl4pJnmmKn0noHO39X6FIuUELiuR7j1SoblR5JnpPkXeLBJuPVCZZ6Q6xMmIxc6krSUobESja0g0xzjC5wrUaRoeQAdMqo75IWfQqV46seFYY4XoWRqkMmm0ShoNfZIskS/GqDmuvQcASfe/olFm5dBNPh0FiDR2bGuXL1KlE0wUF3lls3b+KLTWbGQzAbdPQQVQwZMRnruaanDCMuRIHLQ4dcnq5JsrTsMuZpwR4F4M5J2Lcg7620d5IA8U1VcPbxC8QOBkns37hDqmU31t3lKHybtw72VSz3DJl2Yt7dbfsJx/sVm0p5RbDa3jkX5Yv2vdbsdBd2Aixj0Pbuz91L4BB3GT/tjt3EAMoOxn5i8t/u2E1wBNKpgNz5jiik8FBuKU3caDS4cvE1yLbxJscAiVeNuL24jFcMECLGskU3vsXtXgepNfEgI6p51Koe9bqiMWZZXM3IhUMtMjSNZsrCmLH8xZll7MgcB+65H7WUMFhdJ88Ljhydpti4Su5ZbpiE29LjtaUVrty6wIGjTWYrkyz7VbaWVqi6lnqQ0xneZlY3iNwVAj2GydoEOiAXktsLW6T5NjUnpl6fxa/OIN0mg7jPk1/9NDeuvUqSZoQTHn7bIx1oNjdvorMBvq/p91Y5faVC1a8yNRlwrCJZ1ZQu8tYyf/U2V155ie3588ydmGXEdVF6QK+7SkQVr9FCBgHZcI2F+Us4swHGuhR9B/wqj01XuTU/xmI/ZzIKmRoPCZXlzCtneO3liyy/7hGmRtt4IgXTR0qNKzSJ1dRGJFmyxtbGCrdv3UQIgeu65JRzi6X07zCm7E5qY5D7lAsslLyZnf/dAc3t4/UIyrip3Lgz59i79v9VM8lfajL8NeNv5nMQeow2Q/zQIdFgvYIgNBgnoOgNGZJh8emcfYbordMUMuJqL2fbzdgScFgMaOqUSmWU/qCLTlN8qQkCDzyFHN5gOprj1XQe424z2spx0z6VWpeRmsBphDSiDTbWenQ6HY7OneBQvcX84gWuffXP6Vy7RNSSTN03TnuQ8fVhxH0nG5jhPF63xeRME7f2MMlmh0Lf4vbAoH1LZDWLPU3fh7dWJfcry1dasNgSCF1Cd2wBypP4dRdbKEwKxkCeWRzHoGypfY3WWA0y9MiNAVdSpJp8kKMTDdpicoF1PfIMhOsiPUCCcgS2MIR1H+l5uAakUmgrEIVG+R6udrBCUeSlSZtAIrTFkRD4HsILiK0iNWUby+YZJsvQhcUIsMZBiBKv6biCHPAdhfIclARhBUiJUJI40yQFWCHwVKkc5FiBdF2G/Zg8SUqSjHLw6010EiNNhnI9jJXkqSbLMlQYIV0PihSnjMaJsxRblFKrsb7jBIhjy8q6LQi90kQuU4rA86lENVxPkRe6/K5FicUWjkTZ8jcKHIgCH9+RKAzWaIw1xLkh9CUGyLXGmgJtCyLXL28kKVCug9VlQO/sQIWQLnpHvsrkBlMYpBBkwtlpW1tsXrrRKlfh+SFpnu8RSW2eo7McXHYWpJw8HiCQSOUBGmElNotBGqzVYBRWW7J+lyIfMuh2MLqHzjVJ4bC9rTh4cJLj0+M8eLDBygMHSTdXaQy2efDxaazJuXTuMi+8dBVHF0RNQX/7KkME9zwyibM5pN+P0anFrSump6ts+0OKUBGlAs+TjBUw09dkyufVXsT3vuc7ufeNTyCHLm5nwMlDNcI0IavnbGbb3NQhX+lv8/lL13Bvn+Wd33mShpjiepKytrHMjbV1zEGHsTmX3OkzMtbD5SXS7jVU2qQ+MsnLp88yMjrLfffMUT3wVow/x3BrlVdefoE//8N/R5FmWFEKDajIZ7hlGa6cRkpNe7yG3r7O6a9+mfmFMR5+Ypbve/wtRGOKS6s53a3brJz5Gq/84ccZBAnHmzAShDQrPq7QpOvbhIMeTttHDmM66+tUJhYJmwGBTrlx4waPH6vy2JtPcPnKVZY7Ka4b8gluuVIAACAASURBVKYHD/H8CyGrl3q88LUVJloV2vdX8XSKzgoqUrOtLVkBliGO3QC2EHKaqbkjmM0uRVx2y2Tk4rk7Jox5QqENuXTIjKVI+qAEnrD04wGFKEqTRc/F5kBeoG1OpjU6S0iThDgz9OIE14gyAaFcbKwunWiVUoSeUy4+Ji89RPK/7HMAuzj5Ess9OzrNyuoag9BhS6dka/NMjE+wkrosxAWJUoy6ljY5vjX4XoU4ScDkeEoiHVkWAooNWu44l7M1lBfjuQmuBseLaUUCJwoJ5DZLg000Dm0/pOl6LG4vce7UUwwGKxw8WOXQgSbVVHM6kTx0UBHpIf6gj+tHCKdJxoDMDOjnGl8V5DbBUpB4klnXZU5a6hMOaWHo3s7or5UiErt/911V//3JAHdj4nd27JO6+6b9dv82uxMk7E8s/urF/NtrfHOlfyfw3yUM2zuV+v3ndreLUj7fSbr2VfX3ki1r7nAIpMSwK1X6V0Q64s7nCru/s3BHmcjux2T/rSVle1nN3hbpNbgTDN69u9FoEIQB0vOpj4RgDVlScObcVQ5NhlTW5okJSICZ4zM4az3yYkgSF7RHqlQaFQbOoFS0ywVBxWUq0bQLGBiPVxcSHj00zqMPPsZiOM91rfE8iTdeJQtSuoMtXtha47LxuXH9BoPrr/LA3Bth0+XkfSc5d/p5Dh9pc/y+afxaghZ9Gs0eUp8mS6s4soFUHrd7K1SrLQ5OHkLVTmCMy9bWKq9eeJnPfOkTaBK0sEQjEdKP2N6I2Vy5huMWTE/XiTfnef5qn1RHHD/W5qFjxwhqgmtrmrR7m8svv8i586+SNjJeF0FduTQjl+5yl1imVCoRQauCk2yxvrlMa2ICR4LVhrWtgNmWy5seOMitxSU20gozNZ+j0zB/QzJ/do0zZ25Te0OVVqWBMDlSa1yl6VsDVqBUjOfmuK7cibfcUtlQl1yM3U6YooS/sStpzs41v2MiWJLpdy+VXd6BvTOffFNyu8tLYB+0by/B3pu17rz2rxt/o+Tg5NwUDxw7zFAXWCHZWl1hTAmSGqwu9xBbG4hsSO71WDv7FCfe9T0Ekc9aOmRpeY2NKOeQI6k1mqwZS1P3GfMFYbPCqe1l7s3BGynozK9R01scHXXg6COcXTxPPLjJYw+Oc2vxZYYbDpPjJzg8dZR2YPjwH/weG7cv46qE8XtmOPyO1/GJ33iGsZ/5X5mKLnH+U19BrI7wHTNvo8s0lekWlewTLK3MczUb0s7AJpavbcGxsZzZUNGeFQSLErMtcMOyQ+COuaAcJBJHSoQnKYTFdDTKSlxPIKWDDEGEHvnWEBEPKawgiwtsZlAIHKWoNR22upowdBDKodAQBgLpakZGfBygqsFqTa+vGfYTtBtSr7hUIx+d6TL5QOLusNydwFKrVagqj84wY6vbJ9MWz1ocVRrJCAuuUFgkvjQY4SDVjg8DhuEgIapVyYqcXi8HPwQs2TClXQtKOwSpiNOYfqePKaBSiaiMNInjBOtIwqg0VdKpg+dpdJFRZBpjBPGOF4QpLMJzKYxhPc6oV0rGfp6DQOJIhbSKwggc1yWs+LhpgSsKtM6IhzlubnDCEC+KCKKQNM0JHEW75pZW48aU3QXpkQ1zRsfbuL7Cak2BBkfukETLapJyFBqDdEDVaijAuH4pJ6dNWaEtLLmxDIc54U73QmiDFBrH83C8AHq98hbMMhyhkH6ILTRuJURKQTroUOQWN7S4ocKfHMWmfUTFRwUNpOtgi5h4fRFVr7F08SxKJKT9mMQEFCOzvOuRURrjLSweJ6cPMP2dh6l1b4FMiTtrfPijL9FoHmJrcZtnvnaDa/OLeCeO8iM/VmOyv8Rzp5a5vZZgAh9bq3P71ZTpN/h0zmT4PU1LgQwlT/Ui3vuW1/PetzxOq30IESfYloPbaCCdAH18nNMvLPHHf/E053ubOEmfUSV495GHmJ95hPVhn95aTpb26I8P+e77aqQb13GLBDNcxrErVBRsXZO85fVzPPzg/4xyD3B7WPDa9Quc+tIf8e//9e+SZhbZ3plkRYTo1RgWGVYMcFohx442GK4ucnvxNVaXVrj+bMBX3vdnTL/eZ/Ur2/TO/wGm/wlUXUF9hJXFi/TGZhg7OMroSJtrr9zGDtaoPBgxfLaDFQXDjXmSKGFm5jCDtYTfOl3lJ0+2aR4/yM2FCsnKAlezZV7/3/0kK8+8yje+cJvZiSmOTTbxGwU665GiCYUkchx8PIQVxP0FtBqlFlbR1SZpkZCkpRqP71UoEoP0FP3BgNSANgVFf5siquAon7XhAIeMmnBxXQ9jEjKdUuQCB82g12MwGJIbSZxkUCgcVcrtIhXCCkxRUKmG+I6D6/n0zZBBPyZJBt96ARBl8eDQ1DEuXr1B36ToYcz2MEV3VpgcmaAQloUkZjPLmXI0TaUI/TrbrqWVDal7LokSbKSScWORUUG312HGGVAfqZNKn5XeLYbxLR49fIgrS5fwRJVKdZKRagOPnM8+9xRZZ57AMxw7dj/18TGePjvPgSf+HhPeKl434/7DU4iagw5DlJiilj/FWv8KK6YgzC1ZXrCaQDsaMOb5jB/zyJWht5gwWE/QOy7q1rKnyb8LX9lPQN6V5WQvCDV3KnNiV0+8DFH3qH931nUEoJTce25MqYz37TzELvLH7qQF3yxFxC6ZeIcwubP/jguyuOvw3UDnL30IpRGa2ekQ777H3jOxa7Z292fvVlih7Bwg7sCZ/m6Nb+pU7RtvevNbKdINinQFay2dYcTBmUO8+I0X+fozZzh4zxRves/jPPH6w0yobV49f5FeXGCp08tqLC8lHLininNxgDc0VALBRu5wcdvl8bd8JzMH55iM6kTTo8wdaFOp15GVCsOxgPMvL/DC7ZskWUI9TZg9MMmBaJT/8I2zPPhd76Iy0YCWAw2YGHMw7hoOMXlyE1dCkYMqAk4ePsaBye8HQlaTlNsLlzn1/JN8+rN/wuZAEx4O8PEI9Bh5N6KfDrBqm2i8ziPHRlm8eZOLN59jca3D15+d4Mi7f45jRwUXnhqwdfkTwA28to9bHWVte4HZ+hjHDk2xfPk0vfUNalMNxo9XWX/RYmVGb/MabSehEaak3ZS/WPb43smIcHqcrTWfOBvgNuHBd76Ppedf4ZkvnePYwddTPdRCOKYs4KHxhCBQLoYQYyFN4zvQICmxWu/VD8SOQAGA3pFGZqdDZimVMo21O3C4ctwh9LNnDLjLwdmFPO5JJO8VJHaeGHsXafm/WHLw2u1l/AN12s0mreYY3a2btEZbdAZbTI1bir7l1CvbJMMNsrVVPvv0V3jLz/xPPPzwOE13i2sDwZ8sa35qfI4xM6TmSdLuApvXlnl47gDjEyc5dfGPuG/sLXiqTdw5z/q5J1neeAvH3/J9xGtfxM8DZsYP4bQFi9kSp07/BStffBZTgYd/9DBjD81w4aUC+/APcOtf/gqdqIf0YhbOnefJz32F5qMOJ/7RSWYrPtKJWEozhq7mxJTEvZ3x71/VPHpckjYE7ohAZwLHE/ieoN32SFOF50pUDsYaosM1zKCC6aVQWKSvsEaQ9jKiasjG7W1UAI4LeQFx3+A4kCwNsH6E4yraB5oE7SqepxksrWEdja8Nm90ckwuUUAhfMugleGFEK4jwPTBujtEZJjb0MhgfG8U4LiY32ExTpBmhtMSFphoKqqGLqxSDQUpuHNqtGnFc0G56+K5LnuakMqebWpwsQ7iSLI1LTJrOQGeEQZ1Kw2Ws3aYahgyHKYV20GlGo12nl4BVChEqZG6JC8nUoXF86ZF1BxQ6RylLtRIABXluUUVKkmqyVGM0jI5NELmSdNAn0RKnUkPWHfwkxXVcHF/STwqELglsaEEWw/b2Fq6SHJycQEhNvtMxscIn8jOszRBaQgFCSALPIYkLdFYQag22AFOqQwk3wAlcHM8h1bY0j9OCPLFI1yKtIu3nyMgpNbO1ROcaN/TwHAeTx4jAwa0E5Y2pc3AEUvnUmmNonUKRIx0LrsFmks7Vy7iNEKfigE2QxYAszWg0QQQtBrmhv97HVyvMTNSpeRt8+eOnuLC4RaUF999bxbm+xfozT3F1tYJYuEa9VmNs6iCeCzdemqdftHn3Ac3bvve99NuzXFnZ4sXPfpKf+LHXsdm7xHPPZ3iZRox4JFOjvHvicX70v/oZqkGO51lMb5H41hX66z5jf/8HmK8e52NLr9L1WsyMVmj2rvO2sSbhvY/y0qDHLXuOxtGbHGxvUpU9kn6fukzp5Tl+RdJJLFt9OHiwweyxd4Bq8rlbQz73B/+WFz/1cTZuLUFVAgZRc5CpB94UWrbJlr6GrEZUx8e5tNKlGtTwagKxXUBvFfxf5PpvLJP1NqiOS2r3jZF6Vbrzq1x4+go/8ob3k00WBCMpjrQ4q7cJHpwhb69Ad0AeOGxNuVxyRzgiTnFPb47nlmoklRayVadea6OTFd486/HF2Sbqapeb5zc4d9AQvXMCUzi4OsFzQJoQKds4ok5eJMTpNsPco0gNSWERnkfkegz7fRAOvX7OoN/H6KKEK3oO69t9pKfx6m3qoaHRcJGuYO1mBxlEbGwsMRI6ONIiJGRpggU6MVQqPqnd4b7oBKkz4oGl3a5SmLLzGXku483oW87/gl1XYME73vR2vvT0l7l28xSb3QFfWbrNidnjTL7pcR6tJhhyljO4MCh4T0VRt5bQlQz6iyAKDtZqBGqSW2tPcl/7bVitiYdn6fYH9NOHmD32dnrbp6iqEWojPsaHjWyT9fUrXP7CU7gHQ77/hx9jtHKYja060cEDnP2zP6Yy0yIxW1y6dZo82GT8ngYHjtxLU0u8Zo0FM6RR+IQFZDLlG0sD7hl3cZseQbU0ezSFKav/3xSV7WJ1jb67Nb+nDMLd7qS78AH2mgliD/O7q0wEd4Jprc3fWEHk7/bYwdArsfcc+Kbq5h75gt1Ma1fNZT+cyO4ywdmn877TxTLGIGVZMNC7EIwdTuD+zs4dZ2b2YbfL91S78KJ9z///H//pHQshJW4wiuO3MUYzfdCh218naDdZvNpl8/Q82n6DThLzXd85ja0/gAwjjBrQqA555OSjbHbOcHZri3oIea3Jra2M65e3+emffC+RD2nS53c++hG++tVnmTt6D7/6q7/CiysJ/+Rjv0NqDfXA5b7JUVqHDvKF51/l7T/5Y/zbf/5P+W8+8Fbuub9JTQ7xigGOHTDUCU7gsRUXCOFQa07Qaj4CeLy6lfHFT32El59/mpWNRUTVLRERrQpBpwLhceLOEr3VF/Hb40xMzPDy4ipjlRG8Osh+H607GPlJXvzYMluDFY4frxKOHqSnFZubHV45N8/7jr+JpXpMUFVkmxn+YAk9NU3YvoxZXyGtBKzYgFxKJsVFZtNRzncjEtcnaI7imxoeCWMVTXjPNOmNLqu31qgGTeojLXw3QJoERwDUccQItlglHsYMBzHWQp7nZQdW7bh7G7N37ZYk431dMnavyZ1EWJUKQ0bv+K9wJ9Hdm45sCYXeRUHuv7LEN23Y5Uv9deNvlBw4wuKT45kEbE6jPUqWdokEzN5zlKP3HKE9s8CnPv4Kw+UYna3x2Q98gM/X6ozfN8ubf+hBHnUcPvKlmxz1Fri/CkdHImZmKhg7z4WLZ5ibvYc8u83maofuRg9HHOSxRx6g3vkiZ90BEwddcmfIQG1xtDXOJ//xJ8DXjP7ow3TcMVZ+b535L3wRa12EyUnrICOLVhZdaJY/kdF59TQLP99malIw6Sl0z+GZpZSTo4oFYfm9K5bFZRCuJJqUuIlEBgpVVTjGIjAIAQ6SStUhUZYizrGZJYk1OisQcc7ASahNVEiLAisErigrzMZ1UVGddMsgghDPM9ScIZXQIfOhcaDJ9qVlVjeGYDwa9Rpho07KkIqUiP4GvVyRGgfPEQwzjZGSlc0BtSp0txK2Nob4oUOjYun3B3SLsMSYBwGe45P1UryaS3V8vLRhtwKERAhL0tmmXmvguZLMZFhpcHdMOqrNGqnNSo6FG+C4iqw3pJ9lFLGkNVrFCVy6/ZhiYPHqEf1eglMV+J5G5gXaGuJcYGWGLErOQpIYcguO66BNzuraEl5YRQgfUViU69BsNdmOBwSOoNmukyUp0koCx8FzLENVLrBLG1tUAh/PcZAOiHSDWrvEZkopUaFCKYGVYGyCKCS68In7KdkwJUs0YUviBCFIiTG2dJ5OcxSGwPNQrk9sRAnf0hqRaopOgo016eo8qtLAqfmoUCKckuiJ0WTDIdmwjxl2EEUPo9Idr4ohygUT90l6fbLBOsnWJpFfxYw0Gayu4gpJe6xFZjWri9comrDh5hjdx9qIjtdAp/DMhWs88dbDvO2hY0xNH6TSmsSNamwNL9BdH9IpAkQ0g146z2T3RT7wI6/jjz7zDK+82mO0pWgerTA9Nc19c49y35H34OebeP4ArMfVK/M89+lznD29wd+7fZhf/K2P0c/WOXwo5tihBu2RE7w8bPGxP/o03XyBYGyehx/MaIwIGiLneDOBwZAlBPgOqurgNVzWzDhX1yb47Q/+BDeurtHrb5PnA1TDRU5JKDR2C5QcwaY9Mn0bWXGQ1nLkUMjGcpP15Zv0+8sYDBQFyVee4X/4nV/nz/7Fr9LdvkQ4WoVwkvzpc+haQi/vkFVm8KeP0Dh8Bd+miGyDoWOQI5DpAfGty7SDdVZmjnCw/zLB7Tb33OczrAasppbJ9jTdbJ23/dAbOfX7Q25cW+fPv7DFIgVzMw7jrYDIdQncCpVgitCdxRKA0SSDbZKhxguqCCHpD3vkToDrgM1TwpqDFA7CWLJhTmQzFtbXmBmtouOcraTADyxR6GGjGhUsW2vr9Da2ydIhQTXEdaHpKLrDIcN4SFHEOA6MteskhUuSpkRBiAk9Brpg0O39R9eAXZiG47i87U2PU6tW+MSf/wduXV7h6ksXGX7s9/Gm53j4sRN8x8MzzAnJZzurHHVWOBw4tGsRvq8o9DLr27eYGDlBnt+i191CZ4rQm+FYa5KwuMRNNaTVrNC3fRwvwh32+dznPk805vHAD74dt5jiuU+d4sxLpxkkFqsTxjZH6KkO3WybeDBg4+IWt2dXmXxsisPSY7oasq4z+jbnYDViIyn401XDekewdmlIbyEGbfbiVvY97sJRrDV71f29x/3KOneK13vY+d3jdmkJu/yEXU+E3WriXZX2b9NhsUjkXrVyN+j5lsfvkr53jt2rpu62Z/ZV0OW+82Os3Tlvu+de3knW5G4Css8Ndq/0uq+SKu5IOn5bnnchKXFVlsWFDu985+M8cP/99AY9HnjwMPcen+P6QoeV5R6TzQ6zh+pUoganL7zIa1dX8HzJOgFz1Xv4vu9+iPe9vcrPffDn+dhHf5nf/MjHOPXSGTpbA1579TL/40/9L7SCg0yPTbE5WMNxLRc31ji9ucXYfSd59v/4BQ4/UiMM1nGzAYFXUHdjPPr0RClOIKshxlbpigmWtn0+88lf4/y1NbrxIrEeUDlQw5mQUBRkaxB4xxj2rpEVqzi1AB/DvQciFhYnOXv9BbbzHoVNEb2M/jee4ed/4f/kn/3CP8YPUiqtEdJOyODqeZrVAYlJsOEM7dlRPH+dwPQRxTpbjkWNWfqDNaLVl7Fygq36IUaTa4TdBrNTLuvG4gqHulMjsz0ef/sbeOnP1rl+TdPXq4zNWEZbHrUookggCqs8+8wiL7y4BihK6GYZ2JdqXAZtymtY7nS3doN/9nUmdwsFu/Ai2DVhFHvXt9mBH+2jQO0NswPZ3oXsle/Fne7lf6nOge8prE7obg3JjUav3ER7Hu2RCtXIIwp9Dr1rhPe/4yH+xe88xcUvXyLpZeitNZZPbfHZ1y7gCYutevyjX/1x7p07QhKvsrJ+Cjcc8MDhGmfXbzKqe/hOi+rUAQ6EQ7Zv/S5PjcWMFQlpMYXyBTI9xZ/85idIR+s4Rw6hej7rL5+n+9I8Ni+QvmL0oQkOPVSn9UCT/vY2yy/contxQNox3PzwJp3XK7YedojGJHnd47VhTnPSoVgVqHqO3TaITGCloH0kpLuW47oKz5eIDPKkYPX2FlFUI40z0lijQhc3LNV7orrEqyr8QtLvpMTaYAIXP/LxWhWyZMAwSXC3M5wUMhdCXzB/YQmbWXItIDMM+gXG09jcQFAQZ+C4GqUsmS4vksPTLQ5MjNDDx6/UqTZTuhvbdIYagUQBrueXsBehiFouUkE9UMSpJUsL0rRgmBeEjTphFBKnmkwV2HBHwSfLibM+3cGwNO7wA1Ir6RlB1t3Gqx0g6fcxA8twmFDkKdIP8bIEQ1gqHXk+UkmQsNXZxA8VQb1BsjVEaI0KPDKlEE6EcnywhoACx1pya7BpBm6A7m0hNAjpkBUZqbEcmRlDOYpOJ0VqUyZxykGEJY7bSkWBLZWclGCQJrheiPAEWZ7gum7J60ATDxL8ahXXA3SOpywyclACgtBBD3IST+AKibIK6boIremvb+K2RkhWVhBdi1sNcWpVHF9h4hiRFTiepEgEOocCRby2hhf6Zbs1MCjfIWy2cLB4I210nqEdgS4EWVGAyHng5AHiXswbpjpkrRbu2DjR3CyRl/LQ8ROMTc4RBlVcVyGkg9YZhVQwei+nL65STc5RVVs0gjYLl69zdSNhdc2y3be85/7jvPmNT3Bi6o1IGeKJnHjpOteHVV6aj3ktcxFBzqc/8xv4Yhk3lLzh4RZzJw9wO4bTT19m4blruAd85n64xsmDHicaGsdCIFLmPcGIo4g1DLXE+KNM+0/wm7/9FElYI/e28EYcKqGPtSnbaymkFuk1KLQFhgjRR2jNyIkKXu0dbL36SYbdJVAG5QsKYXBEQjcboh3NcFMztmR51zvrfKwCJtdEOiG0a0TBGrW2JsoUyikQnqIxqghTgxWadUfxzkhya63HsHGGsSyhwiyHageYqzV42UY0Ah93pMVWlrFR5Ny6WcrXToyOUAlapKnLIG4AIVJVUUaQdjcQqobWMSbvUyQZTlAjSzOGicZxA5R0Sg8WkaLzAY6JMd0BxhZkJme7W5AYS3U0Z9BPyYxhmGvifkxhC6JmHRE4RK5Fa0kliGg0KoT1JpHjUXEMaTZkkHbppzHxHgnuW4+yAmXxXI/7T8xSqb2Lr52+ypf+9CsMexnx/EVOrV7m7GchkIZgLOIHf+GD1P0mg/gG/eE8jpMx3qyw1J+nRQ/lTRNEdQJ6xIPPcakiaeTbZPoYgZ+wsfENLl1dY9BuUZs+zHFxgGc/+QVuXb1Orgvmpg/xiz/78zQqIdfjq/zmb/2/3NroUBuv0OsVDJ5fIH+4QjFXQVRDbK64laa4BMS5y8a5DZZe6dBZSrA7+HSj92F2KeUDd5sEu+18sQuP2Vchl0ruLcrstPnVTpGhXI/vxhXtLeC75b5vc+aBlHIn5tit0H+LAGQnkdoPsdqHnbibj/DNSZPYcTnWO3CLPWgSd52+PaT1PuiQtWYPgmGM3oNX7O8wfFsMIbCmoMi7SGn5r//hP6BWD3no4Qpg2Nxc4Y//5KvMPfQdHL+/xWtnFom31xg/ALd7PZ568jbKUTTCFgdG2ty83uWppz7P8Xvm+Omf+d+5cOUWw35K4LgYcm5cv8BqeJPljVWsLMitojBgPAi9IXMPHeCdPzDHA3M+9aDAs9n/R917xViW5/d9n3866caKnXtmemZ2ZuOIy13ukl5KJi0JFA2YEGDDMGE9+8kPftCjE+AnW4ZMw4ABWzL84CAbJgRJkAHCNE2Ku9xEbpzZydM5VLhVN534T344t6qrZ3e1LdoCuH90V7jhnFvn/M/5/8I3kKqGMmiMkzgitVdk5ire3uKr332bMN7CJids7wwxiaBq1xzN1og2kOYvsWpbtD4khhm5lLz06hiT/yK37/x9Kr9GZ5KYejrZkYkllXeoARw9aLm5DS/uZjwYB5z1pNGScMK4WKOGnkwkSOUQieHSvsYsO6z2rJXmBQ3H65J2cJdd5xmZCZkuSLXhNAhGScIbv/wbvH/vTT58eJs33zumXLXkyvC3/tZf5e/9vW9w5/aCxw/n1I3toYPRo/RTB/Dz/2xUtKI8V/M6e1wAUoC/2HWLZ+aYZ53K/iISsoco+guwxLM5f+aBIOXTrtuG8PQzp9nzWQNqSRccVbmiRXJUNbyQRzQaITTKaIa5ZnuU8u//9q9w/8tT5vMnfPNPnvDtP5lRHlVUAvJWcln/kD0549BbOt+iZU29LLmeaox1yO4Rqb2HD47Z9JRPTgquDD/JoycrDt++w+mjY/TY465/ju5773L67kPc8YoQWvRQMbiS8ZV/84s07jFN1yGNYvrKNl3rEI2lfOSYfSPQzgPjTysGtxROKuZrxfGfdbhjSDNDlivCPEId8UEyMAKpwbcR10R8Y+m6Cms9Z+o0oEi0wOQGVzu6LmKEQg0M3mhcmtI0HVt7BavTCu8tXQfOwSgpSExGJRTj7RTtJSrJ0eMhSiqaztJ6gSvbHnIgNXlaoFSvF7ycL/BSkQ0SQpeymK1IRmOKwpAVKcpolNBkWU7tBZ11G6dIgY8b10qd4HWCbyuUlighKczGeXlj6OXrCiUiQiVEKRFFTpQCqQVaKnwq6bzuK+bCoZPeaF0oQEWsd9hoUMMRFkMUG/UnYQhSEo3BmEjXdH1GHBy2bsgkpEbTAaZQvd+Di0QhcW2LUhneWsKmehVibwjRxkAmoAsOHQSJlCjZE7IlkdZ6hDJo3RONfdWC7/CNQCAxiT5/TgpBE1vSzKCQSB+JWFzjSSdDMBCiRLqO0HR4KqhVDwErVwgZwHUEb3FNC10g6KavdrUdiIDMFMXuPirTzJ88RiUJ450xAxTdekE+DJxWR2x94hYqn2DGO5jpLkmSYWIkHY2pyhXrw49YLQ9YEhiMhnztcMhoa0TefsRQHlK2x/yjbzzhvTctrdH84i+/zi9+DrZqvAAAIABJREFU/td46cbnyZNxvyC7ksoK/vAbb/HOO4fo5YpX9iX17ICrA8uNT9zg8s0JK+O48/iE2cFjoi258Vdu8Ff+0id54/Kabf2A1tVUXcTrlFkHVRkQPkJT84+/9S0++GGgbVaooSDTObF1rI9XxCr2UDVziRhOEGEF9DfayfgS67Ckada9T8dQkIwk1VHPOTlyKW0VCZ3HGk012SHblriTmoOuptjfYmd7hwMTme5pjteO6Z4CGxADQ1EodF3xYH7KtSsFtXrI3dPAvpFcv7zDgTG8KAbUtz7LwReXjO8kZKLk0m5B7mFxIMmvDHHeoJ1E2gqlIE/HqDQCBikMPggcNcEuaXzASwFSoRNJdJFZXQEr9sYJiWpBGXwnadcOHyx0NTL0876TCbXoeUmybsnSBGnAZL3gQdPURCWYXNqDKLECRKrJYoJZPH9gqqRmWGxx6/rrDAZX+ezV13l0+M/446++z+2PnrCeLai0Zz8bM9XvkzKlimt87FBUuHbNltGYAMP4Qc/rwdJmay4nIyb6UxwvH1HdOca3NfkkJ5XXaN97n8flj5gkCX/9V/9VXrp5i6tXrvLKzRdRUjFwQ/yJ5qPvHbJ1veCFv3yJ2VHJ3R+taDrPzvWc4VDSiYTGGx7fLTn4wZry0OK7C4GsuAiJOWvZn7cR4ELge7FFf26cJsQzHYgzGMFFSuBTjLzkHPb+850b/IQq5hmHID7FUMWf8DpxobNyllhEzpWJ4NnASPDTYRHnnIINiV6cnQvYkEE3P1/8/xdCseh5RzxPvPoimuW99z7g/r27RCLFICMf5iy94sUXrzHJHnHrRsLDg2O+8c6c+/OWwa0rcGj57Ge+xNFRycMHH/Duex8Sg+PkZMZsXjLIc7QSgMX7hoPZKT5GsjwlSkmIoDON0Z62rPjCS7/AtckJMh4SfYmPG4MwEXCNQ0s4nc344N6bvP+hpmoWDHcTJumE9XxNM6sITcCpHJPcJLY/gjBHC0uejtgeXWMdahbrBc41jIcJxcCzOrGEEDkNBnvS4LYzbGIIwwGjqaKdLZj7juloiywx2FwwyjS+sVzeTnFtYDAdUCSCtFszb1fsTXI6jnlcKnZGGpnk1EqyI1OSvVd4cXvApcuX+IM/+Cf88EcfcDpbEn2kXP0/vP32I5qq95uCiDFmc+/weO/PIT5S9IUWxAb+Ji5cKzzNkT8+N5+5h1zoCvzYFBZP4UR/3s7YcyUHiYmkmSR2CtuU6MIw3c4wmQYZab3DdIJy2fHGi9t84sY1ysYwmQhEEnjvoyVBRX7hNc04fx9bP6RpFEJAkQeOD2uu7qWsQo3QSwaqIeqEvfEeL6QO2QkerZ/QPH5Me+yoXt6ju73C3T7ENx0qEeR7htHlgpuv7bNzTXP3/Y5mXvYKNR6SnZRQRsSRxy5g8Y6nqyLtOpIksDq1lG960kKhtjU6Nbgq0JURLSI6esQGnh5dJLSeqq7IhylC9jKZznpEKolC0VmHiBGlNDJRxEzTGM16HknHglaFHm5i+6pUYhyj7QGiS0hMh5YKoTOsi+SZZLHq8E7grCMGR6I9qUlpnWO2KlkuVyiTYMaCfKhpKkNV9nAbZ11/E5QeHxRCJnTO9eRqqRBSIZVkw79DKw8IjNJkSUIqBIuyInh6VpGWxASEFiTDHoIjjUZpgwwW2QV6iSSHEL2rtPcB5zyNDVgvccJQJCl53tG0/QXeV9MabCfobIdSES379ulgmJOmGmF03xnwESUFHsnpqmIqe8lRSY95jSg8AhcDZdOSJ4LEgI594lB5iQ8wyFKkSVBGI2MgSoUgEOOm4hQ3Fb7YKxQ1XcQkfXIiNxe5FJAMBriuwaQFBNWTGluPawPetYSyQSsLrkbYFukcSiliu0YmEF3Tc76TAmlSQlmDs6jUkBYGkSZ0siIpBPLaDvn+a+hihDQGqRJiVJQHdzg8eYhfzzh9+CFHs8csjGR8/RZG7lKoNcIeMbdPuH0040/fX3M6D1z/1Jhf++Iv8JlXPsd0eAnaGqkUy+WSZetw9YLEnZKpFgoDdUeNQxrLcb3mYO1494Mn2FAz+syIl758ndduvMDV4hTll0R3ymGncSajE+BxxHXkye0Ff/S1IxZHU3woufqJKb4TLJaero5EJ2C0ByIgQoUILVoL8lHC7u4t5s1dXNMQuoAQEpNtKileILWm15T3kEA3GKG0IoSaOjqmoz0moy10Isl3FMWpJwzA1QpSiSpgmnc8qZbc2DVcKiJLcYTrJoTuBZy4wo6UTPdu8ZnPHnJ1WyHtiulYEZo5ggHWFkShaK3E2YZMdGQ7+6ikIDiNkAkSCUYRQkcgEqPD+UhnI6GLrOoSFVum42F/LzNpD5mzEqoZ60VFFzxCJujEgNG9x8Hc4hQEFbHO4jpL1wS0ieg4pLOKGAVKKrzaLFTPNXqyp5I5w3yfYb7HK9deY7bMmA5f5YMPH/Hk+AFH5V1euQFa3MZZhfegZESpQFW3TAYDqm6FljOECHhZMEy2mWiQDnx1n1i2BFnQ5hndakV95z7X/pVP88aXXuPWzZe5efUGo+HofPEbmwl26Tm+v6SuWwZXc6wEO9D42zWtDYx3DBqYrxwPvjtnfqeiKz3RP+tr0P+l8WmQvynUSblRKrtIoP34Ai6eBp0fx/ueqY7AptMQLj79850dXHQePiNxPw38zyBCzwZBz8KHnqoMxRh7FcCzlsAmYXjmSJ8lExeeuPj8RcWWi32MM+jSPy/J+Is5niYG/TWYElF8/evf5vT4IXXbcxNfePlF3vjSrxK6Bev6MaqoWcqOD2cl6zownhZcGezzhc9/gT/+o6/z3e/+gPliwWK+QCmJcxZnFQ0BKyIieFZVi8kMWTFBJJqYGdKtgmQn4cWb17k+vsogkQS3pg1LSpdQtwkA9bqhWax48HjN2/cNs5MxNqx55bV9ujLQNL3nU/ApTG4Q6JB+hooteaLZnU7YHt9g2T2kXjdEYTHKoLWkjBFp+0A52oCWFowkJimpVoSqwhIZZCOyJKNNFdlAU1SOUChsYwiJpsgg1S1zt2ZvaCgMVGFG8BNCGCPJyKRkZ3yNXOdMhiP+6Pf/kEf3FtRVjXOBo6O3cdbDxpwshoD3T7W7zu4ZUpzNcZ5W8zexxlnHq3/HTwflXeTPRDYdzWfuMxvE+GYr5ypsZ9v8/wtWlIiOyUCTqxHlomTnyoTtSxOUVKw6S+cijYrEpkMwI0s7xsmQL/7SJYrLnt/7aiSknn/9ywqRLrhzOmPROIa5ZJwPeSIVVq1YiRKTeyaFJslTrpnLyNVjPrz3Nk9uz1mUHathyodLSffdN4llg1SQbyVMb2Xsvz7mtVd3OTq4w8nRgiQBqoZmXmOyhK7zmImDROCXnvIHnua+R+VgH4MaKkQmCVbSOYG3vXRagcdXEGQgtJIoIt5HbBe4+lLKat5hXYdrAk0ItF3EehgPDCEIkBKlJFILKh+xZYMKoce0uwhBUCnH3g1DrjRBRqIyRKGJqxKjAzKAj72CTxS9RGHVNKybgrU9JVpPBGzXkmcJ+WjMfL4gdg2tlX3wD1hvKQYZUST9IodAKIEyBo1HeIuIHo1ECkWUBi8kVjisdRAVvgt46ZFpQpb2xFwvFT5CGyw2dGgSrA90XUkTFDZ4WgeV08go6TrP5a2MREZYrKmbDhEdou2o0D2utImYxJBmKcUkx/ueiNZVfWKTGEVwkbUPZNaSZ6a/PpQhqowuCCKeVVVDVBgTAYltO8pO0QnFaLiFMClSK5SErJDEpulVAQQ4awkuEl2f8DSdwoWACQGUIJUaY3rdeRklWT7Cu5TgbC9nai2uagjWImSN8BXKW2SqUdLTtRblXS8lqTREj69XdCfr3oNBeZTsUIlCTQzJaMJk/1WC3MXbimDnuLqmKecc3X6bR0FRhI7lfM6qbmi7lPtPDvjSpxo+OrgN9pDbszlff2/BfO4wheRX/tI1fvnWZ7ky2SUSscLhXMtpuaJs17x6I2UsRxwfCh7VDcvouO887sFjBrJibgOP7y/I9zRXf32LK5dyomiofET7nNZLjruEBINowTfw8G7N977T8OggEmPHeHfI7q5i9tDSNg3B9AR/NbkEi9sIXyOJpKli78qArcuf4MkH/xe+rQkEhE7QSU4IHZk0jP0Ko3o/i0RrimICrSAtwChJZjKGg5zxOEGkiuE04BYgMo2TkphE9DSQojhsFZ+5MWAaWoJYUdVL9oPHikChcl6+dJmbY03oKmxXMpspJtv7GKXx1tI4SdspVHS4rkXqAucB3xJ8hxC+v+adJbga33W0ocV34LqKoCIilXSVJERF0AaVRqrFISenHWSKfCAwOqJVpHIdtglYHDIRBClw1qJ8hGmBbdY0LiUGiW8crrO9zOhzj95vBPLN75HdyZf4G3/tS5RfWfFodod3Hv0Jr12d4eMRs+qEEDtSYzB6QCk0QVY0YkaRCow2KJWh5S50JxzOfsDyeElUO5zohNuna07eeYBdlvzVr/xrXLl0FWPMT/xkwXm89ZTHLW/93n2u/sIu+SSlrB1u7ZmP+vvgyUc1R28tqU5afBOIfuO828PW+7/qaZawwQufkZPlM+3/zSHoPWLOGgzxLKeITwFDFxID2ASmG2Ojn6fa9U8bMVw4eJxh/8WGDMx5MH8GbTjnBpw9eRbQCHGOxz57Xfx4OnERcnSGsIjxLM145sScnZNnoBZn7/3/UFn9lz9+0qw4I6WeJTgpznfcemmXo9mKdeMxGi6PDN/71lcZpse4aeDBqqYMEWUk7smaa699DhHgyZMD7j94SIyRzlqEBe8dq7Wj1qpPhjdE2GgtUUZMajCTAfmlIWqs+LXf+iKOhroTEDWtVyyahOU8Ms4Tjg/WfPDujIczOLFDYlwzHhXsDgUfHZ5Se4tPU6JLSacvEE6+T2p7Z/Xtccb1y/tMJtd4+OhrdHWDHIAyOSpIvGsYyoxBaNCbe2CqNanKkJ1gNOwLeEYlDLMcm2XIRFGIgK1hOCloiIhEoHOBRbLwihe3cgpXQqiJviONgSCgMAMEgtFgQlsHjo/XfVwfIEaLdwEf+sQghoDzfSJ37sGxmWpnBYYz8n08T37jM2f//H5yoZP5jHv7eVZ8llBskm+xuavEvjPR37ueqqM9z3iu5KBe1vi2YzjIMWnC7qUhSVoQvCeNjlwKBsMCFQt87HCtxyXQNJFJqvg3/tolJiP44MMDvn/f8v6pZW8Q+M0r0IUZOxNDmhr2soyBioxFxDnPw9l3OX3P8ru/V7M+jhymktujwPr0AeFRAwiSgeTaG2N2Xx9T15F37h2RX95GZYpiKPB5RlQ98dUbjbicUJeOdgFuGfFroOgD92xokFbhjuMmuOurO05EWjbYMQFCKqIODPZyLl8dI1jhYiQIhy0d1arG1ZHJNCdNFd4GXNvrjadlia8Voe1l2FSSkI4KjBZMkgK3LFEmZWUli8Yxmg4Y6pTUQDbOOD054mQ2o7WR1nbM56dsjYcM0hShIHSOFkiyjPGoJLQKISVd6+g6y3BrgvSOIktou0jV1jReINKiNwHzgeXKYYxBKse6LtmZDNCmwOeCGCxd6HAekmKASTW68TRlS+M9dVXRrteEumPdOULs+QcmS5Bpn9gkaYo24G2LQjBIDTpahK0oBkOC61BJStvaXg5MRZwoeHB0ylhlKKNQWoKWJFqwP9hChIiOlsT07rZB9N0Mu1yTakHbWU5PSxLVm581TcCrCdZ5ytpiU0mRGaRzyCjw3iJ0jz92LuCcIHQdUQ7oGocIEZMZvFFgO6TrUFIhVYKSms531EuLnS+ItiVSopMaFVukAJVoXLXEDAuirSFYJGA0PYehrQiuZFQMMaJGSEimKcnOVaQJ+HCbbnVEuzilWy9Ylyumt25yZecWJt1DqJoQW8pV4Edvfod33/o+R03LjZcvM3uv5K2v3UVUgb0rOX/7N36T8fYVQuwIwhGMZ754zHgiaWoIeSDs5DilOXk048QohrsJcylYH65QueT6yylyT/HpF8eM2nv84OAu78lAIToGAnYDHK8ayg8rfvDthrfetNx76IlRsfWpy3zqK29w/60HLA8q4tIitEJPNTpd4LqKRHiUERRbCZc/t09lL3Fw/zFWdYgkYrKUbLSNikt2b+5x8tab2GqOzBPk6BKyeB3tI6bwLBrPDVKu7Ex49eaYozLARLNrOtrSI/ZzQqo4uVfylV/+FG+eeH7YVHx5PGSg9jgVIxrX8LJ0HLQnZEhG+WVC5qnaE7QekWpBKi3LpkPLlNHWLonKsTojdJbTRUl1cki0JUlh0MOU+TIySDVNWeNsSwwKFxzRSeZVTdPUWNnLGPum5PC0ImrNMB9QrpaUZUNwgSwfkiQJ1q7IjMADNhgCkeN5SyUUW9swX7fUixWDTHDj0ug5l4yzIZ75WQiJIDIqprxWvMEnrn8OHywfPvzPePP4Ca9s1eyZFVbMGKRjlNKMigmFrFBRYv2C9fqb1CeOP/6zGbqbcmfUcF/A7KCju99ybfc6uzt7PzUxgKfhVPQRWzoefPMA8+aM61/cQ0wTXCIJNnDn/35CeVj3C3I4j+T7956V1zbVb7Gp9J2pFp2RijnjImwOxdnie6Y+dPaJ4maD58X0M4Lzpvt4VgX8+YK3/Pi4iN8XF4P1uAlqLpC2Lwb1AEoKnmqx92ac0J+bs+MiLyRrZ2TMPvCJF0jjsU/kNrryT1WizlO0zXk4gyj9OYngP/VcieePvn76xn/C72cb3cyl89cE/u7f/Q/xYcE//adf44P373Dj2oTf+a/+PipRTLcKsssanwBRUAjF3XeXfPX4O/yD//3/ZLUqEULgXO+We6YEFSO4sEmafSBNNVXT8eDuE9IiQUiBfFtw69PX6GYf8b35h5joGQ8chXbYRc3de2tu7Gm+/acHPD71VFYhEsX+yy9yefc6B8sFzdEpoelQSUI+yUjTOXUzY5qCSBU7+1P2bl6jskPef/gebFuMlBTFFsppUrPi6kvXmT+6j9QNanAFmV1CqC1MCGSppbKRqUi4Op1i3JS184giZVf3vjCT/Ws0VYlvDZ+8+jr3a8dtV/JGOqZlREATgmN68RQgCAGcC+ddAq0kXWfPUQdCakTwhE0hOMYz476nnTUhBEqpnpDPhc5apBdA4ELAf75vNgpfm3tJfxM5n5NnnbR43vbk6bl9ehn8zPFcycGlS/tMx0OCs1y9coOH9ZplWyOaOfu7U7ZHA6TtqF3JYFSAHxB1zXY2Zmun6OEqsmOUST5Yzbhx2fDSNJDmllQ6XhhDQsS2LbILHC09X3/X8U/+D8/DI1hekcQ9kNckohD4/7EFAaaA65/OcMLz6KBmenlAimd2/whdWeoDi3MOawNdK2lOHa6L2CqitcTsKBCCZCjItjXdEuJaogqFSSR2ZZFbmmxqaBae9VGLrx1Jakgmht2h5OFRjbV9oJhLSQiC7qSFNCEag9ACfO/A2VWWNDFMdoecnlS0dSBGibKB6WgEyZTJ9S3GaUZjPceLivq0IkSLng7B9M7KwmQMC8moUBzdP6HbGZINUqQ3YAWgkNJhpEGNRjhnUUYzGA9pfUKQcPBkTZ7m6DRlYATWO3yIVKFBZj20Jh8mZIMp8/maVEZ2dwcczktc1eJbS1u2NEYzzRVllIS2IZOCfFSwdIHd6QCZa7rGkhjFqNCM0oASEYQnWIlKU0xUBK/BRTCSoHs1poGKtE1Lva5Z5ZrRICPUDUkwKB9RCIaDMT3aKeBdZFU3CBUROrI8PGF3NELIguWqwRgg0+ggSLVhNEpIlCRNDSbRROdZL9bkRYrzII0CYdHCkyUCORzStZpEp6RZ2re9reuLOauGMHc9eVyDtBJlNW7tkRm0jaBpLCauCc2a6nTNYG+EPOiD6241p4sl4aEg290iHh0xujzExBLl2577ctLRrh6CfR8ndtCTMYP9jOGNbbaTl4CMGDwuHLCet8xXC1bdghdefp2jxPPl9D7/0z97i6/9yX2ao17K9n/9L/86g73X8MmE+fqItl2idUITA+HBB9iwjUp2CPIxVXVMeXqIcy15BnkquXEpYe/6AHl5yOPQst067LFjfrIgEY7RWLLaMtxdCobR8U+/2tKWUKcaU2iCSdj5xIR2OGWx+hGrpsZKic41lgTaJbhACGAKQ777AoPi34Hld+geNoixhCb2msHFBMaG4WCNW99BiIZXP3WFVz99g4++c0Q2lbTdmJAmVCEQoiEr9sii5+YVz+2POq6+5lmdVsRlwq1fusmH/iFfeGmFyqdcH11iJXZ47AyH7ZqX0wmNmDLOBySxpapOWJeC7WKM0pJlNWNWKYrMMBQGaz3OlcQQqZsj1tUJRIkYjKlKxzjPwBmWJytCCOSDHJ1qIhJjCmbLBUJ0PQcmgbTIyQYZvm0QncfEiIuOpmlIUw1Vi4vQBoc0hnw0oPaBDz+4x/WXdtjZnWC0JjQN81n1fCvGc41+9VEy4dUb/zFx/DsMxZtoeYISHUnqkVGg/AzhOmZlx0cPPW/9yLBodrk9qpHTDnHZUz12dPcc+1uX+R/+zn//M/ccQyS4QBARHHgr6CrH+7/3oBdEED1MMLjQwySf+cTP/vRxUu3TNv+mAigvJBY8DeEutvyfbuusnd9/OXcGlgoByCieBr8/p0OoZ7tP5wCiC+QCKdU5ORIuxNibmPppQCPOYRfwbHXfu40EpAjPPBdCQOlelvRZinG/X7FRiQqEcw6DiD9+rp57fPxt/9JPXyD6U4I/JIZTYhTE4Pkv/vP/hr3dKT/4wXvcvvuEre0pNsD+JOXTf+M17r7/mNODBZenI37r17/I/r/9C/xH/+l/zenpnKbpi6xKKbLUUFVt30ETfTAbgsf5AG3/xzproYroRJOZhOWTBf/df/KPufzCgMnY8InPXmLv6ojTw4pXb434h3/4gMnukFSArTRBppQnS9JPX2H24B1OXUSkKXmW0ZKi7QJpI14IhtMpw61fJDe/RLf6iMWdEn21QJzUYDLIhqjtAaNigauekGeCL332ZUaTbZ7MGgYTQ20vEbSkDh6hhiTJHoUK7I88T45qrt6A09kJl4ttBuNdZjzh1Z0G1IBhdoU2FsyRrINjW6fPnA1rHU3dIeUG7r3xOjkL9p+R8I1POUdnpH21KSaEM5UinhYOoE884GKn4OyaObsmzjpom1/42DUFF5L1Dc/nLNV4jrn6XMmBEIosHUIGHeDqjk55EttRLhZkIjAdpcgIXdsRJSiRkGiDEIEQLVKl3NzZ4calbQ79jMf2lN+bO17JYDtG7rY13/go8N6bnkd3IydRMr+R070YEU3H4EWwdWD59YA/DIgISSZZlIFsAImD5rSjjrrX+R9kNK0jIBCJRLSB0eWEDkM7txgtUEmf/UUfsLVAGknoIDQCUSi2r6fMH5bUStLOHdGB0AqhJVorlgtPFC2JFHgXAUW+n1E+XOFLeHJnRTaQpAoSDwNd0IhIWUeMFOi0T+OEAkvK/NST7kyYdwFFYKsQJJ2mdIq6DXTrkroDZIESEpMZBvsJKsvoYh+Ed+UKHQXVOuHy5V3W61NMmjMcZxitaSrHaDhEigKvElrvCZ0joPHSUgwMrq6wXaSxARM8SaYYCEFSKMZmhKo01llEJhGuAZVTHa1Ydx0mTykGA3KhWddzwrLnKjhf4yjY2RpvSNQDVFoQkNjOEiSMdrYZFhmL5RwbG1ITGZiMJAisrYhWM5yM2M1zjFS9u7EKrOYlUWi6tkFKSaICmo6t8RQfPRJPMSo22th951t4jWsrateSyAJEwIaIDRJhfV/dVz2PgiSgkKQmIckk7WnZQw6iRNiIkAlhGai/X2EykFt9EKLmntRL7JMluCUq71CjFDJPKA9ZVY7BTiDMZvhyRWgrgvZwq0GGBn/aIWtJOG4RqUVu55hLgrgsSXauIMcJpIASoPdYn77J8t4hs1nDolbUMSUmY9pGUAvP1957j3f+7B6rg5JrNw2/9ZUJRuSsfUriPYnwVM2Ch8eHrOYl+0pzb/aIjz68w/2DGYfzNXW5ZGcEo/2MnVHKlSsF+XZOnSV0csj9R8eM9mBva4skBS0D1BUfPmyQlaNroHQGX2imNzUvbmf89m99mScHlvtHDd1J7wuhU41OEtxpTbplyI1B6SHD4jqvfulVfvfv/LfEbYEIkF8tGGxvod2U9NoQkRnU4gHFMKC2t4jjAdN4jz9984Rf+e3XEOmQVXfE5UHk85/4Fb59WHLn7tf45S/c4q3DA8JOQj6YUiY526tjimyPvd1f4V17CSl3+KVRxkvZkJGwvJgr4rrBdititAyLCYvqMV29pulKimyITjJKF5Ei4OqS9emCeRVYli3BOuqo2bu82xP4nCHEBB8tVWPp2pJLuyNcu8DWDU4K0ixgCHhfcTyP7EwH0LYEbwm2/97OZ1QRRmmClIooJY2ImEwyGg9ZHi4ZGkUxyuhSw6PlyfMsBT9rpdh8j5sAGQSKF4b/LnfL/4Wj9uts6UiKZ+1qfnRYc+9uR93t0Oo9Tq4IZmGNbyouXR/z+KDh6J0V3QO4dSPfrEU/e1ULARB9pT+4zYIZIt4+G+x/DOPTP3RRUejCay6IF52boyEESnEOkwnh6SIvxbNQoWcLdk8rgYK+0/DznhhAj3sOMZ47GZ8RJs+hEVLCM4nTWSDUd1XODuu5x8E5T4Hz7/GCmtH5fjfBVY/SOuOJxGcCrb7TAELIc8hSX9H9F1AqihvYWmVxBw32UYNKQV/Ne9VK70BF0qvbnKeSZx/spx80npJdNviU4Al2AdEhjMEd/y5699/C228BaxADpLqO0C9DhG99802qqqJuLCEKOgcmS6lsyY++8RZWQGwbHr13yu+8eYAPv898vsJ7v0nU6IuoXcD5gNYbLozcJHPEC0o44hw3723k8YM55kjx8KMZl69POX7UcvPVMS+n7BuXAAAgAElEQVR+dso//N/e5vvfn/HGb36OdekoguD1G9v84he+iA2Rb92e0y0d+VZBMRhgkhF2WaGvjJkaiVBX2BrfZLST8Aff+ybJlRRCybXXbjKZXMZZw/jGNsIYZPmQ3f0RcriNSUE2x9x56wm/8Tc/jxcJTThhe7jPQI14WK45Xb7HZ176JO+c3iXZ2UMkY7yAoS9J1BbjwWe5Z4cUKuVFLRkqg5HhmakXI+ddAR88zrqnc04I4qYLc2H6bObx09d4H/DO9RAxIXrepHzquyHOdiSe+hucbeNs7j/l+ogfa1xd3P+Zclf8saz2J4/nSg7mVcfKBkaDFC/g3r2HfPrTL1GMErztqFpLnmmGw22ausbhaLuW0FTE0CKlJ8s9SSJonMU5Se41SRQcNoLf/1bHfReZR1h4QZlEYhvRriXUgVu34OB2ZPZOxH4YetOxRBCzvv3lK0cXW1zlMYVG+kAjO4SIJIUBo9B0DLc1TedZuh4fKk1/MSoBMlfUR46gQKcakxmihMQIgpU4JCKT5KliOErIpjknj1qmA83po5qmsehCM8wTxCAlnUrataU7aRlmkmSYIIWlCxq3rBHWk2lBkvSfpRaOIpEcr9fQdWTCkUTH4qSirAVmOKZF4qVCGYcEqtOOdlXhas9gCEILhNE4B+O9Id52SGnousCqKelcZCQie1d3CDGndZEuWlQiMRqasiMh0ApFwNNUNbZtUdEQs4RF01K6wLpuCXgmE0GxvcVs1WCJJNMClKS0LW3XUNYtg9yQ5ylpYUgzTcBSmIyV69ttJk1Rw4KYK0ZFxjBP8TYlNRkER9O1NF1HDIG2BSNLrNEE2TsJpkKR5gV1s2Y0SvuFFjBaYnSCkgl1ECTaQOx9C6rGcmlnROg6AlDVNW3rkEKRDg1FltBVFdYGotIoNEgIEqQPpMMM0TqEBDPKEMJw+tGC0Ci6NkHbQPSOsFborQnrd/+MMgRc4VGzDnyDCpJib4BzFd3ScXjQ0DWWUSa5otbo3JMIh3KSGFqi6RBpQKf7xNEUOR5AvtNj1MsjgpuzenCIC4LGgdCScZGTjrdQuWLLK96aV9TWko0E126mvPH6Duta44/uAYEQKo6PT7hz5wBFgK0pB8cH1F3dV4xcz+vQmSAfG3Z3C9IiJSJwVcdqvSZPEoxKKStL01gSGdFBYk4jTRnZmaTsFhmj6Zj9nS2ub2/z6pVbfOt3/2faxQKZAplCJorRTsJ6tkbbiG/gxS98ltf/8q9z+84PCWZNbFrEVkJqcnTncOER43HDdA8WzSGxjgzzTzHd/gLt7Ls4G7nzgxlv/Kah1De516Vccqd86caA/WzEh+sVl7cMQWmsjGidkIjr7Gz9EjPnedFE9pLI1Hi2ZST4lkkSaYveyImuBWpmyxWJDqTDKba1xHKFM56A7jkdSuEIODQ+RNZtQ/noCCX3MdRELRgkKYnRrLMBNs0py5ZFEylXp7R1jbOOICKeBt+VdKsFqYJhpimSnlS4e6VgujtlWbWs1g3OBZQybO0m+KbChYh1Ap0mjEfD51ownm+cBXV9+Juqba4Xf5N5u83h+h/x4HDBI++oRGQuHZYTXLem9QITFJ+65HjznRmP3qlZ3e14YXyL/+Df+9vPv/ePr+DQQ3suVtwuVK8vsPTO/vUPn5mWwfliTuzNhuImAer5CPKZct0Z7EjQm6AF37fzz4LmpyU/8S8WnP4FHxeDceA8+1FS9knDT3g9xHOX11626WK1tU8EpFLn2OkefvGTgu3+XHw8r4sxIjbBldpwH86gSPBs8PSzhmu6XoykDtgjRwwSt5LEhxuluRzUrsHXLTJLN8XcnwARihFvLat3fkg4PSDNBIIGs71NqO5CsKAtYpSgtrb7nMF+GxBED0JPkfolEBkIsNazXNX4CFppvHOkMuPJ4zkvXUqYPVxSnzQIC21bUtUe2Hj4eP8MaMk5RwhPOSJPeTL9V+8Dwrr+uDrfFwGEIDjPwzsnzA6W3H3/kO9/s18fVJCs7y74xCdv8dLNq1zfv8Kl8R5vfvv3EWGNmaSIwpDmKbujActFSWKhXlu+8KtfZOfaDY6Wj4h6jqsX6P1tRmKCaEqUaNkfLRlPA/P2CVmTMcpeoUi2kf4BTRP58N0jPvMFw0pcIYSHjJTl1rTgJM25Xy+4NhrhNtAeJQaoMGGSv8bcN1zWkUIFUhXJpCSRGVyYfYKz7srT+XR+XzkjwceI836TtMbzOd8XEiR+0768yCnw4em1cpboXuwanLl//1hnYhP8/8RbysWug7iww3/OeL7OgYx0tmG1aimKEaNRStNWoCUEjwuR01XDblJgfUcrNK3rHTmj7/HUTbQkMqGKLdYFvFd03tBpwaPa8oPvePRLssfNG4FdBEQeGeWwPoL1g4h9FIiL2JOQLxuyKwnpYNMu9J7QRqzv2eJ26UgyRaITjJLkkwytAlEExuME20acDQTAbBl0qqhlRMpNq9FD0AKV6k2puQ+4hJH9SXeB/NKI6qikKS1dbYn08KHtS0P0IGfxeE63rOi6wHrVIYPDpuP+JIUASiOMwgdQbYXxJUGlNI2lqhuUbeg6hwiapm6IJoOuw1Y1jQ3gQcRAwNNWHcL01fTMpFzen/Lk3gFla/EC2i5Q1xaVQbF3jepoBcs1KgQiHhHBW0tbB/I0p4uRGARSarrKIrtI5x11EFRlSSQyHg9I05wQIqt6zSDNkUrSug5tQI9G5JnEJIo0MySJQiiB1IYYJUWR01mHFlAUGYNU0tkW6ztSnSJjQHmPdJa6qlF5AtGyLpcYnaB1smnNGWzbIAEferdTbTTS9Io1REHretJv9I40TchygyPibIdzHpMkZFmB0QrrOzrbbVr+Eqn0phIAWitMopBZ0t9QkgRsPy+01uj9AaIJ+FqjpwazPWD48i2q27dZHB2AW/fqV0mOSSq6ek09azk5bnBtg8kUTjnCIMJIQiKQgwDDiFAet1wSRYHsJL6tqE/mlIdHEC1t5WFrjNIJRTIgGYzRRYHOoTg5plnWGBkZG0EaBbNlxL53RLF9hxg8OumdHIeFJkZYVyVN19BuSLOZEcgkQxUKIQJV56gXkXYBVYh4LWldQK4VUQQS1d/oynlHvRK00TAeZgy2h+xfmnDj0haX9y4x0JbtUYuWAUEkyQzT3W0CCTEcko8M03zI/rUbiK0rVPe/RzVvQHjMpT2itUi1ZLyvKJeOmLTkeUJ0GULsMhpnsPOE6DzHj0p2UGynOzyy8HY44JfdHV6/9Xn046/h8159SxNItaOZfoY8uw5+zjQZs2UKxloi6IhuyXL9iM51dL6kdWtO1yVVkKjOYQYF1jVYb7HNCmcdSM16UdG6M4dWR1V1CONIkjU+erSCzou+cIFiXXfMF0tkbEmVpwuWsmwQBJIsoatbbACTKnSeUGgIwkCiqBuLlpJBntJ0jtpDcC3jQdZzbXxLVkSC/XNCK55jSKEp9DUkX6GzgR/af8Cb75eMXtRELbChoW1rQiIZ65STU8vpgaN63BBXkeF+wSsvvfLc+3tm3TuruG0C+s2DP1Gc6ZmHnkYA5+FAj3HfVHnPCcni3MG3VzXbvEdsqMibjYYQkaKvqvc7u+CI/LEuw8/rEBeCb9gkUBeOndgkV2cJUh8niY005tPHz6BIZ5jqc7LmBYhRjOFCUrZJ0s55DE+r9WcyqucQjo9FTs/LN4gbKVpkL+AhjER6EOMESg9ZRA4kKteEskFmySYAFE/nYIwQA8Fajr/7ZzRv/wDdLhDbOcIEpL0LYgmmA2nAFoTKEuUQnENmnwAVQY4Roug7DUDnekM4KRXa9LCt9XJJ1zXcffeIct5ga08MAu+g7dwFnksf0Colz52qzzoKZ1yb8+bG5vg53+vvCyeQSqJin+DVZUdTdSznMJ8pmnVgvbTc/9EBqlHoRrGVThleUiSmQ4a+S7E9njKd7BG9pu2WTHYKhmbK1u51RDagmtXM56cI0TLcv4VdnpBmhySZw9sWtCBLblBXV/h/qXuzWNuy6zzvm91qd3e629YtVrGKRZXYihJFSRatxJalKIojwSEcILGTwI7SKHnxU5AYhoMY8XNeEiBAYASGkThInECILSNiIMECRYsmKZIiq8gqVXfr9qfd3Wpnl4e19z7nsi1bCmBOoOruc84+a68z11xz/f8Y//iHkDNGeWCcLrFNz5OTiolQjHTJYzGjiS13RMeN2fsR61dQaQ5RYKQfnNvkDbSeMQk1ucrIpMKIwfZcC71ZVlfWzA7V8zRo35KATR3Ozgp50+hPbNYUVzJhcpPZirDrx7GT5X3bBhG3a/dqYIPLLNpWkne1Xide/eX3sOG8J3LgXct6Ncf1jtEkUowL1tWaRmkSDXrDQoWRSGlxwtDaDaNykbZ3JKLHyEAjArWPrK2kjimpTklmluWxR+WRtATaSNdDzCEtBU9eD6wfbYqHPahCUtw2JFOFyTXBAl4gJbjWgVKENoCNCKEw2qBzhe889JAoBQS8HSrC0lTjo0InAWkGb2UtBFpJYpogRSRJBFENRbA+RPq1JTkoObno6JuhQHXbxXEyTkgmBbHtqAi4pqftPHbdM36fITOKbglRSawY2mSPdaA9PUdM94YC5tbhO0+UkiJLCECagrbQ4umspe2hTA0R6Kwj9A6JpJikqODobcu67YhysBKMrqfrJbOjQ+ZVQ7PssF1FDI4YBNoM/RQOp2OkEghhSFTGhZ0TBLhoh+NEh9QSk2mUEeQyZb5SpGmKFAKrWiSKYjQiUyB1QCfD8Y3WiCRFRSjHJf3p2aAVFQkqerq2RcqhiIw+EHuLsBbfW8q9oWNu21bExCOB1nlcELiuB6F29+rA1v1G+6dwzhOiJUkke9OCLEtoA/TOEYInAMoYUjRd3+NCQDqHURop9VBsLAeLTJPogXwoBUhCE9BlgpwpsucL/Elk+ciwiCm3DgLjg0/x+PXXuPv4McLWHGQl02nJxf0FsV3hFmtC3SG9xUiLSTPENYWYeORMI/dTGBvQBa5O6f2I6BXV2RNWTy5olhU6dSSpRmURGSTBS7yLSNvh4pyLt99mfdKSRoEWkrCO3HvQkV8c86woMSYnjRIlAuNcsmg9TVVRtS112xJlICs1FknbR3yhOV11dC7QBHBasXdQsl539L5HpYqQCqL1nD6xBK+IiaHMc0Zpxkhq8ihIJdSrB0ymEqMHW9hinHDt2Qn3XqlJE8HksODw8IjpzUNkoqgWj6gXPWIqkJOczFly02BmEl1FklQRyiN8qDERRllPN2mJPtIsLeen9/jIix+kHN/gbPYyr6/XfCRX/Oi1CW8TcTJlLHNmZsYqf4FEwZGekpl9EjVBC4kPNW0/Z7F6iIsQvKO2DeumwSQJ1B3RBZRK8N7Ttmu69QpPxsX5GpVOiL6n61q6zlJMJEotkQhckFRdoAkeHQJVOuLsYk6R9GgVyApN7g2uaUgkdF2P1qCUGIq2S4VFsuw6XGMpyxytFSIoQt/Tdx3JXkndWkJwODfsD3/y46qQRpHp5zgqc25M32J+8Tu4WSABbB/pnR8KyxPHW29b5scWt/Lc3LvNx1/++KV7zQ/6xKfA2JXTuJol2Hw5RPLkZXZgiAVenvUGeEYRNz/bRqKvHHOr5d0c/uliwO1RL6PYV6VHbAHu1YLDH9axKYwcgpLfBri3BOvKRIkNmN+CHAU7ec12HraFxrvGTcRdRHtbSHzJDcSOQEgxNH7aWslKKVFK7cDvdo1IId5z5iCGONRUCBAmoieaiEdfM/hHkjgSMNKgIdQ99ZvvcrFecfDCc2Tj0QD4+p7mjbeJ6wXzL3wBcXIfPQYxnSImGTFcIEYFosgRSQlqRHAJgRJR3gb1DEJm35E38W6jdRfD/hm8Z7lYIXXk4ZsXu6UawpYkDxdlt+6j3K3Nq/aY2xdPWWZu3sdmbq/+zhbrblw5eXh/RfRQry3L44bFkxq3cmR+sMaXCBKluHYwYzKb8fj+gjSB/WtHHE5uU06mVKFjtT7hYlmh9wXJaEYRHpFOLEZH7NqjjCFm1+m6M3SEJHEIY+m6nvm8Z16d8IHRlDrd4yJYToLnhoE7owlPUGiZkIsUo6Y4dYQScKBHRJGihEIJjRTqexLJAdD7HTkN2w1gU9dy2fRseDYPW5kg8nQ9ALu1DX5TPLw95tXAxs7la1tdLLamB+zW/NVsw+bXdtfyvRLi90QOzuYXPDkZWOdZZ8jHCVPjBlDmAzJ6CIE6rDg4OCAR7SZVqLAoVl5iGo0LLSQprZdUXtHrHE1Cue8xNyzVu46WiCqAQhAraDQ0J9AfR8IyIgWYsSQtFbGJuGSzuSiJSiUhOEwiEElGc9qDdRjpB2IgBCJqXG2HVK+WSCVIhGbRCPLSkBbZsPH4gBYQuzB0Kh1LeuRgSyog1J763TmhDYNTTqrIxilpmUHnSGzHpEzRMtB2mnbtaOuW6bWUVObMHbSdRfSBsjAcXRvx6pcfkF2HvVyTp5Je5dQ20qUZo0lGmWl8Cf1IU9aW4+MeJYcOwghwjYXO0iJ5e72kZ7g+PgwRWaU9wWpGsSZnzbldUHVrsI7Caw6fuc6TkwuE0Rgz1IwUKiHYkjZI2nWLa1qMluSTnKKUCFVDp5nM9kjLyRAlbSqqzjKZgFGDL7uRllQL8iJFpgVpcJhEI7XEtT1NFxFBIqLl2sEMLSTrrsf2Q8Tf6IQiEdRNC1IRg8f2LX1jaayjHI/QiSbRCmIcfOPrNVLnxOgojcJkBUWRMR6NkTLFu0gXI0RBsA7RVExHCVZKTJYjfBgiBkpsznXoX6BSg0r0sClYwAdoJdlzGcm1FBsi53cjr74V2P/4HpOb15g/XPC1+8eMRGR0MCKfTnn7yZy8XVE2C/ZEwJSKw5uC/Z9IMJ+cEOuAnM0gK0CNQB7Q9iOqew31o5Yn3zyj75cU1zJkoQbJynwgosvQIIoFe/slzcryld97i8f3W+gFMij6DuzaYxJHKmA8nqGVo13PmT85596iIks1T07n1HWDThUi1dRLz+p0xXT/On3d0nQ9btPor6k9tvJ06x5ZKLpMQQh0nUAlGh0NidYIG2iXHedyTUDR+BWP7i3xIWBKzfhQcXjT8fbnHnFtL2c0GeMOrzF99oiDPc9nv/i7g/zvmoaw4Oiop8glxy0UdeDa/h6v+uugvsGhOmccLF9YlwQjEF3kNz//j/jY8x/gpz/0aW6UY/7ne/v0F3+XP3N0g9w29PoGOnkfSh1wRx5iwmNu6j1SNQFyvO/wbsWqXRKsJ0RJax1tb4HALJV0jaCp1xid462nrVtWy47OR9p1S5EU1J1lXQ89PoS1eCrGKsFvCWvf41YVdjpltVhz2rVko4RylDHZK3C5QFrLar6iyCV5YshcRMicddXTdC15IhEY+gC9D+Rq6N4tlOFgmoAURK1p2/9f2MFubGFfpvf5yWf+c37j2iuc3ztBaY9MJdEIaCNrGTg76Vje64hL+PGf+BR/5S/+p3wHIvoeQ8hNJP9KBM37DeDfRu22UbQ4BF+vOt3AJe7fecpvHshxWwgbNg22toWCGxmAkmKwMbyCrKQUIOVgbbgDuBvJ0eZ3t1r7H+5xmU25zJ487RL0vYZgyDqEjQPL8D2xURl9dxcnrTQICPGyuBi24DVs6svklXO4cqabaPn3+vnT771CKsUAxBACkWrkRCBTSSjAakHshxpGqTOe/MN/zB+89jV+5tf+HW586EeIEZr7T3j89/53zMUDVGZIR558T5PesahbI6IdI4t9MDOQEyIFwWvcqkUfPEcMQ8Z2QJeX53zZ/dbR94Gu7XDWoYQkbCx6N0mL4f1CboBl3GUK/CY6sG0eJ4XcybS2jjjeh02Wa3hmblDrUOB/JasTIoQ20ncerRXeBVwfeOP1+5weX/CVf/Y1PvNvvoA0kE9z9g8SyrTntJvzws075NN9+vERewcj6oev8/DuV7EGiqMRwZ3w/pvQSMl67Rj3gv3RTV73h5TqFfblGu9HHLsEpxWrRcdvf/P3eGnvNh8b7/FOkvGtqsR1X+GDxT7G9UhzGyn3SUTJSGQYLJkICJEgUCiRkqjiO9ZxiPHyvt4A/Mv6o63USDx1X0TiriZqO19X11oMA0713g/9o9SVAMuVOgNgk42Iu2TZNijy1Lpl27k87oIZ73W8J3KQlUdMDq8hRI+alORac/F4SfBrggGhwBDZF5rQLRGppK1rQuxBBpxXdAkYqYnekWVj0kTTykDva2LM2b+T0b1b4zuPyEDNJHIROX810L4ZCGsAgcoE6XXD+r4l39OoZrD2CzKiDBihkDZirSdT4NaWs7kjmyVM7owojwoevbagr3uECEgpOPYelGB2mKOzjfWoA6EGSdGyNeQpEAIyAgGaTiJ6OHxmRvA9rrFEDHiDPkg4OMpQjedsCaeVwuLIb0vOziuqeY1dDcx3NkuYTQq8HiMSg6sbrEpJyoI8MdiLmn5Vkx2MsV1H0BnptRn7ScLR+wT96SknJ2dYlSPFoGG+mFc01jK6NiZNhxvbeY8PgVEm+Z3/85/y8OKCUSmYTBOyvZKgJIvVkpvPXKefL8mKkul0j8neHoe3Djk7a6m+/gTRt8QY6ectC7fi4Mc/xnyx5Jnnb7MMnrpq8XS4Zk7sJMm1FPqIj+AQoBWJVjjRsmzWZIkieIkMPVoZGhtI04RmOafrVsToSJOEVCf0ocf3FV5mdF0g+KHp2cHREcIo8kINTUcCyKBYVg06lyihScYFSitiYLi+cU1jAypNqPuO2PWoYJBakucTcIFYt0NRcmJQRUpbe3IlUNog5KCDjcFj55bFawsmn7yDIEDlGfWRw6D4+lcNf/YTKf3er5HKE57x7/IcI2R4gfb4HiqckcuOo6ni6CdHHP3KDPVSQmj24fb7YPJRYnJIjCX9Ouf4G49oFytWj79C3RjMZER2NGH/QBF9w/K84+xhxXkTIZfU64pOKOo+kETJso6gJCbNyPOM6wcjsC1heR9HoF43nJ3OeeeNR7ROYI3CGEFTd7RNhdaaw5sTXNWQGDkUt6cZTias255pmRN0ziiNOO+o+g4dIyOZMM4EBocKAiUzQHP/8ZqvPznl+MKjY2SaBEy9ZP2mZe+5jKWTXNyd8yt/4ad58aMf4+433uH0jRPMDU16s2S876kaR+wlz94yvBAVZryHPu25c2vGc5NA+vg1vvnl3yN9KcOvNK/9L1/h3sfv8dM/2vPRvOC/fvF5fqv6j3nc/BMe9w95xtxhIie8Vr/Jz0+e4dn80ygcfZCs+4q6nSO8o+tbvFdUdUPdNKyqNavVGjcK0HiUDzy6eIj1HmE0Nh0RWsHt981ohaYxE8p9SZl6Tu4+Zi+JGNexDgGpJGaU0SvJq3/4FkJLpIJ6FWnTlP3pmHJSoscJuYso24EPBNvTrgfpQp6D8kNRszeGosi5uX8LJTUP53NcTIi2IrYr/Lp5zw+Nf/4xgI0YYaDbkZduv8QrDwIi7YijjlD0iNpx/62ai1ca/EpQpCXT2R7TyfRf6DO3wWo2Rapi96we9oirwPCqe85VKHpJEi6j4kJdfm/78N9Gwtl9+0rGgMuvr6gQLtP+/xwR7H9px5V5uuxwvJU9XAIYIcVQiMEW7GwAZvCErX3Ut5O1TaQ/biRBWg1NO+OmyHiH36VAxK2cYwBpl5mDy94UUgq01psmlz84khr9FflXiPiVo7tbU748Gv6WLmLPApULhEJz+0MJnfgZzPprrH/zd6lqRyj2ePd/+keY6j5arpnsjyh/ep/kR0aISQZuQpx+CFH86GYODb6DtqpRRcrpH36Jw4/9FFKVVyacXaRZxEjwg31rCEOjTuc8MQ5yt61E67Kb94B9tvPiQxgseGGzpLcSOTHYhsNGZiw257c5h2Fi0FIMYJkIQexkdNaHwZ87QrVqqKuO4+M5Dx4c85M/9Rw3JzmqPqOzc6Y3S3pVcu+tB/zb/96vYPIDvnZ8xvHjB0xu5YyPbnA0bjlbOybTlBcPC64XINMD1Krj5Q/c4XrqeefkLR6u3mT2iRlunfA7f+d3+MyP/CL75R4fTFOeSa7xjv1Zlu4tVmHBHfkMTexYhDXPmiml3AM8HkEiS7QwCL7z/gxhaOx6tcHf1mL3226NLSPdEa5hbbIhFJcN0bZSr+EtcXPtLnckscmKEcNT1yDG7Q7F5YGvrO24eY8U28/4wbVO74kcRN8h05S6F3z1//kSt1444qc+9WP083ssq5raDh0mg+uwveD4ZI1INBhFVIosS2lTz7JZUpQZF5UltB6Vpyx7x/rYMRklrJ9zLO92NPcD4SyS7EP3COLgXIpMBKpU4ASqkKhSk40TomNwGaoFzbkllYLJDUPbBLyNRCGJaGI/NDabHKXYStBXbrATbYG6wadyeK0FKElHpGpg9bjGloa47pExko6HjrR7e5pyouiX4KJB5gXFQUHXR07vNxwdjRkXkqaVLFyNUkMK29oOmUqyVJNlCQ7F8XlHeeOQhMjNa3uEPnL6aHD7GU1LVk8eMcpLypHBaIXSKWnbsOx7PJKAp9wfYWYlZ2/fp8wEuq2Ghk5R4jqHCpL3vXCHi4ua3vb0a0mnNZhB99muG955/DrXrx3wwZspmfGcHJ9gveDi8T3avhuKe/OccmTIssCDu48wmebk0TEXiyU600wmJT6vme4V9CJFp9A7ixMCjabrOs5PL/BtYH82IhmNwPW00VItV5x5S7NcAxJMig9AFFwrc2KicGiaPtB2Q2MnnQ2ZhJNHx2iTbLSvmsn+EfePLxhnI1zdkpcpBugWa7I8Z/9wTPSQSUGmCkxi+NbjC569VbKcN4z0kCr1baANjjxLMOWQNQAIHtoTy8lvn3Hz37qGOiqQAeyXF6xfX2HPA5/61w6RCJZHH+Z2csQz1TnZvGE5/11uhgc4NWF0W/PMr7/M/s/dQuZjUC8j9IdpL85Yv3KXV+6d8szjzA0AACAASURBVNqjR6wfnaLnd6nqE946e4sX9zwffP+E8iiwSALRB9brwOK0ZmkhUSmjYLioew6nCTMtqG8KOhfRWpPqMevTnlHu8Q7aasWyqamiZX8/52JV4b0kuIFop6Uk+oDoKpIk5WCkiVKybnoa31NMMqI2OOtwjcU7j5GGwxv7lKVipBxu1eC947xZcO/eilUdkVVN3cK40OTCcyjgxbVlbyoxB1Oe/8gn+fjLn+DVZctn/+gPiR2ENRTPTTk86KieaFIPd8qU4/eN+eZvzfnYr/4X3L/3D2FiUd193vnf3mT8V3+O9nOvE5Ytf+u/+Ru8/car/O2/8beYEfnV8ha+/Ay5GFyFEIE/M/nTECogpffLISspFLmZ0oca1B59YnD9ioZIS09Uhm9+8x10jESjyfKMJC1IdME0F7x78YTWdeRJTgiaaFKCMexPUo6frJhNM04uGrQQZBoW8yVVY7mxV9I3a2Sa0DY97y6PuXZjjz4YFrXj2iRj3nUcr1Zo47j5wh6PzlasL1YU45T9wz1moxEra5nNCtI2xQWDzAR9J1i66r08Cv6YQyCRlHrKr33ir/M/LP4233zjayzudfgsoDPJ4lEk9EMG8K//+t/kFz/9y1fl/z94xG97vZWvbHXrgUsNrwAf/abweANAYyT6Tcr+KXB6eQJb/fD2YRziICkdMgXy8qM3D+nor54UG1kGl8Buxxh+iPMHYvifAMQGcF5KuOIOnHz3SP2WkW3plNhk+TeSro186NszPGyBUvDs6hs253F1LkMc5M3boaTE6GEPtxunmO//t22i7AH6U4s9teQv5ZApRBgspoOL5GNDORuyEf2161zvS4onnuYffIm+aiirR4Rkj/TlZ5h+5mX0Yb7JCF8DcUhoGtxF4O2HK9aLFh0DRRpZnT7m+Z/6JPNHd5lcu006ukKW4wD0E6Mw6VAb17bD3is3MqMoxKa53CCZvkqIQxiI1I4YcKWfxHb+rqzfoeB1R3l3x/Gb8xBCbBrhbQhEjPSdQ6rL42slaSr47d96jb946xleeO5FZuWMM7emFR0/8/Ff4np5yOcuTnljfkZowNea2fUjbpQrHoeU20nGtCh4LAxvf23Bx//UX+KNt/9vRNHx4Iuv8a0vvcuzv/yvYt58wltP/oD/8r/7r/hrf+nX+Vd+/GcZI/mQmRCSj/IS8TKKT4ToiIM/E5kcI78PRFab7JRzfsCnSm5IK7tgQdjsFQOOHwLZV6d3ZzF6RW7HFcnX5RxfWaZP3Stb0n1J8qQUw06rJNu6FLHpoHxVQvmDxnsiByePT3jzdYFKFO9//yFpJmibc8pJQdQg1zWuDTgpaR10JCRRIEPEB8eisiyPa0aFGeoCdIaLCt/CupNUa4X0hsm1dFhQJ5auizRvBWIFUg/RmnQsKa5pkpkhuqErbegh0RIMNGtH6DyxTGjrSDLJkLmg74ZF3S4dQbeICDIIMq3IZgaVJ2S3C+h7XOtwAZwXdF1HO3e4ZU8fAsIGjNFIpTESnJVoqclzQ0jikEXxFpzAOs9yacEITG7YnyTMl9B2gdF+Rlx0aBEJQtD7SDdfko9Tjq7voZXAhcjsaJ/0xnWkCFjfIdISnZQYmSO8wfuKIs1xY8HFvKbplkQNo1nK+eMV0Ql664ambUhMXpLvDfKRdZwNAGSckE1TZCIQSnF6fEFiNK0Tg2563bCuLas2MNofodCk+SBxUnKoK/EhMK8XRCVACbwIjK/NyNJIqy111WJbi5Zq6NKKQPlAu65oFcgiB5VgO4gkrBo/6Bbj8LAdpSn4OPgfo0jSnDQfCqhsY0lEJClHNJUnOodQkmA0T5YVXktq1xC6QC8CZZJSZIZ1sGRCkuU5iU6JfU/b9gjreOPeu9ze30cIiReCfnN3ZlKgjd7dl75x+NaS34i4RJFKQewjFsfKnXJRnzF+6XkC8NbrNZMViGiwrsPbd3kdz7/+l/8zZr+cop+5js0OiH3BxR8Jzn//Cxw3jrZ9zMXyPqY/59bIc/R+TawdP5IGettRCE+ZJigVWNw/ZXnhhrWtoK8tD9/t6LxifdpjkcymKYeZQhmDMoqqddhmcJbqmopV1bGoHR7IUkNbB7QeCvqCVwOptAHfOI7XPShJ1II0V8ySEXo65vjBY4IQhDho2X3dI60hmQwN6vrGUdWWzgYmeYaQGbF3tBND0QuuJYr9Gzk/+8lnUO/7NH7vg7ylNN965Z/S/rPfggKSD6Q885Ml559fc20meOH6lIOwx4NXV8g7N3jOnPALP9awUMd89q2I+cDz+N+9i56fIF6UuPuW/+Pv/wO+9eZb/LX/9m/ykcPnOe4bZsqhaRDCkmhJSjMA8K6japd43yK8o29aWu9wXYcKLbnRhLwg2pbpfs5yKRGFYTzNSYC2XnB8XiERxCB5ND+ltSCEojCaaTrslW/ePR0kJy5SN5ZV07A3SSlygw85UYBSEm1ShE6oOsu6rejrBXmmSRPofc/x43NsbojTlFbB0rbE9RLqhnVVE4LECRAEJIbiT9St6HsNgRAKLQUCxY899ynO68f0c0vVWJb3O3wlyEcZpcwYj4dmbttg/Pbf7ze2kbdtVG1X88slyP8OcLqN2u1A6vf5C8QAAnbgn0swtZWrbL/Y4mMhuLTY3Grlt/Kib/vvh3lsgc3l66ezI4O05ZJw7fC7kEMWH0GMW8nXJhuzYWVCAvHpZnHBD1FbKTdSlk0BsFIDgI1bQLRBRUqpnb1kCJdg9XvN+65GZHgXwXqEDKgi4hkcpPECLz2Ltxeo/YS9F68TAtz7Us/BqcfHFq/O6ew5F3nGB/7Cr5J9XCOm+wSV4TtNf+7pjp+wrns8Fd3ZPYzsyGcF0/KQvckh/dtfRpYz4v41gusJwSJVghCKm4cTnpw6rPdY5wneD825uASOu6zXMN14FxhkRVeAKdsO4JtI87a2QF7Oz9VI9nBcsbtndpx709xvy9GGa+Z3Uq4YI95FlquWX/zTf5VPfPzjg0yzukuFhfwm7zrHxZtfpD95HaaG6fNTnnvfhAdff8CLN0vu5DegyejbHn3tOjfEko98KHLWvM1inLL/7Evw6iPeP844+bGciz845+/8r3+Xt+7f45f/3L/BLC1ZW0upIsQeKYfrKXGEmJDrGQJ1uX6+y9jWW0gpNnamESUFiE39Roi7LNi2w/puX9jMjffbyH/cSbN2tQZc3ivbpOSl1HF3120CGmEwe/m2XiNxl0EbSPuOiLyHreY9kYPRKGFWDAU9wUZqBPPzBWovQytFked0UiNkYN31xODp+qE42AuPyTU0CevKg/JY5bFikB3M5zXtwiFjpNSKODLQC8Tc4SV4AiqTKCPQpUKmCp0pUi0QUhPcZSRGRdCpRCXQ1x5KiZASpQECRIGrOoQC6SNGS7LSIIykLDOcEqy7iK0tfRdxXqCkQLhBTqTKBJNrTJGQJprmosU3FukHW1RjJEIGylHO2cMWqVtINUrCNDN4GzDBorMEFyRCSIxSCOfQRtE3Fts0XLiIjIYiycm14mLeErUm0RHb9rheEYKnvlijvSUVEqM0BE+iBboYsVr1uKqm7ywuWKJOEBksqhNM25PkhmgMIU/wWmNUZDZOWE+mjEcpwghW647zkzmdjQQhmc5KhJckeUlW5Ggl8d0aZRzZqGC5rmlsy7rpKUpNZz0IMAS0iuAdtqrQSUKpPWmpMbkZHKGioO47fBw2+9QUpFlJDIK2rsmIzKsWYTS56FBaDcCqzCmMIUiJSQTODVGSiMOoQFLmVMsFSmdIDcIITJ4TlaJpa1xQ6M2DQ6aaQoKre6rVmmy2h8kG3WHTeiaF2O16266IUTnkrEONZ4MmuQerYZQ84QPyq6j481R/v+HOg6+y71bsi5rGBd5OE37iM/8u01/5WfrkIa4/ojkrePzqmrtfecCDk4aq/gajmWL/hX1uH+5Rto+4UVwMadoP3iaOM8w0w+SKdrXm0etrrFEsL3ouPFQKrI6kWUrXQ5ppbJAor0gSjTGK1nmWiwbrHcIFMiO4PtWQGs6qGhfA9oG+D1g/PBSFl1QLy2SWovJkaDhFxEhJU1uig6btCRFkIkm1H4rydUqSDk48totE6xHa410g2IBJFKOJZjQ1MMlY15bnb32Crz58lVNxzvLsTermAkrIjgScL4l7hpv7I26WY7pGoSLsT2/z7P4xqVLcvSd59a0WEw08fhc1jgO4SwX1RcUfvfkGv/G1z3P//YG+XXF7qpBujY4dd/YL9jLJ2iese4Ht1rhuSd/1BC+JUmIExGgRWCIerzS6mKB7R1poRrlBRwi9Zd17+tpSTqcE5xAIvPUsVytUruh6j/Me4aHvHZ21SK3J04y0SKmanhghSxOKLCXalvGoxPaBWHdoKTCJQKqUqDRprhCJxLYNtu9wSUuWSarFkiRN6H0gRkckUFXte3kU/DHG8NAcpD0DGPzwzZ/goLjOV+5+kT9468u8O7+HE4F8qvnLP/9XeOm5l99btuC7fZqAIYS5TZ9vi/7EU+/ZEYl4+ZDe/rsDjWLrrMPlQzVGNs/+3YN8V8tw5W3Eywf5JjmxC25vwdr2896r//i/jGNHgjavd8A/XoKbqxO4Lfzegv1dlmVzQaLYkIKrmR8ugXzcarrFZVGz2ETHYaPD3/Q0kJv+CmzWRIiRrd+jlPL7dtz+jj9SB0TmEUk6gL8AIRUU7jGmU9Ad4V61HLx5jwMfSJo5lepor+1z6+c/Tfqx92PlHOXGtOeS6qRjdbxmftHQVm+z98we+Z0bZFkgN5E8DxCOIc/Q0z2EPMdWT+hWC5b3zyhvvcif/tBtfutLFU8uqo2UaDhdKcRgtLGz5N1If3ZFyVfm7co1uypx2V3Dzfu3Zk/behv49vduinC3qbbd4t+8jHGQ/vqAkIIin1KUewRfDM5/fs2yrem7E6r6mF7UmIlkPBWI+hwxm3CrOGKkx6y7gEaxXxxxUMwxfsS7Zy3rJmWKgbMHfOSjv8Qr33yFemRYruecnp5wXlecd56XpvtoEYF0IEZCIAgM7VXVbs6+19g6EW3xwHbutlrC7SxIsektIJ6e2+1a3d4H333BXSGvO5K9kcdd2csubVIHQnBVand56Pid1/b7jPdEDoxSyDikXw5vHLKwgccPLzDJHpNxiU5TXOzpXEsqHGWe0PaWrg8Esak1CA4fYd14Oiw+Dgy3WfeEbrNgvUA6SSIUWSpxY4doQGmJ1gKdKXSmEUKhEoWMQ7GL94P0TypBng/qsL4PWOkRchM9ioJgA2pjR2WMGAqSY0AEiQyCJE3JRxofWrzrh0JeCSaTJLlB5QazKUaVSpMkGw27HNJ5WkmyRA7MMUJV9cTOk6aSMhFMcoNf9uh+YJUy0YOtphH03tKte5anIORABIxXdClUXUT4iNaDdETqTTRXQNe2GCVItUIKRWIgyoDKEnAWtWWc0iC0orMV0QuqykGWYZREaEGhJIkUHB1NmI0SINA6xzoKEIq2qSkaRVKOScuUfDxilGREV2DjApkYZNOgbEQIP/xOVOjeIUMYbPyURESBFpE0laSZQko/NP4QCmQcXJDShNQIkiTFu4DE09QrQmIoRzP64BEuMpgFCawHpQ1ppobMz+C1hgg9aZITCsV4mhOR9AQsA/cO3rKqB2/+VMmh8FhJ0mioqh5d97RWIINER03cL3cRL+8Ctrf40BFHAZ8IEAEfQLieiViTqnPia3Oq33yHG8vPUoQneO2w125w9LM/w7O/+Au4gyn93LJ8o6W5e5fu7Uf4sM+tjxwg0zuM90bsPTtlsicwy2uMw7vY+gE2KLLbd8BEFo8f8K2vn/KF19ZM9xLmy55GCFyqEPkgOVNCUiiJaz0uCnoR6PuKlfco71FaoaTCGElqBjJYRo1wgnPXYZ2j7YfNRQWJ6wOlUBst+Qb0KYXtPX3radcelWp0NmwxWTJksTyRdRPoukASAqlzVI1jvejRmcAUmphplh7ePalZPXqHu4v7HB/XXNy/i8UjC0VSKJo6kqQJeaLIlcSLgipMmSjD8/tj7sY97p4/5vjNM5QHoyyBiG2BIIkx4FtL163pcTxpKqajEhNAB+icoA+G1rUIF6gujlks57QuYkxOnuckWgwdV8WwB7V9oLeQZwnjzJBpjXCDS4XvPLZ3NHWD790Akp3Hdi0rK4lSDT7jfcRaBzFQmJQYwAlBlAIRI0ZDmgg6JxnnCWHk6LRC64BKI1IpTCppvd3IDoZMZi1aXFA4N9SR5JtIU5CCJlXfffP/ExyCQeIgYkQKyUF5g738kFSWTM0hDw8eDhbUScrPffLPcm3/+lNg/o/94bB5el+CJbFBRd/+qLwE/VtQs/31S0C6BbKDi43Y/fwKHtpYdF6C3EtCIL4zIhl/eDMHW0y0pUeXZOoyk3A12wKXkeYtaNlZPG6R6tX532Rbhq+H19uGTpfkQ1wyPjZE4Yok7Gp2KDJkgNRGCvLtI4SA90NUOALRhyFqLgMYiGoAZDGCcI48VphWEu/XuM9fsHfxRdK4wqIRz99h9ImXmXziw/giI9SO6kFNOD3B1x7khPHNnFHcY3r9kPwgHYJ80aLCElcfE5RAZuDtCdX5CWf3Tnn0zikfufECN2clR9OSVd0PBiRcMRe4nMZdJmTHiDfTdSnhejrzFrcX9inguZnbOFi6hnD5vUu2fTnflwXp8UrkfIiSy7i9ZBKpUqSeMK9OmPcXNPMVXVcRtSBTGXmSUPeRMhuRKU0iDJGUDs1Eag6LjAf9jMfHb9NcNJTSkWaSi+UTaCUmSXDrnmpd0dmGvXRCJvVT9/jl2nyv9+GA89j8nVLJHTm6usZ38roQd8B9MyNP7Rfbtf3UKVzJ7GyneMcyLpMLuwxOvDLPQzzmaaOFq5/0g8Z7Ige9s7jgSTPDwY0DxKrn9cdPmNVjstKgpKbzjs5LRnlBqsIA2KRH4IlO4DYNpeqmx+EQImzSWAqFJHaRrnH060hsBUYoTAJiNoBzLeXQxEQN3ah8VAgrwQ+FOANDlqQp+FYg4xCN9JsU1pBLiyRKIWXAJBqhhuJU6QNWBZI8IStTQA2FTVVH3wWyaUJSGFRi0Eoh/NAMJCsMKE1UirhZ6VoK1k2H1JK+s/jO46wklppJoohtwLY9wQbSrGA0LhllgsqdDwWhy44sA68EVRuxpQCT0NmOkTOoRGGMIc8TjMu4f3aGShRlmg4WijEwX65Aa0yREnJDmRqUSjA6J8sSumbN6fGcZDJiRCDXJSpNiNEynmSUqWJROVoHMS8QUdBcnLFaR/b2JuRlQjFKmWU5UqScrTvqrif4wds+MYogFD2S0FmUt2ilMdqQaIOWEiNBmQihJVoFWqGNQWZu06NAYH2PdxYhHFW7pszHjHLFvPE4IlFEXNfSucA4yTGpRtiWYB0xKILtSQSMJjlpaWg7T9dZVm1FMDmZkqz6Cis8JYYUSaoCOjNUbcf5uibYGuUlB2WBkAfAoGG1vaNrWzrXIssEJyFEh4sCZTuy4EidJHzuHt0rXyXpP4+loj+4RfnJT/Mj/8G/j54mLB7N8Y3n4R++jrv3R8zSnps/9jwf/anrlLc+gNA9oT3Ft0vs3k3cRYOzD2m9xHeK6smaN77ymP/3s/d55UHLjbWn954sV5Rakmw6SY8yzVhLun6oD3K9Z7GqWAGlyCjLfFMnJIjCUzcOXBwcu0Lc+FsHbBdJTIIxCicU0Q4bo0kTgkkJXU/wEJFDd005gPAsNyxbS9dH1rUn9AGjBpce21ia1nEwMSgt6b2gahxV6/jKl/8x+dGI4wcPWZyeEiSYA4MeJVSV5sAklAbSJKNtn+V8Efngi3vc2XuJ3z9+zP3jFd3jJySHBSYRdK2FZFNM7iKiC1zr4EePDlj7liIdk8sCFXo8iiZIgq9JY0e/WjA/X1AHzbgUaKlxQmHjoLkNPmJbR2wt49GUUkmCB9s4usrSt5YQYH6+BBV3GUwdoW48plD0vYcwABctFIlURKAPA3EOzuKDAxwiTYnBM0oFaIPQA2HWUpCmgrq1G/CU4INnte6JvSTLSzLnKQtNlmvQgq7u38uj4I85NrBOiMEacAOcnz/6ALdmz9J1HUoqkiQhMxlK6SuA+r0D513QehPm3D1Pdz/cgJbvEjx7ylaQK4AhXkawL2sY4kAKwwBUA1vnnK0Yhl3zox0I2rjEsAFpu6j31SjrD+kIW1kFl1FocUU+dQlUr0wql+/fyrJEHPbYnVxr8+6rAHVbaBxCuLR0ZEtSNlHZzbUOmyZrTwGvjV5cqUuLyqvrw4eIc54kGUiz9wHnLJEAm15HEIhRIK1DhohaOuI3L/CvPED3X8UbR7jxDOWf+hTjn/4wIhF0y47Ye+Zv3SNpHqMnYybPHHF4q0SPDkB4op0TgyB4QWg9QoINa+L6IdXZMY/eecy775xzsYL391C3njJLGBUprXVDEy0Rd8Byu163xcrbubyUUw1rb8izPU3ursDS4R4KV74jhkDoJUDdzP9VQBsurzRc2nryHaB8uIYXqzOO3SPsssH2LSo15OmIJC2p2oQbuiRVESNLnN9n3Ujef33ELL/OF44fcH58Smg6ylGOCRlf+vrnCRmIKOkay3K+pF4u+NiNF2mCJVdmqBf6Fw1CXCGiSkqcc1dI73DMsNE2Xma7YGjKOBCFuOWvGyJ7hU9sPuKyIH5nc7DdpMRwgB0BvJIVIl5ez+E4GxIjxHv6c98TOWhVx+Rmzt5ozGvf+iPKBA7v7ON6qCtHEI6L+YKDSUojCtaL+RDRj5IoBV3v8D4MXtZI8jwhyeVgo0dPlQRE1cFKEBYR14ShQdXcIxVoIYabtANfBcxUwUa2ZBs/tPbWAplJotEoA3SQpGYjiXCodNg0+pUlzwWhi3gzZATsyuHd0DsgxoiMniJR4A3SRkI2WFgaP3QFdNahsoxOKFSQmEKiJUQXWCxbOqfpvcAogQyCzgralUepnkQJmi5gsoSDvYL9owkiyZG24axLKJxH2EDftXRC41XK7GjKkycN0QaycYLJNL3r6IOgcZFimjPONaMyo/fw8PEKmee0TYvKUg6uT5jNZqTphGtZwiuP7nGxWrGXDV3/xmboAmg9tI2jtprTxjLvNsXcwiML0JOUbJSQFwmJBu+WaNchQ0RLQ5IInB10owXQND2hbQeSmA1zhIwUI4NwnqyI+M7juwrXOrRMSScFy9UC7yK+t3jXI4JndDjFBklTrVAodJYOm2bXUbcW1QdigEQrZOLoradBIcqCiOP47JjEJGidsWgXKClYe1Ayw+KHJlIoQgRLj8kE0TpEgOCg6yHLFRFPiGKIpMeWzniKfEqiJWFZEfsUJyK9iMh5S//7byDcMXORovNDbv3cn+fmZ34JfVAQlwvOXrng7I3fwNYPaK6/zPGP/gI373Rk+3uQ3gD7JcTJ7xIff4u2Lji59y3GL1wnu3mNJ9/4Gl/87D1+53PnvNFHbiaKdReRRpGmmnGmSBKFmRSMtSDVmj0psEDjI4IUv+7om54sNaTSIIWgayMX68Di8ZrGe+o+4KQgSlg3gcNSUaQJ40mB7z0kmvRwhtdj+jCnPBiRtT1da/FVR54r5muLiB2UKVpAUBIfAseLoWP19DDlaF+TKElQQ0+MxZOKs1ffRN1KSG4W6EbhV57kgyn6Vob7J2tu/rnbfPTGHrPsQ3yu+TD1N/57/vx/8j+SzSZ84w/+Hu+++RCdBLKs4eyNHpxj9FJKsAF3FmgvKl75v36f/+hX/kNO9hqC7XFRApKz9QVnvWAmIkJo9g5vEc2Exbon1RrrAss+0vYB17dE1zFKBUqlqCylalrataNZrGjPl9ig8M7RVI6yGNyiYoxUPfjQY3oBSlDORuSpAR9ZVw6TQ6o0SZ6wWDhcv7EgiJaHpw23JwmEgBIpeZ6SaYlMFHv6/+PuvWNty+77vs9qu5x6+2vzphfOcNhEDkddlESIcmwqVkBJBmLDTmIDhgDnjwBBEAT+LwUJgiCxnMSI7CCBoQQOLCZxYoiyJFJdLGLn9D6v33b6Lqvmj33OvXeoOJoEdkRyAe8B55y9z75n7bJ+5VsUjW1IWlDZhuViAb5hsdQkp7CNZVgktIrMT6qz5/1iMWc2m33bKpDO/j9f1v/5remzgO7sHfEnPj1rca+DaoVGJIFvAyu7YlNdf0cc/6d0w7U2jIajC9XS8/b7O7vzF0ygLsYGSXSBqVwHgBeqovJCxtAt2Btlkc2MdInBGahCiDXuGAQSrdVZ1NUZI3UL/yY5EEIwnU7fMV3iwp+weUNc3ODirF7cUGyqiecJyLdvs6nIn73/jsD9/12u0tQN49HovHp6IWDcYK435/JiQnA2FxfPQzqvuJ51DTaR+1mXR5wZdW2C2LT5HSmhtDoLjsMFEyqlNVqrM7iRUpLxeMxyuez2j2n93ZIsM2edhhgjLliQoFXWceJaTwqamAEhEu7UcPsU3IJK9cm3L7H9yY9TfvB6J3natNR3KlZ3/5jUnjC78iHUpauMxwlZ5CAHEN6A2VeI1uOsxDYT9KiHGoyZvf5lXvzD27z61ozTkLgy3uaLv/5POG2gcoKi6LGnC6rWU9fthTled0IueBIgBEqJs6QM0nkiuz5PGwlUJc87Y3Gt3CSVQml57nkgNufy/BibrsE7hbjOITVSQNM0zOZzIOF8yygNeO7ey+we3I+91RL7ieJyD90vSS+veOjZR3lwIJml97BqGuLd53nmY38VjOFLzz3P6WLK5a0xRa756rduEJolBz9xifkdS3CW6e1j3v7mq3zgkac5air2ydBCnt0rZ/fCuxhKKra3t86eIxvuwcVuQFrPvaB7rpw9F85Og/i2m3ydqF3QN34nTKhLejf8jYudiovPM87P5Dse1WqtILZa1VR/CpT0XSUHW2UPleD4dMJ0MmN8dYuetRzNlxwdrygHffrDnG+9dItRP2d3e4DydH1BhwAAIABJREFUDqlBG4OREekSHsHWoAQVEUlQCEnScCwahMlRpUA3AikCpq+g9GSlwVhPO/XYVURow2C7026f36vwdVhX9jUI1SnIzANqUKAHGtUGZOqCkeQFrvK0ToAT5NKg+pp53SJZIW1OUWQoo4lJ4lvJ6njJaM8QvGS5cAipKPt5l5mHRPKWosgpSoMwhsYL6qZlcTwn2cjl+7YY9zSLecVrtxt2SsPlB/bRZUHZNwgcqg5M2sjjD2xhG8X03oLl4YymrtkJmpVQhFXDZFXjmwUm07gAS2sRvuLk9oq6LHC7Y7b2tvnw9z9N02refPFbxF5OS0bNkK3eLvXbb3A46/P+77+CrRzJC44Ol5z6Yx7cge/72Cf4/WM4nr6G0JY8yzg9mZBCRMlIW61AZ0QpkH3NWy+/Qr5zheViQiBSjAYMdoYIZdleNFBkSKMxSmJUZ3oS2ppAoprOuTwekRc5jRXMsSxJCCNxzrKyDclZRplke3uHybTGKY0KltQ4vNB4YcjzRGMbPIF8MEKSiKua2DhsbUlFoJovWLQOpQ3loM9w9xJWGJL1GJUoskQuIk2deOP4tPOrWDre+voh1WnL4++5wg/88JO0zhI8LCuLjQKhDHbqKUYR0dNw1LJ67g2q1xZ4/Sjan/CF5o+ozZhn/u2/zs4PfAC2+9hF4Na35vze1/4b9pPm6b/wV9n68LMwLrneN7xw2NL+syX3j0tKJ4mnR6jpiksfuo+qaXj+f/89/vC357zylqfykkdKw/b2mF5vyO71IcZYbKxpVeDaOCMvDS6UqH6OqBqa0wUhwGJaY5yiLDLksMQnwdGq4e3XTxFasr3fozmxuNaTSPTKThovLxRGSPKtgmQkKXjcoiFMZ7RtRTWtKIxiMCgwwnSJe0o0jUeFQFt75gtLmSWsTez0Iv0CovPIfIC4epUXv/wF2kJCHug/uIs9EIg7C5pXWuJrlvHlkk89+RjvvfIRvvByyec+9woPXP0oz1yJnPjfYX77Tep7S/JkGSjDpA9hLhDeI4koBa5uee3FFxlIw31mi0U8IdGZME4XSw7GW9RYposFQ6PYHe/SLx2T40Nu375Lf1ASRIvRgiQU3vRYEYizQ7wVxLqBqkYG13VNk0JmBZPTGVXTkmUGESL9Qcb8aEq5s0UxGpDnHRRT0jJdWURpILVsb4+QIXA6WXE4qbl8dczARFSvJGYFQRmmLtAetSgZMIA3AesDIcruXtQJTM7St+i2pcgS9sIK/sM/8gNr7fTzNWCjcR5DFziLtbb6eQD5TujBRv1Ea8mZMdk6+IsXKmGkDjYqVOcRAEDsOlvruBqxPu7Z37FZVL9tpJT4R//z/8Kv/MNfeTfL2nfc+KVf+jtcu3YV4B3B9BkcRKwD4m6Lbs2/MA/hgpPdRsOfGNeQ2wsOwevIWwqQWhMB71xXVbxwHWyUbYRSZ8fdaNpvkprNeOYjz3DjrRv/0ubmX9ZIJFarFT/7l34BYmJ2vOTRxx7np//cJ/i5n/sZou/mvqpt58PgIz4ler0CoSFMWhZfukG4Kyhin7yd8PbJc/jhAff/B38RdXULjKStAvM7c15/9TfoJ8VDH/sZ5M42JtPkUnBcBcIbju2BRjQVLN/oIM17BzTtIXf+8Dd4/rNHHJ14gszYGwxRIWdx5xZ/+5f+p67rLhVi3QnZ4Nm/08cnPvExnn/pBbLCUA4kP/Sp98NewbZMnOYNVVOzfGPOSin2d7b4wGjMKH+Mz79S8/KthuuDBxmwZFHd5Mabb3L82tvU24n+jmIWKlzV0ptJQqhAOI6P7/LCc9/gZz75r9JMl/zCL/4is+mUtmlo6hrbtDhruwKwkutuyzkJewMFSjHyH/9H/wlvvvH2n/EM/n8bn/70p/nUpz71/7jNu0oO7t2YsrffY7DVoxj0mb9+yAPvf4g2eLyBvAdZprl8aYf6cIpnBXkkJkmSiViUqH7Ena64s7Bs7+aMRoYYY2eUtvL4hSMvJNmVHs0qMD+q8V5i5hEfOxiQySUhCeYnDb2RwfRyZLIQBVhJ3tM0s7ZjbfuI9oDRxFJQzxwiCspS4z3Y2jE76kiWelhCG5BFjijzTmmFgCxqskIhyxF+WaNFR6Rp5i1NEoz2cpoU6QvJyVGLbS27l0uu7/eYxMRqsmR5d4LoFexuDVhu52RDQ+/yHt5FGh9YTByr2uMnEXe8ZNDrE5qIkpo8UySpOD09RegSaAlSEo2hSYHGg5WGXpZBaFkdHeOrGnUlQ7QeozJ6xnSLyWzJ8cxyejxHD4Y89r73s7p5G12vMCKwag11PuQbN0/g3g0uIWhTYjGZooRklZfETJIVkl5PYzLBKjSE8Qhbn9IvC5be0tQ16hS2d7e57/I2JEskEYLH2+4BW2yNOJwc45JkWgdy2eJcYNZYqiAoe4YQQWUGISK1dyysJd/uE13d+RYoTYf8siQU+CXLpsXZhnK4RTbeZeJOie2KnXKP0bXHmJ0c01YL+plhoCU2RuaFoc1y5t4xW81Z2Jbx1pj7hj1+4+tv8Pt/8CKmV/D4J5/FJUFMHruoQCkqWlq74IHeiKD6+CDxrsKmI1bihFYqVu0JobjMs3/zZymefpgqCZo7cyanp3z1N/97nnj2Izz98Z+lGOySmoS80xIe1Dw81hx+dMx/+/cv8YGtZ/jxKxVi8euE228jh46vfH7BrbueZUy0Gva3DB//+AdYbO8wv3cTu7AYpzBJM7lbc+2+DJUHbFt1etXFABscuzsB2StokuLu1OJEYtVCVmhmTeDeK1NChF6p6ReamOBw6kBbbk8XXL66w3grw7WWmy+9QYgRTUuhTacQ5iP1siYXgnwgkdYhAVNokup0+O+/klPFyMt3bReEzCYsXj5les+insh54mee5ea9O0xfOsY9v0KWgvL+jE994jLjvZ/gD+zD/M6rb6K+dsi/+fM/SBJjSvU++maLQkvsNHHj6zVCC4rLAvem6+AABaQmUDUVd1cTYpS0QRHxaGW4NLpEhmeAZG/nOsv5IXVVdXyp2JDnmtHAcLKyVJ4z8626WSF8jW0qlscV/Txn61IftZSsFi3zWctoZLBtDd4z3B5zerpAZD1OFxYnWkY7OXmvpEBiosMtZhQmEqIFYxhe3eHKgzm3Xn6DO7FgeDUjJs9qaVmuGtrpHEkkZYZ83FVLDYbqtKK8PODo5i3yrT7FpW1MT6GWt8+e986HtRGSOIN5wJqLfwGffUbE7V50b27gIet92bTs11XcuIF5xITSHU43xEha88bYqMxwUQXoQrX7zIX3QrD7PTi6+D0B8gwq01Xkxdm8wxqoJToPAAEX1JJYr69d1XFTtYQL0KmN7GoIaKXOmzIXgv5EJ+zYAcI27q/dnG803b/bVZa0NvzUT/0k06bglZcaPvgjT/PUjzzdJacpEZzD+haXHPm6wOU385kcSS1JJmBjwiYL+wc8+DefJe0NsC7hqpbF8SGHr36Dy4++h2vv/T6EMNBGVAyInma7lMyvKv7G3/oH/Lt/7Rme2G4R9UuwrDCm5Y0v3qNaWWoEqoD+fo+rjz9Olfd444U/4v7Hvo+iP0J02Kw/6yl918OHhHOWS9f6PP3sdVqdeOJ9P8DNcJf52/doTmfkA8P2lRGfeOIaQTzF16ohL33jmxSTFT/8I0+CKJDxMv0gqbRgcq/m3m2HS4HxfRnNG0t0rsh6ibBqmFUzlrbh5ts3SEmwtb1DvVwSnccLizHmgirT+u7bQIBSWjttcwbR+l4d7yo5OLWRI+swWnFw/XEOHlS8cft5YkoMRzuYfkFjW4yO7Fwdc+/eDBkiwkiwHrGqCQJGo5Jq4VhNG3CB0W6JTxojFMnajvSDIPmOsKZbj8olSii87SRNi16HkQ0Whld6hLrsMFcANpKaBDIilCLUAVMYisxQu7aT+Ipd61DlCpSkWXp6mSM6SUyeetJitMIUiugiQmtSVJ2Ndr4honUP26b2iJRoW09eKrKsxNVgtgvG24LYOpoocVIxJzEYaPa3R9hlReM6WBQ+kCnB9v4Ok9tTqqoiCUneKzGx01u3TaIIK6I0nTxqCzrLUHS8Al9XDHoFEkkTDMxqfL1iMBqQYqRtGggNRikGmUCkwNtv3SZrLcoJcl0w2N9msHvAYjmhVBlLl6itw0WNKTNyO6VpHdVqATqhTcvWsMcqKzg+XmCEJygoyhwjFcY7TOratnVISJWDUTSxQaAYjPapZicoo1DaYDJN0R8wWVYInZGkJAUINhCDRPRzlA8MyhwVBcF7bAhEqbApkKsMZWuqumJeVbS6YLrw7GQFZVtR5Dmm7BQRzKBHkIrj2ZxYDhFa4YTCKmiVIVYT2Bujr1/Gl5LJ8REvvnIX98xTrHykns/o9Udk5HgfmaeM/kiglwF/csiiPuFQNHixRUyKRz75w5QfvsLc1VAvWcwnfPXz32Tw1Ad5/KM/SrQlJ9MKERryOnDjc9DbzdjOE3/5k7uMt56l13+I8IGnmH7zP+R//C9rvva6424luLRd8MyjO2w98jAvHifeOrrN/VsWQcLWEZRioOHe0ZwrDx3gFy3LVWDpukrjoNfHxYaq6ubQi8Sy9nipSLHjbKhMUhiFQtC4QJ5nmMEQJTNambNsQNq4Jid3muJBdmpSuZbowlAazb3pEi01wTlc6/DWg054JUg6Y3vfEJqW2XHL5K7FKdh775g6Tyxfm2DvLRBZAi946IGcB3cfJep9nv/1bzJ/4S5/7i8+w0c//v1oPeoWnaUm1l08qzLV4YWtwPQ7aeToBE5EnHc8f/uP+cC1D2Nb0RUjaElhiW8tbZHj8SRdgK1oZifcPTqisp7GNpSDMcuqYdFUCCXJUmBxdEo5HHSVwdxQ6Jylt7SrTrYzl5peWSClZLGoO9W3gcDNa4K1SB8o6IIx2zaE4GlmNawLJUPXY7S3w+61A2armsVpTe3m+NRBFo+Op2xf3iFFWM5bdCYptCHPc+yqYncnow2W0C5ppcE250F2igmkQEiFVmvMtW0791fVubNuFk4pOudUuW5Xxwtt7ouBo1QdKCekSAq+C3SjIGwgCWdwknTmRSAEZ0ZaG/lQtdk0cpZE/GlQo++ece63sIn/L1YtYS2fyLcF5WuQs1SqC+LTeXU/xfOOjlgnA+eV5Q304AKqQZ4nH5vPNglYSuemTGqTJG7O2buEYnznDYHWih/88R/ln/zWl1n5lnuziqN5w+OXwceIqxuKIscvAzaAygRZKSAk/GJOHVa0UpDIkXnO7ievou8fsqobdJGYHJ4wOZxQXn+Q/QcfIrSSVjhMcMSVxB5CVkoKJfjb/96/xX3XhmRmTlgdUN36NF/8zDFv3my5uzI8/PAe21cOcPker99dMVFz9i9v89JXfoNrj3yIg+uPf1dRV7QW7O6W7F4aIAcF+49cwpeK2Ys3umq/TGRJ8PDegF66wsnE8ruf+yzLwymPXtpHZBIlc0LwLO9ZwiqipUAVmkKJjmM1VkQlqDOBXwXqdsnJ6jbvffxhrl+/j9u3bmLbBu/c+fWtNaREDPYd3bJOLleuDfu+W6/5dzfeVXJw/YEtLl3bIYqcxXKFcy2R2LUxg8O3NYv5iq1MojND4zwiRLzt+Ch5JhBGIsxabjJ0GsW29VStQ2vF1naPug3UtSf5jtQahCc0gRRF1x2QGwxppwMuAGE00XXY9dQEEBJJ7DwWbEBIidRq7dYX1qYpkeAEIgaiErTTBt0vu0ZtjLgmENwaIyYSrq6RISCyzplxo7ahco0IAu8TQia06kxG5scrMp0YjEeUvYgNCS8l41ywOyw4ntUkG4muU9VRQtFWNUaBNh2Rk5SIPmJdpJdl+NWCfDwgyO54KTpkiGgjEJnC+kCHgg242ZzVfEGeFR2vQ0ikSggRcU1NHQRitiKaAnyisonWeOIgEmzAeXA+AR0G3PqAlJJhryQlaFY1KnlMU7OceWyQSBkQMZCUwNmMppU0TReohCRxPuBDRJmM2vq126LGaEXZy5BAs2ophCMmgY8NkdDNR65JMZ51IDJTYF3C+oApSpxzWO9BG5yrWS4WzEODI8eJROUaZKZJRQbkOG1ohMApwcoFRA4IySIplo1gFCwzUyKuD2CUUR87ZqpEy0SFR+QZtY+s6kTTQJYtGWcDkr+FdW/wyuqQUxt4Yjwme0RTPnMFmwna6Dg9njA9PmVrb58HPvwkeT/jjTsLjBZsjw3l/hA5zOj1JZ/+5W/w0//aNbb2x6iipAoLfvUfL/nKix4lM67uD9i5vA17B0zjAW9Op6xEjRt2HYOYAiSBLg1SOeqqpa0dvo0QBKUA33q0gTwDpRJ+XSxxAbSE2oUu6FAaREeyjyqBi0QtaWpHrEG0Fl9FTCbRRUGUEo8kCE2uNCrXFP0evlp1jqM+IVJnYBeUxIVI9InF1DM5ttS1J99VPPSDT3AsK9q3lrg7nfqOQXClyCj6H+V2LahOjrmeWX70A1fRmeHw+IS32ttoaRnkitoLRIoEI3BNwmzJztgnArLrBv3RFz7HU3/+IVIMxOAQKlJkGVXTsFxVCOnIJIAkKY02GTpqmqZBi4bQtNiqwSfJ9o6BQZ+oS7b2BvSMOoOGJEBqhSkLkuh4WLX1HbytzFEIRPD4pqGRiaauqCtLTLErksSIaz1i2ZDJOcJIqjbig+sw0SKQQsT0C0wvRynBYlnjlhZdarb2t4htjTYerTtC+LJ1nE7OOQdSyTXZsAv2z3DeqZOD3gT/5xCXc7zrOab5HMLeVVjT2oiJM/Ium/fhHGdOOhc9Sd05EqIzw9pg59M/LyD9Hlmru2D9AoH2DKsP60k4536k8yB+s/0ZhvwCrvkiaXf96TrJimednbPv51wB6MxTYA1H+naJ183f+93aPdh0ocr9Szzwke/juRd+ixWRRmoEa6dlJWmtp2o8KiVyI1E6J9kpIZzw5mTOMIzZ2e9hdg3miTFeJoKMzE4WNG2gv7PF+L5ddKY5nrbkGWSlIhsYdFRImfj8r93ih/6VKxRjA6LH7O6Ir//GLV57qcWYLa4+cED/8gGMD/Cxz2w2QxYR77rnR/C+uy/ExWvnO3uUvYz9KyMuXR/T3+tx5b6HWRUty9dPaNsWosAYxY4oyfLHmDugmvPU/bsMM82vfebXATiaHvPyl7+FMZ7Rlqa/ZRA9RVNFin1N03YYxaSg9hUvvvlNfuypj/HBj36I5ndXtHWFsxbbtljrzxhWZzCiCzyas27Cn8WE/f843h3nYKukV+ZMJ4HWTWhPTtk7yAipI5QEa6kWLVvjkmVo8XQKQS51KkJCiC7oDBFTqDWZTlA3juW8QSnDcEsQpo666lYJk0ksrpP2c50DoJZ0SisNREfneigi3kVCE6CJKC07g77QKQ4gAjqBKRTe+vM2rItEDyoXhKZbTEkdDtmHiLOxo5alSGpbRNYFOMpoFJ0qjygUqRVdS9x3F5/SEl97hAEz7GEKgWgjuEDfdIoAvg0k16nBrFdg6qoiFxItYievhiAISUqCXGWsfEvZy0BpXAh4H9ZGLgnTK7HLBh8TUiVSsPi6plnUFIO8U1hKiegd0VlWTSBrA16kTk3FelaTJa06YWwiKxtoPaSkEFESmoZev8egyHExEGKkWTmmtcO3gl5ZkmmQriHTqiMFS0HtAqJI2NBJOAIYUxCJtNaSqwwhQSmBEYIgPRkWFx0hWbSUnc29UojYkdOddxRk+BixIdKXIBXUtsUL0anHxO58ZKXCOUebMnAenWuUNjipcEKjewN87XEp4nzgZLliNm2oCsl2SLTjIbFU2GBZtA4pPItoKYucauqZLz3BRfaGLUq1tPE2L81mvNIIZL9H79EB48ck8oGSNjkO2wV3JwtEK3nkifvZvrTP7cmKZSo5MJpellP0eowuS770xzdZLY5JXEIoBTRUyzf53z5nUUmws5Oxf+2A8uo1Ftk2xzcty6gopaGee2KT6BTtEkkbhIzUlaNtEjEIMiEpjWRma7Qx6EziZXefppCwLmGEJMs1SEmIm4CkAxi4uiUVhkiiDYlQd5WAQZkhc8Fs1VK7iPAJHQDr0VJTt51XShcbiq7yo1VnxNZGZjPPso6onuDKB0YcPHiFG1/8Ou2NFWESUKUkM4JesYUu3svkZMZWLrnvyjZXxj1uHh9xspzxwr0X8aklyzTVDJKPJC0h0rmm+4SICakhishrrz1H1dzF+YzGd5yofm4QQlLXFTFV9LMMowS6GNAbOlA1MUastbi2JTZ2fb/m9A72uTtt0b0eiUSzqkBIjFEon0AqGue7DopPeOtISqKEhBCoVyuCaxCxkzxVWYbUElFVeOeo2kCcLdEGFiuIWmByyAuBUonRzqDDqGtFv5eTvCTLJGW/R5KBGB1ZJnExUbcB5847B/JCYBiJZxX6DbkONvAeuX6dNsXr85EuyBWu9+2ENdJasWcNC7q44xl59hyy9A798PVxO632NfnubNcLB/ouHpvfT+TMpflsPjY/+Cw456xr0NW1Nso9F+bmLCcQ7zjGxTnnQhdik3gJdWH7s7ldJ4XfrjTzXQIt+hOXxibxASoEe48/hih/h1XwLH0gEbFEtNFU05rWJgqTkDoiZcDHOXeWLYdeU2zl5A/l5Fc17GhcDExdzXJh6WUZW3tD8kGfWeVwwjBQCqU0WaHwRN5+e45r67VbtySlJadHx3zpDxcYFKP7Ruw/9BCMD6h9TlV7RFaSS8Fq3jAux0jRmbx1cLHNr/3OPS8pJbZ2+5jRkP1rI7avbbO1tc/hyUtUd1dEnSiMocg1MoxI7LOqZvjFFD3qMZlN+exnP8e9w0OOT45xtmYwKhFxRF4MMT0FMdFWAdbFLpGDp+XO8ZtYt2DvYKeTp9edCqTSmmRt1w09UwSSkMJa8er8fvjOndl/MeNdJQeTSUN5b061ClDm2CawtJFe0RkVtc4TkyKSMZvMkb2ctrKdpJYEGwJt5ZnMK/qjnKKU5CJhY6RdeAZbRaeJbjr5UykEMhPE2KINuNZjTKe84oVguQrIKEElXNsSooAAItI9VJXEu7VBhQgoJTH9jLZ2HfteK+LaQVDKdaVs7SooAKFSR9YSYCPoBLrUFKMck2sUiVwm6gQyJZIDnQQySBKSMpd4BM4FpNSQZAfPSILJaUu98pA8MXRSrlIBAXx0CNsi8gKhDQpBmSmkNGSDHTQabXJKqQkh0CxbUFD0+zSxwrWOJCWlUdDWpKrG5AlpNM4nbGM7zsXKEhpPoGOrh5RomgYxmVCMS5ra49BdEhUi0keu7uyhddst+GhESDTW0ctz+sOSZAZIu6CXK0ajISaTzNuGUiisrYkhoqVGJkGZFzjr0ConpoT3jtwYRqUmNIngqs5vIFdoLdduu4lShM5qKlkCHQTNhRahIj40tA6cMIi8oJ9JslLTrirCeMy0tvSkYZCVCJOjsx7j/jZWnCJkYrWqOJ3OWMwsR5WnmE6YDUucVjRty9Hbr7OKH+LIe/aEYblqqZYOnSXy7USULSduwWdeK1mkSzzyuMB/FOxuIhsIjueWl05OEUnywJVdtq73mC5aXr0LTz4+4vJY04sCO7NMbOJ/+Idf5D//G0+y9dAAqRPt6jXuvvGPeLmRfNgIQm+Av3KNsHsf7TQxu/0mw0euUNrE6viYlCyl7DplVR3QItAjp207XxCddYHoYGhImSFpSeM7bxLn6DgfSbG9ranqiLedT0lRCDTQtpayZ8mU7IJbHyh7GVvbJU0I+GlFcBGhO0ffxaJFJs1y7pEyERB4JH6tMBVsoq47sl82kPQvZ3zgp69jm4Z7v3mb+k5N8qA89HKFOXiUUu9gjm7z8M42V/ojZq3n5dO3uHN0zIsvPM981RKFxjuB84ksS8hCUM/SWvZTQAaChLcr5s1tbBx1kD+nKUSfgCQEcLYhQ2DKHJ33yXsgZAINs0VNMw/4pqVUghQ9490tbk1uU7nOIyHUFqE0Umq8D/hli21bgnNnwZ+1jlKXWBdYzlcYBXvbBbGXoQY9WgvKB4gRGzy2caSVo7WKkCKjvZIs75EZRVHkzGeeNgR2dgb0+10i3kaP0ZosZQjTKXIZE+kPirPnfUwJsS4oIy9i/sWaGAsyCULstN8vCH28o9rcSfeJM8fPTfqh1k6dCNFdaGd1Os4C3Y4Q3QW6F+UXN8o2G1WamNI7Atvv9nGWCMjN6/NAfEM+PiMNb7ouYtO1CaxLY+/cr9t4cwS+Paw5eyXWUrPr7jxw5toqLu4tLrgYr2FI3+nJQUqJQDpTnLIx4GNHnK+bhrvVirqfE7OMaV1zMpti0y7LEOijutgh0nkjZZEkPHWyfOVmQbZ7QPZITnwAYr+DHS0bz+35klGW09sqMH1N1UZOF3D1csHAgAgC1wSOVy1f/PJt/vVPXkb1dQclXrzK0dFzvDIteKafmFAy2L2C1Fu0R3Pq6ZTewRg/syxOFmxd30VI9V1Xz7503xYny1MGWyWXruwjRODGV1+mWTl0qSgkDGRByK6ynDRM377Fmy++zO2X36BpLTdu3mQymdC2LSE4QoiU/Zz+dp9UB2SuODmylCNDmUlcSCADMVRUdsJ8dkxdVTR1g/Nuba4qCd6CUmtFK9YQvfgOaN73+nh3UqarhmgDmdQsFoHhAMq+5uDKPsevHTG9s8Bs9di97wrH0yUHOzuciDmnp3PapiEzUJqc8UGfvCggtVjnSBZ6wz6Fyenv7ZDKhmTmmJMVsQ3Uwx7WBXJhIdMIrSgEtHQPT9863NKBVJjckA8Uq6mlGBvaxqHXsk/eB4JSyFLTHFWU4xzV0wjVyZkll1jNG3S/QCuQRoGQiBToZxLbdLr2W0bQ6xtCG4htwJDY3ukzm7fYFhIaAdy8s+TxJ/dJrWXVNmgkhZI0C89p6xFElBCIEDEy0S80ftFyfLSklIm8sGSZplfkbG9vgRGo0ZCTwxbnE72eZjDqY/qaMpPYYOn1CmxAkUI0AAAgAElEQVSTsE6gexnXLu9z58U3mZ+ekg+HCJMhdM7e3j53/CH+5Ii4u0PKM5CCUmmuXN7i9muvMwyBvDcm9jJkr8fu3h77I0EjxpxODnFrMysnBIN8iKsWqEFJE6HIDMWoQIhAqC2LlaStm04nX2d4IZjPj9np5QzLHqiIMYLMRHyw5KUkGkHdehQgZSQpRUmiTJ6iyFi1kZgZdCYIwpFJhzIC2woaJ7EeYrD4UNHb2u+6FlmJRRN1yaX9q9w/GqFNRuwNOJxPiSGxdXmPWFp+8+/8d0z8z/L4UxlZvoXcPcAVC95qPf2YqJSmXkyZNzNsYSlDzf3yYb7yZsObr7e8f++Ep94fKB/IiMUV2iT41ReOeCi7xvseLti9LLlJn/mp4sn3jFHLBpsS+VbBocj4T3/5Nn/3rx9QPniJJDzJHfLqV7/B3/v3v44n57RU/PiPvZfm2iMc3TylfvklHt3SNLScVgs+dF8BsSCERM8E3rxzRK41WlpOppb50uN8QKjEh9+3z6JxVEnghCBThp2hJssM85M5q2XAudAFJkLikyAQCcEhrCf5GjxAwqbIybzChUCuJEIrMiMx0jNZ1BAE3ntUYYhagYrkfdNh2WNChIA0UFzOuf/ZHa49+Bh/8K1vMP/WAj8Nm24u5SjjY0/9NNQVYyrMWOMyy73FK2Qi8rUv/S7zxYKIpTc22CpjduLAJ7JS4JMghoRcdw5IiZuvznnh7g3GgytkaoCIjnuTKcN8F6U1IpW4ILBOkhc5OhM0WiHCEf2hYXGywi9r2miRBz2mkxWZ6mT8pJaETLNsAqfzFl85KhdwPmBbi21ahqOcYb+gGHReBlXjqHwgCoGzDjdpUUKR5wqpM2KwaO+QUmFdoldqok0sppbhIGNrKMhGmsZ7ZGZIOodg8dMZKROMRkNcazvTupBI/zccxpRYs4RZK9mcY9zFWg0nxU3leQ31OUexd9X9TRIgNkFmJ4mr9GbpERfIfnEdbHafSLF2ZN0kAGmdcJyBJs7dQr8XhhAXFILWXA6x+YDzsH4TmGxgapsR1/r2Qsqz/YTYODmf80TEmiTeJW0dzDbSYam74GfDMeCCvOU5bOlMtz2BXPMk5L/wYOniL/uT3/3tkLKLLsoX52uzbSBx6Bq2VY4g8cLslDurmsl0xUtffw537TKPX0lke5eIfWhVw9x7sC2t6RNszSK2eCK57AFjbp5a7t0M/MBjE/bu76O3t0kqw8XE52+teLS8xLU9SIViFjXOSi5dyki1w8eEKTNevxd46c2av/TjQ8RgQIoOERe8+kfP87XPvEqrdjjdVqwGOdtmwOz1V+mtFlzbHlMLT5VJHr5/l/GlqxT9EfK7iIwMsHd1zNEbiqMjR++Ox2Svc/TCBNdElAcRI+MrI56+/mG+9pWXefnrX+H05JSjwyOq1YqmbbvObojEFNYcS4dvPanq6Pym0BASRkSMASUCN26ecvfJIx584gF2vrzNyeERVbXCuQ6topQixk6ZrfunAL++xs65Qd/L410lB3tXdxkdbHF6b4VJFjEYMZ9Y8tKxDAZrSoQUTO7eIZeaV9+asTOQZNowt5bgYP+hkrHMOJlXHcSAjugoehmZgmYxZT6XVFYTTU4pW+5/ao/jmwtmJ+BtwK8csY04lzC5InrWBmsOVweaQpN8oD30ndKNARUDySdiDIgE/VGOlgqVmw4WBCTb+S8URnZ8gxhQKpE0HZvRBUwpsMtV5zpcFJhhTjiZ48SAcneXrA6k1oKM5L7PK1+/w85BHxsTSRqa3oDezg56vmJ5NKNXKjKdSLbm6O05sfYspxUH13fo90zncqo0veSQeZ/J3Tu4WQ+yElloTLFFERYoLNujgqJX4L1mdrri6NbbZHsjxo9eYdgbExLM5ktmsxkNOZ/4yEN8+dUjnPekpCiLIePtLUa9jPr6dbRbEH0kLyLlWND4Ba/dqVC2pfEWXebkgx656hHaJbGN1EyJoUHJGkRD1QSSbxluGxCSot9DZhmByE4+JKczd8m0QadE8i1GKWKh0WT0exqbOlfYXEJYVSyDI5OCKBKmUBhV0LaKo9mSuslYVYHVwnZdoei5vVhx6QHF/uWH2bt6H5mWJCk5JOOBcoRSgjpKWqUZb+/zhM4ZupY/+OBP8vwvf4GbP2VoqwZ9KUdkBW/MBb/5rTf4+Q8+yavLirt3n+dS8PzkB3+emdL8vV9+kUf2X+fSX/jzlI+/D7+YMSXn9WqL+/cjj+/3SYXgZgNBSQY7BUk7BtsFwyzw3K2a337pBn/tI18kf/ovk46+Qpi8QMwcs6M3eX0pGe7fj33Pz3O8Gzn57O8yPzpE72xzYvZZ3lkw7iluTAuSiZAqisWKvUtb5D1DilDaLqnTNkOrhCdxOK/JBgVSC/AeHzxFlnPqAgLIjcaFiEOQ9wsqH4kzy+TunLwwjMcF913KsBJW04Z24VnOGkSuyQeGhUrEpEgCGtddV1JIok2cvl3hhoql7+4xtW0IPcHJpKWa3eDtf3oTP/NnXcHtQvMTH97j2niHG0cvcuf0mJ1hgZCS2fyU596+g9Oak5NTlrNFh8MtMoSuiSRk2XmW4EBkYEqJP0q084bnXn+Nh64JtnpDhlmPsdnmeDpFC8PAFAhniW3NzNXcm62oFgu28h6L+h5buz0KscOdl17jxa+8zsH1ISEf4JqaMlMYCdOTGYvK4VxL03bkxtZGbOOJSiL6fcyixi5rRASda2zy7FzdYXVvycnxnDTqce36iPsv7xObJX0VefHVKUsn0EKynWkuHfSwXlPP53ggTmdUsxnRezKdGI5KmiCYWon1Clcn5vdWZ8/7c4OwtFG9XK+DAu9Dp7GdOljWxUDsnQGbWFf/LzgGC3EhqegkNi9CXOQZn6DjpLH5zjOszfpI6YK5z/fQ+iy4qNDUdWU2RG44T9DOOyXiPHlbO/1ugsO4JiOntNZMP+MjXDAlO5v4jkfXGWet8dXifGo3nYp38A26d9awsPgOs6U/85HSOwK3OiWOo0dKxZedZQeg7HOt7DHKenxpfB/f+Kev88J7jlkNEzvDnJQUd6vE80cLfuz6gM9+9auMDxLvHT7CKH+YeQu/+n/e4umHbjH86CdQeYF3gSppJi7j2iiyv62oRSJ4AVKS9RSISFZqMhP55q2Gujrl+x+co/afhNVtkr9FyDRH0ylHvmT46GMcXn2aH/2xXW7/2m+iSkNlhrx2muitGkYDwaQesD+6hCl7fLfh6n7vM88jr9Q8++xDXL1i+PJXn4fKoWNEWsG1K0Ou9TN+/9d/nx/6+A/y9/+rv8tsOqOpalpr8T6su2edCSVKMJ0sUUbywOiAfqkJRuIlFLsZMghSJVnM57x2521e+cKb3Ltzmxg7yHldr7X/hUBtxBhCtyZuHLxjSudSwd/D410lB/54RT3MsK1jNND4bEDCc/vmgmbVdLj3JLh9t6KQOcNCYL0jRUEvN4hcYpTk7dsLRAr44EEJjFSIWY3NDalWLE467oJdNhzPGga7RWeC5RNtFQlthJhQRmFyhZcSP206vL+CuHIdEdpHZADnEkEJtJHoQmFtZLRbdG6uga5NKATOelQmqOeukwKLneNpZiRqp0d/T5NER04SKVJqKLVnUWjalSXvr51dLdh5hUiRYrtH0wR0odFlBhLmt24yGJRY6QnOUfsALiBTIis0lw4GrOoGpSXDfk4vz1HSkHLB4P7rVC8fs1xOEdozHhmcTxyf1mwtI8NxQuQZ5SjjsZ2HuPfWlLy8hBUSb2uEhTEl169f5cbp2whZgIyYrMRkhqauOKah0JLppEJER4gWJwOUBUV/iyx3HR7PNoR5je4nbOtQJmc0GpBJQ1FKdK7xTYuPAREtIUXqtkF610EKZAKTk2nFsMxJoaGqK4JvSalGa1htqqsRlFKMcjBKcbRcobICYR1x3RaOosBlJad1xWre4Kua4AMUOUsvyY4dd6Z3eOKxB3j4kfuh7NHXGSsiN4XhNGTsSkFhMl7Tmn/nFz/B154Z8seV4M5nXycsWk7K7+e//rv/BT/+b/wVXtQZr85zTuIj1KMRbzHkSydzXn/lC/zQX/k5xk/muPwuC3EfJ4eR41fnPHh/Q7u9j9M9SIFCJESvZEjNeBh4/nbNjcWMJx+o+MiTz8Dkt/D1q0S5z9c+83U+988+z+jgGv/ZL/wt3NaUT//q/wqLOfvDLZLsszy8xzIbca2IWN1QrSpS0yB1IgpF4wKLRYtRgmGhqFLAA2/eqRBZhnUJnRJy/a8NAVVqBpkitJ7aRVofEMp2XJnMIFRncLiY10gCIjP4yjEeZwwyQRCCoDUuwmq2RPYMUSiSXSs/JKiWFqE1ptDMJw1BBGTZ+ZH89v/xOrf/uMJOA8EmtBZEBLdrzz/+7K/QV0N06rFKObOTmqPJCXowJB81FFuCIDPahcc3EaEVdmVJp5FsJEgWvO0K2mrQwQrvvXYLzQC7F5BjTT+D6C21bwjSMDue4X1HsnfR0S4qWu/xK4fIDKq3xei+a7jFnJgylos5pIw2aKQUlIOCfuuY3JlRKIUpDOVWgdLbKAWXd0qmRzOEkfjaEWxktLWFpDMcGoyGjHNF0UbcItHfPmCQtTzynm0W0wrnPdJA4wSVq/8v8t471rbsvu/7rLbbKbe9++q8eZxGzozEEcUmUrItSpYsC04cqzgGZMdOnD+CFNgIEiBAiv6xEcD/JH/EDoLEcOI0xHFiy7JlI6IYmqQkQhI5HHI4hVPe1Nffbafssmr+WOece99QkkdCgJDMAi5uOefsc8/ee631K9/CvLU4EjoGtBKIlPCiwAXJ4nBOs1PRlBVWC9y426z3caM+dKZCtiJUc4YoezYMSe/5PW+iq8dErjrHlCAEYsx6+iGeBqMbiMyq85DgATfWNWboQW7BmiSYNsnLd/NIaVX9l9l/QAb3nmB+LZ+YNkmEVBn7lWLayJjGlU2qXCVjIVuWb+r/Z8nc2QhrDQM7PcdZ5YjNdVh3NEiniaJUYuWAfio/+wf8xL/nb+/nSia+nQ+xHhJACO6EwGwlN+5S4i6JG9ZzzkiUVNjpiD/98Wu8+2t/j9ETf46jL3yJ1lzjtXnL7Le+xCc+/jFuSk199RmWk8RRtcO9qLm+mPPcN77Kj//8z2KmS1xSDKlhuUzMDwfO7waGuiAhkCmihUAaQ4mjKhNvHjikarmyb7iwvQ/ddaK/QxK7vPK5f8aN12/w8BNP86c/8RkOujs898XPsVtrppM9fITWd3RRM409sla8/srzvP1KZP/CZR7/8CcRUr3/E/n/4bC959V/fp13X77H7uVtxnsVy6MBZwNNI7l+/YBXXzpg2T/Hr372sywXc7rlcgUDym7Q60LCuujQdwOHB3P0dc12N+XykzvMTzwCqGpJMVbgLDfffpuvfeUbzO6dMLQDQzegtSKQ55l3buNzEFffgdMO6vf4eF/JQbCBUsJWpbCdJ4gA3tEedXR9DyIQrMEXCnPFMEqR2VE2Bhqfn6BlPrmHdxdsbVV4ZbJMnlYEIv1xR29hPvP4kIgerIv0CwcpoiVELdFCopVEJAiDzz4AOxXORkJIhJRw80DV6Ew2VBKUIEQIi4ztdctA7HvsEAg+YQrNeKIRtWE5syBilgmOZAWgRUddlTkxUIIBSCLr3AqjKEqDihE7OJJzFFJDckSVic9KSFQCKSLVqAAfGBuDlIkoNUkFFJ5xBSedxtvEaFQx2coQrCFK+llgXiRiXaKGgFssObhxk6KeMt3bZdxUtPMZ3ckSIWFSRvqoWSwOSD2wkjPt5y3htVvEWhGNoO9agltCN4AQTHfGTGpNiInpdILQmrbzELNZ2gC0c0upoWgMJiVk1UCKSDzGGMpCo7SkKDSjpiDJhCmzgpUPDiWyS6iRCdZBi9SkUOCNIIWA0olGgLZZQkwZxUgnbNuy1dRYmVV1ohf0QbKQBb7ewytD33mW9+d08wNcipwbGl7/6m/iv/+j7D3yIZ4eT5gqzdsp8bKPXFWCcSlzgisCH1GS3240P/Cxx5jaki899zu8ef8eafEG97/2Zb71b/7bjLXk9mSX6994k4M33+LpJx/n7/+P36Df/knG+59EmiUH7cCtWcQvDZd3PLu7+6RxjVGGIhYMERp7jKoELx1IvnK3Y7cKfOYxgw5z3PAs6aji1Xdf58vfeod2XPOXf/QHefXL/5jfvHeLrZMl1WQLJpCK2+xuDdjRklJUdDGyXMyIJwNFU3BSRByBvg8okbIZnRT4IDiZJyZbgqpUGaJmE0dLy/EwZLdon8naUkOlIPYW20Mx0liX+Tyq1KANyWfVDCUMeqzxUeGSIEVHMSqwIQISZyNxCPgUEBFUkCyOLG3rSCJROokMibt3ZixvOVyfdfCFFLgh8uabc/TeO6C22K5rlJS0g+Wk7am2LHeu36K7P2MYIsPSY7tADECAaBN+kR0/dSmy+6dNoBWzuy17O8d01Zhl4ejKJVpLdMjwncnWGJJEKk3bt3TphBADznl8kBmMISuqqcSLRLcYGI01koQfOoSA6bSiXY4RZC6QrmqKulmZhgWMafA+URYrsmTvWNhjSpmotUKmSLt0uNhzURu6NOdwJpAxInQuXvjO41HosmDR9ogYsyus1hQKvHU4qVksLDIE8P4B86scPJ5Rq1m3DwDW8I2Vl5aSpxXptavnaQchV9jWupwi5QThVJ7z9LXr4PYsf+C0MncatJ6t1p1NDL5XqnhrLL9zWcAhd1jWkJ/3YPvTih+yUnKKYRXQr11ahVhxEPL6tvYlSKwTjm+HoJyFaaVV92dNiuasBBX5+xk6yh/mkz7409kA/+x1fm81fPVrCIF+sKhVghJioCgK/uFnf5v5Qw/z8cf22a4LQHCY4G5MXJKCmQYpEmORUApujEr+1b/wr9BevsQ/+FxEDAvsseP2zeu888k/wlTArekO7zz/Km7hCU+V/OqzBwwPfZp6/BAxHTG3gnaA5BXbTaSpxwQts9Fr0nl+hB6hBbeWidcWjse2JRfGCRGXRP8WqS25c/9dXrpzwN61C+yNL3D7G7/J82/f4CGlKfbPwWhJkgtGWxZnCoZ5IArL7ddeoxSKSheEEDbJwXfyrBACvIvMD3uCzyIwtt+mm1uSB1kJDo8W3L5xgtIGIRTdvM8dgxBy4J7SyhjxjJpQigyt5eD2DNNUvPvSEdsXtil0VoPzXaQfOp6//TLHdw+Yn7QEF4g+5KIiZ+fdCja37niuSexn3aa/R8f7Sg6UyvhERWJcCKwOHM8G8BYZfZb4LCsO73WcvzhC64gxkqiyRbcWgtncorRgPG2wSWBTVjTq+kjoPcvjga4NWbFDK8pxQ7Q9rveYQmFUriblZS7h7UrVR+dAYr0YRp0vZjZ9kSilEBLiENFKgpDYpctkvpgxbWIsMTJRGFYkYbHS1RaYxqCFppt3CKMIMicuaQl1KVbV64C3WVVJs9LkXjlIipT/ZynABkkREmVd4web8fSrFrouC5oEVoAyBUKZrOHvwPZZ9tQPYH0ihYAcHLKMjKZjJBBiwgdPCpGFz9ViHwakMHiRsEowSMXN20dcfHgLL8FLaNs+V0O1RheG2kQmW1PKpiCmhA4ZBtE6sCERBkc5KShNmeFgaGLyRFJO0hS5SiINpqlJ0WaIFgprPX5o0aUGVSONzpteWrunZtnWJByF1tRlRBCRMpGGgUU3zw6/QiKRaKkwSSKFQRTnKcZjoMUPHmcDoRpx87XbHM8in/rpC3zw8h4XTCZ63wgeYmSkYFIajl1Pb5dsNyPQkdHuBT4kDPMf+xRiWnLvzovQHrJdKoKCg9e+yp1nP88wirx0/KM8cm2b9Od/kurKNWbqhJP2PnfvniBaxdUnLpAmispoihhWLXzBVgE3veGVRWBvW/KhSWCbQ+zhTWyA668v+fr116nO7fKRxy8z4S63Tt7g3esH9EKR+oE4dxTlgod24KCViK0RbdLE2CNwJB9RAawHIxWkgDaCstKYJOlnjqoxlLVEKghO4EmkFEgenNS4lChKiTaS5Yknhay2NSo1ptSUtaEsJT5kku5yPiCUBG2IIncXrFst4CExrJRAhMhB4bD0dF1Wfgox4ZYRcZg4mjnscqVuBCCyANPxwcCtN0+QI7BNS4qw7D1t79Bzy2LW0y4s3iVc5/F9VmBShUIrTfICoUWGKlkgCExhsi+H9SjrEM7iug6VJMpbpNIYoxFJkZIgJYlPkq53BKGJMRKcx7uIKBtCXOBDxHYWLfJjISRkkEy2xrihR0iJ1hJFJDqHS5CkRJkCbz1DPxBCR1MZko5URhKjYDkEhO0wIpLoaZ1G65jlnGVEFwrvPEOQEFLupoasTCRiJAmHKbJHh20tyTmCO93oNgHFKihcOxUDG1jLOjB/79h0ENZE1gykX1WuN+XrvLGeQQqtW/ab/+FMYpCJyb/nOz0YMH8nR0P/grGJbdYJ1jovI4HIydX68+XgJK6q53D2g6/PzKmqylnVp9z5WQc9v1v356waS0qnUKfT/FCcXstVV+gPJp15pkv0QHMoklImuMuNo8XpU9ZAqJgSi8Fx67jl+O5dLu1NKQrD4WzJjVuH/M7LN3j6sQ8gpUCvkplupapVCyi1YhYcMUZGUqK04ANPPY0Xhk9+6gd5Z3mf5clNhJ0zNhJP5I0Xv8Y7z7/IWD/O/hPneej8CPHHn0FVE5Y+cdL3dMsOkzQ7uw2pkBiVk/aw6rYUEk6i5M6Q2J8IdktPERd4e0IIcP9uxxs3X2Pv2mOcayJieZ9Ff5fl4QH3JQzDDPQJk7FlMhXMosKYCqkEVz7wOKkfKKrqPdfiTGL/HTdysO1tFqzp55ZF0TO0HiUVh/eXnBwuODlaYgpDQhKsyxzSsDL4O1VE3syZKMC7QLfsObh1hDkscH0kDFPGWzWFMQgkd965x3K2yLFgiBuPgw1Ecr3tnOncrZqoZ5zGv3fH+0oOjDZ5M/SOnS3DMnqOWocmEGVCFtkoa7k8QQ82VxlHFS4GovfYlFguHKNpwWRc0vuE6B3DEBjmAbuwDEctzuVjFZOKalLT3mrxbcCY3JbfZHYia/dbG0khgI/IVSWqrOTKOCshFGgpKEw2rdCFAaPxrUNJgZDZ/dFbT50ipRL4lAmERVOgSp0hBB2QO+L4CISID4kSiVeBEBLeBdJKH9cYkVu5QSJl3mAlgsFDrQ1RGXy0ZM1wgQ8SK2uqwuFswgcYXCKKxDBkz4UCndtcUYDWqLJCFQVFWeLmS5CaoiwIMdD1CVWAFgpVFAQfEEVC1dDPlpQSljGgTA7Ko3O5Y5I8IBlNtonRk6KnNArpHYve0w6B0mhkUSJMidCJftFT1FVOZpwjWE/SEikNUhqUXB1XSaKE3g+UI5lJ1oVeOW56kvBo4akKQQgeoQJCB0iO5B3WtXSLA4qywUoNUiNFDvYq2aDr80zOJ+zRAju/w+COMfvneOPL34Bih08/c4WPPLzHjhIc56YFl0XCIai1pgqCzg0cRskjpcJGz7ZSfPwzn0bvCX7tf/11+uB5pvLcCY6jZ3+V9uUvMvn+D6Ki42f+5cf4qitptObwUHPUWezJW4zHCvHQFOsi0xBIwWGTpxKJwYx57VgijefjOwMPxUMWt9/FLW5x86Tm62+9xZzA9z12kYt15KXf+jx7T0z4RFlxMDtktriP7ROuhzsLwVstDFd7RF1nEnwFhXIUpqBsSnTVIERAGoGqDBKFlS1VbUBB6zxLl0BLdJWwM4+LiYhAaUVVa3yQdK1FScH2yFCNCqSRhBTwId9T7cKStKKoIArBbGbpQ6KpMt7fu0gionTC99lXxIbc9rV9ousDbggsZxlak0JWFUtASDC0nltvLaj3JK42gMBazzA4Qu/xNtJ3kegjvvdEmxdyZRRKKcKq4i1XyYEqJKNRxVZTU6mCRkiqFPH9gPWeMgEyy+KGIPAhsWwtLoIdLKoqEN4RBkvfejo0itz1HJY9Dogx0C8t0oPaGiF0NhMTKScGw6JF1AbrPYWUGYrVOQrnGRUGOwS2JoLWClrrSd4h44BSEBUM3tEPDh+hHJf41pGKmlIqtFCklTJUiFmpqZY5ERlSwvmA82ekTKXcBJ1iFSGu488NvERACmerZ6fEYlaBfw5C1w8/mFCsc4Ost7863spHIY/0wLf18dZB6YO646fv8b0yNgUucQb8vwp0hTg1Rztbuc8f/4yM5SqSWWu1w4OhYk7O1+/4YHKYVslcLtqsOAfrZEyuBI1j3Bzt/XduTqFgaZ2OJEgEQhgIcUCg0KrO95MQSGGIKazup+xsf6/teOVwweLuAYNtqUrDjfvHfP4Lz3JoDb9wZZsLlUEIgVt9jp2U8AhqmQuKLgUckj0lCAImUvGjn/khvvzCl3jhuW8iROBRHTmMgRu/9TlmR3cZ+ikjk/iJZ/Z4K2qElMzcmHZwRDtQNgkxKfEx0cSITVkSXQuBFYb7VqC048nGYuwc2x1npbSu4NbBbaz0PHntA4T5qxycvMHuI2OelA13716nWy6JrUf0kjBX3O4F5y5N8bbjwz/444SuzcXIFVb+O32sA/AMDUqkAN1sILiIrAR37i9YzlqcyyiPkBIinTEGXBccVt2ys4WHFCPBBY5vn9BsjXCdxS0G7IUtpnsTjC5oT9osthPzPFhDiHKsFzJP9dvua/G9tMz8vuN9JQfEmuTrbNgTBd3hQBVjJtsiMj62O2HSaHQKKAqSEBSFQQrFct6iEBgE7XyOiJIiCRCRSgTuvT3LF14rjBZUCUoiSy8ojKYqi7wxOzJUx2QH4/a4IwwuV9+EIPhIWSg6F1HkCraKIEJWcNCFIbhE1RSopBDJ5+zTBSqV5Q6FEGijKMqCctxgW4sdIqqqcTFl7HN0FJXBRhjrBD4w9Ba7HFBCEAuJj5KQLLLIMCidBLuTEmMK5ofzM1LECl0bUtAIHO3SkqKi0CAVKygAACAASURBVAVSaDoXsVZQmIrxtkEWEh9y+3TcNIgkCEITKFFCIvAcDT3jwqC0oF/kCqWJeXLt7DVIrSnTgK4lJlX0WkJy7O5qVKmYzXsUkYQnycRo2tDHnlpKdrcnmEqzFInWeY5OTri6s01hDE0t0SoSZMAohbIZjqFKQ/A9JE9RFuzubhFFhOjwfkDSUxhPU2hiXCLp8ldaYIcl/dLSCE1o7xG3R9lbQzRINcLHLTRbjMZT/LTm/EPbTLbhuS+8i9T3Sd0tYn8bF1sGIZghuANMZcLKiAXejIJpUXPVCF63N/lodYXr/dcx8oM8Vm3DQw0v/mDJi19ccGl5j68cLZkv7yKawOWHtvmz16YcL27zlB/Tiwn3rGCINZNyj6c+tc1SRHZkxHeRearASM6Jgc+faIrljJ9/tKW49zJHt95lPhuwouRzv/UGly8c8RM/8sPcf/V3ePnrX0LvSf7U04HdcxqtSu6+pbhxI/Lq25EvfNFzrhG889bAxT0YVZpRpanGhlYkHr9aM5qOcnAcYPCCWTRcqgtu35nhUmLWD/TBgUy4CEEpXBcxQoAHGWC7qejqyNbOiLqAyTh7HZycdCzvtZSjimKkUKMSpRTt3DI/cVBIrNbUpYLeYnubTRR9BCNwKWurDy7RdxHbR7xNmU8EpCTwNtEvc6Lb9y1uSLRNSdXozB3ykTR4Fndn9HOfPRtc7hoIIfE+t4t1pVBSoQqJKRVlXbC7M2V7PGbc7DCutihlRec8drFENQ3++IjWS4aQsINnMRsoVWDmBNuNYrCO+dyzWA50XcfOOCG1RsmEHxzLecfxnWOi0Mh24ML5KaUk+ywYxckxDN1A9JYgsmSnzhp6nMxbmnGBVpLkE33n6d1AVVd457EnAzacSu11nabQgqLUNE1JMzaoQiBFREVHNBJnE8ElotCEIuKs2yz3We3mQVMzucafp9OKvTwTt+YNev3Q6e4ZQ9xg4cWZR9bB51k1HFL2LFnDYjZx7xpqtHr++gDv3bi/F/bss59ZKXUG1nXmOZvrsk6v2Fyv7Ny6OsaZg54t/gtBJtusYULprJHa6gmr58vNRV53B9J7jp5jgPcLsVinKLnrseoUACHM6e1trF2gZElp9uiHDqELymKbzrYoWaBVRecCh9ZhdhqubT3Omy9+neOTe3TO8s6bL2JJuPQLeMABPVCSCAI8kTtJsK1LYuqZpYELquZevIESl7liDI9dNNzY8bz72j0mw4xvesOyfxe9M+LhcyOeKgKuP+ZiKLGqYREgBcOkGbF3uWIQiTFZMrqloFHZWfftQaDdwCf2HPbwJu1iifeRzgneePsOO9tznvnIp3n3+f+TZf8uo92KRy/UlD9cIdU2s9s1xyeBN1/tef3FjokRvHv9iKtX30b9AJx76LHNtftumQthDQsSkmZUs1jYbOKoFctZT7sYVvddWKEbM4rlbFU/hPBtTcz1tFnPIyKcHCxYzgfKd49pqpKju8f0vcuKWzJjUrz3mw6C95nEnpPxBw0Ac8L83XKW/3DjfSUH9+8eMd6SVI3Ch4r5SUecz/BCM9oqMEJg5xGz1XCiEleCZLkcmPmERWTi2XJgvNMg5h3eK1onmPeeoXeMzo/pZx2jSY0pJKrQqLJg98KY5D19n2+YohCYSuOGQAYmZJxa8HnpckOkHBvq3YZh5jI5ZWFBCMY7Ja5PYATTiUZqRQwKvKMsDC4k6knBcNAxDAMyJIR32CgoZIGTGdPpQsD6iIwePWk4Pp6hpSGliBQJqSWxMNnxd+HphoApE1rA/P6CYlySSJRGI5RCKoWUiugSwwBGSYwWeG/pZpajhafe2ssmbqJEWoFJFoKkax27i5blImzgA8p7tk1ivlgwDJGqAlMUVEYyHhuikSyWJ4zPTTI+uQ70C8lsZukWCyb1DpWyCFUQVIUXkT5pylGJsgEde9KgGLxnaBfEGOlUgUTQ2khKA0pL9rb3mM1mTGpDiANlIShNgfeRk8Wc6fY2xkDyC6LwCCnw0TKtwS/vY/SCMJzQlJ5mpwDv8LHAjSxFp3GxRpoJZfMBMFd58XDGtW3F9OI2H/zpH+HxZxT/4It/l6gssffcsC1tcAgp+aaAjyrFtlC8O7Scl5p9KahITEzBryzv8HFdsi0MJykRzj3OH/0T/y5V/Bv8/X/yi7zwtbss3r7PtT96jSf/7IQXX/vr/Af/1i+TDnZRl/8iP/qX/gQf/+Er7F/ZRyTBBwrNfdtjywFxsqBdSl4uaz4S7/D9F24ye9ODHHNjWfHiS68ii4I/vvs6lz5zjm996W9y7uKcn/xzY6TapUoOM1lgdjV7T1/hQ2LEZ4LkX29H3HhB8Hf+9lfpbKJIkkpp9Ch/DW2HHRxS1YSo6HxingTnzzWgYNl5nAGkJFlHJSWLUuD6gRhgMjU005IUQTUVi+VAlQw9AzFFYhcxqcK6CmESQhU46+haRwhQa0k/a1kgcC7DjLyPSA3JJ8KQITl2WJkaukBw8YECcnQJvwx0Q6KcGgBsaxmWNgeWUqDmAzKEVf1UEMjBppKCYlQhBGip0KWm2m4Y746ZTDU7u7vsjMY0SWGSoioqxlJiRcHB3btAxGxdYFrUhLalO7jL0XEHOnHiMz/D41l0PZ337Ex3KIxHJ5eN07SiLDV3bp7AMOAWLdXuBFUZUnDU5xq6+5bZvUNqEQk+4qOgHtdEDecvjqinY+bxmOFowdF8oBMwMhD7jkJKyrKgqAymEKhxzXRrwqRRCJ3drROO5I9pO4+RmYStRUCVoCg26/0am74hI8e0CTh+N8nItMK/nI0P18kEvDfYP23PCyGID2CJTn88DZJPK9kkVkRZselQiDNv9L3Q6n+QV/EeVaH1X8WZ6nBKp8pEZ5+TH9z8soYSnSV0r3keZ/7Eurewdkg+5YCkTRKxIWSuAyXeT+cgnfkp4WOP8y1CeJQoWLRfoW2fQ8uU5UB7wbITxGKLdigJNEi1izZ7SLXFURd5aDxGmJqnfuCDXL8/8OUXfpOjcEx33HHPO66kxAw4AS5KiUqJoxjYR1LJ7NWxjPCCW/IBYaiF5ITI/t4zfOIjiYn5v/iNb/5vPPf6HYRZ8LFPfZBHnuh44e3/g//qf/8s6e7DlI/8Aj//Lz3KlUmiNAKVFBMtWYaI0g65HFgkhZKSa3Tsj+bM70eE3uLO7JDZ7AQjIx+avMPkQ3u88+xfZ/8xxUPTSwh2MGJAlUeIekRz7sOcFwVPfNrwo33B4Q3H//1P/zl/7Kd+gen2fk7q1yo63yVxa/DZiDX4RNt6vM0+V33n8DYQ/ak879rjJJy2HfP49nz1DFdAMCwHpJEURYF3A928YyYUyWcFy5Diym8FjNYMwa6KxCZzD+JpEWNjAvn/g/bB+yMkB4/1Dm8j3Uzx7q0FFy9VTKqScjyGEswly7Xdy5zcP+B3nr2F1pGtvYbt/Sl6NOauh/nMEmeSqspYWL8MFE1NGBxWOGwXqEYNRVMxO+iQHjSC2aHDKDClQElIRiBdQlpPiomoM0SlLLP3gerEquUkSFJCSoTOoYoETtLPBO3gCArG2wVpCLSHbe5op7yAZkyboBzV1DrhSk0jyFjezhKtpR0s25Mp/dxS1gXFdIwPkWVrCTaTNWOM2GFAy4iLgdRZgoWlSBSFYNQYRnWJHitCp4lpyXhaEZF0bUCWBdWoYuf8lNlBS4xZd771CR8dt9z9VdUu0jlH3/a0bcd0b4olIUc7lKOSkRLoGDjqPWIk2bqwT+qWJOvoCkU3dNy7t8SGwLXdbaxIICKNCojguX5zRjtfsD2pqRtDM6rY29uh0yWCSIgBIRP9wuKGjrKWXLqww/FyTrA9eDCFYTTeQhOodMViOWdS50lbGsl2M2Kr8izlWxwvThjaI0zq0SoxqQRPPlpT1ye4ZLh39x63Dk64c9jzG1/5Etceeorl8CRy8ijNzh6P7fxJ/spTH+M/V7/IO//1s/yzX/mb7E96/swP/hQ/IySfJbKL4NFCcRADr0fYE5Kn9Q4pfZMrxVP8dvsytdnCmH385PvYu/pX+ex/9O+x/VOaSz+v+WOP3eBHzt3ihVmGyYXqPuFb/wVf//zL2N2f5WM/8mmeVJJvzVr2Y+R2u6QUM+oxDHabLV7nZG65OSQOrn+VxewFqvNHXKwmPPQDB9z55ss8+eHAdFKgksGjWZ50lK+B+uQfQe1eRek9hN5DVhe5/Mlj/v0nP8idl5/ntefvcnycmJyb0rvIMHckJZj3kXmXWNpMNj4/3WefQGUt/eBwrcW1itngcEIgKo2SAucD9+61KK2xKELvOHCJ6bTGVBWiqdgxnoMu0oeE7QPdwjE7cfgQkUkgqxphLabQ6ErhYmB+0BF9ItiAHQIx5qAlhrQJCIEsvb7itkot8YNnfneJrrJqUlYZyxr4g40IobIRogeQRKkyT6kqCAKEC6RuQCwlIdVcfPoCtZA0o4LgBpazBdOtbZYuUBcFk6qgnBiE1gxmSrxWcPT8K/i2Q0nBaFIwHRc4uYPqFjSFZGwa7ty8y3y2BAFNY7h4cZtkLcvW0x/OQSWOlj1+5Ro9MjCe1AipKMuSi1d3GFrH7vlLLLv79DFSbI24dGGP9uSE1LWY6BmPGqpRhS5LpJIUZUE9GnP+8g5aeGaHhxwfzpjsT5jPDxhSpO89otAYVeDcacU5xQzJTOvzzmrfXUting0242kCJ1Zl6XVgmeKDmODTA50OpeSmEv5eN2S52tzZVO5WkBYpEOl34T2I3+UNvovGKZRrgxF6T7IjTv90hkOwKfu/Jy8SYk2ijN+GmV4nayqJM0de/x/rRO89BxUP+hlskg3xB0nIctfAhxYX7pLSEd7dYtm/iutuYnRHVSaM1uxMJxizIIzPMzs+og0dJ23LrfuvsTU5z3E4T72/ixlt86HRp9k79yjd6Ff4wn/5a/zSc/+IvY/9KR6bnGcbeIfECLggBEdE5gl2UIyEgXTItr7Ii/YG58wuyVQ0e89w7pLhl/72X+ODf2aXj/3cmJ966Dq7kzd54caA6hZ0o9dpv/gf8+xj/w7pkz/E4zv7BAR3B8c0wYG1jEyPigYZJWU6ph8CJx6W73ydgXeopo5pWTDZv8fi5m/x0FMGYxqgIiaB7R36IFF84CdA7SPECKHHmFHF3qMtP/0Xr7C3fxkhy+/aavZayMD3PicDCu7dOMQ5nxPUdatgldCe7YycnR7rtWZT6feeGFVWAHMC39ss96sUWka8O/UtWAsyhBA2vAMpJUkqBJFIXBGf4f99T4/vzPH+pEwT+MEjXU+sPWrcUE1Khn5gfniCKTTNZMS775xwfOuYZR8pa404CTi3YLwdsR14JNYGlkPGpYumIHY9KiaarSrDYoTAdY7UtcyO+tVCEghC4m1Cy5jxs97j+kBZaNAiu+VEQVkWJBdg5XwsEyQfcS5mN1ItSKUi+IiICdE5+iQz5my12ElWm48LFIUCH6lria41KRrcUtF5hR8cne4pC4NIOr+HD9SmwOExhdxUdNohEUyR1VFSlsgKOuK8p112jJsRThocitYqXILeC8ZVTQEo75jdO8YATVPikWAUg/OMS0FIDhs8Lq7MldqOejTiwt6I7e0JhRC4tic0npNQoosCHyKR3LWgKJls1TSFATPCGIkWKatdJMvDuzUno4LWWaJUoApiWVKohPZLktEUxiBHBYMaEKHj4Nhl1Q2hmG5NmU7HVJWmVBVaBgodmNQVWgWUGKhMQVlXNMVHGY1gNgnMFo7b8wV37jjGzLig7zHev8nFumbvyogn5JwP7WzxjrvBF16ouf3CAeXlyzz5sQ/yc48+xl/9N/4av/hLf4njX/smb3/ft3jjmY+zJ8dUSeIJGHyungqokRwKyU+NnuJLL/0nXDy3zZWdP0mpH0X2B/y9/+l/oD0Z+MwfrXjokuD+ix1/678b8FbxI//ZLtfOJX75Pz1iZ++bXN17mov1Zzi2gTbcxKgpO9riU0CHOfvhTay6yqu3v4m98WtU8h12L0QmzZTz0xHGwuMf/QCmapB6jxQUqb+HvPQpuPYU//B/+W+Id36D3d2KS0+NOf/khPHDH6XSJxjjufhQw/a+IeiKk6M5w9ITfF7sTKNoCknfWd567QY+wGhSkELmF8jCsF1qju8NSFVhVKRQ+T5ezj22s8iU8DLiBCiTg4ZuiGglICrahcP7hKoMBokoDCZEAoKQcrcg+dwpWy4t3kZiWCcFaaPRDmeqoCkbOoWQEDGgpSBal7sdKXf24hpuIRPEtIFJJO8RZUGKgYigGtUU4xInDYUsCINFTneRekQgG/IlF4mdxqh91MSgNXlu2YiRUI4aNAOi0EQg9D06WCrpGHzEyIhSGoXA9pZWSDSCrk+43uOdoyglTVlgk0eWEnSDViZXs7TMUrEHx7SzjmqrZtSM8HbJ8cExSXomE8321hglSlLUKKEYlwX1qKLtO+7d6JhulUCi0AX0gYlWzFcQSK0khMhy1m/W+3z+QcgcYKa0csqNp9laEqzOb9oQlmPMOPacxK1BKqt+wcrzIK4dkc8E/utCZ9wErRvwycqRWWzgRBnr/mCmsf4tKyO9773vO25IkdWzNvFOPDMBVudm06vJmdJ7ugLrZCtxCjsin79NR2IFRVpds7CWrd0MsfKbOO0UrP++7iSczVv+MHGSEKCkQamaRI9W+0h5l06f0NslJ90xwvUUIjERkmJ6nq1qykTssDPa4fx4i3lMPPu25vitE7au7PPExS2e2L7Kz33iZ/jtR77Ga//417n18MfYG08RQmMQBBJKrKTD12dSaD6ot3jp3t9lf3KVXfFJvCy4c/9tvvSbn+ek7fjI4yX7leD5l25x/5ZFyIYf/9krXDmn+G//xitc3HmBi80HqdUluuCxaY6WFSMZQCTKeEKZAo4Rs8UtwuHnqao7TMyIqtylKStUUuxe/TBKNwi5T/RtXuOqT5C2z/G1z/0tirmj2t9hcnmL6YV91PgplGy/jTD7XTUJUkKKLCsbfcoICJm7y+t7c9MlzC9YbwX8vp9zc4/mPUEBPiRESEiVSOp0jxEibZKCNXxISbGBF+W3ynPnQQr/9/Z4X8lBrRSKTKitguTJhye03RK3GIgyk0SG2BE1SC2oJgYlE0UlaUaGqiyoG0nhPfdjix0cujY0lWI5i3QuoYtsbmWdJaaItYFu3lPUCq0yATmEiHeJosjkYFJmKYqYL1wKYF3IN5LO7qRCCoRWhC5DGXRtEDqT4LSUCCEZhkghE8W4wodE8gmSILhEvxjY3a7RhUKvcGmi0EgjCCGrilgEWoKIEm9BlwZpDFIlRHTEJIhCogqJD5lo5l3cLOyeQDsLFE1FXTdEdE5elKKcjjBKcXxvjog+qxClhNQJHyJ9a9FRII0iCY2QkWZcUtUNRV1RaUWKEScFoVQoLdhRBbUp6YZA6wc6H6kmI2KE4Ab66NBBIGLEuYD1UI8qZOgpVUHVVBR1tWoHWqwd2BrV9M4ScCQhaJcDymTeB0oRgsT7hHdZ9rQyiqYeU5cFWiaUrNBKUKhtTHEJU0yomm8ybl5kVrzJ7WS5d+iZvROonh2QzQK1P2N86YSr+1vslIKiepqvHxS8dnyLr3/tFnLxCE8/9TD/2n/4V/iV//5/5vW3nuUbb1zmxx75DDtJk4Dj1DESBaVIaDpaJNuy5I48x3Q4ZOkW2DLRSc8wfYkUAn2bnRaJge7AY/qA29J84qmH+XL5HM9cFHz4ikIoydvJ8UPFwF2/QKTAJMFIGajGnHTvUsVvcP7aBZrxBeqip0kDhR4h3ZxkL3LP9hwfLmkPl4TuhHb+HL56k0e+X1A+c4m6soy2jyjrY0QrIe5QGoGR0PmBYXAsTno6m9CFJvoIKQfxygiS9SyXliQiqlaZG+ACWkqacYWWhqHtaHuLtyF3X0OgrhVKgB0GhBY04wpVG7QNhMWQVbxSQiqYjhV6VOB7C21WLMpzORBdJodHnzZBTYq5in62XbyBN8RE9LkS6mTIZNtVlyHFRIhxo1AmZZYTTjFvENLIHIAJTQyChKQcVezuTamNQsSYTfm0xpgCXdRsjQoKpYmpy1wgIfEyctwtGTeGewuF7wJKRKTIUrFVUTIqDaEfIEQUAimyQVVaVU6FFHS9pbNg6tzlrKoxTWNYLi3t4BF9gOCoCKRkOVlKEAqMQWpF6Bw+epZyYDIp0aWhNCVbowIXAslZ2iFi+y77i6TEbLaEEHAhUlQGUsRHkOrBrWAdWuYqdk7a1tFgDhzXajdpw0XIJmenVbhNIpFWpONVgLvBuae04oOsn/3t8oC5OXBGXvNMxpjD3NMA4XtCWnBdFV21zTbNkbRKllibookzL0in5xgytOQMAZm1WZ14r6P0g0nWOpFeB5vxlK28uUYZciYzl2TdSFrdB+/v4wlAImWBTiNCGpByRFkKlDYU2tPJli4tWXYtw4FFvz6DyRg93aKcbLPdnKNRj/D9D1/jjYXkTnubF989ZL63w6XtHf7yn/8L/JN/9Mu8ev9F9vdrLo+uUIsMNFwkx0gYcjofCUgKoTgS59j2JwzJExA4c4IfvQRhwNlIPQ3gPGnWosuE3n6I77v8KJfTc3zfrmC/kTgBLYmr0nOcBlSKWZJbZeEN7w4x6TrTc9cw1RWMcGihkEIh4gB+n4Xv6U6OsO0xYeiI/hbRSC4+vo/2U1Q9p2jmSOXASUScrK7ce2Ruv4PH2XmaUqKqCuq63NznbvAbgnGKPNCZyuAOsWmzPXDXiTM6TevHUiQJSCtp11ygCPgUSfHBpCqvUXmdCyE9kHuchd6dkvu/B9ab32e8r+SgNJKqqvDW4LvEaOppgye5SEiJ5ByiiBQ7FWZUUqUOKQVlpShLhVqpIqQAzgaSD+igkC7geo+LecHQOiFThJWbcUo5KYiwCijypoSUJCSmXKkoRLHZJLwLKCNJPlcptZawVjoJGVtmktqY/PgosrKRJOPqhSDaSBqyNrrvHKE2FJUm9lkLV5BJmkJqBufw3lGXAiNFDnJENkpK3hJdRCBQJoGGobeIGFEpIlbmGj5JYvDE3iPr7PYqlUIrRTFuoHccn8xQUuJjwg0WFSTSKCKChY0USGLMXQ9TFoybGlEU+L7PnI/SIEuNUlDXBbgs3+V9IkQwZYFQEtdFhMzYumgd3nr6oJFFhuXpoqQejWlGNbjIvLMMSw+FX8G4EgmJGzxCCYpmlLs+PtC1LSkaYvRMygZtqpVRT4LVIplSg5AXKM0eVdphVOwzKveI5rfpy55gIbwb6Y972qOBV653jPbmfPhpxYcfvs7O5ae4cNvw/PUjfv2Vb+AKzRM/9kM89vxXuH30Di999at86PKHafQWx/4QpSRGTREoXErEFDhKS67ufoLXvvFP6R/t2Hpk4B07I6YT1AR2jOH2t3ruvRUYV4LHrkq6QnDzRsB1CdX1jOxAKeH1ODC7tyBuN0Q8zlsGIp0uiPY1Hj43pam3KWSHCPdwyznL24Jmu+K16z0Hh/fxcUDgwTm2J0tkuMvjT9aMzu8idCIFSbIzYn+HYE1OIr2lWwwczRPzpQRdYuqaAo8MkKSkqBRukAy9xzpPKgU+JfoYKKWiKCS6KHDOYheJoY8ooyhKTVkIgg04mxXGIhBN5toQA0opsmR0ojACvyovbyQQV47HKYLScmVIttGj2VQ2v22k04U6hJW8I/k4KWbFiyQSwQekzPM8rqppKQl0VVAVFeWowJQlpiiYTCZsNSMKFE1ZUJYjhCzwTjFpCopC01pHdBHrPMu25WS2IMacOLfLDiEz5rgoEkYrQt/j+oGUEqYskUYTksC7geDcJthLKVe0ogATJYNLLHpP1zpEcKSuQ40KiknJ0Dkckczfk4iYsD4hh8hkKlFSomUuirhugJBwIdH1DqUzl8l6R90YhOqRYt0RECh1qnmvpNwYl4nVOWfzPZ1yEMRq3U25wrZx702n1/mshOaDBmacdgBWcKTNtV1lJuvK9JoIm1i/J6vN/8HS9QMwtO/Csb7v1ycg51BnA6nNaXoA2rB+yZqwLTadGzZB0vp16/FgHJlWkJRVQpJWHYJVnfT0GqymbjzVlV8rTf2Lz/sGCAJCoGQBjFbtJtAyd8wK3aB1hdQv43UkDonYOcL8kPl8Ti8OkPV9Hr4aeGT3As32wzT34MZiwbfuDwziEh/9+Ed5/ZUXuHf7Ju/sXWbr2h5aGLrU5W6Z0DkAJBEIeCK71ZN8881f58nHHLF2HIcFURxQ7QimuuT163do545zE8nOjiZoxauvnGS48jCnChYhErPgs6hIU+BFJIaAW92zIs7ZHjUUxS6KGcnfww8DcdCoquTu3Zb26F1kKYnRIqOjKiwizTh/9QKqvEbiBOIBKbQEdz/zJvk91srvwPFtCXwCpTXaaJzNLsTD4M/AhXLMtwnExZmixPuc62f5NpuOWjq7bqTNmrNOjEMIm1dv/g/BAx3M7+a15v2M95UcSAlNVYIS3Lt9xI1+QbVXoZSmm/UIIuVuCckRkgZrUZMGpMT2LuODjzP7u1v2VBKwgc4NdJ1DVibfJBIUuRoUtKAcVwQtsodA77Lqj9H4KAgpexAkl3AuQxIQAqU1QkHoPckDRUQbkXHJUpD5JHmy+pBIQ0T+P9y9ebBt6Vne9/umNezpzOfO3be7bw9Sd0vdAk0gQCAEQgw2CCe4CEnhxHYqFHYIf+QPO5SxDXY5UElsHNsxKUgcnCKxGAwYMQjQgAarNbRaPd/uO/Wdznz23mv8pvyx9t7n3JacNAVVofVV3br7nLP32nuvb63ve9/3ed7nCRCjRGhD0kvABXxlsZUjEZHx9hSlFKFxM0+Czouh9pHaRqILJLozayN4qGvSTNNaS+M8SkgSFbAu4MuaTM78GXRXyZQC8p6hbGFcN2SZQOgUpVOkUNRtg4sBKVOCsLTOgVcMMkGSG+q6ITQ1KgRUjAgMPX+pWgAAIABJREFUeaoJWUJZFMTGI1yOjJFeP6KSjGr3ANcKZBQoqREioI1Byz6JpAsIQ+x450ZSFhVBSqRIUDolTzPSJGAbCypFS0GapNgYaGzdVUkF9AZD2uAItsK1DisStDTYdtboTcSFgFSSTKfUTiFNghZLaHUCox/FpG/GZBPy07fg4T3KPUv5ouPy5z2f/WzLMzst24+/xAPvKjj5QOCb7nkn950+zc//0RP84bOXeVhoVh9YpfrihK1nCz751pd454kH2Jo+wz2D0xwiiGJAhsH7wE7Y4y3L9/B7X+rRJILTG/s8e/Vp6mcDq48nfO2FPr/6CyVXrjgu3K959F0p5YkeH/zQc7wyblm/WfLAjSlvucez7go+9tIO3/6WM5SywgbLblsTYsVZ1zDYeIzDa0/i9p6hLm5xOG0pL2WcekvKR7+wi7oeOPfABpv3r6Flw7vecxapxoTJ8wi3g0pWQK4RaAitoG1rmrLGWkvdOPYPPF7nDIcp+aCHTAJt40B0KFoxDjRLGTuThrJytDHQ+kiaabAtretofF1VGJTRDPoGQ6CoplhAzO6DykIudKdQhUBJgfcC3waqukGLuQIOM1pJd9zEKLxSBBEWC/idm8iiRNn9uKjcSILvYOG5rKMUHb0IHxGpmnHUJUKAd6DznMGwR29tqRMD8N19NRiM6HvoZwlJnuOcophYVlZTdJqSiyWm9QG7+1O2DsZUrcXFAHhsU3fUy0RCgATH9vaULNEoqUn7ORHB9LDC1S1t1UAErTuBBZVqmrLFlQWToqN7BedRMdB4z8Q4VlKFbFvaKtA2HrxHJoDRZKOMxBh0iMS6pfAW61ukMoQALgRa52lkRCcK1e+jbQUhIlFouh6w+VBaLSpkcz39RfwXWZhxzSH/ELtkZT43gblE5tGmuzDm4vieOscnjsYCGFj8aT7vEUL33oSFCOarX83reseO3bmGOWIjjnGsxZ30nzm9J84LZl3/x5wSJiULtODO4/+Hz8/x5KSbzflsiUVVdnG0Y43SfzLAZpZmCIWSOVIktGGKEBlCPoRUd9NTJ0iTiBptw+YObVnT3phy7aWaq1crbldTqt2CtfsbVk++j7ecvoeVseUzN3f5wvYeD0q4/43nuHTxNjdvjxmu73M2HzF1W5xOVtmPLQaNiqpD8aPl3nSND14MbJyONHGPq9u3KW47Tr9piYc3V/mffusFsjzy5nuGXDi/wjgx/J9/9AmutpqruzucqQuGeWDsWi7uFTzWX6YQNU3wxOBQoWYUI0l2nnL3In76PK07oJmCLzL6ZzQXr2yhrx5y6vFH6I2WyHuCk+dWEbKC+vOQjJByCGqlu8csbG3tsXLyzvP7ehpido1736leSQntTDlNSnFUqZ8vJfIYOnBsMZmvBQuq2xwRkBKpun1m3rck5UzBaDY62dKOAaPmz33VPnScTte93+t4nXmN47U1JB8WyMmEfpZSpIL9sefkKHRwsxAkWpEpyUtPbzNQkAwiIaY0VmJn1X6Jwh7WuDLQSPDOEugmpJcbbO0IVcTSGZZaD0tnlmi9Z7Iz7foIXOjMgaxAoPGzyntXzOrMNLRR2GmLNoroHb6NxKgQCrKRxrsOQfCuW0ATLUBrYhS4Sc0oN4hE00ZQGnqZ4uBGweTW4UwOVWESSWoUZYhUY0+aJzivOiMN12m240tSLUikQaUpQSp2rtwkS3tkvR5VUaFgxtWG4C2ba322DyuKqjs3UtjOOyFJ2NxcpakKGp+QJkPSPKUcW7xvMH6CMqa7cUIkUZGyN2Rzvcf+jqIqGurxHpWr0as59z3QI6Q5RrRo2/FcdRI4nBygW5Da01WGBFIZlkaGg61pp5ARGsr9A2RZMeonmNhy6txprB0Tmqo75wIaJbHjlpOrDhVaEq1IEo1JBAbH4fiQZaXxTTcRKs1ROiCChLbCqB5aDlByGSVPofqPY8OvItwvM9zcYbju2Xg88Mh3WJ77ZOBHf75l/zev8ci3/1u+8Tt2eOtj7+c/+/Zv5ZOTK/z+v/tFbn/qJg8++vWcvOc8F3/9d1j7QMm55gofbRP2e4qHM8ljesATzjOMlufbq1z4/u8n12u8/Mzn+dyv/g/4UvCev3uCk1phEIwe6pG8a8in25x7zENMntlGasXpd34j6i3v4Mlil2S8y/kLHjm+QirXGfVW8HLMzWf3WdtM+eK/+Sc8/9xtru82lK0iqoQmm3L+oOSdb8p4yw//x/TiGOrLJOt9wq0nkZs9ZCKJboqvKhDgm4AtewSv8FFio8IrTdoDIU1Ho1ORWgaiiljr2b5RYOsKX8H+nmUcAjKRjHopq6MeW0Fy++YE17ruPu0nZIOM9fU+xrX44JnsN5QHNWUjKEvHynJGlIa2bjrFB61oC4tJoS0bbG3xs2bS4GfJJSyq2EdLrlj8J6VAzBZtAG8jUgmkjLjgZg20EpNoTCJpq9B5eDDjqyqBNimSznCPJCUIhZAarWUndoBFmh62bQlMUKbH8uoQshyB64xzpCYKSZIYBqt9jIy4qsSWKVXTcWSLuqVtoSw6aeOV5SHgqWvXVf5bSGSkKB2lhb6WbPQVMrTsHgp8osE6RIwoY+gP+9y16ahdySAz2A5AwhlN2htAqMiGGYmICOe7PiLv0T1JqgQNkWbS4GwgTQ1pL8HWNb4VaCHJU0kUkYNjEphdgNoZOM5pQ524Qhd8z1HXDvqPi0B2EasCsxcfzeaCOnRUhZ7/Ps5hgvnPx6p40DUXzoODeeXujq15QSH4atiyjzV0x5nPwDF3VgGdZO1xd+NZ8V4cQ3/mPQNzd9e5yopcIATHUR069AcWz58fNwaOeh2OBV2zQuoRXelP+h0BIRQIRSZWacMYgUaQI9U7kfJRQnwG4q+RDndJ71/hDXdb7jlouHHJ8nO/ecjubz/Bu7/P8ZaHv5mN5Tfyzfffy+Vmn48+/SGuPbXNu9/+XmL0vPLSs/Qu3M2qP+SWWOaSrHmjzjFoDiLo6LlebfPOd383IhnwzMsf5qlnP4KIKd/1gfvp0XktbLxhA7+5ysV2BOUqSxs3SddaTr7hL1Av30PVliS+ZGM9IKo9EjEgyTTleIqfeJLUcePzH+T6pUvc2p0SY49oMkTPcWJ8wP33rnD2vf8FTF9EmhqpLRTPQK8POiW6PZCHxBjwLjI51Pyzf/lJ/tHPevL8TzQB/7+P40H3PCkVUiK0om3srLjfrTFHCOMsAe5+YOG3Mr8W4Y4E+qgXo2OHLKr+c2okM98WuvVNCrlYgKQQuBCOkvNjdLuvCvriaxivKTmohKDykV6UnDl3ijCZ0B9FVG1ZWupBa2nLms2TA4T3rKznOBdp2oAPAa0lblwxHU8xUiIF2CpQN44oYDVXSCHwTTtzNA00LkDbUVPctEZGMD2NyhLauf5dYwlC4mNXATfad5QGEWnLFqW7ZSi0vrt4tAQpZj0HEe8FtfUkvc5kTcRObSdKATKS9TImBxVBS5oQyFTH1U6ANNc0k4beICUERZRJZxTlI7lyiNYjU4PUnTSkrSu0MkQfaV2DixElARE6s40sZXfrFlEnBGLXFCkUtoAlk3PlxhaJivTyBOEExSFkZojQgrqt6eddE7FSkcFgwPkLd1OWNflGStUrsD7FmRG3W8PtvYIza0tUdYP3nf9A0Qiq0rGeK6Q0HYpiOrhPKMPdb1zh9q1t8n5GaD1lVbBfNuS9jCWl8DIj62dI6wlNQxABV5XsHzYsj3pkvZwkESgKbu/vkeU5A5+SatPxw4UmkTlJsoQAnK9pZIonQUlDFMtI+Rc5NPfTD3+ICVdBe7ILPR67Z8wf/sBJfuZ//CS/9/E9/renfo9PP/4i3/PXf5C391NOfu+P8W8fv8X4Sx9j9MpnePubvoWwp/jZ377IT/zwu3g+jnlx/DluyClv67+L0+EpfvbDz/Ofv/uHiLLlk/VllpNd3DfnXHzR8q8uHrD5Ds33PfI23nLP23hmPOHX3cPoNz7P3/yRryWufQO71UmaV57nX//EL/Ff/ff/JaP+LjqZ8vzlwO4rezzCFf7nf/rbnD+5x/l3r/KmjU3WVu8mHZ7iyt6Ys8t9Tg+HqPGXiLpADVPs4SFpP4OmoD1sofJEIbFoDg49TZDkKymTQ8t4AsVUUU09ibZMiw65qoOY9Qgo1tb77OxGXrnVovsSPXbEOmCl4uVLO6isT4ogyTSOAEohUkM1bTg4LJABBr0Mi4IoSL2nLh1SxM6EJnZVGes9Kmq8NEgTZnQk33FLZ+Wf0JV0ELFDAo6ij27xnzOtY8epQCiBmiFv3ncSltEFbIQsV131Z0ZJBIExBoQmMwZfgRWebGXA8tIIX7ZMpw3JcEjdCJSryHKPyXtI6QCHay2ZiSznGld6Dq9f58zdG9x9YpXpfkHQlhg8bWlJRwMmzmOMoJpGfFtRlQ3OO6SMSNlnZVnSOIuSGplkLJ2UxGlkZ69maDTROdq6wWnP8vqIK7cd1bhgut9inaA/TFlaMiT5MoMItmxIkpTBqIfSksNpw7gokQnE0OCtp/KWIAKrSZ9pYTn0LYmM9DJDnh1tBSF0ju7dBixR8s7APc538zh/ztFeIeYsk3hMG5xjlfB5MjEfx9GEed+CODrWHK14NXXly/jV8/jhtWxof87HkbnZvCx6J4Vi3l9zdJ66RDjEcIz+ExdBe/yyeTqiCy3OqZwjA3eeweNJ3RyZmx2CI3O0P90QAhI5wsZ6dixNZAjiMRpOkIrPIsQhIlNkJzT3bjb8zNtW+fV/9zv87h9f5uKzv8Kb3nSJRx/7eu4zhpXH/iN+89we21c+wfn+Jmc3HiRre/zBS9f4vq/J2G13ec49x6rqc05toJsb/OQ/+7/5+//13+KgHbNmr3BidZ+9tSUuXivY2b3Gu997hq89+x3kyUleaSOfb4akk21++v3fyiR9mLLVvPjcS3z2cy/xQ9/39WSmJFUtL9+09OwUM77MR556gs21bU689R7u65+mNziDI6OyLcM0ZZT2iMUzqLS78INtUCYFNybUNdgpQWWUdeSpp3f56X/8FAdj19GGX0fjeHCdpAZjDFJ2nh5GyqNelzBfbBYvPHo8Twr+Azd8t051MdZCgUjMmu1DZAaNzQoeXYFUCNk9l4iUEjPbW2IMM8O/+foiuuLHV8Ni8/8yXlNy0N8Ykp9eIU0NGz3BtUsFDPoYpckGGfhImRSsLg3Y352iGoutLE3lKSqHrxqUTghOYBSdKorrml2djOxslfT7GUFoWu9oGgcI6qklipnBhVZEoxGpJg2CYr9AKglKIgPI2eRHF3EC8qHBNpZgfdcNn3UVk+gi0cyaU7zDTSPReVRmyHoG1zpMLyHpGaTwhLoBBJO9CpdqxLLCDAQqCnxdUxxYokwwQpIkGcYYVN1QFY5MSirrOpoDgURL0jQlEBkMU5IkwzuopCcaSdsK0l6PEA1KpAiVIFqPCi0yCqxzNDagpaAVUEwPuO/8BoNhH9+0CDxKdRJeNy6/TDZYRSSabNSDSjAdFwgZEFHRVAVV7UB0gYGJHt/vEbSiKmuGqSZJMhyCaFuKw8jS+jJ1W0OiyJTBOIHINd47Ki8ZFw3TomBaTklly6g3whhD5QMyeFKhULMwL82XyPJlUpMcax5NaWxJLxlS+BoJaO3I6JMIyS+2Bd9nNmnk+7EiYnBEv8WBvYyWGX/tR9/Evd/2CT78+8/x7Md2+Ff/8Bd54L1fw/u+Juf9Z1e5GB/m5qXnePryE3zTYz/Oib90hn/6zC8wyGomu/vs7+7z4hu/yMGNS+zsneLv/9RfJ1+3FIcVtz9ZsfRXR7z9je/iwy89weqZc3xRZ/zBk5/h5ueusv3Ub/DDP/5t7Kolcp9yT2JZOX8XN/+7v8IXrl/ik3qJ09c/wolQsznIsWstf+PvvZ+09x6mfo8gBgySAWtp4PTpHaTfY+v5D/GllzTrWcnp9DbhcIo5oeDGAVUCIUuYVJHxYWC4nHHy1BLjXbB1Cs6R6YAeGXYOLMW0xfQHyBmCo7VkOikYDDOSRtMPdYe6tQFrIz0B/ZEmmpQKaKXCR4GvatrWYrTCuoAxCi0VIAhOYVKFc568l+ClwAaIJsW6wLRqEUFgm676jxDoRONa1wkOOL9QiDgGHBzRGRYVHBBKkKUaKTsFNGtnr3UeYkBpQZC6a3JMU/KlAXkqSZOE8uCAutL0ZMQMe+jBkDb2sToj1BX9JKHXH5AZSVVMMFrSFmNsUxGdRUuJDIpyv8EJQb+fkurOl2HaKkJlkcGjSEnyHo0vsc0UgN4oRRsFwWGLOHOc9oyDZP3cGsNNS6wtbVlSVQUOy9YUdrYOKceORGlObo5YObNKlA25UlTXdzBakvclWQp12yIziSwsiVCsDlKm0nE4tUgb2D1sSTPdFQcINNbSTN1ivV/w+pkHoMejyCNd/Ds25gVQMKvyz2F54h0B57yPYcEBPv4aju238Sj/OB5MLN4z3vHf8Y/xuh5HzLlj53v+c4yd2t2xcye6J8+C/SPk4Mt0VRY0i9mP87jr2H0WZ0jRkcfFsdd3BIA76Bt+8RmP6FB/gm/6Zd/bkNHGhhAdlsiXfMtjckjLO9BCIESLDxNsPECIhPe976+y9uhHeeJTN3nmqZe4tX3I+Tc+wmNnE751dcR1+yCT8Q43pjc5v/E20gffzIdu/BHCtJwMaxwy5UvxcxxObqO+7h5+7oP/LcO7erz05DX26jGnvv4k4uV1Lg4137j6OJ9vW3ZuPcnWK7c4uFlzb3+Tm81drGrHphEMLtxFurHGC4f7fF5mnNt9gmWdIXLJ4EzOe+7/VrS5QBsLEANSbRhKx2qsEL6g2Pk01273OTG8Tup2IFTIPML4Nq2WRDPkc0/e5FOf2+bJZ/c5OHSUleUo0/vzPb5SxT1Jk46RMFvyvfMsOs+OsdqART/T/FhHiS/H1qnZHiHFgsq4oKHGSJRHal6CWW+BoOt3i3fuPR1K2onfHC9qLPrmXu+Lzf/HeE3JwWBtidWTy7STmude2GZtNUVpQ10XuKqrICIC0dacWE2QbeRmUeMaCz6SpLozQjUJvq4QWiJSjQGUkWxsLrN7+7BrdEwTQhDY1nUGZ3Rz5awnkRn5IMdOK4yEunbE0GWDaqaUJJMuaAkz8wopBVp1vGedKbQWXZOwEjPZN4/RElu1uMbQzzS9VKBEZHJY0wL9viZTfXBdQ6YymmnlukArCwTnCE1FSyDKrnchTSJta5lMLS5Akif0l/tkUVFHj1Sqo1iESJ5rvPWoLMPkeafoIyNZAiZVLA0T2tpgvaQ/WibJcqqqpfWB6WGJNBoQaKE6igkdLas+PGC4OkSqBKcNXmtCbWkIqNEKQVii1hgd0bYgSU1nPuUlNnQ3mRea6FqM7pqKTZoRgkAGyUAqnIDUgEpSSilorEW3BhciReuZVi39ZIAWCi0NQUhcVCxnOVJlVCGiUGSy6zuZNDWoIUYJnKtpg8cZz1CnfItZQpByNeyho2UYEiInGWUP8kTxO9ydnuGhB7+fcX+L/dNP8sqvfYzipee4ub2DHwvOPHiBsxfO8+LeLh+/9QTjrd/kxi98CqUscSPics/Bv7/O8n9ymoOPf4nxtQNW+xok2HGk/EPP0w+8lW99z3fypas3+OyHnqC8dhGVRobffJKPP/ckxbXAucESlw8Trl3NOfOB7+ChzQHnls7w+b11fF+QndtgW7Y8snaBVK0Q9gI3p312JoqDUPDwQwmYk6ydfoR7wkWKgx7Xq00snp0vjlnVgipLGMk+aW5YTiV5olFJjmgkaU+zIgI6cRxMLQNncXXFdLehN+ocmkNiyAcrTHwgigJvG0IbMUrR6yeIssU2DakCg6RpPWXZYquWNMDKckKQCu1mTf0RdJpgCB0H3XRKOCE4lJYURXetL25oOnRBzhplvRd4xyIoXFCd5UzeMcZOlUx19AmTaoSEtnE41/kjzDXwoWuelpqObqcFvrGYYZ+1s0tY79FKkmQCcGgDkyAprt7m3EaOlgl13VC3EWEkSeUQbUtsWmgadGjJ8pS2cZTFmFy0kGusgqawTAqHlAneR2zToBLFaGMJa1uMNijVMp54lDEoJTp/kqYlHRuq2qGyDAZ9fKKwe3tceXGPybSmLQP5mmG4lLCy2ifLcsZ7Y5rWUdceHyP9gUcgqQ4ryoMJcpQTlCQgSDKDUpHQtnjRMBwZtDGExjPeni7W+zDfCGOkA4zETPBGzObtiNozr8b5Gd8d5s/rOPKhawphTjvq/s7C0Gg+Xk0IWgSp8zdavFZ2lbxjycqrE8nX65hTegQd9TUyM3k7Cpe6uZmX72cB+zxYP36y5sDDIpnmSIn2VSDMMbpEmL1HQAp5hEIcj8Jmv5MzXvaxo/yZfH9DggNCbLhPpng0u3FMD00nSLqOUpvcsM+zbta578z7Ofz6Wzz7wvPcuHqJ8e0XuXK4hRh77n3gYVhbZyfAweQlbk+f4PqHnqIdTBmeGtLYhqpuOPGWe7i58wR7u9d54OwGVSwZb7WkTwvOPv4tvPfuTf799pgbVz+NL2/R7xtGbzjNweSAw6c+wUPrF/nklZYm2eShx9/CWpqyki/zzN6Q9dVVYqaplGQ9X0GJnFAKDtqcovIMU1hZMaBG9Eb3seau0TQr1DFimy2q3X16StOYnLy3hJeexh0wmXYLqXNfgYr553wcN9bLsgw9cwIPMVJMZ+vQApgUd1zHc3rcl8Xld16e3UPZiSssEgDEonDhnV8gD1LIRSHDh9ChCzIsPuNxJE/MQYNX9SB8NY7XlBw0zlEVJcXehMu7NSfvWubuPGF8ex9XWZRUqMzgi4rV08uInmJrtyFE21XzpED3E0RddU3iQqBTjc67JufUCFKtFvBpiKKrYDYOdERpNWtWjojW4cpO8Sc6T4gSMdu8ohVgA8GFI+k9KUAKlBAoIemNEprSdYoOSkACiaFbZYPvAv1gEEg8IFNFf5hC4hCx4xsbo/CuO7xKNEZ5JIG2tThlUP2UVAfqadM12giJShNWTiyTe5hWFmsjlbNEEUkSRVN7pDJdYiAkKEEUAZlo+sOMfJoTJk33vULASEk0Eh9cJ5XqPUJLUIogBY0LjMtJp0OfpkStkekA6gn9LMMHhZCGGB0+dpxyHT1F1YDQBK07WlMUaNWpMvkAw14f4TuqVgiCiKKuW0wKOA9BIFVCUJq6tUyLEpMYGqMwEpQW9HtL9LOlGZVII6QiCIEjUnnIYsS5Dt5DghMtiUzZkDn7YQdDDyIUUWGjZMcJMnmeinWWcs3Ddxsqo3je5pjl29TjiptNwZbfIy1TxsUBlz/yQSYXP4O9vUe8G8gUPkiaOhL/aBs5qBm8Ywk98uRR8YbvPcG1Sw1b7QNsLz0Ea7ucv3CG7NQjbPUPuO+hU4jdm2zffJLnn3+F4uWSm7dgGizf8WM/wqke2PvvRed9lpfXsY3n49sGebDDiWRAoZY4kIprey3bH/4ihy++zKMXSpKNHWoVGVvPeGrYKyTWa8JA471geWRYGiYIFFURQA+RQUBsEUKSDHoI0wkFVFaQmBSBxjqJV1CFHO9qcq1RSee8mmYJRmsmpaXykTZG6sZjmwBRYjJDEIpZ+NJxQwGtIDqPlF0hwFmL9xasJ8zkUf1MulJr2QU5UuB9x/E8oorMg8xOu15queCdd/+6qpBtO2OaGI72hDtkNONsgzASoyVZpkAp0kEPoyHtGZQRBBFQicFWDcKkXbPajLqhdYeMIaD1gtpGGheIWhMqSyiKzm8BhZSSfj+jqmuUUrSuQ0H7g4z+sEdVlggnOvlXZegNeuhUUTQ1TWupi4q6dGAVepCitEYpxXjSQOjsXIzpKI1ZP0W7kiwFPzvvVdPg6XTDm6JGyUhsaqxUuBm/O7iu+S5IS6J6ZD1DzAzFcm+x3ocw176f8WsXNCOYB+PzJsFujkS3FszW78iRwOi8UXmuEtJtqnGRaHR/Wzz8MtQo3vHg6H0XSIOIR797vW/Wx5GxKCAu9KIW3y0e++6Liiiz9GH2x7hI5OZzIRbiLHeoHx2dxKMPMA+GjslHLqhh8/lj9jkXyM+xz/mnHFJIRJTEKOgLQxUKEpEToqSNHYXYh4iRa7T0GCaRC6fOooXh9mAZNahwjWU7mbLjC6qo2Sp22bn2GQ5vPoUr9lAbgZ2wT9lGmjJQPR1JBy3rbzwHmeXuB8+yuqo5cEPs0gXG/TPk5T4PnhT4uEvsCU4uDbEHt3jxxiW+8MJlXr4yofVXCXXJX/7272KkI8WJMywNlzGq80B6bj+ifcGqziiioY6a3d0x1158gfLySzz05px0aUyBprZQN4aq1rTO0CaaFy7uc+36lL0DR2sjzoWZse/rIy3+Snx9JTtqaACUFNR1M78M73zuq6h1i2MeHXx2GmaFCCG+rP/gVRkxx39xZ+Px7N4JR74HXxG9/Cofryk5ONw5ZLsXaYqGcYRQWB7cCITWd9VvExFaE+oWTgmQGhtkF7jLTo8/0ZI0iyhtiFGgUkM6SHEBdAzk/ZSmdQTn8SHS1p0ykBQSkQoSLZDO0x6WNJOmCzAUBCE7qDRGbOPxrYfoZwoaRw0kWimkVCSZIbhA9AEpQKUdT990UkPY1lPVDo0gSIFODEmqCCGQpCmJ0cgY0M7P5DolWSKJrnOcdUQcXSO27crvpHnCaKXP8sqQgVSEvYpy2lDbgPCdQpNRIEKkKRtMnoGLtN5hegYXA2k/o6k8BIeIjjxLENKTJAlRRqq60ysPM2tTqSJFY3EHU5SpMHkfnQ3wPpKZBOe6DSj6gMMhYuc+7V1EpZ2jrI2C1ndus01VgtEMfNdc7mOgah1SpRSuohcFvm66hugkRxnF1B3iWkuoaxotUSLQyxWD/ogoEqLzJGk6QxOAoHFofBD4GLu5RRG8pI4GGxTjULEilimi5iAEVHTs2ANOmwfZqQ9ZUjts6oSvO3OB9n2ASeqrAAAgAElEQVSb6Jc+Sv+unEt2ysWdkmsvP0uY7nLwwpdoditWHhWYRzNcLmnHIM8k1J8vSe7R9O8dQFmh0Gy8bYUdO+b82mmuhSVGd23w+INv5O6s4kl7lc1o8Bu77FrF9cOncWv7rIwE21e32Xr5BjvlFv7UKVyyxr7fYIDiozdfZnlqOXlilRNLy+iRphCRGy/Dzaeus/3089z7tRmmrylKyf4UkqzP4e2SfpriCoXVEpsmoDRVDflqZwLSlhFrJenSAJUHnNCo2qOkIipF7SLTpqEShrYFozQy1QghSaUi6yVUhWdvUnfXQYiEAIkxqCShaD2xhSgkkW6+cAF8RCtIpCQKCR6k86RaEISijRAIi1JmiAtlTI78PbvyzHyBF1IiOZKhiyHi2kg49hxg5nAOiJk0p+rUL6QElUjSRGJbR9JLyTJBPsxIc0MgkGrIlnqoLEPqBKMUKI0SEqsFTbSd4o+LtKHbzGKYVe6EwBE6kyWjyVJDtI6oFd53PPAsNQSfUbYNdQNohUkTktwQtaQpbVfBalt8bBBGYHKB7KUYZ/F16NZNE0F5fGxpxxMELTJTdCrNjrqJEDsd+jxLCG3X34TqzoNtu6KJzCWqa9FGJprh6nCx3seFLv5McdYHjDoWQHI8OP0K+urHKtp3BASzGOYOI63FC45efvxox3OSeQX7OKJ/Z2Lx1YL0z+kR8OqsZ/67sJBUnFVE5wnb8XM541eLmQPtHGE4HvjDMcrEsdz8qOfhaL7nsdfRG88n5egz/5mMKAlobIy0OHoMmMaupyJETx0aRuoUY1swVCUnVA918m7S0Rri4BL9NcNlP+Xlwz2auqCY3mDn9rNMd/c4f0GjL4xonCJrNXUhmF49YHCuz+aJTerDLTZOLrO8PkBsazZ7I16JKSfWT/HImdMEWbHjCnqtozHnONAZV3aeI19LUKXnxo1bvHJrCz89JDlzhjE5/ZjResuL4z2WgGLUY5gqSBR1c0i9U7L3/GXayZizb14GoZmWcFhYiiJCASIPfOaJ69zaLrm9U1DXvuvZ/JOyuf6cjSO0rFPDm3P74ejSOrrM4tEF+BW4jQukkXmOIBaJ8vFiREc7mnuBzBcPYFbomB8jvCopmD9dvD5ysT/1eG0NybcPKQcaeglLg8D4+gEHqwJSjXMdjSD6wO4UBvsNoXbs7ZZ4H8mzhNZa2rJh/VQf5wSuDggl0QPFtBIYIlEHlJJo4RCNJyIwSecUrFUncxpah3URbyMmFQyWE9ooCTZ21tuNw1aWNJcEOr1xKSB6CDYiEkVdOCTQOk9wgcR0B89yTVkCHmzlsI3Huki2OaS1jsQIhAoI4cAHqqKhndYkfUPa62g0NnTKya6xHFQ1ddOCMoxGOesnRuQyIe/lMPFE47oM13mk8PQzTTNtaWOAVuK9wEVBTFO2tvYx2agzlMsSBoMeaZowqUDInGBbvO7MPlrvMTEwGPWR4wQfLKHu/Ar8uGRalfRzzXAwwLcW51qC7AKZLE/IhjkxttQ2ImJnNlW1LbFt0E1Low1pf4hUijq0pEYjSLEOAoI0MfTynLSXI4Knry2pUojgic51qISI7E/2GOmc1rcEnSB0QtR9lDLYmGCkosNjDEpk1GTsBIuJJyip2fKBfSc4KRUXsnNcbGtevP0ZRnnCQ6O7WdLLPFNdY/uPt/nOv/A+vm4I09t/wKXLn2cUS5bPCux35tx3NsPqJYLWZAaGpk/5TSnP/5OnKS7vEAeCQ+G5Vm2xdH6J7z8veCLNeEUapBKclYa+eogXmwOu+0PuPvkwJ75nnVpMaDDs7z3IT/7E38VeLhh997ew/Ka3c3rzPh4YDAhuypsffzOfDgNWeoY35JK1s/dw7m0/jvtrP8hf/rbv5f6dPe5ag2RJUw5z7r5rxHSSoAYZS31BnmlcTIkxpWo1phFIS+d9ECRaCIJMkalDtwVSOIKUBCvY3nZM4rRzBHeqk+E0EikltRf4oCimlqg7lGC+KhbTltp6VBDkve4eC7WjbR1GSvpGoYOj8R11JNGSJNc0daBRnrqK+OCx3hF9h+51MX0X6MtZ8L0IOgWdEsusmh8jBAco0ObInNCHjl5kZt4mqG5DCK7FOomzgaStUTqhN+zTX+qTZ71OxtOXLOU9jJQIqVFGg4w00wlBeqpiQmgdRnbBdNG0VAIKZ5DOIXV3/49Lh9YpVTFluLFKU1TE1tIULaAZTw+xViDaiig9qUuRWpFnAxjk2J0pJms6U0WRooYjRmlg95YjEmgJTMpD4lZLnJSoxmHyjLaRSO8xInTJlNZEI3Gi480mRoPU7DUNSkM66qN1Qj2NROGIx7YCpWSHBgCiE4Pr6CyzEv68khZCpHMXDXcmAMeCUylFp3gzg+Tnm/mcwrIY4tXVveMb86yaLo+Ui+7Ym4/RFF7v48tpDK+OQo4i+KNHx2hgs5+Psqljwf/8b/EoKLuzInosEVjMYzh6T3HUbzJ/cKTi8mfx7WeHFgIfFUW0yDikxTGeSU0OhGZFZ+x5y43JdZbzEaeTFBsiF6uS4tKYdzz6GI+lnudf+W3Kw0vksuDkaY39mnXeuDzkQJxAK09PGVL6FA8JPvt7H2NnKxD6kp2bLyMJnF47zzcsea7kim0EWgpW6TPUGdtUTEPL/csXOPeeE1gaKp+zvav42V/5JcbPHXLvX3o/JzfPc3dviQ2jMank/PomT4aUr00FJ5Wgv3ov/Yfupn7fe/mpH/kR3rRdsbIKU6m5MfHcuD0m0YrhUo9Lr0y4fvOQSdF0fVYuHEkGvw5HjBFjDNokM5rhTDJ5jp7NstkFmDjbf+a/n4/FPRLiYs3vkIdZA/JMynq+gi3Qr5m0fYhxIas9v3tiOO7CeewzL47y1T9eU3Lw0F1LPHBhnUIkrLrIZFDiQkQPE9JU0/pIADaXe5Qi42DnNlJJpA/Y2tEfGvbryH4VOLOe43qeomg53Kq4cbsiF5AvZ6S9hNJZmrqGVKIlKBeILXh5lA1muUJISTI0hKIzHWkKi6sdrvG0tSUdGaSCJFGICPXEgrO4YHCVxRgBUjIpHeuDIUtrA8pqAkRU8OgQUDYwMkusGoFMEozRRB+omrprOMwEK+s50QsgYGIkWE8mPWV0CNNdgHgQFQyHCXu3dpHSkKiEXuJxLmKsZ5RptoXvGrZNQPcS+ial30spDksaWjaX886wzTnSnmS3mRBEV6Yb5JJeP8H0UpoWbu9X+OiwbclwOCLLEmzdMhk7ZAK3br2MEhKlBMoYdDai8QlvePwMr7z4MhMX0YmhpwTWtrC0jB0fEItDvPAkgxEnNpfY260IEerYIIxESY8OU6SPrI2GJNKRZQbbTCl9jck0A2U5mDqadJVsqU+qe+Qqp29SGu9QZkgkYIg4oahFypLQpNHySuyzLlKMrBmqmkkMvNxO2aTgPaffzQvjZ/jItT9A2j3+0X0f4Efe+Q7+4Y/+HI98m6NZbiixbF0NnP3BnNVU0dt8gHcvrXDGnMGLDWCf9uRZqp95iN/65T9kyx1ysBW4/awjvK/if33yb/K33/5LfFpt8FwMXLSBc7Hl9t5zPPXs/8XW711HPXwf8RRMXv4s5cf/Be1TE0IT2PkX/5qd+EtcFJKnNtb5uV/+57xpNOAbkpSnGrgcBE5IVpVgpXeKX/793+Bj//vfoxhfQqpAtXNIW2Tcc/8q4/GUsomofEC2tEyMikR4ZLqCSg09UeGLirryTKdjdArFeIpSENMeTUjZHwea2rF5doTsB3AtCYFMSYqJY6dsGZ1cpSmargfIOqY7JTLC8tqIvZ2a6B15L2HUH5AuOZIoSFLNZFp2HP0AIkkwuaGuW5QKXTIQO0dz7zur+naWJAghEaKjscy1qUUIM5pFXGwSSncOxyGA71Z6Ip3E6XyzkEiUB2UjUlleubaPEilrm8sM0yEuT7BZjzNnV4m+xjvNYdEyrVpyAyt9gahKkCmrG+fIlYEoKIqS6vJltPBU4wIpO2QUoVE6Ixn00blgNNBUrsSVTcdxTQTGR4iO0reUt8cYregtDxFacfDKLrUyuBBInWcp1iRSs58OWL4rZ+/qNnvbFfW4YmUkSXqSodYoCeVhgYgwHCSMegrVX4LWUrnIyc0RKMXWbkHqGyZjR60FedugtMYi2R+Xi/Veiq4aLaEzoZ8Fl/OAdZ7IKdVV4PzMyOrOIvLRBnpUgeuSiUXcGbvEgtmc3lGRi0fHWzDFmLfZxiOU6Njoqn5fLRv3nTSGVxdKlVIchTKzZx9PEOIRN3vOqRbMzNOOzc8dyM68MjrDIxaeC3LuScIsITxK5sXsWOJokv5033qGDAU6hbIDDEtoUtEShKeIgR3fMhQtjyw9wpXqMp/b+2PWzYDvXnqAf3PuXv7OP/4/+J7v0hRiwuWiJQAPXBiyqQ3p4E18dzIkESdnCbHDD4Z80w88wO9/6teoh4IXnnZM6ob6Dbt8dO+X+cHhf8NnouDZGMljoO9qtvau8IUXPsLetZqlr3mYib/F3s0XOHz+Cnuf2qY69Fz/2z+NiBKTZLz1rY/zk3/rxziRJpyXkksWDmaoWyo1vf4af+df/jw/9IHvpLUNg1wTnOfW7pTWe8qqRsRIawOtDVjb9Vop9ZpCuD9X43hCqrQkSRVNEyin9QKh6ooRcXF9L2BH5pf40fV7vIchhjCj0cWu5vOq5yBE53sAC/SNGInz3qhj79Ul0HHmCh4X7x1iPGro/yoer+nKur1Xsbw9QeUJQUJPOPL+KsMUimnD/kHL/rhl3O5w6tRJykxz6vQSPQTY0DVA3jrkxP3r3N4+pNwuaKsGJ2G4bmgKTxUj3jUoPEu9hGKgqCYlKkqUUngBUoFWAqEUyUhh64BrPLb0NJXDW7eYcF93CkAy1aAVXnlc46nLBtt60kyRDxRZrpgWNWxHUt25Eqe6M3CaBkHYGrObKYSoSfMMZQwuJrCk6KU9LBKtPE6AI9LvabyzxNSgnOt43MYBJVnaIDKNaC22abFFTWwtMdFMK82o55micbHjFyeJQMmapbUhOh1R102nhpQprK/pJ5LJ+JDVE2uodAQ+4GtLSqT1FaNMErMlKqcoJh4tYHkA9e3bjHcKlpb76F4PFw1FWeNsyU6/x/ZWgzGSpGfwWY5ZX8VWE/IB2AjeBvy0IcSMteUeh7vbRBSp6REEFLbBhIZU5+zsTtHLaUcXIyDkIWath9Q5VfQ4a6H1JCJQBU8lJL5uaEWgDiBMzijJqITmd9uCbzAtLlpEKMhiQysyHlAF+zHjmfoAHwyPDc4yChm/ee0qf+PhC3zwn38nH/6V36G+vs/yScfpt2msDnzg0UfY6J3liribZ33JqvwixAN69gs8E97MX/zA9/LUi5/kE89/iUOvuP0PCvIfeorfevCnuGfpP2WtvYsvTfaod79I3P4NRHMPS++5l5u/+rscfOLzUAZiE1APGLK7RjSfOcBvtQg0ZezxD34j5X/5K4dsrK1wXxBcs4KdKBgtd6pOWbLCuW/6AW698ARu9zKbZyxlscfOfsVweQNcJJg+2ixDDIztPsL3qYqG6CTIBB0866dXqYRn2B+SZwlSa3qFwwZDrQS7hw2iqVntGwySclzi6si5kyMmhSeaTipYC4MWOStLCbZxDIY9mtpSFJ42d7Q+dA23VlHTo2oj5XSKixWDlT7KWqrS4m0nLSdnBjWudd3/zoMUSN2hBELN3HrDLHHoystIpeiUJiIC1VWmxZxy1FWMklQjEjmjFQnSJGM51UwLT5InVE7gDhqcnbDSMwjnMMsK13gG/ZT+IGGQQ9SGqlVoZXBOEVqLnTb4GrxzbNy7jmjbjpZnUtaTjL1xRTu2eANN6dnbK2iBzdPLmFhStJGgDUFDZRva7V1GJ0aMMsFda32EiuQyMPh/uHvTGNnS877v965nqbWXu869c2fnjGaG5AxFURpKIk0t1sbYgKPoQ+zACBLYCCw4/hQg9lfDyRfDQOIgQWBEiJ1ARgzDCqwIlmUt0cJlTHI4nOHs+525W/ft7trO8m758FZ1970cyqPEQDB8ge6uqq5zqurUOe/7PP/n//z/VjCoLUUrWDQrDpcN7bIjOY0uCi6Ma2axo7+xJAYgClbL3L9xcSzQRYlVlqPbXe4b6wLLVmEKQ+wSnVFsTYfUheGgOSnn+5CQ8uT+pux/Ql3JIzNcMkqnlMyL+akoVqmcONzhhMydlKDTdJbTBJrjV9kEnyoHvhvt8w8bJ1SYj+lYN0VuGi3EXUH8MS1iw6U+RSk5TolOZVgbMA0h1gGOXAfxJ9UJIcA7j9n45HBCxVB6nfjB8fNTzJWpTSAVT0mq/vsYt6OjTZEkBK9ExyMi4IhoOgKgENTC0aD5IKzQlDxansfFyI12yZcvnuPM3/xp/vGf/EvOV3MevD9SjjRaK7507kkm+jxXOUedblGIfURq0DHxrniYX/rcX+ZrH/xLDh85YvVWxyu/8QGDLzV8+8KjnJef51avudHNqNqr+MWLlPUFLnzuDF/557/G/P0bpGWupo1+eMyFS2d5/1+8ip9FtB5yK0749e/AX/9sQ11VnIuJA6/okFibEW6jazox4p33b9F3Ldl7Iqs6CrlGwdmg3esG84+ZjOnpkUgYaymrkhACfd+h11RMJWVueD/+4cOj8dOTxuk+glNzQd70pNk/hnjy9ONdfPhJfKfIAsfr1untf1DHRzNBW/TsX52hq5JPPXGZ/ULw4vUlD12aUFYGNT9iNVthhOS9l98moZm1LebciHpasVz1+FIy3hpmOc3tgtJJYgj0wbBQPbODDhEksc8Oj5USRC0pa4WSeaHRRqK0wDloZj1JpWNDJKUlvgNIFIWmmhpMZQgqN0GiJcJFVKEROp9EbRdwIVEUidY3aKVplSHKgmpgkD4wbyJuGbClxbYt1kZMaRE6oqKg3hrgmw7R9UiTkFbQzSJdiEgZGCiF7Hr2399Hu4gvx8QYkDKiqpJUVAgNLBZcunKOl97fR8RI8D2LgwVtUox2AFmCSJRWUNtsUNQrTe8W9CExsgVEcEnS+IjXQ+K6wbjtPEYbylGB9J79m4cMt7YpBgZTVciiopYW10f29mc0boZrPVpOKccVPqwobWJgK7S19M5nqlizoHeGeRup6wLZd2gBBYkYPK5bMapqrIByXCI0JNFios/N1EqRujlNigTv0aYCXeDomUfBfheY1AX3jCw6Rf6cMvQxENNRVpdJO8iomWE5DIHSebCXeZ6a79zs2Xvh37DlBN9+4z366SFpGplVBdNL9/DfPfwLPJtu8p4zDNIrdP4Dbvjb7FjBm21PN7jEH7JDOnuRp+o5T9/zNv/k2Z4bX13y6sO/wfDBb7NTXuG+/S2+8WzL41/6K0yPAjde/oeMH3wdU0raa4YQz3Lvz/1lzH2XmP/FPVbXXuITxvBf/cR/Sje5xP/6h9/kkXsvcnlrTFFVjCNcbQUPlBIpDfddfoIqweFkipYrRqpn2uzRdYFFn+h6x8GhwxqJ0mNu7y9YdgktBaWp0KVi1SRirSgmE5Jr6duWftUROs/ZS+fwYZ/UOUalgRCZeVg1HiPMsSuy0QKdErHP1bgQI6np0VqQJMTgaRL0MSJ8QGvFeGfIcFrQOo8LnsZ1FFaDFkQhiMllSlJMiABSCWIK2R2X9SQs1zr7Yl1VUBKpBdFlTEkamRMI1koWKfdGRASK7GuCkiACvYezVy6iigKpJUVtGI4HdE6yXY0ZjLYQoUVoySpIjItsVyOilix7aLtICpIgSpZRcXBrxplzU/SgxOgchDV9pBYCpxPdYkEXAkJnmlUzO2J1tAQEKklMUaLqAiM7BiNLvbXDtvJ0bY+PkjZocIpaLmlDiy0kwhRU45rx1pC2yd4GvetBSmxpGNWGcV1glc5o3GyBDyGbKsaIiJ5+ERmf2cIaw9H+nAAYThxDlRTHK59cJ2N+reKR+VrpexqHSRxz248X23Ugr7T8npA9+lML9KkGwJN9CjZ9J4j8fCHF8eueZjFtbnzcucCZznC6YnA3Gi/uePKHKTZlZDPeeRjSZl/r0gAnvXgpJcTaJG1TMcivzVrP4xQqu0H1jxuUT+G5/55gVIVEk6XJHxISRyDFhlkyxKQzNx1NkxJFiASzy3O94IP5O6z2n6V0gWevv8fuVscqRW4VUz69/SBfHj/ODRpuBcOEl1mG63gaCiE4CIFgz/McY4rpY/z4EO4Rb/GbN/d545UPePjiP6YcP8sl+QBvHFiuziyXz3+Ws6Xk2s1f4xNPNcwvF6zmA4S9j0ee+CLl7jY3H9tndvsNPr91L1+455MEO+Q3nn2R+85uY4Nj69x55PaUhdKMVf6O/v7f/wf8rf/yb/Kd579DngPX30PKPVspxWOn32z86j4WCPaHUf6CDwihs6+SUOs+UYVMuS9NxkwxgnT8mU/Ag7sngPXtdOLhIQQopU+xHMUdT92M030G+XpY5yMx3ZGb5AK1XG8j+V7K3w/W+EjJwUoYelXiOsELr97g0pMXOVfsEIOn61qCzw2yttRcu75HVRTEoSSkiE+JZRtoVokb147oIrR9oGt6SAljoF85ZIiENqCtwRSa3kdMgsJmDnQEosgyeqEL9IvcaCcSJJ/LPtoqsJKitCij8G0kxHDSqJbI0qpGIXVGG4OP+D7SOQhaoK2AqDHGYmvFjXcXRGXoZw11ZZFKZ0+FmN9baRV9tEgUvvN0y5bFyhNTYjjIaFr0jtbDtWtH6NozHFX0PQitsSprnqdCsXKR2uqM9KRE1wdc42iWc4TXlJXF2hJrJU2bsFXNaBIotSL5jhgFgURQBiE6ktSs2gXeJ6yRaGOyO60uUFVBEwNRSIZVRVlULGcNXbNkcmaEO1oSoyOGBm1L4mLFwXLOYDQihEjbtrjgEGWRzauEgvWilHnbJU1wdEaDVRR1hS0VkYqF6yiswWqDXzdkKwEhOryXRA1JaDySRRDs946zRrElKm4lSRKCSisUBSklhmhupIAqB4y15YF6i2kxpK92+Ob8Bt3rb9O+1KAfEhQXx5TjMyzFAQOmvPruS9x87Q0Eh6hh5Nmrgs98eYRTgRQPODuEcFjywls9P/QfJN56V/Dd3zzgnl+I3PuJkirUzG5e5413XyR032D+zZcR2x3Tp6aMn7nCQ+O/RNp+HFFV1BceonvoYQYSrp8/g1KaTz56hUJEJoVkt1Jg4XoTuWyzX2hhawbjs3i/RHFEiEuCW3G07IlKYAYVJQkRIjGscN0h3cwTlUbVBakyrJYtNtbIsSBETe81rVO4IKHrGZWG3pcINMoIxhPo/YokJD65rGCkFKUSpBIWbUCaLCkplMpeB1ZS14YuabqlI/kOockVulpza2+JrQraVYcUEmsMad1Eu4nsNnQiJFmBaB2caK0zMq3EsQuTixFJyItlSmvwQBOjgBQZbA9yZSFGlBQURtE0AmsLBpVCFJZSl1ihCE1LtT2mVBIhDS5GvEv0OjdeV8bSdIGm6Wk7D8Ez2ZrgXTYV82Jd9SAHWlJFjIRyOCbEFa7zxDa7fwsh6JsWoqIoLGVZIo3BGE2cNyyTx/uILi1VXVAaS7Nc0bnE9k5NkGDLkmFVYEpLJXvKOCCUdUYfZQZHUogYqxiOC+YHS4SPGK0ItaazAReyA7z3ibb3LNvmZMI/teglyMpu6c7AdPM3EdfzazpOCIgbDfJ0jOYdo3TrxvbNTjYo3Innwd0vcnLztGY5pwPjkzd+1/2P39hUCza0nTs/83qcPh6ntskyr2un681+TiOoa6rG3TGN0pIUTvHXBaS0piKt6Xrc8VocJyeZYpQ+NPj7s45ErgxkaRCo0czXFZRCaCK5iVShmMeIMoZaai4rzY6ytNUW7zVHdNfeYv7qIePHRgxHu5R2CsJRpCHvHL7GjQ9eZDB0dD7ROcXjD2/jRUBwxNmy4tq1SJ+WPP1U5J0jwVf/5APOP2MYTs6T+sje0Yw0HEF8ntsvv0p934it3ctMzEPsFp+hqC8itOHBCyOaMztcKMe44RAtLY8+cInQLDk33WI6KCBGjtqeQW2QwOXLlymK8jheiTFTL6VKGCWQa8GR3HvzIdy6j9FIKSG1yC71RlNam5Od9Um2ARvge1H6k2LBCV1oXTz+8Ofe9eAdVCNOJ79rda94Mq/lfWzmsR8c4uK/a3w0wlpVw2CE6zw3FyvGy4ayrlketrgu4r1AIbJ5WUqMxxIztKjCIERW9Ohd5PqNI1KMuLbPxkcACoKPBB+yeZJQ2FKiDXSL3AQklcKF3ECcUu5jCJ0nrDW40/pCkWtpxCgEfRfxbd5GCEBJlEhEKTCFpihUdl/28TjB0Dqj8pZAcj3SGJx3CKWRMssvKpMVmFIEJROxcyix4VwKughRKWQKFEah1yea94nGdVQerJL0bcIUFiE0vu/RStA2LgcJKdOalE2s/JKuWSGjwugBgiFK6Bw4ScFoVKMk2dAtClwQdN6D70naIkRCmYQusmeCkiWmims/iEQUgiTFsTmIIDAZ16w6DwmUSFnUNTpW8xVaFWvTEonvEyk21JNxdr7exAJSIYTGFoogJNqWKFugCotRkuDz51Qmm1hpZdACOiQJSYoRaySTyoIt2PeBF+eeBwvBkTUkEjZFChHQUuFJTLVFxh4lYYxie7jNePJZquYD2h+7yrO/8QeowvHQ+Yt8bvpZroU9jpp3uTV7j7ff2UNWMBidY69+jJ+oai7qexgny1njuGoSh+45turIm14RAhw0CXPYczBbYFjy/td+m8l9r9B3K6SrGA8vc+8nvsAP73yWr79+lflbc+jGXLo4YXhuwFfeuE2yki/u7lK1KwZaU0vQMtHERO8TUpHPa1OiyzEiOGLfopWlbVf45BnUJUU5IPSBIDNvsp8vcUiIkVordFEgnKdb9XiyipHzGikMIiSGSjGXCpEUSkrKumLgNYvFggBoY6hKQ2UEvve46IgIBqWAi1UAACAASURBVJXFhYQygrLUDGpFETRdiCwWDT6BFAalJLGPDIdlFjDoHSnEHMgj15zm3IMg14HoZslTYsP9XFMi1uixlGm9SEYEEqUlprSkJInOZe3smK99JSUKnY0W+x47HCKEwQpFKUBGj29bQlVkdbXeZZUhF4ilxOtEH3RWK3IORaSuKnRV0fuG4MB3AYJDK/C9J/aBUGkQCqUUpdWMhyW+CbTeASCDg2hQ0mKVZnZ9ztI5hBZUwxzktcozO2xpYsSWlnpUYo0FrzAiUyFTBcVklPOm4LNxz9IhFETWlZUYIcBkVDPrPF0P1giUNugAvjuVHBxze9MJjT0dh5icDjY3QWGMKfcgrDdPmwAGTlFlNiX+7x/QHOcTdz6a9xI5WbCP93fCK/hBAPI2/R3iNIXr+8aAH/6Bc7HlpEk4xlNfYNo0GK+Do/U6EsRJIHa6kXmTLJwkeae4GGy+C/F93t9H/Mzrv00ItCmy5/PPWQVLqRAYDAm9TmwSiVoohPAIYKI0u9U2opowcEfsPXid33v/fbarAY8OL3O/vcQsrlj59znoPuDdvdvsmAnOnCOas5RmyrY4R41gS25xnZeIwnOu7HnztiWkxJFPdKuWzkVSf8jVd6+xe/Yt+uBQfcGZMw/ywPanuKAu88Lb7+G9Il1vuOfiCD8KvNQsMaXk8TNn8Iea6XBAbQxBJFIShLju9RESKdU6KQvH10v+yd/daST843LOf5iMKWSxGa3ASIFeo/FpI1t9uiz4PUntn/bBxfG8dXw93UUc+h6n9vxo/n03VUvcfeNEtvkHeXyk5EDbimgqOt9iigE3ry4pdy3Nqid58J3At47DZcNgYNi9p8YPR9hBiSIRYyDKwOGiRSwcxkZyApyyookE57JCEKLHWEk9ymihIs9LkkQMkegC0QfkBmVMJ8XNFLJRkiP3FyQfj+c2qfNrZj5zRhptmfX9fJ+IzjEaGYalQIiIbzp8iCAiKQUG44KytGgNMgVCSPiQWPlEYS2hi4TWZ/WerRLhVgwKjdHQO4ETEaMlWmeDN7/qUNETgsH3PWVlIEak0vR9QilFYQTOZEdalVpEtISuxcuECOFYItb5gJAWhMbHSNu0SO9xQVBVmiShqDWmUCBrbOWygZsWaA0pOFzvUSJTCkqpiEohpKKwls4FrFKkJHE+MahKdFkRUXRujhUCIwBUzvaVwgfJYFTRdS1SaZJURKGQpmJ3WtN2i6zjHk90rdEFUhbIlCglDKoSioqDJPlXt1c8aVpipYn9IXW/ZOx7SiKzdsa5oqL3c65FjSdQaMeVyVkeLgKzh5/k3cdeJl5a8dj0fn5+8jm+s/wqz7/6W+y1ATPR1GfPMX7ss2xv/wq17nlUJUqxhY5LVjuBC/f/Nrf/oCddj9zzRcthVMzem+F7GI4bbn79NaphhX2wQIqLlOHTDPvPsHzzbV567ve4/e0D5I0dvvjUg2w/dT83ZlO6suLwU4qJrHBdZJECYyG5Ugp8SGvqDQhpkKrA91mBqKwGSHFIWDVZQlTVxKRwokCogr73a6M/QzGSTM5uszo8YNV0uATRRYIDqy1SWWyMOKMwJqvUKJkR57ZtUT5RlAV1bSkkLLslVaEJLpKGBU3rQGap4egjtUyUpaJdQOciXexpfaRvc9JZVSV96+nbQO8DUq8R/5DW17UAJUnk8rlIrPtV5NrxPlMopBSQMlVCKYmxiqIqkErjG0XoPAKRGzelhqTZPTOlmS+Ik+2scBACVkYKrZjtz1CFxZYG13u6VUczX+InNUt67HAbVL5+VUx4BJ0LBAy99/he4JtA6Jc5Ae4DzayhW3akBHVdMBkPWLaCWkFoWnwfSKsWUygsBV3r8U2PMhHnOmbzJZ0XLGctw0mBUIq6rCmLgtWsZzXr0JMaKSOVslgNRInznqNVT5CORZsotEEa6HrPtBwjY0/XRhIKY3NJvzAnyUFGLU8kQ2M4MZQ8prDcpTZ0x8J/TEWJJ0nF6Y7aU8HuBqnb+B9sZFQ3scEmQTmVnZxCzje7PBWgfpwX7HTqRhIk4kk1ZoPer4Osu5FP4FgG8hjdPNWgfJpGtAmeTv59yhH5NFK7rgpI5HEl4o6ezePjne4yRPszfNT19+pT4ih4GhI3fOTl1tOrxEJB7JdUvs901ODofMdASUJ0OFGQcNQmG2ueU5Gndx/mpSvf5sJ4hyfKe7nP3Mu17k1eu/lvuR0jo/GIcnI/k52nGRSPUcjABZFQDBBpxc7WCxw2NXtvHxIO4bFPj9lrDKI/oI+GSu5z/erLDMsx9ZUtUrqI7R9EzLfYm7/L89/5Gs6PWLxwxJ97+jKDey5zWCliqXng0oDd4RaL5RxiXku3jFp7j+TjIpXKCVvIx2cjyR59Nj6LcaMU9iEywh+jIYQghQAhf6/OuTzvbKqId1XI7q6U3THSSaP8eu+nfA7W4MH6pD2mx8V4csqnk+1iSusm/s31t6lacnL71Pv5QR0fKTlYLJbofcVqjWzXI4kbLUg9zG7PcW1PYRU7Q4ksK8K4oJiOSCFyeDBjf9UQtYfWrRG/daCfIrFxLBYBU6msNJIS7bylXeYJMkSJiS4bnvkIMaJNoiwNh7c9ghNlk417pga6LhB95o8ZkzXOg49YI9a+aAmrc7Pz4aJhVClGtcFaICWMkMhBiYiJw2V+PUJHP8+NXVJDnwxWJ+hEXuhTYjQtOT8Z4lYCEwWFlXQuUpSJC+dGRGc4WHXItiVFjwiC2gi0SujCUlmD1ZHeB/rG0fURO6worWE0LvD9kv3FIb2DwThTG4QuMVpT6gIpA323wk7H3Pxgn61phdICawyguD2fgy4QpsCIRGkUpRDIlJjsbnHTO4KLCKOR2hKw+H6FTJpOKkLvKZViPBmgK007S4imJYWILiuUsmsTN422hrZdsWw7jF7LIwoYDkaQBFoUBCJdEiShsbaiCdmPwkiFUhqrNDWSL+4qvvHcK6RVw9EH77DYnzO7vcf+1W/i372F0x2SCmGHiKLAji3TB6c8fCHy3h++y+Av7VI89igrO+Vd/yrt8ga/9z/tw6OJH/nph3jmsS/wyPinOZIT3k9DLhL44xi51t9EyxVPntviX19o2Lo3slVL3v/6nO2zQ87+0JDrw+ukK5Gr/3zGQ796hQcf+Q+ZuKc4fPE1/sf/+dfwQ8lgeJbBWc+r+0tW31rwpU98gaerlgEVR41m0UZ6q5ASRir30cj1JFhZSzKa+VELwqKKKecuC27v3UT0PiffqiCYilWQiNEQ5ROpKGmRjApLGm3R7+2Tuh7fefouQFIsgqEMPWfP7iBToHeeJANN79g9v4s4mGOUxChB3znm846jo47CKpZdpKps7iPwCecjw6EkkCiUIAZo+sSsibQxMFsFQu9xLlP9pNSk4KhHVV4UYtYoISZC64DskaKUyvKaOlPKEDJ7FvrsNC6NRBlFUSjMYIgYelrXonSu5mkhsaOKsipxh3PaTqFEwvctfRMwox2a0FA7x9mdMZ3R7LtIO29xMlANB0wGU7RcskqOrnV0KdKniC1KpCywskIKzaJvcV3H1nTI0byhXa0Q3mGk5bAXUFpGxZhbDpazFUVwjMaJ3sPW+S1U29OuFizblrbt8SGynLXURSKGmsNFYBA8Mnqu31hRmJrx1hZdUDjnST7SrVYcHraooSIojR0YkpP4I1gsVxRSsYwSl2RW9BAgrTme73Pz6jrAj2v8ch1IbhC4jGzGYwoAsDYuXM/Fm4X5OK49WZTvwPA+jApwvPjeXdb//iD6CTL5MV6wN6B8OkFJY9oAXN8bBIpTz89VlYwsCyGOfSYQWT/+OPhfJ9bHEqRr/4oT88DTgZA4DrpOkbL/P3/M08lnvp+YuZY+ZfT4vJYkk2hmR+wv5uzdusF86bh1+D57t96ku36TpV5Ryymm2kVYxWBacu5czb3DwDvPvcVjP/8gZnKWlTTM4h6LxQG/+/tXUfdLfvbJz/HY5PMM9RVWomKRDBMi3yHR+CWlGXBheIFb2yvuOeuYSs2LL77How+cQ9Qd/eg6bsfx7T94l2f+wud4YPJLyGXFa9/+Li88+zXEds1QeLbONVzvjni4OcOP1JGzoqXoBFHVvPX6u+ye2ebi+TNMtV7TvXLjv1YKKSR+nZALcpzi+v7ElGudqIWPc0NyShweLdi7PaNdNjSrJldsRTatDXENQJxKcvN2a0DguGJ4ej5JdyD9p0H/0wpeKWajP7WpVqwT8s33cGqHd04pd1Uuf5DHR0oO5vOeuvKUQgA9e75ka+YxgzF9WLFYdiShuPfckOKM5v2FRs72iS7LipquIxmJmgzwTURHR7dqmR/1KCPY3jU0TTYqil3IBmidJwImBPpCURUSI2AZEsEn6rFhHCSuDbRd7m0I5EZFH7NPgioUplSYQqJSxBaZfjCoNClAM+8ZVIIHr9QUQnJ75qnLAqtzf4MqFZPpFvXM06x6ukVH6CIIhXMB6Bic20abhDG5gbJUCtH2WDuisKCSx9SaWhoW8xlHMwf0lMOCJAWdD/SdY2v3DKmsqcYjRNMgVgsEkfF2jXcgNIS4oln1uKVDCYMqCvoQmW6PUIAmIY2iKi3N8pDBqCBaRTIWj2ax8HQxMR6UHNyaU0/HxLVTbT0q8K5n2S1InUaLgPctzVwiDOwKx9mtGh8UMgj6JuL7QLt/GysNB1YwKSt2JyPqsmLv1j4+CKZnawo7yWo0QpCC4XDWs1we0sRb6GKIFxYnHIUzDAdjqnrKTj3g7Sh4/vo+r77xKvIbv8OPPDDlN3/7GxjTEsWEYLa45+mnuPzXtvnuG5GKs0BHMTikSO9z9Xe/zps3JL/yd/8qv/Xq15iuGp6wHTsioez9tI2i/VcLzn02cbkeMJHblNT8FoHbCL7AO9TNb/P83h+xd9DwyU8V+DZxMAisXg5cv32b126sKM4u4IWEqBPUn+bzO4+T9sb8BlP+1v/xz/j6Wy/xuFpye7XHmy9f5a2vvc3B77zAj/3M59ma/iw3r5XUo5JBCeFmyyu+56kvjMiaPAlJRGqDGp2hObrB/s33UEWNtWOk9kilGKgBQiw5FIHxuSmuy6pAnevYu3VAqRRnJwPaox6vQE1KrJS8/s57MJqwXC4otKIPsGoCy+WKqCQ7Y5OrgwGCLrCTCWJ2QOdgOhQMtgf4CM3BkrEtMPWQ0bkBnSkRsyWm7ykqxwe3NbYyFDIhC0OxdCznHQGNkJJ6NMFWgRgC0fV0Iqt1SK0pByW6MDlQ9YEkyZU6Y5Eqc1NTTIS+J4Ql4+kAUw5QwqO1pKwqytGYftUx2p5CoRhOt5iOhwwKA0SMbqiNxDUNWmh2hmNWdkg3n7Pqe+Rywbxr6JzL9LnYI2tJP18gZEFhShiMEVGQ6BkPBEUlmC0WLJcO3/UcrUJWXBlVxHKC9JLglsz2jhiXElWWGFviu4bgoWuy14gXWTVGVVO8HtD1kaGLPHTpEp0oMLomGUHwLVJKtpREuoTTgQZFG0BrTTmVzOYNNkrObA947/oR0XsGtUDIcDzfx+OghDsAug0NZUMW2vhShMgx4sf6f6eROCHIKkPfN7A8ef4xf5505/p7Kis41uffIOgbE7xN9PsxH3c6w67/HlN77gqGjreJd93P+5HiRIEIsWk53lR2TlUSSGzKCTk4WtNt2Thmy+NDe5pOppQ6fnt/ps+43o9PiettQ6EUexHeOTri8NYHmP33uDQtee9bLzOuHU3cpayGPP7U0+ycq3lpH8ZiQqRlXM1pDt/m1juv8O6B5cv/yS/zz979E3503HFROIaiZil3OWgUi9+/xe7jMFYlhShxaN4ksQAeZ5/X3Vf5YPk6PZ4n7tnGecfceq4dLbhx/U1G90hkdYhwATWM2OkzfHZ6ieeWC7Ye/SR//Us/zTuzAy7HFd987pssnOaP/viPeP76nL/6cz/FuPwkB6uex688hu9bmusd4RDO3VsiVS6AHVMoEYSQ+ya7vj8OfOXaVRi4wwX44zaMMSzmK/b2DnF9T0gpC06Qq2Ai3nmufT9gYDNOXN3v+ofg2AzwmLbESSK9qTjE44Q1nWx3PC/9afPXD+b4SMmB0pJircixXDScn15AFIL5wSEja9i59wJ2u8JONEdH+0yaBdJF5gcdh3srjnqH2SqYPrzNuUd28PNDlnu3USPojaTd9xAcMUSCi1njeGAhQa8FtYYgUnYhjYGu97hbEWMNg3GBXDmi8KhCkXrou4gya3dIBMYojFbgIqOBZDpRRJVPCC2h6QOLtsMUFj1QoAS+izRHkXjUZO8Elyk/5Si7iu4fdAxqQ/I9QteodV9C8mRjsyrh2ggy4Zcrmi6CNNy6cRtZKLbMiOmWxViJ6yMyJg6vHRJ8Rv77riOS0EYxri2tjyg7IHiLj9lYLBHZ3t2i8Yqj/SXRzzCFZbg7QdZD5GpJjNkMKRJJncfahC4Nheww3SERzbzXzGaH3L6+T1IWVY8yjSg6IjNsMeXwqGVUlNSVpWkb5k1DWRa4PhCKkqKoMcWYJDSd7wkq4kJi2wyIQOcCgoTWgSWKeedofEc3X4GpKYbbWCJCGFYo3msc333jFs///ld5/4//NY9/espXXxvw87/yS6idJzlQNa1MXBzUbI8K/sYTnq8sDhnM/m8W+z233P38tb/3s9ySE15urvI3nvnzLOJtnEhUqeSm/B3UBUP9I5Zv2Q945PZz/MT5yxzwGT6bDEf9/843rz/Ha7/5Cqu244FfvsLt0PHM6j3+m3/U8+f/wg7yEcmz31nynb/TIh6CM7865q889gkOnGQ2HfEzv/BFllrx6CNP8AAdPylL9j7Rce0nZ9Rv7fPif/97/Ojv/FMunn+S4TMPUzywgxwb7CcrZAB8JPke3/aEPqHQuOWK8fg8e0cthS6xqkWlFqkTi6PbjKZDkBYlMjs1Cs3WeEolJe+/c5VeWGSxltGMnvFYs3e4z2hyD96WdH2gFytKqQiuowsWkRJJqux4rEDUsJo5mnkgmJbCKIRRNFWNCQHft5SlpG8E7crRdT070xLfd8xmDT77HVNUEtcJQhOgUJTWEIPKvQploO0dxaDMwcomAI1ZQMD3AU1+XBkLytBFhVLQLDqsBWXXVUIXkG0HSpNsQUekFoGkEkkJhkZTmAlSVURRUBUV42HBOAb2laLVimUMWGvQyeBCR/SaK2fPcXV5ld4LlssFWsBoNOBovyVWhr39htWipekdrZIo7ylUhXaJkfCMJjVC1hjRM5t3xJVDJUm36gkxYktNPZoijuYMt0qSEEjnSUhaSraHhphKOueYlDVlNSJ5RbsI3PPIFeaHByxcS79KpBAJa1PDJASjYcXWOcts0eB8C83ieL7fGGptlkIp1fHKLGWu3MSUiCGgECixoSClY/GHFHJztjbqOHHYLM6ZLpT3HddI4QbNPhknNJdNAPs9FYb1NnKNfgf/g7F4CyHycVlLL8Kd9Cu4C8AXuS9vI9F4J9B5ElgdN3+vKbqbhmNISCVPUZA42c8aKd0oFOVGzROq0oZOdHc7+Z8+8tnSBM/7ywVRWZoUee+DI179+reIsxtcum/Ea87ypZ98hlTdw/0JjJJMrKE2kp8/H3mtb5k2z3NzITD3Psm5p36SJQXvxyP+i4d/klvhEC2GqNQR1auY3QFnHm94zr/GZXeFC8UAzRkeIrIK3+D12Xf57h99g+m9O+ze/yh9WnF/9wZ/99/M+c+//DTXK89X/vga3/rqPvWDiod/8V6+PLnEG31g+8JZLhuLkJJ7i5LzyfErP3Uft1xP99kl7zz7bf7B//C/8N8+85+xffk+qqfPIAYlYiqR0+zFlELk7/ztv81rr72Wj6+UBOeRUuF9PJbiXJNjCCF8rALWTYB9+jpvVi1t0xJjXJ/zYl0dycySO4uB4kMThGOaz6ad5lRCfWzdmE6Uhzb0vI1TstxQ7tjILuedbCCK42N+il708Tnq/+/HR0oOtkcFZ6YlwSf8yjMYVVy9cRs/X7I9gO2RpZgUXL+1QlfjTDMSHUkkktUMhpadi5bVcsHB2xFEICVBZRU6CLq5QyRQQ4MZK4QXxNbRL3t8kHSdzI2n6+RBW0VMCW0k88bT9/mEMymxbALeRUJImFIjJPQ+nwwpCKLSBCEp14GDjwmh82LXE2lal91ERaY5JSUxSkIX11UDgdCSstRYmxVXZOwy3z+YrAudEjF2dCFiRMRqgTIKmRLVyDLenVBWFlNZhIboO64fLQhRU3iLA5zUeUI3Aj2oSIctCJMrGypkpFTBweEhutrCu9w3EGViJALDUmNlwarL6jI+BoyR1MMpJknG2zXRC3wUxD5hdGT77A7zowVnz1S5kdxlB9vKavZcYtEvmAwvMBpXpJjwfYeb7rLqWwZFdrSOETrXE2MPXiKFJPgOv3YibH3KVRskQRnqakRKMrsnR89eF3jh9evc+urvsth7l50h/MVf/jT3PP1D3BIjbpvzDPSEsVsxmt3i9jtv828PLZfaZ5kNt3ngnrNMzz9EXY/Znu6w6hesDl8Cc53DpuValJTyECGf4jP/0St86x8dcf07B/z601/jGz99gx//oa9zb9T8vX/xDep3bzJsGvQDD/Ba+Ys8YUeYo3/I/T+84K2kOPzjlqsvtOgfVciBoAwjFnHC1mCLkRlTFJZ7gfeAmXO8kiTnixE/em5INdpF/uoY+1//DtXzrxKuHhF/5hMM/+PHcmKbErEP9G1Lt1rRu4ZIoh6NcCFwbqcGIkaN0Bp8ctT9BN8s0Wt6XUwgpaWqhnTeMYugdAEh0rUdyMCtVqCHE7rOs+xbms7TtivoGqZbI5Z9QgbwIZBcC6lnPCoxWrJa9rTLhmg1prTgWjppWRw0tJ3PdJSyIHpBPapYHCwZjCwpZXTHhURjFcuDJYNBbs5PMaGVwquE1BpTF/jOZQfNGFAiUdUFvjQYa7LIgMrKVs4nUu8RRQGCLDxg1g7sTUfSkZgEWEvoOpILyMrQ+khhDSjBqnUkH0lFjzWaelCxVVXEGDg6mOHaDisFxkpmnUdJQ994XNehRCAljyo0V2/czpVPqzBJUZcGNRqz6rIwQqUEzufPpY2i9XBwtKDQESUT5SAHGs1qhU8JZzTSe0gCHyK9C4S2oTLgBqBHFVVZI1SBtgItAmfO7bJ65wO06OmjzxTFuqIwJfNVS13WRCGJ3iDKO0vzJ+vxWrJPCGI8kZll3TQYI8QQTlFVTjNScgCzaY6Va1Tv2LdCsA5KT5Bu1rvPMWtag9nihBd8jPzl+Tsv1jmg+LgXDcSa8hNPU0U+tGnyBPnPx0feldCJU89dJwWnGyjFSfXl5JifUmJJd/YQCHnSayDW+9o4X2+2/TON9fftY2LuAi9dn7H33edpmn0ub9dceuJhhmd3WVBwaMYMZMGWa/DNkv29nleaxK5/m1W1xdb2Rba2C4qyYlQWhNDTLq6j1T6320ijF7iiRNkH+Ikffp0/+L/e4M3XlvyTT/c8+uBbPDF5gGGAf/LCi1zeu87YKg4Gn6AzT3KFDtM4PvWJA95witff2mPPt4yerCkGhkE8Qxsrdm0N2lJJxQCYR0GbFI3S7GhDZSvufeZzPDE5j/7tFfIrHxDebil+/iL6/Bihc4Lmup5vf/t5jg4PiSHk71ZmtUatc4VGqbym5sA54Zz/sx37/5/HaQT+7kRXyDWCH8LxKbypXiY2srrZ6+Q4QD9VcTyWOt6kqvHksRM38LSmLWWAKsYc0x1XItfvM51KEI7fy+Z118Dbx32++XeNj5QcTIcV25MBnQPhLf3hivm8QfWBvoD5vOGocdw+6Ni6f4K2gqNlZBUTqpTUQ8t954ccrAL7ewsWjSdGh1GBhMI7cC7kCkUt0FahJOADbRBZJ9zqrIMeIj4knE/UQ4ULnrAKhC4ijzPDuC4xrSe/kBFCXRmElrguUsqcFbZdpDYapQWDWmTlEidwMTGf9Qy31silkkSRpf9ETBTDgnpQ4luPtApTWJKw9G0gIHA+EIRErSfBECLBJYTSxAhaaZRU+SSWiiAUvetZHM3RZYlW2QW6rixaCKrCMjCKLq1tvbUkioSPkIJDkrBWYQqF6zvA40OkLEr6kAh9QChBURfIXmDUhGbRgQ9oIxjUBoRG+MTZ4YB561i0EREjhUgMDDRNZLHsGMq16lDv6HWBEB1CBvq+IcSelBwxBRrnaYIk9IneZ28E53uG2wq0pS5qUIquc7jgmLuOZHre+OZLXNqpefKBR7j/Qs29959Bnb3ImC3uDWM4PKI9epfV0S1sUdINr3P5/DbzwRWGO2cwo5rlcsGv/2//JzufqZkOew7QVGXJJanxYog0O3zp8Z/jvl96ga9+9WXeeu2Qq/svcXV0k7MR3n1rzvkHDGc++Qmmj/wYqXqaH7YDvtLvcNgXVMsaDvep9uYcXYskIygfrnlz/BrDSc89k8f5od0fYVdCraB1iZcPliRp2a4rzlc15WOXWTxyBf3V1+GDm7jnauYPThj/1D0kk+j7hmVzyMrN8LFBKk+SmuWyxbsl1hpEoRAp0nUNWluE7hFJ5obmGJFCIlVumN/eniLIyZtYQdP0RBcIMnE4a+g9OOeIoUOrRJBQmYSLESWzv0EUGk1uHjVSgMhypgnB8mBOPyiASBQKU2RFKhcF/aKhLAypNOteIJ1VxW4vUaUj+Agx5OZibbJMrRRYq1BC0PeeFAVaG8rRABETqlDoBH1MuJTVdwiBqsgVhKq0jGpDpUV2Cw4QlGBUZ+WgQV1irSY0DUJruqbJUWlSiOQhlRhTZSW1pkP0HtE5+tAjKouMkcIW2KKFmI3iIJGiX+trW8Y7U0TfooJHGUlR1RwdLEkmCxNEIqoss1lc16JQiEIitMBKkEWiS5JFExiqQN95dAKjFVYK/HzFeFJTKE/yLT5kBO3G4YLCAErhQqR1AZ8ynxmZ6FrH/HZHH7LcbHmq5wBOfNc+ewAAIABJREFU03vuHCf89tMKKhvte3EM+CslSSlrmR9bHK8Tg6xGskarOTVPH7/whyiJbIoHp5lDx3Ht2sX0Y0yxAE5VBr632fTk9oZaxJ331w+ePgLptNTlJmtjQyM6uaWUZAOorrfMFYL1PZXUHZWBYwdyJe943kcdm/BNCqiV4tq773Fud8hOUXHxzJDJ1hjKITUl01igmhX9ag8XAtIKEit27IjKbqMHQ4RRXN27xVeuv8eVKzXjIjLDsGUTSlqiqDDW8tnzn2fw1IBn3/w2L7xxnTffXfItXqXwnveaju37Rly6+BTsPMFYX+Fcankz7DLzBcNuRNUcUR4GDo4cohDoccnb+k2Cv8Z9O4+yPbpIKaAQ4Im8t+opjaZWiu3JhN0nH6V/7W3UOzfg/Rn+lRqminYn8Edf+xNeee1l9vb26LougzHH10Smb2UfFwgxEGL82FUONuMOR+O7fo7/f8fpfuzZzYYKlAScajs4Hmpt8rfxRdic5VKKNSh1ckwz3S6dqn6dABGbq+q4crAGJaTceLZsahI/uOOjqRVpRVkUWc88FOwfLfE+5EAjgl90rJolXipK5xB9x2zVE3zAGklZwHhcIbWnO+jpekfnPdFkE6OkNPQR+gRWIE12N41lgCbz0ISUaAVl0jRtLjmhsqRhTNlFUK0RyZRSbrQS6/shkoLAFNl9z6VIn2uk9F2kHudkojKCdhXpk6cPktXKYUpNTBJlFdIqYp8IMTEYVWib0f20NmsSIje5xDX3zWqJ8NnmPIXMHkcK+tYhxonkIkGAUIayErTLI1bLjq2ixBpDVAqjDdH5HAwoQRSRQMjeD7pE20jwCSETVmfFGe8dOjNA0FpgDbgQCM7TrCS1HlGVJbGLBLIHQlVYVssuO0QLS09iFTuc84QgKCtNCJq2DSQajEr0bYOLkqIs6LwjLudIrVBaUFUFTStYdQE89D7Sdj3OO6roKc2AojA0weNSzLr1a1+FM+WCZ378MT597y7TWtHiQNTYWJHmDQc3X2e5/z5OSOy5C9x7ZsGj93yKQ3Wed/ZucvP1N9j/4CqvXn2fJ564hyfO71IUF9mynlr2tBGOTM0l+0Wmv3gfR1tnGL/4Ev8PeW8abHl61/d9nu2/nu0uvffM9EizSTMjabSMEIvAgCAhYMBUCCE2b1SBFE5IpVLlxPGbmEoobF5RIQ5OVcqpwo6LJEAZAwa0BAmBNgaNttmX7um9+25n+2/Plhf/c869PZBkeOchj6pH3eec+/zP/S/P81u+S3v1Fs++cItxUvDYpQc4+9SQ3SeeZuf0hzgrz3JJKP6p2+H2CxWPTh7l/ouC++rLXG8vE03CMHmQK1euI/VVmvwmWyPPnfGEre1tTivFbhOZHS34RhM5ygy705ZTD53DPX8VfzilvvIa00+CfDBDn9HU7ZLKTmlocHTE0LCsK+ZNRWgrGJToqPC+YT6fYhPdK3QJRUD3sp8SGutpm5bxeIiPDtGADZquEQwUVF1LZXt1DO8cPnp8pqjajpEBKwLaaJQ0uNh3/dIQKXpSDc4FlouOum5xwpNlKfkgIU0TQuhJxQe356SjIdJoXBsQslew0qpDmRTb9Vh+JUT/XOkCF0P/HGhBiDVB9F4dKklRMWJyjfAB21pUjCRpD0U0ul/WU60oi4wyU1Avia0ipAllllAWKXmmSJQnGECAa5qVHCq9JHDjSPHU3uOrFukDOgo6D52VKAG5hibpZU+9dbjOsWgaksQQ8CT5AJzBVTWRiFL9s+pEIIreGyHgcd4CHhE1MYo+WdKi50clmjt1wFYdoXN4ICsLilHKsvJkSYJRHkKNtZ62bZguW4Trejf1IAlRIpTCR4itpak7Dvdq0Bqji1X1sh/raj2cgLFwYlMnbNr0myBz041fcRGEANl3H+/VEBGEddnvTZv7qtu/Od4m0zjxgZ6/cPJnT5h5vc1130+ODfyKeNwZ2IQlfWByknvBm5KJDTl7fW5gEyzde/p6RS/vwwo+FE5kCSckVdcB1IosujlO/7G3nJidvDpKCIZaMdEdT77rfi4McoTsYcUBjYma0HUsZrewzYKQlmRFRi4cp4YXqcSQK0f7HN64w/W7d9hvF5zxmkvpCNSEc8oiiFgknUzZkU/xoQ+fY3+QM7xxhZu39nj24CojlfHYxQe5/9I5hmfez9A8wI4YMPCSV8MWN96Y8vDpR9k9lTFeTpjUd5FJxo64wOt7N3HzBXJqcaMlaVYwHgyZKEnuYDptaBEUIZDNWsb3D5CTPWIz5+7zS/bq17gy3Oe3/+B3ePZrz2KdxTmP8/3aEGNAqhWcaHWKQwi9x0oIf/EEv81GDPd6ZMR4fC+Je1aO1R17HNtzkhOwSXVX65YUgXXaKtY3KcdE/w3vhuPkoIcOnRA9XScgJ4Y4nuqv/XhLyUETAj7Sk22ziDYDsraCpq9eRykJmcEMS9oabl2dMtCRzPQbaIyBPdtj/tM8Y7IDjXP4CFJo0jKSZxpDwGQZMk1xbUcjHOAIAprOoWVEKdBpfwPMDlu6OhB9v0uF2HMSbABtevgPK1xkn0k6lkuLHGrmNiJjj+mXEYLUVK1gXvfcBqU1w2FJ13oWjWWypRkOEkQOXespyoym8mSJpqsd83rZL9lSEhKFMRkGaDpLDI4kM2RlynTpESJAdNRLhwuSbFSSlinzo6avnJoErVNsiNSdJbpeWsuhMGnvUeq9QCRDyCLLZY0KHUr6fuFWhmJSksXAUeMR0SFcS7NccnBnyvnzKWWWkhtF53uJtMWy5WBvihCaunNkqWFoNdN2SdsJRDJAlgYdJcHWLOqqr6DGFL01oj46opENOjEUZU4x3CJIi60bTKaQUWBSg8wN1ju2jaHp/KY9qgQMdWTqO374J97DY1vb7JqCLkq6ENkVJfFony9+5XVu3f0zqskW7ty7kGLCJN3mjcUYWR/xmT/+DF/74uc5JSQ/9cv/PUVS8JC8QSFyApYQb7IVX0OIHV7xExrxHTz9nY9w33d/BT/9Ir/y5zd495kH+J53/RDQcTkOScSYD0m4Wu1z4zAnv7HPufHjPP7Ut3H6w3PE/LfJ1Q7PtmM+/9kXiTcPeP7Wi/zR1WfR597Jo08+yX9w4T4eOr3D65eP+OKf3+Q3jireeXnG33n6I+Rb0LX71PY64foU/6cjxt+xSyMsXrV45WmcYzabMju8Sz7QDIqcLE3QIuBbR7uc0XY5rmlQaSTLhiQmJQjH/nRJUx2CHOBDS13XtE2LDDBJU3zdIoyB1GC9p2oa6s6TdZZqRRg2Kyhfa10vf5qAyTKIjnZZIb1FZQYRI1IbxqMBRkvatiNPBONhShcjqTGI4LEWXBdIdIqKFqn7ariWkiTRmFTTdI4sy1gp+hF87CvyAYLqoYZ+E7esoHtKI1wLwdH3MyQhGoTKSHONSDNCVHjbEZolEkOa5cyswwBZDGjZP8e+62iDRCYZQWiib/skPRvQ2ADRU4iWKlS0rqatW+Z1x8x6BmVBkfQiCTLRGFXQLluOjmaUpSJ0lkxFiAFrG5I06SWLlUQ4SUQQpIQouXB6wPLWku6wwrtAFyJUjslwjB6nONGfh0R6VOyoF0tGg4LZNDBfdkihSAtNFJJ5F6C1VHWHTjXZqKQc5ci22qz3a1+J9d9XWJPVu3FTuVsHmj7E3lWZY/lTH3tjQynlqmq3mksCofd+EZv5RQ8bO4HnjWEFmaGHzUjRd5cRctO52CQSmzj4mPvwdqzqxdU+dVzsFye6Cf3ZXgeEx1CfYyiFgE2gFVeckBhjL2yw6aT3M21qo/LEsTbuu7088DopiRvs971BXFz9TwrJX3Rz/v8eApAKvuWDFzib5WTCUMf+6qVREZuaa9cPOJy/ht2+SExGaFJyNYI2ISwP+MTzz3L1G1/n8Qcu8aM/+O+RSM0pMceIBI9FxD08DQtK9klpeIyPvecMp97zHC9NX+SZo0MeHTzME7tPE2LLtTjklEjYjp5btuLmQlPeusrpwX/EhXPfzvvecQPh3kBS8IYv+Nzzr7MVNF957nk+vXiObHSadz34EN8yGnNha8Qb1xZ8Y6/icH/B1s0pH373w5jxkrq+xtdeucZnvvACf3LneRrf9k7nxN7RfI27X5HBY+iTBCV7yGi/5L29SbL3knzXa0T/95PR9zFpnlWcd7wW3TNWHcR7519PFzef3xxXrHsD/Vz3wO7E+vscw+/Eas07dk5++577tzLeUnKwu1WyXSps1cGw4IKAZl9DmtM1FdYG8lFKPjCEZUOZa5IikiSQRomsBa999YByS6MnOchAHhQiTzicWpJRZDzSpDagsgInNIe3Ld3MIrUgm6T41pLEQJkJIoKDO5HQBLrK42x/U7jW47peC1inEpX1rqpKCbJEYXRPKrarqlZmBGluyFJDfm7Csm6R2iPaSHAQhSIpCwpjUQoQkiw3DPNI3XgqLxiMBvhuTowSDwTXIQGTBOKyRiqPGaZkw5x2GRCx42AaabtACKC0YVcaslHO7u4EGyRdG2iqGV0IWK3ZGhSMtwYMJgOkswRjsY3k9uERg0vnSaNADzKMCIgYsVGglcG6Oa1QtCHgEAiR0Ewr7vhbhHpBb/ngcZ2lXToGecL2fffhA/jOE6xDdpZp5xhOtohBEjpHkUjKNGPeCRaHFZP8DLVOcLZFSkizjCgTdk+PWRwekCaG0XBCQFLbDq088+USRyDNE0xZEpUmzTPef/ESF4qSbSUx9JAs7QJ3Fwf87u98kdPnvsZHP/IRvmYe5tllxoPzGR8eDfi7v/8ct3/175GcnfHRH/9J/ubf/vscaMl7qDjiNIar3PCOmzHDyAd4UkgmJuFhLMtYMOOjyK0f5l9/3xmqeIiLU/Zjw0V/DeIVDhc3+MXP/08c/A9f4T/+5fdy4eJ9HAbDM9OO2dElfvLBS3xMbfPev/UUysNRO+OZ177Ov/7vfpVP/atP8Yf1kve9Y5sf/f6n+NZLW3zjf/4jPrEfeOaVP+bjly7gxoGoFafOtHTxCs1eSywNOhMQPd4u6WyFyAqyFJLBgCgNUYLRmomULLqW28uO1AcEFqMVUShuzzrqVtIdHPUGfNazrB3LwwWjPGOSZJDk1F1gUdd0OFKpGG4VxLpDa0EUkbZzCBsQwpOnCbULNI1FBsFwXNCaQIJhnBuM90jlQTisdYy3x1SLDmM03km8jygRMcFjsl6pSWu9WtwjUUlEXjAcpSglCOOMruroWodMU7SUuKZFikhelrgo8c5hjGTn1BZmZXDYeUmiEspyQEnkzuGc6CyNECRSoYD5smNW1WwlHhrFYDImLYa0qu+ondoesZzPuFNZ2kWFJhBUSj7JUXrMrjEEPcMZzdYgRzU1xmiEcORGMMxylIdre/uMVaTMC+42jsb1yTE+4kPgwtlBjzVWGWmeYqQgVjVtB0X0qFQyj1B3HcuqZfryLZ54+BwHt/dJFpE86TtwrhEMMsVtG5kdzhlPEvJBjpQGu98QlOD0VkoxHjPZGiKIXH71mJCslLonUBerzbXnEIQVvEdsHEylFJuAvG/IRqLoBQmi6NWP1lW59diQK+VJ3X7uqdYJ+k16rciilTwh3dibR603bCFX3+ftlxNsxqZAv/mdV0GS4DgYuac7wAl4BGySs5OV/tV8J17iTdP015TVoVYlaiHVZp6TuOs3f+FeOedYPeetjHU3ooueSnjO5Ftkq0PI1T02XS54+bUbbE2u8p5HHufLYUzXRracY6Ilv/z8bZ7/lb/H2W/d5t//wY/z8IMfIkg4h6WmRHHInSBpKMlFyq4QDIRiB0cdMzr5YZ7e+i6+eyvF0RJiw1I4xtxFRsfl5R6/f/lT7H3qT/n4T38/g3SLu87zRmfQ/gxPDSe8RxTc/8GLJAHu2jnPvvgsn/nkJ/nqJz7Hr82n/NiHHuRj3/lhdpu7vPrsi7xwJ/C5L30OUV3mq1deZdFWWAKWiAsO612vLiV6JF4IfWK4hg9FBDH4lZqYPE6o38Zjg/tf3WByVRH4C8H3KvFnte7EcBzMr39mvVjdw7+JgRA8kYjWapMw+OCJIayS4NXzsTrOcQfuJNzpGHq08WF4G681b2W8peRgdnuBPbPNaJLgcZy67xLTgyPm0wqZG2TwdG2HKgUzv2Sx6DBK4pDoQcLpR87hvrHPjZf32Hn0NCYEtIogAt2swh01mMmIBkd95y7N0uIsYC357gDvV7ivCL6OhADpQDFre85BW1ucDf3Ds/rOIgak7M2e3NIjCoWUCdFFMiM4fXrI1naG1oFbt2tuXt5jsp0htSYR4FtHNW1IRiWndnI62xE9dI0lAHkmmU0dSxMIbYfJU0SimR00pC5QJp5xkeKkZG4DR7OaxaFDCN8TZXRBogVZpigGfY3zqHZot6QcZMhE0/le131+cESiI6bsTaSiUNTtgsmkoJrvgymYtYHURHIjaboA8yOCbUnSnJ1RTp1qDuKc8cAQZaDrahACk2YMJ0NOn06Zzzv8vMHFBBdqgm2QEgoZIThoO0ZKMSoyBttDklHBzTeukqpA4iNHrr/mndHMGsvRdM5kPEGlBrRGSShNQuM6hO7dpdFDimJAlqcMxyMu5UNKqYlEjppD7s6WXLszY+/1z/GjP/A32E4f5Y+u99yMx+KU4fQaP/FPf5N4+zrqQsdH/4tf4nu+64d4QGu2cVyPcDs4RLtPQsJAbhOF4Fz8ZVSo+a0bKYfyfnaLjPOl5EX9GN+mvoVfeObn+A8feje2/DBfuNLxiX/zm9z5va9x3/sKHtr9WXbTx7jY3WE0/xK//slP8Y+eeCe/8P5vZUtJXrUGnZzibz/1A3z81z/EZ+78Nv/br32FK5++wz/+53/Mw/cV/Cc/826GdyKf/jfX+GbQPPjYE+TacLPaJ82mpOIUrqsRSqGlQiWK0daAWbVg1tR0IqJVbzmfaMUsJNiu5ezODi2RNvSBbPSBo/1DyrJE6ZRAoOsCbe0RMqfc3iZ1rif7qkia5OyIEq9lb6JV17S2D+S00pw+M+HOUQfFgLA/xTc9LEylgt0zA4bFDtE5YtNircdbyMoBOs3JQsV01tF2kGpNnkoWs8Aw03jbooxBJglCS9JMMiwy8iRyaivlcFazEBKpPPNZhdmZ0FUNxWjYbxLWoYVhZ2vMaGBIjaJp256MFi1JYijKEfWyQuY5MXqibZGlIiOiM/BVy7KFoCD1FmcTmqpGhSWtFwzGOcoopkcN3oMMiuAEzdJSdR1BS8rRiLNkvDE9InqNCoF2YXGtR0pN29Uc3jwCZUhMgm1b5ouWJJU8/K5zLBc9N8loDT6yaC06zbh0UfK15+8iCRSZxGtDkQQ63zIuMqZdR9U6VIwEL7h9c8nhrQOG44JhZlAIrA2c2cpZLgK28ojFnDbWyCzFlOlmvffOI5XsfWfeFFhK2RvzQb8phxMSmpE+6FdKElecF+7xO4gbsq2QJyCf6w34JIRpPWdcKRop2csciripbm/mi30FXGn9VwpS/20b6wQnboKl4y7AMcSn/+wmadu8fxxIrRMLISRCHr++TuhOnlsim2u4TsbW3IV1cCbVcWegr2T31y6EvmsfRezNGP8Kw8dAJLBlEjQ9jru2C+a1Z7Y4wtV7vOfRSxT6NF8/cAxoKILlxt1b/OKzz+L3bjF6+iw/+uP/gMd3zzEUAktgGmFGRLo5miGJzDHcYhj/FBEb/myeY9VFzqSaRBXsyV1OxS1+7+b/yPed/hAL+Rhfvf4azz33eQ5efpaHHjnN6exHSSgZipu4w2/yzdtXuXrmAj9x/hGKCDe9ZiuZ8Lfe+z388BMf4NX5N/mtL3ydZz5zi8/9s9/gvrHmA4+c4WPffoZ/+I9+nY9+4Fu5XB8yvVlR1w1RrlWfeoWvk2ZffXLQO71771eeyatumrzXn+LtOOSqO9VDEfvXhOg7j/dwE1af3zzdYu23cmKyNz/6JztdIeJdOIbJrUYIcaN2tpli3RXbJAbHU4lVseP/D9Cit5QcROeZTiua4Hng4hm62uOtgiLDtZZ22dLVFZ0JLPYbJJFq0cMPtAJfHfHEd5yh+8MZ9et3ibmklYJ5G3ry3qLj2vMHbG0bXO2pDjtsG6DQpKqXdMsyhWgiTRNIB5qw19AtLHi/wa3pXuwfEaEwIHE4DU5BUBHvHbtnS8osIZkM8GWG85ajxYzhqZSDuw3RRbSUKKMxA4Mwgf1bh+Rpz5L3URKUJqVgXEZyERGjhLbtqGc1aarpqpa9vcDwwpDBICNFkGWepelwSuCQlIMcESTVouPKG3fYmmyRJAlSaKx3BCmIWYpGkaWCg/0jkiJFuALbeY7mS2KY0QVQeYFJciKKLkqSrESrlEW1R5EnPZlJeUoj+zm1JMlyfNPifaRrLU3VEjxkPlKOM6IcUteChQ346FHesz3KET7gYiB0HUmbIG1LDH2gMxpm1F2k6yKh7gi2xS6XpMV2r1oEoEAF2JsvSHWOtZE0SopswNliG4ElRsVs+jyH0zm3a0uTCL7nO74f0xzxzMu3+dJNyY03Fsyv3eba3nVCF7DXLaf+q/+ab3n8wzygNbeF4JJQ3LAtZ9xvsWOeJIoSIWqGouLVquDu3ZdQVHxQPc9WXcJswKL6Ej//4v/CRx8veM0V0IyYqIbvfNDAx3eQ7/sphsXD2Fjh7JfZLl/gJ3/wJ7iyvMsnXn2dR84/ylll6ZpXeWl6hRtyi+898+188Gfexx/+4J/wf/2fX+G137/OL/2vX+YD7xhy7sKE1w4XvHH5q2wVJffvbsHejPOnb1PujMA2dB5UosjSXqHHWccKZID3HXWAZZRMG8WZgemDbNnDVZr5jCQxkBjaVXVEFilDMeDwzj4xwKJrUbYDIdBronAQpEmGGG3RNBYlQl+ND4LxSDObLQnekSWaNkQqFzAW8tJgl5GGVeXTQzP3xGWN6zxSGYwJdBFqL8m3t9HGMB7nHBzMadsWgUOFQDbKSQzUzqO1JNeSqAJhXICQlMMCZCTVmjTLkFHiW4caGCyS1vZKY1LlhJBRNxozPEVXtyit8cCyckxGOdEY8qIgyzOUgLbtWFQVmVaEQUaqDFIqYpbRFIK920eIyrK1lXI072hrCASsX7AUglM7O1x9/TZSS1IjkSayuz3CiSGXbx+wXNRUtu8aJInm/PkRw61torCEukFESMuEixdOcbi4Da1hWCiOlhGdpmwPM4TUHDYt2UCTWAtSI7KcVGvu3Dzi7M6Itqlo5yBtL8aAVNCCUZFER1IlEUKTnQDXbgi+Qq5gQRLv7aYBvy5qn9xkxRoPHGOvZCTYwIKADUHw5L9PBrc9PGX1Q+vsY10Zl705ZlgRmeMqIYirz0nZE6DFqvz3doQUweo8hJMJwfp1WOuyA+vS+6ojI9bl/j6puIe0sVZfOQ5wNp+PIN4MqO4n53iC/gKsOQvrSXpn2XXiuFaGeeuRkg+RLni64Ho4mpDU9U2qxjH3nqQwXNx6EOlbru0vePlIIqYt1/YOePlwj9hGllcd7/7Zv8vjo120kHQCygiLaBnFZxiqR3AEtOiQMbBnNcv6MhkHXBIlpj1D9CVHTeAPDhe858wO13yGiBnnEsP4Ukl84BHUmX8HHcdYURHcs1zcVmwPP8KRq/jG3h0uji+wE2tCc4PrGFqZ8ej4MX7uo/fzpXf/OZ/4V3/Gzdfv8tnnX+GFV17j+777KV66fofDak7n3apy3icFRpvNs3cy8gyrCvf6tRB7wniIcUXAffuOkxyXNRtm0x38y5KC1b82kETivbfs5iOyfxRC2HTD1qP3keifgZP3cs+FelMyLe7lRGyEAtaNvb/G460Rkk1BnhQQAlduHLGzqzFGk0SBj4G2FlgPQSqSJKcYByoXkIliWCjObCuGQ8vFSynTA9fLhoZIEgSthWKoWO5ZlhqkAZML6ioQWke3aNFZSkXPRNeDFCciXims8zjfE09WSCGiFCgpUInCrzcdJVBGohNJVqYIqfBEWmsJbQMu4heO2IGtHSQrN18fMQnMFi0liqRQfZWEgNOSMkvIcsViWWG9R4hIogOkfZtVKENW5ugQ8c4yOVewiGoll6pwreuhTdsDrFC0bcMoU70Ea5rgdUJrPa6xeO8IXYNIDSJEgutAKkIUZCKicRD67yxtoA0dg2FOCL2ZnIgCIyQ6enIdMNqjJoPNAxZISLRgqDKSTOJCIMQUyxaVc3gcy84TAyQ+EHxNW/VBjJKaLE/IgibPNRaJEJa2OkRbjaumCJ3ihMQpj5KC0WDEYlGhglsFIIbWOSocB7efR6kKLUrOD8akBgrf8JVXX+K3vnST12anWe7PaabXOQxTZDYkuQD/+VOPc3oy4WYIRCkpsUT/KmflI0iR0MQjWjunaT02Po30r3C/nLLTNnQoDlyGrKY8eukBrk++nQ8U78WFCdfUZczp+3jo/A9x/fA1/vff/TXe+9TTnN+5n05rXq8PuH0Lvved5yniddJ2n/3pkrvzgkff+VE++cwf8T3vfZKPvfODnP3xS3z29HN87l9+mi++fsSlHc1kWNJVCxZSssy2iMKT2ha6GqM8UgtEMPTqI4KiHKCERysQeDrrwQmQCpkVqNDhfSAEQdApSSbQMsN2LZFAZ1uausJ5z92bd6hCROMZjQbkaUIQ/fUwWqC8wLUWEQKEFVE2CvCeatFRDhLyMkUJRVIajAw0ywXzWY3SGq01pUrwaFohycYFVWNpHDitkUYh24rWtbjQYRLIEo0Rga5uKXVKFIYQHFJJijJDhEDTWgbjUU+0B5TSGJUgfW+mE9oWQQ8xbJuOrrZMdjWj0YQlc4QUvTtmhKZu0WVOmuYMyxxcS+i6/ndsLcnFCamJK5McT5b0BOjFoqHQHuUcmQSMocg1ddUQWijThMT0QWt0Fi8ki9b118VHnItIBIlWKCRNHWnbltBZROz7oLEQ7A5TDr0lMZIyWYkzSM343A6/NCyjAAAgAElEQVQuBBSOCKQDTT5M8E5x7tyQZrZgUUNnBYpIqluEERSZ5s5Bxc5uSjbIAINvl5v1fk0o7qvDPc9rYx60ygE2BGTRB+6wkllUYhPk+xPBzMldfgM9WlXD+0189f66rb9pH6xhAGHTdTg2QFtX0Ptd2vu3OcwiHqs/raFWcuVDcAxq+IvmdLDuCqxUh8LxHL0RmlzBLU7ENOKkKsu91dl10AQQRa/Otw621gmMkmrFGVDHELO39kv2AiIh0AaPjp5qeQcpOrTK2dEKo0D6jpsHd/nMq4dcb3cI0wMO2yMWoSPJC8b3CX7qvvuQWjOPkRLQOGI8YiTO989OXNK6XuXMx3cgwhV25HUy11ExxloQwXFu6xz72ZO80zxA5RMqk1BMHmGUf5hpu+R3v/5JPvzI+ynlQ1RU7NmG5VLy7q0xyt8mC1PuVg4nthiVZ3nu5is8ce4dPH3uCdLv2+GLX36WV775HLZpKScpxaJGqNCLpihJ8IG1Bk4IvpcMXiXlSqw6NCcvzrqjs4bivY3HmnMU3xSYr/++vtfXa8Xm59b3WzyGJq4LFptnR644pyeJ25tJjisX645cHwn16l0bbs/Jg66S6zWM6e1ahHir4y0lB1Vtmc9bVBJQo4yAJDWRrvOEpgPnyDODdwpvA4XWWOdIhSRLFEmm6OY1uYwsNXgtSYRkaCNpE4lLz/YkIWhBVJEkE5QTRdAKgse5QIiSdJCSTlJi3dIqT2BtHx5RErQGlIQoCKJvo0d6TWaloBxplOhdVru6ATSSgNEC0QZUAKQgMZI0EfggaBcN0TkypREx0vmAF721t1D9cbquJ03r0pCkAq0lZVDk2iCixDcWKs/o4imq/Tl0nrbxtJ1FCCiKjLoJCB3IBiVag0oThEkIdkkXFUWZEyO9vnmQJCYhCokXkGi90giOPcbOdXSdQKUC1zl87PAu4FqLlJFERRKjSPJ01a502CApEkmWaoQMRA/KS4TSECRd1eBWlWUbPcvQB6VJopAeROgr2XIlcZkahUxAuIaujkTZEZRG54oiK5FRMHMB6T3CO7ztqLreqyKGFqFS8iQnlQrRTPnKS6/x2194gecOxiwO9nDLQ7xYoEaC7to+ky3NR7YHHCaGqy5QE4hJYKxGRM4yC4cEv8R1mroyZErQtQWnspSmhgOR0aYZpwcDbHiA7fxxtvVpbs1eZlF/FZlEzux+KzeWhzz7id/m3O4jnN9+P2l2kWhe5NU/+Sw//OADZGKJ1i3DzHK+82TXPs9OAi++8lW2z53lkXecZ5ztUHaRz33uT7g8XfDItiQYTas6DmOLo2bbSLzsNe+l7FWuhBSYRJMohesiAk+IsSf2A0VqyPMU1wQWTUPnA0k2oLMLXNdRLWq0EbSdp6kdIgru7M3QWW+aluWBTChMkvScABTLxhNdwFlPt/IaEDohMxIxzFGZgUQjlWY8yNBEvHVY63FIVK7Z2hliu4bp1DMoCiI1vm5xvqOLkoJA8B3aSEwiSQwoZ3sZzCjwERwCqSRaCqSNpAbS3KDJcCusbp4laJUhQ4trGrRWfdV7VYjLshQZA4nSKBkwRqOlwQePFhElNcakCCUwbYekxQswQuNWAgrWA0h2d4cc3D0iSSALGcFJguqrUsu6QrlAXMFhpBC4KKjajsWyIypNMRjQ1X3S31ujKuazmugd1jlc52lbi8SyNdAsjhpihDTVGK16icQyx8kEZkfY2BBlL8SgpKIwJfMYODiYE31ApZo8VWSJBJURj5ZEaVaiEJ40OVGBFJsQcgMpWu+RYvP+KmSNx7CXNxt1rTkLb4ZJrJOJ9cSix7Pc07uPa2gLfSIRwrER1/oz64KgULJ/P/zVrLj+bR8x9pCde/ozbwpW4onuzOqHjn92czrFPf9/j5M1J7yoT+RwJ82qYuyThM2R4r3vc/K6/D/9Lm/6txICvY7KokdIQ6IMBk/bLHn94IA/u3KHK3XB/OgQ7eZ4Y5HSEQ9mnNtJeDJPeUMIDkLEicgpCZnIiIxo4oLeE0QTPEgU3pcMRUnVJVQ6QakCLVI8Fxno+yhEyWH7EtbfJDFjhsWjTO3zfP0Lf8x77nsvw+FFlK5o25tcf/kyT33oCbSoULKj1BJnZ5j5lEIqbtx9keHkDE8++A4ykTAqM16//CJ3FzWTnRSd9gIKwkvwYdWniZskTawL4oIVv8DfEzuvjQPf7rCik2tF4AS/5cTzf3x/Hd/HJ1XUTs5z7zlaJxV/8e48KZ18rN+1Pq/qBKTohH/LWiRBnHhm/hqPt3RnVVXN/sGU2aJhsrVFXpQY6VC+xS3m0DYMM01beXSE1CgKKcm1QilN1UaObtZUBx1V1dHESDACYwSDVJEIOHM6pxzoTWVjsK0Z7RqUkSAjQitklqKLjJiaXop0lSkKVipGBpKkD6I61xum4QOaSKphPNCExmJbi6tbXNMRfE9Yxkek9+S5osg1aaLIcsnszhyjIEkkwUZc6xEBsI7OexobcA6kUaTDhHyUUg5SciPBeaq5pTrscAtPiIZmWmHnDYtZTdsFXBQ0ztK0LWmmSHKDkBIFJIBwDikTBuMBaMPSBdrYSxmmWUKaGLQ2KCkxSpAoUMIROk9dddjW0i5r6kVF2ziEMb0krVIriVdH8B7btvi2xdqWtq37ToVzxLbXaA8rScJUBpRwuNBiYwfS4FvHsupYLFqqxZKuXqIIFKOS4D1t29I2FdE2ZEJQJAbhHUZojPfQ1bT1nGU1o+lqssE20oypK8utGzf46jef47c++wx/8MwBlRgSuinRT8H4Pr2tFqSd4ZXnX6A7OiCPEWc9syjYVo8wFbvUlIgwJvGnUH6L0F1B+gwTz7PfnWNqt8j0hJ1T7+V2tcsjwVK7Qw6rF2iXr2CcZCQ06dn30b5QM786wzWKcfEA7zj1NN2rN/naV+8iwllktsP2Tsm7ziqObnyR77z0AHeuvsQLN75MvbzGe+4/w099/Mf4wPc+QZck3O0sDZZOdsxCRSVqdG5QmUEmBpUkKJ2A1Ggj0aqvMDoXsF7gV4pC4zwlURp0gkXhUWRJiRAK6xps2+FsxDtJ8BopE5ZdQIiIj4LWBVofCELifaBrXA836/rkoG0dOI8UkiJLOXNmwnA8IElSMq0YpgZ8AK0waYbQhmhS0u0JJgMle8K8iR5pG9xyhl3OkfTJZDnMycsMk2ikkuSJxoXeMySsZIClCEjhKIsEIQPFIKUsUopck+WaYpQT0UQh0GmKSVJM0nfw8jzDtzUqBhIhKY1hVBbkWUYie0WcCCANSmcYYyiHI4RzLKuWeWWZLiyL2jIcJQxLRTnKSMoBOskRSLrGMp3OqZYVTd0RrcMISWIMXWfxnUPqlHI8Jh8N0GlGLz0rqY6WBN/7CHRdYLm0TJeOg8OO/VtLvAskmWJQJgwyg7cB5zStU7RRU3eSthEoJAJNORiQmZRcwNAIxkVKovqE3yQG20XqZY2zLUV+zDlYb7sCVuZmq81ibVwmV4TZeFxx7tVxIn5Frg4n/qxhQH3VrZ9789/NJv2XQ3jXCj4bFZ8T1T4hj7/Lm6EYb8shxCbwWSsVnVRzuScoWUGs1n/WcJSTWvHiTS2GNQxorYTDqrN+b7flpN48rA3sTnzJe77y5hr/FTo2SggyqSmkQUTQaQEyp2lb9g4OePnqdb708ht89vU5nS4RdkZmHEkqUARMVZE3hpdeew1pO2LokQguanKxQyNyLAYZClQcIIIi+kNEyFA8yMw9gAsjUnOKJHuIuR1yPlqqUFF3rxPcITpGUmnQxX3Mv7lHNasgJAyzM2zpU1Q39njpygwtd4k6Z3uYMUkqQnWZh0a7HBy+zu3lyySi4f0PPcwPfOd38fj7HqOWEjku0KlG6r4LyEodbV1FX8NWTqrk9Jc5rK6/2FTGpZRv++7BCaD/sazouqV44l5cv37vn3snWr92/HL8Sz7H5rmRq2P0h1k/d2y6psfJB5tJI/cmIX9dx1vqHOycKtk5M8ABUmWksu8QKNsxoEMJi3Waelnz5BMXMaZiOrPoRCIMzO4uqfYqjkKgaR0uRBwdwfbE5LNbOV2AqnEsKo/zIB34ypFIQ55qhOmhKnZu6eqa6OuedAx9ZhkiIkh85YkILAItInkqGJaSwVCROsd8CV4qkrzAWsne3hLlLX4ZUBFMrolS4GzvnRBaz2inoOp6kl1mFHmRoIWktoJhYdCDHKl7J2QtBWjNwi04unqX0WCIMTnR5Owd7hOER6hIVmRkowJpFNW8wteWbFJQzxaoJMcHR6gqXFeBSvCyJJq0b+kSUKlBmwTRClT0GK1JEk1iFARQMgMRkaGh61aV9AAhS0hKS9c2LOsZtgu4niNNk4BBoE2KUSl40NZRpIa4VRKFIAkW3zic98hEIdOUZd1Qtb08ZaIlZalZVrC1fY5FfZPGLclSMCbig2WxbIkhcGpUEIMF19I2Nct2Tu3GyLYiiwkvfO0lnv3aa7x4+YDpsiHuPEl9dAMVQaYTXDOlun2T8of+Jjf+2W/yMz/9X/Kzv/Tf8sM/8iNspxkvecuO7P0lLooBJloq5vhkDq3lQxfOcDB9Cjvaowg1Q79Na97Lv/vAAXuzT7M/+iinBh/gHdUTvHZLIqLjdPJOhFS88tLnOfXwKcrJKS6UIz7849/HL//i5/iVf/ITnL2UY7vnQSyYfOjHePXKC3zsPU/y+tVn2b/5Z8yF477iI/z9v/Oz/NzyX7D/zKuM64oyDWRbEjEoyJTC6BSjLIlJUCqhsS22m+Gygtr1mHChUqLUeFuRFhl155BIdsZbdN5Rty1aa4pywqiEplkwm3UgNM5IBltjkkTiYgAlabqONgR0UrA82GeQpSzaCg0kqUYhaLQmNz00ZphkjKWg8x1V02GtRZWGoc4wWUbQGTdnLfM7HdoFuv0pIvSQncQodic5ImqcyhgahxQRsepYeSFY2r7FrnxEyYhWglGSErMSayGXlpgIQpDgLIv9JfOFY5jKnqxtJDKAkIblbE6SlcTFksSUmLREGU0qFTLJiEpRLVokHu8CZTGgGO/ipMc5z7KJHC5q5vMpR7emFNHgJtu0dkrbWZxt8O2Srou4LDIwgmGuGI56SF3T1AitqFpYduBIehilbakWjix4FrVma5yRp+BcoBiPqOdLlkuHMY5RmpBnBus1d27VpM0hQQnMuKSOBipJZwSldETbsHv6NN1ygXINcblgLvpuULtssPMWOUrJ5BBvj9d7IY83XynlvRtxOFHdFKwgKxLv+sqm8wHRCxptVHDWcJR+g+5lWqXqiZZhtdOukUdqHSTFHh6zIR/DZtPfQJFWu3jwx7CBt3WcdE/AITZBk1j/0gChB4Guh9wkDSemiSfnOH7nOIg/rrquIUgn1N2JMdzTFegzu1V1VUAM/bUV64R6DTn7fxknUhSEkGgJ0ksW1uGdQwbBSy+/wYvX9rl6sOSwi7jRfcxmd9hOc4SG5vAuUkke/o6/wRf/j0/yn33pF/nFX/h5PnD+IhHJjEi++r12REqMnlZYhGyRIXJ6tEtVvxuKu2QhouNpZHKGJ8ZLpu03mGfvYzd/GtE5gk0QEYZqG68il699ndF4xOnxOU5vbfPIB97Hr/7Lb/Ar/83HCEriwhVEVmJOf4S9w5s8cf4J7h48w55U5PnD7I7O8iMf+iEO3J+w9/zrmCJHykNO+hj0fhO+X9dX1/w4mVt1zlaXb9O5EfFtHagK0VeoozhOhHsH9RP3zKaj1d9/J9WETna7TkKuEP26sIYc9S8fJ9qI/nwT40oNav2yoLP9YrhJzjg+pg9xQ8r/6z7eUnKQDyecvf8+rK1548WX+MLdI951aYsQIpNRzvm8QOaGu0uDoSFrWoIKRCloFpbrlw+5e6Mi2zGMtxMyo/AeujYSfeSwg3M7ObOFZUEvO5UISSckIQq0ULgoaOcdvmlRroXaYjR0CkRYy+D1drTKBWQqybcNea5IhIQI01nACMHZiwVOSJaLljw0BBcZTiSdhWykUUb1Epq5ZicraLxgtJXh5i3R95CcUztjZi3MIz23IIkkStAuLdWsQRvFeGuCiBof+hV1sQh0tSAdpFS+Y1l3ZDJjtDUmkRYZAnXlYH5ElECiUIlBEPEu0rqaGBRCKFoPJk/YHY1pljWyX7GJUpIZw+l8SOM6bDDILGIKyTBIslwznU9x0mKMoK0q2tpi8ox6XlMHGAwMSe5ItOoN6lyLRCGipjAGz0rKdVZzOLuJykco2WJ9pLN9BWcnTdm7ecBBFdkaDTEaYudY1jMGW4ZMG5bVgqwoMMrgfcdyecCd6ZzXr1zjpWe+wf4dy3I5wMZTpA+cw3CEOjokzBucq2hdRbCKajHETm9CveDO/A6L9pAnBhcokHzKB75XNLjY8PU7n+Z2dZkHzn8Qmn2E+W7udL9BoUtMcR9Wn+GweYPnFp7TxbfxVNwhSsNrzXN0Vz5J8fRPcyTfjdnNOXzpDvuP7dE97imk4vK730/G7/DlT/8e3/29Yx64XyH0ISb+Kb9bPMB07wrndx9E2jkHt19h/9Q2D2x9jH/ws/8p//Dn/zHVzduIUxNO33+aLFF0saZa1jjb4aTEyz5pPb8z5u5hzbzrcO2ccTFgd/sMZjQgKkG0LUIYlosl0/mMpmv6SrUuSLXl4Kj3tOjqGohsT8Z0bUVXd7g6EhYLfNNw8cI5JqWhbi0ISZKX6ERj24ZQ14x2ztB0UFUNtmsIweKdoJyURFczLCKWjv1Zzf61KUZkTK3Eu0iel+QDzVYCruswMlDNp8REURpJqsErybzyJHlKlhrSNCV2Dc1iwcKCzgzCN1TzgNCGNEtJs5RlWDIwU4q0pEzKPpKJjjwxgEQrw4KCVBuEgSgCMRoMmts394jWohKN1AYZDOUQlOu3lSKNyBDJoqFIzzM72mdv7zYxScgGBb7TeB/ZKSt8rpigSP5v7t40VrbsPM971rjHGs45d+zbzaY4NmdSlChKsmRGImIrgRwHSAQrsBEhA+QoA4IEMOzkTxDEQIJAyL8E+iEbCeQ4smA4TuTAGq2RIk1aHJqD2GSP7Nt3OvecU9Oe1pQfu6pO3WZTbFkSos4H3Htq2HtX1dpr7/UN7/e+QuHajiEGMqMRWtN4z/KVh+TZqOCcmwwiNKuW+UxjOwHS4lRg8coZd++f44ZAbiuOr1zl6tVjNoPilS++xEQrmnXHNFNU2ag4HHrP8fU5rzx/RkSNStomJ1nBTA7UpqNZ9FTHk1GPQijc6fLgji/2DnrwYbuQynER3W+x/btL8B1UGFIaqwcHGKAxyy8um1ilECPeeldV2EKLXg0B2AcC7DLf2w/f/xszf4eqqm/UvgNx4PhccsDvSuRsHSMgib2ztCW4ZNdovAvCdnCTR5SnD6FAu/e22Voh097pfC3bOViPwsLjJWxDitc97rvTlmvDzfKI8/WKr33jeZ7+xjkvPhA06hrmRsWElnLTMlORd928zlfY8LmHK+5t4OL+C8SLBWftghSvM1cZOiW+kRJvJ+DxPLv4XbSZUmc1xBbke1iEX6IyNxH2Jk7kOHfOA5+Ymad4S8oYFITN74Nv0Fe/j0bMmTw24cFzr7B+ouFkEnHa8ODqLY7T7/L1P/gM73hHTpkFEg9IwfBVe8RzT3+e977zKRjOcekV+rzgOH+cv/YDP8J//+zPsPKBpDTaamI/kEJiGAa89yPabnstxBDGoG43ckJcvpcSyYdHz/MbzV71tff3lQOozzftsrtfbCMLseuFes3NdwHWZaJi97mBUch3z6C2D5rjPvmxg0nuBAcPyRoe1Wn4/5+9ruDg/Pyc84cTRAqs7txlrjNyk2HyiFEZQgWGYcAMGqsE642jH8JYDWgdq4uRacGWOfVJRaEEw8ax7DpCSFx/fMJy4VguPK4BUxrmJxapDWcbmE5yfISOgabrOb/weMHYXDdVuH7EJUcrGdaBMhdQSmwlMRLSFr6zdoKTueLsrBnL0SFRBMGyDwy5xqvE2aIfJ4OSZJWlKC2qD2xWLa73lJlFFBYvA02fCFIgtcQHh/GJk3nFtWtX6DcbLs5acuvIi4IkFPfvXFDOSlKRoZNFW4tAcH5/zWY9cG1SMMlzTCZJamRgGIKkLATna49SGmVykjT0MRJdpO1bhhgprAYCYegZomW1XrAaHFpEQI2Y8b5HSsX82hEuCAaRKIsCqyx+CAxJIG1B1w9MSktZZUghaBqIEUToWKwDLgWS1ohyzvrOfW7m5VaMKuL8mK2+u+qpbj6BlIG+GZBRjWxSMdI2A/1wwb1lR7SKcl6TVwV937FqL3jp6c9z+vwdekpkXVHOMvIZFMOah3c2dD7g3UD0Hh0N8TP/AhF7UAqDQUXFKkY+HxI/qAx/5+//PR7IT/GB9/ww733rf4ZODeWVK/zKM/+Uuc2oZj9Eb2/QDqe0mw1PzQp69xWknHF3s6RRLW9697v4cv84R4UgVJqXv3Kbd7xwH9s7itLysZNbdD/6FL/4f/4ex0ffzeOP3eRI36cOz/NXbihebN5MExRFcYurIXL7/GVenNzjRM546t/7z/nKr/8yq3vPshp6rE2cnt6huHFMOSmQpiApS5KJi27UhxBKUJQlSkmaZoEUgRZLpgVGJ4yVVPUEMZR063ucrx4yrTOMTFQalAw4D8Nqhc0tR7MpXefwIVHZHN022KMjmq7ByxEOEr2nXW0o64q4WrKJGT5B6yKnD1fcP2t461uu8FilOT3bEGNH8KODbKc1yqy59vgtMiNRcUBERxQ1w8MLitJTTKfYIqMPgfOLNcYKZpkmyURpLbYsCFVJsVkSrcROjhCqoOl6hsFBDJTGML95HR0iwnl8jAQp8FGTS0VqO3LhGTrYKE1VVeRWE7xj8AltcvK6Js9z6BMXi5b7viMZQV0XVNUR+aRmefcu08JQzipWbQcy4ZNj4TpMUVBUFf3DU1YXS7JMMqkt06LifEgcX5lh8hmFVtSZwIqeZtWg5ZTCCJrlktW6JSG5enWGUgWNzZlmE3J7FSlqkuu5JQWza3MeXCzpIsh1T5k5jNXcv/+Ai6SYHc24NcuRybFoG6Qu6fqOqzeOweQ4L3EBgjL7+/0nP/kpnnjiiW+xGry+xfC11swDePFBlvpwg8s/jyT6/gj2H/8nf52f/Mn/YF/6P4hP9rjlw0zjIWZZcJmpldsen72TfdDTGLcMKDvc9+jEjVAdsdcnuPxtB8ig/QDsHo4aEaP9xE/8BK/cvsPlCB2O1KG9msXlj5fFTK8OGnbBxh/BPve5z/H4m57YwzJ2Tcojta0CwPuANpq8KMjLnLIumZ0cc+OtT5CKCbG6AtV1yrqiyBxqfcqnf/PXmb7zg/yLOy9wfvs2mxaqRhL9BmUzdBoTf6uUWCR4U0r85ud+j5X9Au978keYF9dQ9CR1xFfPv0wtpwT7ETyRIbSk6LluNSHdBjHlvF1g6xotTzgLE0ohaGvDl778Nd77/iXqZmQiFe+fzggffxu/8A9+h7/+H/0Ik1vXMNwmV7f58Fxw/oGPgMy5It7G2q9o3ZLWDsyygh/8sZ/kA+/9KB9781O849qtP9a5A/jIR76b9WbNZXQcL+ewuITdhTAy8ygltwrMl7aD0uyc4lebEFsSskPYTUqoHQHBwWtjtl0SU9yLIB5eBCnGPUTu53/+F3j/+99/8EmvcbFcfkP+Zef6oWjiax3j1dfAtz+W4G//7f+Omzdv7CurO7HAlOJBoMElZGwHDTuoZEgpD6BTBxW9lPbn6pBSdVclPLzudwmUELfMbfLRfS6/N/tjdH33bX/n6woOpjXMZhLnBMYqjsuCo9rycGjBWowBukBtetKmZ1g5msHjI0QXMVJCpgnO4ZY9WoxMRGIIyJjAObRNZIUmyIgpFNpIBIpJIei7SL9uaZsWFzzVkaFb97gE3TogFOT5yOnck+iTwAjomghGYoTA+YTwCSkDOJCZRGUKJTWTQhGipKg1ykp8Ap9G+kiUpus83juij3ghGPqBUGb0/cDGOSazAplbVK6wk5oYFRfLc9pBkFlDiBJHZHZ1hoqOXCe6ZOiaHtc7UoKyMqg8I7pIkhnaGqSE5AN9H5jMarKsIkmNi5EQE7k2nC83TEpDkBJQkCSLbkAhybRls7hAyohIAhkkCsnF3dPR+QEyq8m1YtARq2qiKplPDLkMREahkDyT+JToWkAFkg8EF1Amcu3Kydj8HaHrtrzyRhNkousailyzWQ9jpsjA0LScnnbkcmCQBpU00gVMEiSpGIaInR1x9K4pzhu803i3Qq0ucH5FfqtmOFsSLiQ0knh+hr97hkgVk/e9j3ffeIrHVY0Pnltu4BOf+Cwf++iH8Pa9pOomXk6RMfGp5/8Zs+t/lTqPlNqwiSu87rgxEyRzg8xc40JMKNSEG5nmLF7wvEz8eZWjc8MQAq+cdjz9tXMeVy8wu2ZQf/7HWf/SV/gn//cXyeUt/t2/fBPSVyiyFajIpmnwXKEXN5FWULlzhKj56NGc4w+/l/a0ZuYaJspSDoF109I6iRADWifyXNM0njJXICJS5UidobVGK3i46smzgrZrRpx2SPih56iwvHR2QfI9bT8Qk0PnCuUFxNEpCi4xyTKEkYRugzECqRVWwSQzo5igFGRXRpYPKTUGgS010lh8LHjTk1coyppSOoLOWJ63dEOkmk2Zziak2Yx5VVBngr6XXCwifdtwcjLHb1ZENWb3YxzFy0J0RAxITVQStMRKQx1z+t6hjMW7iJUSbTMiamwmRmFzQXQerQwyy5G2InUBLRw6KXSWAZK+G7B1RtdHHrt1Ax8sPkQGF7FGU1WKtBwZtvp1S5taUhJ4IZBZSTSarEv0LkHSzI+mzNya5dBw93xJTIHBa5xPFJWh6SVZnZhYSfI9MSj0ZEqtclLTs7k4J3rIdTZS0uYVsypSqYy6MPjOs76/wLU9wg94vyYrFEJpXCk0vKEAACAASURBVDewXDjq3KAqTaUFsetZW4FOHr9u2fQ9WisSljTIUexKwuD7/f2+rmsmk8nrWRr+P7BHnYdX0wwOg2OxWu0dmD13uhQHzvqjUAyx7VvYiYnthd62xzzE7u/2Hbn/DwKOLaOMkDCyiu0W+1dDGnYPd/0bcp/xTzH9GR73P9yyPGO9Xu+rOzsnRWzxX0KIsfFfawY3MLiefhhou4Gz5ZL5E0+ishXFbEWczRBVRl4q3vYD38lFn+iXEqMm5G5D9+WvYsQVnvxz7+PJ+goWCSEwnJ7yc//PP+Uv/Zs/iNe3UNl1kszohiUPNy9QVt9Lpj1GZfRhhVKBXBtQFTrVbFDUckavJBspaQU8IUfmwHXXc3cxcPJgxUQ7ikIh3vlRHv7DT/Brv/k0f+EHrvOON80g3UPrBiET3m9AlJTmCJsEGZ6UMt5dVtz48PdxrZhQ2fx1O6XfytbrNavVanwitvojjyhpj/MzbmF8UjzaULtz+PdsYN+E09++D3s4ze7a2Imx7aBPuwBjVHVOKK22EMOw/6zDqD3PszfsnI8xsV6t2PeJbKFfe+pfIbaUzWJ/L9hd9zDeS+T2RvNq6uLdMyUP7nPisrpxKQQ3bim3WhmCLXPYq+6Lj+RghMC7R4PD17LXFRw4l+i7gFKKJ564SugD9x6uEdagcsvgHUMfyTJFXmaoFJHLlrYPDFpQlJq0HpiqiPQe70cGFGtgiJIQI64f8cSZHTGs3TqRfIuxdnTKm44YPMIK8kqSKcXpQz8OYCbJphqjwQ0ej4QAfhOJtUBPFCqDo0JRZowUZpnERUE3QH0lJwaNUYlu61TFGImNp35zTe8Szd0eLcEaPdITSo3IAjEFkpYgJSEpWjc2Ya/aiEiShMEHcDGQT2oy3xDiqHQYhgHXD0htKCqLl6AIaCWx1pCkRMjAheuYVVO8G1VBlVJIESEp+s5hxchvHaUZbwDRY4zGoOnUWFURxH3OzC0XpGEgr6doqRAhbSeUQGWW3ObIMOCGflRsJTKtC7quQ2mDEQoZEkJI5lePebg4Iw2O4P1IEanVKGaVemJUGKXQQqNSQiEInadRAalHMZx2M5B0R4otvZcomVGV0DlJlxxxaNBCEjKDXy5JXT/2HViDKnNkHyivvoe/+Jd+mDc/cZ2HD854+YV7PP35ryPqFU+9+8+hyykXsmCNJKwGfvHvfI6/+d/+Le4rwZcevkwuS56cvI0UFyzd13k8fzd31i21mJPkjMXqIe/OpiySoL23IHSJSVGQ+ZZP/dKv8MP/1g/x/ifewTOPvZfnn/ssv/3phre+6wl+8FqJyVqu2gtyH7jwBX0aKMwJJgTusuIJM0VdmXM3XaW7OKW2hiof5ylCQXSI6Elhe56HBmJATwq0NSN17xgXjoxCgPOjiu66GajnlvnxMYvFOT4MY/O+tvgUsIVFhETfBwijg2SsIQRwbUsMfkTmpBEGkpRBWcVZ0+GMwQSNkpbjScbRJENKT/BpO4dHimOhLGWuGdLIFjR4QUwCq0d602IywwvFqnUMfcAlQVHUSN1yPK/HjJSSW8cNYpKUVqMzzXK1wSiJsjlJZKTkya1CkFDGIPQYvBgjiaYgthtEBG0yhDEMUbBYbgguMqlqbGHxEbwLhDBCBWd1SYxbONbg8UHi+khVKrYhOYaRdlIoidYVUfYYkxMIRCFohsiQepLMGDYt0o99QiIpujaShoHSjPeO5DxFUVJMaoTOqKtRadinxKYZlZVFv6a0gugCqQt0qaPtHISEkoKyzjm7dx+lDamdjAFlTAQ/srjpTJEXGX0/VvvMIVvRn2E7RMn8oRsJsV1Y0yPbp232c6favHOexo22jlLaOvuwX+R3AUJKaR8YjJAcuMT88EgMcPn0EIrA3jHaZwgPMoZvWEuXDuNuPA6Dop34WtpC1YZ+IKVEPzjixYK28yibk9evUEwnVNMJ5fEMfTRn/cp9Qhehj2RWkUlDsw6kO8/xmd/6LVbveCchWZ555nm+/MXP82P/zo+CytgIQ58S9++v+OxnnuMv/xsfZ0ni6+uHXLE1E10SU8MQFsz0Dc76jpma0seWGCInytLFxMXtu/hgqbKMzdkpZ+f3eNt738Fbjq7zicffzZeefZmbt65TTybcKi/QqqNUa4YIXWqQYkYmC2SCZeq5rgtu5jOsNN9yOP8odsjes3++zR6P8/yyT2i/zWGZbnfGDq6RV8PHLo8v9hsfMg3tfP6dA7uDCR42VR98+PhHyssnb0DbQZsOaxyHY8LB890YXCYaLhm+9r0Wh8/35+ISKig4PEdpqxFx+Rm793dX4D4Zsv0spdQl49vrGPbXFRzIIIhDRBpJPS25+8opq3XP/LhEGD0uOlJiNAitOJpZ/NCTto0ehZWkXJHLRBjGhmQpGRfsJGlaz3oBMYzRkB8C3kHseuQUQh8YekcQcSyZ+ICEUb/ASrRVYxXACHQBeNBSIJJEWYWdKLIEN67n+CHiBggpEfoxui5nhn7QKO/x3fj9go/EzaiyPD0pGNoBHRNFYSmKHG0yqgo2QyA6T5SaoAR9H0hEnNJYIXBJEP2Oig+EteP2LqBIGDk2uWipCGlkBDIajBIEBFZbPI4hKHzfo7IxMIkx4YgYrUgRRIwkAiEKBAktBRbIMsO6DQxbppnMalI30LlAXk0QUrNjfMIFjAjEfsQ+BhcI3uN8j7EZKA0JFGNDjjKGelaz6VZAIgZLkhJjM1JWoBgwIlFUJUaODb0SQ3QtPkQyMTqJoXV0tES3pg8aGRNqcAgHIni0DGhtxvHrPRmClBtElhPLgtAn3vfdH+Kj3/l2Br/mi39wmxe+8jJPf/7rHD+Z+PrZ9zLVGS+fLbn90ov0L/4B3r+Nx4uSOy7RpoJcFBSmZOM08A0kGSkORClwAqJMvFVX/NLg2Nxdk5pEkVlk7Pj93/w9rp3M+Z4f/zBf/Z4P8Nmzu3z5uY5f/F1463sMb/7eI0qpSGpUE/bJ08eGwUt6lXNdFzgjWSPoXcDmJXmek/uRMcq7ADFAlKNDGTXJu7F8nDzOJ6S0GC1xfkBG6IeRASsmSFJTThS925BSNwZWQuFdh5QJKTSZ0ITBkQIkIel7j9LtyNGf5JjhiAkXB6QpuegjhRF4Lyi0pa4rshhYrxo2TcAlSEqSTSusstjc0DYO5x2Dl0jAKNBaA4agK4RpSckhIhSFxBaKMpOkqFm1LY6RttdkOZWJKCkYtAAlkAqCELh+p1+QUEaD0ggxMqKlLKPtAyqTKJONNKPRs1w3ZEYThx6BRAiFFJIkJaSINoZ23YH3CO9IW5E/WZkR9e0jCrktr48sbS5JpsdX6bqGIQwMPtJ1HqskofOE4LH1BIUm+AQBXOjo/aglUhpLWVagDKkSRNdzvvGsQ0R5h/WeSTU2Oqehxzk/MkHpUUV4GDyrZUudebokoDAYq9DSkEQakwshsMUDotQb0zV9zayruCy1p22W/rX3ZcQsH6yW+2rAPmA4cIa2CZTDBf7VtqN3ZZetS7Drk3ytr3ooMPbGdZMObBvs7AIBAA6EpFJKY3IQ8N6D6Akx4ocBoS0mz8nKgnIywU4mFEdHnN17MCauhEbpHG1LUnOf8y8/yy8/vM3X/uAZECV37p0hTeSTn/4C7/zQh/nGasHFKy+xuP0S3p0w1ZozH+mTQckMNRYcgDUSDWkY6dFJaCGYCc1Xg2P18kNKrlJZw2ZxznNf/AqlznjHd93iXR96L1/+rQu+/A3B0Vwwu26ZPjbBIEnCEdhLe43QHgFzmdBid7/445/1PdXm9jH78X81tORgzr7G9H0UQ5+45MkV+x3SVotv961DCJex8ZbB7BJmk7YVtW+uRHyLBoE3pu3G+1Uv73z8tH0yqow/GjzsEgSvlVxgm859dH8OdmR/rzsMUl7dCyEO37sMHb7tz3pdwcHESiZajo10bc/56YJ8UtGdL4h9R15n5LMS11zQNY6rdUTrNJIppogWgqMrBU3X4Vs/CpLpEYumtGBx5tisBWwXtZDA1oqUIoExU9b2kSQCuYr0bSQMCWUEJh+PE9wIBQpyZEKwViKMxEwNZmLIB48qDRsFOhP41YCMiUktsUayagPCj0GD1OOFEUJkfXrG8WMniO+Y4RcDmTJkRYHNM6YBHg5LXOdRVYGWBk/HYtkhcwN9oHMeA2gBvt0wFNnonKW05SwXNG0kDoGkPFEakJCCwwdIpkLKjNOLlspIjNQIJL1PoB2TaYGKY7AkxEip6vuETZbMWHITWFxsWC1aYkxMKzEqyXqB7zxiyy4cgycOjmg0bd+RXIQUScnTbQZu+xWzo6Mx4BMgtcZUNVIpZpMpWe3I2oIYIUjDOhkyHamtoC6neB/p2xbnFZtNg8gNwowUnNFFBtexbjokDqMCQ98hBtBCYvIMaTL6dcvsaEIIAyRJQuO9QMfIxz7+FoJvePoLz3B675QweN72gRO++szz/O5z97kSNJ/9nd/n0//wHyOe/wJ/41f+EbkymMHzniu3SMJzwYZaga4+zsafc1zU+GYDsuP6rev0IfCZ5oK+icg+srhY8Nztl3nx2Rf43/6Hn+Vf/dd+lO///mtcfP0GX/nCbT71z8/45Vc6/v0PvwNjjsjES1yxFZUoOG/OOHWJK9kRlUzI6FFhoPAOAiidk4sNXRyIscOHQJICazVKzXFR4ILHN2tEFNTRYtLY4OtConcRIQ3TSYFUgmFYMZ9lKFngh0ByY0AY3UBShqKwJJ3oWse6G/H6s1qRzKhzIYREikgaeppBEpWiMBEpochyJlVBuDjl3v01q4sWkVuya9cp5kfkGgQZbnmfIQVIGoVEpXER3qwanFDYskbZgBsGfOiwJmOzOsdkM5rzNdoqJlfnYy9FGkhNT13VhDj2FnjX450kIcfKmc22jI/bDJpPKJ1TZDlCMkIFB4dMkSLXEDyb84fEJDFZQV7NEWnsqTg/WyCSh+iRbkB6x3AhCMbjQ0JbjdFyFARMnpWAk2s3WTy8TzdsMCHSdB2p69Ha0IdA3CY5tLUoazl/6TkeLjdMqhwfBSFAXedAwEuBWA4MXYuIHqkMvVBYExBakklDnWuqTBFDYHWxpC5LjsoMESNu0xN6xcnRhNlJxenFGYuzNcpadKZxG/eHLwJ/RuzbQjAOsp+RtGXUebXIUtpnNndO7B5osXXihZR7p/4yyboVh4vpm0S/dgv4q77GfgmW4rI/Ie3SeuIAYXGZVnxj2tZB2TebPwKf2EK1UtquN9u+jYOqTb9pSaJjaFv6zYbNxYIkBFlmGfp+62CqcV/vmOaW5eB56cUX+cw//zSZzTi5fp33fd/38zM/83f5q//lnM88e4cv/9ovcaPU/NR/81+jt/ect0+OSQQcHUZajHo7Q2yZmhl+aLHZyBTXx8izriOuJHUh2Ww2rM5O+fozz7F4+Zx3feD9/OAHj1l+9SoPVoIvfb3lRiN5340nEKpCc5dKlyOZSmjpYqA2J+RSj1XGP6FwcA+T+6bD7eiI5dZZvKxS7Zz1Q+pQKcCHy34TsXP4t+czhrDHwiMgxbTtY7gUw7sMHEYMfgwBtsc+/L0JDom03rC2nekcOtt753xbrdlDGh8pXwLpgElJXI7rvv+Jw1N6kGzY2o7lKsFeg4Ht40Pb9YTsVOlfqx/htex1BQfLIFh0EcKAFgM3btSURcn5Ys2wXmFER1blPFh3fM/33uDBKytSbtApoofApo/Mr9XQa9TguX9nw7BxTI4sWivqE4tPA0PrESqhhEQpj5hqhAzYPCKHhIuKaA2zmUZcbHh5veWiTWNGRwFZIRkWkdVZhyo00ggmhWR2LePBaYdXGfNJjiwF2ipMLrkIAlNZNveXZBqqiUUZydIIpic5iwenOG9QKFKe4aQi09A0a+pC05z3rJslm2VDWVpiSvSbiLYZnVYEK6hUIrZr7p5tePOtI7SS9FHgUiCKhvPlBVePKvKppW9bVi7hkiLLEzdu3GTdJ0R0KC1RRGp6nEsgoWka2iFxfHzC1StTfO/xHoboR/iG0cynNUJZmnWHrmbkyuKDwW3cCAXKDc1qicgqcpXQivH3SkUvJDIl+r5FSYmLIxyo7xxlN2DKmji0CCFoe0/XewodOJ6XtEtHH1qkyRiSZtEFQoTJtKbpW3IBIm7l4IeAQzO7NkPoDrFo8NGhKo0uCuorE3QYGNYL+t7RDwqdGd75poqHd1/iRZ+xuGhwvsNIR1hv+MiHnuTB4ja/8Y9/i2d/+Te4+MzTqKNjfu6LX+KvPPEuPlhk/MLGcR4TT5mK6+ZJ7qXADXOCNRnPrp6miQ1vPnk3D4eB5cu/Azpya1Zx77O/x1e//AkCgU3y/NTP/jSTlSedLrj5lgp3reR//NUl//bHXuHoX/kRhFii2FDKBlPfYO7O6eQxD5ozFA03r8y5WtScP7hPioauD5xdbAh9gxYJm0NZSe6c3x/x9w60NChhWbfDGCgAAUtRXRmZbLqWi/O7PHZScna+HFW0o6DvW4bNgsnsGhCJfY9MAS3AKEnA0MkKrQXKedzgEcpw9drj3Du9x5EJJBeoJpqqyiDLGYrI5Eiisw3VlWM6ndO6iG87hhBQ0hJjj5YjNtOnse9ndX5OOZmCych0JJPQe0u33rC86Lly3KP0qPBtQsLEiIgCqTVtH0FY8kwxnWpMZlG2pN+MULS2d6ybjpAkRQYn166BgM3gaDYdYdNSWsEkk8gESigyKRExslosuXb9BOFXSCmw0pKCYnAwGIMj0i4Eve8xpqXMJbWxXEhJlmtwLUfzkr5TDE3LbGZ4uFigc0WzHMfUDwNWCoIbUHaKzQWTWUUEzlct2fER+AGtLS6ssXHDqDdtGXygvRjo2sBsVjOblqhM0bQd1sHVkxHP3AVoGkdwnrwq8EnRiZwoWjIzJiiEe2MEB9/OLiER26V113iQLh2XreDv3h5Zhver8Q4rcZn132VAdxlRIR51BA4PIMS4EO/gSzsH67DUL5FslQYeoWx9I9qO1QUux3/no+wUZXejnGLcitzJfUy018ZIo9BicD0xJJySeDds+znUGOwFz9lu7Wfc33tHuh/5yid/m/z4Cj/9X/0tYt/j28jw/vfz66envH9yhceN5jeGwExIrskCLTPaFJmoEiU1Lzf3yE1JYac0fqBdPo+elHz4sZs8+6VPc+/8Iat+Q+sF/8snf5UbbeI7HjN0swmDj3z6duQdL1+Qv+X9CO5BWqLFHKktNiWiKJja4z92n8GhjWxTlzAieeB1p21yZDfxLnsE4gFtcNoHybv3xzP4SM1gT2t8yP4zwpUuFdW3k4FHvNg0+mhbjdlHqkhvZNtXSLj8PYcQRfbzX47toBz85kf/PHJMUrqswrzmJ49n5tV0w7teJ7Y9zrsqZgjxsnrwRxDNe31sRadLzuuKPFdo5Yg+UOSJ3GuadcNLL6544a7i5FrJ6SsDp3fWtCFSTUtuHGUIOzYLr7qSsFkx0XHE4BqLWzuWPpAqw9WpwijBxsO9C08uPCkpmt7hnCdpgU+J+99omFUSU0iyYz027oY0QiFEIjQDV6aS2ZsysuMcVRqWVpPPDEOnGfKcos5oLxru3VlS3dDktWCYKEIzEH1kPs158t0Vy/MNi1yhvSI0gXa1QcRAHGpuvOut9A+WfK35Bm2zRniHkJrjW1PMLJE2ktg7livPfZ/ItWRSKE7PV0QUWghkAu0NWltu32s46SJt68gyw/HJhKISJHeG9ALfODaA0BotYHV6ziJJZJbx9u94jKPZDCkMOoPlww1dt0Bmc6qpIO9aQutoOkcocrJJAVIzuEiIkGE5uXmTdtGjakNVZ3tM6JWjijv3HjLNBcZYZBQItYWPpcDiYkk3uBHeZQS1lYSk2TiNjA1WjHSXru1IoWF2VJIHDybH64wgxuqBjD0ys5R6zibcJ3qHRyDkFGkk123i3sPEQE6yGdNpzs2rR9w60mwuzkiyQttIDIlh1bG6WEFIvPDCfe7f6xiWAaEUeZHzwY/8EFEIWuCtVlGguKnha95T43k5JLy74GH1JFdmBW/PDV9bPcuv/vB/Qf3Bt9PUAb9aMywj9QeeoH/GYX79E5zaK4jJY8A1+mdzNgvLd/3U/8Unf/svMj/+LmJaE1IgyBl90Nx+8AXWTlJkc4wQnHUr3Nrj845MZAiZI7JEFJ5NCEyiwOiOJDRFNSFTBbjIxntO1yuKaoIVkQeLBSEl6lxT5zMuVi39JuI6h80085MjmE9I3qPMEe2q5eLhgmbdEWNPMArTJcpCMMsz1t6zWC1o25ZQzUBuyPMcpQSuX9E1C1bLDSTPdFbQ90smVcV0eszp6SmlgvWm5dwNaK3JjSaThjAElM45X6zInENpBcExrNf050u00TzzzIvM64KJVVz0a5ZnFqO39KY6w1qLkArnQWdmxOA3jjqDHEjKMkSJkBa3WZFPZuS2wNYGaTT4DdVkRkoBWSRE2iru9o7V+QW5FTx26wl8u2HdrNEpYaPj9ssLinlBXlZII+nTQLNaEIVCLGB6dEyR12Qm4FRHE9YUE4UoDHla0/lEe7YiSxtuXr2KUp6iKtB5DioxeM/t51+k8J5XHpxy+6yh1Iar05KjmaRNkc1gePxIUxUFyFEzYlJZ7jSRe4Mkk4mmGZBEJpVm1W1o14njGyWhzvDtQPCevChf96LxZ9kexfWOLGuQLnnJxeUC/E37wiP4nx2nvBBbsbUtD/3O9v0PUo56AXvnSIyO8b7B83KHHV89QCTsX5dSvqFhRY9WTnbOywF9Leyx8DHGbWknIdSukhL3tJ3BhxE+zJhV3TmiSo59j5E0KgbHy8y3d46h62nWDVG/RHZ0jUlVYk3guK546saTI5QJeFIJrggFYmQ5skQu0kAMDV35OMfKMJWB+688x//+H/5N3v6jP4y3Oa+8/DKuUMzf9R2424Hv95ov3HvIYOb05wWLh0ue/to3ePpTn+F/+ukPk9R7GClSNFLOyM1VxhTmn/DYx4j3HrVVY99VCfZu/dZplXtoz44KdZ+PfsSx310f49iPjET7Rldey7lPeOdQSu+vnd1lJLe9YgfT4jLA3jmwb1Dba08I8UhgsBuXHUsXr3W/Sa/65Wl3n9gGaq9Sexf7/y8rPRyMa9xVPIFXD2k6mAMijkxKr6dq9fp6DtYdab1mEBkyK3jqqVt84ZlnyaTBaMitoBOC1SaCi4RmxaAUqQe/jDgS2o7S6G5I1I8dUyJYLxzDDIZ7G3INmdIIKyhS5LoMZN7woA2su8C6HX+gbSMiwZ37nuljhigk5kgjVMLdjwiVKK4rppVC6wRaoApLpQVmkjFcSEyCvosMCcpphhg8vtuQiUCbEiIFku9ZnPWUZcaVqeThg4isM8IQWa17rpzUdPcfbMXeNMfX5mSZJishy8fGwvOzNb0X9C4RvOfq1QmCRFZI+iAx2o6NjJuB9RCQ3ZqFjAhhEM6zXq3BaIQP5EjWbUvvBeQ1xXROPk+ApB88ofM43SLEQNOPN0+d1/R9i/OJmARRJOp5zWZQNDFiU8Rog0Die8dm3TCZTzEykIaBECG4EZd8/cYNVosL1ps1UlmyLGex6LhYL6jKMVipjMLYUe01RMG9h+fY2JCpHi0lWnlM5vF9ovUtSI1JCe/ABUkxrcgLTddukGqUvQ/OkdeOSX5Et36IFIn5PMMYg80zilxw7/49TuqSzWo9qsFmEEzOuZWI4FBdS7x7Ck2PsSWZqXhsI3hmFlARpnG8WS6BtyIIGB7XJUEaTEqUouH89tP85I/9p0Ainj6kSWlk7ClKZGt57AM3KO++xJNPzKnkQF9ueOXqY8THP077j/4ef+1v/Cx/4cc+xgefusatqSG3jsAM19zDRUlyK1KQKCxX5lcoUqQqM9pYMfTjwiliZN2sKepjTheO9TIyyQbmVpIZzfG0phsGFqtznA+YoiRWc9ZtR7dcE6KlntRY5ZBioJ7WFNkRy4sVcVIytwq90qyXa+o6Q/qBUmcoabF2wOaKBkVpIMiCi2VLZ3pESLguMpvW9Hkiq3OuzabU88dIdkI+mXB++2X8vObJayeEKFgvW5rzFdL3lFXNfF6NVLR5TgiejQhcnSgevPKQMlPMZjV1npF8YN102CLHuR4RI56AEgWqmAA5iMBsUpJ8GvVK9Nh/lFSi0ILM5KNo4AQqUdKvc/quYb3pEKpAiIhWMJ1Uo+iUGwiDo+s9wxCRKOp5yawwXKxWzCcVoe9ZnjUsLlaoIiM/nqKHRJEChZGUk5LCGPzDBW3sSUoSu4HUeXwUnN5fMq1y1GzKkBwSyDKLiBue/dornK7XlNWEm9em1GVOHxJ0A/O8QCVBXeUIEoPriAmsyoj0bFbDiEeVib5rSUOiT5ZiqQly25NlJcXw7ant3gimlEIptV8MR+dG7hk89gJujAu6UpfZ0B1d6Q4GkBKkELcsLgmxFVYKIT6qTJsS6iDjuudN32ZJ5e542xclOyjAFmKze/xGzqTugp6ULh3Qveu5NSFI2wBgFHDc7XpQNdlWZfYB1A7kDiOsJYw6SEoIfBjZjxIj01MQCe8dWivKoqYua6TQHFVHTPrAqQ2IBLMEXgo0cJQAJDNhiUpxC4EVLZ/73Kf5n3/276Ksxt+/w21p0MagVYEROdffWfPCs1/nyRs3uHk85a4oePZqjjuWPPhnd/hf/8nv8eP/+o9SZvl2PEbqgj8N5NiOIWc3T/fQrh0sKO0YdAQIiRBh71xeOugHvS8HTu6oTh72rEPbd/afPVZ0xnOtlNpWMOL+HB8W8HbsOpcZ92+VGX+D2DYGO5zj+4TBDqi4raKl9KoNGQkTRj0Y8UhfwHg9jPeGEY54mTjYwWSlPLjOtoFf3FHEPlKdGH3EyyLDdo78SfUcPPbmm7zpLddpQk/vPBfLc0IbcApsVmBtQR8jGym4vxmQVUFhBF2E9XIgiohPjqNcsGoCdSYpjWYyywAAIABJREFUSk1Vj1/An5TE5En9gFASpS0kWN7fMPQO5wI+jNj45AXJjVjnrvEkHWHLfIMbscP1iQAjEBNNyiCIAMqSy4QpoO0Gmn4UDKtOKtabnmKiOG0cnVBEl2DpsFKhc48IgkmZgSkgCVI7jBl413BxNhC0RWpF0gJExLcO13ck2SGMwQqBNRIYCE5SXp2g2g7hO0QSaCOwQqLJQEuGZkCqDKks/XpNWc1IUiCTQCXwfU9z8RDhB+rjGZnUeOfoWocxYw+GLjIE0HUOJSJKa6I06FwTNj2Lh0usENRlQVmWSKtJSqG0IvgRvkQape6LomDtBnwIWCUxVqBkYOgGREjEwRFSwKsBnCQJTbQVvl8hQk/IHT5Jght7LayWDCLHKEtEkSmBQhI1kALWWrwQVPMJsu3QRLIM4pBTEchyidxCnYSQ2GJKM4SxtyHsmngcSa1QtaF77japXaJEJJ/PmT3+BKuvP8uv3K5488mc7ziqUbllKQUtCU1inXquiYHCL/nqM7/Pz/2Dv8+92w8wuSG1HaooMHmGNhLfr3GbDFk9wTdeviCPA295k+Tjb7vBrxt4/uSYRdfwjbsPKGrFal5xtRbkpSQvj5BdS9sNhCDJZIa2AsXYuFcZTSayMbhTkiIrEWjOYkfbN0hnyaucsrQMJJJJbKJHiISVARF7YnJUVcZitUEpO5Y5vUD4gC0SSiQQkTC04AeyTFOUGWk90GwcqTYIpanqiqqo2KxXJKcwGhSXJeaeRJePGgEum/D87TusF1+jyDS3X7jHE28+IdeKKHNIBouknFTIcsLpvXtkCKzcKnTP5xjhkCkx8waVFWRKIvoB3w60mxVHRzUhQd978I5SesCzaR1lPepCpOQQaYTJ2byk7Tr88ABVFKi6IOQjDbCPfnRI/Ej1qXWGMRntukO1jt71bNqB3gVGHmvPZFoyPZlC52hSRBcl0gWm8wqv4WJ5DsqgCousLNNJzqS6woPTU4o850K1+CJS5gXRJQa5xf4mUD5C53CrFWVmmeuaKyc1N65PMEqzWg7IlHNy/Rh6h9jqF7TtgFBjMKAC1PkYAAgkhJHsYNgEXIDMSLQSpMHRrtevZyn4U7f9orVbZP+I3lQiISQjZIVLvG2KB0JpO4d9WxbYuvIIeYn7lVISwmuIhnEJJ5AHmdRLyBFb/PD2+8Mllnh3oF1mVnDgcH0zxOCNaPvm2B2WmsNMcXpkG0gjJv3Adg3aOwjGOK6j879LjaaUcOMGl/Sb++cR3w8MmwvM8RHzazdIRH7t//h5nn3r2yii56Pf9Z3IqqITAkNCCZAiMkkBFVs+/8yn+Y1P/RbnDxfMj6f8uXd9iM8/9zWkUmO1Z9hg6wlen/DcC6e45cDjb7rFZF4jnealx67zAx/+KFYXCKEfbcT9Uxn0b32d7GF0h3A52AcScLDvDnq0c9wlyHR5Ti6ratszJA4m9TZYE1uhxLTtKRl1DrZih9tSnJSSmBJy/w3fwCZ2HQeCGHfN2WLfQyB3jE2vseu+3+ORV9OuHWEMDF7zvO4CjwPs0kFAd9hXsoNG/svY6woOqnlNPa8Iq0DUo9y0zXKadcekzMkKiwgOcIQUwVpc8HTe0/qIj4GYIjrBsgkM5w31YMh1YthOGmMl3oNgjKSkFgQR6f1YDRCKkbfdR8IQ0SLRNRJTSuKgkEJgt9oFWghspZhcr9DVmEWiD1ipyGoxwpAkCCUpM8VyFYheYjJF1JI4RNohoQtoW0cfJbYqULkmRYl3gdWqx+cSVCIrDUlIggv0a4dIA0NSJJFQKoyLSIA+CVRKNO1AcB6GHgNYm6MCGCMwVtK4hNQKrRVSGdo+Maks0kZkdCTXE4YOowTCRZQQW0yfQEiFkSNHvBsiSgJJkqRCYolJorsB340woLE8G9H2/+XuTWJv3dLzrt9qv243/+Z0t69yXZftsiMXWIpIUCzAkQKREjGKyDgzJihTZsyQkgEDpEiMGSIQDIkUESCSiWKcYEhhu8pVt+rWPfc0/27v/XWrZbB2d07d2AdE2bleg/PfZ+9v76//1vu87/M+j6SuDUYroLjxppTIAlJMuGFAUxqLSltYyQDJLPHTjBCRWSS8kqAsGQMItJbM04TzCR81UlcYLZmiJMmitGSMolKaOQZilEglICesNUgB2kiUTFijEHkvd1tqyiVQU4YQCh1EmpokFWRH3QRcdEipqBtLWC9AGRZPn3H7wx+wsS3V+D7dvKZbtAxIPn/o2fUTm+c/5P1VQmx+yvf+xe/wv/7P/wdSapp1XR58SiBFpsqRK+WZ3cAs16Rs8Mmxub/n5kffZ3F5zfK9FYuVYXt3y09/DH63Jj0WXCZNaytinIpDcSy+E23TEbxH5EBra7xMhCgQ1tLWLd7DRddixgmlRJG/zAmlMiFkdKVLnkpC9iPgiMmRcbioCSkjXMCIjDU9/bBj8Bk3zcic6BpDVVucr0gug9LYSlOLCmEN8y6jsycaSWU1BBAaqq5GtUuUkQzDyP39DdubeyaliW6kkpkcE/0w0Q8OZs+yUgQhmRPUZEQMSKGKm7CQtOsVTTQkqUkuEgnUdcuYEtK0eBdxMZBjRo8e/I7RSaStqKxBmyKNLGVG7k36lIxUVJgMMSSyNGgrENoTXECGRPYKEUNxUhYZnSNWZrJIxBwgKmYXAEV0CSEVddvSZFCVpd9tScGDMcRUKpXWQK0FlZJc1S2VaUrzszZsbm/ox5EqSaxS+MExbbaEaUJZy0JILq8WNF3xQiFGpiiYXaQVmpwExlYIKXEx4MYBjaRrG0ylSjU0KpRmr2iVsBK0SswiMPnw/20G+TmPt/W9/6RxMN8Se5J7iWXO5AD3AbxUe3OzwzrYxy77fKZU8phRPRmgFS7wgSpzlh88fl62YR/0C8ERAZzN4edB8zGDe/b9r/M4eTucMptwlsSEUzN3fnOv8/69nDP5vJfjPBu679vIhyrNAUzsPy8u3gJZyEc4N/Lqi5/w5Q//gM9+/w8w0bN5/jlPPv6E7vIKIRQ3r1/xwXvv8ysfXPLTz77H7/7z/4vPfvQSU7dcXK/Y9VuQCSM1tSqiKFVOzMnQNgt2fc/96xfY7HhWK8YPrvjkvfdPVLafcwD8dgApz4L2N2QxD/yTw/8y+0bhs7rBPp0vpEDlop1fkj9v5vlPHPbTeg+9JIfMdLmfBEe4J86uBc4By9d0vLU/h0v0q0DPIUHAcdm3vFaOHxyO9Lk87VtiCftn2xuryPlnrrLj/Sfe2FzOq0R/3HgncFC2pSgNKK0RqsIuYbcLoC3C1OQMyyahjGBKib6fGVMkKoiiXJNDzLgYCQ89figqQRmQVqEqQ1JFXxpfDka1VIQHh+kkNiemPhKmRM4J7xJYhWmLjKGpigKSXWi0jrSd4eJpg7HghpmUInWdqRRU65rLJCBk4hx4nhNu52ltCay92QfdlWAYAuMYaQjUtmRZU0gMvcMnhbKKusr7ACASdiPkiGtWKJURMoKMJCFxUVEJz/1uKtn8lJAqI3VEOtBkGqsRnSHK0v1v6o6HXWKtaqQFGTMqREQqBi7RRVAaWWmkNEipyAii87g5YJUpGulJkbPeux1IpNJIW9bjUkIHjzICJVMJ2kXeA4TMODriGGgbi4+lobhMbAofHCIHrAXnMqgEKpGYSwZ4f/ynfiREiW6KY2ZKhSpTJC1LFjqHiMuSFCLRHagVBluXQE2JTNYSY0omtDSkBWYXMFEwRU+z7NCmIkVJXc1sb3q662swHdViCcqwenrFdP+Cta3YNZLnYceyrklZ8MWLB37/x6/46b/4HS7eE7jXn3H7Rz9ivkkobagW5VoPKULwGJF4bBOvwsyctnSNoatX7PzM//4Hn7P6jmR5VXpc5s2Ge5HQMbI0DUJa3KImj4lh8OSY0NJiFxdALv0otkKIjPOJ3UMgzCPGdqybhs5kEAa0JkRHrSUxKtaLGmJGxEj0AzJ55jAhZMYFR3QJXFF8cmQ2w7iXF81Yq6lrja0twdWkFBBKl+Z9mSAFmqpQVrytaLuq3OADdF2DXLTEENjePyBzxFhFcDOPr2u0yCQ3c38zcv8wYFNi9WTBLCpsZaksECMhBAQBVVeIdonYU3nmAJMwLNYVKkqUMSQ3l2s6U6g/biTJJc5lmtqgtUEahSEyzTM6R5qqpqosSipSKuBcqMw0zQV0hkTynuw9i3pBipZIIktQMjNOJfDY7RJ304iRsjiK18Xd2QWPmxxdVWG7lpwk4xghTTgVCLFk5S4XLVJq/OgYciT4kSVV0VMfMuM8l/tUG5SPIAVziMQ54EJiGyXc7ni8WtL4QN0Z6sawGUZ8LL4L2tTF0I6ESAqpYLkwqOwwIpbytErFZO7PePxxtJq3pfn+VePtbNvBqOlcTvGQlSuc4TdD/IPqxwFIFC32dKQFnZf/z4PgdA4gDhP7MUN+CtLOs+fkvUNyOn3vz8P42fN4Fv4fsppwFhydmUcdAq69ys1hHBPW+zjznMeeD8nRXGhfUpXKz7B7oN8+ELwnh8AXf/gHhBD40ff+T7717W/z9MNPyLrihz/8EX/7b/1HhCdrXr26p78NKN/QNJHlxZLvP/9RodbUirWElc5MYWQOil/45Bmbu+e8vN+wkJqnH73P9OzyT5Uidm62d35r5FzA08nBeA93D0HsGYg4NNaWBvry7EBkxLEyk/f3wpv336ER+VApOACNN+6RA2XusH1fEch+Hcc+77CnIJ7d1/tnxAG0ftWlcP7Wz4CAt5YTb70+nKu3HZWP3zneR2cSt5y5sb/jpflO4GD2npwjlRGMY+T1KBFac/n0MXXV4GNmHDyrZUcQgUoq2PaEOZGQ1I3h9Z3DXBmMDzAH5u3Mbm+WdP24GITMxuIGTw4R0Vq6T1aYO4eRgiw9MWTCnNAm47PA+0wUAoxAWUFTC56+p1lcVmz74oY8bTzu3vHkgxWXaxg3gWffeMx6tSBMnp9+/prmlULOhQ6UO0OzNlilSINnfoB+O3O/ueWRqViu21LmBDabLSEIqvegrixaBpwIkCW91KxqQQwDOSakEkxzQuqEWVhE8tRWoRUMLlI3BhUsprJoIxk9DHORcm1tR041gpmua2nrhjDONCrhVQKhMMKUbOaUCdGBLAGdQoOU5CCIDqwSjNaguxWeQrkQfiZPPdJYlErMLpcqhhZYpRh9RgqD1BVSRiLFnwIy4/aWxTqTdUVhLiRCyKQ40S060DOyqoj9zDBOpCnRpYyoa5RIWCvRGsgJRcJI2IWAkZIsBVmD0oI8OVyyVEZQVyWYi9ERoiuViVmxWHdILZBaopPGucyyWWHaS9wHinmcyCnTrlY0jSH0PdE/8LCZeHjtyc6zblvszY9ptCRtJ4SsadcrLm7ueHE/E8bI8v010+sNhEgymvtgEbOjNq/ZPigunn5I016Tvnwg7wbyHHDtkhQzOQS88zz0O0IUNG5JKxIuZNiDND8PSNWghSmqHqphM038b9/7giub+aVPP6ZWjrbRICQuOlR2aKW5WrVkP+CmmWl2TMER3EjXWqQCsiCJwJRmhkEhp4nOtgitqZTB5IAUidrCLAST94yjImdDMhktE8uuK1W2dolSgugSMWacSyyUwKiKuF4zhIxFcNV2XHRLko8M21vmTU/qPcpabH1N0pILu0J5R/CBME8IP3F5uUZWHcPNDUYomlaT6gpZQT9EdFPjfXEzJiWsSPissFrvMzUaoTNaGCppmKaeIDKYAnKT91R1RVMbSJlQV+Ta4F0gJ4HQFqUU1eWa3dwjVFFTS7KYmkkaNg89rRKsmhpbadSwww8zy25B1Vl0a4iDx/kZ5pmkDarrePVqw8XSUStBf7cjkHBZUSnoWkVNTadWZCMZYuLzHz9w//IWv6zRpkbWHasGVAzcusxySvjUI/E4H7GVQQVHjIngBUoW2VgtJFfLhpR64t4BXUlJ01bvNmP8XEY+Cx+/otSef7Zk/sf9Vsnuc6QSKa2OARSHSnvKOBcRUh4rDSUbXZYLviC4Q+XhwKcv23baHkqq5UiZ2PNbjg3JQrDnax+CrLL+Qjcov1NUU8U77Nu/5iPnIlR6pBCVY1mYQ6fg6ZTATGcZ61MQehrijWD3cHzSqZTzBuXl/HX/8EB/f39AdAixl+tOmXG74cuffk7TNNR1gzYVf/M3/z5SCD7+q3+Ti3qJG3q2P3rAZMP6yYqbzz4H7fG2YecFbnvL5bWGnFg8vUZsRlbLSz6+ekacPDG/pUv/cxw5HZDrmaTpGYDKh4vurGJ1bkx2oNudL3+U4swcqUHnrryH35R7wJDOAlxBRkjFoX/kVCk79ff8eRgZjnS3QxLiQCM6Hf9yQg79ACeTQE7PEyWPx/q8ynj8/GgWlw61zPK8ypDzm8pSb483kxmnn32XM/BO4GD0I9PcYwhcXy35ve+9oM4zjz+8QtUlk97sN3op4Ae3O1arCtsqHgbHPDpkDmzvAtdryThEho1jdBk3RVZXhoVVCCuZvGCePHnjSfeRpsr4kJA5IUVGmExOguZK4vpMeynJCuYAi4VhFpHh+cR7H9fsxp7NTSJ6QSsDVxdLPnhSI2vYzD0PDwNf3j2QH0bUwuI7zbYvGu+VyuRZkFrLeDfSNBV1zuTRczdGHvpEDJ4Pn17y+NmC5ByD96jO8PkXW6gEd3cgUyhzkhIs15GPPn7G3XbLw27CCY0VGo1kJnL5+Io6gR99ubgiRDfS2Yq66lnsA50UBJPNtJUlo6mbFZvdzO7+njkUJaFlpVBVi5KZumporWGUjnnc8WzZIJPAzZrkHX6YmJ1jdanYDQNCQWNbtFbEAFWjGTf3ZC3RyiJSYI4TYxSsnz5BqRlTGbR29H2Pnx2Xy5Zh3LEbZ5adQVYt0gv8mElUzJNkjI7L68XeYXuHEoZx8wKvLKZWGDJGWxZdza6fSLPDNBVJzPhxYB5HlJJ8/Oya17eOZrngYlGTs2CIieXVqphdiZ4Xk2J0DRJBW1WIGNilRLeQ1CJwe//Ay+cPLLuGTz66Zr2MTA9fcvPFjnGzJceEiAm3ndl9cUdlFO2ioWksYYadF1ytNIvZ0W8mtsEyyAr3w+dEqTBas5VLTKPJY+LFD1/xzQ8g3d7wdGlZ1gahFJudY5zvWbYBRQCpcC7QCsVf/43v8HLaYk1F11TM045+2OC8Z9FULNtLglBMkyT7gIkJqWue9xM/+eKOenHBRauxnURKuLndYERF1rBamBLEZE+cdnz5kxcsFxXrpSCmGWMkprb4MXNzc4sHZLAsuyUyKwQRh6CVghlNt9BMEaqm5v0Lgx9B28Crl/csG8M337vmg0cXRGW5nyUqASpSV8UwMU1Fa1wow3pRI3NknCLeC7q2QYqRhKE2NU5C3/fcTxOPP3gPJyT9dsLHTNtaVq2hrg1iIalxeBIqBbxL9PNENdeE2aNkoQhKWUJUYzVCw+QTZtGxu5lBSJrVgttXEbUdWFQtys/MY2KKkWHUPL5+QtVm7u9vkEJw8cgiLwyvbjxUFbsxcXF1SasScz9yu51xdZlkt/0DOXligiwE60qxshXjfct1Z6iWVVH5khXGSuzqEfcvNnjnST6jciAME9llHj3tcCmRfEBpjawsiNKEbxrD/WYipoypDJeXy3eZCn7Oo8yoMUWUVGdBxdtLnVURvoKxL6VA60InTaFQD0tFFYTIJ+WhVHgVch84JSGInFxHD1zpxJ5Wsa9KqAPlMpfs3DHQymcF+0N29qxqcQ5u0oHt8a+a1b+G4wQIflbW9HB2ZM7Es+DzTdrDvlKTDyowvNnXsVc5kkJQclMZcml8PQSpYm9c6PfeCDmlIwWpLCcIOTHPM8MwYIzh6dOnqDOJx4e719y9fA6T5/UXNzTjlg8evYetJFIovBM8zDOL7PmjP/znXH70KQ8e8IkPJ8fN7f0+QfGnOMSBilKOdj67/g7HD1FkNcsy4g1KVt73fhwrOkeefD5mqnM61QROZ7q8lnuWAWdg4ih5Kjge35xP4OTrjhEOlRi1v0ZTOgXjp5ZfgZRqL3JwAlxwXu2KR+B0+O4xqBcnUHxekTmvVBzB1hln8QBEzq/BeLgP3vHKfCdw0N9tmPsFZlHjhp4P65HbXcDt7qhij5YSJeF1L/ngUvLrv/Y+r/uBm7sHzDyz2XriHFBjJDaWVw+R25tIZeH6keH5i4mb0aE6B2Rqm7FrSVYVlZA8/1HPPGamIZFjeXDYTrJ8YtC1xFoBMXLzwy1DJ/jOX+lQ3nFZ1dQfN0xW0bYSIzSrR09obcX9OOOF4D1djIaykTxsZ9aTpr+bmQeHXdfcvxiRQ2L5xNIsFWFy8LDl0SNDrtYonRl1yUCNKvPly3vud561lCgjWVw1mM7gs2B88Ny/fAHGMEwBi6BtLI2Cn3z2wKNHj3h188A0F3dkpTW1ann14gUmL+nWC4YwFl65sjgXSErQ33zJ/dYRs6GqWxpTqgUxC8CghSplvxS5WK95/TChpWImk9DIqqVbLalbw+hGag2JRIoBhUAJCDHRh5HoR4SAQGZKAi01ddfi54Ht3QMpeoSEm5t7FhcL3rta0Pc7EgJbNSg8ft6Csrg5sNkCJKJzCK2JYUaGQFUtEDKRgyeMmadPn6Bf3VDXCiUifpoJmwFdNayfXJCuJ7puxaqpEUgWdUetNa9vXkJzgX/5E+ZRI0RTGpWFRLY1X/74JZ0QRcdfJvphQ9w8Z7u7Z7h5zdTvCCHSTxkRE8sW6kcKmWqUg3g3EqLmw8WCKSWay2fs0EyjQwqFsQvaBmytUMkzb3u0hKvrFTnOXK4qLpcNeu+kLQE3Oybmoj+/p3zotqVdXPF+aJhd4ObuOTEnRDZIEg+39zS6wVYNQhfGrSeitcJIeHTZYmrDalkVWWDvWC06GByPKyBEoptxYSInz3rVsu4qts4V9Rtb3LG3w8Q4jeRqxZWtSZPfK+RkrK2p7JrnP/gj5gwoT90YJrUm6R3z/ZZcWd5bL3l0dUW1XBFcoh53hDiCkigo1MVmjRKBKo+ItmVz84Cuap48WyN8JESNjpkny4bOVsRHVzSLhrpb4XYT97uR7f0dcgoE2fDFdqBSlkykW1RIVfpdgo/c3vQsLxZ4PxG3DqPAWlVMHLs1uxdbZidwQfCwHRnGDToKqsUVOni2ooEA0g97pbaIVpnt/YCfRlJXU0vLvPPMyaC0wdiKzXZLP0VoKrb9iCVRC0tbG+yyIwnBcHODGyakqZlDposCbTKzSLTdJf39luRGgguMwSGToyIi54mpTzxMEZkSTWVJXY3wnlkJzCQw7YJlo4kh8vnz/p0mjJ//EIQY+Af/9d/jO5/+G/zqt7/L5brQNKytOJFSzsdZlLHPcEpVdPTzHigorQpNQoDSpW+sloIYSgNzziBS4qCyqXWR0klxT8Q8y6wWqLA3eUqnyfhsF45B1yEYOGgkHen25MIty4l4VDT9mkdLfBXOeZMqcdRcP8s0H7L7cm+4dVw+n7Kuh6rAGyZeUu5B4PmxLsc7er9X2jmcLYHUIHKRo40h7CtDgn63PW1tzqyv3+P68Ye8evV7XCwy7WPN6EfSEFBZo3XDh4sKkTP/1l/6Lf7ZH/2o9KNpC0j+1n/wN9Ba/+lWgs5A5tHgLIFScn/8DoudV7hOQxzBUT77t7yIKZX7B44B/+GaTofzuVfrkntazaHSdm689ecGBe/HuRP0aeQjwD2KIJS3y5+zio4UJ3nY47cPz4sDOD7AhZ/NkOw34k0gcFKuSvv7SR6Xk3vVorL+P/lcvBM4uLCwqDTS1mipiGrLL3yrZpg92WqoDI3IsHXoBby43xHSzDx5+ikjrcH7gF3XPNwHaiv5xV9oeHRtCdYUhaAUWVy39C6y207kh5kXvcNUifu7yOQzLkIY92WrPpKmIpVadRqjQPrE+pcabG3Azzw8TOgFvPdoxXuXF1xfXTPFkYW0kAI+zVBLnv3CxyhlWA87pq1jupgY+4l+TjzceBbXNVrB9n5gfPDsbkesS1Qf1uiFRfQD4xB52DgmqWhWUK8tMgekCnRNcaC9iRlC4OHVQM7gomCbZlSt+eiDS7Y3W7KLVFqSUQglaC80drXAjYHtlztM3VJZQ5ocu9GxvF6Ts6C2FqWq4rosZ6quYwgZ8JAUCAVGshlmApGUPEhB1pKUi/6zsTWirvDjREiRnAMieKzUXFw2TCmzbAyZhE8JnSVZOgaXiD6xnSPTMJFCQAjBctUwDW7f+ApBSbayxk+BWguCy4x9jzIKa0rTa646jLQEIZHTFpkjMsNUK2IcUanDqsxFU1EDIcLDbouwC1zUTE5AiIz9xN00k5hotOBiscTqiA8BkqBqa5ybiT7z2YsXDLtbaiv45JNP0HnJ7c2XbLYDbiq9GE+vNJ+NCaUkWhmS8wgEtrN01jIqw7PLirubHd4LfBIICYtHF5AmamvpljXGaKyGVS24ai2dVMhsyMEjU0RK8N6TvKT3GmE1slaE4Hlx84JKW5TSTLMGETBGoqxB6YohaXQfwPe0jSW2lu088/TxY7a7LcpUqJiphKRdNsRGodc1YZjZjY5IoePonNmKCbvqMFbgZ8c4TMw+sJ1H6sbQXXbYpmUc5gJSpKFpOsb+llp7GD1ts2R5cYXtOpJt2DjNhU10iwpTNRAlxBkx3pKlASkZXYCYqKuK1XoFArb3E95H6kahbI3QCh12jJseSUapjDHQ1IpKCl7fPKCMLmDUSrTRPGosmAVfPv+SRWsRwhAJxBQwSiKngaaB5B1x9qSsqVYVXZXpdSTuNog8gZ9Iw8hF1/LoymKWl8zOc/fqls3NFpMjpqkR/oEwj6hmhaqa0lScK3a9I+RAUA3OF8pFZQyPrgzD3Q0BScoaNUcMESc1z++3+H6iW2vmWTC5SMwzIlvut5GcFVUeWWoPOdIPEe8Dd7c7ktZIUbKlQgq6qyVhs6HpGrKGefIMU2AK6U+YBX4mOLXmAAAgAElEQVSeQxwDQchopbkdN/y3/+i/4Q8/+z5/7d/+63zw/ofAKdt2zGC+ZbMq9p9JSm+TqoqymVAFMBR6hMSYEkCFUBqxU0p4FyB7BBmtNSEmVOEHlQlbHBySi1lX2mcOD3z4o7rOPoN7oGukmE50pn1WXR242pzN3193WtF+HOk9hwwxp1DkfB9P6lGcnKz30dM51SWfUzKOB7v8Seec+PKiBKcxvmEsl0UuXjpWEkIs/W6yUAS992dUnMzj60uePb3m//6XxVfhcvGIJ4tn3L5+ATnRNAuyqvjFTz7i1Ref47dbvvHRx3znm9/g4/ffp62aN0DMn8IRPwKrw9oOlZdDsHkAVqdAnTeP2/Gzs+09u74PoDy+QRN6U7HruA7O1KmOQPBsuWNV6dDo/DUd+RShHxIFSpWQWori7ZXOj/VBKnl/OE4qZuLY/3EAwoefP1YgDtQwoJgHno7d+edv9iGcYcZ8XoF4t2P+TuAgxtIsW5tEnzNDlvAwYW1R1ZDR015bjAYj4O7lFt0IXBTMWRJzwmrN7BJpyhgpMJVC1gZbGVJMDFNZkUhFKtDFhM4RYw25UiQrS9k3lB3N9wmWgiyKrYgyAlMJYiPJSdE0FVMM6IWlWi5QTc3tMHO1rlnWS0Q25CzZ+khjG4yqycmRXYJFkalcxEicBbezI6ZAHDLRBRCJYetJNz0NidvBM/aB0WUqIxGUakZbmyL7qdKe3zszR8EwOoLW6JDKZGY0qmrxcSTVAoQuuuxk+mkgKs00TAgncSGRa8NCg601RkuQLdkoUirm9FJbpDJ0aaafA0lbbF1jlOZ+90CaE9PkkdZitEVkEHnm5tUty8dXhJiRMSFIyCyYfSgNo1LSLRoCmd5HwhSZtjvWT664mSNRKXRlUdaAiDiRqNoVGo/wgeAiUZSm1/VqRaW2uJQJez+F2c/YShLTRECR3UyloM4zU3/PUiXCdoeuFUKBVgI3OZybkCFDAicaostMw0RLYk6Ai6yrCkNg9ImcTXngSYmoI/3C0A9yD2w8MUXSPDNtd4R5gOjxKSOVJAq1L5tmGiNZdBIMTN7jZ8G42zFHTTaWqjJ0tSBGQ2U0XddiZGmK10oxDzuWy4ZhVzwMFIU+51ykth3ZTeSsCifZSmJMhTqiS1aomAkJpFFoZamsIkwJpQzGGoxSBGGRKhcKlpDFO0KU4CmHRN00jFFiciLNDj85xnnEE6m7hq5bUrWG0M9MgyMEX4A8odDBpEI0mtoopBI452mNZGVXSFuDj8zbHSEo7h9m1tcLqtqStCha/SiqtvQaaakxRiGrCmtb0MXzQHcLpLGYqiYnxTzOiARzKH4EqIwgQBgL7UMUZSBlarJIyOyIniLjahpiFMwPPYhE3ViUUdS5UEyaZYVIHpEjeMe8ucePI+Mw8HDf0/cOZSyXT55QVYacZyqdWHca6Sp2uwIgs6hYLCpytuxGSciZ1sI4zkx9YHCFllLVNVJmdIiMQRBdYBhKQ7NIiSwkKSliksxBYGJR0okovE801mCNwm/7IgOrDCRR+n6YsYAyFdbYEgzHgOksCXBzES0IIWHsu2lT/LxHCTgUv/kbv8V//w//O/7Z7/1Thn7k13/5u/w7f/nfO2Z7j0X7t4IvqSRSySKJbRXLRYPRlhgDSKiairZr6HczShaTR+/iXiEts3ko8tmCQpUQuqzvTTfevbQmh8BJHAOj/BbN/Fxl5+1xVOXZGxO966T9r/MQUkJKp709Zk7Lvh1kMo8f7/85ZDQLmDhbNqdjUAunptsCIvbmcwfOtxDEmEoUJsTxHB2xZ87kFI8OwbD3Tjj6UyRijFxcXvPe+x/SLhckqairlt32jnbvX6SsYLG45JNPPuUf/+Af8Svf/JRPv/kt3n/vGcuu2+vSi6865T+XcXAuPpUOOB7vQz/CEVSf3y+HSst+OSnFm1UdUSpdBYDtA9Ojc684Oy9nP0km5XI9p3TyNDic3wIeTuZhX/fxNs0np9Lz9EYX1Ru+J4fvnR9nTiB5X10sgf2Bunh+rI4LHkHYGyDucEPt3ztQx863lbP3/rjxTjNCSnvZRumZvMDqzHY3sVpURRNfChqpSS3s7gfCOBPR+5KtIMaM1YopxL1yTmb0GeMyRgSm0ZESjLvE6CJujmAUQiachyAlSSlQoex3gDBkpC0PAe0TppbkRhK0ZPQS02jax5ZmvaJdr0AbbG55tHrCk+5jLquZVfXAZurJIiCloUmlsfRmjrgsaKsicTilhN84gkuEORF9Zp484+clA25CxE2BGDLKKGTKNCrTVYpEwk2umInpjHcUlSWjqKyg0VAbjdA1pp7RVUP0kugy0QeGYcILxTQFaiGJLqHQdF2Z8DMSIQxSa0Tcn3RdMc+eRgvqymKbGl1VhNkh4kwYApmMNbIACaFQSbAZxv1DJBH3D3ixv/CNhEWtaWuLF4IoI2MMkHqkUMS85xpagwJSDviU0crgfCrykElgtUTVgsWiozGCbT/QjzPOB2JMxH1gFkOREExWo4JHeDBZkqZIShoqRUiCaQ7k7YbKlkpA9gtENoiYaVQkCVWMzCqNlRqjEnMQSJlANeTc8/jxmoqMu3tA+ExKjhxiQcWpNNtOUWKsJUuFyEUZS+s9fcFKun1gnEQip4ggoY2A4DBKY3XFYrHAEFE5ILLEjyOzhZiKSpaRGRkDIhcDOEgQMtkFlFRoKcnKIKWmrgx+9kTvGcNMbQWxAiEVUmoiEoGith0xjSihkcqQciaybxxEFulba6mIpBQY+8DddgSZiCGQyFTW0mTJ5AO7YYc1IERA60wyNUJILBHvZ4LzWD8jhCAKjUuZKXpS1EzTxKVYgAAfI3724D2V0uQ4IqSmrqtSwRI1KRtc8GWfGw37a2kcJkiB2Sf2tHFyjszzRCM1dS2oGk2tNCFGvItMk8PgqOuGYZiZ+gGtM0YLukVDJU2phCpN3dTI5JjG8RhAT3Ni8omsDHW3wC7WkCPRDYSYsFazXDV4N5HDjFpWXD+6xAdDQiGEpK0l42RwO0/vZow21JVBG0Gce2pbQ5hxo2OglPON0iihEHVDkkUxy1YWicTHRFsr2kYzeIvIpVplas0iSyISmTK6rlBWI3MqlRErSD6WYydlAVg5fuWz/89iSCH5N3/lL/L65ob/5Z/+T/yT3/nHvHz9Alsb/uKv/2WMMRzToW9F40orjNForbDWcnl5wW/+5l/BzQM+OpQpyna77cDm4Z6f/OQ1/TgXR96cmSZX5DBjRmmJtApBmcPmyXOYmOFsIj6jDKUjp+iQvTsHMfls0j5RLcqfrz8wOGY2zwHBIUN69v4b3hFnfItjBpSTws758gdzqBPgSGT2RlvydLxzLk32p584QK9SURD5AOr2wfEenB1G2y159OQ9njz7gB5HipFp7Pnw6VOUEWSp+OTDj3j86Ckff/INPv32L/H06VO6tj0L1HnjN3++4yvWk9+Cmsfr8asWPVBZ9r92PE/lt+Upsi/ceN5sCN+v7gSEc6nUHBpnIXPCacdwmlNU/PUdZR8BikT+4X4+BeSCzMnI7/i98+dC5o0KwzlVKZ/9c6hIwump81Wph9NzibPSwZsVo3cZ7wQOdKVBZaKfsE7zxAZeJ4XICaMyVgjEFJhz4ssvNjQrzTh7CAkrMi5njJEkKXEk3BDILqInj3KZ/mGiXWjGSdIPkSlA3bREnbl9OVP6cyXKKJKNBBdJIeN3ieSKnrupFFwZpNFsssZHweNHNZePL7hcrMFLPn38y7zXfcCj6lNkmnGLG6ZwyzTfkUTA1ZFWSHb9HS/7LVkKbu8Gxikx3TuGB09wCa1K9tjfw/WzyHJd9MPD1jNNM0st6ExCDJEpJCYyVJrFRce4CdTrGtNoGpnplKARiqBLgL68XLMdI/12JvqA8IkwzwhVk/d69jknYgKVwQVFiiBFxBqNNpYkDHO/Q15ccnW1omkLX/lmHInZk+JMveioK1PAgdRFYUqA0MVTIGXBGEpmparEPtMiSDmhpKE2iqbShOWS0Se0NmQpCSETkkCo4gnR328gJEzIGGVo2xpqCQLqtuNh1xP9jMjFdXdwA0JbmLcIqUhBk6fM07bCjTO1LNWbkDIuS0JWhNc3NM+e0PcFmLbNioWpEWGmqtcsKkFrNZVWCBEJaWbV1aSs6ceJx+uOZ01HuFgxTJ4pzkhjqBctbsy4GXTINBHQGjxIpQgZBi9oO8tiYekfPNWiKde3DMjkGfvMYrVEUVHZFi0j2c/kkNEIdrOnNnqvaBJLs73t8C6SbIUIERkiwjsqrcj1Em0tSrZ4ObPd7tgOA9lDEi2LusVnyRSKpF9T1URfsmzIikM3QpYSWxepUk3JrisNUUn6kLhcFqUesgc0y65CC3jY7livI22r6BYWp2omlwiDQ8RAGHrcPOC2d+j1NepijQsORaJtJS5GnEuQIm4YSdMISpBjRhiFthXa1sSgiDHjfZEGNdYgIqQo8D4xuxGfBMmVZ1AWJWuTGknVKJqlBaFxPhEzBRDPkbqRvL4dCT7hY4TNjsX6AtEucLsHYu+LI7Qx+LTDR3AIpqjRVUPTKdq2I+xleIkCN5UKp9AaYyD7nnbxiNY8huDxPpOzotOWoVZMOrOdA+SI1ZJsNC5G2kXLeD8hQiYJwZQEU/BUCOquwSpHVVmapsblzO1uhrpcO3Vb46PGp0gWnoXKhKxJbkbtjREFGZUiQx+o6gpjLbVRTLMj9MP/q4nj/9/xs5PWarHib/y7/yE5Jv6r3/8v+d1/+Tt89uL7XF1c882PPsXaYpSpziY+IUp/gTYGaw0X6wt+9Vd/jb/7d/8TnN8wjvf0wwN9/wAi8we//z1++7d/n5++uqXvR4bNCKL0vIQcsJWh7Wq0Vrg5cPtqR4yhAAlVtluwpwu8FeMcZB1TAuTZZL5HBnmfCX8jI/jnAB+86c56xoY452ef3twveuKuw4GLLfcNsKegNe857FLkvRPvocqQIeRTyPo2CNkHtSkmQghordHiFMQfAjOpTu9dXl7zrU+/zY9ffM64G1m0S64efYStLdooPv3WL9O2C37rr/77xJjQWp+AwZ9yvPsGdeutdR8y9If4/tgX8NYQZ/fRoRpzrBaIg6f3gdcOh9D0BA7213IWheqXT9tz4MHDSUK4/O7XGxgAe9C1FzkQ55z+83Gi131VMH9uknaCTqdqw/lyx/feKEOIr1zvodrGsYp1BrLf4WHzTuBArFr6JBie33OpNHGIPH7coquKzV3PzestP/j8Nfcu8UufXLG86Pji5Q3Je3TOdCpTt4YvP+vp1oJ2r92eRPnsIYEjsVxaRKuRLiKqwPtPFGMvijuyzahOoLJiGBNpzoQ+kVxmrmHRaC5/sUFXIC4kdy9HspUsLzuedR+iU6Zrv8Gz5jvUsiGnESslC1ND8ylRCNz8e6yWmj7/gFf977G965FZYFTC2dLQG/uAz5HFVUP3qMGqMvEqK2kWBttalrWkqgQ/+v4DXguWjxrWF9UxmFxeLpC1wMSAzSV764YtIiVubjcoXaFSwrmAygkhFM8eXTHOJZvdGE23XGDqNVGt6Lc9da2wSkEqWftqvUQuV6zWl2gSYe4RKVF3ay47cHNisegIQTCNHp8jPivSGIs/A5HgA+OcUVaTk+P2dqKZKhYXF4X7TURfX8LseG99xc2d5O7ugRgijx6vSD7x8rPv03YdTtV72lhP5QW7bakS+DEik6aSAqkiVb1iNwXEAprG0lSWWtVUi2eEeovRE6kfGDY7HInrxxfcTTdcr2q0NiRpqazAWtCiw9QLrltDDIHBe+YUUEZR2Yrbhwem2VCritWqQa4ueP7yc0Jfc/nkCqFhe3PHsNmitCLvqWphzsTk0FbRVQZrDEZpsskom7m0FVILhE5IpWkayzjsuHkpqeoKazVVlUhCs2hrrtdr/OQZtzvSHNHrBu9ByQaqsPeNiAzDxMsf37J8+oyuVYVSpyW1Lk63Rknuhw0qVygM2pTHeRwDMU5FAWhvLEcsFcGHcUB6zzj60uguMk+fXXJ9uWYadnRNDShiAm0FH350xc3rHdf2grmPRB1IIUNQPHlyza2SjK5hGzckEVlmx3K5xNY1KkVebwf8JPb0qoxcNLi+p5KwuuyouiVCGpzLbO/vwEiym0k+EJLDh8LXnqKlXlbo7BDzhMpQmxrvZ9qLlmaxQAvNdjMypBGrYA5bcIHluiJjCL5kiTfTTFsFhn6i0Z5tGDGNplou8UGzuf8po3eAoBGShohJI/fbjKkldVczj670X+iGalHRNR1rJN4HPImQEw/bHuEjoxupZEVlJTFHNvcBpQyvX71Gzpq1NlQSEgGfi+naddNiSMQsmEPJrFZSMrjAWmTCYfsqgxGSMHq2964cHyVRulR/p3FCCKgW3b6SOZLGifbPpHJwrliSeftVVVVcLC+5Wj3i+Yvn3O1u+I//s7/Df/Gf/gN+7du/jtb6LBMfS4VFKKRUtN2C7/7Gd/l7f/8/R6OpjGTR1Fyurpnn0mD5/pNr/sJ3/xL/w//4D/ntf/K7bDY3aKNKxSzB1XXL0w+uEULx4osH7m97SIIkOON4C5CF3x1DOuN5Z0ozwV5G86AU8jNzci6KMuLrHyyJMzoDcJS9lFLsqRYcW0sO8Q2c0X84SDTm0rh89tsHBRe5Vyk61msOlYk9BYl8CkBP3hb7c7DvE4F9wHu2giNXXia0Vjx69Ihf/dVfY3A94zhwtXrC9dUTPv74m1xdXiOl3CvwCIw5gZE/i3OYUtpLap69KYpHeEz7+/oYKJ4Aw3mQ/mZD/V55iALYlCr7eTimeY+G3+wfOVy/p9S2UooDvSvt+wsO50R+zSsGwOHiKy+PgffZ/b8fX+XRctz7fF7XOlUNyt/TuTkA4zfoWeLNO+SwSScwfdrMQ/UhH0tIf/LuvRM4eLruePboip0qFI083PHl7YAxMyp4lE6IyvDRymAXFQ+3O7yL5BxRInG5sMg6s15K2pWm1YqcMj4HlheStFAgwRSpflQW+ODRWbJaFpOY7Qy5VqhWUy0k288n5k0mT5nxi8ANGfVY8fFfWJH9hL6oefTBh1xfP6a1FZW+4hvtd/eZpglwKDEiuUeoJyQ0c/VrVGLHdvtDXtw6vv3he0zmJbc/3SCHgN94xk1ESMFsisb8T37i2F5WiATGGB5/Y4WYHQubuPpoiY+JaCX3IaGRvP/+gk2yWJPR1YKMIeaM8wNLVSoVwiQWXcvF+y1hN3BxfUnygo0FHwSVNVTrmnGA3XBHP2YcNVZljMo06wsWXcOFSaipZzNN3I+BOWuqtsIAfRzQcUYKTa4yk88oJCaPoEqw4WbHMEZCGIi2Ro4jeIuPE7KL2ErTzx5By+gcW6cIoqOuQQvNLs1MvWCx0DStJSKYZk+kIQ03jDGRncRIgVSZNERUt+CDRzVjtpi6o2tWGFVxf3fD6nIFEXzcFV1977n54ksa0yFSJqUJaTTGKqxRyJQIbiLVknEaCbPDCkHd1GgmLitoyTRVZppH7h923D/smMPINE80F5f/D3dvGmtbmtb3/d5xDXs6wz13qLmqZ7rpNh0MjcGDIMGOrWBkZEcBMog4svPBkSIlipQoUhIpiiCSZRnFnxLJiZV2SGwLpeVgcBgMNo2hJ5oeqru6qumqunWHM+9hDe+YD2tP91YTipCGLl7p3nvuPnvvc/a71t7r+T/PfyDmQIgtPkiUkhgl8X1Yf/gNlqCh8zRdxJQVxq4DvUqNsQIjFBLJMgnaxqGkYVxqQhBYBVIXLPrEct5AzNTjCZfLFT4IZjpRV5bkE32MKKWZHlouT++ijg/oQ7suCjN909E3LVopsslky5D0vVpiyShRD0Lm5RKZI7W1VLYgqwB2xMS2NF1P6gMqZkLwxKC5mPeU/ZCK3Xcdl6ue49mYuJSIokKrerh4mIzMBdXkANV5ZJIoBitamSQ1isYFpgKKcvhATF6hdUlVjBDeUxQ1WhckYUjKoYsCLQzTQ0N7PSeHHlCsgqE0kulEk/qAYA2GqhJbGqQ1pJhpQ49rlwjfUBhB13aoSmOEH9LFSwnSUk9L+txxfCxpmkiQBWUxYTqZMAX66xVp3hAiyBxoe0fIhhsnN4jOYSuLzAmypdSWFByX985xkzETNFba4SIpegw9NnqS0lhTg5Jk2WN1ydkbDxlpDUpSjwvGVuGcw3tHcTBB9+V2/G8t3Dyc4WOka3pc328dRWJOXLWBcjRiNp3S9y1935FiRBmNINAtV0S1HvmHTBDfHJqDx69Z/+qf/LO88Ozz/Gc/8de5+3rD6uyav/Ff/Bh/48f+U/7Kv/GjAzBgB2wEAmsL3v+t7+cn/vsfX194w+DaEnu0DMhiOgT7Ve9G2mve8eF3skgtxyeHJJ34tX/yabSSnJxM0cD56ZzTexdIKfB516HeLwgGY5B1hzWvvyvEkG3CztJ0X8C565xvBIxv74JpR4XYCYrXqGd3p/UoYNvt3gZrgZRrR5y0cVt5cwk5sDD2HY2G58x7Qs7932VTLaUQEOylCa/taAfh8r4Yf5gyjEZj3v3O9/LC8+/k8vKSWzdvUxTFdrrwCGecP1xg9wgNZb/glwKRdpMpuQVoO9C0LRbftHbPt9FrbKhw+4XpLgX6zZkOA8AYzvmda9Iez+WPwtoOyjY0Ktjv0A+5B7u7yz1QutG6PN7F3z+ecT3peVzf8fUyXzYC8WH68/VnA1uc8BYOwVu6IlyePmQ+ykihCCcT3nj1Ie3CcXizphppsk7oy0CUmeuVx60GsZcSkiAk2q5Ti8uM9o4cBCFBnyPXC4GsJPZGSWg9buHpO0/XJF5vMuVYUedEkpJCgB4JRqMK830Fn//oNc1ZIoVMdz9y9YmeP/ZDB7j5EpkzC9HyYrvkvn2KP3nrO4lyjM9nnLe/QJkfUoqMlGOsKPHpLlJ8mLp4B+99LnB23fG1T3yC+MwMaTTX55HlIuHjYIWXjcD3iawsd+91VEZweCjp20hpNJ3NLJMnZIHRGqXg8v6CkCRGO0YHM0ph0F4gs2R0UBLawGjkWcznrFxHMZlyYzpBjqb4VcNISwKK4OH+6QpkwWLZY21B5wORArSh8CveeDCnOB6zaK5Ydp6kLdPJGJkk9656chMp6wltTDSrFYtVR3FwQKFHeGcpJxNgSWgvqExJUddMDg5xi4bF1QpcQX04ZXnRoGxPUpCEYnI046CQxHbF0dENwlM9CgdBUdgSPZGcPXyDk6OK0oxpGw/RobJnYiKlzoSYEUIhYiZFD0ZhbMXZg3OmFRhl0arH+J7JqOTkyac4ny8JumJkagwK6QOSDN01oZKUowK0QDtPzD3zladvlohs0LWiy4mlWw4Jm11Gkrm4/5DV5SW+6dBkkgRd1JRlwneOnCPJZ8xUo3LC54QsZxwej5mN7eCAEiOm0Ki2JSuNFYEq94zHB/gQSV3iqruAANYYYgQfA4GMcxJ8QKBQ2qBtiTaZaasoREbZEqcMKUcKkZGuwbuOEHrKukJrQ+t7IoqDaUlWEisDSiSMNgQfuXp4wc1nnyAXcgDt9CybiMiSEHpEkIysIgVPjoEb4zG5FxRHE86vHca3FOMRajwCJVA+YVRPpSBHSeozvulYuUTTN+Qw0I+qcU1Rj5GRwQXGzjB20EmInCi1oDg4xAhB7lucXOFzQEqoqkwhBJVKdEpjSokGsnJoKXCNZyUlOXhy6pE64p2DDP3lAjuSFNPpAEaUwijHcu4ZV5Im9TiXaJaKKvaEDMp5alOT4gJrJMV4TEoR4RpcAOMUqQsDjbKUnN5fUo4M9ZFm6RJWSGxhmZkaW1XMhGaZLcs+sFi2uGVLiA0jVVCPS8qxoZ6WaCvxfQJRc3p9iU4KET11ISnLguw8x3Xi4fkpsYnIogCdyEoyGlWojRWuFMQMPkQygmIyJnpH6hxlaRiPS/wfGKXl0QlBZsg12FwoXeiRUmF1sb34PfvkC/zkf/X3+Gv/+V/k7NUev1jyd/+3n+T1B6/wH//V/xKZ5aD1AfS04s/98A/x7/3VHwNpSbll6T5DJXskCqEmQOL09HVu3PkwB5NneP/zjipofst/gn/yf38WbQ3f+seeZbnoWbnMqg8sFu22U4yUDPamYs0GSgPnfUPHyLuiSigJKSPV0OTalLV7zXJSHDraKf2BHYRvzBJrZyby2tlpA3jeTKYYitKM2AgqcyaL9RRFCkSCGOIjItn9QnZTZColtiOEfXCw9fcn7xX/axpRSutG6v65+OjeG6NRakzOMJ3MtpShfT731yvO/nDWppDfcxJSm99xt/t53T3e1xQI5HaPhmJ2l4K8owp9/Z8q98DsFpRs9nhNTxpwxd5EYY9i8wenyfjGLCHYBcMx0KZT3tju7pycpNgJg/NarL3TeOQtmBZid7zy/udDzkj5+Pn1OKh7ZGy0nhY8Ok0aHj40NPc1Dr/Tekvg4PTS8XDWMaoULAyVtVwJTyLS+0DvI0JJemFQMtP0gaqEg0kBVuBipOsSPiRsqUBmCAnhBv94IwS+MbhrR7P0RJfQCPomsJgnRicWYwVFkRgdCSYzy4fed8QPf9ez/OR//WW++sUVOWT8PPDwlQuOnyp5/mRGGp2wKJ/mqnqepb6NRDPvf5WKz2LlAiEKIjNcXLFcvIwcP8OVnPHG6FlOb3yYxrzI8rULrh92LK8jzuVhXKcVwhoyevBaXo9Gm9Zxdd3y7NNj7MwywzC/6pEiURjN4URiVCamxNXFgpG2jHSFLkbU2uAOA6HtEJ0jI4hWMk+BfH6N0prJdIwQGh8TXRHolh6tMzk7rCmwVmBMwhhNWqxoG0OpDIVI+G5JjI48rqjLTB+HgCkZHRoo9WCX6VNgZBSjcUkqDUZJ2vmCalKjygotIDiPF4Kr64bl6TWjA4upD7A+UGTQ0hK85Pr0DKtKinJGcJ7FoqXtW5IfxvYxZbSEsqwpa0C1AV8AACAASURBVIvIDiMgZkGzWuDXsffB+UGk6yLeWAQRozXYGpRh2awwUg5jfe/JEVzKrFLGKoWLjsu7V6QUKEqJHRVMx5alqgltz/XlGd5D7hNX8wXSd/StJ/UOLTJZKZxPZAmjqsBqzTIvCCGgCstoXLHqIyFljss0hGgJTVmXKNeTSkOpC/oQCb0bCtU+AhHhOmLriC6TzeBaJJQmth4vwNgCYxVSZrzrUFYwmx0gTYIU1h03y7gekVrDap7JQuFSJkdPUVl6LyjKghQ9SQ56EKEUuXFkpRHConUxJGpXkkL0A8CYzVBojIYuJEISaF1hZCTkjKkLnI8k11FZyfWqp1teDrSVwuCdwjtQMmFGY1atQyaPigLhM0EkrNRopfDNCmKFkBBJuOSpbKaoKnLWjOuCxne4rkUzpnPXLPMUoxXKGozIqBjo+yUZTVg6pEikFBAyD/vQZ64urtHVBBHSOvF4sLYsRwVN1xGEptCaWidS9JjRhFG7ZJkSQg5uJWSJa1tcVKTY4/qO7EDETGgCowONj5rmYj5oW2JmtQgYIdBEbGVxQSLagBGZw9mIpvMc1SVSJUL2rLoe5YcAvHa5xOV+MHSIgRQUpU6MRpa+S5TjAmUESD18NikQWtN3HTF6EhldWWRVEAFpC2w9ppnPUYWgPqiR4/qtXAp+nytvL4ibv0PwrLoFbbeidx2f+9pn+N4P//lBPCzVtht2cnTMf/If/SA//t/9FIvTFc3lBZdnDwjRoeQmcCrznT/yg8TCUsxOEECfXkKlV4ZIAVEBLUKcUxSvAu9nScW8epJ+ds7BM/f4jj/t+PQ//zxtBz4q7r9+xuXp9ZoOIwcLzE29tKZSiHUCshCZFIcL8kZzsGEap7Tm0q87rHLgE6wBBX8kmqlDQTS8n2KM69rk8SIkbxOpd3OTTbczsYlpepQTsaNq7ATMrIHHo3zroUh93F9/8zx5CPaMw8Rgv8u77xa1oXRsJhlvep17AGFz/z/MtaVI7WOwvAFqrOvIHZdk46Q0bE3i8TpRrk1kxFqrAY/WoTuwBo8+eEez2QC2DfB7nII0UI3eIr/lm3aJ7YQm5Z0DlmDQXQzn0OAutwmZ2z5S7ADY/hZu0pU3N7753NrcWe6Bvv2J2frf7cP2Hah274W3AszeEjiYTWsOb0ywMlKkQKUl01kJKRBaDylhELg+QSExVmJGitHMoq3guunpfaYcGbIUZANCDsnBUQtSn2nvtbiVo196vMtkq9AzRXceCEoQRaI+UZSHBUdPjHn3c+/hu26+h/gffpz/46O/xSd+/QGhiTz45JyPfMdzTCYzFqpAlIdMq6eZCM1ZnhMu/hnj8Rtok8iUIFYQ75HDfVxe0ZHQtsaImjdeOcXYQNcmVEoYCdOnDrn93tuc3r+E1lNUEr8a+KZ9H+k6j08RqQ3HJyUiR3LOjEeWyJAzMK1KsoXSSMa1oRpbzhctympSNshRiRYWVVq6kFhdzZkeHXNYlBAY0lwTlNrQ24QkoUXGyLwOzgJTWZo+UYygtBKFxOWI6zuQBl0PBYWMw8VXCYHSGaWGZFgfIuREXWusU1gS0XeIUlMUBlyguW4odWA6GiOVQkUQWRBcIvWefrGgGB+jzIiUOpABsqOUisoaspU0LoPU2KrCKA0ukFwi+4zQQ8jaqCiojCR2wwkujaaejkk+EqLHKE3jI0baIUwsDo5EXRIcG0mIgm7VkYlIZbBRURaKVCgu2kCznNM1gd5nIo6Y/BDGRqAwAo1BCkVZa2RRkWKimk1AC8rKoGpFDi2HBzWTQoBwNF6TpUJJhUugpAZtCH2iaT1qscJaRVSawf8h4vueED16VEHoMUWBFJnBuHIoPJIDTInzkbDm2Go5uF9JOSJFj0wQckQSMaYAJQaHjhjRQkAWpD7h+8i4rsgpooUlZijUILAOUWCnE/wqYmUiyATC46JHC0WIw4eYtRptFCkEmmZJt2ooq4okFW0AF2E2tmSZmMxm2FCiVRpsZAGhLcYIdB5ctwRDgIzcdBQT2LIijwYb1Sh6hNSoIAhCgLSDQ9O6OIuuJ4gMMZClAKFRVg7J2nj6sBaD5nVypVKQB1MD37dDlz8lpPeIuqCuNWGekHLQGnUuk+NA4/KLwI2xIsuMWhc3fZMIJuFWK6xRJJkQpkJJS200/fWK4DOtTyQX0EIijUZbTfJhoLG5hPcZFxKu9+TQI3Oi6btByC0NfQiobhjmG63ASnIWpBTxIQ2fsyEOrgVGIrVECYGIGSUzpIQ2ZhChx8Rq2b2VS8HvY+1aYXldrOScWK4WPLy4R+dbbhze5Pbhk3zqpU/wgec+iDIKIYbcAyXhw+/7U/zov3nOx/7Pf8G9+xe89sZX+Lnf+Cn+9Y/8CACvuq9w+4U7GDlBI2jyirD6DabmHIkhMwIWCJGoigtCdgQBRpd0Tc/86oqTG1Nuv+MOPJyTC0U1qujagDQOrQTtshuEnRvXHLkp9wVKQ85DbsK+CBQltzzvjZXnNiBJyuFc33T73sZrx++X5PUkB2AjQN7RLnb7k+JeEbTlY+dd4c+uQNpMDvZtQvepTPtc60eKob214cxvarBHuPcIEHnv8b/bC/49bc83dq3R6gYQbcCAXFPddhhpQ/8R633Y7f+GxvU4PWt/Fzf6mB13/fE93k1VpNxRiR7RJOyBvLfQwP7mXlvg9dj5tjkX97QgA6Z8PDSN7Sa86WYeDf57PGxt9/B9ULuXI7F+0o0d6mbtmhb/7+stgYPjkwm37xwQuxZWPQbBdGIRQWCQKJEYSyiFRRqJLyS61Ag9CFKM1WiRGR1UtEtHSIBWaK2JQHvec73wOBfXtKJIrAyTShLbyOosY4+HILFoLG4lefbgJifld/Dv/FtTVMqUdcf5dceDL3W889YB9/tArTpuFYITKxH+JR7wkNH8c0Qb1qFLLYIFKSSkyCxpiURsvERcfZXXP3+X288doCvJpBKMxiW3vuUJnvjO93H+859FiGvqqeV6OXR+tc5oBgQZA6hKMRobCiWZjioufIO7WHLzsGB0WGJNzbiqGI0LzrsGowVZlNgJqKQRxuBzYOU9ZYwEQESILpFcQkvL9KBAZU9OauDAi4GLr4qK5CQuRWqrUUYTfWLVdvR28Hb362h5JYYP4Uoz5CUoTbtqIfTUMlEXhhx7kgM5GiGEAZfIIXJyY8R4NiU6iZQGn+Vg3KUkEY0ycu0rnRFSoYuKOkdkFkgRGQI95DagKGRJ9BGJQUiLNSV1VTGygoVJhDy8ZdRaBCxWCSMt5I7ClCgBKUJAkRAobWkcaKOJWRKSxDsPJJCKEBw5eZJvSQEmsxFX91aoHMAMwVHCWqqJZVwaLleJLBPVdISpLNoIkgwgeuqqABnxKZD7lhgypS1xSaKlBFUgpSWTCDFjsmDzq0AesjT6jC4tMgWskhAjWURAoISELPHdCicESa1FcQIgYsuCGEpoOlSIwJBcbowluWECI2UmxDS8x3ygMApNxspMTyLmiJaDzW1ZKnzMEAW9ECiG4jurApEyOmeK0qKMoXMR7yMxQk4SHzI+JOL6uLvQMx1PqXNBcCt89JACSgoUEVOPEHHoAPsIMYf1lGzQiAjbI6sRMitSyBhboouKLCw5hjVQkqQsGBpmcvdHGqQpqScVHkno50NwnC0HZ6zsUSlis8fqatir4DGFIruGlBxaDRkdPsTBkUtafNOjxpacBUpFRIh0bT9w+JcL1GiE6A0CjTSSHARN4+kjuBgGPnqSQzK2ihiV8QiUZ0hxTYkUHIYh0EmbwZpUKkHIw4RNDN7Q5JB23cEIMQ/UAm0LvBw6SVJmtBBoOWiKlBwKOd975hdXb+VS8Ptaj5A4csIHz+n5fc6uTjHWYnRBoQp+6bd+kXc9+R7auAIyR+UUa5ZU6ln+8g/8APP5FS9+6SWW4Yxf+I2/z5/6499DE1ruhS8x1e+gyIa+u0boOab/IrLQQImgI2dJTkO4VYdDkDHxktXZa9x/9XVO7hxz57kbxHaFFSWTkztcrwJnDx5SyMjqYs7pG+dbGhR5oGQMYtbBLWm/IMg5D/uc94rnDFnsOnopPU4ReHuulHcWpGIdO709J/PQm0fIPb7+rtW96cDCjre9obiwu9fw7562I+dEZlNw7SZScrOvm6JtwCfEmLY0kA0YebPmYPjqTUXcFrx8c6198fX+bcP7bB8YbDjp26b+lnkyiMaHY7alnOQ9O9LNa1+PzbYAJO8mPxvMJteTlW3Hem8ft0ddbIDfN3hz/iBW3gz/xBqk5s0pN5yL6ztlHtuLR/6bH3/K7b/bYUzeC3/kUVH5mx6bd1887g61dQz7XdZbAgceg0uSHDMxlsjCkcOK6fEhs3FBXUS0DdjphNcfXHH50pzQBZYxEQSgh2Ai6pLQBRYrh64k46Maf92yWERImdAPNoc+gG8i7qst0gWi1Zx84IDqiZKz04YHv37Gu35wSSHOkeJd/Ls/8pC/8BdbPv7iG/z4f/MAujPOHrzB+594lnfac0T6Ap88/zgv6FNO6o4gJC4FVB4KlKZNJPs0PQ0+r3jjwaf48osfY7kIrNoVJ89UtHPL7MlDqnfe5lLcIJaHlCNLXSUWDztEDhRCcFBoJpUmtD1nVz2TseVoVjGxipe+FmmaQFSB2digTEGWGpfgaFwiVEDGmlBkQp/oQsaJElE1hH7BfDmjlDVSW3TKdD7yzDO3SM4RfKbvAl3b06xaRGmZHk5wiyu0WodLJY/3kj4P9phdEzA5YEUmaVDZ0wWFE2noTDcBlxKzSjPOPVqOiEmwcJ7VskfExK0bd1gJi9AZaywySyIZNbZEFJWKLNsl7bIZCsKywJYzzs4eIrSiHk0Z1RYjJU0T6Jce0feDMFUpfPAsVytcW9MuA/WkZNF0tCkM2QBCMb90nByUeCkIfvAOLLXGxoSqRty/7rgxmxBConM982VH03eMxwXSeQ4qxVjV+Gwpbtzi7CuvUmkxTHIiSGuppzNUG+gf3Kc+HmMLUCoMxXqUCFFwer5AVjW1FhQiE72ncQk5GZNzQseOUgmqgxmT2YTedbTO0y9alMloLSiM4aCwtCGQkyO5MHT+jRq89MdT5qsVMgqUsehSoe1gQ6vlEK6G6xAxIbNGmoAuRrhlS9M5tIG+D7g2UOtE6xInRYmVEWklSweX1ytK0ZOUZlzV9F2AGDExUmmDjpFCSMzIIvRwvKWQkC1CVviYSDlgtRwmTvMrUn2IpMUai3OB6FqUEgir8aseMy0pzeA2k50muwIlDAlNSJkA+CTxHqJr0bakLCuCz8S2xwc/OBroIXE6hRYlMilFXJvpA9TVEAxXj6dUZYE0hpjtMAkKDboskNrS5EDf9/TzSHNxgcBhoqcoyiFbIwnS5JhcnhO1IvmWQkukzgi/4KAYkxmyLEprSckzfzjn/iIwHZXowzEFcHG+pG8iIitWV6fcfvoWRiuM1wQ/6DNKEVl2Aazg6PgAkyJ4jyIzGdcUItMtG5zzSC0xtaUaF3QpEXKgKCxh1Q/psKXClnJIlTaC1Xw1cN8VGP2NS0jeUUGGr2KKhBhwznH3wauURc3B5AYvv/4S/8vH/hb17dtEEfny1ZfIKfHBoxfQ6vNI9V7gKf6DH/1erpon+cyXvsov/8t7vLz4KK8vH/KOw/cwUyc8uLzL3esv88LNxNh6YpZAj8gNKQZilGT1PFH0xOy4d/5J7p2+yPW8YXRsuX1nTHM2pbATDr/1u+jtlLuvfJWR6XB37/Ir//jXsVoQQ6BtunVOzyDYVFqtC9NECGlbREm5cy5CgERui1UhNnaP37BD8A1fmXWRLcRA4co7Xv+bue5i96DtF2/+3ubWTfd5U6huIEMCSHlL4dpRkNg2pDaoYBjSSHII2yff78p+3SX2v/xmrmJ305ONF/6m/tucX5sXsw8ipJSwl1I8iMDFdiKwLSo32gKxc5bafG+7x8ONA8AQYnvctsArDZqSzdTn0VCvt+cSrKXxj72EDTjYNgOkRCEIYWjyDRPEzeRqfy/2PgP2pg1bh6e1qcFuux8TJW+ecwPetqBgB0x+LxS4twQO2uuW1XU/+Owfzfjgd72Hf/HT/5RVG5BWEaxC6zE3RsfMDhpOKkETejqfcALUuKK2iuAjamJAZNqYuFwmEgoqTb9yqAMzpByvIjlBANqrTC4SD7/Qk36zI4eWb/n3bzMxT5PDR8nyCinvcHPybfzZD387z/zPv8rHP/Y5Tj/jOfnhEc/ceoPzy4bmlz7G6Szw7u+e0WpJ9h1lHmLTr5YZ+5TlieJdfMqd82s/+xv86t/5TXShuHEQuFNHXjqouSpHrOZXxPYLFE/e5MbTN5n/8q9QVhMOJxVVHfDKcDXPpL7Bm5Kz6x7vPCOrOWuAchhwf+3V+yx7EGbE8dERqwf3mNw+wtPh2kxyAqk09ewmdeywwiNFwqjB3rT1nj4EHp5eMK5qcA6iwGpLMfLMYyCHFp8iZ/MWpQq0GXHdtFSjBL5FlxU5S4RSTA8Uy3lLCB2+TqTcs2oX+FXH0fN36Oc9XkVqmzAhIFxH71run19SzG6z6BOHRyWl0vjOE3LPVCmWXWDZJYq64mByQFEZlvdPaZYBWxnyKBKCo1lGri4XrHoYix4hPTkW+Hnk3nKOQVHfuYNvHAVAlvR95KrvIBpmRzdZ+CUWQV0UlGZEjIKuBSUnXLQ9qblCuBVaQOp6XOhQ2vPk7ZsgJGfXS64urxjXluurS3QeaE1+FXmwuuDo5hGptMyXPelyTm0lo1FBVoquTWt6CKAUsiwxRcly7pBNy3RyMIh6tRyE+/NLcJEmePr5krI2mHGJVRrlItVoQkoKpcCnTAigrMQJGB8cDoFva5ETKXJ1fkFfKipbUc0OyT4gSAiVWM7PhryDONhjFhYKrTEic/P4DkYrclhRVzVGCQqVKIoZEUWfFUhNPVaUdY0UFdfnc7peUE+HD5zQNqS257g+4NUHD5jennF61lBUFbNJSRkilQyY6oTgHIUuqMYVZWlYNZ521SFUg5wVCAXUhtlogms9ykqSrNAGFB2hWeJWC9wkk+N9iuqIPkR8iChl8Fmh8JhaUxUVsQ/kNtChuLpckBjcnOqJBSLN/B4+eHqZ8U3P6EiC1VgqJILFKtEuG3onmIwlCUHrHGZ1xdHBCGUMsVVE1+A7j7WS46Mx3nlCOcIXNQrQvUQ0CybHM7ItQGaeLCYkJ4acgYlmEQKl1UzqgtpmYtD0vSAHg8s9OlsODyvGhUamTLNsWaSEdwlTViirQAtCStRlSdMuib0jukACchq61r7vafuWZeuQfsirsJPxW75o/H9aWxZCIkTPw4v7HM1O+PAHPkLbtXzh1d/io//s73J5PaeuC0LIfP4zL/FqfJnrj7ybvzR5Dyn9PFJcIcQ7OKg/wkc++AHe9c7P8dpLv8zDl+f8K3/umJE4ZxleoVr8Ik0M3Hz2Dl4oRLxCikhM0EWDrgqm8jZfjRf80j/6WV764ovMDkfcmnacFBVfOLoB9Yxld0EmMXv6KWzOfPIf/SLf/X3fw52bmi9/8RU+++lX1iAgkcU6oZehuy3UIPeUYigMUh4KraGbOhTSKeU1N/ybu/z83ZZAoNYc/bhOHd4WR7CesIAQ8U2Uhm0vdO2wsilspBqeT641DBu0sE8byrBTd4sdFWmYJgw8721Bu7b1FAwAZm+88zu+prfDklLtiYMfpaDs03mk3FF9NpqMoVDfy3yIw3kpldrpPPL6fN5OIjaAawMyNlOa9U9/fBCWM0prNpa+O/3D22N/f6eVH3udQ7EvUWrnULRLBF+/P8SjT7CZ5rC+z06Lsb5lb5+34vC9Q70PivfXMCF61NJ3+JF5ez78bustgYOri3M6d8j01oxFd8qrnz/j8M4B5xcLLs5WjLuKg1jz2vI1LvwKjmpujCB6j+8CqlRgBXVd8PB6CUIhelh0w+g8I4le0HSQtUQdKrQ0NH1AGUk881z+wn1il/mWb3sff/v7/le0GtH5n4GHr2GK11Hjr6LU89ysP8THP/4ZvuvPaOrjljZdInRCjRy//GnPUx9ecPvg3YjmHBYLVMoUM0tpPkCfW37+//o7fPpXPwExMTlUnLyz5uUXS8Kd2xx86PuI3nP9pV/imQ9PqK/vcn2xwowKukIhK8uTzx3wxLNHLNpLxlqyvOqGMJ3DMU9qT0hjDm4WnF40VEUBpmYlEvWdKeVkTHvRIrRBZYVICUXL5OCQ+197Hc6/RpxNGY0nJGsRWSGwdMsFI6ORElxwRN/QrVq8kYDC6AIrLUZabhzfpLIZ1/bYqmDZdSybiIsSWwh0abi4eIgLieA8MWeakLlx4xDTRdqux4UeoTxZZq7mV9R6TN9GGlNQVwU5eq4XnvHohGAaCnuNUQEtPGnhMWXJ7OQGByND5z3dskeLDL5FeBjfGBHNiFXTEX1AF4arzjOqJ/RXFzTObUOvcht48h3PIWWiNBNUaFktF5yHhoOjm0gXOZkckLFEmchNRmZHP6nQRab0DWm5pG9amotr7j2YA3oohDN0XaD1gZzg8nxFQaRrPLq0OAS+hdG44saJZHE+R+YSZUeoaorUmpSuSC4jBYQY0VVJNa7xbYtIHUXbURyMKWyBrWpUPRocvlSPVhKjND4N9JyQIs53FCUcTEbA4Mnug8fWBUYMPHofAsZYQoxcXl7hnac6qfGhJaaEVoayqBjXYyCihKTxcUgVVRW6FHTtNb5vIcypZ0cUZU3wmfnlEp8VvbIsVqCyQ+bE2Ej6/iFHx4cgC8aHE5IYMgTOV4nbNzXTds5gEh/o3aB/GULNHEV7j1Xs8UmTkZTGYmdTpBkPYuwYqMqS6tZtrpcjrluHiw6RHEIbdJKoBJODA0LsGFuDloMlqsor2uWS6cEB88USWxraZoX3Pc53ZCGY9x5EQgvF7OAAESMXr99Fxsh4csBhNWLZBIiZaa1orq8Z3z5YTzMSos/UxYz68DbX3QXT8YSVS7i2w9YF5cGYkCwIw2KxpG9hUhQUhUYUCalqxGJFIQKd6+n7BFmhiHQ+oZRBZwFOEHNESMfRYU3beUaHFicLktYkkfCuQyrBwfGUxaJlXBjS2jmmMJLVosFjkHikj4g+Q7Zv5VLw+1s544Pj/vldfurn/0eiKvlL3/1XeObWc3z7+z7CU7ee51MvfZKf/qW/z7/9134InwJ//i/8AP/anR8e9CTh50ir11H2LuhnMOIpavVB+vYW3/ah3yCra2K+RNk5Qc750t2Gw6c0Y/vd+O4M6S7IUqKrmyjxDgId//yT/y1v3PsKWmWOTxSTk0NevjtCPfUMR898B9f3vgT5ktt3RsirjqPDCZMbFf3IIKdTZodTUoTVcoXWcm1vLAcxYkykrIg+kNfCz0FrsOYSMxRjb/8yCTZUMSHkMEVca3mHQmQoSLc0iJTY7xxvnHW2Rfzmz4b+wqaAHcCVXIdySSHWjjib8kvsHsSO5rHXOGdjQ7r5fdM3bmD2B7a2Oo8tIJAoBSntWfzuU6XWk5VBMjPMYdKaIvR4ITmcr8N+x7TLntjoNvaBx+645V29uu5ixxh3eR4Dr2iYKryNx2VCSpRSwwQwvJma9ggO2FDZtnu2Oz+399lMy/YmO9vMjs05LsV2Ags7cPLmz48BAAvElgL5GMPrd11vCRw89dQh41HB6f05nW+ojkcUhWJcDBZ51gpUqZBWoe+eU830IEhSFllZhBjsE0XqUb3HiIyxAhUgxiHRtOkV6dLjrgOIjJ4kOCrIy0iaB3IbUaVgcmJ5Th+isRT2r3N5/bcw7WtU04h4SnCkv4P3fqji9d9umT17zuToEqtqUhH5rS8EblUlhzrSnvZcX/SUJ5qDgylCTvnE9f/Epz72Be5/oqc81Nz5ExXT558gLQ6xB8cszr+AjEuObkjGX3uZ1VccvctUd8Y8+f4TnnthwtPjSDO/5PThihdeOOaFOxOk0kQk1STRhuEN8sRNhRGKLAtWqWTeV1xeLelD5HhcUugakUu0rlguPYWpOJgpdFWSjcGogulkTHd1jXQd1FOUGoSiy2XLdDRDRY9ziZwGK1UjI5UVNC5QFoqLq3MgMyoUQmayLtHJo1bN4IVfWPS0JorAwimsLIkerBmQqffQO88sLRkfHiBoSGHQcwiZub64phI9VZlR2qK0RdaGKnUULeicEF7Sd44+B5TWjGygj0N3vKod7XLBfL5iXB5RVWPoG2IOKEDEQOdbvvrK60xrTXk0Q2sIEXxOdG3PxIwhtXTLDpxHCkmPZLlYMEmWyWTG9fkp7bwlC83J0ze5vLhiosacnc/pYyTGiIgB5UApQ6OGECVVWKQ1RKO5XCwRImOSIIVICj1aS25MatokSKLg4MaUWmVy19MuGvxiweygxgM+RZLryVJgK4sh4WOgiZKu60m+Z2Q1orLoPuDcJVU1ApHJsSMFaENG6h7fJzqx/j2cQ6SepOH4+JjgHN4nQpJcLjuaxZKbR7MhoVnb7eg4OENA0C0XLLs5o4nEFgVBCBIJ4RqCKAZbRz2IclPbcTIZMV82wygzeXLuyZVEZwuFwYgIebCpJXiEDxRVTcqeftmArokpMb845aaVHE4nrC4v6JdzJAJbVExuTLh+7XWy7+g7hzFj7Ngi5ZDqLYXF2BqNoO3DkMgcA9fzOUYlmoUnpYAUAWsEejImdQ4hxcD771tIUFQVMjskAmMU46MCYzQImE8Ns+MxDx/MSVmSi+ngnd4sefDaQ544OaIsClRpELogRVBqxatvnKGMweqKRd+wdAOdTFjDdAT4QOo6kktDk6AwmGK4CBmpIQtCGGgqWipKHQkx4XyHdxmhBLYwROG5vOhIKWGswJaDk1G37CFFqnFBbSI6BRKBs2v/1q8av8e15Rmvl1KKuh7zxVe/wv/wD/8m73rqvbz/hQ9xdHjCJ7/6aVb3zuiv5oyfG3N0UjEV5UAlUX+ZiJqoUQAAIABJREFUZvU3KVaXyFFA1oZSfQhV/Qx3775EeXRFYZ5FKE+TWl58bc73f897MMLRX5+DmGPGh5T2BETJq/0/4Jc/+iWuzx1PvPeQJz9wg9GN58jugGJ6zPz6ixRVQx0d5o2XcKeBO+98noM7t3j1y6/wzBM3eO7mjJ/7xx/HuSHlXUo56A4A5yPOBVKIGKPWoWBDo3vn+c66SBO8/XMOYCOBGjr3sCkcdz74OwCw6f3HmFFql/Mg1nXWxhEnr6kvO0H33tm0rXge3bsYwlb/sF+UCTFoTvbpG2/vXd9MCfboPeullRqar1vB69rFiWEvlJK7gnT9mK8nft23kN25FLHe9x0YU5sJwhag7QpaqeT2eOwnJr+dN38zp8ppHfQn1rawewLjxwPRhtvzIyB182z7AG47MdiAg902b8/53SP3JNF7B1NseUa7Tf69aDzeEjhIya/fsYrr68TNiSUVkqg7YoLEoHyX0lDUlsODETF75k1Pv+oGkR6Rk6MCnRl41GSmI4Wtaw7vZMbLjt/+7CUpeIJL9Kc9xmTufPsR95YON49MnlA88W0WKxSZxCtecHzjGcz1ipzmsDhHT36N7//eZ/nbP/FlnnifQ77rnFmtuHOr4OyljodJcZiv6FKDU5mDmabQT9AS+ZV/+iJvvLxAabjzfMX7Pvgc9xfPsbr3OW7emaGuH9JfXAwX9Ksl9y4Fz/zpd3H0/AnvumN5ZhpRuaFKjotp4MmbhrKqIEuaNvLGvGV+lTjtHM/frjEiIVNgWmiWTaS9bCmMQuWIFhEpIjIP/umHoynjSuN0hRMWEQVeCGaTgjJpslAIJQlK07bQtR3NvEWgkdIiSkFVWWqrmXeOxbxnuVhQVgVWW1zboUc1vhk6YCNdIKsKbQsI4DMIkVBSYcxwATyYwmh6TKU1111L4zJBKITSSB/QnaMoSmLbD4Wh1lRa4AN0KSK1RalIURik0gPvOStiTrimBxEJEYQwzMoaJTPaasbCILwjdAFvBElnjNAo5ymNIWqJcBHnWrqQKYSBrifHiBOZLkFRVlgpabqAS5JoSkJMrFyPlAZcixECKwRC60HnoRRN1zKaVshCk4QkpkxyPSIJiqLEGI2MEZxHWIOUoBGD13lWRNfj2xbvEkU1IguFNWLL1SQHpLRYa+h7j5YCqSGFRAzdYNPag1CRLDoECed6nI8UtsJ1PdkNBW1K4GNCWU3IkUppYgy4EAk5IBEcHB6irCWlwa1JSImQBYkCW1YUxwV9MiRl8UljyhopBpFsDgmMJmdFihmZNf2qwawpFTFLhLZYbUhhADAYMTh4eQd9j8iCrOygW1CaYjxC2oLgx9TjEX5xRfPgPpJMzILV0iGmEwqjEbrCjCcIWQwcbjKrZYMRCac1SWmQBaaaIZwgNisqO2RTBBLaKApjMSoiKkPMEJoleI+2Fbo0ZAQyKyaTGTn0iDTQG+qixF0vwXWkDD46ove41YrWw0rXTKoxypbDB7nryVlAVqSsBuu74NBKUYymKBPJvadHoO2gJRHG0DtHVRWQAil6lCqwpUULjU/DCNv5DCKtHZs0SIXA03crhNFoYYgx0HeOxVWDVInKDk5bKUDn8uAk9v/72h+PD/+TQlJXNSd3pnzprmfVXvLqPYXremYnU77tW76VF1/8dYQWPPmOijvPVAOHP2cuomYy+XboPk+ODcK9hlElzz1zi5/+33+Np96lkdN71NZTyBF3v3KfJYZj7tOnFltktB2j5BO4HPjs53+Ny9MVhzcszz1/k1u33sNZc5vF6W/y9K0/QTq9S9M52taR5ktOe837vvtbOLp1zAtPVFTSsVpc0y3fyctffcDd375GKkVVFYSYuLpu8C4MRa2SJLEuzhKw7uhtaEYbH/2398p7RYtYF0zDd3aFz6ZruqFJ5HVDAtYN6i24GO6/68hu9Bp5XYDuBK/Dzx7eX48CB7EujgZdwl45tdFE/BFAB29K5B1ufJTysgVHu+Lz8S7yIwXoGtghNtOG/FiRuRHTp0cev31oWjvS7WvKc95iih1d5u27+QPY2iLZgTq3fxwePy77nP/1NCDtn8d7a+c8tMmTePT7W0oxm33foYLNe2L/PkL+3olcbwkcxLV3sykGO8bzpmdWWTCaGDJ9hrZzrLpA9BHHMDlICEIE5zNdH7h5WFGXCi/i4G8/LhkfHyKmhqNuyfy0IQRHexlxiwD3EtWHAu/5/id45WcekHxLXAbILYGET2fY2bOk64e460tK06LKz/HuF55itRTMLwKxuUJPE25m6C+ALAkscbKHAuqxRskTFt3LfOpnL5mfBeo7isl7akJ5g7v/8ow7Tx2TF2fkh2fYVYfRFSFm5DtqvufP/HFGJ2Nu254brIhxxEJpbkuPqDxdvCYFWLWJiwfXdJ0h9B1XVaIuC4ry/+HuzYJtTc/7rt87feNaa8/79Dl9Wj2qW1JbkzVayLIyOMSOIcVgikoBFYqkKq6i4ILhhsoF14SrVHFBQVI4doBQhHgAz0Z4kGU7liVZLamlHk93n3lPa/iGd+TiXWvvfbqbpEMs4PBWnd671/6Gtd7v+9b7/J/n//z/Kmuqjx06RLRMJBsIwucFW+XMU11XyMJQmBYty6xOMniq1jBta/q+JwSLFJ66LjhZZCqGQaCFw/qe1UpQOI0IjtEO2RgpRKzzWQKxH0jO0W7toOoWlM4ZmBQISEKISAmJrDjRaM3j1w8ZVgNLvyIMI4MdSDExUZLWQHSZfiSFJakEImSX6pizbEZrVMpKKlLGrMASBMNiSSQSSUhdUGiJDBajFDIIkkxoozE7W3ReUEjQdiApl1VaIoRxxShCBghSY6Wg95ExRMrSEEJkuewQQmFFwcKOrFYOHMgAWhdMJwUhSkKUMA5EVTCbVUQRGVwg+pADeERuyBYiq+eMA85IJqZkDAGcJwwWSVb08S4ym7X0Q08pFKpY85OjR0RPkBVJZ8OSLBWqSdFBAuc8WgSWy2795bOWuZQmL5BC5DKxAl1p0BKZwNmBYejoRk8UkmldMZ1NIQnGYVgv3BKERKsM5mRZo6IgxXVDJQXCaHAW6y1JS4RQpCTR1YQ4rlBCIpTM8q0pS2rm3rfcfEvK8rtSC6QpQVZIITFFSznZRpgC5yyFTAzzu7nBWuks5ZoiOlbUZYWWBanUmePsfTZPk2u1jLWyQ1llmheyYBEDJq0oWkOUGrRCFAJnOzQaqTQiZE58iBKpBc4HCqXOjbqSc4gESlV0qwEtFSS3rsgEnCjRk21Su40qKmRKpLFHDAMqJPZ29xgQRGcptKAwCqUlWiaWw0CSJhvYlbnZm2XKvhleoARUJbQTjdYlbsxNzwKDDFkvP0nw3hPGHqVUdmCOATtERuvxcUSp3NQdTH6+ks6f9fs1NsFKXsUCQo48crDL7k6NUo5ufsL3js7QdxRf+MJn+fDnPsiXX1sSh0DsLCRPwhPTEl0/i1t8F+EtSh4j1Svsbz/K2dwxdB2Em6BLrCzpjjygiNwlSIs0oE0NzBjc63ztt14jicjuEy2TqweMccrdt27zyP4OYf4W4vgelSghSpKW6L0JH3v+BzC1Yef6PmlYMD87oa1rHv/AW7z+6j0WZ0uMKTg97gkvZ0AWgs/dsxuefLrM9+aBoOthHnLD+X8HIHi3ZutLgQwbulF+/SILuslYv3uW+SKOveyfse5XWMf8G733y84KG1Wezb/0kFOL3lWNhosM/SauF5f4VZt7cJPdPj8WnGe0H6DFbPZ8Gzfl3QBtxnCCBza/BAxykuDhv+c3tZoH8NT5H9OlFx6czw0ofjc50XcYnXEJOFx6FjbX8oGqxLtM6QP1hUuVyj81KVMfBS4m0InZbs3CLdnTWaZTuYAPgbPlwL3TEa09cmsLrSM+CZTRmKqi7z1CaqZtRLaKqBVtU7P9yCHtXs3+eMrxc2cIPPdspPOO/pZj/tW7fPqvfYKzVztu/F7P7d+fM/oXQbZcVx6dZqz6Fn+mKAoP20uMTGzvw9n9yOndJYdX4X5VkYCd5IlpIOEpZKJUCsUhL9/5VV79wwG7Shy8r6J+ZsKbdxzjm9/lyX/1X+KFL/0W9vYx+9OGw+sN964JfuBz7+eHP/xJnPMId0oRF0jRMxaapjhjEc9wyxV2SCxWkuX9Jarcpi0Ti/kSLwSTpgbXM/Rzmio3B0c0zkucSJjkUAlUZUi6pGkaClPjhgCrY/wgiHWFtY5xWIJMNE3FMgqkAeUjRorcB3B2glESVTWoUmFkQQiR3gUqZXD9iC4Kprt76KrFec+4WjI1ItOVxoAjZQlU65E2UJsaW0JRC4rR4/oeO1i8MexsTTk5yXKZMjr8akVne0zVIFCwNilzLmZzMBnxMWCkJgwjgYgoDLoqSRJwnlIaXBSApqw1VVWR7h7jhyVIj/WAUWhdIJ0BI+mWCw72dojSkELWKHddj4vQrXqKuqRzktNVxI+J6CJF2aA0NKVBSM1q5RlsT11XTKYt4zhgXTbS0UpiYkKtOX4heuzokBJ2dg0ESNHj6ZGFAmkgjYSY6LqBkAzSBYwW1EYQXE/vDVFENOuyrDHEKEBkjm1ynmVnkVJTlRrvoR966rJBmBIhQcoIImIt6CTouzl91zOM66rNtIE1zQGhM7VIZq38sijQQjLaLH1pjEAic4VAKgYC2AEp8vxIBLqeYSroViNSJAotSTHS9yP1tM2LRso8a2001aRGVzUxlSjV0LRThKlxAQiROK4QrqedZJUsEXz28zASLVrKQrIKAz46UgiIBNt1gyNliValUMZQ65JZrTmOHd0isL3XILXBAV0YmB9ZcB3T2Q5l1dJ1nmFpUUbghxFVRpYLh5IGGRIyQtEUOCGojEWkDpEEumiptiZgW6pqgkiRZHuwIzJ4SinZurLPIgrmx6dMSoHR0Fmbkyqjo2k10pToogAJTV0gTELIApECVZVoykjZVCySJzmNqUx2aI6BQMQPI6vFinpni5gC3g447wgkylbj3MDiuKOXkWrWoOoKqf/pi8U/70gpEtKIjcc8unOVJx5/hLs3NTdObnHnzj3czYAubvPJP/cXefXpW5y+eZs7L93H/9BdEIaZjKQk8aNEpohUPaI8RYlrTPcEZycD9vA2zuzRqxKINAyEdIJkQIkCJUpCqri3/C2+8+UFqjVMr+/im4Z7x2e4o1d4/LN/mW9+9VdQZwuuHl6j2JvQFQ2PPPk4z+4/yeAHkl0gqoqinDA53Oba81M+4R7l5qtv0ffwyksnLLol1mZ3bm/DurYVESkhk4BLPPEN3/uhHYJs9pQ2Ac7F51r/cunnuwWGlwP8i+zqA6+ss9ni0jbpktrO+RtZU5A2zQYice5e/YAXw1rn/724xf5/feQCiTgHVedzeZ6qh8uB5kUVYe1ondYzm9bNrG/jx1/OQl8+Z4Lscp0Peg4QuVRVSCllbJw3Oj//wz7r52DpfN4v5I3PN0h5/d7M7wXQvfDweCf1aK1uli6elLdXby78KtLm4l/svblW4lJL/QPneG/A7D2Bg9tnc5p7x5iq4cp2ze7+VUgeuZeb2hbHS954aY6fr0i7LVWhaGqNEIbgDba3CB9ZjQIzKymVIrU1zcE2z7zvKk2puW8Lqh8KXL9e8/Xt26xuOcZl5LXfHnn9K19m7y/vsPVDE9yd27x5/Ld4dPdfZ6bfz9Hxf0vxeGA6fRL/9W9hDzXT2cBnPyr4g68mXr3i+ejHNR9tniaYNzla3Ge/EjRjRFpBSgXwLP/gt/9H5mMiVYJHHtnj+Z0t7r34Lfb/tS/yW3/vN0CPHFSGakcwXvGYDz3OT37qr9MDb7z5FsPxy4zDSxynOzz9wR2+ee81/vy1gqqAux2cxYDb1fh5z/bOFtO6pK5K4ui5d+s+3cpRTDU71x7HUWOHgF8NDEfHPHbwCJOtGRZDXU/QUuPtHBtG3Ogwg6Kznm7MUnrNrGFrCnaQROcoU8iUltLgZcCpCiUUUxTeOWzfsVwtaJsCXTSEmOhXC7Qq2N7ap9GCFHuaYWBuRxZ9YDk4hpMVN2+cIfenJOeopCHpgoinWw7sbO3Q7BRIFwg2MfpAN1p8Z6naht4FTCEJwuSgPmUPAaUSzdaEoHT+4g4JS4GJFfsTwzwmQhjwwXF0umTsNUc3bzDb0dRbLYVRCJ8IXjExiZA8i/mCcrbF7sSgu4Hl8REhGGwwjCkQhETqitV8yZWdmsZU2UVTCaJImDISagUhoWuNi4qIxHqPSp6drYokck9ClLmBGB/oRo8UmhQio5GMY86aT3YmLBer/Gw7T98PrAgMtUbrGWUR6bylVdmgzqy/zGUaqdp9bt+/j5YlVVVSlgYfNd4vWMxPKZot6mlDFC6ra40JXwicjQQfKPAUWiOkwHYLoqnxUq2lYUFLQapriqrB3blJDNl/QyqNko5xHAiioDCZEqVEICZLWVesxvzFNA4rUpK0k5qt3UcYu47Beobe4b2lbmsmk22atiLZhFY1wTuSUEgUhhzU1tWEsp0hlKbrV6y6JVJIZltTtEmkQYKyUCSKJHDdiHceUSjG5QIhbFbyUZGEwylDQJNCdhefVpqxMty5v2T7YEJTlfSxx80HagGqHFA6URuB94KUcmMk3lO02yzu30BQMJlOqGYTytkEf8MRz1Y46TBGoaoGUbaZkO09s6KlVwUxORACY0qOjo7Ymk7zczFYrLW50c06JqWmaRp8cAgcyTv8uEDLQK8EWzst8ViSBgcuEJxlOt1GK48PgS5EohDUpUJqiZSB20enKBLXd7fZ2ZoxX3w/aEV5bJbEhCelnkJars2e59PP3uGNvTeJ48jR3RPmt3q+/Itv8o+/9N/xb/6H/y4v/8ELIG6zGn+NSfUpSnmV1epnKB99DnE3EuevE5sWY0Y+/oGS7357yVOHSw5mT3JoruLK36Wz32SvkGg3IIIESga3yx++eoNVSuhG0/hDZvdOkemMg09+gd/5tS+h6shjkxY5DYRDRXvlST5z+CMsnOXkZEXo36APt6AYmW2XvLl6hY9t1xx+YIs3jy09gcf7q5ydjJwdKwQC7wJ+7S2zoQqkNWd5w89/WMc61GGTuY8hKzjlOPHttIkHtfcv8phvo628bduNgdlmy7Cey832m0bwTcAvlVoHq4mwDo5E3HCXMpUzPdAc/fCOTTP228hFGbStP+v5nIpLewlxOeY8p6M80BJwHvTzQNXgwTMlJJyb1z3AMdpUJ+TGcDW/l/SQd4Nn3JXeWQVZ/7+Ecz+TcKlSsAEFG2nSEC4qXnAJkHEJFHBx2TaKU5ev8bpYfuk9XAZj6VxNKq03fC+JiPcEDioiahghCg4fa/EnJzRPX8GognExp2kCj71fMZxOGZWEssD6Du8GYgioJCiVR1YN3QBtK9luJ+zODrE20tZ7HDRXiPKAZvo0n/7IiuKv3OOn/uovc/clS4qJk18/Q9eSxWOa//3/+Cb/1r/8Bax0qGoPKSqivo+rA+UrK9i5xRc/Lfjybwru3ogMruemvUXchZMiUiAwOxG7EKzunFBf/Wm+/LdXxCHy/L93jY998YDpXPKLv3/Mo9/5Reo+kXZmtM9V7H9yh+sf+QDXqx/jU+1j/PSv/m12i4ahv8Vdd5viqsSrE/7iMy1NkaiEZhkGFsdnfOtrjkf2Z4xuzu7OFlutoS0VVV0zvjLn0Wc+QFlrrE/cOxtZnHVsNzWxKnntzVuEkJhUNU3VkIRExBU+JDrvkE1DrbM5lbMGET3ttCX5iAqOFATRaxg7Eo7l6HArS6Gyi69PJauFo/ELVqfHtE3JZDalFBohKkqlCSQaPyCTA+UYdeTO8pidMlLKglIrIomzwdGdrrhv7tHu7hBtQKaYXY4R3Do+Y2d7Shc9bpUQsqRqZwg1I/mesq1YOMc4drixx/mALgxNayjqmmm0zLvAycpydrRAB8/Oo48wncHe7oy6qPAjLJcB5TqUCVQNpNQxLgKxG9id7bGMCju3iEJCiITRMpysUO0e88WSydYWyUv8OIL1GCNpdypWK8/RnTMGFzF1TTNtQAsOphMGEjFq7NAzjJagE8l76tk2wufSttQFugRZlJzevI+QiaoxeWGLgZOjJbvTHaKLdF6gZaDUgnpSI0wBWHYnhvm8Y3HW05eapDRl2dKPS0a7ovCSQkOZIoqBbj6i6m1KMaM0mqYukbrEzpdUpUaJiBIgkiSkrOhkKEmQfRTIdBWBwAZNXTc4oRFKgwg5e+TGdZVwZBh7rBfoqmbWbLNYdJA8pYCqMLhx5O5bt9jZmlHrGlEpUlmti68SpRvkRIFdgoLF/buMISGqmqqUTCYZnLmTIzQKqSq8C/Tjilndcnq8IMWAUUskJc3uFkWp2NEVs4Ndgvf4ocPbnkZvMSt7bOeQRU1RamZNptrMqm1UTNy9fcZstsNkq0VJQfCJeHqLna0W13U5cLcL0llPY8/o5wGvBGp7C9nWKGMolcIIsF3Hdi3pQ4WLirJSXHu0pDu+TdEYrCywY/aCiC4waombz9cqRVAWihaJKCVaa+ziKIN8F/A+IDXACj8KupiYzirKqkQkwXx+RkJQKkOSnpNuxXiaGzj/9MelTBkghEbJFimnGNkwqR/n6WsHfPBfeT+f/8GX+On/4Vd44Y8d3ib+l5/9WfZ2D3j0Sssbb36NDz79HFFElHkMgSIZSRpXqDMPRcmHnt7mV3/uhMWHe6aPHTNXHXYfOtFzJUEzdZB6XPcy3fArfOUfvkZVJH7k3/k8P/j407z+wku88Ed/wuHrrzF1CWbvo31mwt6Tj7C78xy7+kM8olp+/5Uvc1Dvcs/dwhYdVSNQasUP7E5RWmAoqOueqDpOxoFlN5KAEMkJg3RBcRGb4ICs5hIf4mDpAf41l7OorAMVcR5EXvCpLmgtl03MuAwm0kWAumnillKeU4PeqZd/cb/FEBCXAuPNufLvWc7z3TLiD9t4J1/9cqCY+102I6Z3B0MbpaiLEk16B+Xooi/uIot9edazMlSe63weLqoW6eLfxsAr99n8KUzA/4vjomLwtmtwDrzyc6Bkdknf3LNSXpC3hBSXqG1r0YJLoPe8UHaOzy6elX9SiL/Z4kE60T95n8vjPYEDMzMU2xqfEp1RVLOSP/nGW+xMSwQBmwI9a5dQ67l5+y5tJZjUBUVpGIeBmByltRSNpGhbwOMXx1TbT3I0drhYczh7lno84sbiTd4cNP/Jf/Uvcvb1b/Fzv3KHG98b8USGEPilnznlJ//Mz6KbH2dinkSKFd73pLNIaiT+ZM7hozWfueaZqcB40vNIeh1ZwSd0YktAv4J0muis4/dee5NCwQ//Z88gqo7f+/kXOfveyNXnJfMjS3KKxz4leOIzj/P4U5/nqdmf5QPFAT/1H/0UH/7kIav3afauKH6gvUav50zKSGstu6njj16f86U/7vjGCyP7V0pSKUnAycmK2AXExLMzafnAh/ZoRM/Nm3MWg2E190iv2Lt6yGy6g1EN9+8vGFxktHNSCEzaCVWtKCvDqvfoskApg42CsmippCFKx9l85P69JYu55/qjM9IYqVXJdKeBEPHeM5kq/OoM7xxeVxTTGZOtGU1ZY0ePUzVUAqNLxtUCJSyT6R6dT5TLkf70PslatIS9WY0UiWldYjuHFpIoBFYIhC442N/n7us3ePTxqzjtGUZHcBbTNDT1hL53LDqHjQIlG9paMqsVj9SRWaUY1nKOY4pQN+xvSQ4OtvEJfFKsgiQmaMqRumjoqNg/2GE1RkLn2W53WHY93loKFelHOFs65icjWmlu35kjjGS5uMl02qCVzI7RhchANPaUdYMuI1oLVBjpmHK0XLC7PcHa/D6srFj2gceuXMHolm7pSD7mHo5uZOiXKCNIylCWRXYSdh47dqwWC2ot8cNA7zynKaHNwP5syqo/paom7OzvUVWSEB0rD4u+ZxSBqdbY5IhRosuGiSnWFJ0OHQPeGY69xY736PvAdVOys7+P9w47DkBCacPy7lvUpkDVE5yNeBeoqpZKeoQ0VMqgtMbbkaGzuJTofcDULVsiq+jEKBiGBcF3tJNdCuEwKeYUhjTosmR+NudwtkOMiWFY4gIYIZmUBm2mxDBQT2tMkmBairLGJVjdu4mfH6PLLWRRkFyi8xXbk13S8hYSSdnU6FpzdnRMtxy48uSTDH1H8jFXNaNBzAomeoqeTKDQJNHjncCNlhQlh9slVw4CuipRhSKGiO0X1DqR+jOii2vayEDVGg4PdlH7ipOTM1wYGeaBKA1VWQCRkzt3mO5sM9vaRimTXcu7yGz7EWxyhHFO8g6pQDclSQWiMNTGoBVUlaJqFN04IjVo0TIc34GUmE1LjJQ4t2I+JLYayWQ7Gyf2Y6BoTG5obmt8v8SGiO0i3n8/ivwPHjNEy+BPWPklp/ZFpuUVFuNdjoaI2Huav/43/g0WN7/FL//+i7z00imyXHDr7pyv/d4J77/+80jzo5T6KWBJcApGD4UkjXeYbD/C5x59k5mMSPsGU9FRVolHlUWLhBssIFnaU944eoXGaH7iP/4JorjN//qLv4COjr0nFIvFghRLnnxece2pD3Aw+Tj75RPIbuRnf+m/4ZlnH+Fmusn+4QxlSlAjpQpU3tKy5Nv37/GVF484ngcevV5z88qUk7sr7GjPy/9C5MVfiWxSdd7T+H24Av+Pjk3mehOMSPkALUJKQVwHh2+nQuQdLnjqm+zq5riXfQ4utOE33rP/FzSkd6lYwIXh3CYr+7DTWzaB4+bT57mDTBmNhPB286vNPF8OGnMgK97GTd90FF/OkJ+TUzYULSmJawWoGMMD1KWUUjbm5AKwZK+DtQfAQzz5cl1RyYpQMUuPbnwkUjynZW3mU64pSBvVKLgAX+cUpQfmfz2P8sIL4dx0Ll28h83IuO2doO2cYvfPONfvCRwUesLh3h5RJG4dLWjLSFVGco+mRRrJ/v42bSd5640gF5CZAAAgAElEQVQ7uLHAF5IhOCISpQXV3pQUIWqB0gllArGweDxlstyfv8F2GdjWhnK6z3Y94yx9iG/tVLz/ky/ykUfvMPQrbvWOt77n+J///k1+8q/eZJQTNEv0TqT+6PMc/dw3mU4i4mriiWcFy6PEq7/tGJ5NPPY4zDTIlA3WlklyEkruVgccfHSJevE2r77iuX/sSQq4p3AdfOhzmh/90V2eevwnCPqHeeXGnF/5n/4mX/ixj+J5HaePOXGBVed51CwpnSesRn77xPKbXx/4zkue1VnCLh1XrlvKRrC1U9OUFUKWnCXFXlNye9Exne4RRaAsGmbtFvu7U4ZxICTB/s423o44b7OyConlcsAsHd0YUaakaQSVgiQM4PA+q99szaZMCocmcdKNCBWQUkPIjZxlVdJubzOOK6JXhAR9TEQXmM+XmKrGlIkgE1QFZaEIUbC6u2Q+ZDfQShUoKUBEptsJ0+7gFyNJKpy1xNFTVIK9K1sIAV4I2smEsoTeptzoqjRFpdgpC1ZDprCMdsDGJdODCckN+CSIUWCA7VnDpDIkaRiGiI9Zczisgx3ZNAgh6GPO1s+KyBAScdFjO0tZF3TLSFMqpte2WB4bxv4MbRI6mVwajBHUuvyPRBUVpkwYcr8BdiBhSaphOcTcQxEkSiisjRwfLymKiNGaJBJj32OXpwilUUWJ0IbBJyCbVQWtOTk+JZZybYoCISW8i3R1laViixKKhigTwQVE8hQFLM48qi1QPhI9RKGo2pbTzqFE5t/GKPEyAzUtI+NoicFBylQbKQ3DMFCaTIXxo6Xvs3JUUXikVgQfcGNPUZWYUqPNDOsjhRQYHZCyxseQS/sxUWuDCj0h5Wy3KQ2qWMt8Lh396GDjXhsFUYCoNKYoiUmh6hbrA84nlFJE76gnDVJofJD4BLrUXLl+FZ9GVv1Ao0tEkEgKikoxJo2qS8xafS2IRCQSIshyi9EB3iGBuimQRIR3oCT11j5KG2KIxGEkjFmOVkhNWxu0BB8jUSmEqVnNF6giIY3GpExf0MpC9GzPKoiJOAwI7REhknyiHyJCS6JPeBdIa9MiO3RM6xqlSowBqSVRKkyp0H7k7HSJ8zErRCGoqxqfJKIYKSpJIDLYga739GPEKI3UJWGtiFaVJquSfZ+HkgWlnjH6+8zHWzQ60ipQ5TZDcYDnCXae+Cgf7X6Bj195hXk65fh4zht3O1742st89FM/iI8lilPkzmOkMDK89lXMMyViVvHocyVusWL+Zo+RjmevZadyEiShGGPLUhwwNo9y+IHbyBtf4+svLDnzI/XEYFEQBM/9QMsnn7vCzvSHWdp9Xn7pFY5f/yrPf/g5kLdQZsWJT7QMzGKHDp5oB77ddfz69+bcPnL4ZcTeG5nfXyCIlFV2W/c+EtZ+ABdKJRvn2IceHuTgUlyujlxy7CVdNAOz4Z2/+2c/D0bFJb62uAAO5/ufp0Ivjqku93LAA8HWJXr8O3nZD+vYVF7Oo3ZYX4SLfgAeDFQ3geSGziZEVnva9BysD3sRoF4cBLFpLo4Rzl2WuXgPYkMvyts/0NOxqRSFQPr/w/0uBEpKQgzn83bZ8RgeBP2bOUqXgOqa6Hb+2gYAK6Ue6NtI58e4fKkflEDdnO3SVb989nPQHd/D3L8ncDDd2mZr95DBWxbzJbfPTqhUBK2xzqOFIqWAKhTKgFUqu0GSUBpEAlMasBbdVOhSgfL0fsW9k9eZVYKb9+8RROLKdJuJbtgJie1CIJ/6IH8kZqyal7BvvEox3OXjzyr+6LdG/swXXqC59jhtVWAK0DNLIUDYiHSecpoYFgnmickpPPUEKA/J5lJXmEjOvOS7L5zw2ScEu9Hy6fddQU2f59ZZwz/4jV9iZ9/wF/7sJ/jU+7/Avfs93/nWP+LV797n4NprHIWOsrrDlrIkKShTYtd2jCcDX70f+d3vOb53LzGPAqUldkgE6xETTVNLqlIDmpgk3TAiAa0FdQVIzaQtUEYwrEbGzlGpHLAYlTIViAJsykZM3hEZCS5nop0dMMbgAak0hYGQItIopLIokQMGYqb7VEVugFGFQaEJKPoANgUGH3DLJVNZoFTWu9ckDAnferr5AlNXiCizihOeSVvTzFqcBR8y55MoMv9eaCbTKWUBhQBFAqVQZYUXmuQslVYgFFpE7LJnsRhxSWK7nlXvGVwiJYUWBSHCWedwLhB9IkUFSMaUKI3ByIhPkULqHJj6mKkJPnsiRJ9lPbVSFFLgVUFhoMCj1ipNQihkoTGCnNk2BiFAS4XQhqAUKUHfDbmkKhW1zlkEb3tMsVYyIiDiSLCWojYYo/FCEHwAIkKC1hrvsswqKX8BK6UotaEswXpJUUii9/Qu4WxEykRpNFtNQ1u3SHKQXSiRFwqjCCREymXmWitCSBSzCVVp8hxohdSaFDNtxiFy/0FMmXKkBUhBsD4DpRggRZQSqEKRRkdVNZBG8IJiXW4VIaClpioUPmpCghQC2ku08CijGe0APuSm6ySIUhJJxJRdbZGKJCRJRkKIBOco6hkCh/MR6deUGpkIQiALk5W4fMBEgZAF2mR1KaU0wQ6kECAK/Dii6poYIkIZ5NrYpogeZT1GSYrCZCpfigQB2hgGJTFrYXdtJDJJWBuReQG6bXIg6DwpeGyQKD/QNjP6zhPciEgJnQRSRtwQGGNuTI4xgN7IW+ZG8OA8XmqSi7gUMVpibWAcHMEDMTFaT6Eszjsgi0KkmBcCpSVFVVKUJV0/gKowCgotGbv+vSwF/4zj0iIpQKBQsqJUW1h7gyN5i61iB5NApoBQBt3MmB5+mP2dJ3n5xpeJ48C0TLz6wj2eff8/Rkw+lJ1eTUIWKZs4BY8IA8VWVjSTA0yqyJMHAhESySfQBd95MfHW/Jj6wPH8I5pJ6Nn9wQ8i2vfz3bs3+d7t73B1r+bjz32W61uf4d7Jq9x45Rus5veZbt9nRUepjmmVw0lDy0jlVzjb8VoX+MpbHW8N4KUkuMDiZMRZhxTrDJ+8yLbm6RGwdqrdGKM9zCNLW6Y15Tz/lOu0ttjw/IH0Lhnji8wpnEf8lzKhF4hgQ2G65Na7DpASmY+dRSHWnOzNOdcR1SaBehkYCCl5qMd5L8GDFZT80oONv+c9HpdAUt4lA4SLbPfmbxcZ7pTS+VxdBhrrI70T225A3WXQIrKc8cW+D3Hp4BJlR16irsEGfG3m5EGAlUSOic/9ELgEDNhcI3FB9YLzSsPbzv7AkdPFH9ZmaRcUrgcqCu8RlL0ncCB1sW40FTRbBcerjsW4ADUiiMQE1vbo2jDZbnGjykopJGIMSAJKgiygrCSoyOgdzlpOFif0k4Kbt0456UeO2ikHumQiFdtbig9uP8Hiiad5uTH4omVavcX18CJ/+Jueb/zuKzz3eYW5dkhRWKQ4YfKhknDsoE2oMtEcCJoSTl5NfP4ZEBb8HFwQjIXAusDecMJnP3zAbnvI1Q/sMDv4LC+/8TR35paDxyRPP/cxbt/Y5carv8btb38Ddxeu/KUtvvnmV3n6UYkOgtob9CC4ebvn9sLyB6eCF14P+FKha4EaBUrni5VVFBMi5fKTJNIPI9vThoRHGxAyIYXHhYGQPKvVKV4VlMagTQFKIlDUTYO1EWGz5F8IniBqovMEtTa1IpJEzmI20wkzH7Fjj085WDRaZh354JFSoUxWTfIRfPIIIwl2JDi55g1nAxUtYKs2uN5QTVuEA99bgg8YKdEkQgxEIlqtHf+UZByh0IaqkDlII2GMxpQlwQakyJlULSRS5+zxSee4uxiJJOzg8D4hhMFQMLiBIUaSsyQPUmbDtdEFUkxoHREEEiqrM/UuK+YoyWhzkJuA4BI6eZTQVI3B+IHgItFnYKNUgUqJfrCYdWCvlUJpg0XgF2eE6EEICiNoSkkKYHTOppMCKXhS8kijESpnzqLPIECIiBTrgEcponP4EBAKhCkwTU1TG8QoECJmz4QAzkVK5Sm1YWs2oywLJAKVBJVS4DtEoUkhQYpopdBa4JWmaGZUUiCEyiZ166qAlAYfPVpkTqXRIJQkBI/3MXsVEPK9lXKAo42maYtctQnrBTskXD8ilaJoJugoGK3D+YAbHdIlUoy40Wd53pTfizQFIQasi6SoSCIRpUJIkyVFIyArdF0gvUeOluRHQjdQzEqaaUs/7xh8QNmA1IJSl9jeIkXCOoezARsEw2JFpVtkTGhdIxVIEUFmwFhqjVaSKCROCpASUzWowYH3uBDPv6RTDEQ3gBZZLjUEUhjxdmAMijIGJlsV49gRY84kkxICj0oBPzpiAGQuxVtrUSniCdiUEDIRkZkWJSKj98R1JS2GgBWWngQiIkj4kBBRoZWmrjQKiSoKhtFTlCo3usuEtd17WjD+eUZe8jRKzOj7kePhmNEsaWRFqTVVWZDUffZ3HqNVhkm3pNKednidN759ws2Xv87hsw2mvopggTArzP6M1HWkMiErSakMRI+eJ547MCQvSZ0nyIKzPrE4O+Vwr+Opa09Tl4dsXXs/pvgRvvLdtyiaPa5faTk4+Aw3b1rOzn6H5d3jrOB2WHF78V2mOwoRJBPZEFYjd5ZLju3IS4PghfsDZtKgtcxyxTZkvvd5lvYSWNrw5cVaHSZdCoAf4nFuuLWuCGwC8QeMnbiUub7UZiEu/ee8n/VSxnSjsMM5LeNCFvZibjmvMFymaDwQg66PuZn/h70heWOWtWGxX56vXFR5kKZyIW96UdV5e5D+YGXhQtFJrBu4BQ/OmxAPAobLRl/vaH7dzPmlTPfDOOI6wN/ctxc9GhfzlgXKL8bl65F3W8PVB6o++SqGdOE0/YBp3OVCjLh4vjb9MxfJBxBJnFfdzoH2exzvCRwcHy84OjpF1hrV7rK3u8PtOys656mNQBuBwjNtWwq1z3BniTEB50aG1UhTekxjmLaKWozY0TOEEesdQ/AcLRKn93qOTjpu+RtMo+PKRMDejEevfpt/4bm/xIeubzN+6jFWR4Ff+Lv/BcV1z2/+mqNuX6KUc9RhTa0S6rMN7u8cEbViOoFmXxG6xEtf8vyVvyHRI4yniZURLEWkdpZ//8cq5GPPUhSfI/oXiPE+T7/v4/zd//y/xKXIf3/3RX7m7/ynfGR2iw8/U2M/UPLbL73Jp65GntLwrVPBPFlW9yO/+eWRO61mpYEC6lpQdAIRoKgk0ijqUmEkROtwVmSNcanwSmejHKGQAmIaGUcQKTB0C1TbIoUiaYU0JbazzKbb9MuB4Au8tcQIUTcU0SKiROHpfU9EMp3M2NnaRcnAnfuOnVYjoiDYlKU3iSSpKbWiVAIpQgYvbYEvYfQJ2w8YlSVqvdDEsaMoGup6gqojVgnGpcONnn44ojtbUTSGujBooQkqN+bZKNYyf/khkyLzHb3rMVqw6gd8BCM1bT3DJcmN2ydMtveyIzQKU5RooxnGESk0q25FRFAYjZQJ5wNx9CSZM/8hjSx6x83bC7QdKRrFYuFIMq7pq4lCC1yAdlqQLPizPmehkiR6h+sCdtVT15q6LjFlSaEVS+cIy4CpDVoKSi0pS4FC0tY1/WgJbsS6iEMgqhInwVkLISC0ytKzKptj+cFSJo+LkShVzqSXBUrXtMnT2RGKhCSDMKwjmAI9qbLhmdG0pqSUCjs6CDVCCpTKgWgUYNqWSVvnhnFdopRCa43WiqEOxHFESPC+wxiNUorVapWz62kkikTA46IHL5A6q5cJJVCmRClN9JHoAlEGVNmiSUhj6PqR1WrE2YEiOYzKSlBRZCffJAUxeKyPKNXkSqSQGFOgpELENZiraiQj0uUqZb9colvJZLpFtJlitlpZpE7M9hsWq54kIXkYfWTV9QzLBabaQkSBLEoKaRApCwP4pNBCo4UmqQInJR6LKAtQHWPfE+KGU5tI1mK0RMiCfjFSFWW+95B4mzBFk83xygbvIqPLHgm1EZSNQSvBYogEmfDR083npGhR0ylKgPIWk7MHnJ2dkZTJ947O9C83BryJNNOKMHoIHpxESIUyFQhNFFCVBTH4bMYmJKks3vOi8X93XOQKFYvFEQt/xPHwHfabQ3Znj7GwiiRe4fnDz3OaFnzyE5/l9ps13/nGbdJuwTf/6JhPT7+CuvoRysKjaoO8sov/2k2SmdBMNUVTcvrWiuHOyMc/05K8IPYRWxo+9LzkY6LkcHIFpp9DqQ+TwteI8T6fffYjfO65L+JS4Bur+/yj3/gP+OLTmmee2uEUzxunt3liajmQkldWglp2vPFWx4t3Bu6WJadKICrJzCjwa7AbIlJnaqAQrEHtRSCQuIgT5Dv48Q/fiCnLLEsyHQ5yYiEH7ms6xfpznsejYgMiclAr11SkrOIS3xlYbuhF69/fYTQVE0lcZEsvgqbNcdfbnV+Eh3vOYX3vAJepVefymZcoLJfHgwpSFxUYua4UX8Tsb/Oo2Mzpmm+/ARBSXhzvwebmy9WLB2k2l197KMfm3hOsQe6m3+Jizs7tTcjZ/7hGw1Jc7iO4OOSGJrSZww2IfVDV69JbiIkozpH0OhnMmk724D2fN9n0n/zT7/v3BA7SMCB8IrrE0Xe/xe3b9zl8suDezSVDqdBXJmwXBYuj25STCTt7YFeefmWxq4F+PlLWgu3rO0xmmm5wrLrEqCSPXJ1y4427HFyVCJ0YosxqLzqx3ay4dazYffnv8cx1yf7eNYr3XedH/ubHeGPxJn/rr73Oz//9kT/v7vO5H59RtjXu5i2khSgVByIwP4ms5pFPPi3wjcSdZI7XoRHsB0V0AlEm4vAdbP/HnN7zJCmY7PwO5f5PYfgw//ZBy88/a/jyH3tWleXTf0GxdctSXin5kxuRr9+K3LiZmC/AHRhCJRH3PckIZlpRl4LYJtrDmioKDg+n6CgpixKztUVMNat+JCbDfDHSVhWVyRe2d57F8gRVKXb2GjBTAhVKaGIlqYxh+9oU73c4vX/KcjmglMSOPclIvActCxCK3gXuLVa0SvDU+66yOFvQrSxC5rvn+PgYURZcO2wRImL7Hu9HZFlR7B6wOJ1T681Nm+k0Z4ueotSMJ0f4mGU1dw93ESmwuHPEzpZhcCPWOUzdcHVnh+n2jD95+TWczFn69dOAKVegImerJVJqCqURIhLTyLQu0XVBW1cMIVNRiiJXDUS7heyO8c7i0NjgiFHw2MEUlGKMiqPTBavVCtdbok3EVGLahHNzQlGTEth+RAfFbEujpQQzRe9MqJqBvpvjk+X+7SNms5qTW8ecHS/Y2tvm4OoeRkRq6SmaFlMagh1ZLefUTQPB0ZaSIT/9hBRYdB1GlRRmyhAdOiW00JjCIBvN4vgEn8A0GllmxSLtRkJXocMAIeFjpK0r2lmJpOJkcIjokRGSVniZXZyLekajShaLkeB7Sp3nziVBEokh9AjrMMZgTLF+kxYdHKbMrucpQkiCqipJQ0e7NcW6XC0QKeHHDgaJkRWmNKQIPlhiCBl4RU/wYw6QkkQjKMkmeVEqDh69hgC8B2sD1o2MfqSuGkxdY3uXOWA4ovaUTcOw6hjO5iilkaZCSwN9YFiNTHZ2qFTFaB3LbmB5dMStsKKSsHX9fbgxMHQn+LMFU1WxPS2pp7MMPIwkBsHopySgGwWTekoS4NNIEFDVFUFrTFNQKYU2CqkUIUrm86zUJKMG79BGU062GMclgyw56zzRVLjkCDFimpKr+9sMqzOEjiwWKxbzgW602H6OrDV9XTOmkYkpqbyG6FgtLb0daKctdZEVXDaAZkCzvH8PTIGpImWrMNEQ/IAqNGlxjA2R3iei0rjvi1rR5UUk/8g0g8B0WtCww9LBdPIMbbnFvfmvMwZHe/Sz7G9XlOb9XH284cOPfZGz7gb/23/9Jf7gl2/xqZ9oOLj+SM7KdXcQIYFsmREY5gOt8EwPS6Kukf2AkJKZMkx9AcmAGsH/McH9Kv2iRxW/QVH/OWTx4xj2+Fht+IdPGH7vlVM+MamY7Uoau0S1U944sXz31HPr7sBKCNxWg1cSuRxJSrKnCigcLkaGM8vquCNrkm8kOM9z6Q8GtWtywcM8BIL/k7s3j7Elu+/7Pmet7S69vG3eDIdDDkmRFEU5Wk3bkknKVuLYkoEEUGBbiRNkQYAAUWIYFmAgNhAgu/9I4CjJX1b8hw3LUoBYNrxA5iJRCkXSFiXRpEjODDnLezPztt7uUlVnzR/n3tu331D0QIiAPJ/B9Ou+3bdu1alTVb/luyi1gTPsqp6XQJ7SKcjFoPFKoLN5pqT0u2Ohd/yDyxSzEJPVHuHzcj9SKqiF8ta3BsKZy6ThSR+7JFNcHqsUgphL91NxlRB8qXYj936+5Bo8PnZQlFzkYR93Bd7tx16itnX+3kFbdn8DSLELgp/kzsGWGP94AnvZQbhMDGIq3WW5g2VxZS0refVc7N6419nZdQUe6ybkvTnO27xu2z3bvDfvn7O3Od5WctDNWxKZxek5BzPJ+z74XXz1lZeZzQesFqQQODkdOL4+J6ULxGJNuBjJLlCbTHVoyRXk83u88NCTJg1UxfH17u+c8Nqp582TgdltTaoEPsNdo5i/seK3f37F3zjLuCHz3NN3+NGP/wb/7n/a8NzBLf7a3/pefuFnvspXfn3J+q7joz9mmR5I5H98TPrCKbMjyEvIZ3D8I4p7r2fe+xTIZSFN5RqYGcyRIb12RiBx2EBSkIcvMzz4Keppi6j/F/7mf/LD/PznYXXyCt8nLnj+I5m/+umRa8DdLydWnSI+pVkPEfEocHTT8P4fOMbdEzz47TXnby4ReuDo1oR+FckelOxpWs38wDIzitOHj4jiEGtaJHMyFpFOsU3NtYliDI7RXSDlwMQa2izwI+S0xgdBW1s6Yznvz9EIoltTVzUxJhYXK1aLkZs3rtPXitEtmTY1nW1wg2cYB5a1oZo01JXB9QWTnU1Lnwzjg9NybK1Cdw1V3aCV4ul3Ps+DO28gsqKyBp0lYsx08wmrZk2+OOXZm9fQusJqSafh4uQBfjHw4N5rdMfHXL91xHxm8dERfKBWRU5z2klEhouzNf1iRTWbYcczVN1iqgbInC563HLFevGIbtoxszVSG5Qx9EnTL86YHh8iJaicitNp2yFE5vTinEnXorLHKk3VTUr1FYVVljFrXAzFA0FI3GLN/HiOGxdEIA8BdxIYbeRssaStDKkfcW6NNpKj+QwpBP3aYbspWSQiniShbhQpZrq5oXKZYRwYVgvCkJnOK44OaypTc+36nMpWxKRwXpK1Rreao5Q570eW6zXBeSpjqJRheXrBpNH0OTCGgLItRoxcXKyoTIPp5tQarJHUSqMlpXKcHTpEpCjSsoPLhNWKpyeHZKVx3oHwzA8OOH000DsHWuPdEi01TTshRklIQBC0tSEEz+gc3g3U7SH9ckXyPbZqsbbDHjS01RLbzhB2AiiUTBgcJImIHlV3CClRTUMcBpJfoJMh+gsWZwuEbjBVh5ECmSXBO2SQZDtADuTkkUTqtubey6/znu/6EFrX+MEjVIvqjtBWQBZoZUjjivXFSIyeVnmqg1usvGTtIk2l6NoOKQX9aolfrtHWErIhU6GERkgPcYkkYq3ADQ5jprTTCd4n1kNk8CNCOKSqsXWDGnvuvvAyQg0kJbBNzfVmwnrVc++Nnul8hplPOJx22EqTk2NcL6ntBCWXzI5nrNdrht4RvAM8izsLbDNF5IjWFSEIVufFaVrGAaUyhJ7kEn2QnC7Gt/3Q+D2PnIk54rxnvWw55Wss/JLXVnfQeMziAV/79F0ePuoZloHv/e5P8wc/Muf9H77Jcfdu/sxP/SS//o/+Hi987hWGRyfcfr7DtDXiD/5rxFd+i+awJrwSMdagbxpWy5Gjidk8NgNULcJOkVaTly+RGWnrTGIB7u8S4z9A2Xeg9V/hr37sz/DpF36R2/aU601kbjx//+UzrgnFnRfWhJtzBitZeY9ee27PO977zDtYPcp86esv8NJvvsHJ6ytI4IbAOARy3lQJ97r7GQrcTxRn8id9bCEMsFGl2UhnSlVUvlCXsIdtMLMdSsmdXKmgcKNSygghkUqV5CFfSqZKcTXWKXyHjBSFM7TVkX98D2URoN+rdD+5ErLw2P5vAvS0x6PYdVDYBKebTs5u6rZwrcfGNtFIKe3y1q0a0RWi8t6bt50EtYPJ5cvEBXaV7G1y9iSP7Tzso3WKgZx4S54v94n42/dvOmYgduIEe78EigTqjmOz997t51/pnD12Dnd//1jy93Zn/W0lByoX0qiLgfP759w76+nmifn1A7xzjEOgX47IQ0M1OeBcDlSzhlZntI0oEfDB0xnB2hlEFckG3AhnQ0aTaE3m3j3PeZSsLxLx5Z7wMDB/VvEdHwC7iOR15rOfC/zSP73gJ76r52N/vuL7/5jia4cW98Dz8I1IM28g9sh3S772YsROBDf/iObeaaK9A2IKQkO6l4k5EZ8NjK8lpo3AZEEwCWlA5kRcRKKKaPvfU+kbfP/Ta37pa57/8mc9Cw93T+DVSuAkiKdAaUGjJc9+eM533Z7w6htrzl4OjKeBShlsVgQvGJaeqVZolTCMyLCAlHn2essiaKaNoq4BIoODPkVClFjbIAW4nFm4jGHk0CgePRxRWWO0AgnRRXxuMUlS6wplNMIrwpCI40iWFU1lCWORMfXeo0RgPrMYY1gtV2A02VZEH/DjiqrryKtThDqkjwUaVk0a1sOInh0SsmE9ROLa0whoq8T1rmLV3aatLCp43LrnznLNm4sFCsfBradZ+8ijR0v8MGJNRQgeO53Q1hadPWPf06/XrMbM3NR4l8EEghg2D1vBvdMLTBKoMSDoMXgEiqVfIYRmdAkVRo5mLUq3eA9RK/oAOQa6pkWkwLIfCUkwuky8OKOpKqSyZGEYbUd16Jh2huUiMp5cFGKslrjlilYZoku4WFymszAopWmbmlr0jDHi3YgPoeidK4UwmsEvGNcj0YdiEKfBDoUAACAASURBVGMrKtGQbaSpazKKwaVSgQdkqFmFQvpujUZpSxaaED1++Yi2sWgp8YMnu4SOMKRAdo5xDGSVELUkoclOsO4FaZRoVdR7XLJIIWkbzUUPymqQEPxIjI4QHGiJbqAyksocIJUloSAFcpQkJMI0JfilQOhyXJGzBx9IMuFz6dBp26KFIfVrsmkQukboCqUtnSnE8bQhdtmmRlWmKFZFmB4eErJCKVOgDElwMJmwXJXOgzYKP/Qs7p8QRnjX8+9lcbJgWI+o9pB2esDBvC1EbJkQMdMdH1FHX0jKOeLzSNtO0VKTQiD6VEiWMTKZTMiuqEnlfiRJj1IK23b0Z2eoWiOMIcWM6x3aWDqZivKX1aQQGZZr1henWJ3p2oY0eqQW9BlEU3Hr6RsoGelsoqsl47Aiuh4jEqZV5OYmWgkqmRGtJWRJSJEUK9a9o522BCHQQtBaA8AoLW6oOLrWUbmeRT+QZXybj4y3O976CMpACI6Ti1cZ3APeWAy8Pg4sHzzEvXFCuBi5+c6OD3+ggpMlIkY+9ckHfPIf3uej3/kS7/ujN/iO77/Fna/cI+TAsIooc4DMp4hrHXfvrTm41SGVZFh7zFKCFQglSY9GcteTpYSlxGpV1pboC70jerIfydIj1P+Bkc/xweORX/3cQ37npTVnLnNvAZPasNQC21hMW3Nctzz7jiOem8555f5Dzh5GZtOWmzcPWZ/4YpgWt7ySjXzjPq4obaqIGx7CkzqKuorcVEg31etNYFOCm7K+dsTgXXaUdlAjdnMgNsRXwc4JdkOGlVxqwG/Jlo9j7bdrT24gFilvERdbzgLs4rf85DskZ7isJm++LR3aSy7A44Fk3jUONiFqLlKmSqndOtzOylVuwj7XoGxvv+MghSy5x16gup+ElO5RevJJ4MDW2+Mtawt2vIy8+bv97guwSX433h2ibKeYeJftCCkvpWP3OwQ5785puZAu5Uz3k4f9DgLb60uUa0cILnf024y3lRxE71AiMqkEakyMOtFNGiqV8G5kHD0iZtLSMIrEdDYvlUVGlEpoIanqDiMtrRsZRWQ1eFZLT9OBV4L1o8Sj1wNnjxLjRaLRmZ/4j6b8oQ++k1lrUf6C6C5Yr3ruvz7CG47P/+M1z3/QcHsOd9eSX/21yA/Vnqc+BC/8auQ3fyvxrg8onptIql8KzN4lyK9DakB2gqzAn0fMATxawMGhKQZfvpxwKTLkSM6vIcQFZ28sePBaZLnKnPnSoX7HD1UsjGalLY1RvIuEvu/4wq8+ZD14XFbkXJSJJvOOCkuTQWfQSSGSIIRAJRVJaCyOFNa4IROS4Oz8FOEF1dERLiYyAiU1EkV2iX7o8TEWImxSWFMxbSaM2XCtm6GEKgTRTmF0Q1sZUNC1DeuLCxKZqrIY3aLziO9HXFKF6AqkXNw9jRVUncUL0AnkmPHRMYRyJxBSUckISiAFnPQeFRKNzTw6OcUajRCaXliGEUSS+BRIfiRVgqAzCoEylqqqUUKQhcCTcHnE2Iw1Bj86luc9kQFlDUbXHM4maCRBC4SJGA1GKbRUmLpCVA1H9W38ODL0IyonJJJOCBaLFQ/PipNnlqAQYBskFbLuEFqhU6BDsBhicaE2FVVVkzeQENHUhbQfEsEVIzCjDT4kzhc9jYw4URyKvQ+ElMlK0bUVioSWGVR5GBb4jsE2h7RNCeaKTJrENjW1MixcJkZRoF1SI7QikMmyJsRI9qXSJqWAHFDakpTHrwdCHJGypWosKXhylkhrCg8hFyiQ2txT5rMOacyO97Ct5k26Cqk1VdWgJUiZERJykAzOU08OUFpBiuRkSKnGjQFta4ILiFzkhKWUCK1Zrtc0VqGNIaaRjMIYjTQaEKToEcpsTHhKpVXpBoECl4jOg4hoZZBWMbUVUriNJGmLmxWi73RS4cYl2nY0bVU6XUiQmfPFCtEIIKIrixCSsF6Rg0foAZ+KolTKGbShmR4TWbB6cI4QCW0kRkmkyKRk0EYhUkkkcvbkAFYakpAokcH1OOdIKdBOG2pVJEofPrqHFxCVRShDXbW0NczmNcZI0pjxMRFINJUB0xShg7wkpoxPFLM4KbCVoakbhBKEGBndiKkrQvKcLnrWPtK0itoYLvLvh1rR5dgGv5lIwvNwcZeXX7nDg3sXDP3IzUPFH/83nuX5Z97HpFIId4/oz1ktL1ifX6D8km9+8R633n3I8TXNyYOR9Utrnn2voTsWPPjqildeHGh+oGMaE+HVHn1dwoUq/iTTuiimuRFhK9YjtO0MkR0iBMhFLYwsyLwA4pzlo4cMywHnPUME2Sie+/Ah92LFUM+5aRRPiYx8tOILX3jI6HuCmZCyJAmNH3JRaGMLrtmXHSwP+JRjCYB3UI8nc+y027cQhx3kQmx8BTb32H08+2WMuQvtt19TSjsIBhuY0AalciU43f77uIyj5DIJ20evpE3ysqtqsw/veDLHpYzpJdF6e1wlmNzrInAJpdqfixKUys0yzLtAdrudSzWetyodwaV3x+an3X+ZTfKww7mXe8BlUvZkz/2u+r+Zlyy2gbzYJWXbnOBbOSBvVbe2r+8nyfvnsPz+8nPTlhi+wxBt8gCuftb26+OJ4tsZbys5SDlgVOSglUyzJs1q5OaBI6SgqiQqRKLzjBcDcjpDSEmMAu8TGEHKggWCCLgx0S8860VPM5OMKeFyoj+LhIvI7WPLj378Gv/2n3qKD14/AJbkpMm5IqfM6gLuvph58EKilQmrBIu54HyVefj1kdlTmtPPJ250cGsuaARcvyVpb0v0QU1WHnVdoCuJXAvMgSa4Y2J+gAoleBHkAhOVQBpBnLA88yzPE7ITHLxLcm16Hf3uEXUaacdEswZ/EliNiZe/7NBC0NysqOYKU0uiy8xmmm4TCGVZqqIuFrUeWbfE9QKRHSFJxpBZDx4dFf04EJxHaoO2EqkMPkvG4MkUR8KYikoGKqOFo61agkusxxHnobIVXVOMmHKKpLSxmNeGgKRuKwQLdGNwIcKY8CEixUYSc9oW0yg0ZEmMmRAl0ntyGGiNhEoSEESRuRgGnMslCBUSoRVRSqyt8c4xLJZomYuSTipENqUssJF2VYq008WHfr0iBErF1UdEiBzMO7q6ImZFyAmURuqM1ZK2amhmE7wwWATBRxIOpMANgZwoFeFc1rFRkiwlQ5YYZUjCIFJE5YjV0AtBDlDVmqarkVLQtAZhNNloBAm7uVidD8Sc0drSh0ROnkLMk4gcEDJRV4W8GLi8kWzbkllZUs7Evsf7sXQalKBuDcEXIqlIxWHSKoUVghxLUBxzufY0oHXetNgVyihICik0UmhS9tTWIrTBj6W6KWVGyUwIkUpr0C0iCnS1vflntCn4dql0udELgZIKlEbrXGRWsyf6QIpFmQkPw3pdEo/NcQpZ5HWdG7DKFOKsiihlUMIickLpisH1iFwS4xwD5IxWZQ3muCE85wBWUHcNUjckvyQHT2UrplOIdSADzaRFVwZNILpMTB5jclHsqnTByioJRoECJSyItKnsbAyrRCFt29qw2sAqhamQ2pCCI6dIbRXERBaSJCV5A40QqbR3U8iIFNESqrpG5khOMIaATxlTa+pKYrREmUK+T3Eo120GnwVWlMBe6QxSMvrE4CJJUDpIQhT+B4XnkkLABfAx0I+OcVwjRU3b2kJc/v907D+A8u45EqNDKUtTHdGfObJzvOfpOd/7nbf5yB94huvtNXI+hzwDJClZxr5icaJZvekwaaSxmqo1+CGwflBgl+uv9hwdWmotsVIiZzVqZhD1IcglctYgoiRnhbAtKR6R0puIpCiuN4ly44+QzwBPv1ziQ8TONfOm4uJljb59RPVwpBaBeulwvWPwiZdfXdMqaG60nLy54sHr5wwrB2zhAqLkHru5KcFs3gTO+cluHACPBzIbeMUuDr+Kzc4UpbyrJe8tTv0yMBIIkFcD4N32d3N2NXjaucpuxzaAehx+sRdQP9FjA+HZcQrYzv82UH3suNkLNMVjv9gmGPmtidOlVOdeMvYYpGj/c7ZqVduXdhXvLC+r6f+KjUtVrrf8gv3a/nbZXs7vftB+2TG4Chu6vD72N1uaAvtti8s0bJss7O/b5Sd8+/H2OgcqoW0q5lpYTGc4WTvGMWKMwh5WGO/JOZJcZDhfoqY1CUGMEEmQHcvkSKMneE8cA9kn+kVgNALVCepGcHxU89E/fMRf/PefZ2aeIqc3ies7BNcDGaVgUks+9D2a1Xsy/euBR29mjg4lB09rTj4xsPztxKERfP/HFcfPKySC5scrchRk3RFzQB1Oka3ExgukbqjkbS7uPCIuc5EZNZRnRszksKmIV6AOJXXSVH/0CLs65usvv0581TGNiTjAi69E5HWFPNBooDvUTA41RkrS0nH9PXNmbY0XBp9kkSHMkqCKEktMoGIubXMPSlYIJRnWFzAGVGWLzrfSIE3RrpcCQiSTi+PpYkmrPH2liT5ycV4Ikl03JVVF+3sZHCEJjC2yqOMQaaYTYpMwlaUaHDmuGHpf5j0GrJJIowskJQmy28jVDj2hX8G8QVYNQhgkkeXYs06CA6sJMZHTSAqOpq0K9vDsHKE1QqoixYhCZs3oIot+pKkNSkBrFULBxfkpykwxSjCGvKmol31wMZJSImpFFgprDfPpjGp6wHpY4vuxtLyVxvnIYj3gs6I+OGRmJCIFgg/0wuIWA4qNpGfyaOGxFiZtAzlTGQUdSA2VlbiQyFJAjlgpGIaBEDPKVjRtTQoO4VcopciaAi82onQMciBFgcigtcLokqykEFiFQOoXjONQZDRjLhySMBJlkZ81aLIQGKPIUSFlgw+S0XmST1hhQXqUANtUSC2xWu/azm1lkZVlmTwierQWaK0YncMJTZQVUmdMJQusKA1ICUZEypUtEEKTZYWUAkNGa8HoA94X3oqpDdJo1ssLppMDpFagyhp3LiFSICZN8q5I4GYFwSFERlctORfZ1hQSOQqUNgidISaST+RYWtVBeA4P5kRR4XHklLBKgbEkaXA+03RHCCLJFQhZRKBEYjabILsabTYGbBlMpchRF7Mw8qb9mwnRlaRR5ELGDz1JUCA9IRPjSKU1UQnQliRKEQChkTmD0igJJgRyLhje0QeET0ghUERqI5g0Ggll3ZAZx5EQIojixBlRWCvJMhQDtJjxLlLVimk3JfgRVOkKqQw6JUa/ZnS5dNdkOXZJpNK/fyFSqawVvHKMAa1abl17H/P2t3jqdsMPf/ez/OB3vBsjZuT8AMKLpNgjREaKRFNL2mc6wvUaf7bCLRJHNy1xELjXHuJMT4fhPT94gK4rhJTYWy1kTRK3yKyQ9TWkHIAIYobmHYwXd5Fuc69nc9JzJqcehEJYiZpU1AcTxOyA5T+/4JtvJMSjBdftBctHnnuLBNMaPbdljkXmwTcfcu+lh7g+IPMuUtqDr1w+mreSnClfVl6f1JE2gYwU36IavxfUbIP+3dTs4THe4ua69+OeDRTFNOIy3NqGPJdwjr3K6V5nYluY2GK4n/SEDHhrpLeL28vMXHHh3X1zVY70SpC6C07TLqDcDywvPyfvPmeb4F75tUi7JGALY9q6CO97VDyxY79Uv58IiUs43H4FvwTy+XLR5jIfMcW9xHa7Jje9xsfOz2Wh4eq9YttBeMuMXoE0bX7ebuNfMt5WchAqRa5AxsRqtDx8bYmeNlRCkXUiqwxSY8JIO52x7EciAVFJUAZ3fsbhccPZRcC5QKMzzVwznUlCdjRVwrWabib4k993ix/7gWeYmQnwBjm8RHj0kLj2RA9jgGWGp54VPLyTSUIQa2gD1FJxzwvGf5r43v/KUs8MeZDkAbIEMa2JX+6J3S2y/X6Uiig+TZQz4vpLVHnEn2ZyDeK6QJhMfAgYwEL77pqnO8Vy3fGy/wif+Iv/F0pkJkcCDiTKCsZaINYwf3/FQaNosqI1hkmjaYXgqblicjThG6cRUDTKFFWT6FmentDYihTBDyPJw2E3RU0OaYcF53lFkhmiI7mBqqkJzFAy4v05ITtEyqz7hGLgoahI3uHGBMLig+NslVHrnvpgTtVo2FQ1p9MalTNjSKRK45JjCIkYItYqhvMlLnqqdooyLSFqnIvUVc3ywlF3lkU/0knBpJO8+sYZw9JRdw1nyyWmL0oWkoxQDcoq6oMJikJaG10iadBqpEmCatLRGImMieihHwaq2pCUZFg6lJS0k5ZuMmF5uiwmYgbcOJKUpjtoObh+DZciel0CKqsV4+i4OF2y6gcmRweYuuawrRj7gTdPlpwlTW0bLKBTQEmJVQarMtV8TvAOoUrV2wXPsPLIJGhrSSDTL9f0PiCNpbWWHDzTumGdYoHsSI3WlmwTq+UaG2EYHE1TUWmNJBP6nio6lgJEinghiVkhQ0ZXFVVMSECqCGnEOfBIWg3ICkEmjI7gPGOCed2U80ymqgzIVDD52qBloutqtEiM/YqcIjGOuBRQlcG7FYQRooNUjLWIAggoUborWcnSOckZP4w05ohKWkSMhHEgZU01uUE3T3STCTpHvA+4oUgddwZU0xYfCSDHSIwRW7WE4FC6Iow9xIhRFaiSUEYXyDGihERVGm01IjjIDqMrSAF0kVEN44hONToZhBRoK9Bth+rmjKOnajLNQUUKAyF4pIwoK1mdLRFCkYVGqoo0DPTnPSFLjMm0dYMSlC5aKOZlKSaCrai6FlVP8CEx9gNKCRKlI6QFDOse7wMmRdy4Io2eoXcoRvAKkSrqScNs0hFx9D6gJei6JMDSWgQJnzxaZlorC/eoVnSzlpMTj9J6Ax8ovilSeGIM3LjWUreTAhfUoOTvb5QkBCilqWxDk2p0nfjgHzjkD7/3FrcPjrBCk7kH6QXS6kVyGDYwqUxWgqZTrC8CSVVkHailJKDpR4hf7nn233sakSdkLyAmEArUFO6fkuvvJKrvQ5ovItQdsmjJ8XMoetJqJE8F0hZoT+o9UlpQivr2MU8fGsLiGb72yg0e9D/P8hff4OnbLfrAELNk1BrpJdfeOeNAae78ixPGC0cOmRzSTqNoq2CaN8mAEMUT4zJ4+1chSgXIG+x0uhJMfrujK266YlNJ3czYXoAF7AIcAcXnY69KLdh0IkW5x+WUdt/DpgK73eZ2f/aC0ydfsShv5HIvM6mtfC5cTYCuBIaPcxDYVKG3CjyPv49cDJHzfnB/+f63Fss3cp15O/d753jDSXmyZ36Tku5xOtiACLdrb+uDIKUkxrjrvIgN2oPyY9nOziRx8/LunIi3nLcrr7NNPPZW8mYp7PwpYCfn9XbvNG8rOXjfzZs8PTvm5OED7ERiIkyvzdF5zXK1JiRBNa0ZnWDRr7g+twxuZLVw+NHhhsCbb1wQ+oGDG4amMyiZENlRt4aX7q555wy+7yMdH35HxUQvIb22C0jUgcQcFckyPWbkOnH/NyNcUwShuBcy6WHiPePA8QcE731KYIYMtSKdRNZf7Dn7guKZv/J+vvlPfhP1ykO+8i9+AfMDP8hH/9e/Rl7+z3zikxd85IakfRpku7EE74EHIG4LMHO++9k/y0t3I//bz/5NHv36L6AaOPiA4qlnFXOl0FkyTIru+Dc/P1DPDDfeNeGpWx1TIxnPBhaPPFmOHOh6o9pSAxZJQCZDIyt8ENSDx41FeSScndAdtginGZJAVIama1m6XAIGPMYI7MYkKuYMa8fJ+SP6tUdEQdc01JUiBEc3tVidqCeWkDWrPrJcrqhMxifF6mKJyImqMtRyQsyBh4sRnTP9+QIvR1yWjD4weoUfM/OZ5amnrjGtK/rVQO9HdKWp0kDUiWwUuqmpreHNb9zFSph1NXXT4nxgcLHAOWSNqieo5Itudi5XjU8W03Q0rSWmJTmAMJpoTDG/Ch4pIkfHB8wnE5xQPHjzLtO6ImZZAj4yVhtkpVmdO5rliFCC1arAtQ6OD3GnPblP2LpAiSJq48mQEeMaSSKITN+P5Fw6ClVr0Vmy9p5gDU3TFvy70ighsMKROsvp/SUKaLsGZRrOh8AQRjrbkFJmdJ5KZxpT4pshFmxm3TQcTifMD2b4DF3d4PsVQyycg9ZKuroGIhmJ1aDNlHEcGdYLoEEAMXuwBik1UiqqSoO2LFcDxtQ0nSImR0ieRtXkfmRYPUIRsNqgjC3yeFXNavWo4PFzBOfxo0NrQ4iB9foRdTUFKUGCVsUIDyR5XIMSaDKNjAgZ6CZz6skcU7eE9YLQrwps0Y2EYY2yhslsjtGKnBPL8wskNc3xEYNdMrrykFcmI40kDx5dW6SxKJvQTSCs1qwfLTGHU8gemTWYmiQM5MCw7rHVgJIC6QNhHBnHgeAz4+jofY+p6kKOtop6AwNKwjD0C1xOxJwI44CRIHzCCkW/7kvimzKttKVzAKzWPSkFpMqEFDFC0sw7+uXAejkSAgUmuIalzEgcVUqlmZkSOQeUEfQLh6kN3WxOlho9jFhrObv/oOyfL34USgq0BO9HpgbmnaWbGHwqSmUni+FtPjJ+L2NTBaNILMoseOfBe3n64DMcdxkt70M+hzxCHpCtRchNwBMKX2R17xy6GZmKs6CZrJY00TF5R8vRTEDvoa5I5/dwL18Q18e0H/kezn77F5FvTnj5Ez/HzZ/8z7jxJ34Uv/6HvPra13lu2qKOm6IwlTN4EIOASQXyWd59/B/y2c9+hk/9P7/Emy99knZqePYDM56/NWEWFVHVeFMTo+IbL55jdc3yYSC5DRk2bZVaBFrKAhPk0rgrhPSWWXqSx75D7NVxGWjuY6SvVvq3/YGr0IrdFnZl/quJ1NYfosRcaZcI5JyK0osoHYoY9wj3+VJSMm3w9E/02AsiyzfbF8UGUrqXIHHZiXm8Kn2pu7/HHdgjG19JILawrsSGbL4lkV8agF1CaPYTjcxWleuKOs8TOLadle2sljxoG8BfDcK3vI1t8rs/tr4UV90q9uRfLzdy+R4pdoT7xxO5fSzRFUO0bwUB+zbjbSUHD+69zpuzFePoaY+uc/zMIcaO5Jg5vjElyEzvlswkDH1GGY3xA60SmLZiNLJUWXUDgHfgRHHvvHsRWAt49obi6blialzBZssahCNLiWoMOWxazJXAtjCbCx7dCzw4Meg2cQ/P3/5i4k/+aU33AYv/5Z70zJrYaV7ONX/9k54bX/gN/ov/9ln+wk+/zh9aOn7k85/lGz/8Bb5SB378l/53fu0v/zTv/1MXzKeQTjPmlkB/WKK6a2T1F/j11z/DJ7/wKzz65QuSFLQfEHQzCUJx76Gkv5A0xxLlYS4UB9c6umlF9ImzpcNkhWo7agS3DucIo+ldZLleY+qatmlwHtCiuOLKjK0sTW7RSmNrgxscfhhYBUWO0KWMqWrstCvuhUkwPeg4dUv6R2tsXVG19QZKMmBzjQ+JXElELNDqphaMSbI4XyB0gU5UVYXRABElNdPQ8OAkYpUgOgcIurqiqaC3CiEiq/OH9CeZoc/olFmMA7efmrJYLVA6k/GcrxxRaWoxoLWmqjTSCCIR158QgkOroo5T1YUEO7hASAoxSgYyppmjcsEIu+USYxXKeqxVuOWSB6uepm145vqMN++9yZg2cJpKE4mM48DFyTkTY+ACzsY1VaVpph2NEZwvl2jTUcmMSokYAv16YFwNTDtDDH0h1CJRuQR+D+/dxzSKTpWEAgQSicmJNGYmTYWatbh1jxhHqrbi4KCmP3V4WaREQwz4CC4Ibl4/YHG6IAiQVYMyNf15j9ceFRxKS3TdFfnOwRNEJJsaWVtkTlTaoGtTCnKqRahArSzSGpKAnAMhj7gkUKqmdyOVKSRWnSUhnJXAB0ddG+p2ghCaxfKU5AZqq/D9ipwCRmvqpkMki64shJExOoSUmNYChjD0BN+z6h3dpEUriZSJyfVjlDkgh0DuV6VL002JwReohTT4YYCmKwZuMRTd7sET5TnkAN6TUiYmzdIlwrjmoGmKZ8JGkSurTDOX1G0iS0s/REJ2VFlgK/BqTk6LglaQtsD2hGC9uo/UlsqA79c450k5YqqKgCJLSBsugZEKbTQpgUqZ1ckpQ854FFJVaG2xOVKpREDiUWQRkVKVa7ibYKtVSZaHQDq5wF4/hnGJsRBiYvQOTy6SvKueVLWMY8Q2FmkMOnqUSjRWk4RAG4qxooukGKiMoppOaeoakXzhSyhNMz14O4+C39PYA43gouO103+Gql7h9jyhxAo2UrAZD0Ih9ARSQiqBKfkrVXtAv+y56GfU3Zo795bEPvK+D84wR1Pi1+8ibmd87vjavYqv/tqKo8/9Ij/053+I//E//8f8xPWO+lN/i/u/9n+yvDHj+Z/6G7z8c3+Wd/zoDLF2pbMyqRA3WoR+P4if4itnP8vv/LPPce+Lj2CiOXqu4qCzJCxfvSMQWtNOFCrCkWi4/2rPqy8+5OT+gqHfrN+YEcUKaRMIl+AppUtIxgbN9LaJgv+/HULs1Jj2g8qtdCZ7X0UWBWIBm07DbhNv4V9sq9mbn2DTCRPbBExs37chhVJc5rdV0y1RGop511b6c+sH8KR3bXZkYR73bdgmCGWCdvTufW5H3qrfcEn6fqwyva+8c3WJChJbFa7tJ4orKjv7sK5LaFJRntoq/Typo5C5JbuGTd50tlK6TMTeck2X499XyHq8w7aFaO2WfN5zqBYFTif33iN2X/Y/YT/pk1c7Et9yv9463lZyIBQoWyGxDBGGsaf1A1Y5lNZkKXf/SyLr9UBMCmkNVmb6GFmsImvn0dLgXSRkTyASRCYnUCHTRxhTJGW3yegVSipyLoSxFDypT3gP0gjM1HJ2kXhwN3D/5Ui/hNuHEtUq+C5FmnZkM2N6X/KD/mVujoKGBX/5f7iF/kdz6s+sMA9f5PpC8NX/5n/iA/9WYnKzQuSAniXUkUI1DYj3kOPf4zN/9yV+5ecXRJERrWD+Ryy6l5zeBaiobtYYCSevX3BcG6RSf9mJIQAAIABJREFU1K1lOqmZqIYPPPsO7j94k0pK/MWKdnbA1DT4eIYfDbprGfozhtHjQiyuuDkz05Fx8KxXa6Ify6IMHiVbmnrGmEYqVTGbTNCyZrUcGZoJkwlMJh1a12ghMTkiM0X+MSdG58g6gyik5OnREavFCZ3MhGFN72OR4dMGpQRH0wYjM4PPDCEjs+TwoOHUZzoDZ2/ewy9GtKqZTyZMp4qQPD5lUoionEkRbF0znXWMq5HYe7IQWGloJ4ZkbDFqUpCFImZIQtAeTLj79VehrrBtS10ZjEz0ccBqzVE7pWkMF+c9w+Dxg+f+6cB82nBx6tFSkYYR7x3GSK5fn6FEwA0LVmvHqlfUPiKNRBKoc8AtR1IShBBJQzHwGnqP0oq6FlS2LvAi70hRcnHac+N4ggRiDEhtsJVGKEkkgFZUTYOWEqUNWSa6g5b14AlZk0j4EFgv1ywXAwlLXRlklIQ+IE3p6miVEN6iw7IQY60qHSgxsHi4YtpNaTtbyNlW4QjgHWmITIUBmfEpIKxEDwOqE4TgC2QnK0SK1LbFaFhejERRFG4EA1KEHU5a5BFjy9pIacCYQlAWomDksygJnBIaayS2lthkQWSEltRth64P0arG9wFjakT2BBfIsTgpGy1pbIWyBqEliYZaRwwbV2+paDpLTpIQBW4caabHhJAIWZKVIidREEadJYwRN46Mo0NKjUoBpQXddMr6dIk2YcNFFijdMZ8dExOgFSt6+tUZw3pEX2+xJpFQaFVhZUSpREgRJyVGRuJokN5RSYmxFRJJ31+gNeQcQcQNREKhpWCxGhmCLJwZY2iqGmkEUmecdwQkQcqiTBYCqu5I0dHOpoSc0UKhqwatAlHaDXxKIozEK4vLFVPb4FKktdBOO5KZsxw89x+9trvf/7k/9+9Q1/XuibPVnleyKM9cRgh55+RZCOZXK5FCgFYSIcEYSTvRzI418+sjH/pww+wj12m0RsuEYKPaIzrIRVI0pTU5BFLeODzXByz7nuF0ycXJSC0zk6bIxYqna+ieQeanuFbd4Tv0msN3/utodYf/4L/+GNPPHqG/8Ruki69Tx8jJP/nveOqj70PadTFlUgJRdwh9HfgQ5P+bv/8L/5zfeeEEZ6E5NDz1oZv84OxP8PWXv8rTT0+RCty4ZHm64Lmb7+EnPvZvYn+yhaT2itzbIGC/qsrePF0Gp7/ymV/hR/7Yx4oc5AankXPaVSFLMLJH7M2wrQ5/q+3tnt9iX8byspq7fW1Xfd8nPlICkW1VeBv4CyE2GOktXKTswzvf+U4++YlPPBbV75bJtwkuxJU/3c3Nt3jtW43HsfCPK8LsPn6/7P3Ye/q+5+Mf//iV/WEX2F5ub1dZz6k44l4pfIu3/rN/Krab3UuEdhCgPS7GPjfjcltid072X9+Ov/N3fo6qrn6X+Xr8JHyrmd4d8u7jH08Cfrdx1ezuLb/9NvtTxs/8zF/nzp27j0FixO4a2HYdtvuzlcq9Uvne7HTaSKTuk9p3+7Zd/3vJzlYtKW+y08s1vXff2yaSe2pNW6jQj/34j5c1vz9Z23Xzuxz1v2xGHm8AXL529fxtc9r9V3ff7y2h3TseOz2f+tSn+Et/6ae/xd5cjrfHOfACISvqThGNoh96ejIjkVaLorONIGvF8bwiCVECHh9BZmTOTGYNddIkN+JjwMWEjxEvIroVLE8iX7kzoBVMK4MWCUSRl0tIsqjKUUsHWhAQnC8zfpF47euRO9/MzA8182sNwkTkDc0bv+ZwZ0ukOuJ7/vTHmPzypzHO8d7vfp6++wFW1Qmrv/0iZzHz7PP3mD9X5E2zK86LaM3wgkfffp2oBw6nS67fFJz0EnUkmB5L6pWgvn5M/zCzfuBIHubvmjKZVcSYGdAEWRVyatdwLXScvn7GtJpAVAipaKqGCy+IKSCyhzQiU0KhUEKzOO9hSCipGcdMDB5bSTAakxxkSCHg3UASmRgztRHUMqKFoKssTWVRRBZnCxanJwTRUdVTcogIaVC6JouMURKRIPsNfppCiNSVoZaJoV+SgyOOgSFDOzUoWxGS22AVI25Yl8p1pXd27D56vEvEAG0358btW/Sn5wxDYDWWY7BNjUuRjCKluDmecgeOw5rpvGXtAkZkRIbBl8+aHh2gpMD7otcsUiaPDm8rhtQwElisPLWK1Eoym05Kazn0nK48wmqEUkQpEEqjbKm0DstVIVApiVGJGAM+KbQyG0dcQYqR6BOqahAhMY6ClAJZFrnUoFuMUfTLBSHlIrFqDFkpKimIIWxuhrpc4ErRtAonC6Zcbo4ruHJtJCFAFbOvkCWNrlHG4mIEYwm+J/hATgmtwBqBriymqYiuR8ly89LSgJBIIwkxUFmD2pCj8ua8hxyomposS4XICFHkNL0DkTCNQStNyokxjqRQcKQhK6SyEDMxDPjsUTnSViCzKTKnSHzKiBzJ4xqtbVElSZSkoK4QuoacsKZCKo0PDj+O5S6oFcqCiBKpalKSpGEsCj22wo+umLsJBSIRo0dowfoikhWYukFpVVrhuVTVgs+lI2U2AUHQtNMDxmEkZooow3SCsgqtFaREjmFD7FVoKbFKYZQh+hXaGhAF/y6VIMtEJBO8oLYCKQyITPAS5wMp9GRRvC6UFGQp6EdHrTXOe2LMxCSImwqV94GoMuNySYqpEMLtBi7WGtYXK/wYELFUslRVEfNIdp7zhw8QucNMGmRKiHQJu/jSl750BWpxKYl4+Uy4DJweq4CJy++FAK0L10gb+f+S92axumTned6z5qr6hz2dqfv0wJlskU1RJEVbYmRAcGIJkuEkiK7iAAlyFSRAgMDIZRIguciNfZEgQBAIBmLEgIAgzoUBwRosyVZk2JZkaiJFMmQ32WSf7j7THv6pqtaYi1X/Hk63pBZgGGpmXfTpXX9V7dqr/qr1ft/3fu/LfGm4da/luXXHwfKA737c0DqJlgohE2JSDcpYEMt6buEBSS6ScQyUMfLm6zt2W8n95+bY5ghkQs7nnP7hE5RTtMvnef7zH6HdPEGmgRc/+SN4+xm8f0T4w28y+szybk9z3JHzAMIilKYUQz69QC7+X7IM3L8FR3cd/Twzu2c5nEtG+SZ3XrqFX0nSkNB2jrvXcXL8AvfvfYiTgzsYVaVw63RcX5X/dLj7L//lv+D3fu8rN8D/laY/76Z55PeEBjeA/h4c7UHNddTwbiWa6Zj9vd9n2yeUJacU814rfQ/SKnVF8sUvfOFP/fv+oo6Liwv+1Ve+cgUSp+0352cyVZsC4utZ8f09ucwU1zTy1ecTbYRLYLl/TvYgttwIEq4H3+zPeXkd4l0/v/rqqyyXy3/t8/JvYrz14C3+4Pd//7K6UXn55XJd2c+fUjVRmlO+Vl26mp+9mtyzwZ1gopBN++z3l0JcPg8ppSkbL2/M7w0q2rVnee92/HM/93N84Ytf/Dc0U/96xxtvfO/P3Od9BQelGAQGqQRoMFpTUiIkwTAWbEmIkklK0jhDzKAY8almGSWFtqmmT+ePBpCVg1mEJMXITEHYZv74qwM2Fu50mRcOClImKKkqmWSJLAqhNELAbgfffhJ5/DizGQQbIRG56rCjq9HT6lsjw+PMyWee4+Wf+TLlm/8UdfQcqv0i7tUXePzGmm/+fcDA7S87tPH4sZDDVdJneBoQ5gF+1vLpzzR86UzyoN8SSiG+ngkjzO4JdErgR8IAi5MF3Yc64pNAlJKQMuTKH583DTvncG0HaEpWGDdHjANKCAQZq0DnUvstsmTrIzpLfNT0Q83CFyKZgEsepRtyzPRhRykjCUvJBa2r1KOiVMqIVOxUou+3iB2ULBiwCGVxrSIjMNrQDwNSKZwQ6AJRgDUWH0dCDJTo0aIgjCKmhNKR0Q9IVZAqM/YB4w3d4jZSRTqzw+dCiBlRBPOZpps3uAJnpxeMIdbGPSlprWZIghAhxZEiZG1UzYHj2wtmPqKlwmdJ8qCkQNkKNn3wFQwqRQlVFWvdN/iQGXxGyETbaeZdQ46RYbUlkTGNxbgKQHOW2FajYqLkiBASIw3GSTKCjRfVZKqoCtZCwodEsoamnTOMgZwSUkYUkLRGd44QMlnKKp0qa2ZRpsyuD4RYJqOvGpQKbRilQGaF9wHvPZTIvJG4+eQtACQ1GaaUQkgFkBhj0BJEjjVzLMEYQ+MsQRbE9PKlFHIIqG5JigmjbbVaoJCpDqNagHVVdayqTGRUBiUjUguMsZRSK3oFT+WSZlLKCFmpISkkYuppbId1ipw0UkGOmRQ8yYyUIjFGEtKIkhJlTM0UG4XIBuUsIChjIY8BRA2ulLPIIBDSVlqPiRgsWiv8ICgpI5REK0lW9dUeg8DNGtpFh5KSHANCSNIYUVojJ/UeKEjy5K+QGTdbSipYazGmynJmH0i+0qqMsWhZdeut1uxyVZMqRdUgRRZSqgZ43iecNZP5U0KSCX4gDiNaCYqs818DB8/QJ1JOIAV1bwUkfIoIpRg32wrAnUUJhRQKJs5+TJHsR6q4mcaPkTgG+n5FP26xrQFjpubY/fv+JjC6vp2JujAl2bie37phcCX2QcVkRJULwWf6bWBz4XnwvTXfev0JtzpFc6thZguICCVQioNiEKIBqSgZfCg82u7YrgND0mwz7LJBCI2QGYzlG7/zXZ7/kOLkY5+lO/kI4rf/D4T7GEK/gvpYx+q3FRdJYjvJ7GMnwIqSEqSqGEfJpH4L6lske8KP/vDzvB01/RsrhBAMD7Z8O/weB0cfJw2CPIBWDbdv3+Pecy9dSm5Wesf7zX1fG+LaPMIVCN1ndHk22Li8M+/KCz9rVLX/7EYxY19F2Ad+z1AN9gZX+/fFzQzmVfVhv+8PxCjlOgvqKkW7r75w/XtfLo+53Hfafx8YXJ33Xb/m2vFTA+sN0L//He95idM+f87v11/AcVmRua7uczmtN6sGNwOja5KholJ4L6U/68E3KgX7cfl93VcXrgXi1xWtLoO66xSpa8/RD8DU/5njfQUHxlbush8GCpLlvKPvI0RDP0R2G4+lUBpJsLmWsgFJzZSlXMj9ULlURtJ2CtcURJbsNpmF8IzAw68G/uA8caAS81cth22mqnF44iSUUhCsx8LpWeYPVop+kzj4mCIt4bu/7QkXPe09i8iF2X0wtwztpxxtl4k/Nke/8nnE7GeRq1/i0fbX+F0t+Juf0rhlgZJgU0h9IRZQIhJvK9bngpgLr3zkhFWUfOPNR3znqyse/7onrqCE7zF70dDeNeRV4WJ3zvyuwS6aCpjDgFYFKyQ+G156+R7BK2LQFKFRUmGFZ6Ydg9TMjKIQ8ONIjJ6DwyWtanjtO+eEIaBEZjdGyIHcFpwVyCiJvkoFFgNDsJjFEcJHUgzEsQIw12i6yTRs2OyqwpFuSVmAsMyXDf2qp3MG12pijKzP12jZsBqqnGzTOJauKqnshohPO0a/peQBIQJKR6zJ3L5zzGa34khaxqIYA6RRsuwatv05HY6cEtoqjDGkmLl76xbvnJ5SlCKkCWgrODroGMjcvnubYTuwHTzSamjnZFElSjWGLKtqUMgFHxJiG4i7EWcskkxOHotnZuFsFzCiOv22rUMoy8Xpmu5ghtOR4FyVGJUKrSWIwtkQydsBTaaxikxhRBBD5HA2Z+1DfXkAMUVMCmglUaZm+JXRFFFIPhL8lmEb8EVUPXVdg+vVKBHWILyv/P0wYLTAHsxwjUDmQNfNSEJCrgpBsu0QKWPalsZISIEYM0pkUkoMPuG9wCmNEgERB9KwI88casrSaKnQyoIAVQqN0fWZzdSUfhrJIqJloHEzlBKM3gNDbaSeGZIfCWFEoKeXe0SSsG5JihUsxjAgUkYXi8wB0y4JyZNSpGsXIAT9doVtE84sSSkTYyDGiBAGpEMWjdaOrBQ5JmRJtbTe2skLxBN3tdqirEPLBrygcYJucYCdtYiSIQSMM5w+3tI0HaoIlAyIUshaEX0gJcnuYlezRzKRy4gvHjluEUnQzBtsNwMB426DUZmsFCGE2rCnauVlHCLeJ4Z+xFlTKw8xIFNApQ3jmHBOE2IAIWufkSnsNht0q9HGUkSVh84UhKJ6UaSIaw3WWpRSxADjblWzbTkQ+6HKMhdHCDD6RJaGR6drUgyYxuGVufHOL8+gm+t8ZCVvLpr7cQUwr+gzKWWEUNXZfUyszz2tge8Gz+II7rQSJw547qTB6Uw140tUNksmZcEYE8MYeXN0hHHHvU8d0n9jzcXZmhwMzOZQMl9fBZbLOfeOO3TS8MpLyFs/BuoLiN0v8I7/HtuZ5dWPdCiXoQQYMzVxGOq9bVt8r8l4PnL/s3z2Ysl2+wYP3jjnzX91jj8XlHDK3VdOcNYyk0ec6PvMnztk489Z5kN0Me9Ry38faGJCnkpKYpyC7OscFCEuqwUVh+7vwdUJLqlCkxJMvkYlukkd2v8jrkDUzVt+875O2e5938TNKsQPAFKaqEaX2vB14yWlh/22ApdzcQ1Q7gMDsQ8urnOOhLg6djrmeuhYeC8Quldg2svdTvcvF8rUw6KUvEEf+SCOPWVRMDkNw6XZJdT5SKnOidbm8hjYBxbTHIhrTeYT53//HEgp6/tr/0unSculUopqAHy9QlqbgytXv27PuVxzF55W+B/wCOF9BQf9cMG2d0ghOZ51zFuN7wtjFmjTkGRh23tU0XRYVqsVY0ogCikEzi9GlieWsMkIIxAlYJE0jWF33pOFYD3UReeP/lngra8Gxv/Q8Ve+2OJ0rUjEDE/WkW8+DPzeg8SPHktOjiyvvOJ4/FrgwUXk1X9L0N0BwQhO8uJPa/p3PLvvfJWzb3yNu3/zr5HzCpXfZPP6dzl6/Ii/8ZOGj/+du2Q/Unz1W4hZEsdC6QRFKeSh4fadV9D2kJ/6wj0+97klP//6P+Qf/m8POftVT9wWVl+PXHyz6o1rI3j4x9/n1icsL31iib27YCvgwTuvce/+i6zX5yzmd7HC1OxmTCzuLnny6CHP33qB9fqcPvZI5yhh5NZsjhSG5+9Ezk4Tu91IQhB9Yn3Rk8bCrJ3Rzg+rWVIMLGYabcDkwDjmmlkWBntwn1fuNqwuVqwvdtUBWTsKgtyviXpJYxxFFXY5M4yBi03P04sHLE9mHC0tynQo26Fk4uHjC3abgJHTS845jJ1TzIz1uMLvNjhnq0Sr0ARfkDtPHwdy3uJ3a3ANpp0z1xKbEwemkHyhz4LQR+KwIzeOvIu4LpFkwXQWWRxhHHBCsl5fIBFIWxVohhJRpkGEgDZ28lMAnz2np+dYq2hnxyysQDuHsRo/es6enOK3VXmHEVIBWwTLRlOKIO2eQikMMpKixjSWw9tHqNJwfrEhkdDGoIzBdZbj508470cgo+I4LSiScdiw2gaslGghSSUzjIXdkIjZs9ACnzNd13JrtkS72rQdpcXqwnJxMC3SmVwg5YgsVf42hArqpRQ01jH0AT9smHULpJFYLZFWYhqFyFukm9V+h6IpyCovGwPYDq2YKCcFjMSYAJnqAB16WitQ7RI1NfAmMUfGAAKSyDirmHULRt9jNJRxLzigEcrU6hYRKQrSKEoeSRFEKvjtFtlIyqYg2w7dLtCNJI0ekSNSzJFKEX0ijFURybUS21VKH7Ya6qEMWlvi0y0lZ/IQwQZKLqRdBdbOKrIfMG2BDDFMwCol2s5xfPuQYbdidbHm4mLNED2GzN27t1geHjMGWK/W7DYblu0MiSalakaXoiSXStfS1nIoDbv1ls4KGg1FCpr5beYHnnfeOUOLhHMKaQRj8syPF4zbEWLBOoUGQihkDEZkFvfvk/2mVvOEZBcSfgBtBTGBMA0pZcZN7YmYO0Gi4/5zh2zHgfOLHRdvrS7f90JcVQHgCi9WDCnJBcReOnECpEJymd6+BFaiLro5J0pR9fmJmd02st0F7r7V8lu//Bbrh2s+/8UT7t9ZoFUkC03KhdWw5e31lrM+8ELrWM6WvPjcHd7+3hmfei5wPFfoFgRrUJr/9L96mbDaEJ/8BiH9EN0X/xYl/zpCnTE+/Bov3DpD/ew9Dv7qJyBuKIB0ulYBKAitQLSIdsZs/mWEmPNTn/0Sr37qlN9+9M/4zX/+Gg9+eUXaJr7zW48QRtO0F3xv9oRf/ae/yic+e4//7Gf+O5qj9vqEcTWL7wNMTABca1lpmhPQYT+9U+r/euOnEJNvwPXzTBSW/Awd7F2eAoBS8jIzfnX81EciJknRa8FITrUh+CpT/sEfex75VRC0x/J7szZ4dt72oHTfBlxKIZXabCuu7QdXwPN6j8SeYnQZ6N3IdO/332+fKnrTNVxWdD7gYw+8rwtG7b93SioymZQTKZeaSBESpRRKySkYEIQQ6nFK1mNyJuWMnIKINLkJV1rY1VOopKRMtOf9Pbip+FSrd2lPWbr+wf8PxvsKDoaLLdJHlscLlFScPXyKFp716gKPQTYNbqZZDx7le7IcsSLXRUYLxNJUDddWUVRh3s2oRr2BrnOMu8StA8fZvUIUhfV55uf/3sj//gsjP/Uzii98VJKc4imwcYovfdrwmZlktU4sPWRXWM0zw5mo1YUMQmX0LJH/KPLa3838Yi/4Lz/3jzj+sGXzzm+waxsWf33BfTUS3jmF4zkRQU6F8E4irArqRyyboJgdv8Q//gff4iOfe4GPvvoqLzX/Pv/tZ/4T/ou//X/x+tu/wu/+wVMenXo2p56nX9vx5LuJ17YZHkc284H27pxXXl6wsHPSxdvMpcOlHUo5itREaxl9YumgDOdYAbpdoFyD1Ibt+VNSKSyXc6yybLcDmzGC7ljqRCqGTR8Y/Y7GFaRxJCU5Upat10iR0Lpq5V88Oec0C0pINI3DOoe2BiEl53mgsYXD42P6MDKEkVwqVznuRo4ObhHHDTFLUh/YbDb49Ybt0wvMsiFLCShkkXgfGHePsKpwdNiSc0aqhBXwdDviNiCO5simUHIkb9Z40/L4fEPnBHNjsQcaDiRKS8bkKccdMvbMpaYfBrbjAEIitWWx6PBjRmiJExpEg9OOi+1AaxXbTY/IkUYLrHZIH7i7mLMNlWuepUQbx8nJgn6XCb0nZk3jLE1rUCqyevgQZwVxjLTtvPYDjAG9G7CNpjGGxhyDyBgtmbeuNr8OQFJoXYPlXKBtHKdDpu8ThzNDoeDHkeB7jDEsRKEsDM3xLVSjkMJT0sBmsyUPO3Yx4Q6WiHaOkA0dkTBucNrSWls56bmwjYLo18wah2k12rUUCSEPQK5Oz0qCqP0hSkmUtmitQSp83NG6DkGuzYmiodMNIIlF40xVvCoUQohYsaOZH+DHM2LygCUGD2hK0UhVyFKgtMZqgxAeQUaaDmcsJUnCGMgl0jRLjBQgM65tKbrSs6TUKBJCCcrewbtpELpy10sC51pKqbSmlAoyJpQVLI5bhNaUWJvW+20glID0CdMq0jjJbSqByopxu6XEyG7oST4hpUU7R9qccvzy88i2ISSICRKaVFq2a0/bJmKp2tbD6AmxILUkbEcCGSM07axDaxg2W0qRCK25fe8AVDUVisFThgh+xBiBazoyofJyE5wPG04+/AKiRFIS+BxIJdaG5Zzx24DqJvWsXLPjUlmktUTfc3rak0qs5pBcrc4x5MsFGq5A6bOKj9dL7bVB8xpYuYEb90ECeF84v4i0jeLROyMnP7zg9UeB7/7yW3Sd4Is/0vHh245BODZITLvgwwvNLWMYxhEXEvPGE1UiJjUhtEqJkm5H/J1z3vh6x+lyx+cPf5/msOBX/4g4m7P4Ky9jRE/ZPaC44xqwpEh+uoHGUY5bQm7R7tP88W//Jh969S8zW3yWF5sf4/mXfoqffv6rnP613+Lb339CHzzDWWL3GLZnhrdGySdmn+bJ6UMWzSGL2SHvOyC4nKZJq3+aUykERV6p7kyTvp/ea+efstTPYkVxZXT1XkD1va/h+r9XPO3rXO79OZ7lvn+gxz6oFTc3XKrsyGuErkuK1dUBV1/19yZ+7eVWnw3ALqksz1KF9p/tfR9unP/avfiAz7uY+jhqu8AU8E4Z/TwFRVppCgUl1fUjSSnfrHpRqwb52e/3tE+59v/7oaUikaeqgJiqDFfBwJ5SVx+HD/Zc/3nH+woOZq7DaUtO9WXUNA2lZE6O5qzHSJaJxkqUUGxOB7bDFlLNftm5puk0fhgwwPGBRTtNSFW9yEnJOAr6kLmz1Ny9rTENBDJfe93zO9/KPHoamb9cuPeC5sMnmlutYhRzNsMZr387oGxmfl9hbhe+8isjn/9phV5Uo6r5v6P47McEt34j8U/+TuDf/V+XNK+8Qto8JG/fQvpEGmD77TM2JSMfZYwB3wi+/+uB7i589eQdPvmlhkdPLvg/f/GX2LTf4Mtf+PdYzH+Il08OePHHT4EeUQbScEHyb/PaO2+x+sYZj4KkOc4c2ZGTZSaJBYez24RcGxpzkYzRILXl8cXb2EOLNm01XUJgMeyCrA3SyjEKjxKJIyeYHzSMu8AQIOSElzVi1mOPMS1vrU4JGayaIbIkxcB8PqPf9ShgGAcoAZENKIsfRpqZJYtAobr0lnHEIGgOGnbjBkrGGY2VEpctY2+w62oWlYrEGse807iuwQ8DfgzsxoQtI2XIxCGipaVpJd41nF30lGGg0RmhR8YRNiXSHsynplRVswgi8/jpKWK2hEZULvU4kGLEK8nxnTtQEsoZnJCYIeKHSHewxKREqyJOCBZWs1jOakbINvhtba7NJeB3PSkJSpYYIaoLryyEkiAWirRkMdB0GqV15ccrxcwZfBIoIQg+VpWeIumB7CFqR0mQxpEsFMI2KKmYtYLRr+n7ST5WGxZNy/JwRrugOgOomsLyITNuh5rS1o5oFFoIZClImWm0oTMHDCGSZXXgVSFBrrKnwljCOECKVEJlputqhcMYTcoQ0wgZrGgRCmIZESJRcl/dLolIBdoYgr+gtZrCyBg8KWWULIQQcE2LVAJuCg9PAAAgAElEQVSpLRSHEoWct+SsaLs5fgyUUoMkLSRaWoRpyBlyiOQs0GaBmy1hHCmK6jItFFpblDbE3kNI5MGDqK7J0miUtmThwNQGbyl6ZL8jjwPZe9puSZEFP8Yq7ekk7XLGeLpCag1FIm2LkJC2A2HoSUNAyioJKo3AzSxd6lifXmAORHVpBkQKiOLZpcBqFetCpC1m3qJTwq82HN9a0m9HtBRoAaIkpI7EnAm+IJy6dFCujduFxawFAcNqxTAMZAnaGQ5aV4UIJtpSoWKJMCRUhnE70IiGpCFRexlKKSSpECpVp+0oMEJxtGwu3/c31kBxM0F8neawz27ut5fCpf52rRxMe5WJlpTytPjXZsAn74x8Iwt+5EvHvPyJJU+3PX/4hme1Sdg7hTvLlsPG0qhq9jjG7/HowQo3U7S3W0SIPHr9CXc+0iKbWrlqf3LBh19JnHz7KW/8Yscn/uMPoe/8KLn/F8i0hhyrMeSTx3hAngVUJxm2hf5iQM3honudlz5xh4eP3qacfxs3l7TdDGde5ng254sfXSOEp+SBHDekdM66B//4Tbr2FaToydkhECjVXk3kVQ3gvRfawmWfwfVxxU4RoGowcKk8dD2pXa6OuAKi7/27LrPf77qGcq0CdK2p9tqF3DDOeiZI+IEY5fIvvxzv+hsn4Cqe2QTv9k24BKXXKXhw1cgsbgZ3N03x9h9MPgLXg0PxJ/lKfHCGnAQhUsmVArQPoqbmYmMMWutL80CjDaP3VTFqmiNrzNRUXF9CslRz3JILUklijADvAvjPii5cBQX7asbUB/HMcfv7816eBT9I430FB+2sw1lHDImSFK5pOF1vkcUhMygNbWcZz7YkBAdHLbGftNitopQ0cYQFzjVsdyN9CCijME7jtWEhA1aC6wR6LvA681MvLtmGLc2h4mgJt+dwaAv9znPx9IJxnehd4daR5XghGHcDcRR84xcin/yPLGaukYtC9wl46ail+0sz5DIw9N9h+1sr8uOR/EnB8BCajxn4yoi7JeFQoBy8sKzF2vBHW7afsQjnePGWpZQLXv/1v8/pfMbnXj6kbQJF7DAqc9jNccsZn+meZ1zA6aMeXyStsxzNDyhqiSiZYbfCugOcXVKyZ7N6jFa1aXHwO4Q0WOMIY8+43dK01dG4zGYoqUixYJSlGM2TtWfMGSsLBkGJAvD0vcC42iypkCSZETkyIuhcQ/I9IWVkLBA9WmT67UjbtJUmpAVRSdrGYlqLawS5REoeKSnTaE2UmfmtBv8kUYpF6IZiDFZb3KLl4uwx2+2IUB1GSRABoy1NY/GiYIQn5YEyxuqfoBXrPiGayqUWyqCVQZXAsM5YIrFfIQ00jWXoE2HYkoYdYayeE1BIvWcceqw+ZHmwZKSg/EhjDG03I1nB00cXjF6QSyBmT4iRmTWE7Y4QMwEBsZCypOsUMmX8LiM7yxDBaIESsNuNoGBzcUEIBSS4xqJpGIdMsgKDBi+qa6/fMfYS3Ti0bhAoGtfWsmfOdLpgpSEQGeIAYs/9z6yebDm63bHegMfTYJlJg5KVj9k0LbGUKmMqCzpXUNtawxg8BbBaY4xDa0EREqkcSXgoYjINkgipUWUEZSgEIJKJ5BQYpjKwUUyN1AXJSBi3GD0jxx1CaaxqkLJBCYkYa3NtTH56iWdyjlUlq3hKjpSkgVoaRlRn37BZIZRDmYwokQKoViGRICLC6CpSoDQIhVAWJSw5JoQuKKshN5QiMI1GGQNWIYxCSkhjAB9J256iq85+Vg1CaKS2tMeHDP0O4kBMuQICpXDtjO15z7C+QOqa7Y1DT9jtSCiCUrRKElIkTaBviBnd75gdzEh9VeEBkNLQWJCukKQkx0JOCZFBm4ZhDJi2RSiDc5EkMkWA0Yrt2RppNNZCVcjRaJVIqQcj0UZSRIEiEEZjde1V2O48IQac0bRW4W8sdDedN7lOfeA6nYhLHnvJEx2AK1iTU7lBf6iBhcCHmu0XArT0fP0PVwyD4COfOOH0wRmHn76PzImlsrQyE/yGsV+RfCA6wWF3iJQDxa+Ja3jyu+fc/vJzCNEgu0jzgkMdHtB+4rAqePmv4H/vDdQiIxeKNBTUyTHiOw/Qt1qKE9WjAlmrmG8+pn/5oxg7w5hz4vorPHprxeDmvHTyHEJuKOwwylafFtHSNhAMlPI2unwYwQlCCFJaI+XifSUdb7rOTlnMCVTuQfp+5MkFeK98k/O1Bk2u49CpPXpPaeFqnz8py32dvrLvI9nf2cJVFnz64Qcmo1qg9gE9Qx+Cq/m8ZGU9g92vVwXS/l7sCXbXqgJKSG7cSLh8tjLXA8NpxkX1bJjisGvP0kT3end49wEbk9oVk1IQE91q+vuUVFhjKaWgVP2+p1z76Ko6EZd9BSmly2OVUqDqc7JXmboKqp+per4rwL16i+3vTQ1YyqW0aUF88Kf+zxjvKzhQ2mJdQ4mBi03C7iKidex2AyEnGqFQRSJipGskhwvDYBRIkKZmPW1jmM0kjbGMMiCyoGTBbNGyTAK53SFVomklygkykVsHgv6pYJeg7Qun68zDs8gbb3tOVOH2keRgLmlnojrMnhae9PDgm4Xya4mXPg+LOyBdg/vQ8zx//5x3/rjn6dd2lD+ONBK4W7+U5t4tlh89R6qRUAq6CBb3DWMwvMBP8KZ7m5kZ6WJkt97giucIz3C+xeOR1mM15NMNt583zFzH/LZjpqEfWpIxWN2SKfTDgCgCKU0tI6fq3jtfdnhPlaIUkIvCaIlt52Q1w5gOY2YYE+h7XwFJGpFKIUomp0gaB6ywhCHQ2hlN62htrUJEKfFjRLgOYwtisusqQCoZbSzKOuwELEtMGKk46AzBWrQMSCnoB0+KmbbtkPMOWWAnBOsdxCxBa5quxUiD95uqc64tTgtmC3Btg08SmQNHjSREifeQtWTWOsbsEUISfKzNmRhmjWXuNMZowrhF6ionmbRAWMNu8Oy2ET0GShF47ykCdEnVY8EZpCwkYAhxAoeacewnt+7aIG8bybxTXPQSY6YMrsgkH8lJ0DQdxuqpHAqxQI6JRo5olYijR0mDVQKpFes+oJRAao0UlpJHvPdsY+Kwyxit60vQ2CpVGkaiD4wxEEtgkCNojdYKrRRS7a87IFRAKc8oFH0sGFPQpiGOAV8iUiqkMViraZzEWgeIei6t6j0WclpkRHV0lvVFmKiKYlK1yDIAHjE58+biUTIhtMEIU3mZMpBiRAhPKlWaVev6u6TQKAFSwThOmckbxiyCkgIpliqHWhRGC0rwJB+RxhJ9RupqGEau589kpNWIybIeFEIYhNZ1wU6BEqfmPWsRut6HxFW5mFwo44DWhTBsUa5BRHnZJKedoYySIg0pe0YfGWKttmmbyaVn3G3RqhrZDXHLEDXCNjUzqNyUOc/1d8eA1ZLNMDCsd0ijaGcaKSVG+KpqFQLVQStTUqhKQ8pUkzNRXamLVCjrCNuhBjiTp4WQNTngUwIta7O+KOjJh6BWTUZiCWAM2hm0qr0Al2O/IO4RyTMZ4/1O19fTcj29vA8o9iebAolSBKUIcoFxmIx+ZCR9f4f3QNIIE9gFwYzC6qznyTiw3W1ZmsJi5pg1ZnLBTvhdYjMKeOgRXz/n8EMztBMId4hpXkAfnrN9/Bbb7z5APdlgpEM6UwPI2cu4WwHhdsQMxlpk15HiDFU+x7noaRtByTtSllgZECIR+ofkvEaaSEZTlKXtDEZazEyQxicoVT00KhiJPMPV+RPHdWB/yYGe+guu3weuAZ2adN4Hb9fPts9uXruHN0D/MyKrU2Lisia0B0z7DLmc6EvX6BZ/XsfVv9DjelT7HuNS0ak8s+PNR+Laz1dNx1da/fLyfbc/9AYTbx9oc9PM7Hrg8a7L/qAHZoXLdUBIgURArjSuPejff1e11kghiZPE6N57wJgqxtD3/Q350X2zc31W8mVQd+WfUK6VROtz9Czlbl8NuhzPxhA/wON9BQcpF4TUaCvZnXsuViue/+gBFzkSckJ46NcDhsxsbtBFUDQIVRAyk1AsZprOwhgLSlR5wVAErms5NpItGa0zrgWhCyHC9mLgwXcCF7HQ6QzrxMVbibPzzL/9lwxHL0pkK1jFxHqTKRvYFok/yPzj/zvw2aeJFz8uWBxZlvc1b37jKRd/NLJ6rbBYCPQ9QZKC5V2JXM5Y/lhi/E4mvuMhSuKswzY/Qn7py5Q3fo1heMCu37LZKha3jvjQ8QlPz59AGLAZpM7sNo9Jx8eIWYvVAnO8xI0L+rCkFEuKPTFkhJpTUPhQwaJtZkiZGJ5GSomEDEkInOtoD1p2o0aqZjKFS4TUk4YtPgS6zmKixI+B0G8xOhBzYX7QVdnISZtVlExMCeE0RiWkMZATqWRCzjjXMl/MsBKCECAUSupq3oSiDGEq4QEIGqtZnhzTD4IjaYl5x24ApMQ0BpkE89m8lqdjpuRCN2vp5o43H+9wDMxlITjFThpEN2fezLgYnzLmStcIYyDmhHMzjg8dorHsxAiyPtxaS8zskN0m4IeBIBK5QCyZtutwujD0O5S1YC0+BMKux8rqKDuMZzSNqTK5GaRRNPOGDdB1rur6+5HhYgXKspi1SFWrBplCKhKlClomnDOIGGlbh1u0JKWJudAgq2eyrNr+3kfGmOlzj1h0VaIyF5QCZGYYE5thRIhMLJkiJM2soT2ZszzoaF3LWARWSmROxHFgE0baBI2G4EdiqH4BzbzDNQ4pAvNZRyrTC1AAopp47cujSmm0FEhR8MljjMKaDiU0pezIKVXKkgCtVJX+lKVyWYTGZEua+guoAqgoUb08pJ3M10KkZIEQNchBarRsCT6TfW1G3vc/iKgQaEqSpFgbzqRUlCSQQlGyQRg3gXymqpFEKo0QgrhL5FCqnK9RCGOQAoL3pCGSQwEkImfMXDP2vmLbnBElIESGib4WUaRcvQW89yilcbMWEQspxlrJkIViYAyBVhi2PtPYpgKEnHC2mq6V4Ok3GzabAWktWS6JQaDkwBBSNTgTCokg+QEtLUZKilGAoqRaOXDO0Y+ZONaqj5rK4KlkUswkCyEljK1VklwiIWfCODD6EWF0VVMi14rXs2MCMoJaedi7oV4HlkKKPV7kEvRMwFEq8a7tpYAoghDrAi1lJuVISltCiNy+b/ne62fcWmbeWg1s17U35tMvz2iPDBjJzu/IQ22+HzGk1vIH/88TPt73zJeW5uAW0nnWb71GOD9l+H6hO1HImUJO0sKiOcB+5CXi49cQ20DBku1dZPdD5MMvU05/kzGfEWIPYkG7vM2JO2Kz/S4yDnWu45YoBmhug8woKZDOozQ1YBUSpWY35uBPG3vOc+VSP8tEuTm3+7HHN0rJS3WjK1BUx7NVhfc6V8W9YgJr0/UDpeRL8zOYAK0UyMxEa/lT+hc+UKNWQPeUqv22qx/qM3D9Nr4bl1e1o5sOweWyslCDNXEZfD/TQs4+vi77qGGq2FzNb7m8qus/f5DHs8FqzfoLEBKtFUoppJh61C4rCOryGK01bdvSdV2tNIcwKTpdqXallK95gtQhmGi7l99/QSZf0vouXafLPrEx9Z0Iee2h/MGODt5XcDBudgybHj1z3Dq2vLPq6TcaZwU5azbrkc3ZmhdfWNLNLN///hlSJpwuCFkIWaAOGjabDU/Hnkyu5mhO4bMgC8vR3QWGiEq+glltCNtMs1M8+NbI984y223BSMUXfsjx6k9aPnZH8fBtz+uveYaQ+dHPao4OHK+dDPyP/9zzu38382EHH315xef/+u/z9/524W/8FcXdv2pRH2qRCPQjjwmFcP4O9mSGuWMZFWxGxS6e8KHZf8PvvP7fM3z9Nb56OpJbzcduK955cEpMhU0ufGjpaJwEGVm2FbjI3KP0DOluI9s7CH/IuhcUDLqBcYgMfVUd8rmWtGMSZJUrpaVU6a4iHD5XK+2UCmM/MPpQO+jjiNSSmQNtZ2w3A6vTFf3qjO7oiDCs2W53jENCZUFrDaKz+O1jxHxBPwyklCdVC2g6ixCFsb8gUq+1GMujR0+hnTNsPDpFukXLfOmwInDvZMmDJ5myeYooEi0USihGvyYHzaw4Hp1e1D4HmegPNbfKIbnf4Ic1Z7E6DttuhjuY43A8eGeNaT3GuSl7L9Gdo+0M1kq06NiMIz7GWto/OCb6J4SmQytLpuBzRLgG6yxhyAilQCoSghQ8OUguNhfs+i1ZV/nMHBOHNKxSqIGqBkompqr9r2ezKpkpwWpFEpIsarUhjAO78Snz2YKjwwXKWla7SCMLtnhsVoxhwA89JWbuLg8IfqQfM64tlZqjNFl3aKkwsaCsQA4jKUV0DDQ507SK5XyGOTqcXlwjJXtyzGx8QjYSRGLe1aBljJEcMr0PNJ3DaIUQdR7GnKvMpogUUq1mCY1RkpR7hGxoTAX4MdYqiVELrDHYiQ8f04qcB4T0mKa6NMsSKSFSUiRRJtqNhhKQJSGkgyk4MG6BkQtyWJHSiBUaowxSGKRQKGnxUeFMg2k6BIrUh2rCUKZGWiWpPjeiVtEuqVF79YpCyRLdGEqKyFIN6oSxyFYhZCYMMDtq8UlQECgyMkdi31N2a4biQEuaplYpipW41kLQaAV+GClh5OT4CNsFZl3Hw4crQr+FBEqC7aqk53qz5cIHipIkH3n6xiOs9HRN9W4oZFxjaY1FSke/3uHaAaNBCkseqi9CyYEUIkOSdEojShVUKEUAiVQ0GYnWDlE8YewJEayRPH39lMyKdLzg6HiObK96DvZ0ESl416K6z6TVTJ9EymoEWD+7kjAVE8q5fnSlBWcKUw8VlXqUQqkBH5LvfH3DR+6f86gRjL5wsrS88vGO5z5+yPHMsbpY8/ThhoMZ3Ll/gJYtp3PLP/jVLe98Z83dueL+p/6I5vY3+OoveT734wuWf/kIli1iLMi+ILMiDd9FdofoxRFBbRjUDPgorfoPePP8F0kPH/DtIXO8KMxNJG0uOJztGHLmdtdRZAXkRjukPEKUtxFqgdT3EMLW5+myovV+x5Wiyj7Lf31O9+OqWXI6+57ec3kPrlEmYAKsNyko+0bOqbRwKRdZ86zi8iMp1WUWl1JFNJ+9DrgCeR/csW86vfy//ebLf4u4vuEa/WX6+bpJ3bPqRPKyP+BKKhP2hYhyrY+n3lNxjdq3/+9l0LdPdn/QqwbcLIjVQm6uHkvO0TSOrm3p2hld1xFT5PTsDK00Wmu6ruPk+ITFcoH3ns1mU5WKSFBqpSGEgFJqkje9uscg2Lc3X85jpvbWTdekdaXz7tWP9qO+u8p7BIc/WOP90YrySBx3ZK04Oj5iXHT0Y2K+cMSSCEJiukMiHZvVlvmsZZzK4UokLs42fP/Nc8zC0h4syD6w2/TshsjtE8ntWcOigdXTc8ZRUqTFGRCt5WOf1LzwyTnfW0Xu3Jvz4z98n5cWt8k8xtEj/Xd4aQg0jebF5ztcd59bP/aU/+V/OsONgd1bmUdfyzz6Ffiv/2eHekFgZh1q9p+T5V3G5ue5+B++Bj/kWf/oyO1Xn2f56VuUTcNb31rzt37lZ3n0Nc1PfOkWfmkIsbDaSF6439F/9zF3P/1Jzk8f0s4FZtHx9kbzSnqbk0/+BFK+AOI5RJIQzxBsKWLAlhGlNRGNzxKjI9JD7zNq4sulJBA5UPwOyYyT41s07YzT1TljWuMQnPWCk4MDsJ6UE3ZpWbpjLk53PL244M4L9+l2GUhkBVkLxsdrZgcLsigIpUnRk0rBOkeWhe2w4/z0jEZLZl3HoWsJx3NK0qyGp4TBYxs4MC2LRvH00Zusn/YMg4TsMBJMiaRBcHhwi7EHpbbcOZgxawToyOmTh0TvOVo2rB5e4LOgFY7WF/rNisW8RTeGw1sn2NmCnDWutSwWjtN3HrPzI0NIFKFomw636zFjpnPV/C3GhEoCnQTnT9eUEaQLhFyVcRbtjM1mRS4CbRUx9PgsiFlho6hNnrHgt08JPuOTAe2QKeInucvdLqO0RjtLGDUKQVMkbbdgLIK825HGEU2i3/VgW3LKuNbRKoFRmda2rHvPwcES1Wi2YSTlyEsfeRnz8C2enFUVlTwqtn3Cv7UiOU3WAy8/f8jDp2ekDIv5ApU3HCw1JfRk3ZE1GF04pmAEqIM7WGOxxqG0JpFJfcSkC4Ks1QupLFJZhBS0rjZIG7Uj5x6tCkZXSV1tLDCQyhYjK88/JU8pCavm+LABkWrJvOwq/18ticMK6zpAgNRI3aHMkpwlhfoO0VJN7s0W3yeE1OAjeUgknadG6wCyQVAYz3agG+ysoZlbdGsrqNqNNeNpNbrRCCWIfQQFSIWdtSgFQtZeiLSz+N2AWLRo1yJjJJ6v2Q0DQjvCxYhxCiUF1jS4pmHx3DFnT56iomd2NCewYLsZcSJgbz2PePS1SsOYmuRkKvQXK8as0LMDNuueYRwQRbLxAtE4mpyYdbXnoR8yKoHBcPboEfPjZaVRaYNMEcbEXCbmB4YxBOL/x92bB9uWnuV9v29cw57OOffcqW/P3eoBJLXmCYSkJEJmkI0hDiEDhEqIMYNNgpOYqlSqkvyTqtixKaccKCupJMRxIMSGGEGZopgsIdHdqFtDN+qWerq373zGPa21vjF/rL3P0JJBDHJF+qruPefsvdfae3/fGp73fZ/3eZLsXbHLgoqK1kmilixiiyIj9ZABLVdu7nHXpW12XtmhmzXMqxJ3Cpz03FqxarhPKbKqsZygGPVGdlmtANHRvbOHib0u+Gp/ckUyWjlgp1UWLufeGDFlyLmnpJ07X1OOtnj+pQP+4l96K+9866NM6jGwj6JB+E9wMVqGtmI0PIdSdzCsbvGf/5ShSA2LW5HmakbsS/61Hx8gJhqp70QVf52ULhNe+g3cE0+SLx3g7ttnePHNlOOzxIXg6t4en77xt9i7WvC2R+8kC0kbBbXSDCuB27/M+I7HmB5+gXo0xsstOpdQ6XmKzTeAOAtig0SJzB1C2D/h7fi4yTHTK6ms53oN4nsg01caVxJRq79f2xzZA3x5CsH0kqRHvPWc+x6jVbNnv1ZyFUj0QO2IEpZOgKFVMLLGyl8PlYNTbJET/K7XhMasYHs/lXm9ZT697TpAXv29pgUdVV9SJqt1xryf8xjil4RXJ6dVsHb6Pf6s//8Dp3/yjLpWCm16GLqucCkhGY9GfMt7v4kPfeADvPWxN9O4yP/0kX/I81/8AgeHU0ajId/6wQ/ywz/8w3TO8Z0f/k6CD6eqZjn1srJG9oFxzivp75g46o46sdbrORarAzv1ZiuAODon8urxNRX363l8ZQ7JgxGxHLJsAtOXbjDeHLJRaKrNAXIwg70DZgct1693bI0M5MBwXJBILNsMVUlVVcyDp/ASESOFsWgLXaMhBLQqKSabDIoKUw5QWrBY7uFazz3bG7xlfInx4BuZFA8jRcbKgkqWPH35J3nlxucYV3D4e5n03HOc+74tti9uUcVEddax+ainKjNyaLjuNxjUP8DEfhMh3GKnPsvZH6vxv7hkQ1qUfgfKfDcv35T8jf/hB1m82PET/+WIzz3bsXVhzKVJRbWEy6843nrvCOf3WU49o8GIi+OKC+WSjeEIod4M+iEykpR2EHLBoBJce/kVkIpxPYLYgg/YbPG6hqajUJk0KBnbMWWxQXCJVAx59dpVzp+9k9r2aj27t15F54ASGec0i8UCJRRGGSolKQvLwe09srSYusQUFdbWXDpXExPY2hAydE1H23S4lJnuL9ncGqH1oOeWoxHSYr1jr5kxdRE7sGAlbbekazxu2jDdP8RTYlWBLkq0LlHKIIHJsGC+2yFVRlmLNpJC1aR6A5MjKiZcTIjC9hnsYcmF0UXKjU0Ko2nnLTu3Dli2hjaWXNvZQRcl0Qt82+BmC/aV5czWCD9tmM2W+JBRxhDTHGSiixAOZ9jcUVtNqxU39x1uvk9ZGVIQdD6ilWZjZKirCdevXKHtPLYomdQWvXJAvn5dsOwaBnVJloLGZWoF0S/RkzNMm4juQk8RokSazGy6ZNl02JQxWkNpiUpTWMVmPcYvZ2hhKZWg8Y5Xnn+OzfOXGIzBFhblI8vDKXu7e2xvb+PmC/Zn+3TdnKbpWMwFdWmwxYC61mgyUva9I0YnBsOK0cY2ne+IKaKyxGrFpCgQegzaknPASEFpLKW1xGQxtKTMis5WomWFEBopMhmFzu6odK6AlDqkcJD6SpRgZdLWLSB6inpCpje7i2FJcA0uTCnKMVIYRJwjoiTLEmkU9WQbkkJVETsYYqoSgSTi8cvI7c/eoro4YXRfQblRo/Q6A5QRIZOWEWTvrZL8OmEkMUVBaB1h0SGyByuJCPYv32Bwx1lC5fvG8ZBRgxHCJurlLex4ghcCPz+kjY6NuGRgFHbrAt1iweHelGvTRDML7Dz1+wxLw3LngNGw5vzFs/gkqDYGFCnR5UwpJK4wtD4RYoVvFzRZsrk9QkpF6DyF6LAusLvQzOYdQjZYA6UxuGYOUhIjKCVIK3lWT0RXFRtlT2M63DskJE85rLBVydkLWxR1yWA4YjFraJuO5eH86HrfmxAdU0ZOqXawMgTKq1K9kEhxgo3xGjp2T6nqA4R1hlSbvuIAkLOidznWdJ3i2tXAr/yTa/zt//EnefD+t1AVm33mFYUWihduP0+z6GmMk+khYnaF+vX3MBg/hEqOYa0Z3duhVANmyDJdwtjvwsi76GJDOH839j3Xyc9ex6gJyHej1Dt44sXf5aMf+13Y7/i+732Al68Kzp2fMECRO8+0dVzcHBLDTaIfYfUG1kREXlKYIYh7QZ5HqXOA4U8DHPrelBNZZ6WQUvXStWvO+yqjLHI8VS1YxQxHVJRjLvuXNimfMkPj+LHjz7EOUI5pLGvjraN9vVb3/Ws/PgA45vqv5rKPj06C3i+3rsdUoT9+rEBqPA48jiWD+wrDUbMtxwEBQEzxmNa3ajL5WoenUhxXSeIS+ToAACAASURBVJTpA9PBYMCP/rW/xr/xgQ9wbvss0SfCwZwrL1zhr/9HP86jb/5GhuMhxvT0UVJiPpsfzWOKvTfCOig7UiE60cy9nvwY41FgvZ7bvpKWTvSIHA8BSKX5ujng/4jxFQUHSIUXmi5nBiVsbNbsHhxiOkWhSwaDCa7JeKFYdB4lFHQKUxUUQ4vsWlCa1CUO9lpK04OeopT4DMVgBGZATp6QNKQKIUeY6iyoJYPBGYbV/ZT6fgJb3I4L7pZbZEre+y0/hXj5nzC9+jGG16f801+LvOt1gck73o1uX2b3qSvMrgZe929NuB4fBfsW3PQl5nJKLB7Ej3+QqG5SfdsVFr8fERcDeQIbdz7Ad/zwf8rP/ch/x8/97JTv/96z7HWGVz8X2HBzigckL12PlLHj3vvvwMvI1Wu7PLDpUWlM8JHQvQhSE1OHjx0pJsb1pL9phogP4JwixIwue1nHpvV0PoJfELxEF2OW09sMx2OuvPoilbZYoyFlnItce/UGQgnGowFKCmKImGrAVjUiNgsWXZ+xNBlKpSi1wJSG2XzGwdwRQs/XjlEgpSZjezlULUk50bZLUgoYnbnz3gohwMhMcI7FrEWiycNtUptpO/qmXgRq0bJhambtPtVAQArMmkP84YLaaKrRBZYJvDKEFEgh4ZqGsigQlBzsLSmMQOSEtIKD5YJpu8DYgtL2GdEsoOk6BiSUhmKgKTuJEhlhFVlCaRLSJ8RgQJEKrMhkLSnLGiESplAQAqORYjSqmQxLuiCI58+xWHYQXE+TSZo2QtstIUsKaVBKkGNi3iaGugAf+gZvaXo+IwmFIjQNTRcodY22Gi0kVihiBqECzfQQlwbYUhM6R9t57rxLAwP8MtI2LSFDfWYTbSxNarg9myFjREhBzBKXJLPUz92okAjZczOLqkaXGxwe7pDJFIXFS/rSqwBNQuCJqSOhcSEBHXVhIQWkUKQUEEKSMGihESKiRCYnT8oNWcYV+mv7C6ytiWJKTgGkpJCa4B3SSIQaoaLsqV2dI4uETC2L3euY4TYyFYgYkMFjVW+eVW1uoqu67yPYWTD72GVuPvkKN6TijT/wduyo6MFmgpwiYdESFwt6hQBBDKAqS2+7K8F3hNbhFy0iRUwtcNMpRW2IIRDdWj5X03UtfjZnb2fKREqwluAEqlC8/OxVzly8QDg4ZDFvmE8dYRppdhZs2hJDIFUKWWiCkGglwJZo36FEBlvQdoE8XWB1pBGCemgxSmMLjawKVK6IjabIM7QCbfqmfGsNthyyaBZoa5AyEYj4LEEblAZwzOctrglI3StQeTTogv15Q551vSKSVv11YD1OcMxT6g3O1o19R/17QiLUCuiwpk0cU2DWTJejACH3akZSyV7TXPYUqN7EL5KSIKWeHmat4slPXmNz9BjnLxW8eu06v/p//xr/yd/4MR556Cd5dvefY5eX8Vdu8uIzLfdtBaq73kd0T3P43GXMQDB48A6a/AaEeoi2fQVhR3hxF6l8O/nMHupRcM96xJlEVpJ7738nb1k6fvsXf55f/mc3+b4P38sy3IfqIKfbePkqe7NIpTLb2xdwUSLSPrXpEJxB6YdAlIA51XT6Jx3rxm4hJMH740bhk/N/IlBg9eNYNSqfwi3rxmboQb9AcrLh9bT6zemg4bhSkFcOsz04PiVlKk6+8Gt3CHnSfXo1N+v/VxyrU4+vQKeU6pgWc6L6dlIJ5+g9xNrHIn5JIH28hifAPxz1LCBWpl3HO+NfTeY6k3MgpmuQ5yj1AEIUxx/6zzjSms+/+s5FWfK/fuQj3H3PvYxGQ/J+h3/5gO7FPf7iW76DN77ljYy2xijdA/TrV6/xX/zU32I2myGkxBrbG3QGj/f+yNwuxdPBwvH17TU+Ev1XRq38Dl4rS3uS3vX1UDH7o8ZXFBzszztcSIyGFuGX+OAQuWNxEDBliYqJQvUnUIwRXeqeDxxBCk1ZlGQh0XQgJdr0Nz9TKIpRjalKFl2gNAUKi4sFOZaMqk1MrbB2SKHuQctzJDGglAotqp6LP7qL83e9n4GWiPZjKHtAcagQbPPZJ77I/KWOsxcuoIZ/mVG+hBITcvtZusOXoEiML3yQkL+VMPwlbox22UiesTvEiY7hxQd4/XdfYvrCDp95pmGzNJS6Jm5toDYhH+5RbZ3jIA5w8xm1KLCXHkQNXkdIAh/mSDUgC4UUBUJmyqLuI9UUCDEgFGhlaJ1j4RNKarRSZKH6snB2FEIiyRilEARyTH2DYl3RLhJCJlIIyCwATRsiWRkECS36rKLKvcOg0gOKqmLZLpA590RgBNZYhDQE59BCkGPEdz0X3fslMmW2zo7JQtAtHQvncanvi4jC0EbHfNEiJFSVokiCw3lLNS4IsaSQGhEEc9/SBdBJk3JGVhVCNYS2ZTnr0BTE6MGWYCzKKioliBpCykSfiAjQEl0IVPQko0EpytqSusgiLem6hqJSDKoKFxxGaYwEnTNCGOoCctJE15K6lkpVDIq+jB+9IFEALT60+BAQzhNbR1lZQoAsNcoatM6ERYMLvdSm1QLvBGHl5Ki1ZTgakmQgZ0XIAhF7NSytNapQECuEFLjOETqHNlWvsCRrlmHK0meyMJSVYHYww6lAEgKDQiaJpM/kyQxVWYOEkH3PqtQlWSgympx7r4CEwIeAkpFCWxCiv8kpiVpbxpNArJQzVvQEKRVKWaSskBiyuIEQC8i9sywIoj9ASENmQUoBskFhkCIhxAaCBDkiBUhbI6iJXUKYAiEswtRkoQnOo5sp5fY9mLpGSkP2Ab9zwMHH/4Bsz3DnN99DuVUCmdhFCAkhIm53RgoeNZK9znJegdyciU27+n4KlEHIPmNVDkqEyMybtg/eqpIUBV27oJnPONifk7WlmvRKTyRHzJLZ/hSXAl3o3a3dot++qioK6QgioKxCGqirgsKWyC7SLFsQCiM1WhpCguGkwJoeDEQfSCtzniwkutBoJTC259uiFNpWfclc5h5whAwSjJKUhcEBSjuQirXJq8yCGDyxVzzoZWOlxAtzfME/gehzzpBOKOMcRQf9f2uudOI0N16KdTaVIxB0ssE2hLTiXkty7puaYxQoqRmONnjodW9gNNomRU1dDHnsjY8xX7Ykc4GNjXdT6wGh8qhiH90aENu89MwtjHdsbn8jynwzlotoeY7o54T5p5DlQyh7gaTfSiqWTOvrDGPAxgZrKy7e+Tre9C2PEecdL7x8yNnRAUkbkhEIO4DuEDu6QJDnSF2HtBXKaoTZRoghx1/4TzuOgf1xYJWP5vokq2edNT4KyE687Wsz2Ov2gi99D3HUgHkSMK2fW2d000rpZd2Qvn7/fkGPPtHX9OhdoE8YX3F8GvQvkK+prqwe5jWTf7zDU7Qk8drnWOVTXhOkrftM+gCd43MHTk3zuvFZfAl4/fMcfWCQWa6++5ycvkimBjFByg3Wcsyv3a4ff/y5sD7GpJRsnznDj//Yj/KNb3g9xlhyiDS3Drn+9LP8iy9+nvd/z7czGA8QSJLvMc/04IBnnnmmVylKqcejWqG0Qgi5UmZbB9arpnNWAclJjuRrguPjvpv1de14u6M/v/YP+z9yfGUNyY0nOd+bkwWHbxNu0dB1kcFGoig0hQzMZp5qaChKQ6/LTt+cq3ppwFJrpIS6LlFGkkkUtiQjaVxCGwOigGQRQVHoEcNyE2k2MPoCSm4ghKbOCpdaYo4oIRhUl/CTh1iOnyUPryCkARLPfL4jN4k73nYWyg9yhprLB3/IphoiZKQNrxLcy5TmvTTVF+ExyXL8EK6Z8eqNT/LS49d5w7d9kE//ykd59gsN73ggMT4n2ItwSRoGw4rrnaAIDRtoRpNzyOptZHsfOc1BLHoQElNvopVyT8vQhpw8QnXIlMjCEtp5r7BT1qjQ89+zSIjkMKogh97dV5KQRLLsJby85ogjnGXfTOl9wOTQOwsWPV9OioTKgSR67XUlBVYKshQg+oAtZ4iuQ6+oAjn3+5PaokNApF65yrmMTxmhJB5FFoYkVpKRZLQQKKNZupYyW3yUK219i1GWJmY6HzBKUFYFxmQgEmLAN0tyFoxGQ0xpUUaiMLQp0i0CCUWUfb47EHpwN6gIQiJXGUkpQctMaQRaaYwMFFqik+5fkxUye4ie5BzJeaLXhBDxPuE9OB/w3vXKP64jxw5hPeVw1LshVzXGKESM2ORZLAVEgRGZGDIhr6g3dYkta4ZaEUMkul4+1khBYQuyzgyGNVn05xY5UwxGtMuOpAwuJpYhgoS6rAiLZc//FgqtTW+ElhIQkDlQFIaYMykkEv2NPSJQpkYJhbUFCVYmLwpra+g/ej+XahWcksjC9HKwogdtUhikHKBkAXjIt5HcQMgByDsgl6TQInAIluTU9o2m0pJjJrkBQlfkCGSDVBVKj4GAKQWIXr0IKUkxoG1JMRwilSEnCDszuucu07zyBXjPPVx8853YykLMhIUj3G4gznuH31IjSokQfUMluUdbsXUIaxBCobRFCAVSYEeydwOPfa9EDokQeildH5bk7OkWDXZQUY8HvZlWrIjB4xK41FeyCmtQ0VNaiTYlZXREASFFbGUptMR3Cdc6jFVoY7CFpZk1TOqa6FtSjEQfiMGjRMJajdQKWxYopfvvIyRZKEw9gNzi2rBS1FBo21+DQ+ew1qCMJREROaNiIEaPiCu+eoKYUu/hsBpfIqV41FgJnLihHtMiTjAvVjfVtb+BFOLI4Tevg7QV6BHqRGMmPUCwRck73/VOHnnk9VT1mBgiw2LIY2/6Bm7cus54+wyFuQNR7OKrK1AXCFEgSLzw4pS77tWcGd2D0G+iwDB3CypZk9NL5HgT8gMI9SjB7CLuugcvz+LdLjdvNBwezHj4re/m1ovP88XnX+bMI1MWAXJMnKtKilKw5zOTxlHLAq3PI80ZlN1cI70/t3Ea369AzSrLup77df/BelVOcdRXc7zOlnL0eo5ev2KmHFd7TmTH12MdCKwVYNYUmq+3cdJj4hjafmmw158Cq0oCp/1AXks+WlcYWG/D6TmWK3nYlFZrulbZ4XiK15pGR0pfJ6hEOeev6lL0FQ4HveMPsEfOl4EthLhAzp6cJUKcPQLd//LxL/mkq4RDVVXcd9+9/Jvf8z3Yopd/jgdLlq/e4PDmddLYcOHhi8eN8YvIlcuX+djHP4ZRhkE9wAePlIoHH3iQrc0tPvX0pzg8SKuAC1hRIvvpTz0uWvkj9M++ptLD8bVr7T+3/lt8nZ4HJ8dXFBzYGMjLJQ0SER3JJA5vL/ExosuasjSUKtPNW85dGIMWuABCK7TWq9IxWFuhRIM1hgA0ncO2ARIIaYhowKCyRgQQKSPlkNKcR8sJUlS9mVfOTP0rFBI21QY3smfhE7vLiquN4EBpZn7KS9NALQvkaIPIWaKUPH+4x+s3CuqN83g3ZWf+BTbOvJ6w/Q7OPvBOOmm4fvUTPPWJX+WJn7vBf/BzP8OTZ56ie/ZlYlGwTIndK7fQWxvo+zf43Gd2edPZIWfPXGR783UE+TDBJcpiA4kmhSXRLfDdoo8RAmAHJBxJQCL0SipSUdrIYDAmukDTOjrve+AdAsQMoUHKjJQGJTXB9z4Hioi2JUopcuqdV4vcUtUVHYrgY1950L2D7bJbYvAYkRBGkqQhZwmxOyo6K2V6l9gsMcWEbrlgerig8xmfJVn0WfM2SIxUFEWJmYCVkrIsUFLiF4754ZSl7z0HSpVXFY1eU74YDCitQRQSozXaBtz+DKs1w1ISDAQlyUKziIn96YLxaAK6xodIG3st/3JQsewcwjlc2yGkZDiqKcq+mbKQmcJIRNRkl4kusphNcc28l0ezBQnFogkImckik2OHD7Gf9phYNp6BMoSY2ZjUFIOaFBOhjRS1JaiS5AOGQCATHGSfe537JBmOx5AibtERO9/TVpSh9UuqQmOMoaIgpEQuhiymhySdcMHTOQdWQVUz3oJFN6XQhuGgwGhNComumZFSxIuAEBqlenpVip6Ye5nSurRYo4g5o1LvnVAWEzKRzvfVAiENSpcI4ckohHAoJZGyQMgSIUd9MJovQ/5DBNcQbK5oJiOSNhDnKNERc0NKkYgl+kj0CmkKRDZIMUDIHvgXVY1vBNFFknekKJG2oLpwJ7IoIWZS52ife4XZJz9NQ4M6M+krFlGSM8yvH3Dj4y9SNFM23vgQ5R0DRDKIpJFaorUg+V7Foq+yZJCSLCTeB6Qt0EXHQE5wPuG7QGw7QoQcO4ZlJrg5qSsxdoTWFonGUxI7cLMWqzKT80NmN29TFxInFaVUtCHiXSDkTModi0XLctkyUIqi1NhS0u22xDTAdZ5K9YFk0wW0ShSmd0vW62bulMi5Vyyy44qcHJ1rycEhtEaURe/uPXNYbbDG4Fe+CbgGlTN4j8xATmTvILTHF/y8akheZdNOqtIck857QCPlazJu4jQton9MsIY9+QRYyin3rtO5B1tSCMqy4Fve9z6qekT0mT4hmDiY77C7e5utyYAoPS4oDrqC3U5xURq6OOelQ80ZMQG7QRIDYk7stLe4oyqR9R10OUGcM9B34AdvYrh1D57M3u7jfP7TT3P5puZ93/vv0hRXaZaeTgSm8zkqR1R9BrN1F1devcFgs8MO78WYTaS+gNKbf+ob8JcfJ+BhPgE0BV/ioHwUIOTXbJ+PwWjOp0HpGuCfpHOcHsfw9qj/4QS95UTx4Shg/FpXzkkp9gDyZCAlT4L/Y+WhdYBwaj45URZ7bdS1GusKzrpJ/KjJdbV8a1OvU0HeandHlKc1KM3rxv6vTvo650TGk/GILMjsQX4ZOECIS5ADKe9A1gh15vgLApneKFXK0fF8/BFDa80dd1zkXe96F2Vd91PpA/6l6xxeeRVZGz78/u+itCWkfl/Ta/s89VtP8NFf+mc8cv/DdMmTRSamxLd/6Nu5//77eeHFF/DOIxqBlH7Vu9MHAkqqXmktq+PAMB8HZr1K0apCoyRCqp6adOKc+do+4v/48RUFB4uDObODBVkO0Cj8Luy3iYG1zGYBZObMxhnuu3cDFEw7x3hUUVp1FBEzGHMwv4VOkelsF7/K+DJ3FFXBsLIIL/tMlky0wTGbL9DKk5hDOcLqipXyOT7OMWKPNjk2WDI4mPHE0zd54aZi57riyauB52/BGbPBzuwSD2P4+WaHb77wrZBa5v6LpMIxVuc4nP06L7oFOMM9xQY3XnQ8/fh1UkqE5S2G9z1C+M1XeeKJG9x/f8k33FPy/1xpePuD5/gr73+Y+zfvxuaCEAq6sMfB3jXuufNRuu4Q5xZ474ghI3XBMoNfLDBK0LpACIGqLpmUW3jvqKsBnfTEbHq2hhqwu/cqUhbItETIEqsNWpdUdBTOkJVF6d50zoieQ7y/O8VWGlMOEMpDTgitaBYHzDqYDBUCj5SGgGDeteTFgslowDJAu1ygpaCoKkR2ZO85SBEvDYUpKLQBJJPQg6yQImY4wOqMkRGFYBYNBzt75LLAIdCVpdocwO0DlBKIIHp5USGJqudbb49LUtDszPZwM4vD4oVkMK6YbAQqY0mqL3CLsiblkoNFR7M3pzAZawxF0Wfa2qjROSBzR2oWLDtJ00Ri17Jz9QrVoKTc2sQOB2ij0UJQJE9tBa7UtJ0miyECA35GExNG9X0Q0/19nE9oqSjGBRsjRVy0iLajlAKfI9OlIx422EFNMaxILkIWOCloYsDPO4YbNVIGpBBoLVEisOOWzPYWSLnAF7p3XNYCckSODHhwyyXe9v0h3juUqfHCcnNnn63hgNooSmMwtiD4ls4nhuUGShsK1QfsLi5J2fUBgR3Ts7XUymzG49OMlAOIAUJNkHITiSVzDe9/EclLSBpEvolI10G8Dms38a1D0CFy0zf85iU6JZIuSN0NpNokKQ2xQYQOWwww1SZCe7rDBiUKNi7dhaqGQN9g5q/tsHz6cW5/7uN89tJbeO8776M5BJYOKTJ/8MlP8o/+/s/wr599Jx+6963o+waookAWEmEEEKETqKLALxtS8v09XCk6n3DzBh0zSfceC0qAd57l7X3iYcv8sOFwtmDetYhSUJ4ZY4sNROg4vHWT6dVbDCrN9mP3sl2cxYfM7b1D9KCgVpB0Qbtc9hQjnVG5pVsGfLfAd44iduzc2megM2o4xtYSqSNdGzCy374JEiskhEjXLkjJI4cGowzd0tE0S1RlME5x6ATWe0TWDMuChcs0ywUah7ElwfeeGFompBKMBsdSpidlLk/Lk54MAsQpgCRFD1aOKCxC9JnRnFeqNwDiBFCFeHQrFiSR8D7Qto5/9H/8X9z/4MOcOXMWIyU7t2/zq7/8UX7oh76zX6/FlGu3dnjlygGXb1nu3Ve8vOF58RbcPbuD+9w5bIYXo+eh0WP4NCelAULWCCFp/WX245ycFNvScO3yDrdvHSI4g8qBYvNOxvHzPP7MCzxy54ByOODT08DD2zXveej1jGwNSaOLMcZu8ueXQjwB/FI6QSs/dig+qY2/9h9YA8s1cDlFMzpRFeh58/IIgK4Dud6ZPa/WLx/RKdZZ3aNs+Qmay9HHFce0kK+XsaaOyBMB1fq4X2vjH7vunthu9fPk0fDl5+X0Po8oKyceO9UYDazdkNdVPSFf64Hw5zsSDZAQWQAzUvo9BC8h6CDvI8RN4BKIMdCRs1mB6kgK1/DN0xSjvwCiPKoNfrnzRCnF2bPbfOADH+AnfuIn+lemTNyd4p55ijRtsPc9THnvFr4BJQOkxJO/+bvcfvKLfP+bvof7P/Q2bsdbvOc978FWBc53PPHk43RtR1kUeN9f670QKxW1/noUVz0FvTpkPKp0Hn/U/nxZNzD3HlN9E/OXif2+7sZX1nPgEgdLRz202Lpkb3rAZDikMprxyDIYCIxJDMZjvAvIsmIx3aNLnrJUmMoQ85I77jnD7o3QN6GIhJBgCwMusgwBWxlk2Wt7lxJG9d3Ug7sQaKyoKIWF7OncDmBx4iz7+Tw3k+fpV7/AR3/1Kmc3SvSb38zVgwlLZ5ju7PPxT9/kre9P/Hv2Xn5xCe8uSwq1RWw+h1h8nJl9hDNn3sIlVTAXI17ZsTz3csPhLPJrf/e/59//z36Qz3zXDrdffAGnOl46d5Ef/NAP8K7J29AUKH+F4HbBTxFxj1FdslzexjeOGA0iKzSOEJZoo+m8IOUBtqwxOUDONPNDFgtPKBYoO0ZmjfIdotmD1tG4jmGtKMoaKQrms0Pc4SH1qMZ10DjIqUNpMKOSXGpu3thluBlRpkQqC6GXpaVZsLuUjMoaXSi0FJSFIYkBLgSUc3RtSxM8i/mSYVXBcMCdZy8CAr/sSC4ipWAvZERKjMdjlkCTfW905Racu/cs5y9tceP2Lq5t0C6zOdSEM5uUEgrf4mPHTBQ4LCIviChKa/F7hyy6DnRJVdU0SxiPtnHLJbnrqK0hWcXO1JHLinoyxs52IYMTgoV3tPM5Y5GZzRqqYSQVI2RVM94Ysj2A6zsH+BDRKWKNprYSFyKHc8fBfttzilUmuYh3kUortM0sD29iyyGl1YjkCYuOM6NNPIYm97rvfbNzQpc9L3S+O+9lP42l3KgorKCZzll0gVyViBRwrWPmHYcHc2JKLJNj+8wWUhoWy47nnr3Mmc2Sksj22U2EtSSlQFticMyC5456SEdPNZNSYJRBIRlYQ2GLFTCISCIqB8BT2TFNbImr5lAXPD7tUKiCLMDlDknCSEMm49MhsESIhKBFiEDfjDxHcBFT3EUKu2TdIohkpSmqDfY+f5nhnZt9VjsHEKGvagzuAjclJU+1tYEtDbLuPQlybJle3WPxDz7Cy089z6vn7ufOv/BhLk00RSn4/C99mmd+/aNUnePv/Id/k9F3vKun6d0KCJmQRpJcxu175FARmkBYBkQIyEIiBwaZE8vDFmU00iWE1QShcFFSCUEYbbJ1cYOmcQDUWlDaMV2C+X5DN19QlpnJVoEtSyglsm0YzgPOQdYFuqwQKWPKIcvplJgzi8Ml3jlU6rDDCWZQYUSkXS6pK8nYKlyWGDskpchy4VkGh5KJsigZFkPcouFwuQu2pFIKJTyiCywax/5sST2a0HaeFDusAh8LulnDcGQZ1AWxWeLbwLA4SSOiV7s5ohGtgFFa9x30j6+NtY4yy3DElY8xHSkS9dSII5S6omD0MoMp00tq5r4PoW09zbLDSENlCj732c/w2c/+Ad/zV/4S6CHTUHP1YMrjT1/nyheucvH8BuLSY1y+DgHNS9d2uHj3Hm86L/kGNeYLQXCf2sBrS/YvE9OcpLapqoeYCENLwUs3W6bOcNfZSzxiz1JfmPPqN7+Rg9svECdb1Hc8xDeff4Sz9iwKA2kXay4gZfVnuPV+6eipuKe5/2skf5TdFMfAsV+PvPKbkCuAs97XMfD8Ug79+jl5tDYpn1YjOvk+cAzr0ukGhvU7nAgAvzbHUUb+qJfi+HiFY5rWuqqW1bGC16rGcrSv41Pn5Dzlo8f6tUynqEaviblO0Ij40uNh/U9+NXPXKxlbehd4aOhJxofADFgg2CdznpwahPwOoCD4xwn+U0iRmb76dxjf9VPwR/h9DIcDfuRHf4jv+7e/t8/qp0Q3XdL+41/m+Zv7xNc9zPlHX8eokCideel3n+fl3/xt7r3nfr7pR34A+8B5EJKHFq9DS4NE8oXnvsAnfu/3+54/VRF8oG1bQg7H16+eQXZ03PZ0pV4Raj3PUq6uWycSHII+gdZX07++awdfUXAw1JpJWaCAK9d2GY8L7jk/wkfI0bE8XJJnMJw0+GKT/ds7BDqqojc/arMhLBKuPWRcWUIWLNsOG2BrdAZr4HDu8AEm0rIx2OhdTrXFdXsgBpR6TCSTwy5d+xyyOosS92BSzSd/53/nV/7pP2baKrbveYjK3sPjP/8r7E8PmU0jT37uMgfd77HU38b7ygEvLGFLjdmo3kaoHutdYMm8JvGukgAAIABJREFUuL/D3//p/5annn6cKCT1BXj+4y/zwk8aNt73/XDn41yyHe99/Tvw6jECE4yUeHk3UZZEoUhAPdjChwOSqHDukK45IHSHRBFgcA6XC1ReIrMieY9vDkku9RQRL3tTMG36oCo4RsOOkbDY4Rbz/T3mOzcJXcQYA7Wmcx1SKcq6ojAK5wJnBgOCkUQZkbKD6PAOVD3kwYfvYrlwBJ/ofCTnxKSuKSZDgoCwP2O8OV5xgjNJJERR9mZYTWTpBD7BQCeGkwnXb9xksjGgDAFyRBlFzCW3r9xg8+yE7a0xwVkKmRnXFa4WWCU4uO2Zd4ll7PBJIoUles924ZhsnuVCYQHJrI3E2JFyYPPshIHuD9zW906xzkPbtmhtKDRoI2mdZPfKAWY0YukTsV0ggRKPzIIUBePtMyS/xHcdS6l6LwOryV3HsNZ414NYk3uQ7ZtDFrfg3PaAsQVrJUIVxJCYHnjarnfK9cKjKzhnKlKG3Vu7JDUi6YQGSqMpihqvGwSOrumIMhC8Y9k66kIwEwFiRddGRHKERYvuGu6YnGfhOxbNgvl8n+G45sy5LUajLbQtEQmSBmVAGQ0opBIU1QZIhZa6l2ITmspMGFQTtCoRypPJhNzR+QN8ApEOKY0mJYePhyAKhJDsd3/Atj4L4tbqPhp6CVNmIPYQLAjdLs73KmVlURPzgtnBAV37WYbnH8IONdJKyvF9SDWkqCG4A3RpMYMRQtd9k6r33Piv/2duX75O89Cb2Hr72xmOEru71/ni//azDMf38NZ3fIjJufup7x1BEOQdj9jzRBJpJokp07nQU97OTtB1QZxOSc7h5h3LRaSoKrr5AbbWGFMiyop6fC/7QtBNb4OQ6Ko/PkQ5YL7fsExQFCXnxpYcN9BlyeKwQZYlIkC9dRG5mJGUJpmC5cEhKhxSFjWH4TaQydrQREM52ubCpXvoDm4T/BKUJBtJoQykloSCbokgkaUiAEFG2nmiaxJtaKkGlroqcM6TAkgfcbM9pIWqVGhlCN7jRaJpHXuzObbovT5OghOl1FHPwClKEcd4JLMCSUJy5LAtT2SyTwCsvudjna2WvcoXqwpCXoNQQYyJdrlkZ2cX5xxPPP4JXLfPe7/lGymrEim2sVLxhy/+Dl+4/HnaMOD89qN0ywHPPPFR8qDg6VenTC6/wiOPXkXJ+7hLGa67zJYuUeZBlAAlNQLYbZb8zC/8NLuzHWol6W59jv/m7z3Nh3/8P2b8wPsR47M8sv0QlzbvQwhNTAEhBNbcjUB9Fag064Brpf6EIKe4ko5dcZ9PVAr6v+VRS6hWipjSlwkQVntfN8KeqPism43Xxk4nxxGV6MS2PRXjRI78KMH9tQ+UThVGVggynaIaHc/DSZpPXv0U4hjk55MBxnocq5L2jcQnekdyTgipUOJElWAViJxel3z61z/zMfjl6h2JlBxZBFJucekGldgGrq+yBg0wB24heJVMQ043QN6BkDOkvA3yLMOLP0ryM4QqENLSVw4TmdgLtAjB3/vpv01hC4Qs+uM6Bg7+l19nOZNsvOvdqLsvYm3iYOcme7/3O9Rb9/HGD32Y+swGZrOECDQZMY9c2bnGz/6f/5CnPvcUbdsyHA14/etfz5NPPslsPsN531fk6PtdY4xHoH/tupxyOqqIAUcqbOkEzZIv05vz9Ti+ouBga2ypjSC4yGhSMdoa4mIgxV51J0ZPlxNxLqlUJCJxXW/oZQqB8J4sHG0TmS0bfE4IKQhRc3B4yMb2NiLPscLifMu8axgNJlzdfZHoAqPRBTKJYGpkbBHmHOi72Ek1X3z1U3zm9z/DS5+6jVY1j77v27k5H3KwL4gpEp3n2Scv8zd/5Gf4r/7uy1yo/ip32wmOgmvZcD1Fkk/86i98hC/+xr/gxef+kKVfMDhbsf3ghJALnvp/f5vv++6/yvab/zJjGZiUFTuHc6ZSse8bRlZgBYDBe1CqIZPIYUZOSxABlCSFhF8eInKBV5qQBCEkctc3CmZtcBFkCkflSBcyQpbIYkjnIl2XSFlijWS4McaMSqRQTGcNznmsluQcGIwHGFvgfST5Fccdzfxwjz0VMGqENIpKrhulM6GdInXJvO3AiL7z3xYgIpKEXsmDdT6zdIGucWycH7ExGbBopn0zshS9H1L2gGc5X6LJhBhoc6JtW0YbG7gmkEKkLi0GReMybRsJS0cnBAWCEANdF1i2AVsaXOfQZgWMVs8VZEwhCA6E1kQlVsopgo3xiCws4HAuMKk6JhYMEm8kzkec0Cht8SGzOFygCkNoe1WtrAQaTV1ZROo58kVpVnbuBm0t2moKbWmWAd+06LKidR1t5/BRUhaakHvH3dB6iIkgJIsYmM46hEngOhK+N1ehl2GNPrExKrEiEHMga4GsKw6n+5SVoqqHCKExVhKco20lgwhZacb1kAjErKis6XsLbImSGa0HGF2ipEZJMHpApgcWKWdiyiShiDnS5AYZBc1yB2v2qKsDlOwYictIMSCL8wiWkOaQHcheBlVwDV1mrtxqmHeZh1+nUaKiDY6rL+5wh54w0YpCDhjaXmQgJYGtK0xZIXSNz5KmaXjqH/wyw8uvML/zfppH7yVuOvaufor61oJz47dRje9mY3SBMhn8swsWz32W2d4rqOphRu+5h6QVWWZG791ADXplomgVURmi6A3z3LxDiJayUpjCorRGComSmnpzSDXR+LZhb3ePtvNo4QgJtLTkdokpyx68a01IETpPioK4mCGUQEtJCg6c43AxReSeKmUKRWkLjDJoEs3+TZado6wG2LqgLAXkDtkuWLoEFqzs1YYWBwcsG8GwLjHaErKHnAldJHaO1AaU0qTQEhLEIEgqr+SiQYncH7+mVyQJXTy63p+8763B4FHmOOUjHJHhFAA6+dv69TGmlQjMCozKng+/BlrrPoTewTSCyOzu7vLEk5+gKi0bkxptJpjiDMukefX2c3z6yRe48soBo/E2mU2adJ5r15bkGppZw2/91u+zd+sWP/DvfJCBfi9b2hIRHCBpErRNw5PPPMmnfuOfc+3GZcpxQXXnGQZnR6hKcPDyNd740Nu469Lb2S4nFKqvEKSVgpxAflXAQR8UrOQqRS9hulbHFKxBfR+MrSklOSWSEEfSi/1++sVYu/WmdExvOWq6PV7GU3SWo+1X79mvSw98pZC9aAGiv/evtvtq0lv+VQ2xolYJXiNZeupFfRB70rn4ZC/COkR6TUi2+nla9Ya8Xu/1I2IVeIujYLt/y77ynFay1ac/zp89MOjigpwzVtUn+lcSIU9JaY5ggWUXISrgApkdRJ4DLf2JbREMiPEXWczfgJSvYEzvE3Nw/Rdw3Rm2Lr0bU2zRayInED0QD75hY2OTnAUxQzdvuPGJZzB7uzQPPwSXNnC6odu7zTg2TDa+gWJ4jqocIf4/7t4j1pb8vvP7/GNVnXjze/1S5242SXU3qWaQKGooUVkajSXLHnvGM4IA2xhAMDDwxhuvDK8Mwxt7M4ANwzBkYTTAeBJgCKIlUWJLDM3MZrPZ6b3u1y/fdEKFf/SizrmhSUHcaGTyv3j3nXOq6tT5V/qFb/CK+PqScOsQPztCjC6y8YEplS/5+Z/6eT7+yY+hrWZze5MbN25wcHiAD5EQQi/4kNLK3b2/NtbXnZDyNE3Kp123c1K/QqyS8B/uc/6vGz9QcjAcWYyRdCGzvbMBhaRedqgYMQqEVuSUaZsOZZck5/sKjRa9C6lIdCExWzhUjGgt0dogihJbDbG2wEtF53oYQRdqwjxxsJiznC+opguSLNma7GGERehtHriCO/MFn/13n+GbX3qFpoXtx6Y88uQVvvEnr+OGu4SjOa5Zsrzn+NxnXuF/+18C29sdSk1pxBXmquRY3qV55x4vfe4zHH77uxAj5tIA9fAu6tnnqS7ULI8qhlTsjLfQqWNWz9m/8zZ+extLjUolSSaya2nrOW55HylVj9tuF8TgQEhCkDjXUVlzUk1LMRNDwi9rhInYatBXi6Jfqbr02r/LEHGuQ8hMVRWYlNBSoHNPGCUFYooEYclKs1h6SmPISZKDXz04Asl3dAsFVUFwLVoKjClJGTrXgPc0riN1Ge0jxSBhSoVrl7QJOpfwUSOUQuoBbdeAVmiVUNljZP8Ac9HTdEu6rsXK04eeE4rBVOObDtc4BlYxKDQKSag9ImfEqqMSY6brPL5zGDnElGBkJIZACoGcJYXRdKvzLaaE0gaZMjFmrNJ0MWLKksIKqlKDyDSdY+kySRcoa/tKYogE3xFz28ukyYIc+4eFyr0MpbYaEqhVRSkLgTWa8ajCtXPKonfnJUR8G/BeILPEt56oWpTSxJBoG4+OGpkFg2qAY5UECoESgpwEpVaMhxXRN/jOE3yvJ991LUJaxhsrnHBMOB+RbWQgAlL2+yjFGhsLRvd2nkpZjKmwukJL2+tmy1MJy5RC392SBUlKYMqsvcHR/nWULphM77FVzajMArIliyE561U1KCByBhJCztHW4KWnyYDOiJy4fbfjcN+z9eghUzVGGLGCZsi+YGAkQvcci2a55ItffpMHL36Jh65d5eDClDrfpnjwBttNiS6vMZxHdJeR+zeIbYc/ivgHx5gndoh6gE8SpSV2Q1JsWnrD2pUgo9ZksUqccw9pNKXCVCXK9gT9rutACcxoSCagNbgQaJ1D6AJrNSiNliXLxZyunqMcmMkUITXJN2g0kPpzqgvE2FcHy/GkVy8qCgySbt5wfHiMVxpbjfBJIHzCFppkDDl1DIYVKkbaOrBsEvWsQxeSkD05OVKwhJRJziNj6N2NhUGITIy9+laKjghIBaNxhVQZ366xxafjHFn1TPfgHJw9r03SxHvWO4UX9QFUv2b/EF6BMPLpFtek4941OVI3Sz734l/wsY9/hL0rl2jlgM4JjuojXvzsn/D2O/eo0eztbrOzu8tXvvwGevdR5sdv0M477h0ccnxwQDlwbOy+ixRjGvk4znra5j5HN2/y6vXXufXtb1BozejSlI0rD7N38RqzZeDJzWsMlcVoi1HFyQ9Wq6Dmb2qcJgDnwnbgDHZ9HYiKNTzr9Dik9WdnI38hUCcudX1gI06C0LOcku8TBHGm23CmS7Aea/z7e7H3P7RjDZfj9Nw9Bw96D/Lo7DjnHXHWbfykCv3952n9PfLMMT8fdK7hSJxJQk6//6/jeoTUnXTmzmLGJP19w+dAyo4Q2l5ZMmdi6KjDXaQ8pFQ1Urb0T71Rf5/Ijr57EEF44D7QsOzuYS2YQpFCy4Pb3yDlJxltKRBXkOohlNqGDD625OSQ0oDILJYtt2/coX35DaaPXma5VSDcTYqQKUOFFhPKRqIiiHyXvEzEeSB1Hrk7JFuD94FP/sQnufDoHk9/6H1kkU+gQWvuzNoled2xkVL2cs6CVXJ49sicXmPrSV9DK98LBftRHD9QcmBK3Rs01QElJUFAFzOq8USRQUGSvQzmQgp87bHjXiXDaEU2AtdlZsuOvY2S0hqiUkRjKaoBRvWXQNs1WKUQbc2i6THni8MZh8sWbcc0CUS1gxN7vHo0480vf5E//dcvcu/GbfTeFtsf/TGubo/507sP0Fcus1s4hEvUhw/ousDv/bNXMduvg7Ak+T6EnSD1DepX3+khfFpgdseMn32cjY9/iPLh5xld3Mfe8rz+1g3wNaOhpa1r7h7eQ1UJqRd0ouiftr6m62bgluQoKEuLb1tSCkhdkrMl+oAqDWRFjqGXOc2Z4D0Ej7aa5BUh9DZaSpUYk5kd1fi2wZDRRpBdomkXpAzOF0gRkFogjSKqAfNF128fQew8OXpyznTRUxUVmBbXLInKAAVCib7anRoCmuBCX/WTGakrunpJ3UWEMmAkRVlRVRXL5TEdCisjMnYYIdHGEFPAh6ZXRFnpuUuhYVWxr9tAcpHSObTtIWRSgDWqN2OLEYRCajAhEX2gnFYY1VethBRoIXsjpbZD+IAg9sonMfdBHz3UYbI5YFIZpOorxYGOtmsoTdErZwpPio4QW7zrtfmjUmggx76tq42hLAztzJFEoq47hBAMyl6eN6XYq3D52MvT+oBrEgOrkSmSgseOClIWtF3Axn7dyhaIHMmeHraQ+xt5WUqKomCZIj45fPA9vlhInBcE50ihA617KBSmryAKhQsBY/qKdcwRIRU5e5Qa9NKu2qJlhRS694xAEUl0osOJAqlHCDYoRcV+/TLHR7dxSdG0+4yn90hbI7IawKpDkzM9Vpq8wp10KBVRo4TSfYciuzmvfKvl0sUCaxt0kRCmwuc+aY2pRmpLFr38al0v+PZffIOt+X3uffAp7tkO0dxl3HXsivch6yny7S8jlCTmltgeEXxCP3GJ8S98hOVMISeWYltTXdCoSoLsK/Y5JaTsr3epBOVAYiclOUWklkjTJ3HBNQTXgVE0TUNOgZQ8Lkq0sKAk0hRIEpkFznXQRpJRDEZTlAFJBh+IXSBGgRCWopLY4ZjCGrSQ5M7T0dA1EVn2nYGui+SUUFKhjACXGAwNqcs4J5BaEevIonXgW7L3vZur1kgyWguUkvhkEDmQIzifcM73145RKN1LHPvcnwPr0bfQ5Ulgc2oQta56nq349+ekOkPQzFmcBDMrpjLr4ETIMyZaaa2cH1eJsepFILzjxo3rPPfxD5GGQ/aTZv/BEW+/+m3+/MUvMWs6Jg9f5dL7n+Ha5Qv8xR+/xIWffBr55pzZPY9QLfsHc/7lv32J8eWXgQkdH8FWjrh8m+M3rpOFpCwVo4s7XHzmGR556sNc3XqYedvwxEOP89r+bS5MJyTZB92nwdvf3FjPsGQNy+Kkwny6zGl6draSnFIfyKz9JU712E/3/TTgPbPM91Q/TxOJE7399fusOwwrrkk6uzc/5KFSPvVwWM/bSaK0gletk7c1AGk9dSc0hVNQ0QlfYLWpc8Ep9Mcuk1dKQJwsnM5eZyfb7vflvV4UwPe8fu9IqQMhkShYsQYQPdekzaGXuybjUo0SihwO6Oojlv6AUh1hy5psDchytY9rOJRHEEFE4BghPU7cQ4ltBHvEcMytN29x8dqI6Jd4N0dZA2oLciKmACSE6LuG9WLB3evvUs72mb//EZayoWrvY0RFlSeorkDcvgnWEOOcvGjJWqOvbaCfu4arBcs44+Of/DjVdokqFXmFVJjP533HIPcqb+9V+1of37OfrWVizyYBPVLs9PMf9fEDJQc5JazppSVvv3ub6eVtYhLUhw3dogaRKcYGWxlq6ck+IkNJEgXClkgjiGmJD4nBeIy2hkXrmC9ayv19dC5Y1HPcoiFFQdtljuczgpYI5+maQ+68/Sp3jo+YjR/meLrB9a9e52v/4//A/PiIWJTsvf8DPP8P/jMeHV3gmQ/v8t2k+cinr/DWV77N//MvXsTfXyIyyC7hu4bsv947BkiFLhSyFNhRweTTH+Tip36V3Wsfpbx5n8vDjuvD2/yf//L3+Jmf/CjPP/s8Ulr8aMiklMSuJnbHJC17B1YRGWzscHzvHs38CCRIYSFCORjiYkRmy7LpcG0NOWFtSTEeMV8sqRc1yUSULJGmohgVxDSnNAkXIjE6fHC0bUdIAXusiRj0wK58Inp5R6lKYuyYLxZE31/IOQZm85ZpNUYNO4bDITn16juZRD131DlgqwqVdR/05EwIHVEI6rqmmk4pBwZbKmSOKKXx8wU5HKNFpBgUlBrIHdNNg8w9ITT5iBSCwkiODx5Qd4Gt0qBSIHtPVAoUjMZDchRoYdFFQaEUuvMcHRxR5ILOSaTUGJnAO5rjGdErxGLBcFLgG0/TBFwdUKZgVE3Y3lEY1Sc8wQVyUWKtpku9dKZOHcG3+M5R1wlZTbEmUyoDMuFTxkuDVLbnCLQe3y3wbYsUPcY3eE/yCaEKtLXklOkWDaPL26jNIW2TQSm6KIjO0SzmTC9tsjg8JqnUqw4lQGQGZe8vEDP4JAlCIayitBKhC7SWNEc1QkXsuEQXBeVkROvWnIdMoQRa9YQypRK9N26HwqFEn2QJJEooIroPb3OiEZmRUgx0xQbQDgagWuZHCb/vuFC8y+iFEUI/jgozsszkqMkhkXUGA0I4pIjIsUaWCpkiy+UdvvKXjk/9rmFnK4M2NEHiZjfwaYjyD6jsVWI2NF3m3n3HxhvfxV+0vHnnaxQP73B1eoELYRf/9pDjL/4rKpNR1WOk4SOkjUCa1gz/3odRVwak/Uj5UEmxbTAjidC9sV8OkewCOUaUEciNAtslfOjIXUcQ/QMEKZAiEtsat6w5uLeP6zp8FkQpyLElGIsWjq6NSFVSTneZHx7Q3bqDfLjEmBKlS/ARGXrCc1weU0wGbE4nkCC0jtZFGpcwpiAnB26BKQyFkojGo6aCHCCHROcDXQhIERkOCpo6oHMmhkgKDQpDNTSo3HMVlsvQY2sTpCwJISO1xAqB8x65xt6eqXbGmHsifjoNZOBstTRzvnL2ns/PYCvWmOyUM6xa+aeeCbAOWfvXK633FNnaGRKKyM1mztEsc/fWA17+N3/AYesRwyGPPvsRnvvoJ7gY4YmnLiC2J3xo7xO8NPo6b735Ju3+ISkm0nGHdwdk/2c0qU9yiqKgHBs2toZc/oVP8szTn+QDG5d4XFnMJLO/OOKll7/Gr7zwU2AFISWs+pvtGpzMRs4rWOT5yv06GTvpLkjZm2menUWxrmCv3lvLnq66uSfcj9VnKZ2HxKy/h/y9wU8fOJ0Guet9lesE8occg/1XBXsn/IrcF+tOCvBng0hxesL3uZngXCNuDT1aJ8aCnu8rTpO9s92as5eRWPtn5FWXQIiT5O4HUYhadzrW501GkhF4EksEUmi0GGBkgSUzD99l0bzKoinIqWZQHqN3QcirCHreGQkEnizCaj6OkcJDNejPsVTT1TNe/8pdfuyDBdq+j4zBx0xwc3I2DMsNfGxIWbLsEt1RS3XwgNlm4uD+a1RXtpkUVxnUI+KdQPvdr6F1hsEVGF8k73TICwbzgV3EyJBsZGdzl2KgkKY/TjFErr91naOjY5x3J2R6IQRiBWX8fgnXGta1Pg7nkmvRQyXPyTL/iI4fKDm4d3vO7cr0xmVG0h633H0wZyAsyiaM8IwrzfYTW3SqZHbYUi8dTRsZopkWAwayZXuyi0azmLUsmo6cPXdvLfFuiFjWxCCJtAQXmDUds/tHGCtJxYhXvv0Od7t7zNQNFvdfxL98HRcAa5n+3V/jo7/1m/yTS88wlol/93/8Mc/+6vsYXNmi1NuMNrcRo8SlxwVPPGl45c87cqewlzfwT+7QHC8RRUF55Vk2H/lZ7Fwj/+wLxOM5L77+Erm7x+O/9Ks8/Og1RmFGdDVPXd7GGskyX6Grb4CbI3GE0JB9IvmaXFQoSQ/7ARaHh5R2QuMSi+USLSWFLhAh0TSRJCq0tiAkSpuecOwXRASFVkymGl+7XkNfGtws0GUYVJaMBlmAtLSzJc1yjq/G6NEY5R3ee5yLiELSCYMUBb4LWDtCiILD+/u4mFmg2PAeZQqUliBbDvaXtC4R5kf4ENBSYnNiPmtwXcZKj06u50z4jKw7VAgMlWG6vcXR/UN89ugsKAmo7JHa03UesGRfE3OHKgeMSk2KmW7hSUEgVYEtLJNxxfzwAVkajPCQO7z3LFvF5auX2NoZ4XPm4KgmpITUmnJYce2Rh1ge7ZOcx0pFRvDgeIEelFRa0i3nLNtM12ZSlFTDAfMoKXOg7QJaFZiiojAGEUBWBp0zxlgKJchNYN4dYquKRbMky0jrIkZbJkPB/NCxOZkwm80QKZARKAmykOzvHzGcTlDS0yNdemLobFGjqwp3eMyy9dQhkqQFU5DR7K46SdOdAYNhRWklPkNhLYvmkG07wOoJthpRlSVSGSxzuuYumilG7ILYBjWEvAUkBPAOgpeToEiKv2/HKAS7k1/n/vQVuqM3qL95zF985hY/9c8e5srA4w7eRBQCJS2qAy0SwoIcAxKuFokNkbgzjzx4s+XqGIbPlnRjCVSE+YLX/sXv8t39Lcqf+2/4uWcq8IbP/fkDfv9/+iZPd1/iyqcsMz/gFx//CMObnqPPfYtLRw8R8pT86KeR3hHcEeraJqOfeZ4uaa5/4S7f9RU/fXnAdKKQZnVzj5nkHERPDImcIzl7fOt6x3IviL7GuBZdSKQEay3z+ZzNvR2WywYXIkoblB1St70J4+HBjBB6XkjQluNO4V99g+HWBtNJYlgNKKpNfJGIXUNsAge3j1FGY61GlwVZFijjSLHXLper+0YSGZdgazoipY56uaDtOkwhGU0G3L59G58SKgYKqymtQBlBDi2DsqTxkZzAuUQMknI0ZOkc0SeMS5RWYgqDGZ0+CpQ8GwzK3hTubLC6CnTUmZpxSv1753XhxcqwLZ+05IPPJ0GqsYoUOeUc5Iw0gBS89JVXOB5OSC9+g/tv3eehCw/hg0JWJZd/9Tf5iWef46PDbRbHx3zpy6/xC4/tYWTF5vAK4pph9ETD3gXDeHyXN79p+fAzn2a/dNwNB6SQkNpy6cJzuMFVqnlH197ntej4+mvfYquS/IOf/nWs1ieB778Pwu0ajnX6BqtgPp++fA8EaD1yTqeB5GrFtdzleo01RCavgiKEeE9HRKzgSmtZ1NPvfG/VfP396/35YQ+UzunXr37XufR31Ukj53Oyr2fXPcFdibNYFHEO0fPXJ1H5JIE7e8qdhzmd3+fTJc5852oYPSalGZmOjAHKk128l2GWYUNInpAaQWZUPM+RfgkbFsy//jbN4j6Xf+spxtr36o52ikwKkTxCdAiVyKYPuveMw8fEvLXMZzP2pgFzaRMvhii1jZ8fMb/7CnM3ZOOpT7FVlSwCvPjZOTdeusHF9DIXXhgwi0uef+h56m/ext+YUS0qIhPyw+9DON/fo5/eQF0Z4Vzm6Pqcd9rEhy/u9ImB7JO6g6MDfvs//x2Oj45P4EBSiJ5PuOrMpZXVB+hJAAAgAElEQVSc6Xo+16/X3SB5Uhg5NYFck5d/lOR7v9/4wTgHRjMpLEFElvWSaqrZKDRF8tRdxElJGlZ4ZfBdRzWYkN0MnTLJpZ7suWgRPuPbgFGKycgSAhwuWu5d32djOsDlxPGDQ2ZtxNuKhy7vcjw74N2bD7jxes3+QcIFgZu1/QNsKLn0H/wGv/2Lv8IvP/1+ZlHy3712m0/+pOR3f3mKr7a49dVbHLwaiUEyuxN49Suw97ELdLc7xM3AVLZ4e5HJwz+P+vpXefuP/iVFscv2QzsMd5Yca8XVD36C5/b2GOSOo9khua3Zl4HBeMrhzVfwzRGVdowGGWMy79y9g2qgkgkvepOqFAJRWmQ2FIMBuW6pu5a27VDAUFuSgOg7giqJ2dOlzGi8gTGRZVv3+Dw0PniCB1sNMRGk1Ghboe0AhCabSJcM0YOLUApFoQTCCLwxOA9+f4kZjum6jGtbOmd5MG9pCOztjVC2IMqEJyGHkrFy3D+QON9h9BGGyKgaEIYVrjnC6BEmZ1SOyJgwpmRSaoQwyPEYvdWT+dq6xR0vkaGly4K29QwHlvFoRBKCZbOEBK7xFDGhUyYrRaEl+/OacjzEidg/CE1BJSUqO9quJXQaGSXKlAQFhVW0zRLf1bjFEaYcIHXvEzHfb9l5aJNWtv1x0RqrBVIpxsmxXHiE0pRFoswdhW+JIWELQ9cBMhFRuCBQItO5BT4JcteSvSMjCMriYuLmgxrvPTIJ2iRwKVEWmo3RAKSh7jxJJGLuYVybO1PIgcXxgnrR4QGpFW32tFliosRYhUPTUTFQQ3T0HB8+YGNcMTKWUTFgUm2wNdlF6xLBHKP2Ecz4/J/8X1z/zlf5T/7LT1OO/j6STe5GzdPC8pw1zHPmD13EKMPHxCaPPPJbTLe+zC3/RW79ySuU//fb2P/qd0jbgdk3voaSmcnTj5PufRduAU9lhIVCCJqc2J+33Pxyx8+9AKONAYtDR1p+i1H5gBd+5hl++tI/QY+fQKkK5wU7+ZjUvs61f/hJ/vz2HX794WfZf6tj9sobbB7cYTAu2A8Pc7D/b9m6egHz+LM0u5vcPOj4jmgpP7DDzz82YVRoUuzvcjlkwjIgrEEPK4JbknxESPp2d84IlUltQiiJVD1MMiOw5RhFJutMaRWqLIkxsrx3SKsNXkvqKCAmSinZG1k2R0P09g6xrmnbFmQm1A1FARtbJYt5SwoBn1XvTdY6RO5Qhe6hdUIQoiArQ6UU2S9ZPthHIxgPKmxVUkwH1PV95vOu7wKtTBCX8w4rE044ogsYnSi1gChxKSKMweEplUYh6HLmrxKi7Ktr/UPybBgi6CFZvbvr6uG5ghP1660Dpz4gMlojRK8GklbY3uDjGW+E3uejB1VkBuMB7778GtL0AgCvf+0Gj3/iOZ76yZ/ntz/0IR7e2uGVG+/wz//fP+JXPrXLr71/zDxt8dKX3uHllw/Rquba5Ql7e0+y+2N7fPZbX2VnY5tHrj7OzoXHEMUGb771DT71wae5LzPTwYBL21OeuHSZ6XCElv9+OgVnR17DiM7ChUjn4r73VunzKlhdVzVPo0h5ApU5WXZFJj/hGaySvJNtS9Yr92aQKZ3Z6JmxWkXKU6WqH4WRV3N/KtF7pnNwZpnvIRwA57tnZw/Eaj3Wh0WuFIjOrCnWS5yHJ62RZevEbB2UCnGacBir/9qEI+chKb0O+Q7SvB9yxRzJY1IhUMwzvJYyWiiuUbK79SvUg+sc3twnH11Hv3oH+cKvQTWjvfGn2K2r6GqD3LxE9gm53e+lQdLljuViSXPvkA98UCGLCc3BAcOhoyoN5eUBDw0/0gudIJE54+6/jcsHbH/6I7w8O+anLjzOvbeOsNdvMqgFonqIlDaYP/gC42sX0Fcep60Mx4uO+ymgtiwfuryzgjb2ic9XXvoK//S//qfMZnP8ioS8nsM+4F+bMp5Pss7O5dng/0R96ixs74c8If7rxg8MK+pcwkuoBiVd06KEoiqgXgZcEPisMMUEEQ5pZjNs9ggMTdOy7BzROZZzx9iOmGwVmIGliyXZeQ6bOfP9JdKCjjDQhlyVHM7nLL2mO25J8wbRaaQs0aXATEv2nrrIf/jJ5/no1YsgErVf8oHZG/yd3/xltvY2aeQOo/GbaNMQZjVdUnz0Fy5y/Y0li1sNk9GYcTGlmT1g+dV/BUeHhPIyXdsyO3oHphOyLyiT5uj4LiKUbJQFW2VFOLrNcn6T+vgeUmcaF0jBszEUDGxFIQMuemy5IjiGQOt6HLGIvXQowylKKERwyNhC2zCrPXJgEVKQ6Pkd1B1HxzUKiYwJvTZB0wXOe7y0/WcrYpHraqzN1K5B24Jl2xCFQJZDRIJCdAyqMT57slaU44K2UBy2lm07IaopzXyJMJnhdMTuRPHuzZvYwRCLwxqFtiXDyYjgNMlrROzw3uFTRCuJKQZc2LuGDx5XVoTQ4X1LoWE6qchYvCpYLD1tG7i3f4jWAhkFoetx+1IEcg4g5UpyNdDVDZFAUWqqQYFRkkHsFa6WS0nKmUJKKqOQMTJb3meoFQwsUimk0IzKESI5Du7NcH5JjIGiqhhMJoQUmV+/SzM/ZjQZM54MKauCZrmgnS1ISjKfLxlMKorRkNJarJTksODurEVlge8cwff8nL7NanBCY+hhWIWx2NIymI44nrckoUnZE6InxIRc1oyqIQeHc5omMpwOsVaxmC8oRwNENWG0XRGSwCWNdz30MwrJZDREliOKwSbj4SaVKSnsECULpNglpdf4sY/scOHyNl988Tto8d/y3Cd+g73yaXo1ihEZydOrbledBIHHKIsHXLz6MvOPCf7wD5b8o//ibVBHLO+0CLeg2qlRI0N422PrnvuizITZ25LP/v5dXv9c4h//9yWDaaLQE8TWM5Sjj6H1NXQ5QOQFEoXVFlUcEaev8tzH34/++mvoB39M+/KC4eGAyfaEB8WbNFd3SeppxLVHuD/c4LqvuRtaHnv2UX7ismVUgswRYia0guQSrvaYDUvKEVQii0T0HiUC0hqCimgkOXm6OuJXuvEpZFQlKMYDckzk7EFLTCmYdRFrBEIqolD9OcaYOgnUsqPUGiVWvJ/OIbJccQ8CddcSPEihcSQEAYuhazqEypRaIpMnzOuewyMMOUeMVEitON7fZzLdRbEA03dCYogQEyp6FgcLyvEGWvUFANH1IgWGTKFLOtf1XSwtKa09ud+n9TNQ9AoqPXyl5zCchbL0D9uV4lo+NWhaK+Ks+QiClSGaAEGvppZXGF+p1so/vSqSzOA7jyJRDgeU0wmDjZIsL3Hz66/yO//pP2bLauq2geTYk4l/8/t/zm/8wi8xklPKQQR/n/n9B7ybd/g7n/pxvvCt73Dn3Vu88MQLPPHQU9y4/w4/+czjuLsj3r1/l6u7F5kMhwgk0+EYtQoK/jagMn0hflXVfI9qzRp+8j1rnODZ++7BOdnFszChkzhfnCRqnIGtwFpCtXeaRaxUkM7i73MvxiDOfbf4kdB8P+2UrKFE+QQS1MNRJEKcNwU8u+56lfMbXf8Rp39XMqZwPu1arytPpEz7BbJYJwTiDKysvx61Oh/CpRxJuUOIDEhyuksIrzCf3Wd57ND6DXYvf5ixvABiRBaKAYKd3Kv0dAiiuEBp9hlfKzk69Lz+R2/y3IcfAAvcwQIpa5QG1JQ8O0J4iSgqpL7G4Y1bvP61d5i9E/nYf3wVrTzD4TbaJpTeQIhLCKUR2YEo+vvPeEl1seHqtSnm7pwHNz5D940518oriKllWd4mbFWU9hG6ixe4Ywy3mzmxtFy6tMnVocKo1WymvjDhWkdd1+Sc+w5s6pWK1uTkvDrOp0aNp0cipYS15uTgpLPHas25+b7X4o/W+IGSg1BUUJVYPMJmZk2DSR4zsGxMNB0SYy05evwyEJcNnRRoFAOZkSqzAAoRiD7Qzmpc6/BCEp1Ah8x4XCJEIpjEQAu8jRwcBZb3W2SWiJDIyxqpPZPdCjvRXNjKPDbp2LYOIzwT5XhhN3Jl6wKDcsIsWFrfEes5yfdOzqOxYzxJyDnsjT2PbcwZVZmbd496WUnVIUqB1JpgPeOx4tKgpYyZgdAMjUHjWDQHlEawbI4RCAwOpMcFKK0m2hGqGNNFTY4KJSxJBlKEetkhtUYrjUQQUXgXCSER0IgMRggkinpec3w8p+3ojatIGKUoioqQNFEqhBkgAWskhcjEJIkP7jEYDVFKEHNPRiorhSpGjHcLVNvSzY76yqWtiHaILjQ7OxvIZU0SEFA03uPCoicSu44Y59hKIeQm1hrqDmSGwaBEJEUKPQnaWEXbHFNWG7jOEZ3vj4FQFGVPhC3sACM75nnBYt4QPIyMQktHWWi0FaB7TLzSithqupgh9VhJpS3WKtx8RrOYMyoqpC1BGlKWCKmxFoiZGDLeO7RSWGNBQgyJet6TY5UwveJTFzAGAj32ums8MkMOHV1cInJBURaMBwPGgwotFbGpEUn25FPRc9MNsm9fRo+0BotGikypDcZapDFEIQkRQhb9jUuCKjSNCzT1IfPQqyiEkMhtwEVFcJKiyxgMhe6DtXnTMtyYUE4Nk80ttDEIoZBCYpRAS48QoQ8EBIym78MUjzAYOer9Fzm4/iXU2FFtHKPLPQTb7IkRXW44TIFxNgzMVfTW05RP/im3//cl9d2/YHBxB50q2rsH7L/s2XpW8pnPw89egmqkEVpzcJD40hciP35N8vBTI4bDvwuDMZlNRJ5C/Ta5e4d8+HZ/3Y33eP8jkX/0m5Lf+/0Xee7xyPU7R1ystojiKg+qhygeEzh1kRve8MhY8Q3T0Q0lH780ZHOjQ6REqMGUlhQheYguEbJANB0pRbLIoHJP00sQgicLgdSS5FckVFsic4cPkdzmFedEIZRkMBoglKZwidlRTVi0iOgxErK2vVrX/TnTkaYoLClrTFFC7KhbRxYWqSKx7Vi0LdoaCj3CWIkpVkF30xJczXBUIYkYq+gaR71YQNeAFoToqUaGiCEmT6Am+I66aSFrrFAobUhEmi5RWoMQAZM7FnVDyAljNbk9W808lRqFM0HQyXt5xUVKKNUnEOlM+321hV6mcQU3Wvse9AmDOIFd95XyM8FVSgSfOX5wTFGUdMkzux8YjCsuXRxxoUxk1/CXn/tLvvCFL3Lv7m1Elhg9ps6SdvmAdnafZrFADzRXdq/w9eprTAcBK2pUnlMZR90c8e69N/n45SfYHI8prO27F/LMzvwtjBPzq5PXZ3bnhCBLP2+ryROyn/OY8roe2i++rjyvk4KzUBkBIp9CptYdncT5hCTG3sdaKcVaRpW1gZc4CZM4h4H5IRzrCv33qwaf79asr43TYP5sVfns+6yS5fVx42T589s/y/c5zSZ6JR2xSlSVkieJgZQSqfpOodb6zHoZSPRqQv0vynRItUc12EaKhuRu0h6/AyZjqw2QIxQlQzQxZ5qcqNAYdRG/cQExKji+eQe3/Dxm8BAyQbd/CFJDZXj7zcSTmxlpKxCWWzcDN99pefLykI2di2jzadTQgtjtYbXhHvi70LyDsKDsQ3z4gzO+/UbLH3/uK1zecMR6yd6FC0R5mXY6QGwqkt7kbjJcqASvxI7tLcPVkWFUxF6p0Pf+SinCm2++wVe//jXKsmKxXJy4H5/waVbcpn5eVS+MkM9DxVLsz/HvUe0Sfbf0rAfIj+r4gZKDorQUlSW6iI8dXefJGoSSjMcVKkmWGZZtTXvUkJ1DjAcYq1EKUvA0iwbhPcF1RJGILtJFQfIB4TMiZpASpTIxevwsYl1mECILFyFnZPYQIqWwbBjFxWGmPnqLenOH7Q3JhlIU21tYvcDICsMSlRbk6FbkrITdUFRDQRgIlI4Q5yDKnpw4KdAyYAaJYiCROnNxq+DRHUsIgSGRIjmiW9C5FoEipISrO8rUYpSncQIxqggStDEENCkrfFZEHym16SuHUpCCX+FwE94n2gAeSXK+v/hEQdc5msZTVkPIgRw6Er3IkU+yl9tUBmkUWicEEW0VykpMqckJrNEYIal0r/BTDEY453tVndCbRUUh0N7jlnM26OhCpHbgfSaIjsoqVKXBW6w1KClxLpFzQMseimFsAUmTYoQc6ZqastzEKE2SiiQVMfeyptL0pidaQqUFGNEnVlpQu16G0er+DI1S9NKT0xGqDYSUMaXFSEXyCed7/ffKZrJVdEHgfaAoNDZn6phoO0eMYKwgWUHInqI0LJeKsjAMrEaRSDFQGM10NMKaEkLCtR0xeVzKvXxvYfvvbQP0eUaviy8k3neQU++gaCQpgja9YkjwYaVdntFaEqInxpZu1faUOqFC6r0kuo4oFdbKXnJTSOx4TLIVyyBJ88SkFGQJIWdCNFwYDuiE7U3eUl/9yyRyvEPiHjkJAnMEGmt22Npu0Fwh1jPq/TfI4S7FeBdhLlHpEh8nWGkRnSPRodQOe9c+xOCDn+XOrTe4OrDoSULcE/g7Cf8+wx99PvMTH8uUFx/igYIb7oA0Evz4xyXbkxfQ+pNgFSncI7evkeObCDzCvYbIDaLc5fJDT/HJn3qc//lfv0van1GGAaLaZrb5EIz2GBaOspqylAsOt1uGheXKxPD0BUlmRhvGqJyJeYSSBpkh+ECICVOAUJosJVmuHGJzrzbFCmvaP4UzWQiEkeii9ylwTQ1IdFlisqSoBsiBwrmM6zw+RUQG5wJG9r4ZzXGgGo8YTTepioLoe4I7GUKSPUkvJSqZGY4GaJPRVpB8i+uWJN8gdEWpLTonYnD4tlcfqgaWZtkHdVL1JlYJ1XMMgqAyCtd1ZDIh9vCU0AWk9MTckSNEJLFLzObtyf1+DavoxxnpvlWA2Qcdq2A/rpc5nxy8pyZ60r5fk2rPjpPQclWVyznTNR2LwyOQgrp2zI3m6Q9e5cuf/zyl2eTrX/02r73yKkVl+PSnP44SFmJNDjNiWBKCI8YWYRKlzZQl7M9vsFNPuLJzFQRc3LvExa0tBkVxhuz5tzfOBpviTHV5XT0mZ04OAadwk/XKAvFXBiynROUz/55scw2xOAOdWAW2667B2tX3vTj7dRL5o1JE/V4i9vlz+8xlwRqcsp7d9yYX4j3bOf3/2o/itMu2yrRO/i+l6s+B9TkpJaemFxKpNEpJlD4N4foEryPnOTkvIUOkQVJhTF9Q83K7L+LWtxDsI/UmQg3RQpFyhUJD8CQhMPYKg72nMY/eZjH7DhtmjBpXhNkxcZlxWF5+OfL4kwk5epyj0DEnYjYMV5+cUNkXEOI5snUQ9yHdhLSPyAER30D4JdiHefjqExw1W/zZN29x9NY+D1+4wHK6x0KP0VVJVRhsMcSJjmbgGeeCCyPNbgWIDhctOSd0Lgne8+qr3+WrX/vqChJ5Srw/PQCnnVGgv88Lgcz55B61OlBnkgOJUiuugsiQTpPwH9XxgyUHREyKuBCRucNET7AW76GoKiSShYsUXSa6QHKJodaUViFyZLFYsjiaI5Kg0hJhdG+o3XYo3xIDHO8vMMMSoROt65gtIoNqwO5A8uCep7AwGCpizJS+Za/Q7FaCN777MiNlmNrMoLyIKraR/pgUHWW4QykOeylA+gqV3SiRsiNlwbHLvLUfmMuAwCLGmkJlBsPEaCrYGlqubo+4OB3y4MEMHT3ZBVw7J/mMF56iGNAtGnzj6ERARIMYlNAJcmopyxFCCLrOE+qWamOAEhJB6tVTYiT7hMs9P8D7SIwJuVbKiVAUlvFojMwO34HrXE+i1JrsI5ARRpBCJISmh7QMJ6QIwXWIJNBa0cu8B/A9F0JXQwrfS5wG12C6BfffmTO+uklqj/vfZEvk2JCtZevKDrndYFJVGG2Yz5do0SBUIqRew1zSJz4xJFAakmcwKFEqQAspCERUGFNRN8d473q50WFJ8D3MYDbP+JQRMWJkwGpF1IZST1C2I+aeNClypG09XlfsDQUxR9qYWbaOZd2yQZ9otELR+V46jSBwMeODYzzaIMQxVbk6V0kIlUjaUEw0QllySrjoaAJkUeF9RMjIQT3H2IbxeMDOZIAhIztFXLaQQdkCZSSi0MiU0MmzDA11iGRvGIqIlJ7gj2hcb0ImYuoJ56nXYtZaYWRCG40dVhQbO3RCM593uJkjt5pQWkylWcwdo0Lw9sExFycVw2EiIgg5I8O7RPci5DEe01soe+i6Fp80engJ9m+QZneJ4RaqfJNcOpJ/H1t2yvFC0saGUkSubD/LM//wi7z7oMW671AMAmpPkd/N1AeCWSep34aNH7vC6+GQ18Itnvyg5Mkf1yj5CaS41Lst+5uo+GeIcobQCsEC/AJRtsjhVaaXPspzL2T+6H/953zqZ69xe7KJuFjA0DF45y6XLj3Exe2I2LO8UI3YUyUxBqL0ICe9XG1jMUpQKHrOT86osoSQofUk4Un0XhBrM6KU80qtTxBjQGjJcGKp54HF4TExSsqsEKoFBLkaYq1hUFq6DCFC9AuKUkOM3HtwzKDOGDNhONJ4qYhJE7qWZe0JIVMUGiUFxaDoE0lifw3j0FpiC0M5HJ7IC6MUUUBhJdkPqY9rqpFHClBRIpMhywExdoTFgs4bRO5hSm3doYSnJWOLEqUUjXMc193J/f4UjXJaNUs599+9jmPOBEw5Z6QSKwx6PleJk+dIrPmkhX/SXxCniYM4F5xnDveP+yqpFMz3Z9weGH7vrT/AqJKqHDLd2OCxxx/ht/6jXyIER5jfQskWbTPIhNSZedpH5EwQgnf2b7C7d4Xnn/plUkp8+qO/3Fdn/38DETgfxOR0Plg/xcCLdWaw8hbpAxxOZ5W1os0q/j8Xf65BEkKsnJbfExCfHK33wIliPGuUJ84sffbvD+dYB/bvTXLX0q1rfsYptOR0HuF8s2kNV1l7QJyofnF+Xk8Tg1UnYr0v8rRrsIY0rXklctWRFlIidd+dhT4xiMmTcgPpkBxvAAMigpQkOUZiiiQ0QhXQvktqI5hjpLYrf7ILDFXFshNI0WGZsnHpafwvvsLx4gjdfgU5tci2JLtEh2Y2M/jDiLn0Pm62XyJPHVefqNi8PAU+ihBjUjxEpLcQvIk09SoynyHSfVAerZ9ia+9prl2V/Nkf/CGX/94e/x97bxYrW3qe5z3/tKYa9nT2mfv0Od1NsbvFJilSUjiIVDRQjmzHUAaDsp0oUi4kCHCUGA6CIIYvlMCBb2IgUSDEiJUYGQybVkRrlizR1GCJpKgmm6TY7GZPp0/3GfdU4xr+MRerqvY+FBMwiQOTTP6LvWtXrVpVe/1rrf97v+/93vdBXmJHniwt2OoMO7sjtqtA2Cr5Nln2fgzRI5QkRY1LDmc1bVPzxp3bvPLqqywWCzgLfE8nenOv8vEUqK3lYtdzsAGA67cKcSZB8s0/viZwcOfuku1CMxpHLu4PUDHQtoGj5Zx0UZBtl+wbuJRr7BN73HzhgDhfILGUhcKEwP52yeHdBW7pmYW2zz6riFs0iDyjrT3GeITzZCmwP1JMm47Od1y7aKiyyMkJeAu7lyquXa8I8wl3XzlkVwouDFr29m9QFtfQ4YT58g43D1/g4PhWP5lSYLTA3jwizyRZKXB1YtkKLjy9R33ocSkgnWA0Mly/vssTl66zfOMOB3dfQVdbaN0i0QgMPraU3nN+b0gmO6YHjlmnSPmQIpWIRnDvwQnDqkZISecDg6JkVi/JlKTIDUVR9hn4tmYxWaCkw0+WbF8+Rz4a4YNEq0QnBkznS4ZZr1MsVjKLhQnM555sEPAuYYPDRYFnABIW9SFu2pCQlEOJyHJiNsAtWoiRoEzvntpZYucZbxWk0nC3t2lmONSc2xqS7QzZu3QJZy22duQkpOuw/oh2PiPmIy5cuIhfLgjOooxGl6PegVfUICq8EERpKHJFZnp/BKUSxmhUlqHRhM7jYsf5vS2igjZIUIbBaEAiZz5fMBgXOAuu60gCqvNbZGQo+4B6ZnG+RgtFWeYEaZi1lnJYUIwqZOhQ0RN8pGtaUjlkPFIQPU3T0nWeYBM6KziZLhkM+nJlaz1eaKrRFqHtM7HBN3S1pbOeXAnO7QzRSjEqDBBIOhGk7GVC3RL8EqWgzHOiUnT1gkW7xNmuX+BNTso0ZAWdj7gOpAq0NqHzgtHWLlt7u7z8+hsUqjdoa5Y13kWyYIjLCV84XDDeG9Bd3mO0fYELZohShugzUvMKsvgBTHtAuzyiaSCIDLc45sUXas69dYf9/XejtCa1zxOKjCxN6Bb3cDyNKc6j7X385H/m/d+V84U/XvLP/t4RT75XsbslmNxKqHuW/+pvVRw+19I1NzmZLpm80HDuNugtTQyfQ6kP4ZevI9yLGLNA5FuAQOgTCKHnysohO1tP8Tf/6qP86v/yHOP37fH2t92gPqmZ33uNd33oEml/wf7g3ZRyi+AXTIUjN0MOFw3XsgXDvcsc+QyEolSCIvZALwno6rZPwklF8gllDElohJb4tiYKjVQSnSQ+9RWFkGnEYIAJAp1JrI90C0c3seiBRvf6vUgnqC5fZL5YsLO9B9KAkPimxYaOGsFsNqPuPCJGBplhUOaYXAJ9P4BIEW0G5AMNbkGRFQhdYbsGsgEyRprljEVboIShqyNBNJSF7ntwtCZqzd27vdCDymRvPyE1KVoSsLUzJIQO5ztKBbvbxeZ+n2LqaVewoZ0ocbY5U/TVslWwFPy6eXWdkV4ttGHVcBziwzyZ1ZArWkpaafQLCd57AOaT5YZbvVYPufXaXaTSFHlOWZacP7/D933vt1NlnoPDl/nMFz/FyfExoJBKUhnJOGwzHJZM84yQNM4rlFLk2Uq15esGGJyOs0HKhgjPmTBciFXvR9rQTDYYDB4KXjbYQoozQU6/t3T2ibMZb9FnrlNKfRWY083EhnsvVpWESEpfX8fv/8746v4Bp5WRhxScxNqjAPos/wpQrN57Fuxu6EpnXj+lGPXRZ+LM3Gy+AKf7PIlyhT4AACAASURBVAOc11QipQ3KaFCKSKILFvCnFTh/C6Hfg3L3cJ0lRElMAt8tODnoGF8ek5dPIMME4pQkNZoa350Q5Q0ynZGaZzHpd3jkkYqDuzXP//Jnefx7tokLi5tF9CDw4R99jPrN+xTuZSZHrxHunVAGhcxzSK8Cbyd0b6LFPYTyILd7Opw8gNisQO6AK+ev8gPvG/Abv3Gb4dMjrl96hIP7B5QycWF3hKgcA3MNI3Kcr3uzUAQ+JkbCkw1GLIKkyEfkg4JEpLPdQ7h3k3xYNxpvqEJ/+lw4CwjWI4ZIXM3k+hr4Zh5fEzh49C07XL+2RTOdUjdw+dIW06njeLpgXi9RBGSWMwkzti7ucfGJ8/i6QcVEU0fuH7WkQjJvOvYvbqO1RKiAMYLxIEeNCuJWhRSBWdOXwEcG7t9bMl82DHdzrj1a8MRjJfjI0kaO5h1bdOwUiskbN/lMc8DuIy/x2KU9RsNzvDF7AzOAPFdEIZCqT2Tfvi3QJUgj0DlkJpEtG+YW6oMZu+cqsqSI02NmmaSqDKPtHZJv0MGxnLYcHkwYFgUHUdLVCxKOoiqQo4wsz6ktjISjEBHotb2HhWZna0x7dMhElehWMygjVTnClHsM0dSLCfuPZHSuYTGxJFmCyshwKGmYTma46BApkAtJNTTIzKHsnKIaE0QiWQfKMF+0kCJFrui/RWTZthjfga44uT1l+8IWeVYSyZDa0daWwXBAE2bI8Zg8LylKQ24kultydO+E2rYMc0MpJURBPj7PeGdErg3be/sk1+BdSzka0C6XNI1BtDVCCIw0hBA5ObmLTJFivE2mBdGtGqmNhmDIdiryLGfoLJHQNzWISAoW7QwiBKQWeGHo6g7t59x9cIfxwOBaiXUSmVWU2wUXL+0S2hm10uR5hdaKxWxBt5zSnbyGNgXOJaIqyMoR+Vgxn7Xsn9vn6HCK8xHrPPVyAZOWS7tjxpe2SbGlm8xxswXh5IDjWQ2ZwugKlWuQgtZZTmYTZpMpg60BQWhAIWNCBUc3X6DKASYz5IUmCUETEilleOYwb9B5jg+Jk+M5k6kl+X42b987ohiU5EUGszlKnFBcPsc5bzl34TLl9kWiKoipxag95OBb+sWsvMxo+K2MpKFrP8+9w8jbP6C589wf808/+htU+wXf8+G34NS/xva56zz7sf+Gwd5tyuEtWHyOu1/s+Cd/reGH/hxc+37Br/ymhxcS71Lw60toXvF859+8gH39kA+WlrddEXz29wP2wGMeO09nv4TIrqD1ByEWJPcmQt6CEbC9A3KLxIh7d17mh37gL5N1ksMXf4R7dz/BY49d4a3PfAAnt9hzgmpZc69t2Mo6tFA8cJrLuyXODLk7bRGFYTDQDMu+Uum7vvJnConrLK5rAI9KfZ+Pqxu8bxGiD8xi7IFiV1u6AGZU9iDWCY6PFphyRHCWKiSyskIMJCkKRns7TF9/HTcy7KdzNL5v6q0MzN98QJ7lNM6jtMYMSsywItgl2CVB51hryfDkWhPUHklscfzgiHa2wEVPkAmXNMvJCYOtAdXuHmQZrV3QdDMKFaiUpRpVZOMdpApE62i7xLJZsn9ui2XT0cWO+bwmxog7k/lVWm4yyr3LtiCEM/SSmIgrQz5gQ4EJa+UiANLG/yzBQ3KoXy3JLGUfiIXQN9OaTG7MwJzrAYMUUA0kWvbUqLt3b/Lrv/pRiO/HqRmf/8zLHB/XICVZoSmKnHHxKFUxxuQn3Lj4NI9feRv/cslD/ydDfLUg9eE/5JoCIVWvt76hQpwGP18Zq6+znXLlVN8/lwipBxib3cvTRkspe2qilPIUqGyA1JqCtPna3/DjlJ718Hm6abReZe9PKzCnoG1dXPjK8XC9YLOb/vcKrKV0us3pLlZGn6KnlwkhiUBelCil+/6kIiMblKSuofEdNggyEcmlRMgRQl8DAsKcpyjGpFTj3AHRwMWRYvL6H/LC7/wKV5+6xPnHn0LIp8mzEW++/POUO0uE+n3C/DVOXjrh4JMHPPV+yda/mvMHP3/Mo61DucjdKHj826dc+TfeQ3fni7xn6Dg0guXMEuoOMd7FhzvI7AYiRUi3IN4D8QZkQPE4iAtAyZc+/yn+h//+Zxl3GbMHP87s+BNcvfZ2zOgqSRhyl8DVnKSOLeNxwYDIGBSaqDJqGxFaU5WKH/mRf5enn3qSn/qp/4C2aXDO0bYt3vuNoMJ6vvt728PGaBtPESHP5DTSmlG5AuNff0mFf9HjawIHbTvDR40uJFELTpYWk2dceHQPGyPNsqM9nnBYaLKq7V1qPVjn8NaiVYAkGFYVgUQpI4VICA/z1mPkgqIyLOcNy9rRIXBRM5vWHE89ISaMBDkw2ATHTeTll0/Y35Vc3TcczeHmcYd6o2b+LceUe2/y4p0FzckJf/KZY6KLSC1QlWT3mubgyw1xGkheMLMtIkwIUnN+r2BvxzCQAT+dcegie6MRxW4ABLOTKc2iQUuDKUZss0AnT0OOTAnpAl1bk0xFmynmXQ3OMSpLtgcF7fEBOgjGuWJpA60MCN1r3BdGkAaSZZIYUyF9pKtrmsUUNGztXUJUFVlqe85eUiQBg3HFYJCzXHS0zuG9p10cQ6wYiYx8awCyXwh8DEhZYDuHGlQsGshygdYZjUs4ImExQeUJJT3JtXg8OZo37t3H+ozR9pjd4QAT+2ZKYQyujajM0WqJTBlCgF8sIERm0wdEyYoTLXH0Chl5WbJcLiB4cinJtO750NogZEFre0ygBEjnSVqzNx705VEVkL4jWoewkVznaFNwfDQl5QUmL8hNoBCO5BZMjhtS7F2WTSEwVclgWDBZtkidoxVkRU4xNChdMqgKTo6m7G1vM1+0RFdjVIkP4ILD1oEsetQqaMlNTjVUpGybEBtC6nscls2SFFoQEJIgpX57j8QnQdSawbAgJo9LDr/qYwgobBdRMqMaDxEmY2kdzXJBCpDlBTE55gdT2kxjqpK2tVy9/ji360B2B7IqsVsqhMgJsSamKcaM6BYPIB6hTAFyl6uPfBfR/S6842kuvnXKy5+7w0f+iz/mB//1e9x+/N/jLd/2b/OJn/3v+GfPPs9WGfgL71M89mGBvp8YPF3w779Xkm4GeM7xZCkx2znFaI/w8SVUkb2nMj7w0yVpYSGO0PNPIXKNSAek7jWEbMBEyP8sAkuKc2KyaPE8H3jPu/iPfvrv8masEfVtClOQ5A73D0/YH0pu371HHO/hZIYUFdVoG51rFlozNRkXpaSSoGSfOZe5waeIs5JAQKiIQpBCR5ISWZbQhZ4TLCRKQttYZocdS+sockEbWhoLxd4Ork1UKrCc1XRdjlQa33XYWU3sCo4nBwhhkYMt9HCPKGG0LTk8PGZQSKRMCKXpApRVRXKeRRtJXuE6i8VhxiMOX3kdmRVoNIWSBAVG5gwvDWF7F71o0QREpkm6IsmcfHtMLCboLMOTs4w1liUyz3hwNOHChRK77JvuooTW2s39vg/Q+8cxJWJYK7bwUBAUVypGcJoIPUuNkVIi0qnh2amh18pIe/XXOuBc84Ol7GVO19uH2HsuSCHoWksIAdU6lnVHvVxyMjvmwdGCJx4v6Jq+fycrDPko46h9nfu330C0lktbV7i0++gpqPk6C2vF+kdaZ6e/yjZC9OIMPqwM5U7pX+u9rHtEgE2Qv3qFdZNl4mFq2LrxdRMjx7j5HmsKxtniz2kVQ35T9BsIAXLl0L2m/pyN+tc/+yLMGcCQVspO6XT+zhrX/WnUcAZUrJ9KcRV4CuRKJW4NyNYVOuh7FcphRTEcoEzWVzerAYe1ZZzlaLMCfnQksUDK67juATLWIBRS7TAa7ZDiS2w/8gzfdmnBq5/9EievfYzrb3uT2fb3cuGRP8PzP/+fcHL7gCtXNI/eyLj4wQI5D5hnLvKhn5KIN2akqeWGyVCDbaR5C+Ll5+GqZvdbL7OlWdHdSmT3PCLLILwB8RDEEpQC/QNAA2lJjEu2tyTf+71/jvd8719kLgPaPYrJxlgn6doGETq60CKrMQGN1DlS5wgtsEIyD5F9AWoFbN/97nfxkY/8Y37ix3+cV1979QyIPkvpWs/swz0zMayrdus6wXpLcVqK+/8AtehrAgfTznNQ92gxzwLjcUa7cCAErvW4ZYf0jmJccO/2MVujEpP1Wt1CaXYqQRSJaDQmeEzs+fFt62m7QD4sOZp3ffkskygXcZMG6SK4gIgK3waEVkStyKVgODDYpWVeSRobmS0DSbQ8O5lz7ekxKcGD+zVHhw5CQirItxWT2w3Jxt7RNUh0IfBLx9Zlw/KFY8S5krBVYLZKdkcZsTnCzTvs3CKlYlRo8ALtppitAmP7CzkE27uuxgzXzVmmvD+RrCfogI0gApyrCrzKKI3Fh46uiQgMWZ5orEOagthZ2sZS17Zv3pWSed3S2QaZHLmM5Eowm1m2t3ZpFksWTaRpO5ztSD5x4dw5Jic1vo64BDLTFGVOiArbWZbWYkNNbnOKvMRIzdTO0UawvbtPM1tiW4eIAicSyVpMVpHpjDwrKYwhyRKrK9x8QUwa23pUDCgRkaKXIh2MK6z3dJ0npoDODEGAUhFlXa/xHiI+BOrWMdwZUJQDQt3RLGuibcmVYrxbgTE0bkHrEyn2aiiZou9PyAsy3+K9Q3lJVhaU2mM7izIS1wpIEZEc0SWQEmcjArspD4PGesvWaMi5rRHzqacRYExGEoKurnt348mcxtcYESmKAmVgUJSIAtpYYJ2jcx1d12G7hiozZEqQpCLQf1+vSoSONAGGZYVIvaJQRBM7z3BoiLKgC/255WzELRuEKoi+QxCIPuCEREnN1sUR5y9dYLIMpLJEmECSHqcyMlGg9A5SHKOLsqcZhUgIhsDzGKkZ7r8XwQnPbL3I3mXLr/3WXZ6Rf4LN32Sh7vL4VXj79Zyd914ge/RHSY1A7UWEfpN0fkl6ekAlRojiA6TxIWbwdzj6/Es0L1rG71XsvMsQ6j8EWcCXD0jM4UKCIgf1KCmUhMlLJH/E0Z2X+PynX+Sp7/gQ58+NyNqaQ0a8dqvlwd27nB8mnp20WDXkhh5SCoWRGcIIDpNBa8FbSsNQaTK1supa3cwTEJztAystiNaRokdmBQKPEImQIIZEtIFmNqPuOkyRYb3H24QIQFeTRYntLD56Ytdnb33b4o1aVbA6fGcJixPU3LG1O0bIyO7WiLbVeN/hg6NpHEKW5MIggu25w0IQg6Q5mXN4cMxgawcdba8ak2cELZl1NVup7hWXZCAzBpVlJBXJ88RsPmU+q0nUeNuSYkdrPcG2TKeOqCV5LihEn6Vfj4f41mcW0zUdQp4JgPpgXqyC99V1tHbi/SrAYH2l9e89Q0U6E+L21QlI634EVgFS6hV58BGlJXkuKQo4OT7h4N6cFDPIMoTQjMdj3vLY25hPFqTQEn2gl9zsZSI30pJfV5GtOAUInOU6P5x/9t6vXkubAFRKuaFxrb0L1s3268bKEOOmR+GhTz1zDNb75czxWYMD0sMw5GwT99fTUfx/Os5mi9fmWXAGOHFaNetP9zXgSqf8oc0x/Yq2VXEmED3b/AobgLYGCimtzAVFP6dZXjLY2qEYVhRlwZUbNzh3/QkOYqBMjigyolBI1k6Uc5SuSClA6pWmAveRwpAN34ZIxzz+7siDO6/w4muvc/n66wRziy6LPPbYgP1r2xTXn0QOvht8Qgw1StyHMoHPQA5BXetFOYqPM//cAeJcS/5YRXZ+G9wfI+QA7rwIlScVWW+8Ka5Dyon154Elx7e/zOLwIlduvI/t8YDMz1gy4O79lugihY4sRQRTsi8zZFxTthJ1lCAjF8reUV6tql+vvfYaP/MzP8N8PieE0LvAbwBCn9Q421C/HmkjA9zfJ+KZxuOzfTZrQYZv5vE1gYNu1rKYNCglKbRkYAyHiyXGF2glyYqcGCRaSJouoUeJ5Cy+c3gfyArFYFBR06JtQsiIc57ZtMWGRD3UhBgoC4GWgmUXmMxbMqPY2xYMxjlaSdqFp46ecpSxey7n5Hbb69+HgEoR7yOTuWd4tMQbydGBYz4PIHqwakrJyS1LtWUwA4WMkryQxC7SzSwXHxuymDqaWYtVgnaWYyqBrSNG674BKPUNbMpIbOuYz1vKQhKtpWscMXpS3l/kpYAuRVxnaZaGQkrkjiFFgdEGTQKZUCKAygkhoVKkayy27aUVs2pILiPOKLK8oOskwVlSDBjdL5jT6RyPASKJgLMe285IyfWNrtL06kWmv9nMg6V1lsY5XEoIqRiWOfvnRujBgNH2CG8DzvUBqF00yCTYPneO7e0xwzLr5T1DQPqIzjNiSigkREeKAVlmKFXgYsLkOSHUeB/QSkHyvZJA1xJcIiaJRxJTr/QiZUvwDmctOIfMeufipQ3oPEfHgPcgpKLKC46PlyRTENBAQMoEwVFPJ5i8IlOSpARSJmJwOOfwgM4zpEh4m6iblqbzKFFw3Dmu7O8hY4dMvWOiziQ6aYpc450jRoXWCiVARE/oWqzv8BIWy45l09O6FD1tSjgNSpOSwPlE6xLORZKLdASIPYUqCkUikBUVC9srWSWlQWtMCTIKUtLkGXTLgHUS0UrUsOLozhHTOnDl6hWMLMhVjhIaJXdB7yHEFiqeIHxLjAqBp53fJWRPEOIBcEgx2ObGO3+Id9Zv4tJL3P3jl3lssOTSewZc+9bLZE98J3LnMZJ/CepDwj9/ExqHeOs1xMXHSL/zO/DB70RcqsianOm9wPO/47nWSq5/zy3ciwotLHIbpNgG8wxh+TL+pWdpTt4gVR1HneRQR566Lvgf/9df5OJuzbhIRC/JdIbQA4bFDvnWLqM8p1QGpwwnRiMzzZXKsJuZjZHVmnYRU297z0qtUmmF0BnR9rQ1FwJC9WIB0Xq6ZY21Pbg0WhJUjkASOovC09aWzicynRArMRGhFXXnmC87VHBIH7DOYRtLDI69vS2MMfjoEMKiV5l719UsvKQ0fZCgM00MkcnhlMaBqTuyYY5UiojGJYWQBW7WkOWQcg3KgBIIGVGlwVRDVDPFNjWSSFYUHJ0skEJgrSOhUUqgpECekbCMKaG+StlcrrLZa3BwSh9ah66rQHXVFxVi77y9XmA3e1ttvwm2VryX04z0Soc8ni7Ka/391TuIIdK1jsmkpnOeEAMnJ4lqR1MMBKNBxeXz1/jiC5/l8vm3wo7i3M4lMpPz9RzKPkxX+IrjlthIwq5fBU555mLVAptSTx9aTctpsHl6PMXquU11ZtVbcHbKe1+YUxpSb3R3Jthdv///iFfzDTTW3gJ9q4GAtGr23vQbnDECTNDbBgr+lAnc+nifoV1tMs/r6ySt9rlW0VnTlDhNTG+y2avqjTam18hWBlOOGe2fY+/qDU4Oj7Ghr3ooIRFCIylBDhEUyDRdVf4kpEjwC6K8QEyHCDGl2HqUfXWFZO4TeY3pzc9z+RzsX7hCdeGtyO13ILLHSOkedIekz9+E7V3E/g0Qu6TXPg1v/R7kxfeg02eZHz9g9sWacZOx9dhNwl2PyjxC5CD2QFwi2QPCwR/g6tcRA8HCGWK5zWgY+PgnPsulHUeVSaRXCKlRKseYEl2UZLJXDWqFogNkiuyajCrTiFWK49N/9Ef8wkd/gd/73d+j7Vqcc331McbNvearuhufqXiuzgoS/ky1YT3X8aF5/WYdXxM40C5A67ASvJYIZ3Bth3OSwbCgKHOEKVBKkKmIUeCDx3cdrnUYkWEGFbkCWk8Sfena+0T0idm0oywF0Um8C3gb+mbTgeolAwcGGRPzhWW6cKhcMxhI6lVpHpHIZI+uTSE4Oe5YhMThA0vbJKQGnfcX++IgoHOFlqJXJQmR0CUWhx3Xv2NM2wSSS7gYmc0adkzBzM05vztGyUgMgSQUQWpmhxN844leEa2naRwhOYRTZFXCKIMQK/UOFxCZoO46MCBkryAiiH05M0EKkGLAt5YUIsZkKGPIVKIcFJjSsFzW2MUSEyyZMSxmS1rrkBqU6lWJuuQ4OT6kGuSUpUFkvWmSkgkbIyiHkgFjJMYItI4oGdjf3yEUFSFGTJFThAjeIRxkxYDx9jajcYkRkWhtXyGwDTKpVTkvEumb1JTOiUJhbW+8lGUJpR3CaIJ1fRNW1/UVHGmQOqcos75ZeFkTYyDG3sFWGInMNLGzSJEwos+CBSJCCQKBLkDdBjIlUYD3lug78iwnUwmRC3wMdF3DclEjhKEoDCIGXBdXlQ2HkYloW9pBges6nLV4B0IpRqUkrwzTeUdcZReUSAgSXbukDoFkBMulpbUBqQSZFDQuEG0HOvXUJLdq5Av9Qt85R3C+X19lom48gwqsdQShUFKhsxydGdJiiU8CtEGaHNtEFouO2p0wP57RdZaxGvCO3R3MxX2MACXGeHUVKJDyBKQn0RvNKQra5RRrX0LlghQuUehrvO/738UXPve3eeU3T3jvM5Er79rGPHEeke9B9xzx5NOk1+8R/uCINFFwf0raH6Ne/EUOc8vw8luJytF0rzB51SN+z1FenHLrt1oeff8W+4+ch3CZ9ssZh3fvkX3phLSjme4WPBjuUzz1NFd3JP/o1/45r48UN85lXLg44PL5c5jxNlvFFsNBhkiJmCmczkkqY6fIOV/0wOC02bVfiGP0hOhB9e6+QmuUMXgl8d7hbUDJPjCIMfX+BlKSZb2akNYGYxRBC0TyLIMjREFmJEIrXASfQq/IZfoKRW40SUiaxnN075DBsGJQapB934zShigTk8mCaZNwpSbPFIXpdccXDkxRMhzljM/t4q1lWVuCC+wMR3Sz416SOEms8xAiUgSygaEYb9Mu5oTG9/dGY0gyIYWitR0xRLJCo4zAuzNL3SrYOxu8r7PXrIOndcZ43XTZF+bYkCnOvL5RJGJdkj9brF+9Z5Ml/2o0jP45KdcBWq+c1NQW5z0jH9BFLxkttSQrDINhxXiww7Of+zh/5d/6q5S65OLeNXKTnwZpnKmIfL2NNYBaRfin8oqrX2tqEGxkTh9SkDrz3tN5/MqPWFd/4p86Dn0lSG4qO2fn52Eln4e+1jfuOAukOAVpD0tbsjkXBT3d7UwyeeMr8fCOHiYmsboOThW7Nh+4om6tmp1XWe3+I+WKRqTIBmOK7X30cI8ulbzxyvPcfOkBN8YjZCFRCIQoiOwgMAhxgujFz0kpIpLC2xkh3kaZDNtukxf7PPL4dQ4f/BIHn3qNJ58pyB+5iBxdBZlB+AI0XyYd3iF9+TZsnyceWRD7sPwEtR5TXf4eYryPnU9pDxcQZ6jqHg+eO+Tqe54hM5dI7Q5+3tLObqIOb8J4xEKOsNVViu1rFClw+84rtLVkSzn2Lu5QjvdQZkCmCzLdA7ig5apCIiiEYJiZleoYvPjCi/zSL/8SH/3oR5nP5/0hX1e9vqIUtxZCWIO5h4hG63neXIdnrrmv13vGv+DxNYGD8VbBuDRMpg0nMTLMNLnRHM1bvA3IvSF7O1vIUlLPW0KKGC1RWmFFIHWB5dGUQRFZzhzBCbSRjEc5TRuYHrfkO4bDmaXpHELBaL8kRMd0YpHRkwWQPQeF+f0Foz3Nzk5Grj2zLuF8giKRV5KDuzV3TwInJ5GQIroQqEJi54FYJ2a3LTrrG31SCr2MpYI7NydIlxhUBbJUtM7iOs3htKZIke1hROqSLmjaeeTe3QkXRhWTE9dnwgUEIbCHC4Z7IHIwWlPmiqLsm1ge3HnAzoU9gszwrQUhKHeGveGRB0FEAdnaAMXVRFkwLHJMMaRQmqAFrqlpOs+9O3fZO7+PTxGQvZKB0UyOp+zuVT0okhEpI0oZbIDxIJIBIi8p8hwtFN4JtIR2OWXWWozO2d4aIVNAxDFeZiSg7hpyERAhYZMmyCX14THjvW0QEZTvew6S6ANuVK8vXxQYVWBDJNoOIxImCYRUYDJkmfeqVZ1CuNDfILUkommTYLGc4ZsGbxckD846ll2HEy1FlTO/M2WysIxKhdB9kqUoM1AWIQuyAnzdsZxPOTycsTvaRmeml4sLnmQjwcOsPeZiqTi+e5fWaRYLT91FqtxQ7SgyBY10+M6BzJGmwuhE6DqIAYEizxQJcCGiJQwGObYLSNHLr6XkGQ8KovAkI5G5xLc5wSWCC0wnDq+b3sxOKRAJpQIyTyxDIIga22i0Tihlmc0WNJMJIpbEesndz97i2qjgbW+5xAWjiSLh5bcg06tIfR6RKogzaB2j7aexd34Oaa4wGD+Fn9bc/vLH2H/fj/HEpT0+cyeQflCir2Yg5sTFr+Ae3CK+0MEnIiIUpGhwv/oy7Zu32fpvv5Pnf+6Xedtf+zvcXe7z4Ph1nnxv4OCTno//Twt+9zX44SuO6pFdXLvHzZ/9h7yxVNy4qrnwvn3u5hc44h08celDGCI/9SMdv/RFzYmUjHO4anYp95+h8705X14WzExC5ZIni5zzec6a6NBXC/rMdfSe4C3eW1IKyEwjVe/XkVKvfBGT7Z2MhSRKg8gGZKLBG4WUCUVC5xo51CzuHzEYZ4jJAqUHqFwQnKdbtpTjjJ3dHe7faigHBaUsCdOO26++wcEbd+Bi38gslO77S2xk6QtSauisBaFIQpKiRBnF/niLa0/skJVjDm4fECYThA+cuzTiJCoKLQjJUS8bvLNk0mNMZLC3y/TuqtMnJVKUlHl/UE5mlpAEwxihlDj/sPnVWWqFWFcCQloZ6q6O8KqJOIbe1yNtgvy0MR5itd1a0nTD/d182ObHKmu7/uAz3O5V5Ucp2ZvLxlVVQURUFAjRV4SKkWa8NWSwVWGqXqyATvAtV95BVQ422vHrhX79v349jY007Jrnf5ZPdHa7M7/X2XwlV2p2Z/oDzgKGh1yMV8FoT4kNm2D0bAVgXfk5y2namNltAOMavH1jw4O06ms5paI//P+cAt2z58tpz82qPIMQq8rAmfdv6ELr836zLRv60HofaXMo+/VcbLRvswAAIABJREFUiN7LRmpDnhl2r16j2LtA3Vhu3TrGFJf4lY9+ksev7rI7vEChISKJ7CM4RMhdhGpIqesr4GZImP9ThL5Bnl+jOb5Jm2aU+0+yO9ji1VvHyO+7jqhKUroD7XOE+ZfhaAJfamHnGpwcEj7/R0R7Dv2j7+H+b32Ea3/lZzi8r9GVZvf6gPr1BV/+g7t84dXEn39aMK4eoXnjFpPnPkbTGXbP54ze9hiH7UWy4p2My+uY6Pnz3x159k3Jl1+/ybftCHb0FrLaJwSP9Q0mz6mlodKKsTYUZxyij46O+Xs/93P89m//NvP5fKN8tm4gXs8jq3vW5ryXksSprO+6ryeldLo+rJ4PIWyuna9mmPfNNL4mcGBtpCgN+6XiaNGybALVqCIvA3ZpaU5mPOgcTzy6gx1q2uMlUiaMFpTjnoJC8PgU2N41vbGW8+REjJHITDFSEZQkH5VEJWmayGTmsDYitUOLxEAmfKlofGR2t0GMMzITUaJvuJ0deY6XEtsmTo4CVoC5oMhzQX3f0x0FciMRMaFSr1hErsD0PQ17VwYcvzxnOWvAOWYPPOIdEt/2ZWxUL2H44HDOcacYS0O3jFS57EEBILQhG2mSA2EUyUU8DbWwKFEwHI8xKsO6QAiOEDztUb9Q58WQiOvNsVygMorze2OWdYOfzfHWo0wGosT7jq5p2Tt3jqHujZUSkeATjbAU5RiTEvXxBO8sSUpUVVFVAwxg8QyGCpNlONcDodv3j/C2RuQFSS3JqgGj4R7BC+ZJgTF03uIT6KQQyTAYj2lmJ0wmh5w7f4GiyGnrhhA6siLnZDIhz0cINK4N1G2HzDIWR8eoaMnUkM7Col1AkTMY7rG9e57DZoauZyQfCMIwm8xoJg2D7SG6khRZBlL2ClouskiaqBNmVJINK4SQOKBrPDrNkdqwmDsW04BfOKZ+SlnlCDnA1w31rGVZ942othyyXCxJHkTUDDLNUDsW8zlhZmAwxDvPpOlwrubqpXGvJEHCC3C0ECIiSqrhkKQCk3pOZSTloCRLEKJBJ0tSgSrrnbJnXUvdNAz2RkRbY71GKksKDS4YuqZ3T86rktTVTE7m1IuaEC3VrsbOPCk4wvxNfvGTnyZcu8B/9mffxjjNMEzpuIKJL6BkIKv2iGbJ9M4/YOeRvwRIpge/gcpKHv/gv8mX7v0tdj77aX7sPxdIEsk1CHlI9ydv8urPOEohKO4lxk925MahFZj3eSb/6ON88Kf/U547+gjbT57jxuMf5v7v/wPy1vNffyLxl//jMWGs+NTHv8gXv/Q5PvoFya9+5BEoJDZ/P0+a7yPGHD3/PZifY+/pH+Y/fMc2SRgWPvLK8ZRf/5PX+PbKcHLlBrEouFFmPJIZBkpuSsukvjoZfCB6RwotzgWkEEThEaZXbhH0bt7J9xk7mSmk0AiXsHiis+iqwmiB1n1mLqxAqe06hFDY+YRSDqjKHKkNuquxi0g23MJJCKFG5x03ntxmPm24+dJtdsYluhgRZUkXYDFbYllydWeIlhlFNcIUmsJYtitNezzBxWOMhwt7W2RlSbWTo8SIumswq2qJkoLKSLQK2K6lGFa8caumrqcUhcLPG24fz9gaGBAa2/YVpC6cLnRr+tA6U3pW2WOjzb7OtK4ybyF8Bb2CFc1q9aB3QV5nY9evr+le/d8bbjcgZA8GYJXFVqvFffV4kxfvRdN4x79ymRdfPOJd7/4AovB87vk/4tav/30ePf8YeZafUgXWAdiZz1tXEf5lDwEbNaKzz27YKGcC8A3FZV1Z4Az15xTZbbboH5ytDHxl9Wa1ZVoBCaXOUJVWmdZN4edU0nP1wX+6LPENNs5+/TWG+mqN2xvgximAO9vcKoTsT9I1bhBrczTO0OYewlubCsE6Q92DYUESve8Pqa9Cts5xcnCPUXJIBUEMkaWG5ha//KXXEMOc91weYrBIWjw76HRrRSs2RDelq5+l2P5BUoJ2/kuUO+8m6DGz+f9GefBx3v8TlyG2iDQjNTexN19k/okTDAZ1J1K86wjpE3I/J+y0uM8d8fi/8ze4dfJPuPTOvwCTS9Svfgy7SPzj5zr+4k89TeNmHH3uN/nCC3PuzSp+/CeeAS0J6gNc234G4Q8Q9hUI21Tn3s33ny/g3e+nDoE3JwuODhdcyjWh2gFtuGQM1aq/YHXYiDHykz/5k3zmM59hPp8T170D9PcRpTRnm+qt6wUYziY40hklo+DDKZI4M++n98L/X8oUgJ3McHk8IJWC4RZkvmCyqCmKjK3dDBkjQSSGW73D8H0XSF1LLhOaSNc5OqXJZS8nOJn3ihODQlEMc6bzhG8SVZY4OPAcNYFYKsZjyfReR56gGmrGO4o9IZh1kRffbBilwMmBxa5cZwV9d//ueclk2lM+nI+000hoEsEluiZglCAGkEFQZIKLOznzNvDyJw8RIZFVGSjB4GLBK88dIirNfB4oc0teZJgiQ0dF6w3NbEGTa4ROYASZSGRG8uBeg1YdWa4phzkDJHnmUOMBSSpS1zCocpIoOal7mko9P2YwGDHcLkmdJ7nAdDpH0xFDAmcJWdn/lyExyAzl1jnqyT1cO0MrQ6ELhiYnJkvTZWSDbaRb4lqLWzjm3ZQ6ZMQQmL95jGOGTYoYEpcGhv1HLuO6luWsobEdxi8Ybg+4ONrhwdGSmGVUucToCLHm/usHOCRZZqidR+cVsRhTL+eURpMPK6IyBNLK6TfQNA2kjnL3PE29oBMBZIaShiQVd+7cJChDmUmksvjmAPSIan+AMRW5KVguazrfEZLmsScuMnvuBZZlhlaKtra0taUYCIbZmHK4j1Ee7+b4ylKGwP3DJfMHDVsXBA5FlWfsl7CzN+buomPZepQaELSiaS0H05pHLwzRRUVuNGarItJnaH1qQGRMJnPIDZ3SkEtK0zHYzlgsWka7O3Q+UCApc8PCSbZLj1WS5BwqaYq8QKuM0fkh80XNbNqhs4KEROuMajDk4O59isqQFTtIoZFIOhcZvvVbSFs3GFzqePCpQ+qXXuQLv/krfOy7r/BD1SGk36Ph/Sx5HO3uoewbBN+gd97O4sGM2N2m3HqKcjQjC/+Qd176MY5ufZL6C5HymkRWM+zrsPj7joGH839DI4RGfyrAswG3TMy+1FD98IBU/gnveMuToL4dIZ9g9Nhfwn7or/MLLx3w5d865sJ3lLjHS7JrV/nwf/kTVMUnSOkuJlwki/c4uf0qn/vdX+SXny3563/7nVzafppMGbZV4qntjK13P44sdjinM4yAaQhMQqAQay5pop4tQemVpLUneE/0HoGl38KQSITQ4lqHjwld5kih0CKRG4tOiuNOYKIHC4mcsKJM1o3FFBnedaR8i6gLiixntL0DNvDGzXsU6oQkSoxSVGWONord7cgdd8wgCyAtUWuyssSMzpFmEp0iOgGLOa72qGTxFrLlIcuyorOKYAN66ZDZgCzPsM4S2npVpczJRMTjODo44cG9B9hlg583TGaBVkjyKkcowYVSITW0CebL8NA9X0nZU68EWBs2bKBTF12F0RIRThU9ViFUDwoeqj6cNlZy5vkNueeUOYQAtOpVW8Tp2k+IfR9EjKnvkVC95OpwaHjiyV20gRQCtrbgA7Zx4CR/5rs+jFZmRZERD/Pt/6+ulv8vj3UDrJRrHXV4CLikPgu9DmJO37fqE5Gn4Osslehs2H62wVIJ2ZtfpRUAWIO0r6gwbD588yXWf4qHt/0GHxvQCg+dIxszP3H2vD5VfVoDOLGhq/T7+Wo9O2vAsAYWayWptFL+Om1+PQVfKcXV/cthp1OWCYIEkdXceNeTqOxJ3vjDz/LCSPDI+ae5rmfAq3jeiuMKyh8g4qKnFeXXccuG6B+QD74brd8gkzOK4ftoF7+G+9/Ze+9Y27L7vu+z2m5nn3Lbu/e+OvOm8c1wKofSkBZNUsWRaFmR4JLYshMgiB04RpA/HCFRAAMW8oeBxDICxA6cALGTGDakyBYjyLYUqlGdbTgUOSSnvXnz+nv33XbK7qvkj31ueZQd0EYCDIUs4OKWU/a5a6299698y+0Gs5Hi7S3cO3vYrx0SaUn6w6sIlyO/MYP7NXa/wpYt+mPnQV3jwpnnQDwOgw+TbP4g4+d+gf/6B+7z4LWr5B96EmFi/vhjP8rq2T+GDK8Be8gwQvr7zO5/jpvvfYObB2f44z+0yTDaRKIYSLg4StjIE6SKSEXP8Su8p3GOJPSSvk1dc+XK05RleSpBPuU/cdTt8u4ht2Sl1PGaCSkQ4YikfNQZOH0ePdwNdf5h+dM/iuPbSg6UTpBCEmyDbA1t27K+MSY2Gtm0tEVFV9U0+zs0jccflKSpQnhB0/XVnXwlQhYdkXeoOKJznuChs57gLLPOs9hrKTq3bPEIWq3IRhJhAlXraAtLWVvKDmTd0eLJR4KilrjOM0qgBGaHHpML4ommPHRU+w7X9f9LtqLwSuCbgLQOIVruBUGSKfQgRvnAMI8YDiKasmNtI+ewcpjekrdX3JGwMs4IdULQMVXdAKGHAgnJrO6vDhtbK7Suw+NprIVIcHdnn8lwTKYjhOkhQMPYsDstyAcDEA6pDdZ6qrJGtg2aFl/uY2WMHE2Qce/34HsKcG9sVnVYIRFJxDiJiGLfmyFbSfBHUAtPI2Pwjqq1yCiitY7GerIoJRrkQODOzj3Gac4gMihXEomYUB6Sq44Gj3KiJ2yWDenqgGFXYImWF9OOOJJATFstEE6i46g3SxYS6SO0LdEaksGQZHWTurXUdbPkLQR0ljCdT1nUFq00cTohThO0jth/sEcrRQ/BCgIzWqUjJY8TBB0CSxugER7lQEUB71vuHJbUZUcIBpmk5CsSoQxCC3COZJAw0hFe9thz4z1dt8AicEHgI0XpLGfyBGEbtOyTNdV1dI1iZkuEdrRBQpyglMTbCD0cMY5qynsHOBXQ0mEEjNOILB9z9c4+1aLBeo1SEekgJk8jbNvB6hCU6M8zH6jLOaP1EWuba8y7jstPnGex8Lx3t6PJzrD9wgusb0tWn1G8+6tv8MZXvsY/+C/+Hj/8d/8impcZil3aUFKLhE5fYmjuov0DvP0abatpDu/hG4ea5KjBv2BwUfKP/07H9/9puDixWBuoh1APIXrkDGrwKYJ6ld+9+Q1+8w9a/vOfNPzs/9bw538spRXr3F88wHvH46NL6LWPMeKX2bgdePNqx/2DKekg4tJTX+bXfufTjGzL51/7Pb50U9IoeP7JwMsfrvjpv/HXWU9iqrVLrD72AZ55+iU+8uTHGMUGtSRLpkoQvMf6lrqacuv3f4bhI99PMlzFGA2+pa7m4DqCisEFEB1KgZK9GlTbWnxTIaKEoCSuc1RVA9LQWkgSQzmb4toaQkApzWLRMBgMaWpH21hMkpLoAcHOWN8Ycf9BRyslrm5QtWW0mnPv9jtMJgOkkCgdIUwEScracIwbpnTTByyqFikNiY7AKmyrOZhazm1McElObfsyyMqFdbrpDtiGKB5TzCumewtUDONNg5A1uaqYZYqmNJSHLVbUNCGQTyJmjcc4iVCC6F+DXTmGWz+EAwoQPN73QVGvlnSi2y5FX1mz4YTkelJ9fbhOL4/ecpkgeN8H/cdHEyexqA8BvTRFi2PFaCXm/CMTnn5xk9IFdCR569pr6ETTtZ4synj2g8/3cKLjivxp2cKHJQzfH2MJzQr+GAd9pILTiz70CULPfTshh4twMqunAxp/OoD5FiiEX/ZfjhMuyUmnaHk8vD9e234cp3QPz937byL/jcZJ/+Vkj8plEI9f7mOOfCZO8Q2W035ckz7VDnhY0rR/7AjG0p9CR4n2EnYn5NJr4qjLJgmi74UKAfkgoavmNLZj5cKj/MBf/k/Z3Mwp9IAv/OY6v/0HtxHVl/iPPvUckktETLE0OJEhlUEzQ4YFwV/DWUNXXIVYY+KAkK+jh4Yv/uMHfOjPGuJkjlcNdqjwUYKaPIdUnyJ0P8fnf+dNhPQ8/ckBb3x+ygvPJ7RhxKx+QKpXGag1VPY8Cb/L4OIlrl+dU82nrJ67ijaSg5v/nMTXvPE1w+fe69jcinjs0YQzZ+7zS//0v2WSGIqVZ9jYfowLZy6zPd7GaMWRptpICJqm5p9/5jP87f/ub1MWC2az2XLtwtJVXaKkXMJKPV2weO/665M84XecrL84ycGPoI/htMSvOJa5FXBCJv8jPL6t5ODG/QXbqzGjFU0RDFmmECi0EDjhQFhiETjYWeDwpIkkTgJ1G2idJ041vnU0radeVP3N1UiUUtjWMc4V88LTeY8PPd68bQQDIXCdw0uFt5aycswWjqqDpnIMBgojIU0FxBIbAl4KyiIQGYHoDVLx9AuuTd+OllL0kqmqv6i6su3lAT1EsQYEtvVIDGkWYbVARdAR6JyATmCcZBiBiFeIZwcYGTCRpHUdbdtgDOBKVPBEWpPGEVGaYIOm8w7XeUrvcHWLdR2RsBiRUNsWhMRaS9u2aAldUyBbiPMEbyuC8Ogo6z+nK2idQxmD0gKp+mBYKoVEE3SMVZrKCuZVzTDXjMZDFlX/3pnsPSS0EpRtg6piJvmYlWFKohTeetq2JB0mGHpsXrCBpg10LmAMKNnrDgdlMFr1cw9URU2exBA8Nmi8VGjTYgYZeZQikxSvI2KhkULigqDtOnSiiVqF6AJCR6h0QDxMsEWF8IK66bAu0AWB9VDXHegYYzt6xGVAK48WgbKqiNdW0AnEweCoqZuWECBOFEXRO7E64Sm7Dld3tA6mZdXDIdRyr6NwTlC1HamOyBJJ6AJtUTEvGryASWJQqcYZQIDWMVk+wAnBeFQxL2uCbXCuhSjQVTCSEivAdh3BS3wXMdspmJUlo80hne/xj7H0RCZivLZO6+GgaGhqSzwacW51TEPOwVs36a7N2bl/lcWNQ7r5Hm99bYe/9l/9I/7OT/0F8lggQoN3h9StYM6ECXcww8fRaYptoT68zoOvfY5JdA+5GvjuP62wcWC2cERAYQXXpvBE/p8g4u/m/3z9Hnujt/hTf3MT8/wneCX9ItWbX0Scv8o4+yhSBELxBfTgPNna49jsdRrXMN5OWb2g+fLv/Sa/9fmCcqfl5e/Z5OVHEkq5wZkrj/Hixfe4/ORjDJJL2Pgcu/E6Pl9HEJDe9mIEywAnCE8QAaEFa4+/gpMxXdfiXQvB0nQtwTaoSGE7h5IK5wIhOJRYYqhN301oqoquKGnKGpMk6CRD+RZXFdSLBUJJojhBmQHtomaxP8VEGd4FrA+MhhHVrKStLekkZ1E7Dg8WxGJK5DucGVI56DqFCjDQLbpdYERJ6xuUTug6R2gLRiZCGsGD2nD/TsFoQxPlOU5HHO7P0W1HCDG+doQlbMpEEqkiQnC0dQVdQ1vXTBclaawIwuOdoEPipGSUGrZWT24FxzXiZXDZt+jl0qhsyUEQvRz1UdXt6IYbjqtvLG/OR5VQ8XAARo++OE4MjmFH4fjYx4EyAq0ELoRjdSWtBRtnMp770CZRLGkby2g1pqWkaQQ+OLJByni8svzcpxODhxOE98s4DQ06Ugk6ij+P1uQILsFx4MkxTvp0qPKtmOhjjgXf2q05CaaOkrjwLa+BU4FuOHHrPSIs/1EJkr61R3L003GAyFEV+qgB0CdU/l/x7z8EWQsn73WkwPXQlIWHk+eTODUskz6Fdx7bWaJcsnJmnc0LFykOG+7N5xT1AWLRUM93+PxXW6qq5K/+6CsYBYSG4Kf4YOhIiJij4rNIHSGdwy7exB28QaRvIGN49BND6rZFO4ULjroTFE3MSvTnQFzh17/x80y+6wwXLzxOfPYDnB+8Q3vnNxArG2Tq4xi/AOZIs4HOLuPMq1jnGJ9bQ2Yl16+9xrUbjrOrH2bjmX1eXG+JVs6zuj1mPZ+ytrFOYtbpoi3mZoSIBn3HI/gTSFsIGCV59tmn+fG/8O/zN3/qv1nOXXjoO8uk+QQKJ+nFEcJxJ1MsSR7+lMHdcZuUU/v9VJXi6Pz8/2FFQOMEVkRkWUacDSj3HqDoUCbGZBGJsgg6ag911SEjha09LvQqHkoLuqphsWipDmsiCUZLWiFBQZpJDhe2D9Csp+gcFsGo7OUHF5WnbQJl4alrj/OADXjrcYCTAivAEZAhELpAPBREA0Ezg2D7gFZGAqH6Fe5bt/0mSKKA0mAEpIkkjQVZrIlNAq1lMDDoSOBC396uOvCFA1EzXB3hQqCXtJE471ABlHS0ddFXH0SEtBHBauqurwh1WqNEr6DT1iU+dLiBoWhaTOdRrUUFS7AO6QE8WaZRaYSXBisUXkl8U4E0oOTSSTgQlKCsS1KdoyQIHREjaYNEL9WE0iQiSSJc5zEd6CQiMopgPcM0ZphGaNnzTQKBrm3oWovDE4Kis56q86QKoihaqr9ItNG99COeJDaYSNO1DT4EnJS44ImzEVkmsUJggziGG/QykwKkIcsHtK3FCU1QGi97hRklQepes1n7gDAB28x6AnyisMH2nBINRkdESUbTNQiliOIYFwJdo6GVBOexjSVJ4t4sKDgkjrZzzOsaHTyRNkgdoUQAB3XtEQZQAeEDXfA0TY2OIpzofReQvTusXmLgpbUMs5gQPE3lIHh0bJjNCrqyA0Tf4lQKEaCYNzSdoy4rgo4JzoEKDFKFdZbpwuIbx+F+gXYGRjk0+8y/+Q6zZsqivMPG5oj88lkO/aP82r2af/Tpz/PY4y3PX8oYRr306mE9pwh7FG3FWChiYkT9gOD2qHb3OPyS48wVsFJABLYIFE1P/hXqaRAXyLc+xnBryDPfM8HL7+Xx8ZTpz32WsHed5MkxZqWke/Bl4snjRBsvUadvMZNzVnLP2XNw/14Di8D48VWefHmDcX4Jq55CnXmCC4Mdrly5jDEXgBH3O8V+FwhhwfWDW0xm75BvnEfFmwiZ95AgpRltPUG5KHv5UNtzcTwCqXqiuDIavYRnOLvkIXiHVIYQPF3bUVc1XesxiUe6DoFHC0GSJOg47kvccUZbdIjQQVfSziVt09AealQHRipSbah8TVtYam1B5agoIU+HHM49Vdn1nJKqZZQLgtDgFXK5v7W1iLZBO4EMIJ3DBEek+/2rhcbbBm8tTdPRKRiOE9q6Ye+9W9y6sYOtK+p5TVm3SGFo8CyqDpnEeA8OGGbm5IL/EBRFHOP1lRTL4H9ZyYZlkNhffpw/rXC0fKOTmmr/buKoChcewv5L2Qf93nOcIJz+QEcBvlYCYyRRrMmHEetrMdNpTVO2jEYGLxxtGwg2EGtNFEXfzi3ufTGOg9MA4RgityTWE/5QwN8/92SxxOnJP/W8U7EOCJDLNs2REouU4rhi3b/+OJQ9Pv5pIdnjD/uHEq3v4CH66nGftJ4kUhzVl/vM4BhKdARZEcevOnnFQxAslolCECddnIdINidJ3olPQliq4S0fEwIlA3XdELteWhvXcXjjGjvFlDgPPL65Srd9lv3a89os8JlX3+Cx855H14aI0GFtQ+c6GqY0dkoGKJGAO0DYPdrFDs3OgvGjcnlu9lBMawMyNiAeAyZkKx9j+0LF2tajwEVWB4rmK/8Mqpx46xF6/519VLyBSj9AZ16lChUrQ082ELRdQDSgV1fZupCwfn4VH18kSocMTcHm5hmUXCEQs2+XkCpfc1Dso4tb3D8QKD1gfX2D8+fO8n3f/738zM/+HG988w0623FEkA+hJxwfBfHHSfVDbI+TOT9xDDlaGnH8/USxaMlPWJJH/ihs+/+n8W0lB5PJkI31CeurGdn6Om/f2Uc0BSrVDMYJJhcgayyCw/dKDmcVaRTQeUQySoi0o5lWFPMGW3QYI+h8oGo9ydgglWZRNHgCtQvMqt4cp5h50OA6QdEE2pqeE6BBiUA57yCS1EJQSoHTgdA6lA+sbWjIBdN7AVcHQhsQSR80Bge0AaRHaLGELglGmWaQSPJUMcoi8izh7o0psfG4yCCDxHeBrvW0ZYfynnjcUDQdoS4xCpTucc4mCkjVZ7m2bSlYoCQcFpb1kafLBpgkIjKCtnZUsxJCxLxuSIInFxATsMFhlMErT5wZBpMRXkYsKoczmqos0UlC1TjoHF7o3hOia0hNhhCOOI6Js5QsjSkP79MsPMMsJU5Tms5jO88gTYhiQ1NZ0lRgZECKgJIeTExZFjRVi0OhTIILirppMXFCMBrvO7TSSN0HYTJ48jyCoGgai+ssViicEJgoRUQK5ZplJSXgvMN520MAtCY1OTq2NDZggyd4R5zGxFlfxW+q3tBJJIKumhErT9Catm2R0hG0QaiIOM84vLeLMkO0iHozvFThZYotO3ASg8FIhaBFmw7bVHhr0RKU8Cjp0VqhhSd0gdK2dNajZYcMvblckAmd0kRSEQmBWuIWy3mDKkvSLCIkvTKUl6AGhp39BdNZSRgMUdr0pCl50rKeH87QaQpB0GmJljH3pnuUpGRSUNYdQdRIO8fODzHsMkwEly49xrMvX2Lj6Se5kzzK1a894NO//D/z1KzB2Ud4evsMsYlp2+ssXMPtW9/gTGhIhSTPA2trCisj7r1asUpg/SVFnAQWTWAe4OLTghDehjDm+z75UVr3YSogNedou6cIxa/jyhY23kTmBzT7h6i9z2C2/3uizf+Lg688gAcLBnXCS9/9GPe+eItz37vCIxcmjIaXiZIrmPg8rX2Srq0J3QIj99lWgQ3jOazn3Nh5E3v7Nwjd85jh85jkceJsCyUzBJLICLrG00N5+8TLSIUPEhNFaCmPnTCDs8vqnSJ4v1RwCT3TtXN0zQylI1SckozGpFlKtXfQmzomEdkgRnqBsy3zacG8rLn4xKPkA0+sFZmJGMQpVa3p1JBcG9a3tglywf1ij+lBTaw1Jh1g4gzKvkuTJ4YYQbO7Sw6s5jHGaDQQSUGU5HQLS+drWhtoQ6CJJGIYsbhxj2tffYvbB3N0cJSdp2jplasIOCUZRQbhwFmPQ50XJ7HdAAAgAElEQVRc8E+Vl5UUGCWxzqGV7E3IlmX/3s9gCW2BY4JgCAF7CpMrAI6SAXGEzz5x75WS/lzTAueWhONlx+AoqlUS4lihlCRKNFluiIzAljUqWBaHNflAMZt72oVFEzFOJw9VZIU4DYd5H97axcOB/LFM7PLraL6+tQtw1Dk4rnb2L+5VjEKAZddn+dRlsCtOBUAnH+F0h+L4b94THuoccOrnkyDqO26cmscjI7PT2+LEX2MJJQruVHJ2BH07pdrEUdx/qtp8fJhwvLZHYejRNjzCtx+939FeFUtDr+A9Gmjahs46qqJgvnuflbV10uA5d+4S3/XMecLKJne7hOt3DvidP/hNKuWJ5SOsDQaEUGHdlMbXHEzfZYUGKWLSzBJnEa7JWLx7m0EmGVwaIJZ8TW8Eo3OSEG4jRMIr3/Uj2GBxIkIJ8OIC1HP8XgfrbxBICcUBor6Gzv8aajTmYHGD9almY7JCdn4Te/8G49UbZMl59PASSm0h5ADvBc514OZIscuakFgchSuZLnbQO6/yS7+yi1DrXL78JJubWxwezrl48SLvvP0O1tlTCXXofZX0Cc8onIIF9etxCr64ZKIdLdhpEQZgWbRY7vPwHbjX/y3Gt5UcnF9JWctTOq+xUnBhY8y733zAZAShA58IBusp2IrDacG9OxUXzids5oIhgVgZqqrG24DvHJ3roR/BQ7lwXL/nmM4sK5uGyaDHplfWc0hg+sCzuS5pW2hsQAMm9Hrx9b6FoUKY/u5U2ECz8Jzdlrz4UsRX320pDhxd6Y97s6F1KKkRAZSAyAiClvjSkuUJw0wxGEjiOIDqGK8oqrZjNgsEJMH3fIgoVyATqtJSWI+yHtt0VE2B0YLHnzvLxiRhPi05mDc01jPSCiM7IuHwtgJh+oBaaAwxt67fJs1SzFKZw2nNaGOFg2nNaJIR0iGtSvtgR1uUivFRhQ8NZVVSVT2xIhGezcmQNBvipCZJNFEU06YRi8MHJEqj0rznUeCJI8k4iyiKkq7pGG2tIUWgtW0fzMcKaQVhXtM6gQr9hStRHaOVM72xigooGRDC45f4PhmnJFqB6qiKCuG6JU9ljk9X6EIPV9Cy//LB4WxAJymIgNEarEXbjmFkUDpCbk6w5YzW13hXIjpFVZQEI2hbh6Gv/teNw8lAcVizmBWM84CVBmzPJ9jcWmf33hQ77bC1RVqLpKUoa7QVTCLN+UmCVxKMIc0GFIVFyIbOSYRzSAKj4Yitx85x835BrDxpLAidx3U9BG1+sIvWjiRRxEoTDTWdCBx2lvHaGtNSgYgJXUvX1Tip8DagVY3HUM1qdJwgZMLO3FN7RXZmDHVJMsxJ1tdIViY01RrbH/8Yf+npbR4ZDxhEBiMFOjj8xZQ3P/FfcvPgNT7zuS9za9ryp158hsfPXyI2D3jh0VWqbo+3bk+5czAllA3nLq3w/E9W3PqHDdPYEy5I6kowPSN5+hVwi/8FBrcR+sO08jHmdg0TOu4VVxi8PGE8LDCTGtQ+6YpDXC1ArPDic+f59X9ynTvXD9iZLFj7YMMTP3iGnc/do918mkbP8O2buAHs7+5x6/7nycMd1uI75MMOkxmiTvJ44ZAXVpld+2VC+ArJxkcZXfohjB4QVE7X2SUJXiMAHcB51e8z2yKTDCEVwjq6zqKTBC0lddtBoA/CXYVAEQQc7leQRKSZJpKBZDKkqUpi0dJFCUJEtJWjKBdMdErrOvKBxqSCwaU18smYb3z1Goc7FfFkm9wGoswgY83Bfcf5zRXasmCSR4TI4uqWgCLeOoMtDkjtnG7eIs0IbSJkbRFK0N6eI1dzynKKzhOiNUVrK6rykJsPFuRDza19y868ow2B1GsmI03jOtqqZjJOyBLJzP5hbMRRUVob3XdYY03d2D5BoO/iaSUg+L7yv+QKOB+QBJwUJwnYUQC0DI6kAKNVDxWSAm16eWutZI8RtqGXTkVglCCKJGfWYgISaSTZyBAbQXFQc2ZL83bZkZ/L2Nupqacd66trvHDlY8cBbDiF13j/UZFPj+PMDGuXJHEhOF3BBE6RYU9edfR3xMOuxkc17tOtiRNjryU2+3QywIkb9vK3hzoRy0Mck6ff/yM89O0PDQFa94UB54+62MuHRE9c9d71BZ9l99GHI6ndZXfl6P2Dp+cm9OfCQ7C6ZaIBnCjjHB3kJGvj1AOw5DH64JFAlmfko5xsPGT7qcf4Mx95ge3xCC0lkuV5txGzd+VH2atu8tk33+SVCxMura4zyLZQcsHWyojOH3J3b4p1ByBTBtvbbP3IjMPfvkcV16SjhFYY2jVYv+AIzT+D6AdBPIYNK4QQEWgp7Fmiy9ukmUIkc3AWzAKKPSDj3LnH+M1vfp79wrE2XCO/NGTtyjaLd9/GrXwQ6l2CkSCGVNWcefEuMXfJ9HuoqDdwNV6w6gJsrfDz//QXuHZjRt34Ywij1uYYKiSlQCl53M8Jwffxnla9s/iSkB+OoFxHl4Uj+BGnrg/iYeLxcVfhSKXq33I3fqeMbys5EKplsAbRWHJ4f4dhPOCpZzaIE48zgSYIdpqIw4OCgwctiwbeeKOg3a954pxBC3B7gQyIx5IagdGBM0Zw50HHfulxCuatY2YDCx/IJlDMPc9cllQBFiEQx5BKuH3d0XY9ES6NQHlB0wRmZWByXrOyKZnkioN3LPvv2X5RFchE0llIcoHSfdULCfWDrudFWMei1Hgt6HDUDw5JAhSFQAZLnvRwhNJCsX9IkY6YzkpEqBikgixJGQbH7etTHuzv04YcFRQq1sQ+IIuKrXMriLoh1grfNDSdJY4TBquaVloiqRGto7UOB0RAJxoqG1NNS6JOoaMEAEND3S6YVR2zRYsUgjTRKCSOiLKsyRJNsBKnXM+vICI1Bhc6utYjtSZKIuLE0Daa4XpGlCYsFge0HuJ8DZmMkG4PMxlSzOa0oQI0IpH4QcwAqMs5XfC4usQ2Dbt7BZsbE1SqSeME56HuOoQ0NHXN3r1bTDa3cb5DRIpEJ9jDEodDektL1xPutCTSMXt7+zhv8U1B8A1l00OO8jxDuZpsZZW9eU2xv4+0jijqjZ6kSFhdW0Wh8VbilcQquHPzgIEMGOkp6xovPcNYsZKmdOWC8fgM4/URig7X1LiuY5IPsU2LXptQdX1FjiihrTwDEyF0TFNPEV7086MgHRmKuaCaOjCWqquonUUmI7bWcrAxh2VA+ZbGdtydlly7+g4bj2xTHM6QSYoSmtqXuLoinqyjdU28niPzVbLts8Tnz+MHEx5NBG9ryZ1b11APHjC7fpud967ygZdTvu+7v5fnzlzhUz/2FL//9uv87Bd/l089e5YPXAAR/SWS9B6vjKBtbzIvvoj1Ywz/hLUXHNXcU9wLiAk8+8OSV3/O8ejwXdb+/P9KdvGALPthUCmfefcLDA//d77rhb+MaD9H/cbr+FtXSVYnJD/y0yBqivk73Dic8qU3O/ZGh/zED13lrvl+hpdvgtzg3vXr3L3xWe7OPdXgKcqrbxFWZlx9t2C073gpDXzoSRjEhtGPvQjPXqZzW8wXGTeufoGt7aco2xSZrDNIcpQyWO9p66URmuircW3n8DbQli22bUgHfVIu4gSqCiEcMk9pvceFiMGKoy5bfNHhhcF5B8KRjzMshtZqIinY2o7ItEdGgXh1QjmbUldzqtKSaE8bAm9/8z20b1lfH3NxY8gkUmQo9u8eUPgUnUTE0hN3DXLvDoaC0seMVs6Ch27fYmWMVofkH3yK+fW7/MEXXqWbVGx/YIWtYcTOl1/j6v0ZYqGYdz0XQivBwjmyFtaGhkcuxKTGUFvHncPi5Hq/LFULcSIhqrTszfvog6XekAwiAevjjExLvKQXOGgdzmmmZQdG0lrHETzltCNskiiiWBHHks2thA89v8b5zYRf/JXbzAqL94FBrNhYiTm7mREb+P0v7VJXlq2thLPbCcmKprWwt1NDDL7uvUU2N8/w737qzwFHKJu+EHEsdft+HcsI5Ejm9UQ29OEK/7eO04HKkX+B4ESG9OhJYtm9IUDwJxXu012Kvrty6rdT/IawDIBPOjAnycp33DiK7QMopUGBCv4YqnU0Az2kTeNwEPrE1vujfbx0Vqb3Ngj+qFJ9lIiedAX6hK3/OSy19d2yU6m0OoFziSP+jl8eH4TQ6ChmMB7z1Ce/jw/+iX+HzVjzQEq6wz3ComC2s4ui5fzFFdZXVtnKz/L0h7d47cabvHH/kMfWh0xyCeKPoTjg8rams+9i7QE+tAh2yS/PaduOetqQriv0OOLOF6esZJ8l/eg7RNlfIVEvMGsbbi2ukTS/x9lzPwHd79Dd/BLSHqDGV1CP/w2gxTZf452diuuHC8qVq7x0LmGuP0K8cZfghxzufoXp/LcpXUonztLsvQvDPd69tkPx9iFPbUheuDJARTnJM8/zL//FT/Hj/+Hf59UvX6Usa7yHrrNL2eOjvSyPO2nen/CmTnfkjrtfx3ChP2zud+wNIsRSsapfa386sfsjPL6t5ODB/pSvv36dxnvoJB/75IvEwfdSfTrgTIIThjhyNC9u8OZv3Wdx4LCdI5OBK49EDIMl1ILdhSXTnvWRIFWSO1NLOXXstR5dCiabissXJNsrgUYowlASpZLtGm5fc7zzesvhLLC9Ch98RPOBlyIWi8DVqx3DA/jxvzgkGRp+41cP2X+vxTcBrUDEgigVREKghxJXB2IlmKwapocdqZYUhWWkFLaAzkdMVkfc/cYOdQ2TjaR31A0QO0c2HnE4r1hfTVFySFvW1I0lnqRsnoNRtIQkdB10AYVEDzQGgVMxrQvEMpCnMYN8zO69PWKVk5iIxs+JB5rxJMPoiHoh0HHEwkFXl0SdRStDU89xZYuJEjY28r5yECwGyPKcJOnVh0SAaj5jPp0SGYXQEdkoozrYg65DGEHdCJquobaBu/cr0BJjFDQl1mkEA/IsR/mIbGCIhxl10NRtR6tA6JSumpMoyUqWEgdLrCzGCaTsyAcZkQtU5YJE9a7Rsp3SG4uAd4E40iggYIlNIE4yhNA0TUUSee7d30MFi0okUeZBtL0CUpwws54QGUQSYytPCJrx+hgfDG3dgtUo06s7YRWjLNBMG4aDHG8dCk8kI4rOkSiFwUHZEWcRMpKUzRzXzqjmLbIWrKyfQScGHyzdwRydpuwczsmTAbGGtpwz3d+jqRq00uwC0VAxWR0wyTJ2qsCdW4fs3ptSWoExMTobsLK2yfnnM6qdOwxWBzRWIr1H+h7lsljMkPtDosdW2Ufx7p2G+tYObvE2X7p9ndE2mJtvYO/cRUUZww88w++8Lvj09Vc5v7jOhz/yHGe3L/H0kxf5td0H/Py//D/4Exd+lY2LgcnWMygZ0+4eYg+/gnrkE5gPfYXp791n+qDhwW7gxjvw0iuCwgiSqkUufpe6fZumu8DHz/8ZdnxMufgZzN4UcW9GpIfEH32W4O/gu1/i6vyAl15WvPh8wuXnYnAR3/PCf0z9RMObpWV3eIf48j1e0JZJ8gjj6DkiBbb7MovFr7B78/e49rsLtn6xgZd2mDz9EyTRFjKryCYt+fA81JbWCdogiBBIZejNPTrarkVJgW0acBaNQ5kI13ZU8wJX1QjfIYSg7FqcE4hQ4oOiawpmDwp2XWCyvUYeSRwSHWc0wlO2DUVbMJ23hKlgb3+KdwsEFoUhzxPW1lL2qwMi4Wn2dynLkllVs+MTJsOI7OyEaDSh2duluHmD8vaUWHtEcpb5ogE5xpghg2zEcD0mWRvR3LrKnekucSK5aDZBpHzjxh7TpuWRzQE0nqYNxAqiGLbWMrLUk1hLEhvSSQp5dny979vxfWVfLaudSmvarmN1ZYAQEuc8ITgSI9naHPHh7Zw37hywWzYkKzFnRzGff2sf56FsOA7E+uqe5NLZnGndkgw0L78w4YVnxyS5RuURXQisrsUMIsUgVuSZYphBGguK1vKRl9dZX4nQyjEQko+8cp4716fc3OlQ3jAcxIxHI7TSeOco6wWDNEeIHjr1vnVF5uSziWMI0RGv4CiyX1YxpVjOZx/MKqmW+KNl3TOEkw7AMeTFHwdCx3Hx8nmnE4MjpvhR8qCOTKJCOJbc7Ivap8yl3ofzeYzh/9c/4TjA01IQx0kPb7WWI9Ub5/yxeZ5zDufdUrXGH3NnlJC9Eo4/mV8pll4IyGO+iD9qxYkT/oFYdm6OP8zR9AqOuwwI2QsjDHJGH/thqksv8YXXb+MWC9ZXBVuzB/jDGXK0QphM6N6eMYnmbFf3uPLMFbZXLrFwntf3d+m+/hofWPkC+Rokg2dwtsBVd8HuIkafQl78PPaNr9LUCw5ngVZpNp9IaZRAVwdI81ls8zpaPMHF/DIViq79eeT8AWL+ALX+OPLMCwS/Swhf4kFT8AOfGpFvpKxtjjFqxMWtj+NWLXeto95cJ9sqWJOaWK8Sqz+LEvBdH3qHsvwNip132Hv7kPq3ZiwWX+X5j/5n/A9/92X+1t/6aT796V/s4ysE2ujjoP6EX9Anfc7a4/mWopdJBoFbmqT1TZ5/dXfpOKHg1LknRJ/UfScmxP8G49tKDnYKy5XRiCtPbPUGO3GHOiyIhh3J2io6HxMQrG2toUxJ/et32a0dxsFBAtnEM1qTNEVgvGsxVWCcSgYjSX5F81u/0eElXPpghEphPrOIWeCVH4zoEsVb32h54w3LwV2PbDwrY8Ff/fGUjUc0Jhbces/h9gQbc8/mXk0rPFoFlAGTiB6jmwryiSC4nnSbxhIjBfXUoaXA2YCVgaZxdI2nKx2jTHH2sRF+ryHNNa2zIBQro5iirjFK0lUdg3HeEzYbi8ZwOD/EeEm+HpMYQ1CBICTJOMbXJVhFluVoqRAuIJCsTibMFy1d1xDHhiTRBK+oywaZRFjf45AjpSF4qqoiS2KGJibLRrR1S1nXOC8ZRBKjY7TWSCy2bcF36KWSkVY9TlkOUoySaCUIriISFVVrKb1HR738aSssrisYZBmj8ZjxyhAXPEF4UgJF09DMS4p5QZpGaAO1bYkSg5aSqipxTYMwtsd946lChxSOejHFRwmd701ITGR6rXqjEMYgtYTQImWFxWHiZnlsgetaFkXFg2lHOhzSzGesjnKy1SHCDVDOkiYRNkT4JKHuevKxbTyN0zjnqduKRVGSK8ko1iSxYiA0LVAsWlxTUi9qhAYrJSiNq+cY0dAu5mhGDPIBIo5pWkmmPLhAqxQkMB57Wl3T+9Zl6CjQdA3TBzO81Ejfqyv5pqXxYIXsuQ4C1s9vkwxTDvenlIsGW/dwODtbcH9+lX07wI0kbVfTLm5hEokqZ5giZ/KBj7DykREba0POreecESUrQ4N0zwMZSg5YkS3rruHix/89fm3+BvPb97hy8y2eSms2V8eMz/4gs/tfRwyfoDunQD7AFDWDTHJ4p8ONBH7XYWf3MZsLnL2Pe+vrpOdapr90n8ljgcEVQzQWCPUewe7RVJpoXvL6mx12HljLBOVKw8qlB7yVPs2OFpw1ZzirdhDuJqLd5079Dlv54wyyD5Im55nkf5LzW+/Ad1/n9V/9Omv7v8rkiRcZrD9CNjiDUBHO1iihkTis9XgXcHWHFH2wG0WaID2+Ad968B5rO8pZQWhbbFsjjCBfG7M4qNm5f8D2xTOoaIKMBzRlQ1FamsMFSmmUVHRFy+KwYDEtmESSpumYVoeoTKNNDylLh4KNLU1313P15k3WViLSVPdY2GbOtUZzeK9hVJaMRgO6zQlvvf4G2/km65sJs3nDOPXkWUq6ts7kmTEk8NZXbjGbLnjy8irn1gfU3rBb1hTWs+8CkQShwIqAVDBvW/JEce3GnDPbgkc2xowGg+PrvexLlfjQizxo0ZN784Hh5ZeeJM9TQGCd4+7tWwjbMG0cL54fcWFDcXbLMBjF/NCdNX7us7d4cm2CGGruV45bD2qUkFy6lLP+xIi6bZloyI3gwmMp81rwie9Z5WC/I1k6jA9XDd/zyjr5WsJXrxV86IUxK8FjnMesB/6n//E1Pv7JFfY+d4iMehGC8SSi7Wq0icjSvoP0fgxgHxphGYQslZuOfdvCCd45LCFdEtFLkZ6uUp8iJJ+Gs3AKAnHa50HK8BCh+ShRWD6TAMeV0yOS81HAfVoP/nSQ/f/5BH27zzz9Px3PxdGjJ8CyI/h4YiKUkCSxgaR/nfOetml7CNESy97LalmEPzlQEL3ePkusu1qqOAkEznl8OKk09/O1XMfTkyZ6xS8X+i7bceIle77UpU/8SbLNbWQ8ptg7xAiPbkqSdsD5y8+go95LZRBJMmFJI4n22wiRYVTEwBUEnaAuv8LX2/sUuwc8ufsaa4khy9Yx2SM0izuI5Fn8egfTG2hh8UB9WOITjZjNCBdeg2gL7Nv9vWowpP7aV0gvZJhHxsjUI8Q3lnKpKbqZ8eVvFjxZWPJI4dKSKK/YjTYodGBLZcRMEX4BrmAeNKNonSh+FGPWyNM9utUH7G3d4if/+t9jZestmsZR1S0XL17g1q07PYRZyuPCwxFxXC45Iw4e6gyc8EP8co1O9lXfZejV7I6EGI72kPceueTvHEGa3i/jdOfu/63P9e35HKxF6NUIqRyhnOLbmsHZLeq9PeR8nygKmPGQOB7z6HMv8h/8lXP8w3/wBXbf2+P6vuPWDc+jFxRxJVj1INtAWnjSxhNtJWxENXMbuHDZ4KSnyjwfPCPYWBH4NvC52469Hccoheee1Tx6xfDMM4IiOBaFIBaeswPoIhhm4IaSe7uBouxzb60EiRaMMomUisRC8ALbBVznGUwMg0mEoq/OSiXRicKLwHigYC4YKEEdBLULNLVlUQQGg4g8T2htR1W22Kpj2nU0tSUMYnwDUaRQUX+j9S2IrqRpNcGBMTHeS5ReoJfBsGs91ns6J9BB9SpCvsc/tUulo57w3FfzjEnwdQcOjFLEGpIooi4bkJJIi2ULVGLiGCN1jxPWEisDWkmM0mAlThnySKN6dX80AUVvdjWMY9IkRghF5Rx119C1FcpZIhMhM0+cZSRGYqRHalCupLU1BIXvGjw9mSdJFUoqbNNQNx4bWDq7KuLIEKUD2q4kyA4XenlaLwPjSUZtO+rW0nV9FdJoT7YyZE1KRokGJLYNuLZXN9Ii9E7ZcUo+0igLTemoaHB6nWrnkNS3RAFEJ8liTWagrWucq4gHEbGJqBEcziq6oqYtAl4MiAYaTEZIJ7jdXXxbUzmPygxGObQLmCgmyQydAms75mWgqD2R6bBVi/MBk8bE+QAvNUVrESpCRpp2USKWZOzgIIoHaN1gTUxjDKG1UJZMXMsHLqzyytObDNfHiPEag1HOMIM8Klgznny4wsJvUM6nHM732Wsq8lHEUxfPMam2OZztsdLdZKB2IYVu8CR7813OSEu0KSmSDbpFiXYzdr52m2zheW3Hs7rbMNx2xCsll9Yti1sxK2c7uqon9YqsX/MQFHUV+O1fqBmOJOMzIGygLhy7B6+ysvIcJlIMRCAWOUIOcWyQdEP2ioLdKGMlOs969n9T9+ZBuqV3fd/nWc767r333de5M6NZJM2MhEYbICRhiJyAwWIJMg5JysZUqlJOGYL5I66Ug6lUQdkuhxBSMcQuKwFcDhiCFCFQJLQwGm0z0oxm5t65e9/e3/2sz5I/TvftnoHA/GEbeP7pfk+f9+3zPmd5fst3OUGanMUsjVmbnGQqHZmxRFbiREjtQASNwtN9AIl3KJoWsw5U02o2HlM7XGVBCby3jYlhlKCNOghDAopyitSyMe4TCqEkcSeE2lLkEpWk1GXBbDKjzkv6gw6xtITtELtrmJUl2hlk7CCbgigwdoZqaYpEYWKFiD3dsubuq5uMdqa0WzHdtoRyzm6eUBch3eWA7voynXiJ3vIi/QsDkuWUap6xeWOfblGyIgvadkKea8okpfJD6sISxArRChAScmOp5zUPXmgRJS1aaYSpLfNbu/ef9z/993+GhYWF+wGpFKJRA5OekyeWCNQY3AyLZDIeY+uS5z//TXS2TUsbVnRAvxOxcLKPfzJgNUnQg5h5GrNvA3Z3BRM/4a1PL7E3HNNRcGIhprsY0ZkXrA4qvCk4sxyzvhaxsKo5cyLCSsGHvnONiydPEOxmaGtonV/i29/T4+TZp0m/9vvU9Qhpc/a2rvEvPvrz7O1UuBrq2t03nGoChUZ/57A6fjiEaOA2hxrp9yEGHBlduQMRhcP9D4Pl+xCEA9LwYc1eyCNM+mt+cjxghV63x8/+7M8dw54fJ6rev5ibiFYcfs5RwNN0Ew62HGEojt7pj2BEr08YDnY4Fn43/+A4sdb5o2Ti8Psezk9ZlvzUT/3k/dcNkfO1SkZN9fzQBZr7fz/Eit+XUfX/f8oxTZAulUJridaNeefhPkIKtFJY5xFSkcQxvW6bbqdDqENu3LxFmRcs93p4D8ZahIROkvBf/fjfoTUYgDWoIEBISV3XGGNACHQQNXCf13UBjroz3A9K78tewmsJ5K+BrhydGn94/KJR1eFYwucB6z0vJEtYndAJEhY6IctdzYqM6bZT+v0WQagJlCGUNYkShGFE6dpU5ZxZMcX6mjQJ6bXbRGbALJ3QsQO0rvBBC6O6ZFVBW1h071EKfRLcHLJ9pveuEuYV1/dKBsUOuluSpAGtxFGPE+KBwWRDdApojUfgUZi65Buf3OH0+RbdtscbS1XlUNwgTdaQ0hOLCE0EwuHQaBcxr0p8ENGRq4TxIkF4GhFf5MM/kpGkK1gHaZriPYzHk/vQu0MewfH5bpAJRwaPh/cjHG0/Hko33TR3BE06fl8cO7fee/b29vnJn/zJ46i9ptDzukD9NdLDxzoY970TXneTCxr1wiAMMcbQ6XTo9/vEcczW5hb5dE5tS4QSB8lMc41Ze8ys8thB+YP76/A6kwJeeeUqf9Z4Q8lBaxAStRV1VWInQ3S3wLRWsLnE2RFuOsfbHrGO5wYAACAASURBVCYsWDrzKP/Rmce4t53y2Y89y9aNmzxz1xMq6EuFpiFzmNxjRp7wpKInBAvC05KgB5Kor3hkHTIPt28a7ty2rCwKHrsiecdbNA89qqlHhs1rFuslHQFJCmUKSVdDR7OzC3ne+Jco2RCP01QRaknLCmojKOaO2lgWOpLeUkBeWoxpFsK4pRu1AAeuqlFaEKGonTxIDiANGqnRsq4p85xqVlFnIPEorRodcOfRQmE8jIcVMqgxQFHPCUKHsQInPHEaI4QnUFDVhgIDEpIwBC/RCswhxlM07paH5OjZZIYQmjBSxFGEkJrJdEIQh9TIxsNFKIIoIQpjcBVSC4qqRgJaBoggwIYpoRN4KxDaE2hFoANAk8Qp0juwDkyFqSrqqkZ5DmRf2+g4JgolgWxIntYYnBBQ1XjpQWmEjpvjjCMyKSiMReGJtCIMFXGiCaIAb21DKJUarUOCQKNocJ+VFxCACASpCEjbEStJhLYVeV5SuxoL4CRCN34IKmwTJx06QYI0knlcY3PI3CZ2bwuXZeA8qrD43CBmBYG3JAoiJXA45GSGKitGlUO2LGkJnpCo00cPR5TWALq5YY0DK1FSkcQpdZVjDVinqZEYU+OrJhhNkoS002r8OLKSrIQyqzD5FCsa/G+UBKT9NjbyxINl8k5IJAVr/ZAHeglvfaTHt64uEbQTMlcjpUNQUpkdhFoi9BF3pwJpK8auZlsEPLx0ijCOeXP7JPXKKYy/QGX2mWWbXLu3Qb97mUreIGpfJuyFxKUjzibcOvtpphu3qVIYzx3ZbUM0tfQTSTbM6J+XUHq8N/ha4nVIWVm+8Kkx9zYcl54OWBsIopkiTDrcHX6NB5cylkTEni3Yt5627JNEPWLZYr+cUTnN0Ei8V6yFpwmTC5x5Z4+rt2+g4wWEajpQwll0EGFsyYFoI0pKRKAxtiHRGu8x1jfQGOcQWjdFgVAThI0imaktZVlibI2KAoqsQkpPEEWESQsVBrjKIsM2VV7hHYRBQK/fRWqPEBaHZLq1S1mVaOko6pxQZDhbIETCqAKkphtDK6gJzZR8nrOzaxi7ClULyrzN2IeEOmH57Bla3UU6i106p9roSJJdy9ndG3O6HXOy1yUOIvy4ZFgCUiJrh4s0XgqEAo2kKh2qnbByegVTOEY7E/ZvHiUHP/IjH+HMmTPHVoDDoNDiyuu4/BbgEMk6MMOLiCj4Iree+RR7o03iexAoSZJ0efsDHXxeobsJ4YlVzOIaL3xjwo3tV1leWCTtJAwiWEwDDAorAubzbc6eXeahS23OnFZ0exZb1gx3LU8/cRZtEqrcIb2nv3qCD11+L1/4aooSfawdgcvZ2brN1557hbs3pmSziiK31LW9H9g23jeHzs3cX02lpHkOqIPkwB0akTUUx0My4lGiwUHBRjZEyAPIwZFLLq+rQB7BeZr/dyiG6fnxH/8J/tuf/vtvZEn+Cze++MVn+OAH33+gF+8PHK4P06OjgPgwmD7SiT8iksoD+NKhx0WDkjqQWT1IRpSSBGFEuxUTBBpr7H3cuNKaNE2ojCNJW5w7e4azZ06zvLSMsILPfPpzpCpkrZ2ioQn8nWO1P+C7vvd76S0vo6KAqNdDaE02GVHOpsi0S9LuNkacYYDS6qhjA//e2iaH1eraWn7lq98kL2tOhJKTXc1qL2AlDFCBonS2gX75AudrECnKa+YlaFcztg4dhHSSgDAIOR11sK0ezq9g7JR5OSbLJqTxOlZsodMryEgS2RIV3GPSE+TTq9gwIpvXyHqIrUMUAbYaEy9EiKoGNwMX4WlTFSXXnt9iOvFcebJHVFtC3QaZMC1eZbn1FC3vmboaIxShSFEqQouA3FZYL5k7QSIjYpXQ7i7yIz/6EaJwleMqQ3+e46d+8qf4n3/xF19TXHAHHJLDcRx6dz/xgAPStGzgSdYe46MItNKNDHwcc+7seS4/cJm1tVWqsuL3Pv4Jdu9tUdscrxtivLUO6yx1ZTi8n44LKjnrUEreTw6U4EBU4k8fbyg5CEpL6CBIQwLVolyIubNzlVNnOqT1HLm/SfXqXfK6RzA4S7z4AH/7J36M84ur/Pr/8n/wta19+rfhkSVBt6uoQxrZzT1YHAqCCs4JmN0qObkccnpV4/YqdjLBH3yxYlR4vvOvaN7zds1CX6B8TV5a5hues6cFkYR54pl0Gk6BFYpy7jE1WC/QWtJe0vRXAsjAV6ADRewl2jgWWpJOrHDOkWiBArRrFp+q8piybsycdIAjIBQSX1pmezWTWUlnkBIIRy0MVojGBEyA8zVVIcE3HgPbowIXK7qDoJEPLGucKHGRwswd1lUk0mBpDOMq68mtIBKCVhoRhE0t3zmPqQ2VMwhpyIqSQBgCnSJESGEts3zGqlrGVuZAy10S6oAoCvBOYu0c6qpJDgINSpO2Eqq8xogAHTYKR1oLvLGgNPl0AtaRl3MKYzA6QQLSNY6uoRZEWiDxVDanqEpU1KIoRoRBRNrrE6QdqmJC2OkhkhRRlAjvCbVC6QCpHMaUCG8QQhAIQRDGuDhmOt6lLHOCUFAFDqsa4ytTj7Bxh6oomGYZpTF4oZB1BSamtCFaVeShIGn1WFxZo70cMb4xw21Z8nwHOS1RxlLPK+qsws0m9MIAVTvsPEeHnkVbgrBMVYQrDaKwpGgG3Q5+sIiOAwhjZmUOZU4aBThrSOOAygsEEbGvKYVhWmnSVLGcphCqRmJXgg8V+xtDivEU0Qqoq4owCmn3OnRW28gyJlk/Q1kYzqykvOfCAt92rkcvlQi9hPclbVsipMY4xTRrs1WfxczbfOX2XbopVL0TRL0Vep2IO3aPgppUCopaMat67ExrPvvcr/GRb/thdv0OJ9JLtNUaWrbpCo9bT/j6v/0ET5/cpJjljHYt1diz8ZJhZRnGr3pOvFUSDhp3aVtJpjvb/Oo/m/Bd/0XK6UuajtdEnTYyWWMvv4etbiCDVea2Zs95crHIGUY4HbIc9ElkyO2q5GphWAoSQhkStS4yWG2RqIBYHrquCwId4JFY1wQfUkhkoNEavKmaxUU0ggQq9CAd1UFJ15qCumh0851zhBqKDPRBtVNKjVQhTkAy0OSjGlsZ2u0WTjReGUnSwfiC/mLAeKaZjAx5LlAJ9BJBlBXcuT1kojRRN4ZehLFzWm1NGghefWWX+f6E2EWESZeFtQ4nVtbpnzxBa22BpB2iI4mwjvlzu9Q+54ELZzlz4QHkYAm7c50bN0fEQUAgmgShrhxOOJYXNWOn2J0JohHkw5L5Xs68/rMXC0+FmX4SP9tFBheR4SUcU2TY5oMf+k4+m+3w4rMZ10YTUiU4cTIi6kZUxW3MpEK2FxGdFDd8lYX5Htn+IgunOrTJsXnBvIrYGJ5klM/5rrefZm3FE+g5wuXY2lGNYeXkOdz8Liqc4n2IEoqo8yGee+4fkOVzSiuI4gAtPbOpoa4PfHHkscosR3juw+D+UM3I+6PK4GHOcBgGNoGvOwgMD6uJh3NzEAAfSr0e/ek1VfBjsfL9l+J12/6yDiGa4N07d9DgOCqN3+80HAb9h50Cd6gmdfQZcFgF9vcN9qRq4BxBoElbEYtLPdrtGHMfT95UW+MkxVjB6toaT7/rnVy+fIVOq89wb8JwWPGm9VOo4TbdQCGMp5qXRF6x/cxXmCUxvYvn6J47DQqGN19l9+4d/NJZFk+cZrC8QLvfQSTJseTnP8ScKi73YrxUXO5HLKeq6f6LBDBoVzfPexNQWk3mevgq5PZoRDeS1GmfJE7QGiaupPaWUAoKI6htm935Lrv7V3nLmaeZ+X0G4Vli0UIIDZ059Je599LHuLJ0i9lsj3Ja4YqKuc1JU0WxW9E/30VoifMaV1tmwxt89v++yTt/8CydXkBQRUixgpFLZGYbb/dBpOSuxglNIgRtUeOloqUSQqG4ZyqM90RSIdCooHdwbfzF4Ax5mg6SPDimwwT3Pj/hWHftkBgN/qBz0bxfSdEUsBsST4NsiRIWFvr0lxb5Gz/6N3n66XfQabf5+nPP8Yef/DRCQBAGmIN7SUqPqAVeg7FNguAPix4A4kg1yzetuzckIPCGkoO739xl83Sb1dOnOHlxGROs8JUbz7Ds7iHTnCB0uNhgvjbh+V/9Vzz+w/vopffwvg9/N4+/6Qyf/7n/ns/edZwtDCJVDHSArCrqfYsb93lXus8/3/VU9xznRcTiashsa8g//uU54s0Bf/tvxZxZdRBaKsBknllbEV6A3okAc7MmyBzrqSCqDHl3je3tHeZTh4olnUXFuXekvPepLte+XrN5q2Q+9oRKsLwSMRikKKkYtBzFxGJKR5Vb6swwaCu6awkbuzUdAYu9gMU4JrM500nBoBeRBA60otduIUJBHEjq3TGikzAvFbW36EDSVh6DREpNvw1EMSJKCMOAejKlyA1WVM0JFwrrFTavkK0YFbQpLQ0GUTismbO9OaTbiektrhEJhRISa2usFCy0U6rhDHQT/EvtcKJGRi1CnbB9Z0wYJ42CUVkStTVWAC6kk7QJoxYSiSlyZrMJTu0yy2bk8xrvKipfUXjDw0sJse4jwgjC5rtWxZy6mBPEHSQapUGFEWHaJYlSvM3BOqIwJZSqqfsojdaCIs8ovcJUEEUBSmrKqiKrCuLl0+R7d3BmSlnMsa6ku9hFBQX5fMZs7iiwlBiqwiHLgFsjT5IukYqK/qkubqmDSnosJJ5cDPnqVz5PuHmDVRnQVT3GuxlnY4+tPNaEpEKy0vb0BhXT6ZRnC02gNSdOLnPlgXOcPHECazXhwoDuuQe4c/ced+/ewtSGKA2wtWK0NyXpLTKZFRR5hXSGrla0emtErYDcZGT5jElWMJ7XyKqg3YsQ3SX8eIRSirDdpdMfEAnD0lLA01fO8+jKAsvtHlHYRckIk38NU97D6HM436ISLabJJe56xas7W0zZIWOVx+IlHum1mQjPzLd5abzBGeX54qtf5e7mq5yJI77nu3+aL45v8HDr/cxpk5mcPfsq33DP8/72h5l+zweZvPzf0Uuvsni2RCUgx5ZwSbLUk0TJIWRAYjLIbggefFfAV285FtuexfUOt/IOv/1PXuSv/+g7ePXGr3Lm1PdxPn2AZRdwuxzz1coRmV2utFZB7XFCK06HXaauZkFGBKrF2uAMRTHD1AXaCxySuqrxpsI5gZcapxTSC7wzlFkGQjZtXSmpjWxI8NbhqhKVCHQswcBoz5JXlqKoSNuKsNVFRBFVVWJmOfHiEtnsHmU2RXc7eKWZ7A3RojGtW1xZQQUx0/0R5TxDR4ZeV7G7WzMqAnYKQzKfEsxGvLK1haXNm9cGjCZzNvcy1mLJf3xO8fYPPc3Ke5/GtiJUpAi0bBRTjGM+m/IDb75E98IKcWuZ0W7OvZc2qZwgjAJaHU0gDfuzit1pzTx39NshLz2/yUsvTLGFYakXcP7CAnDtT10HqvxrCL2LTLdxsy2ql17GLX4H6eJLED7MO/76j/DQI5fZ+NKnubeTU1Y0/Kp4FbO/i9mdELUmnKy2+fjOiBVzljTOCakZjxUv3DzFLfdZPvKDA9LWJk6YRhXKSuooQS86wvQ2+X5OiEMHNarapa7u8MJz1xkWE0ToWD7Z4czFLhcvLvMv/9fn0Fph6kZuVQrVVLAPF09xHHN8lCQY71/j29D8PMSNNyvuIfrnEEViDwipr5U+vI93ACEPkoHDzsOxN/+l104X9yu6R0mBP9YhOXQZFq9LhgQcc8U+hFsgmoTA+6bqqbUkjAI6vRYnTi6yuNDhe7//W9nc2afTT0mTlNm45tmv3SDQbc6dPc3C2XOI3hKq1eF0f4EPdZd55eOfIJ0PSZMB1VzgRzX9jmC+PcH0E6pvXKMup6ikRt14EeH7bN+8xcqp07gsw4QBYRwfcA2OssB/18Hq8dDNecebTy8RiwqtAoQMG8aJ3cGaCU6u4L3GyEVyAobOs59n1HLOWA64HCe0Q02Bp3QBO+WURen56uZVZDllpd3nwfPfxZ16zHrwFkofUrqcmbuBFAUnkqepHn2CbPtnafUd3RWDwCBMhUoi0jhq1JZweKewFbhcce7tPV6+V/JUqBDJCW7erri38RKPPfUO9oa/z2L/W1nVfTLnmNmKTevQPmMlaFOLKas6auBJvuFNSUJqVzdIh/9ALJc/bfgDgr67D2U68BMRR11FKUWD8DgGV9Sq8WsxxhIGukEZIEnCiDRJSNttnnr72/mH/+h/JEkThHCYqqbfH4CHbjumcBZXlRwWvwIdIsoCk5vGkNY13YFDdbim2HF8zv7s+XtDyYETOf1oyrIYcfOFEWunNnj/I21idRdhc6g9YeAJ3wdvKVI2fv23yS58nd6lN9NbPs2j/+UP8Bt/7//k2aLiiTonXNbEgUBXgmK0yWa7RXFnjBw7FsMz9MM+V7/xB1zd9/wPfzXhLBULsSdpg1Aw23NoI7mSQ2I82Y5Dbzv0akT4+GV+7edr9rYddQUyFLQ6mkcf67AeCm4Jgao82U6FFpJTF2KWQst+L4Rd8JVD+APSSWHIcfQXNA9e6TKZNq7A1hmiRDOcS9pasLDcohSebFbCuGCWWy6c62DrgFkmmE0KapNhy4KHHr6ECDwFCqk1AY5ynlGbBkspohZKSqKguYBsafEqYXNUEYYKT4mpC0wxR0WCssgwtqLTG6B9ExhpaxojLx0QhCnW1Ggd0x8sE3dS6mxCZ3mFPM9w+RzpDV4JnI9QOiLtLjb4wMk+5XAPfEhZjnEiYF5khIkmTrsEzqNaoiFVhg7EjLKYM5mN0VaxsnyKcVHR6gwIZNNutrWh01qirAqoc6JQkKQpQZhQVjkFIE2JEALjRIMLR7GytIKzc2xnQFF5ElOQuZKN6YiVlQU2RjM0Fq9rOr2E1VaPza2c2cYON1/d4uIjb2dp+RyD9XMsRSlb44KbL/wbru2/yJuoSU2Im5SYoWQvGDI3U7YJqGtFVwu6AXzp1Tl/MBMMTq3zgbc9zYVTFzGTGptXtLRAzEraCk60OnilCIVlPyu5vZPTjSAetGkvxyAcuY+ZOMPONCPqR9RliStydFkRh5qRkywLR+0gSEKkVOzvZZx94CxPXj7HW0+doyOnSDfD1WOcyfDsUuo1dnLJb14f8enNCbkdEVcZevgS3/eut3B6dYFBOGQyusam07yyM2Vj4za/8clf44l3LvO2p55Ct95CqiRvHlwgtjO+MdvE5TdZFvucXrxCqQe8tXOa8PFfQuf/E5H8InHaRooEV3y1Mf/D4wqLGXp2X875B/8058F3RDz08BKuctwZtwjOXOSH/t5f4xd/4Zf40pdLfuBvXuc73vNuTp58mJ6LSYILzG3IFyZbdGXA6VizklgKUVFqQSI0sdaISGFkAsZQlxZHgY40muAAj+mQAqwMidMWZVU1FTnZkO6Lac5CJ6XwFZ6KIEkJow4wwdweNl0oGZKNpoTBhFjC/p0Rk40tFk91mcgWKlDESiM6A7bubbByZg2pFOW8pCospRVsbWbM6HK3CLg3bTprs+mcu7fGzKYlyx3HKyamowc8+vBbeOqpd/P4D7yPOIkJOgFayaa7ZDzl1FJeLxlHPR7+zh/C7O3inWOyd5eXnx2hwzaZnfPs9TGXVwJ6/QDXUdy8XVBHkijzOOFZW+9y5fF1Hr64AnzxT1kFDNL9Dl5OIKxRfVC9IZjfIb/+MOE5hRATWqfWaJdPsfs7n6W9dJLlrZcpBxaV9sA7ir3nGUcR5f4Ms79PElzEj/a4/vwX+MSXPsVP/N330KpeJA5rdADOGExl0U6yZAzCh8idEb6oketncP3HeOFTn+fe1j4ikI24RCXphjFPPr3Ev/noixQCqqJuglZxhH2HA9jQsUjM+wNTtwP8+xG74FDWtQlu/THPpD91uT3A/1rrUKrRYmvW6+PeBYD4i1EN/XcxDhMBOIJSvXa8lsx5mCscqiEppdBaHXQaJFGoSdKQMNFcftMZPvyRD/ClZ77Otdt3OPfAAstLiygREbZzHhQnGO0bls6eZ+nUeZa6AyKpmE5n7Nx9lo3ZDR4PFDof4UcB4b5lPt+htFM297Y4uRwRy+tYKq5vzPnGdJOFS0+QtntoEVLPHHMzJexFRK2kOf5/T+ft8Npz3hGpEOkr8AXYOc6XeAqc7DHMKn5/t2Sj1BgniG2FLvf59ktn6LRiQj8iKyxTC3t5yWg64jNf/r948ulHaa9cJtTLRFJxQi6gfcntckRsNmlpSKJVvGpxUvVQJ/4hqv7f0DpHqRZ4i7dfRshG9cdXJTaruXd9ny98ccSJhxY5ffI8eVFSBF2WL12ifSLhE5/5LZ55fspHfniDB8++Gx0OSIkIVZfKSG5UM1pCsxCAVg7vG2EChWg8C/4CJAZwwH85ULE6HEcV+UNInWw47Hik9xhrqY1BCEkchTjXKCqdXD5BlCYQSk6sr/MLv/CPQTXw47qsmA9n7N3apzA1p85eZLi/x85on7IsMNZSOkteFFjrGp8sedDdvH9oh8+Zpij2J9yUf2y8oeTgkXeeYfHBy2wWfZK4ZP38WarqjyhyT+gaOUAnQUkLAroPC1rxjNn+17i1f412f8DP/fL7+M+//9+ijePRjmTQVri2op878I689KwNFIvtkNuTgP/9m56lNcG3XIjwCMKgRkvwtmnDpDqkdV5R3y7R3tM9q9CDHjr9MT76yf+GvDLoQHL5iYRv/94e7zgdsnd1xo1nZtSFoKMFaSIRBkYZ1KZkulOShIq4pfBCMRo38KPt/YpZ2bSPXA3zsiCQAYNQURvbcBKExOeO/b0Z86nh0pkOEmin6gDf74j7XXpLXaajCQqBtxInmodgYSr6nQQZJuSzOaaygGW0O2Fh4DFeI7OasJsigxBX1pw6mWAOkor5bI4xDQYt1pp0YYFimmEAnMU4ixkrkqzEl1O8l4RBSK1DTO2h8hhfE5oaU0xxtQcn0VGX4d4EWQnycoa2Na1WShwlIC29xTZ1XoMMMbbGe0E7ikmigDj21IeJlnNA4xqNKEkihbPNBVuXBldPKJ0F4RDaEwcJeZHjrSUOQkIZsTV35FVBXUzY2N3i6u4epqMRZ3r019u8+vJNdOywqaeyimE25dqLm5Siz4Orb6LsnGRmJS0c5b1bfO4zf8QHH4govmmY7YZEtkflhtw0AaudNcLpLuvtkpWOYjcXfGwIRAv82N/9zzh77jLFSDLdhdopumHEeDqinFZgNV61mLmScV1g2guMp1OiErxq3Gl95PGtPrN5ia9rirwkm88pZnPquMVCq002y5nmGa7IiMuc/uIC2aRmMjdcHe1jtp5HTq/j7ZTrU8lv3vFsfv42+TBjZlIKC9RD4laLx97+HfzSL/wcs91dnLEIHSKCNt/xwXfwpW/8Fh/50e/hkYtP0koWqFwDLUvtTV6c3qKmYLXf50R8iVCGbNbfxPubDHc/S5jdJdmeku7dZv0timS5j/ATrNOMhzU3nze88KWUD//MB9hNDBfSFt6sMvddqqCFTtb48Z/5eTZ3b/Evf+U3+Z3f/X3e8ugef+vv/BC0QjJzndPRAoEacKvM+Or4KutRTXfl2wgPsMuhipBeUlOhhUF5jTMVAon0HJAWGwNFR4gOQ+qywBQGa0BITZZXqLCFdg1PxAcRrYWYqoa6MuRZhSsybGUpZKN4lpUZrWlIZ3GR4f6M/Y0t8nnBxqTGdD2VytjZ3MSXM6SE4c4OpXXUhUQFGoox1AWB0NSjPbJcsTmf8uTqWR5/29s4/e4n8UJTlaATmOce7cDNLbN7JeW1OVceW0NulNQ3tnFJTieSfMsj59kMbvHlPcV4p+besCZJQh452yMK2oz255xbiRGRQoaweXfC/F71uqe+f93vAlO3UHYCwuCFRWLwUiHjr2D3N8msAtlh8WSLb//Bt/Kvfu5jPLHcZj0tENKgZIQyClfvk41rwvrLKL/OC3uO5/cq1k4J1rojnE1Reo4gANcsZEqlBAseuz0h6GhEWyA7K8zqx/j4x/7JgXOy4q3vXePNjy6w3gnZurlHJ5JkY4cSAuMdxrj7uH9rXVOp5tD06k9YMP0Rf0CqIxdpJSQed0yeUv5xkikHMBt/2OI/qigewpqsdUdk5r/U4zCUPTJgO5QDBYFz9j5Z9FBqsgmuGqWfxtG2cbgNtCIMG3+SQEva7ZCF9TZX3naGB5+6RN2SPP0dj3N34zo2rMhFAd4wyibcur1BqZZ5ePkihU6xXiCrmnx/h5ef/zLvelOX6bMTqjrFVprKTclMTH9pQJTtsTDICRTc3bd8ZRs6py/wbd/3PtqdFGcUQiqkElSzGhXohn9w7Lr4dzufB+GlkOTOMd69C/UuRV1yL4dnR3D1ubsMd2aMZRdTzQkoWRr0eeLhR/kXv/lRdjb3EErjVMygt8DTj57nhduf4nvf9yGWu6dB6oM40aP8mM1yHyVquq1lEpmAkMzcJvg95vNniMwMvX+DSE1JlmN0sopgB+dTsvmEneuOWbbGWz/0PRSBZzFqU5sFShHjVYvOQsr7v/u/5m3v3edff+x3+b3PfJ53P/Ukj77pCl4Jaj9koNtIkXKvmoOfHJjHnjjg59CodPlDE7o/v/HH01t47XlrxBzKqsIfwN7uE6Q9SC+JgoS15UVUEvG+93+QD7z/gwRhiBCS2bymzOZQS6oRrKTr/PN/+sskheaTH/9d/p+vfIpX7l5jOBkhnCWKAqrykMPDAQ/lSByhOTx/QJr+s7/fG0oOtsYzxkbSHSxgd2/x5e1dHlj/NpSb4IscQY1KHK7y4CBaS9jfN8yyfQgy4m4XH034wFtWef75bS7klvWOpOxr6oWAO1fH7DvBciukRcbGfs2tDc87lxW9Xotq5MgqibGeCEcnkMQ+oNhzCKJGvaClkMsLzK/vcGOvxFhoRfDgiZR3PjCAecFnfntGC0kuGvWi5a5meVmxPSoZ7QlmmSNZTJByPwAAIABJREFU1gRaoHEEbUnYCpnOmopTGCuIBYWE2bAmaHeoMOzsFEjvccYSBSFBC4xzzDIw1tHwkiWyGzGfZzgEoVJ4pTFeMMtLKmMYTwRJQgOLsBZvPcLAeDhHh5rSOTqhIk4iojCkrD1JGlKVjnw6wxmQSuNDjUpjRBzisEgBWgsC31ivK+MIk/BA4UIjlMVag3euqYYUc5zVOARONx2OUDfwn3arR5RovLRY4cirGmPBZhOs8ygtaLdSvPdUdYHJxyADpGpagc5apNL0WiFOBxRliYUDF0NJqGIiEaBVQNpyB6TRxsEyLguEl7y6ucfO7i77uyOqMVx+IGBt4QF2F2O++fVt6qnjrU9G3ArH7G+OEW2BbjnODxRroePuzhYvf/PL5Hs5uwrG+5Zg7lgSFaqe4LxjJ5vy0DKcXdBsVvCvb3uGNuG7/sq7WD99Eh23qDBUGFqRY7CumW9MqGyACBQCKKqQqaxY6BiyvMQ4iwwCgiSFVodZJakrz/50jrQgVYRQFh3ElGXNrKyYz0pqaylyi7MKq2+STzZ5tt+jtHOK/RH5cJ95e4lrV0vKqoXpLIMrkd6g5SKtfpsbr3ya4a1r1L5EDq7QP/FmHrwUcu3WF/hrP/BXuXLhcWzcY+I9iS9x9R7PbvwhuvsIy8mATtiiEG2GZcXLu7/Hx/7ZM/zYj/+nuM4X+eK1bV78TM7KbzlMVCAueIJd2NpybOcgVxRPml1OFRbbPY9qn0PUEbvjGZ+49zI/+sQHqFLHh3/w+3jl5pDr13f42X/0K1x59BLf/598J1t2SKpqekFIxIAKwefGE949iIll2FSUlMZ6T1ZUaOFQKuA+61Q0uHMlJWGoqMoaZ8EL2RAQA0k1r5FKowKNrUuK+Zwstwid4OsCoRrOkdAaHUqilqAOe3gD2lk6cYDrtRBasuTmtLVBhF2UDrBGopSg325x4tIFfDIm1xW7xjMrS4oqJwk9/VbI2sIFwt4i6BRnNEUtCQPYGTvcyJN4jxgXiO056bLCvDBH5Yags0QdFVRZQTYu6ZsWcZ0T97sURcZkZrl2bYKvQRhBIiWr3Yi4n2KFYuvu/rEn/qGLqL8PmTAuRwVvgnoPxBAhS7wV4BwqTcjmc2qbEUQGHQUkrZLHH13l6ldeZbUfEfUDfFtRC9i/N2GbgG6UIOyM7Z0poz3PE6c7RGEHk2VUto9yHukdofQorzFZBbKLlCEyakG4ynxnxFdevo2RlrVWysWlRda7XXyWcefFMXEQICgItMTZBot7SMaT4sDV2cPr+XlNtU/gpOTQyMofTc+xIOCAqHyoEnIMUnTcA0AdkHOP6wEdfozzjdvrX0ojsfvjSNrUWvOa7U3CIF4TkBzJQ/omaJIS5Q8N9hrol1aKKNKsrLZ46KlVFs6GSDmmnbZZbZ2nsH1evnqHhy+EdPsxpRiyt7OJ6Ch06FhPFBGG0WzMzvYG5bBkGpXs7nt6OMIiQ+YjnHOMx0NOnwpptSQvb1ueuyOYix5veeph2t0eHkWeNx3IJJEoBba2SKVeo47zZ43jc/An7f7HjLiameWljU2cD9jZgd3csW0Ud7ZrRrLDbHkB7XJCExA4hxcVL17/Mvdu3caElmTlzZxeO8HpfsX2+BXe+7b3stA9QSlClLcoX1PbOffmV9HxWbraI2VK5TVFPWFr/FW+8PHP8v3f/zeYi9/n+f2S2fUd2qOKWm0gLoYEdx03tgqqNGZwvssFP6FvHVaeQ6QrUDnu5hlTV/DEykVcKPnguz/A7tTw8sY2L92+x5Xzp3nswQeYuIxEpbSUxvmECs1WVbMeNQavh9g+x6Ex2Z/POLzTD8m+UqmDYoLHetcIExzsJ6Ui0Jqqqg4IyU1ReHmwgnGG5YVlzpw+z9lzl5BSsLM/Z7S5TyA8qYtJhEL0U3ZubbC+cpYrV97El25+g1vbdwmkRmpBXlcopTDeHPjQHMHefNNMaDoHgjf0rHlDyYEc5uxcvUc2TXjw4gpK5HzzruChhYfRusKaWyhnwXiEtOjQYCqD9D1k0GKSbdHuwFPv6PHcN3fZGRnW+4J2P8BomEwspfV0+l2K/ZK7GyPqmeDSYyFK9PB53lhxeoEoDdpZKCPqeUAQthBm2FzMi4/x0V//NPPKIaRg7VKH85fadK3g65+bs3+9ZmUlJIokEgiUJwjB1I75DKJW0GjdR5JYCmwoKCtLHCiigAYfJiTCWHSsKYwFHEiIAWVBeMHCICHQgnlWU1YHko5CopKAuswRvulIGBy1pTFE02Bqg/f6SEXDeZIopKTxIigrAxbCICQIJQaLlwE6EBhdI70BZ6lzg08UKlIN5t85AtkouTgjsHVN2GpTH5i6CAkKiZGKJO2Ca7Sby6qmyObUzpDEHRIgThVCmMbOXQnG8ylKtkEphNYEUUgUKepyRlnXjaEMBqUNwjf+BKUXJDpBBi2MbRI5jwetiZNO02rTEXEQI0SAtc0NmFtFkGjoXMPFYETNeFZx8/YGD6+us7rQ5huzbSpdksga4yZk05LAzgiyu8T+Ct4F3Nu6zYuf/xLCCapSY6oSbUqsDJkSMPQZV+KSU4OEXav4o1HMN6oFeish7/zWh0iTmM1XRmy9vE+5M0THkrq7ynRaYCtJe9DCKclwmBF0IdIZhbUIp5FJiosSphkoY5AGnEsavogwWF/jvWS8PyYrSrI8o64qCpVTG8e8rthtKdxgmRIoqoCyWMaONVb0aZ0OqHVMpydpKYsfFeQig6gkaV9EBR1k7wq6vY6ZfZVHH27z1sffTqwjSj/Fe01uYXf7K5Sq2wRwOmXqLGV+l72dl/nc//sMUScnab2JLC5R63ssvjmgv1Hx8njOvds5D3YT6jMtdNrjoQvrnFh4hMndF9nI7tA9d4qwvcKiTzntEp555QUGKz1OXn6A3okZg8WbPG9rdodjvvCHX+fUQ8uUfUOkA1oqwruA3ekthkmPpVgjpEIg0apR4/CmbgIMPP6gr2q9JziGY8Y3vB55oGRmC4UtLWiBrRtoijGGIm+qPGEcoIM2SlmEqAlCSaIChHVU0wzhJZ00JmynDXzc5eTjCV5GhOmAQEE0g9mwIqwsA1szzDKK8ZSqzkEIuq2YKFlg+fID9BaWEWNDGRnkSsTevZqOc1jjkNMKWRpkZqjvFES9EFnHmMxSzSTKRrgi5oFBn2t7m8SyMTbb3TNEgI4j0lhBYRltZRRSULj6j618hwpFDRRG4tUqoBFY8PVB4qWQSmLrChUMQETUbo6MDBceHfDiH4wZb7RY6rXQaUCVFeS7BWVlSborZHsTxhsTfKZZWxogxABf7UDUAmsRtkY6hzcptuqigi4ULyPaZ9nLV/ijzz3LcFYQdyIuPXKeE6sD/LRg+9Uhflzy1gs9bt2ZwEH1/pAUax2vqdgLx5E6UQMfbuDw9zHy/jWB/7FaHOJAkeS1mvqvjfyOZDoPA8RjcBt/iF/+y5wccEzF6WgOXj8f4oCoIQ6gW0dykQ1MIwxDBoM+g0Gf3b09klbI409fZv1yRBUWTKp9hjmcGqzTTTrMxyVUFVoIjB0zmU6IbYI2QwKWMMYx3Nvh7svXEV5ia42vSrwoME6Ro8lcxom0oN+LuDdRvDQasCVaLJ9sc+7KOlJI9m9nzLemhNIjFmPSk73XBF+H1BLEG0FzH87Xa169Zh6PbxZAO4q5MyrZqFM2c8kod1iZsrjWxxc1S+0eYWWopjNm0x2cnuPiiNb58yTLV1DCIM0+p060uXjqQYSQeJfhRIAxOVmxgZUJqQpABOTOUFW7DIev8ur150g7giA8j+Mi8dIUUbWIohnTas7+MONCewFUi+7CIuunz9COzpDPNhHlHZKVVXSQ0vUaU5bc2LtHp93i1KlzLFQFUsDu7phplnH11busnBxQR655XqOpvaCspxQ6JFESeZhk+yZu+POC4x0S8I+rEQkhMd7ex/hb2/yuGoUaxMF2KQWB1iRJh7ye8uQjT3Dp5KUDSXnH1194kbPL60QoqrzAOUlMQFrFOOtZTlfASLxt1rHa2ftduT/+rOJ1vJg3poDwhpKDcFhx+8s32UrntNfey7esRXz2pducXzpPEm8hiy2MdShvEcKDrYiEhahLrVvsDZ+ne+4h1p+sSD4qubfpWJjCg1pjXM2o8ITWE8UJWzcdV7+WoWvJ8kICdhEz30FrhSaA3GGLDFenSNfD5wGYOSYecG9+kV/8jd8CAUGoeOztS5y71GJ0Z/b/UfemMZal533f713Oete6tVd1dfW+ztozHI5mSIrDIcUhKYkSKVJRkMWWLUeC5CgfkiCBLQUOYliCgdiBjSCAZcHWYslaIZGxKJKixBnOypnpmZ7e9+rq2uvW3e/Z3zcf7u3uoWJFDBBH1gsUqnHqXnTdU+e853n+z3/hvW90KVmL7OdMLbkYaXFKisJ38EOD08upVDWBKwgdge9pokzS2upjfQdcDUaSG8gKi/YkRScFIXFDNeLBZRm2gFI1JHQc8iQiig2FBUmB6ETI+Qp5kpEJQWYkmR2J1ALfoZemFFZgrBgVyAiUowlcF0dZ0qJAa42jPXA0wo7yEHzHIShLijgmH6bkSY5Jc4QLjnaQwoDNyDNJUUBRpIx+IwNKooUadeRWo70SeVaANBRpSpIlWKXQQYCkwBJRFNl4Y1MMs5iwUsHxqjiOg9YOVhbAgLwoUCrE2gxhBcKOmpCiyIjjAe4YbSospEWGIyWO8shFDlKjdYjjlBDCQyqPTFTp22kmTZN99BkWfZpXB5x/u8UjpzZpONNUHAdrLFFssElMmhRYEyP718jSU7Stw+7WbdYu3sYFgkpA5EaYQUJsHJrKBS9hbkKRCcFbey6vdiZIy/s49bjP8X2CZC/i8subDG7cZZoOebnEXTtgrYD6ZJlSpULmKNxYUCs59HLAG0IhybVPVCja7SENbfGR6NoUWdQh7sdkRmJSQ3tnjwxDkqekUYQ1liQvkJ0+Xr0MQ02WG2xQBb9OtrGLOzNNUKsh4z6VUomak5M0N9hrr1Gf9rH1ZRxvkcKEJDu3WL32Gv/dT/0NKt4sUbGHY0dTit1hwXpvg+UDn8bXCZFJSYab7O1c4MKlb3HxrVX+7n/7gyT02ImrTOx/nIeOL+Gnd6lsb3HhZYeHHithZicR3jwPeQcoyYP87u1t1s+e5Wi4zOLEEgsz+9jX0Pzyt77Ok16ZraCg5MLphxY5duQgb7+zwje+9Qo/VH6eKO9QqpWp+R4+hobtsNLt4mmfmpZoMaInlP2QOI54gH4bjBlpxJQc542YUfCZKAxKjkjm2tHEwyFFYhkF3Dg4GvZ6u3iupFoLEdrDkGOyCC+oQCaRUUTcHSCVgw4DwtChPlsl7rZIuh2CsEIYujgS8rTEtUs7VEVKEGWUjEAbh340RGgXrX2UX2Xu6BEatWkYQNLOMWWHnetdgqokGxTIpMDGBfbaANfXiJqL3Rky2G0TFUMqtQUmZtvI7A7vrsQ4MsPXUHiCNLWUPYtQgq3dlLvNiNwRTM0FDzb8MTiRZglFkeB7ciQGRCFUANZH2hRhMxAZwgzRIgVnisymFGmbsD5B9WAFp8jZvtsj3D9JVSjyAnqdjCDOUG6F3ZUhvdUYJ3EoV+pgJilSgfJ8pFGQxZg8g6KOsDVsAhhFYWe4s+Xx9W++jlSKsFTm0acfZ2qyyc6VbbauNgmw7J/07msIpJLjhPQxnUeOi1QERoIY089G+VTyPkhzH8W956wjuD9N+M4i98Gx+yeScQ81TjR+/3ThHr3mvtPRd/Mw/o922QdUorG24/3OQ/CgMbj37wdBaqP3S6nw/YDDR47w1FMf4MbNm2jf5cOfOE0hV1lr3maz0+L6rYjl2QN4RYVQOQihKExGkQ0YRik276CzNVKzj2iYsLe9ye7qJh4CtxyC2sXkEZn16bsuhAn1GU1qBBc2A1aSKeTsJAceDpiqGpJeytr5Jl6/hS5JMlsl8jXurEaIHCdwkPZ9TST3Pu/7pyV/0V/3wXXz4HoZncc4Sdlr9+hGMVmasnp3l6ZRDAaCtJPhVEPq1ZD27jWqlQauzelELeLBHqUwwK3VCCb2oURMa+c2VbnHox/5KK4sk5guLhlJIeinQ+JsSL16Ei0LEpOSp9vsdC6zunaB7a0tPvXxH2CQdOiZeRb2eZT3t7F5k9pwh9vXOiwf20/Dm6WqZmmoKWwRcrEds7fyJsv1Y5RLFea9KlUn4ez6TQ4pn0wbSi48fPIAUVSwvtniyu2bNKqPkpqIkueipUTZAmxMOx2Fq4r3teZ/lc5FAh44FAlBnhdjUf4oJ0GKkRh5jDNgitHPlZQjOqzjIbXmwOJhHjt9htmJOeJ+SqZz1m5s8Mj8MdxU0BrGpIOMknVZqi1SSCilIV6qcdFo7dBPolFmwtho4Z4jkoDvAB3sSPv8Xe0131VzcG3V4DQz1rN11ld+h9P/8GN8z/IkumiRoZHuFNq0kEUf00sRTkijoWjHLYa9JnqQkQ6ncY776MoVdjdjbrUyymsJk4+UOJ9YJgDdjFjLq9y4W8JJm8zuuGjbQCYKGStwQ9JUUqznBPUaXuFQXLqBPKTYLUn+7PcusTtIUEoxO+vz8TMTHAwN7327z+5uTj2QDHA4tr9M0NDYig+1MmG1hXT7tJoWVE7hwdC69I1Pq7tHaytmYamKF2TkuWXQz0gGBfV6iV7mMMwE3ShDpRmTFQcjXKz0EQyxaoSwOwLIMhwBnWFM3MvRFYEbBriiIBceg+6QuIhRxiALQ2ZHF1TFc7BCUalX0L5HlhdQFOTWYqxE6wKEGKF7VuO4PoNeinBijJug7ltsFfSjjIpTQllBUK6hlIU8Iup3UHlCkWZkCJwgZCLwqFYDUqOpOB5Rt0NmLMZAnqdEvYSwHBB6Lq7rgtDkeUac9imSPtp18fwySgTj6bJCaEVdFMSDHayIqFYmKKwgzQ2eW6IoUpQOsE4JK10sGqVCXKfM9EQDp1jkaNjg0GyJE9UB/bNNXnsj5pWn2nw0VLjaEuOwugc4o0CcoiiI3BsIvYocaDor1xF1n97WHjYs2HFDhjaiWuwRkfD8YoMNPeTKpuXcoEJTKsrTt/jEZ5ewN89y4XKZG+/ucayW8/TD80SVOb762y/TbCxx8AcO4gRlrGOZnrHs7m5xc7dHNXRo9S2D1gBhJbVSiWzYpR5Wqc5NsrlVUHR6WO2QmoK030ZMTZF3IrI8xeaGoiNIhylmrQnZZYRXRoUNpFdCFwPynTWGe0dJdm/R6e9RxD1M0iHLM3b8MgR3qMzOY/rb2GiDpQ8/xv6p72MgXHyRkMsqe91NVrYvcHD/8wTOFIOshT98C7P+bXYuXuDr7+zw0AcDlqZf4NVv/T4rdZg/8ASN8Dlu936V/W7Oof/0p7iZbzMb58wWDq0UhLqIHw5441yf+YM3yZf2seFUMbbHC8/+KOrGJc63+xDGTFZcpr0qDz9xiDxt8+71a5Ramxw7+jAz+08Q5W2masd5cWOLql/GLZUpaTWygxMSrR3iOKXIi5EPurU4SpPnBVlmSKKcIk6QJh01wY6H1BKhXWyaYvMMyHFEAdGQrC9wJyZGFAIJ1qviBQ2y5hCZryP6EUJYomFGr7PL8ccPknUlg56iVK/ieC6FcJhcqnLj+kuUSHEnSjx1+APMbW/wZy99HU+m2LzC0sGDWF2ig0aVPKwr2Fkfsn15hXJUohJZZGIRmaGaxXiL84g1i9mN6K6u0HSalE+e5oWPHuHHf+7n6EcpoWNolB3mJnzudhLcusvdzZy9riVNBa4taG8Pv2PPz7KUdqtFFHWZm6mhZIciT5BqGmEysA6YXUiGoDxKJcuw2MFEe1hSTHkZNaMRZYfdXkS41UPOlEkDn6vtmDkhkJ0+63crdLcUfmIotz0ENUQm0IXG2Cp54sOwj/KqaKMxt7+FPLrIVltw/fxd1lttgtDj0NE5Hj10nMH2Kwx3+qT9AqTgD1/Zwg89XGsZRjk2KSjIITMoOQIsEPdoQ/f89McP0nuIvuV+0fedgWljqPg7KoaxkHn0ZqyV/97XmvGE4q83leg7l7UWrdQ9IP1+gQKjIsqMuc73moQ/HxaltCIIAx559FH+7s/+LEKOuPbDvIXIX+H6pT7xtTWurLS5dKTJiawgCH0io1FZgZWKNM/JREzq3ECJ4/R39mjurCGqLr3tDIKcbafOIBqi0jbSLTi8XGdP9Vm/CyuDBoMgYnnfJicencbs3mbjbomdG00ePuEyc7BBLD3W31pl4kkH15VMLNSR3kihfq/If//UZHRkDErYBwFxjJvMB6+AKI6Jk5Q8z7mztslXX3qDt2+sY+MBiVthanp2RJHLErxeG5PO0zz7DnvnPWwekcV94jxna7WCLYX0bn4Vkm1m9jWYePqDVIOj5Chc4VJQoh2tkxYp9eoJtCyRmiFuepN8711urV7jaqfJyaN1auETXLrydZpTdQ5NPIwSGXH2LhNKMPXUT7BZ7DCTWHShiTBou4V2It693GTxyCqJVyNyJMaBUwuPkG2vsSkN5bKh6jp4XsjiokSIlJWtTYJqiD+zjOt5owbM8bk9HFBzfKSSY5oeD+41/sMJw/+iZax9MBlQ6r7W5t7fX45TlpUU5MYgtcJBIcTIOCHwQhxP85lP/xCRsGz2WkyXQ+JEcXr/Y+Q3UmxUUC5K6MKirUHUHfyeQzQwnKotszfVJO1AYlOSbk4pCEiyZPR7ja8pOb7XzHgfw/w/fqz767tqDsK5OU4/eYoj0uHLv/1lvvDzX+cnfvLDfHhmmylviCgr/IkQ3AI2YoSnMYM2LhlVXaGQE1w69yLf85kv8qFD7/Di5pCdQc72ekRjxtIq4DQwdXKKnVsJ7DZpSM3+akCyd5dBJ0blNVRcUOwVZFMPoXZ6dPrXaRzLSZxHePXdgH/0h19GInE9yf/4NxZYmFO88kqbb/x2G2FgekLzN//BhxGVMs2tbTZWtrn73jYb2xkuknJphCBFscCTOUEpYeFgCDsZYU2BMWSxQRaCStlho53Q6Q2pVXyIMmSS4gofJSTDnQHhRIhbGIbDlDQrmJouEycxrucTdxLSZgeZptSnyxihOHRglpu3thjmlsD3qFdLhIFHp7tLpValUi9joph4r8MwzekPDKVahTjPcUshQjpjr1wDOLhylGrqKIHJCtIko+TUAIUbOBhlSOIBJu7jY9G+AlugYTx6LVA2xrE5Wk8RC4feMMWVI/90RxaE5RrYAonFmCGiSEcjTNdHURCnEZ7vIqU7RpMSfN9Fe1PkeYSQoIUcP0gGo8CucBIrFEp6SBmglIdSLlIoJpXGV9PE6kM0HtMs/33LJ59/jZtvD2j4Owx3DX7dQcUtHjvt8VtSkLUz3rp8myNH32I6vsO5V79Cb7PL80/MsfvGNUrZMnFpntsmwbO32an1ubwKwcwHyXY2aFRWOfPJKT589EN86V+VufLqkOfnJzisJeqaQ+Vgncc/9Gmuz5U5+OwMOTHNVptuP+JOe4fW5iZ34oQkKgjLIbOLMxxcngf/MIdnarQzwb5DC2ysrfDeO+9w4dx7RNbSvXgRU2T3+d8mL7CpuW+EIHUHkiF6co5wYYKi1yZrXUGXHIpMkkVgVAnpu4jlA8hkg+7KeRj2eOQDx/nFf/Tf0xaakuhQ6DLr698kGWzy2NQR5spTvNW9TND6t1y6uc65jTbr0ZBnn67zk5/4e7x99Xf59T98lc//6Gf55PxDyMTnpUtX+b1/8h4/9xs/w5y/wG/96r/l1rtv8UP/9fey79CnOPPUMUrJFn/wKy8ze6XNZ37WI9Yf5Xm3zO836kwOtpkQU6SDhItbZ9FT8zz73Md58Su/SikuWL+zTTMr8/ihCVYTwf7QgXRA5GgcERDIER9VKgchcpSUKNcBDFmakaUJQigwkKSWPM0RJsbmXYQUpL2CwJFokYFNsSanFFYorGR9rUu8sYGwOW6thDERiWjgWI0qQuKWIQf8epnhUJPlCr9apT6/SFipoRwPnAqf++n9aCFQRlAqCa5e2mR7u8bty3/MR5/5KNPPHGYlK1PNXKb6htaLW7QrA5Zv/yal4Rk0k7gyoCRdvDhE74FZ3yMNc/zKKeYP+YTP1vjS5fPE/f5Ia+RpCiSDRGClw+01ixj08HyXU8tT+NLy8uXVBxu+EHieT6MxzXaz4Jtnz/KJZz6JTDex+RQ4McgUyKBnQWlssoajDUaGRKmgufMmC0de4NEzS5x79QbtnQ6VNQF1h1ZsedgV+MuLFO/dxOv0qVdKVAKXfLhOFqdY7UNviLFlrLcM/R5p8h6lgz5Z8TRfe+0iX3npDTQe9ekKP/VjT5Hb67z14mXWLmyjhMCr+xx97DilrS4rt9Yp+ilFno+m3GpUtOdjG1MzbgIcLbHFmB4jRroEO37M2jHt6F4S8Wg/G1ORGAWnyXuTKcR3IMcj4fE9OtKDgK8/n+b613eNAKh7jIVRjfx+VFeMnV3uNQj2/jRn9FJLlmbs7uzS2muNii2hKEuLI2sU+kkefcRFCYc3zv4Zt291aOgbeCkQdQinyixOBRgBw7UW59fOMV06RNzdorP1Dkmrw5OPHWT7xdeZcj7ITn2K2DSpeJsMq0NW70pK+5/Fnj/LgSMRj37gMPO1h7n+pmLt9SFPHZ2gNATuSNwJl8a+ZXqRZt+ijxEjOscoOM8wGEaEvn//Gru3jLFsNlssTE+OPv+98zReaZbxC//0n3Px1gqd7oBomBD3MxAWrRWOXyakYPnQEgeO7WNfvcJ7d7bpbN0kmNyH0C6FV0PXfdTSAmpwl8HuHroY8sTxp/mR558nEQKHGEHATvttAukxHU7iaJetdBM3/lPubG9xsbuD9SM+NHucx/d9nrWdl/itl7/Gf/WFn2HZn6bdv8XKrQtsvPg6n/vpz1MVE/zLX/tnzC1UePKZZ6lVjrJ/3wLOJ67zG7/2ezwAE0LbAAAgAElEQVT7mYgDDz2DlAssBpL3ajWm8wFlOUE/6tA2LZywypGDx7h06Zv46RLrzS61KjTKLr1CMOmMUpcz4SHG9CIY3bt/FeLk0T0reRDKdi+lWN5vdj0vQKmRyYXveziyhM0FWTIgtRlHTx3nm2ff5kde+Dw1Pcve5R5926a2/i6e8xSpEXiOj4eLKPSIVbGbs5d1kKVJqtOz1N0eETmDQcz8TJ3tvT2iKLlPuUqz4n5KspKjPK+8+Ms7hO+qOTi/mnA36SKVy2RY5fDRE/z6P3mTYz//PaTVPk7vDkvdiMlp0I8sI6Im6dUROiO1ZpcGOopwrcfKKYm9Auqm4W7TYtsVanTYAa7dLHNrPcemOR+oOfifWab97i1ub4fM7ttPOZNkO1vk3Vs4EwbrC4x6nN941ee3X94gUJbKhOIjM4p6vc9X/sUOdy7ENIxF+4If/+lDVGYbbLY79AcpaWwgyRDDmHrNpRRIdOgSxxmd3QGdLU0QBiM0vZVhx6nEvj9qQMpxQqs1JCtyPF8TVD3CksJmMYUUdHZShBT4gcNE2aUfxXgdS6nWIAwlwvHRrksyMCgH+naIqywGgeO5aD+gQFAKqigrEJlAWIGWGk9pRDjqCt0gQGgfrTVagLQ5vhOQZSnCdXF0ASoeCWOsAZvSbd6lXJ+hHJQR5QqmyMkG8cgdqFwiS1KMsAi/TNrrkWKoTlYJqiFRMqA/6BOnDlUlcZTAcTXGQmoEwroE2pL0tsjTAWE4iR/6KCkhH4xoPuR4jocx+cgfXHq4jofru2glKdAUMLKhRGAQ3LsFExy0c4Cy1jhzHf6n/+U6//MvNpn+/o+zu3aJE7LN/mmf1251ceqCeKfgWFZwQFTYG5R5/VwHO4iYfMJhbWuKlbu7bPa2kY7iySOG3VJGNHOA3E8QTp8nDhzlJ5/5Ya7/4y/x9fNV/t6zn6ByO8Lu5djQp8g2MLnH4lyVchiQ+w7DLIb1DHerx3tvXCO1OdWZGQ5/4CkeefYphNE4VYeFkqDdyrh26Q5vv3aJd77yB/R7PfI8GfkfW/PANxxGxa10ccIq/tQspZlZ/Ikq5DF5fYZ0uIcMGgTuBOF+Hz1bI27exXoBtpsy3NnCPTnD1OdPU9YzlIRhVzRodX8Z4RSUG/sY+gFnuy/hRRd4b6XPK+/1UC6cXt7Hk7OHuXr3Or/z8iVe+Nw0D506jCenidM91tfa/Of/w0OsOreZEQf45ONTXJYeu+fO8/ihx8mKZS5MVVlNDOVb6ziXzxEcWuSfr7l8YeEo59UkK1urlAw8tu/DbKYOV6OMJ57+YQaRYntjhd76y1yZ+Tj1epWSrNIH0rggMimLgYcjxZgm5JBaC0Ux0irJB0WZdgRuqNGOjzSaNE9I4wg/FDhSEHdikiQCL6C5usrQSDyRw3BIbjMGdkg4Ncn2bhfZ2WJ+eYGiEMSxpchCZDdjqubQvHmHaJhQm1ukPjvPVD3g6PEy1pj7fu61+QqVWc3f+dyv8NWVnL/9fIiTFmy1hsTdnEPONvzp28z4exTd/5MsfQytTmDdBiZPob+KKE/Qzl3S/Q7+Iy7GS3nvpTcBQ+b6VCoGT1vag4K7SUHaL6g6gpoHchgROh6Pzy1wrXkVuFfcwntnv831Kxf57Bf/M85fPM/yckim59BJikcfx+kjZk8i8nXydYtQGbnwiW0VlW2jrMvmSUHpbUO2O2CnUkU5E0wIyU5u2dkos70TUzcFR+caqJP7SNZu0GzPMukeREYdiqiNcG+iAgOOppAf5w++VXDlRpvJwDA5G/DkootbVlz+VorZKKjbgrBR4vjHH+HJ6jKZjfnFf/g7xFEM1pAkFjOeEBTGjhyMCkBwP/kYHozj7ejGQ96j6r4fEbb33IdGDcBftO5PHe5zTu41FQ/Ey3+9m4NRQ6X1+/cqOaYP8b5jAmNHzZMcq7jF2NHIMhJ1CqkYZzUBkAuFo6aR8hRHjgz5iR9f55/92lUWPvfjXL78Wzw3o9BKsdlvUWpomlfaHClyprwab27e5eV3NijZIc999gSbdw6ysnmNnZ5msgGN/Rltx5LOHgc9wPP7nDn4NKf8Jbb/6Nucu17ic8+cwV7sjcKjhmD6Bus6+MGIRpvkGWKc3iwYCalfeuUsjz92Au179FNDLyswCqYqIZfbAzY2WlSKIefPvsXvfenfEQ17JGlGFMUUFqwQCKHQ2qVWb/Df/J3/gqefOjP2vR+dOyklnwT+9f/2C+S3V/AqFbxaBbdawe7c5MgHz5DK6yx89BSzTx7HkyEKiAgYJl/H8+tIVWMgMtLkGipfY6WZ8srKDvONgCP1w8yHS2y0N3jpxkW++MnTTFbmUMIlTiJSMj70g8+za7ep0+D7v+cwrcEm8c4N5qsLFLbG7Uqd1Y020foKztISWcnljURzpjbDrUHEbq9J1a9QCWcZGMFObjh66GkGqUPaWmEw6COD/WjHwzejPIXMgijAlQ/uvb+KNcLoxg2KeTAxEELgeR5PP/00v/Qvfol+v0+lXEEqyfb2Li//yWt8+Te/QrA0j6MLao1FLt9YIakMmEgsgys3OLkP0p2XMclJjD+N1RppCpxOBtWQOHJZPn2Ukq4xu73A699+h5JQuDUf3evgZHJkKGPhvp/p2KlIylG2z1/WIHxXzUF7Z5eomyGUixCG6GvvcfTECX7l/7jAD39hP88+tYyN+9zZ2Ga6vYq37KAnfdJdRb41oNZKGOYRSXKZqScsV15TdG9nVIThpMqZU4ICxVYPqqnlWElRVAMGlzcQSrPbUYS6j6oFZFMV7N46vY7En9nHL7/c57XLd8njJtOORKSGz3xhli/93oC91ZQkKpioaT734TqNo0vERZ8wH9K81ebKuT3a7ZT+MMckhsOHQqwCqwVCCWyUszeIqFcCSrqg18tIM0BL2p0CL/SYbHhUaw5B6OFojRaGcuiye7dLVIBf8fHLHpWqz+ZGF0cKhDE4QQByVNB7jiDPclq9Atdz8ZB4nsbTo80yRSC1SxoNkNIiHY2LpeQWpNbiheURl7qwZNYgbTEOJdFkWY7nhig/hGJAnhQjzqz0EVqNEBrlYJVPFBckcU4RKrTrAQW5MXieS65GFCfXd0GOLEd9P6QcVhBFhMlijFRjeC0HBI4zEh1Lx0MqPfKat4Y8z3AdhRUFBgXKQWsXx/UQ0h1HwCuUdEFICpsRmxwlJEoYAmGRCDRVQu8Yz32oyttrFa68cpbuWpv+tCQ1ER85XObLXps+llNHDrISSV46v8GgnaCA9vQTvNp9kc3dPaYWHB4+U+bopOD8DZ/dqZTuVotHT1Z59HTA2uUL/KsL8NNHniN/5w754Ara209afpqWV2J9a4Un9x8lUPD6r7/GN/7oRS52bzEvE464Dqf+kx9j/6kjTM9P44ZluolF7sT8ws//S/rNd7nb3GC7uU2/1SQfO0e9fxsSWiMdF6lc3Eqd6uw0blhFei6YAqFLiCLHC6dGQTlaoVyDyltIJ2HuuY9w81d/g9p8lU8+/2G++PEfJpQePXKcfJ3O7SbV6gGcepV21qSiKjSbLS5cvYujMxquxvYtF92MJ+tXOf/SLp/64FM4oUvT3KBnrlI4it+95vIzZzwKc53dYJtWySHswuuv/xueefpvsTR9itriHW5t9fndl64yPWzwxTOf59zAUKgyWbBIq99jYjthbsLQKyxvGQddtHEn6hRBjbNn3+SFD3yEHWcSVysmHU1FSXJjUFIhxEjwj3XI7chVxOSWUbp4QVbkGFOABKEdlADG4X6DQZ+knyCEpjwTMH90kdZehIhabA80GQGBVyLNBMPmOu6wzbDtISqzoxTxYYe5YD/CbtApBpRCRXWqysTUBK6rAYE1D2gFnhLMLszz3I/+HA+fmaLVzdjcXuf2O2cp7XbZ/9gnuNsrWOpZPA5g8wYmVZg4J092KCYX6FczXuzA4oKi0Rjyh1+/yMXLr5LJgiOnq4h2H2Es5WqAsx5R8R3KgaQa+AwSCITD8cUJuPCgOfg3//p3KZU8Hnr0SX7pn/6vvPD5L/DiN77Nk08t4gcxadIk7mwSJBvIRgVVq5F3QfZbeImlkAMKs0L9eMjdQOJFOQ2dMaNypn2XXAZ0erDPMwxmK5hqiWx7E4RPv+9Qa7cRjovBRcRdBBpdPcIfvbHL7bVVPLvJjCMom5yHnzvAi79/HdPq0GrtMT9XY9+RaS7dibh593W++LlHqZU0E2UPDeRZgVYj1LowIEVOLg3FmDI5KvIsRTFOFh1TipSUWOx9550HetQH2oL7VcN4lH8P0XwwdRgjjXaUM3FPKCj+XwhZ/2NediwsvqfVGJ2KEeXGmHspsvp+I2TG/HqtR45FQeDjeg6FHU0YpACHkVZNiArlcIZTx6b57Gcb3Hrzjxh2WgwSn8DxOdSoEnp3EVnG0vxjXO0WXF7dY2ejQ5eM//2XzjFVmWDrxgoPfXCRwycqNFzN2m6ZvcmE9nqbp55ZZmrKsLq6xaXbDs8dPEX85jpedAMxcZpMTzIUgn57yMLEBBK49TsXuLGzQebGLEyFLDx6jANHDlA4DrmBXIyup7yZ8OUX36G18ibn19YYDru0O222m02KPB+zPQTC86jX6zx15jH+5o99EcdxmZ2epBQGI+rK+Fzfv17ynGjQIU/6ZIMWes+jMIZ8eYn5xQY/8vCHObN4GoUkswZlBwz2BtRry4wMJlNcHAbDLte3rjNZktQRxDHsqJiq2+WVs+t87NT3YST0zToRO/SN5vVdn0/tc0jsGp0gJ419RL/D6vrXWF74FDPlk1QOvcH17h7JrVtMLwacnDrJndQgpUfmNkjyHNcWVFzJnrXctg4lkaBrcwzihOHONkdm99FB4VooiXGOjmVEL7Ijwwkl/wNTi/5vVlNi3BQqtB6nqwPlcpnPff7z/MTf/glqtSqlUohSo2ve9Tw+8KGPIP0DTM97vHfuTXRtkublm2h/F2oLBGIas7tLbmbwsxLaOAibQxGjJktE5YLNfpXJZcWb597i9bPnCCtV8ryO8hOkAKXVCHzIDY7WI+MZITBj98fvpqP6rpqDTz7+vUCdt2+v0cybtPZW2Lp1lxyXr/3OKrYteeETYByHnBg5LNAShAJpLUEvx1Z8XrzR5NhUg3frXdZUSp4YKmsDEguh6yOyUVFUaVTZ99gyl1e2qO+bIEoM169mzDQE03MO3biMN1Hh1sU+b73XZrs1RJERllyeWdS8dsHQ3SoQmcF1oNbQLB33GfTb2J7inde2uX29S5EaGnWNo3MWZjWy7JD2M/q9gn4sgJFgprAQSU0uDUJaXN+lPu2xerdHtexgE4suCUolTTZMSFNLIQRKGlwNjiMQWuEqSTTIcEqjh4TUAu0IpNKYLMeicfwQm2cUuSFLc2pTAcOkwNcCjEIpUEqAr1B5gbIKVwqQ9zjVBUJoskwyaMeU6j44Idp3CB1NHGfkeY5bro5QszhBaoHVLtYqyvUqbuBj84S8GD32CiQ2L7ASHAS+F6ClJImGpIWlpDVFHmPHPr6OlOjxFEG5/gjttmb8laPGIlEpBY7rY8XofQhBVsQIK0DpESdYKAwCYXJWs4gk6TDhFFQchVQGKRtMTJ7iB75vQOvGO+yuZzQHivWe5YVTS1T3b9K5mPDut3dZMneQfYMtRjCh507T6kV0BwkTrkUsBzQfepQr597Eo80jxxrMlQOaGwXDS3f5+COnmbr8LYrdLsqZpVALpH2B5C5LjQJx6TbDrRZXXr/EOzevcGd4h3Y15NN/67/k9AceozY5ydpmj8svvsPKxXMUm9c5++q3yaINusmAOE/Htobm/mgSJRHaQWgHqTRutYEOyyjXGxXAJsNEKcITiMLghQFhLRidyywjbg6Imm02/uhPSNbXmfueeZaOHmT/xBICS2oKBrtXmK4cJA1qDEUORZ9W6zXObmwxHMRUGwGucrCiYLLc5PJGFy9MaVWWEe4sWnjkEuYmZ7l+paCTbqGEg/Qm8EszFO1d3nt9g0ce2WGuNEelWqJzc4vdK2s0lm7zx1de5vThF0gdj9nGJB0rOb92i7nONv7xM8yLjFw1UKqMzDVlcZdyLnEDQUMrPAHWGPLcIrEoIRF25PUs5ZhiOYJuR4UY3LefK4wlzSxZlBANexRphjQCrQTp3gAT5yB8Yt3ArcfIzGCNxAoX17GEiFGieC0kyRKitEU6KLGbdGgcPsbs/oPUJ6fwfQ8pR9QVk6cIqcYUQEFtIuSzP/Yk59KMV3/zj/GCHrOTZSpOwLmXv8pi7SD93VlscRA3nyTBo5CKgCqm4vPNboepJxrMnNZ0wz4bxYC9fhuv7FMNBHkkiVNBGwephrgmpxGW2T9Xw8YO2dByZ7v94LmHwHOqrG31aUZ36Q1zzn/7dVbv7DDcXuexJ7vsW8rIlcbYNiIdUWaQIAuDTiU28Lmx12a5vsSb1VsUex1oJThem8wKwrABeQZSU19apLo8xc5OF39ykjw3rF+PmJiTaM+jKOrIMKR5q8+Fc6sUZoiSgompOodmPa7eKMg7fUgjMgpUNWBiscx8ohn0Ja+/9B7LMyHaTLG+2aWwBVlucTyHJMoQVo0mA+aeoFiOKUPFfdtTIQWmeJDge8+k8F69IO8fG53BP7/+/JF7k4T7mQD3yUt/fdd3FmajxscKgRx/MjkupO4z7a29FyYLgOd67F9eZt/SPgpr6OcZSTqk4gg8pUZFj5qgXDnBBx+O2b15k7W7ObvDIVGhmarOUJ+/ja8EV86vUDs8g0ha2DTB9Xye/ND38trXvsreXgsb1LCLB2m5c9y8c42QXU4dm6YUKPZuD1CR5fj+acq33sHupMjKLHlawXQzdJZQCS327h7pbsSN2+tcWLvG0PbZ2j/DxJnTTJZL5Eayutlj9fYWu3fuMNy4xbXrK3T37nC3vccwjchMTmEtWmkC3+MLn/shZmbnqVTL7Juf58TRw+9zenogMv2OZQsocmw+AtSqtVnAMtzaxMguVRlQc8tYLLktyIbbVIP9pFJTiAKT79GPrnGnt0WWxkxOTEKh0SrFUTvs9FtUwyE9b5GGDLFEaO1T86dptgRR0aYQ4Hiz5FoQ9XbZG+wyP9Oj4U3j1xyGrR2GW3eJq3UuSo/9jZNkQlEPS6TDIa24h5vG6No0dQyOKmGEO8q3ynMcAzUt8MQ9rP4BSj9qFP49+p//D9d36GPG312tCP2RqDjPM4Iw5NTJk3zsYx/juec+yoEDyxhjaLdalCsVXM/FcTSL+6chKLGeJnReeo/hziUWGlM4XcPgziaLUydI2zluvgh5QJaPnhXa0ZiKw/XukOUzZYI5zdzgAFPNPTrbTcq1CtWqYr3sj4xt8pFNbTGmvCkpMfczRf7yvea7ag6eOfkE87PHWFhZ4VrrLmv9g7SvX4Us4ttvKNJIMlvKOfNQGVvLyOMM5Qi0L/FqmmTT0tuCQd9waOE05VJGrgfsRSmXV6ORY40KmJg+Qq/YItm7DZnCqCnW9hbw99bYXu3gFD6zB+ZpG0E1gnfOtthZ64CWlEKHsjYsVTV/ciHDpjnTZctkVbF/QeKIlJ2Vbe5swPaFFvVgkn1LHrJosm5jKtYi8oKKp7C5ILUWYzQihWE3JQk98mQUS62BwFd4EibKLt1WhsgMOs8R0oxQrsClyDIkliLJyHSKKyAzgk43RvsaP1BoR2GEwCiF71mw9zpQC7bAURbtOiAt2vHRyuKoETpTpBqnkChr0Y6L50CqNFFmybJihJAJjXZ9cBywhlJQJosL/LBMEUekRqDH/5frepTKJYzIGSQJhclRrkZqTVEUOCIHMwpd87RGew5ZniFciaVAIRDKGY2GixQhDK47tnYsciyjxkUIgxUaK0YJg5KRA4gxloKRlacU7n0tAwJyk5CbiJ32ZYTvk7kuriMI3QLlPcPD+1/mqWcX2d4sGAyGNDcVE/4BiuzbSCCgxcHKFvNHysQfnUJLxYmFGcgMRV4wHMJOXEMtf5iV7VfYr1KOPu2SdQTNO4aFYcjDizXStZeAOrl7kIx9JKnFGbSYrTuksWFrpcOtfkSv6jK1b4Hpk6dZ/tj3stXOuH7xba5cvM6ldy+wdeltht0bZNaSmIysyEdImwQn9CjVysSdUcOlfB+hHUxh0J6H0hqbF5gsAWtGXuHag7xAWBfXlRTGkA5SsnZEuhfTvf4GUuccP36Yg8v7kUiGRY8s2kIkm9Tq8+zKnMTukucbbHcucaef4pclnlKEnk85kGTZDleafWphQRA08HWAwCGVU0xOHKXpbrDe2WSmvkzoTFCpdGiXm+y8G7Gzc5fS4kGUpzEmo+h0GGxtcmn9j3nm8MfpKIEIXIJqCdEJub3T5CFlqVpBX1dwdJXQarKJnDRKqYQpvpbYQpBgRvxla5AWHKVGYS/Ye5G3Y3rDiBtujRzfIzmiGCHJhZK4QQBGYtOc/l6fqJORlqaQpSq1Sk4xjMiiDK/koQ/uZ3Blg9r0LH7NI4kTXOGAm7O52+bQE/tozMwQhMFI5GpybB5ji5SicxkZLiKDffiBw0OP1vnT80POnd9httakfuI4kzNTRDdXEFmfnIOYtExhUoyKSFTA0ClT1A1rruCZx1zMvOVGc8Buf5cg1PiVkDRKcbQiyyx73QRpDQdmXOYPVvDQiLBB5Ck2Vx5oDkRmOHHsCM7aNu24x9FHznDlwlV2V1a4akNMmqCfhPl9NfAHmHSA0grpOShPofqGtGXJ5g3z1dPo6nUSUvZ2E3TUAqkovAnKE/vY0xvkqcXGLoU7Rbs7g9ddY+/WHuVqHRnWiI2DigpWLqzTubNJY76G6/tUy4JGxePSSoK0CVN1QVDzmJwQeDpm0lFseJbB2i6PnzzOgYU2F67cIomHlFyXcCLk5kqXOMlJM0OaG0wxojEWlhHAc4/6IyBnJGK2BjBmjPTa+9SC++fvHtVhXLDY+xWF+A708YGbz7gx+OvdG4zF22Mdxfiz3KNM3VtijLjem8ZIKcbNmCAIAx5/4nEefvRhjC0obMYg2sS1ZQo9svPWMkDrEyxOXOHkw0e4dbNNr58RDzwmgxnyxOBIg7YbzIW7PH7UJ+jvpxLW+L6PP8uf/f5vk2UJnR607CwiPM6trXMccYYcfdKjeSfBtiRT1mPR8yjWNhB2AlNfIjclTJygVYRX0+SppTuIWDc5edWlVJnEP7iErdZY2e7TXt3i1s1VNm7eprlyg+7uClFhaKV9BvGQzI7yhhbmpnnkxEOEpYAf/sHvZ2ZqGtd1RlMmKf+CkvfBUTt2vcKOvpT2qdSqmCLm+OGD1ErVUWNgEoq8D0WXUtigRYKxA7Jim25yh900IfA1Go3vltAqI8pabEc9ZksFjq6hhSbFRegGlWCJpNehnexRdmcJ9ARFMGDQ26a90aU/3MWtzGNdiRn0yftNuq11OnstTkyepCcZUcg8l7hQDLOMmhSECEK3ihUa5VlcY9BIlKPQ4ymUZBwyNrqo/v+buo1KNARQqZSZnGyQZCnGupTKNT7z/Z/m05/6FAsLi5giYzDokyZ9ouIOqnEU7VQolRzm3Ao31gTdboWbNy6y/NEXSIoW3bVVjteOYMUsThpii4xcuRhHk5QURRX6QrF01KXrgDe3yPRyC5FGICsMdvZG7JPMYpMMYQ2+UuR2RJ+8p4P5bmyTv6vmoGoMHzqyjzOPH+XSTos/EYJ3/vDfsXX7W7TbNd54F+LN2/yDv+8xOz8k2TTo0OJXQM64xB2P7W9scux7BYX8ALVKQr20y253g681M+bCCtnSEeYf+yHc6ze5fe1LXHhpm8/+4Af51tWQR/au0tlu4Rw9hHfoMXZvfYP4vRUu3e5hhobKhM+EpyjlEStrEZ51aWYZZxYlZ5YVC1OQ3Omw6cJXXx/ysSmHA8eWEKHH1s1ttvs5W2sDFo/mLJ2coleBfCul19e0dmOKTox1DXlm0M7oxAbkHJwvEar/i7o3DbL0Ou/7fuecd3/vfnvvmelZMRgMBgMMNhJcQAHgJoqLSe0UpZCJrUSqKIqWuCquSipl2U4+OKmSFMmKFKmsUlKSbIkSZYqbuIEkNhIAsQ5mxcx09/R6b9/9Xc85+XAbAGVZMqtcsc2nqj901b1dfd577vs+z3me/+8vcbRA5yV6ZKjWPfzYpRCScmApC0MySDGZxpECFfpsb42JGwopHQLfRyiBVIJqaBn2+wjh4Yc+cehi8oxarUaRp7iejxL7YzvGIByBkhJRSpR0cDwf5Rkm/QmWjFY1JPJ9fMcl11OTtwMLMaUQIDwyIdH784uUOXG9ClaTpQNGgyECqDUjvMCjnGgiUaCtwJY5UkrCSpV8PERIi5LT8SSh9g3STI7yII4rFEWOzgYYWyC8EIHE8WIKk1DuM+mVcqendEpiRAE2w5oEhINBMtYFs7JgOLlIMmmxJz1EYFme8Wm5Jwn053jvu89x/uWCl759jeSyoLMV4PY0h+fgJz7kcPubNKmWPHTbCo6niG+JuOV4iHIbFNbn5sUqs9zKcNOyW9M4MYw3hqgs5MTCIa589QZHzQEK9yi5nMNKCb4haDTQzoSd4ys8s7vK9mzIYvM4t95zgCPvfC9JVvDnf/51rj36Wcab57FFF2kLUmtRKgAEjqNQjsSLfCozNRrLs2y8eHNqEBfHCNelmOTYrADlYqUgt/nUPMj1EEIjrEZnBek4oSxysuEEM0mAKSVq9vA8D9/1Zs4uH8fqnH7Rg9HLzFYdJk6OsglKb7GXX2W3ULhKEs8FuH2Xlh9QqRgub+yxlgiCUnCrE1IVE/raZ0SbqHo77RmXzd09Gp4kkB5R3aVrqwSp5ublCyw1WpSexkSCMQWXrm/hbnbZe/d11NwxJiJAxBG3njjC06zjZwOSPCctwPcUkfLp5IbNvI91HdzIUAiJpxTScygRiLIk8Pz9TtW0uERJTGko8wzPccCAyQw21y894nUAACAASURBVMSegEZMGnp4vs94kNLf6TFOS4aDHC+StKKpwFBbH6sz4sBBrSzw3LqP05rBizKIIsTCEUQ1wPQv4agxSo4RTDtnpszQg8sIv6Tc/n1U+z0IfwbkFIVsE4MpZ9nqDLm+Pmbx+BL3PfRevvLrf8y9zQ/icAMtBtighak36YWCq2qTxbcfRi05XCDl69vb3Lh4kYOLAaM4pb+XEktFWWaUg4QwUNx/ZxMzX+fq+QzhVFD1WcKmAp4DoNwdcuLYUY4dXaAQgk6ScvUmdF9+jj17jG882qXc3ePhD/rUWzWKQZcwKHACAbWQvG+YvNRh7rikELcz37rEptdnc2OdYb9gpr3EZPko9SNvIbhYsvvC8+jukKNvP8vWNY/D3efZW9vGefN92GqT/k6fwbU1Vi/vEk4kFb9CxS8JyzG9nQJfOPSylDOHPeZmKrhORtrdZWIN3e0hbzs8S3zoNKPBGk7WZbDT4cRig9mVGl/zHfrDjNFEM5yUZMlUvFeYaYKbZtPCXSDQatqNKkuDKEGbaQfU8oZHwl9DCPKaYJm/kcBM61S73yl8Pe/4no43jM1e0wvsn+zKKTvRWsNrbtHTH4nc58RLqYjikNNnTnPi1ElyWxJTkukd8lQzBHxfUglcfDGLY5/hvrse5IknryFGKemWYOiA7iQcXICH3hYQtwuOLczznrfOIN0QVVcsLccErk+vW2Fns049brGzaqjPlLiBIOn0WAiWqeU19p4Z0DDL6GAZTYSRFhkKROxjpGa42OTq7hZ5K+bIyZMcOLlA88AKk0nG1x+/zJUvPUrWuYzMO5QmY6jB8WtgBFHFI6rUmFma545zt/H3f+zj+K6HsZZJklCUBb7v4ygHx/kOB+Z/R/dA69dmyg1llpIM+9TbTcJ6lU/85MdYbi+gTUmmx4hih9hXZKLEsRmF6TDRPSZG4UiFV4mQiaLZCshMh61hl+3UEJWCJeUhSciMRIsWQSCoRFv0hn3ixgF8JUniABGFOGlKb+cazbCJDiTah34xYby1jj8eMT71XmTYYoLADzwabp0sFUTCgnSYc8PXu3RS/G0F0huhxP8/5cHfRhOz1tJqt1g5skJWFLi+pBJG/MAPPML83AzW5hTZiNHeq9TrPpOtr1LGbaQKQbnTP1IK8jxipzNiOMpJdEo/36O/ukNr/hzCdDAqx8YOo8DSUxlaBczeOYMJNWulYSPXGASHD1TpmpRXXtgD5VCrOrhORiKngu69UU6/n0zHoKSDcgCSv3Pt31VxkHztG9y4Drvtk6SVNnedrHH6lz/EjvNTfOk3fotXvvgYLw6P8IlfeIXf+eUa44sOS2FG86SLf+s80YkzvFx8nif/8Q0+/MsJ9y6eJTg65PL2Ni3Xo710Bz/4m79NJ2vgth7gTd6bufZnn+TXvzJPpf8nLKRblG5IUD1E6S/x9Sde4OLLQxpxhZo7nUGr5ppaWZJ6sDcac6+w3OY7NAJJCgw2HLYngh8/PMsYyxe++DRXbg7RWCo+dCaWhUbJQKdc3DQ8c1Wzl0JeStzIpSjGWKFo1jzmY8HJtktzqUm60SWXJT0MVnk021WUgklaMEo1YehhDYxGCbVGTFHkePWQ5kyFdqNCFIUIpZDJkKw0tGqKUeoQRXVqjSrD4R6hq4iqDSg0yTghT1KUhOZsnUq9jp5kJEnBeFJijCG2Y6QfEUUVnMBD5BOULqlIA5MRunARKiCMqmgMRZ5jCgWFpSIsSvtU3AKBRhWgi4R6NcLzA4x0wE5P1gorcOotPFeS5UNyPZ4KmY0mDj2UF5HlYwLHolWC1lMhMtIjdC1FNpqKZghAuvieT2Ek1iZIpSnNmKE2bOmCtVLwgLNBy69x48pz7CYhYesQBytws/dJWoHHgcoZDp3aYWOtz+a3h/zDf/pH/JP/a4V7nrtO81yEWyupyF3ajR7WaIT8F3zyD1d4tDjL//sHq3zzU+vMDwzGqULQZ3Ylxrvaw+zuUfNbPLfbZSloElTPcT25QcO/zrF2G3HyDK/e6fDr377E+hd+lxNvWeRNb7+fpeatvPzkJT7zz/93xoNdIjPElQlDByZaoYTEjT086dJcDFlcabK4NIsrI558uQNOQOiJKY4113hxTNIdgRdg3GmC4gQOXuDjSkPcblDYgGQwpCwLiiQhG++B1jiexyd+7ie499Rp6tKn1IaaCQnqpyiNZpccT07w9Jhe5nJpK6WRl4wTn3tPHmcv3+XG8Aa3LEj+8pMjjq3ElP4ixgqKckKuPQ6058hPbdG9uU63YfEciRMHkM5y5EybtccvUDk2SzRXQtVh69WUlr/FSFv+4E/+Vz7647/C8sIt3Mgt38pc3nr0zQxvvkC322GjoxFBk9m5BQ5UIwwug94QJzU4YuqgncUhVd/FMYYs+etDGrbUjLeHTJIBjXaNwPMIGzFGT0fr9CQlGXYweUg2GJIM9pgUmsbhWWRRcP3F82QjiR2Da6B9sEW5qbCVQ2zvCebjBtWFWfxAkEmXuSMF1699jqZ/lopzBIyLHt7E7v4qorWDt3QC7ZTkRQ8cRZ4r9KU9pNnh9Pe/k+OnV1B7gmf/ZI3jKiKq1NnLE8IwRM42GS9XGMy5fOYv/4hP/OQnYFayu9Nje2cVNezgLo0pN3pUD8esv9wl7xTUGyGLKxI9b/jUFzb4gfvvZ33V4ZVrI1Ix+/q1yp67xCALmeiAJAM97/PIh+/i7o+8mU/+yq8yGCgeuz7Ljd+6zn/1sRbZqkRWJ3grIap+FNOosjZ6mvwPr3HfT5acve0BmpfWGXc7VCoNqrc9wtlf/hn6I8nywx+mVr2DrRfX+crjLlH3q7Qn1xDBAdxgkd6wx7efepa1p3dpzC0y1+gTW0M1K/CFJnMsw2SHMwJmXQ+pIC8Uk56iPxS88+hxEqt58nN/ynA8Qjnw1hNNhpOC22dz7vzgLBeuJGzsFIxSSDPFlZ0Jsa9oNVtcurHD1l4fx5FkGSRJQpKWZGhsYTGvVQH7u+21pH+KRZ0KbaV6Tbj4HZ0C+524y9c6W9+7qoPXcqipdwM4nrOPz35tTftYxX2M59RAysHzvenrHRelJN969llku82ZN93NshwTuzG7O6+QMEO93sTIhJG5Suj4NLwjHLj9doqLq1x87hpX9tb4pV+4h+Wb3yRoNxFuilvfwdb6+9qOXX7zVz/Ay/oM/89v/QXZ3i6VXFJ4TYh2qM5EVLo7VHwFmaBzY0KlXsVpH2F7d5XZKkQzLfTyLLvzgr9a3eHm5/6Uuz54JwcPHUVSZf2l6zz9yb9iuLvNnNlj5EzoWcGkdHF8j7AZEimPI6cX+f5HPsDi7BL9YZ8kzSiLkk63yzMvvsTSwgLHDx/GVYqZmfZfu9b/9i4xZvoMl8ql1pph5dQd5GmflsmpyxCp7VQvKDw8bw5jLWNKAilJdJ9+BpujlLgoGE4i7lg5xbXRC3iyS+xYzq8POLkwg5YNsFMvHikcGnEVI4eM+htMYoFwBcJEeJU55g7s0bn8MtHCAnOLDTZ3xmSdLnWbM7KSR5/5Ex554L/EcxWb2uA7Iedmmq+v7T9iL+BvjddNDV9rhBm7352e6oyU63Pu3vt4z/u/n0tXL3JsuaQW51jdRxiNo28yF38F6e0SrZxmnKfkxQRpI4pE07+6wZXLf8mJu84gZkKO1O9iRp1joZ/hVHx2+j3qsw2KWcWLg8s8fv0ZVpI7ee8js4jYobvTIxkOsOM9+sUGyha892Pv4Im/eAZfemRZQre3y0wtYO9yj0a9xqA/QTkBwvOAwd+5/u+qOGCyjbt7kcp4iEpznn+qwnNfdZn90IP86M//PMOP/ff8/r++yt7nfo2Zo+9m8f4JT376y4w+vcbSUzG3/4O38NEfv8Dv/P5NikvXGfQNO1Jjj72Nn/ml34G7Y578rW0urCcs5RlzhWL2lh/gn/5vdzBY/Sj/9S9+kV/8+WOcqT3Dt3/tn+G+MqKnLYwGnKgIjoc+1dBhZ2LZmliaY8s73+TQXFRMHIdB16EsQlbXBlx6cZMndksmJVQcWK4Jjh5zeHBFsLpleezpDFJYkJKmC605wd3vqTDZsSyuzNNeqKEw+CU4LZ9rmceCq4gyS5pZdjf7FFIiXQc/kIyyElUKfE8yHCfM1qYW7VqX9CcZaQnSCMa9CdVWlaBSR3kapUAayezMEfb6XTzHRZcZyg3xnen8Mm4F40Wke3tMhjlZMU2IfOXSDBU61+RlzvbaNvl4yMxcxOIdt2KdEOVI0mJqvhTGIfgKR2jC6ixu0yUZdskmA0DjhxFaFORFAdJS5BllUUyT/LkZlE1RFBQmA1PgSIXjN5AkGJuRpX3QIwQl2IQig8lknSD0QDpok1NkE0w5wAvbuO7UkMng05lYLg87nGvVGNgms807WDmySW17k+1rz/HlL2bc84njmO5VVLjMR3/kl3HKv+Dzv/t/8Js/NsNtK78JS59A6B4UA+wgR9/UWA/c40OE2+BB7z14P/73UCur/Muf/jkeed8sVxvn+MoLY+7Y2mNZCVY7OVpmFMc+wHnOc+zQmPn5RUaHbuHKoRb//LOPMRxv8pGf/VH8eIYXXujxG5//V+QXPknNizA6Y6jH5I6DbbWZO1hnpmiytHKAMytzuIHH+k6XFy5dY2Nvl163D1JhcJCeh3L9qXC8AjKIqDXrUyt2pXBUhKccbJaTY6YJb1aiS4tTa+L6LtWlJTpDj8HEUo8KlLQ0nAqb2YBVBE015EZ6nRvdVxisX2duYkA0uX+xZCPtEERjDkcuz62X5Bc0zbvqtAOfsfXJTcCiCHDtFk7D4Wz97ax2U8b5HsJaZpw61wIfVY7Z6K/TvdpDD0riA5LolMPmt4Z84w+e4P2P9Dm0KDgXONzp+CTjITmCvdVtTOngFAbtCmx8cEpbsJJCCjxn2uWghCGGmisxhd4Xv5eYQiO0mTrpNioUykUnCaKcjgDqvARb0GzMUGQ5YeDiL9RxlY9XX2T1xQ2Kbbi+OcD1K1Tr83ztBcVbHphlvqFYfbXLbiaZFQFzCz6zgeSP/vAv+JUfFNTdIaZ8Hpk9j8oehYUE8DD2BlI/i9Ehk/FRNvqK6vCrtOqb7PQz7tSWRd/we1cTKn3FB+f6rIsRpZsz07RU2pLPX9b87G98hKje4Cul4NmLQ8Yv71J1YbuUHJxrsvXyEDN0iX1YDAvOzEW4wuHErfP8q69cxe/lnK4vcGr5Vr62f7tXDYUc9XC2E8TuhI0XA16dgfqbb+Vnf+WXePZqwTcfv0r30nNEs2eoHE659PUv43xhRPvWBrVTRzn7jg7f+uI2enOTJB3RayzTfPebeOCDP4iddXj1yxPWuwGHTIqftjhw/wz3vrtF1n8T/8M/eoV/9o8P4137NOPPfxWe3aWTFrB5nVsPKJars2hKBmnBeKCp9QtOPdzAmakwznLK1MXkDpPdHV66/DKPXuqgpKJVUSwteRw4GtKYDdjdLbj61JiqkMxLwVwsqa54fPBHjpLsFswdPokVilcu3eSbz1yj3qryhS+9wMbWkMIYhBZTx1MBupxii/Tr7Xq7nwArsLyuRxB8Z3EgkfKNU+H/9OnQf2hMCx3B/siHfKPgmXYT9ok++0WD4ygajSo/9CPv5/FvPM3P/sLPkUYxrh8wIyEnIg4P0G5vMBn1GLy6zVBLFs40sckqwmvx4Yd/ln/5yj8h1Bf56L330qz/d1D5R8Au6MvYcQ+bpuC6iMYqQhzlNu8RfvgT/5AvfeUZvvanf8yHvn+Ra/HdPH9xlxV/hKsLhpMcEwn07efY4BrLKwX+7CLJXJsbruSLz99klA14309/mNxEfO1bO1x65usUV56i6cdYk9BJdphUmwS3LLMw12CWJnPL89x2eInCGq5d3uTJJ19hb5yyvdNFKXj3g28hiirMtmdot5pTwt+/76rbqdjbAt2dTXa/9CmUUmw3KgzHE4qywHUdokrEyMBQCqqi5GaxyWC0Sj7aoZ5Z0kmFe+ckN9Nt5mLLsHRZ3S5I1wrqb50hEoqRdXDx8ESJERkqcFkJzrE1HqJtgjSKUEV0XR9lBnTTTfpre7hOSXU2wGsItq7s8sIff4p33P1R6l7EcUd9h5bgP5+wFtZe3CHLDbXlGu2ZAL2PPh6MUx5420Pc++YHKPOEP//zv+Q3/qd34jk5mCtQvowS56GSAiGWa4TeAQweSZoy6KfE5RWE2KFx8M08/82v08gOsyLPsd4dcGdzh44Z0XUMF9e+ydivcN87PsLZByu4gcu3S821K3vozpBq6JI151kQOWsv7+KqClWv4MRyjWq9zdbOhExX2Vgdc7BZp1WtMcwSdrsbf+f6v6vioKRED8e43W2atsu95gZvCx7i8U+9ilE1amcWufeRGn/1+Q6/+3vP8Pf/l39A632nuHzgJpd3HaLtRczmkA9/7CFsu8XFP38WNa7wyJn38OlH15mdO0g32+WMtJCcR9V3ePj930e7GlLeEfGnn/4gSSRZfwJQD/EB+7u8YizCc6msrCAZkfQ7mHHJUUdxes6nmsPkguZGr+ClnuaFYYebpeEW3/KuFcXJY4IjJwXzxwW1gwpVlSRdi3HDqUBWKfxaHa/5fbjRg1jbQqgAQYpOrpOufYVCG+z5HcIYRklJPioIY4egWieZZJRJgU4MpVRQ8WhWqxBEU3W75+A6YMuM0SjHEQ7J9pBymBLHdYLYR5qcIu0ihWVvb4DNE+JaRKNZIwh8xpMxaX+HGzd2qVTaBLUY4SpsIZB6wtbmNrlxsdLit6qIuI4RDkwGWNedOjArByVdjO8TOBbXUST9HkoIwiCiNDnC9ShLw2BnDYHF8318P8DzFcqmmDyhyFIUOUrqKenJZGgBFEOMHmL1BG0STFYSBTWC0MNxmSZ1UmERWJsSuhbpxSAqhATUij6TdI0vnc95+MgZvjHqc8K7Dzm7hWdWmZ3s8Kf/82f5wDsKyge/wF7lAFVxlXtma5x88EEEvwf0sOkYCg2ORa1M97Vey1FLPQi+THrj6/SeuMBg5yYvvzxh6ePvRLxc8FJnxAjNW47dxmPdLr0Tz7J1+QluvetdXKqf4IvDmIuru1j5Kr/439zPi89POP/Y4+xeP89MusqkHjDWLtlkj/qJZQ4dWKbmBWQ7mxzxcr75rW/y2Nfs1GBKGlAumfWxjke8dBwpSqKKj1KGYbeDDXwQgmw0wq/GeFGE64Yo5TDpD6YCZemAkriVAL8aIaseUbPJy+dfohWnlKdu5ejiCo6KaAeHqAjL2sRi0oCKlYRVsKrJhVXDBZOw0qixOxSsbmWwl5GPNCvNA8SqhSvqGGvpGYEXH+AEVYrRDo1KTqWokuUVdvIh9eV5zDM96v0eTpThz1iCScHW8wXzK5J8U/Br/+J/5OM/8Qt8/9s/gJKSbSup11vce+52VldvMszBUYZRklDzGwSBojOakDgejSCgGkCMmI4MiekpZeB4FKKgs7tHYgucXDMpNUVviC0tjhchdUa9HlD0UwrjE0YxccXFCX2GY8Hs0UN0BhEzepe99U0uX3mKV7Xl4z99B/0tw4GDMbVZl2ZTgZnw25/9GjPVLlFc4KhnkeU2onwR3CFWa8zEwwQxxh9ixSoUXczuU7z61CusHLuTQ3dBrWXZuLKH6z/Jln2UPxtOuO2Rd1A9e5CrtmR9o8OpH55lNV5mQUt0kaKKLtAhtQXz3ZSgEZKON2k0XQ4c8Dh+oGSurvjspZidqx6D1OVMOOJkmNDO3nhQ5NfXKJRE7aXUhjusyC5Hirs5/+g25cMHObDksXfEcunlHZ780lXe9mOPEN/f5tKVAYOwzsoohyzn3PsfwgQuVz7zDIuzt9KcO8WFS2NiP2ZSjjmhFHnvMpWVCo2zB/ECBxt5/Or/eQc6lvTX7qIu17hDv8TNzCBqdcJT96FHFyj2dnFTw3IUsXAwxvWOk17tsrPe4cZmj7XehD1TcLRmee99dZaPuzSWFdGsi1f3EK6iHFvue1cMViGcCOUvoYJ7kd4tWBNMyWlmwvzRVe6+9wpCGHY3dhiMMpIsnwpk5VQjNiUPmdfRpK/F63jTfXTqa8ZnrwkpXyOeCL63OwfTMaE3/n9t9keI5HQsRClJEPh4novne0gpqFYr3HPvWT7xiR/nJz/2MaK4xvWkz9ZkxJXuJscac1zJJhzwbofKLsFsn8nNXV74N09y5nSJPfFtUtnmeDShGR6lsXwPgq+D6GLzLtYkCM8gfIm1GtvfRtQMQjxFunGT7pXzrF3boTJ/goPvehPmcsIrW5c5sdwiOrzCgJT08HV6V57hyO3v5mLZ5HIu2EpGuEGXH37bYV69lrJ7+dvYrVXm2WIyEzEqfSb9NRbecpZb55Zxyhw1HtMox7z0xFN8+rMWmffxAxfrReQyxA0Cztx5mgfuu4/Ad3HUlCT4N/Ua/46wYDFonUNuMFpTItjJxvy3P/NztFstPvCB9/OhD38IR4SEWLpZAVriG43rOehqg20063bAQjTDal+TpiP0cMBkVLAYr6AIiPAZGYkWJY5rmSVE5yMqXgmmTlJqctcQ1Waxqx3iZBdRNcS2RI/36Iz7LMx7JPOC//vTv8pPvfunOdBaxAVKo3Hld3de/R8jBDDc3KM3mJCpgiheoMwsQUXBvgPyq9eu89jTT/H2B08SRl2UvIowLyC4DnIEtsQWETgNhJogbBdZ3sSMLzNYu8Zb33GW0w/cQv3hu7nwjfO88sWvMkwGrF27wsM/+mHcgxUa/aPUBcwvVhmGNaQFpTW+nDBUGdaUzE8Kqo0q6egyR47WObRsaNckRenTcZYw1zcJopCHV2Y4NrvAhc1Nnr78/N+5/u/qk5AL78JTS4ib18gKiSj2qGw9z7nsChc/P0CP3so9x2o8Xn0bV689z9ZmgfYrnL3tdqp+mxiXr5n/gtks5fb2EVaq1+jYm0hWOfTAOTavTVg46uOla9QWWrROHCcO6ww+N2Hu9gqdlYCaL4jvOEnlI+9m9cu/y0MCbhjNbEWQjsBL4TbpMgkCDs4XqGHJy7uGC0NDxxhmGnD3LQ5vvUPRbCmqM5KoYfGrFllVlEVAPBvhVQKkXwO3jfJnEe4ZDCmWgmxwmWz7CunmOkV/nU4uGY1zCmXJSwPOtGOwuTmiEYEwU1pKgSXLLYW12KSgcMAVGs/dd8/TmvEgI3YlfuBjs5xxNmSkUkQYoAIP3wkoBOQGxpMEdIYZ90lGfQ4stslUgPJdhFKM0zGrnT6WEq/ewAs8gjAgiiqUuSZLJijVJisSlLH4GIQTkOLiCZ9hmkM+RAmN47u4VFCORbgBgWvwfB/HdRFCUwz3kDbH3W+tK9dFuj6lSVDSIc9zpAqRCpQjcEQOMidLhvj+LI6rkMoH4SIwSDVGEGLxsCZh2evzrnkYN6o4psNhL+f6wJJmHsqp4h3scHTlFJ/515/jA3eWsPMYd9Yv8PYfyhHZE+AXmNEYO9IIZREB4DHFWCIwuoTiOdYvCp756gjQtNuSD916jkeffAadH8UUiu6qIfMrPJ/e5ODJs3yzPMFmvMiwnVJ/8Tne9fdO0nnpBbae1+xcfYlu5yqjNKHQlurSPMdbDTItSDY7JJMUT6c8lUo2Bz0mWmIciR/WiJpz+H6DyPMoS3B8iS5LsFBpzzIWA4rcoOIKKLBWYVGkaUIyHqN8DydwcCsRTuARxD7Cc2G0RSoS0uEMUpfE7nScKTOWTOeEqkHbW2DcXWV1DVxP49YzllqKwnQoZUbuSi4OobbscWb5MIFbQ8k2woWUklA5eGUf4wR4cR2Rp0zSPp3tPRzdpHakxgvnOyR5gVSKLDF4Dc2wq3E9Se+Va1xf3+J6PmHGlOR5Ti/1kOMxzdAjCFyM59EMJK2KQltnipU0iqIwDMscGWjc0EM6an8mfCpIDuKQwliKMsE4Arxguh+UQimH3c0hdd9HGY2vfDwnwGoHx0AQKo6eWEKOPYZr15h0n+Ow9PnUr/02H/jYR1k41MSru+wkJd+6Mmb31fN83+w1IkCUeyBGWDHE2gxRgtEBwo0QqoHJE5LhedaH22xudZk7fop4tonwBeO8D+oit/38xzh5x12cO7jMlUrMq2sjtjYKki9e5RP3n2FtZKhuj3GvrlJcu4qnAtKxpjPao9lymWlZ2nWL9jxupk0uXwwwuzeplBGzrTnm2vNUHPeNh2L7dmRHokc99KgGyQB//AJHJpdYffJBamcOcrAyw1p0ks3VdUZDiyDm5PE2oRNAnrPjPYSbW5Zn2yyGksD08aIxwcFFxnslzWUHLu1Sv32BcK6CMi7FJU28IBk3HSoOuKeOMLx6gOIxwd2OZafIqNYkox1LLXdpux5EMY3ZHLOxxvX1jM3OiMQWzB92ObUScvxwQNT0CRoeblSifMAN0GWMV62hghihmqAaCDmDkIcwGCySYnKVvLeJGe2g+zs8/vwGN7f6eK7EcSR5IcDY130hXtcOfEeF8Log9zscXV97jWF//t4K7Hdie77XQ4ip4FHtI1ol+L5DELhIqahUIh76vvt417seoNGsEccSQYy1GUuRpum6lEYhbcKMMtxMABOg/ASnHVIfHOLbn/8M9x27B7H7Oe68o0u1koL+DMgMW+xgsxzhWKbGP9PiywrATEB8nudfSrlwuY8QgoWmywNzKzz+xMvU/bNcHddxc4EMPNaKPWZPnOb5SZv+XAUz7jI37nLo9Cyj9VW6Vy2dGxfpDTuMkwwjFI3D85yoVsmFR/fqKk6RIE3J1ZFgs7/LRHtYX+I2W1Rbc7Rm5nnnPbextDBHJY72KX1v7Jm/rSh4fS8ZPaU+mSmJb0rjMxih6Ozu8iM/9BEeePObcKSDtYYcTeDE2J5iNIK8NEinxA1zmoFDqm8inZyOkWxYh4X5Gsu1RaTwUUiMgtJqHATKpFjp4HgxVhfkkzGjSYZDg2CuySvXr+N5ElNOkdteWDAe5YShmKw5OQAAIABJREFUQ/el59l9YEC9PkssBMKq/6yKAwCcCXl3nf54h44PlUoTEfv4riDBJRERC+2Iew6soxggbB/YADFgaooB1tYRqoIRMabskhUdRvmQfn/I8m0P0Z5vE8kKc80q5W1LzJx7G/OHlrjt8CFedRX65oTBWg9xccCbD86zl1sqwxR97QZir4eLQzY23Ej2OHCwQaNhqLUtXhjTGzXpDgWRs8PKwaOcOXGcY7OzJN9F6v9dfRJpskNemyGvL7C22+NG8Qre6CY7hebqtyvMVWc5fes7+KmPv4+2OYaggpeXtJpVZtotdCFYuftBAtVBZRlNY5FLVar3HaN92GP4WML69XWOtUPqBxvEKqL42k3YjHFesgxPhmzf75Iu1ugvHWSHBd6kNph3BJk0FFJScTzaUnBkwaHsTHhiWHJ1DGkABxYlp067HD3qc+yOCg4ZwpMQeuA4ZLlEu01KLdGjCIYBppTobIssfZInLozZGQeMh1sU/S28dMKxhsBfrDHRFsdOCUJCQXdYsNUrGUwk42RqaCaVxBWSLNfk2fQ0IxAOceDjhT5+GJOnE4wwU5a21hSlprAlvlDE1RCLg/AiCl2QTFLsJEOUOWVaICsFnlPi+BKLIssm9NOE+XYTPwzwgpAwjgmjmDIbYpm6MZZaY5VE6hLXTnUMJhvhuA7WukjM1G2kzKbeCnETpTTS3cds6hKx39J0vRDLVFTrOC4KMLZAKQdHSYS0+66YcuoWq0YgSiT5VIdAjhJ9rJ5gTZ20XyKkT+goVqQld0OGecyMP0uq++SiwEYeW3aR6l1V7PNfgqtXiHs3aMttFk5qhLiJLQxCW1AgHKZFgRTTB1coSBOLNH0Oz7u8/S6HT10XvO9dD/CmuQWuLSyxMefQ7wu6boPG0ZgNP8c7coo+TSb9baKiw8LZGbyJ5amnu6xduUG/u84kTSgExHNz+IFHkk0oRxlpP8emOUZmrE8EudXMHz+CqtbwGk2CapNeN0PmOXYyxnUcjJmamTjSRfkhxuYIDCAxxqCLElcphGT6eSoHpeS+IZ7BcyyuyWlEDgutJs24hivUPgLOkJYpRZnTH07o9zPyTNLLCpYWFRPpomxJklsmI7AjxcpKQFeXJFbQkCFNx0FLTWYcXNnGeDE1vcVICLxIM1epYmyMQrB9bUKvp3FzQcWXDHRJXoewBskg5/zqVRavXeAtCwtkecJwr4NfWhzHw7MCKAhMjsiGSBkROVMnVasVZVYy7KdQWuLYRwNYixKCOA5BQj6S0++SL6Es0aXBE4KoGoGBOFR4roBSg3WIooCw6lJtSAI/oNq+i0MHUyZPPs3nn30Ue/cK3smH8f0mbgakCaMrz7Fyoo/vuwg7weYpZDmwb8iGBVGZJix5n+H2Bi8+3idzmpw5sUg9crHdDRiuMXPnQd7+vu+jdXCJQrrUhaS5lSILl9PHDnKs4bM2yXnhy3/FpSe+QX9zjaheoz9MKOyEo3d5LM5DsyLRpcsTF8aMe5aKTXj73Se579hZDrdWGPaG8Jnp/T7vbmO8JdKoRn9QsDcukOkum5OCm8k8t7erHDrQxn/kLA0ziyklrvap1mI8zyXPA2qLJ0CPIC1puAVqvkKw0sCtC/IbBbs3eizPBwTzFdTAYi4MYewiGxHZYZfRrYI8jplUlijECif8q9QDAVIjnIDYM9QjB7flojd3eGVQ0p1IZFWzuBwweyimvVShdbCJsGNwQ4TjYIRCaxdNE2tcTBIDAaYs0cUaebrN1dUh2wNBMtxCpwNcm6Os5spqn71hNqXD7I/PWPsGq//fFhb/9ZTOvs5B/85kb/p+g5Diex5l+p3xBmbyNd3BdM1SwqmTS7zpvmXuvisGkYC+SJmOEapGKCWhkmjhkWufyKmRlEMcBzI3IKvOEhxsIq74sH0ef/NFmo0e4UyOoIvdH23dl3uAUAjhYIUCR1AWGslNTizVuHwgYN2E3Hv6To5GMRdbDcwwoK89pB9QaUuMq3GWDzApXExvh6qfE81FOJnh/KURm9dWGe11GRcZuB5xvY4fuiSFoRz2Sbs5rk4obcHqEHI0x04fw0YRzdlZfD+mFle549ZjhL63bwjHvoD9u+skTceKNGWRI7QEYxEYNBZdlBw4cIC5uTlgutdyPRXZ94djxuOCHI3wCqqhICHApSAtIU8EbumxWA8Z6pISgSM8YgmZNRgrUDLG4hGIHpkQ+F5A1SvBKqQQ7NzcpT9SNLXEUYqEnDyCuCLp70y43Nmg3prDC0KszQkc7/X9858qrLXY0mK0pbXYRvYGjFc3uPzYU5y54zZs+yhSSlyl8NGE+S4LjSHK0WDHoPewZoygACsBA7KCsAZTDBh3OmxdG2P8GU4dW8aPQmxnQK3h4997K0ceOE2tWaeUiibg2JTA8VluhLR8h26uefKvvsK1l19BOgYvcEkGE6wYc9+5kEa9JPY9OgOXm1sZOvOZn6nyyLlz3Hb4JI2oRiXt/fsuw3dXHIy6zzGKQ+zKHUwW2/SvP8lmWvLcIKUsXyXYu4Efx/zUx+9DinvovrqHO84Rk4JE94niOmfvWMCKRSYvvoQRTaKDB2jfdRbV6cFmj871Ibc/vERoJ9hnLlJ+dYO4OEn+zR2cw0fZTqv07vfQtkZ6yzvhwh9wxnV41bqU0lBxPXxZsOiXPPFyznPS0ljyOHnM4+itAXecDanWImiH2N6IwkiKIiQ3Ef2dAr/ZIu9lOESYLCcZdhj1t+h1Mr7weMLV/vSUJ4p8Zlo1Ys9lTnjkNkVnJcZYcmPY7pX0Esv2SOAiUELiOw6e60xxnVpTZiWeV1LmOdr18IKIsOEgsxIr980rrAFTIoocV0kSI5GOiygNZabJdYqjHAw+k3FKIBWujSiFwJoC4VqqMzOIQuwTDzykcsnNtAOgyxzP81B+gHRc1H6BUIwzXBUgoylVyNoCdIL0q3hRDa1LSjTWaKQWOJ5CF+B6HpZpwikQOEqR5RmeG+A4MKWAa8DiuBGu7yBtgiAFO0LYDYRYB9PH2piyt4sjWwi3iqMtTukhbZNJeozDSKSTMRKKob+EPThH62iT4VPnmR2MqBwvcOsgfQvaTAsDH/aHYadHWcJBCMgnJVJabj9W4WM/0ubqhma5NY++foE2CTvuhLJRoXH0EIM8wWmd5ttGc7g2Yj7tIPI93JWTXPizV3jxQodk5zKlmRoGhqGi2gwp+z1udrbxjZ0y1Y2l1JrcCKKZCseOH0aHNXQco8IQne4wGveRskACQk29HnRRohwXGUqkzVCOj5XTkyMvDKnUq5SOi3BdpDAoU6K0wDGGZj3g8HKTQ0vL1Cp1tLXkRcq4mDAYdZgUe+zsbTNIRijfp0zHNIKYK5klsprusGTUS6mnDvV2xKvJiHNlQRvJnOMTG8FqKcA9iJIpkZ1gHIWJA7x5wZ7cJZ9kTHJB/3pJM1LEBx062zn+YYnXkXiRYPXmBc5feIq7qm/B5mNE0sE4LjkSdIlTaDKG6HGCE2o8P552sRyJKA2jQYo2EiGn3zcpBZ4rCV1JHBr01CQXKQTaGAqTgzDMLM6QdAdEdQ+pDTYvUW5E0I5Qng9KUVuscOhMi/TcMutOwTP/5s/YfOwrzD54Dn+uQeRAS2R4u1cIK6BCATrDZilkBdIDm0/3paUGRULWGbBxoce1CwWt5mHuOhzS0z02b65i0z2OP/wWji7PM0Twrc2cVq6Z7WecWYp5x9tPMRMplkLJi49/kQsvPI3nQWEGpFozP2eYXQlozVjcXLFzXXDpSp9K1eH2g4d510OnueX4WZxohcm1ndfv98n1CxS3NSgPtckiy8RT7I1znt4e4pkbHBvdyszcIU6eqAErJHspYe5ikxJdgOd5zMxEIGLy9ZvgNQkOrhDOtTH9BNtNGW6khKdnp/f/5ztwWePoWTQD5Kk5er5LsSQpKwexK/fDq2scigO2rUfsVQl8jeeWhCLhxpU+qxLaKw3atzSZPVKlvVDHDSoQVbCTLlr7GFGl1C55ahFeFZPkSBFiixHpZItktM1kmPDUN3fZSizSgPJjJBKTZgxKS1YYslxjjMG8Thuy+64Hb8RriZ14Iy+ecv1fo/fs//7ae//GH/gejNfExnafEPbGkqamcUoKTt5ygAcfPMYttwgkr2DtGEyMSddRziGkUAgDynpIUyXPZ5hVIUqk9IkovTq0BJWVBZIXnyIc3cQ9rZG+RagcbMb0pmn3L75i2iqOEFjKYoQyhvtvWyDPIp6MHepulXLnBjOyYIM+bnsR1aozJkeGy1zKcg7/f9S9aZCl2Vnn9zvLu9795p5VlZVZa1dVt3pvSa1Wo0ZoQ9IIJDOAxQAGzTCAwhOYsMMxxPiDHWF77IgJcISxxx40ggACBhOABJKQ1JJQd6vVUm/q6q6la8vacs+863vvu51z/OFmdwthQzPLB51PmTcjI/O+77nvef7P81/qKVGvg6r42LDK7Ze3uHxtj/H6JUo50YTF9ZBaw6fo73Jza4uaE1ijMLYkNQUZkvpck7fceZK+lcSNGqEf0g6rhIH/hqPVa4Wx+Nt1KK//zO3nvBR2f1K1n7shwJaGy5euUKlU0Z5HgaWQFuEZVjeu4+jhVy2+rwiEz3apqBiPzijBjhWNMkDrkGvb25xYmOQtNYRi7BwjC4gGUpQEboSVUI0kvlUkdod8NGRQKLauDpheauD7Hv1sjN/28CsKvyrZ7m3QHx5kVk1Psgqixn/8jfkm13db8NpyEhY2tThP3Tm284SbL73CoBJROXkYFQhCCRU7wkvW8SOB0ALMAPIBkO4LjCRSWSw1hBmS9/bobQzo7UKzdZCjsyF7aU6/t0vUimjPLzHXbpIhuNy3zJSWtoW5hSonl6rEnqTuWZ786lfJkz0aTU1c1WS2ZGHKMnWgRiUWuGFAt1uysTNkqh1w/MRJ3vEDp6lPHca6GH1t6m+7FMCbBAd5pUk6p4juKTn9wNs49a1zPHmlZOP5PXQQMXcwImuHWD1pn1fnW4RDQ+fKNXYubFBrL+MfalKZibCHTpIc+Qg6T4m2Urb/6iyXrvZ59NEPMFutIL7yF/D4nxHnI6R4HwUbTJl/QP0zR/CHTcTDM1z85K/xqV/+Mz4pDMfkNJuuj7E9Ipvx6mXLE0Jw9wGPh39yjsP3NQmqVaSt4HzHeGePot+ml1n6pWRQCjp7BQtqCzH2iOdKrOrTz3useT67znH3fYKjYYWV+YCVlQM0F46QbHa4ebtPtjZgby8ns5bUSRID41IglaJWCyagUQi0L6k3I5yC3V07KexzRypyZKTRfkTk+ViX4oSZAAsDRVbQTzLwvf2EO/CEIoqqSK0pCjWhlowsBQOc1lQCTaBCavUWo06KE5LSOERusDLC2ElmQa02jY5DECUuTyiLMVlqQRf4vsD3FVpHiDJFaIO1HmUBpQVjJThJLHw8bxJuZq2ZQAAHwhZYFEqC1MEkxdeISRcn7SCCAC8IUCpDuG2wVxFuG0mKtl2aNY0rBzDYRWzvYo3EpT63nv8ii49+GCUGNJI93rn4Tp4bVtmzmhe/knBflDG1ItCzkwmMEJOJgRu5yaGhxcQl2YRQWNTQkjqBayxy6MT9fOJXU37jH3+Kh499ntWrPsNuwsoDD/LWRx/mD377M8w89nHWfvdTLL3tXg7ffwwt6zzz5Sd45ZmU0fYzuCKDoEJYi6lVJePdy4itEc4EoDS5GzGyOUYE+IHP4VMHWCzH3FjdY6dUiGaLerNKisUojSly5D71xVmLVj5BpYIWGpRPaQRlObkfjbl50FCUOc6WaKWIogDnEqampjh1x2nq9SbGGUZ5wqgcszYesbp2DU8l+OTEUczYNViMHVbG9IuU1d2EYughRZUgLkmMJq5NUdgCnCHYtxLVosrlQiHpk4tFYrpoMWQ1StmMLjHvSvqixnhUEoWCpOJTpintXcFYCuKmQCU3GK8+x8bSFAe8KjORx05/gFMK6TRZKekOhlRCn8j4xFaTpgZPeQQqwHmSzEFSQpmXBIFCakVWWISxpOOM2JsEKu1nJuOkxY88vJpCmgKMRUeKaKqC14iYFBgSTwE1TTR1hOqxX+IDLz7DMxf3WF7rMHdkEXAMxmNONkDJGOdJ7GiASDOk2M9byBQy9EHVKft9Ns+v8uITm0THj3FXchCdZqjuLdIkoWjNceb+e1jd6bOb+3zn6QR5PeFtJ2P+yX92hK0gRAnFwwcCFqabXPV9bD5AZAWLi4J73l1nat7D5ZaLNw3fOV+imk2OnWzzMz/2QRZLSWEHjMa79F3++vO+kDF5nOIdlcw3DrGwfoIrtzKuPm6ZWfKpTnuYUOH26Rp+NULnluHtdfJS4FfrqHqAFylse570wHupBDFiZ0RybYudjZwzD5/Bswo+/wTi/GVU6oO8E0ePKm8lCht4DwXkx1dY++j7eP5/+it+SElm5Sw900fbbVzSZatT8Coex46HHP/YGaKpFkJWgAAkFMM9TLbAMCso8MhKKNKMqsgRmYdqlTizxd54wG46sXiWdcnDDx9heS4mrq9w9UbK1x5/nrUraxSFIRnnZHlJUb6Rqsz3cO5f4+C/8dr3Tga+f/UF/1/rNfH1JAVZ4qyb0KYmByBSClrtOp/85Y9w+pSlWtlBsIckBRcQhj7YDiTbuKyHcxpbhPSupkzd+5OU3Qs0vRbV6CTrRcjAetx46jpHZhLEnTEitDg3mkzlpMBlBrSHEBqIwbXBGmQ2ppAaEZ/gnnuOEtc2+fPf/23uPXqSq2c9iv4OZz74QYL5CmcvXKF+/B7WvvBFjjz6IPOn5xj0ulw/f5XVVxLG68/i0hzRiqlPVfD1iNH2ecRmH1fUEb7HoNwidQIjI2r1gDvuWmZRWHZvb7GzN+DO0yd5510nX9ehAK8DhDe7Q6wzWGuQQk6oU84htEIrhXWO3/7076C1RkiJF/q0plscWl4gN2MaCxUOHG+y3GhgCeilJdf2RhSpRKcRoizpjw3dlzfITmUIVUFLSUWAQtBzCuFSSprELsMJQV8ldFwPLxmxy0FG3fOMlgOM9ih7Ca1EMFaCZlsxXXZR4z3KSkRNR/9pNuebWM65iWre2En+kpYTjOYL9LEDzLdj7qHgysU9ph8Z409XyEuDoORgQ02o0FJB2kXYMUgDwoPSm+iZRIUy22H36g12twqqB4+yks9AUaAGO4ytJZyeoTk7TWeUkZSKK5cytrZz7r2rwuxSSKkUUgpWGppGvcF2f5N8kFANFMuHNXc+NE2tGVKOMy7cKrnRVcRzUxxfnuO9D76NuLCU5ZgCTfEmGhFvChzc9d/+LCceOsnXv/FX/Ponf4E/+He/xE81Z3nsiS28Q+9hPP9Wru4VfKYL7z3h0dmStGY1sw/eQfXYYW5f2Eb0S9gdoSs+D7/3XtIi5+bqFuezGh/8xIdZagbc+j+u4J7PaDOD53Yw5s/QZJhRSNR5F4OvLpNciTnz0yH3z/8c14Z/wj2VMe0ipS8cztf0Gh7vbEge+y9XaB+5E0aCfGMdVwzYvXybW0M4P3AMSsuUcpyOFSdm23jlLHMfWsILXkSGKSJaoBTH2OkaNi6/yNId7yaq3olQ0+R5wrj8Bs//wTOY2GfkBCrQOCtIdgtGqSHSjspUjaDqo7XCFxJhFLpSoTRjNjsl7emA6aZPFGrS7pBxqYmCAK8SEfgaqTxKGVIYy3TFZ28IkR/SmKpQb1Qo8hFBOKTT6VNqnyTJGY66CCtptAJkURBUfFzp8KzDd45uJ8NljsbiAWRYR2uBsAl5WWKlptmMGJuUUVoyLixR4BOHMfmogxWTFGYlg4kIFh8pLEJFODLyNANXEEQKL2rgi8mpaa2mLCfjTi0NWmtwKVK2cbYDdgdpd5CuDxQIJ9ChD2UXwhrMr+AGq+gs5967l1n/wlO88kKfvBrwgz8d8I4lzaGD66wqS/yBCPkegZUGmZcTYGDAjQRE+1MDA+QZtiuQQ9ioLSGC98LuXVz+N/8V9w8Lrp5d52q/pLSamfUXib7xL1Hr57n6my/woV/7V/RvbnHrUobqDDn7+Fe4cvsGUkCtWUPJMeVwl821MUVu8cID+HaHXtFHeIpqXKU1vcDBk2cYXn+Zm36HNA/wcrD5CPwqTmu0lpSDfeGjlhRGTmgVCsY2wg0znDFIX6F8n16S02hGeFLhCPH8kErLZ+bIMvcsznBgdhbtBfTzHJenGJOTjBPyUQ+/ClHUpq41CEtbBWyk0LYRw50xB5vTrBxtY3NHYENOLL6TeVES2RSP2iQaXioqfoVUaW4RMMyvkmcdyiKh52rcoZokT63iaYP1fTY3LIMetNZBRY6iosiyIRvXr/DCd76BWLwDKWL6/Q612gxRXMF5knzUZ3pqgXolprM3xPMFSijG2YhkBJWqoihAKo0AyqzAOEs1lrRrPsZoBp2EcpwR+4KppQOTTpv1GG908SJBMBuivBI3TiHTOOMhGgoRTIC/V2vw/v/z1/idH/3vOP+V80zPz6DvqKLbe2ztjGk0WqBq2KKLyOwkHNEXiJYEVyLSi1B67PT6nHu5x73pHj/8ax/l2hOv8u1+g4UTd3Lq+DyX9wZ4vYSLX0746KGCuR+axSzWuJrkHAmjfVqK5Gf+x3+J9+v/K7c+/2/5sbeFHP5hzfrAsHch46WzBdvjmPbiIU7e8Raiq0/w5T/8I95/111cvJTw5NmMy3v115/3B3/5g1Rbmq997ltcPnuTX/hvfogH39rm+JkOwfLDDGSb7tDSHUtWmoJxIqg0FY3jBxn3MsaDHDEyxIlD+5I73rnCOC3YW++R+HXOvPcQjVCx+9tbVHZCNFOIsovL/gopMuxeDa9ziuSpGHXcZ2F+hu6ZT7Dd+QuW4iGBzLFKUUQ1TN3n9Fs0J3/kbvz6Kcp+F5t2sXmPZHeDfga3E0eJZUY72lFIPZ6CskX9ngMI8RTK18zK0xR2lnGac/zMOZqzP4jyDoLwEdEtdjsjnvv2WZK0IM0Nk+iCfS67sxNP9u9y53lNd/CGy+nkNHbwBi3pu8DDdzv7fL+uiSf95OsJBX4ybbfOURYlR48cYmE+JPDWwW4h6AL5hHqkYzC3oHkYXBNX3ECajMWFM/Se/yJr1zs0VuaZOy1ZaS7SnrrKrtHo9yzDksPRQ9hkot0wDgoFOsA5b3IAmB42VcjCpxs/QqweI7l5i/G3n+CO3QHX+xe4uDbAE3WO3n6WKpdxN2+w1nmJ93z8l9i9vkZ307J9bZNLLz7F6q2baOFoL86A2GW8dpm9bkKRKYLaMeLyBrfSAXElZnZqnun5ZWYOHmK8eZlr+RY2E4iiIN0Z0u0PmGk3/xoY+HvtBOuQ+4GiEwH4pCEJgiIv6Obd1/MlvCCg3+9x4+o1ompMa7ZOZ73FzqU63STFr0Vsbm2jM0c1CvF9j6SbITCM3rUOizWk1CgEWkgCBFbF7FqBKbYwZY7BYcMWc/VFNv7wOdqHAsZO0O8a8j40tUWHkMaSW1uXOHXoLuaqi2il/s63+p9kOYcrcyhKQEPJJOkslrwW/e4368w9eg9fefYzLJ/fYvH+A1gxJCu7mEFGGNVwNHDmPNLkCGUmzaDQB3IoriCwbN7eoXN5zPLJBY6++172Lm9yMWty/MgUMvLpJzmMCjYuFvzQvCF6qEEeS8bGUdfidVvVX/mX/4Lf/R/+BQflKg+/vUrtDk1vbElujnjlpRFZPMehpSM0WlMEu+c4+/TjPHDsTl584SyXNyp886VLf+dleVPg4Muf+wse/+xnWN+4wCd/do5/9s/+LYOt+/nVxx7i7sYsM0sJi1XD9l7IN/8Ylo8K1qVF+hATsHLHAToDQ7pbMHy+YOEBRftIFRGEbLysuPmvX6D90Ckq25egSBnZ02RyDk8mWPE0ojJP/ZNHUUFI949e5ev/fMwPTre5WC7Q2+pTLDZIV5oEXp+V+49x9w/9CMYUPPfMN7CDXZpexOrNHb5+c5oH72vywHLIgjcmFJqSNn78KtX7+2QX/hA5laHiSfFqywppp8fVNcPF9ae5/OrnOX+hz9VbJYOkZKEpmJ31UUJhMostDM5JgkhTCzU2khjt8DyHlIL+2OHGhqSXIn1FOlSkWqIig5Yee1mJMJYyz/GiAD8WSK8g9n0IQ6YYMRwadndT0kEXoS2UJa2piOEww3OGuUAhrCDGxwyGbK7vMUxyGs06S8uz1P0hxq+jpGXYHSBlQRCUxHFMFMWkZUHk+XhihHMO3/fxfBgPLc6MqcUVysJSlDnUqoRKE3hjstxSGjdJNHaKwgi8oI0SEluOcUIg/QpB0MCOr2PSAVSW0f4CwjURpUSY74ApoJx8WIWxuOEett9FVUqEszh7kYXHGrTfUeHq+ZJP/atn+OivvMJLlxPeercmbMbYVGC6I8x58E9BsQfKFwgtwUiEFdjbBhN6yIU5GuOHKNe6uLVP8wO+ZfkXj6HescQXvrjKybf9Y46eXGHrhf+Ln7oc8tiv/xbV5jTfqi/x5S89xzcf/yrdtct4JiX2QrbW1lDOIgWUKHzl0R+tU686pqc8wngBz2si3DbPP/Ulfupkkz9an6VoH2Wq7tEsOux0IS88WqHAxZOQNFNa7ChF+R6eEiT9EUqLiWYlCIkijRxbbG7Ii5JaI6bRCKkEhrqA0hgurt6g1Z4mCGK0EERewbWtWxRlwWgnIar51Coe9foiWz2Fy1KOVyrc99AySlqMMdhAcXjmGAtRSJlnZN6YUOUEetJdjxEooTmoPEbBDJmusNy8mx9sv8wv/s9/RCoNNpeMNiy6khMIQYFikAkqgaIcOHau97jAFY415qg2AmbnZynLCvkYTF5SOM2NtQ4zLfYnbCU4h8nBWEUU+jgcYyMYlw4tHFoJPE9Rbc8w6o6Jm4oijiiynM31HuH2Ftn6Kiq1TB+bR7UF5kqP7E+fJ/z4x8izGNHRqLpCNyeaheDY/fzXD58eKQzpAAAgAElEQVTg+dXPc3m1yvLsXSzvXGewFNNYug9z61sIM0YFoOLJweeul1ANYfkebnz7ZV752hpJrc6P/tyH2HjlSR6/2uVHPvI+duszvLA24OjWTTaeH/GTDx1ltFClcaRBc6qKFgrPFuz14WZqsCrikY/+F8hHz3DP1BdZ65/nyE6frz+xx41xzOJ0yHFpuXT5OcrthHPdkts7l/H0As2V47zrvjovn58877/zzDPcvHKZZiPl4XdO8anf/BK9G6f5xEfOUFv0mK0XtLAkieLGKx5Ts9BNJvOVwPdpTPlkmaUcG7KrlvadmmorxOaKYsun94V14jvniEYbkAXk7iQyCBHBGOQlxHSd6D+forw8pHthi/FzGcfmqmxnhxht9slPHgZvGlWBmcMrzCzfh3UlV849S9XTjIeOta2U3XKeIyt1Djc0rWCEpI6ToMMN/Nk+5dafolsFQjSwlBRZycbtbV4+v0ml9mW6u1tcX0tY381Js5K7HjzMq3/8PHlpMWZf7M4EuE/WdwED9sPP2A9Ce43lwmsi5e+tT9z/b+DS98uy9o33/tpy++Fw4MhzR1Q9hQ5mEU5POHYu3f/FEZgUN7wMFtDFPmd7QOPug1ROTXPjfIeXn/wyKw/EbKz1OPr2Ns6bgzLF9XNcohGtEjeyCC9C2AhkCKXEJRl4Nai/hSh/CNm5Sn1wgdPTAbWffQdyZYkXv3WOU2//RTy5Rf/qs0wV0yx95JcIogqXihW+/c1zXD97lsHt84TFgDhqcP7ll2iKEiM1qACtNVvdSywuKo62mwTRaTwtyMfrnPv2FT54ZoHfveoxt3yYd73lICcPtYmC8G9ct7/Xeh1kutczNibgzFKU5f59mPyBwozJ8wwpBUVRME4SNm9uojwJUuBJue+UJIkrIe3pKRbm5nnu6Zf4Rz/2CX7+53+eD7z/AywdXmbSWBcUTtBSHoXfpOo1mHMZY1b59Fd/n6gtyfqKK7c3CALL7KxP5jwGhabmB5ixoMws1lmk9P8DLsJ/wLIG0jF2p4vbSlAnj2AKBaVFBhLhCVCaoDnH++5bZGvnJZppgygfMy1zxjN1rH8S0/k2SmQIXyO0D1bBYAzBQWifYefbn2V9fQ8xe4wTD93PcPMKZzcT3vXoA1zKfVw/odpNGG0YHlppkdV94qmAhtaTJGhrGZfQKx2e9vnwP/1VmuJVmv5FkvE1pssuz3zlClvhQU43I8JiyO76Hlm3z61uzu0tja8PsnRqkZ7bhD/92y/LmwIHX33+PD/24XfxT3/mh0kubXJ5c5Vo8AT/21eu4z1juWelzsff/RDLP/KzLDwqKXGkPUfaAeMESSAZVSWH79B0zvXZehHyTYlVFl7IePy536N3pcHp8A4C1SaRBUM7oG6fJg8f4cSvvAd99wHCXsrUiQh74cs0mkdZWPkYjUfOkTQ26I4zNs0KH3rkp/jy5z9F3flUIp/+Lrx04ybZDHzsA4vMJUMYZrhKQdHIcZUx0r9BeSkhPJiBBmccxc4enWsv8pUnc67sWZ6/CFtbJcOBIStAKMEg8pA7jrga4ClJEPtUIo9kDM7TjLOCfJgyMhbtedSbVZJRD2FzlNWTYCRjcKVhWJa06y1ckdKcmSKMApwzoDWRLCj6O7RmZhC+YNAbk2Q51TAmaDVxVjFd9THjEcWgh0wzTO7oD/tUa01UUKJDjxQ94ZylOTrSiLLADzWVagU/ClBSQJpgkBiTYU1BCXgqJI5jiiTF5IYSPXGAyEeUtkRVPazJiSoBftDC82OycggOtJIk2QjP9/GjCK0Vjgxlawg0QraQrIBMES5C5E9g8wxcONHyxHIi0h52cbsWPIs8NCL0C1YOChrvE4yfzPDnHc8/VXDfIw8yu3wYUd5kcPtzVOPJqewiiYh9yH3cUFE8W6DfU0HaGdreIuee2OHsn7xKY7bCiR/8caL5Ju/+2WNU60uEYUz3Lf+cr332t7nr332W5s/8FF/63f+dJ556kjzdwwjDYJDR0zmhmtBdnRUo4cisA+EIAk2WRySFxdIndGMePTrFFzamSLwGd997lHa1wvalVWSvRzkq6G5nVCJJoEGISQBLUZb0t/eIoypSOjzfUYmh4TkKbemZkrIYEUif2Ff4pqAYSMaeoJuM2esm1OKISuxTBIJ6NSIdZuhA43sWzwmQTdrVkGo4IChKtLF4Tk9Ci8IIrMTYGlJFJGUBaYe6b9EqBhyYEgVU/Rp1JzGja9z6xm+wennI0Ar0jEbWBdoXxE7RuW058v4qGxdK8szRiAR1JUluXWeQSOr1JpIMIUOciiaUNN9nZ29EIwoJfI32JpqaViWgyAuEjiZuT0oRBIrAk/R6Y0IPskJiCwi1h68Fgxu3CdWImXvvQmxeQ2e3KV66gtw1yOk29uo59MEV8k1FueNhFmOCAxHCUxz5yR/mhX/9O+TDEWlvQHd9ndGtHL/xIC67AIMdbC/D9Cxq3oNSI5p3YtPrrF3ZwE+rfOStx7HDjAtJk499/F3sFDHb524wv3qdFa9Dcfo49eMx7akIFyjy0RBMQaFCzq4lJN2C+YMtxkGDZ27O8Xu/6Uj3NgjzjI2+pVQlQ2XYEyVO9Jg+cJQTd7XZuNwnsA18F7C5duv15/3nv3GWj3/0MY7PN7l1fcCFtR1qe0/w6T9bx/5Fn0ceOMC9b72T9tHTNCqTWq4YgynBCIHVUPqKekUyuDZkcEUQtAR2y5G/POTyU18ne6nKQvsIhVcjVw5bdPHsLUzrNLOfOAWtAG/RULm9hX/9JmFzmvqpxwgevEapOnTHFbzqIgfnT3D5/NPERNSjJp2bt+iPe/i1iLsXp2nYMTY3CGFxwRDh9RHyPLa7hjeVgpQ4IylHr3L1lXP8m9+/ydsfmeVzT19h0M0ZpY7SSvxQ4zF5Xr+R7uuASVNk0iV3f423zOTTMHl+7X+zX8JhrZtkIABKyf1Jw/fv5MA5R1mWKDUBSlLK/ckI+wYYhnPnrmBMhJAL+xLlGOyzODMGVwdZnXRaiwzyHRgXoA2y1UVrjwOHDVlTYG7m6CnLtW/2OPrQP8SrRdjus5TdL+GJ/e6ziHF2ClHGuIHAbhnEShPpFqnoKa596RskG+tUl+ZpHXsPulblzne9h0p1BscimzMzXFw9z+xLLxO/7e184Xd+i85wk2K0Q1aM2Vvbpoz3aIUKl1m0m6Qbp6UFZYmjCnk2TT8z2GJMKzTcfWSRJ9bbqGqVe+86QLNVBaknIv5iQgP999oCzvL6pvuuMLrMGJRSqP174YRAOCidRXuadJRS5AqlFVJJpBJkk19GacWgm7C72efaxVv0OgPSccanP/Vpnvj6k3zoQx/iH/74T+y7bVkkEOgQ4TLK4Sq7q3/Ay+c26WlFY6lGrVWl4iy+NextWE68o8mVCyNW2m1qUQ21n/fx7zM9+xvA6u/Qarym9Sn6fehuQDmGJIXUIVQV19lBttqYnsVkEllRyEgjtKR5/yluPfEMZZpj8xQzSEi3crz4GGTncEWAG2YIH0QQ4qhBdBfkV9m50mFp6hD1paOUuWGnqPC2R06wmUnEzU0a4x5VzyIPTBHM+ISRxjmHKVKcm+T6bA0L8tTSmooZ+jWefj7m0otjyt2rhOWQtYFDRBk2stSyMUpntGaPcvx4nduXeviVJuPMMOj97QFo8GatTOt3cm7V5//+vafobo9YCBN++iceoYyX2Bt4aFfhvDvI9rUObzlQp7ProbSHV5OYFPqbDh8YCUFcr1GZ86gc9BCJZa5aJyhr7G2tE/7C+5mZWmb0cob9y02eGb3MW848hDy9gFEedmdE0Fe0Z9ukySsMGifxo2lGgy6BrHD8zvu4/Nw3qFeWCbY22L7VZWTH1FeaHDi+RMMOqEcWMTXEuT4lCc6M8Zt9tMuQgcAagdkruX3F8idPZ/zlEyUmVmzuOdLRRKEfRBIvlBSFpQwlKlA0GhGRp7GZxVpDYQxpmlF1jkhLohBCzzLUGs+bCNnA4ntQiTReZikl6DDa5w2WBFoQVEKkybEElLkhzzNKV06CsSpTBJWYbJAh91N0bVYihGJ3p0/UmCGMfbxQ41XrVGcOgikY9oa0ZgJCI9GqxBQjhnl/39kBrFCkeUlpDMrmWATNxhyZ6pEXGb4MkSpEOIMpxwhdRVMiVIRUGmMKbFngdInUVbywjpR2YtlnDagAaQc4W04AkKwixEGE64NsIYIhzuW4YQFGIfQkqwHPUVxxuFdGiHkP/4DP1OGIa4XHyuKj2NYm9TseRVWPI+wWwd0+Qn8R4Sx4DqcaCLeMYwUXfA0RPIDd1ahCUhsmHIxCDr7/nawNmywPe6RrX4K5u9AH78P3ZnnmQsHU+uPM3LzOM1/9Bmu3biOkQQlD6DmGpSO3+xZ0+xaFUikW65qMCsZqPJcTuTEVT7CZC273OkydPkmrqmjUfezSHOWtFCEjhttDirFBegrlecRxQJJmSGcnPse+j/b8CcfWlOg8pchSRDbGDgwEGZVmlaAscSX4no/nCbQoKIuCsTVUtEczUAgdIpVDCQulZWg9KrJJWQ6Ig4DAm4xYlYoI/RajLJ/wWIUlJaMsd4m9DJwjt4bEFBTjPW5ePMuX/vhPuHbhMt2ewYUKjcCljrxnUMIRasnGszml1YTaJ/J9bA6Xr2wxv9LGZQXVSg3tWZyUaCEpi4y8FCRlgO2M8HWK0RW6hcQrJTNtSeBrlCcpEdhSUI8jdgcO7QdUY59IWZQp0HOz1OQAbzjEC7cQ7iai7CFaAuQK9tVzCO8UUhyjMG2y3SG6UkVPtagcO8GJOx6k3EjZO3uOMM7Z3kxQ/hkKOYdZu4UqR6hZhTMaN9RAQHl7j6yvCMI6i62YTscyc+QUl65WSF96ipa9weJ8SWU+5kgb4pbB8xJM2sGWisxErGcWzw05VOmxefY8vb2IWqo485bHkLXTPP/V/4dWO6B9aBkjYvq7fSqeZm8YknuWnIh0lDMcb2LzNwTJ4fQZvvPiHt9JbzNISlaahne+534Kb5H+sMRv1tkwDSq9lLmqzziRKK1QIZgxlENQlcl0PqgE+LMarypxI001CvBNheGNXYIfexg59kifz+l+Z5v1UY/F+w4jDlWwJYi+wxc+su1RZjdJmwfwwzbZdpdqaw6vMUVv8xZROI/udxkmJcZTNJozVJsNQgoCLaA6ANvBuCGIHVR0G0UPoTWu1NjBiJu3Ul54Ned2N+Hsap/EWPY6I7JCUBpBvm24cWWiM5jU8ZPyw7o3uv6vdWcF4rvEud9VvMjXHHz2HY72XzbG7heF39+TA5i8VykFUr7mhjaxerUW9jo9fuM3fouf/7kPc/zYFDAEMYvQPVw5xmVjhKiAnLjkOelwmxnu+jpioYpfqSOaVfoipNV8ECc20M27J7bA1SZqtgrqm5OJhJLAEnB8QiXVFxH6HtwwQDpDpRwRTM8QH7+HQVGlmY8o966Qq3vx40V6ScxTr6SI609TvfYqrz7/JEk6ROsCLTPi2NHNckYmwCmJEgohFL7vcagVUNpp8lITuh4RBRGKndRyfXeXQ/ccpeYLarFPXAnxtNrfO2944H5vXsbftoTYP1dfK6zlxCVq4pDlXheIv3GTJtMcY/eF9ftgQBSTG+isQ8oSqSRC5FjjMMZSmpLNzS2SZMRwmHD+/AUOHFzkxz/+E6RlAeWQK688y9nnn+Di6lnWdzJsxaNuJYwtZWnIhEMpwfUXBxjnc9fR+1icPfQ6OPj77jXnHMY6uoOCwFd4WqCVQO3rXJxzlGYyOf4bwGM0QpgtyPcQMoPIA1q49evgHUWIKazR2EwhlEb4Ht70LDPzy6TrHQgHKHKy7YQgPITJZnA7Dhf7uMAHE0EW4Aix3S1K26JSa1MJI4pcUpmaZWPLx55/kVYzpdoUeLUKMhZ4oUPKHFOMwGlyo0mMQYmMZpDSvbZGmVaZjRsEdz2AMfNcOf9NFhYjZg4dJUkVaTkmUjndUUiuwXkVdvtjBklCbzD4O6/vmzOVtSWvXrnFi5vXaU8v8fEPHeSHf/TtpPFBdvs1tjoB2z3H6sV1DkjHwLWo1zz8WCIzyIeOdMsSadCVkGBeEy5IvJFk8W119BdjqsFhwuOHqN65QjxXYq7VCNfeTvORZQZ7imKQY17tkd3exQUea+MUcfcsw2YTVdSoBwVxLWL99g1mD51imIYEKiGqFzQOCOaaEXYPytEQIfo4OiAG+P4Y6eUI5yh6UHQdw024fMnx5fNwJXHMRo7mlEDNKPJUkIwEYSRJ+4YSR5Zb0tyg5SQcIzeG0E6ojlZOHH0qVY9Kzcd5Ptu5QzmHJyQeAl9JZBiymaTUQ49slEAhEIEiCj08zwPhk+cZ6SglzwxB4CGFYNxPsBlIW2ByAypERBXSrYRmJcCPPHACP66g/Yhup0/pRaQGQuEo85SyHJKXOUKFBHGEUBOlvjUTsZOgpDAKpzSe5yNliBDepLhXFrSHwkeIiQDKWIMUCluOyVOFlBohzH5MJgjhYdEYU6JsATJEiCkE86CPgLs6GTH7GjcsKLtdEA4RCUQDTGJJruVkHfCWQrzAcv1Gzr3veDf1w3fTv5bQO3+dhVOHEM37KK+cRUY5qlaHsonrGdSBBtbOYHMfu71Fu14Sv/teph94mNV1yWhrDbn+Attra9zezsmW3sm7H7mHKT2Nr1KsyRiPEqxzhN7kueLcBBwoLVBikp4q1cR7epgVeLLAU47QF3iVgJ3McOBwjXsfOkJQ8VCBY+ZQi3K4QWkCRF5BuWxivCEVypMEJSgrCQT4UiCFAiMYFxmhNYiiINQC5coJYFCa0AtIcqjUIyqhQlFSlinCZCQ9R7tRxRmBlAHOOrIsxUlvQvPRJaHy0UpNwgFFhCdjrBOURYbQMU6UjE1KXuTgLJnJ2OrtsnrhPM9+7Sn+8rNPsDUsXh9bq0IgHVAKXKTQStC/De2DEbVKSDUMEMayN8iYm08Y5TkRAh1ppPaRfkiaZagSkqEgzS2hp4jqksIElEZjpabAm3QwtaCfO7RUKOnwI001VkTKQVkQevP4psLes49Tj14l9NaQXoKoa9xegjF9zLU97HSJCQ5TZCFq5FG9V+HXIo6dXGSvm5EmfYrtLUgKKEKkPkHev4hgMPm8DDR4VRyK4ram7Af41TbTK3ei46N0L1xgsLrF/O4LHF7uMnN4FhYOUK3GBOY6MvWRRcA4jegmlk7eZ3aujhruMhyOyKxmZmGKO+96gKwlmG0JFJpwbpFuYri1uoaQPZLdnCy1RNOOPJ2I5lT5RmHqTM5LL69jUsOBpRne83CLBx65i0y3GCQ+g7EkTQ3F9pCaq5ARUglAqkkxbEpHkYBWAh176IZERwI5A9XlACVDgsosaqWBXw1RsiDPFF5HEN7fYtwBjaFcG2EGGSZQDMsSuVIn9QJ0DYJaDJ4mTUoqjUWywkMHgmocEcaCyNOQ9rFFgqCDYxuh9lBqD6kG4AxmDCYxjDpw+brjlTVLMBeQOcfcvCb2Q65dGbG3kZIkBYNOOjkOLeDE99CAJlamEzHpPv9eTiYCrxf/r1d8Yv/779IhOPh+pxV995q4MLnXi08pIU1zvva1p/gHH36M48cXEUyBPIzjBsJqUA1c2oOyD8KCpyF0uCRnfGsADQ9qIUKU9DZGLN/7XlRlgcHZF6HcJV4+A77D7j6PDAsEc7g8wpkcUZvGudkJQB/cpnGohazPow+cpJ9AMewg+5fo9HPc/AOUUYNjRw8QeQKtU/K0w95WB08ZalVBFAisdYxSCKsaEEgMSpa4zLA96lH1BEEgiasBMg4ZOlhYDLn7xBy+cgS+Igy8SWo03ytgf/NL8JrTjtt3wvrrlrnWWYQVb3TUpQQzAQavTazE/ojHWYuzFvb3rxDidfqctRZbWvr9AWdfeolLly6xtHQIP/YpraFR11y78B1e/M5ZVjtjhFYoIxjcTqhHHtZaxkVBHGrybo70HYtTS7TqUwjxxv/999hlE2AwLBhmhlEBlVAilQTh8ADPE+y/nYkpxGsAXoAZZ6h0D2nWJk5XQuPGHVxZwGaBa53BqgokAlKBnq6jQo+pxTbjUpIPhojdDmqcoUSIVcvYRCKDEGwENgTVBARmT2PLKn51nqh9ECsajFavk/fatIertA54+FNTiEpM6CmU3UU4D4wmy2FcluSuII59RJowzkqssBw80OBYpU2hjzA9V0OJgOrsAhtbA5KkjyAlHU5okJVpwSjxkFKgovjvvLpvChx42UXC+gL1Eyd56PQD/KN/soCxAj/sM9sIiWdC4vWcnWf32LgREpyoQOBTKoeoSBpH4dpzsFiTjGqO3k6JLQXNioOjPXbKTR5s/QBsViiPObwlzdQPtHn08nup3l9l7bmcMEuQG7fJdq8wDvfYPHQPR9/7EONxRrNaINUmG5vnaB19B77TmENTHF2qUqlk5IObDG+fJaxpeutbmN0t/NqA6kxGpVbiUkvRd/R3HNurcHMHXuhIeqFm8ZTkQDzxmffrimQk2LjukEDSnWifur2M8aikUQ1otisYHEHgEWkFDkqpEdojCD2mtGSnIwilh5YaWwisFZQ6Ik13iFVBWigKASaQhEoQzU5NPItNMaEhFeCkgXGPTqdLqBsITyF1iBe1UNUasjFA+hLlKYT0EUqRj0Z0BwnN9gL94Qjp5bgyIc8THA6pPIJI4IRCSY0TAuMkCI/dvS6KjEZ7bj9MxSG9GBkFWAqk8ia2ftaB0HieJhvtMM5G+FETrSedFal8nC2wqom1Fm0KnIpAVkDMIeQJhNvDBhLpVTDZENPNkfUMEUv0Axli4Bh907L1isHbHBAHkuce/3PueMf7MKOM3W8/w+pn/5z4Y0eY/sjHSNcuUZIRaUUQ7lBceIbR1CHEzV0i7wzFrW8RRAG1h95GEC9zbNGy+mKXajHHxuVrvLoZI468g//lv/9JCucT6oytrKD/mc+xsb6BLQyZE5h9bq3nHNqBcJMH8O2OoRAJ04GGOGAUxAxDjSLg0R94gNN3LvLqxpAUw0yjSs9XaGFpTbUQZkyeFuSFwRYFoQRhIPIV+y1IXOFIsxwVaQLtJt2oSE0yPKyg4kV0ximt6RBfK2yZY02B5wqGaUYtmgTa+TKgFB5jZ4iVR6wNqhIjbIY1ErwAKWMwgtAPyfMhmBQhHNaUDPMEnCErety8eYmv/9VTfOuJ75BqD7+mEMKiA4XKJVoq/LomjiRy7Kg1FK1qlVocECmPQDiMVngUFGOHG6UIlSFlgaOkyCyBKcnSFJMpbBAQ+QHt2NFzAhdI+iNBTSlqsaJwjr2+oR5LyqFEOAkVSSPSSM+HwqO/M8BzN1HRGl69QDkPsX0TOXMIc/sGZVmlqGVkdopiF6JDVWTDMr1UUj9xgM6NgMufu8aMEJi9dZR/B848iXE7/y91bx5lSXbXd37uvbG+eGvuW2Xtq3pRtdRaepMElrCQhIQwIMCAjcEw4OHMmJk5PozPMYwNAxpjGx/M8bEZPByDAWEQSIBBu9RqLb2puquqq7uWrKzMrNwz3x4vtnvv/BFZVS3sGUnwj4lzsvJlZeR7ETdu3Pgt3wWbBdCWMDeDFQ6DFQVDh/rCHOPnHmO4Dzc+/Fs8Oj3Pift71M5FyIUWBDNI35DvvIwVUxT2MO2uYWN3i6C+R6TvZ2vHUDl0lmZQx/clR2uS65sDnnj8O/GclEGh6WcFx0+dpG/aDDd32FwuEH6HPIUi9Yk7w7vrvem+glOfYuHYEd50/jhveGu1rC66PRr+GG4qGe4XZDsj+l2FM+VhyxwVGYGrBINdS80TpL5luKOhKpC2oKjF9EYdTizej+lIbA3UMUWDJn67hnfMoXtVE5BiNtsU/X0yP2c4e5iJ1y6Sxim12QXSdJssGxK0jiOFRI+FTE5UsHZAPtwiG+3ieIK0uwXD2zjRHn7Qx3FjbF5g0pykn9PZNGz1FUu7Ln3HYfFMyELoYgQsHIvY7+asrQ4ocl2qDVlBUZivKvLfCersq93PKCvopXrPPS5Cucsd+dLSQdiav2CQ8Nd0O2iY3tXdf3U3pUySdPkaCQQgxkAcBtsHZxJUFeKXyw6C7yI8hTgSw7QheTYl7wxQtbILunLxORYf+pvYeJ/u05/CZvs40WMER99O0bmIEUN8XyIGr6A7+xTeMZAdPPcEZvt5/NmTqPGTSG+MltB012MCO8n20kt0xBT1U4/w97//EQwKVxZ88YUXGT3/AqNOm7xfILRHrsvCT2Qsrs3AZCTE3NobMZS7NJtVdGWCfhghwoAwqPK6h84xN1Nnu5+WLu5K3u0myQOJ2288QTiAsr3aPwPLnWaUOXgu3ZmaSpVy6eLuBSs7CdZYsOZu0lCgv4o4bw9cr40u0BqKouDm0k1+6Rf+Oa7ncPzUIo6viGVAddxD5yNcz6F3q4c7UwcMg/0hvnKoT3p0bu0hjcJ1nLsQtG/gjIHSiXuvm+KGLoOkPEejDLkBT1uUFISeJFcWzwFHlOMilShVFQdDRLELfloqnMcGqnOY9irWHccGk+iRRGcGVZUIzxK2LEE0wdbTr5Avb1K1YEZ9lHscrUOwErIQa0KozSGEItuUKOsQtuYJxg4z2Gyz++VnOTW7wPiZHDVbhagGThUhC0y8BbTQjDPsFyR5jBsWuGaCft9SmTkEUlHzBL6wdIeKc6cfwZEFmbGM18dJbU6iR6T9Ie1djfSHpKmCQrG2WvuaY/x1JQfvfddjnHrLu8kmjnK63ibbf5KXLjzFwnyb1sIjhLU3Ek7PMPW2cS59PmM22WNtpaBQEVHN59Ck4tTbHOo+9I3lqV/ZxlxPObmY8OSXf4d1fYn10TEWrnXxa3Uq8w7yYcH4m1r0exbHTRhc36HS3qAy1mZ9KuDUd76HwGkw3hiRmD79dBq/OsPkvMTKgDORQcpdiuEexe5t4qVlXt7bod7bpDI+ZCrMCIsC0dVoa+lcsyPmGYMAACAASURBVFy5Ah9fFjyzBb0xxeu+t8bkZoHu5nz+ckF/TxOFivF5xcq1AmNBehIPiBzwpSVPclwHxqciIqnQ2uBIQW5ha6NLnAi08UiVQQlBIFxy4ZKatJRDcyV5L0MXBsdxsEIickMuDAZBJfSpuCUOX0mPKPQZxQl+dZagWkUJSxz3iQvB5s4+826FaquO4/toq6lHdXrbO3i+Q6EE0nURVCEdgMkx2mCQ5AlY6aMqNayEQW8fncW43oDQc3GUg1QKi4MjcoTjYU2BsDnSGDCSIs+oNFp4nl8qx0gHIyDLNFJFWNul0H2kVgcL47B8ijiHEEph95eQ9SrBEx/AtJ8qpcKyJZxpw+J3Vmi+JLjyC1u8sFLwzW+LuPDJn+NYrDh639uY+cWf5rlf+Bc88f5vxp38t7zyoR4TextMzzu0/yzh8xdeofW44o3f9w56N1yyzWvUNl2mvvURhD+Pt1Hl+rWCuQeOcf7hRUzoYpB4ViJVxD/9xQ9y37lT/OsPfpDl1TYRhsJaUm1ItCG7o2SSWcJQUfUUlSiARoWBG9BtV2jVTlM79h5++/c+TOEFLBw5TGgE+519eu09PDfEZDFpZsgLkFgcCQJDXli8wENbQZolSGPpj3K80MU6EqML0mHBvhVYrzROI/MZWY9CW6xx8ZVDrebTDCOUGxAEdQI/4pBUDEZdhmkPzzrkWYZyJK5UIMERhjwdIi1k6ZA0HZIVmiQzOI5mlPRIi4xousHs2XmcDY84zRBodFqAEbihT60RUHfKKlwvLlCxpMgsRQCVmk+9GRL6FVzHw7EeKpdAQXfYYZS7jCQIGdFJNHvdEe2BxfclAxNSiSqEBOhCkUrB4fGSe/Dv/jCh29NU6pLXn3J4x32Smgeu53L0x76XwZMbxBc28dZ6hDMOasZDJFu4Z49jl5fI1vrklQfpJPPUl27hLOwjJ5qEwRh6v8NYKGlYQX7rJmpuCr0bgF/F2hq2Y+DEYXRbs/KlDcamK0y+bgzb2+Q3fuKf8O53/kNOzD1J9IBBzcxhnQV07yZ2bQ0aD5BtRNzOU2519xkO2zx+9DTrGwMmz55nolqjEIpklLOz2ubTv3mBy90+Na/HQrPGkXOzLJyfY3ZsHhU0aE5JJu0Ww62vcPXKRb5w6dbd9f79730LtZPnCSoBE06ffLjMzvplxsb3CRpPUFXzBOMV0krAzmpBo4jZ3zXgulQCRRQKxo8IPFXCxl/69R4TLYVkj+UXX2A3eZlO9xCt1RShJKoC8rQklKUHgXQLRtf7hEUPMZ5RTEVMPHgOx7hUKpDoBM0UbiAIIwFCMeVZBH3y0RAz2CfZW2Mw3MOLb+E1dggrMU4xhCRBFwXJbsbmmuWLNx2+slXQOjPBW981S9AekfT6PLOaonsp9amII6csS9e6WANZZsgzfQBZuEc0llIiD5R57mzG3IN1lPu9Kkk4aCP8BbTHX+PtIIDEvgoiIkoehrl3ZsPhkNEopsgTXDcvlYrkfFm1HX4FOfZakI9h0xtl4KovIeuCibePM3hui70nb9HZMbzm0UMsvfirzPctM+/8dkZ9zf7VS8wf/1ZUdZKtj28zqV5BdTN6L3bZWtklfNjh8KNvYLg0Qm5eJjhWwT98CEmE6gRs3R6x+MBxjk8vHsCSBMoCwuWnf/5f8Pv/4V/y5Mc+zdbqDnVbkGY5/SynkyU46oBXoqAxXuFQLaDSGqOYbLBfBKTtKgsTxwnHH+Djn/sSXmuMqeYYwtqyUv+XTgzu6WBZSpibPJBFlaJ8T2NLprgUdxKRe50FKUuTuiIv5VA5UDW6Q7gXQhwgF8BxHHJbfNX11EZjs9LE75Wry7SmGozPTzDRiNhaXqPWqlLzqqwtrRP3h7hSkCcZ2ctbFLkmSwuEOJAN/UY6B3dMBy2EjiBNDV4hyVKLH8iyk4/guWuaqbrFOjDfFIxVyktrtcabnSBPK+ilFIcOqqEQlQDyXeTCSfT2dUw8IjOTaFvB7fYQ1QGiEiFdRZynxGlK1QpMZxen0YB2FZoRtggh96G5gB1q9p9fYep1c9Tnq7SvXebqH3+KM2/5AONjL+AcFhDOgAmwow1sPgBvgaLr0SFlr9sj8CTjzRbDQU5t/hBV1y9FudKcnY0BF1/Y4sYgpenFzDdrTB9rUpsMafoewq1QqQladOjtvcz1pRX215//mkMs/v9amUKUnu61Wot3vffb+YG/9wOcPDbB5f/y++zufpRzW1vkaxl94WDPzjLxuvfjTr6Hp3/3dxnu9FmsnWZ69g3cnjpO9fGAxxYUH/+lNk/9+a9T3b3AE815Evc8H7v6PF/Jb3AkmOGNk+eYjMZZSnd4+995J6OOwuysMdHbxO2tk3gFvPvttBcWqCgXYy3d9jaeE3Nisc7+bU1Pwd6zv82Y9zLNqIswKZu3utTnM6bVLrXXu2SdmKwTY/Kc5c9ofu0SrM4r8hmf1IDua2qZYb6ABx922D7kstdTbNwwrF7O6CwXuBWHkyeqFD3NWMWjFrj0Bpb6eAWRGMKKotbwqFQ8/CAgCANGCexu9jBWELgu1dCnFgWkjkOzUaMRhEghUdJFWYGNOxw/skA/hgEWKSyBtFQCF9lYIE1HBK6DNSXeURjN9so629s7RItHKeKcSnWMWrVOFATY5hhLS7dYaCk83+BHAV5QwRSW3ZuXaC6eJhkVSFnqJGMt/WGHvfY+UU0xU5+g4gcoWSp3u7U6jgN53kMqSVrkJGmO54QoYbAix/dclCorFgiHJN0vZVqLGCVjPC/C88dxXR/FFWAV8iUss0ANm+9iey9hvQcpOs+WWMHmMeT4wyBOM1j+CO1f/CTT33YWeeqdUD+N8lt4E/dz/V/+FLsf/2PO/o818i/EtD/So5CCtB6yvC9ZE4ZzFsaVwjt3ipP/7J/w7G9MMLjS5vzfm6dxn0U2RiBz0pHLl3/lNg/9z48TjTsIIXn+uRf5oR/8YdZWrpWd8IN7x/EV1brPXFWRhQsci1qkTQ8jFBNRyBsfmOf0Q9/F3/3gr+JUj3H6/hNMTgfEvW2uP/UccXuNw3MzxIM+mdYURlMkKcKropQHWYoXelhRdniaLZ+wHkI6IjEFwhUo34OwQdBscP7MAkII+sOEPI5xbUa9bnGwLC5MIH2fRtREqCoD7dKqOVAkpMmQTKekRYq1hopbYawS4UiLtpYkTYjzjMJK6pUWlow4HXJ74xYbG9usrW1zc3mDXjfGZkMGnQSjJX49ojndYLLu05KKK8/fpF7zCaI6yg2RQjBeC5kZny7vB7eKFS5WurhRi5yQoF6lvZuytd5lMDQ4boRKUm4u73DmzDfz4INHaMw2cCoeDU/QCiW1OgxTwZ98JuFzXxqwsZ1y6HzEv/8+lyjSiOEFuPEh7Cufwt4eEdRDRBSihYs8f4j+dkb3mRHR6b/B0ucsR77nCSrNXfyZAJlt0//sR3nmV57nkV/83whOHyF58sOY1eu4TRfv9R5xX5B8skNw+By7kWRvf5f8VsrY0e8hfO5Xmf1AA2fhKMbMk217pCurJJUA78gTPP3MDVy9y9zZk8w9/E2k3R5GgA7GcL2Adq/g6rVtnnvmCvUJj6u7itZElesbXW5evUD75vMoUaXhaRaOHcbrPkc322H65DRvevQs/9MP/isA3v6O9/IjP/bDvOGN56m4ht2bl4kHn2Vud4XRek7eqqEWTxHOPooIT7L8hS+TDzTzYyegMcuoVSM4pDhUE1z+oxGXPvZHHPM0M80ZhvkYr1xY5eJwjbNTs5w9eZRMG4oqHPkbRymGEtvpUBt20d19zHQNe99h0noNT0qstQz6PWqRIPQd0qElkRBf/wL16Dael5AOhiTDPkEzocIG4YkK+d4GmD2ybo+dqzFfvF6wPNcib00QpwVultEsCiYMzB2NGMzUuXWzYH8vY28zpbOZ4wUBX/jjl4gHWWmid0BERoAuygDpTtB1r5tQwjHK0OdOclBi8dWBbvmd//vxH/8H/PzP/59ff4D039H2zDPP8M53vgO4R0a+C5WypZiCUoIw9Gk1G/zQD303P/qj34FkF9gFs4rlyEGLYQubb2PVCWzyDGQpovZa8E5jtUu++xXSj/0p1cffgm09gXAbSL+BLQTdL/8J8Zd+g9kfOMPwty6Tr3Ywvk8eTdHdVexJzVEjUJ5P+MhbCB95H9sXArLlhEPva+K0CnALrIV8aNl4esDCO44hVelI/5lPfY7//Du/yfVLX8BNLYEEYwXRzBhTM3WmGhFFdIIj0TjxmIcoFLPjEYuLcwStU/zyn3yWyclj3Hdqitcfn2OuFSGFKL8Oxu0b3eYW5un3+3c7DxZQ4l6yYa05MN8rZbPK53D5twJ5V0b3biwoyjl7p7ugVBlbwAHGX9+Biklcz8V1HbQpSp8LW5oDludh0IUmjCJGcYIxBteRmEITD0ZYa/mzP/s4588/9A0nB8aUxxHHCdeubZFnNWr1CiIoJcADB3wl8HzINdzeNgyGhkFmER48cUzgOAbSVdj4KGzfgFGOCiIIIqzwEcePMrq+i8lbyOppeksFzYePoNwuTqOCad+g88yz7HzhFsd/9O+ipibIX/hjRJagxj3EhEMxsugrPZz5c/ScjGRrC5E1CKpncFc+QfUtDUTtMCYbw3RTiuEA4wXI1gmWr60TukNaR0/hNyfQeY4VAqMCHMehP9SsrbVp7/dwQsXmUFKv+1zZHHDrlcvE7Q6e9Gj6lkNHZ1B7T7OrB5x94CSrN2/zD3/iZ+9c0//mwH9dnYM3/eRPcvLs61h7pcvKlsPjb3qAR5oNiu5nGd26znBpRHsp5/J//BAfW/0wb33wNbS3Y25evsZg9J9p2wr/w4X/g+UfPMHWM/+JfH+D8cffxpkf/XZGmUvjow/xvpUNPvmVP+Bab4mb8T59vcIn/8Mu73jobVx58VOsiC6t155m/IlvYtiaopcp4tsp0yckM4caZEnItRsjNrdy1ofrHB97iFeuTrK8fJM0XuKt8z3mHpgnPOGRfP4WG/sjnl3V/OlzhlUjcCckRVyh4SiOHTW4Bi58TnPZCq58oaB5XCAqlvauYX8jR6eWak0wbGcwggRDzYf5SZ+JUNGTlMZQulRGScgxIwGVCo1GjSjy8T0fbQRJltOsV2n4LuNRgDWlWZhUHsaPoDJBf2uV/W5MVA0IW6WWvc4zwMdYB9cpyJIR6TDDCoWnHOL9lObYGNUoLM2gXIkj4ey5Y6RxF5t1S0hTpil6MWE0y3BvhCMNqlJBG0MyGtGNNbISYSgolMKoA9jRnYqDBaSiPUjJiwJHSjIsRhoCpyjbyQbyZEReDAgqUyBDlOsdKDYJsizG6h6efwQpaljbARQUbWx2C1FpEd96lvD492CzLrcvXyO+tMbZb3kf9ePHear2LJWFKRpTp2lfjLn1e79Bur7JidYaxzwX+fERlUdPEr1vDHo95On/nSO3XYb/y4/wu9c3kDk8sneJG9/xY5z/rh/Cfvffwj3kY659mCL9FOpEFW/uX/Ha136E5d+5xPw730/96BHmG4KffCzkn34InKqkogWpgcxIBkPLi/0MYTd4xa6hrcEKByUkH/3znGb0h/z4930XD37LOzBVlxevX+VzL1/Fd1NkGLG9voFVbkkUtwKFj+c6eD64Yy26+12SUYyQDrnWeHFBNXTxfA8ovSVkOmKMgFG/W5LOrKBWUYRI8v4AFXnsDgbUlULEMdKOMNbQsw3qnkvoBZAWSMdDSUnkuXiOhy5G5EWB1hZlFRLIk5hhOmR/2GWYCIQMaDbrnDghKLRm9coKvhcx7KUYA9mgIJU1ei5UZ48xV1co3yfHQRpo1BsYv4Y1UFgHxwtwvBBtLPMTVTLl0VEp1uYkwz7d/iYbN6+yt7PGyy8/xac/d5hG4wzT4/dx5vAZjr9hgm962GN2UvF3vj3kA98ScHvb8PufS/nA/53xo08onjh2lFrjMfTYENn5EumexrMR2fIOTu4QNCVqdki++odMTLyN9qc+z86kw9RpTT3qoGPBoWpEenue4rkNZNxC1V6DFYr48z3MGYN3aIfOK1+mevQcNVln2LkBN/8fpt9VRbXOYPpzpO2EZHgLPT5g1D3BCx//U2YWEmbOv4vqdFnV6l3eQc6eZr1o84nn19jauo0iwW3McNme4sH7KhxqGCYWe0xPWm7UXTaX1ijSdZLuOuPHZjnaUtTDHutXvnR3vf/uf/RTHBqbYXcrRQaKQ0cWqXjfihk9jb+7RLbjMNje59alj/LSusND5+9jZ63H1qUlOr0UN5rm8be8m86bWvSfewqhPervuI/J84s0Ymi8tMhDm32e+/SnubWxRU4OuyPMH7U5+eAJbj/zAu1aQf3hUzhH58iDgCyHrFPQmBM0xisUScHunmYw1PSyPjOtU6zeaHL79gY1dZvjcym1hUncyYD8wjO09YgXLwy4eCPmNhZvvI4zOkRzRnJiLqO7p1lZSbg1NFy+aplMXYaZYG0zZn8lJt3PWFtaResDyIU29wjIVtwN8g+etne/3TO2uoP/tv+V4VVZcf/r7XNQBo32QLa1VMmRJdAbkHfHKssK2p0+v/7rH+L69Rt88IP/K1IEYPfLN9JbYHugQnT/Ik7rO7DFPnvLVwkafWqzD2GaLbYqTxM0J3Ars3QuXGZ45RKit06jsUarMol+bofw/d9G6OQIatD4m4x1BXO/+Pf51EtDjriCmVsfwX7hCjPv+V7sWx5EVQRm5ZMQriFaizjBNzN96CI7X1xj/OE3oXyfc/MO3/pAyIeWHbyjAfVM0MsNmXFY3ch5ea0NXOXJPCUpcoSo4ZFRc1MOzUzxvX/7ezj84GmCKKDi+/9VOPzqufH1bkLIA7+NO4R47sbZFnsPrnPw3iUn8A7kzQLybjJ7Z7//FiNaa13Cmg+q9sYYiqIgO+ia+IFf3gfWUuiCPMsx1jKK04NbolRD0lqDLT1Jy+P/xs73TtLZ7fa5dPEaf/QHnyLNAx59/Dy+P4krG1QrVSYO+RyZU/gVwalFhS4UW23L1Q3N77xgeGxRcLg1CZWHsZFC5MvoWKJkE722ilIevpujTQe9v0MY3Ed88QamKakvbEPSwRUurXqTotNAX99DFvPIhsTGGrOSwniBnNxhdP0popMPE+gA3d1AsEv0uhrCP46NmxT9Psb2MKEgHU2yf/l5xqdyakcex1EeeXePtJshquP0dMKzV/fJRu0yMas06MkWx+ZdxkODX3cZD06yvrrN/nabIuuQdHeYO36UQ+FtAm+bl/ZufM1x/rqSg7ccWeD4yVMsbSWkkxHNuRZShPjRWZyxPbzjGwT7m9R2Y7z1s1zfrLC6dYXh9jLdfo8b8Sa//9lf4r3B3+bl3S12nKPMe+dIhE/UlMy8dYzP/PIaVVMlKzbZz2L6ap7l9pDbK5sE/jk8v40XHWK/Ms2GqvDoSQez6NK1mqrrMNbwCGshG07K2xfruBWXE48/wMNZjM0H6FGbT/72/4X/4Q2urQxZinM2U8sgs8imQCk4dwQ6GyVJc+qw5HveHfKVEbz0UsHutiEfGtLUIpsKt7BUlED3C8ZrIY3IxXcdJKU6iu+7JKOCvbggNaB8xcxEjchxqFV9KpUQgSTLS1kxdE5BQKILdKKRwsXzHXBD+lqh3QrKNegChsMCcBF5juN7CKmQjkWIAiMlVGs0ojrDbozWoHMBTtmulyZDiAid5TAqHY2FVHh+hSSzuJVx8qRPnhqE64DjkyS7jI3XyNIUKwz6YDEwJsdXNYQ0IAPC0McrdMlklophuourQgxgTQH4eL6P47hIJyg5Crjl8QuLNvsURYzrnUR4ExSjq5jsFkIexgmP482sEO9voYmpH2rSUDP0+rv4mcMbf+IXuPAff4eFs5cYryWMz6/z4rMrPDBhCf/B65HpECMmIL8f79yboXGcMFKsRie5z+0TmD4tk1Pd3yf9xEeI3v4exJhBRq+hWOkw+Ngn0KOfwvv2H2POm8IbnyTONNc3Yn7rk0soRKnM5UjyXFBoBdLBUlAUozKoAKzNsdYSW0M3zvn3v/fHjD15gUff9FpGSFavbyCzDD0s93OUwupyAffCCOUppCplI/2ginIMVoD0PKLIJ6xH+FGA65XcgqTfJ+kOsPMzJLHGC30qUUDkhtjIw0GXcymzJGmKo1wqYYjSkqKwSEfguBGOyZG2tMcuTEKeZ6Q6I8s1FoGjFJKUYtjD5AZrBK5yqVeqVH2fzn6XQ4uztHcGDLwRFkHge1Qcy+TEFOM1QdU9qMRaQagclHCJezHKC0tya2GQIqPAst8eMHIc9nsDBoUmVYpUCIbGkIuQYrRPttmjt7dMZ/159pcXeeHiA/zph48ydvIw735bk4dO+5w86vADkeTcVYVfM+zsBQhxgmixgLDF/p//OZPHPfTWLGZdIrVBTYSAZsy5yrULMHv4m7CbLp2tXeRuj5nvfg8mNthsFeFmiGyA7MRQrZFvNBAT76ZSv4bsaZTRuG+eI7+1hWy9BmJDsf0KedpDC4sezSLsLkebt5g8/y7csQZ2fx29voeunWUpNrx4bY/6zCxjx+YZKlgj5Ey9hrtveerSkNB1mWoucupbptB2wOZOm0YwwA1uY4xHZ/c2V5buSZmemx7HqbRoa4tfUQRRiJAujvduRLiPmujiHI4Jhga/M83WsMJOsESR5tza7dBfu0qo/4SHeAvLoyFJdITMG8O4Dn4TOBNy7WKXMb9Or7/DkIjCrSO3U6Zu9/GbR/AqA2ylSd+tkDuK+ZaEpmUkLBUl8TwFviEJDKdqPo6raBya4lB6HGES8sEW1y58Bvf2Kyzf3GJ5GBNnGUMJVB2iqsupRcHeyh5J7DA/FXD0dRFLfcPybsbW9ohex5ApSyI060tt0mFBkem7wZe1d7DiAmEF+gCrXcZV9gCD/9XQoTvOydwlIP/1TQhevQlxD/J+J3izQiApK9alB0LJ17A2Y7/d5YtfusA//se/zM/93E8j1Bsx2W2srSFkEyEayGiPLN7HiiG12TmEUyfLRkh8Ft764yz/l88y+/pV/HCD1F9lsLfKxJTCfdfjkLaxZgoRHkXWFsAdxwkE7cobOVt7ipoeEeYx7vYq5oufwP3hB8AvYOo+9FaMWXkZSxd13zuoz0elu31heemlFZ789Is4VpL3YCf0GQwsVoRo5WBMSpa0GaU5FkGexxSFZhvLelez8e9+j8NHn+N9730rZ17zGvxm66s4K3+pBPFVSSjiVR0qDqBEdwV0D3Y3Fn0HjHSgJiWEvJvg3vNM4O701IU+UFg8+JDyaXaXcI4AEovjOHe5NiWPwaDvWIgffLbRZdfB/BWmvhCQpBn73ZjGxASSgi994Yu0mmNETh1fNaleX2D/vml2i5A33+fRrEqmxwWVULHbF3ghDGOHwDuEM+VgnHHSW1eohAobHkbvKMS4iwxSIMVnmf1rlubCm8g3EtgboKxL7fFHITVgdhAuiKQNrsB6FUy/iqg/jntyGTFKccdCnPoYdjREVA5BkmE6Sxg7wIgQa1tI0aNV3aR66DGEEtj+PjYRFG6LbmpY2UqYnB1DOk16QjKSLgueixzBhVsZrdBhcXqao7Nj5HnCYDSi6uU4wR5Wa3Z3tljfT77mGH9dycHQOiR+heZEwOEFHzcoEGYabT1ENIcfHsed6NM8olHdOdRaTnVsgs0vTrDy7AXG0w7X91d59umPMIw1XnWePC5YenKNzf6I+UqTq+2nGK82aCjNKN5n3+1y7PQ5hmM+s605vOZh0oUmuh5yvKUwV1P2ghwrBa9cv0iye4vxuTpTY8eYbi3Qo0JzXFGtgJSG/jBhuPf9PPPr/5wvb3XZjS2Ts4LHHvHotxyGic/ILzABxANLulRyBVJX8ND5gGs3c3Y3NXQEnoWoJbAZd1fELDOMpCZ0HLQR+EoQG02SWxINSlD6HRSa2UYNV7lkoxKf7wqBNLZULZCSwhY4AoSrQDkYI3AdF88t29AaxSCxuMIQioJemlCpeijhoBwBWpBnkvpYDbTFFSDtweKsNTbPMYVBuUHpemwlXlhBJQWuFyKkIs27GFNghSIIAjKTkiUd+t2CQrfwwyaBXwPHQ4oCqwJcofGcclEobEakxnCcAmELhFUIWZ4f1sfo0UFpzWCMwIhS3slai3I8hJgFmSG8CKEMRhhk7TBKFEg1i+t7KCciyy1aR3jdl6nbk5ibK2xlN9lf3uTQjME9fx7ngb+FGMWIzitYu4pNJ9D9s1itGP/+72Ni/43wlaeQX/gioTLIyg6ifgubjWG9MeTcm/HyCJ0rZCMgbM6hlCLLUuJhn+XtmBGCwgh0bimhmwYhdVk4Ew5WFCUx/G67XVIYzfXVDdzNNsP+ELdSox3n1GpVtJUEboWgWiNNMoo0x1iF8iKyPCcKKmBShCzAEUgJXhjgBCEq9AgrPjb3yUc5hRbst7OSiCYKCl/h1CpUm016nT2klPT6GYGvsNrQG/WpNj0c5REnBVJYRJGjTIZ1PZBl5b/IDUlSSueqwC05BcbgHGB1BQrHCXBcHyqaPM5x7ZDI85FS4igHR7j4KJr1souWpwXkBmsl0lMIY0nTAhyJg6RAooFe0aedFCSxQSmF6/kIWRC2DjHWWmRzfZ2kf5vRaJ886REPtvF2dsE7zNz6Ah9Zr/L80UUWj57j0QdDDjUdrq+mLM4IVOQBITYaJ3jk/fRuv4iyu3S3Uuho6n1F5VgVhWbqkEuyehOd+ITC4k8ep9hOSZafJIgGmGqGHW4jbYz75inElk/e2SU8CirwYWiwWY53/hiy2kHfHJAlOVZJXG8MJ5wFsUft0KM4zdPEbRjuWtrxFC+lPv3Qo6i7NFqtsqMnYKrqMKGhk1iGxoXU0hEOmYqYmm4yPz6JWX+Oa9e2GI52yYYx8c69J3VsBFXXpREIWpFEOg4Cg7Euwm/ieClOLSPQAmemDu0CJVw66imLMgAAIABJREFURcign2HzLdY2d2hd+DJGS7wxh6yXs3GxQxwbGqHLRucyk9OTRGqHQZZB3WP86DTphEOj1kTWWmQTdbxQETkCu6OJXY2QgpuXXsb1cyoTNWq1cWphjQSXWjXAcSKstYz6dfJRwtrtm7y4/DIjbTh8X43FIyF70sMJawykRVQU3W5BbqHSKH157jve4ubmkJgcP7EoKUlHRWlEaO5UTe1dpZcyTLoXfL2qUIvBHKx5vCq44gDicbAff3mlmv9eNiEEjuMckFnvRZX24B8py+CzKDRFURKTd3Y6fOazT/NvfvW3+JEf/l4cMY6QtfJhBQjPLe921Sj5d1QxWmCNg5OlBN4x9MYV+puXKPZuU5txUEceQi48BnEPM7qFEJvYooK1U2AE0bveTe3Nx+H5TyC311CVHKp7ELSxuQf+OLJ5P6hpLB4i8PDCJgKLLnJ63QHrO316QjHKBNkgJ48lQmUotyTAojyQFuXVEb5FmVIONy40V5fW2O0mWDfgA7UJHmw0/8rX/U7C+WqA+Ku5L6+akQfBvL3Lk4E7Ha6SRM4dGd4D7sGdpKUoCrQxf6HDcKdJZhGURp1wwMcx5WeVnYa7M6FMGF7Fw/nLCHTdgSDVqhFnzhxhenqcQX/AH/zuJ9na3MKVbaKgzZxrWbkeUxQ+X247NCammJmqMzMhaQWSvbam0ZAI5WBNANU51OEaWX8LIXcZbA5x+xZvMkA1qwhjiCYdkpVV3NTB8auIwMe0M4r1i7gtjY1y9O4GcqyKWGhC30EPerizHsL1S7K9UsjWFHg9zM6gVDNTCuVGWFUFGeM3TyP8SbJuTpa49DKPPe2QuQoOCjaZAd8ReI6goiHOLSmSLHfoCocw9Kk1K1RaOaazxis3tkF0yHs5+de2Ofj6koOXb3SYOpFwbr7O/XUXpMKVY5giAxTKaSIcl8KReK7kWJQT1cdp0KKeOdRfaLPU17y09SKHa6cpwpR0f4sXPrvHjY0tzowvEM4MQM/QSCP8RIEZUT86TXRqmvr4JOFMRFIN8KRD08LyxYTdyQTdbrN3a4VB/za7+wNOHGlybVigGzPUKzm1qkvUiKjUXc5/23ewtfEKx1ufw7l8g0bUZ2JeYl1JZgNu6gS3YUgcwfbQsv6KoTUmOH5Uos+4eOMOe7cM+Yqh4UvSNoSyLJmkmUWgKSKDprw5rAR7EBB7notwPYzy8IIQkWagNQoIHIUSsgy2bMEwzvFDF18qsJoiTRGmNN+Rbum+p0UZOOVpzCBLyE1ApRLguR6OckkzQ601QTHoIfMMm2kKxyALByvB5Dkq8NBCgLYo30O5DlIWBNUKcpSQJAOSNAED+ztbmKSNzWKywlBXEdV6DSEMFo3AQ0qNPFDisIXF80K0aYMukNKhfB6WSgfCZuXiZDTWmvLhKj2EsRRFv/Q+UOMoJ0LKFK1vgDuN3wSpFgEJeohvE0ajIemNi8wfOUb/5RfYufwSw/aQs980hvvIu8F5FFHbwuxeRe99BYpVMj2LM/ZGpt/7TqTbI/9cjbhYZvDSJuP3a6hsYwsXs50iZBX/wbdjGw2K/m1MkSNRbC8vs3ThGWqew35qyDSUJhWybPVaiTogWyk3Kk1o7tjc41BQUIw6GAQvL63huAGVahVHOWihCPwQ5fi4vsRahUWSF5CmhmpFYnWBsBolPRxpsUYTxzHaZihrUFKVilKBotPNCKNSftZ3BdWKh+9YkkJRcRXDNMN1ywA8jjPc0CCDAx8iCsgyhM4gcrAOSOmgC4UpCoQETElO08ZidYl5dZWHwcEVliAosMUeQlt84eC4Lq7jIVUFCpCuJc0lRS4ROWipkKFL4EqKzGALjVYGYUApSPOEUTfGFT5SOhhHMXI9ZmePMD82zvTccTb3btHv7JN2+yTdPfL0Jl6xT752ha+shFysn+HUacFEepjaqRYhku7AoZo7jAlFIH2qJ0/QG4C01yjYIGl30cspulrBFoaxhsfqrRuIYYBoTJBXx4i/eBF9ewOxOI9uSugPkTZBHE4ROwLV2kN2FSIS4BgEAv9UhNm9TppMYZpTKByUqCCm60ipUVNvZWvLsr26z05PsZpFfPnmCvXJKWbmaux1c0bGIHzJtA+qa7DKZWLaw0kVg17K6kpKN81pNQrUdp9b1/YZdDtEjqXqT95d72+txdxXt8xUXVqeACkRNgSrESJAiApWSowSOI5gytMEfoUo8QltztgNy27fsrpxg5nWaZJKxmCrS+9WQb+XMN2s4s+M0O4ijQboUYdRJAlP1PFmqgS1Ck7TLbXFhUBlls5mwaCWU2wPaa+2kWFBtYBWErLTKaBRp1AlId8NHMKgytxrH6Y/2GKs3SdeW6Exq6jMuIxiSGyTHT2i2gwYdDN2BhYxyqmHimOLDvZIDVnTLF9oM9pLD9R27gQ09q68I9xxBj6A1PyFToC1HKx79yqxr64UWwBTqhb99U0NAMRdU7c7FfCSMFpyMpQjUUoewLLKAlKe5ezutPm1X/tNTpw4yiNvfg21agNEjLU9hGrgBCDkJNgMYTTYHJ3lFHu3GTtyiOTqU8QvXcGLDI03nEIefQI4AeEeZucZhGoj8jbG+sjwGLUnHgZxH7o5IH/usxRxj+BUBk4fsjp2P0eEMziLh7GOwhRDrNEIodi6fo14d5uwUmFlYOhkFpspUOrAsVzhC4VUiqA2jpYugXugSogkzhOy9iapgS8/f5Vjxy7hOpKxsRbT0xMlx+9V4/f1bge83Hs/iDtdqXuB/53X9+btq5NRe3cOl/K74u4+d47HHgT6Qoh7pmpf9cmiTEgKjTnoPJiDLsHBjXH38O68+qsp9wrq9Qq12iLWWlbXO5y8f51hb0AaJ2Asmg7b6wOaCG5u+NSnLWYIoQ4JxgPQgsGo9ITwESgvRE1OkuUhsl6gBzG2N8KKEo5NYQhrLu21VVxdxTYamJ6guLaCvb2NPL2IrYHdjFGxQnoJItWIqIOIvYO1XiMCiRp3sfEaOm9AfQxZKIRfhzAsPUKik/Tahv5eSl8HrPdhvdMhakSMjwe0B5oUQRgIqghEYkFKWi2Fnwn2hpr9xNDMDKFncPoj1tf6SNOn4fr4Tv1rjrD6mZ/5mf/PX/7sz/7szwBMOvdx/5HjvP51c1jpEroKX4a4boRUHtpI4kRwu12wP4T9jmBz6FCdGGdxbgJ3Y8Ro1CF3A94wM41jq2x2Rqy0V5kIbpLke7zzO99P2xHUJj1OHJpj2pvj8+11nvjm1xBXPKKZkGrLx2rBK5dgxWjMpOXpTz/DkfvPcN873s1GdoKrVy3XP/0MVjisX77K5ss7DDYlqnCozwecfeQx3vLEJP2dDhcu7fD0Us6lFzTXty3uvEOhDcWYxMw55FYwXhUs3co5e9wlbHgY4yD7UPcdQuVQD0vVF9dRKFdhHYUX+uR5QaEkKQ5KudQqIc3xJmEQlsF7r09RGDzPpxGFOI5Lt58z7MV0OglGOLhhiC0y8jShSDMyYxGOixcEBIFPYTXWxJgiJx7FGAVevU5Qm8APQwJPUqQJab9DPuqCyPBCB98xxMMUqUopM3unza1TrMgJKgGeEuhkSGdvi92dNju3bpLmOZ7jo9yIoFKnUWtijUQXyUElwsFisSZHShdtUowusNbgqJK4JCnIsxQvqOJ4DQQOUjhIWXYClBRoE6OFV1Yu5Agh9rAUKPd4ab4mxsG4mNGAYmeJYvki0mkga9fZeP4i4voOJ1oe9fecIXzkH1HsFdjeRfp/9nlGz13DX8zILj2Je+qdEDWQro+cHDGq73LlT64w/y0W5/7HEaGkePYViss3oS7BM6RxhqBG3M34yH/6EL/9q/+G8YrDRgFB1MRSQTkhyqvg+CHCCUFr3Ggei0YJief4BJ4D1TrCaKQKwBqELbBGk4xSCmNxlIPQGs/3qVSrCCnodzrYIsXmGaZIUIJSzcfxiEd99rZ3yAZDksGIPDO4lSr1iQbaWnSegjA40kIWs7OxiqNCQuVSCIXveiU5PGiipCQ2Bsf5f6l702DbzrO+8/cOa9zj2Wce7nyvdAdLlmXJsiwj8CAbsIEwxjhNDHRnoJsiobvTqVCVhFQqTVWAdAgkjC66gDg00HjEdmxj2ZYs2Uajr3SvpDufe+azz573mtf79od9zr0SSQcD6erwfjnD3nvtU+usvd7n/zz/wcGxBops0llSYj8wzSWJc7ScdC4EOUWZEWcpw7hACr2fKyDBQDRKGPV3sIVEKxffCwmrdSrVJtJK4mFGnhaYzKLQVPwKju/iOCAK9qcvGiEdqn6IyXNMmlPRDmQGk5WEjsPS3DzHDq/w4NvuYfquN1FbvofAXUaME3KrGOeGqOxTdwRLckhzfI3N64K3fvtJ3nSvy5PnBd11SR1Fs5nChcdpvOP7EdOnqR9rIhoenZ5h7/kuUVKg1gqCORdHusTrJZ0/2cXu7eCVEVnhw6iGKSsUhUtxfojrWoK33Emx3SRf6yL8gvCNi4jiGvmFjGT5ffgrb0SLJqQpVBJs7XUkaZ0vP/oKT19t88zakKdf3ubS115guD1EWtjoF0RK43oKf5CSjS3unMf0tKRZkZCXjPZiOv0BN69vocsMYUucOKPiVakcPc75r30VgIfu+V7OnlpguuUjxL4zmtAo6cK+vXFawCiFOIMohl4umVqoUw98nFRg84Q88Di7MkOeeOx2xkTRHhVnjzyLecN7HmQ3i5k+FDI718L1KqwmESdOz5Jqhdd0cV1Jlgg6e9DDQk3w3KOXed0776Jy+CT9pMXWmmH3+TWcmkvn+gZxp6RMJFJIvLrLwokz3POWE2xe73NlJ+GV1ZjVaxFrY03lcECRZ5SzIVnNA0fRCgQ32xFnluugA77+uTUufXWbIitfNTmYFFMHRcpBEJpS8jXg4LY70YHQ8yAE7bZr0aRImlge3f+mN/H2t7/jG6+P/htaGxvrfOhDvzMxm9Nq383J3Co4pVKT7r+1r7HHLI0hyzKeeOIp3vWuh5me9veZ6QIppxHSAVGZTF6yMWbcxgy2kaqKCK7ReeJxKv0uzUPTuG94I2rpXZioxMY3SL7weWzeQfhjTOc6cvr1CC9EKIWYV0T9XYZXXqLyJo2cfwC0wZy/gU0icC2IkrIokcInGeZ88oMf5Ob5Z/FDn61MIdwaqFm8cIqwPoVfayLdKmVe0Fg4Q5GOCZyAqu9Rqfm4rSm0sPhhDW1T1m6ucfXqTeIsY2VlkTAIgD//FOnnf/7nydJsQi+Scj8zwN7SGAjBLUAGr06vnjgyWXO7o39LFP2qtxevum4PQPDtB/dzP26PESZOQoA15T5N9FVP3l92H4x84AMfYGlp6c91rU3+pte6fw2igpXTJ7jz7J0sLczjKpd2J6E3ysjsiMWpCkv1HDeNGHcMKycbLC1KXrwMTizwHYkjYuht4B6/G6pH8RdrFNoj6eUka32KpEC2De6Sh0g1yeWE9EIXsdtBx30KqohhBSN9zEBg12JUKHBOH6FsV7CdLdR0BTXrQr6N2S3Ip9+N2ziCyPezoFyw7gJF6nLphQ1udGIu78a8cqXL9Ys7pIMc1xXsRBbrK1xApSVlAbqmaFQEoSvII0MU5fRGMbt7o4m9ugB3mFGbnqebZjz5pS8B8NM//dP/7D93jr+hycF3/vW7aZxb4mMXunzvXdP4aHJbooQGa0lyw/bAsrNhyLYHfO2ZjNpcwLAOsfDYfdd38OArdxJvdri29xlyCaUXIESPI298K+946zniG5ZHHnkzQrmsvhLx3Nomp4oNfuUf/QyDmXto3P9mmscO02qEHDsa8PpWwI29Cv/bv/wBdgaWbmx593e1UPkUs83TrK4lBNlRyo092hd6PP+RHLcSsHyvg1N9mBv6EufL67jVLWYePMFoeI3tqxGNUFLTltkmLJyS7LQNOy9aPr6XMxOAl0tkLLGexpcWIoGRUKlqqlUHJRV5UdJoVnBGKY16iDFgkgKdGeI0ZWAKTD/GR+FWINeK6uwMJxsuRZEQpxHWSrw8JvADkmgSNjZTa5ClJdkoIncmgSdKKLp7I6rNKq4bIJSDwiA8j3HcIR3vkSQxWZyik4zK4iJSKBaPHp0U82WGKVKKMmUsMuIoJQyrZFkMWtKYmqY/zKhML5JEfUpRI6wu0KjPIvfHx/tsesqywJQ5xuY4bojBQTjTCDKEnjyvNA7WSUHUmHhda4wZUhYjLDFeGCJVDSHUpDshJBaJdr8JcAEHW44g24OoQ7FXsPP5z9J6cBG/8RK7ahfhlJxdnCV48O8jlELPNen+2pswvecIls4jLg/xE4G9/LdRrV9FhisMLmzQ+cRTtIyheC5BHfmnWDeElXksmsEH90j8Ko/JYzz0vh/jt379M3z6i1/gcmTIhjmLi01+4H/6F3z6w88ySFOMHJKM10hMhSB3iYYv4oR1bAlFFlPEKTKT1JffQjZepxhtY/MUrMDkBTZTjHo9sjhgzqtSrVbQdoxxJdYafF/SnFtCOQ5RnNAfjklHQzxtaEy1kE6I8gMqjQrzy7PEyZi000Yai44KTGrxpGK+uUAWxUgtGaUSR2pWWg2MELRHQ4ZRjF+OqIcSPwzI0phCSPzS7NPdJiA1iksqjqbuh/SGQ5LhgCwzlLnBphndbo9q4aMCgbGCrIRhP8NxE1oVjc0ljpYoB0LPoTkVkClFw/XIhx3Gg4SsTPGCgqlKi7m6QA6GJNGAvJ+jpM/s3CLN6RrLR+bwleYuD4KapnHmGG97y1nSvYzPPb5Fv32Tbn+b9f5F8s2PM339o7z5Z84w/69P8H3fHTC+WdK+UOXpxz1OsUL667+MXjqN/+YHWPrOdzH/1qt0fuP/RC1W2Xp2nuWpOsKbxssrVP2Y5PLnaLz+A4gyhvn7cE4tgzeg/amnCN4yw95/eJbaO19HeO8DSHke8+LnsdM/irpDUm1UMU98FlFXMF2h/9nnGC2EfOl3P80fxRt0spysMHh+hfe8/h3oc2dpLDYIjyxQ9wNMP2P9eh/VCghGCXdVc3alhZZBVzxKO0PcL/niR75C2u0ypWMajZLOjfat+/23PHKErqPJ+zknmi4KMBPTScCQFZZxDNGopBjmXL5W0pxzaTuG8VSL8i1v4PTJI2S7Eat7X8b6ZyniMV7VZfHcGY4en6FoW97w0ClMAqtXU/a6Haai6zz6q59ksHAHrTeeoFKfaLlas4pF36EbObz/J9/ERs/iaJhf0kgbEnhz9Polvq2Sbo0YbUZsb5YsKEVtQaLcO3mmOMPNckBtvkn90DKjrRe4cWXMQtWnHhpWahBUHPb6gs3VjE9GEcFeTryV7RdFYEt7Ky32wAZSSrHfEJkUKUq8OjX5oJJhnxc+0dNYcUDD2RfqHtRif7lW6v+vy1pu0YW01iglJ+41+x77B1QjpTRW7IfCiYllpuN4LCzMgZi43mgVIOUMoJiM39P9e35O2e0TXf0TguPzaP8p9so2i9UYd+k4evk9CCmR1YDo0yeRc4uo4Cqy20baAXR+Fao/CcIlvvQy5Y1LeNkIc20L0foXIGYQJ49TXh2RfTEidZqsicMcf+u387Ff+2O+dmGN1a0Iqwx33X2Sb33/j/OxP7yIqCvSdIdxMiYpfWq5prP7LLMLh0hGCeNkjIhj3MBh5ey3kEebJDs3KXPL2voeo+g58kzwwz/03lvTlz/PUkrdmjYcaGD2IyUmhfr+96+2MD0Y6kgpEeq2DgC4ZWl6QP+RSuG67uQIUt6aBh1oaoqiuAUAJobr3NI6HISo/ekE6FdfN3+pJQRCwsp8ld2dmCvtlNbCDCeOL7K+FnHh0hhXRuxs9njlxQuQbrLSbLHovJ9D317ngTdq0q5PtB0T7QRUiwC18SVkcwXn1F1MrdxDsX6F7JUXwXeIbs5Sr3uYpIo6ojDhHuW2xnvdexFFCgt3oFY88p0uxXoXfdIj/uwa/jcfRS4ch/GT2N0Igncg5wWe52HPP4k8tEgx7pHeHJK4guuff54vJFtkiSUtSqan57jnnjOolTkqTR93pkaIJO7njOMSGUjctOCQb2gLy/Q0VKccSiNJxpYnH7tE3o9ZrCSYwYh+J/ozT+03BA7WVMHZRc29gU9TT5DphL9esDvKaG+n9K9mXH+5zeb5P+TOh7+PvVqN7ULgKckjRyyfefYG/a0XEStHyUceR04u8N63v4Pq8bMIG6DPKm70JIPYkBypcvr9J1jZWmT2dzvUl2M++fl/w/bKWU59zwc4WlP8wYctf/MdiuJygVNabAzPX5KcOi65sgenl1yGyQxhY4qz5wr2UsFXvxDxzcUOv/mzn+Kx84+CiqjoZYbPrVI753DP2xd4+rO7bN1MqC1J9k5oZjLLHX97iYv/fo/rF2KmHMXCkk9ZwCiBKRc8oKLAs5YyKxCpoTssWFqoMrNQx6Jp7ya0N2NC35LliqifEFvFeFxiuiXqZsTr7zuJU61TlZpyHGNGQ0xZ4qiQcRRTeAKlXRwEhUkokpRMabzAoVJv4nkNTO4xSksUXQIfZNVBmgxHa7CGwcsXaB45hg5nsKbEGokkwHccRJnT0JIyG6GEJgybeJ5hwRgG12NEEuBVp6g3pqiGNayU2CLBioA0GlEai9Qujg6weYaV4JIjpUCKSddRKpBagPL2N9UMrEUKH6k0iBpKelgkUoUo0QCqGNtHUMEWLmW0hshfBLuGnA5o/a334Y5+D7ObcDgrGBjDGtvc2f8F9PLvQS7IKiH+mZ/Aqb2V6GP/ivBEgWydQZQjhI2pLg3h7j3WvmoRFcP4U0PceoR1BxjHJz9V5RmnwXu+911svfx5rnSfZTPrUkgH4U/R/NFf4d/9/D/ElhGuL5COT2mrBAwARX3mCEpKClNQFFVUAWkmiDafJ3AdWvVl8tLSHXYprUUbRVkICDQGRWbEROi8f4N1a3U836csM2w2ompjkjynUp3D5pKcgpKY/m6b6zamGgY0tItbpoh9N6rW/GHc+iyZ2UHLHFcLJDmdTgetLZ5bZarqkpfeJAODgnrVIbGWrb0OpdfAy1OyOGIYpSSuJvQkySjBky5CFqQmx0qPVnMed2qabmd3sjlJQWYEw1jhenWKeoRfFhTRmNwk5L7CDSqk4wTXDxHpxEGsUfGpezAejKlUXBabHtop6EQSaRXSpmxf3kD7VXZXd7hy+Qrr7S1eqtfxGod56J6T3Byc5eK1aZK1Ar8boWWFf/S5H+X3P/g7HP3+RZyGy+zrljh2rsHei4cwr6QkV9dxv/rrOHjok+do/vc/y+hzn4XVzzMchNSOzVA9NE8x7rLTPUPtJNRXHkZNLUBYxdbnOPTgEun/8cfUZiukz0TgzOCdeS9i6XuwaxuIuV3KL38a77u+D2MvIfaeZeZH3k/+6DV++eoXcO7+CSphnblmk1NnTvHeR2a5umXxp10WPcFuZOj4DqfumeWFbsKfXISPPWa5f2qXxZWS+lyVLJV89QtPsXPlOdJ0A//0MQ6fuI+GbfIoHwKgIwtOtxwaWuHJCSSw1mKw9BND2i8Zdwr2dvsMNy5y5HX303Uk3RxmKoK6Z7lyrc1o5ybyyCmytuXEW46yeHIOrz6FQCEWJLtjQS4s4pjP8soClU6d5jgiXIz55Id+h8Pf8k0cvu80nhG8cB7efFqQbhf4wLAHEYJ6U9COYKEhGSUVvCXF9BKkuWZtPeeYyfjsLz7D+qUX8ZZq+LkgurLG8okWJ5arfPSjL+Ksl8wuu8y1NDUrOPbwaV549Aa91SHjborJDUVu9kMOuWX9+CoNKMbCn2723qKHHDCKDmqj/YpokhOz33H9q4sLAPYnx+pW+JkQEted0MImLjeT3J56vUISJ2RZRp5PQJbrevzWb/1bGs1ppMiAbAIIcMAqbLoH5hpWpIiZgGD2YVT+RewwYSGLseRE5hL17LOIyg9PKI6Bi3/uJ2HryxRbT6HnQISnJqGNjiJYWMcub5PtFeCMKZ7dRVabWLWOdaZIFufp+jPcceYeRtvP80r/MntlRurXCZePE77nR/jXP/cbSDejUVcUso6wAXUyhNAsHjmNIwRxq4IopiCHOLF0Lj/PbCPgzLk3kpU5u90+w3HG+mYfYyx/AWzAq4t2i711/qWyyFdbyooD7YfcBwe3aUFSyltWvAcgT4oJ8BBCUuTFaxyQDi7bsiyxZmLjOwlKm6QWo149QfvPg4AD8PCXXQJQUjAzE6BETq8XsbGe0B8Zvuvblvna1/sMrGahdoK8O8Xm2pBf/t1f4x9P/zjhvR7SV9QPtRALFfJOk3JXUOSG/MOfAreOPnUS797vJL98FcUu2fObuIfvQi+4ZE5BbFfwVgTu9J2IsIp1Nd5CiHeqSfnkKu6sS34+xXFbyMZ7QBoYj8COsS89jX7oWzF7T6LrFeTySUYvbfMfnv0i9Xf/GFVZsjzT5NiRJkcPefTG4FQUTQU7icWtOzh1h6244OI2fOkFeGB2gNvSSN9hNMy4dP4GN15+hThbY+ahe5hZPM7c1vjPPK/fEDhI22NkP8V3fbZ6Ob4rkdKwvp5w7ZktLj67zoUbe4hwhdOP/CjPyYBGxWfGpvijPusX10gdh63BDoMX93jkh97HG86+HndQIEqPnTE8d6NkdkoiPQ3e5NrqCMF9P/O3ePnfv8IxXeXlF6/w5fTfcv8/+ynavXU+cnGa3T7csQDHpwS+gS+dV0wFkt1LlrvudqGm2Mok9RY88t0+XtTh8c5HuT66jNsIcSSQD9l6LMfdrrC0BHMrLlFk2X0xwxzxSD83YKnpUrvbp2IEGsE4kbSmNDULZVQgAZlbdGmpiJLUCxjuJYhySLVaYdrzCKcUwzyjSMGvOAirMEqjgoCpepNB4VPzA8KKRlhBOhiSRQluqFhcWgarKQtDPumlo0KPwTCnpCS3OYHIcLWLyUtIU2StjvYqyLqLtSOGex1yUzAtJTZNSHNBkeZIJahNhYQuyLnoAAAgAElEQVRhDWFL+p0dZNDCSofMJEihmKn66LBCozmH51VAaqTUpPmQIKyQpi5xmqONRauCIo8ZDTqkLlQa0yg9oR4h1aQDaTLSbLx/01AIoRHCwRQZhclBgrE5pQQlcqQdY9Jnya//MRQJdjii6I/Ik4Ki0sJpZZjViF5SMgqh5qWU7asgYPz8mObbXZAgzN3U/u5PI6OvIGfuRdRaINtkN7fpP5vQceDOv1lBPBFRXLAk1lCe9NBvPcH9M++jV9YZznr88D/9Ft4vGrQLzeObEb//D36OZLiHsRlxNNGHKDSZdnA9nyJxKYSDIkVbQ04NpTXH6xqv9iBDG1CahFZljFIWU0RYmxD6DiZLSEYdHFfjupJRZEhz2FjbJotGlFkCUuK4PtpxcbSL6/soV6GEQSY52pfU602scSk1GM+nm0jsaERRlPgqx9UunqdxXZc8HtMdjbBC4SgHiabIC8bjHsoPUdrb38wcAscFNycvCnY7EZ7y8LXEuB7KKSe+8K6m39vCDev4njsZ149TdOAjXY/AQjKKKI3EKQ3pOAcBtdYMsiKI8z1sbnGlZXtzG+IRgRDEnoeJM3RcIFH0lcvifBXlJFSDiKlazrA7prN2jbK7xpevfp2lMw/wrntbBO94J9vjd/PVj62z2f5pfuGD/4S/t/w/c/L+U8gQSAWzp2dxXv+D5Be+hk0CyrbEbPZI/uD3cFstjv+9/4H8ehe1u4Msd/FPP8Tx5mH09i+hzt4DscS0C4o4IcpHhI+cZPSrX6H+3WcRCzMUWQVV9RHHj5F/RaHPPUD6xGeRK1Wcux9BTJ1h7lvv5u7f2ObU+86xq6tU3IBTMzU+emHMcN1w+myTr0QlaGhWFBGC+abH6bcrQg1fv+jxlYsdei90qC9GDLYuEjYWuPPQnSyuzNOYapIMu7fu99kwQxcGhGJUliglkFi6vYLdy32uXu/RHhq8Rp2lsw9wRTg0PM20ynCSiGF/QKoE7c4e3c6Ad//QtzHjV1BGY41kmAlu7lmm6wLjTMAHjiTTFQ79jQfZ+lKbO6uWq5+/iI7GvO6db6I7GvPMZsDuCM7MC0IxoTRd3RSEjmS4azh21KEQHgYIQsuRqkCbkg+/+Jv0c1hgEZeScrzNjS/GuK+b5U33VEnLkv4oZWN1YhWtrvZYqQY8cekGnXaEKSeUjNd4vuxXO2ZfVTlxZxGTxNv9oseK21oEYJ/PvX+MWwLSW2ODb2Qr/m96CcGr/PBve+Ef0Fu0loRhiNaaJEnJspyyKPF9l3/+z3+O/+V//R9ZXGghRAEmwRa7mN5jCCuwUReTDimtwDrTyMBg2zuMnQzXBaN2sfFFaFqyjZzwPj3pjB+9D3nkCJgdRLACrgYGFGvbpNt9sorL1APLFNc3Mddycr+EY1P4S69j3r+f1ARkNcX7f+JHyI1kJ4evX23zqQ99km63TWlitrdzHBSecgl8j0qtijPySKRLxY7QwkM4dRqBy6lqQGvlISLlcO/paQ6vNKhUPMLARyn5Xz7B/y/LGHOrmw/s5xMw0b3dSuDe1wCYEiknJg4HoP8gi2JioX77uAfFv5SWojQoKdFa3z6WNRNNAexTlGCiZTgQ7JtX/ZW3J2mvTQz/y133E23y5HhKgesqQl8w6iX0Vtd4otvm2NmTLE/XGZd1VldTOt2bbLRf4JO/9nt8xz/5XvwZj0nanUTN1ZBzd2H2NrFzb8W2c0hTzJWrSEdTu/8c5VofOdhDVBbxjh/Dma4ju19AHD4GEdheSZkVGGHQp5tkH38F/7uOY10faxyELydGMzcV8sgpiuceRx6eQzYWEU6D+p1z3HV6xPG3zbAZWZaqAY7SPL+Vkw7h8JLixagk9AQVZ5Lp0Kpolk5J3DvhlZuCjdUxJRFKDxm2N2jNL3DHkRPML87g+S6FzP/Mc/sNgYNDU1VsJLh4ocexlQqOcPjKs2NefmGNjZfWGOWK1t13s3hiini6xvEGaGWpFgU207yyZbH9G6yPOxw58x6a8ycJZ2ao1Sy4Lr3Y0myAKwUinnCMjQ+50Zz3Zjjx7YrHbj5Hd+0as1cTfuWX/hWP/PW/wwsff5nw+DLbW4qyazmy7FPrRCwfa2ETS3vVstOw+POSWW2pOILkc79I1HuFshxTpiWjUYl/RLO0UxK3M0wB2oGKtYQVhYks3dWcuaaPtIqyANcKKkYyJT2coiBXoBA4UiC0InQFjYZPPDSYJGdUxLgBePU6jXSMI8GrelilKazCKJdWK2TcbVOMXDJPok1BaQUUJRVH4ihJPBpS5iVgUdIgXYegXsWMh5RY0qJAZAmitEgryTKDFBM9Q6WmJpapxqK9gLxIsCVoR+F5Po4OKMuCoiwRwqXIcqwZY8ocUWZUwiqt5gzKq5ClOYPBmHolxHE8bFmipAYmwmOlPUw54ZBbHFSW4wmN2rc4046LsgYhXJByX3MgsRQAFLZA2Zws6ZGnbex4DbVzHbt1heDwNhQFyBLpl8jMUqwmDG5YnFGGKi3dEnp9w9LWALfzD/GP/H10o4W1guxam8FXn2TqEYGoShA3yB7/BJufeZSbV0pa9ckNMa1LrrdLxJxkOy545uO73H3HJoO9r/Hc1S1mD72etLnMwG1xKFjhB956gg8/ucmwM8IWY5QtcMQk+KcoMywFjtNA2QApwHE9HJmiKmfI5BRpNskrqIULeLqgMEOsTWlWNU6gsdpSlCll4SLJSYdjpC3BKoT2cX1FfaqKH1bRvkewb2U6Go2oeD55DmMjEE6A8jRSa8bjnE77GvOtOn4gsEIhtMJ1wCYTD2yT5ijPTqhAaUmZlISqRGOhzMFKtPSpBg5xNIDQwwiFyXPS1BDFBUmcUp8OkXaKtDekiHKsAVd4hJUQAOm4DMuYJFP4UlNT3sQ+LytI4onxgVQWUxaY0uAqn6AyRZwkKEdRrToErkMpcgJV0prxODQ9y+GZmM3FlI3xNN11OH9pj8svfpmdm9N4YYPENkjMNBKH890X+Njv/DbfPnqEc284jul0EcYjz9ZxFpaw0RgtIowose0xIr4XrVvolRpyZgVhG5jcpXzsaYaDPv76H+HXH4AMev1VXso6PPDQOWy8Q/zoH+M/8g7cu+7GZorogiI8O4dsuVi7hVl9hWy3jfPwPGavyoX2BqMP/x5nHngbeuoIj7+0x8am5cR9x7jSHtNqOkxVNa6AZGgR0lJ1DLu5ZOFQSLMuuPlyn89++P8ii0fMHz3DsUVDlnTp3uzhqdubxUzFY9gvyJShUdUII7mxmbN2rUt3tUtRqTB9qk6t5VPUXRb8STMnLCTjsaTXyymHu1wbdDn9xrcT1pt4votGglQkEirhpJOuMhByonvKhWLDrzJ/n+TTTz5HEG2y90KHJ2TCuYceZOPpXWonW2xuGmbqktATBKWl2fIxuaSzZSirkkoFQmlxRUF54fcZjm8gZZ1oIFFTDuGKz2E/Z7wXUQUca2mhqPuCvJR0biZUhyX9dkw8zjCFRTKZdpl9StGtZe0tACAAa8wk1X6f4nHQrZ3UMAe0jsn35hb3Y38y81eYVnSwzL5LjZJqwmMXB/aWkmq1coue4u17/EdRQqUa8PLLl/nZf/mLVKsujiqYq1s+8G11nJmJoQW6QJgCEUMxGJBai0pTlIJOZsmHKcFwFb/1m+ipH0SFClNaius7lNEG7gkP4SqgQ/HCB+mcf468mxJOaww5ZRDQ3hjjnnW4vjVivLPDwswe6WiHV66usXjyTXTcKtJrcEetgfPmQ3zS32Vrc4AsugRAqCcBXGmRYMkJ3Vmcoop2PdzQJXQtyj9BL/UYlxG7ewnLSzMsL83i6EmH/i/WSd+fANyaEEymBUopDOxfmAci4UmYmxDmtije2ltA4UAwz8HP+0DAWkNpmBij/CldzYGd6URnMPkqD6hLxrwGVN/S3Ij9vIP/iksIcB1BreZjygbd6SHtbspXH3sWCCmsQ5T6oD2kdLi48zKHP/IYr/vWu6k0PMgKEAqT9pHNOiQptiUgsdgCRN5ECg8x10I2mlhZw2wmmCdvksUj9KWn0fN3YIcDBr0usVuycNccJF3yR5/Beed9iIqPiSSmo9CLVagoRLqDuXoRO4wQi+fI+iXPre6Sf+LznHzLg/RiS7tXEKeKxaMN1ocZU6Gi6gkowaQgPQikpV/CwrxLI4DLFze48NTzGGFZOXqYw/MF3W4H6znYNP4zz+c3BA6K1Zco5w8jwkVkHvDFJ/o8+uhFdgeKqak6c8emmTp9jKOLmnZmOVG17OykjPZKeuspV1e7DHY3UPVZ/EPnELqFUA7enEOBxpaGWm4xKSS5JStAuQJfK9olVM5OI2d8HAdq+ZC980+y903vZiHsIG2dceISFZbtJOPIVMHO2OVEJSAdCaLCYgQoUdB96cv8/kf+I71OlyktcMOUOFRkQ8PxWckw0wzGBptD6INNCxSCxVLijgVZZhFI6r67777jo7Mxmgk/HjNR7EtX4yhQgUOcWJIspxAKf1oRGofALdCBQykVVjm4QYA1EXGnT+qGiFpI4Cq0MxHlugrS4YDRKEY77r6wy4ApyVDkxuAaQZmXlKog8ILJBzMzKCUndpLaR1WqZGlGWgqELXBcH9cNcPcL/Kg7xEoDxmJJMPnETQgDjcYs1cYUxljS0pIkKQAVd2JDKrB4rovr+CihKQsmNA89CXWbuO1orBVYXKzUIHOkVCjp7vMmU4zJEEiQAkuCtZIsz+luXuXCF1/i3nslzYrB9UH5Eqel0UkBxiBCj/AE1GxOEll2Xshonvsj1KFD2PQYwjmGDrvo4DKoJhR/Qv7SBqOvPEqyfQM5LRADSzKyJFNVbmZjaq5DOxN87csdVq88hWN2uHB5ndpMjyicJnZaHJ8+x7EjR/j+lQbRKGM4jiiyAtcKHJFTFhGlGSOokmWaNCmxZPgulNEh+r2cuuOgvABZqeL5BmtdlMzxXChFQVZkyHJflG7BFgXScUFqhC1xPZcgCGjWHNAO0kLBZGQvpSA3Lt1hihO6hEoRCAumIBtGyFqADlzSLKckRgofpTRBaSHPKITBIjFliREOCI0AXCGQQmGZ6AgcGYAnKKwgyQuyPCdL0/0AvGwiaC0leVaghML1PBzXBSTD1GBUCNJgpaUQ7gRMZgVFUmLtxCygLDMcYYnjgiQfk+9vVq6rcTyB70qEyQg8Q813qYqAqltlOtOMFmcYdJ7k0s4Wq7s9cuNghIeqnuG/+66/RrWWsVw4bF27iOisciTQqDBA5gWIBrJIEVKiF2ewjTrszmIuvIwO5pGzhzB5nezZLeKLj9M1KfMDzU3n66T5Jja5iSczslaGv1wlv/QCRaVEhyX67ofQLYVu+Qwvd3BqOeWgQ7m2h7yrzeArN9nqX2f01Sscaq7gzlrWNyKOHj5L0zdIV3G4KvG1IEssIrP4CpIIehIW6pKVRoCfOHx09Rp5vYETlkRJjywBz5+i3mzcut+XWzewqoKo1kkTyeXNlBcu7DAuHGZaFVorUzTmatRCwdhY5l3o9EtGY0u7nbGxM2LY6+E0WwQrh7E4SHdSOJVWgrAEE+MZsnKf+6xBCUFkBf6hCrYiCcfgJT2StesMO6dpBjHKZIxzS5QKlCuo+5Z+JlnwNMlYUBwU2GXCaPsy//Fjn0ElA+ZnoKx45HgU44Kj8w7DxKfXz6gEEi0LdAmBlhRjw9qlPeJxTpHbfevHCTfitr8LtyqeVxd01rzmgVcBgtscpH26/cT/XfxpF/q/uktwOw361u+EQDsO1WqFWq1KluVkWY6UEiUPzo/gwQfvQ0rB1atXiIa75MuSly64nDih8f0M6UqE9pChiywLKAuE18Q7kuPuRJhhSby2hzf9GLKxgMkOI50lpNvD5rsgKhPzjo1XyK5+EWO7iKqY5GxmkIfzdMY3aflV9jZyrm9usFa/gCf7XHr5EnsDwa6sot1ZFpvzHDu5xHfM+7TbCXkywDMWT0qksGRFihAZvtMiTyaaFO1aAldRpjP0+zELFYeK1mghcfY1Gv/JtfLnOO/AgTXRrWvJWjvhu8Etq91XTwom+UMHnf99cxJew3zbNym9/S7W7FOXJg/emjQcWNhaDjQNk1e+yhzptrD54PH/D6x7HUejtAKhWD40gzU7rK9vsbPbJ04KcKtU61O8810PUNURQVXRuXGTsuFTCVyE50KSIhwBeTEBlF4dUUhs18eu7SCdJqI1hdmSlBfWyV+8QFJk1MaavesvI6INinyAaniUrRS9VKE8fwHTtMj7Xo9sLkKoEKElWx+hG5ay00bqKqIyILk2YmP7JvIrkuMn7qSXaaJMMzMzTdU1WKmY8/YpYKXFWNAC8twSCcFcIJj2XdpXcuKdPcpWneXQMB4PyApFrVrF3xe//5fWNwQO+i89i3P0ELNnmuxdWeeD//eYQecKs3fcy7G3HeP4mQZCC2aBeQTpRkzv5R6Xr22zunqDrdVLtIcZp4+/kaxaJ0ksRWwopiVCgUZg+pYEwUhDqsFzBTUH5iSMtaTZnCOsTVMUfR4+ssjHfv+L/OD33EHejWg6hqFnWO+k3H3M4U82JCtLilYjIPAhSwpsktC7/hT/+6N7yDTncE1RnYLeomb43Ah5WjDVchiOS0orKLFEezmtmuBY4BJllrhUhL5Po+pjpYvVDsrEeM6+yLIwFMYglEMSGwLtTew9jQVhIE+RhcALJsenNHgaqoFmfX2beJCgay5+YAk8hec6OIGPqxNGoxFpJpCeh3XdSbBWVjBMM4qipCYkWkw2WD+sUuwX1o6YfEyt9BBKUxZDOr2IeuASuNX94lGRRxHDvS5eqNHKIDETF6NSIKRHtdJCag/KAldAZmA0jtFm4mOppMRVPo7SUFpMWuA7Hk5QRSiQMkBIDbYEK7GyDnKMUg5KOvvdNQUUaOljhMX1a2hnBiGbRM02zxWWleurEA6RqoRQ4S5J9LxD0NQI41OrRhzyxxTPpuw9X7J1IqY6/Hd44R240w/jzMzgfCvYfJ2y8zV6n3yZvRspRVXQnIX0Wcj1NOXyPKPpa7g1j0q9yVzL56mbm1ScDNGsszPeYdzeYZwGrNoN+g/fxwf+2r14tSoRFeLMxWYGR48Q2RBFjzLN6Y1KuoOYPOoR+g36V1M6Wx3mvDmsU2Ubu++K5SFFRlak9Ppd8jjDsQJFPtlMpEBqhUAgrUYrD1e6NBxLbAuKQiClQ60Z4vqCTLmMowTPGjxhUYFH1VE4YYWGowmUZG84Ymgtwkwx02hQLSc6hiy/7W7huhPgkOfgaokVkjQvSdIMp5TkZkIpmGDXAmFKKp5HNIonYkQm4EJqieO4aOlgtUuRZ+ighrIKVeZkaBwlyAsQyptkd5Qp5BbtWLq9Hr14b6KB8T2EC0JLmk4dsoiot4sRYNIxpsio5gn+4jHuOVHDDwOutS2745RSGY4dS/jH/+DHCRY0eWeLp/7oC1z9+ivMn1rGcbdwnTvIrw+Qnodu1RH1KUQwhd25gnnueezCm4EC09kje/xZsvQKVs4RNu7npe1PMcgvMR9o7nI88u6L+KeWKV/pkT3+SaST4D14L9WHA5Kvdml/5mtM39dGOCF2uoG1JeP1a9zZ0rQjTbs9oCZ2Wax4vPW+Q3QGA+ZmfCpSMBwV5LGlqjWVfaefKV8iSoN0YLoZsrRyhsu710n7a2zLnGp1nqnmHKp2e7OIbr7CoaVl3NJhZ3XMo+cLertt5k6f5PAbGlRrCi0FIdAAsm7BcCNifafLzvYee+09+rHl9J3niFyHIp1sYEZPChAhBTa2ZAhiNfnYu2rC+KgLSKTg8OIc4/EG1apgZbrCC09f45u/aYG0Oynmu5SMcstUVbE3EMxOSWo1NckuyA2FjRjsrvJLH7nCIZWwHDpkC5aeA2YtRt6pmGr57HQhCBVpaihGKY2Ky5LQPL3WpchLDrzYDwoZKeV+ASxAHJROr0qnfU29c9v69EA0Ovmt4ECkeyAOPQAMf3XXPu+9LCf3ciEm+wcTi9MwrOA4Dp1OjzRNb3nt+77HmSOn+cAP/w2aU3U+/8dfYmPtEocWBKvRBku724hwNOlaByGqJlCNEOX5SGoESuO8uEW5ExFdGaNqO3gLv432H0DU7kMvpVAWWLMJ0Rrxs58h6uboeRcbQDnUlGoJ2zhC0hhh/GlqQYAwiovr21RDi2jW2GivMkwchskOq0GHu994lDedO0rwhgqlCDClAlMi5MTyWRNR5oZhbEiTBGyB71QYbqX0dwcstWaoLDSZngonmjz5FwMGr3nNn3I5Mq8CswdThYPr7GBq8Or/3a3pwf4LLK+97g+OdTAlePXzb00g5O20ZsEkAE/YW+9yG4RYMRkZ/lcECAKB1BqJxTPQaFVQNEjijGg0IEpzlM5YXtb84Hc/glOVlKMBV598kfEgxQ/qSJkjvRqmlyC0AxUP4fgIqyDfw15dg+kqOAbzcpfy/DXM4Caoedz5U/Se+ATa69NoKGquwgzW0Estynib4nM3kK0A/c1zyLqkWEuJnr5M7f4IG0xj/Qa2yDH9DsdmBHHusNceYbXDYqvJySM14jSj3nRwsQxjA0bguRJHQVEIqo6gLC2BC61GnbnZBa6NuqTDNjs2pVFfwA0boMM/83x+Q+DgzjffxaGTR7n+/HU+/mufYHXxzXzP3/kWHrprcdJ1tuBjsVHJsJPwiQ9tE28/w9r2k6z2roLfogiWOHLmAVaTiGivT7cRQs1jZV5BKSmEJLbgNAXas0QZDKVlaTOhoySjKc1ay7I+dHn7236QuY9+mhvbSwT1nGmpaNicNI94+WXBO+5dYdhTdHNIkxKzm5JkMUe+8+9S+6kPUnTb9AuLk8OJiqR/MuDq1Qjtx0gUCEEcWbTvs7YJpglHA8nRuSa1VpVqKIkSi0VSeiGuJ5BpilOUOBWfsNZgNEiJc4jSAuU71Bo+jGMy5aL9CkG1jkZQljndTp88LUgsuEVClrkY38VRHvVqDemGTDc1ql8QpwVRnlEoyXicoW2GF/iEoUu1OuEtRuMeympqzSpkKb3+mNykBJUqviu4cW2HwncRwxhmpvGbTbTr4lc8lM1wHY8ySxDG4kiPXDt0+zEzbmUiaNISbQ2+KlFKEXU6ONUQmyaUmYvrupRW4Nen0ZU6BoHS/iRdOe1jigTpCJSuoJWLFGBsgTECKQO008II51a3wwtO8oZvfguvf7ikGP0UNz7zOC98YpebL6Q05zLufq/PkUM1gsNTNI/72JGgc6Mg3Cv5w3+TcGYm5+4fe4WGWsXmU4jqAmXZprhwjavPJGwWljKTNFM4tuTg3fE2lH8M940fIxZw6Oz9/Pj3v4Nf+INneOojj3Pf972V4uZVemttdndytm+0eeJTH+ULH/5tls8d5ZvufxuLc6doJ4Js3qcsGjx44g5m5A200yGcCpB6Hj3ULNT6TD9whnrps7M74Fq7w8rCFG0TstvZJrMeSTxgWMSUGJpViZVVRr0+ZCWuH+B5Aa4WtFpN8ixinEc4bjgJHxOWqbqkwDJ0/P+HujcPsiy76zs/59x77vLu21/uS+17Ve/Vq3pRq7sHgQRCSICGZTwwngAiDMPM2DETMQ6DHEEYxmgcHhxj48AeZDACCyOhBalBSOqW1K3eu6u6a6/KzKrMyqzMfPn2d/dz5o+XWVWtgBC25YngREZk5rv33e2d++5v+S4opbCNja0V9aqPUYb52THSJKO3sYEO+9jKIqhNYhddktxgY9BY5EaiSCDKkLlGWII0H/l1KJ3S63QI8xjHsklTjUkFrrSoF8BzPFqDGOl5eN6Ik2WwsFA0+xmOIzG+wPbL2OToJCHOIDU5tiogbPDcHEfZ+LZN2+7i+ZJ00KWfF0kyHyeFejBEEXL9rcukQ8jyCG1CdKR5/eoSH3z6vdz38HHObfhc6lgEkz6/+vNjWPboQaXK+3j8F/aio5hko0nn9Fn0lkYWp0YP1DwnW+rD5RuYb38BNTGH/eAxWPOQZ76J6n8SK/c5WLwX1RhyT1ZC1j+Et+c9mPYyeef32fzSX5BmIVY+RC8uoL/1GtYPPsyNr51n6+w7BE6N8hMnkXcfBa9A9amMf6Y+yGfPdzkr55DjR3n0+H6SjT77pGHrUhfRsEgzg8htrLEy/U7KvoaDm2guG0MkBFNT0zz6sb/H5V//ScS1jPmTd6Bzh7Wzl3lrdePm9/3siSP4boGrr1zhrTdXWZnex/f/yGGOTJXItMQSI9NGnWjCYcYr3+xjugucWz5NK43RbglZnGB2314WhwPirsvAs8C28F0QWpAjSAC3BBmQakMClLsZfVuQzisuLA2Jqg3mjt1D7a3LbHRquAWNgyEwGWmY000sjs2WGA4E2BANMuJ8gCxoyocfoVAuQ55zowvTqWD/pMfQLnPlYgtV2MTNXJIsJUcTJ4rWpmbPVIGpcpGry23gFkTCsiyyLBspypjtogvbVdabcqXbqjDi9oRB3NxOrkeeLlLcIoaKm+v87U0PdqBSIwLr6Dx2YCNpmtFqtZFS0O8PSJIRhM11FY1Gg9/+7d/Csh2MMPzQhz4KCAwaY3JM8vs0T32epa+skvQ7lOY9Ju4Zp1adRNQn8CdthusJepCRtSLe+fQq01M9Zj7yGogLSHcGYZXQ6Tp69TTNs316gY1lOxSFojwxjj32AaQ1ibyjSeTPcejxBxh/dJxvnb7KOy+e4cEPPsNw4SytrYjVaxGry9f48hcu8x//sMV9Txzj8TsfQlhFQmmRBTbGeBwdnyAQ62DFFMoOEmukTrfP5cjReVQiSG2J54x8A/5LPnuxTTLe+RxG116PKvuW3ElFb843W9lIIRDG3Ex0dwL3fNuIVN/kLewQGUaB/2gf4jbn4+39f2fXw4hbMLl3ofB2ZIB3iPjfw57ZdgvOAEmS0m512XNgL9XaPGPzORvRCHJz72HnVifDaXDoBx7DJBn5YEjW6eUmB5wAACAASURBVEIiwfYRgYMJY8yNIaz34fIlZKGMODYFF2Pk8pvI5pvIuEJ97zHERMie+Tr2XU9g1WqY/g109xXCz3yNPB9gJVuYpauwuoGebDB4Z4Ph2QUK4zOoO05CvYo2ULtrin9QfIqXLw65Jirs2TPFRLUAg5SGgMFGjCgLdGiQSgGCNDHUfImdwXXLUJSC2X27OfaIZPGP/h3iWs6u+48wbGcsvbPExdOL3/Vy/o2Sg7OfepuFP3iH569fYyHYy8f+ySN8+PAYl4earbWQreWEpbfanH7+PBvXP0kvBSG72K6N5fgonfCRH3qM9kCzW9VZC2oMjcfBlkE5GWVPoXwYqwmuh9CLDdMmZ2Uj4+XnzvHUB2YolxympybJlGQRj8He+wn7PcbECptuCbs+xh17DtLsdVl+O2Zut4dlMrxhBElI09JMWy5nz36e87/2y3ziC6d49mpEHLX4uZ85xO9/7gbzT54YOdhtJkRDj8uVOuniKhcunqNc90jCDmFzQF4tkEkHy5N4roUqekRaEMfgqBG+mzxn0B+SZoZMGywrZq5aI6iVKJYqBNWAbmuLzfUu/Uhw/NgBBtMxG1sxlrSwAExOnkRYRqBVlXJpwKDfZhDGePUixVoVaSksk4PWZJlG2j6eZeO6BVLho4IC436OJS1yYbF+Y4PJsTEKJicaJpjWgEw4KFeBKgEDBjE4bhlHQpzliAyE8kkijetZmO0HnzQWWRhiqQDXKaCTAbYwI2Jr1UILG50OQVgjnX2dkid9glIDJQS2NcL+GSQIsG2JbRcY1dZyMh2PlIwYlRcNEW7hF5m8I2Fl7QV6TpvDuySz0x5eYx/e1CPId75JdayL/z/PEjUH7P+TLumZjH/7K13q9T77Z1tUSwtcPJUyBtSrsH9a4t6pcO8q4Kgx+vEhwoUL/NGfp9zoKp542uXn75nnl37c4YXaFN8eHkbNH+SBO5scrCZ4rZR//KkLXD37bbau3uAzS3/A0akaP3TPCcbknUSH9vDaSotJf5ITu45wuOqysdZmqZJQPbBOuJFB3+BOlpgteVy9vkUnSUl7LXIdkUcxQrq4VoYlDXE8gCwmR6AchfJG3he9doQmJ9cOUmssHSMcRb+dUixG1LwClUqAxCaPM/rdLvNTYyRpTjrsU7QdHKcMiSJPcvxqQEMqBp0tBmFEnBkSy8JxXCyGmEyQa0nYG9JrbZGbCK/cQBibbmsTYyAo+EhPIbViSoJwGwyinGgwJA9DsqSHbfmkfcFkuYAtcvIkJkpgo5cQaigEGQ5QUDaB5aGymJlajdW1TYZG0W91wQqpVKosLzXJNBRMRpbk9IYpcZQR2BG7rBaFrS1eXWwzd7TCz/xAjYPHXayhJrvYoXe1hz/l40w5yGDUGRk7MU34xhqDzhDLlWSvfpPoz/4Ut9Cgse8B3L/3w3C9jl7oYq5GqCxlzJ1DVR6E62cIPv4xxBOHQIHp7qH/C2W2Bj9FkQgpMvLzZ4k++W/x7ziEfPtfU60dxNt9HG0aDJ6/ROvrX+Hy2gUmHj7Bj/7UT7DFJO+suLx1JmSyWObEQzAmYXWhQy0QFMYU6+mA9YUWnXgcAhdbGGxL0PXB1HyUmiZKMuLz30ILB52XULeppCx/8RJvrH6TN7YyBnuO8IM/MM/djQKrYU4U5rTXU65fGXLlzCo3rn2b9QRc1cYtBQjLZqxq8d5H9jOMDbuDgGXXI8wtJsIRptm1BZYNRQMbCVi5wcsNnX7GpUtN7j5ZpVjx2D0/S7lUoaV8wundpIOYCm02bI9atUSt4BDFGZ3rmsqYDTrHC0OurS1wxTR55un38KXn/pjVP/w/+PXPXeH0Wze4I5c8+J6D/PHlM5x433/D+dffppi5xOUxepbL1pVFeovLXL7aIo1TPDWq+IdxhjYaR9mjhCDX6B2IxvbYIYKybWh2u2vtLVjSKAiTQm6TIG+Lkf725gbvGjc19LdPLM9zBoMheZ6jt5Vt6rUaTz75Xv7pP/0NdkBVOSk3A1W2lZycD1PavYZ34mUKSZfGmEe50sAKTmCV7kNf+RSFQ7Pkx+eIWy3GTq+SXhzwl795ltk9AbXJS5hM013sE6Dx6w6Tkzb24RpWbQKpDpBkU6TNFf706zbFmuG973M4cmyc95/0Od6Y4J1kmmC2xKFjMXUrZ2sz5E9fus65Uy9x9ewKv3P63/P08T3cd/AAvpgnHqtyrjVk0q2ze6yAbTT9MKFv5xQKA8KBodSoUPFcbEf9FQKf/2lDbycC3CQC76gQjWDQN4cx287cI36LfFdScZuXwfZ7jeGmK/Lo7aOdvGvO39adkDuE6u1jEdpgCXmThwJmO4nY6R5878F00rbAQFAKOHh8LwCXznSZ3lvi2ISN7wGRRndSsjjHDiykLxFobGVh1QrkzYgszZFpQvrsn6MXl7Gr43i7D2I9fRfcsDALGm7E2EjU2DxyfD9cWcT9Jx+EMW/0ga5WST9dIFz9S1xHg4jJv/EqQhQR738EcekrFGZ3I6f2kEcu6SsXGVw6S6+zQnD3MR754Hvpxi5X1i1W1jT1QDGxC4pA60bIZNUmtzX9NCbsJkSVAigLNzcYW5BYAnwPz5kkDHOSiy+QpCWECVDyeyRl+icLTVwb1FSdp37yF3goHPKJ//P30OtXWV65QrvbxsKiNWziScMdB+boWVNkJZ+5vTM8c/9jXHjlbb59MePBOx+lc6rFhXTA2f3jPPNAkUPTCf5Qkg8EJWnQcc71tYgT1ZwF/zpjpQkGV16hUveZeurv8qfPLvD+x48wc/cYS689j19wsIsNXl/S7PbrzBwpcEY6TKmM3XVFxYS0Ll2mX1qjOvkA+07eyfzrN6hcXqK9FvGJf3YeNTtO8z+8htAa5UqEJemFDrWjd/GDf+cHWXzuDfqtTbIsIjeCYsmi5kkqvk2UZBhtkMomy6G7OaCfpji+S1GNvA/yHDZWt3BLZaJ+SJ6lCGMx3pij4RRxpM3q9XU8JUcVftfGaBgMM1IlGQtykgyqlTJeOSdTkqBQot2Lub58lcrEDBPFcYqFGlae0m+1yE2Pcq1BotRITkyn2NJGug3isEOaavQgx1gxdmAoFMrEEUR6gM4EOo0Jh31EUEJKG+HY2I53SwpNlRDZkLDbRGiFrWpIqdE6w1YujlMgzyykVKRao02CkYoYFxuJZRfJ8hQhFEoVtknNAk1GlnVpNd+gP2wRmxrr61vcd+dJ/vU//Ed0xzo89OBj/MiPzSJERKH4MMrSDL/wG+Ct4467yCDAqj/Iyf9tEdNcYenzHS6+lvDS2ZzNgWFcCg7MWsxZkmNPHaZ4Yhbh7SZtPMNrrzzPb/z6O2y0Mhpz07x+rc2v/NYn+dkPPsDcsTv4wYUNlkSN0ys5L19o8t4ndvG7v3aCl1o/yyf/6AssvPYOF9Y7/KsXz1GbX+Pj1mkKB3+cwtgURTsgN4p9d5a5zzFcaU2w5g1pKElVSPrDDHm9xdXzl9CySHO9jWtiagUbyy8AEX2dkLkOnqNwPIVlMlyZEmWGPE9wbI8sHcnZeZ7EcctINEIFVMs1xoo+jpBEJqMohshtaOrY1Cx+sYRQilRaRMOIXntAhsGyFb5tkNLCsSW5KJMm8cg9VLn4lQZOHmPcIp1Wh4rvkCQZJtJok4GQRIOMLBoiLBdvex5ZwqYfgudahL2IVGe4jkWtUqHTaRJZFk6tzkTRpuxY2FoTb23RWrnGdLVMK1LEcYckisHuEKoCuSxQbExiJxHTJU3FiqmqdcZUA1mp8NqFVzFBHzW/Dyo+/dNt9PAatmOIX+nR3WyS9LsYNNKxsfbupjRW4OLnv8TqW0vY8iCHowkEexC7dqF//zzm5W9jWmfBOont/TRkEkQR84//DD58GfGjT8OKxD0yxvTp48ioCbqDNhGDxQs0/8dfpDdsYSYO8sXf/x3KpBRtj6/3rvDlwYD//f6H2Xf9ImO7C9x3sMhsQ9DZ6vOZrxv27VOUvQJJBu3VDF/F7D0xwY3VIYHU1EWOb4Bc8vRBh6Of+DW++Rfforn1NuvXrpD1O5QC9+b3/adf3UTKJhP3HuWBpx9hdhjx2ZfOYDVvcObSpZG0p85oR21KtuSxu/bQZA5ZVRzaPcee2jir1zZ4YVnzxLEj3DjVY6HkMjHjcWJW0QhynESQJ4KiZRiEOXGcM2VnbLo9Aq9C851XmTtxgoE1wZsLIfcemaQ2V2D1wlkq5RpD4xD1JGXbpzhhc11ajFk55SmHw6UZwp5i8/qbTEwfoXbkIXZ9aQ3THbD48nWuXghR++d489NfGwVMZUVveZXl6z0uXluh4kt0Lnn0xD5Wtrpc22gjxK2KapZvEzC/I7a53TzqliPyrcBKCDEynmQEI9H5Tb2imxKUf1vH7UVgS1rbVefR/2mWkaXZDiSeJ594kh/7sR/jqaeeQohRXzI3Awa9K+RGkWQWWZoxVhvnG//xX5Lvktz5wN+hVvSQ0sZWuxAC0lP/CFkR4NURzl5k8ACF2euYxxa4+tI1Lp8d0Hx1SBwaGp7L1JxDQyqmT74PUZoAdw+RnGb56hU++e/P0Oor9s9N8PKVZdaiHvfs3011aoYHN7usWVVevbpBqWhxYr7B/7RvL9c+9CR/9LWXuPr6FV68MuBM5zzzu1b5Ua7gTj2CH3iI3ML2HaYqPkoa2nFAX2VIzyHTYDKDrf7LkoORBOktNaAR2V0jpHVTLUpvh/xS3EYs2OERMCIci9um3+2J7c76I57BLY6CuA1qdFOy9yan4RY5+q+DSv3X4BzswKWkECP5IgGNiQjZAxG4mNCQbYaYfICwDNl6St7vo5NktAFPIWtlVKDYeP4VMivAqRwj2LJgugLVCnxqBXP+LPRyhHcSWb4LEgFCwW9+Az52AvZMwkBg7ylRmr8PEfcx2Tomy4lfeZ3swhJp3MfM7+X1T3yCieouulmHs5sXuRBH/PidJ6m3V6nUd3FwVjEcGoaDlDfPGaamJJ7v0glBkuO6Bm/Cp99P8YShjMYKBTVbcP/BGgd/6aOcf2eBTm+B1YuLBK7BV9l3vZZ/o+RgK7zAsUce5b7v/xATY0W+/G/+He2tVTop+EGJ6WCGga6z/846+6YGLJ/qQqfDeH0/dx14gN1TE/zOS39GO6syvb9IueCQLGS0lzss1ge8fTphryc4sbdCo+5St1KGokn09hZee5ledz/BoQMsnl2k++ZLfOSHH2at22blTIycOUilHFDzFJbwmPIDzm3A1GTGpJVStAYUnQT/yDS/8Q9+Gzf6NMfSPv5yyvtLPrYNz3VToutNcpOhpYTMYsK1eSSwCNYu8ND+DzNfOM6VN87Rvt7EBRpWjhjmFOoNkjDEMhJb2RhtWGpGlGsBY7WAUtEjCjM67RC/XCRJIE4ixIARSavs4hRdlK+olH0y5aGUwCQRURwicejmktzyqJY9vJKLThLCrRYrSxcQxRIVT1LxXZTQpHEPKQ3+2Bjt5Q0uv/gKtV0z1GdncF2foFQlR5MNbaRdwq+WKTbKICR5MkDj4tgp+TAhDBPCFIxJKNLGeD5JnGHyFAzYro/rFLEKI5UPrTOEyHFcgbKKSMsli/poKTBGIFBYtoVtOeRCkRuNtEZuu1IqECODrzAfsra1gE4ktjNDURUwecIXP/UfOPmjP8HYRINatYjlO0gJWpZpf+6X6Fxp4t5hY/sFdOKQ6R6bsWFi5v1830+3iT7co9dzabUnsbe+TT7zOFawF7tRQQcB3e6AP//jT3PqYhnvwe/jxw9Ok0ZNUpHTGJ/ij7/4Ek8/WmDXkSqNNGVqYpIra0Xe/uoC7VqZB49u8PGf/X6ef/wxnnvuVS4//xyrlyN+s3ORJxeepXzkA7iHDzBWdqkLC9eRTFfKVHyfQBp8Ab6fEQ1jnAMzbLkJmU6Qbp/MaCwXBrFD3o8IGmWkUgg5ggx1e0P8UgHf8vGKHgI9UpBRNmNFmzBOGSv7lAoujuvhWja2TOmttXGFPXKcNoLUSLTx6fbCkRyr72FJiyRPMFmMb9mQ29jk2I5DHGaQaSQCxzH0uj1820YLnyyOiQZD0m4Pu+CzvrKKcEvUJ6bxgiJGK7J+TBLl2ER0wgQhRpLAYSYolCu45LhRiiFHVAs4rkdPKtJqnXrgY3e7lKvThKlhOIgp+lVsp0QWZ+SpoFD0mKrXaXhz+G4Bp1jnQ0/XGT8+T2O+OPJ2OLkLE9axCkCU4EcxejhAd7uINCfrdohefIP5apn64X10zqUMug3S86+g/vkUYjHEmBpYx7H0FrLiI4wha15Gmg7iM+cRL/XJjSFtnSK4+250KomWLxBtXCbKBuSJwt31FN+4tsB6Z4s07+DYFtO+4pdOzvCZr36N7BsvcefcIY7suoOpPSeYOrYH15d0TJm+LUda+9Ii8V2c5pCaD5ZK6WWCVs9gOimiYKhLzcMnpljsGBZrDukwpOhW4aWvAnDl+rM881M/weH7H8bXKW996VWGvRbNVDI7PU2YBeAHHJt3mSwlbF6NSft95ht7OTAxQ5plvHBqi6YuMD7jkg4kSz1DdyPiuky4nGbMOoJdkz4lZVFIE7JeRLo+QA1bRNEktROHWF7vUC7b3HfnFGEa0lrNcKfmCHwPZVkoYeNKm80h1MuagtCIPMTxDK2tlM/+iy8yLf6cI77FAR2wb0bQzXPOd0IGFxbISRBeQErGtGUxVZEUWopNpahOVOm2W3T6IXmW49iSNM1vyT7eFgjtVF1HjvPiVhtg+88R/EJjWyPI6g5PAUYB100y59/i5AC4CUXJtWYnbDRGj/gmWiOFYHJyio985CM89thj+L6PMYbMpHSHTSQBlu3i2RDmHc6fepODj/8wQSmg4PkjmVgxEkbIzv0ronaKM94AWcFkNrmIiHKboPZ+7nl8k/TkgOGwRBIarHQZKndgeRNQqYHtst68weWrb3B1o0Tjgcd4ZrpKP2zhF4vY0vDW2csc3XeI0nQJL00JvHHWN3tcPrNFq+ixb1rwc+9/mJcPH+HUt9/kxtU1LgxD/uDGIu89XCTcfRI1bVMT4AuBbUmKrkvRVdgIpDSjavtORf8/c9ysxm+zWYQQIxXAbUiRtCykkbepCt2awztJgoCb5nwIa7vLZXhXhnAb3MjsMJJ3+Dg7r5mdl83NLtHNuW4M+XbHwuSG/2qzfXQRRsIdwK4jk5goxRZ61JGarUBW2CYd59hZholjTJqNZFizFNPqUt87R3SuRdYxpBs2+RuXkPUy9EOMMwm2i1AK0VCja3NlDWll8KmrUNtEE6PDVdRjxzGJIH3nLGlrlTyWGFlC7jvKxbPL9Df7dLbewA4cphs1GrMuz3/+z0hFwN133MPErkMUp6coNso4HkTaJVQjU1lLSjJpsKKMggNC5gxzgR5okAZha0pKcHhPlRv9PSMlTrdAN/8eqRU98NgJ7r97kka6wOLpkA2vzN33HyAeq2CbBBMLElFlcqbMsHuOZHABqcYYm9vHnoP7qFc1m1sLJLqA8FLq82VCo8lXQ8489wLH3AJy1uZbyy0myjX2K4/gxiJfunCDAyf3sLje4eLiOn2t2HXwIEHVpVp3mO5a6HoFyg7GsyhYisVcMjFh2FPWlEQG6zdoby6SlBXveeoZVLzFWKLYIxKwe9hWn7t7Pqf+8kvUds+wtNyiUi5wuBFQXVrlG5fWeeXZ1zl4osJ8w8PpjzwQXA2RMUS9kCxMkUKhlI3WCZ5UI617YyMtB6+gsISFZ6mRHGU6kgVTysVPI+TQ4AVTVBvjxMImT4ZkaYw2IydJ31PEiaGb5Hi2wlYebiFg0GwhBz2CWkBJWVh5TDKIiHXK2GSRcmOc1rUNokFCf7NNqobg+Uip0FkG0kFLOSJR5wlxf0guJZ6yyXRCnhukbeP6PnkWYUiIk2QEJRKgXAchbbLcYMnblDyMJNcSkebkOeg0RUsLbBtb2VjCQhvIDSMN/e3EQGOIdUqz+fbo+niTaBT9NMWIacr7JXsPH0W5HtKSDAX00xhr6S9Y+voFJh8L8HdP4lRnSfoBW+fPULnraUJtkVibyEZAZWI/fno3rXQvdX+Sga7TyQT9fszWjZC3VwRD41Ms1RiOHYR+Eb15mf7Vi1jeLNdbHdpulfmCzb6SR6NSZUobLg8yXl3Y4BE354E949SdB3mtWuK1V19hM+7x0tlL3BE+Tx2NVbiL1YJDxRdUfYeKI0ekda2RGsrFAkQ+eSVgfatAMhgSRfFIgSgeUq9X6UWGOElHHG5LksYpUkQo38cIhe1a+EpQdBVGgy0tfNsiHvSQeY4uBGihCXOFsVxQHlpYpKnA6Iww1ihyvKIkzhJMngGCLDcUHId40EEIRZYbsixHao2RLiYZ4gceqTQ4CrSTk2cax1X4vkuswUbjWSPy2NDWFBwY9EOEMTiWhdCG4SACN2DnAeRIC1tDFsa0uwndUFMoOEinRJKkGKkpFYsIrSm7IGwLGVQouwrf8/FLRWx8XK/M/qMVCvNVbN/BxAahPGRRYYYRVqmAVYgxgYMpFDDNLhKJPHwMhwjPibCvbjFsnidqbeK9toh18CjCMnAlxMgh4v46vN1C31hAZzFyZQWx/m20o8jthERN49/xOGmUsdVcpRm38NKUAz/6GBN/1CeMJukPMkpOyvF9E0w/swfZKnHt9QWaawt8Y7NJsHSRYGGao8cfYmZ6L6HJMLaDsT3iNCfeGlCeLJMbb/TAM5o4zLDCiGCwRmBixl2PuF6mJRL6W+s3v++f+MBD3H0gQIU32Gz7DEplDs5PMV30CaycJHORjk+5bJEMN4j7p1H+LOMT4zTqFTY219lsLjPULtI5SW1KESpob3VZemuTPQUHMW5xJUqpWgGVOCTcanFuY8jc0QlutIdcXmkTlBtUxqsEpZHPRiWS6MDHeHJb3UXS1aNuc801KDT9lXXW16+z0Wlz6K478eIhG60BB77//QSBZpgnTG8M2Vg6ixpvcGOtw/yuScaFIbq2itgasuYGLIRNOoNwdI8BlpTkchToYm7Cm98VkRjYrr6KnZ8RKXQbQqHNttKYGElNj8xE/3YnBH/VGCVQ2wRlzIioK0bypT/38z/P/fc/QKVS2U4MMobhGgIL6QRkesRVEFYFf9yiMTEzqlALQYwgS3vQPEP7nfNU7t6FLO1CWFMk/ZB4sIU7fjepdtH2OnZjinJ9N5kuE+sWjj1GTMAgN0RRwkYPrvcUmXQpFSukY3OILciGTYzOkU6V1jBioIqMOZIZ36Nk27SUopMZLm32OD4D9+4Zoyru5OJ4nWvXVxmkQ944f4078iJaHWGgqiPkhS3wbWsE9dF6xDsR7/YW+M8b4lbAv/OKGM1QrfVfW6HfgQndPpdvdnx2KAE7S8zt7/uOvctbwf9O8ryzrdtuituO6zsJ0d/bsdPFGAUkBsexR3I+mUZrAVoiHBuyDOEpRJ5gbAvSDJJ0dF+WbVTgw7JHIjbQwzXycIh9ZgtxYBKyFNpbmCCF4y4sRpjhClo7iHNvQSHG+ArjWyRuA+euO8iubtHfXCNNhzgGyo8eptTpk97YSxgvMbByvMkS+x85Qqnt0Dy3wuryRdY2m6hKg8LkGLMHD1GtNkj0EOE5aAR5rsmHGW7RRRuFENseFInGihNk3Mclp+K6xPUiaZgQh/3veh3/RsnBvXft4sR4zvrZF+iszzL3vo9RsyfIgx5FL8NzFODgdUK+/OZFOsMBMyceYtfBfZSrAYO4zfiYYWXlOmvLK+zeW2b34RJuAb72ZshuvchGP+bNGyvMuOMkQRniK7xlV7h79m5ePnuZM+fWGdu3l9kjh+mubeIfmWb3uEuUO7Qci8wVaMsgjOZQI6chInoX3ia8dobe5lWu9nIevON+CkEVf2ofdsEj7NygffUSR8YPc6DsMbFvF5eubFCtFNjTKNB95TTPvvEHPP/VN7HTPYy5CQ1XIo3AMZAgSaME+ybbXyKR1HyLVqpHKjzYeL6FXXBGngdhRBIaMi2InIiBZciHEYXSGE5QRmc5WRSTa4kG8ixnrFFgiCITFkZIpBRYysXxfMgzlHRwJQidkWhDqg2WyUfwpHIVYzKiTpdUCGSxgl8uojwPLW1ynRMNB1hZQjSMsHwXXBfL8XGQKMtQLAcM+ikmCwmHGToKcR2FMClZrDFZCkoh0AgkeS6Joxhtb/+dZUhHjpRphEWWGSwlENuymGYbx5johK3eOyTpENubxFJlktTQiwdYssKeew+SSU1iMsJU0I5z1ptb5C99mUKjgnfXDMH0MWwxQRS12dhKmB9/L6ubb3B5YYugPE25VmcYJbSKe5gJSjRX1+j2QmSS0e1GRKaGtIeURZu+sChVZrAHW3SWljh07AhRv83a1gS+KjHte0w1fObuL+CvDzh/VnNpocne3Sl37RujUn+SftxhuHKZxaUO9auvYJRDJMuE4hAV32NvefTAGHFGIJcS3/MYaolrWzieA5YkThPyJMM1CaoSYNKEJMvRaY6lJBYG8gzLhoLv4voOnmNRUDYa8FywpSCNQkID2A4YQ2a79LSFLSQeEmEkaIM0ArVNWsuTCGEMlj0yvrMdm2E3hxSyTGPyUdCTJPZI2lRLtDFYjoMnBVq7eL5FpZExGObYUmDlGZYwWMLgK0nfCAquhaccbCBLYrTJR5Uq18bolLATEoYJG+tdBv2UDSehaCvCJEYaTdn3kTrHNRHlYoDjFFDYWJaLcIroRGGrEv7sJLbnQrZT7RIIaWMygUnEaB7nBqFtdKqwy+Oo8WlYvootOvgyx7BFmg1gaGMKFQgGoCK0PUScLEMxg40A3b6ByRaR+RpGe8jKIdK5SeSB3YheTLK8SCdfx5uYoXj3PNUvGPSe3eSMU65q9p6oomYCPvj4Sa5PT/LK1SaX2iHdYUhr9RpFv8hcvoqwFP7EHJY/gUxihtiE3RRT9BDkmCQmHyYYE7OytEYoB+h8yJTv+k+JQQAAIABJREFUULRKnFu/RUh+z+P3MJY1ubG8TpLPM3bsXop2Ec/qUypILEshtSDr9nnzwlX6SczcwTlqYxUsZYEwjFUzlq532NjsUq9UmfdsdCy5fCmkajbJ2jHraci83aCV92nnPZbdIgdrPm9euc6llSEP7DpAqVYlCROcRoF6URFri4EU5NJg0GiR0yiCT0Z/6QJpe43e+irhIOG+u09iLM1qa8D8gb2IQZdKkjJ7X4H2wi6csQmuL6wxv3eaYpaweeoMzUvrWE4Ra6yKOnyCOBtxuQSQbvMMdrgGt4m9AO+GT9ySeNzmFbCj+GJurrsTIO2ov/iez2c/+1luuS/vBG7mtmBH3OxW3L6vHYWYm3KS28t2DnEHW34TfnK77OROMLe9sXcnPjvHu72GMbd+iVtwllZriw9+4AMjdRrEzSo/mG1issBxHT760Y9SrVbRxpDpmDhtonWGtCujTnOekuYSaReozUyQCYMxObGWDJKMsLuFWXkbt1BHzR7G9g6D9snMIlHcohQcpz9Y4sbGDSr1aaR0SLQkcSYpOj69boskTrE1hClk+EgrpCgUA2yCYoNk0MSkCeO1Imk8oDOsEJQVvrQYrxWpFX3W+gkra5q19S4TkwWOH5ihVC7iBRA111lY7DJ7/Qwlt0CsJclUGbsOZQVKCBYWF6lVqxRLJQbtAa+//hp5lm7Pre3rfntwzm3V+tuGEIKnn3maJEneFbXfhLiZHS7AX+FpcPvnuv1L3jbHRnPpVnLwVwb0ZtT9uL2TdmuLhp2SofnOY9te//Sp06wsL9+ayNuz/vb93n4NdjwSvhPzdPM8tu+FnfvLdVwef/A9o4Kklhi9vW8BJh1BqQQ55HqkjJCAsRWm4BGu9SBVCA0ma5OnKWYgoeiDl2CcGFFTcMwFX8PbDmZrHbJLkA3AlBHl/ZhqETFTh4kZ0htXSDODO1HH2VulUMoQdxwl0+P0yhFyd4Ha/DxzJ/fTnrnMmaV1Wv2MQTYgaUJQDqimm2B7uI1JtLRHKplGkkUa44PQGp3m6CxHZynDrS6pTECHjJcCOjoHnfDdxt8oOZDdFToZrF9fYaaQs+/OXTz/lS7Z1W9w7+MHmbvzEGmU0Lx8hddffZ6xe36IB598jKNzs8TdIW8sN7n/obvY+uKLXHz9FLXyOEeOVxmfqPLWpaf48jf+H8qvXaBiJIkjOeV0eSsYsO/DH+Ra3uXFF16kbc8yWZvByvpkax22/DL6zjJ2X1LOBXEKmTCcLEaUkk3C/hqn/+TfIJMlSrvLXHm5Q/HLz1OY3MXhn/lvKdTmWXt5kzN/cpZHPjDH/b/wD4n7GbMPgXQFQmQUDj/C/n/5KV7tD3nuq+c4OeMxMxNQLReQkUYJF6Vsio4iNRZRClpYBLbBKQdUfA9PKRxHYtuGMM8QzZBwKJAWhD2NzFJkUCDu9lGVCmkUMQwzskRDlhGFKROOh4VDpVhAKUkcx8RhgnA9hO2TJREmMyglsJQi8IsY4RK3W+RiW7qSFJ1pkriAsjTV+VmSMCWNB+gwHDkTZwbX9clQOKUCymRkOsW2JGW/QL/fo99NUBJ8R6KTiDgBJSQ6zdByhDHUOcTpEN9zEQIS4eLYHlpapGmKRFPyStiWhxSjdmeSp/TSdTa3vsr09E/Ty1JSnZPnGikCTLGMsBQX+y2mfcViJ+ONq1tsXjqHuLDJ3//7j9IIxnDt+xi02zS3zjOcPkpizxPJyywswsxkEcfKub7+NdxSHVl6H53OAv3NPkpWMLLAmNvl/PVF9lfmGAv6zM0eQk+WWHIsHLPJnBwQRwNuDCpoaTHhw0SpyKPlKscrHt98Y5HFZpMZR7CrtouH73+UFa/LRqfPctwmuvwSQccghyUKxVncOZvZghwZ6CGxpIWyBWEqyBND0bKoODapkoRpRqlcoh9HSNtCOS5JnKDThIJv4ZUcSiXFbMPHckadAEe5OEKDLbBshS0FQikQBlsIlO/R7IcUUoNvOTjSwbYtpDJ4tkWabssOSoGrHIp+ES00GQKSGJPlyG2fjyzTSOURRqMk1XJtlOcg8hzHEfgVgW3HKGmTxQlxmhKHOUaPzPB838JXCk9KpG+zEcaQWygF3a0bhO0uvX7Kei+n6AUMBxFOwcZXcpQECJvJsSrDZhNlgWeNpN5yY5PmCrKRBwm5jW6DTsE4EhlISMGuFDHrQ4yxETgQRQhVAUciBl3ypRZ6rYklY9zCPui+Bf4s+lwbIYZQkWRZGWYEPDiDvfQM6aXfQ3RCRGyB5+DuniP45b+LiAT+wKG4tklpeYPZe95LfHmd9cXX2f3IHRT334M9XiOYyei8/gr+7oxd33+SXcVdhJmiudXk2pUBX/vcl1m/8gLFsX3UDknKu2wclaLGjrNxvo+7L0dnMaI7RA4z8rLilfUI1+lR7K1y/NgMe2d30+/e1mYerNJqr5F2I8brHpXJEmcvpGQr73DP4ycIKg5pL6S1tcbpN15n8sH3c/fd+6lYNt1+zCCB++7az9bWGa5cuEb5noDxMUUmqiy2DX/5ykuMX1ighkuxlHPGGbI5pdh78gBr0ZAXXz1H3NiD9H2IIpJ2TGhgZq6ODMHLDKnWQEpVDxFG0x9scf5Lf8js8SlmxmqU8BGLi3jj09y57wCWKrJ+dpM8yph5724ajx8hzwxzxwVCGtAZWtWZ+sq3OTfM+fGPfZQjDz5IZXwC23FuBTW3BTHf6/Fbv/V/89M/9ZNY1ggrfhOuoW8ZrbENq7m5HG6q1eRZNoIwvSuIHJWClRo96neSkR1nW8seKTBhuElQHQWBo+V6G799u0TlTvphSYk2I0jUyZP38+yzz/6V53XTTGt7mwZNplPirEUULVAs3keo021IigWWxNijbvJmElJzbJb7KeutLsPNNdxOj/d939N4dhVLHmbQuUSYC9LiAXJZIZUeN25k+L6HEVuEyVUct4pw9hOGa2SDDO3UsGVOQXRZ7W4wF0xScQ8zUZugoyDqbmDrHmUZE8UR7dgj04KiI/E9m32ux4yvOLO4idXvUi0rpmpl2LefLS9mtdXj2nCd2vlTWD3NVnQAIQvkvqHiCl584UWOHj3K9NQM77xzhv/lf/1l+r0uWZ6Ta43W+c2Aesc74t1Qtm30jJQsLS1RLpe/t5Px/6fxvief5NVXXx3xBLZVm24lIeZmcg2j8x+p5MpbHYrtxdKSI5K/ECNBF8tCCsHE2ATPfeU5POOSGwO2QCoLneajWTxMEbYZde5Tg9Yj87y836V97hruqoVIM7SqoOJ1jFfGnO2CiWDMgakCYtqC/RXkhXvR5/4Q+glYFqLsYe2fwvmJJyDMcQ4fwO1ex2ZA8a5j6M0+g2vnmPrgw1gTd6GqHpY1JF2/jjCaxoN38uijdZI0YdiPaK33ufLWWbpXVwimDlGQBdyii1QK6ZQYNFNs16DTDBGlCCGIEFztpNgqpDDYZO+RWYquQ6X63eeL9au/+qt/7cKPf/zjvwpgYXNlK6arDD/ySJVP/r9/zuGn38sz73sPR44eZKpRxReGP/zTz7HeXOWJD/0PPPPQPmpOzMq1FU6dW+DokVnOv36GyXmLQVaj3SvhFVzuf19Ae/dDFPsB++2AnjfLlcZROHYv5fkKn/sXv0enGzL++ENUJiuI1UXm9no8+7tfp741jilKahVBowBxmvGllzZY+tz/xe/+5j/ns6+fpb/V585A8eR//wD2lWtcOqs5/Zmvsfz5s9hnNUe8wwR6F94TU6y8kuI4EqekRnh2A2N/8nk+3e7STzNW+ynrnWQE0xmCcEaqDMJx8AsuSll0eynDQUKlUcezJHYeYwuNbSnSTLC21sUmR1kG1wbXsbG9Ml5QIgh88n5EtzdEI3GLZSjVmWxMEA36OAVFnEbEWYoX+BQDn9wt4RWKmN4AmaUoR4IRhMOQ9rU1UmlTUDa2lMQGrKLDzK79+MVRq9NTAmkMw/YAx/NRxdLIWCtPIc/Ic0OWhbhScWO9hbZGmrpKCox0QPiEGx2kNviewrZtciNIt+/bPMlwvSK5GcmrOUohhcH1Ktj2SAZ3mES0ekt0tr7K3Ox/R4ykZwDhoqUPTsBc2eMr7Q1sk5GZnMWXr3L2z15l+dqrfPgX38PxyffhOA8j5CRnX7rAt569xL0//StUhcXLb/wWUWxz7cp5FtfO4x8/xkSwm89/8wVm95zA230/623D0qk3mfDbXFlLuXy1RTP1mW80ODEzx2R1hpdXrzM7fid7utfJM0XfrdEp1OnlkkqhiPEq7J8dp6BcsijE0j0OH96DygJOnT1LsToFeR/dvMB4t8X51b2sFwpMSo2djbqvwhiyXkg3yuh0QlYvXqDT3CTJQpRK2bV7in6nSzjsgwDHFhSUoGjbuJ4kHAwoVaooxx+Z3Hk+liUIqiUS5P9H3ZsGWZqddX6/c8673z1v7ln73l1VXdXdarVa+4JAAsQOEgabmTEwjHGEJ4wDOyb8gRmPIwgCf7AdxjAxESxj0MAMGgRCC6ClJXW3elNXdXdV116VWVm5Z9793c85/nAzq0oGjBwBhDkfsjKz7n1v3vuee9//8zz/BTcIqASKqm8IghDpeVQrDSqei7vLf7XW4CuL5wkQliIHcHEcH89xMEVKtx/jFCVZDlkpkVIx0W6QlJI8K/FcF89VWF2QDEf4tsT3XVwpUb5LUWq63SEb232yuCROMjzXA11gTYFVDqurm0zVq3Q2Vxn1hwz6KXGc40WK6elpDs+1aUQOPg6BcKj4DqW0pIMUawxZXJD2U5JexqCXIYYJ1UqdsDV21ZGeQoUSUQoQcgyyKgo7AjtQqIk6shpgrl/BvP4WcuTjtGZwFvbjysdRvQRVjrBlhnpyCnnuOFKcQp6bhnsl6qcP4zzzIZSKEN0V5NueQf63P4+YqoPjIkRMma6TrK+SDDXltRcRG9foryzT6d4ic3r4zYOUpkr/M/8OZ/8TiMoETlCn3trH9KFpDj0xRfvch1itnOLS4hI3Fm+jZ86TVyLSHcO2BpGnTE16HHqkTWMyZFCf4sSkT9mxLN+6xrW3XmV5ZYlLt+4CcO7USW73YqoTAQdmfF56/iqHnjjLk+dOMjHRoB769Ps9vnn5LXZGHd7zwY/y6IEaNk9Z3+rQHcbMtGus3LzHwiGPftak1C7NhsORExHq2GGqpsaRIGSpMsPWwn6cwws4vuDTf/B1+pnh5AfOUjEpvkkQZDz3+deYd2agJqgFAl9Bpz/iwqU7DN56jq/+zr/lazeXmMRy8MAs82eP4ZSGzNS59W/+iGLdEJVVaqaB2JGogxHZgPEE01EIpXCGMf5bN/jq3Q2Wr1yis3aP5tQUzZmZB8LKv6PCAODll1/iS1/60n2A/jBIuu8A9NDa88eXQjwEIC1yl1UxBlxje1FHPegDioe6uY5y7t9WiPHxhHzYf378uz2KyV7XV0qJ44wtroSQLCws8JM/+ZN/6TntRWYVOr/fEc7KkiRbRZcdqtXHdhu2Y4ciI1xcx8VzJbfTGGeXIrHy5iZL129S2B5PPPMYU9EjSHkEhM+NVy4yGEXMPPJhPAyLK58GplhZeoFEFvjtg7iyxuWlG0xPH0O2jrCxvkXWX8OXMRu9kptrXWKnyaFWg5laE+kErCQ5zeo8rf46hYzIvIhMemgknuth3YDZiSrCCGyZ4TuWdquOJypcu7XI5OwB8s5dvOE2bmJZi5vEvoPeWef82fNMTk3x+sUL/N7v/S6bm5vkeU5ZFA+0AdaMpzC7ouI94TAPOQRpo/mFX/gFfN//S6/9P4T127/9O6yurrJn5fvAOfWhKYQYvwbqYTekv0KjY7HjhObdKYcUgiiI+PgPfJwgDMbumY4a8zuUHBcQoULEIHARgYdwoFjbQN9ZwZV1aNdQ7Un8ygJO6iGKDKs1vLOFfHw/6sQCouZC1yK+ZwL51NOIfIiYqiHe/STiI88wFgMocDLKtIdOc4phjl27jaM3SZZXSIo1RNXHqc1Sxpr80rM4B54A5eA4IX6lRrVdZfJIm+rR82y40ywu3mRQCGx1Cu046NgyAFxd0pwIqE/4eBUPU6sxV3fJdiyb966xsbrItZvX+MY3LwLwS7/0S//yrzo339bkQFRmOPdDP4Q3NcV///P/jLe1m/zshw+yoyM2OyXlwKJKy0uv3iLvjnjn49PMTIZsLm+jnAEf/cij/MYnl3nb93w31577AkfEl6lVU3rL72B6os6j0yX+z76XpbfmaMuCE80azhB+61d+Effc4xSBS//2Zdx+SH0u5I/f7FB/5zf59U/+e4JPOfihx8TUHI+efYr3fvwkG9GIldshaRZzOxH8+ZUh5reeY6JIeKJl6ScZQbJKq3BpxAK7GVP85iyTaUTnVUXxnojJD0U4zSmOf/U5zp86z0a8RYAlKDTFMCesCFTi4fuahpWUiWaYlcQlFFpikwGd4djByA8UYRSPbSelJKr4uJ6iVgupViOc3Td2llt6w4LSSHJr0Zlleq5FrATKBWNiiixlMEhJMksQVVAuyEBROh69QYIz7NGacNH5Bs3JJjV8SAuG3ZRebJibqRNW6ggUsVUYHIQfEc04SOWgrMINfIpRQZGXCGGRfo3u5gaNiWlcf5yubLQmTWKKuIThmA+fuh5OxcVxxwKdFE2z3kZIgVKS0lpGeUklrKNLQypyeoMeo3iIVB6Tcz+BkS6pTpHC0C/17lgUvra1yoxd4mB4nD/6P36Pr712m7Q1zQe//2OcabdR1MAKlrdeYKt1meZH2syoKn29xhsvbtDTA952UhKQ87nf+UN+4Gd+kcHUCTqZB+kWtYkC73yTC79/hYP7JjkQHuT2ygpfuniLjmjwnQcqvPPcO3nt3i3ed2KB/StrjFa7FNkEC1Ml3XI/qj6H49coGxHQwmRrbA432f/Yab6v916uXLvFYEOQ2ZTXFq/jeANaz0d86XbAtCdpq5KGn+A2hyBy8q0N6kFAHriQJ7hhQH+QEEUhWQmDpKA0GqUsbgBhs4KXhzihjx/4uEGIDAOEDigyS5ZmNGYCXMcFI4hcD8eUFHbsViSUi7B6/AFYanaGmkYzIvQkcV4y7CXkOxl+GJL2EsqoQm5iFAZXBnT6GZ4XUaqESuRTaks8iulv7zB0fB45sZ9BPqLbSyjSElcoIiCLKti4T5YMSB0Xz/VpA/smqqiiS0UJslzjCNg33+LRMydJtU+a+2wtbRL5CieA4ShFxiUiT1je2CB0QyI1Fmm7WU5ZryN8KIcFgnFnUiGQDYFNgMwgSlChh3VdMAY2eyhRQ77v/VD42FgghiVMJpS3n6IoVpD5Fva1JuodB3H/+SHMXYtoGcrPjRD1AnFuHnHyA9i5sxTPa6zpQUNT3Poa8ZWXWe2UXLz7PGfrI971AzMEUxYbHmY0OMzdz94mqd/iyX/+P/PCr/06y/cstQPHOfaORzBzIZVDZ6jOK95ZHfLI6feymfgMVhPkNy/SPjFPdWjZf6SJiHxevdnhpT+8yA999CgvvNHj7FOneWb+HEW8zIvP/Rl/8BfP7X7e7+Md3/UR7r7yAv/pN36f8yeO8+4TTXq5YDjSyECy00l5+cIKRXfAqQNVPE+xkwxotxRevc2LlwY89aGneeuFr3PunEIMT5A509TbLofrFvd7j3P3To3DlXE43MadVb7wyb+g8vgJNgPF1vXrnJj2iAOHt7KE6MRtfusPnqVZreBFHrPzh2hOTZCzwasbF9g62sK+MWSdFh11kGZwGB1cI7jwMnMywX/9KoE3wHHbEA3R9QBVeJTHPdwZEIHAOXyUyX/xL3jsH/13DIpN7N0l9KB/v0splPprrpB/O0sIuZsT8IAW9DCN5H4B8NDPe6DqfiGwCyT3usoP+Ne7aeZmnEAupUQbPZ4a8IB2ZC3I+z/vThCE+Baw9mC6wG639m+qmcagrZSCNE0pyxzltnHDBSwSTYlEEBuDkorMFAySmDp9Ws4UX/nUF3h1K2f64AJPnTzPdBgCHmDpDK5gDxVU/EkC4ZCWQ5ZurJI6mnNHPZZXXuf61honz/04cXWeOBcUaZ/2XEi3kKzd6LEw3WLOneH60iLPVyY5P99mvhqBM8+t7g5n9k0xtb3BqJfgVhyiQJKZOtKrYlWADacQ2YDSpFhT0Jqf4YPvOsfi8hpyZh+dzZR7S6sofYCq8tiuT5D3LRdf+yJff+ELXHzjAqPR8P5EyBg9pp/dHw/sidr30oX3Nsy3bI9/kEvsFaO7Ey2tzUN7b7xPnV3XofEUYY/K9oBsZI3Zpezt2bGOm2x7WSL/5Of/Cf/bL//vHDp8COEIcECUYkyH1RIib8zIKg0itQRBDfHkHDYT42lCbDCNFLN2AJP2sfEO5csh/gebqPkKtmcgAN4ooKHhfcfB0eBNYxYt6BxCjb75OvnKFpt3B3TiZeZmMw5+bBoZFVjnOOmgwvDyKtRiJr/zH5HnhqUvv0lYDwina1APUdUWfh0e8XMO7H8bSSYo+jlio084XceLC6ZnIxJtWbrVp3u3x6kTdW4upRw9f4h69QCDzjK3Nlf+xnPzbRUH165fYfu3P8XMwnE+8vHv51T3K/z6L/4PfP9/84scWlhgqzvgG29eR/dvMnP4GQ4uTFKNfHpBg6Tocu3123zigwv8xaV1tKyxnrnI4RLTcsTti+9joqxhZxKUGJAIw1IXOndizn/snbx5I+cn/otH2bfTYfHV1/nCn75O7MC/+rUz/NFCgyt/sMTGnYSt7i26yy/hXKzwo//qMd7+P72Xndsdekt9bl/p86//5A6fqFT44MJhFuoGqS1OmqGzWyhvi/LzJ1CPHWOi1cDdVXsLTyJ9j5955If49PVPsV528HyHiVpIu+qTI1EqoEhLtDS4UjE14Y+DLOoRaaoRUuIFDmHg4vsOMxMWhAuug7AueSooyozQLcmSkuHONlHNp12tEFQiWk2XQkHPqzHsdekPEgbDlCzLiNNNjp06QZyF1Cs+fmuKUhvWu+tUvSqyuQ8lClzlELUNzX6KcAM2bi/hRQ2kH2BUgMHBd32KJMEUGVnSRfkVvGodKwxSONSOHwcryPKYPB1SJinZIMetTOPVK4TtMUBwXA/hhRjPZeveJsIkBEEwniIIO+bPZzlaa7qjITtZTq3qM92qkUnFvbKgIV186aAdy0BrhqZgOmgQ2DP87q/+Nt+8u4F65DynHzlCOxgQBo+Rij7S9ul07pJbRWPfOSInopflPHe1w9PvbrOd9lm9tcPahktevMZ//raf5bPPf4b23FFqjXniosQcfpPlz73C4R+c4vEZy9X+Jq9fvcWs1+YdRxdouYf4969rnmge4HA9oR3mtGstTLKFrybJyoKwGrJlGmykMK3XmZzIeerdb2dtc50kyfCkRy0ekDibDNdLXrwlGPUHNHzLyQMBp04YpmYElhJTxoQ+WMcjThPidJ3eYEQ3zXHDCImgsIKw3cZB4khw+ztIx8Ot1AiCAJ2ViDLFOIKKX6VarYxFZMqikyH1ikNZSISELE3p9lLyJCYe5dQjRS30QUhGpcETPuUgwRiFNBm+sIgSdFpgQ4EoE6JgbN+bpTGmLKmGdaJ6lY21HmkRk/RjFBLX8SEI8J2UsFXHpkMckeGZApNkRFGItJKg0sQWlu3NbYabI9av7RBOTAAprZpDe6pJsxFBmrJy5Tp3sxG+A/UwILQWV49wlcfU/lncmSo2MIiqRbUETm0XFDlAVUF3vEcZaexqgZhqIVSEXR9hdvrozWX01jI6rrKdXkMkizRbTxE9cxz5HXNYIShvalSlhCIGOUQcOoLhMKPn+8jtIXb1Ms58D+/8UaYfOc2Zz79F+fXfQeY93KPH8J/6ASyzyK7k6DsmsFHJcHuZJ/7pz3FiS3L9jes8+xdfxA9DyvP7aOwf4vgOtYl5Jiot+p6LOqYYFCO2YsvyH3+d3soa650RRXeLL/7uW7z7/Y+z9sZlrr9mmDgwwSPv/k74Xz4JwCuvfZ17XcHBuWne9YmPMZlc4Iv/1yd554/8GJM1xU5/xNraMmK4xKFHn6ZVD3GkxPGrbO/0SIoRT5+ocnl1gJE11jPJZHYP1U/pZAtUjYup5QiR0Etho5uSo3j8Q4/y5orm577zAK31Hb721We5sXKP1v4GP/ajJ3hpusGNP3+L1Y2Y9Y2XmPElxyar/OCPv4vX3tzhVppw7OlH2Yp7XPrM53nfU2+n9swHcTe/CXdSRGeAtRkyGmKfayHPTMKShEhgHQlS4AUhH3zPD3LLv8mj3/vdNPftG4OYv8OJwd66TxO/LzF4QKvYo/nsgXj1kEf9+P8ecqxRCmksDygoAqPH16L7wVU84GY/nOC8B9Ycx0GXeveveKBHsGbcyb9/+4cmDH/dshbyokRKSS/TRIGP9FxyBKk1+OOIMFwJqTVoIam6IVL7PPsnz/F6DAtnTrNv0qfqlChZpRQ5gpTRaBXhtfGjfThCMSpLnr9zj+941zk2Om+xuLZOoQSKFZ6ef5rXbr7K3OwxkC1MvUcRLbL1yjeY/8BHeKxteW2ny1UHgukKs7WIUDT53D3BO1ot6k5G5CkizwGd4siIvExQgUdfR5SFILQJrso4fOww91ZXSD1LGApqCjI35+6NKyw7k2ysrHD5jedYWrpMnhW4rosuS4oi54EV6G4S8S719v4E5yFdifh/ed3/ISxrDHu2SVJKlBzrF7TW4+mAMejd2+5pfZSSD3QOxnxLOJvaLRLGv4DSlnQHXYbFAO2VOOGYrTCOVlKQ6DEFaGggE1CNxsYO3QzdT7DdTfo7HXqrCc0+mM4a0ZEzuM9Mo/aH2NhiNizCtWBzhCoRC0cx/RK9bRAB2EsriOkY9/xpmu1jiFdv4r35EiLvoqaOIReexmYugfbwhAeOJusP8SaazJ0+wca9RXZu3AYnwMyfpToxpsxV/RABxJFCBC5pkTMsYfTKNfr9jCTNEHkCxCw5AAAgAElEQVTOrRccjp5dYOv6IkvCZfZgi9bC4b/x3HxbxcEPf2wOt9Lm0i3Dji54WRzixQu3+FCesRAqBldXePlPv0BpSg6+4314fgDakBYxuCnH9jfpZyl+CgfPPkacl/RKF1d5LDg91JEai0sDZuYalFbT3SoovAJ19Dw//GSV/ssvEB9oUEx65I0B8miV3/yVV/jxnxd8+L+y3F0S3LxesvRmxsVbA9Z/ueSH3jvN3KP7mHjbIaYfrVE7/hSf+9XPcbqfsM9IlKgjiLAayAvsdoHYFDg1gV0tyC+Dd8ZHunDq576Xlf/zCjdWrzJSGb7j4Lkuk1UfJ/RQrkQLgxSGzGhMVqBaNaq1cMzVDse0oyJNaNQbFHrMnXP8AOn7KN+l2qgwGuZMT7URgTu+TzUiCEJsVuK7kmHiko4y9CgmEAJMhmNy0CPyWCLLEi8KmNy/QBonpPGAIHKJ4xwTl6jSIJOY1Ar8oIIpNXGakcVDvHJEFscEXoDjeWiTI/MSpKA0JW7kYbXGFhZhXZRbw6taKvUm5XCI67p4/jitLy9ycmuQjiUrMpKioNsfEqcpfugwMzXJ/PQ01QqIakQUeASeRyEkvh0LvktrMMIiJPgItJb8xr/5E+5c+ibZ3HECIBv2qT95gLryWbYFLVFhM/OI7RRzlUcwVnHlzkW2NxIalRyTZ3R7OdaUDLqvcHXqJ5mIqqwMh0yHbWZbRxETHjvDhIPdDVayeZKyj6M2ubXWpureYEb1+b4zp1g2ikujEtspkdsxH250WYi6VFwXTyps6FM2qmwVlmyzQyWq8J53vYuXX36JxWs3OXB+glH389xY8gn0NEUG/SBkZb0G6YjFIKHhJCg7wpQxZR7j2YLCGESZE2CI3HHqrFRQj8bOQb4jaLcbRK0K+IIiz/FcDyl9qs2QWq2C6zpoUyKMJnLcMRIxBXmWUWZjgX1sLIHnoXSJLgyekDiBh2cNeeEzo0YYpSiNwZYaUWqsEOgkRQJJnoyduzyBNj79YU7F1VgEpQbpuATVKhPKZeveOo1ZH4NLNsjISo32JaN+StuFYdpBG0ulWoVCMOr26I4sKohoBwJGCXgevhPimgZHDtcQw4x6VEfmJSYtcMPa2PZ1GJMLcFsBwhfjNqkBNFA+6EwJX8CsB7GGrR309SV27txkMOpgXUXdV6xJzVqxzkz/OY7oGabLg9idEudtDuYtjelpnAWH3g3DaAWmnpxg8NnXEaFENX1Es41XaRO8fUDnK+us6wGnrhTMHhK47TqiUsUPq8h2gC0aOIHEbUtOzc4xefYIO1eX+P3P/Cbn3vldhEfnubNtWe72GWwOSXaWkekN0v4O/aVbpL0OrqPY125R5gWXvvksk/mIydAnDGboNir3P++//7uPs5PUKY1lR3hs2cO8fGGJd/yIJXAV6zeXWLp0Ha0E+88+yl5iaq5TAh/CwCPJS7xCcPD0cRIDfeMiBTSdFFFz2NhKqHga6YbEWpBGLs7cIb7niEP/whUaR6ZRLQhcKCY1n/mjb/Dhj7qc/2GH1Q2X9eWEwdKIeyt9vvgfnufsIxNMPHWU+aOTuO4UswePjSlgXoD2BIgqaIHNDdaUiG0NXYGogNnUY1vJpkJ6LtPf9yTV8Az1+TmU6347l8i/tbXX+dzLVGB3R447xvaBOPn+HcZfrH2Qu2CNGYP43eApoXaFz3shZOwdYtdWcg/k77kqaYORY2qLsWNXnfswVDygeewdaE938Nc8I6SQhH4ICMIwwHN2QSACZ3fKYcSuDz/jxxqOCr724hXWl6+hDp4myzIMHkG1hqsUQ6sJ8ekXChlN4rltSq3Z7N1jc2tILSzodfvk+RC8DZL0AmX4JK0gYnk0ZH9jmjBqon1JZ9hnftRlI5vAzXqk/YBV30OaLUISnlmYp2sNvVyh+xD0C06ECVUnwZMShUPFl4wIGGpQ+ZBKpcLpU6d44/KbOMqh4UgGwwvc7WpsepfLl17h7vJl+oMeeZYiBLhKgeeS5nb3hRW750Ajxf+zQLUPnf9/+Evc/7o7oRJ774U9at1DxS8P9ipwn3Yl5QMh856VapwkGGNwAxfljnOU7lu0mvHRsBYCAVJicw3DhPzuBsO79xiVCYUU4Lr0ZMHWaI3ZNcOMmIa8Do5FzErsloYShCsZXTII38WbLCnvbSPnAmRUQqWKOlCB1TsMX14hdhLmtj2CaQ+hKkjHRTouBBJ0iHAk/qTPVMWlmS4Q90a8dek1gpOPkrQF211NUVh0VjIaDDBZF52lONmI7e4OCsFks0agNZt3bxEN+viNKnKkyZO/pRC0s6ebtA+E0EzJ1jPuDuqImZCB1GwNBizdXeHGlWuA4PjRSTxh2OkPybSm3qgS+C4XX7rC0f1Nrt4b4I4yXOEgC8XQjzGjVaJIMz1ZY2d7B5NsU6+WzJ96hLp2uPj7N9CVE8hD+5mU51i8eoE3L+8w6IbMTZY06prJWYhmJdsXDK+8sE4lGXJgTTN93DB7KOLt73+cxUt9br20SJ2QltNAuE2gwDKA7Da2cxiGEWbRYssSNatwpiW1Mwc59fjbcPySzeEK2imJogDf8ZDKxQ1dlAclmmFqyAuJKTQog+OA1BryEp1ZZBQgdY4wZpwgKBXSCcaMS8fDr3loKXb9jyVFmlImBRgHU0o86eJ4Hq6QuLZAZgkqcCnzMQ3IVYKgVaPMc0Q5QtoqwpSUeUI+KvEcSY5DliaYTFMUJehynKNoSiQG5XpjpXtR7ka7G3SSI5TYFbIppOviKIVULk4YUBYF0hqkcjBSkRlDkSbkpmSUFXSHCYU21EQF1wtwXJ+qK1DSxd21dzOWcYhcoZHCUghDXGpWtwa89oULvPiVL1BtFLSmPKSf4KkRC9PzDIQksT5uvokWlkowxUS0j74pWd5+HV9lWDHAr6X4NUv/Rsm1N+/xxOFlvPYsozs36amQ9v6TuDPHifNnId0map+k2bdkow1WViJ62zkfOuHw2GFNRUs6bsC29LjS1XxmzePMqMdjBwNCF0JbZabqIfsB/VShQo/GwmEOb96j3FkmT2IW/BFMHqGiBINeSmEKQsZBZvduXcGbdjFOQpwNsaZgouqiAoXneOwMSgwFUhhcR5IOOhjh4UoPqyRRFOL4AcNU4wYenhNRb0SEQYC2BluMNQ5GlxSJQecjcj22nhXSwfU9QuVhdIFULhKF40h8qcbuIZnBaHk/6VUKcByf3s4A644zLBwFSEGix70f5UhsIfG9ACUcdGnxPA9fWEIl0I6HdnwKk2ONoTeKUWZsuVuUBSiHIAqQqRlrD7TC8QNsUpK7GV7VJYwCKjUH65X4ToSyY79r5QYoaSiHQ0zFBbnrLV+ORcs2t5Ca+/8yyrGdLsUbL5EsrnJ9WWONAreN1i6dfo4/HbEzSFnP7hB27zHZ6yPaDWRTwoxENCJwDdIpcRsGUQpUu4mariCnLFQb2LLAFl0yRuwYzdL1Ds7+TRonDuE1A5ASXbp4tWmEHGeITExM0DwwR3dqlrf3t7lw8SZ6uc9msMBmUSfrdSl665h4jWzzEvloi3oYMddeYHpuAn9jg9HmDi1KAu2hOha9Ur3/eX/q1AzdUrG5mZL1Dd2kiTvtkFJiUsu9lQ1WVjdRUrFvrjYWBKclQknC0CcvNDvdDnMTEXfsiGZeQqkpypJEZri5JfChGlTpDgocChoVh8bMJJERfOGPr+PNNakcOkRlI2dja4nuygbWNpicSplolUxMSu61PLbfSrl25RZ1LyGYC+kNBuw7cJjJmQWsdshHCdrzkEGE8MRYhW5KiLegNwlthVkzY+5iIBA+eAsNgnr0LcDr72VywAPHo78abIv7mNAas8vl2RMYcP/vvd/LFw9ErMaaB/e1e3fYnVbsaRt2nV6stehdwfLDB7K7399/JXZ1CHuP8Vc/p7EzjFIKbQye4zBu9I674NqCNhaJxQhIS8Pq+oArby5y6eqrNOqCdsPF6pjArROFVXIrKKzCMQOQLqHbwFUVUp3QjRepuClWbOFXCrTQdHt91tYWOdDs4VbbjDaWyMIG1m8goklGWQz5FlHzEM1ehk16rO5oekPLmbbkQBu8UpArn05qWU9Lel3JwSTh4KQLVuALD1yBMA6pdSisojY5w9zkXeJOB4qYSS/HTLQhV3x55ypZvI0UFsdxKIsMBDiOxDUSIRRGg36IUjSmi+0B4/+Pm+v/t+thAt0DLcX9qRY82HvsTdYebPa/8n25p1vAUhT5uBA1Brur5RD3m0GMm8OlxWYFptsju7tEttFjbc0ihWaIxFiByktSv0vhZCx171Lr9/Hy1tiswnOgJgAXtEEEBumCMALhesjZCkJ4oBywMVYklF5K4nnkooEzsqhQgXTACATjwFmEQQWCSuRjrSGojZjt9lhZ3MbupGSVFpWKhyctuRIEtQDt5jTmpmnP1FEIqqGPoy29lTUiAkpV4KQjiP+Wcg6cQHDkRIauJlx9VrJ9I+Hk6eOsrN6hv73F1Zu32c5zHMflUHPsjtFNC6z0aDTb9OMBva0OJ99zjCtrI6p+Qs11KCX08j7BesrEwhSecrFFiTUJlYmAx4/N8cYb2yyvryCWI46ceYqjCx/gzU9+kUrD8uxLKW8/qTk9Z3j0mCA6otg+4pDGcGW74ObX7tK82uHU4wnf/6Pn+fhPfRfPr32WwZpLZFvj6YELFBHWbmD7W9gdD2tD8F3KtRxVcyApmDl2jNJ0qG25pHmfUkInLlGJxqtGhBVnrHp3C7LQ2fUVz0BBoUvIS8pCgmsRxlJqC0JjlcZgQI+QYRsrxraQpoRslKNHKaWxFEQIDZEfIR0XhcXzJV5ZILTAFGNfRluU6GGMyAp8ZVBlNh7BKctIZxQ6RwtBksTobIiQEt93CQIfW3r44dgjP9N6nPosJFJZdJ4jHGd3pCmR0kVIj6LQOAjSOMFYcHwfGwTj916WUeQpcZKDEfh+QBTVqNaaWKFwlaK0AmsgNYautmznGp1nVJVkO864vb7Fxdfe4rO/9imixmXqj7+bipcjPUWzFbJQbbFuDI6NiAdLuI6iGU3TCGqslgl3N96i3irJsh7NuiZoCXYGmksvJ3zwe24SNx/HDrZJgdGBI1QWzlIKTTza4ci5CLWcsLG+RtmxLJn9XIsEVXmPU7OznJ2osdNycVuCr18x9FYS/KBgwe9Siwrq1QZVkbDoV9HSpycF9X2HmN9a44UvvcbchMdTh+YoCpdh2WE0ysnsOLtg1F+k4weMbEpS5lR8QbVRo1Eb+9bnpWFzMEBngjBw2EmGCDeCaouiHIPhKIpAZKgwJKxEVAKFlQK7qxYXUpIXGbrQ6DLGOgHC8ZBYAqek4vnkgxRfBIDEmF2xo04YZTlGazzPwRFj8oHrSqw2aDl203D2gEZZUKmGY31MYqlGPiYvyQcpInSJQoUjxh1G1w3GvSGtsXnBME5otQNkDlY4SC/E8w2BkISeoloNkVZQZAWll1GtCxQgKxG2cFCuTxAGY7tXo8AUSA+s0Zi0QOQWSjG+QCQGOzKYjRH53XWSm5coL36OThJwwz9Ma/I0zUoboRN6vZscn5EUd0M2c8HtlXu07l5l3/yj2E6KmKmjZqqYG5rogCWqWvTLMeGRE8jjFus45J0R8bUbdC98k9IRzM/P0Y0lr7+Zss8tOXh6LOou+wbpu6jAAUci1bionj5zhB87+tN85ed+jUtff46iuoCYOEiR5zjFFllaYOKEmqeYb08wP7uAGwkcoWnXIxQFmSiQvS6ueNBJkgr2L8SEQcn6zbHL2umzB9hYW0EayUqnR7+0+J7LdKDRumSUFnhugLGGUTYkSRJm5ysUmzEtH4yR5LpglMU0s5JGq0oYNOn2NxCqpFYL2N+qcm895tad20yu7WPy+FFqwwHXb7zExKTl+soQdzZlX0Pj7nepTDhsTEQMhiW3Ngc4ndt4lf3U68doNSNwLMPeELEwhx1KhDKIQYHNcqzpQz+GoQThYHMJhQW1Czz27ETvY4+/nxbtX36UB33++9/tgiZzX5j68IRhF+wLELuWwpYHegW5K2p++Ih74P6BlmBM59i7/f3Hfcj+VGu9q2sQ9x/zr127yK4wehfcCbS1ZAYSbTBa40vBdlpwd2OHNy7c5uI33qTevEPzzDNEZoT1fWqhR+T4xNYi8cizLXy3QsWtIpVDN4/pjK4zNVGSZSv4lZLStWz2Uu4udjh1apMsPACDNfLWDE51Eq86S0lOEm+ycDgiG3Qp8pJkaOiKGi1H4ssu+5oNlO+yHUpuxYarW1B2C0KvoKbGKbWRVPjS0PdCNIpMeUzNzXO3n7C9tsH+qseR2Tq9QUbLyRg5BoIqjltnY3OFWsVnmKbUqg3SNGMUxxRlCaWlKM0DR589p56/h4L173rt2fDu7cOx+H6PaTS20r4/z92jyO1pahhfwx52c3qouhgXUbuhb5evvEW7PclUewphxXhaXFjIDbqbUmzskK0skty5Rn+gWbLTTB04iDYlZToiTjtsO6u0KxHdNGf11jLOTJV6fRpRaKh7iKqLXTUER4HEYHckTnsC0QRESNlJKO6uUnS2ke0arf2zlH6TjR1Ba1rh+3LcqCrGVDLpyDH9V1oEkrBZ4+TT57n56QtsXF5l+vgRZhqTTNQ9dL1KrdYiT6pMticIAh9jDEWWY8uCWj3ExCNGO9v4rjMOPv0b1rdVHOSkNGsZx+ZLbkyPWJjegcLlxX97GVWr07UuTqMFTo5nYCVLaHohShmGSUxZjDhz+iQXV+4xd3SO7c0hO05Ea6KOf/U2x97zfl5elTQSSb02Q/XRJv3SYV+lyr3DI9A9tt98iUfPznPkmbfz2UaNUdzn4p+XfOgxl/lpQyPQzDiadELx1NOTfPU/lKxdNeysJdy5ssrV5Ws8PfsE7/qpTzD89F3SWx38TOGqOWx/mryMId5AbEqcQ9M4p+tgCsr1nPzOGsQdpo7uo35sgsHmGvdu3mWU7jDodVC+g1+pE4QB9YkKjucTD4YMBgarzTjwBkFhDLLM8YIAUVoMijSxxP0BvippTHu4QYAiGAd2lBm2iMfdUZvjSY/culghCSou7VoE+Yh4FOOJgiCs4gcuJumR9AuCuk/W3SSoNImiAGntWOxbljiyRjLqI4xGhQ5F6aDyEU4twmYZZZojxNjRRWAxpSEZ9BG+h1CglEE4gjTPiLe3CDwHHJcyzyiKjNL1CWsBTiJg98NSuR5hFI6TRt2SEtBakJmSYaFZjHMGVqBkTmwtX3hpkWc/+yXuffHTBNURlblZGgdO03/pVartA9TOHERJF2VyXGOJd2I0B5HBQSwlN/Mer7z6FqKh8YYFPQtbicVrQmcl5+b2FabnjmGsRBUDZuQ9RlNVnCmf27e6zJ/r0k+75EXK6egIzoET/OmLX+XC62/wUx98H287oThQdzjenOQHF/bxh1145a11usMuR8suDXKqo5TD9XkK1+WyMXQnjrK+37LlLPLS1Wu8n6+ztdql3Nohsw4dv8lK2sMW2wxjhx0NwpFM1VyqYkAR+/SGY2epYS+nMygIXMXszCSpENTrs9Qakzh+BS09nNChXglxfZcsS8bJpabAQeOFPmWuKMocYyVRGOAGEXlWkMYJrgPJbptKCovAoPOMPO6jygJtFAqJsgJdFGS2g/QkwhTkmSEXGtDgKALPR4rxxE0Z0GVCoVOSocbRJeQZohDoOCUvLZ7vMRGU+NUavgeVSovC+GQ5YFPmp+rUJ1pMTIaMuiPKUU6ZxASupXQ83KhK3svIigIcSSWsENYqWD0GNLqXUOYG6/jQAxGBSVLMYkx84TZbb7zEysrz+O2zlI9/Bx95bI7BjT4ME+ptUNMTrH7hDTYqhzkROly9dJl7YpN/fOqnkZ0Rzv6zCL+KrRrwQFQFTLjIaQeTDyhtwdpX32T5y3/G8spXWHMr/Mx/+QMsv1nltxYPcfhejR98NGTfvI/Z0RgxvmjsOcW4agzkvKrPP/4f/yn/+r/+Ga5eehFv+yC16VP0Vi/i1Pezb/9JDvkdpEhYXL3EcJhydmaGswenCKMqw+46o84yGzce5BxkZsScp0iiFFUdMNkaYjOHi39yk2imxTA1eO0mgSxQVtAvx3uwNIYyL3EVzM1Ostjts//ANFvbI6Jag0AbdK/L5JGjXO/CRCGZbbeJtcZ1XRq+S29CUfTvsnX1VU4eX6CYnOONapud/iavfyPmHT/RoBqNaDiadgX2Nzxq1QOMtlxWr2Wkgz5xL8ZYDbqkPjuN/miDvLkIixlsOtiOjy4KGPQQI4XzeAO1zwUlIC1Qrehh+PLtXCL/Vtaezeh9v/f71i27IEqOYZTZdWvZu88e+pa7YVTGPBAkS/sgk2GPssRuFsEuwYL7VI7dx5RCoM0DMPot4k9rKcoSY+2u85z4lonHX//cxl/EXmGgDcNSMzIAmrwwfPnaBi9+/mts377ExERGY3aO2sRBdl56hcmTjxG4tTFowiCtJY9zjLOAUBUKq9nIulxd+iZuA5x4hZ6QlC7IwNLZ6rEVL1OvzpFqF0cPqTsV6rUQOVVjaWmL+ZMxW9kmLbfFoWiOLGzw7O1FFu+O+Mj5x5lsaOY8j/nA523NBq+nlreWdjgWFjQE+FLiloamU8E4DsMC4uYBOpWYu6N1est3OH0k5cXnX+OJiQi3qCIqdRZmZngh7/H0uRN84/JNTj9yhPWNLa7dvMNwlFCWJdYaxvR8fd/Jaq+I/Ye+dmuCsTvTbjbGXqG652Q61r3vagus3U2FfjA0k0Lcn47dTyy3dtcW1vArv/or2MLwkfd/J57wKWyOLxR2qyC9ukrn5hvE/U2cyUNkpw9wqGUItn1c10Ck6CUJy2td+pXHODLlcfkrL2Ma8Oh0iCgtojoxtgj3LcKTWCuhAkQCUxRYCf1XlhguXqA7Wqbcd4DHPvYeBvccXu1LzlQU8zUX1x1HECjPYg3j9+re+bYC15e8/cNP8Ae//huIRFF1IqbbdQJ/nBdFq4LnjAXcCnXfwrjabJKnKcOtTZSjiBaX/sbz8m0VB2v5JgOtOTRT4z/7kQP8RljyqV+5Qpkpzp04ycTsfqb2V7hzaZmvfukCv/DUI1QrdZIEdGZIwzozVY/R4tdx9p3BAGlS4qYlwdGj/Om1VZ6c24ecrCDxyQcOqhBMhRI9WCHPU+gWiG5BK2xR++j72Pl3nyeZsPzZVwUtV/Kex6BWGYeL3SsL3vWJSfy+4sblkss3Q1a721zRd3nixFN4HwH9YkmxKQiq+8hWGpiRQBRvYdLXcG6FBJOHiA49AkmK3rzNYPE21ASiHRK2mkxMbCCCOre3JFEtIKoFSF8y6A9pWMP2vS1KI6nWxlQO1wEjBdZxSI3E8xwCLyAQDk5ckCYxOAG9zghbZFQrPrXIo4hzjKMImzVUIdnqp2RpQoQGqfC9gGCqjut7pHFC3B8StWc5cNBj/c41UB5RRYGFLC7ACnRoqbSbIA3pTocyTRBhFeEqEAqRFbiA9BRO5KJ8n+HGBnFs8JSLu+uDbfOYpNOnNC7K9/AnJnA8B52MSHa6JJRMTTSpA0kJubEIWxKPhogiJpcu/aSk0xnSHyTknsNmrcq94ZDnPvUfuffaVZKdLpWT0yx84r20xGN8/df/V6pmmw9+/BBnH5tBWQ3GoozDkAFp8xBJrUWn7LLR/zI3Xkl4+kcU1RnBaGQwCrxpwfC64dk/ucAHfvLHqOw/Sjzc5MbyMvvm9hOcmSO42ePqlW9y7MRTFM0pnn9tlf2DV/nAe6bYtKf55c/fY+7Ll/jupyJ+9InzONEUn2hUufH4DPGgxu2Veyxdvs179p9A/af/yP7v+jBPTVVZ8wUHjk/y5D97L//y51/g9T+7g8wyyqIgNobRbvcjkBAFDtpx8UOHe9uSl68bbJ7ju/CB4028QmIzzUbPMIxTHnnkURrNOr1OhwyXaqvFVLtCvR5SloZatYJ0fQwGrTPKMsdXBoskrFWotRogYGe4w2h7A1tpUA8DlBuMR7GiRDsuldYkyyu3QTl4xqJcB61hlIytdE3pUMRDsmSExOBXqngopKMYDDRW/9/UvXmMZdl93/c559z13be/V3v1vsx09yycjdRwhsuYFCWRWmhaghLIQuREQYDYMWAFhoIYQZAgQYw4TowgIJzYguJYlsxQIkXSChfNcBmSwxlyhjM909PT+1pdXeurt979nJM/XlVXk1owCSIr+v3ReP3q1a17H86597d8F1DKw281Ic2Z7MB2NqBIMrLSgBsgVQVVqTGxU87LodkZojCiSHMmvU2iaoRIJwjdwAsUrlPi+R5hQ2EyS+92D1dPvReyOCZUJbYqEY6HGQzJBxLtOCgczHpB0U/Y+eo3mdy9ylpZotvzPPDUr9F5zwn8xYj8Yp/28hg7WKX/zi0uvNBn9thp/s5/8Thf+ucvcWYtYWlH8/pvvUDuHOZ0sEHjZx9DRD5YH9ELUQ8HMAt2JOh9/nW+/dLnOXvtOzjK8oGFRbynfpVTz3X4Bxtw/orm2z9IOXQt48kP1abj78xirCZXljSQ1OoCIWFx1ke5Bl300bFDNqqCoynjHrfTLeJKQdcvmPcl751vYIIh568MODWzwMyMix9GXD5/8979vpetsKRnmOs08YIFzvqr/PG/eA1MhWeqTzDTajEsDVt373L+7Vv87NEFhFRkmUBLB9f1qDtQbG+guodJbIGTaVzfo2i1eWNzzIlGDWrudLQ/sUgNFQUmGzEajYh3xoxXt6DTpPHEM6x/5WsMZuHVd+BDpz1m2iW+B74rOXkyYHxonu+9/EPe88wTHHnwYawVOG44nWBVfdSHj1JeG1FeyTBrCnIgXofJTVzvJML3sWU5JRb+JcU03ZvCbaYJ9z751NopDJBd47F9MvJ9FlF2j5S5n/SDuEdClntd1l2UilLqR5IpdqUyDdzjMOz97p505JyglaEAACAASURBVBQDv8sTsNMptxD2zy2hhJimdYHr3zvPrXRCMo5JXcVmmvHt777EjbfvkJcxy888yIHHH6BmZvn8v/oMR6IJDz/7BDOtcAo/shZhJCkTdHiEQrnkuk9vdJ1LlzZ55kMVvKpBjzRuKHGqlv52zLlzb/HE0x+mMXeQgdaoeES94lE5cRz/xjpXbr/JE8few/U7JedubrIwV/Ls6RY79iD/4wu3eOJAznsPNTjcmQHh8kQQsXW8Qxmn3Oz1EMay7FUQF87ReOgURzzB3SKnfqLLvDrM1z57icvPX8cbj9mYJOS5ZpL22On3WGq0GPTGHDt8FOU6zC3MEEVVttY3efXcBZxpU3m6QnZVeKRSmL/i+KL92vY+SN0ev4Vpwbt3jXvv7ZfD+3C2e9OE+2B500LbkmUpo+GQf/iP/yFvfO9VfvknP8k3X3qRT7UeJblzh20EleUFOo+fIjrQxql5ZLdHDNp38cYp5c0Uhpqn3/cxogfmufgvbvLYoUNUtjPWX76FrLZpVVLc493pSfVc8BVyXkGosLkgefUO77zxNcb5gFqtwnKzjbNwmu7hgOe2NStrhpvXCzotSaOjpt9LARYDWiIcwZ5YWr3qkGYxDzx4iKNHF/E8797+LUp9j68B3CNrA3hhQPvAAay1eJV9jtmfFe+qOCjTgDSxpH4fz3X5Ox+vku58gG/94U2ur28RjROcaot64PGd177Fr2w8x/GqhyNdhALpRbydbXHw4Y/z8iuvsNwWzFQrrK/FVFzF6eUqt3VCtAnNSGJDSeG4hK5k9a0/Is8yRKmpZynHfEVk5ug3D2PCId9+scdjRwKeecrBD2LqyhIaWI9LkC7FyRp+K2IxG9Mqr2PSgwSdCjx2EHcMsqKoz9bILydkV+vY3kWyweuk3/wuyfXHqH/8QcqKRM63iLfuUK70oR7iBD5Sa2YbgtCx2HhE3C/ZWI9JoxHlJMcLKlAYiqQEHzyliCcZjmuQylKmIwpjmRQG36+R7myjC0FYUQgpSQsXP2pSZjFmXFAYSb1bJwgaKKlJ4sm0gLCGnV4PpEtQa+C6Ffx2i3qhcaVClJoinuCUJeNewuITj5H3+/hSob2Q0uZIFdHszjDZGZKPDZNC4RiJG7mI3FBp1cmdgsmoj3YdPOVSTBL6vR1KJ8Ctz1JQYO2UxVGYDC0d4smYKPApMk1aCvwwIEljtta3yVXAzbUdticJg7xgbXvCyuaYlUuXGFx4nXw4QkZ1KJqs/utX0L8QYiiIRYV2rcGDnSoBOXfyIZVkg9JfZD5oEjrQj7dYfet7jMeGA0cC7lzIMBWoHYCDEq5fN6SDW/hmg6K3iR0KlD/PrdDh5MIBzr60xeHqJjvBG3jLj3L4A0+w9p03Oe04zLVexn2yw9WtRf7piz7/57/5Bs88+SCfeuoQ426HkTZE1RZnZiNev17QPvFe1r7S49BxB/9kg1Z3Hneuwqf/p/+E3/zN/43GaIckHbOZa5LSog3EpSWODUJkBLmD5zpoIM81Mja88PbmVJVEOYShRy2EhaNdpAtaW1yhqHoBkVfBsYJ6fSoSgBRY4WCFO72BjgYErRrGcTAIyiJDSGhVHJJswjgZMhplOEgUMEknHDh6mBPHZrl0/gajwiX1g2mXMR8Rzs9SSHACB+3WCFyPWhQyGsXEqUIrFy90UHbqDF5mCc2FOdbvbiKlg/J8HK9CNfAJGlWqKkRPxuS9IXE5RPhVZg+eIt0eUT+4SDZKyRON4zq4rkM+Khhs9DDGJww9KsriSIu1gqQXI+WQMi3xHYUf+EjlkWzH3HnrFqkesOVVOXjqFMffc4bKgQpme4AbNtDxNtmtGySTbTIkhx5+lKVPfAhTaj76d3+aG1+Dyy9fpX+zwTBe5br+1wxf63K8vczsQ+/FO3qK8gsrNMqcNy+8zit3XiUqC5rBPMnSHI/8k/8e6VlWzuaosMLcfEDnoCRqw4V3YjqBZv5UDb/u4CgoDPT7mqghqeUaX4YopzLV8fZzirFm/kAHMyxJzIBcuERBiCgbDLNtrm/v4GwNsXGXxvEmDz5zGl68CMCdW5rF1oBWw1ANmrzveJ3i3/1rfPuPrvH2lWtErS6BdPBFyYtvvMpzH3mIejTFQgspKaXDmk3oLD7Emxcvc2wuJM40aT/DdXwOth02bEk4SAmcgsKReKGHsCXbq2+QiIiil9KSiopfoypm2Jl9BO3v8Ptfv8ZDh+eZny/w3Am+EHiuInAtJ4936Hab+H4FJR2mkiS7GAXHwTnRxDlisXGJHhQ4sw9i4pjszbOYd0qchQP4jx/7yyN5/mnwabE3DTCU2uA400d2qfW9zv5ed1/fk3TknizktAhwgCm/Te/yBOSuIlFRFPsKOPclaXuqkXvHukcJFQIl9omfZVlOYUZ7RcS7uDwLRL5LLVNsrvf45stnuf3D1xgPM2YOL1FNHQZv3MSckljHsiNrNCoRLU+BLUl1jltOsO4sLcdHCsNkskVv8yo7ccHcTI3Vq3cRbejMWMrSsNFPyOKzOGZMNhxQDTqUTpWUhEP1Bd64c5Uz3TW25FtE3dPY6iyDO1sckmPq4Xnihxpc3J7hnVdT5rnGI0dneeSAJQt8RmlGI6iiU8u1rZTMeBz44ZDu4Qb1TpUdCbPzh/kP/6O/we/+1hfpBOuM3Ix0kpGmmrKwbA8MvSQDZ4d2UkM4ilwb/KjCs4+foRVIvnX2CqMkn3pbKEVW/HlE8L8a8SPWIXZ/hewVyIh9KBzsQYvkfTYcAvSenpHY/9fa6doEjJ46IRdFzuef/yJ/9I0vY0vLl6N/w88c/zAf+djHWH7gAEHNh8KgqgG62ERtjZhkKbmQZHMh+XzIy9//Hs/9+nOs/tE6YxXgpRWS1XU2Bi+RvdzlyPsfxZmdx/Qs5q0RapiycXeV+CD4URO6M9QeOkr3fY+BhP7tEuEpOl0H5YNyLIMdjacsUddFOmJPifiefHDVVfz0z3+cWq2OLjUy2MdSeY7zZ9+/7ptIvhsO1bsqDvzAY6BdNq/ssPPqFa4MFc+d0TR+5hRf++o73L52i/n6DnORx5U443/5wwv8xq/MsDSTk6Z9Ntbhwyc6XLx4k0cfPU5/PGEwyQiaAcH8AmQlxxaqaBFgJhm+KXnwsE9eFLz07R9QaEujuYQbdfEpOFYdMGkJUuUjrOLVC5ojb7j89Q82QFo86TMXemjvIFW/zVJFkK7ElLHi5tlXCP2DeKYyVePZuEMjz/DnPJRTIIZd8pt9xrfv0Fs5S3K2QCqHPB9TypRCZ9jEIBpN/CigED2yNMNaDdJS8R3CakStWiFsVads8qJECE2JQgkDRYpgSszypKBR9clw0EWB0iW+UPjSQxqF1oY0K5mMd3AkeO0IEQRTqIeBNDEEVQ8lHZLMoikJG4pkWFDmPo7vUSQj8olBiID6gUWkcDGmxBYFWIlyI6wKSeMMR0rGeYFXq+I1quC5CGkQuEwmfbLxAL/dxPUD0klJtVmhDEIKmzOKJ1M3UV1gTYajpkWUkZpq1aMiJOUuPnmSF5SOS1zGjCYDkjgh0mPM6l2S65cwkwRhNHrUY3xlB5Sl+J2MYnObzvtO0V6ex5M+I+sgS0WhQ4Tpsm6q+KUgnQz44ZVzCCQHtOQtLe4VLndLS9CFnes51+9+A2naeLKFTXv4Yx/VPo5fvUTuCu5ubbMQ3uGxRx7ne3Mf4q1ygwWRcKRM+ImFjLzd4CvnLC9ff4dLr52nM38A58QMtaZiIZ2waCrMuxnbo1Wu//E7RFdPUn/iAcLjNYrWB/mFZ+7i3LnAaP3SVMrSlZzPJQMLq1sjdrKEwlqE0XhKIAKHPMvpZxrHsXiORTiS2EjyQjM73yDTEUGzTaPTQmBxJAhjsWKaMIldRRCEod5eQOuCOBmhk5yyNCBChN/B6gllPsTDUqQJcZZTFJp4sEOz3WB2cRasRlhDURQU0icMI6S1KAnxOCUeJpRpRqMdUVERRWHQBcT9McOtPnlR4NcCFmZmiDOB60X4rofUGeWkYFRYmoFCqohKNaDSrhM1fNAl8bjA7Cp6CKtwHQ+Lh+NonIqDHzh4nkIIi0lTsniEtXZqGOQBvkX54C9F1FcVjfljLJiQeqeFf9BDLdUwxmXw+YvEV7/OeLyB+8CDtH7mo9QeXkBGEZufu8S4ZWg//V66TzxFspHxwv/6z/GdNgPb5JWNm7S+d43KGz7XxiU7WcG8LmhaQxYdInjgUY489TjP/95FjrcqzD7zEF7gUOZTx/VybKg0HYK2YnurpJZbgkgiXEElkOjS8If/+F/RuzMAtwrVJtFch+HmFYreNbrNw1jls1RzWKhE3F0bkHUcPvmRZ7j6+jmubPdYcGOC+X0TpeGwpJ/B3QurrF6+iIpqPHA8wz5zki98/ltU726x0GkwEwVcTlM++/11/uYHKghSkrRE54Kj7ZDtrT4njy4yihO0Ar/u41Yq2NIy3/Qw1iEf51RlTlsJ0szh+2++QVCvU5k7TtToUA/hcCUmacAEH8cq3r5V0G5WODRXQwpwVYW6H/DTP/Uc9ZoDdgB09h+AYhdAIwTWBVFzcSIHq0tkPcR7+DQmLxF7Hbi/NKjGfenz/QzMXUgRu0n8fl603yW1dt/3QOypC91nprbHobjHKbDmnjOyNXaX/LkPYZhKRdop72y3+IDdaQNThaIp9ONHz+nPvLL7zlUI8F2HuUYNB/jq9hbtMKTuejz3+Cm80OXF77/GzZUd2Bmx/Phj1GpVrFAUZkr0tNZDUKVvHQJj2Yo3uda7gsKnawVnjaIhNANr2FEatwY7qwnrk9epqBBlS0QxwVUGp3qAoNYkEZakt8aR+hKd5hI3xk0upn3mKmMeEBlPLMF6TXF9O+b1uytcOHeTVqeFWq7R9CwtDU0sqUwRyQYb310nfOAg4WKEjCSDieZDT38Edfcqd66+yjGRY1yPES79tGRns8/meAerNdIB31fkQUQytox1xnvOHMEiWF3vc21lnfu77X9VQ+yaT3LfVEred00/en0Ca/WuxOt962n3Z2J3smL2OBm7YbEoo7AaSlMyMexOwg3fH7zD+yrPIlsOouJjBiXpyxvo6+dJB1vIMyeonzyI362SlSWPDSRpluE/dZJWs4McliS3VqgcOMJo5PDW179Le6FGYQXbvZjJpKDrS6rUkceOM398GbdWY/XCkMhVhAc7CCvJCyh3RUKkL3FCSCYW35/ylHEsdk/rGDh15iRCStxdNbV9P5P9q/6T3/UeTPHd8VXeVXFQ5CDykNBYhuUGb/1gxO2rtxl6EUUQMrN8kMVIcWvlNmYCq2cvcvt9x4icDtbkCDFBBgHt+Rrnr2yTKFDtCp4tSSfncKsPID1NIHOydJuImINOysqlL7L61i0836NaDRDCkiUJbbdKdPQ0+cZlHLa5favg/CWHn37fAkpMQDi4MkCKCBV0cWshm9E6Oxsp1UaD0FO4ucYUKdlkwrB/C3cCYT1A55KiUqFs1jCOxcQ9tFfZtTYvMWKqJiNSi9+IyLMKg96uUpAjpglJIAgaLQQanRcYBI6QUGYEQYTjeDiOpSwLCg0IRV4IAkcTOgJZWkSRo5RlaocikEU6dfAzGmUFfqWCqwKszkB4mDImSwpsnhMMCyqBJB9l2CSZPl+CCFdKZBjgVmsE0pCmMVIbhFIIW1AWGZ7rk5QlwnhY60EhSbTFo8TmMa4xkGRo5eBWw+nDxOip26AUICxaCozrgy3QhYsKFZ7vgVKYomQSD0i0JktG1FxwWxFFLcDkHhtXVrmlFDqaxQekyNB6RFoY0tsrUKa05ucJWm1KKxDWoPOUYTmhYnOapmQ7H/DG1h02LvSZnZeMpEPRdEi0JR2bqRfAEYG9ATZOscahUCGZkNRHG4xNTvVIm8HWgChNyeprDIY3eOT0HN85H5Jv1ynyAYnZoVFT/Mz7jvP6D2+yWfZJr1+gaWP8xRaEmgkZW9ev0z14mq21ywzPnkcnJUv1RwlrbdpH3sM7l8/RxWPRa1IXiqXQZVUMGIQz9NOckc0pnAJHlUxGhtkHKtydaFb7mrKUNKou7W4FP7B4gU+r0aLbrRJVHEgTlNRYI0FItNYYqzGWqUSeFJRZiSk0Js8pc02uFX5QQUnBelzie/lUpSrP8XyFIzWl1ggyMi3RpYXC4kc1hHRxQge/UCTjFIHGDyqkKeR5AnmJLTQ2zaY3H+kg3YBqVaLH0/MUwuIFDnE/xmaaRFWQpcZIjZtojFswGSQYcvIyx3UcPD/ADz3ycYFVCilK0rREqIAwdLGlRJceUmgsORoX44IIJEKXqLaPq1yiaoegWUW2fAhctKPZfudltgY3aT/1BM1nn6b6yGG8uQp6UuLMFUR+QW8gMNajfcjl4ceP8ebbJe//lV9g9fW3Ke/chmKETVc5rAtEtUPn+NN0Tz9AZfkg/Tzij7/wPC/6m/z6maMsHq1QqQr6O/DyCpxsSToHBGZsiMcluhAENYXjK4qi5PsXV9lJJE77IPUDB5hZ6jK6dRmTjslGK9TCgEy43CoK3EhyZLZNKDSLRxZQOsLzMjYm++oV3/3WFa5fCfFsQT7K6Y1XuX4iZiwzYl2yPDtDFLmsrN1Fxy5bF1boPzRLJYI9GSzlSCpVjxvrE/AdHF8gTEpRjJH+DEIaHJ2Rln0qvqTKmN7aDa6/fo12p0qtGuK4CscKKjIkmjtIMrhNYBU3VlJOLHVZbLcRbg7CQcmQdruNEoDNwJopUPnH0lYhBCiwSiCEAiVRrSbyXXS+/+LD3sNfG2N2OQb7CaAx+74FeyTh+xvH+/wAu9tx3SsQJNZo7jcyu5+EbIy+RwY1xkyTkN3Xe9MCIeS948I+7ElIidiTQn03sTvJUVIiXUGnXuUTH3ovuihRSnDowCLGGkxR8rtf+DpOkrM4N4fn+7vQKoPWmtwUOBgq1rBVxNzq9xhu9VmeCYgJsNWIQZmQFRbXc3BnJWJLQF6AqGOUD1hkPiETltrBWTbWe3QalsloDS9YYHlukXfuBuhhiK1mjPUmUdTk4bDN7dUdNtIdyjsTKv4ybt3FOoJSa5zJmOr8PIOVW0zeWqGSz+EfquI5EbWFQ9w4/yaz9RnqMJ3AK8VWZYdRPaI3aJB7BcovwGrSVFM92WJnUrC2nbK2MaHU5T1uyF/xwcE07lPCsrtTKmAqzoLcHQ5MPTemH7f3rX+zn+v+WM57P2dnf+1Pp17aGLIyZz3epvQsIlAYJShLzeTKZeJhj+jRU/inDqFmauAKqjogaW7i+5qeFtjAodaoYJ88jL/cJCwc1l8ReFJTJiOcPGVGGeonj+PVFqgemcdvNdjeTHnnrRXSvM/Hlj5IULF4jmRrYkkSmK0KQlfc4wsZDUoKhLu754BKVJlyi+6fAvzIFvxz9uO73KvvTq0otZR3Df1Vw8U1Qc9zubBeJ6xqRBhRcSoU+Zg41cxXGpSrN3jp69+iiE9x8OgCMw2XpMxpz7eorWzjmhVUkCP9AD2BYRVmPY3t3aaWbTEbFvjDO3ztG39IsjFmbukw9WqILQviUULk1Oie6DAerCBcl1G/4PZtwa1BxAk57ciXVED4CBGi3DpuNcULE6JGDSfOESZGyAwVagrdp+yneFGbUhQUnkRHHsq3WDMizzVxMibLU3AMKpCQZrgVDyMkeIoiLynzAiksYaEQUlPmGq0tRst73RqBQSmBKUvK0lJoKMsCP6ziOZZqGCJwUAKU1GgkQme4tkAoH4nAwcH3I3KToYUkT0uKVE+TLqtJ4xJlHbCWfDRBuQ6qEqACH+EIiqKYumAKidwl7kmdAxYZ+IhAkWsXm4ApDEmcUKtkCFuClEySnNRKwnqIcFxsNk0ynd2HrkZSCodxb4BOM2ozDYQ7HXelpZ56H+QJRS5pVUNkVZCVmix3abVrNLsLjEYayhzfKfCCFjs7CcP1FaxwmW91CYIqo1zjoBkOxrgRWNchK4b0km3Wti9T3i0I6wrtuqi6Je1ZRqMCo0HMS8QOePGYvEwoPYn2ffQgpugPqR1u0l/pIUYJcXvEsLxLXVxhuXGQXrHA7a2Svi44EJa0KoLDcxWsGWFev4B+p0/cW6ScqROHAZW+ZuxDFAIbW2TnXMYzh2g81cWdOUBZm6PMRgwmQ0ZxQU0VdFVGo96gFUhy1yFzc4b5BM8xHG06zIWCWVfSzyReI+TUyRmWDs1SazdZmu/Qarh4ssR6Aq0NQhikgiLNSdOCoiyxlGhhcIVFFwZbGExeUuYaxyhcKaYQDStQOsMt1BT3WJaM+mPyvKC0HhaF6wg8L0DnFukqlDNdD44rCYKQ/jBj1BviGAvGoJQkqkVoA0Hg4TgKJXLSLMcWOU44dYp1XWf60FAOpRXkaUHpF+i0IM0nGFPiRRWUsFgrSfMS15d40lCUYt9h03OwhUWhka5FOGCVxLpT6IIJPaRUyIaHbPmIyMVYyPtjLmxdxm0ss/z0MzSeeRi36U2fOZlBdGIi32WSw6Q3odATjj16gM1ug4MnHiLftNj2ElHTolYvkv3gZWaefj/9ztNUTx2mO19HbcZE7S4vvP5NTrz4Kh9xnmT+cJda08VsC7bH4EwEC76A0pIbi5MbjBakcUFam6P0G/hRlXZnkYWZFqODDyD624SyZCaqoHTJzmhCs+rQEYa1tS1atYhGZ5HcK7m6unbvfv/aD25w8ZxHp1Wh3gzpZ4aJbwjrI+ozbbx6RJJn5IlmPmyQ3LzFK98xPPTwUaqtiMCD0moqtRBva4gUq8RpDriEYZ3UMUQ2pxxtEBFTk4piPODSxVcZ3+1z4tTDVAMXXeSI3KPiVeks1hnEmyjXY3uzZKOnGKZVWkIjBBgqWJzdxBb+ROfs/gfiXrfRUdP3d6E4f1q37d9+7COq70F5/pQH/Z+WjIvdxFvvGqYJMSVvThN9C5j7kqndScRew3FXAWmvaBBiOlHY1SPYV5W5J+Y0nUAIe++Nd3V1Yu/EdsPzXN77+Jl7+1QIQVGUZHnJ5774ddqdFovNFkI4lMaitabIC6RrsVJSlDGjYoPJuIeYWKJqiFEhTqXOaKJJc4tVFtH0UKnCTYcYW8e4DlaAyTJ0GlNf6rBx/Q5hXpB0h4TtbRx8ZqMmg6LFys4WlUrBnCzoerDQ8ClmBJy/ijE5g0aNcdWn5rnMW580g7AK8Z0diqsBwgmpdqsMaxV02MQvDcXOBJ1pXJnRlhlRvUlUE6iGJRcxcTwiMSXLMz5Z3cHRhsHOGNcRBIFHaXZXx15mvP8N/5UJa6deGrAPW/uxT8AuD8eYaZ7xJz5j95PkPw0yI9jlIFhzj4hvrKHQmuFkxNs3LjF3cIn5zgLD3g4bm6uE3Tk6T54hWGig0RRZjrRgKyl+NJXnJ8+RoaR1ootcnCMcQHokxvcgzMf4G3exGxvMPXaaXtLAaUYoz0HKksJI3ry0wskraxw9OodX9XB9wbiASWawmaAT7rqd30+ylvvXdv/rv4h4d8XBdsnK93u8+MMdXh55HPnEcVrJKeStlHxzh15vjZXVTRphm2d/4hmef/FVvvQHn2Ww82F+9hd+jpkZj7ubKzz4+Gk+8uQCt899la3JZWT3EerHP8nLKylBkpLceImOXzAjfK6/c4fPffE6QggOzCwQBRUoJeN+RjVwODwXsHnRJav7lOOcO2ual64kLJ2u43uWQlQQ0kNisEYThSHe4YiinxNvr6MHGSp38WQdr2qxVqPTHUoshcgoTIYsS7LckJJTmISdwQiLptH2QDoUvSFZuTv+s4ZklJJnJb4CX21AUEMpD20EmdYox0fkOWmpiYcJOB7WcSl1ytysh7GSareDLEpsXk51oa0l1wnsjlOldRA4oCVFnCODgGRnRJkafOngeA6UhqKAqOKTDIeUeYwVGuEqlOMyXl/DC3yUW8GUKSYvEIXBcQOscYmaNfSkRE8yUisY9LfxDnhIzyPFMkotIi5wHIGMHIyVGJMjcSmFS24lWWFYX98hqwlsAJoSjWSQZpR5SpFOcKM29XoDneck2YDMQqXVZumgx+b6Ntlwg2oU0Zmfx/fWcfIMxw85ObNAwwkZJgXSFmxtZZxqtRjLCpf6q2xsnMe99TauESTKp4qLEhJbWrIEBoVBdF28qMTs3AFVw6kt4gQO+bqDv5kgjtYJIo/41oRRL0fKAa+de51PPPM451cFV9/ewHOruMUMX3vzGmcORbhlzlb/OhubF8mvzuJ0j3Jq6RhPHzvCa69c5JGOpVN36K+NuPv8DXQjJIwaPPb+n+LOSylX+28zKgrKrR2OOw52nJA5CX5zujY2hzBxJG/dynkwNDzW8BlLl7xZ4ZnHD9I88xi5N898vYVniinHwKuRZxLPkyhHUmQ5k8GYNE0xNifJM2ZmZ0ALjJ26Too8Ix5l+JGiHYWM06nHhedNu1XJJGUcpxgvmGL3PQ/HdbGlIY8zpAtZkmAxKGfqzyGkQufp9P9S4YUR1XoNITROkUJuEIVB55qizCGDIAyoerWpYoQKkAhcBdaxRFFAPNkhCgJ8qzFxRjzOmWSGVtXFVyFCulM3TVGCuytlqQu8SoDwPFCSUlus64BSyIoLoYUArCcxRUl86w7fjzU/+czPU3/oFMFSNO10FRqbFWgRE9S6LEQh45tr9M6eZfZIg5/75b/B9z/9FitbI5aePc7xn3yY7rXbfPp7r/Abf/3n+PpZuLahUC2f0483+ZvmE3zzhy/we5/5LPXY8MGffS/zj87z0TOS77xiuXlL89xRQbOmEBrKwlJkmtGg4ODpR7iyegNhNV0p6QY+5ZlHcEcFzbCg4eWYnR79mysMRluM1++yXvgwKfCiJVR3jlB49+73m2tDsshDCwfdaNN+oIvXOEZDNPCFYGv1LmaUMTdziDOPPMTXX3iLz//eqzjOL3Lq1DEcZRnqEYtHl3j0SJO7V7/E1bURTuMU7QNHuTWIMcMUs3WB7Nz0IAAAIABJREFUyPcp85LVrTVefu0mrqM4Or+MqxyScUbgSJpVH60Em3c90jAgnSSsbhes9EsqMsJRoJmqoIWhi6v86VTgz0qU/sxE9i8/sRKAFQIpp8TMe4n5bqdY7qq57Cm0WMs9wub+VGA32drVd5e70B+7Z0bLfrIxJW2y63i8yy+w5h4kyVize4z7VVPYLRrsPa6B+X8zedklKvue9yPvKaVo1Ko8fOokc7MdDjeaOCiyQmO0psihEQRkjsudyTbx8CbeeJtAVEiUILA+QjQwZcEkU8RK0gxDPL/ETFaAJtLVWOtQZhZ3mOHM1AkCl531mJlDKVneZ30Ijx1e5uaO5crlLeYOdoljuLCzxXI3pDrnsvX1K2zfXGfoNwjaM5xYXubo4QVunrvDiQUPuZ2QrsVkNqHyZAvfNzz4zAfZ+PZXGCRDsp0BcjJizpfYOEd4I7x6gziVDGNBphxurcQcrGgO1hzMgebULCuoMBjldGdnd4cxey7Z977G+1bU/3/DGLvbAZ8Wn+o+Ai3sr+m94l0g75tegRUKyy7E7V6Rz73Jwt4GMrvqW0JO99B07WqG8ZgvPP9l2jMzPPNIhUsXLrAzKnnyw08TLXem8MNdf454e0RU8xG+Yu5QHdEfU/R2CNoVPE+xemGFiSuonV6k3arg317gna98iwePHODu+ZitPszOSOaXGpx59DA/fP0Sr3znLFH2KPMPzTFb94kcWNuaclC6NWe67+0urHD/i/jxl38h8a6Kgy9/cY3KbER/ucHBT5zgo498is/8s3fY/ObX0YMdJFAJKhw69gC/+uu/zIXX3iAeeVyedPk/Xk6487n/gdHkGt944XeIuiFriU8ljlgKO8x5IcOVP+KLv/8tfvHpkMZCm1fehN9+/hq9WxlSucxi6TY7VP0WSSxpN2sMTY+lpRrreZNxrrlz3fD53x/xzH88w0JHoaVPUaZQbuOUCTL1McYnjQcMhzvkE4GvFK2apNosKaQk3d4hGe0QD2MyXaBdiXVDstKi7VSjO9clxtXkiWBhMaJSCxHWoIyDG3n4kYO1miKGICzQSuL6dZQTMdnp050LKXLLoB/jljmh72ErTeJRQqXVIQxcyrggGyVom+OEks7sDFt3x1jtgPDJU0OZbFObaZHGBcJ18KJo10zNpRwNUMrFKChLjVev4wQhOrMYWxA5HsoLp8TVSGLCklyDU62yszPBFAYvK7FlSV6WFGmCKErmFxYYZwnBKEEIaHUjwEH3B7tmZi7aSMq0xBGKuYWQxGjiNJlifnHIEs0kzoiiiG6jiu8EbA5iNrdHpFZSrdY5cEyi3IR6eJr2TIMwUhxsQm9+nocef4gzZ07SDSq4eUGmBEHQ5FwWcDyq4KUj1l9POP/8CrJapfp4gwvvJKxbw9itkNUKzFZMTUY43RFrwwVajWUasoEPZI5LKF1GcYPZw13SPCG+vcEbn32ND/7ip9isF+i3LzCnN/HiOdKkxbGH5njnzfOIYoA2PpvJiHH/Bt3egCgNWE1vEThnWEs96vktqmKV2aLO2ncbFEerzH7gKOff9IiW5vnA6WO8+KUXeNscZkZNOFVdZ9PEZEg+cqJDGab81subXJZwJIb3L0k+ciikdmiBaOkhrOMRKXdqMigcJN5uM9Kgi5J6c2o/H48E6aTEsT6uo9CixOIg8xIHjetYAtdF5zlOURJIBxFFBK5DnIATJxR5AjoD42NtZVoYCslgfYc8LxDSYpRLb5hTCTw6nTbCaMKggu8H+J6LKy3jUUERj/FMhishdzxK6ZAULq2WT7NdoczB8zw81yHZnhA4gvlug2ojBL07lStimnMdiGPs7nWXaU5ZpECJWwux1sMIjUSis5IyTrHSJ6p6uIFCSosxGm1KtLWMxhM81eXB/+AYzVN1hJoiVqwx6GLAzCNPkW5sk2/cxZNXOfDkGv5yG61G3Dr3j7iYzUH+SxyvVimac7xNi9FkQlBtU2oHnVnwFUc/XOPgzMdZ3fwdPvelf0YeDfmpxX8Hz3XYumvoJNCvSnRdE0oIrCUpYWeQ4tQSlhfmCAtNVSjurG7yk+85TO/OKp3FOQY5uAtznDl9ADnY4tL1WwQTyyCZMLl8iUbRYebwzL37fZ5rejrDnRXMt1rU7AJnv3EOtb3Kwe4Ckesws7DEkVMP8tSzj/H2Cz9gkIdcGEZcev4a6698F1Nu8t99+h/gVhxM7PHgoePUukdBFyTbF/n2C9/hp57u8n/98QXuZg6FCujfGuP5FeaUwqm3ENbFWkXoOdjhJgc6EedueLiF5fL1EuXFdB+p0W74oHzOnbvGqQcfoTLb2YUU/dUNa0Fbs1sAmH1YxDQjgl3Vnj3IxF7s46/FLnZb7EOR9qAou4kSUlIWBY7j3NPPFwiMmc4qPN+jLMoppEOIe1Kq2hiUVPemDD9+Du82fnyKsBdSCmZnO/zm3/v3McYwTlM0U5GlXCpcN2Bdw5zrIguPW29tsL62jalGRIcWub0yoU9AErTI9QhRltREhKptsz1ZJoq6hPioqTsinvQYZQEHTywyKcdsXLpEmcKDTz7HyC+xo1UOyARVzuDXm/i1gpsbm0g9wVLn1voWouzTGFoaXoexvI7vH6CXOIS2RyQ1JD6TSw563qf+wCxvfWHM0SdP4WO4+eplbtkl2m7MgYbhdjqhWvNZXl4ilRO++spVbvmSpXrAY4caPPGeB7ia1njxlav8vb//GyjXUugUgZpi+BFIuVcc/z+AfP0lxf3d/j0Vrr1pAOxzYpRU97a12Z1qCSGnkz/xo/O1vdW4p2Kk7dRBWVo59ZWabg201mzv9FjbWufNK2/z2a99np+e/ynmPtrFiZy9sQPGTF3TZo4+wHB9i3K8Q9RIqdSmxokmH7P+yr9kfeFxopNdPFFngscdHTJc7yOcAEqL1qAais7hiMPLj7K58W2++5VN3t/4SRZPLGFLSEZQ1ZbxWNNoONhyn/vzbzPeVXEw+9wTPP7BB+nUXfTNDf7LX/o0XrmBLif4Fp489RS//Klfo3G0xe/+7U8zM9C0Dz7H+555isqy4D/77S2s8PnEx/42jx5qcrHXZ3UUE6lzHFf/My/vpLSrLm3nOBuTdd660ScrxTThHRn82mHq2kFtbRM3A7qLRzj3xm0i0aIq++hmQB6nTC6P+M6bKc8+Okea9VBa4OgxnoloyBbpuCCTIWXg45ETqAnGMxS6SZFukuip/nJcZgyTCbIMObw4A3hIIYmERMRjUmsonIhYudhRhpQWZVw8Z2q815xvgy0YTTRIH0dJBAVG+RS5QLjQbEWk4wStC2pVDyN84s1NRhQk2zFlmiI9gywcnGqVwSQljCIiofBCH1cKTDLG6gIpBVG9jhU+SaJJ8hRPCLJCIZTCCoFREmsNxU5MNNNka6VHmZS4rsAN5JTQLAsmWxmNTgNbZJR2gu+WLMw6NFpd0jjGDz1EVGLyHJukGMeSpBOU7xAPCxy/Qs11sGZCEjjEgzFxUpBXBZ6nKEvwwohK5NIfx2xvbbC1PWGnPyKd9KkuL/Lwww9wernJ3Nw8lajKcDhga7bO4OzbLFQnrF29zM1LbxM0Q44++hjH6g4bJiMrAjbeeIXVb7/IaG3M6b/1AcyBJs//t3/IE59c4sDROdZ6Gf2LlwmePMj4yk06Dx1gJxF4O2t0GHLBVjh2JOfN6wbPasqOj2V6jW/+8Ct0wzrPfvADfOv3cyY3btBK1wnHixx/8jBmK+TbXz7PMB1j8pg8n1C//kMWZz5JS27w+obP0UqXo02f3s1vcWDpCMKv8dv/zf/OYz//E+TxGl/73B/wsUc6mIHh7N0N3kmr+MZDxTHfz3L0TMLf/WSTL7004s5WyiuTnEZ1np9bfB+uG4HjTTuB0kFaiTUlCA9QOK4LVQ/hBLhhhYpuUKQTlDBkmQtGoaoOYeSTxDmTQW8XZ6AQVmLL6STGKkNqJvhKIXRJQY7wQrrdBtdvrTNJxljrIq1BCI1wJVVcrBfiWYk1BcJqXMejSHImcU5mfUoBwpZ4uIRBnW43QoU+iTbUqhVcYzCTGJGXjDZ3kLIksZLaXBvpSLLRBM9UKPKSYRLjWsBoHFdS7VYZb26hHEVucoJmhBcF4Eiy/hDpe1gnoCgVZhQjkoSilIzkmE994udpLTemqhC7LSmrLf5ChHVL/EaKO3kdW76MjQrU/AcY3f0SV8ebHF1u8/gCdDzJJiH/6Df+K65NWjzxiM+Nm5bJpCBJoFpx+Pf+65/hM//586Q7b/Kdz3+T4WqTT/79j/P+x11efy3h+z8oOHHUZaajMBZcaXAxtJt1lk8ew05SPJPRYIIHzMy2WJifw1sbU5QhTqNFJfLoDEvSjiEtx6z2N7h56yqVa+/cu99LZ6r8NFkfcuHrb3LeXuPo4gKNmQVC6/ChD32cM08+QaFz3vinL7JMiHv0MB893eGtN3q8cndIbkqe/Ymf5T/91V/iq2/fIStKFr1v0DXbfOPmDscPNPnMZ67x4HtO4wQRRZlS63QwA8hlE3+cYCcTnFpI5LUh3mb7ep9DC4cZZBI7GdC7MuTtSsADR+bI8w1+/7Mv8rd+7VlmZ/8CnpT/FsIae08ZyJh9aJG5T7vR6F3S8S7h2BozhfbsEY3vP949ONDecey9hNzuqrlIIXf/rt79e3bX2ExgtEEphVJTCVRrpj+zdtp0ut847f9rSJbcJVFLIWhUKlhrGWYpeVFSVdMzTbWif/ksd8+exUYuR558mrLi8eV/+Qf8tU89hml1ice3Gad93PkF4g1L89A8a5Pi/6buvWMsy+47v88JN79YseN0mOmexCE5DMMRZySREpUhaaVN2EAL3hVs2IBhw7D/cAK88AIG1rAX8ArwrsPacljLlteWqaVWolaUqBWTSI6GHJIzPdNhOlWuevHGc885/uNWdfdQa4CwRZE6QKNR792679a755z7C99ArzygVTELpTm12rDcjYmVJd9cwc5LZstdbt3+HMPHA559+kl++9oBG+YWvapHNB6ytpERuYt8+uhzNJMtRNViFyWZTeivvkAsp9x4O+KptTMEh9uY3TcZb4xAhXzqH/wOH/qbf5kbn/8cbvs2z7x3jF203L2/za18k8TMqKqGt5sKuVryF3/2Ap/9/D22D47oNyWXVh7nh374p/hLf/0SQRih9ImW3MlEEd9CTv/eHVLKh2pEj1bFH5i9dT8/6Io92iA5Vt464Sw87Io9hL2dwLk7UQL1Dt5Nay3ONyyWC/7h//w/ILxgJRnx/r/xfsKeBtmdtG5qqrJAp4qqKVBRQ5RcJwoXyHANkhWa5Rsc4ji/YlhLu3WW9If8yMc+yn4R8Nhpzda2pzVdgpAOI176y5f57N9/lTq/zvUvXMe7mM0rq1w4K5lNHWEgUVKgku9OcvdtJQeX+hlXdMbda0f8l//Fp5GVpScF45VNPv7xv8rLH/wI+V3P1/67f8Zots3Yx7z/uYtkywlf/fRbrIcBm2sJP3h+xK+8dp3t5YLWOXI8E9/g8BSN4De/eKfDgpkWrTQ9pVgbj+jLiuz047g04f5uSVEccPnCcxzd/jLrZ/rsVRE7e4L52xN+49dus/faPTYuDhn3Uwa6oScKlm7JchaBHhIcY5Hb1tLOcsQgos4t+bzqJkwaEkYKCHh7+4go1DhhWT01YJWYoihpdY8oTbGmU5hRIkQpjU4UKhR4MkRZI4Kwc7gzJTEW1wZdBSfJSOMYHWqiNKTKLcpBUbXIWBNHGUoJrPZ4WzNYGeB1iJOKpvG0riRQLSLSpFmK94qqrGiWJeVsSZMXZKtD+kogy7zDj/bGqCxjvqxQQUCVV7imI+45YbGmwAnJ0bxASUvYSwizjrhVlSWmWpLqIVpJvAJX5ezlBbsHS4gismFKX0pcEDGtLVJIzo5WmM0qlssGK0DpgOE4pHGesiwp8zlNMaMtSuoy4FSooW0ZDAa09Yyj5Q7VsqQXpGzNF1x78zqtHTKvDI12vLUz5YWnz/HKH73GRz/6FPnr3+Do+n201Dx+/im+FjzDcu9XaQ8MG7pHMBpw3e/g8qcYlRMOlaA/DNA2Ym9qcYub3EszLo+2uMVlQj9is97DHdXMvp5z+t0ztGxYe26DPN3B3L/H9es1z175AarLTxL1fpNNdQd5vBF9vZqx+OKv8n1Xf5DnVy8jG8t0UTEaP87yjU+zcvqvcCl+hs994k3K8CbDs4pX5xMod6kDw1AqtOjUQeJ6zvY+fPaPai5flQxWFUf7nl/56g3+t7/yb/Df/KO/Q7r2JEJGCLLuAY9F0QIBUikCoY6diCXWBtSBpswLcAVSdeRF4T2BbqjxNF4jrMMaibOaMIxwJqd3/MDWqoMOqSCkqnKGgyFR1KMoauqywDadD0VlWlS9RGUDpHOYIme6WHTk6MYgRYoOY4RrkAh6qaSfaEyV46zD2uMNfVkwO9hHOkeY9ZBJH2cctAaPoJkXzI9q4iSgtQbXClqv0YUlXskIlcUXLUo7vDW4tpungQZna5yvsE7ha2jKmo33XmD16iWivqbr7ApwnTSqjxWivoHqSdpeiG0UIl4g+yvMfu23+N3DCT85HhM0IwIBm5nkC/Ualy8K7tyZkg6GrGQR0/2aZBzzfe9J+T/XfgFR/hq+vsXOG7/PG7/6FM/91HmaW0taV9EmMU5HSC2I+h47OUDNLc1+CfmUXgIrGytUMqM3TDncmpEfLIhCj1KCw8MjxsMBh2XJNw8qTBUzsAVuNnmw3wsAD7ZxmNaQxiU9U3L5iXfxE3/uJzm7eYn2sCV/9Q7Z0SE90eOll97FL/29/5zt+wsujs6zeW6Vsy//OP/Lp/+Iw3yOwLNDjbZLWuc4WITsHM4Z399iZTRAyZCmrHjq7GVMfkD8+BNU3jPdXVCrBcv9nKun13B2wa2DGbk1TKcVr7xyhzdf+SZfevUOd+8c8hf+Qv0vxOj/mRjiEeT4cdX00arvO8mWJ3ht/zAJEB0swx+/IB5JGDpysXgQWJ0EUifKMN8KC3r4+d2FdUGme8BHgHemA12l+k9mvFPZSBzHiJ40CAmFpKwLysmCOK05eust8q0DVi5fYH3wGG/bAbs3D7BLw6lTffbCIYuFQpgLjMyCIyUYpwHORRjTYM2SWZxyLtvmbZ5h0Nxj1C4wy4rFjQXjswVi2DK+OiJZ3Ge5tY/Z8qy++AyMUrLhiM2tFEuJbAxv398i/43f5srLL3Flcx03W2LFgCgNad96k3j8Ps70LvHZX3+DIJ3TG1vuLvfxZY0NDX1VojKBbHPMcs7ceG4Ucx5/d8JwyzLZs9z+yh/Cm/d498sf4+WPfqxTbpInSnTd/XrAHeGRiPl7cjwyn76l+/QwuO9I9ifzQR4nxifD+YfnOiEdP8o/ODntA0ne445a61ukdBRl2bnKa40fjRm+d3RsusaxGSBIpdChQDRTjLaIKEAEHhE4vIDq9hf47etv81fPfx/CaEIJoVYcuJjVNcl0WjFeSxFSYGpH1JOc2Qhohx9mfaWH8EvynR2qQcroXMp821JMPGkiUUp+V27ft5Uc7N0/4rNHr3L75gHPXznNoA14+eqznH3x3ZwZPUbz9fvc/f03WL33Tc5kKxi7xmNrm9zcrfj6Hx7QmIJk0vJzf/vf4hP/wd/FzSukaJFYGucAT9NazCw/3uSg1TDLa9JY8+YCEm9ZCypGlGymNTt7NYl2mCBEzhfoakEsPX5aYQ9DjmSNODOgUYJpUdKTDT1iol5CPm0ovSZNMnqDAW0Q0/Y85aztCJFKIKIQ3zpkqKito98PGZ5aQcWaKC8oCsNsb4YqanzoQLSEoSQdJHjhkTpEBg4RKKxpsGVBNux1ZFgCdCRA6K5y0zqiQDNfHhFmPaIgQGqFiiOiNMU1DrFsqY3A5TlNXaMDiQs9KlSEYUxT1tjW0FpDYSoUGbGxyCRFmpImr6jMkiBM0XGKNznCCUzbYo0jDCOCuKVclrjAoGKJDUOwICVo7xFeUkznHTG5qWmrAhdnGKHQMqLMHXFkSdOQ0XiMMAfQWuZtQ4BHyE6r37clwyyllpYkkoh+RCRgGrSkgSRVFZPJHtYssa3B1JJULNiuWsa6ptdrCBFM5xXf/MM/ZPezv8vNO/d49+h1rnzoObYqzSuf/C2mX/k8z/7UD/BFIzi6dkTygTV6Zx+nv+ER2w6xcYXe6CrSSqJmydhWlO48VT5FrmWcvt1QCDBrCT4ViEPIr03YH90k2tygmKxRvvUNVqYFd7+6z3t//hkuPXaFa3fvMq1qUq/YdoasXrDcusvZ4AI6WUFkY7TNyYoJgxA+fCbm7Wtz7i9L/HiFhT3g/LhmM0mYTAvmvkWFnlHcYxwOeFPdJc8txniOKsfdSU3U7HPvi/+YJ3/83wYZYb3Beg+uwy/L44hPyGMzFS/wDmTHU8Q5MM4hlCTUIVFUY9IU5SSuqahLS1nWWARSCbLhCDw0TUFd1tjlnCgE4zvttTgQxDLEJx7rIoQU1LllPl2ihScQjkCAVhGql5I3ASGetnZI74gDidSeWHqMFyjtkUIiwgAZxPRXOkO3oJfinME7hxKK+dESuyywNsIZhw4iwigAW+OdonUNuBaMQsuOh4GAtjDYzj4ZjiET1rfEWUi4niKOjzupVnkFKggQag1kiVR7eL2NHJ5CSHjjN+9iCsfq08/RO3eJct5SHzk2nl9Bm5rx2ZBECAJncFaymDjSgeTMDz/B658YEm0r3GSX+5/7vzl99eNkg4bttw+48RVwk4zHrg4glASDlFlzxKXLG6RypXOnNg7jNaFSiMjT9i1aOdq24e7tKXW5oLAlp05fIKoUauqYqObBfi+EoG0MaAgTTRwqNk6tUYqK/fs7+Ns1yaFhuJgRD4bYdkivn/L+lQ/x2sEN6sUR8k7NZ6IlrYnQIsM0E0pXoGnxzvD6jdsIPGVRsNABQnnauuL69btsnr3HzwxT7ty7zf7RAckg5dLjl9BYZmXDra9fwzU1o36EnXmu3d/ixu1DFstOavd7HWf9/zY6xZYOe905vvoHsJ0T4yv3DhnCb4ETHVeKhfDvePdB1fWEgfygHNsFP1IpvDshMT9MKk44Ce7R1sUDCEinFNeRJCXfCejKQ6gJCN99hreWelnwqf/jH/OjP7LOlRdf5O1bB1RHR7Tb13jswkcocsfk1jZPXP4wa8MBi3IfsdCE46uk8Wl83RL5kkgqnBhQ1wtcP+PUdk0Vhfi1BJsKmspTby2YJwesnDtHfX0Xme8TNS1HWxe4uN7nwhNPcO3WXWQl6fmQ/aYmWljq6zsM4lO4MEYHFtnUBHlFpOHq6ZBrrx1RtxqbDiiYsrpSM057zPYPKXVLmMBQrdMLE7bVW+R5hbWee/OGg3kD87vs/MYniHtjXnr5B1HSgZcPSezioUke4ns3Xf4XXdkJN+DBlKMj4p5w30/UigQcrxH3EOLGH0+s3zE1T44TPFhfTdPgdYfvRwlkFnQdtONPcc7R2JZQhaATsihENHeRqkHodWxj2Pv8DVxu6V+6gIxT2tqBEyTrMQJLPEgI8eAsWGgbgQ4kmy+u0d4ckA482pWUOztE2TlOXQ6Q2vOnjCR6x/i2koPbN49ohi1jFXH19JhgKXnP+UusjzfIr+9w9JX7yLuHrIUJvWwFuXmFwcZ55rvfYHd/l3WpeFdyhttvS6rGIo4FOqVwHe7RWax1aN09m4WQqECxsj5EZjETU3Bn7zZNDVni0DqhH4fslyVFleNtySB1DM8khA5kOqAuFcv9ltKDKB11DFnf0FYFpjB4H6J1itAxMk5xYQ1JgmkcaE8YK4RpsFWLl5IgCQnTBJXGWBVgyfHMKOsS6zxIj5cdiU9HAU1jaYTEtQaFQ8chMgqQ5njDsxYZaLzUtLXp1DxUgNIBKgzQQUgQpwRJDxE2CGcwc4OtDcqBTjJ0qqiNoSkb2rruWs5So+KYuJcSRQlSazAdudKaGuW7TgDmmODsjrNSIbBYolgiQklR1+S2wjQFpmkYDhOEMXhhUdojvKNuLVXTkqQpTigUAt86TFUTCYPSismyRPmaKNHIJKDygvliSqgFlCVKONIsJghCGnLasmC+e8T+wR5WWoSUKKvwQULRCPqtIo5CRCCo65Jyr2B+9zpPDWtGp58keeoFRjccdVFz66t3+chfTMAr5jOJaoZspptsDgZQBiSjPtom4D1Kp2gUNl+QbT5LefcaOhH0woCyEsyqil4ygvmSxe4uqxfHyPEmO8MLVDe/SnvtNc6ET3H2qdPcfHMFphNSp1hax4H31EXO/GiLZKxJshQRrxCVS0RVsTZKudLPyBvJvCiZtobGKS5ICcrQmJq2AUOILOeopGVDO5JLKdGGpL7nWdkcMDxzFi0NLaZTZvASfEBjPaEE4QWy65V2FSXvwLdoDWGk8U3TERAJCIKEIKjRAvKqBRxCekxdE/X6SC0JtML5gLqsaRuDMC01FmsFKkgIwgCEpylLojDAtRaPoAWEkuhAo46NzzpnL49UXVKOVwg8QnjCSKGUp17mlNMlWkKUxDgREoZB16ptbfd7TpDEGmk9QRASppowsuBbXBMg427NuabtJIaDANsKvHHUbYtrW3QYIoOA1ge0YUTr7QM3WKzDtQ6U7xzFVR+aryGC28i0RgQBNv8qX75ekLiU/niMDmPc0iIbWDsdszyQDIQh8oZAOYR2neKXE7zwoQF3v3iRyd4uk2aP5c4NFq++TTpaYRwZ/OERUxGRJY7YaPRGyHgYs5EopDMcHs05OJiwsTlgbZjCIGS01sPahuXREdYqzHxOUVecv9ijn2aIMEDph48C23ak1EgKQq1w1rKsKwZNA3eOkNYhjUSFimSwQrB2jni4wlq0wmawQykKVqMBp1cvcev2N1DWIpRHqG7+VQ0IPKfOjkhSjdISLwSNbbizt8PMeP7gCynTyT7z+ZQ4jTF1TtMWNK7hcGf4wVofAAAgAElEQVQHb1uaPCLWitt3JsxnFWVtug7TSYfnz9o4jsGlkg+9Bx4JeKSU+GPDJ3HMPej+O8ZfPzjJo0RO8UAN5uE41oQXdEB+HlbpH1zKCRzjkfeO4dcPyZHeP+g4fCfNuB4EeUCd5+y8+Torek40eJ7x6CrJYMzu7S127+xx9YkA14bMFprA91iNLNOgQLSyUzWzAa3wSJXgaoM3ll7/HLO926hIkoohOS2uaUnCBF9WFLMpK2sp28GQyu+iFwf4nV1WXjjD+tVTfOPLI7JWEbSa3DimztDOSqr9Q/R4BdIIoTOU92Ba+qOY81nMxC0oy4qFM5RGc0ZLfFDS2BpjA7Rz+OUCmVQMlSG4sMahb8h3GoRMeNdTz3SKXg9DZR7e9WMZX295YC72Pdk9OL52cQKBe8Ca6Z5FD6BwD6vnXcLsH1EmOz7Tt8zfh2vhZL2ckPePic10CfOJYaBpLbP5nE/8xj/hr/2NX0AoQVmUVFUNeKzzqCBBi+u4cIIIEqDFVFvcuZMzDsdEwwyExBuP9BBnirqESAikt0h1vF5bj9CCx69GXNteoWJJPstRS0s2GLN6YRV3osb8IOX70x3fVnLgSs3ZC6d5YnPEsLaoVhAWnvobh+Sv7yK2ZmxmKelogzDYZPThZ/FBQl7OoN3latLjvU9+kE9/8qssZ0uEb5E4pHToQEHb3TAddNmUUoowDll5bA0velT5lJ39fUzlWR8G4AcMHt9gfmvCfDEBaoYDTRaEUAlqETJOU2RtaWuPawNqoWgzhSkbQOBai6ka2qYhHPQQShGmKbLulIsQdA8z0WKcwgtN64AWhNcEQUwYhzShpGoNis7LwNC51pZ1AUGEcwatA5I4BKW7m219p0YkPChH27QsloZ+f0wQhR3OUwZoEaC8RoXQhiBFS2sdVvkOFxwF5Muc+nhlSR0RZ4qRjlCBJJIRtDVt3eAah9aOQCrsokCGAq01SjiE7KpHBkd/nBCEIc3WgjzPqQvPYlYSsE4UdItYxREyiBAeykVOOFjBuk51wgPLxQyJQYcxh7MlkWhJEkUyCDBecLRfMhMB7WKJCDU6CFFCkiQaUyw5mG6zLHNkv0eSRYShoiYkCjTOabyThNIzSjR6bZ1mcpuf/snnOf++n2U7GqLFl6gby52bOVWTI4Rg2aTYNmGoIy4NEm5PHWvDMWHjiIIAxIhpWxOaN1HxE0R2C7caYPMSacWxQcoUrSrs4ZxkZY7N1picfYbDr3yZZOtrUP0M48c3WNlcRW0dclqG3J4vsDiMbJnmO7ioRxinGDkmTHKavIDNEVfOnWPp7/Pa4S0wBbfKFJPCGdVV+JvGUZqS+XLJE6uKUSCJ05Dk4pALzw1YPz9k/V1P0LgtBEsEuusOWIURY6TsoVB4ZLdJti14g8cQhMea717Q2uOHvQxBdAZq5jhp0FrS1BbrBK3pvDSM9ISBRsYxpixoTUNVeuJ+RBDHIATG5AQqQAhFGHamLUoqpAoRQuJaR6IlrZT4IMJJD3SEOocj1BJflVSTGfnRkkE/Aw8q1GitcaaldQLrBUGSkAURNI4wipEhIBus7fxJpI1wQmPrGtEagliB7wJgY8EahxAGISRWaAyCKi+IGoPoZHE69Rblj9sxGm++BvI+BA5b55SLL/PKvCVVQwKl8K2F2hFFCgLJYRSiaod0LTKCKANhOynZ913QfP7cVQ7evs/h9IBFXTK99jbZy0POjSWL1uAqx+FuiTIO2cRcXOsx0o5yaSm8I2hbYmNIACKFDEKM0TRFTj9LCZYRCMU4SMjSkFpCO58/3O+PpWa10gRSd9+1gceSDQa5YhgHhIMEkQaI3hrJuzeRMsRWc0ai5szqCqsXL7DSX+NzX3qVwFUEkUCHER6JkJ5eqlg51zsWMdDUjafFIpRksTjkc5//LIEWOG8RSCazKbPFgjBWaNVVkOdT0EpzMCloTSdx6d1350H6JzGOHQqAjkB58leceApAF/RI8ajvQFfhfAjBOYFinCQUPIgtHlUaemiO9hCv/a0ykNZ2KjAPMwkeXBFwrGbU8RVOOAvfqSGEQHiPa1tsmfPBF54lO/V+yraDpSyXDVv3cy7ZBikV83qIdxErQcMsCJjWkEYaaSyp0jQ+xtoFytVovU5g9zB9DQUINcCrAGdt57OzKAn7JWFvgyrdp967STzZQvN+Bo+tsLI+ZqQTohqOjnIcYJUlnxzSS1JcnOF0hozBVg2MMh4/v8HN/R12FxMKU3PPZ/gebEQSX3V7blHOqPMDNtcDkjBAxD0uPdlndBaCIOMjL73E0VGDFOa40AMg8SICHAJ5nBd8j68J8Qh8DR6Si4+TgJPJ/2iy7E/e553z9tHXvzVffZRvwDsUvzrVLd8ajqYT/tH//iv89M//OYbDIXVVUZYFQnTxaZRFCHMDoUuQIc7mVGXJjblnrX8KpVWnEkgHB/ISCqlIWgdSIDSo44DfO89jK4qb6SpFWaHKliRoUM6gtOBPDqj3/218W8nBy08/zfe/510oLzh8c8rFXka6XWFaR2QvE58ThEmDzTwieoz0+TPc/q2vk9+5zZqsudRfJfv+J5n82ieR3ne4Z+k7lYSATmedzpwqSjVBGiLCkOkwYD0Z0b59D6U8KN35CgjHra09Dre3qU1N2pPEkSLAMU7h7lv3ef+Pvw9nWsrc0jaaWAgqJNLFBJHCGkNV1CynC3SWEEYpLoJBv6VcLjCLBmTIymjM7rQhbzwULcoYnHEoKYnjgOj0GfYnR+ArokiCdFT5FNNKhmtDRDAAKZCic+krlwUqyTAe6rJG2IZEa/r9HumgTxBqfNVp8XulQQVYH9CYlliHGCyVadFVh49uK0OYDVBhggwiUt1VJXff3scHFl/n1JMZVgbEG2OyQcjebEaaZN1n2RZnHc53BJ1okKClpxeDr1qKuoEWNIY4S6irBhlEhIMBIkqQR4eURcVoOEQlEcbWVGVOazw+Tdg7OmBl0Cf2kApHqhXDLKVsShbFjGE0RFmLrWpGoWDWNFTFgghHGmhWRgPSfsJbb884vZmSLwSLxRwjPDJMeOpdz7IfTnn6F/8WOkxR927gjnYwjSVfNNy9/gpeNFSLgOVSEUUZz5y9yK1XX+XMuY+SNCWrwZCdecNWUfPBJ65y7RuvsnpqBWsr7h7sgVzl4nt/lGs3/lNEMiCY1+zuWjiVMDq7RtUbMFne5Rt7Jf3BWS6tn6Y8vWQlHmBu3+e0qamjhky3xNqghGEx0/T0KjJoUL1NBlcfZ6zvMZh9nb6pqOMec6WIbUQvhCxqEXXFsoLLI8UnDySTX5/zQz92il/4V55j9bRlMv9n5G7MmWxIIFJsC60Fog9i9SkQCTjZVc1b21UoMV1iKQyB6mAHlpayMjS2JbCS2goaS4c9ElAu5gQyQ1iNtIY4ClCDMZO9I1Q9QypJmkQMRn2kjohUSGUsEYIgCNAStANpO0RsMStIQoXUCTpWIAVB1FVYHI6mrGgPZ7iFIZAhTgY0LYwGYSdf50B5gQgjhFTIUNJbj8B2pEtjBa2XeCqq6QwfBrQGlPIoL5BxSLOskJFGZiHeGBpTgbaoZkk9UZjlSueDoFXHzdDgfNv1QfwCV+TY+QyjHVv3zvFGDU/FfXSU0CK7StFKRNtCbCXZMMblFotDRgHUAirI8Fy4cor7tzaYziLu2oZsMufDkcf3NF6dwUcRqhcy29/FT2c8+dIlIt3Qi2Gw0ePCSo+dnX3uvNkQRzWVNUitiIRnnIbMR2dZH4QMUoW1hu2DBV94/d7Dh4LWBFp3AaiTjPoDfvSZD/Chx19m63CK7PfojzNkogmSVdoNTfGFbUR+wGpsWTm9TvTec2x96Q2GQZ+WmigK0FmICDy9SOFkTSIl6WrG4aRmf3/KomwRWlDMFxRL90DHWwjBbLkA77DOEsdBl+Bai3eetmnRUfQnzYn9LowTorB9SB7uXj6u0PuHmOmOdHBsYtZVPjuctO8MC4U4OaTjHFiH1iek1UdgF98SiJ18hSeEVqXkA8z/CZ775Dgh5XEA4/9YIPYd+XaEZLSxyft//KdZ2gqEwk7vUc6mLOcFyWTJ/uE9VFQzO9KUNaytDNhIC+b7h6yOrhC2NX3d5/a8IJAJG/2Aw507DEZDgnLB1s6EdPUqSWLZ2fkdeqd6RKVlXmgG6yOCM0fMdrdZ5ntsFy1pb40rp9bJ1gW+FoS3D1gxhqZXkWmLDru9tqklhBlCWkQ6ILtyhqS9ySC3xKKgjfvMdUBiUqJUk8YVRhY4C5trCZ/ZDih/4x4f/OEX+MCHLzNaDThaXCPqJwi/hTMtngAhh0i1gnO26x+o+HuelPzH1u3JxBXvSI+/Be7W/dKJ74GU8tgo7dHz0HV7j+Fx3alP5HhPzi+OuwctznfH3d+6z9defZWnn32WMAyp64qj6REXLpxHyAjIEabEW4+zY/LiFNcLeO+ZNUQQ4LxAaAFK4pxAewjTgLaqu26HkggvEBZCAaPTPZrDlGjoSdZ7ZE8Mjz0cxTGS5ruT2H1byUHVtOxcewt/uM/a+uOsvfTj6OWAVGU0+wYzKZGJZ+WHzmJ9AJOKt177DHb3dZ5NElbShL4xbM0kxnY3Gi+xQJBAXnYbn2slkRckmSY9nTDKPAOx5MzT56gWS2grCifYqVq0n6H7mjKvyRLLWuLRLcRScWEt4XB3n3xpkGiSIGJaVKgqYHz6DNWiwkhomobJ/SWPVQWnn3ma9dUerh1STZZM7x+yd3uLebDJyuXH2Lu/z2x7hgo8gRIkkWB1o49MAqKBp13OEG1NXcwJ05hAWpTp4BQi7tGgmGzvU5Ytw1WND/u0C4OtKqJhj9PnznK4t4vtnUEpAa3A1gqdhuSTHBUGtK4my0JE2EVXuZXYoHMpDrUGL2nylqaYkbWGZByTrmQM1jZpvaSWAYvDKf0k4OjuHloHpOMMnUY0+YJyYViGYeduujEiHEfE0zlrpxJWNvokwzUOp1PK6SG2mDA4tcr6sE8VaoSucXVJICUqiih8TShzMq+Y7+5hyyW2XGE0XkEiCO2SezdvkT5+FhVlmNLiJXjr6K9vUBlDGoKyS6qioZnfZW04Iu4LYuVojCOINGcur/Lzf/4/xKiYuZf8w//sH/A7/9evIdOI4aVTfPm//RW8UVSzCWFdsNkbwcXnCNbv4+0dwpUhk4khjRuuDOD6co3zzyRMytexR9d5/j0v4+o+b73xq3zsX3qayfZFBjsxZb5klEnkaJ2vy4g/vH+fj4eWu1uO4RNPoUPP4t49HvvgS0yvfxnHaXpBTBM17AY1Ub9POnaIU4paztipQpr+OR67egn7+hRfH7IoPImUOO2Z0VKYhmwz4Jdzwd6sRreeX//1b3Lr+i3+1n+0zt3dkiqB/jlPFGlaEeL1AC33COUPU7sEYQOwXdDnCfDOUi4O8T6kzB2t0wgdk09maB0yK3JGKxltoyiXJXUDWIFZNkxsSbtsUDoiXAkJBzEKqA5zFguDiCv6w4BsECJ29pGDiKP9PbTX+KbzP+gNU0JtQWnqqsbLzpjKVNCUDpZL8qN9ev0xMu6jhCZYWQEk5WRBMux15klJjPdQTBui80NUFqIU6NYiFgX2YIYMJWqkWSxqAhWTJCFh6DFlBUrSmIZARaCDrkMmW6RzSBVSTZd4IMziDg5YW2QkEaJHu5CYQ4vJBfMk4cvXM6wP0HKJyaFdKqIAJJ5sAqN1ydFCMOj3SbDUC0syUkQaciP4wHsy9m8M+OyNIQe+5feOdrm8k6OEwIiALNKs9xWZH3DqTIjMK2rh0FFCspohraPfNEy2drmxs0OZL+inktVxSl3C+bOXMDbn5rXrFJXBuoDL49MP9ntjTGdUB9gwQmc9nvzQR8k2L3B1LtBOoIYKcSYEGTDf3uPeVz7PqC2gFxEmmn4QsX+kcN533UoPMhCEA8vBrEABrpHo2tE0DXVTYvKauii6Z4FzOMcxGU9QluWDABjcsRMyx3AAR2NL2tY+0N3/sziU7Lo17kSBiIfV0u7fIxXSk2j8Efy1EJ3caCDVAzx112noACcn6kNAp1DkXVcg8P6BOkxnFuVxJ/KlQmCtPdaRF8cE1+7L7wIu8YAn+J0eHZfipHIsqDz893/n73Lr5g3SU2skG2O+/rufQetVprvb6LZhkG6yGHnkUQn+CJUlzBeWzb7DeMXUJAzXA3YO3yRmj/c//xEO9+4zNzd58sVL+HqTZBFCWbJyesx+P+N1A2+8vc1HtGd34Vl98d3UW2/jcsvqueco374ObJJEilIbiD1BEhH0W/xYYH3BtI2JT51jnQPMvSm62qZYegKlaENH3hZYUSM3M/7pUnFn55DMtXz2U7+PKd7iwx89hZkvESGY5Vuo6PtBjvFUeBqElyh9mu/pjgHgcV3XSQiUEA8q/8e04m7+01X2xQnz+IRszMPAWcoTTs6x7O/xsUrLRzpgJ2lGd46TmWztQ9NAgPliwS/8zX+ZH/nYj/Dxv/5xHn/8MhsbG/QHAzwKVzrs0iCTs7jwSdpwHRn2ieIaU4JPBVKBcp6ogSQT5BX00gjhOr8RFXbX0Th477MpB3trVIsEFWtE0q217zY88ttKDl67dp3B+Us8OzrLhuqjZw6yiHY7YNlmcHmN8dMh4kxEFlu2/+PPcebubVrfsB9m1KvrtO+6wo75JxR2ifANgRQoL2jnBoGndR7lOsfFWAuGSYCZW/L8gCr1rI17xGkP40qmB0eUiwmVsIxCSBpFUAf0Y8nB7RnagS9qYhtgnaKyjtYq7tzJmW3dxFpPMk4JwghXCfb8Ltk9jV9Z7ao2jSVMFYPTQ5beIdoZy8UeyhkCBSLUZGfW6Y82sKKh7kEjAkwxo8qXSNkiyhrjLXW+QMUZQdInCx1tUSJby2IyJ1KK0ekNsvGQ0lQM+inzfEngAkIVYy2Udw+xCIxtiAcxSsYINErCaG2Aq0ryWUXrYoTwyNaQ6BhWM6qyJPABWEVdNxTVEiME3kwZ9gImiwI7a9GVplwUhP2UO3cnXLqwQTEpOja/Sij2don9FFAc3LiNcS1RL6K2O4zCmoYI5Rx542l9V/ELvcMfHbCaJJAJon6GjlJmhWBRthztVqyfuUKY9ogHA9LNmFi0KNuwtb2NpebwaMn1e7dZTg6QQYbJAkaDISodsJJEjAYZpzYjnBfUVc6v/vv/Djc/8yWEs1gClrWnH52mKa/h25xbd2+zu7vLu09f4Me+/2f5o0nJT4wdon8bXE1rV9irV5jMVhEbTxGyw9H0Gq58k42LL3Dq9Lv5vd/7JC89+QP0B4YV1TCb7XFtco/3rz7DjX++y+oTMYfNDBn2ufCej3L7zdd57sWLhE3GXg2bvYxTo4RaeHb3GnjjJqOfep63Xr3PfTSPv/gSFPcYbeeoyYI78yW5axn2JY+di/h0nHD4xX3UquRf/7GMH/3hNbKrPbbmO8RPtFzMHLYx7OeOogLhDrlyucIXE1pzBZ08g9KreAR1UzPd3ULIEC88tfc0rcE3hkAJzGKCkA5XO6JAoXoBzd4+Zx67jHSeuqjYPpqwmM9IWgtBiGsasJ1akGhzJvsl0/0Fq5lGHB4RCQ1OISINSUDVGLSQpIElCiNs4ynnBflkRhiFTCYVaZAQ9Dp3cNcaVDlDqwCvQ+p80Z1LB7hWUJYL7I054wvrxOMMHQUoHyMKSRRrHBAqS6grggC8USzv71I4RWsN89194l7K4NQK2WqGzzwiKREo9r5xFxlFjC+dIRpndIzsbe7+16/x1jd38Y9f5OyP/RCf/MI2fREg1y9xa+8W6/NNnrr4DFLArHScijRhZcF4lJYMRhKVgZlC2njSMKI/usTa8IDVxau4oGbvsEBKuHhpxHglxree9Timlglp4hBNSdu0+NbgrSFpa6pexuZaRnx+RBQG0EIpHYGE2dYUMytYGQ04feEcJlH8vd/9n4CuatyKDreshWI2n/Gv/u1/k6fPP8tf+6lf5MnnnmDlXJ9stYeWDvfpezxmZhxKhRkOiM6dgbMb3C8qpsUeg9ATC4WqDLZeEnhH0VjC2nDrrS0WeU1RWUxjaY3BuWP3dtkFoW17orUPWkhs25l0ee8xjT0mGMoObvMde1R+50fXAeiqnyfBTudu3r3fwX9cp5f9SBWVY/SFdRaQXUfeg7VdRf/Eedha947qapcoCLRStK05Pr9/QE6GrjvD8eu4roMgJA/ckx/Cnb7jXw8A1rYU5RInBZ//5V+i2rpDFgeIOGbeKvrxmMXBfaqDKfd3dzh3ZoMLo1XshT63i5YXUk8T76KEIm9SChNT2Izhxg9ANWUyuQMa1k+/jyAa8qVX3uA9j10hi0tSbzic77KbT/ngqafZe3NBf0NydGdKtnYOORIsD/Y5/4Fz0MZMa894FBPEmtZ68nlDdveA5MULvPnlXfqn1xn2nkT7Jb39BfJgnzv72zSi5dTpGHV6xB/5mK3PXCN6POYXf/Ixzl29hE8cZbtLLzNkuqVxlmb5T/FulSAYkqV9lH4ZKaM/nZvy/2M8IBJ7jz3ucHQytifvPwq2e8dvwiOBPjyiuOUfJg3ugZSR54GYxHE3QTw4y0nK2XUknHf41vOpT32Kg4N9/vzP/Rw/87M/gxAOU0+ZfOJLvL13xJmXXiA8v8HXX9tic7TK2vPvZl4ckq5GBEGGt1C3nkx3IiC+pYMLBYACV3cddCslbRPh6pIw9vQGMY/8Wd+18W0lB1IH6PE6yTPPsfns+6AY4uoEfTlhYxwghhpSSRRD80bB7vU/4P7ygEMhMOM+vecuMtOe0NxB+opADYiUxvslrWtYiwS7Rdc94FjqabGV0x8NKGzAC0+fZS2T1KbhaA4ynSEbwerZFcxhwcGkZn9rQWQNSVHx3mfXmU0N8WqPOMkIZISQmnk8xU1qjOswwK03CKfYPiio7V02xgX91RFJmiACjXctUguolqTKEIYaIbsApZkdUWcd5j3K4s6KHUVkQ4QvEFFAYTy2rpCFQakagoxEBQjnGa6MiXxLpDXeaSRLRNQjjWJE0xIdq8YUTlJbT1PX+LmhN0oJIoVvaqrdOckowTtJOc/ptOw12TCmyA3Seg53S7RUIAO8yljdTBFihXy2oD+WoBTetiA9VVGjdAy+6pSfvMPYGjQcTUqmbLFoamwrWNQVbtrApRWKwpKlA5Z5Tr6co31FXwv296YkCcRRipARrYPG1RwezKFsCeIArICiRNYlLvI0psB4y929I6aLnDIvaBuLjgSVqdnd3iVUitXVFZQXHLBPomL+11/6ZX7/D17h7sGCUiqkUky39igPZsfkXMe1L3yer51b5SP/2r/LTz6/xv4/v0PuE86oBVG+iylzXjx7irJ0bE2OiJWmXTlHED1GFgx58ytf4ec/9peYV1sc3XyL9ewUm8MEJ2Nem9zhh8SSOj9glETYocTHhuiD5xALwcwaxN4BjZyz8JokCJisB5zWAd9863N84PsuMTqAz376Fc5l7+KOeIVxphk4iWolzsC9HcvguSHr/9VP8O9dfp5nVmOS5BVa8Sku9R39yKG0JW88ifHYCmxuMUcTZvNvkK72keEZIMG6gLrMkdIDlrJqcCIk0CHCeaStmBZHhFGExWGtxiIJg5jZ/S0kirqqEMesqcWyJE0dVWkJVFefaWY5TV4h8hybbtKWFVYkmLqhNRaJotcb4QOPa6BZzrF1izEWJSBWgosX17Feo6MI4S3KW/r9GFvUQMHyaIGOE2TWx6mYXl8xnS3IiiUEFiXBljXtskEIxWA1JY4DbFnRLAuqRYWVAlPsI4UiijVStXhbotUQpWPqecFyd8rkYM6tu/e4/j++zaKY8f3PP8v9L3+aL75xg7z1vHDuFE9uvsj9t/4T4nSNJ/qW6tar7J8dc/HpJ4kHAQKoSs9AC2wraT1EIZ3zc+jxjWdzpHjq0gqHl06x/Xqfjz3xFEFQglTEypEEx6IB+yXTO3usDVYIw5BZ4SimFWFbQGPptRUiiFEeyFukFYzXV8kXS3Jj6Y1OkaQBOIGrHwaED/DqgUZEnQTueLjKiy9+H1c/8Bjrp8eEaYjAUe0UlDdfZ1bVFP8Pd28WbFt+33d9/tMa9niGe8+5Y9++PbfUkmwNloRQZCuJnFQCZcoEPxACFE9AwWMAVx7ggSIvIRRVpJyqVFwQcCXGCQq2Y+O4heRJUtxqtVo9d9/uvn2Hc++5Z9jjGv4jD2vvc063UykVpBWJ/8MZ9rD22v+1/mv9hu+gM+SFETy0TSMcZXMDkZaM+h8hz1pCOCSw4KGx5pXbFciS+bzmeFphbYfTBUlR6FWSEE+IhVJ2fJgoEs5FklzBbuKpVOe6GvjjOtZVeyXViatxF/uvYEArWE+MnYqJgJM5EuLUMdl7j5Qd5nm9XYTo4HDriH6t8hIFyI78GeOp6osQa86CPENCTsTECVka1hKp8GFjuhKJEDzOW0Jw7L97hz/8Z69wY9Kwde0K0hTs3bzFobpLVIroWl557hs8cm6DZ57+NE+ogN1bUCfNWM2hqsmEZzRSeB+ZVjWZynCjC+RZQWw9k/0HfO6ZT9OEKdPbt9jdvE4vNyyD5Ll7N/kJ0WLbhs3BGInE9RN6fA5aQRU98uCYyJKSgDAatynpS8Wd26/zmc9f4ZXXXuXm/RmD4hEeyFcZjXLGLqeJkmbu8SZx7umHuPDf/Cy/sPMIuyON1N8iptcpY0ArjxQWnyI6NiS3QPAQIj2DMo+y7ur8KA+5OsfgbJB++t9Z9Sy56mKdfUl3vp4lxZ9C3E5Nw7p1s+4mrL0R4Iz5WteG6JJo77vnErz80ssc3tvnm1/7On/xZ36acv8GL742Y5k8f/qTA66qHr5ZsPPwdbbKRKyO8G6LSL+DDwHeQSkhulW3oltyyAxEm0gSrj06RKkBmTlVA4N/tQnCD5QcfPLTn+BTn/g0G4MdYn9IVuboRqOHoCPe7GYAACAASURBVPsgepCySHhgOfoH/yeTyes0siCOLqEuPcTgwhXC9D0sHikLYnK4YJFyhWuUoAUd50BChsA78DZAECxmc3TK8N5ja0uJoD/qHH69FhSlwgVFnFv6eU4mFGZQ0i8MuekwmY2zxDxHn+sz3X9Aax0DI+n3C2ztCAEa3xIWCyrnyaRAl4ZB2cc2Df3hEBEjwa3IP0SiCDSzKTF0KkI+JmTRQyVIwaFSixR0km8EpNL4toXFDKQmFhmUOaowxLkghoTzFTJ2EosiNDgXaKuW3rCHUhlKq45kZhTtokbJhKgqopcIXSCkJqWO1B0b1ymBxG5/pZaEKMEYgmo6vJ4SRKGQeYZbVKR6yXKu6OmEFJ4kIqrIWDhLnFVEb6lspAkJo7oOSJQlsamRMUJMWBtYBoH1ka3+GO8E7dzhcNRtoK1rMqnIddfKrpcVqV2S5Ylsc0B0FuESJklEXpBUQvZMV/mqFlRJQUi4ZcXUeN555UWe+84L3DpasEyQpISYiLVFtBWZFoQkuX9nyrtv3ML6fTZ6l/jikzvcmAvu6UfY3jhPv5zThH36uuKRjW3AEWXGsk1MHtQ8df0Z4lDzzp3ARx/+CMP+mLfu3GE2mwGKc5uRF99ccGFrxGjLcXR4F9H2aDY3ENUeW08/Qc8kdC6Iox0eVo6DG3/MQh/jjx5wcXCJr3zli7z75vN8dOtx5OQuO+/dYTZZcrjwHNWJx8vAL3z+53lmY5db7R9zPLvPsK55snTIvFMAKzPASMjAG7ALj0uBkAS+XSDlhOALXNuilO4Chujx1hKDRAaNkWCyAl9VtG2NUAqhNcEllFI0rcO3LSrLyKTELhzTuoWgKIsMGToYg0xQ5JrMSGQxpLURY7qLeEyCbFCQ6UhsWpSSBCUwSjPcHIKjS8hVjjEKEUFE0CRUFkkITE+TCIS2JqSAdQ4RA5PDOUVryXNFpgTlsLdqKxtUbFcEvogPkbppiVIhdY4oDMIIUKbTtyZgq5ajm4fs3XvA3q332Lt5g3uHt7h78wb2cJ/7TeSR69c5f+lxJguYzaZsiB7DQrCcLzm8cczxm1Ouf26LYgz1QaJfdsmP0AlbJcRxhJDIFfTayIZU7I43ENsPYQZj+rojWwsrsLWjHGnGFzPSvQUyCWzlkG2iEBpFjjCe2f4+88p1hP/kMSLQLyRZKMj7I4ajPm5ZMdlfMA/tyfU+ywxaaRLgvCczkaIsuHLtUgcD62mkgnC0pP3Gq9TVbUK+RdzaQu/sIHsFoZlQp0BRnqNtDzv4iw4Irch1IteCTIkuuA+RGNYuwF1wG08qhuuaHqwLiilGfBQrj6IVDAaB/pAkNX9o40QR6ESm5AQffUqkPA34OpJu97eUYsU/6OZwzRlgTUJOnCQG64fWKjZd4NVlG5HTxECsxd67V60+vfshZRdspRVm+4cxOodnhbeBP/jaP+XGpGKRaYRr0AuwzhNjxWY/o6kSb762z92PP+CjT9f08x4Pb/e43wBqh2GvQYQW0oxcerZ7PQSBKDKqJhG9YufcBWKm2JsEnrh0HR/6PDhoOZhM6Jsegz689m7Dtd0xyc5pmxZkhh+UiPaY0fVraOUQeY7KSnrJsjx8G6fmqFnNtUubLMYly+k9ro4eQS1L+jcXLOae6cRCXfNYT/LxJ7/ApXzMXfsSsZ0wiAtGugERQHm0yjrndulIsSFRI2S5nrUfyrH5fzved+ac6fydUTJdPbdOWs98n1UnYA0lglO43UnCseYVnHl+HaCL98GYOsjcevvBe4TS2LplcnDAe0LynMlYHO7z9oNDlrHhqeOWq5hu2y6xsbvF3uv3mOcLcjOm3MjwGfglZEagdbe2ogNs14GTKaFDwvQ1OperpF/8SBy2Hyg5eOjyJa5fewgoEAqkiigcQgWSChAFfn/J8e+9xeG3/y8O2j2WxUPEjR3ynV2KjW1q9rGI7iIUa2IKJCExShJJKCXJlWScSUYGJj5gZxVl3mdyOMcvNN5Hqrol956dgULOLbkAbxStVrRKdwRFIcmNRoaInS+omkCL7gzJdEbZzxFoTJGhc03ZNxSlBgNLW9MER89o+saQFzlSJIyQuLqh9a67pipJiJFYL5G6O6hSd5hPHTUxOQIR7yKRrpUUku86DLYmJoNTCp8EMgS8TbgUsE2D1jkidpwM7wIqeopCI7Oiy3Bj6IS4fKI+npGsJ3mFKg1aCGQSFKWkWVpUZiBphOqUUmzrSSFRVRbJSloLj2tqUgoI66jnCqTH6EQ0kmWINCHQVhX1YoFNCZkZsjKnbVpcW5HqinkrWNjQEVcLhZIC66BtAx5wAZomUmiNMoZBaTpd9qbGVRVt5TASltMFsW6h9aRVW93IQFs1ULdUNlHNlkxFQIaaydGc945mLHwgAIQALahc4puWTEBRSPCBm2/f5mu/+yx//mf/LZ7cHVCnwOHUcZA0TdHDhEghBEb1CaGBKDqn3SyysbPLa8spSmRcv3ad/dv3+b3ffwFnHX/qmYe4desd3nxpyuCzH2Xn/Bb9akqqczIlEDKwNeyhNwp8P5HnhoubY377m69zFKecW064+pjh6mNP4NR56luKW/Njtq4NMH3H/JZncRT4qdrxpfHTvIfkVjVlOTsgLD3HlUceRLYvgSokSglE1klHeq/Jh8OuKuLmxKQIvt8R6ynADJCihRAI1hO9Q+cZRV5SLRf4pgURkVqT0FgKfEi0LqIFEEGESDVr6BX9lTtzZ7okMoNAoUIEqcAAmSQvcpLqJHd1aLHOIXOB0B3ptywLfBURWpAZ2UnfRknykHzEGNkF9CLHudjptROwQZAZjV3WOJEwIkP2crKiwNVNJ0NqPSJFlBZII4kCksoIqkCUHV4UNK512OWUarJkfrxgf++Ao8MJ0Xvy6Ll9+zajwRY9YxmqMbP7lj989gWil/QLxUD3mbvA/L2a6UsH8LGH6PU1zSyRQkLkILOEkIk09YiYEP2E3W8oPFy7vMkl8xhuNgOnGWwXCATeRYSGwYYh1oaDexOc9d11rOhklJ2XLBYBIQ1SZQSfCNET8GRGM9rcplfm1EEQvSC07uR6r1RHuo6x4wMYY/DR871XXyArDf1hn03R4+qypH3puyzsAXb8BGFrhO8VOCAFT40kNzmpfYAVAq0Ehdb4JOj1SvqmS0LXhNi10lDw60rgaofW3YN1NW312Arx/n4Fkx/jscZQrwOYtQPxWZnQs7FRp/+++kusZYnOqA8lOKtm1I20ns7uv5UcqVgF/MT3pQHv378PqBmtt3f214c2Vvu8XC559bXXeP7lV9ivHF4lwvGUvLRkecedGxnFYFPha8u7N97hxsOXefzRj3Cun1GHSN1kzFVHutepg6rlIicmCzEj2UDIFKbssW8bFIbd3Qs8//03ePW190gx8fHHd7m/t8d7b8y5cmmbvPQUPqJiJ7ggRKA/KIlFQTKSzGhKKXnjjbeZxTk7zrF59QmKUR9TjnETxX41Y/v6OeRey8F8iW0sV2zgyfwCRwmmdoJsKlSwGNFA9JQjQVYMESJ0KAA5ALH9zz1+P6pjHZp/8Nw6TYdPX7fmDaQzLzirYvT+DZyuo7OjW2enJO0EEONKGnUVwMdEoIuzrLUcTo557vsvMWla5tWSOjimy3al3JfolwXDc+fYf2dKqiJx6RGjTuEotGv+0Gr9xkRynUy30GBKiTZiRa7+/zCR/5LHD5QctNOaWLUUw6JzGF20gMBWEWEy4rxh+fwN3vyVf8J08Qq3BNAvGWz3KDcVZFBunoeUkAQQcXV4I0YIfBJooym0ZLOUbPYVdpHwsznlxSF+YbELS+six3Ug1I7yPPRVQJeKFAVGGWQpaNoEUmNcxPmG+bxiOmswwzGDrKHFsTnsoYzpMtUY2egbMgMhQeua7iIYMrIEJiR6/RKXAqkFTyJKiELQ1B22WhclOZBaS6pbdLJEIi5BU3lSkpi+J8qKflZ0J4tUnSmYT9hlg6ssVmpiSEQZcSngQ0fQ7RUZIgWk6Eg5KXhi7EykZtMlWihESigRMSqhgkPmgUZ0evcq67wTklTY1hNc6FSahEepREy+C/CjIAVHO5+RlKfIJMkYjiqHpGU6nzE5mtDrGbbOj+j3eyQhmB/ss4iJe42iETllWWLI0UKwfzjtvBuKAoxBJclIGZLJKXWkXswJtsEHT9M2tG3N7LBisZhTu4CLHiE9AzTBS6y1zKYVvq1IrmHRtOwfeQ5twIVEigFSJCmPKkzn0KsFg1KRZ4Kjvbv88t/+R3z6iacYXfwUn9wxvH7U8F5leTAuuT5+miQbbGyQyUGtGY8UOxuR12eWGYZPjTYomiO+951v8PXf/W1M1uPnf+Zz/P3/+3nu3a24dO0cly9/hEvXHqNdtGDnzHUf/+AOTl9EjLbZZY7qnedbL9xibzbjUx+ThOxVlL3P5YefYn7jHt+/6fj4F3ZQvUR70FCFxO6+Z2YTL/tEavqcDxv0XI+9aYM4jvQKRb4lVsmZJEmNzgtGeoPgAskvO4iQTxAVyUeiGaOlxJisq6iLgBIJFGi1wj5711U0JSzbBi1yrO2MtSSqc61Mijwr0EojZadsJJTqTNlaR/KWrDAkBDLrk/XHGKmJ8xYlFahEWXSa+4KEyRWIzkJeqo6oHGIihEhWZOSZxoVISBEhNEpnRBHIUkIGS6bpqslJEG2gXbRkfUlqu31DgikkeciJS4uLElWU3XePgXpWEe2M6miO8yWLuqKyDp31uLR5nkIv2dy6wGI2p37Q8p1vvMqx9xQiJ1eSvh1ShoQ/dBy+fIejlx9h4/Et8lzQLiN+EciKRD6CGD2yjrQhMt2rkNZz7VKf/u5lXvnWPt6VGC0JRhBVAtkRfOUg49Z330Ekxc6VDbQuqRvL0gqcy9m+MCLLVbe2nCamiEEyHm8QXWAwGDMcjhF1//SCv8KdBwLWWXSjmc2n/P3/4x/w2tuvkQvN0+YCP7f5Mdz8DR6IRCwEXi7JvAAv0b2CGD2ahkwmolg5UUtFGyXlYMgwNxgpkHRcM5FArIy+xAresg5k02kkcPorrf9eVQdj/OGB3z/k8X7ZxW6swQZdMC+7c+BMhyH4cBIMrYmcpPcHR2t893qLHa/h1GzpxFF2Je+opFwFNfKE8JxCJK3M0d6P2f5wR4yR/QcPePb3v8HNec1sWQMOkyKMA8oI/LJF9AoubGmUktx5922+/UcFl7Z2KEcXeWiguDOzzJQkFD1GeZ8kQsevSznJSsZDgU+RIxtohOKJssTN9/mj3/99Xnn5HS5e2OanP/MMf/CdN3jwXsXx4RUuXRiyuV3irYfQ0qgcf7SP390lN4JceKLQvPLKOzxYzvjsTw2o1Wvkm+fo9Tep9495665j8K89THAzlrfnhEVieOxoA+z5SB565HGIcDnzdgaNRcgMnW11sGWhEXIXqR7mT4bWP5qjO6dP9/GkU8aZ8/af8xXESRuxgyat3Y+751ZPrdfQugspTj/rgwlFPHndistDp37UyZwGatuyN5kQRceVRchOUTImCInLj1ym6A3ZvHQBsVD4WYPvF+hehjaJYFdEZNPVyJAJESBJyEYaoX70jtMPZoL2/Te4mW1w6dpDFIMG3RuSlUMaJakeVCzfeJujb3yd19rv8U0vGOQ5j++eZ/PaZQZbGeHgNR56/HEULUJovDAY4SlVd/BcSigFedb5G2xuDxlfHnL33RmbWyNs1TLaHMA4h6WnPWxBKCoHVkbG45IrV0rGmeLVNw6ZR83AC4SWFFmB6xuM0OhFw8I2qAhFOVglCBLhBbPGkojUbQMpYjNDGgeUzlEMwEFoPcFZJB5rLf7Akj92HvIIbYtODdokqJdI06OMEnoe2zoIln5eoFQkesFonFPkCq0CKcKyXmJjYmtjSPAJZxu8S6iU0FtDYl1BTCixMrASCSFahFK0i5bBeECWRfBLwnLOYlITQyIEuvmNASMsUmlCEhA0RS9DZAIbPQRBfTRjUVu0luxeHCILiasr+q7B+kCczRnmhsFwQF6U+OCRzZy8l3HnzgMCOdIIXCtY+g76UFUeYSTDHPq5pJclqtqDKjmcHNMulsS2gdDiY0uTeixsy/2jCSIlslyjMsNsDoM8YtsGO5/hbE1rW/YmlsZoQvSk4LquAYCQBNsiRdfhaerA5e2M8caQ/UXif/xv/w7/6X/9BLvnB3zqY7s80XruTFveuLdkMVI8PN6gxCBFZL5csl/P6RUjPhcyntjJ+du/9N/xW//sRbwoyfQOx+VPcvXx29x+cJfv/O7X6NVzfu6vfJkgC6yVHB/NePlbv8HwwZRHw6c59+VPszh+ixff28fJiHjlHV564ya+MHzqT7/JX3h6g999a8zBhWvUc8U8HvJ0GVm0ju/fvc3dVvJU+TDn8y/gW0GYfY/tJy3VosXlip5Q5JkmiZy8HGGiwrcK53skm6PQSDEgWUldz5EoCiPJdCRESWoi3i9xKYJPyKgQK9y3W9b43HQKWXQeICZXnNsYghBkpkDKjhibUkBIhReJYDKSW3UcgkWZCikVwrW4RY3JSwQKIoTgiJ4OoqczZK5WKioeJcB7gc4NaIFWnVmeFIZB2YADvTnGFKaTM54skUJxfHhMf/MCrvW0bUNSCWU0pYqEXOHqDhaXFQodoVlUxOWCMu/ReMlYSWyWYYsSo85xbjgHAYO8x53DQ2xbcaU/5uDIsT+3VAdLrogd7jvL86+9Qvq7A376P/os2dUCmoBfeOIyYqtETI6EZHHoCTHhJ3OaxRy1qfnJL/wE929PqG2gUQLjA9nEoYuMWR0ZFImmdhzeO2Zy1Cmqjbe2KFQPIzRGZxRFick2KTYN9YOalCKDfkZoOxMyhubkeu+972CJMZ1g2qs7FWVZ8v2XXmZscnpbU14kcmhXqk3xiMWR5WK+yfaOocgG6FCjZJ/aBMZ5S2kCMQS8SuhS0+/16FrREqkhWt/twJrzsK6ir6AyCfCrTuKJHOEqJJCCD82p94c1Tqv4K2fiP5EgnIVHxM7wDd73ncVqntZdByneL/EoECRxmiScKBEJtdpWx23o3pNOIE5rXkGKK034dOqlsNqhD21e1m0DISQuRfaWx0ybBb6ZEpqWmGl0IcgahVKa1rYsp4JPfPQCjRpzuL/gm8/+AZ/72X+T4aDg+tURlYtMasekDrhMsJUXGBSkyNK2hCAodMGjybPVF/zDX/6bvHPTEtQIXVykza9y8ZEHvPHuTb77W9+m/7M/wSMfv0pEE4Jgsax578VvsFEnBo9eJ98eMnlwi++/+Tapr3nl5e/T+ERvZ4MnP/4Qj14aEm9vMtm4xqG/zTA7ZqOfqOuK+4sZMxt5OH8YpSwhaVLSZJsty3lFPhwg2ERIDXhS+A6oK/CvXCn/Bx/vU+FKkE7c+dbGZWded0at6ARuJOUK7t09eGICuHJWPjHyk+trymkycRYWJ+gI/KfwvPXvAARCDOQmY5D3MKqD0F68fI6HPvoEyQVGJufW/hHz/ZbdSrJ1fQM17Iq3sY2kAGIgMRcMwvxoS8z+QMnBR7/8BR5+7CPYownlSJKUxEnH8tAxfeMWb7/wPN95/RWqqLg8fILew9dRg8v4tI0pz7Hz6BXSOGOYjTiMtyEFtNZoLVm6Fu89SMF4u8AvFbduNIgNw+b16/TqBfiKMG/YOn+Oc7sDXj/wDHON94r9gyWTo4pqI+PSdkG9DFTRIVNFynPMeMjF7T7Jee68O2Vra5thv08bBU0MSKNoXUA2kdF2RpQKGocJoKIiExGqGfWypm4bWu9RGrYGOWowQEiB8hXJWUIbaIIEn6FdoF04sqKkGPQQojO/kMogM4MxfaQyxNbRTiYorVF1jZ9JUhIYrekNSvKyhzSKWLfUxxOIoYOMaImKgRQ148sX0b0CoTV14zi+ex+FIh8EnG3xRSIbSfLxFkJrYmMZbZbkuSSkSHICep1jpPOSZBJ12+2HxDDoK1zdMLx2laAF9UqHu1dk7FwY89ab7zAc95hVjtrOOynE4QhDj14JWkuyJAnzBrtYcLSYcf6RS8xpiTh8CNi2w5C7YKmXDe1yyXBUMhgUSG1Y2JbJfMZ0anGt5/C44XjRYIk0k4pY+86afHWhEFKR2u5md6nfuQRPFy2XH9riz/75P8f//tVn+Te+8hX+xl//63zyMx9lfG6L8aVtHr14jnnleG0RmKmE1Za8X3JxVLIzKlh+7ft85Rf/Yx5EC2JArjIG9oD00h/yE3/mz/Hdb73Mnfsv8Ow/3ac+qvkP/qu/zPjCJteevEj2pU9ipESnxOLwkP/pP/lrZC6wYQTVccthAisa2t98k03G/Gw/kAZPMvnyJ7i9ozj41Rf5/M9dZ++dt3jUXGDz6hZi9DOYjS9x/clA9M8Sjv8xOh4jK4XzA0S2iTaXUUJj0wDnAq6aE+oWqQw+ZPjag+5TN5FmafFtRWYy+oMRJhkqKbB1TfQBg4FUQ7PE9PsIoYlBEtBkox7VdIFrHL1eRkTig0OJyGhzi8VkgRkMyUKiqmumh3Mu7YzxKqcYaKTSrHXeZRBdQqINbe0wxYqTYz1IRV4KbGuJscMhaynRGlovIe9hp55YdeROlXcY+a1L57CLCmt959EeA8kGdK+gnTVkSqJlWqn1gBkMEK1G6BK7PGLn6nWuPvMUeR6p9h5QtQ133nyLuoELgx2K7Y7j5J1n05ZMQ4HNcsremDL0uXd4h+f+7je4/jOPkY97SG2Y7S/Zvzlh95NXuPhkj0IJxiqRywH1YWD54JA5kdH2kO2RZm4jdROYzyx7hws2Roayn9MbGNqqI0hqqdCi5cL1LXr9DJTE2baDDk4TIcF4Y4QRESsErmlZHB6c3hRMdlKsO1thq+uGNrWgLS+2kTvTORc2LjExnvrO23zpi1/h/MVH6J3bJhUwLDa41bxBP9Nk+ZAoHdPljDSvUT1DU/SpKk9TeQKQRNehgi4clKrT5T/FGqeT+7/oincr641Trf4P06n3hz5WfIq1ektX1+ycb9cuxZ3kazwNlk7wyl1QFIlncRl/8iNWD8a4Jn+ewoe01Cs897qKuzoGH5xjIbrg7IcwXGs5vntAe7QE313ztSkgauw8MswUT2xmzG3k4GjKxz/1Cfrjazz33Mv8k9/5Rf7Lv/ZXOb87ZpCX9POM3QStjxzYSCPAq0RRZIyVpBCJ+p1j/spf/c+ID11Eqi22RGJrfh+5d5NHnvkM3/i1r/Hy/VfxzSHN7It84ssfQxU5m+cHqMf+3c7KMSYO3n6Tb/7K36OfBKMgOLh7zMyBOlzQLieYz2zxxX4gZU/T/+k/xZ4uSPf2ufLZx1gePuCCHGLyIS77SXT+CQpR0zavgf06Ko4gXiChEeocSn+CHxeQ3dnA/yzRfQ0e+mAAf5KmrtbGOgnu3iFXa2TVgVx1t062t3JZXsP2Tj94XVg47ZytixFCppP9XKshOeeZpwoXPbtXLrJ7+SIIgW8toih56toOQil0rskKg9ACgzp1Fv8xqV/8QMmBaz0xZKDGNLVDjypuvX0f99YB87plEiOtMJjxwwzLEY88cY3hxcdp5ZDbx463vlvzxXMjhNBIEi5GattlZDsDTWgT85g4Om7AJba3DKNcYxZLvJAUyiBdYno4w04rpG/RDGmxPHl9szPDIeHQWLvk9rzGonjyYs4gCdqZ487+Ai0HyKg5nrWIIidqRb1oUSGwuVVgY2Q40OT9HJ0SRjtUFrHzFqU1WaZRKiPLOufOuDwENaJJER/WEnyaZeUZ93N0T2MbC03nLkuRyPKAGZ6jXtY08zkKjeqVpGmFCC2N0UTbkoUMkymULFAYWiLBB/AJnwQuBjSefDyinT1AlJeIQWNtoOiXpKVnsYwsq4rUQu41tg7YADp4vAKtDVIJtBakVBDbGU0SyNoiSoM2JUIY6mlFMSooekWXGChL0JEsK+iPLzDamJKyORSOLAgcGh8iy8oSWk/eKzsTKu9o5h2caf/tt5i0DpMMeqWcUQuBdC0pOrwuiSspthhblos5tnYcT6tOfajI6JGIy5Zgu4oyazWC1Y1UBo9RiWQlF7YGPHp5izJavvrV36Bxks888hB/45f+Z/hbks888Th/4ctf4qkvfI6Nczmf7plOAtdp6smcwxvv8Jtf/23++//tV5ksW5TpdYZeOhHail/7+rP84n/+73Gu0OyFlntHN3nhxd/h+Gs7fOI//PeRqsBJBTHwzssv8b/+D3+TP7y3jx7kbFwZMG8bqkmFnTbcuWv5R/9LzU9sa8qjX2f82C7jKNgbZfzay8dc+fQuH995mONGkh0JhgPBK1XNo9k5FssrFJUg1wFZbBKLa4Rsl2L4MN7dxjaW6AQSgfQLdJAYuUlbL8hFjjSGutUdtAaDjxZdjlZQpBaEpCwFShl6ww1ihHppcdYiswqtIm2z6BS4lO4ClODQuuHcuW3MYMB8VpN8orGJvTtThr2MvCyJAYii82FIkA8G+LbFO8ti0l30k0vEWBOtQw0Kin5Bpg3Je9plRT7q0cwXlL2IznKUMaSYsLMFRaFp69BxFYoMrUFFD9FzbvccjQ2kKAhB4FwEaztuT/L0B32aZEm2wVsQpkeqLVmxTektSXek6Sw4PvPwM4yHl3jzxh0qmyBWmEwzGm7y7eO3WDwv6Q8yykIRQqLxgrhsiQvTwbxaR2wtCkGvN+a99w659mSGzqCHQERBnSTKR1jO6fcKpnv72FaAykkukeqG3uaY/nZJsLZTuvFpNcc5yXt88phMkZmSbHnaOSClFf62G2ujLb/iH1SupXWOw2bJ7cWE8xd2SErz3Vdf4GA55eLbFzB5y+FiggkWWweOYktWeHpFZCByGimpJjXBhlP88Lq6d2Y/usdgbXz0PjKuEAgRO81+Op30H28xU06+/9ngJa4jFUCrU7jVGgoBqzeciT26OT1Bc3dBj1itobQOu9bPsyIpcLKRk0rrVwdbbQAAIABJREFUGXLkSTVWrGVUVx+c0ofqkHyWA2GtY3q0wC/rTjZZSJASlQKZrSmIpGbA9StXePT6Reb7h7x144iE5jNPP8zf+ZVfRzv4wic/wlMfeZyNizuUheSykfiYiEFgFzWzu3u8+PKL/PKv/mM8G/RmQ4pCY/KGxfyAP/iDb/OX/uznOZ8a7s8Oef2Fb7JROJ66XrLziY8jhOnkgGPkxgvf47lvfI2Xbt9GbY3YeHSHB9MHpP1D5vMpb756zPTt+zxzuU9Wf5XhtWsUWjHPDS/sTdi6OuLqYJNZHVDJ0STHe5MFL33rBS7uSr7Y30L2zmF6T67U6LIPzN6P7ppQZ7t96yT4RFVo9fDZn/JUgeusYpY8AzdccxLOdt7Wwf8ZjYOT7Zz+s1pbsoMhpVUxIqVwsuY6CJMnxIhfKaStp1cXGYPMvI8PgeA0KeAMhOpH95CcjB8sOWhqUBHdzzk6bqmP9mFyn1de+y6HS4cNge1Rjtnc4tHr1xmNCsqtgvNbfXZty96NKWkx40tf+Ty/9tX7HE+nQMIguJ5rDnXGYl4hQsT5xLKJ5LOWwvS5O23ZMBKXEtJahHb0swITLRe2x51yStUSnCUQ2TKJJRkXdodIZZg3kUBiVAw5Nx4QhEdLg+nlRCVgWbGcV4TgupuuA5nnZGUJSuNChiwkMoZOh9pHohLMjyaoUhOqRJSSosw6584QSCKwWFb0yhJV5gjAaIUuc5AaQUS4FnxEZBJdanJfIkRkuVxQ5IYskwTXcnj/mF5eEFIkiojQspNcROIWDdV8DlJDE5BZJAiJE4Z8YHBNQhQCHwP1ck5wLdKUzOpAvy9plxKVaaSWGAOthMIIVE/jRVdR6fVzth45z3JxjFMKYzIKJ6nrJbN7E1QyHB42IANZlpF8IDWW6ALRCXyd6GcFZZnwMrC0Dm8XmIFmaAwqKmJIJKEp+xn337tNr5ez6T1CJGrbEqOnWTS0rUfICD4gUiIh8T4RfTi5SYqVY6IG+jpxrZ+RDXO2dzc5t7NJ8onZ/j6t2IBen6fHiaPJjDe+/xzvvP4a5a/+Qy4/8QWeuNSnHQzI7B0O3n2Nbz/3OocHM+rKMlIZKTXk0WOkYYLiremCyyaiUcQELrTsHe7xt37lV/m5N7/Hl/+LX2TWKr72O8/yu7/1m+zdegeRCXplgfct2UDw8KUehc556Y8rZsvIK77l0XhEllr6l/t84jObvPTHM37hyg5vqyE+KbaATTxXckemHqfMF2TNtxH1EW6pccbR29mmWloycxWROZxtaF1D1dRoOSK6lgyFdzXCR5SMhKWjisuum9Q2eBcIEZJr0SjquUNQkVCd7KSrmR05EAohJNYGlPJdBwdJUZSIBPV0Sb2ocLbtuA0ykpLvuj1JEpxDpITJclIMuCCRvSGk0LV8hQYLRmcQE8J6vPUE5/Heo8tIlhnAo4qMhCA6h5ES7wRaKuyyJXoNeVfNSW1L3u8RPTRJE7wlNhYlFL1+iTAZy8M5vu4I0jIv8FGjSoUpI7I6RmDQMUNiyLMRg/GQSxcuspg2tE6SyImp4vLmmEy3mEzT2+xjyhIfDdFbJjcXnZt6dAxGhjDOmOzXjKoleZkTK0d1tKB1AZ1rNkIDXtAGj1QFm1t9sl5BpGW0kUEuUUaD8CgrUa1eVdcdvu0CxLzUZBqEOlPBW5F/E3SmYs4BCe8dSoiuuyo7WEv0iXh4n3IwxMwN4Z2W+3vv0hspPvrZp/i9r97GJo/yMNaK3WHGnVmDSIqeSqgVZGUdrsbYdVhPE4E1jCahzgQGMa7gleuKohQfvO//WI50JkFaBzwnwcYqoIix45ycEDPhVHkFVgpG7+cDnA30xcmcroIjIQgxIJCn0KwzAdsJvOss/OKDJNAPG1UEvP3223znO9+hXdbdWleqE07QmqGG3ULw8NYGve0B25d3GG9tMLs1YX5/SdIbiN4mT2/D0YMZL33r27z0xy+Qj7fZffQjXN3JaYuCor3LjZff4J237nE8axCt4GJ/SPRHjGMfKxQTJ1jemzFSiZhyQrTUzQFvvPw9fvPv1Xz+1ed58t/5yyxnjmd//bd5+7VXWMz2kaVi0B/i7IzeZsHu1Qssj5e89+acyTTw+s0pTxDJVMX2xojSjDjcm/HpjT73owGl6SfFu6+9weuvfJcnH32aanmLfPivk+UbCD1EiIxVmwlYyQP/iAeipz2CU/jgyUEX61d0QwrRXZM+UP2PZ5LZdWJ8VgJVnH7YCWRx/b5TboM46UiQOPHyWE+glN32Y4ona/JPwBjlOrn/ABTqx3D8QMnB5GDG9HhB2evR2grXzGn23qFZ7qM87Gxssn3+MRrfYzDsE5GYMtIfQXCKZV+ho+Gn/8yX+J1nv8Zk1iUHIcBB5RmN+gxbjY+RxicyG6H1NLOasSm6KnyC5CwyBjYHfUJKZKoAaVCik55qfaQ/HmKMxkjPbF7jbIvEUOqcNCzQpUJJTXSWtnY4axkOe7jWQeiyQSUlpszoFSV+VT2UeJK3JGeJWpG8pxxt0zaWpAyZyci1QkhPpSK+bmFjhNKmg9VkBrWCEVWLOaGuUYhOMcU7tNK01tHTgqLMyPKMmCQxOEQS5GVJcpGmdgTvkFIRfCS0DaZfYmdLVNlJBerckOUZdjoh+oCQESESKViMViAF7ayhbiLKqM4MSkTwDZnuVJcgEoLDBTAJgtI01qNkxPuAd4mm8uzZexxNG8rcI1TogrTa4bxGBU+hC0RyuNri2gV4S641Qkk2trZRQtBWlrZuUcERbIPp9cmNxPkONiKEQqBo2+XqJtZdSGJMndHP2hp9JednlKBUgs1MEVXGeGvI1QsjQoAHBzUqCc6PO8J0iIJrG4r50nLneML0cM7Nd6e8MSppjUDHGcvpPjfvPiAIRVEocpGTQkSKQFKKbNDnUn9MfPcGs9ZTC4kFprbl+fduE6tDbm/8Ek989EnefvU53n3rVYZl5N/+S0/zwvNvsrdsGG5oNrcVfRI/9fmMxRyOX2+YLizxVuCidzxydUC1EWH+Mhtbm4hiQM+BdFDkkpS2KeTjKF3j21v49hi/WNLq+6jeENO/SqwSsTWQBCEF2iqBjyQRid7jfMC5RLQBUkN0/sRoSgiN0BIRBNa1qNYRYiB4TwyBtnFokyiyAiFWl5YY0cagENhljW072V+Z6B7PDHJlcaIEHckSic4U0XmUURBAJolRGq06jf8sy2iW045rklYJIoLoRNelS6sGdIydTGtwxChwrce1DhkCISqiFCSv6Y01ydXUS4tvHdJ3rs1iq0eMAZmV6GBprWfReJyL6CTpD3eZLiBGgRWKViQ+dvUyzmvaGGlTIklNZgryImdrWJDlWYfrtgGhIrFDigDg6obkHDJTBK0JUlAODViLa20nNuADde2IzYKtKzsoDb3hEJMZpBDYBqLtcOmu8R0YRZnODToIRN4Z5SUpOwhXTJxoYtLdFNNJhXpVvV/DT1KgU7aXpBgQQXQ8LaM4niRs0zDoD9DlJo995DH+6Dd+j9Y1EBPeCppWsjUacjCdM6sjbqVQJFY3ZLG6L5zCV1YhruhcEGJaV7855R6I1U0+Rv7/AitKcBKgi5RI7yNTcjotJ0H8CpYBJwHK2XEKPTqFbSROicsnnYYPkDTfr57U7VkHdVp9KJw5Th/uKMqCQa/f8f6EoOj3KMuMQabZyhTbPYPI+4zOn2P3/AbzmWU5c+RS0RvlKCEgCR7a1jw4ckxnNZPb93iwN+dmkVElS07F/v4+R5M5UUsGo4ye6hFsg8AhcsOwN+TSeIN0+ID7UTMXihAtbjqlevMdlvaIuybnsY9/jHu33mR28B7nzmc8/aknuXf3De7Xc85fHjEuYaOnGA8H1PNE9fYxk6MJDsvu5Zbtfh/dN9DuUeaPgoj4quHowQHv3niH5FsefWgHlV9CmHKlwCM4kxJ+6MfkX8pYndsnJmbvf+p9HYQTgvGZgH793FlPhDW86GQ7qw2lMxs+abqdhTZ1D5xI+554gp9Zf1L8CyB0J8vxx2Tu/wXjB1MrmrdUkwUyJRANuY7MmoperhiXGTsXd9h5/EmOjhwhL9D9jLIn0SsCGqVApoKnnnqCc4Mh96TCRYeNiVtLy5ODgp7piI1eqq59EwWz6ZKLu53kXaYEKJDeszksuVevtIBVQvqATBKUpjfK6fUk7mhCvWyp64hWGSkPzOeKUpVkMlA3LfOmwQrYHGyyrDxCyE6O1EgwojNf8BZvBUpHlAIyiS40ujdkuLlJ3ixIwqCERItOvrEosk5GcZAjTNap9ZgM4QPtsqaqKjI6GToVA8K1KN99XJYb8jJHZ1kHsVhV0EypcaElpYgPARkDQmkkCqMVoWlJKWF6OSbPUVqiY+wcNlfFA5E6KFJKUFUNTdNVII0WhOSRpC7g9YEkFBYHymJ6iRAE1lliCIQQcNbS1pb50YIqdVAHksNbh7NraUmLLgSCDO8C3jYIESjLXmeS1MtRUkAMhDrgqwXaKHz0hBTwISCiREpNClDXligTQnQJSheUdpFld6/qPDNyJRgaxTgvCP2SnXNDzg0y7uxZ9g4cRudsD3IKpZguWzYGkQtbQ4ajHg9uzXnw4AY37yYWtiIIiFIRtKEwXeXY5ANoEz60eJ2xffEqn90Zc+u7L3BcLbGiOxeFlKhC8vxkSf7VX+OhCz/PYNyydU6xZRx/8StbTO/W3N13pEHk/2HvTX4ly/L7vs8Z7xDTm3POqswae2IPZDfJbrs1UBZt0BAkQNBCBmRBgrn2f+CtDW+80MKAF17ICwGGLRg0RVmmJZOmSNFNNrubPdXQ1ZWV8/DeixfDHc7oxY1472WRAnrBNlQNnQQqK+NGnHsj7nB+w3fwUuBc5rU3LWedYicn2iV0i8D8YYP3geuzgnd/9zd59ReOiPYVcioIKpJ1GMzC/BHCfgHSHiL8GNk8ws+PkdHgoh+cr0MGXQwV/r5Houj8IGWaYsLHRPaJHDqij8QskVkgN14A0XXowhATeOc3gTlIpZFCD5AlKckbOVMjJTkmXOcIbYMSargn9NC5SiFtHsgMyYIUKCXIIW2eOYOLqzGDfwdiwHGKnMlh6OjllBBCkSIkJclekLNHKZAM6l85JbpmOF67WRCi0ggzBhTRR3zb4buAyoMu/3rdY4xASAPK4HxkvfTD4pMSupww2b+G92lQy1ICbWsePT9l0fZkIbBaUxhDPakxxSBXkRJ0qx7ZgSyhnhZIk8ldJLhIaANeOKIQSCsGad+UqSuDyAyCAz4xGlUUtQE9HH/oHFpq8vb+UD2qVGhp0KXEryPWJvqNX4tvPYl4Lh8KQ9VrmxjknEhZDH4tQmw8BTbhZN4o2uSMd45lDMSYUFoR/JS278nbwkRONG1EiMDekWXerFl1gc6HzWJ/sUhvpTUvHw+ZcyKtki9XAskb4mD65PcOXvre+eUAZxusDOeBlyBXF92BS2++NM+wqG6Vjbb7ehnAdJkQffm1j/+i+RyuxP+v8efB/gG3bt5ES8moKhlNaqyM7BrNYVWyM6mJ4wn7e7tMS8t7989oWkFZVOxOCoxULJYtO1PBtev77EwE88dLnj/5iAfzzHxxgjAWbxWiNBQ2oozEjGaYRUeXA2oy4trVm3z+cMbxhx/yInhcUSO0JlcFroDvPH7O+Hf/Ga99+jrTfYlbw61rmV/48h7f/P1TPnrekWtBFxKTUnH7qKJ1mpV2tPPMetXRPHpBvdsym+7w7Pu/z/7rM16cJZanc/qmRSvNd779Q3aqMTlrEOrli0dsk4R/x8fHDvG8c3aJ6H65+/XnqXidT3X+uXyJH/9ykiSAvOEVnG/OF8+8866ZGJKATEbki4RreP6o8+P5WR4/UXIwqyxVToT1AjvSMBozObpO92KJHc2YHl2nnu3haokvCq4f1TCukEqQiLiU6NrAzHveODzg8cP7PFmdEXMiRHgwb6hLw539miZl1lGSpWLZ9XByRvSO3XHJpLDUoxGiNtAkPrz3guAdO6OCo/0RB7MaU2libtjfrfCLHpE9KI0qK7pmULhRVhCSJOTBf2D9Yk6hLcWkpDBQT0qq2pJdhx0XhFVAakO5MwGZMLVlPBshMRg7IgUxBNQ+EkNmtHuAMhlRDbKNOQtCymTnWJ4tUVJjdkaoDCIllEiI3HJwc4/+rMFai9SG4CJZGjKSvm2JzlOVmqoqSBEKW4IdQZZ0Kzd0EV0EWoLvONgZ0fUS5x0+OnIaDFnOTteYSiN7R46KWJQkNLYo8e0Jvl0Ox6sVpaiZVTuk9QobHau2J6SI9z3r1ZxVE0lG4URJyoLoM8knjIKQHOu1Y2YEpi7IyhCyISmBd4L58zkiJVzT0a1bXOqpdyY8PD6l8xEfEjF4Qt+wmK9YNp6iFHTOEXzAbzT5t4uUEAIDlEIwNpbxaIe9V0a8eaWiXfQsG/CqRguIncCOC6ruGR8sM3duH/Dm9evEB9/i8/sTfl+seaJK2ujohcCVFbtV4ngVKI4OyYtIagKmmnL7rS/x9uwBv/eN79CuzrBSUNmSo1pzdVrw3Sdn/M0dxVc+e43iTs2j+Xus793j2ZNvc/tq5vtTwYkPrDoYA/kRrKLhs780QuWKh99fMn93xXuPHXKeePTd/wP7eMqTna9Q793k7asj3FqRpUaVY6rdXXR9iLSHePE+rluS25LWOZrjhpjkcG1KSaFqEpLYeJLPCDG4szrXkHw3mBEKgxIK1MY3oemY7sxYrQZ5UmJAKUE9mZCSJIWO5HuUkAMUxAd8ioNzaUqU0xqhFN47UgdoSRYZXWi0MkgYpFNFxq0b6vGIwkpkzqS+H3gIZGxVQk7INFwHKQ5yljEXA26/6Sgqgy0MSVt8hkIlVm0iaouWFlsY9HRKco6cDFoHvGjw3iFkyeqDexzdvYNvHW0jCE5jRUaLjE6RZbPiyrWbeDckM7bU/ME33+Hh2Zwr0x2u702x2RCDxFpN7x3JWkaFJaehRV1oUEoMsrdComqLaz2+G5Kb6BNBGspaolRBjh2zymGnO5RKYe0AzUt9BDd4aBirWS3WhNajhUCPLMJY8uIMxADnCV1L33ZkMmv3ctVu2xq/gJOIjRJOvlioyYOgAYkQAwpF33fMz04JyfNbv/VbLN0ZJg9ymSFH2lXie6sFD88WuBToXE9MlxKR8wBfDFK8DNK1246B3Epqni/M+XwhjznxiQiI/i3j4hsN33kodF9U+3POZDEkyynFDaxhA5OQ8twTYThn6VIisVV+GWAmf7ZiuqnGkgcRCikHmNYWXsG2MjscpZKSy/HZuWHaT+t32QSFMQ5dwslkwjgFxpMR/uyYiTHsTHbZPzpifK3k5kHNet7SRkO2Ci0kqZOYkaFsH/HBQvP2p24yEhF7fMpr16d8X614qqd0vqGpCsSoZFx4XpydUb1yheDOcG3DbOeQW6+9xmFxwg+/9w7SnTGbjDmsDTf3CqYTzTv3nvIrRyU3bu3z2hevo+wDZH5Gu/4+B7uC2Ujzwq8HkcOs6E4zfaq486VriDjh/rc+YPliRXyyQB73nHz3N9C/csA3H2ba9ZJCBV69fpOT5yf83h98k7/9d/8epvip/fw/1fGSStHHXtv846VeCLBRJroAH53D71IazDo3fxKXCh55AznezLUl2g/zbQz9NhAk2LiQC/GSAMJ5AUOKAQ7575MDWHpBD0wKQVGWmL0dnn7/jylEy8237nL0qevEZHj20Zq9V67iVvPBdddYVC64fuMKLx49ZzIN/MP/4m+z/B86fvtff4OY4CxHfOOYRljX4LQmaYGycKWuWLrAer2GLlLsag6nFVmAJHM0MZycRbo+cny8Jq5a6p0xyUSuXre8fmPC8VngtMmI5IirJXpck9ygf66ExveS58szrt7YZ6Ikfe8JocV3JZPKgltijMKUlvUy4roeZMTs15jRCN8LSC1mZLHVFCklfQa/OkHo4ckaQsKniFCGejxCA4UJQ/CEwkpFeWWKmowY3zgaMNFRkh2ks0e4VGH00F42RYUpKpQ0VKMJAUvf9GiKgcwYPH7tGF3ZGyodAYQLGJFRpiJ2CWuHyovJLT52pG4gKAeXWS9bzk7neNdTjGswivvv3mO8e5XF86eczk8Y7Y2pxiX9SJEahdaC1mukAWzeuDYK7j+YU9QFK3eCkQItM8YoXNT064gVHW0fWS0b2r4n1oMBTZMEo6llvfD4LuJ9wnmPyoHcJwzgY8a5dN5KV0AhM3ul5qi27O6U8MqYL9/WvDI64H975xn3Txy2nHDzyjVuTCwvfvRjbFjwRr3DnZ0bTMdv0i7e43Fzn4lQiL1dVn1L61tkFbm6b4hmj7tXa+YURDViMhtxa19x7bNf5L/9n/5rVHDUUvH2TsWv3h7zO0/OaBL84Djy5off5sbbY+58aYd/+ifv8i/+eM5//g/2ef47J3z3eeTEZ9oAj84Sx2eJdBpJz07QhUB+quLJo8jnrkn4k8Dv/ZP/mSW/yRuvf4Grn/oqPzix3Prca9z58mvUezW2OiKbKaib5IcP8M++TS+fE8Qu2Y4QQtEuO4qiGIzx+kQOg2ujFpmVSxhTkrwkdAMQXFtNaBOdz3TPT8mqgqyRQmANlPWI9ckpmYTPkhwiJkcoBO7FAtd6rJZoFzFWYqWhD4MChalHSK0RWZB9IPmIyDAZlwPfQDA4cAeHlmLwvIiAthhtMTYOUr/FICWYUEihSCHTp0jwArJDaqgnI4SSxJTxyw7RwGhnIKC7CEJZpIWQM8V4zPK0GdTGUsagMdpQTgp61yOXifd/+GMylqKoUCJw79lHTHYPUTniU2QyHTOZTDHlCJEcXe8ZH8wQQQ9GdDJCcqiRpT31aA3V1FDsFuQEqRH4PuK6gCZQWcHk5oz1co1REvqArhRMNOhMu2zoV55yViFEJnRuSKZ2KnaPxjTPzyA4ogt415NyJPbd+fM+c6FesyUj55w3XhgGpQ1CCEIY5C575xDeo7XB+4APQ2flwYOAKxLtomemCxok8xiZVTXEBc5H4oZ8uG3bXyiGXIAJtvjeDIhtXLCFQeVtcAw5f7IX6+F3TxcKLvni99huj5sk6bKWy+VkaWgo5HN0yQXz4PJeLiBCL/EWuKi8DrCxbWTENgvZTsplVPX2vP3Fj4tjzTnzjW/8Ef/sN38TJQSua1Aq8urBmGv7e0yuX6W6dsCtsWOvPOCb37rHqhdMdvY43N1hqmHx0QNsPOW1yS0Op1dYHwe64+fk9SkTFPLVI1bHJzgZKGaR8U6JGFXcvVbwdF2wP7Ls7I042C0pp9f5jf/+f+WW0TyIgl++e8itfc33Hp8wd4IHjx2Hx+9x85blo/uGd98/Zf+J4Etfe43n33+fe12iSYmVg6bxzNeavHLEZx9ib5T0Y0tqI9dHCr7X8d1/8j/ywXHmoRc8WTSsO8eNmzeJahMQf1ID1Y8lmS/xbLiAC13my285MNvnktjwZC66nRe8gZcS65Remm+b/F7e/2W80fZeG45nuP6FkKSQ8DkQfook/H8Xxk+UHMQ2s3oaiCeOK9daxFTw1tf+Kh9d/zwcljSyoF0MJjd6Neekj0zKQEqaEASlcFyfaB7//j3sbua10VUe7l7hg/kTZMooIDjPu8/mzEYFu6OCbh5Q44KAZp0zOnsW6wXpcUvTSuaux+YeIzTj3V1me2MqG3h6/4TR0Q7Hc8h2RM+KtJqTQqZdt9waV3Q54t1gTiakGQyypgVZDCRclQTFhteTsiJGgSSiK4G0GiUS8+On7Io1XarROuP7jtR32KkBVRBTi1wHpBmjsiXFgBMC8EQfaFzEkCmqEfZgRtIS33jCukErtUlvI9V0RBU1zme0UkgNWvhBYrWXpN6jUqZfr1CmoByNMMHCao2xFm8UoksE58lZYCZTdqZjRE6sVg3Nak3IiaRrkpBUxrLMhqrIjEYVo2qGrCc0x8c8ePBiSIL6gJIt5WjMnZ2SGAWmrBAy4PoVq8WK1TqwNxrj4ppuDauYqSrF4WQMJvPs8TFn60ylFY2PzDtPXjVkk2gXZ2Qr6F2m7wJd25NlpBAZUsZtqmlKCIwYdLtHRvBqLZHWoncqilf2ePtLn2J37vnt94857jyjwx3K0T6dE9TOc9ycMlaG19+6w+HeAacPzri1fsjCez413eNBL3gA1NemXL014Xvf/pBf+JX/gGq54Oy0pBcVr7/5Nn//b36N/+a/+kcsvaOSklcLeHsc0OWa904dNZl/2kre/oP7/PzVz/K5u3f47ekfM3nccfZkxRfKTHrN8K7SPF8Ljj8KVDcEj184jm4Y+qyJvWI0EXzwxHF7JLjVOa4rz82DiitffJvPfvEzlCOLEZlm1XD6NLJee5q142op0PuvYbuGnMELQR8KXFT0j+cQBX1wpL5HGz1IlMYKnwaVByXVoJVvDDkHjCoIXUvyAakMWUjaPpIX3eBgjMa3a0KMJG0obQFZUViQxg48IWORSrJ8viS3gRzWeBS6KtFWIZXGFEMgnl2P9AnyAOuKXcRYMUhZGgtWIbTESAlCElbN4O7dRWKfkFpRlBa3iriVR48tFAVKSaTMaFPQdpn12ZKucRTjknJnTIiZtPJomXCrjrIeY4xhvfI8f3rKaGdK6FdUuhogUURihFJrrF9x+85bTCcjiIqQE+OZhXXCtw5ah1IZLTM5RdqTFTuvHjC9VhFjZH28opmvkYWhrA3lSOMWbqBQiAxWMru6D0aTlSQbgdQRkwIEiZAjyBGpQY1KkvO4R3NyYYgIUgCkHOCLBFS4WCXlpWBSCjH4EEhJ7wNKCPLGHGjYvtXHF4QwVHaVELi+J3QOZKZvW6T1zMqKqbbUIfPzR9f5Pz94l5zS4Mw7TELc9vnhJWOjc/hQHuBcUsnNIzIh1GB0d14W/ISOj4OixPl3HoJ0eU7IHrZt/70N2LeV0iFZEufvlfICi70lcl4oD11KyuQiS5eUAAAgAElEQVSAWd92jLak8G3SsA1Ah6rsxlF5Awn7aaO5+r7n5Pkznj16QOqWXN2r+PRuibdj9JU9RjcPObp6nWku+NMP7hNI7N6+jpIjYhTo3HPWHDPSI2596g6CEvXiAbtnj+l7zytXrvFknenLKQd3JkgTefrghM9/9QsUqzUPipo8mXLzjde4c32ff/mb/zfz6DFlxS/uBl7daVgm+PBZy5TEb8wVd753j4Nf/AxHh0fMH0nsyQv6dcXrJcTdKU+zZb7OrJaB6hCeLNZcvT5lHQyqVKg28ey052CS2TtbEZbPef/JmuchI43h6Q9eAPklH4tP2ngZ75/PO1Bi2HgexF++9s4vt21XYbtNXAT2HyfMn3e/5BDgayCEeJ7int9Lf+Y63twPKV0kGnyM5PwzOn6i5MAqjZEWYqZvgX5E4zzRS1aPHGkksOOS6VGBmtWU6zWxCcR2iVs2LJdzGE3YndbYWcGX3vw0er5g750VP1o3PA6emKFOEec8Tgmm1jIJmaPdiiwGXsHIBmaFwMTI6bol2RIpFG3Xo1YKPalopYZVzzsLycG+ZFqV6L0pD+4fI+qaM6UwJJSxpJyJISCsxfUtFkNV6o1jZ0fKkqgsxEjoOhIJqSVFVVCNNa7pWC/X7BztU+1PMEYCnuw91XgCRKStSS7D2ZKwXqNyJBhDVYwpjEBJgW9WZF2BKgjNaiA7FhWmrMhGkpTCREdwHSlpYsokNUhoduuGkBNWGozRG8lVQxI1ou+oC01pZ6xXa5bzJTpoyvGUjMK5DpEdpRI0bo0SCqM1u6OCgMV7zfMXDaNJpj875frBLst+hVs7vK8QoxFlCty8eoguNPPTU/o+k0NmvVxxcrLg5hs3WK16tDGDU2voWZy+wLkeJw2L1RppDUVdErqO1bolO2g7R997ehcJ3hO6wfG294m+CwSfyHHgtCgBRgqCVLxxY8T1t15nfP01wr37VIcjFo8ek8KM3WKHWTUlhMj9h+8xHtdcG+8yvvIZdN7Hn37Ee77k67Xh3XbJ/pXbzEYV3Rgaozj4y3+Vtz/zKd7903cZV2vu3hjzlS+9RbFzyIePHiOEoLCaokisUuQ4wK//rUP+0f/yAj17hR886LlxesiNr7zCf/jX/hV/+C+e8ku9YCwFX5Dwc1MJ1wrePQh8f54IWmFGJVhJWCTC+wG1FHwYLL80M1y7vUd1BGeP3sOZCenONXRlCU3L/P6c9aKjGMGj04jtlkxnJT0KjyaTqWKm3Nujb9fIZWDZdjSNpyRiVAUpsFiu8G5Q5IpKkoTElkPSn4JDFZIsBN4HXOM3bVi3walbEIYQBcYOHAStNYLBCyC7SHQtfSMoihGdC5jsENkMFe/GkYuhW0CSA8cgZVJSmNSQyylab6AScSCXu94hpEArg/MJWyhsqfC9w9SWmil9kOSQia4n+R6Rlrh1g4wKJQ05ZLILjKwhj0pyNPRWErIlbTod5ahC5oRbL3DOkVAgFZ13nLRrbl99ldJoCmvQSpOjYH08JzUNZT0hOoesQGpFihJjJMn1iLoAJchakATkPqBGJYSMtZKiKNC1QhYKUEM3p+8RWRFCJgdQQiNyIkVPRiHMAG2MMUPbYa3ES0USfthHYiAln4+hY7AtGCsliZsqWXABrYdK5QDFHRb0lDYchJzpN1wnpSRlWZBk5rRb43zHTlkhRxO6GDet+jRwq8SGa3DpKLYBrkiDJdIGZv8SIXeYBGLMF69/QscAmxLn3+lyYrStqG6H2jhJb0e+/AFxKegSl0Kalwif56wBYKMCHdNFEiBAScE2Pct5c50IUEohctokJFs40l/8D395SikHfpRbrym1YmQsopry6c++xv7dTyGlJS5PkFVk9eQR0uwzLaZoWZBXa+YnzxhNJxyM9zE7r5Cew2oZOQ41d2eRx4sz9u/eZVwr3ASakeHg1pvcuHmNjz54wG69w+0713nl9hUiikePnqGMpB5byhrOXMfOtRH/8a/e5Df++RPs1c/w0b1T6i8d8urd1+mbd3j3/Q95NUClFG+IxFujgm6seT7zPOkiUVpMPcGKTJgH8sKTVvDQVdyeKhbVGaLsKXsIGear5fZUfnKH2PbBPvbyplJ/boYmLjpg8dJzYpsYKKmGZELkIZnOQ7IbL13zYpNE53zpNfHSbXPO29h2IC4UkIZ5xcU7f+bHT5QcCCXISuCSxmeNbYGsEMWE1bNnxKbhys517Kzk+Uf30VWJyCUED7lBFwJtM7HvWD04RrrEweyIVw9v04gHrJYLYk5UWqGkwmdJyIqDUY0pNCvnobB0SI7XGa0MxvSUhaLQhhADzXJB7Fui79DF4JbXnXnsyA6mPtagrWV+tsZqgSotyhh0CUorunWgUBrnHEokKBVWgvABqyXOZ0xVoe3gDaBMifMOpdLA81IQ5SbDlAKhhwss+g5ixFiPiBCEICIoSjUssiRy8CQkhRZgEhFADCRNYw1dmzCFQRd28JxoA14LinpEUWUKIxE+AZHQtvRNBG3JcYVUQ6VRkRnVFqEVbn5K6zzjUiHK8XDRd4GmCZyerjE6Qg70fcPSL1h3O5jcoYTiZL4mZUlRacrcM9qvOV05dLNm0fT0EZLU2EoxPagossPbjKkKMoqzkzXPT5coBNiCmDwpB3CJvu3JQuJTppSaymSMAK8SIyVZ+0h2iRyHxICYkGSUgBsjw9d/5Q1ev3MVa8a0qwVFueIPvrtgVu1R3PoCypbQL1H9KWfrM26ND7j72peYqZJ0Mic1Z4yEJ4g9MDXTeh9xsIM/KsnXBW+NdymXc4rJmNF4wt07r/K5z3yKnDyPjp8SY+TmwZiJ9ijhqPrITttxeGWCC4k/fHjGzadr/kpR8Iufv8t3/vfn/OgF3DSabpnIbWC8B3dKQXmkOZWw6jw2SibTgslXr7D/tbv88AdrfvC73+PFC4+a/5j8gwVv7n3IcucGo6NdDqcVmBJVllhZMPea7tQP6laixNSWsjaDEhCGQmZa35GixMWMXw369xo1eGP0kSDAGoW2BdGDUgZIJDnwCFII5ARtM5il2cKitSJlQY+H7KjHI4w15OjxncP74ZiyUISYBsKxSPiuxwWPIZ1jrEMcMOlSRIyMBB9xqx6ROmxdYqtyiDFDQGpFTB65MQtESYQaPJMQDKR31xOdJzpP13QQPEU5G8j7SiGTJHSeLAz0HbkPQ3AqLdIYTIhoIZnu7VK4Hh8HZ2FJz/XdKVYWxABdGyh0RgsJQZJlRheK2KchGFMapRVZSlwfUbFHWE1RFqhdQezdQMouFHKksWONUoLoAn0fB5yNksTODwpa21hbgpRmYwY0wERUUSDlUHfrQoNUBhUiMQaie7n6OFTZ5FAhEwN+V244AGnzjMtpqNyrDawhX5IfzSEToiBu/EdEGjo/9KCN5up4TF0U+JQ2jruXYpx86a/8MtwION8H+WPmZ59UaMVmbGFc8PFE6SKAOodXbF4954RcglRdrqQOv+sFcWAb6Ih8oUJ0DuT42Dm4YDtsIEwbIvI2EYjxovL604yXUkr8zv/127z7g+8zqktqO+Gzb73K2597hcOjA0y1DyHi6DldRHYmR1R7b6FFRqzXhG5F2yzZH+1x9OrbmJDo1h3SNZQykdQuoiipx1Ps3oi4L9mZarStMF2DGdeMxiNu3rzO3v4uDx8/48MHD0g+8MrNMSafoWWg8h1lbbnyyj4+JP7NDx9wNG/Zu7nPjcNXePb9hzxfC/Z0iV8mbGipS81VO3TsGyFpfUuZJcXulGJ3H/3qDvd+fMY7f/gduqgILuAbN8Bqu/7c0+cTO7YZ//n19fL1K5Gcw8vYdBcuffZccWszx9aP4Dzgv9RdkJvnSIZLibK4dB8Nk77UidjcIS8LlL6cWP+sjp8oORgk4gRZGbKtsKXBN2FQuVEGowf5z37tSUGjtQIlUVpRlwWKkiwy4bmnmS9x3qPrmtn+EdNmzsz3uBgotEIpOVS/Tcm4KgmbKpY0BoTCx4y2ktGoIJMxOpNzpPeBdfQUOlFJT2E0rvOsM8jCIqwm5ojvHT4OC6YtYTraKObkTE4Q+0DMAZUkOkVkjNjaDvJ9G5xr3PgdDF0Ei1QCpCBLQQwJtV3wM/jOE1OHzA6tQFZDxU8q0IVBKUnyA5lSGcBsnfoGcG3oHGSBKSw5S2IXB23xod+MkgzVIQnRe0LrcMsApoLUoYwgqeHhruTglOpWS9o+YcpqUP7IglINeukpeFyG4Dpc1xIjpEKTTWTRemJSSGnIUdCue3RVsejWiDjAk3IOkDzGSkoUOYYB6hED3jmapiPFjLBiQyKNyBSGKkEMaJmpC4MiorQm+kyfAp5MCkNiQMqonNECpFV8/nbJFz9/i1/4+ucpomVx74T+3iPmbs2T44JrV65hytGgY7/qmJ88xiaFRXL14Aqq7+mbFmMMd+sxXSy4qgtmoqI+PCTcOWS9o9mzDScPn7M7m1DdfIXbd17j8Oohz5slq2aFQnJlOqFWa6zzg4t0H3nr7hE/+KDnZB358cMVn3kKr7z6FT7z6R/QP06cXS1Y+Qg+IZcJ0Sb2iowqFLqBKir2RxNmN+9g5KvsxI71owWnHz1n/WJB2y44e3IK9ROuvXoDc+sQXY4J0vJCCnovqHOkWzVI4xnvaKwsEUh8l8i9I7aZjX4lrsu43g/yqHEwnlZ6UI0SQhFcHirsMRBDxIcwuGLnTNc2KDTCZHJMxOSJQpCF2cBABtfuvmnwvUfrElMqyGGjSjXwSMiDyo02Guc3qlsiD7LdIqGKEhmHAGW7uKQk0EaR41D5V3YItIIfgs+QBUIqlFAkoRAigRyq3VprTKEw0hJTIoVEihmlwYewkb0d3Ga11UgpiCGizRCAl+RBHhlLKfcgZZqmJ/pEtHowaouDIZwUGWkGuVZpFGkjEev7QX1JZTmojdWWpIaFKGmJGhXoiUUSiTGjzGAAlfJwvHmj8iP10KVB2sEgctMVUFIhZMb3DlCDdKyyoECp8uJ5n7cLIudQHSHEpmK8gaWki8raNlng4lPnsoQpBsQGqBTzYICZGLwMzvkFm/1KIYdK9JZseKmk92d0eM4Dg5dWKj7ZZdSLwOdCrYVzBZULUMOf+dh5cL4NdF7CoH/sA5f5CttWzHnoM0Rnlz72chCUch7kgTeV1JeO9ac0/uSP/l++980/olvMufPKbd566w3efOMORzdGaFHiVo6uX5KCRJYzrtyZsGJGaFrOmmesl3MKDAbFbHeftBokkOvKokc1MVp2TEEpLOZwF7dfkkuwwtGedUxGNeWV6+weHlKUBb3rOD07xaI52t8l9R0yeIiZWmTu3D3ivR91nK4jz543zK4dcnDwFjdufoCfB9rZjD62ZA8Wj5SJiY5obRGdZiIsdb2PqW+T/B7juODxjx6T3rtPCJGu73B+6KinT/T1zrbv9PJr510vzuGEL3EH8p99f8rxpSRhM/klOBKXigebPYrt/XLxqriU/Mrts+nPwc19ohOyn3D8RMkBKaONwdQldlxha8vqpMe6QLW7Q1kryIqTR0tGh9ew04CTAhU8RRBokXGxIxugLBDOoceGam/GeDHjIHZ4kQYnT6WorR5a+gK8S2g7yBhKoxFSIUVkrGvmyzWIiNaZkIegvTJgcsfIVNAnlm1P5yJSCfp1Q6nBkXCuJ5OIRuGyYFwZRE7oTWXM9REJlFrQu0TSBhUDMg4+Ad51GCOQhR0uFCmQWpOCGnDbSpGSJ2dPCoHgO2SU6NEIJcwmGTAYY0FpYhwyZCkHw7SMJPmEb1qU0UhVErtwbgCmRCb0LWRJbDNFUSDi4OpqRCLlcrg5fEQkNSRnPuBjT8gRgaJvuiGg2OL0vKM2irPW0XaOGD1WCXLscSKzChGrS7QuSVnSNA73YkVWCWKDkgkpI0JGMBB8pE0CJzTRLenbHt+31JUmAl2zhugQcsAdGwFkT1Vb+i4gRUYk6GOmayPJRcxGMrbUirGR7M0sf+ev3OLnfvWXUHmf9//wI55/7xnH95/z7SYjDo7o7AH29CmyS3TzYx6+eMar032q/R1qCa4JxKQZz3aYja9y72TOK+KUQt5gb2+PeHCde9IS5Duwe8A1MaI4uMXNV69hKkt32g7BrKoYjXbYNwK37lkEz9RqPrs34cfPPMZV3L+34E++veA/+Rtf4mv/0e/w7Fvvs5iWeJMoTCCpQPfME2wiT2p0KMmxYNFOWDybsDxeUI/3+bmvfYnl9Ecc3z/mxdLzZO2olWPm55w5DU3L6syzWK4YlWP2r+wR1ivKwoFTZKeQSpEc+PUC5wdon8gCYqYLfhNrSbSEwhqKsiALTbtqUVIM8LY4GBB658g5EWOkrmuUUuQcGfyaMlJkcuhp+4T3PX3TkXzETmu0lRAcXgwNM6UF5UgjXUYXlj46lM5IoVBCkoXE7ozQLhD6gCoMAklMA0yH0HNeAYoM0q1i4CMoI4lRIo1C4YbEvSyxWqOsQpuSru3woUdkSaEkUWmUVMgoyArQgigVXdsRewdKUm7MCZXXVMawXDm6pkWYiEgl0Qpy78EHxH7EViWq0KAlUSiU0fTN5vcSQ1tcaZDWQI4gBErLoROCQNhEVQiQ0K/98F3lFjuuCD6SoiTEhMjbTkAihYxrPVoZhEhkZdGFwRST88d9ZvuBi4B/y/HJ4nKlDqRUIPJFTPmxNv1QxUvkPCR9fUi03nHmOnKKF9CYTaKw1fQ/P47hf86Vcl4qnV8an1hC5uWReQkqJAc8EfBykLP1H3gZD3Hxs+SUh+6RuOiynBMwxVYq8gK6sd13Pp/kcuBzsX37V9zIRw9JiPzzTsdf2Mg586ff+iaVUbz5+mvcuH2br379lyknM1xzgltnnHtGtwqsnGF89YCinBDe+TEheJ4sz5ifLbg63cPujDFkuiYhrGW0s0N11rF4sWJfOJS8zmQ2Zl1PaIQncwqjCXsUmMke49kMIQUxeIgRVe5Qjw4wdkG/7HECDouCO9MpHzw9pmoPePDwjJ0b17h+9Q3e+NyPWD34Hut6SjIGTCCmhtC0JBXIRYlOIzw1y25C6C2u7SirGTfeep1v/+m7ZK3xOdMGPxij/jneAJ+ocYkjsC0U5EvX9znpXg73Q4wXycFLRPx8kWRsyfYXNX9xcR9sd3v5EDZ/to+8wcdDvtQtOD+OzX//fXKwGbauOLi5z/RgRg6R9aMTTj48RRWavVt7VLOSZtWyPk3IcUJMBrhMd7Jg/eIFVSGx0x2y1ey/ckh+IkjCodSU3l9HqkRdS148P6ZzHi0z0rc8nicqo5nWNdYO3gMRgXMCW9XIVYfQmlIJjAk0radtPF0r8K5FxowPmcYJrDWsfWK0U7KXHAkQKqFjQxMVEwPtOiJFQlqJMIooDVFEHrxoMUpzeM1QjEuUNaAgpUgiE5slutSYeoeirChsRhBo5gukgMHHKRJyYGdvnxwNZEPoPLGJGFMgi4J2Pkd6hzT14DDsHOXE0J02OGnBgXQesaka6lIQ2oDyGVmOUFYg60wsAkJrUta4VU9IHpUiOQRIkqODmnbe8vx0zbrpCD6QMsSsqbKkWa6JAlCGTKDvOpbJI6lZ+FOEnWJ0jU2OPrasVWZkMtn5QTmhtLgUcH1i3R2TK0tMErd29E3LtJoh0YzKREyWznt6H8gpE1UC36F7jwuePkW8gB4NSrI7VpS6o1SCO4cjvv7Fq3z+V75GMbrL8e/9G779L7/DvYcnBCP5YBUxO2BkTe5PaY4fMD87pciaR8szfv2v/zrxcYfOE3bLTIgrnuoCn1csY+L6/oza7yBXlp2bgfuNgpufY6e0HIrIweEIoTQ6eaxUWF3id2boUSI9W9E8CaQomKzmHFyfcRws9+5/iP1G4st/+W9x9VM/z/t/fJ+iBUYKXUJdZWRteCYMT8U+K2qeP0m8eL6k675LsR7zd3/t17jzuS+j3/wCBE/y0L77Pv/4/5nzrXvf5Z1HZ7x55y7XD3aoy0RtZzx4foJVgIvERjB/1pEV7Bzuk5zh9GRBEhuvARLTUUmzSjigLi1G6yERRbGcr0jZMZpMUTFC10LfgtJMKsN4NqLvItEnCq2oyxqpNRjFerlCpozVFqHBh0Rqe1IuEdpTVQW2KClKiywSvYsU4xFWyeG7Og9ao+vBIMyYgQcQXSC5yLr11FOLKgpizEg9JAIpaYpq6FyEJqOtHZS9moacJXo8QtLSrc5YLweDRCUFRVFRzia08yVGDwl9EJmu6/FdQ2ULtNHIPKhn9X2kKASH+7v0q0BhK6QthlK5UUj8gJnVghgdiIyZWBBgCknuE8qloZkuhvK6azzFvkGEQFptCLhCEkOPtAajJDHLoZpPhiRQuqBvejAGKSRSRhARfEZri5RxcCNmCMhTuHjenwePmw6mEEMnYCuXebEgA5ttSqkhuE3pvMOqlRpgD+kC1pLy0IlBCkhDMpk2kem2Cnoxf2JLhRggAZsq9zZePScsnkv4f7LH5Sj7HAZ0sek8sDmHUQ1bxHnrYAup2Eb6+fwcbSfdqr1ueQXn7+HlBOuie5TJFz/4+VwpDQms1NsE46eXIvyd/+zvkWLE2AJrFCkM8ru2PGS9OKbPCrN7hb3RmEXTMa5HCCJt8xzhe2QQzJuGv/TLv0Z41qDVGKsyznYslSKkNX2fuHowRbYls7FgVGeWwcDOFUZGMSFSlpZERGeYaEtpxvjZlDpPaNcrfD9A6MrujMNbeyxaw/vvfJ/JoeLgymuMDj7D83sfYH1CGIs2YLKFBCtK5uIaHWOePutYNi8I/ZoqTPjqZz+HvPlppje/R/X0FLluSX3/MxGeXia7SyEunI7PCfQX1yIwQLazeClBgEvB/uaBcP4seekOGrZv5xVySEBE3pqeDe9RYnuPpZeS580OLzqbPxNn4N8+fqLkYHK4h7E1i0dLumWLLKAwFuIK70akRtGvenb3Lf38jKcPHzLdU8S+I7tIubfP2dkL+qfPOXjzGrlraM9WrLsBc3dr94jjsydcn00IKeNzQulEWRfInBBomk6huoSlI/YdT1YQK03NgLFts+BZmzhdekoJz5YtI6OQUiGkRBuYTi1lzqybiKkU45FlPC4ogqQFdkuFHEB8GKmppxUlC/YmQBaI0OKcQI+m6HENAbILlOMxSmvCekXyLdEUVNOKcjImuzUUlnr/Cm4dEOihJKhGCLcmxhWJDiVLJhMFhcZ33XCBe8/6yRnV1RusXzylrGeMruxBkjSnS4SdogQkseL0/lO0LalmM3IqaI6foEjkCASHKkr0ZAe3OGN93GI0hNWC5myJCxGkpqoqOmdYux4KM8CYgmBkNKpb0ISGx8dr1rqFoqYgcGVW8WxxQj2qaM/OBsnEvQmzwyn70ykP2zXtaYv2EekDgsRYJMa7CimmvHhxSo5QVzWMLGfrOd5lom+IPgyk4xBAwqiq2RsZ6r0xt4+mvHX3kFdevcLZjx5x9s1/zdP7icfPWp70GZ8kR7duo63l+voJjxanfLRo6LrIjarijetvYh+vadwMp5eMa8/uSOIeTbjeSd5dG+YvHlN8+tMUt64gDiRfPrrDnz57zs5kTK0Eupb43vPkccIWU4zI3JyN2R87WldSdIrTndeYnTzjK1c+zR/JBfcffci9H77LP//v/jF//7/8Gn/9b9zl3e/e48lxx9OV5Pig5LW7V/jusURUr/PD3/6A5YdLdnbH/NLX3+Af/qf/gC5VxKXlNO/RiggiUL59g7+2E1k3X+X0G/+KtDpj0SgO9q9BD6XqqasJftmwbCJB9tRC0PVnHB3soYTBKj9AVnxAhMzIloi+QfqhA9a2ntOlgz6yt1/Ttp6+awgxgCk5nI0Axbzx9H2PViXCVIOOvcpk12DlwE9Qegjgm7bH2IKD3cnghKwEiEjfusFFuSgphESXBYiKHNNg5mc1ugA/75BGIIikrkMVhhSGz+mxHrgG3hO7HgoNCIp6463RDjr/IUNnoK4KpCoop2NkFejbDkSmGBv6FZsoNCFFQsvMwf4exIRSg+51oTQKRTGtiesOj8cYgZIBEhRFjbCK4DrWKwGbVrjvHbaeoILEtUMyHLNFCDnA8mIiODUYQYq8UQuSJGERcQi+pTUIFNkHfBvwMUGSqDxs9/2QOCgt0FqjxxWSTOwDbt2R8wXn4LxqlzKIRD43zxqCwMtd/W3gn+JWd38rR5jx3qO0vKg6n3cbJGGjeJTyRaA6eBmI88rhUL3byhJeJAbb6mK6BG0amiuf/O7BJcEVMnnozHxMdSWz5SRcBOaXSdpi41Uw8EAuuUZvG0KXJ7s0zgOu7bFsJ8yXzt0lAuhlH4SfRpi0PZ/1aHxxwDkhdYGQmtB2TA7+P/bePMiy677v+5zlLm/vfaanZ5/BDDGDHSAEgBBJ0NwXSaQkUhLJREsky7FULkdeIkVVcVlK5HJKiSMnsUM7UZUtkbKtMkVKJGWSgrhDAEgsBDDAYJm1Z+n1db/1buec/HHue68HoGRGZVIkNb+qQTde97vv9bv3nvNbvsscM0tLOKCztc3mqec5eMdu8v4WyRlBpZcSiZD56QXE5hBnYkzQpxo5ZK4RMxWmc8XqdshwbY36kSVEq05cbVKP59kYDKmEkYfBaUE2zBmmmqg1TywN840aytVhqom2MWllkVq/zU1zx3jSbLJy8TnOP/N1ZsQWN99zkOO338TKxVN0hinrWUSl0SCeWmQ5CRHBYZ7+4lPk2yl79u3m5K1HuOXgnaSFZO1ym2GhsTJCBRFIhVQO78z63RuWEkYq8E7xO+LaAmAyVXiFstCOi2/kgSBeRr6/Zs0a/W75/WhSKcrXmiT/XDPZmNQH/ib9XucdfFPFwebyGu3pDSq1GFUN6A5ypqca2B7oQuKcQjZnmAkVNkx46bFl2EppzbYId9XIBwOunG/Tqkk67XWG3Q2s6YPMyTsbTLeaJEWFPDdUlSAMHITHv6QAACAASURBVMiCjlUo4djq9qnEFWq1CAhYXm5jckmWFOyZm6VZjYgSQ78QJNaSdgYIC1maMl3RzDUjpEiReG3yxmwdqyYSkfUY8gKMgzAO/UXivGKRCCPmWgFOVyiMwZicdDAg0J4wFuiAMHAo4clZQmQIW2DSBCEcQonxiKpSa+CMw6Y52D4qFChdQxoQ1pAXBpOATHOUkNCIqYYRssiot2KMct7UJWxRqcyg4wqF88ovUuReN71fUAwS6vU54tCbhWWZI8tzko01htt94pogl5qhUQRxncAa2r0+m1sd+umAImxh84S0yDA2oyYG0O+gdMwdh2a51E1Z7mxireTq1Ta1SCFTQbM6MsrKidurpAPYPz1Pb8RBEAY57KGNZbuzTV5kZIXBCg9PyTuCYghy2KdvHFZoChTOKhqxZGaqQSuw1APNfL1FU4Tkl1fYXOny9EtdrlzpMsgKpNVspRXyFcFSU/P586fJh13q0tKUgu08J4gEleMnWH3oyzSnFGF9DyaZY27fFGbtGWbDBYbdGZJVTaMtiOfraA1HZw8QB4rtwTb99VWK/gaD3hq6NQVWcjk2LE0H1NM6l672aA7bLBxpcer8OvXAsefgfgb2EF/eGHD+H/0Bf/N9U9x08wLHB13OXk154qrkj/uaNaVoP/ICq6fXuPfwIu9862u543U/gEk3MHKIqMbsm6qhdB1TVOh3cpr1Lhv9kKXuPC+d7XBlU7LZ2WK+0WSg6ySDnCTLUUVGMwiZnV1EV6rgDLXS8TjJJEkKqGKchBqnKYZD8sQXCiGKzlaffmaQzgsEaBfQ7eYkGOLqFK1WDeEKAm2J6xV0XEflA6yQmCDG4Um5yggqMkIUBTr0hPkRPCaqNBAEHgqUgo4VcS2mGN2sxhcZngirCKeVN9tKLUEcIqVPHhVghaUYpggVUGQ5SS8hTTwfApMSyRpZBgQhAaAlBAQMugOGwwKLxKkAaQMUgkgqbJ4R17wXgbPeQT0KFVmvoFJrsFBrlZwIgUIipII8Q8uQaiUmrMeePJ1bkq0+eQEirkAUoOv+7857DiyEWYZuBRgnESogasWEVUWy3sekDonEOo0pHHky9IpnUuKSnDTJscaitcSGChlabwxnPB9D10Jm9kyP13tn3Rg+BOWYvTQXctd0mr2SUZF7zlnZVxlDHby2eKkw5ey1G62bdPWsG/0OjFLNEclZCPxa6CaTitFv7eysfy/s0zu7pzsalR5TMQrr0GXH8+V/s3/IeenS8pFR0eAYJVkvIyGPv0zgF2LUOS1f/xroipt86JNabAJN/S8dL+dOOOR4YmKF910aJW7TMzO8+r67Aeh2uzDokaUJVkJtoUW4a4HOM6epz8egZlGNaSoLCruxTD2aJdmqUdmCaEoS1DRawUy1hZaSYTYg6/TIkgRDTrgwhzWK9SDnaFTBRXVcv6Bie1QWW5y/2maqaglfdZJhDo8ud7j48c/xuvtm2HvwEPlgg8vtnKtbAWcGER0kW5dPs3rmAm+/9y5uuvUepncdwBVDlJI0pjS33nQDG2tX6G1vkWcZvV73ux5W5GGJ/qoUO64t39kfFQGv5BmMGgovN08bPV2W98w1V/tYpUi8opEwItwL5I7HRr89Ofa4eBCvPMb3WnxTxUF9vkF9uopLcswwxQwj9HSMqIUQaIQOiBSY4ZBuMmRm9xyRyBlubbN5aY2oVWXP0V24dIvV5SsU6RAtC3SW0ogVVZ1StAI2tssNSUJWFLhhigkUcQjSGpLMkAMyjJhuxWQCBoMCk3nsXQXLdKSIZusUeYo0EmsKVts9wkgz2wqIGzUKoVGAcgaRWVSlSqwdUOCE9PrjAkKt0YHESEBqxsQU6wuBKIwIlEYGAUJJP+VQGoHFZX2vuR/GCKEAQVCpQzakiANMahGiJHkagXSSYjiASGJ6hiIxCOOIGyFCTDHY6CNzgcwNQuYIoyjWtjGFI9QVZvbUsbktXVobFFtbDAcZWIdUksApbBFQDyq4YZ9MOGpakwtBkkPuLCudbbIiIcgzUuswwhFowdWtAUJIQmU4d2UdKyTzkaIQsD2EoXNEaY+oFhAG3gfC5AYZBHS2u4hIEusQaSzbvZwogrgiCVxI2h6SZQWmcAjrCKxgZjammwX0M0uSWaKKpFGrkqYJCYp6WEGoCnmm6KYx7XbO5S1L4ASFUxQyJNYRUWhpd64iXcaCthhryG3AdHWGu+/4fs6tdokX92KHW2SDIRXt3XiL+fuprbyA0B1E5yLF9hQ2niZXIVPTlvblNa48/jCikqN2TdNOCxqBRqgmgWoSBAFBPUXPOfKFKZ5f7bNo1yjmD9LOZ2inksbUOmdehA/9xxUeOGE5PAdzjYgT+0NObznWXhoyuJBy82Kd177mBDfd8SpfUOoAXAUlbXm9OggVKs6oRCEuzujvP0q6eoneRkatMc3M4f24K1dYf+kiLulREQIXaIZum9augEDH2BTypCDPC79IOq/ulQwG9NMhwmZI67G2WZGz0u1RCE0YBERao1WOCEOkstg0QQ8SpCuoxCG2EmFFwtZ6m2bdS/Za4T0GqrUaoQqQKGxhEVIjpEbipSx1NUJH4djwJs895EY6AIXUyndHC89JERbCSBFUvHyoKTwePwi1hxkOc0xqUMIRRwolKphMoVVAGEZ4OwWfzEpXUJ2qM+ylxIHG6RCpAqSDYVogHJjca15LIREagijEmoxQKWQYIbMcm3slJyFAV6tUalWU0mAETghUEFKbCXEGnNJY6V1thYFKMwYT4RAUmUBVAnQcIJ3FDjLCeoCN6p6PlBsv6CA1UhmvoGatv1aKAldAUKsS1iLveG1yAu3XJtudbLKjxHwEP3FuRM6bdI/HqkVCeOUiSnK4EGNdfeFKRZsdHemR7KVgkgTv5B8CZdfbfz+i6AopsMYix5ACN0lqX5GsfneGoJRvFf5vVWX3f6ztXho+Un6+OzumvvvqEyFZnrNRdi9FWXgJxzcyinvF57fjuNZOzt0rfjj6f/fKR79lIUS5n0IQRdeStYWfaCTDhINHDmPTlKSfo4xiYfdeNnsZ4cIcJu0jgoxAh6haEzN/krC4jAj6uM4mLo9wuoWTijiwDLb7bL10mnihTiI1ubW0ohChmihRRQVNdCOliAx5rU5/K2GONczMIa70qxRRQVzknF11pF9a5tVHHTMNwWy1ztBFXBoY1jeGDFaG3H10D8dPvIqp2RkEFpRCmIAgMpw4eZzzFy+x2d4mSRKvBDYqAL9Lo5x7+Ulg6eo9mgwIJhC6l9fCE5nRUVE8mXft5BeMy+QdnimSHQcT5e+4UWk9KSIm98OEffCtkOz9To1vqjhQQYjUmsLlGCNRwkClAkWCwKFMgZIwwCCNQ4WSZOgohEZXq+hahUo1YHl5C4xFBwIlFdopjIhxGOIgYKrmMM7f7KGmlOUzVKMICwzSlJ4RxNUqtYZmIQpKDJjFGEekBDpSKGtIEVglSTNBUUCkPBlRKkluCsbukwhMmhCGGoVPhpWSCCxWeCUTColwOQLjsa228GN0pdGx9iN55zzJUYQgDEoKVBAhlQKhEEIjA4mszKGMhwy5wivvCCegcChXwQ0HFC7341MVEITKd0qtgVwgrUA5gU1y0q2CsNkkqDTKBMmBAYRkOMjJ+hphvceADvAbq1LkhSAfDhHWkaYZW4MBm/2+dwMuMqIixZQJlRIB3WGGVgH9NGWYOaqVmGqo0MrRmKtzeWubQDsKazCZ72wFUQBakwyGaKtZ6/bJs4yiyIlixb6pGTqDAVnhME7htMBkOfVYI8OIyAlSI4kihZZhKcmYE4ZVojAiSwRreYExks5qStcE1HQDhaBhFbFUdI2j7yzKOqwM0VJSD2fZu+t25vcc5OlnH+P40SMMhl1UFBPPzECvS/PmW+mXDr90ttg6/RRbapvFG2/gmXMvcW75HFG+Trwwgw5n2D3dQNRmwIYcjgJEf0huY+Z2aa5c7KLrLXbvb5AmcH6tR5BGTB9aYNdbfpCLD3+UPz3d44UVyZH9mpn9igOxY8+eKqfahlc1KizNF0hzlq3LF5HVRUxwmHTYwbg6URwSRhGZKQh0SD2qkU4tEjcGSL3Bat/SPX2F26dChI5RkSSwDo0kyCVVEeFSS55Z77TrLNUoAKfod7t0B71S8cZPEoQrMEVCURSoUCEE5NZQmIxQGayVDAcZyhXEgSRUiizNGPQGZKnBxg6pLIEOCKoRcRxjCy8n7CxIFaJCf92H9SoqDgmiEGMctlQyks5Blnp4nh01FARaS5xz6FgjpKBIHVJrlHJY6bCDDCkEWimMkQitvA56FCDLY0lncEIipIYgLNci6Y0JpYdpmMJ3waWSaOmdowUOkxucdNTqMUI4pBYIK8AKnMSrEwEoiTXgMoeSAh1pr0gaekUlJUtjMYknSVcDTAEWMVZKIrcIJTAGj6u0gPHE77geYnOP5xcWsAFG+6ZLFEmCUOHyzHeqpaLIHclgB6xITrpiI9Ipwm+wI6zumAxYwoJsqeR07QZ+7ZjeQ15GiaQrTbSglCUvu9Y7OAX4ZHa02U++foMs9nshRthrGE9qRh+qcDs8EMpMWOz46oRX6ypPCDs/GyEF0roxTGLSEb02qxylQJYJd2GiGCXGmKSJmpSbJFffjtjRGcZ5Z9xroB7le1JaEcUR+44epl6foegZ4kqVleWL7N6zi16/T9CIUDZCZIr4yH7ywn+2ZqtN/1yBznrEMy3aaxusrq1QCwZkcYyqhdSrVWR9GmzIYqhJuqDjJoKUzvoAWW0xtVAhSQqC9gBVCZlZWKS6MEX73Jd49FyHxamQPYuaqKbYHQlarRoXt3MOt1o0qikuWyZNAtDTWDGNyTNa07McOXID7XbXN3EEDPp9vrvHZmVxJ142JSpjDFlz3vFg3MUfrT8ldG7n4ZgsNzuOs4Obs/P+GE0wR2vOzknEeERGeT+88rjfy/HNSZnmXg5PaIVQktClyDhCpDnkniRocoeIFHGhSJOUdJCio4i43sCSk3d69Ne3qE+FfkMTgkqjSjq09JMELRz1iq/KrRMoEWOcZZj6zp/GQVFQZI6puSmCwNGIJUIor3yTQWFyqkqR5TmZFQgn0VKjrKBS8dyDLMswWFSgve22tUAOpVOnlo4g8HhKU+TkUoLTCO8Sgw4kCIs1XvfcuAKtZLlhmrFOelitjC8uoQJkECMwqFrTX2nG4rKSYGkKrLOoagWTp0ilcFoiRIDUEabTIZqaxg0kLjcUJkXKCtF0g7AxRdG1IC2qEiGFIt/qEe/ejTm3jSs2gQihJFpDRYTIWoV+skKRGbq9AevdbTa6HQpTas8rrxhinNeyz0s5ROMc1nnt8iKXhEJRDRSRhEotJjUW53z3MtISO4JK2YJuZ4ApcurVkGEGSM1WJ2NQTlC8EoogrIRYAqQ1BE4glUYHId1+ShBVmZqaReYp3X7BwDiMsay3czouxsqAinY0rCUxjmGhkNSxJmMoW0zVFlhcOMoNh27hyqVNWuQ0bEYqQqSrom0VV1FU52q0Ngqytcsk2SaDKxfJsw1cJ+W5Zy6yVlziyD6NzQMG25rYbCCIuWFxGrXVx6iCeq1Cs2U4+9RFpo4tkBeWXXqL46GCpE7eC2lWqxy95QBnzpyh101JNuFoUxKYnHrhOLZHs6uhSdN1rp4f4Iymo7exQhGHFYY6Ikx7NLQlzwVbSU6kA/pFhVqlzlS0xepWm63thJP79hAaCEWVUElCIajokMDFpIMeotA4qxGiIJCCvDB0t9t4nqojzW1p9pVhiyFOKDApTgqUlN4dOC+wRpJmpeyoiwgCTb/Tx5qCqFKnKCwhBhVCqAPCOCTPvDyoLbw6UVCLCSuhhwYFEh0pXFZCWwTYrADnJwOeNOa5RbpczVQc4PLCcyekRMoAqSV5apAKAmcQVuKcpCQ6UFhLNiwQWiGlnxAorUjTDC3V2LU8N34SoJVEIbEmRymvlkQBTjrCSJE5idJ4zk/gyW5aS2+wKAEjEIFGhLrsFDt0ACoQPhkvpVulFuiKRiTgtG9wCAeusEilyQdewYy88MQ6rZCxl5uVeYHIfSfOOm98J5VXDi9wCKmwmcUU4OQEu+zhJXJM+JXy2jR8BAF4BYF1Z/LoRoXFjue50bHL15nkuZMJwbU7OjvxM2Mn5fJdjv476ix+txMEBaIkRk4mNgCeFF4mv4wSmHJCM95jBCY3GFeUMJvJpMcnUbbs8LvRaRoXbpNPbceUYNRMveZnOzu1vh71tcg4hfv2Rfl5iJ3Tk/INa61JEMwu7KJen6W72qG3vE5FWkJnECJE2hBBiKgEBDOKuOsw65tkSY98dUiWD0jbQ1YvbbOVb9DcH1PkGjewuEGGkjF75usUqx2EgnqzistzuptdKrV58ixjRiccUBHtooZKq9TrAZWDBzh36TRFz6H6UBWOwBjCQqIWQhpVTTJYw2RbGBeRyiHOeviyjKss7dtLe7NNe2OT7fYWyTD99n7u34IYcQp23t/fCEY0nhbsLA7Gz2dH9j7xBGHnPTD6Mbzsmh/dEfDy63hC7ocdNySjFed7Ob45zsHGVa6uLyN0SJE4isGQrBMQuJx8kDLsJGRpzvSeBi5L6GxeJulmxK0akQvorK2TdNbI+9ukKiQZDhESqs2Yfmrpphk2TSlshjEZDoFUMRtJxuZ2Si11VCNJmuZkhSXQdbpDw7DbpxGHiEAzKAzdQUIzEPSygoH1xl8Iv3AmpiDvJPTTFB0oWvWYUCuKooCaYtjuE4eaoXNUqwEKy7A7QMaKSChcGJDnOTqU1KeqqH5OPVPYfMDU3DRSSS/F6grCOCRsNLFZH6EiZFRHh8r7DlQ2/YVqFTiBzXPMcIDLwCkPKbKJxPRzbJGiEk1v+TIzJ/ZjnaPz/CXygaN29DiNA7vJV1M2vn6BaLZOZc80CEHnuXPM3nuCrcGQtLcFaVjinQtEJMkaivXegPV2m6udNld6HTb7PbQ05NaSS0lmDYXrI6SkWYkIQ00lDnC5odtPGSaSaiVitZMgAkkmNNIlSOkIpMUN+mwmQzpIpMnJkpRISYIgZNsaVtpdzl7YBu2IFQTOYZFshwEhEjc05HmBlQVZ4djs9tk9t4iqNFlZv0AxzIilJjIFZ4YFG4WkIQW7XI4wOVu5l1AdmghRQCGaVKdPEO26kda84pMf/Sgf/K/extbls/TyJmK4RfbSkGhpD8PtTbKao7veoVN0yIsM2e/x1BfWEeFBFg/NEbOGSfpsrKzx/MN/gltd42/cvZ9PfeVxbj/Y4rbDVWS3zbwZEKyu8/lHz3DX66Y5vneO/HLGf3r2Mi99/gl++n98L86ssL6esj4s6J3LuXS1z8a5Dd78QJPt1PL4sxlVWWXP7hanNp6m197gtlteT7/Ww+TrVAYJKqvz4plz6NoMleY0artLWHSpDS5SlYovP7FBLC0VXWcqbjJbrTIlBrQ322TpNsYpenlKxpAgKZA41rY2iRtzZBgGyYDBsE/KEFXkOAMJCWFUoVGpUo0Ckm5CYfzEy9oCnSjifkhVR7RaTRqRYGvLEumQcNgnGHapJDWwAUEoscYSVCMCagQ2QnQtQQAiCikSC0IilaAYpkihKAYZlNAWqf0/5S1cwUGRpDhTlKaEknyYkG4Poej74j9JMYMBTnvzt6SfoYIYFVTRcQUZafqdASIviKLQJ2BZSpFm6CCGAtpbXVpz0ygZeNtSa5GZwUUVVKYwqVdGc0ohB5ZKNUQM+mA1QVhBpAqzmeFSgYod4VSEyRyUUr4qryKHGrPtkA1JUAl9XmQMaEneSSgGeSk6ECDjAIelyBwCz7Nwwk9dbG6wThBWwFUCbApZL8Vi2Rb98XpvnfWZX7kZWrtTSchLWTrc2CBt/JwdLTbf5HcgPTRlvDWLUqLTOYpxh9qHc2M/1BIaMzqQ/MYbvXPXmEA5Byurq5w7d+7/xxb4nROb7U0cXtjKiVERaDyGTo0Ixs5fZwqPyS4J4UJJHMZ/1mICx0AIXxdYr74yKtxG52GiBOOu4TqMw9myIPFqUX6+5Cd1uNFrQTJM/so/91ExC84LGiiNQLB9aZMLX3uRG249wKWzLzAommwt9wmCCNWqEnQsxqUkg6skYoiwlqK/Tne4jNDTVJc03fYamYvZ3upx6cWXyC9uc+LoMT7z2ae49869/n7srGE66/Qvak6fP8WNrz/IrtYcmyuap89sEAxf5I3v+wFmai/R6W9zblVirko22z166yl33z7DpeGA8xe3aFSbqChivb9MNrzMgf0n6UgYpENv/IkkTVKEkFy4cIFarfZX+tn/ZWOYDLHWwxGd2Sk4MFlPxiWrc6Wa0cgLyv/MK2ft6PjvmCJRrjHX9hwmE7Hx6+yoDSZeCTuLADH+mSzdyTc2Nv7Kr/m/bKytrf1nf0f8RRgqIcSf/8PrcT2ux/W4HtfjelyP63E9rsd3ZbhvRESCHdTs63E9rsf1uB7X43pcj+txPa7HX+v4pmBFH/rQh3jzm9/8rX4v12MkteVSXHYGlz6PExGq+TbvLnrhaXRjCqVr2PU2xfQ80XRrx0jM4YzzeORYjxiBr2TS2Im5h3UTrfCiKPijP/wjvvKZP+G9H3w/r773Hg+/sBat9TckDH0nhHN4p2c5MU9JO4bLj/Y59EDLO2KuZtjEE9eL3CA6A6o3teiezhDblqCiUFWNvZLTv5JTO1BQVPu4XNBegcvLA268/Qzh3RAFr+bD/8+zLIjzvPH+BuLQ2ym+doFzj22xtDCHzgpQCrXUQB5P+cSnf423vf/X+ae//iGeOHWKm+6I+Qf/cB9/VPwA/+7nf5n3/PRubj4a0273+OrZNt298/zw0TlC82M8+KenqReX2b8gEdNHuNJ7DccXIlaTl2C7Qi1u0dwVEzYzJA2ybcdMFdaurrK60SaVAVG4l/zUOndu16mureLyLYq6xu5/FVM/1EJPR2MnVuCvD+PqeoxjeXmZ+++/H4Bmo+WVcvCKQmmWjEftIz6CUgqtNYyMygSYohgvOQjvc2CNJQ4DrzaFlz4F0DogzTIQ0sNdrN2BDHDj9UmVnBZndxBQ3cQNdcQ5UEJgJvQE/1wlx1KPAg/Dcc7DELTyPBBjvGnbyIzJUcKmnDcEHJF+wasyhWFEmmZcS4z2DuJCKUxRYK1BSoHSHjoKEq0VaZYRBhqt/e9VMcTNOrffdpAf+9G7OXZkkdMvrPI//NrH2Vy+zG/96s9z7LXvZHh5nScf/DP+8BNf5LH2OYLpGt1Oh4aq8oEPvJ8Tt97E3/k7v0izWqU/zNB4GFvhDCZPaUpNLgzdJCXSEYWAHAh0zP6lJarO8uKlc1hjCIMAqSTb/QHOWM8B9GekJPNLisJ413OpKWyBlBKltfczsRbrPNF+fK6cpSgMYajHcrQjmVvw6lTGG16gSsdlhy19LDzvzJoCHEgVEMcNpsIal9rLhDqmWWvwmhvfwKtveC3//qEPcfTQ7fzY978FSUBeWEIlqUjHRz/7Md7/o3+TOFGEs4GHm64UJO2C6n5DUe1CErB81pDnbQ7edJngdkGk7+N//bUv8Y7bVjh+x43QuIXs65c5/8QWh/cu4jp9RLOG2h8xnF3h8w/9S971k7/Jz33g77KedHjve1u87oeO8Zn27Xz0l/4xP/X3DnLjnoCnXljj+X5BsGeWNx+YJyx+gj/4+MMcn15jZn6KLD7OVnYrR2cDLg+fQ23M0JppUpkRyLggTSSff/BZvvKpT7B/9wL7jx9kfu8hKmo36eOrPNCfobJ2mcK0GVZaLCvJg1f/mC9c/iqdQWds4mqdxbgCJwW2MDtUeUYQNIHFyyU7a8b3yeg8W9yYFKyUQsvSpNEY/3Tp70PvYwJaae9kD2ipSkgiKK0n149SJXRRIqUgyzIA8jwfcxS8oIJfT0YSwNYYTAkzkkJ66NEEqzQWPlDSX8cjUvNILnXktBzogCzPRyuMf69K+8/K2rHfB6WamLWmVHEroUjlhe4PLzGlYIgU3mV+JN8sy3XFuzKP+GF2nJcZYyYci/F9WK6ZTLwWHCOjSP/POost+UW2hBQKMfGrMcaQZn8xX+WbKg7m5+fZv3//N/Or1+MvCueAAaCAgLF+tXM4MrB9nKmSr1xG1OfRS1Ws2UDVdoEIKZoVZBggrcPIKt2HLzH1wROgd1h9G0feyXnx969w9B2zBPNVhPabK9Yhgh06vjtkwpJhwn/4nQ/TrNbYNz3F0sI8e5aWkGXREIThKwlAf8Uxwpe68sbP8hytNVJI8k5BfXWILAKClQKXQSRytLQMUfRqBXMqYk5sIuuGjVTRXlXsaxn27apz9vQGhY2ZO15h3xvq7DcBjz96gCOf/UN2HdnkfT/4atLhHbCyztyDp6jcfpyF7cNU6w5RDXFFQLo+4NQnHuTdP3Efu/ctcPOt9zJIClzvAg/9yTY/9MFLPPzW4yzdtMhsc5vNlYx0vcY737GbW3f9OP/y//ocmTW0luosHd7P/OI9bDw9iys+z1Kjysz+XeRRnUTnvKre4PSfXeWlS2uke6Zp7Jpj/95DDIYCVoccOT7Nnk1LkKe4rZyMkCRzhI9K5n9yHyLcMUT8zji91+PbGDv10l2ZEMpyQ9JK70iuR/h+R1F4YrYzxqtNCYljJG8qMRQIpcZY9mucUMsNdrSBjUiEskzGbYkvdk6MuQtSKYwpkFKUz3Ielz/qf5R4YDFycXYONbZOduXjlLKy5aa6o3cyShC0lp7cLQXWuvF7EQiCQJFlfhMPA4WUfqMNAuHNJMuiIYwijh+/gV/6736Rixcv8+EP/3tWVlapVGKWlha46cQRHnjt/fwvf/8fc3tQ4eiuV7F0YBeF09xz9808ah2PPPIcd7zj/bSWItzB4xx4/SzpO27kH/zqr2B0gQWqzQZ3Hfk+/t59/4iDb2nw67/5P5Pagrvv/j4KY/jCl77A0BQgFNO10FxW+gAAIABJREFUGlhJL8uIlebA9BxxLlhqRGxEMb0yWXDGE32FVGghMWVC5BN662V6ERTOIYUaG65pBUiFMXac8I14ADpQCCWweZmklAWkkmqcsFnrEFqUyctIgECW51khpUbrGK0jpA5YnD+ELTKmozp7mvMc23OY+4+9m3uP3EHLLDDbACVDChlShPCBn5jjqGkQTEsubAdIJ1icd6jFmPMvtLFE7L27xZ5bq1xpG86eusTBz/4JS8c2+Vu/8FbY2CY8t86UuUB0w0EWu0eoTTvc4RjR1WxcuMTWmUv80I/cx+LiDLe/+g28+MJDrJztceGJNu94YI2vvfVGlm48wLS6Qn8zZCqocv8th7mx+Tb+z3/+aeKqYmrvPEeP3IQJTvD4SzGu+AoHWnV2Hd3HOpZaDPMWnnv4Et3ldQ4u7mPfXTeydPgouqjQe2aFE2qbZjFkV9TBGeiHmkZlhuqBt/CVK4+jAoW0vpFmnJcItqXkrcfxm5GCgC8MnE+obXl/ejlpf56FEEilUEKiAy+wkGc5xjovc1yuLXJH/jBKioX0Mu5jpS6tKdKUOIy8k7zwxWMUReAmie5IYpeykJCluIwbJe5jtQOJFGLcKBhzcZwnrgsExhq/NiAoTDEuOrTWXiHP+feslETYMjkfF1CTdc3hRROk9PLQI54PQqCV9mtRqcwkncNgx/LMujSzG903owi0LnlIEqU0xhhMYfzxRw2b8v2OZGCVkL5gY8QZs+OvY2lk6/jPxTdVHFyP/xLh8Cy/UTWall0lhT8NwhcLznpPBTkFooGQFkwb9DyqPoXAYdYHJOcNpjvEOUfywoBgVqHqGptCct4gVgquyfKsw2UWEfqL0Fkz/vn6yhp/9rmvcOrJp9m/MMeMs8Sjanr89icb/GjS8J0Qo25jkmZIKRi+uElnM2UgFfNTMb1THZRsYDsOCoNIB+jOgGDXHMP1lCCWmNVtTN8SqRitFKp/CdM22O0znDUpreZejr7m1cxu7UV8fA/GtTn4QyfY7lXZPucQ+QB58QJNtx/mGjDs4TKLiiW1IKLyXBcz8wx3v/oIg/VzPPf4aZ57zHDy+57hnQ/c7QnIz2+SdwWHDs1zuL6Hxy5XuXzxEnHdUTt2F9WZk2wP60zLs1RIaIRz5I0KWRgQW4ck4uEvPsLGUDDTqhAFFUzUJOknNLbPEHYUbj2DQuBkDSfqPtkSmuRMQnQwRkRiLEMyPr/fGaf5enwbwzlLUersa6UJgmBCFNxhambdRAFn1OkaTw5Gibrwm68UYtJt41oSoS8KhJcqLIVDhPWY14nqCFzDj9sxPdhJaB4djx0bt2+AiNKoy78PUSb+/gXKxkp5nLGcqrjW9M2TpC1S+iRAKekVqKR/F875iYFUmtnZaU6ePM4b3vBaHnn0MT7wgR+l0+ny1FPPsrq6SpZbZnft5tY776S/vcLXHz2NiTQzu/bz9rdpXjj9Ek++dIlHHnmMGyr7mNWL7L9tkdabXs+P/Mev8tWnv8wNd53g5kO3Ue00+Ru3vJ7NqQsoGVKrVbn55C3kWc7Djz5KalKWFmbZWt0gKQz1sEGzUmcmrDEVBuyJJE9fQyYvPRaURAFZnuPsyKxO4G0GBHbkqu3KxlPZEeVln6O1/lrwec8OlSspy6nBRFd+3BXGJ0OB1r7pE0oqUZ0oqiGEZHZqnq32Jq87cC+FaFIpGgwuneP7GsfYP7eITiKaKQR5Qo5hOD/Fwu4D2G5C/+oaMosIKyFagOptYjYttvMcT8Vw5E23snDiEFtdEJ9ZpFCr3Phf38XyIxVIC2S+jrq0TJP9sKuBW9sAIoLYUO1qKqc7mPmneOOb7iFfe4rt5RVefHKFpaN1fuCN9/L06Q4XOwlGVTi8d5r5YDePX465evECM4sVpuffAvFhkoFiSl2g6lIa0R56zQqiSKloRdYe8thDj5Ou97n9rpMUhw9hmwvYtS6VzlUaPUWQZcggxqgAEdRQYUQ9XuA9972HT379U3T6HZy1FKZgmA1xzowncaMTsjOZ9vt/mRjbHckxAiUm/ibOTRJlVx5vojDkp3+FKQhkOFHLGnXJpSinDLYk0DPukPsEXQFqnOiPGfEjsrCQCLXjfZfv7xp1ox3TgLEhY5lgK9T4eVIIJurAYpxYI5xvMJREZiG8/LR1dtzJHy1EYwEAwJTEa/80/3f6x0Ahx+9ZKeUnG7mfynn+/6TrPypMvFmlf59KyLJAKF9iTCPYIUAgRoXLyxjaf05cLw6+5eFwbghsg0tBzJYX0Hq5KdVxokVuFYGsIlQBxmDaXdx2jl5q+eLAhdhODv2E/NyA5MUeat8CrrC0H9+keTCksreKSQOSZzJ2z1eQeVAaLYErgBxcWraFpAOp2Fzf5msPPclHf+ejNGZrVOZh7tAhpqamcDhMYcrRlK86kRNZvb+yT3ScLXiEFNYxHOY0G1W6L21x9dQ67UhSP9kgfiFFHxaYLVADh+gPCNpXaIU1ulgGszFIqFYz5mqWYS/n4qlnmdtzC66xxdezFfrrgpvjO7nv9RW2nruPsH4W0ymITYba0yI4Mgtf/APQAYIK7uolhMmIbtzPsakFLn3ieWonj3Db7uNstwSplkzN1zlzfovbb76Lz3zqSdrL29xxi+JNb1hk9VLMJ597jEo9plXLmZ3Zgwr3c/rZTXbLZVr1JYKpg1xQLSpCs2AVp19c48+eOcXtx2+jMjdPGtXo93PY2KQxHJBcjCnWBFrsxlRCbK2KmJ9BnZxmeCaFmkLVBTKUqIocwzqux1+/EFJOun1KjjcUY+0EziO8c7GXgx4l4KNk22/oUvrOuiu78KNu/lhhpOz/y1J9ZLxniVI+dbTBlV+sMddcls56TX4hpYc3lDv52MRorKoDOK+EJHEgS1Ur/GuMhhOjv4vynfkkR4w3VqWU7/SNTdr8k1Q50VBSEMchR48ucPLEAW6+eY7HH3+MZ599ig9+4J1E0RQf+tBH+MNPfJbO0HH+whpvfO97ePRf/9+8+KWHmWlVOHTsnbz+dXv5zCc/SXIlZ/mRx9gzpViYPog4HFMkBe+77X0sGMEb3/8e5vQBhk8lzM1GPHN2jZM33UZtts6JG28iHSbccevtdHtbVGPJ+uUNlGww31hgtlZHkDJdC8iyAWnhYTt65E4eBAglKJylKMRYmUqUbtW21JVy5eftBa6sR6zKMhFR5YTAUHZoRwWjBFcCMHYUXqPz6J+k0EoTRjG1ehPnLHMzu1mY200UBczP7OWxRz7HD974ABtJg5WNZbovPc9rDt5PbnrM2IjqUCO3B0Q2pRJX6V42DBfrYA3zrRSlMnqbPdpnLrBr6RZsc4PnNreY7e7lppOHmLq/Ref8vQSVFynWBzQDgzyyhM4a8PgXEEqDPAZnXoR9c0wdqVNZa7DyydPU7zzO/QeOcz50XK2FtGohly93uevEIv/h984j2x3e+e5ZbrhhgYsXHJ9+8Ummphq0Kpb5+aP0htOsXl5hl1ql2dhHMHWQs67CgSBG9Pqcev4KX33uNLccuZmjd97KGVXH9HJa6YDdjZBGd4aGjnFBTKFCiihiGDu29BYfvO8n2cy2ubp5mbXNq6xtr5NkKaIs9q7tXk8gMiNpYuFBX2PTslFRN7mvfaItgcKUXXnh5d6lv7G9ql051bN2YpRojc8zCmNGCwm4SUGvSzijMYailFj3r+mhOKN705UQo9Gk0ifNkwTfjVS4mJipAaUHjgE7KRDcuOgZLyU7ip1RoStwxo3XpR3zyHGRU9bG4+fYEr4oSkgUMJ5YKKnGBdioMDDGTNbD8j2M1qZRgTJSJButx+PphRPlhEXwsuHEnxvXi4NvaTicy8A9B/Yr4Lqgf6F87BRQQYiDWFehnfVZiKogHZ0v/SnDRx8hnNLM/q33IFpLuN4ZBl88Bc8sQz9ALpxEN28j38xZ21wn2tLEg1lcpY46vY2u5RQPDRD3V6HhpR3JHfZqgoxyxGwT5+ChB5/gYx/5LJ3tnLTY5s5f+G84dtMJwihk2O/T72wTxjFRHBNXKpO/zE3gAN/uGFEmnIUsMaSZxYoYYwVioc7s+oDg/AqP/faT3LN0A+bsMkE8iw3qpIXAZFXC02voWLE8q9j3fTM0w5Tus+d45AuP8uCFFX7jZ95KfPA4eysaZ8CkliB2zP3cHuyVRbafvoCak9Tu3kW6lqPnqohsCF88C90NOFZDNDOyz/wxS4em0dO3U3z09zj54ikO3bLIrp+9myK4zD/5yB8xeGEVNciZNou00ph//W8fQ7kWaQavf+BOZuYbrF0+T3puQK82z3bcI6o3UTJmOivon7nMb/3Tf0Va5DzwwEHOVKYZ9g2t7goH1i6wKzhAc6aHyCpkroaJK2TTFdJdERGK+rSk83yCdDnxbk3txuZ4pDxa43YaxexY965PFr4HQytv2Dg6t95k0m/g1jpGu8tIk9+5UVfKFxUjaUIh/SaslMf6T7qEpevZGC/r2HlxTfZWV3bvy+93bJTOTbrUIz/VUWKwc0Kx81p1rkxnSmnWEaZ5dJwRvKUELPkUVZUmD8Kh1CghwHc6rQPjxn9/GCgOHZrlV375Tbz2+xc4/eyL/Le/+Avs2j3Lj79vlii6hcOHF3jfT/wIb3n3u2mhCQLHiScex5w5TT1JsMk2QTzHL/zMu2g+3qFytk2ydZUiaiH0Cdrn25w7e54fvvktVPUc2fk+4rkuccPy7uPv5Ed/7r0QKFxhKQYZ99x0F19/8iF+7V/8FtXaFPtn70IjSbNNkILnt9Z5avkswllmaxVCJUkLgxaC3OakSYGzbuyaPbaicg5pRel9A2AxJfRqdFbHSaP0pn/j/cJfDOOJAfikSCmF0hohFMpRepdE3HbHXaytrXD86Ku4757XcfDwYbaGKXFDUTm4m2Orhl2uSd7RzIQOdeYKumIwUZ0005A5ghc2iSqKF1eHnHzDPqLNNpceP81jXz3Fk9s9fuNvvwP2/gzvDxU2c7gcoinJ3M8uYS/vYeMrz1O/cw+i1SRfdqiZGPIhfPJF6HcRxxcwxQrumS+zdHAG3bqT/Lf/Ca9NVgkfOEbrrQfoFFf5Z7//B6iLV5HGsaSadC4kfOxTjyFdg04G737vaykY0l4+T3Ixo1OfoR33iZpT1IuQ6TTh8c9/jQ//3idwSvD2dx3jIT2LIWf31jJ7210WmkeYCwzucp2hqGFadXqxoxMNiZsRHTJ+/L6fQpPye1/4XT795J+U96tEsWP6U07VdrBA/BRIeB6QcGKcXDvKtQGBUqIs1ndAjsamfiC156gEgecijaYASinyLB8n72MPDzwEyDjrrxGlxlON3HqPKGssSk/S2dGUYXRcO4LgMML1e7jTGIZUrg/OjgYRblI4iBHUzYynEKPCZpSIWzuarkymHAiQ+DXSOjeeltqyIFAlPM+vacJ7ZAm/VmYlt2L0+Yxei9F7UqJsqkwKH2vNeD3162M5XUGUn9toSvfNIT+uFwffsvCbhk0/DvYrCLWJQEL2d3HbCUQ3IsIaTp1HqZtZCBfxjkma5lvfiosCup/9BMU//3/Z86u/imgeR7Q/hSp6qIUb0EcX6V/JkHbAsV0COdwEEaBQRPoSQXU/+mSIqPjOmOk4sosWezGn/gMNr62uBHcdvhP92og/evDfkFViPvIvfpdf+o3/ntmFOV58/DE+9/v/jqjRpLF3Hz/ykz9NVKlcM3b8duaG4/GjBWMdRe4Ydh0yFsgMVtoG9s4TTE8TL+zm0jnHH5/6OjfqiH1zNXS9jsEytEM0jp6N2dN5kkr3JrJ9M1ydk3zx6vP85j/6h6gTcwhddgtshskHpOs52//b59n9a29n+tVN0gsb5Kd71G8/yhX5wyy+LoBPfMy792Yh4soF4moN7n8X9ulP0u9cJD4iadwYE0wpuJiw8qnneN1r9vCWd72eq8vbfOiXv8Cuyizzb/9Zlr/2b5haeDOnn3mCta//PvccWuCJ3l3sWboXF7eon7/K6uNf5umvfo7tNOHtd7yN84fv4Uo3IHrpBfaKhL033825r77AsXCeotXABpqkGTGcClGRQ3Zhc05Sa0XYNqSZIEgsQaXs7o06LWIEOfhLnPGXt2Wvx3d0jDYXrfW4S5fnOUDJM1BlIeC80ZyYkH8NjImHcoRFKo9qy6Rw9NjodUYJ5dgx2U06ysK5HY7MfpKBc1jhJxzgD2mMJdTqmsmGtTtwt27yuNwBF5ronItxYSBH35SPl++EEVZ+VOz4hLbEESNo1jX/6v94gENHegjWuPFVggc/fT9mY532xoOE4iJvesOtIG7A2JSiEAgqzP3cz7P6od9i6ysPUXRWmP3bv0Rj3xvg438fkr1UDr+KbHaB4fkMt5JxdLbHYOMidiNEtC0q6VI9cgPBbREu8AVS73JG/7k+V59d4wuXn+Rjv/MxjIYzf7rNl7/wWZ544SsMlSSmwaPZC2jpuGG6yaHZKYzSbEnJf/raUxSFJQo11jnyokwOpQAhccKViaM/m5Ly3NlRMjRKHH2iL+SEbwKTIk6UeGuhFEIqlA7QOkQpjVaSTt/Rmj/Knn03s7R0A/sO7eUGEXPzrXdS5Dni0oCtR69y5gsv0T59ipONKgeX5hBakZsh1g4RMqbvJPs3H0H0X0c6V+H5oMey3OZ/+pWfQx5rja8l54bkg4TB5T7d336YpX/2Hub1FIOzy0g7TbhnN2vRe9h9fwC/+2/B1mC7jRq2iaYXEPe8C/vIR+gU28zcERCejJAVgXihz9VPnOadbzvAD//4G/nYRx7iiYfOsjh7hOnv/ykufvW3ae19L5/+8P/OrvwSi7N7eSm9ld17X40Na8y8cJav/9kf8tUnn0GEEQ/c8gZeOnIv2ysw9+zX2D+/QC1e5IWHX6IaHUDvWqRQgu5shbwlaVSbzGroxgmnzr7AbQcPM794A/MXX6SXDrAGbHkPinLiZ6wteQaA8xwAs+P8SSmQo8eE/16U0yRJCTWS0n+vFEor5Oh8A0rqMUlXKYX8/9h78yBJrvu+8/Pey6Oyrq6uvq/p6blnMJgZ3CdB4qBEChRvUVxLJNderVYWN8LWhlYSbSkkr7SHj5VCG7LlDW+YtiTqJmFSskiJJAACBkACg3MGg7mn5+r7qK4zK4/39o/MrK4BKYmhhXVs4CHQ011dXVWZ+fJ3fH/f3/enRDL92ZDsr35qYxyhtcHvdnsxiJISnSLqJmM39K3Mdugo6jUS9yP+mU3q+bneJ9umUfeDDVnwn/RMpaINN6BlpPs87c9KE2RbKsIoIoqj3vtlt45UKqnE9SUhGT9T98AWUMq6EezoC/J7M01IEgxk0ifSP+QwjpNEQ8g+oO8vWN/VnIPHHnuMD3zgA3/5q7290pUiUdGLmODrmPg0QjYSyhBgAtArDjocgOIIzsQcRjwMVMnKd/VvPUHja49RzDkM/IP3o8MK8TOvwZUrCG8cM/0wwfPXkW4eJerIAweJunnCq1uI1gbenlHUO0fAzqPnoXWmS7sZMvrDFfRygBy1MYEBG4ytCf0uYUvzL3713/GDn3ovL37jSeIo4J6H38XeQwcxCGzHuUH9Q6Zo0l/fGU1KdkFk8JuaZk2z3jBYjmFoUGBbkm4saMXQNYZ8N+KFX7vM+de/xbuKITsGh/FKVbSStDYhGrUoVK5y/NIW+ub9HPzwHewsJEPsUAIhDMGplzDdOs7RY6Dz6K1F2r/8q+Q+9ABy3ENvbiDsOeTsXaz+5NepTOSwpIHOMugl2HMPxt0irn+dtddexbm5SOmRW2mXbuef/fNf5Rf+pw/jVY8hogZaO8TWDEa4/OZv/Qsi9SDXrz3Fer1JK5Aop8N933cfj975Qf7wj85Tvvoa64uXOb20SdWyuf8XPsOpCz6sNjg2LSiLNhdOrHDfwcO0T9gM3lRga1EjcpLitEVuQEDeQktB7bUmq5cXubJ6ictb5wk7y5Q9xac+8+MMjg4jVYIjfNv1/m4uf7+NeTtB+Fu55ufn2bVrFwClYqmHjIkUJQyCACGSkjeQDJ9L/9NogjDolcczyhCkDXo9tF/3Ko49LnGPB5w9V+CHURqAp0lGSmXc5i6/OfBP/t62EvpTf3KRrcx5ZgFNcgjbn5F+J5uuXhAhEqqLZWUYaoJk5vMerpsDIch7OX71V76Hm/askcvVkVYXIQ0YgQk1weUQP3RwxnbjDN+G5i6gmjQ9asPy5/4vwteewR3Oo97/Ls689BpH6hPYq8vUrANEZjelmkTjIIJl7AfeQbigiRc2kLpD/tAY7iMTaFy6L0dsvNTg+NmXeE0f50f/4X/H6ZVz3Hr0Fr765FcZnxpl/4H9zJ9d4Bd+/t9ybfk4u6sFdNxmubHB9XoNpKTTDXHSBlMNRFoTpmo2SllEUdRnD5JrldBFMmpQ70SSNalL6OOUpxzxlJuevZZSFm4uT6FYZu/evQxP7OZ9Dz3KyMgcsciRyyumRh3cnEWjY+jIhKMtVrqc+K1rnHn5WT4yCsPDO7ALBWIj6DQhGlYUq/P82WtbTH/8QfbcsYPxgsZxbYSSgMZ/7quoiVGsmV0QW+itJZq/+L9R+ulPoTvLGF8ivN2IgQOs/pMnGN5TQgQRtC5AQcH0QYxTI679GYvPv0jlw7vwbrmX8+t5fvsPHuOn/8f34VbuAP86sRjHWKPU6lt88UufJVIPc+niF9ho5fCjDtUxjzvfdRePHHsvn/3dU+xaOc6Jy9fZ2GozPjnB0R/7Ed646COXt3josM3KpWXaywF7q1PoiwUa3iZONIo7KShN2rhlxcrWFs8/f4oD1m7WrlznjcVTLDcvIdnEMV3OLL7BuY0VwlgThCFBFKYVtrR3SKmEBpTGAUkjrehRdKyM4pdiANqA6zhJFcixcVwXpSy8fB4dJgMqs6okUtBqtQjDkG632wvAHcchn8+jtabjt4mjeLvKJ5JkIqPPZHYrS3AyalKUJhAZPdBA732zZuCsSbcnziC2S+dJ0L6N4L+5eoBJ6FhZNVVm/TTp+6q0STnW8Q0ARlbx7L9djDY9n6n73j99s7RRO02y0+NUGV0vM6a9gCl5fu+8pCcnDEPafif7/N/RKb9dOXirlzGAD8YH4SOUgcBgOl3Ih4BGKAs5lIN2m25jnfrJAYYOngQ5B3IEIUIKs5rwmMeFr9e51SkRnFohMrMgu9DRmPYmas5Gdcpos4ZobCKbHex2HcMm6o5Z8B2iL8zzzROnMXtK3P337oGOQeYV0kszbm2QRqDKeZyc5tM/+Um26j5hF4KOz/WLl5i/cJGbjh3lj3/zc1jlErfffy83HT2G27fh3uokQWvN1tYWaysrNFst9u7bh+u6CUoYCXRswBI4gyJJFmJDpxODlOSsZFqy8Gzu/dEdjH4tzxuvXed6fZ4d0TyTo7sQ05Jme56tNcOO4Wla19ZY+90/Yd+nvw+s5Lj8bowcH8VqrmDmfwMx8yHkQBHvB4YRhWcRlJFuEX3qHFz6MtV//Gmix54hLruonANrAtovoxcuYKYgP1JGjd1GR97E6unj/MSnj1Ievy8xYqaMjhVWFAGbfPQjn8CISf7NfxTUrz6HyG8wfcctHNg/yRNf+BwDnRHO1VZZDxoM7Spw5wN3sbgSMSIaDO51sVsd/JbDwNxhFpp5StNdOkELZ6eHsAy+8Vldlpx6Y5OiPsml+Xn8ZouWX6fWXSefg/e8/3sJfZ84ipBpUNjXov5dXfNM4UT0jPZ3LmnqWGPilG6igVijis7/12309vorLK01UkmUVD0VjCSI1X2IliGMQmylCKKwVyIXIlX5wRDHEVFkSFkAvbUdf6c0g4yqIwSRNmllYluNI/mbpPIg+/4uS1wSZyl7VIPkdzfmpIakaXL78W8HxW5oqCZx8NtPTZKenGsTxUljnxCSHTum+fCH3se9997B1MQCtnoc43fQ0kflBAiDUBb2ZAVR91m7dIHO+S0G99UpDtyFsHYgRZvBO/IsbHosXewy5mvs12uEe78XrV+gfm2NdqAJixUGh/cTxz5qeRW1bpCdTeSwQd7qYRqK8HNn+ZPXXuXVhZeZPDbJj/z3/4DSYJmv/MaXObT/AA+84z5yAx5eOc94GDC/+Qrlys3k7E0sS2IrwUC+SKPdYXi0QFMYFupbNLud5N5XkjCKiXqytf33cl8yR1LdzXjq2Tk0WVRnEupIrGMsaZFzHIYqFTzXJdYxHb9L2YGPf+yj7Nl3BEsXaMUQWRGikCNA0tmKQUkqVqIcxYTHvT86x8ifFnj65Svs2DzPDioMVscxZU2zfYnaChzbuYf1J47T9JdxPnAXqOQ6+36MtXsnsvUCZukkYvRdyEqRwidGIPwi0htDb4G5eAKZsxn6qR8j+Owf4xyYQrRy0K5hGsfRjSuYaYvS6CDW+LvZrAmc9gV+7EeOUhy5H4TG2LtQoY3RLYZKXT76kR/CiCl+/v+s0dh4iuLcINO37mVmsszXP/+bTEbjfGt1Fd/qMHv7JLuP3sLKWsS4bDB0uEBndQvljOJNF9kKbOzxJhWviKkqHBu6GBavR5w66bP1+gX+1H8J3Q3Y6m4QyhalAgwNOOx0dnKlXcNvNBFoXCUJetLnKZ0sq6il9ywk9lsbQ862ydl2otwlEtoZadXAsmxc26VSHeQHPvpR7rrjTrROpj2fPXuW3/vC73Pl2lWCoAvaEIQBhqR5udVqYVkK30+qBrZlIaWVIvlkmULv3u1nJmY2JjMM/fz+uCd9Cm9GFDLYol+ZKFsZTSrb/7GOoa8lgB5I8iZsjAyoSKppSlnbvRcmpRDJ1B+yDVBkdjiThO0dZPoGsdaotF9Ix6mP7asa3AB69H39i9bbycFbtkx6MWLolarHQQwhLAeiCFod8BRYGuF0kEgsA7bZYPHVy0wc6QDTQIgqOxR23sHw6OvEx18lfmON5WVFqZKn6OWIFy9gzd6BZBlRHkV2DMbUEOU2DJcG42q1AAAgAElEQVSh66HPxnzlxVfwNtvsPjiEXbGgpcEFPV+DkpfwUzPpOgVV32OzXcdVNlGkaW1uUhwd4/jjT7DvyM1cvnaNrc0a66ur5PN5BgYHEyf65wR9f9UVBAEvHn+Bk6+9Rrvd5umnSpjIMDVQ5q5HvpdydRwrBuUbckA3AJeEhhCHmtiA0FCqOuy9f4TCpMv1Ey7nr22w0u1SLCrmbt9J/coWjdU67aXLFNohJnwXwh5I0EElEKUhhB7ALC9D+CTCPYzaGaNrm5hgDWF5yHFJ+yvXKNz3EuLhGfzTF6Fdx5sbxkTzhBfm6eYnce56CHv/EeLBIapSMTTdBvk6xC10t47u+JgwQrkRQ4O7wfi875FdGNXk7JXX8bbWuPq8x+nT88TRCrVWm/xAgakDcxR27GV9VVC0JHktMKFNJC0oFbi+0OTIXB6Bwg/brK34LC+0WFlbY3VhiUJui3p3A6Vi8sOS4eokUwfn2HPbUVyvkJT9jaG+tcWlc+c5cvttaQn2TajGDbeDSe2t6f2cPvlNTzNEfpQYQjJjCEiBDhNFrUze8O3117My1CsryUshsSwbHaeoV+rcMmk+JWRvfoFIlX+E1om0qdjeI1mJ26QUlEymMvNT/WpDGasnI7IZEhuVOdZsZahmUk3oU0DK4peM1tIn3Ze9RvaIfhPVSdCHCPat7EelBJ6X49ixozzyyEM88shDTE6NsbjQZLDk4iqFiCNMJ0rmzSiDzPkoE1EYsegu1Ln6zec4+EgRo0OMbiCHpvAm9lO+cpbi2WvQhcUTL1KwGzjSwi4MoIaH6frnkZMjSO1j9BZmMILJQUQnR3wy5vee+iY7pcWDD9/J8AO7GJsaJdQBd47sxWiNwkYKCyEk5VKRT9z/fp5+/QpFlcOWXaQIiWJNpWSz0m5TqJQYkkXygUO747PRaKFUgm4KQRqQZBWjRG1m+z7ugxJEooGRpnop3UImFxUo5j0qlQFsJRPpbNvClQ6rp07y0IMPEwQWdkvT1RLPsQhiQU4ZhJKEUTK7xpaS4ojL/ofGyE06XHvB4o12h2LQpVxSzNy0i9rFTTZXVgmunoY5jYmOIKwSmYStqkyAb2E6ZyFSCGcvardAb6wANWTRJfYiOi9ukb//JXj0MK0TL+LmXeyRAqY1Tzh/Gb8wjffeD2PtOEqeAHdwgIExH8RrEDcxnU10OwQTYeUUQ4OzYAI+/oFj/NaX1jAsI5ZXudKIOXv6MnG8RrPdZGzHKKP79pIbn0VsCgqWxIsFQeRivCIRLhuBz559RXLKot5pML8QsLrSYHVlnbWFRbRfZyvcJF+UjM4UGJgcpzQ6wOKZN6ht1LBdD9NoUvEKFByXy5trcEPzcKYuJZKHTbIPEua8SdDxFJG3lMIgsS0Hx3aZnpnhk5/4JPv3H2D3rjlWV9fIex6jY6MMjQ2xsrrGb37uN1hggXqjThAExOmMC9FnJ7QxCBNjTFLFC6Mo7VVIt1sqcqD7/E6vxpXGKjcoGpnt+11KeYOQQbaU2gYL+um1UiQzVkRfctKjVqazVTIVrixpsaTCtpKKVU+JSKeVWB2jhUhFDtR2hQLTq3bItIrbE4LoHVPWZ2Cg56PTxuY+MZnvxp2+nRy8hSu5SDFJi5wNjCDkboy1As4mtFrQTrj+uAaUjV0A1Br1FcXC9S6jYx2UdECWccoTjE5cpvbE8wQ1H+2DLO3FcseRfguxvoQcs0GVod0B2UGUDGKiCuuSpWefpd1osefQNDtumu5lntEby0jPRXhuMiMhlknWayA8cwkt2hQsi/zICBMzOxie3cHr62scu+9e8qdP47gO7WaDrt+hUCwmfMDMSryFXQhKKvL5AnEc883nnmFtaYO5agWvPMyh2+6gODBCXho0go4m6RGIDVEMsQYRQ3ctZnDEYm6ggvAcrg9WCJrLLNVbVHIu5V2DNIMWwXIX1agRnH4V95ZkGFRSbbQxuREozUH4OrhFjOdBx4FwHUQDMVjBEBCffQp14IcxNQ+zGmN27kR0W+jTBr84Re6mu7EmJ7EQWEUP5KsQvwxxHaJlhG6SoW80r4Nc4tb9t9EIprA8QXPlLC+fOctWK0BiyFVHmdg7w8zenTjWCF43olhwcWJJaNs0LZuOgcqQIDfk0lzrMn/pCtfmN1lZ9mm1G3jWOtrOUykNUqpYVEeLDM8MM7h7Flmu4Dhub4jN2uoa3/jq44Rac+vtt/eCxxvgVkgSgz6jGoYhp199lcO33bZdQUhuGHSsE0WsTAMaMCItCWcBnRYY+bdHPvf/70spldA9skBfsk2vMdtcXCtt+LMsq8dRzmyASOk7yXNlXyqZOlHSa2y2k8Ieyty3RN/zkamvTtHnjJ7U7/R7/GHRX4qnjzaUPJSghtvI3o3bN21GNKmYquhDEU1yPmzb4uabD/Pww48wPTOL1hGxHgJ5EKFCRBRBdxPTDpLAygNpS4rDFnGoqa9sMn/hBLM7m8QRGDGGVx1Fli4SHT+L1YwQ/gnkzAiF8REUNqFoEw7EKLuEaHcxsokYLCCrA+iliOWvP4Efxux/5BAjH9iP2Fkh2vCJL61w7+13Y1sWURgTBzE61LhC8ejOPaxeWUbGNptdQy0IaYUhUlms+m3oOhRLOUrkaDZt2kGIH8WYlBctSK6ZFGCy/dJDcUXPFvRTHjLaRO956Tn3u118DJYtKZTyxG048eJL3PLySWb2HaBSKhFHCmMEvgHpKIiTyrHRhshANzAMjVvsGxgmFA61xVXazQ3afkDJcynvrbJR36RrfLqr1wkvnsE5eCsAljKgXExhBtQyhG+A7WDyJUzLQrAJnosoJ4i/PvME1h0/jp63iCvDWKM52Kqj5w1+aYbSbQ+gvCJ5NIY8iFMQnQC9hQmvgQkRwiCMBc3LIJd4x633cW3zEGfPe2xevcpy7QKNdoBEU57YwczBnYxOzeHIQfLdiFLBxQkk7XyZhnDQCKrDiuJEgcZyh4vnLnF1vs36ehu/U8cWm9hVjxF7lKFJl+p4kcEdozjVATbaPtdeuUSoQUiF53oMFEpUwoDNVhOZBtt9aXbvPksSxAT5tmyHoVKRWrtNuVwhiCKU5bBr924eeffDvPc976XbDdA63QsCRsZGmZqZwve7bG5u8Aef/wM6focwCBOevLWN+Cf3qEbH6a0ttymI2w3B25+r3xdlgFW2N3v+K7VZJgWmEqGCOIO/eq8n0x6D3lkwYDLaXJo09Oa6JH/Za7Y3xiB1krRk/VyJ3aRn+7YlVbfViXoSqYa0eVuDSsEbI25UlzLbnKKMtpT1VfRHZ99eN/329XZy8Jatbe8ihKKHf8mbwNYI0QEToFdXINCYskG4GqFibDdk8pDg2RdtXN2iVBpDCTCdDkLUuH78Ms5EgamZMl4hQOQdVHmC+OQLyDs/gT5zHXQErgO2jdAF0CGXXvp/eO/0f0vpwaOI+4ZBQLwW4z9+kfwP3o4RChEZQGN8AUIjNs6Ts4uMDlaozE2y97ajdGqb3P7gg3RaLcYnxonjiE6nhd/uUBmsMlCpJBMxjeDNzv2vunK5HO966CHe+eCDrK6u0GzXaTdfZKnV5LlvPIdQAxy+s4Jn25gYtBbEmf6wBkskAeXV6xFECrcomTyQY2q2SmfR4uQTl3nt5cvcdv80wwdm8P0mm2eXafznL+EeOYiQRYwJwYSQKyMm7oXmRYxZBTWNKDcgjohbPp3FBrkDNtHzF5A7rpPbM0U8WUSXqyjtoeeeRd58N6I6luSNpougmyQbpgPxFtLqgpNUb0zsw/o8xm6ArvPOm99JtXw7//p3c1y79gdMTMwyNVilfPgOJnZPMjrgIOoWhXaT8lAeFUvaOYdGKNG+4ejBYRp1zZkTV3jtxRPU1tdwnBzF4UnGR3filixyecHwjhJDUyPkSlU22j5nGytMVUs4dtJotnB9gReOv0jD73D01luwZN8U7r7VK8Omj7eaTX7/33+W4YkpRkZHsGwr5UxCHG5r4JttUDqRj4PkfMWpPuKNt9nb67/SykrY2zQbTRxr4jhKAv1elJ98kZl/zcj/6e8yx5z9Pu1px0qduUxpCVkQL7PAkT7p5L69lUmJbicZyRejNVl5IUtKsgShP2HYBhHT/dYXVGQNglr3yQD2b+1eoJEmtLHBdfMUS2WESBopJyd3g6kiZDp40pzDbKxjuhqqMdgWQoRUxvPYxQpfefwiRbOCciZxVYgSm0jVZeGlKzgzFeb2DmGPT2BKe4i3wLp2CW59N9aZZTAWobCwrBLSFGitrnLhG7/Gp+74BdwfPIacyxO1YoLLLTY/f5Lhn3iY2IpxZJL0RM0QfJ9C6yIP7J3hW/M1rm91qHUDHGCh08axbZqBz6idJ+86WJZFM4hYazYTRZ847p2v7LxrLbanrfeQ3hTtTa9RP30r42hvNZs0/Q5SQmWgRLHkIQuChVaLP/rcf+K9n/gkuw7sx3MkUaiJjSCWAhEIbCFAQRAYFpcjZGRhlyQH7ipg6pKNiw7nXrzOay/Nc/fDO5k6sodTmwtsXpmn9dTXcPbNImQJo7tgAqjMIcIu+I9jWANrF7KSSI8HK13CRht3ThI+ew730AL5W24GewTjWVC2iOdOII/dj8iVQQRAjDB1iE4n9j6qodwY8sm9ZcImptYGuwF0+G8efj//yR3mS38qWVv8BmPj08xWhyjd+SDTsyUGLZe4Jil0AsojHjJUrOdd6i3DkC04MFWgWdeceuUizz/zCnHXx8kPUKpWGaoOYCxNqSwZ3TuAKhYwdp5uJBgY30+t+QTtQODmCgjHJVaK6sAg640aStCj+yX/JxfYtiQKgR8mWlbFfJ5DM7O8Mn+ZsZExQh1isLn7rnv46Ec+im3b+G0fv9OlWqkmg9NMQhXOeTk+/Q9/nKf/y9NsbtYIgwhjgt7k4GRDJXsqm7WSxNB9CekNsViaMhh6s1iyFxFSYJFUqhCp9C70BeJpkJ32JJl0incmogAk04719hTjN6sckSYHtrLTnoQEMLGshGaV2bpYRz1wJancql4i0OvzNKIvLdkO+NOftil9OvlcWeLT66HQvZGTverPX7TeTg7ewpUM+HAwJplIKVAgPOAmsIYgN4gceZ7o+jrh+Q6i2MEaEciiD+2Ye496PPf7W+y4uUO14BKfrdN8bp2uLHHwk3dhDw5D6U5oz8JiF/X378UsBIjWAmLfYYw1gFnvYloR4rDNoUDhXX4NnpgAu4w5oIi/3MH70M2wrJPN4iYO2cQa4Wicm29hdqTIrmqZSAiWzl/iyV/7dcz0GFeuXiYgIj80jJMvIjC4XpHywMB3ihH/iivd+n2OfHR0lH/6sz/Pv/vsL/HK02+w89AMNZ3nyeNNxkpFjt1s025CAYFjSaSdOKC4q5nZZdM620XnJNKLURbkh8rc8/f2ceHpJR778jWO3T7KwFie0rmY9oUrxJufRVbel5QedBdMlATzzgzES2CNYewpsMbYWqhx/LH/zG22Q/WHZhH5CKsYYBkDdgGtZ7l0cp2D3zuA7dnE8RI6WsJ2LGJ/DWnF4PtgmgjZxlgGbAtTEuBHGLMOpo6ki4uPa9u886MfRDSXmBkp4uZCapsN1uYF43smibuaVWPjYzE5KDkyCC6S3/jqKk//yVeYsCIq+QIyV0CVbPLlAis6wJWSsKtYvNqm1mjSqNXpXHkdITU5TzE0WEDEPrNzM3zmF35uG5XtC+Ayw2uMIY7CFNGBTqfDeifk//jML/FP/vefY2RsJJ1ImUzUjDpxKkUnQaVIrTYpCtJHKRHbRvnv5DLf6dvvjOHcIB37N7C00ZjY9AKBJPhTaYKQocLJc+MooRpkjitpPhW9JkBBquyRsYhk2sqc7heVJhKxhqjP6fWcYupQFX38dcMNSGIUJs/NlIQyHoIxpNWqLEhIGhfjhAfQh9ZlCHZa8Ui9bU8piWRfR3HS39Bud/jCFx6j0+nwsz/3cwgktl1IVJ3kAyAnEeJZjHiV+OpVghNtrAmJVVUIOyBPyAcenuZr//Yqh95t0BsXiV/ZovNKiyg/wuH/4T5kaQwx8D2YBQ/ZjVDvFHCpgS1OEt12P+vPX8etW9hyk/OLpzniFnCuvID441l41AVf0/p6m2euX+EDl0KsHRZCQtSI8P0WYdik/J73clvV5f/+n79OUyhuHtvNwbLL9fo6LRmj8za1ThdQ5PM5xkdc2uFlwigkTPQ1ehxr4E2Nj9n9mwUoGT0iWZm9sCyFkaKHwLbabda3Vnjw3Qe5fqKNyYd8840681tN5sbL7NutCH3FQCix3fQdYkNOgL3DonkupDAg6boxrlIM7x5iaC7P/LeW+Q9/cIX3vncXhWoO90KbzqWTlGu/ldh70wbTTZvtu2CPgl4GNYNxZoF9XDt/ioWvHOdQwaX68SqIAGdGgJQYa5CuGOfyqQ0Of6iKsCRhdx4pukixhfbXEZm9p45QAcYSSYm6KDF+BHoVaGMZcEVIqVzkwR/4IGbrGnunXAI6bCzVaddshneOEnU1K8YhFIoj04KdBYHfNnzhq2t87bE/5tBADtcrIvN5VNFBORbrKiZ0JbWNiMZSi1argV+rsX7mVaYnZvGHRyBYw9U+nWaNc/OXiHSUTj2nF4RLCcqSjAznsULNWt1gsEAoVhshN00fppvzuePobXS6mtW1Nb7w+cf41A9/km6zTb5cwHatnuJQpxuQK7hIITl27Bitdptr167RbDQIo6inMpYF8dltbkiKc324RB99RvSoRzprfO4LVAykUqsJlVLrpEeuVz3c5jKlQx+z0Hy7ctAjPqYVSimSiciWZaOkSud+JJOaLen2lLuUrUAnE6rDKCCKoiQhwPQSE2PS4XDpa9rKQseZDYuTREIISIfLqZQOmlVx4lj3EoE41mmvlGDbcv756+3k4C1fAojBWOlutdPH8qA+BN6dqLk/xdinWD27wsbLHYwdcuhdCmGvcc8njxCd72KCWRgdIu7+NvuP3oV90z+C2INIJC9ZDOHKKkLXEI/cj35+FXP1GhQ95LEq0Z+epN41FOKn4NkhzMkS2i1C62Var5QpffoWzFIMToi2YnQT7GMlxPgkQhrWlhu8/OTTfPOPHiMOAzpXr2HZIQ1Lsbq1RWiSJuC63+Wmo0f+K8UxmYZwstHf89BOHr2nyNpmnnrUoSs7aJHj9IrFoIJ1IbDSwc9KSsbygiIwfkeO9esx7U1NN4gI7ZDRATj4fbuYe+c4p2sR1/0AOTFHPbrKyOefw/24RLghvWYMBMgOGJ2UhtUMJhikMjHJAz97N1/40U/zg7PvR3rDIMYhDiF4A2Mm2fvO3ejWJeJiDuWNIPBobbyEagus8BKq7EPkY0SMEBbYRcDGGAc6kji8QEkF3HIgx+oZj6rnsGNknJOvnmVxLaAwOMn+QwfZqrUQhRxDZUPZgyFPYinBV9/o8IU/fBzdWMauDlKsVCkXh6j5Taz1FeyywjJDXHxji1qzhZuLmZgYRuwaZ9JuMzk9zdzsHBMjoxhMygm2/xyaj6G5chaDg5Ov0PZjTp18na3NLerrbX7v13+HRz/2KLN7dqFDQxyl/d8hxJZGOAah0oDOAiKSIeJx2sej/g4nB9naZt8kpiIwyVTqgsA0NcKTf6OWuae+gd4OkDMXqLImZYjCiCgMUenU1CAKESQIfzLxx/Q5orQ3IJuv1+edevQeuEH7PgvItU744NsfsPel962tJBqwrCQ5iGOdzHpMt0ts0sZ4tisa2WcQShDH20lQj5Ykb9xrAohjgxQxURiwsbHG8vISRkcImdj7OFYYE2CpKaT1MSjcD3OPIc2zXDvZorGlKQw77LodZG6Th37iXtrPXuCFr15DznfZ542y78i9yJv+MaJtJ3TPaYNstWFxnZzTgo88ivryNSZqNuGUB6MWR64MsO4bKvWvwFcOYJ4VYDqU/Qt8T+UWrEEXPe9jSiEi0IhYE026lGcmyIuIdx79ftZPvQTNVa6tt/G1xsmFLDcDIiL8QBALCyMljWabKAiRMkno4nTIE4CVSrv2VxSsntpUchKzRk4lZW92hLIUtq1wlMIIgZezePTBEpPvn2NhYz91I8HpEliaC+sWVRdWY4MKASkp2IJqwTCAQN1rsXwxxt+KCE1A5MZUy5JDj+5m7p3jvLim2ajuZLC1wIg+weCXniH3gyT2XYjE3gsN0icZcvMSqD3ojmDnfe+hMHYrT/zyr/CRuQ+CNZAAf8EGhFtYtmLPO3YSrp/Gcg7j5PYQtK/hN+ZRHYMdXUJWfPB9jANC5YACBhuwoC2IopeYGhznwM4cJzZyVPMOO4cneeqp52jFeUYnZ5mYHqFRayELOSYqhooHI3lF0zc88cYWX/jDxzGNNVZzO5gbGUe4Npt+AyMbXFq6TmDlsZ0qyAAtAoStKN40hTx7iS1tcf30Kp2tTXQckM/naDTbxCRSwsk9LrAthWdLPvH9+1laqPHi6+sEcR7XKRN0Q5YaG9xx4Bgf/uDHqFZHyLlFvFwe7WuGCiOEcYAyCUgkpcFYmq31OgNDA/zUT/4UP/0zP8PVq1cT0CGV4HRdFykEUZTIK/eGpZE0CMtU5SyKYjJ8JaH5xNtUQ9NnftJvdLw9hyDWyeBXSV+1UX673zF9iYKS2/MXVGojbWVTcAvYwqbkDdAKm8yO7GDX9C5y5TzPnnyWf/nP/jn/+j/+G06eOsHG5gZBN2vCDpPj1FklIbF/YZaRkzRBi1j0fi+FTBqjs2NO77dslktm+6SUSC35y9bbycFbugSgMXGAUDJlvykwLkbbQAejh8D6YayZM4yNvky1+Qat5SVe+mLERPE61V15xGaZztUTNK8ZuoUDjL/zhxLOY8nANQ21GDHqw4QPbhVaa8h7RjCHljFbS1CtYn/4MCO/P4VVn05kNc1LCHsvMqzhOlOwGCFyEboZgwNq2EEUEn3c4EqXr/3253n+W/+FdmsdVxnsgk1pdJTpmSluuf8d7L3pZiBRMennjr7V5zPorNBYfZVw7TXClkaINgMDO8hFOZoNQ6MVURcxyhFYQNMImkZQi2BtC/YMQrgVcfMuC6sEGyuC9QXFt15Z5OjhDYqzVXZPeOx7137qu+C1f/840+sWcukU9oiPyFnJJEzCpERsDMQBInod5DjCHcMEPksVl1AewKKIEFvo9nXi9etQVVgzLo0Xv0L5/jFwc7Svn+LaU7/DvvcMEZ25itxbSNSrXBdEGSMOEofDaLECjTWMtU7RWByZHGLgY38ff6tOlwH2HT7K/lweYxVZCwQzk2UGbYXnCBwhUNqwutDmd//Vs+jNJzBAyRojjgWLdR+RkzjGotWwmYprKKMZKMBApcDOqUHiSsjh0cNUSg627XL6wkl+63O/CYHkX/6rX8ZxnL5AK4t4DZeuPo30a3jeTkpDh7nrvnsZGBzkp//RP+X5l1/g9gduY3p6mrBlsXEVBssCS4I1qhJde02SlIXpNpB/uSH7W78yOkUn5c/6mngxJroeov2Y/LtKaUANxtfgSIQtMrD1r/ejpkGd6g3Z2ebuSjLq4LZTio0mTIf2ZKicpQTSKLJm1f7Jpdlgnswzy9Rpa93Hje1D/tJ2lIRqacBIekOHMmpTj7uut+kDQoBOxx9nE3uNyaQ0zXbPoTY9bXJ6AURGR8ougOhRKrJjCrpd/E6TsNvC8coAdPwI17ZBBxjjY8kRpPtjOHtuZ2b6ecL6OWrza7z8WJ2xwhalHW3ia3lmQ5sgP0o0fTe5+z6CqAtEyaBfjMEKMZUWjPsIdwjRXEF+cI7o3AtcP3uazbUC+x+9mdE/mUHoHLReg9hC4KF0E8+dhIUIE3WhYxB5gTPq4k67WI6ifaZD68IF1ldXMXELW8RIx9A1msGyzfHzS9RanZRakZ6N3pRpAXGqTpUmBHEUb18/kmRApags6aAny1I4jp2qviTgT97z+IEP3ME7bh2nKDaJNyMsJRG0GJQROowJmxFNbOxQY5H0HtSNYaMr8Duwo2SIGzF3HnRoB7C2ptg8F+BfWuemAxbFXSMcm8whP3wn157b4MI3XmFsXaAWT2INtxCOlzIYQxBhQpXTXYQ5hbTngCKhWmF5wCOWh7BwEWKZeOssOgDjTWJN2tSf/RLVDx7EiDqbJ5+hvfAUM3fmic9cRRwuIwcLYLkgxjBmDq0qaJZhawWTX2HE0dy5f4wdEx+jvblFYAa57f57sbwyHePS0pLZaYtBR5G3BbYUyNBw6uQKX/z1b6E3ngQBg06eeickipMeDRHaCGuOqXIN4wKWTc5zKZQdmoUaly5vcWg0T8kps1XPE/sCfyvkxMmToDVKQt5zKOQdcjkby4adN49x6PAgE2NVvvbNBV6/eJ2iVcJRRU7Pn8GxLEq5Ap0NycJyG4sOY5NVGLXSqcKJ0IE0MDBQSpt0gR4JJlEskqh0H20PTktshEQpKx3AuE0dyuwXJulJIasOpri/0Wmfgja96cVZkE1aOVAikeA1qV1IhpTpGxKMzDZGcYyVziKwpc3owCjHZo+wur7Knol9vOfu72FUjHD2yjm+ePKPKYg8s3t28ks//4v89u//Nk8+9SQXLl2g4/sEQbdnq4QQ29OoSYCzMAx7nzWzXd8O1qX9F1KRDZ7sPe+7CNbeTg7e0pVuVuUl5UnsZBMahcGDqEPcXMKoCaz8IaRXxbHHUO5xdj9Up3WmyVZTkA813TiiE8CAXUQdGEYISf3LEe445Mo1zJVF5G1TsPw4ZrgIuRYiVyZSVRonX6T6wIM4M0dgQWFCCyFyYOoobweoy5jmOGIij4zbGBEhp0tJQ682nP3ySyydvETQbCUOVhpmDx/gwY98mGef/BpBt0s+X8Bx3RtKeG9NdpC9SFra67YxjTWECHEKLt3mGNqfpONX6HYtZFEyKkO6XYXxJGUpGLNB5STtcdjYMIhhi1MrhmHPZnzKYnTc0JmcpnWhxcVXQ4ZXBAMTBtkjOC8AACAASURBVOlVOfjxT7E1/0XCM5sUuh3cMQtZskBphNBpJSEAWggRYMw6tmN4/4/dTefaN7HnfKRsECydo3vyPCZ+CntXieLRECG/RPelLvH8MuMjTQhz2PunEYNFRE5ihIfRswj1bpCniVdWidfXwanjDMD46ChXW+tUx/ehQofYkXgFl3IuRzXSLNTaxO0GNZlnWOWI1jTPfnOR1dXnkSJg2s1TtF0EBkt0yec9un4Xy4GW3wZXkquUKY9XCNQauVxAu30JzwppRwMstzusN9bpbob8r7/4v5D3crz30fdx002HwYSE3SWMKjM6fjuvfOtxrFyLKa/DYLGNVC5CeWy2DYvPnmNDD1LasYOKa2FbNnFDE3dA6LQpzBKIHIlBj01WK34rNtjfyDLGYNoa/+V2ckzdNNdcD4k2fVqzMYWdld72N1EanFoCrL/e4+7pz4u+ZjptiFLqEGbbSSmliMOkwtDHhk2C8qyXoIe6bTcLIiUmTqoCRoDInHEqbCD7qEACknOWOXedlfv7KxOg+noXhJK9hCMjt+htb54M40qTBnqBbHrcpPoMqXNOcpAkzJUZCGI0RsecPXOWX/7lX+FnPvMZEDZ5zyUOI8JAIXRI0FoENY1XvRNVGELZI1Sd0zilGu3zNWqbFnkBkaWQKkfBK2PtGwYEG78T4B0N0YvnEetdvDsmYP0pzEgJXI21ewrn2gq51QWsoXtRo4ehVSIruQmpUe4oME/jXInCPRWitTVEKYc1WUJ5NmjDG59/nmC9howjYjRaaSxPcWp9mb2V2QQ59rt0g7A3HTdWKqFBGJNMSY4TPnO8TQvfpqShEZpE9SwNpLIhabatiLWhOlTBsQSjRY/JwTKuq+iEgrY/RLe9G0sMIgsObl5QERHdrkLlJUNCMuUJjC1pa6htadSIzfOXNXODLjNzMDnp4u90ac23OXu8y45dBm8swps7yGzpQ2wtPE7wxjrlPW3ssRzkBEiNECa1912gjRAxRttUxyXv+eQxGpeeZmBfgAmu4s+/Tnh1DaFcrJkCpdsjTOs/0HlpA7exhFdtI4zCPjCDGCgjHDBmADgM6jBwjnh5mWhtA1kOKZUchoeGWYvqDI7txgQOxhUUi3mGLAs/iFnZahG1G6yrEjtVjqvnfZ56dp6N9ZdRMmA2V8RWOWIdoqNkknBXdyl4HsaOIRdRGh7EdgO68RXypTqP3G8zN53jaqvC8Zc3Of3SGkIZJifHsU3E6vomni3Yv6vCwcMTXF2qc/zFBUYHBrnSdinOzrKzELJ6vo3BoilyrP7Z6+SOaNzSEBUvh53PE9QCTE4Tk1QErJyFW3aTAWmapDm94ydIejqh27LsRObU9AEYWSVTpLKp23zk9N++sMRk2j39qD8pup48S6cUnmQSdGoVssqY2B7gt01hSkEUKcAk1B8pJaOlUe6avZ33H/5+GvUWMzummRqbQlyL2apXOOTsZmN8nHwpT0kWed/3fT+VgUEef/zrvPjaS4TdgNjonoR01rid2S6VzmboHYQkbXpOPqsUSR+mTpOCrKrSo4N+F7yit5ODt3gJwAgL010Cqwgim9rpYChghIsJVugGDtq0ESKHrWYpz2hE3MSYfVgbTeTqAqK7ji2uIQo2LBjURoQstKDUBsfGvHoe5DyiMgixDY5ElnI4w1XMqUXUzM2Y5jLUNzHROugaqAHkkIsYU4hhCwIroWykOyHeinn+1CmurK8TIhgcGuKWd9zC7JFD+EHAxMwO3JzH5UsXWF1aYmhklENHjr4l5+4GVQFjCMMGkfZR3hCyOISRLoHjUA/G0VYe4SrasSZq+Gg3R2QU2lKYWFIEBguS4ogEBZfXImIFXVtQzMFwxWPTEbDaJW8bZNvHRDHF2QOY1suYgWW6jevIfBfHjRA5maC4IlHoSIKkDpgQJS3mDk3RWV4jvPosbG6g25tY5Q66FRAt5qmvSRTXcMIId0Biz5QRXh6Rn0KoIkYOAkPUNz2e+ZMneeQdAdI1mIEBjEgal+xonYH8MKNFi+4WNFoR7W5ISzXRAQzkIkTOJcZhK1CsCsnGsAfKQzmSgmMRywBh6rgROEGOWEQo1aHs2eRHSnhDOfLlLWy5RCkXY+JlhAix5EEGSlX2Hhgnr8d57plnibpdOp02L77wLVxLUq1aHLv9Ac6fW6E0tB+3UKHpW1w+tcxWPSJfGERHgjcuLpP3zrGnHTIeF9GjY8SRQpWBWGKEwDgGaYFQJpHatSV/55KDjJZqDLqtia50iZZiiAyykxTCda2Dv7jM5jMB+2ZuTxP0hNVgDJjYINW2o/vrWNvUmn4J2WzPp8cl0m9kH7IutpuB+69VT22IjOOfvWLieHsDk3rJg+ijHm17916gb7a1zQWpeojZ7iHYPu/0Xqt3FMb0/UBPsrXX3Jf9vcikV8325yYDQtKKgoH1tTWee+YZgtYStjeMkhotJEbkQBQQskHoX2PzqsGy2zhWCcveRWlHRByscv5MyIwdgHKx6eCwjPAszKJBroeI5jrSA9kxiNcvYORlxNAQJiwg3TEYyhMtuphTq8i5Y3BxBePXQC9ihIuwishhB2uHTVg2SK2QJYWwE6WTYDPi6ZdfYb3dIRYKy7bQVsxaGJAvVYiMJue4jA0PIaUkimIuXV9Ca7NNXeidOLFdzOkFadn5vHGP9eI4AVJZVIcGuefOm9mzfxdWaQSR93CVh24U0WoE3c0RSYUOY4JmALkcGomxLDCSQkqjLA8nFbfOYkzXkriOoegphgcL1PIKveRTsDXxZgs1kMeb2Y8Jz0F5mc5GE1nsopREOAIUJOPf0n2gG2AUnldgx/5x/JVVgvNPolevQ9jAKnYxfkS46LG1JrG5itsNyQ3nsCZKiHwJ6c2AKmHUMJgRLp/xmT/xDPfcHiA9gaxUEbaLMl1c02AgP8JIycLfgHo9IvS3sAwIbag4MXg5AhwWOpJrnkO94mFkYu+LjkVXdFC6jRNqpBZYtsaWHYYGXKKiTWnQx/W2MLrGwGjAjFLsGJdcPN7EsUNGJxWLrQ7Fspc0sBc8XAU6knRbMRaSq1dCNga7bLXz2MVJpipDOF6HzTOniIXH8y9fZq0WMjc5wc7RaeyxMYKOIXB9cq6DdCTSlkgtINaYwPDkE0+wuLhIHMfo2BBHGik1Ybg9eC8BHbZlhzNEv1dFNNv25IZoOKvipiCIedPj2/ZObNu87DVT4KInZJDaBFvZWNJKqURFDo0d4O6Zu5lyd2DKmjFvGLtj4W+s4tUD5ooT3PWBvdhuQh3M5/LcfOBmom7EletXiaKIbtAliqNe9aBHCRICqfX2Z2P78ISQaB1h+o6xjxvVU4j7btbbycFbtgx9+wqjI0x3AywPpAMGgkhhu0Noc4W4tUkUpRxHewoVC4pTFqgDaH0BizWcTotY1JOhZx2DWwGlAkw3hG6IefopxNxmorKw10VUbKzcNMXde4n/6BKiugPKNUynA/E6qBiTjxDH7kLM2pAHHAsig2lFGE/RWQm5GtRp2oZcYYDR6Un2HbuV3NAAT3z5y0zPTlOrbXL+wjkuX7zAPe94sC85+KtFL/1JQW9wCJoo8gn5f9l77yDLrvvO73POzS+/7vc6THdPThjkAUAKIEgQJCUxLamstWRZ1qrkXVu1VV6ty2VVra1ab63tP7Ysx1oH2auVyrKk5UpWICUSy0wCJAAizQCDyaGnc/fL7+Zzjv+473UPZNnSSizaLPP8MVM9/d6b+274nV/4Bou8coQxM8S5y0CmbIdg5wYrT+n0ElSikfYIcofUgNQQGKhVPObmoeQ5tBxJd2S4sRnjpAOWqhkLDYfZGYnOHaJRQpRmCOERLN6Hu+CjdlLSuIcIMxwJeBIh9QQfCuBSmEYIzN42TqRIb12BUYjbruCeXUDHOePXb9K7AmJs8BddaufqeK0GZjuBKtAKMHIFIU8SDca8/Fv/Cc/e9x7cE6cQsy4m98hjA/2Ysu0ioh6OVcbEOVGYMTQQJzYPH/fwqrO0HIfb4+J+Obu0wNqbj3Pl1Q6aEGlHOFJja4Mdj6i06pRr0Jir0Vxp4FYzcrap+T0apRTXjBFegTWuVko8/PAKx9rv5+bq29y5epsvfOE5VKYIPI9jJ44RZyVe/darPP2BD2FSl9W1DS5e2QWvzPHjR3FlgIpd1tZ3KUcppXSW0hELUa+AHxSKH45ElHRB7A8csC2E+91XG+wTa0NFvpORb2aokcHKNYw0JlHke3uE66v0Ig9+iv1kykzej6J4Tr+D61497CkhjmlSbf6cRFtM3yf2CXFMMP3iz4FFFQnlZDJoOFAhEQJJkeQfZJ0HxzEtTO5VAgFAGzQTg7Rpd9BAgdMSB3hhc3AAZjoFmBQr0/ccdBanhzQteuRBd9EYnMl7dZbR73R46Rtf47EnnkB6tYnSiESZAK+ygNZvM9pbx/YdMsvCcdp4gU/p0CLZZoesexdfpNh6jMk2IdKosSZoGaROkX6A2OuiX34BebgHMsOcKWM8G1MPMPV5zFt95MI59OYeMhti1ABsBxqH4JGH8B8sE5PjtEuFy+04J9Oa0d2Ey6NtxkZT9kp4gUdmhYyjEYdaLeKsj2s7NJoNPN+n0+2jVteLpM2YffnGonEq90nm+/Cs4rJOurF6X6Rgeq6FlAhpYXs+Tz/zXpYW5kjtCmOnTWYCQgfG0sJSI9L+iCgL0ZnB8QaI3CUx4ChD2bFoVF1mWoKyb7PkWGzuarbHY0qMWSgr5uo27fst8tRl3E3IhMZyyniH7sOZ98nXx6ThCNfVBbVJFI2lIs5DIS5iQ2ZBdwcnViRX30LGCd6pOaz5OdQgIby0SvcSWKGhcjagfjTArVQw2wm6YhDzJYw5gZAn2L7+Zd74g0/x7uOP45w8hZh1MFmAGkXIJKdk2Yiwi+NU0YOYQZiT5hIpbc6ueHjVNm3H4mJXMzsfcLZ0mO7dR7lxcYAyY2xriIXBMTkOYDke5SBlbuEIpiawyx1KQZd6oGg0wdcW2lF0uh18X7K84rJ5I2H2UJm9OxFB4GNyzeZ2wjjcxfEthKixqww6tSnrEqXmLLOLgmz1FiePn2J3bPCurFLbjphftKDvYEoBQiichoddsRC2Rg8j8CxW19b59Kf/iI2NdaYmmnlWODXneb4/zRSTKd9Ubah4xKdJ+wGvaD+WcZAw70+15IHK0PRmvdcDQTOdKkybBEVDYl8ydfJvjmUTOAGe5XJu8T6eOPI4J5unILIIpIM1NIhegtrbxU5DlpaW+b4ffG/Bd8o10SiiPdvm4Qcf4U++8Kd0+x2yPJvEnwO4o5RyElcl+35aTA3U1D0qR/d8x3si6VQt6S8DAv9ecfBtWfu7+UGlZs2TdV4ErwFODa0Uo+GARqOM9Jfxy6pwwstj0vEmaus6fus4ebaDGXQRSY4jPPIY9NYIeaiM2XUwC20Y3EQ/9wXErZeRawG8aCF+LME8XEOUjkInRvpLIDJMexZEjgklxh4hTp9H/thxTKhglIJTaOaqYY6RFltbMSeOHaFWUQRVj1prls986rOYsmJ3c51XvvkCwrGoNmscPXWSJ9/3zEF3cdK9+6udweIc7mv7YkiVzyAxbPcSrnWH9PoWva0Qq28QSYjJh1jk1Bfb3L64yigJGHcjsnGIyXJyVWM8jnhoeYbve6hJjODG5jarty/Q0Nv84IkyR59cwFs4SmW2SaPqoHSKaJ4jj8b4Cx5Jsko22qSkQtyyQPgSYZUQloOhhqaKjmPi575K1lFwyKf0eBvvyApYS0g1IpAxh+qCvRfH3H0tweob3nXCIfy157CPO3gfewjRHpBLg69qfOx4BVGfgfIzWFqjcwtpKch32L67w14n5NSxYyzUc4zrIcuzRHaZq7lgPjK0fMGxtsU5C2xhc/ofPct//R95sPl5VjyB7TrEjk2lamgvexw7fpytkoVVG2O7fSwBS606WJtYwqOb19kb32AwuoTvLlKrVnnyg+ewHcWVS3fY2x4wHo7YfeNNvvX6ZZqNWS7d6COlRTweEQ1HtGolfvZv/TTnjj3I6FurjK+uYnbGdOIhMr+FOzdDPmhhqj5W3ULOCIwcYx2bRVZdhP1dODkAUJp0PSG5EeP4LqqT4Vgg4hi9MyDZvks02uPw8scKs7fJplZgcaddWPhLxPJv3zLTXqmBCYbXsu3J+PqdibbRen/zKhLxIolWebGZ29LCwDtG/tO0fhouponi1ClFa1OYa8FkQlHI3k5/L/c39OLN0io8C4zW+9hgWTQhi27i/gZ6z4FzzwRDH5D3pmCD6WheTDDHB1KnxUhHGIMtwHdt0Ir/7L/4n/lf/iuoLDyCtAOSJCZNYtxmBa92lvnmCYwRDPq3CXuryDDEaSzx6COLxF8dkzspRgjysY/eHaHmHXTDwTlxBPPC8+gvfwm5/SbcCeBlG/l3DMn8LBW7gV+t49TnyddGiMYstpNDfhdTq8IDD6M/uYweppS0AyVJnmiSnZCByrh7NeTw/AKDfoRxLIRr4ToZh+sDxsMuSWoIXAfXlQzjMddX1wuTJq1RWk84KNNzJNEqv6dzO7kWhRxVwUUwpsCHI9AGpO2Q5zmdQczdrRS3Uie1a2yMDf1BzObtAZWxDVkfFQ8RwuDPVNle3SbMa0SdMSocY5SFNgFJnPLw4RmeeWKWrb7ixuoNejvXaMsuzx6rcPyZQ9hzp2geLiM8G42E2ftQ8Yhg+VGi6Cr5sIOfZ9iBQHgW0i6BdNCihTYOardD8oVXyLo54nCJ8vsPYTWOg6gh6n0CL2epKtj68oC3v5Sy7FicMBHxb30d+5iD/+NPQCUlUy5LXsr7j1Sh1oLSB7HyEG37SIZkSY/t9W32dkecPX2apUaKXWmi/Tpj6XNNCeZDw3xL8vCSRUlCNDfP2WMf4Nf+cQWx/hlOVGBgPDIsLCfCK41ZWTpEvtRisdlDIfFsh7mqi+sPkJS41s859u424x3Frdd6QM4D72nxFjnrd4aE45wo1XQ7CUJbeF6IPV7A6JjdjTdw1KtULcHhhTZ/7+/+DMMvXCbf2MEaGbrrXUg07myTUthGdFNMK8eUclIRETZtfvv3fpubt28SRyHGaJQpOEI6y97RSCye6YJIbNk2TAsC2Oe2SMtCTwrZ/dg2iUXTIkPew2OYNgMAcqWKmHMPB8lA4X8wCV6FClGxN/mWS92t8dGHPsKp9hl0BCUZUA4kMokxu33i7hqu53H82ONIzyqORynas20Egr3OHo5TpOVa6X0+1L2eDVrpYmoirGKCN4EdpUphWfaBr8GkwWLZ9v6z+GdO3//j+l5x8G1YZrrpTDpiKh6z85nfxFms0w1vEI2H+IHhyLsfZ/vSDWrLy+BILCvEsceUyhF6RpC8/AZJe4bSmfcha0+hxQuUX/0G+o3nsX7sI7hPWiSf2UB99TZ2t48MDVRPQz7AfHYLMbiE+b4WOOcxmYD7DHo5wFo5hbAkqquwnvLQOZg9hTA5eRyhLYO1VEMPhrz09mucOP8AT+kVmofq7FZcPvvLn0OaBM8VKK2pV+o8fP4JPvkT/wau4/wFZ+df4zxOiqskTen1e3zxy6/wzZevs7YeQTxCa4eqU8J2G3hOQLnsMNu2yW91efRwQGj7GKeJAaJhwtbbA7qbe9zs9Nl7eZMPPbXIj76/yWD1PuKxzcXdK2z94ZvMWpKZeZ/ayTrBQ8uUjj2K45xGqD1KtSpRWmOrc4PKnR3kUOEdC3AXzxBph7C/hd/bpL9paD85i3NKYlVKGH0SnKcx8VeRpT7Vpz5G9al1jtlHwZ4j2/0Cl7+RcOSlEPPSS7g/X+at/C4XvrzJT/7y30POHELnOdJbIvrGc6x/48tc9+do/42forz1GlcuWCw/cIb2TAvfsbE9i2MGOmPDN29kHGlZnGlbuBacswX/wd9+lLe/3kCsvUk82iJxXerHTjF7PKQ7vEviBQShpilhvllirO5wY2Sj/PvYHmUMtnYZ3xnRu/kS/+Lu57jv3BP84A+f4OFnF7j85i5XX9thsz8m2kzJpUO/10XlkjTNQSnSFB4/c47AdWk/fhq1fJzs1pD01gZhbPB7O+S7EbldRgYuVt3COdfEbgbw3QgpAoyAPFSoSKFDTbieYRKFCRPE1m10dxcVRghvBn+hUiSnE0sHExdQJGFA1uQE4vCdOgcFbGbKO5g+l/s4W1l0sGxho7Uh0dGkeywmm6+ekIEh1we+BAd4fbOfwGe6wKyL4gX7SaUUHJjsUSTwU5y6nBJhD/p9QFGAFI69k6T+HthLwUueGnZNjIpMEc8K2dji2LUqsMaF6s7kbExwvJZlIZnURzpHaEEt8Hj81GF+4akHiDd6rF76HCIfU5mrUj60yN3bGa2TpzG2wbEG1KoKWaqidrfof+mL9Bs+/eVn8fIhNfsSXncXdfGbqI89g/U+SfTP7iDfXkN2BphIImpnIO3D/36D4BML+EcWyA8fJbyR0i/vUX5gjup7H0D0BQQCeb9NOk6wug7GzUi3RuQlC1WW5J0+f/rl53no2XdzWpzgf/jDf8Grl2/TaszgOBmlkkRlCte36PX77A6G5FkCTJyRkfvQq+Ic3otxEPvFltGGCeVzv8iaXiOVK8rlMo1qk69+/Rp/8rkNwmGGyCK0dqnbJYxs4Lse9aaNa+dsXr/Gk4/M0bcl1fMrGAzD7YjdGwP6u12u7vTZ+/o2P/3JY7zr1CLjLcl4fJMLnets/fbrzPmfZ+ZIifKZWYLTh/GXz2K594HaolL36Y9uMeisEfS6yJHCP1XCPXSe3miAGW4ht/YIO4LWu9s4ZwXSK2N4DJjFqG9hVWJq7/sktfe+zWn3aRB9Bi/9KTe+HrPyzRDxytdx/uMFPv/cf4mdz/LsL/4iojGHSkMs/xjDf/nfcf3OOp3F07Tf8yyl7Yu88aLHfc88SL1axnVtLEdywkB3rPncWwlPn3DxKoKygMcaLvVfOM+lr9Rx179Fd9Qh9WZx2nWqyz2MTOiEt2kaw7EZi0rJZUjGG7s5b3Zz1kKJu9NHbIzIthIWF2psvt3lp3/xft662efKKwPW78T0RznhVk5u+ZCMCjM3LUCBtHw++tSTlJ2clY++C72ak17fI1nbJVGCYLBDvpuQWj6yZGMv+vTbGf/wV/8JF69eJDMpSZZSQP8mcEEhCpW8SQxReUFkFlLiOA6u65IkyQSKpLGsiSKWnCoY5ah79P210iihDjrt+kCtTEqJmDQqCyGG6dTh3iTbFA7wApTKSfKUs4fPUtYBXuYTOFVkJrD7KdbeTfJuBxMqrIUZ/PkK05wx1xlpL8ExNn7u0mrM7sOC8jxHTmRWpxOL6RNWSK5On7gihuYq34dYTeWnp7DIXCmUSveneH/REn+2EnvHL0XxtP/+7/8+n/zkJ//CD/v/65paVifDAd0rF8me++f4h2YwD95PaeksVtAkyVNGyYhmYLFx8wWy9W1GuwNGnZB8kNFoNDn+7g/gWQGbq7tYvQ1qvQ2Gr2/QOvw05fc/jViaQV81mI6FPFRBlDW8uIt5/h+CGCAO1RAnz2KOfQJTWUBdWCNVYI5UsU/UcdsldEeh9zRSpJjN51HNGmb5CHYgkJ7LxsVdnn/rDrcuXyTubzDTLvHgB5/mq3/wO5x64t3MHVpi5fhJZufnkUBQquBMVGumOOB//fNn9v8Oo4j/8VN/zKVXLtHZ2iMapmSJQOdVjOXh2PM0fZ+qHVMtG2bmFhAKdqWk6SnqJYtqo0KjNcORxhxyzmdtU3Hpleex7QFnjji855SFXxsx3Hmd4eUdVDRGopCejzU7T2bXWLh/DuHVsCsLWB5ofYU4fAU7myG5vsFLL23jzz/EykOn6W8/xzf+6SX+rf/2PF7zhzFZBkaSRlVu/cEfcexHfg63eo5MFxrplmUj9C7h3R9m9PeH1E/nuD98nrxrM/yda/SdBkd+9TdQ4z/kD//7b2CSGeZPHSc4MUvz6GmWF+4H4WGERZgbwkxRAXwHhIbXr2a8cL3H6s095vbG/ORD80Rrt+hLjVr0USIlzRLiZol6BfpKUZsLqBiDVCOGeoPLg9vszUXcvTJi9/YO6foIN9K02yVmKhb+EO4MwLbLzM/NsLIyhyUDtvY2CPfq7PVyttY3UUnE/WdO8e/9nR/H3hN0Pn+L0hAcXQEVYOkxadJHag+8GgaN9G28w02897VxjvqFi/c9BLPvlqWTHCME6VZOfDXD3DHEV0PKN/tY4SphssddVWLr0Bk++J8ew25LjBaogSomexisho30BKL856lRfPvWrVu3OH78OAC1Sg3HsZFTp2Qg12q/czbF8067cFESobTGkhJbyn14T6ZVAd9hmuizP2Fl8jnT4kEIsT8ZmBqkSXnAYcjyAyLgvXKjhVqSIc81UoBl20Wev6/xXYQk27KAA0UdIcW+lviUMG0oiH7WRK4RMU2CD8izRms8KXAsyQOLs3zo5BIfPLmAN1dGvue91JYeQkuXKItIVUTZNqxf+wrZ7bv0O2OiToJINL7vov0SqhdRmnuQJWuIfWed9GZEUHmA6ic+ROncCur5DOGXkG0fIRS8uoP54t8vDLROtjDHnkIvPEUuayQv3SbD4ka2y6FnT9E6vgh9AwODJXP07c+wWZrFO7RAfb6BFhZrr23wP/3m10i717HpkDImtlJaTY9hHpMowZ1uhyzLSJOM7b0B/VGI1qrwipimJZOLa8xBwWZNSOXTREVPrp3t2FjSwvN9WovLPPXxH+fupVuEvTF5bNCZi1FltOXiOIu0A5+K7NFolqnUG+hcsCegHShaDZ9qq06rOct8Ywar5XN3U/H6159jtq15/KTDuRWwgj7h7lv039zG5OPiXilXEbUW2q0wf/8cuA3c+grC6pDnl8miq1hZnfjKGl/8yhYn3vNxKrMJ21ef5/KnV/npX30Eq/xvYqJ1cFoMbnXZe+0iKx/+CZzqA6R5VORTSQAAIABJREFUjGW5WFKg4xeJrv8S438wZuaRHPvnP0j06bsMX9ojXTrNoV/+z1Gj3+fXf+VrLC3dR/3kIqUj8zSXT7A4fwbwMEh6aTEhKwnw7CLef+Niyhcu7xDd7HBWGJ5ZLrN74U2GFZs7ostMw8eaqRCXJHncwZ1tsZdtoO+s4lfH6EZON9DsNIdcerNLdndMvtqnLDWzMx7tSoDTzbkdlkEJjh1doFINiOIUIR3iToubq0O27t5G5oZHHjzNz/3MR8hvxcR/ssW8V8P125N9b0wSDrCMjyg10TrDqgd07IgXdy/w6UufZXO8RX84ZK9bQGvk5FnN8kK+Tgq5nwAbY3Bch1KphDGQJilZlmGMfgc8EgqZ5Onkbwq5sSck+TzPwRgc25n4BBRePTCZQIgJP0ozUemaNjEsXMfBsV3ONFbIsPnk+R/nXUefZMGdw9qB+maIHd+iP97hql7CfeokT/zdQ1izEqNgvD7i2otXEIHAbrtcvnaJf/RP/jG7nZ1iaqL1ZFpXELMtaaEmng1KF38XcKOimJj+fFCIH7gwT5/RLM9J03TyPcyfu7F8b3Lw117Fyb71wudZ+/pzBP09lpop1R94Blk7i3AKUrIwKZanIbzAoZV58vlFVC4gdxCqhlNq4nkRJt5i3klQqy5Jb4mR/SCiK3H/+Hex5h5HPvkg1hMLRWTAoP+330T1N5BVD2wb4xiE2CTPbayHSrjxGDXaIX9lhzRyEfUSnhmQl7awzx3Bac6jrRImVyiT01iqoV/XbA5ht5fTYJfm7Zt89Gf+Fm6lguN57O3tcfHC64yHIT/yk38Tx3X/WmdwXw4TcByH+Zl5zDmHrZmUXs8h0w38apv5lkAMBLNVC0yP8Xibfj8Gu0W8e4f1qMvtNCLPQWqPiqzQcDQPnT/P+YfvYzUc89Llt3nt05/jE6cSZrwhzSebOIceQ1ROIewWlsxQucGywSiNiXbQuUFWH6NUfxLUBZyHjvHuUwsYMyIZXGTj+hanmwrbfx/CegQhLbK1a+TX3+bIx38OnCU0LmKsMGi0b7D9Nv7irxE98NPYH20jT70fuyMpf9zC6IfZeOXLzD34NI8+UUYHNcShw4ztMjW/zsZ6D5uAUZiSjXuoYZ83uhbXVt/ikcV5ls4/wCcfs4nvm2Fnw+M3fuOfUckzdLlCOz1CfW4GI2Hj8m1E8xBOKePCm9ewZILxM0IvIolj2AgZ3dijaap41RJeM6Na8hmhGceKwXaHKA5ZvbbLt8xVjJa4/gKeM2Cm4THX1KwsHOJHPvI0gV0j6W/jeQ52bwiDDJ3mYFUQ0XVisYTnjhA1F+tEFe/JmUI5xJIH9eZ3UWEAICYmN07ThiOQ7ETYeylmcJtRNKZrC9JGmdmjdWRdYDJQkSbbysFoZEVArEELrNJ3ziF6OikosK3FBiORE6nAexw7px02JrhcY1BaYyZTASElTDr9026f4aBzv6+9zYR6ZVsIA0meo/adkg+kTafmZO8Y1CqNxmBNoCsGgzCF5KCQxe+llO/A3E57Zvv1pjiYUFiTYkSKAuKokftdS4TAdWx8W/KJ+w/zQKPCkZpLpeVS/aFPYDUeBssrkmAV4mWbiPgKR08eI1k+jlFgUh9BDdstYUyHuHMFGQqsVcloc46RW0anGY3P/C7ZhQ9h/41HkYsVhGtBt4f6rV9H93eRfhMtBEYMCAfX2Fo3rDx1knRznaOhg/XWNtGVMQQ2rhmQ17Zx3v0YLa+JES5Ka5SKCeZ8HCR3dJlcdfFkhqNjLt/cYAykGmr1CmXXZ2xiPDtCMmFzTBKSyeVAq6LoMqaAORh9IGF7wCsvMNZi4keRppokkbQOnSCulzCmie22CCp1ZhoC0YXZmqDTuUEUDRgoAdTprd0mFgNuZglG2zgmoGL5NDx49PHHee+zT/DqnT3+6Ivf4OXBBd5/OKXpjWm9fxZn4VmEfxxhlxAiR0/ivVYKPVhDlurYwfux3feBvozz6DE+cPoIln2HvRtvY9b3ONmQSPdZhP0gBCdI3noZJ9Ic+uDfBGcBjY0YuGjXIAILy38Uf+lXiR/8d7B+YhnR/hje4y9h5nYJ5Rk2X3ue+Ye+n6efcfCPnyGptzBumZJTYWOti0OJ7jCC0Q7jYcpGJ+Xu5g0eOTTPsace42dbDuOH5rlx4Tq/8Ye/ix/GJKUSzaPL2DWPvNNntK3IyzOUyLh5ewdUSpJqwn5ClA4h6JPe7JL3E1plSaPk43s+IyqM+2P6OwOiRLB5azTxBbCoVg/jORGeHdOqRRxrBZxb1qxf3cK+3Kfu+LgiQgx6aOpI6WGFPVK5jBt0MXWfVwdv8M2Ni7y+doWd8Q474R5RGKPyHKUUSoPnehM3ZLVv/jW9//TkXkuzjCxL96eLfxbuPG0sTFscliz0/82U8GtN+FIYzMQv4EBMobh3BfdAEI1BGUWuJIKMzahD4NR5efVblKwS9dl3MdsNYHiLQTRm29iIdpnKUgBl0KkhHynStZzZdhtRFohAcGzpGIsLC+z2dhF6MoEzk4aHMUjnXqNGa78Y0EpNFIvMwfmB/UJi/zsIgSXvUTv6v1nfKw7+ymva7dYMrrxIcu0VArVD69Ea9TMfwmk9iLSapEagdQeR30FEa0iniTYWdnURX3oTLV4HaQ0w2TWMk1Ly51G1Y4imhRtYbLzwIjJeo9bRuMkdrN0z2Mfux7xxif76FhUz8VOor6Bnz5LsjnBXQvJKGVnNsFo+MnLQAwNxhrXYwJptQL0Jro9UgnSYcu3CFWaPzHC8WWO9XiIcagaDPV5/5RW2d9axXB9hSbIkZjQYgvz23j7TMdj5cycZHs7oDhRRLJEElMtlSj7E4wKykOcNolGLXicmVZJ8J2V1rYpJDPl4zLC3x15nk5G26b/6MqdHi9SWV1goH2LH1PnWzdv8yN/+ebyjdWRtDuE2EdIHk2GrHJ2PMfkYtAd6D92/BpZE+gZhDyk3TpAOduju3mBrnPDYk1Wkex5EYfIivCXcE03s5hFUKEAZpBgTvnkDNcqo/+BTJOI0qnYY5t8DXg3RTHEefpyyfBd6b5XNyzeQKycYbm2x8/pFhrXjtB9p8/JXXmJr/S47wxClEqpOztxswMKxFa7ZLXrrdzjqpHhhTHKnx3wlozQ3y2awTNSaBc8rAtusTRYquv0+PoJhmDAapeRB0Q1JV2OCMGOpHVGvzyHsOsPRkHAwYJyOKc/PUDMu8SClvzMkTzKGURdT9ohkxFyzxLzvYfX2cE5XiGsZzgJYQQW2E8xOjvQkOjiOHUdgKezjTbwHZ5BVm2wvwlkqc09m8f/9dS+u3RiM0kTbIeHVAWI3Rnd3iKId9oSg45fwTtY48v4yOgada8xQYwYJwhcI4SAyDZ71Hf3+BQm5IISbCabf7Et68o7poNIFnnd/fA/7r2UC43Emm/C0GICDr1NMCtjf5O0JqdmYolM2haYIigLlHdOHCVxoypGYfqAWU/6S5uBaFFpIZnL4Qh58p3thTwV8agovmB5hAZlyLIuSZ/FTT57g/nKZ5SNV2vcdp3ryfbjtB5H2LGGeQ74G2Soy7SKdGbSReI2j2FIgsYvPlz1MtkGp5mKyo6hWQN5wGZYjtl5+Bbe7Rq3/VWx5E/exJ7DKM+g33mRwd5MKxYQpqR4j103UKKa6WCP0YuRyRilYxIQ2ZlR4hlhzs9BqkQZ13KAMqaF7d5dLL15gbfMmj59YJNIdNvuKNEtRZAhHYhuJbVmUHBshLGLLmhSMEu7RmZ9ei3cUW/KexGyfulmcTUta2JaNZTlgYPPWder1BZ5++nFm6vP4XoVS4OG6hmig0UYRjX3CUUwUKpJUc6SdcXeziZ0K4mGXYbfH9rBHD5ut5Hkei44yu3IMESww2r7GxS3Fx3/2F3CP15CVJXDqCGGByUFl6GyMyEcIY2GynULByALpa4TTp9qaIdp6iV5nnaFUPPCuOsJ5DLAxkYM1cxbLtrGq86hYgK2RcsDwK2/irizhP3yaRJ4irx1GLHwYRIJcnsedPQH6BLq3ydpb1wjuf4ydG5fZudPBaR8nOFLhxS+9xubdO2yNYxwTUy/BzGyF9rElLtst+jff5oyVonbHsLXGXD3HO95m1T+MbjUZWjYpikRrSKA/6OHFmp6CCI/MFpg8Qu2kzGSwdDRgHBeGfmFqE6eQWhZuu0agPMK9mNHeiDgMycNtPNemJAfMVW1WgiZiGPKnn/8qD1bu52w1oJtJSpnCkxnGK6GtFYhCVKZ48eZb3HX6lGfLPFZ+kE99/Q9Ik5Q4icjyDG10wSmadMhtywYbbMvGYEjTFKUUURShdRG3ij6F2IcLCSYTRSmQGvQk294nHU+Kg4JiZfYhb9NYOEXMWVKSG1UckyhikTAgKQQKtNbUgypH/UPMxj5qawfVt4iiHTYyyZYbsPBohflHfbJQkYxT5BhUL8Jr2NiBQ05OGEbEcYxrO2R5VhTasvge0rL+L7Cggoeg9o/1Hjzk/iR2+rr9KcNfYn2vOPg2LAHUF2apLTxA/f4VvMWnMPgoQOkxOt2GdB1hFNpuo7WLY7UQZAizh2QL8jWE2ADbw2Q+olLGO96gWbLI9DLxS7fI0238yxs4e+uY62tEr95AJBDMncU6O484dw7mjkCnDyQYZWEqCqsaIGQJIgUjg1isI6oBKgPimHwwItoYkSYQG4vq3BythQXW+3cZbd9mY/0u25u3KJVKYFm4ns9Ma45TZ++bEIG+DedwsjFLIThyqE2cGkaxIldgCQtySCJB1zHEqULlFtou4bkZ7rCPXVrB1HIYpejxkPGwTKfTZbC5zdreBr6SLKYBs4slHnni+8A7Ten8D0yIxdNugUZphVTjIjhYNlguQuWFqdnOBey5JsguJgEV9jBG43oWwbwDwj3AJZZnsGdXQFmYbISxI0g2EHoPVE7WuQzBCtaRD6OHDipbA2XAWsI9dJgyfa59/gKdxjKW0WTDmN2tW1zwAtbX9shNgrFy8Dzs2RmaywHth86xFTbJt66wtraG7A1ItGT5/Hmidot5fx5tOagkJ09THAfopmzvWMy32hB20MkYJxDMNBRDJO3lUzRqOYiA7hDWxj3iOEP5Als4uLi40iVwfFCCzlYX385QaQKxRKSacSIZ9A3GriIqCmUlmNhgRjl2wwba2PkuwhY4S3WcQ5Wi6x6pyd2xn5Z+V6w/C9RU44hkfRuztosOe4xJ2A3K2MdnaD7conHCIe/nZInGTjXCmuj4Z6bwe3C+8999SnwD9tnD7+iyTbL0Qg9cYklrMv4/4Bjc60b6DvMzMZUNFQed5wlXwVB8jtRTrgP7o/FiSl5od083wimPQU3G5tY9OemB0ZnhXnhBkexTdN6n04s/Q/izpq7okz+FLFx8Xc+jUgponz7M/MPHad73AF773Rh8cq3J0i4iu4vMd8HY5FYLnTv4VqtwsxfbSLZBbyCsTSy7SpYPkDMVPNun6oG2lgm/cZ2we5nK167i7O5iSi2St+9iQkEw/wDW+SXylbPkTgXyHMczZNEAdwbkYhVpHERkEJnEtMpQKyH6MXo8Ju9GjNf26OyFdMYZ588dpjXYpZ/cJssNygg836NsWRjLxnEdBmHCKIpI9zHNE1jHpJs6vZx6Atl6x7WdXMeDAUxR7GtTqNDs3L2JZwecPNpkeamFI21MJohjTdcWjMMMy2vjVDRmHOOPhzj1I6TVGHeUMNqz8Es2ldGIcafL7a27tC+WmNc15httqnNPEzQUwaM/ANKa2ElNjLRUjtARSImwLRAOpGPM6A46vAmtOsg9TPdFVLSLEBqvZBO0A8DDGIXREjm7jHB8TAYmDyELIb2LZICOBXnfBWpYRz+C2gsQncuQ+8jKMdzGEiWGXHnudTqHzlAKM4a9hLh3kzTK2FjbQ4kMZA6VGn7bZ3alTvP0fWyOmyR3X+fa3VV6mzvEuWDukUcYt2eZteexPY9sFKN0VsBO+hl7kaTiZNhunbKrSc2AMBsgU488HKIjQRoJYi3RUqBtjVXzyCNwckm56uEISTrOSccJLgk6iwh0lUq5hd9YRmyPMOUWsfLIw6hIrl2FrFhEozI6HxLUy6x3utyJtrAyl4pVNAHHeTwx1Tso7qdJvO1YhejBhERcxKCpCaN8xxTwwChNILRmOqYURuxzYO4JeEWsmkw+96cM01GlPIgjU3jO9J6f0A4mqmaaBTdgJs/QwzWiWBKqhC2njHdfi9pDFfw5yDo5YTcmEBbGVqgUiGCsxqxvrSOkwHFdsjzfj6XSsibkYo1R74xp9zY59n/ej7nveBz/0ut7xcFfaR2cZYGgevJRKscKmAnOPOChTEaSjRH5DmTbaA1++X7GxiXw57DNGJLb6PwigtdBdBD+CUwaEa9uopNb2I3TzB4/RevMM2yrkJ3OdXRvA6dzlfGtC3T1AodXVuDc44gPnMGUHBjGeLMl1G4PEScUW/UYWdLISgkx1yo25ziFXJB1BsQb24y7MUceOkPiSkbCUBuf5lA+Qss+49EuqDGtaoDlB/j1Gc48fJ4Pf+JHC4LQQcvor31mhRC4joNBobQgUwalBJt7Ob0udBXkiWKsNGMMWivsrQS70aA6n6P8PaiVqC3VOBQvs3XpBYINF9dyuX37Dsad4eM/9SyNc/OTK6nJlUbnCpWn5EmEa4ZgOaAVUoyRaKSYQffW0e46WDZ57wrKqxE0ZjhS7RAlHo3sGsKqIdwaBhuEROOghUbEXcxoDf9kCWNLkvXP4y9/BH3uQ+i9T2F6dyDzEPUq1pLEq8+QDAVfe+FfcfThxziyfILs1ps897ku87U5Hn3vk1QqAXapilVr4jo2OwpOJ1sMLZvrvYxhKJg/exyWH2NDC46XJGFiiMIEmcYIqahWK3RKEnfW0IoHNLMBlSDiyHyJ3qElFluLDAdD1tbvsL1zhc3tHZSIKbeqxNsR0XhA4JaYac8ROBU8Y5BZl3GcEvVzxuNDmNZptm6GzEgXabvgxpiKgFkfU/LBzbFnF5FKYs9UsTwHWbKxyt8+svt3bO13tgEhkLZAiJAsXKW/dpM8E2x4DdylOieeWGThXJM0SdEDQ5YYbN8ga4VzqEkV1Cxw7mmffweWFAfa4XoCy0FMYBcTboGwpkS3wiV96h587/4jJjjd/B5H030FPt4pmbo/ETCFEpAlRWHiwwGJeJpcHhCTp0oh0ynBQfI5hS/Jia63nMBY2N/Yzf7/OeU2ABP1D3MPvGhqBCcR0sZ2PS4ObZ584gkaDz6BW17C4JLrhDAeoMLrRcPHqSLdJWLj4nttLDHGpFeA1xHiOogxuEcwaUp45RrYx8hLSwSH55k5/W76yYjVGy8gB9tw+UuEWYnYWWRxZQH96JPIH7oPtvpYeYohI1rbxnckeiRRgx6yWkXO1sCrFQpCYYKDIFzfYbzRIYsMK+fP0hAn0ZUF2mFGaPVwtzVx2EHoEc3AJjYQGtgbDtnqdEiyvICOTa7xfvIxJYlPtebvSaSmXdwDOdgpmTRFWmMGezuk830G3T36JQ+tPYYDl07HkPoeaZjRN5KYHJKcoKeQ1SbezADNGJW4VErzLMg2g9sjSt0mxlhceP0Nvv9D9/Pej36U2olZimhf8FN0rlBZgs5CHBNiLAehNVIMsYSHUR66exdh3QXbJtt+GzOzTLNex+tGRIlDPbuCEE9AqYwQNmBRWL4pRNLFDO5QfmqFPNxAbT2P234Sc/8PkK//OqK7DbSRh48gZxzcapOoD5/92r/kQ5/8cRwvZe36Ld68tslctc33ff/78WwHWZ/BKVXAtujnhvviTbq2yyurI/bGCcHhI8w9/CyrWnLUSslkAG6IrQoieVz28Go+4/4d5gODaw3oda7S38iQVkBnABsbIZWahxVYCE/hBwK3WWK02ycNczzbpzRTpd7wiLd2qXkhw8TBRiJqSyze/wwfWSmj7g4I13aIh9skyqNd8qn6guFwyK4ec/bwUeSozJ03N7n15h1sCfWFNnuj3sT0rIDIWJaNY9uFIdq0iTeJRXq/gBCTmFI8t3oy/ZzcpWR5Md3cb2qYwv3YYPYH0wL2i957pweTGcJkQjqNV5OGojEF3Ekrcq3pRXuk8Sq5zhhFNuO8xDoN1KzPg+9t4c1JwmGIFUrCvRC7ZmHqFnkvoT/qs53ssNvbo1KpFAWQ0fvNkOk0rkBJ3QN2mhREeiKuYISZKLBNfVomvAl5j5rTX6JS+F5x8Fdc7zDLMCFGlkHUMMZCoQizDunuHXw/x/VLYLfJrVksrXFlBPkFsN8E+w5CjECByQPUzia9V3aI714naG8x//Gj5EFC++c/yZxex9x8AfXaRfJLOScf+H7kux5AtprokSFd75NtD5HOAP/4UZJdxeDVDWT3NYJFQ/DEw8i8iu71MEmOSSXd7pAxhtqDK3iBoFR2mZmXnDpzmvT7T7K9/kG+9K8+S9S7weHDh5lfOcLKyTPMLS5h284+ru3bQ5YUCFHgh31hIRFkOYxDTW87Y2AEQcNBuBCMNJVBxngQc21XkF7fwIrG1KsupaqNlBGmv86JU6d4ZtHiTy+9xV5vGweozjX2E7g0hzhRhMOYaNBD5utUyj7jvU1ktollYlyzQ4m3sech29gkGyU4x89gApdko0M0lMw/egQTv4p2T4M1C5QBG2MZ7KBGvruFsS2MSJAmwvEjVPdLqN5dvPs+jLnydfR4DbFgY0YZYvb7eO8vPsZXfukf8I3PfJMLtetU6nVGyYhbl3fY2In4wIceo94Q9K/tUvd9bo1CLnzp9xjkiuDEYfwzp7lbbzMeOOT9ERszASpTCASBX2a2XWbZtTlyCvYig5uVqFNjxo84PN9ifbPOf/O//lMGg22SeESSJAhtkCqh6rgcmpllJ9kkGvfpKpvdaJvaTINatIsYROjYJukLnLCFX/aJVvdoHg0IFg8hPYt8N2P85S7WfI3yU01MP8OuO8jAZpIRfhvuqf+X1iQ+5FnOxvWrvPHCF+n0NQkz7FUr/NAHD1E/USWMQuI7Q2aO1XFny5hMF5wXabB8iVWVkBoIvpOHPoUFgdCQmgPvkakDqKDozOV5PiEGF2RdBPvKQGbS/ZOTTvI99gf73eN98q8p5Itzbd6BY793EwYxIeFNHt6CtYyUFtJkk+70BOLCPc7MQuw7jE47aEpNHVblvsLRPrzIKmQ2HbsofBzbxrYt/MClOTvDf/grv8KhpSVsJ0AbSa5Txskuo7VLWNaAarONFSyiaGIbg29FCPUSIngTKTYRRBgFOnNJ7t5g+8u3YPQ2YW2B0dIZqocVD/z7P8l8+hj6wp+gXrwNwxbW/c/Ag6ew5lvoboYYRWSdDiLIaNx/jnRXMfjWKtnoM5TPH8Y9+xDCtzD9ASrKMJnFxq0Oqm5TvX+W+ZlZhCNxygGPPT7LaPAIly++zYtf/yJ7a6/jGYWOQy68fZvN3R5xnJJNFFwsyyomMxzAiKZqUFP52INpTGF0N32t0QYjNEIpTJ6SxkNuX77Ap/+PP6BUnaHkL1Mun2U90jz97HHybp+6cqlEmsEgYbWjiXtr+FlEveoTpZpstEeSdzmxtMIPLNf4rddfIUv7+MEpyjOV/f06yQ1xlDHqjcnCXWzTpeS7jPY2sLN1LJER5DfwvFWsuiJb3yYdpXgPPIpSEfFgSJp7BCcW0eFLCOcRkA2KKYLE2Abbr5LvbGB8H8wAKYcIexfd/SKqv0Zw/t8me/43CnPTqsDENvbsU3zgl97Fp370Z/njf/5pqo1ZLC+gM+5yI9lhp5fzQz/yNONbCTpJcWyLO4Mhr3359+gqgXffCWrn342pL7CeVUk7Azq1wpPAdzwqjQqz9YBDgcvANWwMG7jjIbp/m6vdlO6dNUZKU5tbwisNyfOULFKIcQgWOCan7iriVJFlCf1RhkjBKbnMVg3yTkqeOzCqUGMBu2mx+fYu22qLi8k14lHOI57iqYVF4nmX3/niF/l3P3yUb954jSt3rjEIh+RCcae/jVI5EonruIV7suMQ+AFxkpDnU/z8wcQRmMQZKNzbD8QGgAN1o4n78bRozafSpXJKcJ4CD4uYMQlR3GOFiOM4SKX3Y5ZSmkwpfMsmjEaUjGHYuc0Nd/h/svdeQZJl553f75xzbfrMyvKuu6q7p81MD8YPZgAQAAceoF0QlJZLSFxpYzeCL1KEFIplaAWEVtoH6UEMciWSCipiRS4pmqU4BAHCcQzGYbzp6Z72prxPn3n90cO9mdUDcReIBQgQETwT0TWVVZV5zbnnfN/3Nx+9OEcoJli3HT50NmG1u0b5UoFKKY81ZrIVtthZi5ieniZXsbj4zk2urd1g8cQRut10v42iKBVLo9NiSTxci9MiRkrdTK2EjYzFEUfRiI45vEBSSJCCODpE/r7b+Pvk4PsYOglIkh7plmSQaB8/atHrb8CghZWbBSMglBZ+UmKzt8OxQgCiBHIfIRoIupDE6ECggwu8+tvrWAWDqfuWmLj/LLIwS7x6CT1zFqQDS+9DLX0IFeYhGIBdJj6AwV4PaUY4iy7xrqZ7VVF4eIzJO6ts/sV1rrz0Gt5r15i66zwX31ol7MfMLJ7AOVqmbfk8+2cvohyHhx7+MKWJEm7BwrQVc0fG+aX/8pfodQN63W0kUCpXME2Tv51SZgpTSymwLYllgmNLHn44j2UNG+jYtBs+ft+kWCrTbHp89fFLXL/WoL0d0t9Mbb8wE964/Aqnj86x5vscLS9w3/RJdO5QjNNsRqgwpGBCbaaCtCdotnYZL9eAWeKkBcktpHdAcnOLKI5JDIOt1QOi2gzu1CmOfyTk5jcvYn/QwckNkCohAUJAhwndpqZYWUL6KxBuEgcD0G3ExYs41RLBk99CnVhCzp9OLWhlisYIw6RQ/xiDa8+wv7dKVVvU7jsFb13j1Zdf5lvPPUOUDDAIKbglSo7DTKXK+3/lP2F8cRaVswlti8GFrO3sAAAgAElEQVT1PnrR5mBvgJBgWSZBYvDKpQFrMk9lSlAvQM4QVEzBRD5dWX77d36T7e09wijENh3mxmc5cfwYB41dZpfm2Lj2OkfqEi1yBLqANUhwyiGNjTFUtUI5KeIyxcq5fR76T4/w1rV96lNHiQ86RN2EOFJ48zD32DhxJ8KYdbJ+Bn8L0+qHPIZL7wt/9P/yxhPPs769R2SWOTlX5GOf+yDlyQrhvk/iedhjChKJDmOMnEL72YJvSwhiRM5IFaDfG1X0+x5hFGIaKWoTJ/GoAmcYRoogoNFxnFn/wWHFOMkoODIVwSV65BkOafXKUBlfVhzSY4dVO/Rt9J4Mro/ihDjj9Q6rz4aRohZSSqTKPMHThYFY30ZdyUZa3TucVkJzKEoGhkoIIUCpdKONo4Q4Fkh52MH34Qfv5h//k19hZvYIUgm8sI0XHuB5O0StXdzaCWyzBEaVPV/RCbY4WowRooRQeyjRAN2HKEZ7IcngdV78Xy9TO1Fn7jN3crAnuX5xl5+9W5IEEb2+JHf2ZzHuKqB9hYgDhFvF3wwZ7LWxxySGcvB2BXrFpPTeCfL31LnxG9/m+l++QPyNV1HFPBvrA2JfcPTMvYjjFhsbbbZf72Ll8jz8yE9SmRHkixaFgsV9j9zN6XuOc+H8VS5fepHdb3+LINFZ9TLzXVfpRFRKZe4vmXB8qOHQh5QHKVI6VhRnXvVRhBCpi1Ecp0mDEUUkMbz2ygtYVg43V8V1n+OgucP2O+OMVcqcXr6XsO8RxR6PnrqLG5cjrl7bhgaIJLVE3Q4Szq++zauFEhvdgA9OnuRobQbtHCJhB7sRLiG1gsIcm0HLGdq9BhOVMdAzRLqJihNEu02yuU0YJWjTYOXyNnJ2kdKpWaqTPdafv8XSBxzsoo9Qmog0oYz9hH4LSmPHEP3z6KwfD4N9xNp57EoJ78vfwHz4g2iRoEUVIY20yCYMSpOf5cqNp2nutqnMuBTOLNK+cIvnn3mWbzz91xD3MJUk7xYo2TYz5Sof/2/+GcI0UJUcWpv4Gz4cy7G+3sdyDVzHoeUJVvYi1pVBfhwmixovDCBuofs7NPZ2mV86SqM1IG3AJFMLTdNG2IpiZZpy0qM0PqAVugw6AmPgUxo3WTnnEYkC86Ul+hs2V15fJX9HwIFo8cQbX+fzP/s5auVJWjseT7zzAl+++mUeueu9/PPf+O/Z3tqm6/WJSBvkTU9N0uv1aDabRGEqFo/iGCUVru3QG/SJk/hdQuHUTQgsy8oKAQnoeFRcGCYDcZKuSWniOlqVbqPeiKxJ2KFRwjApkOLQIc0wJQpBGMYpysCQZhfykaklepHirf4AZTscGTf53C89xOTSFP1LTfr+Po12D2PgEMUJM0sTxF5EYpvc++i93OfcTzcccOyby9xcvZX2UcjEx2J0bOkaGsfJ6LiyXxgtasNeDoJ0PcuYUSO90PfC8vj75OD7GgJNiMBG64g4GiD8AXk1hxi7g6i/jqEmiJIeg/4FNBLH+iCxXkfgIXQPog6J1yfs5mg9c4A1K5l/9BiVxSW0hKjzDZKdAQIfXZmFXky83yIOAvL33EPvT34P5xOfpXCqTNxRxG0wjxRRMQRrfZzFHBMf/wiFSo7+Xz2O3Yp4/z/7Kf6P33qKtzeuMysLLCwVOHmXxUvPb3H5/PNUzlU4cmqJysI4smChXBPXNcEex1YK27QYVoZ+oFfztgd2ONnTqiRIVx36HQP2pEsUJgRexMJSkX/0T99Dv3uKt55f49b5GwwamwgBg6TGiYeP8pnPP0ZykKAiQdiLQUk2txLMksItuhgq9Sru+33yhsSwNUIUMHDQ2gI7QR7voF9d57VnG0x/eJaxiQeJ1TQX1l7l2IOP0n3jHMr6EmrsAwjrbpSoE3ohuSJ0uhF5aWNEXRisQxwjpgvo8CjJ7DiyPIUuTJJQJNYSJ/FJUOw2XmCndYFBoOlhMdX0+YWffgxdrfLVbz7LxQvXCPsxnrYJwgP0qY/y0naTUjdCRi5WqLn/qMvWXpF6wcUtGUSJJPRgZl7TtyS31qHXSbhjUlKuFRgMfP7V//wvuH7lIp1E8+h7H6ZSLTE2Nsaj732UZ176CtsrW5RMB6WmMIXEwsSXBV5a3WCpVuLM2ZM0bplsXjUJ4wMespaYO32EuDPArOVh0kIA044i7ocYJXNU2R1FjO/iqPxAp9rf3vgO2PZgt0Wz7eEUy9x16jQf+EefxqRI4Am0ZWHYBo4j0MJEJyZhW2PmFMoGaYqUUgQ/tMQAQCkjFfClpH5i3wdSoXAq+MvoQlGUBn9KEob6sGkYYEo1QhzIYH40qOx9/DjGMtMkPkoSwjghSdLKnZJpEhFnTkVKiuxzsiB+FOnrtHPqsDqmUvoPWqfOOdn6keoPyP7RQwkFQomMUsRog9VZQ6H0gyRapM3WpDIw7BzzC/McNBq4OZPQ3yfy++TzR4jqx8Bbo+eX0HKTQPQwzDKu8yBJsgZRH5IuOmgQ9z38A0nn2/s4Jx2Wf/5eVH6OU3MuJ5Y1bF4kUhHbrYgpp0q0cwlyOUonTtD7o9/F+Qe/gjWWJ9juIytFipMTqUPa6gD3eJGF/+Lz1P7sjwgvv44YqzH7mQ/xG7/+DG9dPc9xM8/c0RKLBcUbL9/gy3/4O9x/8lHOPHoWs55H5iwcx+LY8SNYZYM3L7yDllcRQqIMg5iYOEkwMt/1mEPhp1Qqq1ZmxZns3g8DnCiOs4QwbeahswSBICRSPq3mHkpZmO0WytgmjgZc721yPYm4fvUtJmtzKGHyF1/7Q8I+lIqLfOCuj2H0W8RRk7wBA7fEWxvXIYlpTM/TDcHvRqgENjZj8uMmOSf1AA3ikCgcpOu9lSBECYNcSnuzQFoBxpubPPdEgzt++Sjlsfdz0PZoD64xf3aS9stvUy3+ETL/SaR5DJI8cRTiFgWtTkzZyCP8G+A3ESQwVUKHS8QLExjuJNquE+MghMJKfDQGm3vfYK+zTYxDaBc4Oy/5iZ/7KEmtxu/92z9nd3OfJBAMtMSPB+i7PsXXLlyk7NRRgUndUhybctnZzbEwVsStmngDScXWiKqmoyQbW4KgpynFXV559kUuvfUOY4Vx2ht7eELhGAmFco7+oI9ONEsn59lf2WN2sUDsOczk8wjLZn8/4eJ2j1I1j9Wy6YeLrG/liHIDjt9tMn58ipMXFnj67dfphqkQutveo26VePzZx7FyEqfi0Nvv43U8bMdm6ehRVlZX6Pa6KCXTpFOnFp1e4Ke0RqVGxYRRIJx9G0fRyK5UCknCoe5AKSPTTmXVd33YnT2NZUQmSM6oR0ly+L1Il2A/DFFCEGXBt0ohSmxTEUWaQNtEUlEfr3Py7tPc+cn3QmRysHKAaZvU6tNYOZXSlg2LouOw7a8TiCgVtBuSJIhZ21xPkwL0u5ANKdJAf+hApEVa6EyShCizJh3Rj4Yo6lB4PaRJZZqN7zb+Pjn4PoaQCmIDLSCOQqIoJhE2cTTA83ZxTYskCfC9HslAsDh1ByEaoW8iRC/lhqGIAxO93sU45nLs4ZO4tRrKLKPjAkKNw6KFt30Fp1BD5gsIbSP290kufIvcRz8OOQeUQFgmKu8gpEa/+BU4+2kwFYZbwZ6ssl8U/MUra5xaWuPRjz3C2kaTva11rq4ccPKBo/zkTx3n2Rd7vLN9lde3bnJ8for3HD+KNVbHniqi4hjLtkfwFfyg6ER/49W9LVnQGMaoTpD+q1IXFGWYKCVwcya2rbj3fQucumecJPTRicZLNI19Sa9hUioJcq5ktxFQcw3MgiDvSDZjEHFCRccwaCF0m+31Fs2wgeu65K0IK/JR1r3o+Trm8U1k5eME4hiJ1kwWXDqbz2PWcoRRH5pvIZ0WqngMwzmRWgaafbztA9Sgi5WESHxiSuixOk7lHmRuHIwcCWlHx4PtbbyVG0RJAWGN4dJloVLkYC/ka9+6yvREjfeePcsnPvQIQhrECRgqRlZmiZKATiAJQwM3FmwKg4ZhE5oGri8wTXCK4EqYyAtOVyUHfU23H7Pe0MzkTE6cPMnK+iq/9qu/ytzMDMpQGIZBsVjk3jsf5Xz8FNrvglHGCy2SQHHm7Ene+L3/h9rEGJNujoNwm439DXxvE+/cGWrHXKJIkpgGpqMwjdTqU1oinb8MY+rvFJD+mIyhO0SS0N3d5err52jv7rOwvMTCmdOcevgspunSXtnBrNYwijZKmAgjg6zzEnyypEikYmQLRlnSD+mSGCr1oU9GwX36JcrEcfI2KuGweqyTBKEkh2GhTqlGOkMJso04ijWGkpijzSnl/gql0EqPNrQh919rPaIPkf1vMqIA6ZGQWamsaRuHDYqGBy8yTYJAZxoC0gojZIHHYbIxPN2hK8jwXAaDAVeuXuPKlavcvLHC5FSZer1GPpej093Fi3tYaHL5PPv7DQzHZmZsiYgYoa+hZAQxJIlB3BOw18U8WeH0++/CrddJdBlp1Qhlnnang9O4SbG0jCq4JAHQXYc1n8KnfhptSAxlENkmsYoh2Me++RbBqY+RMw2c+gTRdIkbF2PeOLfHwuwedzxwhL1GzLXVdTxbs3x6ivd+dI4XXgx44tLbvLp9lQdPLDE7PYkoFXCmK0xVKrTbXcIwJEGghUwD+4ySoZMUIUUc6jMSnfZyuf0eDHniw+fj0GbxcEL7Xp9IGVhmlGq/4iZJHGJaJkJrvEGf3e1dkkTT6bRxzSID/wpPvtqGOEQJMEyLPvDpj/8ynYbP7uZlzl2/hrs8xtxyHekm5C3B1QDKUpCLAqTfRMddtlabHEQHVIo1XBqY2kKqe0jmJ7DuWEe4P0s/qWKaARWrSGfvNcx6jtBro/wXMIrbSGcZw54liTxyZo/u2h525GPo9KFOZBldGyNXewDh1tAypSJFYUBja4v+reuQmwfVZ8wxqTsu21seX21cYW6qzi985iO4ORct0qDZMEBWZvGCHo3AxIwUlpBsK5MmJpGpyA8kliXIKSgozYwruWdcstmO2dmtsts1aLRDXCUJEsWtGzdwHYXtWCAgl7fZWW1x+lidqZpBa+DQ6oIfBATJAKvbY8K1uOvRh/j28xts7r5Ebv84450PsJrc5O31JmZOceAf4ORtSmMVLr5zgdWdNar1Cp/5zGe4cP4Cr732OlprVlZW2D/YJwiCkVlAkmj8wCeKIwxlpMYoOnUq8vxhUz6ZVdPjEfc+lU4JDKkwsq7DKRKaUuOiJEIphWkaI4qk1hrDMLK1hxGsKTKkMo6jdA5nlXzDUBRMi3smpynKEjnbxi5OkIzl2Cto8sUqjSubuBPT5O08tmMgRaqHULmUEjkxOYlZMDDyiljEeA2PjY0N/MAnSeLRUqYTTSL1aN2TUmV0yCG16JAbKbP18tA84PbeB9/bRvL3ycH3NQRh6OEHPTr9PXpemyCBxl6T8WqVwPG4ubJDqELmjtaZtiIgIkxWsEU35eRGaXIgihPk6jZ2pYpIDJJQQeRAItBKIZxc+omWQRwHDDZvYB5bQM3MoSOIQo2OFSKRCNlFjBsYZSP1iZeSxMnRLVR5q+ez8+zbzC4uU5yaJueX6Oy1ufbOTebPVrnz7B1cW1nl5q1N3t7wUK7ibK1CTsRYSnNI4/3bjVTe/fb/vs8SKCPN8qUUSKGojOepjOch4+T1uwE76y3KFUXQ9Rjsh1iVPFVymLbET9KHIIg0rQjGpAMKnJJF3nchiYmCgJhFAt/CKi7jnOkQV08TqwqWEWIWLfY2fYpWgndjBz0dYao+SXMfo9BFxGMYMobSJNIBmVQQuoeylqB2FiM/D9JFIyFOCH2ftadeYK3dQYxNkJ+N8fe2kIaiVoi41mjTbg3oByHjM1PUJsY5uljALtnYYYIwC/Q8iZdItK3Y8KAmDLQURP2EEE1Tam70Iio5SSkJaaMwTUmj0eXc9k2299o8+vAjnD1zJ/lCIbOL67O7s01zv0W5OkHi23TaAZbQFOoubiWg1xrQ2O5TerCCW9wlCLfp9APW31pj+dgRlLSIexFSC8yqSp0+zNGkerdQ6sciPzgMQtNv00Bo77WXaa9tM7u8QHVmnomjS8jiGK21LlJLpClRVmr/ybAyLkDbIFPjq3RiyttsIX9IIw2mo1HToOFGMxQDj+z9RnQcMQoQh9aiIqu0xRkKKIa/n52KkrcDQ5noWApIIObQ3YYsQJd66Cl2mDu9S3SnNcqQGS6QCfMyykumVrhNMJ11ftZk+gWdcZUZcpJGFUatJVonxFFEu9Vme+sG0KHneySdAXFbsLuzjYgGHD8yzuvn3yY/LjlSXcA1IxJCouQmSnokSKJAkiQ5VGWKXL2AUx2DQBB7BjpSiEhguC5B2MA0FNo2CVo70NpEz4xhzi0Q9AO0D0rmkKqHtEKoKwIr7X4qlCLOl9ixSry63+TWc+/g5CtUjiwR+nvsbe3jWAH33VHj/kdPc+HKVS5fWUHfjKlvr6GEZu7UDNXxSRzTwLQspFKQUcWGrlXprRuxtA+dXbLFe0htiIU+7I2RwjTZXEhRHh0nJAKEFkQiQIhoFOhpnWqkfD8gSTppNTfWKQ2PPr7fzuaDxLJyVMuL4BXoNtbJySJhV9Dc6TCzNIadM+jHGhtBP0jfoyRzYAjckkXBdyFMCEWNQBSJtIFZvoPc2TaBexxDGdhOQJgPaO0FFC3N4J1NnOMa3e8gwz2kewyRVDBVjK4eQcUWIt5PE2l7EapnUIUZwCLRKQd80Oqy8tQLrLa7FI8uk+uFGFEX05YUcyE3GgGd5oAITWVymsmpKtPTOay8hR2GiFKVRge0KfGUZN8X1FHEUhC0I3xLshslRH5MyREUk4CtSLK+36NtTENhCa9zEztOEFGI34+Io4RSMU8pV8RIbGLp0B0Y9FsRrmNSnysR1HOsXG8SihL5WgGhuvhhm24rR3+1x/g9derTU7ihpNXb46C1S6O7z1ZzG88fEIR5VldXOWgcEMcRidasrq4SRGGqD0AgVRbQ6rSjMRkjOE4SojjO9C2Q+v0nt31/uJ4NBb1DA4OYQ4Hv0AVpSIUbFgSkECQie41D5EAqMaJZSiGwFFQdgwenq3h9i1YIXe0hRAknrrC7GuEoE7dkYztWimyiMZIE27GQEgzTRrkSDM3a2hq//we/T6fbyeb/bXTIbF0adqhXSr1rXU0yt0Wh0z1DZO5xw8Rh5B6n9e2X5987/j45+D5HEAbsNtdpdLbohwNiYbO+s8V4bY6ra2/y/AvnKE8VmTv9EAIPCImSXUxxgI77RGGC1ibm9DxGLkEIDToPSRFigySOGQxilFMGw0LLAK+zzd71mxQfOAtIhCXRUYwWCkGM9neRJ6YRRStdf/0ujU6Xy32DfqHOxaubrGz7nH7IJC8hDjVXzt2g0t/igz93hPL4OCofsbLR5EJnhxNmTK67i1ms8K7E80ccvA2PQ+the/UMQgOiKEkbpGkYdDuYtgn9EO/AI9pp4pqKyvEKXgxlBZ6EPopQltgLc0zVFZYX4fXaRJFPpBQHrZCKU8CcCtCmgTIcHCuPn49R9UmizhrhXgdhQqJ9lLGPwAfrTqQs4NRnQI9D3IZkgHRPgDVP5pNG7If0my22Ll/mjWde5YZTZeLs/bS1y80AWtE2M8rDKbiE/Zi3zl0mubDFxMwcjTN5rHqFmuFQrdVAuESGSaQ0Qpo4iSaMQSWpPWwYaXbbMZvdBHoDQsuhljMZ7Pe48uYKcvcWn/nwg2yurzM9O5vaqoUh7Vab1ZVVphemUfkpmjsXsWTAwlSVSAzodnw2NhpY5QqlsRKOI0jiHgcr15kbzOOYBnGs0XEaSEjj3YnmDzsQ/oGNYeCpNbHvE7abFMoFzPIEhfoE0nRpH0ToUFGplzHy1mF1WgqkKSHSCFOkHZEVoHRqsWh+94Y1P8gx3CxTb3FGjkBpH4B4xHsdbjZw2327bTcTCITWmVwio+/A6MEdBvuJTqtfMgvQh3apKaw+LOpr9PDvRMrv1sMgNeMUD4NOPQpOgaGYMKOrDdECdHp8yZBvDKnOgeFp6IxelNEa4gjPG3Br5SpzyxN4osf+/gEHrQ47WzvQGYA5xVNPX+bRT7yHE4VFIEAS4etddNIhjAKiCIRVxKwuo9wUzUiokEQ2cUCqdUhsEjOP4+RB9Ohs3kR3m1TKZTQCbShiP0GYJioJkGYfliZQRkrN0/0Gq60BN0KbplFi98oWbinkzMwcpu3Q2DngcmOPatTlwU8sURyfZSB6bDW6XF9fw+51sPNNLNcAHaeibaUY2sgyuoa3cf/EYZIwvMUpbUOPEjTgtuZLGvRhn4m0621CFCajZFOPusOSJQVxFgDCwO+jDAVY6fqvcpgUkdph48oWt3ZXWCzXaG+12b28TWNyjPqpMfqhZtwUNGNIhIWHohflmJ4wMHohXueARGq8GNoDTcnOYc8GxJaJaeYwiImKZdTYBGFnDWOniaiZGE4Xw2liJD0wTyBlEXdqCeJxiDsgFNI+irBmgNSFJxp4dHZ2WbvwDm88+zo33ConHjrNQSuks3GLftyjpnzcgkPQi3n2uTewS3ssHhnn2HIeq1KiqmzGJsaJYofYNQgcAykN7ATCWCOTBH+g6XsJ+4OI1RYk3T4t5bC76xGqOVS5gdfaoojH7HidVt8jAmwnR6lYJpcrc9CRdJoaozNgbMFgbqZKJBy++fglGmhkKY+TMzGMmHDQoLWywuT9Jzl+fJHdS+tIDf1eh17QI4gHDF3OXnr5ZTqdDr7vIaSk3e1k881AGRl9aFg4yChEURgSRiFRPNSvDJ2xbrMuHQbEZHqDLNkY/qdJ51kcx0TRUGNwKKwf6RAOVwRSsxSZcfk1hgTXlNTzBnlL0+728ckx0AkFo4Qlx9nd6XPqznFUzkBaWWIsBYYyMJWJVgnaTIhkzPr6Ok8+9RR//Gd/mjVzS0aI3PCZG75mGFn3+tsT8ezryEp4iOjJVD9Cht6OaJPfZfyYJQffUaX7kY70GBLtcjDw6SYS251gwq1jCovqxBh//twNrtzY4k4jwen7qMoskCC1JIkOCP0GcaIwC+OogoKkBWIabZ4hiS0iv0NMnWboUpRtnLyLYJWBd5Wdrsd8J8AgQSCRhoCygbA10fomqp5HGiYIQX/jCufefJUvX1yjeuRemnvrJG6OS29fpuS4mFJx0BP86TNrzM//Psce+gzVh47w5rVdzl/dZKOxTX/lKrNnH8V0ytkD+XdzpNXAhG7H5+I72zxw/wI51+OVl9e4695ZyvMGX/6tZ9l+vcUn//nD5G0DJQV5V1GxJRstwUurCe9bBNFNQOXAzaHjmH7UpxwlmLQwpY3SBlK4YE0wNveTHFy7ijsHg1UPsRmSWyoShm2c4ho6t5AGWqqEUEcRTo5E2IhIE4YBkR/h7TbYOX+Rl778OM96Jn7P43MzeZS02N3dx9tt8PbNPu5skTvvKHHpco+d/Ta76zf50vVtVGmB8sIiJXsbq1bFKBTJK4uF6Qo3e5JqzWKyKCgbkgmpOD5vcL2vGSiTg47k5rWQxrokUBX8nsW/+/NvsrG6xgc+8iFmFxZQyqBcrSMtB9stUsqV2FLXMYSkVFkklBoRJ7S7LWJhUKhNUJucYLBzgOnfxGs8ijNl4E64KCsTCUYJWOK2RfiHPFnge4ZZ/+YhssQgJbbHUYDf2mf2Q4/R6XZ5/ekX6L15nfGJ4yzedw+lRRe7lEMJiEJI4pQxgwXaSVtriMw4O00afriJAUAYRRgq3XxifdjXIBkG4hnnf7h5pzB+Su9JK1RyFPgrJSGOUZloMA3UD0WASXbttGbUwCiBFAnI7DGHvUNSD32Zrj9xWiW8XacUZ7SndBzqC7KLmTKTdNaMLRnun/IQUdCZrWmGkKRHokmSCM9LSJKIF158g/uK94INzf19Bt0O+bzB7mCXp863WV3dJWk0sH2JKk6gdYBIJHGyTeC1QeUxnQrSFakGgRkS8wEisUOkYRBVWG+ETBdNClNTBO1v0fE3CHsmc/0QSFLRtALPiVBBCzvaQzh5atVJNIL2lVd54uXXeHWtTXlimebeBoFlc+Hlt6m4eaIgR7fXZ+OZ68zObnDy0X9I4SNnePKVy7ztHRBLwfyETa5os7q6Sr/Xz+75YWV1iCBAZhk7qs6kF1LrYVqmbwtwDtGZkWUkAmmkcyNOotuCOzna7YcNnkaVUSAmhlhkdA+HUn6JanmJ1sFr9BvXiMUs37ryJEsbdbz1Pv4qPPbfPkAhb2HIhJmCoh9I1hpwYTvhfUc0UStGOGWE0sReyCAMKEYJJg1Mo4ChHYRyMXILVGY/QOPaZfKL0H2zgz3pYU0ZBH4TO7+Bzi+iaCDVGJizCMNFCwsdQRj4RH5Ib2WTWy+/wmvffoFX/HS9/+SxMmsrVa4N9mm2BvTWBjhTRe69s8TzL+8x8BtceWeXC2/3MIqzlBYWqdo7GJMTmJZDxXUZrxW5NhCM1SxmSoJxDTM1hW8arHrQE4qgITH2pwjMhMStgz2OnyhOjY9xa3+f/V6PUBj0Iok2HfxAsL/XZd5R9DsxXt/CrUxAGNPqtKjOHKE2s0Zzp4fhdUj2L3HhBQttaV669iztoI+bdynmc/ihhx8H5HIuK6ur9PuDtI/ICLRLg3Aj07AMdQRDWkwYhsQZdWiILEgpSB//w+DeUmaqk4njtC9AnK6thhAkyiCMUrRCDIsSJOgYYsj4/UNUNEMNsuqG4xiIROMYgumyzeK4wzObq6DzjBdKLFfnqE0fpTRbxRmPqZ6aottqo2WaBKusd02sYqRK17nt7R2+9Jdf4o//9E8Jg/CQHnVbkjNqfKYPqZ1D4l6iM82WOEQUhijK8HfjjKL0vboVqS984Qv/3h9+8Ytf/ALAL/7iL3Ly5Mnv+mY/vPGjTg4ymyshsO0c46VZ6uVZxsoTjJUmGatO8tT6b7N/0GT75gHnz23yzqU+n/joLyBwMVUBki9KNe8AACAASURBVBYyHGCIMlblfqRxCqGOgLgXnRRodOHWpsHqVVhazJEfDzEcSA7OETZuoR2H4uwusnAaIazRphYJB99dxLDmEcpECHj83/wBf/X4VwgMuO8nHyKO+8yN56CoqMyOU6lP4nUkQWuDF19scfeRHLVqGVUdp2nneOaZb3JtL+DU8p3k8sVU2DOsHP4dHGEYMuh5AIzViswtj3Pm7ByWZbB2fZ+1K5vcWnsbYc3hV0tYlsKSYBmCak5y57TJE3uCgiXQXsTBXpetgybTNYHhtcmXJNIq0xtYtDsJrmXgDxKsms31vSZ+JIn6JvvXQnZudWm+eImVFy4Q7d4gXL2Ev71GYAj6jT3CXbj49Cu89ZUneOPrT/HW6xdYU0Xu+eyHseqzPPvMCrMlzUffe4TS+Amu7Atcr0N30GFi/iiTCzWccoiZq5NzTBKh6Hd8BkGDyN/Fb+1y5fVLbOxcY7NX4MZOQsPXaFNgAg/PG7xnzOT0uMHpZYvpk0Wi6SkOegvs3XiTZt9jfW2dt69d5+3rN9nZ2GRsrMzmdoPxsTHWNva5eukW+2u73PvIh3jq8a/h+QEf/NRjFCZn6Ycx7Y0baAwCf4K5s2PYeTNd8NRwcb/t5v0o5tR/1Gfq0RdNAokmCQaErS3CvevkZk+QJJqXvvLnXHrpW8S6x32f/jCmI4i8NCNQIsFQCcJI/fxNW4PMKDiGQprWD/Q0/0Oj2Wzy67/+60DK37UsC9M0UUORaYYWKCVHG4tSEo0misK0L8Ft2ogoSxgMKTCkxMjEwnJYYR5V/8mq+IzQv+FrRpZQjIJSIUAq4ihmGHSmL6WuRUkmeE0dPORhMjHUSNxW21aZ484Qbh8iIbfTJuM4rVandoKpELfd7nPz6ip+GNJtDug2ekDI3T+zQOOgy+aVJi+9vEYYjfPQAz+JEC6WLKHjLaTXx7AXkLm7kOoOUIsgHiQOBRt7cO0a3LrURQ9ucseD80gLks0n6B6sI4sRlcUEVTiJkA6WZdDpdAiNCkb1FLZzBGGYIDS/+Wtf5PU33qIwXeP4vcdptrYoyB5M5HHGy1hWGRWaeM0dXnyhw0/cXaRWn2FQGadvGrS7Ld5e7/LcN7/G6tounW6fgefjB0Gqq8uCCyFucxvW4rAfRjLkRGcKFJ2KzOWoqCSQCJQQKMNM+d630dgOA5fU9UpmCVysk1FCr6RK+dhJQs6uknNq2KZNxQ242XkHYfhU3DnquWmkDljbucpbr3jUHlymaCpMJXAtwURRcXzC4us7MG5p/E7A9m6b3qDHeElj+G2KFQNt1Gi0BKGfat0CH+wxl4vrWyjp0NuT7N0M2LvepPnSJW49fx7ZXcG79g5+t4GfBPQP9gl3E859/Xlef/yrvPHkc1y4tk6zXOfOn3o/Zm2WLz9+no/eV+E9Z5YxivOstQWO16HT73D01N1UJiROSWLnK+Rsk0RKOk0PL9oj8vZpbW1w7dxlNravszmocnUzpAdoCWVL8MCswb1jBu+ZNLnztE3uWBm/MkPXn6K5cRnPcKjXx1i+5z4K1XEkgrGxIonMc/PaKn5g4h345Owa5fF5Lr70Fr434NrqVaZOnkWEIZ2tdVAurnOMf/fE7xMEAyKR4IUD2t0W7X6XXM6l0+vQ6/dJkgTbsigWimh01iFd4/keURgNH8i0M3EW+8nMwjiL3bEtO9U0RYdBtWlZmX4gIfJDZBKjsi7sbj5PGMfEUZQWOEZzOp2vcRynxgjGUMek0QIMCWNVm5IrufNIgYdPV1iYdXniwh5WziCvfeJwj6X7j/Loz32YsakyRALTtpA6RClISPAjDyEDEh1jGop/+S//J770l1+i2WwSRuGo+dlwDNe/OInfhRiMej1oMqHxEMFlhBgMUdC0QWUK4yVJMvqML3zhC1/8m/aEHzPk4O/eEEJiWQ7SkERxSKfb5t8+/rs8/a1vE4cBkRcR64TLV6/x+f/6P+d3/8V/hVlaRFmfwrA1UAIxTjrFI/zWS9y8kRD0XYq2wdhCG6dmIfQFtLdCErcxyh5G4vPUV7d47LP/Gln9JWAcpINSBpZhEUYxQsXsPPXXbG1uEZUqVHIuaneLqcVxqvUCjddv0Vhdw5ioceeDR1idKvLOa8/w+De3+ETlDFMnHe6aDjDfd4ZJu8at9RuUyjVM0/mRxHDfyxACHMfCnrQYn6iMXs8XJEoUqf3Eae7/wEneeHKDrbjMX/yVz82338BrHnDyRJVf++/uIzrweH8oaHod4sGAmgVzM2M0gpjK2ASGlrS6IZaQmHlJOAgxVJ6+eIgTZ5bwu6+StNawennC6Aj7kU+5u8rltYDd1Q5h/23sb55jpZWwuhvQjRIcq4hyK5QXjvGpz32MzU3NfLnBXm6DN85f5WBvm5+4/w4mP3WK3/u/vkKHAnJzg2q9RKU+gcy38JMSTtKlLw2iZJIgsMiZLabP3INrNGluX6bTzPPW1YCXOwGONcb4ZJnpSo7ls2Xes5jjkZLBPcdtLs4e4y/P/g+0XniG1d4Kjtch7wxouTmibheESenBCo7MkY/LTKhpIKY8VmV8dxPL91g6c5L5uU9y+cwS1588j9E+j2AZhM2ImD6MCm/3mvyxGjq1Io4D4s4q0dpLSBHT252i3YetwYD9fpcZr0kuB5rUHjCJYnQikEqgTCM79wTiAGG5CPWjW5pd2xl1Ox6KjYcaHkNIbDN1MkpIbQbTy6CxTDVKAIbWogx56MMhUhEzWQVQx3pENxrai0opSOLbNuvbdABk1oGjl4QEMUwYyKrSadVMJwlaKkSWbSSH+RxR5rpEpId/xiEfKq1EqtsS1+H77R908IKIXKGAZUmEGRFaLn/0v7yBjkKiSBMngi8/8XVu7a3zr371V7BLx5DWz2OM2yDGgBIASRzQbzzFs0+3mahOM1ezceZcxubvxpCvQHADrZpUjjusr/V45qvP8eF/0Meo/GOgzPhEnSgEfxDS6oaYSZ/z//v/xq2DJrGbQww6DG5dZuLIGEeXZ3n6q+cQnS5TU1NMnJmhMVXh2tvf5rf+z9f5uX+6yGQ9z11HixQKRxjsNNgYVAjj1dH1kSKlQ2ggSTKKz0j3kYBOE6rDxEFlSdohD3WoQ9BZQiaz6aG1GAX+esgvJ7M/HSV3w94VMv287OdeuA3dFkFsk8/lCYjoBTd4z90LbO9ucbWRcN/yR3FOnOTf/GGXtVdewxARn/7kIv/ws8eImj4fjCRPvvgix2cmmZ+pIPN5+pGmUp/E0JL9VkDeMVKnGj/CMMr0xXs5e+8R2o2nMTp91KBKEE/SiHyqnRVevRFx0DxAvvY8if8c6+2Y9f2QTpRQdGrofIVjD9zDo4/ez+5uwmKlwapzlb968k3uPzXLI8cWmBs/xh//4V/Tk2Wubl1jcnYCO1dD5D3CJIcTd4iURRAvYgV9ijlBbWYeSzZpbr1FIy7z3Lk2cWDguhXG6kXmanlOPVDl4QWXn6kJ3vdAiXPH7uYb9y3TfPoJet4tuhsDYh/spIi/H1Ao5lGuQ70wyRGrguhIzr35Mrmcw6Tfwey1+erj/zdxz2DWnEBbLvb+67QPNhEE9MOIxqBDy+tgmhbHl49zY+0GeTeHUoqc62LZDr7vE+oQAZimNXIMMpVKxcTDJoxDNCpbRzzfQyo1qpJLIYnCzNM/SkZ0Yy1EmlQohZ2Zqwz6/YzKmAbTShwuBVKKrA+KxDTAVoJ6zWayaPCBO0vctZQnSCSfDuc5dz1iuwtJv4MhfKpjDp5v8td//Rz3nr2LatFFGoowjoiCCMNySMI+n//PPs+FC+/Q7nRTq/RsoUqSwwaQw2EYxkjzJUmLM0nWV0TKVMMWRoeJ9pAmpaQaracZVvtd94EfM+Tgtrv2Ix+Hx6KzVuzrm7f42pN/Qn/QpdveRlqS+XvHWHpkltl7lrCP3MuXv/kELzz3FIsLd1LI50iiLQL/PDd33uS115/l+htvUhxbJj81B0VFuRrimO+AWCPsHdDa7uJFCea4xfpFj413fHYurhI+/ZeI7j5ibJJBr8eLf/CnvPbKiyy/9yEGk3li16AgDSL2WNtpk2xuUKvbFMoWXthne3+Tk3fdyWCnzWDQo1yIKZcd6pPzHKktc+XKG7zn1COUCpXRpvnuBOFHd19ujx+GlmQjp5GMtOw1Y6KBRiKwXcXMsTL1usmpo4r1G6vstxVWZYFCQXPta+cw/W3sehmVK6FyRexCnlqpgFAmylAoLRkEsLPfY+vWVUqzU5iJJl7ZJAlcPHWUtjqJqh+lngt5dt9iYnaZ+eVjjE3NYAmbex/5CWzH4ac++9OM3/cepu++kyPHjnPt4hrLBUGlucLCwhSeLnBtvc/NtR3uPHsXH33sFNOT4+goJuh7aN+noARB7DAIEwQDtN8m7nUYtAJWL61QMD1KtQr1aI/FXJuFiZBY7NHoeazdWGFlxeOdWz2ubPTpdEOWiw6npmw2p2cZxBN0Ox6d1h69Ady6cYPG3hbF/BiNTo+t/XaKJJR9FpaOsHd1haijKVQqjE2PI/2Ivcs3sWZyzN99B+2tXYL+ALdUGFV133UzfxQT6D96aOLWO4Tb3yBqPI0wtiC3jnLv4KVnn+LcuXdY32sjyxU+9InHEIaFl0CCxDAVhqlG5VchNMqyEBm/+4d5LW5HDiwz9V3XGdd7dKYaTDNFDYcivyirvImMR5QmFENqSEoVsgyFUgplpBZ6UZR6dAudwfUj6DwLDDPKyqFAUIw2tSHMP8QBkoSsuZpO7btv2/REpkMYHT/DAFOOzmtIcxqew6G4Ov2b7zDVyc5DISSMTRSYmK2AiJFxgLQlxz4wweKDM9TO3EG3OMvXnnqG5575Bvff+xEM6ZOEt+h0z3F943Vee+NZrr/2JnMn348zUceuKorVPq55GVgh6Oyzv9ZBFA1CmbB6fpdbrx+w8dYV1BN/gCpX0G6e7es3ePI3f4dvP/stwqUZouUJpNaYyQDhDNjY7WDv7DC16GJYCX2/Q3vQIbZMjE5MEPlMj4WMTU0x6MWsXb5JOe/wzDdf5uCgRRCGRGEqUk0p3of9K0bXa8jXvu06Cm7TePAda7QGhM7m2SG9b9jQSQ8TiezeK5miDcNgSJIlbjKdr7ZtYpkmKkk1CD/zoZ/nsY9+iKVjMwTJAS+89VXGp3KsXv42kacxi4ustmJefuUixvUd4oNrLNx7hlx5HLNQxC3kKRcKSGViGBKVSFp92N7coXmwQ35iDDPRBNdX0GqMnj7OwDmBWZ2lkot5ctfi+PJJZpaXKJaqlMvj3HXfQ7iuyy/88ucwT53g+P33UChV2V7ZYdHVVJq3OHpiiY2G4tpag2Yv4M67TvKRx05Tr9XodXpEnoeKQhwhCRObQZQgdQ89aBH3BrR3umzdWCdv+lTGa0z2VzlW96mX+8Q0aHb63Lx6i2s3A86t9Li+3SP2YpaKNmdmXdZmF+n16gy6+5AkJIlif++AKOjw4fd/nKurW+w3PaSKGMsN8HttzIFgprTM+ZXruEqyXB+n5ubY9rb5+qWXef/iaXp+j6bfQYs0Ud8+2KHX6xNEIYaZugO1Wi20hiDwuX35G8qYLMsmisJDmkwcE4YhQgiiKMIwTKIoGjUKMwwjpStJmTqikcpkYiWISbt0jzoLD9cgDYaSI0Qs1T8IDFNRKLjkc5J/8rllPv2BKmdOF6gvFCjNlGh4krwzyfrOgN1BxOypk9z94L0Ylk1lYgo/CHFydurKJwWWbSF0whe/+D/yxhtv0O3108RghJrd1rU9QzKGLktwqAsbGjLo257J4fM57Fo+7Gp/O5VI/91GDr4zcxF/w8/+riQC/+EhELRaDVbXbrK9s0N9YoJPf+Kz+HoXVTcZCM1+N6YtEzoti53mAX9y7mlyLwfYrX1Koof2NbnlM4wf/zBJMUcsd8hZAxy1D7oHuOw1JBu+gZl3mCuWcOoRx89+mvNbr3DpxibOSy9R3Dgg9gMWOlu82XfoGTHjR+eZbx+wu7OL9gPuvnuKnZsttAJpRNimT+LFbG1fpDK/QOtGl0uXtrArE9w9cxx/0GJ55gTFYjmt+v2dStL+/2MYqKT0BUg8jQxBBoLYSwi2E8rHDcYnTaIw4ed+5gS3WuC5BYqTAvfho7hlgVUu4SuTREkwFIMIBn6CCGL2bzZo99p4Zogu1smZJv1+hD7wCUtV5NgUeSOHt+PRsee5645lxN4A2zawSoKWXGBl4wbvfexDGMqmnLfxlcXBns/6nsebN15C1evk4oSTJ2Y5ujzL1Rs7vH1pg4U5h3vummKyHHNz9YDtRh9v0AajQM9z+f+oe7MYy6/7zu9zzn+/+721r73vC8luUpRIUdQuK2N5iT0ewzNIECBA4CQveQiQ5CEIAkzmKS95SRAgDxMgsScznniXbEmmNop7k93NZu/dtW+37r7893Py8L+3qkTJkG3EpnwAdrFvVVfd+v//53d+y3cJEj8b3CcKORxgWz3uvnObwvQzzFQUMzVBJWdyYgqOYRJO1Wj0hyS9Adu+TX+vQrdlcWXZ5j9YKvDYWGBtxqC5M0G0u07g79DvDXh8/wEXrpzDTCI+eP1d9pon2aw3aaSwvbNHr9Ojvd/k/vu3uParr2LkDCzHxinmMvWTn7ppn8SD8ndZ44dLk/grqPQ9tPUQWQzArKKIGPbvcun6Z1hb7zHwU3qDHjf+7E954df/GYaEdgKphhwaoTRCKSzLQMh/+MLg40vpjDuSdfkz2VGlFNGoIyXI4DimNDNYUZxkhmcjvwAFBxhhzWjcbY4UglTGExBHwr8UjDpcArRCjbgCIw5iJvl8hDg81v1WOisAkpFj6SE+lxGsRYx8ChgdmKNvoMcExJHdUca6PihAxrhcASh1SG4cvwOdKkrVHG7eBWlgWw7VqTzLxyt4J2bwE5uu8khUSD+U7HaH/G8//mPM7W2KUYe8CkkSGJRrPHvllxEFjek0cKwejmiCHqLJs7MvWdMO824Zp+Qiqg2aiUVzeod7d1Yp/NHvYRZr2P6QmXiFN7cMTv/qKxwzZzHrdYb+PjkTnn9+ksZKn1RF5AoSc5AyDPqEaYw1Mwu7fW7f2adySlOt1pifnGRve4dBLyQKYpIoOYQkwJGkZNz1JyMX6xGsQY8Tez0q4MbeGJm8bXYZs8Q/Ix2nBwXDmBR+uAfEwd/H5lSGNA6eAyklhinHmg7kSx6/+5/9Lmfmz1MuVGjrMo1Ci3v6Nu+/9S2EKNIZWHzxK6c588wZ8kxSIKFckXgTNYaYaFuSSkkcQxApZKjYuVenT4/QEuTKVTzTYjhIoO4TucewSxPoxGTYCujYy1y/dAax2ceb9EidZRq7+9Rbe7z81S9hSpvPXJwmSC3WHzXY31rj5qN7GFNTFEh59eXz7O732GsMuPNgh8V5l8++sMhEzmdtu0+r28ePYqSRxXs/dTCxMaIQIxkQ6Q733r5NYe46C9WAOcem7EEhL1Haol0xaQddgkaHjW6Owd4ErX2D80s2v3m6xG2Os7YEra1VBptPCcN9/GHA1tM1ttefUBQWlsrR9y10fpK+WqcSREgEdgr9bpe3O/uE0seUmtagRZCEmKZJzrYyGdQ4ysjAKsX3/Qy+qDI+ZuaLIQ9gfeOifiw1ekg0zgi2gkw6NwwC0tFzmvmwxJCKEX9qhAlipJwVRhk+X4oR9CjFNEzyeY9Bf5A9ZxwOtk0pyOcsfuOfnOHFz80xkU9QKiUVBrbpsLQs+O7ra+RdmziVbD5+yIff+Q5Xv/4NSqUcPSVRpokpFShFr9vhL7/157zz7rt0uj2CMMoKm5FB5FgE4uh++ziMW42no6NYOt5njHeeOhrH1MfS6p9/vvz9Fgd/HeHvoIIZ33YOgsXBy/Cx939kPP0LhGkZT7sNw6RanuTiuetoS1OeKyNUjt36Pvu7++y2OgzMLUr5Avm5WZTjs1nfIdneYspKmZo6zemFZ6hNTEPwFKlaGFIjCVCqT6oTtpoBvlHEy5fQMqZ8DNRsm0JuQNAy0P0mSr6PmfjUlk9z1l1C2aCVg7RdpG1QmzlFpEOsvIfpWECMdASu5TJM25Rniwx2LfZ6Q9b3mhxrd8h5eZbnMym3n3xAf3Huw89cAnSg0ZGGtkb2FcpXqDQhqUeofQM5Z3FqeYIZQ9ATAiNV+FSJzJH0p4Y0gbCTMGz4NIOAVn2PQSvAK5hUF0qUpyYJYpN4qEmaXXxnAs+pUTINNu5v056t8tkXZnh87wl9KbCXqrgzZXbe/YjdSpdea8DyjEt5cQqdq1CrVbn39C5OcZZARHilmMnJCqXaGeq7LTZbKfPTismpGqabo9gYsr1bp6AULctmkDoM44wca9oaYWjEMEdjex011IQDk27bplKyKZdgojBNLQ9+EuNHCUEgePSwg9mb5Vgww6lJk+mzs2xPeWyVbBr06T55xE59n5n6PJa0mJ+bYDg0aPZhKAyGKqLvD2jt77Ozsc7nf+uXEZbB9uY2qR9QqpQpjDfPQQz4RJ+Wv9kaQx9IUcEaKngLrZ8gnT4aC4REqBLdrRZGRXLh8hmkCmjv7NPb22WskoGAUIFMNTmZ4ebFuPD+hOObgIPOfYa7NUek0NGhI7Kph2VZmKZBKAJUkmKOZCrR6iCxG8NzLGlkV00f+rklo46xMcKgpyNgkTHu9o3gA0pr0iOHXFZ0jPW7R6eIPEwjs5G7PuhEj4nOh9f1J6VTD5+7I+eSHiHdRp4IWeGQ8STiOGHQD6nvdRnGOSaWqkwdn2N2tsTGVodWe0g3aRHZBq7rYZc8BmKfev0JhUGHac+jOnmCxaVrTM0uIIYfYcoIU8YI+ijVJ9Epq3sDqMyCY2OKmImzeXQiyS0prFYenawiokc4MqW0aHNi/gT5iQrDNMb0HLAtEtMj1SnKFjiOjWko7LyB5Sh8I8Gq2bTbBuvNIVt7DaZMSKOUtUcbmFL8FOcCgLH/BCPp2lFL9mAnj5oz40JsfK/GkwT0oYLUeCr0k0e9Ht2jsbOx+glIWDYpSoHsPBq7Zk9OTvArX/8GX/3Sl1CbEDUjhnXJVFDimcoptJunbSVw3OVTVwucu1pGJiW67QFJLkekJSkwCDXdboTf9mkFEc29HQaNkOqcS3mqQqFaJoiyeJ822vTnLzOVr5HuD9l42KM/U+HVT8/y/hu3CbQFU1Vk0aJ+Z5XdYpd2vcvFk0XchQUGRY9CocjTtcfYZZOoH1CdSjl2bJrpWUWz0WWjmXB8XrG4NItbCNjZ79JodykpRWvo0E8c+pFCWhJhgTQUPd9jb/0JwtcEPYtyyaZcdCgWFEvFCvM1wSAK8COB363zcNBAtac4Fc1zdcZitnyM1arDpifoGCHB2gprW9vkrCJFkeBIC2FM0JcGrWSVoQgpFHK4iUEYDNjyW3Skz/LUPIIM6oIG27DQZnYj4zgGzUFH/Cim3jIt0jRgLEGaQRFHj9/YlVuPO+nZ8xWn6UHMktJAKZ09+0phmdaosanRauzurjNY4eg5NAwDx3UZDIaoUTNBjgqDiarDl19d5mtfWWR2wcOUMWGYolODNLXQgY9WCYtLRSZ6YA/rbD28w9Wv/zJCCBzPIdApayurbK08Ye3pU77znW9T398njKMDmJ7S6nDviDEy86chQHoEtxrHwLGzc1ZEjDwOxmQu+JnFxc9b/zCTg4+Nd0cv/uTHIwLZ4wAyXn/DQucTW0IIKqUaxUKFkycucHf9I242PoDGkKc377G9vkE/6BMagisvPMOFs6cpzLtsO5pmLqRkRBx//lWWp06S7N4lTteRbgpGgVRYqGif3UFCK3Go5ScomAb94S7TJxR3t/89M2WXMy+bCKEIQx9rLyZWC7xy6Vl6loVq+RnJxbKYPHOFdz/8MWXTwTJNVKowTIVXcsgJgWkN8CbyqKFgEA/Y3Vrn6pWXKeWnD6rQA3LgL/rSoHopyofwcYhuBEgSnKpBuq0IPpQYZh5VMjGEIp9EBGFE5GtCz8WzBCLVBGFKpx/QX99jPR6wvr1JdXaCEzPHKM/PUbME+80Yu+0zGPRJEeQcFxGFPLy1Qc6pIqVkY61DsxMzlRqcem6WVXOWv/j976NiwaUpg/MvXaD6+c+wdOEYm+ubuFKgSdjarpOkKZ964RKXjlX4weMBO82AfL6AV62wXIwRXgXdeoJhWhTw6A5ChpFEyxKmLrL4Qo27779N0m1Qbye0TJtiIU+5BserS0zNT1IpGiTCYhCk7NVXePy0y+rWgE8/N8HsQo7KZJFC/jwrjsLfr9Me+tx47z5LtTKnTpzA72ryhTmEY5MaKd1OEy1ThsM+g26P0swUu5s76CjGtGxqo3v0E42BX/B1EJt0Sty/gVBvI0QKZhaM08RHp0UGHZfdjRssnpxhqniWxkoJpzRBksb4QYItLVIk6Yh3YNkWwC/EvhJSjrr4o4RbSoRS2IaRJWmGwDQtbNtBWxYSSKIYa5TIaw478aZh4BgGhhQH+HSDLDGP0yxhlGRdulSBVhrDEAeFgQaUFsgRXCn7L0sKss/pEcxgDGHhsBD42MF4WBqMu84j+cPxtACO/MzRF+rDTnbm6JthgjdW97H3ulTnqrgzE5ycP0Vjb8CTNz6k1+sSKgU5h6UziywtTnNycYZ7/SZiABMTM5y4+CXOVa7gb7yNsDeQRgFt2NkzEdXZ7kW0U5eTuQmImyg5ZPF8mbDdZK6sWfxGlSEBujMg3grZ3HL4/NVrxK6FOYhJhWRouwwMj72NHgUtKDkWaRRiuQLXNSkYJo4T0CpahCpgc3eFYdhkY32Pu3efIsi6nGmSHhA94RADPU74R63Og+nA6Bg/pJwcTWAOqrnRvc+qtCMJ0BE0tBj9fSRneqCapTMOjBb6IE+wbYulhQV+59d+G90A/1YAzT6i0aY6EHxm6RmuPf8V3ujeZurqApOFKvZWl0SDGqa0k4SiLVGxph/E9Ft9ertNCFr5CwAAIABJREFUNpMhqxvrzJ9cZGZhnupEiRzQbMZYbZ/esI8yHUzbZtBt8PSjHfJ2BdOUPLrfQDZijj1vUymV2UgqfPP/fg2VSPSiyelffZXq8gkWzi2zv9/AQaOJefh4gwsXTnDxzAL6eI03Voas7/gUKlWqswKzWMPdb6M6G0gDCiJPo90jxkK7Nq5ZYnl5iltvv45fb7K5J2i4HsWCQ6kiOVZZYGZ5hmpVEylJp9+m0ahz78ECa9sBX365xrHJHIWlaQoFm62SzVqvQ7c7ZHHhLOW4QyXvYk0u8aDZJ0xSUhkxVSsj+xGqH2Enmm4a8NzyeURnSKw0cZIgpJHJGo+SWWmIkQrRoU6/YRgHggGM9qplmSAyv4v4iCv6QSJ8RCTBNK2MczAqSFKlMNBYY8+EdMyNSVFj7tGRRsI4rggBhiFwHYPF+QK/85tnOX3ayM4rw8YSoCMTfyDZWe1zerHC0tkyTlsTtWEQ7PP06QMKtVl6zSHNbod3fvBXvPuj7/PowQM6vR5aj/w8GPkXjBoQYwngo7BOISVytO8O/GY4PDMOP8J4Z4736dHPj7/m562/9+JgfJiKj706JiYRR2gkwrJGLpjZ61pnBKcDQtpfmz/8zDHDP8Aaj1iznz2uWD3H49Kxi7x3903e+4sfYQV9aoZi0rPwizb5SZuFBYeb97fRtkdl7gKagNNzL7O9910GH73DcHGGyfJ5TjgzxOE9gladbz+QXL/+H6P791ldfQc76fPMZxb4YGWDO4+7lK9XqE7b6MAkCRyaT/dxlMIRijOlhDgf8WQ4ZKexy6tfe56P3rxPo90HIck74PoN3HwZkRRZPn8WYh8dttjfWqF/8hkqxfkjGOBf/KUhG6sFisEHEc339tHrG3g6onTyONYX5jE/axBqSH3F5qMWax9uUXVbiAvnqc2bkIDfDAhbbZS/i47qKNPlwtVnuXhumlrJIRko6k8CRLPNsLeNX6uxPFthOmex1+xz4+kev/vVPBKDJ3s9PrqxyqlOk+uvHqN99UXq77xF1BjQbkv6U5N8/tqAM+dmeLx6mmT/EUqZFIouOQ33bu7y6c8u8qsvTdDohGy3EjSKnA2G5RHnoLfewXcsalWDsCPY2fHplisUFvo8l1ygvvaAqLWHDgf43Rar9YReaR8+VBxfLjM/P0G1WuXsMxVW19bY3bzDN79zluXjJ7l2dYZrJ3JMTV+n29pn58YNdLRPS/rkohzddJqZxVkcpUi6beorj9nfcXj85Akf3bzNp7/8eZ55/rmRSpEx6vj+Y3iaPr40Wkck4Ta2oxFSZRqkyiKJTAatBOwyabJBKmLKx2zsaoXtpwHddp2d3W08b5ZKuUgu5yKE9Yu1p/RByneAEVcqRWQ5GVpDKgTJiAAoDRPblYhUYWiFqQShSrBGZj2mkSX/phTkHQNfaJASyzJI4hRbCEyRGZ0FOjscxwljqjOjsnFjwrENgig9fG00ocikNnXmWk92uCo1wt6KEQThYGQvDnTTxZj8jGb0tg5OzvHZlUFqssNZqZERUpIQ+Yrefpvte+tMT07w4K/eYdaVzJspOmeSTnrUFgpcvTjPm++tEto2bnkBZ+osy5NX2Wn+iN7d7zG8epmz7llKlib2P6LX2OdP7gz4+lf+B/Yf/z67aw+YrJgsXZjj9soTPrgfsfDlWVxHEEuXYUcyjFKKbpmZoseC12bfVazGCVJEPPvp42zeqvNobZNCrsBUWZLXKUlqEHVNmCxSikKGrQ2igct+K2Bjq4nvh0RRMuKQjBKM0R+mmd07PfYq0BxRI4JsPjSGH40bf9lnDoylRsXWgYPruHgQmfvreFogDWP0LGYythnkaDyJ0KRJgoGBkRjcfu0W1ntFvJZFKdymnM9TmllkcPoYpc+XeaF/HSXhwx9uETebTMwKxOmTTORS9DDF3x4Q9/ZRYR2VdNCmw9XrL3LtmRk8QzJsJTR2A0S7w6C3zWB+jsszefKm5F7T5+FWi3/+hRxKST7aatO48YSvVuDqV5+hc+E56u++TVQf8pddC3W1weXlJU6em2Fz7yTJ/kPS1GOi5uE3hqyLNleeneHXFiaptwLWGgmOC27eJe+6RHmL9nqHMGczVSnQ2h3Q6GmCSp7CfJ8XwitsPbmJ7ndIwzbDZsTKTkq3VOeDWwmXL0wxOTXB0mSFc/M5VtaeUt/4kP/r/73OC9dOcPlClZeOTbK2UMYfdol+9DqRaJMrm1iGRxyYXF1cpPVuiuq1WZwu0IhjGs0ASwtyjkc97HJ/7R5JEqHRDKOQdAT5MS1rNC3UqDQzNWNUNPi+n0mWjpJ108qIuAeJNGKkUiYPJppCClzXA7KphNIay8piqzQMpGFgmgamtgjDCJTEMQ2iOM7c3aUkjjIOg2PbSBJcS1IqWkxOuhTcOFM/MwDDJo0gGGjaewGtrk+xaHHqyhR5N8fO4x6333/Mt/7lf8Xv/Iv/nD/985usPr1Js77BoNclCCPiJESliiiMDjxvEFmzZEwkhkN+1NEmux5V4AdNlCMFwHh/6FGRMVb7OpSD/Zs1of7eCckqjon6fUzHyV4YR5c0Jd1cofM//zf0334T9/JzWfBNUrRKR5XcUeLrYSfoZxcCn/zxOr7eSZzgxC53br9Dc9BD5yymz87wwm98irMnL/D2g8fsq4iNtQ3StsdLz/w2yeAH/NE3v4OeMpldepnF6iVKIqBb/yb/6+9/xBe/8dvMVq/w/u0bPN16j1OnUio1kNWQW3eb5Gsp0jHpxhab3ZTwaYBz/NNUvSJ5p4DWMc3OKq995z2m/G1Onw+YXPDQNZuupYgHAa5nEsZDBsIHETA7s8Tli19gYe4UWquRdNhITOwXoMP585ZW2eTAWjaQvokjCjjlSaylKsYxk+BmyP7tPttv30A3HzJ/3KD64qeoncrhaMHuVhche6SFhE2nhH3iAheXz3LxRJW8b9BbCXlyY4u3/vKH7K4+wqRN7fqL1Obm0VqytTnkzdcfce0rl7CEwXt/dZv65i52yaNy6Tznzha4/4bDVvMhqXBxk5RiUGfm+hUSJJM5g65hsddzWVsfcO/e+9y/vcb1K6cwLItywSTnGIDEy9nY+RInZ13wh6SJxPIKTM14GM279L1TLD37LMbUOfo6R7vbw0gHeFLipTGmrUkGfbp7e9R31tlYW+f0guT5qyneYJP2XpsHKxErKxHPzmi+/PIlcueW2drd4enqCu2gz+l5lzNTSzQe36IfRPiRpt0Zsre/jX7jBudeegXp2YwJjAd27v/Ilk76BPUb6MaPkfk4a7GIEklUZNASrDyW9Fr3mT8XUawM6aqQTX9Iw3/En//bP+S9117ju3/2B7z15vcZhj6XLj97IAP5ScWxo4TkfC6HaZiZezMiMxyKU1zTxnUdNIJEKVKlMA0DwzQpFPI4lsFiMc9SMU+kEmqTZfxBiGkYLBQ9fvP0LP/y+TP8k9kqDwY+Zcem4jh4pjFSLMr0+1OliVJ9mMSjSVU25jekIE31yNk46xRahjjoVI+vX2bipg4mBOMDdDzZMAzj4PAc95fGDs/iSHFwoAkuOBBiGGv2q9GBG4cxvdVdigWPvtK4U0WOfeoU137peU4tn+Wt+yt0LM3Wgw0KxiXmq2dRw7f48798Det4kZMnvsFcYQk7XGV95fv8/rdW+Nqv/ydM5q/yre//IdKus3zcolgDs6p5+9YOc8sQCoO6r9htBsTbCa3CZS4unqGUnyRWHRqtPTYebLOc7PLsi4KFk9PEMyVCqVBRiO1KtNDIkkE+n7K/2+PW+0/54L2H5PI5Br0hUZglaGp0QdRIX54jnctDbFd23eTIo0CNkpnxZOegrXTkORcHH8cKSByc/XrERZBSjoaL2dcqPeIokEk0mtLAxMKObUr9ArfX3uf84kWKuSm8xVn0kkfPHpKvF1j99j47b/wQtfUBEyeKzH/hM9RO5LEVbKy2yBf6tB1JqziFd+zcKN6XsRpQfzDkox8/4NaP3mZv/QmW7DL9ypeoVsv4Q83jB00eP6lz6ZVzWFry2h++RdDrUlicpXp6ieXFPA/f8dho3MSwJikMG5RyUDlzEm0YTOYs9oVkZ9/jydNN7t+7w9qjXa5ePI5hWUyUrJEssImbd/CKZU7NukTtDrFyKVRLVAoJRn+dgXuS4y9cR5XP0OwnDP0BhgpxgFyaYHkQNlu097bZ3VynsbfDqXnBi9di2HnK2obP/UchrXrMs3OSL798Cc4ucffWh6zv7aGMkBNTNsdL0/S37tIZJtjFabq+jxh2eT5fYnnpEnfW1kZIw4QwjvDjkCiJkULguE52z5VCperQR2X0WKmRShoi8zqQQmSFqs6mCZ7rUiqWEALCKMIyzAOFtey5MbBME9OwDgqLZOQfMJY9NgWYloVt25iWiWEY2LY9ejIVli15/uoEv/W1BY5PmlhlC2FK0rREOHDYWx9w/9Y6larFc19ZZnq2wMqgQ0v0kPkIv97l5mt/SWvzLradMBz26fcHxHGSTUGSTDJVHNkXh07uHMqWjro1juNgGJk6m3lEnWkcv8b/Jtuuh/OD8V4dT/2SNP25hOS/v+JgJK8kpERozf6tD8hNTx/8osnddwn/4H9HP9pAbu4S33obY3GZeHeN4Ufv0+0Need/+R859vmvZyS9I2PiwyX+mv//h1/jAqbb6/Df/6v/lte+96e0I5/ayRoXXn2By1/6EkMR0V65w+aTLs1eiFE6zfLx41yornBj+12UdDkxfZazU+epeXk6QZMP1u/xcLXLF17+NSyjz527N9jeX6MyLzg1k0PJLh912kxPSyoFk7xlkXfKnD73XzJZWSZQFqAolqcoT5zn9R++Q6s3pJn0wRpQzflMF03M4jSikFKczXF+4RoqHlDwChxfuozjeIAYdXD+EUCKNJBq9FARfGuA+lDjTJp4Zz2cYx4q9Nn/t9+h9eFNGo9fp99dh+Pz5D77IpVFl1Zb0WnEWNpHGxosj2q5xmLRIu4ltB77fPi9H/L+D/6IOx9+h/1wQDlvMbRmOHPlFKVyjl475cmHbVoPP+K5b1yDMGL7jR/S3V7HtXM8e/oSS6dcum6Fh+++RrcbIWObmlvi7EvnMMoej1+/ycT8PMfOzTGzWACl+Oiexft3NilPFCiVXTzbxEGQNyWpbQIGhpvHcyxcobDikKn5MhO9fdLmGsuLZU5cOEH52HHWWimD1h6hyqEiHxUNkLFPPk6oRCGrjR6m0pxbTlnItRDdDVb2drn5UMNwyJWlKscWCuSrHvvDmEdP1mkbLV49doXZhUW68YD1vQ2S0Ccf9Rn88DW6IodXruAVcgcGNv841vjESgnau6y/9SdUlgYYngNyhrgn2N8YsvIwworXyZ2aoDKZpz2Y4N5mn7s7ayjLJhZ1Wq0WgzQmtWFuYYGrV144TKA+oetxtDgo5PIH5NwxdCRnWhiWhWGYCGFgSANjlCQbpsm50yfpDwYMhwE12+ZrJ5ZYHbRAGpiWyX/63HF+bWECtz6gGMAXTi2zIQX/9NoZLk5UOJ7L88Wzc7yzXSeMFVJmHXpjlNyrMW+AjGRsGgLLNDCNsWnZ+DcZT56zr5Uy6zCO1TrGikdj1aSxUs4hHWFUkGgOJAUPO20aRod1ph6iyOU8lk7NY9sClXOZvTTNs7/0VaYunqcbdehvPOTpw306IZQWPsO1U0UWyqs8bD9C2EXOzFzi0sxFHAO2O5t8uLHC5l7Ml175DbTa5sdv/pDE6jE5a7EwYaNEj9vtNieWPMqui2fYxL7F0xWPZy/9Cm/euctUrcTC8hXitMytD+7RGSb0ZIzrDZktRni2QLku7oSLPampP9mjVvBYe7LPxlqDMIjRUmbFQZLCiCA6nsBoPYZ3qQO89jipE0eIlFJmsrZZk1OMzJmOTJ71+I8xHG388sjUaZRDjCFf4wpwrNQihMQyLKrlGicXT/HSuZf47Su/xYtLn6b2qQresznsBQfZ6aB+eJPO7Zv0d99mGO5R++UvMvPl58lPO3Q6mvZ+iid9EimxvSIT5SLTnkncS2jc93nvW3/GjR/9Wx49/YB+4pP3bIbWDFdeOIPrWGyvx6x9tEPc2ubily6h/YiN7/wZ/U6buck5zi8fY3bJpZ+rcPt7f8wwdPASi5mZaZauLGPkHR587waL589x7Pw0lZpFEEjuPRDcuLPB/GKNSsXFFhJPClxLoiwDjYnp5fFsia1iPEMzOZlnst8grq9y9sICy5dOI8pT7HZTBp0WEXkI+qRRHyuJKMQxuSBgvdnD1oLnLygm1S5+d5On23VuPkiIWh0+d3mB2VmbyDTYbvR5srFFx2zz9TOforPdYj/t0o/7GCqiTMBp1SdXPE0cRSQiJZUZ3NCyLLRWGbxw5JVy4G8xRicIfirxHcOOxoXm+OvGxYDt2KRJ5l2gRjyGbO+Pm5rigL8ghSCJQmzHASNTjEvSNPNWSBKWFufI5V0m8gbnJm2uLuSZu1DFzBdBzOLv93hwc43tp7tM1lyKZxeYmp3m9fce8dFum7ofEsoEM5/QH4b0VIooSPwoJPDDkV/IGPI4nmbK0XTDzMzSxoaPjJoUKotdcZzAKI4ppX5i+gYcKMkBP1UcjK4mSmniJAb+/1QrGm9orVFhPLJqNrJRtHWEYZ2ow7l0EuO/+Tqt1bsUP/sqZnUaogTdjZCDECNQqI1t0jd/hHntOnpims73/ph+vYFKkxFRT36s8zB+M598UZBdEjHCjyV4nkOxVuDE6QonL1xkZnoC3dlk9/4DgtCnIyKc2jKX51yO5bd4sPaE1V6E3oDy5Wcw7DyxSuh2Y+7eWGd2Iocrc2zrFjtpRC/ViFQiMXDMFGfWInUEMQKLPJZxHGVPgJA0uyHlvEcx5zE9W+I3/4vf5c//9f/B6tMOURDTLSiKhZjCZIpSKdKKKE+U0ROnyLtlHNc7EtR/VoH2C7ZGGy7tK4Y3AtIBiH5K+DBED/YQ3R0Ytkjr6+zHLqJwnvmvHyP//Bxy2sPXoDoJbuojvIRESgxpIgyJHigePfSZ6X6Xrc0HDAd9ZvM54qKkanfJXzyNMF2ioaC7H9OtD1maSpnMw/aDNkYiqNoGVhSy8qRO7pk8dupTm75GHO7TCto83d6k/XgP5+ISc+cu0GmE7PhtclMOX/ziM5w6HfGv/+IDvvvDj/iaeZFzp6ZxcyZJqphBEFsutpUFRGU66GKRsNfDXHAxOwOazT3K5S5X5jzO/cbn+N5bCzz58C3M7oAoMEiClNgPCUKJHUe8OwzY3s1xfqnAc+cEZ/web62t8NaNIYP+FpcuTPG5Z05ycs7iO29JtjbWaZ6o4tdXmKnkKM9eZG99hfTxKqu+T+OdN+k+ecqZT7/AyS++zCdqtv23QCSmcRutA7rNNrv379N4tMLy81NoJHF/yObDOo2NPrZVoLBcJSjM8NH6YxqdOsNUUzBtor7P1OIcV05bIDXDKEep0Ga3/jpz059FynE4/oRjmpF1aqXKEmVbGuRtm7MT87QGQ2aWj2HmPNb3NgnDgEE05OzxM8zNzFPfWKXWa/PpapFLEyf4Xupzf7tLLkkxuwGGH2PEArMT8C9efIkf721RzCW84BqstPvkTJPY1SRCECs9UixRmDJTdzJGpkRyPFHWmihOxyDP0S8gDigHKs2Ms4RpjLP8Q0grh0hWGH/Mks5xsvrxEfxYXlAKge1YFEsepVIey0o5cf04cyfPknd9hutb7O3sESUpgSsozx7j5UVFQT1lZXeb1V6CuWUz+cKLKDSx0uxud1l7sMNMLYcj8zzSTepK4SYCkUoMJI6Z4Cy4xEITawOtCmgKGOV5ZueXefNhnU7fJlcocP7Z5/k6Jn/xe/8n8aOANNSU3B65YkSp5GJoB9MwCdsBXSyCKCVOFYMgJO4HhHEy4meIg+RNygyXzU9cM0ZQIHHw2kFhIECMWN8fZxVoDq+5FBI1krk8UEPSCvQIPTDih6gjZGVDmuScHOV8medOPMevPP+r2EMPqQWD9/uYww2spI0etGBQpxG7mBPPcvKfHyd3eQGj5hHEkHZTPD1E5FMismLWQJJ0Ux4/GDLf+RZPNu7jpQnzZQeR19S8AblLZ1GpSdiH1m5IOvRZnEyZzMHmnSa2YTFphyTtHmtrTViexVU+k3Mv09rvsdNtsL6xxZn1Fu6JaRYuXqKzMWSvFzE/W+UrX5vm1PkB/89rd/iLb9/in/6HzzNdy2fmeEqTQxDbLqYp0BhoJwdRSDQcYCx4GM0+u9urzNTyvHJpkkvzn+et94/x9M47mJ02Q98gDSMiGZF3JVYY8OYwYL+R5+rxIq9OmGy3Gry7EvHOzWWk2Ofq5XmmX4ab0wZv3Vxnt75FozhNsdhhwpF4JQ+RSwn32mzFIQ4NPleucsPS3BtALNRIjtRBaIWWEp0c4Q7JDCxmSANGSX/CSIhA/GSxoLUmimKUznhAKlUZNE3IzLDMNPFcD9u0SeMUPYoFOgUtDGzbwcnliOLoALpkOzZJHPOv/qf/DtNKefub/x627xO1E3ALKGURdlo8ubVO0PApF13c+TJN6fH+ky22+gGGCVILUJLynMdz5220TNlra4J2nqd38/z4Bzu0O2PDQI3W46mIwjCMkQqTOJD6He+JMIpAZ1PMsQeEPqJSlCp1AKU86mkwVvY6qvr289bfiXOgNaQDn+RH70Mvxpibw7hyBt1PM6yTAdLJ3sGYOyDDiMG9x3iLC0jDQmOCXUGSx9ARhBZ6N4WBDWWLJE6xbAd/bxujWMHJFzAsa5SNH44iD9hPn+Q6CJRZFTg/P8OEUaQ0p5iZLCLTIdsbT4haHfycjfYkxyeqFIyARm+bre6QKHBYml+iVpzFMlyCNKU5hO3dkFq1iiEKDBgwiCXNgWC1J0i1g6Ul09U8ju2iRQWYx7EvkSYw6KWUvTx5J4dlWOTdlOsXLjH8pV/n7Rs3UKpN4A/xbJtybpF8cYa99keZQYfhYVq5I5X82IjmF706ICsQYkW07aN0ShLAYNBGtDawhnWQBn3vLJsyx9mvL1P+1BTWjEssIO6n5I0UJXy0KzBNmzixGQxg6KdMeU95/O6H2EGXmudgOEXw5pGqgUMOO5Ukvqa116Wzt8vVz1xm98M2jtS4dpmCUUQkikGzQTycY8LTFNwC+3bCMPLZ7XWprzY4dXmBQjWHRtJvR9S3A0SScnKhxJdfOsO9lYQff7CFH0RcubiEJSWeLXGEMZqcgGlJepEiUAaDxMLFZq3dY/9Rjzw+x46f4KsvX2b9bIG7H9yls7JKuL9F0G8g/CETWqD9gEaqWVEmprJYnjV58fiA1c1ddjfKoAyOzwsWiwZfvTbNLbXPo/YmM2bElJMDIyO8J7UyfR921zbQm3uUS0WmL52ntDj9CT0jRzhDSmWkW/jrY4kw0XpIq/GUlccfkdMm0i2RJj6bT1vsbYekmOSmHHYdl3pzk2ZrSJhqbFNQdqBQAtuLWa5ZWFZApGJMuYsp3sIfKvKFL6C1+MTD2Ti5Rmcyq6ZpcGFygX927DyhL+nNzRDPTPDZ6zama9IP+jxdf8ynX3iJ5JlrRE8fUGpsM6EEL83nGPQSjNQgiSxcihhaQeQw7xwn71o4so6TtnFNn2uLFZ40B+xFMf0gIdKjpsSIBzE2wTraQT6a3I8hRKM+/wGU6IDAd3Df9eh7jeApB99HH/osjK/HqAc1dk8dt6Qs06CQd5marlKeK7O4XGRhboJuY5V+fZe45xMVcoi8wdnJCYg22fZ32RtG6DjH3PwytfwMQqYMkpR6V7FbT5meKmKKAj1h4UcGO33JztDI4j0GsxNFDCtHossYLFMqnuD0qQUiX3L94mXeefM9nn/eYPnUKT519TkGjR7v37xN4O8j4i4ICKKIVq/HidOTmKZNf5iQKFBSECcp/jA69CAZXcwDbsDYm0CMpzEc7h19mLiNJWnR2STggHtw5BTJzNP4GGp4fJ2PQg/H/zZbUghMmRFXDSnxcCnEObrNDtK3ae3WKQw2sEVAajp0vbNsOQUu/+ZJqtcmESWbJAWChLyRoPFJPYkpHPzIJOhpIj9k0nvK3ddvU5MhpldAejWkU0LqAFd42CkEoWZ/YxehIk5dOs3unTY5R+BZExRlivBD/HabNKgx4WlybpGWZdL2G+w2erS2WiydniI/kUcR0miHbGwOiScdTi3n+dJnznLnScK3f3Cfl54/weJcDdsQeJbAEQYq1aiywolMBr5JgImfWrgVm4fNNo2NfSaKVWbnpvnqK0U2z5f54M2b9FeekjS3GYZdxDCkogA/ZAeJpwxOLQqWJiSuabFZ3+HJoxoq2eXkTMjVmSLV52d5cLvP7Z0nLM/kqJg2fuzj65A0ZzOIbQK/x5x0OOmW6WlFNx4QxyEmEjWCn439CLQaTYyUIiVBjLk+R0PTyGk7KxRGIgejYiKbJkikkT2DpplBI+MowhGZeZ85UkIKtEZ7TgZ/U3pUfEIUxWiV0mi2eOnl06zNFWk0TOLUQNhFwqDD4zt77O4OyBdzyOkiW6ZNfdCh1x0SOhY5K6ZsCwquiePByWmFZQsWAwOZFrh4vMxU1eX3fv8xQSBQSpKmGlAjOGRWKBgjCWml9AHnSY+mdQdx+si0RUqJHk9MRufZGPo4LqzGMexvsv4OxUH2jZMHqyRv3ETsDuDYGYQxg8h76LIED6IgIyRJE6Rj4Ry/QOuNHxA9fJS5LLb76NTBMGdBdBFGGaHnUD2bWKTE7hyeV2f/w7dQuRLT558hPzV3SEDT6gDm8smsnx7XCJG5+l04d5GB0wKzjSUT2q19Gs19kIpAJDiVCtMuBFGHnX6XbmSRix1On32WilvEMiz8oEun36PXk5SsIuCRkiNKTBrNlAcrMf6LOUyRZ8GzsY0qlpjB4ji2cQydClJlUi0UME17dLhJplzJy698Hj/J4ag6tuxgWwnHDnLnAAAgAElEQVSOVWam9gy9TgfbymNbNp5b+Al3vn80EBABwhIYU5JoGJNYoHIKGVsoo0zsVmilS6iyS/FzVZzJbOIlfIXsJ5hWSkKKcnPEqYNODWSsIBri9G+wtbXNUt7EKlTpyiniMIf0YlxlYCmII82g0yNs7zF34kW6ewlJu06OIjmrSJREGL0maSegkHQoexrHdgiERSdIaO76XBQgpaYynUfbDqvbbW7d2yHvmrxycYmuMWTr8QofrbQpV2ucnC8RIvBMQc41EUJjWuD4KQE2bk9g2Cb9VDNo+OztdImHa7z8yjGevXgF1yuzVy3TXM3R3LGJNleQSUxBJMhuSEv5PIkkjg1L0zlqUnJrr0Jrq8XTgYlYynN6IcE4M8Wte208N4dWKaozoKJT7MkpNnb6BO0+QTqk8fgpe7fuUFqYOkzI/xad/L/TOgI90VGCGgSoYYwxWUDYkiO5y0H8HL81KR2UGhIE+3QHXYrFHMIwaWz2WdsYEiUOXtWlWzC4V+/SD1pYwsawFK6ZUrJSZmsCKQeUHJAipOwpLKuNYawQhZpc/vOjn/fJTkTH/bksQdY40uCLy2f5fG0eK3R46k7TLy4ze3aZ8qkaQ+3zb/7NH3LxxHMIV7PtFei8+wGl7cecm3bpLswyFVoQe0jDBTnM4r1a5HitQBCUSLpr5N0e15crlDzJW7td4jRzQ0aYmKZkGCYoBELpAwfQsZ7++D6JEU9BH7als99lpHR0gGfWP5V2MH5AxkZEY3nUA3W2cSGJyKYrI8iLbUvOXz5HsRLjyoS94YAgDMHQRIYmV5xgSg7YG+yzH0REkU1ZFDl96jkKtochFcNBnU4vYNCzSHOjeK9zRJFkYztmZUsRXshhygLLORvbmMRUU8AxHPsEiwtz+IHGRbOxto5lWFiGxeLSMq9+7ku0+hZ+/V2iJCIIFfEgZm21i2t6NBtD/CCl0xkSx0e7sFkRlnUuD02Xxr4PY3z0wRU8cjnHMIjxlU1VimAUZwVofTjBOaSKHBLhlZRIpY9gsTmYGB29ZRpNGIVs7K1z6/FNjjkncKQkskNSbRNKl6FVo2kvkkznKH1xAseTJFog/AQ5TLCshNRLkU6RMLIgkYg4QYQdrM47rG7ucXU+z9CpMqSGil1k3sJNDQwFvVDTa+wj05CphZP092OS1i5lZ5pQdjEjH9lro7s+hbRLJSfYtTyCoaTdj+k2AhwJhtBMLBSJDYuHW/s0Ol2eOzfL5y4vsceARw/uUVvpYDs55idzRKN4n3ctEArLT3ClJBA2g77ArBjUo4SNzR7r+/vEQ8W1F+aZufwMGDmapRz7Gx693XV0cwcjSSmKFNkK2IokRgKnT0qOTblMWX3ivUm2Hm0jhyVOLhe4Mq/Ih1O8e7NBvlTBjMEZJhRdh7RcZqepCNOQJAmZzXnsuzlWI5cwClBRmpkJCj26v5oUhYFBojVpmiB0NjHKTAuPTPuMTKr0ADKjwLKtEXY/40ilKsPyu5ZLEgcsFqpMuEXQ0AqH7Kc+2jPoD/pIKTN4ERD4XaSEd965wbXreVJCUlOgXRMtDHY36jx80kCaecxKnq5j8bDRJ0wHmFh4OYOyDJkuaCYrBpaVUnYSDCOmOpHDsmyWZvJ4jsO/+4MnmUdHMibmZ7/iUQ+YLMYdUQkbbbIDXtSRKYE4UiRkalCHMXBMSP7bCID87YqD8UbWiuT12xjtEDEYwN0tkvZT5LVlxJUSsiQZrGtUrHFrgtyCg/viVxl8//tED1awhx20n8J+iDCWUXIPZc8gyydQoUO402IYVEAIVn/0J0QqRhr/EYaXw7Bd/EEHL1/C8fIH7+snosjf8/pZurOQJd85L88Lz7zE2uAmvbhEs7dDa9Ah0Apymm7gM7d0gTjcpRm2aSUgI4cZs8pi5SqO5SGlIAnbBK0V0r5BtZonSg208Eix6DYjNm7EtL6RY7Ywy4KR4MslPGORAgvotAiei+OUkKadjXH1oXFI1TH58meepZAzMGVKp73Nk5VbuLbL3PR1FubO4drekev5j6QoGC0hBEbJoPRKhWTYwXYFxYKL7laJOgmRMBmmOU6/4lGsZmoqOlaYUYoIY0Ijwai5CFWgO4A4SKjkEoTe5pvffQMzDXCNMqYzh+A4re37TF9apFxxUFIQRSlp6CODLnEHLrwwyTf/629jUyXnFkjiFl6/zXDHJ95cZaZmsr1n0mlrhrGi19YoTEQicRybM8fzlIqw+UadN1Z6/PKZIldPhFTLS7R2Aj64s83MVA5fm9iWxPRMXFOghETpGMc1qVjQDuBSIeFYJWHtqc+H7/yYbwOXl2pcv7JEMOWydXqW1bV1Hn67ixi0EGlKIRhiKYjQ3EGBMphZqvKyDZvNhKdRnptbE4RRk1Mzi7jCw98P2W38f+S9Z4xsSXqm90TEcXnSZ6Upe6vq+vZ3etrN9DhyrGaWZjmzNKBIaUFJkAgQghwkQQbCAvoluytQEiWCWoiQCAHCUuSQyyVHM8NxPTPtb/fcvt6Ud5mVPs/JYyL0IzPrVjeHRJOaFZfa+FH3VlVWVZ44J76I73vf730HjIOQFdcn65YJj2MycsK7PL69xe43X+LcZz6GUKe5Rf8UnrXT69WAiRPSoz7RnUPi5oDs5x5H2TNe84zg/N4fS9BRE1slFObqWPYW43GPG2/t0kzyZCslRjnBTrPJnXt7LNaLlOY0nhmTkyEFK8YSCX4mIeMotE5wbYXtpGihmYRiw193YgBgWxZJmk4NqSRF2+Gnzj+J1xoigz4XxBpRc47QVzhrLqYi+OInfxlNxOFwk9gvs7/6PNbGPRrNlJ++cgmxF6H2LIQqoGUbbTVIsmdYK9Vpdcs0I4mSD1jOOdSKJbbCkHGSEjmSjGfj+w4bBwPGUXrCsZ01wgpmMHv6rgNqOjMI0pxssCffSye78GkO/KyoNqNPnqAQ4lTD8/QPKCVJtaHfG9Lcb7K2NE/qwN7RXbrBgEhCnDG0gwFnzjxFr32NJinDxMZPsiz4NZZKT2KryRY8HuwQtPfRA0mpnmGsJZgssZAcPRix4/t0X8xS9ec5o2L6rOGrJcI0x2hsyPoWQlp87fe/QWO+wZtX36TX7/NLv/RLeCbi8kqFl3dTgl5EGmlQmihMeOvNfd56c2NSfdaGJE6ZdmUTR/EEPRLmhNoA0yf0PYWi2TzqEzrQw+Ryxh2fpF+zvoUZYjCb9FNmZ6eoQwYm5lhTBOGhEosh1QlJmtAb9nj53it0Bj1+9RO/hpvx8Qo+MjhLFCuOU4tdX7D+hRx+RiIlqDDFBAmMIyIrwZpzQefoHcd4aCp+QDDY4it//C2yFngij/bP0x0IwuERtYUliiWXxEAUpTAewHCIjCWXni7x+7/2B5SLZzj2fCydYHV7jPaGxHv3WVr02ToKCDCMwpRhD7SxIJFkCi5XHs2SMOKNeyNe3RzwqXNZnrkQ8qBwmZ3dLpkHLQoFF6UVji2xsxYZJUjNGITG8yQFldKL4dmzPuuFKjffvsXGzdu0w2d4fKXMjz9zkWbNZvtglQfX32Hn5W/DsItIE/KjIcoIjrcN78Qp0bqmVFvk027C7cOUu8MSV7cFF0Y9zi+fIytzDLb7bI365JBUM3mEyZP22hQsnyCKKSSaBc+i4VSJopjuuIujLJAQxuMTDw3HcbCUIAwnzchKSoSSJ/TCWXI5kTp9aKpoOza2bU+KbEHAaDTCUopqoUIup/ho7QIvLD3OUTTiyxuvEcctxjpmNApwPYdSuYwQgvEoRNqCOA4Y928T9Fto22DXJOOgy4039zgyPvVGmQOlODjssLPfYq5kUWkIsjqhZMcUvJSMDX7GkPMgSQ2+IxG2YRjHBONo2v9gSOKpW/sUvZQnfjEP0brZhZ+sAzHp0xGnGo1ntKHTqCnTZP5k/c7i2/sY7z85OEkMJv+6pXOQ8zHtPQgiOLhF+lIf3bmI96UqxRVB/0AzbKe4FbBtSaW6QrR7kyjSuJk6TvYstI4x9hKp3oY5QVquMThK2TnYZ2d3j5VlSb2QcP87/zvt3gGlsx/ga//nf8m//O//FqfNdiYB7b0b6z/tUuS7x6yJxnUzFMcFjrpHbB7usX1wQK8ToEo2tr9IPg7ojQ7pHg5IBw4Vv8azVz6FXyighUSRMI6P6IQbJKlDzhN0x2NSbOxiAVXME3SG7OyOWLj0FA3H4366xtjMYWQWx82R4mFJRaoTpJgsrjhJcGyF77jYZTVpzJGCbKbEwvxlUp0w31g76TH46z6k/JXGKfRZOFD+VIHRcQyDFGMc0m7CaCviw5/LMUgMeXcC4emBxukmyLxgmEgKdoXOMCHjpmRtg4xGHO6/wkvX+3xqwWecf4K0eBkvlIRJm5APkPoaSGEwhl4XlQ7JehZWqHikeI4fXH8bk61TX3gMX/UY73UIezalgiSbTfBshUgEdw4PeaEbUy5lOOwZAiul1Mjziz/+GH/62j5f3jjikysuj5UL3BxG3Nk84lsvW3zqyjral9gSHFsS2Iqh1ix4EXrZ4atv5vjIQg7XsTka9Ll0ucG9q6/z5tY8dzYucunxCqtnGyyunUV5R9z+vW9h93uMxJilJCbfC9lMcnTyBfz2HaLzj7E8l6XRPeR++wbXDldAnGOtYPGDzgGliqBecBGtIa1+yuVLj3E3lHSDI5xwjDcskg4jVH5StTkRHXhv2f59jndXMf8ssjf9Asl+m+Rr94kfDDALZYRlM9O610k6ga7VKTI6EI9v0N+5Cd2AesXHLqdsHR1yHLjkLy7i+B47W0e8+eYOZz5d40JHoVRIJScp+5J8JsLNaCxHoWyDpSykNCASBHky+X8dIf7ZWHeVuSq9fo9oGGLriQmgnb+ANQ4Q3W0I+8jWA6ywziiUtD4bM3+hzuYbAXPlRS5fuUjSHbL11rfRwz2sA7DVKiJvQTQEZ5E4fcAob1C1dYbdPluH+7QOW6zkLBZrNl/60AL/+AdHaGWxvpTn+zeb5PIuVpAwGo5J0Oipi+qkki9QyiKdIgTpVNXkvZTPk8rb6QueHjjkFDORSjBTDxRMnZqFIJnufVJMzMHSVBInmtFgzIObN6CSYbd3SPN4yDjRmJyLdnLkxj0CPWawHZCEHpXqMk+tfZxssUCMwGFMP9qkE+wTRhrPEbSDECNd7FoJ7mfo91L29hNqZ5+iYdnsBeewTY58xsf3PIIIxv2AZ59/htdefY0XPvQijzzyCM3mEb/+3/0623t77GzfYzTokaYxliXwXEnruE8cTaqWWk8QljSd6L8/TAjShzF1WsU1RiPFVC1lyns+aUWYLRutMdPq/glf3Ez13E8aLUEzkSM9mfCTbdtgzLRhNZ0kCEpK5LQhPtWaKImZqMMPudu8x//wjf+es6XLrFYXCcIQW9bpmIQ7vet8bO3fIacgig3iOMKNEqwcBKmkZFVpDmKKWYNtNEn/iP3dN3j1TsQXzuQ4rjyPn11GBduE6YhQVtHZFEwKnT4Mu9gmxbdt7NDmifJFXrv1OtnlD5Avubg6ZbzfI+i7VCsWGW+MZ1uMopj7zRZP9GOqcz47bU3kpTz+yDxnKgVeudHiDzaO+MKaS7FR4PvNQ27u9AB48ZEl0qzAkQLXFbQCi4iIOS8iLfr8k9ctfu5CjlFiqK6UEdGQ3Ruv8er9Bje3HuO555a59Og69fkqV/NDHvzJ9zG9LkMVcDGKGLVd+mmetnLJNDfYOuPyWL3GQucH3NpNeXtvieTyGmslzXeOEs7OWxQGI+JWQDvSrJSX2QvWaIb7VI3m/JzLqDhkZ+doUuHXCVk/h+NniOOYKAqxHYckkUhhIE2nBogptmQqejpBj2aiAamBTMbHdhx8P4NONeVSmflag0Qn1BpVfvbCC7yYnsMyWcbuHo1H1yjIBTZuPcDSkkhENBp1XMdl0O5QqRX4V/+VDxNt/Anu4IBMwyWzlmHjcJuDnsXc0+soy+POW/fYD7qsP7/AuVaAo2LqJcFcQZDzBY4nsCyJ7Wgy0sGyJgntO9f6/MZvbNLpRsTxxN9FWerEYDFJE2zbOZFyPS0lPEMPJk3c6YmbtJwW2IQRJ+txRqmcrFtxklwrKdHvKsj98PH+koNpxoGYNHglcYz9009g/nAJE29hWgHYPiI6RGzfgN4zmIKHXxXYI2jfDyivOcx96ZcwX//fsJVBhFlMO4ZcjFh6HhNfQcuYwegO7e594sPvIAYt9g59nvjJJa59Y58//Ie/AUpwZnUBo0eAzURB+5+9cf94E2OHtHeO6R51sXIO0SBD9bxNo3+DnYOYJFaU/CLrlTVKK0/j2RrXskh1zOGxYmevwPp8DduWDIYdYkoUs3PUq3WC7j43vtPh2XMuwn2ec3YZYya9HEo6041uxuFLUNLCzWROZOBcx3n4ZsWpjJUZ5/nPVob+Rg0xyZCVL8g6DiY2GAG+FDQ+CCmQiyZVLJUYJCnaScGDmlcgHIKvUoSYzOFxP+Z7X95ivVimWP0g9pkP0BkldLZuUhp1qdXyZB2JLQ2dXovgsIk4SlDbKWpJogceldRBHG0jo5DSucscv7zNwF1gqA7JBvvUvADjrVBbWCHdvkWmXqbu2CSpSzy2GfgOjz8rib6zxV1jkxZGWHNF1kt5Xr16H0nMp184Ty7noGwo+Aop4Ae7MavjlJ9/yuelVzaxXYtnnn4B88xzjDJ/wO3vXqW3uUl79Ah3HjRYW5J87sV/iSsrq3zzt/8Rx1uHXB+F1OyYD9sxN+5arL1wkcNrt+i5dSqlHJcX85zv7/LWtmSTYx5tFBl3enSbMSJp0JjzEdd/wHqQUFB1Wukim5s1ir+9w+ovLuEW3ffcwB9hBf1UjUCHKWZTwl4feXiAthPSIEYIC6kkg0FIajS2q/AcC8tyOLjxfWRug2CoiHWKldnBmcvReStGzq8y6sccbx9j4j4ffzpPpTei7oaYOZ+81yfnp7gZB9DYjotIh5CEoCQGhQZkJvuju97/l6NSKKGThCgVZLQN2ubv/env8J9//j/BC+cgcZCWQekOfjdmnK7T6w9YfCJH2E3pbI4oL7s0n/sMZ9rfwllZRRxmYDCEkgWND6KHj+MXh7Ti+ww6ryB6b2JLw0Ebnv+7Vb7yP23g2w6e72CQrJ4p0R4eE40jLDUpBsUpaARqeqCUYtrgN00MZij8D8V5xZ//qdZMXJWZcPDlVMFollZM2POzZr+J50PgJKxUC1x97SqRFRNZFuOBYXEtw8rgBre2I5TwWKgscWHxCcpLT+JZBk8poiTg/pbNsJdjqRxj24L+sE3i5qmX6vTLFUa9kDvfb/PUagasD/PBQpE4FQyHY6I4pZovEKiQaqXE4nyd3/yff4s/+oPf5+KlS3zzT79Ou9MmihOMThBy5jJsiONkOmczGUkzNYiazcu0GZmZypOYSEOZmUPtQ/M5jH4oyXuyn3AqY5gYmAn9UBJWSAVJzKxJWTBDaaY8cjkxuUqnEpQzudvZPU2SFGEitE4I44DWsMlmYYP5owaDNGIQjkikYOn8WcpZiyQFEcboOASpcbIuNSdLMNRkpUG5mlhr9naHvPmVPdaKJQr1j5Bbu8LB3T2i/QeUVUi1mse3BLbQDFv7xM0eXuqi9lLUnER3MzSMQ3vzGn68Sk7N035tn5HTYGjtUkk3MFmHcm2RSrmC3rmDV6+w6CiSwGbkOug5m0efUiQv73LNOMSlPguX1jg46vHK1hFpEvDpFy4gfYmyBPNFiyOpuXkUMy8DfuW5Ir//R9c5d7HKsy+eoflIk69/5atsvv467TsbtIfPsrToc2k1x+c/+cscXDjP137z/6C72+TlNOTRbMQjQcLWNqx98Bytm1vcL1nUqh7P5SOG/V3eujVCZUd8ZL5Bc2OPYTeLiQuUrIByc5NCckzZPU/L1MlEy3xhvsGP/Rdf4L/9H/8rNjc3sWxreqhPaLUTJkbqikRIjFKgU6ROUA4k6XQdWhaua6OEQmhJqV5jaXmRbreLMgpbKqQwWK7Dv/Vv/ts82l7G+cYrpKNjHr28yNInnsMr+/y7/95/wCPL5/mxz3+cpeU6d25cp7W3yb/2pY/Qb7/J4WaHymqW/HIJyy/Svt4mrDaI9w8JmwPmC/DImSxzoyH1copp5Cg6x+TzEsu2EBIsS0LSBTPGpJo0lRzu9XnraoswnPh5WJYFCJQ1fa61IY6j6Tp8GL2M0SDUSaHDsqyTM5s+1Yisp6pGQohJ38YMPZjK0b/fottfQsr0EmmiGTRH3P/+O9TW64h+D2IbrAJkMhiVkgbbRL0ssppB5CWp1oyHGssWjHe+QShclBFYkcHEgjTeJbl0hbbok/lAlZG+wf6dr7F9f4vNYcBP/uIS+wdj3ny7xdZBH2nBM08tsXLJwfEunAo+/AVVtx/tpvtD53b6tdSkjKIOYdznxsYddvYOCKIIHInKKuaUYXTQ56gPUeRTKlziwuM/Qb6So2xJHKUIkoQbP7jFje++RT2b5fmPvsDL17sMirVJA9Ywor3ZYuNBk0+9WMf15pAyjxCZSWIg1LSBeBKllbJR0mbWsDODzWdwOad4tbM5FCff/xsgXfreId7NFZ49FmJabYgiQzIExxPIFHQwqWZZeQvhWIzGAmHAcwW2axgMDrl/7VV2r22x7Pnkn75CcalK3N2ht/MOylF4Vz7OYiNHEkQMezHpwRBvo4M4NKx8eJXxWx7dnk+aWJhU0A0znLUluUaX0MsjR118PcLNWrRreR4755EpFxlpmySwkGOF44GXkQRentu7Y85kNOWMIhAelu1zsLtPELosVD18b8LnNEKTEZqwG5IvuQhtyAoHK7YJJcytrZDzJctzc7gSkvEIE8fkfQWiyOoH1kmDLuNgxHCccjiMqIwjZKhpzEusQko3iDjaTygVJcvekECuMAwcMCMysocTDCkgaR9HeAOLoh6TYYCJu4yPm9RffJRUTmXqhMDokLi/TTrYQdo5mEkZn77BnA6akCQJ4XDAsHOM7U/ohifpxamwYLTBHBvSO0ckB1vEyS6BKCPPVQmTlChKkErgOBZKGI4efB9H3kcHGwStLXACnFqJXq/Bqzc3yFU8esd7xGkLLzOi7GnmxJjKgqSaC8h5CbbrgJUhFQ5aZpA6RCp7EuhFESMv47gfZiYJ+dcxTkuZ2paNlILl+jpPrnyQc2qeu82r/K3PfhJHVhB+AeM5pCLGjPdgWKWTG2HnHbQWJJFByQi7923u39yllPOxjY9Ox6SiR3L+MfYHhxQ+sUxr/yvs332F3f0WbZHw+Z+v8+BeyKtvdzgexJRLFleerPGRzzzOd1/aoJDzMUCcauJ0codtR5GkhjiZmaPNrmqGHnES705nCuLUh1m8kxKS2eH4PfDCidnQNK5kfJfGUoVHnlwjUxDcb+1zcNgmEYAj8DxB3XYY7vfY7ytMlGNp+SOsXHiRbDFDyRLYStKLxnzvq99j/8Z9Sp7D2sV1rt6NCRZWUGlAsN/laKtF+3jIx56t4WZqSFVmOIgwWpL1c+QyOTzPw7Yt/pv/+u/z/e+9zPb2Drdu3aLb6RCE4dRHYKLxPtFZjxFCkiQPs2czpWC964AhJtrpM+nhh07VD19zYq40IwfNKpxTJHAmaCGFfNczLsSE/nVCLTqhD02/P6Mkneztp+6DAUtNDmEnYIVJsD2HJDEkjPEzRc6tXuaTH/0oTz1zCR0lBO0IlZFYWZtUSoYhJGFCzlccd/c52L3F7s3rtG8fsJLNkX3hWSqNEu0HVwk7O1jFIt6jz7LQyBH1Q/rdGLHZwd0LUAPJ/JUlxm9maA0yKA1h4pBEDmdsyNW6DJwyVveAnIqh6BLWfc6vuviVEv3ExgwslJE4rsDxLMJMgWsbAVcqGmPZxMIDLA72jhgMbM6tZLHUNFnVCSIaEw7GlKo+yTgirz2EthCZDI2zK+SyivV6HXSMHoconeI5FkKWOPv8eQb7m4yjmG6Q0BtGFMcxMjasrLvobMJRMyYYGkp5wZlcxFCu0+uBa3XJmCFZk1K0PY4PY4pplrIeYukBIuniuJozn7jC4x98kjvXbtEf9fn4hy7zi1/8GJ/++FOMgj6dXhcQ5At5XHviq+K4DhnfIpPzQErKvsd6o8IHH7vIJz7/k2SyOTBwsL9Ht9shSWMy2Sw/86UvUtJleGeXdPgArUJUroF7cZ7a8goIm/MXz7Czs0nveJdf+NvPc/G8Iu+MEWFA4UyDyC5xf0Nzv6Up1lzCXodMTlDKC+aclIoVU1mwqOX6+J5BOg5aKhIUiVCoNEAoG4QkGFtceyfkq19rEiegrIlimO04OI6DbVknfgyz9SHlVJJZqmmfxsP1YAwnTcozSdiZadpJn4GYONWf7p1KdUoU/4ikTA0QBwnNjS52McMPvvE9zns1vPUsom5h+inmyMN0MhAHhM0Oxs0jMi65qkV/PyTtTy8qX8DoAN1vwlqNeMHFrVcIdZvueIfjtElrHHJ5TpB6LhtXd+i3+pjxGFmQzFXGSNHF6BAj/cmB9yTgnKYS/dPaaN99OHkoGTWtVgubnFOl14sYDEJ0kuIaCzkYsrJU4vpQ0etanDnzGJfPPct8LoevBI41aSRp9oZ0OyPsSJO3FM5cneT2NsVhn4yTJSg3yFdyjAPF7327zc985g7ZXBmhcu+56hQlbaRQU07nD89q/qad/d/XOHVNExh78n9jwBECY08/kQYcM0HONUhH4VkgHUgH0cT9thcR3+/h5IvUyg7lJy/SOzYcH4eMRpJS/VHm6jmUFCSxRoQ9MjrEc3zc44jhV0PmnsuzO16hffuYUf8uInmA468w1lVc6TBKYBSn+J5F9eJZXv72HT7yhQaFgk9XCwa9GKcL3pzL5WWXw3bKKBkRdYZYXsjl1SIv9Qo0R3vst3wcO0c2J3EtSda3OLq3RVg+Q2XOo324T3P3KjlpWLzyMdz1NQb7h8zVFGGsSfs9WkicilsAACAASURBVJvvUFxaJe9XufChF8nmsmy/fY32Xod2GqMOm4RuzMoFQ8WTtIYWD44lizmXmhMQxn3GZgwyS87VHN8NKHgfo5+8St608MSInBkRDgytV/eof3IRpdwJUpPEpDqaSigGmPAAaZcRMosQ1rTZMUHrGMtyQUh0mhD2OzTvvoFf+wKgppjiZK0ao0niBJCYBYXOHhKzQ6yyqGqOFMMoTAiHEZ4rsWRCqnuMhzv4FZdEF1BzCcZyGIQZXn/jFgV/SHJssKMeC6WAeg0KeZucTMlWi9iqB2hSYRMZlzESZzwglmWMciB10bqBsNaZsblPotgPoUj9f4UsDPt9ZC5PJVdjobbG1sEbnHUaBGmPzPkCVqzQfYVpOui+iwgHuGMPnUrcgoPraILmAEuVKawuoxqLmHaIMSnamyOoW2QrC/T7m3STHZpJh4gx5+YsIsfm/q0m8SDExCme69KoQ62aYXmlwuaDY9J00ltgWxJLGtITA9HTicHD6TqJ1rNm2lksYBq7zdQnYVqRM2Y2/w9fq6eqKJiJcdKJlGI45rjVxt6BgQ/DUUhWWXgxFCyL5azDtb5Fr+Pw1BMvcKZ+jqJlkZFMONfAxkGLwfEAd5xSzniUVtZ58JU7XHn8LLbM4ReKZMo5jvWY/+UfX+ff+Lkqtpwn4+VA2FjKmbxPk/Af/0f/Ka+88grtdmfiEptq4igijuPZLDzkMYupoVyankgjzl4jpq+b0OvkCWpyIjF68rs0sxb2h9gKp+hbE4xFCEE67UF4OOcGMUsMmPKmpz/7MAEwSKHQnPK50BpOaEmaJJ38TiUtBHDcbTG0Rkgl8DMjdCvhB3cVv8BPgBL0R23yIoe0HMZJxKATUCzniYchWS9DpxmR7Iyw/Cy15SLlJy/TvNejczwiSUsUCxep1HIoAVGskUGbvAILB2t/TPCNkNqPFbk3WKe/vUHYv4XSFo6/QGQqeNKhG2mMTimX8xQbi7z6nS0+9pMLzJUd9kNNGqQ4QmIXbS6tuGwdRDRHAXHUoZDzyC+6vNrL8Mb9t3j8/EdYXvCwHUHGtSnkbHZ2N4iGWRaW8xzcv0V6eISfyVI7f4XMuXMM9g8pzXuMhwEi7NDePSLfWKKYr/P4pz9D7nsvsX/7Af3jAU4SIfaPiDIp55+QSM9iEDhsdRR116bhDBhEh0RK4jkFrIFmsCMplz5Nu/89KmmTnBhgogHRgaD/2iWWPrGAthVLyw0a83O4Gc2gd8TSgsOVKy/wxg+abGy1aTYH+EpQrzhks4LOSDDojShKyUrR4emLVebOn2UYjmk2m/jZLLlshpXlRX76i1+iPDdHqiTGuU9sDjHZIvZSBek6rJ87T84pYvSIxfkK55Zcan6ffNkniRTZdUNs5ejuBBwc7FLOh8jemLxIWa2lVCqKfEbg25JspYAjJ9K/kXCIsYhNih32GGmJkykT9kccNVNa7QTXmTRB+9kytmXjuhZpqhmNQjApxqQIoSZrRMz6DCYeDUkyoxtptJ4kEZa0ph4QvGubmKkWMY11M6+H91PwfV/JQTQe091vMWr2cRUUlmp8/Tvfw8l1WDp7Dn+5Cm0DsQJZxbiatNOCAlg5F2FP5LZibWPpPjrnkWqIszGJV0E0POIwYZTepxO16JqE1NKcWXM4CGL2OyOiOEZKjURgiTxSVE8C3Yyq/K7xV+Qtv9/x502uEALHypD35uh1A0aDECESSCx8W6KMYBi4uHaZlflzrM2v4guDrzVKKgwwPOqi+xGVbJn5RpUUJg2Mww5aWvj5PNWVRVq7+zzYi7l5a4MLF1bI5QvTKitY0sYITqEI/xwPcep+GVA2IAxpOPlXCoMRU16CEtjKgJpyl0cx8SAmlg4q38BfXyRTnaP9YIvkuIuFoFRfZWnewySa4/0OVpSQ8zxiy8MaGPpvjij/RJnG2QIiKNPcdumP92nrOvmz8+RElmBTMxiPmFN5zi2UeOMNiPeauIUsbtZhFMSkvZg0l6FYs1hfy7O9JwiCETmT4lmGteUyrc09bh0MUZbFinDxchbSsRCORzo2WEWLsZ3QMwHV7Bz7d3bptg3FXBFfhcRhyNgokkgTBi0yxscvL7B8OcQ1Y66NrtPvD7EHA8JdQ84T1BZtSsUMB/t9xm4Wzx1i6S4miUkjyWDg4ioX3TGIpISQAa4cgEgZjzq0Xn6V+oufIwIsz5pUQaQiTY5gHCBEhBEhRvukqYshw8HWHUrz8xQKcwgJw94RhzsPyOUKE4749NZrnUyaa40mTUEJQdA+IoyOGLkpcalCbbWMFNCOIpwpaSSOE0iGOK4DjouJMkinQb8XsrVxxLj9gHIxxHE19To05iwqFYHnu7i2j3KzCBTaSBIctLGxZYplEqS9QF+7yLQISQ2SIrn8JI6Nk8FJBQgjsJWPAJSymLBupw/0qYf7R43s5ZTDk6uXeP6pJ6kW53n97Q6rdpHDew/wnq/gZzxkRkJioymRWCH2IMJKyyjXRzNpyh8E4JeyiLJHEvVJUkOaL0LdIRwGpNEWHT2kT4LKaBaWLPaDhP32CEOKEBqTJkTDkNZRD9ez0Do9kRqFiRypNubknkvx8Hg7K9YwpanMwIDTsQA4SQiAdyns/HmzetIQqDX9fsDG3QOGyZjMeploFJNxBY4HOWUhNPQGDr7XYH35Eo1iBU+neKk+ee9bb9+FfkIlV6RULJIawTgKSQ+2UZ4mXykxbFTptY64fr/DO9dvcmZtGctZRakCzcMjvvvdVxgOe/zJn3yFMAxPKogT59lJ5cO85xok4lQyNUuiH87LbD6MMTP18JM+jpP5mvAg4BTq9d4y1Onn8+HPzfoZzMn3H94Xg5khDzPUBzlNzh76T0z+8lRelalWPoJxNCZOE6SSJCQk7TGZDdjf22V+YR7HthCKSay3bDJegucq4kGMNYbOXo/DoxGiMI+3uoZTLhAdbKL7fVynRKW+xELdRSeao60WWSmQroeQBtnT9N8OqPyMx9KFEnZcoXW0jTZtuqJG7twieZ2l80aIlwasZCQLlTy33tHEO0fMPVbAyQmC4zFJP8XyXUoVm3PnCmxtg5UOKZoU13NZXSrxztV9ru0NcFxBreKgHIntuSjPJwlS3KJLXwRYliGvHA7uHTDsG+rlElkxIhIQSYHWCeNRi4QsucYq557qokzK5vUH9IcBajBgvAXVkkVuzkM7im47JJybo+QNsHUXoQVJYJOOXTw7AwOFpIa0BmTFGK1jut0mwzfeYv6zn+HjH/04N+9cRUuLMBmTyQ557LECSys1ciWfhds+d243abf6nF3wMaUMq/YKSmrSg13y6Yhhv4PqtCaIXxLz5JUnWJyfZ3FxgceeeIpUa4ZH+2jdYpR1sBaq5FcrCMcm9TIsLNWIogG+WyDnDLFiJoiSCbD9c+xvd+g0j7CjHn48RuYUc3XJmQVBvujgeA6O7WA5OQSS1Fik6WTdWERIY5PKClu9mNGR4Ogg5rgT4zgK2/X4wk9/jmzGJ0oitja3uHf7PpYy+BmPj378EySxJl8o4Ps+YTjmrbfe4vbtO0Tj8cSIEU4MA2dUxxk6IN6z9k7WvXjY8/MXjfeVHLS2drjz2jWCzoiVi0t4uGjP5d71O7j5HEvVMqKoEEMH6ZRIVIQOeqjAQ6RzpJbAKti0d2J8o9G+RWo7hG2LYSqp1VzCoybBcI9e0GWcCvyiwl52uX/Uo5ekaFfiGoVr2wx7WXTiMBoc4HjzCEcx6z04XTn66yiICwS28vCsHJ3jHqNegOsISCXFap5OVzMeeyzPn2G5tkAl45MOY5wkRWCTpppg5xDZG1ObazC30CAYhmBNKtLCccj6HktrawzbXdyMzbW7PeqNEdlczISFa6aGSn8lG4v/X48ZOm0MSAsmybYBJSZylhKEMphYg4bR0ZDucUhcqZCzMqiVS1jSRreOUP0uhaxD/XydWtliZ3vMqDekaFm4XhatOmBSgtYQv5Vn/rxNXi7gW5e514W9bJ78UyvkBiHqNY3WY2wRs5DT3C3maN3epLrSIFvKoAuGYDAmakakVZv1pQzdFLrHFkJH9Poxjy74fH0rz92jARllkXMs6r6FkJJsbQkzCggymsTOYVVXSSvL7HznVUamhFj2ySd9rDRE+hmsssNR85AwNmhHkK/Pk3Ul/V7E1tu30MGQfnfExl2NwGH5XJaiTJBRyFCLic9CFKL7Me1OjsuVRbbvXCenFlAiQRpFRgdkohHdd14l2P4wadHBqWSwPU0SB5hwgzRRWF4OYbpEoSQMs6Rmnltvf49HSp/Az+WRIiEImgx6Lc49+1EUKdqM0TikWpOkCQaBFopBv0f/2jv0O22iSgnv0gXs+oSq0o8T6u5EJztJU0Si8YtljBUiLEE4tDjY6bN37y51p4eVCuoNyULdI5/3sB0Qlo1QGcJRQkiOoXGQwiajDL4cIVSVXpSlEyocU8amirJyGJMQpWPCtINATQ444xiPLLbrkc0WQWgmcpCna7QP5SR/VEnC2bkGz557igtnzpCoMcWqR39gcf+du+QurKBWs3hlBxG5aFkgMUPS42PsoI4xebQlMK7huN0hW3EwJZcoUAShIFGKYt2l96CHTPfpBWOMBL+skPMWe60h/TRBZCYyjSZKae2NiPItCj5kfInqTST+kkRjK4mSU31+8ZAeNIHbJzuknFW83xUIHlb/H6oRGWYy4jPd8xk9ETGRUJycgyeJR5IahoOQcRQTkrJYzhCPUhJPo4oWrudx1AoIQpdL6+ssFMtkpERGMVacAA6Dfp/Dt2/jRILSXAOv4NNud/ELLmFrB7teolDME1TniAZ9PF/z8lv7HPe+h1J7CFFic2OP3/rN3+a4fcxwODpBPmYGSSeKJSfPyezZmZz1pTzVt2dmztCTU3mq05N5kz+EtvvwPG/e/fyd0K8mf+vdKiqnehpmcw8n9wCYyFieRhB4mFAIcQIcnNwjM7vHUxQ/NQkYRZSMYaRpNg/55rf+lJ/92Z+jVCqgLVDu5DzhOS4m0Wgh6Wx02Nnt0Uwt6rV19PxlVKJJ9ndxo5B8I0t9bY65osXudsio26dU9hGOj5YRJkkImkPCZoHVDzjk9Tq2H3IQHnJYLJC/skL+eIiWMSaO8K2ERg72cj6H1+/RuLRGoeigwphxJyE6TkgrDhfO+OyPDGJoEaUxMkp5fDHHxv1F3t5qUXUtMq5F3lYo2yJbXSIdDAl8G+PPoXILJMLn6M3rdOMcbrFILjzAQuLkc6A8jo9bBAmknqB+7gIYQxSmHNy4g45iuu0hd9855OJTObL+tFQRZRkaRWoU7rhPr6tgLKmXi+zcu0HRPoOQAbbokY0DonBAcP8aqvNpfuozn+cf9g4RMsJxDEs1By0EqRzx1OMZzjSWKXuC29cT1pbyyPXLXFr9EOWqw+2X/m/uvP4qdza2qJWuUptfZnV1iYuXzrG2dpZ8qUx7MCAYhag332aUjDFrZyldWset50iNYWQM5ZxDxZtHpH1UkuL5c+CECFsRDG0Oth4QtQ+puQMcFNUFjzMLFvm8jbIthOWAzBAME0bkGRgX2yRkVIQrNbEuMNBl9o82GexqDvZi+gOozOXIlat86Rf+FnFo6A7avP26jYxHJCuLeH6RX/3VXyWKUmq1GsViiW63y+/+o9/lOy+9xOuvvc54PCZJkol0a5KeiAM8JM+IEwGFGVVvJq7wfg7H7+v0eO2Pv05yr02Uq/DOxj2eLvt84fOf5E9+8/c4OGhSaLTwF+aRmTLs7iCGLqnwiXsGtzUid65IVHI4vL/H0oV5mF9DRwHjwy69XotaERzdo7dzSLTXwQ4TcgsZ9hyH9s0WBomVd5jLW9Q8webuBo8f/RGHxxWWLvwUhcpFlLLfVZU4DW3+xeM9UDTvDp5/mTEJfpOP4/GYzkGPbjtkrlIg79VoVOts3+og7TxnG+eo+GXMOMb0Q6yqA9ohHY852t4k7LcpN6qMUKQ9gz/nYbsRFhLPcshX6hzPL+DPQaB8hHcBx15FSut9ZYX/vA8hBMKeNsh56l2PirIgGSUkg5CDrUP29/qofINLz60xVpKiNhx1jxkkFitnVlm8soxOYbA74pGnFunebzIYjLAzKVZkkF6H4WYF67MWTm6OnPdBCuYJmr173Mk7LOzeZt7VRMUCkW3jexHzVYfvXtun/oEBS9USbsOl68LGNztk6x7zDYvLDZctoTg+tBgO+yzmYx69XODW1V2OLcVxxacYWXi2oFRwGW3eoxnXyVdrVHNzvH1zh6cux+Qqc3z59X1yKqWR8/EcB9tofKtIojQy7RAnWbK1c3zkiw2+1f8d7M0NbnRjBscBSjfxkwzlJ84T3mwx0hlydpkkEKRhm7nMiLRzBOmIjHuBrlaQSvJij5rU3O6M2PnqFoUPzZGoCIYdkv6bZK0msVfF6DGWDEkjQzgsMAoFIxFg+QYtQoQZUajYuI9ewIgIHTWJkiOMqGJZRRzbJdGGKIp4+61reJtvchR3KTz5FOs/+RxKwH6kyeoJVcWYFJOMcWWMchSpSTBCsHntGu0HW1T1gFxJUngkx7kzeRx7jFQuRijG0Yhhv8nhbsyd2OZuIDiT93ih6iJVyLiwzCsbDzijEqRl8OaWqNZXSHSPw842Ob9Exi4yGIzY33lA0u8zf34NJ3MJS7on9MCHIWuCJgjknz2g/RXHi+cu0GkP+fIffJO8Svj5Dz/Pd69fZ6MXUnnnLk4+j1xbwcmXsHZ2EYcZep1j4u0RpXyEV8/QK9oMDgeoR55ErV4mihVB/y6R3WNuzqKoQ45e2SfdH5BTArfusSckvTttjGVQeUlNKfKeJEg1z6xphM6SpHm6/YBef0JR0YCSD70ZZpSUyTgpO58cQk9TtE4abKcv1Zh3HVYnVWozTRYm8Hw6k/UREpGmJMJgpEDakt7hCB2neL6YiENom50HPbDmWKucwUIR9wKkBlF1ManLO1evMu4f4/suTiFDaDlEfUNlKYvjjGDs4McJWdtmWC5RqkuORMx3fudbtPb/Cb1uyGg0Jo40YRBO6UMPzwgPEbQZ8XVy7ZNEaPa5mboeT83KzERd6MSpmIfUrJMDvHgPjWg2p8xQmtnveA9t9eQXvfuZe0hcOuXqOt3HUp2eIAaICfd6+haAh+85FWKCvguDmPooGD3psTjYP+Dv//o/4LOf+xyu62I71pRKlTAej0i6CelxyDvfv8Fg5FE79yT18yuMfZu51LDRPCCrKtTWzlK91CCNDYPdgKc/ss7Oa9ukyRjHS7DMGOl2GNyrMfdFi8x4ifx8nX4yoKsPuJ23Wblzl9WST2eQoh1F3k+olh3+9K0dLnw6pFR18VYyHMuQo2s9snMuyw2LR5c99nYV3e6IaBhQ8+GRCz4vffUee8Uc9VoGLytxJRQLDv1b77Cl11murdLtjthrHvKBRxKcXJn/9ds7PNawKWddMpaFoxMyVoHY0lhJizCps/DI0xSKJV5tHZLt9LnaSRgfDMi+vc/KBZfS8jzj+x16eBRVjfEgxTEBnjWYUMiTAD/7JAfxKlm9TUbElK2IfpSw88c7WM8pFup1luZHrNVDbBKagy6ZrCCfdXHrBRo1i4NtiVXz+cJP/R3W5y8jRZv+3utsbtgk/QSV3uTF56+wtPhxvvHNV3npey9RqTZ47oUXKTg55o7eZtsVXPrxp6g+8ygIOI4NFWmRK9joOMKSGscRKEui0aAUt7/7fUz7iDlrRLbiUDif5fyZMkqNkCpDbBLiYUDS73K0P+JaZHM7sPjYfJHzOUMiQzpS8frObR53XeK+ZNhU2HaJ5z9yhvmzS0RhxJf/r6/iezFO3OdDT6zz7Kd/grPnn8G2PKZEO4wxuK7H3/2VX+GXf/mX+Ns/80V2d3YIgnDy/J+4KD9M1E+oqacWoBSTlSbec+b9YeN9JQdzhTqL2QLHyZjjVszvXn2bv3PzBpWRRgw69Esu2csLJF0LU5tHuAo3HdDZ2WCwv0X+4o+TqViY/T5JWSMurTLycuznPObP2Ggrphsd8fb9Y4JWQsaxEZbhwSgkxdDtJGTnFNVyhryy6PcPaN+LKM976LhFkvwslv2x6STOgtAPOSA/jCjvfu0Jf3IW/P7yPPyHG/bkJh0cHhAMIizlUG6UuPT4I3zmkS/xn33zP+THP/Yv8MSlx3BtnzSMyRQEKE0Shwy6fQrZDGqhRmVhnsrKIq8/2EElfdxCHSV9UBaeZ7NQLzLoBByOu4zHhkmI/evAS/7mDsuxJgsrnWwiGIPKOCjHorO5ydITc9QfL3O0cYjIpRQKPiIcIdMBmaxDcbFOccEh7KaUygrhKEQkECoPi3lccYCmSUvW2fhGSumSS/3zPlf8HDfv+cx7ivtvNVlYmMculeh2Q4atIYXHljgXjdi82kYZj/lLNebKHsXP1vjWH/bwP1VgrWxh1y3aqebBloPej3j28RL3N0ZsbW/iRPuUa08zV3DRriANByz6JY56EXfDAX68RXX5aa6+8gM+thoTDiWdsUsnFsTdJnNuhFioMn7QJxn1GIxGBJbhuV/7F3nj7/06peiYaBRxeNxFa3g271J47AzN2/sEeCCzOJ6HN4p559ZdPnj5k+w+uIpnSijLx9iLOLbkorF4+eprPLr4KOkIRs4Qx5fkVJOSPsBKqojCebSIOR4ccO3+Hmka4kRdRCbDmP+HvTeLkS057/x+EXH23DOrsva6+9q8vbHZZDcpcZMoyaa1DeixJC+SZcxgHuwXzxiYefCTB55nGxjYBsbGjMeCx5ZHtgRt5NCkSIpNdrPZe/ftuy91a83KPfOsEeGHzKq63aKtlkXYsMEPuLdQmXnOiTx1IuJb/v//ZynEAcp7g+lkQnxniqsUe3EdWVpB+yWu73ZoZst03jugvXaaM79wicrmJoVyGRUaO05YLDkIB2ShcaTGUwbrOCiWuP7ay/T2tvCcMQtNxdLH2jQa4LlgcDDaI00M3d0Jj25a7ticU5UyPxfmjHb7fPM1yb14g9s7r/Hrn71A/XIV5WbExfd41LlBq/4U7dozDNMhu9uPePDum4z7d7n24mWW164ghYuYy7QcrVOPm7XmxwYfbPkLGCOwQnA4tXztz9/gN8402cpi/P0dXHUFtxlQDAV2ZY0oUqznJbbffoeROyGon2P78AF+T5Me3AfnSQ7DCnE7or1kKGTCSHd55b0OroGo5FH4BXtpQW4KeocZ7dMBC2UPVUCapsS72zxxvsHTn36a/+QfvEwca4pMozUzjX79WMWAk27IUgkKM8s2P95ESIqZ/KkUM4ItwiKtnGW1zYkjeky8nVcMAAwziI4VEolBKI1EkIwLgrJHe7NJpzvh5a/d4cLV89RbDuOiR0FOuRISYMmKGCaK//G/+6ecby5Sq1SISlW057PXS4BDqqvrbA+n7BzsE2dDahWP/YcDVCDZ3R8xOJyQxDlFbrAGsiybqfzMuQzWziRA9RFhcb79mbkKyhH5N8syYLaHSTGH73wAW8QJNOsoo89JZv8DsKEjDVhm1Z0jzfYjuNZRFeMoGDiWWpwHDbNg7AhSZI8DBTtXQpLyZI+zzGCDJ9fTFDqfnV8pHOEgjMVajTYFpmf53Bc/x2d/6qf5rd/8TS6cP8+7777Lf/YP/yGB8Pjbn/9FXr/3Q1ZW1zl7fpFwM0SVfcaDA2QxIKo0qS3XKTcdspGm0VIYRyGnFsptxEoV97CHFocM5Ap3fz9j7YWQ1Rd9mrbEw50GbVdy45U9Lj97kbsPulgdkExyqlfXOB+PePvrD7j8udNU2mWW1yOq1YDv/6sB1V+s82RdYbVl33jsdjTFQcrHL7d56/qUt199mbJzgahykXLkYFyLScZcxvL+yHLYO6CS7xO1LvPea9f51WtTpv0yA+swSAqiySGLQQ5rS8TvHpKOd0hciV+q8MJ//Hd4/R/9V7TiHjrJuLvTQRvDJTKqV88Sv3ufsaogvAXKymIOJ9x+cMDT1z7DvevfouZtItwmQknKssdZXF764ff55NWP84krlyiCCVO5SyQOWV6ckE3GbO1kSBdMxeKcqqGDiKVIIBiRWMFnvvQsn/lsA5tOGG93cM2rTGsr/Af//k/RyQ0Hg4zy1Ofw3R1a157hqReepdxaIpcOWWGRccZy1Ucoiyw0rtQoBdbxQZR4++vfIBnvUQ5TFtZKLJ6rUqsJHAc0LllqmQxjDnd6PLo74ZHjc7Zc5uNVwYN39/jnN4e8+SiGwOPf+vQatedO4ZbGrF7zkMEiebLEy6/02T08YOv2G5yqRlx67ixPfPJ5Ns8+j+cEHEEj7VxeOE1TuoddiiLnl3/5l/jd3/1fuHv33iywn88fIcXJ/D5KJB0F6/PA+2ge/WX2kdSK/tbf+7v8zL/5qyytLTPe2mV3UjA+dPD7u3Q628TbD2j39il9/hMUsSbLJ8hwJj+lSgEsNggDwdf/9HW8g+vUT29S3dgg9Bz6vQ5Oy+XGD14h6+6i5BTrJExtgicdHg5TKk1JVHHJRIl+HOAVAz7xSUF9zRKUNeQjssmUUc/ja//iH3Pxmc/MMz0nm8H/Gd7IGMN4PCaOp3ie9yMyTH9107rg7/+jv0t/0GNtbY1nrz7H+Y1LfPfdryMcn6988W+y2FigEkZUy2WiehXp+KSTMU5YYpKk4Aj8kocbBig3I9UxOksAh9zCJItZaa7yzMVnUK7l7Op5KlHtuIT0/w6o6v+7JqRAOgrpzEvsQhC1m/itGqVmjXqrxPSlP0GWG9zejQknksX1FaqXNvArdXr7sNT2kXaC7ufEnSGT3j7V9XVUpcWD6X1uDA7x2i5Kal76X9+g1awzublH3ihBPWIwHtHr7LN6bpGN5Qo7PcEoMziRxPElqZ6peWxeKvH69QJfFqzUBBsNj6jk89b9jLJvKK1XiBPJuJPjxFNaG02maIxXoyz6iHyExUVFS+ze36ObGCqVIstyVwAAIABJREFUFXIjMcmEUjahstpiEHvE3ZxqfYHCMcRpTMlpYEY9lj/uUR+OGY1jRmmOLQzFJGMxqOH4Fpt18OIYMzb0BnBl5ZPs3n2NEoLAb+MpF6kKstIyu8M3WK2U6YynGKsplSxOKSG1E+g/wHX2EXqbYecuh9sPySZ7nIoyllZSlHqItTsoJniOi3AUUU1h/Brleo1EW4Yjw4Lf5ubQYenqBdJ2gN9cohxU8RGMhgVVfwYtkxRIXaAUuJED9Dm8/nVu3bxBRU5prXlUL5RZWDQoqyBLSGKfzjjg0Z7H4Y7L2adCPvPCi5y7eI6lMxdYv3Kejz23zgufiPjip0/jHuwwSc8QNa9Qqlaw8TbS1JhkmvuvfINH732HUtNy4fnnWFp6ESX9YzjRsdr3j0jH/nWUxR5XK/pP//F/yYVPPUO5HGLGMYe5y3QY0kj2edTdI9x9SMPRhM9doYgNw0GHnCHpaIRq1ahsLrO01OSb33iXWuct2s9/Cq8UYU1GnIwRVcv7338ZRvsoZ0Iux2QkoHO2x5pm2ycsSw7GhvFU0yzB088GNDYUYUXx1KUGkTYEqebamSo3Hk6YpDP8rePM5C+FFLjO7OdsNZzdF89zqNcC6tUAozVB4M5w+fNU+5ETe5ylVnLWcRnAipnimfhged7xHNbOr2KBsBbgSpd6vcqZJzbwvTJ//gcv8c5rb/DSt7/Fn371j/na//41Xnnlh4y7B7x2/TalqEJY80l0wnAypNUOCcsh0hTsHY4pBFgJ496QcW/E0kqNe28/pH84IolTikJjERRFccyFMI858nBEHH6MbG1PvudRhvFo7zjJQH7wEXscwzwLQuRJld2ewH6OuR5HsLf5hT/cc+RI0egYCnbMFhFHH+Ao2Tar9EiElCghUVIBAmM1xs6co+PgQcjZ2ObXNZhjOdaiKLj/4AF/+Ed/xD/77/8Z/9vv/wF7ewf0hz2+9fYPuLl1n+3uDiI54IkgJ8Hl4UjRTj1aV05TObuGcEqMD6G9FEAxJO9oRvv76DwhXF5FlurcG9/h3X6P1Us1du/sc+N796mWIia39imWa1Dx2N3ewZDSXq/TrCj2Rg7DtMAJCnJjyIzEcQWbl8p859WMdq1gra5Yrvk4rsv7j3JCt6BxvkFnt0CPMgI01eUqCRoTNggnd4mnY4RTQroNOjt9BoVgoXGaaZGhpiNKShMu1hmkHtP9hOrCAqNiiLQugYggHbLyfEh9t8fuMCErNKYwkFoaXhWvLCHdJ0os035OUZQ503yC3XuvU3U8wnAdV+Xg+8R+mc7kPTbqVbZHU4JAEpYNTphSkOBNh1RqU1YWWxTTHNKMVgiXWoq10z6u8xDsAZ6c9QKQnkupHmC8JgvLy/SnBmVCQmeRrSxk5doVpgsuleYGZS+EApK4oOKDVQJJjtAFjidxAoHVh3Tf/wbXb9xiOcqony1TPxNSq1ukFpBNiacR28OIe7emTEcFFz++zKc/9dNcuPoxFs5c4syT5/nUT1/kyz9/mS+9eAFnf4tXX+uSqpByqPBMymQwIaw2Gb/1Tc4s+Dz5+We58omfZW39Mzhq1oBW64I8y+j3+8RxjJSSPMv5wz/8I770pZ/j5ZdfZnt7m6LIj9ctM1dn+GAAP/OFhZyvZ0JQFJo4TYG/plqR4yu8sk/r7Co//Rs/h/f1d7nz3bd4FPuMkphH+wOKd2/wxXe+jn/1s2SBxQ4T8vE+6bhP2K9A9Sx+fIM3D7ZYmIwJPEU3KrOjFYtJH3OYMxnnKNcgSjACRJyw2BDgKJIsJM0BRiTKIjw1IyjrlME7b3Lnreu8012gdursSUAgOM4E5UXOo0cPWF3bAMtxl83JZMSf/snvUwpdfv5f+wpBGHGy2c5P8lcwYzTdfheBob2wwJd/+st8/KlPUC6Vubh8lTzXlKPKrNHYh84dVuvkhWbtzCaNdguDIQgDyvUKa8urXL97m8IIan7EZn2FxXqLclhmeWGJSlQ96az3E/sr2Y9yqCwW6SiEEcwg9JKt/ZTb7/weX/j3fp1dc5pit0M4GCCVotSaEZuFX0GxixcY9OYp8kBT5BLTl7TXIjqHt5nEmic+/xSyyDnsZCycq5NaM9PkThPqQY1Bv08l38GNViiXI8qRAmWIY40bwqUrHt39lHzP0F4VXF5QDFZLdCcZtchQaUb0e2O27j3iyhOnKC143PcV4+s3qbs+KysXuRNn3N1/hxfOXOLt3T6LVcVy3UWNO/T7IxbLFSbS4aDfJVAB9XKVWEwQaYG1G5gLfVaHGdXikCzNGPX67L77PvWL53CtwsgUxxOsVqqMp/dwnAAhGmS6QDkgPJ+BPoDKIofeFM8GFCOP7mEZz/NoVwxJDs7BiFRl7I4lh5lLe7nJq+8ccvXFLlIuoFQCdv7PEaAFjguoNRpUcZ0SiVji2ZbDvU7GpeVFvMDH0QZZGEpODo43Uz+yFsd3UQKsmZDFQ+7evk8oNeXVCpUFl0ogcI3ExgWy3Obebk7cO6RZdnnis6cJohxP3JnxD2wJRIRSEa6/hh9pohf7JINbXL97wDgvsb6hQN7jcOcWh/e2kY0G1cULNOtXETI4fj6NKeboajgigdpjKMfsqf1xTP84m7C4vskTP/sca0+e5bVv32TrlfeRqc9BnDB5cED29pt8/HId7/ynkKKC3S1wjIXhAbpfJWgtE6XX+d7WFhdNiq63GE4ajPd3qU26DG9vMRwllGo5qW+YWItIDYutmY55d2DIhcZzLZkC4YEUBbJIcG8d0pykNKs+saPQzIJ790guU0qiyGNhocR+Z4rV+lgdp1rxWV+rUg5dXntzB5h1W7XWomep69kd1XPy67xicASnkWImz23nr4WhR7NdxVMCx/Po3D5g982tGffMcRDCZdAZonNNx/FmcoRS8mh3l1u3b83gaq5gTIITOBihCfs7WEfg1lqk1hInU3qHB+w8eMiw2+fRnV26nTFpWlAUR1JNR43MzJxr8cHqt543EYOZbPOcTTEjNRZ6tleKx56lx3Npx7Csk+BhpnJk5s+mPb43IOaB00mTsyOI7zGf4Oi/OTTpOGj4UbwFPlShsLMqjzHFMc8Ae9Ih1syVlI6UpY4rENaiC42Rs6xqmiTHx87GqsjSlOXFNsYqDg+m3Lqxz6PXH/Ll/+hv82Ynx017+JMJjqeImjMStAjqOMUdgkYZW/cpXEueK2xPsn62zLtvfJfF1SUuPH8amxX0OhkrV1oM44zGSpvIhbIXksYTKukj0tIZ6o0KoW/J0wlxXsYvwZNP+dx9OGVlzaFWE1xZdEn7JfZGMQsVTWOtRf/uPR7eTjl9dpmo4XLbd5i8/xat1Yt45ZCt6YSDw/f41JlL/Nn7j3hys0S7qtFJl/Ggy0Kpysg6bHcOqYcrSE+QMEHkFms3sU8ecHaQMu2M0HnMoNNl//oN6pcv4JiYnCHlsIKfp0wmD2ewGLlAko/xApdMxYwYYKIGO8k+lTRg0guYRgGR8qgHgrQQuD1FLsZsH+YYv0o9qvDegy6f9PpItUAgO2ATrC0QclYBU/kEN7zKUiNkktVJaPBU2+F+L+fp9UsYx0NlBcoapGPAcTAmx7OgAg8lNUanxJMBd28/oOZDdLZJra6oOAJXC2yqUeVl3rx5iDvtcObUIksbZwlCjSfvoZwITBnhRDh+BZ9lonJK6Qt9Wo/u83v/6gFxvsSZMwuUopxs/z690RS70KDVfppa7SJKhsCMZJwXGVhDFLqz+SoVjWadL3zhc5TLpceI/LOu31rP5rFklkQ8SRTP+1jNKwlCzqqmf5l9pOBgcjjgcK8LvsNCu8WTn7xAq+ax9a2U+P6I0XTMW3v7NL76fZ5cPkfQWCd2XeLdiCIeo+Y1zZ1pl+50Qn/wPovJInmwgKxtcPj2e+RTg6yFJJ6mcDQ6U6RGslj3GE41mbAYp8ALDKVySFFyMUJQ7KTcv+9x98DiBYarzz2DEDO1j5df/Q5379xiPBiT5RkCcB1n3oZbUqnWWF1b59qTz85kRI8IHY/nMD7iZntSAAXf9fnKl38Nx/W4euEJ2o02UioqQfWYTX5MdDs63lqU44IQVOs1/MBHG40fBDNsrTVzXVyHclQiCkPKURlHOYR+eHxO5uP+if317PhvI2fFOOkH1K5c5pTfo96ocDubBQVRs4kVoAuBdAVCOwgnQJZiXC2YFgppY6rtFqF/wEAICrfGqN8nqkT4NQ9lJSVfsbKyQCgtk8mQquex0Ix4e8/AgxG+ylk9W0cGikIXlCoeSd2l2zUc3iw4d9Fhfdnn3l5BICTNdpWkN+Dhaz1uv9vn6meXGWjLYnmJotCM+z3640PWalXc8T5qPGZkazgln4rfIvIi0smAyB0hSiG51gyTPqNRjI1zrDWU6os0zuW4xqH3cJ881+z3B0y3DllaaeL4GqNjktzA9ICgcgaKMqPJFo7VBG6ZpDQlaKwTOQdI9wBdVkwdy2ivTzQeEK22yOOMiQaCkLpfQeSKg+FgJm/KCMkEmGJNghQO1oYIHHJicJdxaKJjyzDVNCohjvRmqVgxQx8qDBqLtAWOlCgFEkOejHhw+yZpkrGwWiJsuZTKHiVPQpHjuGXudqsod8DqWpWFekSl4iGExRYxZCOsHSNUBJQQYoSULkF5jKLL4sKE4rDGQW+J5ZVnePD+n5MWBac3ztBa3kQ50bGzpm2BIJ9jUA3WagQBIOc+0EeTp/soNtg6oONVCCoBUavM1U+eY9R5gLgbIZMOO0mCvXEP96se58uL+M11pjRJ70UIRyItaFPwaNqlN54w7r2GrD5FEZXJRZWH3/k2484B+RL0S5ZCSfJMUVhLqxrQn2hyaVGuJPAVwZIijxyMkKT3Brx5fcQw1mye2SQ48yRf/+E/xwWWNxexqUZnGsd1qFZnGThbWBASqQTWajqdMUnkU6/6TJIcbeScwGuO7+GHq+4W5k71CQzmCMaUpwXdnQFIwXB3QB7nc5iTRDqKPJtlWrO0mHX5VYo8T5lORpTKFYLAo5AWjSFOpigMhbDUllcYj8cURcZ0PKGzd0A8iUEKsjglz2edjMV8gCcqVxasOBrksfN9pH9+HGweE3zFsTN9XE84+aofcM4ff8I+XAk4qk58+Fm09oQUbR4LEB7nyHyYL3MEnfvgvjYzbU4CHUc5c7nHkzHNGqjJky8wf/3xyorkpAO64wiKeVfo0XSC1fDAGbJQH/Gxy8/QaFU4HN6gUS/hlstzONMMkoZ2sF6AigyFhqkRSJFQW1kgC3Y49Ksk1mU0GhIGPl7VQxSCaslj8/QqOp0ST0aUKg7thTIvPyqo3RmwvulTaYUzKe2ioFRziRoudx4ZqmPN4rJite0xejjbZxY2a9x9aLl7v8f6e30uvLDIQVpwprZOrB36g33SdMRKtYzsPcJPhnR7q4goIAp8fKlIkgkVfwiiRF7EJKOUJM6wSQHWUl5cZvFCStc+YHw4pjCa/V6f6cMOa6stRDahmE4wWYpILEH1FOQl+qP3qYgy2pfkUUFY3SAotvH8fXS9zCCfMtrt4ZWnREuLZNOURAuieh1BmcnI0o8LlNdC0kOKCdZOZsGBdbAixHUsmgInbCKJyBNDbCytSoTAxc6kGxF2trZrQBmN48wEDYQtmI67PLp3hyzNWd6sEjQ8KpGH79h5G2PFy7eGlMsuy8tt2kstStUSMMXmY0w6ATtE2gpCTRAiQCpJUE1pGcOTTwj2Bl3evZkhTQk/mZDrjMvXPslC+wyeG834A4WhsJoiG+M4PoIMhJgFDkKxtLTEa6+9ThzHKKVmyQ0x50/qx3qOzBcGcZTsPl7JPpp9pOBg1B8y7I9wywEjmxKWBKc/dgrb3SXXfdLtKaMs5p3Xb7N89iUWfvYXoFQhq1WZTnMmWYBvLbkPytH0tq/T267itK+RxgO27nXI3AxblcQastTiKZeiHJI5lpGdkKsMFUJYlWyu+yTS0h/B7g3NvUGbrLXG2uYCoqx4/Z2XGQ3G/Nm3v8rN968z7o/Q2rK0vIyjFMyl8JZX1lhYXODatWcYdh8Qj3YQlTauH8034b/6ZiuFJIoiPvvCz6CknHexOyK8ziO9oxrtY3biiyp830cphTHmGOpkjGFzdQNHOTjOTM9ZOc4HCHbH5/6J/XhsntmSUuGGAatPXWVpqcD1Qxws0vdwKmWUIyiEhQIcV+JGZWQlxqQ5Ii+TZl3ChQVkbKi4EYlTo9uZEpQDgnqI1RpfKVrNCr4jyZI+Xtyn2mrAXkH/cEynZGifquBlHaS/TG4t9aoimQo6XUuWQ6miaPVdPCROTTJaqLArSjy4t8/FFxdnnUlLTZJej3G3h+dpcuVxe/suDc9hMsjZHwYMyz5L5RgpDIErKVV8pnnMeJIjTUisIB4OGGaK+vImkY2YZJbJ/nCWleseMqpUKYcCKQrGOqOCJfdyLBOs26fwNHHkkiyUke0meu8B8ahLOEhQbhlXxiQBiFFBxXOgtIQyFcQgp7u9y2JUIB0Xig7YAUKkYHKQPlYYrFUUuk8uCxIU42mfgjKlagljNEJLrAOFMBg0ymqMnZVdlbAU6ZTx4QMGB3t4oaTecvFKLoHr4CpFFlvGuUNqqizUcxbrilKksNkAIwEC0uQQ32+jMg3xNvg+wi9jiwOsmeK7E0qhIaHFaJpjdUp9pczS+gaVamvuQM0aUmmb44gUK46UZczsewKSI2fsxzP3O9v7jHIoVX2W6iGO47B+ZY3usEuYuGRJTqfX471Xr1NdbLHwr/8SohExrTZIpcFLXMI0JXMLHCdn++b3aVY8rG0w6O2y/fZ18ijFtgPGuUAZiXI8ssAhljDQBhsYVEnRaLksrXnEwtIbFNx7c8LbeyCiCqvrLYKlGq31OqKb0FwoYZOCPJ71s3A9h0YjnOHb52vwcDBl2J9wZr3GmbUqN+736PbjmcMHaDPnKhxDiU7gNTMnmuMqgjGWPNeMhwlpMsO+p9NsVm2YofuRxmAKO4cuzbrTO0YhcNAS9HCIUoI4SUjznMl0grCaAqgMRgwHw9lfWxumkylpNsPUH+GQZ12D/wKdDmvMPD4QJ1CiD9kRIVnIxzgBH7IjWMLjv9vHGMonTr04Jm/PR8DRiE5Ikh+uQHxwXPaoMnBEPp7DuE4qY/PPiyNoFAgljp0fa81xlUKIOX/kMWdIa32CtT52nmZOlTEWjGUwnlVkhPRopzF/89MvoNwApTUiCFChj3vUyVaD6wqcSh3yHibXiCIgz0eEiy3EMKNeaZNmDoNujL/mETQCTJYTlV2WVlpMRh55NsSdTqi3W+h7KQ/uDEAGrLslmv4UWdkgs5YwyNC5YjoV5FpQKiuankJllnrTJ6zXGO2nPLx/wKln65gCdLnNdDAkJ8VxLRMtuLVzj43Apb+3zXZUolL2qfsFjtQELkTVkP50jJQWRwSk0pKMR/RShQwixOICEpe4n2CMJT3oMGwsUFKCjBSrE0pSknsFxk7A7ZH7hrRSJW1VEa06evs+vfE+9YHEiQAvIw3EbL33XWzlFH7mM+2MmXb3WaqAdDzIdhHEYJMZn0R4GGGQ0iEzAzKliI1hGk8xTpWoWqIoChASIw1azKR9ldUzMQNHIa0mnfQZHW4x6nbwI0Vj0cMJHALPQRrIUs0kU4wzl81FWFtt4zkCm48wFBQFFHpKKdrAxF2k6IMfgAgh3wdilhY1sdFsdyyTYcaSW9DcaHD2wtOUq81Z5UsXs2qeLTA6BiWxaLCziuVRYPz2228xmYxPKmryaG6d/PwL5T9OktgfxT5ScFBIiwwUjiPoPHw4y2BHVZafusg0G5IXU7LDA8bTHrd+72vIzTNUL15BViImY8He1MXPNFeunGIn7bJzdwdn8S1W3Jj719/CzeuEawmxmJL0p5gkI/Qcys0anV6XsZvhRRlhzWFxJeLy6YDReMJ2x+HVmy5O1GTt3CbuWpWXX/8Wb755lzs37lMkOUqAFzj4QYVKM+TsmQtIocnSmKX2Chcvr6OLDvsPv4njBCjnKZSzhlQRQpwoIM3u74/efD+AlRTguh6u6/2F447IVieYysdPcpSxmiloKHXkBBy9rqg47gcvLD4caPwkMPix2/yWOp7L4kqbvKXJc2jX6uRyijE51QCcXEACKhSE9QhvGjEcDylVQ4aFwEY5smgR5hqlU8ZBHWklbsmFYoJ0wHFcKqpGMnEZb71M+doSpxcto1iQuS6dkaHVf0jp3AIah8CRnG5LlqqQZTMMZS3wENYihaBWb7Bw+jyD/ZsMOytUnTLTLEEOO0S5prR4nt9/71Xc7pAvnGoiBgdsdxN2rKAvhjzx9HlGxSJ1Z0IzKFgsR6i1Gt18wO69Ce+8N8Jtr9HYLFMpMrYmd9hIMsompb/bRzdKVCKJ8Qr8aoXd8SNcq2jWBEVUZb8a0a21OHQ1B+M+nYNtWntbrK+VWHhiAae2TvfWO1TOB5RWrjDuS7a23uLg9n1eeL6ClD1MvAdyjHROdNylnPUVwPbJxZBxUWMwGXKq3WTXaBqOwsGC0aQmR1hNKHOm0pvpn5uMZNLl8NF1PAnuokfoWHxlESInKwqy3OPRfs7mpYBqaYnATRC6h0m3SW0VFdYYFhNq/hP4eRcx3kI1DNazmLhHOszZ3ynIpcf6mYLr1/9nqsDmtatU6jWUcMAYtNXkWqNkihUZCAcrPBDecWdMecTm/DHZ7e37iF6PSiAZlFykE3D22jMc3LqOnzZYHIKJx4x6+zz8w28RXXsKf/M8Rb1Bb5IR9zQtd0StJjGjgndefZ9LzYjcd7h/+z1GtmDlcsg00OiORRUC5SocT7E7PCQJoBJZyi3J6qridFsxHE54uCf5+ts5Y69Kc2OBgyDn8MY3WL+0jPdwQJHmeAq8qodyPKJqhOeC5xqwUBSGqCJZXvD4tV+8irUOX//+A27e7bK7N2IwiGeBWKFPnNGjOzv3dc1xBhzQBpvrGSFwkiHF3OGeY/2lVMgZqH8OY529Xsyr01IIsmxKkaco5aDtDKqj5EwBqdftz5YgKedQ2IIszXEcZ569NscYYytmfAs5D2AM9uS9x+A5RxCD2RsGIeUH3n+cdCwF8Jia09F6eMQpMPYxfLM4ceCPurKeQIvM8XWV48yf16MA64TAbI8VlU5SXPY4EplBLbBHMLCZHKopzPEafaThroSaBXf2RJXJHqOMTgKZWfDBidMlBFmeU2hDpFOcRkj7qRWKQrBaqyGNBpNTCiWuBpuCWxeU6hX62RiTG0IRMDJDHD9FOKtE0wKkiw0rSCHwIhebjZGOIqwEKMclHQrGO29QfXqFs80JWwcxN3cSRkWPazXN8jMrFMbBTPucX6phlGQ6KjC+RzP0ibN4pu61toEcSgbDbXp7DVpejX48wu3t06i1sF6TP779Ko14yi9sVkh27rO7p9jH0PJTLlw9TT9rsegeslwGt15FC49eKtl7MOG1N7vY3S4bzSpeENHP9ilnGSUbs/uwy0o7wBECFYDrhOxPHuLisrRYpl8q0WvUGFQrGJVxMO5xsL/Nqe4eqxdq1C4uIsMGh7fuULscUl3+JJ0bD3lw7wF6sM3Hn2uB6KLTXYQtENLMEiUSBOmsImUOSRkzyj1ynbNUbbKvNW1HIbEUWlNQoKwmmK/3UoHNcsbdRwwP7uM7s/U+kBrXUWBS8kIxTRV7XcOTZ89S8vZQykEUHYpsQGo8Cukw1SGhehE5/SaGHlJZhJNjki7pIGbnUUyt1qLa8NnbS2jZMqtXr1IqN1BihmjRFrTVSDKQBYhZoGqsJC9ykiTDVYo4npJl2XGCwD4W6H9gjj9WBbRiNsfkY9XE/yv7SMHB2SfO01pu0Ov0OPf88+ztdti6f52FUki97UI7gJEiS2J2rKD0B1/D/YpL5dQqTlvguob3+z1+4e/8A/7r//zvsdu7z869e6jsIdkwRaktPr55mkfXE1KdYyLNpDfGdMeUljWrq5a1EmzWFWtNn3IQcPeh5u17K/T9KU55RD65yfa7HkmvQ5YMUa4lWiyzvFrlwplVrl18lmqtgqcE43iHeqlGLXKQ9jskw4zVtT5C1SiKLtPxBdzwGmGw8lFuzwfsAwHEh/bsx7P6jwcMP+IsJ+f5QADx4Wv9lYf3E/u/YUdYV10YpCMxmaW708FVgsXGAgYoJlBfF9gEEBG+V6fm5hRoKhsrmFThhimFW+AqRasa0Z3Ahm8ppAJrUMLghAGBcXh5eIkXXYezZwWpjNjPA374UPNTF67iJvuE4SLG+LiOwqtKJollkAsmsaAUWKwLbsWnfr7C1vUD3vmz77D2xc+CM8bzDDIV3HnnDo2epbH6PG/f+T4lP0d7OfFOj4OB5a3Xv8ZIlbhcMpxvuiw3HYJAM5xKErXKU3aCPngdP3A5veAzaZd4871dTlXWWNAD0rFHnJep+RlhU9HpPmKt6uGunGMY1rmb59w5uEs+HfLEvxFy7+sBtx8MefXOAZsHh7y4s8PFn2rxw0PFmVZMcrDPwb23eDScsLgxz6yLGMt0Jj8nZxVBWSQYp4mxMVJ0iPyIWqvKQQpCgZYW68wcA2kgdD2mcUG5ohBodNpFJx1S6dDNJjx1pkxF+mRFSn+QMrKC8sIym+0NDm6+Tu3aZ3DCXWy+h8kkhw8yWuemLLc+zfD+PbTnU175NJZXIbuHznKmgwxPK5Rsksdnafl75KOcWu0KSnjk6ZBCJxhRQjkpFH2sU8IKH2NnVUUEBEIcVxdmSdG/fm+T3/3qv+TXvvLrjJKcH7xxgwuXnqB6eotc9mmd9gm3fOTeiMJO2TGC0u/8Puf/w99g4ZzAjWNG6YiXHiX86YMuF0JNZTxh6+0fQCjQRYG/7tO6WOP+K7ewoUdmC/JBitEFlRWHpbrlbAVONT1aFYnQGQfbhm++qRg3apSWl4mzgklngEzBFQY3VJROVzm1UWN9qcVio0m5XGFlcY02TwxEAAAgAElEQVTh9A4qT1mou9QihWM0oScxhLzwxWt8+5Vt/vhP3+Gl775PXmi0MQgzV/WZrQAzJ5rZ5nqSSJ+tC8ZAkebH5OVZQlpirCbPZtw2KcW80jtTAyrmkqNGW9K0QCk9x9CDnhNnZ3HGiUrPcZDCTF0NO8/UW4tyTrL7xpjjZ+IIKnWUbDpSMpmta7PtRUqJFHJ+3Ow9KY8gSRx7/WbujNu5w3HMYRAcBwcncYdFysfKLsdVBANCcSQzenIn507N0e/zMR1rANrZZ6x4LJCBeYO3k2fXyplSkZASO++cLKUFY1DzqvssWDDz6sFsry20nn1fYVFK8MQTV/jtv/VbSEdRpIbOnV02nl5BlRx0bjCxpLIu0BOwTpWSO0HqKUYJyqtL6EThlz3SXFMKfQhDBmNY9QyZ4yCKHNdVeKGPSFq8Mb7E8yalWjrkyto6d+OAO+MxxnaoDh/il1ZptxawWLq9IcN+glxYYjC21CKfGIfySolJ12H/pYf88I8fceXX/waxOyZwLMODLtsPurRHLosbn+CVG9+gWffIxl16nSk7seDl77zLtNTg6SDm4kpEowpCFowmkpFZ5AUvJj4tKDsxsWvJmx5v3tnjdGWdRd2h2z+F6wtaYYFbFnS6O5xqBLinrtEVilvpmO2DPXRpxMe+UuX6/3TIrcMx1bcmnN/e55mLNc4+X+f7+4qnVyeMH77D3qO7yMCwsOqCASunWAqs0LPnyGjQU4y7iDExSuxQjtpAlcNstsYXyuB5EmEMSkg8JUgSPZMxNRkm3iUvxsTAWCdcXS5TlQHTbMJBnKK9iKi1xvriAgc3XuXUZ34JJV7GZIZkmNHZGbF8+TSN8rMcXv8OYXuVoFrC8j42PaTICsa9mJKA3a0RWhU0axGMBOXSVYwuSPIu2oQY4SLkFFl0sYQI4QLOLNgXFqszvLDCb//2b/GDH/yQe/fuY+aJBx6b1/pYsegkgawLixISPUei/GX2EXcSQXupTVStcGNrl+79h2wdDJk6uzTbC0RXL3J3d5sVp0keBNgLTW792T9l6ilYW6B9viAoR/SSL6HWM+I4ITmYEDmSC8+ts31nQK35BSbO75CND6lmFq8QbDxnaJ91OVtAyfiooMJhGvI7/2KH+voqj/SI9Y9FOIUk701JRiPG4wEvXmmy8NkqSxtnaLXOUvIb2GKH1HQpkpRWw8dzezjKQcoQ/AghakAVZQKQCygnOL7RHyHI+on9/90ExyQeUUDQAGkEQit8BVMHxg8slRVBtOxQqIBUl/CYIEwJG8K0sIQBKGkYxzGVMMAoQ1DS+NLBVS5SuWShodwMee/wEe7eDs3GOu3lswRrPrce7HO2VSLPpni+IAwCfDFzctekJUdwMJYshoJqRZEt1rlVOofUVR7d3KccCfZMTjw4YFkItvM+D15/j/PtkAzNlAleacL0fsrre3vIQnNHW5TJkbZAWkldCLr6e6z6ls/VHU7VA2y7whdfWODs4gJ//p19tgY+p8sx6wvLFI3LvNR9i3PllGCjyht2jx2VMq5UMO4un3hmiS987t/lb3wpYzx+mfdf/h7f+R/u8O23u4ynY87/0mlKlR0m+z3KgeRMu0zt3CewxR7JtMD1U1yZg3EwQgABigbTJEfLjEy7POqFNL2C1koZmccImaGERdicokiZuC0iKVFWk8Zd+t17DLr7XDt7hmo5RR/s8NZhjNNY4Mq5i0h5hjde/S4XTj+NHz2BUGP6nT4Pb+yycWYJHfwyDx5JGkFGFN5F5G+APcDkkAwTMhUxyQKmnW3y0b+ktHCN85++jBcskRearIjR1hD6FmmGzHTzJUkeY+yEQApcvww4s+SukDym9v/Xsmmc8LVvfpULH3uGK5/5LGo44dV3HnJxeZnJeJuenxFFgpYuo3yPG+OXGPyTl3mkLPULC6xcaXG2kvOr/84G994b098bInZGtM6UaD9ZZW9ryHff7zMVGYvDKUFsiEqw+qTL4imXS6nGMw6UQ967nfHKD0b4C3X6keLqs8sk+wVJX5DIEM2UT1/22fyFZdbOXqMcbeA7AiWHZHrCdHiT5bZD5C/ieRHK8ecNIi1QQ2kPY0ZkiaDI5xlmcwKDeQwd8wFn3CLQeuaAn/AUZllpY2c9GKQQWFPMHH5zBGtRx3j4o9MWRU6hxbHC0OMyg4/t+bOsuBQUaf4B/oCUJz0JCl3MNc+Pj56Nac5FsMcNzsAijzkAzDkXdj7uIxPiscoJfADffzRAO2M7fiCPZXi8gvAY2MhYtNXH5zr6XkfqguKx4MQcScpiZ+pERxlPY2bQIU703B9D7ZLrjCLJ583dHq+azEzrAkc58ywrFLqY/T2EwPM8arUaG6c3uHT5wuw6ORwc3mXDLhO4Po6yJNIyug+1dUFl0yUxJbJOimSC69QwrmSSW6ql2fmzNCEIfYwyROUCz3q4ygPlMlE5B4ddXnk4xNu5x6IbsFlZxNE5t7YGPHFOobMhQgXUShHxNCU+7HN1dZlMKu4PCi43DX7dZ7iwwMQ/h9IB99/aohqE3Em2iaYJLSHopj3u/+BdPrZeYlAk2DDGCabs72S82+0h9w64nRnc11KkNbhWUBKWrik4HVp+edEjrfrU1sp84eMhW0stvv3tbe7LMk/WU8rLFxk6i2wPbrJZzQhPN/hmdod+fYVBVODbPk9eW+Lzn/sVfvULY7q9P+H7v/c6735njz9/44DhYMCTXzmP793FcSa0yh6VxSqVM89gs32SsSGoTFFYLD5GSCQRDg0O4wnKt4ymPgcDn5qvaS6VsFkMIkEJjTQ5uTVMvAaRAGFhOt6m27mPSadcPX2KSjlF7z7kpYOMc+fPsrZ0njSpcOOd16lXlhHOJeAHbG8dMOoOaK+tkvs/yzvvTTnTbBJ4t5DFDtg+JjWkgwmpcuj2MspKEPgKJUqcefGL+KVNsjQmzgqUMvieROQDpPBxvDLDZEQRT3CVQxjVcEoRgedz4/2bjEajGQn5eKU4maNHr9k5DlIczQF5Uln8y+wjp5mEEEhdIIf7vPBTzzMeDPmTf/rfMNiPOHftKX7+7/8MX/8n/y3KdBkObnL3cAuhxgQjw7tvWS5eKqE/dcAzL26Q9g853B2wWveoyjH7NuX7b/wXlMWY9qqh3XQ4faFMRWrSRBBUKtwdBdx5CHsdAxfPMw1LNBua7v0+NX/KSsNhZT2gvbhK5CnCqA0osvgW/X6fwsR40qW29PNIOUEJgZRVpGphRYgxPbQpcL3LSNnEWoU2eraIPL7y/Kh786NgQidvHpO9PvqxH8y2PH6un9j/86a1ochnG53VsPPKkFMXLxDUHIRxcCyUlaU7sQS5QvmCoOJRWShjhMRMHHrjlFKjhMonoDNa7RLjvQTrzaVs0xxHSZySRz7N6W49ZO3qGfYf7hNKWG+FrNVq6LUqo0mOyhJ8T6KUJdUFEy3IU8nKuoAtS1iAtFAOXOKlDQ71bYr+CsLEhKaPLzv0JwXaRpwNJFZPyTJJWQjWWh7P/UrIU7t1hjf22d6fst2fcDixZNqwr2PcPMURih92NW/2Nf5WTPN6ny8/2+RnP7/M228c0O0n9A73KEnB+uICU5mytxzwyp2Eew92aS+N+c1/+xqLjsPOG99i49qXqNV+hWd++jnOXX6J29/7No9e7SHvDqm1fYJnnkE1N7n97T8DXWXSex9ZLWFljs4mgMB6DnkRkWeGQC4yFcvkNqLspVT9GsNMQ5YTOC6u65JZQa8/otlw8SXkecL9B7fob7/Hpc2AejNHSsvW7pCV1QrV9YsE4ROMhu+z/f4Nnnruc0h3j8LchXwfP5mipQuZJpy+jtcWqCgDO4IsJyty9g41W9tDtDA0Vlusry5iRYL4P9h70yDJsvM87znn3D33rL26q3qd7p59BcABAYIACIkQQC1WmCalMH8wGKR/OGSFI2TR/uMwKTrCYYYUIUoRNk0thgJ2kBQhyiZIipuIZQbLDGbDzPT03lXV1bVlZVZud7/n+MfNzKoeACYJgg5bnhPRS93KvHnuzXvPfb/ve7/3tesMhhvEqULg4DpVUHV0vgfOIklalsddKbGUP1G2mASsQvG9WiDSNKazt8vls4d4w/t89tc/x4WVNey1Fv1Rj/u9Pr5webS9gNKbLM5ZvD7sM9eC/dt9drbucuaiw2OPr1JtL/KN37xF3YPlWoqvhvR0SMXTrDqahtKcWnNZWXEJpCCJNXajziu7mlu3xxwOIVtvYbsNWi3J/TeGrM4pzp6yWKy7tJtNPNum3jhLHI9IRl9jpGNAI1EM4xUCv0aSuih7HdtaBeFQFD3SNOLv/ze/zNb2Pv1+iOM5DEfRhLN+rBde8tz1LFs9Bd5y0ngrBMhJ4qAE4eWaX0y8U4w2SKWQlMC0KMSMtiOlnPQoTORHtSkBj5o2SZdgOpt8u++mA2jDt2Tgp6Zgk9LaZHsJtOUJ+dGS5HpMij1Bx594FJTVhllzMMxEO46lRyemZTOgX85bToOKCdWnPDdlYGJmxzEJXExJ8RNSMZWHPfmasmpiZsGZtMrKWVHa25fVmkk5ZxowaHMcnEhZ9i4URUEe5yhloY1GmvI9eqITr5TCcRx+6qd+mh/7sR8vg62k4LVfvcvLG1d52HsWt+LiCIEWhqOhppKX6311LsByDFon6Nii0wtpLjQQwy5eRaAdm+goQTsVnCCAcYL0Sl8cMzJEnQO85cfYfmeTay/+MRv7He73BnhBjU9+/HlkkjJKx1jKIFwbq15ntxtRaSQ47xTI1Tq+rfCqVdLVUxylN8k7NazWgHnriKLochSBUHUueIIkGxKPLJY9xSMXfMSTVd63P8/g2i53d0K2epphnBIWBbFOsYsMJ7f4g32wDnKCjYjVlsdHn5jnk39plZde3GZjHKH2N6jPzbPUmiOS99lbDnjhlSOONu/wzNPLfPLjj9BSks2X/5CHPvAfMz//k3z8x9/iqQ99nc1XXmX3zSOsWz1aH6lz5WMfxZm7SrR3D5NXGfXeQbbbGF1Q5AlGKoxtU+QBWaKpWKcYmXmEtKm6OVWnwSA1yCSj6nsI2yKKNfE4pdm08BTEccjbV1+nIu5z7lRArZUjhWHj3oCHH11mfvlJLFWlN3yH3Vt3eOpv/RRC3CHPNlBJDycryIwh7veYM9dw6xWUFYEO0XlGkmfsdg13NjJkpcbC6gKtZgOhWjj+ImG4SRhJlHSRbo0CC2UGZFaLwVDjSKgHLo5Tx3brQMky+Pmf/++5dev2A5RApdTs3tdoxOT6Ptn0P00qfM9oRZNPwPV91i9cJEsi3nz9VYwwdPbuEXb32HIdbu9f55N/tcXyJYcLJgAKiixhZy/nta+MeDu6ybPPuwgrJzMgLZeHzp7hN3/jS7jNhI98v8/FZYe5qqJaNySZRqaK3STjZqbZkzam1sRvPYyz/yaDw4jH1wRLLUWtoqi54FsRKI+j0TapzHHtgmpNouwGUqzguHUQ8wjjkYVjugfXuT3MuXD2/bRrbbSusb13n1E44OELT56A6SdTSH+28e0akN8b/98ZgklO1oByJaeerWIHJQ9YZwZlC5zAkA40WipsWyCUwuDh1RXj/pD2SgUhDGRVjM7RGIJFH99zsAqFpSTKFihL4FcUnaMB6uomjzzyGL6Eg+1tnM4h2vFZXltB4qINZIXGCMNcw2U8Ntw/1FgtQaUiwQJPSk4v16nEq4yjnDEKm7Kp7uigS2Yn9MMRUeLgkKNNwvWjgrhjePjUKg9/qEqUxQx7Gf2DlN7hkI14yAdrKavLASZW7B8qNvYV4+GYX3/ziA+eFqwteLiyoBsX6CJm2B2jVyXd9hK9W/cJmjZXnjjD+umLiNEtDu8f8uKLv8fZK+9nfe0czdUa57/fx7X/GCUchN2mVlthft7jbqXKzo6hPf8UsvgGMhcYbLSwUJkDRQuROFhuDZKCPBpgRIMjvY+TVrAcyEWGTjOyTCPsBq6rQGi2790m7+6waEuq7SWkO0+0f5W7WnOx8UEa9WfQaCITUrFqOM4ciH10npKmhiSTSG+R+N4b1OebWO4uxvRBa/LUsHEzJg2h6lpU5qrU2xVs2yI1dXQRkaU25Am2o7GloIiHKG8JhEToLo7TxrYaSOUdc7p1gjD2LBP657/eDVEc88abb7KzfY/FmkvVtyh0jBAF6xUbUaT01A6f+PQqa09UeVzv46iI8Thnayvh6htHRP2cpz+wjpCSRBe4nmKu7vE7b+0RzBl+5Id9TlcVzYbCrUjSTCNTyb3YcNMYjmwBrRUC9zRB7wadnuYHHqvSbiiqnkXgSFyrAOVyOLhLohLqfk7V9pDWHJhF7HQN129zf3sfcX+LVN9hYwzfePMu+5v7fPPaFkunm7i6ILzfpdBmJgYxXfWnvgBTpblpJl1rjTCTrJyUoAuOs/TlwqEnzqXokt9fDoMxopROnYHyY4+A2f+1nv1/go3RpmyixOgJB98c050mVe4ZZeBbsvaaGQdITPjJk/mb6V8zzwAxA9ffokIkQMnyHE3PwQz0n+A4f+vVOA1DzImfJr+Zvr6MgDCU9B4xoSBpXRxXVU7Qn8yE1iWlmdGjpJJIc+wAbQyYQs9CIUEZCEwrNFLKmWGbkBLHcVBSsrW1xS/+4i+yf3UAVo4TWLieQlkC2zVEhxnmEQslAWyECnB8RTgYsbBeQxoDVgMjNIUAf97HdWwcbKSrygSlMri+INE59165xeFoxNn1ddpzi5zq9jlKDf/jP/qH5OGAT3/qR3j4scfoHPa4fu02p1YfQlbWWLpUZWf3LlajgSurzM9VcYZL6EHC1ihjlQKTxYz6KYUHwzQi7HkEJuRwlLJ/ZBAVi0srSzzyEZ9H05j+Xk5/f8xhf0S3iPi+WsHp0xXiI8HGnsN+V3MYj/ncWz2+/7Tg0nqVrb0BoczJszGj/gC9rOjMr3CU9Fg+M8elR85xanUVM9qgs93h9//wN3nuA5+gWX+C+XMtlN8gCL6CFi7KnqNdXaDb7jLudNnflzTnnkUlXyYXCowHxkXiYYpmud6rOsUgpEgccgT9ooOTVrA9SEyKSTRpbhBODddRGDS3b1+lEh4xt+ATNJYRVoXo4Dq3BDw/9yl8/yxxtktKQtWq4/lLwE2KPCdJNbnxsdwl8v3rNFdWEPIOhggKiEaGrc2ENJK0Kj7NU4vUanUsq04h59A6IU1tpElwLYkyPcgscBcQ0sJWR0gxj+00cNwqUtllwJql7O7ukkx8CqbrftmXLNAcU/6m1//kr2NBgD8FIP0zEVQt26baaBGHY9rz85grD/P2yy9y6+bbeC4sPtfm7NOnqS+PEVYVdE6WQnXOoTuUvHhLs3twgFXPqcxbFNJgBxa790a4/QLvEx4Ly4rACAaHCdpXuIHFXqQYZoJUtLDlKnLzLjZ91pqaC+sB7aqFJS0sIcjTjEFqMHaO60DFDQjcJZT9MEbPMQ4Lut0B/aMOh4cH7HRuszvOEdYlbmVd+kddBqMurUaTRy48+R2T+O+N//8MIQTSKoMBKaG65JTl8ViDBmkJLFeQDDKKrCxX247E9W10LvHmNMItoFAYy0IbG1Nk2K6Lp5wZV1nZlA8eS+MGFnev3mJhrs7KYg2lMsbjLu3mhVJBQZa0BlVo8onBj+OUZdJ+BmlkSg1tKVhsOEhrjnhrEygYmRw1ihFZipMmxNGIXDhYUhMLzbiQ2EPFTSKOmhGLTZv5xSqnFi1MljC3scmFpkXDK3ADjwV85ocWva2Et3aabAx3adcUpmZwhMGYhHc6RzznV6j5CsvSNKuKR85U8Pwme7f32fMWUNQYHo3ZcfvU55doLH+Q8JEB+2/cpZFXcNUSjtdA1laJihrKluihQyFtjAJjHGRegVwirQWSYUZBgREueVEglI1nIDUFPlAUgjgX+K6LMJo0TdjevUNVpMwtzGNbPsJZ4+rVr9E8fZFG4zKWtcAgvM+dnZCzD69hqRT0AdEwJI0VlYYDaYFXqSDdIZgOOuuTxym9/ZSjrqZRd6k1fPy6jePbGFGjEGdIBj2EnMN1BJZVIESGEB6FyBFG49getuWhlD0JDHSZcRX297QByRhNlmfsdzqMR0Pa9Sq7hwc0nQqWKc33ggWblWcWuPShKzRXIxA5RveJoxS3bnMUSb5wI+LcMKJxyi6BsK2Qjs3edoI/gsZcwGLLRseGUT/FuAoncNkObcLcYNzz2CMX/2ifqkppLlhcOmfjWAJbKoSRpVpQGmGcjGqgqDgNXHsdIc4Rxx5plnHj5h1u394mjLoMs4j7oebWbsjw/gHCd1BeOb8szUugKcwxqC8XgMmJOfHj5IFrJhQjOePCT8+hmb1GTN57TH855qqWQQCz7Ps08DDCnKD8nHjAT15wHKg8GDxMZnjiefXgA+ykURnaYE28cY4lUN9tnjYNjABKF+5Zt9z0GJgKbUw/5zhAmFEbmFK1SurVSbpuGVyJY8rWbL+UNCqtZ0Bfl18QAvkAnWr2Z0KzKkeBmQYuxsy2C3nS7O0kLawMfr7xjZeJo5But8cf//Efkcc5y0urFKRISyAtgXIMw05CkXsoX+D4Cp07FAjctkZ5BlFYGMdG61JfH9vBkTbKslCWQjkG6YDtCCxPcOuNayystcksiV9TBJHm6t0N3rx1nTwJmWu12Nvfoz2/wMrKPLWGSyFsDnPIRUATi4oy1AOFYI7o3hZuxWKcG2ScI5MIK09IkxCdeqBSRgaySOGEkps6pFsfszLnsXqqztnVNnE0Znv/gPNNm6ZfYK9XaKY+h13o7MTcPBhxp7/DXMtFjMHVmjgbc3M45ik3oF61kbLg/LLFuZUqlhVw0Dlkz1/Gl3X2dzqk5hTV2jrNVUGSxOy9cotlXcW2T2EFfaj0iIsGli3IxxZ6+qArfIT2oVAIe4m0N8KoRTSKvNAIaSMNxDonQBJnUBiLwLHBaJI0ZmP7GhfrPo2GjWVXKcQSb199ieVzj1KpXEIqh243YfcoZf3yKaSI0MUeo6McIWz8ioPUikqtifT6GL2PzsfEw5Tufka/p2k0XOqNgErDwrJ9CrlAYVbJhkdIMYftgKUypHRA2miRoXWK71YRsoKy3In6VkGWJvzzf/EZhsPhg30DkyrjSfOz8haf9Ndw8lr/0ykW/elpRZQsSSHA8wMeeeJJ9hbm2d66zV7nPsHpFu//9HnaaxXgZnmTS7BtRXvO4X0frXMrVNy710dZGfVlC+kX9PWALMnJswLHlnhVm2ykubcf0W56BEsOSRJg4WFl8xQDG7F1FbXu8fhFl/k5hSMVQkvQglBqIp0xX7eouh62WkHr8wxHyxz1CnZ2b9HZPWJ7r8/9/oAjkbHYOE1/NObrX/8yW/c2WFte5Qe+7we+zRn4s40HVSL+LOO9SOT/TUPIkuv7wDYlMJYogwMJyhGQFkTdAicQ2J4gaCiGRwJ3vkY+HiClTalLr5FGgeWgpIW0JNIC6QikbRA5+HWb62932N09pD1fpVHzSHXI0sr8hNtcqpMoJZGFYZzkWLaiXRd0+4Z+Zshs8KShXbMY2xXyTU0eR4RxiBik2DLDGw05Ska4toUyglxIlLBpSovNvR22t2JOz9dZXjQsLlZYWKhyKazRdzz293bx5zLqSxanlmF92cfdbLB965ADEaECgyUs0izl+iDi3H3NUqFZaMBCDc40odCSjdt77F18mudWLjA86LK9dQ9RtalXL+Cd+gEOXzpgKfYJijbCc2icehyp6sisg6ZGUYzQOkFIH134mKIOdpMsHFPYFsYLiPOYmjtPIfLS88S20cYiNZKmLTBas98/ZDjcpVGVVOYXkNInHgg2DhQ/9IFnaVQX0SYnjEM6B4Jn3vcohi5ptM24NyBPHJpLASZKqa4uk8cvUmQH6GTEqB+xt5PgupKgZlGpuSjbA1kjlyskxTwm3sCpFliOAFI0FsqpgRgjhI3jzKOkN+GBF0wcupDS/y7WmO88jCmRm9YFcZbSGQxIkw6WanO65TOQBWfWWjz7qaeYW58HroMpaSqeZ7Ny2ufpSoOX97e5fbuHPy8wWAhfEUlJGhfo3BAEDk7FZn8Q0+kkNBs+/oJDGLqIVEGyiOof4ffu4p2u8OTDLvWGhclBGEmhBWFeEImcpZZLza0gOEeanWEwaHB/55D9g7u8/fqbbO4O6EnJUEiiBLTyCBo+ZA6Dfki/O5oZYxZaM0nal/c6lHz3yaYy4X4Mek+e+pP4fPrD1Jxy9ruSCMxUovqkzCBMOMOTqkMpqTohR1Nm9k/SiGYfJsRs+4OXwvFEjpt49UQZSKNs+1uag2e9CeLb+RqUAcI0eDoJ5IEH+hWO6yDH5+ZkADHNYL7b74ATx68FM171dM/GlDQuYcTke5hWJCYN1LPgaCrpKGbvLhMxckaxKLRGqTLxYyjP90svf52vfu2rjEfH18R+b5coi0CYMjiwIO2GDPcD2ms2XlWChigUOAsWxXiA5ThoAKNKupNlIYVdeoHYAtsBoTQokJ5h71YHf65ClO1QsTMOuru8+dYrFEIiMbzyysvcuXuHDzz/IT70kY+SpiG1WsxWX1P32+XxZhmBayicgOROSs0UpKHBSgtsIvQoZFhkBI6NKAxCWHjKxjc593dTNu4MGay0WFo0LK/UqNfqOCah53js3LtHfd2luZhyZtnm1Oka1e0G2zcP2FUhVl2iMojHKbf6EetSs4RhsQ3n5mGxKkkSzcbGIXsX3scPnr7I7Ru3SaRAeWu0vct4qwX7X9oiSQMwizj1jOpijJBVVNYhp0WepQgJQgQIgnK9d1pkgx6m5ZMLh6wwVN0ahcjIshTl+eRaYURZ2ddFwUG/QzjawT/fwmvUwNQI+5LNA5u/+rHnce2AuBgxGEYMRy5PP3UBXRyQhVsMDxJsu4bv+4hMU11ZJY/+PUL3yKIxvYOI7mGG6yqCmk2l5iAtF6Pa5GKFNJ/DJNtY1Uue3ywAACAASURBVAJLFRgStAwQlgcyBA2uexo1WduNKYjCiNdfe51/+k9/mTAMy3t2cq+U1cNJj89MYcyUFcaJ3PGJO/lkJuE7jj9lcDAL/Y9vailYWlnl3GNPMLd+mieefZTFxbeBqxi2gR6YDCFslOXSrPl85KOX+K3f+DLJOKG1XLCwYjPWIcoXZH2oyRqOVWFfxGzmId5mzkLTwk0rVNVpotER4e6b+JeX8Wsh6ysOQtmlZrkQxErRcyNOtRrUlAemSp6cpj9ocv3G7/Olr+5xeLDHqUaFxPHQVY+l04v8zQ/9GMUg4X+/cR2QPH75aX7w+U9M/AneA+rvjW8/hBIIB5AgHVhsCfpbOXYgaC4r3Gop0RhGBr/aLIFAVqIO6ZSmTMXETEc6AukKhNCYwtCPh7Tm2zzz9GVqTZ/+oI9W9W8TcAqUhIproaTAtARXAkMUaTpHmq2e5tSSxZFtke7V6W1toMKECjZxMUQwJMkL3EAgswSv0Li2Rd8SvD9w6EQu24cDOnsDAs+itlzjw2eXuROPeKdnGLyzQ0umPHra4vH3VTi7VHB2bomrt3dIogKTOxz1wCiL3ztI+fihw/kzddYXLBrVgDTJ2Oob7EggPA8hHER4hOnfRtROUa9/AKf2VeK8SZS4uNUmV578GP3r3yQJDrAb6yS9lCLu4VZaCONg1HNk3TsoZxWpqySDEUPjsWY7dIo+LRFTFB4pFlC6bBoF37x/i6ad0PIU0m5j3EtsvfBbnHvmUYLmJYSqEaZdwnTAhfY53MpzZOkrjDqHpIMQISroyhq29tB0EGlIkSUMewmd/ZRxWPDoIxViLdGJRKoVjHOJtFgkDntYzUtIDih0Hy1cEAGGDN9xUcKaNbyW2VBZAhVV/Z6vUULJsv9FCpQArTOU1GzuHdKaW8GqSloLLZ5YPwvcxJhtMD2M0Qjh4ToVFtseTz13xJd+e4+aX7B6ySdYsMmkRPmQHxlaVh2hLA4x3I8S3GFMu1bDiiyyOCDbfAlfgv/QKYJ6wvqyohA2UkNuFGOhGQWGVb9KVbqYok6SnmNnd8Cbb/0RL359i2gcca4VYFUtKm0PbJe0oxltHGINhuhCsL+5y/BwQBpnEylSc4wnp9lvfQJg6+Ps97v70WYZ+MlmMfGgKCVDOQHCjzP6GnNiPxM330LPts1+N9nfZOuM1lPGBsf84pNrhJxIGxbFieZdUQYbM2+DaUWDMgF4DOknVZF3OcIJMXUiPjYJPcYaZnZoYrqvE43HJ18sJjz/vChKXwam1ZXjOkSWFxhzrNgkJudrOkeBeIAiVBTFzCn2ZFUFAbooykTPhDZWKjmV35llWZPqgiLPC7IseyAzm+tSBlNLjbBA2IZ8sMPbL2Q8+8llKnUHvyGxfUEUSoJGmyIrsDIDCoQtyvW+KM+L5UqkPaFFFZpRHiEcxe/9u/+DC1fWqNerdA9CorQgz0Is28KyIvw45p13rrK3t0cUR3zsL/81Lp2/xGBg2O+6pEZSDwqSqqLRqtDfucai0FhGkFGadMWZTVBXWOOQupRkliSz4QMVh33b4+7OkIOdETdvH7K0VOPJUwvspCFvHmrCq3c4W9M88pDDuUs+51c05xfWeOXqHSzfJo5tYp0TCcXvHqR8uuvx9OMNzq3X8V2bfpRx78jgxCAqPrKwYLiPGSlk8BT1xgewan/AKGxAw6a9dBbP8wg3rxEHB9jty4y3h0ilcNwqmBpaPUN2cBOnfoFxZIjyhFhVcC2LTtFnQSTEeYPcGJQ0CGkopOGVezc4XYHAEkjvLEnssHftRc499xhO9SGMcOhHR1hScG7hCk7wGGnyCv29DjpKMY0FTDCPJXw0B4gkJMtTunsJh52MAsOF8wFxodCxjaxfQMsLpFmFJAmxmg9hsUtedNGigc4TFDbViotS9nEvjZCkWc7Nm7f5+z/73xJF0SxoFUJMzB0NxeS+KlXWZuXGd60Fk+rh965yMFsFObkWCil59gMfwZCi1BGQAKWttdE2xtgYLHIjEGbMxeY3aNb2uLY7ItGwtFLjomuoN2yyzMKjySh32YxyNrY149spT79Ps++cYfvte9zd2cGONWf9jPc/4uL6HiZXpFoyNJphkbBayanLCJMH5InPrbde5+23OoxqDxMLQeL47PgBC5daPHtxnadWnqTlNPm5f/jfkUYp/9Xf+VmeffI5lPrzBwbvxRX/YQ8hS47ftMR/6q/UOWUE2bigyAxCCVRFUPMg7BqcQJI7hqwwOCW2w/HLwMCyS+6xLkTp5ZWn/Bf/5U/g+S5CwPLS0qR58VslyEq1jzLjaMmSFmEkeB6s1qEdCJQxHDRbZFuCcdInTPZojIfsd0MeO+vz1q0jbF/QroEjxuz3FP3WPHNnNe2jlCKVpMpmmNt8ZWOLT1xu8uG/+WkG0TW2965zb6fHl17q8+Qpg2gqzj52kfFhQv+wR+wnRDc0B8bm83+0yY/9xDOcvSxJ6VHkHc4//zHC63eoXLxIsNygL7sM7mwQnv4QBs2p938a3SsohmAHBXv4RNYCix4kxiLTuwh9iNAW1L8PwiG6aBALyAhRRuInLUZJipXFRA0HjEWeQ5EZPMvi2v4O2dYBS8tVmnNzGF0h3LrOqH6FCw8/ieXOAYLDwZjNo4KLF59l//At3KRDqCXu6bMIrRn0EpbOPkmWXkX3jjg4DBl2Rsg84txZl6gb4zZaWK3vYxyfZdgPSO2Udi3FF/dRHGBUE1SAtECoFEtWUGoFyCeLegmELFn5C7muozAiUxLPtfE9i7woNb+1gBv3Drn06BKt+SqQgUkwFBjjYFBoFAUaV8X8lScXuPFyh82NFG8/5vx6zNK8Ta0BeSoQCexnNpsDyd07BXEv46mn4VXXpTs+oDdMKCoOF+o5z13xsB0fkeXECHpZSCFzVisOdZWi8wrp2Oelf/+/8eadIdtpndwNSAuLO4HP2jMrtB3N7vUOu9c2seKcvDBsvLVFHMblA1WbmU9BeX+/awGfpb6Pgf0Ue86SdSfej5hsF8dV5Kk4xcxQjWOqDZwwJpsA3ymlZ6rhjyrphFPwflwNOFYZkpNA5HjS5dAzWlMZAKoJqDBw3A8xBRQn9jXdbqbHL0qAy4nqiZx0IJ+kCk3/PVk5mHCWTsyplF09GURME/9TfrTW8ri6MqNpHSsyFbqYZP1L9SWdZw8kT2ama0yrC2by3chZI+dU9SkKwwcqC5w490HFw/VL/6JRMuTvfe6nScaGzz7yr7hy5TLCltgVieVB1AWvpojy8rsqfVUMjieQvsJxyu+2SKFICqJul6+98ru02y1uXb3BaDykyAsqlQoHB2PiJKHQBsu20VqTRCGPPfEEt65fx/IaLK6uYYQgGo3xZc6ZuXl2mi30vqSTHlFPuzhhyNEw54kzNt94u0N7yablFphc0x9ZDJoeixcNc7sRWjiM8Qkjw2v3d/nYpQY/+BM/TqfzBe7sbLG9P6Lzap8ryyBaioefe4r+Vof+eMwhOeNNzaG2+Tefv8Xf+Xs/SKu+T2oOEa7Nhfd9iPD6NYLHn+D0uXkGu9cY7uxQW3wCIyRnPvSjhD1Bo1WQBBb7okJmLbDgS+LCIjdv4BQJQrbAfwwRDjF6jlDnFGKMox2swmGcpNhZTNjyKIwiSTMqThmy3tjfwWwesHZ+Hr9xhnwYMe4fEbce5eLDj4JsgNFsdwakps7q6goHh2/hpV1C5VJ/6BHiwZgwtmgvnyVNr6O7A+4fRIQHQ4JKQXPRJu7FeI0Wav5jHPVPMzIS4SQ0KxGuuI9iD2HPT+hEBRCTZwrXWceYBCNrALz26qt85jOfpd8fkMQxeV4GwEKeqKhxnHw4aTpY9sRM1dDMtwT732l8F6LYx1PRWqMsRaG7xPnL+HZOKWLWQpsxhc7JtEWSe4h8iJSK9z93mWHnFgcbR0RvVwg++AxV6ypWIBAT2adoKyJ8VRE0C9ygTpr3CfcH6E7GwpzF+x5RtD0DxmYU5ezkObklOVu1qSuBzgxmPGDzm/u8fb/NW/lFspt3WFxp8/STZ/BW53ACC5Ud8vZLn+Fz/+aIo0HCP/of/imnT50+YUD23nhv/MlDCIFwpz+AXZVYBkxhyAsQNgTzgiw2WJbEq5YgQRfguAJ54nITUuDVPX767/5tlJKTh/aJzNt3uDanzUieA66lcCyNJWCs4dr1jIcfs3jkTJXDNw1hmOCojEZToGoer25qHj4d0A8zuoMMG3iomtDNOux8XVNfcKhVFA01Ys3v8ebdiF/ZFvyNZxWLl57loXPrnF3+AgMZ0dlL0PfHzC/sMFcVLDVqzNuP8rmv/D6jkWRr/zbDewuoS5eprD/GeKx54XP/lh/90TX8SpfcWcUaNxjcu4UqRiTKx3NsnCBFq4JRbrOoauwvnMUoD5N00SwQZwMGBxmn6wsMuh1cq44hINUwzhJ6ozvUVy9j8BDUyXOBozS+b9FNUvYPbuO2LaQ4hSnqDBPD9m5K5fEfpOp4SMb0jjr0EqB2mSXfZiwu4LhDPOEj0UhRo1X3gW8y3L3Jzq09VBER1MFp16nUqhi5hKx9mt6woDseY4sOK5UET0oI5rHsxyjEHIYqUjjYEqR0QXiUYFQihEQpn++VdOm7x1Qju9CadKLHLi1F4EmMLfngD1zhox+9jCCd0JtaZHm/bNRODWlW1mSEkDz3bIvDrYzkes6RH1J5TBGgsO2cYhwTETF6Z0hyNcNfdXGrLapyjvHmBmqUcuasxzOXHdq+RGPRH4/ZNDZN12fFEwSyoMhSzHDI9Rdv843OOltpAWGHWsvi8UfmcdZXyOnS0iMyNUKlCUWs2bx+n3AYH/cWTAoGZU6cY1QrHvx3mrE7rhycaDwGpCVnmf3pm6Y9A1OZUTH5AGviT6B1USoPTfahpJwB62lGvVQgKUF+yY+Xs88vFXqOA4Gp0s+0EjKVCj1WKTkx+cnnHnsclKBZF8WMAnUS9Bs9rRoc9w7M+h44WdWcftRxxWDaKDllD53Mzj8AWmaBwXGD9DGt6DgK0bN+CzPzaSh0MUmYqElT85S2VRqowURVafq5QmLb9izJYzAIKQgqAUVeVhsqlSq2XcKlV197lZ/5z36Go2EPY+Bv/eSP8cHnP8hf++t/nU9+8pMIB/wFSCLwAlGatk3m7TjH670x8MKLX+N/+Z/+GS+/9iqO69DrdhBCUhQZeZ6RJhGWJcnS8rsYDAYMhyN63UOiMCROM7765S/wN/72T+K48wz6EuW0WFtL+fATC3zuK2OaVkLgGhrzFk7D42vXI953ucpGN2avW1CxC9aDnF5ywNYXYhbPNam5khV/BFpyfSvmf95U/EQU0LjyKZ6qvURy7m0GepIh3x6zcvoeK+2c1fXT6LbiD974OqOxZGPnOvHmGdz3n8FrVunf6/H1z/8BP/qfrCHVIf5Ci/6eTTocI4sxmXLxXZdKZcTYGIx2mXdaHM1bIHxM1EHLU/SG27i5YM5pM+z1cO0W2gQkOmcQDeibiGDhDMZ4SJpkqabmSxxH0I1CDg7v4C84UJzB6DYHvR69yKP60LNUbRfMEfudPYayTd2vsRBYROo8jjdkUfhIPGrzywhVYIpvEu7cZfvmAZ5MqK3aVJo1Kn4No5aRtU9xcBTSDQ9p+SFtK8NRFqIyh+U8TaYX0MZDIrCkxLI8hPAn94jmV37lX/L5//N32Nq6TxiGM9qhZZVKmkbrScLgJHVvcm/o6T09ueY0FBOq0Z80/kzBwQO8QMqSIMKA8FC6Tl5sl1QiWUPjoSmQFDgyZqxd8gjWlz/B2QUP++h1Aj/mtZ238Rs2z60vsDJnMTrMCLdsKg2PZ55XCGueG2/fY+9uBzvJWG02aTXOgNkhHI+5MVY0fZu1wMITEtKQfE+zsVHwhRtwqx+T0qFm91hZsrAqhrYb0usN+eYbu7z6xR32e2UQUqtWsS37ODPy5x7vlQ7+gx/T6P2BB+KEU2sJbAVFDpZnsNxJM58oy/XGEbOM4zRZJ21RGhp9C2/42zx0OfncnYAVwEiouoI4NNztZQxTQw3wGgrf0UROgOMsMYwjRHhAqwZJVgoBOK4ksSSDVGM5GWfmbPqFIYrLcv3+MObcksVZHN66+gY3OocsP/Q0q2f/U3T33zHnXsM8FLB9P2fBg7XFnOW25j/61Af4J//yD4l0gxde36O9fo6PP7RKRb/DI5cFB7tHNE4VeDKi1rCQ5y+ws3ebU6uPU3gO4TDEzzOsImKMTS4EWVYjqK2wt9tjuLfPfE0g6ZA7FcZhD7tSZ5gG7PRGRL0jKg9LjGsYjhOaVRehyma9QqckseDR2jxtX5H1OySZoHX5OSqBC2ZIXki2kjlwbR6pWyRpwijMqVfP40qFyG4iig10ErF/q0Pc6YIjqa60qdQDHK+NbV9Cq2UOjg5IModmTVOtzhFUVlEyKKsFooLAA2GjJnUpISwMJcCQykcKZ0Ij+YtZX8RE+lGI8gGjNWS5JkwMVcchHGYMByOajRQlUqRsoIWD1jmWSsAkhHFKFud0dwwNJWk1LKQL22lGte3zzGrBXKPK7q0uyWFOa9HmiedqGOZ4++3bjO6HnKorVtsNGtU1oEM4GvHmMOehOY+25+BSQFKu9zdvGz5/22InSRAmZq4V89DFJqo64EzTYvP+Pl99YZ8bbw6IxjkISTSMZi7Cs/tMTO5Jc1w5OJmFN+8C4CVVqGwGVNbUP4EHX6dBCMP0k6ZBRSkrenxvS8BMqD+60KAmAYKZNkjribvpiR3NPkbPqEXTyEYXJXVGTgKNYzrNicrHJMlXgowSdGgtUFKhlMIwCRIoAfrUf2AK8IGZBOuDBqClypEwzAzcjvFDOb9pveQButP0PE9eOA2EjD5RQVEKISRZnk8CDjGZt565Nk+rMie9FpRUM8aY5pgWNQ0GSvdYSa1eYgGpJPt7+yAEQRCQ5wW/9mu/xj//F/+Mg4P9mZO21gO+9tJX2Lx3l6987QV+/ud+AdsFyz3GEWZSspmCNF1o/skv/RK/9Vu/zc79XcKoT5pbCAy5LpiFhdPAjTKAzLPyOOMoJI5jLNshCKq8+dKXOXflw9TmruB5VSpFQXveJfDByn1SaoxEgkx7LLRL08w5aZFWDLkwhFmObWsurvgcJBolDGGaoTBcXLa5KBxeePnr1Do9zj72IWq1hxCDF2h7d+BywI27CZcXYG4h5aH2HJ/8+JP8yq9+ibFu8ztfvkPz4iNcWmrQqG9z+QLs3utx5QwYPaK9MkcSpxx0tlheusyu7zA6ElSKBF3YpIjj9b5xmts3bqCSMYsLNlIclev9+AC38TCdoaDTzTAypmJJjGfoDmIWWx4FgnGmifKCLJY83likGihG2xsQLNE+d4GKb2EYkOeKm/Eyiw2XeReSJGUcGlT1IVxpIHkH8uskRyO6Wz2Sbg/lWzRW67iVCo6zgmWdIZfzdLo7ZJnL0ryhWl3Hd+dLGWrlI0QFy3gIY02qhYbS+EzROTzgH/yDX+S1V9/g8LBHmiRkeT6rbE1vdQ0PJgY4QaljWtWcRPFihib4k8Z3Zaf5IM9SoEQdW50hze5QmDqKKpmJKEyI1iFZnhPqAFOk5Ml1KgsJ87pOY67C+fYPc/7cLnHf4sUvHjEYJ8Q5PH054PTlJok5y+G1LdKDlHrD0FqWWNIijhNu7ZVNbHNOgac1spAUY83+nuRr9322dINMjFl0ejz/vsuMRESe97l2dcS9jQF3bg7ZO4yRwuY//5m/S61anxzRe6D+vXE8plmxb6EZiOmD/tuB9uMHnbLKB+7sVRMgP8tElgIcx0HGd3H5vXsKlhLUK5K1ZQstUqQxBNKw3KyT9WpkeY7rNqhnXXQN+nsZVQQVzyKQcJQIZF4QWxJXaIpckWqFtC0GY4HjZcyLCLvYwul7xLsucfV5PAvq4h6saNKjjMP9Ecu1Hs9/4i/zy//2G6BztvZ2ubffIytspF1l7YyAwQATX0X5V7AtF0SKSg1HcYorPXKvDUhMKsltC4lNP2vgqDqqepZkr8vuzgGnrswjA5/dnX3mXYVyAhzPYPCJtM04NLQxCG3KvIbQ9MOEOhJXQqodMneZPHBwgyqOGmKEYnPooC2buqvwhCEqyp6JW7fuMwrvUSm28PQORTqkkmpErUJroYpf8XHcOSxrBS2X6UUhhbBpttZLAGGXHe2FsJEoojxBCo0SNkIopCiAKkL5CFTZ0Cj+YiubJY1CIuVE0nJSRRC5RBfwztu7rK/VmZ8/g7I9jHYwlocuhhRFTpJJhpmNyQzziz6DCzV8pSmEpL8pWV+rMdwP+YPf6nBvN8KrCh6+HNBab7DVidl57QAGCY0zAfV2+fgbJyNu3B9xer5O0wpxdIzIBOkg4/59zR9vVNi3zmCFO1xYsXjooXPEKiOOD7j61ia3rx9x+9aI7iAlTwp29wYU2rzruDnmp09A5BSYz1Jyx+nr2fuOA4FjMDd9yZT7O6XdTAHpTC3ngRmYGXidgt0H1pYTjKUZveYEcaf0FyhBgDh5PJPJTDPj0+M6BhDmxOGUez3ZyzA99GnCfgrupwZwYnLyplWEWU/BBIkYrTETgP7geTumP0yvu1m1ZPa7dzVFT/Y8fZ+ZZGeEoOz90mIyFzlzeZ6eG2WpEkyZ0il2SvfSWk8M6iTVWo1PfepT1GpVfuM3foNCF9i2QxxHfOZffYZut8utW7fJ8wKtC6aeCsPhgCSJGY1H/MIv/Bw/+7P/NbZjl03T07M6UbTSheYf/9I/5rc//3nu3L1b7ssUgEQohS4ydJHPzuGUXw5gKTULFLI0w/E8dKG58c5bjEJYOdvn7EOPk4Q+7UaLM8tzHO6NyEmwnRqVoI+pK7rbKXOOouFYpFozjgqkKIhsSYWMPLEwlkRIGAwL3CBlRYXY+R3EQZO4uEDqvx/XtmmKLdbWBaODGLfbo7U6x3Mf+TD/6+++jhYp1za3OOzHFMbF9QNOrRkY9jHx69jeFZQqyqRyqjmKMwIVkHsSCgedSwoU4NDLmnh2E1W/xOBugiUd2mvzCN9le+s+a3UHy3Ow7JC4kISFzXhsWJAatEFakBY54yilhsSREBceUWUNUZ3D9RxsNcaguD108XybuiNRaDIM1QBu3NhmFG3R1vcQeQeRxfi5QdaqtJdreEEFx11GqhUy06CfRGhhMbdwHsuOsWyFmaz3wpSmlhYFSthkWYwuMqSq84d/+AJf/OILfPUrX+foaECe57P7YdqgP/VBOels/sBdMl0LJphiZjIoxLfghW83vqvgYDrEbPXxUGoVVTwMZhkpK2TpJnkxIM0GHEV3yRCozCJPx3gNQVvVqbhNkv0W59rneXPjFrduDAnjlEpDUWvZvH5HMJ8NGe8VeMZlacHm1CmPIhnQ248QymLB0wSywKSaPLHo7sDbewHXBhJb5VxYEqy1fZotm+7+AQcHPbZvH3F/I+Swk2P7Hk8+/Cw/9NEfnpVT3xvvjen4vzML+dNcK9PS+5Q7jJlmkSZFt4mxrRDfJvj4LkdJMYLAk6wuWEhlsKzSFG15rk7UrTA46mPLCpW5OQbjAU2vIMkhRFKXLo1qTlEUDJOCtls+2BNhkQubfmwIiFFZghNpzP4NsiRFXflLUHuePPsS9WDIWI8xwwTd77ByPuXDH7zMS6/tEOaa3mjEcNCj0WzSXnFIGUGxiyjmkTQwIsO1K+RZikxBygCDIM8Nic6wLIfDEFrCxq6dJhEdDrZDHuc0ha/Y7NxFNVzsioOSEeMoozuycTJBYZV8TS00YZ4z6oW4sYaaR6JtjB9g+T7KLlCWYpC69LVDzVNUnYlUnBJYjsEID0QdLdvkJBS2jd+qIZo+1QYoUcfoJplpkuRVkiLCq5zCdX2E1BidkaYxUQHGlICAwuBZ4DulopVlt5HCRfD/nEBCeT0e01amZessK7h584CgYmPZgnpDMhonXHy0TZ7HaJFgrIJUlz0FwlK0VivYWjPsFhxtZdRrko0ebGwOCFPD6rpF0DIUt1NkpUN4P8IVBavLLq0WJGGXXqePsGxWA4GlE0ymiEeKgx14a9fn2kDSClJOn7FZX/GoNywG3SM6nTFb1/ts3Y7oDyZROIZ+d/yu450o58wQuJkBVL7zEnAig1c+iE8wXt4FaqcVghIqTikzRsK0cXcGrN9VoZeT78F8OxqZmC4oE6B/ohIhpETMgohvN3n41j6Bac59GuhMvBSmVcnpIsZxQmIaBIjjF8zmYE4GHmYqpygna6CZbDteI5l5Lxwfy8npTvdh9LQt+ThJKQXoaW/BpMIixISOOe07mAQV06qNmdCmpJRUq1U+8Ykf4kd+5NMcHh7y2c9+ljRNMcYQxzFf/OIXJkBsuq5PGkZNGUwlScLOzn3+9b/+dS5fvsxTTz/N2uk1XM8DII0TvvTlL9E97PJrv/ar7NzfmTRjlwAvLybVo6l062SuRVHMqjvHfRiGIs8RSmEpxf7eDmGU0js6JA47rNqXObXyDGdX5imGu5jUxrYr+F6T/nhA2xeMtQENnrRQ1fIeHyQFy77g/2LvvYMty67zvt/e+4Sbw8uhX+fu6e5JPQmDAQYgEUQREJMo0CpSskCbZBVLZcplucoky/6DVpVLIm2KVXIVZYoyadJ0GbSJAkESFGEEIhOYGUye6e7p9Dq8nG4+ce/tP849997XA0qQDMIENKuqwzvvnnNP2nuvb61vfStGEQtFagXtKKEkQ7w0RvYPSO++iEgS1PHHofokSRwyXR5wMDDoMMAJDziybHn3O87xF19fpxMbWu19gsECnldjatEnoouO13D9BYSIEFLgOUXSJEJFYLwqBksSW1JhUMpjrw8L0qXYPM3qa1uEoeUoy6QFyc2tqzSO+ijHwVroDTStvoubCoyTIgSk1jAIY4J2gB8ZqBUItAu1BqpUQDkWoRw6sUfb+MxVFAUJwsqhSIODoQDU0XIapMEpJhTLhRPpNQAAIABJREFUZWStQLUJwjSxtklk6kTGJTExxcoRfM/NhptOCNOAKDVo46F1itCGkguClL29Ps+9sM4nPvEZnn3meZJEj4QHcvA/DhqMgwsjCt6b5odxRGMUyDwU3P/L7T8QHNwbQZVIKvjeU1giwKEfvYDRHZK0QyfogLL42sfqFaqlbcpyH921fO4zn+XEzAomfoPQcYgLhl7fcOvzXSqvD3jwbR1a7ZDm9DTHVxos1h3arW321hJOPlTFFzE2hjhw6R44vHYj4aVWgZSA08UO5040KU1P89Lrl+n3tlndMES7mqiXcQkXlmb40If+3lug4C17k01ykf+/mlQCM9QzF9mcDMO1UH6LQMGkieFiWfAUx+YlURgR92JmGmWi6RIqlJi0QNo4gtm5zrEZyY12RHsABcehOVMgGWiCMERaKDoCVwp2U7COwmrJWt/g9QOm/Ij5fkhtqgTNv0vPP4ef3Maf2ccttUm6Xdj/c37qQ49yZ+NL7AUFBoOEzVvXqDUeoNRsIE0MjsSm+0g0brmI9QR+ktLvJ6TCQTkuGIOOQ6xToxWn2ZV6U/TtAmsH6wRmmshzub5ZoLDgMuMLkjhha7dHfVvz2HKFThiBgNRqWv2YaL+P6aWwUCcRFt8TFAs2UyRhiq0gpVhwKbsCdxitdF2XQZpw7OxZimIRY06gzRrILp6sge3hGI3VTeLYJQgNfVOg5C/hF5eIgjWETJHSxRiHVqyJ05SG7xFHPXD7+EIg5SKO0xg91W+HCRimskZ+MmaonhPFCbu7PZ579ha3b++ztNxgfXOHH/q7ZxBCI/0Yvw5ewYdezMadCNeBguuQ9i0HGwmFVgxGEbglUpVyeS3l1fUe9fmQ+y4WiCNLY8phsVmkTEJ7b4vWxoAzjyzjmBQbSYK+y86O5NLNlJcPKnh+xP3VO5y9cIxuorly9Qb9/j431xKi3Zh4oHE9heNnkp+Oq4bNCMXhC7c2p+mOioPzj4iJdD6Mfdd8W/b5CbWgYbBpknKTZQbsRHhcjIIFudkhbefQMxGZ6MDIkc8Dc0P/2A7BSabAkzc6OiwtOm5o9uasxyGQk21BSpVljCYi+pPOf8bbt6N5bPKmiJw7ZUf/jFyZUQH2sBA5a0Kms4LpCf8mP9974zNZQ7RhlkWOMwyICblYATrVSGTWV0CNm7YpJVFKjWoLjTF4ns/Fixf52Z/9WY4dO86nP/0phBDEcUwcxyP1qFw1yXEUeUnGOPtisdrS7/f5pf/+l/jwh3+Sd73rXTSbU1hr6bTb/Mqv/ArXr10jSZNh9sGMMjmpTscByhwE2TE9JO9+mwOfPGosBIRBQJru0O202N+4wfGpH+aJRy6wNF8n2C3QPVDgFkmqS6SbA84vezyzPkAnFq+saDZcklDT3wpRCGoedIFIS4Tngw5Z7aaUA818MWTaGEo1FxrfT9c/TzFapXZE4bRbJL1NytEz/PSPPcFrVz+FKc6yt73F/tYUi8cbFJt1pImydyLZQDlFnFIDXPATTbcfo6WP8kRWe6EtRpU5SNKMVldYYD+cpmdSAmYIXcnVdZ/l0MGXgv4gYnt3QGXXcHGpzEE/YEFZOqmm04uI9gfYUCOWmsQmpVoQuL5BuR6xrbEZpNTKDmVHDGtXMtAW6pRT589RFAsk+iiWbaRIcGQJTB/HaoyeIwoM/ViS4FD0C/ilJQa960jXQeAQaUU7TghDQ9mBKOhC4QApJFeubPBr//z32N1tYUxO2TOjcWDzwZRLG+djUQ79i28UzMyBRE4r+nZkDkbfPYx8ZCM140s1io8QOj1KbsBM+Z3sHqxTrJZ4/pnPs3Lke/BKCa/e+SQvX3qG6oUHeeL9x3AXXXR0wPq1Pf7iiyG9ux0+dfU23ozP3/qB80zNnGTzSsxeusl8E2zUIrE+OpZsbsS8+GqP20GVnjrgiSOK88dX6AxivvrCZe7e3aJ9kEDs0ih6JBWXarHAg+84yoMPPPituA1v2Vv2bzU5VA0A+Csvec+jA8PJIh6E9NY3KNYK1Bem6fX3SVPFWhpx/sgsd5OAWdtj0Qvompid0FJHsDBdZb+XEsaWsmdYcBL20gq9wizHjq+ztdZmt5/iyAHq+Wcp2E3mHvjPCEs1DtpX0CZicUpgk5Dl00c5e6zOWmeOuBXwxrPPc+r++wjCebTdQrk90mQTi6TWWGC99TIi/F6qU1N09wKESqnUPRaqNV563ZI0XRSCjlC0XA9ZKNC1Fs91WN3YpjZfpVRyEV6FTjLD5o0rNB97imi9RxxrlBbIOCEJBxQ9F+1KYmFwPZC+Syqb3NyPkCWfWZk9s9RKtBUMrKHsubjCkIg6nihRFCcQRFi7j47uom2FJE4IjUfk+hSiHoVild3Wy9TKZzDCkugUZYvMTx1FW4srHZSMUWYHhxTHO/NX/aa8yTzfQUqJ1oZUG5yhNryUEqMtUZzS6wuc/T4Iw9ZOj//rd1/lyMkaQlrSRFNreujUUrIpq6tdzp9q4rpFQlsEr8A73jtD6dgMycEGL399h1df6tK+mfLZSwe48x5/8wPTbN3u0t/oUlrwmJ9S2KBLYkskgeDqtQGXVg13Q5/IafM9JxweOH2eS7c3uHp7ne2tA3ptg4ks01WXTltRP1ZBOg7XX2hRLPpYA0mSjpzPNy+s4yj/qP5ggrtL7jTfE4kbOdijFL4YOfyTNEQxpGwJO47Wjw+dOdCjQtyc3gSjYx6K0pM739mx80hjviX7/DD6PA43joqAR83ORtH9zKdwlJOdlxkXMcohShEjqlQW/YfxtY2uPz/f4X4Tm4bNzMY0J631CFBBlv0cZSomHk1+bxwnp9gMo6pynA0QOX1ryAUbdXMWWWbCcRw8z4MhbadcKvFrv/ZrNBqN4ectSZJMOOP2UHRWKTW6V0abTE51OE6MMYRhwG/+5r/id/63386oIEPqUpqmxHGc1YPkIGcik5SpTuXYcQIkiiyyH8fxSNJYKYXjKJIkQQqJg4NA4CnB0aVlWqu3aSw1ae7PIZyUyARs6ZgLxxa5noZcmFLESUQfzV5kqSNZnq2z3Y4pCSi6Gs+RtE2FnrfImdO3ufZGh10LcmMHBl/AT1aZf+in6LtltnZeoeTGzJUMwqYcObPCuWNV2uIEW1dvcXdGMbv8BGE4i2YDx+sSDe7i+WcxnmC3cxkRPUVtZprt9e6oH4yTOlxZtSQNFxfYkQ6hX8DREQMsjutw7e4mZzZ3OLY0i1YNDvoJu3euM/3YE3RX24RB5jwTxaRxSMl1SV1JpAVV3yK9En1dZKsXI0o+C1JgrCBBoo0lwVJ0s/k+FtMU3TKOiIEAaw7Q8Tra1ojDkL6sYBxLQYf4nsvu/os0qg+QmB4msShVZ74xT5DEFF0Pz02R8SrPPvMCn/7M83S6PdIkRUg1AuWZCEX2fiU2Ho2F/L3O38tJlaLJtoS5UtEoK/lNRDy/JeAgf3uztLccDWjfqeA5JbROaVSW+Y3f/u/YvX2HRx5p4wjBpZdf59x9p3jHD5+mUvEpl1aQMsE8tM4PvucK/9Ovv8bd67sYT3Lp8i3qhYjHTzWJrx6lcGKDQZQiwzpXLrVZ20xxawvYguA9TcnK8TM89+IVbm/dQTgRJ+ZLbCUB8QD2uykPPL3IY0+c4/Tck2iTopSdiJq8ZW/ZPfYd+mrkAcZKo4KjFoha65Q8l6nqIoOdMvdXD9jW2zSSAmkBUk9RSUJqnQFJ08cmPZquRxQJEp1SshEn53yurLd4JZ3m6HwRvdfi9ds92tMps5+5g7v1u8y+9/toLp5lfUfx5Tcu8VQcszD9ef7xP/5x/vRPv0SsJWcffJCN1S+ztLzM5mCLNBb4RYU2Lbqt11lqPMFuELJ9A6pTisSkbK8nFGtFlucFr+9qbgw0jmdZWlzEnPMZDAyhn5KGBi/V1GtlErpce/HTdG9fpPQDFlFWHBiJHUCwG7O11+fMxQXaXpG6q5Fema4uEkUxplBmxTMYpbBINBbhGHwlKGJwhDPkhjloPKT1SXSJKG4StJ/HuD5x4qDjmGLD4Xa3x1LhLP1eiqeKuF6VBM3m/iorswt4ThFHeEAJawVGuN/2dyYM41FUdUQrMgb0UDIzFaRpShBG7B30UI7A8RU3rnVxlMBRsL+XsnK0RHvXUCqUaO0pqlWfc/cv8PT3HmFmZo6p5oMgDnjvo9d4/dLL/OvfewW14WAcuHJlwPG3NShKQ2tzwMrxGoNIYTsFnn12l0iXoVRGehFPNywnTz/MJz7zRTpRl3JJcnyuzJ4JCYVhp2X4/r9/lgfPPMjd6wm/dfVzCLGFkpJkwv+alBkVAoydrBNiRK3J7suYhHPI8iz+OKh/yKRUI2rAvU3CRjsOwYYagocRKyeP0ss8EjjcOsnjz/sFjGP9EzSlMWUlp94M/zMuchz+GWcz875GEjEEAJNyiYfuRe58DI85CV7U0HHP+NK58z8EMnlEMwdiw+PpXEp04p7nQGny+3L6krEglUIKiTYZdVAqcYia4zgOnu9y4sQJKpUKvV6PdrvN+fMX8P3CCAgkSUKv27unYD0zow0p6dCBywOjWcGzlJIwipBCEOusAVeuEpUp1JlRjUP+zHOmhzOUMUq1xpIBGTUq5h5S+6wd7WNMShRkipFCgOs5CCFpd/b5jd/4dX7mp3+CB9x5pAHfNCjpCjPFPXbwWUxdwqpE6IB6GCLCiKTuQ9JlVhUZxAZtUipOTKMZcXWjzdf1AhdOFVi/0WJvLWK+GzC9dRN/57eY/1s/SnPlApduXubOnQ0ejnvMNb/IL/2Tn+N3fvv3OH7mPNNHSuxvvsrs7DKb/S10pPCKim54m9SELDTuZy8I2bxsmVpxaLdD+j3wSj4LM4LLe5orgabuw8LJc5ggpj8wGJmiA0PBaKZmm0SvXubq818m2XqI8geAmmLLKkzX0trV9HsRpy7Mse8UmCootGrSSRSBNuCXWPYMRmbzfSqyvha+FJSERqFAKKCMxgdbINFVomiK4OAZTKlJ2EtRjkAXBTv9gKXiOdrtAWW/hpSCXhSw3X2Do/PLFAsNPAl491NuxPjl64RhkmWFkmQ8M0iZZc11OpoPzPCdnoxpHBqTwyFozOQMkwcu3vRav8m+BeAgjxhMRg9ASSdDXmlEEAZ0Ovt42iMMDas3r3DuaJ0fff8Zph98G33lcKe9AVuWwV4XIVKWzz3J3/txy0f/6BWWjzTxymWmpx7AL5zn+InP4KkKcbfLn39uDat8/IZH27T43qNHKfsuf/bFZ0hMQrmiQDvc3bCU6h5HzpY5X6lQmjrO2obH1Vdf4IPve5zpRvmetOdb9h+TZTzWnA4w+fwnPILvMMvXZyEFSii8YoFkr4WX7tGsCepLx1m9amg6UziLlrgfo/t9cPuIWp2d1W2OV8uYqouuO4ShYf+gg77d5eHTTVpRyEFQQk6XONHos3ppn10Ptl9c5djO73P8PY9x8tGTHFmusH39Cp/+N1ucfuw5nnrnE2xuBWzcusrFCxbhzdMoWbYjS0mWgGl2B1UOXEs9bVFZXCZdG1D2XUqVGm/cNpw+rdi63uL+pQZ7MWy2U+IIGq7iX/3pBv2NLe4+v4PWPTqyjNcL6PS/hlE/wIlGjTdu7rJzdxdnEHD++Aw9t8zRgiJx6/StSxyBSgXNqsCgiKxEiKyPhCszelFJOvStZaANYWqIIk0c9An3bqIOVomkCwWPUnFAxU8JOgWqjiIwDhQarIUJcRAxVbYsTBUJTAtfVBEikykVOV3k2/wCigltXQvooVKO1hklw3EUQgtSbBaNlpY46tGcrVCuuTi+olrykANDGCvqFY+n7p/nwgNnKZ84T18qrmy/xpf/74+z4Gvue+A4s0ffwY//uOQTf3aZleNlrO/z8mt9jtQFjz8wiyt9gl7CH/3xbWaXpkl88DzN++aWKDoOf/ipL6FcTaPuEg4SNvY1lYbLyn1VLlRKJLLEF752jfWbXRAa33eJgmTiOsfe/IhLnzu7YrygjhxjPaYKCXF4wZ10lm3eAdkycjwtgBRIMvUcM1Fwmu03ph/es5Gc6pU58macIRx+JpdUHSshHZbytEIglBg55iMJxCFFZRzaH/cWGAGHIfAYn9JkZmLiPCeBycRnR4oq+elmKQOstTiOix6qD4lh/wHk4a7PI+AwLmIYAYosg6BRUiGkxHHV8HzN8PgOFkHB9/B9j5/5mZ/h6affxdU3rvLPfvmf8su//MsUh7UBxhjSNCFJk5Hak041xgwzOSIDbX7Bx3Ec0jSrFTLWkg4dulGmQWedqEf3gcOWjaesl0iaDJ1CbYbKUNnv8megpUbrrBYsB3bCAZ2mBIMBSRTjOArXVeg0YntvF7miqJg9Iidm4PooMUuVNu4CyG4Zwj7Cj0irCbtre5yqV4ibPlXr0O2FtLp9aptdHjk5xV4wYH/QZOZUheCgx93bHbZ9y87Xr3Nq73/l9Ifez6MPn2PQbbKzeouX/3SD8+/4Kn/7Q/8Jly5dp7OzxfypAtKboVk23O4bZpw6nahGJ27gCE0tbVFZOUpwY5+5+Rr7SYHdLcviAmy8ccDbz8zwWi9lr6uZQiATy0f+zTrp7hY3vvJ5WmnC3ds7qPY+Xb6OdT7Afc0pvv7aXYLNA4oyZe7INH23xLGCJHTn6KQSm4ASinpJYK0iyEYnrgRXCHwBBemN5vsg1kRRQtw7IGndRrbvEioXUTQ0Sm0kgqTnUnEUfaMQxTne6PVx3YhmUbBUrxCLLmWmkbIICBYWjnP61H04ykEnevQO5JmxfPyM6WZmTK8bZfpUBljzzzCJ00VGO7SHcPtfat/azMGQBzXq3CYUjuNTKkoc5fHUO3+QlWO3KRRilhZ95pfLGM/A3iZ3XrzJgteiWqyRliqsr0umig/y1LtPQ5Rwa/Uqq/01hIZyqcuLH9/D9EPSikGYmClT5sKJFQaO5Pb1dcp1idQuUVczGAhmZh2CUONSZbAbcrC7gV88yvGFR6iVp75pHtZb9t1nxtrR4BlTf76J0fMdYJMOiXJ8CtNnCfYjkt0bqLrLUlMi5p5g79ZrWOMgSyWMnUX4PsfOHGN7dxtXB6goRCSa2WqJVhSwfaODX5bUiikUijhOlQsXCnQ3euyEA9jqE3/+WVZaWxx976PMHztGddnB9LcgrTGzcByndIGvvPJx3lVqUKqcYtrs0O0EhEkXv1qj1QmZbsYc7O9TbkzRa/sMbsGRuuGrz4S87bE6G9dv0HbKzFRqNB+Y5rlrXbZf+xrKSYnLNeJEIkKB586TJru8snqLR06fIuhJ2j1FzRFEOmG2WQOhGESSRAukcHBLClcI2kZQEZniikFghKSApZ1YtBUEQUzQD4h6LUywg/Q9nLl5EDVcO8BXIJ0CGgdsh34Myu8xVfXxvAZlt0DZLWT8azLlDnBAKJT0/x1P+FtvcijraIfQRGuTEUflECikegQUpBQkcbaQdTsJUWzpOoJOMUUcqWGEYv5Yk5WLjzJ98hixDYk27nDn69e5oHvY1GPtlsN+tMTRmSd58t0PsXbzVXZX10F6pIUCd3sOn/3YDmJgsVMu24OQ48vLzM3P0jGamzfXqM9I3NShexCjUExPK+JYY2JNZ7NDJ7G09gx3b7S5dWOXYBCT6mEfAjGmodzLwR9F5oer7KRvOkmRuVdlbNSh9NCiYjOdcTHh7JKDiXGeYUzxyVFK5gZbbObU5w74ZD3B8ESUEiPwkCsaWWuxYthELScg2TG4yZujieFfWb1SHr23gBlOh1kdk4ZD+09GK/NciDV2GDHPzs/I8TW+eZm9NyhjQciso3G+5Z4sRfb/vCv0+Hoz58eAHvZUGKoFWQS+7zEzM80v/MIv8va3P8n1a9f4+Mc/jhAC18ldoSwrliTJqFB4vBSMi6szBSEzojJl55I9M9d1MMN9J4tJc3oHwyyCzDMyIqMIpTk4GtX7jJtWKaWGXZvzcZl/JrsHcRyTkOA4CqyPKWg+/7kvcvvFAk8cnaE+16BcgYZbQM2/k803nsUtONhSBascXMflaHHA3d1NSjqEIMBH4RaL9NoR+nqbQlVSL4JbLFL1GzQLJbo7A3aCPnKtQ/rxT3HsXQ8wdf4I7ilJ85jC9G5hKtOcOHucjQ3N85df4jGvQKl2ljm9SWu3Rep6KB+CXshUPaa/u0tjYYbNTQcJ1NyUF15OeceTDa48/xrdyjxnlssoY3np6j67rz2DVxQMyiVqXY0MCjjONEka8tLqKk+cPkN7X5LECqeQoDHUGjUsim4AVksc18H1JUoIWkZQk4ZUCLRQeAIcLJ3hfN/vRwS9PklvB5v2EG4BZ26egqjjmQ6eWwLlZRKjpk+3n1CstFlsFim4VcpegZLjZfO9SLDWQWt45qvP8Cd/9KcjgJsHDXKAcK8qUV5zQg4OZDbeZF7gz0Rfk+Hwk8Ms2zfj33wLwcHYJiMpSiqEI1FSceLkBYq1MtLrU60XkdUy+/1L2PYay/UDGqUE7QYEPpSKs6jBPnWvwnprD79cJklirt68jUh3iRNDtarwjtSoFuaouw1QirgfkMgstWjjFLBIJYi1oeBIgnaAVg69wFL0a5w89gCu65Png98CCP9xWY6888icNVmTGntvleB3uGWROIVVRWRtHrPfYv36HS48+Aj7B+tUjyyhwwFh0CcKBpRdn9LRBUSlgjABImpjwy5xbCmKDr2NfYL9GOVrtBuSOi7T02Xqy1OoVoF2r8XVuy02teWg0uTikycpOimRu0/qt6A0wCnN0wrfyXayjrunmV5eoej3MSIidLpEWBLloU2RTlRDhj7FGNwgxnd62O4+e2t38eeOIIzD7Z0WFODU8WlOPPYeZmbL1CoNuh1B1Ap45ZlPoRPAWMK9XYKdLarzHtX5RcBjt5ulkJXKWtJrQFuBATQCJQTWQBwa9lLD7UEfEVvormPTIOtwKSW1YondVNNAIE1KZFx6kUeqoaANsj4AJ6RSWKDqVfFUBUc6CDSYiEyq1EEIF/lXLFv6DS3nOudR7qEzgxUIazCGkd6+SrOfjbYEvYQkNriexBho91JO33eU848/yuzJJ9AVj07rEqK3yem5gNoS7GtBv1DGK1QQ/QFOHNMLJZVmg16/x8Z2wqCTkGpBo+5QPDFNXSxTK5Ux1hL3Q2KROU8m1CgpSbGkVuA5kqiTkLpFWvuWjfWAzY0urYM+SaKzwPuIN5+Pk4lbkDvLo+DBeKG1uaLAhFOfL8j53yPqTu5525wyNKHgM3Qsx+tOXluQd/IVI+AyPscR0WbESx8H/OUIcOSgxgyzF1Kq0TWMAU3Oyp8498lsxAQ4spOfExxy1MfncI/TMYqz5BSh/H6PP5c58VkBdH4hZqT1n+01VhIUo2OOchR2/MoCo3syou6IrKDUUYp/8A8+zLvf/W4qlQr7ewccWV7mxRdf4GN/+DE+/OGfxPNcnn32Ob70xS+Nr2zI487rbvJtWo+53kLYIS9cYIwe0pj0qD/FcPiMrmUEQo3BCIFynNH2HJiJiedhbEZDG6lq5WBIm4njWYwRxElCrz/gjTeuk9ar+EGP+VYDp1oCx+Whxx+hefwEadQnHPTBGEqeT3lmEVsp4xAggl10GBFFmoLq0ts6INiJcEqGnhzglHxqtSINdwrV8jno7tG6ts22d53TwuPs/UuUnJRAbqP9PUrFRVJ5DFOw7MTbOLua+ZNnKfhbhE5CSIuIJJvvdYWD0KAi8LEkJsZXA2w3Yuv2XabPTdHdDAn7A6zUnD41y6m3rTC3WKNSmma+MoVKU+7ceBETZxnA/sY6Vg9QK1VK000sHtsdjfQsjpIgs/le5vO9zYC2Tg2BtnTTlI0gQMRA6xaWDGQ4rkOx4LOrLVM2c/Z7aZEkcTE6xU1TqPaJ5IC54llKbgNPFXGEQqAxNuKVl1/h+edf4TOf+QJX37hOOilVasYANHvOZoImNKwryIPyowTVPVm7ibH47xPy/BaDA/GmH7MmKACSRn2aVHbRXhHHL5PKErHcwHMdTpzQaMewn8QYEdGoKXTQgajL+tpdSlMOhVKZ/kHK3q7i+IkqD56cQdeaTBUXcdMCa7tb6IM+UCQOYpJwuAA4DmGSYpHEvT6F2Tnc4gyN5gpz8yv3ZA2+u5zCt+zfbvcOFmvHS+CkfSeDxtEiLrI2K8YrEYgy69c2mDnxIBt3X2dhbplisYj0U4TsQbKPI0usHFkmFQptA5Kox6ATUQhbiOIG0d42aT8k6kTEhLgFQbFSYt6tIhzNQVpgP3F4/cXbzC3MUyiEFBsefsFgVRfcGufOnWe9F7O3egua0xS9MpY9OmmCKMXs9tpIf55Wu0chFRRkgbCVMH8Erl95Eak9vESzu7PNlUvXed/338/KiQd57MwCZTcr6Gp3E0rFAkVzi6IoMehFDHY20L1dCsePMDU7S2snQRtBuaJQKlvI9bAY1xFgDAir0alhEKXsDkL2og4yhELUoehrnGIZUWhifQn9GBt1iHREAkQiJUpAeAVmyi7GM7iOhys9HOECEmE1CB8hPMS3oZ/BX2Ymd2YYs1ZGeEFnjqaVIKQl97+MhWQYjFHKRSCJYpg/Ms/x+x6j1DxFZAISVccvVzg379AzBYK4Trkwjy+qxJu3SPot2q0uS6fKaOXRPxiwHwecODHFxVMLJI15Fvwj9PsRO7s7pK0O1rrE/YA0MliRnUuaZG2u4oHBmSvRDS3buyF7e33SJB054JPZ7uxS88jasAjZ5vkTO8GYybML+R0bK8jkWYjxbyZ+ziPrlqETCGKyg+/wC3JnbwxQJpzg0TN5s5OdZxwm6U6TzZDsxAEmuf0ZfvnG2VIxvFA7PGc78ZuxilHm+ebnPOp0PPn7yQPey2kQk0XEYugAjVrGHXLKJ4HQm6RbJ+5jpt5ihs9Gjpz7H/uxH6PRbJLECc1mk1OnT+N6Hpubm0NVGMtzzz3Ll778pUMASEwAlDHYGd+DAAAgAElEQVQoGlOyJgGE1ik6TdHDPghjOdxhfYGUyBE1xI56LIhhdid3AkeP2WaypZBJsOaqSPl35/vlwCuJEzpJShxFNIXg5ppm0BvgFTx2bUh1KuXMmUcQocIqiQ0DRBrgqjLHj66QSAet20SDgLAXUgzbiMom0fYGcT8mCANkHCNdKFSKLLo1tIg5EFXW92LMK+tUq3UKhYhis0ipkJDIA6an5ijVz7LVTdndu4W7uIhbTInTgIFJsYWQ3V4bVTzCzkGLWVnHxlnfh+m5lDdefwFXlXDDlCuXb6HTgMeeOsXpsw/xtvuW8IevyPL8LI2Kwyu1Hp4t0W0HhNu38WsupeoUtUaTzl6CtoKqL0DlYA+UBEdAakAlKUls6IQJB2FAK+ojQiiHHYoVB1mqI/wyVgFBio1ahDoikgmhUaSpoaJcZioukQxxpIsrvWEPG4E1KZ12yKc+9ed84hP/D7dvr42K4PPnn1MTpZRZ3QGZgpOQw+yeGoPVvO8Iw3cmZ0TkUr6HC9z/3Q7NX0nmIDcBuQQzQgh836dqG/RRpMLBCJ+Z0lnMaUnS6RLFDbTXBFEhiPZQiw2K3gat9W32WoLTF87y8OMPcHerQWj3OHLibXhOFaN7xGHEXOUEB/GAg60AgyKRgiRWKKNoNAyXbyaU/AKFULI0Pc/87DKu4x6aJCfjI2/Zd6/dq0ySSwXmv7OHxtB3x/sgpMQrlej3emzeuknU7fLR3/wNkuCA86fqnLhwlubiDG7J5+6NDeTaJnLlvVCdQZcqOAXFEdWnc9Cjee4AulfYXN0n2Oogu13291N2Btu4jTonF+YozFTolxxW90K+8uk3mF8qsfDAPI1pB7/QR8g7+KLLYu19xMfq3OwG1AoSK2fYCAVL8xWuvfIKp48paPTYSxPa/SqzRhEXa9zYv85T597L7lbK2q1ViqV9zp49xcpMaTghAtbSrLo8/cQyTzz8U3z2uS1uXd2kvXeAX1ZMH51GRYbWrRbL56YIPUVswNWGgu+gpEVbcJOIXhTRTzXdJOV2v83pIjhVF2fpLIVigaKSyFSzFUQ8WOxzt6fpDCyul1AqD0icIlPLx1guN+kajU86VGTRCCTGSqRQ/78CA8hlS0UeXkblvFeyDMG4rdOQsmHssGstZG6UwlEurvRxVAmhyiTCRUqPqeoFxJkSSadN98AndZdwRIFUhZjlBguVmMFnV1l3E87cd44jxwp0BgekZcuRY+/EcRpE0RYUikSux1a3xdZWgHRSjA9hz1LyDYVC5hQVPR8VQG8woN/tEfRDrB6Ob0nOkRk5sRZGkoCSrMHV2Bs97NfeG1AaYoOR05cnFibX4bGjOFzMIdNmn6AMjOeckRd8yG3Pvmdi28j3fHOfHikFdijjmSY6U9QZioYIyajoeZQpysFF1iEwozRMOCv5F2bnqkaZjdyhF8NaBTF5T940fY6vbVTrgECKifoMcsc8BwdiSNUZSzJmQEgdAjv581GOgxjKhAqZUX2mZ6ZxXTcrKE4T7q7f5eatmzz22GP84i/+twgsuzu7bG9t0263sdaOJFAhCxbkzruUEs/zcJQi1emI3iGHzpqQAmHF6Bomn6AZ1gyI4bjKJU0BlHKyazPj+5ymevhejHs15M9DDsFUXoNgjB41zNKpZnVnn8XqEj4ClSSoIOErn3iO6KG7zJ89yfTCDKYs2V/fRq3v4Rz/fig1SEunKPuaKTOg3+kzfWEf2q9z68oBzf02STegs6fp9rfxGg0eWFnBWa6wnRq22jF/8dlrzC2UWHpkkaYB5bWR4oCSUiw23kl0vMal7T3ma2X24zKhcGhUHK5fucy5ky622eLOtqGSFKh6LoFf4vreVb7vsb/Dpdd3aO3d5sjxBufvO8niVIkxG9hyZL7E0uw5nn7qOJ9/fpvrl+8S9LrMnD5CfaaG7Ws6d9ssX5ii5zjIxOApge9IlMjmey8JOYhCgtSyG4W04z5HfYvjeThHH6RS8PGBJNZ0o4AHiwE3Oym9gaBaDfEdi/WKVJqLLFYX2I0H9FotBmYTKbOeNWkacun1y3zyk59la2t7VE+S1xIcml5y0DhUuJJ58GJYm6aNQY7eMTvqWp5PKIJxF+VvNtD5VwoOMhsjeykk3XQLrXwcWcMVBRzHxbg1LqcLTFUazKZ9dOcmmzs3WbzwIzQqVzl5X49Ll++wsbrF3Mw855bfRb2q+a1PfAStE+J+CEnKfK3Mk49ehKVFvv61l9jf6eK6MfUmmMhiOylmVnHr2j63rn0VkgJPPvL06Bzfsu9+y9blbJAkw3q+nOp6b0Art+/krMGk5RNOa3+PK1ff4Oatu2zud2h3Wjy7usPssxucmq/xwIVlHvk7P8TNSzv82Rt3KLe+RNm3+NUafrnB3LEmtj+HEA8xc7/AntlnZ/Ua7s01/KDNpdV1Op7PSqvIwrlTnPyRDxLWjqK9Gi9eu0nnxa/jJ9eZn5/i9P1PEw0uUert4nrTOG4J46TMyA7XWyWO3fdebr30OidOPYlj22ztvELjkXdz82uv8CMf+mnufP0GN688Sz80PPjEUxybLeVXS5owjJxkVKGi73PxwXn++CMvsra9xcnzR5irT3P1hX2Wz1fZ6WpKicZ1QXgW4UkIBMH+HokTsWUlnSSkKBK+Z2WF1U5C0TVU/SJhatnuDohbLcT6Hb64fYO+O8fA9/D8kPmozYWVGsuF+1CiQFVZXOHiym/DFPzvaVqDlBaphlSKYW2BNgbP8w715YijGNd1h/tZhDBZEaZRKFHg0bdfpFqdxpOZCpNyS2jmeVUvURE+xZ2XCHdXoVBj7syHkFPXWDp5kxs3O+zVtyk3ZpBmjofP3Mf//Id/giMEg86AorAsTJU5sjxDpbzI6y9dI+r0aEwpREESBgbbSTAzRVYv7aOEmxWMak2q9UixxxpGDtekTri1llSbnGzKKP49jAAj7DCSd+/qcY8k6cQnJhfrnDpiIWuENHGUvAFWfh6Tzna+071ShILcMR1H+bOMyORuh8GGTseFrTDmw4+c9+G12kles5DYoSSoMfaQeIMUEukoRvwFMb7+kU67tRMT7fC+58BDjLMDkDnKo3qCUfaFUZQ9j4QeVjEaBwWUlCjHxfM8Fufn+ef/4l/Q7nbp9wdUa1UefvhhHn30UTzXQwhBu9Xm5/7Rz/HCCy8QR3H2vO7pO2etHWUElFIYO64r0GikkSM6k1IKKRV5Mf+opwEWKeTw3gmMGPcwyJMhSqmJ91JjLZnSkuuitSZJklE6T2tz6L3Na0i0SbHCgKPYiTQH/ZD9QUR/0OO5u10W//waD55d5uK7nuDk0z/I7at7/NErl5lp3aBcL+FVahRrdaYWGtj+DFI8yomnFJ2dW+zdvoW3to0XdnjlxhqD4j7H+yVOvf1tXPi+J4nLC6RelWcvX2Xw5S9RL2yxfPQki8dOEQ8uU+nt4xUX8J0SU6rHXhqxFpRYOfserjz3dR564ge4dvk5AlFFzp5i89Ub/NhP/EOufe51rr32RWqzxzl9/EGWp4qjdz5NGTFVlFJUSkUuPjTP7//mV9jvt3l46n48XWDtWoe5U1U2DzTVkkY6AulnzrYdWAatfRIn4q51iKI2s6UiZ6YXWeunlBxDzSvSCVP2+n30wR5ma50v7t6m5y3S8wpUe21Wpg1Hp2t4UQWTWKqyxH/18/8Nr7786qixXpIkaK1RSpKmeqjOZUcUojEIz8eYJUnT4TPXE1SjIfVw+K6mOh+vGQCV46GT+TLfpEMj7o2gHvpllnPlYx/7GD/8wz/8TR3wsB3mrFoMoR4wMD1im5DgMABqQpAaSYiggKaQxoRRxEEgkMU+St7i47//Wa6/cZuVozN88IN/g09+4cusbW4QxRpSKEpFvaCwJuJACt51scpuP2VvvcdgKyChyNGpCKd+DKEWeOC+t3P/2YeZm5kfcjHfHAl6y777LAsEvhlV/2U24uZ+F1g+IVmjSVPN9uYmP/9f/hyb6+tINKk1WKlwyzUqixd49+OK426f6ZqDNGVwFigunKK9v4c0i5TLhpg+0pUUfZdu/w6da19l9/omB3spaWRxCiVqp85z8b/+J5yrlXGxhOmAdu8WG3df4/qLm7z9nRcRpQG31lcplY4gC3Nsxh38uuZyZDkZlbFxnZhZ+nsDdv/8I6TVt/PYT76bZ37rowR31rn/oXN84Cd+iEo5c076fU2/mz1jzzEUhMaf8unuR3z0X/8feDNNasdO4ZTq6HCNDoscn6/gVwooXxIb6AWW49KypWO24oh6oUTZFZg05OBAU5+ymMTjxuYOcXcbL23jqYRi0WPl2AlmppYpe5KSq/BUxvdWsoBS3uiZ/HV5t1ZXVzl58iQA5YqP62agJXdOpcgLOxlGT8WIHmMY86R936NcKVGqFJmZrXHi/uP87D/8R0zNLZIIRSIEZQRxagmExO23IA5p9wJu7XY4eWYazOv8+q9+lCjscu78MU6dPcmrV++yub1DkoBIDFVXUXIFRiR0hOA9jxe4ujWge6tHv5WAgKOzir4ssrqZcPt6i731Nr2DAdGwGFkwXEgZp+XzfgR5wkCMrl0cKk49RLCZeIbjwlQ7WqAnKTHDT43WGjtxjJELMDE/HeKZH/quSa8/j/JnHOnROU18ic6LG5VETfY2yCk9o4j0MJuhMgpDBl6yyP69IGiUGiGnvwx7IIisjiKPgI6uaYJ+k1/TqKiS8bZD4ECKoQOlRqAov5+jvgtSjqgUSmb9BlzHRSjFwsICH/jAB/jFX/j5TLFoWAOQZzkcxxkpAnXabT78kx/mhRdeIIqiEd0nv4bs2rLzVFLh+d7IUR/dXzGkf9gMOOXyrXqYjctrClzPxXXdYWbCEgYBYRSOvst13ax+JtXEcTTK4Hmel/XHGCpLZUpKGeVIDc81TTPanJKC6VJxVEPnOi4z9Srdfg/fkcQWcBzc+jzTK2d416OKU27A7HSBNKrj1o6iKtP0Oj2UnqdS0/RNl1KxiCCm17lNd/UFdq5tsr+bYlPwGlPMPf40F/7+z3KmWsQFenGPvdar3Ll2jc5myEOPnkOU+ryxepWF2Yt0rKIrAihprseWs2GVKG4QyyXal1+m/drziKlHeeQ/fZrP/tPfRPV6vO9v/00effoRioVsvu/1NN2OxXXAFxrftTg1j+5+yO/86r9k8ZH7Kc0fRyhI4xZ9McvJ+QputYTyoBdbSCzzwrKtEzaikPlyHV/FhEFMEBgqNYtJPS7d2UD1N3FtH98xlMtFlo6sMDtzlLJjKDoOUsDGxgZ/8Acf5Xf/948QDALCMJigzx1+f8c1NZCmyQg/j0GAGAYs9EjBa7LB4Wg2EIyaLubAOh+bxhrUsNg9jlO6nSAfm99wEforDlsNGZwChBVDdBdg7S5C9PGEoiKLDChSdqoYLYi1xAqPgqew+5vslaY5WnySysrrpJs3WF1b59nXvshT734vjcoF2sZBGo3SffqtVb7wZ3/MTBDyqU/u4vkKv1JANiqkUcyl9RC7u0YabXL25GNMNWe+weL812Oxfsu+9ZbqLKriyFFIa/y0J+kC8t49vzvM2kxqLwgCtNZMzc7yq//yfyEcBPzGr/wPPPfSK+z1BhAeEOqXuO/7TvDwUx+k3LgPQ5VBYGl1Q84dPUoQKQahRxWLV3Kh7FPSJ1k+dYHN1Wdo3dnkzk6XgTND4ez7+PxX+6yfLXBm2lCzfSpOk5PH3k3ibLMTWhqR5szUNOFgg8H+BrPOFK90Yy6unGTPFhCDAjMuLNUlcnaJrW7CgoSwOseBDBhoB1fFYAvoRLN1dYvZpRrKd4h6LTqtm8zUn8RxFT1vhhkM1XCPOAm53HJ46uEmkaNIggQRGgoKloXDVtIjMJaCURRtDLElTjSlqmQwcGkNUqbqLs25o9R9RdlPqRWLKKeEQ4LvGhxHIaWLRaNkBgz+uoCCb2RCjvn2efGbFSJTzxACKyTGZjr84+APQ6UcmzlWJsUvKqZmi7jOHq4QFKSHkgUC61P3qhm9w8vm/V5vixvXnqd65kOcrb6f6fNf4OZrfe5u71BfrPD4k0+zsvgO9lPwrIZkn41br/PiVz5Htd3iY3+4Q6mkEOUitlLARDGvrqUYJ6bXTdld79Dd75PGaRbt1YdlOWEiqjYEBGmaRbvNhJ+d3R+yjRzyv7N/zST9Jrc3B+Am44E5nQcpxwBhYp9Jrv+h92acCABr0BPqRpN1dMYy5Cjn8riTJ5w5kTnFabLYOf9ucYjhlIOBN6+bQwZNFgg0+vBvc8d44hrz7VLKEfgcKShpjTYaxUSWQAgEeT1GDp5ytaWs4Fo5WefjQrHIP/uV/5FHLj5MvVbF9/2hw2Wyfgh5SsCOn2G31yWKoqFzbZgENHbC2c8jsmMAoTLgYXOVphEraEjzyagiakS9G4M1yHXos3uTy6KmaTpShRoBFDEEBWbsWKZJirF23CyPiewDYhhVdol1SicYsNPpUlCCB5anuduNCeIUqXcoFSPOzZ7g8ad/FK96Hq09Ov2EMIxYdhLCWNEb+CwqjaqWsJ6lps8izz1M48ZX2V/d5PpOH2/+fqLlJ/n8swPunPI5P2Mopx3mqqdwzyyzNtVmNzA0ooSHFmdpH7xK3VZIKHGnY7m4dIwdU8Dp+qzUNVNTJW43Z+mmKYtS0G0sYTqbpNaiZApWkkaajcvrHD07R6INUWuNRPeplx/EcR06/jwndUx1sMVu4rOVejxyborAkUS9EKEMValwsWybgNBYylZRJCAKsufkFSX9wKXVT1ma85gt3EfVM5R9S9kvopwiyob4DjiOi7WS3d1dPvJ//gEH+/tZJooMvGY9ZHIAnb8Ded2JHGblcioZhzK1SkpSM9GH5B7K4eQ4zUdIlpDIUpnGZlTCb2b9+Q8EB5OnM+bT/WUx2ENFXkJm6S4b4ioQdh/NSdpohHApOz4y6tFvXaPkDLBijoGxBFoTWk2qYM8K5hsnib1lSo5LWYJLjFeb4/0fnOaTX/kYvfUeMpWUPBff8YnDmP39BNKIQrmKQI5Sd2/Zd7/FaY62s5/zSNyhRfpN9t2nXuW6Lmmasr25xde+/BVOnjnF297xDt75N76f7c6AzmuvU5+u8J//F+/nkYuPUJs/ycBWGRwckHR3KIgUE7WJaVKuLeErg7YxaRoyPdMEMYOpLVI5HbEQpQhZRFQWcHtF2oOUW7Fh1lH4hEDISrPKnf2UtWiAH7jUYoGXJgS6Q3J9jXhwlND18f0CWjpoHFRpjkov5oU/+xNcNc3UdJlaRaGUJIpTdlcvU29M48iE9maLfqfLwso8As2lF64gWlv4tRI6NoRRwIljFykYSae1Sa3o/L/svXmwJdd93/c5p9e73/v2bfYVM1gHO4iFBEACBClSosqyLIu0Y1uO5ZRSVqosu2JFLqcSlyMvSiQlKctkpGixFYqSSIq7uIELSOzLYDALZn37/u5+ez0nf/TtvvcNQAmqSoqkiIPCvJnXt/uePn36nO/v9/v+vj9M2yWOYD3YwTMMcpaDlgYKBUIiTRcs2Ak1RbvFdAmqVkTOVNiWgSNCwnATK2djCCORVtQawyj/UKw3UiaSlQlQlrvoNgJNpq8vzOR+VFqdlr5BoUAnHs0wCAnCDugChughaBCLPTRRGNJg/spFrHiHvNHk5L4CcaNJu1DAV5rAFLQtk65VYHr0GMqdomBZjJoQxJMYuTEcZ5yvPPNntJeuEEkHy3HRRASdEH8nRsQR2CZRGKNinfHWh1vKD1dKgxwk9KbeutSNl0q8JuvCEEgW/R1OgRZ9Aowe3iX7FB+ldzslrpsLWU0EUo18dV3NleRa+k3QQBrR0UOXTRkJafRhmKqQRlCHaU8ZJaovXzqcjJsyhYYjJ7vNiPR6Q8ndaUfEsGQru47pDNjKrDJw6hFPP5fe1/C5qTd0OE/D6ANkyzT55//il7n3nruZnBjvVzPuz92sunN6nUGfarXaIEKRgTaV/ZQiydeQ0sCyLMIw9dKnhd2G7ntIynRAqUoiMmmeRVbASg/lNgxHc/pGUxRHmWd52GjZHUUazFWtEyEWaQq8ICAnDEpunlqhiO93Wa7XaXkxhjAx0Rw/Ps1PffhBbr35ZgoTh2nGBbqrCyi/jS0CVNAloEalOodtRPiqgSkdCrUxNBPE5VmKhz1mgxjTrdGzRlnoOdQ7EZf9mCnLBtXCthST5RKrjZBFr4vbtRjpCSwCaPcI15oE7Vl6lkvJcYmQKKOA5VZxGm2e+9ynKFcnkK1t8rlk7el2e+wsXmJ0bBwR99i4soVlxYxOjxJHAa+98DpOZxPbtOg1fAxnnL0ze3EU1OvLjBUckDl6gUcj9gkNA9e0UdIk0hHCsDCERAtNN9KUnSZ7ygZlw8c1JbZlYAmfMOxgOgZCCeIw4rvPvMwf/uGn2NzcIgr7tSlInCxap//rTH40mWMaiLM1SmQMOZ3NmTSamb39Q4Z7Eg1L6YF9h4BMTFU99PLqofX8L2p/BeNg2JPxJr//C/a84RfYkg6RHxPpLpZQaNnDFl2aWmCTI+w2iVpr9DqrqFIVG4/m5hnq6+t0uhq3VGF87ha2/TJBlMhOxqZA4xDEoxw/NsKSt4XpzLG4co1up0WvHhJ5GiUcHrzzHVRHR9g7s59hEbfd9/ODv4G/3f7qLcU7b2zppr3bvP0hwHF/pZbQBQxs28bNuTiORX17m7Mvv0x9u4Fjuxw/foDb7znKY+9+hHJ+gk7YI+w1Uf41ZHgZ2xGEahtTFxD+PIESRJHGC022tiYoTp6A0j4K1RwKA6EFjqmJSiHNHR9C6HqCQMXYRkDFNMhLA5Er4/dCenEEKkSYBcYsj/r5deTRSfKOxpFgmBblvKBnK7bOXKBQOY5jx9SKILVPEEp8X1EesfGCmF5nGxV2EM4xNIrtrVW8+ib+1ARYVcpuGbfgsLVwGVV1iCKBIWI04EcRUrrowMCUGkOFCMtGGA5+HJE3tpgtQEUEFKTGFgYi1mjRwxBGQt8QqQlq8P1MMv6rNEMmMn4IgVAaRKKYoUUCilNQllIk9DCDpQ9QpJSoSLGz3mBzZ4ta1caWEiTYdGgisJRD2N1ABeuYZU1+YgwvbLGzfpX6eoteKKmVxsmPHqUe1VBtjWVrsCRenMOyZjl2rMTr9RW0Mcv61iK9TpewFxP1DLSyaK/XiaUm8MI+73tA2UllTAXJPSTZxGSqH8NKM8Oe4+TkNzoXrlflGYDmbHnpnzA4KzUSshwByGgH2TX+soVIkO1lw5GM1EgZvkYKUgfKRanKksg+n+VM7Pre/vGsMlsCYKRIAE/qwcxAh3jjTir6n8sMg6HfDxsYXPfdu9WcBp5xIRJ5YaBfndhASkGpVOKx97yH0dGR7DuzZ4jI1FtEf9xSoF0oFLAsK3nOiCwPwJC739tdUSQh+wZEmlQ96KtSaqiGzuD+9JBx+gagf92zllIiVeLIHB5f0TcitVZJtEKmhipIJYhUjBAmUZ/HbktB0bbALPajGza5nM3JYzO86/E7efjhd1HKjdHo1VlefJ1cd5Gc6WNaMWHcxtB5tL+IH8cEocaL82xsTJIfP4IuHaQ84hIpiS0FJRSyF9JqBIhA0O6C0CEijnFtSU4aiFyFXsfDi32k4WCZUEGwc24d6+QsBRljCYm2DUo5QdCK2Dp9gVotR74kKLkxQvnEQUTga6rjNu1uSNBdxywXwZpEqYitzRWC+iZ+PEE+X6RWKGFZgu3FK1BzCMMYS6jEkRHHCOH013uFVAGYLpG2iGOfvNFgtgg14VOQGgMLoohYeUjDBG32nZAG165d5uWXT+/CvumzjxlE1aToJ/ULkc0ZEH0J0/56o9P5NHj2aVJ+uqQMR9IGjpz0un1nRmoMv0Vc8xaNg0HuwGBS/8VnXL+wgEYgsaSDik380MfSLRwzomAuEOgKPc+ku10nbjewXYtNZ5JR3WXx7FfYvLZI6FmM7Znk0P53sFa3yTsQtRVbUhALTU5pfMfg7pvfgzG1ROfpL9M6fZruzhamEBw8dJy//3d+nlKxhGmY2UANLU1vbTjebj9UTZMAHsgcc8nfhz4z2PjE7hP/GhkI6aJimiYzMzO874Mf4OzpV3nlued5+utP4kcRd993ir/14Ueo5PfSCxfxvCWsyMGxF6A4T0RMZDYodNo0t0L8wEaTx4sLnL1apHrAxJ3IMzrhEtgCbcCkCzkZM1HRbAUGXlNj6MRD09hpkrdsRssFmo7ERxEEIU5pjAOlOS59/mkK9s1ULI2tBRqL6TGLSBfJNWt0mpuUKhYOPlurC5SrMxSKs2w3AnpeF8toUawGdL0YuwQuPZRj06OAcMaolUbprG2xuXSB8el30PUjQj/AMaFgFvGVQxDG2LkYQ0doLJQEeopZu8mEXUT4AVKbaC1RQYgyOrh2DVSMRqOk6If4U8rJG1VlfpCaZRmYpoHqAyupVCJZGmeu6IRuoxQYA9qHECLDjkII4kizvrjF1YUFRqvgyByOJcnLeTxVptmCctEn7kEHi017nHERc+XFT7O10CBybaqj+5mcPMVa16YsNJ12zKql0VFMRcTkizY3Hr4fY1+HnW9+lsbZSwQthdAWpi3Y3GrRaXRQUYyK44ROpEErjWHIvhpRCtKSe0rrH6RRgVSnfhf2T/k5Q+H7gVd9AF6z7TsFokOLSkoVSc5LDYL+OqWHPPPXAfshJ3W24feDNtl1Uy9l/0PJ84h3F1FKvfkZ2O5fTwqZ9PMNQHTIYIIEmGZGQ/9YNgL9KAWpzZVakLuQ8tCAJs9E91WxhBZZ1GR3j3V2qmGkBpFAGn1KkZRMTE5RyDmD3AoGIBwxyFEYdGMQqXAcB8uyCIIge5iJYpPKztFaE8fRUI0BlY1h2sXrpkv6Tag4e0H6Xv4BRWo4OpDOLehXUbbM5PkplYHCeKhIm2CQy4GUKNFXjtKgVUwQdAlURC1f5PS+yV4AACAASURBVPD4FFqaxHmXx9//AI8+/gAFZ4Kuv0i7e4n26jlGRz0KOUUkYmKzRbHbob4eEkR5hJFns5lncXuM8h7ITZaYmMpRl4KSDWVTUzIUU2XNRmjgbSuKjoNUPTrNJkXLZrycZ9uZJIxCTCtHuVbCKs5x9esvUXJNqkYAsUHetrDHHbTIk2vWaO0sMzZhEXbrNLdWyeXGyBdm2Nju0e12KJTaWK6FFyhcU5MTPSI3RycuMFqexjWLtNbW2Vq7yMTcgzSbXXJ+F8s0yJtFAmUShAo7H2OqGF8kBp4ZxUxZLSbsIrrbA7OAikApj9huYxlloqBHEIQYZo6R2ggnTtxAuVTildOvZu+ZRkOmuDWcj0RS80KpoXdsoAuXGvTDhnKKqrO347ooY+Yw6L97UgoSIYU3fvbN2luPHOiErx2rCFMmIbAwioa4cwLDNHBtt79I6EHnRLKwJOFNg4o9TdjbYm3nHGPuJqXSJVxZ4czFbUrmPqZHTtB2R2iKEiNqm8/9+TLrmwGVgxNMHj9Ez6txrFwksmzO9jQRmvGcZlbEPHfNxx/TPPv0NYJNkzJVDLtLpezyC3/7v6ZSriSF2YZDpkPD+Xb7a9j00JPNDIPrlu4fhUcvEq6s0d9MAXK2zf2PPsLywiKtVovpib0U83P4/jbXts5Rs5oU7QDhbhHSREVN3KhOGHQxYomTyxFaEscs8c7ZPN956gXOnz1OtCfm5E0m+6cEi5sxSDDtiKVmRMVxMMOYdmsHR12m3SsgvCpOwaRUK2HRgXABY/wkan+NrbUuYuwgK55NczPiwRvewy13w7OFKhe358nnYW2nydk/epK//Y8+Qq7d4JmXziDKdfbuGaMyspdIxahejHFum9ve9Q60XaO73mbrxbMoYTJ31z4sLel22+hWm9h2MecOsLVdZ2qiRyAKBHaZWGgIGhx1BG5hhPUL55ieG6erXDrdEOFt4kgTqbcxTIkpc5hWub8m+kCMMIrf33nwhrb7Xcjl7ARgSBCmIGdA4Mf4QUwQ9D2hKTCJY2zX2cVrRQsCP8ayNdubLS69sshITmP4JqOFDvmChalynD69zg1T92FPHmPLKCHNPLl4g098ZoW2D6PHJinP7ceR0+wt2eDavNgSWEbMtOHT3m7yB2canLh9mpe//TqbKxD1BBYCS0Lc9gi7HnEYoYeAsSAJvaeJtgoGx4eqi6bGTuZpV0NAHd7gIRtg8d0b9rAKaAJMRaZck14rOzWzvwbqSCK1NhiAyHQ/Tj3hu3j4feAxiE2kEqDDYyD6akv9a/YTiVEDj2R6rQSUDCUxk/KgU4/6dYtn3yIYGEf95Emt0UK+KSDOxi2NUqGROlH6GdR9SEC8aQyS5XUaoRAC0zCxbYuDBw4m9zOE0GWmdXldhOW6Zzg5OUmxWKTT6QCJQhBZ95K/DCdQJ30y+tdSWZ+ShH1BrFXWifSrEqpQn2aSGQCJ8pFjOwRBkOU9pIBfkBRxi7MBTgxIwzCI+wZVFMVJZIaEWqW0RsUxzW6EZ5qQg8miZKPrMTMzRXl0lLHqPiyjTLO1xPz2S0wXQk7dUiXuXiMIG6B6OLQIgx6mMpClEM+wmByxmJ4TvPj8S7z22k2oQzEP3SVRkWapoTCkZsqOmK9HzJSLBK2AyKtjqFXa3TyiVyVfMnCnx5DhFlIG6PIsYl+VzYUW4q7DnL8cMWLNcdsth7jViXj+ySrntq9SGnV46cULzC82eOSJR3Hadb71/CvkJhscP3gQmaskReg6AuO1Le750OOIqMTG6yv424sYOZvZW/ZixxrVbaBaHfToJGG5wk67ycSYh08R363hRQFF5TPtgmVXWT1/jn2H59j0bcJuA5MOZlER75wjny+hIoN8Kc+jD7+bxx/7IFtbG9x1z0PEUUQSJOgb2n16WCI7m77eyWITxREilRsW9KNPgwjTwKAXA4fB0Hs4XEyQ4bVD9n/9Fn3gb8k40FrjRz6bjQVOX3ySd536GS4tXeDjf/R7nD/3OjvbDWKlOXrwEL/+7/9TotX9PdGWwDJcfD/H/JWY1sYKMycc/NIKc7UJQr3JVnyRILiDle9+gz/69J/S0B6lqQkOnLiP40ffg7lu8UokaJTgxlmLvKWRKkbrGOXAt770KgtnXkd1rzKeh/vvvp8P/9hPUqlUdllqb7e3249aywCEUsRhhGmYVMtl/smv/DKtzRXCcBMvWiGMA/ZXLZSuE/eaRHGPiBAV9uj5MaYN1QNlnNI+pHsAxSyB5/LuD02y1JlgI+dSdg1yFtgTkqq0OHPNZyJnE5oGgWsTWSZnr7rckqvzqa89z/677mXv9BhGqNmuL3H72CjizvfT/q3/kdnxj3D7sZtx9tgUSxZCwC0PH2VyXuHkXNzKGJEsc/HiFvN//ls88PA47syt+P443oJPcO5lfu2rrzHqv8yjok3uxEkuRV1e2r5KrnaQenOWl59Z5sbZGHNslK5tYa6c5dANBzHK05xrKuYcyXjQQXZ2wNhhx1thZq/N5tq3WRdFVH6CybxN1HyeaOwYxdxxRKcNfhMcEEUHhPV9ngHfqw12DCtnMXt4iiMnxyhVDL779SvMHJ3C3/HYWm/g+QrTMHEMuHp+LamQrDRmX31FJhm7hGGE0iZx4LK4FBBt7TCrt5k85uKVNDft30+grtImT7dlcOXFp/j4lz5Hjxh7coTpw49Sdm9h47zPci5PMGZw9yGDKJbgB1jFPEcnbD77hZepX7iK7iXcYq8es3xtkebGJmEQEceptw50v68JEyTxwg7UaMQQEEzekSRPIPW+DQ9XBt93tV2uJjHwqg/C/kO7+dAlhwNJw8A53csFg5yH4aTnjIjUB9bAgMkmBoGJJEowLI+YgNlh0J8k2va/47pby3rfPzCoUTYwcTKqEqKfRzCIvrwZ1WAAtoeqAgvRV0pKkjSTiEeUjb9WiogQIWRm4GidFAkLhSCfz3Po0EFMyxwUDFMawxDfE5MMj/2v/dqv8cu//Mt87KMfS+hE/WNSSFRfjnS4GJqOFUZfvlUpQRgGmZSplDLLdxjOXUEITNPsR6lSI1En4D+O+hHGFBAm/QujiDCI+sZSIqNqGKl0bFL4jIx2AradrDM5aRDFMQXTouoWcd0CJcvjwsYCH3noFGPjkra3QM/bZjrXIec2Cbp1Qt1BaZ847OGHCsuGkSNVnMoRhHmQWI0RBnnevX+CxfYIa0Wbak5iGVAtGLja4vxiwJ6iTc80MUfGqO9YtDYqHDLrfOLLz3Dy0cfZZ+Zo1rcxZMihvdOI22dp/fo/5Yab/i0PH6uQcyX5nIEhTG599DjjlwOqY+Pc/q776Xkm58/Os/Kd/8Ljj01iTN5HZ7tAdH6HpTOv8cVnLjAavMoHypr4xE0801lku9mhYO9nuz7NS08tcN8RRWNkL2HQotC+xoEDcxilGV6pK24sGFQbW1hBnTjaodfdZG6/zdLVL7Kcm6GUH6UiO4j2FSqjx/j217/Lw3e9kzwKEftg5bDtHKZh7qLQ7aKSaYijCNMyM9lRAwMVD2prDN5P+s9eoBkkM2cRuv6/jOHCaH3jOv1uIQSmKf9S5g+8VeOAmNXWK1xufIv8ZJdvrf3vvHZ5kWAqhk3o1T067ZjXrl3l809+hkfvew+uk0vXiV0tiAL80Gdy5AClEx/is584z3/6/TXunoapiTZbwuD11qtcW/ssesWk14mIyybRaIEuLmtXYQWbm445HC5JXCP5kkgabIUWp7ebSBEgjCbSMDl18hZ++t0PU6lUB0oJmafirdz92+2vQ/veKhtp+xGYDKlnwg9QUYSTczl26y1Z2L04Nobv+fR614iCFdxiA8+ro0MPoWJMbWPaNbS2sE0TdI3laz7bKy9RX3mWxYaDmxvhrp88zo3VHKsRzPvgGIJVX7F3rEw3Dllei8gRs79iMTM3wdaq5MF33MuZc4s8+fRVnLFJxm97L//Hl2K2n/kED9omK9/9c4ygzb4Td+Kte5jTRYRb4uxXnubgjXupnaqyEwQ888pZnn92hblxg4OjI6y/cIFXP/VFFrfbPL2uuT0Pzz7zAp3nvkEtp3lstIzhv872809SHrmXJeMIPb9F3mozu6/ARLnMC54gt9AmCNv45jZFex1PbzA5lsMPVihOmuR0iAyXcaMQoyTQO5eJwhgz9BC9Dlqb6LETyInbv9+z4C9toyN5HvngEY7fMoWbM7jz8ZOcvXiNc5damK96xCs+XqCJTJvjDx1l5eU1Wi0faVi4jotpmIRRQK7gsPfgASbGJ1k4v8ZS2GB53ODFZ9a5dyZiasrnUgQXd15kdSWitxzR6/rIMYvi/hm0V6JeL6Dyoxw96DBVMXANQSQlPZFjowPnGh1i3UXJbQwjz9b8Ao3Fedqb20RBogWv4lRfPtlGs0JafA9wDv13hewzw5tvcnh4dx3i6A9dKC2g9qZLTh/4ZaI5aliRKK0wPPydfeNGJF7/lKKmAOI4S14VIsmf0GoAQIx+ITPBkJTokPfckEYSqdhFG856k/X3uhvoHxVvfrh/6mAsEypOamilhpPse0bVrgsMoiQDDR4yeoTuR0vQSY0IKWRCKzKSROFGo0Gz2cQ0zER0hFSNSWcR0+/1HDY2Nuh0Olk+StqkMTAI0uRuIQTa0JkxkOTgSCKVqBMlCkp9hai+gZSCtSiOEmeuSO4ljmIUiSGTyFX2jTDdpyINGYyGHIipGIYkCiMMQyLkEGVFxUhhIpDsK1VRKNbbLeabdSzbBMvk+UtnmF60cCuj2GYLx92h16kjohCJiSnLKNtG0MLK19DxOJfPbtNYWmZzQ7PVyZErjXPP37iFuZLgfA/8OKkwrEPN3rESnShkcSFkX1lzKJ9HTZjUNy0efvAdPPfsaV6tS8ZOHMGcmOVLn2vRfPHzvLtU5eJnfp8b3vUEhdoc3obGGM8jnDIvfvLLvPOn3oNbHmGl0eQ7r5zn7DMrHJ2x2TMzy+U/+ziXXjjN5R2Pl3c0t+bh29/8Duvf/CzHKzluHCmgm6epv/gVKqP3cVXcQNxZYnQ0YnJ6hFqpxCueoHKtSVu3sJwNtFwnNppM1Bz8YInKvgKFoI0V1DFVD221UWuneeedN2CHC6iVcwh3jCt1m3//sT9LVLf6zzxRDRXZc0zrrRj9eZkmsGevnRpWVUvmccqKSxWxht+T5Jzd6mZpJBSS+WKYBiJ6M1W13e0tGQexDsBSFEo2NatDTMD48b10D83wNadIsxOws7nOxk6X3/2TP+Xe2x7Atu1kPguRLT5pZy0z0QfWlo2z/zjF7fMsNBtcXm6y3QrZ7Ck6oUAaNhTKVG+a4aYjJ5jJ7yMnTMb3WYyXJL3+IC2Fitc3fa6e2eTas0/T89dwleaJd7yDB249SbVcyRbOdJh+FLDg22246UGYOUMEw4c1b9zF9VBY7oe4DdENtFKotk9Y7xDlehRmxrJNPNQS0x2jbN+M115Fiy7SBBUboIxE0zsOcaTDTt2hs9FgccWjvh3TaUjOrfs4FYvG177NOx98kJGREVwL2lpg5AzCSGBL2D9lsl6PeHY9ZCQvyOdzXLxwlYoFq4HNtXMBiyvXKBHx8z/+GKWK4PVnnyPsSaRhIgsGlitpbMWcevyDrL34PKc/9S0qN53goXsOcOmTBhvBNN4zp7nw4mucmV/CtPL8q3/2YSp7p+hd/GO+9dUuZ671uLazTkPHVJwCd84qqnkLY/ogxvQkuuLSigWcWWI6WEfjERYjOrZPrjHP2pU8O7rLWKlCyW7hml0MSyC9CKxpdGMBZZkIywCZQ5hmlkD5g9PeiOpuuPkY+w8dYm46T8X2iLXBhJygYhb4jh/R6WzTWfYJlEC2TSbGRygWA5AOUagJg4icbWK7LuOjE1hmnlyhjDRdxKSLU4crO3VOX1phpRlQ9yWeNlDSRJeqTJ3az0xtknFc9uRN9hywqVVMPANywHlfcfFqj/nXFlk5+yrt3hoigO76Eu21NbqNFmEQovvVnFPPdOqJBXa9+xl1Q4jdyaLXxQaGPd3ZRcTg029cQ3bTSZIzBkmraRXTYapPcr1hkM7uXITrHlvmhdSJ53noi5LrDfUp8TwOvIhpgm5aIXmYTjW438G5Oun0IBKgQZMWMBvIjKb9GnS0Tynqf9/A3tD9wnm7wibJ5aToF0ETGQ87yWtIivJl6WEJMywpQhYn1YHr9TpRENFtd8m5DqZtEYcKyzIHHvyU5sSApgXwa//hP/CNb3xjV/QmuT2ZzCWdGAMqVpiWuUs9KBv3Pt0j0ZUfUJiT5yQGxgSpAUA/GtRPOtX0k6LJ+phOASllX+Gmn1wfp4CyP3ZaITTEkcC1DUbdIqdmb6Zgucw3Vnlh4yKxKbFyDnfc+xCLy9t4vUs8/NAIwgiS85WFDhWBUmhtYok8Ozs5Oms7XFro4tVhoy5YbIa4FYvGV57k/Y89ypxl01YCnySyEUYSxxYc36u4uh6y0BGUbXBch4sXLjFdMLk2b7L6TJN8PmLMgZ/90HspVgUvfumrqEhi2BbCEpi2pLkZ8cBPf4QrT34De6pO4cBe7r11L0tfNlkJZtn+6tf5zqtnWFleZ2Jmlv/hH/0YlbkJOmd+hwufljyz0ubZtSYemqpT5K45RW20TGfPLMZ4kaiQo+0pxKsr7AlW8YVPLxejZBOnPc9q3WVH95iu1iga65iGjzBipNBot4xsr4Bro2xJoENWNrZ44cXn+7K+uv8OqH5Eyezn9kQYol84Tw9UiaBf5VtKBhTowTx6g6muB9kHqSGazsVsSRAiKWjZL2r5l7W3ZBx04iY94aEsA4yIsmETGD1GRYv9xytcWJlm4XwDv6e5eHmeP33y87z3vncyOTKO1iLJyO6/BO0wIIgVfhjQVjGHjt3HxprH0vIipZkilo6pYmHnprh87izG3jmUtNmJxiiKIq4d0ZA60baNQLYD5ud3uHx5je1rS/gr2/iGz088cor7bz7O3MQ4pmkOQrzZMP+gbdJvt///WmoYDCXWD3n5hr1zwzPjTXDED2VL7yNutIheWyda6KJaMcoO6R31cG+aQORsTGkn3jhVwLRrhNEaEhMMEy0kGDEy1ESewHJtjJrDRH4fpT0jtD0XZ2Od1bUuCxcu8krtIEeOWZRHCxhILBPqgYYAao5gsmhgSmgLk3bsUBibpnXhChsba2xuC6ZDn8c+dBtHbp5GOQbaFFi2jeVIYiFZ+HZI7aQkjqfYWTVprS3iFCIOPPQe9uk2XJunsOc+7OoIeavIDWP7OHn/XchKke5kwN3jda48c4nN06+y52CNrfkGV3caTLSWKYq9dMwKa5uS+nad9ssvs5jvMbmvggBanZDJ6WP4XR+nu0wvEOgoR+jYuIbAQSHdSZS/g3Ty4JQR5hiyMPNDYWievONmKlNTCLuHaXkUpYRxk3vtMZq5AvXNyzTW1wkjQasVM7l/hoNWkcnxWeYXVnn94mVsx8K0bO596BEwNJXZPfTCDu3eNpX8FksbbYxigdroFA5ldrqa5uYG+YP7CcMSTesgVcOhJ322UfT6673R8Hjl/DqLV1ZoLq4Qbu8QGCG95Ut0N+fx6g1iP0hyCNSAY59V/9U6U6PJQF0qMZrVd+gPxBAVZDgRN2kiA+ApfEvXluujk/19Okty1hlQGDp+3aKj0zVr6NcDas1uaCD61n1a2IshI2BXn8VAoad/B0MUh/6V+qj7elCRcqUHUffUo39dX4Yd7tktpON43dwfohvJlN6U/pdGYoYAkQC0GOJfI3ZRfEBnFWctyyQMAszUU5p6/YEwjjJp0rT2gAbW19Y4c+Y1NjY2s5EdNqZIn2PfYAmCYMjhKHapWYn+vaQFrgZSlLtNzjSKMqgSPfRjCLMY/fscLqgnRD8aFOuMEie0RGqBLQ0eOHyCe0ZOcLBwBCuWbJY2OT5yhKfrr7KTU6yt1bEtGBupoEUBP9rE1AbaSKSbhYog8rP1Xo44zOWP0ItqlNqK8uY2G5s+V8+c44Xpkxw+PInIO0lOm4S6ryHQTBQksxWTRijxtCSKXYrjs2y9ep6NjVWCqM7Eob08cv8NHD4xQeyYHPd9qlOjmDkDvwlrT4fUTkjCaI61qyH5nfMUCprJmQPsjVtEl68y8Z53I3NFxt0aN80d4cR9dyIrRdojP8k7qx2ufv05gsYm7nie+nKLS1tbzLSXUM4BvLjMyqrC3Nyi9fLLzBd7zB4bo+P1kDmXsakj+D0Pu7dMuytQZhHbdrCsGFNLAp3D6K6TK86CUeXcpW2+9tQrtFvNjA4kh+rCJFgkiWiqoXUqswKH3j3YLd2bKXr1Pz+wdQdr1bCIgbhOHU1eZzR8r/aWjANPtQnxkdIhIodh2CjdxBDbHJgpcvTGg1y40MF7ZZFuL+BTX/kyN+6dZrRoI60isZYoBEpBJ9b0Ik0nCAmimLnJQxTyp8H2Gb/hAL6MaHc1RWcPO7EgzpnsrLe5Erbojq7TqXYJ/BZWHLPaiQmbAZuXN2kubyDCLpZtc9fRAzx2721MjJSxTHNX1GAw4G+3H8mWeraSnfF7zoU3+lN/MFsq75dREd7kuI5i4nab+LXLRN/dQi9IZM9As0241EKGLbpFi8g2MEouRlXSDkeRepycqBAKn5CAWESYdp5e0CafNxHVMcac/cTGHjpxkX2tFebPLfLCiw0uXLiMb1jsYw9OzsVDYkSJp3DLjylZMF2U7ASajpCM753h689eZnNnm6Jrc+qmGvfctw9hJmmPsycOoUOF8mNiKeisKypHDTrbGrswRaG4Sry2TKe1jBF02Lh4haM/8RMcPC6w1jrcdugUxugE7Qsd7Ml72H9SUzRfpzE6zoHbpjl3ZpkvfuGbjG0tU2uvILsjrC3GrF2qk1+9RDhdZMJ2sSyTOLIRlWnc0jYjPZNeWxGpHC1p0lQ+IgqpFUawXYnlFrFyExj2FLFdw3gDQeX73fqgb6jtPbKXUrUABsQixjAtnELIaCHHXaU9rCxabGwZNC5vEHgxHTPH3bef4OiRW7m2uM707ByGZWGYFrfedR+r9R2i2KPT3mF5/jJeeI1mlOfw7XMImYNejl5DExQqWMUy7SWPngZR3KEbx1wL2phKsdZRBNsey68t093ZQagAUwp6W+tsX7tI2G6gwh5xGA8MAz3g7A5zvlMvXbYpa6AvCblLPPx7DRkpYBwCeuJNPgRJHzKg1/e4vylYTv4Y8JIHYDtR/ElFPvTgfJH9pk8dUhnQzr6+f2k1tN5lUZD++rG7SOr3uPddxoxAGv38hKE5rcWwc2Vwr5rUk3ndOA1TfIf6lwKhQQJmasipLJiroe+ZHwAipWLa7TZnzpzh8KHD5PIuKo6JVOLpbzWbfVaDBgMMYfQjGDGf/8IX2NjcyApQ9Z/G4DENPe+0ToFlWck99o0uKeUg0gG75tiwgZCOZ6JFL4lV3Ad86dMkUaySSW0Fy7awTJN9+/ai4pjV1VXCMCCKwow6JtA40mDEyTGTL/GBQzdyX+0duL0x4q6Hb4xwsrqXih1xnhbRfAN3poJhjtAKKtiyCZ11cqUKEYlMvBAxYdilkLeQtWmmc0foiVm8ALz6GosXV3ju+QYvvfIakS0ZnxrDsG18wIggjjVr2zEjeXDzkqZv4BkGk/tn+fSXT9Nqr7N/Lsftt45x6q45hJEwvA7efhLlRX1FIEF3Q1ONBJ0NTXHyAGb3VYKNZXrlHIbfZv38JW77+X/MkWOHsWp7uOGW25GVMdoXu7hz7+TYKUUprGAEm4zsLfP6uVU+/7mvs3/9CmPecbZCwfZSiH9tk9zaJep2mb25CoavEGYJWa3gVuqM9iy6Dc2Ol4y3qWJ0FKHjiJJRIqTM1pbgworPasPHtAyMQALG0LNPxQFENpfSOd3XVE6mmroen+gsapA6HLJIVfrS7HqvBu9mamen8+3/s8iBxseV4MgKhrDRUuJYNZSKOFwq4N04wYWwRGvh0/htnyuvr3Lx3LNMFk2q48fIFUt4yiAEpJUj1gZdr4O302aUkB2/gLTLdPJl1nY6XDu/Au0dqvfdSOO5Z4lamtb86zTMBRZGHMyCIl6v094MQFpowLaLVEbmmBit8d9/+GFKxXxisV1nGLzdfvRaws00EilDPVCaYLBdD+zqNLpw3Sb6A9v6AEhL3mgg9AGR8jz8187DV55Hbo8jWjXoRBhhgGpcoXvlHFetgG41R+32Y8w8fAuLzSpzpeMIyyX25+l2N4hUSCFfIM55CMC19qFFFUkB1xyFsT3cdN8JPONVXj57mUvzkq5hcWB2nIuey71lgSoKLi0ExH7EZF4xFXvYYZPiiEszsnDLI9x56x5+9iMPJmHzSKBi0BHgabSnQWj2vdNmZ0lh5STHH7wFf6PC+tlvs7n2HKvKIGjb3LDjMTk+Tu2x+xm/+wFiX3PhPy8z8s4JGk0Lq3CAgx84SnnS4s474A+++jr1xWvMXLWpGA16S5qVFZexUsTE3gKGqmOpHG6hytXFZcoVj0r+MLVqQChK1H2T5foOjVaHG7SN645jixwFOYZr1Qgij1HjBy0h+Y0h6mLBYsTJY5oGplEBKXCtKnEccUe1yvIDVdZUnnNb3yTohixe2uLgjxeZnR7jhpO38mMf/HG6MUjLxtOCwC6wtjhPTkkOjI/zZDCKsGH8yN2cObPA0qUNIulSuvFmms8/T9ASBIsv06vkWaiYSCsk2mjQ24rRho1GYzo1LLtE5LfYPPsUQWsL4pgoClFx3OdeDxSBsiiASO86bcNSoJo4Gt5gh97/FOxlG/lQvDH15L+BUjTkXdf9C6aGgcjwcLZR78pZ0ILMSbwrwql3/ZmBV53WZxjOcRjIlA4HQ3YvaZkYaXYcrq/1kFBkRHZNlXmxFapvf+l0NIciB32ahB4oDWXl568fzzSJ1+hXS9YpAB8A9WGgbfRzANLky77LlVgpzp07x2/+xm/wi7/4i5RLrzBzdQAAIABJREFURbTWtNptYqW4dvUqhw4dwnHdLOoQhRFXr13jV3/1V2k0GplRkoyDQhq719XUMMh44kn1u139TKlDoQ6HJEoHxc8gVYgajF16G9l49sfftEwsy6JYLPLoIw9jmQbffuopLl28RL3uZadKBFXH5daJKd574CgPFMfIeTayC7oHdqQoGD4/VTvOq51telaZa0FAs+2w1ptjwnFZX2ozt3eMQAVYtoXtOKhciARy1mE0FUyKOG4VY+YAN4236YpXePb0WV69VOBADKVqlfXQ5o6yICoJXj3nUXYUk2ZENe6RizsUR3JshQ6jY+M88cTtvOvBW1FxYqTGMRACHY2OwDIFc/dZ7Cwp3Krk9g88xParOVqd19nYfJUVZTLfsrl/p8PhY4dx75ukduwkQSPmwu8tMfHBGVYvS8YO38PEYZNCzaR4e8DHPnua1qXzHDw+imPV6CxJNjckY+WYqX1lgvYKldIosYi5trpCqRhRzR8jV+twaTWgo0wCLeh2OozIBlSnaMUm3z1zEdMpc/e73skLzz2P70cIIBDR4PXWfbqjFCmOzwyH1ERU/XdmOB8opY+pfiQtVT8bXscHwgoiUzpLDci0QrO8rnbHmzVxvZTXroP9MpC/+/F/xaPvv4uYHo5s48gKO9qngImKm3Qii0uNMf71159l44+/iOyYGFJxYHaGh++5jw//9E8TGi7zSPYYkjCIefa7z/KNL/wZ9905xfQTf5eP/vr/xrYfk8uXINAsXV7CL1lM7HExSnP0VhT+ZpMoqKPLirIICNo5wlwJCUyXizxwyw383E88loXkMqCXDdjwIvt2+1FsKo6JwwgQGPZu23iXJ/CHyKjUKobYBzM3mPsw2Jw9n8ZvfAyn7iE2JWInQPRcMG9Bc5nQ3WQz59CZkMQnZ+GuW2haNhMFn4LToVufR6BRBNS3z1Gu5vG21ulstZKChnEJX+yjUzpBbMeU8y5TOYP11SbtTsCemUk23KN4vsVW22NuXFNfX+fVp8+yfe4lIstnz+xJ/PBG3v3uA9xzdxVTQ9BVbEQGjVWNfj0iJzSlCrihpnCrhW5rRFVgOAKBQgUBXq/Byu/8r3hj+zl9uc619hSjh2/lZz98I73Lio/+s/9CuTTN1IEDCGcMii4//isFtIB/+Q+vsHjhf+Hm3BXumHUxp0t8ytvDgUOHOTGlOP3cWUR7i6kxizNxnkJtkr0jHuM3H6UwPofpVpCmw4Q7ikZy1Vshb5QwzDKRdBBobrXLDD+i7/9qlKyRV69e5dDBQwB89/THmNw3giF7uEaMJYvsaJ+SNgmiTZrRON9aVPzOt15g63NPItoWUoacOnqUDzz2GA898BCxXWBeCY7YJjstj099/BOsXX6B4zdOMPrwz/Ab/+5X6TklaqUa22sNtrbq2KM5qlMGonyA9iUfo9VAmB46F2GrLn6riF+oYMYReVPS21ji8ne+RtDroaIgAZb9e1JKoaIIUGSld7XKIGziaUsr16bUlsH7n3rmRUrXGAKLsDt0n2nNX68z3vfo6WEwmB3rj75OvenD6831Rkbmms7e710JvH2aQZbXBxkQT6+Zqp4M03BUHA8lPA4ZM7voCQO6T3rtFLCnSbHD3Ri2PjIuPIM1dfDX3TQtKUSW9JtSpLQehjyJ8yMxSkT2+QF9KvmM69i4rotl2VSrVX76p/4G73vf+7Ash698/avcfuoU+/bvx3VdDMMgiiLm5+d54okn8H2/Ly051K8hetbw/1EU9R1OKqtgnICuhEIUhWH2jIaPpRKlWuts/NJ8iTTykBpSSYK1CUIQBAHFQoG5uVl+8kM/zh23n+If/ze/wNLiYtK/WFGwbcbzeU6OTvA/3/9eSp7A7lSQLQ+hZsGYRetreGKVxVCwXm7gPHEP+tYTdC3JZCHAVBuszT/N5Mxh4riB11umWMzj7azT2WgSB5pQTeLZB/Hye4ltTSXvMJczOX9xnbzrUB6bZsfeh+ebbLZ6HNsDZ1++wpWXztBavIiyY/bMnqTr3cZ/9fcOsG/WRcTge4qtyGBnSSHORJRrkLfAtSF3zER3NGJUYFoicQQEHr3NJdb++LfxJg7x9OlVluIbufvhW3jg3r3Uz3X53X/5CUbH9rPn+FFa3RJzd+R4x0dc/EDzL/7uZdav/iKPT4YcmsuxXa7ylJpl774D3DIb85UvPMu+coDK2yyIAoXKKHtHfCbuuolceRZh5XCsPDWnihaCi515XF3CcGpEGJx/+WV+/b/979jaWEfFMX4QYlkmhpHUrAjDxHBM648IKUmL6mVL1vVUxv4Pfd06dL2gwCAROTG4DZmUGrBsE8s26XU8lhY20rn9ppvQW4octBR4cURO+ggCAn2JEWZQ1OkQ0YsDXKn5hXf/FP/ROUDn+e8Qr66x3gn5k698ly9++0WmTtxP6fDtzPkRB2sR28tX0SImuvleIrvIlWiW7uIF7nzPXcydOIz3uc+AO4Vp+YweuY0HH56k16zzzJUlRGmUExWLU+MjPHlhCWEKbtkzwcOH9+1aVq/PM3i7vd2ElJiOjYoioiBMNlJDJprfb4h5/5A0IRPDQMdwfRVeIZC2jVGqEHQNDBlhCBAYEGyBahHaB7HcDfa+7z7M2/bQ6m4wYpg0uoJWTxEjwVtFhC0K+RKta98l0Aq/7rG5DJuNdTreFWq9r3Be7aMnXTwENgpHxAhHUh7bw61zhwmXF/jcQoORsubotOKZ4g4bSxYbK69TdVcJ734UW97G1qbH//Qr3+G9Nx1l36kaug1SS2TRxKwJgk8uYT8xie5aaA2+EjTWDOovuVSP/BxT9jJy6zx337WPqQePoKXBZz4dMF6Y5QP/5i5GDhY4882AF74YUm9AtQpHrVHWVYWnNiUXw5C7DMlNRyVXN+f5xvlNgm4Pw7KJqHHnzccZmQh47UqDnZc77Jtd4cD+iLGpWQwR0KXOiXyIEBt4IqTLBGiLRtyhYhS+P/PkL2jDs35HaWphm7zpgRES6g1G9Qwx20QCvHCDQyNT/P3H/xa/Xz1O6+lvoFc2eH29zW/87if5vz75dSaO303t8O3U1htcO/05VGuVPTfup3Dv4+RHpll3biBeOM8j/+TDbG2ucPq5F9HuKI4dMnvyHRTGrhAojW8XCUyXqLnBxZdeYO/hE+Tygktf/RJXn/kmYbcLWiGERschMQn014AwBAgjKxyVCn1nnHUpMirLwFZL3Xi7x+fNnGi7gC8DgLorgXA4+vCGc4f+3Y8qZLGGNKwwHJTQWfpv37O4+wqD7+wbDzqRApVCYpoGOq1NIQQ6BediMAaDIUh7IbLrpgndSX2GIa4/w2vmwDDIvO9id9ekYQ7xpnUmDapJ5EgHYGdw4i6Xnu4ncfeBPfSNhT6YTqMHKvDZ3Nzg//yPv8VnPvtZ3vvYY/yDn/uHtNtNTCH4zlNPobTG8zx+6Zd+KTP6gCThuB8ZSKMDURST1THo9yFGgU4qKKeGSmbk9cc9e3awK/lca/r97xtK/byXNInZsqw+kDQwTJNioUCv1+PS5Sv8/n/+Q86ceY2/85Gf5V//m3+LqRWYBn4UsdrqUDBa+AHQg3IkMLWDjEOIttBxj8g+gmme5Tdf+AY/9sAMj4wepxNpLi9usjr/Irec2k/cWyWO2hB1aS2+RqQ0wU6P5QXJZmcL4b+G7Umu6Fm6MkcPQYEI04gxcjlqo7PcOL0ff+EKv/uHTW47bDFXavGq3WB93WRt8Tyj+VWM4Gcw5RQvvbTBx//v8zx84gD77xohaOpEwGFSIgkJPreB/fgkuiXRReh0BY15g96lMcpH/gEz9iJRyeP97z9G9fgs22uCL39RM1We42c++gBOSfKl3+rRaEa0WpBzBDfYY6zGJf50aYMb4pgjByRH92gWNq/x5bNr+H7IVc9hamKGuw7NUawGnL1aZ/M7dU4ehYmpUYoVieN08Glza1Gg2aYlXHxdYvTWm7nt43/ABx59IjH+hMh+OrZJHIX9wmQGQRAhlEaIuP+OyqEpnxqZA9paaj3sZgsMvy+Dd3mwuvXnmb7+U2/e3lLk4Lf+n3/H+z7wIJb0iVimLBSaHCEdpBb4oWSxFfOdsw288VM0Y5vVTsjis8+x8dS3UY1tSnNTFI0Kleo0tUoZpMAs5vmZv/eT9AyLf/5PP0pj8SIn3nM/px57gLHeNn/ysd9j9NgBwjjigTvu4ODMLEFPcWnV54a9DjcXCzQDn6JjU8vnyfcLluxe6NNhebu93ZK2S1Ej1fp+k83xB7lpFe/yDA7Qhs48eDqK0EGItB10r8v6730ZeU1hbbYRjRaxVyAIL9GbOkrub56geGo/5CUbmwuc2bnMvtIIxdo0SI/IW0aEW9i2g9fuIeJ17MIJwiBPo+Ox1dwmbDboijzbPY9W6LLRENQ36+jty9iRj27DnBWx7Bm0yOGUR6ntPcQdR27iN3/781TbS9xx4hj3PHIPJx46wdaKz8Xf/ib3ffBuSgcrmEUjWUwjjffCNtFnP0p08m9inpwmqEhWtjTfuqCp9lq4Zz/JjflFZh66jdwDD6HsMr0O7LzYZOL2InbRIOxpek0FhklpXNCrK9rdOl/6s0vMv/QqD91ykc254/Su7SBrBxnbO055okShnGc6n8e2Qlqhxus1WV65yM7ONRyjwUQlwNzjM1OukTMrCHGIWBzHo8JKrLjBLGEIifiBqZSsuXr1Kgf7kYOvnf4j9s2OIo0WltWibEgUOULVxMSkEQgurnu8NB/gj95MSzss/b/svXesbdl93/dZa/ezTz+39/t6mVemkEMOh21YJEpW40gmDAeJg9hBEESxEyFIIkAxZCCI04wYtoAgSrEcwYokq5gRi0iKReRUvpnhzJt583q7vZ5+9tltrfxx6n2UZDpIJBKYH2Zwzn1n77XX3nuVX/n+vr9myP0vfInG9XcQcZfs9ARZWcDNzeA7JrEQnL10hh//qY/T1JL/+Bf/Z+Ld23zsF/9dzpxaoH3/Fl/9/JeYPLlCpCJ+6iMfY8LPs77f5e31A+Jok2//5r/g8acusvPOO2zdvk11d5coCnt8+FoNXNf9O2L4t4YhQ9AR3HffSy0HxcDGIs06HVfDj8KG/ixa5MH0k8YAosSfgeHRwwrSR9TeIwHLQW0ERtGAvlN/mIz6iNedMeVBK0abXf+8ngI/usfBJjmqSzBoZnRfUoo+m1Kvf0OPeF+hNQ1jeAzQZ17piUr7xtj4jfX7PSjQNKBsHMfnD++bI18wDfOI8i769KA9WIYcQowEYli0bFAszXEcstks0zPTPP3+91MuFXnp5VfY2t4eRgoODg4Iw3AIMUrTXmXzgbffMIy+d1cNYUE9JU8OX28PttE7Pk5ikiQ5kn8weHcqHSQlD4bGaAykSYo0JJZlYds2Wd9ncnKS6elp/sE/+FX+01/6Ja5fv0GaJJSKBY4fX2X9/k2aWwd4pslsvkw2U6CrTXS7wa8+/jzT9jG8Tg3REaSRIIzWabhL/N+Nl/n99Zc59cQsT3z8SeaeuIgfx6ycfAonk5K27mKIEEMaxJ0uqAPc3GW6bYu9Vp1Ws0bcDujgchgE1BOfzT1FsL8JzS3sJEa3YMWJudG2SK0smfIMU4urnJg9xj/9Z19ivrvBc89+mPd/5n1MHZ/j4H6TB7/7Kh/9Gx/BW8r0IsJCoJsx4Zu7JF/6Z8RP/0fYlzK0FNzZ0bzzMCUfNPDe/l3eX9qi8rmfxTpxllRmCBqa2ltN5j6cR1q99T0KwbAMMiVBUFU0Ogf8xq9dZUJd5eTpJtXKIt31OnLiNHPHJ8lUfIrZDBXXwTT6632nyp37VwmDLTJ2i3IhxlqImM+VcY0CSlwm1ou0lMu9ao1/+O//HR7ee0C92iKKYuiPU92frIZhHoGc6bE5JMWgAvegDokcfteM2M6GRAf0xr4UwwGGUqqX+2AYPaioZRAEXbY3Dgbz/v995EDqBFSCFgqNiRABmgQTAzCwpWLKSXhsLsvWYYeC5zE/M8n5T3yCxqULVIMWYUdDtU3Ukswem6Y0W8LK+mQMm4eRJhX7KDNCeCaVgs+FnORLE2WK5QI3rrzGa5kytlvgwsIsoQ447NS5o7vsbNY5OzfNbD53ZB3+4dh035MfRhnS+Akx9LT/KIyXoVEzCCn2E5uAfrVT0GGTuB0hLAehNEm1BlqipMS5sExoHBA4KcqPiapt6mmZpt8g09zh8Ou32a3u01Idshcmyc2tYMoYFXdQIotyMiADsvk56vESraSA5Xh4vmR2apVUgWcYqFQTptAModoM2dt5jNtvXOOdzZdoEPV48KUiaE8gGvN88UtfRcQdtNasb27y4P59HvvIOeYnDepej+LNdMDK9BhBVAxok9b1deydf4He+yjR8jkiP8P7L4AObL708hx2Y4Pun75GuRkx//zPkC2aVF2bNO1Xx9UJqlZl+xtvM/u3PkmuJPFKZZ74tI1RMnj9rTrnJyVz5y6RzEwzOVHCy3hEwuB+DIcPG6zOCDJZl8XFVWamCwi9RkdfxY0OMBKNlhbIgEQdcpDus13bIFBNThefIuvMYhh+3/vzwzP+2s194sjDcQVoA61CtDAwhAHKJCMj5rOaelbz+a99jaef+1mWF2e48PxnqTU+RjMIiNoKXWvTqgrOXJjHKedZmKpgGzZ77QgtdlCOwsjYLJUL0JnkxUoJO+uxceUdXps7zaculzgxP4Fhmuw1EuJPfhBH5agZN7GlwDQkCRql0j4mXoztAb25kqoB1p2hbqxHmtmIRUT3PLsDfU0aIw7ycd+1GHjuGNN7BSPqyf4/CMERRVeP/znwiz/qlxvY+YOvgj6cSB855PupT8ciG+PK9bC9XqXcnr4g+rD/gRHy/ZGPsbvgz+E56OHs1bAEGwp1BOLQL7YwgjmKgdGkhnYDA9jW8FpHKz2PQyOGER0GjEs9kWMKkACU6hkLA8y/iAWtdotkI+FrX/satmOzs7NLt9s9AvGJohjDkEOjYPwZJEmvPsMRBU73+OYHBsC40flo0rHWmlSPJTn3x8rAQBp4fwdsR73aDOD7PpcvX+b5zz7P8vIKv/zLv0ytWuWVV17i63/yNQ72t3n64izNJGGzGTDvWKyUSxi5Co1ml+vBJlZpFs8yEFZI3I6pygz7cpvA7XBydgLVTNl4uId7bJ8wjnjMAR22UfYMyAhDpNhmhkayyn5cwsm6FPMz5DSgBY4hUakmSKAWCA5rTXY2Nrn/9g2ub16hJWMMw6KTGMSdDMm2z723v46tQpSCm7dvsbq3wtLpeeYmJG1PoVOF5YHh9uZtEkl0Kmm9+xCn9uvoxk/RLs/hFWyeuiBI2w6f/8YiE+ED6n/4Vaae61L54AeQRUnVs0hihSkFkpDunU2a93aZfP4Z8hOSjJ7k2c89zs2XY25t3eJ4yWb+/GXiuVkWpyoIyyJAcrub0jxMWZ0W+HmP48fPopMKigdE+gZuVMNMQUkPrdvUw4c8aB7ysHqf5/7mMjtXJK+98oD1zSadYADLM4dr/4DiVIgBrMwYy7cRo3l01Jo/4hR8NHl+HLrXm66D8SuPVG3/8+QHMg6EcJBIhIp6ConoImmDcEm1BVpgGQaFnM1hPaF1WKNsF7DKs6i5BZCK/UaEarSxmhGTMwXschZMAy/V3DyIUE4NWXQp5jJMORa+hovnH6frabqtDg/ubbA4v8xjxxZZKHts1AI2Gm02dqo4SlF0DOanJn8klLz35K9efuTGSX+Sq7TPatHfhAUaHQWke2so24e9twnWmwjhIaRF1OnSTW1UxsWtFAjKMd0oJfYd0hmP7PIS7775Kis27NxZ586dW4Q2nChL1vXbaAtyro2QgiiNSNIOQvjEVonQlBhWip/Jk8uV0Nql3W6SdNsc7O6j4y46kcRti3J+gqnji7QPD0laIVEk6UZdWs3XWb93hWk/hylhdq6M5xd5/co+F8/arDXXqL+c53HjMaZPlZFFATHEtwyCuofTWEN6G1i5ZYrzGYqTUMfi7EdOo7+3T2v/Pvn1TeK9u1TvrWH5l9AqR1BNiDsRURDilVw6+zG5RRshwclkwM2zdiApbNaYq1zCdfI0E5N2SxFECbuNgFYUoZsGNhFTvkuhXEGIJmZqkgkthE65vXNAW5oou81uLWBj+yZRo87eVJ0Li88wVzmBaXqMF776qzYU7j54yPxsAdex0UmEtgIM0e5Fi5VCpwmWIcj5FqboEmxusexPMrl4HOwTxCql1oxIW23MasjMShlyPkXbRMaaW4cRwqtiiiLTWZeybSKKJS6cu0TDjOnUmty8tcYTJ48xUylxUhR6nOLnH+fg7iEzC0s097Y53N/t7Xp9mEcP4TIyBBhLzh142IbMObq35Q5iC+OUnkLIkYY+pjEPKEh7MJDx3fVoftLIEBiDxug+ZmjwfoeIHj00VsT48eNa+Z8X3B+gdoQA1S+WNQ7xGR028lYD4ihqoXf0ANI0VCr654oxmk1G66bWoBjzWCoGqK1xfNU4oqivyyjkmBIzpIIVHFFmxkUfaWV0Vz1IhugXtes7SdIEKa1hlGOQHNztdqlVq8NIx7iS3/s77b/7fu4Doscg1D9WDKJLY89BCnnEOEj7MC6t/4J7GR9PWvcTv3tVjwc5K1L2qFhLhQKnT57i7NmzGFLy9PveR5omVMwYe/NtqtV9njuRp7VXYuvQoehlKPsO+D5RZYJmcMCOsY7luIRKsddtc6O9y+R0kYYKmXCytEgIDpvUb95BOZLb117FTgNsvwCGQqkEIX1is0TXNLHtlHy+hO3mSFKTVqdN0m2xu7mDRULaNSHyKBcne+v9wQGyGRKmktbuAbubdfY23mYqk8OUimMn52g0DN69dshCKeJh4yHN77zNs5kn8JdchCfQHUF026TTyJAJbiMndvCeqGCVbDJTgoayOf/cWZpX1shsbpNsbdDdeJf65gF27gIqMWk3Q+J2L8po+zbBfkx+yUYIyBTyBGTY3Ve4Oy1myhN4bo5qCGk3pdkNOWx16SYJqilxdMR8IY9np2gOcVMLL7JAJby1toPKWOy0I+5tr9GobSGNmMyyxeymRxTHHByGhGGvSruUgiQZjcOB0dxDPA4ib6JHs/x9xgHDNWBkmB8dZ+NkC1r1EpnHk+L/IvmBjAODLFpZxDrshfiwsKiSKIVSDkq7JDpDOw7puBHVjS6eH2HaClfaTHg2/kQGo1Jk0YQYTVv3vDpxrHmwE6C9BNeeYSqfoywFHSweP32Zd1sbaCFp7OyxubXPTpRy0TdRosy9tiYWFg939inYgvmpye9LynhP3pMfdekpEAqdpCilSboRdsbtKRdJSnpwSOe1bxE7OZy9VwjvN4k7JlpkiO0MVVkgLvtkkhkC0SGtgJ70ib0CE08sE+9eJbs4Tb6xQ24/g512SdcP+N67ryPyLidPnMdUXZqNHSJpEDsWhfJJxOQCBhIzsDHTFgf1A/Y2t2h3dthc28XqtrCxactZ5mZynL50geDwkN21Bvu7Ca2DLocb30J1YwzaLJ4+zTMfeYL89Cle+F6VpaUc371/DXn1kClrggJZzEkD1dS034RIn0PoKoaVx5/QuPNQ3wqQJ3x+7Pklrrf3cGomudmAaO9N9r7zdRZ+ykcE83QPI6JQYWezzH3ycQ72E9AWSguiakKyG2IQsKOLhA1BYStG2hFKaFAKN02YnPVoY3DQNkilJrYSTFMzZVfwTM12vcWrDw/ZSfcwMj5RVRE3NulWNc3WS9iGh2t6FLLzWJbTq97ap9H8q1y73nr3HqdOzOC7JWwrRZkGhtonUUXS1CCILFpdg8iQrDy2xMbDXWZnImwrQ15Y+K5DecpHTpVYNaGpoaPBSjXdIOXBXoD0Y+zSDPOugysEqV/gydOXudnaRAG1h+s8PGyysjjDbNamExVJIpN2NmRmaZWde7f7THSjdb7nFR9T0gfRQa1I+0nD49InBezRJfYhNsOKtUoNN+oR/WBfuX3k3Yjexfp/iO9TuvkzchhghOMftDHc+o/sYUeuMkxSHEQKGTtvpMSOEE2jImcjYwQAxZgRoIfGwaOjblzZGOYawJAthYFy34c4jPT4Mc1lrI0eu/uAIakXmRB6kFA5Bs8aRhEGfRZDC2aoL/UZVwawC4BkUC16EOHpGwdpmiKF7GH6DWNkKI5FKnrP6FFDr88qgxoq/cOk4TEWo6NJzAKlxBiCa2SwqaFBMKKwHGDHLcvCkAa5XJ7ZqQmOLS3iSIN2tcH+zh5z8zMQxixJxc8s5djNBjxRtmivFgnzWWJl0ZZQVRFG1qWTk2zLbbTyqWmbu2ad78XX+VjlCbZaAWXXJOvYGEmH1rs3scseb9X3KLgmhWwWadnEpkHqOuRLJ5BTJjo0iNpdolZKtd7lcHeHVnubh3e3KOqAWBfBmaA8keXM1AU6+wes36kRHggae7s0dh+SRgmmbnHs0iWe+7EPcXvL4e69Bo6Z8N3772C8VeexqZOYsURmJPFDRecdg1icR+o60rUpzUGYV7T2YowVj5/+G6t8d/00haKPm40J1l6l+tpV5j6TQbcXaG820NLGmy1SOrlAvZYgsEm1JtyO0fUuiogdlSNoQGkzZsvskqIx0hRXKipTLk1tsNc0MN2UjEzwTJOKPYFrwka1ybfv7tL1d2kELer7++QSResgxvMlE8suYZCgUkG9EdMNUgxpEKVxP0rZMwpGc3g8gjaqhzGcx2NrTY/xTDCAIo4bG0L25pfSCqnF0cjWXyA/GKxIObRaEc24ydzEMohpklTRTeO+78VBqRJJusHa/jrVaI5SxiLrGKgEtrqarAG20Qt+aCFwRQ/P+E5H4UdtMlYGa2aSQsHHVtAFUiU5s7zElz2Pzt09bt1b58pmnadOVig4FjOTJXZbMY2dNQ5aIUnaK1M9eKDvyXvyoy5DdowoIg7a2F6O5oMNSidWEEKhDpp0b6zDVI+MAAAgAElEQVSx/d23iWobLJ/JI6d8uvuabidF2NC2Nbu6Te36GzhTWWaWVikVpmhu1/nm17/I+Q+ukillmb9wAb/sEWxe47DeZX97l1w7g33CoB46HNQsFud9Msfm8KfO0jamqHhFjEaHzVs3uXXjCl7YxitJHr94hiSZhcQkX5zjkDLR7hrPfuAyW08YvHtvnZuvv4MTRujaHZRp8Qv/3r/NiceOIwzN/IkcSRgRN8BOt+hs73P4zQqiKlC7kk4CIvMzpGYL8YE85vt8uvUuN377Ph/61YtEaYozF5E94eGdNTDsLWZXLdTdL5L4ZzCVi+lNYNmrKKUpHXfQQBApJqw2p3NVqnnBs89/hrs7IRs3N8l6JoajcLOSpx4/hXBtsoYkFYL1oE012ienKgRijnbr6/zhu3fZVZJWvUXS2mZ6Lsv7LhYouZLDtkOt+ibX7oacmf80hWIFx3ERw1DzX6YcVQvfufqAk6fyGPYZ5irLOIaHEgGtqIspLTptk3ZXkCQxrahFjQpBzsSV0Ik1XaHJmBJbQgogBDmhacWaO0GKH7ZxnRz+4iRZxwIFkRZYpsOZ5WW0bdFaX+ONu1vMLy1wei7PcsXEMF22mxFh2MHOFfHzedIkxpAxYdSDAvWD6L0bUT1tM03SvnL7CFQFQPWcVAPRYjxRtI8pF2KIvWcYfejvMX1c/cgQ0UMD5dH9V6lBH3q/pVoNC7I96vAfJOwOcMaDBpUa0IKOHdd/xmIMPjUOwRmq4mL851GUYQg9GIt3DMfFeNazGHkihzkc6D5t7FgCshDDZ33EOugnUeohLGcsWqaPMkHB0fc0jNQM7ATB8BmMK/SDpM8h1ejY+xlAewZJ1Y9ecxBlUH3DsMcz38N8p+nRaMAwh0AN4CBieE8DBiIp+nkb/Teg9XjBqwE8qmdsmKZFNpujUqlw/PhxPv7sMxQ8j+988zt89Pzj/Le/9k/5T37pF/H3uwSvv0tya4NpB4xujFgp0SYkCjQd4FB32Gi1iHKS3EqOSGnqBy20GXJ5aonMRJvDuwGJVebyvEvZitjfq9E5qJPrRsTTWbZDn1LRYXouj7c0S2biHE1jmoVsifb6Fg9vv82Dh9dx4wC/LPngM4/TqUd4dgHTn6KW+iQHm3ziI0/x7uPw1lvvsPbWbXwFNNdQhsnf+c/+HvlJj4mTiiRKOdzeI65rDL1O8+Eh4k4KB5KkKghiENnnSa0G7qen0MsWjetV1l7d46m/d4YwSfFXQrKPlXAXmujggKl5RXrrjyB3EScWGKXlXpTWEBSPu6hU0441q5kah34Df7HE+b/2HA/2Ih5ce8Bk2SMyQhZnC1w4uYB0bLJSEstJbjZrtFSI0Iu09TyN1rf5v96+Qd3MUL+7jSFjZqc8LsyaFB14cJAQlTPQtYlbLRwZ0XFSwkQQdMMhdA1DYvTn57DOgRwp/GnaMyjGZvhw7A8qtyutxubEKNqgNai0R3f8AwQOfjDjIOtkAZ+7+x1eOXyDS0urTJklSqZBnAQ0wpDD7g5C1fnA1CWuKIO2SrGTLkUHPGngYuAJ6GqNAyRAHYHpaib0DqWJGUSpgmvbmElKaEpWFzxME7zVi+jdV6nubnD72jUenvgwc4aglnXJLU9TrVd5cNjgwdYu85MlLNMaegeOWu7vyXvyoyVa9/DCCIHh+Sgi/GPTSMcg2K9Su/sO21df5uH2Ph8SXcTEBfynLxK2NGlTo50M29deI6nE5NJV3EmLfSOkrqs88/7302yf4IUX/4ALrkFpcp6ZxacRwQm2XvgNTh07z8t3mrxw6xaPPfURPvKZXyBUKSWvzH4iKbQVt19ZZ2vtXZRxk2PnfWaPfxIjexITB9uShHHI1s4BU80GK7MWf/wvv8DmepP85AwfPLFKbi7H73wl5p/8+q8QKIfbDzoYwOKiQ7bk89/83v/E4b/8BvFaTPfuK+jtNmZQpsg8LzSnCLMuT/k2mf2E619tcWwxQ9qIuPrmIVK3ieobxO9UWTlnUvrMT6GNp4giEwjpdjs0OwkF20Yq2Kwl5BPN5o3vsVldY+rHfoavvnTAz530+MDHprEyeaTp0UoFL+wGVDsP+OjMPDLjIdOEGWFSNgoEwXX+7n/9FcIVwdy580y4CdPJAZcq0yAUjzkJViaLnvARZh47IxC6Rnu3RmbiJIblckQz+kuWvZsb3Lw9QSvnUuhGXJhfYd6uULFMWt0adaAjA1RYJ3wQ4E/m2esEWJZFwaJXE0dLfCFoa8gITUdDV4Jtp0zoXSanF7BKZVwkIlE4tsHqfAbDAPvE++nWXmLrzk3urEyxPfsYk6bEz2conljgzvpDvKkVVs51aG3fY29zm2qzhRCQKkXax5L3/ez9iUS/NCjjuJ9euH4AMxpikHofalwxhjHoCz2Y0J8TpVZj6J4BFEBDn2ZV9P8bEAcw3KN6isCY13AAIxh4zMeupccyj1W/ENmgPoDoRz8GtzJSnPu5AsPzesaJFHJY12AQgTD6Sb/jkY0jz4HR2jSuFI8SnwdnDYwZA4lAC0065t0cKtzDiIEccrf3qGgHzFKPeOnVGLuRPFqrYgCNGhpyY9GBR2fVQMkfj0IM8hUAVJogpOgnc5popUiSZBiNENCL+A2ehxokmfYSr3VKP4G6b4zoQTLzyKgx+kxHUhp85jM/wec+9/PMzMyA1nzqp3+SJIqJRMSt175LbusWnXs3EdUOTxcVtSRD54MXCFZtas2AWtCmkXTIzVhcefkh076gZZfZ3N/jcGeD8mSByaLHMx9fpRradD0LL6/51GMVItvmxZtNanaRT/zELzAxswDCIOsWOIgEpY7m1S/dolr7Hl5unxOPTzK9/CTCP4mNjeMIqo0m1YMas50Wx2ZMfvd/+1329kKWz57mExdOEM3n+ObrDv/413+F/QasvdumXDKZnLCYPz7PP/z9f8z+b36ZdGuDzoM3EYcCKyqTY5qXmlO8UcjwmZLFxpsB9WshS9MuST3ijdcP8PIB6/ceEIUB08fylH78Z9HGE4ShxBEdGs02kVb4lolMNevNlHKiufnGnxCWi8iJZ3j59UN+4liGZ358DssrIQ2HjY7i21stWuFDPjY9j/I9fJWQM308EbK99za/8j98hfiU5Njlc0w66yw7MctFH0MmPJkRPOlnSOc83vS6bFwUFDKTzORm+B9/7bdoBUEfhTMao6nSQ3jbcGwN4X16gNEbltfoTQk9XA9Aj5LhjTFKY6XQqSZRCf86+QFzDmB18gwThQXu1B5Q7aSY+SlacQeSB4h0HxHH3LghCbOKUmkS2YpQsk3HMSggyKqEWmqQk9BQolcpOVbkVYwKDlhZuUQh72EIeHDYoljKkdiCshRMPXWZrbevEmztsHF3jT/Z7/IfVFxWDIFfsvGOLXLzxkP+9y+/yi/+zDOUCoXRYvWevCc/wjLYcFSSotIYkhaG6ZCGDeyCh3V8GcIG/kEV7RfI/Pjf5k+/+AV2GzfQ2RAj69OYilgoXGCzsUkalDFVjla0yz9/8GuU/Txdx+DF9RfQ6wlaSWxtcrZS5tTUZQpLDXZ0woPNbb7ypS+yev4itzt3eHA1JN7ZIXYUpRNTnHj8Z1menMTQGfa6GrfT4aDVYrfVohmEzNs2HbOJ/74zXLqUZ/veHn/87dcJ2nWe+smP8nCvwf2XXmfrXp3ppUWWPvdRfKe3cc987lk2/8+vkt6+Bu2A/fY0S/4kTxYMfjOFK//HHr7XYLHS5ezfPEYNRTF+QOHELG5mFt1osHN9j4WFM3TaPbq9Tmoj3CzlnEk3BteCgk64+Y2vk5sp8tTzn2FN+8hbIWHJIkUjsBCpQqqIp2dcdDLH7bZB3EpY9F06QYs/+u6bfOO3foum55ENPOrv7jFdMlmezlFMBNev7nMrI5mdmCc3vYJbOolpTCKEgTlVAZ0yBHD/FUm92uZPfvt1Vu+0OPMxh4P9PMn6NnNlgw+cy2M6NpsbB7zw1jYzx36SXGEKNg/o2CYZx6SoDfw0pSYMSlJwmEIj6cHismmIiOocO/4+JksZqp0QoxFQyHsoW1KWMPvs+2m/9B3a65tcX9vlpTMhnytYHDcN3IqDOHcOnYJpWpQzNpawSNYf0gqCI7kAWvdyA6SUfTz8wMv+SPLeELh7xKHe23xHrfVfy4AOlb5SSj/fYWyXhr6CytDbP6RK7h8j+n0S41foYYb6hZEGib0M+6mH/en3pX+NAaRgVG9BDvshANM0SAYJukIOFekh7liIIYxndOt6uPYMWHuEGFCkDmBWowJqSuk+U9MQiDQsDifGIgS6D6mhDxcah+mIwTH9+x5AjUBDHxYkpRwmLgPDImgDuNXoWWr0wEgSAjn2+wAS1MsrUP3+qyHUR41FNizbQghBHMfDZ2HZNkr1eOoH1z3CgEcv4iCNXj10PcZC0+uzMXaswDBNSuUSiwuLLM7PY0kTHSdoFaHiNkmi+fu/8ktUpmb5ky//Dltbt5mTilrF4Z/f3Kd09VuULpYROU3oasKsTVhPmb7gUD+scrh/gJvxOPXcAoYKud+tMbXgkxUJUtp0HJ+okGO1cp7ySo0NnfLm66+QKa4zOb9I2A54+E5Esr1BmDNYfuIYq6c+ynS+jNQuu6FGNltsNOvstzuoJGXSFHTMJoVnL3FSVfje69f47tXrGBZc+vSHuLtxyNtf/ha7GxFPPfcUM1PnyPTX+7l/55Pc++9/G6Nzn27LoBUvMOuVeV/R4J8kmjf+q4cU7BrnztisXpynTsJEdJeJS2ew9DGi/QMOHqRMT5+k04mxDKinGbxCCUNIYgWOpSmqhDf+8A849sxl5qbn2OjYHGxGdEsWsVII4SKiLllL84FZH5WY3GpLlE44m8txe3uXb7/yIle+9hWaToZcJ8Pe6w9YmTRYLGXxA7h3d5ebnolrJFSOn+XJp57mGXcF07DQOuVvhR5//1f/O8Io6Y0n3VPg1dgcGMDRxglJvg8UNB7gG87/0Rwe6sIDp8H/V5ED6FGQ5ewcJ0qrfHP9ClVngmm3TCpCDCOHa8DNG39Ie9rm0uUpiAIq0mTKNhAGPW51ramFGkcrXJUik4g4Cjl/8hzFZoprCUSc0uy0EPkM06LHh/Sh8gQHC/PcTyVJnHLj9de5/sxTLPsOE1IyP5lnrz3Frf0av/mFN7gwl+HZZ5/E81yGSV7vRRDekx8xSZKEVMUw/H/glZK02ts4XpF8Kc/Ji8dZLGyTsY5x48p3uPbOm9SSPcyixi1lqZw4iTmxw2quw+07dYh9yvkK5cIC1cPvMlfOcO3+Nt0gwvUyGNkiL93u8NLNGmenithWRMkoIhyD737rq6jGAV4zR3GhzNLlJ5g/fopyoUiqDA6rXZKgTYMGqWkwWcxyvJQnEpo/frHFxXOn2d/r0k6axJ1d2o197n7rOySnTvLkBy+w96QmxKPeSLGEpptqOjfadFoOXTNHLCMso4HppcRs86StuBY3URWbyplZ/vTtLlMvvUl5VeH4WdxCBlHIk1laIrzepiEyyLKDQCJTaEuF8OFgO8Bv7FE6UeFe1ybcDDlzssDMScl6pNjsQnujwWRGcGLWxYy7WIbF6bKLYUhiIfjurTpf+lev0KqHFJeyFLTJh8s+80WIgg6vvrnNB8/l2NjL0j50mHGmmbKnkBJsR4KU6B/Ao/P/uwhJpxlx69WbBO2ET/zteaqGz+aV61iqRC43ycZuRG2/TTN3n2dWjxPHLWZsyFsCaWgMCYbWHHRTPK3x05goiYhUwvmT5yg0U7K2QAUR9W4X03eY1L2Q+ienptlbnqcjfOoHVa699Q43Lp/jWN5jThgsLJTZPpyjetjCjG0+tnSO3/q934AooZ/lh9R9Hnp1dM0fKpBjCbmin9iK6nnnBt73/gn9g3oGxAAuMnRkj23KUvYuL/rnjQcoOPJ9BEEZv8TA4967fo91J0kSBrkQxgA7rAYt67HujdhJhrSH/fvt4e17UQU5lpNhGMZYMTU9Ym0a6/MQ+jM4Tg/YoUYQKUSvEmsfDMTwzsVIYT4SJRB9I2UIZ2IIRRpPnB7irwZwJyn7LFJ92ARHi8GNK0JmHzmg6D87wxhChkCTJH0a1H5uwkD5GhgG49EMNTzvz5bxqtkDSNF4XzQM2zdNc/h7z6trYJkmnuvxX/yX/zkz01MU8g6kXZIwpN2sc/PWdS49cQbTgmc//mmi8wt07rzI269eYTEW3Dto0VyPscom5CyE4XHm8ix5afDNF9bIFBMMq41DxERZks/E3NyoYyiJX6jQibv86Y1dvq13eWy6hGF1mS0tsF3b5sqta+h2A6+ZpbI6yYlnPsrs/AK+5xMngmo9JO20OBR1pOuw7BZwhKAVh3zzu23ed/kx7t49pBvVCDs7xN0O974do86c4SM//jR3mxo/U6TRTEBJwkTTvtaiRZbQ8FGyg2+2MLyEiG0+bCe82akxuVpBT5R44fUGE9+5Q+W4xs3ZWEYGt1zu0V3f6FAXGcwJB5EKukohLcDRtGsRfmOPyccXuVLVVLyExckM867BZqhY70g69w44OesyU5QYSYxl2pyrOJimJACuvHGfP/3GVcJ2RG4xQykx+cnpHFk/4mDvkO2wzWOrHg83TDLeKrROIL0CpiVxnF4y9Ac/9FEKxf+FWr3RMwzSXj0Nofk+w1P2x1Lfiu3r+WJoaI+vM0rrvuPAGK4ZI6fAYA35i+UHNA5G2Djf8jlfPo5vFyAOiWOLVOZRKJqtlEOxQyBhaqJEyXPxpKANNAEXzWEck6gEnUZESYzEwPBzrFoRiVLUWl3iJMYKW7SsLIZlcLbocWV1mv2ojRm3qT14yNXjC+Tn5yg6FkXHYG6ywN7KMnevrVFupyTpqNDKMLR6JNT7nrwnP/wiNGiVIoTGsCx0mqJUgGXY9Jg/EmzPJZpY4Pd/7wXSww2c2TZ2IEhUBi87iyMK7AU1wladIFRM56eYmZmk3rmD47aZLiUkYcrmQUIrbNNpaKphSrvVpX1QpWynFKc6GLlJPDeheb+KsFOOPflJVk6eIZ8vkipBrd1BGJqMZ6F0BtMwAJNGJ2Rr7T7nj5+meSA5vHOfrKpz5swkb1+rgazg5fJUZvLkTYNES8xEsna/S6ViYRVtSk+dQq1MEN3fRX/vIeQaBHHMyYUiU/kKG1qx2ahhZ7KEB22iExmiFDzTwc5kEUiSqkF80MVyHAxToqUkFWB0NGYUk+Q9CuV58vWQ7Wqbe2+sEZsp7sws2Tgh78ToNOXObhfPSZkvl7EtA9+QBBqqyiQIXWJhkklDPr6cxQ+bNJoGsmCzNF9BJi753AqVibPknDwy6pJ2OyiZRZqSHwZa0ziKe59xzObNNV75g2/RaqVk3Zg7Gyl+3qJa03Q6EqqHRLZFeXqCoudiSkEsoA24WtOMEhQRcRz1k3wNLD/PCTskUpq9sA1JFxFatIwMUhg8Ufb58sk51G6bpHHI9kPBlekiJXeZomMy4UqmZytUm8eoRzbbap8olX2F2ujplFKik6SXoApDOJHQYrDrjpTgoRKqxyC6I5gNMGYkjM4RQ6V1hHcfQnEGsBoxan+4D0lgDCEw+Bx4zHv2zSBJuAfTGeUF9I0KPR5JGKAM9NgeN2p3qEyPQY16vRtEN47o4Dx61OA6I+/8KKegZxDoMTYVQI8MhFErPcMkTfvni9GVBtGI8dyKITRIMDx2EFHpGSwDt9/3KzlDIyntsQDpPjVorxptgtaMxsnQ4z96RuOQrJFiJodQKKVUj/1q4JEdHP8IjGlo/PX7OJ4XQb8/tm2TzWaZmppEK4VjmxgCGvUaQdClVMiyvDKP6/okcZdczkdZK9Tr27z24AXKFiw/W2BzJyQIenUS7DZ0ZJlmZwdJB2mkZH2LfElQzMLqlI0tBBuHijhuEUQR9RA67S7t/UOmMorSgoEhMzhGSFDtrfennvk5VlZXcByPbpzS7naRhsbP2CidwbZcogSqjSb7e9ucP3Ga/c2U6s0bzJckcqXI2nqKMHrr/eSch6MkEpO0A1sPuxRLFnbZYfLDF4lPLRDf2MR80EB7dYIk4uJqhSl/modhwkGzgWsahLUO0RmfKNI45Sym40KoiBst4oMA6XsYSLQhUCmIjsaIY+KiR2VimexOQHOvyp3tOqkFztQ0uTimkolptRPuxBrfEcwUC1ieiWsIGgoaiU03dlAYZNOIHzteQNcP2EfiZGwmCy5m6lIozDI1/RS+4SCjLgcbG9xptLjw5GUKhQqlUomdnb1+ob0e61gvTwV6tYzG1h49Gkuj3CbdSw0azNPhOjAyxhmf+48YE3+e/MDGwaB3hpAcKy4SJwn73RaNpEtHhdQbCVHXIFQpUhhUCgWypjH0AnS1Iq80Ko0IkpgkjVAqxbMcXMMg69sEiSKMFaguabvOljJxihlKtmBiaoLC/h5prUWq4Mbdm0y6PqcqeTKmwXLOITo2zfeClG1avH7zNudXFijmsiAExrCC4nvynvxwyygZsQeTTlFolfQw1e0W2ux7DdIAjUEQJVzbqvOFr3yDsh3zgVNnmZ8tkOBjF4sEUcD2/X0OdreZzHrkKhGlSodUbOLZgmKugyU1jmeyvpVysNlgPp9jK4XmQZtuPSSSmooNpYxLnMZMnj1F5dQF/GIZlSY0+8WoMDS2YSMxSBJFK0yodRQGgslymasP7yOTLuVKjuxUka2DhKJ/irXNHeYWfIq+h2GYxDHsKIGlDTJzNs78AgRTJMszxMUc0rLJJB4TiyXKjo1Z7dC6u4NR3wQBZj4PVgbMDMJ00V1FUshBuz5ihDBkT6lJUzKeJCrkcVCUVIPD3W3ufu8hetFnRinKuSyFrKCpNNvdBByLdpwSqh7G3kQwXalw+anHefO1OxjVBn4S09WKbmqQxaFS9DhslqkUVpjIzGFrhQxaKGmhbAeBBYaB0Jpx/vO/bEmiXnKcMATNwxZXv/E6dtbmxBMrpJ5HQ0A1Sui0Day6xpQm0yUf27ZQ9PavUClyWqPSkGYaESchUkhcy8M1JVnHoR2ltBwLqSLCdoNtZeAUXCZdQWVulqBzDxXHBN2Ya3dvspwvca6SJZvEHCtlSI/PcF0LtjcSvMokcdoljUGpBCV6uPAezGYcQgQMEvKO6PsDdXZcIR0pmsNTxYjbX4ue+vto4u24HTFUjsec4CPv+vgmPdaLgce6D8EZKP5D7/vw6PGWBjq1GCmsfU3g+5XVQf/1EUXhSARjXPpNiT9LoegbSWLMOEjTkcd8gI0eKPsjv9zouxhXasae3KDdI/0ZREUG70UdNRDGYUr9lz+MSDzaNnoseXPs/O+LGg36MXwvalhXYZgPMWYUjN7mUYNhRAPbe6+GYeB5HnNzs3zg6acxTRPTMBFolEpAxThCMTc313/PAZIMh92U67td3l0LmM5JLnk5CjMeoWmTWjZa2GyuNdnf3qKYjSl4JpNli3LRxBIxEyWFa0os32DjfoQIUzJ5nz0F9b02USNC+9tkS2WKrgIUU+fPUD51Ec82CaKITpyQ6gQMMVzvozil1U1odTW2MJkol3nt1i1cGVOcm0S5Du24QCF3nPvrGyytnKLiuUgpaaYpdS2xMTAXbdzFFVRzlmSmQnp/F8O0ySQuU8dK5KVJvHaI3tzHbDZAgFUsoA0PYWcQwkKRkuSz0G4gNb213pAgNIbSOBmDqFDA04qJ4IC79x+yvlVFzGaZTlMquSzFssFmO6KVgsSmlShMDVnAEYJjK8tsPXaWuzc2MWstsmnMjo4JupIZP0vWL3LYKlLMrFC2JjDTACPskAQpQauFjlOEaXL50mX29w8Jw6iXP9Sn5tX0IXhjY3h8fRg5uQVC9KFGwxpIA8O7n3zfXxOG5//rbYN/M+NAwIBpjziN0YagGtd5UN9iZ6NN0IoRmSJTpktRCqTWhFojRS9DOogSZBISRgmpSvFMkAbMGgYNw8YSKaUMWCqh2qzTbrss+hYpKUW3yFS+REPHGBNzrN94m1e8SWQ6zULeJ2tZnCkIDi9M8M7bDW59/gt89iMf5NKZU+RzPhnPG+IMh5b8ezCj9+SHTAabSy/03E+MU2mvEFkcE+3uoXNlhNHB9hRCZmgFLb715gtsNpvsScX5rTIXn13CmYa12h71nRoP37hKdb1F+dMVZOEGtrvG8dkQEYGgjUoiVmYyeLHE2AhZzBkIaaCzDlv3Y8JuSNw8xEojHCfizKd+DuXnaSrQkaYTKvKOQz3ooGKNskz2Wl0azYSi4bN87nG++cYbZJxDpi4eo5VarG00mKjYOKbHF//VH7O09Nfx/SwSiSEFK6dy6A7YjkYmGm1IjOkC9l97glhJZqUkjTXN9YBs1uLp8w63/uBbiIUPkJudxJ8oYVgWSSclrnVp203sOae3qBoStEQmAisjMXwD1zJI04SwrWhu7dLYfoOlU6fYurqDdeYMyi7j+DbLvg1unk7QwglTUgQTBnxgaYryX3+OdvgiyZsBL73V4fST05QKGcxQsbcTE7krTMRF4t0AYRoYjgTRxvJ8RATSk2iZIkz6CbR/+WtUOsDpK0jjhLDTxp/NIjyb/MIMbWXQ3avSaWqyfp4Zy6JimSSif25v0BLEMUYaUg9TTKEwTYllCGYMg7phY1sJk1lFvRVx0GiRBhaLvkGgEub8Gdq5bbraxPRLbN+5zculRVxVwdOKSc/FmnFouxVaZovZU2dIwhZh0CCNQ+KuRgdjTDTDSEBvcxwq68C4evmoR06rcU/3SMY36cGXkR48Op8+l/kANjOMEAzaZ9yxJ4bGyaDZXqBjPHJAjx1o2F+GSu6w/2KgAuvhtUYQplE7gqOGz7C44iAS8ujvg089+BwwFMm+7iH6z0ofOXC8tkC/YY6YOFL0IjqPyBAGoXuefa0VWhgjRUn3kzTHox5DI6T3D70IgRhCgwbVsHtF3Abn9XD/A5aqEQ3kGHd8/72Oc8RLKY9gwUgNSf8AACAASURBVMfvWYzhzvSgAcYMi/7ULhaLXHjsMX7+55/n2MoKSRKhwxrlvIeyBcnBISpXwnICMlmBaWfYqe1w5fZbbHUjDmJF5tuHPPHTi5gzFToqQ6OacO97V9m9f8jqvzXHxWMZZjMmGTTEGtMI0anmXLaAuR/QCjSlgsVNw0DnHB5c3yUMAlxjG4KYTM7l7Kc/SygNGil0uik6Ac9yaIZddAyJbbJe7aJDmHArlKcnefHqWxRzVYrHn2CrHkO3SqVcwRQmn//dP+LS5f+QiYKH0JJMRrJ4zEIHYLsa2VVoU2KdmsU+t0CiBXNSkkaKxu02Sws+FfGQ9RdfQS48SX5uBr9cAC2JmzFREBCYAfa83XvHpoSkB1s0PYnhmbiWQZIkBIcx9c0HhPU1phaX2HxrC/fCBVSmSD5nUrJdlOHSiQKcMEVhMi81n37qDOVSyOf1OyTv3uObrze5+OwcRtAmrafsBJoWU+SET+POHtlCBpGLKeZzzMwvkrYjDF/ycz/9s9y9c4/Dg8Negv+gJssY0cBYQPPIXBxGoYQgHRjhjEXPlEYY4sgc+UHl3zByMOqVa7lkwhi1J9h70ODW9jaHtSpzExWW81naloGIE8wopRqlOBmDVpiQRREnIYnW5G2PIpqW7i8qhiTnO9goWs0ulmpyZzehmHVZ8m3icoX7CdgmbDDD/Ye3uHnnJnamQGmywsxkFmpVouuvcrC5yT/6X3+DDz7+GL/wE5/k7MnTo8XsqLPmPXlPfqhEqRSlYnSSgI5Jo4C020YQY5QXSFIwXA+t2qRhCyu5y1JmHRyJNiyM6CoHN+5Sfydlv93hU589zjd/u0rcTbEdi0pWUzEbxGlAQoCsB5ixoK5svMkCx58u8uXfuUd8+hKPTXTo7hkkcUrzoEna6fDER88xUZ4ga5jcrWtEajDvOKwFdeadDEbG4v5egnTyHJ8wqZgxL9+4Tab9VU6d+QV2G2U6zS55r0m1+w5v3boHrSwP7nSYmVX4MxJTgBULWkJjmoJ4vUmKQJRs0jhlrZVSdjWNAIplk6jV4p1XbrF4fILZT8/TKlpIxyCsdqnd26WzcYfC0qtUzn6WlsqgLIFlSZw+1OEglWRVjz75rZfe5MWvfYviZMrS3QeUoi7X3r5Pc22aublFjk8vsN9OsIombrvLWtZmLiNYcDRnXJO/+/Of4kW3ik5dzFqKa9pMVyro+iEyiahu7iJdSXluFtOxidttjG4H0xQ4cybaNEDoI7j4v0yRQmJaPcY3YRpIx6S50+D+6w9oxzGlxSV0YCHSmJxT4lgxy65SZOOEbjehoxS2Z9AJE/IoOlGAb1u40iQLtDF6avD/w957xtqSXXd+v70r18nn3JzevS+/ft39OpLsZrMpJkkUJc1QyRpLgjTSwNKXAQawDYwxMEB5YI9seD7IGowxgA3DQfLYoyxKopo5NMlms+Prfv3yfTenk1Pl2v5w4m1RsmTMUP7QG7j3pKpdVbt2Vf3XWv/1X7pGueCg4hDPS0jjDncOY0p5m0dKLmFhnrofoWuSI+a5u3mD6+8orOIsCwtlcha0DvdpvfUa9WodZ/4MTtKgXz8mOgrQdA2VDvj2SZJOgPUY1J723otRqG406O/i5U5AIozI+SMnnKaJYeLx6QJiiMkDfNzPlHf5L1Fcp5cfGwkTa2EMRMcGzoiqMlokRaUDufBBF4MI0KkNjA/mXYbMu5aaZlud9s5PGQij/2rgsZ8G2O9O1I3jZEANAtQY8AxQy6BmwESqdRRHGYNvxaDK69CjOk7qTdX3HF8BY8XCaY7/CGSNKBxiyCpAgq7rYwMAOJUoPYoUjCITA8UhyWC3p6nLYvxeCIGum2haOqzGPOCTj0ZYKVhZXuLDH36esxtniAOfwO8gEx+dAE2XUF4mjcB0cyRRB9QJebHFaq6GzFj4sc/7n5rD6MUcvLqDM+Py9GOzfOP36sRhTL5YZCVvUjEiorhPkvronQAt1GikMUtXZtg1A772zSOSs1d4bL5H+4FO6kfUu11cS+Pqc5eolGbJCsEbVcWSaWFJRT30mLddtIzBrb2QQmmGhaxEBR2u379Dpv8Frj7yy9w9sLGMJlljj1rrVW4+2INulgd3AwpPguMOPONGBD2pMDQItrqkJQtpa4RhyrGnKFmKeh+WVk1uvbxJffOQxSuzzD2/TMeV6KZGZ7tN68E+cfcO+eW7lC/9OO2kAJbA1gfGQZwqmokipyBKBV/9wy9wuH+XuTmN+QcppSjg1dce0Kus8PDGBjlnjnaUwcjp2F2PB3mLSxmYNxQfWCyz/Pef57u5Fip2iHY9CgWbnC6RvQC/cZ9WQUMwS8vvUU4EJWx0L0AYGtqqyeXzl7h47jxbD7YI/IBYJqhUInU5zIGaRNYm1MXBHEqHhc3U1Pwc04lgeF2NrqbRlf03CBvw/8U4ABI1sGbe2N3lC999g5t3bhIFKcpwefbXHsfOGBQQ3GsFnHRDHp636YQp+SRk10vJSsmcAToJB7FkxVLoKh3wjRHErk12NkPtte9ycO4JZlRKlxapobNaOEthyWJhweIr//YF2kc1Qr9NmgZI3SC3MstcPkuznRJ6Pi+9/ipx2uc//Ue/yky5MvYgvdfea/9/bVJqpImP1ARpBFLTEY4LykO1H2Bay/S9PqCRHNVRR/v88LWn+PxHTX7s6Sxv1QJefP2Q3v0aWaGoHjZYOJtnb6tNLg2wgz6JDioMSYKYnmGhzCX8lsFBNeGw6pNdyXHZ3Gd7G+I0QOYtepHk/s0umcx9nvtBRT+Mqe8ChmT1gsF5kaUd96kJk9l5kxyCqFfj5uar9Dpv8sy1X+HrjSJHe9ukrXvQ2yRJ+zy2OMNhuE4xX0DXNOJYkSag9AEu6tRTrHkX0xhgN03TWHd9dh+0+PY7TeoPDjCiQ5bX+qx95Dmq+3sUF2ep3a1ytLNN6G9z9WIIoU149FWc2edQ2jqIPAKBrgtKuuDFP/0uX/vcLQKrS+FMhdbhNl96cMKVp2ZYKq+RpC612h7f3Nlk7ZFPUTEN3nztBjfvHxD2DilluqytprhOlZnFMxSKReLGMUkU0Wo0KPcky5k6GBv4+DRvv4FjOJSWLyPJESUaukzRZvUByItCRMb6vs8/IQcFmaSmY2VcZlaX2N07oPjsD9JvH9K700RGOqXKAh/9x08iBaxpGt897OMYsFow6McKPQl54KXM6QZZHWJSThLJIgoDKOka/URgFbJYQZ/63Tu0zzzCoko4UVWKmRnm8y5aAfRMxFt/8k261QZx1OK2StFdG3u2gJQCL7QRcZVM1sYtF4mjgDSJicMQoQ0zhYf823GuwNDtPmGPTMWSp0Lv0/z90wM16GsUGZBDA2Hq5ymKyuDf6OGdpum443dTl0YrD4ppqfHz/N0UpHfvx/fcx9F3wz6md2eSJDwB86fyEqaCI+9+Yo7GbkJfUKRxcnqhv4KGNF0jYJDYLMaF0UY1EAYGl8Y0mBkrAU3JmsppY2wEgoYe1DGViUGQYKQYNMgZOJ1gnMQxUtPGkQYBaLpOGIYkaXIqIiEYyL8iBgZFkiSD/tR07YaJAtRkXEdeXsaJ1d9+6SXqjTqPP3aVmcosmpAIwySKA1TcxlANjMwK/V4PIQyit7aoEPGRJ5/gtW6GH386yzf3Aza/fg9V61JyJbff3mPurMXeA0U57qOHCUnsk4Y9okjR0x185VKrSo6bHo1mSnnR4py5z4P7IMwIreRyuOXTvdvAdbd47mOKVj/m6D5kz2icqVjkdEUn9mljcmbFIoegXr3P7vF1omCPJx/7T/j8SZHazg0M/y5efQdTRlxbmuUgWKeQcQFBFCmEglQOqm63qwrnXA59yASySTG9gL2tHl97o05vc5ucc8i5Kw4Ljz5O43iX0vIC+28e8mDrBuVsjdU1D5FIoqMvkVn4BKlcQxMDIQpTFxSE4mt/+BIv/MENMhsKs5hhv1HjQIu5cK3CRuUsfmRy/9YbaNlFls99gJKu8car17l+Z48/Cw9YnA2Zmw3I2C1ml9axHYOkekgiJMqHnCc4V8ygWXkaYR/7pIqu1iCpkBoOXqqh6THmssN//k/+M4q5Ev/q3/yPhFFEOqqvESdjJ8NwWg2vHcVA2W5UYXxKgGCqdseo1sZgpe9xIf81TfvMZz7zV/7467/+658B+Nmf/VkuX7586gYWhCG//eYB92oJsVFALiyz9Okf4yPLqxQ1nc1GSK0bYBKT0QWt0CeJAmb1lCBKCJSG5ViYOmSikFhAJxlwXR1NoAtBnHF48OYbSNci0V1IJXoaMFdwEDE8+rFnMDcuEwtF7HeRTgbnwgUKD1+kt7PDE5cv8OjVy5xbX+fyxlmUUhi6cfogp2+s77X32t9xG4cJNX1AJwr7QADEpHGEki5p/QCVJCjRxdMEbaOMDFyevnqJxcULXF0vEfQ61BptNFMnt2rx8DWL7nGI2Q84rHfZ6fnkCzZ9JfnjPckLX2ly7yTgoB6zvxkT6xLNNdna66AcjV6k2Nvts7nZ5njH58d/4pMoTEqOxNHhuAP7CE5SDdtLsRNFrXXIYWcP27V47OIn2I9yHN69warTZalk4hQruCtnsVauUa647L7+Tbzru1gdib1YxA/AtsDJgmEN6B5Rouh2Q2xqfP7/fJ2Sfx03OcHVU1xTp3N8n7mSzuFxTPvBAW7kk0899q6/QbPVpnZYpN++i66qNPyQNw4F9+/u8dL//Bk+//kvs3P8FikHSD0iLc0Sbyyzfb9HI4qIpY+dzTBbLLPYfY0X3znmx95X5mOPzvHoWYds3me/ucfuq0cYxTzb96pksy6G4RAFNsI5QxTNY/VAhT1sRyeTLeKQR+9GGLkMVMWwei0IQyBM7ftCLWo2m/zmb/4mAJZtDxR/dAN0k64Xotku8x/+j5H6DHpuntLDj3L5Uz/Eh5dWKEmNt05CvCDA1RS6hE7kk0YBC4ai4Segm5imga0p7DggFtCKEyx9EL3RdElk6excfxOjlCPRMnSabVTskbd1Kk6WJ3/4eVi9iN+tkqYJslDCPn+OyqOX6d+9h57NoGctYt8jbDXRNUESx+iGNqb4jAHy8G/ko5aaNiiiptRAtSgZKdAM6TXDcZJyMA/HMp1DED+OSIvROgw/TCg+MA2nGYPXcUdMQPrg/VTl0yH9ZWrV4RbEKeA5ShiWQyrUmEY1XneU1Ds8bqkxYh1M+p5sR9O0UxWhR4BDjfuawPeBl36UJ6FOrzOspzCdwDsyeE7lEMC4wvHYi68mY6iYePTHxsvU5TGd9Dtal+G6gwjC5Dsh5Xhb49oKQ8MhTQf1CEZqUUJMFIdGNC8hxGlZSTGSlp0yfpJkSPkak7IYy8kO50zgB9zb3GRtZYG5Ug6lAqKwj0rBNAuo5tEg8qJqNHUXTxbJyBLvu3qZ+cXzXDtXYGf3AN8PMbMGpTMOVx9xaOz2sfpd7tV6tBVYGYd2YvDH+xp/+hd1qpHF7nZK9ViR6DrYBlvbbbSSQb0VsbXVZXu7R6um+NSPf5wkNZjLSpJYcezBgZLUUh3HS3BS2K7eoxM1KBVnubTxPAdhlv2br/FQJaFUcHAq87gr53FWHqZSsbn9tc+h3+li6TZaPkMYKWwL3BwYxmCe+GGK73tI/4QXfuc1lnkDM26TczT0NMBr7FHJa+wfxnTu7TBjgaofcXTnDs1mj+phEa9zA8doc78leGc/5M5bN/jO//obvPCFr3LYvoGh18DSSGbmCBbm2N7s0kwjMH1yxXkW7ASn8Rav3TvhJ56d4QevLXJuVZKaLQ6P9jl4p4HIuNy8vsXy6gJBP6Jajai1XTSxgdGM0fHIV4okfUlSi7FjiZ7JIKsaQhcg4e79e9y9ewfP84aG80SCdGSQDgzmQRRunCUlOHUNTfKOGBvfiqHU8DDqkCQpcTQQnvjMZz7z63yP9reOHIys+t+/v0mt7VN0SuSXFylfnmeuXGBOGjTDlG6nR0aElDIgVJcSgjY+QuRQDJLtTE0jiH0CAScHLexCDjIWwtDJGgZZM0MUSjbrfZw0JisiMsUET6VUZhZpmCYfezjPk8s5bt9e5eZrrxJpHvkoZu4Dj+AHIXebVaLEQ9d1/MDHNE00qZ0a9HHIdOqG+157r/1dtcHUHKpjkKCiLmnYJwkhivPEWhlL7ZB2qhh6iUxxhbRtUtBAC9uIOGaj7CLff46ZxTJr+SoyV2Txx1Puv36bg/tNdmoJx57k5H7IUarT72tkPI+MijCkjm0I6kceXqzo1BKWywb5RZ29TYuWn/Df/Nf/kh/7iZ9m49xVZnIFNE/RUYJizsRNUjp+gu0WyWVdHEPS6greeP1LbMwtoWSear3LSb2Koae0wy6R36QbBVR3t7nXCnjosMrS+iqr5wqQddCEotsJ6VWbOPv3+Te37/OT15b5+ss+WqBTKblkjQzmcYOj6JDilQJ7okMvzGHqq4RlnYpW5c79kMquzc7NmHp6h8PWK9Tqh3jtFs20jS8jwm6IN5tl9qklKqKA1z1EOSb1VodWs4lumBxZEXnh8cdfvcNCUbJWsTlbNji/sEywXqErdQ6MEE3LIjVBphhhyQ7Hb7aJ5y6Q6SRovSzxsUEQVrG0FG2nD9oMyYFJkpGIGYm2EaMvuxOex/dtDg4eMJqm4RaKPPKz/4AeDnlnhqVLD7F6YYHVcp45YVCLFK1Gg9mcIG+DrgIKKLrCB1EiVQG6pmFISBKfADjZbZCZLdOT4OiSrGmS0V2iUHC32sXqS+ayAs0wEKZNOV+hYVp8+vEMDxY/zfVXX2F7d4uEPnS6FB9aRqSSuLpPPwxJoxjbtREixet6GKZGjCKNp8LuQ7qRpslJwukInIvTnn8xxdkdY73hKqMgwLRa0OB1TLqZfDlNQWEAWqefN++WJB3lMZyiPg3BqRRiUHNs2EMyxek/xUmecoClw6rRavjdmC4zXHYQMRii7jHA/h70KoYgeIryMNgejPj5A2/m6PvJsuNjlQKJHFN1pg0jGEo3Dj2o08bItHLT6MhGoH3amBlECobncpoLNX1epyMlafqX8lAGcqnpoCrtKKox7EuNjImpfkae3LGcqZpU5mZ8LtPhsQyAXBAG3Llzl36/S0qE8mvIMEIpBy/UQCtjqy3i1gnZzDkScx68LHlNDe/3AZdXymysLzA/a7KQ6yIzBeZ/OuLmi99l/3bASUdycy+luhdxrHTaEcj9Dk5sYRkGukxoHPXxFPSPQy4tWqRzJs2qyUG7yz//r/5bfuYX/iErK5fQDQM9hEBI8hmNTJzQ8FOKhXlsfQZNSGrNkDfe+BpXzqzjpzbH+8f0+x2QinYYE/pN2nHE527f5Gynx7nbq8yvLrK8nsfPOugqodrwEcfHdPa3eGF3n0+/b4nPfrnPjFHELeRxVYw82OfYO6TycJm7qknoL4F+AYoFsqrJvXsh87sum+/4HHmvcNJq0Goe4nVatGkTyIi9uqK0sUDxoUVyqYXnHRHbNsdHVaTW4siUZPQUJ+3y7754k7WKzsaMw2PLOteWzuBf9mmlKXaSZXvrgJlShrmVDEkD9m5ucqAtcKHkkokrOF2BEcRozSOMkxRpL5DUEsgLnp1/iuhHPX7rf//XeIE/UMgSp5ku6bBYmhhGria3GTVxNowu32lcqyZFHU8l3f817W9sHEw8H9DsdnnzsA5aytmFIjOLFbT5GS7oCj8VNPyI1IC8qZOzoe/7NPoJWcOgGytcU2KZEkWCoVJO6jXq7YS42SRTyrMwU2Ypa5GxLYpzGTzPp93z8I2QxJQsFJbRDZdKnFLOWOSXl9Fsk0Qp7t+5SXRcZ25jluT4gPZxgz2/xrevv8SV9Uu4jgP6sBLjqGblqdAvgxPynoHwXvs7ayNvpoFI+pCkCGVCGiHS/tAD56LrWaTpYJgWHT2PpdVQnSp9X7BSeoyFlQx2LuZk/0Xq7/RY2MiB0mi3BO12TKvn0aynpGZKxjTIuAaOKbFMhS0i/H7EYilL0I8wE4VraTz3xAxbDzzeeuttipUFjo/7rG1cYnZpCVuX5A3Q0pSEBIREYtDu9njn/j1mczl6okyjPQDZYa+JYQtyxSVKpSV2cnkO7h1xv1GnfzukeLLPxTsZVLZEoivCOEJ4fSpelUKgaOGRWZ8no+dxpEmn38GNYrR+j3Z/F2f5DP1kgX6awTBm6DaPWXwM9m908fe7+GmPKOrQ2t7Ey9i4CzaWcOlHKb7q0zncxS5pXLuyQVtaGIFOEvl4AnByzMge2/UqvVCx17TohS4lx4bII+wFrLgWQteIiSH2UFHI/GwRPe0ivJjE84g80Po6umUikiYib4HuoEwN2ho4CfqS8/01DOSkqqam6xTmF3BXz0MtJen4lAo51mfnOKMr+gnU/QTD1ShmdCwtoeeHdPoJWcOkFcVUXB3LAEECccRJs0mtHXPcblFemGO5lCNr6GRci8J8Fr/do96KCXIe5Zk8lVIOTXcoBQlOTufsxsagKJ1tsbOzRXrcoLA6S3y0jyc9skUTU59FJjHJ0YC7rVSK1CceXZEOnqxyKvl4LLU0vgKHn0cA+3ucgwGOnlapGfnRT/UyjiikY7rSZPmRbOEgODAdAWCcUzD4acpNf2r31Lvx+/DHMcYfry/EVCRBMKDDTEcGGEVThtufoiicAtIIhJQDz/kQCI/3capNfx5TeqcMrZFRdspgmsozkEKQTikFMQTeI+/8KLIzHozpY1eMx3aSb/iugRqe37Hs+eh8j/ubGBHj4lKDkM4gOjFcbhwXmOrvdERheE9/1/kbJUs3mw2+9KUvc3nFQUNDIgdCLngoaSBkFtPyMSybIHHxI7BkA9U+oeuZXD33EYyiDaJG/fBNmjs9li7kiSKDVjOl1o/QnJR2K0GZiqKp4Vo6rqNhS4VOROTFrMzk6LdCRKRYm3VxH7HY2/N54823mP/SV7h0ucfa2QvkS0UwJFkDtCTFJ8aSBnGiqHWabO7uMpcr0FRljuvHtNtNZNjFsk3ypVlKZYu7bpaDG7vcOjmg6nco7W9z9qZDmquQyBg/iMj4bXSvSS5MaeJRuLjKTGaGNEnxujWcMEbrezT72xTOn6cTzqOkjsE8XrvOYgl2XmsT1Tt4wsNv12gd7+O7NtklG4csLT+i5zUwqoe4hQUee+gsTWHjZmK8OCTUdTTboESP7foJXV/woG5T9B1cCanfJ+p7rDmSaqJjyBgtibGkIjuTEnY80qYkanUwAwctMRG6RMgOqpgDzUI5GrNLJc5V1nEMexgpEANJ5qm8nXEkbXwvOK1gNHIkTEfoxnNzRFH8G2Lbv1XkYGQRP2jU6HQDLA3mZxxmKlm6SlLRBEdKIdIEN2ti6ylCJfQTjUMvYB2XWFeUXBNLF9T9gOOGz/bRIUFqEdaalPszWJbJvCNxTMnCcondu03q7SqRnkJulsfKeQ6bMTNKo9NP0RyNQmmWtYef5N6NLXonDXrLWeYyOmbR4KR6xBe/81UurV8gHZY/13QNJGMDYXK1MlBOmHYVvdfea38HTUoDjYhU6mDaCNVFFx2k55NqGaRjDh6CfhfN1NHNkKDeIAjmmF16iEy5QK97l5vNHDuv3ySJPHqewnZdLCnR+hpduhR0naImsRwN3dYRUYKIEhxTY6Gkk+YkzVZCFOs8cilLzsqR2etw994b7B422dg94eFrV8m4GvsI3FigpEVKTD/sctius1Wt8b5LH+Ebd9t0u7s4okUpK8lbLpkzK1S0iL7dpdcPaSQe20mLlt/n4CtHzOUXaOspdsFgpmzTtXSee2id7xzs8vDTV8kX5mg3fA7euUvQilgu2Wx3m8ytP4nlLFH3NGI/Rth5rl6Z5YQt6i+/hiF1Vi6cxxdt9oSObsSYFYe8luJ3+vRv3KR9XpFdeZyMgNJsBk2meECgZ8lqx8ytJohOzEknZa+XcFRrE3ZPSI7aXFlaJj9rItKUXiuCns+55SLJXg0/zKJ3Y2Q3hsAibZukSQsRO0hbgWmjpCI5TqY41d+fpmkjmgUYjs3cxXP0+yGmnoKT4uqSnNQoanCshvliJRfLUKQRdGPBsZ/iCodYS6nkXEKVUO+HnDT67FYPCFKb8KjKitDIWxqZvEPG0VlYLrH9Tp1a84B6apCplKjkM1Q7MeVUcNSOKJVdFtfO0/IF23cOif02ubVFjLSOsAPshQxJZNPeO0INk6MVEwBLolDD274UDChEY8Ng4I0fKYbAEIC+S1Z27GWHsWKOkFOmwdibN1x+GDUQ4hQ2HLfpZMORd3/4w3j9sRToiM4yNDTUKBIw4TMxQQtD/DtVVXhkiYzUm6a/FyPz5hTIH9EXxJiuMzrWURBlBOhHtAc1BDCTYMpEOWUE/Ef7q5RCqEny8QifTyswjfj76anzMqVMpIB0SPfSJ4BqenzlEMyP6xiMoh6j8Wc64jEVIZmmAU2df03KIf1seltqnMcupUClE8NCnAJyg9yJUZTI8zy+9tWv8vOfepRsYQNNs9Bliqn1EWFEbOTRMzZRAsQ+ugm6FhD4dQJ/jfVLT2GYHkfVt6lWHfbfuIsiIExN8jkTKTRiX+HRp2AYlDWBmbXQpETGCUQpumWwVDKIXMFJLaWYt1i8ZFHMxGwddnnjzZe4v9Xk0ScbnNlYxrY0JAI3kqS6RaJ8mv02h+0G9a7HY+c+xBfeqRN5DygYIaWMTj6bw11ZoaJHVLUc3VqLbrNJL23QaLXYeaXKYmmJYy1kds4hlzXIuzZPrc3w8t4e73/+KWy7zN7mMd5mk8SPmSlabLYanHl6DREX6PoQB3n0wgyXL86w3btD96VvUlgrYy06xI7iSAh0M8SaK5BNffonbfzbt+htJOSWHyGDYm7eIVIJnjRJdR1XVllYSxDNlO12TLMekvY6xN0qquZxvphldWWGWr1Ju94mF0vOz5iI0Kd/7CDDAJHayNRAYILqotIW0i2gQovUehV/qQAAIABJREFUSFHdEEs3x3NLCkk6fe8aXaoj+1VM7gGTi3v0MjEgRiv/bZzef3PjYNh/lCZcbxyhpQHpSZd6qURGE1R0BZpORqWs5jQOwoQwDGmHIa1Q4jo6W52Qq2tFDMegFwQc1Nr8T9/aISkco3XhUdelkCZ0Ol2ObEXezlCyF3nFb3F8skm2nCdXeISy1NkKepzYWdJeRFYK9JyB5WQJWML1b9LY3+eRxy+yOKPDzR7KSyjli0hNI4ojwjhA03Qcy5ka8KGk2ti6ei95+b32d9eUihF2FhmFqFghTYuIGNG7Txhl0fQyfc+j59eZWSzTV1lErkJu9iyabhO26+hBhw9fvsTNoyavX6/StjUuP7TAo+sVmjX47W++zpNLLolhkKYxcewRxJIwEVRmXcIwwMk7FAybVlPxzl7IwvkZPn01z0tbdd66dZfPvnCP3/3sZ8nrCmUZnJ9ZJVM5S+KGJKqBHWlsXPs0n/3yMbt736ayklI8v8bM6kXWzTx6IcurL3+Lw709dBGRndPp9gWf/KGP8/t7f8gzFZNDGTNzbpaV80vcq4fsZ3Rq7ZSFxUXsbAkzD7aT4fjPbmCunmc91en3Y/KZEEPP8cq9Nh/60BLCNnj8Yxv837deR0s03veRa2Ted5nudpPNF/433AWNS1eKlIRi81s71BoP+L3PRzx57QrefJaZgkvJcUFmWcyV0OQ8SaXP2dShFUQcte5TO0p483qPg+M93nc2oJIpI/0CXqfDYXWLWXsdIy7jJDO4wsLUIlSrh6CBME3QbbBtiFOS/eD7Pu8EA8AsdciU85z/wKNUuyHRfp1zT1zlzNIsRV0gdUlBpczmNTb9hDDs0wsU/UTDMjU22wFPnJshNjT67Q5vbtf47DsHxLkqtBXP5bOEYUC93caUMa7hULYX+Ea/RvXgOoulpyjmZsgLyX7k07BypP0IhIbtmFhuiVAsErXfxD86oFy2KRXyeA2f4+0mjZM2KSlO3kKzJX43JPJjSMSgcLJSJNEQ3I2Kcw1zYJUQJHEyedYOHwupGoE+NfR4q1PPj8GFOzWYUx7vAegcwc6h82kKxKZquB/DKs1j4Dx+Bk0TaRhHEdT0h9GSU9tVirG3/ZQ0qVIDWtLYFhkZPN/LMTaquCpQaqgslIw4/GM3/dReMjYQRsehGFGfJonCaiqBe1AddvB+upLzqOjZqIm/BNbVNDl4ar0p1ZZpqtbUeZg2NAY0rYmxkaSTGggjj+xYyWhqG2kqpqIDarysFBIlB0nKQkqSsZLToA+VJkMjXJJGEYuzBTyhUzAHOTJBmoJUWMkOUVJGpvM0G4cIMyZfztNPs8j8DIXFi6g0ImrVKUvFhy5f5E6jw3dfOsYruHz4yXnmslm29z3+4votnl5yCQ0dFUeEkSCMBanQKM26eH5AruxSRNLqKpqpYv5ymaceLfLVuye8/ubrvPI7b0Oi4eoKYZlcmF0jM3eJwKpC2CHvzDN/9sP8yZcO2d75CquXbTIbD7FQWWHeyiJck1e/822qe7vkiopACYr5Cu976CE+d/QCH60YKBIevbYG2Swn/ZgDS1BvJ6yvrdGNdVacIm1D0Xt9D3P1DGcTnV6rxdJckQf1hONazIUnZxG2yTM/eoH/4etf4IMrZ7l07RzZzpN4u3Xuf26bwrrOEw+v42832b9dpXF8n9/9vMczTz9CZDjM5bJUDBfDsJnJVDDkAlG5x1pSoNY74aS5zfGe5O23d9k9bPEJ6eIf+HROfII4pnSQUhEWuneRnLlO1jDR/BDaXZANhGmDmQUb0k6IOgmQQkNKDZJ4Qo2bvmbFUEY3HdUwmEQCGVHv4NS1PqbRSTG8+3wvF8Xp9reKHKSpIk1iNtC53qjRbcNBO8LpJ8xnJbaANlATEKVgCB3NkCSpohyHbOo1CnaRrK741maV3/7Gy5wcfwPvt29ipDpP/xe/Sm4xT9D0eeeoysc/+AjS1alZh7TDY4rYFPM27VhwN7L5UNGg2Q+wlIYrDDzdIDu3Tu/wKxh1xRv7XR45N8cvffqjLLqPsNW9y7nSZXYOHvDKze9iWw6ffPZHsS17eAORk6t+7Pn43uHS99p77T94UzFCdwYPm6hP5PdJJMjco5D2iVo1LMvAya/gH92m0T7i3JM/xdHBfXoPbqOCBK1UInBcHvrhZ2n9X9+GuE+3CW++Xad31OUDDy/g1E9wdZ3UMaiHGq0+zFkpdlaR9jWqLTAth9lZm6TV4+BWFfnww6wsFMitw/a+z4M3WtiGQrMEfqaMNROTCh3dfZTKueeo9XRu3fhn/MTPf4qHrz5BKT9DHCmqTZ9q1aPZjnCNLMvLa8Sm4vbODXrVhF/7p7/Mtz/7F8w+eoX1yxvMFByceot/8Vtf4PzzH2LbrDBv2WRMyJgavY//DDe+fYMzj63Q2Y+QIsLRUrLvRHjneiwVS+ybJs1Cnruvv8zxH+7wI7/0y2T6oF38IM3tV7jvdXnoyjwf/5lneeXNt/jOvR7f/NaXWKvElCwIejrbzRxXH/8oi2vz5E2Dsws252YzPLp4FnEp4KPPdfnSt9/k1tdvcyHSeeLKBTphwEEjZPe+h767z2LQYFEU0fU5pFsBZxlMidJMVKoNwKKljXXnv18tjhNMy8ZyHbQkYfelV1HlM5zUFCvCRaGjJQrThL4QnChIUoWrWfjmIHJcikMe6A0qzhwiTXjhxhYvvPUyR/uv0H/xHjLRMX/rn2ELi+O9Bn6tzdPXLqC5BifWFj2vTtYWOI5FM9F5kLh8OGOw0+zi4qAE5K0MbnmR3v4XoZGQu7jBo5UC0U6VXTPlsfd/hD/9P/6C2eUs5lyGk8069a0GkR9jaoKwH6OEQtMFSopBZdJ05NUeRFDGAJfBA3cMWoeUmmnezoTHzru8eUMmiibGOFowpJhwClcPqS2TcyHGfCM1iRSMwftUvYOp/0Ocf5qPPAVspxV0pgH2xOyYWETTib9JMjBaRoB+OmIw2tdTsqFikvysUoUS6QTcTEUhgKE0qBhHJKbbWKVIDHJgxlSn4e9pMqrPMCwW9S4lqEkoR4y3Oxo1ecroEGNt+fFxDb3+pyIsDAy5KIoGVY4tCzVMYE6H82VEZVIokjQZiEsk6fhYxttEjKMpD197mGxpFSebgzghTmLQNVLjcVB9vPoB2UIBEo/+/iYdv8PZJ3+K7c03CHYOkKYLORvlFrn6yQ9ycvR1lBmzvxdz4B8RegHvvzKHXTuhYhhEOYO9piRNoOKkWJmURGocVKFQKLBopQQtj6M7TdKHHuL8So7iZcmt11o09z1MQ6GZOr3MDPasRxRkKKx/gMzsFY7rPW6/8y/4hV/7GR669DSOYdP3E+qtgE6tR6sbUbQLnL98le3GFv1OFy11+NV/+g/52u/+ERd/8BMsbSxi65DeO+R/+XevcP65j3BPuhQdg4KdYl68QGDkeef1O2w8tUbznkchk5A5SXHuhgRLfZYKJvdti1apyB+9+GWuxXs8/AOfwPUV8tLznNz4FreCHo8/ssK5i6tcv3WPVx90+PKX/pzLSwm2kjQ6Bu14lotXn2FxbY6ioXN1Pc8jy7PYa1dJHvY5+liXP/vqy3ztT17lI49eY2NdZ2tnhxe3O8wHJuVOHVOL0M15XKOEcOchcwYsbVAEM4ZEKEKREsuRcsIAzKdJOoxOjubgKAo5mbuDyNfgczLt7BZiLIcKg2t3umDhX9f+dgnJAsI44ms3X0MrrBBWD4l6fVIvGtM1TQV9TFwtRiIIEBTTmCDscHFmGakZmCImu5jDvrxO8uU/wFhfYukXf54feexJmne3+ebt22jFMugOpbyid+MuXqNDumiicPCEzrLfQ7ds7EJMX2j0Q4UnUjzRolprgm3xUD7Lxvx5yoXz+MIgY5fY8n+PN5M3eaWxy+6dHp//5p/x937g03z8mU8idfPU4b47Wey99l77fjYVd0BFkPposo/r+iSRSaIEqddFWi7SyKLZLubG07hen1deucX6mQILD19FaINIWKoUui2YeV8DM6hjJC38apU7Jy1ypsGxHxPk10gPu7haSHnWJhUe+8dtak4Wizx+z6JTD5ENn6uGw0tfuk3SVVxdLPIDl1cp/8qzeNkcudw692JJVk8oaAUCL8vbd+q89tl/xT/+jX/OY6U8upAEkaIdJvS6Edev3yG/UOJMocRJs4vn6bz/yofYmC9w+7DD/V6Pcj5LS3fZ3vPYfOeATnTA3t195j+wQNtXtIXgUs5BnV1gZTHHTpAwL3TcBJK+x+qzEmvJJRTgaJC/cA65v09j7zZh0OGTF4oUokeozbY42r7Ha2/tcRIpPvX8r/Hc0+/wctVjZ7uFH8ScyUk+nIFv3Wuw97pPvDxH9V6bF1WDwmqWH3pcY9VZ4R88f4VXl7+CdxISG+tcvrDC0sEJ+qU9jFqWYEsjObbxogKOmUWraEhbI01AlAXGuoa+Yf6/T5R/700g0hRNCpycS2VlFi+zSOt4m36zR6vdw8toaG4GUyn6mBS0EKEEllBk04Gm+qWZFWIkeRmSvbiIcVAhfbGNfXGd+V/5RX7u0hN87gvf4PZJi5W1VZ7WbUp5RfOVGxCmgE0qbFKhsxh0QLfQMx4ngYuUkkDGpHqPdtvDKVmcmy3yyNoTmMsW7WsBM0tlfupHz/OtvVf4+lcOSSlRnneIQ5+9W03iMCaJGRsDui4QSMJwKMkpxNCLrxh7jcRE/WMMwJkYBuOkPyZdjF7ToeEx5qjLofJOOgDHo+Wm5Qcnmv8jKsygPymntzJ5OzIIxvDzXRSZyXENlh5FFQaAdmJsjKk0mnY6qZYJ6B3OlAGoFhMn2qnkZNRQRXZYeAwxNpxOj9RgPEfqTEqNtNsHYzGidg1q8wlGqc7vdt5975jHwOiTchSdmVCLUhSa0gYgPklO9ze0zKalIcdxnymVokksSJGmCZqmT2+cSYTitLd2ejyzuRy//Mu/iGUaGFqEZgSoJCUONWBQO0BmSmh2DmnOYFWWyPgBL337OpcvzaItLgwiKqP5YaTMP3tMJm2Ti+ts3+uwfdTEVToHfozPBdT2AaWCRi6vEamAk2qbqp0nq0rs1QR+NyDTj1jTbL71wg3SLjxzdoafvvYQ9o8sEmULuJkV7saSkhZR1Oc5qum8/dYtdl/7HP/kv/sNnixlSRT4gaIbpDTrPW7duE9peYZzJcWdvV3ydoUrK1eYLbjcOWqz6fW5MltmN9SpbjW4c+OATrDP7t0D1n/wDK91UzZciVvOolkGc2dK3AtSNuYMRKDIlHwWn9IxF1xCICsh/9ijHLy4T+uoiYnPD18sk4seoz5zxO69XV58bYeLD13koz/wj/iId5tvHPfZvdfAMQRPZAU5KXl9u87uqz5qY4kX3jkidiSLqzrPXJAsucv80id+ia/M2Zy8EdITeZafWuXCkxpz0sc6qeDd1PG8IhhFHDcDRQ0jZ5BEKWExoJ1L6RwqtJc10AQiEWMn9eia/svFDCdUPCkmEa4xBfHUzWASIZP/vo0DwUDaLDtXZP/2Hu3mPkZRw/cKqCRHOx6oPhRQaLpOI/Tp+D4l16VpL7JdrTPnasSuxaV8gV+8sM6/fPwp/OoJf//CJVZzBfqGIIzb1A+qeHyCZtCnXzshsQS5mTxzuSyNVoIh6+RknlbkEyQaGWDGCPG97xClHknGYqWwzEpmFc3Ichj2sZJNUupcKCvO/sAse48X+e5Ojz966Xe427pBWE349Ef/IzZWzw9v2gp9rLX8XnuvfX+aUoo0qiGkAVEfUm/w6vmk/QCjsjJ4cMYhSb9NWD8mzecRyREbxTJpaOPV9kniI/zYpKMuYMsG2UyFuLPL/c1dtg6bGBUJKsYqZuj1GmSMBFdL8FsxJwJyM/N4uzG9fo8gbOMlg+ID19sdNpRg5eIGSukEkUurmuHlz97EKd2jmbRZP3eVjlOmdtzk3p3bfPLnfoHL5SJCl6SJotuPuL91zOtvv8LTl2Z40JSEzjyFgkYRSUZZtMKIrfp3Kc5mWSlmmMvqbLdCNjf3sVaydI0eXppwxhZst2P+eD/gU+ey9A0o9FPCGDo9D0tXVC7Och/JTApZATkHhCU46US8ff0uzzx1Dq1gU9SfwLWKxMe3SQ8e8MU/+rf89Kc/yKeKa9TX4KSfEAQxc07IT15wEa2b9JMDbKOMkTh47ZDr79h87Mk8hgi5tv4svZkuYbtBcHSH2Y1rEC8jA0gf01CBDoGGDAVCB5mRKFMgLAEmg7/vc9OkQJMClURATGm+THNzj9g/pNPdRFc5DK1EJx5wyIsCNNNgv90nVVDIOjQdi61anTMFg9g0+OjcDOnlC/zO5jWiVpufu3CZspPBsgV9/5hqAzyeoR549E+OcdbyzM8VyRg27XaIQZ28nmdPhUQeVCxBUTQI/VdBBFDIcLl8ESt2OOkHVJMO2aCGafV5eiXDUz95jjePu7x2p8rOWydcXF2kfa/L5isn+L0IoQ2kApN44pFLSSdO56HnXnsXEB4B7VEOwjjvYCocMA2sESCUZKRNPup+rFA0hL2n1G9GgFVOceyBUQ7D8O3gddpIGLYxiB1505n2+o9oOhPAIYU8VSVZvJu/z+T4J575yeeRatOYxjPen0Hl8+nvpo2JEdtqMKwCpWmD78Y1CYbefykRQk7RfCZjJYYcoHHC9VQ+xfj4RtKl0+OiRuM5zG0YhnjGicpTyw5sBjGmKkVxNN69MV1pvMbpiIMYUj/UkC4ihGRjY5X//jf+SyqzKwSdXeKwRfPoPlGnR6F0CWehhKRE7PdITvYIpUbqmGiqxdnSDF7HQGveIkr6eGkBTy1ja01KpXmSB5u8fmeHes9DKwggwS5nabePqWQStCSi0wJfM3DL8/S3Ivpek14YEClBLxF4gc85JBtXL9Np9/jGV97Ckw+ws4sYuTfp0uXQcyiZZWKvh523+cRP/RQXS3liTaCilGrT5+adTQ4OH/DYhSIPmhI/s8LCpRRTmRhoNIIe241XmF2ssJazkYbkpN9h/6SGseTS0bv4ScqjWZ1XD32UUrx/yaZvCordlG4Cab+NUbCw8y5bSGYU5AXksrAtBXsnHe7eesCjD6+iFV3KxgfJaG+TtO7j3XmLFw9P+Hs/8jQ/Ud7g6EzCUTfBIWbRSjj/kAHNm3TTHXLnZ0l7gv2TDr//5zUemt3lgx/+EBcqz1B9aBtaVdL2AXc7gos/9CmM2CT3ARMZGshER0t1hKbQCjqaJZEywpI5Vu+0qMzNsHO4dypaNc7fGV/vk0jgyEmRTs8z3kUrGk6+kWTv36T9LY0DgaEbPLl2kZt3vkGiG3T7ESfNHidBQtlQeEKQl+Aj0TSTjJHSTWIcCRuOSa3bJpFZim6Wh8tFfuGHPsHn/+iP+VCuiKUZmJUC+ZLL/st3sKSkE/VJvB6ZwgIzhQXyusZbjRZLOY2WimiRw8JAJQn7fo/2yT0ikVCuzLFcWkJJyWZ3m1DVWTVaePEJBSvGdhJKWYVp6vzB7Q5vvvVtgnZKlAR87AOf5Omrz74XNXivff+bUkDKoPqZgQo7CDHgoKfJIUKvkPbbEG8NtOhtDU03SY0clmthZjOE/UNU1ERZBtI9Q9RzmZnN8PVvfJ3dB9scV5tEKmJjNkunH9APBQU3wVAJQkGMxJMGh7s6aWAhZELOEaw7LrPlOSpem0JqkZ05y85hn6iTkp7UmQ0jkuohy6uz2LZBt3OA39ihnA956vIZirpkL4FWS3FwHFH1BJcvbyBnMqyXHMp5l2o/odMLUfhIq8fJ7QMef/J5KjNlOr0edw/2qYZVPApYHZ+mHzObKooGbDiKQMFu26eQcenqg+rHKpaYliBIY7qhpEVKxg4oFQQPLIfbu4esn3FZLa2zG5XRZlOMfEpa63G8vc+f/P5XefyZJ1haXqdQdugEHfpJRIEaufkyWtgmq4dkhE5ciChEBoEfYDgajumg5V0iM4sVJZhuBqUkIqMGNWwSUKmAEb1dZ6x7PZgP6V85Vf4DTsKhRntM0Otxsr1DQhYsh24n4KgTsBjEFE0TXwpMAX0krmHhxTF+mpCVig3HYrdRZ7ZcomC5fHB9jfj5D/H1z3+R5/MFIqFRXJnFuHUdb3cXQ0An6JP0u+QLV5nLltHSlFqnzWxG0EgiuqLCjNDo+BF7zQad2haxUMzPLbKaX6GtAjpGFSEOSPpNDLdKxRFkMgORDD1xaO1L+s0YK6exdLXEwa0mXjsiSdWQOqO+56iIYfXkNFXjh+14xEYUFDF03w2sgKnfR50M/uTI+z2VYDs2FsQkN2DwkB8hAsYVhmGoYT69D6N/098LJvsz2oZisG8jr+QQsI5AuRRywtFnApgn3byLioMCNdJWnzKORqhl7PWc/H5K/UgIRnKlisn+jzY1So4eHhpCDCItYy/qlHf0tBzr1HGPcg3GxzJFfRqOyyT6M0XhePdcGJ9nxmpNpz2zw22lKXIYdZmmXiml0HV9nEBeKhW4fOkCV69eQQpI+jX+4s+/SKWgc+HcWbrKwN+5RybXROouKiMJYp0osSgWVjFzGbr125iyjWHPINQihFmK5Qxf/vIL7G/uc1jvkM1pzGYtekFIL4CZbIyRppCmREKjLQz293SS0AQZMp81qOQLVJwMRb9DXtkUFs7y1o19stT/H/bePNiyLCvv++195jvf++6bp8yXY2VmzdVVXT3RFE3TTSvUGCwLE1gRDoUibIeN7ZAUmBCgJiRkhyQbQxCEERIgAwappW5wj3R30WMNWZWVWXNlVc6Zb7zv3Xk6497+444vuxrRWGqQXasi6713z7ln3Pucb631rW+RihR2q4nyWywu5QhiEN1rJH6b/NwGDxxfIW8IbsXQrClu7YVEVoqjJ9Yxix4bRY/ZUoYbNR8VxgjZJ9EN9q/s8tjjHyabdrm6s8+tgx1qYQufHHarTy1ImLNg0dUkCnqJZqvlU8ikaUSggxQpW5NYEOiYTiCooyhnfFJ5h2avx9WtbeYXbY6Wj3CtXya7dhLZiQn2r9LYu8UffarHuz/4OAuLR8m7Pr0wpK8CcqJLZnEW4ddImpfJZvNseC6Rinj11YvMLc2xuHSG7e1d3rq2x9bV69T7CTe3DlicX+RDT/wQsytzWNJGMlCpwjORlsRCYmqFl0uRzqbHY3k02waUd43WAynTZDhGxZh3OJkDo9Yo02NyFHR4+9za29t33efAFJK1fJF0SmIYJn6zR6PaohaERCmbvpbM2NDVCi0kpmERhz5lU2OmXDZ7TWKlQCtSJrzv5DqNE6ukGHBVbccklXKQSoEKaffaSC3IpwoUUjlMrWj12pyaS9HqK2I8MloR+z3udBr023WEbbI0u0HWKxAT01ENLLmLJwOEobFNsERESkacK0sq9xa48EqfervBxSvPsjy/yrljD5Dy0n/mC/mOvWP/Pkyj0Yk/+E1FIFMIMwMosGuY7gJJ7SaG1GgjQRgpLJ1D+aATi1CHGLKLmcqCnceyFjA9SaGcIYyb3Ky0aLZCSgUD0zDxVUToa9KmxpaaCElHuCiZpRvZFA3NXDnHgitZtATzGZdZJ83eQZZW7GHFIW7YJ5cEnMtGdFM25fWB2sROc5NO+w7Z8gzLBQdbQC3S7LcV/VhQLKY5uZijFkYUHRdBhOgkWEqTdqAXdslaRdaPHsHLpHjz1Td56dU3UI6PiAuElTp+EBMqyNgSN22wu9PEdiVRJwLTRNomwpEkhiIrBTebIa6rcF1NdsbDLGbYP9jj+m6Oh04u07QsetYsomBiegml8AJ3bt7hwkWDY80Ox1ZnmS25HEQKon0iw8RJdZEyRMkGppewpApEsY2KZnEsE8twMVMlHNMegpEh+DeGAG2EeoBpUHlIVvF7OQb1JPIt4gTdamKWPIQw6R20qTV7NMOYSA3u46ylaSiFJU0QCqVCcgZYKZcbvRplDaiY+azL+06s0bk6j5MotJngpR0cy0QFIToJafXbGEhK2RmyjouKQzpBl6MzHvVejDYyuCpir9tjs1HD77UQtsnK3Akc0yZWXcxUQFr3SOsmjgkpS+CIgNW0Ri87dM4UOf/yAYEvKThp2jWfOFQE3WRKDUdMAechT94YSXfqMchlFDjXI9w8HWWeent8h3fymG0iJqB/7F+M/hjflAllYBxsv8tBmGz38OeHMwmTaKSUYnz8E1UeJlhjGmBzdz3EdGfnaYWiiWPD2HmYyizcfU2mqBPjKP3dKRExtQwxpkJNruFIsnQ0b0ZHfRetAg6BdTGMpo6jsN92XmLcqXp8Z6e2d8jnEwNHbuIITGVP7nIQYFA/ceL4Bh/6ge8DIPTb/MmfPMXTz17kscfOMBfB1Stv8MDGDKlijLAjtJVF9wyibp9OM8bwJJbRwc3MI9xFbFHCSwxyJY++X+XydhtUTCZnIQyTfhITJpqCpTGloi0kHeEQqTTd0KZkKhYWZ1k1FfOuQ9nzyBs5KrUs+01BRlnknRSOTLCsmCBro1IW86bioLOPafgUcoqFrIOFZj+CWkujDYP5+RJLxRnacUzR8UAHyCjBEWAbCX4/IGeXOHr8KNI2efX1a1y/cxNlxxBlCfdr+JEi0pr5lEm/F3Cw38Z2JGE7QlgGRspGWxoMjYfmejPESykyWUF6LktnJ2D3oMKt3QwP37NCxbZJ3GVERiMdgUpeZefObZ59zuWe012OrRQoeQatKETHVSLDxMt06fh7kOpScArca8V0qgk377zM2voZivlZmj3NC2/cIIxizj//EgsLC/TDiGPHjnH06AYnTpxAaGNQbyL08JE/ePYnowZnI+dgWEuD1sMkWjyR851ynCeTbjTsJ2N8tMaApvgdpI/vsj+7czAViDBQLJVyVG936DSa+AcVGq0GrayFEja2JbF0TEslBErjmZB3DJpakfFcsoaFDiPqcR/HSHjfe+5jN+iy4dp4cUTKMEktzNEPO3R/ggyCAAAgAElEQVR7HVw3SyGfwXENoiRE6j6WnCFqgWvHWCqk3W+wV9tBC4mbdlmfO44WglgFpG1BygoxRYu0mcGSPlIrpI7w0pIfe7xEmDKpfaNNd99ne3+Tm1vXOXP83vHpv1N/8I79hzcNOkHHLUCCVgh3YbAkrqGlgeW6UEyBOoLWIUo4EDvI7j79RpVekiGbsxGpZaSdwTICnGwaKRWnT87ywuu3iNs+wjRphtCIJZ6EuBNheYK+bbCPg5uUKJdNVuMWp1fLLKYsUn6HpNuml1rnSi1Nu17lSNRnIfJxOxHpWaivLNOxXfYrW2zu3KHe2CdVkDiWiUATxQoLzXrRZr5ggRAUkwSpE3Y6PXSSMOeZZDzJnZt97nnkAeaKLt044c2rt3jj0kusPbyOcDT7tQOSMB4+lCS+MKhu7/HI/RtcvVLHyim8nIXpmYSGZFHC12/XuHdGYlgW9kyOVNnF39vi5k6ZU0sHFOwCBhk6RpZoJoen2zy8ss35b9xis7JFtX6U99x7hplcCiej6fsv4zkWwhD4JAitSTllZFyl569jyBNYpgQsEDaMJDHFkIIwAjPJWONlEu2dRovfQxNCYBoGpjSwEGRNTSprU0/6JNV9gkaVTr9DO2OjpIVjCkwd0VaaWEDaEuRtSVMrCqkUGQz6vk+iAnKu5j3vPsftdpN7TIkbRWRyWSJP0wvadLptXDdHqZBGGpow6qNiH1vOUG9q0l6MEfZpdvaptqogJXbaYWP2FG2/Q2IF5D2Dom2Tj00My8E1A0ydIIk5uWBSyi1xICOaz9UIqgmZWYewFxP2exx6iQrGFJJRsWwSj4qQR0BxlOIZZhzUxKkQI5oLdwWgh7QVwxjRi6av/fAnw0zFcBujIPZIq3wUMXy7l/wIDEwxfr59DI3A+ng5U0H2karP6LjHI3OqM/QUKBkehFIKCRPgPQI1I5AzpOIkeqo52ORwhk7E2/cjGK83RfFRKmHsXQy3Mjk+OQD1ehBt/dPmkJQSpTVqXHMwOTIpR92kpxukieG+1MSJPqR0O6VcNO1UiEGmaOTYOI7Dffee5WMf/RCVvR1ajRq/83ufZWmtTKZYoNZs8uyFizz40I8hs8sEcZd+3yCOQwgaVDZ3kJl1FlcKJO4GpmXgWArPdZEozp2Z56vP38YxDWIhaYaaRixIGRC2QoysoCkM6omLqbIUCi5HVIsH1heYlRFGt4WK+rTNFd6qeuxcu8GjdkJRJ6ScBDObcDBf5uJBnQhFtdXEcTWeq7CNwfmHkcYFji26ZFODDJGhekgVc7PVISVhxrOJEkm7rzjzyP3MZA2qfsTLl15lu7bDzPFlpKk4qFZIkqH8sGnSDft09lvce3qVy5frpOZsvJyFtk20FJS15ls36zy2IJFeCm8uh906oN844OZukXtWq8x6eRpmDt8+jTYz5O2IpfUdvv7ly9zZv8P3P3Ifp46sMpMysNIxvf4rZNIe3lJCrKokNJhdzPPhjxzn68+/ReDvc+LYKrdPneDCc8+zf/M2lYMDKgcH3Lh1i7XVNZ74/u/nJ37iJ1hcWkIIiJOYTruN3++zs7NDtV6fcnInc8cYjimlxDjzOBxl46zf9Dy9W2J3NDZH8+zfZX9m50CMJ4tBMV3mgVP30G1pdjZ38fs1br/8ChuZd3GkVKSmNBlp0TKhqWMWhAFYBGKTOW+BIOyz2W5R6yc8tDJHefYofr9KM0yTz2Y5t7TA7au7JP02jhDMzJRYWlrGzWRp93qUVYiBSaISrCikL/tsBTvcuv0KXrZA2kg4N5sljn2qnRZGqsaatYevoZXUKJpd0kaMiUISIg3J0dMJn/9sk+pewFdrf4Lfj/n5jV+cNFt5xzF4x74nNpi00siA4RHWK0ATaQcYboqw/Roi6CNcl1iXiBIbpQNkPkuqu0V2+VGisE/1oEaid5lfSGPYcwhxQGkmjyksDGHgehahhmpbc3pRMRcEXJce29KGWNIBFjoGj59ew9/tETox5oxNzVvlqa/XaO7d4IdnPVYDg1So0aYiaCS8cb3J5Sv79DMxzSTAtB2yeW/AzdUxc1phlCSOAQhNI9HoMKQZmsRxmrm0gSP6bNe26ERVTpzcwLY0X756wHN3dul292hvmhQzin3bYSdOOBolxNritnCZffgY127ErCzmaDsQmtARgo6GR3VC0tjlRpAiNDWeJfDyIdHthMbmba5tlJihR8pbJJUtUzfLPN//CP/JkTd44q+keOaFCt94/hYvvniH73//Gh967Bw5t0cQ72MbIE2TQFsooZEOWP1XQTlobQA5kqSLaeYO3+7hQ10LCXEy4iUM+eXyrvDz98Zs28axHYQQ1OstXrxwmZ/8wIfo1q9R2z2gsXWT22mbBfssq8U8lURQMhwqRoASmpww0EhCsceSt0KzW+VmvYttWhyfLbC+dga/u08lyLAxO8NmeZbNSpOo38JEky8WWV1ZJZYm3XYLs9MEvYrWCjvq0LD6bDZvUK3ewk3n8GTCQws59nu7VJ0Gc+Y+eb1HO6nT1z5LMsYyYkwRIYjJpx0ef2yOb3xxk96+wnRN7KyNtAJEpBFSo+NRxFmMX7YqiQfv1GEx8ODd/XYv2iHAnIrYIUcR6cHLfCRbOlllAiAndpjTfzgSONmtHlGCmGxHjMAFDLT2jfEWJ8wiMfme0qNianVof5P+DvowOB7i95HzNFo+Xbw8PrcR4B46HIMjnlyqEYwZFV9PR+OnL8nIaZFSTihGw2s9KjqeHM/AQRCocY1BHMUD5RZADCOvo75HcRyTDD+Tw4yKEJIkSUiGakhy1JcAxo7E6FwHywWGIYgTNXZwpDHJGgj0oNB0mK1YmJ8ll02xs73F008/z7/87d/jidOzfODj38faqdOk01lOnz5CY/cKTStiv5Fhd/8OxUKajeUFvKTOlQNJPpilcnOffMGkOFvAsGyErDI7W0KFYHsmhmPQTzT1jmJuERb6XZ4TedrYxNokjGLcnX3e+94NDl6+g78kIZtns+/xwre26Fa7/GhesdLOYmtFEoTUgogLOx1e0jFixaWrBs9U2xk4igkRCxpSCxLH0IRoOpFChyGt0II4x0rJpN+vUWlV8GmytHYUSyZ86uUK16p7RM0d0tuajBNw4HhsBiHLict+bNDJ5cmXClzfjDm2nqfqgG9AB4Gp4ZiKiBs7vJVkEIYklVa4qQi/GtDYus3VE2VKYZdibp0wk2GXda6GOT66+hYf+VGbL37tgH/9uYscWXqL975rjcfvP0rO6+CH18m6JrFpkGiXRAcYrsf7Hp6nUrlAHD/AD/zgB1heXuJv/I2/RZLEaK1ptVq8+eZl9vf3uXHzJv/0n/wThBD4vs/nv/AFXnzxRW7dusXe3h7AIIMwDBJN1+/AoPZXDSWPR300RnNkTH0bz7EpAYG36UT+ney7phUJKfAclwdm1ukea5Jg08FjYX2N65t12n7AA6uztDVkBWhpcbERMad2WC8ssK9iTDtG5l0c18LCINYmewcJcwuKtg6oK0WpVCbWDsZOn8JMmiPlEiVh0Wx1iNMmO3HIngq4J5Ow2etxbeeAxuu3kGGXH/7JHye0Je2+T9kpcywzRxBv0SXElgu0VY2+qpKWIXlDIWjz3rTHb+ZNtOXT6rXYO9il1qwxNzP33V6id+wd+/ObsJDO/GCCK4WVy5JEbXTiI5IUkVqn7XfIZ2Zpd/rcvHGTxv4Wjz2yhnfyIQ5e+DIzZ3+I+VxCu9mjWusR7F2m2XiG3/rDb5EkEXOzKQQJ27t9CqUcc6YiLuYJKBD4Jir2yTkBH1swyUUB8ZzkYk1y9SUfs7PD0twS//niKTKtADPpo4gIPItGeZmGvo4sl7BnC/zYx+7jkdUF/GCbftzjev0aGdbwvDRCmwSJRmqNkUqz4oKSkkb/gJ36FTrtG9x//IPMFYq8fLPJs3/4z7n18gsIYeHk0qys5dhuVvjcp59k7uPv54l3nSJrwRe2NAdS8iEX3BikAUVLMJco/sVewmK1QXwmy2vXdlBhk/uPLfDsboubr7zI7JpB9vQHkEEds9NhffkoRx8u8z//mxl+7qM/wl//+B0u397n4psB37ym+dLzT/P3/sv3UnKehWQHrTq4pkQLE02CNB0GKeAALZskuvSnPnCFaXyvRtmfar7vkyQx0jQwAp8giviDX/lnzD96DndulcX1Y+TLZa5t16j3ezy+sUQ9jlkxDW73TS52u5RVm7XCItuqj+uBJbLYysJUBn1tsnOQsLqm2el1By9zN0MQGBhbfZZWi5yYmUUECVJosnMFKknEHhEPpyIu1NrcublD5+o2KUvzsb/+cbbbDZ7du8H3nznLEdfDjys0E4OssUIluEPb6FKyEtKGwhMB702nMPMGyUGECgWWZ5KfT9HY6hDGGjno5TWm/Yx57dNUHTGJ6jNcNI7835UxGEXY9YgSpKe6MzMpLD5EWTlEQ5ko7Ax+CN6+M/KQWzw+sKFUJgOwPZAMnVB8RhBcjACImtrmCMhPnbPmcA+Cw/ScocrSiLufTKn8jByqKW32MSVCqXGmZLoAWNx1rUf3QH0HYDOmLzGRRp1kWQ5f10EfggFIT4bSp5ZlDjIOd60/rqUYFTFPybWOXBMxdBaVHnSMvvsYR9d6kIkYzPNmq80n/+1n+fQffZ5s2qPouXhHzzKzvEw65XDl9Wv8wb/8JL1uk6qRY++OjyciHrx/no/+lUd57P0fY/Zrn+Fn/t6v8l/993+NVOEYOzsxYbRFq/UCv/r7XyGdkxQLFv1+TDtSZPMeMwR0Fop04nk6fYWpNQue4K8eS+N2u4h1k09e77K9WUN2BQuZGf7WsXOUQjBVQGIkBLksrWyWjv8msa1wjhxFbT/DIw/dyw988AmaQYPN9h3y8jipdIpYSRKtMYTGTKXJ2aBMSaV9h4P6awiVcO/RR5gpFDj/Vp1nf/cfUr29RX52jnQxw9Jclq1mhf/rNz/D6f/mr3JyscTtLjxd0TSl5KMuCB/MjGDJhGaQ8PuVmPlag/hIiWeffZXVGcHx9Tleqba48cqLzB+xKZ79MJ3922SCMmfn5jlyqsw//myNX/prP87qymWeea3Bja2EL7wc8Plnnudn/+YTZOQXUVENQ8aYho+SCdIogYaXX/oiDz9WpDAzS6hiRsyfgRMagVbUqgc8+eSTPP6e95DJZFAqGdR4qYFiVhAEhGE4UM8aBwSGQQU1Ch5KhL6b1jfJ8N09P4ejkBH97s+SjDY+8YlPfMeFv/ALv/AJgB//8R/n9OnTk1QpAsuy2Dq4Rcfv0m43qVQqlO45x0EdhO4x40hyhiYvE455No6dotOrULJthBIYiSKtfNqtbUzbJBQRtpUhaLfRQZf5lVl6MVzfuUimMEeusIpjOThGn0ApjLTN6XSKncTj+Quv8Obz5zHocOojD/DutMPOnSYUF+h6JrvBJmayR2LECCIsTGLVI9I+IDBJMKRB62SRnasderUYz8uyOLfEsdXj48n9TvbgHfsPa5NInhBioKUe1tEYCLMIRhrTncH20rheil63RxD4CKUJDuoUVxZw5xbxgx6dhk/gO8SGQbNxnn/xO1+g0eqzfiTL0moKM21y0DG4f0kSeQlvJmm6jQgvECzmy3y4uM6xWZdLlYA3GpIec8zNHOXc+go/sHEv6Z7AXpxHLMyRbKzTPLXBGwt5jrzrAU6dPcsT5x4knXFoJzEzTpmnnvpdjuY7xPtvEBkW2nCI/Jid7SaFnMVBs8bW5nlU5ypZ16E4/27ymTJB6PMr/+wT3N5+nSTySaVcjpw7QSfeoH77IlF9h/zKKoWFFRZTBieyglJBcAeB6wliW1AHDvpd4j/6be4szZAv2uzvbFHb3cYPe2RPHuVg6zLtbp+8J/FsG2lZhEnAYjrHvWdn+fRX3sISaU6UUxwtxtR8SU4sc/7GNY6trJJLm0gRYKIxpKQtnEGfF/YQtJEih2utcXen3fGdH1FXpv59L7MGjUaDX/7lXwbA9dwJANWg44QkSbj34RNgGtSrB/iJJrN+nP2GxhQ9VjyblIiZNWHVdbAtl3avwrzjEcUKV8dYUYte/wDDMghFhCkzNPa2cGwolov0wpjNg5fJzaySyq4MGm0mPQIU0jM566W4plJ89Y+fZOfqG2RnDE6/7zQP2oLPffUFTj3yQbpuRL1/AxXuoC3Qqg1BGyWCsZKPRCENk+aZGa49vU8UaJysjeVYNLe7aDVMy4/EQMQE/I6LBMcAe0I9EdIYewOH6DowKhlgULjLpHfF0EkYUHDuutliQh0YSYYeXn54eNwdaR8B0gElQY6BshitPKYuHN7nhAbDOII+7UTI6W1MXYtDsERMLxeT78Dkuk6d46S4+K6TYJhZ0JPn4tBnmXJMBuuN7s/dTdImkXuBNCSGYYyzDyNVIsREBWl0bqNsxCF52rvqFQbO0rfP6ZGazPRxDP4erBvHMYYhsW0b13GIw5BAC37qv/2b5EtraJHjjat7/ObvfoGtSov9ZkAqZSEFFEyX5dwci/ecpqE1Dz54H9cuvUkvsDBTksr+8/yfv/9F2t2As2cKzC44hNIiUgZn5w0CL+a5wCXebeFqg0UtuDfocXKlxLM7EZeq0I7nWJ1d5333nOWHzz5KJrCw11fQC2XC08e4vbbIpbTBtmNi5wqc/6PP85Ef+SjNeo9nvvo1TGOT9WyD9q3n0LkFJAadZp96rUs2bXDQqnH75tdxoi1yuVVK5XvJpAr0/S7/y//+t2l291BhSHlhhrmjR+kESzTuXCSqbzN/9kFKhTxLnuRYTlDKC64pQSEj6BiCmtbUdzeJvvopNpfKlEsON69eoV2rkDgG7vIs9b3rNNod5vMWjp1CCY0gYTGb5b6zM/zzf/sK67MLnCoLip6mFzl4zPPNK5d59J5TWKaPZCDXL6VJFwcLwbEjOaQh+Oz//XV+7Vd/n0a9ThRGw3kuB43xtCZOYoIgwPf79Hp9+r6PH/iEYUgQBozEAAYdx0FrNZECHs3tqfl8uK5lkm2YTKfR82uwCZWowXEBn/jEJ37h2wYwfw61opF6gWmYLOWKtLJNorDHXgS1zSucXr2HA79Lv+6zkHFY9EwyOqZIQmRl0X6M0iFaJVgixs0oVHKbBTNDRzUILR+sDk7jFoUjj3J0doae8ijlJWFYZ6+yQ25mgRnbxbbgwje/xtW3XkaIGiuLDj+8usg3v/USCwurZIw5lp0FivYGEQl1/zxdYWIoTdZIExNyI26wYEUU0gYnvYTzeUktbZLJZDi+cvwdd+Ad+wswMf6/tItTkUABwkQaBlIIisUS25t32LxzlQ88tgGAFAn1VoTfaWGZMem0ScPRhFkLJzKI+i7dDjgZxQOnymQWE25cb2CaBuXZFIXEYC7oUYqrGEf/U04vhRyxbKTwyJhpyrkUqVaN6M4O2rYw1tfYw+RKs88jZ5ZpdnfR3YAeAjvlgIStvWvEzqAhWTp9B0Nokt4WIsyyVs7xxuXzJKLBQj5NLr+Blz6CaeXohn1+/ff+N/Z2btDr9HGKFtmVFP2aZnvnPGHQx8t4EFd56+odLnWLnDuT51hZUjIEXSDWmv5WhW989itsV67ywfc+ypKX4SoRQXcf4oj8TBlhZzB1ne2ta1i2x2zZo98VvH7Q4QMbeXYfPkGnU+NqK2Y+VeYj987whc9/hv2t17l1/BxZJ0UhPYNOqgihSImEnvIJkgBbSFxmEPYDf3FD6ruwQbEbqGRAMxEC2rU6TqeN9MDy8iSqzd6dt8im5tjuePRFjyM5lxlL4JJQFAmRlUH1AxIVgFY4UmF7ISq+zZKZpa6biJzAq9YxwypO+SS9Yg5fpCllFbt7e/TDgFxxnhknhe3AV/7NZ9jZeQPbaXNstshDWYsvPfcC5eUFSqmQG29cpmXUMI8U0eoyYdTFSEKWkoCOH3NgKOZtQS5tcC6V8McFSRAowm5ErxaOI8/A4V9GTCEYhgKnKD6CQeMBPaLHjJIMQw6SYIp6NIrMD6P6U86gFgxYPVMvdc10pG/44h9JWekBIJ+G5WPloPFnUxmPEZAYfqaH/0ltTKgIYtD8bfQ1OXVsAxw9OV6lR+cz7JQ8vGBKq4kzM3aOhrQjNepSICbBRmPw9yTaP614xLCOQI+j94aQKJWMmz1NFw+PgnhqCKaEFuP7JoyJhOmoj4Ia3TOlBjUgo6i/GBRoD8DZoLZh1OBttDspJ9mcaQWkQQHz5A5OH9dkPYiimHarTafdIQwCbNflf/r5f0qxWEAjqFRqtHoBUkQUU5Ldyj5HFmdZO7nCiQc3BoAxbvGZLzzL8aUcuUKCaVbphDv00xKrp6nsdFDSoZD1WJhL45QSdm6EpA0TZ95iNlCsqJgcgt/446usnHmQx9//fjav7rN55Rq3gj5P3H8fwY0t+rHgFb/DlTjHa7dvc+et53nw8WOszh2jd+I0rz/9PAvlFCvHZghkB51ISjO72Pp5onaRHDlMz+Tym3dQosHqTJZM8V5cbxGkw35jn9/5179Os75Lvx+TO5LCKbu09nrsVy4Qhz7pfJaku8VTl2xsu8CpY2mOFA1KJnQAR2tuXHqDF595mmbvFu9776MsOWlM1aPV3EUYWYziHMJOY+kaN2++hXEqS0qb+G2TvtHl8bUcN959D7c6B/QTh1JhkceE4umnvk5l6zWuP5zh2GqRlBGgVRMpYjyZ0FYRpgkyOUCKGlrHSGlgOw5RGI3rAAYO6WCchMNGetOjRQ3ngdaKZDT20YfGjmK68H3yc6RgJobZyOnEwaSOYeqB8afYd08rEmKcklsuL7NfrVGttUiEprq/RX79KMJziIViJ4xp6ZglI6KAwrIcumGITEI8KbBsh46WpMIOGSfNXlAD1aOUUphGHiUOMFSNtZkN0DU6fR8hDEqZHEXH4aWbr3H76kt0q3coz3mcuOcomzd2SVbOkJ9zyQrIxCHptEOTZYQ+jdR3qAcdlAJLWXR8yY3A5IwTsmhoygsWBw2D0lye+fIi37PQ3Tv2jr0N71gYDiN9jwl9YfASdxybhcUlhOqTLligE7o90Ni46SKuIzAdUEaZ7/u+92HUm/T9AG1qUjmHbCHH9dp1UjMlZFeQd3KUtCSXtKgbOcpmhqXZIsKyEQosBF7KRZkxcdmlG2vq3QZXuj5b+3VOLzkUPImZytGIFRYCQ2haqs3S8gyxsU/aaYIKkckeQruYYZqM2yNfOMtcfh6ZWiZIHPb2rvO1p77MxUvnScwIkQYnlcISOeot6LZu4KTh+NoCul/njVee4/qO4q3rOe5/5IcozRtsbcXUd65S27zE9Ruv0847JHQwKFHOZ9i2DGp72+TW2uRXM6hKlX7Qot3dIZc2yFsz+A2Lqw2T07MeFSdHvysI4oBUyWT93Gn2r73Gay/cIu/Okz1RxCBEqT6IeAg0BegQrf0xwPzLbqYhGXHddaLRMkHHMW9eepOlU8cwMoIohLYfkRR8NhbvJ9Kaa35EI1bMGQkZFLbl0Qp9jESRsk20ofEVeHGHrJvlZq9C2uxgF1yEkvhmA4sGpVyBuHebOPRxrSzlTJ6cZXLhxmtsXb1I4Fc5enqRuYUZNjdrRKvnWFv2ePWFp5jPeCwurpPOOQQ4COMNKv0DUgnoKCJWIV1Lco9jsmZKSqsmkdDU3vLp7PcH0rd6lLljTC2ajhYLAHkY/I7R9NvZXdQiYEyjGSWIBgD1sKzptJTh1FfHNvjecJ1DC4eRcCaNwtTUficbYACe79rmIYdGiMPHfVdEcnLS4hDomOQ8Jg7L4PtivPrIGZFCfhuNaHTCI2jEGPQMrpsUchhJfZuLLgbLp05zapfDY1KTOoJRhF8PPbtR0zMth+cx7Hk05nwPT1VpjeSuazqkcsmhQzWShh05G0oPJFgNwyCd8pBS0u/3CMKIMIp57sKLZDMDlcQgjAnDGM8bNDuJwohOt0OoAgxPEgV9nn/+FbrdiCvXd6l1epSX86TnCjzyrvvxmg0OGhUMJbAMD8PJsteoYxVdCk2NnWjKUiFjgzuBh8xkKM0sc2r1JGWRYzmbwnMtzJkc3YLgoNXkQmWbzdhgf2cbq9NgybG4deUqqyeP8/LFp/DLBun5MvliSGI1yDlddHgZkXiYeGjtkHVDCsVzLBYXiL01+j2fOzde5KnnvsGlF59DORHSEHhuFp2kaHYDet1bOFnBPcdKNHZucbOyScuXvH5ljjP3fYCZBcmVKxGd3Yvs3HiJrb3bqBkLpTsYlFmaKdLeeZNuNSSfz5BbTqEr+3T8Ju32HbxciGME+E3JlabJw8sZbh9ExD4kaLIlxfyJo+xcvsT5b12m8INL2DN5LJGgCIFofI+lqZAyAR0jpMA0TZJEkehk6GDCoJxs8IAZdy4fjfnhPzV0YKcd+lFwYdohmJYNHme3Jl75OGAxnl7Tz5k/xb5r5wAms6GYn2WhtES91sLfraA6dWqb10iVF/EyabokNKMAWye0tGAunSZSmpSWOCJBioRIG9iGTUwDrQQePkUnIkm5bHcOQIbMpHxq7QYyMSnl5ki5KeKkxfkLz9JpbVMqCDY2FlhZO8b5Zy5TOLeG43QIWi12ug0qTUWSdfGKazi6SxB3OUhiMtrClmV2ghazvSopx6Qwb1PsGORzWVJuapIa/Y/hrf6O/X/UJin9u21xaZn5+Rmi/iYIi0R7JEkdz8uRyuYRUmFY+zzx+EmM3jbbu1V6kUQbDq24jYwbLG6YHFxpkItNspaBXchjLTyElJD2XKQwEeMHmEaksrA8i+pLunECSUDJiGhVKiycOUaUKeD6AbHo0ddVIrfDUtoi7tZB+ujER9MYbM03ObJ4jvLsuwhUmt1GnVubr/Lm68/xhS99klYnxltzsYSDbZegX6Te3UXJDpmZMuUZl7DXYntvk1t3tnjrdcFm5gyLOwnbl7u0ty5B+CpWwUKkMuzs73KssMjxiuYAACAASURBVMhcKUMh5bLd6kJ/n9JalmpVoBOfoLNPP20yM+uSad3kai3Lu8o5ytkMTWmje23aKuTUQ49w7Wtf5861bbaXUxxZWMDMzqKTKgqFIQQWNqawEfzlqCf4s9iAXsFYo10lCqnhtZeuIGyXfDlCuV16Tod+u0NvcZa55SWaiU9dDyJkdQRzqTRdZVFQAkcmhEKRYGJLm1DUQUFW9khlBb6WNNtNDEtRtJvstXw8s0w6m8VzbIKozjee+SZxuM/ivMPy6hw6XeCVzT1mzh0hUTu89vJ5Cg/fi7DydGIL7R7B0TUi1WVPhaQjQRxpamFM2euR9lIUVmx6kaJ+tUfQDFGxYlRjPAGrQ5CsJwXEo1pxRhE8NYnGDz4dAXvNoU4Vo6geUzUHesRVfxvHQExe8iNgMP0cGIHU0e/j/U7RYMdUA+764hjQT84PxCgJMqYLHeoGLCb9D8YZEDE640HB8SBaP+U4TeGQce2AOPxG1UPevxgBcCZg6e1sQB2aKAiNyFejKP3kvMcnO3aUpo9lRCcarX+37Oig54McyE2OnJPh/Umm5FRHzsC0mtPou1LKcXO8MEoYqYE5ziDw4/sC0zSIoog4jul2u4AkGSobSeHg+wFaKWq1Bm9evc3zl96gNNvli1+5yD333Me1y9d56bVrzK+VefSDj1IuzHBkMc2VWwbtUKNlhki5ECaUlyX7ey28QOGkTQ4ixZtVzQcffw8L88vkbYda3MexJblCAZ3OUvNMvvH8K1zY2yFJQnIo5koFRGhQ8X0K/Q6l1Tz5VRenpCgWNJgN0D4qrqCFRscCU2c4snyW2fJj9BOHO5Udbt54nZdffIpvPfsntHsx3tEUduJgM0/YtWj399FGl8xsmbmSS/2gws7WDpuVOm9eKXHDPsrSbsS159sElW9imBVkzgbHY2d/m9Mza6zM57n+qqTdbmIkTYprWaoV0HGXbmubKGWRs01Uz+dqLc3753PMFou0aiaR6hDZERvn7uf6k0/yxku3uP90lpyTIp0qIHUHxSB4ZgsHbaTRShIE/rDrNpPxNTXtRsNb62TwRLibsjZFTRtnDu6KFGg1cvw10rjbVb1LfvcQVe/fbX8u52D80BFwcuMEaM2N27fxK3uc/9ZXObK4RvnsvczOemSdgLa2eLmj+L5UHkeGOHaMClsEnRYLhTyuyLPTOM9C6h4kNqG/Q691g37/cZZW7yfsvYYtXMrZMriSvu5xfec1bl+4hJx1eOj9pzh1dIPGno07fx9vPfnHpJfyYHSot/ZpB1VKGzaPvufDLGYWMWWNZtJGyxRr6UVcdZnXqvsslQTa8ygU0xTTxSFP8h2n4B37Xtl3P9aEEBiGi0xvoFRCec7k1u1bJEqTKxTxvCzl3DLF9CzKKHLPbIZYmuw3djh4/Uu8/+EzBHGTUGhspcC2sBc2+MC7f4gw6CFEhJQaw/YQhgNCkARd+tkFiqfmmHcdHlCKsN+ju7uLV5zneqPCWiZPNb7BbvAKptskCvvYMiFEY9qSIFb044RsNk8md5Z+P+Fys8Fzz32Ni+ef5Pr1q5gzFoYQiIyHHWSR5gKh8OhUvoZVmGW2PM9m0ydlgXRjpBdCt4pWX2brfJ/9/U1mZmFxvUTXyrF1e4e3rm/zoRMPk05rvKzAdUzs9hZe+ShO3oR2i7Br04rn2cFiRd5kIVhhp5sidlyka+PaDobuMecIskcX6V+t0a51qewG2OmFQcpYdzCkidAeyAKS7Nt7d38JLU6SKa4rg6hXooh6Pjdff4Ol4yHezBy9uI6ZqvGlW7f42E/+F6yXNIbU1GLJFV9SSuVxRYjtJPj9KlIkzGUy2DLHVu1pNnKPoeIefu8K7W6fILyfhaWzJM2n8IxZMh7gxdSCA+7svcqN8xdInyjy3h88Tadjcm07ou8d4fKXv0DL3MdOh3zj0tc4f+1JyhtZFo6eoGhYOIUUVboEsYUbK2Iz5JWDgLWyi8xYmFaM0GJAo1L62+6TEMOi3umIm54G3YMMyzQYHpbUDl/cYkzPEVMUIyEHwHu6t8K37Xuyybe1UbR7tPKIBz+pJRj2MhiCgwm2mEbs059plJpE3eUwws8UaB87RdPZEjHCH4NrNQDp376v6QjoyNNKkkFEdVzwO82dZgS8xTiLMdJ4P9SPQE5dYzgE8DUDhaMRrQc4VOMghwouKlGTbN/wPhmmROshfcgwp+ob5KAXE4edSCWGDqQEy7AY0bDl0CmSUqKShERKup0OSiuCIBwrKgkhiaIEUOPsiu/36fV7BEGEb0mevvAWl6/ukM9meeP6NvMLS2TKJfZbPW7fqpO99BbdOOJ9984Tp45jeh6G3SOX8Tl7fJaD+usctCM8V5BkMtTbmkZVcWTjHItzOVrNGp/6wz/k6aefY239GL/4i/+Al3a7/OqXPkegYrKuyYnZElZ6kW+9+hYP/mc/yh/82i/xE//dezlxJk9G9rGTLqbu4Schhi1o+zFCWqRTeTKZU3R7IS9Xu3zty5/ilUvn2a/vIrM20hg87512Hm0v02/u0qu9hFMsM1de4Mp+i5ybQXoJ0umi4hYq/hJ3vtljf/86J05mSJXnaCcmB5Uql69t86P323iZGC9jEoURdn+fVHGJdkGiWlXCfIZaLICEWXmbhXCRG60MoWth5goYoYWheqxmFO7GIv7VKjs3t8hmlphdyuHaJqYKkAI0eeIwS+gbBH6I3w/QepD1Gdx/Yzw+kyQBRiphkwg/MHz+Hg4QKAbUvVGCblq9aLSdwz7/VKBCjKfx2z1m3tb+fJmDoQkGtQcnNo7zYymX/+O3foNrN7a4+dIVup/6NKIww9q9p/mhD9/DKSn56vUqa2aNNQfmUi75vIvWNQ7qVykV10iSJt1OC7/Xx2SZjcVlvOh1tmSHVFqQyB6+7LBop/nMH38JJyc59oMPUcitc/35Pb72+T+g3Qd0SKleJLZ7+PSJ4oj6DY3TuAQffgjLy1E2OsRhwPV+jZzdpa8X+VajT6Ud8+jRH+CHT/7YfzQv83fs/+c2fBsNXryKhx5+N3HUHdD/DJhfKNFs3ESYRTyRot/ZQvg3eN+5I7x25S129+HoiYcpFedwHBdLCtqNXYrlVaLeLaRZQhjWIMKZKBAeX/3GJR58/BxLqwukUincTAbvxElqnQ4nsiXqfpUwqZORPiYBJStChW062kCYGaQtMBxNT89z0MvwuU/9Fm9e36Pe3acfN0nNprDWTNJxRHQgcOQSSdCnF9/EzHtYKI7Pexwc5Li5c4VKZ5NIJIgooPnMU/zUT/8sv//bv0mY7JLKZ1Fmid61i8T5PoHqkdglUnMLzB+5jKP7iKhKw1QYRU1Ai/7BFcpeg3rpJLPhLZx2liXPJnBMOjEUnTy9pM3D776f1zo1GrUur11u07ehmFOk3QyuOUciTDzzFKb90F/0KPmubCAuI1BDcBMEAVIKms2AUqtFJu3gYNG406XfDfj1v/N3cI8c5+H3nOGxh1ZZlyZfah9wyqpwxLWZyXo4jkGsdjlo3Ga2eJwo2qTTbhAHBo65xJF8CdF+gS1Hs5AXtAkwrT5Wt8PFr3wZd8bg1EffxdaW5Nozl7j11g2UdrFESHlOIQuCmJjeQZ/a1Qbba/ssPL7MhuGwknWpqJAuEStpj6qf8Pl9RbUpqF7t09n10Yka03vGaBfNqMA10RO5TD1S/JyK9I1NTKLS0w2uxTD6PPh8QgtQQ0AqRiAYDoH4QxHvIcgcqeMc3veE+jIJ6ush8Jw0OxuB+8PZBD2Obk8jfo1GGHKYGRmsM6EOfXtgf6iVxMDJmN7WoZWAUTHw1Hb05PowPMfRO3jQnFqMv6fieBiFHRKYRs6aHMZLtR6DopGNehIMuUlDB0IhTXNwf6ekI0f3QwzrGwYSqoO/5RBkJXE8KG425BDsDfY7KngWCJI4QiUJMRMZVtt1CKOIdqfDSA5VjYHe4BorpVHJ4HrEaIIoAa1QStAPYqrNLkGiWJgvUdnr8PEf+QinTzdod9qcu+8Ip09ucH2zwe5Ok/lik/XVLOl0jhdfv8AbV/ZwbUkVl43UMT7yxAN86L1Zfu5nf45/9Xu/xK//q09y6aXXaDZ6XOlc4+/+1M8zk15ncWaBereCYWmu1qu8Wmswd/YM5//RP+LYowU8p4oZ9nDtmKzZx6ZLW5rY0kSmXRRZOsyy23T43Kd+ndeuVWgHuwRJj9RCBnPeGDzvK+DaR+i3bxEkFcysgyM0JxZSbG5muXzrPI24TaIjRCeke+E8f/fv/0P+wc/8NI4TkS7M4rdS9G68Spzv46sA7S1TWCth2RXcpIuIq9iWxihrOt0D0gcvo8x5mvkjzPg3MVSOjVWTSqKISJBCkhgm73rP/bxY2eLNN+v0xQ5H4h7lokM2nSIJBJ6b5ulv7XDxxQP0kJc47m0xCgYMx+KoXmU0fsQoMzDMJowzd3pCgZs45dMF798+xcZKYfLwwtGs/04ZuWn7f+UcjMyQBotzJf6H//rjfOHCZb74ya8Q9hOCgztc++pNfu3Jz+IQUVhM8ZGf/dusLR3FD6o02q9jWl1WyjPcad4iq9tYxiwUlinafboHf8BrOY9S3CZWDyJNAxm+xtfPf4pOuUxm4xQn3HWu/skLvPTMBUIVM1ue57f/8a+Q8Tw2/U1Qmlalxm98+n9lt1pl99NfpnTaprQGqaxAmB1aUZbV/Ab1TpMP3PtBTmbvpZgq//u4NO/YO/Y9Mk0SNxgUQQoQCZAQ9ltoFTA3ex+39yvUq2+Q87IslB9kv/I8NxoVPv6Bn8EybTzXwzRAxxGWmwcVY3mrjEXSBzIuaOAjP/pBvHR6KP83ACp+GPDTf/9/5JH3PErpTMz6nM+8GyHRGLpKyxBkUrOESYKvDIQ1S1bezx89eZEkP4POdigUfBbTgkR1uHm7iugrnOwGvVCDqGKIHcwg5vT/w957B1mW3fd9n3POTS/369w9eXZnNu9igQUWmViAAAkGMVkSSYgmSjZZqDIdVLbJkkPJiVRZ5aJkVdEsWSbtkqhi0SVSlkgABCmUkLEIu5iNs2Fy6On8+uWbzjn+44Z3e2YJwBSE5D1Vuz3d7777zj3vhO/v+/v+fr/HVvAab+Xy1/4JvdEWylfUPMlAJtSdIaN4iq1ZBjcS4qsJP/j2Bq8sWJLE4JmEQI5oenvMdxIaiYvjpAjXY7nr00gSUhuxoXye8AQ3h2Omtas00pi6t0jgt2l6AVesouF6PPSW93Pl+gWMo1lpv521lZMEnsdkeg7PO43nLCOly1/GM/SdaNYYUnJgamyWjs9xMGSoWFnBGx+4myc+8Hb+6Atf4wsf/TKTYcj40jk+c+kpvvB7moZj6B5p8+F/8D9T97r0R6/QH13E9RKOzs9xZXCJBXuA8k5Ra8zhm10GB7/PK3VYD0NG8RmC2ojNW+d45uVrjI8co33PPOErfc59/HMMd3soz8f3XSYbm5y7OOLH/9aPceFr57HhmM5ak4NhzOCz1wgfazK9u4XTrmETh0vhlMDWCFOX3XO7XP9Kj8H1KUUmIVPky8+bMSYH+TZntclZ7mytlWyykuWhjMiDZyVltpvbWf7ZAQ65QL0Ux/xFLdPo51flVOBrxhPcJqU5lI60xMizv5nymhI+zK4t9PbWoirvkUJgcgBTpCGdSSio3KfaM3Hnn6gYOKXHg7KHtxteUmRenjvG6bY/FEaUrHgkDhskud5bZNWKC7OqkAIhBFqnUBoKswBtrbNg06LegZQSJWXZP5V7IwrvRsESW2tJKt6HQr8lgTTVBL6LNpYkSXOmOHsw35UIobAIXEdx4tgaP/9zP8rdd59FKZ963ePxTgcpLDc3rvI7v/sxHnz7O3jgjYuce/IGB1sbrByBq/0hn/joVZSr6NYXWJtf5NWX9vn4n/7fPPLwA/zUz/wyVzd2MBqaQQ0rUi5ffoHN2gW2ej1wLcooEivAszT9EfNvO8kP/exdPHpE0VQJjk0IVMhQO7ipJMEy0Yqaewwdn+GTX3oGFpbRm31W1jt4vsNkMmRjq48ILX77DP1piOtugtmjLhzO3t/Fqb2dVy7+L4TEeDUHEaREw4iaM6QfhagWbF4JOTkHZ5cDbnYtcWwIbIzHNnONAW5L4+PhOCm4PutrDn4/ZOIaBo7HaQc2+iMajat0w5Cmt0Bjrk3L9bmhp9SFYF/UoS545WbIixdu0N+fEkiHX/mVn+Dv/+YnuXG9z+7OiOk0zoP7NY6r8vlWjSnIpYpFteN8jpb2K9U1VBAF2fwtPJLYbP/IUvLOri3rc4ksQ1exhrTWd0iM/qL2LTEOhFB4ToNu625+4m1HeP/DP8Dm3mf53Oef5rOfucDO9haJTHAdqPEsvt4k0Sp7bKUZDy+z7DfBeKj0CmnyLHEiGbRizgbQqD3G/sE+vWsvM9kfsXp0iebwHva/9CSXLuxQR/GTH/wRHn/0rRxZW2eu1UEKwXHnRDYg9WP86od/g3/wif+enesTBs8M2Nl16Z5w6R5xaQqfp0fX2T4/5W0PztEJuoc0m6+319t3byvc5wbXbWJtDMIh07gLrGvQJqYfhhiV4NgQG/fpRw6v3NI899wYwR/zY2//cZqqgZQK6deyYKlKUF8GkHLXvzW0Wi1kKT2xaKMJwyn3njnDB9/9w5jGLTx5GZebJHqfSEdItcIg1cRRimMEJhryqec/w/VrLaKwR3POIXDmiAcxW9d62MQS+i1c7xQ2fRmpN1FW49UVC/W7OUh3GU6nTAdTGl3JwoKDdSK0tuxZn8lOhJ5GJE3JXq3FwrLLaGuP3XjK/OICc815thxDd8FndxRxbMkjmSSYWoNOPcAND7gy2uf0YpOp3WV7YpiTsNyusSsDjuAQrD9I7Uide07fhzEJC91lAjcLNGzU34yUHuJbs81+G1shv8hQlK0wuXGccv3aLb74uacRNmW13mStpfmVX36cP/nYi7zy8iZJFBMLC2ZMzT6Jl3YQJmfFRMR4dIW1oIWOHZrJFzGTKVMs07bhoaBLs/Eebmyfp3fuImES0lxcZjpeZ+Mzn2R7bx8dx1gbMdjoEe6PURZ0EvMv//4fk0QxoOkeq/PwT5/i1rUBl58eMRikrN5VZ67rotyAzdTlyvkeN7/aZ7qXYnUFFFfYuBIc55WJS4lNXnV3xu7NZCmF/MXmqSulEHmWnpmsppTQIHPpDlTRbfGr0eaQdr5g/Y01ZTrOGX4oWPY7kHf5z0MFkG7X5lcdCfkfqsG6FtDGZCC4uFf+U5gilWjF/hGFNzN3V+TGUVXjP+t25e85gFK5Vr+QcFXrGNwRvEzFEMp/VouWFUwr+XtNZQystaRJmv0qb0uDmt9bqrz+gci+Q6mKwmqHx7WoY1BKR6o1D3KjQebGlNYGW/msNI3yQmwiLyZXjKfBcT2kUqyuLnHi+DGOHlnj2rU9VlZCvvKVL3Dp4gWiOKbZrrO8toxtr/DgQ3dTMxd59IE6L1/b45PPbLPZDzn6jrNwNeIH3vo+bm7s8erLX+LKtes8//yLJGlMGMZ0mk08VwAxSmm29g/Acag36hSqMxV4OK5lsLnH4+sfYq15C6s30HpEYiSxrpEKTTqJqamArY2rPPfKBq9e7zKa7tJd8WnIFr3NfXp7fYyG2G/henchwi8g9AAlNPVai27tBL10i+EkRCch820P5WoG+wlpCrvWJ9yY4K/VmNR9Rs0mc/OK8eYu22nM4tw6N90acQCdhsv+OOL4isd0kBLMz7HkSJzJPjccl5NLTUZmk4v9kCNzilpQY6RqrONyrid46dmLrK03sGlCf79Pb6+PTjS/9qv/jN3dITrJjAAps4KSkY0xiSZN09xYFSWjbw3oIt6oMNrFTCJ0O79/yN93qN7InRfOPGe3rfPXfMOd7VtwaomcrXTw3A6e26LbVszPv4du8wEeuX+Xje3rPH/zizxwYkKntUeU7BMlGikgcH1GYcpcEDM1A1BjXFeDqrHq3U1DTNHxJsl4B9IIp9ZmkxoHV15mdOMWj37gbZw9dYbF+UVWFlep12pZr4TAFW72kJ7D0cUT/I13fYQXXnqJT1/7DMPdA6Iwpt8TNDyP4X6PD979M6w1juJK93uF5Hu9/f+6zQwDEAjpIKzK5CBaY61BSIW1CqF71JQhdTyGUY+bB3s8d2UH67jcf/JemoGPFAaQCKkOM43k7KDKdbuVxZGalMlkwvbeNi/fuMgbHn+UfX+bBQd80UaaPpp9BqaOJ5cQMqbuBUjdYa9vePXaVxgc7CBkyn2rJxgMI/bjKZF0SLXCmbsPofdQSQ9lQ2q+w3J3jtWlu9mMbhIOhkRRQkMEeK5PmkrcSNJQ4LoC19F4MsX1fFTqUPMNSgo81yPwaviui1t3aJFgEgiaDVACqyztJuyaEVMCus2AmAnK9kiSeXyvhQE6tQV86VL369kh7rgIMoChRH22SX8PtULZkWmts78VZ4nWmvE45MKF6wwGIxqNOqPRAZ/+8/Psbuzh+5q5NY/lU3Xe9WAHYS8ynlriFJTj4Do+o0gzx5Cx2UY5Q1zPwXW71J2jNJiQRDcIBxdJk31GosUt7dG/cp745i0GG3tEg5BkkpKGKTpK8qw8lvhWnHVSgjaaF//8BvW1Ou58k73rMUlk6XUVSsBg33LzqR7DjZBkojE6k/fMZDelA7/4Jbt1nu6y2qr59m3l/SVwr6hbyjM5l59obe4AuqUsxoryzZkkpshCYksWstq9w5i/EiNgix0iv3d5fX6NPZyP/1A/qQDp8ikK0FoFGFl/VIUwsMVgiAwQZeDHlmC/uE5UBiyTVhXAuPgibvNKMLPTSqMj77Slsl+V951VkoUKq4rIZEi5t0KWUqOZ9ygjQzKDpahuXIAupWTJ8FY9JWWmr1yKVTxDaW4U7LCYXau1yb9nA6jssUTW11arjpQuQeCzuryAkparV69i0ojzL73K3u4OdS9hGiX0Bj7Kd3n/B9/G1tUXCcQVImfAtg7ZilJiKQlSw333PcjDDz7IH//Lj/PCC+eZTKeMhiOkFKRJwmg8JI4clASMZhql+FhqTR8Z+MhmQLDcJFgLeNub38B8o4OnIgx9Uj2gn9SYTFyUChgPxly9ucP1TcGlXZ/BwT6ohOOLR9nenjAxmgiH1Lg43XsR6U1UPMBxE1o1j7WFBZbmT7AVXmPan4KnUaqGg0KnMV4saDqgXIknYzzH4jg+yihqvkEK8L0agesT+i5uXdEUCTqCoNUgFSC9FM+PGZoxU2ost+oM0hGYPjadw/ObJNrwpU8/RW+7RzjoY7QmCiPSJEFry2C4g05NTiiYrJZAms2nwlAtUwNbW67zwntVkDLF2iozaFFOIWZL6nAq02Itl7aAzZ2RZLKk7NKC8P7GhgF8izwHxWYhcjAOlrp/lLtOHuX4sYT+aJ8TGyscWzgA8Ty3RptoM6ZTA0/VQPlZ0mA1xZGaQMkciESYyYAbGzfY3YkZpQE9z+HCfsTg1ZuIRHPfXffy4D0P4vv+1+sdSjq88eTbmPdWcbs1nnn5KW7sXmUwmKKblsfW38njR99Btz7/utfg9fZd2v7iRV0KEgRoPULrCaBQok2ajPFdD6UcjFynN5mwsXWVvf0eJ9ZOcN+J+6n59XwDO2wYZPemIqOAmTCS8hBXyqFZb3Dq9HGu6+cJEhekRVqfVPsY20CKVaLwOlZ36e1Jzl+8wU6vT1APOHH0BM26x/72iHA0wjgesi7wWy3S3RfwzARHWVp1lyPHlvBra+xuPU1kxqA0yvPwvS7G7NNtdVDTIdJJUJ7EcWt4bhuZQKNusAIc4dIKaiy0miBdvDo0QomwEu34KFeQolmsdxmZGnVH0ZIWKSDVlqbRKGnxVA2JRLmzAN4Cvhwexu+h/SQ/gWYFszKAKHPQlGpNfzBmOJwgpaBeU+zvD7BonLrAOB6TvmSw77I/2mU/nFD3La3Aw5F1kB5IDc4I3xF4jpvHtCTo8YCr1y6zt7HNTgzXHJ+r+z1GF25iw5DR5oCwP8Uks7z6GmZ6+XxqhsOEm8/ssThJ8bWl3lHYiWa6IxHWsvX8gP1XRoQHMSY2GG3LOICC0y/1/xUWWQow5eHOzJiwueFQiFNyt7/FlGfJHekDK1OimDdCUGZLuh2SzzBwwTLOAhQLsPDaaoEZJXkHYVjIpG4jA8ouFuA7H1xx22tFlebDOdcrrHvFU5Bh8SIFaXFFsVZm7zm0/9gCMM+Y1NnL4lBnRem2mBlQ1Va9b2l8iMOvG2Mq98z2tZl0SKHUzCvguR5GmbKPWZXb7Pfy3+SenIpxkKVKzQypwouhjc4rNovcwLIIKQkCn1arQZoaHCVIk4iD3oRer5+BPiF597seY30l4MKlDfb7Y+bnAm5dvsz2/hbN+hjmYXMSEUUax1iGV8fEd2mee/YFLl2+Qq93gDaGVGtIM69YGEUkSZLJxXTmMbZJwng8xcPiuAI5kaQh3PPAEnuTTcZihCNTjIbhRLC7E7LQ9rh6ecjly322DgQj2yJoQqvVwlGWeNgnjROs56G8AL/RIt2+gE+CIy3zc3XW1pdx/SV2Np8iFRGOEnheA2UUwobMtTqIcR8ZaJQX4Lh1XFVHJtCsG7TNgsO7zQYmqiOVg1+DBgKsJHFdjJOCtHSCNoPUp+lJFlQmiTLGoKwmTWNeeuElJsMJo4O0WOkZaM+Z/iTVmdGez4k0zfeBYn0UsqAiA1jp6cp2i9kaKkB/MTfzPcHOfrkzHakt10SWNWy2F5UGyjdpGMC3zDiAw4dfcTBaPMdnaW6Nxc6PoU3Kxu7vsRMO8dWQY36MZkAj6OAol7rycQS4NiWKQ3b6zzPZh6cv9EimAQe1gGtBn81bMelOzCN3P8rSwtLXNQyq3RNWcGr9FMdXT7CiFvnK+Sc5CHs0ag3+5hMfIfCC13RXvt5eb9+w/YVuOnHox1/y5q/xe3FDAzbBkmljrdXobcJKiwAAIABJREFUdIBlgpQBiBYmndBoHcVYw8BKBgOH3pamqeq8+czDdBptlPKoVkL9us9SoUOVUjQbTRr1JiePniCxMePhBVKdMNISYeukuklHLGJ0g8FBTDwNOX/hFl997mlS43D3/ffxyIOPce6Fr9HfO8CMI5Tn43V8AmfANB5QlxrPd2h1WiwfO02Suty4dYO0kaASg+f71OrLKHWV5SMLTA52wE6pterUWsukto0rLJ4jiI3FomgHDVbm5ulHGqce0BYhRhtE3cc6HsloxKnOEbbDhAMbMu+08VWLsfAITUpH3um6FaI6Tt+bLUufmOtUcyOhADtSZMGpplREW3Qa53pXg5AWuSG49fIBl7+sWF1zYUnywKqk6SakYkjNb+C4AU3Voq4SMJLJ9ID9wU2GuxFPnt/GTARX5wKuh312bu4Tbx4Qj1KmvQlWz7S7ZQExY1G57l0gsNqSTjXbL/ZwrgxYe2ietO0ydQU6tWx8cY/pXlQC7Wq+0cL2LYFm4TUQle9YiCxfOBUQL7JMPbqQF5WHfcUwEFT6nAfaimrmn0NolSqwFznrXF2GJfssCg9++eZyT8rrgOVjU1gz4tCeVQJlWzDqVSCd96VAMbnxeMhTYWcFvgrAVI5f1QARs8+relmyjEol/J+lea1kiJoZq1TkTofnAVAG9Nr8mlll68JII7fAOHRfWQL//G95jvo0f6fnebiOgyBj+hv1BliDsZAkCUkck5oUhCXNx0GJw0Hmxhq0yYrGSSHzzE7ZMzhK4jgKx3WQUuC6LvVGA89TjMcT0jQlicc0mwHNo12k47G6tsLP/tyPU69bPvFnT3Lh1WvMNQL+8I/+FD9wWFzvIDuWRBiUVCw16mzF8Ozzr3D9459mNBpn099opBToNDcErM0C8FOD1hrfcwhjw/bWHn7NQ+wI1HWJM11j58Ir9HyBJw3zc9AMUqJeyP7elHhsefniPps9zSR2EF5Md7HB+vpJdna3CA+G2CjF8X1U3cd3+pioT8uxyMBhbnGRuZVjRKni2q1riK7FsQY/aKO0h+cfsLQ2z2hnA+XENDpruMEixjbwhMV1INSWORwWWm1sNMcoNbg1TVuM0YnGtFqkcYS0AauNZXZjzZ4Zs+J2GOgakZUkJiXQCQcHfeIozj1+IHLPkzWZRzrLSiTz/TNLt1vsnTMGf2ZEF96Esgp3PsFtblzkVxXLvVw/Zb2EfJ5mBkqxLdhy26iuca3tTML4TRxR/47FsLNdLMvt63J0+RcQjRZx+mmE3MAVKa2GRlpBkkaQJgzChGu7KU99TXEwXeJGY4ppGcRcSIRlemlCt7bI3/nP/ptsgX5TPZkd4koJ3vvY+3nisR+cvcZtjMXr7fX2jZpl5ry3QCUYcbb4bFYw6TAd93Xu+dpGxgyGSLAJCBfQWDPEpnsYsw04GJ3iBPdhmSM7ZD2a7WPZx1r47HN/xtNfe4r4AB576DEef/gsRg+Qcj43Dr5e12aHdOVhSjeoxeLgcKb1TibxCK1DpnqHvcSSiFX6w6fYG6+zuX+T7cktgmYbvzbPBx//IV4abbM33OUgjoiVR70eMJE1nHSI0gZrJU6tRqN7ipr/BHp0gdGtKaLrokKDcBys30bOt2jUx9hoB8/VHFlZ5uyxI9zanlBrSGK7iFEusTVY4eJ7i3hWs9hM2YmndLqZq5hEsnL0NDt6lxNzU4TTpOUvokWDyDiMTMqq+CZIie/VliO3avVOY03G/BqTg+mM/UxTm+Xpz5lrx8mKpO1uxfy933iRX/t7j1Fvekg3whMxygOFRqQRJonZG4ZcuBnyzHMR1/ct++s11LJArviYmzHJ9SHCJNx66loe4EseA5CTUDnQ00XJXGHBCIQ2iATiacKVz24inLx+gzaY1GDS/MEOEcjFQVyerodeyYYlk5OYzJVySO4CM+A7u1vl9cJDkANwkevTC2lUCRpkEbdQWXMVZvyOLaTCmBcfU/anYC5Flm2niAOo5l03OVilAmQzp0HeD2yZXdNiMDpnSw8VgzvMS5byGlto/WUJ1qtxFEWToig8bXND4fCeUzy+TvMUkOJwKlFjDMpRr7GF5nEAuRFpMOV+JWxm0EmlqNVqpGmK0XpWaVYIXMdBKYXv+TQbDeq1GtIKuq25bBylZTQaMx6NmE6nhEmIdV2MTknSlCRNsurPedxCka1GpwnWSoSUuErguQ6Oo6jVXTxXYYwlDEd06h6DNOLokUXe996HeOc7HuKuu09gjKQWNPhv/87vsrjY4bnnL3L12hYX5zukBlZaHmfeeYJrFzYZb/VZnvN535seZumHHuF//I3/jcFgQBiG2fgoReC7jMdhaUya3BuitSGOs+AKnUIcZlJt11EMdwb8/j/8JCvH68y1Pc48uMLSkRaDvSmnjtf42KduMtet4xpwJw5WBcTjkNrSEgeXn2c/0QjXxQt8IuFBfACpxShJvd2h3n4I330EM77A8OYUZ8VH9iNwAwiaqG6NRm1IGu5QCySPnD1OqznHZi8iqCtiu4hVithohGziuosEytCox2xHI+bXDDvbPZbqizQ7K/TtLic7YxxvkYZ/lN2RwyBN0TrlqJAYC1I6pGlMmqYUcSZpkuZZrcBxnHKOVTOJHeIcEGXsTjUBQjHnhIAkMbnXPkeoFU8AFMRASUuV5EB1/pfeq9zzb2/z/n299m2PlBM4rNZ/mK1pjZfHv8eym1DHMNJDXtmLuHIjordfwwSn2F+V7NLHTicsLNWYhIbN5/v0Lk44dvTY18VY31xfKkfC64bB6+0v04xFT1Pim2PSGyHSBWfZQzQUNtVgY/wTy1RW/ze+p9X5P/LtxGhIJ5jkAFlfIt38HdTCT2LsJTCbIFykOoFwH8rCkEWRGefwZ2mjaaRd7j3yBtYeXedtb3obnld7zWv/Mi0zwBVKKFrBPNZqmnaeurvEk5f/gEeP/BRnl+f56NP/gmMnFnn/W+5nNNqg3ZhwjxZ8eWtMtBeBkjRqAfONeZLeGHe5RdNt4ch5Gu5Jjpxc5F/88/8TZ0XhppbFo8usdE/g2znmTi0hXBcx2aTbcQi68xDUaKZ7vPTV6/z0h96K69UIzZCO7zG39AhmHLK79wz3Hb+Hy4MNTKNGzV8gVC7tdB/PWaBVf4A900ZQY80XzDseCsvXN6e+l1sGcI02eXEd8t81SInKAzLjJCmN5ILFTpMMMEsBo33Ln/zT60z+2ioPvcFn3pHUVMK+HvDcVsjlS1O2BpaerTFaXiE6Cl68R/eI5NbGlJ3zE0bXRjixAWvR6WvYz7f9XmQWEkqUS0lbA+kMMh+6R+Gqh5kn4bZ7z5atLVBzdmhLVWYdMtqWMfyVjJ/5aN5pgJRjakzmlbCHWfJqXIEQedG0ch+pdvHwkV+V9pR5/wtm/fZO2QJAZN93IXUpgMjhSwutfGYcaWuQtkIO3M7iy8LbUBgQIvc43G4YZFmEVOU7KOM9xO07k71jqyqMUiFmmaEo+iFnhkN2jSyrJxeMblElOpyGmaOjAFRKYW0mC6sFAe1Wm7c+9jg/+r4f5q33vJnwyhi3Lnl17yL9/gF6OmV3b5Pf+sN/QpREKCUYhyGjicFojSQrMOdJB2MyqrdZ9+l26oAlTDWtZkC7LnngniXm5ltsHYT82kfu5X//51v88i99gLluDUOTS5en/Ppv/Bbj4YjzL29iDFm6U6GIEotfDxjHI174wvNoR2KjiI2X9vjNp26S6o8ThjFa67IGhk5TxpFGG4vjFCA4IwckpuS9qmx3mhg2rh/gbiuuvwprx+bYvjHl+JkOd79xnj/8/Rd57pl93vgTjzIaJTSt4P4TCzz++ONMI8sXL+8zPYipz9epBx6B9Ih2Bsytt+l6DlKuM985TnvB48mnnsRb90j0mCP3nmCuuUYSO7SOLSJcFzm6weJyC9lawKuBuLXDpedu8RM/+xZS4TNJ95hvLtFUHa6P+mzuP8vDJ+/l+b3L+EtHEV6HFEs7GeB7S9Tdhzkf1lhodDjht2gpl2k8RRqL4yjSBLQt5pAl1WlmtApRBrXbShaiMjC+WJP5hNXaoNOUwkMrZSZfu22CVzagbCUW1ZVngfCyXCzV5VEld0RO9tjbN8y/oH2bjIMqCLc41FmtPUHLOcKVwW/w5Qs73DSa1IGJNETBAJu8SDSFmvG5Zz3m5StjLr4YsX8xomYb/K+//lvUgvpfsjd37Divt9fb/+emowQdpQgjSDZTEAo9VdgNg3AScA3uER8zCZH1oDx0Dy/27HedJIwvv8r4/DkabRdhRnhLi9jwOugxVmlEU+IeOYJwA2z6JYRsYW0DjIusPQy4Zd8OBxdmG4pSHkJJTp+4i0fufyPeHTK6f4tFUWKWKgRykELRrq3y3ns+wngyQArFex96PwfTTUbJFp22pF1r8+xnPs50eAvVtIjAR3ge60tter0RQWQZ9xNOPnyGB9/ybq5sXkTW+iTb+6jlLg1nHneaEjuXOdLaZX4x5iAWyLGkLU/RbtxNePAS2iqePXeTU/cIIrnOdtKjq69xb7fGXtDk0niPpUaAlIpUaFzVxYoG8/VH2NUHLKmYlvLwlMETEMjmbU/8/dFMroOlkBZgcV0XY3RWsCoHjg4Ka8g15HnK0xx4aa2xQpBqzde+skVvb8D2B+b5gR+b5+JGnxvaYn3FqOYgrKGdxEi9xXSY8thpl899bcrGC1NGNxLSXszWheGsgzmtnTH5t0ljuM3+LqQ1ZsaqF0DbpBV6v6D1K7ZB4a6f5d7P7pfVOJjl0RdFSsr8NlJQglJtMgMr+0xZuVcOlCvBzUKITCdsZ8z5LI/5a88ym1ORGSDJ3jfzQJSEfvlcZRaq8jM5BEaKrEoyD8QtJDwF6FdqBjYc1ym9D0JmLp3b4wUKT0E5pypN5LKpTDoEWpjX5E6KrGhGmzyLy2uNxZ1neul5sSZPK5t5jnQeQ5B5FAogZ9FW54ZDYeBkr/meh6MUf/u/+FXe/c5346Ye0StjktigqHO6fYah6bFrtjjwDrhvaZWnrlxEOpJASmKp0FLRqAUEnouLZsH3+NEHzvDwyWUaHUXQFExUwtEjc5h0gKoL3MU51PI6yo75T//jNxM0VgjHm3z0Y5/g//i/Ps/mZg8hBam2hFGKseA6Cqs1SgluXN/j7Noq25f3mOyFCC2JY8F4Emdsd5qt52zOZkZbkiRoLWfzHlt6cyBLtwqZrEoqiVSSNLGkacr1S3ts3ujx8rM3+fyfKk7fs0DgOgwu7PHoW+7jzJmTrC+sMe8t8dTTf4SwI4JFF6cZENQCWkFAf2cfPzSMeiFP/Mi76ayd5MbWBVTQJ93q4R5boq3nsJMDlJyw1t5hbiFkNwR/VKNdu5+GN4/UVxmFmqefvsZ9b5AciOOE8WW6dszZOY+VxhyvjHY53W0TWUh0ArZBEJzAhuv03Zh7gwaB0vik7N3c4bd/6x8xnU6I45hUp7m31JRpaiE34CteOWOzsSk9gPnrWd0DhTa62AqyOWtBl8XMKrK5Yn+x5pBhUM51W0joZLYH3M6glO+3M7fgN2jfkRx7QkgUAQ33DCfb/zXPuv8VF87tUTsu8TzQwjIZj9FNxZxjubSRsrWVEvZSxNhSb7i0Gq3vRNdfb683gDxISyBdBRpUx0GMDHLJw44tYJCLCmfORQ9HiMDLtaeidBPajDbExDE7T32F0QvncHqb+OtziEDiiA3wNSJIkL4Et4Ue9bHOAjJpoupnkX4HrKRMl3kH2LclQhDAGx98HEcpPLcwDL55aPv1vGuHD+wZ6LIIpFW4MqBRUyip8FyPVq1NbI6SmiHSbHP0xFHqz17BHSfUgxZH1k8RxR796Q5Law1ONxdZXD/BVNbQjuXWzV2EE9NeuRsdDUBusLbicjDQxGJMp3kXl+MlwnSeWpCy3NklGU/Z64U0ECw7Hpumw6ss4Ic3WJ57GM95monKwJiHxVdTJvWzoHxW1CKOcJHSxRFZ7mpZyrC+v8yDDBQddnFro0v3tbWUVW1n2tci/Z7B5AegchVpqommghvXJvzZv0p49eKIt//sMufPHbD4YB3XkaRGE8YaWZMs1wQvXU7p7WninkZGBs/L6gdIR2aViEtyuCK5yYHsHTi6NCIqByO3yfzyduhP4raf1iKUwqSawqC3OShXUmCsyIwAC1ZUjJZCHmMstvqh1sw6XGUVZZYMw5bvteWz2VJyk5PwxTeSA1xdyhpn1yEEjuvNAHHFq2BzECxzIXKpWqoCidvGufivZOLLe4FQCpmD7+L++WjP2NLcSCjkSNaCFapk/4tvoogpkVKWQb5Vr4QxumKUzTwEhUFic928Ja9BoLLP0FpXjMgCTGXfjeM4uddCHrpGKcUv/MIv8NAjD9PqdkhHCWNPgwKzaHEnAYmSbEx7bPT3+ZEf/Su8+Du/jUgi4lQjTOYVcaygqRyW/SZPHF3kAd9nMY4JEoUNLcsnHVx/jLPkoh2BdTQyGjFJfEwS8t/9T/+YzY0tdnZ7bG/1CcMU5SiiKIuKcB2F57soR7C3vYsxMS88eYMkTNGJxWrQOguarQaAq9wTmKaZzq7wKJRyrYo9aW2WkEBYg9DZ+Kk83W5iDEkMoYQoUrz60gHhRDMd3WSwMWXr/h6Pv0Vz/C0LdOZ9pBGIOKHbaDE3t8ZkoknsBVaX57m/uUats0ykPCKbsnVrD+XFdNbvZ7J9mfn2kEbdMA1TUjFhvnUPz4+zWIN2Y0K33iMdR9zYGtJVDstejfNqiX4cc0bvszz3EILPEnoNGtbgWI0QktQ5Ss22GfZ2ESt1fKeGIwTD0YBnzp1jPBqSJHG5noo5lBEAlRS9JQ9oZl41LNLKMkDdGn3IhVmNjTHWlBi+Gpg8WyGzvaJqKFTTEldJgsJDZCHb++7U3t3RvgPGQUHTCKQIaLj38NDqz/N59c842OvjugahLRECm1iMb9jai9m/FTPdS1moL/Khn/rw99t5/Hr7Hms2B90iz1DitFysTVFtByMsWoMOFMpIrPU4ePIZNvd26N59itX7z2aSgSTh4N98Dvp7TG5cxexv4rhTnJpErnXAjZA1H1FrgFsH1cEKn3Tq4jVPgVwE0ajkTH9tL0D1X3Pt7mte861thz/b5m5Q1/HyVxSOcvGpkeoGWiusfhqlJF7gMddtsL7a4pXnt1ntdFhcWiJoLlKf7xJ4KTu3zjMMQ5xVF1zDfKCZcxOmSiOShGawxMhdQZtNAjMhUJZd5RKnhv5+xIWdiywvzHM8mMPaNa5OLaneZbHewlpDKmq4sklNdvDUAp601FAI4aOEgxIKR9RK4Pn91opCelWZSIF6TQWAlsxvRSWizYzlQmQgI45TVOjQ27fICymdL4VMlcPuZoovLSaFxApECg3P4eZ2SP9WTNLX6IkhGacVVzxUuP0SVJagNk8vCbPzbxY/QOXApQT3JUtaGhhFJqJZ6tBCJpAZ9Hml4NukSOVBXg09yiUYxubZkGTeBzLgAPI2e16Ufc2qGovbWP/i56xScvY+W/GAFG0GsJMkYab9L82K/HMkFbuJAgtmzPudqVZn9xCl1KjoevFa9ToKI6L8og7dqfSqWGNmBkXFyitrRFTeKmWm1S801TODptK/AuDn8phZIbL89cJrUDE6HOVQndMCaDQavOeJJ1heW0UqSZwmbB/scnR+FWfRR+4rbrzaZ3+UcursfTxw9i5++tOf4+b2Fk9tXWNgBQ034Fizyw+fvotuMuZ4q8miK2jWLcFRD7PgUpuzUK+jPYdUBFjqkDQwkcMff+IZnj/3Ktu7fZJU59mFDLooqpX1GqNTotAwHU+RrmC8GxdTIQ/SLgZ3tnYNhjSteohm41c1DI0t0m+S1dgUM9BbdYYXTqcknSCsIA414TAmHqWEg5iDzR2OrSZIJfBcl/mFGs0G9G/1WGgGdObmcedWac+16Ed99rYvMIojnBUPhGZtSePVU0KjUdrQCDoMnBVscoEGIUJ6TIUiTg2DXsxL2y/z9pOPcbo5zy0puBa7rOt9lprzbFqJlC18W0PZFilN9HTEarNN3anjSI9XX3qVj/3JJ9jf6xGFEUmS5kZmMdeLdSRKb0E1kN4aM4ulMQaTky+zuZ57ByveR611WQ+j9Grm1xbrOFtYxVyd7UXluqySJ0Urv6jvUs/B4Sa5e/6DLC5/ius3EyZmigoEti6xqaE/1PQ2Y0ZbMekQFo4u8dM/9Nezt34/nsyvt+/6VrgIyUGT1RaTgGo6SE9gnSxMIB5BElrqcwH953a4cv7LJL0BC905VLfL4LnL7P/rT+MOtxC+pD6vqB9z8Y4L5IqDNYvIYAHcNsgGliZpJDA6IZnUQEmcb5Rg6E7E8HU9AP8uWgEi74DSVuGoOkoeIfBXCDyfVkPTbipq7hjXjlhcXkUqn6C7Snt+AUHIjUvnsDVJfaGF74zp1BPqnmJgJXNC0a4vsZ02adZSFrwpThKyMQ6RXY/QGL787DnuXTrJIyeXqakuzwiXgekz7y9iTYgj53GcBVI82rKBLww+IISDJDMQXBUUT/dtHctvS6uA/pKlzoFvkYKvkObMAHolvWcla4ZSGRrWWgCKNHG4/EJM+90tBrfG+L7BaUiE50Bi6A8tB5sJ0+0EE1qSiWHSS6gi0HLExeyzCtRfauwrRoPJA2mRlAdjcbuisFXJpBbMemE85BAcO4PBxVldSOoL55wQAl119VMA7pwpLK6dkdwlk26L6ypLNWPY5Yzxn5GCh2QDQhQVU7ljOmbfmUanaV58SVbAyKErobJCTellmH1GaZsVf5iZUcWHzXBMBWB+ozVSGGymynQKmeXDqk7C0sITpdSoCLYu5uTtgKgwYu74TCnz1I6zfgohcD03C8JN0yx9r5T84Pt+kDNnz9BoNDCpQUdZZd7gnjpO0yMdW6KpJZAL3HPmLKsnu7zv7vfwbPg5dBhz0R+C8nl84SjvX14jmGyR1hT1NYf6mQD/TAs73wItmIo2RvikuoYxdWziMe4N2bw6xcYGSRbnIoXAUYYkNaUnx2hI8oJaxlrIg8aNma1lyILfS5tSZEZqWuTnt4XhO/vaZHGhztd5vn7KlLsVA4XCG2Q1aWJQedVwkxpu3tih3x9x8eVLvP89R3GloVmXNIOEQA5QZkCj3UJrBzW3QrvdYO/KJTY3Xoa6JFhs48k+3aYldSV2apmTHq36MhtJg/lWSFdNiSPNdpwguh4p8KkvfYE3r97P6c4SvnK5OHEZ2CHz3jokYxznKMYGoB1q2seKmJW5JaTyuXjhMp/815/izz/xSabTKXGclIHIh0mFfP/IjdXC0Cqt7XxdFDuIrayRfOlgKbKc5Z45Kct4mNdsuUeh3BplZaYfWrtitoeU6+i70nMABVuQySEsBsvZ1fuY3IoYhXtYLyJ1Q5TRbF2f0L8UkR5YWrU5jqwfp91ufz8eya+375E20wnnWtWJJtmKcO/JM2fFFn1gCRND7Lo0VxWx8xBO+AL6uYuM/Qb+o49y83f/HGeyg+tG1Jfq1O9rETw6h+zWsLqDVWuI4CQaH60FJnUIJyOkdBnfuE7rmIvyfMQsMzuVU3LW4cpB8J1rr8U+Qhas6HL2vp/gxLlX8Q9uEEhN0ttiYaUGToO9vQMeeNMpFpfWeeXSK2zduEljzaezsMRC05BGKZGWHJ1rsGpcjGjjolhfWWS542FHm1y8/ALdR5ZI+4oXP/MCF448wl3Lx1lsdHhXq8Wl9FHi9BqpHdKWHQIRsJ/2WFYuDVkHNFmKOh9PBpUx//5rWXXsOzXiWV51KqyYpMiQMcu4UQUemeVqrSCOLOHUUIsMSnrUCBiOJlgNoiZRroNINZvXpwwvRZgJgCSNLZNBXAKc4kAtPAUiP3wz59nhiBcgCxDOU46K4qy2eQXTCtqdsfIVoq56mOf3rnovbIGgKq770iIojJjiYBbF+/PPyz+zeE3mEpnSaMmrHxeMenF/a+/8Xoog3EJCc/g7s8RRjLEWR6pZFeLq//Og25nLZUYpiBJM5OMusj1PKnmbFKji0Sg8KWVAch5wrPKKx6aaejQDLUXq0fyDKL7N4pkKQwoyGUwxLoe2OlFIpGxZS0HYinQoH18pBY5Sh2JFijF3HIc0TUnzcfA8n1//9V/PZEmAjjVEgqXaIqrjZHMoNBxrrTNfF9TdNYKOgoX30Ii+wodOPswrOmYrEry3eQz2XkLUNZ21Os23LeHe00Y061jdIdYLbGxYmu150lQSjTVmnHDtyh5PPPooT517DsMYKSWek2ULGk9ioijNk4dl46i1wXUkSaqxVtyR9reY6EJQMtM6z0xUjkZlbhbeNWsK47vIxlUOfC6tyw1oKzDaIoUlNQasAiuYjCOm05heb8jOzj5vfOwYnQ444x1krUl3JWCaOsSDkLccuwvl1djd77G/u019JaAzv8hyK6Y/TJkLAta7NeZ9gRZNXCQnjq8y7xsubF9ho3eFzkPzTHqCL/6rL3HljT/EXK3FKb/GirvA9fSNTKNLxPqABWeVKSGRDVlQAQvLR5BY9g8G/MHv/yGf+uSn6e33mIYRSW4YzKQ+Vfa/kNsdXqHFWs/21cqo5Vi9XL+H7put55mRUTF4paQo7HcY5IvZj3xhFDFOxX3lbXVJvl77LvAcCALV4K/e/xHM+B/z1MufZ3O7T3SQEswpBlsWHSkcKfiRJ36M//xv/u1DLtHX2+vt29XKRVro96xFTwzTqxH1MwGiprIsipMU009RTYeVbsZOJfMLzNkmrV4P/ZXr9P7NZerDa1i/g3d6jeYHThGcnc8KAopVhFxBT6eYoWZzZ8TO3gSihLmW4mDrJsff+AiT8QCLpbG4TpVVu911P4NM321rpki/JnAcj7/xc7/K57/6R9y6/hx3dY6xVR8wYcqbH3gHayvHuBROeWZ/ExtCPJa0FxdYakwY9l2UFSz7NQ7mu7z0bJ+H3/oYm5tfRfuWSX+Tp/960IEFAAAgAElEQVT4Gc78B/8e3qu3uLb/PL/30X/K3nCD/+iv/RKegLNOA+Pei4vN+2Q56h4FG2GRWAyurKGE931tGAClG7yQDMAs64UUAqtEyXgfep+dscsVsqwE40liGA0Tbrza49LFXe7/K2uE4ykHGynULW5NMtgy6EThCOjvTRjvh6+hRKl6DyoMGXdM/ZypFyXqt4YSvFqRBaHO0nHmh6i2ZeBg+f6CSRUU+TbLdWWsLXOVKyUPc3LicGfKYMHciC/qHMBh1ruQ82SSmlziUWHWy+dlZqZgc009Mw9K8flGa3Se0aRqGBRZVFRlTytuXqY2zvsJs9SIhcSqkDTO0jYKRJ7l53bDKxsfcQd4yl0flcESJcM5A7MZKBKV+0EOlIwuQanI+22LYmYiC5i3evYeJSWu62KtJckzxUiVpQ5NkzRLZ2oMvu9z7PixzEuR9zHZT0l7mtaDTWTDBwO6F9G/2oemYnnuKALJuLPAquyyiMeRRhMdaNJoGxss4551aX/oEbzlFtJpg1hB23nEeEi8/TQ7A8l4lDLY2mS8cx3f0fz2pz7KW+9dx5xPubbbx9qsQnPG3Bs8R+H5DlYIwjBBp1lMlBSZQZ9bAmWhteK7LsCn1hWPYDEfoQyQL5zlSsqspomtVPU1Fk1uZAqRpUKtGPBxnCJlfr3NUh1Px/C5T13gAz91L61hSH2qaXbmaB1dZu34mzi9ehef7e1y+aCHmUIaSjpLiyzXB2ymPk3Xp1Wrs4PHxReGvOkd7+TViz1ELeLmM69y/svXWf+R92CefZk42OR/+Ee/zn/57/8K73vsB2ggOKMa2MaDnG2SzzMAg7Up1kpGox7/8Dd/iy9+/kvs7uwTxVEejF3U55ClsZ6mGkGWHU3l86jwKhT/zsY7lxFCyVQUXrzZ2s/mf2HkFq3YW4sxre6y2VebFRe0xuaxC5kBXaRPk/nrxXL6ZgSx32HjIHsIhYeQmgePvZFeuM3IGWDDmIPLU/RIUKsHBA2fTqeF53n5mq9uJq+319u3pxkzA0U2sVitcVtZrVIlgDTLvz3aHTF4dcrih04DcP3LEc1rCdaJSMe76OgGm1Ly4Ic/TPCwD40GWtZBu0x3NNH1mwwnCZox09EmKjmgNufRrh1l4d5V4hvPoIMmxj0FJkWnE6RTo6zvmjM+30trxHEc3vWWn8E+9pMYHTIYvMiImNRdYkM4bFw/R/Tq59AtSftsl9On22yc32G9rTjdXaKVLrG918ddP8KqGvHme1L6dpdzQ8v6W99J+uUr3LfUZPhIja3nhnzsTz/B1Rs3+E9++W+xXO8wTBJq0iBJEGQucYcEYz1qTheB+sYP8X3Q0lSXRagKMCaYGQjFAVNltbK/z+ICSmytc9ZdW+IoxfQtw1FIre3hxD7NBQ9lNeNxyv7lED0SBA2foAHh1oRQAJ7KikrlxHLBWmeZkmZAuwQkcBjoFv0rnul2cFoYQnYGvl+LoS/Go0jtWsouqveryJqsrZB4hfeiNAayF6vBulWNd/EMVYBfADebA3qqFXiZAffSc5EDBAkkOdtuKnEHxXNiITF6ZlAceuDMUNEFEKl6HirPfSfez+9fYa2hyNwkSqCYdVeAzKRExTgdNj4FeYKWQ99RwdJm2ZBmnossBafK0u4W9xcZcLPGIJUqs/RU+yqlIDUaQ1a/48SJk3z0Tz5avh6PY5Ca2rwLjbwiuoZEpgSxwhUe3qLEAHsvKlZDD7dVw4kOiMId9up17v+lX8B7g8A4bWLro4eKcCdi//xzxLiISEH4Ak0npNlKiWspvb0ev/iuY2z2BnTqDnefXGFlqcXVK7fwpQDqDCYxcZpm+fa1zmRCxXyrpNMs5lMWO5THHBSer8qXaMvvbrZuYJat6Pb75Q6gmeMs/3uhZtHGZN+LkmW2r8Ew4mN/8DztVsAbHj7Oz/zV+7j3TT9I6q3yShyy89Knibaeh67L3N3z3HW6xaWnrvPg8RZHa+voccB0EuKurbMm9nnzIwkXBy+w1XRonbyX6KsXcPdfYvHtbQ6e3Ofv/vZv8pm3fYWf/fG/zrHuMiNjaIgUIRJMmiKswXNhb3/IL37oI+zt7WWZifIxVVKi0aVRZvJIbVkW3QMlZ96AohYLCKSqrIdiyKwta7MYUyFiZszHbJzL5XKYHICC0DAIJfKierNm7azit1RyZoh8E7DgO2gcCBA2N6AyV9W9y2/g+NzdvPX4y3zs3P/DCwcvYhWoOZeff+8v8sSb3l/1fH4PwZ7X2/dlkyBci6glCD/INgMNxhXUnB615AqkJ4k+mXDklcvUo5A6Q6KpZqvW4J7/8OfxHjlBFO4jpzWSqcPgVkj/5gE7BzHR+GXmj87TPrFOt3OCmkioezEmvUpwtINqrSC9lGj0LMmoz9azF2mffogwjOmsnqK1dOTQxv7d2YoNMNu0pFQgJVIpWu37iNMDJpMeaTJgGm4zYoTTlnQ7At3bwplvsVzvsuC0mRpwsCzXVlhu9rFRwM2dBjd2YhZtwHD7RR5714e5fv46o5aPTjVhf8RgOmZzmvKmxVU8KSlQqCwlFRJRBo5+t4/nv30rsFvlL0CV3crc41LJWYacyoGTMZJ5YKK1SCtIc6lHkqQgwfUlz/7JVVRNsHjPHK1jTVLfojF4bcnBpT7R1JRyHiklVmapLE2GBGeyh5IZzbubn8llppv8oUTxcJXnLMDLnS6HyrXFZ1QOnUKTX6S7LFjuEnAW98hBbvUaASW7Wna58GbYGQRQjqwA4uyvGeC4DYRxWFww636RyyRnmW+7qtTjF1IDY8t+ldcAlHEPZkZhUmDCw4Cmei6XTohi/Cjys+fPkj+TsTMphi3GovBC5AaRKedeAbLMobEqDazSAMxSoMoitqAsvJbNCStm88p1XVzXy/r3/7L3prGaZOd93++cU8u7333pvn17m+mZ6dlnOMOdQ1KkqMW2LMNxtCSGBSGKkCD55iAGnHx1EgRJ4MA2EEdWEjgLIAGSLMjaOJRIkRKHi0gOOUtPz/Tet+++vWtt55x8qDpV9d4ZSnQiaYZiP0D3vfetems56///rORB9e1Wi/X1dTzPK19mZ28HmWjm2j1EGOSALIPU0yw279IMAxg+QPrHCeevXWNOGRrxPkcyJjp7lod++icInzhLPN5GNDoc3YvZv37A4cYxI+2jJ1fw50JWLp/HZkekxxt0VMz5h05x3O8wvnfMz3zgSdpNDxVNOLiyyO1+RDKO+c2X3mJjr0+aVUX5XME1T4myPY0x1PAiQgg8KQoXFkeMT4BVWx9nFZEqP6sF37p5aV0p3pIAV1WztbE5SZSCREmO+jHfeX2T9ouv8cTHf56vvPx5wtMXOJpsMVYj/B70upp0f5NgdZ615iot1eJYpIRSstJcZrGzzzBp8e07A7Z2oTmKMNvXSOKYuQziuRAGmus3b/AbL32RZx59jn/+j/4xnjUgDFZrJBAEHvt7h2xu7pAmSVnc0Vhbhiy54WmMKZUTdbfEwpxXWvRkUXjQtbmrlOzmQjXy31mmXMFkvZryNJmrCL8px7ojzu4sZzl9z7sV5YtkMUmRNP0WoWrw0IpP8GyDD57fwcaGwA95aP0RFueXawvTX/9N+r68d8QU5lHfk1jyrC0mLfJEBwIjQYncgiCSlCBNkDqF60PSP9qhffh5ZHaXuCGw586y9iMfovHQeVIjsKLH8Z0+encTf3xAa+4Slx6YRfiXaXRa+C0PFQiUsUjdJ+vvkGZ9MD10bJkcbnLvzW3evLrNxx59gduv/jHLWhF05wibLf68ysfvFak0p4VF0Wtyd+81hqbP8cGA+PgApKLZ7tAMmgxp0ELhC4sUBo95Du1pFq1msTnPltDsHO9zfGcDzw84v7rEd978KqOjGGF8dKrpHw8ZxgMuLa3gyaLsPdMa8uLp3o0meVekwsTOncWZxAvf+ALoVprxemXcarN0+48LjoTcXUloGB3HRJMUL1RoLRnta7QQTA4j0DDciUknBptZdJaTjTI7kil336pXjJ2qPOY0n3Wx7jzhiF+VJWQK1DtcU4JayuuawmzvCIUVpgSgUxlCinbMNbSOGMjSIpM/+5RuvPySs1oISg+mkpzkmVDyYEWHVBx4qQDyifmeq/lzmisrQOJSKgrIA6lFBc5zLG9BFUXDpABbzYsSxJcA3YHyE5rNmlY+f8bqAvVsLeV3hNOq1lJDunMc0ylEKVVUdi47rHjfk9etUqNam1dFVipXQCilcpCaJgR+UI7py5cf4xd/8T/J+wPQqUYJifTBBuQGWpm72/ipxm9KAiz2ap/0i9t0By8iOGTst2k8/xyzH32a4MGzpFqCmOXgzQPE1lt0U4t3YY21+YBG+2kIFGHXJ5rMkIxnCOnTYB+tLI+tXkLqYwZbm2xsHHJra8wbm/s8dHqW1fkOozjloD8hdqW/i3mYu6nZouJx1WdlkxUAPteIm2KuVUDX1ty76sBUKlm2azUwaiuBdZlzXL8VfVDTnmudA+yj/oQ3rt3jpatfIWtZNq98heOjXaxSBF6DwMtbooMCIjzaWLtE3zRZEJrF5gLfCfa4c/MKg4MRobSEbYHfCEiGAqMl6SSh7TdY7XV46Xd+l/5ohJmMSeKYJIowWuMpRRRFpEXgsXt0N8fqNQ3cu1DMK6Xk26yp1lKmMLbFu1KoPKw1U/U/poL3a+tORSZE7Tym5kPBvfP1oVwXLaZW86C6z/Sc+27y7rsVlW+X2w2lFHSbMzxy+gkuLMZIqfCVh+/5ZfXGspF+gDbs+/JXL25RK30zTe4zmAMUk1dFtBky8NxKhzVFER1rkOMM8+oR9t4eJtvGSA/v3DkaH3qK3rOPIjxI9iOy8R7jzXtkkxFBt4VaClg500G15kBMINnFJEOMaZCOd0FkWE8RD+8x2O1z7/o9rt06YDyCjVu3SbRAKK/c4Otr93td6vu7EBJSw/7oXu4zbSO0NLRWOgSdDskBrM3OsBAoWsEck/QMR7vbvP/JB+g0l7i7fYet/QOIRyzMNRkeZ1y5+hp2yUcp0EnGKBuxe3uD9609yiCL6KgQX6rvafH8aytiOud2HTw7ba+zLpTZdPKPeVtyjdrftvArt0A8zpCJwEs0R3eHjI9SrBRkcYrNLPEwIYs0OjMYXWzC0w8xJQ7414/Y+sYpqp/WIZMaTioU6DVmdPLiJ8lrlbvIxVTkPsvT7+3aq2rT0j+mbFcXT1Cef4KQTO3qtY8KylGe6K4llZwC0U5r6QBE3cgy5btUAvPKBapsm5IoFQ1VKopt+dNCrcpxdfdqtxZT13RjYXqNmiYKb5da0LaQOLesenPZExYKbWwZu0HhhlQnUrIIuPWDABB0Ox0efvhhnn322fJ+WaYJQj9/Yl/l7htaY63EGo0SII8zzJVD7MYexmyThm28Jx+n8+FnaT12ASst0X5EPNhicu8Oggy5MEdntcvicoPm3BpaH2NGtwlMRKQTbDwAldGY6dAgY/vqLneu3uPmrX36/RSTwfEoxRiLrxSB75GZwl3FulYvxoAxVTEuh6OmJoWtG4bKmh2lG1i9Y+vfr32nBNJmuv9cyY66xQ+cm64gTTUHh8d86+WXOPfkOuNslygdQUPS6LXxWi3GOylnZlrM+iGBt0KctRnsH/PoxVP4ao439/ocHh5goxEyVMSJxuqMoC1AGnSiseOMdia4tLaG/pFP8cqffIXdzS0iPckJgczy+IsyXWjxzMbiYiq0NuVccBbv6tQq8N2hWzf2ygxgJYeqip1Vg54p65u7ZqELKXsTKsVNvf3rypHpBY7CMl8jIH+OvCcCkqv/c1FSIf2QwAurSQyFluOdU5Pdl/vyFyG2NrvcxNPakGUZUhWbuM19KLXN0BiEChESbKZzt6IsQ2sgVshrR6TRPpHXIjyzRONDz9D+wMNIX6EnEYPtfZLD6wg7gsXTTE49Qncmw/ghNmuibB9Gd7Cju+gsJE0GqE4TK3yONm5y55Ut3rpywGaiWZtf5Oar3+L8488wt7yG5wflW32vC8K7L6IGOMBLBNHwEL/XxTQFmZfhz/lYKWE3Yv3UPOvdLtYucZQuIg9e47HzD+MFcGtjk529PVoKFlqKGwd9JoM+yw8uMzk2WJsSj8bc/PZV0g9+kqMkImx4eEXQWLUY/2BJHrRYK+gD5P1CobWuASwpMJmugYoaWHVAtI4IbeXj7DRvRsdMhmlZI8FasJkhS3NiUAJpywlrwDRgsdWvJXmp84hp15X8t/IZS/ZQ07bW9lb3BrLmv+1unbvjVP7ttmqC2r1z9yPpLDGiqiPhpLpX9SyOhNRBQL1IXf5xFedQPmsNzFls7U9XfK3edk5F5zSTRRvIWoam8kWq53X9XXcpKXWWzkpQ6jAt70S463EWU2Sk/oy1BnLtYKwFWVgXRA2UOauLrM5zyh2BQHoKCpLmcIXyPNrtTl4FXFvW1s5yZv0snpf3tSkUQTJQRf/mqUStyUALkijGiy3qMIODQ9L4gEnQofPQBTqf/AiNy6ugBNko4nhzl/H264ShJT71OGphhVbXoFoNsqSNtLuI8TX80QA9SYniPezsHCjB/tWrXP/KLW7cHXJsBHPNJg+027y1vcPRKCYzBs9TBDYPkrU2dwlyxHm64SmtWAX2LOpMVJ1bJC2rAvbtdJdUVq2KgFRz35aAuKwa7LqRIjKumNOqSLGbJgnbN6/TPq3x5jt5xjIB/kyARZJtjzhzep1T7WV20nMcDUeIw5tcWP4IGsuVGzcZjUcEMkYZy14/QiQxq/OG41uaxBoGe4f07+3x937qZ7i0s8HG1bc43j9EeYosk1OFHV2WLFuQBUsekJ2VQf+1tjB5DEfdkiLKY0VK5NIiV7V7HgdQpRqdXkfz+U+t6vlUJrCCfljh+i+/b+7GVKWmlW+bdyfGwneR9wA5qMSZHIUV8A6uEPVGuy/35S9LrM0rwhpjyTJDkqSkOqPbbeWZMQykmUFbQEpMYiEAPIEdZqR3j0j3M/yZVeTemK3BNbLZeVZ+6qM0H1/DNjyyxHC8PWZj++vMBG0WH3me8NQahD69ULI/0mQbCTMNH08L7OgQxoeEa+tkesj+Gze4/qcH3Ls9YhxlLLebzM50mJ9b4Nyly3Tm5/OX+T7VgBtjGEdDXr3+Tbz5WRI/JGkqrC8Ybg3RuyNOLS7w0OwCK90HuLrr89adAx46/QSzgSEyW8T9I7J+QmZT+oO7nDq1zN00oifbDNQIzzPoLOLNN6+gkLSkjy+qjCg/qNYDp0l1pmwhyLO9iCJ7js2Bs6uSC9MkwG1UBptXk6auP6YCCkagtcUajVR52kOBwGqDTo3zACrdIoqvFverA9YKHL9Tj5XuDcX+QlmrQZTPXbpBOU26rTR2pStMdcGaS0WlYRRCoKREyBw4uYDFad9gBwJyIO0yntRJjwPm2uaFkHCWiUJR5jZ7ASAFqgiUdy4PeUB5EQtR+EV7RYXg/F55LIcUID2vcJfIqu+4tnEkxWnbybMe5Z4pZurck+OmzMJUaozzYlvCipr3V+1eLoLd9XFJQipyWu9nKLIfeVUb6qJSr/TyQmbaaJwJxHkdQEFwPZW7FXkeQRiydv4sGDjcHdKbXaQ3t5DXXdC5JjnRucsomYE0w295CF+ijxLMjUMmfR9LQJD02RrcwC6usPiLn0auzmB9STxOOd7qc2fzJboiZPW5TyNnZ/FDj1AKDiea7E5KKC0Na1DjXVpC01hbJkrGbH3ni7z++V32DjS+DFif6dGcXUarJi++dgs8H2SKtRmh75GoLK+BIEUJ+k8a3Oq+7O/kg17vv7IXSkJhq2rhYtrdqIRptXnkrq9UFaPj+tcPA8JmgNfwaMwGbO0P6C2sYnsD9HHE8F4f441ZXZzj+eUH6AQP8OXbI+7upFxYvMS5pRYTvcHh9i6T/QGtWUOrrdhrGLJMYscRvtQEPowGR9y9fZNAefRUk72tbQyWsNnAWkMcxcVcqtVoKOKWBALtsoiV1oSq3bTOgbgjo+DGdU0hQj6262uamzuly1XRWa4Cch5nYMr1rRjSlHTM1sm4a/eCrlmbu+6XY98R+bd199vkPUUOSqPJidr2P4jau/vybkk+qZIsYWP7mC988QrHUcpHPv0ET3VaaCwmThFSkhlDlsbM+ID00EZgdUqWDkgmfdJEkugIM7vE2f/4eeTZORIL2SBhMhxx95Uvsnr5EssPPY7yQ2xiEMMM43nMhoLxmRDDafQgQ4wnEH0B07+OaKTceeWA/a0+41SThCGLyz2eeuGjZO0u2xuvoc1F5pbOFNk53mPT/M+UfO4f9w/4l//6v2Pt8YeZP3+Ob+69wu1bN4iuHSCagpm1Hj/62EV63ce5rRfZ6h9zpi/48OV1EAG+WOHi4nn63UO27t6h/8qYF97/SbyGZu/2FlE8wmuBHmQcDw4ZJhNC1UAIWYcjP5CSZlnusuEsBNZppMjTcRRSDzSt+xU4UiGLtJ5O62htThhyEEcO7JTE6BycGlNsXuX9KiDiOqPMolRo8MuKzVOdVjMZ1DbvEgxJl06wVrituIjTspafCodypkGOLbLuKOUyglUBtliRX6OoB+CeTxdgzT2WcI9XtFd91yuPO0tD0bDVeS4uwdUeKFKeyuKzglCYwl/ZmAyH9cp+c5pRY3Ly4NpJyrIt8ntUvuOmOD/nHdMEQamatcmW5eNAutyCogSaOagx+ThTVeC1A0QVGaxohEtlqq0pO1wU7V4S2Vq1eCFyopbHhFQZijzfR0iFNgabZfTCgM985lMcTBq8eSXm6Rce49GPPlbUDjCYLCPNIhKb0lCSQCkyF9VrM6waYgNNYiyJjbFLy5z7zz+MXeyQZoZknNLf22H3zW9x6uFHWHvieTACG2uU0Yi2x1xD0l/z+MX/6Jf5x7/wER5diGHyOgzH+EHEja9uMx4lTJCoBrSXWqw9/BCjsMU/WAn4N7/zJSZxSppqjgdjRDFXjEsRKypyVcURuYbNwaOug9UaaXZRM/U5VM4FMX2sjKkpRtDU92qKBGPzf1Yb0jRh9UyXJz90lsizPPrEB7mV3KV/e4vooE+jGzC31uNHHjmDEZd5edLhje/coXk44qOffAxooDhFS0tanuBwO2ZrI0GjmV1vEN0c4YUKv2nRo4jjyTGjNGbjzl2sFczOzTEe+ug0I40TPM9DZ7oYe8Xsc4HJZrr2gGtTtwYaW485qAiEa2pZZBB0NSXyGKaq4reUplzTSn4lQCiJNMWxmrXNWcbcGuKkxMxFpTpbvkfeDyeTE7yTfD+hhvtyX/5KRACHyYhGtwXKsnt0xLV7Bzx+eiFXHMURQdjAw8MiiDJFGApUbNGjIVE6ZKASjOqg0w6r/8FZvIs9xlECNiIaD7j12h1mLl1m8cJFskQwTiKEzfASw95Wm7Cr6IQQdDRybhWx8Bls8hCTm/+EP/zfJ9zeihmoOVbXF3nu8jrzD72fYRywdziiKY44euU2s3NnePi5H363m/PfWeJ4ws7BFjuTPVZm1zm0Q/bu3ibqH6BaEpsYHlptcqrzBL6cx9+LuBj4rH76aeY7LRCQIJnxF1hqL+OvQnemw5Wb30T4HjO9DlmaEUUxE2EYTYZsHt/k3Nx5jPFQyjkW/WCKMSC9POBTFbErOo4whrIYlNs4c22azUGpqBVCcji82LBUkePPGJNnOLIWo3OgWcvdB5Bn1KhdM/9ZEA0HfutFs2r7XO62M+2q4kCQ20TrByrtXU3zWRTY+l420MoNIP+jnq5fliTEcZTi/k4he8I65QhL+cMyFQCZ941FkINzjUQ4vxFbuCggpoBMeQ9Rd4mS0/cVVQrYk32R39PgXB4cMFKlZaIC8XmfVV7RtvaudSkruVoHWPOThFI4bWeVStcrtd/GFNp7UYGfnFAUrhnGUHVFZYXISZKeAlSieDirDWmS8okf+2H+n9/8AkdRn1u7h9zdG3BxaZZMW5LRmFa7TXY8Is4sIpQ02gKRWZKjQ0bZkFgotG2gGk1Wf/Yiar3NoD/Cb1r2N7c52D6md+lRVh68QDLQRFITmBQ9kEQbIWFb0fbhl//Ff0Wr66HkiGz4NYbX/hVf+N92uXkvYSsKefzyCgtrpxh7C7x665gDucujZ5v85Gfex+/+4cu89K1rRVVk5x+fW8C1qcC862z3q6m7/FQDoRwbEorYoiKNb9HXpiyFXidyVdB9mmmUElXGMJuXkqzGo8D3JcvLHZZO97DtkDOPniFuwNEb19F2jPChgeSR5R5husb23pjf+60XyYZj1s+uoX2Jkg0yrelvxGQDTeAJgo6P9RRmIugseKBg0hCkI814MmB7cJvnn3yUixcvcPvGDeLxiDSOMYX1SRXWJxMnedB0zW1ICIkxuja2K0VEPabDkQAnltwdudQ71Nrc9ZdzHyqtmdWsmZpMpVKkmD9Ta1XJB8XUvbTOa/h8rxbx9yQ5uG8puC/vlriNbYhiG8GhTUiVJmp2UAIyMlTokxlLmubmR0GMlD0wB2izzd3JMVEqubDQIbgsERfaJEajPUP/aMi4H7G0vsbcuRUQKTtHKQ0l6LR9GnMtwjlFoASf/ZXbPPfxeRbXGgjVJIravPjLd9jozzLTW2ZlZYXOqdNE7VPc3opIsgnD0TZLcx4NEaBUI190lNMxvvclyzKu33qNf/sH/yedBY/1sw9yI93g4MY2/bt9ZKBoiZAzwRrWO8dekjGJhrQ1tFQnDyq0Ak+EfOCZ93Pp7EXu3bvNG9df5fbeNbKxYO5UQDNtEJgJKkgRAbx27WVOPbXIwEDLb9LwA+Rf82Jn3018TyKkKt3rSl/kIpNJrpWtgAKQm87rPstUSnxBAciwIPJCYaZuHXYAs/i/ntM+P15tfsJVYj2RFcRdwFLXkjkteQUUnW+v81XPP69bF6r7VCdQbrjvKFPfrwVoUysS5oCUszA4olJobuufy8LloJ58o/6OFLuosyoAACAASURBVJpfWaA7ByYqwFw9knObqmcwKtvSMlUcrGxD6wopVW3j/LDfRmhqtSOqjwVlhe2axpoi05NUqnzukjSV7VdVNDbG5BlkpDc9rmpkxuYPl1uDpCxrP7iXd8/v4miEVHkBNFGl69TWYtozPPGZz/D6G79K7EvSsIkSlhSN1wgYjCP64wRfGBphXrTRTHbR7PDazhFLcpG1sx2CNR9xoUWSZlgPNu8dYbTH0rkzzJyZx9qUzcOUbkPS7AU02j5toRDW8Bv/y1v8xM+dQ/kBCMHuhuSP//Vtbu/A7MwyS5fO0FheZtJaIM6ajO0+Mw2FEgFSNAiDBs1GiLaGLIpzkFtkIHK+6c6iUBL5og+clt+1cx2sCiGLar6i0oQX47du1ZuyiolCkXDC7a70ry/IQbvb4NT6LKcvztJb7XBm/WEOG2MGbxyS6AQhFL6SzGQtgvYTHMSKuRAeeeASUmt+6Zf+FYPBgK29ba5fv0a76zG/2KC3GCKbAeOhprnqMRmb3OzlCyZmxDdef4nTzy3wkR/6KPHvjsmyBLAcpClRFJdAoGyjqWFaLAg2H+uyILVam6mq2+4968tUOfdxBMLiggZc0Lhb34qZVFvDanNNutTaeRYlqymPu0fMp54s+8BVkS/XwT9H3pPk4L7cl78qmZoiNabe1xmHKI6ylMPRhL3jIQbNyBhCqcgSQ5LkC4TXEgiRktoRbx3CbtamOa8QD3rIRZC9PNBpdzhiEqU0goDecgehFNvHKV4jpBkoAl8hDHhNy5e+ssn6WUGrI4uE8YdE0et89YpmvZOhTi/RXDmDv7BKLLrs392lsdCj2+oxOtpHNptI5eWLjFK1t33vUgRrLaPxgKPBPlYlPPL4JbzAZ+fqbQY7xySjlCbQC33a3QuE3hzJOGKxN8OM1yAMm3naxQKlzHR6NPyQaDJmZ3uPhtcmw9BSMwxtgq8kjabCoukPt0izIb5qMD0qSlXzX3FrvHti6zuaqysApRk8B34C4UzsWEoMUAPceRCozLVV1gXiOv9aU1oSqhsXgF5S+upCRTpyTXUF8u0UQiwvMfWzZChTf76DOrv2fSGK+5vi4pVvxNu14M4C4a7rftZdC2pAvbzJic9sca9p94vKpau8pqB0+xE4kJyDFVMUMsuvU97+Hd+1erz8hesB1u7a1bnVu0A9HWpVt6EiOU77WWlPS1uCyF19pBBl3QFtqoEjCwuRA2X1zhRCuERxbwOyFooQBVseM7WXFELieV4eYxAESERRtLLIVhSGHGcZanEOG3ocTSYcDEdoO8PYGkIpmYwjdCYIQ4UKLFKmxGLE63uScTgHK23EBQ+5JBEdibaae6M+WWqZaTfoLrSwMl/vw06TVijxhEQJQaRT/vTlHR55PCRoqFxLr7c4PLrBt65qVpQgnuvQO3MW2V1hPILB0Yig1UJlY4YHMckwRlibp9quA3njCFeVLSonBmBdalPXfzjiZafml5C5e5qsu425XnMAtKT2FGMxB//WmXpqKmxVpP0VUrK02mPhdJelUz0Wzy/Tbna4eu11xocRBJZOoGjagMTOkcVNRvu77N6+TTieEE0ivvmtl9nd3eX4+Ig0jZmMG3hqhrAdEDQN0hMc7afgSUJfkIVgRMo42iNO+2gdk6YJWZZhAc/3EHFCmqV5henCJc3qrIw3KLMt2do8o3IRqsc+1cepa9/SLFhyjGLc2uqcym2pmqbOPUiVCQmqsV8nXfUMXuU9C5JXpk79HqwH98nBffmBFGstkdH4MjfFj7OUQZqSasPx3gG7AehQgR+QCkl/fExsNam1SCRZkpEkGuEZjJ9hRJN+EvPWlkR5Pp0VYN1gmgo8wU4/pR8ZwiCg3Q4RnYBxYoiMYj7wCEOJJwRJatg+ThkdHfPB51cIOx5CZESDbTZe/wZ3xy3WOx4LDzyCWltB+E3sIMWO+qiFNhIPqy2+F+KHTU7Qn/e8HPb3SHTM5UeeYe2BNbbjY7bf2GR8OEHHBulBu+HT7Z2jKZtIYZntdeiErRKMAOXiGAQBYdjAGkGvMYfX9HONZGbxJLSbAVYL+oNjxukAz2vT8BpgQ75bhpW/7jKtVaq2txy4VccqslAq0Up3GZh2gakrlVFVvYS6q0+JIxzodNrdKfBf0zif0GSf1Ja786cyi7jP62/oNPcnDtQxvvPTdoCnrjEtH/ttLVYnKdXF6nED5fmi2OSpa1ir583PqY/t+sNRuM+Y0u8f984n7oVzTyieaeq5RdmBZXuZWv9U72nLm9atG67+RI5jinaXonzB8nfB9PcKsOU0m47cKCUwwl2xYjsCCgsSuMQljqAomQdei1qBCOUpOr0eH/7Ex7ny+hXiOGbxzBmaM7MkmWEwGnHnqA8zPrTaTIymHw2IjCbSGolHFidkxpIpi/EsGQ0GScIbGx4Ly02aFyScAdOUWA+2+gmDyDLXbtCcCTGhR5xYYqvoNTzCAKQVDMYZm0cRk/6AFz60igokkNDfeouNa1fZnLRY7cKRF9LrLWJTQTwYoJIxQbdHMhAobYiTLAenQhTZdVz/Gax12YZsmYEHa6bGphCUloWyT8putlOfnczGU0qBVK11rm2yNk9c3IkL5s+H9tLaDK2ZEOF5tBod0mzI5qt3SMYZvpH4QFc16XTPc7hzyM6NG2zeusPm9dtMooid3R2ODo9I4ji3cvYnjHpNepFBTjSioRgPNWFHEHoCFViE0IzHIwbRIULlQdWZznIXvmK+WGMxooorMkZibVaO2Rp1Ltcp10bTiglw8TpFU+efOKVCyX/fvk/XrXH1ddK5dNpa1qN6H1RWzzp5cYv0d+m7d5D75OC+fJ/IScDyDmdMaTTE9ISrbYTWWjLgUCc0bYAnYDuecGMwYBxpvv4nX2fpgQc4e9qn15uhvRIjgpR+lpsOU+mhs4RET9B+RmgNSi5xazvhcD/iwvyEpXMK1TMYr01kJW8djln2OyzOeDQ7kgE+SSaYn/WRqcYkmjRQHGWCb1wd8Hee76K6AdZGoCMO723w8ovXoblIvLLA+efez1GWcry3j0iGLPYUmU44PNrn7HKD+aUlmt35XJP+fSTjaIAfBjx56WPIpuGNuy9yfOuIZJiCtnieZLbVZblzCt9aOu0uoRfm1VBr5MCJlJJeb5bHLj/Bnc3rLCwv8satK0RxhBKSmU4Lk8LuzoCDcR8h2zS8Nk2/VWg8f/DIgZPSBF6COUlpIhBOEykqcGFtDci5zDhFHIBz1ym03bKIXZCFBtPdqwSNdcWZIwDu3EoXXSrgak9NyVIAF03plH3lRe3J34stvLYZ14uE5Qig8AUW0yApP+wy6bhncFDoncVxhdJSUQP+7netdfkM7lEdeYBpX3HnAoK1TAfl5nEQ1XpYtJ7IswY5VxxT3htcsTNrKQpWVX3n2sb1r6CKK3FpIJ0lwrWAq+1QAR1KMuAChd0YKntQCJTy8rU6qyXNL9rXxVcIqUpXFyHACwK01lXmIiHo9no8/tRT/Nf/7T/hf/yf/il7e7t86Md/jFMPXGJn75gv/Mmf8vKNXR44bVGzs4iOJJUp/UwTRTFeI2A0GjAUMRZFV/UQ1ufGVkz/MOHRRyJm1xSqC0aFTIzkjf0xF1tzLM2DDRUj45Fpyfych40zjLBkvs/d45TbmyN+5LkuohFg9RghR9z69nWufGWDLFzkaL6BmZ9jnCkGG3cJJ2MWe10Sm2E9ycJck+09SWIqq+nJ7FdTwbVl4a7p9c2IimxXY7vqc+fnXmrOi7ljMeUYKFXZtopPKccilIDWjeNGKyATguHYMDoyDINbHN3ooxODp8FT0As7nO6e59pbm1z5xjc5PDxgb3ef8XhMFMfEcYTRJicH1hBFCckkIWyB8kA1fKyx+MriBQIpDFtbR2wN9phdmqHdbeEHeYxBmqb5vCuqq1frW95W+fvU3KOcRt/W42Rq7e4+KLujRvBzVlGbZ7U1qpyP1ZfrJM25Rzoinq+R8m0rT0XkXIKAE/EJf4bcJwf35T0kb9/mnXyvEO3k4uYWMlH8dMRgU6dI6fF6ltLCIj2fhdk5TmnNFxfX+eof3KL36S5DaUjagpYfchhbruz3ed/KAqoRMop3ScYDzi8/zgTB731+i4vLm8w+8RTeyllMEjGxHntJg8WOYbHjIzzJIAMrBUHTx0pD0FAEyrDZT7m2N+b967eR88/AeBObbWFlRhwNGfpLnH96kQd+6Cd46+CA/W/8KaPjQ5qrKzx6+WluXrtGKCXDpMVcMEfQ7mKsQThNYF019B6VRy4+zVb/Dq9sfpnFlQbDGyP0OENqAxrmG10+8ez7WJs9x539m5yZvYDv+VNWg5MyPzfPxz7ycX7t325jhWV+YYGDaB/Z9Oh1O+zf3SedJBwNB6zPXKLpNf9qX/o9JhU4r4HPYuPLdB50KgUlEASncK6BZaoUk+4MUYBRIQSmyBxTeo8UQM6Y3Dfa6hqwmCIAOao2DoSXgMbdFYc+qzUAZz0QU5pQ99y1F6/evxBZAwfG5KBzSm9YaP9E6XaRj8Mym1LhNiPLe1f3tTb3GKyfU2VoygtWWVVlmIF6cboCaJWuH4JABSWAN+77tq6Rd2TkBOiQslgfC1BnTb2cQelG9E5ibe5yIoqsQyX/Es7HvwJS1TH3L3ePkCrXMLuCetZYkDavK1OCXFEEJOcxKVJ5eL6PNaALrW/enpKw2WIyGufFyTyfD7zwcf6bf/7PUMLyM//lP+I73/oGF8+e5fT8AqdmRnxrM+Zbn7vD9ctHjNuWua6PsZLtseHK/pAXznT5k1dfo7dseHz2QdrBEv0YfvvFezx1YYv2059BBU2yLGNsPA7SgNVuxsKsRyQNOhMgJUFTgTQETQ9fGb6zFRFNDnl2vY9aeAQ7vIfV9zCeZP/4mEPdpHfxIQ5PPcZHPjrH5u++iGyFRF6b24eW5iRmpiPYPvK5vjXgYDDCGIvne3jWFuk4wVpd9nvdEldPS1rGZrg568B/QbTr87s+BvNxBsYR6xq5dYoFN+CttVhtyZtDoJTgq194i/f96CUe+sAcS6uSb7x8AyYZShukEay02yyHHi99/it85FMf4p//91+nf3RMNImIk4Q01Y7yFGBc0D8a44WKxvwKYcND+xItLX4vQGqBHUtGwyG3tje4+pUb7GxvYXSe9jaK4hK4lwX9tEYXLnsCitoNEitESYilkrU5WgTBF9nCyhWysJa6mecse64GgpsYJ3cyWRScMAUJM9ZidN11sCIW5fpXEnaX4Szvi7qF48+T++Tgvvy1kVI3cnLg11wP+tZyR2sWpCTFsickgySlJwQzvqIvFT/70Yc5+8Lj/MubG1z79lt4sSZ98BK//kef42Mf+wj3pOLexphB0mR2eY4zhNwaR9y88QrPfvpTtNaaaHFMJOYZDQyDnZjlxZSs1UZLH6wlEHmu7QbQDC1bxxn9JOLMfMr68gXE5Com3cHKOe6+/DpvvnKFzvIZfuGFv4maNXzty9fwbcpcdxYSxetf/jJmdoXTZ1cwvuXexjXu3XqDbrPJ+z75t5jSpr6HRQjBSm+dxfYq42TMb7z+Jfo7I7KBphl4LM2u8cxzP43E5/zCQyip+PNeTEpJt9Pj4x/8FBvbd7ly9xU8G6Azy87eLn4HPCzZMCGUIYEKy+qrP4hiCs1ZudELB8gLDZUDmrXv2BN/QwWEHSc11oLWGJMDR12kLa2KL02TgSnDX3nNEwqEEzd1gMcdEzUgU2o6Tz5oTbNXZtI5+S712AhsGXhYBj9TD+IURTvlQcMlkaHYs2v3srbasIudPQe/nofUaQXUCnG1ExyJkEogkFPuXbZIs+nqFmidUT3BNBhUqiIY9RzopiBctvjckRtsjaioevCwq61Qs2yYnGTUyYUoCFAeV0LhPiTL9zdWlOlsBZCUBFTk9/PyexoEKB8/UJCkeAH4YYgX+Hh+k9F4gu8H/Nw//If81M//PIGUJNayI6D32NN4vmJfCpLZLr/wiYf5p1/6FdqXf47D3/8cY/8CbxyP2P3S5/jERz/CXenRuvAso45lvzlDz/i81T/iT7/5FT7zH/4Dgs6QxEhi2owGlv5exKllTdz0MUKirMETAun5hKQ0G4ZruylSjVhfCVidWYHxm1i9gxUrvPo7v8bdq1ucf+RJfvrDn2ZneJsvvfjbrLTaBN1FMmMZZWNG2mfGTBhkQ86tzfHgqWfYuLfN7/3xN4nTrMxWVc/cNDWnSoXZic9rlsApgiAoMiFVFdLdGCvnZ63v31FEpR2Po7yGxDc/e5W3vnGXubUZ5k/1GO5HZImh1Za8+eYu3/nWJqPJS/z6r/06o8GA8WhENIlIsyzPwuSCd4usVpNJxMGuRV5VzA1nOPP4Av2DFCw0W5KgqyCN2bh5k69/+ZsMDwYkk4QkSvA8hc7yDE9pmpbZ1UqrGLV0ynkDlBYEU1hVtSPspZKFYs5CfXFRUpIZXc5NQTVXbLGWCKpkADnBEFN4xs23ujWgshKdaHrhXKS+S9+ckPvk4L68R+QdrAbTK1bt2Enwn//QWhPFCdbmqfaiOGam1+WXfvVz7K6c4rGH1nhstUdbSvas5ZaxnBYw9gUaSygMjwjBtzH4DHn/2ixqaZ6NrV30ZIvZwy1eNQFPSMFWu82VN7ZofPsmK/9+j//rs3fZXf0hvNYFIKIfpxxGBmLF8oyl3e5hfB9fKjwLiRUE2QThC+4MJNf6KbOh5dElD5sO0Po6Ytxla/cOV+5tk/RafOrpy7z1tc/y2a++zOMLi7SXlzGdFBHeYWE1xDTu0Oo9yjBJ2LnxFtHhEetnHyRLU/wgLBeg96rkG1K+MSnpI1G88q1XOdg9xmaW9myDdtih2eyWjiUVcPqz30wpxfqZs8Rpwt/95N/ns3/yu7x593U6zS4qU3zy2b/Bk+efotvsVZvde7mx/hLFmgrQO1eV0hzuinYVGTZVTfvoAg2diRxsSTIorjCdJ7wiGWUazCmVGaUFw92jDvSrIN6atr+0MhT/a5tfpwA7gtyKWK4gdeIA5XNNBfdRAKZCi28yQ5l9qFJsk1tHqiJ6+fXIg7rdrZz7TO24Cxgt28Ja0jitgIExBQiTJ7S97j65NcPogqjUUphKpUBU2X9cHzrN/tv6vtY2trD+ULPMnDC1VFrod7C61MURB5fPXSlZFMTKg0CxucugkDnRSZMUozWhzAOJjaFMZWoRNPyQ9twinfYcw+ND0jRGeh7xOOKBD/wNHvjw+/l7zz/AE2dWaPo+W8ayYS0XJRz5INDMCIkv4HVf8Z/+F/8Zx81Z/o/fE5i4jzkYsXfrKlc+9sO8T8CN7gzXvvQy/YuzjJ86z7/54i7m0Z+kGa6RmT36kWIUgcwUK7OWdmuG1Fe0hMRaD20Mnh4jPMmNY8Fr/YSnlhSnuhqTHmKz6zDscefeVb5zcMSZxy+y2lnhld//Vb5+/R7PLa0gl0+jm3sI74jeYoYOPI73LBkKogOEkXhG0/RVTriNKVPh1pX5UJBC3F5aAf5ynp/4XYgiZfGJ+VI/11kA38kuV3LiYjkx2mBFEYrbd4HTEozHuJ+AFsim4HBvyJ1bB4RhgJAe0TAiSVMyo/M6FcYW1rwqDklYiMcJe5vHBO0G1762zcqFJZphEw9Ih5rheMzm1Zfp7x0wOJ7kxc60JkvzuAJbAHIhZNlWZSIFilgot44Jyorn9TYRgrygb4lPTGF1qYoFQlUgra71ryc6cAXVqqr1eUPW56QUslIy1Po5/z3/w2RV0crvRe6Tg/vyHpBaroMa0843QJ37NEqfKrBHnPg27I8m3NodsL+9zVzDY/3UEttHQ77x4ld49fYhH3z8Ehdnm3RFnqkiMpb5YoLNKcVQp4zSmMUgpCstkQiYCwWPPvsY3t1bXL97hf7+LT4e5Lc//M5XOfz2t2m2AzYmT/Djz61w49FVWksthjZklAwZ9IfITLC8vkgqoSkFymR55gcraQeKnUyxlxnOziuW/QTiY7LogMx22dgYsXV4j6Vz55hrewz2v06flFYIb9x7k3jrTYzK6LQNl87PshlZzGVJa+4cDz31flRqyaJxnrWobLX3MkVwqt2iQvJwzO7WPpNhhOf5PPXE+/nbf/NnyzgKUf78Hq4sBEEQcG79HMYY/tYnf5KNnfdxa+M6f/rqVxFS0G318JVfasvfq630ly1uY3JY0JRZe/JNq6z66UhAzYWvCsjLP5N5NaWCAFSfT6VAFAJcZtEpa4HABTi+TUqt/TQgtQUJcKlAKUz/ZUzACXxrcan9RUkg7PTOWloxyiK+9Z292Jin3Bhrr6FkbkkwRYpCp60Vrrhc6SJUPkKu9aewEhT3q8/aErwYpyEUZf9IKXNXj+JImb2nIAYWyuwmU89be+568COFlaKuBHXZkiifubrWlEuWFIULmijTWkop8X2F57l/Ej/Ia2n0Zlr0ei3SNGN355DJOEJ5AVbk1sHcTQOCVodnP/HDLJ95hP7WJjdef5lJEhPOr3JwlJGG8/z9F57m2VNzdAOfyFoSa5mzecOueB7bSUQENJTHjCdozi3TFh4//u/9GK/dvcrOnTdohXA+gBTDmy/+JltX32S+9STrT6/x4x9Y5eaTp6Hd5Diapz8ZEg0H+MJj6fQciRS0BFBYfzwhCD2PnUyxk2qeWlUsexNsdIxOjsl0l9t3+tzYusITz32Etj1guHMVM5PQDgWv3rvKaOcqQoxZnLXML3jsJZK5+Q79geLmjXssNAImk5hxFKGKsaCsoWYQQpo6+asN4xo5dv7zbpiXn1FYBhzwJQ88LgutUTsfW7jDlNOoHLtu7XApi3VmSWNNPMoYHUxII43nKe7dPaR/OGIyjkkTnVuVMk2mdU4unItUoSgox62x6AySKGbrxg5hq0E0Slg8NcPsUpd2p0Wz4bF3fZ9xf4xOs4IcVHUbXF0DJ7lVwrksk7+3dXE3Rda1us7STUnyGKX62nbS+imFLIunGWPzQPypNZViHTQYM60cOFn0UBTP6jqvjDmoKU++V83XfXJwX95lqcCE02LkLgwZWk/I9BhjDI1gjixLQUqUCsvN1lcBqdHsRzF72hApj3Q45PitQ0bG8uWvfY1B5jHX+CCzDR8pBJG1KAGezeMPEpGz+UAKjmzMslJEdkRDNDmzvEAqjtnYPeT21j3WRMamzjjYuMr48AYzs+c40/A4Nddgznq0hWI0gUkWILKI7oxCNyTKgNCW1EqMELSEYc/4HCeW+VCzooY0kz5RNMBkMVsHGcNxn9mFebqhRaWb9NN7rJzt0O41OD5KGfSHTKIMHQsONyeMdJPb1++wejbk9KlLLC2uMxkcVcWY3uNSXzSjKOILX/w8o/6ENM7w2wGrS6d58OIjUwDke8kmVPo8C0Gn3SFNU86dPsfC7CJLs8t0Wz3OnjpLM2yhpKq5E30/tNpfvNTrF1RAP9/tcpBdgNWi+mYuRYYSivNFtWnlGrRKBeCuO6XBhxzs1lScU1uou14BSh0QmOr+ktBNb751t4dSM1f72yKm8H71QCc15W8H1VMUsnjHk5YnIahSs1r3rapK7UlQXb6LcPeriIi7qHMvKvtHON/lWhB0AcTeWZdbHD7hYeCOV1ShitUQ5fvlZ1Y57KsMLyfduMrYA5GTec9ThI2ARiMgDH3C0MP3Fb1eg7Nn55mZaTAaRXRbgjiN8Bsz7O6PmZ2bIUk0UWSYWz7F8x97gcbyeQZ3bpHpEf1RH687xzjeIx5tcXGhRTfwQIAmdxv0ydd7C4RKgc2Y2IRlzyO2Q9qyy1OXzhNxm6PtPtF4xJrIuJMp9q5/gyge0lAPsxYKVheaLFofT0gObIM4jfBESnvGIws9fGOR2hAh8QpwuK8Vx4lltaVZFcfISZ84GZEkCbtHGcPJMadOn2HGH5AMboO/xbmHZ5lfanF8vMPx8YhkkmEiw3DPMkwkOo3Ba7G1s88+uUY+zTKEFHieBBTCFkHpFqw06AI0GjePTsyX2gDCKeko5oicGqc11iHc6VVSgpx4V+mKnauS82pxmZNyS6LA9zyiUYpJDbIpOdwbMupP0KlBZxX4fTuBnya0tiAfRlsmgwipPAb7Q9CWZJTSmU0Ig4DBwZDJJMZVLjTO0mJtEdSuSwXUVGC1mF53HOHOfy/cLh1xngLi9fXPlgSgXNuMBcyUMsS9lqh9z5GFfNK9/dp1HjDdSG5JO2Gh/S5ynxzcl3dV3CZkrUHbFGxu+kqzI+JkkzQ9yvc+u8xkEoEXolSH1FiMFYTBDKkWHMUpfiug21qmv5Ny89ZNJipma/smiTZM0jEZEAN9IBR5doYYS2ShIRUdaTnSQ2ZVG2n7KBHQlB6r3SZn1xc46IQw3OLeRHM0vEfYE5w9v8CFYMS1uzcYxU0G4TI0mijl0Wo2WVgK0AIk+WKQWIFB0hSC/dTQsDFnghQVDZj0DxkPJxgpOdjeYXYxZnlhjqR/ldHoOq25kIUFTaNpEapF1G8yHMD+nubNb6d01DwHowyRGjyh6PTm6MzMlwv39xPUHY9H/NZv/ybxJMVow1xvjpneLJ73F7NkCSHptjt0zj/EA+ceLCwLISerx/4gShW46z7J/WUdDi2cZGoQl+r8EvxSAkaqy9Q2uXyjOnlcyvwzY+ubnYP8VaYV7HQufig2aFEBGTfoy8Jk76Dtr1s7pq4mxPTDFtp7Jaug6RJ4n9AIuoDfKWXdSfclpr9D/W/3fVVP9ToNGEpVfgG4HNEypqqoXBGgaTAjSjWmqAG6acuE+yN3C3NtaWtgpPY85UNRaJ1l1S61eyulCAKfZjNkbr7H/HyXZsvHZDEPP7LCQ5dmabUVo0HM+ukGaRah2stcv3nMqbU14lgwHFnml85w5vwFsrDFQuMCWh+xtX+Xo3Ef89oeabyXF50UEAvBBEsoBdpaRkajhWLW8zFGE5mErmqQ6D6e7DArJetLPTaWO9y+o1HZigAAIABJREFUvYvu3+XO2BKnu3RX5zmzHLBg9rlz+yZR0uGocQrb8PGQtJsN5uabGGGRGLSxxFYWJBqOUktoI84FKdngmOHxMUmSEmeGw50dZhcjTq8uc3D7c2h9QG+xycKCJmxKpOoy3O8xGBru3U65/VZCI4Y7m338hmUymrA1iMhs4fMuiorZxiBMqcjO+zbLrQm26K9a2oHaQBRTLmyun0uOW052N8eKNaMYJi6epj6u6yS47qpkCqWA5/uMRikYg+9rolFCPEnz8VNLz+oIc2UoOKG1r82T0m9fW0bHE+JxwtHukEYYMjgckiZZvj2KvD6EqWW6yi2O7/z8+RojKUKxp5Qa7niVUKFSSNSXlLpF060lOenXU6QaqoQKrt3zLnbk35FwtwgLShLj+qrePlOE5bvLfXJwX95FKakB2mYkaR9IUNJjEr3GZPwq1h4R+A3GI8F4IjH+DFEWkuoGiB7KX0GpWfqRZbHVwQ9C2mdWCGcivnT9Dxn7EYODATuTIROdIkTAAXBKCAIlOdYpbQQtIfAELFvFK9mIB6SHD0QYRHORxx/8IR746WVevf6HvHHzDlm6zZNPX+JjH15h6+gP+Z//798i2lokXP1RPvGJJ3n28gK9mRYCS09KxpkmkxmkGp0KDpTPKTthqTkg7hsSJMeRZXd/D+l5XOjeo73e4+D6r9GaGbP+yALIOZSNUH4f2WrTmFtjRnQ5bT0e+2iL4X7AG6/uc+7yp5ldOgdSlgFj32/sIEkTrr55lTTWSCl45unneejBy/+fr1fPYOV53hSoq4JQv7/a6C9Lyk3L7S5GlgCg3GxK1OcArJ0CA+UeaqmqquZHyuNC5Hnsqy8VXzlxHQds3LXqaQXrQX8uILB61gq41IF7VcRruojYyc6v7pu/n1CyuIco0rO+w8ZbtF8eQyCnruXSe1K0oS18ieuVZWvNkB+rWw5qUvkf11Ih1tsNqu8VZMjd14nT9JcYpvy/slrUwREn+tAdFLXfS2IgqNyRCuuRH3h4vsQPfM6cXeHxxy/QaSs2N27xyU+us7yoaYQeSs5g9ApHx2NMuMSH0hbIHkItYOwM48hnLKCXTJhdnmN14Xlu7rd56cpLmI4m3h2ylY5YNx3GUtBHsCAkgRJsThJW/ICGFSgp8JBc0xEXhY/CMsQyN/sQj19O8M2Qr776m7x+bw+/PeGZZxY4e27Am/d+h3/xK3+A2T1DcObv8nd+4mHWZz38QCFRtJRkkmmklyLHhrFRKCk5RcxSc8joSIMI2RtMGAyPCZThQm+T9tke26/+ryye9wi7pxDM4ok4X+/bPRpzF5kXPmefCnhfFHKwmfBHv/9H/P6XrpNmmlQb4tSQZbkG3GXMmXb3y3vsz0xnKShV4SezwNXngy0ArQuIFeWyUPjUF8G8bvyUbjAlkdSly5POLFGkyRKNkjAZp2SJLrPyCCmK+JvaJLH1h6o9Zm0qCwHJJEV6EhuATg3RMGYkJ9hM5/FANeuJUiqvdCwEysuLiObxBbYA784KUsyNovZLGcRtqvZya175SZlW3Fak3E5nE8pdlCxC2KIAW+6WaC1lAgeo7lf9y3+p1qPienWL5b/j3nafHNyXd1nykWtMTKoPsHaPLL3HOL5BGm0h6SPRhIFkpjuD7w8xLDIeDhhO+gwjuHr3GvMzqwyzRcL5ecJmi+XmI/ztpbPsy1/h8//DZ/mDK59ndink42uP8TiC17F0gHkpGVjDHoaWhVOyAdk2PbnItWyHUDbwZIdIzbMvL7H7yhvIMxtc/KEGlxdus6hucisyiPEY077L4OV/xiuzP46d+2EevXieUwh2kpSuhX6S4IuYwIdUN2hwQJxo+toy2n2TOLqB3z2m53fpru0zvPc1Fs8YgrCJJEAjyaIEu2cJ1j8MzVWE7AAdpJqhszrh6cUtgnANKTsg5NsW9+8HsdaSpRmjwQijDZ70+MQLn+SZp5/5/3XdKXekdyACP+gWAyfWGISSNUtALlPaeKfJcr7sJVeotOZGVxq9SqFWS6Uo8kw1zrXmJMGQThsmqvgGKWUVqFyo72392eo3dM9SXbB8P12zWFT97jR8Ne1gHUaVz1fttFNuRjWwXD9PiOmKve7KJVgotbjV85REwpk07Mn3qzBAqcA9AZKcFWzKragAEK5SqjRTXykuXbgn/b/svXmQJcl93/fJrKp3v9fd7/Xd03Pu7O7M7Ox9EYuDAEECAmmApgzZPGQyaJMWKZGyTAcVokXafzBsMcJUSBFimCFLPkBdgCFQJEGQIEEQxwJYALP3zuzs7tzTPX2f764j039UZVXWmwGBPwRgF+qMmJ7uevWyMrPyl/n9/q7UWbpE825tt5KUdCVAJqXYgjjoOAE3Zg2KogjXLTE+UefkySM89faHWVwYYzi4ghIraH8bpQI8D0pFh3q1huv1iHSNna119gZ9Njq73FjtMzd5BNE8TOBoiqUJ7q19H5PTJ2hX/oDP/++f4Q9f+CRzj3+QuxszjAPX0VSFYM512BeaHjCBQ0W4CL3DmDvDK/4SU14T7ZYoN++jOePyid/9dU5/uMVDP1rjB+evMl69xstLPnLQYVi7Su/p/5kX7v4l5JNPUh6fJkKwMfAZA7Z9n5o7xFEeMhIU2aU/iNgLoXvreXyxRKkeMlYqUJ/aoH3rKyzcU8BzKmiKKC0I+gG6B4Vj70E7LYSoIZw6XrVE61iX9/3EHP/uz36Tne6QgR8RRpogCBOCoBLNekYKTVC7k4DQ3JxMLXT2ZZ3NLYucZ9r7RP50PMeN4kAqMTKnYwuKIRQAURRPPMeJT8UOByE6iufe1uoOQRCkxMBMeONSIxJ5yFknsiNY4hS3RImGfoh0BMHQj+ek4+A4iigIMS5ThmzHKXET2ZASLR0ECkU8nobkAyYlATKJq4nJs+X6SCLnhnZr+7yO/MIqEKmsGOV/OrbSkC0ddyxZ8AzwT62NaX12/ZnyxP74TgqH0XJADg7Kd73EguHiOlUUAzx3Ac/rMij26Q977PV30HttilyhIaBYb1L3JqiNTaDEOvP1KbYCzblrmtXLO3jj4xw/MctTzSb/7ff9NC+eepUbn3uOa+NHODV3jJosUETGeYMJkWiKQAlBB8HDhTleWv1nzNXmmSg/jCtb6MEu//KT/4b1F77Ez/3aaeYmAq5e2eT/+lqPmpriJ//2O6mWbvJ7v3OV6enLHG4cp+neRTdUDNUe47JM3VFEGoTu0wrWCeUMu3s3UDt/QdFdoTFRoFSYpVqqI8J1Jo8+inSqIJpoJZH+OnL8SZha5Lk//y30xir15gwTdy1Sne5TbL4DiQNYi9BbsERRRL8/IPTj3NNTrWmq1SqO43y3m/afRFEJoogTDWXgPQuANT/jzTL19FHELhRJXv2cxj7JcpQG/QmB1kazT0Im4pqz9ATaCnrO2mfnvk+v6exQp0zLrVPX3DSIF9J0i39VMaQkBz6sdth8wjQlpRS2PxE2UbBB2gg51UbTLrL9PJfiNNHAk4GyJBoxtZJonaUFzWuKRwCEdT3O2W43JLGKGFKStlukQM3GNznLQtr3rD3xPTFJcF03Jh1KMxwEDAeKcmWS8bEx/MBhEGr6gxX63R2E36NIRF1CaXySyXqT1tgEh6fHOb04wZa/xTNXKqy9vkXz8CxnDrU4NX6Y/+ap/5rnPnmeN/6/v2Tp8KM06w0kHgUgQlP1JD2tKWEC1j3OuhM8v/JPOTpxNxPiHUSywOrqZT79mT+gPfR58lSVmZLmmXPL3Lo2pFys8Z/9zFGOzzr81j88z5HpF1isnqTmLtALA3z2cWWFhoxQQlNS25R0hC/G2G4vweYfUa1u0yw0KRemKBVLyGiH6RNPgqyBmEYFe0gVICsn0FPzfOUPfpXiXp/ybJOxI+OML0xTaDwMukMQBLE8Je/TBLdqex4kMqx0mJDmdLJaZDibAwleT7lpinHtczZU3rVP2D8SBUJeeDOQn056BI50cKWDCnR60GCcRjR5RyYrGcTQW+em8J1L0o5MDgRRFAN8GSlcV4HKZFOpMGdhMSdNZ3EBRslmWwOy+7XJ/CVA6IwgYMK38sKYa6rh/Tr3WWZlVGnGKZFm84rvMGuUtdDYDGFUuwO3vem/qhyQg4PyXS3Ga1kKD8+tE0R9HDmGlDVcd4JSoYRfGLDj9Ol2+nRvDZA7HURxDadVozw5wfhEi7n6ad556jA3+hUu7+zz6qUVNqdmeHxxjl/7xV/mox/7GLc613l1/RxPTj9MTcQntO7rgLKIXYggIEDgaode8UG6ag1XDZAoOl5A8ch5/K/usrvr06z7FPCZ0IoxAVvBkFPNM5x0tzk13uDEeJWBEKyieNBVrERDpNJU0ZSER1gcZzhYpSrOUz70AF7xYVw5wFF9BB4iXCDqTbOvu3T3lvE7HbTS9DZeQXl9jj28QLH4ANIZ4rjrSOkj/FfQnEAU7Y36rVFsd4fLly/xr/71R2L3FuDnf/5vceLEXf/R+vNWGpfvRhHpnpIdZBZFKdJLNFixRitNI5Ck2zQHX0H2TlNQm2r+iMG70pYLk9FY32HjtMBA+rkwW7VNEDKtptnoI2O2N+A1vjHrq+0aQx4oZY8S+Q0+0RIanyezB9suQDlMkXZE5OaeHT5tW2WyCjJilAZhSge7xSlgyaWZTAC+GS8T6G3GJX1MnmSJ5LtmDJUVrWyqjqIIpERFyiILWZ/s58apHmXS7xg8uY7DoB+wurLNraVtHn6wgetWcdwaRXWRqufQ8wLavSHtrk/nZh/nhQ56Yg2v1aA6MU6t3qRSOUXt7Cne6EleX1vi3JVbLE9Ncd9Mi9/8lV/ld/6P3+X8+jlaUw7Hx45TJQ5+3dE+Y6KIJESjCJF4QtAtPkLXX8UpBERC41f3KS++hvNSn60dn8k5RVVAS/s4UZeuKHK0fB/HBs/wyGSNyWqRNpoOilOOYjnq42nNuADPrRCIgGB4i7q4QPXYO3GL4Oo2jo5AC4g0QWeatt6jvXERv7tPOOgS9b+OKgy5790P4ogZhLOKdHZxnH308BVENEUU6Wy8oyhRLif0Xak0AJhExlAapMR1ZZpxJ70sksDckfmUzux0/lhnXCQyZrIWpbIkjFUvP9ty3EBrypUi1VqFMIiVQcNBgLGI3dH9SVga85Hr6UxMlANogUZmIq9ji2aoFVpllsXYtTRTLETp6cimOp21PYk5Mu48dixCrk3WNiOMzFjtFEk8j9ak5xogYmImhCQIo7TO1I0pWWdG0xBrcx6IsTCQtS0XF2We/S3QhANycFC+iyWd7UgcXFkGMUmkfaQs4cgSrjOJ68yi5WfQZYEuF4h2A8JuQGd3h9euttlni0fuC6gvCI43zjJemuBG2eP87gZfXvY4MVXn7IP3cGt7hauvLbPQvIemU6Ud7VJzCghKBEg08UmhbYYcLx/ja+dvsjA7ZHI+ZHXYobu+T3nBZX7MZfVKyPotl2Ix4uRiiF/qw/A4u92nWd+8xeHdNSYqsK1Crmx0mWg2iWRAEAb0dARS4UUd6hN3I3SEDLeIwg2Gww7BboVSS3P1xnWGqyuUGhWK43VQPjMnj4PYpVb1casa4TRiwVdbqKBPFPVwteatkZ/oDgs8sLm5yblzX4/TuknJ8eMnqFVrI9rJg/LtKq7npCZxG2ikqkSSU5JlltYv809PNGlpVsBkU1UW8E//y3ZsbZOHhEBobbRl8XNjZbmdT11b6DvTAo6WXCYTYbR+wB1lxIAqM9fi+wwfMPXZsQ4iuzFV3uXAlL25J/fYrTSgwNxrarXdtuL7ZNpCYyUx4526C6n4tGJMHI0wmaUsgnGHPoskr6QdeGkUN1nbM1CWEiEL6Ykk+0zuPeg42YQgBkfDwRAELC+tce7ceQqFKj/8Ix/EkXPxei+nke7LuIWvoSv76JJLNB4SdIdsLW1w+eIuvrvOg6d9xhZLnGo+wERhgiu7fW7ubNCNJCdnxnjiybNsLe1xdXydWnWOmiywH+0z5hSJcAh0ookWiqEOOVE+xp9//QJveyhA14asd9v09zpUFz1OTIzz9Wcu0dkeMNfyWJyr0S8JPvm5Z1nvwtradaYW9mk0NL0w4Opmj4lWi0D0GIQBARqhfTztU2/ejYwi5GCFINqk1w2IegUK45or168wXLpG/dAswq3gVYpMLZTRzj6Vch+n4oCYAVVER/uEQR8V9fCHPkEQEoSxO1E8ZYQ1d5M9NueGkk1Sbb1Dk+0qdWkx89xKx5kS/NhslYJNaWux00lLKmZpCl1DJIQVWGvmmhT4/dCySok8SZASKwz4NnG3rVmJ0CQEVqbnEggRu7yZ2HoTUyDQKfAOkxPcU2IdmwQy4J1mBTPKAKN8sAi+GUelSc9FERZZGlkIDDEJtQn81ok11lpbbKsPI98lU7baCpDcb4mS4k6rwGg5IAcH5btcEr9eIZB4eKIBqg9ECFlG0kLKKaQcIrkJjStEk13C3T7O6oCtrk9/o8fXn79Medln7rigOXM/J6en2YtCboV9Lm8tE3o+tWId/AJX15cpTs0TBVvoQosdKXFFgRouA60IdciEW6THNG1VQXd3eG35PJ3ViDPfN8fCeJErr/TZ6XnMLXi4UyXGStO8emOV1X6fKV1lQBGtAqqRz2YwYDaKCDVoJKEKCYdDakDY82lvXiforxEE+wyHPsM9j4mhotPpUBJ1KuU6lUYF6bhMzlUQbhmCN0DtIuQYCBdN/E+6hxCimBvft1LRWtMfDFjf2ADALXiMj4/jeV7uvgOC8O0rWRCcDRaz/UYmfssp+NBgH/+ZBcfqDOgnwDPTrSefj8xPyzBgabcyIGr70N/2bQNo/oq+xYDQ3hzzOjQb25jkHyNeQha4z5NVe6zMx3fahO2xzDUfa5O/DRDke5V3XRIJ0NEZkDKMIL3XgIdvUJKxy41frqEiHbvRirRVR2aMyJ6ZWnGiiOHQR2nF+vo2YajY3+tTKk/wA+95N567gHAnkbKB5xaRlVswdolwsku40cdnwE4vYGu7y1efu0x1JeLwPWVmmqeQbp3hVoeNsMcbWzdxq5KGmqDT9rm5vcrh8QmC4QZbUYVhtcmELOJowVBFaBEw5hTZVbN0IpftnZtcXb7CcBdOPznDkUaNf395QL1VoDhbozI9AarKS1feYFu4dGUdH4eSCilGPjvBgIUooocAIfEDHxH4VNGEXZ+9tcsM9q8RhD38oUD5BcZmNd1um4o7Rq1aw6tKSmVoTpYQbhX8V0HtIJwKCA8tPKJQ8sJLNxkMw8RlxgTXZsQ9PvdCZ/IUI2sipRJwbkmCsbDZc9MmAkbytJmXxq0oI5GYu0YnuPXnKMBVmjRjkRCCwA+sOUQKyK0pnZF7oVM5y83y1OhhHx6WuAxZB5HF16OkubHbTrpGpIc13i6DuYQWIkniQBYHMNpnm/QbWYuv52U9tew42e25sTDtN1YO60Hp6GcMfYQpZffccQEaKQfk4KC8CUqm5RJIik6dIOolU76IlBVc8TdQ+iJafwa3dAt3ZkipFTFxzOfEUsC/+LMuy6/c5OgGnD475K5Dj/PQwiEmgzZfu3SJq2sbHJs+yuxki72lm7QbFUqDfTpyghUZUHMiasKlpz2K2qcTDbj7nvtxRJHVrde4dOVzCEo89a57KCiNkCHjszWaJ1pshGUq7kN8/tL/i9PUNI89gpw6w+qwR2drm/ExiQzbeKIKjkcURQRtHyWHrC19gZ31NXpBkVCViZRHT3Tx1/Y4sthg5vATuGII0QZOqQCDa1Apx0IfdlFqCEKiIolmgUL1bUmQ8lur2C4o5rh4ISXVap2xsTE8z8tcQA6Iwbe1xOcNmH033sgcKTFHa4369httoMDGkjqnZbaUgJnjQYpvMxCa4dFsg1cWOMiZ99MGG9BibcDCAjtJxRZmz7v33AkU5aq3NOlJfcrqlzDt0sbJKSYwKnG1Mm20N3ibOaSe26bfWIBDkHN5EILEmmC5FSR9Fdq6lrNYiMx/e5Se6YzImXGRlv+01jZhwX5pmcXEBjfJQWcpeEtuDqMQRzugNQqNancYDgN2tttcvnSDw4cOc9ddJykW60jnDEIeQ+k30OpP8CqreIuKIzMBs3f7rC0FfOQvetx68Qpn+wXuvzdiZvI0Dy1Mc8vf55lLr3NpZZ0nzzyKIwTby0tUpI/b32RpWEd5JcoFRUFJ2pGiLPpc3lzi0YfejueWWLr6Ba4vP4dTKPLI2xaJhgHVaolDdx+iNNliPajiD5rUppaZPS5pHX8Pg+oc7V6bwd4e42MCGexTEFWkA4PeENUZEug2a7e+xMbaKlu7Q4Soo7wilLoMN9scOzzO7PEfhP41pDtAuj4Mr4MsgXTR/g7a2UcpTb8XcuOG4qMff5HBMLSAc5ZpChILk8oImtFkR5GyvM1G3NBSmcjmVjp/LQaZgtnk5Qtrrtv41FgDzb0yaVfi3QQijj8SQiJdBz8IDIvPAXQE1unrmXLCJrSj8TNmzqsozjpkZ9CCJM4HkcZXmQVICkGUrAvCGpPcmmKeIjJFitCxO56dotm0SekMlOv0h2l8Xi6zy7fvdSLheJFZX622KQv4jyoqhMhI47dSDsjBQXmTlLwQeE6VQPkoQoSOQ4a1uAdfTODpCzh6A7wIt1Fi8lSXXz3V4rOf/xKfe2mVP/v0l7l+coW3vfODHCp61O55L1+YbTO49QrDvcvcu/AILVXjM9ev80OnHRq6y4a/QYchxwvHaagVtL/A/aUK7aBHL1hnytnAfWyOXmecVzY2WThZ4djUKRbHH2Bt2Of5cJzS/Dw//fYnkOUH6Ic1ejtb/Lv/8BV+7iffg+f1cOSQtV1Fb7/HPFt87StfYXpim9Y9s8zXp6lU5nCLTXb7PcaKRWqFIgyuop0B0vOIBnu4hTKEHaLhEBH20Hgo0SBUs9QP/zwgs0XuTV7u5OIQhiGB7xMphZQOhw8t4joHy9R3stiaRiFlosQy1gORO+k426TzWnY0aRpDm0CYmwzgiDe3DNzbWkWDRe60mxlgnmmtR26wEUNyIdWvaWs/tuqz70IbVxsDoBL/bJW1RwgDLvKVZVpamQEpDKjP6EN69x1EVVnuRLarj9n77ZSOtgtQrsfmuRpMZqS4ScnIaYswCKvdVndkGj9ifNKz4U01sukY2vwsDZ1OiAmY/C4xGQzREYR+RKfd5Wd/5hf45//ydzl1+hSu6wFVlDhF4ExQ1M+C2IeSS7EoWWwN+bX7J/jkp/+CT7+wzNLVP+W+s6vc98BTLBY8aqc+wHB6m53rX+FwdZJGZY6ly+s8u73K33nne7io27zef4OWW2HRnUb2lvhn//aP+F/+9q+yF+zSGC7Rqu+yM1Hn+q0+O9tLPPH2OR5ZeC8lb5qbvuaFQY3i/E3+xx98D53CSYaBy6XLN3n2+Sv8+Ie+D7fQw5VDrq2EVMIuXucW5155lqnWDjMPHOFYZY5ybYGIEv1gSL1Qol4sEnVfxS0Sp9j0h0ivAEGbaDCAsEskinR6ipfPb/Nbv/Myu/sh3a5PEKjYBYXkADAVJaA7nuxSxC84ipIZngBvkutpSmGdJ9VpzAqJjAh7jmR594EkEBrDvhkVSuNyY0iEFOB6Hp7rpvELrsxOG08PY0jnoz3B7hSNkAlSSni1JgyjeNbZloiEx0SJnMUpv2WcrQidpgBXIkmhOkL+M5eopGciJgVRkoIpH4MwQiiEyJINYIYpSdkavyzru9lClp58nI5stpDF8VVZmtWcUcFanzNZ/OZF3NkH0fQhThj1+7//+3zoQx/61mo8KAflP1LRWhMSEughDoKvRPs8LEMEIQKBg0LrfQbROgIPz6nw+tYLnHvxNS48t0+jWeGuxx7nscXT7BTq3NrbYmN7GYZDHj37wzwT9Ai3n8aVHVo0qKgK5+VltvZvsL2/SOHSc9TGQvb3+1x5fpX7f/o+/t69v8K/evHfsjjbxKtU2Oz02F5aYfdam7/3Y7/EG/42ShSZcMepiArn2n3ae+vsiQqzuxeZJmSiXGa8qphpVpDufQzDDooiBelRdhQOPXTUprP+JZY3y1TdHSa8FVRvH6fhws4ygedCcQyn8gjFsR+g3jqBEG6yKWeLyB2Rx5uk2GuP+X17e5tP/cmn+N/+0f+KEIK/+ZN/k1/4hV+k0WgcWA6+jeXatWscP34cgHq9ku4pwvJth0yLD9kUi03wlrNPotFSSW5wk4XHAFVpbX4ZCIm3+9sy/ZCfJzb5yH1uqeJymYBG9uR0o7XuyQ76ItFUkgNEcXyFTPtkxsBxklSdaV/IPdceq0wMrRu02fClZZWwQJm532AiHYOWjGDlpVuIkSBFm7SZe6xU66Pjav5Mz0axNKxokiDMEQtROsgax3ERgOM6KTjMNL/xGDqOgxRx5iLP80AQB6ICjbEG/+DX/wEf/NCP4AvNC1GHx2VISIiDg2RIpPYYql0c4eDKOs+tfpYvf/4mGys+49MTHLv/AR4/fIZVt8b1jetsb92i7FY5fPRJngm6bNz4GEda47zw3Mu4ZY+jpxbZ3LvFTuco1QtfYPxYjSsvrrI37LL4/fMcXj7E6vge77n/EXrCZW1zg42bt2gvd7l3/BhzTzzKZO0Qs4Um/cjl1U6PdmebPVnh6PrzTBXLjFccxmuC1lgd6ZxiEO6jqVB2HYoiQNCDsEN7/YtcWxlnrnGDYrgBUR+nAnpvlcBzUIUxvvbsFk9/dY0XX91hvxPRHyTkIAyTuQlBMp4IYceip7IVBFF6wraZY7GsS6SAUOXnYDp3hLDFLJ00ObnFyDJZvIw1laXtfqg1tXqVYqmM6zgYgLyyvJZCf2ONyq35ydy1p2BmNRG3KSLsyWqSJriugyBOr4uIzzcQiDRBgnlQ7A6ncmRdWeNi7rU/z9YYW34yUpYtBVmQcfo8qxZjFXBcJxv75N3IJCNcJp467ac5eTpNBJFTgsR/BkEvO6WmAAAgAElEQVRIv++b59xxQz1QyR2UN20RQuBqFykEQ93hEaeCJmRTreEQUtYFNDWq7jyX/K8zJcaYmXgPZ554kv7867z22c+yv/oq59ev4e0FnDx+itmFRa702nxu9yKb+3/BjU++QVfs4s65OA2XvatbnPmxd3Dt/F8itrc51mggSwKpS9QvzvPJsSFPnvoZvnJrndfPn8PfvMhkq8b0993Lf7j6R6jtiMmCw8XNIRduKh7/wF/j3vEKM+UmLw2nUSUHr9lgV0XMutNIIXACl87AYaevKUU+CwsaIRvUWg8w712h32mwMywQOUvsXd+iUZog0GWqXpO6O4FXdDGqkLcKMRgtRlv13HPP8fTTTxOFEV6xwM/93M9Tq7313KTeysW4zMRaQ3AckSq6TDYTSPbeBBynWU8wG2ZswlapdtL4rCfPUCoHMEf1gAZwiPiPtMSpVZV1v8l0lG3WsWadvFJeZDXHz9dIRyZKOkNosvriFIQZqr4TQdFKEZkUn7dpLRkRPwNWdO4DIZKN3GgOE1/oKFSpBtOMR7rhy2xc0m09rTalaKkW2ACCOEUtmUUmbYMhbxrj1ied7NwCQ0zsTpl0pxlOlNnfUXbyq4FRjpQgZDwfpIw1tkGAkCLNyrK3u8c/+e1/wtWrV/g7f/cXeFhWCIlY00vUcHC0i6SF58xxzX+BWW+S49MfZv9967x04UWWLrzM1soFXl6/SmFrwMOPvQPmDrEaBDzXe43t3c/yzEc/z0uzksJiiWg7YPnzr3HXux/l+vk/p7C/w33uDJHn074ZsPZVwfwP/Cg/fuIw//6Nm9x4/c+R/gqtVo2ptx1jbfMmS1/9FGenJ/mj1zr4xXme+v53c3qsylylxdN703gzLVTJoy0kLdlEAHLosDVw2OmGjJUCJiclyDHqrQdZlK/R68zSFwX8cIXOtQ1qxTJDr0JNNHHKAqfYJYx2EcIhCALCSBOpJHlAIruR0rH7jiUAKnUvyq6lJFmnszADrAmwtt1RtE0cjKXPnvvm352UzomMOTJTnJfLZRzHQUWKSGv29/aze625RdIckwr5ttrNBcutyJD6KIxILR4JsQjDKM3wFZ+1khABpbLzVcgUGIZnmOEazfYjpLRSPefJkmm8sd6k7TWETRgylWWOGl07jDxF2hCVWKGRnjtiEzaytSyrgTSzmB5Ze79ROSAHB+VNXWJfWoHSsTaqr3apihpaCwIEkdZsB22a8ghKlCkIn4WyQC4e59D7xnDddYa9HjebHTaKPut7m2x3t7n+6qfZvfIaZWdA/ahENQp0fZfhlMNzn3qGiRPjzJ44Q8PR1JTHXQstllahIBq8GE1Qb9Z4d22SYvQEG16PE7UxikGfF/QFri9vEe4IilHEn/3eR/iNX/5Vyk7AvfMzCKdE0augQ83L+xH93V0Wqg1ksUxXSDbasP/KFYK1daYbVynORggkUajp9QpoUaXfBa8xSbn2EJXGXXjFFre7Er35icGd/DfDMCAMfKQjGWvUaTQat6VtOyjf3hJFCicxYSutUaHCdZJNh/x7E8Qa9Owk1gxUmw0JDFgwmj0r2w0pLsnuS6Zu6npkaddsbWTcFp1zsclZ7yFNxWoHMmc8wWgWsZ6ZECANwlKo3ZEcWM+xnyqE0ZRngCr1B7a/eQcRNUBMSRv5W89Mxsqc6irMWRFkfs/p2JGcYyBEZkXABofpIObqNq5AmQu55WZmyIbIUtrammCtjHuEzL9HW2GhRaqNFYmVIgZmERvrGywvrbDf7lNvNOiqbcbFBKEWBBpCreirPk3nCIGuUpJ9TtYq1O59gO2ZRRxnm0Gvy+Wxfa4G+wyGsNleZXn1VXauXWJyus3EmQY9J6AzkAw6cOEvnmPyxAQLp44gwx3uf+I0d5+ucH3Lxa/M8Zya5NhslcdaUwzZpecMmfYKRMUtnnPO88XzN1i91WE42ETt7PArP/uLlOSAB48coVRs4AqX3iDky6s9XN/ncG2cvnTplorc2tzBf+ar7D1/jqfeN0dhEYR28Qc+vZ5LoMvsbWsCT3Dua9dYXutxa6XL0Ff4fkh2aG4ie8SugDKx2GWkkpH5kU3/WDZMtqtE/u4INvPA31oRctp8G0zb8zwjoVlJjhNJiLogTOINYrnJn9dzJ8KR08LL9EHW4XvmOfkYiuwkb5vsZMG+YNLAWrEaOmtvCuzJYgnsdU8bdp42L4nlSUm1ysiK3QfTqRHLSDr6IhnupL1RolSQqYzp9DZLfXLbGH4r1vcDcnBQ3vRFI1C49JUixKGIw0AL+goKKDzhEVFkZ7BJxQmpORVmSw2uT7n4Nzc5NH2COkNe3Vrj1uareME2wr+OO+NzaKqImG4Qeh7jgWB+vkT7Zp/BfgftVOkJQSgiat4uxXqV040KK14Bp1hi3mmw4MyxqroUkYSFHpOTXbqqghobUgtheHOKP3/+awSbbWonj1ObnKdRkDSFw3Jvh4lihetuhdlikWpJUvIEVWeBUBZ45rOfZfFYkVrDBbeKqMwzvfggYWeAV6lRadxNsTKHdEvErglv/bK/v8/u3h6e6zExPpEuYgcuRd+5km5QZGAgH9CaabruRPDsioSN2IWlyc4BbG3/kQfvo+3RmXbSusX63XwnD0QM6DHPFYmWXetsQzUNsxSrWVC2trph77yJtjUFQLl2WHM29x2rLzk2kxxklUujmlcj5n2ZIT4tVmSWDmMFMRVYBChtW2q9ECnQsK0HOaKW9tJ+L9kA2eKotEIQEwQl4mDq5Efidha7OShhpXXUOs5+lfQ9UoqhH59zIKsQCYcCHn0Vt81B4QmIKLHZX2OiAGPOGIN6lVUkrO5xeOYklajHuZUbDHpbMNhARssU50JOTLdQ81MMI4WOXLRforPSZ7DbAWeMrg9OYYAowMR4g7P1KluOR2mswN2FcVzhsxP1IQjouk2OOZrVQYXx+QHDoYSgwqef+yrD9T0mHjpLrVaj5bmIEDaDiNlihctulUNFyVhFokWLaHiSUn/IX372C5x6aIJC0WHfF2x1Anb3ejh+iFdzOX9xi1trHTZ3evT7EUM/QkU6tZRlJMC88oysq2Qep5M6hYyj66lGq5FLWMoAS1zMNBdYTMAQSWMtFCPzSMexPCZtqOM4SMdN2qxvlwdNXt7MPmDAsz0Bdf7PLChbpqA9a5dAOCKxQpr1IhsOO4A7NzojzzDPTWOCsqUAc8p4GiRtrxGYOAVrbRwlCskAax2fF5JyLSOrqZzGqV2NFSEjBeT+TtnRt4gUDsjBQXkLFIFCMkShdQVJyEBrhlrjCkFRlGmrgEEwJIg0yh0ihUYRcX1XEwrFoaaHDPbY279Mxd9nYsplbKbJ4fEJHKeFlEWKjqQiygwWylx45qv01vcYlCR7UcBSe4l77j7FrLdOrVBnTUh8EWc0aMk622GPdjCkEJZQk1OEro8IAyYnZvj9j32C7tUukw/eR3PhMFPVCY5Ua8wfnmaxNct1PJTrUHYElUqV8dZJxNFDPP30Fxn4DrXIoVhpUGjezeziaQa9Lo6jKVeauIUKQjrfE6BZa83e3i47uzuUKxXOnDnz3W7Sf5JFyix7iRgBAvFmlfzDmOKtTTQHgo1rkY364w3KbMrYoNtOA4i9MWcbd3oAm91gCzDHQELkNnmjVTVgSOc2cNsFwLRNZ0DjDqA+aV1GKMxzRu9ROokpyH0x5iBSxiefjqKNVPsa3/yN5NomTKOoPaErGCvAaB/NI6Ud/Jl2JTsXIXvplh93elnnv2NYW9qNuBUGF8XEIR771Bca0FFsGZJSxtpjmYBFx2OoQVPBFRHD5MEl4eBJj44KGQQDtoWHjvoEWjKMIlZ2FZFQHJkq4PdX2du9QUH0aM16TEy1ON5soeQUrnAoSpeCKNNfdLjwla/SX91C1yRLm6toFbFw6AiHCmtMFadZAgZSMEGRcSFZp836sEMpqHDo1L0MdY/eEDbXQj7+x39K+3Kb+e19Ws0F5st1Do3VmV+YYnGyyRuqgOMJxhxBrT5L7dA0wYP389I/usbXv3yJWkMzdFw2uhG31vZxHUmpUuD68j5rGx06PR8/iJLYguzdiEQmM3IZv+v0lPFkrowGnack1X5/5uOUVJg5kj3LviakiA9KNH/nrEX5+mPiErfCdV1kksFPRWEsbunki8PsM995gVkLtCElpk2mI3afjELDkJSk07aCwAB4ATmXpFELSzYu+VOh7ZLVm1eYpJbL5GwHQyZ0cl9s9Bfpe0j7kyMqiZ+kWePuoG/Q9pfsa6Z/5htGWfFNygE5OChv6qK0JiI+QkQDXRw0EkcEFGSIrzW7KqAqfBbLi2z66yx3r4Ha471jj/PxI8f52Mf/hPvPDglrPXoE3NxXnD5TZbJQoV6+h3uK40zICTQ1oIMqT3Dfe2d47pUvsq12WN0KuHrVp312iy+vf4IPHvp5PDnBiha8oBTTOmA42CDsrnHp9Rvs18uE5YD+zlVuXLzA/mtrDLuaS5/4A7Qf4TgFpufn+ce//ZvMei4LjsNaBPvJ+lkTkpJT4ad+6ZdxhBsvkSpChQFusUK52iJd4s1C/Ba3G5jFNAgDlAppNsf5Gx/+L3OaUrPofi8QoTdzERaAMIfxZJqqLOVlDAokUaRSH/S4gvQHYGvIszgCDekJyeahuWlskYbMq8zk5Mm7GpliuxLYWrVR0Dqa2SfDMTGC0EpbrmwZSEGaNoyUEQ177rsW+DeaeSEEruMQmbEZrS+tKWufeYxpp3RMDimd3W0hGTPeOumWSg+qy1JApm1SViCCNj2MCVyMyUQaSJpaiwS5unKuZiPXpUh8zJP5ItIhi+832WCklFRqdVrT07Rak3R0SF94ODgURECEZoBiqELKIuR49QRLg+u80XmJplvlqepJPjV/mI989I9517siurrDhh+gpOD4dIVWoUK1ch/3ew0KYpL4hQaoSo0H3jfPl579U9qVIa9vK/Z6Q3rlbc7t/jE/PnE3ShW4qjQrOqIS9NjcvcErl55hbyWgeM9hOv4qO2uX2b+0zN7FbYZdxYv//P+BSOIVyzz8yEP8T3//7zLneiw4kmuBpo3AQVCRDqXyGP/dP/wNfuqv/wiDYZdK0UGHEWs7PYIoojcYIDX4gSIIFUEQEoYRjuPiui5KxadXa8sNJjnXLj+/zHvI2HHebcaRaHOS78gUj+dKRgbsdeKOc1iDMPHzCLTI3yWEwHEd3IKDGkYMesOMlMSzLUdMzCeZuFkByJD1W4MWmshYSKx7hEjOaRFWwoCEVGUpm0T6vXjNUojU/Sjpa2IJy4B23koiyFz/zHeEtYdpHZ/eDqAjkNKQIFvOTfvIiIUZhfQ5IpFRaRF2Ky2tuZZzzb3zijNaDsjBQXlTl56O2I4CStLhdRVwUkTxpqV9PB0S4tISPn1c1tUAjcOhQpOi8nitvcMPTU4y/rNv5+Pn/hK9s8/CRMDxEwV8qXn71Cka7gwbTLGiB9S4hqBNIXqDW9zDk2f+Gle2niEoXGBfVjn30Us4P7LJq1PHmS09RTVqcd3vEfZWcPov4nMMcfQIN7/4aW69+CKqqwl6IeMPjVOca7H1hZsMb/WRFFGlcX7/oscvjvlUS5Kmhl0l6CEpOiIBEKXU5C6EgOI3Ha63TLmjpjVZbF3Po96oc/Lk3em9B4TgO1eiSKNl5lsQ560XCJmlwkuVdOnmI5DkU1s6Thx4ascEkJjSzftPA/+EpcEj1iySgonYBQCjbVN33tzSTdVs0ne6zVhEsj9JN3BrTpozCvLXY39kKUmDO9N+pfWTrE/Jn2nmn9hNwMRMpGleLQ29Tb7ittl+05bG0+zzlvuHfV+qQxSZpheVtF6ak5Cz8QrDCM+T1nkKBrjJNNVj2jatEsQX32PmQxofojVaJK4jJgDSbl/yUKO1Ne3UgON5/Ox//8t86L/46wyE5FIUcK+j6AVDPHwcGecsqoiAPi4rqo9DibtLs/hKsTHo8r7Zacb/1vfzf3/hj5grtzlyWFNpeDieyzunT1N3ZripZ6iwTpFNJD2cCG5yN+975MM8c+sP2Tm5S/cKXPqTVRo/0OeVhT9jWr6DVd9lfbhHub9E1LlAuTJL6dEpvvSxf0F7aR3di7tXe6jO3OIMy594jXBf4bo1tlSDT1yAX3isR7VSYUpptgPwkXhObKkreBUCWePGrVX8wSB+wULHFgIRnzWiiQOLlU4yfUaKMInfUIlQ2pp7KYHUdz5+h7YAZHKQ+ezbLpzpe8WA7+x/M7V0+k7tuJd4HurIflYeSCMEXqFAsVQgCiN838d1nSTmSaa+/MLIoL1nWEqE9HdzAjTW0oGZk06WnlSZlJ92FQn5xTqo0Vqn7P1ndKy0BpUcpJZq/xmxmo7UETfXECudX9MMibD7N6LtN5ZLQ9DirmcdyhN1E2Qu0neVX7TuXA7IwUF5UxeJpCAcpIb7hGSAQukBfe0w1FUkkh4uPa0oRRqcFm9Q5mL3BntLz1DzA84tL1GY6RMUFatehcrYcf7+1Lu5EG6yHknKXCaIVthVe4w5HivhgKAww3OM49aP8UA54uz4K/zTiz4XX15iYeIjlKa/woR3DL/T5NlrisfPvo/NQUC08hEWTt5kfKrM/pZDXx3lwUd+lEJzgt13dGjv3eSohJ+9690EjscbNzYYrykmygUqjoMbanYdQdMVIOJj3J0kBeD3elGRIopVjHhuAdd1D4jBd6G4UiSm/XgDk45DqBQSgZROsrlqbIBhsujkNtMEyDvuaD58QRTaG73ItMl3AC0IUKHK6s8U5NkWJ6zNXmcPE+mmmWnh7ng/+d81OtagmtziRqOePNukiBwtedIhss1dawsoaLRSsUzn+mNiIKy+f6OiczTCvpyeU5G7KMwYGG2qpWlNsgclZ8Nm46YtAGOAfzJIqRXPfGOE7McWg3y7RpqaWp6UUkghUUJSKZSoeCUcrTmNYKgFrgxpUyLSXtxG7THQinKkiAozfGXocmP3MoONlyn6Pl9fXmJ2sU83UqyWmjzeupf/avwhXg+3WYkkLV5kL1whYEhJCvZChSrO8GU9Trn5AO8d87jivsHHNzZ47ZUOx2d/l+LYZznq3M3rW2Wu71Y5fvhdzNU1N2/+Y+5/akh7q0K3XUcUTnL67PsptibYeHKX3a3XeO/kUX5o/n7agebffO7rnJidpBwFTC8sIFtN2o7LmBMPzu/93r/mZ376p3n23DlAIx0z9yQRDugM6EdKo1WYzhOldOrD7kiZWJd0sqbaWuUR1qxH/r/9rd3hwzhtqolfkCIJKpZZ5p9URi1gm/nLa4rlEo5bQMoCQgximZLxXq9QSG0IpE7IuM0J7kDM7ZKIreO4uXUn+SX3NZOOOO2msbjY/8yjzLqYO0wsIWVk7TXuR+n+pUncGTNlSvp8s1aSfW7pI1KSjSXXxkXPkDL7NQmRdEGbfuhYuZLIvND2A75xOSAHB+VNW4ycughCFJ4oMNQOQjiUpaSIg9KaEpJupAkKJarS4S4qHClWicbmuDDc5eXOH7J2YY3qkSIzhyYZK06zGixRocm17fNcu/kqjuxQqbhcXlH88FMLhBIqepeWF9He0zx/bZMPvEdxbq3Il764z8STmxw7vIgnqkTDTV5cfRnCp9m/uIxoCSaPzHH3qWOcKL8XJePA2kZ5jHBsGoXimlbISLEwNY7QEUUpKDoCLQV7oWbMETiQ5oi/8yr4zQX8rVSUUjTqNVqTLbyCx/b2NrOzswfk4DtcdDrfEhciCVIbkJhpxeONM0pAZKYhRxlTukHQ2eaplEZFGVhJU3XqUchyO2LXaWoW+3N7boj8RwC2ZptMo2YD97zG0yIXgiT1p6W1T75tA19lWym08Qm2zi3QMq0jT56SujWonOXE1rbr2y0l6fibuuLvxOlEsxz32dDF7Yhjsk2a0az9ruegktSOSY2IJO2oyZlO7lmmDToBNVn/Td1xEHtGEiFLexm/84xIeoUC0nFwPI9XXn2VIy+/xNkzp5FKIqSLkOPUhINKgJeH5Fay3telw0NugfvLY/SnT3Cxv8OLe3/Ara8tM/NEi9b4DEWvwma4SoVxLm0+zxcvv0yrCT1f0Bs6vP3hOQKhqbPJbNHljas9tga7/MA7NS+tF/jMn+4x9/41xidOEQWCzf0N/K2XcfSXWHv+CmP3TXPk1BFmyvcxX3ycUNfQCE4VJxguPErNK/H60KdcKPODTzzA3tYGi81ZGtUqQx2x3Y2o1go4AkqlElI66UArFae1lY6g4AqEcEAnFhvM2MekICYHyrxBEIrbNN8ChB0oawNc87kFnrP3aBHnZI5LmWm3tdI5wmxc0UwigxwWTfY0KSWuF/8rFDyqpRKhH6DN/DS8XAuEyEdJGznJDGYijbPPZM2619b8m/YZUJ6SGQvUJ+k+LYmw5vCoQsGKQ9AqdeG7LauTIRnJsNvynhpVLEVGbOnLxk4Kmbjo6RzBMe9IpvFNI8RJW6fM64zof7NyQA4OypuyaKAbhXSUYkcpXuqF3F0Q9JwYuBR1SJEQT0q6hIxJF6382DcfRUEoaqUWDxRK6LPv4FP7+5RrirO1BR4uP0CfTTaHL7GnNuiGAyhUiMaOUqmdoeSVWRQNKhSoErFSURTrX8Ld7tNfK3BsoUbfk9xod+gONmh4A2699jlaR7YIawpHjFPWJ1ioP8piaZzdTo/nL93kdGOO+WYDVfS4tNajLSs8POYyhkApgY40joCajLVCMlngxDeV47ceeLYXz8zFRFKv15ibmaJSquC6Tu7+g/KdKtZmLkjT+WXFbHQZKEzdDAAljak9VvdlwbtZnd+I16ZW79s/yZntratpxQYQ3LbxaUtTZz9bJPEMufpIA6OzA5u01a7EpUBlmY4MSMvhZvtZRosqrCGwteoWiDDAKxfUmHUsD3JGQZeRI0M8ksuZbzVYryzVaBqwpMnWmhyAEZklKbWI2OOfcb2sbYkLRwbMRHoAlUnpaOpxHIdSpcIHf+IneOiptxG0pvn8vs8RR0G1hNARZXyKCTjydcS4dFDKJ1QOgoCydBgrtSgVSvDAu/jo2irztQaPVu/iRPEoPb3Jlv8i+2qDXhDiOpPo6bsoy2NU3BJVUadGkRo+a7VrFHsXUNt9hhsFThyrsUuJ3f1dekGRYrjLyusXWDjRRbRKdPplpvTdzFTO0BIFvvDKs/hBkeGlNvffM0Wn2WTJ04iS4IlWmcmJSTw3PjCuJASeK4hUdnq1dGIXGKXik30N4NMq9tFJ4wNMQHnqcmMH7pqTkk3q3wxMCpm4DlqkVpBlzpHSSficTudj9u6z95+9X1JiIrXt0iTRqFR7nX4n+ZJWCkdqCo4miH2HkEIQGBepkZJfF0YXidGFIyPjhpSKjE7llBEpWE6eqZRZU3TaPxvmg8hZAfMHoGV9jOXTJgl2xjdtWk1OKHNjRJoYItdvY40QpHPBttTEfSJTfJC5lBmFw7dSDsjBQXlTFD3ymx9F9KKIIZpIQ0/DZn9AWyuGgw74Q4Q/YDjco7+/T8FVoAXaKaGkxPM002NjNIsBzmaPudlJClMercI0c26dNX+bly+9yk5BUanXaDYOM948C8X7kQJmhGZIgaEeIIstDk20WN7coeTCodkC7W7AMOjgFfah0KbTu4S+KZiYnKNeuptW6TSlYZPttWVW29v0N/cZ6BJ9QnTBoxhVcJ2IQt2JTeUCIgEigoqXCLsQd9p3v6fL4cXDPPbo4xTcApVK9TZScEASvv3F3jiFBhXFmskULItEt23taVpnbjPpVqitv7Ue3QPT72V+sYmW3N4QtSUBo5g/BbKaOA0OGeARtz8s1WqjLdCQB8vpdUmqAc89k1GyPmpVyD7Mz1XTHnHbJbORj3bOEJ/R7TxztRM5PBQfOEdGDAzCx0o5a0hciiFNPUmgsDVudryANH0f6dKoFSMdAU0KYJJRSn2+hZA4rovjuggh8DyPx972Nt7z/vdz+PhxthyPlfaASzvbVMI6fr+NEwQov8tw0GbY6VDw4rkSygrC0dTKBVr1Mg0vwN3sc/jYPM3GFNOFFk2nympvjZffuMB2Caampphq3ktp/CwF7xiugGmh6VGkq/ap1yZpdcZZ2mhT9DSH5wusbAyoVTsIMcAtrNPZusL69SKN+SZF5ww1fZT2ypC1lee4cuMNUHUG1zrMV4c0tUu5XsENBzh1h4pXYXNzg0a9zFi9RqXo5cCd4zjEAaZROl7pYV7E1gTbl90EdOtkzM0hefo2udHpe46JhcrNfUNO8xPyDhYve47bb12TBR0bLkv+gMS4vkxH7g99pFb4wyG+78dzWI8oj8wTRixluaLJ2pkSWUsbYQhWXBGaOGQnTYmadsmAb5PJSxjWjtFDZJp3bf2ezfPM8pKRkfRzY9FT9t9JP3W+b3GGIslohiOlNdJYHaznp+NjtIp6NPGCWbu/tT30gBwclO96sQUWIFAR3TCgr8HXIFTEoaiH6rXZ3tllf3+L/W7ATq/L5u5l1OYWu/QoyQZeoYFT8PBK0Gi6HG9o9pf2GDtbpzzRQjg1enoPHQ559vlN9FTE2+8/ywNz9zJTOMVAFFnFw0Gzp0P2ojaRHjJZbLE6vsHhZkCj5LJxM0RUFZWZgE5hiWG9x8b5Hkd/+CFOzjxCKVqgs7nD/s1VrnY2ONyco1rVbPS2ifYdTk4eZVr6uDh0hxIcidKxBkkpjVuKFxZLEXSH8r0BlO2N4OTJe1hYWERFEZVKJVtMU0B0UL7dRVljnW5+lgot0wbntXVRpFIwmQbNJrfZPuu3b04j7zb1XyA9OMwGFHciy5lrkCUV1s22Rt6uL6ecJ3MXMj6++VYSB3cmm/+d5mMitSnhMc8e7WsuQNdUnl6y/JRR32DMsqHXWien48YKkljTT+ZmYXyWDXFIyVgG3tPr3MFikfxuwEjak5xMjgZpxu/buBBl2s44zsArFCiVy5TKZRaPHPeL80wAACAASURBVOHDP/WTHDpyFMcrUAl95qMuV7dWaO9t0utss9eD7c46e3tLRNs77Mo+ZcagUKdYcqjUHCbGXBarir2be8x/3yy12gyRcBiofYaDPuee30TMKT74xElOjZ2l4h6hJ0psawcXzTYh7XAHRwrGyxNsNPc4PBVScx1evLLO8WNz6JrAr24R1UOuvLLHUx86zamxtxO0Cyxfu8yNVy8i6x5jEvzZiO2oR3l3l2NRgeMTmvJQEooK2xt76FBRdIoUhItbJAHuAkc68YFgltYbBGGoEmtcrNMWIpbVMHb+z8Y3BaCZpjgNGk7elpQCrZLkAOk1eTvQ5HZ5syFvHOCbgXZDKLXWMYtBW1aAhIgmc0U6kna7R08KBr0Bg8EQZU7XFol147ZZb0B0JjB5mTaMNVsv0k5bZEOrOHDecZyMSBlLoBjJ7KNH/4wvqCSWw8iSUmaMLeJ2p7U0aVB6/oH1PlMZS9YjO37IKGAyI8eIRTdewDAvI34HljbAuu1bKd9z5GBU03MAKN4KJTP1RVqzOhjgOQ77SnOz2+fW1jrOrdc52qqy9eplCq4PooZwGhw7fi+L765xYVNToQ74FL0untrg5sUXudVx+aH3/zBf2r5IJQxYlCEVNFqO0w5c2i/tUDgWMHbIpSiKOLgso/C15i69g/DPs9Q7z74/4PjMOEdDn11HM9M8yb6qcWmwSc/bIvCHUPHpupO0ChPQc7mkXJ5417uQu5scc0LG3AI31rYY7PUZK0R4OzsUvBnabZeo5OIUYsHdjxTTi3EKU6FHNZXfOyXnlyniA3Fq1RrVxGJgB2HnANVB+bYWlbi0pSBz5HOzxRq/4SiJBUh97CHxk0+0xSii3LuGTDtm/HWT4FaZbep51wKj9QJHGBeIJCuII4hPeI3blYL8hFwYjWiqiEvmkYpUDkxl00sk6Uwzraky6WEMJ7KCGE2387AkbovJMZ9mZUoBhZMYEoz2P9Mcp4HCdk0iLwO3e12MEJkExCR5pmK8kbpJZc9RSiVgSFukRmKnQrLPa7hdS2kOZzJ+6OZY5ewZxhdaaYUjXRzXwSsWqI+Pceyuu/gffv03mGk2WY40V7d32du4RWl3mfvGKzz98ss0qhFh1KJSaTC/eD+tmQoXtxU1xtD0qJc6DHZvsHXzKut9j/f96If4w6VnuEsHTIuQqqhQEWO0hy6dZ9cZe0xRcTzKokCAwzKaoVacYpNLw+dY7V4nEJqTs02OBz5bTsBOf8Bz28tUPMDdhSDErWvKYw9zpjHLy90uEydO8ba3v5Ob7R0WdZ8XX3yBdujy0vMvcmVlj6l3vZ3xyoP0+i4n544TBQOGGz57Hcn0YhEJDPxhjOUSUhVFMSEY+n4KGqWUKYmN52gGZrXWRJFOUwsLixCiIYyi9F6bLOu0bitOwMzJnNxmMmXi4eL0pxkIFsTn/xrBMFm/bE27QBJF0Gn3UCoi8AMirRGOjLX5CSjWKjsPRaQzbXTy60wmhbRkw0QQZHNYCJPtTKVWlLivIo3XsNc3lfY9IbzGQoIZOyOTOg/2rXHDIlMmS1nmEphfe/LB3CJNFGDkMj2MUiTcK6khl8Z55Kct9Vmcwzcv33Pk4KC8VYsm0orL+3vgFEBFLG92eeOVN1h95SXO3N/k1dUib3vycZzqPB3hEQjNhFeg6ko+MKO5HPQo9V+n1w3Zjeb5z3/sMfZFmauDDT585DEGqkOgFa72iOSzeJMVJk/XuFpd5ujgIidq0/Q5zD1a0om+yo3ORa4/f54gCDjy5L3s6iH3Bq/y23/Z5wOP7TE32+Vrlzb48v+5SvWM5PQHjvH+1iJd5dIrF3j45FEGGhaa04wT0ZQe5UqLzjBg6EfMzU3R/a0v0piaxzs9iTNTQZQc3Dk3zbnsuFlw2vd6GSUE9vWD8p0rOcCgQZrYD22C3uI0gyqKcABHkpzQajbObLOWTgxyVBBvzrkMNjretBVZxg4b9Rrf/5zCR9j/JZtmAtSj0LTf/NBkRySINDc7xEQhywJCCkDihpn0nZl/tA2+U+2o5dpxG1xJNIQGXKjISk84+qWR6S2EiImLzNGD22+0+yYEOlKpxjH7VqYBlgmIVAkp0Kn7hIrfk7Hs2K8heZ9Gg/n/s/feQZZs933f55zuvvlOntnZ3dm8b9++fTkCIPAYAIIAGPBEqEhRIi3ZrjJN2mW5rFCypPIfLlulkkolkVSV5CAWZRZNkaBEUAwiSCIS6eW8723Oszs7eW6+t7vP8R/dJ/TdBYiyXXyBc6p29+693adP7PP9/qJvRuEAk7lQeKAnJx7I3Dwii5IiZCbJjMoljp+6j5/923+bsNZgK065urzD2W++iGqtcOieac4kFT7+/R9BVQ+yhaIkJRNRSC2QfHqv4vSgw+zgVVbaUDr0EPuf+hhtylwarPHfnfh+bow2CEQdqUekwVmihTrzjzR5OTnHofgg+8t1Iha4B01bPceF7Td566svM3NkD3PH72Ooexwfnud/+sM2/8Mzj3OzPORPv7LMy1/boHky4L4fO8Izkwc4M0qZ3bvAoaiMAg5WKuzRCac+fpzVeMjwQ30uP/sy//yf/u/84od/ntnDR6k8sYBoVJDTQfZHg04U/+B//PucO3s2G18pSeMEITNHcyldPCmNJkkSt3yEs3O3q0YpO/9mTgIpSJW295ipM0J3Pza/eZjWeIA1+8FG8YLMPKmwgVwEoCTRIFzeBA2kSZqFYVWKeJTl07A5T+zzlA2je6eou7gPzFo1YXXdviq+x4xjtTEbMmMs7Tr2wyS7iuyYF18DXs4OXbg+H0Fbj3Eah6IZYJqq3NTODGsubElTW4svnVFK2b4Kf6+Z913+rvJzXZi5c07uwpuv71x2ycFueedLvg9SremnmheXd7j9+ivEndvsm6vwzDMP09y3nzYRt9M6VQLK6Yhyr83GTovnWiEL8Vuo2iz75uapTh5goVymFJYJ0gGDuEvMKptxwpYO0PVNIvEwn3r6Mn/82ctcfXaVz96zxleeOMsn9z3Gog743144y8L6BotRQmnvCc6EH+ehsIro/9889dAOy1py840trixvMvfxBqUgYmK0l07aZLJcoynLSCGYF7ChoZtq2koxI0IOViPCsiLpJcikQvTsLZLXWogPL1L+sX3Zy12Tiwbk+5obfLdmQ7sE4c+xeKYGNk4/AqVShPEJsAeuJk1SpJHIO8yQSTGTxILXAJElw1I6A74iI78ZMPBOK02ewMlzzs2/J5f8CTxbaG1U+vn5aA9EYdtqpWeaopmDFdd7rKOw1jJfCCNJdVFJvsP4ebdLS0qMlDEfF6UcQPPqGo+NfufmdyAjzU0wAuPgq30q4BopZQ78DbAwZMID+sbsR+SffUKWORDn9+Z1mUg3Or8eyMJu+oOTrwUZSKu1CMOQQArK5TJhucztdp9Xdlrc+NY3kHqTB4/u5djRx6nOzdOhzK20xoQImRx1GHVbXG8PWO7AfHyWtLlAc/EoU3M1KpUypSBEJn36ozaxvM3tnmC7FLBQrhFV7ueTT1/j9/7tGc5/c4Nf/MAm9518jQ/OHqeRCP7Fi2c4vrrOvokaa1OP0I0e415GyO7v8H1PbvJSW3PulTVuJwPmv7dJFJWo9RfYTKssVRqooERFCiaA7VTT0YJtrVkKyzQmyxz//u/loyceJvrliwRfukbyepvyTx4k2jeFCCQazWg45PU33mB7e5s0TXOpfEDml5GFdQ6ts3JG7uI4yQm4mQaRZ99WBXMfZ+YlPNLt5k9rTRCYHBcugpidWxM1J9cwjEu6syy/vjmOWS9uvZk2asht/Y3WSYDIQyEDKkncMzxObM2GDDnX3lITueAil+5ryCKN5dJ8P8SqECYDfE6S7dZy+9u9IUTx+UW8btf5+J4ReQeE9PaldoQiU7YaEiBsHWqMEGly4Ulerw02UBgTnLZHK/xBcWTJRY36brXw72tysAso3jvFbKv5apmtK+c5eXKJfRNHmK2H1BslVFQmpM48EarXpd9dZTjsUZ1sUqtvMlc7QS+cJipVIBSstHb4tc//AR96coGZyRqdYIrJMGVaBAhZQwcRT0z9KAefuYcvnXmW0ys3Of8HF3mtc4MoGZLUKyw8tMDkoceZnnkEor2ckCHfSOc4t1ll79QEe8VN1Gibl97YZliOOLDnEJvbN9DVmPnaEvOVfZTJIlLEAq50h2wQUCpFLEQBMgIeXIDbN5H9AemFLfrPlah+aJagHmUHsdELv8+Lb2J0t992y59fcdJyB6h9TKy9pEpW4G8uyf8fBBK0YBTHTsKmcETAy39w58PHiKIQ1qRHSjyTBSwRUErZJF7G/CVNM8BjanJAID80lc45gS8lLPoKFM3epH2e4xcWJbnm2sM+IyIBTprr+0UU7fLNoY3tv806XTjM3bgEgQNxRvPi7xSn+cAjIdq00H4KwyB3GsVpf4x00eAxE79dCM+kJUCpNKtW5FoSE25WiGIfka4PUoIUdLpdzrz+Kr1oiac+eIqlZsh0M6JcLaPCCiVRY0FHqM4O7dZNSggqkyFzkx1maifohPNUyyUSCW9evczr59/i0Ydn2DNZZ0PMcrCRImUZIStoGfKB6R/j4F85xude/TKXL7a48MZrfLF/mjCNiWsR8qn9zB78MMHEg0yGe9iv+zyvZjm/UeFkNMOhoMdobZtLN7tE1YRARJzVLzHov8RD+57k0MxxQqAmIEZxptVnvVQiiAKmwhA5O8HokQXE8g2CbpfRK+ukZegsxvyH3/ttXnjpRba3t4njmCRNs7FTGhFmBDBVWbKzNE1J0jTLiKyzqFk+8PUdU82Yyzw/giGUzgdB+1vJZkQHR2h9c0BrWWfXiCPw9r2hTUZul5+nQA6MVNtkGTaA3mu3v4/c68cAaWHfNeNHRpDndlBW4JDdUyQHRtBe9Lnwt4lpQSYQyIiPzkP7+mSgmOQsE+TpXANixj81G8lkWc7/dlq2bCzv0CQKrEmRX7L9LnOCdKdDsiXtpkP52OrcjNK91L9zef+Rg10c8Z4qHvlHCigJwT0HahzbN81Co0oUSEaklCkRKWhvddjZuUY/HZGW64hSjbCsqDZmCWWFt1Zvc/n6ZTrrqxw9dIjJ+gxLlZByEFEWKaEYkuohXVllJGZp7J3mgXCaA3vPsbN5hWeXV9hTWuKBfQ8wf3CC8sxRGuV9LIgKkYZraobtKzc48tBJDu69l8OVExxqnkVEVeYmj3Bju0Vr+ybr8SZnh5dY2n+EqFrhQKXMHhGws9Xn8k7MVSk5oGBuvkayEKLWdtAlSVifQ5YDm7TkLyIw/ovY53dbMfazRhug8eeleLAorW3ELadiFxas25C80kW9MSdYhj+EBQ3mcB4H35nDn0Jr4UnBcyliDjTAAQvTTqXGpNwID8hkQMj83x3UvpTdfOeBbU0uz+Ou/kAanYNprITWjI2FKwWwDhb+2Oe6fhtHU3PIF773wJ0f9tBGsFHaM53InueIQdZBKSU6VWiUNUkQIpdy2v6rMcCR2Z4bYuD7MxTaa2+RVpMjpEQrzWjQp9va5r7HTnDy0Bzz1SpKKBQCKUKiFFqbbba3LjEQElWdRFQqREFEtT5DKKs8d/0Ky1cukKYxhw4cZKo+yVI5pBSUqMgRUg+I0fRkjVjMMbE0w5OizsOb57mydp2Lmy32lha5f9/9LB6ZJJw8yXQ4x7yoIJKUa+kMOxeuMHnoQxw+vJ+DtSs8sv8WhBXKC0e4utUn7LR5de0lLpaWqU3MsH/PAkcqFfbJkJ3lLc6MFHKUMLHZ5dB0A+YCVHuLa+dvcm6lxVviBs+9+gKXrlwiTRPiJM1Il9ZopWx2cEMY0zTJiEEuZXYZf50UGXzSma1df4WaFVcgwkoba1a7H9zazdecTRDmO9q6feKoBU4gTvG9YNZxMVOxW8vGB8bj7IU9Ytl1oXhMdmzv+nvUEBlXgbenyHaHfc8J3D7GkQpnrmMIk3e/R4zNuLqxEYUuFcdQe1dw1/4VpP4e+c765dXjv8zss7Dt/27L+4oc3M233SladwHHu75oiHXKqWMLTJdKVERIAmgVZpmQt1tsb2/QH7XoVJoMypOUVMhUaZYzLUnv+mle2bjM6uYme6MGH37kCRoyYEJ0KQmItSKhixRbVKkwoEwomjywp0ljcT+j0VXmNlY4UjvAsclTKFK2kAQIZvSIS71brCyvsT8asK8xx8LcfZRmTrB/aS8z0QS30xpbgzWC4YB2v8vK2ho321tIWed2WGJpdgIZh3TXBlxa3WEzDnj8nhM0H5hAtiDYW6d0rE5QybflX7Alu0sK3h1FCE/KO0YIrI25kfDjAIR/TUYYzHUOjItAoEUOevBBsHF+zK5TBqCSSckQmd2+s6c1TdPFc9Br7riAzNhjG8ID3hnqS7rdVxbEOxlkfgB7mP5uj/eLAULav8qr2zTYtuUuBIF8tLV2QNCCPuENnGM4eSInTZCPny48IK9besAh9xvRaKTIbJSNqYIuDJb56AiZkWRm/5eedJoc2GLrM1qYRq3KwQP7ePjkXuarVcoipG+6kkB3p8XG1iqjuMtOcy8qalAVEYGs8/aOpHvlZZ7fuEi83ubU4eM8df+j1GXApOgQCcFQJyixTcCIChX6lIlEkw8crDF5cD/Xuzc43+5ysLqPo1OnSPSI2zpiVmhKaZtLnRus3lzjSHXEYnOJ6eos++aOI5NlGkGD26rG4PJNJmSHtdVtLtx6i2Ei2TezxAOVCkf3ziLbAbdvt7m5vEnlVofWoYOE6VW2tq9ztr3Cy9tXeG3rCkM1YhSPACwxULmmIMjt8aVn4icgC3WtjS+HkY5jJfrjc5WNvb5jXfmv3bthy4I2gmJwTvue8DeBLjq9Wjv+8T2Hc05GeOTb/Zzb+Wv/9oyW533S3vdobZ10XbsBoe2+cZca4yO3J5zAQXoO3cK+z0T+jILmsDA+PjHKhRje84xJ0DhM9bWJ5i8xfp22Tcv30Tj+d6TLalBNO/Jn+EEUvpvyPiEHd5KCXTLw3imGjSc6ZSBSpqMmFQkip+c6VXSGHa4urzM1scLSzBLX5Qw7ccjEcEBVxPzKuU0u/vv/k9mjEU9/5Af5gUc/TU/CLAl9qgi9TVsr2oRIMcl+MaQiJHU9ItaahH00y0f56/sbaBJ66QZKCuq6T6JabPbX+cKVP6T1wjf5qZ/6OHNT8/SUYHUUs9mt8uT0JEeqTeaPzYKCfhpzbesW3/jCH9K5JvjS8k2eOLTAUw8eY7bR5ObqFc5sJuw5MsOppw9Tn7mHoFwq2Pfult3yTpRM4liUwBn1tcqdXo0jMNpkStWe8YxAK0h0akGpATP+Mww5cGYM2MPTfJTCOVoGQR4ZCcgOQs8MJ3d+loHMzRUUPtLwTY7cl2BjgZvER1bqVww5aqSf2rvXRWfJDmob4Ql3cGfgW9vqDbwy6n3jEGwkq4a42BCg+WAYzYrfJ2etUIzU5IChAwg+kBirxmoZ7Nzk2gSVv3+tf8c4ItFmjFzCMyMpdWExs+vTNM2z3Wf31ZsNjp04zkd/4PuYiEqUhQAUQkOSJAy6Xa4urzHRvM6+xVO8qiZJh4rKMIZY8e8vbHLh//oXHPreQ/z4D/w0xw4+jBIwQ0yfCkJvsqUDhtSoiJB5MaQmBE0d01eSWNzDyfpDPN6sZe/7ZAMVlKjRIkliLrdu8aeXv0LnxZf5L/7LH6NRnmQjSVgdanTc4IGJKY6XJ5g/OYvUgu24x1uXTvPs1/6U5187yxc3N/nEfft5+gMPU+5u0r10hZtb8PJrL1BOV3n18gV2+h1inZIITaJS4jSx+8LuMSGs+RAIsozkuTZI68w3QboEc9oAZGEi3WC1aVr7GcmL6yCb76Jpi93LFM38ClqtfF8VE4EJuykK+DaPEkSuVZQiM7lReQhes/YK691ba0YoIaRxuvXaY8C02bPm+tycSpOZHBnfiVRlmpcgMETW67rHOJzZjqMSKvdslvkLS2sXcc011xESa3pkI3tl4x4E0v1WGF83hmZfKfubC8DgTJ6K7xx/jshbZRzE78JNvm15n5CDrNyNEOyShHd/0TpTUcc6ZSqMCEXuoJUO6Q5H7HQHdLYucer4CarhLBdaKekwZq8eEgy2+Ydf/BZq7SbV41U+8kM/wwfvfZIpCTWtaSlNmxTSHiEBZVFHC01d/wlS9zjdqdAXe5iI6kyXIjbELAfEAb5w+1f54PRJdOkE53dGvPT211h97nmO3jfPnvoP0ggWmaRNOLzCxUuv8Af7DvLTe++lKiRrWiJlg6cWT/Lhnz7Exd5r/OGLZ7j+/CoXvvISJw8v8XP/2U+wc/5F9j16H7evXEeWQ5rlMrvMYLe800WlKTLIwLZNBpSfnlLmTsWQH+4mNGJ2wFqAnub2uAaY5GBBeeY/WpNlNLeOk+KOiCDanHoSRCCRwsT61taswrTLEgM/xl8BzbuPVlo+liHZB9TC/ypvo7KncGZ/b4CIf+hnvGrMDGAMr5trQHtgIJfUewQIXBQWH5sbSaD5bCWfwmV2NqTOSvgNsLDtMfU78w7pO5XqDMiZdWCuNWZaqYl4pDXay4iczU/qQjta6bImCEPKpTKL+/Zy/J7jTEVlIiFQaAbxgNYgod3eIumv88A9R6gGC7y2GVPTA2pqxPL6Cv/m5Vdh4xYTjy3yI5/+u5ycWaQhM81wW8EOmiDtEtIkkhUitqnrbyB0n1fbVeJgP5NqSCmsE5WW2CPn+KOVX+YTC0/RkSd57dZF3j79LXYuvMGRe+aZr3yKiBoNcZPB9hlOr17n5p4l/uree6hqwU0VMFOa5kfu/wifOvkQF7un+dyzb/DGl2/x7G/8PgcnI544uoeP7dnD//xPPsvTj38PF9vrbN3qMOgP0cKAP23n2JmBCJIkG8vUhOMCTLjZMAyz8zPXMph14y2zjNDb+7K5y91nrEYHnYHigvWRW6iF+33/BisOyOe4kAjRA/hG4GABfV6fITSZyZRbLql2dRa0efnfVqvnLa87iif5z6KiqTwfiNsPSmnrSC8Kt2oKxMDie4+Ie+sagachcTWlqS585YQG2ciZEKQmYlP2rhXkfv92LM39Co1Q3p7FEYjsWi8iXH6/b/b07QfrziK+nRNgVk9mrfW5z32OZ5555ruu9M+/jL95d8t7pWgy56VhmrCT9ImkICBgOLxNfziiHaeMpODY5Bxq2ObWVpvXWoLuTkxrY4cXb99iW3fYefUaJ3/2p/ipe45wpF6jJ2BBa7ZVF6mfpSGOoSmBSKkwZGv0LVrd51FynbkgosYMOpllONL80a01vufQMQbl4xAcJ+0P6a1/HSnOoRf/GvsqxxEiQcWvoeKrKP0h1vpb9IY9lib3U5YpiRrSS2FdNnmsXgadcLr7Ft/65ltceO4GC2GNn//r/xXD9TUqU3uZnt9Do9kkkMHuMt4tf+7lypUrHD16FIBKuYwMMkm9ydY6GsXWnEDYv9wh6sBxdl8GSlIHGnzVOWMHXm5yI3PnRUNGjLlEkKOGND8801TbTKqQHbBBIGy0E+Mo6CT7OXHQXt2eb4IfktQv0gPShQBCVn0vrRTT2BMEhedAkWEUgUn+RQYswCKz8fP7bpoAf7yt6YAyeRuwwMxqF3CSY6Px+c4yRGfC5MfVV8qEWPWSXWGyH2OvN20TUlgzozAIqVSrHDp+hB//yZ/gmc88Q6UUERLS61+nN9DspAmVUpn99QnSQYfLa5u80IpoXVvjxtYO14dd2mmH1hs3ePzv/df8N0t7CaIIKaCpU9ppB8G3mBQPE5NSEgr0Bjujl2j3XkHJNZaCKiKZI0mqbA4SXtzq8uEDx2lV7iMITjLYOseo/TIy3IKFZ1gq30si+qjBF9BplZG6h83BNr1RnyPTh5C6yyhNaOuQYVDngWoJrWK+1Xqe3/vNZ1k7s0K1P2Au0JxcOMJL59Z44+xFtra2GI6G+dqXeW4DF6I0G+/s/34cexeKFgIbuUjdATztTOYLwtn9a6tFE9axVdm97AhinsDsLuTAX8PmZxsStEDujTBAFtaoWSPKMy80WkTnWGs0YeYvDGPCaBe9D3a/+T4FTlDgCICv9VTKhPHFacqELL6bdJEcKOtI7fopA0kSJ7nAwdyscwLtCLvfhSzqlLaEwxAefy6NgMFqYL1+KKWQwkUCM87lviwC7Sehc0EM4jhlMBiaObor4nifaA520dR7t2SLN1YpgzTJiMLOKmEAUVBlrlamJIFhl6u3l/mTc9usDqcZdfsMBhsk4YhyaYK5U5KfW5qhUimxpjUBEJGi9SpNcQKNINEd4rRPJwYpH6QsrlDXG1SSPgMSukoQJC0eO/goy5WHOVnaj1YB63KFpLHE0tQPsb71Nr/52qs8dvwxliaPEjPPtc4Kre2Qp/fvA1YJkm2G/QGtfoV7Fh/maxe/yZOH7udU/QTzHznE63uv8OU/+Qq/8Ov/ihP7D/L0o9/HpJrF2EHuart2yztZZOAcWLOIP9pJtD1caaSOIj98glASBDKXAAoSI5ku6OxzeKLylW5CoJooNzjpIB4pUKoYa98SFIeNs5jqeCBCUzCpsBoQ7iQE5rA3ksxAFu30bdSXXNponXW9gzeTBGbaC6Wz3MYZ0MrBmbrT+Tm7T9g2FJ2hhQVqnitzgZzZOkRGgEz8eD+KSeazITCh6Y0E0ecuvnQ2A2NO+5KmCm0lnBqdusyyQRja/rlOuTHWCEKLhiCMQhb27qU5PcVIpTBKGGzfplwJqERNGpWQSCjiXovLt2/wB2e22UoWiXf6dNIeupQSyjrzpwR/d+8s21LS0poJIGSEZp0pcYqUhETvMIgTdApC3E+FZZrcJoi7tNhDrCEKBA8deIzLlYd5rHyAVpLSjyoEU48wU9vPxvY5fuXii3zy0R9kMnyK7dE2K+01Bt2QDy0uopKrlPQ2260E5Dx7Jqp8/dKzfPDILq2BRQAAIABJREFUA3xg4lGmP3OErzz7HC+/8CKr3QGTVcHsQoXwMshIIlKZja/WhGQmVWnuXxBImUuQfel1DmCt9NyNt92P+Nqm4jxjSLoNMeq+MxOuC2tajO0DD3znQJZUZeE2gywulwG3QgiCMLCZgwFEEGS0UmCzIftr32+nXeYipzPemnfk3tOQCU9YYQiIlCiT+M1UYNtveuiiEmmyXDtKpfmlJoSCznlIdrUP2I0g4A7/C5ERY98RwvXBj1REobgxx2kQzLPzl4clCt6cu9+8+cr/KK0JQ5mHNQYpij4Ydyt3iSX33i5FddBueTcXXx4WyYBGEBFoqJSrhGGNKIgokZD0tzh99QK/8+o11lWdfqcF8Q7lqqLUCBhcvMhStcRCKKlLSVdprseKBGjIWUZimo6OGOkInTZI0wYq2WIwKlNlmt5wkfZoCh1UqdePcWM4z345QxnoDt+mM3iRkB0a0Syivo+VF67RWxsSMEm9dJDJykGuvHCaeAChbCLDCs1anaVmmeGtP+b+uf1cXX6Z652LVMqKJ4+d4Mc/9UOUD5S5vrrCuctv0ups7q7b3fKuKL480Ji8GCBiALB1fjTAPf9jAGGGL7X9A7npjy/VtIcqNh64Be+eVFJpr25Pgijy+mQonamRXzfucNRaeVI9bZ9lcasnzZRjoMkH63aMrERcWpBlxiRNVZb0zDAp7ciN6bOrR1pTH+fj4GssfH2NKAKQMcKjfII1VpeZN3OdUioDLdqZKFh8772Hvp2gQttnZlJrcsGGUgqVKttNYUCisU1PU7bW1zn71lu89tJLbKytUi5XkbJKFASEasDO9m1eunCO33ntBu1wit7OKv3BOrqcEAQJydWrHKyVmQsDKkKwnmhWE4UmpCHnGIhpOlqiVAWVNkjTEmnSYhCXqelptgf76Ks6YWmGqHqUleE8h8JZAp2y3XuO4egtSmJIvTQHtb3c+NoF4p4gkvM0K4cppdNce/ks8VBQCiYhLDE/Mcls0IKNb3ByZg/nrj7LreENDkxP8sNPfZgf/+FPsHBqkbVOi/pchbAkCUKZJRjMAV7BQt8DeFZaPeabEoYBYRjmfmrCRqXKJPPZ3Ot8rrL940xMzJ6y+yafMJOMTCmVSd39fSTG/GlwyQuNJsm0I8OpqgBo3WYSDkyb5axz0x9vr/laMePPk0W9kt769q93Dtt5U/LxkzbbecalnFmi6ZPpkRRZ2FjrzJzXLe0+xf5mCJCUmRm0I/5uD2aS/QCXOyL748zADPHTbuy1CSbgtKPZu0va8Tf+R2ZvW48Cb4KMEEB4/XGO2H92ed+Rg93y3itSCCIhqQYRcapIREhCyFa7x8Ubt3nx3DLPnVvh7FZIJ1EInRAGuRSvP2J+zzzdzYDP/+k3uXXrJlNo5gX0tSCkQUyJgIiSrlCiTECAUB0aYQO4l6E4SirmKTFNVLmHetikmm7QVj0SDZFuINM5QgSVyiLDtT7b62t0+z2CoMpsZZ7Jao2vv7LCcFhHBHXCKKVZ7qKCiOmwRFUKkt4yg/4y5XLKqXtO8KFHnkDOTHNta4PtbsdKK3bLbnlHiznwCwcuxQPWXIonnc/jqKdpikoyX4LUHHYeAMnFYBa4mEN43LrHHZg+KbBYyrZFYDIRezHMPdBh2um6Nw4qikDDSO1yYaQ7gC3uEMVDWzipukpz22HvqYXIMWDHw7VlHOgURqHwHKtBKLCW714o5ttRZ7WPX+/AQ0HQ6g8Obt4MyFIeuLEZkQUF8y105pi8tbHBhTNnefv0abrDAYMUYhWwtrHN21du8fy5ZZ6/uM75nYh+qtDJAKQgGSXEo5io2aCzLvncF77IsNthTmgawFBL+76PKFHSFSIqSA1SdWmEDTT3M5AHEXqaklykVDpCLahTTdbYVAMkklBNIdUkkQiplBfpr7TZ3LzNMEmoRk1mq7PUohJffuEmUkyhZYlKaUi1NIQgYkJIKkIz7FwmTtZYmJvg8VMP88FHnyRYmGdUqxFVo8zWPR8jK+m2e87NlymFXBT5XBQdwr3Pd5BII50vrhdjniSKk+w0BHdZBGbfkgNWIywo7KUcdKucYFgfIbtui/kRxPhecQPgrd1i2/zm3dF2W1eRcPmffTDvOx0rf22P7SetPRv+sWfbMRt7tvTm49vV6cbVeyfaudZ2t7r3TnFfuT2brQPzTPPekmJsfL+L8r4jB3d92e+Wd2UxB3u2mCWhkKRaMEg0nf6IyzfXeO7MTb745gZv3tJQmWfYa1GWUC/XiHTEYKPL0qNPcOXakF/5rd/lzMXzLIiUB0NJCgyBAGiKkJKKIe0SBkMCHTNfW2DEISgtUgrniZgnZZYDtRL9ZJW2GlEOl2gG95MOFhE6oSInEOWA9Y3rrG/fJtGKRlTm8KMP8uVvXmFra4BWIOiAXKE2f4rNXpsDM4eZ0ZpksMLmaBkQfPieD3L4oYfoRhUGSuWJY3bX7W55Z4sPeLPl6CL3OHm+i0oT5FlcMzCgSRJFkqo8aZP2wEEOSHBSeidJczbR9jlaW3Bh24U57NzhXHSoHdNQ2LNQFLQYjJ0RBdxgAEAO3Nzhnv/xpIO5dYWTmucJkAyR0hZs3yUDuAbf1ntsFmwHhWVD5h5t63Xv0GL7XR/d9+NRibT/nXZSVaNRKUyQQZnCzZfRhDiS55NAF0mFfF2oNEWlCb12h5Xlm1y+dJkbt9c5d/0Gl5dv8cq5K3z59WW+dqbFhc0QyrMM2huoVJGmgu5Wj15XUTp6LxeuDPiXv/rrbG6vcVxqjgSCRGfv+xCYIESmA4TuEcohEYr52h66+jCyvIdyMIdkDhlMs78a0o1XaGvFZOkkFX0CNZpG6jR/30uWb55np7cDWjPVmGDx5L380Z9eYtBLM29idZugPKI0dZSN7g4LtT00B13ag+u04g2a1SYfufcjHHv0CbbDGqJUys3mtPU1KKxHIdBCOK3ZHQTbSJ8dUTBrxIBz6RMzx2eLQDWfWZFHx3JAXxZ8F5wJkrfArORcZAEM5JjkgNxp3Vs79rlu+zjibfquXB/Nc7R97p37xCkltF2m4Pa60ZyMj6PvB2HWsybz8bDkSefRlPLnGmLvEwFfeGHlB7h8E5ZkWcnKOOFxQg2KP3vX6aJm0GgDxi4335t3oPS1klYic2f9dyvvE5+D3fKeLvmeCYRkoTrJRgIXV69y4eYWF9ditkZNynumaIo+zUFCXSUcbEyiZJ1rqyFrHUF78ybJdot2r8MoHVKXEQK4ouGgGqF0n/X+RXrJDjONo0AfJU7STb9OGDQJwj0kcpI03WEjTmmGB1mkhpKS9eQ2aetNAj3LQNSpzNVpbeyws7ZNul+D0GzO7mUi/DrLV88wXWsyOyMRoovUF7ge7qWqKtRrxyDZoNffpC82mCrfy8cefJKvDgSlah09/mbdLbvlHSnZEZc5/6b2sClkA7WfdG6y4oCoPcjMAaqd9MpI2AW5M6UFozmyH9sDvuAyk/KJ4glsz11z8Lq2u/tchJGsfWOSSnufa78vZPJNdFxkJVtd3h9RqMc649p73LP95/jhmUR+v9Y+WHL9sWDbYidDELR9bsHeGiflRHi25AYo5mBKaY2QenzoXb/Mpbro6J3lP3DjkwGuwBIIrXPglbd7lMZIKRiNYvrdLlcvXuI//NpvML1/kVgIVG0fQ2YR1RnKs3XKqgNbOwy2+2xtLdMD9Px+1DCivbkMO112Bl20TpiQZQSam1pzOB0y0n1WOq8TRRPUS3VQCUocp5t+gWq0BOEcsSiTJC02E2iGh1nSJYZSkw7ehmSAWJhkIKaoztdZv7JC70gfNalJwpCdmUVmwg4Xzr7GqfsbVCoa2ERR4lpphhsXTnPf8SOk8TaJXmVYrTNTPsCnH3+af3rmAoMgREQRQRSTpiOU1oxGozxsqSN8WUZkG8gyI3w54FNKo5PEzb4u6oEyU5bUriIQluzqHFiaBalzE5e7kkzv/9pb8yoH/u4e4bRHZq3mmg0pzHrNwL9Nhjj2kG97AubbRBT2hwChbZIzQ8PH+2DI7HhlSZJYH6J8dABQ2vgbGMm7tE7DWisbKtbsxUwa6MQm+YvKjhPCmRxZ8yvTOGH6IwpjYT6FQWD3nembHUML/KVdKwhtAzM4LqK9sfkODGSsvA80B3d2ctdu+71ZpMgSjnU7LZ5//RUu3rpOHI1ozkfMTAgenIS/8T1P0BWC3zt9mrO3b/G3PvlxNs9chLhHqVSmJCOkFgyBFeCIkDz3xkv8yenfYmcYsm/qY1TD/UzUPsy5rcuMVIU0eoBhdIIudTbjMnvKk5TFLSCmM+qSSM3c4hFW1SQ1YFALuXD1GrdvrBAkKRGCB6pNHvrew3zhi6/w9pkdtJqhLOo0uM4jjVUIh4yiBvXaSWbKJ+n1t2jpDlURUH/gCb65tca3Lp95Zydgt+wWsiRMaZpmIRBzUKqVAYrZIaY9KZzv/GjArNEoZP9Ke6gbwGklfX7JpYNOSmhAdh6RQ4g8CZCTeJrDWIbOJtjcl4vccwmiziVpWVQYLTJc7gtCHeh1QAPhzCOM46gDSdmNBogDmaNnLkE1JlGuOLMsQS7ZE0Za65EVPAdRkZsSecDMABMjDTRjaX7WGmveZQCI1QrYDmpLYILA+T2YeTAaXQyk8DQtBSFovjZUqiwgsdqNQpuyPsVJwnA0pNPpsLm+yebaGv1eixSBDhXV6YCJuYCpWsI+vc3FZ79BS4CcmSHt9+mevUBy+QZB2qNUqRASgIa21mxrOKg1X331Wf7o7V+jWnmQucaT1EtHqZYf4ezWJZSeIC0/yTBYoqXrdNMqC6UGJZZBaLYG25TrDeozB9hUTWoI+o2IN0+fobO5TZCmNGTAgxMTPPLRI/zWb36NtbUIwRwVIZiR13lsYpPj9z/MdlJm1J6j35a0epu06dMIIx5/5m/w1H/+M0wdPUQ8ihkOh4yGQ5I4dvNv7P69fSBzTYNSijRJ3TXKBEL1CFmaZVmWUlhHVH8N+L4qBa2elaDbGt012RK2Woa0sLZz4KwNYfBIsictNyYveVVuZ3iaSrMMpTVZyiwLXBI4t76KbBuX/0Dk7xwTbldQiJxl1q/yyLQhuP67RXtr2WHNTAuWOY+nlnBl+zbzDRknWpDhG38f2e0Mdg49mYPdWzrXGAivr+adrFI310p7kYm0zjVuRruUvwtt3/5sQeT7RHNQlJyYf3dNNN47xbxMAik5tGeJn/6RzzCME1q9AStbO2z325y9tc5vn2mxqbcpVUKuXt/in7zy66xttimJOe796BOcPHSSGVlBKcW8UhAnPHHfvaTiJCNZIRYRgUq4svEczYlPUA4FJZEwUF2UHDFTESg5SRBM06NCWUrCqEKbHqtCcb+MCMsleknKSmvE5dUes6xRm4pQJ59m5/Nv8tVvnkGK/fzQ9ywi2CIKuiBjkiRGIUnDSebkYWo6RlHmZFRi7tQjzITld3gWdstucZFOwICNuzmxaf+1m31TjBpYCKHnawAy4HyXB+s7PmT3jH3IBHXZwy1gyb/PhXq5xM9TMNj45KZTXv2e+l0rF8Izc5A04Vjd4Q8UkhUWTDu8qjPw7gH9wkPdNUZ66BOOsZ67IfI0IobE3P2U80CgUhYU2Z9ELlkWjlChVAZyAg+8GOKUP8WATL+PtsrCZ0MUNGmS5s7aGZBVSUoSxwz7AzbXNtludZg9cpSwtEN1apPa5AS6XqY2UeGhH/1+bm93GGxH1MuzBJ02g9ffoCQXOf6JD3DPxB4qBKg0YbRym1/4d5/l5//bv4IKHmQUNFAiZDDaYLX1NpOTn6AcKiISBmmLIEypyxJKNAiYoUXIZDjLMKzQEtAWmmMyQlbK7AyGXNuKmVjZYTIcUq5HcP/HWP/1b/Af/+A5nvnBQzx4fApYphR2mZeaatwjKS+QyiZKS9LWOrq+jycqNZ597lVGG9uEpRJyOELp1EHPsYRiVkIss1C/Kk2tNsEStBzUCmFCZLpoUz7QVxpIi5vPSMjNnvTXmGtF/m9OYmUgiXKynaapZ7KTrxYpQEkb1SpVKeBhMq9uZQQF2s/R4dvpe5qCsWIECR5vLiQ8lEIWtF1mJFzf833s1+E9x5khCdv3grOyt//y3W5rMNodci2q2Xi+IEDalxf2HetrFwoCFG/ohNHkam2xbiZEEKSeGZRt7x0Dd8dQ3lHe8+TA05rulvdosZtKgERSiiLmJiZIlWammbBnaoL+aMjRxQVevnCO+4/dSzmIiAcJ25stvvDyGX720x9n6eAi81MTxP0h12+ucf78Cj/6g48wlDWQISkBIw3D9oDf+dXT/J2/9Rk2gbfaW9RkmcO1JrHq00suMh8dZWPYpyIbJDqg1e1xYq7OttasXrzCqAtTtQZNPeDVZ5/l6Y99hIfrdd46/hjLF97khbdjFg5M8OjMJEF9QE3uMJIBAxUQUyEKJpE6YFMNmJRVJqKQchC901OxW3aLk7QZaZ6J5Q8WyAI2gVgWJ9xJFtFZxtQgyHHI+Eva+6/B6ZlGQVsVOaau/DcpBUgDYDKQI4Q59MdU5Vo784kxoGNU+ErlZjpB0TY7CweaRwvBAYVMYyHyMJ7SHuhOeOoxEa/5BpilqXKx6r1hMOZCvqZEj5EuB7p9UiOw9hT+cBlUXhA/5omwPMm/eYDwhs5AE/K5t6jMzpcgEMKGlHWoSNhs9sZ+HrJkecII6QwG0pokSRGDzISm1x+Qak2vNyAoVSjXalSbTepTE9RnpinPzrF54yY6AZFIytUS9alZWstX6b7wJT4X3+bBBx8lVVXefOs8Vy+fR8kayDIxIbFWXL+6wze+dJ6f/7kfY1UpXtte5WhtgulokpFqM0yWmY+OstJvMx3N0o7bKJ1yaLrGVqK4feYC6Dp7Jur0129xc/kaj37wcR5u1PjGyQ9x+uqbLJwTVJpNTkzuIIMB9WAHKgk7wx7xKCBNy0itGVZ61EaC9s0VutttlMoSmaUiyyqenYMOPGax7EF4e0xgTPKUJ6EfI6V5SN40VR6B8NdKEaQbYmGuM4DYEGLncyAKc2/yjVhpv1kPApAi1ybowpqz/+RxOouwfdxfVOSCAHdN3mO7d4RHhhwJ1navG8JgNFp3fU5Bs1J0/LbvEI2Nmma3+xjp8Al4gTDbd6oZAC9RnRFom8/e/tda2DbbKGpgzbeyphsyZvzATHQr05TcjDMIbV3fDV5+z5OD8bKrLXiPFgFCm0NEEAWCMNBEQUAlimiqKlP1BhUZ0KxWiYIQpTSD4YgDS/t54oF7qNfKCAQDKVicmSQ4Irh0Y5mlg/vZ1IIztzc5f/Yc7XOvc+qJp6kFAeupZrpUpyw1SkiEiCkHe0l1SCTKeSp1TblSpoLgzTSltzZAdDWBEgxGQy6evUApkXzsL3+GDz92mOfa66xsdXnhTJ+9+zX7Tu1D0iAUQ8oyJBAhiRoSp5pIVqlKiKykZHf97pZ3thTDIHqJgPDxoHBSyXEAjjtgjZTLFHO9Uo5c2Pq0d2jl7wFfEyzzNtmwp7j94gCALyfNfvh2drY2BYF5oCeJF56pkFF3SCHRFqg46O8X5fXHSt7NOJg9bg/tPP54HqJQ5KTHmGWoPNSiGYtMyqktgDEgyZr7mMdZCa4HbrQBTubK/HdtNCWeqZcFg/n4Cu0IgwCp79ZzByTHzUaszbR2Sb2UVsgk01wordFJCmFEWCpRrlZpr9cIq1UqE03aW1toJZAyQMoSQobIfof1tS5fXr3J6VffRIYV+iPF7L4pfu3f/Tbf/8xf4uzqDjfefBW9vcaJhz5ATQakKSyWm5SDEC0SpChTChZJdEBZVtAqJQgFkSwRIricJrRvdalTIokTVrY3efO5l+mutfnRn/lr/MCH7+Hrv3+LMzdgsjZgekmy5959BDQoiRYlAuI0Jk1GqCCCZECFEp2tHfrdLmmceNJhbc1gitJwsxYMyBR2ss1a8a/FaAIMePYIp7nS7BV/HqWUpGMx+bN7jU9J3jbhnP3TPGBAZkrnoiyZ61WaPcMHtj6wt8TSPNDsBO3ArfPncavKJzoyQ8R3rEi8triiC9+Zte8Dfb9uu/fyW7MtUQw7O24mZJ+ktPceyAQfBTaG7+DsSLlvluU9BShqAAr7zLeUGWuI7+tl26bv3MHj5T1PDnbJwPujCEQhdbtZ9oHUSCkJdUA5KnHywMHCAaeBo0v7nE0lUC2XqC7MsGdmkjcuXqRESIji0rnzfPE//TH9K+f4mz/xl5FCUhOapFxFoRiSUJUhiH0oNaQWVRgOuygR02xMECvNrVGbNJbMhCFpr8vV5SvcXl+nt97j3u99iplGzP75OstobrVSzsQBi0cmkfV5AlayvgjBiIRBOqIuG1SDMoEIPBCzW3bLO1ekMGAVDMjPPrqD1T+HfEm3O8M9CTPFqDnZz/bkz4FvJiUrSszdY80fZ/Lk9r8BQlZal9+UEQlpD1z/0DSHvMjrF2isr7P5S48BBbCHrPDqsfbYd1zrNAu+Y7MDC3gACFuHMIC/iOFzB8GxePg4wGijp2jt9TcHHwURsT+2OgcxpmYv8ooH1vKJ8gCII2G2A+QdykmFP3Z+GEuVpnlkNhcRZzQcoYcjktGIZDhk0O2gEUSliHg0zNooA0Cgkph6OSKJU27dvMWF8+cplUpMz83RnH2cL33xK+jpWc5cX+PyC8+xZ6bJ45/5SwgENSlJKw1SoUjIhDOCCZQe0ohK9ActwlJAOawySFNuDVuokWSqFLC6sszG+iqXr16jtdLikU9+HwvNEbOTZTpKc/Zmn4lWn08dmCBo7CEUPapBCJEkkoo0yMb6+a8/y+b6BvFgRJomhag62b9etuMc7NscH1oX58GbfzMt7idHZEWB1OJInNknRsLua4rM90ZYkJq9lf2l0C7DMdI+2PxtBAuYNS/GTri7kcyC1NwupeIlhfWZt3HsN1N8IqW8cR2vy7TbRjIS4NXqrrUaFOy7y9u99pkFoUZO/gsvNAF+MAJDCCxhEs7x2rwXNBSUhTLX0pl3cFE4UxgF2xbz/rnzmjvLe54c7Jb3Tynw+7EXibWLlNJea18SxhYQF7dDa00QBjx4/BiJ0ixowejsaW68+CxBbZKXWm0+OrePmUByI1YMgUUZEYgmQxQVWUZqyQ4tEqGZL08xVDEbV94kqpc5XJlmuL3Kq69eYyRiNgcDPv/Wy0yOoBKmHDrYpFet8MKlKicvrLL44P0I0QJiJENKskEkBUrUqIVNArm7FXfLu6QIgSfsv4OymgPbnatOhV8AifhRjjJnYkEONoQuHsxCkCUTdZFZjHw8O4yzKCEqVcWkYcZcwGRQFk6mnjVNZ1GQrFYyP4i9Do7lkHUf87PbHtLmcNVjAFoILwuqASzGcdmXirqoSRk4kzlg0UVQkttBZ34S/iFuAMc4ALwTdFnthHm853BsyIffPk3umAkuAd0YCLtDG+G3wCMnto94AJPcH8Tcq8hUEPmXzgFXoVVKmmS24nFfksSjvA9hVpdKafWzzNnmGWmawPoaF159idL0DL/+r/8VxAnpQCEfeojXOx2enhEsBAHn0pRJJGVZRooSI60ok2XGbes1amGVStSgPeqzduVNqlMNjlabXDn/GhudFqoEmyrms89/mXo7phR1mZ1vsNaN+Y8vb/HwkRUOPPYoQi5TKUNYqjEcCba2N9npbPHP/vE/Z2113Tr9Gw2RXQNm4dmlpQqEtEBGhUBpRYC0vxmTObdWHMs1/ggG6BrJvSXJQljtmAGj2Z7SBaddk/XctEW6pWEZhC8QsMS3sDWL7wC73jAher06MaY++SPysTFhV6WXa8OsRwARuLXs9co+0+WUuOMtZ8fKagPNgOYNcLzD7Qnfp8JoPn2hgO1v8R/vscKZ4vmtGtvg1lcif9fqMQmNJQA60+5Ig6ekuMtD7152EclueVcWtymKm9ZXHt5Na2S3VC4VCYOQQGqGSUIQlCiVSlQqESf3HgIgQTMvBaEImBCadS2paE1ba9J0SC+aoiZDpgLB7d4an/vv/xFHPvE0QaPJ5tY2m70W0/cfoX12wGNJyMXNFltUiZMq7W3JyrlN/pfXXuIf/6PHmJg8iGaUH8QNqqV9gLxrP3bLbnmnShDI3JEvj3iTn9QOwGTXCZGprONE2c8+sg6k+WS3o2cbLAgDkQF+e1V2wGXaAXNAOttaIQRBGNhnixw9ZMAl81cyUjTzZJX7KFi/AmHA8ZjU0ENTmS20+cHZ8cogIE1Sc5ntk8iSKxT8MpRpiCetM4e4zVKbZnWlaeawK811Rltzl0Pcl3NakoQH2IRwYRdte8ZMLqR7P2YCTOEqF9IOoNMcuCcbO3R/TpyWxTXaSKGtSQO5eYOxD9c6s5EODHlMbZ6IzD8jczBxzqqaIFCZvweQpAkugawmjQXxcES/P0Av36Q8vUCzXkNGiul6nWMLS2g0sYalQDArBAhJR2tKKFpao1SfQWUvc2FIg4SbK1f57b/5v3L00x9jc2eHzu0NxESVqfuOkFyL6X3pC2zPnKAyc4C0O0F7U7K9GvAPfumP+OX/4yMofZw07ZJqydlz1/jFX/g3nH7zLP3+0EYC0zrrbxiGGYHSmW9KQapsyKMvavcl2DoLOZztW2FDiZoLDEB1pj3ZnGSm82NkLwfcOk+OptDInFi73CR+u7J5TpKEIAhdQsT8e2leAmZpeGjXCRQ8gKs1aepM02w3xjaBdt3L8xB4BLWgssrN2YzWJa8gM/FxbMZJ+x2puSu6MITAEBFLLLTVuhiyYMdrvJpx9YXXJ8hCs5roXxIf54y1URfvNdogu++9yk1UJpGqMa3Ity+75GC3/IUo3W6PQIbMzS4yMTPHnhjWSgqJoKIBLRhImAdSIZiihA5DAq2JRMza2iX+zt/7hwTViGRthVvbW0RRman6FLobcPzRg1y5dJ7FvXtYnGkyKjc4k4SMFj/A6mcv828eR1MmAAAgAElEQVR//1v85Kd+mAN7j/pyi3dsPHbLbvl2JY0TdOAAZUFDZ6W1LpZ2KL1kPAagBu6QFlJYSSO4gynbdgKJS6g2GqXOHjqv1ACI3H8xBz7FQzdrkyYIgqze3N5XKW1DdToJm+kXBKEXZtVENcm3pcodRF2egjHw6lUkhUBLJ7kFi5k9CWP2HwNLjNNz5mfgEiAaCb7C5RUw9v9CAF5yKiN51jrvu5d4KXMkN410Usw70EpBuzEudBHWdMSMeSDHBBo6B0ke+Moul8VHCYE2IXKlJAj8KrSrK02LgNi0I01RSQK5FDtNU6Iowjjupkojk5gwDKjXmjTrTQIRMtOYYbKfshoppIZJDbEURMCMBo1kWoakss5hDRE9nn3hG/yzf/mvKdUrxLeuszUcUalOEFKlLOrseXiC0k3F4uF5eqvLxHMVNg/u49rBGu0/XOXv/9Jv8MIX/oS410FoSOKEnZ02g36fUZLYYdI6i2UfhkHuNG5Ad1oIg+th95wYOL8CY75n1qnv92GjRBnNgwgQIrXzZ52gKZ5GVkOgNEqlBGFAqpUN2VkoIpvrMAyzOdbZPZmAwM97MebcXFwahIEkSVOrbSo8ADA5DbTA7ge/ZNoQQ/6LvjjZ/jSkC2xEMu3IR/aakXbc07GkgU7uke9P8zLyt4K91DNlNIKI4mZwjsN5f+yeNm0jez8WzKYwvFpZYYwhflbD5JN9NJnJl/lKFwjMdyrvCXLgM+ZdKetfvPL/ZsaLEjFNtVKmVq+x99B+Hn3scR4qB2y2+kxUSggJA6CrBEOdRfLrkTBBilB9zl17i9/90u/S7yXMzk3yiSee5uzNa+z0uoQBDIZbhMNJqO7n7Qur3K62OH5wL08fXSIkRh1Z4ic++cPsmZvP2uZJAnbLbnm3FRP/H3CoVuer1fj2CCcMLJz0uTRf5VlOHRbNpWu56C3IJYyBsWfOpXtBIFBotHaHdLF+IzH1a81/CqQF4zLMpP/mOT7w11oTSGe8YO63eD8HCRqdBUkYC7uamUC5eOmFzMOiGF0lP77HhKbCAmof4vgmBzpvp3uFeXbQ3pyYp7ghunsIb+PQKkTg5gc3juP90zau5Z1vKdPfTNPhwlfKQHpaIp3X4cWP98ii0fqoNC0ArHHTLdNvpVIL+rTWpGmCAJLEOOpmfVFKMRoMGGyvMTc7zdz+AyRqxG/+0i9y6L4HqKuYT3z0+5DNJj0hidAEArRKmBEKrdp86ZUv84WvfpXhMGFyus7O1ZvMHT5Co9FAC0Xa32JHKfZMHOPFN64ykQ64v7nOgekytYbgzP55vv75z5MOB/RaHZLRCJWqLEqTlFmkIRtqNAN1o9HIzS3Z+pPSmMkU58hoYwyIRFA0kyvMvwsM4IubMwdxVQDRZi1kSdJyBZMu+tjYB5rN7QHmURwX1kgQmDwFgWcuCDIInK9CAcga7VLGGl1IV134R+Rtzeg6dwB0q+nMiRGCPLCIROMygttLhX+jtx/RhXETYP0H/PkzvyrlreV8r0rpcieMF+MbNEZxMqCPJvDnBh/QG4LjDcpdivEVyfbwnb5Kf1Z5T5ADv2jt3lb//zlwjg/a3erV3+G33fJuLHaT55vsiUce5PChAxw4cIBGICnVypRyM4WqUnTihJ3ugMlqmedef5v7Ds6zdusib775CjcvdanUJ5neO8GZK2fpJiNCIZmQkgNRQiBTuv2UfXsXEaMWqxtr9NWI+cU97FmaolmvERhzhV2Cu1vexUUI59cj85CIvjmRs3hwIf/GHSRNBePSfUMQzGvcWLFYUwUjFdSZ34NNAuTuzPIcSE96mNtsh1FgpbGuL1gNQpa7SeZSdqfyNwDMAMzMfEmiE9MmZfsrA5mBf+H6n/XZ9VDkiEMI4bK3aveb4xEiN+FwtvPORMfMgKvXkKiCdBBnIjXuw6F1Pr7WBt1Ide30uEEil0AbUaphgDkI9KWwBZOiQh3mOz3WRjt82TUGyFrzFG/+zVgZQKV1bmLkNxi7HkXg5g3IzFvCiFI5Ik1jNtdusb6yjBoOuH7uLCJJuPbm6xy69wSzi/vRMuTKlavMzi0St68zEQ65ePkSt651qTQmmJ5v0Ov0EUGKjgfMlDT1EHaSEi2dMlGv0ZQBq5ubiHQEU5PM72tyJh2BzhJljUZxruHRmaYqX482JKbwtDqWvGbrMxXZWBcyc3uEFkEWK99Iia0YPPvHhRHN9ql1bM7nypBTs0J0Ps5ZZC4vUlnuQO6vL5ETYTv+noRbCldZUWB+Z3hh95/M3CcwZnHyTu2l3zf7fQ5+nUmTudaP+uPjN13059EY9pC1XZr3gv8cMmKhsIkLjWar+A7ICY6HTrOhGaMA3vvU75J7dQpvgJy/hTBzc5d3rv+2EKYOr3IrKAFEyp9Z3tXkYNzz/Nv9/v9FmzC+6HZh2/uvCDLV7ZGDBzm0tEStWiWQklIgrH1xKAWB1shyRC0I2DfRpFmpkk7OMT+9j+nKbTaCLrVqnb4aEY/6lIOIMAqoBhH9botISqYnpkhT6Pc6dPox90xM0V6Y3yUEu+U9VcxqVWPvWCHMoagcgIMMJIAFtkX1dvFotl8L3KEnM4dllWNTY5YOHqA2pCQHVDLIjuDUiS8RQvtnKiDyTM3OnMFI7DOQm9vuawomFga4ZVJUgZ9WaFzS6gP+AorN+52ZY5mvcumsdNFIkMKLQiLQ3+YcKhIQAyj9vo5f6xEO79+ClsNePyb88sa5WK+LFuVHVBm/xjhIGuJiK/VIhvYm1Tc5MeTAb68wWMnU55EuQzZB2/BQyWjEzvoqWmc+HaQpKolJk5T15etcunCe2YVFZFTh+o1l6s0pOq1lqjKhVs7CpYZCEoYRM4t1+p0uiBFBEFAKJKVkSBxvEI8GTBycZdAb0NruEPd7CCkplcq02l2SOCZNU+cwr/K2atd2M84+uC1Op9NGOXMajdb+5Ocy6IK2KR8rI932yBjk8fHtOhCOPOBIgyHXQuDyEtxFk5clJszbRS5gyOdR5WZixtcHD8j6S0fn9bl/iuTSg8puDfn3eqRb4PZw4Vn5+Amvz3fKhoVtoyWrdjwzyYT1YRoj/wVzQ3INDY7AFHuQP26MLPudzt4FphOOQBcuG18v3t7JZQ35XDrfp++mvEvJgd9Zo3pxzNZ9vrsK9W71ZWX8Wl38V4vi8N+l6l2I994rQgjCMGSi0Sh+bz5IgdSSsFyiVorQSvPEqWNIIdg/N0dZBFw9f5YraQJDTblZhuGICBAyoK9LdLY7zM1XiUddwlqJMJhAJ5L5xhS3Kw2MLGHXLG63vPtLdrgYQKM1hGGQC5SFA2fCmRyI/HpzmBqw5ta7u04ah1gy9bkARCAyMwStCELJaJBkSc/I7eYF1m9AaGdna3MyKDIzhPw74x8BubmLMakwj9aaJNWuPToDCsZuO83t4g0qtYCVnDAUZErCSR5z5OfjWymkBXcWeHn2z77/qQE5zhnYImIHijxJvh95ZtycxLbPImsDYnTxqoIE1YH2LLyrB9AMGbISySLoRGfhLf3B8deCbYv53mutf48DfQKv6R6r1MX7hP85A6X9bpd+u43piRDGyVMz6vfYXF+jUvl/2HvTYM2O877v133Ou999mXtnXzELBgABggBIihJFbaRoKdqlpMRyKorkyK5UKmWlSs7iKueLKnHZiauyqEqOl5IURZZFS5RFWqJIUyIWASABAiDWwWA23Jm77/ddzznd+dDree+AwoekAMj3qZq5977vOX26n+4+/X/2OrVanSwvyLKcXnePosh44NIZ5udn6XYyBu2M1uQo+fYutYqgEBU6uYSBopbssNvtk7ROUEkb5J1l1u+sUBsbRSHodrrkWage7OdLqbIMFgli5nvLR7unHBANIFeX59HDm4ineohN0XUh+Dbm99CcWYDstN5SSh/D4oU/+zmY+Ji4PeHvt+lDnYAx9OwQJxB64uNsor47WcFbKbB7yWywknA5LPCGNRA46AB32doW8SuSru3rAhOPUKBRKG2L0jkMannhAunD68Ls+DhoOnqIfURISerAPNG9Ihp8/BYxr2HtPx9GFl6wiz+07+53Ix68T4UDR2YIRVGQ5xkgSJMKSRzJRHlhl5eU+WS4PZzE6O/W0ZXhO6GH2H2A6z6wFG/Kux6hQniTurGehqsG/R6b6yvIrGB7bYtB0WVmYopmvWZ8pFWFTlaQ64K1lVvUJw6RVZvkWpP3c7qdPmmSlPxCD+iA3q/kDxSLeQ2AsWDFRAT4kzQR7n0pylo6mwNRWq1i/GaGAIidi5Dzo65UElrjNdq7fYpCkeeKIlchk48OLhZORpFSIFPzvSmuZl2MFBS50flLGRQ/JqtLYoQDl+JTgxIaMC5ELkWiUhrl4KoVSBLpgv8s0HW1F7QTgfAvFud+4Hlrfyqn5NKhcnHpxNIuQHkYRBvgoggpUN2clSHW3cB23IO7U9nlo5yvPTThLALW8hIJKk6YCUIAUW80UgcrQTAH4cFxLDwIoUv8c7UShBCIBO8uJYRLvZtY7bYiHwysS5oLbjbXJYmkSDSDgaLX65GmKc1m0/Abhc5zpNYkgOhnZHsD2qub1NIqY60GqUzJ+oK+kkyMSOYSwdZOl7zSpEPC7tYuOq2xs7lJluUmqNzyXwKFDUb2wpEHdoIiN32N/fM9UI/mTWltgpfj6RRBCIpdXaQ0MSYOhEuXJjcCiFpr798fW25iaO2sCk45EImtFtQGpYGUwe2mKEyCAVeHyM1DyU3R7ue4UnlwHx9yS4rWlOtveX3jhVYj1Ac+Kb+GxT4+x28nPyPCZjXSoVhZGEckjFgLjPJbOd6Bpnifi90gGrcR/pSJpxFRkL+fK+H3henXfsEnHnssePkEBhFbCpdY4F0C2fepcOBERDOIoij4gy//PxR5wSce+UHmZ+cBqFZr9kWKv1YLXWbYXdu/ywsvfBr9HeUcNo1H2pt3bv2A3r/0V82Ye6lAeAHUGmPMHz3HjWu3GW9pGtMJhRrQ3R1QzTUybXF8tA5acd8Dj3F9fYudvTaHJqbYaXf4mc/8CPVazWoQD9bMAb3PyWlgMUdz4pdsOMQ9QBDCBFhq77UctN9a24w/hoxrggsojYC5vU8IkImk2apy+WMn2FzbZXlhm73NPtVGwu5Gn3xQkKYhu5AqjB+3jAR6kTjrgSRJUpJEklQMSJJSkKSCbFDQkII8Uz7TZ1GYWgpobEyCyZAj0CE9uMCCPaMNdMCmFPDntY0GDMSB1cEbQXs1YVEM3Uf8nnInkNP4OaBceMaGas46uicIHHr4WxEHMLsp1x5gxkKHhtLfZQDvX5UhDoFhCtl0EMKARdeGcOe8uVPa9aDCrVYDq0sWKiwIFokkTRN/jdPkag1FllEURnPtBAqZJsaYlJtYAFcgr723a+5XBWki2e3kNLZ7pLpgalTTPFRBDkaQ/QH5ICOhyrHRUdo6ozuoovsKnQ+AhDSt8+LXn6S9vcug1y/xLXY9MQHibk4D39xYjaY+mlcH5j0otaxzmy3yRfPucxqrvAqSgEaXCml5vtrq2R6wuwnWJjNO4oKEIx5rjJBiALJE2ZS8CFv12qZDFV67XV4dpXWFEf7cWjHt2LigSHARaJ8e1QvEWnvlgcvS5NZtzFwnwAchobyvBNKCfyMY+LgQ24SrLeBGEnihA+MsL9E6+Ej6Drn1jF0HAoYV3ZHwUGiXOGFYPMLPpxMe/Lhtf5QyKXG1CAkkEhHm8N1g1/epcFCmNE1p532efP5xvvHqt/iln/zbnD93wWpQgvTo6C6svAvFr813e+cwU98dkw/og0taa8ZGm5w7c5ynH89I0oSpkVnmJg7Ta++xs7PJxNg4Parcf+4M6ytL7G3sMD0+yYfPneGeM2eoV2sHQsEBfWDIr1QhEEkCLuMHwgc4msPbnH3mEA3p95wG3eu7hAHbApehw1AiXdpRRaE1SI0eFGysd5mTkmR6hDGlQe6wtdYNWkfbbpKaugdSmkrq/b7V+muBxADHJDVWApGATKwWT0iqVYmQJsWkEEYwGAwyYIDEuFFluSbREpErlHYZXAQoRe6KlxE0fE6r7zS4Ps955PvsXCES4dwCPAayLDfAXhU2I1ASdH0l5b1rEP9oT0opZJJ4MKVtH9x1sZDgJ4xwjgoL7twjRNzXIStH7P9P9FnQ3JaQ6H4LrpW6hKvzoE1QdGxl1SrKquOer6K1FwFMJ7EolzI16pMaKCpVwaAoTHpOLVHCgDCtCmSSkMiEVkMz1lTsdU39gURX2F5dYmpsgtZEA5FU2JWCphYM9ID23h5rq+us3LnNytIia0urZIOBB6hCGMcRhEC7NLDaBB1rbDpae11h95GJT3ApcyOlJI4PlIRTvx/dGvDWlgA2Y6Hh3ZKZcy922/Se+GcGZbdz0XOpgYNAHFu1SnEy0cJxWZyEHZMDvGpo/cTA2hUwy3PtB66G1pgm6M+NkBQA+7CmXQRNsx1teWd5WcS6MGrfVnBJdF4tUkhIysH7cVB5HDguEFYICFmkwpDjTW8FYwRChCioeJ3F+7M0zxFUfbfz/4EQDqRI+P5HP0PeL/jTr/87fv13/jcee+Dj/MyP/hzVas1e5RhfDgjxUp5nZCy/mhdLoXMSWfGTIny1QYUUTrIrB1eFRRc0Lgf0/qV3mp14+8cmbTAbOy9y6o0WJ07fw8T0DLmoUK3WWV9foi4Fs5MtctHnyPg8p06d5+b1f889J05wz/lLHD08T6NW8wf+wRI5oA8CKa1JCBVRVWFN0sJo0pwPv8BkwPCFwVwDwloNLBKV9r3pc+Y4N5RC2XyJTqunUIWg38u4c22D1kSNpJYyOjdGfazOwhvrVoMpkFHgsUCQpgmFKtDapk9MJUk1ZWJihFqlaoC/hEarzuj4CNubbZJE0+tlDPomN76QsL2xR7fbAw2JNClRlZRGC20FnSy3fuOIqA/WoiICH2It4PDm9xpxIdBF5IPuhCenwVXl+gfCMSsSstxPKQRFobxGXFowXbgKvARFJlbr68Cnc5dwJ6WvqGr7igNP2vDBgfN9AMqUuQ6jlVFwKGXNrn8lhiFZnplz2OXoj4GbAY7W1UjIKM7ECBd5Xhig71GwsNpex/TCADtlXLMKm1cfDdVKSrNRY21zj0LB9NQkA1GhoWFybJSxVkK9AQUFnc1NXr62wMz0LDdvLbG8vMT2xjrdvT2yLENb8K+cZtpr/IXXqDt/8ZiGBb34LHLfORBo/O0NXhGOkb4RHe73jxmK0XRa5ggguz1v5lIg/b3uM2lcDH0/St331Z7N71FMDw6XG4E1gHirRtBGQDf4N7Y8DIPjKCuPVsPsI1pdto4AeOuM3Q8exwlBQrLPauPHEkwzCARFZK1zD/N7xs+Ti0GwfEfb6un7BbNYQPDGRbCpbjUmtkFYoTq6PsKcZateEDyc0KxU/J4M6+ndQJEPhHAghODw7BG+99HvJxEJn//S79Lv9ekVbX70+3+SQ9NzViOiSYbiBIKmyZEmV22UHqB1gdI5SuVGm0MdKVtA4jVASCetaWt2Vn7RVCtVu1kOgN8HmYanzmkUjMtEQrVaY3x8ihOnz7HR22HQHyA1tEYnmZqcYKe3w/l7LjA5Mc0jj36MVmuUqekZmo2G1+iY5xwskgN6/5MXlt2pSnAl8EjDHkr50GFpfogSQPCfeyRowaAqB/SBOdSKTLN+c4vuVo2RyRqN0RpC1jhycZqlNzZAadKqRCaCPNPoAmQlJdUCtEQmkkqaUq/VmZ6a5j/7hb/JoN+mn3UoVB9NRq/XZ+nOHV559Ra7nb45UPOC3VSSpCkqVyQVSVqpIoURDjp7PVxKRyGiHOg6VhVFgElgQxhcUSrHN6fZM21piDMpmnb2vSqMq8Mwu53WEI0p8iSC77bSyhStK90kgnVCKN9/p812vtUOfHp//SiI3JBx13EB5SBCeshYyRIJFgEMxZGBTsOtcHaOWJNqLndrybqpSAuUlUJZFw6tFEq4oHjtx+n6YorKmVSnQshSDnmn3c2znL4NZq/VG8xWawiZkJBQbVTodHvkAGnK+toaS8urrKxusd0ZsLW5Rbu9Sz7IhtxgBMrGsTh3j0g+C1yIJDcn1Hkelaxy2vOoHJ8RLR5/XVlg1zoCr0Pkpq1s9YnmzGXpEa62hQXDOlIExO0R+unXlN8jrmcuNgEPpN1aDcHF5ZVSWvOWKaXxE5IFiLtcHwvaYIUZLxgPC/Qxf+w7UEVry/XTzoWUwb0H3wdRnoeoPdcPU2lZO8xfmp/STIWt5feKHrretL3/M//MIcXCd6L3qXCwv+u1ao1zJ8+TZzmf/+Lvcn3hGqu7S1SrNb7nkU9x8ujpcgtalRaMW3yKvhUMeijdR6kMtKBAAT2UKlC6CjqlmtbsJJpl3u/3WFlbZm1zhXOnLlBJK6WX+gH99SEXaJQICaQ0my3OX7jI69ffQGcZ9UaL8YlDzM0fYVYojh87RaPR5MKFSzanuixpYQ7WyAF94ChSYXvFZHR4Ow2yucClZXSuKQY4yMQdhO5QtpdbrafXgtn9ppQGBd2tHnkvI5HQHK2hNIxMNxg91KS93jUaUymRiQYpSOsVCg1CJSZNca3G/PwcP/TpH+Jv/PBnGWS79Ps7dHu7dDp7IOHWjTcYG5/mjeu3WFleZ2d9F6SpcaC0otmqMjLWIkkTOnsDer0MldvgZi2Dm7cq88Yf4kLYGDgRs9Ke3oHNTmgqvSJE6cu7TQwBegSg4N45QQsf836/4iz+GWFVd2Tu+ywWJgJY3d9N93w/lEjYcEg0uCs5i8DQ2LXTdgYhArRdWLbOtNeQg6acEcZNibOi6KKgKBSVVHofe3OvaSPLC9zk5UVhBAMp0blgkBfs7nTItwqyvGDlziobWzvs7XbQCHq9HoN+37syaW0rXFtAWdLwRhWuHZCLLQslwSDi4bCLlv9eg9bOskNpbQWQPQSqY4osAM6aFRBygPSO/zrmuVa+Xec+5OZKiiAwOhwVq89LAijhMy+g+KeGmBPcGiKsjTCMKJOaGy8Rn/x1Q94l2vXFtRnFz4iAHfcjfM8Ru8Zc3IbeD9CHhLXhXV2aliF++LFEFgLzoMClYauEvy5eECKIZneVgIbofSYcxFKbZvi3JEkYGx3n4pnLvPDq8ywtL/HPfu/X6XY7/MQP/Sxzs/N+Ekx5aVla2IXOKGiTCImmgqAgSQoETeN7WGyQ64LOQKKKOrMjh8lVRioqgGZ5ZZFnn3+CN6+/wS/9p/815Sl+p2k/oA8qSVtRMUkkzWaDixcusdfbpdPpMDk2yfzsEY4dOcXs7BzS+UxG2rXYB/CADuiDSlJgtNKAy6Wu7KHjDqVQmIwS0DC51E3WkPjAFMLUKXD6QCnN30URzry8lzPo5OR9BULT2R0wfXKMIsvJ2jlFYdqv1qtUminZQCFEgpAJY+MTfPS7Psbf+Tu/TEpKmmgatYTR5giDEZBpyszkCKfOPsAff+2r7D31LTZWt2mO1NnNMqSEickms/MTKCVYyrZMIGRhQYR0YMIIAFKYzEgeHNiTxwlM3vfYg2yC8GVBhT/L7U89dKaUAjodkImBmyDy+VYWXIcJ8UBMKVMY0kwSIpEekGjfsJvfMsBxAMNZ1XVhNOHSAa5IK+kEBJcRVodmI9lHeJcjP1Id0szGb8+gxY5GLdwYrUVGhQxHHhZFWt6SBtnPle231hRKk2U5/f6A/mBAvdenXWjaO7vstfdYX99ka2MbXSh22126nR4CE2jt4kQMn5XxNPBxD2WLDIJQtRvjQx5rgcvChAxgToRrlBW0YkEsYhYS6wrj74vnJFRpFjFvLbmUvrGrkXNTIdr7TsATvl/CPy+xE6+ti0wsAEnKz3PT5LNTOTDtNPZertBD94T16N1sggbDCMxRzYX4PmWtVViBSHgGDa236Llu/uLicjHpaD5cfIUeeq7j93C8TjwP0Rb0/XIuQrEwE+4MgoMOw/efBX7cRch5B3ofCAfDQsCwgFCO1j52+Di/9qv/iF/8736Smzc69Lbb/Obv/ga33r7GP/iVf0ilUkHrYh9uVyj67JECWudAhmCAoIsQowgkuRxDqJyb61dY3trkk/d8mk7WYaZ1mCzP+MrX/i1PP/s4x46eYWJsEk28AAD7kjpwH/nrQdHxQqVS5ejR48zNH2Z7e5uJiUmajaYtsBSyJ5RMggeCwQF9AClkvqB0GDkwUljNt7QarJJWUml8Sh77WQl8iFCHIE0FQiQm0FfaoGUBWgiyrAAku+tdVJZz4bF5Ntdysq0+M4dH2FrtsLfZJ61WaIykICWVSg2Vaer1Bvdevpe/99/+qu3/gCQBVfRBFtSqYwiZkNbPQLLNyftOs9XfY3xslEzmPPOnL1JNE6amRkiArY091pe3kQIyrX02Hf+e11ZYsC6orjCD8JYDk4UJK0CZW4IrhDlDrGIhqpbsMrB4/qoyyHB/ycgtAq1N0CgBsMWAxZ2vMWiO0YR/hkUnboyxQlqUI6g9sHZjAW0ArbANxSYBYdaQGloXgiDYGPehcqpO73IkDBT0FhH3IwpMDv0I/XNA2Lt9CJcStPB9lpgYh7wo2N1ts/D2IreXVhgZGWHx7Tv0+z3yPDcCiBD0+gMK66aktCppnrUOmXzKLNaRX7oLLjVj9pp2Fdy7wKQL9tYM21gA6WYwJX95O+9CCoQKvPcaZ7duEpOmc5/Q5GccD2BNbIJbq1HMA4JYdvFLhxBDENICqzBv0aJy69TFv+AsDFG2n+GT1FmDYkuCm+4YfwUB0y56EY8x8CMWboJoHz9w6HzX0T7C7GctnAAS72sRN4HLeOTbsGBdiPAv5mVRKK9gKQXpD1WsdvPrM8mpu7sOCSeZvwto8j4QDsrktP6FyhEIBnkPIRKqadXm7IV6rc5v/eMv8rlf+X4W3lxk0Onw+BN/wt9avcG/+Md/YA4cbSRmhaZHxp1ik/RumT8AACAASURBVHnZpKBDp3iNVG/bIlZNpEiBAsEkiRxlbvI0vUHGk8/+K77vE/85Cs2v//N/yGuvv05zZIZTpy5SrVSHXoj7g3MO6K8PSSkZGRlBaxgfm4g0oPCudtoBHdAHhiL1rhRom2pTQCjWpTRKQmLfe4m3LITbS2U9hMt/boqSOSQlEkFjpEq1XgGtmT48Smevz/LCtgmMTgGhuf7CMuc/MsPGzTZ5t2B2vsHEbJP1t7v0OgOaE010oqg0m/zof/yz/OIv/xdoUUXpNruDb9IQAxKRIpIxBAXLKzc5dPQxJsdO8sDZglGqvJg/yx998XkqtQoPfuQ0Wxtd9vqavV7O7m7HZiIxkowgWEWUKDxOdUwKvvoSrTRJYvlpj+zYR1sXyoLLIeWCjAvL2WtLijP3WaSRjrSz7rsYbMQgdTguZFj5bL6z2mUL8IaVdXGmJgfSQaNtsLMBNCHotASnhsC81ja9rZQIhU2NGTTtcQfdb4nLMTsEEn2mKKJ89jqMyVkLQo8EKEWhTS2C7Syj2+kiKxUkkA0ym4/eAjClyWzqWylCdhnfD69Zjplq9krhrC1SooVJx+snRwW+apvNKNxtmts/TUGEtHIOMpFBcel5bK+NAfewpWJIsz0s3MRUxjuOl6E9x3cTpOyAbJwGGe+SV1akCS9XOu3/XbA60SWRkCH9M+PrkiTx8ShFkdsAdvOdS2Jk9s47ZArC7EdnITPCeRSHgMm+pqxgKAiB2G6Jatt+CCQOvHN2Rtfp+NHGTbks9NgOlvvn73MuZrrEN4dVnMD2V9FffcX/r+Q0GmFx5kVOu7vL8voCC8vX+cLjv0unt0dWZGT5AKULFGaT/trf/xyXLh+mURPIfp/e1iaD3AaN2Se8kW3w5d4CXdECJP3sVWrcoirugFhGsYpSr9HtPoFS2+zqjLV0mtXmaTZlwhee/GfcXHiLa9dvsbK+xenT9/BzP/XzAOGlVR6S/e9uctsBfRApCAKyFEsQTMJlrcKBO9EBfZApqg1kBAMdDkpvzhYBDphjS3hXG/f2829B4ZMSmTskVKoJlapkfLrBiTPTXHzgMBceOsLZR48hEsnUsTEm55qMTzeYnB7h8Nw0v/b3f5rp+SaNVJIOFBWtGDlUpT5So5FUaTSb/NCv/C0+/LmfJUtaCDTd4mUqxVWkeBstVtAsIsQVRkbeBN1hS2uW68fYHj3FxOlTfPqnPsLRM7NsbeX0i4Sbb63w9tUlM0aRmINaRMe0xKZTdZmdXKYdYd3iDRecS4CxEETvkcBCx3E8Wym/Rxy4cC5aIUhSDbm1RO1Ezcuhd5RvDwNsQoyUQVseVBLAnlImG5DtUJh9qwWX0gRxxyA5Xj/GqiBIkoQkTQP4B9u+tRoM+UQ4MKV0GZCFwNwQZwE6tKXitqBSSVFKUeQ5ReGyBlkrgm1XKYx7UZ4z6PUZ9AdkWWbchKzWvrD9Kde1FFZBHUPXMAwRzbHnZ1HuYwzSZZKQJon/TCbSWKoTE3TvlKXBShN1I7YCaaJ1E6QLrQPP47XiKzILEUB9CWQKb7kqWSyGtNJ3OwM9HxwflXG/cv/Q2q9TZ3VMosJj3mJg10tRFL7t/cJhCE7WLm2Rv9YKBX4+DH+klKRR7QEXaJxE7nrOLcvVLXJ1F5SKXfksNhdmrZetLaHd8vsyqq1Qet/GfHRXR/tTu/UUteTnQXirjI+r8O7235neQ+Gg9OpBaVNNr93eZXHlNtcW3mJsZJJPPPADPP3qUyyu3WZQ9Nnpb9IvuuT0mB9/jP/ql/4Tvu/7H6TaqrC+ucr/+nv/jTfxvNV/jY38NtNpgxE0O7pNt/005K8j9AKCJYS+A+oaUt8mZ4ACWmlCvdflyksvsnTnJn/49d+j6CwzUtM0GlWqtQpFUTDIBnbjxZskDjw5EBA+yCQia1C8uYf/ld+c70lXD+iA/j+jJImC6YV7owUSwhyWaWJqDDhAEMQEAiDUxudXWC2yK1CGgLRWYWSsSn28Ql4RrK22efkvrnHkgcPkSjFxeIzjF+c5deEo9z94P2fmP8s/+NVf4MLl4ySVhHor5eTlUWqiSmt0hJ/5uz/Cd330IU6MTlGnYFtt0935CypyAckKkhUEtxHiJvXKNgMyACZkwmBtjcXr16glKUcvHGO2VjDaTJk7MsPciXlGpsYYHW+QVqThTyJL7wCZJKSVxLtGuQNZSqikRkspbFxFDL6kdUs08U0mI14RSq0GDaMDRlaoKIF//5KidI0DVB74RkAugH0DyIxvuh4WCRySK907HAtQ8iVPEiMkDFd8Na14Lb0DKg68hXEFgOrGUAI3rm3p6maokguOe1wQdMovZAdAtVIeEDohwhSWMyBSK4WyFYvzojCgTRiwmVsga8BcYT0dlKmtYLMZOuDuhAn3LyalQ/ZDp3GOB6G1A7QWV2hKmmknZMVSuLBo02upS0os4XmMEL5vjv9pmpraAirmpRPY7DzZda+jNeGAaVhnARQ7a5vTVsthYFrCTnjByP+N625YA/EYfF9ijYb9zldpjupklN2mbBYxzT63NLcO3XqKvwqxCbHgK4jnypn7lMtwabNU3VVpGAm8nqe42IkQ2+DmoaQYuMu+DnzFz01wLWT/WnsHek/dilz33AbJ8gGr68usri3RqI8wyHNefONZXlu+wrG5E6RZykp3kbMj5xDyJlU5ycWzj/DZH9zj6FHBysYab117luX+U+wVHdrs0EoP0RBjqGKPrr5DU90xG1pWgB6wYza6aJLRR1OQZZvsbL/BnbfvkFYP00+2GW1pTp+9xKGTx3hh5SbFdofuYJuzcyeYGZ8lTSoA5sAcqnp3QB9kCgLCvg0Vm2cP6ID+upCzDpQ0vtZEHvkXS5ve0hzo9proRPUg0gFj65dfqaYk1YRas8LIRA2FZmenx6BQjE7WqB9qUB2pc+jCHLVqSrKt+NG/8SDN6gwPXf4efvrHl7h+6w0WtzZY3M147HP30Un2ePSxo8xN1dH9FVb7m0y1utT1IoIKkIPug7bpHJMRcnpoFP3+TbY2rrO6vMaho1PMHx8l39mmJhvMX7yX3YFkZeEOtSSjv7HJmy9dN7nehXF9yXNbBlqYegsGG0R+/kIYtyJs1hwBklCR1ripWI2jDO8U766K9gHEDlx4jak238WZ0YI7iIsHCcAhhkbOzcAJcc4P3s1dee7DNR6cqRDI6YQNYVBgfItFKWYcLvh6aMHZZVd+n7rHDAMgs64sf51L1JBKrnSPAKGx2bDiwNgwfuHAk3Tr3/BCFa6Gh0Zo5f3uS2DMgUTXdwtYEWIozbmdT/e9dlvGaXTDeI2g5vZXuN/7wwvn0iVRKvOA3F/p+xi7VAkLmh3Xo3l1MyFDgLhfF5F5xMV++DVe8o/Tpq6F2/T2s7CWIyHR1kvQvm9RM8P1Dfycx7wU4UY3NoKLnFv9Ukpb/0Q77pcsaHa68Of80DqLLih95gC8vcU/z2n/Iw5Yngub2S36LhKOfWnH8uvW88cpHMKQh/oY808P7XkrCJbTrL5PhQOvibITVuiCwaCPUoosHyCEZHJsmleuv8QfP/6vqc5M0VcDlneWeWHxWzRO1zhdvYmgjyDhw/ef4tIlwe2123zhyy+ztPVFbu9scGLmDLPVOqJYZnXvGlVxnbFKFyUSCq2QugvkpqhNOg1CkDNgafkKV688y067g1JtZqabbE+1OHPhPCPz07xw5006qzskdJlqjkAhQOekScKhmaNeq6HtWylaxoDblAf0gaOSgeBgDg/orycZbbOwB6X/FHOAmhz/OqBLApAhHJZWIHA/jWZYIFNJrVGhMVYz78RU0uvm9ApozjSZO9JgkGiSWpXq5AiVZsL4qOCTH7sHwTICyQ9+8n52e1O8fuMWz770Nh//3uO8uXyNY60eU8kuy7sLrG++QksUjFULcpGS6h6CAqVysiKBdBYhBJnucePGcywsXKHT7aF1m7npUTanxxC1UcYv3MOgOsbIscM00wGbr7zK7kaXZk3QaXfZ3Nih2xkYkKSMZtVpX/PCaVw9bIw0oeZgdy4dDky64l1OMDABhg5F3D1lYYT0o+eBA4MehDkQFM1njEJclij/qQh+59oBfa/FjICZH4vpo3buPG4stmOxyxLEmtrAH8+LCGzH2lTj2oF3x8Bp0R1TCeDIu1nYsSWISBsf889paUFrYbJuWXcnI4SVQZ932YksIw64KbTPxBNHZ8TAzs9CxA7ncy5E4G0ArZGgZse2P+bNjtWC6H2a5KF5dzyMgW8cY+AvjWfG9UOHce0D8Tp+D0QF1jyfowaFsAUShV9D7hkBzIf14K0ifkTlmdTRtY43QgoosNnVHK8lZeFAUBq2Dtp6LzBH18aWFLcnyxTx3FsspK9+7YRBt2398+3eLWNForbK43PkEhcg/HIaEgCi/XQ3y8U70HtnOXBj1Josz1hcX6DVGGP+0FEOzRxmdXuVLz73B+z1c8TuLpubm2wv7PH0689Rm9dcmLwfrb6JYBPEDI30BKfmzvC5n53m2qtPs3d7k9pDI4yMH6XT7bK58AUalT1mTs2QyToUewi6aCSDLCdpNGjKCdYGG7zywjd57itPU2uNMN7cYzJJ2R6fZANNb2eNbq/Ndlrl0vwZ5iaP8vqbr7C4cpXJ8VG+b/onSfBbEHSYuDD0g4xGH0Q6mLMD+g+BpBDBzG410KoojKLD5VOPNGhEB6U7gJxAAFaRbDXKlVpCc6LJ/KkJVhZ3WF/tklQTRg6NMHV6kt3tDnpQ0N4esHBlnQvffZqHP3MvFTmFLv4SxAZCnmG0dokH7jnF0aOvcfWVJ+gvthk9dpY6mzSKG9Taz7BXZMydPkwmqohijYScooBBUSNtNGjJKRZ6d/jGVx/nrStXmZwaYWY0ZyLRrE5OI0em6Q7aaCEYOzxHrVB885U/5cHHHmJuNuHqazf49rfeIsuMS4rC+h0LrGYUZKJs5V5lk68Y8OnQWVEoq32NAQIGxAqJQGLyn1JybwiVhkPswNAh44HHfugdA0htgs619oHnUsgg/DnNuwjPL6xf9HDMnZvvQhW+srN35dDGl98Xj4vILSdf7Mtp9mWCWTbSgPSSQOphY6R+NejIKeacIOAFJpdFCjsHseqWsJ51YfivpakMHgsqMXP9GO39ZpjWguJdxyzfrLAk4v2iw/5x1zuA7udOR3yOQKETHjWhkrQfh3ACgBMyrOBh96Syfv7OvS92tylshiUXLO3cUVxthjgmwk2FlKKsLS+/EgBNkqSG3a5IXZAqrZudaV8mMljFfOC4vdommZG2RoWO58/yPgiJkbDq32OuSyZlbZBR/AzacUWCmLcy3cX3X5eBvFmekiQJ1h4H3I2FsBwb4tIaSxm3GwQuF09TElRiioSs4T3llQrC7aVQg+Fu7nZ3o/dEOIiEJJQuWN9a4Y8e/79pF4qPX/4kj138OKeap/m7P/E/8Mzrz/ClJz7P//y//I90dnucv/cSP3Ls55FUyPM/o+jeIEluICpzSHmWVuUC/e44F85/i8ZITqY2QTSgssLrb28zfQxGaycRqo/uryCRJPWUVJymoODbV36LN68/g8pypqc1U0fnuXWjSjE9T37oAh0Evd1Fpo+NM9h7m9W1cTbaayx3NslqEqVtIRXil3L8djkAmAd0QAf0PiZ/mAjjF12ErCPgUk5qCgIgKFSoAuzdYUKCEoSASkXSGm1w/NwcJ+47xMx9mjeffoutpV3anV06GYyfHKO6PWCikZAtbXOmd5afOvO3kRQUxZfQO9dJGncgPUUijiHyEzzzzCLf/alDiGoHLXZJKnvkcpc377SZPVFlpHqRvLeMGmyipSBtzJHK02S6z1++8I9YXLpORcLUjKQ1M8H1hRbJkZNMn3iUrcXXQW0wPzeC3OwxNTnKyFSdQbOCHB1hbHKMPNe09zpUKglaJ17TLguF0onxXc9d8KtGKLx23mUjckeDtPcaGcP4otspsTjd8jxKteIB3F3cH5wQ4r5R2utX/WfaVR4WIdDUaXo9aEVQwiaiDBhNwLVJyZpIGawQFoiUNNkOKNuGROL6Gn4ErbFrR9o6Gi5jjCZxWlwCmCqtYYaPXQu6nWBh3YRi0nZOUNpUkI4049r7ORmBVxWmXkSlUgm1FfLYChFZWAipW9368FYd7YLV/XR5IOndacDGLVjLx7DVAhkJA9K353ge/+4EfxNcb4Npifz2Y+29MnOqtfFV92tGK+MKZ+dX+nUSnhfPeVEUHtS7SVVuHfjMUnjBRCmFtMHYTuMeTW24HmEKIhI9L0rz6nz3pQjuRDq+1i0Ney06zF0RxQlobbKTFT49rem3tMKEzzhlGMiQ3BwEwXCF/VmSFYNyxf6Tbi7cGrcNO8uKu3NIbDHWEZvh6N3EF9yN3tOYA6MtMGmmRscmuXn9FX7zS7/BH3/93/BdH/peLp97kCdef5KNt2+Tbe3RGEuZPd1kgipCJKTJ5+h0/w9U9jaVWg/GBzSSnyZt/RsWFq6iayNU6i0SeYwi7fDCWxt85hMXacqCwe4G/e4SyViLZv1+EC1u9v8Vj3/+G7z16ibTx0c5/dgszdljqO4U1dYYy1tXSHSbyZZmZnOJtbfW+O2dF5g5NsfHHvg49548x2bnGnOVi7i0b/tJv8PnB3RAB3RA7z0VSpFEh5NMjS1UqehgFSbg0KWbDGSBlw/w06CEB7nVamqCc9MEBgOOXz7C4fMZ/UHObl/THB9jcOVt1F6P8fNjzB5uMipq5jBNfoG99n9PdW+FdLSHbEnGmw/z8EdPsLy4xNjh16lXTyOSAW3V5uUb23z2e+4lFX16GyvoZIfq2CyN2jxQ51r/X/CVf/o6vY7i5IPTnHhojtHJc5BPUB+dYmPjeZqNjJGiT+XmK/RWC45dPMf0sSNc/fYbnD4xx6XTh/ij3/8LsqwPCtLUZOHR2hbTGuT084JKJTXac23yxbvMQlgQYTKX2Dz/MSD1FgGD9lTkj10KBg8KVHcnJVAeWvGgM770rt4GJUDttKiKRKbEKM+DGx0KFyNcKk1hXTHihmNYo20xOxm07R6jOm26AcQCaTWxEdhxiNqBLa8BLyLrivZjFCJBq6JsMHBgc8gVR+vIZYOQttVYAuJUsCGOoQQApSTBZQSyIDVNcFaHMmizbVk1s9aFtTJJ63rjrHLmWu+yY60lAVoGSmRwZXHPUioIKUkicYYM99ndSFPWsvvHOTBt73MWhNj64QG/dbdzfXAUgovLcxfaFT5FqJ9nN+XRfc6Vr+w2ZgUCmfjPTDpSa1WwjQRrSVhDQuhSbIImuEhppcAJBuCFJBdLoqL1M7wmiPsN0VqOYhtLgkCUFvk7wEYvTLu17OptDT36O7UxTO+BcOAGHjbfSGuE+WPj3FhJ6A4K+sUWL337ea4svcRnvvsH+M2N64i1bQ4dq3PpwTE/CcvFHhPjj5L2auj8FqK3ArWvct/5i/z2v3yZ0cmCo4cWaVYrTI/OsfDtG6wXCTXuMBDbqAo0mzUScZYBGc8/9xxrG5uMTkvuuTjF+RMPc33jBBs3/oQT930X49kane01VnsStd3mWhfu/cTDTByaIh3ZZLv7LSBhay+hkkzRqk+CTHCBQVpLEmGClfVBsbQDOqADeh9SnF7SpTLUWnlNlAMosfuAC3ozv2Pv0aSp9IdSIgSJkFRkyulz81x5c4Ek1bQ3MwpyDh9tMjo9wu0jLcTiHmcujXD8bAsARcFitkuz8SgUr4PqIAY3qKWKB+/9KP/0//wtTl5skI6/zVgdWskkt19dYl2nzIubdGWfek1SrY0hxQn6asDTTz9Np9vj8IkGF84f5fChD3FrY5qtm1/h7COfZnzrDpvtAVvtjNpOm8WiykOffpSx6QkeeWAWOdhlc32dH/vxD/H6m7e5+uoaMklpNutkRcH65h691V0DxFKjdZTKHHwKAxClBYCxRlkIQZoGYcIAOCMkpGlKkecRQDOklCaJcg+WAkC1BQ4ebEfgw37nAjl9o0JaQK09+JFSlsByXIfLaYpjIOTdP8qKbpze1Lkb3dUf348jSrNppRuX6tGDQssMUxR6yF/cLj6ZmABY15B2LivuaTGojxCU/1QEy5n73Hvxa13qv+e5l8bMPjKuHu5zYYWAoOEeFu3QGl0oX528hBYcQPbaffbdW9a3BxcVV4SthFl1EKBCI/Z6b7YqC0pCyqFUolF7StnMRqGf8TWxm46vwGzvC5KkFQSccDIkXJjPgtBhhBIjnQZrTLzm3TsrEmq9VcVav2y8qHPVEuFB1oJqZ0qHOg6ub8Pr/25/xxY9DbbScvy+tZWbhX3nCpMdzXXY8aKsQHCjsW3YwgplQTVMa7wuvxO9RwHJ+I2hdM5AbTA/Ncnc/ASF7rK30eXGrdfIb+dMTGZ8/FP38/hmn53VFe68vAkf66PQ1GmTpLPk/Sqq06EyVkFUbtGoX6CQmm6vT9ZfRdVSttKUvFPQIEGzhRZtZKKoJClCTNAdvMiLf36H3l7G9NkJGqdnWO63uP3KE9x73yNsb9+hv7ZEVUsOj0wxoM/s+QkeOneZWr1GUxbUREEiJJ1ijX52DfqSmpwkFU0SUaNVPUKt0kDKBKFD9cwDS8IBHdABvb/IHl6RhpQYDBGClSPFrb0z/GnSfgpbRLDJkSOzPPzwJY5MTrE+s8bWRp+B1vR6GYONPcYP17j8H32CP7zxJyxf22Xjxhbc20eR0xRtGiOXyBdfR6ddKhJEeodW4wy51HTaPVS2QL/aZEdKim5BU0hyVtGyT5JK0rSOpk5n8CLP/+kSSQKT58bRh2ZY3tWsXX2O+x74GGt33oDlFcaaE6QjTfp1mDs0yUfO3o9IBU01A4MOM+M7TE7Nce7B2ywur7O2uIYgZXlxl9deHpD36+xuF6hcIdMEVWgECqkZcgZwHLb6xGEtdASZpZTeEiPAuoaoSLtcQuKgba2p2BXBSgzBCiGDFrMEGsMvQlNOV6XxQMa7QlhAF7tVaIa0p9FaCm5HCheYWtLkx1KQs2SUoLRbi2WwFFdCdm05Dkph3J5cPQXtvo9AWqkjhDb8cyPQb4KTve62VAE56qHXJMvIBciwy6uMI0NAmEsH/gPGdhfGCQOGgLAGXw/DC0yG10F4wvfJrEYbwyAkGmWKWbs+6GBx0EM8G57V4PoSCY2YNeim1FU39tYXrX0Mh+d3xH899AzX/1iWEa6SsAjxNFII4zJVElDjF1c8mfjsV6792CATBPgy33FzPdyujr6Pnu+E4tJeLTXn4o+G3YWCUBMLAP6akmA3zLkwh27u/ip6jyskK5Tuo9QOc2NHOXfsOPVU83axzOKNJXZ3+jzz+FOce/BBDp88RqpTthb26OevkSRzNGUVXSyjZQXEOLQ30fU9UlEwN5fQ2Wmzs7HF+PgoSTqLkgqp1kDvIXQHqQukSBHMcnPzL1i4tkdWaGbmjnL88Hn2tnu0GgKV1djd2CBpd2mNtBgdT9mem+a+M/czNzFP1h+g8zZd1aWgg04HrHavMJJqciYQjKPFFFmeMj16lKovoX0gFBzQAR3Q+4ti9wrj+uJcG9z3EIQDbdNsCo8bA6YT1n0hIa2kTE2Nce6eEzxw+R7WtzY4feQQKxUodgfsrXdpr3RZra8wNbnL2JkJekvbbC0vkRVvIuUULVkHvYioTSEGbXS3B7UOSVpw5HDK+lKH3uwGsl5HJpMooUiKNUSyRaJ6SF1DUCNXo9zc+DoLb/VgtEpzbJpECfL2Os26RGU1dlZXaPUzGuOCylSDpDXG2RMXmW5O0+51yAcdVFEg6gnTxyZIDu1w+nyVtTsVdtqKxnjK5m6bXq+g1+mZigoK7w/tC8ZpwydnhRFoDNQPmlARUJqZAOECimMAFUtnAYkEDGDnawh8+a9FED+8hj4CjkbLKbz70n5sISLN+H4tatQ5AvAePv/cwikLN/7KSFAQrv9qCKjZb9wYPPBWGiW0Bb5uvFbIugvADm05dxllNeglHa3vmNZBqDNdD+41bhAq0vrGgNxlRsLhUqehH+Kfez6CYAUp9TUERe/nfCyMubHuB4nDzToga/i1nzSULDLeNQwRYgXctNrOx7EtblzOzcq4l8n9z/Azbj9xgPydxivCc73QF83FsOA3/DTXiI9DEMHNUpUlBs+b4V441rl7hC5/6d6pOloP4esoDsONL+pH2OJ339duHQnPiLA2w176zvSeFEGLBRxNRipzppsnOH/0LJfOneWee45x/MgUCfDaN9b5d7/951SqVU5eOE1aVWztfQ30OhUxRp7fRo62qI6dRLe7qCxD0ubCyQrt1YzVO20SFFPJEfIGdPMbSLVJRfdIVGYrPlb51hsLtPOC6lSTo/NnOds6w+jmAifPXeCNF55jb7dDrVmlMVlBTElap0/zoblHGeQ5O+0Om1urLG1c48bGq3T0MjvZCq1km1qyQKGvs927xcLmdZTK/djL3DigAzqgA3rvyRUzcucikVY1PmOtlR7nr+vSlcZ+ug78pmmF0fFRjh45xOHZQyxd2+ae+ZNcOHuKM2eOMHdoHHJ47dlNvvgvv0LzcJPGVIt+cYedzpMIvUFFTpJlV6nOnCStTKE7PXQ+IKXN5XMNFt7ssrvdpi5qjFXmyBoFnfw6id6movpIlaEV9AeSb11ZoI+mOTfCZP0QrZ02jd0FDh8/xavffJbeoKA13qAyKUnmmkyeOsd9hx5hp7fH9k6b9c1F7mxdY7l7nb7YYCdbZqre456To8zN15g82mDm9CS1RoJMTWVbAQEECcuvJDG55cExO+K12AdsShV/KYML5/oTMujg5yGm8okT8tALge2XiNoYAqg2eNn52ZcznwTNtSpM9drCFgkrk476HXroSrB58O40qH6sOkojKfZVGPaVq+11TvMq/TOjYmRGxY2DnU7jfDeKrQmRrOX7JEQsGMSaWiD+CEogzrGstF9wMJ/SxhvQ6QAAIABJREFUfitbGkK/yvE+sUAWro/3pRu2sySE7oSG3byUuy329z16kgOkps+y/KVrE7zPvxM6QlXsIFQ5hYJ3tSEUxYutY248pqqw8nsrDrqOLUKl3uu7jOkdtOkas+9MkPiQcHO3e7xVJComSXkpCGEKSYb5228t1JYfw0X+wnocWhND6y0er1JBsC0rFd6Z3uOAZEEiGgjRIhE1GtV55ifrHJ46xmP3nuN//79+n147o5/nfOPJJxmfGufcsUlu3nqR6cuPUKCQyTSSPsg9dDog2VmD5gInjzZ5+s8F67U+udpjVy+RT8Mg6SGR1GoDCgFZZ52k+VVe+PICaSJ44Psucfxyk9Xtl/nGt5/i2OjLNAcaWkdoHhln4vQ00/PnmEofYlo0ePHON2mmNQbZGrtqlWRUUogdzk9MUE1yEi1pZ3us72yytpZz/7GPD5nj7qZBOaADOqADem/Ia4y1A3qaJJE2gNFV6RSlg84BPgEkUlBYv2BlNbuJTOh3M5YWtxgMKuiiQaNynNPzx7l88j4W773B7/z+nzHoKPo6Z/Wl29QbVXbUBrdvv8LEucsUQiPTI0bjmwoUHZKdAupNzp4c5UufX6P9kT59tcWe7JJNQV92SbWg3spAS/LeTTrdr/Pin92h2ZR8/Mce5v5jJ3n71Wtcf+0qM0uLtHKFqJ6keWqEqVNzTE6cZyq9yKRKee7Ot5luTrFbrJFVu9QakiTtcH58hCQFmaZUq3so0WUv69PpZSbFqdZRTIZ1f7BZWTR4MOt8nYOVJvK593A9HOyuijCoENyJnT8HLiPQ7lqKJpqgwsRqYr1eHuf+4NrWkZZXRAAb7cbghMKo+Jbtgy59EM48F8RaAjuRltdpQVWkXZZJAgXevSJWOboT1RVlExbUufXs2lUePAYOO2E47mJRqBDIazN1hXVfBmrSpl8VQpaCzl0FaOej7y0F+yw8RG2HlsuCWJhHETLdRveG6TUCQCg8p6KUtyK+0a5Pt5djAc59H68vp7oO2XScgGCeZapEu3SvXu4twR3jHhdWRUz7Kh5bnriYF595yAsVZq/I2Ld+iCnv5AblrA9uPKa9csYlbx3QQQvvW/LxK3G75f4l0VidsOPZ6AukBdaq2MXKS4zuHht0fZc1E+9xx9kQYxQE8HdD722FZFXQyzboFG02964wWpsEYKOnWC8O8Yu//PN0Fl/iz75xhdffWKOve+zlSzz1ZwUPnPs8svIZqskRoIdSq+jeAKo1VG+J1tgMDx1eo9bKKHqbjOtFKg04mmTUBWSDDN2VZHmPm+tXqScJP/xf/jA62eK5Z77OxtubnLkwyvbGDqqoceKi5MjpU8xOPsRM9TIzssY//9f/hHvvPcFgqs7oaJ3j1SP0xTY1qaiqjKbuc2Nrhxdu7vDWnZyzc5LuoE01rR6IAwd0QAf0vqU4+BIhyPMCKWPtVTk/d1Eo70fsNHdpJSGRApkIQDE3N8VHHr2PtFXhR37uMzTFGO18jfV+D2bu4Zd+eYps7Q2+8NSrXHl9i9qEYGdzj289+SoXT/4hsvJZauk5YAeVJTDIoCZQ/SVGJ47yXcduMy4VcnCLMbFHra44JjNSocl7GVon7PY3ubV2lVY14cf+3k/Q793k337hj6jJnJnTNXa3d9Cqzpn7Eo6cucRs62FmKyeh3eY3/+Q3uHz5BHf0beYOjZFW62jZpSYVjWJAiz2+vbrMU69vsL2nOHq8ye35UTaX9+j3Bgake22nQuI02QwB3LI2OPDcqAh1EfkrC5d6VHgQobSmsOlnk0R6UKl1DEyjFJEWwCoTmFDWohukZ0GM70noodf8B591h3SFF1ywoN4ED2sHbPZp0YX/4bTQ5vkFRV541jiNemJTXXqYth9hD7moBCAaBGAdgS7n2+8E4wCiAz8gOFzEwc9J+Dq6NgbXymbhiQEnCpQNHXbjMprqSIPs+enGadxdtFJhJkQYnV9FImRKKrsTDQFkCxpd35zfvVk2ct99sVLAu9rYDFBKFeX2rYbcsgDAC8RODIlBv+ePcFPjsl0Fq4BpI8RheCFVyQCQtUYmibc2eEFR2FSphXu/2T3opBcZBCmEQPqEMuW1Fdanefd5odUK/M5dLQbsseARBOLQXnkdRvMlg4XIByL7JVS2iDiLRiyyun6+a6nA0ntrOZAJ9eo0/XyV3cEiWdKnLivM18cYr83T0SmjRx/jwd4X+fDRN+h1l7izt8WtN7Z49vErfPSTD5HrPSQdZKtOevyztJ/6PLUHajBecOhche52h9XXVsiPaB48BTWbak2JhL5o0tGH2G2c4+hDb1Nc+Utefq3PWr8gHU+5tagoBoKPfGSMD188yszYJ8j1JRZWVvjyV/4Jn/zBT9EdXCeTa2xlil2VMys3qcgBapDxcrvLEzc63FzNaRRjVAYnaNZG7IvcbuVhc9cBHdABHdB7SAZKBtBRzvih/aGdOLBqDx1fAdRra512FvI859bbSzz1xLeYP9xioFYYP3SByTRlRE3TVjVWdmf54hNX+dB9H+GTx26wpbZYWN7mxkqHZ594mY996mGyokbKFunMWXIl6bzxOLVLdRgvOHZ/nf7WLvm1XSq1nAdOSKq2mnMhUnp6lB1xjMH4cY58aJ3sha/x9PNdujVNc7xGT4HUCR9+ZIyPXj7GeOOHWO+M8dLLL7B89Um++3s+Rqd/hUp1l5WBYrToMpl2SEVGPhjw3F6XL722w9aWQu0p+otd1m9vIFA0W1WKXJNlmgKnTXUuD+XCV4aHQRPv5sHUnIhAI6Yonfs+gFodpd10Ws5Iy+3ASmJAkpvr4H/vQFQUYCydNj4KtvWWjhjkCLQH8ME1yLkyiCig2QAZV127fAr6MWDPSMcXOXxeOlQc2kxE1CetS2DWfSwtoCy54di16oGdTS/rrpA2T6sD7kq7+GwLHkW0GUqCnku+UuZTSTPsZlSF302fI8DrZspmDVOugJ4DfiXwJxhmawxUhV8btjfCxU0EIcTtc/+HvVGAtyCF3LVO2LKPjhQHKgrydetTF5EQ4WMw9/ffAV1nkQH3njHrxlsSNGgRgWdhsqc50SaR0teJKAs5NuZDWf4ThONQ0diOQxsXKJO1KwhNaZKQF3kpFSqlJwTyFlncGtIRa3Tp/jRJUVqFtRPJBX5NxhYmP5/4OiPDigYn1Khhwfwu9B4IB3YlCxBaIkWFejrLYHCblWKJ0do4rXSUJF9hppIiqxNUJy/RGD1H/86L5Jtf43s/NMb1l7a4dOHPqc98mFp1EilAykVq4w0kObroQkWT1LTR5A8E5+YEolCQAaJCbfQRlPhxrj//P/HIjGREVnjs8odJmw/x9lbCbz/+O5w+3OKxS59lfuxhltZvcP2tp9i80+PDj9R5a+PLjLf6jImCVlKlIiSjaodee5eXdzVPv91hNU+hXmVEjHNk+lTEhgOR4IAO6IDefyRiP9kITHjsI6J/ZUXW/raERCvjf76zvc1bV9/i2afrHLtvlrRRR/YEjbRJo97gRLPgb/7wD3A1y3h5MWPQ7nCoWeXSmODmy9vcf/mrpBMfR6Y1ErGBrG5RG6khdY4u2lAXpFpR0zCu4PQhAbmGTCGqNb7xTM711evMnVrg0VnJSFLhkQe/h0rjIzx55XX+8s0nOHN0jI9d/DSzjce4uvBVrr6yglADLlzWXNv4MhMjfSalopXWaYqMer5Lp9vmyp7ia9c7bIsKop6idzO6e5nVKEKhHdArjH7da0R1AJgeqJUtN04zasBd4edgH0wWAZzEQM3Mj/Zz4cF7DFBLbhC69JkLmPUwOwZgUT5TmSRGI2v771Kf4mwKTsscgWTflB8oTq1f1rxH/dTWMhK7UDjtt/OtL4pQLMyBWXRpyZo+O+uLNq5Qji+hV46P5Tu9SBFps52ow9CeMU3EjlXDQkGZF85lxVkx4nkK2nUcfg59dTh9SCMdP8a5DYV6Z7EgoL22O+oVEBUsEy5uYbi4lkAOR7DqaI1G7w0vUMZCkQ4Cpc9cJKW/38UcOMa6+XICjY7+j12OclvvIgjJjisxub5H8RDYVavLLkPxvtK4uQ+xPvFy1doGHcdPdQKxHkpHGj/FXGhc0ER45rBFQUd8C6N3zw97yfEUIYbm9jvTe5ytCAxjm7Tbe+zmK2yxyGhSZ6w+TtEcgWSB4+PH0WKMSvU+KjVFtv41tgY5b71yg1P31UimTiIrEiE6pMcPUawvghiQ1jQirSNFwcb1Nh8+0kCqlKJbkJHQZ5NMf5OLM5rDMw9Rq5ykMdYgrZ1gdu8oA11jeqKCbpzgmy+/RCV/jYbeRo3X2EugXqwwKSHPBegKvb7m5tI2K1rzdp5wu18gqymjSYNJMcl4c9xsMsf1AwHhgA7ogN53FEGOqPKp00YTabuGgZ491/yrzfw0B3mWDdje3uKt67cYO5WwsHKD6iCnDtSSFFmpceToEc4l91Dccy8iP0naf4v+ynNs9QuuvnSNMw+NkI6cRsgdRK0gnZ+mWF9GJw2qIwm1aoOsPSDfzPjQXB2dp6h2xiCpMDotOFVTnDxUZW7qAWqVUzQnayTpWWTtGEdmzzE5XiWvH+fJb36d0corjNcG5GlKJxE01CpTSUJ/IGnoGutbPVY326wpxa1CsJwV1FtVZAfyQYHKCpJK4t0cXH7+wCwXEBq5VVjk4bWI0ggVsabeuQy5e2NtpAOjsQViWKHsfhgcqb2g4doDVxcg3BYAism540Ciz+ZirzFVdCMw679TXtvqA0uj9RL6F4Cdc78IX7lA1v1A2oFlbxmwmZPK4D0AJo/3Iz5ZJHdXACXc1BAAdtTl8HtsibAd0qX7on74jgcW+FbdXotJhxXimefiCby0ELmcxdfGn0Ugc9hP3VkUyo+MsuXYdRvzIR6ftsKJWYsiEolKo9vHw7iv3g2nPOxQ38CtAQvO43gYs/YcULd1CWJrSczHeCwEa9ndxu92TMxD74pkex8Lyp4PkYXBr8dIgx8LrrYjpbEJWV4Z3iVv6FPAp7wVfqC4RR7m1Q3lXdB7G3PgGSnJsw7ZoEtnsMkgqdKsTNDtrFBwk8NTGpWmTLZGOTz5AK99+2XmLihu3VinXn8DeS5jbGaaVCYwWYe32uiWpF6RFLUqRT9jsKG4fHkEkYPKNCQpSt1GZ0tcPjEBo0eQch6VL1DkbzLZavCjj3warVOu9DZ5/uZvcFguc3Z+jJG5hDc2Vjg3BXWds9CBQd6jvVvw+p02K7Uau4BOBBOVhFFVZUw0GWuNl8xAB3RAB3RA7zuKDk2s9sxn58CCmwjA2ZvsYegwiwObDgFqNIo8z9nZ3QH67O6sUKHP5m4bMsXozCTVsU1OHWowej6lUjnP5lqFG+oWM1py7c1VRsZeZu4eaDYlSTWF0Spca8N4SrOektSgv50j2nBqsonONGqQQ73CmeMJFVFlanQKWodJ5DxF9gaFfoVz8/dx4cinybXkze4GT139Eh+ZFRyZn6KT5iy3tzg5rqmrjIU9kEWPxbUeNzYHrFerbKMRFUErTUErsoGiyAorEOAP5xhPxEpep5k338c+6MIH3Tonh1jb74B9KTDTATMhLdSP9JJ2ghzmca5Jwubpd+BCSol2ftm+v8NA3bXh2lbBqOTBabhAa20KsXmQG8cqWA1stAyH/bLDwx2+CVpvsMDc+uPHAoZ3q/KpdnVJpV4CygTsFECl8OPwAsrQ907gKLUbEI57UDwEe70opSUNwnUI9i1NAiJ+RLktQn+ESyvrBjQ0tnjcZQAthgBkAP9uDD7YPeJ9yFIWrfEhQbQ0xmj8JbA7rGwQ4fPy+8YxSvs9gP+3D2uX8bDWpf5EQ4ueEe4If4nQH+wgNUYg0/j3ZIln5QVF7IIWjy1eGULgXdcCD6zr11Cfy/wwD/P/e0E7vmLIxfA70HsnHPgNZEyl9XqKqDbo5BmVdITKyCxbW0+z1+5B9wYTrZSR1jzjjcMcfux+9vJZ/v3vPMO1V3aQ6QK1EUXSHEH31pBJBUWVhlD0ewN0b8CR+RpFUiMZ9JEkNGRKXdfQOoVUQP4aSj/FoNtD/7/svXmQLMl93/fJzKrqu+eeeffbd+yNxWJ3gQVALEiAB0BaIEEfMiVeJk3SsnkoyHDYphUO6x+FZMsKS46QQpZCYoQtkZKsCIECBV4iiJM4uMBiL+wC+3bffb+5u3u6u45M/5GVWVn9ZglQMvXWEfOLfTsz3VVZeVXV9/s7hSJuvkTU/IsIcZgHmy3mjra5djEn2Rnx8LEG/e0hedLjxq7h4lbBzR3YTWHabZEridxLiZMGC3GbBd2gG8WsLK4RRzGzhssDOZADOZC3ihiM1/IaY9NFRpH0LywH/J1PvM1yAs5i4JSeodLL5u23LyulDEkCjSgljwybmzlymnFsIWNre4Mk+y0WuhHtzmkWlrqcWXs7g/EtPvnrX+TVZzdJ+peIj68hI4OZbiKjhIIGXZExGUxoCU1nuYmWCWY6RUhJV0a0aSBEDDKD/BUK8zkmowkyfpak+Qwq+R4iscyDzQbd+/q8dvE27ZUxc31JJx2TJR2u7eRc2Mi4tQUjCWm3SSEl8V6KSmIWVINMjBmkOZOdlPHuBIHEmAKHJ/w8Ow127eOq8mrll1IFeQvhAsFD8GJw7gd23qUHb+5/sgSw2hE1Y32opZABSMRf1waAzrrZOL/7IJ5A1gGbVKVWN9TWlwjVjSHQgXpwBWC0rvtCeyJRAs+aVrsiQB4Uu81G5V9umwkJlQNdpjyyIjl4ImZw1CWYZE86ggUs+yRqx1WdEcymEqq5e5SHWFckXWm8/dgEspy32WKEQtiYB0e4vOHAnScEhdEgyzb8GKgAKvVA4Xpa1PoylAP1Abf19XFDCkiGr91Q7XF/LR/L4tyjHKEo928ZMKyNLoNxbdxHmK3K963sl107WZE/rWvE03Lucs6lLJ9N5Z6qZVazRyupPCl3BCskpD5ORswEFgsb2O9jRMrzCq290oRgz7k95sYYaAv8fnHr5Ul3QCrcKc4a4Xiv72+58KZ0C/vTiNiXmfuB2p39sY99jI9+9KN/qobvlvp1vNnQFOyO7vDi+c+zWbzIsNhgojOQmu7kDq/8wWU2NyaMhxknjije/74u73r/Gs3Ww2ixyPOf+zTD67dYWIi5/4lFGi2DSFbJr34d0RJMtzOmOyntM22G45SlfgRpgREKZAfUPKrfgd3raKaI2GCEveGUilHxIUT818j1G3zt6h+S7r3O2V7BWGb8+jnJIpJbV2Cv2WDcV2ynKWKScXh+jreffhvprmGuOM7DC+/l9LH7iVWMkMqblA7owYEcyIHca7l48SKnT58GoNtt2VSRwcveuayE7ifO9G0zFdl2hBSoSKKUQAn7wo2SiEYzptVSzM0nnHxoiVOPL3Dfo0sUERgVEaOJBxuc++wNNjem7A1z3vl4wnveO8fDjx8maZyhEEt86bd/k2J7xImzPY6c6RI3JCJZIr/4NeRCi8GlESIRRGsJkzRlsRfDNMOoBog+IukjWxFmeAtDikiMLVAkJFK1UMlxRPRXyfULfOrcxzkUbbLcylnPcj5+UbAsFG98c4/80DyjRDLKMqK0YLXf4eyxEwzXNS9+5hxvfO0aW9dHFGPN3m5KOi1KkCec4tB7adig0hK8l9llfHBj6bcfutg49wX3BrHApwJDYdBv5Tbh/rS+zDUXDXeY14i7VkNg7b4rwUz5WVip2f3iLBlhLQQbj1BYd6WgXz4zDhaY+3Owrk3ep1spSx7Kf64PLjjauW4hbPCq04aH8EbMgCoRjMmUcy3c3yas41ARr5pFJNAkuznw0+5IRs3CVn/XV+TNnuiu7wO+y2UI09k6AOldVEy5V2asEu66VfP2HKkcyTeeRFaabuMBfThhbq9YgDmzJ4yZCT62aXiVlH4O3Pau+cub+lqE/a7muyJ04R70ViEHrAOCW+jCBh0Hx1bXrIC4A+muI9qnDCsDnMsxFUXhyYMj5dW62bkLXd+kq1niF2tGQgtNOe+1wOfqRi3HVt1Ls+NxY6pZfdxPt04Iv3+qLWWzz43HE9fGviD0nsccaKNZ3z7PeHqdm4Mh18djNre3GV+4xt6tCacfn+fxxzokoxH5MOX5FwZ8/GN3+M/e9RqPfGiVM29b4VZvienOgNHOmLh5GFmsI5db3Lw5Im7GzK112dmd0tgS0BCgFOwWGDNGL0bkWxMaDYUkQssJQto0c2YyxYgroP42igc5MzfiK5e2+Zv/aoPtFDYH0G7HZK2YaLVPQ3SZixPuP32KB+YW2BrAYGPC9u55snXD8UMniVVyr6f8QA7kQA7kTUUKGbx0wpd0XRxICEGUlNZiYItp4bXLQhiQgqQdc+aBOebmFJfXB+yKFpM7m0yvbZDtTDn5WI+nn+wiNgZMJwW/9zvrfPyf3+D73/Eyj354jUffd5RLL94gMzl7w4Je0kcW64i1HpeuDFk+2kMqwXiQkgwlogFGKcz6BNONMBLYlSRJhKBAizFKGSjApClGpAj1t5A8wtuXx/zup2/z3DeG7E5hewSddsy4LWk0E5qdFqvtDqeOrnK6N8erV6+xdadgYa7D0aPLTLdz1rcGZQEip9WvtIVARRQ8mA3TY1rwknsg77KuuEKa5Rr55kKXF7z2sCgKX4TNtiMRQteAWR261tdcB77MUkryPAeXPUZYVyAPpgIQo1waSWPQ2qYidUQovFZNzek0rqWFojrMeKLkgFKoya+8U0qVLCWwwoJT/HceD1dadEeAa9rVysXKESoHzGetKZVUZEFQVtLdx+2jZl4w7h6ZWbsS0M3gdD9FISi8m3bg94UDuh5QB+4qsyVwvVY+0PjXrr1PNp46iHdWq7qSOuybt4CF2n83n+EYQ8uNJ1zB1BGSO3uQzeZV4NZBOktCeZOpWYsDNojeW95czEA5vx6QS2eNkbX6C45AGreGwdK6v/0e20ecFUYIgjiiwLUvIEpunPXng51cf1w418EWCzalv97+zKUu9z7mwBTICG7tXuH8hfPcvL7J3m5KZy7m53/xFA+sPW7rAugNjF4nS7cZ7mwyur3Oa8/ucPS+grl2zOYk5qWvjXj0yU3mjzW48dwul18fs3Jfj6WzisYXRrQeOoTZ3kHEBtFugFSY0ZSoqxiOod2dR5gtyMdAgVBlbmWuYsQuW3c2GG6N6LVgEkG7rXj6Ox6kaBxhSAtlMk4Uu6S3NvjXv3WORhwjOl3m5g5xqB/RiJu1G+BPa+Y5kAM5kAP5sxb7XHYaMvfSc2++QMtYogCXb96dbdO5G4hkSRYskIxjQbsdETcUmcy5eWXI1o2bZHnBqZMd/vMff5Azq4+RqAShr6P1JtPxNqOdLfbWt3j18xvc93DB6mrE9cs5mxsDzjwimDuUcPVL25w/N6XzXV3m8wL9xoj4pMJsKkhALXXIc2CSIppNhmPo9pYQxS3QKZAjpAOdV0AMuHXlBnoyodsypDF0+oqn3nOEa9MmQ9nnaCQ5qjOmV+7wr792DqUK6M4DkqkWTEaFzchHgQvMrLTXFgBoU6Z0LN/sUopKE+mAr9OSmnoWIwcAHWj32tOy0JZzKZAh0MA1HYJUfB8qLTq140NXFFnmgncaSSOCPpsKtDsLhig18VZRW0N3tXMqnmOBmcskBGX7oq4h9Ud7zXo1RkkQ1B28ZrVPoSnK9ioQ7CwR3jphjLd0eDcqr00vx64ri4LLa+Pdc8o1rUhLSA1CDbO1XFV/VuNxVjr8/Li9UWrQdUUOq/GGoLK0VoXzQX0MzmojhHPL0X5pXMIBl8N/Nkg87GfYXtkqBlOSE+kBeIGt96CNsQSSKn2skgpnSXL7ArdcAYGoxX6UzyKJLONKjDNV2B+IquDafkDdcYKy+KCzhLggZe/KYwIXSr8MLh6lXB/nImfst9W9Uu19b+2irJGA8evs78vyPgyrR99tBQn2h/DTVJFHql3mntmuP9+O/AckBzX+CBhbBC0dIWWLtYWH+ObrN2k0htz3yBwffvosj548SS9JwNzE6JFtpdtirr/AeAGmaxkNMtLc0OlFrJ1qMb5xh1avjX5jyn3Hm8yfbBA1Fb3HF1BzEaJxBiN2EK0IogRVSETcpG1OY9JXbCEN10djoAGYAVBQ5GOyTKObEUffvsSfP/IrfGH6Cfa21okyjRqnXLw1RLckO9OUdm44vrbE2848yVNnn7G5et9UD3cgB3IgB3LvxWmnpLSp+ArvnhC6UYTpFu13oe6q0rw5n1lNoyHo9RU7wzFRDOluSrNneN+DJ3j/Ox7k/uNH6SYJRl8BMwahMJ0OC/OCybJiciijJTJMZlhYa5BNMiY312m2WujXUh55osv8vKJhIpLmAqIbIVqHgE1kt4UwEaAQUQelj1NkLyELUaaALEFIYkAPQGjyLGVaGKLFBgvzLTa+krDZmiff3mFRblLs5Fwd5qSRZDfNaAL9ecGVb97h6jfWGQ+ndp6EA09ufqq5quZoRl8UqrdxvvrV/DqyUdMMlvPutPchYagOqH71WYP8V9VK+mw/Zf+8ZjTQ+lfAtdKQVu43JSDxx1da17pbTwWkfcpU25gdrbFEJczzbudUEVaSDvtTD+T13xK67pTT6nBhCapCFw17jtHGWptwGu6K/DiL2ez73FZTnrm+cHA5WLt9LDd1a44pDQgzJE4GAB8dnFyeV85l1U83wfW5ciSpvkXMPr/hx+racrdLeLIjDc5jpxqPwFDGt0iJKj+3Fqd6PEGhg0J91F3HVFmQLKwy7fa4Nhp0lZo2TKDg+l+bbzeeStVvyayz0pUDqQiCq/psK5h7Ml3bQa5dWSMv/vrBQpnSdFPFFITHh+Suvhb7WROEoL7nHZFy9KC2Fctr8a3lnlgOwr4KIIma9PtLrK7Oc+SI4NHTSzz98Gki0QVzFZ1ewORDMAVaGAw5vT4ksaDYE4iRpiUVrV6L3a+vk53PmTveov8cfB72AAAgAElEQVRgj8Z8E2Ei1MkmmATyFlr2EPEqMjH2RSRXkAiyaQ7T3FbUiCWgMbkGlYJIkC1F61CXlV6X9n1Pc/nCJq9fv4WY7DAXa+Jcs7ueI+faLB5dph+1OHPiQR46/jaOr5yqbZgDo8GBHMiBvCVFVMBES9BF5VZSaZxFeLgHh1ABQ+M0hyJ0MzKk04xYJiwtJ5y97xjf8chZHj1xkkg0MOY6ZvoGppgAxoIfWdDrC+JYUowEIi/ozzXJExhf2iK7kLH4QJfFh+ZRccP2cVGASdBZC6NOIpKTKHEbzBDkItII0mmGmRSIBhYIGMrn/RRkgurF9I7FjFhkSyyxvfM651/YpJnu0WgJdncLxiMDnQbtlTYdBGaasXNjwO7tIfk086/hEu/iAgc96C9/agcQEKX7jAOrDgCI2px7F4gS9DqioI2ufe6B0sxL1/sjo2EGOEF4bXMXaKmLAyCVWxTYoEzh1Jhv8rJzV5wlMDXQKWY+x9FSvPZVEO7NelsVCQgAthQ2RmMGv1djdVYxp4UOyEPJKLzPOnUQ59c1HJcfqI9UqKBbDUDW+xNaAEKtvx+rKYORPYmsD3zWwuKvJGp/VeTBXcFdV+uZ9Xf3tqjW1hOQ2bgISi168LwoiZ67fr3dytJAsGXEzP6d7Y+fJ+PWqg58fZvBfDrrUMhy7f0m8a565VjdIdoRX0+oZEUMXN+C+fMWJhNYljxp9BvK970ar1sP4ee2vnbVGKr5qeah/mTGk3XfSGBV+VZyj9yKSoYpJXHcoJEltBoxZ890OLHU5YG1FWIBhtugr6DTG5CP0Lqg0JAZjdSS6Z5Gk5BLEFrTKGBXKrids/yBFVSrj8kkZpJjRgY5v0Z+6yaaMxQcRnY0jdUJRs8zHX+NqBhishzi6uY34wIRGYgSWguHWVAJO7sNBptn+LV/9XfoJAVrKw2yuRjiCDHXQagmS2vLHOoucfbYQxyaP4rzWYO7H4YHciAHciBvFXHZQgpttXHOF1nU3zIYYzV+SoXOwC4DSQWypCozjmhBNtVIrWk1FA880Oe73/YwR+dXiEWOYRv0FUx2E4oputBk2mbYEQ1JulegZZNcaRJjkEYwNhJxO2fl+w8hRB8zKTDTAmNiZHeF4vpNjHqU6e1DxMuCqN/E5Anp9AUiPcZkBSSULjCFJQuxAdGku3qcuTjl1nqHjYtzDPLnMC9uc+xIi9TEFFGE7iikSujON5lXMVdf3iIbZZjClKlAy/dIOW1GVz7KpmZZqYNcIfD+4eC0pKL03w/8sXFOFRWY96AV52Ns16fC2wHqcX0JtI4YbPXd/TZHAJIqUBkG/pq7QK4nL28iInDDMbU0rqGPOB45iXDOSqIjRQXYTDlmd1VHXGe1/BXchruAWO0VXQK9MjuXa0fAPuOqA9HwAD8vM+5RVXBqHbjZe0daTbkjOCFnKjFFoQtvJXCdCn3Tw2uLEBh6bXb4/cx+IDgvwG3U9lvAAWv7QJZxAkFcgqnGKYWsBa1ba4e9tq+pEsyqc/cKwbcbe0WWwykPAfQ+v5fZiMIxar9s1X6xRdlc8PdMLEzQZhh/4feeqebMz2t5nAvm90TOkfZweQj2kp+Mav9UBLLal85NycyMTci71/VPkntCDrxZjdIcogtWu4dY7jXpNqdEcoQxm2AmGKbIRoRoJUhTIAuDyHLGGwNo9zA02DOGYjwlTtdpHWoyNycRhcYUCjOZkl3bYPSaoPeh9zJ441XyK9fYeO6PiI4/yH2//Cvo9Le4dvM2hxuGZD5CxIDJoRCIiYF+EyGPsdT9fi5vSJ5/9vd48Qv/B42+4fCDbY6vtlmQDWLa5O05hEy48Nomh+Mj9JtLdFp9n93h27LnHMiBHMiB3CMRlKkQa1q0UINnP3cgVargxYugyj1eirFuKpGy/5TR6O0pz3zoJKv9GCU2MGYAZgJMkc0EIUFqjSgK8mnGZGsE7S7aNBkUOe3hHq0ipX2kxVxPwDjDtGKK4RaTCwOywQKdpx9n8MbL5JeucOOzH2P1R36Wle/7DtLpH3D9zm2ONSFebNjUpkZDDiIViH4T5H0cnvsRPvXy5/jyF/6QWxdv0OrHHH2oy6m1Dt08olAN8rhJUSguvrFDQxmGGxlFarV1WgPaZnNRUtp89sL4l3ee61CvWuFCowFZAkPtJ9FQarwD1wcH9lwRNeG1oMaD8rByrS/cpINWQ60tdWBTgZXKuoExvq+lq7hf/5DsVFJpV0MjhItZmQVoTnMaAlbbbad5DfdkpTE1pUuKNgZhLGl18RBVNiPnDiQpE3IFK1DdAU7j6tyrXD9q98HdpoegX4EWvDzZuZZYY4S9QSpga/tRIxWidLdxjZRDF259Z8SfK1wDIbCsnNI8BQpJiR/fDAkKAGh9DStQqnXhyVzdilLOt58bg02MI6rxO3JRUtyQX4TFzVTZjizjm8LYm0IXZafc3qxibIoSiIf1pdy+tm5KVVBxza0stO5QAXcnLtWvm3AhbMpY176fq5lrhpu9Gqed+LqVUdfONeFJwhIbd8/XkxLg57X27JaiItjsv39m5S2QrUhwZeuryMZFDvV2aCi3fVsYpiCsj6jNA5wTKYmMIWnOMR7sMRp3kXHBoEh543zKE+9eIFmZQ5+7jpjPMc0V1rOzfPLzN5h/9v/he3/pB/iHH/sUj00mPHnrZbZ+9ce51Zry6P/6CS78y59k5cmUVtugxymqnyDX2hA9COLnuDT8DH/84u/ztd++Tt6KWT3VYq6TIEWDcXqcUbrAeLwJ6Zh5kfCeh76X46v304jb+NQA/jl0wBIO5EAO5K0opkzJJ9DaZiCJoupF7dwKXDYiY6qaBrWXGBYTZLlGZQV745xJrjn7+CJnz/ZY7DZRYgQkQGKf9yhE1AO9i1QgI4FKoNFZZDzYY2fUp9kZcfXGkGKv4OHH+sRLPYpXLiOOFmSmz2u3mrzy2QGLX/g4H/xvvo+/9g8+zo8fbtP61K9z6zO/xvDQIg/8D7/G6//khzn5A3OIvRQwqF4DudKB+GHgL/PK9t/l1a/8MTe/toWYa7B0X5P5dow2Ca9eFQgV0e0pogIWRYtbl8ZcPrfO1p0B00leAicDukCU/sVOw6/LFJ4IgfS49e6INClEpbksQVCVj944JOEhswOl+1mnw3SIJvjbiLCuRQgqRQUWmQG9DjwFIN9j0hKMVNtJIFyhqPIj63Eyq7UOAVxAJCBoTyB8xhXsvHica3wArXDzZgLwJEIgVdUS2BcnlW2FOfW9gi/sNBVu9387UE0IyQkIAvu+/o3BWpuC5ZVCeuLm4wzCNRJh7Mj+mcU8gQx+dxf0+06YID9/AJBFHViHxMB3MvwkBLmmIj7GkaJwW+jKCmUtY+Vca20teUJ41yYIMhzNYGE/eSJwb5PWMuHuFb/vwMadBB0pgvS4tdkLMny6oGqXati3Fmj6HYn16+Pmm5Ac2F2ha5uuTgyq+y0cXp3shW3Nko5992N5L3vCs8/zYVbuMTkQSKG4b+UZ9rJDGP6ITG8RyxREgTUrdkHkGFNAMaTIJxSFQEYRqrnIKJ0y2Bixe2tENsqZa0WIKEGe7GDiwyCP023nPMkLLD3xM8S8wF/6G99F8ewS5itXkNd+j/lBzI1f/2mOfvgoqjkGPUB2M0SjDWoVeALMx/jDf/NVfv9zV5k0DaofcfSJVZ7p/yecv3iBIhG0+y3iqeTGxk0eWTtDr71IpGI70mADWZnVVhzIgRzIgbwVxICQRFHkNYO2lkGt1q7VbBqDMKCFzaEuAi2XNhBJ66KS54I814wGGc99/jYqzzl7ZIFWkhHJAoFGCAWiBybDyAxdDNFFjjYCISNkc5HBeMj49oCdO2M6saDXihFRgjjTg+ZZZHGIQ83ziPx1snGXyFzhr/xfP4z+xAq8+nnaWy/DrW1u/Iuf5eQPP4IUQ0gkMpLIpAtqDcwTwP/JP/tHX+KFc7tkHUlrWbH69nl2Xku5vZHTaa/RbXUQecqd9TssqQa72xOkkkihkMIgIyiEzZNeFLoEPxIo0NqBjTLFp3HuWLoqNCUo6xcEEx5qHn0tKhGcX/3tvnPt+/OcljQAgU6DGp5jgxzrbj62uFbV35qyWpSFucqL1DTZRnhtaJjG0mnSXR9r/tour34AyA2WiIpgHO4iQkiUrNJC/knaVIfkLFaeyenp5pQQlM0Gz5ZzHaxMZfoJL17NgSVPDkwKP7a7tLjBqdpX3f2TAZ3nWjPcxRjjA72F+7vs6+xl38wiUQFZU6Y5rtKsinB9ZkBoUdzdliWuLojYlBpwWaZQtYOWStmUvcaAq/3g+lK6FTlCVCc6Bhmk7DVU2VorkgGy3GdFWdvAZ7ByhLg8t9Dap7e116y0+AKCPpeT8ea8r9bHEPm5rRBaUFxDhmrd6gRNlATJVPvK3ee4vVvFzbh/Lk3trMvZm8k9IAfmrr+SuEOaL3JtxzDfnnCkD1KkSDIgpyAG5hAiQqih1aagGO2NMCPDzQtj7twqWDq0Qtw5DHKMaHTZ+spNitEO8dwpjvz5Xyb56ieRmaHZPkLxnieZRktM/uW/ZXusOf3uo0RtgxEaUCAUhhbF9evIxU+jVYe3PZRwfTzHly5MaCw1mE8MtyefZ/nUUaa7EePNPSIdcfz+YywuHEEou8HdY1gEAUkHciAHciBvRTGaMkNMoGkOwCQE2l77F8ZAkbuXbPUCs+fboOY8K0inObvbKTevDvnGzTs0GxC3FULmCAogRxODWCyBwRRhFNoIRqMRYqR545URWZHQO7VA3F4BsYds9rj5yXNErQ2aC49w4iOPU3zlXyCylNbKSfIfeDfT7ArjL77MIJYcf/ooUaIptEEQg0zQmaJYv4Ja/BRadXj/031Gseb8TkF3rcFiM+LQqZiFxbdx48IdRju7SKk4cuY4sVbob26hhULGMU2hiKQinU4ZDcc2uBtTVu6FPC/8XNYrHgsKbVOfYqqqre47qerA2q5F8E41oSvI3e/ayr0jADF3qekdoahAtjEGpEZTuZYJXArTQAvv+yRqn1t/5xJUl3UTjABRHleNYYY4aFt12QeEAj7P6qyFxBgPqApjkHfrl+3wHDmZ0YK7Il/207vf0pXrCX4OnebdEmqrna+IiJvOcj2MKZXRorq2W4i6qjfAvME9R508ubbd5/aaNiuQ2ye6CNxTCNo09b0za3EK/egdmAyJZj22RZcB6K5vdY26m7vQQiCltCDdV0u23+V5Xqaxld7KI4RARcp+Hlgl3E8pbVxGzd2o/F4DSikPio3VdlRWClOtqygtoZSAXAiBUMrP3L6uXLhikJXV5a4K5gEhFdTnvNwFaOOUAOG+udtqd/f1q3b935S1aoTx17OF4YJYof1vjZrcQ8uBHaySEbFq0E5W2V3vkjULOmrKUgcQGZDah4oWWK+uBCNgMtVcG0l2d8eIboMojbi5mWGyCbQUIlI0Vj9INjSodkpj/mHMlU8g59+FSN6JTHIGrRtcSCVr89BYbSLEAJMW6JLxyiylkIZ0tEWRZNx3dIXHJx2ujC6zs5Vz+/ltNtIhzeYuzXaHSEWINOZI936Or5wlThJ89HtI6w/kQA7kQN6iUsLH+meBJtLlzbfPtrugBw7taFNmrZECoQ1pqhnupLRbkktvGOZfjlhtKhqHOsy1BFLkYDKfllCIyGpPNYzTgisjyWBnTHutx+3bGRs7KSafIJoKjOSPX9rgwcfmOXJiDbVwGL3eQi48BeqdqPnb3JQ77GjJyrygsdIAs2uDl7XB5AWYlEIUZMNNikbGYw+e4uLwBoPX7jDdyll/fgcxFey0zkNDg84ppoKphrGOiZsNGq2EcTTGZlsU2LoAiqKsdeC0xg5AOE1oBTzsC1xrU8uoMwsW7wKu9f/V3A5qADAArQRAKwR/4ZrbfpoasBTUAXJ1Whi7UL3vQsBZ0/QTBHL6Y+rjqlsmQueLCoA6sOvCv8FpWk2tHWMcMajXFbhrIkMN+gxQr89dsOcDQGnuunvqh7pYhMqtqtK8u/UK/f1ra+5AqABXlwBRZuN1jKs2fxUAxR9T1147YK78fFZA1/3t2xL1NXIxGVUIgKl+ODIR7uPSzUeXFjFlsJnCLIrFB/UKqiBgBEaXwdcUNcLitPfOquMYm6EiDq4YWjnZfndW2ZjK07RBC23JhCczdn0c8XJcrpoD4+Oz3Bz52Jtg7KFVpooJsi24/GLBcpRdDayB1KVaJxD77Tfq62SMtahVJP5byz0gB+4hYF8sUigilSAb8zTNCTZvXkKPbxOdbtBvSRAabVK0FmidkxY5gzRH5oZdHUGimFuJQWXcGe2CGSFEG6ShdWyRaK+gmF5HFDdQjz6N6J+C6Dhm9AWy/BtMlxosPbmATABTgDaYoswkIVN0o0WWJUCPhd4xHjkZsbk3xzdev8DtOwP2rk3QkxGdlTbtxTZR0aCVLXMjuUm2MOXs4Udpxk1AUV/iA6JwIAdyIG9N2c8NxX1uHGAyNt2zEwcenAYXypzv2mrT8kyzN8oY7Qiu5TmLa4pvNhVRniKPtuk0JYIcXWoic50zyTPGWQG5ZlfHqKZiuZMwmeRETMDsgWhZY+9aglxWiGidyThjs7/G2d4ZEMcpdj/FRNyAY20WnlhAxgZMjtCGIhfYopdgGk2yzFqqDy2e4qn7l8Fc4fyVa2zcHjG8nKHTIfP3zRHFCpOCMSMKldCZj9huCKQ0ZEVhXWwcQFGVFt66J4jyd1kWPtM+e5GUNr9+6NrsUZnDXjVNrjvO1FGGJwYVQJzhBZV+3COS+j6Y1VKH+6Pm1lFrkwqoOfBfHhLmod/fXUYE43JaWEoAHO6vcHLq5AXqwaz7SwiPKw2127mmvE5oPwiohv3PAf1gDh1w98e4z+sN3PV3BQirn8ItuakOcvUuLLGqHyzKTtmaENXc+ul1CxM0Gs69mzMXf1ARzXo7jqr4uBTqQe/BFHmLgbM81n/aiVYIhHRAF1+LwrlcWe+LgkjV96KUZXGzMn7HVUDWzoJQEm83Xmeh8Br8oC07jdUzTiCCuTGl9r0qVhbitzqxDb6bsbC4Y0PyVc1neP6sBP2q3TOhxSKY+rIdM7PJ7FoEe+ZbyD0PSBZCIFEIKTl2+G3cvHqOl85/ExVlHF/r0WrmyMialffSjPW9EdcHE061G3SbMSvLfYYbI+K9CUful0RNgJH1UY0+gSw02WbMYHOTxff+MsZ8HvKrZIMLdOJ1Hn5vl94PPQzamn5FLKGwTFNHCkQD0ZxDqQeIxDJnV9c4vPI+vvr4Z/n0l1/lxuYGkzQjvZUyvpMTxQnZ7Zd44dWXOP3AGu33t1nsrtjYg5oaqL5pDuRADuRA3hpiaqbnularfDZqU3up+vzl/qVfmbCN1lifc0GRG/ZGBeNxzvrtjBeeXSefTCn0PIeXO7SbGTKKKAzsTMbcHo0ZTHOONhP6rYSjawvcvLLFyaWcha5CNUAwAhnzkb+wxvT2gNG1T3HnZsS54mHO5LcR6grp9uusrY5QJ5bovu80xkysdSJWkFnCg4owooVo9FHyYRQLPH32SU6eGPL8+rN86WvnuHrrNmmaMbw4tnEWAlQkmTYiTp7toaK8VHzpUmtoUxZKqcjzoqbFL4oCVfpXQ6lBLIGJUkFApp/78hVSAo4KKISpRd0SGg+savg90KjXgEZNq09JXNz3VRpbIUTpqhKgV/tNTdtODWhVe0jaktn+GgIHyvcXD9BMqD4tW/TgJ7AglNd0vuLhMW5eqj7PxDu4th2wFRb8ixnrWI2Uiap1r9F24HaWTLnrhPdN2XfnduSIkwOklkTaiTIlGQktLq4f9vOa45+fK389a3aoaY9n+2nHJ5FSlwHKlVtLwC58n91cSynrQeO+fy6Q2Aby6kIjApDv5iTcei57jyMrLoVpTo6Sylo5lKy+N7bisuuD1IZCCHtPE8YpCAxVTIKtzmyDpt14qliGat18xWy3P0Ipn5Oza12fT/uZUqr2fWVB8kfW22bGvcyRmuD+v8u6cBfBsG0oGbr88W3JPSUHlUlRgTAszh/i9ANPksohX3ruVb6sdnn8sREnFiU6arAnBJlqcXKlw0rSYDqd0Mg1RZQzSQrSEWU58dw+S6IJ5uou25/NeTUteN+JX6W5KChGnySP2iQPH6b3yBC9dxWay2gjodCYwR56qpGHF5nqmDi5n0uvvMLC4dMsHrqPXvQk37X0NO/+8AtsPfNFLt+4w+54wnSUs3dTM1qPuToVnO7dT7aXsTPcYHX+aOkD5nKC17jrvVuEAzmQAzmQQIpcl9k5Qo3Y3ZpMB4asHy/l880dTOUajnM9MGQZ7A5ymg3J+u0pK4f6XF7PuPqZ2zRb8K4nWpxaaTKRDYZI4maHE72IpShhMh0TZwXtRkoaFRRala4HZRafZIx+aZMbL6bcaTb4wA+9hBlfZbL5CfLOKt33HCcWe+jxDWguURiB0Tl6e4hpJtBskpsmUeNBzj33ZU4+9m463cc53HgXq0e/k+869HW2vvOPeP3yOuN0ymB9h+2ru2zcmHBumDK+tMuhYz3SnQxZSASSwe6ISEnSokBJUVoTSq1vCdwLHyxZB31SCIwLzPQzGeIJD+/uWkNTLlgNfLrvvEZzHwm1zAjv/uGDG4NzQ0Dr2q2ArwXns4GUBhNUoa3IhYffDswLyvoZtS/273IIrlwfQm1wCVJdGkw3QV577f72HalIhh+XFNUsu/MEnjhUXaiPuTb28Hr+muVcmOq42ncOnHvScvec+MBY4/pmgj4GhbGC+xbwgcpuLqpb11UerjIYubWVQqKi6h4v8gJqoFfUnhNOs2+Bu9sjbj7wlZwLbarAZGMwhUZTphxVCoMhUlGwbwVFEdZIKC1F2vj4lNo8eetNtV+tK5WkoF4/wRhbhbkec7HPmpYT5iqSOyvJ7P4Rbk+4v3HB/vhMW34dqD9Dg2Wu7R9nMahczmb6J2Y+E1VDxkA9W9L+It7c7AaitEF87GMf46Mf/ei3bOxPJzM3IAajC7TOGE6ucm39s9zaHnN96wU68jWayzGLC01W2zGdqAnMM9y9wO7tISrWRG1DXhTMbe1x7JEOoqEQaLvJBjl730g5/+kuj/z8GWTnneTTc5jp6yhjIJ2SjgZMkcjdAhUbikSxvZPQmG+y0V7hUHeOnZ2YUX6KuP803d4cnaRHbHaRZoRgimCKMSOMvslgLNi7eZWo8wTdhSeZ6x0DNEp29zEfHZCDAzmQA7l3cvHiRU6fPg1Ap93wL8oAvwGl5liHz+4AuAp8/m1E3QQulUApQRwJkkTSaEjaXcXicoN3vXeZM4/2uD3YI24X3LcoaR5ucXiuzUKrQUPZ5/3e7gU2rw9o9cHEBjnNmBtPOfxAB9GIEOSYvCC/NWHnlRFXn9M89kvvRSfPkO19FpHdRukcck06GpGiEZsT4n7CXq7Ym8bEc322Wisc689z7ZbixYs5je4DPPX270aiaMkRygyJogLJFBiQ53e4fO08xcYNvvzKkOdfGDAcSNARz79wmekkJ01zokhRFJosKyi0QRc5WB28zbAzA96c1AMYA9Dr1YVUAM8eWT9P1qFDzWVs9nMHnjyGNpVmdIYcuOtUmuh6ESgRfPdm1xUEYDognrPgJgSv+zRS/6X8XOui5DgzmnEpvb95SA7KwXBX1IBhJhA8mH/vZFMRG6chrjVds+TU16OaW3v92n1VYVnb7wBgls1WWvFyD/jiWlTFt1zzPjOPH2tI/u0voYZbG1dXw3gXONdZp7V247ZWBHddp/0XNSsjxniyYK8VURS6tK5JvxecpjyOY+I4LpUAmiROmEyntl/WZEIcx7ZQnDu3rEFgtLVaFEVREYOZeRdArjW6DGh23Qz7+Gb3oyrntiL3lWvWfueF6+bmtVzykhQFBwWMLkxKUCMp5T0SPAL8I6GyFpXTYiDMMpXnOeNJ6vq5LwC9h+QA8GY94/8Zoyl0RprvMJqeR4g2G/lv0lQNWmqINOcZp7vsDcboTLNXaPrtLp2GpEjXYZSizg1Y/cARomaTUqWFzlbIpyuoliGbXiV9/hpmMCE60yLbymmcPEz62kWipQQ6EYUSSBVjCsHoiiA9doYiXiaSi0jT4taVi2w1e5w9dIYomqLZQ0noJAvEag8MFNOrFOkaceNJWv2nkDKmKHZRap56QNQBOTiQAzmQeyd1ctCs8oMbp2GstGKVJsu9bOxLWkpRuhdZlKcNqNKFQEpLDqJIIpUgjqDZlPT6CYsrDe47O88TTx3h5u07fOg/PYOYpKwtxDSTjMl0wHiUYnLDsChY7S8RiRE63YFBirww5MiHTyBEAmQY3UJnSxRpHx3tUqRXmX7mFmpRIBdi9CQiOrxA9o1LNE70yROBUcpWbM0Ee1cV0zMPk5sFpOmR7eXs7GyzE7c5uXiYZkdQmAHNqE0r6aDUhCKdoqcXOP/NW3zi92/z3Iu7FEXM0+9+lH/6T/8tg8EeULnnGKPJczt/NoOR1wmWP63GtJ6DvVLru4xGTmusC1sVOMBgFcj0oGkm8HhWG2oCwOddaMorB8DL97JEHh58hhYO6ZB+VZdBlzEVofvLbOzBLBypXJVmgNE+Uh1apmCd1SqbCm/UwWKl1Xfjm7W2iBIUC0+Q/Kn7aOSrmha1fomZE2pzgK/L4D8ve+qKXQHe791p8UMC6C7mtMKVBcNpxDV5UXg3tpCAeVIf9CcUVxgNUbmbuQ9MCTyrOglWXG2AosyY5FyBtHEVgk1Vo8HY/goI6ksIGo0GjUYDYwxRZAOFp9MpeZFTlPdMHEUIUWU6cmMAKIqiqufh9/fdYH/2c+1cpYJ5cEkC3GKGpMu5pYUEzvVj1orh1eHGBfSH810WMXyT/t3tAnb3WtWubZesyjxXtpflBZNvQQ7ueZ0D4bP4VFkLlBI0xCKRihhNB+wMFANzFZnusLezzfU7m5yYkywtJMw1I1RUMMi14h4AACAASURBVJ1OmWymjDIQI830y7dZebBNeylGRguI5v3E0TfZunSb0bktotGEpKsQqSbqCVTvDK0HIvT0DjpNUTom6vfJTZf+Ax9hW1wjEUN0PmGSRcwvH2OhsYjItknHQ1RUYCQMB0P6i10i1SaJDVrsoOIRUsaAQsouVbq2A1JwIAdyIG8xEQFQCwpVGaMDgFO9mIxxRb1Cza1AeY210zA6raNgMsnLc3LyAtJ0i8koZ25FcHN9yEIj4/q1jMFgzHA45mg/YnGxxXwzxsiUyXDCeJAzmdjnffH5G6w93iNpS4RaQzaOItR5Ni9eZfjKJq2swJiYyBhULyGae4jo4QQzvYOYaFQnQXb7FGaefvc/YkO8QYcBu4MNxpmk0WyzEvWRekS2O0YlmnS8hxbbdPotpGyQNCJO3HeYPL/D+p0h01TwR59/kTzPAcgLB+jLeTYu8DMEjqJW/bV0DJrRnIeBsqYiCb7ZCuhYbW7dz92vXbjkDtSU4FN74le5W7iOOiBrwYcIAE8gJTFwYMS7bXA3MINQ4+oAU13RW+ttSTzlzJgqemVq/fUNEpCe8junWTXaHidmkVkwHOsKFhCG8FCBX6fwSm78BlCevO3/3q+7sVTHVS4gJUkP9MWOsNtUlSKwIlRZr2wMTDmvwbWlkL6Xbg/lhUa5cc2C6NKK5MI53FQJAUoqCjQGR8TKDEVGB4oGY11wDDZDEbYBgVUqyJLwiPJZYslEWK1aoqQiLy0BUlrLQCNJaDabDIdD6+ZUjqooCu/WFNYTce47xhVb8/NY36t27t08lPMUVMyuB8W7YYm75s65393tyrMfsC/tb+HedveXJ89V6lp7v1QKmNo1gSqzmGu9vO7sZfeRex6QHIpnOqbcFHSJpSHbXWJ9/RyjnXWmwxwhNK2jbXr9JlpodqcZaTal3VB0W00mqznPPrfNkVtTVpdiegua/snzXP7KG3QbE7SUmMNNTDfCxDFRI8LIjGhxAbG7hzaaQigKtUiz8SEGxSLpxhWG6ZgCRSwjBE3mIsloMiExBoVEooEpwqwhzBQpbc5rGUX+YWS1W3BADA7kQA7kLStOI6XB6Z9swCxIB75KIGJT5EFoVbAaW98Y4F687sUmyHNIpwYokDLjVjJkMJJceXWLQc8wHUzJ04x+V9A60qTfb5Ebw+ZoD1XkNFoxKomYLBd87ktbPLSVMd+X9A+1iLsFN75+gV5zDM0Ec1RAM0LEEVGrCTIjWl6h2ByCnpDLBiI6Thx/B4O8x/TOmDvZiDwrQCcoEdOJBGkxoS0FkYiAKbrI2BtJej2BUgnduXma7UsIeYvR3oidnWFZDEqA0RgMWpfaVkINfQgILFB3vtPG1OcwFO8L7tchyOdOaEHYz1BQd/ewILYOeJzW2ZGJwu0N13/fn2oc/tz9SEO1vXAKwf2k9nGt3xVzMMFXri+hlh1RWQRCy4aLw5i99t2a/fD3khiEHKV2nvu6DuzCarkeyHmrhAmsDrNXFJVmP9A2226Y2pQ4wOsDF6gIUWV5EaXWX1bXBmttogKTUswEurpTQ4KIs8g48leSBWehwcUYWYLpr+nnQ3grltecB/tbSIFSEUopoigijmOS0r0oyzLv9iSlotFIaLfbtNttsiwjFWlp5ajIcWWRqiZZWHbhx2VjYep1BaQPWCYI7K+iPnR5t8jgnguJvV8bHO2fDQouCYew61CB/brrmUs/6wi3k1krQrjW4X3hyWMwz98O/nwLkIPaNrebzVFyY2gmPfrqFJuTW6R7EVKOue/wPKsnmvSbEcPdTbKdMVpr5g/1aTaW2G4kfOH5KVxJyW+mzM9vYvKvcvWFjIef6tK5fwE5v4YgQQ63EdsjisYVRK+PbM0hVQudR4yLJSbp/Vxe/wzx8A43JxkmjlnrjMnTMcpk5ErRjCKksi9DpRIwMUJMEHIJIRYRqo8xOUJE+4z5QA7kQL4d8VqUogAhEaUfsNcCViqd4AV8IH9qCbRTePeQ6juLb9yLrVKf1rGW09BVYrMLmrJt62Nri6Np8tymFF2/kbJ5acodUdBqtTiyssDJIx1WjrfptSJ2t+4wGWT0u4rFhT6R6rHbbHDzi3v0z+XsxZp08zLNhRvceFkz91SX3mOL0D2GSqeI3V3MYEIRX0bMLaG6y4goJaNLmq+g82Nc2fgsjcEGb4wL5lsJvUhQFBOSfBsdt+gqAVJZDJanZGmKkm2EXEXJNQ4fuc3yyia3bg9Is8JXinUgxfkQV7jclC/0EoRL7QNdrRZ8ZnkC4C8CIOi+q7tIiGq+uduC4NbKZlWaBc9Wu1yLC9inH6EIB4MEVIXLRAB2HMCpNN+C0J3IITcH6OtaXa9kc1gh1NBCFV/hyRfV/AiB8GCxqnLstbFlIzXoPcMNwh3tyEht7LL6LnQFCQFqDQy7PVCzFlED7K7tqsAXhHWTZtcaUycmswSvCo62/Q8rKNsg8LqLjQPKQtjMW66YlncXK2zxOKWcixH2+eyWs6ysbTCIcs+6IoCeeFCtg5SSRqPB4uICK0tLLM4vkjQa3Fm/w607d0p3RcnKygpnTp+h1Wpx7vVzRFFElmVeyez6rJQqq1obPKsNALRbDy0qci1wZMeg0aCdlQXvwlUFkdvPdGF8AbeKH7vaCOV8ObJezr8j064v3iIXEvdqZbGWvLq1o/6UdVugfG6E+9BvrjrJfTN5C5CDUETwf4hUg0KnHD9+muMnHqIQ1zHyVbpJE2O2iJhC/sd084hIJbSbiyh5itW1Of7ij0WofEg+yBndMEwva977E6uIfoKMjyLj/xjEMpn5bdIv/AGsDcnuG9Fee5R44Rj5tMHOrXW+cu1vMtpo8eCJQ+hmD2Mk01TRb0XkOzdprz3CZHSDpKGIm/NM8wbJ+HWazScRchnEHEbMoc0EReveTe2BHMh/cJnVQv57tGSsGVhnGXpvBDIh6rbtgzTQhNliVtgUlQfy7yQCymA+gZLS5+tXgY+zMZSBitq+LIMiSKVehzx3L9MKODktnFS2im1eWFeEvWHBhspYWWkg4i7rGyl/7pkneeodD9Jv9YAdFGN09lkW8phe1KLVWEHKNdYOz/FTPyto6DGjO1PG13LknuTpH5tD9GKIjqOSX6TQFym2f5/slWcxqwPyM1O6h99Fs7vGeDfj2u0bvHTjbzHe6PDY2WOYhiEtDDpK6LVixGibdmeN4fAy7X6fSa7QuWStOyWKTwIrjEYxR44NOXz4Ks9/7XWyrPAuH86/2vlmV4Hd2Po6sirjZYBIqup7E5AqbHYXG/1pwUXhqvsGINsBL1DeWuNQmNemgw84tWslLbihTBHpjqn4hwfejhiGcQHuAGn9ROwYS6CqZFW0y7EBUWrIfTVm10hNu+72lEPzM9pZd2ZIVMO9HBIb4a5Xa6L2hKpZU0R4cEmIy71swWFt0mt98EC87HsVt2EwqjrHFtGqaBNurKELE9RAvJ8j8AHW4Nz3TBX3oISfY9c/Fdl9Fe7L0BWpKHKvJbfgWqKUwtem8gQomNKSQBS59u5zSskyrasjNqK0BiiUyoPzS5JRWhUjFbGytMT73/8M3/Od7+cdjz7G3jTn7/3Df0Cn3WU4GtHr9fjABz/AT//UTzFNUz7ykY9Q5FWBNMrnkxA2zsmUAcxa65LglOsWrLUlBMIrLkxwf9ltI0rLXxnfQ9VvROnmZlwbZdYjVwGcsm6J3zMhJagylvk9ow2Fd+msb1YhqvSs3n3Iu18Jvw/CZ4mSjqyVJPnbUJy9xcgBVJoOMEiUajLfe4Bh/irSdEjk9yOEQckYheLq9m22dqc0Y8P0ioEbX6Dzzgfpdu8j0gVxV9BcK4iibVA9RuYYUfxhGuoMWu8yaR2n9cETmK9cpil6CPl2hHyGG9sj/v7v/lUml/b4L396hWu3FL1+l7lmAzUt2Noac3yxS1FsoPMGUbNDpxFj1A7NpAXyJMgVpFxGyjb/XwCkAzmQey8BoClFhG+rP4srGoPJc0xRWPAvEopUozRkowkilshY3ZWV5UD+3USUmUbci9YVrgKLV6wPr9PESQ8OjH8pWfG/aksQKAFxHDvXBoExEiFihFSkU8WN6wW//Zs3+Lv/6H/kzKknSaI567JATCQizt95mfEeLG4lzO3sIAaXab/9FN3eWZTJaMYD2kdTkoZCyyY76Sqd5CdJ5DGG0w2yhWU6715FvHyTRPZAvhup3s1zFz/Fxz/zh5iNMf/FTxzmpW8OOHp0lb5qIDLDIMs4ujBHZnYYDgo63QZLHYUShkbSBE6iWeW/++9/lRdeeJnt7R0Krcmy7C4QVP5Ru4msRYESgJV7XilbXbkoqPv+C4QpLIgRpQZbVusjEJWHCZWGt+Z24EC0t1qEGvog6BgQxuDqD3tfZ1Ou9Yx2u3JJKV1KnPXJjTNw2wj/gfAVcb34rEIBgDS6BGCly0doNaGKV3AMwNGg0L3DBIPzLiHBGPyYhCNO1QgrlTAz5wTz55059pPS/aSorqmD86UQ5XpbC6nL+oMDpTNzZ7ABrEVJeqxbkKxdO4zNENIVJIEoiqxlSFZ7BCCOo9qeVZGi3+uQ5SmT8ZSiyL3lSwhr/RNSkCQRJoY8y5lO82AZBVAqFowmz4KgYVPtGxXbmIJOp8Nf+rmf43u/+7tZWlwin+bk2YCr56/yC//1L/C2dz5Gp9+t+qw1w+Gw2iOFptCFt544UuD2bWXFsdmbXCpSD8xNCb5nApLdWksVlevhgvcplSMV4bB8P6hJEWyY0H0vjB1xrlfue2FEad2p7nMnUaSCJAbVvvZ7P/hG1j6zSjYz4/60n7xJDfG3gtQH2FKnaapTaJrs6oiYNQRtHn7gV1h96MeIFh+ktdnia5+csHFpQq7fT5EfZ/f1IXeevUEhltkyH6SQP8hkcovx9BJT06VIvhsz9zaiJ08w/WZBvpOhKVhePcVHf+ivMB0n/JPfuM6JuS6rrVPI8f2o9BCoCbe3J0y2NAvzK6hknuFQE+khwrSIokdQ6jhCtO/ZDB7IgfxZiM0odp6ieAFjNv/Mr1dMJuii1GJOCqbf2GTrd89z88uXKfICoaQ3oaLNgdXg31McSEFYza82NpCw0IEfspQ+b7x7QTqXAm18KnsvDuBJJbFZOwV5bkgzzWSSs7dXsLdnGI8Nuoj51O+d48bVMamOefXSTf7n/+l/Q+uEJ97+12mf/TDN5nHyKwkvfWbKxqWMQnwP+WSBnRfHDC5oJhzm9vQZ9oofYGf7K3z2i/+Mq+stZP8HMEvvIHrHKabP7VFMU3Jd8MBD38Uzz/wM25uSf/x/X+Qdx5pcOTfhpS9e5drrV8nNkFubQzau3ODwkfu4vbHD5sZ1RDFkZyvlF37xr/P009/HJz/5WW7evMVotMd0muEAdQW8vRGg/Ny6Y8gyI5RT+AkpydKUIs89QHakAVMGzrpXpFd+mrLOT7iWtVXABYHOLk4dqFfnuj91oa37yP4bxl/f9ce4wQZ7yh0basedVj2Mi/DX9ADGVKkrw7Zqv5uZnwRa9koD6y0QgiomRlRa+fLPug/DjLbVtRH6tkNpESjnvxYQXhufBeeeoAQg3AFTp4WXSlXzg9X+2uxUbpLqrjG2XQc28d4jxiJwVGS19r6/JekToiIQ4XZJkojFxTmeeuptfPozv87nP/ePefzxs/T7XdrtBnEsS9BdrpGuMkS5LGXOcuKu57IHFXmZxjeYKyEEjWaT3/+d3+FHfuQvsHboEGY7Y/riBuNPXecnnvlR3vH0O0piYLX7ly9d5s/94A+yvb1NmmU0kgbtTptWq2ULDAZFBm0f3L6y19QBMfD7ppxrTyhmRGvtayyE+6VcglrRNCErt60wvkgK6X86kuv358wN6mNKZqSy2Ly5SsySlHA/Bs+gbyFvQcsBeOuBv7U12uQUxgAJbREBKQWQySb9zhO0RAuT/RH9o9dpZw0kbS68fId8uMvy0ZOoxk/SZYFIzFMUE/LRNzDqOu3+02j5ASZmwM7KFVrK0Mz2yJnSai/xoR/9INPbQ77++i5H5q/Q686xl2ji7iLR8BbthROkYgWTFySiT9w6i4jnQTTqWogDOZD/34vBmALDLkI0gU2MeY2iaAALKHUc2A+Yz2rfvs2rGYPOJja2wACFptgZMfnGBRa//0lyNLJRumpkFpFaV/Do2zKbHsj+op21wIEa7VwOQpBXHhu6E3lsaF0PDFZr6LSv2oAoteNZVpR5zV2wItZlQcQsLi3zgQ9+iNVDxzFFxNrcCj/+Yz/K9mBAnkQs976TpuwzXS7ore7QyltI0eXrX7xAp12wsvReksb30aHByy+e4/GH1njwyMvQ2ITsJEZ9J1OmbK69Tr9IaRZD9iYRUafD0z/4GBsX3+Bzz93hSGeO5ollmotdoo4mHq9jeif4xqUxem+KXJin1z1NxhzPfuWfs76+VWn9/T87J6H2PgSpLgDUGRLcXLm5DjWBszC40tKb2nvm7kDF8OvqXrRBzJVmtR5wKmtaz7oPe9lB575Rtun9700VqGmJQvUevCsPfHms17J6f24HiEpf9RpxCYI4tatEHZCCgDi5gNuQhDgNMaXGXiLL78vUss5tyYRPq7pLj3bfv9ljxt0//uzwu6qfbhq11r7YV1ULISAeENxfUMUL2DnwFp3y2t4ly1mFnHWgZKZeAUAQOBz8LaVkfmGe9z/zHn7pL/9XdLvLGL3H//I3fpo0i/jyl1/lN37j33Dlyi3yXJMkpdsaIJVASkWWC5S0/v65KWoE1wfgln2VSnL0yGH+zv/+t1laXrbEKM3Jrq9z4Y+/ym+9/jw/89/+PHEjAm3QWUGeZQy3d9hYXwds7v4kSYjLIGYpJeO9MXl5PSFKUmiEd6kqN6LvRwX47fzYWgTBOrg1rabaHi3rhNAtVMjfrQWguqbW2sYzlNat8NzwHp61yFZf1bUDsxzB1DpanfvtEAN4y5IDqAwlUOjUGjVFjECCKZjqIVIkNIQkUk2mao5xtMCeisiiBMOE6xtTFIq1/hJanqQhYm7t/b/svXmQJcl93/fJzKp6Z3e/vqZ7eqZ77t2Zve9d7HJxH4RACSAFggTAS5YlXwRJk7LNsMJgmKIZMiU5fIRDpGWHZYtBUzQJ8xQIgBC4ABZYYLHAHrPYmZ2ds2em7+vdr6oy039UZVW97lkCsmQLQ/cvYqavelV5Vn6/v3OZUSGQvk9Mn0G0QtU/Slh9hNrC49jaLN0oZHnl63zrxSXuevpprkbPsfb6NlMjA/q6xfpamztLdcojh7iytc1EWdMoNShVJsGbxQumSZwS9wHKvvzlEWsNlj7JQRmBXUktBzWEiJJ0cRaEPEpex6N4PIpdP/+FD0u/cWZwi97uole3kSOSzlaP2mwtARsGTN9guzFqtkL+9k7BiUlN9P738Ovue0kKSKQIQDOgKgS4yrli94FT8HW3xQQTRY2qyJ5jUwhkSfyRq9UqH/zBD3H48BGk8NGRwVcBU7NjXFu8zOyhw1CqEKlxemqUnvKJvQDoc2kl4uSpCrI2A2qBasnij19FeAGVep2mXifs1/HKC5jgIerHn8D4R2l2b3Ll/HVuLrc5cu+72Wq2WV9scWZhnHZkMK0W05UKVla5uLXFuPSplRoE/jyXr0n+xaf/lK2tVlq3oAAQbHH80i7bXYc2xd8Xtd6FuXA/F4iHA3hF4rAHQNhhUFwUkd67OHe5X3y+53YTHeHU0UP3yvd13tfEXz8PvU0+tiedYwq2itaqrNtDWnUXhMktpYC5MgJA+vwiuCuSW5EvwySeyeaF6JJXRwqyHWh0rxSRBjaTE5aicnfoTWeLE5gTQsiJkiGxOOT5+MnBnNsfqc9+MQDaGJNoxdP27CaIGRhNLU2OTPhSEsdxwXphsSKPr3Br5YknHuOjH/sRjiwcwdJCiCWOHh0gxDgjIw8yNVXl8qUL/E//5LN4CrzUXdBoSxhqfJ24DUaRJalRJjJ//CAtXGbSNTU6Msqdd97Jvffei/KSyufx0jY7VxYJ+y0efuRxxmfGk3VgIG5GnH35FX7v07/LWH2UakXTDwdIKXni8Sc4Mj/PH/7xH2GNZRCGCBHl1h4t0rSoMslMqfM0p8atnRSQuwzNMr3WpHlcs/HNV2s27pllClcw0oIVeXYnUsCfzmuuBMjv5dZ7tpaL9y5IbvEb3sdD98quThaWEMP3eDO5LU7LZBG7wiKpGQYLtFF4+FZjYkurLVhtexyNfdpRxI0mVIMRtJrCUmbLGmIriL0RPDGLMTFxoq4h9A8i60eRwmNn8zWuXT3L5VeXeOjd70dXGphQsN3uEIsQwj477QD/0AL0mgSepRwo/KCO8g4gVePf8ojty778m5XEYhBh0QhrMXYRYa8CWwiqgAa7g7U+gsOAn72tLDEmuon0FxJy/x1Jc3qcG534yBqLCWPi5VUGV67RKVfwehGV2GmzLa31bTYuLXNIHqE8OoIsKzLVn7VYbcH/f3GA/lJJwZ98N7AcPoWyw2nYLWTYRUVgsSKZ1aTyaHKhC+wzJDnLsRapEp9jUBgjwAqiMOLylQvUqopAxEgd0u1FrLdgtaM4FCl2Bj2ubitm9ARGjqNFiRYRMqgSyxGsP4e2Bq1jBuEA7c1SGr0LYWF98xmuXzrL5maJu554G7KxgD73Etv9GGtCTGzYaFn8egVrQw6MjxHYMa7f7PPs11/lD//oC4WCZsOuN4I8S40tqn+TXyXkdRgNpmNe1Fkn5CnhZLvcGYR7xrCGE5sHwrrn5/PkNPq7NfKZEjUjgym0GaYyRSAsHGhhT/+L8QzFdTSk4c57npEd1658VAqacNxzLEoVCKxrfDLSGXBz4zKkkigAendfk+XlH2IHBfBv3Yczy0PRkpEyt4zoZKC8sDfc2Gb7Imt3Ol7G5jHIt9xy+dy5+2VrQaZxJCnJcu1LYjPy50qZBBcnQcM5Ecm8NNJfPPjQ/bzrXW/noYceBEKsvYawV5GiiRARhw8dYGbmHpZuTvJ7n3qWKAzxvcQCMDpa4vDBUV58eZ1mK0Rr154k5sFTiiAICMMQjKFcLnPy5Ane+9734pcCsGD6IdGlq/RWVlGNUR5+4nEUPjZOxmHpwjVe/8rLbJ5b4emH30rHdBkdGwUheOKJxxkZqfOZz32WSrmcreUklgPAZMRJZa6Rw++5orukkElchtD5OpOptQDyInDWptr7wpop7lW3Nt2xJIXIrUTFvZntuCLZc18dETDk2yj//PAuKSzPvGdD9/uL5LYgB0oEGBum5r5kAJSoYOwamiolDKIXsbi4xVqrQr9fZa3jsdSS1P06ze4UB5As6ZD5ynGk6RNTx4oQRZkwXqVtDcJ4jKgyO1t9bt7cRCmfsjHUGweJypdZ2VgnxuPIzDjX4hJ1r8GZw3PU/ACFj1R1/KDBHtXKvuzLbS4JMQgRVgIdrD0LXEfQASSCHWABRAPYwtpxBAprI4xeI+o+i18tIf0DCJKArjfbJ4mWTmNMEnRpjEavbxEtXqNz8xprB05ydHYEEwvMIMLGERtXr3PhW69SK5eZPF7Ga6T3lyQZO3YXN9rfom8qGagraIxhWHPlAJADOlLs1gqnpnazB5plVV4T0GIStw5jiCLNYBDy2c98nrc8+VampmqEccTG+jpnX3qFj33sXVil8FshSyubXLu+zepOiV6/wvWdmBtbsNacoDcYo2IFyzqm36yjZxewqkQQSOI4pBctE5dKDGLFmPRYurHN2nqTbq/G+s1FJqZOsGle5sLiEifm6qhalSuhz2FvgrvmDnJw8jDXry7x+S/8OX/wx8+xs7NDom3PQaDrrS38rkigbJrFxGVoESL7Q3p9WjuiAEgTgE++jlMgmGggnXXHFa9zk1mYU5tmOxLDQFXKYd9xCh/NXGmcxWAXkSmC5CFilLbbAWZHgoQUSbIhO7wm8ifnz9+bPnU4n7xwz0gXk8n6WLznXoA2pM23b54qdq97VtrCDHQPw7CivrZIePa6OIq0D45w5D23u/ZQSgtxWaosucXC7UeXstOB1aIfemYxKJAKV2ugWPPAER4LBIHPRz/6YZ5++qm0XW2sfQW4iRA9oIVgC987yIEDdR555Divnr1MFIZMTJR49OHDvP+9d/I//uNv8Nw3bqTZjhKyJqVHpZJkmYu1RkrFkSMLvPOd7+DDP/zhpH2xJr6xSufCa8QDQ+nEGcoHRzGRRXf6RJ0OF7/5MnqlxQ8+9gEWnr6PjXidhx55mKAS0Om2ee7rzxFFEaVSiTCKEEAIWS0QyDP+yEJ8gcs45OYlB+PJOEubxE3YNCWqy1qqHbHcpSxJ+pwT1eLMOutD0WJWXHfWFrMP2SyjVE5IbDqfBozI3g17CMItyPx3I9/j5CBn2FLIJEeuEEgEA70OosyAGj1gaR2e/9YNpscn8ebupR9Pgaiz2VrnjesrHD1hOKNGuRALDqo6SvjYeBWi6wy8acrlE4wIj76RLO/ELG3FjI/PMS9GkFOzLD94J9urASiIJ0/w+PyDzJZmUHgI3cTz6nje+L/d4dqXffnXlr2HdqbJsEnaSW17CAYk+a67QAT0gC6Cg1gTIuTbsUxjzBLh4E+QnqC98k+pz/4HSO/WlrXMBcNE6LiLEGWsDgl3ekRf+jqdVo/w1GlG509QLUmUMGxdWGfr0iX8UPOOx5/CO30IkOh1jaxLZEUVzLb77OC7EWtFIY16ftQ4UO9AmRtXY0yq7U0/T5KaT2YgueA9nWnkEi2iw0fWQqwNg0FMvxfiCQ9febx+8TVeffVbvP8D70b4I7SjCks7W3zr1RWuX1jh4MEJxMxdXF82aDyuLm9yeH2LmYOC0/443zxSolweJQxLeOYSUnWgfIRSMEtVW9qh4spaj+ubXZauL/Htl1/ll/+Hv8e3v+9RuluLrBnLZOUwjxx7ivn6PDoyWLPF3/9Hv8FXv/oC/X5/KDixMIh7Dnzn9+w0NJYDzAAAIABJREFUjW50k7HdG3CbuQ0VNZtFbbYxGOFSURYBfk4Gsu8pglbXVolzu3Ggo+jiUASrDqSYIU7v7lbIvlLMTITN0kkKmxfYypyji/0qaO33WJ5Erskt9kdrk9+z2CwHnFLklsXPkBMI9xybPkCklpnhglNFUpUNSBLjoFzBr7yvRcy1Ow5kCIBbm2h+E/NNbvURIqtvkfeh+BTXy/SfHL6/tWLokQKB7/uZRtmRwiBICrF6noeUSe0CHess3qU+UuPQ4UOMNRqARts+gkHSB9EGukAPQZNyaYZ/8Gs/wUc+8qtcvbrDhz50Jx//2MOU/Dr/xc8/yod+YpkgKOH7EVEElUqVuUOHWV1ZJY41tVqVn/ypj/GRj3w4OV+MYbDTov9Hf8aVtW30ydPMnDxK1RcoZbjy/GWuPvNF5o8c54kf/+v4xw8AkmOdI0jhoWPNhfNv8MLXX0Apj8DzicKIvrFgI8DmGaoK2bFkMeVqQUtvnUUofWclrlkKpWS2P2xhFSSWADW0fjOCfAvSKaTIYryyAn6719GuzziiYvMNkSlmistujwWBIf3Dd5TvcXLgRGDTwA1hIgbREqgKQk4grMe5N77E1156hp2+z4G5u6mVjvG1rz5DH83NLnS+fYXve/oSkbyLBeWzGkFVlKioQwjvEL5USAzr/S6/+Uf/G29cf4NS4DEhlvm5T/40P/bJ/4zq0acQY/McCKrcO/cQWMnA9BEIgtIc4ns58dO+7Mu/lliMjRJSIKBnrlEVU8AqyStoAHTSnxcRnMGaUwhRRYgBUi4BY4zM/cdYPcDqLkIGIFR6SMZIUQbA6D7GxCDL2cHc/u1n6Gy3iI8cQszMUQos/W6b9S9+ntLoLAfmjlMenUKNqaSEa8dAz0AgEHWQFVnsyj4v+A7iKZnlzR52EwHlcpyTgCRTIA9SOh/vYSuCkCI7YIWQSbEkUs1YaqIHgdGGXqfD6uoaYTTgua98Ca2bvOOd91OuVBBM4yvJ2Tc+z7krrxLGdWam72bQqfHKc5/CjJR54do2Iwcvcebu60hxgntHGyyFMKlGqFTvS4Eg9LotNjD82v/6K7TDLrXRErPHx2itRywbxcTdH0Tc/AbnP/1Vvvg7X+SLBy7xcz/3CTwh+LlP/CIXLrxOGMXsSlgzlAkFC0p5CAleWtXVZWtxYNGJFDLx+7bFYFGBMTrNzZ5e58Z3VxCpIMmwoosEYde8FklHpj3NUoOqW3yi+OHkPynFsIUoMyIIRJqhRqZBskVrRLbttEunOSyW1PaSXr9Hu1l4pAukdn9wAe2OuRYtCy5Gwj1TaD3cyzfToqZsIEtlaoe1rlngOFk5wKyfeZt3jWceypG0x+ZuSC5INwkhyAuR7U05aYe/zT6b9yOpSZDMVZKW1M1LUnk4CHwqlSqlUoBUgigKk8DdOELJgKmpMaSn0baHpcfA3KAmphHcTB/aBZrAMnANwV289akxfm9tHeVFVKsR6+tb/O2f/RRPPjJHP65z5doW4xMHec973seHf/hH+MEPfRghJL/+6/89d99zL0IkmZlMHLP9jz9NJ5ZMPPU03vwsfmDYWltm488/x+jcaR76wF+nNDmKN+JBDLZroK25trLIf/M//3d86+y3MMYwNTXJAw8+wHPPPUez1SIKwyHXHVfzwI2Z9CQmcpaFZMxUCsK11vn+UcVYE5uX3RC59ZCUbCZWhWFCilMUQBKn5+5TWDe5ssE9h3RN3GrJFm0FznVT7knTm/xtzyp6U7lNyEGy+YyNia0GNYaVFTpWsrVzjfOvXOTqa9tMjc/x/qc/xGp3mwOTd7HViVheWefb33qd/+g/+Xv8o1/9EUb8H2DaqxKi2LSCbWPRseZPn/1Tnv+jP6DX2qFUC5g5PMHY/BzHyuNsX7jGsbsOMjb3AFXpI0mqY1ZUXtTsuzXV7Mu+fO+KJTJ9BrpD1RtPTdECrEGbNqFZQYoBFVZIshUdwtJC2HWgCUKTOPaXMfq36PTuINYVqtUBUpRYu/xrDPqzjB98gurYMYQsgdWAB8ISR30SpOJhrCCMYq798deotzaJThwjPDqDLvfYWbuOvxXRmHgArzxGyS8hezHx2gB9YZXe+jJqaoHSfVOUVBWUwMYGVNIdGSSAbZ8kvIkUxsWBwUTrCdoMWwiKknuc5MBXx8OaOCMMCJUBLWdlSGxTMfgea2ur/MsvfI7JiVGmJscxto5fOkDLSC5ff5Hnv/QGi9d2mJyawZoGbXuIGzdjvDHDYKfJH/7+5zn/6mv8pz/3VxnxP8BcUKZnJRvW0DaWdqfNnz33Bb70u79FOOhTapQ4emyK6cPTiJrm2c98lh/7wE+xMPMEL7Rf4vIbi1w4f4Uff+5rKKVYX1uj1+sRR3EGQotm/mwYRVKJN4kJSAC+q45cPOUzH/E0r3ky2LJACkTmyyyEyIIYjU6ynQghstSLkOHaLEe+1ibzrU7V32RKafebIpnLAL+zCiXnr0x9r1VK5Eg/lwX92jQji90FkHatp8yfu6DtJF0HuYXFuVMwXD04BW6u6u2QFrbgzpG436RFrGyhEU5DW3ABcb93ZDUDfm4Qim5IDFsq8mD99G/s3hf5KNuCdSQhGyI3omTfC/KCcKRZhmSSsnlXOhrXDt/3sIis0JUlIWi1WpXx8fEkxiCOGQwGGG2oVCr0uj1mZ2f5kY//ENKD3/pn/wfN7R36vT6eb9FmizC+gZQdyqyDqADzWDYQtgV0QFiECIAyP/GTJzhywnDocAUrY8YnpviVv/sAKzcNL74hGUQhjz/xOD/60Y9ireLQoUP8rb/1Uxw/cQohPWJj6e90WPzsN6h1t+k/9AD20AiGbeTqFo24x8zCW/FrE1RKAbYZE11sEV1eI9zZQE4cYeaJGQ5X53js44/ynh94D0io1it84md/hq3tLbQxxFGETmsbSCkwGpRUaUrR4WxaFJQju12DYq2zOcjJhMHaNDubcKShSKQLpCK1UBTdwrJ1YnbRzNRqYd2e3rPustU4tC5s8X2wS76bo++2IAcCkHjEaAbaEIkSO1rQG4R886vf5PU3LkO5zOHTpzAlw2inxmtxzGY/pteKaG10WV/e4Ff+4aeYmP8WUo0RijOY0hhWLrL+yqssra3R2VjFl4LRQ+NMnT7J/J2Pc3Vrh7ecehg/qJJnLyi2bR9h7MvtI7HuYzEIJFmxHCFRKCIbEZkIjWEnvIEUAcpqTNSnr9fQrFD326AMSI2llMQgWE3i0Rkl/8QmQvQJ9QaDuERN1hA2ZG35PBBRHg1R/kWUfxw/OI0QMAg7gEZKD4EkjAZcuLSKuHKN8I7jbFcUUecipUGHCTmLr46gVtaToC7Tw/b7mI7AKkHlsRNoUUWMeokmqBUj6zI1w9vv7s34/2MpmrKllIg3yfdtTRLIqVReLMgF/+GUudLhYJEBnQz0pWwicVcyKJVoyvuDPl/4whd5z/vfxeGTp+iqGtvdkPXtDT77qd/nxuo6ul5j7OhhFo4c5HN/8mXG7nyQlWvfpLXdp7XZ4ZvNNr/8D3+H8cNfQ8gGoXwMqgMG7Susn7/AyuYGzc0tAs+jemgWDh2j3ziM1zB88Z/+Hj/yjo+ihMQrBUhP0e90WF9fT45gY9K6Gy7XUi4uN05RO2+tJY6dJjstvEXBfzy5KhvzzN2FXRrH5Gapptzm+dNtoi3UxmaazkIVtMzfW6QtzttlKIL0oefvcXHam0jAEYIMAAmnkR22LIhUi1msW1AUmcYDOTAuXNcdbne+1sXHkGe+yUlPoQ9Zj5MbuvilIRckMaxzdTd3vxPkc+UsB9nfd22HzDaSuUq5scy1xcOB/YWRsDmOKAaaJs1xyQHyFKPJdclFCUlK9lwWh2HBCIHnefz83/kZZmZmkUIRx4k1pzfo86u//Kt89Cc/zqOPPYhQMQfnJ4kjwysvfplBdw2v0qHbv0TN7yOUBWmwVJJlZSNSD34QMbBJfaTEqbtL1GslpBJYHYLu4Qc+3/++Q7zbPszUgceoVKpoDZ/42Z/m2PHDlCtlLJrtnTaXz13Hu3iZ0iP30qxYxNYr1JViVB6gHBzHv7qNCnx0uI1pReg+iJJH5fETxFTZ7jb54Ac/xMT8ODOHZpK4ACy9Xi+1YpnMWuD2qFIqH9PdwfTkc+kk0coXVpezTCFI+EKB8BbWq0iJm9u7uVvTXmtZFhOiUguca0/+Osgpp7Nopb8VhfWauUIV3lLu2r805MCSlHLvhl02wjaR32CnN+DKy9/g7NnzrG7uMDY3R/3UKQKpkD6YaonjJ04i4oiN1jZshpx7fYny2jqIKqFZBFnDExs0r15HeJJqzadxbIEj99/HHWce4sz0SebH+4zVxnj1xmVmGuPUxiaIjMaX+4WW9uX2E0tabVWKoQNNC8PAGmIhkfhoEaKEZRAv0e+t0x10gDbV8ja2JrCmASIisZVLMBFCRulhkWS00J4kpoqkijHrXDm7zKm7fZQYYIzC6GmwMdikEqxJy9UbIIpiwsVlKmM+m2pAV0EgDRVbxe9XiW+sodZWwA+wSmJjhUGjTk3inZog6gvEiAdlCX7u8pDJPkF4U8kyCjnJENTwwVfM8iHTvOU2+0AKmAqHobC7gvWy65N1aEm020ZHhHEXHUAn8NgZWNbWVrn4/Jd57fxVOlHMwTvu5vgDD3No+gBKRozOz9ModYj7Fi2WiXo9Xjt3jdLKMoYKoV5F+RrTW6W9vIr0JbWqR+PMKebufQAR+axdWKOzsY7ySnz5lRfw2l1iLOMHptnZ2UndC1zl1/yUTqzaKbAQgltlCjSppjK3xuV/y7OauODfHAwkt8zHM9NPi2G1VA48bcGSkYBNV29gSOPNra0dZO1zMQ45eckvdbEmdggcJYTQrZHcOuHWhSgC76w9NkfihZHN3k3pgAgYjmdw7hjZf47E7OrN0M9ZibAUOA6D/HxccmJkC5/N58eND/l16aZwYy8cw0mf4UhgMYbDBbW6MS8CxWKrdrsN5X0tjIe1GVlKfk5SdN53/z0sHD6CUj7WJlbA/iDkb/y7f5OHnniCxmQDKWLGJhsoC2ONHVZuvIyQEe3tFbxyE3+0jrUNIELgpfs2QqBJrMU7KFWmMuFR8gMEEdFgjcVzm5y4a5q5IxVU6RAqmCDUEVFkeOmlF7nzzEmklMTWEnV7hEsrhKZL5A3oeYYx6VEyVVTHx2yuw+oaplxDKA8ziBE1hTo5iXdyEroQSDg+MUV5rIT0k9Sj7WaLZqtJFEdJteSCTt6t/zyFbG7Vc0uyuD7cvBpj873oCJvMA4KH95ZFFUhpcd0U359FcZdKITBCItNqCEPrQmSrMV+d7keTX7OLh+dr6la/3iW3BTmA5OXaDXts9dr4ssHO2haLr77G+voWqt5g8sgJpufmGfGqLMdr1GtlTi2cpuzD9e1lBmM+SlqE7NPraDy1BaJLz4aUD00R1H3GJ8aZeOBB5o/fx8LEUWZVmVAYljeX2dre4kB9DE+oPVqDfdmX20USi4FBpJUxLQqLQGPpAn0rCYRPVY0QCIi0YRDfpN/vQ0fTGayg7vLx1QhCb6YaSg90lGiUVBK0JkSM51fwZBljuoT9NhtXt3jg0Tp+MI4VPtYoeu0lIu1TH5kDLLGVtDuGlcU+rK1gDio2OkvURiepeSOUuiXshk908SKlSgBIrKpBtY5oGOTJA8SBoG+hUpXIaqIsICsANGz525e9krt9JJpLkZmyCxqrIRowDFyKWG8oBsFaRKEiqQNSyS/SQ9m53UjDRq9JdH2Rre4yre0Ob3zlWTqRxZ+Z48TdD3Lv6fuZiDQjo2VGahWO3XE3rX4frSKi5iaeMpTLiq2NNrbzEqpcRXg+/uwIfs2nPjrK3FNvYWriFNvnFlm/dJbuyiILp+b5/Je/SLDRxEOhPA+tNUomOdyty10+rMreBTwL2vBsXHPN3R5P8kyFXADmDBODN8uik34y4xzFOcqAOSLJ3JWBlxyYFH2sHQnYDVhy7XwBkrxJe4YBjxgKnHbjNGTBKA7OrvHINK3OyiLSqt3OpSgjMMUAZmelyElX9hwAW9QQm929ytqd99s1KCVCQ0R5b3xEFlha6IylkNb0FqAtI0qFP2Wa5vSXmb+6e4e5/qaWFylV6iqjsdYShSHnXzvHZGOc8fFJEl9KieeX+PGf+klWdUQHTQmPqgjwsRw5ehIp3sDokO7SFp5cp3TXAQI1CnodowKEEQgbpcQgiSERIiYol1FCo3WLfneHzWttvu/dB5EeRMaj326it1+n3YNnnn2OH/rwh4mMYH0zYm2xhd1YYTCl2e5cZ3JyjpoeJ2hWsCuG8Oo1gmoJGYPxR+FADTlbQh4fJ/YFHU8zNtugVJUILwlEDwchz371K+zsNInjOFtPbrW7Ggd7CvMNqSwYWpdAFrScu8Ul7mi4a4v3KOyjIvFwc564sWVXwK51nFnJ9i6Zofu664pude4execV19d3ktuDHFiQwkOYAD/0OFS2rKwuMTE5TaOzw+T9D/DQw4/yYHUMH8vyjRVG64YyipIaZXLsMOWxEQ4dLjM2usHy1YCDE3dTmphkkXWEBumVmBw/iajP44cSsb7Fdq3Kc2dfYKKqePqhpxmtjeb+ofsIY1++p2VY++TEU2Ws7WFsNz3v6jgg0wXWLEgrOKMCDFDxT9L2z+GJDuFak5vPnyU4egbfBxPeAGGQ+EirgDZIDaXkEBtRmgBNJ9J0t7eZHosJpkfQQRUh6gjt0b7xdXb6IwxOjDJWqRJbyZVrfZ777AZ3VNbwJtuEIzWOjjUorUUMvn2TcnsKK6rYmZMIozE6RExW8E5PEiHZWe3TUgGHxqHsuxR/6Uj46pbgal9ykaJ4SMoUt+eFpbDD+fEtqRZZ5kWaHMFI/N7T/NvGoK3NwIwfKNDOr9yirc5iQc6dv8Jg4mWsOs/G4gYHJqYxVuGPjHDsHe/l4bvu5c7SCButdd64uMh771+gLKuU1ST1+iZ+PWZ2VnJsvsar32zS34bqySOoA+N0e32UX8UrzTPZOI1Yb1NqdZiZnuLwkWl6zRuc+8p5SsbQ3mnS2tkh7PcB0NomLiqpllggIE076jSNmYa8AJAzFy33+xTNu0BZ6ca2IEIKrC5kAsJh1L2gvOhyksHvXXPk5s8FC0Oe8jL7nEgz6di8f27ucxKxi7g4cGJzIpOvhRywFOMzMktGzocyt52EVCVjlAOqBFRLKfPPMnz93gxH7tlJXwU5ISqCsN2fFyKvTZGNjEhd59LPmwIB2kOwhlTOwhkG9szZrSQHd/nt8vnLLUvpxSAEnkqy53h+Ushl0E/SBBgT81/9yn/NL33y7/D0009SrY0C1Yyw7wBNIxgTgrpQWAG10mlGx79OuB3Tv7TGVnOJ2tE6QQBmcBWhygj8NBNZH6TJ3veTKiY0gk6/Rbe1w4EJgTowRm+g6fUjOuvnaC5foxlO8f4f/ihClmhHghe+0ebKN25yyL/G+H0lYhsxP36A3is30YtN/G4NLeqY2eOoWKNNH/9IA3GwRj80NLc6rESW+xZqSE+ChDAMWVy8xif/y1+i2WxmMTJCCqRNi8+lWcaK8+j2UbYmCz7+bv+oNLlAkWC74PvdMQDOlS0Lks/+ltxbidQDJdvTyboVhfu7deNIb0aKHfndZUEaWjSF9SKyxfPd0YPbghxYLJ1eB99IpoNRbty4xuP338cLF77Bfe9+Jw8cO8HCaANjJW0j0FzmyYVDaA9e3hrwxis7xPEGzc0xZmaOMXVyigs3lrErK9x58jSHZs6gKlNcunyWB48phFdiYGOOzcww03gXY7X6UMq0fdmX20X2mqnB2hJWNzHmBZT/MIIqXSRTQjHrSUILF41FIZkXZRpjT1IuX6PZfZFtf4D32nXUkx/ClvsMlr6CkILS9OPYzmewfYucNAglUEik1fQGO+xcX+XOMz6lap2w10XJDtUKeNOCmdFHEX4FgUIbmK5pjizE1OaP8uLmBk9MHKW/ERFeXabW2iKYqNMZTNDvvUZlagRxYI64XqHV1Wz4htJshSONAL9oLbBJIPK+/KuJMQZjKIDIXBMtVVoB1CaWAWVFdhAVTfUuYFaIRFtn0kwzcaRTkJUcfp4nsydU6lWWX7uI9H2kEFw6e4WT3/cgC0+/i79x/30sNCZ55coiv/25z/Cep6b4wJkRWnqCZ750kesXBNr4LC31+cbLTU49doJ2tIXZDKHZZKtTpj4+z4FSjz/+J/+A42fuo7uzzrU3XiWWHuuXrqCMRUcRQti0em0Cml32IMgBc+bjXgCAQgBm+NB2lViTPpIUE9Rpob9EnY+LzcivK5ofXAYUkVnCnO9y+hAcGCXNhkIBZJs0QDL3oy5kDrKpYjn1ULbSZkGTRUmweNJfV2E2b1tysUoDzl2T3NoxpuCKk7U3B0FFtyM3Fu6hRctA0TfcZXlKxsJkk5CDqgRsFR6XtWk3CXBg0M3fXguKi324lcVk+BnF37knJNMi92Qgci5IWfsK7cmsTSkoLZIfBAQlHykko2MjjI6OIoVkZ6fFYNBHCEun0+bv/uIv8hM/+U7+w5/+MTzvXhBlWkiOSR8hFU1juKgtnvI4QoXpiffRrryBmVxGb7QQr11EPPVDqOoWvcufJ5g8hKyMYXvPQ2hg0iTFzYSibwZ0Om16a1ucOSNRwRhmu8MbZ7/ESG2O+x9/hKD+FpBjSC8g1hCuLxKyxfjbHuLc9jZvnTrB2tUmwbWb1LoCUTmIseO0N15gZGEWb+EE/bLPdjtkzcZ4jYD7Dk+gUi25MPDiiy/xiZ/5BM1miyiOk30mRBp8LIhji7RyzxwXCaMLFM5IADYrNJe5kRUsWrvJckYERIEgFyxwMnthuP+GXY5cirKidSqrql1Yh9mnd1n7htcXuUL7u8Syt8VpKRCYWNPptFneXONrrzzPq9fP89M/+jfpiBBPeVgsoYmx/T7ve/LjDPQlBkZRrgh8b4PW9UtcjMZ593se4xuvvs6Naze45+g9vO3ed/HnrzzDX330TtgYZX1rk4NTsyzMzRDFmrFafZ8U7MttLBZtuwhhAIU1a2j9Ot3OZdZXDEq8xtzRp6h7B0GMYgnwkRxMU/NGgLGTKNViZLrC4AGfl3/3NZ54ZAm8bcKdFiJew6+uIYIp7NYaNlJJqmF1mO6G5tvPfo0b3wx518+cxK/G+H4FhI8MPFT5cYRUYAeJVkZK2r1NLiy/woffeoRSqc2oXUIPIoJAUJ5p0Cldx9w5Rj8+iJmcpOUHbJiQjtIcmBxjfkTipUn2rXEvUpDBfpzQdyPGJEBRigSEJqBWoFSSKtNJAlhEUh244PqRa4oTra0UEqlcph2wSZlT4tgglfPHTfN9W4j6IR6ayugIlfExahNVhC85/+wr/PRP/DuM+x6tXgdpBswHgt/89c/woff+AHU5wuiopswa7a1VQkZ42/uO8cobK/Q3Otxc6VOq1pg4Osnzv/15zty7wPTJ45x94VnazRbaWForK0itiQd9PM/LEJp1pKCgUS+KlAJthrMA7RWRHdTOvcDaxNVqSONoHJAYHuvd55AQSXyO4wOOtrlsRoWHZc90qNIRtd3tk0JghcDEcbYfjc0zqhTrMSCcNnuXhSIjBg5Ep8GYKgdKe3ytU1bgQNit3HUgrweRf7Rg0drdm0Jf3WeLYynSGBAT66zdQyDLzX06bi5mxNwChBXJ0K4hTb8U5i8jZMP+705cUHlOFhiaT9d2z1MomQQk97oDPNXjve99N5/8pf88tWxJ4CZR9BKt7U0unX8J+DLHTv8VxtUcRoxg8agJwVyaWnUAxHaWir+OOV5hYyfm3J9c47G3LGPMNv31DoLXkQcEwhvH7myhYoUNqkjvOBsXr3Lu+cs0r1ue/tvHCVRMo3GQp97+IMo7hlINEB7WDhB4eEogGx1qh3scO9ZgZGmLpfO/z+BbbY43TiEmA1qlG+jpCpXgDvozM6xLxWJ7Byolji5McbymSPQKFnSSUS3qx4RhlIynSgppRlGEpVDnwNqkXkGakQtyohoEfjb4xSl1XDJzl8RitUZBVmtkePKdciHNbiQdJcgVKcNS2BuFKukug5Vylkb3rALZyJ6as4Hdd07X4Xe2YMFtQg4A6rU6zeYOMtZ87AMfwVhNGHUJggG+rBLIMqOqBH4FKQWerdAyEe3OJq31RXqdLrFvONg4zNTUReIO1II2ndZlpkcsazvLnFt8hUfveZq5ySmq5RLuZQnc8uWzL/vyvStOB2fAhiQZigRWxEg1T7V+hLmSZtB+le7mIvgxfnUc5Y9iqVMVZWIMLW2oAYGaIqoex58ao710nkHrzyg17sUTVcJWh/a1LrUjdV58RXNf3eAHZYT02Nrs8+LLfd76YI3pxiF8/8MQjGBtkDRtcBFsjGifBz+CykGOHxrjB94Z8H/+4Vd531N3c/n115mKJjHlA/Sro5QXfKKoykokmPFjLnsgKiUeGA9QKiKMYtAlPF8BEotA+vt1SL5rcYGNqXayeNhIIZID0VqiSOMpmVRHzrTDJgOMymW1FBadmvVdtg+BSIiGTbCSc/1KKiUL1m6sM6cUrc4ON871GWnUOHNmljGvT9xr8tlPf4Fn/vyLdDtNJifG8b0aTQ2t7Zt0tlYYdHvYwLC9fINDszViz6MyVadWr0O9zNaZGeaPH+arX/o229ev0Wl3EzeDOE11GGuypODkri3aaLB5BqDEmgCC3NXAkBzsQ24rGWlIYIVI3WPyzD651nEYYBe+p+DP7jT/Igm2F9YSp7EQGeR0GD5zQxjWqDvAKkVCbEzq9uVaI4RIfLUzd5vU58uaYaBaIDZ7demuKaLwO0ckctV45s6Ttju7Y0Hrmv9ssvZnFoYC4EvWUZrNKcfheRudpt5liyGHV5kVptD4YVej4bSWzsqR96P4rFyrnJpcCm3J+zSU3QlX4VomxDkFk8WMU1JJlPKKB2IHAAAgAElEQVRQSuL7PnEcI4SgXC4zUq8SBAIp3Frw8PyHCQLB6FiLQed11q+9SGU8plQdR6hRpKhSFQGhNbStpWYMgTpMNDaPqNfpri4T7nwWf+xhfCEYrG1jrA91j/NnYx5sGGRQAwRXrgxYvBnz2H1jTI8dxpc/hvLBUoM4hMEFsGHyvi/FyOoJ3vmY4MXzPf733/k898z7iNBy5K57ieN5Oo0a3pSPtSNcjWA+CHkxhuNzFU6MlPHUgChSCA1e4GEMvPzKyzzzpWeo1+u0O23iOM7iBIQtBn6n2Z5uQVh1rLM1VXQ3c/NVDG3OLQYMi3DzaZFpKmHnkr5Hy18ky+nalkqmFr/CWrE2d20XIlN8GVx9FOkYbr7CXJ9Mau20tya4u+W2IQdCShqNBqVSmbH6CEopBlEPISt4ykdJPzErWUU/WkEJKImQsuqhvBBtYzyh6YgtIAJp2eyucOHGS9x76l0Efp0n7nuauanDVEqldJD3Iwv25Xtf7C1+SjRcBmMGGLMNdgMgzXugEFYibIj0x5C+JeyvoTsrEFQR3kQK7CaoigATa0LTB1ujMflOxt53he3mdSaDGmIEVDiCGHSJTYWXXow5fUeMP3KGTWAzWOfAySqHT1fxvfcgxDGskAizDPYyQi4DFlG6gRAtEDepVE8zNXMvoWzzja8sUvFKmHqN6vQoslRn0NqhNjKCX+vSHw2YC0rUAo+yl6TWM1TQeoAxAVJ5+H5y0O7LdyfSgRwAY5EiKeTj3EKsy8fPXm0sUKg8uhf4Os1Y7k5EBrBSPW92zdbGNkJKojCmu7VDo6r457/5OwTeKMs31gh7XcbHxvjRj74fiUdgdghUD6UiLBqhLFNHptna7hL7kvJYiW4n5NtfPkezHfHCV86yenWVXruFCSOcX3GWEjJp9VC7EwBb6Fui/s8BZkGJtDcLicgAQzbWUuzSNjo3AllwYRFYkQJXlxoWcg2gzfe802pmQas47FqIISjMirU2LZw27N+cuTNlwDjJ1FR0e8hB01Av0/9dPpdcg18sipZZKRgWR0r2Au3hq5ISDkkqZpO6YNg9b0JH0pKfnOUj9ykvAMLM8pHP61DMSOHu+TqgsM6H40yKY5IF46dXFiuNu/HIA0eTtiglE4tqejObEqHkgxKhZFq4y0NZi+/7PPTwAzz+xAOYeJ3YbuC001IEyW3lAOGNUR6pYfo30PYG0h9HerXkWaZBVQWYQUgoukgOUT/4GP23b7G1fY1pfwwmS4hNDxEKur2AV16OuO+uGDn6MEvRTaKGYeZUhYMnxvHU+0AcRjCA+DLYRYTcBGGgdBMpd0Bu0ph8mKnZY8R0+PoXz3Pf3XewWKphGgrP19R6UG8oSiNdOmOCu6kxWZKUVIyQhsiUsXGHWFcZDPqcP/86L738Er1eL7PA3CpQNyHFt3h/WZeEIScNSYE6R9x0Yt1ze81lIbM2I6WFF9vw0rW7V2m+Wt0GcO+J4vpMpj25p3tf7rau2azc/NBWKXybplA29hbF9fbKbUMOpBDUayPUayMYa/CUn1eHdEUkrMWYAXG0ifA8pInwhEF5AqTF90DrMPF/VZJW2GN5a4V3Nhaw1jI5Op2V0d53JdqX20EyzVX2c6Kt0lZjbIyxEdg+Nr4ETGNJStSbOAEFRhvCUCTWBeWyDq2BF4Mx+NKnH5cxWDwM5SDm0NPTDKIO6+dfpdIA5UviFui1mJnDDeKOxuoq2/E2O+E2BxoeI9M1YBoh6ph4B/QK0l5GeINEbWx7CL0FKgTvKJX6Ye6/S/K5332Wx99yAHmgQViVWDooM0A2NPVKBVWtMKICKlJihCA2Gl9ahCeJDCgsSuzv538lcQdQrnpO/OONA4zkoNDa3BrgzsN0qI3JTfjJ7Wx2qBXgVGJBghT4JtfGUURzK0amtREG/ZCbV1ZYurqO75WpVqrMzM7y0MN38/jjd9Pr7bC+dgEddZBeojEOfPA88JWgKwWxUmy1e1y6sIKOLa2tDlE/Sgq1WZtkBDGpH3G2ZgSiEKSbWE7S67KDPA04tKBSUJGMnnOzAiGsw2rFkU2GtwDYhwMKi1flGnHIynshHK4Vu1HBLtmz/NO0m7tLPKfXOqKRN2X4GlevIte5u3gIhqwExTeTu48Dxq7fw8Wabr1PRWHsEAzFSrgvOYQX5Plk7a26V8RiOTEogC2bLmTX3qIFx13r9kiRiAmRp3jNwFhxHAuttXb36Lh7JFaaotXEfZVCIKRCyIQYCE/hK8HpM6d58qknuevu01jbwcaXQcxgiDEmKcwVxxoTx2itkKIDlEF3sHRACdAxvvXp6QoajTQxI+MS9fgk/UGHlbPfojYbY4QgbFviyHBgrsGgGePbOsvtJkb0mBoPqE/WSd73NXS0jdDXECwivDiZO9MFs4GQCuX5TE+f4J7Tit999iYPPj2BGG0wkDGWGOmXUen7XtaqzBCgSDLsgUWiQQkGWCJr2G7tsLy6QrfbTea/MLqZ774Q2ILbTh7LUfhqGbIYZesrJeyimBhg99YrEIM3O3ty1XP6phDDxCEnn/kvcoVKoU/u2vT67HXgnvD/8Oy7LchB4tvqsXsGlPIKB0/ynzY9pO0TxhZtPYzxwEqkJ6kEghEa1MpVyuUAHYIQdaSUKOllG3ofSOzL97oUSUGmSXDaXCyRiTE2RgmLEB7oLYSaB9PFRBEmTl5IetCitdmnNKqwsoG1Hr6/jRFVPGEY9JfQYi5xH9E30O3PM+YLWv2Q9dduUp8NqAQCvTYgWta8/a3TxJ0OOlxCh+vI7W0qWzHCKwGrWGswuoMwbYQ0oOpAjJDuzaeAMr6qc8dMjX/WFKiZGmOzHjpMwNzBo6OIqqbqT6MoY21IKAwSj4GBktAIv4S1CitlUiHZHeL78h0lPwBzjZoU5KZomxyuiX86idbWGqzNXR/cgWSsC+IrEIRUMoDorAgAJL65vU6/oEFO/q3cXEd5PuVSQL9aYXZ2klMn57Bxh9WdG7x09gW2t3cQSJSSlBSsXb5JbXoSTwn6A02vn7gF7aw3CQcRJk59eUUSFJxlNRG7wa47G8gIDiJ1+3BWlbT3Nu1M7kIw7Iec+dQzDEiKmvvMmlBAxW71JrEbSfVkIZKgXCEKF+ziFw4oWOvaVJwKhzYK801CyIy1abG3QlN2AVebujVkgbxOgzrcjFzbnlkc5BBZzAhJYRwonMVFMuHWTGZlcPMy1HcxtN6KcQNu/B342+265J7nnu9cmXJiU7x3nvHJ5o8bsi4UwVs23+4PpOurSFbyu2XvducyIj0fz/PxfA9V8hFCMDU9zXv+yvt56NFHmJicQrCCpImQpxDRKjq2KUHQoLu0N0Kqk4pBOIHvdfDEACurKGKi3hpGHsMTfaQ5j9IvMuoJOv2I5ZevMR2PoloRuq2xZcNbv2+auN3C9C+h20v4Wy2qoUR4HthVQGDibRSdZK/IOkJEoHS69nwQFUYrdU7MjBJVZggO1Zk/MMLOTpuK8phsVJFlQ9U7gBQltOmle1JijKUqLV65SmgU5aDG1Mw009NTLK8s5WuosO6z91NhbQ3PfYEQFObaGIOLTnBWBLeuXLBy/tk8RWnuRiSGFAQiJfRuX1pyJYyz3u2Ct4Ue7F2v2Ts0ZQfpq6qwb9Mtt2ulvZncFuQglzfrUJ4ZQ4mAiCr9cJtKeRJfjWIQ+IGiVPKplQ5SDi7g+yUa1XHuOvKIe+3/f9eNfdmXfwOSk4I0UI8EtA1MRN/EgKGmLFBG+AdTcDOK9CsESLS+SSxrTM9Lmjdf5urLX0JVyxx/8BTCPkK5PMX60vN4pW2UdwkdvURntcm1f3GTu56SjNzr8epX+3B1wIKIubQj8Npd5v7a4+jmCkf9JjN1j6WBRvf6iPEG2mwkfq7yFFgBehnE1aSCjTgMooEVYzR3VviN//aTlPoVmmunaHUvMj01Qe3AGWJRpm4EQaxpxR1KMgYkfaMYrfjEKmAQaoSnCKRMA9Lywl775P8vlmS8Um26M79TOLCMc71JyUAKgpxvrAN7Sgp0ahVw6VDd9bnY7OASAuI4yTuuXCyDTTSeydqGWk2hpAYiVleu8+ef/wwlv0Uodzj36lV2dnqgJF5ZoZTgyqUed04YpBL02326zS7EcaKFi5OUpFpbLEmxMKUS0JEc2mY4ADc9I5QUaFu0ELjzOAcV2Dz+Ykg/nGmYcxCdiQOe6WVW7DqVRErKZOLioLXJgG4O/PMCX8lzUsBqE0AjRe4vr63JgXE2B+lpKAVC211BlgUg7eayYCVIepjGZug0eLtgSXFznXw+hVlCIJVK/+ZIh0nXks3ce4fiKNK1VMzqNDRImcaWrK/5h0XhCnLQWFiT1uRxH1mWLiEyV5KM+AlnMbq14iEHYcX5yAFiPoy7wV5aNdya1CtCYgC/VEZ5Pn7gUSqXCKplbNjnre99F0++4+3Mzk4jRISghvAPJuPnT+OVRrD0iKN1rCeZqXfZvvp13jj3BWZPTjJ97E6UOERQabB+8yuU6j2UfBbduUrz8jbrX1vl9BOSkccrfOX/2mShr/EiWDZt5E6HuQ++hXD5dR4YCdkIFJ12jB6ECDFGHC8jvTmE7SPsIphlrFhCBD6I4yCmsZS4+PpL/PP/5TeYEFW62w/Tbb3MwYV78epzWHyC2ELUo0nEmK+JtA9SUSt5WFWiFxqk71EOPH7wQx9kYf4wv/ALP0+r2WQwGNDv9/PYA8jmLttHRStOOqfF+gcmBf+QB+e7a925C2Tr3j2jSHidiiG5vwEMSg4neSi2ofjVrdGh+B6ZKG3cdcq5M5ErKzJiaky6X2zB7fMvltuMHLyZOBOnQsoKfnCIsWCBnZ2bbG9uEA1C/LJPpVFlY3CV1aVrhM0W84eOcezgmfyQ2ycI+3I7iU1cg+JYE2tNUPKJjWW9M8AoqPqSxLEmJKlBME8cNiFuIlUAos7o6B1Yc46xuTOMzS6wcukKL3zqC9z35DWakz/I1Nw7uPjpv8/Kay9RLkkeeqzO1PdXYE3jz0zzlh8PYLOPWWwxG/hQaiDLpzCv3YBSSPXQBMc+chDT3QRbQYUXSAIatkFfB9EDZUG+H4jBtsEKAn+DJ594B+/7oX+PLd3HRE0UCkuJVqdHveSxtbOJKdcxQiFFQBCUkb4iBPrSY0QkLzj3AnXuL/vyF4tO0/5BAs517LTYDH11ufKdODtW7q8u07HfRQpEmtd/SPKYBmMMUZQcwu5nSwKW+/0BsdbIbki706fVbLK6ucrKepu776oz6MXoWOOXPSqNEsfPTDLY6aAGsHp5gyvnN+g0O+gozA5xlbV+lwbZmnS9CLS2+UGcgmRjDJhh7eJuP+AEXxT90/dKlru8SJoK2vyiSJnEz+hY59rLXbrAoiZ86PsE1WaAZvd1xXsULSgyzZ5zy52TkooM8EIGPvZeL9hb/i3/217OnsRN7Q1KTr7myvcieSuCvBzED5WtzshXfpfEAqOStZYi90zbm905QQhySOssiLUmi7BwBE+4edmtlh5qRvqNyeZDpLFRWicBsQoyEmSMoV6vUqnXUX6AVAJVq1M/eALtlTEoEAZjk/e9lFXicAkp2gjpIb0JRsoTGP06jYX7eXi+w/mvvsTmxX/J8fuuszPxPg4svJ+zv/nvs3Ftk/mFMifuLDH3jipsxPj3z/H9vyCxV7cxOyEngjK23CA2s3DhRexCmYl75hgPwIQWbBk5OIsIAtCLYDdAdEFKrPwBBF2wTazpMN5QvPs9f423vf/jrIcdRHQC36vTDy2DXhcR9xkYjayOEqOQfgmlAoQnCYWgqeGAIHEhlYJHH32E3//9P+DHPv5x3rj4RmblKlqw8gkZXntZGmb3dfeyTH9xq6Bel+0rexfuusami0+mlko378W9XvzE7vOqSHT3KLkEuHS+zirh+iOFyEjvd6YFidz25CA3byZFP/r9Lp4v8DyfanWakleHSFMtlXjwnrfQ2e5h4j5Gx+mhNzxc+1rFfbldRBtDGEWEsUYpSXMw4PJmi54yTFZ9qkGJWCg8ApDjCFp4fjlJ3WYM1kgiexElJX7tHgQd5u8ZYeKw5LlnL3DqzEVC7w3CWpv5MxPMz9Qo33ESNf5Tib+mNMAaVPr83+y9ebAl133f9znn9Hb3e986b2be7Bu2wUKABEmRFknJFCmKUcmMUqpES8mKS38ksa1KqZKyVY71R5ylKqmsSsouy6bLjiIplEktJZmUCEIEQQAEQQIDYAaDWTDre/PWu9/byzn5o/t0930YkRRFWSQ1P1ThvXenb/c5p8/y+35/m1qpIKiCOoORfVTtCoMLLxFeGFA5W6N2Yh6ip0G0Ye0SiD6mXQPVRIj7MEaRDL8OZofhdsStS1VWz3wC1zG0iRjEirXNkO7ukMW64s3BEONWWFYBHikjKiQMtMBxBcuuxMnih6Awrd6Tby5p3GtxmNq4ATuWSsxaC+wBZtlzqwGVs2yUzdr5c2Z8zWcPUmPIGL30b6lExsYb4iQh8CS1mkOz7dLv9djd7HPu1REq8BGOxPUcnKqit92n1agwjrK0ho7Mze/xJMRIicrnhc6VyTS7SZn5g8SU2mkKFrpg9Yq25/3I+2+Z4j2sfpaL1LapNHz5vXL9IHsPURRh1VWrgEop88q4ufJh25K9x0TropIrd7fkFC4RhfKrskwr5aDl9J2oPZaNtJM22NNk95HSpot8uwJUZuDts4FZ1lbvtQQUbbZpKFNrh9UHmBFhtfZMGcstJdnjTN7fWZBlM8XkmDYHJcVaMKTz39iA6Bz7ZGip3Gsxq4iKjKG2z7RxFCb73WTzXWVVyivVGo25eYJalUq1wtEzZ1g+9QBnnniEasMHKdDCQQkf6CDYwfFaoGOMEegkRuu3UErh1R9DsMmDH5Dcvn6Bl994iyMnLhI7bzBt+Zx9fIGFQ/N4hx5GNn+stN/fQJwWSBMALYQ6ihFdwvqX6T27jlgcUDldJ1hdxERPg+rA1ZegITC1GjhthDwDRhD3X0Qw4s7V59jdPsSB4x/DlZqOE9GLPa681cNECfUAukKDX+OA8lFJljgAwyABoTSrNQ9HqdwL5JWXX+Yf/Tf/iK2tLeI4Jk6SzAqos3cqSxbLYhZboD5LTOwlN6zLjzWLzgIF61qXWAtqZv3K6ZNsrtt9U2ZpZHMrRHYXgwazN/C9JMak1sXSIkySbA+zU7503xk49C0chd/z4MBKagJUBEE1N7ViBEiFdCW1qsvqyjFe+NoXOXn0NEdX6uybO0Kt2uBt6P6e3JPvdsmYOWMgihN2h2Nev7XGmYP7WY8TlHBxpYsjBIoaRjYQognJFpgQYxyEmRBNt0jkcbS+DOzieg3qcz/G4++9Q3fwItvnX+FAdURjdR+VlTPIxpPgBAh9ETNdw7x4AULg1P0w9zD6mX+MeOLnESs/QFDxCG+d59rzW3R2dlh+/CbJtfPIeh1ZayLEPDiPoadfI7n2O0TjHqYqGKkq06UGK+0Bn/zU5zi2bFhqOHiBT6cRINwKC24Ht1LDFQJHKiLpMBQK33FoexI3zyedSjkbxT35xmK0BiVTszWFsmvds6x/ufVXkULkGVnSQ09mB15qgUiV/JSRtex1qoBmzyspnWX+Ov9MykLZlOnBl0QJ/d6EOEqo1j2EEgz6MTXfI/Akngs6MkzHmr6MiCcxw+6YUXdMEqXWBcdzCKPMZalUCbUw6WfKn8h81U3mglTKZmQPXSVn3VWKw5msr3KPYcC6NcwqvwXTLVL2vsR451YCC1LKymyu8FpFwOTvyGQ3L4MBAZk7D1m/krwNVpTjYOMsUkWJ4l0XHSmekSv4hUpcXJoqp2mF48Jfe2ZN2otzHSx719a1S95lDdvnGw06C9YV2RyeUZzETF2H2UxEBRiZ8U/PrtGlYHTr9mUoZ16alRQkmHwSlOexNVlokxE0mXJZBqEWzNhK5UJIXM9FI0i0xAlaNJdXaCyvcu6553j0kUfwhI8rHJQwSGogmwjRRpqbaCPAKIROiJM+iTyKTl4F2ScIDrO0+gBBY43+8GW2zr3M6WVDa/Uo3sIjyOpDoBzQl2ByG/3HX4flZcThBxCOInnlv0U8+Z9yw9RoP7TK8HaXzRdGtLe2WXjkBsmbr6KW2gg/QMijIA4QD19G3/gq0XgX2h4jr45cVgTuFp/81Oc4tV+z2HCpewH4Aa5ToeG1cIMqrhAoJ93rxwZcNPuCAM9RCFIL1+/97mf4l5/8JOfOnSOJE8IwTJX8sntclvln73wogzRhQV921mqTWnOEKSyr1s0STGEBLE9lkaZ+1kkyU8ROa02S6NxFyWRgcha8v21qYeONjDGpepsBmbKbk7V2WnBrO2Zrgub68TeR7wNwYLMJZKZB6ZAkMdok7HZ3GI0HeIFDpVmh5jXY2dzi0JP3s7JwkFqlhed4e5iTuxdfuSf35LtBcqNidhDf2trh5TffYn1rh5vbQ65cuEFPe7zzkaMsn0pLmRnhoFlEESNEABKETk3hrrNMOH2DxExxvAZJ6BEPt2gt3A/yda4+tUbnrEd1uYlo1EHewUTnML0rsLaF2RljxhXMUKNHY5xjFTZf/ANa97+fsbrFUL+K3w4I16ZsXrjNW+d6HHnkJPOt/ZhojvDiV9jZukwl3MLd36GnWgzcVaqNs1S8Fvvnd+nHkqas0XQkgZvg1Fs4MsBTqd97rCCRkqpU1ByJl2ccs6N2Dxj8eaXMnlofdKNnXUVEpjRrU2R0AZtasvDjzZnb7H5WmSxeSYl1K3x3CqtPdh+lbPCnybJsxRijcVwQrkOt6uC4Ei9QOIEkHIV42nD94jbRKGZ7fUi/NyaygMCRyFjfxXf97UAlb3v+e6n9JgUMxrLtOWss2OvjvDf4OHdxoawMlJj7vc82xd97eXgpBZg0PWNhbEizoLxNSu2wcRVlq48lKtPqw8XzcxAAKeAzhYXB2HcmQeaOYyL/sdd1ai9gt/NIIItaAlYRsg+fvcXb1nUeAiwLlt6+D2NKweKldsscYFjlyQI1Ow6zoMr2yro85f0rpfjNB0vYOgzk410oZ8XnFrxZeCcyeteuPeX6uK5Lc2mF2tIKsVdjcydm0IXnnrnIifkOi9UgszJ5aBbS/V5WETKCJK1s6DhzhNPzJGaK6y4wHUyQMqC1cBIhL3L5313n4Q/O4y3MIasKxFVM+AKmfxVzYxMzmsCNEfpWjNGLyIMum8/+W+pHfpLhxh8QeX0c32F8a8RmcINLL3a5/4M1atWTmF3B9NZX6e1coRp3cY8ssmk6RLXT1PxTBKbO/vldtqaSzd0NjhxYoL1QwwlaSOHhiDTT0UQ5SKloSEkgJIHj5O/mc5/9HJ/5zGd46aWXGI1Gd1eCLaOuizldntfCmDT1dcbul/MJWIvi3rvqMsEhJPYKYecchUXL2DZoWzNB5zELJp+z6bwtr830klKbtUELuzeqgpShWCNvs3aJUgO+iXwfgAPYs29ijOaNS68QRZogqLCycoCQETduvQWRZLl9kANLx7IsD0WZ+bK58p7ck+9msezgTm/Axes32d7t0h9ozr9ykTj2qDY8Vg50ONb0kWiMqKNNDymClIFTESQxUrgo2UXIRZSqoJOQKOxDskVNDvG9ENX0EFWFMH306CLR7fOInT5cCZH+AogELr+JvrOJfvhhwlvXmMSaiZ5DeEu0VzcZvr7Dy89tsZsEtIeaoAfj/ogbzz1Ne66NN9fAXTxO7K4Ch2hVDqO05MmHD3Jxy6HRmKMiY0imRKqBMIbIgHQlsVQ4StJUikBlhZog/3lvTf/5RBYnSi5CCHRi0qJSmRJoleo0t7cN4k0VNHtY2sDRcjxXmZnPKXZmlT4o+9sWylnBftkDOV0HtaaL8hVeVeFWFShBOI4JDVw5t04UauLYEIUJSeYKpZQkjhJKZDxCgk6ywmwlFxWrTNizNVf48rakHbLZcIQRZFHY5G5KqVlltpN30V2MMQg7diV3hL0iSv8zxmBVkr2zfS8wKT8nZTCTkvJRSJFp6u0sZu4GNIOSyFnLu625vcBo5hpRrNlCCSqU+dkhKPpplUJj25R/ln5aJgny8bLvWxQgIJ9LM7p9MZoFz/D2fs3EJljLQjnN5Uy/RenhWXNyxYU83qF4XFrLAZkWxfKbTdxajek0ZmNjFxW0+Orzr/H448eZa1VYrljXpAaaXaSoImQIJgRt8/XvgtyPkh5h3CVGowOy/T5CtQXCV5jkBnp4m3jjCmK3D29Mke2DsLOFud1Hm3k4c5rpjavMPf5xxluv47WGuJVtBld6fP3Lm2xFFQ4NpmgXutdusXv+BZrtJv58E2/5NGF4CM87St1dxNWCdz28yusbiju3XZygjXRaRLKGMglJkuC4DlpJqo6iplx8VVS9f/HFr/L//uZv8uUvf5nRaJRbw5RK9bw8DkYwO+8zt55yhjCTbTJCiDykNV/H6cssrEzCoIukXjmwKymkBbDMUXdp7hhSYqGEgEUxqQuAU2Jg7JzF2NS5GqVUWtFcW3d5u8Zm99tvNf3O9wU4AHJzqyEtVf3bv//P+MB7f5z77jvL0PT4/HO/zx9+4VOcPvQgvltBSYXJ/9t7ON1ti70n9+S7R+z52a76PHR4H7X7j3Dt5hbPMebO7W1euXGD2tV59j94kKoIUQyJqWHMGClAqgAtpoTDc3j1JzAGwsmLSEfR3PcYW6OnCbb/hPv/Zg0hNOgBJopJbr9E//NbeIGH2gTvQB8lJmlU50Oa6MKX2P/Bv8udyVtUlleYW/gEw2u/jeuMee6i5gN/axmnYdi8eZ4bNyOe31jgv/ipBzDKoNWjzMkzaC1gfIFo1KC+73EenasAisgYdiYhNze7HHAlcb2NVoqmI2lIiScklBjB8s978q2LjSewv5fIzUJZFpniaJXju2TcyD0rtMn9wcsKd6HcF2wtpN+RqpwissjKYdk8q9kJlVa/PvHAIhcubGdNquYAACAASURBVEFFIKqCeJpW+52MY8aDMCWBhEQqhdQpsex7LtNxlCnuhRqojcGVCoQsCr/tGR8LePaa6E0pDaEQIvfLt4rrzDhZpTHza5d59pHZw7vs326VW+teZT/QlAs22caY/Iry88AqqobZ5ZEptiat6FoGM8W7NzOEd/k5iFLxNIpiX7aP9v0V7hdpZiILMlWpIqywqESk8UR54TDbTFMGaSK7f6E4pc8n/8y+ozT7kc2mlM4tzSwwyHFf3l+Rv0PyZ5Kne807ZkGRII09ELMAwOIce4+yZS23aGTjaQwYCVKk71THMdMopre1iREaqQBZx6n6hDtbfP7CFdrzVdqrbQIxRTIkoQmmn7laVTBxj2j8Fn793RiTMBl+lkrzQRKnwWD4RfzdL3D24/PAFGF6mNE20ZU3GL7YxfV91HqC39pFJiBaHqIdEl3uc/Cjv8TN3WdYPP0h6M4zvvYUhpDnLsZ85KdX0NLlzlsvc+78gPVei1/4yYdAQeI8wUr9fkx0Gz1+kzjuUFt4mHfOVeDMw4yThFu9Idu9Ecueg640mToui45DVQmc3LpkWF9f51d/9Vc5d+4cg34/s0IVLmNKOaV6GoJQh+l8sJXKS+s4JUJ0abJRYu9F8b3SupHCYLLA/fJyshtkGbaXXRdt5esCGFAA7hnrIKUJahX8Uqpck7kGZs8sp53OfwhDXiDlW5DvMXBwdwbFvoDU/0vTG25z9PB9LMwtMQkjpoOQaBIzmUx5/+Mfo1lvFy83e+HlA/Ce3JPvVikf9EpJ5lst5BHJ3FyHs2ckjz35MJ/83HmuvP46F5/7KpdPL/CgOwIuE3MCwxwy6SGTHYwJkcFhotEUHW/jBMdxvAHKPMdS7f1MKv+GaH2C2/Ex3ga6a4i+vIWbQOXDHYRoIC8P4dKQZJQQXolxfvggxrnBYmcVxGEQi7Tb7yU59s/5e++5xcbLV6jV6+j5NkfmVnnPT/w8InkG2ETrNsIMmPTeYu3yH/PSm1X+5k8cp+67KCHxhGHeFwT7WqAqVLNsOFOjCY3BFRpRcme4Bwy+fVFSIlXKYIVhkh9MhQKqkI5MlSxKyr0xWf79jOVPP5pR+OyZazktASl4yJ7tqJQlLbt2xNqgyAI0pUAqUI6gWnM4drKD44JJEsa9cXpkGsF0FLF1e0g4TTAmNQcIkQYgx3FCdzgsDn2ZtiyJ074m2kBWZok9jDKkirzIXAWEmXExnzl8y+4/ReBtoQTkSqJJ3VSQNhd/MZ75ow2ZhSZz2cpYQWOscin3zPn0Xdj3U7jOpI1V2aDbvtgHCVvQzpS7Yvb8TDtauIEVQCAPss0+KNjW1G/bKvpKZW/fWAU86w8Gk1c2Tp+Vsr+lz5IktxbYm++1UJW8ecCI3NJgDHn8gI2BiOMk75sxdvzLfSsU/zxAP5/AorBQCFI3lLtYYqQoxkvIAghh+5HpMLbtssQmJ3GMSSKiXo8RkEiBCKYce+wM7WNnuP3iq1xYDDi88gBHnT5whZjTROxDxZsI3U+BmL9KNBqj4zv4tfegnGu4coBffSfT4NOEtyd4S1V0fIv46ibJK7u4jqT60Q5C1xGvdDFrY+LdMfEkwnlfBeQ19i88AOIE1B4jWP4Azfv+LX/v/bdZ+8pF6o+fQSuHxeMnqMYHcWr7gC1EUkckd+jdeZ7rV17n+u4i7//IIZq+h0BSkYYDDZ/5qo9wfKpCIYGhTggTjcjSKU/GY5544gmm0+mMgq+s4q8NSqbpQ/Mq3cbG1JBh0ALw5+vUVjvO3k8cx/l+FSdpEhCVufLYOW4ze+XkQLrQ8n3GWo+ELOZgnuAgXz8ak6QNm90zZue2nfephU+RZAkJUgvJHpBiZr70LQGE7zFw8I3EkCQRO90NfuN3/xGh8THy3dy6c5kXX3mKcJKgpMvDZx+hUqkBdvHPbCd/RW2/J/fk2xAhaDbr1Os1ptrw29e7BFXJ0R98iF57iVdfvcyv/9+/y//4n30YyUl8+iRMiYVPrBbx2UWYLsa5hE48kvEddGTwKy2k+wxux+PZf73BfR+A+coIYxLipkPcdFCdx5DuRzDqGS5c/BKvvb7Nj/3KHC/8f9s8fp+Ppkl/2seYiPlgAVl5F+78Z6kfOcLt9RG97hpeENGY+1PWLvxLKknIxdcEr65VifwqD512OXP/mN/5179Cy3eZtk/RXLmPowdPcXzpBL7K4TyuSPOkpy4sb0+SeU/+/GIVn71KcX7SGI1O4/PydIuWzZUZqxrHSa74WyuALtU9gCwzRwYCrJ6onNl3aC372hicrGJyECjacxVWj7c5+8599KYJrq8IvFSBmE5Timw4jNAGkkhjKJRUYy0CqSt21vZMGUgy9rCkaORsohUjcqUi7U+WevXPJLBsX94OWlX2fHv8pG5FzAADq9Qr0gE1WcyQvd/dZn0OBGY+KzH4mc08B1yyYOJzK3ymBBW3sZrGHl2jVEPBBtLqLJtLGjAJcaJRjoMsVZfOAyZNmt0lZ/hLHSpCQtJBsvfTWbCo1iXWPbtmb/aYLHNk/nk501LZXSy9g8m/J9OI8VJbsrlg9Iy2YN72SwEu9s6J1I0lfa4FRilZKXKLkLBBpkJmz4RGvUI47jGJpswdOcnH//4vs7RQYUe4PPMn+/ns8xeZbu3yn/+H70RyHJ8dYiZEoolSHi7d1CKg30THAdHgPPgVXD9GqBdxWg5P/7Nd3vvTLr7fw8gpccshCarI1juQ7k9g7vskT3/hHNLRPPqRJl/94x3e9XCViWnRHd+m6szTcOeQ1XfgyadoHjvBpfNdRt0pcwdanDnl88aXf52KnvLyC5qnL2tWD7d54P4W+1fW+NS/+gd0fEV/4RH2HbiPY/tPsTq3ipdlIjJAWzpMxiN+69Of5h/+g19hNOwzDePiHWUKexoPBcakWf105vtj16koKcx73R5zJbtsTSivpez9pbmyNErJPFNQ4ZJE6bua1N1S53ELMgtQjqIoXzt7RYgCcOz5lxlQkgfIl6yxlOYxkLmVpfv03dKw7pXvSXDwNstN+imTaZ9nX/oXxNGEVmuJREcMpj1GyYgomTLXnKNeb5aixi26zyaImL3jPbkn37UiBCJjIxIM3UlI79odpky4fOMio+0x7njE9a1tfuGf/Ba/9l9+At81OMaA7hMlhrFpURFbKP8kynNRWhINrjK49gUq6gKypXnkJztEk4jxZIILTEPBxk7CnPMLIA/x+ZdfQi80+PA/eQjZ+VHO/twLxLf/ADlXpxG8H6GOQPgCyj+DrD5ApJ7FyJj2aof6whyXzz/F1y/6HFn5EQ68d5elMGTKHP7SEQ42rrF6+Aiuu4yRHXYJmAiPNBBSZxuqLjHQBq2nSOnfsxr8BUSbwt9cG5Nn1VCqYF0BklinjLtMi4fpLC2nHXqb3SiVLGGESBVDnTHuZCEiKYtbKK9l9xshwHUksTY4Tvosx5Es76/xzh84QBjFOCKhsxTgBIrEaLTQuL5kZ3OcAgEBJkuNaudLSrbvnSepgqZNoRPKjM2nqG+E9bm3sRVK3j0AvqxoFr7D+VXZFYVqms7tIhVpWWmFNP+9ZbutzAQL28+0nv3bKjmlQS3ek8raX6jXlpXf656XW1ooXCvyd2ZMCiQSawmQM8ep9ccvAyRR9s2n+Lfc1YZMUaZId1oEXJesGaa4h3KcNADXphe1/WU2owzlvumiqcW42edbBbJQHK0VQubAclbKzG4+2exY7b2+pEhakCgsvW00CIckTphOpjQaTRZWV1k+eYKbb9xg8/yIN25cII4qmGGPp1+acHV9g//+F38UXxkck2D0BrH2SUyFQHZRwWmU76ISwXT7BcL1rxA4byHqhid+dp7heIJMJInRjMaSft9nzvtF4CC/+cVf576PrnLyxFnc6sM8tO9lJpd/C7XcoeN+AmV2INpBevtx5QOE8imETFh58BBGRlw4/yyvXRZceqXLf/zzP8An3hVA8zjN+SZLlU2OnzqM666gZZs17eEqD61jtLUEmJQpdz3Fj3z4h1iY7/CzP/PzCJEU68COXX5GZqRDFp+gtc4tmTZg2KYsLcBxsR6FSDO3ZSFEmIwIkHnRviLjmA0gTotHyvw+IHLwW7hXpgH9aQY4UwQlG0Gsk/w5uYWLLAi+tJfYeAohII4tQCpYnbL7mj0jZZb97ZvJdyk4KFKiwds3SHsN2JelSXRCFE3pd9fRkeHEobPUKjXiKCQcRyTjBK+lcBzHEiP3YMA9+d4Wu4kZg9Qxk7XLVGsBOp5y6kiD5vxh7uiAy3cm/NrvfoGzpwRnDy7TCjx0HDIMrzIy2/Q3LlMnwZc+rhrj1GLiUUL3c9tUzyr8hoNTgWQnJgw19XkfqAIOZ+77EeBRgqUaQpym0tllcvEZol2Bu38e2ZwS96/j+BuoznuI/JfoiTvUjKAeNPFWV9i4fJ3FQ2PmF6q46ihGHkQGi1ScwziqiZQ1BC6BFky1BiasD9Zojm9Q6ZxGOU1AFjQwcG+Ff/uSq0IizeTiOqkKm+art+4jJh9eKfLkMPk+rbUpfHwhY7SyTBxZ9V1K+7CS4DiCJAEpS8GzhW6H76aVkz1fEVQcKoEikJrJNKK/O6FZV0ximEwS9FSjKoJoGpeUBdsWSgeKzYQzeyjYlK254qBFfqjrLGe6vV96nqQ3tax5ueCQzRIiZ/xcyBWLWfNMpgQLg8zScuoSS5kqInpWmTTF/dLPZmBBToSVX7ANKM/dY8rKgikpWGT+/GWrxsztyop8yuLrDLibbHSFzaIiiroVd2NC33bK5yCkiFPJx1uXrQwiAzvWf9ukgZnoXDG3c1rJWderMmDLfbj3WIwsjLPpR6HwFbdxJzZWJP2qdewuB5QXVhJDuVCVjVuxMDHNjmOEfT5oElypGI8neJOI0WBIf2OdoPIG691dKnMeD903j2icZCN02dwd839+5inecZ/g8cOHUje6qMckHtBPthlM3qSFxldVHLmBDBKm3Yj+8zvUHlVUOh7SSZhEMRpDbc4F0rivJ975s3TaE/zmIoh5AqfP9PznifrreEdfARTJdBsV3Ea2niAMvsiO2aJJl1ZjCaE79G+tcejHHmV5/yKuOo3wVlFencCJcVUTIWtgHBwNWidEyZDtwQ7O9itcuiVx/TkOHTrC/Nw8J0+e4D3vfQ9feuZLTMMwX2NpIcUIpRxsIHHJc6c01UvgNMeaxf5jrVQ2lkhm6788f8qugmWW39gJm+2dqdtP6bmlmJh8rpl0RljwWd6UhBCoLIFOogurgu2fyECBgLQQWw5aCvRpSDeUu2Zx2iN/SeDgbgv/W/9O2m6T/4RygBxYk2eSISVjNFESMh4PmQ4SfBVxcN9REIZBv8ekF6IncGDxaGG+ye6RHoB/nnbek+9byQ8KMfv794B4SnJwX4fFRpXmUo3lhTqt+Q5dVef09pid1/sMzYg3t/rsb7SZr9XxnBhNA0dtgBkxTgyhian5EqfaRtVuEW9EKE+CK4ljmDiC+SMumJfBaFb27Scxh4iMxJNVwngVAomUMVJsIKiAGWK652D+P6DWWWby6mVMdxM6TToHD7O6WsXXb+Gqk/hBDaUqKOUTxy6j6Q4Ot3FlH1dpHKEIkwg96RFHuwiOI0SW4xpZKAj35NuX0pkkhMB1HeI4xnMkUVzQ58K6opABBCVSHVsDRqOz++TgwKrKJr1eZNYGKdM4A6UyFxklcrcfMoXJcQT1qoNUCjdQVBsuriuYDqZUHc20H1KrO4w2QsJ+hE4MSckSoYRAS9CJPczJGVxZOl/sh/bose2wjFtZh7Axs6VvknW1hD1KtHBJwS5+zjLzs8SYyXLUUyiv+XeZuV6W96z0hhnTnT64jLXyJxlyK8Db+1A+jwsmsnyya633BGZa8LBnz5wBL0UL8v6L8r8VrbQuPNZlI9cHbDyCHVprbcgVbY2UTta24mWkjL/MXeBEdoPUrUrm1haTK2nFfWHWDaVcBm3G4yAHFuV3KvLrZpMBk39Xl+eEKX0Nmf8dJ3Fq1dIJ4WRIJYDjy6ssri5x39FFZHOOXR2wvtWn++aQvhnx6touh9vzVDyJ60Qkso4bbYMZ0Q+7BP6Uiushq01UdZ3o9hTnqAORItIQVyTtgwKjv46QZzl65H4iLYmFixKGyKxCYFBOjBQ3wVQw8TamfwXR+RiNuWV6z19m7G4w32izsLRIeKiBv+BSCTp4Th3lBggZEMcJw8kWjriBK7tUlSQBxtEUPd0hia7y6d85RxjXWd53gHZ7juFwzHg8LixP2Rq15HnB4qcKdBEhZb7hWSFKa3bWWkQRh5DNghxol9ZD7u6W76N2nhbvuBxfYh9miZe0rkvpGjsdcmtXaY5YxmNmzWbttrtuyeJnR+CbyXcUHBT+jLZqIW9TrsTs/5gFBcUCMVozGnUxOiKotpHSya+PopBBb4fJeECrs4jjeAyHXW7dvEw4Mcy3asy1F7h47QK3b19n2g9xnYDHH/obRRXC3My6h1W5J38NxNz11+Kzb2Xp/NWKZcIMEAsYOy4nzj5AxxM8pLKFrRMOJiGPrLj0l56kF25w+dYNTM9Q9as0KzU8d0SnXiPRXXaHQ8LJLpHRePXDdN57h/4La8Q7EUKnBXjMvI9sCuLuZ5GNAdJ5CMNBYgJ0PGE0dakcOIHn9hEqgXgd5SSI0AV8Ou02k42Ena0dllp3qK3uUj96iMm12+iFCrEYEpm3QA6YTA39/hu48g7K3KJaCahWmhDu0gwlqr4KYpquYOn91b2M71Oxeq1SCqM1rqPQ2hSslQBHChyZMqlSpfMxSQxxZIi0wSRZWlPKZ1jKtHquwpDWLwh8Sa3uEviKXi9kGhl0YlASfE9SCRwWOi6jsQElaDQdqoFkOo5YWFCEw4hGxyGexITDlDTqR3F6mJO6ISWJRsdpKlPLB5dz/tijIM9eUwISeaBhhiryANR8nMp5zE2heGe5V01mOcmvMOkXU199UdJhCwU6SbJz1LLXJQX6bbEE9pvZSysr6HkPS6jAWJZRzAZU5veyCnKGOWYAhP08b0cBcGZckQBKbhtWpLQuaKboVxkb2HaLImg4DXwvZZRRIqulUNyjeJ4uWNVSn4zW+TgLTOYWAnFWGRspskD0Wf1cqnR8pJBZilJb26N4VxaYkP0lRREMW+6LBQemNB75WJX1ohKQKFebrtSrtJcWWTh8iP2njvGRR+6j4yk8pSBJQIwxy5Lo4JN0p3d4/epVKp7ggNeiXmngqjGm2SLRO9zpDonjTRIJ7rxD+9079L98nXA7RNR9EtfBzBlEPSTe+UNUa4pQD6PFEolxiJIRk8ijsnoaL5iC6IIeIZ0pInIBj7m5DruXRqxNYlpz28yf6FA/fIjJtTVY7RBONhBhSEKdyTRk0L+MJ9dQ+hoYCDwH31U0QoGYP8Ctm5d5/ivX2e1N0Zn7mlJONi9NNr9kPn+10QjpZMo7+fq163MGLRf0Rf5eCp/+Mqwr/ZYBj3TfsKAwW09Gp/Mk2yuklBl5kgLY1NJdfnJ6A0OaECLWVqEvP9laG3W2z1gwVMwz6+qoSwvX4uo92aG/oXwHwMHep6Tl3aPJCOU4eH5Amqs3zXCR5vG1BjyK/5c6pJOYcDrg1VeeQpkdTt7/UTy/AUISR1Nu37zKi8/9EeGkyw999OeZXzzA+tpVnn7qN2iteBw79m4Cr85LLz3DG+e/hiOgUvX58Ic+jpIqr+aZsw2lgb0n379STrP3Z8nb1o410/1Z1/4VzRm7bhIDm7Hmy8OQthKEWrA73IXBgMlul3G/y6FjcyzNzdPyWhw+3uba9hrn129yZrlFRyY46n6UM2C5LUmSbcLoMlr7SK5QOTgkGo+JBjFUJHMnA+58fUin8gKVR6/jtqYoN8A1kmuD23jjL9Bc+AlE8irJxtegdxlV66CO/ENgShxeYqPf49rNEfryGvvecZmR8xH8+RWQ8wz7t+h3r9KfamL/NOHGVUx1m7U7u+xrPsiZpWOonU/jOS3c+5eJpy8jkCj36L31+x0S6yaTVwYGHEcRxWkEsuNkjK4ETxoW2xXqriJGM40SwkhjtMPOMEK7EEYxdmVpa55XEPgKz1dUqor9+yo8crbD/qUKn/mjG/RHMUZDLVAstD32L1XxPcGXXtggig2tapXlRZ+g6WCEoN+domoCPY1QUjONDBvXh6nlw8vAwVinQcXaZNmQLIMNQhRccKb1pmOR/S919bGFqsisJun1KattlY7SeUIKrJI8kLlkFSiRU3u8ivIm6AxICVHeZt5+3uZMfH7r4hrr0mQ/nwk43qO4Fg2YZcOt244FNBYtFKttFrAUzy+YUq11zuru5V6KbC0lVtSkLiVCCMJQ57EC1m88Ra1A5mJVxCpItJbF39m1EpFmqzKQ6KTg/Y3BURIh06QGUheWMZO++NRyIQQJ5HoLOtMXhCwXscbSy9ZDwYjClSQFmFmfpczesSHRafXcnPwVNqg1NauZrNia43pU2h2OPPle7v/gh1hyJesodrc3kcMxvTubTMY7NDqSd5x9Bx1/nqMPzPPyjTe5sjXgyFyNVsWg1IMoZ5fVBZ8oukIcb2PMFMwtqod6hNMp00GI11LIqsvmawNalReovusmbi3Alz69yGVjeAMvfJbW8s9gwi+R3HgREXdx2vcjD/0CMCKanudWf8rGlTHqwHVqR5tM3PfjL66hdYPB7sv0+19llFSI5X6i7bcwjW2uXt1i+OYmJ+bhoZNVpKzhP/gY/9ev/V1+4Rf/Oc89d55eb4jWmjhOcBw1MwdEBqiMznRKXVoTomxJK637bCqb0nzOEylg44BMPt8La9XsPpEkcR57UF4lNluVkRDHBUApLHPp3pLG/0ikjcfJ25XNoSSr0WCD1w251UuINFZKl/aXfE3Z1lvg8E3kO+xWlD6w193m85/8n9h/9Azv/OhPoZQkHOzgNRcLVsMOdMbM7G5v4AcVlKOYjNZZu/EMnrNOJEY4vkQ6gl53iysXX+OpP/5tTh47xuOP/SDzC0uMR3eIx+ucOnyCD/zIT7Db+z0271xg+/Yd4lFEvVKh2W7jOi46SZhMR3iej+9VvrPdvyffF/ItgOrvCkmM4fmNAb/31jZyOmZnY4tmS9Ps3kHsdsHxUCsH+OKlAe1rA1Yma5w8dpS5ziL7lxZ4Y9RjcO4LPDj3PPU5qNSPIYRPMu5hRpcQcz+KPPgCyeVzTPpbDPoR20gOnawSSnDiHiL8ClGyRqKXOdL4EEPjE0e/jxptQ28NSR116AcxZhf0C2yFOzzyZIVHnwyYP9hCaIfDy+8jmdeshzGD4Cju/FkOyoSKO4//4CdQAjA3mIYv0O9+kV6/yvyt+/FOr6KCEyTGx8QjXLf2V/1Kvi/EHrZSpO44IJCOIowi5jt1hJTEsQad4HuS5aUGTx5o8NqNHTaGEyqBw4GWz7Pnt0gMjCbGlp/A6NQ958iBOrvjkKDm8s53dHjsbAuvqpA1l8gY5uYD6p6k6isaVUWjBoEHg2nM+55cZKHtIlVCVQje+65D3Lyyw9W1EBVDxXdApSxxpeaysK/J+vUuYHA8SRLrjLTLOOSSe4tObIadEpjJxkVmip/9jtb513IdQAqr1JNWIhc2q4hVKAp2/25SBCwWrP1e5RnILBI2Y49GSZUrpqkyYZnIonFlEqxMeBQOX7OEh/WzttmKDCZn1qHE0FKuXUA+bvkTSmCpSN8IWosZi4KyVv2ShQAy64oqrACIog9kn4sSW6yUQEiJ4zj5PTEZo08a1E2mICU6wWTZmjwvINFJ/u82m5IQEteRJDqNNUm0JktplenvIvMnTydE3kcMMi1BWbiZZONbzoRlmW9EQV6JkuUAIXF8H1Vv0PqBjzE+/CjPv3KTaNBncV4grl5gsrZB68Ahqgf2k0wUr3ztKvvHt3nooQdZ6RxikBjObd8hvPkVHph7lvqCoFI/SxINSca3MPEmovWjyMPPEr/2VSbjATu7htBxWDkREEqJO95GeE8xSV7BkadZbZxkPFCE00+hBpuI3gbO0mnk8iMYvYHRl9gMx/zwR1s0liq0F1t4ssWhfe8nnk+4GcaMl5dorIxYkIpAzRG4+5DAux+/yHD8OXrrb7D12g7jL3fpD1/msff9Ev/b//4efvVX/zt+67d+hyiK0zF0VD525bmolEMSx0WWKpFmCQJyt/QUx9kVMHv6F8uo+Dch0irkaE1hDDRZxewii1Zuec0yUZGB5LyacrY3SGURs21jer2kYAXSui8y3XtNmP1eENopiWPBShEPVe6HXZ5pDM83J9K+TXBQDKDRUzBR9pfAoAjDKZujiPXPf5ro4lPcf6KJ9IfI6lmqD/w4yXAIyQR3bg5VX+L6tWu89Ozvc/DUEk7g09/aZHDrHCcflziV07x1+fO89uobbN28DpM+vhrz5DsW8Jt/iFKHGe2+RHTn3zHXHTO6NGDlwf+ap5/+JaLkOq35OhrD/EKV8XSI6/pUq3WUdEoVOO/J96Z862p8ztgYUzoki3/PmaTS/mCyLxYmvyKDiDX/iW9w0H+npRzodP7mBluTiNfWuvRv7VCpOizIBD9WHDv5MLV6lSBwaHqSFlOqvsKYU4SRRAqFT0xHR+w/+xG+PrxJd2eLQxuXOeSNaTdXqMx9jHH3HFQfIplzwbmMM92h6ruM7uySVFySjT7V5VdQ7dto3WZ0+7dxFk4weemrBAeqeAc7qEodYV7B8DpxtIA32eGlcz2YJrwr0VSOVwlau6ypFXqBYF7WaYsh2uyQxLtshZpmsIwn9xH4HyVY/EHmOncw9/eoNJ4A4eQKW5lF/esuM+zxn3N+KiVBSBKTzm9HGALXod30ec+7H6LVrIIQRLHmrSuX0KMR64OIJ4+2OX3A4dABj6Dhs76+wj/9vcs8slJFNF1ujmIu3x6jhOTwkToHzs4xHE0IopiKMRw9VWV3CD/2I0usr03w3NNcCAAAIABJREFUowQlBc15jx/6wDKNxQoXbo15zxMd2nGMG2vcBcM//pU/5ad/bpXNp7cxrkS5ijg2jPsho2HC2rVdwklMEuncFSF120gzLlmGUKr08DVao6RVDO3eUT7wczU6Y+ZL52FpCpqM0QPy+91tx5olnkUJVJSYRcvC6/R3SVq8y7o1zLD/JWZQZB3Iufwymy5ngylNea/LoFNecI6i6nV+n5z1zK4wZSXY5MAoVaIzxUgDQuftyueco/K89BjQIks9a3LMkytHhlTJc103Axcir9VQzlgkpcTzPFzHw2hDOJmQxDGeq/IxMcaQxKklQQlJNfBSdpc0l/10MiHRFghJEpFgSEiSAviYzKJhM89YlyJB6hpmM+HkwapmNsg7H08pSUyS9SftK1IhlOLkx36K2soBpNtgcGsdz4FKOKIVNageP8vSk3Psm2uwGDg0ZEzFUxhzmulU4gqHmukjvQDnwQ/z4ugm3TubPHj7WZZrFRqNA7iNh5j0LkD1MfSyQOxexs9cNkcbQ5JAYe50qR55HoL9EH6dJBrgtFYZf+Ur1E508M4sILwIzAsY8zWSaA5v0uXzz/d44MiUM/dp/NUuXmOXO84B+tJwxKnjsYtOusTxNptRTDvYhyePUK/+HLXDXRb33WHzzFv87Y/9V9Taf8Ik1LRabU6cOM6VK29lGbyyKuEydYE0WqcFD4UgsWC4bA0kqysCmKR4EYnWOdguxw9Y65cUMleubWVimTH4SghirdFZpqEUqMs8pa+1eglSAJvDX0OafMBokiQFn1IqpFS4joOUCuU6eJ6LMYZRL8GopADNAoRJkznERqNEmhkpW+aFG2C2z6ks+1dIkf71bvIXshwYHYORmGSIDq+BdEFK2s0pzcUON+94XLm+Rme6zdJhhdg6R3TrBiIUyMAlXmkh9y2xcSFia/sG++kzjUKEM+K+sxV830GPr3Lx6y9x89YOrbrggYdqLB5sUmusMRqH3L76v5KMHVquIJYjnMqE0c4/pdn6G7jun+LJmwRBwFJzP6NRl/n5lRLjIf596XX35N+D3C0CP88AkV6QmSGnTEdjas02AkEcTrOCJ+nCjycTRt0+1blOnlLOCSpEYZoWUSiF47hpnmJr2pvZ6f9y+xglCS9u7bDeHWMmMWfnXFaXKxzzApzAQ7gOjqtRcowUEyqOwPUaTHSVmAHdUZ+tMKJR81msebSr9zHpjHH1CVz6CBERqQUG/i4tOUU0HiTyjxKHfUS0RXf3earDERc3I2obEdW5KV57h+VFl/6d12ke9dGjAck4QfkxRmkwR4jDLl/+nTUOHazQnlO4CqLI0Bu+zlxjH00kwkgMCiU8tLNKNXEZTqd0lU/NcWnKNo5bxzgJ03gbz11A4vz1xgQ5vfUdGgSRpQvN0pdKNEE1YLGjWLt1i0cfegePPXYK5dZwvY8RR2P+1f/yL9gcRSxtwZIDNWVYkJK//eRBKnGI7DiE7So7wuO1r6+x6Srue2CB7d0eLTdmX1uhHMG+quB1rXEdw4ljFY4fa7B0oE6jmjCe9vmZ/2gfdcdBrcV4nqJ2uMUv//1H+dQfXWbY1wgjcIXBE4LFhQpvdftIk8YvmCRdy6libftaKMCWKc+ww8y6tjuLtEp+zvCnrL6UIj9XElvMwaSWCFGuf7Bnj9prRbDYomyxKOIZBFKq7Hlpdi5LOKauOOm99TeYD4XSknU+JywLRsSQgpnEpG4Zicn8/Uv1BJw8LeSsRcSCISmte0fWFFWAI2nH1qZn1KWaAYbcVzoPCLZ7bPaulOPiuQrf94gz5thmRHJdN02967g06zWWFudZXFig4gZ87eVXGfUHrC4tYDSEcYwUsNBsUJM+r1y+xOED+9geDOiNRlR9nygMGU9ipgjCJGYaRUzCKYIJGEMsdO6mjClcNpIkrfGRYTkkqUKmLQArvxoLsnTh4iKExHFcnMCnOrfAyuOPIUSAHE5YEX0eWGlwdmEf9UadSDpUfBdXjXFVjO84uF6NcVLF17tsDqZokdCo+czXK8zXHmDcGRLo4zj0MdIhpMrAH9IRE2g/yjg4hY776N5turuvUHFGvLoesdjbxW1PqXUCWk3FaOsCzZM1ov4OTkWj3BBYBNMmDHd5+t/c4t3vnaflJEghCacheniBhcZBWiYdF4yDUnW0WKCiXXqTEZFTYc7xCeQiXtBh4cBh/uf/43/g7/ydX2YwnLC1tZsp0DadqMZ13dTak7n5pS59SRE3YLJaGtn8lZm7u7U07LWnla0Js+lA3768LKzOkx3svRhIytmuZDojEp2BRxsPY1JLlVKKSqVCFMW0O22W9+2jXq9x9cpVksEUoyOkSgmCJDZZ+uls77B7SgYMtNYZ4SOKNt6lov1e+Qu6FQn05DzJ8CLEEWrunRizhufXecd73k3NxNx66VleutbnMVGl1YlwnG2S8RDRB20W8JtNBrdv0hxukvQ1wbyi3jLUvIg4jOl2l7h07TX2H6hw6niNA/skzfaUeDRguq1xAxdPCDx3QBhMUSrB8c+wtn6F4XBKGCUEVZdDq6eoVZspIhRF9c2/3lrF97IUizU90EpJyEuiM1Ov1powDomiEGPSPMdxrJl2B0x7u8TDASYMkdJhvNVlPOpTa9Tw2y2C+Tn8Vovendv07qwjm/NUGm2qjTqVehXX85Cl1HZ/2SKEoCoNnQrMN12ONFzmW4qOEyCd1OwoMhN1nETEpkWSBGwOE1xhGCmPcaXGQsUlFFBRFQLXw5gqsZ5jEO5y6/Y5Ds8fZso1fHUQ169Q1YJGMmbzVIX+7eeYO+QgGaFNzLTbpydcpIkJhYNXAeklGBODFkTRJs/90Q1qyxUWj9RoVB2c0CeoHmYnvMIK78bFo28ihsYQyBoVqRC4GCHxpEukYcsY5p0AKRTGjCkt5O9fKU1rbWZdD3IpmZHLbijfzsikDG/qYw0C4UpiHaOFx4fet8xjpwRmcJOL64qP/62PI1WLH/9PFG889fvcWbuBDjVnEkOtUmF5ro4eDVPXGuUhPJ+O61J1QEynzHccOi7UPRiHhssXu6xthTz4YJWTR6qs7AuoNwzRaEq4HbI676ESQ1IDoRVCKq5dHxKFkiSRxEagHInQhv5uSBIluaJtfZBt5bWZ7SJTGkRpHNPxm2XgraW/YNwzdwGTFSIr3bOsXux9keU0nELYegn2Vc4CkrKLgn3RxfXZ39an3z7vm6yLvCWiUGiLj3LoMGNlFZnuJIWcVYIotS/LRV8EbBfpUm1RqtSiUFge/izLlqC4zsZ4KCXxPIdWq46jZKb8pQ1xHCdVlmNNo9XmgfvPcOzoMeY780zGEb1BxP7WPG2p8aXARAk6Tmi4PiacslqpIX3FVbXBoFLh4MIcvqu41Y2Y4DAKp/SnI7b7XTbW15mGU3ScIDAYnQWkZsAt0YmdLmmsSjaeNvjbuh1Z1JO/4www2X5LKfB8j4bUrMz7HFutcbjtcnC+zkqjnVrJdIhUDjoJSYwhMQFxHLA+iAikpudWCFwXN3CIBFRV+rc2VSI9YWewxm7vEgfb+xlzlYpzIrW4GENS2WDHNBmsfYXlYxJhxsThhPFuhIol0iRMhUNQEyCjzPc9ZjRY5/nP3mLheJsDhxt4U4PndlDBIv3wKvtFiAtsJ1OEUPiiQiAlCBdtBJ5UdGNNKCVNp4of1HjiXe8D6aC1yTIU2WJnqTKd1q+S2LAUSONLpJRp+lELnpOEOHftyUBoto7KcUh7Vko6I7PaBbnLXzb3i9igzFpmQaG04II8wUHqsFLsN5giO5EQCs91qVQClOvygQ98iEceeYTFxQU2Nzb5jZv/Dz0BruNg0jAZ0noJqRWDbC6WgY39KwUKBoHOrSbfSP5C4ECbHkn4Onp6DhHV0L0jaM/g+Aknz5zACyc40wHrly6wOfSo1FyE72PUFD0dEe0MCaYe3mAL1d8h7i/gL9do1kN0v8/2oMH1bkKtpTl+3OHIEYHvj0GPSIwgiQ1N30OGI0IxQPoJSo9w/Qd4840/Ynt7EyMU1UaT9lIN1y+Ky5SH755874k19UOWf9rEjEY7ICTaJETxFIHE85oIBNMoZBJNiY3BcVxc6TIYjNi8/BbRxhpiOEBEGoRLdGeL8XTINKhQX5qHwyNENGZ06VW21zYIm/uYP3gYtEGJ9FAypSJCf9kihOBou0qkFfMVxUrNw3UgTXsXZsycQuOSCBgnTaJQsjkeprniKzWafgXflYzMhDiJ8IVhGE4YRxPiKGYYR8SyAaKD6ywgRQ0FKDGhc+yDDIXLfPAyJlojHI/QoSaOplTrLsaAUwuQgZu+j0QSDbe4dmWdE+9botr08Z0aRrTY2lHo1oQwvIHj7svaLZkYB2kmSCSe8nGFYag1EwOJAUdIpKrlG/T3WzDyrAk8/b/WZQWydGjdpe82zaT5NgBC6gJigLQAEEISxTFHj7f5oQ/uZ6VpuHzxNqM7MetXL3H4zDv5gR/+MJVpnzdffIbR5m02ug7KCIK2j/IMhCG6B7Lu0ZGKfhKxu9bnwJkONU8x6Q5563bIpTtj5pc87r+vwvKiR+AbMBM0Gh1Ds+6gphGxn45CrA3Xb0YkEcSxIJESp+pTrUoa2zFrN4ap77Zdn9l5mVsCckU/G9XsUNAlt4/cr9660IgSx1iiCfO/vxFAsE2Y1TnK7uZvfx/ZXlc2MpTdgezfZd4z7yv5F2aBT94ukSs35b7mPbLDYF2XKMARmfKusyAL6/dvsgqwRbsNNkhU2sBvizZMUbU1a0Cag8hkVZJFmto2zYal8H2XRrPK4mKLgwcXGE+mqT+2UqAlYQzaKFb27+fsE49x9OhJmvUWw+6IQS9in/Rwd+/Q8nxMpAn7U6pC0h/scHRlnmEyoiIhFiGHFjugPOpth1AFOIHL+u4WF/5/9t48SLLsOu/73Xvfki/3rL2qq6uru3pfZh9gZjCDwQADEIOVFAkSNG2CJq2wFFIEGLJBk8EI0lZYCksO0bIjGKGQTSm40yAZIkGQHOwDYoDBrD1L93T39FrVXXtV7stb7/UfLzMru0GCEEnJgI0TUV2dlZlvvfe+c873ne8sX6fX7UIbDGFai9B3tgY0LyXTrPWdqNDgM0MndO8G7w2HwbWWaTDhuTbTpssDM/s4PTvGdMHDsS0G671CgLRIpEcUQ1fnCUPJTrdJzrVxcwXybgbLgq4JiJMITxiqfpc4juj2YnqxJlYFoELGmkPhYESCcguUvSxrMsNU7mWC7haRH0Ico5MIJ2thtMEq5ZBKYbBIIk3Q2uXm9S1O/cAcGdfCsYqEYYlWQ0ChRxiuYFnTCAyxUf15EyKQuMrBFpqeiYmMhTZgCYWXm+AH3v8Un3v6czTq9SF9Z9DUVmuDlOY2NAH6Rbwj6IE2BpMkw3uFGBTOjyb3zLCT8cCLH8y50YDAGJMWl5s9Gp0ZdHjsB3fDzw2QtyElj2E/Dkk6hi1l43kes3OznLr7bj704Q9z1+kzZDIu58+d4w9/9/exrRRZD41GYVBSEQuFMRDFEULsqaHRXwKGyEc/iP1L8qjfYn+L4MAQB5dArCEyDWCbcPUP0JX3IYo7yMwh9p+5m8mZcdaf/WMuXavixwpCgWflEYFBN3oktTqTSZ3Xak3KfgnXKuG6VfxqwoUr49Tzr/LYOxzKxQ7IJtrE6NgQW3nsYoLt7aK7ISqMcFyDMgF++xbXr95iZ7vG3P5FDiwsYrI1Or1rZJz7hpNS7P3zN78M37f/F6w/0PuIQRC1wBg2dy9ipCSMe7Q6O0jtUi4fwxhFEPoYJ4PtFchKG4xhe2uL5Tdex9ldp4iF55YJtEO20cbvNAlzkiDYIBM2cMIy5vpZQl2m3t1mbGYemSTEnR46l0+hb6X2Hqh/x87q6FzWRnNwoohNiCUFUtoIITHJFknSRosKgbEIjI1vitQ11DotNAFG5plRDtO2xMcQaUkzaJKLe6x3tukGTSqWy7ED72YnbDClDhEYm1gH+KZKyDoHnQfoLh0mqf06meR1suUG0gIRBsiMwMs4/SZBqWpNEmhaWzEzpwpUe5KxrkAUizT1GG+eW+HEPfdxq/c8U5MPkPPmcKVLKwmpJaB0SNlSGBHiSUlOummAJ0FiDTnHSqi/4sp9D1vfGxyMqSQ2I9moNBMlrJFCzZEVP1WzkH/jlS3lpu7RNZSl+PjHDjI9Z+M5MSdO5dlXEbz83OeYns7S4zDH3vV+5mbzrL74BW6udil0OsicomCX0J0dlBAUi0X2522+vNqjtBZw6K5xXK/H+rUqz3xtk9lHp/jQvTmy2RDLjUBokgQS28WtKMoTBbrXt5FGY7mC2HU4fmyJ5154Fl8I3LxFaSLLwSNFFufHuHqphmUZojC5TXVn0Mxt9BmaOgR7XcfVMIu4t97sOfZi6HsPYw6tMdyuVpRqF/a9ejG4H2l3VhhJKPS9E9NHMG7L4/c3wUggLEd4xcDwXo/SfEbV+Az9jsaDDbGnoz4qlzjk7Q9iiv75SzOittJ/Y5jVF3361FChR9x2PunxjG6/f/WGyMfg+prh/kWfpmWMRimFbUsc16Y8VmRxaZa85/DUh99OrdmkVMnhZbK0miFnX19ByiwHDyxS2bcfq1TByhaYzBd56B0PcfnzXyIftPCQhG1BUI/J5SQ6giCSzFcKTFUE2D2yEq43EirlSWS5zNKhg9y4eZN6s4Xf7bKtBKLVptvtDrvfwmhBrOg/C9g7v/65DRCVoTSu2JM5Te9nWsfgOg6TlRJ3T+R4cH6CcrGCbbkIEnSyi9YdYjFBLxIEJk/P2DRiQ6PXBhUSWGUO2TaeRX+9FzSCFsW4y7XmKioOmMhWWNz3MNWoxbR9lK62CE2HntlAiYiZzF30lk4Q7nbJlgxqMkaQIJIIlYGMY6ddqU0MWhL1NN26Ye50gY0GTOck2ptiq6HZ3Njm0PEJVnrPMj/zTsr2JD1jaMcR7USjRMC4pdCmR0U5ICAyGiVASZv/9V/9S869cY56rTacs8CwMHngoA87CvfvxQCxuU2lR+ytdXuKQQOnf+QeDp15gzZ7nZgHdLI9ZSLZX2P25uAgMNEinWtqcHwi7UBtW4ok1ihl47kuXiZDvljkHY8+yqd+/hfJeC4YTRSE5DI5jDYUC1n8OCL2fTAaqSRSpn5BGIXp+WhIBs3OxN7c+paT/zb2HxEc3BlqJEjzHFosgwqRWY27P4D4i/TWjmFNL6IyPnZWMHb/I9TO/ynF8Vkm6jdQWR/LsVAiR7D9Ki3HIWx0iRt1bD2HYwyrN77Gn37h6/zcL72XctLGtUJsO4VOwjBEGYdKHGFpi6jVQTQ6iHIBNf02zn/tJTY2duj2IiyZYXJiHycWF2k3n6FSOI0QTsp1G82sfN++R8wMgwKNJox6XN36JuPZQ9iZIrudKySmhVdwabYbvHDhadoNw76F00zMHabi5XEsi7YfU988x2r1MgtxjKUdknpId0OA1yDo7dKoblMpO2SMwuom3LrR5LXGDmNL92BncjiZAjo0dLZbuOUMbt5LM2t3NAb6Oztv0lmoMTjSQpgQTIhJemgTok2XmBy9CF6p+VxoB4TGx00iVHeHhxdnKXsOGdGh2/NpIdntRlSbVTbe/BJLS5MsLB5H2fuxhGTWKaNMyEbUhmiXvOhQyswQywzTsoCa/AfI6E9R4jKWlUcID5N8AyH6hU5xhOml1+dLX9lm/tQEc7MHEImm5Rexyge4/93v5ktf/G1efL3FUz+wzqlj91MuLJIRNpYcIzCS9ahLRiiKliSLIRFJHz0QabMjvj094XvBvqVeZpDN7p+SjvrOrEgdWxOD6Rmsysh3ByiBMVh9/u3fxGxLUsg5xImm24uQ0rB0cIb777XwMiEYjVWWjJdd3nvkAG987vf52i2H9z31YfYdOEQ5fh9vXHkaf3eXu6gSzedA2SijUaZKNz9F1NjBizJU8sewg+u0d5s0IviRU2NkTR3PFVi2RMeaOEqwEosJrREmRtVCTBBDqYgunsRtdtlthFiui5WVmERSsDMcuT/P7+UceoQEvajvtKbXKxl4uAZG+w/AgOkhhvNtoOUzpA4KMANVw0H+/Y5rPZpyMqRyp2lB4gABkHv0HwaOxECGcHg7GWYwYdh86c7tj9LHRjOV6HStEPS18kdqJUaf54PurYOgY+BYCcvCGEMcpxQZM3Tq0+/udXwWt615w8ZoI3SZ203c8UoMz1NIUFKlalkqvciOrcjmHNyszaHj+/jRn3wfr7xwnpWNNRaPjjM5XkFJF+n1WDo1Tb0aU5lfoDK7QKVYxpWKZqvN7vprbHVvMaMUqtfEatg49YRet0YcN2iQIWcJpnKKRMRcW2lzpSUZO3qYe97+EFkri5cZJ+eNce7Kef7i+b/AdV22thIwuh+caeI77tco8jSojzBa76nR9LtJD8QtlEqLUS3LplAocOTIYR598BEyVoBJuiSmA0Ro0yPSOep+wFd2fNYCi0QLMkmIE9Z51+F5Clkbqet0egntBGp+SLVZY/XVP+HBR86QmzqCa03iCIsZp4wyATfDBpl4k5wFnjuJkR4zTgE1/SlU9O+wVA+lciASSM5Cf703oU/Sidi6EfDNl5rMnRhjfu4Qvu8jnALji0fITmd49tk/4YU3WvzEx3dZ2vcQtlvBlVkcq0wQK5b9Jp6RjDkaW6WN32zpYCPIulnyuTy27RCGIUmiCYKAUZlb3efxD35G58ydQ9D0aWDpwO0jeCk/boiQDeRQB/fU3Db+U6Wq4T6GdJ00sBBCpEXlGKQxxElCFMcIIcm4DlqnKNPc5CyZXBbhKuZmZ/nlX/6nGJkiAbEf0ql1qK3VSTDMLxyiurNDrHfxfZ8oTAh1Qs8PSLTBViJFSjGY5I751h9/3wl08LdADgRxlENEFoIuRkYIAhAKlTmLaV2n3cgQkSOTneZjn3wX/8c/+T1OVfLMT0d4WR9jxWTjLDraolsPsfw3sJIym+0SX7wWMH/IZq5Uw4gMUiQpBKwdjEmwZA57HJKdJkqCNeMiM3mEeoLPfObnCcMQz7MYn4uZPbyByyZBXCTo9XAzFqhBWdT37XvPNGHos1q/ysu3vsiB2WME3bNs72xhhI/r2dgiohV0uXFjlZYpMH18ktAt4mvBpDE0WjXOPv813rFUIbgUE1RtrKRIHNbYRlGeWCTjV6mUfQo5Q60NX1uJmTh8inf9yPsolisYbWEyCsuxCFs+yrFQlhqqh/ynMAEoIelpQ7O2SdxdJ4mbbPYEX64qLr60THO3TSxyqZMR7lAoFnj8bY/xW2d/l82NTcJIg+2hnAI/9q4HeHX5aT76no8wP76EJV1iHWGQWOyyHlQxIqLo5Slas0gULb0JZpNO50VUVMdubeK0X6Sw38XJLWHYBDL4vYDqqs/G9TyP/fjHaYqECSuD0RUCnSUWFtIu8IEf/EUef3+V3//Tz/GVF1/h2IE2H/2BxzG2ItI7VKwCUng04og1v0ZJRczmDg2bzgwcoP8c9R7/qc0Yg0kGnGRB2IlJu7pC3Oe1m1ATdTV0NVmTYKoRZDSy7KDy7m3O4t/E3KyLm82RMZDLanJ5j243oNMyOKaNbYFREgjQJubo20ocf2yBbryM391lcqHID/3sU/zrf/RvKNLl8JSHKrhEgOwFSKPpNTRHDhTJex6v3YJXdzSLh3Oc2FcmShSW1UWQKo+gE5TKY09miNbXsYoKWVSosYOE8t187un/Dtd2yGRtHn3vPA/cO810xmL58iYFR9CppwoesdHEsR72D0iVZQbyf6ntTdu++230kMM7kEDEpHPQkG4Ls9ci6fZpP5ABTfczDD72/GuSZJDZHDCfB9rqA4xhrzOzGDr4DLe1R4kwI3+6I1AZQST6f9ijroy8D2lgkugY0Q+GJKm6yUBeNOnXNgAEQdhHsgaZ2gHVaK9h3LBIux98pDrwydCZk3Lv83EcI4XA6SuzxIlGWYJCwWViPs/JdxzkxINHCbKCxz9wP9eX3yKxQ7qiB0lEvdPg+vWbhM4Mp6aP0rNzJEYgw5DeziYXzj7Pe+6ZYucbdcIwTxIqQt2knXhUxiuItatMTDhkMoorO5rnNxVOYYqnfvJDKOVy4fVrvPXWNXy/ywN3Pcjq1hrXb1yjVqsThlF6fRMNOlVvHCB8A/Rt0AxQCvpIw8DRNLcNnAHqp7XG9wM2N7b4xtlXmKsYShmfyGhu+pJndwyXz67S2mnjWxV01MLFZ3J8jIfueYB/+/K/Z/3WFigHozwmxsZ5z31HeWPlC3zih36SSmYeQyrBadBYps5qsIsSMaX8DJ7MYjC0knUwW7Taz+LGXayda2RUnexMFjs7j2QTbXJ0Wg02r2o6wTwPfewdtEXMpJUlTCbwjYNRGYrZLB/64bt54gO7/Nvf+TS3bn6WDzz+GO986H5wBTG7TDl5jMlxvb2LTtpMZFzmCgex7LTR5Wf+5DP8wi/8Ar/5G79JGIYM+P4pymSn4/jOwGCY3d9z6gfzK0mSPUTB3D4fBrYX8AJiD+EaoIh3LriDgFwgCKMQQ6qgNZgLGJBGkrE99s1MgWvzgQ9/hI986KN95StotyOCThsiRVCHmdw8f/jrnybTUfz5Z/6Iz770BS6svEW1UUXoBNe1icIUxZP9IHtYjzAy91M1J/5a+w6DAzNcHDAaIRRR0kY5pzBRFZFsI2UnVYPQCSpXoNs2BFEToTpYYowo3uHdjy9x9qvnKbuKcj5HXLCJi5LNl2usCZtMpkJGJqw2dlm+EfL+Q2UcZwzdiwlxSKTBMjEZlaCMRdQIEKqEVNmUWlFaxN9c5aW3bqFtw1yxxMHxMRbLk4TtDV78wus89eM/0s+u9f/5Ni20v2/fnRZFPueuf5mz175AM2owXt5lX/5uGl7M1esNKrksx5YybFmbrN66iizMolTAjCfIK81Os8XKzaskDc3W1Q7dtQS7m1AWXVR7G+Ps8LSEAAAgAElEQVRBdXuNg4s5xiqKtbbmK28mtOIST7zrXrL5PAaLXs8Q+SGFvMZ2QUdJ6kCYPQj5O7GRxO9f8p657TekC8+bt1bThmdNj1vbHbaVy+ZqAKVZ3IksBQIKyjCVPc1d8xM8/8bXWbu1TVclWDPHmN1/Fw/MS66tPcMPv//HmCxMESDp6ZCMiUD3uFx/nVzuBCXbwlE2gbEJ45CN1nP8yb//M37yE/89snCBi9vrXHqtTeUP1vBZQZwq4qwnrG9E1JRi/Mw0Z1rX2acMYeE+LGcMoS3q3TavV6/y4YUHEG6OH/nAR9ht+rx55Rb/4v/6Hd5+5ghPPvIotaSJoxyyliIrc0Qolv2AAxmFhWKQzDQmSfXev0fsTmk9SKU1B85hEhnCEKQ0JAhk0ueVd2JEM0KVLHRXQytOu4Ame4Vw33ZQ/TWmlCCbzZDPZkAnNP2Q/+q//mmWb75G7gC4xQgpYkwMUiS45XFq1ZDY1HAz0zh2jkjU+dAPPsJzn32WpU4XayKPKeVJpMXm16+yKmwq2XF0VGV9o05zS/DE4SyWOw6tgJ7OYMkYSyfYtkTqDGE9QLr7EL0WMlvBuPvobG7wxkoLspKJrGCpNMaUW6Bba3H9lToZx0Hgp92YBzB7kspPYsCy5JBadBvjYFAwKxSIVILzNndh4Gj0HQMxHIO3ow/0f4t+hn1UzHTwCErVSvaCizsdk9F1ZOCQjKIORu/1KUgPzfSz7mJIaRo4R0NExBiEMXtZ7OFzsB9kiD7KoFIO9WDbenhue12jR883FXqIhkezR/UQI0NSDI8z0X3OuJRYiGFRaZKkzce8jM3cfIG7H99HfkYR9Fap7BNM5E7QnRvnxZcvc98xydhklkDtsr29ilUSKDvgYFYgk4idepX19RXihmH9rTY7W5qyCvH8CNXegYyhunOLU6fyFEqCV25qXr2piDMVHvt770xROOkyNbMA2iHwm0zOlpibnuXK1at4GY8wikiCVMY0IyVxEvfVmUYoKOzRXoSdquoMqR+Q0lL76I2ybIRQ+GHApbcu8crGJs9taALfx2Q8kmyF7c0IKnO40wWycR2VjGMlYMdtXrr4F2zd3ECWJLn5t3FsYYGDxTYb9Vf5+If/S4qZSVomwSLBNiFx3GK5eYFc/jQVG6Rw6WlFN6yyVv0GT//2F/jkz/4vNOI/4oVaTPVclfzqLQJ5FXGmiHs14q2NEDOVY+Z0lmOt68woTVB6BJEZgzDmWrvJblzlibmTCDfLf/Oxn2Cl2ua5l8/z6m/9AW87fZQn3v4wO3ENT2aY9nL4oUXD1+wEu9wz5WDLdKx86ud+jsXFg/zyL//SnkRu/1oPAtLRAGFIqxuM8n7TMAz9gFcM1YtGpYNHptlQ2MBSVpqU6t871UcU02e/ThW+dEKcJFj9gFApG8eyCBONJi0oVkowO7WPjt/m4P797JtdYGxiBikF61sNqqs7ZJSkgEfetrHHPd567gKnF45y+PhJKtdexV1fwVE2tlS0Ax/d7+Yd9yWa+6AcJgUThmuREbevMX+ZfYfBwQDPTjlXwoQIkSERBYx0ERrQCUInICOk7mBiD0vOIJwi3aiOV5DMnsxz7ksBjZWYUtahNOelCjLVENMJcfLj9JoJ1evb6IbF+Pw4gnGSsIqw7VSdIgoRJkRHRXTsIZ0SJriGEA49534+/dufJYgSXCfD4XuOsnBsGu132boCotPiyjf+b44+/KN4xQn2ooTv/Yzj/5dtmF3p81Or/k2a8ToBXepJk4vrV5g8Ms1Yboxr4RahaCKMh4lbNJptvLCKaG9g4ll88jSau1x/6c0UunVyOKKKrbugXJpuhQY1jk0JCiXJrYbFuZ0Cm5kZ5hZtDiyNYynJzvUWrVsNRLeLmMxSOjOLcAUDXvAenzY9h+9khH0rs+Rbw/t0vgsWx6e4vLlFLXapWuM0qj6qUGTWk1SyHsW8RVZqXD+imJccPzbPA6dPcbYTUZVFRCK4duEl3veOJSYKMxihkaaDxCLQglrjTTzvAJ6liIRDkETE0SbNxkVeefl5HnznMbzCJKHSTEyHFN4xSf50h5vdKrd2N5m/f5qyNY7vTHBwYoFK5Qibm5cI2hfITmXwcvNMFTwedMd46eYF5idmyDs5JsZs7j6+j6lKjijQfO3Fs5w8tkiSA5RG0ad0xrt0LYecLVEpsQiD6Ler/9bs6feKDYo341ZM0IhIpEIWLJQwmEijA43QBuVK9FpIHGusrMI0DSZnoNTf0N/i/E2c0Gq0KFdKLB6aQ+iQL33lOR79+Q9hec9jxCZGp1KN0jKYpIuIPRzvIEEc0mvdoDRWYv5MCfsPEnau+8xUxnE9l6DZJarGmG6IU5mjcXOX1o0mVuhRmZ0EPUESbqK8AipOEEkI2qCjPDqeQbpj0H4BWTjEzfokn/mjzxMZiSsyHHnoGDP7SnS32qy+uUEuiXnqvkn+zUqdJE6hf9VvHhbrtLlW6hQMdPjTB35a2LjnwGL6EP2obOfIjB50kk6SQc3CaEDQvx0D53gYhNzetXUv+7lHRjKYVJN8xKFPi133ONJ3BjSDLGE/Fhls6jYqwdAZvY320u8o21+6jAHVd5zY28wexal/coPmZOkpmT1ZUrFHX9J6xIGSAt3vLjyQOzX9HUopcV2XmZlpZmZnWF5Zxsu6vPOD95CfjmmaJtWozvVqwnRphrzMI0ONZTQSnzio02p1yUa7OP4GUTJOEifsbm2w/NollErXe5cmduITCZeGXaQnGhyfleTLNhc2JBdaU7RLFRYOeCwdm0ZKxeobVXprVax2A2O63GjuUKs1kEIxMTmJpi/QYjRxFCKNxJgEIdSAeNbPCJu0G3N/nEiREmTTa6n6UpsiDRriiKSnkZbFN7/ydSZPniYzPYuRWZKWIlsep1CwqLU77J/cTyYIaO/ustPoUhxz6SQT5I7fjVtapN3corp2ncceWGIsP0NsYizTRYgsnbBLq3sDL3ugX5vgkiQ+gX+Lna2LvHXpPA89cRJhV9DmLg4uKQ5NHsJqt1nr1rm5s8Gpdy5h63HyhWn2VfaTy8+xtX2F8OYr5BfejesUOFTKMxYEvHLrEvvGp/G8PAsziszbT7Kz2yL0Y5557kXuOXOUwNFYAmzLJkuMHzZp+mNUPA8pBJWxMR597DF++qd/hn/3a782zPYncYwWot8VeQ8tGM6RQf0ADGVOB3M8RVH25IyHiB2DOZH0/z7ocZB2Xh98PtEGIRSxiYfobdo9XaMU6ChOx3mf0m5bNradQSvN+x55kjMHThE1IxI75pvfeIm333MvGa3oNJqErR4Fk+VAcT9aSSqiQthKFT0Fkl4YpkFBfx8pupGeb9Kf1HIU6fiWMoFvte+YVqSThCD0aXcbjJU8MCLVP5YeUpYxaARNSHwwEseKiRHEOiYKV/GKR8nMRShbUN/ukd/tkfE1JmezUQ/JhQlWLGhsGbZvJFhtTYEcwoxBpJDKRsgsJklIenWEKCJNAepNhIDIKbG1bvPNs+ewLEV5rMiJ48eYmSjS2Vln61obV3lk8hPIfuT3ffvescSkUHSkDbGUVEoF9o8XaFxe48ZruyzNbbPPKuIqC20iOkGC1hF+GKHpkOhVtFlEJw466NLpdtNCoJxN6DqEzRgdNumIhMq0h1Xq0ugablQ9lrt5kpLFsftzFESdznaZzbdaqHaHibLBsgS1qzvkDk4RBwlu3sV2U3hz+EBmL+vXf+OvCEu/deIOFrowjLh45QY3dxpEYcBKvUVVC3xh0d1u4BY1nltmThn8RpPdRp2kVeeGCUksTWXM5tDULG6txsqNt7DjKktzj2OrHLHuIIRFGCc0gy5aZim4MyDitI9JsEmtcYU3Vt+go7c4fvxDdHqbVGUPy11kdv88zKywP9zE3byH0niBCa+CLSuUZAlHeNzCYuPKCovuPNn8NNIqMW4ZNlsF7EjSihOklZAvZDmWr7BTa3D1yg3q9Q5OIsjlcuRdD2MSPGWxE/hY0iKjRBo08B+H2Hy32OBum77OeRQmJHHqMiQa4sAQ1H0yPbACg0gMaIPcCcFLm8CZICbJGkwBVNYZ4Tnf7sx9R8eTDDJumqxnMztRYbfmk8lNgj2OxkeYJpIQkgCBjecKIqkwURdjmgjrAN68QNmK3VpIthlTnk4/s9mIKMUaFQvWtgTtDYPTU+RFCcE4hAIr4yKMgwl9dNhDiiKKMma3isxl6MYFlm8EvHL+EpZjUxkvsn9+kowFrZ02jbU2Qhuq9SBFB4QFsUFHaXfbuN84aUDjN31HdihdykDF53b0buBYiGHtwJ5zPTpvjUmvvaTP3zdi+PcBD38ohTqsfUhHw7eo2Qyt35hM7G1rQHEYZvwZODIjNAn2aBB6iCCQ0tVG99P/ypAOM6QrpUjLKN1CDBp97cEVwzVu4JQM0ZLRz41s/06TSuFlsxw/cYL3P/UDbGxugaW4+9FZNG+xvHaB67d2uLHd4cDMLvmkiOdkiLEJY02iI4IgwtBBcBPNIu1Gl+rOBp1ODxkb7IJDV9mooIeJA0I7oTBmIYuSnVrMW9UJNhOP3JzN4TMZCrJJe7PH2oVdxqwOnoqJg4Tecgt8m0ff/hivXXqVerOJ4zhEcbyXsdYpFS0NhBQZ1yVJNEhBHEliE6FNSjEZoD/GGJRto2wHx8uRLU1gF4q0aiHubkBsx0jRAz/BKxqkXSJavUnbL+EHXVq1bWqtKibIEiUW0U6TZPc14mCX6YrFwZljWCJLZJpYwqEd9uhGPVA5PGcaI2JImiTdZVZ3LnFt4zKJaHLixIep1q6yqQRjpTMUxhbR0Roq3MXZuI/cbJGTzgSeLJMXBdCSVaNYu3SVM9P3glskY2UoS4uddhfdiakqhedqpqfHGSuPs7ldZXn5Fjs7DUQ+ZrxQxJI2ltB4yma924Y4oZTLYUnJwsICTz75JL/x679OHKcFyYMiYTPyM1qg3J8dt6F6A0LqqAT04L29Qvq9JnapxC79ZMGIStFIvUG6LsjbAvMUvbBSyo+SZBwPaSkeOPMQUzP7kJZDEMUEiUZFHm7LxgrAalkIP8HSUM6WIRFkfIcpVaKSKREkIb04QMepcpE2CeiRxKTcWx4Ga8ydici/zL7z4MAYwjCk2WhiTJdyPodOIqCAUNOk6EII3Q4ocOwYkzSIohbGrxL0EqzKJNnxHI3dJruNLvmtFoWjFW60QiYAN05o7hrq64KMD7muC4mDifqQjXTRgUT3wLLzyDiCxnWolKmZEq+9dJGtZhsv53Hi+CxL+6dwIp/lqxtUN9pMzu5n/5n34Hj54QL5fdTge8HMsF9BrA0ZZ4J9E4vkzCbdlZs8/fo6V++vU8iuYxEQC2j5PRxHkmhN2+/RjFdIzBGc0KVXWyexfKSToHWPnsriy5BO3CGSLY7N76MeGKJulo1elp6VUJnd5ujpIsFuk62VBr0Nn6kiTE0W0BNldl9fRZdKePkEy7WwHGtINUj0gO5yO6VAa00UJTh2ykVMgYbbs4kbW9vUmy16QUC73eULX32eN5Y3MGFAbGfIlycYG6ugTEjZMgglqOTLXFy+xfnLVwm6DZqBj1Us4+W3edepALlxjfDmRQ4+8SieO0+CwBI2YQJ+1CGImozlDyGERRzXEcFNus3LbG1f4WZtk7sOz+NYM7x5/QXCcpGpySMYptjtrWPXYw4f+hBVfMJ6AxHGtEuanNXG82yanYCdtRWUN4Y3mcFgcXTmKHGjSjMIINEktsCVhmIlz8LCDPVmFTfxkUKRsfJIYbCsApvdgIqTwRZpkdUooeh7IUgQow7XwFkUgjjSJEBiK8KuIYgjujeryI6DiSUiBhEanFij3AxsJxgrIeloZFeiss4QvYrjuM/tliMO2re/LtoIlLIIej1qu7vMzBY4fGiGRm0dt5xFumNpxljXIfDBknieJgmr2KYNQhFHCmtsmtxkgcZWg/xOB3cmR+zZrLQjZoVARgnVTZugqsjGkryfBe1gIoOMbEzsoQMLEzgIu4CMQ6hdggNL3FyNePP8OtVOj2w2w8kTU8wWM/jbVerrLcJOgrAkry33yBfzBGGI7kbESYyRBkj6mbSB478XwA/8iKEjn74avr93//qO+QDUFKPv97Xvh8ole3UJ6bbvqB3o79AwbMMw/Nyd40XAkL8u+s43IxSWwdHuZfQHxydGPARx2zZHVYVud4r2UAFGgoy0lmIU1e07tnKQKWdkTRtkW/WIUzKQjb19v0op9i8s8JGP/iBCSHyt6SYNROKSi5t0l7d46dwOV++uczIJyDgQxhGhBttRRDoh8Hu09HVm9Ek61V0aOysYN0DGCVHYpG0XCYMQYdpYTsDUbImq1gSNHFt+BlPuMLWQsLiUw99psHm9ga4HlPdbWAWLpO1Q2YV940u854MPs17bYHN7m263izGGTLZMq9lAmwClLJRSOI5DqVxh3/w8yzeu0+t16XV76CBIeyL0HTYvX8D2slh2hkyuTGHqAHg5VOjT2eoQ+Vu4jo0rE3r1bYS/j9rFC7QyeUwSEoVdAqNpdiW4Fr1bLyLCbRYP72P/XY+Sceb6632KBneDFhpNMbuAQBHHVUTvGu3aeda2b1ALu5w8tB9HzfDi5S9iLS5S9k4T6h6t7hZWC44f/WE2kl3k5g7CNohCjC0iPM+m1vTZvnmZscU8Vn4So2wOTRyis71GRwYYYTCWwVIW45MljInY2N0gGxbIOXkyjg1GIa081W6XbJiQdV2UbZPP5zl8+Ah33303r7zyyh4qcIfnm6oDDZIlA3QrnbB7gbYZWQv2amUGwXW6NEswSX9sSxIGPTb0cN+jyJqSqt9pOc3ep43XLAQSKQy27ZAr5Dh+8i5iy6Lp+wg/Ty9JWChMYlZ8okDjGRs7cbC0ASmwA4XuxCwU5lgd26CtQno6pBeEFHIuXb+XrnP9eb5XVD2y8v9dBgeWZZHL5un1urxy8VUef/AJhNlG6xJajKGsHogOxBqMhQlrKDSOGCMWk9R2XmV+/EMcPDbDxa0arVaP1to23kRCI4CTjsCbGKe+HcPuDuNWjkIhS9LbJApCJGVkBKYTofNH0N0OoX8Zb9Ii5AgXLyj+4JnPYGMzNl7go0+eoJhvcu38Kpee30JoKJyewnbBEIBxEcLu0zTMYL3ijv98374rLIWfBQJXgRQZYrHI9LThscd8PvvnN7i53KSSTQvb3ZyDFZeYrtgYBb31Fiub1zh84DCm1+WNs09TX1/n0QeP4Z9bIxPO0s2PsZlk8WSbtldnfdvCmTpB0ttgLLvJyQenmc0f4s1zFtXzMYcnMowpAWsKmRjKM/toBRaluQzCEmmXzn5A0O352JaFY9sp95ZBZhF2Gk3GyyXUoKBPa/wgwBhNFMX87h/+B145f4GtagO/F9JtpTrGuayHlytguTZFu8ziwXmWJsq8eWubYwdm8HttNra2aTupygPzsxSTGl9+7qv0WjscOzLPx97zJKEQ2IRoJF1/lSTuMO1NkrMd1oItrN7X2d5dZ7lVpZ60uefABI8e+hmWd17khcuv88i9T3A4O4uJNdu7K6x+/hme+umPk3cKPPf6C2ysXebh9zzA+Ph9TE+Pwduu8dWnX6Oy1eHRD5aJ5GFmpOKa65AhxMUjiWJq0Q4iW2R+3yLX/RdxtaLT6tHTLebHsrQSQcmyMElM3F/8Bwt9YvZkKL+b7FsUieiPgyS9167rpAiso4gC6NQjwu0QnY+pxLewdnJIlUdJGyuSWKGD6BnMWoA5aCFcFyGdvqObFp512m2yWQ/HcYfu4l+XFDFC4Qea3d02xhL4lQw7F1/jwHwI+z2mphV2IYeRCSJRCGmj/U0cCUbl8CNNo3qe+bGnOHJ6hnNfb9OqdyltN6Di0goFd1vgzswQv3wVt+0zViqQz3kk3U0CP8axM9AK0DqLdvYhOm2C8CK5+Rwd/wxfP3uer77yIo50KFVcfvDd+5GTeV57+ipbl3dRSpIt5Dhy1xEK2y3euriMaafQezLsGAqp0IgZNhWzLYnp04MQfSh+lG7TpyMNif/97LpJUp6/EAO60GjB4qDwmL17cMc1H6rYmNTJHw1C7qw7iuOYgdc9cNB1n3KEGEiF9rc7Qm1kkBDr9xwYHPttg3F0HOwdXH9Hg0ZkaviJ4VgSfXTkNhBjVD5R9FWRdN/RMsNC3cGu4yimXqvTbLb6Dp0iKyVK5knUaY4dAx0nPPfiV1i50WAqu4ryQ0TQIyPzTJRdjILuWpNrW2+xUDmF31qntvk6Qb3JPXcvsfsXb1Ky7mW7UCI0imJmi16ux9otm+z8g9B4mf0HYo4dP0BB7OP6DY/q+YB7DxTI+AkoF6+UwTsVkSko9h+f4YG3PcD27hbV2i7Ktjm4dISV5RUatSrKknhelkKxwL6FBT71qf+Bf/7P/xn1WpXqzjaNeh3TS0UVpOUyf+QU0s2QJJooiGltbSPEFsqSWK0mubCHO1lBeoL2zhax6VHfvEF+Yh5hu2jLQ3kecn4aJ9iitVXHkRGnDx/ivW9/iEgILEIMimb7PBmZIeeOYVmK7XATq/tV1jY3uNzZRWYi7p9e4szcR1jZfZFnzr/Azxx9kH3uOLX2VdZWr7D9zbN8+O//FHlR5NNP/yaTMznufdtDlEvHmJmeJHn4HJ/5vS/y2ActFs88jJRjjLuK3WKRStTFw6Pba9KihXLzzM4u4Le/QSbOslVrki/kKWUdfK0oWTGe6xImaWMzW0qmp6f5lf/tX/PeJ99zWwHyKJIFI7KjZoCK3h4YDCV59chr0w8m+kW9qYKUNUzmDKhDQwnf/rYHSILjuoyNjSOlwFIK182gRIaol9BtNUhUzIGlRc5eusRHnzxOVpRpXGvRimuMbZ7Htu8lTGwc28MRDiJWxCKGakw9amHlK5QmZ6g4bbo6ptvuMjleZnNX4/t7FCkdJf3jT8UFtE4L0P86+46Cg0FUtbmxxn/4vV/nH/6TX+T8hXPMzkmkNQ5hhAnauO4WYvo4Il4j2Q4xSQxK0mUcGbWQxmHnkES8rrE2A3Zv+phD44xJSS027Gxn2d6sY7o+p8c8rLsOEqxfoNaskK8s4CYK3dpE967i5A2Wo9DyPr55Psezr1ynoCIqCx7v2O9QLFqsno+pXQzIRz7ShlMPzBIml2i36xSyJ8h6B9O1bC/Z019MB8vid5+D8f9fG6TSIEYhZQlLLiHKPX72k+f5Z796hYn3/zjbt15g/3iTM/fkuFyvkZ9w2blcZy4KmBCK9ZbhmbNrmOo2T/3YaWrVCdaWN9jo3ALL4uDxhE5BEUwvETsx0mlzaGqOxw89RfXP/4LXL+T46MP34t6MMPUEk9WYsInuq6XYyiI2Gp3E2HaqOuBYFs+/fJ7DS/spVUoEWrDbi4gVTOc9brR9NrabiF6b7uYKv/Kr/yfddoMgjIjjGN3PcggpsZRLsTLOP/ypj/OOhx5ganJ8mB2UUvJkP0N4ZGGOH3ryMSKtabTbSCn51c8/TcO2KN21wMF33YOjcthAF49e+CxSSTL2OJFyWPOvYSXL3Kr3eGW1jmPD4YmDHC4ssd3a5OvXL/LI/VMcnJ7FEjn8pEq1uctjH3kfLatBnknuXSqzmbVorV1kYewIRo9xK1vgZsNHJuvI3WW8sTG+0VY8UBhngwz1dh3HwFzxEM1EsB1p9i/cQxBJWo1twtZVqoWTOK5LRjoopUiMJOzzxEcZC/9Z0IOBQ/XX7GfghCVJf1Hu+5Ya8Hshl8+/xfTCAcbH84SRJsZge5DJR2i/g1rfRDe6aHEAKWYgcTFRjAmakM0Qaiul40QaEcX0goBOu0G310NZUziOO3xgQj8h8lccsxE23V7IofkZji7M88I3rrB4dBFZWORWu0qY7KIrPcYnbezpUxDfIm4ZlNIkModvbKxoC4nNxnFB7iVDvNNlp1BGORXKUrKtbbbX82xv+5R0zNLMOPLEPP7qZWqNGSbcg4huncSvIexlZDbBsm1i8S7+6Gshl67WGc8aJmez3D/rEosdvvZr58h0upTRZMsex588wwPFRRLh8z//j5+m2/ExOiEwBiPT009UX6qzf1uSQf8Dw7DGwPTvrxyk0UeoBwNH15BymNPXe07H7Z8Tg40x6Ho2yLIPGzcNIP8hMsCIwz3yHQmYfoHr8ID/queWGe5fKbWHJpi9Z5/oBxamHzwNnPkhGtJ3hAb1FYPgZyDjKETqSFliLygaOFx3FlQPUGDZvzBCqv736TdSk/1Oyul3YqGw1SRSnmBpqctPf+IW/+rX3mL+Y/8tFy/9LnOzEtuSbLZa5CoWOxfqLCURE26JFzZu8o3XN8ibHu/54RO0Vxa5sXaF7bbF5DhUFhPqliGYOYax22TcDqfm7ue4vZ/mM+d482qeH338fvQbLYwUEEhkx2Bp2DdbwXEdPvDhD3H+zXO88cbrCCTXLi9z99vexcqN85y+7y7ue/gRjpw8RbFUIBf1+NS/+BWWb23z+U//FlfOv4FRNn6vTRjFtHd3MPQHp1BI5WBlckhp2F45z87NcygrTTpFYUTQ7SBth0z+JplCEbdcwC0W0NvXOPrIgwTyMvueOMHUfUdxpYcFdPDoBp8j444jVJGOiAiDm1jxKiu1iGdv7jA/nuVw+Qgz2f1sNDb4+rWL/Mh7TzJWmEYJBz/oERDzyAefYFdvUWKcpx5aotpaxd+5hlfeT2LKLBeK3Nqo011bwVlYIMxleCmwebA4ybWOz3Zjk5KTZ8qdom0kNR1zcPHtdCJFs3qDTruJtveTy2aRIZx94zy5bJ7F2VmmxyrYtsWBxQMUCgU6nU4a/CfJHsVtBAVDCIROnXgx0t9q0DBSiDSjP4inBzUJQgps294bs7K/jg/8RW6vxRFCkMlkeOSRR/jN3/hNWq0WhXwBqSQbm9t87fNf549/60/xDsxhWRHTE3Ncur5MWOgwHkL3zSucWhAE22CXz7oAACAASURBVN/EBCcxmSm0ZWFpcJoxlLL4PYeFk0fI2WUmN2f45otnyQmJVXSxmnWsWKH7Cci+nmm6pmjdT0RCnHz7AOE7Cg601nz+z77C66++yT/4x5/klz75j/jEP/4kzz5zliNHSiwuahI2qdXXybdXkJPjyHyRpGWj6w28bosgaZIkV6gcsbk1btO2NfucmP3KZy7jEKosDV8xpgz2tEs8Pk64cg1h52i3LWyaqHyOpFyERpWgY2OXj/G5lxtcvnEB46+xkLXQzS73ffAevvrZa0TVBkhBcXqOt99XIjv1dqRdJux8ER02iWTagtt2Mt+PA76LzQCx0f2MmMFB9yewi6umOXpwgk98YorXnvkCjfUtxvJZ4qTOmekyn88IVJwwP30Xm1GR565tsHmzihdH3Hf3L/I/Pf0LXLl0gYWDOR55Yj/7cpKry7A91qW6JjhzepLjB/Ns3rjI0+cU/8VdD5K8sEocXkcVZkiKp+lmHGobuyy+rYIl4fqfX+b8y2+xanY5OOly5F0PsHTkIE4uS88IIgPSsrCbEb/3R8/SuPECb60ts9Go4fc6NLrdtN17/6GsHJdcocixY0v87//0l1GWhWNbyP5DdSQ1OLxmllJYCmytcYoFbNvGqjV57IF7uOvMEY4eOoSDwkejdJ1utUPWm0F5Ht2kSU7laDabvLV2kYIjKNkuxk+4JgKOTtzgq8+vcP/Ck0g7Q9ts0DO3wM7xuVsWf2/KRbNGzWpQs12yvs2la7/L8aWfYDZ/kvFDl9iqt/jyhSuMLXq8Z/FhrvsGSzgYp4IfhgTtiLKn2MZwLVF4JsDOl9FRkau3lnlw8Sg7WAhhKEiDA3vZU1InL5WH/C4yo5Ej/iGkFBIhLHwxjx9CuxOx22jTrtVw44TZ8TlWXrjFbCPBzh/ANIroDmidQK+BnK0QTCZc2AkYn4CFvEWkE86++gZSRBw7fgTXdYaH8J1cDx0mnDh4H81Gky898xKP3X2CQnmGL//ZBX7oh+9hbr6IZy/Tatwit7GBNT2BNVYhqoFqbpHxExLlkyRXmDyV5xVP4vZixp2IWTtkLpMhsnLU2oalrKa1r0xcKhDdXMHYWVpti2J1G+l5aOUiug3o2tiVU/z+V9e4uXaFgtyhbEmyUcQ9T53kj39nDbcb0Uk0U0sVFo/O8PLFFpeufpG//1MPU8kpJkouTQnVqJd2n1WSRKdFynGSECdpUbKUaYF7kuxlHA0MJT0HyjsjtP709/D1nuMxynTWeqTA2JiUcjTiRN+2sf4Gh70FSH8Ludcp+3Yef78LrBipSRgJJkZtNCE2yHQO6UUMEmT/D3tvGiNZdp7pPefu98Yeue+1r11LV3d1sZpsdpPdXERtpERKomSJoiRLo7FlGWN4+2H/MQx4jAEMGBgDNmwNZHjkRZqhJUoUqSHZ3LrZ7L2qa99zz4zI2Je7n+MfEZGZRUqaBjzSyIY+oFDIjJs3btz4zrnf8r7vJ3bPuz/w+av4AqNkQKnHZy0MtqdBdjMiemv63gyOwWeR6LqBoet4novtWCRq0GHQBFgwmAIscmS9SZ44McWvfnGGN/78f6ff2qETWBwwHU5NlfievYqIYw4uXOZqPeHqowqV9SYtYv6r/+Z15ucmqN56yAdeXOTU6SIF3eTRRo7qhE/tUZ0XP3aU+Wmd1bVtrj1w+fTpp+h+awU3vQ1jF4isCbqmorvT4PCUga7g/u+9w9TmLJ858xnGsynb+Cw89yQLv/LTzMzOYHhZUDppPeYP/uB7iNrbXNlap9FqEAU+QdJBpsnAfzSB7tiYXoYo6LN17zqogfL6CEq23zRNB5EQNOukfoeoY+NbFolMiebnmD8wwRcufJxzCyfR0QlViqHadKs+Y+XyIFFWEY5w6fTa3Fy/wWzeYgxBt5+yKbqUrCovv7bCJ858hlRI2vIRfbboSJNvrJv83IxNTz6iaoeEPQ/ZafFg+UscXfpZ5nJPUjr5JjfbOzTv3mV2weSZmfPcDSWWZtPTSig/pBj6uI4g0HXeixRae5NCdopeELK58pAD+Qn0yXlOnD1HyTIxEXuKY7rB9155lZ/5zKeHUt0RcRwTx/HQ7+S+DtWQhzCs9o9kRXfJ/oZOMhQvkGqvuyUYVN0d0ySWKQg5aDsqhW7oGIZgJCaQLxT41S98gX//d34HyzIplYrDjp5gZmaSyx95EW/8DFPTOq99/3sY+RKb71xHOJuo8hIZY460skXKPG6Sx5AWWppAGqFN5ennU9Z7RWYOWbzyg1f59vdfY3J8CilLaHYfTQyuiVSRDmHLyVA+OE3lY7NU/jp7X8mBJgSTE/PYbpP//p99jcL0Qb73tT+n3UpYvnKT4yf7vPCJGGHnUUkFFdUQWgR6FqHbGIEG2RLvbXWY9Ra4WazQMfskjQTjToVWKinmxrCUJJECY2yahUtPsLq1THZmkiSRbNyPyGUDyrM2/WiSYqHAyvUN7ry7TCcIsS0dqzjGB5/x+O53emhhgGVIclOLzJ44hDe1Q7f+KrZ7gn53km5rA8vpMj1/As0wdiEgQ1TlYDP84Rvx97Cjv3UbNNklqJR6EhHHPlldYhsahiYQIoNuXeCpE112VlfYaUoafsBmP+Hi9BHGDtzHMwXvvP4eJ1KLYqIwUh8tFtzYuEp1bZl2vUG4oIiKNttLz/Pue99kWm3x7BNPkNE9Kg9ijGqVn3juFHzjTzF6BnruCDJZJGmkGP4m01Mmyc0t1B2bRw82uVFbZbu7wWa/yGLuo+Rtm1RprK93uX1ng0dXbtBbfof1SpVOv0G916EXBcQyGQw5syzcjMsXfukXeeL0aQqFAp7rkM1mdu/Nj1bFR0EBuy3RIIy4fuc+/+Irf0Hot/jYMz/OiYWjmJoJKFIlCTqblHIHCHWTgBihfBqdV7jRrCPThGKmhC4slFBMZba5V9/hwExIx5tC6WVMDAItw2R2nrDdo5NUME0Py5wm4yiS3hrLdxoszrfJWzk8z6G7uU68/ABvcpKvrLzFB2YvEQsdSzeINI3tdgO7v4kzdZA5LURYeaQwyUiYdnLoKUxbAlvT0MWoSzDc9JVC7gvQ/kb8cj8W/PFXHvs+RvLP7LseMZBrGRwtwHJ0jp/Mc6efcuuNexw/OsHczCRBo0/l/gPGMh5hYwy5XsBIHaQySFINQ88h8ybvVXtMXchRnIVW4FPtB3T6AaW8Sa9Tx3NsdN3YG271w5HlD9mRAwc5fuQpQjPDZnuDZm8Fa3WZ7NxZvvMvb+D8pMkT53VSWQBZQ4ZVNBKEkUNTJmasoewC7261OZY7yvfLq6S1GnLbR8gdOqmkWJjAlCEtLIqHZigemmKtskVmeoI0TnhwNWBqQcfK2CTJFJlclo0r69x+5z6WpdANm/H5DKfnHb77HZ+8HiONQTBNxqAw63Jm2iJrlfnyH36XY/N58q7O8loDREoQKSzXwu+GCDUKfEff3aBiriVDTLEYqBolcToI7oFh+LD7dWtCDH2OIQzn8Xv6WOy/D/Kg6/qwzT8s5Qse60wIRpAjMYQF7c01GJ1r9H57Af7wmkdwn0HGsM839w9N03YnJ8vRK0MVVIHYxWePJB6lYncOx1/blRtBoRBojOQctcc6F4/prwOO7XD85AmOHD2KlCnNNKQfdBizBI5poAsQYgzHeZKLJ7qs3b5JpSbZ7PY4EFmM5+YZP7CMZ1T47suvc/CcSTatY6Qh+UyOz//OF/k//+n/SLfZJtK79KZP07UPcP32D5iWPi9dehozFqy+2yaTZnnxyTnU9/4Us2uilZ8gDsdQO30ct8fMhEF8bQt5y+VOrcpmXKeddFG5SV767GcpjJewLIeV7YBH379F5c5t/I1brFeq9MImO70OQRKRyIEnmaaJYem0O21amzskSUKaJqRxPIB/Pb6FMMKUSU1i6MNOAwLHLVCeW0IDulvr1GQD6acY2gCymMiEoLvBVOkUHV2gREoab1LvXuFes4kmJaVsgTjWyFshGXOD1XaNg7MRVXuekl4AejhmianMHBU/oplsg3DIOAcQ1gb9+gYb9R7zs23Kdhk7YxLvbCHcLEkxz79KFZfmLtGXOgulAiubm2zVthl3Jfn5YxyQEQ0rTyZbxtF88olG2csS9TqkShJKl3qrxd1bt7l+7T0WFhZ4/vnnMUxzMJsj1XbXVZqme0PKhnwDOcAO7R6zyy9goEI0gB0amJYxnAquDWBBlolKUoTQ0HWwjMH7aIZOGEZkc1kuf+ADfO5zn+Xpp5/GdWySJGFrY4NiqYztOmiaztRsngt5h+v1Huvr0L75Hc4cO4NdDejdWeHI0Yv425JMtIiKLUJDJ9V1TNcmKVq8W21z/qNF9KLNSfk0FQzW7t4nW8gxVjTYKmaotXxknGKgSKME09AHkCJ9sO7iJCH6q1cv8H5hRUHKwvQ4H3n+PPXQR9eO8L1vvMna7bfwZYl6O4sVVLj8sTFwusi4h2YE6KYNWYe0I+g/aFGaX8Qyn8DNdNCsNtXtCldvVvAsG98s4M08Qaht01y7SfWdTRbPLlDbmcKr3yNcrZAuzqAXlgiCDfx6m+Ub6wQbHeyCR95zcEWIChPiboIfBcwWFXNjbSasVZQf0qk8ZHWnQVkluLkxLDMlqL6HMfsM7cYWmi7xCtMYpjdchxojXOagJbxP+3bfGt2zv08a/k2bVJJIRiQqwRKSINwg1F3iREfTFY4Bhn6KgvV9zp89y8Z6QDeo06+CdXia+koXTcYcXQo4udTlwHSJ/BeewRAa43mLNAlIZUK7pbO5VUI7fpSV5a9geZLcGUjbEXFfUPYmMR/FyLaFoojQJklFjgSFLhRGEpGWxqjFkqptoE2VOfZEkcnjxzBKRd59UGfr5n2qy8vUt1bpba2x09gkwaAVdgmiwXVYjsX8oTk++6lP47oO58+dZWJ8HNM0Hxve8qOetq91j9oNNgxdp1zIs75VYWIig+EZ6KYGSPw0II13sPUAw8wRE6NUh1hu00u6+FKSz2fRpUbGdvEsjWp3k+04pEDKmO5gi0GgFJPHcQ6Styu0/DYlkcHRXFzHpZ2ziO50aLc38UqLJDqkRkKs+lQbVbrraxhTF0gNg0gIhGVQzGXodNuYJOhAwXQxdRsUWLY3GM5kDKYjw94U2FGl8m9txOEQmjGI6dSwZT2a2KyhVMx+AigyAZUi/YcIcxzM8QG2OqMT9GFtXXLssIGSghSdsaVJtm4uk0vHEb5Eqi6YFrg5QssgziboeRt7UqNtSTaaXVaWNzH9NnExh5ctoBvWEKc+IMGNsO/i8Whj1z566TkOHDzGWqNFvG5izxzHlTbba3fYzJ8m800f0elz+mIZ3D5p1EW3Agwng8oKkp4kWekwNm9gWBfI5B7Q1SLWql367QTXsumZRQrzT1G71ae1WkeTbSaPLNKoTJDfuc7m/W2YfxIyeYJmFa3W4dH1ddJKH+/AGI6jyOgJ0o8ImoJu1OPIjM7BfJbyFGhhHUPkaTbbHHAF46cu02pXuPLeDaJ+l+lChuxElndv1ukHCWGUEoQpcZxiCEEsIR1i5BkF22owA0LJgWJUKsVAL1zt8YhGeH81CvLZp1A2gv+M1rAQjIYUjTTJ94Lu/et5z69H/4nhVN1Ra+AxYjDsrgqxLycYVDYHP+xNNx7xKvZBmBg984Yuq/aSILl77v2KS/sSEyUek2gVgqFay55/ja5CCIFuCAZD/jQyWY8PfuhZnrl8EUmKTUovXCcSJaIUTAMs3cAwjlGwf8DFi5e4f+frhG1J3HYQzhj1lQ6GSDhzLGB2rov7/BRn5i/hOjnOnTnO/xb7pCphp2JRaU1hTS2yuvxtLE9RLuts3+mSIUNWFNBXksF+L8poxhSxcFAEGEKhkZKW81TDhJpjUT4+z9LMMaaOHGL8yCHu3tth48qb7Kwv09lep1vbotWpkQqDVtgnjiMUCifn4uRsuvUWrVqDftAfQsUkqUwZjrlGClDy8aRskFwppEzRTROUIg5Cgk6X8sw0upPwMx/9SRZnZ5EqJZJ9ZNzA0UJ000Xgk8gmYVqln/YIlCSbs5GhopzJoQmfaq/OThhQImVCdzFI8ZWB1MdxnYisVafRb1ByF3F1lzjjknY1wvUW7fYGbukgsQmOHuFHHaqVdaJkHWP2IkIIIgGFfA6V9NjpbVNWMUjJd778VYqFEt1mi62VFQwxCMKFHDzT/H6faqXC9tYWhUKBN954gyiK0HV9N+gf+aUYwuV++NkppUQ3jEHSvQsP2lMfGqlMjSBzqZR4TgYV+WgqpVwqYjs23V6PXCGD5+X53Oc+w6VLFymVysRRQLtZxzQl/Z2XMSY/gHDKWKZONmeRthOiaIq7d/6EY4tP0A46dCsrHM4fYULMYMYKKTtIQxC5Hn5GEOUTnHkPd1Kwret0nQxuqcziXI1QxNy/+gih63iugxARMYqcYxGmKb4fo+mDZ2b6PloH7ys5SKpNMmHMwclx5lNBx1BMHunQT5qsLEseradYvkemnHLyZI6kmeJYCjMjMJwsejFP8/t38JZ95OEJJssn6JQr9Nar1OoR0/MnMC9cJr90Ft9u0N7U6T5ao7l4gNpWl2xr8HDQ5g9DdobqzdtsPFpmayPAijQczSKnm3hpn04rQUkTKwkZyxiMZbo4aUjcMPDtAr3NVQp2NJBlrVeJww65Spva5hrjkzqlqQNE0qHTjYlSAZjMHz5NFEV0Wg0c12NmfmkQlOxiBAYutx/H9vf2b8IGD81YSdppQk5EWLJLFPaIMNBMEz1nAQqNiEOLp5lZrLD6MMFfl9x5uMHShMuBpy0unPWYW4BUwcGpCYSuMPIVnr08w/LSGG3fYHstZUkWaDV02nqM4eqk2z2MnqA0tkD9jRoTSQlyS0TSRlM+hqNhlLMkxYQ122B15xFhLmF+eo7FA2Uys4us3V7h+pVltq5eo1d5SBJUSVOfQILlOViGhTdmUR4fZ25uiYn5Mj/2Yx/HNkziJKHWaJCmKePlMQwjwbHtvcrvX5Is7OcVxknCZrVOIZ/l7BOnyOezQApKI5UJhgyxDIdADKezqogg7VCPB1Adx8njpS6OKUDvEQZd1lsptmlR0FxMUnwFEQ6uM00un9Lz62QtgSZ0DNtCZfJkLZPW1iP0TAHN01COQScKSerb6O0mWzv3KY4fQegeia5juB6T+iRZwwagYDhY+mC70oT2r11lf1Ncg/0dA7XvoTIKzpRSxGlCmsaotI9pCHTdRKCj0giiZTD6qHR7gBVQRZTQUEqgRSlj5TyWbQ2CS93CdrLEtfcw3DlwaygZgafDhI42bXN3c43ZM3NoeY26jHjUbrO5sc2pSZ1e0KblNwfBmRxUh8fGx4ftchhUyB8P8gCenFikWMhjA652EHN+Bscrs3rD4OFKlpt3BKZU6E7M4SN5klqC7kmMgo6RLUJTo72+jvOojzwxx8LMGTbv1IhqHToxTM8cxLz4QbyZ0+QPJ9SuXKOzGmKVF9jZ6lJsbiFqPoY9QWy6bG3fJV5bZ3szJCMNMoZNVotwo5hOK0XFMXYSMD2WY2LGwjAUQaNHP7HJSJ3DU+OkQqA0xVze4ORMhulihsUjOfIOVGshzU5C108JfEk/HFQaDd2k2e0ThNGgc5AMsERxnAIpioFm/3AE0G5lHx4PzkeB8P6KvRg4zS4Rer9PaUOZ0N3fjUJ3tX/Zj/xucMTINE3bl6gMEhc5hBvtdq7E40H9yPZ3N3b5EqPAir0kRQzFE6QcJSR7MKLRP10fHL1XlYX9c1t21YmMgQixYehYtomXy6C5Dl2ZkBUhjuoRdGNCTFzPQnN1QKKTcPzQBcbmr2NGHeqrPkpWOTTtceQZm7NPeDiFiKmizfmT42i6jZat8PyHl9hqOHQCQWtHZ6Kco9kw6Bg+TkYnrTfI2B5uotO82WI8LaPyh+hGCj3jY2YFWilLnJesOyYPNx5gzZrMTR9mcmECMz/G+u1lbr/9iO233sJvLpNGTWIZEqJhuy62YZEds+j7EZlChuJkgdvdNqHv47o2XqFEkiT0u138nk/Q6w66TT9MGB9iyNM0RdONXf8zTAtd18i6Nh/90IeZKI8hZYKUMbqKsEwHX4CJIlI+/aRPO1ZYKIThkhcFLFORqD7dsMtGJ8EZ7veCkEhpSJHFc6YI84pOt0be0jF1Dc110LwsniFobD7EyI1j5Cyibp9Gv0O/toEZBGxW7lKcOEoodAzPI6hI3nv7OvWHW7TbHV7+8lfIeBn6nQ4bGxskcYJlmozkRgedlRHRVuP69etks1niJBnw9B6Dwmm7BV5NCKTYmxtiahoqHXbuRpCjIddGExqGpg+JyDqulwEJnqeh6VAeG2N6ZppssUCSBhRzFk89fYpiwUVJHxk3UeEtsnkIw4ckySlEmkPoApUq4k5Iu9VA6TahAul4GG4B2exjTpeIOptoDqhiSl1rsB7UMXtlFp5eRHmS7SChFkaoJKZYgI4yMPIeVj/CdjRsP6Df61LO2lQaAXE8gErquolhCKDPX2fvKzlIN6oE97fwrTzdWkI05XLqySUWL5/gnT/9Jg+uPGDVPMof/l9X+Y9/Z5akmkPSwi46mJNl9OJpulaDjZernM0FzI4vIueOUL1/n4mxcTKnP8KRz/08vdRD6PMsXJilFtzi1noRp/4KW1sBVnEaOztN3I9YvnaTOz/YpjQ2Qc5TZExBNk2x45Qokfi9OiddjUnbHOCtlE7UAt/wWNJ7dHx48OAGtVoDKfvkMt+iF6ScOp6ls5KnWktZ3ejT8RMQWT75hd+l3Wiw8vA245MzTEyUMExv2LY1djfcv08M/t/afnk/gUKSKkkkoZakOJqPY3i0OisEkY5mlohFQmwu4+oGGWuG+YOn8VsRzZVNXtdf5vM/9zRT232cqSyaGWKwgV2ookgRos9v/tox1uQZvvnKOu+8/gC13cDJldCKLXTPwosqiFaIbjdpbrYpT0wgCuP0/CaulpAt5UjnpqlOSF5br9O+cZWF0xPMHj2ARYGNmw95949fpteo4cQNNK1P29XxlUdGs8mM5Zm0y0wulDh39hxnTjzFVnWDrcoOpq4TRSGPVtdIpeLieQ9dE4PkYJ/9pV43fKj3fZ/vv3uNU0cO8tMf/Sj28OEqFdiYaGaZREkCkQxgBMqgHyvqvYi80iD1mCxN00+3aEcV8q7Ow2ttToyXwcgNA6QEpQyytksw5hJ2wY/VYCKjYaKZJcqzU7S2HuHNTeN5OsK0aDR9DL9KT0refO+bvHB5ilwhS0tCK4XTxZl9wdS//bWllCKNJUmcopk6mhhWkofB9UjZoh/6xElE3LtNKV/GsLOgUoh2UMG3EE4dzT6A1BZQykcpQZpqOH2fZy6WcDMWQtdBpWzf7OIkGnrWInQEQpnoRQf9kIt22Gbl9zdZyM0RO4J2J6TT7aCHPqXJadZWH3Dt3tvMjx3G0z00Abl8Bl0DTXfQtGFwOISKjCy/2cRSZY6MLXHuxCTdkoY6YnP8pQu8/E9/n0a7xI1GgcafPOS3vjBHvJ1FaA2saQdjbB7yRVqqz+rXt7g0G3F46TR6+S5Ru0dpYobMyec49vnP02hrjJ/+EE6ywM79Le5u2Nj1H7CxGmHNHMCwC7RrFe69e5vl9+qUxscZz6XkhMKLE0xiIl0Sdnuc8WDMHcAKklgjaOp0WpJz5TEafszdd75JEPQxbcGTB3P4YcJiIWLx6TwPVwKqtYR+CFFqsN6NcXSNsbEJHm7W2dppDDkJGo1Gh14/GnAI1KCqPuoa7fcTRlV7xO5k0l3Y3wiPL8TusSPC795J2I8C2ktEhXjs/R7TZh8SlBlBi9QgsRjwJhgOHWPfNQzUmX7kbYdBp9wldI6aIGIgKT46cI9tscejkANu2EDPXdv396NkhF3Ik24YOI5NNpchiSXjE+Osbm5y9d59nijmsLUAz8xRb9/DlyW0NI8tU2JjDUc3yNrzHDx9nsaVG6zdXaUjavzyL1xiajvAznsIvY3hdlF2a/B9aE3+0e9e5J58hj/85y+T9PvQ6uEUioiiwPAsct0GbugiQ4t2xac4Po4ojNNubzJmG1jjJcKZEluFlFc3duhee4sTL51ibHycNDJYu3qXG3/xKt16jXxSQzMjOoZJiklWt/HKOUpGnplDRbY3quiY5EolVh7WKIynjE+W8UrjdDodGjs76HqX0O8Pugbsv+ePV8CTOEY3LNxsltLUNHHYwfIVnjAHwgUoTN1EN0qkShGQYJCSSI1uJGn2I5xIEscuc3NzbPRvoGttDAGPNrucmhhHaVmUCgY8HaHjuC6RcAk6in6skDoI3cXyyhQmyrQ2HpI7sESh4FFdbyJ7HfK2ohcrXn3nz/mplw5TMG02ZcKDjQrf/qOv0KrXqFaqRFEy9Je9dRFH0cAR1V6XFkA3DJSUNJOEJI4f7xqM7tWog7CPXzNK0He7bwzge7qmIRQYmsFEcQrH8RCGRqFQYHltmVw+x/jEGGMTZc6cPcPzL77A21ff5qkTJlk3RskGIg0w0jWK7htoRhNn6hj92CdJ+ggFkZ/Q39hife0VFk+eIHIUk/oik/PH8Jo+ytGoa23ypSL9Qsid3jpX2/c41DzN4eISkWNQb/QIu11E2KUvm1gkXHzhLG987SqObpCkIZ2ORsGzaHQl2YxFr+PjmC6JLqHT+OFH3GP2vpID4QpE2kfb6GKtNdi45/JwXOCdP8QLn/kkT31c4+s/2GH9qylO4SmM+ZjV994ivLZFzrOZ/tghnvjQA17/VxVko0nYU3Qtj+TUx3jq1/4DxILJ6nd6bO8kFKKYXKqTPXSCT/3SFGHrNP/4nzzgZz87xmT5Nhvf+BLmOzs0wxRtZ5PxGYO5TAbXM2n1Ypq9lFwj5tDpAt6kS6wZBB2dNC6ytXKXaOseb6+0CJOUnKszNW4wddSjNG1Rr4fcubmOFhmMmRY5W5ErhutvFgAAIABJREFUx4je18nEGk8/UcLLp/Qq3yM3+QGkDDCcCYQ2YLL/DcOc/39q+x+qg5+lCtCERZQGtOKQVpIypitCHDL2FPnCDmavTbe2zsqdkLlLM6joEcLMcOnMp+hvSV5791X+0587xXj218BbRqkGSm5B2EJ2OmAYiFIVoS2yYF7ghcs/jlbe4kv/0+/zYx+ZZjl/jke1Pkthh6IF7W6KtGLkidPssMHYYkymXCScGKdWdvjyzUf4UYfnPvUsluXxYLXHm2+8Tf/drzDmFkiTPp24SeDYMDHLwsEyU2mRyblpDs9NoemCSqPJV776Mg0/YnPrZQxD8KGLT5LL5RgfL1LalTwd2F9dHR/WLYWgmM/zH/3653ePDRIfqSS6EDiaRTcNaSqBK0IaSYO6v4Hf2aaUSHL2Scr6Bs2kjmGGjBk2D5oh3dU+xaPH8AyLWBlIBVlhYNBGt3Wm7RM0+hFh2kcoRVbzqFgOetqkE1Zp7zRQUUh2QseeNmnc2+HhN1/lyeOfpJyfYlo3mNNGDvGvwTb/LZpS0NzsUl1ukTtQZGo6Q5IMgqF+EBPGCUIb8GGiFAp6E0PYKNlFpA8Q6RsIzwcclNpCyDWUzJDKMn6ooYebOGNLNPsp+YyOpWus7MQwXcAppfR8RZiGFOYz5A7qvPzNNV744hkMy+aRFGw1E0QjImMqbq09oiRS4hokborKpsjUp7Jxk/L4AoYlEIxa6gOJyJE162sseCWyiYbYrtNITVaWbaY/cp5f/U9+i3cfJbzx/fs07hSxS0+QXYq5/crL6K92GDtWoHDyICcubfHm1zeR1R38oEMnP0Pp+Utc+MmfhSmD5Ze7bNZcFmQfK8ozc77MhU+UCFvn+c/+izv8l787g77yNfzvfRdxo0EjTNCq68wsmMxlJpFEtP0Uv5dS7CQcv5iBgkEQWySBSxIa9OtVbj+4ySv36wN4XU5ndtZmdsmhMOGws5Pw8JpPTmhMmgIsndy4w6fOH8WvJUwuHUUKnTt3N3jjnUcUy1m++vUrRIkkSiUiebx5LAT72vWD9adrA7iQHLBNdx1pb9qxvqcYNBxKNpJO/BHbLUDtSwxGfYVRfqAGmuaaYDgBWewGUXvETMXjZ2IX8jSCL42ShNEU48eTiiGMb/f8j097FuypGu0NmxoQunVd200aDEOnWMzzc7/wU7z26jv89n/47xG4HrptU9IgxsVzpimW1rA6HdqrNXqpYOp0ARUtI+w8n3j2l/lf3/mvcdUdPn3uGUq5X4HMXZSso+QDVK+JCkIwTURhC6Ed4qj5ST71ud/kGy+/xet//qe89PwkK7knufmgwZLRx5AxvSBBZgTy+Cm25SrzByTmRJneRIlVU+PlW5v04g6f+sVPEqYOr1+tcO+dd0nuv0HJzSLTPs24QT9bwpmfZWqiyBgFxibGmMjZmLbF+nid9WqD7VaXhYOnmVmM6DXraKZD2KvSqlYJff8xnxnFGD8sdSuHQ9SatQr16ia6rtEoZGm2OgRhgGNb5PJZfCloa4KcSNiIq7T7G8S9GrlIEfQ9zkxqbEc1yp6imxhsdkOCzYT8kTFcodNTBgY2poiRIsZwTOad02x3eyQqQFMaju5St2x02aIVVOhstTDNhEzRxSgI6g/qXP+zr/OJD/0aRcvliG1Qsww0pfD7fZIoHiSnQ5/aVfKSI0nREUlYI5UpmpQkgIrjfT46ujfyR7gtQtPQ93W5RmThAb9AHyThEmzD4+c/9QXyxTlev3mFauMWT5w8x+b2Jh958Sc5/9RZZmfGicIe3/jmt/nZZ1/E1EOQFUhvoolbiEyAwkWpdRyzgsTFD0K6HR83eYSuNyjOPced669S8ReZF+fYrnc4O75DE5+WqXGn8g59O8v5Z3+Msx/OYtomN5KUteUWaaNHxtGJ7HGmtZjVuxVMI0POipmeyJHNl9mu9ulGGTZXe5SKecq5Ap2wz9bO2o/uMfvs/cGKNraJvDVUQyPb3GaRFY5El7ndq8Ili8KhPOfOmFS/UeW7X73D87/4cbwnF9icbLPaAquTg2aHpz/9EpGmsfoX7yL6Nk898yLXrrUoZAv04h6LmkIGm2hel+MfPoll6shpk3/8352mDzTvKYR+mYvyNe6HEvIF3GMXEKJKWHuEaobMZfLML2Xx3MMk6x3q2zVWt5vcrwdsRwHHi4IPP2Eze0hjbFGQmdYxCxaYDqmfctksg7BA2OhOGc15AbSTIDKD26ViVNIgab9CmvokybPYmUl0w3k/t/Lv7a81hSImVTVSZaFhkCqfLb9G1E84WZ7lQeQzZRxFZDoY1MjFTd78P77FU0+BPHKVvj3BhLXD5Ykxxg79FPANYBviCkgftBStpA8ws61tRC4E8w2i+hWad66y/uARV+aOcegnLqOtSpardTpRzMkjB7jT7OIffkTz/hUmjlxiKzfFez2LR7UuQq/w+Y8f4/6jgJVrt2lvPmIm2KQ3naMZ2fRba0xcOM7hhUUKhk24U2FGD3nz1df4v2sJSdDBMcHJ5gj0LFbG4/zpc1y+9AFmJ8r7Km7vHzKjCYFpGo9tjJ7pDYIVJEES4uoFbKFoxqBSC1dYeK5Lak6xVt/Cd7tMuhmagaDS8hH9Diq0mfHmsfUshhjwc3wFmCUmcUmiNhk7xUk9ktSjLX2y5Vnkgzpe0MT0YpwSZMOU/oZkYdZA1VO+/Mo/56X0M1w8+gyGGExgN4T+V3y6v30TgN/sUrm3Ts8IKRSXiAOF7elIBqQ109DohgG3773Gk0uraKIDahPkNdDboFJU5KGMLMoIgDqkHaT/gI2bW1jaixjFGZo9iR4rDp2V3H1jm/BYmSAaQ5Q9HiYJWw8qHHo2S83IklcCGcfIqE2YNEmTiNlmh1hXBBG02lsITcO1+6RJmav3Qw7OHsc2bYKtTWSjRa/R3v2c07kMY20dp9HD1tZxxRYXsh/l2ssV4k+6LMxbtA4rbl7b5pWvObz4xU+R/+A01+91aJpZDrZ7qL7P8ZcukhZd7v7J6yxMnaE4dYobt9pk7Rx+0uO4oeNX75A/UqD05BKGY6IyJv/L75+nqaBRuURR2+LJ9D02Q4nKF8ic+SCy+R7RTgXDT1lwHWYPlPAbCWq1x069wcpOn5VGjyYpx8uCn362xPwJg+K8gTtuDKCIhk7aV3z4p3NIpSOMDIYzj2ZdRmknABeldKTsMX98hQ9++B5KSXa2d/hm9wFBEA8SA22gUiJJ9xf6d20/tlfT9wK8/cPStOEMl2Ep8zF8/mMqK1IxCIMG77IfpLR3uj3ewX4YEoLB3w9x64Pf7WU2j81ZUApd13Yrq49VX4FUjpTj9kGSfqhznu5OYh7AOgxDx3EsbNvCsi00Icjnc3zg8gV++7d/lX/4D/8BYPKw12Cj1+LOzgbHS9PcDXssWechV8GVTXprFd79l69w/jyo42/ia+Mcz/QoeUcoLVwCvgXsQFwDFSBshXA0lEoH+30hBvF9/PUVandvsvKgiTt+jMM/8SHUrYDrW3c5sThGduIgLd3HP/yQ5u03OXTup7gZjXE7FFR6bWynzs++dIT3bvSo3n4bdlaYFVV6U1lasUU/XGHu+ac4MzWHFgSIVoti2uftHzzgX1QT9LBJNusg3AyR5iFsl+z0Im98538mDnrEcUQSxQPoTJLscVL+so1JDbvsSQgM5DcToOJ3+Y0v/gbj5TKf+9zn+Plf/HkMPDwU1TCCRMeWEtsyyBbKbIuENdlk3hvnYSMl8DukrTZ+N2YudxADFw+HrtRIRIJpCSbJEEctsnYCskQ/TglNRSY/iWrskAmqiEJKhoSkW6fbbjA76xBWBP/Dl/5bfusnfpfF8Tlmxsc59+Q5qpVtHNfB9/0BUV8qkjRFH06a3j/LYORbu4ntPqidGsp3jvw5SdPHYG6j5FvXjV0JYokCmWJoBmgapmnSWa2R1i0yZpaXfvHzxL7G8vZ9nnvhOQo5lzv37vDtH7zKSy+exMnU0fV7iPQdBCug+4OOceyBXkaYPYTcQUt9ZPc27eVHvPDSBZ744EnKP/4c1771Dlf+/Bu0+m3uP7jJT/z6L2PMZym3jlMWkpkpl5aTR1Ogpym21qejByiZMN2PyJXy+N07HDlaZGlBUs4Jwshmx1xAPlrH8Tw+eWiSo5Mz3NjY5I27V/4yb9q199c5mDqDnj2GXFsn7E+StLrYrbc4NPE2j+RFkvY5jh7I8PbYh6msvkOzFpC6giPTk2QOZFEJPMx8HqPRZHFhnMXSA7qtCkm0zNzlGXaqMeOLFtyvkzleIDO/iCZs/LdjcksWzTFBxoapg1P0njtF9cs6HzYlG5HPmBsTdhVGz+SA7RFkixSme6jNeyxvpWy2InxSFo66PHPc5fARB8vTMVwDzVYIPQLhIIMJhJPDsGyEUQR9HLQiiAVQLZRMSYItks4mabuBitpYCz+NaZcQaKAk/B0KZP5u2w9XxRRS9kiTFdAkYA2rVwElI+B8XiPOZomTLrNmwmY/Jk4FlrAxx+Hgyad57Uv/jA/8g5OIzrc5Mn2d85+VqOD3EE6IipqoKEFoIEwdpQ8JdFkTiCB9mbsPDF5+NQRdsjTj8tLMQb7z3n00cZwEg8qDiIxtc7+7zeKJp7iVLNLS88ipgLkHDznzoYNU7txh5wHU125Tb6zRCmOSUDJ5bJ5zEzP0+zHNe6tUmy2yVsr1lkGtu4MUFipvo5fHKE7Pky1P8sVPfJDxUgHXsYfQX7HvSf9XJwj7AxQlxA8p0wxeTWVMIhMMoZEqRShTTM1lzJyi5vdYri1jWgrT85nO2ERyC7QIadlcb4TMLNgcKC9hai5CZFA6RKSYwkCXG+iaiWZmQIsI4i6NZgMrLZKdH+fGyhqxkOjKodvrY45tsbMToGsm7du3qBzYonowoiBASYlh/t1aU8IMkek27VcfsekISqVxhONgmxqtAO5s9ulv3+SA9Sam7CKkjhB9EH2QfZASpcoIPQtanjSJCMMH1Po+W9t1xIJgtiSwULRWKzx8+RWWfuZDaDNTHDENNoSGXw9pVxOufmODn/qlc1RChdeNSR+s0bp7B69QptHqstVrcHAmQ9Jr0xOSwNHYaUdcvdPDryVETZ9iLJjUbdJOZ/czpksv4nRMzEafJPAgVGj33uBE/22uf/OTTDx9mIOZaVbzT7G9dpN2I0KlBs8cX8LSbTqNPjf7H2fCkRwtzHG4/BpavIXhTjB5YoLmTszEIZvk+hbly4dxxzLgmwTvxuQWLHYmoGyCe+EwrY0l4lcFz5mKjdinkE1prsFY7FFwbZKCR2GmD7WAqysJtX6IdCVHz2eZPW5z+IiLmbUwPAvNjBGGQuGQ9HPglNEdD8OYAK0EooxiGpXWUeSJurcJamsk3RrtVpOvvbrMnfsVLFPDMDS0eDCBfRSwjKqVcjfgZi+Z3x+lD+GTkpHQxd6q3Y/bZ3DkLvRrQAxW6LqBYi9xkPsCcQWPze0ZBZXwOAl597uWcih9qnZzhV2o0/By96RRh9ez79xCe/xzjT64kgr0AUxD08G2dVzXBgS5bIaf+cyLfPazH8eyTYTwERgo1WfBCZm2LOLUIJE95k3Fw04fXdmYlok5lWE6OM0rf/QHfPQ/fwZt64+4dLlKNusjg99DsyNUONjvMQVC12AIp1JZE2QAfInX3kq5cjPAtEwOz3p8fOYwf/ztt5jMfZCbbRe9l+KZBg+6Oxw4+yG+35jAX/CwuhUOd6ocuTjHxvVb1O5AffU69W6LXpgAOpNHF5ifnKXVCll9+zpGHKALybsdQa1TQ1MOciyDOTWLXRiDMGHlnddYffmPCf0OaRyTpglSpkMlq9HtVez/ahACTWgomaBpxqBKnqYomQ7iEdMgCkP+3d/8dV54/nl0zUBKSUhCxszRqOm0OhCkEt2MMDMx065NN36EaYWs+gaPhM3CosdiYR5Ns9GVQaJLYiQ6OnraRxMmup2DOCToNmm3+1iqRGZ+krdu38WxDOLIRSiFk41o1Fq4rk3z+nW2nm+SLU6gOxYz8/MD7X0lh+ISw0Fe+z7yKEnY3Y/3w/FGcCExlOBVaiAJvvv6cFkMb6K2qwA2WoKD+yk0gWs7WJZFs/6QKWJOGTbv/dnrfOEf/QaXvJNYrkU10AjsEicPTnBp7gqGshFyC9jZ2+8VKDWGMPNIUSBNdgiiCq3Qp9HymX3qBQqTYxjSYbKQ49wzJ5j66DkWlxY4WMxxQwnCtR6NezWC5RovfXqarUBSaAYkt+6hdbqYhkWvo9hob3P06ASlYoJXVOhOHr9TplKDnLnJqcPHOX/iBAcnxuny1ycG8D6Tg3DlFlFxlmS6RKWnsxV1ScIqa+2Q5k6GOaPAwaMX+He+cI6MXMJ2c+gyxRQmlq6DrrFwaAaVlqDTwk4CxGyOzMWTuFlBdiPm4XubHDhSxJl00ZoRybtNjK6LdLMkBy1Wzuv4kxqRViISFznovkYhZ9HTJI5l42SLOJpiclHHv17hZjfFlzrWuMHSYZv54wXy5SyZqTIkLdANhOmhNIc40sCeJo1T0siBVCONW8hohSS8zRtXN1mtxfR7AY7jsjC/yIWzZzGEg9AMBhPy/m5AH/6/aFL2UXId1BVU2gU8ol4NTcuj6zkcTceWJjEZMCaZpIPUUxJdZ4cZnCWXieNzGNW3MXoPMewK7kKMMCQq7QPpgBqiwWA6qIkSFkLTiKIETQs5d8jhFz6W5/frXT727CdYcF2OL05RiVz6bZBOBi3vIIXGyuQ0mrKwm1tY7S65JxZor3V453ZCY+U2/U6dMJYIw2T6yCy6plhe3kbzI2RfQGQQxj6VfkJq6px+6knMQhEvnyeby9FtR8xMlrGMPfnJEU73fdmwivejkpXisf8HeGSJTGMSGdEL+4SxwjMLVIM1lsamaEofUxj4UYd+16cUWCweOsV60KEoJTlDJy80TGHQlxqWVgSRkJF1AiGwHcFcHtIgJQ0Ser0u1Z2YjLCYzGao9puIqQzZWOH3NB41q5R2NnhqbIpu7JMxnd3A59+mpWGKTBWF8hjHzx6n8/oVrvzZV7n87AXc3Cl0y8PUIKsiKmt3cE410E1A+ai4DUkXRDTAhRMC7uABnnQImy0evtUhciZYmrDRhCKuV8GvUTh7iANzE2i2SVVp2JogF0v0SPDMpSVKjs5OmPAXX/4yK7euIWRAcWKHfi/ApItzPMUrCTKmQdAz+cG129TbY1j9DZ45eZzpsTlcK093bXP3sxqVG8iJJ2hTpLEpqfXaqKTBw25Iu3aVZ6YKHDq7wNyvPIXHUYSycKTAFiamoVMoZTn95BFMXZI2mnj4mCdO4h1fwrAg2oi4e2Wd009OYhVMeNgjvR9j+A7SzZActbl9SSN0DSJtHqGd4aB3lULOoqMSJrwsmVQjm9HITGn0r1W51g4JU0Fh0WDiSJapAzly5TyZ6XGI6mB6CMNFYhLHBqlRQoaKJMigUoGM1kmCm/R7knduNHlUjfE7bWQa4pmQsQQ77ZhukAx10NVQsUcOScXqce3wH3HXgZIPDGANI97AfqjIXlLwl63Z/fBLuQv12aUb7OKw944Wo4BfKXanIg9PKYZwPaHth+3tkTIH3QN9dPBj02T3q2ruJ+U/FrRpw3MjQA0I9zJNMUyDS88c4skn84yVVlAEkGQIu9vo5jSGbmOg40iLWGUQxiTTNDEsnY7y6JLBPCCZOD6LWP4u3vY93KkOdjZB6AkqDYAUYTLc7w2EMFDCBE0MFW16/NilCdJehhu3PD566UVmLZNTh+b4f9h77yDZsvu+73POublz9+SZN2/m5X2bd7HAEgCJNUGACARlECTFJKvMAEouynbZpT9s2tYf8p9WlYslV5ku2RKpREKWRFIkQHBBRAK7ALjAhpfzmxw7pxvOOf6ju2fmgbC5ZplkuQqnamrmhem+9/a5v/sL39CkyzDzEGGEyCmMdHkwu4iTgrd2j1xZEC7P0Njo8MbNjPr9Kwz6PeLM4OfylKamEMJy7942ziDD9CXWCPo65aAPme/wzDtfgFyOsJAnzQQb99fZXbtHPOii0/R4Px0Rvjm69qOP7yjLPSpMjTakcUw2mS5jwGh0EuJ7Pq7rYa1B24wkHRJnffbaDfr9IZnIsGRUHcVe5pJ3PTrDBNO11FKPIJ9jfdBk1loCqagKl4E1JEbgqFG8z+t9+m5AMVcmMB7ZoI+OY9qdFtt7sBR6uK6ilRmYdimkisaB5Vub90iFwwyC85fOjWGz8iinEmKk+jZ5jh0V20eX5hgWpPUINqfU8V6Nzej+PJKqtxPFJ4m14ykYo/3tOA5+ELAwv8A/+NV/gEBRwMPbPqR59Q7drTrpjddJL58lKuUoC0lT92gc3KH05BDpKrBDSJsjKKkYFYuCGEsBYYfYpEN7q8n6lS6yvMLz52ukro/e2qVQ9cgtPMn5x8/hRiE7SGYlbAwNshDx9IUaFV+xN7R86jd+k8PNe0Q5iRe6dDtdPNnl+WdKlIqQd0I2d+D27X2UzrG0WOPHP/D9nF48j+/mCOL6dwaoP7PeXnHQbDJMW6ilMrmlJcq3p9ipN9l50MMmbaTtIiKXc4sBUCbpJGSJRg+HDHttvDBPFLoIVSBONUluFRxFmC9gtht0NvvkwpCwlENtHcIb64ibHaS5gGEHr76ELyLEYy5BVKL3gx9m4w++zSk/wBUFEuHiyC4OHWwz5v5eTBrBzOUy1XNVykslKjNlXC/AKoFNA7JUkWUBGT79bkLoG3TfoHyJ1X2ytE1qFZ36BmF+AdG6TT4/oFItUlucJ6iew/Fyj2zc7623uybXy2BMC2vWsPom2LsI2wZClG0jdBmRuYishzAuyhTotyJyxdMIlZImGVqdYigCbLlC/a23qKQ7BCspMlIIMQCS0UPiiPgnAR8oAxabtjDCUCtUeeHpi2w3Y9Zu3cZtCgYPNMOdFk6uQvX8c2zt7zG9tMD9nQ1WZmaoVkY44TgesH6jw87D+wwPt9BSocIc+ZzCVV30fpNma0CEwGpDolOMydAo5s/Mcn5xhr5RpAhynsfli0s4Sh3vq0ce6m/vyj7ye9+xlDzuxvtqFIQdYZFOHhVMIRjS0gc4MqSZaKRW9GJDlmmKIiAflMn7syPnZguBVDjjhCO1BTApkiGeSMDxEKGgT5NQF+mKEs2DPWSkUdN5ZF3jK4P1NVHRQ5kuSWePpJBDGcvEeeSvY1lrx7atoz8LKQgLEd7qApEeUvnCPvW7O0RnzxBGARKL0BlhcjhSD1EWdAt0Z9SxVEAmwVUg8ogsJm7UOVzbp0+OmVyVsi8YJk16nTaZsMw+toKQikFquHuY4Xc1ntY8fTrH3EIOTwlmQsn+5gabGxtEvkHbFiqApTM++ZrBCQ3tjmZzK2WnNaBSNZxanWZqJqJQCpBuhG1HR+dtBl1sKcVdnaF4KYd+uM5er8Pm7S75rIEVMblyQO1UBFSJ2zEi9khbPYxKcP2QUiFCOoLhMCUtPEZUWcZTHslOg+72gEIhT1DKId96AFd2kBsg7TIai986jR8FuOcU6cIKg3e9j+0v3+KUHyBtES3aI/ldMyBtaB7sDTF5y/ILC5TPlCjPFymUCzh+CFJijUcyUGQqItEOySDDdQRmoFGexWZ1Or19Ot0mSX/Iwwf7pEFIpSxxoxr9PqxvHXDYjUkzw3CYkWYjJ2FtxoTfE2sCsRGMws1RT91OfAqOE50jXwKOE/zvhOwcNeQRJ1PFo8Ji8hpHylknDkRKMe6+iqMD+S5shmNiOsdTi5P3gWFSIByTnifY9/HfMrYYOXEujKRex+/oBx4f+KHneP8PrnB2VSO4i2CANSHKNpE6RsQJQidY46NMnn4zpDR1AZkdIsmj1CwDX2JLFQ6++TqVbBdVkyMUgBgC6SjeH1ksu0AAFBBYbNJAS8Pp2SXe+2KNqGBYu3kbtwnJesJg95DS2cdwZqrUuy28uXnurD/g8ZXTFD2B8S39bp+d62121u4RH26h/Rx+oUCUlziiRbbfptnoU5KKWKf0TMZQa4xymD8zy3Ipop4JdKrp1Ovs3rtJPOgxMt7Ljojd1pqRUpQ1R3vkZIQ/gseIkSmiOCG1rqRAyBGx/Iuf/xIPH67jOA5GgfRdciWPrfoGTjCgMGUpRQG+47NtBO1uzGHPRcc+gXaw1uH+2h5PLWoiKYmEQiHpS9C2iJAJ0nTxMeBKTGDoxw30oEOLMvXNXebPRziuIOsPyEmF8CW5ouJw5xaNIKBWniHynSOjQZjIU8tHpgNHpfOJQdVEfnR8VxzdCUcTgvEkQWs9gg6NSTpyTJZXUhEEAefPn+ejH/ko1WqV9730vpFPQpqR7OxzECn2PrvF3tVNZh+/gO86JJnFtwkV2UW5HsKRkLYhHTeChAQtEa4DoohI2vR2d2jutcmcHAulWaZyimZv5HvhV/LkF2ZxPY9hZrm1l1DtZcy7itxKkdmZEN8RzIWSh3fvMejsUxwIoqKDExpOnfYoz3oErqS+J9isG3oGls/keXblAucvLZArVTDkUOX8d4kCj663Z4I2VUMs5IlnYrrK48zyGbz9mNY3Atz8LPOrZTJH0teC0AHhebjKYpOEpD/ApAkKie8rCIuoxadAZzAwdDdaJNqy8vgSfiLgrX3E12+gOl0QCmtb+EoxFc2CjLBnfTofepE/efkCp2SHsirQG8cCxZDmoaFeiFi9XGTpvecpLE4jVYCwPtokJO0Wwzgk1gJtwNqEJNHIXh9JgHJ7oFqgMvDOksVDzq9epLwSkPNSSqUZwtJZXDdCqQjkxDHmbWRu31vfsSzW7GP0LTDXEOwi6IP1RnblpglpCml7JAOZhaR1gaMEOh1A1mduLmIPDylT2rfr5KsxwnMQvsLaGMQoyFhjQCoECnDBhKAtMu2RiBxWrlIuPcN7n93gs7/+uwyX77FxXzFoDVi6eI6l2lluX3+L8sqz6EFCj2LfAAAgAElEQVQTS0RYqSGNZOPKTR7c6jI4uIU0GuVF+L7FVzHd3W1kPUWkLpkSJAyJyRBemZlKkeWlKQpW02/06GWCnAp48h1Lj1ylUTD8/y5FlkIh1Yh34VjwhENmHIpOxMDL4TkOhi6B4xPqHGkGOTcjV4xx3Ix8OMNK8SJSKiQGBUgkBSlo6hAhFKko4tg+2AE9peg5KXMyR7sbEQ8USSDoCgedhgTdIT1pCQuK0HZw+3WwpwjVXx+PZ1QYaMhGRFLBCB6Bo5BuDufpi1xuHfDWN7eoHHQJSjlQAk2Cn7VRKgRlsWkCWQ9BilAOWIdR2BVY3aF7sMP2nV3C+YssRvMwzEiGA7SxOMUS+UqZdi+m3ZP09lLirmFpyuXMSkTqOAgE06FiZfU0B9tr6M4mNVczvepw9ok8oW/ptzN2dgVrdZ9cbYaFOY+V1SkCV9DtNOknCVv7x7Aib+UUzmpEv6TRyuXsY+cIDjL2hU9teY7SXI5ECgZaEDggPR9fWfq9DunAYFIXaQW+70C+glp5FyoXoNsJ/e02qYUzT59GNAx84yHy9j3UQAEx0CHwQ2YrU0jpk85Mc/D97+SNV7/AadFmyinQMh4uGpsOaQ41jWLEuaeLnP7gM/iFPEJ4WKPQJiFuthkOI/pj+VFjDTo1hGKAI0Ks3wSngfYsSVDGqJTq0pDlS5dYrBXw80s8XO/y5S/+KfsPbxEnmkGckY4N0sy4wztJ+k/W4+LEtG9iJDbaXDwKERz/OyelsP/MzX6sfnT0PpMuv5kYn8mjBoIQo8RKypE/w+RtT7RcR4XI8eDi6PiOScSj72ZMcDZjCJFSCq31eDLAuHPLGBN+DJUadbXlkblcrVbmP/4bL3LxfEIU7iOoj6Zo1kP6HpgDMF1Ie6A1IgtI6wI/V2LYuEMQVQnLHgfkaKiUxpUDSmc1InARXoa1CUKM9OxtZkYkZOEA3ijeZxaRtIlVBeU9xunFGeLOPV79P19meOoud68LdK/D0tkcUeSwsXaP4uLj6H4Dq6YozpRoHR6we2ONtdtthoe3UBjwDIFvEFmPbuMA2cqQsUviCga2Q6pcRFBgOpdnebGG2+uSNFN6js/+7jYH6w9QUpJai9UGYzQTFarjadKxM8nJ/WWtHvluHFWho300MdjT2vDyy59DfV4hpMANfErVErPzUxgSSvN5Fs9WCN0ih33NobUcHrbQcYKbSlQMvUFCc3+P+NneiJsjR+Zg0jh0kAgrGVLGs31SDIkUdGVMLrMctnKYRDAULpmVJH1JpSuIpSBXUuj2GntrHnbvkM5eAyWPMD5H/hgnJ1JG6xPTdMZQouOJgrWMIG3i2P174nBsjEHY46mCGBPkA9/j4oXz/OjHPsbf+eW/O54qCIQSELj44QL4cPrebe7c6LKqXVwhyEwCNqbqg5QRVniQdhF6CMqMG5EuQngIwKRNDte3aeyklKZnmAvnMb2YpN3Geh5BpUxQyNPqJXT6gsF2TKtnuXghpLoQYJ0RpGompzh36QJ336gT0mO+4DK96rByOSRwFb1mxtouNLMc1fk8p2ciHn9iBU9Bq3FAL405bA2/M8D8mfW2ioPSS48TvO8CD69d5zP//A/5lf/+Y5w+/SyLSz2c2gWy0jLNRPMwgdWiJOkLgrwgmC3jFPN06wOSxCCHI8v6+XNTaGto1XscmoAzz5+inPNof/oQ8RBcKkirsIO3kKKH6VZQsUeyBnHTofROxcrFn6BT/wxzbornpSSuA36OtJrjfMln5Qcv4pVOQwq638RmPbqHO/RTOIgh0ZpIaqZdSa5YwRFThEt5pHMD4XTBrWBFQKF2mV79dVZXn0c6c2jjE6eGTm+dKFDkC9WjAuHPoDi+t/6cpbG2A7aFsG0ELaAHViFVOKq+ZRGCU9j0Nl42YKp2nt6dGzTW2qTKZWkqx3xBERQ36DgC9/FZuOSA6GMziXDAZhpSCa6HxRs5ymQdTOIiMp++9wRCvoDtTdN5/VM8nmr2N3bYq3cxFJhL9vG2vkzYvEb7Wwe88NGfodca0GposkaHh2++wcONe7hCkKuUcJwuWWeLvYcdkr7GLVwk0Fs0sy7S9ykVa1Snl5hdOYc+vMd22mSQeDh4qH5Gu9Mj9L3jIMhfTt05SViUVCPVFCyO8gicgFpQA+EwrxN0aggcH891yXSCp3xcN2KoW0ym9whQVjClXDIr6FIm0WD1iJQ1tA7DXp3WlR2CQODn8nT7Lo12g5LvoByFDV2a/UM67UOmohlc5fz1TA2sBZ1h4iFCjwK8tRLhy1H3XwiE6zLzridovHqPxsMD8rUCaibA84b0Wm08vwY4WC0QWoMY44C9kc+E0HvoVNJptdi+3+SiP2DlHefZv3fAThZQmC4zXYtoDmJEP6V5J+OpmiV/LsIWPbqZoeKOumTawod/5hO4Xsbet/6Qj7w7R/lpSXegaa51Wbub0c4KVGZmOb14hmDvDW698U3c0xfY24659UBza/s47Zj+iXcjC4K3/vhbPLy5zc/+nfdx5myOpfkO/uqL9JwKnaGhm8ByXjLsC3IlQe7ULMN2zLCXQmIRA410JGeeW2SQZDS2WnTdPGeenaec96h/dgfV8JHUELqNTa4gxQDTmcdNQnpvacRph+pUieXzP0bj8NOc8vsoz2KMTxoWoRxyoeSz+qHLOOEZTLeDHjZJh0169X0GWrDTt6PpoIJK4ONGZbBl8mdqSPl1pKeoytOkZoZeP2Z2KaI0/R6kmsUYl+rMFstnt3n1a9+iH2fEqR5DiCawmXG3Xx37b0wGlRPkwwSrP8L0m3GX98QUYQzBmaCM5DjRnmTuJ4uP48b+iVTxCGIxSt4nhon26DUmeGyB5NhJ+YjjcOLVjqYB45OZqBKNfh7BmYx91GRqwj04qd40slew49tJs7Q4y/RUDs9tj2N+C4gRSIQKgSHkliDKYdMNPD1kevoi7TdfYX+9RW5hiqmiw3x+nrCwQVu5qBdnYM5ibRNhJFYJyMx4QudjrTs6kHG8lzqk671AKJ5juLtGdv3bXIxT9je22W21CLxp6NzB393CO9ig+/oO7/2xn+dgbZvGnmbv3h4Pr77G2vYGrhCEU1WkqNPfbTFs98kSBze/QmA22R92yeUKTJWrVKYXKU/Pog8fsq88IER2NaF2qNbmONjfR8TDowR3wiOZ7A0YjWUmnhOMybnjumHE7Rjj5aU4nvKkWUba7mDtqGhyfY9er8v2+gZhLqK8V6Bz0KL+IE+rH+MXQvb2D3ATyEcBvu8x6GboRLP34B7llRCVK+EoByUknhBoEWBMmSwbGZgJIVF+mbxXof7aG5QXPHqJJetlZD3IWhYZgAkkxvT5+le/wuH9NiSj8xjxbI6LysneO+b2HBPdpVRM1IhGhHpzVDALIfA8DykFSZKOJ2nyaN+LMWejVCzyUz/+CX7up38a3R+AcDFa4OSc0VtLSW5mirN/84O8+j/8Ns07e+SncxjbI9NtsmGG74dYG2F1itTZqEiVcuTcRwZ6G5sNONip036YcTanOf3cefbv7LFliywvVxGBS68XQy+ldV/zrllNtFoijRSJthSd0c2lgZ/7Lz7Jp/6nAxblA975Dp/cOUFnYGjc7XH7eozOz7Ewt0KuXMY/vMH1b79KcOZxrl454OF+ntfeWv9zHoJvszi4e+M6vZ0dDnbv8JM/d5p/+X+8TPPhE/zkD53l9PMlcpWUYmTpDSwb1x2q04KuBBR4OJSn8gyGlmygSTYM+VOKYMoFWaRTULRe3iG8PIPXOoBYk+kltFtCuglWXUfWKvgfqCDzLoNXD3n4WwnnZnPsxovEjTZ6oUx2uoKj2lTOnmPu/LswWrP18Ao27pHzcnQGPlfWU86s5jk1XSYvuygLhhLSvYu7UEfv/wEi6iKFj7ULGFuBrIB1X+SgnrC29mXuPVjn/kaL7YMGT589zS/8wj8kilxODLy+t972kgg5jeAciARhusCoa4QdjAyf4j7EB+AmQIqwXfJn5whXCtS3Ur79R1/lqY9eYXe7wfITedxKFTKFHRzCvoIZje1bhBOAChEmABxsJwbXQ+Qv4qfPYbsa2/wqZ11N5affhTy7zI0r95hZ+SC1uVN01v+YH1j3Ofuzv4Trh6z7mjeurHH19Ws0167iJ01yUZkHd3dwdYorBanyCb2Ig+Yd5ucVi5U8fnQaz5sCs8frr36eTzyzxO+sK9ypeZ67tMR7H5sjDMOjbshf9noEb4zAEQ5KKHwnBKDAcVfRWotRGkOGIxwK7tQIc30ChexgESMAAKmKiAKXMvOcCbb5X//NvyLzEpQJWc0/y2NnLvO5vd/CCEkj6VGJIszAJRtYtNb4rv8dx/j21yPIiD9vqHdS4QVGyUQSY1tNzN1D5BMXMJnCpAbhCqQvQAlUcZqXnppjN35Ap5ujVJqlEHeZXprCLz+D7XwZYfoIR4xGyyho9sFfwvrnaK9dYef2Gi03x2Pf/27a+/e5udfn2WceoxtFbLYTZjstWvcTnj0/RVoUBFWfIHSRCKQxDDJDOwOE4h0f+Bjivc+wGL5Ba3CDaqfBt76+zlZWZXo6YFVaNnduoRtdttqGhDaYMoWFAs8uZUeX48prr3H/1i1qtZgX3zPNP/8nn6e99gSf/MQl8gsOU2FC2XXo9RTr112mZqHVHyWGgedT9DziZATTjB8Ygicc8mUfHVdIdjxan9slenKWoL8LiU9qzyP8EBkMsOIWcqqI/5NV0lttGtcaDF+LWZ3JsTdcYrDbJj53CtwqKg9Tp88yfeZZsjTj/s1XKXgug65lcy/mMJvl3Nkip0oOVb+PoISVFifYxp1tk+38W1TFIEQRgyWJDbube1y5vkdU+CKNgx0ebHXZPkhJUsPlZ09x7e5rJGNI0cRcTJ3wCpjAh+zJbPtoH4oJRPrRCQOP8gUmBObvZlB3zDWwR91SJBhzjBnSWQZj4uYEu35EVrYCpcSYTwBa69HxcpxQTqRUJ4ZsJwuJo2nIibzNMqp74dFjnVwPO8bOp6klyF1EeTUEEswQYQegDZY+6CEM7oIW4GQgUkTcofTkMrlLNR5eaXH9lS9y5p0Ruzstzr2zjHVnIRti2jGipxDVDNuzCC8CEyKkD5nE9hKs6yMKTxAkzyMb9yl0r3Op5lH62e9Dnl3m21+/yuPv/hUUO7TufINqXGPl47+I4wXcjk/z6itXeXjlCp2tG/hZn1xY5Nb1K5SFRksHoXwc5XDQvMPstGFlOo8fPYGjLHFvixsbt/nopWn+xfopKkuLDA7fYn9rncNGE2Mm6lBm/GVPdNDFI/FsNPGZeFWf2DMTzsh4wqC1PobbjD/jzAxJkhgpBVmWMej12NvYQzoj8rYjBK7joBxJGAVMTdeYn5vnm199nU/+J3+PX/rkL/GRD3+UlZVVRqAtgbCCsnJI3RJ5t8iMTRhwn3/y5VsEVUncVexv7uH7mtk5n9h6dFKHoufRr2t67SGtVpu4E9PrDjDajKF6Ynw+J/fe6P5SSuG4Lo7jPuK9ofWYxG01WutR08vaMfl4AlkaNbRc5eC5Lu989mlOz04RP9ygfWMTe/ksJnMplIs4kYPwQDqK8sIKP/IDp7l2/Y9Rqx/CjxQ1mdKfKmC8C2TNV3GIEb4zghgZBZ0B+HkIH+Pw6r9nZ6eBnL7AueeeobN3n2v7fd7/0go3hi623aPQ7DLY0Tx3rsaw4BFWfYqOM2rAGc0ghWZmcV2XD/3C36PMLYrONXr9e1TTJl/90j32o1M8XgkJ0y77u3WSZof1RsrWvkvoLbN0cYGL+phj9n+33lZx8IU/vcnf/pmP88mf+BDNB3Xe2tyl2vwCv/m7t8l+Z8ClMxEf//BzTL34A5QvCTINaX/0ZS3EriDxBZUZwd5Wj85DS9ocYxTfjPnWp/+Ic18LWVq6iOMVid2MOO0SxG+Szb7I7CcvIM5GqH5Kblkhrl7Dm16m/PgHCZ9ZI4l2GQwTGtkqT5/7Aa5+698REZIr5Bl0YH3vAXY64j0vLOF3DtHdJtofqVoQtFDqGmb3Nk7VjqFMGbq3QdIeEi78Gl/+4n/FTnOR69fusr65TpxpgigkfHpuTJz5XmHwF1sKQQ4rZhDSjqYE+mVG04P8aCznK3AEDDahm4KTIcoNlBxSmxIU3+MxuJnhzhgefK3F8qkfolp7HNIHDBu/jq8yUAHWBgi3DKaEjV3MgyHi8SrCLBGpabZf22L9K1cpnK1QvfSjqCjk0vd/HEdFI9L5wk/xzdyfMP21r1N7z3v440/9a27dvop0B2iRsLu2R5zbZyrnIa3FGoUvDL0BoAxRmCdNq7SbDknWJDBdPvDMKi9vVEjDEs89vsjZ5SliI6gFPkma4Sh1RK76q1zfrVsvxrAGqRQCj8l+F0gUo6CbMVaGsAYhLJ7ykUhssk39zq9x40YdExVxZuD+8C7JWo9aVKZ5MOT8CyG764LILTNVmsZV7l/hGY9W2mhAcxebdGA4RHQzhF/DHu4hq1V0T2B6YHIKp+hhgdILT7L9J18n7Q2Iez06hwdkdYXyViC4gh3mMP0OwmbIkg82B9FzkG3QeLhJlBT5oXc/jxnE7MQV3v2+xzkYCHrrh1QPDpnyBpgz8/izLrnARStJliQok5EJh812StbXVCoRmQp4fS3H//aZlHT7BpHp0rQg/Zh9m7BPhkudmdMXuXC5wva9Fp5yyOdc6jvHD4t/8/nX+M9/8eM8Nj/F7esNrm7vUGt9ll/7l/dIfvOAD757mXe/9DxTl5+hVoZUQ9qBNBvlddoVpL6iMifp3O/QuinwqwK9Zxl+u8nVL32W3isRyytPk7glho7GpAd42QOy2Xew8F9fRpQ9vKUcxa09wgf3CaoLlJ/6CMGLt9Hscdgr4OVPcXrhIlde+ww5QiqVGgd3H9AetghrES8uz5CPu6RDsH6GCZpItwHyGmb/Ad6sBCsxmSDrXuXW66/xP//vD/nwjyzzbz9/lU5LkyQCKxVB6OLiHiVcQkikEqAtmdGjLrmw40R4fBuMv6sj1+IRPGfUGbZHCbpU6ohrAOOusdajpMeaUa54Yp+OBgEjLoEdyz3yHaIYxtoTHIHj3/3OKcDJbuyxXOao4DiCRJ0YB1hj0ExgGWI0QbGWEX9sJIEKY1UZOCoe4kTz7ddvoHWAlEsjqIUqgX4Fq3tgyyAthB6kMcS70BvH+6lDHOly+pwlbSn691LcGcOtzzd57J1/G69UIKu/Qlr/fTzrgBJYESLMNGQ5bEtgdjLEhQqYJfLOFLd+9026u5uULy5RvvgxVBjyzAd/HN/xMWKJ3uwpXr//FtVXvsHUSy/xqX/8j+inB9isTZINOFjbJo52mct7ZEONYz20yegmKcKFKApptaoMOwNs2mcqzHjXhVN8eqOKzOd48mKNHbVIs75Nf3ONIFdg2GkipRp5Y4z3gRlDjUaSnZPPb7IbTn43xxcbOxqWZBnp+Dki5LjgtIAdNSv63T7KUTiOg1Sj/SwZQXeUo5Cyw+5GnWviLoPekDhO+Me/9r/wu//+9/jEJz7BL37yk0fvLYDACRB2SNq5yd6tf8obb27T9Twq5wqUZ4rkjcVLUvY3M556/wzX3miT9odkcUw6GDIc9EnSsRRrmo2RGCdMy4RAKQfHUYix14HjuiipqNRqaD027zMZ8XBIq9k4Ko5c10XL0V73HYe5mWk+9Ru/QTCoI7MeTqwR+1vkZ4rEnQYHgGkPyE+VCWoR0h1dn4UP/wDXfv03yXkhUsS0W10GmzFe7hIivoZNQmy7NVLDD0IsRYieh+QaezcbnJs7Q3nlIukgYScr84MfeJr1lkbe36I8bFIILM3VWbwZlyh0yaxFJwMslsQodjoJWd8wPZuno3J87qs+b73aJdu/QWh61BG4gyFDP6PYH+C7MbXFx3jiySp339onDCr0BinNevO7PgNPrrdVHEyvvINbdyX/4xd/h2YqeGZG8LFf+BgmnKbTc0kyl/Uoz95Wj7O1kE5X4fgSlZPYFIZ1i1uEoRYEuRCvKvHLEvqWymyOWv4USWMb7z+dpbA0R3Y9o/W7La5t7XPhfSswG45s6g81qqEIV+dIDq/RKZ/B2Ij0wMWTHisXz7Nx5SvUpp5ANvbo7iakSlA+N0t1ehG6dRw3j1tsYU0drQ8xaQOVW0eGMUgFWmK6KYd7Dt+4J7j1e/+IYmWBB7s3efyZd/CRj/w0YZRnenqWqdoUvh/yvcLgL7oEQpYQVmNNjKCLFQvgNkeM/2EXrINQOZAp+Ba9EWOvbSOmIsRCBVWYIsl8ZqIfQUzvk5t7BpxFhHMa73wZzG+POlTCglwC+ziIFch/BqFewg4saEFeDVk+VaL0vh+m3pJM2V26+3+CU7pIVHsSnXh87pU2OneV6Btf4a03b7C9d4CQmrBgqE0rDjuaTtuC6yAcFwcP1/d5bD6ia6eJE0FoO8yKjNBX3KwnbB6uc/75JQo+hA5UqnkcZySVePKh/pdffp4gfYn/ZxLwI2jpE4MHRziApZN1SYxBpz3Wb7/FH/3Ob/Gnd26z19H88Pvfi87HdNqHrG3fY7ZcY35qjntfW2d2YZlnH3uRx848jVJvKzQ9suz4wZhlloNmgutKfE/iOgJHSZxxoZWkZtQ9lY+eoxgMQBwixR64XURVYNGw/haWswhvHitzmERi+gkyF6FKVeZPP8agM6S3toHr9Nl+4w3E3/p5jJ3DHNxA4CIrIZgABg4YgWmmWFPBzSvCwKXXhamlU9y6bVHXX6OSa1JecVHlAtMheL5GigyZpFgjyUxII82IVEJU6LP74AHtns+civixj7wbmXuab77yH1iwIVOLp4mtz+FBi9DNsXegaA67YD263QGHrQGD9rF6xeKl9/OZ/3CH3z78Ohnw/LziY7/8CRJvlmZLgAp5oCLC3R6nywHtjhrLQwvSrkW3wc3DIIOoFBGdcvAigQNUpotUoiUGB1uE/80yjg6IvxJz8Cd73O4mnHtpFcouemhhV+OaELlQJG7doFM+g7BF+ht7VOcXcApFtm/+KVNTTyAONrn32gP8Gcvs6VWKxQqi38LxCriVOjbZJzMNBAc4uW2USAEXqwW60ePW/T5fu5nSlYqvXu8i8jDY7ZEkgjiD7a2Uq9+OSVI9Qn9LCcaMu+wcd+iZOBFPkppjTXUpxXF3/gTFNMuyRyBGk2W0AXGCiirko5jzyd/JYzOn8a3IsYLeuOM6MT8bcwGMOZZCZTKlPEHqFByTXUf31rFHwmQKIRHjrvZJ0ymOTKpG56DRduSL0G53+ZVf+W/57371l3n2mXmgAmIB4TWxSQM76CFkHoQFmWE9g1lLsW+tI84UkdUaslTCiByz0ccRU5s4tWexKkKVZxHuaTB/AHY4PpWzYJ8CR0LuWwjn3diWQdghU2FC7dIZgmffSaMlmLI7tDc/R7T0EmFhlXrd8PLXDujlbhF940s8eOtP6fb7OL4hDA2VmqLeMTSaYH0XiYuSHvkoYmUmpKGraCS1rEHB0Xiux51WytbhOo9fPk9ISjxoE8dtyAak8XCc2E5Mu8Z7aNzxn5DZx2QTJiWeHkPWrNZH7r9SCgTyhCP2d4ywxrh8rUeFpTUW5SjIGNt+G4TMkEohhURrM+bXGPr9AQ8ePuSf/rN/xssvv8y58+f4+7/69+mnCTZp8eYrn+drX/k8V9c32OtmyDxUUoXuJvRTjXUFgSd5/bN7eKUCO7cP2H14QLPeIRkmJyBVZjzxOt5Lk32slDP67ngEUYHVlfP88n/2X9LrNllbf8j9e3e4f/c2m+sPSJKEv/kzf4tXvvJF1tfXSNOEMBjJlA7396jN9pHpASJKECLAyWLU9haV2gImUPS7GVqEFFQJEYXIYpXVJ16kf2+PaC7DUwnDvTZBuEw6nMdsvYksBdjQBx3CwMOWBPowwbrzBLkqrnSIE4ep+SWuXNP43/4SMyua3LyPLJaZCiyeZ5B2gIwTrPUZapdOlhI5CblSn/Urd0jSCpfnq1z4sQ+RqXfx+jc/y6LIs3DuIrsHMXG/DSphr65oxx2kn2P7oIUjNY1Wmz9vva0ncGf/HuuJJm4knDt3gQ/+aJWli8ukToFq6tMbSro9TbLfoqtA+xGer5Au4IJnBL2mpTQNeHI0mncEKg+FJz2Sf6WZmz2DE5WQ0wGeMOR3BYv3niD/bJ7ejsVVGrvdI9upY8yQulckeGaRrKDxKjUcZ0hsYoQ/gyfLDPIOuYrCCTTSGyJJUYU8WWcN098FeYB0G3hBGxiMiEBD0F0Y9jz6g1lk7nli7zbKVSzO+VSmu0wvOCzPP0UU5XFd90RAf7RD87319pYQCms9RiZzNYS6APomVgWIwMf2W5jmXYRjRso38wpymv5+THK1ibPk49uYm6++zOWXfha3tETnrTfpfvsLzPzwC4jyh8g2PosM+kgnD9pA59uI8gxWS6zNQ3uTsCoJZt6LV13F9i1Jt0OgU5p3X2Nrp0Oy+j5+/iefZ1qdwVMJN7a2uL/+kDROkIlF5V1iY8FA4Ep8IVA2QUjY2W5RNx0qvkOUC6AYoasFMiV4/rklLj91Cs8PkUrgee6RUYv8LgnDX8ln8hcoQ47G2ghCJ8Kzhut37/CN197k5uYhh0MPPxRUSlXOnFul3tphd2eDF578PgQaz61x8cLjnFm+QLlQGb/e/9vjGMlJ7jSGZFbQG1oCbfE8SKzGMxAFJ87OHGc00pGkwxTVayL1DlJ1wJXQPoAgwOzehArYaA6TKtJGgn96GulYClMOXlokGXTo3dsnSDNsliCcFayOABdhcqPCIJwCqdDtAN3zUW6Z/NKTOG6Nq1/6IhGLlMM9CrMZQa0KuRqBFyCTLZAB0oTEqaI37JPZHqVSmaTRx3gFhBtQ8AJWciViFyr5v4FEIqMc3aGm3uhgRI9+K2HY01DWJKmLMB5B61jBqrl5hZ16RujkeOzSMj/0/mCtMycAACAASURBVCoLF04RO0XKQ5/uAPqdlHS/TReLDnIoXyAUuGNhhn7HUqyJ0eTPFQhX4E9LogsO6e9ZSgsjKJGq+vhPO5TSaRbqHrlnc7TvGXwnI1tvoestUpvRCksEzy+SRDG5sxXwM1KhkcEMrijRL0jmnp7HK2hcT6PG8T7trkF3B9Qeym/geK2RpGCWoQeGtAXdluDWQ7i5ZymtBtRqDr4nWJqr8sZrTfbudhkOMrrtZAxdMHAi6R/t1WNzplGCLFBKYgxjScoxn+BkPX3CkMyOYSKT5G6SjMnj/v1ofxuDFPJIIekoWT96rePn0EnpS2vHPAaO4SqTZH8yiTj2MxhBi0Zx6NgYbVQEmaP4NHmjCU5+koRaa4+MpY4cagUkScrm5g6DgQZRQIg5EOex+taIcxDmsK2H2GQP4VhwfcSiA7mM9sMe9tBB1RQyjbnz5md57iN/F+VXOPjDf4fIDim/8yyi8EGy9c+g8gkyqGGH+9i4hyhOYTOJtUXs4U2KF08hS8vIyjKyb4jbLXLE7L3+xwyW34ucPcPP/eQ7mVIX8VTM57/xGr39LqqvkcMRXj7WBgzkAgdXWKRIsFi2t1scZG1mcx4y9NH5gGFeoh14x/NLPH15ge2DOpoUgSZLxsWBNWOOhh15HNiThQLjclIc7YVJzBuj1Y5cshnDisQYZmaM5qT5hTxhdoeUCCOR1oI5nkRZDSIb7w8z+oz1mIQ/HAzY3t6mfnjIzs4O2T9MsRLmF8oc7Kxzd7vJ4dDB8SVSSA5u1KnV8migfdAn8h2csECn2aG+2aTb7JHEyUgi2I7dxO1xAcRka40hRlprHCHwXJe5uQU++vGfYuX8eTq9mKXVM1x6+ll29w5o7x9QzDnMzc3y9BOXR0IPmaZRP+Qzf/D7PHjjOsVLA4qlPioSI1DsYBunEBA279EJHAYmxMYhYZohT9WQjqWy6JI4OWxzA/NwhzDToDXSvYhOv4A1LmQh2BCCmVG8rwfovoe3eIr80uPoLODhl75EUSxRm6pTmA1wqmUIKwjXQyabIEOEyTEcavrJECsTonyBuNHD5qsIETETeORCSSynma1EKKGQ+QL79T69QRdtBgw7CYOegXLGcBDgK5fdg5k/92n6toqD2RKsXpwGt8az509z5jHJcLCHErsE/gyOV8FV0O8buu0Yf9Yj1ZKM0TjLL4CTgBsIkpyltZHR24B8wVDf26Ex2GJl8TlMR6J7FpUX+M/6LCwuIacV3TWN7g6Rhx1M1mQYJnDqLMHyNMZoXLeCpc+wXyeqzuKg8HJFcnmFkkP08JC4uUZMjG3vgdzHjeo4Xhcl+9hUY3qaXlNQr4fs9wo0VYiag6VMUZSWw46iPtim3Ntk1ZkQwyYqFZNgzPcKhL/QEoyYnj6IKRAHCKUAjXU8hCvA6SAchcg1sCWNkhazYRjc3kMPBVl9QLe9gUq6mNZDrM7o3luj9OIPg36F/nobb66PF+2Qrd2mM1xELRySr8yTHd7CWoOzsIoUBfKhorWfQmceMdxE+QMCT/AfvfsMFoUjDe/d3cUqxZ2rV9Cd3kgxL9OkWYIjwRlL0qW6zyBLydwBjlfAei6dwCExPjlT5rnLT6CwtPt9/CAYm79MuoLHD9//P6xJGuM5PtYaIj9PbeoUF554ATYfcHZphSgKybk5ygsXOD1/hstnnyBJEkrlORZnT1HIF3Ec95H76u2so0eltQyHGcJzSJLRA88AqQCr4aBtyHkSx7GEHuS9sdKtMBB4mI6BbhfsITInEZnBBrOIocX0dzFaoEWRrGFwp7sQZLh5cFQOp2VJMoeC42N7baRXwcYhyBBrSiMb6eoSGMlgfYhjFd5MFS+qsH/1Nhz2mZ5ao3RqgDtbQOSKo2lm1sBmPWwmSWxId5DS7ffJFw0kBiuCMRHeQ0gIsOxtdcmYxVcpDAVFT1FcLpDKhLTbp9nQKKdPlgzpd2PW28dqRaemQZxepVaZ5anzM6xekAyGO6hwm1x0GseL8IQmTg3dToKf90kyiTXjKU0eHDOK93HOcnA9oVCQSDukvr9Nc7iFyr2AroPJWeScJHo+z1wnQlYl7XsZpj9ENFtkpk2cAzGzSnhqimwY44UVhkkTkw2JajmkEfj5EsWSg9Vt0u42Se8AbIxpbSPUNn6xiRt0kfSxcUbWz+g2LJublodNxfoworgcsegLqgqaQ4Nf8SjUPPwtxWCYISVYI0bJ1gncvRATiI79jibtRKf9GDNuJ1nc8X85AUU6WWyMoT6PJO0T8vAEg30MJfpOD4PJJOFYwcWMOK0nHGaPDkEc37uTaaAYT0cm0KNjONLxVGTSEJhMS45VYzhRTBy/jzFmLNUJo3gfjuN9HRwHSMFdQpAD1R/F+/whtmSQMcR1TXK4QzoQZM0h7fYm+cYmdtggG3bobzYpPPV92OzLdO52yF3qIjstkp0Gg2wBOV+nUFsm3XkVWV1ChXmULJILBK39FNFeQMXbiCxmuhrwjrlzgEJJzQ9+9Ed45UtfYO/hGno4xBMWqzOyLEYPLQrQUjBMoadTtNPHo4yOfOquS6oDCrbCc5efIBn06MYJw2RkdoY1GJ2RZem4IBjDicZcjZP74SjX+G4BUDwq/Dz56chVeLJFhMBoc+IzBKPt2Dzt2GPBjl9jUgxOphBmPF0YGsPe/h6f/v1P4/kuC6dm8XMexg0oTYcMOm3C0GfY7NM5iDFZyrA7RAFR0dCp92nstxn24iOuwElm/CP3wfhaSDWG09mRBGkURNRqsxjA83LkyyVmFpY4c16Tdgb0U8Xm2gOWVs6zMBWR9yWNwwOM1uSmp4gH18h0A5UKhK8Q2iKCGdxEIXubKDmFSQSx6aMqDipniaZDgrBCfe8u8U6dyILptVDuPNkwAONBGmB1COUFhBb07/cJ8wH56RkwLs079xD1HrMzDymdHcl6E0Sj2JA1MGkfm7nECFrtAdrERAWJSCxGhBSmpnClJFRAktHei/8v9t4z2LLsPM971tr55HBz6tu5p3umB5MwGIDIJAEIBERQLMqkSYsSJRZsyy6VLemHQ3FolatcLlGyiqTFkijSNE2JpCEwAEQgOEQeTMA0ZqbTTOeb48nn7LzX8o9zzr23B6ABUHIV4cLXP/reE9bed++11v7C+74fGdM4Roz0DaYrVdRkhURHJH5Au6Ww7D7hIMTvByD8b9oH3mjfUXBwfHmGt7/3cXJT80x5MbF/k8bWK1RyDRzvJIZ1As+sYM+V2F/XyEEbv20hDBfHc5F5i/y0wLJA92DjUhv2ImbnNCvXbtFP99hpN3DvtVG2xK6aZHaG/WCOOMyAmKw9QAx6GIWYdDpP6dFlDGnjGCmJViSZi+UsYHsCLQxyBMisj4raZIN90uYu3aiJF+1jlQIMImQaoYOYLFS0thX7bZeVwTT3egUGdszSzDeYK+fJW1XWek38Xoqzt0O9eJWcXcOxXeZnjiHN7x4C8X0bm2Donkk0CqElyCnQCpINhFNGFB5Fh6+C9CC9gnAycqcrmBWD1jN36az2WD5fp7/zZQyVozz1MPkHf5bdr3yGYlhBJTn8TRMV7iDcJuHVLju3etgPlRAXT6BWBujBHvbAwixdJIsL6IbA78eUFmaZWSyhDYab+EChizbv+/CPMzNd50//8GNcev46lu5iJkOMZ5gkpKaJaZvIVFGcqFAp5imUKohKmdApEsRFat4JYmOG116/hcy5eF5xhEk+3Pq/VwKDbzbB6ZPnmJtbZG1zlWdfeY53P/EuXrt9jYHf51jtOKdPnAGtkEWDqYmZEdnyqCTkdxMdjBRXlMJEEQUZUg2JmqmUeM6wvcDNfUXJU2gBBRdUYXisopNhlktkYYmsbaA7PsQKWcohkjaUS4igCb2EjCliXSfe62LUEoRhIS2JnbcpzE6Sdwqofg9RKqKDIsgaOqlCotCijm7HhNt9cjUPZzZH2txm5Zk/4+yTP0J15jbWjIR8GSig/CY66aDdY0Q9g34WMkgzMpVRzNUYhBlebQLPcsgQxFFKpzlg4/UWt3oRRSem7FqUai6FSRvLMbFSk0LJJa9iorRJGm8RdQ7VKy48sMzcxacoV0vUzD7R4C77W68wUdrH8p7AMmfJ2yWcqTzNHYXRazGIbEw7h5tz8HIG+WmBbUImNXee2WWqIrFkn/Xrt+mn+2y3GuRudihlBaQDugTmnEscZAgRk+72cLI+oqJQs2WK55cxlIlpZcRxhqaC5UhsV6CEQV4NIO6i4xaqt0/U3CaImjjhNnath6kDZBKg0ogkSOnsJmztCy5t2lzdh/LxPOfPTpDrRGShz1qkiboZxck88yc06e0etm3RbYXD1iniIJk5nO1iCFNTRx24AwdZH+CnR1P10Hm/fwoDI1jFUbze2InTR5z4cVMzcfhFpYbEywNJUsZZ/WHzp2yIQTlcY6MjjDPJapT9H8tgjs9XjtRyDqFSY6Wi4VHG8BclhseW4ojKmuCArAwQBAHr6xs0GnNM1CUCAyGnhus3u4UsnwFsdHwXhA3ZqwhXUH50Gv9al9aLm/T3A06crdFY+wxm4FJ7y/uIfE3/3k3yQRmVeAxWJbZ7F9kK6d8YsL/dwzqfw3zsHNHtHnLrBm5cwTh1iizMofcF/f5pps8vY03OHQRSylcYZZuf+rmPUq94fPlzn+fe6/ew9QAryYjjgEESE9sWhiUxlCRfL1HN5ylUJ0irJVKVI81qWN4pQmOGyy+/SmFqgsEgwPd9hjxHTZpEqEyNaQMH11YfCSCPdgzW922PIz0srUd8kzEM7RDyNdbSOqhFHSGXD6sC2Qi+xAGUSAgxlBUXQx7JIeznsPqUphppSNbWtijVilSmqzg5j16QIj2PfKHE1uoOYd/HlIIkSojvNshSRZJkQwKyOjzeQWO9I4HtkHsBQhqj62KAMIjChNcuv8bk5CzlfInEMHClpGxbpEXJnZsRm/uSnV6HdjtmtuZSLlb523/rb5NlIf3X22Q7DbJ4gCiaiJwLcQtZP4a300AqSapdwjiH2G6Sm5O45RqGm6frGWhT4GoT3eshKmUIhgkhbbigHdA1VDsi2OxTfXCSXFHQXbvNzguXOPHIu6nM3sCcscGuoVMTHe2h0wC8RaKOoCf6BGGM41rknQJ+rMhNTJGzHFKlCQYx+zsBazca3OknlN2ImudSnnbxKtYQopxZFMoW5cyn428S+PvEg1W+nX1HXu2nPvcs+eoCH/xQnYKdZ29VEIQdCttbRDu3iYWNXpzHW3wPlcnzbF66TNgOqbjTONUlNotVcqccliqSxjdCdm6+jNPZYi6aZL60RLv8BM/tb7D2uQEnX1+gVCywN+jxwI+fJQssVLtNjh7CHJAYDvmTZwmw0JkmEQZhAFJqqmWDoK0IpSJcvYpnbODYfVAxYatHsRZR8DT2bIk0iIn7PlmsaN+Ar9y0aR1bxJqeIytp6HfZeqWLkJrimTxnH6hgGSfY24n53c/+Ktu3e9QnJ3n6v/llCkaRI1XW79t3aUIWQJvDkiajRjZ6A+xTCHKQtYAULebQqgFRAPYC1vQFpn56nmrnEsEn/4Cpyhxi+imw5xDCZu4DH6Xz1Y/jf/029ffNoq418J+/izZgorpI++s3eO35V5jIIC9NdEOSe7DL/iVBtBoz/a6TuLMZwonR9FFhwvazLWbevoSVN7n45LsoTZ1gP/plXnn+M5ipwJVDgpaVs6ku1Fiq2MSFB1jMVYnLNkqYlByHU8s1ppcu8suf/jLl2iIna5PUK+Vhh8gjGZ2/Ct2B/zImBAgpyOfynD15jrMnz4HWHFs4RpqmSCmxRkH1fdC88Ze/CztwqjJFFCXsbu0SRwUKxRymZ5NkQCTAErxp2SBVgv2Wot1UbG5mtBW897TAtQxk8RjMrINYQzW7kJoI10aHG8j5OejvwcYaxbk307qUUnr0GKY3wCj4GEYH121Qrs2iYwO0i/ROojt5sh0LY9Ei7fTJrncpnzlN4BoEzRbZ7gYPvv9nsO7+CeYDFYQ7i048skFA1u6QmjbSyLOzv4/BgOr0JMX5k6RhRMERKMNEAGmU0dn3WVttMrXooAYehYLDWjvg2s1V9p65i6ldqnbK/PI0dv86/bRJZbbKE2956OB6/h//9pP83fwkS48/jC0cGvuaIO6Qvb5Jf/P3ScpF5MJpnOmnKNdOsv7iJeJexlzlOGFplna1SG7JJleW7DwXsL36FXJ7mtnqDPPlRfolwZd27rH5xz7nTi2TpBlpUXDsPcuowEQ1mxTtDlkcQaGKu7hEhInWkCmLQT+gVJB4xmi/FynBnZcpuGvYVkTsD0j84X6fczPcpSniZkbY9YnaGbu3Yl64o1iZq5HV65jFhCiOWbu0Tl0JZo/lePDhOqv3EgwjIdEGhpPDsh2e+/Rrw6w6Q+jPgaZ6pg5kJMcPgwPU2nBqj+aqPuiAOyYkH6jRHIHvjOEf8g1wH2kYo8z8IcAEIchGwXGWZaMxh98dxRYIho6lYRhIORpjyKI+cMgO+AlHzzVTQ7LquHKgh0qhwKiiII+c8zgQOmBJHDqmcjhGHMX80i/9K/b3m/y9v/tjOE4ZSEGvINwnhpFEugNotJxHx3sQRpA7g/fgWdzzDhONVwg/+0mm33QMXX0HyAJeuYg7eY7uC5/Gf+Eusz99Fv//vkG03kbaDtVCie6Lr3P5a99gMROYto0h5jEme+xfVcSrMQsfvoBZCcFK0LpP0jXYfrHL7HuWMW3BD/+Nn8WtneDf/+7vcOPyV7FSQdGCTGm8WoGJ6RJTpRxp7gRLuTp+xYTE5JF6jsXFGazSCX7tmefJlxZZKFUJAp9Gs4kfhCRxcrCRDTtbH0kQcRjwjSs/YkRQPmjSKMQBNn/c/CvL1AEC6QAGNrrPQ2dbHwSUh3PgSPJeHN5n2xwKRJimQZaNGo+NOFumaQ47TytJY6vB3ub+6FgZG69v4OXzBEGEVhmWIclShd8Ph+ehDpNh93cMH5/rcN7J0SQezjmNMExM00Vok417u7x2aZNHHskNO2FnCkyBaxv8wAMuwYnTfOKZW/zxZ9fA8Tj/0Cx/49E8+ZxN5fjbEW4T9m6SdX1kJMCx0P49vNPHUTdWYNBAuWfovuJiF85iuT0MI2TxXI3K4Di7z66iYwutXWThIXQjQmsLUTdJWz2y1zpMPPkIXSule/sGIi5y9u0fwFr/AuZDFYQ1hQoNsm6fbDAgsz2kkWdjd4ucEzK3fAqnNEGWJBTc0X6vIQwy9rZ6tFp9phdzCF9SKjm8tt3j+a9dY9BsYwuLsqNYWJ7Ban2dhupz7sGTPHDh1Dc9R99o4o3SY/e9OZqhv/Drv8kP/sC7yfUTQtPmzFxA0WuTRq+Qtm8R7w0INvNsrye8eAcef+JNNFYiuttd+p0+7cDgRz/4c+TeUefOb32VjbUWkw8v8PhPPEKSgv/yAL3d55Uvf5VgYCDsPGG6x0y5yoW3nGf75asoMyB3YZ78Y+eIXY9ISMyWojQlMBxNmmQE3YRuV9GOOkznoLfWZnt9l3iwwcWlTWYfmsSc3CG9dome3+P2esRLLyv06bcyuTjBncYN6ks5ZmYdSAe8+soqJxZ+kOv3vsLUfJl6bRkZV2msBmyurPNP/sd/hmWaRzKeR1bU9+27sPHDJUVntwAfsmuAAzqEbB0tcqTtNcz6R9BZQHfzNkkomTz319Eabnz8v2f+qcfwqm/HX/FpPfdFso17TMytY/ZMzOkUeeEhmJlFhE3E5M+S9Qzif/r3efalVWSgOFewcMo1aj//D2D+cZiQ6M5zkLyCmDKh9FHS21+iuScpnX8TzsQEQWOFG3/26/yLf/PH2NMupVTiJxo/tYiSHI04QegycRwQxwlKeBhIPNVirlbgv/wHf5+li4/iFYvYlo01gtSM+Qbfiqj4vWHfLMP4reyNf9tfNjjQWhMEIVcu3+S3fuMPiRKHRx+/QH1iHoMqeavM1MkcpxYltjPSas+g58Ord1JudBTvOAbLtRg7WEHvv4LYfwkx0MjiAtnmOnK2gihZqCQk7UMUPkWWOWQlg/xMhuMMiLd2iZ5dwXn3TyP3e8h0G5FLICdRYR/mNLp1g2itizV9DikKxLdX0QUoXMgjy6fQWYXMj0jjFtoOiAan2du+R3k6obj4KFZ+GuX3GWz3kKVpOkryyp027U4bU6Y4pSpb+WnOV01qrmaQRmzvtVi7t83G6h74+8zUPWaOGdSK+3hmh93dLj/1k78EwC999nOc92rkpEO+kmd5OqTgtknD50n2bxFtG/S2LLY2Uy6vC97y1OOsXu7gNzo02z5OboZ3v+cj5N5W4/V//jnWWiGP/PibWHp8icTXBNd89FaPr33ms5j2HAkxCJ/pWpVzj51l7blLyHJG+W3nsY7PE9sOMRKrpSgtCITUxEGK303pDVK6UY+5vGbvtV3WN7Ypm2ucWWozebaCObVH+tKzNFXEpZdavHyzz4YJ+ekC9uRxaidhfjKhtd/j7t0B3YHCcU1mjlXxY8nKjR7NVZ+oGbNyo0UapYSD9D4nWCC+RZfkQwhOptR9EI8xxt8w5ME6P7pWxsHBG9e/5sh6ue944mDc4Vt6pFAjDz6fpilKKSzLOiAXjx2ubxputBANKVGZGgUU8iCjnGbZKP45rISMoSvj0zNN48j44uA9wzCwLIt83uVtb32EX/3Vp5FiANkrwARkW6A7aG2Sdncw6z+BTvfZv3UFt3KO0vybSYMetz75P3P8B9+JlXsvrRdfoX/lG4jOOrXJbYyeibmYIB9/NzgJghKi/COkXUh+4af41Kt9TliCuZyDu3SC8t/8WfTcY4gp0FufAG8FUTsBzvtJ7j1PY9dg4i0/gOE6NG9+lUt/9vv8uz/8Ata0QyU2aCeKKMkxSEw6sUboAlEcEEYxwihj6ZCC4XNsdoK/91/8PAsPPsaXnvsKf/CHf8zVy1fxBz7BwCfwBwf3ZlwJPfQpvvV+KkaBwVHXYwjzMo78PgIIje7ZUcL5mDx+/3NmDCsafs4wDGx7qNQ15JLo++aLYQyJ8o5rj+BlQ15AHCcHAaYenazQAjUKYCWgxjAlDfcHlhz4VfdNLASW5eA4OSYmFliafwChHTRF8pUS9dpxji+c5OTxeaaPe5xcMLBcQZokZKlgc1/xjbsxVxoR/8lFjzPTMbJ1HfZfQLRuQqDR3iysr2BeOE4mfLIwJPOLpMmbUSqHqptUllJE1CK8sU54pUHxfX8LdtoYegNZNUBkKB3ARIpu3yK808E991bUdoe02UCUBfkzBUT5NDqpkPTaKDooKYkGC+zvrlCbTykefw9SGCTdPmE7QRQm6CjJ167tkQQtHNdCF6q0c3XOVk3qjqYZB6yv7bCxssf+dgMRt5ite8yfNKh661hGzFe+cp2nf+HfjfeLb/nA/Y6Cg9/6vd/liXe+n41+SlwweWdZIXUHIRy0CsnSFmnUQoUR+50lbu1Itq6vEt7eoLmyzatbm7xncYF3/vCH+Pr1O/SjKZYfWuSJ99dxHUHip1z5PzdJ792g19qjFUt8e46i2eeRC0sI4WI5PuJEifj8PG3L5IFZiVaaXqpxhMaVmiyD9VbGsbpAWyOZOJ2BSgnCgNt/8m8xXvsiKxvrrHT6dFGUpic4+9d+hpsrn+H4cZPmxoDEgNqix+njZbaY5epKi+Z2AzMtkyhwCjn+2w8/TaFQPCBtja7XX3gtv2/fzo4ECGoXiFHJGjrdAZkhzQVUskcaZigiDNNEmnUyljBSA2GY3Py9P6JyfJHSZEKy+QJrn7rG6cdsrHe/Dx0N0HEJnJMY0xfAdFFasve//huSy89g9TbxhBwSg5fO4fyjp6FigQrIGq+T3vo8qiswf+i/RjtFhGmitODmqy/zL//xRwlFQmpaJHmPoCdIIwfh5MlEQDgI8OMUtCRNFXGSkiowDJdKscz8/Cwf+uA7edvbn2Tx+MlDzOj3dHDw7QODsf2H/n1jZ6rX8/nzL32Dq1fuYhCzcncTU1rUS1WstIhXPsWpR5fYS3M8es7h5JyJZUKcwH5bYVgaL4nx6GPTRPgbDC79OYXjE2TbFiiQpQyqCTrwISyzd0VRfvwtgI3eW0X2b2BdeAtZfxrRu4cUIYIOQgzQ+SqZUYDSJLAKnQChJSIvyLa2sM+eR6gE1emQqj6ZNNBqnlTayPg67ul3Iuw6ahChugN8c4k9pVjZCChMlLBzJoGEbSWZcExkW3FjJ6Fop0wVFdUCYKa0eiGuESDkHmm6S6u5zcuXXuef/KNfBeDr166hclM0tMDLGzxezJC6ixAeSnXJ4gZZ1CMNNY3ePK9vCjZevoG6vcmd1U1agwFvXVrkbe99P1966RqZOMPj75vj5MMFLFMQ9xIu/8YGevUKzU6LDmUSq0TFiXno3AJCe1i5DjyywGCuSuIanJwYOtDtRFEyNCbgR5rmQLFQF2hjqMYjdYZSKb3dbVae+QPMG1/i5uo9bvf6KEuR5iW9kkVtscDFh+ZYu76HMWEzf8yjUrd5vau4vhkQ7cd0mimJJdm722flyzuoRBOH6VAyUetRk69DvH02ako1nvXDjKwcZXvHDv6RcoIYqmgdDQ7G1QY5wvMfXR9jaNI4Y3vAVRh/dpTuPWwSJQ4yykmSDKsQI9lUNVLGMcbZ5vvWkz4YdkhI1aPqgTyC/z74kw7sANvO0GEcVz6EFPdBRqSU2LZJuVzgwoXT/PZv/xqCiCy6BbqFkA5C1lBpkyTIUDLAsnIgZ1B6CkMZIA2u/frvsPT2J3GMm3SvvkLn1VWOXfSw3vt+dHcfFc8hqw8gK8fAcFAKtv+Hf4G68ae4iY9rGJi5EnL5/HC/z6WQ9klXnyVdvwa6hPEDP4d2CwhjWHF85vd/mz/5zV8hFhmpaREVPfw90LIApkGqA6JBRD9KkMIgilLiNEMjsUyPYr7I3MwMP/aj7+Djn/oUz734EipNQUciSAAAIABJREFUydKUOA4PHOuxvXFvPJplP7j1R6pLY6jZuNow7A58/x1+I2x1rAh0qAp0CB0aQ8zkKKg4CpVjRJDXelj9klJiWSaGMVQ4SpNkCDvK1CFIbqSSZIwqYAeljdH0zdKMbDSP5JHgdnhew6q6YVg4bo6puVMsn3yc0BcE7T1yto1ne9Tzdar5OXDm2UszTr/1YT7whMncpI1pGviBYnV7QBT1WMp5VHMBRrZDsnud9PbXKZ5cILqtMEwB0ynSS5Ep6KDM7qsZ9ff+EKodIfauYVg+xtJFVDCJ6N7CMBOkboAlUG6JzMgjShPAbdhPkDkLrSN0t4d94hRCxaSNJqkxQFFC6wkyKRDxDXLnP4gih263SSIT35iikWXcXQ+ozdcwHUFDCwZIKqaB6CqubcTMFFKmy5qcp1EkdPwQzwjRcpsk3mZzc4PPf/Z5fvNXPj6eD9/yAfwdwYr2Yk1XCyqexWzBQEiN0HkyDUIUkVYB25pD5qFe8hC1lOmJIo1ija3EQSRdGoHk6sufR2ZVCrUqIgvYeqHB+mbI4lSJrfbz1KfnKeZnSToNOtY2Z568SFq0qZXLGMU6cdFG5wxO5CF8PabjpjiW5M6V1+jvbTB5ukJ9fhmTOkFk4rpyqJokbWzP4cz7foxrcZMbt/YI05iF0y4P/+Ak3nFFrvoYd7p3UHUI+jEr6xo/NSlM5Lm43OM1z6TZCUk7ioLIk88XOFLY/Z514P7q2Ljpj4mQkyjVAjmFsIsIoUAPEFYVUwCyMOoGaSCVSZblSFZeoD53Hjm4TfPuZfprt5k9ayEvvB9ReTcii9HRa5BdQQ/2UPYHEBnUfvLD8KNPol9+Bv3cpzEsgTibgbODDitgusjqWayHJtFaoo14SJQTAq1SdBrix4ptbdJXkrQVkWXDDc+INY4pMOwShooQThFLmrgI0swkikJ6fof17QYf/8yLBBT4zxaPYf7/hMMyJizen+P8j79OxhVoz3N565MP8sjF0zQbXf7g33+B9bUtwmAX2+hydirHzt0+dmbz9VXJy6U6s4uLPPaAjSUEm5uK5ZrAtBSkCUpIvCc+QnjnCka6xmC/DVspXt3FOTuP1jbVMy6Du7cwEwe36GAuXCC+vEF653WsOQ9KGXR2EKmP+ZY50n0D1biOtaiQtTwEGarXxj5zBuGsoTZ7ZMIE08U0K+BNIHUTmX8Hypgi6aREvkU/m2KlpyHn4E05GLZFmEICTOclXqzoJuB4BijY7St2Is10VZIrmSQ727x64w5hso+tAmTrUK1oK4G6aTJvSSbzcpiB1nkyBUJUMZwypqNwigJRcaGaMFPLsWNWMFLY391gr5dw5RvP4KUTMJsQ7/e588WAdidluuKx2fsqC8fOUdkzGYQ9qAw4/tBpkqLFRKWKKFUJSjlKRYknNcHNhI6b4VkGL3/ha5heRP1YncrMPKauMohMcp7Gtk2EcLCtBaz3fYRraYsrr6xiSpsLjxepnS2wk9koXeJOGGHN5mi0Y1o3fZytmNgyePsDE1zdGaB3Y4JOhi2CISY8VQdkyCwbgS+EQB+BfYznI4wrWkMHXOtRV+ERUkIa8sDJHlcEhBBDAv0I9z38/vATR2GGY0n7MZl5rDpkGMYImnQopzqGGr0RpjgOCpQev8YbYCmHAdAQ/nQIEToMUMTBeYIeQU5GzeHGLqkeHsSQEmlIkiRFZRlJAr2ez9Wrt/joR/8x//yf/U841gxCTiFECjpAmFWsnAZZGXXLddDKIgsM0tVLTJ94Er31Clu3XobBPpNny8jz70GU3o1w+ojwBeBF9KCBNp+CTDD58z8JwTtQn/u/EPeuYeQEnE3B2kL7BXDyGHNPIicfRAsTbUQIszpkxKmYLI3oxZp9bdBXgrQZkqUSYQwwLRPbMDDsMkbmY+ZqmEWBqyRpJojjkO6gi9pr8nufepl79xpoLUFIGHf7hSNkZICRctQ3QU3hqO8xhqZpQGjIxp85LD8M77c6VI+S414UozHH80SOmnEc7TGQZkOe0ziYOOSyjAcYQo3SEYdgOJ46qBIcQD/vgxDBOCkoxvi3v8DGCk7DY2fEccT+zir+YIBp2FQqx1G6iB+mRHGDRqePZ2xgOmX0S31+71WL2tJJzp2d5uwxgY4TmvseS4spghRUAvkJ1Jn309u4haVu0dmMsRsae7aAOTeJmfOYOO/Rf/UKTubgTk0gHE366irp6nWcpTyqlKA21pFTZeTpKbImpI1rOCc0YrqC6rQRaMwTi+Cskq11yUwHaeQwnDraLiPpIXPvIqVM1BgQJSWasc1ODHguhRkXaVn0Q41lCyZtgRUpejG4BYNMC1baCifS1EsGuaJJvLPFC1duYJhtrDBG9oy/8FqPzXj66af/wjd/8Rd/8WmAi4+8jxPHTrE46VK2zaFMmzAYk0KEsNE4xMohwUQbBqnhYLs5Sq5N3o/ww4zUCJivTeC4BZIYuvs9BvtbpF2f6ikXlS/ili3KEzZe2SGpFZg5N4Ez4eJOedhlGyklWR8ajYzAyli/votKUtxKkUAUCPoOrVttEiXw9zsErZA0Assw8OplZD5PfjKPJQ0wJUnBYXMzYK+n6TohqUyJbYOBZdFMFAVLooRPuQSmZzFbO8kTx97L0tTJ+yLb7wcH/zFsnCk3GBYds9GmoQEfIatI6SCNGkJ6wydbEqB8H9VtYrqSeP1VklvXMP0B1ccXsc7++DDIECHZ6mWyrWvIXIBq+UjvOOZkBXNqAqMsUUab/soq3lMeYvkpkA5630d3E2S1hijXESoB4SK0werVq1z5wjP4zS3u+YJOBEnqoYSHsD1MJ49heWRK4ZYWQVpYtkfeK1LMFzArRUQaYto5gigliSPiKGQQhExN1O8jBX7vzi9x37//L48jpSCfcymV8qQYKMtlYmaayakJTNMkUxndzgAVtFFJjC0EBdNEhlCedbEM6Pc1qa+wVIptJ0ilEPlppJdHOyZKa5JAkQSaxFeYoSBLQ2ScwUCQ7Gqy1zcQK3fRmOiBRrUjdC+F0IIgw5iyEJmDDmIgRZZdjHKMbm+T6eOI8iLSLCNwkQUPnDwyv0hzN2ZvP2Szq7jT0LxyZRe/l2Gakk6o6KeghSCPQoeazJSYnsCzJFkCnX5GEMf0ByEi7NNq90h6PpYysbwyf/rZzwHwtnf8JMtzE8yUbfLmMKNoHOz1w/0+08P9PhYmQpokhkvey1GQAjdKCWNFKgNOTM4grBzhIKG718Jv7JH2fCbO5YjsIqW6SaFm41Q91ESBmbN1nLqLN53DLFhIJYn7mmYrI7Qy7l7axMsbiHyRQOXxOyat2y1SYTDYbhL3FToRmJaJVy9jFEoUJlx0kELRpq8le42UVpQnqhhoI8O3TbrG0NnLWQLHNZiacMF1Wb/SZv3VBv1mRJoohpzNEeziSKZ+3ADskC56JOM5+n8MoZYj/Pe4ya1WetSHgAMywf0Z029W7rp/PxitLjkGkDBy8oa49HHFQR8d70iW+Ki05TgwOHru4ijs5CBAkAeVkTEvYlwBGfMLxspKAjFqtjVSdDpy/mmSsrm5Q5KknD57kkI+z5BfliBkebTfTyKwQKXoKEAHA1SvhZkzCa5/kfTuCl5OUHz4FNbJHwExiRB9kmtfgXATpI/qRcjcMczpKub0BDIXkIQtgv4+7qM5xLGnAAu11gFhIcpVRKGM0AngITC4/MUvcO/SC/S7bTYCQScSJEkOLT2kncN0ckjDJVPglZfQQuK4eQq5AvliHqOYhyTEdPJ0+wFSK/L5Ak6uQJwM1XwOJwoHDjgw7FTN/bAbxu+L+5MuY+gQB/dumKLR6rDT8Hi/PDicPpS2vU/56gikbcixOQpt4z7CM0fmzzjYyMYKREdn1fh3PSbqH/4+nnMjPjIHpGkO45wxJCrLElQS4bkmf+2vf4T81BSG64IwyFKI4pQ0zTCjFlEvQAQhVpTiCIv8pKSc9+j2BHaqsWWGaQ5FLIzSHDgeMmeSpXq41w80KjKwQkGS+piRRnUl6WZIdmsLsbaCNjx0T6GaA7QvwJcQZ8hpCxHbwz4etsQoW8hcgO7skXJmKKerc0jLReQ8hFtA5hbY2/DZ3Q9Z7wpubEa8drOJ38uwbElzoPD1sD+skyl0rFGWgeUJcqagH2gGQYofxfQGEUbYZ7/RQXV9cm6Jdi/ihedfAODpp5/+Rb6FfUcpSumnGNEwalQILGEABoYYajFnShOn0A8USZrR7WsCJXAqeUrnFkgGIQv2CqFIKJQhzBL2+10Gkc90PcV0TJbPnWW3G2LrFC+rYe6m3Om1CPpdunGevC2xTYnKNANfEBUl2rMIs4yZpRmq8zWarRR/L0C2exi1hDj2ibQg7miyjqZ8ymPxgceYPTHJF3SBS5e+wcrtHoouVs1A2xpLSGTexPYkiR+T6BYr6ymLCwZ1t86x+pt4fP49hw1k+F523P7qmpQembbRWiF0DOQRogRCAfbwQZFlqKBDtruJdHII9zZB7y6636RWK2IuPYwsLZP5GaqdkK510P19jDrQ+DxUj4M+BcKC+gTZ4jyDwRcpW01IboFRRg9idE+T6SIUCgyUjVfN0dpr8spXXuKlLz+PYXuUSi6Ty4s0mxIlJKYtMEzIMNGDLm5xgjgaILXGNg0cSyPzBTzDGGZ6Ip/NjXU+9ek+Zx84TblU5uTxhWE3yO/Pr29r40za+AFjOxYXHj5LEGb4HZ/21g53bu+y3wgJjZCKa+KIHlHzNe7slJheeJS5GZM7gUEYO8QUMUSA0bqHOXMKbZ0mV5si7u0RbO4Qr20giwair7FncmC4ZNsmyWaEbETYuTJZ4kFUQ+Qm0SIkuRVjn7UQVFGRBbqBKA4wiiakCTqso8vnMSQIHaBVHzVoorxj+Pe63L67y/4gphUJGn1BbzfD1oKoZJB4YNkGpoB0kII2sAtQdEClYGQQRpooVvSjCD/UoAs4Ko9jaqKic3AtjV6KzIYymho5VD5BYgpQOiNJIUw0fqRIEuj2NL6WFOcrlNLjZEog1jaJREK+nBKGMfstH2RIvayxXYMTFy6wstOlYudRPU2jFbPb7RH0XNqhopI3kUKSxOBHgrhooF0Ikpjlx06jLYdOK8ZvBBjtHuZkguoOSHqapK1Jqi6lJYelB9/M/Mkqv7OtubPzOn63S6wtfCdmYsohywxk1cEVYEQpjsi4ea/Hg+cmyGeS3prP/mqPLFWjgOAwMDjiI92XVddvcO7GCjMcOPmCMUn0gIB5FOpx5KejS18ccQbHUcB9nAQ9VCUaj6e/Cbf+Rht3NB4OOJTVPISmjI/5zQtt7AAOq70jbMtI4nUIKRJiSIjVWh0ZawRNGsNgNKRZhgpCPvaxP+FDH3o3ExMukgwhju73JqgEncSofoO02UC6HsK7Tm9vlULWo1Q/ibnwILK0RDZIUc2Y5F4Tc6KLaSbgN6E8D5wBYaMX5kiqFcJbfYpWA5IboAvo7gDt2xAWULkcgbLJ1YrsrLV57k+/xMbtWxiWR6WSZ7q2wM4OGLaJaYMwBEoL9KCPW54kHLSwpIljCqQlMZwinmmgUoh7bSy3gmnZxCpFC4O9wEelyWEDOaWAsTjp6N4egk6Hrws94iccCQakQCgOggEFR8tQR+7pQdg6PNbBrR6Nd1BVGgaaWo1fvx+WpNRhQDmcgyN3Xo/hQkca+Y0d/TGn4ch60PpQ6erI6R6sgaNVDkZzDZ1iWwaLC1Vm3Bp7uwPa63sEjT5KubTaGQ3dpm5q0tYdtoMtZP8ET0xeZPaszbXXTIIIbAo4uo85aGJMnyC1yjgLS/g7W4Rrm6hGC1FO0J0UdzkPjTzpJmQ7EUY/xcpVyCIHjAlEvYYKQ/Saxjppg66iIxP0BrKokJ5AJwId1aHyIFJHCKOPUn1U0Cez5wh2Otx4fYNmpGiEklYHwr7AUhBVDAJXkM+ZiFSRxhqQ2HnNnKtJI0EUQCeAMFT044gg1FiyjEi7WHYZI1/+FvvB/fYdBQdnLtQpzBZY6SQ8OGlgMGymIhhGs0mq8UNNv6dI2wO2tiVOySZ2IREmwcXTLFRLxLt9mr3LZIaF9jwsJ6R+/gwnT06StGHpVAUtDdq7CXuNPjNGl8ufeJ7B5BLW8VnyMxUq5TyTFYuKaeAnJm/7wCkGsSZINEvLNsayjWuXGfgZZlZEdQPC3Yjm3RCzZGPNStJwkrVogVvZBgXXYPrsKZZqZV6+9SwuDnmpqHiayXqBMLTx+xGXXgs5P1Ujl5t8Qwn5+47bf5gdbhv3vaoVGgMtTIZyd9OAAdoAFaGzAaQDVJQQbd7AXS5j2FcI9CbCDDBrE8iZHwApkJ5DcGkO5DLGzCqiMcBQArqfgMLfAatG2tojWbmOK0PUZgcx8ZtgVSE/j04d0lebRHaNTesk8w/nePFzr/LCi69xvZMyCAIuPHmed3zgP+VrX10j0CmZ9An8JoPMo5TYdNrXyVcrpAlEwYBBEGFlKRPLD6LiFll3nywMGfgply/foVB4kcWfmcY0v3357/t2xEYO2ETFw2pHbPQSpGnx8KOnqU/McXstRKcBzf0eN/dWCNq3qFmw+JUFznxwhpPLBqlvEzYcOnsehaSGefUysjiFMTODNzeHM9EjMi4hbPBXqziWhcgVMCZcLCckiTtYjzyJrTOoziOnS2BEhK9uYiy7hN9Yw7o4gbGwgDBX0a2r4L4HWQPLlOj12+AKyBkkG9vE+QrXP3mXS8qnnyjSTON6Hu946CIsTJIrOTiVHLZhokJFt5OiXYmOFCWZESlF6oKYMlDaY9CNef7KLmG7S92LqVUEvfbhJXzTk9P4tsHeIKVQtpEIFEMpRKUVcarxfRj0U5JOwMaWQWHCpmkpwnIJ/aazLE7Viff6bHVfQttFcCO8ksP0A8ssLtVIm5rTFxfJQthYiel321SiDq/80dcYzJ7CPTtLsV6mVnapVk0qhoEfm/zwT5xnu6cxpKA24WGednHsGr1eiq08kn0ffyem1QEjZ1KZlcTBLFeDBbayXYoTRQpzUwyar9HcTSgaNkVXMVmCnG3S6UGrnfHlVwPcRkK4HzMkHDNUd8mGcIlDrLY4cH60HkqcjqE6b6TcCKFBD6UpxYhvoJRirPx5kO0f2SHRdxwJHFYFDhL8R4KDMY9AMCJBjyKYYUM246AyMIQCKbIsOzjeMNMv7+MNaM2Ia2DcF4Ac/qzuqwSMv2uaQ9y5YRijQGoMZZFYlnUQRAwDkiFJ+tSpZUzLHTp+0kPIGuP9XqsAsh4kIWowINp+HXephOFcop+1yHkh5uQUxuTjw/0+5+J/eRFjahnp3ER0+hgigt4noPJfgbCJN+6i9u5hZT5qcx8x8a/Rso6YOU62GpDciwitGrv2cRYfK/P5j/05l+/ssLYXISzJuUfP8bb3/U0+9+nXkSWTOG4yiALizKWQSFrNq9QmZ4gGIUnko5MUM4HS0kX87iYOCVmi0cLEsXMsLF5kf/MOkAxhRmJ834fOsdIjUvt9wSejSh6Hc5LDgFGjh3PgYB4evn8wX6VEjJK8Yy5LlmXDcGQUXEopMU0TZehhEf+gWjEcK03TI9WBUe1MDNv3jYOHo0pIR02PA+cj818pNYp59JHA4qDcgNbqULVLZQwGXf74Y7/Dhz/0k0yVprBnY3TdYmH2HNdvDei0Wuy3Yjo7VzH711neucVSaYmFszUeOi/pbUNvRzPoOVR0AXP3G8jqIvL4Ms7yPNJdgfU7WIUcrX2HSbuCztcw50yU0yLb1pgPvQlbZTB9CmPOJm10SDdbGLMmwdfXcd4ygzG/AOEldDsC583I6lBeW9+5iZipoEOfZMcnkA7XP7vC1/FJIk2qNZMTkzz20GnEzAS5soNTL+JoQdhL8MMMbUt0nFExFT2lqJTAK5qkGfQ7Ec+9vEPS7bFQzpBhgt+L+Xb2nXVIlhn5gmDBtHAPyp+CDIUfK/x+RthIae/6tFe+wfT5R+m7kvZQUYozVc2VGy36eyuIuRnSwGZyvsSZN53Drk2CNhBTkk4gCBNNWrOYfrJCpfsg+VYbbyrla88+Q2NyhrkPvIuqLXnxVXjqvEC3FIbWkAh29gUTE9D0YbIkiVMXa9JhYlqTTzSbt1Ic4fPV37nC9auXCe0eExOzhPd2WGebR88v8vXn12nsZ0zM5khmTCYwuPD2B3j2mZf42hefRTYdLpx+8v8NHvd9+0vZuCA+tDRrjja/EmCidQRYoDJ02oZsA6GbCNfBefO7kPGfovs+lSQkUgk9o40TfhKK/xAUKNfEnPsghn2e5NVPYM3ECO8E6AxBglVq4S2skZQyhBeSXruFzBXR5jbaqpDNTrIjy5x6+CL93dus9+6wk/SI7TwiP0XtI/+Q3/jV/x0hffJ5ieHkSHWJku6BMJmcXR5qPOuMNCtgJhCEgva969SLHscXjuO4Ls1eh82dDtu73VHmje/Pte/CxpfKNCSVioMhFa1mj+2NXXYbMT/0zkUu3+gTGibazahWTZorPr/+8d/kv5v6z6k/VkY6Eq+ep1R3CPeLZDspaQp87SVEoJBzS7hv+zDJa69jyB2S2/tY9RzWRAGVlwxax3BmNXZtGZErgG2hnRyF4wWyz9zGrtqk9xKEVcBYuAjFR6HdBdFH37yG8dCjILdR/jreY28lu7nHH117ntxbf4p8ochE0WVhcYIHznk0uhorb1A0oJ+AbxnUZ3JsBil3tzTP3YAHCj71qsYr2SSp4NVr66zdvsMg2MB+YIml+XMUe+nBNWzJjPMVi7JpYI8IjWqEY+5FGWFbMWgmNPa69Davs/DQEzQtSTuBiZygbCtu3m7S31tFLp8gaWhOvXmR2VNTOMUKAhMxJWgMBLHQiGMOs3OT5FsFSp0uuemQP/n4x7Df+XYKb34AWwmu3YC3PiCI9sBB0w1hoAXlsqARaGZKBr0ohzNtUJsRhInB1nqCKyI++7+9xPbt17DnCzipJLi3yczJKqcWC/zBH17F2s6YnLeZqpuUlGDpLae4/OcrdFf6+O0YlSiyZNQngEM8/3Bd6tH1ub/ZGRxxpMfQnvEWdySDO3TaRwTMEZRCKX0Q5B51rt4IvziY86PPDh1yiRo1lDpw3EcKRWMbvz4mDGdKD/HueujUDT8zxp/fHxi8kcx6kN1lqJCj1dFAwBxVELIDEmqplCcMQ+IoIUkzpBTYtsOv/Mr/QrFURYoYiNFquN9rnUHcBHUXLUJELYc78RRG/Hl0L2QyDtGk+OoOVvwFRP7voDPIPAvrwkdh+yukWy9iToH0TkAWICwDd2oLPbNHtJeC7ZNe3kMWKmi5jbZrhDMztN06Jx94kO72Ve7079HWCYlTxls4gfven+Vf/vKvYXkJlb5BJkugPQokCCmZXjiFLSSDsodOyhBDECrad69SK7hUZk6y0+7SHvhobeBIG8NwiPSwU7JW9weXh/DS+6tT/D/svXewZFle3/k55/r09nlT7pXvrq420266xzMzO8KEBgEaFsRKWrFoIXCxKGK1xGrFEhLaXUkIo1ihAbGwDBoCtIBAgwbGtp92VdVd3jxv8+VLn3ndOftHmpc1DMEEM4qN2OgTUfGy8tq893fP/Znv7/sdmFMfJjYmkDeAckmGCfyxey777EKHEeYgSJCHELmhPRoDwpUwCEGOahiMNxBr1Q8shs3rfXsaP/dREeG+FOCoijBWIogG1atRQKA1iiFsrX8+UayIVYwaQJeiKOLypTfYWNminF+kWJ6jNLVAEKzT2L3EsQc/zNW1DpaYwuulCKXHb/+nT3P+oZ8g+aiDlbLJugVEkKSzl8DGZ+/ababevIqVLBHPzxEeexa5W6F26zmyzOIcncKYcAmtmG48gzMDVvEEIpFEWyb2hId9NEP8wgp20Sa6FiCSKWT2g/2JoNME3ULfu4T5zAdRlRcw0wnkzAma17f4D1deIvfRv09KxpTKeY4uZlmcc6i1wUpIcgbs9jRWyiaT1mx3IlZ2BC+8DU+UmphFE+FatLoBd6+usX7nLt1gjckjD1OYOkppo8FfNr6u4CBshdCNMFMmjW6MaQqk0NTqEZV7TVbv1Liz1cLJFjnx5Hu5rTQZxyCnY6xel+pmjdA22a1WONiu8tR3PMvJk0cRjRAdS5oBLO9p8mmBYfWtygBaQrD43z7L9ud2OZpMcvf6Mi/v/D6L/+C7qbfrvLKeYL8rWMjBXBosAdfWJVlbcrCtmJ8zsTxBIxZ4Cc3ZiybK7/CZu5/i7l6F7PQkpogxgj2u/fE21mNLHJszwDLpdjWbt2vMPvQ0b37lZZ448TDv+tgHmJ88OZpA3xn/5YZpFIjjOkp3EcQI7YPaJtr/HGKAPVXdBnHYRbvTyKSDrlTo6i5+Chy3h269DmVNsB7inTMGzXFHcT70d6B3G+EugJ0E0SHe26F3a5eOFJTec4T4zgbxnZBIR6iZFMapMywmPkI3lvhph2//exf4DiNFS0uu7Hf5xZ/6FZqVHaK4g9Y+FhpXWHieSyafwWw4+NLB0T0SKAKrRCrjcSadJDfzJB3TY3o+w3c+OEU+n8RxbJIJ553A4BsYUgosS+I5BilX0Vy7xecr25y6sMTsAxl6KstO/TgvNffZfu1l/uCXfouP/di3Mf3ADMLR6FjhlT3k9EV0dQu9MI+qa/R+i/iNNxAJj8wTF4i2W4hKBREeYC6cppAvw+a/R8x8NwSgawrlhwRBgP3oBP6nbuB+eBoKKVRkIx0DJgqoaxK5eIb41mVEMYWx+Ag4RVLnZ3nkgS7zH5qnajs40mTKs3lpPaB3oDky6/KWr5CmIOsKklqQSxi896zEuSC4tWlxeblD/Xab7IRPfWeZ4sQUjy+cpFzOkEi67HU3RtctaPiYoUIJg2YUYxh9R2G/GrJzrcatu1X2WopEscCRh5/leqwpuiYTpo/ZblOrNfANye7+Hvs7Vf76D3+cvJFARoI4MmgEcLepmcolQjcSAAAgAElEQVQLlN0PPrRt0LMlR/7ee1n7oy3OZyyu/qe30Ac1Ln7ru6k2W7y4nmSrDhdnIWNAx4ebG5K0Jahuao4fE0SmjZKCRFKTzwlEEPOpK79IV3vMMI9DQNza4vaftJEPTvLs42l6gaJS67J+t00i42Fer3Ikk+Dz1+5S2Wmhoj5ee+jkAKMPI6iRBq36mgDDjCmCMUjRENs/cHzGegCGOx7SRwIYg+WH1YT7ncWho/W1pgc56FUaNoaOkq5jzctCDJiL+gvoK20NHUtGSYk+u9Bhs+uQQx8Og58R7EOAaZuDZWqkg8BgH6YpSaWS2LZFr+vjByFxFON5Nj/2Y/8j/+h/+Snm58oIEYLuosNtVPU/Aya6XUf5TZTSKLuETDno3R1aVoDtahLGDqp9BZnThKshqacsYl8jjz+JXDqNCLfBmQHbBmqEy1t0N2oEKZv8M4tEdzZQ1yMCTyGWSiTmHybhPk4nkgQZmx/86cfR0mY3FLxybZPf+j8+TateIap22dj0cbTENWzchEs6m8Kqu7SEQ0Y3MLRDLNO4tuTUlI2ZfYINPyIU1wn9TdqNCu12DaUjpNAD1qtxqM7YfR/LtPdtawx7MwweB7Y66kMZUIX2A8YYKdUITnZfr4m6H8am9bCZXQ0c/n7AN9qXVqh4SGE79IkOm9T1uPrdWEAx3utwn/32H4w/B10a/93xyKb71yce/O4w8KkebFHOlwgaW9R6TbJoZDvL9r1LfPDB4yTf9wyVisvVF7dYvvEpfu+f/Brf9c+/n9SkjTIhNhTmTA7r+OOYUzdA5OAAjIMK6vo1zOkpzvz49xOt1ZDVHWRmDndpCWeqAnv/EbF4DJqguxFRL0LJGOvBIsFvX8P7xAmU5aFiC+lJsCzUHRO5dJ7wpc9inDyKzM8irTTZ8zM8diHmxEfLrLRgNukitcEr6z5hA47Oe7zWisl4grQt8AxBOWVxrCRwHxK8fttg5W6LWLex7TqNyhqlmVkeWDpPsZjDsiWR8U2qHJTTLjoQrKx1mCk72NLg2h2fjXtVDrbqKNvm6BNLlCdtalJyNNm/xU6kiCOTlQOJrq5xq1blwpMfJlOaQTo2bskB06QdQykHhgZ69JVNLVCx5KYvOfb0BF+8eZWD3goLB21+5V/8Gn/zx7+fG3+8yfRSnvaBwUpNMzdjUWj1KJaT6NCgWdEcuOAUBOmB1ceX/w1x4w5GrMA3aXUk6ZMmF5IFant7uF0D2zZwTJMT+SQHW7cJN2FycZGMVxhjknnHa/vGh/6qz6PU2iCrlsEgBSiIfFqX/wX2XAR0EVbUZ7DoCsLqHv5WD6k6GFrRDhUH+wHJeo1k+6exp38SYabRWhBv7dJ94TUST+fB8hF0iK78Ggevf4n6vR75siZuNwhth92tCGPKotLp8dYf3eTcsdP4tWXevrFCaeEB/Nw0HTvN0cwU/8N//S5+/fmY1bU6unNAUvukDRPLcujGEUhFxkli6wKGMLAzHknLJ0ycZbNl0lNNAh2SS3m8/z1lTNO8vznsnfFXGpYhSKdtHK/I0aNzrG02+bPPvEIYOWgclHZQsoRnp7ndW+al3/ssj7QeYeHCHHR6aOEStncxp9IIehjJAAyNDi10axJ6st9Yns2DctE1RfipNwn8EPPLz2HNn0Eo6FS22ezVOPH+s4igSvCHz2G95yLG+ePoQBLeiXBOpcGykdRRm1eJNm8jH/ooUdPhT6/c5Oj+DS6+93H0xBxf2qnSOoAzj0+y1gqYyhhk3D7WuNeFSABasdkRFHMG5QeSbK00+f3f+gOsXJqFE0vMFQKa9T1aFYWI2qNrNptLUt0PsY2IUs7GUIIb9wJWbu1R2zjAnimxdKFIJm/RMCQnU31HNBEZ1Jom1VpEXF3jZu2AJz/4nVh2GithYwmJFgYdBRP5/nwvu6Bk/18YS274klMfmObTLzzPDJtUr2zxR919PvK938bNP95g8eIkaysR5bxBLiUpEFAoJ9GhZm8NVF6QyQhSQmPEIdGbv4Dyd7CMLM0q6KxN7lSGB8uCg1oPQZ8WdcI2mciZtGPB9nIP3Yyp7/fodkLiSPXVZWUfRz90lseHGGb940PnW4xlO8eB04J+g2kcRYNth/Sjw8bTw5lxCMEZNpYO2YBGDr4YkFbqQwpTBpl7wxw0HUsxEJgcHF8Mvhs4d3EcI+RXNbsyqAToPkvT8LwN2YcSD6lJh46eUvq+8zOkMTpPy7IwDINsNo1l2YDEcxMYhqTV7pBMeWxsbPIjP/wPcByBbSjmS/A//cAMzqJGhCHCU0hTo9uCeG+N7maIRYBtwE5H0zkIcRsrGPl/jD33UwjLQFia4OpNdH0N90IOYQXAFuGL/5jdV66iDgKysyZxp0XoeGytNkk86nLt7j6167c4MlXEr69x6e27HDn/HradNF6iyJLl8aOfeJTffEGxtlLHCiqkhSZhWEjDIoj61YhSIosMXAzbwnQkjgxQmYu0VJJuuMdEeRFT+exv3aLTOgAVDyowh7CxYYZ/1FMwNLTB9/f1Cag+qEfKPgzONIw+Ne6wTYShSJ6BEHpQpVLjkeCoj6W/+0GwKIfBHkRRfN87SQ6eCaXiPgxOH1YdNKDieECDOnxOhr0Sw8BjYJSDHywGlcrxZ2AIj0PI0XEOnyUxCj5nZ6dYnMtgmDaG6TBVzlE/aLC32uK5/S1suwlWjm5PYAmPq62bfOFf/i5P/MAzpAsOut1DhRqtm3hzM4QHFUjFKNVDNyWiO4HuCqxyHlGcAJ1A3akR/ee3CYIQ68ufwzr2ILpe5eBgj46jmHt0AaIq/m/8Kfb3vA9ZLqHqgngP7KUUWBZyZoL48gvoiSOIhUfp7io+c+kGD/yrWzzxbR9lc6vHRiUkjgyOXyixXPM5ljdJOIIogLCniQb2sNoSHJ+1WCymufKVZV787AtYuTTHTi4xW+iyvrlKwrHRnRZ/2fj6YEV3rhIvnSBbmkco+MIrHd6+skKczLJwpMzkjIdb8Ci4kgyarNBUa4pKLaZW8VldO2B/r0Z58RiiWCaWNmiB9Ix+yQgwQo2KwNcQ6T4cybMEtgSSNqViDpnNkKTLaavFGy/fY3HBABUQYhIamt1uyJE8LFc6HEnbpFyT0B4+OxGNe1/hF/7d8zS2KxzJJSnMSaKZJAc3Khw/ZpJIp9itxhg4WI5F96BDOhPy2MI5js6cIpnIDnB6X89Ve2f8xUOP/R0hDseWC+K4hdIhQpgILLrtPV66XudMvUk63cNKgHRdZCrdb+AUDsTTOLFNbvWAuObTuNbBm7iNLPwaqnMaYS1hZAX2qQBkFcJdouXX8VfeRDodkks20WZAFJqEqWmarOKZKeLIpXqnzuc2XiWfidje3WK3FdEx79Ihw0riKA9dmODvfudH6XRj2t0eKoxwEJgiJo66KNVBCI8gMAj8GAhIJR261QS1apekl6AwkaNcSGIYBoZxGBi8EyD81YdhGgjpYCrB7NEJ0CGthuTeaoNqNSDQGq8Y8IM/9O14bkhOSuJOk7XX32JqMouR6bNfqGoXlEJYFiKdQlJGK4m+dQdhFKBcRPck0YsVovXX8YMY5/gCe2+tErTXsfUBpaRFtGFgnS4Tv3aN+MufQ3T3MJ59BuuYAULRu7qFWa6j4wDV0Vh+l+71bXr1DVZ6koXjeyQji7gR8tDJE1g6ppSxyNgSYohCjavBNsGPBdoQmFKTsASFtIEbSeqBItIttvaaGNIhky9iivTomtWuvML82XeRLJRptxVvXO9y7a1VdK7EmYfmyEymSGRc0rYghyYnNNtVxWY9YnezzfZ6lVqtzeTR48SFAnFsIEyJtAwi3RcxM0OIQugNHCBLgi0EtgE6ZTNbLJIM9kg5HeKwzuXXljl6XKI6PTwL/DiiEcFEWnBvv82JjEMmYdAzwRQa5beo3PsKv/hvn8NqNzmyIOhNJ2gZ0L3T4viiJJnLsrbdJZMyiCMf3Q3Iui5WHPPq1XX8bjRgJ+pnRoeUkiPBM32YnR0XQRt3sQ8d/yEUZJBZHTSBigFT0OBJP8zE6z48Y7SNHoMa3Wfh/d6/ERuRuF8QDd13rg457MXhOmP9BaOAY7APYwz/3fdSxw/cb0QeceNr+vTmoq/1MDxGn3ZSYtk2uVyOVMqj0Wjh+8HICY5VH2703/3Q95PwXF555StUdpYpTkiev7LFwy1BKhtieAbSS2CkE1jmgDlLzeI+ZFBebSCaMa1bdZz8TWTxV4hb55DuGawpH53rggjR4SbxrZfobdzBmVLErkkYC8LIIkrNUI9v4TgZgm3B2r1tlu+9SS4Vsru3Sf3NF6nqJNooUyrMcupUkb//3R+j2Y5odbsYscZCY+gYFfeIdRspUnS7EAQBWgUYUqC7eSrbDeamM9SDDr0aGAYIHYGOGL4Th9AfpTR6YA/97Pwh41A/mByyQo059cN7Osiwj/oHhrh/pWBgs4dsSMObe3+1YujMj2xD60Mhv7H1+pUERvajBtAmMWBZGvZLjNOuCjnQANEDpW4Ot+/HCmOYtQE0qv+ThqCjfuVEqL49d7td9g8qSMMgl9OUZhK0DvagomlU2+xHDUKjRn5igv/+Jz9OMhGS15LVNy+T8iTpgktsahJuDmu1immYCM/DKqUxshLDd4guX8PJHEHOp4iXFdGr24TrV+hF4J06zvpLbyJ761hGj2wxSbwTYZ+bJvzi60T/sYX1gWcwjp9CeCbogO6VDZyFNnEQof0I0WrQvblPr7HBnZs25zcrNANJwvRYODrXn++zFgVLEoQaI+z7ytZgvscQWEKTTBrkXAM7ErQDRaybrG1VkVaWTGmCVL7IXza+ruDAFCGeEWH2umxc3+aVZRcvJZheTDJ3JE2xYCGlwNPgKthfD6nuNdjc2WOzUqFWa7EfmDx2YonANgn8mMhXRJ6BaYJQfZrZQAtiC5SA0AAXSEUaX0GimGQvZ1PpCB45dYKX72xy5KlpCCOSEgJDU++FRJaBJSyiSGM5YAiIe6ovpGXbPH/1gEwYMVVQZJMSs+jhr0KrFmJlUhhKogNJ7Jh4zgQylCQxSdhu31jEX1TMfWf81cfh9exPYgGaCK3j4VSJloLk/PsxvNcIwnu0VjuEfoxVkLiTGs9LIMwCjtEPPKPOLtFOj61X9khNfYnEXAUzs4e085izATquopt3aF99hXati0pKjLSFcBV455DWAnpGo7IpUqlZjp9L88aWplGvkzt6jKDjo9tt/FbI7fWQ2Ghxcj5DaaZAeW4a00gShBqcCKKYjB0j44BeENL1I3Qc4FoJuumA6aJLxk6RyKbwsk4f0zx0F94JDP7Ko++49TNRg1ctc4slhLQxrDbrmS6h0JxcKvL4e5cwPIn2u1RXtvGrDcgkUEaMtBx0FCFMG6SJjk3wLfTuOuw1ENNlRFegN/bRN95CN2vYiSNY5RJGdRPTNHEnFsk4Bqp3ABWBbu2jt2uolMR810WMyRTB1Q7dt+6ROBUiUyVkJg2miXA1z16YYbeu6EYmViyZL6eZKTiEQYgTK6wY/ADiCGzLxACEhKwcoEYMyKQTHD93jleuXyKuVlAZB9uyUaGg2uyNrpspApJWTLRXY3WtyxubFl7GYO5YitkTKbxEnxXJ0aBj2F0NqO7UWN7apFKtU281accOF4+foCs0UTcmTJkY9tAREn1BMS2IHdASkGDTn+87MWSns1QOBE42ydzsNG/d2+T40zOoTkTGkdR1ROgrYtPA0AZhqHFcAZEiakeEIiCSFl+4vM+sjHAISaTBS5oELU2rHiOTIboniCyBjvrUtKqtyZgOcTscwHL6lgSDrL7oN0ty+PV9mdn7H1c9guMYo9WGvO5fw1qF4JDmA4aO4iF15Fj2eGz50PkaUZKOrTuCmAyCBznAhQ8hH0Mn835BNQYO2uEPHa039myNHWZsX2IEMfnqHoUgCGk22wRBMIAcCVKpJN/6rR/jAx/4AMlUgvLENPt7G5QKEPcqGKm36XXv0Fntoo0AqxDiltK4noe0CrgnJEZPE2018Nc7bLNDavrzJBfrYBwgMxLSXXTcQDfu0bzyAq1OjCwZyKSJCFzwziPtBdRsk9ibZHKhTF163KjE1OsB+VOn6NY70GpSq0bs73XpRg1OzKWZmC8xO3UUpSwipcCMQcVk7RgR9Wj1IvzAR0URUpn4ByF5T1NK5Lm1tcnqWoikDyfqZ84FclAB0FKidDzIjo874wOHXn7td8QhrEfff88GlaZhUDcMDsarXEMzGFGkjhJUcmSzIyE0DqFDQ5seVTbGs/t6GPoOg+XhYjGy31H1gsOqwX2CgcNzGm2nD4+hNXEU0qg3qHgulpQIbVGt7hNR58SxE+y3c9QCjZdxOHt6kqc+tITpSeJOm1iEmCrESBmEfptACURX09URnulimgnMnkJvbSEqLUTJhYaGu+voezfR7RZOcgFzsohx+zXMYo5k1sFLgO5WIRLozj7q0ip6aR5xbAGZtwlutOlcuoPlCUR+EZGfAtPATgre99AsO3WotBRu2iVXSDGVsYjCCCfWGHFM3OnTRJiOMZrv8xJCBZ4FpckSc8eP8fa9m0T7NjrjYBo23XZMo/FNghUlM3lkLNl8e5lLX75H68yDvPvd88wWk0hhoCINkeKgEdJuNnjrzQ5Rc5vdg2W2mxW0myFRnKAwNUUlVPh+RLOr0R7kzIGJSAl94UOE0ReZ6WlwawG+aRDnDOo5gR9bPH7iAVLVGzRaAV4iQsp+v0FaQL0ZMTdhEYaSUGniqP8G0zYkF85z8vxZzP17RALqzZj5wOf48Rz1PQhbNvlUGpRCapPizAm6tS4ra/d4sNfrv2Vh9EC9M/6q42tVC4YPv6bffGwi5CFTj5ss8+iz34sKczTvfIb9O/eo3euRKsdMegJHZDDzU9gpG13yUfUAu9Zi+bUm5XRA+Ph13KlNLK+A4UwSdiqwe43mWpuOAdqxcT2L7FwKkXk3hsjSLu7SFhal4lkee+Ai4bV13vzyW5QvPoCub9Gr1ckdhGzd7XD97Ru89Nw2Jx5Y5IETp5gqTCMtF5X1iGUaaSVIyyae6+MkBpO/L0nMBiTMBI62+o5swhxjLHnHxr6hMSxZ04dQ+D2fucUZLLNIIqs54oPhGTx53h29FYWbpHTqOMQxqucT1mvQBW04CNdCdzqojV1EQyNWV5DFEmKmAHsGYm0bWX8DI0yTLC0hEz6lpQJi8gTGkUVoNom3Xqbz3JfQUQcR1dGbG+jry4jHz9C7uU6wtY9bymNOzPb7ENoBIhPz199/lusVwabMY2ULzEzkCFoxeVfQa8fEYYRQYCGRjsTvKApJA0NJDoQmRpBMJ1l610Vefe059K5JvjQLKqKxtcvq2vbosmWLE/i1LstXVrl2p45/8jTPvmeB+WKCKBboQBEFinYroN1o8uZrXUR7lbt7t2hGIdLLkCpOUJieYqsX0OlFNLs22JqkI5BaDLodwRwkg7TS+LHGPQjo2QZ6ymL3nsLKFji6uETyyjK1VoDrRlhIElIRa02nHTNTMIhigVCaqBvi+w1it0dh8TynHzhDqnqbak9SbMVMFQ1YzLNya49UWWPFoFqaSLp0cTmoKGTeJGlZMIbdVoPse6w1hiEGUI+hgwSH0QGjLCmMvyvECMahYZSZHzrsjO1HwZiTPdaIPDRrMeSxP1ygxaA6Ma4joBmtN2QS0iNNAw6Dhvt9sPs9/tG5DEKbsR6K4T5Hr8IBVelhU3MfjhRFEfV6AyGg2+0SRhGGNEins1y48CA/9mM/jDRNNJonnnxmeBJoHaHC3+fgaoPNl1cJ23Uysz5l28CReURyFjcToya66AjUQYf1V+uUMz7x+6/gZJcxvUmETBB1KrB3k+Zaj07GxAgtEgkbuzSJzDwFIkdz4iYimmTy1OOkz0/BjQ2uv3qDqccu4q/fJNfskdnx2dno8Nblq3z5C9s88K6TPHzyQdKJHDgOKuWhjBSm7ZGWNZLJkEQ6iVYC5WtCt8HkdAHRjnCqIVJ3UVEwuOt9W1BjtjPw/wffjYNt+pUEPawo3Xe/hnAhEMYQpqNHjrsxoMeWcKh3MYQjxfEhnGh8h3pMiwMBqJGgmhwoKN/nE4nDxvf7fHk9Ln6mR8cejvEK3KH9Hi6TQnKYoB1WRRRRFNFutagduDiWjQqrXHr1MtoM+GsXP8icVSZwkywsJHnkVAKhIfQjpJPgxAfehQpC/EYDubNHWPNRdpKDgwpsBySDOrIWEm9u4R6dRyzk4aqP2LqNbNzGVFnc0hLCazH1wAzmudPITBrdqBBvvUHni8+hVQcRVdF3V9DHttCL0/RubhBu76P2ZzFOL0DCIwoC3KLg4x88x1vbkk0vS2GyRD6VQHUUOVvQafVV2o0QhGmCFoQ9RT7Rn+93Bs98cXqSxXOnufrWa7BrUppZpNPosrvVZPPeFn/Z+PoUkl/b5tU7n+fS2ia3Myf4nvfOsJS32e+FtLs+rVrE3rrPzTcrbK9+mWokMYw2dsLE9DxcqfnAo0dodBVl16NlOazFksmOxjQ1rimQHngK6hH4kSalNI2u4t69KudSWVxHMFEuENsW+8ogmJonjnxMv0nHdjGSSSZzabp+QLOiSOVNDDRmHGMJhXBNEDE//6//CbXP/Sqf/rMrvLbSInx1mY992xmi04+zHe4wU5jFDATVRotNJIvlPC+srCGdJEKao878dxy3b+bQY1NeiJA2aNVXIOaw5A4K9BPYxW2cYz4Jd5NiySCVyWEkT2O4S7D3AnbawXj2HFGnSfGNdfSdBpf/cJ1E1qY05WJ7kurNFmkR4+UMciUbczGNMVfGMBYIogk61XWef0PTCSXnepL3zSd48vQ8s1aSm34ZM19garrNhBdiPa34nec3uXqlwcF2jc+uP8fSRJaPXDhNSi4ipvKstHyyVpKZbJG8Z9Jp96hJhZdsE3Q0yYRHwvMwbWtQIv7/6l78/2tIQ46YNI6dXgRga61FMuNw/phDOisgiFEHIZEfYbgG0hUIQyOVwk7ZxIHfV8cNfOJr1wifewUzmcc7dgbjmZOw76K3uuitABnEuPkFZGkRsb2D+TfPwPkywpboXpr4N57G3/8TbNlFiBB1b53oM1/EODYLd5/HyS9Adoo4dIlv79J5+zK727fJP/YgZx97nGMyy1bNYGMvIuM4TJfBldCq+ri2wEoI2nGE3+4R4KEtE0OAITWhCSJhkU5NE8ch4eYNNCYqTmIb3dE1W//cCpWdl3mrrugdO8vHnpnmRMZkuxXQacfU9yK2ljssX99md+MV9iMD22rgpJNIy2IiZfH0Q3M0ujEziSRbhk0vEMRdEELjmCBNQcKBvQAMpbEiTaMdcfdulYvFPF7SYHZmmnQ6S9VwCKbniIMAW9Spmi7ZVJpcwsH3IzoVTaYkkCrG9X3WdzZZ0xXef+Rx/s9f/3m2P/3T/NP/5za3ru9zTpo88uQJblxrc/bhp7h16Spe7OCnitSlTbWzQmttk9WtBsQKzzKJlabrhyitsExj1Hw8bOAdjmGWfsjqAowe5KFvN4RpDCkk4TDLe+gwHQYT/UrA4WQgEH0+/ZEK8ViAoIcO1LCKMObY634VRA2xHwK+mjZ13InsQ4LuP7chpMQYUJVqdZhdvg+HPth+2AwdRTFR1COKIrTWmJbJRLnM+973Xn72Z39mUE1RKB3ACGgMfSHMZ3Enb+OejkiGDQolj3R2EiNxBsM7g965gXekTHxymqBWp/D2Fup2k5d+4x7TcwmypVV0pGiudkgJRaJgU5xwMZfyGPlJpHUcPyzR2V/jT18xSBfgWc/g1Jk07z6/yNF0jmu9Kbwpj2MnuuTNmMZBwGde3eTalTrby/v87q0/4r2nF3j4xHE8OYcuZ1mu95h0s8yXEpha0e4FNI0Iu2AjmjFvXHqZ1c01Wr0GWvR7NdCqfw/UECYkkXJM72BcmZhDSl3GkpXDfhCt1X3Z/uFNFgOuXSU0f16rqW+bw7B3mOEfsmwd2vr9wePQwIdUqIdVNI0h+sJ3fXVwPQiExagMIujP0TBs7j/c5Xhvj0AM9Fbur0gN0W5SafwgYHNnh6SXoOt1aNT3KRbKNPZdJhdjjp82mZiwEb2Y3l6Hyvoe6ckUXs5DSo0pBalimkYnpNvr4tom+ksvEm5VMQsTWMdPId93Gr0pYDWEio+BhVmYRxYWYG0L+8feDVPJPmRlK038exZ+5Y9x7RhETPzaWwg3j/CeQCy/gDNxBJ2ZJG4Kghu3ad65Rr2+Re7RB7j4nvdwInS5t2uwt6/IJywmSuAaUN/pUcgaxJamHfr0WiG+8tC2iYNGm4JIgpF0SSenCKOQYPUSgZ9AkMSUh5Xiv2iIr25Cuv9+92evjz72d5gpF3CnBY//rR/k4bzN51+/idjfZWVlmYNaHds02e1WyNkmS6eO0DCLRAmHqZkCTy6dZuX6Cl9YVTy+dJzWvkE1klizSZ48ZjOZBieEKBCEErqRotOImEso3lhZ4+EHp/nKZz9HD4vimUd5/uVd3vfwJLmFFLv3buM4KVyvSOALCpZJJm2yIwwyhiJvKzzh092vkpvrYbmTqNUX+cPf+VNeePE6vtKQylC8cJpgZwcJ2J5BKp9jdu4BPv7d30Wf+SGmurOFEILS9BzSeId//ps39NiE1P8bqw69zhp+2CXSSVqtNrNTC3z5d3+ZXjHk+ImjHJ+ZQWsfyzoJaMK3fwbhNCCdQzmzxNZDCLEOvbtcenOd7bfrHCz77B9ETLgOs0dtCq7F1LNPkJw/hpRlSD7I2srb/JtffZF6u8fU4hwTc2WyWYNvuXiani6i9hvsYXOz0uSg0+Jd5wqcT7ms+Qn+w3Ovc+v12/QqNVIZg9KRDD/0QJHO9LuxkwUs08G2JIm0xDOg2gtpRSEFy8QT/UayVMob0Bq+EyF8M0afieMQy7Hy9hZ0BOmMQyZvEG90QTX7jcbdkOgVNmMAACAASURBVLjVQXW7/USAayHKeeykxcGbb9PdaWMEadI3Q1IPzmN+7wX49B7q0m303ia6Z2DknoGERoguiBV4poz40Bl0XRBdaxB/6regVYOoihItlGsRZqcIdRfmHmXt9hdwhcDLFbgVrfFn167z/T/6IxTnZnEKs4RmllZX0GnBvT2YnJQk7D72G6WwjQhzIkGjHmJbBgmhsQwNtkAZgmbL5+qVuxzUVthdWSFqd7BMzU//s38EwPd98H/GMHeYedd5Ln74v2IpafCF129gVnZ5+9YNdKSIiagHdXKOxckzx9ijiMxanDm6wJF8mdW7W3x5TfH+82dYuxfSTLlMzro8OGdRSoIVQuQLAhPanRjdi8nbIW+tb/LUo/P8/r/9v5m+cJGmMcHKcpsnzpfIzidZv3aFfHGOULkQCSY8h3TaYlXDhKEoODGq06Db3MNMHzA5cw7/6h/wy//777G8uosvDVQ6S/LsUdTWFlIIElmLZkexvN7g5toGuYSJbnU4u1hkrVJjdbdGq+szZO6Jle5Djg4tbGBngyBgPNU/+DwUBuuPYZb2EPM/ZKjRmgEZweD7YYOzHBNM6+8CPYRriNFXgyzy/cJoCMZYZcTIN5NSEqvDDPChMFW/iRgYMQ4Ng4XhPuT9B71vrrJMc+AoDrxKIQiDQ6rcb/nwh/jEJz7BBz/wgcFlUsS6Tbtxm0hbBJFBGEaUC5N84bf/OfERl0fPPkA+7SGEiWkuAIrw9Z9AFG10skRsH0Mbiwixie7e5aUXV6heabG34eN3NeWExfSiQ9G1mP3Wb8FOTiCdowRiipXl63zy11+m6fucPH+WVMFlYTrNY0tH6ak8eq/Opuny5vIuqbTgwtEMxxMOa70E/9efPM/qq3cw4h7pgsXCYobvPV2iPfMMbjLfF0HzDFxPYAvNfsdnv9ch2Fgnl87w6uuv88lf/ST37twm8n3iOCKMDq+VGgR1403JeiyjLgfV9UNN5MF2cYyQxoBdSA/2owcN7GIQHBqjQGPMjBnqUtwHIRtWxL4qkz80gZG2gtYjOx6HCvUboQ/VwQ+PN77OoHoyaL4/DLH1qLKr6QvnjS3p0+0ObN+1bNIJl6TnIIVEGi4fe/QTfOhD72f2ZI60Y2C3NHFQR9qC3m6dqNaAKAIp0JaBmCzgZR1WP/VHtCqCnCozn5om+dAc5vddQP/LVfTta+jaAVDCyDyESCg0XYS4Cd/3IBybRFcV8fUa0ad+C+E3IdxFWRFxIkGUzBOoHiw8wa2Xf5PJ/CL1uMHb1Vvc8H2+7yd/nMLcLHZpkU7s0OlImi1Yr8L0tCBhGcQxGDrCckHmHJqNEMcySAmNtABLEEF/vr98h2rtLps37pB0LO6t3eZXfvOTg/utv6aj8XUFBw8cOcq3fOd3896/8QmSMs313/1TWmGTirLIl9JYToZmlGHufJa5Qo+1qw0O6jVK5WlOnFyiWLL53/71l2ibaf7Wxx9CNS1WtmIqkebsEUm1EzHvwtEpj3TKRChFVOnQ225zp73O8YtLrFZ3uXNvG7+leebpC6xXWziRiVlwyXgWKdPANCySpsXqgaaU1SSlwhMBrhkjTcmNt26w8dqblA8atPe3COMmhiv5yl6b9NIS9cY+tWYTL+GyOD3FxZOnOfbEe0mWSsRROBCNMbFs+3AyfMeB+4ZHX/DsMCsRKJ9mextUjGnYCMMi9OvcfuMq8w+cI51KYxlDNh+JROK//g/x62uY8ymMfAmtiihZohUckM5fxBAttGoTBDa9bhFarxJknwJnEle6OIZFp13njStf5O72LL3SBI/MFol6B4QqIpXOsXbrMk888BDpdJY4DmmFgp1awJ3rG6STCS4e1WQmjnBtP+bl167z1pe+gq9cyukOHzt1kuSRRzDnJ0mVXWY8g4QFodIIoZEa5GDytixjxKX+zvjGx6h8PTAxFSuUH0AYIZRGGQ6EEdISoBQ6Vn3F4m4PAcTdDvqggdQR4Wqd7ut14uUsOWsV89lHELsatW9A1Uc064gT5yACfesmqBYi40AxiXI1qnsb46FZdGwR3rpHuHKXKGig544hTpzl2us36Wy9TCgOsAoJJhbnyT4yxx/+4Yu0ApNTx09xYukcxSMnsI+VabQEjcgltgfMJGhMS2MIRcLu21CgRF9wKdYIR+Epn167QaXbZLuyReSHKB9+4Ae+E4CnTp/j4z/645x99GloRNz77Iu0giY72mFuNkcnzEAyzfRSkqmMz8qVGtVGleNL5zl2bIZWt8O/+5036BhpfuRvP872zZC71b4y6HwZ6r2YRQ+W5pI4noHuBIT7HTp7Le51tzn7xFku373N3Vt7FPN5Tp8+wk69gx2amBMeRdvElgaWNLGkyWYdyrmIpI6xdRtDxGyub/Dvf/nXmQ5jHi4V2du9i2n2qEUhlytt6lIRWwoSKRKuyaRjYfkRl5e3WDdtSsUUB5vbbGzv02j30EAQRiPGomGz8DhmW8qvdnz6/lE8wNcbA4rRURNzHA/iOTUmPnbIdNRnORqASe6jIQXDMA+ds8ExwzDEHBxjRGeq1H3bjqeS9QAqdahFEDPkyDdNE9MyB0HQ4XqjbVWfcpOxSoMxEKYa/u3D+YZUr/25bW5+np/7uX/K008/jWmaaK0JdY9aax1TS0zTRQtNt3nA6vU7LFx4kIyXGsyH/XMQUYfg0s/Qq63hnCkj7BKaEhFJOlGLTP5hJFVU3KbnFwi7Ct27S5h+DJxpEoaNLU22t+9y9fYN1vYn6ZUmefZIib3KGm4yjY5j6jtrPHz6HOlMhjAIqEUGaxs1djcPyCRdHjoCmaklnl9t8vLnXmbl2gqxMJlI+3z72TNYx5/CWshSzFqUHIlrCfxYcffObSaLBVzH4cXnX+CTn/wkV6++Ta/bodfrje7DULOAQTVJjCBhg56RMTsZ0uAOHXWl+kJhxrBpnL6Dfmhnh3C3ESxp4JDrMfs4TOX3/46gQkPjZqxyJPrwzSEcSMWHwmrjQmhSHPbGDPvrxoMUKfrVXmNQ/VIqHnue9H2N1OMN0/1tBa7jkPQ8PDeBZVrk0zl+6Zf/FYtzsygFsepj9LVUCKUhjtG+j+r16HU69A5q7L70OsXZEtZqjFjxsGpJMt4u1nsfgZUQVbFgv44wDOTcMYhAXXsbYXYRpTSkHZTpE6t1zAszqMAkeP0K4e4qsSlg9gh64ThvvXwVf/3z9Gjgpj1SM3k4luClSxXakcuTDz/K/InzZI4sIKeyNNuCeuSiXBMd637Fw9QYUuNZ/XsQxII40CAU0lK4cX++3+402NhcJmknufLmZX7mf/2Hw2v6NR2NrwtW9Ne+59v54NOnsHde5+5emfjUcR6ZLhJnPYh9VKBQwiWTsNjfW6NVuQGJBVITkxSmsiTMgG77Hu3AIlCnyZRcpg0Ddntc+eLbPFVKkZo2uN3o4uFQjiWJ5g6fvXvAE+87x069yxuXV1GmzZkLZwk0FGayFHoS5diEjiS0JJYQrEYwVYCspTGFQjdb9GotrHKRI0tHmJspYEaSOOyCbiGMgBO+w861V0lOPsDeXhPPMSgnTazNXb70Cz9P4vQ5Hv3oR0hks3+uhPrO+MaGGgQGw5J2qGJarRWkkcCwUkRa4IchQuWYOv84mUym37AOgKAT+8jtL7N3eZPSuxdxJxcw7Vminklj9QUyS3+DIGrTCnbBcJHGFCJ1jFZmlpSw8GOLVqxp9Zq0ai22/FkS2SQCyYZOYkmFaKzR21mmPHGa3bZPRUZMuQaZpEXCTTDhWqy2Ql7dPuBc1GAhkyD32BInpoq8evkyomXz4t1dLgaXKOkzdM1j7BsS25Q4pkAOJuGh0/DO+OaOIf565BjF/Rcn0kBHGiKBsC2U3xcwEjru26RlQ8fHMF30ZAIZ+dBMoVMJguASUauHcbeOePgIYkuhu210XEe+Ow2XWsRqE9oa0a0ialuQclGpPMFVjfPUo8SVLu2VdZrtOk6jzdRHlpilzd5rZ4nUPumzeeY/8m6kt8+3zS1SvbLM2uYur197hfjWNZx0lofe826Kk2WCOALDQhs2QaAIOz7C8lDYmAKQmiBSyHYAnRpon6TSFFybetBmY+tQ5+C/+Ym/y5lZQXvlDTbrOThzksemCgT5BLLbIooNpOHgWnBQ2aBZeRuz8CC56RK5YopguzGY701i8Ri5WYs5T7C9vs/t59d4pJAgNWvyu2/e5MHpo8xLRada4bVKl0efOc1qpckrX7nD3InjTCzMEBuSwlSWYlfiuxaBI/vML1pQVTBVhKyhkSqisbzO2vo9Kt0O3/63vwvRa7G9vMWp73iWdFrjxyEnKx12rr6MMz3Lyq1NTpxapKhCGjeXkfs9Zr0Mr+yu0Gi1CeKBGJhgRBHJCIIzXt0ThxCM/n/7QMhhU6g+dPT6pmgcQm+4H/sPI38QPfbZMOQgCzzY51hjsZQGlmmh4hgkI+pSpfVI72C8GhAPHa4xp0sKOYZS0gMGmsOK7iGX/WHD9DCYkGPz1jDoGEKboihCCIGXSPBz/+znePjiw33FXa0JVUC7vYxlZDBNj14UEwUxmGWmzhXJJLOEWmEKSQgE3Sp6+0Uql7aY+vBpzPxRpJyle7BHr75OZvEj+EGLXrCBYU8hrFm0XaSbO0VS2PQii3oYI/0WOw3YjyZJZJJIDXdVGmlk6W6tYBOTLRxhp+2zI2KOJAwKrkdq0WK2kGazHfDKZo1HdI0Hix4TH3qMG8dnuH7rNrLb4Us3NnjCf5mEeJgGE5h5SckA1xQcmZnGNAyuXLnCzZs3cV0H0xjJZI+0MaSQKPpB3QjKNrQtYQwxX8Oa++HnEcyoLxI2hjy7bwztSowXpAbxbV8bQY8qT18LSXTYizAMANSYfR9C6YbHP0yochgQDKBqw+X3NTQPfvNQ22BYHbj/uevvb0iXKgdK4L0gIIxikl6Sn/2ln2V2YR4/jFEROJaFFhFhM8B0bEyhwTYR2sULNXbBwnjm3ZjKx+gIxNYetO8QdmLMW3XE08fh1Ra6vgkFEx5PwFttdLiK7iYQ3bfAa6OTHiqZpfNWjPfBZwlvbFOPlgm6LdwooPzRJeb8OrvtC5id2zS8HuF0mofe8wgzzxbYffUGdzbXWH5lD3EpTbo8wdknHmViehI/8JEJj0hLgiAm7kaQ9Yjp/x4lFHEUI3s+uldHa5+UhkLSpV2vUat8k3oOZiY8ClaLg5UNZKvGsfd8B40DQbi3TbHkkZ9Ko7VE1ttcfe0yPSfN0rEjzM2WsISg1ok4vVTk8rVdNtf38I56TE4mcVyXlXtFXrt1j8Jmg0hqSmaKnpTsxXt0Z+fRaZPLN1ZYOVBMz2fJZBIElRbCy5LM20RhP3JU9Bvbyq4ibygcQlp3b6C6+yhTs7O1StlL42RSuFPTCLNEd2efxvIm0w8vkXQ93EyW8mLA/8vem8ZYkl13fr97Y494a76Xe1ZmZdbSXVVdVd3sJpukukmKGmkkwaORgZGNkQ35i2cGMOANMgx7AAPUBwM2hPlij/3BHnsAaywJmtFI5Aw3URI5TbK72ftee1Xu+9u3WO/1h7dltTwgJREwYPQBspZ8ETfiRdy48T/n/M//mKbAFRlxsEf6jR/wYa3LwsYGq1eexC8Wp9w7MZWY+8T+8qbUMHKGGDYRSnVCb3AP0yyhpIMW1qTjIoZNLufQUymmhL6CVpTRaTdJHnzI2lNX8eaXsfyLoD1SjuiRo+Sskakdjk+6+LkCuZxHr79L7Di4hSKt7j7RIMLQJpkWmELQC48oeSm+s0SQm0HJhG42oOAK3LRDM8rTNn0wDFzDoFopYOYyjg1BqxeD2SWXD7i0sUQ/7NI9fMj9R02OWtvoTQMntWjFqzjnLGbdoWzgOA2vlSZVCsf5iR7NT+wntbMR00xAyrCEBTnlv0oD0mFDKKHFUFNZmWAbCENAGEGskZbEXAjQD+sgc9AToDJw0yFYWzWgECC2l9Gb76OjLRANCD3kwjzW568gz1eQfRBHJ6CbeNefRPo2WfeImZuLmDMXcFcKOHNFktoJCxfWKRUL5BsD6t1hkW88kBzvbtM7vocdlHBnl7CKJUyRoFyPsKsRwRBAZmGKCjOUqdk+7pCZEVbWo1SwKMxXaZ82JtdnfSWHMzikfRjimOvMXv8yzaYk3t9mZbWC7bkQK8LTBrfefp/QrXDjygZz5TxZpki04NJ6iQ/unLL58Ii1cwusLluoLOC9vRxv3N1hZqdJ/aRJ48iibUXUrIhoeQWdM3njvfschB4bxSKubZG0YsScQ1BxMKIhiFZopFAUzZSyI7BUxPGPvocSHbLOKfFeGyNO0Z7D/BMbZEFA+7hDr9GnYxtc//Kvom2PmaUGS+fmCbSi5rzP4ut3aAxSFjJJL8mQgGXKkYQpRMmU8vEY3/ssDeIsq2i44Yi2oybAZgRxJo7D2AuYfC4mW4yA32gwIUFnw74Co7HFqMZg7F3okUMAw+ukYZK1mJZRT7/D2FEQUowKPqfOzJC7Pv5CehLxHTsAY2CntELq0XmIoerS+DVpGAa24/Df/sP/hmeffRbf98mUIlE9BtEuhllESxctjGFkF4mwbALXpp2l2FJSSwTtQUS/fozafcC5m0/hVs5j2VeGVBwahKJIwVkly7bZ32+wsHQFSAnTQ5Tt4eaL1Ns7JIMY2/DQAiSKMDqi7Cd4zga56gJ91YewTc5SOEmLepSn5XgEUuC5Dp5j4+RSTg3BYXPArJUyWyrChVUEKb2Tbe72Gxyc3qd0L0c7gs7qHGLBZMZU+J7HK6+8AsCNGzdwXY9333ln2ERPjLtmjyk7H+uGfOaPcXZmDIzP4nc9epcIxITSM65BYTLyY6NOaEPTOhOmlLYzjuhkLz1tmPf4SNMRh3N3eqxptgLEeP+RE/EYUw1NpqbF0eMxh06TOHshJjURk8J+RjQ9NXQWnnzyKjYekYqGc9w0yDKNtCxEosGUCAWGMhDSRfqSwPHoPXiEHIyyHEKhkwHazENLg0zQdoLOCcSaRJR9uHMO9t+GZA9EBHYRoziPeOEaYrmAsbaOqO8gdRf3yYsI1yKpbzP3xYuEeolSIcWaM3BMj8r58+RzPl49ot2PCUNNmkiOtjfpH9/Fzlfxl9cRlomBQpsuvWaKWbLQaUo6SNGZYpClHB11UGaElXZZnivSti2CwOHH2U+EQAbNGkdHgnbrhPmyC3GDWlrC6IfYZkC+4JFGCQdbJ2zvbrL22V9kfWOZhaJP2Is4qvd46sp5tjYbtOundKoVgsBnpmKzem2FD/vH9E5OqWroWSl1x2az4LN2cZWPdo/58N4eycwiVqlAEvYws4R+rU80YyKlgSOZTOhAKeLOMfXjPfbeeR3f7DO3MkMyyBM1GqT9BaJaHysoEZ8mRHdi1KKgtH6VNNGUigJpMEzJOEWWbIfXt/f48OVXSOKIlcuXKS8s/iSX7RP7t5gecSDPpipTFROnDVQW4vhlojEPFj2SnrQZaM0gSwmEpNlJ2T5p02jsU5YWMzc/h2sWMeQi/VaN5kkbOfMMWgQMkj7dvkGWhmTZMbFOsSnS7nmkWYTSijTNiOKMotXndHCK62Z48Rr5Qh7HXcKUgiTrMmOZJGlMErv0pEAJg8CSVHMuOcNk76hJoiLSJCbnOFxeO0dNdtk56dDTCfXGAW5k4AiXXWsOOWtScQW2cSb9ejZ1+4n99Gx8WRXoePh/bTAE/oAwDcg0ZHLoFJANBaRVCoM+upMgtMIoO6A30IcthGGiD/sQAOcDSBaG+qGzDvKFS6i5GuzVEd0EXSkjb5xHvnAVkQnMLti1ZezsGGt5kXTniKy5T/DEMtZKBXM2h0aT9SVZ/RhvcYXV9RLLGERRRLeV8OiDWwy6PUIZ0G12sRW4gYdwXcLjBGFrhM4wtMKxBJkjaQkbmwTVi/FtcHyJbU2hQvfkgG73BB1nVItldNyklpawegM8z8HPu/SbHWr1I3b2tll/8W/zxMVFfKDeGtCPMq4+scrOVpP68QHVSpnZGYu5xYC5Jxe5H9bp7h9SST06Tc2hB62FHGvn5vlg64gP7uxibTwBpkkWDsj6MScP+ixeWAEh8Bn6bVmaoPstuvToHm5x5wd/xuqFPHnLI7YSmh+8RV+U2Ph0ns6gi94Oibsx6lxA9Rc+zd7WIYuXVsiXC9iWQaGbsuD6vHbaZ0E4DByPKE5oZ+oMeBlGSoViCJbPgC0e+9cZIH4mOj/pRzDeV4/3eBywPyZnfPbTEbgajzUu/h2CfDUBWmP1G0ZRfcM0ps+AmALKYYHqcKcxPUNKMW2OxRS0qTOUkeG4U8nSyff72OMmhSCfz/PFL32R3/iN30BKY+gYZH2SrIFWEZZXZqDS6bkZEmGZDLSmn6YUbYPjWshBrUbUOaVi+1Ru3sAxS0i5SvP4A7p9E1G6hhYeg6RLt2fRarSQVkQmBbYu0pY2mYpQWjCIEshCAqNLvV/DdVL8pEelXCWQa/RbNdKsR8mU+NGAfuyhhURJA9+UzOVdiqbF5kGDMInI2TEzgcPl1RVq5oBHB03aRoY+eICVSEIlMZkhLQrKZkK71WF9fR3XcTncP5xEzMfgV51xzB6TJFXTyPz45pwFz+P589h9UHoy9l/IeJ29d2eyVx+n7SCmGGs8/thJnDjIZ0wIplk2cXZ2Pz7+0LlhlA0Zn+FZ5/TxLIEQTK7J+EuPCFij76qGXZMRw34qhjlpH2HJobb9uDeH9ARikCKUGv5IibYNVBIjOn10K0FJA1Hyob+EqB+CMNBbbSjBYNYhCQwcO8K/GCC+cAXu7yL26qBtWJhD3FzHfOEKRBprYwHrdAkRdzCrM8Rbh0T798lfK2NU5siVPCxHQ69FfLyHubTCxYtzpFoThQntRp/t2/fp9zr0jBKdkzpO3sP2fLRtM2jEmH6GTBIsrTEtgTJNWtLCETGqE2KULFypsMwfH9A2vvKVr/xbP/yt3/qtrwBcuXQB5eXpmwaXF23eevU+G88+zeWL56hWy3iOjVQpL7/5Lse1Iz77hS9zeXUGR2a0Wh2O611K5QLH24eUKwIlPJLUxXEs1jdMssUl8jJgznHpByXq1Xn8jRWEmfDd77xDM86Yf3KF2bKD02uTL5q09mskR0M9a0Mkw2iZUrQHiu7mO7z27a/zxke3SXo91koFzn3maYxBRBw7HH3jVaKHLeyBQ1GWEMcCcyNH3BkujNIUCNNAaI1/9xEvP9zjdHeLzvERjueydOnyZKZ+QjH6y9n4IY6ziGFjIU2SpURJlyTeJ8hdIxWCIXYz0JhoaeJZku2ohwXEYcjRVp3d+we0+8d8+nNXqHoXMIxlNDYne3vsPzpg+ebfwhawvf9tktSk296l099FFJfIeYvc2d+hVFrCyC/SizJaJ3t4us1JV3HUCukLn2KQZz5foOAG7PZ65LxZKlkfrQSxdEhMhwyNY1pg2pRyPqY0UFmGoWPKM3lM7bN7cIifKyHSAbpzTBDDaTJH6prkjWEkW6shdcC2zcki+In99E2HCjJg/KwzBmJiKEgfa3QqkI4NpoRWE93oQGoifR9RziP1DKIhEHqoay7WA+SNOeTFJUTRhrZGPJNDXruICGwEIeK5G4gvfAYce3isLCQLm8StLmE/Q9e2sWSDtNcgThooF6ziMmmYke19iKxeQAkblMSyfZy8S3G5gL98kZ43y0mnQ7PTwSgsog0DFUMIGCgCzyBXGtZKqcCn5AgIJYN2jWZtl+OTQ77xZy8B8NzN65wqAy9vUXEzbr23w4VPP8OVS2vkCzlyjk2z2eStD27TaDd44ed+gUvLObJwQK3ZoTOIyAc+p3tHVOYEUVZEKZtC3mB5zUMsLxKIgEXH5rgwS3dpAWuxSpaFfO+779FRsPHcZfI6ws5CMiLefvl9ylme1EqwRYTUGc12l9v3t+ncf43Xv/7HvL29T1mllMsBzkKRtHHK6cMY+909xK6gkBRYKqywvngZaz3PnTe2sH2LoJjDch3MKMbaOeTVhweYOmOl4FMbDDjpDkhSRZJmZEpPuhWPOeGPqQmNormM/1LTuoQpAJLTbca87jOUijG/fwqCpnUNfOxY423HXPCx/OVZoCgNA9OYxgEnPQoYgSemoE/KIbddjGRWp07AGaCmh8c1jWH3hrM1F2PYKEc1CI7jcH7jPP/4f/3HOI5HlmVESUycnKJVD9+/TArECNAGSpijJpCwH/WxBYT9ATu3jjnY3UOYETeeeYKKt4GUyygt2PzoQwaxz+yFFzDJ2Nr9BpnO0zx5j1AkGLkFbKvMvYNdZitriNwijVqDuHOMoXrUuhkHrZC+yLNUKlIN8hiGzUmUELgVSoMGSjrEpksqDbQQWIaJNh0qeR+tBDpNsExNIR9gCY/N3T2KM/Mk7UPMXhsZCk6iGRLHRHcaXN64jOd6vPPO23z1j/8lJ6enJElCmiZDKphWQ+eAaVbocTA+nApqHF0f38PxPRdT503KaW+DCUcfJtsyng1ngPgUnJ+Zv/A4BWjUK2GYdZWTuTr+fDwJx71mODPvxqB+PHfG40+PP81IjDNjE3UlPT7f6ZyfrO1KI0bfwxASz/X4+S/9PIV8Ecu1MMxhcb2UBlJKDFtCyJCmZVsIAdlpDXVcxzIKiJkcZmkG253D6BqILB7WQNwsUvMNGo6BLDt4ysX4mRLyySuIpA3VPOK564jnbw4DTEhE2iVuN4i7IVEnQp1sorubpL0m2g0Z6Ix+YmJLm+jBa5yoGaS0sUwP2/VwCy7llRLu0mUaRomDw136mUR7M2ghyWJNTytsnZEv2Tg5E6REBD4lW5L1odPYpdU45sGjh7zyxjsAfOUrX/kt/l/sJ8ocaKfC+Wf/JsIw+N3//r/j2fVVnj0XMDAc+gOFiiGOFW++d0DvqM/anEfON+k1+xhGzJOXq3zntTbXP/80D956nYLU+D4MWmsUci6rgcJ88RzH2asZKgAAIABJREFUhwElqVgLHOgrfv//+JcUPnWFU0fSbdVAtfErNu+fxCzOHfGnf/xVjFRjezalyiwbF67y/ItPQvEyP9x5H91u0DNyHBpLzFtriKCPe/dDqlkbYyfF2U2xvEXQPbKVAkZmk52zYNEcNmfzAor/9X/Flbf/M1rREVb9FNWoP+ZVf2J/eRunPFMy4jgmSROENPFyT6GRZGQINLFW6NHiuBt2ydOkaFR485W3eXuzxiBX5MXPXmfWCxBiCLi6g12ifA3vahlP2ESqw/7WMX3RZ33ewFB93nnzj/jsF36TMFhgkBnQ7+P6YCz4PPrRA+bLZRbcJY7bPe4eNoiMgKfLFhsL59jrNPDLOfKtFnE3RCmfYi4jCktIO48yLJRTQuCg0y79JKS4UOVzz11ld/+QviGIdcT9vX0qlZTOVsLDlqZgwkxRUl0wEc7jkZ9P7KdrRsEkbaXoeBQttRk6ZyOqkbAMhGGAVoheApmJWF6CzIAEdKQQMkV/tELWbyGyPvIggIqBfC6HOlUIR8CDFLwM8cQceuNpyC+h9oE0RrsZ6nCTdH+Xbl2xe+8Wy4shq79cxioqsBaI40V6Hx2TBXXmXvg7JKni8IMd0n5IYbkMJRezUMXOwZqdMD+/QT81CNspHJ3iLxSIBppi0UFYkv3TkIdvHvHsjTIPDiKW1+YoFRdQSYPsnR9NL5C3wNO/+EvsvvEq3/rd3+fpS5d47nyediLp9TIMJI1myDsfHpI1e1xazmFbknrYo1yUmLkyP/qww80XnuHWyz/gxk0b0ddE9hx522Y1r7F+7jzbmy6rOZOrlsPRowO+/bU/xX/mCQaeQfPRI56Yteg7BttxiH9hhz/41z+gGPjYnsXC0jql2RkSccwH9fc5PV+CTodHTc3d799h0Gvy/Lkqn1lfRjyM8HodPF3CirqI7hF6ociz/mW+9c3v4/xtG/fSAubqeSr/5X/BU6/+59SjHRxT4CKwpMASYsiF10MAorRmyrI4E8XUAqVHyiwTgD00MaKMjClK4+JKpfUZgD1WahmPe1YXfhpcgdH+aryNHgF2OaKTMHU4JtkCY0htkqOeDSojHSnjTLMAIEd0J8O0hkBoHL3mTOR4FGUeq8/oUYh43CHZMIZOiB8ELC+tYJomURzR6XbIVIrjFvH8ZTSSlAyJZqAUhjBIdEon7JGjS0lW+N63XuLNWsL8+WWuXrhKxfUYPrSaZvcerKT4Th5HmERJl53NQ2JbcXPNYmf/Ix6dnvLE03+XMFignwiSqEtxzqYZQn2vzUKlxIK7yL3dHd4ozPP0kslS4KGNBbabNa4tVijXavQ7Ebay8F1JrPJIJwemg/YqiLBDloWkRkppfpaf+fQ1tnYOSKtLtE4GHOwfY4g2BdumXigStxTvvvUSP3j123x06yMGgz4qy0ZUreH7bzIRBKPi7ynd7KxprYe0Maag/rGMwmT+nBnjsWj/1Ak4C8LHPQ8QZ6hJ4wj9KJUwcVwmHbanNQHSHNabKKWYHmn8MAzpQFKOaZ1DRyfLMgxpfGxOGyNHaJwzmdLbxt9/XPsyLtgXE2dX8pv/8Df5n//Hf8z6xjrCFAhz2PRQZAKUxPCs4YmlCh1pXCcPNxYgFOhEo/oZmR+idpbJBm20bJG9F2Bey1FcdSmaZYRnkH0YoQsp8vnzCDNDm7MkDxOEBqMA2aNbJCcN6vs9au0d5ud7rP7qOkZOgblB68iludvmNNcid/OX+ee//dtcX32ei596ivzqDFlg4VUWMXMm6yJlpnKFbl+TdvuoWgOz5GIkBjOLAaHSPLzXoLHV4vq1Eg93Qy5dPUcht0K3scvt3U1+nP1EmYNczqBxEtJrmXzhl59nY+4uP3r1lMW1dUrlgCSNuL+5y9vf/RrrT3+JL75wg5znkCTQ7KYcHje5uVFip9OledghdT2ko3BpMuiVCHoGhpEwSNpISxMmggf7PS5cDTg4yfj1L6/y4qxg2cnoDbps3n2dv/GzJaxLNkdH9zg82qR+sklYu0uh06S8csDzz/wsX/jZX+Lac88QZRF/9Af/iieefJr8xhWshoHVMjCaKTTbyLgPzQKi6CASibQEoiAni+tCLYd/eZZP/fq/z6Uv/uwociQ+yRz8lU0QRiFaSVpxCoaB4zooIWlrjcmY+2qQIBlohScNPJnnpa99n3dqPby18zx5ZZ1Zu8dCeQFEihIRnfZDBlmGnb9I1Z0nznr83r/5I9bWljBosr33kO3jkMtPrPLU/Ge4v3cH0/WxvQIxkmZ8zN53X2LmiYssOYKTxOQ4gryrWC3nKJs239l3kM4MOc8jsCV5v4St+viWh6FTbFOQYdGNDXwZkfMNcsUitdMTLNemXCjgtPqo3ALLsyaPtvo02j28ABaWvDOdL/8/vk3/vzaNsAXCFcNArgRhjegiUoACWgryFhgutDN0M0Ifn6Jrh+Cb9D/YItWHyGAR4+lF5LUCINBbGkINKkZ4CWImB7kFkm2JLJqoW/sIdYxxYR57/RKuyGPs3EcYx5RfuIB58WcRM1cw8lWcc+fwl9dJ2k2sQoBXLJOojP2tR7R3jqipRSBCWhau42EZDnEqsfIOURzTjTXNB3vsf7DF8aN9rLTB6e0jLl+o0Do6Yne3RahdSksV/sn/9n8CkC8Idh8MCHJVPvuFyyyVHvHKD4+4dPMm+cCk0ely+6OP2Hz/ddZvvMiXv3gDx5D0IzhpDOj3B1xZybPT6VLfbaJLRWyzh0wjol6A3zUQRkyzX6OXhhw2YjqpZvVyjoPjlP/kVzZ43ot5/fvf5vsv/xkq2uHXfmWd5GLM3qMPODx8xMne2/S3XmWut8Ov/Iefx8gM4iymtJgn0ia1w4zwNKElC1zOXcbtupidFNnvIeMI0czDrMfGuXX8pQDhSqQxVD6bPfTYOn6H37t7l73BAMOQKKAXJxNF3LPg+/FY7JS28fi7YZoRGMfuxw7CmKYx7scxjr9qmFAMJ+BtNKYhJcZjkqHTvgRiVF8wjs5OgD/TJmwfN8MwhseXQ1qPaVmjY09jvmIC0KaBscc47OKMAzT6rqZpMTMzwwsvvsh3/vwlrEKZcrmM5/skSDporPF6Lw1CIEXjGRYOAX/+h3/OO6Fi7cZ11pdLzHqKarE6XO8JadQ/IrFnCIINClaRXtzmd777hzxz/Um6rQc82DmgG0s2zi9zde5TfLD5LsXiHMIOGOiYRnOf41dfo/zkJc6ZGbcHLrFWFF3BcjGgYJp8dcuhUp7FtwxyroPv+rhqgGd5iCzGsUzC1CJRAlfG2KaiVK2ws7VJP0txM0VROhjFOWr7W+wfCV55/S7f/+G3uffgbaKoP5xjWUYSx2R6yrUf/wwlbafUnikpZ1wsLycZn0lDstG9mKx4+qw07XCbscTpuNh8DKjHTsHZl9DQQZjS5IZsIzHZTn5se/RUnnQ0+OQYk3odpqpJUowUunic1gYjhTmtJ521x8/KWUqTlBJDGhMnwTCHuCLTGT//C3+D6nIVyzeHa70Uw/U/G637IcOfnA22C7WE9LSP2tuh8egRRw92MA5aDE4eYlYvYP/iOXLXZgnMHByCjAESYqONrlbI0jKdhxGb9x9QrkcgDzGeeQK7uooTg3n4CDhi9hevY13+VTJnAaO6QHDpEoW1J7CylIufe571p57mcH+Hndu36Rx12Q8rtDtHbO4eYJkOmTKJFAjXQKE57SUcvn6Le6/dY//2Q/rHu/S2mjx1dZ7DzW0ebnfwyjO0oz7/6mtfB/6amYNf+3evs37pKvd2XA57Hbbjp3n5/ROu/FJC2ZR0jk758Hs/YqBg/dkbSMtCK0WUDhBGxNpSgXovxI0EF64/QSdM6CqBaQXMOwPknM3Rccy5+RJJllFrRFRcDXNr/PoTPjuvvYZcLRPpDo9at2hfSvjdf/oGv/4fzPPUr0lqDZe9vYzde3V+8PJ3+NMfZPytv3mPxavP4swssfzEIn9n9e9iGyUM2yZzAOGCtiBR6DSFJoiaRAQC3VRkVoq5bKIlzPx7n6LoPovpOo81DvnE/io2jC0EXgAIMnMYJTClQCFwNIgRY3ZYdCiwEaSZ4ne++iq9vVs4a1dIVUa73sB7ahHXkNR1iq9dOqlLjEPZWkJpwe7pA2onbVyjB6pDGHYxhWDQe4n77uepBEX2woiikWPen2U7sDiNQlbaJ2ypc0RZH0u1OW4XMPUBs3bML51fYi8VPAoh6kJUH/D5XJ+y4WKZJoYQ5CwTAptOXCTudPEcm5vXr3P33m0O9nZYebpK1nmLj94TrK9cYP3yMvNL/mj9PBvxmQKRT+yvaWcvoWSYJdCjCJtiSDXSozewyVCJop9Bs406ajI4PiYWGaKcxwlDOq5BV0Z49beYaWny/RxIE3nZQO+k6HBIT+zfV8SHGYWf8Yje3cW4UEBaEjwf4fhw2aP+tQc0dUhlzyA/ozByBhg20jQRvonhr4BQmIagGgTMXFgl6Q34/te/i3v10+hZl12V0okVdpZSr7VQ4QkkfSyd0Itb9Ho9zq/M45ctdh58RKk/YDHnIPMhp3F/cmn+07//WXZq52h2MzZ7KXfCa7zy7iFfQuOZBnsf3uPBWx+SWjbnn70+AR1h0iMfQMnwafQivEjw5PPXqXciGtpCmBYVL0SXTXZ2ehTcDNPOMxCavikwKxv8R9dcHnzr+2w8u4676jM3V0SVHf6X/+kb/IO/V+Dn/kHA3onJ5oM+R3f6PHxwxKP/4Y/5pS+vsPjFK7j5BVoteLf6iK/9zjdZO+7wwo0FPHsVEduQaOiLyXpv5UySw4xMgJwXKAl7N2x+/59t0owThBBkWpNkahTxV9NnccjlGAGpqdTnhDxxBrhMnIIRgBr3FpgCmyltaBwBngDx0f4TbvXouELrYY2BGEpIjhUJdTbuXTCigIyjxRP1oeEaO4zMGmfOb3jcLM2GlM+RqtEwkjs6T2OokjPusjuWNB1HefWIYjKmn8RxxNbWFv/ot/8RcZrymRc+T+B6GGJ4XGeUkVBoMsAQEomg0e7z1T95m/7hHYIrz9NpNgnzJdzSLLaUNHRGDp9GamM7c9hWlThL2T99ROOkS8HrcVrrkCU9hDyg03+VjvNpFgsz3O+0uFReJufPoFyDWhRxrnXCg/4iHk0S12PHscmSfYrGgF+7vM7dKOVkIInqGkcNeCbXo2i42KZBhkXBlXSlRysWyEGLYiHPZ559ltfe/BGGazHjSNrH3+dBU6D797j17sscHN2n2+uQxAOkAMc0kJ7LIApJsww1kh4dU8Ue4/ozfTmIMe1LqSlIZ5jVMU2TJE0m9+PjkrRSyFH932hKK0U2IZSNHIgxUH/shTT9fGyTmpTxZiN+/2SLyXMz4RtN9p0+OY/LA4/n5HTx1hOHZKrUJUdZjDFyGD4rWZbR6XZJkgQv8DAti6HYxOgZGpW5oABfgCXRvRQaLaKHB7QebdImQTkuVs6lYUYc9g5Z3n6J5aiM1fPBNpFPWKjdlPZuh/xNn95rGpETeBse8y2H7XadteIMhukiVwTpUsZp+wGNXovcOy3ydgNplUA6CEOSmAJRqjDvWKBNri18id1Hm7z3yps0v/mHXPrcz1FeXuGjfUmt0SRs90jCAVZaI2nX2bl9F88wmasWma8U6MV93nnpkDVDYJc8mOnRbZzy4+wncg6KJZ/1S2AVOwyOBduHNhvPXCF1JI1ej/3TBltHNRzLYq1iYOuMdj8hQ5IL8mg0+3v7nF8pc2t3l4KRkLM9DCHpWCn2SZ0Z38ZxDDr1Lr1uC98TLC3OEXcybt/bJi3azF1YomRmvP1nf0hVmtw7rjHrDcj7fTbWNX41T7ha4Yd//DYvv/GQpYbL/Pk+C+fWWV66iFYWg3oDZToI38IIbNAJxF0It6BdgI6B1hIdSlRBIPICaRuYgQ+GZKxV9wnx469mgiH+kkKSZOmoPfxQljAD4lGDIVNoMgGDTLNf7/G9b3zI/vHLzJ0rM1OWSDPG92wqfp6Olmgc4vQEQyoCo0Bg5+nrjHb0kNniACWOsYMBTl6w/3DA3XsHPFet0QlK6MMHRDqhX13HLF5iEP0LRFZjbu4SbkfSi1uc1GDv1OLFVZeCm7FqGcSGTduy2RxovtlKudyKeHIhwzUVhrTJWxZ2pummJhEmwjGZm5vFCNu0ThoseyZX19bJ5VzKBRvPGz6OZzmU45cBfEJj+6nbKB0+bFGqIdHojCGADFN0u4vau0vSiTnoOdhBGbvgIWyDsDOg+OVlWn/+gAMxwIz7BFGILLjDAs+yRJoOOlZYMwqjoNE1jVmqIBcdhPTBMtH9AbrZxMhryBVI8lXiyMSyBNI20TEIRw5roEbNbYQlQDhYrsPTX/o0b795TLzXxChXyFVLlAOBmVnk/QXSsE0h52FZJjpTWFJiZIrG7j5Wv0+WhJBGmINpx8yZao5gKeTkOKN7pDnqu1x8bomejonaCVtHNQ5qbWwpOFeWSJXRGMRYtoNp2fQHIcfHNTbWirz9YJMFW5PFKVlo0vRD3NOYxbKF51bZP2qRJBGlvMvswgxxJ+XdD+5iXZwjf/E67hZsffgWvtHjeKBB9VgoK+xrklzF4aQiuPfyKa+8qfFmBYXFFq2u5MHuMbErcByfyPTI3DyGctBRjCZBDLbQjTJUJHQVaaZQtsYqGKxe3KAjBf0RwFZaE2fZlNc/nUBnptKYCz6KoDN1BhRT8KX0kBM95u2PlYrGfO8xsMvOrAFTm/K4ldbDIsqzjsqYhTLi/istJ9QlxopEI0rJWA51cl5KTfaDM02rRmBywncf/W7cMO3xx2l0fZQmE2rkBGniOKHT7fIf//2/RzGfHzoeDIvKI6XRmcIUkAnoJBn3H5zy+su3OKm9ycJahWoBsiyk6EnyTjBc77VDmB7imBY5u4BtuPTTNp34IQuliDA7pDCTku0pDo+7zDw64OZMjVZuFr39Ln0vALuEzK0wiL4D6oRzK1c5PeqQDE7ZPR5wUDP5/LLDXCHjsivJbI+TCHb6Cd+op1yqD7i+YmGgsQyHgimxlaSrXUJloP0C60tz1A+OGHRazOcNvNwSKIuXXj1AJ11c28QyPKKwR6YUhgTLNIbJSwlZJkiVQilG1J1RhmhUZDy2cZGtOlN/MFY9EqN5My06/ou06LPF5OOkwSgqNQTio4Ld4X7T6L8xcgQnqGiUPBgDekMak//r0eBn5Uofqxf42Jx/rHh/4tSO6h7OZAvG03/iQowcZiEEKktRyiKOI9IkHarQaRAZ6ERDptGxgl5MenxE/96H9I/aPGrkyFVL9FVK1kuh3yd0j7F9zb1OnXy9ibVQwvB8hDCQFUlQKiFjiXeJISU1kgQrSwgvJiu4w2tVb6PaTbQZEinBu+/dYclapbiyTr48g+nY9FREqVLEtAwyDbbhsLh+Htv3aB3W+JOv30Pn8nRKJU5bDXrNUyygXd8iOtqmUd/HsSTtaJ4wm8Po9FifXcSwICcLWHUT0enx4+wncg6EhFJJgRmzPxAUrBaFxVlOH96n47gcHtcITRMvX6BoQ6xS0pGMlBBDColtmSS2wvUNZJwhbRPLMYjDHr6TIxaSQQQCie/bmJbJQt5jNxrQbBzSOPKYX5+lWl0mqoU0cykffKR5/lrATCmlECS4JZNkJibuPkO71qTTbyMPjjGtIudWLBAaw3GQT66j6YKXIhoK3c6DmaE7fUTPhKKLLBpDekGsELYFUowemGka9RP7K9oo3Z2psfoFJFoTKehlCq0yHCE46EY82Dniznt3+ejdj6guNigtPoUchBiOxHd9PNMm1hqJQRr2EMLHsUqY0qCRheydfkCQTyA9HnIaTYhQ7O+2UOkRpn0BFQ/IhMAQMUG+ivYMGs0a588p2r2QLAkpKBdhFrl1NKDbPeDi3CxzgUfJNrCd4WLeH6QchoqyjPEthe1ofJWgTRslTXpoZKGCXQnpHtwn0ZKqr3FyEjVoE3cUWA4HW9usXr5Ap1HDzxcIwwFZllGpzp3pg/DJ/PtrmSGGxaKxGsqaCoac01Ch6iHpaZ24foBu10nzFaz5MobIYdo2hqvJzBRnwaevPYRlUjuqobcfsXTjAjKMwA0gL6EOhisxbNC7KbKUQzgKbVgkxz3inT26W/eJZ0qs3LyElnm2TyR5LZmtmhgmqASkMVwbGb+YpQZpsbCxRvEw5d6H93CzPtUZSbVYoVLI43smWRKQCzxc10EIQRIn6CzFDxzSwYBBq4nOYqKeNbk0SqTMzUYIHZO2EgpWTGlxlq3338ewbE7bLRLLwjUDijaEWUqaaUzTGsoPApZlkNgaPzCQKsOUNqkBab+DHxQJhYEQDr4bIoUgyPvM5Tz2wh4nR9scbd9n7ZlrtBsL3G1GWHnF7bs9qk9pCm6CmzMI8ibVvEMyEOjIoNNu0AtDjluKRjvjiacu0XpY40f1E54LlpgtBbhZMOQRS4VudVANTc1scxo1IBRceHKdb/7pt8nQZGLUDVkpsgnoYgKyh/YXVV7G6i5jG/OwxxmqabMn8TiomdBFHqcj8dj20yjqWc718PMze40cjbHiy1lpzMezGdPPhT4TCT4DIMcAbXx+4zqJoQTzSOZ1dEYTh2e0zzjync/neer6ddRIragfJ3STDGVagMKTkvuNPnfvbnL3vXvsPHhAdbFNeeVT6EYdu1jGdzxswyLVarTetzHMMo4ZoKWgkfQ4qH9EvqhQ4R4YEamp6cYJR/tN9DNHWM4lkn4HlbRxvFnc3AzKFdTrJ1xcNzjYbyGJcWyHUAd8cBjR7+9ydXkZxzHwbYljm2xJQTdM2WolzFoDfFdjSpNAZwjLJZMGDcCZWyGqDTjZ3UZaiurcDNt7u5wPJKpnIpyAIPB4uH2fpfky+6cNVpZn6XZ6nDaaRHGCShSZHjoIUj4uJwojBw7BGKKfLdRVZxrVTWbMJHI/nQdn59WZ5DVnPNdJBms8Y8dTZUzvOUt3mh7nTGH92IEesy+EmBx1nBWbQqwpbUifOcezCl4fL5LWSo8Cj9Ms27i4+5vf+haO5XDh/EXESJ2LVENfkR52GOzvMjjcIWk06CiHtGwjcyV8kaHUgIEbUqsdM+OWsB3No3dvkxUk1UvLiEhgeHmsgovazzAXBAwUqgZWtUgQxGgpGTxqEN6/Q/PRQwaBz+ylC3R1jncfwgU34nxBUbBNzNhGSpPBIEJJsG0LN/BZXl9jZn6eyq0er/35a0TFAq2kS6d9ggp7dPtNRK9Bv3+MEJpB0qbePMJOU9q9JudmK8zLkNO4ycP79//CPPq4/UTOQUqCbaaUc4J2RVGa79JubfPg3jZ+qUjP8PAqRbQcEPcTIpXhmDZSaeJEoVEszs5w0DmlXCrQ7ob0hYXhSNxWH3tmhnYo0VriuQGO4xIqSd4ycQNIB3Xa+wLVXKW8too3v0Tj4D4P72qevhBgmSY5J8aTTTI7ZuFXfpV7t++RtiqopADZqKpepXilAuppnzR3iiq1YU+jjzx0koAKYSAxCybGhge2gH6GKHtnlutPQNlPywQCgyGbI8sUvSihryHVKbVen3e2arz51h2233mb2cWU0so5ksyjt7dJZX6JvFdCIpAMOwzHcYySRbRZJNMZzbTDva1b2AWFpdtEAwi1wikatBs9jlo7VCqraMNBa4Wl2hQ8C2thhlqtw1yvSaIBocljUCn4fHDUoNMdAB7nZhQzeYNLXp413+N+DL1miJmGaGJClRJk4GkNlkEsIHJy6NIiXrXN/sEuaXSfIOpwshNhuC6Z6/PhG2/zmXjA6f425cUlev0uaMX6xSv4uYBCocR0wT/z4v8ks/ATmzSHXUVVmKF7GcKXZPUuuhESH3WIaifE0QlGbh6xtM581SOpRTCIMLMM5WZkcYSYXyZ3PKBzdExmP6RyroLMBGbOQAYOGBrGnXNzEpGTaGKyQUL7/i6tW7fo9x6hy1XOv/g5BjWLetsh7Bl4RUngjKJcMOWAy1FkWhhIQ3L55gb3PnoDmcUU3SVKBQvPtUagzsUw5KSOxfEc0DZeEJDGMWGnRJbGRKfTNHOYdfBMSc7P8Mt90n6bTu0hH37wkJlz86RK4pSLGNmAZJAQZimOZZJmikwlmIZgtlzkqF1jbm6G01oXL5fDUZB1B1hzc9R6AlMKyoUi/STDsk3yloGTg7hzRGPrLlevXaZamsWZWaBT3+HB7ZQXnsphW5qcnVH0MuYCB8su0at73H2rRf24Sb2WkWYeG2trfO/ONl/fuwXLPp9a8VkK5jAHeXScIOIuST3mlrjFZrxP0MwRBA7/+z/9J6RJjEKQMQS+Wg9BR6bUEERLRpztEViZBDpG0Y4xeBqHMvXjwE1MgPtUJWYCws+CLphmBaRAMm7Edna8x5//s9KV4wHGxxidzSRLoCefPz6GOksVGoMvpoBTa42wrGGDPcbgcAhUx3UZ494O4+3v379Pkg37uGA5CD+HzOWQBhz3evzw1hHv/vBNOsePqM5DYWmFKLYZbN5h7eYinpNDDlnqSKWJoghlLoH0iHXCadTg4c4dvBkwkzqdCJSlkY6m2ehw1NyhWtlASR+RDnAJyQcOxmyJ0+M2K4MmqRHhapuCkOQ9m9undfq9CNssslQ2KAYuVwOPDd/jXiI4PWjhi5QsjrBFjKvAUynCydHTgkFQJSu26MtD7m0+IosG3HrrQ1Zcg67voL0c89UKneYB184vk2i4fPEcp7UGoGh3etRbnRGwHtZ8SCFGDevEKFggJ3x8GEfThwXIw19Ncs/D34/ul5j+6jGncdJsjWmGQDyWNRp1z9DizNQeK2Z97F0kGNLdzjioj9HtxntMMhvDcz9b9A7DALVgrFb0MTlVzjjOmkk3cKUVQgmUyviDf/EH5Dwf84uC2XyVZq9J1QhQJwN6m6d0Dx+RJF3suXPI+SWWvBSzKbAlYFq0fIvDXQPOnacy0OzcvoW/4OPmbVRp98tQAAAgAElEQVSi8UoK28uhDYVU5lD1LieRvo3MUtIw5fSN2zRvv06ruUNWrrLwxc/T2be5dzpHM3HpJOBJiecFICAcRCg5XHNsx8QyTZzA57mfv8a/+ervcXwY0RMp3bBJq3aAtBxynkMc91Eqo9vrcHi0j+847NUOaaeXOO35DPptbm1t8ePsJ3IOQj0gZUDec7h8YY4OIS/9X48Ie5LL0qIwX6JSsWmc7nH37i4XLizgmg5JKsiEgWE5eJakVG+DMU+qh2lcGWeY+QJ3GgPWC3mEbyIxIEmxUoFrCNKoRavdwj0VZO0BRb9E8Znnad4/oI/mo0easu9RXLawrSZaK7r6Lc49sULJ/jKmWiHNhguxabogBIZnIa/MoWYLJHe6qKIx1D0PayAaQ/1pw4ckRVicybN9Yj8NGxfx2eYoWqmhn8Uc9/rEpsFBb8Abb77F5p1duq0Os5dnOf+la8wY5/jeP/8jqqLJ8uocy3P+hDsrlCAmJrNtMsshUiHdcJMHD2q8+KUAO1DESYYwNX7JoFdPuHfvNn7xRbzCLGncpdHtUMiVCDbWsTZPOTzeYmnpCtqv8HBvwExywLVlh7aY4bt3O5S2T/nUqslTC4tYbo5LlkVjxiWJTVrtNvV6m/ViFfPeXXKXLjKXc8lJSbHsMXdtkd///vd4t9tF12tE3S7NMKaZarAkP3zpOwQ5F7yAYrVEeabEBx98yMaFyzz/+Z/Bsiwse1oD84mD8Jc3aRngadJaH1nwGbz5iLheYyBA5woUN27gzhYx8haqFuMUMrTVJ9yt0zgKya3OcuPfucLdf71JtRaTizJqb+2ig1lmvD3McAbDsUBYIE1ESYAPWSQYPKyzd+ddjvbvY5U81mdmkNUNCksuN9qak5pi/yClWhKUqgZSDV+UWmiQoLQctmAAAs9ASMXc/AwXLq7gee6E3pKk6YQGAI/PD9OxyTkVtNbUz9CKGuERcZpRKZYw7Crvy5Qf/d93SSOXz86UKeXKNMKYk8Mmd+7s8OST55CGBKVJhYFp2nimplRvgbVCQISMFZZtkRYK3G302SjkIWdCBjpWSAWuAVnYptvrE7b6DE6ayEqR/NVP0f+TBh2hePsOzNxwWKim2Lbm/2HvzWMsy+77vs85d3v37Uvt1VXV3dX7TPdsHG4aDkc0LQkiRVoULcmBk8CQ4SB2EsR/5Y8kMAwngRE7guUISAJbihBDcUAtjEhRG8V9hsOZ6Z6e6Z7prbq6q2vf6+3vrufkj/vue696RImEpCQS5gdUV82bd9dz7rm/5fv9/mxTcOqkQ2tqgu98e4PNuk/Lk3TaPl9feYUgjLjbeUije4g/7vLiyRkKoUD3bOLePrpxxGt3vgozeZ6cvsI7776FJSVBEBBH0QBPPyq7mFZvUv351A1Xg8xniu9J7mdCCk4+GA0GRh06reWQGzBw1kbhGP2ffuZ2oIQ0kq3VSveJqSNOP2LgLCXNrFQ/oSswDDGoggyrCKofBKgBl2QU2pF2TU6rEik8aVg9EIMKhiZR2en1elx94w12dnapN5v4XsBHX/oEL33q0/Q8nxaC7732PVZubRHrgLErJ1l49hxFJvjav/8tTuU7fKD6UWpFB0GSCTY0+AToTI7IMAmiOo3WIx6uHPKxT+QwMjFRJ8B0wcpDc7/LvXu3yH3ok+Srk7Rjhe11yTkW7sI85soea1t3uDD7FI+2NcvbDSbHNM+dzlNXk/z61S0uT0c8O1fkZKUGhs2lbJ79E2XCrsdW/RARa6YsF/HwPuWLF5hxJIaOyM5XqKoTfGP5Lo9ev4nTanHY7RKFirbfoNlqMJ4r0Kh3mJ2aQRiCaq2MbTsc7B3QbC8lIIYoRmuB6MvEDqRE0Qk/YcTpHgQCgyZ2aQA4dOAT1UCVqFuNQowYZuZTgjIMOyAPyO6D4FYNfjOy3WiwK6TE6AcQOq1GkCpxJc/GIDgZPjr9ruTH62l65Hf63ku7Sg+ChvTZ0pogELRbLf7tr/0KK7fv89MvfYqXX3uVz1QuE+/s0bJscnPTVM9fIDdTwSw6eKsNGoUtaHtEWz60FVee+iiZxRorv7HFhdkZjIOA7e+tE+gMBXOLykcWEYaB1cthZh1kSSIcTdBStG9vsvzWtznY3yRXzHDyxAlU7QzK9fncBxbY2pcc7HXxu03mTpcRoSKXydPzfVr1LooI17UplkvoqIsfeuztLNMI23hxSBT56K5GxzVCP0QSo3WiRub7HZpCoqKIW5ZAq4hGq82fZT+QWtHnPvdZLpw/iZQdpNScqLpQPUO9YRIGEWHoIzXYUnFvY5NnLp8l7yaOX6QgFpK1TodKaZoH69sUnZhixsLrgBWZlPIWRyIpn9sGSEvSFZLTZYfbS6/w2nfexY41Z0/OcerMae5uNjncizCKNreWDpmq2pw76WLZEZahcAwTtIElZzGNcWy7iGlYSGkM8G5CCmTexljIY561MGYNnBcnsZ6sEDe38K6+TXwUYZ8/kWyTZv/et78wGzos/Qdfafb26vzRN6+yevUtmuvbZEybyclJvI1DxFSOjaUVlDS5eHaRp88sYAtoxz46ahMCOadIxnToRk1WN1/ju9de40c+UqO31yEQIUYRTEPT2AnJFzrMz32U+mELPEHeHKMjTWgfcO/6EkUbXEdgFvOYtXl2H24zr3uM6UcUpwUHRo43VkzevLFOFEPFMQgMSYjAEiZF6bLfBGeyRuNeDxEaSNvCyDjYmSLPPTnFzbeWmck5ZI2IUPu04oAoiOj0fBodj3r9EN/robUiUopvfu2rfPUrv8P68l3GJiYpV8eGZV8heD84+CFMgDAlRsVFOibOxSnCagG3Oka5NkZm3EV0PUQhg95vErdaRD0PbZtkT81SeGIBWclSPFVCFDRdDLqqyuF6i6O7X2H99gqIGJ0x8cKY9p0twhubrH/nBjt6j7jrYTkF7PNnWfz8Z5GGprUNcSyxMga5kkmmaNBtxsS9GCtrYNgiadomkmaNGrANSb6Qp1qrksk4uNnMgOBqSCNRgiFNYo/UQEfmTKPR4Jf+9b8G4BOfvEy1GGNZioxtMFN2kFNXWHvkUz/cIwpDhFL4XpcHO7u88MHLZCwjWesReAq2PY9KeYbbSyvM1ywIwW8r7NigUsqwL0D7CrRPICVWNsNUFu4svcK3v/4uYxmbZ65cwilVWT8IaDcFsmjz5o09PnJlksmxDI6VkDgzVhbDyHKwE7K23mJ7o8HB9iFbW7u02h3CKCRE8b3l61zduYFckAQlj//6N/85S607fPL0FC/MLtLYbfOLv/G/s3d4SLsP5VP9ikAi8Th0oqGP71ZDRZnhpBpOMZ1+py8vmjpzKZl3IL/Y30im+9fDMUr3o7QachL6GXlEqi7TP15/nONYEUfJ+Vum2VeCGSEWS4llmQMFmmNNr0Q/C9y/FDXSeCsNMlKnUaXnwZBDYRipHGtyVVEc0+t12d7eptFs0Wq3OGw1WdnaZWXzgDtLW6x89yqt7UMyuRwSg8bWAcaUy9a9FZSd4ePPPcXCeBV0TCfy0FGHSEDJqSKloNHZ5OHaNd66fYMXPzrOwcoRFARGFrSK6Rx65PMdFhd/jK2NTXIUMYwSntbQrnP3zftMFCwUPezaJGa2RmvzkHntUYmXEDOa++0Sby0H3F3eR2mDiiPpSkGj55E3HUzlsHngse35iA0Dx8rg5F18BY7j8OFnTnHv9jpTRoRNl06/uhxHEV0vpNELaLeboBRBEBJEEdIwWZiq8czpKXYOW8RKY1kGlmkQxmqYtddJAGoYEsMwMaQcQIWESLkj8hh8Tcdp/+x0WjwW7CqVZN/7y0ZaARqZ3MM/+7+llMcUkpI5NexPkCYq9MhGaSLjmOm0OppC1+Sx/Q0D9REORfosDeZtcr4qTrhDURRy9+ESX/r67/P23Zt8c+kNDLfGEy98iLlnFilOFbCUxqrkUJuH+Hu7+O0uXTR+OUs4U+B7b7/J8z/9QXbXH7G5ozjYtWmvNwk2vsqjN5ZZvXWbZhzTPmjRu71NdGuXB195nd/90q9TNYv4Th7z8iXmf/bTxHGIq6axMi521iBfs7Czkvqeh+7FuFUb2zUxTMnS/ft8+zsvc/r0Kb74G7/BrXceEMQBfuTR9dtEYYCUEARJ4JB2kY7jhEvkBSH1douu56NFwu9sd3rA91cr+oGCg5/9+b/F3GKZRqdJ1HiCpYctzk76TE6fYXuvxd7mHhUR4sqQo9jgYVBlfqJM0VV0vRb1RsDZ8SxH9QPGJyqE0qIbgWlbWGNlzFhQrbg4ro1Q4KI5VXOwJXzhD3+b/a02UzNnOHfxIrOzJRqHy6huCzvr4rcPseyIXN5htjaGEHmEKGLLDBITdITQEmmUh5P0MROmRBZtdBQm7ahrVcz5WYypEoabSWfk971P79uf36QQuI7DeDHLa9/+LkYQUXRtnr98hp964TneuXqNRzc26O3scerpMzz95FnmquP4GEQqRiiBjqFtZPGlQbe3x7eWf5fdB/v8zSfz7LQDIlPhGYrlTkgm0nh7Nvm5KkZs46hkvtky5jCwaW9vk6nm6IRdJJqzk3O0gwXqtkuc8RjH40rO5MmaSz32WG4ecevNLZr7PnthRD3qEncb1IipZjS99Q2at3cI6wpp55B5C+nUGCPHiVKJU6fnee7yeT725Fnmqnmefv45ilJiE2PbCS6319pHODZRrDg82ufmW6/zzvWrNBoNzl64BLxfOfhzmRA4JRfTFAgjRhYclDIIXt/Hv3cDv7EP5SKZS2fJnKyCI+i9c4ivQ5zJMsXT02RLBvuvv0717BwtWWTj9h3qy7do79znzu1bXL9/F1QDpxdiTM1Seu5ppq9cYuPmAdGOT2Y6h2mbRFoQRiBijbQFmaIk8BjRsIcR6C7VWoVSpYTjOO9RJHn8Gv8kqzca/NIv/RIAL/2NS5SnM6wub/PdP7rN8soRTy9oapNX+MbLb9PZ3KYUe5RyJlserKppnjldQ4guzVaH0I85Wc1Qrx8wMzPBkaeJkTj5HHaliAg0tVoWO+MQdX2yhEy4Goni3//Bb9DY9llYvMyVp5+gVBT0Wuv0mgf4UkP3iHzRpFLMUc1XkLKIlCUc6XLu3Ic5d+Ycgae4e2cN308IiAJwHQcVxzSbDe4s3+UPXvsqP/KBZ7i3s8rS7g5vPVrmzQfvsrS1QRTHBGGA0vHQWYYBhnlgfQcmddgHWOr0ViMwzYQUiuhXEIQ8hrlOg7ZBk6r+fkd2MoAUDRJbDKEZaaUhVTcSA8hJshYYxjAhJuUolKmfQdaQCDCNOmLDAEdrko7FfacxlSlFgGkaA6dzOL1G59fwOElFw0h072NFp1lnd+0he48ekpUuQbMDccTGvXfYvHuLXr3FwYM6/v4BT3z8KZ6/cJZitkCg+/0Z/BC0SdMqoFGs1+9ydeVbNDbr/PiVPPcPetg5xU4Us9OLsUNFb1dTPjON0c3iCAtTRGgd0ghNmpubOFWHRqfFdLnKVOkE7WiW9VAgch5nZMgLEyVmCiZ15bF8cMCb31tlf6PNvqXpBV1Mv0uVCDuok2l3qb+9jVZZ3GIB6WbYPQg5N77AbKGIFTa4PFXk2dMznDt9ghMz41QMA0MFCCmwTHAzJqbrEkQRvdDn5PwEZxamMaTJzkEjQeCLkUqCSOaQaZpIwxjMNcuysG0b0zQHVbCk90C/uZiRON9DwrIajF86puk8S8a8f9wRSVTRn/9G/xwS2Fo6gRPJUvRjiQn6863/PMT9qtRgSzncd7KNHFa1GFYO+nWH/tLW5xukAZDWIPo8B6GJVUwYRYRRQGQouk7Icx+8wuSpacyCi/IF/qu7hHfepL62jjy9QOn5S4w/fRKnkOGEV8MzY+RcjdqTMxQLMf7yHSJp0LDHCY62iDdvs3fvHW7fus31t26gOjtM56vslKbxzsyiKjU6KxFu16Z6fgw36xAJE7TEQGJlBKHsEPQktmFgGAbj42OcWTzF7s4Ov/jf/wsebD6g6Xfxwh5R5KPiqF8VjPvPqk44lirhq6TrjOjfvyAM8fwQ+HNKmWbMKaq5H0W5HsoX2PlTLN27gVsa54WPTdE8OOJoc42O52G/vYR6sEF9sUbRLCEA0+rhC4tyrcCdlUPImDhFG0OH+M27mIXTWCImY2i00SNDSFZ1Odx+k/q9Pc6emqeWzyEJicKIamaC2mKR/d0HZHHY323ycN3k6dOL2MYhCIkgh8YkES4P0ToaWcRGJ2n6D+BYyQJpGhiOfXyRft/+ciypnScvMgGObfH3fu7TaJVkoHJZF9d1+Hs//3n+m3/+v2IGAVPlCvlcAUXS/VWFIZ72sPEp4XIYBdxq7XO4csT5eZemkUUVI3qhxOt55A2w5yRsSWxlESqH2MyiTAfp12nHHSpnZtl5uEolE6HdDIftbS4s5HltGXpRlpajOMh71AoOL16c48HyDrEL4mAXdzvArRSwM5o2HYKbS9RmzyMO1/EfbKJbAbUXF7FKJsb4LHeuvcGU4TFpm2QieFJX6WiP2Svn8aILdMMWvmog8IijHIVql712yG5TMH9mkWef/3ByK/+/Hcm/uibSXwJMicyYqChGGxItJZ2tu7RbR5SefAr34mnMspsol/kKc0Yio4CepwiFJjvmcvpTz2LMVqgKi/3rk0T7dVTYpWCscqII7gevIAsz5KerOKUcrVbMtbc22Wus8fmpH6cybuI4gm5XsHSgOV0SuAWB6fSzzwpkrBEZiTGC7ZWPZZtHr+1PnR2PBQxf+u23+M43HIoZgakVW7sbXH2zTpQ7IJCauXOnKNmCO3eXiHsWQW2F/acnKRRNpIiRZoAvJKVqnhv393ErLnbORIctvPYOZmGeSEfIyENFu+Rci6w6Ynf1Jo9eW2Z8YoxSzsSQChGZWBRxTzxBe/cerjJ4uNrj3OwUJ2oTZGwPIQwQLpaVYXa2xuLpI6anl2jU15JGiiqi1WsnGUSl6foerm3zjauv0mm3WQqCPo5bDDvOjmTL07un3nPPjnMG4Di6u5+8wzCMvsxjPzMrQPVdICkSmWaldEI2HakMpByDFMIUx6qflR9+pkeysUYK/xipAkgpQEi0SmUxR5STVKJoo1TU5wkkWVaVXptKnQo5IoQw8qwwbPSW6NArUKBUIqEp+gFRFMXEscKyFCmpVGAS+dDwdliO3qDT6eG16wReGyvjYlkWjsii/YDxcg3DtPtKTzFxFNCKepSNkKoOeRS0ub+/T3enxZkTGQ51FqNS5CBoE4aaQkZgztqobYEVWPRw6GEjo4g4btKMOpTOzLC2vMqJMU39aA3pjLE4u8C1hw6r+y5+yWe5t8ZUcYKPnp7m0co+jzItMgerVAsGubKDcAS9KEQ2WpRPP83R1h3a15bJdWZwLlQpugW6tQzvfPvrnC5MUlKCjLTQpmBP7tG9sEC9OUFoexiOj459eu2AiQ+Os92MWVpr8eDREc12JwnY+muBaZoDxz9tXBZGESpOGthFUTTSSTutNtCfryl34HFi/bAwkDa2Q/SrSCP8g+F++v+kRYK++mkcx/05OAL3SaFofRndNGCRoq/MBIPvpupMUZRcl5DDSkFyHDX4HP0YSfrYyY1wGoQm1oogijjsNIgdgXAMFBCGIc2Vm3R6Tao/8RKZMzPonEmsYnJunkZxnWqhxMGDHooYIxsQXyjx+9+4zj/4J5/l8JUJjG6bbvMAq3HAmWzEqmlSev7jPHN2jKYXsbLU5NU3tgiM2/xHi+NMzdu4lmTtSLDfEIxZMeWKTafVYHurQaVaptWtc/3GNa6//RZre9t0vB5mxkH1n2uAKAoTSJ8QRKOQR5H0RYn64xhEMWFfjexPsx8oOJDSwTLKhCqg0TtA2BayNE03Nmh3OtRbDerNNl7b59TMLFv7e7z8x9/iySunuXBpkXLWRcUKJ+swN+4S+MtYpsTJL9B2S9SFJG8LwvoWjvYoOBC1A964/g4ygtmJSTKmjSEEkR9jCsnYeInDQ0mxUCQOfPYONLtdyXS2lExykQUcBEbSQvrxl+OxyTOC105/RmfV+/aXZqNQh5QANzczCf2XXYrNnT8xS61YoFjIMV+t4ZoOvUhhoPC8CNc1UcLlKOrRiA4RvQ0c30RbWWwjg+Vo2r6i14voKInIuxiugeFtE6ocyi6gTYO4HUOjTbaWR93X1He6ZDNtqottVnYfsFg7Qz2s0WhGWEJSylpstVsUygYtr0f3zn38DYdgcobiyRksYVA0yuyvNcjbCmlEhFstGteaFJ4tYuXy1E6eh51ltnd38Q+7uJYgv9NFj42DKchmwZSCo05AaJgUQs2JjGRmbI7K3Ay2mdD0jjuAo27K+/YDWQqFyDmJo9iNUFHIeqdNYewM1uwJrLECwurzPGKNooeRMXGkSdQJ8HaauCWBOVGmtxkiy1XcWhm3aJI5nGbv1aucvHKevUaGnnCQ2iKXNzl5eoYbv3+LG9eWuHzpFJXpIoWsyVQs6PmK9Q6cKEr6CbCk0VF/4R+sbX9BQ710Z5tCzqZazVMcLxKVi7TyJyhka8yclPR0jH/Yw7GKXJqZZX9tld/5wg4f+/gHmJ6bJO846FjhZDOcmnDxvOvsHnQQVpXqxCnqxJS0T3f/ITVbUxLQOtjn2lvvEHcDTp07Qdax8bselpmhmM0y6xZoNmysTIZm3WenrjnsmUyKAkJAjAvCBAyUFsRx4oTEKoY+eTWFOkdxAjFodFuoWBGGYYLXNwS2aRL3JUslqYpLP0vZ74ycZt9GLW0a9fh7Js3QDvKneugMJQeRx185/aONwjtSR0eO7D/xAY53YE73m56akAKURsh+pljIgRzrQKK0n2E1ZJqVTW5SivXWyUUMnMPBnOtvq1TqyqWchz7MiaEKUpqRjqK0epEIhKm+RGewu47nh4S9NqJfkSDwyNs2gZbM5ApoLeiFEVEY0mh2KRYyBBrqXoNeuAmdXUQ3Js46OGYG0ynSbYZ0fIUnIJO1MF2N0V0j1hamnQdhoLsKo+1RnCqzdfsBhxs+pQmPgAat+gbnxhfY86bY3l1nvJql1YkJu3WKFYNqZOG9fIPDRp3tQgmzmGe8mGcxU2Pn4T7lskQ2faKVDsgC2VN5ooJi8txl2LvP7uYhcbuNQ0jGauOWq0RxjJPL0Yk1R55HpEEEmlMZjSpbeK0MjbZLywuJFCAMTMMgm3Ux+pWZbrdHs9VMgsT+T8o7SeeJELL//xiM1fFgl8GsTd8sadA5wPzrx98x6X6G4578PTK/RUJuTvksPLaHtJHaYI96+F7TWiH0SHDMcMdpxWw0KBjmRfq9GgQIkQSnSmuiOKbRafLV734Lp5jn/PxZ9je22DqoM3HmMoVLp7DHcigUkR8Qd0MsN8LISsamivj1JlJo8pcmuJL5CGHTwMvlqZ2dwtIzqEcrtN9dJjpZo1eooHLjTE4a5PI+Mi7wR199hW986U1+6m99hMJMjlpRAJKwY7EXm6zeu0apUKS306XRPGJvb4+33rpOpBUKTRQGaB2RPvAaje73CVFaDcnrMrl+U0pUP+iP1fH160+yHyg46Bc+0VoQajCFoDYxRX2/ycHuChsrKwSNFraR59lnLnP09eus3FvFyefJj80hO3s0ukc8/7FnmR/LcrR1hAo98pkpctkawVGb4OAQq7dBIZfDxGV9a5uHKx3QULIcstk8juUSR2AZgqprkM+ajM2eZG9bc3DocXutw9jpMUxDoUQGIXIYRhEhCkl26fu9Pb8vFON9x+r/VesvHKZpHv8MyDg2L73wPKVigZmZaUqmDbEmRqNigRIWwjBp9xrUD/fpbW5iSQc/XyMOXKLQJNISX1u0o5C8UUS6PXzPByPCNEAagkhJrG6MyrkUSnl6zRadwxat/W06gebUlE20b9DuKbBtojDDodchb2m6qk2vVae108U4ajMRKiYK4xhZSWu3jVswsawA3egQPazTnbAReYOZSxfYqm/T0RJRKtDc26HbtjADDzPbhpJJ5JoYmCjDZ3Wrx1gGpisWORkSN7eJKkUMM0eson62b4AShkH5Gd6f03+GCYF0zEQRxouQeZOm6TB54Qz2ZBmZ6We7Yo2OI4RhgGlgCRCeRxAeYOQymFLTWLpLI4TC6SlqZ6awmlVuvv4OTxQKxG2N1xMYtmBszOLMk1Nk/3ic+3dWyIWKRRaoLo4zVRCs1DWRgDAHltUv4T8OPeEvbmTrR11CP0RkXGwzR216gp5ysY66FGyb+sEhZiSYnT3FM889xe/99itce2WXyZNnCJSL6jTw4x7Pv/gcp6byrN9boR0F2PkitUKezsER+1t7lPQmjU7IodDsNY94590dbMtkrlzDtB0CXyHDmIJrUyWiUnA4smzCXsz6TsjD7ZDCTAHHkijh0mh0uHd3gzt3HlJvdBLnM06knuIo6mchk+53URT24RV9UqZWoBJIRdzPjkoSx0al8Ji0QqDVIEgYThtBKrY4CDLFSBY/dZaPT7ZhCD8Cz9BCIPTQMRI6DQZGiMMMn+73Om19R7Dv+NHPFj/+mhNCEMcJDMEwEt5Cis+GpFPygIDMSHVkAD953KlMMe5p4yyOTUqlFVIbCRE7iiBOAgXlh0RRBDpGGiaGABF5BO1DnEyWQhyjvRDf8JOu3x2fQimPQnLUa1Df2SQ8OMA0XFQ+R+wlYighml7cpSc1GdNBuj5+p4chFZYpENoAJbEDjS4VKZZzhBs9uod17NIesXBYmLTxd00anRi3UiNSBvuhTyUrMXOaVuOQvY02XTNPoTZJcX4BYz5DfatFeTyDbTUJm230egdRqWLmJPPPPMXKV5aJs1miWNPYa1OwCliGRSbTRMcmQpk4dgYyJqtbHaaympJtcnG2RC6fpzzus7HT4tLlyxTyOXJZF9MwiULF0dERr7/xOhsbmwn3JI4TnkE/2EsldBEjEqMcH6s0CNR65F3Sh8c9vs70H0g5/zYAACAASURBVIljwUAKJxvO2feuTsf4C/25n/IVhopGx6FNA6J+epZSgFJIIY9VMgZb9o+htELH+lhQrLSi6/X43ltXuXDxItVcmWtvv4nZEyw+c4nMWAHDNdBKITX0Wh6FWhkMg0JZYAcBwgpwayU+fGqGw6/d4kgb1ObnKFSm6ToG926scvLiIgEZvMBiPJ9nfNzENFxe/tZdbrx+lwuTFc69dJbcRAHtwuqhJOpAzw/p9LbImDb1+iHrG+vs7++jidFaoaKoD7FSg4tO1o+Re9xfd5TWSMNIEhxCH7/338d+wOCgX7a0LIrlEoYwcYiIZQfZ7qDrLVzDYOLEHIunF7j/2rsYYhKZn+DudsDdL32Do4NlPvbBy0Rxj+Z+RNdv4MUPqOQgerjEvfU9nnuiRsaqsN2SvL3cQvl5fP+ITKyoZfPk7CxRCNmMiyZirlahMD6N8kLWdh9x/Z0Wz86cJp8JiJGYZgUppjCMMfg+fIP37f8/NlpFeNxs2+Lv/tynUXFMLwiJdNLJMQAcy6ERQ0Wa4MPhozqPbm0hqgWKc1XW1/foZlwiu0KcCVDeETlZg8wO3XASV1ZwtI2pFZ40yVoGDT/H2GSVnt/Cb7RZv7nEEx+epW0FmKpFWXsYPYnX0ZRLJQ4OjlChQkmXw9Y+na17dLeOqMxfoTdr4sgp2j0TN+riGm3MYJ/uSg4x6yAmLQLTxJkcZ3p+jM3XA+rRCbKqybgd0w17RBbMTVWIrDqv3u6w2wxomY84q2KKRkA4NYE0XSIVIAal+wSPKpAIYZB0UD2uTPG+/Ukmkj4IrolVzVKYmKD8VAm7aifCBP0XnybELpVRnofymhhWndysj8xkUVGLg3vf4NA9gZwpEEkDH5OuW6V52EXKbNKkOdJoKSnMWJxevMTW+ivcvf4WhhOTGS/juBZxkPCwgp7CdQwMQ6CjVAHnL97iSNPqRmQinTSM7ORYvfMAs7HLicoEtUKB8RPzLCwucmphjgkimuTZi/JsXdtg9eWXUfEBp2aqjI0XOdyGfGmMkpND7u4Qr9zn+utv8uHLBV65vsZeYBFKh/aOj21lKRsmtptDKAnKIGNZ6MYRNdfhULhIbbC+ocm6XWbcAuMVBy0kN28s8+Uvv8nNG484OmoO1ICSLr4xUhpIMXQ2VBwTxXHifIsEWuGHUYKz75fnlU56HKD7fXtgICU6cFBGnSpBH7pAsk3qUKtRJ2y4wYDD0He8Rp2o1ClPIUkpdwE9dJqOk6HTrYcJgXTfaeCRkobTnziO+xCgfrZWCpRK/jYtiyiMBhne9DtKDfsZpPKR6f6Sc9Z9orMYVBLSs0prJum4JCpQEoFCmgamKZFSE3ot1u5f5+SpU+w9eEBeQHViHCOTAS05iAQTlovuHrF5e5u9gw6ZsSns2RIrj3bpZUvEmRpx0EBEATkzj5E9oB1M42TKONpA6ERdyzUlTS/L1Ikx2t0GR+sbaGzOPjNHy/SxwgY17SN8EkneTJa9o0OMOCZQWbb3d5BhnWpXUMiM4TkxrjXFUdskzyGuaEDXprfmIKYc5IxDF5PpCwvYccjuuzYNNUWeFlP5gG2vS6ZgMz6RxTc7vPrOEQeeYsxVnB4vcOHiHE+Ica7e3OAX/pO/z+zkJKZhApI41hzsH/Brv/ZrfOc7L7O6ukav1xvAjdIuyilWf6DEReJxC5nA64QYTtfBrOpvl0LVjpseVNfSWEDo48/G4IkZ2blO51VaAUjnShoc6CGvIOFQMHyeBs/a6FxPjp2euhq5zmM9OPrnGMcx9UadlfVHEGv+8LWv87kzn6P2fBnDNfoxkULFEQhFaXqO9t4+yjtEONsYxYjMxBhTOsvW2tfxxp9B2Ab56hjdqZhucYpL5y+zdpDwCZQSGK6kOp9j8fwT3L++wtU/+CbGmMPclZMoaRF2YwwvYmx8jj/6w99mcmyc+tEh1669SRAEBIGHioORBIAaXpIYVvxSuGH632EUH6v6/Vn2AwcHkLQ2L9g5fD9k7eFDXnv1VZTnc/H8E5w/fwW34nLj//gmZQ8ufOjDTD55kp2Dfb62fUgQZ1Bmjpd/8/f45vW7bBy1KVm3uODU+dK7a1w4M80zz/1Trt9b47U3XqVWnabV62KToTg+T8HNIIMAv93DzZfY2HrIxakLXL35GqGZo1o5Tby9z0Ejh5R54rhHqTCOIcvvKfW+b3+1bHTxkEKQ6z/kXhzS63bJG8kDEimD1uYK+3feobG+x5Mf/gniSoFXfu83+cCLi0yOT6PbXXbbPlZ2js5WQK4yTieSmF6TvPQ51DbjtZDmjsISEFeL+NLA97usrl6jkq1y4eRpHrYV/tEecnMJM6wxNzdNr2Vwz1in16rT29ymIfewGha58Y/jyDZrDQvDLVDNS7yHtynMTiKMDN/58pvMP3+JyNvj7ndf5srFEnQ0q6v77Ph5rI6FbHV44B2gxlt88oUqV69vsLZyi3B/EyeKOHfpI0Rht08W7JMSR5yIoaKI8Vid9317jwmQtom0EjLpyXMLOAU7Qa30TWuddFgXMYYdI/1NdLQCZoTIzhC271FXAeV8xERe4UhoYfKjL71APbSoVUyaDU0c66Qaague/8wCr/7qTfyj+2wvreHmp1n88BxzMwZHhzGWKTGkwLIkwv5LvHzTwLJMevttlr97myW9xuLMNKXaBDlh8+GPfIKLzz5LGPrc/vXXmMHBPLnAR0/leaexzat7bUId8fOf//v8F3/nc3z11iZ+FDJtvUJN7fOt1Tpn5sr81hcfcPHpS1iZHGHskS9V0C0IZQG3F6A7XWQhi2uXoLtHY73JiYk56oFAtxocrbS5V3TRKoPv7/KVr7zGvbtbdDq9pHTex9Um2P1+Z1lUQsAdApETjLNOYTDJx0qDFHroPPX11xl8Z1AnIFVf0SqRXtQj3xuFUxxz4kccd611Ip+t9KCR1bFuzJqBt6Ni1YdQ9B00pRIN+pH9DyEZw+MPsd7D7H8cxRiyn01UQ2hCSgRVscIwDIx+BUErPeAepBhwOSClJsRlrVS/CpCeSJo1Tqo0Caejn8lVCmkYmKaBaQhSTmAcRXTjCKE0WxuP+He/+qtIU/ITn/kMP/nZzzBZyNALPSIrR2PlFju3b0He4dTicwSuw9e/eJNP/syzqNIEzeYqodfAdmbodRWFiXF2OzGFoEEsbNqGZKIS0doFx1B0xsqoZo92Z5+19WuUMwUunTnDH7+7hR2vkQ+PsCtFKrUcjna4Wf82UWMX0YuIuwEuBXLjz5MxGyzvZCiPTWH5m0T7DylNjoHh8Ef/5yt84POf4uFr30XtrrN4qUTciljf2GW9N4YbNvCDgEboIcc8fvJvzvLqa+vs7TUoxz4nx8/woQ+9yKc/t4jtZIiiCCEM4jgmCgMymQz/8B/+I37mc5/nv/zH/5hHKyt4njfgDhyrNImE1zLgEYihbOlo4HAM5z8IngfIpP78H+nYnXihI6vKe53RYSVAHJ+09IMEPZz4qbTugDxP+jg+FiT3A5xhZasvsZoGtgmeCSFEwsvQ0O52+MIXfxOhBdVshcufeBIrZ5KWDoMgwPN6mFmJH3aRdkDWXYHMJiJTBMdAtZZZP9xn8TJMlSwM06JQq/Gpn/kxjvwsZ09bPHoU4vVCwsDALdp8/O+ewl+qEXl3efN3btBpCRY/Mke1rHiwVOdrr36N+3ff5Vt7W7Q7raTLcxQO1gA96EzNCElcQKQG8KzRexqr4Xo4Evl9X/uhggOtNVEYEUchloBTs3OcPHWSyfFpOns+O99eItc4JB9JFqTBeC5Dxq7yoWfmyWUC1r73Cr/76tvcfviIwPdwTMF91SIMPepdnyjWhJ7P4eY2vaMGn/ns3+bOa28yUc1i54pEGjo9hR+FPHfhGTbWbnN+ehzDybG7X+ftazvcvLHGc088yYn5j2I7uT8dTvS+/RW15AVsS5PxbJ5ur033qIXj+rRX7lN/sIb0NCcq8yzJGXYe/hu8yx5zCxm0m+GerkCwSCWs0zQkecvE0Q6dngB/j4NMnvn8NutyAUMXGfP2UJ5Pa6nLxKkuhoipLJToOocEq1vs3fe5MHueqFbF671CzReMYxErzYODQ9pf/DLnX3iRk1MT4Cu8dog7tYB/6x3c2keZcee5/d0NAmed6pzFSn0PvHUiKyZvGBhSoHSM8vbY3zO51VnnxKJNcSzmaK/F16+/zjce7PGf/lf/bX8tNUHYDKTrBphN3g8MflgTguLlMoYjH3t/ieTlETcQtom2E81+YQYIxyW4+Qpfu7fEx4wF5r0MEig4grUow8SYpN32yOQcTNvE92KMjMGJSQPKH6GcrZLJ1OkePKL5oMLUEwUamzG9I4Xr2Elw8Jc4hAJAQ+QrRBiSdXvkI48zJ87z2b/z00zW5vA2urTfeEj+cJ+SLPCjH3+Kf/Yv/gd2tjucmznHzPw4Jz/5Gf7nr1yl5bURaNa1j6HaCGC/5bC936SytkGtUsQwbIJOjycWzhG098icu0BPxRxuN+lJaO23uDg7gYob3N9t0FYB9SOf119f4earb/Hq1Ufs7rTwuj6+H+J5IUEQ9oPkdMwS50EpjdF3ch9/RaoRrXb6ZMhhs6dh1nG0d0BqAwdcD7+rRwZKGmlPkvfec/3YczmUeR797PFtEshPumlKSh5AMgbwiRFISf+aH0eSxLF6rAKSHj/5VgrHGpKdj987mbTwJlKqn52Wg14IgyCtv8+Ea5BsbVpy2MW3r7SSPl8qjKjX66BNpGXyO7/9O7x1/To/8tEP0Wi1+I//w5/i4M5tOmt7jJ1bZLx8ivtBkZ37+0StkJnpIrtWhUZsob2TlPwGB4agkrPwQ0kvaBNELfZsm4X8BstcoRSuUombhC2P1lKL6mwbUYqoXqjgNtdpr+8QrMWMv3ACynnylTIzWzki0cXwI5bX12l+aY+LP/oJzk9Pog5axKKMnfMI793GrX6QueIZvvVbN3ErDYpVxaPWDnQ9YltRNLuIvECGbcJ2g0YAd5t1zj6TpbyhONyKuf/aq8RvL/HMSz/BJ378U3R7Pgd7dRqNJo1Gg17X4+yZs8zPz/NzP/ezfPGL/zf379/H9zyiOErGmmGWPq0sjY79YPzTwE7rY478gMg8GP+UID3sgzGAsWp9nOvy2DMzGsCOOrT68Z/++Rw7d4YQo0FdSo/AkPpljKFCU5o5B3RC5u10BYFhJHDmapXKc1XS4l/ch+RJw8R0QPhHhJZCOA5EEcIKMSyL4NF3+OOtI874YxjawRQxhtQcxFnyus2jlZhcOY9SPu0mlMddTs3lYP7HsddNgv0Ntq/bKBUSFlq01opMGjNs2DmUigl8jzAKE5hkWukRsg8BHETix3gco+M5uLeDSO49X3uP/VDBgRACy0p0V0+dOsWpM4sQxvS2mnTurJPfXadcrhHHZQrFChs3d7nx7gMO9vYZL8H5l16i+Advktts8vwHzvDii1f4V//TvyRo9fjv/sdfpDYxwXdf/TbLD+5TGZvGdFz+9j/4BbQWNI6OMAxJsVxCoXm09hDXtnHsMWrVKRamJJOFMkKFTM9cwrJzSJle3vvO0F8XSxQ4QGIMMyBBzBf+za/wEz82zuKzT3MUOFz7vd/l6PY3ufChX+DLPcHBg03OnXqayclzTI67iIMQe/wyxdw8OlYYcZcSIcqYwu/eJy6Xmdro0CMmHHNReY08jOk8bFC3dolzY/img99rMd5psf+oycmnJzl95ixvP9yg0fSo4rAXBrgqontnnapRxSyXoZRHRB6ODMjYcG7GYO2oxcFhBLKGUIrZ8YixYp7G7hFd7SEzkkJukrI9xkPnDpudiLin2GmGrO7GlNQ+hsggpCAmzfr0scNohDD6L96R0u779qdb31MRthwmQGHwt5ASjALoAMEGiEcIZxq0YuNr95H1iNLCHM7UBKGnCLua4oksRCHZcg5TKWQcoYRB0Esk7GY+XqZxJ48NFAo2vc1l6qULzF3IoIXGcsR7nMS/aJNCEPoB2lRkciZZx2JmfpqGanHv7Xc56K5TPAoZi3vkauOEUQ3LzfCpMz/DteA2hwcrBK0O/86sY8sxXMvG9/cI4x5aKHQccv3WPUwDer0uDctGSPB7Xb735rtMzZ3hP8jZLC/fZXt3k2K5yJPPPAWx4qjpceu16xBHjJWzhKbmnYfrrG/V6fQSNbsoiAijCCnAkIIgjAfOSQpBUJqB05pmuAWJUzOA+gxwziRBhU6y54YUAx3ZJBt5PEM/WtIfDQQGAUr6t05rD8crDKI/BqlTnzg7iVxlrNTIl/UAWy0G5yuTikd6pMecgOM69YnzIw0D9FDFRo4EGIM+BsMIZOBwiT63IZVLVTq5n4ncqdEPQkaJqUmUJkUSWKcwFyFlwgHpn4MUicSlUhoVhBwe7WHaGdqdFl67ib+7y+zEBJ3VDE//5KfZ2PJoba/hPXiD8xc+zRc7sHfnEecWX2KyOkHb20Y0ISqdo+guEHs+FXFETpqY4QRxsIoqlZl/1KDjmKgpl7gkcDqa3qMWR84WYwunad/awehukfd8dlbmuPihPGcvPcnVhxsYPYOSdtBhSEZoeu+uUnUmUFkXgxjD72FEIa4DT8yZvPt6nZZwCHNVLHnI1FRE1XPZ29glMEIyOYuaOUfNyvHAfIfWfge8mIcHHvtNgTZ3Wf3N/wth5rn81NN4gQdSMD0zQ7FQ4Oob1yiWSnz6059m6d4Se7u77AUBUkkU/TFP7TiGqD8HBEql4zecFwNHc3Rypc/IIKBgoLOfficNHgbyp9Lo84FGnNmRqpaQI92REUjD7E9ZPYAZpZWAQZVDD4+VVrVGn5N0zqfwPNX/HQQB2jSTZJpMlItGWT2xivGjANvNgJWnmNXoYAnheMj8AlEQsfXHS+Rih+KlM4hsDq8VEfuK8TNFVEOQr1k4igHPpteNsTIGcz9Z4er/ElP0QtwHKxSkovIjl/j9t7/A/n6Lh6vLtL1Wv3Kn+r1XEmiX6FdStD7+XA94SaPPnhoZc61/kNjghwwOknuLFBLbdUFrOivr+EvbWK0ezvwMsiWQ5RpWsUT95jL7t+4zKeDykx/k7a8us72+hd9psLp0m5fVAZcuXuD6m1f5lX/7vzExM8bm5irlapHp6UlOnJglm8v1F7AqArBsCykEc7NzJOSxGNO0kEKSc7OEoU/GLfQDg9EX6fvO0F8XSxcoAcRBwO2Xv8UHz+WonfwIXvkETm6fGFi6e8jMj5gI7dIOSyiVp2Q6TNkGkW9jmx466GcKZZZYxXTrO5Rmn6C1cZewaOBSRHaPOGi2ydoTyNgj6nQouzlytSmOZi9w8PAVco+WyT9do3yqTGa6ir/fpBQb1JsRBzomjmLau3vYSuBU8pi5MkYpRHUDjFyG02NlrIMjDro7NMI2Rx2DeUeRtQOU36PX1PSUT+Q/wh13mDBNMhdOMnkuz0KrwrlzH0LTQJBDYIzAB2IUAqP/mdb9Lpv68bLv+/b9zMg5/Sws9DERyXJiGAhloqPbYGyDo9FItH+b+7sBVXcc13WT2xwqDCVwc4JuzyQTxgncxQRD6j7pzeDcnMW76zXadYU8bFJq1imUpsicm+kHJGln3r+8sQvDCADbNHFMCz8I2NzbY8qcorjepiJsHEziXB6ZH6OycBK7VsVUS1SFolKsMF09SXFmhi989cuIOMQ1NYZtApqOF1Ep5qjM5sg6NrZtoTEJgohu4LG9u8Hv/t6X8P0OntfFsi2a7QbtTgssTePoCB1HeJ0Wjmmytt2k3QnoeQEqVolCDxLTSBwAQ4ikcdxg+PSgxC5TuJAYfckm3005HaNO/dD67xYxlGhMM/Xfj4DZRw4NHf7HjpE4RWAa5gACMsBbv0fzvb+dANFnLKe1EM0QljQgB5NmgRl8N+mYPHTcR/tjpBn/1NFIISC6D9tITzqOE3LkaECBHumarDRRn5ysGc7bNOjQWmPIpHfBgLcgBFIlTqkk4YbEgY8hoOTYfGB+kosXixQXPkGcmcKwLer1DivLRzzzhInQWY78EhY5JqyApm2hQpNiVqE9lZD5jTKR38HvtZCFk3C4TlDK4ZKl2djCjwKyVgkZe/TqTWoTWbrOGG25j9Hew95eZ8w5ycHFMczXqxSxyQWCrqc41CEqiGlsbuGMTeKUMhi5MlK0UJ0Aq5DlyYkK2/4q9c4BzbjHQcNkPqNwswGR59H0AppRhzhsY+c7TE9qrKfmiasRxloPKfL8jY99EsfNs7u7zcMHK1TKFRzbYHunQ7PV5Jd/+Zf5z/+zf8S5c2e4e/cu+wf7IMAwjZE5NCTnpjh+yZCXkk7ctH/B443QhlWqfrD8/XpJjaxXCQRpVEoz9dPSztv9uarVCIdhWMkYJb+ndmz+Dc5NDeKTZBrrAX8ofZbS9TRWiiAK2dnf41/+63/FP/ln/xTTsmg1mvi+j2FKojjGtl2kuorKtBEig449eq1b3FvrMpWdTfYXKgwMHNPEyVq0dQlHRRgixHAMpNnvXhnHPHXW5p2J0zR7HuXYx2qFhA/2WV59l167i4hCiFUirT3g6DCQfe3H20ncTlLJNA0D1edZ6T7XBIb8J0bWhD/NfqjgYDA4aFS7R7jbQTVCTMNBumDkHTBtMos1wnaMX69jhk1OVLKU509w48YqcTfAUhG9+iFbqz3mTp9k7sQs9269xe5+ATefZfHcGZ595gVKpRKQyKxlMpn+dSWLZCFfBFJsXCJTlXWzxLFCGub7QcFfc0sXAcM0GZ89QbYwTq52Go1ExAG9rsfOxv/D3nsGW5Zd932/vU+8+d6X3+s009PdkxMGOYoABRIqirZISabkKn5RqVyWXeWyPtj+Ypb1ySXKKhflsstBdtEUTVtiMkkVQCIRwGAAEMDknpmezvHld++7+aS9tz+c+N4MAyAApMleA3S/1/fcc/bZ8b/W+q+1JkyDEcJSTOZ1gsilZjmcaDS5eTijs7aIj8S1HLQWHMYRHd/FTEN8u4Hj2swnE5BNWkuPEd26gXBizDQgrsVov4nVWcQ4NsHeTUbBs9QWOqws9WitTVmyfOJbBzSMRrkxcTzFSQLQDZLIxXZaaRaVdp2lk8vM5C6T7SmNeMyOWGDPsViSLpYTI0WMCQPGkz0eXlliOPAYuhGdBxY4/8hjrK01Scw9TNLGsVqZhUQDLkI2MajMDSz4YQLLv2wiAGFbqERVMgQZRG6EEQbYAzMEPcckY6KkydWxodlYwvF8DCLlo7spTUUjsa10VzfCYDkiTaKvDAs1Qb3dIppPiaMpdDy8npNu/laK6n7Yw5daqbNKq8LCtxwe7Kzw1NqT1E2bWq1JvVFH1G1kYxnrXIdkGKPnA3p2RGupR/fhs1ihxMdOq866EtuvYYSLY0ukjOn06rg1jzCSjMYB0yRE2JLpeMCbl8bYFsXJNxyPmc1nWLbEcdK8/Zg0Du5wOEtBv1LkmCNjP6TAXgiMUlnBpVQxVkoVoLtQCky1D8TxTinPPlMClgI8U9Ibcg5+1aJ3xOJ6nPZgckifNjhNQ5gd3hl7o0qvSC3rIuNfg8lAuCVTHnK1zgF5H5DhtwLvZc/PlCZ9LO158SwpKdWOojOy+8mM/pGfw+lVJn/X4/MqV09SLTsFpUql8R4ZHSTnSuffzilHBrC1zTwM2RmP+bsf+1n8zhncKMKohPFwzu7WiGkwxnI0o1mTOLHpepJl12d3ErOwtkrNgGfXmYUKQ0LHS5iFCs9tYWyY9yfY/iroiPnOFl6niZiEqLbG766gevvE+33MeIdpbGitLnJiuUen1sIOob8zom4MsRtCMMEzPYxySLSHbWtUEiM6TdYfXGN25x7zwZQkntOXXXaNZNVyEW6apSuOpsznB5zp+RwOXdTtiPXVk2ycauD5Nc6d7zAcRgwHW6wtWzhuwHh4l739ANeVrK0t8bnPfpaLFy8yGg2LMbEsq+LNoRiL1PCbg29djFr+V56BqDpHiomRrQdZ6NqiYB29Q6HNuPKFtyH3xBZetGqUqCFVEUWlDfknFa9E3u7ypd7Fa3ek+UUbTOZ9iOOY0XjM8y98nZ3tHVZXVzDGMJ/PiZOI3kIH368h1DaCOUYlhOEue9uaS4OEVm0JZForQVoC6UqMFAjbxjWgogRpSywnW6eJYNE3rJ5f53b/NqPRnM3BAdGVMZY0RPGEWEUkSeoJVVqhtCr6UVBZx9l7iHyLqSp3VAyq4vha/uPle1YO0lYI1GhOvDVFWD5ux0dbM6gLTKOOtVTn8PZtGA9YbApWlruIus10fohjLGrSxrYNjmURxlMWeh0O9kYE0zGLKwtceOQRPvCBj+C47lH+W9XtJNIJbttlBHrq4iyn1X0M9JddBI7rcv659zFWc7SQ9K9fYf/ObYIopqYkm3euIW3FbKwIZgbP9ljrLHHzxg2a9R6eUfjCZxwqQhOz2F5ieLBPrVEDHaIl4LVp1Rc5PLiBqDtYQcJskiBssGoestZkc3eTM0GCbTdYW1khDBQ16RAJn/ZkjKoLLE8jHYWRCVHsILwa0tUI18Fa7OLFCzRHHo04IHQSEmMItYVv+1g2GALsuiRxY97aignvBVyIupw+NcExl5jPHBLqtLwulvAxuCAbWNLBKAHCRkofIa0/tWfvSyaVjbj6bymmS2lbRkeYKEBHIcZTRHGPrcji8V4TaTsYk1nDXAGJwJMpR1soQ5oqRyKs1E1sC1hY8ZE0EPMQty6pnWqUfFvxLsD1B/7KqaUw5edDs9XkQ48+x7MPvJ+9/gSvXqPZqyOaNrbfJa4bRi/dxp4fsuBDd7GFf3aZa994i7pdQ5kpjuPg1ATC09giAQk2klrDZxrPGU7HjOcJCAjDOWGgi3cVQjALAjAKbTSe55AW7Eo9LkmksF2nUqApS5GZ9ZrOLIMWacahFMTITDkoraGGHJjkAY3Hp0H1LConRfqzLGgOsnJOGTKroxEz9AAAIABJREFUPxWQnr1TXlsgj3PIAZau1FNIb1TWFMjbmPvx83vl4Dy3kB4//LTWSHF03R/hmedAP31gUb/gaGaTDE5V+6qiBKV59bPgz0pwagrsctUpz/Z0FJiV4DJNqFCAV/L7CpTWTMOIO9OQxcc/gZAO25dfY3RwQKwhiBK2717D8gyTQ0McQ6/TYqE+Y293h3ajh6MS6qLGxEywHJ+258DhAKvmIsIRsZD4zRWUM6N/cBXLlXiRYT4XtHs9rKUl9m7eZO9wj2mkcNw2p0+t4wUxJjBYXp3WbEbSENRcg3CStPgUEun5aFeD52KvLeJP23RmkpoKSZyYWNsEysFxwbLmaW56LaHh8cZdiO/u8uQHV3ny/T3WT/r0R1dwfI9WbUZ7dZnR+JDNwwnzuc2JjbOc3FjjF//ZL3H3zj0m02kxz48qqhXqWjZWulruLxu6amaqfC1kk7yY6/nY5fcq5swxpTufx5VH5Cz6/KLU+5ROzCNz9nj7cy9Wvo4z/1S2BvJaJaVSIauR1IU3TBe1TUwEu3u7fOmLX+CpZ55hdWUVpRWTyZjuQjt9tg4gCoiiKf1RwrXrkjtTydPLHmTpZKXQCM8CBZ4USMtCKytV5HPF21hIo1k943LvDcHgMGIyPORgNMR3PQyGeRIQqSiLFUlTl1bxcF4Es0goYAxJkmQewfzUoKBjFT3+Z9AOvkflIB8+A8LHWfNJDhPUJAHfxTub5h4mSJhs3sQaH7DaqNFeW0BEMTv7CVGSuiD9Wh232WQ022N3d0gSRjRrPt3eOqdOnqXdbhVcxiOTETiqLJhjnx1v6335yypC5LnD04NsFgR89fc+y7e//nVEvU77zAZX/ui7oH0m/QHJdEzNcdHtFbxOH6UnWDWfaK6oOYq6L+gHNToLqyCnzEZ3WV46g459+geXefxDj7O/4+Ae2sRRTN026KbPW8bi4uaQzxjFaG7wT28gaoZ4v8/C0sPMb1wGlrEdB1VXJJ7Ccus4DQVNg7IixqEkaSywcOYU6somar7PdKaxhSCxDYkIifQca73O18aC7cMxLWG4/ObLRPEd/ubfOc10LlCOwWuC4z2CkA+AGYPQCONi2ev3l8X3KdKx04M0y+yilcmC1iz0TKMmoE0L/IcIOIXltfDqoGODigyWnXa9HRq8umQegefYOAK0MlhetolrOHPSpdtoM+obLJ0ga1Z6CB7bB39YkiQJaI0t07ge6fssPPgwam2BjcUTeMLG6TnIdRekzejONrtvvkJbhdDwcGsuTdfnYGihdJoRRxswlsCuacb9AAswkcAKEsIgIgoDkllEFMxTOkB22OUVgcMwSL3CEgQ6s5KngbRxooi1JklUVggpfQ9docwUKf2S1PLm2HYKmIsg4VQTMoBty+LwrFpY8zSciCyjbf5BBshzy2sOaKTUCJPWC8BwJDC35EPnQFgUudqrgZN5G7Q+TpkoPQ25qpAHSOfjllsPLZkpHFqXeeR16qGQ1lE6Rg7ytdLk9IO0ym3GxyZXvnTRbpF7szKgr7XGWFZxfhtMOZ6ydF/I7OeiJoIBLXShDFlSVgJY07N+YXGBD3/0YxgjmExn/L//8pe5eesm9Y0V/KUuV7/zElK0GO3uIKKQprdKp2PwOnOUnlCv+8xGCQs1RWwspqpBe9Fn7/Aavuzz8IUPMtjfYhJv8+BTDxLNenhzHxOH9Oo2Ud1jJzZc3znkM2j2Z4b2E+eIdu7AVNNZWyO8cwNYxnEtQjdB1A225+A0wDRAi5DD2MFZWqend4nvDBDBAbNpVsHWUcRmjrYS9HKDr45g83DIkm248vpFmo1dFrtLqOkUyzU8cMLw9rWXmM4krtPh5IkHeezRdf63f/nb7OxsMxoNiaI4U8IEcRQV89BkcyGbiuWaqFB3RDbZtcmrEcsiq1HOga9asav7ZA7Ryu+VxpZUATaFd6+gvRRKam6ESZX7wp+UKcdVQ0nhPSB9duklkShVrQNQxkfk+FhlQDq9n2IynfIL/+S/4RMf/wR/7+f+Ho88/DCLi4s0Gk0MkmQUEQ8iDkPJjW3FK2/NUKaGtKeQ2OhEYHvZOgyh1hRMA0m97hOHEXGS4HgWjiORWDS9fRJ7ysQ2qCDm+uEm2jkkjFKlIM/slXtzin0ge59qBEFaQ0Rla7X0TuqKt07KSl//CfK9ew6yxnmn2pjEMN2KYapwmgJTk9iWZvrVezRu3iWajpm4dWazBHepy14YchgeYOk5TuQwO4iQcgrxjDCKWXLrPHrhKd7z9AfwXK+iS/5JLyIKkHhf/upImS5QM5tP0FLw6m/9n+y/+QoeCtPqchgZFv0lJv1dTCTZ3t5kNJmw0V7g2bNPcmUWs1bXSO8ATILSNQ6TOrOkjmitIv1lprNNTLxLvXsayznJ27df5onTz+D5ipqlGU6HXD3c5H3rj9C/PqO57jCKp2D7LD70BHu373DquRNYicc0hFbNp9H0UEIzGySIu31q7znJ5v6UEQ7r5x6F2T3qOyPE3h6bh32mKqTVsdl4qM3zfod7n38L74zL3/7ECu996iTOcofh/DZ2V9FxUrA5nQ1Q+i2kXKLd8pDWjyOlwx/HCb0vfwYRArIKxVon6Uarp4y/fYvR0EKeOE+r/RAvvXSH5VaXxccfJbRiZtEIv7uAMBAk4Dlg5bF4ElxPggMmAFsbtJBo7ZCEDp6MaHVqeQN+JN5QrTUqs6rZQjIajfjP/tl/xWOnHufnf/o/4uGnzrN4qkl9sYEtNfoLMaeiMftSEnc6eCfWYGOZzdmcw/keHRd8YSHDCBVOcYxmFia4UcStawPG05BZqIgiTRzFGEMGlFNkkSRJym3HIIWFUgaRAcgkzrjqSheUiPy8EAikAFVYPbP0o4KC86y1zp4jM2t42Q85oE2pXBkfX2Z8eUhTiMJRK5wxGJPl+BdlTAEiBzBZH5vcVmqKNZlb/apBvkqV1YlzWkeSFXSrggJj8lSFEtu2kQaUSs9F25IIxyFJVBmETV5wKuUopwHBmUJRqWuQX58qT9m+m3MXRNlfeWyEkxewFGWmomqmGp1ZbC07S5mZcaIFmVdHp/1n0i8U7XBch3rN5+zZM/ydv/uzzKcTvvWr/yPh1h2kjoiMZhRbtPwe4/1NAjNic2+HM6dWOdXtEZ9qcmMe84G6IaptYwmbaVQnCGoECjpLaxAccji8gbBhae0ZHLfDt198k4UHHqLuz6ibiMF4l93ZIc+tXGD/6pjmqsXB9JDGwgayI5ns7XLy2Q1QPsPAsND1cXwblRhmoxhx94Dah89w9fqA1oklus3z2GpEtDdG7u1y82CPWCSsbdSwVzt81/hsvXwJ/1yNn/+pDU49/CDKV0zDLRqNmKadEEdT1k9GTKcCWyY0mw0uvvp7/Pq/+S1ms4TqNK3aTnUG4vPf87+rsSPaaCyZJrOQJp2PWumMTplfm86DJEkK8J1a69Oq3FXKUK6gpCsu9zqlUbU6V6pLbbP0WOTzPJ/sWWNzpaRKu8vnTPq8itfL5J6o3M5SKir5/XSmNOtE86UvfYl+/4C//bM/w9/6W/8+QiiiYMDgsy9xY69PcvIRRrUHEPacjrXPZHGR25s3ubB4gWbNRxiIE0PdEchQgwLXsTASjDCE8xhbg+u6LCydxh9bDOY73N29iFv3mc7HaJOgC85fZXMSaWwIVJS7TKrF4AqqVd5f2V6G/CHEHKRPTP9SocatC2xPogHLNujthNGl1xkOBsxsC7XawX9knUBqvOAqdS/Gr21Qt31Qe4RqyiMbC7x8eZNarUaj2cTza/dBzH35U0UbRRSFGKPYunyT5795kTfuDbAXuiwtrXDvxm0O7LvEAixibrzxXS6dbHH+J/8+T5wwhLdGRFh0ZIgzH6HjkNZCmzjWHIxHOFJiWstYziqe9Llz5RKffO/HOJxvM7p3lxpdWr6LETUuzrd4xgmIwzEt38cIB+MkeE+uwRhmJoaDQ0Km1HRqNZ4tOLRsi3tbl3jk8XW2+jGvfvdNNjpPco/vsNDx6eLjRYJEKbZuzFh+7wVO/4uf4ecWH2LBdRC8htJfYclVuLYCYmKd4OopJhlhkilC/RR2/TG+3+V+X46KEQKloH/tNre/8lnevL1D98xpHr1whl5tiXB8kfXzF1huCOzwkGReI9E9bCfd0+IIfJneQ2cntgUYD0SY/n7iZIMHzjax3R+9qyfFbxLpOkjfRToOp5bW+fSnf4KnPn6OheUlbN9BGMX8zozJ269yOA+YuB72RgfOLjMnohG8jTQTeq1nce2ARO2SMOOhBYdXb05B1hiNZgwOZ8SxRggLKSWu6xBHUZYTv6QDJMqk4EQbtEyLbZEdjNUMQ/mPhZVSyCwHewkk8pz/SmmMzGk5ujh3jgTsGUDkXgZRBE2WgD3vN1MwFjAGLdMc8tXPq4HCeUaW3DuusyBcy5IF5UZUGAA5lEm/Ywrraw7m8nbFcYKUMlMwsnSMpKlUy/TGeYG4lBuutc7SNpojfWdVALrJ2oipgq9KASZK8FYGqoqszkT6WeoBySkdZBbR9P1UlqYxf57SCo1BGo1f8zl95iQbJ1f49re/zsXnv8ndmze41p8hFts4iWF05Sq+ZaFtCxPPee3rn+OBXoP3PP0RPEcxvLLPxLRYtCaYyRRfxiz26kSJoT8e49s2cfcUvlcjmYccbN3jx973UQ5nm/Rv3GKte46m7zFNbL565zJPyQ8SBXOW2otgDJEL9uIqZiaYmhi5e0BixtRMjOXaxIs2Ddvi1o3X+cSnzvPdF1/l6uaAjv8wO+JVFro+C6pGoGNmw4REKNafPctD/9PP8Q8WL+DboMwfoPVF6nWNLRMgJvQVfkPSa1kcHgS89K2L/JP/9i0GgxBj0jlbBOCKsohfuq5KhTUH11WwTGaJlpZMvUn53D1CZyu9WIbcm1/g+8o6Mke+X6QDFpU00RyVI7RyqhnGSoVZm2qBs6PZlSp3qoDojBZXsQbktRGEkFm60JT29/prr3Pr6nX+7b/+TX7ub/wkja3LfPfmkNBKuNBuYieS7SuXsXurnGrF3Hv5mywvt2j0Ojhu6qVLImjYEhUbbNfCcjRRFLJ1sE3Ta3H6xBJfDv6Ab1z7Gru7d3A9myCcolRcKEbp+j5uEHh3i3iuXJVrVBV9Uuw1P3BaUT7Y2d8CgxAaIQ2WBDNMmP7uNwjGtzF+G7G4jHN6lXpvgXi6z9z2qDVWiWcj5vEhjpsNjoa6Z+O7dmrl4HsNmjw+C+/LXwURQuLYDkni8Lnf+Q3ePhgy8hwsHRHt7mCUTTzvs9J0mVqau5szLl3a4yd+vI9t97iw1uDWyHBgrdBq9qirOdOoj0/AWmsBYxKMFMwDxWA04dyDjzExAbdiw8NnHqXpeLx18xY37m7SrTVpNwxvXg9ZWWrQacWM+nuYSZ1osYUMDuieewDXNiAV1Husy4jh3ZdR9pTh3g695kk++emPcff26zy5+hR6dBd15y2mB/sMBhH9meK8N+Ovrb6PpuNzN7rIdH6LRjzhhBehhYO0wJZZARcpMXaC1juA9Q563n35/sRoQzib8s0XXuDx936UT36yTavbpd5qppZvIYmHczpry/Rv7aNmQ3xrzuJZH6cOyQSkA7YDwgKVAHODtFL7tWUMtidxfCs7A0vr849CfN9Lgxa1IQhDbNvBcW1WTyzhei62J5Boku0Jwe9+l3l8B91cR6wuI9eXkK6Lnu4xwqLePMV4chPPE1hujHQkUtjUPYuaY6WZhEhxQ15oKwyjo9SCnIYisoDJLBOHJv2iMmkQrJ2n1NQpDUFDlrlDFxZLWbHS5+k0RZaTX1hWacnMx7o4Vas9VFpN04/N8Y8KJSHR6sgY5oClpCvpIzcXIrWm5/SfgqZxBFhR/CxTh0j6Dhl9CMoiVoXV1uRtMBUFqnxumY40j10Qx9qaKQVZG/MsL8YcPXsFIs0Ik19XeWbxtBzE5Rfl75n9XvWUiEwLi6OYzXub/FEccO/mdXq2w9U5zJs1PNdCJBqdhFhixkrLYzIzvPnmkGef2eOpJ8b4TotnHljk+tignQ26nRiRTIiTPi4RG50FtI4xwuJwPEfFFg+cPs/EBFyLBB985DnCxOLW3TfY2t9lsdmh2xF8+42Qx871MEGf+WQGskbcrWPN91h8/DEsJhjXw/IadM2c4darGGfK/q0Bj50/y/yBFQ52brB84kn06B5L12eMBkP29wOiyOJBP+HDK+/HsVzeDl5Az7fomTGLzozEVlh2gi0ssAW2EDTakmZHst+fE0WpJ0nkhe6MhoQKzQSkyGJLMsqPUnluzKPgs1Bq81GsfF6leb9jPRTzOldJOUJ5KaZEPrez3wvaXvF5ZvGvflB4AkyhaOTr6Tj1vNRfjqUazuajUWn61HTKWyRxDJaNhUQmCfN+n289/036hwPu9PtM1Jwdp8PK4pDRcMap5hJ7kwMa0RKzOxHhcoh/soZTtwiHGt8HS2qCIEYNY0yY4GmXRs1nsD9ga+s6e4O7BMkUodOAcIMhUUnqtZECKW3iJC7evYwHKuMwqqHc2UImL+CYbSWpQeSHka2oisOlJ8EGqQ1qEnL45TcJ77zKWA2JOl3s5Tb1tTZet5XmZvVcfN/CUSnXTDgWnvSwG13aC4pmrYZrWVTmzJ+9WT8Kf/t9+YsjJgVps9mcr3zly7xxd5vd0ZxAR1hhSDwLaSwtEBxO6DkOnZ4LQtDfvscXvvCH/I1Pf4amU2O9YTgcRkw0zN0ardoSjogQxkGbBLSg4Qm8riGxXfpxyKLtsdiqc/XSDf7wSy8Qx/CZTz7CG69f4c7dkMaz51lY6NBMEtxQYmeBRJ6KEPU6yvfwmOO32rx28waD+SFrGydYdn3cpmBxY43hnV3u7BtWN5bxGzEqnrNzoHjmMKZnNdnRkiBWyCSB2DCOYxgo2ks1pOMjpUopMKKHdJ6mtO3dl39XkZbEbzR46sMfZGVjA8/3sZ00xXIYJgSTiKWVHq3FRaKpwMxsRJCgA51WORYG4gxs2Rl7ItaYEHANbstG+mXl2R/5+2WUIqUVURQROiFBFPBvfvfXubl5k5rvsyE6vIc14tsvcxgNSJZOEDVttK0QSqFth8iAKxMcM0MpEEbi2w6Rsag3WzQdB1dmhB6dcs0FaSaP/OA3hgwglgffEYukKFm3RSrMigW08CjI0mKeIeYC3OTAIne7p7G4lUDcwqyZUxzKBuSBfmUQMoW1v2r1wxRPLkTnHozie2UAcP4+MgtaLqyu2feOZxtKvSMqo0+Zsv2ZUvDOd8lfqVqkjDTFcXaPNIhZlDtHVmk606CKAPCcolHB90eyHOWSX1dkNhLlfKMwXBiO9JQxqcdCKZIoSouwCpvbs4TD0GAcRbw/xG/E1Dst5sMxXUtyermORnH5zTdZXmjz4Q98mLbnc1Ib+v05fVviOQ0aNReHGHAQxoZE0q2D0oLYshnEEWu2R6/T4HNffIGXX3qThl/j0x+4wGuvXOLetRnnzi7SaHZpC5ckId3vMfhJQNRpIm2DZ8XYtse169fpB0POPXQBu9XCrjforq4w2tzj1q7mzLkN/LsRk+GUcJrwzEjRsZpsKoOKE+xYkSSK0SzARCGtRQct04rmIDkYxLz8+jhLmZsFu+ucLpYOumVZhcKpMyUwr7J9PFtRblAS2Roqldo8rWZ1jLO1KHIlMq8iXlH8srmnqwo4ZYG1XBkupmi+oCqT9kjGHZO3OVNqKvcpaEbH5r5AlHS/bF0aY0CV1KQURCsiA2MMdw/2GM1mzOKEIIoIVcLrr11iY3HKmr+GIzUH/Rmxitm9vE2r06PWqeHW6wijUXNDFAdIx+BIiWW7uK5FPA/55V/737ly7U2iZI42CSpOM6lpygDyqvckSVSmLFhUFZ/qNdX+Tr1+Irtnti9KAccylB2X759nIEDYEmmnPopkohnvbrKvBsxbdepnlmk9uEJjrYkQCX7NxxIaW4LJgkdcR2Bjo4SNX6/hyNSFKI5tKvflvry7GOI45rtvvMLWZMpkPiOOQiw0xnfwew1UpFBCUrNtOi0bx4q4+PpVnjx7lbUHn2DRk1ieYBQLQmmhhMPMUrjCINEQSywMtqMZRgZX2Jys1xjfu8Kbr73C21duYjtdHn34Ub792tsMDg7Zulmn03BZXVsgCdOiT1NLMR31kUmCu7hArWmBJbl05RaHwQRlBPMkxOzdY+3Mg9TckL3AorFwCkFE6BzgWQnuMGQSxRxogaua+KximwOiSGEpQxJ2sGUN0EhpMKKTUQMygvv9tfXvJPkG7Po+Dz36aMV6Q5aTW+BYFifOnsDzajTbHWZBwGR/jFuvU1+sYzmgokxBUKkXQdRECsxcsOoS6fz50SrzTDUAERFWYHEw2OfWvVv0R31q0uFxf42V5ceZj7foW2CcmDDu05jHOEri1DzQMTYGYVlYlsKVGktIIk2a8cjzsPKiSEJkBbHsAnDmf1bBcW5oP26vrtJ3ipSzqTsig5rH7iVyjJvSXHK3fZX/n926kNwS/yevoSqwLW+R6hulpTL3jBStKq7NlYzSGlqc/mVDgOP1LkrvQv6MPPPSO6hPhXU3p3aUsRFHg6B1VrQK0mxMJSWhTJla6YtMCSqzKR3ru7yduQKTo8gjfUfZvswjJDKwmiQJsTGIRp29yYAwDCCIESpCSvCbLiZKUI6kYRu6HYfZ6JC33rjCAyvrrJx+lGVfIlzJSAiQNonw0FLjSI1lPIyRuL4m0ZogMXjSZr1ZZ/PKS7z6ykvc2zrgxPoq5x86z3cuXmZwMODetRM8dG6FzmIXFWtMEjORHUYHWwixTqNbx/MtEqW4dPkmg2hOs9FibzrCX1xgYWEZzwnZntssr51l0j9AO0PcSGCP0v1+Pza0dA+HNWQyJIjmyEQzn1hpEBMuYGNw8f2EbrdBFE2JoqTM4mWOj0XFcl+ZF0d56uVVMpu/ueIrzLF5nrmVjq7N8ialjm2OffTO9XQku44pqyiXDSppUgBai2I9FbqmKdf7cUWdyroolAOyEjamXBvGGGYmrYEwmM5Sb6SQWNLm8OAQX9U4cXKVveEBviswrmC0PWLv8h71dpvV8w5SaqKZJp6H+HWHcXDItetX2dvdZTA75PNf/QMOR0OUSjKFIKt8LkoDSUnTI/1cS4Qoi7+9wzhe9cRVui1X9s2f7jj4PpWD6n6ASINTXODhGnvqBN21JZafeIj22ipIxeRgh3q7gY3CJBDE4DuSpmejkUymEwwa17HTEtaFFeI+kLkv7yYV65IQ7I4PU8UgnJDMAowUKKdONJvhSBthEqKZpLVs0VtqMzENvvPCizwre5w4scJi16OtYRopDmYxkbAQrsTOrGSJidGJxvM8TiYQjvZ58YUv8uZbmySiQcPuEJgeq6d7XLl2m2uvXsRPYlZXn6a52EIbizBoMx338aYzmq0lvNYSw63r3Lq7ifIEd27fZmtzk8i2eTjp88ypLrWOQ9w6RTAPMLUdTrcMxob+eESgbVreAnX7UYz2EbqD3wnR2kYlAiEsDDYIH6NvgvUUcD+O5wchR13W6d86C5h1bJuTZ1bZuHAWy7Kpey5zETIaTantz2i0PWTLQkrQMQhtQAqcBRvs75VO+cMRlSkH+cEzD+aEUYjv+1y7dp2249PqzXlFCMYqPRCZbqOFw6kubIgOnuvimBiEQ2j7dL0Y305IEkWMxvIknueRpnlNLXlp3J0pAGbOUzcZSDTGoHQeAClKEAlYohwPLUGqKjDIgXmmgJSPOQqceScoquJfA0c8BPk1VYtdxaGRtsWYjN9byeRSAS2pUvROa2xBhTomOVc4z8pStDVvg6m2IVV4qkHI+XmdOmPy7CWlUpQ20RT8/7SGkCwAWqpv6dIrURj4DRJJnqTSVI18medHFdSUiqKQBYnnY174DvJrjQHS2IggjBjN5oxMzDwOUNEYPY9xPIlRMXEQ4AkLC818EnL+jIdodIlmhpe+9SpP0OHUqVVWV+p0E8MoUAxDReJYNC0HsDBaEccRBqg7Nq0EwsMdvvL532ZzV4Fs4todItlj7UyXixev8sbz36HlPEv3mbP47RZaS+ZBm9H+PdrjAK+7hOW6HNy6xI27W4iGw/VrV5jHUFtqc/7xE1xYbeN3XYLmgwz929SbIzoiRktNfzImSqDubyCtEC0dsBrY9QnBbIAUEq08pOXRark88/QCGxtbjEcxSawxGXUon+95gb2c3pOPny6UtoqSWU6KY56tDPeZQuWuYLacKlgBrZXrqtbu6vwtlYHKtaYEyJCvvxIfFs+RsoJ4y3cSUhSFBwuaHKaotVA8JPd2kMbZ5PE/xqTZjHQ2D7VWuLZDw3axhEAlIYPhNtuDPR5fO4OzKJjO59y5fI95EDOPx5iGIZ4mxLMY25FcvX2F3/3i73Dx8hsMx0OiKEr3XFO2JV9f2qQeVSgpiYWSfqwgXbUviwHJx+TdFIg/RX4gEYoGsOo1TnzqIyy+/1m8ZgPbcQhnMfPxnFpvAeHB8vIqV67fwKDwa3XaS0u0VhZ565UX0XHCE898iFMPXnhXy8N9uS+55EcMpNatw50+4XCGidMUjMJxkJZDNFJ4ruBM2ydUhtksYN31ePrJZ3j+hVf5+i/+9/zDf/QPOX1mg1qjTq/m0an7RMqwH2piYVCWwhI2TdeiYQtmW0P+61/8pwxqLtJaoGV7LAQHqDvXOPns4zi//wJ3r19k3t/G1haf+A8+gt1o0F5oYJ/+VFrORWtmh4d881f/HzxlaBqL4HDGVGlCJEoH9NwVnnAV2KeYX3iYfQcOht9l4/3nmIyGLNhtfLeO8B5EeA/S6v0YgtuY8A2EGSF0C0MTYXlY9gehsjHfX1s/eJGWhTQGq1HjQ3/94yAESRhj1Wr4qz1AYHk2bs1B5EqAqG7kf67NPyK27ZTWpoolOQhCpAmRdsKlSLM7nrHW3WDoJMx3bvNPybD5AAAgAElEQVTxj/44nYUTOO0e2oGG1+ZWuE3DtXGcBkrGTOYjzCRA1h2COsznijBIUAaMkOgkKVR/aeVuc1OkOy9KAogUs2otMkoEpaVZpBxqrRRG5LnAM3BUoUZIkVKIcmivjcGo5B39UXKrqYBoQ/HY/ML82ZQVjVUlreLxg7xqzS1vcXQi5NSerIkZiKoGG2bUgwpgygGBMSk1oaRh5IC7/D3/N11RuvL/29KuxCDwjvcQ5SR5V+BRTXea2XGyf6eyDZnKeJT3SJeHKK6L47TSexhEDLf7RIMZJo4xOsGyGykNdAq2Kzm3UGOSGA5HU548t0qjfZoXX3qTL3/tn/OP/8t/zPJKF8/3WWn5LDYFUaLZjw2RNCSWxpcOTSlwjWKyOeC/+IVfQJ9aR8oeXWnoTPcw23c4/fTTiF/7LFd23kYkM4gFz37qKaxane5SA3nmp7EAlGL36mVe/I3fpmYEXSMZ7I4YRQZrOEOFY2rPLfCcn2CsJ/De9162YoPe2mXlqTPMDvssW21sr0lsP4bVeRSPKcHsLbR8HhkNGAUOWC329gUvfGOIbfn4vsd8HiNUnso2T/r9LnNNlEC7HKjKGEOR0tZkgL0g9FUU5uPQ7Yi3rJgXpeJwXIEogLEo6YLVuVsC/3J+FXOWnFtfUXiK+h95YHauhFcnKkUK5DxuIl+aQhpyZSYH8EmimJgZruMwj0PuDbaJwghjBONE4ooGsVJM354x/dyY2IuQtsV4NmF4eMh0PiUxCmUSoigiylLLSpGmiNVUKo5na9goU6x1y7IKhTrv62rwtZSyUmhOFArfkWX3Tt/OO+QHohwIIbBsC2nX8er1rCECv2UhHIvx2KJT83juY+/n9VdfYqd/SD+OqLfr/OTP/DQ93+G1l7/NwfYuo8GQjVM/iFbdl78KohLFYH9MPJmhwyjdtGSa5MuNZtTQmHmTkyfWOHN6Ddt2ef4Pv0YgfD74+Fl+/Xe/TBIYHn/wFB95/5OsnnsQr25xomGRGNBaEs8jJnt9Xn/jFf67//VXSLRHTbfw6x6ubzDjKV/4/Ff4+Z/4CCu24t5swJ39PnY45X1Pd9j40IcQwkFlFpj9u/d4/nd+hz+6cQNvuU37wWUm4YjJ3h7B/oAb1wZMbu7x1KkG/sFnaZ4+TR2bvYUW37m1x8qZJidbPeYx2HNBzZX0E81q4wKx5aNnb4PlYftnsb1HAcm7nN335YchhRVZYHsOtucU+3ABquRf8MHIQHYuee79JIpwHIdpFDCPQvbmE26ND1hbX0PYLi++8RLbwwHrV9ZwvYC9cR8nCYkSxb4K8GoJdV/TqvvMEcwHM1SoymOqoMKUv+cWa5GB99IoloNYXVj3bEumOc6hAMyQW9urQb0lVrGs9EDOgQRUQXD2/tlDVSXFZ8nMSG9WBbY5uBAi/a6u3CttCZmBsLQAVrPzHVE4qMRNGEjrF6ZegzwgmyPfrHzflIzvnGL0DpiVZ4qpgsK8/46B/sJbUgFfZNZmnWpzlRcsAVaWA7V4amG1rfaJKQvIHX9/A2nRPNtCIgnGMfFkhokSsCRYAksn+NE0rUYfuJw9fZLzD52gv7PPpct7aOnxgUfP8j//yu9ghZq/9r4nefzJR1g4uYpfszjpku73iSQczzjc2uTKay/zv/zab6JEl8aohV9zsL0549EeX/vqN/gPP/MxVkzA9nCft156gbYz57EHaqw+9x7AJhGpIejyiy/z7T/8Ihfv3sVf6tI9t0o03MFs7TMaDxm9ccDB21s8faaJO/4NumfPUbNshr7LS5t9ls90ONPsMZwlWCZGm5ib/QmvvPASpzYE5zc6jMYRv/3Z1/ny87eYTEKazbROlGVJksyrKURaUbwY7soYlUbm4zS0HPCn2p2hjBfIM2TpI9ebYqJImda6SOtmVLxXQnA83Wb2wZFBP6oOZApmJUj+yDw0Je0mnzN57FH+TFG4parz7ujCTOMwdHaZIQ1l0GU6XiGIVVrYTmmdUXYFGsObO1e5tHsdKSw8x8OxPeIkZp7MSHQaSGzyVK5Soo060gZlFEakCRJyxd2yrKLWQRFzlf935H3L9kkpU0+rzu5S8QTJzJv4x2U6qsoPRjmAIuAh/yO3nsi6i+daSFuwvLaYWtTQOI6DZwmi7bt8+K//BG9dfIODe/cY9w+OapP35b4cl2xe7+zu8Lnf/xzBeEacJNi2xHYcXN+lacG6D4+vLmEtNVlYXaOzvEg0i5nu7BKKZeJak/eflBwOJuxdvcivvPQKxq1x+umPce6ET1Kv4SZ77N94m+98623GoUPbatGo+ygzpJFMcJwG94zHizsT/lMStPZItCFKhmxvX+H/+KVf5jPf/kOe/Af/iFA7fP2LX+ObX/kKcTzBa9t0mh3iYIDXsLjwzBo1e5FXvrnLZDfmjVsjLsQRjplQ31jksWfXeOObm3zi32tzFxdjJC2gJQULdRujplhyBbuzjpAuQvpH11GeWP/+0vrhSBXYctTyeTx47y/y/pYH2BpSa2EKtNP4njR3v4WRkljHGGXY3N2i0W5juYLk+pTN25eod10+8OPP8fu/ukmoE+qJYclx2OjUudKfYguLpp/l4IfCSqh0iveKlJeVNlkVYJAe1iXtxrJlCXRID0hV+bxqadc6vZeV5d1/twwnedGgwpoOBWApKC8VU7gQFdBfsZBX3uAdVApIQfVxoFR4HwqLf37f/B1MZomXJYASJVkn7bbccpjXbyi0qoLWk8cOWFKSaIVEFsWkKm6BMkj1mLWxqmRlGhlCyIzKocsPDUX8ApknQWaUljKHexbrkj+fHPAI7Kzy7tLKCovLK4zHQVo9WApc38WTko6tOdVwOL/Uw1ppsXBindZCl/6NA2bbY4yziKo1+fgZi+2tAa987Xm+8YXncdo9TjzyHOdO1AgbdWrzm1x66SKXr2wzCSUdu03LqxElOyyoBnNcdmOLg50p/4lQxLpOomMSfcAbr73I/F/s8WPv/TzP/Mf/OeNRxG/+q/+bG5ffRuspfsul3WwTTPdo9nwePH+KyWDK1dcPGR/EvH59yBM6YianrKwv02p02bw55BMLLa4nDtKxaWmby6+8zsVXvsVHPvQB+gc3+L/+9ee5dmOLW3cHjIcRQjrMZnMevnCeV159izBM0KqMLTmqB2ZjlLFXitS0hSU9U8wrNJzc4l8G8h+V6neBPzkzTqYk53btcs3kCkP6R/6UNKOSqkw5c+Rnma2JqmciVzjz+4m8CJg5qkAcUYxMts7z5xf7gMiAeraXmLRftNbYlg1aADGRirDkDCklcRIWdDul1ZG1LESaZS1/tjHpGOUKmFKqUAQMJvNwlEUCy4EsU7oW3SbFsb1KFOtb6D/9/PkBJT6vKgZFWzEircaGnbp7FpYWePSZJ4kxzEZDJsMJb1y9ifFqfOqn/ia257N8MnMbHLNk3Jf7clzarTZPPP4EKglxpMCrN6n5Dk3XpudYrDZsDkWdBxZWWF/pEUxidjbHeHaN9fUWrgWDmWGl49Crtdk9hNlQcuNbX+OmcZjHM6TUxEnI4SREeBHNBRtf1iHSGKEIHOie6PD+hQsk25vcjQy70mUqbEaRYjIcM3/5Kq/9D7/Eez7+QYLJPaQesdaO+czf/wRvvPIlrg8m9DoNGk0bTyV87JNtZjPJ/qu7jKZTopshS7OQ0ydDHjttMR1eotd5AsvxcbTAIgMSdi09BKwa4kjBs2Jr/XMaqb/CkmOy/x9pZEXGjszqZJTJlILUg6BkZtkyCqEEcZIQhHP2DnZp1lp0Ox26bptzj57HdX3CcIYwhsksZscynF5Z5PbuHttDRRBnwDxDBQKTFu+Co8m4RZpmMKe/5NhBZpWj0/R8GWAVojBWlwClQl/JMgApXVJmcuto1aKWW/5zqkNutcwP+pxBkeHirIp1CdKrfVkg/IoCUwUlZSrC7Ht5AyANyM0edoQ+lL9/7hHIKtUic4pF0Qi0Umlwcfl2kCmsOehPM9ro4rl5VqTcMpzTSUyRn7603KZgESwro2VU+jt9FVEod2W70nfMqS7VGAqTKxuyjEmYjqdY1gBLWFgYhOfSarj0PIeVmstiq8ZINnlweZ2Tqx12Nkcc9iOa9Rrd5SaOZdifah5c92g3PA6HgulYc+2bX+O6cZmGYxwHJrMJ8zhAeNBcdPBFHS8IiaRB12zWl7pcWF4lvHebm9qib3koFTAOIkb7AwYvznn9n/9TPvyZTxHP9/DEkFNnGrz/x5/h0utf4/LBlNMrXVypWV02rH+qw2wGey/vsNcfM4sjTs5CFhdaNNYbTA/fYqn9NBpNMB4x7A/YvLfF5z8/4SPvf4qrN+e8fXXAZDIlTjRKhxjg2rXbBEFIGVeSjaWpBrEew26mHJxqViCTDUoZR1IMYLHGjmTRyjRHrVTuXKoozWWsS3V/fLcYm6oXKZ8jx+dVvm5klulS5xWPq/fJblRpdrkkMyWgoFTl/WXEkRsUp2jmLVCmrAwtZVqJObfKG5l6HdAJiUqwLZtEq0oxR4klrawvMsU5U5oLb0cG5quxBbnXOU91XO2jd9C0sraaihZfrNU/Q0TyD0Y5eLdzT5QaYZqbVlBvNPjQJz7CaDzk8usXmU4nbN3d5H0f/QhnTz+A5bg0O50fSJPuy19+cV2XleUVfM/HlpJao4bUMQ0LerU6vXYPFlusLrWpScEwMExCC9vxcYWFa7lEsyHDWNFqtTl1okk/OqA5i7hzMGE8mpAYReLYiFqdVl0R6xi720NODWE4RTgeGw+d49EFm52bN5nMRgjXpdHp0vYcNlZr7I9GvO/gKl3/OZZPNVnfr+PHO6yvTdjrzbhtxczdKVJJ6sqw0mqQODYnn1ggmVnM9qfMR1PGdzSm2eDe17/IxtM16J5GeA2kJTFJgrRtpFUjLalVtf5lcl/Zvi9/BinBYnYYi+w0xWSWsjR40RhQRmOjSZI4s6hJLNvCH3i8+dYlQjVHCoXWmjA0TIiJpGZzMGQWJQRxnOVgJyuIVVokC4CRKyumQpEpLOHkSLrwAJSciZySkwEYkR+4ogg4zN+z9BKU/SDIwX5Kz5HvcvjmVAeRWfLT+1W40pk1UAiOs2vIbfgllUocqTxboJhiYHKPgSiq2+Z0CZEpb6IYv1wFIas7YBD6qJdCVLWsTBnU5PQjUWlH1j/5T3lnVppXBBMXdRvKOZRd8C72vhKMFZizMii5gpBXiQ6COfbUodVoYwuQto1nNG3bpldr0Wl2sZbarCw0cZRiNIVQOdiWk+730iWYHtJPNJ2FFRoejKI+bSfkTn9CPBgSWoLIc7FqNWp+QqITnMUlzCBglkT47R4nTj/A+a7F5rUbTOMpTr1Bo+7Ta/n0Oi770zEfPrhCp/1p1s62ETgsLM5ZX51ycGfGFREzEWOSxNC2Ldr1Gp7rcubpRaKpw3izz6Q/wgkjTCPi7vN/wMazbe4cGKbDQ3QUs7a8ws1bt7l06Raraw9x6eomUTxFa0OSFQrc2x8QhXFBtaMYmXy2iXdgN3F8ESCOWP6r9JaqYlDM5mwtmWwuvPtceqdU41mOFC/LDAb5HNJH5kxpfS8mm5Dk8UDFDY6oxLmyf+QVK4Cccq5mXhaK6ZnuTbZtH3uvLLtQ5T9Mupa1VllSgncGDx8B6KY0epTekOPUvlLJOxqrcbS+Qe5FFJU1lPfZccrknyQ/kpKp+SbkOC5PPPUE9+7cYTzos3vnNoeHQ4bTgPMLi9QbjUz7exdgc1/uSyb54giCgM3NTep+DW1LGjUfOza0Hclit0NnbYPehsNar8ngIGIyM2irRq1l40gXmWjccMR8btFqrrLYWWSudllvuOhA4dtNZuGcuYS46bLUhs1BRHuhR0KAMDF2rcH6yVMsd8Zc/O5biPmIpuvQ6TY4v1Kj3bT49njAQzXDcssiWWhzMOmwd+Ua/cPLLK/7LLUU/ThhpCC2BHISMIklZ062qSUe2pMEmwn7swhf2oQvv4xv1qifl7Q3TmN7jRRYaYOwnHdX1u/LffkeJAenudXWANKQ5tXPLd2ZsqCMhjjGNoaQgBFg0HzrW99ipqdYWqIExLFmohXzcM7uYEKoY6I4LsE/RwGEFGlV3mr+cVseL5JpSqB97Myo2MTJ7fzpUZS72itAvuKJSM/SEmYftV+mgczVf6sC9ALT571XouP0f5m1vJr55Qi4MalnIk8xmr9b3sQcHOlqdhMEeSG33EthcghYVQCOtOco8C9+N+kLSknlXjloAoFECn0EXBwJKK3+UDXX5m3K6BwFXD1mGq56WfK+VCoFRVKIlIYmBI4A3xZ0bcmi79JuNWkuLrB8qsVKu87u9pxZJJFuA99xcYWNTAxecMhoXmN1o4s0Cm0OWGu46FDhWh2CcMLMk8imR6vmsDNUtJd6BME+JjB0213WTm7Q9Ye89uJb1NQcVatxpudzcsFDOoY3ZkMu1Ay9js3pRxYJIo8guMdwfIOVEzWWWppJEhFhUMYimgjmieCBM1380CPUIdP+FDML8RKY33wRR23w5pZhPJ8hTIyJNCrSXHzzCo12Hd9vYNkTkjDMoJMmCMK0qnFu2dfmHSlr8wEog9rLuVbFYIXymityleVX/lAqAdW5JfMK2Vlmqqq36kiWoneTbM5VZky2L2Rgt9oUUxbNS1d/tZghFeU/NSSUjrt83ZTelGJdVvcKqn0mioJsRudxNAaNrtyHog1H4h/+GGUpN6Zrk3ogtDnqoUtjPFLaXjUD2TuksI2Ue9j3Awl+6MpB0fHZC9YadT708Y/iOg5f/YPPszcc8Fv/6lc589A5Tp45XbpL3mlmuC/3hfzQMMawvbXFv/2930uzjiQhXmxYbnqs9tosra3gPrDKA82Qpt3hrf1tBuMEp9ZicXGJ5brN4PpN7P+vvTN5kiS5zvvPPbbcl8raq7qrt+nuGQxmABLgYBFIUTBKJjOZzCjTUSbTgVcdJF6km/4B6SoddJFOkiiJB5KiSJGCjAsAbgCIZTAzjem9uqprr9wzFncdIjzCI6ux0AgjADK+AbqqMmNx93AP/77n7z1PRgzaa6x2evjOgPjSZzw6piU95GqL0cxjEc9xOtDtOUT1TXbWalzEPrHTorPSY6Pn4ffX+IMv/1dqOqbnutxcafC51/p89ekJ0xieH8dsne7Tuz1gZbvN174y5fHzQz7xmeucPXyKM424SGCRwNk44TyMkdMQMRzh1iXc6HN5mtDruzjnIS/+5Ets+V1WBj0Cv4twXVSs0kw48tXZQypU+MFQEGSZp/VL3WpcN0s3DegknfiiKCKOY5IkIY5j4iRBCsFLlRB6Cj1b4LgBc0cQx9AJanhIRqFa2k3XWC4pmdht8l78qu0/SPd1KlxgTO+XQlh+1Jmv9BXrpM4Ju32uCWS2yVB5XAnzPwspo7VdcfL6ieJgmTEVkX2nsuBBpZVVB2HdxgSDakNN8mm/5OJjBEBu3Nf5uVct+vZ3WORQA7KwGJtC2iscWpsMiyyHEOd1BvLgSiM2dXHvnD7mfeBVRDGznkpJp91htbfCYhHS8DSrNc31QZONlSa1jRa1nRa7qz51t82TFyOmiUu722W136Pnw+WT53jxmM3BgH5zwGS6IL50mEwmtKWH2OoyPIe2pwk6glrLRzU3uLYWcHDp06sHDAYtVns1hCv5vS9+jXXPQSjBx6712Oq7fP35GZMInh3HbJ0+YnPT5+Fjn6eHI3aOHT7+Mzvcee8hjxeSiYbZAuZTxTBMcKYh+vQcd6OGqvswS+jUJPJ8xqP/82vsnyQ8nWsOxzOmi4jNrS0SR/EHf/RFOu02vl9jNg8z9zqTXlngmIB7rdD53gRZ7zFkGF08uFxEm74riwe65I2irWuZfq7NqpLpu7kxgTxIVorUX75kwBeiHGdjdb3yqiH5ODbvJdN3jIHBiEybiBtreiEAlFVHa4xk7WDGWt6nRSrCVZLGGiDM/iplUWREiHlVGHc6IQQiE0hmjObeNYjSSoK9kmLGgJQyc4ksB2PbiRbyspr2lBKhzCuuUHQ/CD/4q1s5sAb92voa73zuM7S7bX7jv/8Pzh894T/923/HP/vlf8mNu69Vhs8K3xWmG0VRxGh4yeHzZ8SzIeu9Gne7ATJo4g96eDsrbG6v06PBtx49ZRIlNFd7BK0VooXAj2KG0zMaTsDg2g7tbp/p4ZTB8AWzacjO5oCTUBDJBrWdLoPrLR589REf+fxPE0wmXPg1IlmntXOdT7xxg1//L/+L83BBL/C501Lc64XgD/nwaEYXzf8buex854g7GwM2B1t0+jX88zMWkza7niIeNJBOjbO55FxG1AdwcjlnddAg1D4qdmk0JEenCzbaLmv1Ntd2dxhsrOP4HgAy+CsZzhX+msN+/0ohQKZByGEU4wqRZj/JBmK6S2c6+cdxglY63ehsMSeaL0BCOJ8i/ZheUKPledQTzdurm/z2ww/QSpHzdCFKQcR2EKThn0prhFLILJA5jbGRRZCu2TPAqochMELY1nS7wiInHemfwjqnyPEjLM5jNIMpnEmraAwXuXXcaB17hSBzj5CYOhUpSTO6X5RNG2Jj5WnPhZtlydRWFhlZJlnCsdydMnZukzkTx2D8ng15ydObLgkQQboBk5SZ9da4L1AmNbnQsARUvjsyNpmxhF7GtUyry0wYtBsN2o06Dd/BUwmDZsBbA5+43kGs9ejc2GJ75wbqbMI3X04ItaKzPcCVLZIIHCIup+e0vAbbd/cQBDhnR3SHLwkXEbsbqxxOYVZrs3azg/QSDp+f8eZn38IfjXjq19GtDtu3bnJzo8/v/NoXuEwi/Fqdn+7FXOtMGWnB89M5bTS/dely/71nrHzqo6wN1jhrONn7vsHNAMJ+m5fK52IC0yCmvqo5upyytdlhFrk4gYMz1xyfzlltKvrnY+LxMY8OxxxFID2Xlx+cABrXdTk8PCQMo9SNRaUiXWtws0B9O6NQ/vwzS3tO3K3OXYjEIsZFADr3iS+T10IQmmde9L9EXU2nm1vqrc6RjrG0r8q8v2Z9ycrwli8uCVswiHycwVWhmXctma2yUQgVc7zZQ8F2bcMWt+bGomz0lkKQQBYMXQgLk3d5WQCZn450SHQacGzH20jxqtjAtAxxlmpZl6569VjzNPJ7Zu+QPOHBD0CyfyRsQkhJf2WFdz77GW6/dod/8y9+mcPTUxZZvtcKFb4fpEwV/OTynLrr0PJ8RKPD7fs32HrtHrXeNsNnHyJ6mumLfQR9WrUe7VqLOI44ev4BrV6XQWuFxuAmjmoTnR/yeNbkpwY1nl5c0L15g063yaIOUw/W/+7nuX5tk6cP9+k059zoN3jtI3s4QZ0nT1/geJJm26fWUMydiEk055/+k9v8x//8mPrmmxwcj1i9qLH2+k3e+ext/vz/fpWbn4VAOtwSmjs1B9FtcdgNeTSNSZxU7OBK4llC/CLCm3mc+itsbm9TWx0gfb9olGq1rcIPBcKydqUpJM2kFIURrusWLj+YTbvSyTNRirlSRFGM6zrU6zWUhLPZiPliQr/eQLS6TJMkswAqUOm1ErNBWYY0o01qVU+35LK6eGbJM4w9saxlkB4oslzhKcG0zGrm3Ly2UNCH4rNlwZAx/pREl4hteaI2rklKLX1uE/bsd7V0vgmARltTvLDrlf5w5CtSSFqwg51zImdSteY20qK+KmVxWflTNw5HCmtTs5TrSJGmfzWXVZTdwVLSlF7ddtnK+CWl2lqioii4qXQaBC+y4+I4Ip7PoeZTE1CXgpkMuH1nhcbuR3DcBvHhEd1OndHTD8G9SS/o4coANRpzerJPu9thvbeK37+FOkwYXiScRG3u9RKeXpyzdv8e/YbLrKmYNH3W73yUa1trPHzwlNXWkJt3drh1c4soETzbP8TxJK12QNAUnIdzVndb/KNfvMF/+9UDajtv8fDhMR/5qQ1u371PHD7gm9/4DjdiQd1xeAPF2+2ARdfj5SLi+VSROD6y0SaQmvAsQl8u0GN4Fja42fO4aAwR9ZCG1MQKzkcjhBD4vsdkMiUMw3Q8iSwcXQiiKM4JYRGTQqEEDNlFgCjIeJLY8SxLIyR/xvYDs63vRuPZIrfsvpd/tbRaV6BYxbJjaNLVtcKib7L3pCsR6ftEZSsCQso8/TCmPJoll6Ll0VsQf3NHY903gc9pX09LEKs4y1TklIg/6FImLsgyFWG3ZxErYJN9szJg0gfksUx5U14d9/ZKQP61Vuk7ekm4C/ti3wN/deLAfhlrDVLieR6r6+v883/9r/iV//Dvkeg0E4IViV2hwjKUUnzp93+P3/nfv0m71aTh9Xjn429w9+3r9Fd6uG4TnUj6Wys8fhmzurpHp38bhUSPh4jZJePpBTudLbZuvklDusSXFzAfseJOWbCN02pRa7YRK21qqwH9VcFrfp3o/JSgWaPebrK+ucH27g5hHPL+ww9RswV7H1mj4S9wVUhzESJPT7h2b4PpeMYff/CM4NYtPvXmDW7vvMEH6tscjCRrXoPZJEJNZtRbMf26g9duMJEwmY/xIodmrUXzrZu0P3mX8zOXsydndCKNv1jgSyfL/PCTlBOnwo8rNIVFLLXIpf8Zl0+tFIlIJ8w4jnGkk6Y3zVL8maC8JImJogVCp5a6SaLQ8xnSdbjR69Gu14knU6Ik2+ugZOpPCWt6PSuVYG5oNJZHcuu1EAJDf80EmBP0fEIvW81yIqBNGkeBI7lCWu3sQia7iT3acsIlRF5/+z5K8QoyL/LUhkDuV58eb9PogmqZWuQ/zWpASewUYijVQpbFM/uvyFpi9mjQryARlhtR1t7KiCMgToxks55d0bC5mitIkCm5LtoM+7HrvF1ssuM6Djc21um1mrgS6tJld1Dj0//gcwxW1zk9mhCNXpAsJvzhuzHXN+7Q3XwbogV6fImeXjCbjtjpbrN15+N48znT0RQvGtNyQkK5jttq0zrKe0QAABr0SURBVGh2iAcd6usO610H3/FILk6pdZrErRa7164zGKzw8MkzvvPoEWoR8drtLsRnBETUJ1OUK9m9t8Z0NOF3//wRaz9/wc7tFa6t3uFAPWd/JNjwmlxehASzMV7DZTVwaXRqjB0YzYY0Q4fm2oD6tR2cZJMHHxzzld/+IvPIIZwtmI0XxIkmmi/QAibjMQiTucohSVLXtNRzp5xVqtgELf03UQqh07EtrN20S+eYBFZa5zuVm/6BTTgt2ILkVQI672vYhNt2dbLEuS6Lyry/mBU1bfzzyQN/C2Gd9jz7XQZ2tp5ixcH0SnN/uTSmlim86dGFIM7Gf9aHjesgmM0MC4OLELK0aiKzWCqNlSJWmJVZ8nfcMoxTjr0yma/05AaIJYEEr7zWMn40fghCpJHUUuL6Prfv3+Mf/9IvsbGzU1p6rVDhVfj9L/wu3/jTP4b5hFt71/m5v/05ru1dp95USO0ST0Im5+ecn89p9XdodzYZjhXRLGK4WHDwcp++30ULaNR81CIijhV+u8n2YIN4Klj3Q3zlEPTaqPUeY9/BdUeEvkPXC2jtXmewuYJfrzEeXTKdjgmcGt3WgG4whMWCuYxZdySvv7bJ1749BLfG+aXi5ZFkbfVjvPnT38A7u2S60iMUEVLERIlCX0xxvJBANFAqwKdGw13BC3aZJnWSmkf/Wp1aq5lZMauxUuGHhzwoVBT/lyLdbMp2ScgziwizE29BRszErWKNFJpYKyKtCZOIMEmYxRFxEmcpOrMJPLOGl0g0lIm4xY7LCwCvGgPGjag4LyXOFOSkMLPlqxJlF4nitposGDL7w2QWKpn4uSosir8Lf+nl7CiltjfEwEpHWrIMovNylGl2IRiUurrakLaBsTSSN6DtdsBSnZfbVZOmjU3bq4jlsMuX/yqK8+3EkqUrCgCZCkvbuJEJMCkl9/Z2ud7v4rsS6Si6PQfV6TDY2OPg0Uvm+4fE0ykzJRhOPA7GCf2LU5xYcHZ0yGJ0xKDWQAlFqx4QnV+gpKTd61IfrZLMBRv+giBxqW92mfaaRJ7CFRMiz6HvBnRu3KK7OkB6LotwwXQ2IXBrDDqr6MUMEUbEUtILfO7f3uDPvnWJ4zU5OFzQ2dxldeOj3P/oE7zTIePVVWI5xREKwhg1H+M4C2qyThLXaDpNat4G0ttioVrU11x6t/fg0XMSpVhEIYsozjbH0lnbGcs5uYU7123ZnhLa9HH7GZRcab57rFrJ1cYi9svH5M8w68PFfhdWEHLp4WtrHAuLXJdhrquUtvYfKO6rMzFUOlVzpT7ma2Vul1epKFsqmKXVZoU0sYWV7ZJ0ZaxZGZNy0p4FMJsHYMRKHkOQtW0pTres2/P7ylxYFO+UUssuGQrLY/Vqu7wKPzonZavw9UaDj3zyk1c+r1BhGVqnPpbX9va4eeMGnV6fj3/ybfxmi2QxYT4OWcQXxJFAB328eot6o8N88owknJDMRszGU2qNFr3713CEREUSR3rUmoKk1eN8eEpbzKkHO9T8BtprIDxBokfI1gpd6eN3Jb1+lkY0SXC1xvOauM0e9YYmHo6ZzxSucFlvShp9n2jR5+x8wuNHh6xtXmf33hucPPgSYStAuT6OGyKdkGg2TTdS8+vEus0i9LmYuyTjBfHkhN3Na/TWV6i32zium1kZqlFT4YeIjLQbwpBRhyu7OwubaWOMxTon0pCmO03dhzSRVizimJmK0SrJs3wA6CLCNfu7oKvl7n21r+dzs87Kmc3DZh+EEpHWRUzBq1D45S6Vp1RLy1pYPtsi3tZWDTYhEFaQNKJEnO1yGZJlCwiBLl3TZD+yW2U5C5G5ZMnia5WlKIe5lF2ncuXT55s9z8x1qwictpRVzmiKuuT0xbJK2wTNvobpb67rELgOURKxCBOChsvuYA2vu84H7z1n/5tPqM9nhFHMcSSJu+sk45CmPIZFzOTsmMV0QlMGdHa3EUmCjiSu7yBbTaJ6i9H4go6YU6/XaXgNXK/BzA1J9AynvUJf+ARdSaPVTNtLJbiA77ZwWn1qtTNmZ3OiRBE4Dut1h3o/QM4HPH1yQG+7z82bW2zfusfZh3/ColtDuwLpRwg1Q4UQS00YNEjocDbzSBYQqynJPGa1t8rGrTvUVr6NUz8hGc1YmBSZVlYrO6bEJtlCm0YWpcdpxknRZ8r9o9wpiz9sl5zSL6ZPy3KMi6URS8i1qj0uTJml1UcwPNl0+FeMUVMuXbyDTF3setrlt0uSj4mrxTRnfde/BVwJpEan6Z7J4qNMwUy7L+lwTCWNcMtjg3RRX6xrF+/moi2Kz00ZMQP/Sm1/EPzIIxgNsXGwGqAiOhW+Bz7xzqdJkhgpJUEQoKIZCHD8Ljgj8Gp4/QGrrS5Hp+estFv4NY+xXqDUnLoTMF9EbN+9T3IRIYQk8BU60Yx8HynnhLGmW3dxRYBMXIKaYpzUwBvQ8FwaKOoNLx1oiaLh16h7dWSrhduJ0FGdeBShRI3aYsLa+gqn8xqnl5e433mX1+51afXvIPx3U19fCQgJjoMXtBnqGiO5xXjhcn4aMZnOEPKIDqvc321Ra/bxak2k6y5tblShwl8O0t4d1fAKpYrdNW0LuUiXzB3HyYLqNEluKcusmSqfFdE6dUcRiYQkSTciy6bUOCf2lmUuc4WQmnyTMZvQGO8bs/luKiRETjKN/7yyzG+ljEaGtVK4Hyxn/zC/yNLxZtI2qU3NJlDZ30Lk7hi2bzH5JQtCXZBji7gY0mSOz+9ok0Bzvu0XbdrNOqtQDfkzK8pz1cJp7mEkgy4aPBdd5v6SsmGiTGLSshiRJijva2fXRZj2s6qPSHePPTw5Y1T3SZSi3W2xrRq0Yp/f+50vEr6c0m76zLTgLHHYaK9zcXLMqob55SnJIsbFIUxg4/ZrREONlDV8RxMFLgvPSd/3kabf9JFxQFM41AKHqaojvBWanksThe/7JDpGKGh6dWpeHdFu4esW8+E42+DKp7aYsrG1yunUZ3//MSuPAzbWb9Ho3uLMfx8RReCCFhLh+jiBw0jXGMothjOHk+M5YTLCAbpywM3VNnL9FvXBBl7nEOdyhJ7P0uciykK35PhiEUvjUFOswOlS/yqL5TJzvdp/zfiQ+XFXyTO5Irc0SSH8RJEuVGDGdTnAuEyMs3eKEIUFHqx3hd3prEDj0ggyZUrLlV9nSWgYcm7iN0o3sFc2yl0dmb+7dC7cAFCqaNGi6Ev1szaQ0+Srkkoplt8dppCFHrCEVN4P7PY2z6voKz++bkXfBT/IUkeFv9mQUlKr19M/sgEsXR8hXeL5glqrQ6O3guO5zGczXh4cs7U5IJlPmCUR7nROtztlvb+FHIXEkYdyFriBwvccom6DzsDh5YXD/HKMJxWy20DUBRutLseTKbXAxxUgPFBJwmQKQWcNXyZ0mwHNRoOw3cSdO8wbt6iNT7jVvUa8O2Vy+JTTowPe/8Mv887n3+DG/dc4ffmA0WzMJJJMGi0G3XUOph64O3znww+ZH0/odTvcf2udT9//HDEBUruATAVFhQo/TGScMt85dCk3ep5Zw1gjFSiSnKwashxFEa7nZPN1OgEaV6Q4Tv3VlZncRNnP3mQPsa2A6ecFOc1TrAqRpm+0LIQiI8VKFXneSwybLHA4rVF+z2LJXeRkv7CapyRJSpkR2fJELIub52RfZhuAphmJErQhQxbsIOTi3PR+Ujoly5+5qzK7IVsWxJSFaYQWxWZJqrz5krFMWhe07quXjjFfWN9lBM6xymVWAMxxhoAI6/irU7tFsMxKk/VNeo5kEca8DIf4E4dWs4EfJbz37Qc8erjPnbUtTi8nHDy8QPgBe3s3ue26/Mbv/hrBxz5DFGrW6nVurA/Y27uNP1UskgDtzqjVwIk86NXphg5HFy6L0wu8u3vIVgO32aJVg9PpnHoQ4AiFcCCaJSxCF7+zQiAVvWYNTzdQnRauCghrmzSml9zp7zG7ds54/wNefPiAVX/Gm5+8xs3XX+N4/9sMpwsuEp+g2SFodziYe+Du8t63voGeJOxc3+L1N27y5vW3WcQOJwfnhNpHOAGO6yOEg+MAjkMSR6XdhYWQ+S6+sPS882PKnxo3wHzVbYk8lsXpq+23pVUk+8Qr98lEZUaiJTJ9hyx1znKwbfEuMAHI2u5DVhnQGrlsLX8FcTZ1ssVLSZSYymK1l1Xx9F0kch6iRclCkZFx+91lCQ3LwGHXo3gO2f1tF6rsp5SO9fxUvlp69aEUsRW2waR0z++BHytxUKHCXxwChAsIlBB4gYd0HBCCRqPJO3/rU2g0k8mEeDJGz2dMEkVrvY2/ucn4vQ+otRycWg8dtmhu11GHD2jVVolGLaJzB38CbstHSsGg2UUKySKaE00mqHBKFE0I1ldBS84DWGt5tBdtzk80tcUFre0ezw8vafqwfWOPqbrF14dTXvzKb/H3Pr/J5vY1NsILTi+nPB06/HkYMBSS8xcPOPzwGR/f2+Nzn/oUO7c/QRgOcYjRIkbjg/aASiBU+OFBqXSiszPqOI6bW8HtyVVKgUpIc6lnxN2QdnMtlO17XEySZkJTWuW7JJup28myf6RzmjQGwWJSzQpQIp6isFCbcpsvimX3IjjxVZk+cqJNYWTMa50xWJvL28LCILfEG5UkspSrtpXVsvgpy3JpLOimEikvssa30riOWxIMeclTkyNOfnhZ3GBSj+bNaK9U2JbbgsQJI7CwjyvaP7/PVZ6WP5g0OD3Jn2fJQG2Oyxin/cyUVqgEXCnRCuIwYnQ5IprOmM4jTk4veHpxziJR6EXM1999l29++12klBy9POb2+gAPzXCxIHJinI0N5l//Fp3tFjjryLZDY91BnT6jVVtldt6kfg5uV+K1XFxHMGgGSCGYLaaEwxGL+ZyEEH99DaUcTryYu7UG+qSFmkQ01IT6dpfHL87oNTT+/TeZhpo/eX7O04Mv8PmfW2f3xi2i6Qn7ZxEvLjxOpj4jJOf773P08Cn/8Gff4a2PfZbe2h5ROMFxBO2ex8c+epfTowNGlxdpKu/RsBCJ+b/Zc7T7TElclomw+TSPpbnC7cuRN5rCsn/1yCV+KkRpZsqt3NmYEojULdcSJnZBjXtSTmjtPi/SO15xlcvKV1qhMsLVXk1YFkfZC0YgKYkDimvaAsGOwSjdyhIEwurshpwXrl5lgl5qz1fx9vxVYr9nTJyOyFff0s3TsnevWZWz3rfpu8aIx++NShxU+MmGNWj9IMg/S3+mP+bTOXu3buJJQRJrPKfN9Rt3OTqfUl/fQE1GxLMFvuvi1wOS3XcInj1E1CaI2Qlq7KN3t1DSJQgSJudjLh4+gBrIQZdJrOgHDsJdIXDauI6P00xw1gTx6oD94yGr6gjRv8FZ1OcohEHb4dnDGv/ztx7yM3cEWwOHVrvJ7nqNZ+OEl/sTZgdzPnlzi4+/9SYb1/eIojFSOiQ6QAiIkwVO7OKVLAkVKvzl4LmeMUhjMnEYYQAmVWeRVUNkFvgkSTKCnk0+WmcbBhWZPUyAn5moTKYgKOiNlBZBN59KgUoUUpnJVy8z1PT6WpeIgU30vx/sEbRMDwz5yFcz8usX1MxxUxKrjDuFdQ0p7Uld56sl0pq4C5GT1tUxblzGampSvQpjIc3OzMSHxmzAlOa2zwWIyFZo0g9KbWG/Nl7VVibb0zJBLLXU0qMwZEq/6mjreaerHFadi5Lk95ZCkChNGMVEccJ4usBzXBaLkMeLs3RFRoPScZZWXnNjc5fT831ajmaju8Pe9Q3uvP4WR2cTWrs7xJMRIpjhOz5uq0uy9QmC5x8iapfoiyN05KO8Pko6BEHC+HTE6XvfoL7dY+4GhEqzEngIr4cn2zhugtON0I2ERafF+fGYTV7C+n2+OmySBBH1RsSH+y5nv/mQn31dsN53WWt3CJs+z0cxLw8XzA5m/J2P3uTNt9+mvdInSeZIx0UkHm4w4+2Pvcnzg5dcDEfMF4ssVaZmMoZkEWbNKLPxk/abInA1bRu19MxN3yseXHkFyVj3lwNeixNMLzckOMualz1XaWXNEnY5dBH0a/qFIhXQhrgW43m5DxZjyNa+dplyDZIfr6zRXDYoCAyJL+/hUGgnkZfFxpVXiu3ek/1pXK+WVxFMmWyXIDtLkzFKpP8Wwkks3cPeN8SRxWqKCUA2WeQMXNfJzqvEQYW/zhBXvfGWJ20AP/CZJQmb16/RW1nn4nBE4Pq8fPfr9Pb2mAEiCPA6PdR8Qv2NXWLhoOchjGZMvvOIZHRC//Y1Pvxwn8PjQ/p9QTDoIz2H9U4T1dtER5LdQCLGCVEc0FtZ4+S9F9S2r9Hb6pBcRrSPThktAlbuDPjoL/wij7/2q/zRi2P655rrGz4bW5I9X3Pz+ioP9CnX6y3ajQnx9D0WCxDBFsLZJormaBnSqAvawstzz1ciocJfFrZLj9I6XxVQWZpDJxOjMiOoQog0n7i4akHPs2Zk1nBhkWbHkQhldm5NJ9NlEm3SmILONkuzrJz28jvlyVpYZdHm/mDxmeLcnLiIq9cxnyy7NpgJ37bC5rewBIOQTnZFZVntRd5WTm7aLwog0TiuW1oeETpdnSF3hSLLQpNeTwqZEQWV7+9QkBSJzPye7c2WvlschMkDb2IYigZNf9iWSXOeLC0JmGYr/pbZcoZaNukKW0iln9krOubZJUnRdkmsCOM0U4/neGn76eIZHZ+f0ljb5r3DfWK3z+1aB+n7TJ88YO3+XS6HiqDdwlEBJCG111vEOBBGxGfnzL85wTnt01gf8OLJAS+OXrC16TG/hFrHY6XTQfXW0ZHkViAYn0b4tS6OnnH26Izaxha97S7zkwmtFzOSdpPNvRus3L3N02/8Ol94fMLWGdy+BkFXcKcuuHNthQ+SU653u/jyiGh0SZT44K+D3CCaTam1Oty79zqT8Rw0PH/+nOHlBY7r4itNGtCfPlXXEahEY6fjJO9vZiXvFWNEF8QzH1evVNZlq7SB0sYCn2U4y8eEfVS6a7NtDc9jCa7cpehLJg2r2dvAjCF7LwO7SwttX8de2bDeGtqMx8x0YQtnSzRpq49ekUjWvPsqdx3znXGFyo0blHeINu3pOA5ap6ttSEpjuSD/rxAx5nNhwrDTwqY2G7MjtFMq7/dCJQ4qpPhuprWfJLJpWSygsFKl+cMlbq1OEDRxRcDzP3vI2vo6QRISywC58OFCIestZMOhtrFGfHRCqCKSaI4eJpy8L5ifJdQDn6YX40iXRQjnBwd444S3769x+uSM1a5k0K/jyyliMaYWJ1w8fUh7NeDuepP6pebo5IyXo/e5ffcu+4cJSTTmUgmcqeRiNiUaRux0HRo1zWR2SXIS43sBl+OYOFZ0O2vEniCZz3GQtJodhOtiXjo/SY+two8hbLJn5khrCbt0KOTkP3fD0ZlJV5Jfx/jGFhZqywafT852/y1Px/aEZhPzsjz43n0/5wYWzAq7IQ+GCBhjaU7frXawL2OIivnQJhVmQzST7922QKaESCIyUmLaN+W4MtMTmYXUyXYv1iaVY+qSUVhoJXEYE6voFaRfWqqssMKa4OtcJtkWWvOPLrdtqez58RZhWbJs2kUp3JMKYobVlgIwCauKd3e5vymtUCrb9C5RSJGQ9Sq0FnhuQBwnhHFA7HhEnsNwPOT5t/ZZ22rizid4bhMxAuFIZL2JG0hqW+tEhy9Z6Dl6EROeKGbDkPlFQqsW0HQVkfRZDOeM9o+pzTRv3Vvl8bcO2d6o0W2BDscEiwl+lHD2+AFr203e3GyzvxBcHozh4pLX7r/O42dfY6FCziOJN9YMZwvi8YK9VQ8/UJyfnVAL6iADRqMFSRTT7a5B4LC+uc713R0O9w84fHGI6/p4nkKSbgpqhpTUab82RDptW513cKFFvqs4kLu5XKUBxdjNmPSriaXRt4VCTrtPWfmRi93SR3asT/H87e4j8jgfc21xZTwW97Fc37LrmN28zRWLIhWflUTDUjmsRgCzCqCLewmZivNX8ajluqXjqHzMsoujEUymva+4VXH1mrmYLl3XiOy0nolKUpHyAyyl/kDi4Mtf/nK+OUaFCj9JMC+1KIwR2YsymoU8/NIH3Li/jRqeEcY+euHiJRKn28R1NGocEp2eE8ZTlJ8gaoLRVCCcLsEgIXCm6FqLmahx9uQhDx6es1Hb4/33nrC11mBzI0CqEdHTA+T+kGcvn7B5t48M+rwcBrx3vCA5e5dP//2f5/xsn8l0iBAOnlfjYjRhdDLn9dc6uK6DjlxcUaPVbHI6CwnnfdbX9oh9Dwk0pEOr2cXx0uFcCYMKf1EcHx/nv8dxjMm6AaCEzHfKFRRuMyJj04Is2DY7Iu9+OhUHJWu1mSh1EbhqSYTcjJ8v9RfmvtI1bN2wHHBbHPddBoIhSIJ8ZWL5SGXUgfVlYY0zZNq6obUCkNNdu666TFYM6U+WJngpRJp5iSzOwrhu5RvQaXSStqtUTioOtEY4DnEc5b79JT9uIbLdkQvyKEQqDsp7SpTtnjorZ6mepiVkdk2r7UqeJ0ZYZSRNJLoIDrcs08vh2aYvFH3G7IhbiMfUOJ1aksncU9KyCoRwQcecDi9x6wGH5wd85dsxLx8+5s4n9qgnc0I6uAuJ6/o4rQBXQjIKiY6OWYg5oq5JpGA6dxBOm9pawvsfjohajxiPp5w832f/cMJ6cI2vfeUD3ry/QbuTwOSC+PgC8fiEp4ePufFTm8zDHo/PHZ6fXuLOn/PJX/gcRy8PmM7GfOA3UFowHM2YXYS8ca+DFJJk7lOvNXA8j8u5Ilp02dy4xURo5sMhB0+fcfTyiMvLS8IoJIqiVBgkSf68Ym1c1kSefSy3Wuv0d3tzLEM+7eBy0yfsY4z4vRrQXB6m6cpitheHrf9hSUBbQtuIGOtehaAVpQuJ5WPLJn/reF2U7RU8394WrtDI5VGQv/myslyNVxIIpTLxe5V0S22Cw3VenZJ41tZddErgBYJEJyWDjNaaRKTfaaWzlRYzPos4KrvZimBnXbwHxFUDz6sgvtdBQojvf4UKFSpUqFChQoUKFSr8REHnG8yUUaU5qVChQoUKFSpUqFChAvB9Vg4qVKhQoUKFChUqVKjwNwfVykGFChUqVKhQoUKFChWAShxUqFChQoUKFSpUqFAhQyUOKlSoUKFChQoVKlSoAFTioEKFChUqVKhQoUKFChkqcVChQoUKFSpUqFChQgWgEgcVKlSoUKFChQoVKlTI8P8BL1g2uZqc4n8AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "By placing our rendered image onto different backgrounds, we can clearly see the varying degrees of transparency throughout the image.\n", + "\n", + "While this naive strategy works pretty well, the channel visualization features are positioned all over the rendered image when using the `ChannelActivation` loss objective for model targets. In the next section, we'll demonstrate a potential improvement by using a custom optimization loss objective.\n", + "\n", + "We can also see that the optimization process is working well with our setup, by using the `plot_loss` helper function on the `history` output of `InputOptimization`'s `optimize` function." + ], + "metadata": { + "id": "E4Jr_QUw-xPk" + } + }, + { + "cell_type": "code", + "source": [ + "# Plot loss vs iterations\n", + "plot_loss(history_basic, title=\"Basic Alpha Channel Optimization\", figsize=(8, 5))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 350 + }, + "id": "N4VUvsoQ-wj-", + "outputId": "f444d5c9-6d59-44b6-d10b-6a8fbccbd498" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFNCAYAAAAKBrb9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9d5xcVf3//3pP374pm2wqSUgjoSf0okgv0hS+KNJUENQPKn70B2JBqYp+LEiRqjSRIoKEGmkSUkggpJLeNtkkW7Jt+r1zfn/ce+6ce+fO7Gyb2fJ+Ph77yMy57dyZyX2ddznvQ0IIMAzDMAwz+PEUuwMMwzAMwxQGFn2GYRiGGSKw6DMMwzDMEIFFn2EYhmGGCCz6DMMwDDNEYNFnGIZhmCECiz7D5ICIXiOiK/rgvO8S0Td7e9+eQkRXEtEHhbhWVyCivxLRbQW+5gNE9LNuHvsTInq4P/WJYQAWfWaQQERbiShKRB1EtI+I5hHRhJ6eVwhxphDib93sExHRZiJa09N+9CZEdDoRvU9E7UTUQETvEdG5xe5XTyCi8UT0FBE1EVGYiJYQ0TldOD5jsCOEuFYIcWt3+iOEuEMI0aOBWm/3iWEAFn1mcPFFIUQ5gDEA9gC4p8j9ORHAKABTiOiIIvcFAEBEXwbwHIDHAYwHMBrAzwF8sZj96glENBzABwASAGYDGAng9wCeNu+XYRgTFn1m0CGEiAF4HsAs2UZEZxPRJ0TURkQ7iOgWZVuIiJ40rcQWIvqIiEab22yudSK6mojWmlbyGiI6PEdXrgDwEoBXzdeumBbdAiL6MxG1EtFnRHSyY7f9zH3aiehNIhqpHP8cEe02j32fiGZnuQ4B+D8AtwohHhZCtAohUkKI94QQVzv2/a3pMdlCRGcq7Vcp97+ZiL6lbPs8EdUR0Q+JaC8R1RPRVcr2vxLRvaYXpp2IFhPR/sr2mUT0FhE1E9E6Iro4x2er8gMAHQC+IYTYLYSICiH+DuB2AL8z7xtEJIjoerPfjUR0NxF5iOgAAA8AOMb0FLUo/b3NcW8/Vu7tfCI6i4jWm33+iXIvtxDRk+brP5vnlX+a/P0R0Y1EtEn5PV1gtnfaJ/P91US00bz+y0Q0VtkmiOhaItpg/q7vlZ8FM3Rh0WcGHURUCuD/AVikNIcBXA6gGsDZAK4jovPNbVcAqAIwAcAIANcCiLqc9yIAt5jnqQRwLoCmHH34MoCnzL9LiCiQo9tHAdgEw0r9BYB/mhas5KsAroLhOQgA+F9l22sAppnbPjav58YM8x6fz9EP2Zd1Zl9+A+ARRSz2AjgHxv1fBeD3joFPLYzPchyAbwC4l4iGKdsvAfBLAMMAbIQhzCCiMgBvAXjavI9LANxHRLPQOacCeEEIkXK0PwtgIoDpStsFAOYCOBzAeQC+LoRYC+M7XyiEKBdCVGe5Ti2AkHlvPwfwEICvAZgD4AQAPyOiyc6DhBDfNc9bDuB4APtgDAYB4zs/AcZn9ksATxLRmHz6RERfAHAngItheLe2AXjGsds5AI4AcLC53+lZ7o0ZIrDoM4OJf5kWUSsMIbhbbhBCvCuEWGlatisA/B3A58zNSRhiP1UIoQshlgkh2lzO/00AvxFCfCQMNgohtmXpy4UA4gDeBDAPgB/GYCMbewH8QQiRFEL8A4boqvs/JoRYL4SIwhCzQ5V7e1QI0S6EiMMYlBxCRFUu1xhh/lufox8AsE0I8ZAQQgfwNxiCMtq81jwhxCbz/t8z7+8E5dgkgF+Z9/EqDAt8hrL9RSHEEiGEBmNwIu/jHABbhRCPCSE0IcQnAF4AcFEnfQWMwYnbPdUr2yW/FkI0CyG2A/gDgK/kcX5JEsDtQogkDHEdCeCP5me/GsAaAIdkO5iIagD8C8D/mPcHIcRzQohd5u/yHwA2ADgyz/5cCuBRIcTH5nd/EwzPwCRln7uEEC3m/b4D5XfDDE1Y9JnBxPmmRRQC8F0A7xFRLQAQ0VFE9A4ZiWutMKwoKQZPAHgDwDNEtIuIfkNEfpfzT4BhmeXDFQCeNQUsBkPAcs0C2Cnsq19tAzBWeb9beR0BUG7el5eI7jJdxG0Atpr7qEInkV6JMZ303bqWECJivpTXO5OIFpnu5BYAZzmu1WQKekZfc90HgP0AHGW6oVvMc18Kw7rujMYs9zRG2S7Zobx2fsad0WQOhIC0J2iPsj0K+71amL+n5wE8LYR4Rmm/nIiWK/d8INy/OzfGmvcAABBCdMD4jscp+2T7vJkhCos+M+gwrfV/AtBhuFMBw238MoAJQogqGPFSMvdPCiF+KYSYBeBYGFbn5S6n3gFgf5d2G0Q0HsAXAHyNjFj7bhiu/rNIicU7GOeIt04EsKuza8Fw+58H4BQYLuJJshsu+64z7+FLeZw3AyIKwhi8/BbAaHOA9WqWa3WVHQDeE0JUK3/lQojr8jh2PoALicj5PLvYPO96pU2d0aF+xn293Og9ANoA/FQ2ENF+MEIE3wUwwvw8VyH9eXbWp10wBkvyfGUwvDk7e6/bzGCDRZ8ZdJDBeTDixmvN5goAzUKIGBEdCUMs5f4nEdFBROSF8WBOAnDGhwHgYQD/S0RzzGtMNR/cTi6DITQzYLhTD4URV65DdnfyKADXE5HfzB04AIagdkYFjDBCE4BSAHdk29H0JNwAI/Z8FRFVmolsxxPRg3lcKwAgCKABgEZGgt9peRyXD68AmE5El5mfgZ+IjjAT2jrj9zAGPI8QUS0ZiZlfAXAzgB85PCg/IqJhZEzn/B6Af5jtewCM7yTvoluQkez4OQCXOvIOymAIe4O531UwLH1JZ336O4CriOhQc0B2B4DFQoitvXwLzCCCRZ8ZTPybiDpgCPftAK4wY60A8G0AvyKidhhJWM8qx9XCcL22wRgkvAfD5W9DCPGced6nAbTDiM8Od+4Hw41/n5lJbv3B8C5kc/EvhpGM12he48tCCNckQQePw3Dx7oQRU16Ua2chxPMwkhy/DsNS3APgNqQTy3Id2w7gehif3T4YA6eX8+hjp5jnPg1GAt8uGG7pX8MYZHR2bBMMj04IxmfQBGNwc5kZJ1d5CcAyAMth5Fo8Yra/DWA1gN1E1Ije5SsApgDYpWTw/0QIsQbA7wAshPE9HARggXJczj4JIeYD+BkM70s9DC/UJb3cd2aQQfZBMMMwhYaIrgTwTSHE8Z3ty3QfIhIApgkhNha7LwxTLNjSZxiGYZghAos+wzAMwwwR2L3PMAzDMEMEtvQZhmEYZojAos8wDMMwQwRfsTvQ14wcOVJMmjSp2N1gGIZhmIKwbNmyRiFEjdu2QS/6kyZNwtKlS4vdDYZhGIYpCESUbU0Qdu8zDMMwzFCBRZ9hGIZhhggs+gzDMAwzRGDRZxiGYZghAos+wzAMwwwRWPQZhmEYZojAos8wDMMwQwQWfYZhGIYZIrDoMwzDMMwQgUW/m0QSGt5YvRs7W6Ku2/e2xdAcThS4VwzDMAyTnUFfhre3iSV1fLChEXe+thabGsKorQzhB6dOw/mHjcP2pggiCR33vL0R89fuwSETqvHrLx2EqTXlmL92DwI+D6bWVGDcsBJ4PVTsW2EYhmGGGCSEKHYf+pS5c+eK3qi9L4TAt55YhkWbm9AW0+D3Er5+3GQ8uWgbwgkd5UEfOuIaAMDrIeip9OeqbgOAmbUV+Mtlc7DfiLIe94thGIZhVIhomRBirts2tvTzhIgQ9HtxxoG1OH12LQ4YU4mx1SX4wanTsWBjo2HJez1YsbMVPz59JmbWVuCwW98CAAR8HpQKL04+YDQmjyzD4wu34nN3v4tj9x+B8qAPY6tLEPJ7cdrs0ZgxugJlQf5aGIZhmN6HLf0+pG5fBDUVQQhhhAWqSwMAgK2NYTy/rA5PLd6GlABao0nrmIPHV+HqE6bggfc24bRZtfjeKdOK0neGYRhmYJLL0mfRLzJJPYVdLVHc/+4mJHWBN1bvtoUClv/8VGuwwDAMwzCdMahEn4jOAPBHAF4ADwsh7sq1f38XfSetkSQ27G2Hz+vB+fcuwDkHj8HssVW4+oTJ8Hl5sgXDMAyTm0ET0yciL4B7AZwKoA7AR0T0shBiTXF71ntUlfoxd9JwAMDxU0filRX1eGVFPbY3h3HnhQcXuXcMwzDMQGagmY5HAtgohNgshEgAeAbAeUXuU59xw2nTMWlEKQ4ZX4Vnl9bh5U93IZrQi90thmEYZoAy0ER/HIAdyvs6s21QcvjEYXj3RyfhdxcfAj0lcP3fP8HVjy+FpqeK3TWGYRhmADLQRD8viOgaIlpKREsbGhqK3Z0eM3VUBa4/eRpm1lbgg42NWLS5udhdYhiGYQYgA030dwKYoLwfb7bZEEI8KISYK4SYW1NTU7DO9SU3nDodz193LHwewuMLt2LDnvZid4lhGIYZYAw00f8IwDQimkxEAQCXAHi5yH0qGLKQz5tr9uDC+z4sdncYhmGYAcaAEn0hhAbguwDeALAWwLNCiNXF7VVhuezo/QAA7XENr62sR1zjxD6GYRgmPwaU6AOAEOJVIcR0IcT+Qojbi92fQnP1iVPw0OXG9MvrnvoYf5i/ocg9YhiGYQYKA070GeDwidXW63kr6jHQCiwxDMMwxYFFfwAyojyIK4+dhDMPrMX25gieWry92F1iGIZhBgAs+gOUW86djXu/ejg+N70Gt81bg6aOeLG7xDAMw/RzWPQHMB4P4WfnHIBYMoW/fbi12N1hGIZh+jks+gOcqaMqcMoBo/D0ku1IaFypj2EYhskOi/4g4NKj9kNjRwJfvOcDzF+zp9jdYRiGYfopLPqDgBOn1+D4qSPR2BHH1U8sxY7mSLG7xDAMw/RDWPQHAV4P4clvHoWHrpgLIYB1u7lEL8MwDJMJi/4gYuqocgDAxoaOIveEYRiG6Y+w6A8iKkN+jKoIYuNeFn2GYRgmExb9QcbUUeXYwKLPMAzDuMCiP8iYUVuBdbvbEEloxe4KwzAM089g0R9knHrAaMSSKby7rqHYXWEYhmH6GSz6g4wjJw/HyPIAXlu1u9hdYRiGYfoZLPqDDJ/XgxOn12DBxkakUrz6HsMwDJOGRX8Qctz+I9EcTmDt7rZid4VhGIbpR7DoD0KOnToCAPDGai7JyzAMw6Rh0R+EjKkqwemzR+NP/9mAw299Cy2RBACgqSOOl5bvLHLvGIZhmGLBoj9Iue38g7B/TRmawwm8ZS7Cc+2Ty/C9Z5Zjb3usyL1jGIZhigGL/iClpiKI+Td8DmOrQnhjtZHJv6UxDACIJ3kJXoZhmKEIi/4ghohw4vQaLNu2DwCQ0Ayxjyb1YnaLYRiGKRIs+oOc8cNKsC+SRDShI6kbU/g64lytj2EYZijCoj/IGVNVAgCob40iqRuWfiTOlj7DMMxQhEV/kDO2Wop+DFqKLX2GYZihDIv+IGdsdQgAcOnDi602XoyHYRhmaMKiP8iprQpltIXZ0mcYhhmSsOgPcoI+b0ZbOMExfYZhmKEIi/4Q4KI5423v2dJnGIYZmrDoDwHuvugQXHb0ftb7MGfvMwzDDEn6negT0S1EtJOIlpt/ZynbbiKijUS0johOL2Y/BxonzayxXj+6YAv+u6GhiL1hGIZhikG/E32T3wshDjX/XgUAIpoF4BIAswGcAeA+IsoMWDOufGHmaHx44xcwZWQZAOC+dzYVuUcMwzBMoemvou/GeQCeEULEhRBbAGwEcGSR+zSgGFtdgtZoEgCwalcrhBBF7hHDMAxTSPqr6H+XiFYQ0aNENMxsGwdgh7JPndmWARFdQ0RLiWhpQwO7sVWawsYyu+0xDTuao0XuDcMwDFNIiiL6RDSfiFa5/J0H4H4A+wM4FEA9gN919fxCiAeFEHOFEHNramo6P2CIsmpXKwAgrun4yoOL8Mn2fUXuEcMwDNOX+IpxUSHEKfnsR0QPAXjFfLsTwARl83izjekCU0aWYbO5xK5candtfTsWbm7CT15chde+d0Ixu8cwDMP0If3OvU9EY5S3FwBYZb5+GcAlRBQkoskApgFYUuj+DXRe/M5xWPyTk1EZ8mFvWwyvrazHH+avBwCE/P3u58AwDMP0IkWx9DvhN0R0KAABYCuAbwGAEGI1ET0LYA0ADcB3hBA84byLVJX4UVXiR01FEHvb47juqY+tbSGX6n0MwzDM4KHfib4Q4rIc224HcHsBuzNoGVURQkN73Nbm81KResMwDMMUAvbnDlGkpa8ip/MxDMMwgxMW/SHKqIog9rbHbG1NHYki9YZhGIYpBCz6Q5RRlUHEkilbW3OYRZ9hGGYww6I/RKmpCFqvLzxsHC6eOx7RpI4oL7vLMAwzaGHRH6KMqSqxXp950BgcPtEofNgUjmc7hGEYhhngsOgPUWaPrbReDy/zY3hZAACwL8zJfAzDMIMVFv0hSkXIb70eXhZEeciYvdkR19DUEUcsyW5+hmGYwQaL/hCmNGAU4xleGkBZwBD9SELDBfd9iNvnrS1m1xiGYZg+gEV/CPPyd4/DDadOR2WJD2VBYwCwL5LE9uYI3li9m5feZRiGGWSw6A9hpo6qwPUnTwMRodS09Lc0dgAA9rbHsaa+rZjdYxiGYXoZFn0GACz3/qa9Yavt3XUNxeoOwzAM0wew6DMAgFLTvb/ZtPQrQz6889neYnaJYRiG6WVY9BkAgN/rQcDnwdbGCADgwsPH4+Pt+1DfGi1yzxiGYZjegkWfsSgLeJHQUygNeHH5Mfsh5PfiW08s44Q+hmGYQQKLPmMhk/lqK0OYUlOOG06djhV1rahvjXVyJMMwDDMQYNFnLOS0vdGVIQDAnP2M0rwr6loAAOG4VpyOMQzDML0Ciz5jIS39MVWG6B8wphJ+L2H5jlb846PtmP2LN7BxbzviGlfrYxiGGYiw6DMW5UFD9Eeboh/yezGzthKrdrbi5U93AQDO+/MC/Oi5FUXrI8MwDNN9WPQZC1mWt9Z07wPAxOGl2NUaRVIzkvnCCR3bmiNF6R/DMAzTM1j0GYsy09KvrUqLfk1FEA1tccT1lNUW4dg+wzDMgIRFn7Fws/RrKoJoj2toi6aX3OWEPoZhmIEJiz5jIS39MYqlP6oiCADYuS9dpKeDRZ9hGGZAwqLPWEwcXoqaiiBGlAettlGm1Z9Q3fsJnQv2MAzDDEB8xe4A03/46pET8eU54+H1kNVWowwAJFpKIK6lEPJ7C9k9hmEYpoewpc9YeDyUIeSjKjNFH+C4PsMwzECERZ/JyfDSgGt7JMEFehiGYQYaLPpMTjwewkHjqjLaOZmPYRhm4MGiz3TKI1fMxUkzauD3pmP9kQSLPsMwzECjKKJPRBcR0WoiShHRXMe2m4hoIxGtI6LTlfYzzLaNRHRj4Xs9dBlVGcJjVx2JQ8ZXW20dcXbvMwzDDDSKZemvAnAhgPfVRiKaBeASALMBnAHgPiLyEpEXwL0AzgQwC8BXzH2ZAiLn8QOcyMcwDDMQKcqUPSHEWgAgIuem8wA8I4SIA9hCRBsBHGlu2yiE2Gwe94y575rC9JgB0kvvAmnR/+m/VmJYaQA/PG1GsbrFMAzD5El/i+mPA7BDeV9ntmVrZwpIWSA9RnxzzR4k9RTeX9+IBRsbi9grhmEYJl/6zNInovkAal023SyEeKmvrmte+xoA1wDAxIkT+/JSQ4rhZQGUBbwIJ3S8tWYPnl26A40d8WJ3i2EYhsmTPhN9IcQp3ThsJ4AJyvvxZhtytLtd+0EADwLA3LlzuV5sL3HNiVPwxUPG4px7PgAAfLipCZGEjiYWfoZhmAFBf3PvvwzgEiIKEtFkANMALAHwEYBpRDSZiAIwkv1eLmI/hyQjyoM4cFwV/n710ThsYjVeX7UbABBO6IhysR6GYZh+T7Gm7F1ARHUAjgEwj4jeAAAhxGoAz8JI0HsdwHeEELoQQgPwXQBvAFgL4FlzX6YIHLP/CJx5YC30VNqJwm5+hmGY/k+xsvdfBPBilm23A7jdpf1VAK/2cdeYPDls4jDb+6ZwAhOGlxapNwzDMEw+9Df3PjNAmDWm0va+sZ0tfYZhmP4Oiz7TLdRCPQDQFGbRZxiG6e+w6DPdZlip33rd2JEoYk8YhmGYfGDRZ7rNWzd8DvOuPx4lfi/2hbOL/kvLd3KiH8MwTD+ARZ/pNiPLg5g9tgrVpX60RpOu+zR2xPG9Z5bj6seXFrh3DMMwjBMWfabHVJX40ZJF9FPmtL7tTZFCdolhGIZxgUWf6TFVJX60RtxFP6GnbP8yDMMwxYNFn+kxudz7Cc0Q+ySLPsMwTNFh0Wd6THVJAC1R90Q+aeEndV4CgWEYptiw6DM9pqrUj5Zs7n3T0ldL9jIMwzDFgUWf6TFVJX7EtRRiycxFd6ToMwzDMMWHRZ/pMdVmkZ7LHlmcEbtn0WcYhuk/sOgzPaaqxBD9j7buw5bGsG1bnBP4GIZh+g0s+kyPCfm81uudLVHbNjdLf1NDB467623sbYv1ed8YhmGYNCz6TI+ZUVthvd65r3PR37CnHTtbotjWzAV7GIZhCgmLPtNjJgwvxaY7zoLfS6jLIfqa6eqPmgl/0URm4h/DMAzTd7DoM72C10MYW12S6d5XYvrhhBR7o80t259hGIbpO1j0mV5jXHUJdu6zu+zVbP5wXAOgWPos+gzDMAWFRZ/pNSaNLMOGPR2IJXUs2NiIix74EO0xzdoejmv4zlMf48H3NwFgS59hGKbQ+IrdAWbwcM5BY/D04u14Y/Vu3P3GOtTti8LnSY8rO+Ia5q2st97Hkjydj2EYppCwpc/0GkdPGYFx1SV4dWU9Aj7jp7Vwc5O1fXerfYpeNKljxk9fwy9eWlXQfjIMwwxVWPSZXsPjIRw6oRor61qxw2U63vo9Hbb30YSOuJbC3xZuK1QXGYZhhjQs+kyvMnVUOXa1xpDUhVWpT7J+b7vtfVM4XsiuMQzDDHlY9JleZdrocuv1GbNrAQB+LwEANjos/foWrsjHMAxTSFj0mV5l2qh0db5JI8sAACG/Fx7KtPSdc/oZhmGYvoVFn+lVJptCf+OZMy33fjyZQkXIDyHs++4yRV8m/TEMwzB9S15T9oioDEBUCJEioukAZgJ4TQiR7NPeMQOOgM+DLXeeBQB4deVuAEZVvtElQbRG7T+XNnMOf2nAC4ZhGKbvydfEeh9AiIjGAXgTwGUA/tpXnWIGNkQEIkJ1aTqRrzLkz7p/WSD72DOVEnjkgy0IxzW8/dkefLipMWOfl5bvxOSb5nGxH4ZhmE7IV/RJCBEBcCGA+4QQFwGY3d2LEtFFRLSaiFJENFdpn0REUSJabv49oGybQ0QriWgjEf2JiKi712cKg5q9XxEyhD3kz/zJ5XLvv7V2D259ZQ1+8/pn+Ppfl+KrDy3O2Oc3r6+DEEBDO88GYBiGyUXeok9ExwC4FMA8s60nPtlVMAYQ77ts2ySEONT8u1Zpvx/A1QCmmX9n9OD6TAFQRZ9gjNFmjK7I2M9t+V1JmxkSaI9rWfeRwz9nzgDDMAxjJ1/R/z6AmwC8KIRYTURTALzT3YsKIdYKIdbluz8RjQFQKYRYJIQQAB4HcH53r88UhirFvd8eN8R7uovox7W0W15PCQhFvbWU8drvyf5TlaKfYtVnGIbJSV6iL4R4TwhxrhDi10TkAdAohLi+j/o0mYg+IaL3iOgEs20cgDplnzqzjenHlCuxernwzozaTNFXa/Dv/5NX8cNnP7Xea+YqfT5v9miOx1R9LcW1/BmGYXKRl+gT0dNEVGlm8a8CsIaIftTJMfOJaJXL33k5DqsHMFEIcRiAGwA8TUSV+d6Mcu1riGgpES1taGjo6uFML+HxpIXaawrzpBFlGftJS19a+P/8ZKe1Lamblr43+09Vin48R5iAYRiGyX+VvVlCiDYiuhTAawBuBLAMwN3ZDhBCnNLVzggh4gDi5utlRLQJwHQAOwGMV3Ydb7ZlO8+DAB4EgLlz57LPt8iMKAvgwcvn4JUV9aitCtm2HTiuEqt2tkFPCdfYvrTefZ7slr7ckis3gGEYhsk/pu8nIj+MOPrL5vz8XhdTIqohIq/5egqMhL3NQoh6AG1EdLSZtX85gJd6+/pM77Pwpi/g7R9+HlNHVeD7p0zH5JFl8CoCPmfiMACGtd+hJOs9s2Q7hBCWpe/LYelL1Zf7MgzDMO7ka+n/BcBWAJ8CeJ+I9gPQ1t2LEtEFAO4BUANgHhEtF0KcDuBEAL8ioiSAFIBrhRDN5mHfhlEboASGt+G17l6fKRxjqkps78uCPmy64yws27YPLy/faVXwiydTCCuif+M/V2LyyDJolnu/85g+W/oMwzC5yUv0hRB/AvAnpWkbEZ3U3YsKIV4E8KJL+wsAXshyzFIAB3b3mkz/Ys5+wzBnv2F4Zsl2AEDMYekDRuZ+0kzky1WWQToOEjoX52EYhslFvol8VUT0fzI5joh+ByAzI4thukjQLNbjtPQlUbPKXlypticcU/NkDYCExu59hmGYXOQb038UQDuAi82/NgCP9VWnmKFD0GfUeIppOsIJu+hHEjoiCUPs1W3O2D1Zln6me3/j3g4ce+d/sKeNl/FlGIbJV/T3F0L8Qgix2fz7JYApfdkxZmgQUix9OZdfEo5rVj39SDxt6TvFnXLE9B9bsAW7WmN4fdXuXu03wzDMQCRf0Y8S0fHyDREdB4AXQ2d6jLT041oK4bg9Jh9OaIi6WPpxx8I6VkzfRfSFYx+GYZihTL7Z+9cCeJyIqsz3+wBc0TddYoYS0tKPJfWMmH4kriMiLf1EWuidRXjImrLnIvpm/J/XZ2IYhsk/e/9TAIfI6nhmoZ7vA1jRl51jBj+qpe/M3g8nNMRMsY/mEn1kd+/LnD/WfIZhmPzd+wAMsRdCyPn5N/RBf5ghRtCX3dIPxzVEkkZbWBF9p7h7ciTyyUV4UinO7GcYhsnXve8G205Mjwn5DUs/mtCxtz1u2xZO6JaFH1Vj+mat/oWbmlBZ4lPas1v6aniAYRhmqNIT0WfTiekxcvndW+etycjej8TVRL5M9/5XHloEAJg1xliTqS2axKQb5+GnZx+Ab55gTC7RTdVn0WcYhunEvU9E7UTU5vLXDmBsgfrIDGIqgj4EfR6b4G+962wcMKbSsPSTmTF9p3tfLsqzu4WRdSUAACAASURBVNWYi//oB1usbXLKXzTJos8wDJPT0hdCZC5+zjC9CBFhVGUQO5qNGaA3nDodAFAW8KIjplkWftjFvS+R9fllpr+6pG+HOQ3QrdofwzDMUKNLiXwM0xeMqjCW2z3roFpcf/I0AEBp0IfPdrdZVr1aeTeeTEFXEvOSpqXfHksCgG0Vv4gp9lF27zMMw7DoM8VnVEUQADC6MmS1lQW82BcxRHyYGfeXJPSUvSyvWXO/LWqKPqmWvrEfx/QZhmFY9Jl+gBT9WlX0g0bkyechzB5bZds/nkyhQ8kBkDH91qjRps7Jl2If4Zg+wzAMiz5TfEaZYl9blRb9clP0p42uQGnAa9s/7liGVy7AIy39vW1xPLt0B4B0LD+a4Jg+wzBMT6bsMUyvUFOeaen/vyMmAABOmzUaTy3Zbts/rqWs+L3x3rDiZXGe9riGHz+/AqfPrrXCAOzeZxiGYUuf6QccO3UETp01GrPHpd34B4ypxC3nzsaxU0fC71gt57Z5a/Gl+xda72PJzKI8gJG8J7f1RSLf1sYw5t72FnY0R3r93AzDMH0Biz5TdMYPK8VDl8+1XPpO/N7u/UwblAp/fWHpb9zbgcaOBDY3hnv93AzDMH0Biz7T7/Epov/WD07EC9cdm9dxjR2G6If8HoQTGjQ91as1+K3QAdcAYBhmgMCiz/R7/N60e3/iiFJMHVWe13FN4QQAYERZENGEjvPuXYA/v7Ox1/rF0wEZhhlosOgz/R7Vve/3eFBV4s+xd5om09IfVuaHlhLYsLcD25p6L/4eMav9RXhmAMMwAwQWfabf4zMtfb+XbCV2O6PZtPSHlxmzAxJayqrF3xuwpc8wzECDRZ/p9wRMS1+1+J3Wvizwo9LYId37AatNXXjnhN+8jXt74O6XNQDCLPoMwwwQWPSZfo/PY/xM1fK67/zv5/HYlUdY78cNK8k4rjlsuPeHK6KvWvo7mqO4+411Wa/bHkvaavw7kWLPiXwMwwwUWPSZfo9075colfmGlwUwe2yl9X5cdaboN1nu/UxL37k8rxMhBA665U3c+MKKrPtIS59L/DIMM1Bg0Wf6PdK9P6WmzNauDgLcLP0mN/d+Ir+ldmV1v+eW1WXdxxL9blj6e9tjOPiWN7CyrrXLxzIMw3QXFn2m3yNguNj3r7FP1SsLpIv5jB9WmnFck4t7P25a+OFOMu7lfpQjb7AniXzvfLYXbTENf/1wa5ePZRiG6S4s+ky/R06zc4q+x0NWvX63RD5Zgne4q6XvLtQLNzXhsF+9aXkJcs0VsFbwyyL6HXEND7y3yTUvoN1cJbAiNPSWvxBCdBpeYRimb2DRZ/o9sjzvweOrMrbNnTQMQHp6nhtuMf2OLC75u9/4DPsiSayoawEAeHKY+pZ7P4vX4L/rG3DXa59hbX1bxjYp+pVDUPTvfWcjpv/0NbQpiyYxDFMYiiL6RHQ3EX1GRCuI6EUiqla23UREG4loHRGdrrSfYbZtJKIbi9Fvpjh8/5Tp+OtVR2DupOEZ2777hanweghHTR6OR6+ci7MPGmPb7vMQKpXpfTJ7P5tQy2V6U8L4V0sJTLpxHlojmQLVmXtfhgjiLlatPDboT+clLNvWjPPuXWCtGjhYed7Mk5DeFIZhCkexLP23ABwohDgYwHoANwEAEc0CcAmA2QDOAHAfEXmJyAvgXgBnApgF4CvmvswQoCTgxednjHLdNrO2EpvuOAtTasrxhZmjMUvJ6AeAEr8XpUrCX1wz6u9nS+STbuekZnfJ17dFM/btzL0vz+Xmym6NGoOIuJL5f/OLq/DpjhZsKcICPrk+k95Gek/kwIphmMJRFNEXQrwphJBPmEUAxpuvzwPwjBAiLoTYAmAjgCPNv41CiM1CiASAZ8x9GcaGc0GdUMCLkM9ra4tpOjqyxPSTZta+0/XsdPMLIdIL7mTxGsTNc8mZACpyBcCYMiDQzL57c2UP9hHzVtbj6Dv/06sVC7Mhb0+w6DNMwekPMf2vA3jNfD0OwA5lW53Zlq2dYWzoDiEJ+T3weAglihs9lkxld++nDBGWMXeJU4ajSR1CGAKWLSkwl6UvRT+qeAlyFQJysmhzU6/W/K9vjaI9phXE2pcDKJexEMMwfUyfiT4RzSeiVS5/5yn73AxAA/BUL1/7GiJaSkRLGxoaevPUTD/HqZvSyldd/NGkbkvke3fdXtzy8moAaYF2ir7mOLGcGVBV4kc0qbsu2Su9Bq6iby4GpJYFlqLv5hlQ2doYxiUPLsIvXlqdc7+uIHMZnPfZF3jN9RO0FKs+wxSaPksdFkKckms7EV0J4BwAJ4u0n28ngAnKbuPNNuRod7v2gwAeBIC5c+eyD3EIIcV3eFkAzeEEYmZSXEnAC5ih8mhCt1m0Vz72EQDgxjNnWuLX7nDvO4Vbvq8u8aMlkkRM01Ea8Lnuk9DtngBNT1krALqKfifT2XbsM6Yw1u3LzDPoLvLayQKY32Ra+prO/zUZptAUK3v/DAA/BnCuEEJd6/RlAJcQUZCIJgOYBmAJgI8ATCOiyUQUgJHs93Kh+830f6QVOXmkUb1PZoirhXxiSd3VJV+3L4JkFkvfKYZSmCtCxsyApxZtx0dbm133cYp4Q0fc8kioiXzS8pX7P7FwKybdOC/D5W5VGiwPoLfQzPsrhBDLhRILMcBgGMZOsWL6fwZQAeAtIlpORA8AgBBiNYBnAawB8DqA7wghdDPp77sA3gCwFsCz5r4MY+PqE6fgymMn4SdnzQSQzqxXS/Yaop8Zu97RHLVc685EPqfLXVrvlSXGYOKO19biqUXbXI9Rp+ztbY9h3op6673d0jf+ld6Gh/67xTwmbjuvXFNALS/cU5Kpwrn3ZUy/szAGwzC9T1EqgwghpubYdjuA213aXwXwal/2ixn4lAd9uOXc2daUOIkzpu9Whnd7c8SyPjMtfbsYSiGvCBqWvhB2AQfcLf0rHv3IKtYzsjzgSOSzhwN8HrK1S+Tqgc7lhXuCbol+3wtx2tJn9z7DFJr+kL3PML2OUxBnj63EjNEVAIBrHl+G+tZYxjHbmyOW290Z009miemrZXSjZnLfpzta8OGmRldLf3NDh/V60ogy6xggbWXLc8tQhbO4j8z8702jPFlA976cs+f8TCXRhI5NyufEMEzvwaLPDFp+dd5sPP3NowAAN589C/deehgAwyL/ZHsLRlfa6/Vvb06nl7R1MaYPADHTaj/v3gX46kOLXS39icPTCwPVVoVs8+LT2fvmfH1T9FVvwF/e24Rnl9aZfUxi/Z72XB9B3kixL0ScvbOY/lOLt+GL93zQpSmMDMPkB4s+M2i5/JhJOHbqSOt9Zchu/Z/lKNm7W7H+nZZ+e1yzibe04lVLP6Zlce8r4jZKGWiUBrzuom8e5zeXFFYr/v369c+s148v3IbTfv9+r4ij9DLke66eFNbxdhLTb40mEUnonOjHMH0Aiz4zZBhVGcIz1xyNi+eOR8DrwamzRtu272pJT4Fzxpt//PwKnPb796z3cdMtr9b1jyY6j+mrAh7ye1HfGsPht74FIC240YSGs//0X6zc2ZpxzLH7pwcxzuv0BJm9n0+c/Y3VuzH5plexral75YJlIl+2a8nBQCGSCgHg/nc34Zf/Hjh5wXpK4PGFW3mlQqZbsOgzQ4qjp4zAzWfNwgvXHYvR5rK8gJEJ35RjpT4A2NqUdv+7WfrORD65cI76cA7HNRw+sRpLfnKyVSVQrhAoRW5NfTtW70qvzBdNpkMNCS2Fo6cMx0hlul6viH4XEvke/cCYVaCGQ7oCdeLet0INBRK1X7/+GR5bsLUg1+oNnlu6Az9/aTX+8t6mYneFGYCw6DNDjqpSPw4aX4X9lPj6JHNef75IoVWXxnXWrbcW1VHc/h0xDVNqyjGqMoSQUhpYUwRw+Y4W23lUSz+u6Qj6vFa8HwDies/r5UvR/+P8DXj5010595ViH3SsaZAvaUs/m+ibXoduziRojyVR39p7hYv6G/vMFR+zLQ/NMLlg0WeGLD6vx8roHz+sJK9jNEdpXTWRz+nelw9n1RLviGsoDxoDBTUurk4RlFP63M4b11II+T3wedL/dZ2W/p2vrsW76/bmdT8SeV9Lt+3D9X//JOe+cuZDdz0MsuvZjrdqBnRzJsHZf/oAx9z5dreO7Qmf7W7DjS+scC3J3JvI78rnLfzCTMzAh0WfGdL87etH4hvHT8bRU0bktb+smR/P4t5XhVyW2pWhACGETfR3KYmDTWF7AR4Vp+gHfV74lQe+c0rfE4u24T9ruyb6+c6ZV+/PWV44XzqL6fe0OmB3ww495VtPLMMzH+3o8+vLQZE68GOYfOFfDTOkqa0K4WfnzMLI8nRWveqyd7LbYeWqMwJSwi7Actqf3Dea1JESQLl5fnXA4Ky6pxJRwgbxpI6gzwOfN7ulH9dStpBCPjgLAGWjsSOd99BdS586de+bMf0BtiBPyhwQOZdh7m3kd+Xz9Ow6Fz+wEF+6/8Pe6BIzgChKRT6G6W9Ul6bFu6rUnzFPX+IU/QrHAMFZyQ9IDwRkDLbMtPR/dPoMJPUUnly03Sq440Y0oWNvewzDSwOGpe/32B74qvhqegp6SlirAOZLvpnyahzZ6WHoKtlEv6fu/e4ihLAGJN1BjlH6WPOtz0Ud+HWHJY61IpihAVv6DANjtTyJP8fD1BnPrnDM/d8XyZwBIPftMAcEFabolwZ8uOCw8QCQU/QbO+L4/N3v4rlldYglddO9r1j6inhKIe6qpZ/vnHj1vN0V/VQnSwinpw8W1tLv6RTBntQu6AoyLOIfgjH999c34KrHlhTssx6MsKXPMLCX7Q3kEP2WSAL//nQXfj9/PbweQsBnWN1SMJpdpv1JcZMr+0lLH0h7CnKJ/uaGMCIJHRv2dKQT+bzuln5a9LsmmPkW5YkrHoTuuvfltMCk5n5NKWqFmqcviSX1nAO+bDy1eBuGlQasssh9XUmwt9z7A5Fv/m0pEnrK/H+Q3+yRDzc2wu/z4IhJw/u4dwMDFn2Ggb3ITsBnPPgrQr4Md31bTMNLy40pbUFzv6DPA81MttvnJvpyud64kc1froi+HADsbMk+xUwWwdnZEoGWEoalryRxqda3vFa8i+59t6S699c3oKE9ji/NGW+1qdMSuyv6UhSzxvRTMpGvsJZ+XEuhohvH3fziKgDAqAojL6SvBysy/OEdgqIvfxtdMfS/+vBiAMDWu87uiy4NONi9zzCAZTX8zxemWg+UYaWZS9e2xzS0mC58OTgIKhaHnKanIq1uaemrom9l8ucQ/bA5oNjWJOfHe2wPfLulr9v+BYC9bTFLrOetqMc7n2Vm9rsV5bn80SX44XOfut4L0P2lcbXORN9aB6Cw7vZc3pH31zd0OvdfXq2vLX05GBqKaxPIWy7EapCDFRZ9hjHZetfZ+OFpM6xktWGlmUvXtseSaDZFX2pKyJf+b/STF1dmHCNFWU7hU5MGy8wlf3e12Ff9c4vXqqLvyzJlz829f+Qd/8E1TywDANz37kY8YlbUU8k3ac4m+j209LMNGqwV/3r4YO+qKDqLK6n9ufzRJfjqQ4tzHp/qQlXDnpCunjj4Rb8tlsSCjY0Z7az53YdFn2EcSJd+dVZL37Dm5fz5YCexRSmOG/Z2IOT3YGx1uhCQz+tBid+L3W120VenEEpkmd+g35HIp4q+6daXAia3vb++wTqHm7jlKyC9697PFtN3n6d/zj3/xcP/3Zz3dboqitlCIjvMefc79+W29OWUvb639Hv3On1dTKg7vLR8Jz7c2Ihrn1iGSx9ebFW3lLCl331Y9BnGQYcZe7947gSbVT6iLIDWaNJy70tLNejL/G9Uobjw5X7r97Rj2qiKjFisnLevJma5ib4k5Jyyp7u592VIwZ6TEEvoGasBAvnHz3vDvW+JfpZBQzb3/6qdbbht3touXydfss142NJo5FTUVGT/TgAULJHPynnopev0dOplX/DH/2zAk4u3YY1ZndL5mfan0EZrJIlj7vwPVta1FrsrecGizzAO5Bz3mWMqsPznp1ntNRVB7GyJwvm8cRP9A8ZUWq+lRbxudzumj85MFZNxfXUGwQhzQZ1DJlRn7O+csqdaqE73vrM+ezSpZ5QLBgpr6XcW03fL3u+ONdpVUcxW20CK/ujK3KIvBqil71woqj+gpwQ0XUDPcq96P5qyt3BzI+pbY7jn7Q3F7kpesOgzTBaGO9z7NRXBDDcjYLjbndb7AWPS4h5N6tjVEsXe9jhm1JZnHC+n7dlEv8wQmBOnGUvpqpa9M6bvaumbD/K2mL2/hns/U9xyxfTVhDg5mAh4Pdbr+Wv2YNKN8/Je5KazmL7bPP3uWKO9ZelvNkW/s2I48mPq8+z9Xl56OFsuQzHRdIGUEJa4O935hS7clAv5vfd1JcbegkWfYbKgijCQ3b0b9HkwqiKIV/7neKtt1ljD0q+tDEFPCTz4vhGLnqis7CeZMMxoq1CuJ8MKPo8HH918Cl793gnK9bxZF9yRVr9l6StTDlNmpT43ccsVI1XFRR5bWeKzrvv0ku0AgNU72zIPdj1f7uI7VqKa8mCPJLq+olw+cV91QJPN0t9uJlA6QyXO4wsV05f9zLd0cmf0V0tf/gGZIp/qR5a+7MkA0XwWfYZxctKMGgCAx2G9Zxd9L0J+Lw4cV2W1nTF7DK48dhKeu/YY7F9Thr9+uBWAe6x+So2xrG+JP/3fUWb1CwjUVARtg4Wg32PL7k+4xNnjWspa4EciBwJdde+rVrYUnPKgzxoAyAdzvvPG9U6m5Lll73dHmPIRX7cBjRM54Ih08rmlCmTpy34OZktfFwJaSlji7hwg9qeZC/1o/JEXLPoM4+DBy+di9S9Pz2gfVRFy3f9z00fi1FmjAQBz9hsGwEjOu+Xc2ZgwvNQ2GHAT/f1rDJd/izLHXw445LNNrT4W8tnDCTb3ftI+AFBFXwpnzMVVnstd6qwDEPB5EPR5rXb5YM5X9POdp5/QVSu868KUjwtY3SdbCEH21239evUe5CCjtyzwbFiWfpb7E0Jgw572LpyvH4q+KfiWpe8Q+VRKIBzXcP+7m7rkWUnqKddBb08Qpq0/UCx9rsjHMA78Xo9rOdaR5ZlT+ADgsmMmWa//etUR2NIYtglgbVV6sDDC5RzS0m/sSOCsg2rx6srdIBjHuxWYMSz9LO59xVqNJVO2ioJS9PWUQFJPwe/14L53N6KmPJghwPY4vrrKXwpBnwcBn8cabEjhzFf05SAhWyKgW0U+Nyu7M/IRA3Ulv3gW8UtkmQkB2EsJOz+PviLWiaX/wsc78b/PfYrHv34kTpxe0/n5uli9sRBoesqM6xvvnb8VLSXw2zfX4bEFWzF+WAm+eMjYjHPUt0YzBuqXPbIYizY392p1PvlfRf6f7e+w6DNMnpQGjP8uoyqC2Nsex9RRbkl5fhw83p5xX1uZfvCo1fgkU0xLf0RZAPddOgcAcM9/jExgt9hl0GefshfXdAghsN6sza+2S+uUyO7Wl3Xmn19Wh4nDSzMEUnW9OwcVIb/XEH3NXhkuX0sn7+x9pQ9q31fUteCjrfvwjeMnZxyr3kc+LuB8LH3Zz0hCRyolbGEft2TEvo43x5P2z93JJ9v3AQC2NoVxIjoX/d62fHsDXXHtA5nfpZ4SaDKXeXb7He1ujeGYO9+2SiNLFm3u/ZUFrZ4NDM1n9z7D5MvwMsNK//bn98eKW06zJe7lYoxi6bst3Voe9OHPXz0Mj151hNXmdO+rBH1eWyZ5XEvhvfUNOP0P72NtfdqtG0+mrEQ+IezJcNLqjyZ0ROJ6xkNVjafHHYmCQZ8HAa8i+iJTpHMh3dJZ3ekyez9LTP9fn+zCb17/zPVYVQDyEV/Vm3DbvLVW0p5tH+WziTi8AW6CU+yYfkKZYZENWwJjF1dkLAQypi9x1pHQU8L6jUqvV2skad1Xo1n9cm+Ohay6yvo97a7VLOU1B4jms+gzTGfMNjPx5+w3DPNv+ByuPG4yKkP+vFf5Gl3pngugcs7BYzFOqdQnxwZuuuWsC5DQUthuVo2T1eMAQ1TVOLS6LoC0FsNxLWNaH2B3W7+7bi8m3TgP63a3I6bpCPo8CPrT7v3OFtBxIh/mbtMfgfSCMlqWmH5ST2W9lmp55zMISTqE8w/z12fuowxOnC5+txBFsbP35WeTa8VAtYu5LH0hBJZsaS544Rk9JWy1GZxJn7oQSJi/Ub+XsKM5gkN+9SYeXbAVX3lwEc6/d0HGOXtaefCCexfg1lfWZC1k5Tag74+we59hOuGF6461RNLNpd8ZY6pKOt/JgbTS1DD54ROr8fH2FgT9Hit5CDCEp9G0aKSFAxgWoSroTcq2WNIICUQSesZKgvJYybNL6wAAy7btQzxpLGmqWvrpDOs8LX3z4dse06DpqYz575oVG3eP6Sf1FFLCOI8zj0AV6Lyy9x0P8IkjMqdUJnSBsoAX4YSeIfquln4fxvTfXbfXGshltfTNPuXqherJcUvslKytb8fFf1kIAFj1y9Ndw1N9gZYStgI8zumXMi/FeA3UmSWS31y9G4u3uLvwkz1MsJQLX0WSOiqV32w6pp8fQgh8vL0Fh080woCFHiyw6DNMJ4T83rytejeyJQDm4tKj9sO2pgiu/fz+VttjVx6JT+tajNwC5Yme0FNoMOObDYo785EPtuCfH++03ssYKGBYiwk9BS0lXC3usCKyclZBacCLuKYk8mn2xLV866FrqRQqQz60xTS0RJO2GQ1GLNd4rVrhUZdKgAkthZKA/XtRBx65+vOj5z7FweOrcMz+I23tpYHM71lLpVBdGkA4EbVWSrT64iL6fWnp//DZ9KqH2a4jLeBs0xw/2tqMix5YaL2P5bD01d9GJKEVRPRTKQEh7IMn50BK09Pu/bimW4O/XCGdng7GPGR4SKIJHZWhdE2Nrmbvv/zpLnzvmeXW+0Iv+VsU9z4R3U1EnxHRCiJ6kYiqzfZJRBQlouXm3wPKMXOIaCURbSSiP9FA8aUwQx6f14OrT5iMx5SYfWeUBLy49fwDbQ+XqlK/lY2tPr7iyZRl4bcrlqgq+ADQFE6LvlqO120qmmrRtkYT5n0QYsl0Il/cYenn81AVwhD1kWaClVzHQJK0ueeVmL4iTFJo3QTXbQqdG++tb8DCzU0ZAwM3b0VSS1mFmpyfldv+fRnTLw/5MHF4KcZUhbJ+3lathiyi/+e3N9re55qyp36ePV3qOF+kha8KuNOjkhLC6k9cS0Ea3rk++3zDT9mQBbGc3h75PeQrSGreTTEoVkz/LQAHCiEOBrAewE3Ktk1CiEPNv2uV9vsBXA1gmvl3RsF6yzA95OazZ+GkGaN67XxqIlZCT9ksfCdfO3oigEz3fjiHhWd3p5sP12TKsvSDvsyY/gsf1+Hfn+6yjvvnx3V4bWW97bxyX2ndq3kGgP2hnXTJ3vd6yHp4u8XTbTH9HAIQTepmeMHY5y+Xzcl6zqQuMKzMEH1nZUD3mH7fTYGLJ1M4espwVIb8WT0ZMsSRLVbvFK1chY+yDcLy4f53N2HR5qYuHQPAdW6+5ojxa4p7P57U4TUFOVfcvqeDFulNcE4fTc9eMbb/9F8r8aHLcsCSYtdFKIroCyHeFELIX94iAONz7U9EYwBUCiEWCeNp9ziA8/u4mwzTb1G9mHFNt8XyVU6aUYPzDx0HwG7px5I6Ii4WvuRRlyxluSxv0GeP6cuH3n83NOKJhdus/W949lNc99THAIxpZP/6ZKf1IK+Roh+2W/qaTbQzs/dTQljXdbPc8rX040kjyVHuH/AaVQ6TegovLd+J6T99DY8t2AIhBJKptKX/wsd1uOmfK12vl891JZsaOrosooDxXQfN4kzZrhOxijBlEX2HaGWbp//e+gZbfLyrovnr1z/DJQ8u6tIxQFrs7Yl8KduALmUuyAOkq0+qx7qf1358V5HTZDPyOlJpS7+xI44nF23H1x5ZnPU82So/For+kL3/dQCvKe8nE9EnRPQeEcmC4+MA1Cn71JltDDMkUR9ZbVHNJvpqdv/I8qBVX+Dtz/Za7dFOLP3XV+/OaIsldcS1FEJ+j+neN4v9qIV8XBPbUrjgvg/x/X8sVyx9I8+hxWHpJ7PEcaXoG1MPdXNfF9FXZh3saI4goaXw7rq9eGxBehCjpwQSegrhuGaJhM9L8Hs9SOop/OOjHUhoKaytb4NuxpdlLPutNXts3gy3EENn7v2dLVGc/Lv3cNdr7tMOnewLJ3Dy797Fhj3tiCWNz9/npazXaTfj8NFECq2RJCbdOM/W5wxvhe7+O7ji0SXWmhHGfRWmiI+1sp6w/xacXhw5+ItrKaUaYg5LX/ltdGeVPjmN1jlt0xq8EbB+t+G6zzVzotjFkPpM9IloPhGtcvk7T9nnZgAagKfMpnoAE4UQhwG4AcDTRFSZefZOr30NES0loqUNDQ29cTsM069Qn1m7W2O2B8kEpU7/yIogpo8uxwWH2cfI8WQqp6XvRjSRtvTLgj5r8R71Qevm7n5rzR7rteZw7+9sieL2eWssV7QqLMksU/bCpmi5u/fT+934z5X4wT+W48rHPsIv/73GapeDlY5Y2tL3eTym6KuehPRc8fKg32qzTR/sxpQ96d34cFN+ru/31jdgU0MYf/zPBsTM4ki+HJZ+mzkbI6bp2NzYAQB4WPHcOC3VeJ4i1JVEuJ4kM1oLMikiraVStn7qKWENBONaus5ErkQ+NXu/O/2Tln4k7hR9aekT1pvljytC9sW6VIrt3u+zVEwhxCm5thPRlQDOAXCy6bKHECIOIG6+XkZEmwBMB7AT9hDAeLMt27UfBPAgAMydO7cw2ScMU0BkxnBF0GdL3gOAmbUVqG+JIpzQMaIsAJ/Xg99edAhe/CT9Xyam6V0ubRtJ6miNJlFV6rcWAKrbF3WIvulaVh5sy+tarNfSKqoI+eD3Et5aswdr6ttw4vQa6g40RgAAIABJREFUnDCtxp6xrTyk1b7KDHo3Kzuh2f+7z3PkFADpWHd7PB3T95uWfkJPWQmKsaRuXaM8lH5UailhTTXsTiKfXBY5X8tZehlaIkkIISsyerKKsJymGUvo1kwIdWZjPjMQ3OhKIlxPhE1a4apHIumw9HWz9j5gDFrysvS7WLjJifzewg5PSbruRAKPmB6lXN9tsUW/WNn7ZwD4MYBzhRARpb2GiLzm6ykwEvY2CyHqAbQR0dFm1v7lAF4qQtcZpl8gn1nVZZkWxYzRFaguNdzncmVAr4dsddiNRL6uWfoN7XHEtRRGlgew3whjvYBtTWG76OspvPhJHWb+7HWrbc2u9JK70jrzeT2oLg1gZ4sxv1oKkT1xLDORD4BVV8BZHvjWV9Zg6dbsZVZl3FfOS1dj+j6vBwEvIamlrPPGkrplyVeG7PaRHBi4ucbztSLzzfKXCWQyhBPyZ4/px5J6uv9meWbAvta7M3Ev2xoI2fr75KJtmHTjvJyx6R6JfkqKfvocmp6y9VMXwhrsxrV0saZcn719QNkdS9+QS6eHTA5k56/dix3Nxu+5JZLMmkg5aN37nfBnABUA3nJMzTsRwAoiWg7geQDXCiHk/+JvA3gYwEYAm2DPA2CYIUl1SWYNgOm1FVbJYPkvADx25RFY+ytj0ks0keqypV+3zxifjygLYpJZxGZrYyTDvf/CMrsTbm19WvTllDefh1Bd4rfmgYddCs6oAwB1gCL3Va3sX/17DR75YAseX5ROJHSS0FO4952NOO6utwEYAydpFfs8BL/PiOnHLW9FyuqPsx6AFP2k1rml//yyOixRE+K0/Kc4Gv0w+iNFP+iTMf1M8Wi0zdBIW8C51kLKVg7ZiRwA/d9bRtVCt6JO1rXzPKcb6boP9pkcquirg5snFm3DT/+1CkDuWH3SkQjYVeTgy5kL46zqeMOp0wEYC/64Ueyyx0UpziOEmJql/QUAL2TZthTAgX3ZL4YZKEgLblhZpujPGF2BwyZWY+XOVlsxFa+HUBIw5thHkhrC8a4VHJJVz0aUBzC8LIASvxe/emWNbZ+EOaVPpVEpCiTXAvB6CBWK9SxdueqDuS2WxIm/eQd3f/lg7GqJWe3SUlVF4CPTwvfmKN8Riet4bMFWW9u+sCH6cmVFVVyiirAEvMY0RdX1D2QrzmNv+9/njII6sgiL9A7km70ftUTf+ByDOSz97UoZ5mhCt/orp5O5rdroZum77Zd0xM1zech7w9K3X9tu6bc5CkrJ32auiIk6SOxOTF+G1JwWvPp9j6kKYe4kY3nt+taYtZiWitPSdy7i1Nf0h+x9hmG6yEVzJwAALjQT9DwEXHnsJABGIt/NZx+AB742B4dNHJZxbHnQh46YlvHwevqbR+GJbxzper2R5UHrwTqyPAgicp3fndBSCPiyP1akS9bnJZQryU4dcSmE6YfxyrpWbG+O4I5X16JuXySjBLI6QJDz/bPV8wcMb4HP8XCVxYF8XjKmISpTw2JJ3VbHXq3KaFn63cjel3kH+bqYnSIhV1l0O77OdC9PGlGKmKZb4itv223Ghpub3jVXwbxXaSXnivHnmxzohpu1bmTvp/u5z1HUyTo2p3u/Z4l81hLLzpi+8ln5vGR519x+i39dsMXm+QL6foEmJyz6DDMAOXBcFbbedTYOHl8FwHDj/+KLs7D+tjPh9RCCPi/OOLDW9djyoA972uJ4ZYU9yW3upOG2ZYBVJgxPrx8gM+//9JXDMvZLOGKvzmPaLUvfg4pgpqWvuqyl+O5piyOpC0x1WE1WjXkh0GqKfq5CM5GEnlGrXw4W/B4P/GZpYSlYcS3t3veblr5EiqkUvvHD0p9PZ67jfOLPKk6rOVdMf3tzBF4PYfLIMmO2hfldyJi+sy4C4G7pu7mg5UBAWO9zJKv1wIXtdl+akmAJAM1h98GdKqDOVQZtiYDdSOST13dm76sDJL/HY13X7XO95d9rMtoKNRVSwqLPMAMYmbAnre9cVrakPOjD/LV7sG6PvRxowOfJWPxGotakl5bMuYeMxcVz7XW1krqwxZXloiJy0CDd+z4P2UIPHY44PVH69e42w7XvtPRtbvg8XOXhuGZlYEv22Sx9ozhPXLH05TX8XnK19OV2dYXEziw3KZZ5W/oOAZXZ+5/tbs+oeLi9OYKx1SGUh/yIaymrrr4UfXUVRiC9nkLGNV0GT1Kc8rH0u+Pe/++GBjSHE665DsmUsHkPmsPuxajUrPyyoD18pfXQvW+tTJmRvZ/ulwwTAV1PkCwULPoMM4CRWeUySz8fVLE9xPQUfH6GkdnvdH+ff+hY/PGSQ1FiCl5Vid82sBhbnbmCoBRpAJg91jj/MHNw0hE3LDQPOWL6juz9EpcFjqaNtov+799aj2XbmjMK/GTDzdKXx8riPAkle7++NYZz7vkAQHZLP2EKifo5dCYolujnEM3WaBJPLNwKIUSGe19a+gCsioeS7c0RTBxeihK/x7T0jX7KVIetTZmi7yZObu55KZry9pzTIwHgHXMZZnXGRj7ENR2XPbIEVz22JKulr4qtzMVwLgCkHiuLUlnn6ME8fSGEFQZxJsCqou3zkvU7yXcqZF+uyugGr7LHMAMYn9eDipDPtlJdZ8g552UBL/71neOwtcmwDgFkeAr+vzNnYkxViVVgZ4RjxUA30d/TlrbCZo01amtJEW9XLX1F9DsSGrY0hvGqabnWVASxTREoD8GaJijZ3BjGl+5fiFevPwH5EI5r8Hvs99diLibkN4vzONcCkOSK6Qe8HoxSBl2qCLi5+uVAIZzQMX/NHpwya3TGPj9/aRVeWr4LM2orXd37zsGZpKE9jikjhyPk9zpi+sb+25rDZrlhow+lAZ+rpe8W5//+P5Zjc0OHspRy5nHPL0svw9wV5KBv494OV3d3Uhc2t3qz6aEJ+DxmZRcDdSDlHBAkemDpa8rqj86Khuo1/V6P9X/IOZhyS450Hl8I2NJnmAHOjWfOtBbVyQf5MKwuDYDIiP8GfYagOcVExielaE8ZaRfe46bal6aVXPf5/fHfH5+Ei+aMx8/PmYVvn2QsEWzF9L129344ruHyRxfj70t24JQDRuOgcVW285X4vShzWfYWSAu3cy69E9eYfthu6cvpgM4ldv2KBQcoMX0tBb+XcOZBY6xtuiIubmu4q1X8vvn4UqvSoa1f5uDjHx/twCtKCV3AcO+r96GKb1xLIej3osTvNc8rY/rG9m2NEauwkrxPd/e+uxCtqW+3svbdLFn5+XU1G12Gd/w+j2vhHC3ltPRN0c8Rt89073e/OI/6GTlXWlQtdVnkCcgcFMm+/ej0Gbblttm9zzBMl7j0qP0wZ7/hee9fZoptZUlmYR+nKMoYv3wwOWcDjKsuwda7zs44br/hpZgwvBQ+rwdfP36ylQcgp1oFTA+FJBLXrcImd1xwIMocrtmg32sNTJzUm9P5pNch25rv4URmTF9m7xsWGlkP9CrHZ+PLYukndGO2wqETqrH5jrMwrrrE9hB3X7XP3vbmmt2Y+bPX8fqq9HoHcvD1wsd12NUas+0f8ntt96FOXzMW5PEg6DfEPL1QkbF9a1MYkxSPiSH6uTP61VmQcU1PW/ou9yZFP1thmmxIl3nA615pUNOFza3eHEnA66GM+gNqUl2Z43egJnl2VWjVZYqdWfk2974nu6UvP5MSv9cq9AMU3r3Pos8wQwwpttUuol9dGsBvLzoE3zEtc2nhrzMXEjl0QrXrOZ2WU3Wp/dylfuOa9aaAVZX4rXr2gGE9eQj4zkn7Y1RlCKUOKy3o89jCASpy+dbaqpB1bjcicd0mCl4PWVPYfB7DQssm+oEsMf1oQrcsO4+HzKz69MPebeqb00K+5eXVAIAVSrli5yBK9Tw4Lf02pUiOrJMgvSLSIk6YK9HtaI7Y1mYoDfjcs/cVS1/1/sSTKSt7383Sl1Mvm11mCeTCsvS9Hvd5+rpAR1yzBiBCGN9RriJAzsGfOhDpqntfDvJCfo81U0RiS+Qzp1MSZX4+ctBSGvDC71M8NQXO3ueYPsMMMeTD0GkJSb48x8jI/9HpM622qaPKsaa+zZoi6MTpLVUFHQBCAUMYZZWy6lI/msPp6zeF40iJ9HEZlr7Pk9WCl/HjMVUl1rlleV+VcEKzudGrS/xoCifMCnceK5EPACpDTkvfnr3/4+dXYEVdCxZvabYlGPo8BFXnVas+qads15BIV776ffgdHonaqhA2N4QByJh+egAiLX0j2cwUffNcsqBPQk+hLaYhnNBtMw1KTPe+EMIq4APYs++9nnQOQEy19F0GNNLSz1UvwQ0ZJw/4PBlWuIcMYY3ENVQEfdYgp6rEjz1tsYxzSZyJfKqnoKs6K0V/VEUIO/ZFbAV17FP2CETpdRzcrl8S8NpW4evJ4kTdgS19hhliSPF0Cksu7rzwILz+/RNyrh5mu4bDKg94DetUWvrVpQHbPjL5r9y08J0DkqDPm3U64ubGMII+D4aZ3gWnYEsiCd1m7cnrS6tePX9lif36zux9AHhy0XZsb47giEnp0IrT0lcFPmrN7Xd/yMuSwMZ57NdSP/egz2Orpf/U4m1oaI9b5w340qGTJnNqW0JLYZc5EFKTL6UHwdknNYatVjmMJ1PWAM8tkU+Kvlo8R42lf7qjBV/43btojyVdj/N7KWMOfYnfC00XCCd0VIT8lrVfGfLlrMvgzMuwu/e7pvoy3DGqIggh7CWInYl8ABB0Gdyp7n01obQrCxn1Biz6DDPEkKLvdCHnoizow8za/Fe5Lne454kIJWac2eshlAW8tuI81nFyZoHTve/P/agaXRmyHvIhZV/76nKa7cFf7shtUJPCnPkOAa8nax+OdIh+QkvhO099jI+2NtusPTln3u0hX1Xix2f17Zi3oh5CCPgd342a+R3ye22i9ezSOvzP3z+2hOn/b+/M4+Sqqjz+O7W82npf00l3OumkE8hKFrIRIIsQiEAQCCPyYRMJMoDIAAoCLjgqo6M4Ljg6gIrD4qCMBHSUsIgshhiEQBBIAtn3pLN0uju9VN3549376r5br6qrk3RXd+p8P5/6dL1b7726dbu7zj17KOB3LCWqZkJHV8KxstSUJAswKW3Y9Oubmr4zrp1nfo7fvbkVe6VZX0+j7IgnsHZnM77/3BosXbUNH+1uwQ4jTkE1XAr6fa5ASACIWAF0xBNo7ehC1EpmLhRFgrh8Rj3SUWWkseobvkyBfJubWlPcEyqFsarIvqduyTBT9gA4hZ50lDUjagVc5n1O2WMYpldRX0zp0r6OBaZ5H7CF1aH2LpREgiAiRL2EvrzONM0qLdssP1ssm/aMqIw55nddSFkBn+OfTif0laavWz5SA/koJZDwljNG4d1tBzG5vtR13pZ9bXh/RzOW/WMnlt54ivNaq4fQv3hqLW6Y24jLHnodL63ZjZfW7Mbn5o1M2ZCZQtgMlNu2/3CyT4Bm3t+rmfdV/4LBxamavimgdJ9+OrO/sgY88PJH+Nffv4d0dHQlcPdTq7H8oybnb87MDmjJYN6PWn7ZZQ+IhgKOu6E4EsRXzh2LqqIwvvOnD1zX3LZgNK6ePRzflc2BANOnn3a6uObhlZg0tATfumBCymetKrQ3TC6hrwlttXG0/L6UTVFrp7d5nyvyMQzTq6gvVdOEfCwxNXUgKWCKpRm+0CMwT11npucpgRs2ivaoKn0jKgucjYIuMHXT9M6D7S7hpt5fpfrpX8Sm0A96aPpzRlfhPy+b4pqT3+dzihOZJYmdRkGaMBhVXYih5VHXWvzx3WQUv8IUkq2GWVtPvdPN+2qjoTT9gI9chZzUOptpe7pw17Vi/bxOqcFnEviA/XlVbIH62zOrDLo0fS+hnxBoae9CQcjv/E4Lw0H4fJRixgeAQUXhlL+V1izN+00tHdjdbGj6cr5q7dyavhb0KDeOloem36YH8nH0PsMwfYXStkwT/LHEDMQDkkJfZQ0UhYP4y21z8d3FE51zCpWmn+LT97l+mvccUVWAiAwW1IW+CrYqjQaxbvchAMDiKbX4n2tnemj6yXubsQuW34ewoelXFKZ2OAz4yG3a1r7439lyAIC7Ha+q2V+oWUY2NbVmFMJA0lXgvK+fnPfSA/kU7V0JbN9/GNVFYdf6ROTvyRRQrvfXZJI+j81NbTjjvr+4rrvm1OEphaI6uhIpVRPNz6N8+mt2NuOmx990vRax/OiMJ9DSEUfUCjjzV797r9LRZmomAOzVykNnUq7buxIpBXgc874U+qo2BGCa9+25BP2UdfR+X+fps3mfYfKMcyYMxgc7m3H9XM8O18cEr+IsDZUxvL+j2ekXAABDy6PYpvUd16sF6igt2xT6SiusKgw5aV+6BUMJiBGVBVgpo/wn1JVg2vAyLF21FYDm09fubbo+An5K0fTLY6lVEM3Wvpv3JasKfuG3byNi+dERj6MwFMA3LhiPBWPtpki6pn+4M5GSfdDWGceT/zwL63Ydco519jR3OELG8sh06OiKY1dzO6qL3HNWlpVMmwxdJOnnbdjTApOSqOVsvpLvnXDqIeifUUeZ971KKkeCdqng1o4uxCx/itC3PAS8V7yKvqaZGu4c7oyndCNU81NBkN2a9wP+lDLFbfIeEcudfcGBfAzD9CpWwIc7zj4xbZR7bzFOVtkzv471gCslhFJ9+vZ4yDDZ3n3OGEwfXoYZDeXOl2/Aw7zfUJksSKNqDyhrhFoH3advaspBD03fK5vAFDart7pr0P/38o3o7BKIhvw4b+Jgx1+uLAsqnW6t0QypvTOByUNLcbFsqWwK/d2H2h3zcSjg9yhBm0Dz4c6UAEW1Fik+fc38rgcR6rJS36wpwkG/U5NBsa+1I0WbTafpexHw+9CZEGhpjyMaCjj3iihN38NNZY6VRINO9gIAxBMJxBPCNQYk0x71+Xx16bt49PVNALyFvi601d+eFfDhufd2YuLXnnVeS2r6AU7ZYxjm+EeV1t2yz/1FW6W181Vm7pTo/TTm/RNrivDra2ciFgo42puezubTNH2F08xHnqaEh/5FPG1YGb5zUTKQK+ih6XthmpWVZq5YsaEJh9q7XO8FJLXWSbIroV5wB0jVTJWA/+Elk3D93BGIJ4STDmkFfAgHfa7MhY6uBJrbu1I2A2pzo/eqB9wNd9KJJC9NPxL0I2xYaXYdTO2IlyL0M1TwC/oIXfGkpq82KOr36GXKNy01g4rCrrTEeAL41h/ew6x7X3BF6itrSasm9H/x2ga8vr4JgN17wvL70kbvBwMqkM9+f/28Vi1lz9KL87BPn2GY4xHVcW+wljIGuCunqXQ7U9NXQVmmpq8zqroQADBrRLkzpjR9l9CX5mfVDEdtEnRBHAr6sFhq1YAdwT64JNJt62Kl6Y+pKUIo4MOHu91CXwhgy/62lPuoYLCJtSUwPAQ4d+JgPPHZma6xqcPsjIHpDWUYP8TeKKi2uaGAD0TkiqtICOBAa2dK8KTa8Jhd9XRNN116m7kxse/nQ0T+DgfJzZxXAR2zkl5mTZ+keT+OWCjZIChp3vewuBgbAbMxVDwh8OSbtntH9/Urt4NZX18RswIojQXRdCi5UdA19aCm6Ss64wl0xhNYs7PZqaboKsPLFfkYhjkeKYtZePSa6TgxQ76/Mnen0/TDGYTuSXUleP1L81FdFMYtT6wCkBTCQ8uTpWeVKV1ZZZXM0L+olSAJBXyOkJkzqhIrvjQf7+9oTiv8lYY5qDiMjnjCpemXxyzsbenA1n1troYrQNJXXhwJojgSdPm27zlvLEpj7vO/fM5YXHXKcFQVhp3c8S0yfkDNrVkKrqFlUWxqasXelo4UTT8qN1Hthl95U1MrhpVHsWFva0q1xUxEgsl0tPryKHYcPIxdze2uzw+4a9kDcHXQMwlqmrW+kVFBiJ6BfKamX+zeaMYTwqlkqHdW1Nvnml3xIrKl8aCisKt9tMu8r6XsKZpaOnDDo3/H3zYkOw+yeZ9hmLxg1oiKFAHmhek/d8z7UkjdeuYoPHPj7JTrqovcX+5nyLa1lQUhvHTbHNx/6WRMkU2DEoY7wDI0fQBYdvPp+OllUwDYG5KSqIUZDeWYbDQeUqgv8BGVMdRrNe5/ftXJ+PlVJwOwC+aY5v0Oj3Q7hVe5ZCvgc6wX5XI9lXnfdIGMqUlussz6Cerepqa/fk8LRg+yLSc9EUnhoN+pVlcvN1pK6OuC1zTvHzycvmxv1PI7mwW9J4PasHhVljRjKwabQl8Ixyyvm/fVOnQlhJ1y6eraF3A+h15cyN1lz+f6CQCvrN3jEvgA2LzPMMzA5sZ5I1PM0j1hYl2JywdtRv8rYX/2ODva/ezxNU5gYCbu+viJ+Osd81Aas1BfHsPC8TXOva+bMwKnj6p0eg3oX9RqAzC0POpE2GfDmp22Zj95aKnLujC2pshlYjYF1WmNlQDsGAU9fc8K+Lp1KZTLFLm0Qn9wUuibGwqVXqcaKgG2qX1XcztGS3dJT6R+JOh3tPJ62c1PmfdrtKJAZvT+jm5q6KvNlFvTT43FUJiBfPp7A+7ARb1ksF6ZsKU97pqnsj7VFEfcQl837/tTzfsqWPCnl03BsptPS5lfVx9H77N5n2GYo+aWM0fjljNHY9jtvz+i65+8blaKOVVHCbJPnlyHheNqnAI/6fjs6SNQWRhCwO9L+cJXVBeF8ctPT3OOyzWTu5fJOBtUWtikoaWuFLGg34fiSNCpKGgKqsVTa/GxMdUoi1muuv+O4M1AzLL7Eqgyu5bfbSUZpFk/zJ4Ig4rDOG1UJX61fCNmN1ZgSn0pNuy1A/ROqCnC5TPrcf6kIbjg/tey+fiIWH4nPW+otHTsdjT9ZJaGrum3tHd5puo5n0/X7rUgwWT0fveavp69AdjuC4Wu6etCvqW9y7WBUhuOQcVhNLd34ZAMjHR12XNS9pLXqQ1NbWkEjfL36a7Ix5o+wzADmCtmpq+Hng6/j1IE7Yo75+MTk4YASH6JElG3Ah8Abj/7BFw9e3iP5jCjoRzLbj7N0caOhLFSqx5UHHZtIoIBH3w+cjRrU3snIpRJM72KObhk2lA87eHCMCEiVMQsp+qdck18+ZwxuHLWMNd7qX4HulXmpvmN2HOoHdc8vBKAbdoHgGHlMdyzaFxaV4YXkaAf+x1N3xb6Ow8eRkEo4Cp4pKcEKk14SIn35kwP6tRjEtQGIOhhCTEtKebGb9PeZObBvpY0mn6Hu2yzer8a6SpQ2r5u3ncq8ml/y+o8/XO4a++zps8wzABlw70fP2b3qioMO9H8vqPxHfSAxiw060w8vmSGk05XphXvUUKguiiEHQcPe5qkFcoEb5rpM1FWYGGbStmT9/603PT84Z3tznlK01928+lYvdWuEDilvhTXzx2BH7/4IeIJ4dTrNwv5eBG1/K6WteGgHw9eMRWPLN/kCNp9rZ2oLY0kUyUBtHUkBd0WKfTry6OeLZH1Qk16pUZ1v6BHnr6p6ZvHm7W00QdeWY/a0giuPGW4K7ahpT0O0qpKKLeQihvZceAwRlYVuDYK6vequ6eU20X/HK4yvKzpMwzD2CiLfx/J/KOmMBx06g6UaZUHleapBGGmtsaqWFBPhL5eHdCsJ1CiWUaUtj2yqgDnSyuKfv3Btk5XEZnuqCuNuo4jlh/zTqjGg1ee7LQ6VnPQhb6Xpj+swm2CV+iCPuZl3vfM0/cZx+TKmFDpjUpr/6+X1zuFeRQPvbIeC76fLDOs3E/KIrGpqRUdXQlXIJ76veoxA8q8H9GFPpv3GYZhUjEj7AcSZZqQUamITvGdtvR56YUeDYC6Q3clmHnrelyAmbKnUBuDA22daOvoApG7RXE6VO8AhS7YA36f08yoNGq5ivYc7ojj0geW4zdvbMHWfW3w+yjlXopoGk1fbUq81snU7H0+wo8/NdmVUVBRYDla+Nb9bfhgZ7Mr1uD3moUEsGsdqM9cHrOwcmNTSo1+VQJaF/oqZiCdef/ltbuduIe+gIU+wzD9FkfTz+00jghd01ecPLwMAPDW5v1pr1OFiDp7ULRFpe35KDUIsVxrgOPV2RBINh3aLzX9SNDvaqmbjroyt6ZvdrZTcQrFkaCrxsL6PS14dd1e3PrEKmze14aqwlBKmqZCj9h3afoZUvbM4D6/jzC9oRxLr0/GSNQUR5wujQDw6rq9KT0IdFQGARFh2vAyrFjflFJJUL2tWdZYFeVRjKgscDY5r67bi6fe2pr2fY81LPQZhum3KMPnAFT0XeZchSpFbEbR6yizvik4MqFavnZnKe5O09/f2oG2zrhnu1ovdO3cMgSbfV9b6JdGLdd6fKSV8H161TaURq20qYkuTV/bAKj3ykbTV5sA3eo/uCSMx5fMwPO3nA4f2QF97V3piwTp2SXTh5dhy742vPj+Ltc5yiJldtgz13PB2EF45YvznGOzeFBvwkKfYZh+S9KnPwClvgdBvw+PfmY6nrh2ZtpzlNDPpHWajM5Q5RAAJtTam410wrw4Ygtn27wfT9HYFUE/4ZufGO8c6xH3EY9rlKZv+vS9zvMqpwski+JYfu+aBV4+fXMjoISxvhmoKY6goiCEEZUFKAgFcKi9K6V+gI6+n1p00hA0VMRw1+9W23MLqIBT+3Vz89BdfIRZVKo3yZnQJ6KvE9HbRPQWET1LRIPlOBHRD4honXx9snbNFUS0Vj6uyNXcGYbpG4bIOv3lWVTxGyjMGlmRNmgNSHYU7ImmP76bQkWPfGY6/u+mU9NunpR5/4A075ubg29fOAGXzajH2m8sxKemD3XGJ9eX4tTGCjRUxjyFemlUCX0r5XV9w1ASDXq2YwaSG5VoKM1GpAfR+/p4ZaHu9gii+XBXRk1fn29pzMIFk5OBkOqzqfXtlG111bp2ZzkZlA9CH8B3hBAThBAnAXgGwJfl+NkAGuVjCYCfAAARlQH4CoDpAKYB+AoRZZ9AyjDMgOPG+Y24/9LJmHdCVa6n0meuPDd8AAAMjElEQVSo6PueaPpl3WyKCsNBnFiT3hrg+PRbO9HaGXfq2isuPrkOXz9/XMp11UVh/Orq6RhcHPF0Z6gI/tJoMKVZ0vSGMlegn1djH6Kkph9Loy175embPn116Nc2PXp8QGE4gObDnY6mb25Q7lk0FvdeOME1VqzFbKigR3V3FbCp6jZ0J/T1DUhvk7M8fSGE3mg6hqT1ZBGAh4XtQFlORCVEVANgDoBlQogmACCiZQDOAvBY382aYZi+JOj3YeH4mlxP44i5c+GJTiOcbJlUZ+sy507o2ecuDAWcJjs9xQr4ELX8TvR+NIMpHgCW3zHf1YmusjDkaZkozWDeXzylDm9s3IeDh7tQGrOcroc6PqKkpi9/XjdnhJNyB6SpyGeY/MnDvG8W/TnUbmv6fh+hKBJwFeZZPKUuZVNTEkmmJKrPptwIty4YjQun1OLpVdvw2od7M3aHBFIDIHuTnBbnIaJvALgcwAEAc+XwEACbtdO2yLF04173XQLbSoChQ4d6ncIwDNPrXHNaQ4+vGVoePaIiR6/eMS+lcU5PKJHd/Vo74hhUlLnqoRl49tVzx6YErwG6T9/CsIooThtViQlDivHSmt2Y0VDmCOzSaNAzX91HSeGs0vW+eNYJrnO8a+97uwp094buLigMB7DnUAfaOxMIB3zSupBMo/OqmaDXP1CWEXX7oN+HUdWFTgXGnrhqepteNe8T0XNEtNrjsQgAhBB3CiHqADwC4IZj9b5CiJ8JIaYKIaZWVlYeq9syDMP0W4rCwaMyExdFgtjb0o62jrinqT4TxVHv955YW4KGyhgaKmKIWgE8/OlpuHXBaDx942wQkaMZl8WS5v0Ta4pw24LRAGwh7fcRQgEfCtL49E3/fboxE91dUBAO2oF8XXGEgv4UV4JXvEFJJGnej6SpHKnqJ7R1pI8V6Gt6VegLIT4mhBjn8XjKOPURABfK51sB1Gmv1cqxdOMMwzDMUTJ9eBleXrsHH+1pyTplrzvGDC7CC7fMcVL3TJRwLolaTqbGjIYyp/Oh8sHHQoGsKgQqzIp8XkRTfPpdaO9MICRdHd1RrJn31YbHtAioSoctHd5ulwm1xbh0et9ao3Nm3ieiRiHEWnm4CMD78vlSADcQ0eOwg/YOCCG2E9GfAHxTC947E8AdfTpphmGY45Qb5zfi0RWbEEd2JXiPBUozLgoHsHhqLd7ZegCfm9eIuFOJ0T6vosByTOXZoDYTQ0oinvX8AfdnLAzZgXytMl0xXT0DHb3x070XTMCE2k2Y0VDuOqeyMLOmv/SG7hsqHWty6dO/l4hGA0gA2Ajgs3L8DwAWAlgHoBXAVQAghGgioq8D+Js87x4V1McwDMMcHRUFIdSVRvHRnpYem/ePlJFVBfjH9oMokJr8vy+eCCDZ+U5tCh684uRuBfHU+lKs3LjPNfbMjbOxs/mw5/m6T78gFEB7VwKvr2/CtOGlTjndTBRq8ymNWbh+7siUc1TTJT0oMNfkMnr/wjTjAsD1aV57CMBDvTkvhmGYfKW6KGyb9/somvxbF4zHwvGDUrobKte48qWb5X5N3rz7DEQsP8770StYs/OQM14as5wMAhPdb6/KE+851I7ZIyvx9pb0ZZIV6eoK6JREgiiPWSnBh7mEW+syDMMwAIAK6ZvuK00/FgrgrHGpqYmqpW1NluVplWB/4tpZ2H7Q25xv4tL0w0lT/amNFfhwt71xWHJaA646ZVhW9/PC5yO8cfcZR3x9b8BCn2EYhgHQfyofFkeD+O7iiZjdWNHj63RfeyZ0a4ZyHVgBH+rKok7hniElEacd8vECC32GYRgGAJye83ulTz2XXCgj+HsLvRuhJVvdXjVrGIBkTYDuLB7fvmiCuyj/AICFPsMwDAMAGCtr+GdrVj9eOH1UFX54ySScPW4QgGTp30xNggDg4ql1GV/vj7DQZxiGYQAAc0dX4bfXzXRKAecLfh/h3ImDnWNl3u9O6A9EWOgzDMMwDlPqy3I9hZzjlP7to4DGviSXXfYYhmEYpt/RWF2A8piF+gwtkAcqrOkzDMMwjMaIyoJ+l2p3rGBNn2EYhskr+ktqYi5gTZ9hGIbJG9792oKsuvAdr7DQZxiGYfKGWBbNdI5n2LzPMAzDMHkCC32GYRiGyRNY6DMMwzBMnsBCn2EYhmHyBBb6DMMwDJMnsNBnGIZhmDyBhT7DMAzD5Aks9BmGYRgmT2ChzzAMwzB5Agt9hmEYhskTSAiR6zn0KkS0G8DGY3jLCgB7juH98gleu6OD1+/I4bU7Onj9jpxcrF29EKLS64XjXugfa4hopRBiaq7nMRDhtTs6eP2OHF67o4PX78jpb2vH5n2GYRiGyRNY6DMMwzBMnsBCv+f8LNcTGMDw2h0dvH5HDq/d0cHrd+T0q7Vjnz7DMAzD5Ams6TMMwzBMnsBCP0uI6Cwi+oCI1hHR7bmeT3+EiB4iol1EtFobKyOiZUS0Vv4sleNERD+Q6/k2EU3O3cxzDxHVEdGLRPQPInqXiG6S47x+3UBEYSJaQUSr5Np9TY4PJ6LX5Rr9mogsOR6Sx+vk68NyOf/+AhH5iehNInpGHvP6ZQERbSCid4joLSJaKcf67f8tC/0sICI/gB8DOBvAGACXENGY3M6qX/ILAGcZY7cDeF4I0QjgeXkM2GvZKB9LAPykj+bYX+kCcIsQYgyAGQCul39jvH7d0w5gnhBiIoCTAJxFRDMA/BuA+4QQIwHsA3C1PP9qAPvk+H3yPAa4CcB72jGvX/bMFUKcpKXm9dv/Wxb62TENwDohxEdCiA4AjwNYlOM59TuEEH8B0GQMLwLwS/n8lwDO18YfFjbLAZQQUU3fzLT/IYTYLoT4u3zeDPvLdwh4/bpFrsEheRiUDwFgHoDfyHFz7dSa/gbAfCKiPppuv4SIagF8HMAD8pjA63c09Nv/Wxb62TEEwGbteIscY7qnWgixXT7fAaBaPuc1TYM0l04C8Dp4/bJCmqbfArALwDIAHwLYL4Tokqfo6+OsnXz9AIDyvp1xv+P7AL4AICGPy8Hrly0CwLNE9AYRLZFj/fb/NtCXb8bkN0IIQUScLpIBIioA8FsAnxdCHNQVKF6/9Agh4gBOIqISAP8L4IQcT2nAQETnANglhHiDiObkej4DkNlCiK1EVAVgGRG9r7/Y3/5vWdPPjq0A6rTjWjnGdM9OZb6SP3fJcV5TAyIKwhb4jwghnpTDvH49QAixH8CLAGbCNp0qxUZfH2ft5OvFAPb28VT7E6cAOI+INsB2Xc4D8B/g9csKIcRW+XMX7A3nNPTj/1sW+tnxNwCNMprVAvBJAEtzPKeBwlIAV8jnVwB4Shu/XEazzgBwQDOH5R3SJ/oggPeEEN/TXuL16wYiqpQaPogoAuAM2DERLwK4SJ5mrp1a04sAvCDyuGCJEOIOIUStEGIY7O+2F4QQl4LXr1uIKEZEheo5gDMBrEZ//r8VQvAjiweAhQDWwPYV3pnr+fTHB4DHAGwH0AnbV3U1bF/f8wDWAngOQJk8l2BnRHwI4B0AU3M9/xyv3WzYvsG3AbwlHwt5/bJauwkA3pRrtxrAl+V4A4AVANYBeAJASI6H5fE6+XpDrj9Df3kAmAPgGV6/rNerAcAq+XhXyYb+/H/LFfkYhmEYJk9g8z7DMAzD5Aks9BmGYRgmT2ChzzAMwzB5Agt9hmEYhskTWOgzDMMwTJ7AQp9hmB5BRHfKbnZvy85i04no80QUzfXcGIbJDKfsMQyTNUQ0E8D3AMwRQrQTUQUAC8BrsHOO9+R0ggzDZIQ1fYZhekINgD1CiHYAkEL+IgCDAbxIRC8CABGdSUR/JaK/E9ETsqeA6j3+bdl/fAURjczVB2GYfISFPsMwPeFZAHVEtIaI7iei04UQPwCwDXZP8blS+78LwMeEEJMBrATwL9o9DgghxgP4EezubgzD9BHcZY9hmKwRQhwioikATgUwF8Cvieh247QZAMYAeFV2CbQA/FV7/THt5329O2OGYXRY6DMM0yOE3cb2zwD+TETvINlYREEAlgkhLkl3izTPGYbpZdi8zzBM1hDRaCJq1IZOArARQDOAQjm2HMApyl8vO5GN0q75J+2nbgFgGKaXYU2fYZieUADgh7KVbRfsTmtLAFwC4I9EtE369a8E8BgRheR1d8HuUgkApUT0NoB2eR3DMH0Ep+wxDNNnENEGcGofw+QMNu8zDMMwTJ7Amj7DMAzD5Ams6TMMwzBMnsBCn2EYhmHyBBb6DMMwDJMnsNBnGIZhmDyBhT7DMAzD5Aks9BmGYRgmT/h/s/11r0zmz84AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Advanced optimization with transparency\n" + ], + "metadata": { + "id": "sKN4xD6Cz-xL" + } + }, + { + "cell_type": "markdown", + "source": [ + "While the simple optimization above using `opt.loss.ChannelActivation` works for optimizing the alpha channel, we can do better in a variety of ways. For example, using `NaturalImage` as a target means that we miss out on the random image transforms that can improve visualization quality.\n", + "\n", + "Below we define a special loss objective for optimizing our alpha channel, using transform robustness. We also add a `CenterCrop()` transform to encourage the visualization to avoid the edges of the image." + ], + "metadata": { + "id": "Dmpiqunk_LmO" + } + }, + { + "cell_type": "code", + "source": [ + "@opt.loss.loss_wrapper\n", + "class AlphaChannelLoss(opt.loss.BaseLoss):\n", + " \"\"\"\n", + " Optimize the alpha channel of an image parameterization.\n", + " \"\"\"\n", + "\n", + " def __init__(\n", + " self,\n", + " target: torch.nn.Module,\n", + " crop_size: Tuple[int, int],\n", + " scale_list: List[float],\n", + " batch_index: Optional[int] = None,\n", + " ) -> None:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " crop_size (Tuple[int, int]): The desired random crop size to use.\n", + " scale_list (list of float): A list of scale values to randomly select from\n", + " when rescaling the input.\n", + " batch_index (int, optional): The target batch index to use.\n", + " Default: None\n", + " \"\"\"\n", + " opt.loss.BaseLoss.__init__(self, target, batch_index)\n", + " assert len(crop_size) == 2\n", + " self.random_scale = opt.transforms.RandomScale(scale_list)\n", + " self.random_crop = opt.transforms.RandomCrop(crop_size=crop_size)\n", + "\n", + " def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor:\n", + " activations = targets_to_values[self.target]\n", + " activations = activations[self.batch_index[0] : self.batch_index[1], :, ...]\n", + " assert activations.dim() == 4\n", + " assert activations.shape[1] == 4\n", + "\n", + " alpha_mean = activations[:, 3:, ...].clone().mean()\n", + "\n", + " # Randomly scale the image and then randomly crop it\n", + " scaled_alpha = self.random_scale(activations[:, 3:, ...].clone())\n", + " cropped_alpha_mean = self.random_crop(scaled_alpha).mean()\n", + "\n", + " loss = (1.0 - alpha_mean) * 0.5\n", + " return loss + (1.0 - cropped_alpha_mean)" + ], + "metadata": { + "id": "pc7MGUKM2MqT" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Now we can render the results using the `AlphaChannelLoss()` objective!" + ], + "metadata": { + "id": "mAwfOLftBYck" + } + }, + { + "cell_type": "code", + "source": [ + "image_size = (320, 320)\n", + "crop_size = (150, 150)\n", + "scale_list = [0.6, 0.7, 0.8, 0.9, 1.0, 1.1]\n", + "\n", + "# Initialize NaturalImage with 4 channels\n", + "image = opt.images.NaturalImage(image_size, channels=4).to(device)\n", + "\n", + "# Set optimization target\n", + "loss_fn = opt.loss.ChannelActivation(model.mixed4d.conv_3x3_reduce, channel_index=139)\n", + "\n", + "# Use NaturalImage output as target, for alpha channel loss objective\n", + "loss_fn = loss_fn * AlphaChannelLoss(image, crop_size=crop_size, scale_list=scale_list)\n", + "\n", + "# Setup transforms\n", + "transforms = [\n", + " opt.transforms.TransformationRobustness(),\n", + " # Blend the alpha channel into the image using random backgrounds &\n", + " opt.transforms.BlendAlpha(),\n", + " # Center crop the image to encourage visualizations in the image center\n", + " opt.transforms.CenterCrop(crop_size),\n", + "]\n", + "\n", + "# Render visualization\n", + "img_advanced, history_advanced = visualize(\n", + " model, loss_fn, image, transforms=transforms, n_iter=512\n", + ")\n", + "\n", + "# Show visualization on multiple backgrounds\n", + "# The backgrounds are as follows: No transparency, checkerboard, white, & black\n", + "opt.images.show(create_mosaic(img_advanced), images_per_row=2, figsize=(14, 14))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 824, + "referenced_widgets": [ + "b9b1828c563c4cd184f26fa5590b3f5d", + "03a3658f7c2e499f9528d3376ac6b203", + "6717308b8d6148d9a9c8747164b791b6", + "53a11c21782140afa93165abf2f97e76", + "b91e276e9fb24ebb804eb5605707874b", + "6dd3c9c30bb246cdbb364456cd1bf5e8", + "5017968b4ae742d5b8320942b325e707", + "92994846e32f4fd4a079444319362f1a", + "35d3a18dfd08421ba1543031b5fb8cab", + "3952b6f664e94cf8ad7edaf249a17d1b", + "b6e7d16af29a4e43ac54a249e843d973" + ] + }, + "id": "37jeXKau1prg", + "outputId": "b5c05ffc-2eef-40ee-dbf2-c506c12c879b" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/512 [00:00" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwcAAAMHCAYAAABsWCtPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9vZJ1yXKe92RW1drdM0BQBhVSiCEEDCkoEzLlCA7gChZuAxcAXoHoSAyGaOAORFuUoaAcRVAmKMoSHdwBQyGcM1/3XlWVKSOz1l57d38/c84cnDOIrpj5unvvtWrVqt83/94Ud+ejfJSP8lE+ykf5KB/lo3yUj/JR9LfdgI/yUT7KR/koH+WjfJSP8lE+yu9G+RAOPspH+Sgf5aN8lI/yUT7KR/kowIdw8FE+ykf5KB/lo3yUj/JRPspHyfIhHHyUj/JRPspH+Sgf5aN8lI/yUYAP4eCjfJSP8lE+ykf5KB/lo3yUj5LlQzj4KB/lo3yUj/JRPspH+Sgf5aMAUL/0pYh88Jx+lI/yUT7KR/koH+WjfJSP8vesuLu89/kXhYNV/uv/5r/lP/1H/zkizhiGakF9MM1wN0BAhPjNKTi1aD7Y4idOUaXUDQE8/y8Sf5k6cxhzGtMMc0cE5jC2WqlVcXN674zeqbWhqqgIuGNzMudA1XEtiCiIIloQLQCoKpXJ6DuGZ7uEogriFAStFRHBzHAXSmvUquyvO+Z+arliLkgRRAXF0fxmmlFE0CqoOG6OOxRRTAt938EGRYVWC7VWcGPfB2DU1hCt0UJzVARzZ0zLNoCIgIOK4Q77fsUMQJmz42a01pDSqAVaKZRSwIXRJyYGNsEMwVEVHAeEovG8OS3qVKgilFIQcaY5czrmhqugPgGhtRrPt+hrEcHmlWmTaY6o0mpFBPq+U1tBBVQUkRxLbeSLRC+rUIsi4qCKlApmzD4YveM2qPXCFJiejXXBDMycWiX6UAv7PhjDbnPTBrVtx/x0HDNjzomJYqbRNzlPZ85hHMydUqNPRx+YwzTHxk7bKqUouFNKwWb0pahE26Yxe0dU2eoW7ZGJu+PEnJ17xyXWVcxzRRDMwbBYKxbz3mbHfYJNWrvQ904fI+Z2a8c8j/8k2l0rIoph9NeOe8wzVUUU3IXtsnF9eWWa4y64O31OLq1QNfpAi1BK1DX6js+O1g0XoapQRHJ+dmqrjBHvFTNNKEUxAxEwm+CGiFBroZWCa6zjHLBcl0rbNsacoCBSYuexCRij77R2wc2ZY+A20FpwU1CJ97aY7UjM06pObZVpTimVWmPPGNPwOShacAQRUCX2PITeR6x9if11zsn1OhhjUNqGquIY7k6pynXvxxqO5zRKLaASYzYnorEeRBT16BeziSCoCELuu6qYAyKU3IdEci8Sxczoc4IIkrNAVRnTKCoghTEno3d++Ytf8H/8b/8rAH/1V3/FP/yH//HDKfAT64ly3/6py//0L/4F//bf/l/E0lHw6Hu4vYHkWMlqx/om+xKB6FiOvnPA3XPf9bwvbvLbpYgIt9xBcvy9Lr/dRdYT68CBP/mTP+HP//zPTxf89stq99eG6m/+5m/4p//0v8fM8ix5qIeHeuT22fk3co3Fc+Mc0uxyz/NXRG99fDTw+Oeoxyz2EjndH+fSakvsAc/PT/yP/8M/+1pX/J2W24r9+kT4i7/4C14+vcTczH477nSyD3LOS5yLq69WH8ia5367/2jLMTzy8NVpMB9+jzmf4yT3I3y+7i//8i/5wz/8w6+84d2q+TXK5+o5t855r7XvlX/5L/9n/vW//t+PMTrG7IzROI/hacY/LKxbiwIviurdp2uP4PSvJgZ01r6UzzrtrUcb3O+Gbd+v/PIXv/ji+32TcPCf/Gf/iD/8L/5LzIzRB7VWfO63hQcY4OIIiszBtjVUADdUFBehaKG2GnuvOeZQVHGfeIG9D+aYmBlGdJBNT2CruBljDGwMWmnZ1wbmzDkZo1OUAJCqGIqWRm0tO0t5KkYfPQ5cj4ng7pQCVQtaEkwl0CyXC4LTr9djouMOBtI2poOooxIgUkQC8AKU+DwqFBTFpDD6K+JOq8JWC7U08MkPn14QlRAWtGIoRRRsMuakjwAJiFBqQxDEdqbB9TVAHBL95GaUEsLYEg5qDaFjv+7gA7GJ+Eyco4g6uKIa778ANjhFBdUSYDQnmuN4KYgNBGit4WgIAsfE7JgbI9vWWo3Nfk5qKagumCWIKtMKuNNqTcDqbE0C3Img7YKNAF+zD2x0aml4EcYEQ5jTmWMyp3HZYr7hSt9HzKfWcJ/MsVNaOwSjmQLYNGMijBGCSwHEHa3K07bhbox5AwhzTMwDuPvsXC43cAkw5sRdjq3BxqS/7oDw3Xe/Ry2SK4iFMNhfrtRWc9oWRNZ7wMTYr50xJ3NOfHZ8ThRja0/0vvO6dyyFW3NjOrRWqbVSW6XUiluM88vLa4DRBDMiYNOQUqKvZwByd+g2ebo0mjhjTqQopdQAnaOjPqjbM+Qa0Hyl19crpW2MsYdAKUJVDeGJgs2dMcYx12qtFC1I2wIYiyZmc2yuueYMmyDlBgRT+N+2DXFl9p05O6WUmJuAUHIOS27CSpHJ5emCSSgLSqnUUmLNjZ2qGuOgCz8qPmO+4BPNo2GMyT6MMaL/VGN/MZ+gwj52nBDCWr2kIkAwnGvfUedokxB9NK1jcyIuuafGPjBdmO7UWti2gpQQdAprXwsB0rPfcKOUynRD3IHCMGOMzv/7H/7DMV//9E//lD/4gz/4lqPhd678L//qX/H//Pt/D8Ta9ZjkQB6rcluH8ecjsIkfbveHK2Q1axGu79b2vkDQm4NZ7q6/EzRujcDd+cf/+L/iz/67P/sJeuHvvvz1X/81//yf/7NDgLqH6fcgJT689d0ZfC6hYGHc1eXufge6zkLG5zBjCAd6B4hVS2KnNSec3//93+fP/uzn2e8A/+Qv/8khBHBMv1sHqa55eBYO8vx2v917lCXgpgpnLQu5KRDJGpaYvZbRUfMhHNibNXe+/4//+I/5oz/6o5+qK36i8igsPH4Wn/+7//vf8W/+zf/5MNflUIgjD2/9ICzdwPqtVx1wM1SXct1va+FhUalojMdZHjjLP2dlxRIcjlf6uqD1TcKBuDNnaGptGirOHD0EANVcuKGB9gRJ5qH11Ty4VeOwVVmNdNwMW9oB1dSMgWho2dGClNghzC0kpFK41IK6Mmzic+YEdLSWQ3t2HPpFqFXwpb0tStWNMQfM0Lr3faeVkoO3FkYc4IdF4kGSNoxaBBvx7pbapKpCqxrabct2qWY/gWI0Ta2hhpY+zpD4WTQsJGYzQFQBO/W9eUqVqbWdYzJHasdyQddSQUO7KD6xCXtaY1oLbbF6CAYL7ES9BXdl+gBCE9kUbM6wXhjsfUY7S/ZzUUwqJcd+9dKcI7WlIeHWIrgoqoK4cblsIUiK4D5D6DBnjNSoi6LiCKlN9rA4KGCiaeFRpijiS1tV8GlRn41cCIYjzNHBnVoKVTWtHo7ZHprnXERmoVnG/NjYHGGa850ql0tj2oTu9D5Ce+2pRReJOeuKZDhPnwPHEK1YSFs4jpYSC18LTgiisbc7bpOwtMU6Wpr2OQaK4JpzzmLuiwhaavStKrVVNmCYhdBOXF/bhe3SYn4gjDkQM1QI7fXagTzW5r7vYQFJYU+1oFqzvwCMabE2VQAN4aO0EHZ92LG2VUNBIKUc82FLwYJS2V877jEOpUhufKBScMs+XNZAHJtGrcK1h/VANdptOCoVM6hKWGss95gCNgw8tZO6BCFnYowx0VZC4LIbwHYzTJZlMIGJC9ikSmHYxNyOzb22DamENWcdnwbDRvRFqakoaWgJQWXsHUurheQe4DgoISQJMKPP1w4/p9Et+gHK8bmn1pQiFFFGKgvcwMUoRRj7zLokLUbfpi37erkB7K+qm38D1oOzlnQd0pJn1MO5mdP9fl+Psb3T471Rlp41defzP87c072nQ1hPgMAf39n9p+6G30rx088bqLmBUiCUJOv3BSXTqyHm4G0dL2XFTZ6Q088bElp4InfPrCIFCda98Ze7peFnnVVyuurnX2L7znkvp75ObBB9fQaJ53uX8HX7MvpzWV/8piDNcqy3pZk+NNS3i+T49yzcGb+75cctxrO10O/moT8IXad1wGkfWPee5vd9nfdNOlsk1j52q1VCQDlFBCyhTpb3kPg3zfhvEg4OCTMBsyqUbaO0moeopyvKxG3y9PyUCzu+G+ZUhVICRM0R7gGxKXaKFBRFWmUq+JygheFwqcLeQwscG07sspMZWsjRA6zWwrY1bBjTnba1AEylIiU6ywnTPuYUSrgppRlfa0VKxV3XyAUo64PWCioFm+mMJIKW0LjVGoKGCrSmtCL4GOnipCG8FIe6BISBJeDtAwahJV0A7TCBmjP2wZBB8cnoV9BCKVtaFRzxDhhz9ABvOalUQndYVBAlAawjYpSqtAZihdlDI1tUKQ5SKt0F+k6p9dC8iQTg3Upq/SX6YZrTVDARWqmHYKgemve+X5kDWIColrAc2KRVYVqAPbOYvH3fUa1sWwMmtSiqDcTDVSu1IE1ruPGIYRN07phNSmkBsDzcmkqrYPDyeg1LSmo4bChawtSvEsKKuSAuVBGmzbDsLOndPAVOwS0AVSHmh6gyXbA+UQbDjeEhoIhGXa0JY14ZPYCoinC5XMKyUwSfCtgaeHwOtCrdBiqhfTYzxvU1xrZognWNNUlo4CFca0opNAwf4SIl4ly2Sqsl3EncGN3pfY/166GtKBoubiKCD0PbxnXMcKsqQqmKlsJ1GEil1BbzezquULcW7+ST63XHst8K4V4lKkzqsS9MM2oLt4FaK6KGiSJSqCLgE4CtFmbvjDlwEbbawvXJJkUkLIVoCDuEZWi6MdM6aBYa/ctTQ3GGGaUUikbfTpsglT4mRWJ8nLTSuWP9FdsuoW1PbbBP49IqYIiEQLdcfJAQGCXMAHlgR7/XEn0crkLjJnyOsCwMc1qJ+QkBklrZwDpotDMsCI4Vxa7XsL5YKB6kBBguRRmq9BFujiGXGirh6jUNShXmGIwxQ5Hx96HICcjAcUCftZ7idyftGyxwJ2AsQJNYdAGkR4DK3W+r+OkaOdp0E1LWYf4FeHpDd9/YAb+9IqSSKX9fWnvgwA9yGp/4/PaKB4BPgH8vWNxcEc/3Z+13gth5jA5QdNKc3lknViN+xkVkTeN7QLjK6ps3Qml8fHfP2Tqz6ghXzlOdx/yX+2rcb3P6eP5ZJD/XEfqVn3U5+vNxA8n9ggfB4RCI5M1txy6xBhPuxuKwLqg+7B+356y97O7zs5lCOVzcv0U8+EbhgNRoVebrC3PvfPcP/iPa1hgz/L6LKn0KPq60Gi1ZUmprjW1rzL4fWn4nNPJNG0IIC3XbAljaZKpSRPj08hIgITWG+AAqisLsSGr0SJcnRKnbBZuhfa8IVcPkrtPYRwA/cSilsEkAKhfFtaY7gaICfe84hlal4gw0hZQw+5QSHVxKpdTQeJo5fRhCo5bQfs4xcbvSthra5VphaThEMI0FuNWSrheO7+EmUpYFpFoACIEiCbq0wlYYewhOy2fcBYpu/OIX/19YFzx95am8vrzwe7/3DMCUEB5cLNxIRgCM6QHAai24TUYCjFokxtw83WpCY1wzZgNVagjMIZDg1PSd9gSgIURVXl53Lk+XjDkA8dD2unn4XRdlDKNU53KJcSGBreU1irNdFOsNtQXmQpMqFPo0zIStVKQ6Qmh3U8Kh1Ubdwm1l9BEa8tqQ6TxvjTGd67Vj6tRWEJ9oa+gwrMT7mEEtyqVWhMlwGBb9xRjAZPRYpk+tMAqM6fQ5KO07VJy21XR/GZg4sxYEuL68UmRQSzxnH4Pvn56hCmPsFKnRLhHGGLncLcFuCJ0uhltHtYQWed+xOXAzxIVWn1CB19EpEjEsE0FawXsAYNGWgGpic6Bu2Mx33fewBLRC04wZGhHb4UQsSyt5EPugpWXDPYSDOQ0bn8KNa3YcpZYLpbVwM7JOVegz1mxtmpZFwdDQvrcWW6UP9mtHa0W1UmKRU0pBez/2nlz8ICE4lFLYe8cA8xBKaylICcuNFGWfHfFKUaWK8rRVJOOg0LSWmN9iPQqYR9wRczCtU7YWShDCQmBm9PESc8WhzAJVmH2EBahI7FlzpxKWh6KaMQkbZTrPl4YAJd0sFyhznDE83B49RMhawq3PU3DZ9x0lhOCfjLZOHv/4AvD6DYCyWJMPGrnPteE4kX0prE/a6VXf0tDdEKxKOXTWK34kFAj3YGDV4+48il4n7HvTjL/bxp+gj+7x2Y+//aFh7zcp4rXi+xsYerxXxJdxMu+5aVcjJkA4a04X6FwvElab9Qw/BIG3bVqf3/TW62XO2vUltH3p3X/XZYdwWzwjzduMf3Rfy0/jz/zHnWPsOL7x0zj67a6HuX2stbxOJZDxuU/j17NQF8pFN387uX6t8mMm+uO1C0Q/3ivvV7uURJ973J1QfBOOD4XBoaw4lVM/3+0hEPGW+UcAfH8QJG7NOFwi0106prqn0fkzAs075dvcinBUjKJQnyq9e/r/9yOwd86OergOxDyzw2/XgVaUbtD3yZyxOwiFMRxqBND16zWCLCmoKbUW9OlCH3seioJ5Y1x3Zr/SLht9n4dFQdHYxkuFoghGaGKdUhtNQ3MebicgHho263bEP7StHe/jYmyb0m0yJMCEKikADC7bc9QnMOZgvxpFK9vTd7z2jmth2MDxcD8arzx9/x0IqDYMCT96VVQCnMzeQTfaVthKuA2YOW6CDcN8xzz6Qkww13RNCo3vcRzb5Pmp8frySy4tgh4F47vnpyNwOhTPMVFLU3ofrIDG0Xv4bBJSpgiM2dnKRrso6s6+d+aYSCuAh3XFJjYmz5cLu0+aaMQJlAA1y7z+/FRj4h6IJuaZiFPcAriXGB8tBR8DtrAMaAaVIqC1cp0zXNi85MYYGnX3wbTQupftghFxLppuMd9dLuz7ldY2St3Yew9gt11wUcbcw93GHMzQreFzBJC0XMCpea5VqFKxMZAccyQ01mKevuJhsUI1hNFc1H28phtWuAhdtDFtQNMA9aWCh8YXGYDiGYwfGmijbZWX10FZQoFHLE6TQu+w94gRqqUgpA+8wRg7l1Z5auF60XvEh7R2YUzPV7cUHATHeN2v4bs+CcuBAtaZ3bnuHbew0BXxAOgpBGuap8ceMQ5aa4KyCKweY0YAv1/p1lERPr2+sv3eM60JfRh779CN779fMRjG7FdEjVYNZo0g5AqlhqtiKQWXiB/AHS2abowhtEY8xhPDrrF2RINoQCZFK5MniqU7nWgG9e5c6hMDO+JwcElrUoHZwSfjOmP/U4Vaef30CauNvfe0CsVcAKNV5WXf0aIRAO0RkF1wcEXKE6qgOCbO86WyXwnBynpYbyUC4IP4oUf/awshMS16VZYLY0mr2cTewNefovxuoKozPIzxfR+QvNW2HnfcCwicDu+TglRW4Pyh+V4XvN8PZ635z7/I/e+yLJt8Bl37HbCE0NkAaZ0lgfwCQes2fwNIT38c973p90O2exAG7sbtnVb+bkzhL5YDoJ4U0nL+4O3V8dvnZOYlUDze7vf9/SWh6usN/kojfqblPTniXgi4zcs3O8Oh/V8CxWEMOFm5PvfQUJwC6VJ/u/ioUuRwV/2WXv8m4QBPzbIKl7ZRqwbbSQ0XEiiICaMPhIl5jQOuCLUuEDMwwg1D3Bkj/MxLEYwG2ri+vGTgarCHiPgRt+AOPtO/WeHaO0UbJsHmoUYehIKMyZxXLk8bWtL/v+/MaZR6YQ7H5mINUcQMtCSgGmgpaK0UlXDncUCXD7ohVZAB7gOkIVqoumElYjPmnNQiwaaT2gt3p6oG6EZxgv3I05Lw/XMEPl+vVwQLAKtQpmNz0KpSynNohTG2UiLY2Z2nSwuBK9SGmIcmudTK0/PvhS+nhLbczNgNsEkfg5lg+6k2tqpYqAOi3anB11pDs+gGKpiH0NWWm7NdkdIQBjAw74xrjzgOLdEWCwYa1QI+ed42hpQQekyRUpBLweaVouHuYDOYdSoZd/EyqS2sRiWDWueY1FroPSTyw0SNoKlB8bQ6XdqGpOsR3plmSGl0JAO9w/1NPAJolXClmhrjWuoTn15+gGnhx5zgUgWkVYqEhUkkgpvDYlMoGBBB1FqiH0KB0vHFElUjjsSddB8X2iXm6t47Qtxns5NGmVhPAloEZbBVpwrgyZ2VrEiXbYPOEUMT8zzqEMIypFWPYL3AsRWVSr++0vedKZLXQPVwSUKFbYutq4+dsSxbLVzw4gHhcrNt7W4fCY3GDAFhOFUFKyHcL83J674Hy1QPph7cwlqoDfdBKZXh+RxuQfBbKTiTOZxFENBaYbjjo7AVKBJzfOZsKeLhhpbCaC2hnBhzctluQu8wY0yjSsFGxAlUiaebSIQRqzJnMKtNX8xdoGkFufZBxPYEJC8l2l1r4YKG8JJ9YNl3ZoJNGB7uglok3fUUo4SQNDvMSWkb+xiHpY7UaCNlaQR4emqYhbvWHMamtwD6X6vcAbS/+3KHI/P0jSadTPqntsWv+kZreAvIvJWlOb1zDlrbLkvTfTwwDBJrTcvNF/vsRnO425w1lD9hOQ/Do+LzV8Vl7w9tKvzOQNtv+/EjHrx/tudcD2aveMY7DTwsBOkydMb458tz319xflH/+spurk+5N/wqQuwbIePXKPdC6Tt1fsW1LI/9O43z0U985e1Oy/Wu/4RDGBaS0OC8hh7aexdw/o5csuo/2uOfcXM6nvCOZv2by1ff+kfcu97nnUkvcrDUmd8slktJG3/4SVdwL8hK9vGaj+c+ubOc5XfrmQ+DFUqph/eVQ2BYb3VTwsYe9PXN5puEA9XwP8cjGFbJgJLhqWFLysFkuymEVqqUCFg2G3TzAK3TgmLQJmN2RFqYZOeMqZcv78mG0ghNwjIPOhGMKKcdxjyAe2jVSk7QGX78GoDDMrag946NEVYAudGcTR+YV+YMuKAlBKC9d/ARPrwJvEQETz/33kn/YBg26f1KIUCt+lhzA3OjmyNe0KQ2DBOLY0xshs++okuZnyw1A7PBig1I2EtLrXoEqTq7hTtDrY1aCjb2sJaUyvSwrijhM3+j4wuNZSiZHZOCFokYjWnhbmVK0Yoi2AhmmCIJd60jPsISM8P6A0FjaxaMQW0L+lM3xwbUIpSSQl+6cy0/uhinBOo+j/iWwLITp+XbSzBU4ZgoSGHaSCrLpPjK5bK1je4D1RZ+5iVBqAXl7vAIuMYMpjPGTq0bW9uAcMnCwqVl7CEorvmnCk2jL9ycISE0VI24Chkz2JA8hL05HZObaVwk6FB9jqCcJPpwzhH9xW3zDXYdO8DPVmswK3kEz0asavTHHOGWolp4voS1wwTCmhfUocNm7BMWQfoRsZAHp0EpoSmdGewbzDeGELEcQQU6UxgNs/bWGjaNIhH4vuZ4KTHVSmo0Sq24BA2n+9IwhmvWCgRW1YxJ2I6gXak1gXgErq8Sh03EGkkKt4In5kvWnozXmMnCtSxPoummkLto1djE3SKepapwqUofziyE21QfyBZxL7WmpdFiX1ORcL2qigyQaTl+EW+CRDA2mm50rMMkmIXKtqESrogzrRURjxABzGZhNQilCWgpB+2m1LCcmYUSA5vhSCeSe2OMt0sIWqqCF8W9htD+U5bfmkbwFF/g94GPN6+KFVh5c2FZJRQfednJWrBA/zlo8wh+jce+p2g9tLBnS8QBVGXRdp787D//Wl/FO58TBD5XxyP+Pv/9bbLdfYXRp/l3Mpz7Ab7XmbPcelZfJmw6hK516dndiKNhhzbV/WGK+d09R3veKyfQNee679QXcvvxpWn8CLC+RVh4H+e/g6bfq/8zdQZZS94DHPTy5By7NfC+Eae7zqxdtgD+fa23KuSEvcyPff02t8/jHXvtnWvS43ueBIFHXqPHK+9+vWvj/at9dijk8Qly95anf7Ke8wJ5rMxv6/ahLaflfvx+v9bkmMu3bekhgFluc8CPCvwQsm7Y/3H+fGY+xYPff5V3yjcKByVADJ4HteXgLPeOcCUSLamxjUBXXJhJP9rTDaOPyeErlf/PDJgNFxs5QOaYM3nlHzYCh5KHcjCfxOQMs3+AqBV4SYIPN0NLaO5dwrWklLRqyDxoFF2CiSiwRXL+F4H0lTRf0qJg4vgcyAxt/pwjeNy1MIZwqXIsDIcEhjEdRUtGp2dA4xxETOI9jZsDokGvuPrGU1uqBJAfI6hckXLXD7r40i0OSUkhCYLSzdfh6DkJU8NZS8FkhIZawgKkM3zZdR0Ac4YLDcF4FG5YkjkLoo+GOyQIDWYqwwbpehZCyWJLclIgSRCcDLWYDIaEMEkGPeMpzJjji80qkeYSMvAQSLSG//jKX7EYZBaVpg1HPZiMpgcvvpYLWusRiBVbVmGMSVWla2xn4qcT0AlaSQkWqZj/pDAd8RFdBsNjS1G5md1FUiAign5D6x5sQppjRY57KRqB01vDe8d6xFrYHLgHI5TbQIj5vdXKZGBbiSD5HJ8VDObmlLYoMsMiJMd2vdixJAX6CJpWUYoGG9Jqf5EQiFcdtQaQdUlltQcVbk1L1GKAitiVsDDVGpKgpYBQSsbopLUxVk/EfphN5hREawBi99SUa4xT0VQgrGs7uumxrozbOiua8w/CiighOMeWE+M45wxBhrUGw30tXNgy54Q5iDF6p1yW61+0YQnjpayoA2Es7Wc2ZLpRU8McbmnJBmbzGM+gi449IxjalDLTTVJiO59zgZ2YR+6pVDhoWMl4Hs2+52SK/vmXR6C9BIHs0vvPXW6A9hGAO0FksQ7+k9BAruPjtrVPyGMlvEXhtwaQouhXD+vbwf4WgMj9VQ+/+emz07uuTx7ynN76570WPb6Dv/3rjbb/4ZezxnP9dgB/f0cIijY++rDfcO5JgHjT3Ds09nZ4z89F7ubGuvJbNKy3R3ytzx4B3LfW8d51t/puAdhfuuGdRx4T6AYm76wHn6srl839BQ9r4tz3p7rOgcpLMA7B+vYunK69/f0gGLzzTkto/PwLvy96fEuPP16z5uCRM+KznXUC/+cW3YNbqwEAACAASURBVFkC3hMMkqhA3vbL7ftz8P7DEx8+iz0mFWL+3hu9Ld8Wc6ASbkRKBNXNjtQS7iCk5OpxeJZSgi7QnO7hR202cSKgNjBesNfUFAI8tWukdnEB4D52aE8BNs8vXhtFKzaCfaNuNbrJJ1UjoLakdniahc864a1RW2F6DbCRIFYUqkVMRQA7gn0Ez+RClTl7uCO5YLoQTwZ/TsNSc+0ebhOvrx19ugTNoARNW60bIvNgHYq9fgKhKbdpkTdgmZQ8KBRrK2ztkod6cNtHQGhQjM4ERct9IZJDBV1nSUCSM5CC0segXi5gg+Ka90om7prUqljZEIvltJUS2miC2cf7wMcOc+DqqFZITacxc7zCpcxsBD1oTuIxHVBUd0xDq57kNanBn2iVzBsQwqRi9KSunKUmJVeaotNNZk5jayVpYB2mJdDsEURagkt+ZI6LVrcEnRZzK6I2cQ2rzLTQyBdVtBbGFCpC8YlsJVzVpjG6YShbfcrNLgCZZL+XWhHvkYuAGX7m6fePCDYGJuWwjIWmNzZf6wPc2WpDa2OOPfcSpeqN9lfdmTYwCk2coo6oU5ghDGwVQXn5oQd9LVDFmR5CQtg+wuIWlKQBWvuY9NEPLbv5jTUq6DIJBqRYOBlPMfHsm9sW5AnMMgliSfcBSSE513G4nIVQHyxLafGTsCTgIWQWIeIcyL01hUVJ5UK3ibRFQxzzQzOhmG4bYpO57slNU0uJAy0ZhNDYfEefiBau1z2FosgpMKZRiJgNd47EjeZGn4O5h0tDKNlCyKylUUoLBUJaYTxzwEha8Wz03C9SeJRFeatJC5vzxCZTYr9qpbDvxoq10RJxImPOzOkRLGI4VK0h9FlsO9GB5UE4+HZA9LtWPPcFTmfve9B70SmaG2In68EDKPKVLO8kCKzn3HD0Z8A/t8Nd1vw9al9gKoDUojHM5c+3jMGCPzc49AhE32vTY71n6PK5a74EuE5XJWJylvV2VSX31zzU9SZfxLriBIzOWMofn7GuP9Hxhq7j1tt6quvUmM++y0+3Bt6v58tC2GdqeqPxX38ugLr6XI93O2IP/HTfHZYNNidP68Pb7lkz7Pbsg6lIToxQD+9xG2X5zIx5S/P5U5efov47S9Tjlw/WL9a/Dxaau+DhkwUl5qgdwtGdleBN+9d4phB7GlI/PzPH4r6t52emMPYNXfNNwkGAq5JuOoUhy9cZjkyjKmARS+CWrEAah7UARQjNL5GxdFr4H6NC3S6hf+uvUApSW27yk957JFNKTd50QetGn68M83R5CJYd3DCJ4Ng5jUowf0QWUwmqzK1y2S64R66GOSZbKwEI5wDLYNbUXE+bCIP99QqlIUlpWlsACV8mfM2ud6Vuje9K0m3mYKkWXIWttaQ/tQNgXV93thqAqdYSvt0i+CQSd5nxvD0z5qSWxtYumE2u1x+ivz3cSCLQtUApqFfC3SfcLyIQONCKJ6uPIkhmaK6lso9IpjVtJddIGkAOz4VkA+m4TNpWGXOnJe1p36/hR07ME/ORgEl4uhSqSgSdpjaWORl95jGrCW0iJ0BJwQxgDI+M0xjz2imXhtacj4CxYS+/TEBuTBtMH+HSlLSx7iGQNinMEebAkXOLZGhCC1urtK0xXz6xtQuuypihmR/TedrijpG5CBYPvVunbhuIpEvKPHJSjOs1Y0UShBJCGDZoW+WHq6GlMX3yur/y3CLDcHifNEQMtz3zZsD15Yp/b+z7FfdgufL6HX3sbFqQGduImfO6d1omHiylUCzySbh79J0NnIraYEngq28YA7MewfMe72xjIEUwCcvA6OEauNUW4yiO+GT2oPNUVepWqaq0ptQCZj3bExSsXQZzdGzmoeYBvC+Xhs3JPjM+QQRtG+Jh5TMizklVM08JtCoIG6Vo0BQTAcJFS85noIBMC7c2c0wqrUy2Futy9I4PgxabbN+vzGnh5y/hV121xaY2Q9gSB7HQ6JdcY6UEE1kkUhtIKQfdrpRgPTIy0zoxbyJfR1I9Y5kcOhiepgM+kg1qRMD+FhZAI9z+LPct9xCMnr/7HpDMam5crx3omehwQdwlnKzyVuN29+s3uE/8tsqi6rsd0G/w6YFLVW6npJu9r4C7VXN3e/xyAgQJcO9iDs7Awh8B1Dqkz+DjDJy/8p5fGKJfrZyB/5fa8Raw3LXrTpQC8ROY8SWUBaBa2m853Xfu2zAk3Gq8y3Nw0n4ermOP3JiyYNKD//bp+8+95W++vNeP39qSt0B8uWUdcQJy9kNPV5RjPmePHkDV7+o6AsAPi8RnhMI7QeIWRH5/jR/NvbfdfFvMxo0l7FzlWwHy/Pf7Rrq3a/LXKrLalH20nvNmq7xTNdx9dyesCTeWobPFRE7tj8E5f3wM6tnd8RjR1fWnOh5X+JfKtwUkJ9+ki6NVKLR4odkprVApWA8gfd2vCIWtRIDehACiqzMluP4REFWu43oEALdLC/YM65HZ053XvtNq0J2uF7S9pzbb2S7P4cPsxhw7WsIFJ1wawipQ3Lm+XIPVRQu0NOxLwQSuPeITRBzvE6nByW8ubJuy9/B4VyKRUimR3Krvr+GPjmX8QghRFQ+qS9kiJ0SRpEeV8DUW4fJ0Ce3zkEywFhYW5gBNtqUMDMUiV4SUjeVD7R7f9TnYWgVtjBFsUADlUiJzsyYrjk3celA1Vo3syJpuG9l3rW1M1QDUMzXqOH/7t5/YWvLTl4xBsOCLrzk2AXNWnKuE6tMU1UktcNlKME55tKkW5dPrnq4jBRxqq/RekBGJrZY7RAhrwrDJpbyyf3pBS0NbUF6KGk9NKTYPusaOM1O9rCuD75wHqLe98w+eNhAYHkGlWiKeYthO++67sNKMSKb2dLnQRwQQj2vH5kAk/MDHXO44zmXbmOManPyZ7Vs84hsEILnzKcHn7xOaGNc9qEifamPOSasFnp8C+Jsx9o7MwT6hz4m/XvE5QoBKP/mqYLPT2lOA3r7T+8T9iVaEevhfBwDfSqFqpdUQRCJANubxmNdwHxyd7jH7pxnWr+GHw05r3+ESQbNj9giaF5i1MPo1BYBGa2Gh6dcrzGAec4kwD7FJ0UZ9CndFS/pZKYqUhooGBWwmAIRwIdr7FWRlu16CrIIrpSrzesVPJl/LvjXvTJJFCo95nYne+hi4eNCjpkniOpzRg22tthaUpSL0647PW+I40UiiaDYy94UxO2Epkcg0vY/YP7RcQGu+X7iUTTfwQuT8CPAjEtQFriWonluNRI6acsnoaFWoeozdbetXTBqvew+lwUF/F4Bt74NtqyxQeLv3510OXHP3mXDXNXBo69zvP36vvq9hmHsA8OVgvzvx4KQpTBHtyw/6avkMiHvz5G8tb8SlLz77Hvq9vW+t07jgXrB6v+WHfvX0mPOArMFLkCuf68NDZ3pfz7ldvxPlx/T3rdzlDjgLUZzf7dvrPQTZtX0eAP8Wo/m5Kf6eBe6u5/30y2/YcvAbL/71veFRrXAWhG9z+14A8tMaSaqCe2FPHmfKW3fGcx3cL7lvLt8kHPS+h9b6EkGaRYU+I+lPmRHgWrRgpbE9SbijuB3AyEUyu29IRzYj4U+5XHhqW2jgxzXYPjSyemqNwL4fXielRcAeSa0pwBw7T9tTdESy65in+wEemU5dQus7BqUWLu0SGVxL+DYX3dDnCrPz+vIDbnDtV9j3YCt6esKmU1ulzgvIzRJi5kHNWFu4whDMNHWrbNvGy6cfjkyogoTmsUZ3a20M6/E+KlyenrF5ZQwP4LBWoDliRu8TEpDP1Eq7OcLIBFkCcyAuFA/BBS20758pAi8vPzD6Htp3LZSmjJ6Jw7whNYSRcOsBNP3TMWqttMslEkZZZxKBn4uiOGBIALaiQpGKZKKn6z5wlMtliyRaImzfPTEt/ekdZDqlSrCu+OT752d++fKJ0SPr7LGg3Lk8bYgIrVZWMLX1jisUdfp1x6wcrmJFCk+Xjf46EDc2VZo2hsN1/0Sfk/Z04aIlxTN4fX0NS1Ry04uEltdoiDZe91dkzghKFUNrxK9sl7BSXD9FHoEY58I0eGqNPiIWgRRzI/jeIOlfW/FghSpbuGK5camV1lbgariV7NdPXFoN2UsCZE93ik9a2ehENuE5OzYntVS2qry+vGRW7HAt2S4tXPf2Sf/hUyQp3CokEBUPyuGtKWMqw8AV9FIRjFZqJH2ziY1IgDg93O9KqVyen4P+FaNkvo5SC1JruOIAUir7BFVLuk5YnpRjZPbmUjK2YwVxw6GnUeV63YOVrEZmYzNhv+6MPdZ8uAWG0F4E9msIZsEqlMGrFtY5pVC2drgjta3w9NSY5mk6C4uilkJrG9frpxAK0mXEUmCOV0nTrpRIFqmVce2RJ0U1N14/3AchrEyuJCUwN9pdjTlTgVa3SDyoYQ2bCPvLjpbIHyJSwyVvXNP9LmK+VhxHLclIpho01B75KCwTzv3cS+CZE5g5f8HtgDziwE6c4O9V9qVASk4aw7t7OB/ED6rEGwJ4t92/qoAg7/z244HmowT1Y+o5aSsPcBo/z0Hej/XFPX4PYv08Jg9tOVyMEh7dATS/A00BqFIL6xZg62QtWi5K9k3CwY8H2X9X5c5SBty08vdaa7NzMOuX38M5BYhn0QNn+nHN8cR00yPpuN8IyKepdZAB8FYw+1U0+4+WhN+UzPGOuMuXdPDu77xP6JxOFR6zlYXv31rReBzKu3cUYo0tS9zq21+3fGMStNSwTGP3zna54MPwObFDWndKrRQn2IA8XIEkN+EJVCnh7y4bKxlRLaHFWm8pTuY9EEptPD9Vai3pFwduE6lKkS3Zfm7+ckU1Xc2dUAYuc1r4RT9fLml/sNx4kr2nKIgm33ceHBZuB5KuOloCNNmciI0ApRZZRmurycKTHPYOpUUytTFCiBItmE9aBdEeNKQam+LMpFKtVgxjmmISENIlaCZrJFhgeIDmiNMw6lYzyJT8bAYVYlHs+ikz/3ry28e7YxFkviI55vRIPjevlLox+wga01oimVQJTf98vaJYgnaP3WL2AFUFiBzGkXRKhW3bsD6SBjXA0vTIRjxnsBSNETzrpSWdZFFqqdnSYLERwlpTaliWnBiLaZGLQYuiZmyXy+EGJZmwbs4VIBzxJYZAz7wENQKjww0jhFmV0MwHxWQ53DqcEEIVRZPJKOI0auSr8BkB7EJm5w2Gq1o3phtbUSbOSH93YSKloEW5tBJWDol4k5JsT2aRNVrgAMjmExvKUwkQvVyEcNBibLUlM1cNSlE35njlcqnYHoBSasSYuAmXp0bfYx0GWIqMx2aDVhpOiVwGaRnRojAjx0VQajZqqZSqVJEAvkqs+/y/9x0rNdyuWEnx4iBBa2jGATzc2oIxN8ZmSlLgZuzSnJlcrdYIGk+BXQHXyPEQOSNCSAyL4mCMiK0pNSwgTuw1ERQfwfNuRkk3IUQZ09LCFu1dcT2O83rdmRbr0uaMgGQ3RD0sH+neSJIItKbpehX5UsYcoaAo4W63jxCkFw/12hCHOT47dWvYmBRdMFJDyDEORq9ugwhWbpgrWhuRtd5yvob9KsSAfE+PeT1W3NddOR8xfvfjd7IcCrj7k3M5TwWmvAcPSyN3p2l7qPJdAPPwrOV+cZjunftspg9uAedy1P9NfXsDtnf3/ujyJbD7+Nnjte89U96AwoM15w3KuUF4yXWeNeRl99SMK/By9eHSjj+6Xpxbq3ft8FXtWbd6MmL8tgH/r/n8w2cIoneM9+DhvXb5PSe2kwXnoW/fCsHvz4HbNnGf3O5WOymkfa6Ot1W+/x4/rvzGx3itx4fnHWQI75VzX5Hdcewtcp+vID+7CX3KSij4ttJUeh0fnWb9j9hrvlk4MCKorXjSf9mM/yXch6IzLFw6Fl2gLykpDmMtoWVzS4CLZ8Cgg2QwqYB6uFwgxra1Q6IyCa1bHHKKagTozVwUESMcLjfT5iEla4LV9fecM4N3wxdXbbnfSAZnppuAB0tL30cOjOBzRCDuTE0EEcRZSzA6Tb/FXaABXmcCdNBk1bnFUCy6x6Dt1PA6ScCqGmAsej8mWeQK0KBezXeNORQSYy3BkhKuLpNFK7B0OeSmWmu4FEzXQ19VU1MzZ/p3Z8eHJjxddJKBZWXYFQkhbGliIfNY7B1tNVmlPISvFGDGHDhBsxoZrzk0DjFRKkJyxkvkNNhaBYHZR1B42gxtp0e24YqwXRbVbgiIc05EO7W0ZEuKUoqgEq5j+8zYFwLQqig2O6XVEAhnJojSEprmFKrqtsx9ERxsdhNwY4Eny411mMFNb+lL7i5obZnMLRKG+QiLDD4RjLbGYqyA9Zhnl20j0glkLA9LcwR+JFJbCeccMb8FcFMyVi1oSSMHA8yyjuzIGDxnuMmFwnxmcHNsYaXUiPvxcCnUTMYW8dxGObQWgbyD/zmkfjOC/WW13peAHgIVyYYUsSNB0ekC7vM4ysJKZaTfWTCVeVojRQ+3MSlhQcyQEzwFbaHkRhvj4DlmpSapwYoFEiILd+5tta5YphFJx0ZkY5cUOM9kBPF/WHdWMHUIKgHJD4YYCSusZAyOi0MypQmSSy6BUFKQLsWneSF4x0LAGD3yq3gKrc6KI5i5990ODJ8RD2KLdM6/dk7/hiWCR83Yr1puZyjL/XI5AT9CouNxwrFHvq3uC43yEwB482/+tJO2Oj87s7gcTCMpUHzxeZ8pv8vA9k7DzwNG8tvn71V3dvniAEE34WBdeu6xdc36/P1cBP7mx7cJWL/tfv5SWXMv+8Uf59IXtOl3Mquv6Zh3PfbvDege43EGwfn9u4L2atPZBeoncuf6ba6BFeB7Fpwl3YGQt+94bDfrr8/Nz9P1d3163slOAQ7vxYWcWpTX++nar5dvizkAgvFCqEkVGEGeybKgC3ROSm3MUW5rPydBLXFNqeFXax4Ab+wRnBhsQ4abJtgPYF630Hhb0gsGSA8f20sJBiWSAnNtwVpKsoF4ZpgNN4IxZroUcTugPTKHqgZ4KmtgdWk4ZwRd1srSSSOLWSXryXb7tNRoh7YSj9wD7kF9WLVkEPOioPKMWUjN/jr8CX9oSVcdSrpVaeY68Ah0Dn9ySxcjTWAVgGPM1PLaEjacZW4yG1SJuJEiEhSkGLVE0KOrZJKxAJzTjGGZXTeD0G2G34OoMkfkmAgXKsNGgKjt6UJtGRiasQ9zuUnVwkUFTYYhJSgzzRa4jbaqCq0qbdsO7X7QdsY7i3owytSwJhQpCSjznX2C1INve2nmXWtYRtLfW0XQUpjJEHTZarQ3fd1LBnoHLzahBfbMucFpk/B4D/VgmZn7TtB4EjlBclmI6gEkVw4D3HELUB8UpCnkjATNWnh6fmKMcNdb2vmwfmSm2zGDiSpeN+I80GDIWRamFDZEI7hehRAmU4C2FF6vfTAyKWCtQaeqGq4rWgtab+vUzJka/Q+SFh4/BCiczHGSwvdaO5LBt2aIpEk6aZhqGgfnmLERut8UBR6CgiR1qzlQgoDgNtdzHZ+0xbbqie0ycgtkvglyLUUm7SU4GNU14nv6YMxIYhjufH6n9dT8N3fgyEHgngqSeNaKTagrg6Dn5i1yzIEVHBzzBCD2M9dFHRsKkjFibdZSWJRfSzEiUg5YFsmgwjVJPBiRZDGarId8Ns/Bb1gw+A2U42AOc1R8dvOJOB20srZzDgDLSWt9YBy5u+9NQGRaqM8Bf2eAevyd37/LgLIsC39n5ccAqsdr37vX39WSnoWkdT7FcvBbJ61Xz6RAZ1aeQybwuxrv+vptS7j15clqwP1Hp79/fnP8sdxTvd5m4QL95zG7u5aTguCuxs/Mj3O/H5jrvh3v02/6gQUfWXl+zuVBRrqd76tj3gXi8vCXPHwsx75yXiPR3++P43HPcfHb5z7mUPha+bY8BxLHntvK/Bp0huZCSbcTxxBL322ROGyy58yMVrfjII0MoIqa4jVoORk9ZAx3fMIUmA4XcWppGajnzN4jY2oN0u4xR7AMAaYVpaCaDC8EeC1aqCLsYwcptHpzD1ja6r2HhlRSKFjZYkMzH9eoKLptqFRG7+z7nlpjwoe/7xgS1Jc+w2Iggoof2s85nTHC3UOyzgAmEy2NtqhH3SKJ0ZzUWpH0TfekF61FgBrMPGNSU1Fq7qCFyxaBujZHGBAMPMFj79cjV0Ntjao1YkKmh0tP0Qi+9lNiLnOenwNAuDkY9NkRF/reUTXaU4BSE2e7bGxPG1UL0he9ZVg78AiWtVpvyeyWMELktqiiSU+5SGEiwZjWjYtoBq6CE775TwWKBqD3pERtrd54/5fQcFpYDrStsVLIiChzHzxdKs+XSIDnTSge2t4hhWCJDcuLm7MPZ1wHtSmeVhVZCNtiLhtKx7i0Qs2+nPuOb0qtT1hmsxUic2/VyE8wzNCqXE2Clx6n1EZtgthkdKOPEG58juS/XFmnB0b47Ks4W1ocMKeVzP5tAxFQrZEozVIboRI0pvuVaXB5CuFAS0W0sLVw7+rjNdFn9OecQmscwLWIUFu4TrlDTxrZcGmK+bpdwoXJXSJwXEJpMN15ahdwC5cfD4EPLHzMRrig2ZxHVvVl3WAJvsUxddBY5yMtImOOCN42Z9+vbC1omYsS7ykZr5ReEUXDL3l64hx1tssTLy+vvL6+0sqyoESw8uv1JbJzJ1XumDNcmbRx2cLdbdtKCFRuGTNlKbQFFek6PsOwGLTKElqTdJlcQtPIfFOauV3CTquVoEZGiPwHocSQZItzKSCZnU7CBelHnRzvljvV8Lff9uugBHl85k0zeXfZ6dpFjSnJ737A9/PZCm9M84/sQ+9p825NkENzvRRXy2Z2z+cvB3D+ewGXHoDn8XMJBn4D/KFFvb13dMsSzhbMWt15SBB8Xiy4CWtRnx/DetegQxrhVv/PuBzCVpZ7zfBbq8Fj7/k7X8jSgyK3MTmD0QeBys/3fe6ak0XhToD7WZfb3L37dK3xLCd7+knAShv6eV86rspVcLIOnGOS3gaap6Ls2FN4f2Cznm+Rh79JOBhzMG0gpcViTt/8aQMfwdVdNZJE2Wswm0gpzL5jfbDVwnJ56ZYvKKExb6VAEUwLRTPbqE/mfqVdnsLvSsIVyLohBpeWuQbE0LL0k0qrjX3vVA/ayNVHgf+D9QON5E02diAThWWXlRRkXIQpwSI0JqHxIzV0M9oX9QeLSk3XHydiHfDJ06UFaEnLBMZBnVmQWyDj4i3vPQCdFGq6GElpmFSEHvkcJFwIQJgGWitj92P8F4CZFu4dRYW9x2ZRNfIfzNm5bM/J5DLxmX79Hn8LLZlQJki4S80Uja+v+43XXiqM0HirVwoh9EU/RibkuQ9EJ0q9+XSr0z34/ue+IwclaMGIbLhby4PZwafjwzC18KnfGrq1sM6kv/3L6ye2p2cKEUiNKqItgmjnoNSNvu+MGVr9WoO5qMyNWojMvjYY4wpitPbEy8sLLiUy1c4BFJ6/v/BSM16jZlZhda7XEZm3JzgVn5nJeLvguzL2V7ZMqhY0qx60lqLM/hpJ/2qA130Gg05phf466N2YI3j/x+hc+6C0ygYx7ySA9tXDtSvcxBywSFQHXL77/mBAEl/bfVjWrq9X9qslC1VYM3wuBUDQym6lUEtQ8SKRAdmnUUpaT3xGUHGtbK3hhKY/dfBpvWsYyr6H9UJjS4jEaE3Z93ALciGDlxv92hnDaZlXwtIFzlFEBq/XK2ChoEh3u/0lAqLR0BY3iaDwYZNtu+AOz0WYY88M3xFLULdKbYVaW1i2xox3RumujGtQwKqAuvHy6QeKKFbC3UjFk805rYClRBzAuGU4FwTzjk+49j36mhDahaAAdoexd0oN1yq3iO2ibLg0+mIuW6ewtojhSa1tUaFJWF9V9OaulYoQLU/URgYpR7JIccP217vj4/7nQzlcA977/ic68b+k6v0imstYF+4PZ1tazqWke6usW3dzuPt84Rnv/35udljTllByXCX52TrElzRybtzPuCxYf4Cc0zA8aujPotnt8oUP4qPVLQFQb3Xe33lT7qwa7q0/DwGyDl8SMH6O5QwV3xpwUjS9E2jvy1l4vn0QNT/e8ebas1D+hXZ9ed/4OZZMiHmA7UdhKK4JIfixhx6F6EfpIn+c9qv7tZKCs7z9ebPM+G2bOdq0Kv76GHyTcLC1yqUlNSZGn8F9XrZLaM3HTML5jnscVupBK4lGJtfrdYbGS5YPeyaYyo2zbpdMvDsSLGoc8u703oGkanTAF0i/hraxRJInEeFy2XDb0faUc1YCdATEpdQah7xy0EqKlAx2JTTwsoIz431brREMmfzsgecHRYxCZC9FawD0Oagl3HWuY1BVaBo+w330oDL1iJNwT4VIungE20joRkj3iq0q2p4wU+hXmkYswBzGMGN7rswJs1+ZowczTBH2vnPdJ+HBE8G3rUREhQpsFUwiQNSXkCShtZw2I96B0EgrypZuNgtktFrZWqUHhy1FQ39pc+LD6JKZbEvh+vK3tFYy0FZ5fn4O4D/2AKVoUr7a4Yoxx5VSargtJS2npka4z54WmRBc1QZ9TvDgvNcSyFMVvGqMTy343Jl94hQulye0RJzFMKePYO5Rd8Y+ko2pZ+bfFtYkMy5VEQmN7XrGtm182j/xy1/+wPN2SUFH8Bnztl022tMG43rMqzF2Ck5tyhwdP/KICFIuvF53XvbBGDsQ/PdjgF1/QOWJWbd0KYq1sl2eg+N/EjlGyGy8ZVnJYvxqi/ibOQf79SWS823h9lMKsNhjrVDr79My1iNAO9TaYt7WxkXLkQF9zkGrlZcfPlFrkBO4lADeJdzzRIStRTxRisS4hta71fTXl7DIjNcXUOXp+Zn99QdsrkD7EjEmKni5QPL3h9Wr8PQcKdqu19cA1Esozbb0fsU9GJ1qrWyXymVrTITXK2xzhMCSbmrTw3LmY899QSPYVwEf1FbTOhTCwdYa0uMk0CKMfdL3+SmOFQAAIABJREFUPQKnizOsBA3zHnuXlAoirLx9/z9339rcOI5seTITIOXqvvv//+VG3NkpiwSQuR9OgqRkudrdM3d33IzoLluWKBIEwXycB9KP4eBhBLDe/is9Lk63dQnBUt+w9w00lEvTNVGoVYgI7v/8SS6MMgkoQtM9QPF2uwHCjmXEoDP032I7H5Jnxf7je0TOB+r5vDxJry92+TJheCoQPrz++KZLR+P/I0b6f3yLOLhdf3ial3F5vE6XyualEwDIAd+afzu/4qzMzuTu6Bw8Z4CvJ8XfYvsQpl/i8ZMYnH+SWZz4o8HIvb4M7h/3+Ys84e+3fXKefpmvr1FF8jSGT7u8rF3XvxyKUC+2Z9jdc3J4XvNXyePr7UvJgY+UrvTAfbtja45lZVUZwaBSADQAaA2AoJrmERAaEqOhdVDdKIMqYqUFrQdGdCy1Qq0ASXQWnAZYEzc/IEQWKLJymZVvMxoqeWB9+4GJc/ZIHfbeWAl2Ksrk0xtTRYeV+ZMgHcjvG1SB8d4SD48MaDpGd+qiqxGjj6DaSg90UfIX0pwJqqhds4IYEHHUaqjJZRgDkDGwLIYYAQlWRNdKc6l9bCBdgloEulRI23P8GGiKEH8/xoCYwg5zNk46TYhVLQzYCJcyiEzoByUki2qapxoWo2Roe3+HVcXuQK0Lr5UQ/tScRMjmlCdVoQxtSGAfhNwUIyclvGFZFyAUUd4gCLoED4d6QMq8cYJkXggDV1VeA6M8LZD9InHUWiFjwIogMOjCLHbg7UsxxFBq1JfJR3FoBP75z3c0J7RDBEnupJ5LqswfAaZrx22t2HdgDEqJsovT0SL18QtN+gBB70zYamE1XYA0BlSUYJUcWalHBMxKOthSuaauC/Z9w+gj1bsEi1WKRPVO47asCqtUMDnr0FTrKiYoi+U9OO+jgTY4zwESZ39fDH3wfgwEigaiOLX8YyR5WuFCqU5VyoKWQl8IMcDvHX1/z1WgoNaF997ogAPrekNrgTYGSrVjzkMItaMiF+F2IQFbloMUv65v6L0zgSwK644ejp7vt/QEQQyYkhdCU8OpZhYYo0HizsTEDAoG0KJAD6Ry1CSw6tFRFCcp3A7ZUyqLMajmQl3qghie5HGBj51V+VJZya+VxQBJZoIWVOHvI3lKaitEGvZBNavgBWGupgWtU1KZljPkPLXe0wSRXZypwNadyk4CzoOR3QYXcg9qYfLDB4TBs6P25e0sg19/efr5C9u/HCTL0xFcaslZkD9jzDM4v5L3DinTXGeOCmDMgAgnwfPD6V2CgDyfl4HWQxV2Ji94GrrAnx6//7TtgAxdxlamsMXnn5kRC/85E4NIuOnlzR9/Frlcs/NP187Razw+zr9/83F/NeWuMfpBVH6an3Pcnjsw85n7YY9Hu+3z4Jb7jUMA5grH+9vlDBGHTO90jfaLGZw8vfdVcvUU0+PDbL8UOJ45T9duwfMcjzwmOXd0JuJfvBBfUyuKIOlVWZkqKvARgE7VHUHrzgBXiNEdvWe1UbL6WtD2hmTYwR0pBZkkyQzQNCVBQwT7oDzk1P2OSNiOKINerWzte/ChLoJqOCbvcMIxqE4kMEtcrepJYo6UAgRVPoaTlBgigBjEHCGsalazbG46EBXFOlQYaM6KkFSSPMcgnGi0AZhR7nG19GIgcTeCwZZkxb2uGUSEp+JOw+iAWIFl9RjZMg1PQUJnoAKMVIGistIxLkd1gEXhUiqWWoEIFGVV3QPonRrsqgDEUKZUZi4efQyEpN9z7tCUrtJqBiuKvu8IMMi1Qn14y4bwDFZqMRgi1aScJmjFMNRgdckqdyoOBRWJ3GclFQy+cS42KgIYoR7TyZeV14RF1YpiwO5U8gkQdoWtY2Pml4RVnhfl3kl2VpV0Bk4CtjmabxAhedU9ibKphGNmif/fARCusVTO923bYQDhLwi03qhhD6TaDeE5oUAJJuMjF4aa8CGAfITeHeGDCUouCmqAak3CL+e4WMlk1FGLoKf/WuQcV5lGeYVSoZkEAXQv9mLkeqTcr6pBTDFahxbFvns6OzqKsJtwEPqT+GuTRJ+VdHUBwvP+4v3XO7t6ZV3opxFggiAAVawKqnE2+gVOxoUzg6r0guD6M6VukY1DzWo71zF6FUjCejjGPga/Nw3DENPYkN/J5JvnzwNTjNYwrQIdXGvaGITpTC6EFWipyRUisXn4gEkCuwIIlxQRJ+kfHoRsgnyFuL9Dk+OSACEMdN5D4DqqCVEawwl7dIemHDIntfD4lcpp+75TYc0MohXQK+fgD58Iv/7z89Pns0DiUgHG0wPv4ROX/V1jann6l7u8EmPz3Zc3PKKVzifyLAJ8qIpeY87L+x8OUM4E43pK16M7H+jnPk+oy4X38I23GZA+5I44A5Vfbh8Czjg+e+4sjp+Od/klKJIL3O75MkYkv+Hcg2QC+LdAuZy57Idp9NwxuKYNr3f1wm/jiDLl/P0X4/bQ4XlxLDzWbz7fn/L5YxW4XISPRYAXs/jyd5/PtT+4X+bqxuOYIhbzgJ6v3fzSD3foL7cvJQcT9z8xVKZUP/GpFiSHCuGlgsJgQ5wPYUsnWSpnBAMDlUMJZZr0ZMYBEcFocakMzIqZAlnFpMwlK/EzWzLlw5/BVtBZdQTMKuxQ5MiQIhcWzaDC3ckD9oDDE2PNsdRMclSACKGqjPHzDgZr7IooE5vWTq3AWpMEygABqegSkGMy0PiKGvKA5wNrsNMBYpr5XXEc43wGmrH6zMUx19nsgDjkUP4BGPRVq+itMRAUAEG8lvvIyjXdBSIVpcwUYkoiZ2GCFD5AtgB7GaYFQ+aYMvAcmTgJPMmRlJ6cMqgzgJeEcaimhKUW+JSeHVSxgkhq/RMiMs9TlG7PKqnKMmVJEVBhdwDBxJYJFxhgeSQURo/kAChUAhImt4stDGw90ILxW9sbxAIy54mnj4KyAhtBaBmCCUsphj6C420GpAPuTHYdgkiCNYPfDNBV0BoTqqJccDzoITJ6dt0yYYJwLk55YFEGoVYKRCUDTUFEoeTmcIgzcBef9yMDF86VZCUYDm1/0yTKq2JES0J4PkZkSnIKii5J6hcGvbku9TEgKBDJ6sqsMo5kERgTuxkkyayYRGSewfMbKcPKhLPjKgXNAgaJyloKJI0XARYATCr2rTHhsEtgEI4QhcnJU0qRMEodxyBJ3ygRK0HTmQhB7zxBwoISwmTkYUUAJd25mZgwCRh7dkZ14rgiZVP5HVNta2CeN5OVmWzPBy+5T5YPBp9p+OFbckihplyqmiIVcrle6Pmg0ldqRS9hBF/YjmfQi8/JtSr59f3KJz8/f+3zL1d1lDNQvR5aHuxDsA+ceoMvjjGur1+qdg8P4C9sjxnQ3wdtdORkn5/QMUqfnPQ1oI3jE5evOJLI8zrI9W9HF+PyjRm/HEnLNw9OHzb5OOt4/pfk6c/cdzPAPa7Do8rU+ecZBF81+E/OR2RH6NX2d8jJ5nbtzjxkaNfk4Q/W0XP8rquIHCOK/P3oCOB5fcNxDM9KRsd6/CJ3/mz7cnJAyUCa/SAC3geiIsmqqe2a0BSkB8F8oAWI9bdKAuMcOxZ3FKUu8O4QtUNukRriKZc6q3haziqggA95SMJtuIy4e1Z8BaT+AiIDZjUD3sDRMgb3ES6J02fgxKCN1WIrlKTUiIQ58ME/gjAND0JrIgbmgUVW5uiflZ0QDIQT793SVwFZZXUBAEdvdxTJborOcQjE2KhCE6wmz1Y4AqnkZDRAEkrFSgi2fctEylGEhlB8PyviKvQMYHBe8hgT8uQDoand7u34+3BK1U5IAiuvejreiiKjZvTWASWRvORcmIEeE0zJinynBKRZwigEWhQ+ORwTnYYC7+lPwVCX8DTR4wGiQtjalEVVYVBuIeRz9KyiJtfFSmGCN9jtEDMIOtACe39HLDzvGooYAyZsWO37DoESbucBjQpTSl0iuRYYrOwqHBGE9kQ4ej+1OCICfUwS3SmjufeGsqzw3kAFYELhJAL3RtgOu5fp2K0T1+8QJdxvqUy4IgJ7Z9Jb1wXhNN8SQQaEcXoDaLqTi5JjI4GyJGxwkuQV2MH9HXL9k8gcA6bLwU+JvWF0kueRCa4ISfOs+jtGkNO03H5gbwOtE361pMIRhF4LY/TU+meifiSXGRwHmDxoUNN/WQp65/7GIEAMVqkohdkx8Nw/if6ch+QLWRo4MvgfR9dgGrj5AKAV3e9QnxVOLmpiBS4shJRSWOxwoAs9YnwEu115/ysc0TtsvR3zeK4zoQWlLGhthxTC80TIR5gdObgDzrUTQHbIpnJTJjX5r0ZwzRVhNyLXrkPaGbisjX/18R2fP32e93mFKuD1x/5aCBdPv12P6elb4qxQX4r5RzD5DDt5LnJfVYmOwDPOAPb6nuvYXgOK/0ln1/9X2xEIPo3ltYp8raoGcJikPp/6w9h98l0vBywer9b1t+OrZ0D1ENB+5+0Aq52DdYQI59/m2LtfJ+/j+6+B5zkuZ7zB+E3SGuSzRJgx4Pycp4DC0cxDxgp/i5YN8DjprwntERIev7w+41dr75lmzRztWYr0sSYxuQgfk7H5uVmI/vCVn2xf9DlgVdpltuA7lvWWASulG9kd4MOPwV9JPfrBoKf3JFVGkvcY2CW0NoPTDPaELqas+BLY0iGEZQCI6BlwFEADdWFg19tA3zaEGmxdYS6HzKCoQXzAzFJDxeHKCToi0PeNFeyahFgPdJBHMPJK1WIoamidHAZUnmf0AaQLswHYm+O2UuHFccqmhhYqH4nDpLL6CketAseAj8DI4CNCU4IxSbaNkKppZrRUhYyB1ncGSTEmlxH7viM0AAc0+hEQ12p4u/2Ae2BdKkIDe9sxxgaVlUF1GotBCqaZx/3nHQ4BbEXoCheBKY9HxKFvb4AYdC2IDnhzbNs/UZYloUe8lpacBwQJ1IIALAPJNK27b//Ab/U3moYFoCioYGekvt0ACeytZZWWx6EqaK1BdTlcjUcf8FD0aIg25WE5FHBHWMXbjx/ofT8cpK1WqAd63zhPxnRhzjnSKafqe+e4B7sV3rlYuhq0N8AHRm+Ut+0Fvy0Lb1JT3kcJQ+sD6P1Ow7NMtpCJZRuOaB1RBMttRa0VvQ2UVSBuKPXQVQEAmFERapVUIsr7EsJgdFlznJUJKn1HDL0rxn7HVAjRmYwAuFXLan5q4R6EWYeWyntx4hiDHaKIju6SKkQLSk0pYBhGI6ywVk2VHPIOzDgnlrpCYmOSMU3JekepK9cRZUdgRAAeWDXQj4c7L+7ohNaQA+R0awZJ7fudCmgsLzTeM9nJK1BARnJyQCWpIShLQDoX1rbdATVoKYCWwwgt6yWULpUCmCDGQKlU1YpBbpUo+SLkcBDKRLUlg8Cwj4Gy8PiqpIBABPaW49+d8J8UJSilpnJRGukF4YHeduhyI5cC5FJRGI38qB70T6nF0N3Rmh8y019+cvy7tw/R+Z/fWAh6lAaUY9+XGnR8DMT51/ng/BiwfjAzkkvLCvMBPB/nZ5Xv3Pfj9kqK8DvHSjz2wNWY6ekd+e91TOIhVpkB+2O1+xLcX67r855mGHxVY/kwnC/gbt88Hzs2Bo/xGIDOoRDOSv+QB/0qiZ8J3GNiwGscuHbWHi7ZNQPA44+8O7KAgvPZ8W03LjgALssX5nif2zE2mdA+dLauu3vEPB47PEGHl7Ttun7kfg9OwkSE4FwLBRmr/AnhiS8lByMGepCIWN9WtJ8/AcXhUMsqJCtda2ElnQQ8tsh9EJk7esPAIPFyaq2PHXVdU6qQxl0BoKW0nmkhUXVWDEWBKPDR0NpP6FuBjkAV4K0WNF3RB2ErmmuNaMCUBkb7bqglK+dggLYsC2q5UbK1b/ngLBidFbU3FVbnW8eIHSbAsirlXTxQS4UnLwEixF8ndv7HSoJ12za4NAQqTBWt3RGJPY7EvBShFKtEEO5SI4nbwjtrD3YiSsFwQ7QN4YEiirIWeDh6H5CFJmgYQK2FJE5hvXTb70yysmIqKihiMBPADApD23eM3okRrwbzgM0UeBragCTHUisTCgGyHAqtjltySWApyZiu0aM7xAg2AhLLL4OJEAaKGrZGj4LR9iRYs5rbx8BqoJkcFH0EWnPcbj9QTdKpV2C2ohRgaxs7QUbi5xjktNTbDe/3Hd4dVRSyEhvXW2O1XoG1VrrQJuG3FgUk0LZ3tPc7TbJE4WKUCFVgFaBHRwR19Mu6oI3AP37esa6FY5gOy30EVa2UAbiZsao+OqyuEAC1VlZ4tWAfANU+F5Qi2PedwTwAeKBvd1aJa4FqAYTk/H0MwpmU52eCw+AOGNj7HUtRwDt6a+knIYAUrMrvdB/s7CAgHvh9vWH0jtZpWmbV6PsQgt4Gav2BsTcECmCVSMEAfrYOtcAKEpkjAr3tGMOxLgorDlhk4s9Ooq2VikFKnwp2N9gRjN7RtjvqUmG6oDXFvneUwuTQSoGYnB0LB+4/f2K9UcnMRKlEFqkCIcJjRuVYasBdIaUgmlMhSYDWGsa4o9QFq93QR8M2SKwWdJKbM4Fg0nCRvEsy8/A0AAygtY5lXWAwzp1igBUKHvQ9iwELTDoT6jBIqYAG6JOMdMcOKrBJYAxKNQvA6y8Ultim0Zykf4Kz+ze+/Mj4T99mBHSUKC8V7GuY/lgyfRUjfRqrvyiYPlSinwuzggs2/ppMPO7z25txPY3LWVh+JBk/5FUP778ETB8q+vLw87UD8dmhXLfPIE7fnYzMbQby18TprwXes7t1msR+vD/k6FB+Dhn65BBxdPCe22/fcDtXmvj4h2uO9LzkAH94/q+gQr8+lktCjXNGzI7Dmbt9IprwYvta5yAUEqzoFwhkJX9gVoERAzE6JLsFS6WB03ST1cTgInZKjypNedwHRAEfWwY0ju6DnwNdlU2ABPlmxYfVbUVW0j0YEAOIkp0Nd/S+UUXIiCVWNSxKkuX9fgddeKm00nwAI7C//4RgQCuN3VY17FvDECoisZJv0MLq/v3+jqUUlGIoWjOJYzDbBTA43ZUBWK0kVY5ABInMLpHeA071n+VUM6JkYgIgwuGgQhMx5AN+d1h2A9reWR0EUFVgUKyLYX+n6Zu4w4zO0VvvaO4obxVonp2a6fac0JbWGOSX5EqsAZGC7kCBYwK5rRjQNj50E+ZC5aGGZalY6oL3bcfedhpilUJCJwK3Hze83zdivY3KQlOferSGaC3lF4HJWVhvlcF9KSgOtB5wGDsxS02Yzg4ZqWYVI4OedE9WyyQW+PF2A3zAygIgsG0btm0DYNC6Ar5n9V2Sk6L0GmiD19tI+B6DnAMYoWmmK/o256rC7z8z6WW1vrmjeUJ6orO6XZYMOPNolWaCBQGEY9/vqdPOIN6rYH1bKZk0HBDHLgXDBW5LmhJyhahrgQ6gbRuK1QwKk6yrwvkrcQT/Xdip0/w8orFjKQFIQ/cdpfxInojChdOhtX5UJ+4/f2YwT43+gCLaHUsxKkq5oM3qdaXpmJWSJnjE1Htv2EDvhCKJu4cCwepHBHkddV2o6COCutwQxgq76ryXAIBcBcIKFfe9Y61MHAA6MwcUWlc4BLtTOUuBXMsUVQYOuPwgpEng6N4priDK7w6BSsHWG7w1dqOm+7kP7AGgGG7rjcPrOUfbjlJXNKe3hWQH1dYfWMxRlEmFpVRviBIOZh23otg2FhuKRiYx9BJRq1iygzfllNUW9Hy/qqIooLhWlP5qRe9VjfxXb//j7/lrR3Lich+PJo6/AcBUm5rJ0oS/PGN6P+xdr/t4DmHl8UGe+zr6CZfY6POz+ywo/s/dXo2XTqUh+fW8eCB6v0gCHi/BJXDlp687enFMcvldjj8ccKLsjn/nTZ5+/jDSc44+FfXn3z5uGfIeULD5oY9dgY958uMFmx3pOcbX7tx33845//T6pXtJBUAcKAxeoEdVL4g8jfFcHy6jOyGLDzWGOBJqek/h8sfzqjAhe+Ym/PH4f02tCMLAI6E+kXCARdN4y51kURvwAWwxDofholSMaWMgysqq2SCExJQxpUjAwS5ETKIt7DhxvSzGgtlC52BF7/AY6GEpMci2vWRl3LunLjllLfedWvNKKRSIU8lj3wlnoBMsg4olK+ceHAPVkgRIqhBFrvKRLqfIyuYIwjySx50dDKUeuoysnhMrXQpQtECNUCqzSXpmZd6ygq6ZrU/uABOMSnJnmswpAStAAO4dLBhyUowIjk9WkQPkcbgE3Bur6KulVrsSruEd3sd5gyc8ifN2IBphGJFdpZEchfAOoHK+eEsidwDeADhKEUgolqIZ3BuDZRFEdPgYGEHSJmLCRApMWNH2VNuRCEJE3KBQ9GAAdxLUkzciA2lckPK0xE3eloK237Pj4NCgD0fvjYJWLQNjLYSPScCqQYL8GwkniRUDpgUIqglFqkGpKsaNpGJVuvmWScBnSRk9ggl3CDTOoMaEwYsiwIkTCUsip8Cm7r2xWGwChAzAd4xIN2Mhwb2aQmqFpPbUVCsqkKM7EdGSYE1irRVl8mL0HQ5hhZlCX9kx1GsAJmj7Ts6LsTgg4qmipPCypDKYorfGe1cSJ18KRm9AWSDpKTFGS74G6DSefgABwDuTaggdrgEKDwBAESag5EeNlOjUXEMGrDDRaKMhQhCpBGXLiuFAwJO3wk6UZlI5wvN+p0GbDmBkVV8BwNLkbHS4t8PDhcIBjfckM4tjHRMo4YOR0Co4ai1ondLJouxs2Eoiuyp9UMwMagbf7xCtCDiGCxB0Nq8mFCewN0DY+Yrk/LDM4VjWZXajeS9hlnP/6MHxq0DvX3jgXwHqz6/9iW0G+Oc+Xh3an6nY4Rynhzj0RdpxgRbNIACR/LWjynpWeeVS2fP4F8buP2Sbp3/EL9OsT85xfYrzj3Wav15Wk6dAZr7vjwOcx5TgUR3ncqBfnA/fZpvzDS+qzE8Qtodb4nI7X19/hL3NN12q09eOwkymj/j2uqfHpOC7J2LP22ecgBm7Xiv28/X84Xh9JgpXMvN0b5/fgtzXFCW6KhTNr5UU1DiuZ14XP1p4TLaJprmu96+3LyUHpomfDycUBciqPI/EnV+sEHQMFF3yZAIeCnEGeEwySAoNF8CEnYNA4oDPBEAABhOSlVQ/K+jUV0/5R6fTJwaJiIhA1ZoDYEd2u7eGqSSkKcvIFrAfJGapU+GF33VI/6V0op+Kpax2p/sx/0ZYgllFLfze0Tsr5ZJ65n0c+HUDSbllSj2CwWDJaovP8XNWEWd1FKDyCpVOWFFHVkkxzycCE7ddMkBxdyZguiCADN4ks9aAGjkBMRqsSLr9Jq1RFL1tR2IiMxMFCedaWQVHjOPahQ+EkKcRjRXyCYGJrsBCVZuaEJjju6AwsLtBlXpJgiaTGxVFm0mkk5PBwKae2XVKvvLcHEiH4zkngcB938kn6T0TWQbKPQTDG48mJuk5OzjO4ymMeOE2PUAGallIxB6Eq4gyEP79v37LBDS9FEwOJaLhgJjQBC0D2VJK3sYO08rrIelJIfysgpCQ44ZXRVEmAqok5jIxy/vXkByKuTBMhaHU8hdK2hbLOT7J9cdikuyGcCj0WAN8XiMlh2AkfAZJaKaCFBeoWkr6bxgqJwgglAwIkNwvwslteQ09XXzD2GnkZRXCdFzz84R7TW6FVYWkX0kfA/Bz7KwUmE/lL649SPhfKQtatEziPGVCFaYUMoBZSqgmHV6V5PLRk6dA2FOXAe9UqRp5nwSQVftAXY7VnQ8AASCaUrFcmzz5NCyWeDqPD0RMSdZ5beV4OJdSktwZ0DFoHnhgUMmNINaV/hWzODH1ufVPSZn+Z28RBx0bEwAsOZePB/bLuDLH/CFQPx+s80PXwGk+zx8qgZcI+SQdP+0vkLDtQ9flknx8vwBqBpR6RC98Ne+0432XGPaTvXzM5j5eD+7pUnj98Pd5jR8w8x++Tz50fr7jNqE6jynAx41x5+VqxMNofSmRPq7QFZ5yZM+P8z1mrCB/t5SAGx9H8givmjUOzPvhCjrK1edVkeEyns+FiOM5gfn6xTsi48XzOORhrTmv72PC9pUr8qXkoJgmeU3SEEhRqsE0wAo/g6TpsmuFpMXRqeM/Wppc5YMokFKATtfOWRGcmawKEMpWfSmUAhx9HAErgFSWceqSYz60cQwCZU+FRkPu2PcOLQbLpGY+KBlgd5Sy0EX1klCxKwJIjEM+VFyI4S+GKp4SpHFMEEFgKYbed/TRIVpZUewD0RsABsJwYqo5EUbKaer50JDIwCrJlYFsQfBfVerNs4LdAaGWuqcUqkSgFEURRdup9OIxINGo3Q/JgEwyuOP3jQFYLXDp1NlXBqq9d9wWOlYfWrzBQHStioiOU0WIZEspDFp6I49iEqZGd5T1DEzTJhpTCUFUoJ3XQDWyst8Rnfr4fUhWQVMq1RThkkkCA6sQQkiKSrq/6qnSoEBvO+5OcyuEoNQKqzTF6z2AsTPoFiYOY4yUyHVoMWhZmWT1jmgbJMaRoHEcOP/WdQHSqGr0QahNJkoDDKbJbQFKLViWhR4hTrfdLrPqS38GE4EEjbKAeb8pRCoglGGFIwNDJnaRHQEHYVpWLJMuQnTGcJjwmE0VrtkNTN1L3ipUKJqwbXaT4vi7iqHUQiMzCFz0SBomdCVyn2YVAnJQRARb94QachMlFDDGYHdIU4kpV0wzOxIolTM5EOXYe44XE2ek0pLRI4I3NAPj9AeQGVyDCT6hX+xMUA2Kc0uSSzVS3cmB7O5oHne6l8dJhJWUoR3g5xapNCf0QGgmn2op0kBoVS1MZMcIRPJkAoHuPdel06RtKkDXVB5iF5fFg+j7EYyFMWkNETQfvFN0Vpf0yQTtMRg+X3v++Tmsen79k/fJ448P3/IXugUvt0vgMyvSHx+Uv/r8hVYs579Xg6GHfV3e/3wcAI5jeHjxEpOx6PTdw9TLNk/qCH5OnPqrtz1uj+Tsx6DpmUwU03pmAAAgAElEQVQe5xX+atcpHufAd+d68Ew+JlNXeEu+cD1rnFP4cazODtC5zyyPPX7npQNzqkfNF86jur7379pB4BaYZe4PGXDMAtvrFeiQQMjY6uM1eVpLr9cyi2ZHDPWLuT+Ti69wbb6UHKgQviHuiD6ga8VtMfhonICFmvYOwAqx91YqHB1t62jpknpbK6wYfGwYo2EaP93eVux9sIIvlLLUlLLUdIR1yxhyDGxbg9XCY7KpUw8GoKVmZ4AY294bDdqctWOXgGnNSrCn1W228Y0PSkuMMCuXAfF+XC9NMmR3R10LCbPdIUqCaRHyH9reZuwEZDu/e2BZK4h15QUcQWgTK9fGqp4Gkw+ldCFGkBSJKdHJxMUjq4jDEUKDNQrKsLNimPjZAIKKJ953hvCywJVqTDL3q4DeVgbM4pA+CJMAMW2UjswuBLFWJEy3DWUtpIYMBrFDBMuU1lQ5XJ9FSAIXDBgIHwkwASiaWvxiUOwZWCYMppPTAu2As96s6foLUUqiakKOYrL1C4ol2TgJycNTWQuOsXfoupJ4bTQNq6C0bB893YWVQZp3JnPBDozqkm7QfO5t9zudcLOjoRJAKCUqeUMwkHMGjtXma45SCB+pdYEaE0veSwYBVXFG8gscjmHCsRDCS6hfr4ArehJr2b0oVAgbDVt3cniUZGAFYS/NB3rrCPVjwbCi8B5H10yU991Ibg9VpujubSnBGu4pMlAQ3mmEZ0zE14XEfS81k0cG/Ow4AXvfaLXheV8IgGnwltAaiKC1Hb01lHU5jNsilc1EAKuGMQa23gAHYWAq5IhUqvwMD8qCTrlgVdRamNgAGKPTn1pSmEmBocquX2S3ZCSMEHQt7sPZJXRlF9WoAkTM/2wbM0nxUFShr4sqPUrMCu73DSJArZYO7vmYCUctbxRZ6JmwO46kK8Y47FTaNHy0gvRqpvt2dglUFbIIpKwoOt/PLqOP9vwY+cXvf/Rgl4d/PkTZ/8Pbhxb+cQhPwTnfdB5XxMP7rpXWK5f5WqV7FcjKNWh62tfxnZfjPH/+vgETj14+vngEQ/EA+WJNkOP0EL9iPjLj4/7OSPPYR+TzNZ7f9CoJyaSA33f0lv422ysVnDnvslZ0CQq/mCQ/vfWxRMAC0VWid2LrPyRcH359cX2/2Tbn6fM4clq/LAfk400uLzytRXMHj3s8/h+XvZ55nTx87Dm3mApREFwMZP947L9GSHZHjAbv/XB97b1h9A18njNI6Ttb4G/LjdVObxlgA7/9/jsWM7T9HRJIMjNXjt4ddakQypEw4FHD/r6xCumDUJqi6GC11qyi5KpNIie1zcPpUOvBpMIs68uNWHZ+rdN1WAqGL1iwA6BpFWUFOfRqCoNArR6uzZEQndE3yA6UolApB8aMeOEphRnYt40VWTMsP35gNYWA+PTugy67YzAgQSdkI4xwCQR64vpH72j3O5bFoLViGk8Fajo/Kt2jQTLn+uM3jL6jtQYRXrMIAGUBZEGn5iOKaUKPGoAOnVAWTDgEGDQbA8MRAhdBGINfRMvkCIABIgOKDkOgbTRVM5V0qxUUK3ARtEaC7FLpwutjYF3fMiIDmrN6ajleLU3abFTcbssBdylmeH/f2I2ogakrScnQnRKoNccoAAWr2aFpzzYG9r2lQR8x9nv7yflgS0rzBm5vC1wUy/ID3mf1WGh+NuFmETB0eHoPAMD9/SdUBLe3imWp6N2w96z8x0i/BUB1wMcd0YAKjmV4wtBaR+sNAseyVtz3Hbe3FRET0+68UIOVdBNFXRZYJivtZ0MRduraMLgGCgYVdUASd2udik9q9LWovG5NNgQUIQsghI3NhUbg5AUoVcVKLVTl6gNvv9+wrG/scI1pl3cqiKkk0KsUvN04Pw4NbaeDNLkygLQ9lYcUBjqte9C/Q9QviTIDs8J8EKZLwgSN0rKp5VdUc90ibMiscI1JMzvTijCFFsUIQ3vf6GzcN9DVWwE4E4O2YxFjpyYMa13O1m9ZATXOWxesBYjoCCxAJmMOdkitkDvQOu8FEYXlfc7JyCTWZKTalCbkkOe6b1QYm54Xnax3LCUTg5R0jtnNgMA86AAfVAO7PE3+wvaxsvXVHV4fov+O7bl6dv5+iVbnFz/AI/i/2RmQI/o8j/Tg2TzDj55OgL4flwAog9jrr6+ShO+6nbDQj1X8RzlSvHz9aWcP28fr8Pi3A/9+gXfMe3AO+DUofg5Lv3vn4EUaxNcjHmQGTgxVHG+9Bpef7OYMQj8M09M3z8D36e9HV+F63+F6Tb7nRqhidsRmEUDm63lPxOP75/ZYrMi/Zvz2IJN8ncfH8nFZs/JZfKQOE51zuRcOieD5ti+O+xcJyaz0LeuSe0+CHhhcwAHMVvXo6K2jd2p712WBgbCCvb2zalgMmjr6fX+nsRoUtS6AGCKE6iLrihg7+r6ThGmGWgkzWpcFEY6fPzcAhAW4FKg5BB3bvrHimWZCtZL9HNHRG7XyIUBVVuv6oMGbTzyuEWLCqlpH/VEZOBXKGVoDet+AfPCMDDzWori3QB8NAUvOBHHfMRqgBffWsW87irFbgFoQ+x37xgB5XVeUkthrGANfAepvb3Q+ZRkyOSCBahUA4RJqTLBGbHBvrEZHQe+BrQ14j1TicVQNWFZxxQrGyOAHjrZ3+hMAKOpoux9gmGVW64PQEFhl0DNYBb8ta/ItbohgclLXBRGCNjrUWJ2+FRKuY7mRS6I0iCsKxMKpaUii7o8faPuOUit0qraoJnRIwUyRRPMIEvxUBW3r6G3PPXHOxeiwUvBWVwQce++AOFSDvgeexNmd56cSILGT0qE+uxl575a6nNV005w3TKhjOGShoZbFQFkK6lKxtx33//NP2FJwqyux7+Hw1nC/v6PefmdA2xtGeBq3afKqC/pOrsQYnfNj+Q1rXbEWQsNGb2hjp/Z+dEJqQrE3JqFDAm1vCcn2TASDmqOSQgFgpaEBWNaK27qg7xu0FAbUoKwnB0bR9jtMgL3v6I33JUm0FDO4rRX73jFcCQNUAEEuUjFASuW1G44CKpX9c9+wB7DQ4ARjDHLqg9TaiFTqMuE5NcftthBel5AwcoJy8Q7AM0HQhE1t2zvMKpaFRo3FBYGOuSD/uL0BoM+LB12tS7nBfQeEHcw+prkbCw8IerzkbQmFYiAoElACxZYk9ws/g32WU3Es/s5gv7cBGO8fuosHtMyFfjDZMYAE58C+vQNSACgGDMv0VXDHJB6H0LXenB1bm5UF4NNA7Dtsz4HoYxUt54D+Qs7vKag8iHvhT39iR3aKNXwgFH/jMfzXtlNBBXiuNOO4GL8MyLPo9/G1X37rZb/P3/6hlv7hc995exWQf/z1z5/nkZRdgsyPHYEzKH46KBpV/g06BJ9tV17i8drT7x8I9Nep+TCUc2G57ut868tN8pmNeEEwnsI+gkNr4mEx/OP58DWHZKSJjlJeMwolUmLigT0O8q0A2LctK4EZyCIAJ8xhwlsApBypotwWiKZiTRDWESIkWFqFmJO74KnzLYAtP1iRW5eUOQW2vWNJTXsUworouut8oJsiBquDS0IV3BvG6JCi0DEy6A1EmrZZqqlAWUlUkVN+MFJ7PjH5YzhGU+z3AS0CLQMJ7GXgNzr2QVfipSpGONpwLGaotQJDoEWAaIArg4cQlCKElPQGohao/lMXkiJ720nWdBxk5EhS7rbRt4EQLof6HVZvUBgQ48RNC/D222/w+z+JTx9UWFlKZUeisNKu6Rw7J6TLLautAhU/oUCqfKCKQaodVW4JSrGarilvGzAdWMxgdUGFgI60Ak2cOa0QdlgVXoqgs/LW6JsAEagV9LGTV5HStRJAh2LbNixrIaY3GkQA3we8pJO2D4QEBlLv3nc4qIKjhXfW7j1J8VRVGqPDVLFYQQvOU4+OyQ+YRHXRAq0r6m3FAWXzAEBVH4CJpSW3xFaq5iwCQANDSaoucNRqkLJAq6J3AOFUxTKa3XlrGDAaDaajryIoBYoOQ81En3NI8nyHIL0/OG7IeR8RgBpWPZ2BozBoH74j1FDXChUKBmw7z6HUG0wqSlmgRmfr3u5YFlbc204t/1IWBvvzegnXF0TKrWJgqQU++Qw058AIQW8dbQRkBDqcaj7prbGoocVA641zVivvLwT2Rj8AFjcSt++ApLJXdAb1ZpxTEYo+OtQKuRJBGNXwwL41jl+QZzDjGRUFbAH5KzQ3DLrJHZAGnVXW7NQIFBCqX7mMXE9oKOcIjH1PIzNC+ro7ZaHDyTtyOh1PUmgxw75tQJA/YUq54AE6d5stmG4jH7DJf7i9erC8eO1DYPL4Hb+K915/4uvbBI08VM/wi6Qgv4wBkT599yyh8hrO+/voOlwbCIkZfvgW+RgefTivh6D2+21HyPGIsZrp2Myzj/cdI/KLWOWgM8/GQd47J5Tj1Xg9Ejuv77kqJl0rt98/dL3MT3xyPhMeNwNUQV6fhFmJHJyux7nLV17nBE+dg7n/ywsHhOb61n/15v5P2i7nMDuFfrkekprgR8X/Ou1zCj8nUGcnLEt0AVaYcv6ezYIrDyQePnsc3qVjcMItL52EX2xfgxVpgVhNch3VSGAKlRtdfr1jANBBsuYYIysp0wk5wApXTYMjQNKYSObQOR+uhyKSpGynZ/0yq3wzkN3e32G1oNgCF8cYnceRIi6m+ZlUGqK0qKGjsaJHsUKOacpoonDgJKjEQxfSgojOBcodIyIhJbw4mg+MUpLoDKAsdHc9ddZzGDFlSgFoKh6ZwYpi7D0Nm1KjHXRWjVDOi9RjNyskfAuhWR3jkEyFKJ1eg1yNEIFqJ7FTgXWpQDjUgoZ0QS5EkeRSBOUxIdSXJ1GzQkWwtTtKIZdENRMeydaVI4njgWRuQwodckfvqaICuCmGFYyNHhVLrSil5AM3MPpOk7BgoNMHu1EqBFmZGWhgXbJTMTD2DlsWIEj65QI3cuyE45oJnVYGxD46rCiqCXoIc9UISAx4b6BsbSruYFYPBQOUO4WlMV+wSyFQSsAuN7TeEtrW2f0SoIgBlhVgKGACxSCPJJxIKA/i+wGqTKX4lIqgJAdGLTkNOTdHKtZwbjLBaY2RLtd0YS6eEU215H1gjgN7QSaaXHeasI1BV+6yrADs1CsPwbos9NnYO2pdYFYOAnQ1KuZQLZf7j6CRoKqhD0cbPG9CmoDF6OmgCrRBcJ2pwBZBj4reB6AlCcXChGkfmFLGI7toxQxWDNEGWuS9UAh8wpTKDcry6kFGprJRHy0hWJSENUnDNZCvQcQWzTOo8ONwpz+JGX1PJDy7h4DAQPd4QI2iB6F+BCtjkFOkSSinM3sAQaNFHyNhK3IKHqSZnxTN+RxoY8/OIc9PZwFACXMspabwA4sjeauykxKdcz7nun5B2u7L2x88eP4nY4JH6P41GZgB4/mAvQbx8rCD+c+LI83A6pQdPHb9y2NK5tfxgauyyIm4+M7RkqTgyAyScCRPAa6V+bbz3zh/+BiWzhG5VlTna/JhyH+VaF6/9vrzi1D4W24fuTVPie1lLk/pTAESajtTsD/iYFxTu9d//di0OI/m5Se//9BfEq08y6e1j4+pyED+vDd4HbiGMO4/JU3nboGHS3dJeh8WDby+LmcinF98vO3q4/Kr7cs+Bw6BBIMkSTgLpUHP6gAdkxmITcJeqKbe/nw4AyGSZMCgAqYDbPYP9CQpqyg0VTv4kKU5mA8GU/d9R40gcflyTZiUOIjaV4Qw+zLjw1oyOmcwxQe641TFCdDMqqgdEojeUw4UcdFPD7goNPcvCogYDJ5VfCY5SBUY3ocnoVhTXx0SiNGB6BAJKsIoK9qSE0ucmP5aC6uxyq5DeCSUx1L5JbVvnRVUtemtwIlLmURA1eEgDMgFGByphGLwWlhhNdeKEcuuvB5MZirEaIBlAnhyQGiixqDDSkVZV5gg50tK1hoNyYoBpZAEzQ4OoTCQxmuPmK4NUFFUFYgRwgHhbBGnyk5VEogVntKUSFiPZ5VcD4gHoRyEodDbQC6BkScnRZhspCoNydI2JypCqAQVAwlXubD/8zpHIN2a+Sij8VgkJ0BgEoTCjXHcxp7JTS00zkIEVjG45UNWDWgTZx7Hw/go62RXhkZvKXeZajwk0p8E9KmwQ82vKWmZXSd3PjiEcwaRClUe+TrnYs2/TUhdKYUOwNMPZbCLUlJgwIcfY6/pnF2NLtQjbd250vA4IPQ8kKmqo7Nr1bN6m1wDEXahsgLeOivlKlQoiiQAT2lkTXlhQaTRHRV+AnqMu8/AGYHuHG+P8/HJJC7N+0R47ysAKKyUVMuKPA7ez9MQh2slr0NM1aIAJml4dJwd4EAWK5LQ6QCUweVwdjrHoScvRwd2+ECpC1rbj3XcOSkf1Z8mZvbl0+KL0e/zdpZ5czd//Cj6i9/0i309PaRxaffPSDJL0g+mZzgTCOBXgdcjgvjU6sd5vs8Qg+NIrp/7zgnBZbvG7/nv47XMP1ymxmM4+rried3lwzV9xlzE+fofhLAPe/s7xKfAnKfXROsyj2fl+WlkZFaeI4jUOPf28M+r23cmz1c50yPXu3wW19eOP/1dRp1bXBKwo6iQ4zGLWPh0puOT9fGc3/I0qPPZ8NhxON/zEv6Fq8ra17Yvcw6mfCXgUAzqw6faSuRTN5yBIi76/8TgAkCFj5GmZ8KHkk7JyVkJZTVuRNCBNh+MMdvemZRkoRfoPQNMweFABxKYYchrJIfSxOg7q+kiRxeg80vInpAkBxrJlcCEITAIjAzyzsRH6OOQmaEKUAWQAngHMNopOTgCLqzgrYW+EX0MtDYQSezkhfckS0q68/KmVhHclgVmlefTA3tvUADrQhMp9wAkrwccRhNkSjlKBuJQqIxU0yFZHGGA9JTtBMJ7JgaS5mwD61oAKwmDsANKVBRo4aDFBOeISkCsUBWolkzqGEQqgHIDYVo29doZqnrKW0IoiRkgOZkV4wKHIVqDaE+XbAAmqAa0fYdWcicCchjOrTdyFLZ9T3yeJn4/Tf0AVloBAI6qNd2K91THysp2QnR6AMjxcXDucsyogkMYCQNkFUnlK5rxsYKY94Q7qinlTIOk3tm1qhlMC4AigtEVfQy4aGLDA6MPKh7l3FTlhKf6TJKUBRDn/UGZWias7BTkvmLKlhKGZDGA3hhsg1Kew4EYmeBk4nh7e0MECGHK7pxYBsGDlW3T6XOQnZjRSXwNStBqqQz4RTHaHRB2zFiVbyR2i1JKGJawtlnp5pgG6GAdAcKMhI7pKIpDDliQDtlM1tzzoZj3Pn00chHWDGDynB4qyTNJQqSrN2FRnVkvOxJCQnAbnkE9co2TQymLE2ZkNUkyiQoU47o3xDDgZ3V5+qBAUpmIx02uRhrI5Rqp2TGVoH/K0Om4PiuGcZDE53UR0xOX+rz95QjqF9HBF7e/8qlH1Z/49Ll7rdLlBy/t/Hh48yNS5vpLzq1Pjvsx7r/uJy6/M0F4/UD/XtsBNbkmBgecBcf/cRmHWUjhWz+54vHhBxwhZpzX+jEhuSQJgcNQMw/p6bi/97gfW5xFqhmYnknWCUGZ69oDtGteOzzkb5hvyDz6+rZfxrQff5Hzlbgm69937AWXJOnhfDIxuL45k4TP5vj1fpkD/VzMmPwm7u7c+0Mx43JMD+vfZTGK+Nqof83noFAJx6eCyPAcDCDghAOEo6qgb+2QZyT+nA/sGA0kG9PUi7hdVtlNgGVZcG8dU/rFqvEh2weWdYX3Hb11jNFgy5pk50Ide9UjeSkIFKsZrFPJqPdOo6kx0BIKALBSiwAfjoEjmJtSpqMPjLZBy0JYVeqg0wBpoBix52ydMhhrymBt9AETQ02YTJcOT0y0rgudm2cAkr4RRRks0N1WKFGaMqZ1IbeC4RnVklSA5bcVt2XFNgZa9KzO8/0SG2qlMhIL9Ky0RgeolIMMrhwagW3r7FAULgamBbWSK3K0slIyNRDQzI7HcAgGIVEYyKgafb9jqcSja6Gz8HDqtmOhAtRo9MGIGKipDuMtOQeJRS/GRPL9vpNUObjwl6rYtk7X6bEhZEFVegFAgVgMI5OsUqg1HyBGW404dA/HgKQEKW+a1joAKlchScCj7Qe0zYQGUyYCWQ0xAn3v6S48AAyUIlhqOTo4Qy1N4CipCg9oDESQ/G4JcREMWF2BELTWYQoMB4ZTYalUg/dA6x2q2WHLgFRMYFpZORemlftOAzhFYN/vDBwnLAxCKd/ET69rBWB4fw/0kdfV6b/gYnBndZyStryH1AD3jr6TJzMgrL5DKNG6FLpze2fChWl81unCvawM/N3p8DyLEEfFnZ0EeIcPFhW0KCyMHCGbmv9n8uOuwBhwDIh3wKhAVGuBD0PfW3YjAETHWgwKR28/EV0TUseOxn3vqLowsM97XE3zvjLc39+xFoWLoadBXO8N+96gZSGfBSmi1ZkQaRVCgcwwScQAO0HbvmME0DMJKAr0EScZXQVxMZ90CH0+8mEi6YXCK9AgSKfxGSyZwZ1dSrVKYzgTLItdVvxrhfYrT4ivbV8J9v9aGvFqewyEABwmcR++M//+QYFofv6zn+dzPJ6TkI/fcQTOx8/PZ/p9gyTgHLtrHfPVGf0qEL/CkfKFYx8PORkunZr8oucw9AiOX8yoU+klP/t3SQ4u20w2Z4IwC3f5RwB/7ryf07JjRTnurefrHY8/yvXTOL//7zb0L89Hzr+d8f2Ht87X/WGdySGeecLztbvWQnKnUxJ85hm8UnLsD1l4+qPtS8nB2Bv6fUMEUJc15UxTuSgfmiIBsQrInsHcNDqL1HlnacpbR98YrFYTaD0nmRqxtwWCuhiqLhCQZNrSLdVUYeK4LW94e1t5ok6dcRbc8yHqHUN4DDRCIuTHXQDn/iJSrlSBW73BhNjnYhkgIACsGLMiOeg8awgqDZlhG57YdKc0Y2SltAgKZtXesKjBtw0GoLeGahVlWYlzdxIg68JK+chuhYnhdluw1IKyLuj3d4yULOxOyNJoHTqIt6fePRWW+vYTtSj5BFZZjW0b66yqeFsXvL0RkuCDQZSI0bwqgyAPRx8NDFMy8MjOjIjiti7UqAdJr1oZ7GCMI6gTJSGVireK5bZiWReM1gDfAe8IJ05fsMCDXIR92xCebsOmCK2ItidkLbK7s0Bswd7v2Hvgrc4bice47XfU2w1qgrf1N4xO4ngA0KDxmIlCQqFGeFXrA7fbDf/473/AjdVcSfx41QLXleZkkzDaOnpv8Baoy4L3Tr36ifsmrMhh0gFo8tMVrgzMow9sG92Rl2KoRdHbTjnNYOpWLANlCJbbG/753/+Nt1vJmD71+n2grm8Y+z9xs0wEIdDbih7AGDtuv1MvPzwwxg71wUW9d8iiGIN8olJWmLazIupcWNQKlqVg2zY0d9RaYRCMEKAntj2AWgidCgR60OjM+53QHgUsAJNJ8B0I0E17v99Z3S8GCRKjdSbjIzC8QZRKR+4sAjTfMUZHKRVvtx/YR2B735h4SzAJk0ARp4iABNaF836MAc/CQa3k83QngdgsEpKlTAayFtRGR9t2hNOwrtTKLmgAOhiwhyl+e7thG+MgWKsK530mCY4OhaRjtgJhGA60Hin9yrXEu6OY5XPA4RJH5UcsgHCur+WEmcVoLE7c3lDf3uApmSzCIoRnMivKxG50x/b+/viEedj+hQrfn2hj/zu2U63mEjVeIA+/aqufD9PnfeWHj9ezincto16PAY/P7HP0Hsdxft+1QPhdN7n+cBn+a7UT+BiQPr39+sanTsvlWx4j1Y9XSHByHB7+cAbNz3v+7ps8/o+v/WKu/8os61Xa+uzPFy/e93Evl3fNf/KlA23znbcJ5cwzuc5hhiEnj+BYfz4rvMhl3ZBrBvEaDnR4qQQuXYv5zY+HGJf3RKIl8O9KDjyQlVWH7Bsrjz7w/r4hwIAdAPq+oSwV7k6JwxjEZs8TVBJch++sZqvQI2A0tEa5xFoqTcv2Ha0Efr6/47YuqLWiFhoEWV1wWxKfC0MfOwNJKzAZ6MNx/3nHUhloFC2oxdC8o64FigXLmlWkAHxsUGmsTkZB2xyjZYVUiP0fuyfxN+gRoAFDQSkFW2uwumBZF5gEfRvKDWP7P+QDiGAMwdv/+h1j23HfG0QY8BlICF61AqMTI1+RCicNe3Pi/rsjrEAjDaQQ6D5QpHM8lWos5H0E1lJQ6CMHHyRhiyH5C4ZqFSEK9Y6Gga0LFgNuy4JAJ8kSIBTMWakOJNa83rAUg8qAIWAlFZXyjlcrMAi2+45//O9/4MdtQV0LykKoko+NTmjw9DGoDPbKwkA1gGV9Ywbs05yrE7sOSXdgwSS1b82xlIWtgd4TGjJQNFDBLkGMnMgZLOhS4PefCKEPBiQx8LeKvu/4X7cFu/MYNYCiBWpvKBo0CQOVdVSC3YBwiFN1CWka6DEgqEwGCzC8EEIAwGRq3POamBp8DLy3DWstsKWgGgiRE8KlSsRBpD34D5SW4nWIhhBW9JFdD3FW6sfW0TicKVPKaqcicPuxoGMA0dNBPNCD0BkJB4lBSMMxwboWjEHVoKmC5QBaUCmoLpTRtELezr5vEDFWq6UAMK4p4UymC5WkyrJmQqkoS4UZlZvaYDcm3NPkTvL8aZCmqrCy8MZp77jdCkwE3Zn8zzVo27aD50Eei8KNssxqFS27m6Mz6VNRSF1p9JbKPkUVtizQwmO1UgAtQO9QZyAfkh2TDRgCTOuZ8MFOgAta39npKZZcp7OiLCqwECAIxVpNoLVidz+ljMFOk6kln4UmbYRICbwYO7rpfUGHZybWguA5IM6HhVweBQ8Pon8hfHp6oH0Ms//9AQI1xmcR4xKIz2PIaqoK4XkBEGJ1rWxeHsZnZ+CMao704yjpvaqSXvDcL6rT10Rkft93DlRnEJSiXDhDpo9KN+cH8Bjvz6QXcQQ0rz90fjTm60cAps9ZxqdTWDAJ4d8+TGPcAUEAACAASURBVAXwunL/auwvae6HoXp4z1MH55zDnNtHZ+YS2F4v60N122diNl/Kffy5U/yP2iIi+Xm5LmTiea5BOOdlzkOZHN2nJeNh7CXhik8wxz9K9vLrTlhRXpSHa3l+yR+e39c5B7kkigqqKbad+ubhrKgziBgYA7A68cw06jI1hAoCGWikSpGDFT3Parc3pAvp/E9wW6mhX0qFaaV6jSn2fT9k/WZ7SmPAfUfbE8bghuiCYgO6VKAYFALPNr1lENlSilDBc4OkLrrSZTgZ1QAGIgg5gVsuRgyOIcRJR5oe8QIUjCDZ0wolhcpSYPtOD4OscqtWjHAsywJBAw6d9UH/gbyVVAItBtwbPz8aiaciCN8gxoBHFSgr+QMYI7kG7BAcbsLrj3wwAjGAKjSRGxEp+0gn2DGSwKoAIjHfRhdrMwVcsHekgzHdaGsxJmsK1LcVVpTSlQnf6ukGS9y1MRhShRXFKoLRyM8wcUCm9C0Dqdam5BofIGN0GIDb2y1N4RgoxWAwhwh4C865YNBObgkQFNqHhZMOP0Cn7/y9ZsLjHhjeEeP9wKsT56+QZWHnKLN9LSS0UumKc6H1DuyF3STTQ7FKQROvEEK/JNiRKsUwRkOphHwgg3AI4H2HaRzPvEmWFrEMoi+QJ2ECVcygv/0XWtuIyw9yEpo7tBr2nYEqXCA6W5AdlgpWfZxSmPBAaw1WVpgUdHAdUFNYAFpX7KMTwhMD0QltqSsNwXoqGPU+MKLgt99/RwS7LtKNjtzh2PaBdU1fAxDaOII5JbtjrIJQcpSJh48dhpE5YM33Ab0NSrpmAkbyL/kKIQYpwITz9YR8EaLD6wGhdK7idFUefadCkNEvwWqFaGBnoxJ9ZDVndlaTmzMajfYGgK0NtHGnwpMYNKVdW98BcH5VIxxqGIsos6rE+UdeFCVbccDgAIXJYEdCJP0NshCTa1OpFT46Rgz44DX+8PD4dz25n6E6lwfTvzssOyEnMwp5neg8hiUzgJWHj3z2/Pz49+tYHRHu04fwy/F87FJ8zy2e/mXMFJ8MyVN19Hz1K0XNsyNxfe9zdRUfR/QKfTqO93sPO4A/O3Muo31JXB/I8zqT4zNZFlHMguqH3V2G/kNJILiGHsnw8YG/Q1J2WQyeA/78M+d0jqd/vFIPefK1azAT7COBZRwwx+8UJMn/iTzcAjNh/yCw8KJY8Wr7WnJwYMPywJNoqJ6LsZOALCChWKymTKCwMqzE8veRTsSSY6CSuvyUX/RIcpdQYUZTI3Z4qqwEVU36YEUb0VIqldY+JPPS2GvMdoonEXgMcg081VLkJEqttdCh1NtxU4iystvHgBSipInVYgWTrqsDap7diFkl4iLfOkmi7kw6rFhWChW4DZSyMjiBQ6fKj3A60MfAMHokcXig7RsosjKgmtrm4ilV2eGScqTKarDGgIPcjkMaESV5DdR5h1ABaFk1zdAEHVObl067aoCMgUUNVHOZ5lGeWHhCZzAGVNgx0JzkKsBSCupS0pyMWLcYHaG87iLJ+0g+QykVBqC1HYFONayET5WF3x2ZtIyI9LGgjr9onY93wAw9sfrLUlhVTQWqWTEfpui9Y7YH816CqaIBDCKDcrX0iBjoSc5lNjrbhp73wSCxN+e4ATme3HdJQiwfmgLMiq4yYIcPjk2q//iIVOkSQJj0tPtASclQ+nAwAXdk0ieghOgIUHdVMNqdGHY1SN+ZEcIh3hHOeUk1gXFIn5aEQwFTkckh6hAn1MWkHwpDJDwbeTMm6CMdiJN4LJaGeQB6b3kdFIbIKn2DLQvPPYLGhUhn5RiUS5UABpKLQvGDyOrKbHlTxjOdwCUXUmZQVPHBVAA7Vras2PL7GESDSlaJ39fw7PaciaInjFENqHM+gsIHZtxfP2COOVeCfJLwKcpwyjN7sLo/q3NTcU0hsLrQM0QSfXSswXLI2u5tx7oyCRdIjj2Tp1nAELHcQcI7Yyo8VUD9sSoV+LYR07VK/6DWcv6DU7wiHl7/TB8/P3X886qCd002HlKfLISlNu6HT/2dtqNiicdTfX2Wz0orl2sRZ/g4/z/H9zn8PwL9iX1/jvwfvvJylS6tm+/fOJiJ5RnQA3OePg7EkbBdP/rhF/nk9n/x4nXZuNxnR6wcXANjqsLk90+FsO889ILH8+RreZ5xzujZCfjy7T7zqfkFD386eST8wvP7juOSV9dP8lj0/3L3Pr+yLFt+12etiMisfc65j9eNhUBCthHQksfmf7D/CTPEMPec/h/Axh7gIc3ME5CY98QjYIInNhISiAmyu/vde86uyohYi8FamZVVe997T3c/q9+5+fTuqV2VlVUVmRmxfnx/3Oekn9m+zgQtF8pjkvWAg5iXDPhCYWfXi5/TqK1kgB+XgEK4zUIEHZlsuGiQhT0qqSRWWSXUXeYEfFcmibZln6lS4p11WWJ89gRFJB2Jo4rmRKtnzDCB0hzwaAkFNr4ewYAe4xiSoMYwodiM3+EewbaFm65bQFhCySYCsjkn4p6SoeEZEEtRSEkWVdb1QiktoRUTbIuTnldFJC8a73EH74yxHRAJRBjT7vr3WZlUiWSiqCA+EI/KontgocOvIvYzjzGqKkglE5RJEzDLAC7lL5GUf8zAN7O2CJREWFpg1UXusAYkquS1pRyqRzcnLpK4WGKCCJiERE8nTO9QbG4BrVJSyymCUXEOV+BQXk0yeI75vmkGQlH1CBiWZNKFGz5nBF17xq3xDcYk4RaRXB1EYRuIGTo9oU7ZbXDie6gwhyEpVyoE9G5vswOpPHVXKQniu1I0fpd1ZxuRzNWa5H0vdwEdjDk6l2WNpCh1+VU8fROCfG17gmCxYIx+Yzohg5seEgF5is9tNZTEFEnSu9Fqi3PMHhjvVaSgdc9xY4omeV4pRVI8OFSa7re4ZiLd78u/SCZRwuw3bp+vLBZKZJSKSECFYpGJIDpMFfck8n6NbTMSzN2LwdEjSJEU4RHN7oJHkCwkbM+zuL67LZPKVEJwJoSQ4bWAs0UCmKR+QuygWhqghXEJpZQI62ckRpGtJS9pT8CAWloKIxA8nxRREI0uW3QyBCll92o+OD8ukeTYwU3gcJAPqxJL1Sg7EqZQN/KYE9OcLRY2DSGLn4QSyePDryvtvnOcHz3qb3HbK50c/+az96rx8VvlqHft9ySnx/JukHRXFrpDJJ6CLTn98v3vfV85v/AL2+7x6ZtL5pRbZfK+/5FBy+kQjyPznNmdX3oHeHQOknh8fCSBueMvBU503t43wfqK+/BpKPZ75b2ZwN/u/s73uL/5uJ/2Nzs5H/2Stz1BuEOvziZ8RwaQj9++9l4R4k4ul1NmFbfR49UuzyQR9qQt3/jbghVJ4rH3ANxmtLRrrSFhyV6JLqES4xGc7aolTixGZCXraG2YI60yCY5C9QgEnMAVVavM3YHYZkoR1iARIiy6SxWGhOOYMwl3k7qsoQqT2OwgHxrry5K/IWBA0wyzAmOy1IAMRNcDxAMi5XOLxZ8IlswzlEh4R99uVImscXSjFUnJSaGWljBIgyl08wjIM5C3JDTjobLjFnVwUQnSpsR3VwloRS16QFpaaZRLQ2Z0E5D0QyiKTaP4jO+tNR1hUy3FHGqjtUtMsKMzxwCfAZFiRhClacBWorqsGXx6GuG5KK0qTRx0ZncmDOHA0LVS1xqyoh74JUm51dbu2vfgKS/qFI1Kba3CYIfTKKWt9NGRND6bU7DMgqfNGJeR1ezE6JcScK3etxy7igJzZHAsQqmJDc5zaTbp/Yb1DukpIQ4kmXlJVaBrn2xjRvJYF5al4DbwdNt2KcwJ5lFFllKTZhHXRXBL1sOHIUjmkXii2X3xnewfXbjqylqUtSnbFlX1OR3EWapS14XZjdYqYxg9ZVVFNZynrVMLMTFMEA8YXStJ+s5UjZx8SilMJlZSklWVrU9Une22UVqL5EGhlXAc38bM7ssueZtzh4DdOi8fXiD5Gm6OjSD4IoHlF/Z7MOBm4f0RSlJ3LGfwnDwr/TuLoqBsuQIpsNRyVMpcnKrRwYgA2zMw1OhqIVRd2PotEuucP813wzUhWmqS9+JynDNRT/K0ohpwJl2FaR2bwX2Yc2LJmSgi6XYciZOWSE7NwjuhlRD2dWL9GO4UAS8lUzXBxShqMJ1lWVP5KLo4RaPwsEl0n+5zVoyTuXLrnabp32J7t+LHtvNrXxFQPQckpyrteVF6L977y29nlQ47oBBvlIhO0ehjvHnfZ+/wP9fZ7FyFOA52f985eDonEY8f/Li93e/b25xUxD0nBm+C0zw/exK3B437m3bsNM/Xx564vQ1Zj/3yxB/j/5zw7miB00C/p1D17W05J3D/ySfGR/x7vq73jDj+iH8eoCfPV3Qe6eGWPqXE7o9/55sfAt6n69vt6T3f8PZMuoed9P48T3C6BjkKEyL6o4muPN9LT0mtcO/CPM/h53Nufu8On/KKn9y+KjnoZgxIjHlgU/u24VoyqHTWUjCNk97W5ajA1VpDocMieXC3qJppoZRIDFpR0BaY4t7BQwllu21H1llr6nGLo8VZ68LoW5hfaSibyFRGT5LZCGJu2Z1TbQRufBOqCloCZuLDwDtLvUTQLellQBBKl7IwJMyE3GPB1lqi4lg1TJ/c8DRWKrVQWpBmlxYwph0e0Uph2yb1w8K0ATlGWhvresGngQQmuSZkRIpgvSMlPjMQA0JdIvha10K/9qhj+wji8qzoBBuvlMunA+KFwvKyoj1Kzlr1cH+d4ogPts1YWiQhWjQrvA16D86AhGyshwBodC5KoQ+jakBnNCFCujitgLTC6MbsUXVeW0XVmD6y0pk+B+NGd0epAcGy8L6wPpgDZr9RteYNM+NaLBVMMNsO4ryUStHA68sMadLL5QVsMvo4TKVK+k1c+0xFqskigy82oNaoFk9jTGOkilEpzsggumgJjkEpTHMuS0EpKWcK2ipV4PvemSz0GRj+khh1gNnDUG8Mw1VpL0ska7cvGFDLJW5TKdSlIR4S/q6Ol8KcW9yLtrIUGP1KsQUtyrKGo7JuG5SCzDRiM4l712bi3SOxdlKRaF0CoiKCUoLMXVqQohmMccPN2baO6aQtjdYEp7Ko8uoDZ4QEbiotiVa0hZiAmzPGoM+Nvg10abTLClLu7eZSaK1xu70Gcb/qgdssqswt3IGX1u6VWnUWCtdhXJYLSxGQmfyj6FjtAbKLMPGUP907GXugEN2XMY1+DfnXy8snpAhVK4iGO3JrzOmo7JyqSCaKBGdHtURngyC0xrUZPIWaxRMtDVXYtg2fO4RKIJNpJ4QASl1DAtaJIouBSAUdfLhcGGOyMQ9Z19IaOjquglj8ztEDCigCfRidnANRXm/vLGR/0e052IoV8Hh47Pb0728vSbiHNvfg7x50ngPEczHzORyy0yvnbsEBzcgAyOV+LPZk9Kgcnn7XuXrop89z7u//1rfnZMCfR/YEJ3qOfh7G/z5yb+Rl3/vYp9E7V2Ahi7TP53z/bt98cnBOAjiSr3yB57DzzhuQI0A9b0didUqc3iQG5/YcHPPm87fak8F7wHz/kG9/1OUoHDxexfcZ7Vzhjxf9+Pce5P/0TPhwv5Cw2v3c3LPB02fY4/V9fPT+dxSLfm77quRAAR+DbQYmutYFmzdqXVhaCWgBsN16YI7dQ4HIwmNAE45ibqwt/AO2PpHRKSUCht4nw5Ls68Z2DQWgeolqompU44/As62hFe4cAbpWDYLtMHx0tMbPM49KX6tRpevbXlHdzbqU27aFNGZi/J2QBt3mK8uyUtqHNLnaUCZ1ieq4JxRiusEciAjry3exWPctfAoyGMU3yM+K79eSwDqRPlEpFK0YQndnEg6+nlXuMEHqCI7Wythu/NntyuVjyF02FtRi7L58+cyYyotcqcuCtggU/59/+X+zfFT++t/467RFUIc5C59fK3/2fef3Pla2a+c2N7SMdGVeg39hxlIz083qd+8bqp6yrQISCU6pC05cJ/P6ikgJAyqCO5IF4FRLkQOqFH4Y4YHRb505MiEbV9bW8O2Wqi9xDdSXT4zbKz4i4KlIYtEHbtHZ8O7Y6AnBAURY28o2Ybttcfu5MGwwfXC5fMJs0G8d224IEsFmlRBE8oC1SPFolhVNDgyRMLmhtbKuletrpy1J/rZ07m2RDDIHNgfXHgRdPHTtAYaNSJhso9aoLIs5tZaAAqnQx0CYoE7vrywvC7Ut6V6e8AebmcxWXBzbrpHalJhR5pjcRgYtWjERzAZVPmI2cQVdaiwUdotEckxGYqjbsoQCkEV1uywLJpW11ahnqVJrY/RI3kIRTA5XYq0lJYC3TISC01NM8eE0ldTmJzNjP6KwWpRtbOn8G4Tiy7LAsrBeLrBL5EokgXO70S4XxuikmximDqNzWV/4/PolzNoSs1mK4kt0GkcauJVUOXpZG5/7YKmF4cG1QiMxKLURvUUJL4pUmBIJwvXLh1/hhDJZVYj2nCJirK3gWhiDKLzkpP7lyyu1toMrBYKnkZmbM4fHcdzozMOBmj7ifI2AwGlRRu+steBaDyljt/41S8E3s+1xyxGQ/MhieA5az2os9/X41PI/vf6mEstjwPlceTX3BE7a8frjMb/tYGnvWp3H8Q0s4lwuPZ56Tgh+7lPe3/Zc6+cSrJ9PM769zXflund+zl8EvLOrbO1/xfZzI/teYrD/mzOWPL7yrW/ncXLOBYSf+IVvWzLH+9991u/Fh/3t732Pd1BEHMnfec3gXuD4ue2rkgOI6m4YsoasYJgN3egbsbBpxR22aYx+45AqLUl+G4HhjhU5BlElJCIpBdtC5m9aEIFLEdZU9bgsNTPNqOoPc+T2mo6kaVSFM0dH+ozxnx3bQfCesCIP0mxUd6JFX0sJrHYpiEegNVOBqVgQDW3bqK2iEtVxc7KSvHCdI4KohAaJw/e/+Z5WoGpjpgdE1cAAh6LPDseKU9uWJdDOSUattaQtRAS12+1GawtoDZlQcVqtTIHRX5mbISXcl82EMaKVviwXdP2AtOislCL83n/47/HZGn/ymx/4uC4sIvG52w25fcY+/Irl43dst1Sh0QpjQ4vQ6oW2lExUDJsdlU6rhUp0VzCjiCOE0ZJImJ7Z7JiN4J20GvAbqbTLkh0lcK9Y35AqjDkD8uUBHVmWyuiTiQXBmIJLSNtO69HlEKePmSTpwsvLwhgTbRqk0Qz6zIxuHaUFP0QkOimlMG6deb2hNToUUitFG6UuQYAuCU8p0TVyB+Zk9MnlUhlDgpBfKmZkkjh4aR/pI5WQ5mBsV2qptLbQx/eEHlh8fx8TbYWXZYnrThV8Yh6KSkpcq60IrVxwnNFv0dnTivd+VDmLBNzltn2JoJyAUokKKgtir5EsyCX8NQCWBtJTijR4DWOEMVpN/kgbG14X1mU5+Anq6Qyyq0/p7jQ2aFWRsiaMD9QVtSDJ3nrHDbbtRksDP9UsMkhFxt4Szft/jpQvjeKASn5eaSxLQ+dgbD8Akfzu82RbVpgW475Uxpxs1xs954ZLq0E4Tx6M20T2XoMuYRgmAm5MK6iBiIfhmEY3IuCKG5eXJY5rAh6maiqT6y1cpGWHnWUHEULS2G3DPZTUyrqmQEOQlufIeUnDS2JaJOc2OaQ5p0dnqA8BlOFw7R2zSa2V1gpTWxQhJIsuaix5Dn92+yaqrO8s0PsC+Vyse/hD3j51eu6skf9TjsZy7M8RG52Ocn98ev/uYv7Nbu90ht67Vp6g0Y+V7cfC8v0wz8d49/PvO//YKP5Yx0G/JlL6nd5+jEB82uOIzM/VZD83V+73yNOx4ZkAy+ncvj92z669p7baO7X2b3w7kp73k+KjeHDqNj56GZwP5Od86p70Pn3G+XMfDnF6fG9MxAF2IYbd/Pfntq/jHBA5h5klPMgOSb/o1oVcns/0BZASgYyH5GCxUCyhG7dt9zcAt0mfJaq96ok/F0qt1BK4bfWQ6lMVQg4r7v5KTKZj9FD0IRRtJE2Baq0R9Kc3AYCJ0LeeFUABF9QTOpH9nzHt0L3felRKl3UN9ZdkXWvCh2qplNLj5HsBj5a+WrDCVSySKXfckkhoPYqWPrO8pfhUpjjMG7UFbCEw+EHKfPnwgSK7LCHsHQuthbVc6Fu4R0uSo9tLZcoHfvXdr6At+flhUHWtC/XLhjZldmMTUHeqCB8/XKIaPSZYmMGl9yyFkgFvyl2K0GqllhewkActGr9ZfFJLCXOw0fFpB7fC8YRyBbFTXbJTk8F592wB767LflzQteYV7yQGHnz7HApMFiR4lSCsSwl3ZzdjqcIuVQnQew+JTu/BnyCJ3GllN8bEsosjSKrr7HK2G9vokdG75H23c0zisWoJzH0C13c+hBJSrjYms6RmfonrSGUmnA3KpUbQKI57QKri3nNqqengHATqnbivtUIhCOwS/CAVqMsalfXXL5QSfgClRJW5z3ApbodRVzkclAN0Ex0Rn8Yc4GhwaChUVYbs0sApHaRCLTWS/Ozg1BI8IZ9G38JJXTzhdBqdpA+XhVufaKmsLSrvRsq2rh9j/imh/CXeg5fjTt/GMd4hK3rnOeh0xCVNdzyJ8uGh4BBqQn2AOaU0xgzVrZIqZSJCaRfcNJyqE9M/ZxQnXJ2WXUBU4lrREFRoLc69WVSWxKGK0NKvRUvBXZi7h4cqBaGPGcpY6Qxekv+kCsMU0yC8+zS6RVFiJn/KRWitoir02YOLoqHC1NoaFXAlE7YSkMWDsyFxbf7b2vZA4s2i+W/ns36ycndaeB+/ifPeinmPhU4V/qfK+FuiM89r/PHHDjl6U2d1fvp7/65vJ5jDOfzcg/8dX/4sJfog4frmMnkej7fnYA86H5OJd5INf+9qk+fdfhnbe5XpE/znCM7fuQjjnMSfd77IzhN53E8eoDE/8lX8/v57IvJuhv6NbrHOnOE9z/NDXPs/VoC463DFGL05KfFffzvf3LkOZ57V45jen38scnxN6+ArOwdCkJKdMTUW0AyAz1lKhFmSrqBRcduJJ6VqwMM9d06/7d1FeU9BEAJzv9RwKk21mH2AAnqhNC1RydUc3l2eMeRJwrNgqfdFmoCDuMeiKUk63mEulmTrQ+0knYt9Dpg1CKsWgaqWEoH7DGOuAxojEbAVAqsuEiRqzFNfPBRz+nYF9/idUlO7Np1QPWVKy252FeZu++9T8UhkJBMQrWjpjOnshGQVY/3uA5ePK1IX5rYxtoBrqICMW2LOC5KKUiJKa5VtDmTOkBQtAf+IU6aM7RbVU60HxKuwsm2vMQZJesZDHDKw0ePuRSFxHEkYRUhiJjTCI2EsJcZexNFCtNQywHKfGVzG91IP/XmPU4PO8BdotYaykntU95OkHDi/FJDpk+kzZTNDp0YkKtr4oBJGDb5LEO7BrAmzjzgdmXCsa6MSgXwkhXtlIDpb6xLEaxeOFuFM46p9QhDCrMxVaS1gNCrx/c2CWApEddotkk0tKdEKy/ISGGkBIRIx0cT7EwpKnlAaTxL3SDdn84LsRG4J00A3y6Ru7jdt3LaZ7GhdYASHYYe9ldaopeE4c4743CQm45xwvyHvWlpFPQzgdmM7M0dmaPQH6V+OoBtAikY3DgmHafe87yNR2bGc++QZZN8wjZtzsLSKhcNh8qfivO/LoKqyG++pKLq0wOX73bTHiATWor7wAPsM6dnoGMU9ty8U4fuhqUQEiszoUk485hoRjLkPVB43EpuipKEZ+R1IGWjynCYhze/XlxIJX62pT57/L1pw68GNSWUoLffk4H/4oz/i93//382/9kDrvOicq17vAxfeyIge5/68YN3DZ7nvmgWnx+Dv/Fnn0EL2slru/gd/8Af8jb/5N9gJmvuej8eXI0D3099vy6+nd+WX/rE99uTgOfi9D5M/BFjvpUkfPnzgH//jf3R/+t1E5n68493nIOQpQDhQeI8fdT+2n4LpDLLv54c81W8D/scvCVvv/P3/8r96+x32xw/R5fO72b8IR5D09BsegxuOKuxxfZzu4Z+raj9vIsI/+kf/kNMl+k7g/Oc55Plq+5HtneO9/f7HF3xz9LzyEeDv/b3//IAW/dTH78fer9WnAz7tKE/f7fGeOT//U9uh1nP6+3wR/vEf/zH//J//8/seDwn2/d57nBN+/DPP5OCHIP2EpfmpJPwhAH8e96NbGM9/9+kTf/+/+Pv7B5/mkfvf9+/7LDjw3kzy3vOP3+v5dz10dE738vmb73PcuenzL/7F/8H/+Ed/9GPDAHxtciC770DBPGAj47Zllhknf69IuZOKMTmZGriCz3CWXZLQSoThEQiaEbyCvHS0BJnRx2FwdG/JFIqGJOXtdstVM4+n8Wfox1uq5kRQqZKqMcTrkSCk5n9KDZoZpS0cJmikCZINsAjEJIOdOSO4KEs4rIIcfg5NSxh9QRhzOYwMRMqycu2vuAd5txKGVdMcrSvYFfcBHtU8F0kIkmW3gaMlZRmMB1kzzlOYWE0+/eoTRZy6KN0iWXE3PojxJzbCjEmXGGe5w21qUTQJ4Vor5o4NA21sr19YXz7QliCUq4CkdKvPzkydfVcN7oAF/j58LCIo0VIRJYicBDlY5V6JaFUYPTpF0gSfgo1JVeW22cmnIpIDJFV5qNEuSw19xJk9+Alz5BiNPAc4cyR0pOSNu2vCeyrdtDRctr3SZ2CKe8FGkJSRwlqEWheKTm7XmYF43oSZQK+tcfONie0RJK7C1nsY5+0dOb9LlZVWQ5nJo+vinqZXHhC1aftEnbK0rXDbehiiefBSMLAZ8K5aCr1vTBuMPhlzMGdHJWEzbkeXTRGGa14zkUzJTs/Mc6ylplxudk8QWtUk/1sSde9kNEOQUsHnoRSkUihSGBNaFXo3+taxMlnWJd2PIdSNdmlQYEQBoVWi0+XpHOwOM9WDchFUjWr6HIRz+ULCheIYBQ71L8MzIQ//FcxDoatW5khFNkBKiCmYH2kHVwAAIABJREFUWxKuuSeoBI9jEpK7Eezsi0PItYrGMpKegNFltZFKZDFmZR9zd0gh1SKeymcBFwqPBwnYoMf3myOLB3i4qUsJo8QM0Gw6tQanZb8vNJWo9u2/+W//IbXuS0OGhfvK9hA07gnKaRE+Xr6HEftbfE9enoLSWNCfFvDDuTkX3Xc7AufFP/b9p//9P+Xv/t2/y7e4/ZN/8t/xh3/4Xz9VWc+x0H2BP2RsIbtneswdZxnKvTgHvJNsnM/tnmCcgyAIftlp/+cEKf/+23/7P+N/+p//l7/cAPwVbb/5zW/4T/+T/wiAI8Z+ij/P1fRzkJWP3r6Bc9J13+7J4n48jvlhP9Sz6szDfXU8vj/3L//V/8mvfvWrd3/b7/r2d/7O3+F//9/+11OCm9xDP6esz9ek8Jy8nLcjmT0VGM4J0UMX5em4e1U9uGr6fvKWn/GHf/iH/IN/8A/+kiPw9dvPpJvv7Pjj7/hn/+yf/XaSg5LKNgLZ3h8U3Um2KQ1IGB/N2RNTG1i+0PI3SKOgpZVUE4+TMTMIF5tBAHQwE7oJS1kwnyFKIxqVt11yEud6vVFaQJBEC3p4HUSQa7kYuwZmfYrx5XVgEhrvKikN6jHZmhjer7EAZ7C4rAt968yp2WUQkM4YnWVpzOv1CAJKWyjSGOOa1VTP4G1EglILy6pMq+ABK2lFqK3BzRi3K8sCYKmwEnKdBdKoqh5eAUWUMQeNTntZkvMxUHGWUlkvJWAc80arhlBQdXQO/r/ZmSJcWuMuFTmZfbC8NEpbabVRlwVHeLWOtkK57fr9RBdFYFw/A04Rw71HkDKVfu1IJoKz3yKgXFaWpVKXhS/f/xDmZX1kwARalVoWxojJNqBnRNWxKMu6YjrRslCbAJPr5w0h8NrL0ujTsRHqUCZXlvUFZqjCuGUXIZVi2jSkNsJKIzpYokpdFqQu+BiRBBDeGdMG0wNe15ZKXS5B1vaoshdVdM6AgKFMQq2paHR95ugBLVsKUhZuX74HNy5ND/Ou/TyYRdBprplYhaFcTaz97bZhkJX7u9rN3OLerEVwJjZecQ2ezeWy8Hr9EkR5MxSNe6gER2O5hLTqHFt4Ykh4GGADGz26CG0wJarfReKash02Njp1WeOeosXv8TAwtDkjEbCQE7UkpbfWKETiZhr8gb1RoHsnTYikwqNTMdwpFtyT8PqIeWqaoQpNC5SA32CWXQnSeToq81IKS2sIwW8ZMxSNIqEpqAfkyyaZmAWMyczR2tLhXMPpOa8blUhA3A1SdjiSy5zrUPp2oyXHKTggzqKR3ClOFw23CB/0HkWWkY6Oa2t48rLEDTVBWpCf57bFgmph3NiWSinLQejfw3RNbw8tldK3w9kev3MfAlomD2vLe2S7N/Knp2LumUR3j6L8XkjmtIifKt/7Xu9Vyh6SiafPvT/86iX0d3Dbgxd4yMKO7RTEqB7j+lBBPL1jD6qOZOxcyGTPxeRU7b8/vye1MS/di3P75+07pvntz9SPv4Ht9NseU9r9+f3B+ZUfu9YeLsj7dXsc+36897grz5Xuh+efPuNbH/e884858kizHtpXvJknnHtwf98/x3qv2j8NzmOH7ckzgHticN/X73PU/h32uegnuhd/ZdtPdESex/Nrtq9zSDZj9H4EBNM6pSxRqV9a4HjduSW8RrDADWfrXgHSFEzMQgZQK8ulMdM5t9WSwWSc04JnKz8w7xDY5VqEL19+YE6ntUZU5BwpSmkL25cvfPfr73APN2YB8Ah4alVeLi214RWTwvC4NKU0FnXGuLHdQgFlbWs4obaF3kd0N0qYeZXE1CMSMoMlAhsbG19eP1OL8vHlAhDOwTVUN1shtNhrC+5DibY/U3i9dbRnYiPO6BMzqJeFMHcO+U0IAybVSamVMb8APeEQCq1iE6wb5lfCBC4CoOIbr5//NeXlAzI3LktjXVfqcuH65Qd+7z/4PXp2coT4Teul8eV65cPH75jbZNxu0J0hk6VVPn5ofPn+B6qsOAYyWWrIyxQDXVp0OEqYdVl/TdK1YzNkZwXnZV0Y22DZCckjFqRWFbeBaqMuiqSPgk2ntMZ6WSm6sL1+SWM6jeSmXUAX6DewjrQF0Tin2wiSt2eQNz2CS5GC6qDfbmym9JEB+9gQOtQPrJcPtKbUFtf+mMbWneZOq0t6BRitFC618Wc/fGb6pLWKa8Fxxu2VRZVbt1T5KtRMfj2TVV1K3k3Bgh+jsznolgtK0RQKSBM+RhhzaUMkk3k1vrx+5vLhO+q60ncCvQaMaCEq5a0GCdbTIE/conNhIS9sMySLhw20BX9CqQgRtEeJX4+KfHMyOQ6ITS3C9bpxG32XJQDZOzBxPbcM9EUFqYWRsLTLhxck5UNvfaYhmiAWWH4XjSKDWRogCrcenhqqGspWIriHslAYraUXi8TchTTG9cZtbAm1q4epXotMgKW14Al4BOcxgQa3ao7JmNFJqDWkiKcHByi6UZ7+FQ0j5hCR9MOIrDA8GCzGpZYGLfwvpo0w5bPgEHhyGUotbFs6rOf3KaVQW3QD+5xxj6SpopmF5LGFGltdIznCk4twrCPnBVKOY+9yyA9rw3P73R8TgPMW6lVvq6fvBUKwL97x2HknKbgf+BexHVX/N5XiRyWlDI2yuhmJ3NGV4W1l9Ogi+H1M93HV0wl5D24RBqf39BJS8W2vcGcR9xdzDo5Hp86Xv93jvT7Bkdy9PdjbvZ+q1gfsllMl+7T/w5HPucc3Pu7nZP4Zenff522KfE9Ws1Pqj8fRUyK2P/fj23n+Ov7z9KrwWHjwN/v9297epoZ/ju3PmRjA1/ocjI3r7RV3j0XLwH3QtGZiIGx9EmZVNRSI6EFKZKGIYv2Gz8lmgWeXogyDZVkOfwHRFgt5anWHFOjg0kIJaZjRDbRdEO1styDlHpKiorRlwR2WtkRCoIVSaxjX7DarFhhlt0m3zlILreTFZCTRM7Ddao4z0WWlalSrzSZFJuvHT6GQRBgbiUCfk3VZQkKSDDaXGsGwAB4SpuITkZQtHQO3wbq0gL/0awTTa8BVsE43oexShqmT78NR61RqVFUxRr9y3T7zabnxop+4XcOoa5hz651/8/1v+I//5r/P//Wv/l9+MwdVhWVZuXz8Pf7W3/oDvtxuUHpIX7rTxwi9/fVDQJZ0Mm9Xpt+D+MGKzolLugab88Or8bFFsjS2MJHzWhFzWqlclkrvgkmnLYJTuH15xa2z2RomaTW5G3MgDJYPL9gweh+JhR8UwE0xhJmkd8kgv89JWwbryyUIq7WBKv22cfXfsL3+BmsrtbUkpgtelaoNf92opEpMQrxk+YC7J6em0G+dMb7gIqw1zrmXhhDcdRNol5XlMqjTE34yg7vbGtsP3wesqkQQT5Jpm8Dn64YOvZu6aUitukWVWXyAjQPWMpKUPm8b7pfg6iQB2m0ybldur1/YegSZQkrK2qCUSGJHn9BnKgEpvV9DL7/EveUECbkApVau1xHysKWy1sbLy3fMLTppbbkgJWFpduP65ZW1NerLGnj8PhndUmUpncvxQ+gAQFLB6XZ9DV+CMZJ4X1hKBR8YNTtOEp4FNhmbU0okb+FWLRSVSPBE8FpDVcgmwwc7CCOIvRG4G05rK0tbsNmZIxy7RYRWSi4Nkq7ZaS4mgkvyAjySxtY0A3CnFuNmYc6GFqalxKUEnKiWldfbjWEW14U7Uiv0qIINSzdoCbhitzBi1CIgJSMFPSrG1+stuhF9JuROWKI1eYQ4c07mnGz9dl9HzA4uzkPb/SdXiecuQgoLPL3rDDd6f//7yztXbD/Kt9wT+JrtVLjkCElOY3iHZd2TN8n75lzZ3zfnDhX13YGcvaoa/98DryMoO1XQj+9y6vwAd/6Tn/gVf4Hg43dxy1Ts+Pstku0YoD/XMZEfvfJP+/34MZ8D5IcXvuHtAQt//Ce3/Xp9VvF66ii8SaL+IlV9eT7Ke3PU0+f8wrevSg6qapoNKaKNAqhvqfwhD4uISAm8tFbEQr99joBKqEQyQbY6VQWXipZY5HyvdmIHkXKMwdVGaofHSdMS2ulzjrtUqsF0KGXfT1jXFySD1fhAYW0LLIUxA++Nx2d4rccCpaXmZ1SwQV3u6imhCT7Z5mSxEQo6HsFWEG8FasG3SZ9Ga+VoRUYltaE18PJukRRIqbyOjbWtQeBcVsQtMcH3Yt2YnXAPjqDvervyqXkSHVdgRS4ekqtSoFTaKqg7ZUQH56999/sUhF/9+leYR9t4WRofP33C6IzX7wNXfrnQLheW9QO9d1Z3xjax4nBRsIC7iBRe//RPuHz3EUqLRG+Gi28RwecISNfMcCoXuH59ZfRwQw6gpx+tr8prQIEkFWhag6nY7NxeN/qtU0qj1MS9E4Tul6XS5ANzG9gYYJO6phFXBpxzTLx3Lh8+8eX6yi1aA7S20taFidNHgfoxzPlaaNirpNu3wnb9Qp89iOm6xPVHCdK6W5KNHZkB8xILjoQHixnEGa9fYA4u60tg+lNxy2wyPJSiCgFJI2F6sleXgaZZZUqZy0NjXIKjEsbJSW6VkHt1c0a/AkHaVoRyCWM+qOFpkR2AUlfWlw9cr9dQ7ZEcu21DLy/B8WBg01i0HI7BIoFrv16vedV6GpBJdH8kq+HJ2dASFfZWIomvraQKWZiHbdxVvVKfiXHbGK1T2iU6AMyEZBnIguGsWlN1Koi525i0VtBW6KMzLM6T5z0rBA9hKQG12zsLY7siO6lXowhh1qMiXy8R2EuUQUSC47S2ytWCI2RbKLtRlM3SSBJNHskehDmlBWl7aS2SX485K3wxjDFXlBFQyRRcmGMLI0mb7HIQlj4UxzomEh0oT0J6FiWKxBxnEgIM+o5Q9tFmP7nSvqfE8by91a7fa2/76/sUvUMCTs+fK+SyH+v++c9B7C9t2+UG76NwvHDqDJz2Pc7D+dzE62Hrl5wgDXjqvvn5Px6fdBAqc4/eZ6rCxWe7n95zJBYxv/ycas3v/ha/4w6pOr92HvdTV+c4T879euVYyk4nj+dHEQ9wHPfH7qPnZPF4+DYX/Da35/v5bbvk1AnYL/yE1L1zyTmEeMnTfPaj16fsc8t9npHHk8ddUev5y/2OXfNPHdy/7PaVhOQw2VINOcHWArYQF3UsLlIGfduAUAUpuZQXLVgBaqMWZVoQm1UELLDKRQEPsIElgXXHVIqkU28GUCohYWrDKEXDQdcCmB4JRZA+y04U3AOAGRnoNAvzKiETg87SNKUaycnU8DHSpTjw+J7fS1XRWtJETYFJ0UPQJZV/nFJbVD49lWPc6RIKRUttzNEz2bIDYrAnTlHJBnGn1qgKzT45mK5ZYa2l4KIhUVniBlCgMqN9X2riuTemR3Lw4bJQC3z6+CHMxGpgzV8+LLgPlrXi3SM4zcWnrAtyu6ZDMogkztsH4/qZoaBVElqSJHQXSgVKYbiR9hKohzrRnNGRKK3iUw73ZKZlAgGijlZPTXZh3Db2oleozewynoHfLgTp3ah0QGYGzT6xER4WZiSBOZR0apqYhboRyBgxGWjg7Vur1AY+JrN3pLa7xn4J7L3PlE81ic9g12hQtm3Qx4gK8qnSJ27Q1jhn4pEo7wu5zXvwpxyT1R742+xYygiT/85MPHSpKf9qyQEySCiKqtBqwfbKdNy4VHVqq9S2UPbf5M5lXXELwjciaBMWIRSJ8rpDd1zyZI7rMS+4aF77CS+TIHm5OkUCGuZE56kmJBAtEXzPUydQHJP4nbsEcRBzI9GcQQpARahC3v8HqyngOER13QWwmddezgGHg3B4h3j6aiCKW8D2aq3YGEgJXtVuZBUiBhPVimh0Dkb+puB0ODuZ2nu8qyV5mPSCiKshrsVb35j79RdaQxkgxP0dhPi4TXYmwY6xdU/RCPGEgOVnIbmWGnMEx6uoUZc1AjzrKbn6NOXndXp/fI7g5c3+b/6Wex303WXqWGsfuwP7AvcgcZmvvqlkPwUUkv/7ljffo5v974egMMeGe1C+/xPB5tOIPyVfZnsRIYP9896nv/dEI+YmDtgwnsINzlG8Oz78FxGpPm+SRZszNp0DlvUcuMfz50DyntQeu50Su3tS8HAmHraHzznlyY+qP9/w9vY2vz/0RyjPOXk9eBlwzpY5OpA/cj2+SRIeuhBn8v7pHjp1T998yV/w9tXJQehuSwQuBYSoWIlqBjaegViQI61E8LBLO5ZWw7FzWEIePHDzQF0WOCAQO4k3yYlSUjkjiXM4QnIT9jLScR41q/GpjW+GT08Fgqg+RhVzJoZ3rwTGUmt7JcZDlnJ2oID1Hk6xSWTVWnFRqkSQuysmuYXkJinPuEONcLLiZywljNd8BlE6EqIZWvA5CWkqMuFhiNathwqLRNK8Ky3VUkCXrGBHx0Al1I8yus7FI8bJzFmX0GG/XBo+hbYULpfK0gTxzuXSsF3S36MvpKLB+kijsFqX0P23GzI3KB/yc/I7SqjDSPU8f5bpfCwuWA9svYAwCR16z2q/p/yj4gTRF0/1K5vRuarpvptu2qoFZnosqKQ5XqW6hpISk7ENnM70MKoir9elRWcBArYSRmATqZ7HiqzGJLTl1evhPltSr97mjADa4zLNVgDTQ0/fdxWo1KwXz2TA74nBrqw1Z1ShmUG8balCYu6Y7AuUMWeMd8EpBZyZwWFJr4kIQG2mlG9q/EdyENlsKElpJIhLy45fyes1cOhrWzC7RUdNFVNBS0D3LIPbkMEMxSq04RlUBFQ5pE5VQqbVsoqprql0Y6Ha1YL8jo2HRVO4L6Kh8qPhS+JR2QxjOo1EWDWkUNWOe3uPpkstD8WeA5PqETxDCYnXTKbI0L6oHKpCwUcJkrgq3LbONKO2+miQltcX6BFY7RCZ+H4p5rDflx5KWGPEfKWlgtyV1ooKYEFml3u1spTCPNYpQzxkglUJRkh2VUXP/ijEfafBQZgj1LweF+jHSudZwPBOBnxcrN8snafF+2Ep9fv+Rwy8Bzznhfrdat3T9hQE+J4sfbPbPci8b/4wzj+acp2Hyk9P/mhF/3Hw3gSbewKQsLzjpVOgdCYyf8ujDhkYOkcgeBSm96UUeRgtTq8dR3B4HIl3ztHz535FhfdQn/qJoPdb3h6KD/tz+zV/rAWxxXnx94P2rx1L+XmI1zvf8uHfvan6S96+KjmIID0r8yUqgkBU1CVcW8ccWOqP9zGYplTXhEdwkPxEZ5BrjTQBys/QEjAfIojx3UhqWKJogzIw3fJbR7VSS3QWAp4S1dc5BnMou1pQVACUiYJO+ux4cgVqbUCYc5lFYB0xewQaYxrMQV3KEWirRxWwQJIIHRtR3ReJ4EJrkKRrKRhxrJIuvkLIFs4ZjqaiNbonNkKe0zTH0phUIAJ6T/hIQExA3YIbQH43DXKiFsAmY1eC0oLUmt0Tpy2NNjpOZVkKbanJubCAh2jgwT3N7nYCN25oa5S2UEvFLYJbmTd8fkZkHmZ10zuJgGFdW1SW54iRnoOlFfqEuV1B0kRsxLi6O+oTnyEH6TiWlfzCRFuNOM8CeqUe12URJ9RtBG0FbRduX24YhvUe7sNEgmO0MAPzqA7NaQFDmami72QSF32AkJONRGNP3IQglI9paE8pSZQi0YXoc3LrnaXUDFSD/Kti0VG5bpS6oqUGuZmo+EtpbDNcuWuR8DqYlsmERjA7cmHRUIrSAkbB0v+ANAPUprxeR5DVxdMsDJA98ZpIrdQ1kkzJ6LHqclQal9oyMXW2oZTaQq40iZCqYQpoPWROKeUOeXDomzHd0JcXIDsgEQ0mZyHkXnfdfs8k3udg6xaGdMWSDxAdI0QZfRznBo070iyIyDs3SPP4k8jZam3UGTyDw4FblGVtvF5vaKlH50Nz7GdW712EafcFyfZEwonzUgS3mEdMwDV8IwSnlOQ5ebg7uwVHyCxhYR5eForS2oJIOeSVJbM1ycR/Jy9qS2O4mde9he9DwdMAMH00JH+TxVwqOXZzjlDQMrtLOJ62h0r0c+Aj96fi38dANIIZuT/O+/oMB7C9GuunkPeAzuwB6P6fxwpiBGPC7pfziy3mOQdEwk9jB3sB5zS27GOzjw+831nYg5s90HmSiTwlcPCoSqWqD+fNdgnh3wKM4a9026/fp0ryexHkT19qcpyXn7smz8nEO/Hx8fw3PrI/uZ2hcTFHJUSdR2W0u1KakyL4x7g8F/XPc8mbOWz/++lc5x7v5Nf+PLXxTU02ewEd+PNeSV8nZZrW7pLJwdyNsTBsjPjIdOCd5uiyom6pPz6pS0XSA0GkRPVehXq54HNyu90QDR12d6PUitYllHKWhvs4EhLVhqH0bIeXEkFcmJJlJZEIuluJhXkyGRZVWS0F7x33krCSEhrxr9+nAklAexTNhcegVVpRxti4jRt1WahamQ6trthZq17DnVczaJk4uzlZUQ/llkXR0hIH6lAqhSAXtwZYTvFpPLYHZuslCJ4+B+4dF9gM3DqfNCrZpZbAmgPWb9S2BKmxNnQ1llap7YUmFURotdFaYakE+bcUrO8V64ApyHqBpXH98n1UaWtAq1RfMJnYyMRn3hi3G9M2hMCfl9bi2gFU0gF2AL5ht4A1aQkQGqXy5c+24IVIqNJMg25Gv77y6bLQaqTsQkBTbH3JinxlXtP4a5envb5StTG2z9T1BdHAmdMKP3z/mZdPH6EHXnukudxsS2D9t852m3jCelQrl3VheWmoa8pMRmW4qSJL4c/+9EZbV8o0aq2sl5UqkST6tmG1htJSLSy1cGlLSKPizO0VFaeK0ofQItcN0ncm0ipCbR/AbqHyZREcD4tuGoQ/hTn0bsHzQdFWqF7DiE8SqCCOl6wMZgdrXS+UEoGjzcL2+hmIgFhLoZaFy5p8gLFxWStzhmJKkYS62GRZw5Bt55N02WFwOf1mR9Ed5pS4n2qhj5nzA9xmp7ofSUQQZ6OzE8lyZV3q0Q0QIQjxAlUb5kGQd43uXRGhT2dpM+VMQ8lIqjCG431D8h6SlEQm+QEx7yh9zIQxchQidqPFYT2QbjlnzjHxw6E9FpMmzjajMxb+JwG5wpzpN0qpjM3CwVvTWX1Ouo2UMo7O265xX5dK85BgLRIJmHnAiwoTapjLhXO6QInFlzHYiIRT8redoSxF7hKW8La6Kafn9gDHId25H4NO4O5Z8Lz5Xeb1edl6TwHpgGAckcGbd50q69/i9jTO+VMOSE88+/j88fg5wNwThHNks98oe+B0P3/nLoDozk/xx8Qj4wzdPYKyOxciDd9yCPuUfB2ar8dLx5k5xh5OBocxCYm8HYMz4uXx+VPy+5hzP/7h9/nj/iW+9nf97m8P4/l8DeXvfytl/Ag2ehjAIwc4HVhOx343o7gf6Xk7q4Q9Pv/O9/0r2M7f6t1v85f4il+VHNg0xjahhNMxCNt2BcJcTCUDbR+0JJ/OsUVlQWCYUjVMvzwDNE9csQOym6u1BbeO+8TGDdrCUpUtVDpx5IBGjGmspYajqCQxU2ZW5JwvX27UGpAnVeXy4QXm5E9/+BJSjj4IM1Jjzg2bI3C4JKhAgj+wvXa8h6zl9XVjOqyXwqcPK9twfvWhIk0Q3TDCOfeyRFfDNSvNUgIXj8M0tmG8vBTca8IY4sKvywtFJtPCHKwIdDdKLZSyw0M0YAdjchudskQi5AKa+GgyGJp8Zm01TMNaQ2ujb53vPlzgT/80ntOa32/l5dcf6dcfaHWhtAWzSb9+RnjlT3/zhY+fPrCujba0qLCOjpTCx8snqg5sFKwqaxOu1zDLA6dconLuN0foXD698OVPP+PbDWeJpESVl+8+8d13L/ybf32ltgVEmWNyvTrWJ1+unUUNkUZJ3P9yqZT11+AbQ4JgbqNjw6Niah0Btr4dnSqZhXr5GByZonGdGGhxBsL25S6DK1pBazgjz0G5wTYnta7gMG8dH6Hw8+m7F9xLkGuL4gKXy0eKTK7jho8wiqMr7bIgi1I9ODJMD61/69jWAWOIUCzgLbUqVZXeb+HYK5adIUXbEh2hGjAdnYouC6NOxraxWGFZKr0bWmpIaapQiG5QW1oks33gpsgcbD98jsq3G0u78PLhhdoar7eNVkKV6nXrKQBgkdzUj4y+xTwglTED3vNhfQkp38sSvgGizOH0btTWqAq3uQUHwiNJ9W2y1YA27caGgwLT6cOo7RL3rc/Q7E8+THSpnNv1hhOclKmFtrwwET5/DvlhzSDAXWjiKd8bEr7xokby54TyWMqeRhA987kwb0M1jRSdIpVu4TlRa2VNg8IxgywsDGyEp4fmPBiBRQTyl7WFutCM5DokHzLwVri7h5f0cYl5MXoO0UUST9lTdyYS2N3kmZgnZJPkjGnMD61d7vO9e3ZfeFPBg6fA/bT6/Gix9N46eHhSctH23fH6aTs+N6PeX3oVdd+eR+L8u4/CJ7FuHnGj3KVN9x0F7uaOx/vlEGeAhD3mDpoQ4ceiqh/7iwSKYO5cLwm39IDC/jZ++V/Vdqpe/8QV9mM/8V5tflN3/vFjvVO5vr/2VUd4r/j9DW6ZWO0PH155lg/ds6WnIsAZXpTn0ewuv3yXZD5qSfd93xnA83z3ngHdt0++/7rtq5KDacb0gZhgN6AINgaXSz0qD6021pcl5EeJNrUScoLLsuBzhJqJplSkWwTBMmkVrq+fcQ3JwdpqEFV9MhC01sNJdsfPqoRqUZEwNjKL5bG7s/XJUgRzYVlCHvV23TDrjLlRlpKE3zTLGlFpL4RM5FGdM+elwtXCxVVKo3gQlOe80UwxX+J7LIWFyu32hTBAKwkpiGuwqKClce2d0TvDPZ11FeaI4MaNsl5wXunXz1xvG21dk1SpQfBlV8ZZaFWxcQWcL69XZv/Csi6UtSE+KD7ovSEddLtFML00xnDahxWkYt3SqXc3pILu4aIrpdI+fGKOjV//tY/o0gLWo0JlQ9mQjy/oUpi3V0RiPJmdy8slSLA3DfzlAAAgAElEQVRSmOMLMm8UG0yH1z/7E8D59Pu/phQJEvAczOv3vH6JINFnDX6AK2WpVFG2vmDbK+tLdCNCXHNit1fUO59+9Wu+/PAD43aNce8dvSzMzVAzdP2ALiveO+PLjbo2xtiQuqBUdHOKCR8+rswpUEpIpJozfGZx1QMOMndPhEZrC7/58gWbg1uHVgJOty/ErWl87gxlJJXA4ReUgcPYsBmBWl2y0lob3DKQTQhTLRWft+C7FEEoiIHaZLm0mEjNCMxRxLjrWgFN2dBJzU6BZgW2XS5QlgMvHxKsCk2pwMvlA7WFG3DfNqpC364B2SkScCEJKIz7Ft/DjLJYmIXNivlkWWtKG3fcMuTV8Ae4jcIqk1ZDYejWB9Mmc5tcPn5A3XndNrat49NY24rNDYowtolvPXg6taFFWC6Nlw8X5ujpJVJjiRGw7cZt9qiAptiBSg3VMCnBeSBuWlVlpLHamJ2+jTBCmzvvSunbGXIEfX5h2KTVkiZsEXQFLKoc/ghjC0ECCBUqQbEx0bXGNdYjwUCEyyLgg4JSWtz/5sLwIGKX4kBBslMKMN3Z0j8ECZ8YrfE750w53qMrJpT6vODFcVTCZWZ/vFflRILT9WwktL8z/vb3o5y923BemOX8Rv/xqOdUADyaBzu0iG+bc3BUI48E4DEAOp+hCNAfPRF2E9HjYHmUfdB2nPS+Pr9VlYpu395t2Cvjnjwaz26blpKQuugyHGoc3/j2XJf+0S5UtM6OIbbT03tw+obA+jRE+74x1/hxQfvDuXfuqd3jt7mf9m/3egce4UL+TuFBnh9mAUmeztFTwH6vRxi4HpyvmPflofv58H2Axz7m/bgPMKc/7w/9LW8/2zE4d07+gttXOiRXamlBdBQiiK/BCXAkqtm10krhet3AJkUIUm4qkAikK6gnjEERUw5gug+wMHyyIbgOTDUgAALDkzi8beiIBdWt7DNqLFIqYehVZgR9gI3BbRrdA2BU1KJKrBGM7a3AnoRfm3ZAhCYBzaA0PJMSEQvlEJ/M7crWlGWt0Z1YG8vyiW27JYkwAr0xjdkndQli6tTC6B0RodYXlvVDBniXkCVdGuIrXXezpCCKFuXQ/DWU0aFJulID3WHMDX91vvu05HhWarsgbaUsC/Wy0PsroNS6IlURF2pZki/QWNolCIuECVUpH5iJzS6lIHOLKmipIdc6As4jVIoWWBr4Qv/yPe3jv4NcJ3N0rE9su1HEaS8rpQ6sTxgdxmAOx364Uj99gPRuMAjoizsva4lzxjggHKOH94ZPo3/5Epjs2rAxKZfK1sHrhctLQ+uSi97AlsI2ZxKrI05rreDb4LZN1jU7F0lYraXSt06tSu8aKYIIg4BxrevC5y8zuiVzBLyjFtQFtzC8QyQrbgG3u90syKk2U6UGpio+B229MFQSNx8wnDljERnXG/Vl4dJSfjeMR9KsLEj+O0SmENetJRlaVaitgEryvIV2uSCzB5wmJ9FWhL51NKFHRWLSnGMm10Wx/DyXcDU3SlQzUwhA07PAVfM6KuEYbGFg5+ZoXViXTHS3jvWR36UHD8mM9eUDY188KxStAaGZTlVlSCikiTuXZWFsN3T9GCRwiSRtTihujJSgZVcKyk7jDrkyE7TG77A58NEZDMQlcPojulOiFZ+dvkvcoiF3bJOqSaZPzkDsQVZ2Qx3KJCGCMcNmJ0Jgpm9Kdp5wy7/rwb8JS7WQV50ec5ZqHCm84FJlZg5qC+7ITtB2D8RuQJpKcrbkYbXZg9R9oQ6IkZ1e93ugeSw+90rmOW55CNYfCquexzx/8P7PeRH2IzAIJbtTHPBey/+vetX+S2xPSKqjs/KwvcFhZ5Cefa+9Cn5GURzpQVZc/XRe9vUkkoL9HfePCVPS+7UQamLzuD4OB+ZfYDX18I44x1mHGcc96Tonx2/gKwDyOKaPF/G+e36Qnwjoj7nh8Tqn8/RL2X6yA/JO7umWY7gnavn8MU4i0W3l7T3k/jjDnA9+OqsPf507G/sp+J0/A3/JttJXJQeiqc4ioQjjwBQoEq13MnjZCWgqId+3kwrVw6hMPOXUyKp/Ldny9iMIMYsgx81ZLiujbxnQ7b/VsAmFaKmPvqG7ApCE/4HtUoIpTzltZpDpLEvosUd3ykPlZynQ94Vtx2SntGRRpLa0iJfU1Q/Mr9ZQJCqQGvShGBLqJAE7iELYjs8cB9badkHELCpMCwnDMTpVLHTVp2bbd1LLktiqQeDGQ+Gl+mQnYpo7uo87K5PUSa8rdf1IaQ3zDhr+tqW2SPooQfFxwzwSHZLz4RYKQkuteH9FxEAmog7aEGYYcklJbLHHccZMl90rJMZbIM6zB0barl/ixp0GvWPXznjtsKRzKynhqA7qtEuhd7C+ReXKwUehfFjxzYB2VNo9BpWiLTgwtd4njNa41DVgNHMGLMRD1Uq1Jq48qqmlhKZ8XkB4EqBNMsDaJW6LpDFZkNT39mVN3Xy3cdwnkqZ9cxq1Bj7dduKzjaguWxD3vY+QVS0B8WmtApNlXait4j6wkVwdlahse3z3mu7bcwauvi41YIG6VyhzH5VQACrRJfFpIQlrESDv4JZQ/wqYVq2V7bbFuct7BRGsD1qt1KwcOxN3DTfxacxubGOjD2e4UCdIN9qvPhJywRGk16UyZcEJDkSpNeB0HkF2//waCXHv0UvTUFSDIOoX4lxazjmiElAzgtdx6AVpYczBmFG0EHFIU0Y8zod5QgPFk4yewao5UiWdhwMcY25UDQihELCNKRHoS7RsouqevK2jDT5DsWyMntdVTr4eVX93Dq8QJMa8IClcALjHjOIAJboD/z937xYzXZbed/2eZ62196563+/UJ0/3eOzBxI7l2HJQYiOwkKI4IRcECYGCFF8gLpIb7o3CFUgRUZAQCEW5QSJ3KApCnKRIGCmChGBsQg42ju1xPGPPjO2ZaU93f4f3fav2XoeHi2ftql3v9/W4w4xJdy+p+6u3qvauqn1Y6zn8D60XVNZiR1sLMYY1cefkListL1mtXkTyL1VRe03mFBitf/tr9sqq6+Ue/ThcxEu8nEyc5Qy3QfFaBV+VZey0v0/6kPuPLxKwzWvniP90zNZ4yQ8cpznXq/vda6RvrOfNe2Lhx3hNxl4NJZMPPdaf9CO//bV6ghj5/8+vySsenWN1k8uA8v4bt9e/8ep7hHuvnY/zhmuyvu/TkiT0a9Be8dx6XIXzvS56hoFtb44t5G7typi1LZ3q95wjtvecbE/Y5Ts+3uM7hDX7aMlBx+5qN1IxM1eVqau7qx+waq4zT4207lbazJBgHtD2qryakiS5JjsRWsXMvRNy8dZ9bpkhJdcX7+ZoUbWfuEYwV+qopfoJD2uVqasYORDndC6jeidj6AZFdOMtTxCUQZTjkk8VXnfBVcI4gjhUYojq63IPKGOKeKzVq4Slkasfn9qb8bETZKERpbH0xEHE86pmjZyPWF0Ii6JUJHoAreIJVLOGBKEtFWi9AhyZxolWjgQZsDIj2oghetUwjJSWPfDrik6iUJYDYRg7Tjv0c+rJi6sp+flAejAW3JMhDXsaGWuzQxGIzlcIDrdpxSEzJ8WdOnt35/jMMfSteACtAfIRy0fqsiApeTBfCjbPlLnBnAkYkrziLupmcCF2JazjcvJF0Joo8YgWcf5F9WQmqKvI7PYjNUY3x269PhMGhjRRw0xdZg9hc6Fkc/dqHOajsQd0fnWjVEoGrMPFmp/3NUEIVk4VHxEcLjb0pKlVCN6NcNWdnoTWrpDUq4DSMiriRHSVzs1pmHiCFdLo5OAUkRRx9aPqMAOA5vehlOIeBDG4BCalS5X6/dFqI4TEmKJ3w2LwJKQ2qrtEkAbpibrfD2aNwNlgS8xVnRBFiW6ohRGjuit6V+MxDMuNQqM2oeTFyb0WOjlduNrv6JMMq/ABDEDzDkZaJWzx7kKXZy25MMRIigntsKQhBr+3gVIapRbGMfhx6YpMlxAJJ78LDv9rzRCpp6DbK02ddM/qEOsBv8qaKJ7DCMW7rQ31Tgl+v4eoBDMQ7W7HrgBn1ii1klBKXro6kgcD0g3OrEu/qshJq0Nad1Hu5ObT9S1u+tbM5VFPqm3W5V3xVrsnBt3w7f6cL7JZbDeVuf6v3XvvSW7xoip3sYhwqoSsCcepGn1+j5xxFf1z7GJxv782v6xB/gkeF0H5Wv2kr3l2KmZukyt/573AahvZ9Gu09nnsDMPof/W1W9a6zvrR1iWK1+SkF9PWr3fW59/+98kfq8wlcC9CXI/zJgve5AEGXQq1pxQ9eV2v9/XobM28LpKA9ZntjbZN9jgn0/Jh99gncazdrJ7Mni/P9YGd5oRVdl77GuGH9jyXrPPPKTd+6aNeFdi/OtjfJmWXb9nMgB+Dk/D7+RU+YnJgJ1yshniqvNecAXqFXqA2hpRYbHHVlKZOSqyVcZDuMeB4bQtKEOcepDERFErthFHRfmOIY6vFb8sQfEGrxb0MzKoTbqPDJaw1qlVScOiEK6b4QpuikoLSrBCCAB5EB/VKYRiUUJbTZCBmiBVi2pGrGy8NQyCoYsWJ1q0tlKUgkjCE0hqldDnEmqmWQR1LPaRAbAuHXIirqZwYrRwp2SEUWf24lerqM5YGYkjkw0wxP35RtcO8XG9/rgCtfzdXbYpBGYYdZTmAFWo9esWddJqYpnGHtIK2Bcy5ARJ2TMOOWjMSVpOk2U3e8g3jtMdqcp+CToqsS6bVgcANkpSmEZWIDlfcvv8UowCLdxyo0BZEK2WpCNWlOpvzT3yNqUg1tBlRDZGG5QwtYMtCPh6pc8WqY94jkXp3R5geOvnY8M5IHIjDRNztWGYnrrYmtNYj99bIi8uStlKxaj3Jqd4JEqEWV4ZaF+lcKkrs1fXcuS5dlz8ERI3dAEikVKPkhUUqoRlhGEgBmnhyiDgxtC1HTI1WKi0XrFRiFGpeXLJVoicLtZDLQhUYhoH5cIvW0T0DRBnGgZv336d752LF1WuqCkgkqPNWsIpL+MIwuIRujAISvEOoQq61O+1mSvFOXVTcME7BSmM5zq6E5KL6TnoXYdpdOZF/Pvb4xoPtoNp5NgI2ENXlg2sThtEN+OSkOtY8EI54xyNFypIpS3aoIspuP1BqIYWdJw3iEMTS/J518q13hupSWawRh4RJYl6yB/rq5Nth2lPKDXOekeQ8IO0VKxdc6h0QTn1FEDfwy7V3dsyQ5tA7Dcq4v2JZsieZ9I5ZUHo2dAq63C3af5tRKNYozR2yh6ho7CpUIZBz9qijL521dc+Y5kR604A1Tl2DoHqu+69dj+ZVCen+DareMbFNduDdejt9zin02wRLZ5Msf6euLrrrerEGtPe2g3XhPS/f/uhUD12/MZuQabMWvWJ9+hR0DOB8nNdfXatDCtcXjU2BA1i9S05BkZ1VgwS5OC6XULB1XfS5w8z9dFZVqTXh0p4ol1L6PtYA7byvLQH6Xsr4+3OQfp+H3btW4RSasxYcthyD87ngpYbBSwHq5vycnuJ8zO99E87H0Ldp1S4O6yWs7xM6esB/Gj3Ib/euRfqcElZPnZd+d595bHN/9A7mh3YYz5nuuVABnQKy7uWST3WRDX5cx3fowvhIyUFUV8Ioy0KW7vE0jNQ5U4tr84fo1TENyjLPnt1BD8DlRGCiY5XzvKBhIEblsBSG4PwBxavZNMf2iw2AdaMvJ+02UWrLIIapwxOonWhpRi25OwQHQnD9dqsz2SqDDqTkUADXOe+4zSpggoReTTEo2THCdb4hpIlS3dDKzaESUwrk5UjOhSVXlpzBKtMEtEytrntPSy6vKNCWiiYljJGcZ8qy9LavsOTKwyvDXCoJje4I24Dj7QusGaVXI4Z9IgQnZhcBOjRIgpKGkYQx7K+puWLLkVoLmhMijaEtsJsIXU7Veoen1ko73LpHAN1BOO6QYTXmunMpW/BqaFDieIXNRyy5+VYFp4/YQpquUV6QBsi3N+TDwTHYCb7+pXd56zMTkYBUPGHaRY4fzFheSNcjw26i5MztB++5GVmqvPjGC+8m4Ao+xAQdciJRsIoTPwXq7QuG3egym31RNTGWUnjx/nvI7iGNhWKKDhO7Mfi5XLJr4+dCrgWTQEgjppGaXRWqUFwVqTWHLam41D50CAws1sjz4l2Pkkn7kWaVbBUTpbWCtiPWAlrtJAVJKcgQ0GZoWlW46uk+cChJJc8HTBxCJNJlTPMdee5J+37PfppYqneCDs9fYCGQhpEhOSQsDeHkA9CaO4Nji5uZmVFLISSH5dViyIqgb4VyXBiuHpCmPRoTyIBKAYG75ehE1zRSTYgKozqcp1IozYPtMQlLzgxXO9IwuJkcmYhxNx8o5t0HMe+SVMukfo8qBlZR69KKwVWBcptpeSGom4nF5EaDrTpeehiSd0J65bR0M0fLC00axMl/jxX/zNwckkfArPaEtxufDdMJrrNKOUscqaUyrPOmeSKUgncSWiusHs4VqLg3S25u1hZDcH+YrrZmJi5XqxHUt3RugwfnBNDsc20LxrEUhyV20mntyWgMrhpXm5FbRZshTbBSOd7cnub7rQTp/ZrwhZLH/edt8+7NRuuCy4oRPr2nJx+dkPmyZOqair1sQPWqjsGnoYOwVuTX5Kv1DvKqbnMKo4SLIFZFXBa5Sx6Ldhndvo91XNT6zVgNLoIIFsLpXRvnCTYF8FP1Fnz+LaV7abwULW1L4B//sQ39Xr7GN70zu9xq/e2n1NbOsOT1n1NB/Ft0uV6Rk1wc99Nn2GV345N+ya9dWegJbX/+W6pHrcH7/S4DnGK3vpPTv/p7dBjPHJq+id2DPG4S4W2i/bEb38EL4qNJmTb3M2gtgwaK1628liYO4LHSCOrunLsxcpxnryh1p08x9aBdHIcd0kCIA0KhZt9Xa2sG1z0SMEwKQdIJWkT3Tlizx6ABCbEvFg4/kdADG0DUiAGqqbf/1bxK3XunLi/Yq7kB5lK8qiYBwggCMQ3UciSYENLqjivcHQq7uGPOt8SgjGmiLjMtHxEpzC8O6DC4ApA0mmQiA2aNw60H2prcICymzfQkYPVIyQUdRsZhZC4RVYfmVDFuDi+QOXhHZBwRXA7UQqCYcbDI4cULlyLtCiyikcevv0HRkbxk51OsijE3z5mGxPTkc6TddcfqFe8QCNzdHhm7iVVKD5yYLIW6fINw9Yj5g6dAI6ZA0MThg2+we3AF84yMe+Ik6A3cPX3B8Vnm7beEwzfeQ69Hx4a3iA57xkcjclyoz55xuHmOiTMi7HDk7oOF5Zi5fnjF49ev2V9PTgXIwvMXt1w/eoDURkxCHEfmkjk8PyBpz+3NHYfjkSVnSsmkB1ckaxxr4HA8EmNht9vRJDImoVhAWiFopKnLe4oIJHMi7nwkhMC0vyYIPHv2FBl2TlydZzegwkhJCMPYE9HspmXRA6IhRo52hTY3I3OouRHHibvDDHHhStrJPTmqMKXAXI2bFzeoCMM0opK4e/85z772dR6//RbTfmAcR9I4eaG5VdSEFJRcm8O8NDDtJ+fuzAe/P5pj7M0Mk8gwJIawViazE9/zTNJE05FxnwiaoEKmJzIG+ynx4NG1B8qa2MeRuRQijdulIMPEFM319vORBw8espsStS5+LGphyQVRYwiR42FG2+zws2rkUnn4+iOWpuwfX3uHZlnI1WjLwu28cP3kDWII7vdQjTRGqgoaE8/ef8Y0TQzj6PPRkFwJKERKOWBWyLmrEBkMaaCVRmm5E3txDgwN1UYM3nmpBksx74aVhWMz5/+ISzCX3FVicBJxEGEMwU3PupdFzq5iJRqxU6enc4eG4OC2fr2UvBCGkXEcqdGvt5ILxzozRiWLuOO2SJdiFTSA1UYShxt2KDrT1VnK1GehD19kLqAX65zV560VJ/zyRt9igVkLeD0IewmL3Uuwn4pK6bcY22DjjCd3RTDPBc4B59qRcySesPILVDfrSO82rM7ssHYU1iDY36ahE9NVO2QDjsfZ369CEJfcbifdqvPpHNJHCiE+EeP+9XUm5dsrcp970fwrr0vDNpueXdk3ycc9aN0pmVgDVTvfiyuXZw2oPy0ds4siw/0XDY9FRNlMFGB2Mm4U/b3OA6cDfP+Yfchp+9bf96KT8DEa3+HJ8SMmB5VizatwIbpSTHO4TEW6okFzacaTwRAo0gl84m6njY57Do55VyHGwR1mNSCyxU03Si5OwDShVW9tOsRpDfi7WtGmNWco4zhQ24w0MBq55e5I7Phpsy5nZd5pUBFKdn+B0uUDCY2okcMxU0tGgbvjTFhg2o9kc4nWYpmQEqhRzDAJxN0VgcI47llRLFEa2IDExGG+ZRrH02TRRJjnI3HYUepCKUatC9YK2gxiAYsEPRMtNQzY8TlZRwZpjLsdadyT0oQa3Dx9jxh27B964tDMJSprGLma9r2a4TAZiQPy4BFiMOdDl5R1z4SUHNbw4LXXCepSpa4Rnyn51gmdh/eIQ8DKTKszNd9Sl+eUcMvVG2+i4yPqfIPoTF2Uepx5/wvvI8UIrZGmEcM43r0gxR1p79VUGVyC0hYjXu9p85HPvfmE8eFE2o9or+ZKhIeh+QI37EAj1hLD9QOW48Ly9IYQ9gy7gbjLhBRpGjERxrmikvr1E9jtB+7CFclczjPnhZwX7xJYYF4yu2lAd9GruwFKc/O8cdpDNYfUmCt6Yc5PCT0JbDm76zYdp2PSyduuXy9Be7U7EoaROCix36XSwKt6md2UICTHsWtDxsT1m4+xWlw5SoVSK/PhgALDNKGTJ15+/grL4TlheAJUohXvDlhzgjSCGlAbEiM1uwv4NO66SV9F485/hzgRnpJ78h2oOJbfr18YQmKZF1IaUYQ8zyy1kEKglcbds+cMw4A0Q+qC1EzSyQPh6oTkIBEiaHJ8vWAcjweW4lwG7W3ntuwo2cgln2ACtVVyMdK0Y9jtka6cVHOhHTMhRrDqxomykt6C77t4kBZCAGnUUogasGogxZWUgiEa8FipkZuyEmmlcxswo9VC0hGid+zcH0FAlKlzjdwkMfRAoDIOA7kZ4zA438kaFsSdymPy+RNPWmrvhhte2U0psNTuhyA4fVmMlJxLBHhnYsnnCd+zH84V/pcr9Ofi3P1FUk6L97YbsDYO1oDpvFmPUO1yf+cQd13UN/v/lI5zQuDjbETnUWKzlXx+fn0N5ldVP9nUXzstB3SjI98f+LXVTudHcCnrGENPxJScvftt3V299e3NjDREVz6L7sau/XnaoQtVdAPBj2sgdX+cvqddXO/N7ier9i22w7sDm7caWx7By8dhaya4Tf7WRtx2k5c6Bp8C7sFFRb4/d1K3PP142QTksukYrPeGb3yhqbDCi161701HQbZzm51LE7bdd39t3c+nJCf7PcdH8zmorZt1iUsvavALVZPLFrZywl6nFDsWtePfVaBWN3TqhEivVERWpaM07HBt9s2N2Rd0ciMGn4DMwMSxtbWa8x+6R4BXsoVmxpyLKyGJt9StOizC8AQHvNVaa6WUzJjcBTakRApeYonq5EorlRAjpRQ0JWJSJ00C64Qd1Bd3MIiOD7cQXP5x1ZTv7x+HSC3BZQnFKzYivTJoHog4JGt1acaNr6IHe0boJF3B4uhmbT0BsVaxkglp6H65QhxGNHgCVwzm6tKsjo12bXiTgGV1Em+ZsSIQd6gMaJh8hVG/GZ0TXmn1iNnRVV16EGztOVYWrGQs32IRNE2EcUC10eaK2i35+XMOd5n2uzNaJvT1TiY+GikqNTcqlZC747MmUhzYXydivCJOySurLYH6OQ/dZVk10SxQc/fLGJRknpBa7unQNFJFKESiLIROIm/4NRFD5Hj0bkvF3ZZrqYjKST4yBcdxt7bguI7+vctywu62huPoY8CRcq4Ss1ZDalWW49FhT7USukoVCik6rKzVSjGvCHrH1JMzTzrd9CpgtJV0GhQJ6q3/rjSFgJUZq/j7tddom3MqhNaJuI3WHC5FECAhIYAoEgKxQ2nK7E7jcUidTF0xEXJr3QE7dDfn5KTX4GZ2IQZfPA1CCB7sdhnkVSKxtRVCBdUqqpGogZRSV89yKWJrBVVYlpnSlGbikCBxCdlaMzElTGRjFOa8pdS/dynFhROwE/F/9VIJHYequPKaiwh0laDYryfDYUaNXtnqzsoaHTZmhRBin3J6oiDSlam80yfiXQTpAgnjOPqcEaTjwcMZarK20sUD+hWmU0txbkT/jc5v8OsOjcQluxqadEl6s6585oWR1pMWTrMUpzn4IkLZBK8vq9asQf15/v4wnZfz4tru5R0eYMn62a8YW9nIbZv/8rt80od0M7JN4HM+KZxDl55YIf088tIx2R7HNXGQU5KgPQm209p9td8TYuDu7sDh4Gs/ZszLQm3VC2l9/632+eb0MQ2r34D6AsL3IHoNJyHfj/NwHoVuKtB28WqHkXA20jolAdvWwKt3fQ4s7eJEnt9yLwe/7CCdw9Rtfrx2ED5NQ+jKcnBaJ/z5i19/TtZeuqxs8//Ns68oblxyZbg4Lx+Wcr1qNvs4jZfu/W9zfKTkwHXJvbXTWm+br8uAtxHOGXBrvegk/QbyRbOZIRJPGeG2nTaOI7V0p19zEUDTM7nkwj7bDDTSMiCt37iO06Ubih3mzKjp1JprrZE7ZjuIY+ldSrJQenKhIRBjRCycJl6lkXTwxTNnYgpoCog6mdPw70DHuK8M+vlYEYkeyIRNGxfvpqQUXZO+Qw5WpRENHrCJKjG47KQEJ2CLufmSETy5kkgNIxoK1sHu1s3qrKvZLEWQGJHoMrTWGvV4oGBE60GRKkHjqSVtlgndjM6xrrErx6wq2t2hVSMhjAgF1YFmz6hSnfw831FuX1AOhYef/wwSUoc1AM8+4O53nlFLIxwL7ZCx7KTyWIx6d8fSGsPDAQ3d7EyFIInd1UAcHiLRq1ImgRZc+WW5LUQRJCoqCVOlVqMXtHwAACAASURBVEXi4CZkrWAKYsGlaYFW5KSGZTjxLpdCw1jm0t1lHfNem8uveqIp0MmezfD9huCv5bKpetipdb/Mi6vTqxAlYHSt/+ocFJdr6/+Jq34Vc6dcU4EYCUOgqaA9KQ/q2v3SGtSKipFSIA0JrAedOLehLq4qFVW9Mo655GZe3D8jBe+i9TQ66kqe82oKsvqAFAwhqBuxlR5kmhqhdqfb7h8Rgyd3hrGU7AF1a+6rIYLF2GWSlVyrw5bM1XU0iMP/egDtZmUuAWxd6rUhHf+smPrUEHpxorUC9CJGj29TjKfHotI9KPwWDiqngF66JuQqTajB5Wcdxx0wjee1ZO1t9yqtmPcxNYAUut+J9YTH76tSixcVJHa4ZEVqxrpyGl0FSrsztBknkzo2s9M2mGg94bTWFz5dpaX1XGxrzaFe4vLRtc/pPse+esG7ILXSQ9NTML5NCS4XZtls/+q1au2r2HmDi4jsEsd971td7qlHbB8mDfnJGtvkyf9eD8y5crxNGs6B52Wl+VRj3nQHVrWdc3DlpHUvrgRVrh9c88brT3hxc8Nv/9bXWLKbj7YWMHOIZe2mZ2atG+Gtq5th7QOwZ8DoH6EPOWd82+/18RonkjZrDnzvmtsGkxfV5vs7Oj94VZC6vXf6Ds8dtXUL60pl60dt8o9tLu4Qvk9PgnCqPcj2HPjvWzkDpw6LAPfmrHPavP7VH8m34nrYKW47bWWnVe90wM/J+OW+P07jO30lfLTkoMfkJr6grgugq8O0LoenDDGQSyX0bNmaB/yYUEpPGrqO+Kq9rYqrB7VA0+qVLRyjG6QHUh1zJmanBdKsUbLrsZ80OdQ17ltrlJxPnQrpkUNtlaU2Ug84TKFhVIQp+iLq2uirdn1iSIm7wx2ifvOuFYY0Do6LxhVoThwJ66oC6v4KQnCoxclsraBRibZx3y0FaYsHveJTeAxKDIkq0gnL5Rw0oMQwuC5/EJDupNslvkqtxHGiBUVS7JJ04u7GtaujmJKLotGr1TFOuN51Iw579wcI6nKYOqJqWFugzSDR1YBUkHb0ayMLLQTm5cDh6TeodzfcfvMFr//ojxFlj4RKEEVunpO/douJMkawpdFuF1QaaRHuPlg4FmH3KBBT8vOUjaYQdw4VWqteRnDVq6AsNzcokagJGXaYDNxmRXUgjgEps+errVBVablSj0fK7S0SEwWYlyNlXrjLlRASVVonOHVJXmscb+/Y73c0DRACJomGE8Glta6+tEmAW6EU4e7mjjEGxiE5L0OUvBRSUDdOi4JV6ZAVRZMgxYnHgp4q8RXtQfdAsIq0BWsZbTAOoXszBGrp1WmBVpr7kiQ9TagiEIdAKzMWg3cRmt9fKkIKwtxhOc30JMfqyYwrBK2VsB6LEkVdMtGaGxxqvx9aY1kyMTWs9mNjfj+pikOqrLuSAxJcNanMM612Lf/1XFRz7HMpzgtR1+o3ceMxiRGsuOJRzb2iL4gpcUguhVsrMUZX+jGh4LwaVaUJPegBQxGjS/56kmAaaXiAr6K06gTxQMf1a2BBPWkLArjnh88nwd3la+1zScHNp6p/5walHZCQkFG6KaFDG7zD2L+ndfhQr8qqemezFTddQ5xgrj4Z9XPbemfGTp2aUo21g4GuZFROq8wp2F6D700ssiXvvWpRsjWikXV93W78IdWtXkW5CKsuEgZOQdMpFFiTiIvA+JM51t8myBlCtIYkci9pWOPIXrk+CS609b3nKqKTlPVM/F63w6B7DQ2Dd5PffOMNfuzH/jA3Nzf8P7tf5stf/gq3d0dSGkgpAX4trl5E3lE7lQoxAkjA6lfRliF8FgmP11/I732i/tkFYL2e84qwvj+/vd6NXg3YvL7pYG1/xYdWdDeHYg2G7yeGtu5ke9g290H7Z3Ccft+GrbLMtjEwe0Vx/3Se1jlpm/xu37IS+zdz2+azLrpq2wTifsf0pU0/PgnZ/ZrKd3J8pOSgWCW3xqpUUpeZ/X4ixqG7gPqiIyGR6FU7EaxVSsunilZQ1xnHzDHcVEwT+Xjn1d/q0CIVCHEkinMBci2kGNygqnqgEQRQD4SkL2xmgMRuvmak0I1+osOY6nLEgrDU0jNEI6oQY+JYhTF5t8HhGw7sod1xvR9QrRTryU7x5CMfMzIJx7s7V2ySbhTVjHwsaBggBSwG0EYMmaUYSZV0dcVyPMKyMA2RMRhtmTFNaAyuuz+b4+Q7b0NCcgJ2K5S8EMeRJI047T3QEa+o51oZh4nr/VWvImfnMNTKwykyxUDLxb0HJKHhiiCVML7GnH+DkPaILbjZ2YDGPSoNdKDWGYcDzFBfIEmw/Jxc3qeW3+X5u7/NB7/1Lm98duK9X5x5+zd/gfD5N0jXD9CrI/vPP+TJr77g17+U+dqXD4xp5q13Rt54M1HvjJaF6wcjsTbshWNeW80stTC93QjDzrshOmEWqHMhPnqTB69PiE6ENCHjhOlAO2RkGjBb3OdAKmaZuswsx4W2zKRp4LBk5lzIS+buxQteVOHBw4EhKblkT7ZiYBgmyjGDKUtpDr9Sr/zXXMjlyNWUUAm05so8GCwFEGWumXzIpCWym0Zy8a5VzgtuHFfcBA2h5sLV42vH/7cGFJZFiWrUILQFqnjAGofohGOM5y/umGPz44BCPhDD0CEsq2oDp6Reo4CKS7Mu1cUBGpTuPyCqkLulV3T34xCFcb8nz90MUGBIAR33LLVyvJsJVGp1Z3PxCoBDmCR0IqXvu5bM3SHz4MkjiiituvZniEqqoSfxsQeZRgiCNOO4HEBHYpiQIKj0rmOrhCGhi3tOeDfCWKwRDJbOl1jh0I1KigmpjZLnHvTjBY5WPCErlWpGxU0dTdz5uVZXQHJo1EBIvdOF+36Itq6Q5LCkEAPVHMYTBaxzgWhGiD3J7IpozhSONCKNTKuNFANDT5yQStCIidsp5rz0boMn9NUcErl6IDiEsne9lhkkuJqbKCa+zTramtxxNjjbdgLkfpS6qfBdBK3bsW3b33ttK7vZ7rkmnzkHcpFf3F8Sfz8Xyf+/x5mA2gnGHTLkRTLpEqO9W7+axImcgqNVinFbfW40qBBj6lyGDuHo96GZMYwDP/qjP8yf/3P/LqVk7u7u+A//o/+YX//il5nnI0OKTNPAu+9+k2fPnjHPnnCmqExjoOZKGP4Q9e5v+Fpx92VE3yY8+lPnyLp/oY8bBOwMM+lJ8SYQP41TEOo/5xW52uW1fVEB759hr7hP7iXL20OzXtfqWcapoi2foit+nVO28qXn68SPjbV2Klbc775IL0hZL0gD3ol/ZVK2JrHruegVDNbEfLPPTVbS690Xn/txGa+6VL8T46NJmcZIStE1j5cDISWOx5lxN3W9fgFKxy9DXRZ0mBwu0SotLyQXj6eWdnI9TuMIBsOUXPe8ecVO8AnQANPAkMa+dnn1ZFkWdmMAFXLrmN8YOlxI2O12rgqT1m6AV1urgVmhLO6wq6pM08Q0JgzILZOzBxRCpYVIk8p+EoIapVRKbhQTDnPlOB/dqGxzsY4pOCazNMKopzM3xMQ0JerNHbtpAoGkA0ye3KThESkGDseZIA2aK79IGrHyAk2TV01rYzHImtm3heu33wCbsS5U3lqhtsbtXHiQrO+vEIOwGx/6RL4bKHl2s6oA2IzKwPHwnOsn3w/1lqA7r9baHRoeI5L8vzj0Kuczmr2HxLeQ8AZanzLWr/HouvHBTeV//Ctf5Bd/p/DTf/CGq+9+h6gPkV0ivXXNozcb4edn5GC0Q+VpmSlPG4/2yosb43vfumIAqkbqDPMHd8gxs/uuJ+Rv/C7jW58lXF0hcedqGeNDOGbSW5/DQvKbuTRiKzS5o5W+UGpEwkDUQswLFiMvnr9gWQrHCodiLAQkjQy7wO0yux9cUz/uN88YxkSjUi1CciO/2hovXjzjux7uuXowYSbMi3FcGs2UcVIGTcRh9EpeqScJ3FpXB0dBYiLGhCSlLIXD7S2tZE8CJyElIwbj+fOZKSppuHJcOYW6LEy7K+LhGaVmVyjq5mS+oKjzgQzi4FCx+e5IFEhTcBGAnMmLw9KqNepSGPfXVJuxfr+kYfDORG0MaSCmPXMuvDgemSSTBmE3BCyEzusp1EUYaMiQuL2564IEZzL2sJs8wYiBYXCeQG0NGQeWwx0B84mqFWo5UktmfzXRGIjj6IF78/p9bcq8HBhScEiEGTEm4rSnlMpuShwytJoJYkTFO2IyeofGUyqvxpp3K2KKzItXSlWcfFlbx1qb+Ryo0Kw6XC4mQlDMonuChNB5E5FBg89/weGJXiHrikZAJZGid/t8Qewckejyzk16d8c8YZjvZkKaqFWcgA1MYyT0ELPmhVoqSmAcIrlm52upc0YM6X4dGyWaU5V6XTRfDsT7IeIyLO+r6ysqpB9aD7bLJ++jNl4ehtkZqrndp2z/+ASOe6HKKWhspyCmJ3+wiQTuHcB7z2yhteCO3dq9UWSFnZkrZd3e3vKrv/pr/O9/9+f4k3/yj3P94Al/9a/+Z/zMz/wt3n//a3zXW495553v5t//C3+Z/+G//4v8B3/hP+fXfvUrzDcHnn/lC/x3f/nP86//ez9NnAZEdjAcu76ur9GrweFFl+pjMWRzXFco6BoJnt9zGutrG9nMUwdLXn77aQ/34S0feq1edokuvRcuuTyf9LF2tj5ysniaYraR+vmx6LboLx9pPjBrlwnh+YVP9Hzy7Y6PplZUC2YFNHjwnDMShTw3iE4YDMBcZqqBxuRQn5KhNlctCiAhYnnp0n9e7RPVrsPdGFJwQm9pLPPsPIRSGVMgBP+qtTamMZ0kBdO0c4WSZhwPR2qrDMlJu7TS+3qO7Y4qBB1cdlGdgKv494oBlkMhRU+GmgWvwzRXgjA8ANDo5lhlyd1kTaldpz9oRENgVIhT9S6JajeqElqFSRNjGiAE8nKgZSPGgV0aGIYIzQP6WvGq35IZdw+hLR1eYITQ0FhoIYApGq+p5YgIrrbCDEmZl8zV1bV3UNQ6ydK5FilGYpoIcUeQAcFIZJfglEiri5PPw4S1o/8WZkQiSAUiOrzmYZstxOGztEcDD/7A63xW/jHf84Vv8t9+OfM3/toX+akHd3z3D32OdHWNThO7P/IO8vO/ydOvZb67wSMRYihUiZACoWXa8wDJjfJCHLi9Kzz6xh377/sB7IVRnj9DHijT97xDqwLHhpaR+OARhIiVSnoNWj1w9+xrlBe3LnPaDEuRcvUaNx98g3D9hOXpc24PdxxKxVAePXmNLJ7stmzQGmrucD0kOBwbx7s7QipM00QK8NnPvMU0KBoDuYGkxi4JUxzJ2WjqiVU5HKm5sNtdI7Hw9Olz9qP1YB60KRFx6JMGdx8T3BukVeIucTUNSC0MozrZvBpxH5EQuL5+yLwsiASkQZsLAQ+2a/Z2bcszGmFIEMLk3IUObQrmIgEalRqvsOaqXbE7oUsnp9fDHaUpMY0MqkhU6uFAvivsHjyg9O5HWRYagTR4QjxOA8viDswxuaxvcC9hxuhJSSOgaUfNDY2ZMSjDEGgVlhYwKq0KQWCejz7nqPNz8nIgxYhZ7Xhq6UWJhVo6x6b7AOgK3wgBqMTgQUzncBOiy4ZqSKRBWZYjpWSvcpkyTIlchICwZCewx6jYcuz3kbAUv29FlVIF610ij9y9QqVpoNbGmBI5z3hTVEAc3x1CPAXNS3bCtlWj1UyMgXk5IkBKAXASc8MN+jScXe0FY4iBGgNLhdysK1ethGgf28qcVz5fvS6cl+W18v8KoyF61foUya8V7k31T3q1fG1CbCrn5+90b01qm1D641bK+zbGiqs+6653TLRbyBJCOFX9t+flrHQj3cn77OWz5X2coDPi98La6V7NuX75V77A3/ybP8Of+BN/rMMFIz/5k/8Krd4h4v4ef+2/+k9QnflLf+mnseXrvPcbv8QXf+FX+cLXP+Dv/Jd/kX/pz/4A48PvcailGNgRdM9X/s7PkP7JP+L1P/VnmL73Bz7kvH2rc9mzzPsl3O/A+V8D92b28sUGp+rx9hsKeNcFEFpP9GW7yWnfq5xw3Rh+rffBfajeFjYHrzoin6br/fLfTQNnA3/r7znNEXaenLZQrHsdhb5R5/Ote33VkNM8dykRu1Y1zp2FbePn05OivXp8NJFiAzFX1CGJK+00c3fgViEmVJRqxt1xYTcNxN7mL6U4NyENxGReebW4cXKEUmp3WdWOIfaFzAmIlSWvrrVOjA3DQMve8kd8re1QS1wS3nG8ckoCAik6JMpaYZp2RHGyoKjSxMh5xkqjWFdi6TKTLgVkLhcoxpgCDMmro3lkjLMHtcUhStf7K/IyMw6BFkaojqdWhRQSHywFPWaqetchxQkV4e72DgmPyLkrEkUhBkXHscssTqRyZHUVTjEg3aF1VCXGHSE44XE3TSwWKPMBKcGlGMUIKfixq5Uqo5NzjX6sAykOpLTH6k2/WRbacqRql3cMO0QKhrpSFQHYEfQxtFvm9BZ6vee179vx43/mPf7NZ1/kH/39md/+P36Xx3eFh9//OXjzs9x95df5/A9NPP+lhSF79yDnhtxVrh4MyHuZ8jCgj3boEJmuI08+9wbDozcJg1eAaTuEJ0R7RMlw9c476KMnhEePkRixUrDoAVSjIekpNY/UtrDUhZv3n2LSyNZoUWgB6lLIS+HFu+9RbO4kUA94VAOP93sev/GY9774NWhCbIZUd+01g9ygzu44G1UJ4h4cuzExV/Pqe6hoMmIKHOcZRMilefdJoGA9EReefvMZ45SY9iM6BOI0kMaABEjDnilGaJXSoKG03KFlTci5ElXZX02kFDkee1AJQI+ACV3Bxl2QQ3QiOxoppbk8bTtFsf79SoO6sMxCy5VpZ2hMlGZYELDIYh0vrxHruvq1LVgNlOMCuJmbCyIpaZg60dqPFxoxBGsHxjEx58qyeNesZOs1h8q4885jVL+3S6kkFcpyQFNyeE/zQEqbuSFbzh2md57ga840DdReCPCJSbsJonTjsq7WFhIr6doJ37gLsuIQn1KR6L4opTkp3AQ0nNWwWq0dDunnS6S7VIPzGErryjONUpuTuk1pElxNqtZTQKdmUP25lTvg6lGugFXJ3UXXdfGbNVqPyLUXaEzcL2YdwibYZE0QzlW006K9WajP1byXewTCSu4+7/AkGLhZye3+knv68G3AdX9J3rYlPg1Bk99nKvLSz9kakHmS4MHoGlSWUi92o8Hdui+eXz9CpK8/6ST5W2vl9vaWL33pN/jrf/2/4ad+6t9GpDEMU09aFswGXn/9mvn4dabdjsjrPH4w8uSJ8PDv/QZf/gff4Ie/EAnffSC+8f3Y1Z56fI7lb1K+8Es8+pEfR68fuyIagsZNCHKKvjZBdnMH8osG1fmAONFf/V76tobZqXuwQrYcyqObRMy4hMCcP1Pg1P07X44nIIzPM11u9vJz10SQTcl7TbT7kZCzaOe9OPjTM146vy+f8PviCK+6Jl51mchFDaFzGk77+fA5Q7o7+as4Bttz8fEZl3Pstzs+UnIQQg+uRdwnQFytxN1MXYVDVZxYu8qHEnyB71d4zhUZGyk4hMHMiXalZEzw4IJVktIXSQn+eR685FMVUIPjZDU62bB1cjM0aiu0ZuymhFojBCV2B91QCuYSIE6g7MnBUrLjvXGIh9VMrjPNhJSUgPs0WJdMjcH1wx8NESmNNAYIDUzdxEj9N8STq/Oabnri03qnJIZIDBG1Rmkuq2ompOSwBBWhIczLgSDBTZfEK7ghqbsC00BdklS7ylCMXp0bAkSNYC556V+lIWHASTod36sR0YhawdoBoYKDoxCNtHJH04xqw8jAAWz2SUsGVPaQPscQDIsFid/FZ36k8a/+W4XDN3+df/gLB/Ro/JA+Zn8tPP/qkdvFSA8Cu1DZFaNl43Cs7LRw8/VMigO2F+J+ZHpwze7Ra6S330ZyJIyJmq+Q+BqSH5CGK+LrjyAOaLqGIULy5ECtMEkl7Pbk5Rnz8RnzzTM0uTbQ3TJzmzNzV646LgtUd5ANUXtSCfVY2E2RFzdHd9Uw9/pVOkldEoebAxYSaUhI8EklqnRMeyHnjBnE6Co+IRgxKdYlNTX6fVRLpVLcZ8CgViPnRhqKB45tdTTyxKUh3Zk8u3ymGhpdiSQNiXFMWFtYltIx6D3ws9VlmC4xTCcuRmQ5EhWydalDqkPdFl8URV0mVtWhL+603dAujYv4/kLzrl1QpdROqBXBFYNbl0/1TpR1R1df6IO7pqtXL3MpWHMPiLU4oSIEcRKwn5LmWuz9Pg6qbnzenZElVGJQRNbqa+3O7UYprce/zjZaK3h5WdAQPcDX7j1QXX0t50JrLtu8BgKNDnGyjZCCdP4SQuj7ouPI6QHekLpvwlrFaq1zG/x7upmaPz6tjL0jEXv31XqVxPG00j/PpWQdPtT6dC1YrVjLPTg/E0rhsgq9bd9vF1U/3isZ2L71SrlZrE772+QQH7qW9ff2EPj+i5v9fzp0itbxraRZV1O7tRuwqrldqhadC2/3gx85wYn6/dLaaXtrbqL33vvv87M/+3P81J/9N3xNZMYLBAEkIgyM45unBDalkbdidE7PN36BX/n53+EHD5XH6R3UnlJvfond2/8CT/7wj7P77PcSph319oa2LAyPnyBpuPcr1+9n2HyDTA/7/YOLmZjzaWiGJOfGWCfee2czfnSYyuaYn6Vh6Z2Ctc1yqQS1cjzuK0SdjrdtpGblnFxvz4s/8NdXsSefmzl9h+29t62O2+nhJz9D8Gu5C8TYJU/gonPoT65b9ef6GTolWLo9uH3/m31s5p7GpoOzedOW13CRjKxdoVOi8fGYcV4uxXznxkdODqRLnnk13h2ClyxemVtTXKvdJ8Db7kAvqXk7LS8ZGfzmaR1T35obHOVa+mIZPbju1b0Q1bH2rfgEIdHf1y+otU2thkOAzCudMUwn/LC/1g3ZUHJ2CVTzlder+9JfF68clDqzlEaUCCG5nr+sakINrHA1RI4tuTmYePV1KYXracCaG5ZJJ3+5kVvz9zZXI/KPs5NLacmLJx+DmxthjeN8S1kOWBgIwWXjCoZEYReVEJLDuDScSEsi7oarce+QBAyxgpjDZtChK7CslUt3Y631iFbtjoPWseEj1hZaucOCghwQ3gW7BX2McA08QNPbDF3VxuLraIz84E/+Dje/+Yy/+79+wG98KTPun/KZ9DU++K3Cc2k8/OFHpC/ekN5bIBvHo5GWys3TwqPXKiyulIMphw8W9E0jiRHGCak7mEfsxZ709nehcUcrDWrCI0rz5FGTq9/srpBDoojB8UiYJmoYONYbbvLC3byQjzNzLj3gBnKliaG4Tv+cFz54PzupVxva3bdFDaGxHBbC2KgqQPBrr4GZuKtycU8BCY6NTEMkLcWFqMycUCpeYc61eBLRsedlmcmaaSGBTE4g1n6ttkYSaJYdPhcETcG9Mzq5NyYlzxVFXRPfxJMDW4mL7hAsKtS6ToYe3IaotFKpxfdvNREinpCa0vrC10ohpKEn/p3rExUrEMVJ+SSHDmHWK+AOWxQTV/epFQhISK48JW605EF7AwbqXDANPTnw1VWAFANLLs7b6MpBa3Uxu1kFGgZE6OZjbnwYY+znRjoUyS+hoEIr1hNyD6qsdxFaD1IwV2/h5Ecg3SshepJtFfD7TEUIKSBFyD05MfMkjdQhGF0msgs6E4J3AmpdoR9tbeJgpbmXSHAokSclrc+NvSPRFcdc1NarxRWwUsCazwft1ZXIl3TZjXPb/aJI5TyAi/fKuaJ/lmjc/L0usvatq3enQOhbvKtPe3wca3n/9MODdK8YA5x9CVad/dM7TwHnOTlYq52+p14M6oclhD6f2HlbL1RxOre1Vu5u7/jyV77KPN/itMAP/MjKFSIDoAR9TLD1XE4MDxNv/eCRH3r/XX7xf/sq737pKVy9y/7thyiPyccbnvz4T1CfPSO/+9uUd79Bu3kBn3kdHr3F8Nnvu4zrTie+nf6wuWJzJ9ln93CRB6Mfs34Rm9hJMplNIvRhx/rir21AuibDm+1XH4Q1F7a2Kq7pZm/b5OJy3OccnB69Inl+1bfeJn6fliGyJghCd/nswzOmVyfKl8doTenWv8/PG2t3xzpscgvlWiF29w/22sA6H+vLY+4JycfvPJz7VOf/fzvjo5mgtdYrFl6Ni+KYXpHQtb+dQBdb9YAbdSJnX4ygUTVQFjeICqFrincXzoBRuvmFqWFd3xtbCL0t6oFGIsSR0vRsLGRe7dQgvqDLiElDcV33WmuXNYUQB1QatRw8YGvW2+ru1BwCrlZiAY0jZkdXAQnKmIZuqOSOppYLOTRSUKz2SUKEIUWGIVAXT6JKdYlCFUEp1LqgzZzQakpVcwiyKWrCboxuthYHpFWOdwtDSN4d0IC1wnEp3Fljmq4J494lPwGx5glAkw5zgDgqUs1jFIMYd1RTgjqWX4huYmdKWap3QSSgwRBHjiMhQXuB2YLYNzH7KvBNsAhhAXY9EBq8uqQRDW+Qdv8yP/7v3PG5z/wSP/e33uPv/f33ePMLz4h55s0f2vEDf/p7+ep//SWefXNm14wnajxKkGm0FzPyeKG8uOPmg5l5uaW2yoMnr7vq1PMjmgfSm5HhM49o7xqWCm1oYBWJFdKAaEKHgA4RotHUmFvl+TJT9wvt7pZjKzw9ztzeHNxQrFSGQclmlDwzaGIY9w7/78nTEJVpCux2iRiUm9uKBoettbIQw0Qchl6dhjovjEkRC06srYU4TuiLQ792zM0Cj959awRKORAG0CaQoUggPt7BkFBjQ/g9erIR9cSnSckdyJVM7WZxVmeshV5ZU6QKhEqMSqse2IfoHaRFoJaFYZwYppHlrnFcZvf6aw1T/5xaA7kYS14cZ5+WLrHrfgsxJUIr0KpD/iRS5sXnk+CeDZ4AFYe5dedj0Q49svaQzQAAIABJREFUCsq8rL4MbpjGELCUCKK9gp9RUYZxoFQlpdQDna5yYb6tiVBz9u5ddZiV9Hk0Qoc0um9G9bIs027qAbE6gbzUjndficsVsexTUS+IqPg9U6qx5AK4t0mKCQ2JurjTuNUeoEkll8AYwykgMbxDqxrIy9IbBe20cNUu19yac7xQ9UowdJPKgLbcIZtySpZSFHLtXLEYHUrVPRjWcb/SSU+K+tPnYH9dsFeSxnZsKqBsHp5ww5gnRZvtZP2siwrhK4KtTSJw+bEfvwX7n2pcBCT0zsAa5HOCAsE20LwMoELQHsSuyi1+hEIIXYqUTkB3vyJVv67p84YIlA4v+spXv8r3/XPXBH0P4wjsgLdBIl0FpJ/DBOEJcfohPvcTRx49/L/55b/9db7yD36dN//Qd/HWH/3jvPcr/xNv/4t/jpqPvPjZ/5nyq/+YcLilvRbIn/8jvPav/RR6/QQJyX9Pq34d75+cDkD94Eh7fyY8unIzyQhtqSAVQifti2K1AAXRASNsAsvzNfzSgRcuiN+rOpaKuCpcD2K3FWzrd0LrKlKvuvy2sDu4d5edM8B+f5+vdTaf5/dMf3wvWP6YFLC/rbF2aVf+qayGsveO2xaCePGz1yRuO53IGizb5TbSizF0L2S9eJU1E788rtu/X5FN/DMY2xnyleME0fv/Pj5ScqDi6gZ+I4CZdJJx8mpfhwEQBmi97mUuCeiGaYoVxYK6pF+I3RrNybjH44Fhl7xCusH31qVwvUtYVGoTzBxbPAyBUv29qVc1MXPscj4gOMTJWNvnjWyZqzgBgSGOiHiVVmiMasylIil0EtcaOCxYCySNpJq5vavUGLl6tEN0dAdkMWrDYTrSaOVAjBPV4M3Hr3N7d8PhcEspM7ktPHr8iGaFeZ5BHRpU6oxSebKfyDSCNoK4uVkKE7W6hOdcFjQEht0VaTdQ5iNtmMmipE7+Emssx5lpuoYwU44RsQq2OJdDjCldE9Q9FlzJaUJDIlw9Rji66pSO/p9UYEHiO5jd0Jb/C+o/QewDRBoMT6ntC1AzJp8BniD6hLj752H8o4TXHvI9f/oR7/zEr/F//i+/xV/5T7/Oe7nyX/yxid33vsWD7/s64SvPGUrjyVuRB5+PHL8K2hr6/I7xtQfsf+SzpNffYa5CaDvu/vZvEY6vM7zxDjo/wL4aKP/wFv5AQ/9ggTcKNhXitMLP/IaOKbG/foCEwtxm3r+55fly5L27O14sR5ayMD87kF7bs08TYpEUlTG4/Os0DdQMwQbG2Lh6vGd/NbG8/4xAlxaMI2naEUMiz5W7m2c0YucvVCQoGpM70raK5QNKY1kW5yqMiXm+473bzMMHA7ksDiPrHaa8PEDbwmGpjHv3nwi+5mNWiRRimohikBdKKZTqi35IA+M0eqeoGMGqq3Ats3NrXGYLqY1AgWPmcHsg7fcOfWqNbJH9ODBcX6MoZYGkEAfh7gBPn77g+sFEORhydU28vkKnPfV4x3zMDMMVUc07H7nSFJa7W66ePHYxgDG5y3X1xdqqkUsmH44ObxJjuXvOMF7RUkRk4P/l7s2DZs3uu77P75zzbN3vct+7zL1zZ980kkayPF6EZVuALEvGDosDVRSJi0pIBQh/4MK4KhVXqIRKSCqQEENBQVwuQlI2sYkcQyHHDrYMtotBsrAsyZrRNtbsc/fl3Xp5nrPlj995uvu9M2NPYlGMdP64t9/ufp7ufpZzfst3cbZW4q2tmE4sw9ArwbZU6zGG7BxZlCzuoy/67CM0T039ssDgB0IugVI2zOcLmq4h+r4ggHIJGiw5eGJIqI/LUhczZ/ERjCtSrt6XCr6QsmW5XOjcFVTZzVqrnhFAP3hAE8NESQZiwlU1IQzUlSHEQIiRlHSf1tWE6JWULIKtaiiSzzllqpy1q5BRk76in++sxdkKciSksOZaMJKh5USwLidX3RNB7Cr4KhDKO4P7k0v0RnKxer5guVdQgBGykU9sqHfxZhC2CbG4s7r4tTmMGLBlXZd1YjA+MXZu1lXtEe6l62LOa8z8aiesj+dYpdUkYO0fEkJSrgpgY2IYEn/v7//v/Lf/1Xcw6Q4QjkBaMI+S8yVSHDD2LqBFzDZitsE+gGknnHpPw7e97QV+/Z99iV/92K+y9cVX+dAH7kac4/iZnyPnQH3xPFXlad72Trr73sv+T/4ldv/kf4899wB5uU+a3cCefnR9YDLQCzJXoYr0lQHzNgNtIptQEqmK0TQRUBK1acDcCVtadwjGa9WU9RBKJVsfrc8JFM+kTJJ0Iugfr8lNyvKJ6m0xOzUn8Uer77KK46SI0d4Bqdk872LWSeFbIUj9vY7Rmwko/lKZnHUuOiFFupkoiJzgrG66HRs2E6qxPbCuqq8SgteNm8d7xJyc38q+x6FeMm9srPbvYvzb+CZvKjnQ6pqQ8phB5dJWV/hDSIa2avBeFVeaulJjo2JHmnKFqwRPpLYO4yrVUvcB58AW9SEZ25whkYrZUxJNQAyJnCN+iGRvaJuWKMUoKWvVD98z3vghq3KIUY1BxfoCPkb65YAVjYdiDNQmM6RIbSuqyuJqgzUNFR0Yw/xoQZ+h3uoQV0GSohKjfY8UtX3vatW4xzisE44WB/SDZ8jogu8N8xRRxFsFqSRcVHRtw+E8MelUJjKFBS4FOpPJrmURQyE2Fy7F7BDXdkS/gBiJUsjcRMR76srRbN+NxF4hBFHJkj4eYrcqItu4egsxlXormAblIPSYakthSsZqIJmGktq35Oob8bdfJh29jJs66tOfR4Zz5GoPf/u3yGkbN3kc4SWk/xi0fwyquzDbS+59NPBd79/np5+a8V//2AF/+0P7PPQDd3F8OjL/6E2tRJ838JzHLYV0e8HR7CpHtzoe/LN/itnP/jj+0bvYfvQRwidu4J/6JHb7HsLWwOz6beR8oPvT91PdtYtUEbKBcASmJqclsMDIQN06tk5V5BtzLg9HfPHyVW5dPiTPPZURfOy5cTNyZm+HC2e2S4JaUZ8+zbXnrrBcHrI0gh96DicNi+M5bdvQnTsLIZCGwDBEjFjaZov+cI6JSxXPlwA5kL3KcvrFgqbpMBZC6AnzGVkyF8/vQgN1SoSFBvl1UxGHXrsaIRCPAtmqEpirhcVxz6nT28S+R6igVjK77xcINdV0irWGqm6w1uHnR5CU7N/3AWtrqrbGNEIrQj8k0jJwfHhcJgJDY9X8LS3npYPXalCYhJ3dCd20w2cwTrshoe8RqYlmQtMlxNTFmTdQGWinDdm0ZU6B0CeMDerSXVUMizl5sSCFYrhkMqfPniO5hn7R03YNGVUx0wC3FBa8EsOlciDq+5xioqor4lK9D1JWeOB4DIxzGFvRFGI/MeGc3o8+jH4uRW7ZDFgKkTgVrpRV3SVE35cxCr0qFa2RU2RLoWX0XxEBU+ATwVrqptbfEIqRWwrUlfIdoi9eCzGSnSOkWNTHanVOtxaMpWlqbt9e4k1JBIwWY8iWjMqwDiFo59WaE2HGnbh17ng0Ps4ro67fdfUYFxFt629UXmWzerrx+Ws1opMjjxW/NxpvnfX6//PYPAwq7zg+ebJOOKrzjTAX3VZQD5F4UslIMs5ZNX2MaSM50AIawGTSYUxQSKurmEw67r33Hv76//DfYORV5jd/BmuuUk92MDVI3sOYXeLsVxB7L6a+u0ACnwX3+8CeQ5rE/e+8zdxf5tmXr/MvPyb8kcd+hu13zwjdNvHZW3D0HOHWdZZP/SLG9WquEiNIg9R7QCZcehp37m30/+vHyC+32O5txGYgXF9gblvcd5xCTinHSzOjAayD7IFASj3kCmt3VpX3YSiiCMWvJKWs8Ecf150xMaUzGleQlBg3kqsCJdLXx47EmB7kk6dNX1xDWzagX2OMb1ZYwXXg+9rr4nU6al/jQ+fTN5AyLT/x9cjm5vWC84wa0q7mp41jVw7ZCtK4MdZJCL/z3FL2Ixvdu6/n8abVilJS3L8V7RxoqzmV1r86f7ZVh+8XLJdLamfLomNwtZobSShZWYqQVXFHFyyt1ptCZNRTpIS9kKDvvUIkii+FMbAYBr1ACl/AYElYnGRCVrKvjF+eTIg9YjM+ouo/Kamcm7Mcz+cYZzA+qXttMVUiRXLIJGNJfmDol5gQaZpaEwPTUDtbSFHKbRBJDEPAR/UO8CETfCKFhMMQk8c2Hf1ySR/64uxaITazVWdCjjRiMZJW7pNIpqorbFnI26Zj2nUKLxgWVGKo61YPHRnXbpPslME76mqClQ5jF+TkibEn+EhFj8kdRhSSZAiA6rS7uiwuaikMYhFp1NRNHsJML5LzlMyCNNwGfwupLlJNPf7GNeYvPU3ua7r6APNAB/4SVAecf3yL3/dnfj8//qlf5Na1yOyVI3YfiEze7uim22Sb+fQ/PubsIy3L/Uy41VNNYPrAjJd/+zfYfvxeaLZYfvLLyOefx13dh6u/Ra7uotv5IeyTD2DqKdzI5AGyX2LsJZhMoRKkahG7jUs9VfVbTM5OWG5N2DeGm0Mgz3omlWXihL6ucL0gR5mezO5W4pXnLzP0nrauaZwthnQwaSfYSsBkjg9uQ4amqmmbFltXLK/eJKWBJELllBw+DJ44eIUwtULVqMlfiJkgibycQW7BJmqnJltVY/HzOd10ijPa+TJETIqIz0y6hjD0yMhkzsrTMc4UP46Bymo3KIaEtU7Pd1Vj2wrXWqwz5ELSHZYKS0krwr5gWuXKhOBJPqv6kqtxTiFltmmJ/UAkE4aIDANWPHWtXAHbqpUixpBFRQScs6TkSEkYudY5JJKfMQwDVW1JSfBDIsXEfAHddoN16kyQC/Qi5kQOAWssfVRXWLUSTiCQ/IC1rkD/Kp1ffCDnVNSChIwmlSmpiMJoppOjzinG6bwXc8QYp4WM0WHYGAwKdeq6hqUPSFB4kw+ZCu0sKB9AAwUjCtW0riw42jJAg5e04mfUlQOE4BxSAsembfQ3GeUd6S/Q+TEGT11pUhRiIsdUpGiVzzCqY8Wocpf2TlLo60Ek1nX6jcVWh2xudOeaudrXyRc2oRgrvPcdi/lrvkhZ4O9cl78eFuq8+r1SuAF5xXUZf11KSYnlwFgCHQt1I9F+hEGkrFLgo9qac1YRADkTStCr2+SV5wrI6jNc1ZHTOeqtC5BmZDyk65CuItWD2DYRDz6Fv+WV02d7zKkK4gvgjjn7tgfYGU7z8hef4pVXrvKHbu3Q7L0bt/cM9l37UD8B23+McPi3OPO9f5Pb/+Qf4Pa26d79PprHvx1EcOcfp/+FXyb91lOYVxfAHrQXcee/D3NhB3oDs0yuM9QJUwVIPRhUeAMh5gXL/llcdT8pWz7yr36Bw+u3ePTiA3zTE+/BiMHVNd73pFK1zqQiELBGZ5xwGCjnZoS0nAjbNzpeJ8L4sdMga5jKGrpXzm9WsYPNc76+QMpZl/HbfH2MTTjVeHw2uR9vPF6bOMNG1+B3ePvr71ZeM+WMXQNZ//GWmGt+12/wVehqvDmfg6xwFCNFLz1lbOV0QVMWLNFHxKp2sjgK1GjUDo6KFzOuyH3l0hJ3pOxZhqTa5EmxrSEmbfWLkPFrDFqpaMWUiUlNo1JOOBnJvYmIehnUrvANolZSrFkbwQCKwy0wnJiTasKnRE7Kl4g54b1nOV9Qt7W6Uha33jToIh96T1s7KtdATqu2vRGVssx+oF8GBp8hJnwYlOAqkWUy5Bgx2SMm4mPH4Swx3a6VK4DgpKJqHEMU5rNjbG2ojWjlOXuqbofOajtVFZ20siqSkRSwxVXQuA5Jjpx6mrrD2ApdVILCd6zCqzKCsQ2gmO2UVI1HMKR0CGYL2MXYKSmAvzlH7BJ7pkbqKcYsqfdqbHueNETk4DrhyqchzAjJ0zPBHc/5wDdN+dn/+5Cf/PnL/Kl/b8pD5wXpHOEocP8f3qOZbnP1quPWp25gLi84c2nOzvY9/ELq+OPnzrC89DnMpZdxiwGRORISdg/ENsTnlvivzIhbPeY9U7pHOk1ICZBmEK+Q/fPUzZTd3SkvXHma61cWzA56pI/EIVLFwNakpaoqxDXYOuCcx0dDyjXZl05UtNSDwVaGYRhw+ZiRmJpzxi/nkCOWjMlKgido38hEj3FC0zRK1E0Z5xRjbkKicYbkDM4kjJUC7RNyGEh+SdOInt8UIQVSP5Abh595bOc0kTYWW3U4VzEczWl3JhiX9P7EkYeMqWtUHtitqthKgE1FFUitFoJkQhrnnUAKPYhjOfSYILRdrXyXCq2EGasBKeAqo07BkjCqmaq/JXl1uG4anKsIaZzYk/qiBCVuO1sTQtTOQCoyjjEhWfB9TyRD4Qv0MRD6oG7DqBdCKchhncMZQzJG75fgySno8TUqF2qM6rPo709KIBYYlZWUoG2RXK88EkyGbJQunUvLefBhBXWxVhU5qsqRkJUHgimFkFzq4ca6UhRI5BQgFQM0KX4MYshZpZEFo52C7Eg5aNKRi5JSVAWzqm5Z9ssVX0yy4GPQAowRTXZEjw0bc+O6mF9a8RtVutd3Hd0AOQgrLnLeWGll430nNoKNhUzWj8tcn1+79r/OeP3v9LU2VE50XUWVUoDDnCTWro9LPPHelApcrcBPNNDSawzK+le6DcYYmkZNGf3gVxVcMsxFuHLlCn/9b/wdfvAv/kc0pib3A2m4jdhbSLuF2D1EbmO3djBtQ44LZHiBdPRxSAfEHAjMONVa3v7whF/7xUv86ie+wPu/Q2inN6CagzPYs/fSvuMu9mdPc9BfonrOk+pt5O53UJ86C1XD8ql/jXv+OcxhAjOD7QlyD4AlvTKQa0/eAU4b3J6UIllC0pKcDyDPgZq5v0VtznL7xgGvXLpCLTUP3fMAZ/fOMJlMWC4G8kptVNZCK6uxrjBnMpLSCXDPJuxlVaWmNN1X507v+M19j69vNstGHD4F5jI2iU6Skv/dB6lfrbHuJpZxR/KksPbXJ2RvbplTfg0M6HU/b+OB5gx5NV8rzOvknJQ3Chnj62+l+WaVlH4Vx5vrHJQFe5TmGp2lC+RxlSnnHDE2F4+AXIIEgaSLoxNTkgwN/IWIpKiwF6sKA3rTlP+Ngehxoi318eSkWFR3ChRJKdClbSejTKIGt2Pbz5aAQHIieJ0BFN/ntUqQdGGPCV3As3IaQJWFxBicVUUi0IvVx1wgCUr4jFmlAjNa9c+gCUDSSoBHJ+jlbEZ2bj2ZZFU/IXgWs0SohcYVDeiqJaUB8EiuKRJPKGlTmGztEIKh9z0xLjVBkUBdJUwOmJwQHJhaJxgT9FxYbZuqklEsetFu1bnR/yM5eyjVpZwrRLaR6lHEPUYebuCP5/hnPbJ9leZtGXt2B9ttEYMhGCG8eh0nEf9y4uaLC56/ecBiCUHgX/zGId/1LfDwBYu0nnh9YHK3JU8gTQ1NajjIS65eOuTdR1fpzz7Gtc8+g3n5CpPZMSYWKU3zoMJVXlgyi9fx7RzzUIObZ2YHiWmzg1CRl6+A/zKYl6mnf5DtqeXKc1c5uLpPXvSYkkwdZUPTCfMh0UYYkrAMasBV24osEW8qHBaThOD1etPAsMA/YiT4JalfUpmJVrCLJGjOseTUma6ulICNBgXWWVL0IGAlqRpSLio5MVE5yHHA1rV2e5LKepI1aA79ElsXXWzRDph1mWwCdetIBsRp5TWGXK79SAoGW1eKaSURQ8RVet5rp5h+vOrv57GVbkY4j8eagapyGOtxAjFHVYySUWpReUmJUTJUsMaRUgCM3ner1TErTEFEFbMQnHNkGu1WCog4QlSsvHG2wHoMvVhyjloltRZjBBUBUqUvEf27kKe0owBq+hYoWP8MIqXjot06Y5S0ncocqHGvruorBSCEKLl0V3MxWSwmSaLfJ8eShJdkxpqiJpREZW3L54/eAKb8n6J+f3JUM0ZKQaRyK7UrnYYLPrkkTFltmEsAYlQ3XnT+zBILCRtU43Sc7jc6BK8TgJzkG8CJktzG6j4GN6+/nWy8dyOROPFxm/u9c+G7IyR766zTv4ch60LY5sijUtUYtkop3uT1NS2j03XSe0FkhedeyeymDKjTuS33xjD4VSJMLiRmycyO53TdFGgR9xBZXgF/jTSbkS8dI13E3WMwdQN1Q46WaIR0+CpGPPHywNHNfW7frlgsMrM48IlPv8J7v8HRnkrAnDh/nnj7l2DXMz/8dez9mf3PHnD8wpc5f/ULdM2T+E99mvilL+NuHSC+Qpo9sOdBDOklj0+H5DOCVBYZwM+hnjaAIftr5HxFc2H3ACkM/OKv/xqvXr5CDIG2buiajpFYPAY045Fecz02OlOry3Ejki/naISxjFftihB7x22UV8d5fA8n7pWRf7OqWss6Qd/k67wFCthflSF6IE4Wb1kfm7yO4FedmhM/PufX3P5jQejNjBPHdPXva31GNrlQb6XE4I2/ifyOr/5u401yDrTCntNaQURE4YGqLTzePOo34KqaFMOqZb6SAGMkUun7/KByeqSkmMjVArE+AVJIQrpKF5OnkqhIzmuzmJxKQCVYk4ghFRWOtDqppIAhE0IhF5J0wc+J5DRQTkWeDEkYY9namqj6SUwovFjwSQMdEVG4hYslELHkkIgx0/ceXKXfxyk+NNmKFBJxPqM2HaaqUOUHvUArG1nO5qRUYZuKYIQhC1kSk2mNzbZMFhZja7IfMN0OOXrENeQU8L4nROVbSNKqtd5Qegz9MIC1NPUW1lW6zOR+lTVrQgBCU64txWdjdxEzBQTTfCtud0GcXSYunmP4zSVRFvh5R/3QgNveR7Y6Ug1MwDaC+Qr0lxLXXh74wm2IFq5cCxxfnxNnFlcl0rxnthzw8x4zbTn3jY7ednzhY0vuufIrfNu3fg8v/rW/x72XrlElPf9ki7gnSLFi9sw+B/ZVeEyY7J1nWF4lXDfUOxMsFXL8Mvinsacs4naRHDl+/iX627cLbE3IzhJtg2k7NZJLhojDS00fLVVlcLUDa0gCMWWFGrUGHyF5r+FgDMQhEJae1vUosRu9BiVgKlu0uh0mRwhB8zFriCQWMdD5jHG1Tn5RZVVdXaNXS1JYjkAyBnE1TesIVTEXyyBZJWxTjDRTVfhSSEZEjCeFnjhoIkIxIJQS8KcYqKuGnBN1W2FiIC09IWpwLaZSjX8MKSb8MFBXlkoCYAmxV96AtToX1DUEp8lR8pgSLEul0opDUAjfKGEMKvmbo5DwGGuobaeu5L4nYwjl/U3bUtU1PkWMSzjUmA7ndB6Jqlw2Vv/zqkpqMGIZQlDJYaMwI1Bc9wi7skYfj2IF0efik1KTi0FczuoOkkWTq7FLEaNeI5is5ysHREYvF1ZmcTHmsSSJ1XZJqSSraVoMCYxKo1oBY8fzYMhYkg8lmRrnyEIyLt4MpY5TDPs0EAzRY3AFbrQ532+OEtmMcc4Gvnr1/rHgn0/uQ2Mts4K9rLYru9wMd18vCXijLsXmp6yqfm/wjq+lMSaMm/Kj+Y5jLiLa9dZnVtuO0rqbnQRjpHSbFKOdYirnYb0ma8W6qHehx9JE5cr8Z3/+z+Eqh8iTmPaIFA7Jy+eJL94muxukdDd2d450E6Ru1OunAlMZmGf6yzNuXoMX9y3eGV5+6YDh6AZ5y5LjjDi7RH/wLKk6i2l2mby95cZlw/HsKlv7nyGdfYSDn/0nnLlxC9MnVXqTDmkeJAeD/+Kc4fwx5nSLIZL7gWwNrq314lteQuwNpDmFMQ3ZJH78I/+Iuqp48tHHefje+7jr3DmOj4+ZL/rNS2+zgaWX/ybGvTz52utyvLbXsK41Jml9rcoYtWZYOXSNT4xdhg3nrvHVkbALxcDQmN/h3vgaGa9ff1glSGy8LBuV6RM8gdXhy6vjtYJlvd4csjqfm599Eqq4Cet6DYwxrxPyt/b4vV0bbyo5cJXD1TUxxKLkIdRNxXKhOMVMJlugMmRUjcWKkJInRa++CFWFD8WoLJbFWdSQqKqK7GAeG+wgRaM8RYhxUfT8lXRXVeoj0FaWlFVWTQSqyuGMpXbCLCyorSMVeSwD+OXApK2ZNg2ZjPcDC+9V1aNrMbZUADO6wIolOYVLIKoUYqylbVt8hLqtSLknJ1/07i2+EoZhiWRhsVysL7Lg9YKUzHS7w1nFKEdUeSmGCE1F02aVekUl5cxwTNNahI4qR5KtwdX4HJCl59jsa9WfDGlJij0hCm13ihSCGrkZAwRi6AlDj6laUrZKXmZAsRpbZJYIlpgGhUcZio58g3WnlZ8gGcx9mJ0PI90W/an/mfqBa8yeXXLpp+fI0TF732LY/mBFmtRMti2Jiq0/4HjHdzfc41uaTxzzV37kGlMihy8OHD1es/eY4C5mdiXx8r85ZueRQJ5Ouf+bGx68t2Vhb/LI3v0c1XuAI6aekA2GGp8WxOEq18j0d2fqLhNfeZWDV5/hkT/1vfRHB5hlj5lfobJLbPsAmLM8H66zPFwQD2aYiYOthmwc03Nnqeqa5CMpQ8zCgKOZtMz2byJDQ10JUYAY8GGgraf0y8zyeA45YXLEJCU498s59aQi+ohBTYcYIqZyLJYRBoUfSSXkICyWA1VrqQT84NVt2Sou3WP1ps0B22qFzPQRFgMx9GzvTUg54ofSRUqGYdmzvTOhX87IRFzXINmR9g+h7ainFdXuNs45/HyBXy6xopj7tnFUTcXiONPHxM7uhDAEjBhCFGIWxBqqxmEa9Y7wy0Eha6Zg90NEUq8JiLVY40pSr8mIHwayNBpIYoghkJZLrIEhgBWLa9SvImchpIHD/Vu4rqFtOqRqCKhDrLGGGDO2qkBE/RkyiKtxUhMH7TSYVMzKQiL5gI+CsTW2ysQYVoTQEBM2KPdHjFUbhgxt0yJZbfBizCv1tJwzIWc6oyTJMdmJyoguAXksMEX103BO4U9+0OBNhQ1UoS36SAiR4IMWVWBV4QwEDUIG/VLWmcLLMgg1PvQqDFHmtJhz6YqWWTYnYQYNAAAgAElEQVRnkLhy8h6HKR4oYxcDWJEzVwvwiYVxHfis/t5oDIzB+7holyxjFUtt7GZsHK22W/3cO8uAJbBabf+1HiQBakqmQXoK6qINJyuWYFYwsfXYCKLKucl5NPZbS+O6knCSs6r5lf9jKYiNAY8xlqZpcK4phcCz5MkHkOYMafrzmHOX8Ndusf+R56kvCs07Jrj7t6Ca4tqWnCuab7mL+967zfbM0H7pJs8+/1uccoHFlX3CuV1sl5WLlCJHL71Ed88FUnMXD/2Bc+SlkOobbLuWw+qUQjG9cnsEq5LM/RHHFdSPTUgu0F+9STyccerdj6oAQxiQYR/bCmK3SdJxK844vnKD7WnHux5+jEcffBhQuOFyOZTOCqvOIVB4f6pktHnMTcHj5ZwVljyeQ1jtZ7yQRXe6yqI3Ccd6GWdSGhPwdTIxkmdH082cR9XgzYj4a3xsdAzuLDyMru1aeEhj4wCLrLbZ5Hu8JlXLJ589oX62mqo2OxBlzlkVMtbfcXOjN8hn/p2N31t/4I3Hm/Q5EIxxVG2l3D5n6Ysle44DxkBddbiqwgfV9daKVQYixjqWi6Xq3xtVDUmp8BByLg6jYHIk5zJBqfcsWTJ125GiEiMNiaapiEZvHitCzFmxgk5bq8uYiyScTiY2KXGwcSqNWFeWkBPUDa5umC+XOHFUYsmlk6C5gaVxLUKmMoLEpd78VvXCjUCDK5AGh0GowpKj5ZzF8YxFCkyn2zhbqV28BByJU1sTKgM+GYZkCHXFUd9zOOs5vV1DHCDpQn60HKgnO2xt7ZL7AzIOHz3zwzk722cYokq3GgsxD/TDnGFI7Ex3se02/fKAGBpEEinNFfdtJzpXZQGJIAGxNZmKlLzCDHIk+WNiWlJ19xHjgDiDqCI8yARTvYf27I8Q3N9m95v22X1yIFyZce2pYz76FxY8axb8hZ94SBWC8l0YdxrbCu//g5Yf+uiM63//U9SPGvZ3oJ17wqXIgHDuXpg/syCFJXkQjq8bXnnZcnb5E5x/8XOk5RE3cqKyj3Nu64fx28LAj/Kq+wblAywmtNOLvO1D34DZa7j56iepXvxZdh+dUr3j90H3fhKJf/ob/5DZ4gDIRJ8gCXc9co7KTFjGyJmzZzi1O2Vna0rXTalrRz9MqGKksjWEgbBcQo4Y2zIfjlhEgwmezkaV3PUwObPNsOghR3VPNnB4cEzrPG6rxdQTagZiGliEwHRS07W1Vq7RCr+kDL1ly3UcXjvi1I4jNQ5xFVXVMtnbItopbZMJvUecGrW5rqYODdt37XC0v0Bsg8kCQ6I5vYttt7CdBZNZHu7jFz3GKdFaBLJJhGFJU1mM7QpJWSM4g2Xa1gqpI9HPjqFqtWWeAtFDFEMMyg8wUbCTDowGn06JEfi4JDAKGFCwPWbFQTBGPTgK43+lsmKMYRkEkw1tY3GV8jVitsodyGr+5aMaME4mHbaqij+EdkKtc7RiClwwUDdtaftHcgwKvVgsqadNmY/URC7EtBJQEIv6wcc8zlrk4Akpl9+gSYIkyNGDrYmoH4OIEPygk7sRTE4sjzWRUg5IjZGBJOqMPMJxUgjUzik8onH0g9c1TQyKuIzUVQ2i5nQ5RWUVScLnpXrTjKCnfLKdv7km6kIoq+OdYjwRCK3GKugvyUBaV/7HVfZNL6qr1e6OVsSdX3Dz7V8HwdJYaNaOka6d6wQB1mXlsYQ2ZlGFj1J2EqPK6GpnyqxNurJ2xMgjqi7jw1o20pgRb50K92E89wmRCdgnsN0eWX6O5r7bnPuhB4g3L3Hr31zl0j99gf2u4jt+6EOkcITlMZAp3bbhXU8+xl/8u+/m8P/5GeLdp+irgaY/JB0ckhAmp2v8V14Cc5k0r1nctPSLK7Tv+xS7z36cOBxzHDzN6Q9SX/x+0umBmP8pB/IE9pkBLu7QPbTD7oMXoDUsDl/E3fgo3QNvQ7beCeZehtjz6Uv/Ch8WCC17u3uc2j21Ei7x3q9Pwng+eP1rdqzeb3asXveeuOO8qlCEnrdVx2vsNGxsP3b5oPA9y2NTzkdePf/1kBC/MURHZZfXPbJ13vS7dRRfWytY+bSUOeo1Vf/XJAKv3d9Y2HjLdgxWLdyvzniTnINIiAPeQ8qGBqGqFKPbNpUa/LQtKSequiUnrahl0YktCVTddLVoGlshxpGIkBLOGCoDy96DiGJzRYr5mRCDkIuMmDVaeSRrFUtIOHSyG5Ye54TKmZX8IEYKsTlji2NiFosTkBTxMTNta3IS+r5n8BocO2dISahbVYuJQBS3Jh1ioS4aP4MmElXlmA09SEU2ju2t05g84Eyk3m6wwSLdhMWsZ5ESxishcxEMk0lDXVsWg6duHJ5E6AfausYFT9NOsE1HiImazDZ7BB+Z1g1SJZV97RqmXYfvPa5tcVXLol9gjS9uuxOmk1PEYUEk48NSW9m2wxBUoWl0VBZHnyKz4yXh6AUmuzXTRqiqKeRb5HQLkUzmfqT5dvLsEFMf4x64yrkLr/KBD+7zzdcNn3jqOvJc4Fe/cINPX8ns7MB/+R9Y3nnW8th/ssv/9Q/2Wfx2z4feC5OzGfNMpq+FpWQOWsE7S3Oh5u1PXuCP/sjf4IdD4mxOnGkeZ7L7QQ7vucDtq3+Ljy6vEs4f847vfCenHrtA2Guw9WX+z7/51/imb3Y8+C0dzcW3k6oHSLnj5vI6H/nz/4TF0RKpK3YePsf5b3yICxcf4OhLMy7cfYZz21O2K4sNieVsSRpmBG+wVYsV0Q7Q6V2Ojg45vHUbPEiMLJeeo75HcmZ3Z4pdZhb7BzjJ1LbGGVeceAWJhiw98xhZ9IF5PzDdsoQIZ3ag71WCViF0mWF/RtcJqelotraom0YJsjiq7HHdHrkZyMGShwXMZnhvePqLV3jwifvIQ6+qXlWH6xqS7wlzDzEyv3nAcjYgtsY1Slp33TY5VMgyYAfV8q+7lt4bxFmFHWCQGEEqvF8SB8Uru7olxszMz5HFAtM2WDHY2hFTZt57kh8wVUvjFFqjaHsleWMyW5OW45tH5JzIRpV1/GJBPZ3QDwuaiSOGnn5pAcNysWBxeIjZmpDEEGIu1aZcFvuM4Kgb5SyE5GnaipgN2VqVKc1aDKEQ/UNIRK9uziarilpMyuUwdYuEjHOJbKJ2QUIgSCYa7T6OAZojE60lpEBbawIzmjumlJh2HcPg6UMixFykEzMY7f4ZEax1J/wEhEwogU1KiZQDrrKIqQk+IjmSYiCkREI7FE0zhazzsFYjC1+mDJUSHf8uBE8ZE4QNZZY7YncRQ2Ito5ny2l2aQt7cqKVyIpR6g7V67EKcCNre4L13YrK/Nkepmo6cMNmA5W7AGUYCskrmrqG91hiMNavXUlZNo5QyVaXGn13XYq3l4OCIuq5Wrsl93xOCx/vIpUuv8s3f/F7+5b/85+zugIhHT9JZcE+CXyDuGHfXS+x96FWm79+nn1ue//KzyKUjfuXpL3DtOPLgfYbv+vaWi5OOb/jwE/yLn/pNvuHxwN33J2ybkOsDwQYGU9HXQKqp77+LvLyLv/qf/xf82aqjJrB98Q/Do7+f5dnI7MpTPHN8FR58jIe+9R7y3hbVVmJYvsyzn/h57nu0ZeuhbczkAsgOIcONmzf4h3/lf6MSqLqGpm1WpnAAddNqxzKHFfRwTcI3q3MCa4f0zYJyXL13nRBrTrZ25B0j/zHgHaFgo1LnCSjLGAijt54Ys2o+rM3HT8KOvhbH+nfqb1nLva5TpDvv6TFxhdHTg5US24md6sas/CHYlEEeoZQy/nkSllcS8XWDYV0gec1nvAXGeor86vUR3lRyYI1OOglIyRJTIHujN5BVJ8+UIEZZtURDVKdXa8riI9qazymV/SRiCBgSfQxUdYOzlWJ2RZCcqZ3FFZWgWE5wypnBR6xEBNXYCSGoVnFVl8qVwdYtKfqirlS0wckK5enDSkHEGSUcphzIzim2GE06DFkrvrWh6hqwVcHww6IPNDExmy2YNjXJGYYUGZJyMSJg4oB1CgcxYhFnuH3zkNpA3ba4psZtZU5h6IdA0wpRLNu7u2Ads/mco/2bHJiAa65TVRV109LWNdZWzHNg0c+wGZI1mJypxTDd3sPZCbbq2GkmWKva6ooTqguUSwmtYgTrmtJNCETASQ3isE1FnSEtrtHf+DRmO/D0xz7DuUcf5+K7TxOWn6KafgCxHf38BuGVl4j1kri9SzJLth7c4h/9Ty9w+dXItf3M4TLjbOa/+3vCH9wT7vrTgccuel56MfMLv5n5979H6N4Oi1fh2MMkZQyJo+D58udu8p3G8+j50/jjObQtN6bX+OT+j/FzB7/FH//287gHX+ArKXPq6lXO7/f84M8+xQ9+uOLsOy5Sn/8+YvcES7PDy9cv88N/6a+y2F+AwDu+7x1ceM+7sfU9LA4Sj36jwR31VNKQc0UgEzAMsx4idFsNqXIsJWF8QFyHXyzYn82xKeOMxTUN2et1+dIrV9ixgcl2i81GA03g6HhAUiSxxDkQSTRVJidP6BNH86Rk3ALvstbSdDWTvY56b68QoFXlSEhYUxOHBWKDBoUJxDm2tqdszXoW1/fp9nZxXYd1NXVXE5ZK0j+83TMMauhnJJIGg+1asheCVwhUUzviMCAlkA/9kuWgcqk5QRZPNkKzs0sKgX7ZKy9BBPIScS0xeow0uKrS+2hYEjLIco4xFrKq8NRtTRTV+s/OEoOW34wVJjtT+mWg7SYIMPQDQz8WFWA6nZCzwfdB7/2UyCTC4BEDdWO1ciqWHNX7BFMwqFm0E0TGWEdEnZ6913vZFGd1ay2uUgdWJBB8IKWAWANBVAUtKHk4pkQIKK8pQW1QsnqscFWrEI5K3dkp3BdTSmU5gzEOcRlSUR0qy6WxBnENi8VS+RllbQjBk/GkKNqhzbkkFhaDwfseZ+0KyjkuKeNYw3/WVTuBEjBtvmv93wl3WUQD+HxC/HT9d36d6lsJfPRnv3ZxG58foTNfn2MMFpXDMgYsOa8VVDYDmJGELiNcJeWV/ru1KrU8ymI6p8WrECLz+RIonaCsBoBpVNoowUVKgdu3bvLML/0U3/jBD9HtzCDPMfY+MA1xOCDtf5nctiR7GiqQ7Sm/8FO/xiuXM1dv9Mx85IVXEvvPwjedc+x+/zEPP5J46erAYOHhhw3uXEM4yAwh0VlPkiX9/DaLq5H3nRZOX3yAxaVL5AtbXG9f4EvXrvPZG1/gwx+8H7n/RZ6dJy5WE165dIkXbnyR733PlMn5u5HufSR7noDl81/5Aj/xkf+D5eExrmn4Mz/wAzz6yKOr62hUdjIYVTmTYqSWEmkVmOeNKr6sztXYRViRj8sVr+Inm5yAdYKwMjIb95dzuV820uYRvgclpNXAeQx0WX3213Y6rLPM+lpfBe+lc5he08dcd9fGOWqTc7A5d4zJwCZf5ARUceOYMn6PMtKdc1TOq+tgNGF7q/A98us8+mqMN5Uc5KyYRYxQOQehX+PzVuQ+rRipgagSmHUhM4VfkHTdXcGFBKyS5Qavkpqj0Rqsbr/iWqjkGySTYsAX1RBXVdrWFzAmk3PAB22vOqmQDCYrtlhXWavqHRmMWKyzY/KNCPgg2PI7yZEUBzCOkBKS9AaWMnlP2wYhUVm30o7OSYMBa4XaKTnQOFUACjGRvSeFDJVh6D22q2mnHW3dUs0HXANNU1NVNSEmPJmKTEwG74dyHHok9wwpMKSasDimwykPAyFlQzIZqR1iFGrhCoYYFDsZYySEAWMdlXSI6RDUQVYQdZWk6NCLoaoa1bJvW04/BpOzZ0FqTHU/5Nv4+YI0f4lnP/4KX35lYLbT8a53OX7zpQPyQpi1Qt9mqh3h/EOWJ5vEvYeZp3655+3fCjXCx38bXvpl2DrKfP+TwvSMEGZwMBOuLeE4wt0Xpvzr/QWHVHQyZ4hf4ZPhgO23n+Kzt27zvndGLkwTt+ZX+eKs4ju/40m23v0A5sJ9+MnbefYo8+kvfo5PffSjfOrjTyOSOfdAx91PfhuTR55k/3Jkdus5uvsa9pcLMB4qw1bbsHt2j2N/TLQtgYjLWZPg5ZJhsUR8YDYbmFqHsYIVxeLbmOmMVnwlG1JQDwGD0LYNs8USkUBVZZxNVCaWYDpicNSNVowNQlVXdLvbxWAMQixKIwSsASnwO8irTkNKmRR76lZlEZeLBS4lmim0boptK4JPiFM/BPGov0cGkxvCMJC9QFUjbUVdTYgYnAlkFA+fRZWHAoYQI1V2ZRKOKvcXYmmfF8jC0JOdQvdcVSs5u0gkjx3BlE2pfnuqpkaKApgxUDWV4qSdchqkkH5jDIhzBJ8xTpcGrfJFVT/KiRwSplkbSIkY/SxbY5xTXfikc5hWyQ2Vs+Ssc40aFPqykOncE7wnlueyNYSUVuppivSxBfZhsJILfCOvJCpHJ3eyJhKrAK1wH0AgJZWSjkUwwBiq0kUQayEpMVrEIFm7piKuVDvtahsRUaM+StA/zp+bxkzrmR9dQE8uuGtww+bCu7lYjsd23SEYt1hdCOXfldOprBf9k9WvXFBP4+Kuc/AqInhrrM9ftTF2AEaloVFGPOe1mpfyADa04KEkFUrWtMYWda+1f4E2bzKjXGrOecVBSEllu2PxNzHG0nUT/vJf/kEuvu0JXLOFiEWdxhYkP5D981z6zOe5dFTRnt3h1PmaF69epskNYbcnLzK7ZxruP2d42PWcioFnPn6VR55sedlb/s31yOduRnaOPe97sqXZdqRemHnD3Bt65zjzwAWeuXSF4/oUO/Y2l4cjXqkWbL9jly9fv8J73pHYs5lrh45gLI89+i6au8/D1jmivY9X5j1ffuaT/MbHf43PP/0lbAUPvf0073rb26m7KfvzpSIXGOOSuAHBGvmPZlXNPoG+K4nundybUp1c7yOvz+n6uc0uw+a1nFeGX5sV6/U2eeOc59X+vqbH6rhsdE6kzNWcDNjv/O361pOV8vXxhlXGVTprJ/cnJx7rf5vvyOudbex8TObeUuPf0vd5k7CikhyIoaosMQkhjwSdMYtV3GN5p+qLFxgPWZcGH1UpIaWx8mX1NVthrCWG4u5YsLAqK6ocATF5FYCPWTzGoIatGviq4U9W8q9Vq/OcUjF1omB41ZjNWFPszMv3dapBDhS3QkMomudZBAm5fA7kkGkmjqFfFOdS5VEYMo3NhNpgpSZaVwKMMUiLtG2DE/BRCWEYi2knTGxHVRvaWghDYIiBbAzdZBufYLYYqIZAGITaadUwGiBlLJYc16Q/HxONdYSwROk7NVCvKw4pEpMGRJgOkbYs+iobKVLarRkkJ+p6l7rbo6p2ue9bnoC0RPIMsVvMl18i+Y483Gag49if4dWbHde/NOcX/9kXOe0skz3DPY+c5uKDFfc/fsAfcT3NlcSLn05cORJuTIRXT8HHfzMhz2cu7Aj1Kbh1FQ4PoBdhfpw41Vk+efmYnd1TzN0hL4UFV09N+YH3XeTLX3iOW2HOuTbQTxpie4E/+n1Pci2d4dDez9OfeY5ff+Er/OtP/gaf+9l/jl9kpndt8eh3v4+tB9/LUi4wm72E7zNhEegXESFRt1BNGvZObWFmHcexI8z2tbUZE0OfmM+jKvksI3MitROaytBUDkJkt2lIRFXXSQErgjMGU1dkX6Q8o8eZROsgF7yGpEzTGPWuyELdWlxbK/cl9Ej0G/cF+D4hRCSrI2oKekX75ZyqESrbMCx6huARgWE6VdhMTGAyYhPGFm8MEaxoBbGyFbY22LbB1i0yDEUBSBnDei9KwczrtVM7V7gInuSBqiJEdfoNfsAkNRVzrsJaoHIMIZeuSixqZ2aldGRtUaEw2iGoukaTiTHYDonBqw/CchhoxZVkufh1mLVRoXpO6JxkAGsrXNNgrGOQgRh0cRJK0GxUvSXDCksfQsRkJQmnGFYLh9ZJIkG9khkXJlUWkZIoZHVgNqYEflHnKBHF9FurPdFcYCMj/tvJiithYNWFBYOYshbKeI9njJNSADElJtdV01Y1OQckrTHppmDbYQyM1jP/nYvkOO3LeoNVuD+Ct1bJwImNTjwosdS6Gvg7RvpjFfWO75I3/v3aH2PV2qy4Brkkg5wIDjcrphtJk2wEi3oJa9e9uCYrFGkMltbBqvce78Mqwdjb2+NDH/5u/uyf+0+LMEiP4Ml5Tgg3yakih2uEuMN8XnNrf4cXl4GnP/EcO3XDqQs19957L+ceFB66MOedHGD2e1555pirBxXHuzUvzgLXnl3QvTpw5myD2bHcfNlrAp7AH3m2po6v7F9j++G7eTFc4UXbYu/e4wNPnOWlz3+RY3/AztbAkek4c/pBnnj4nSyYsJQ9vvSlp3nmxjU++4mnePYzn6VfZM7fe573/oH3s721x9EyMAwDW04hxiunXjYC+fG0jN2Zjet1lc2Otf2NIJfVSnzH2d1IlmG0nDh5n5x8j96vCvnb7EDkjRzk6+PaX+f6Y/eLE4fxpM8HG4/zai46+fzrfAYnk67ND15Hgnd8oY2xeVbfKmpFJ+dYeZ0X//9fH29OytQYZNTAF8FUFRICOalkn8JyinZ6iqtgXLMwo+o7ORYioUrpCRmxmRDU/bNpG4ZlDyETc4EiZcBanC2GJEIJ+lVHPaYAooG9kjeLS2oOGCCkTAypEIwVGjWqMaScyD4gOVE1NUnA1VVZkLWV66qO4/mMtmuQlKhqxWHHYcAPgbiYFX8GQwyeqjJ0XUVGaOoJIWV6P5AyWOOwbU1jHTknaikOqCkSgcm0o60dw2xGGIRARe4cXbvF4ZVLzJZL6tzT1Zad3VPsnrkbkzO2cVSupV/OtKraNkitakjzo+sM4ojtFnUN1rVgamwFtt6mqqbqbLtyerTl2MmqhWpdR9Xt0FQ7GKpVB0ltGTI3j6fs2XuIZosn/+Q38i2nnuQzr7b8x3/7p9l/NhBt5MJ7Wv7Ehx/lD33bhEn4DE3wTN9v+A+/KfB3fjLxuVYwD1q2LsPlVyI/9kuJdMGwfzmzbeDBuyMvfO6QD0wsp885Pvy45VND4nOLisn9D2Aey3zP+57ksx//TQ6HQx56bI/3PCS8cPlpbs0XzO0D/C8/+lN86fMvMywT2Qi5qbj7O97NI3/8B7kxazl88TL24BbdmS36vmfLGvIyIyYhIRByptrZZXH5mMZDSD1WDLVtoau4fHOfeoBbsyPa2rC7NaEyNWEYaBuDRVvNPqi2fNc2JO85uztlGAJLn2icMG1gGAYQQ79YsnOmpa70fqlbIfgFrcvY1GMtVI2j7ipyiBzdPqCuwdUN/nhJjtCe2iKGyGSno3IdzsAw94T5guNbNxkEHImwnBODx1ioJ47KdmQcJgtVPaHenmInU3JucIsZxnjcQsBAPwQl6NawM90mZeickKMwmAKps8L+coGlJuWMDRGbssp4hkDdTagNLIuJl5VMiktV+AlFvljUKMy6CnEw+GKqJgYxqbjBeq3Kj2S2pN0CyKQKxRmnQBJTzBTBGaeV1qydwywayIMG8VGMJl0IYh1SgxCwosoxlRGysSREO5WSWfpAXWn3DtH5McaEqS1GNlrWOan3AHZVmhylLJUsGfEhKIRJxsqiTvgxRCIBH5RYLWxgn40WTVI2Om8a7WSmnKibmuilKJKJ+kS4Nf5aSpfxziRgs9MwjjVXoeixj3W3Eyv1ulewUqOTdbVw/f43WGxPrNnjnuTrKjiCdcAx/kaFhJ2Ecq0hzyXALFh0snaEjQhepMDpchEI0eMdiluybqcBWIpp5QVkjOHU3im+7X3fxo/+6P+IUbdEslSQhRADvW9p5DRJtnnkez7Iw9VD/Mpzl/iZf/Exrn/2NkNb8cQHLvInvvsDXNy5RpW/SGWWVI+0fOdDmZ/8yJz+iV3ac5buVuDq1cDPPzUQ77O8+pk5j9zXsmWOOHz2Gu/Zadl9ZI/3PWn5x68umXVnuOuhC9T3G977zvfy28/8K87u9tx/X8ek67nx/5L35kGXnXd95+dZzzn33nfvbnW3Wq3NkqW2ZMsb4LBNYMxATNg8JGQotiEGkykyzISZSiUzhEz+ISRUTc1QU9ipQDIwVTBFeQrMDgMBvGHJsmwhWZYttVpS793vepdzzrPNH8859963u4UVICDXPF39Lve999xzz/I8v9/39/19vzufZ9o6nDzCz/3Sz3D58j5Nm2iVQq2u8Lqv+nIeecd3U8eCnfEBK4Vha3WF8XjcGSJ2oGXnk5S6iz97NS1D0vl4i15aVCxQ72w5c0NlADqgYdFM3P89x299tZB5lLu4BnoOPpDy85d7gl4D8elfbCwH992xWvY7WO6zWf59niiL1PnY5PljUa05TAu6cZZYBjYQ4uZZZDkJ7L/3oMlr7aAvXZNLDy59//PNka/S56C3Xc+W4klkd2NE1lSXvSuaTETnu8WlX8QiUShcCJlaIRXBOaL3BJ8X3IxiZRQxpAAxZG5v8EDCQ2faojMaJwUqBqS0iE5WJXYVDKsFhS5BZH5wI7KbsrW2K9sZ6JA6kSJaS4wQ+CiwhWTmoHWeGDxaSYpyhaoyDA20rSdFT2UNQhkoV/MSFQNtXdO2PnPTZ3sMhyZr0iugO36uqRHFAO1rUueSq9uEaGZM28CYhHQNTQgkEsZIhC3QscanhuGwQpYlzkhaN6PQGpca/KzB1zXGWIQZ4JNkb7JPChJrClSxgS5HiCTwSWGKVYxWaF12ZcssMatESUqdxF2YkKTCDk5SmKoLPMjlPn+dZnqBycGMTXOC2Ys/TXP0KMXwDgpdwM4FrnzgQyQE2iVGD5/gV//DZ/m1929zwsE//jLJxg8q1o7Dj75H8vMfh599DuQ3lKRPTLjvtODjLyTqFraOQjVMaBK/t+f56f9ug5NfssKbT9zJO8Vb+JUXH+Ejv/BjmP/6n3B69Gk8Bzz3uYv88X84x5OPzTh3PVOzWpWFW/VAolY1Zn2Dd//I/4WehTUAACAASURBVMiv/fKnuPzUeYzUnLhzi/vvtpTXr1OtVOxTUw0LpLHsjVuKao3dyWVu3xzRXGtJTYtUuXlUoXGtp0JzZG1EWWim4zEhJLZWVgjjhtGaxfkWYmBjUFCpyOW9GgQMrEJrifORuoGNNUnd0fVSEmgt0DIS6z2EHuT7TiuUDOADKoEKM4ITiOQoBybLeaqIHoxQVoDQFGKErgL1rGHnwhWqgaUOgfHOGJAMV4ZU5QiRCpq6xhQFUgVScMTGEZNCmApDwhQKMZuim6ajwwSU9FzZndJqy6AaUVQF3jh8aNGzBt8YvM8BfCwMpZZoITLdSmRKHiJXxaKPlJXJfTLJklIgppAdgDHZzDAEkuooF53r8cZqBSRan7IjsrUEkbBViZtOUVIhFOjOkDElz3Q2zWZvMicInUMKPqauqTMSouiMhCVlURHaBms0sXN174GK0pakEFHK5MZi73IgDkRhCEJgpM3zWWdGFTpmZm5OFkQiRicGVUltFEppaudISRLoTQuhblqiyBQzyOpPsutYbNsWFzJ1y1iDVDInSik/FkUgeE9ow9Ji0gepi59vXFrma9CN8Nw83+mrAWmOZvdxlbzFYnVDZ8IXXI2WAwmx9JWl5OSLcWRp0QCEDq/JvkLL1JJl/vQyBSbGTiK5oyTBIgiFLPMtZd5Wb5YWerRcZJPBqqr4ju/4Dn78x//n7vU5yErhAOemBJ8oMPiDP8SP7qXQR5Aysf+5x3nh938FhMEc1Kw+8BZ+83f/H/TFK9wzSHzVmyqKL12hWFF8998b8fOfcpzXI9KDI8Qzz/G6uzW/+9QBsoRi1VN6wXZs+PiVln/4o2eoTm/wg8MHOOce5LMXPZ95+rd46G98JyeL3yKkwAtnn+bCSx/nuc/v8/w1R0lgbCuiEFQbhuHaKtXxe3jnf/5ufu+xz/LQaIW33XeaY5srwCJwj+JwcNWrcwGdlGkfqHaOxSJX7PqehUzd6/qEUk7QU+c6nQ0ps7Ki7AP/ZYpRRy/qG2z7imO/L33u3N894s8f872mRp/szIGDQ4H3Yh7pRw8KzCs0XW/OjSj+Tb8vbVF0ScSNU8VC9vdWO3oY7HitTDPLc+Ff9nh1DclKYk0uq/uYkDISAgwrDV35WwBtN+kIssRoEuBjPtguZPUdqTInFnKjnbUFSmZ+bRIq82cTtO2MwhhS8DgfkEXm7YYIqq8qCDq1hdw7EKPHe/Ap3+xBSoQGLbOr8mBQooQmtNkYSoiY6TkpEaMjeYPyjoJIkpCIiOTRGGaz3NBsVIHWmqaZEVyNNHmfTVWQfItrp1hboosKYyyF7RbIGJFRwWSfOLBUhUEKjRCK0CVIEolXBluQ1ZSAxu8zKDUhGrQtSKKgmXqu7r3I+tqAtaOnsMowtQMkCikNIrQIVSILh7KWmBze1RhTUZgCKQ21G1Og0NpkQyppSHEGKEJyCDXCyBKtbD7QBGKYsnv9MXxzHWOHrBy9BysF1ZHvgVig5Cl8uk7jn0I2ENrEd//fj3DvE88jPzfm0rXEXkiccCDXFGoqScPEw29X/Gfrgt/5tZpTp+Fb3y05/8uRN7/dEBz88i96fGa+8N7/4xr/cDrhHW884M6jO7x79Qrf9Zl9nvyuf8DWpub4VmIaAtdj5JGvs6zsJuQ1yblxRJWC4yc1d95fIOWAX/2+H+BSOoa4/QzRKA7OnmVs70TTcGl7h43VDVpXc+n6DE+isAnTtjz77HlKJSi1oYigfKCdOkIzxddjrl+tMSYr8gyM5fnnXmZNSXwYEtqGMJ3ir+xy8mjF6toapsoVNh9aGucxwXH5esttd60Tpw11SrhKgs3B7ORgn+H6Fkom8C04TxCgTKbm6ZUhZmWELgqEyAl5kgU0Hn0kN+va8RSjElprLj93gdJ09JPWMblygLABM7LEGGkOZqg6oQtI0iGrAUW1igsOfCDMPPXBjJgEymsUhsnuHqFxmLKinkyppw0HV/YZHnUM1ku0FOTIVeX7wGom0yzHKRFEF6kbl4UGZMSo7MuRUiBiMmAgEklZnA+0riVET8/X9j4rjqXUZsqWUiTnKazB2K4ClrIzdTvLSV6jGxAZ9Igx4XyL1BqrJagC7yIu5fkoxEChOzqO1EjvOrWT3CellKapO4lWKTFaoHtaYsrVgeBd1qyXWR5VCInqVFByz0KgbVpAkWQPXgVCyDzyifNYnRuNk8oc2p794F1HReiS/xSzu3vqHNaTUFkFq9ufZtrM5/scLMmbFp3sW7FEvJ5TK7rRUR2ylGmHAt4Q9y/41rfexJ89Dq/Ii8DqNbJS/4VHz6UAkHOn49gp5yz6ZG4MhA5vpQ/4eyfk5Sbmnq7UC4L0j6+urvIvf/In+MZvfBeLENQzHZ8lpRZtVrGDEZKAHn4dJIuUW/h4idTU6P1M6Xvv+7+PY8/8BuH6HpcuzVhdS4yiQBQriNagi8SXPjwgPu/47DM73H9/yZd85YAntvf5xnfewaOPTfijTxwQXEQ18JM//XHe89/cw21Htjk92mMShvz2E8/zkQ+8hzvuXuP2Y1d5YXeC3VLc+xUjjswsclfxpxPHkZHh1IkBx44cRYctPvGz78cce4B3fOu3sLEyOnTV9MdsTlnuzkevTKSUzKBC//zs2Irqgv6+8qKUXPRvLF3XIoGWIq/3XV+VpPcwWJz/1ElIi6XET4h0KLiV+Qad07O/uEc6FGwvX6vLY35+ll9303h1GVMPVvQ+Fcuvmr//jYnDYhczPfv/B+NVNiR3vGaysZlzEVMO8DEQXDbRssbM0czZbEoga/8LqUlREFuHEhDaFt27LEuZ0dLWo0QCmXsVUAJlLT5k/M6qgrym5RtKykShVW5Klply4IMndFQnWw2AbHAkiUjRcYEDONpcilI6o4ZBIKxGiWwWlWKvCJAboLURTA4mVEZjtELGgKsdRI+1FlsMaYPvdMgVMjZdc6ViUJZZmaRtabyjHFhcm4jC4Dr98egTaA0EVLNNUVggkhT4GJmMa6zWqFjikyCG7OLqa8dgy7K7t4+2JVoPqWxFVdhOSaUEvYUQeUFv2xmunSHVhMHKSYwZkZLLn1cbpDAkZUjRgdBoWSBkdlAOsWE6/hz1/scZrN2FWn8EIbcwKiLSCwjxAEkkkihpdv6Y+tKvsbkp+ZH3aDb+9FnObLSUXw4XVwXnHs2mYmlfIkagNyw6RTarlq//ErDXJY2AH/x6SawiZxvBV3yP5r7bFR/4Bc/B5wI/9cszyg+2nD4y5hu+Ypuff/938f0//G/Yvl5zcDGhBRQqcenDjlMPGY6/o6J+pmF8zbP7fMOFP3WEtmV/OxGMYKU+y4qwDJNjfDkgq4rBYIW9xqNiixKBqBJXdyN2UlMHR9NEGh2pDOiZRyFwyRCTJTQRGyOlkmjnaZ3n+rhhNOrUugSMRhqvNIPoENMaVSUCATer2a89Rnj2LuwSEwxHlsGoorISJT11nVW+lDK4VtBMXE64LazecQJiwA4LTNkpJqV8rTVtjfAaU1QMVgZYsUlTe47ddTtSQj1u8I1HK4sejGiDwCWXHVB1SVIaUkLbEmNKhC6QukLqAqPzwtm0EW1h9eQW3kfaus2Tb3TEQlJPr6OLVeRggNEWISM+thgCfjbDNyCFRmnFuta4lBffOFfq0agUqZuGxmfzINGbxAlNM5siGWB1D2TIztsgEWOL0tmkjV6SM0E5KPAuh+Q9uJGDq0wfIlkIWYY5Otf19whqB5VS2fG5Wz6yKWSmP1mRsJ0XAiIHzVoxl1CUnZqbkJIm5ABeEDBFiVAWHyNtWxN9i/cC5xzehUwnCp7kPUmVXfDfBeJ9YJOyiZDQGq0MWmuEkrjUkHoNfKW6ZupAjP7mOX9BbJ5H8Tcti0tI9gIFzAFsPNTB2S/BC9583mT2izmEBr7ySnTT+9xyn79Ix+HqwM3HI3a9JDHmpH7euIxAiNBVD9ShBK7vX1Aqu4UbYw69jxCS4XDAv/t3P8sb3/RwV7FocG6X0LxAUZ0EeYLst+EgTUDc1m1d4yd/iElPcOahEX/7v1hl7dzvc/tWS/pSzWrSiHEkRgONQViJHGwimn3u2phx/EGBnRW4lPjur1lBVDX3vtFw/MxRKqn48IcnXHt8j5/8hRco1Hkeue9l3vrIG/iRv/9u/vd//295+doO16cemyK2VewBx+5ZYePMBlee20VPG156puGs8wyNZmt0J9/6tV/D+auXkVKwPlpZoqtEhDSk2EmZ3nRuesRezCsBJLDGopekY1OX3Iuekhiy8akQmfI3F0dZYhHNA+P+axJzuksfJ/c0sDn1UIBUnarVF/GYH9fuf+weEIIFlaefX3pQeGkIkaDr7urnk/m2u23OgYnl9+2+HhZbWKKCzcGMG8AQ8UUERfTIz59zvKrkwLctvm2RWmbX45ilE3tllJSgaVuMyrmwkiKX2b1DyNxwmV0As3qJ1FmKU4ocwCMFIeTnCJGyJrnICh4x5Zup7xdYLCxZsxuRCN5n+b5M+FsE+P2NmHLjclYPEcgsSJodP2MiKZf5wRjaeooEtDJAfo9Q1zTeoKoKaS1R5YZgpVWmR3UNX1IIqsoiomMwrFBEnIu0HgJZj977mqJQxJSNjwKJtp7g65rVgWU63qdIFnTKcrBSMVxfI0xmRG1pYyJFCYVh4hNxNmZrraCwCkg0wVFow8AUTELu9wi+gRBQwkAUGD+jLKoOtojEFLpgokCqqpuUJIhIjDWt20Zrw2DjYWxxG1JuAAVCtIRkUWwhRMu/+fVfYlU9w12r92HMBT7zycB73hlZezlSHYGVrxMcOQPnfjPy6/+05Y73WuTdicsGhndKzEnNG6aefaC6mtg0kPbg4kuJj344sn0x8s3vXuGJx2bsbAfOX2v4g0d3edcPTPkf/sm3YNJxprNH+dz2c3zyhYbtR/fZeTJwZXvG6ighKtieCWYxMXpYIScBEVpMvU1RDCkHFSk4hivHSI1genCAawNKgLUSLQtGq0MGSucmWwexCUyalraOBCexKCohWUmgXCLpyDpwkCBNWtYrS7Vesj4sWFkxDFcszbRm6qD2iUjEWsGo0lzbmbG6PmAwMAwrQ6E1GMFaJVAmImmRImS5XCHQKxatJUSPCBNi00I0JGUJsSWklpQCIgak1BRrmyQ1zYn4bIKyMSfygYzCo0Hk6lmKGcUPTW6KD6NN7LDKi19SaFvl3gGTk/4mSULrSS5itMYWQ9b0EJHa7HDZBgIJM9KkEBhvb+NmWR1E6kzP0ZUk+UT0DmE6Wkwie57IAuKY5AO5l1eiOhS9abLsaMwrDFJk5+DgPN45bGHnPG0lc6E6yiwRqOhk6ohoJdFaIFPIlRkFOnVNxEIRiZ0yEfMFP+cBiUDep9RTApBIBT4GhMsSy0pLbPafI7qM5icJtA4hO765czjvUVJ3KkpZ6SilmOlD0aF0kedbxBxxlGkxR/YKNTJGCBERc1+HFD3YwhyVho7z2wU/iyDmZtT+Rk7vXFVlmSecempSOrw6syzR+cqI36HqwC1W5eXg6os4L+jGgludvQf6Dg26yCknmLIT+hAi32sCASHkc6wOB1JS5oSpd/zOXgaeBGitOXHyBD/+z36Mh9/4EFVVkpIjxjpT3qrbUXqdRElvhpYV7SoQnp//6C/xZXdIysHtKPE8V8+NefCtBnOxxRyXnPzaiuZcy7XHx1x6ouHI952C1YgrNNXRiuGm4Iib0ZKwKlAVLcenks/vtHz6YuTCyw3f8u338ZGPvAh4Xjy/y2jlCl//ZsN3/t2/A+2Q1n2Uc+NdLl7a4/KFXc4/XXP79jYnVyI7LrEXE844zIl9Xnjx8zz66Y9x5v6H0IeS2jT3CIlLLuBKyayouEQnUqqjWHd0Ias1lTWsliXeB66P91krCwQwcy1t8LgQ59UIq3Wmdd1AG4Ict4TlYLm7uAXk+SxG8gSxqLjFdMvb4otnpDSPy+b9RN2HF/Tf8+PzXo3+tbf44MueIPMpRzIHgvrtz6cKsfjeH/OuqLCYu7rr4bV7oMWhb39Z41U6JPvskCt1Rupjyu6hInUNUbFr7ovE6JFSkYLrqDS5lJZRpwUqEnzsDHMCwqhMSQB6dCmLn+Tm4V7KUQrR9UR3QnqibwAScy6aEOTmIqHmXLbMEex4vSIjVULlBusYHMIFkpSIGLIzZVdqCF0GH33EpYhTmQ+Kzko0OdioSZ10ZaZ8SpQyRO+Ztb5DcgQ+JHydcD4RaEix6biiEu9aCB7MkKZ2OX1RmkRHN1C5lGW1hpgDBTlcI1jLtG5IIZJCICgDGLTIUqgh1PgA0c2ySpfWuQE6tgjKrJwis4JTvriyUlFvGpdoSXik0Gi7QZJbJFEREgiaXLHx4CZ/yLOfvUy7/yzDU6vY4jaE+kOeeCLw7Oskb17pgqYWdBCE/cjjnws8/fqASRJ1h2B0VPGASdzbwvkxVCIxAgYlzGZw8XKCCONJ5M7XSda2E3vX4KXLNR/8lcc5/rYv54FTR1Cscc/kCCcvwOc2C371F6+wu9dw9IQgjiSxFBRC4uuErkCMPWk2wZeaMBjky08XNFNHIHNEgwsEl1WLymHFNCSUznKarZ+yXze4NiJaTyETOiXKJFhRktIk2qQxJiJrj9GSUakZyMBapUjOkeqG1gfamBPN5AJ2KFECqkpTVCqjRDGAThiVELGFlOknyoItNFILRJiRXENCZcRKGYRUeDdG64SS2cNDiIQwqlMJk6SQ+c3SClybSM4BCWMl3oVcUeroeTE0SJ2Nt+q6wbcNEt/dfBFbFezuNNR1QAqFsSUDPcx8elfneyZFjJRoJWjbltC0iCCxRYktNbrI/2NqEZ0mD6mXdBRZjUdkbj5kVaXkEkqqzPEPCYyZAydKaVLQnbRotzrEfM0rmftRSIkkVWfulQEJYwShdfPGWykzhVFKjY9ZypVufhESlFComOdIHxK9+kzqFpdcxXNdsKxwEYQIhCRysiQUrXN53omJmDL1o0fW+jlUKZUd4GXf5Njdwv1XIfPc0yc7IeQFr6u+htSr2KT5ItiP5QB/URnokh/EEjd36U17qHupLC/S0oI6R8Lnp5K+H+HWI6/OeV5fPGeZc9+vFn8RdOy1NPLhzmc530pLwVC6RUKW0qEqAbDoPZgfknx+Q6fEk1JuPlZd8/H3fu/38M6ve+dcNASyMIWUGsSASBbh6E9gjI7knufypZep5AHW3o8uruG84LOfnvD62wecrhJ0zdESgdt1nLvQcP6pGeYNBjVUrBaGLeHYjIm9JmBxlDJyfF0znQkuXvIIEpPG88Abhoz3E+OdyMvnr/DpJx7j2P1fyYm1dWJ8gaOzTV6+MuHs6Dwf+pMX2d3b5fgpiRiuUK6WFHKAwlKHfZ566lHe/sa35R7EpZEv3b4BvJMwJVMck6ATZclqY0ZbrDKkGFixmhPrq6yWJXvTMQezMYXJ8uY++LyGp5SrmGIOPmc5Xpbvu0QUYt6pOT/vSzsoyHOX7P6HkOW0v5hHH7TfquKXlg9EX02A+ZyQ5o8tq3i9wlyQbjiqNz2tn2NvRhr6efDW2/vrH6+IjfwFd/HVSZmmXkI0N7im6Aneoa3JcXRHiA3B4X3AGkuWPuu1gBOkmBEPlRuinA/ZE0FEjIAoJapveu4mQaMVSSpUlwVkJKy/AFRWZBCpC8g1InqyF0LAp9g1+8n5Sfc+q89EJTDaIBUEAYSG4CO4Ots1SLkI6FPMh0lonA9EWjR5v3wzwyWf1U5klgFt24g1EjeZEaKnqgYIJME5Wu+ItLSzBiUcSooceEuNHhiCCngLXkeUEShtqKc1TTOGpLEqUSgBokBXJdJKVJCkTrlJS4OyKwhd4kKNSJ7GBwgeozRCqTliCtn8RkrTqVLk85Oby/P5ImVOstFrCAkheVxMxFiDHyPdhFi/zHjvgzzzpy/zFW/+Ck7efYZnn7sGVvHS+cjjTyYe/AbBIMH1p+HS44njCq5r2PmwZ/UOweCI4c51wYMDsBbuEYmRAd8kfBKs3ybwCD71ZOJPfn/CV77LUK4rtIrYvcgHP/gMD7tTrL3xHHccv8KZ9YIH3rjBC/es8/jTLc996Dr7s0h1LDE6pinXBVeebCkKRWodLtZMTYUuA0ZFxhPPrIkIW2GEItYzfOOIzuPqyHga0cYQPUyawF7dEjzI1jFUjiZFRKnZspbjA8GeVoy0JrZTTONJakpQNWJ9wHQvUbfTHATKzg/Ee3yjGBSaopQkmWicI8w8thAE6QhkTX86TXOzYjN1L05xbQ1mgFQgVMCnFl9PGK0OMSohZUbHfONzUtm2xN6B3BqSgjDLlEFtyw6V9KCzko9EEUPAjVtm+wf4tkGbrGIWQ8QOCto24BxoqzG2YliWVMbgasNkDNG3mM5PJNR1VvNSUBSaYlCgrEGqfE9IJbpAOWX39ZD50glBkgKhxPxzSGO7pLXNVKveZVYXuWlb5oBVknJfkRAIlYUVnPOkmGlAWTI13w8u5h6DnFjInAAoQ2xbIKOwCNGhVgIZcqOiTyn38yhJ6hZzkHP6T2Ah3YzW+C6g6uWXYwcLWpvRS6LP86gUSG1zxSORg4SlYDA7yQi0EIgOnSfl54guERAi5fksZeR+uXr+0EMPUVXVHP1fmD9xiKM7Txr6v80zlMVyNWc5LdED4GaQK93ipwUd4IZAapleIBb7hBBcv36dxx577NDr4ObKx/wtXmGRX3qrP3Pc6nk94rv8+Q99oH7Hb9hG2zre9ra3dz4Yi/6OPlHIDcpdZahTlFpGQ/uKj5TyUDIxVzRaej+lFCdOHOeH3vuD3Z5lOl1Gccpu72PXNNtCbBGhJoartM0nuXz+M3zNmb9NObyNz+uztMly9uw+L50znH6HxI8F488F/EsepWHPKvY+tc/6qYKiGrKuNEcUqARbeKzyeB8pBppioBHCcO6Fmk/80Uu889uPcW07UJlAmk755Cef5D77OtZOnWc0arh3uMLpe49ycn2Nz1+Z8dmPneNqEzl5esiRoxVWjDi4YDBKcOn885y/cJ7r13YycwBoZjVvf/vbF5WE7r7rKVuJDAr0PRxGWYy0XHr5EsdXC+45ssHq6ojd8T6jgUVLhT1ylP2XX0asrhCNIaQ0BzPpXK0PAb59JYBF4jyHs9PC20IKkc0YZTaIbJznySc/RVGWc7S832jvv7R85eXNLR7rwYSb75WlR5bAg4Vg+g3P7ylAN1zTi8D/5jswkTh9+vT8s/VB+PI+Lh2h+asOez8sJ1j9folDP86lUeeHdFHJTEuvF/3PQszBoFuVKfrnt03DJ7q5pj+eh/eHpYO8ONpwc6L/Fx+CWxzgG3ZisQ/PP//8F9ziq1MrEhmJSgh8V06LMRJ9QGqDlKlTIBEgsySg0YYgZLdwJZQAn/LNFX2mKEilAUEKCZQkSQW5rwkpcrNx2y18oiu5RSGR0oPNDXWKbqJMPdpN9x6ZMiRknCPhwUVQObhJMiK1RtuSUHuIgiaAUAqpcyBtlaDxATlQWKVR3WUVYuBg1jAssn9ASj57MiRBDILGN5SlBZFyQ2HKF6SRirZxGUFIEqsVZVViqwFNShw0Y4pSQwi46ZRExLnArBUMpSTRUg5GRKFo24at4QgzCEzrSGEtg6qiqAZYW2J8YOYKXGyQUmG1wZoKLRIR3bnGhqzehMBHj+krCKnpJGEDpEiMM3zq0NmQqJsJ7cGLqO1HMfU5rp18gL/xbV+N0Y+wFyQX/DUGxywXnnV82SlIn4/MTmoaK7h+vsU4OB/gvgAPTRN7B9CsS6ZDya4R3DdM6JFAthDqhBgLjt+lUDPH0CfOPuXRtyvuvEvxTZslL935IB//0Dku7O0xOKPQrx+xekfkgSP380P/Yo1//m2/w2S3YfpSJDWR4pGMKIckqMcOpCOIFmEawGGv7DBxhnJoqJTFWpBB4ZrItfEYvXqC0CbqumHcSKYMcSmQPLR1Q7SJDQUFli0p2NpcYW8WkVODS479pub89h6idaQqU4WMAGOBQtIEy2zc4qVm1jj8NKK8wEwDa8OCWrosHTUcoAcD9KCgHFWIKGEyRgxklttMLbGumR3s4vfH6GMrCJWVuHztcROPLlYyzzZk5F8XhrIo8Sayt7PPeH+GlQKRAm0dSMpSmEg7nVEVCj9rOulVTRgf4KMiScnqcI2pCrQ+I2bVsEA2OWEVwRFcNuKStYeQG3hNpbBWY4xEWU1wISNsSqCNyWpBLuTqCNA0LdIkhFYoBSKpTiQtZKlS50kCjLFzj5KMymaCfkb7RQYqVO+CGufzSQYZsgmhVDpXNoVECEWUAknEyFxdykVK2VUyl9BBsQA1Ih7dBfb1bJYDBZldWVVIaDL1iU5YwOguYPAeqRMxtEghs4hA1/De+thRBjPm2C/zISZoW2xRoGU2b/PegcgKTC6ETvZUEgW4pZ6D9/3Mz3D69OlXWgxuFQn/2evHF15i/tLG937v9/Cj/+gfAYfXxsO65IvAYhGA36A33z9zHoB0H7sL1uZMAyFuClbmvjsxHuq76PsFRBfg9dtXHRXive/9IX7rt37nL+9gvMJYJHVdYpt8V5vLoFAmN6Z5lcG5hlRfQjbnSXGX2crd3P+2tyDE3YzDhLYokWurXJ1c4XXHIvXZGnv8OM34gPrlmtgErjjLPS5wT91yvhngjaRVhiQNm6ZBFhLjcsBbVpKVVYOe7rHaJJ7/7AHy6IAH7h1y9+oxtkcP8/yz59hrtlG3VwyOWMrhKncfe4C/++4t/vXjP4ufOV588gruQcdwc8Kly5GiMuy9vM+P/8S/4OyzL7B7fYcYEyvDEefOnn2FYzX/CchU5Om05qWXr/AL7/sA99+1ypZyPPiWRzhSGZrPfJokJMe+9e9x4f/692z+za+lOn0nousRORxspuVN3zxe8cY5jII/+Pq7mEzGeB+z/073uqIosmljTHMPB6UUrpO0nRvnDqlF4QAAIABJREFU0VdOOtBQLNSu+uqV6gxrffBLr+k8cZRCSjWXxJ1Tsrr7pJfYvXGuiCny27/ze7z1rW99pQ/6mh7/7Md+jG/6pm8Cbj6FPaUy/7L8DHFDUrPoK1l++lxFcolWdfP1sJCbzj+LebP0vOooFhLTi8QOZtPpF/x8r64hud/7GMgMmAYBRAloA0IhRcgLYfdPqyzJF6KHEPHJ5yBa6BzAa422tkObBCp15XwpUB2vd1I7lATd8ZiNVhiVkw/n3fygxZRRQGFMNnxSBbYoO5SwcwYOicFAZ+qTq3HRE9p84KxMZEdaCcGTDYgMQSi0sSipUKbEtw3BNYiUsIViFhIrlSbGTMuIPvN6dTkkisTQauqmxXWOs66e0HQnaTqrYWCorMWI3ChWKMXa6CTN+ICmOcCngKoqVlZGFLoiNDW+aVCmorKrFGadYjVQDiRRatqmwbWX0BJWRytUo9swMVG7CSE4ArBSHaOwFVpmJ80MWUSMKhG524OUJtR+TOPHhFijxYBx/QLx8j5c+gNUnBGro2yv3c3l1/8Qb9Qll1B4N8OE53nDbef5p9814IcenfDjvxQxHv6rgeMrSzga4CMN3K7hO7/f8MBXrfIHZx0f+/0x9bsUd8XIVeDEMPdpJw/qAEZWcaRybN0mqQYwvRQYlAPe/J438cBdP0V6w6+ysvM4H//jZ4nPXOaBvznhHWeu8dWjTR74x8d4+n1XOHi2ZXI+4g4Caw+vEy55ZiKrZDnnCOMDzErB1b0aS0PtGpqUTeSqcpX77jzNhav7XN++yqBaxUeJo0CuH6Me14TiJHvjlkGxythU7Lma6ZWaTeOoVja5uFcDDetWYFXJ/uUZq8eLfB/QV80Ck4OGEYmrOzPGbY0qBNVQsbZVoE2EnTHVSYuowA5WGR4/gjSCFMpcNYgB30xJ0zFKSiph0SZSFCXtdEKzPyE6gR6so4qCShX4yYwYslqGFGBLwdraGtNpYLyzz/RgTD1zhKhZPX4SrS3jHUdKBqkzsm+qESrAYGOTZporLckLUj2j2Y648R6qrJCmxOqCJBPeOQighMmIuDIgNK7xNLtXEeUQUCidEEoQo0BrRSETUZS46JCITIsoS5yLJGEIYYa2BlNYjLXdhJy59lobYsrKR5KsTFQOVgku0sRA6gQ3Ywh4R6ZKWZPnHJHQVhJ8IhmD1gofYvZUiQkXPCEJtKRr1NYkIXAxo5RKJnwI2MLk6qXU2fQpAGRjskjK+xfSYoEQCmUKMv6i5r0NaEFS2dk5Y78dShw9yK4nKuUeh6yipHAudWpE+XMJKdHqVfph3mK8Yln7r2XkBRch5tSNfnHuF+Nl59rlXosebb8xiFkkAJ13Rl+t6FH6pTE305qjkR3imlKuRnVHqZezzCIfCSn/6o5e6um88wCmxceWEHvFKoHzuzBpYO9jSFnh7SZ1dYJ6+BaOSc1BEqTQornOm+/0DN6xzvseg5/9P3cx48S33/55tgw0reBCLThRBb7qW4+wcec9XH32LPV+DacUK2nGRCRWO4pcdAnpBZUpuW3FsHnKUOnI7osTBo+c5vY3vZOjw3ehTz6FqT/D049/kpU7Djhx9z5H1la4d7DCW3/4rXzi555gcqnlwtM11ZrGrK8QGolHYdfXsVWFVvtZOegLpq99IpmIES5fO+ADv/kJdsxRPvTYC/zwf/tf4revcP6p59hwYGc12z/3y8wu7HL1gx9k48vfwepbv2RRIlja5o03zSEEv6flpXTDa+fPAJg3OWuVqwXzKmvKAXyMIUswd7TPvsIJzCnFvYyuEAtik2DhzUC/G32WLLqel/nf4qGgd04/hLnbd/8+OTkXXe/MFzj0r+FxyEhtgRwAt6oMHK489HPRMqp/09ntFOMOV20W27up8iCWX7v4Oe/a/CzCDZWiVxqv0ucgb8on2alaJJS2GKtBZqWLFANSKbTOdBiRIiokjIpQFERfM93bwxZDyqJEW4vQmuh9l9UIogAhFIKc6VZlhaBFSZ0/rBQkJUjB0NQzhsMqo/Ux82dzZmwIoaEwlt4hNZFdjhUJqyTIgratqesZwTsGw1Gn2qO7BRuUlEhlaXyiWinwroHQZo63ltiiyuhPO8YahSMQYsQOSkarq+Cn1LMpwXtUSmilKCuLn9UIayEmrLE0bWT7pfOY0YAUJH56naGRVKrCp5JpjLz0whW2jq3jXe6LKHXDqIRrk+us3HYnkVxxIbT4dkbT1jC5xGBjSio38QmSKAhqhEsJmzKvVPTJAQIpc9IWiLSxwIcDiAbhJQeT53D7q1RKk858D2qwSdIbDIXizuZDyLTJVvMEe67kys51rrxwAXdV84v/dsTf+b4D4gz+VQ0/p+HNJXz/JnxkBvsnN5goOLNTc+KpwEkXUF8t2FoDK0BqgR4IlBXs/Ynj4uXEtRbecIdgOoEXXwo8/WLDp7a2eMO934e7/NWc+Fsf4Zh9lPs2Ps/42hi3WfDI2+4gXIWzv77N9qdq/F7AveQ4eGlGCIpiYLFFgdAFQVYInZhNau49dQSrLUIYbLXCHpq9PcmlF2uMdaAkgQgSvNhiqgr8cI3PTF7gSnOFq+vr3L52G7ftXMVMx6yHDVIS+PYaswoe+cp7SKbFnlrBTw9oZmPq4KhMZH/cMr7QcDBtGK0qrFA4WWOsxlqPNFlXPzZXcbsOu7GF392l3d1FFhpbFQiliQH0mqYwMH7hHNgRQpRoZVBqSJwcUGyepN1w+GlN8ol24lBFyc7ONCeLtkKViiI5pNZUKyvEep/t6ztoLalKjdKCkLIJX5hN0QgqKzBGUlpJwoFWBFEQREIYkV/T1OAcUShMOUSIAoJA0KCszvSa4AlaEUUOrczA4p3PyfZ0Rka7svwvUoEUDFdGHUKrM+olBSibtcxlTkB6p2KFJAawRUHq/FeIEaMV3gui1AhlMu0RQUwSKbM3SON853Saex+UECAVSioK7YlEgovZAFJmUEMSMVYiVab3iJiD9ZgUQsvcMBx9Tl6EpChL2sYRYqdQEnu/gJzUZuQ55eppTF1fUW6UdonOLybvl2trUjJUo4q2gUwfzDr3f95xuGD+GhnLiUFXzZkrxXR/uJnssAiK8tPS0l8WXg15YU5LnP/8Jgv+/80VCugCty6xiKmnR2TzvijFHO37Tz/6GntXUU+aFBsElhhqXDsmtQVaKNKJv5V9VWRJmVrKeBmRSgbhLLMwYufgIvX2mK31Ef/TP3+Qf/D3P82R6PnM1cR9a4K3H1M8eFTx7NRQr9+HS56HdmrUxR2GNag7FIMCBBKURhUlTASTCzu8+MKUKycHvPVew9WLkYvHplw4aLherHJ868vwB6/j2JfdzaZ9iqG+Rlvvg1U8cPu9+G+s+cxvvMzeyzXbn99nd3yZU7ffgRcVLz75DAc7+xk4lH0V5ZWP1fIQUuCT5MKu5rreIKwN+Nfv+zXuXjW86cgqbxmVlNv7qDCkSkfR168h92ekGLKR7Bc+Nd0b9b8vJRFi+U5bjv7i3IQ23+YCArg2i57ML8sEzoeslpYSMUSECCAOq2MtGn/7BEJ0VYDYUa4WVMVErohl1aA0D5R7ytatqDM9bes1OGv8R43Y0+bn9/jha2U5WUqd0d1hMzduet1yUjGvbrL82sV7zae4G55/41jkMItkRtwAatxqvLoVQQhQXXkiZnQvCZmbbFLXECMkKeWAM3Y0GqWzgk4UEIWgHA2yrJ6S5Cp/JImIVCb7HCTV7Xg+ECJFtDDZ20fkzL1uHMFHjC3QnSybD4tpXiJzw58I2cBp3scQkdKjhKZ1MXsTWANEnI/4GCiMRQiFsRatFfWsRiSJa1umkyladbSiNlIOBVoElDXs716jbT1SGdTAM2s1pS2Y7F6kDb0xkkAPimwKVg24Pq3x3qOVoTRDjCjZnkwZWEUwRe7lCI66jYzrhNrzqOAJITGzBscIFz3FZk1RVSihcV4RJQidsMOSEMf4VhHFEKUsRkRU59Za+wYVHFrpfD47TnJIgR2/iwgttAfEdkJpjyOOrSN0idKK3QAHjaeQE46nSJ32adLt7Mw80gRed999VKc2OAj/Lz/xvwl++l+NuXA2slLAA7fBwUk4sSN4auY4VQuO35Y48oikGkXUCwn1MOAEu1cg1JJ2pnj6ow1rBahBYmtTIFoww3VW7vlSvm1rg5mAUJzhd5/8bc5NLqIeNGwgOXJ0lTeXFc8UB4iiRVlBaGFy0SOVJYWEUhW6WkEZy2x3zObxIXpzBVAEL3Lw5QOXL5zn8qUdlEwEYQlC0ctWCquwchOXEk19iWv1dZ5pHB9yM+5s9yndiGPlMSZJsBv2KNvANTfkrrsrymMQZMFkvyVebqiCQm5ZhqFATBx147m654lWMrg6o5kE1m5fQdMgXYSmIU0mCBcQaYpZWUcPDDEqQu0IPjcoh7ZB6wGqMAhV5UB6uM7u1W38rEbLhLKKSAGppBxGkgsY4ykHKyAMQkhkgnY2ZU0r7GiQExGRmI5n6MGIYamReoAyMJ4FDqYRLxVHjpxEIAnjCa5twUUUBWa1xFMQpcV5SM7jvUcJQ9t4RFESZh5ZKKSx1LMpezt7+NgiYkZ/jdEYrZk0DaiSUmWZ0wUtPoEUaCNwzayTgzQYY0FIWu8QyhJSB1UIgTYabTU+ks3CslEAKSRCSLjYeQlIjRYanSLex9xvEDtqRsz+K8R8r0dtiKEFKTtJ1Iw0KxLa2Ny3kcA1Nb71pNSSQlZGa1wkJoFUHUUFkftTZCKm/rOmTostq8Ol6AhxQXtCQELho0OZrq/KO5xv+I8eNyLs3fcb45u/8rEcWKXDC+dy4L9QRznc5NyX4nswcLkkn1FQ5rSMxWK+UFe5eUcyheJQE2rKincxZdfrBZL4VzDS4paIJKZxhkqBFGpIEW1WiKaYJ7kHMfsQWRqqFPBihk9HmLaRslxj9fgZ5JF1mvAx/pf/Fd7/U3+Kv9Zw9Jjm6D0Gf0SzuW94sanZ8JGNkwrZaJT1iD2HPKYhama7oFTBZBeuPXfA1lCjR4n1NcFKISiGp1hbP8NtVZlNCteP89GP/wazjSnT62MuvLjHu959mntMyVPmGLqaYaoZFQk7SChToh2M1jbxPkE6IM3qJcrhFxgdkH/i6Crf+c1v5gN/dIHPBceVS8/ggkOXlg0VeLg+QPtVVsujzPwB+3/yCZqDPY588zfng36LdDqfjwXq3J8j0SWYQskO/BXzfemH6qouSmZVthgTnt6wNlcC+nYEJSXB+/k+LOZHMa+izZNUkSsHvXEe0DVDy/k+x5TlmJfj4znaLcSiEZ7FvTjPYvgrvOb/E4z53t9Itbxh3OjtcvPjon8gb1PcWCWAm66Z/gZe6pdYVnOaz8GSQ6/rxSYWzvavPF59z0FX/hQpZClNlbNQ1V2UC/6UBNGpYCByCZys96uLEiV1RrhSRHQXocSjjMSF7Abb0zRDiAiVctfwvAqTD5u2dl41mL+XVFkhSRm0MQihyfbaCfoyfZfkaKk6W/isS+5dpEgySxSKjFJKpUhti3ddsxYL8xjX1GgEhc19CzFl9ZbkPW4yhiQQZQUzh3eeJnmiVUgtaZoaaySlUZhObUQT0CKhdYnSZUbwRcIqGBQFKzprlqtigLAlUWmkKkhqgDJDCNm/QWmDLtbBaMaz68iiRakKpQS6c8iUQhJDQyBmpFZmnajGtzTJIZNDskfUEdQWSdgczCjL2O/j45Qq7jHyl1DSgJTspiFOXWGgS0b29fhqk6vP/C6DB9f5gf++ZPLcAbpuOXFUcuKoxLy/pfpsw8cei9y17jlzj2B1SyD2E3IXQis4eF5wcBX228S5i1CtCQYnBcfukuxPEtcODC9e3uDM/ZpHIxwvR9xz+k34g13geV5+bp+Nu27jSJMoDgqkXkGuGfz2DJJAak0MEoIGr9BVweagoLCW4eoaColVBQnN3n5OSuumRguJHVikKuZVGSkLjp6+l8oM2fnULs25CZf3xnzUe969tsb6ZA8rToGoqL3lup9S7EVWH7ofs94SVY3avkbSEX8pMPOJYlVyfRw5v+dxMeK0JOJZqxKurimMRigHdUs0DlqBNBJVqkwzagM0NWHmiGKIHKyghwOUHQEW30bQEEOTGw6lQqBQIiKEZzDQ+BZa5/K1ogWFMcQ6ErRk49QWshgAgtC02JFG2QpZbRKTog0N0yYnuDE21MMV8LnxMEOomXYojEUYDSl7eLRtS902FJWFoiKmgNIWpMB7R+uzoIEuLD46REq5YdAWFErSRMG07aQGSSgNWilC9LklIfZykJLYBe9SSpLo6DaqY2BHQJFR/xSJ0UGKqJ4HmkJ2TpV5wo2p64tK4FufQY2YqZZ9IhJioAlN1/OSm4d7FZNM9/CQFEorpCigQ5azG7bquOAp9wTR6Z9LiejYEamTmBYpLwyt99nZvHNzVUp1fQ6dhGDKKPKrXqJvoN3c6nV/3cv9ocVR9Lu8WICXxzIw2wtoLDwAboF69n9j4bLa9x4g1Tyw6jncS20Oc/SwH7252aEd/ysYfVAXUiAQyZpWs+xjQgmo7hxr6lQjaLHxAEuNwJCSZEZBkjtYNcKIIU5Gpruw9cDdfOcPWtpLZ9kaJY4eKSmURv/xNvb8Lk9+eIfTdzu2jlqkTeAizCBZQ305qxZuX3Ts7AaGRzSD45a12ypmYcb1g5LxdMTGmuRCSqxry+1HzzDb//+4e/NYS870vO/3bVV11rv07X1jN5s7h5wZiqQ0oxFnZGmkiTbHVuKBHDiOvCAwEAdZgCSA4fyjOIAdBIgDOFBsxJaRIImtWLLGSqTIkkbSDMmZ4TJcm80mu9l7993vPVtVfVv++Oqce26THLccYzCj7w/y9r1Vdc6p89X3ve/zPu/z1FTjMQd6PVy1iB5b1ChD9g4RuyMUlhZJvGBSTuj3DzLeGTGJg1nz98ePvS8whR+CPNc8cN8Knx1JJtcsl9ZOsjW8zcWbu3QnBY8s9Cm2N1DtI2TkDLc22b14Af3KN1l46hmivQRYhDgIIkn5TZ/AGOHShdeoRnfo93ocPPoQ47XzLJ/9oSlhhVmchQAhkxHspKlmhUZRLsC0gTk2PZeJfJHc3+crY/t7Z+5Cmps+iSkVSUi55/AcEs1ur3l+7zMwt6YkQYM90GV23CxR+v4dH07zGphgPo6Pe0dNK4/7FNfuTiw+6qIfSgzuvv6H/zxdp6Yr4jyd8l7GPScHScBm78uc6SjPqkmNS6BoJPJ8yhhFoxakpUKZDCU1ztpUZhMpkzVaEGVyDpxWnGKT3XjB3qQlcTOnr+Wcazh1KXiPycucrGhhsmSclvSI02bvXSBGmxB+JZnqazufpN0kiV4TosQFUqOjl/jgUUpA04QdQsDWFbnOE80hL4gkfm+IAeECZTnBtIr04NQCgcM6B9EzLmsKDapBIWMMBGtpZwYfJM6nhSxKTSs36AVJN5NgCkxniaAzSmtptZZxIhJE1gR4AS0VxhQEKXAYTExW70omh8epJGyIAcSeggnN70a+pisMXmQErVBqGRc9IlqGYYQLAwo5pi3HFC4QWGCnvkVZDzFxDUVObRdTo1opuSx7/Ns/fYrWxgab26vs6gnVamQROPp2xYWLHnMOThyVtHKBBsxYUK0Kbr4huHE9sh096xGigjOHJf1DBv++Z+ODkivfvI74XGQzChaF4Nz9n0ZOckaDl3hl8DoLOx1WB45qIwNXgJEIAiIGghPIrI/O2mSmTSvv0OkXyLyTFCnIMaaF9ZKynKQkwGRILci7baLOqWzE0SIXXY49fIpqeRlGI1Y3h0y2XuGSs3yr2+FP6SGqUJiQ0XIKGT2btzYIuUQf6BFVjo8Tsm1D7gyr745ZH1mubFmubtqkmlVIXDtw7jGFaVtMnrT4RXQJddAZUmSpSVe65GaKxdoSLw2630JkKWGOzuPrqkGXA0ImrqrApw0zgjEKoSAET7LXBRwI7xFGotoGmbdSxU8atLRJPlO1sVZQOYutY0oGvKUcjYm1I8RmyYqe4Cwug4wcpZI/Su0CdQCFQucZ+BqhVSMDWuGsTUpCKtECJDIJGggoihxcoHKADwlhnFYVvUeolJQobdA6S+7ETRUhxBSos49nGxJlUuxtaVMsuSHyJhS/CbRDFMy0yJuLSCkbo7Ykg6pVAkjS3t7IEoaYjM2CJyrdnJMqqr7ZXKXSDZiRKg6CiNQptItThE5IYmgUP0JaH5VUCaRRetbXFWmMIWel6XtET+f3hT/2Gd+dMY17pntsim8Sf3fGv43zx8ePSBqmgcweGjf9wMmZdg8BniGAcu/4+evM0LppJaJJWKLf20tnfgXfpZHocYE6egqhcEIhRAHCNElMpI41IVbkwmKkQ0ZBIKPyOzg3QYsdiD1cFNShwjnNqljhuS+exW4uMIkbuFBhVys6MbBwZZX3XtngQKdL90BSIxM2IK3G78LmJSh9zdrAMSC5fh9fKcgXeuy6wNqtXXaur3LiKIwRdIFTxx7ndrAI30VKy9Xbnncvr3L7whbOtxFaIuMEEQLOeba3Byz2ewSXKDJ/PNUYASLO/IweOLvMBz3P5nsPs/Fuzdr2Ku+6mvc7bR43E2RLo4NBe8Fke507L32dzrllpLkK0uDrISEaUAXCnEDpHGsdr7/6NYZb73DkyAK1u0bHnseOApIcokWoPiI7htTLgCDLJMakdSz4vc+FUHvftth7FmAvWd4LLPfkQOX8gc2DNFPHmp2XjhFM04D9c3923bmKgpgdv28ift+OOPfDvB9LbHpvP3T83Al7Zod3VQ8+dHFmBYIGG98HfMyP+X/O/+2jEpJ7mfH3LGUqGoQroNKG6pOcoxKJe5u8yiJS0gTBaaNKm2BA65ysKFKE17h5SimSQVKmmNjUQKdpNJ69I0gBMaRGJT9FuCLEQF36pFDSOCRH0uaqTYHJ2wnpdi4FPz4glcR5CyHQMqahPKm0KdqaIjOoaa8BInkHSEHRajEeD5IZmkumTkKJpCoSc6xLD5WSSRLRR43MNLaeYFRO0cqQhSYGx2BS46rkcuo8xNqmDSXLsFWg0+uyM06KIlnWyKa1MnrdDmVl0Xkbp3O8kEgRKfKCUTUiM47oPAZBJnRCZTNFq7WQ+kCUShUekbTzvU8BmlIFQmTEdNdp64xdNwbZo5RdJJZ2tERlED6yGzZYMYK+LMhEm6hPs1uNeG/3X7LsblGIwMQLNkIgN2MOHu3zMjk3ygdZ6m3ijcTeusLzvzHiTAe6tx2nfUSPBDeuRjY7gs4ostgWrL8QeelbgUtr4LqC6ohEnI98qq+YqJxKOOzODltf/xrhP96iS5+hlRzsHKbT7jHWx3h/pUKul1y4ArdvacqNQBhYlBP4KuCJdI4s0Vpapttr0+oYahXpmx71oKZYKBoHWkGWCUaVoLO4iMkUWbeLxxBkQIgWMl9g+fAi2aEFqkeeYrJes/PmLap6k390e5NHjhWcXm6R1RVZ8CxXka9eucr9LxhOPXca3ZGUOzuUkwlxRXPxq2MuXBtz6UbN1iBQdGAph2P3Cx78cYMpBXmIyMZQR+YKdE4YO0QcI3yd+O8tCEFjxxFpFN5OcHVJsApPcgUPViBMgbc1Inh0LpPzuZYoI8kVGOEJsaIeWUTtUcow2Rmhey3yTousnePqIdFHXO2obKI1CZESIaUN0Vl8EFQTR3AO1YTuWMAbdL+LF5KoDXmWobIMrQTkbeqqxNY2OfraEqUl3ib3YJ3lCAkh1BhZ0O3kZDKjHo0RIYEK0TtkjCihkTKtXSbPEVKhtE8qZr5xCo6K2JTPo5Bp7YkerZLbewzJONB7jzFJESSV50Vj5JiU1pJb8h66FptNtpUX1K5Oz6RKqKEPlhCT8pFuULoEkLh0rebcKfIjmippSgLSGiyaxF8aTQyesvRJl90YdNN47KvGATbotJZOA+A/xib9cRtL/Ff8/bs79uGsTVy3h+jNNmM5HyA1BKJZYBP3ZQXTU6ZNx9O/xIZjrZqm7vmNfr46MB8wzTcaIlKCOFUa+W6MmXqed0RRYMkxuJRCNc9sGSf0lcQIjWQZHyS1G7Ne3aAT1tBCMg5rRBxaDGh3lxnEnHX7CFmnRXBvMLz5Lmtvr3OoBebOKkcz8Ls1G2sC4yRZULR0xs7bNe++HSijZNLR1EstuFzzQLfFIC7jdaBavcH4vVeIT32BnJwyCnrFAifve5br28d55/Z5Jlev8wd/9D6XL92ic/A4qtYwEZSlp3Il2+t3mAy3cWWiFnq/v5rzne5YElxpwEpgHCQnFzS3P/EQdjxkeNmyMRrwOx9scOZcm95ynvyJBKiy5Obld1l66yssP/E4xB7l1tvY8ja0D5At/ByT3U22t3Z4443n8eEyThvU1ed55sku9cYbaBaIoUbkZ9H9H0V0P4NAYhS0CoV3gdpGfBCIhkqYejGb+TUDWWlAkZDWJaZUoqYqJqdUpLhvaZDznipzgWZowKUY9nsuTKsJezKl6fffgYHzfTlmUsvMf8aPSzr/9T783WeJu3+ey7qmSdhHvZd7zoO554bk5nWkxOgcGRxuVl5Pgbx3acMlJifX2HDbfQhIoZFaY0wB3qHynGh0QuWkZFLVEAOZlLMM1Qs56wWIcarh3LybplTvvcVkOcbkIEJSRtI6uZOGMFOGSE1gIfHxSNePU8ttAoXJGll/R/CWGBN9IMsMCkHaRgWIZCwVvMf5SG1rityQZwVB+0a6DqpygkYRYsZoOMSWY0Rwycws71JoD9HjvEX4gLKBfr9L0c3xOtLutJA4bFXhFZRtiEIwGO+gKTFZjpQGRGA8GtFvJ3faKdqoslYqJQqHkqZJAjTO1+lBbihQShfJ60BIpFAIJCumQxSRQkic38X7IUtykZoNHjCOTGikyPHuDjvDr/P6quPSHcvuiftZkQNujje4We/yuWOaft7nz9Qb/I3nv82R1oiTYZP3qARQAAAgAElEQVRbr1aMvwo/9gvwwpsgN+H225HL7wXqFTj1ADwcA1//WuT2GMoMCi155icznqwtR1Z6XNwuyGRF/2jJqtzl1ev/mJOHv8y7kz4bTnBIGzrZYY4e/zzvb32bt1/+Jrfeus3O9S3sqGyQ4xZZtkCxsEzeboPOqWNGITTjIbhxwEnH8kFDf7lH3o1sjXc4cPoUhbQMdi3lcEwIGtPOGYeCG5vQdY7DZ3vgP8XbGxP85V/h1kTxdgwcPTGg5YYIHHoNNr3jV//+W3xpd5sDD3eoQs3G5pj1lZwto7mxE7izE7B14PSDkj/3ixlfelohfMRvRIxPsptRpSQaXyELQditCGiQOcg2WT9Dd3pYN0kOuVEgTY4p+shJ6rmRRhJkhpaCLFfUYZdq5NGdXvIgMC2CNMRQMRkPyRd7FHoBYRopXyvJOz2GOwPCOLK5McCWNYSIUYp+t4WNgRAk1taoKGi3Wjgf2Jk4upnEmDZKBAwemSmCtXS6XcbliFB7cMnkzArNcLSLyZL3RuUgiEBuDM4H8gxyne6LVGB049BOUv3JckVeGKRWTXDQ0D+URrgIIakGaSUJEpQSTMYWKdKGO1UmMjqZKAbrm3UlrSk+WIRWtIr0fnwI7JkrNfTA4Ig0XgMhgMwwJvVoeQG1rRLP26ik0uQ8SIEIqUISibjaErxrqhIarRJSWNsaITOMEY3S3LQXQqbGYx+TSVVTfZnXz7+XMb9RfW8kAvtH2iamSir7Ecy9UnvaE+Y/zN3U4b3q/jS43ztgqsASIzM+NnwEVagJzKaUJSnT6yeFIsnMoyHcGw/438zYuwdtlQGRjhR4XyOjJxOaICasyIBEITB4f5NxfZvVUWBj7LGLp+myy5V6i0w7ThY5Ld3nab/G3774Bs/1b6MGN9h9awtetzzyRcm770Wya4ErL03YvFDBQcmRY4qTseaF3xqwqTRV23DwgYKHH1mgpyZ0eyfY2Fng2EmPGlu24hrru99msfskt23GOESWdE6rdYjFpYgsFjn5mGd3knHnyjp2XCcjRtWiLj3t/gLR1anaJtIzG/zH3/d5NpqY3jsBtRe8dKsmzzIefaiFHT/CpUmgfO8lPvCKO9HRPzpC9CXylibeieyMRrz6q9/gC0/8BcYbX2GydY1KKGS7w0FT8A/++7/Ma9++iAKe+8kFfuSLPU4d1EmgYFyjuAmyBeISsY5gzxLNMdotQV0Gqqb/SgiJ1jK5pofY9HACkcToaOauVKpJDPYrDaXPO01c9xgj03R7XvWLOO+/0dCXppWx2Lw2iXqerttc609AhjBfL5kPxu/6cV+FYEpx/FCTMPsD98iH/z5de6a/+U6VxmmBdN97EnsGlveSJdyblCkkab2QkChH4q5G73GAkBqTR4KtsSKVzacl68TNJTXped9g1CnQFkJQW5viGmtRxiS1DpE2L60M1pE05KNHEhtHUIXRaaI7V+OsQwqJUQIvKwTJTVjq1GwYXGqMKXrtxpVVN8hf0vb20aO0QqsMqTW1S+haAcTxiMnOkIBCy0CrndNaWMZIQe09VrXBVSgiRkSksyil2B4PCT7g6zoFBgJcHVgsYHNc0m5loAxBejINCM1a5SmEpRoNqaMg6ILFqX9DphAxsLa5QxU17d4S3Thhe2cEXpDnLdpZRmlrttZXOXXqfsbDIXXrAAW6MUtyGEpa3YOJKqJymEmZBYRIBi+BgCTQ0n3QfYgBLftESqzborZX2Nx4lZffep5/9r7n55/ssJId5I3JbZyseLJn6LgB/2TjOj/e6/Hs+iqyLVhdFTz/2/BAF4ocrg6hA4yyBB7bG/DeNXhfR9Y2YeiBBcG5FcVfPNfjr/7dNT71Z3+E8197myvv7bKzYVnb2eHWX/nv+C/++pt86un/lFdXJZtUHD6W8wPHz/Cf/61fY+PSgNHOLracIJC0egssnHyAIjsOrQ5Fq0WmI7ol0EcPkdeCnY01TLtDrgy5kMjMsLQYOPfoKW5evkZVVpQmYiuFtw6dK669tcaJs4bHHjUsPLLC2p1HWb++QFVe5MWNJR6THnniYYbZCbYHv8vO7girJVcqw2tvbCHbjrxr+Cf/+x2uro7ZvFETfeBnvqD5hT9tePpTAuWTEYhpg2pJRNZU56oACvQE7CQSrCc6T3COWEakqol31rFDj8hb6H6fGBx55zB5r4Md1ZBlSALRjVGZoVV0wUcmE0fwgSADtXMgPLUXuPUb2FqiTI+8cwArFMiCUComayPA0O4vUvSSFKuJnklVs2QURkS0ktRBIqyi3e6T9dqIUOEql5A9HOM1h+gYYp1oUMhERaIsGWvJYGOXhX4XrRXj0tJWOR5PLiNGK7AOHTxFO8dayKQgLzrEKKmrmrKq0Fqn4FsnU8fcJJRdSkFpHUoKskw3ut8BBSgJtvRYZ/HONzXNZD4lhUxqITFQu0Tdm6oH6qZ5GJlU2WJITvG6qdrTCCggJUoaZJbjgsfWtgFJSOX8ZoP3CDKlUEaBUAQfCTElC1lucPjEQXaeYGs8qS9JKNUEBzH5NNzLRvD9MD5qzxPsBeHsBS4fdc6+Uj80FZ84C2rmJQgFDRc7JjfcEPwcd7vRlm+ihqQ/n86dNo9OjZhS8vDdRFT3KFGSPX8MLduzv0sKEA4fxgS/zvb2RS6vX+K9QeSpo2266gDvlVfomoxlFXB+i3eqKzySrfCFncssGMMrb2tuv6t4qJ+q1zcHkQPGUhqwJbj34dK7lsvGcnUTtqKjOJvx4IEej7YP8CuvnOfc53+K83/4VTavDxhWjlu773Jr7X/gp/+tn+O+kz/Nu1sTOm1YyBWLdPj1X7/Mxg3H2u01quGQVpFUyzbXbrB84CSjG++lhyg4pFSoLEeZ7ONv1cfdwRi5fGXEv/tMi0pD+dAifucg16+32R1c5vztg5zUHnHgLPVEMdkaMRqOcZnn0kt/n41qg/se/hm2d0e88cLXee6zP8jr71wjKsu/9+WH+fRTmuUDY0SYpDmSS4QxqT8wOAiXCeXfgmHG3/s7n+Rv/903eevCDqORQwBVnUQTCD5RHsN03spZtWsa7O+Z1U4px3FfZYxmhnjnEz1ZKaKgqZg2Vwn7I9FUXUmVTan2c1ySx9LeTPwTM/Y4mh/97+8wPpbaNt+bcFev190iCvuoYKTvbN9VxV5Cdy+LzT3SiiC60BjnKLQIeCVSox7JOdCJiKtquqrAR4nWyRl0WraqrQWaTTSExM8PDqUEwQMiQzSmaTF4ROPOaOuKLJuWudIkl0qAMAilUym3SURcEPhJjXEg8hZeJjt4P0P7IDqHKDQIidQZykh8sNjRmPF4TBSgtSbPTAqc85x+LzUFZkWeyvM+4F3E1iVKBDSpJ0EriEZgVIuFIiMEyxiHLSU+RqzSeC1pFzmCkORRg6N2gqu711g+cZqBS7KnWZGTFy2clISxxY0GOK0ojKFbtOj0WshouTmxrNfb9IoxtsghM+yKjPeHNUeKg9SqYFJagp+Qacmxfp8oJCNrcUwoTIaSEusntPMeSjXULhr52IRvJolE77C25Nbbr/L1iy/zW+Ewf+NnP8maPsALo6sUmeBQu8TGwK/tDHggi/zzf7nK4nKf116tcKPAn/8PD3Fhssp/8z85/qO/JHn8PoEqBW+fj/zK70daRzTmHcugDZ/4Sc1zP3Y/Z7JH+Ov/yW9wcwBb/chnf+A0kw3L125fp7sA/QXJ3/2l36H3zIDPf+knWGm3eOniJgef/ik6YYsP7pzH2QlCQKvb5fDxU6w88ml89z4G12/hpEFkILXHjj1ETbvXJgbJcHtAGI7J8jbHVrp8+9UrKMDHnHa/oJAF4zLgZU6n3+LOZsDd8nQP5xz55BGqb36WrXcv8sbuNhevXaG/pFGHcvyBg/zph0/yW2+8ztdf3mRDWobC4aLHTSqGV8bEIxmfiI7nHjI8eUqh7ljCbYc8IWAHaEHMAC2QbYmQE0RHI4oMuwXOeqRRCKkp1zaJTpJlOimPBQ8aoh0m5NnkVOMaX1fIGDBFD6VyfDVEG431kuAUUhtCFqgnDnQLYzIkGc6WeFfTOXKCiEWLRGVrZwnRXzrYI5rAaHfM7uoaUhla/UVUGWi1BbWtKHciWkaE89jSYmPAZJHxeIjzsqnuJcS71daoWLDVzhgi0E7QLxTdDHrdDrs7Q4RT1HWkDDUhCHJt0O0uVT1OVcAGvAghUNUVee6TGpBM8hvWC0JIQHucBZgx9R8JncCRkOiH00XYJ08ylICysgm+EQ1YH2IyQ9Ka2lqkikgpUoXCVwQvcTEQmz4hrQTCO2pXIwT4usKFpvopk0KJJyYRVR+J0TZc40gINZnJkFFhQ2gkXJP/jHM2iUqEBIrIxNS89/ERG9b3VAVhH9o2LafPlQWme/fUjyDubz6eleWnl7jr59DMwUgKiqSSKBTzY0Y/mSKrcorINkG5FMQo8CL5T6Rrf3dCpSR1m9Sz9vwYZHNf4qznIDYqRVvXXucbu5sMipP8qYdPMJYdLtRrdE1JTyk2/YhNu8UBPN96510WD57m9751h9MrfR7+6Qe4vnORX/7KJn/ly30OLxTUQ8HrFy1vXg3k/TbmvS1WlyM/8/MrfOLBH2PjQs3//D/+c64MYNKCZx9/nOvvrjNx2/TbEqM8v/HL/5TuZ0c88wM/xGB1l4Fuo80Sy6bmW2+9gPVDWibj8IEDLB08zODMg0ycoHSW3c1VvJ1gqzH1ZHxPso5A4yaefs6MpNs2/NrbFYePG2RXc+C+gwzve4A7L1/ijZsbfPrWTQ6clXSeepT8iYdQb36L8xdf583Xb/CDP/tX6S8f5/b6i9y5fJG/83t/mXj/Ej/sI4+cdCxmFewOiJMJoqehFFA0kqFKgc5AFZC1OX1/i1/6rx7kn/2LVb76/Ba7uzVr6yU7uxGrBN6ntSepliXJ+Xn2vxAi8SmEaKqcsem/2lMmCjE2fZrTBuP0mEmV2B5JeY1ZhcAFn3qsmA98xYzSRNirYPyJGHeXHfcF8lO1s39Ff8u+2P6u+uxdicHd5+1Rmj68jiWgIs7RFsVHXeVD494qB03DVC4FSJEk/WwAoSAGgp9ucqnR14aAVKLJMNOtkTYSbDIRmjbUxeiwFrRKiYGQYF2NqytETAt3bgxKgXNJSURphZQaUMlKXBkQMfUIEFOTYfAE77A2afhqpTEyNfNpJYiuSprXQqYGUwTGGJyrSPr/CcYTIk3yEMAogVGprc37ZBYiIo0sqiBoiSfinU2qtI0xESKCAqLGtNoInTGe7OCjQ2uJFJKqrhjbSFaPyY1Ay4C3jnE1poqRhYUept1FmJzSVgQvWAyKXksjhGXXkZAenSOzHK0Ni40UndAKrSTRp2Bo20aCrZqNQTVuqRYXPEWWKjZTmoUgEIPD+QnoFnWI/N6rF/nG86tcvq0oHugyriw3wzssZW20OsXYr1GWlzk4HnJSel6ziteuFuz0+5w7XXO6v8tXfzewuwqxkLQe+EkWu2dYL1ap/u+v4Ko2XbFN52jkh5/5czx5+jQXXvwGl9YDNsBvf/USX/6Jn+PBp3u8dWud9Zs179mKlYUuotzlq7/9LYLt0F1a5ss/OObaxW9jqyExRnTWon/4GA987vN073+CK1cr8n4g0xkqiyhdgbYURU7wUAiNKGtsCMl4KzcsLmm2bm/TXVwElTGpPCYL2HqC3xwAOSy36CzD8mKPq+eew77zv3Gj3GYLRehpinZgkNe8tO55+kd/lNHa27y2sYUwnoVupLo24l3gkyrw7/9MxrMPQ2Et0jjEQkzxTg6xDEgPogXsCOg4xKJHCo8uZJPESoJpo/OcMJ4uVJLgJTpK3HiCdy0iqRFN6AwRIqEsiZVL1CQcrq6x1QSUJkRFqCOu9igESkaE8CjVIk62cV6y0E3GZJKKydYA04t0llv0+4Y8P4SvI7701FUEEXBBkmmLUcnLxErNlPUhVRecBWERssDGmjqU2OBZbOVoBXkm0SYZLw42R5RVIMpI1KCFQipw0VKWVeMNEIjIZp5HMqNQIiY1NZWeFe9SM2/wHmYbYqp8CiXxomzWIDUTXsA5hJC4mGgjIabqpNaaQsnUCBnBGEMILlUvRVJbAnBVTUQkbxelZ07OlauxrgkkZUh0QKUpjEYJ1TQiNu9TJhqSUw19QEaMTBVS71ziDOPS8p84StxjfPQdx/fKNj+lgOypMIkG2Zwd8eFz+DAa91FHfogOMUcP2KsWzG3CDS1jD0yc47mL5s1Oid3fJRhVS4OSqd9OkJSvps34MXhC9EiVYbFsDwO/dwE2Ys7REznWW3a5QV+30eIEw3AbZ3dYsLssBscHwfDaaofs6FmOHBzSqm+w9s6E4Y2ALFrkR3+RVuiTr75GWb6Ga/fpyJqls4JPPfLX6OqMdzaf5+JqjY2G59+4yBef/CJnPnGV7dfPc+PaBDnwHFo+RGXHvPi1t6is5uSZY6wcVpx/60UmwzWUMpj2IkuHj3Lm8ceIeYff+fXfoN1boija7GzeZujtTDZ9RuP4Dvdt9q0KyLXgR88W/Oa3PXHRsJgJxNICV4+fYvCi4fX1VUbiUQ62JOXudVZvbXG1DDz6hZ9i5+YrvPbS79M70MMOrtL3u4zKAc8Ywxd//CAriyUqlAhZEQufHk4doRqDSZUq4SVkOeQ1xpQcWDE88lDG6kaHdy7CnbVxE9yLRrloGr/GJqEVc8D2lOoWPvRZQ9N3IMSeD0fwKa6azvPg93pw0iF7CbmUjfjJ3O9nFLv/H3P4e2XsN01sEq55ECKVZGYUxDjj++zRgqYyyVOyXxQxAd7T3zfrxD7Ttbv7HOaoSnvrSNOlG/deQU6rl/ewWN9TciClmFm8IwJu9rb37oFApSpACKlY2ZTlEyUpLdJJTlMQgk8I2dzNQ+zZsggRid4jUAnpFFMloiRXKoXCh2mRLJ3vRWqqkQgQcqYeImGPq9VQZ9KC3aAjyuFdnWg23ibZQxQpt07Bu1JJlSk5J09htogNERkCWaYTghgcSkS8r0GBtBXCW0QMidcfPIPdEcPxBEdIJl8qTYjdkUVs7HL8SA+tE93K1g50zrCuMIFGlSah+s6C72T0ex22S4cVgqgkrVaByXOWW21GzjdOqKKhFXlGztKJASkitnF2TQ+xwXrbuCanncoHm3jq2GRWJwV5u0X/9FnOHDrK6fv6rKqKkfKcLRa5PFilsmOWqFkRlisDw0aeU7mCB453OLs8ZnXjDrfPRzoCuscOky0/Q+ycxhx+n/uOXeCt65dYXsw40m2x0D6JtSusbVVJcrMWvPbiDZ58+A4rJ4/x3A8/zR/9P99gddtisZyuJrx/4312BkssHRX8we9+hd3NdWJ0SBQnn/g0Z3/ox2ifeYKhWCZfGMAkQzhHoCIKQd5dQGQOXwqiUgiVpe8+b7EVMg4cynCTilYnJ8QkramDJwy3seWIYHImVwuqTNM+ldN/4iQ3/4Vk4i2r25aRb9Pr59CtaZeKhWVNt/UoB7Kr9MMWB1XJ1zYsIkT+7OcEz5yNrPQCeEfcCUQJ0TeydVUk1s0CESNRRhAOWhHVVMfiqCTapBSWdTTEnEBOEIboHDIoXFknKdGQFFOEICWFtUdkhmrscPU0mNYIk0PliEITkIioISpicDAYIXWHVpFoM5C8L6T3yCgxeYbMJfWoYjxOCL4QCqMluY5omdYXKRLbWecF0WdJ4VNIogZvBd5LJI62kUiVBAGIYGuLtTWobLaQRilx3jf88AmIRkCBFKgLJclM1gQJjcSpICmjSRAuqRXNNgIxRYLS2hCnWqRERGwqptbvBYaAELFZHxvUuFEKC43XQWwoQgFBiB4RRTJFiwF8uveh4bxPpZlBpR6CkFxQiY1Eq0ySt9H7RMOMDRwTfdrshQSR6ETB+1ng8Mcad6Hr3zMjkp6FD3F193asPWDu40v5++L0GQ87zZkpQjfbi+9OKOIs1ZhTjtlD8dJXEJucIM5huN+dkdDgaTVezOanaBDKpGin0DKjlfc5dfJxDjGkuxAYykAtAgd1l2uTVXJR08Yig2e9brGtl4mhxcMnuvTMgLUPBqxdjfRVTr7wKDJ/loihuyxY7oy5fvM9lpeXONpbopU9SF2uMbEeMk1dGV5+8TyPn3mWBx5+ElsGLrzxDjc2SiZ+xMP3jbh4+RIlhxkJyfLWNndu3UT4mkxlPPbMs5x+7Am6h44x8oqV46eQIUNKTfV2yWiwhTLJoX4aI8SPm9fNlyREomtoCacXJXFcMril6CtB3jJ0T/Spg2SzrNje8gTdw1e3ceVt8iKnvdRF+Ie4ducS2dYO1dYtttd3MdHy3JMtThyymGwMrky9jzKZFCICsa4BhZjx+wPgwVhU3uPcuZz1Tcd7l4fJJXn6xkV641LsVUDnJXdFo8AEs8dnL3Cdxbl7szQ0Ue58EjylyEFTUZByNqf3GpOZUfri7Jn8bs78f7Njtqp8B4pOnPvvXb/cv/zMrTlx/rgPgf37KxLTfyZaeNNHO9uf0kXiXRP6Xtf6e0sOkjR2oupNFz7RqPrMMpg0IXyIKNOgEkJACLPyrdYGrcG7xLsVU8fP6HEBpEhqR5lRuOARnpRMxKRTHoVI6iIIXOPULKInNq3HoSHl6iwDQlIeEnuygzJB+CkYbjJnHz3O1o1cZ5JrE0EhvMJb3/DwEooonEfqlAnHEBqDj2R+5p3Du5I8k3hb4UJN7kpwnuhTNhjdhK2tEuscZfA44clyTa/dwbqScliC60GuCNESQqTdarM5GqJ8TbuV02ktkqkMayNlUHTbHapoidEjgqcloVUUGJ0xHu+QSwVNYhBDwDQLQx0rfEgu0JnOyKWhdHVyiG6+98pbSlujVSS4IXne4YHTx2kfWaAWgpVOj/PlJXZLxWLWB/c+2u2ylElqHXlxp89wqcOpFcczx2qUr/h/37BsbsHJw4oDZ54k65zBiT5Zf4FPPPU4L7/yOuJoh6NLh4jWc2t9yJ2BpF0IVEezfW3IH/7h83z+C5/hqWc/Q9i1/F+//RJXb4xpLW+wM9AMy8DAwq/+r7/XyHOCafe5/9nP88AX/gyXrgVu3ak4uJThMk/tBzgb0DKi+0vACF8JnJZInQJIKw3btaC3lNM/uEBEYW3EGEMmIlQjIKd2nu1bNVrVZIsZyw+3iKIFRG6uVWxXXY52lgm5475MoOUIVzxEd8FTbk8Y3NrivU3PqaXIT3xG0a0sbhSIrYiuI8GByAM6RmIZU7KQCaSKMIFgA8IIRBGQwqOsgLoG4REthVAFQbTxPsOOLYgMaoeQTZASpgt/UsOJzuNKS4wSlRVEWSBkCykn6NxAiAQviEGlipqFXGtQEH2NkZFOt51I9y5ircABVRWwLqYmYBKybnRAUCM9aCEJgDEFIqSkyKcsgOBrJIpMpvVAiMRtTdx6i/OCTJummijwIlLaiECSKYnUkijmGkelTvKiyKb0njZTpdIGPJUy9UwlLJORUCDJi6rIDH0NQiJlahqXItEgxZyJI1I3KFKq0NEgcsF7gtBIbRKoL9LCHoInuPSaQsqm/D+NUgISnWgiPgEBWkmEUHg5lexNdJGkmxQbOlLS47fONeuyRMo/5ia9DzH7Hh5z5f59VGCRNN/3O5U2SnnzjcFiXp89rZ2yMZbah/7Prjd9uXTsHndb7G3uEeY53UJKpqHcd3ekz6vEPCVKAQaATCmyXsHnnvwEAzdk026z7rYZe0lHd7D+XXrKUkgYCsX71UHKTp9TvQmPLg+5tbPLe5tjNgaKcyc6dJY/h1AHcL5k6eBxTpw4y8XzX4MTpzjaexhbBXaGnjpolpcKpG9z873bvPTKizz96c/yyU88jXKR3/3WW9x8d53uoRvc3jDUMmO7Wke4Szgf0CrSO3CIT//Ic7SP3M+dQWRnp+Tsk5+h3JkglGH9zhVGu+torZKU+jSBi0xVhu+6UzDlbAtSrLE5cUzqyOSOo1Uoesc0i4cMXhYQPGu3S2zsIfJtdOZYUZpgdwjmJL3+iLh9mbUbG9zeHnN8KfDY4xkMtwiqqZJ6S8QjdEzUP9dUEQQp4HdJfREtEarFseMFjz1S8MZbBW+/k+KmudrZbI76pnqw93nSB26WlL2m1bvGzIuhQcen/gXTJvuU6IoZHcn7xkdlulRME/e5xOT7ODfYG9M1ZvZ/PhZ3mB/T+zX7uZl7+645/efcWfteurnvM/piY3S5d1gT/07PnibB9/Cx7k2tKDaNVU35GiRGJuWP4C3eu8RhlBnK6EZ7PRB9MihztUumZSQEjygaGlIKWp0PeJ8ArcyIpLqhFIFURpdKIGKqRGiduMze1U0gE6brLVE2mv5KI6JL5bMokqSjTDSk2MjQSakamcKAUBoTIbRzopNY56irGgJkuSLUFlc7OgiMULiQ/AxyIwjRIqTBi0jtHW5SEeuKsa1wRZcgNC5EKgtRSSa1QxpDNZ4QsiTlqluGg4d7dPKM2kpiCZNaUlpNy+TE8Rp5L6ffWaHfXUaKnPHEgfOU4wkiJBWS6APjcQV5wNohq5tr9BT02h2KrIXUmnZWMJiMMTFSx4ws00kGsiobrnVqyEwakBKhDESLluBiwEWNVjlKa3LTo/BHeO+DP+SJzhM82m9RjnM2JgMuEbgxOswTj0juyz/gpNrh4vs1L7wTGFs48MM57cUvEdQyhoyl5eMc/vRlZKa4um157MEjLOUdbt7xvHQ+UHQNJ+4vuPYuXPj6BzjV5XM/+xP81H/wX/L7b/w1bn+wxevfvkPWWkJlET+4zZ0PRshMIZyje/aT9JfPEccdbt0aU080E+UY7SZlGZVL8syRF5bc9PCVR7daRDuhHI0I5ZiWybg+6NLLMpzUOCUQMdCJGfmuRZ16hOGNw0wGArnpaN909M/kII8R4yVWx5YxBbQWWC8DWxsln/rx+3nlqyNMFbnwwYgXXr1MdkDyCz+s0Pct7CYAACAASURBVOsem4EdRmQ70j0N/kZE7URop+RaaJFoRQioYiK7+0h0ARE9UgPS4b0l1A7V06iiAz7DDkcNi0xCbdFGEYTBNcimKRIdIy8KfFR4Mmprku+HVCjTop6kJBaRUXRbqaHNtKnHJSJqpMkIusCNJ1QuQDaisopq7KgnFq9AE5HtHlEn6p8AMp0UwoSrUbVOKj1EggsQAkWekSuNFSkxUrIh+0fITaILOWsTNUdqausgRPKewYeAVonTn9DTBtmKQJP0x4Yu5KYbGqma6Rv02HlHJNF7VIx452dURQBlDFqC0mn5l0JiXVrkppJ/UsjUY4HEERHaUCiJFQpBQAqB9envBEtmJMGDEBJlkqkbPuBs+gxT7rQgkmuNC0miVSFA7WmfC6Woqwrf9DdJBPJfY5f+qDO+V9KFaUg03xQ4rRhM36NUMlE/Z2OaRIiGRtE4YDe7rRA0dJwG/RTMKm0JfU9eIVN60TQBkDMVPph6LEz/pppgL3llfG9GSoKUQGhZIEXBzcEFzub380C7oK4n7PrArSjZsMc4d1hwWL5PT67xwuaQ1245RlGx/EOH0Nln8Ci06tBZWqBzvAN5xpWtIY+cPUFbGt66HbixqVg+tMC5+xa58Aa8/LsvIzorfOoTP8gjP3ial6/vcmPtNr/5229y5OSjkF1ldGvCeLSD6bRgNOH4D/0o/aWj7Ew0azuWEAr6B88Q4g468xw4dhL8iMnuJvVgJ4kGTD8s+0Hb+RshSA27pY385jtjXLvHcMfT2gzoPnSKDJ8fJWy/yvquxQUFUbI78biq4tiji6xdHFBoybe++SZX7rzL4n0FX3q2Q9ypCUrgtx26H1A5xHFATiaQ6WSoqCToJooPgDQJgBUVCHjwXJu/9Av38ft/tMHuIFGc9ypfcxWE2a9TVpDmvARCE2DuR6jnm5bnw80pKCub8uMsiWoS46lk77Ty8CdBpWh+zNSd2Esg5/7K/Co5n3DNkjL2Awf7zpbyQ+ftO0LsXVfc9brzucWs96l5l+IeKzb3lBz4ZkMyRuG8nz1EAt9YdyeHvMo7VJ1QsNqZpuEklcCcsygpUmNcjEl/u0HQXDmECFq3CD5QOYtwtnFEhVzqFOA3C7wLAqE1RqlGetQhiMgY0apFCHVC7AGUQklNZhSaSIiOuq5QSid1JCnwEYRQiKAJKhBomo+CxQ3HGCnx0VPZRF9Ca0xLEn3FeDBgMhojjSLLFFnWImsVtPFsru4gjCEA48oysUk3vax2OXS0T4ypybsqSxb7PVqqoN/O2RmOER76SjO6vc7yQpfOgRVWDhxDqQ7DsWMwGlBv7SImQ1pFj16vTVG0AMnu+irl9g5RRvKVFVpSkguJwFCPSwgCqw15psgURG+pg6OdFSiRaA2SJFFbVmNErPFoKhsYu4iWBbnKyZH8SO8UxYN/nhvlLQ6Ncm4NdrniVnm2ewp7PFLkbSZWcikI3rkO61+N5C3Nj/87p1nonCMXC1hfUtYT1GSVAsnoWuDcL56ke1+HtRcvcfPqO5x5+hBnWx3cSLK5PuSDVz7ggzf/T75y8BL/yz/6h/zWH/xj/uEvf5OdzRolalr5GH9CsP124lZ/4sm/SCk+zatvjxitD1k56Vl/801iWbF4aol2T9HJJMcWFHW+QKudcbjTQsdIPRgxWN3i2uYODEfsSo3MocgytNEMYs3qnVfxdzZpHfgsbtuztZajOmd44ssK9AGoFJ16A+O38OJgkk5dW+et857i/nXCG99msv4+XRX5worgkwdhxwlsW9BuCxZaEeFg9TocfZAk8xQkYScSPwB9GFiRcBHCdkQcB7EgEbpRo6oDQiqIimjBl5Zqa4ReOoTUmhgzgk/zUwg9k8CLHiCgTAudt1EB3O4E3V/ECo0UGVYEopPkWZuIILqAjhCjoBpW7K6ukXUUWb+NtQUy7+IRlJMaqQJkLXAlTqm0toTkXZIbRXQBnCVTmigjE1cyqZLUsHUeioK6skDASAFk+MmArK1TxSvUBGeRUWFMTgw1IJAqR6tUDnU0TaZCJlpgTH1GKIEgEFyJ9Y0KUYxY74gikmc55aRKNIMsx8g98CREknpbI5OYFnpNVVZoFVE6SQcrJVFag7NYW+G9IldJeSgCQgpGw1EyB8xU8n4RIEXAhUCIAmMKTJaSIed9Um1r1r/omursHC0pBkeWZwgZGvURuR8t/xMy5slBCeDf2x5pKjkzvvl0J22OiVOiNvuLJPt6BwLsMcoisVGGmr5q6jlpkgWf+vDYR6uY6ssnSoDct8F/j40IbaE5WxykdeBZVt2A5dLwQX0TI2tOZyfJ+pFctSmd5A6aS295br8VOXrwAE899RRGHERHsKEiuDHajshdzu77Jcd+/jixK7ly8wIb41XOffoxjpoe9UixenOdb3/9VV771hbnzj3F3/zP/msufPAN/tt/8ALBa/p6m8XlCWMdufLNIVF0+cwTX2Jt3Of8+bfY2d3mzKPn+KN/+n+wcuwcRVGxfesi1WAd2Zix7iVvMM0iI3xsdcxby/qFS/zNv/A0v/TLd7i6W1Asac6c0VAsQpB0xneQYZwqnkFh10as3g607ttm540/oh5e52gRePqQ4FgvMHbgckPLKKTxBBsptz2dQ4KYS7AFcSjSmt7RkAMbnlhGxFIyOYwk4YaqsrMpHXyYKQsJuVclmnc19n4qebrfmGtKAxJSzCiSc//Zmx7Tx4eYkhgpZ9WCqWJl074AYq9x+ft5zAoE00B8bqGYFhC+04hzB+1VED7qvOnNnWPqCLF38HTBEWKvd6h5P2l9a5KH+QrpPcA490grahoYgm/KU0kGUIq0EU71gokxbVBZRPqA1prMmFTGb5p6JYK6qnAzV9ZApk3i2FclWuo0cWTS6RXRgZLJIdUnTXYhU8Ogij4ZmSTYBqV0s6hDluXIRv/b6EQ9oK4AiVYFMQaq0lK5hKp22wVSKbzzuBib5uKEUg4nDl9N6HZyWjFHBYkymhihqh3dVuo9EJVHqAyhBe1eH5G12C1rqnGF8YEYx9zeLdGUON9FmwwdHaGybK1u0j15lJ1xMmeJQiZDmGB46NgRHJJ6PECqgKZgIS9Yu3mNYGrcZBcrBX2R0WkXaCNYXtasrV5nMrK0s4jGE+OYTCtk1iUqhTHpXmup0ErgnQNjKK3//7h702DLrvM871nTHs54p5670Q0CDYAgOA8iKdGkJVMWi5Jpl5IqJbaTqOyUy0m5MjhVcSp28iOpVP7kX1KuSsVOKrErihTLZSuSNVDiIBEkRYIAQRAkgB7Qc/e9fccz7GFN+bH2Ofd2EyShSBEhr6rue+85++yzzz57r/V93/t+70vlWqp2TuMsJh8kI6woGed9Zq6ltRGXGaQoaOUq8+oaz+4XmPznuHD8ND3xJZ6ofh30PreC4te+0+P5rwVoLcc/scbGE/8Vw/wcbf0czs6Q5KjjT/PYO36HF742Yb7/Orn5IKPhBn5e8/IXpvzcf/MEbXuTV3TG9qaj3r3Drc1f5+d+9nmy4xknP/IBym9/m/2r15nPIrmIgCHrFxxfUQybhrhbs11tc+f3fhd9sMvjH/lzrFwYY4YZRSY5ud6j8go/zilkRLrEy3UV7N844MyZPtNJhDpiMtAmMts/YJhn3Lr8ArNbFUL20OuPEuRZrl9tkIXGzxSoMW0omFnDJJzgcrvJJ09u8fLkEe7tXGZn7xp7Fq7uBx754Gm++9lNho8FRsfTrLq1DVdr6F2CjZUU+IU9EHupt0YOQZ4XxBngBdSSUGXY2xpfRbwhoQo64JzCiwxpI9XuLqI3Sp4YusCUBj3o0R44ssEqKEtVW9zUkpUF2XCIzNeQrcNXFUoEhFa4SYscFFQ7M4TWgENIR7HSQxiNGa91ruZpMVZZRrCWMlfkRuBql3qJFrS/rsm23BgRrcE5hxYBYftoSm7dvkPemzEYFBSFQUuPa2uycohSEaF6zKuWqqrJdYAsX8LpIkZMZsiKjMmsxrcVQSSzMSEFSkRsU4MpMVmPYAONtTjnOtfigNEZWhtabzu6SbdgpNwGFyUhJkMyQiBGQXQ1tkvCkmJNSF4FMTkl4JJDtFBJ1cjHkJqTSQir7GZ+F9MC7NoGmWVkSoMX2DbgW9dRZyRCaaz3OJckcDOjaLynaQNZlnXUJ4/91yg5WFbRjhbHFmthV0ETXaJ3lCt9dPOF5N/Cz2Ch9PFg4NTB+d37JYBaLulES+pQF3QtaBXEQ4434giN4y2cHPRUQS4Ns9DgRI+m3ebFpseo/DdYyRylf5WT4StAyX054F9cDbx4ZR9DyYUPvJPB+r9HJgva9lUiGUL3KDfO8ejbN3juyzdoqhsMjz1JqQU7tzd5YVvzY3/jp6mqq1QM2b19j9nm8zx74xW+8NwFxmcKPvazH+fuF3+Pe/cb5j6iDSi9wmhtxMZA4qaWR9YvcNVd4zu//es8ceYiF555jDu3XmYyGiDtHFvNUJTf83mX8dYbnIuEBMK91y7zX//3kYMasjNnsbHP9tRjhpIGA2YdGzSOHlM/Ztsf8PR6w+v7p9m7N2J3muFC4P5MMjr/Dja/9W365y1yYPEuUNWBSQN6M1IO0pzC1IPwCU00BtYyRBPBS2IoePHFlv/5H73OZOrwPtK24ZAqSUJHkv/UQo3oUBZ5cR0mZkp3vYvYmUCmz+6XPVSd7Gk4TDpiJ3m2wOLEgn535CRKFijFW/daf7PjYYWzN9zmh+3jB0JVD44HzNYWj70BBWyZ0L3R0cRF/9mfEHKQYCWIItFgfEfF8d6m714m9Q5igsOdC4nDGkHESG4UIkKQKhmb2eREKgAvBcpoZEyB3IL4FkUkhpaiKFCLpmSfoH1nXSev2NI2beLiag0ycZOH+QBI/QuIdGNomXoWfNMS8MkfwXeLqFS4GNBR4FyCi43RRB+pXdcsGAVV6xBaUGiD94Jy2CNvSqTy3c0jcVGQCbWUOPQxYIPH4qiCZz4/YGNtlbqxmJDcUCOC+/f3iGVJX/UplCDKgBMRlQ94fXPCShnZ2ob+2LOyItBa41wk62n29ismTuFlidE5pcrIs5LhcJQqkD5CTBXhgMD7GWU+QAqFjelfX6dzvDOv2WtaJk2LUjDq9TAqo59pmiCpCURpkESUMDQYzughr+2c4bHVR6nyjOdeu8Y//kff5j/6B7/IpfrL/Nr/8iLXvzWjutuihyPWfuqvcK53gZycO/spsFnpr3Jm3XHtVkRFydaWoq0zitzQ60dc5fnf/8dv87f+47/K9NefZbZ/A7+eEYnsvnYJed8wv3kHtVKgjp2idH2038ZkO1x48jGE3Ga32WevMvj727SbL/Gu972Pdz99DHN8BdPLGZYZa8OCzf2GqdAcVA2lgdFKn2F/RC8vuf36AXY2w4SAyiQrx3v0336adnuH+9dfpZpcQ628By9WqXamiN6YEHIQgtuTLfZtS6ENq34LVwnu3noUZTaYNYp926IiPBYidqdl8wpsPCGwuWCzjfiZ4B2nBSMVEpXo9YC0IM5JvIT4lYh6WiDGEgpNqDXhTqQ9gCg1mAw3d0RVI3SfcuMkEYOYVgQvIM8QxiS5zAbmk5osbwi6QBqNkRGpC1QmCVFirU+BqAehDbpUyODwbZOqTLLr7xGGldNnEXiEtrQB2mAhtHghqZs5o/4IpTOck3gviBK0ApVpZlMFucHkGoxEZBnz/QNOP7KBcAFXT3AHM8gKUH1cAybLqVoHGPpFMlw02lAOhrj5hLaqUpU3BAoNTTC0HbUxVXyT5COtw1tLWZQIKWmEwEtBpjOEkkjhEdEkepGQIAVKJuRRSInJNMlGEVrr0dqk/h/nQBtijFjrk0Ry8EnpTKYmbUjUpqAEzjryLDVN+47vq5REZanyL7qKkVISH9McvJBXzoxBALZpUAIUqTnZuVRQkUJjHuCd/xHGQ4vMgnrwoxyHXN4OJxCHQf3RxoNFVX9BiTj8LF1NUCyKyHFZ8V9SJ5bv1e1rIc1IFzh18/qSaiAOg6JIQhJCtz4md9n4PefyrTQWFciAYiwz+uYcK9lJ7nn4/Isvc//qHj//Fz/NlfvP88ufvcL2jT3mtxzHHnmU9ad+hhWzhkSxXyuGeY9+LjFiwPU7kAnNwb5iI2r6fRj1HdPdin/2S8/x7/ziX+PWr/021SgnjCTN7pxbL3yBrdeGbH7rFYaPrZOdvsjAC0S9zXi0w/s/8A58OGDPZcyqALVlVAqeurhKbO6ye+M1qCZkpMRYqsNr/3sqvg99JQtCRoyQqcj9mzcx55+iajXzmWNdK6w3RCW4cecarfWUeUtu93ETyd7WCkb02a8mTFvLWAhOOI+fVkyuw+oThlYkU0miYWMlJ5M1QgXidkDkBgpNdMD1GnFSQNEH2SdWhr3NKd+9dIBzXbJ/pFrcccOX94LvrlsZD5PlrJtjbFfEOXzdolrdIWtdkrvUze/eY5E0LLYXXf9BKgp1CcoCVTiy7z+L44Haw8MFiQ5N/H7j6MdevmTZD3AIBzyopNX1FxzOLGn7hxIEIXjg4JbN3/HBeeiHjTeVHDjbcfCFIMnwdNJXka5BDgSR1jr8orqlkoazijI11YVIcgUmXXghIAWJ+985HqemrNQwl2UGgew0vVWSJvUuZbyd4lEMneIRcQkDayHRCkAemcgXN4MAkQy+YuwgYJl0iWzT4mR6XqlFQ7VMDYTS0sTk4xBFQJiIKRUhQpFpiiLHheR9gBS4KCilwHlPphX9zBBsy4G1mNwwn8/xbUPWKxiOB4xXxxCgIWeQZ1Qx3TxaBYSfobI1rly5yazWnJSSYU+Rac1az7EH5L2cygvapsXWln4/x9tAFBkiimR7HzQeSbQ1JgNlHTJYopSgBNMoUAJ253OsynGk45/bSKmTfrt1LXPbELVCmwwbgSg4Lg1yktNfXWXqFJvNCeZnPs0/f/EYt57/bV7/Rkt9P5IPR5x67xP8zPt/nDVZcGAPENEifYW3lpwpo7PHuX/jde7fvUs7uYtihs8EdRXZ3KsYF7sce+zHuXr/JZrrz1OWlh//5Apf/dw2zW7AqAxGfTDreAX905K6mXHq4oB7B47q9VsM7n4b4QXDcpVjp1dZ21ihKDN0lqhqexPHXqMxuaaXSUqgqRzlwFId7DPKB/RUYJBnGAFCefJxycapJ7jTzrGuIU53ETsnuP+KRZCUg2xoiSpJi+7MYNbCifPnmX73EgeTPdoY2RgYzq5KPv+1liffX9CXNfOZoAqS0W6kzCOiENgvR/RpjR9DOw3kIVJcEMQ5iCKhB24zUN+E0JPEQuMmAS8jUYukqiNU8ioYrkLsIfIeQmoIAu81MuthnUXmfZSQROGSGlhM97KSCiW6ilGIuBBQ0dMblcxqh0eidUnWS9V3O5kQbcBkhn5RopSkjgLT1ZryLEkGtD523ieSZlYTYoEWKk2CMVDmGm9Ss3HUGTIvCEGBMpgsp7Weam7xBJTWZJlOvgFZngLpTGOyDOsDB5MZo34PEVM/EipBsxGJ0kVCCmLi9GslCDqZNyqtESLSeJZGQ9GnBZaudydGv1wjQuxU38qCtm5YrNrJtdikOU8pnA+ddRCdyEiqvimlkSo1EqfjS0GvMcm4rbUu+Rl0vQdaHdHB6fo4hJBLQzZJTF4zSKIQiaL1Rx1v4WA2je+V7Fusm0eNzoDDz9JV+OOCKhQ7j4JFchAjD+izLxKGLnA6+txCpY/u/QKHDsmig5fEgpcU/7RcDv54QyLoC8WVPc9wrcfcepr8NPWq5vdu9bj0UsX1yy16DusXHufp936A9568SImi8jWKCKECEckzwfDkGe6+epv97Wtg94k6UEfJzr5Hj2YM8jnHHv0YV597lnp+g5NjwcWfPs0Xv3ib6X2F2jiOGI+JJhn7rV/IqKoDjp0uuHO1ht0txns7WFVSmoLTbzvH7uZ1jr//vWitef3yZb72lWe7eyq1bCVk8fsETzEukc8zZ87yyqRmVlVE3zDdCextR5RIEuKurUBKbFTMaqisYLi2yvTaTXamM4rScGK4Qq9fcOVqxYl3bKDa28ylhlqStw6tA+iIf8Uhj68nHyhnUcKjVjJEK8BIYhX54u9v8i9+a5Pd/bZTJ1wE48lTY5HYSClTv8KRxGHZaB061ZsjF2OKtzqKijhMlBf3Q/IzWCByYomULeVNj5ieLRp0vl/T85+p8UAxYflgVzD4YcQd8QP+ig88uGArHe3d+N5DiYdB/xKFOEQ006F2T7zJefvNJQfO4Z1LjpoiSXwuvAAWlSJB6ivwIaKlQUSQMSk2WB+SpJuP+KhSdT6EJBEaZFLScAFlEtQuZeLhZkWSJgwhceYWNudKaXz0ic7UqZ1IIRNFpnO0TEkAyZY+egK+WzgXMNmCWxoxRuGDxXkwuvsCYvJQyHTS+dBGJ+UPJXFIahtQrUVLQZYbZAi0okXKQBBQzybUMXG2pQgoEUBEikxAa2nqGqkj0MOUJf2NgkExpG8U1geED8jQYqspzoGQOZkKRGep64qYKWKmkwKTgRgk3ktckCidgWsRIn1flYemDrjgiaGhLzNcaCkyQZYrQFH5dCE5IWmiwHpP9BZJpDWmO68B52y6GGUkiADOY2LkwqgkV4oeijOr66iPfpybs21u3Bkj+6sMij6rF87wxMc/xtmVs0zmFVJWFKZEI2jtjNjcY+3kSS6F1znY3mJ/cp/GCwya1kZ0cOzd/CaPPPaLXLtZs3nlFfIoGY0zfvrnP8W8yZjNArt7Lfd353gi2XDAbOeA1ZOrHOgM63ax2zcJuqCZ7bCy3uP0+hBjNI0QzGygX5aIlpQ4aoWUYKJlNCgZDwpOrBeMMog4pvMp+/e3UKJh4/hJ7t+7Q1VNCP4uarbOzs1jCF0RhUAD0mgaYbi1B1OnOPfkWb7+ud9ga/s+eV9z4VjBvbrmm19v+Pjf6VFqTz13yMqTq4jdj7hNyPs5TTcBqzYiBiShkUITUbhbUF8KVHsSfSEnSINtItEoiAZEctsUSqOzAcEZglXpM0tFDAKd97G1S3h2THKqztbg0+uWfHWZJp0oFdFDb62HnTa0bURqjS7KTiEnOYoJC1pJijxHFhmZAuVBBI+MDuGTApKSmmAtuswxJlH8nPeIIFBaEBygFUoV+CCxPkkdowSN9eS5wWQ6KUoZBVInmVGdp2KESE3ETeUQXUN/RKQCi0yqQ3Q+BUnbO7JkfXbyod56YrDdPJiUgpyLWH9oqJa07T0yTR/L5GGhV5Mql6ILOlIVMwWwgbiYKzs0QYhUfBEidv4SaWF3LjVSQ+LzxpiM10IMCE8n3SySKhwpMJVdUSdEgQtvbsH4wUP8cBz9//dx+Dm+X+wh4Hth9Y5qtqzdHeFeH6ESH75LFxwJkZBzuUAbjhzDgxXoBZQvl08sK6hvfr3+0Y60YKKBUms0gmPa8PiJE5S9MXeqfTarMePxcXobcOHJp3ny6fewlo9orEUIS6FLIODdDCVbVjdOYxvHbP86tZ0k9M1rJrOWQZgy2/4G5x/7t3nxpUu0BzsMM8Mj53t88lNPUbdDQjZgdxaZNA1eCnorI3Y39xivDuB2RT09oLk/gZ7B1VMeOf9ewuy9nDr3CDu7O9y8fj0ZqR79mPHhXx5GwxJq9/YnTnH59ZvsTqbIvGA+LdmfGFTWglRoAlJJqlawO4HaG8Ynxrz8hc+yuT9n4+Qq64PA1u6c+Td3ePKvngQ3gLpFOoeKHj8PhEai8xVa0Qc/R0aS34FSoAfEWGLveZ7/wx2e/fo2VZ0EXrxPlNijF2+iG4plsHn4UdNFnprpPYcNrLBABBbnYRGe+u6+kEqlxHjxfKcSGUmJwbIP5wiSkIQA3tpo2Q8dh5n/Gzx5iDI+UIz4QQnR4hy/wcPL5uVFT8Pyvzd85+VeOux0+doHvu8fMt5cz4FIHgVSL+D2JN+5mDUXMFuIqROezho+yX16AgLRVbUcatHtSwidsUZM3GKtcqRK/rwheIwxeJ+a7AgBJZLfghACLRResGy2UEqilUYQEmyPx3ROgEm2D6KISALuSBAQgifTAhtTv0GIgEt+CEpnFN7hRWA46KGEQBpJVJFZ5ciMJZMKhEBpMDH1QUQcW3c3CYN1EAFvW6xrkUqg8RSFxs0bsugxPuKbgM1WuHjyBPPZDC08sbXUs0DtM7bvTzl39hT1/gQfYTq3zFBYOWKUGXYmB3gMXmZ4mSHzEmkEqlY0RPaaFmsDwQZkHglGgg+sjiQ680giFsXcefq9PvuzmrptkK4lw1DbAiklRkm0UDQuAo5cSFys8ULxrkfHbLYgg2BwquTmSsaVuoDpx2BzHa0CG49c5OK7f4L9aeCmnLBReNazY8gYqaub+PkWK9kAJWCyO2dzf495LOmrAsIezbzmlW99hw//W3D7/IDXvtYjLzJuX2n4+//r38eKnHvfuczzv/8sz37hS2xv79DIHrIdoeSQvOwRDNw52ENrT2l2OL5asDrMmTrYsZFJEJw7NmKbljuzSOUlpZb0S8VKhPpt65zeMIwz2Nvb5/LlOxxcfoW1lTGc2ODKaw1MLDHsE+JdJvMniGYOQnaBqWTu4eb9hqhXWTl9jNevX+Hu9h6PXCx51zuG/OavXmfmPFGu0Dtv6L86wx1UuJOCZi5p70iGf3nAdL+lmLUc64M+KQkvBNRHM9ptwexyoLoSsUaR1yW+FTghIWqEzJJXAQXRS6KTuDokjr3M0L0SKTyoHKEloWmTUo912LqF3JD1cnRMyXTMDEHkmKLAtWBGmsLkMLVED0GZ5K4uA6LIcK3ANY6gAmZcUo77yHmN3d7BVg22jTihKZVCDnOi0agsXbPeB1obkDpHxYDQkogitBLXBkznO0jew/QEuU4KZ1lmCFGhtEkLZ2sxSpL3e+xvT9G91OPgQ5pLkrhkN3d1SEnwEe+TiVVwHm8bQoBIt9BJjdKaEANNa5PSVyrHDFT/yQAAIABJREFUJQ8IJN77rpImOu5RWlSlTNV7pWUyXiPig8O7hD4sEBspJFKLznslFV2s88vtlEqqbA6J6PoJYkxzYEpqIijdIaRdkSculEr+uGNZsvrRjnhE23sJ1affjwY5S8OyRUVOLJKoTpa0S+yO7Kb7PRxWTulKZDEitVqqHx2mGfGIxOnCQFOAkOhu+xRIhbd8oCRIBb8oBE+fWmGrbjhVaB4pDa/1FKu1IL79PYgzI4q84NyZi5xaP03VRvZFQ18Hcr2SGv7tFOHm9FUPLeBge4uD6gAdNSU5rp2zv+e4de0Pufixv8bxlRKqVZRsONgR/OLf/k9wQbJ94zZf/crXeeXSVXYncyauQLerSJlTFI69pmFza8JwBJmpGPVz3vved7O5P+U7r77KC998gV5ZLoPexVj6UQAP3hqpQKAVPPPkCr/x+Su4fYESUxo/5MAOoaiJopuzlGKy59nZiwS9SjHsc/O7L3Fvu+Id7z3HODS89Pl7tKHhM3/9PHrjAubyNYJw+FwR64Kwa+Cjj1Pfv0/JHNNXiMwQtxycX+PGNcf+CzOuX52zO7E4JK6bp+ICpVp8OnHocfBwW+qCRuSDP0TKSGiY6u4F0UllJg+peFjRXrgeL87jkkIHPiTlNSHTPykVQYTlvfZneTzg7yC/N9N/0CTtjQsNR55dPnI0mVgaby5f2KUc4qGXHUEfH0hClvs4iiD88PGmkgNjMozJCALa1hGjh7ZNzshK45zHe5e28S3eOgIQteq4w5qApXEBERty1RkNxZCqaD4wGPRQKjUEhpD0wh2gTIGIFt99CVIlKT7fOmRcmNanMy6VJtiGum6SnGpI+ulCCpq2BXloauZjgJjczay3SUfdJzhOSZNej6SNmhgcUabyZpQeH2VHRXIUa6PUZyA1WimqeUXTzNi+u8X64ysEAtZZqqplcuCxoaTNofaWnumTqxy/O6PsGWbk7O/eY1T2yVWPvND0dI/d/S1u3drDaEkmA1pHhB4x6o+QtqZQNbmWaOOxsWbq5uRS4LPIfFIxmc6Y15E2KPTKGi40lCqiyj5NE9Heo7Rh5gL9QnO8VOy0AqckRW4IKA7qikzC3CckRuJBK2zwFMZglUHEFmk9/QgXc89QGIYf+mlODj6J6ZXMhaZtpryvvgYrZ7hZ1eQqkIX71M0mMQaeGN7mi0PD1SuO91z6JurUCvXGGNxdmAVeuKH4qWJIP7fU7i5rg4JP//zP8rmXx3zqg2MufGSFs+eOMTqzwa/+w3/C9PJ11NmPEJRiEOYMmrs00xcJquXv/af/A+XaGgde8of3Gz53v+E9pwZ84nTJNpI5jrIz7murSNFk5KvHefxthkLWZAPHrC4w9wMfeDryst3g+ZfnsHOA0qvI4TkObkmifgzkV6lKjVWGtvLc23VcfOyjxKkjTPZxTcuZ/pifeGSdf+lucKWCungGyxaVuMNm1dJcD7zrI4b4/iEv7Uaefspwosxgr4Y6EDKP/3Lg+u9YpjOFHOUMjmfYOmPvxoz8ZB8x1Jiih8mGSDLauaY9mKbKvtcEPD5UlEUP21po53gv8aQEAB1p5i2FCaAiptdDljkuaqI0KA112xCaith6gsyxJuPenS0y4SlWVlFlwXR7ymRnwsbJnFCMmN0+oJ1EXJWCrMF4yOh4iRMZdd2mhN97JIEiFwzKIQd3KjRQO0/dOBoLpUmBmJKK4CxBCmKUycdCa7QUaBXxWeJQe+uwbUMrNEoBKk/mbrGDxUPAO0dUhmSxGJDRUbcV0bskBSqSilt0yQFeCUOvyEFKWueJhK6oAW0raN0iQAyLuZtcZWSmo5qIJCwqpMBIgUQnv4SYFIoEEqmzhOYhaF3TNRcmWeI0VTq0Mngk1qcijSCgM0P0EamyJXLqg08FmD+JsUCujzz0p5suiGUF9AHeLYd0iAf4vjGm5G2RHKQHu0X8EMI/ytNdBk2LACjEtJaFcIgkRLFQ2UYqkRysve+qqhKlEjXT24qjai5v5aGlYpj1lqf1WJEDUCrFUAqkqxk89k6O5e8EkzGPkdLXnPEzYjFk1zoKFfF+ivcVRrac7m2RnVzjtRdnPPPhF6kLSd0fECc1YSvw8t2c9xUltd1k7q9z7vhJfuxDn+Q7dwve90jG+sUL9Mc9xqtDfv+zX+Lei1convnzRAnjUMPBDXbvfIMyFHzmU/8dUkoqafjl3/o9vvXtl+ivrnEi17gYUzDU5ezOL9SsIJeH10FK8gISx2icwWgN7tXkgzExH7C9q3HZKchLJhs5XisO9lumleGxtz+d5sTtW9QHjuO9FVZp+OpU8dq+xJsPI8M1WrHHbOrQvcja20bEtx3jzoHn3NvOYGwf2hk0lihauCH5u//h87y22TC14KIgELGt7yr7qQiK6NCwQOfYnfyaZBfQLqiTLoYlLSYN0YVXhw3Lh70DKfFYJMohJNNIunnzcLsFspDETxZJRiC8yTD1rTmW6OFDtKIH/+KhGzsentsl9Sce2ZjlhLlUM4oPbgYPB/9Hj4Ulj2hR+Hig30okhHupzvUDxptKDlDJE8Avm3cUSgukS7revquMGS1wMVXrlVq4JGsEspNDjZR5jlG6g1MDUilKU6J1jg+e1vqunyAiFKnpOdjuwykCKrn4Skn0LdokjX+t0sLq6ZqkkUgJzrZpMQZMZgjB0Tqf/A1kauxtfHLQVVrjF4ukSBz7pq6QwTFvWnSuMBkYETAmwxOZVhVjVdL4Fm8rIJDlkvHJNWbTGTu7U2bzGh8lgZLRxggjatAFlQ/c3tpFqoJ3nXmUDQPtYAUpDFJ6EJZoHWfPnicbrbE3nXCws4tsFeuiT08Pmexv0xuspfcOntnuPps3NgHH6dPrNE3EKMEwT0omzXwbla0TpaLyjto6go14P0MLwV1nODcoObV6rFs4E5e8soGDVjCZTQi+oci75vNyTGUbfEzBz7FeRikFu7OKLAOdDzndy1gxilxKWq15+bXXODEYs+8LzuIIYZ8m5sjBU1TDbU6uXKPdc7x4TXAmBj62VnM1+W3x+n4kYjE0zPca7schP/OX/xahzbj5jev0Hl/n4qNPUPQ3+Mq1jLv/8L/F37zE575xnfHgFCLrAT2MWKe/fpygNd+dNnz9d5/nW7//KuI//+s85yBmhsfHkskssDP1TGaR2jnavSnPXYKNeEC9dQtuvcz79fN89IPv5bFjH+JX/ukvEab3kMMPEeOPYdWUuPWbCCxnV0Z4NLdnGacHT/PEyHAQcv6wCayKwKmZ4dqVHt+tPCPg3v1f4Fv/8l+RH5P0V3qIS3c4eKak0Q3PnFCsZON0H+iKcLfm4P884Es3GvIzOYNRxiAvCHk/+RPMGkb9IWY4QBY9pCzBKOLOnKI3xrnOeUtlyKLAEakPLCK2tFYRpURlGmUyil7GfG+fwUoPSNQfWzt8sOmeFZZyPEaPCqoa2kmFtBYnIlZCO5khpGP9RIGZTagvT2hrRxAZpm/IC0027uFklo5JKCKp4k4EY3IIMBiv0rYNRkRWi4x1aYg2oDrPAd8GrAdcJAiP6hma6DFSYDKDd5HWefKixApJsAlFS27tnfmZIvU9RYlSBqLHi0CuC/KeQihomhYf6i6AT0prSojOZRlCB/GH6EEbjMyJLsmvLvTFF02sKuvhY8TZNlWVQ8D5FqXLjtInEy/aO1wE11ikMgjhEKTertYnrEEpuTRPSlNmlvoZZEg9HUSstXgf0cq8qaXgX5exMJR7uLK3aPpb/r2kYHAEZfjekeIhhxCQSlZHKVYpEZVKPcDJVlJ2brcLL4S3AOryRxhHC5dKwIZRZFKybjSlSiapVeXZnAb6WU4TO2Q/QJADyM8S+lPOrfcJO1O+e1uwXljePm55eSiZt4Hv7DmESEjDzdcPGOUXeMe/+xGih53Xdzh2bsz5U2eYvb/g1YOCl17435i9+Bpfv7aPCBKpSoxYp6c3MGUPD3zxpReZzI7j3CnU2pR//7/8e1ypA+dMqtBuzjzOR46XguAjmdZLVMk3Nb7eJPorjNc+SnXzS6hphnAfpOUUczfBXv4qRgvedmKVBonU65xaucCpoaKJmt/eafnQ0LFe5VzdC7y8ZzmtMibTn+Teb/46wyczRHOJML9PszHGywmnxxmaE6CGEGeEzQPaL0/J/oNf4fL+4+zXNaFjQ0RSP+jiu+n4FcvvbFGv11IdUl665HTx91JhCx5ICEI8NDFLf/sj26U3DIs+ne79FjFwjIG29Z2YgnrLJ8M/fDxU0X/48xxBKr+nx+KBbcUSQf4+7/DQiw4N5x7Y9of0cCznuiOo5w8ab1KtSIJQCNlJdnYLdtFLlYMQInkWENKgXEPwqYIWOufOqCSlkVRVQHiXpN+k6KpkCU53dkqCtDolB0jNvwRciEmqT4i0IDoAjw2QyTQpJxg9JS4gaFpHcKmB2fqAloogWrxL2uNKCrRMsiKRmBIP3yUhIRJai3UWowKTpmXeNpggkha8kWS5IytyrGvZ2ZuhVArCZYR6b8pk1jANgWllsS65Qw+KgmPHz7B19waunSOjICtK1o+tcP70BrGq6REJwmKJOBeppnPuTxWDWoBW6OE6Mi9x5Qrj8ZD6XkN/dIypUkwnM2aTGQeTGf1McW9ngukNEDGiVKQ3yBjnPaa2ZS8a1tpAT1i08OCTT8VqOUxKUyLS2oa6nmOFQWYlg1wRZcBaQyQwt55xT9A3Ofs2Ms6Saor3DolkzWjm0XC/EgSf/CRuVZrHH38/p2TF5XqTG2rAmlcU1ZyieZm3P9rnay5ysFqw99oN+nWPjfMFeV/QHESqKxVXdyR7wlD0NALDLbPO+4cFv9VOKFnnpOlx/JjmL/3CJ3juf/oH4LaQ9yaU/SG91TmokvzkZ8gl3JntEkzOxo89wfsvnOHffMeIJzPBNpK7FZwcK86tGO7OPN9+NbB90NKfztArgTMnVpj5FX75/7jCj/+0IV+rQJQEOUaYFcgL4nQbwoxeKVCr5xEco9oLXHIT/oLLmL32j5hV+7xd9hh5wa3pLlJIPtHP8M9+nnurH+F+83HOSsGn/maP6Rd+gzO/8JfI1asQZnh3n8s3L/Ff/N2vc28e+cQ4489vrNFf7SGzgkr0MAewcfEsxegMPmhi6CGyMdJoom2gnxNbiW0cgYD0jqAD09mMYZ6Qu87OBuUj3il8LMAMEeUKNJLY1EQfEAqyso/IClSUlEWgNBo3zYgq9TM0bg+cR+oesW5RRcFgkLP12lWG6yuUg1Wia7BVwPR6tHOLtZYgJEHAbG+CGfSQLlL2Cwa6n+SWJTgn2N7exTUNpQpIZNfr1GJtQ5YVZEWBlgLXtFgZ0CIJJSitCC4JL0itCdHhG4eRBT6Ajy5NySpDREviTIGSgl5Z4n2gaZrkaNwho863He82VfOkbNF5hlAiUZI6pEDpjNY2ZDp5O+gOCZBSYFE4H9F50a3gAWcdziaVNNdMyfK86wPr8I0YqaoqyTsvKADBQ1AIUyJ9i4+pl0prmE//pFbqRSP0j3AcQQ0eDPS74AcO+wseoh8tkIfFa49C8Ys+BSkOF/tls9+R+CB0yMKimuqcSwlgt/uFSVr0qWjlO1O8PyvB0mHOcxj4zCYTXvrqV3nqIx9jrwGRCSYhYilYXzlOT3ju2Ck7qiR3AuP2Kdnk5GrOqHVMT51g68Xn6D15gt5azspqzt6tOXvP3WKrAjPIGBQ5KhZMVcnJTPO1tmJVrFJIzdkTa7zv6TP8Tjslzl5H7tX0BhFdOsRoncFjH0URmTQV5x5/G8+MzvChT7+Hd53ocUxLKhGpQ8fTV4LcCIpMJtGTBb1ISF76+pd5/Vu/x898+jF08WEsZZpj8x5KCajnaDfl9HGF2HgUEXps1nvcaGe80yqarS9xbxo4dfIMwgWm7YxSZ/zEuTX8yy+yf/bj3N11nD+vObMyx9+7xuiZd6LkHWJ0ELf41lde4Au/8jrN6CT/WZZTB0EQSSBlwdRRSuEXgkULWtGRoFAKiTGpIOC866hEcWm8dXTEEPEiURpFevER2tHiPRb3TPrvQd+Uw3tLymRKq5TCWvvHuxDfIuNowX853xzyGg8Rxodu8AWV8fDVHM4n3UPLvYRDE7rFPh/cmVj+FEf+XGx7aIAnHtz+B4w3lRxYa2lamybLGIhKoTqPgsQhEwiRdP9l18ApVeot8M6mhuAQKYocKXSCmcQCohM469FdA32y3O7ceWOqgIkIyVU5mSRZlzhsCpBCoXXi/dvWIYLAGJWMYjt97xhCcjBuPUYborPEmLi2UghkiIiYdAyVAtu65JCrk5JIkQdEXuJ8S+1rnHeM8j4Eh8o8olvk2wACRRUEdePZmXtsFCA0IUgy7+mXOfP+CrN5ZL5zQL1TIZzi+rF9Mq3QsWWvamlqh68a6v19qtUBsq0ZZn1MZkArmmbO1vYEKQbsV46QlaiexFhHXs9YXR8zV3HpNB1C4klbd4At1hDKUFmPo00Gc0CvVzIois7sKeCcY95ahMnwTcucmKBynVEYw7DIAcVO3VKjUCQqRtMGJk1gVltmMnBpT6L7OeujjBPDnBVdcs9m9LNAXTe0wVOIHtvhHKr/MtmJHtPbc/qmwQWogmB8SnF312JnnmbzJvgDymMlq2WfR82Q7cYR9Q368hgDBBjDxeOryCwnOMW1qzeIckq7dx0tJhwzNff29/hX+55yo8fps2ucPr7CB7Lksv1P5vDas46fOq9YWxX82vMtL/3zLd7zC8c4vb7BzqXbjHPJxcc2OPPJEah9Zs1voocOmZU4bRCFw7hXaQPE1nLywjMwOMfW3pSh3Ofxp1b4Z99umHnF8PwzbEnJt77xCr0s4zOf+gS/8rU/4PFHLedO/STN1Zx/+u3P8Tf+zt9GyeO46QmaK7/Ls89e5Vc/d5kbU8VICVaznPl2pI6RckUhdI6toLeygR4/giIQhCLWFlc3hGpK01RYURJNRowRO50SJKyMR4S9CabXJ+/1USZHeElEIm2NjX1owLWeECVt04AP5LFJrtvKYF3A2wats8SBrRukyAhKYp2maVtyAnkGKydPIY2gaRqiD2Ar6oMGU5bUVaBp29TDVLdkxYA6SgohELkhiIitG3zbYnKNDTnzqkEGyDKJMTpRhKqaJkqsiAhn0UqQlTmhcVhrk9iBa2nb5DgqpCTLNbVNRovLWVumZCIGl7xWfEI8tRDYAI1tk5JQmqVS5d7IpGQVFFIbZKfAhEwVOEjohRKk5ETKFKz4iNSxczBP/ivOdnIjIcnLImV3n6fFIBOC1nUoSGdwJHVyQ259SO9xpHKo/7imRA+sam+F0dGBgDc6qqML9VE4/qgeSFw2Ece0BnULc+x41wte+rKKJxZOpIeBWOwyhwcAikjXUxKOHtCf+Bn40xoC2N3e5v/+pf+Lp169zDs+/QuMV/qMMs1KBpnUzIKjVIG69WQRHH2sGCOLA8zJdXZu7XFqtI8LJbrnOHY2Z/PShMntCW5/m3KQsf7IKifOjRnLjHkISL1NwUkMgr7RHBv0yMcD6trw2vX7XDjh8M0WPbXP8cwybWtemEdWhz3Ony5Z14pHeoYg4BtW8FMGGiLXDiKXblnCZssHP9zjnWupwV9IeOyZd3PqVE6UX6f132FwvGBzL2OaKfqmoZjvsG/BT2uOn79ITQ9f14zzGaNTfb5+06EHPQbv+jBX797h+rVdNk6c4N1/8RN89rO/ylMf+CsM1t/Dvedusl/u856/8OcQckhoRth7X8OceDfjp57i6c98AFP2Ez3IRURcCKlEfAypRCDF8hpdpMULNkAUEes6sYWux2BBNUmB5yLxS//FEJMppDhMDN5QX+uhhx6+zxYJwgJ9+LOFlT08jswxy6r84XOLcyeOSOV+7y4OaYvpz0OFtUMPhDc+z0nX7rCf4MEhHji5D8iXfh/08+HxppKDEENqwgKIAdUF+D4EZOiqJ8GnoEFoghApy1QBGdMCp2RS/wmhM9KQQBS0rU963CYD77rP1Kl5eNcpDqWFVUqV3PdwnbSiSHesSDdviAItFUIaRIdCCKUOFUJCxDmbGsNCREY6eCt9kVqqlMxYhwgeJZL0YdYfUOSGqppTzTzBtzRNSzEyKBWIFhobcN4iPDTzA3zeQ7kaISRGa4xUqOiobYPzlnZeMTuY42pLdIr9M3NirFnvixQQhJTtz2rHfFoz2MgZ9jT9ssChmTYVs/0JAsXMtUiR3J9FpuivDKiFRGca69LCp5VBKU3wjrauETEy8448lhRFgRap4t/6gPctdVszbRpaJ1jNJfiU6AggV4ZeZ7w0tZ79eYtViuTOmIIRKwQEwUAKchmJDoRNiVuhFPdamEwmrJtIE3rstwMK1aOvIyfeuc7N+w3NvOZgPyCmiuGJHne/u48UcO2VP2CuDOsbx8mngJsyvf0d3n3sJPt7gut6xqmTJYMip39ywORWxbyZsrdV47f3yAcbnHxsn5du7ZANNvB15HhPcW41w84rJnnB9RB5+pzm/Ibk1p3AH/4/nvvfVBz7mwM+86jG46mufJcbl1/jmd4JpuYML+zNqWUfjCMaINtH3ruNwKPIWX/sIpsObrx+iyePn0SONvnNL96mFBnl0LBnW+7utTzdz1ktPLMnf5aXb7/G2b3PYZ3iu1vf4tOPn+HZWlI0FZt3XuDSpZvce73lXF5QECDkBFsSfA/og+gnR+Q2x1YCmefEGAhNRXANQmfEIBBZQVA5RIGSGVI6TNGHFQXlAJkXECS2TYm1zDJQOW3V4itHtBCbGjezCEpkHnExoXTaSLQx+MYSg8LoflLIcQHbNgjZkhV9zLDEuxpnG7z12FmNzAL9TupTCJU4OhHqyiKKHnVd40jkble14CxIlRonfZoflZBLg8TgAraxyWjRe3zbErVEiAh4EKaLuSMhSIzshAp8QEpSkC0AJROXPEaECGm2jt1PEsc8aBDKoCSIGBJdKGiU1Ef4n+mntQ6tdWrcQySlQSEQMnRQvkvVwZDU1pYTvhJIY4h0PjALlBfQuiCQUMM0j9NxCiwIlgnBQt70jzweqj4tK1QPQ+g/grFwd12ukQ8tsEfW8K7SJpaLZuzUnI5GOl2In34PRwKjB5KAxUNJjCOEkNaso1XDKJYZi7X2gfP1Iz5l/9+HEDR1zeVXXiEieOTDP8modw6lFUoJlFDYKJjXDWUGjcvQsUCJjNwI1i+e5urNPWYHcw72PWHUY+X4Gphdci25c/PL9PslG6M1+jISfU073eLR0Tqb+5bjY43JJL1exrHH17jx4j5TW7O3tUPwivGxFdbPzrl7UFFmfZyD05lmrMA5T6UU92P6apQWXLkKn/9qIBxE4rsFT0YIbSBTkEePUJpGnOZ61SKLId5IVB4QzJGTAzSeXPQYnz3Fle0JbRs4d6yP1Vv8xh9c423Hj2PWcq7ft4Q28tSxIb1hRnvxE7zy2lXO3p1xe3MLoRoeKTyXKsUTP/YOvvE7r/LOTz7J2tmneXp4hswswje57JERUiB9UhJKX80huvOwgZ/voIXYQWgLn47lhdglFQu0LUa6xuIUxB56HBwNig/fV0q5pGkvEpTlcQjxhijFn6XxhiH2A4H3oXnc4WNHEJaH9pNOZXxgz7Hb5wNJxCLGj4LvOYTu3B7thVhiuUukM/LwfPhG400lB0omlaAQFx38i+50lvC59w4hBNqUS2fTxKlNSkdKCiTJeCMCoksqXAhIbUBoEL6DPWInX+pB6k4RRHR0JNBL5CJJZPmO6iQ63XW6Rj0hJUqkSk9acD3Wtp1BU2pK9ohkEEVIC3jjwXUNhDI5tWpjUDrgNXijkja498gsBxtxPkkJWuvBW0K0uHzA0KR9aKlQEepZw+Rgl2q2h5tPE7IRJfO5pZ1U+GaH/UZBr09eDvAqoxEK3x1zaSTDXoaLCt/OsNYy9Y4YPMKnnpAQAlmvZNYITvdG3N+epvOUCZCKBsFsss9QjvFeQ95D6QxJwLuWubU0jWXWVNQuoJRhTQh0jEhpkqoUiT7lvWN71jKpPK0UyXVZKHKhkrIRgjLXnB0kl8bSBYyVxEwQncS2Go9gavvQDDidS/pmzMnTOeM1yeb+/0vdmwdbdl3nfb89neEOb349N4BuAI3GQBAgCc40aVqkTFFSJNmSpViypKRcHqSUVK5IictxlZKKktgVR1E0WEnskkVriAbHEiWFogZKBCEOIAkQAAdMjQZ6fq/fdMcz7SF/7HPve90AZURxFYldBfR7955z3rnnnrP3Wt/61vcFtq979JKkv7qM0kO0Fjz//OOoxdNk5gS9vOG5qxdZ3T7H2RN/hUdfCpTNgLX1lJ6SdFZyxlenNGXJZOAJkwqd9zn2+g5PPT3i7e88zh6CxeBZ14ph2TDSCYcEfOB+wxENLz3r2XgiEEZdLk8Upxc15q41nr2q2b4WqE6/mReuHOXPiw6jyRgvtpCdCt3dw268hFKB3rF78N1DTMoCW+xwbLXHE5vn2Tg35JhOGBTbNOWUFWN486GjfOFCiTz9IKOLX+K5y49g8KwtZjz8od/iz5uUNRG4Vg1BOu7oLrEsPbUPGJUi9RIkfUgXSbqLhAa8TSm3pySL/Uhpsa1CWH+RempBJfgQaT86TUFYPAbdy1BpDsJgK0dTVFhApElcIGyUs1UBEunxjcU7hbMiJtreRSlTreKihUHrWAF0PgoANFVDYwNSSYJQBBE5vo6IoM/oL9G0x+FlbDDOuoKyiNRFScDXFhUgSA/Wor2Nz3GQhKAJxCQhKqSBt9GADBmb+EJrfoZQ0Xys1eqr6tjDIExsJpVKxvlMgBO+nXRbkQXfqgvJVppUxUA9rtYBqQxSGXxo2gUiggDOOrLEtJricfElxMQmVkstDnB+JnnaonxtwtK0SmsChRRxWlfGQLAQQjtHOw4200pBTLoCf7lg/uACI8TN8cHXeLQReHuON59bBLTYTcCsAAAgAElEQVTiQjnn+h+gGh1E/WNVYL88P6smtDvtK0HNE4BZEBSPJaVoA7H9IEC0lW0x203to7WvtSGA4DzldMpwZ5vi8nnyw+tkWYJ0LQ/eC6wTeKeZ2pQ0aDpSkeouq2spiyua6+cq0o2abrrCwvIxsv4F0p7hxUufpXIP0NXHSFWf7fGA7nSb48tn+dK1iizRLJnocL9ytMOlL+4wnVSM6gmNl2SrOcu3ai5dq7nrzkV2XaAvAilQ+UAlJEtCRAEUCdc3A+eeF2ir+dJEUAeobMA1HoZTpjsN28ntPFMnFPUiIRmTdhu0G1FubJFmsHrbWZzJGU+vYxJPZjTnr+9y9YVd3rSyxNXrF5kWexxd7HPnoSOcv9pgjr2T4flf5YVLz+ATQyfPeO6PPsXzVcrhtWWubgruKAXHej16/X5kZ7Rzj2/nkVnv0uxZl0LNw/uDCTPso/qxKLav2HVj4/38G44/zagpgpgAc+BJmPGvZuchWpnreeVitt2B31+zGXEcN7cRiAOBfLvFK+94QymRg9NJrPbOf97/Qy870uy1m7hIB3eb9xjcdCavZq5+VcmBNjo6EtvIJfdBoITHtIGyc21WGSxSegQO1zQIYje8kgqCx7sGKQy+XdgCAWNa+T/v5gXd0PLfGutAR/pS01iUAKE0aZq2CJqlcQ0gMEqTKD1343O2QeLbL0AglIzon9bUVYUMHusFoW7ITLxsTW3biV4RUIggkSYg3ITRzggvwRhB2jEs9DKEh0nR4Bw0XmIxURFp5RDFYMDq2iKpNHjrKIqCurGo7U3CdEqqYGGpjxU5CYZ6MqKjHdeuDVk92SVZSPEKsk5K1lFMt0dUC13qPMo3JomhqnsMhkMyhmR5ineBsvFUeZe0s87a8grD6wP2hmOGQtMklsJbzKTg+KEVCp+QqZRUakrb0FUZzgW2hxMQAi8E3jaUjUU2niTTOHxsGg8x+dodDCgxDC0s9CJa31MJKgQGjUNLyaFc0FhBJmFZC3YbqGvP8bVlrl7eRTSKBdPlwt4it3dP0dt7hJUjgmtXJaNBxfLmiO7Z0yT5BXwQbO011NsNwq9w6o138fCjL/I3XneCAbsYEXB+mY3ScshaRB0QUjO8MCI5mWBkhWODtePfzdUveVbf4TmxaBhIyVUfuKWTYUTgfVqQNFGkMuvA0q2SwVQiX3SIRuO04OQDD3LmjrvpG8c//+knuLQnGG3sEdjE9CaYhTGDzS+SpBnrb/kuNq9pzq7WnLwj4TOPfpmHP9fh/sMr1MPzPPnSJVZ9zTtXDnHy2Hv4F1/aZf2pn+M7by94er2Lzzv80ENH+YlPdPjGtMuRySZNuctUBJokRQhLNzEo4UiSHsEsobprdA8fiiaCxYR6XKGTgEwzgjCIPEP3ekwG16mKCdKkSKNis2qSYJtAYytMP0Uaga0ldQ2Nd0iZ4kYVRmiSXEX1qmwRaaZ4HU0LwUfU2jf4EJsy6zog8mjCFYJDSIHHMt4dkPT7JHmCyQ0yaZAywfQ6pB1NU0bZ0EZC4xwLXY2ibFXFBMJ5glMoGRExGQJGWJwLVCUoDCbLUUmGa6qouuYFQnewIc5FXoq5cIKUkqTts/KtsGkIUWDBGIOXgHeE0H621jBRErXrDa3hWIuWOe9onI+JAft9VaKtlEoZ04Tg9o3JhIiASmbiXGSJ1KAQQvSdiWeF9H4uoSlbedIYb8YKpMMTaZlRzaiqWyqhaE27goqa6a9m/IfoQ1/ztf5gwgKtm9lfuO3BUv4MVYuc6ShbKeRM8nWGo96EhN5wrJv+/Iw6FCOH/W3Dvg+q8zG0u5Gn/doagdhbURYFV575ImdOnSbpZiQmcuKd86z3crZ2SnKt8SHD2T4LYp1s8jCrt2Q8/3Sge32LztISvYVjrKwYLJrNvSkXNxqOrt1B9/hRzl0Z8vrDyxRhTI6n9imN83S8R1UBladcPDeld7tk4nfo+JRu/53sXAr0zwS6mWYioRSCrpJo4H4J1gaUEiyswPJRmG6C3faI2yVOCqYTT9Y9Qu1X+Mynt7k8gN29HjLZotuvEFXF3uULrC73OPFX38fGlZq7VzIGfswLL17h+qDLe29fprz+DH/26Fd440Lgrlvvwy2/jd9+asTRz/7ffNOb4KPPdLj/zBq3HT7CI0+lPNjLSZ58kW/74AfoHDsGNiDT/dAtBEkIojVPjIi98Ps+HFGqWIGIjIn9mzQciCn3Fb7CgWdh1lsj22rkzMzv4D5zFSPC/qMWxBy0ffmcMHu+/gNzyWtxzBOu/ZLB/hwR3znw1uyVG36f/Ruv0IFrNPPwmoE58wPsH/0GZtOMSjRP2gIhyBv+xl80Xh2tqEU40iQhuLiOmFZlobFNzFWyDCM8ja1REhKlcTZK5AkCWsSbzvoaKfR8ATM6NsUYFXlttnHY2hKI/QvaKCzgELjaI0WDzKLKgwsOEQJG6tjIFwJOCoqyQIRmnkNJKVEeRJBoJTE9HdH4EKIUavAIAkoImuCoGxtLwmVAkOKsRQlPJ8vI8gSjA1Vd4WtB7cELFRt8EBQWmqYmSzpQlpS6wglJJTyTumK6V3BLP6Vyjrzfo7t0GKM7rC92+NKTT1NlKcnUo7MGmSQsLixHRDMJlFXDteu76CRhoZvT7SfkVjLdKslyw3IvAaEZWUOaZozGOyQSUpMiTUae95hsF2SrPWphaCqLNSWNVkzKCptlTJoqoroorFAIEdgrKka7Y/oLnvVuRqIldfCMCocShlRpGuvYm9TkaJY6hknhqGRgx3oSrVuPioBQgZcGjuuFw9Xw1NNwqr/M8ZPLnLvepVv+Hq9/1z08ufU0nW5JWRTs7VWkLykWlg3VjkU1iqXVHWr/BZ5+ZptvPP1WmnTM5vArmP59ZMkK0+2GC80uS+uHuP7iBH38MJN6Az0a0F9d5/lPfpl3fdd9lFeHTK0iW+9yONdsesFSEDzYE/zelytOZ/DAMcWP/4MOP/Vrih/1Df1aMx4UyKZGLQcaJXl2q0MoK+zwswijkNUJuFDROXkXze4O1RM1H/zJ41x+6VE+/BufYG9Q8uPf8n7+x1/8GTZGNe/vBd6wcJyRup0f+/THEPYS33xLh4G/lW/8hr/F2bvfTlYM+Dffexe7jw4Yf+gfMa0aBvo2iu5ZVtdT+t2SK1deoNddoLe8TL60hMiWMOvL2OEAVVmkdJGKIgS+KfB7FSrtkKeaGMrGCqGtAohAOalpQonuKqRJ0Is97NYOclIzLkqSRJH3cvKlHkmmKYsGkxkCFofHhkBT1aRZisMxrioaqyFER3UhOmQ9QT0qSb3DaIVJDM0EpuMpuU5JMoNEkihFSAwuSan2dlBlQp7paNomFCHNI2Wvquh0FhH9PmVRU1UOGdLWFcyhEFgUjXMQHJ2lRYpxINECr2XsjfDRbNGjSXRNUVmsqxEWaCmV4JBKI61v0WQR+aXSo4TElk0sE4tAbS3DSUGeWNLOIp4E0RqRtekBTd3gdDSYEzIKK3jvMUkKArRzCBUbD5s20Ay+QUlFkBFQCd7TuKb9PmO1wM+Q7FkS4R3IhNo6sDUhRFW3VzVuXsxvQL++9mjgPtPhQBk+wpz7i/CBfGFGxbj5IDNEbo6SHkDmBGFubhePGqVQ5YHPvd+8fCAEeFkVI1KZtG4pTa8xtaKDw3tPWVXs7u7wpccfZ293j2/64Ldw9oE3sNPAxAWCDXzlUuCB4z0QGXtTiU6uc/KuN/Dk5uOsH+kR6pLh1gjsMY4cX2Ty0gTVpNx28hJlXXDxUsGRtXfjdcVOcYVO/xQKQ1FYisaztn6EIPfonV5hY+MCmTGsriyzdWGDs284QrVbUvc75B0NUlAgyAQcN4HHrjnu6go+cLdktZvw8NOOH8AjnYdRjVAeEkExlpzf07jCUm4+RX78EGqqSaTg8N2nKXYmlE/WvPNHjvDpT3yKJ750nkwrPvDQXfzqr/8rnr9e85/d5jm28hCPD1f4nT97BFO8wAcfWmGnuofv+b5vot9dwGj4/r+2SHmppP7Nn6X6zatUr38z3bfcx+LdR+a0kcQYZEubDBAd0o2JfYZhnwInaH2iANvOCwefA2CO8s9EBWZ89rnr98xoUamWku1v3DfMAtT9IPZm2t2st+erdC28ZkZbj7mRinXT+zePg0H9DfWFG2D9OEFFldmDEsqv7rzk7Jr7aBUwo0xC218CN34fX2W8Op+DJMFoE+X4hKOpm9alVJMaQyoETeNiRinapjk/y0qj+6Yx0c04aXXHY2nf0tgCIzWTwreTclQ8sY0lM7FCEELbpKc0QQimZYEyJqI5UsbFVMTSfF2MIpqHwGiD0SrKClqHoEEQF3yhQREwSqGkAKkhFHQ6OcZEpSIpBV6k5FkKLiY1tnHUVRP1/XODNgl1A3VTz1WakjRnUVmub+0yLUsaRyypTj1+e49tt4ByGjGtQI9JljNGtSI5fJw8T0lSCdYRKCi9Y3trmyMrh7DaooyHDjR5h6AMk8GI44cXUSFggseFmrKs2Lx2ha2FVYRLSDod8kSgqLhjWVFIyV7tWV9IkQS2dwZsTwv6C31OH15hUDdM64pGAsZQTD2Xz52jd+wE/nCf5X4PZTK0UWRJysh5Fn1FP8tYy6Kr9CSXyLrG6OiNIKyHEI20fOXZ3Q089VzN8lpKpTzPblRM+z0uiwfYOrfD6TNX2Lo24NxOSTGYcKj5HATJyn0LjHcDw1GD7oxZWXqRoq746Z/9EP/wu/4Om6bhmfOPkY42eM+DJW958wNcemZIefFjlOUUpTLS9bOcfsdduN0EccsSspuRC8liIxhWUGXw+Nhz122aNec5f83zpSD47/+blNFTF/nXP/9zDJL/hLc/eD/vfF3CFy9XuDtu49pTz9PUL4LW+KRPZTyTc5/B6Nv47p95M1988SUe+8RjdJM9/v53nuAf//N/jc+WOaW2ue/s3+RKOMUvPvlFVPg0v/6hf8l9tzxAonLcn9eUfzbi0l7Nj/53P8N79UXed8c70F2BnxTYYYNM1+h0Vzj71rPIrMHS4PC4iUGnBrN0HO2nTC5fwk8nEOICsXjfWagmTIet3rqC2jvqSYFRFeXOLrKxmMZj8h66k5H1cnrdFfKioSwtLmjqRlBXFeNxxWJusNZTNyVSC7oLS4CnGY2otiaEbheTpqRGky2lBCvoHF5AToeooPDBUNmKTq/LQieBqqKZTpgOJhSTBqtTdIiUonowIclSZJogVEWnn5N1uyQ6cOXKNuW0QiuDUFGMQAlN5RwhOJJEo01KcFVcTFtajpCiNTtrCK5BGYMykcoo8di6xKNIUoUQ0CiJDG0/QIjzYAgBR8A3La/XR46/UknUxfdxaXGte7w2cf+m9GgDQoWoPuJqMq3wQeDQBB8NswSgtcKGiAx5EZv8pIDUiNavgngOASACKhIF3tI2f7WouODrjRT0lx03IGo3vnHg5XDj9q9APTqoMDJvnmyD90AbJM0SAKnme+8bo+1LoM5+vwFBFLEa4b1rr//XQdHl/8eY0U3KouC5p7/CxtUr1NMJ9zz/PEfvvJfu8TM8e91z+LBhVHsmgE+6yHASszXiztsX2TjfY/NSSbHxPEvjCwjZ4eR7jrJ5qcZ3GvLOBiuZYVxM+fCffILveNdf52JdMLm6yVJasNwreeDuu/j8Yztsf/mPmV7dYvnIcdZvO8zh2w/hpwpWc1CSFAgOrA80SrDr4NSaJHGBZ8eBbAX+7vsl9fUhf/bHH2WSv4+33LWAltEsszy6xLnntgnDp+GYp057DDYHXP/Uk6wv3sa3/MStPPXsJb7wzHnuOq45mgp+4V/+DizdyluSc9z2xv+CD59TfPLC5zjU2+Yn/9ef5MjyMYTQ+M9bmvMlL1ze5jOf/wL3Z9vc/ab34iaC/hvuJLtzbZ9yEiDLu6hpgaeZZcZt0guhaebfjRSCmUWfEPJAn9FNpJMQqeCxyLBPmdv3LYjArrWRaRGLAwcdxUNs3xISrVTbv9V6urTuydEfwSNe03f9y0fgxsD71X2+tlzzivPWgR8PFBFupgndvNO8knPzOzcle3/ReHU+By1/Mt4sAustJqgoO2pjZ3xMBnx0WNWSpioIQqBnTTMiBvIEQQgeJUEJRdU0uODxbtZE4QkiIHQMuBNj0Fq0kmIOKcHIAJH5HBsNETSNxTXNHMHTUkVbdCHnVhuqReMi3UsjiGukFILaWbIkQ9gAXhJcLPF3uxpNoKoDta9BC1QiSXTsbVAEtAgIrQjSILSMTZIqQXe65EqhioaibqjqmtWjS4xHDd4rekYRMs0Uz95kQjcVpN7jGxg2Fkc0X1vsdhnsXWN3T1NLEJ0enVHg8GKH46sdSpeidU7ZOOq6RIhAs9Bj5/Imy4sr1FVBlmt6iym2qRlsjghKI5cXcEFSWIcwUV1qe1TFREXn5DqAiihBd3UNj+J6Gci7khVtsMAzG7sc0oJbMolWAaxjVFbUjWOnhnWpuTooGI5rZAgsdlO6ix2WliHpljTjhsHeNtqPOXHnIZ55UXGS99BfXuToyY8xuj5hb8MTugE3dOxdrDixvkwlDAPr8IMhT/3xP+Zb/9Hf4+GXLBee/wNOHevw0ENv5vEvX+bpjz/B0W9/Py/99r+nGg8JHU0xHHB9coK1hRfIsy6pMozGku0x3LqiKUNgRQfSAJe3LEXp+eu3a8a+Yiws3/Kf/gjXiz4LJmFj6HniSkHIa6ZP/wKuuEC6ej9aLOG3a6Di0K3vJVtL+dOPfoE1dZ1Tt/b51Y+UmFvXyK85vuPMW3j04vN87vqfcvTwKv/sf/4tsn+/yM5Lv03Yeo5ndkZ8clLyRFPyQf9GHsxuYTo4y6j8CsX4GXy1TTk4w7R+B8u3L6IyBwnoXKM7GjudoDDIhT5JsYQzmuAApZnslTjnMIvrSK1opgX19hAfcrQqWTxxmOnQMd2eAFOyhQVUJ2NjaxAVwUIS3dO9wzmPyFM8gvHlc9TjEWZhkWSpCyLH1jUr/R7jomIysSiZ0EwKrJAsLq3QXViAlqPfWe4xrRqQcREq68C0gtHEMymHrPYSsq5iEiSJMaRZThAK2zikh42dhroKJGlCkqaxX6GOvRVCt5Qc56jKkqAESZYhGjefx0LweOepihLtQ6QleouQ0cPFW4d3AqUlaRLBidp6gldYZ1HSkWkipct7fKgiracFTGboDsS+Cq1bO8cWDMFFSoAWUNc1QhmEUDHx8HHiaqq6rfREJ2QpBVJJvJg5ObffSdsPERfxSAGwTYN1FmRcwBP92m4OPDgONuIdfO0ggtqyfObjhmZNblzg253mJf2DlYSbXUv3d4u4qHez5uz43cwWboSYO9V6F4WCX8u0Iu8DdV1HZFI0WBd47HOf59lnn6PT79NfPcTIZ3zr3/77aO+RzQiUZdrts8599BZSjt96jVCOaSZTfG6xwylXnpO87rY7uFxJ9mpLuP4SpvlF3vyB7+SxSyWXLz3O/Xecot9b4eKlghefOMf93/VX+chP/gt8dgy9ULM7KBk0PXrZFolOMUj2pgGjoZsILIGuiMHQxsizksByJqicpRSBN771A2yVOWkm2SkcG1OHkwUbj/4eTbnBav9NJE1KOaoxaeDsA/djeoI/fuwZ3nKbQkwMj59zdO45Qu+C531v+27+7cMP88zVS7zxoXv53u/8J5jH+kzPP0Y49xLndxoeG0yYNAlv69zBMXWIYvcIS3/nMNsf/TPq/3ObtHuS/OztLP3gqdjXaAxBMHc3FlJE89nWnZi2Ijy7gVULqPq2T3HWi+CCR4ooLNLWDubf8X6/TdspdQDRruqSPElACNz82Yj7ydkz1W4cq3v/kUwXvx7GTVTL+Vwzj+D3q4cv8zvYf4e5OYWUN9CxZkDSwf1eMbQ/QFs86I8wu+7z/b4agHLTeJVqRQIfbfYIITpvBogKOT6qcPgg2mw0IiZSzvaJNvFKRQ1uFwAfEEogtIzCGe2JxxvbI0Rk+SodEwOPxAcXM80gIo/XWQIyZqXEPoXoa+BxwWF0bBoORMlBkSZIV9G4eGNDvImtc7gW9RuXE5RQSAFGa6IIisAFB1pHXrUMLQ0pupTWZUmiNXUINCFghCBNNCGRNBND7S1WOIKWYAzXtku63lNWDR6FQ8B4wlQrirJhubOMTSNSGYSiDFDXJXk3pSo8lQPpBGlwVI1jMekiTU7lFXWoaLzAYsl1Tmd1IaIH1uGaQF3F70EZQ9rr4mTsxejmCVobdkcV07FFpBnZYkY30aRaoozGH16h8SCMYjgtaCqLC4pmMCJb7SIQlNYz9TBtYoWgsoHzVycMG/BSkhpFE2BrWJAlCR0/ZK3n8c2Y3dEuqpKsHj7CzsZ51rIVlk+eZvn6mJ2tCwxGDl8EXCaZ7Jbo9bvIltaY7HyCixcu8LFf/E2a27+d199xN0lV8Mu/9hl2Lz7HkdNnuXxlF1cU4KoY1NUevfUIt77pPQyKBu0daQKrRlCXnsIFlvPApWkgyyRpKrjuHfnQcfzWZR7fNNx7SLGc11yfVIxNSXFhFzt6Fu8EZmERk+VML+2hsNz1rhWeOj9lwVaYcsqlyYSrheT2MKHfWeRze5d5bnSVe153hg++65vY/dCT8IUrPLX15zwx3eayVXQ5xreqe3mz2WbRSwa71zhX7zIuC1ZdifEbDDeH5Jf6ZGc6qEwhOgrdVQgJOjG48YDgE5zq4oSPjfo6Jte+rHEh4BpHkqRIIWi8REoD2qNSRxACp1JcI7CNRSYarUJ0MJ/UOCExqWFvWhL6K5jFZWSeUjQ1roYmKJSvEcHHJmEhSbKUPMkQKOrGon2DNhKpDKmW1N6hpCLNUurcUZUOawO+cjgtyLtdAjGA1kkaK1MOdGro+C5ChLl6kc7MHKDwnjlqL6WKDaMhJgzeRullKSAxGt9OlI3zNNbTSIcQ4K2I81JbqhWidVUNRPEEIp88BBBSo7XGepBuf8EWLZChZRRckMS5JVYNPM41eCLtUrbzaxBx3rPWEtrqg1Qx+LfWxXNq5Yi9CygdQESIRELbgB2Po1ok6YCv0V9+iJvDia/xCPsJwst1wdsk66tUTG7UJZ8t9AcX55tqLbPjiVlyEgMEHxzqpqrC/vnFQMzj50nja3e0STUm3rfeURRT6rpid3sbc/UKsrNEZndwOsEmjjRL6Pe6DMe7LOkl1o7fx/b1kvHkApO9Cjupcb2EweVdOrf+FZwYsDP4CnZrG//bv4m8/3u499SdXLxa8fnHnqYebrN2/CTnNofYugYmNJXDVSVmcp6VE3cyqSxCGRIFRkSBRBcCuYbtOtDN2wZk50ltQC/mvDCUnFoWKGGppKX0DZONCdNr56h9n/5KD9tIwqBmwVjOvqnLM9dqTmWWMJ2wNXZMm5o7xITewhKPbl5lp9zife9/G/evncF/5CrTF5/ipQuf5bNbAyb1AseSW7mvc4hbGZJaSXFtgE+PUOyWNBe2MR1DIVZYCqcIIYq0BALYeKtKJfHOxTmjpcDNJHcPqordyIePY5YgzxtZxX6QeZCiMlcdgpiItK/Nkl6l5DzxmCUfcccZZYnX9C2/H37fWCEIYiZ9PPuM+5Ss+XYHKwLcRDW84R9x8wY3jNnLsTdh/xAHgZD5tvPv6yCI8dXHq0oO5glnmE1iUVZUzsvvsdAdmwNnpSdB8C0v0/n5dBlRrPaAPoo0yHgnRtWdGC4jRDye0jJWFeZE0SgpOENZ5nJwzO7AViWJgBS+lQaMKD9CtZO3I4TW9t77+YNUVzaamWmFlhKtZYuEEJF2ofFYnI09EdQ2mhWFGGQ4F92ErbOUVclkWEXVgFZ9xJiMSVOSBwjOUZdFvFZak610KYuCWqZ4ErQ3CJ1QktNYyWKni1eBTpqS9ft0F3rkSQfnIu+vrmvKoqKuSmrh6S4tkSwu4JyjLGsa2+DHU/r9DkmeYjqdttIjolqUTuJ5FzUmaFgQJFKTCoHWirV+h3FVUnjPpLBMXB2bWoXECsXYenanJWMv8FKQ6kgduzYqKFoEV3VTMBLlHB08a51AN9TUusGKmulwm0MrfTqrlikr9NYf4Ngp2L60w7WNUVT3CJ7hpGRlqWK5myPTO9i69Bif+eNP072+yOL4DoqdEZ997CtknTH3H/1Ojrnr7KiEptNH5h2aYsjlCy+x1FliOqrpakdqINOBYe2RCIaFRzhBZmKgpqae1UxyXXTIJpZr48DUeorSM96zDJ/5BK4ZgUiRvWOYtE9WnUf0V8lWl1hlRDndZHtjl9pX9EVOf1KR9RSP7+1y4rZ7uP/WO8k2dnAfeYTSbvAn9SZ73M4hscob1SrvlTkL4TzeGUb1aaRfJsvO0lclwgm8bwi1gpAgtEYlEplIaAwyTXBDR7AxYQ8ChDEtxc+1CbcHL5AqQQso64YgVVxMexphDBiFrwukUVF6UymCiypFaIPopkyrmnRxBZ0ZgoSirrF1jRXRRA+tkCikUWT9PmmWMh5MoWlRJg/COzpZHvt/yhpEnCu0gERrbFmSkhxolIvqWXFhcijhETKWtJ1rOeBSRblP30qN+gC0UsbWxtdabxTvPUoptIQqRMf2yFv380AxhMjhd86CjH4Gou2DihQjaKybL4xGabyMIIrWao4IaSkxUtJ4j1Jtz0OYfaYQ1V7mjX9t2CnAejEHTbyPDYCzHgOpTRRwOPBfEDHIjYpMEqXE/Fxnsob/n8cr9Bn8xSXvr/3YD/nj9XjFCrvYx91CuLHZMqpw76cHNyQRB36ac61nzcwHkFsC+1KnN+z5Wh4CZQy2qmPVqvUY8t5TlwWJg+e+8CkWltdYObRGv3+URAtMxzENfZbWHmD9yIDxaMzm5hZNUyKDZXNvjxMnG9LlFbbcES6ce4LLz3+K/mgdf2yZ8y9usTsesrLW48zRt3PU7WHSDL22ik4Vk9GAq1u7PHhfTlVash4kbf990wZspY3S5omS0XAQgUI/p24AACAASURBVNGSqZDo2rFVBrrKU1aB0e6Ua88+S1kMCPkKur9GMrQsSYc4vEq+lNPzJYO9TTbrIXXQ9L2jPy1JVjSPX9nl/te9njv6h+if3yR89iLVdJtPbl9lIs5wWK9wd7rGnUaRNFuESlOVJxABzMIxWJcIHVUhCdHdvNvpMimmWOdiX4EQWD+TKj1QFTtAD5orarU33yyoP4g035gQsy93yo33rGqTk5li0b48574C2D5//ut9hnj1I8C+oeLBF9ug/pU/6cvBhjhuDOT3r9XLD3JjNUDEuZ2XgyAHKxUH/RBezdV/dbSiiE8BsYHO+RnPkuhv4KMqkKSl/7RlbCF8NDWzUX5QaYk2shXV9gRr0SIGkcHFBV2K0PoSROWhuLKFlu8ZQDhCKyMYAlH/u0VgVIsKyhbXSXTk3dngcC5E9SEJwTaxutFesLTlxUsdKyK2NRRRUuC9jWpKISZEeIV1cYG2dcHSYpemLnFNjWsc1lkm4zGD0ZgqQpjxfFxAi5R+L8GPLUmqYzXF1wRryUUPo0EYqKyldg5tIORLJKnA6BTTMSytrrKwuESqU1AZW9cGTKY7VI3F1o668TTasLRqEEqQJYHaQ900UNf0fAedJYQQ8SznArV3gENLQSVUmzQJrIXSOYyAXCkqPJPKUTfQOEEDZN0uI1JCXXBpWFJ6WOhqlhaXkHXA75SUdUNTOYyHpcSw2jEIKTi22mFwvUTYwKJSdIJnb7jNA8c6PLuborJ1Dh/3VPe+yNXxVwgjC3VDiaQZP0M+DfTOvAu/VXH5/Dl2PvURLjwSUd20l6Duu4Wr01XuOqZ4sdsh9HJkvkh19SW+cP40uzuOVAoSEZPSwgZqHEtJxgsDOJpKgpPUjWfVwcpSwpULgr9yCv7deYseSQ5ZzZVnRgzP/TuCqxH5CiY/SqYzRNhALN+OCuvc09nkqY0X2NzcYbnTYdFNaRrNjnYs9I/w5jNvo7Nzlaf+4Of4Ril4wWme4hDfot7F+9USZ8UAHS5jvcHRI0tPcEvSwxxKWV43FDt75GJIdnwBlZo5lxwAL0CY6OwrLCKEiFAbRTmxWNsge3kM/gXYMgbJoQl4HEJHipzuZCAcqAYvA1KnON9W1hSgNN6keG2plMMhEE7hvaR2k4ioKI1zQJAkiSDJE2SiqOsJeZITMARiE1XWzWFaMhnWVNOauqzxTYNt4nOrshxvA1meoBKJdQ0Q6W3NpMa1dMdZNVFbg25adaHQFl+FJLgaiOZivq0eWBendYXHNw5MvJ5KKJAymiuquBjamH0QkOAjgOKca00dYxVCKRl7HqSO1Uyjo2VDcPPmvtqWSKOp6gYXiJVRD0jaz9HE9UBGAxzro2qRkDGxs87N3XZlmyBIRTufxoA2BLB1TEKEiAIQzrv/OGX+r4OG5JvHK5bwb4LNbl7A5wBcy4ve3+IATneQSTALstpNQovMBX8g8moDs3nvZpgBXPuo7Gs5QRAiUlWk0iAstrEtoqwiM0AIQl3y6T/9GCdO3MobH3ojnaNHKKqCkwspL000naTH8ZP3UNZ7bBQT/GCKKAbsiJQje4+ztvpm0iNvYO/iLhfHVxn89q/wGevIUsn6HUfJTjzEdt3j7CHPwlKfpXvuxA5H7G5t8sTlU7yn8GgCWvjIhiDCiEYKdipYMSIyCyx0AJ0qxiO4Z03yR9c8t6WS0dBx7eIOF7/0SWrnyPoLJNkq6d5LyMwj1k8hfJdbkwGPvPACeSdhMUnIy4a6StjpO5b6R3jzmQfZ/sOPs/2lr3BaCi5XiqfCEb5v4d3cm0NfDBB+gHcCHxJMf5kwTVg8dTdNditBNKjWryTPctIkobERlJS0n817Zm7csl0PnPNz4OPg/TajDAn2A/qZWhrcbJBGS82OcygwFwWb9eoczAFCa8w4QylCqwR2QxLymhwHkizaa3MAvb957FOFboQDAgf2aX8JLZggv0p1JRzo9ZihYwerPDdsG2aKU/sVzVczXmXlwCPwCBEIeLJU47zH2lmm2Op/S0NVNySzRCF4grNobUh0EoOIEJEyIVVExpoajwdvSZLYpCVl5BEHNI2NhkVegHcBR0TpjUnQRGTXNqFd1D1GCVKtkSIgRNT39s5jQ5wEJB7ra5RSmLapWYhAmmdIUccyvBAYEQNkqUz0MWgcxkQdeCk0IThEKxvIzMzDR+7vcDhmWjXobify+mpLUzZ4ZxE2nmtqcjrdhFRDVTs2r+2QyZS14yuMt3bx1tE1mtxIEmEohg29o4vorIvJunTSDq5qKMuCzc0tXAh08i7dTk7jBX40YunwOqPpmNIFRJKw0Okj0xwZaylMqigDK5SgnhTU04Iguwjv2/cC0ltSAwvdFB0Uvqkpy0DtBCgPGLSCwhvKICM1pBHc1u8yLS31Spdp5inKgJISHRzeaZqi4VDXkIQOl/2UalHx+rMn+MjnznF+sMw9KxWPvnCJKihe99C7+fjHn8UAFQ5U4PpoRHVul7uzZX7klz/CT/0PP8DORx6lHk0AgRIZ1bUep7/9DJ/69R9HqJo7Th4FJF88N2C8OeZTTzzNu97+Bq5Wnm5TcMRIVjowGhuOBc9OIUkzTy/z6CQwUYJ7TmkyMeFQP5A3Brk94Qsv/Dl2fA5Eil47zsl+gah2eHJvQnf9Tr7tvSn/5pc+wbWdCbcsLtBXgS88d563HjvCkxem/Off9B089+jvc9sLT/L9JuV3bMovcT+n5dv4Zm25JzyN8CWNegN7yb2M+odZPrlEtpCx8u6MU+9PKF8sENe3CD0bpXydxVUW3ziETGiGFbK3hJIaNwy48Yh6MmA8qEj6Od4VyCTDY6grqMZTlBLUdY1a6CKQqOCR3qKkwRmP7vcIowJbWbzQKC2iB0eAwfYQbQydvENmJMEY6uGIxgeaRmNMFs3RfIG3CdgKHzLqugEU+WJOIFBNx1SlYzqusVX0y5iOhqweOYY2GUILTKqiSWJIImdWWpxTKA+uaQjeI3U0OGzqANJEIIGAQ6KlxNYlUsdmYamibhNCobSEuoBgkNrghcA6R11FjwZtIpBgGxcpQN4hpG7N2mTsrVICLeMcGQVdY2+VTk1M2toJ3ANl43AiqiG5psbaBmMM1tlINUJC6xGjtaCaVrHfiShXaLTEhwbvGiofSLMonapk9GcISIKrUFrQNG1fg5KoVytl+tUXifmPX+vUYJ9KFH+LY18hZdaEPAfvbuIMzyOf/YO01Nf9wChSBtr3ZEwi/KwCPuNlCxGrVWF2HnHHG//UTX/3NTqUUvR6XYqqwqgoDuKaBuE92hgQgjzPOHL8KGqhS766zOKRNZ7dHJCXHU53Sj5z+TpHF0+wfuge/OPPkorAmBEysTxz7UVKf5r73/A23v3ffjO/+NFf4os//Rs0okZKTTHsMrre48Rbl3jkD36dM3cc5uzpBZ754jWe3dxl88qYFy5vcvftJ9mpPX0ilUgrSVMLlggMG8gMpCYGXl7CoSWJoGY1EywoxYuTAV+89Bw7l55GmpylO09wT3fMl/d2uLDtObV6iLfcKfndP/0KZZJy19oSW9c2uLa5zdljR/n8U0P+7ve9j8/8/M/z9qZkOe/w2HSBj/r7uDe/hzf0GjrNOYJYxKZnKHuHqNe6dG7Luf6nnpV3LLLw3hVEHiNJgcCkhvGoirQVIecSmFK1/U4uVkLxgtBSvubyo+1tKWh9T16B1z5/nmYS9C/jIIY2kL2RErNfoWBOc59L+873fI2PGTI/xwBeTgOao/VSHrg2N1Z0XrbxAVDhZprXwU3nVeF5UhHRJPGKSch+0vZqEoRXlxx4T900bXOboHaePO9iQkRXfPDUdUNdRefdmTmamE2KwWMU2Jp5P0Lw0ThNqbYK4PX8gvkAoaqBKK8XhEALgfWOuqnbpkAdnZeVQYXonKwTRZ4qAo7aOkoby/NSSgwB19QURRHdlY0hBBHLutqQZTk4gRcWoyMlaTRssK6m15s5ukZ0zUrD4uICeR7lXeudTbQUiERSNIq028X0YDCYIEKUcqyLhl6nTxE0aI2QgqqyWK9QWYrWCSLtszucUFaeREUlqG4/ZzHX6ODoLy4wHI65vDem21tANJaptKhMc2ShT2YkTVkwGY/Z2IX+yiKhaFjODFmekaeaQemoK0GxvYdF4JShCjCYVgSVka90ye2EvemEsgTjLXk3YWNjg7WlPsIbgmsoq5ogYG2hR64U1yvBZNrQSxLWlxcIQO09x1b61D1L6gUahUWRporzW5Y7Vxe4e63H4zrns5eGfPJFOLV4ilNH9tjeVbz+nrdzeeMqn/z0/8Pf/sEzfOhDT6KvxyqHWQg0+hxPPvkzLPzyN/DwT/8a4mfh0e0LlE5wm1qgeupxfugf/gCD0ZS/9eM/yH2vf4jnHj/Hk594lGrzMc4338uhFz7GO+5+B/3FE0x8Q1LVONVlc2I5cgikjIHguGjIq4ROt8HJLh+4RfG7j5znF37l97n0kf8lVrpWvpVDD76Nunia4vKz5EeP8uB338fTT16n2HiWwysGVUzZ2d1BiITPDSTf/g3fwcO///N8fznipE74sFvgf7OvZ1G/j/9D/hYrYZUgzmDVKcr0EOr2e8FJVt+Tc+p9GcmdGtETmNsNocqxG1PKKwPCzhQ7Dtgy4H3DeNuzeCzFy4xaVBT1lOloCsFTTRx5t4PIOgipkdKT5jomy7oiyTUSTzOtgIAKUIwrculwjSQIg0oUZIZiMiWUBXY0BmOonaNJNOliH2FyVB1Vw6QtcKWnmgqy1Q7LR9covUcmCicl13fHLJYNVQFlLRgNh3gESa/HatoheJBpgg82SnLWNcFZSFPwDSrJoXFI5yIXyShEy7MJzqGkJHhHPR1RuwqZpyQChE5QMiZBEKibgDY5SZrgpaBqGmwV5ZqDc1ghsc4jVHRC99ailaZpokrbrFKAD3gf+7V0mtNYh6s9SgmMFtRNhVKt1nq7sGup0Ilpq7NxQU+0jFSuEGhcSZZHjXedJPNgWIgUIQNl2ezPpz5EPlFLhm3qJrrS60j9VCZ7NUvB1/24QVF8Hmzv+xjsj1dA7+bBPW1EE/apEGL/GN77uWwktOot7TWOi/ONtIoZRWm2vglBNOxsr/1+weVrnVb95YdzjvF4RLzWcU1Pk4Q0zzHG4AIcXl/nv/6xH+MlmzBsApeGgqP5Cmv9guEk56E77+WZF1+kMYt88zc/wIf/cIfswhjRG9M5FNia/BGf/fwu3ZP/lP/9e34Y9z0/xHOTHfoqp1M7Np9/hg/9q3/G9taAv/dPf5j15eOMdwoee/xFts8/yWX/Nlauf5k7j9+HVQYbHMbFZHxcB5b64LylaWLcYKTEGInH8NCq5Hc/d5UP/95HeeLjf4LudOmd+TZe99BdTK8+RVUXHL/vEG961yGuXh1Tb7/I6VtWqEdXqYohpUt5dpLz7X/zvTz8P/0E373YoUx6/OH4GB8Z38fJpTP8cPJxpDsG6m58soQ/tIC4awWcoPvXDEu3aUSHGLX5AC4QEijrir3RgKIs5o7ETduPNGuid97jQ6R3z+5XIaKYAYS5M/vBsX9vRlC2fXH+Hd9Ag/F+3ytlnnXPkuQDibSIjflCiLkJ4Gt1vCy8vrkE+Urb7/9v//UbkoRX4g+9wl8TN20/pzneTNval0IV7Fd2Zsyfv2i8quRASkiNwmtF4wRKKaSSyNA2wLlWRUgZyqqJ+yiF9AnSx+DeBYdSIJWgdk1bapJtZ7uPN6/3IOPkGd1QLUmaRjM0wDvbuq5KjKgQyhCcjdmz0WRZilaeoqxxNj4ISrVN0gSESyBzBNciaUKAFCgC5XgUXUh9wAdNmmr6ix2qQmNrT13VUT84SUhMgpKKhW6XcVngdQZ5ghaSBRGYFBep6oJOoinKEu891sPFS9scWumishxUpBUp53DjisUT63gv6GpPV3fI85y1tUX6h5eQtqVXoairmmHRMJp6UjvBd3KyXFO7EikEJoHeWpfRnuLS9h7NZILuZnQkVLbBNRJflmxd32NSushNzww+ScmWV0AE9EKXpppSjsfYYkR1YYx3gs1hF6kMC90Oh5cW6HQWGVVDnro0ZjDy3HJknSOriyznKdrD7s6EC5f2uO1wh0PLfbp5SolkOq44utRhJTEsZpqHzvToHm344lbNWzJLtzD4DmyXlqle5+g9P4CV38Z652+wLSe4yiMKR9IP5J1tHvnZ9/FPdn+Zb/gHr+Ps6hp9oRjubfOV5z9N/ta7qT/2BP/XT/8GP/pfHuV1d5+ld8sJJhcv8chvPc77/6t3M6k9TDdJ8h5jn7PkLf1jjkcvP8HJdIVbO8cIySImc3z4U+fJxy/h0zt4+JMf44Uv/ApCp4j8dvJ7G+7hN7iye4htbmHl9gUePPoQH/m3P8X6/8vdmwdZdp7nfb9vO+duvXfPjhkMBhgsBIiNpLiJpExKotbIslwlK0pk2tGSqlhxNiUl20kqlSpv5SpV5CopdkqxndixLZdkcZNEkRIXkAAIgtjXwWD2pafX23c5y7flj+/c290DSAIjOSL0Vc3S99x7zulzz/m+933e530ePcb1Nzl/bYuikhw/cpLz117n2U//Y37UB15jjn8bvoMX4sPcqj7Dv8p+lQV+BkubMa8xUOdYb93Hucryfe9pM/NegzmmEB2BMJOSrUbOZJilNjITqJHBjWqK7TGjK1fQ3YOoTCGzOdrzObbWqDxiS0XVL2AckFkrqXzZSF1bWt0M36+o4hgXHNE7Zg8u0FtepKyqVFXUCX6yI0usHUV/mxaSXq9Le26GaDSqpZHDjMHOCBGTc289HDNud9Ee8uV5YuVS75IUdHPLzvoOtkxKX+0DhxMNzlpqLCaKZPwnDCIEbF1TuEgsLdKkEqpzCUXR2lC7EmstUvQQIqkRRVsRfYX1gVZM7uqZ0VhbY0MAJcl0h7ooEs2n4fgmU0ea3imSb4KLCBkxxlA7h5SCljE453E2CSUolTxdvE/eKAqPDIFgQ+JqO8duyJkqeppE74tIMiXJTPJUsT5gyciUQyqF0qJBryNIifURpZPXQVIfEY34gkNGn1TV6ip5wEg5pSP9eRkTXHV3UX3zJrzdRCB96Oa37E8hJgGObGgU6b6fqgzFXVR0ouoiYI9iTBMc7TEBTQDf2x4/bYYAIckzQ2YMWZ6jTYaUCmUM/8Pf+tvccvgQc0JxufCMK8dxFWl5iTWC9XGF6R1lrnUEPzrNsd4LXJUVcXsH0Q3MdyNq/AS/98s/Rdj8FR7+7oPcks8ikez0r7NVrNF5zzvof+YxfuUf/Ev+9t/6m9x27x0cee0sGxcv86nfvcQH/tqdDKtxkj8WBh8VnRjJZwJnty5zorNMR7RBJh+lFy9uYcpNQnaErz7xec5feg49t0hr6TYOPFzzoP1dHls/Tr1wiDtOrnDIzPPlRx7hUOapr97g2W+uMre4zMqhea5dOsuZX32E781ynq2O8PXwYW6EjPd1XuQ/m30VKX8kUTDjOcquoVg8RH0wcuJORX6vSTdisqMBmkR47FhZWUm9jVswHA0SiLkHHVZKpQBx3yOedPAn9/d+RuD+dvuJCWCqTOypJzQJRqIq+em9PQlAw7RCJ5r5cnqA5lhi389v1/FHsinf8q+3J9HaW3WY7nT/jLZb2JxQHPcnBM2e2JscpLwkVZfeynhLyYFSGj0xKzMJ9ZZSEb0nuYmCRKFNhmlKTs5ZRIzJuAhIOlsWV0ecb0qwIlUVtEiKQsH5xvY78WQFgtrWSGXwPiSlI6FARsbjEabVoWU0WimMSWXzurJ4m5qDm7kKmq755B9gCI3ayKQcE53HNbKAQkq8jxRji/AOHwSZMbRamihT1i2jxxUlg4FiXBbUXlDagPMlwlfU43Hqc4gRnRuilPhY05qNWOE4uDhLv1+wM7YEa8FZ5uoxy7fdw41zr0NmaLUMHSPQvqSqLVG0GZcVRTlM/QtREvIeKmtzcHGWsnAoGel2FKbdQS0q1rd3qFVgPBox3C4R9ZjZzizLi4uUK0v49T6tXoe822Z9a5j07seR8VaFjDWtXNOamUc6cNWAnWHByqEuuqXxwuFFneRfQ+DIwYxDCx1mtKIalaxd2wE0puijQqq8WO9wXjT3kWAUBLlUZEZwREhKr3htHHjnwRayXXF4PORgJrjW7vD4WcO7fui/4rF/98tsrvWpxgEvwBzydMcjnv/C36feOcj8T/xlXh1k/MGXnucnf+hdxK/cwLunqAZbnDm3xuG7H+Snf+7H+KVf/CXs2tf58lcl6qPvZn6kEWXFvfe9h88/9QyLJ09xmzhBz+acOTfg66+9QKt1nWvf/AIf+a4f4f/5jV/j8WeeJcQWsncSdURzyldcW+uxMRgyszDPyaMnePYrn+Fd90ge/fwqxYajZ2ZY6gUuXn2dQ3bIL9za5V9ufD8XyuNs1Tc4HB/lf1z4CfKdTzOMQx6Rt7Kul2m1Sg7N7HD/sS7mmEbOS6KPhHFqoBaZTJO/EgitEJmBscMPKmxRM7/cQQjZIN4BETztLMeGGltWUEnKrTHIiu58D9lqoUyLcjgkyIBWnlx4ahEZbm8xmy0QxiW+dmijyWa6dNoKYw1rN3LyXNLpzKDzDoPCIuoyyQYbTaZM8h6QHhssO4Mt1I5i9uCBFMAWY1R0zLQNZZ7TbncQweOrinKUpFczlWFjSH1CMjUVZkBVj1EyeRLk3RZlUWJrh8lbZKLxMpAa52u8MJh2jpFJBS36pPTlfUwiCAHQgiA0EQkiARdKTRC5QFWWiEnQ71ITZp7nQGp4FiI1aSbH0kRTRErUdDJPqk3BhdQIjsW6OJ30ffAJYfYBoRItxnuHt0koQauG4kgKWolN70Gd/BlgghLG6ZyqVYb3ltqlyoWSuwHrtzZuqp/zZ49+T9RYJihZCOFNF+gkmy2mbrBTJm4k9eq8GS2g+Vcq+ca+hT0Vgumbm6q1CJN7Ie120jSulEpJQ1OB///2HXx7DEECDUNI19G51KtnMkHebpG12nz5K1/h5O23k3czlqNkRyg2PRzpZAjlWLEwpw03CsHl6ij3feBnKLb/EavXHNWNQDwcmFuw9NyAl774a/jhQb77Yz/IY09fA+84deIE4eUB5bhmuHaJS9f73HP6FB//4MP8q//zs1RXXuCbLyseuvcUw8EanVaHbm+BV9ZX6S4uckytIGvD65sD1oc7SLYZXnqJe9/5QX7pn//fnNvchHyJ9qGc3nHFw67m7I1ZNostTh6+lZVMcfX8a9x7UvLVz13CXtIcOXyYsR1z7bUz3BqH/NB3HOG3L38f24Ml+tuv8I6ZnO878H7yjRepXcWL5ii+l9NZkMzOVix2DPqIJtYR0RFNxYAU20QBbU1ta4bjEXVd7Ta9i6k9FyGGKZ1uP41tQvdJwZBsEgClklfVrskfk7IXQqrdvhn2V+f2uSVPDyNARGTT/5aUJeP+CPftPMTufLN37NoW7HoOiD3XZEpvZJd2tb/C2VS50zt2WUZNs+1knkOw7zvdm0xMqUViLxUsTUx/aiZoyWgs0YQEEtW4EQtjklyVT4Y7iecmUUrjJg7EzUUSUlL71KwXmnVRkspRlrQApgs9UTxqkJ4Q01mKyWSuiMHhfMBEptreUYLzAecCjegKIXii23UHldoklSWSLGAUaeFEaaT2eBtwjfqREgKtJXnLIEUKvCKpQUSpNJnXVU3wqTm3djE5DlclPiics1SlRecCqSMyA4GhKixSSzIj8Q5c1OTtNt35ZYpijBbQ7nbodHqopkJR1UO6cz1yp5BZD+tgVEo2S4cstmmpOUalJ1MeYwK6CyETVNT0Rxu4qkRLSZ7nDKwnbpYI0yYzKpleEbEByq0+QYDHYYTHO03toN3KyFWL7e0BNzb6bA/HtNpteguK5XYOXlLGwKXrG/SkJEeyPRghsy6z87OIdovNsYVhBSZjcbZDbT0+GFxMN2xbSg53DKEjGJvIqJSsSE1uoUJzxyHPNfNBTj30AvbRL7O1voGvI+NRpJ1BvzjD2QsjPvWFL3H86GluO77EJ3/vET7+gQd4/Uu/TR1HvHbmFe68cg/f9f7v5J8f+TWq4gIvvXwruvUSD959nBOHFvjq17/KsYUFXvzip5g7dSdPvX6Bx59+kXPX1uge7vHhd93Np3/nD3jp+iqDKPAhopTjWDupWe34FdRsi5XlLgfb62xvP831QYHbLjFYEIraenI34ifuOsHX1jf5Zn2FsRtwmxjyXXrE8fA058ImT7jP87Q8z1L7/Tx02z3c9qGcI7fNkB3IEHNNOFMEggfREvhRkuGMLhJs+uMDyCzDtA2VDdixnz4XQkmk0xjpsbYi2gBG41GEAFnb4IMh+ioFNUJQW49Wmv71HaoyIc95W2CsRylBhkArQzvT5EoTXMSOK2ywdDJFp91CSoXWKciuQxImqHZGFHkXkTUoV2bIWhl+ZFM5XEVIvcAYY9CZTt4cEoKLjVJRoinGxgU4xGaS1gopFUHK1G+jFUJJ8L5RUmtK7z4ppkWSA26ISWUmREFwASXTAhlDJPhUHUjV80DTEABCJqEDqZrzSXKhIUSsDYnj7C06TSLT+RUf2Gu4NR2T32GyD99QWhqKZ1qEJnOnaOhSKZlTE7QvBpTUZEbjY/r+JzLNE/Quxv1c4D9+vDExaE73z5gq0HxHE1pDg/BPcPwp7WiSFNycBOz9XPPzJNGYKr3slWJkEgg1y3icJHYTKdM4Ddgm4ZqQErUPHWzEA97GsdLEp8Fok5reY0A4l1y9haDVbrO1tY0LgSxCLgVzuSJGQaUilYTZlkQ7yVyAemaGHXU/t9///fQ3fot6vEM5iujM02lbtqrzXFjXfOmZ5+hmS9TjmudePctDdxznEaGobclr585y5Oi7ue+uU9xy+zxVdZ7nz55AqsvceXSRGCs2B5eZbbe4/sJTzB4/yVeeeY5Xz11l5ALLcmSGYwAAIABJREFUx5Z44MQRfv2zX2NNSApSNWEmC9zZAYNmwy+wsCw5MmdYNFuMxpdZ65ewVtFpF0RpCGWfRWV5z+nbeG67zzcGV+mVq9yVD3mo02KB11n3G7zU/wNeyW/nziMPsnDvPPN3anqHDXImKStSk+YZRQKDBAgl2NzaYjAYUNd1Qx+6KXENe7yIJ/cziZ2xe8+z2zcQd4PMSYFsQjGaVA8mVYC9QeYkWdhttG9mA7FLeBF73vfnITeYjF1qUPO9THqamis/NVLcc113k4TJK001plE3S/PW3rrlGy+YIDFzJk3/k9f2NobfnAe8lcQA3mJyMCkrTRRImyMklQ0psQh8cCnr1CpJ9jWLrABUIlkilZkG2GKSHIhA5QNJIVA0720+KSTEpIYk4p7brWloFs0v6htJwUnGGiAt/jFRniZlY9foi6vGkyGGJuDXGhU8dV3hrE2LqVZImWOyZKxEbCokEwElIbHWNdm1SBUNoSFqpGkR6proaaosifoRfVrMS1cjdSTLEh2q251Ftnqsb28y1zJ0u21MnuGiRgVJGUBHQBm0zLEiUpQ1YxcxwbM19pTOklETAwxCpMw7DKsRo6JPKEt6szN0Fw8SXZthP9BtaVq9Dl5LLInOVZclWcsgjEAiqYqaQX/E8pJhfq4N/R3WtwegDabt6TiDn7WMBwEXDeV4TEfCYruNUAoZPcsH5wlKs9kfUxU1WTskLfy+xShFK5cYJBmSlbZktiW5Wkd67QzpM2IV6frIQzMzfKY6zukP/CjbVy9TlUNGVUWxBboTEbpma1zy2JNPIbMW773/fh757a/yg5+4n87yImU55PKFV7ly7lV+6KPv447Th3nx6UusX1nlBW3oZRmzGVzvn6cXj3Pjldf52nqfx595jFdffYVWtsDV1TnuecedfPrzjxCXDyO0BlugVc2869HXFcEssjybszRTIPxV2gSefeEylBW6XTFynnbUvP/gIlm7zf+1ZlmrnqIVPULNoeQSXxr/HpeC43f9GXw8y7GF49x2zwc58cEerVskKInspkk8+kAcecIwEKpkFBjK9MdbT1QCpTOCjBAK7MgmCkmjxRwCiCCI3iF1JBpw3iGsQLcVwQvwjVaZSvxbMAw2R3hqTG6Isib2I7I2qNww0zLMzuRoIxlbh6sdSkI7yzAtRR0iEBAyBdyjnQJT1Yy2tjG9NlkvhzyDVoaoPPXOkKxloOHeJ7f0CRqVAnVnLa6u0ZokS+oszjfa/jo1hboQyZoeAKkVCgjWkZR6Gv538GkBlSmhiBNEzTuiT4EnIYLzyDzDaJ2UhBpur4CkWCT1LjInkmqajQFCSK7LqgnMpSRKOU0aJ0D37p/J3BKmHgzEgGzM2NJMKZkoL0kpQE78YiQipmRCqiSlik+qRyDJ9IT/+y0acL3ZivNtNCY86z2058mWP/azQqRnApg6F++NYiZA0xv3tudgotka2deAOVm0ZWNyNDGsQu6W/t9uY084kFS5tE7BaUzruQ+JKSCk4sjJ25NiVghkIsldGy0YuERbjiI9M3OtSDvLeSEscuqBH+Tyi0/jV88zLCr6MaB6DpEV3NjZoXzpeb7zO96HijVXz5/jncduYe7wQcrRNufOn+Gh++/k8MEV7r3nMM988yJXLq7TziXzuWG+J6hDibBdtq+v8cSO54tPfJnh9hit5tkaWGbbHT795ac49OBdeB+RbsRM5jlge2yrCpEd49YFz1yrRIUBqqo589JVzLjEHB5zZdtxSOXcfniJLd3mN8+scaH/JEeERfSOM7QZz22+xqCq+dpgC8IG77nrXg68f4b5UwrVhuhIanAuVSvZq0QH9HdSv8HNz/C0cnDzF8VuZSw2r4k9PQcTdaPpHsSudPwkQZ5UAibPxwQ931s9aDZN3jVN0G8+3tt6TJquYXqtvvVpZ28Qv3vddpuM096F/GMC+73XfXdPaS14wzn9KVUOErKhG5di8JVH6dTMEmOcKhdJ4Wi328QYUilcJBmzSTbV67QbbmskBI93jiBBukb6zTcLn0jIvzKJ7+9dqqNNSpZ5btAogreNz4IjoJAqTPmgqWTbTOSxMQUJHu8lUSpkaBrLiIgQiN4TvEWGpMpE9HhbUUqZaAxSYzJJlBHrU1OlEwEXfeof0ArIUSoQhEdWbdo9yDoSh6PygVjU6JZkWAzRQiC0xEiFVoL+9gaVC8TZLk5AYS2lj2QqxwrDla0h2mT4AKVzjAnMzS0xOzND5R2m2qIqYWfHUva3OXwypxqO0EgqneNlG5N1OXDgMOPOCHKD8J3GgbbE1iOkMrRneoQs4GtLVZYMt7eg9szN3EY+26EYeZzUFDYyuLZFsd2m3NmhlS/gQ6RPZFgJDt9yiPl2hjKaceEZlYGi9FCOuLE5YlhIbowt3ueszGZ08hYL7Q5RwDEjOLaccWXbsuMjvQVJJ8t453gR0/4eti8+Rm03OP/aRYYjj1MCrUoGF84xc3iJsy8bdspVfvj+BX7js88wd/IYw+01drZucP3KBUoXef/9t/PCN85jN18gHD/A8y+8xPb5R/nJn/0ov/IvvkZv7n08/snfQIhVTr/jbk4efYjP/Jvf5//4O/8LevYg1K+BrVE+kLfm2BrkWH+DfPlujpjX6cU+14tl4rlbqK89Sm372IbWccf8DD94xyn+yu8+jqeNiCVBKJ7RntdbFbrIycKQQkQekJYHT3huvyOCDfhaoBaBjJRdV+BGDntjjOgognPEyuPHllA5Gh9CRhtjspYk2IB3FmRK3n1pGQ9LEBphLCEWVMMa3eoxjprxVh+TJcdyoTV5u0uIDrIMLZLOfjEaUvQ9vp2zfGCWpZkWnZUehYtURUmIkoPdjI7R6F6bkQ2Miyo5oLc111+9zJGDObHsJ8qfhlZbUhWCIAx1VSeXdB+JPiK9BeexpSHTEhEcISbJUFsHZAzYRkAhKgkqKZnFGHEqoTqqcV2nQeGjSCVzomCSA0idgu3M6AbjSaZiIqYATyuNCMl7w5OQuNg0q4YG0IgJgUhARAg4V6GIxGARSjdzYwIofB2SYRu7KIySGqQmhqR2NpWlkwptTAJl/EQesFluY0QolQANJae9Et47vIuEkFRakitzAle+pYV638Iy+dx06Z8uQn8WS//NSOZk2Z7wcsW+96btk8a+iZzj3uAmQlKhaz4wRUAbIOqNFRcx3XeMoQFOG4qa2E0CQpO8hZgqO7GpUr1th0hN9DEETJYhlE7SptpQu8C48tz9/o9ShYBylkxrTKOZP6cEcz3NxtiDgTwX5GhujR2UuYu73vtBqm9YBhevMt62zChBZrbZeGWDg3fexctnuxyd73L/sS5PvniNUw+fpn/1HKvXzrO+scbxQ4vcd/IYT37tDOW15wmnP8Yzzz7P6eNdTpw+yleeOU+ve5pP/ubvsHLA8a53PYgo5vnS55/jl7/weeZP3M7qmZfx/RHdzNDWXTZ2FJVfZ+bA7ZyQ57HBsDHuUF+YoXr9KkWxStGXbA8sD955lLnZZf7uJ7/J0M+Rhz7atPmyG/JMndF1nqwcMVKC9y8G7vrujOX7TFPVi9DERykwkilR2HMjO+emsqWToHuCHKfK424n0wTZn2roR5pqQprTEuUtgbXTCth0vwlMnRidJS8qhfNJGjU0lc89+UACX/ec7MT3Sk4Q4j8H42ZaUdzzn+by7i9IChqD4PTDfkrRG2fiXQnUmw7SzGlvNt9OZGknBsMIpt/DXoz/jxpvzSHZJ58ApEZpUlDvwbvARNOZphGFmJDHmMTMiUJSe/DVCJMpjMn2lbVsXSekLTSnIkRC6KPHVWUqp8dkZBSjQCuBiRGTQ1EEqto3DTcO6yy9mRmG4wpBhjYKpGqaZVLAL0RAmhZKKIRL1YJhvw9YXFmnhmShklnUuERrS6vbJsiIrV2qBOikdKIzTe3BFWPKYsy4GDGuSma7Ob35FqozR+0KYjmk7TRlq2K4XbA2KlhZXmCml9PJJC0tKWyflsgY1zlVf4yUkazVYr5TY4xCe0PldXLyne1wsNMj687SyQx1XXD1yibjuiQoycLKAY63WhRRcL00OK/YtJaN0Q0OHcq5awEG1iLzGbzWoBWzCwE92AFRUEVNXZfU1ZDaDrixKdh8/jJLB+dQRkFd4cZjisIwGJScvPtWBn1PXVQYFO28RzbTI2jB1cqzU0YGY8+w7xgPSupxQT2oePSJLVYfgBMnVlhaOcGpQ8c41mlReOhKwYKAKCI7ETaBD57KefKi46Mf/29ZMC2qwf/O5QsVg1Gk1UmUjfFmyeiJM1x+/TrmL36Q0XOLLLevsKEqqpFj9ewFnnziCR788Q/h/8nnCFnBxto5/GxGubnKL/zXL/DvP/UZPvaxn2Xz8kt84r/8BJ/46/8xnTrw7z71SeJ2id1eRc30ErKoOiBvY7V/ltO3/Cgil7C0gJhdob0ZOPfsL1M05lR+DH/lHSc4vdDjE597BC9XIHik9OTmJO/+0I/y4e/9S3zj15/nmSf+BjNixOmsw4oUCFOjVuZgVkJL4IpkzBXHFrdd48qADB402JHF9itCbcGkY5cjS6gV9aBCCIvpCITJcSEj7ypk1qKsKmxV4J2lGozQhaCyjpAZdAzEuqawETPbAZOhomS8s03wjlYrY+wE2wNPaEUGlyuCcARfkdU19ShQ9UuWO0eZmWvTW+hRFTVXzl1mZWUWX45wdUG33UVLST2qUdpTB4NEEapEU8wkyJYhqkBdVkjlEURU9FgisqE0urIgCkGwpARJpcDfKolo1IpECHjnsFWVQAqpm1k0AQzOB3CiQeoVQitQotkmUsWi9kSVI1VERYu3nhAFWhjybgvnwrRSGnwCRWoXsC5JrAqpUFlONFmiQfkwNTHyBDw+KbcJiRSxoTmKRJvyNi3sMWJkgBhwNmB9omK12m0y097l3QtJECE1F0Y75axKFFlm3spS8CYjvvGnP7JD7z/smAZFN/Or09bm3ykkt2+h3OtLEEJEIqcL8N7fSTToNxOEfEIpkCkRi2GP8dO+0ew/7r00KcmY6M+/nca+FFEKTJ6DUqhWh3ZvDusc1jq8F4yrwCPPXSLcrZidXWCm1WOu1Wa+3cIFaElBV0BBpIyCqODWecGlPrzvA38NX6wSqjFXroxZ3XLMzzmM0exc7XP18hNs3H4Lp+57kGKrw+H2BfI8Ym9scuP1i/RPHuPofacpx59DzA+5tHqZw+0Rjz/3Ci+cO8vP/Kc/zc/+4j9j9fxz/PzP/Tzvvu8unn7+dX7r8cewZ7fZeu0s3VsPYqTFmGXqsMLZzTXee+uHidriF1fIdJvxuVe58fgn2fGOuqpwV+C//5EP8OqFdf7xpx9noI8TosOQMb/8MD/wiY9z+OBhXv/qGc588ddY9Gvc96PvQu5oynMlet4gOwI1q4ijgMjEPjnMybDWNo7uu4lncOleSvTpXZ37GBu/RiFI1iZNCh0D1jaeHlMKXRPYSpH2EycGkM133lSGJjeDSs2nk0kgvUeIXQnUSeItG5pR8/y83ccU2d8Hz+/9YVf1af+UNM2gENNizpsLJ+y97nsOfNMzuMeLYjLB7JmDhRQTEs2u7OwfMd6aWhEBhWsWYbV7czUOw8F7hPWQGWzw2KoErZnImUodcVWaAKMr0UalIJ3EvQ1ElIJ23kGqhGY5V+LKEhAoaYAw5cQlsb9AK08eBMTUxOwDjIoCnCfIppohFUoalILaFWRZhncW16gBS6kJMVAMxySLlNjU8QQ2SGztafUUvnagNUqqlGUbw6isqMsBo7LAtBQz8z1iX6OUx2cZOzZQFw5XJYWkbs8w2hjgnUIEiawVw0HJhc0NZDdy290P0Wm1qbxOmbuvuX490M0FTplEA1IZlYBMBIwdUw4rzlxcZePGGh7P3NIMR9oKDcwuHSF0S4pyzMbaJqsXr1NXhpnOEgcWlyijpIyOkbOMKkEY1CwuddiqPCWaMDNLxxiUbLN55Qo7N4ZIJSj6Q+pxIO+t0D12C3W9jR30cYNIZ36e9swcawNLOzecfXmVhaPzjAvLxvURm+f6BFewNC/Y+uYn+dxT24iOI3Y1euYE7/mLf4Pvf8cRFrsZWRC4AP1+YGczYLPA++7q8Np1xa33fTcfq2q+8K//Ka9vWuI4UHTAMqJjOnRqePTXX+Q9B57k8usXMN15LCWXrpznd37js/zKr/4SS4f+HsOtAW7jVW5sKVxZ0IqCTHYobjyJHW2xaNosdZbpV9epBxvNAyFpHXmYUG0R1l4hE+eZmV8mX3gZnbdZ6B5hdP4qT33uMwxtRe08Js/5ge+4n7MbFf/2qxcpRA7ifSCe4Lt+6l/w83/1Pt77ji4Wwcd+7BD/8CP/G6Mr/xM3IlzdHHP07Bat2YyszKh6EiqL3apw/TLx8lGYPDXtitluQrJDwI9qXF0hbc3mjQHCKEymiJVCyQxmO7Slwo4dmc5RSuGtpQh9lLR0Fnt4UVM78FERhaQaiuQZQIVRhlY3p9UxKZj2ERUi43IT6wpqaymtQGWLaEeSSo2S6DyiqlCVR+cCsziHURqRJ11+neV4D4qAnmkRaof0nqwtELnG+oCvPMWwSn0DWmJyzXh7m7w7g4h22rwstEBlyTVaNBXCygWkluhcI9AgFbVN9KCJJ4BzyUldRj+lfjhnsXWJMhrIqGPd9FUJjDJoqfEBok30LW3UVDpQa01dedp5RllWuBATh0U6IhLrHHriPi+S87oINvWBxGZCjz5RnYxCC4nyDlqK2gYq67DeN2iVxFaW4MFoDUJMzSIRgRB3FUicd9R1/VaWgrfBmJKxABon48lPYXfhnfYCwP6VVzRo/+4epZAISSP7mN4vpEhN5s0nm7aCPQtw2rI34JdC3oQm7t3+9kdRIwKPZv7wMZaO305dSXzQzC0f4q5738G15x/hM69V0LWEvMvs0kkevP/9PHBghrZO/UDOR4oyUtcRp+GOFc3lLcm9D/0kuZ3BDD/HmRs1frtktJRTxyssdY8x3LC8+NWXuHep4NprrzJ/6hT2xhVefu1VVg4e44Pf+S5uvWue/uoG46vP8aJzFFt9bl05iIiCqy98lnKzTw9FpjLKqmRrcy3dTTrj8N0fYPPlx4jVdWYXNIfnF8hmL6F0i7l8hVf+4DFeffLrbA02GQ5rZg8s81N/+eP89h+c57lzN9jSSyj9LkR4mp/+e3+fH/nQHHNdiUNwxz092jt/k+Kpf8LZL7zM0Q+/j9aJPEkvZ+m+kN0/vlk93pSspu9kN3iPpDlIkKRO3+wbnAbtTaSbkP49T5TY/f9eIEA1oi+hkfhVE9Wim5rs96bn+1Pzt9+Q7FEC2psgNGNCDdqlB5FA6j/iWd9btdzd0Zt84k128QZRhDds/0P2/4eMt5QceBcILqJUJMiEQtVN427wu4YaeItQiQubzMdck6nK6UXzMYD1RDFxLg3J/VcbhEp9BFOt4ZBUgLRJ5XajdCpH6pgQfmpEtA3/TRJixLmY6A4hKSBpnZyWXTVGq/RtBZ/Oo2lxJiqN6c3jaoeITVktQp4rhM6xdU0MnlwCQRIcTZUiZ33cRxHwhcdFQYgC1ZohyJzMWrJWwImaUFcsLc1TbRTg28ws9Gh1Oiih6K3Mc2Wzj2ordLeLK4CoAEXRL5hvL1CMh1i3TVHXOCSD+XluP3qQ7Y0hwQVaWYvMaDqmzdbqFnPHT3DyYIcXnn+J/lYfN3TIbIa63eG6z/DbQ9x4yPbWgM1BwVhGWosrrN7YYbi2zXhziO4auofnGQxGRAaMtrYIpaXeGuMLQT1jkRIur0pywI4AKzGtWboLbUZjz3i9pPJ9+teGbF/oYweW7uIsO9V1RG+FugS7sYa/uIbSO3xj/R9y/YFDHH7vj/Bdty5xT9exNBd4Wi7x289vcVEf5UMrmuN33cZK62G2+59l/XevU62PEGMIWlLbEdp6OrrPC8U8Nrsbt3WWWI4QmSDLRoycYOWeOYZfWadYL4lZG2kMSjmUrgkNFWM0uMqgf5HgBX60QSQyc+8p/NqLuP4AozPyThtpr7Eyd4RDcYWzz1/l7NkXGLkBNZCZjIffcYKnz66ytlUzjjMofRjkgJ//7/5nfvDDh5g7KPjc9cCzQ8HDBxQH3ncrc4++ix458zNLjIdrnHu2ZGFnkdmjCm8jQSbDMS8jQTeun6Unm3EQLL6oqEYlUQWsd4i2ptU2xLpmvD0mDEvmDmmiMsi2Zrw+oBoXaO1RUjFY79OZrxGtLDVRSgWtNsEKOrOLmCwgvEOGGhUtWkvqosK7IcYoTN6h0xWQ5VgvmFuYoyYgvAXvcVWBkiWdlSN4OyZrdYmmhxOG0ahC+JpeJ6MUBmkiuBpfOJRsEZWhqEuc0IBD+YAioHSWVDx0jpQ1SoHJNUpLSpeoRzHUSTJVJMR8MKoIoSai8EEglERrjZIC52ocIEXA29A4HwuEjbho0TI5rgqpiUomtcAYQGi8t8nDRfgGNQugIDbAhpKS2iU3ZqmS6pTWskHrYlqkPUTv0VoxrjxSCbRUydAoxqbZ2SJFRDdWyAEwzX5ykxrAfTP3ihhBgQrJnyGmdqNdov2fZHwb0QSmaP6+V/egeWJvmCKmL+2rIogmoJ9+uiGXTfnXzR730IXEdNfNWhOnIVdDJWqCriAaWXjRcLy/PWkW+ypBb8JtmIZ3QmLaPTpzB1g5dS/57Ck6aplWa5a5+RalHKBmVhi7PsXFa1D3KTo7fOPaJldPL3H4zvfy7jnFgva02oorIuOJ9YoNOcs9PUnIDiEeOk0pz7P99QuMr1wmbo2wWcbQXmc2H5HlM7zcWcG23ks88xW8tSg1RuuCqBRH715i9ZUzDNZ2UMsHUMFhZImUSa3QO09RbOLsGDceUly7QiBy8nvvY/Dc7+OGBdnKCu22woTrLPdWWPZzPPn4BS6dP89WvU2BYn5hno/8hQf47O+9wvW1iiI7SdY5SHcW/pv/4qf5jndmCA3f6IOVkRMrGT/8i7ez8dxPceie43RW5nYbjt/KPTEN5N+4aXKvTvpcQuMv5UOKfvYiyPs8Qpp7dp8G/54gNe45niBV2tJt0JBX9iLW00rEXhffSVni2++ef6tjd4bZf912CVhMr9kkMJ+mVuLmfU32tjfZoKn4yH3vmbz+ZnQmNZVJ3n+I/Q3K8Q1N62823nLPAcQkM+o9IgqCj4kHHEVS+fARIyXOJcWghmmElKl/T2qNFmC9TYiZSD0JIUaiVLgYEY1ySAweoqD2KQlQUWFkQuBCgy6ERh4uhHQOYsJVih6pNFJPJLdSA3SW5aQG5dSgk3SqkzFIVBojk0eD1ppMiUb/W+FjREZFVSeN96gkEU1RjFBCJ3dgW1FUDoskasm11QEuKLKWQhCxpcUVjqooiLJFr9PDtHLybpssy3HWcVBHqsEYnc1QhORn4GtPaT03tq+jSAWNYX9IUXuq2rHR6zHu9xF1yYyBdi7pSkkLycbVy2TtDpiUXM3NKZZmFlCHD3Lk2DyhGHG9GjK0YyrbR/Y0sb2EL0qCCqgZQ1CCweY2g/VhQkdrRyjKVA3KINoNBlegchKtAdkDPct4BN5XtA51OHjqANc2PGImZ/b2BbwT9JY63H/PcfzwTrbLMTeun2Xt3LMML77O8Np5Xtm4xOUXN7jQW+DOOxZ493ce4uFbDtM7PscTz6zxhVtPcvRA5ODSUT76F36Op772D7haV4Sxx4Qk0zn2FUIHzKbDixZCOVo5yOi4fOEiX/yNX+XHfvyv8kvf+Lvs7CRTMqHbKK15ec0lpRohGfdfYbTxDO2Z+4iuIkb4ztvv4dmtR1mtS6JpU2U5t9xyC8sHP8yFZx7l2rXnGQ8uEQS0TcYtBzpcv9Fnfbum8i1MvsBs5xB336v56EdOc2ZjyIVXDa9u9Ljal1wU8J/8wCGWvvun8X2L2nCovieQjG2K1TFOeFxMnHiJpx5XSGVozbWJtUveHHWk6I+xdgdaPWIQDPtl4u0LTW4io/4YM9PBO4+1kdqBFRIlW8zMdijriryTkuwQBSE48m4bpSVVUaKiI89A5znBOULwVNUYTAfVyRFGEwPMdFtoo5IksvcEWyNEpDM/hxuP0J0WQmcUozFl7VCZQinBaDAkIAiuJlqLBFpO4z3Y4QgpDdpoZNPg25uV1HWS9szaM2gZMEYQFBjpKeo6+Z7EJgCMgryVY51u+N+gDGgtiUYjarC1RYS0mCmVhBWEMMknIZBK+CLx0kOMKC0JBKRoeOUh9UBEQBszNcsKDQlVEKkqm+Y6AULohp6yK0yePIYUiNiowyV/lyDj1JVZSoUWpAZk71GtDpNugpSkpEVcEJFEtBQ0tkjTReVPNOK3yYLfoJt7KwP7kcq9iN/u6UbE1LhzN4hhEudP3tQE/bsB84SHvddcKm1KFFlgt4m5+dikoRMx+V7/bJuS3xAq3BQ87Epk7mZQk6sZY0S3Otz24Lt514e+h9curnLotrsw7UW0yZib1ZxYstS3H2S7Lllfv8z2+lWKzQ22r19ic/UyF1/e4CUzyzvvXeTO2+Y40ZmhNdfi/PkhTx9Z4UAnMHfgHk7f4Th/5je5UG+Tb43ohQrnRgw0RO/INwqc7KBbnk7b4KqCi+fPcsuheT7ygY/zxX/9JUbDIVl3iZl2myzrsT6OxJCjTEU1OoerbwVfE8bb+Cj5vjvu5N989evgcpzMsN0Ox5YXmJu7m9eefYqN1acZFzeQyrC02OK2W+a4+Noqa5tjgllmvrPC4soyd93f4YH7DnNpe8yVi5K1SuFKwYaGjz+oOHTf7fQOzkyVq95qH9DUAXlPsD65fyf9BUk4ZUJ5E2glpwnw5PudOIdPhmCXoiKEwIcGXNh3Wo225OQ4k1dFMxcyoROF6fO4l4b3dh6T534ae5LWE8QujSj9fVMCsfcai7R9QmlsOkb2HWdSsdwLZ9CADkLsBSb2JGR7X5nEhayDAAAgAElEQVScG2JfQvfHjbeWHBD3uD82ikA+4IXa/cLl7k1yc3kFYmOaFpK8XpwsSslBVJB8EYiNW/LEzAc55aXJ5hf1IVUdaDhxodlGo+EuYkSbpgohSOY/zUXXQhNESA9JM9n5EAjY5uKFpJGudktimogI0G61krMzAus8ZVnibSBrCWxd46wjSkUIgrIqSWqKusmqPS4qRpsVWVsyM5tjjCTLFErBcFSBdwRXUFYVVTBUIeCjAxXR3YyOTk1e1kO1NWC8ucXGbA87LDGZpGMUKkZCbRFSEJCsbW1iJXQXZlhuZfTmF7CzbRa7GVZGtno9dHdARk3WVYyqEm8dQWnUXAsXLMXOgKoskELByOFHFiqH1grTyxivrROcxszPoFqScuDoXx6gZjRziynw8jOSpYMZs21DqOHCxYqR0NxyeoXj0sF4hfXTh/j6U6+w/uSjbF9fZfj8c1zzLS6dm2F1e5mddxzl/fe9G3k08tTlTV7faBGPLXLfyQ/zAx9/nF//1GdYr3xT3k9JYOUiItREeYMYPSpXBOnZuHGdx7/yGf76//qP+KdLK2xuDIneszhj+KGP38Nv/fpv4r1CKs1LL63y6c8+z9yRDK0E1sekKW0rYqwJfgxuhw988Ic5f/Yaq1deYbh9keCGKKnIjYYo2RjMY6UC0yFrLXPoxAE+8P238NLlPpev9hi4QKtynEZyx4Gc+x7o0J15J8XamNHL6xRn1qg3htjRDjuDEkeJiyp5DOQy9ai0Bc5qKEtGg5JRf0y5NaSuBqh5Q1WlZlmlJHmuyZHYylH6AumSqlirlRF0Ur7JdI0bB2QUEJKRFkKgBNSjIf31DTINoZsTY453dZP8B5SQidwaBd4GhNLITDdNUU2DpgctNdF7MpOjpEL6MbEcU1mN1hoXCzJjmsB7d56p64BAQQxobdBZ0vTPhMLVZXqehWqAgsS7jcKiVKINKUVTVQQlIrKVUdX1dF4IwSOVTLRH6afTPKKpggqJUqpBkif29mmBVlIRokcIiRDJiXK6EMdGCKFBkZNk6gRZClP33RCS5KiUoqmIuqSeFD3OWbzziX4km/OKESGbJECK1MToA0I1AXBjdhYJaJEqCUbKqZiEnrib/knHt1C2/g819pCK3py/Ox1/uJyilGJXEWaSMEzQzyYqbu6U/ce+eX/NzxNX2MnCvlePXP5pXftvYbzZZYk3BYZ70d60HZKsYEqIBkVNjM2cGNvc9r6PsnzPg6zxCsdvP0yv22NcRrZHnkIajhztcoSAPTrLtY0DXLh4hY3Xz7K2us76i2fwscPmYIbra3PcffwAdx89iZiLnLv+OjdmWhyZn+fgkXfy8IOXGDx2ncs7BRFL9AXWekpRIIMhiJwgFKabUfsRq1df5/I5w3u+78dpHTjCqLhOGBecOHmAe+89zmOPfgOdzaKk5elnbxDyK1y41qeTK8aVYGtcUNsx3le4ch0jF7n7zvu4cW2VtUsvUWxdJPqKPM+Z6WQIcq5tLUBvCREWmV9e4Y53LPPgexY4v1Gws5XTm0nVx6BhpSuRSmDmu3sCfPHWIjjYNZCNk8+JadJ2c0A+FTRo+o/2imWmpmSxm/iK6Zk08WVkoo72hrtoeq7ptT3THVMK3557SU5MaP9cjZvj3snYrQLsChLslzC9+YncC1pMdyH2bn/zeXbf69N/dgGM6Zm+hUv/1nwOmOaHzToUicFhbePG0ZgOxRiQJGWjRJpPN4OMEa0luIhRmkhC5J13CGWQwWFdCtiDIKFjMaKVTnw3MblSMaH3UqCU3r3AMhnICClRkIyRGoQjxITsxZA03EMzsdEAIFGAsxUhCkQMCALBh+b4oLUiIuj0eggBtXVJgSVEhlVJT2i8DaSCfqRynsxoJA5X1kkWtaXIei2cc5hcYlpJYhBnsdYy6g+QdUmrm1MVBV4l3wdjQAvFgaPLKJkh0cSsQ+0FG1ev0F9bReoO7U6P3Ci8CxRFifWR3tEDbF26jFM5SwtzLC/M0Ou02cERR2NaKqfd6tFdWEa2WwlF3qhx3uC1QPfaUJfUWwO8D7i6wK33ccMSPxqj8oyOaVNvraNUBz2/RLQwvr7B6PIO8sAKZcvhfI2eX2JpcYnlFYPxgsuveJ78+mXqUxWn2jW3zuccO3wM2zrOWQ2D1de5cnaLnc0RN9b6/P6/v8LT37hK7xM5Dzx4gvLGdS7eaLHNLfS78D3/0V/iG998lv7gAnVRoXxE4QjWURuFtuvJ/M4ovHHUbsjLZy9y6+ISvcXj6HwD7UbcebzHf/5z388v/J3f46GH7odQYrIVXnhVk21cIcvbEAxPvHYGO9whhIpMGU4sdbn18BEe+ew/Y7z2KvV4RPBJQtS0ctZ3wIrDiLyDcpG5uTYPvHuW3qm7+K1PXeWu+btZPBJZPug5OWd46D0dul3QAnRHQFtQa09RDxldGzLoR0pfIJTBGEO7ndGda6GEYDysIdQMNnYYbA2oqoo6OLQcMRgHOu2MLAPqOjkVaxhtFbSkQetkchgzjYiReiTQWhFqTxASVIbQBl/UFP0BVb+P15Lo6kS90w3arTMwEmUkSkt8HSlrj8k10dapsRdFrCGUjvbcDJnJiECmoJYxNUZbg9B16hnQLYSKiTQToK5BmxYx1igtMJmEqIg2IoIgNLJvAUEQCk/AOdAmQylPnuv0bIeAE6m6UFnZBOgJrVHRTueV1OvkmyQjVVKVkviQFDtCFNMVMbUGxIZjnpAgJVOC4qxPUqIiVaaSb1lEyURji94TGpW1hPqlyoMPqfo6WWB9TLTLNP2l+VQ0LqWp0itx1pJJza4uf6IRGK0RpKqTwIMKDSXpz9vYj9gJdpHNaZA/edu+d09K9nsX1f1B1nQfexb+3Q1N7aEJigSgGnrrtKQf3/i5/7+TqjczcpsEc8QExA2GI/LMYH1gNC4YjksOLC0SEbxycY3xuGZce9ZspHv4ds5f3yBfmKfT1SzNgCFw9VrJ84Mh9ULNYeM5vNChu3yYdmuRq+0cM3eWS+dLBqOKl85e5fzla7x6cgvzfrjjtsOU66vs+HlGytOdy7n/3R/h/yXvvaMsP886z8/7vr9w862cuqujpE6S3ApWlmxLtoTlgLHAAYPJZmF2lznALAwDw3h22QEW5hzYhQOzpAGWMBwHcJBtHIQtS5ZsxZZkqXOs7uqKt276hTfsH+/vVlW3ZNYcw1lr9z06qq6b6tate9/3eb7PN5w+8SznLvZIckOgM5RI0EgSUSXUR3F5nVwZkH266QJn56rcV64yuv1a2hczmoHmhr1T3HXntfz1h5/hhuuvxdllVlojHD6Z01rLGB0dIUgCHnrxCL20i7QpFVFhS0UxVK7w9Mkv0F88Qq/TxRETViuoSon5JUUa7SKMI1w7Z3ImZtf+OmJoksefb3FgeAs7RwWmBnEkGZ8ICAPWKR//lMYA/P7xsnwUMaD6FGDMBtz8skJxfRLkHEp5sGZQHw32G4FYB3YucfIq3i5yAJ8XVDoosqSsXRfqDhqWDYrLq9vMdP3ZX9bsD0CHzVSiwblwad1eXHdJ0X75flC8eH6Ms3HfV2gcBs5pm1OsL+8w/imv+DcnSJYBQRgjhE8BFc6Q5z40CBzKefTN4VBBRJb7jjRU/uAUzhCKEB2GoFNCIQicQwnP0dX4Ub01AwTfW/UJKdDGEkcBQvlphfOjAk9zUAFhIbSzBRUpiiKMgjx3UHA5hZAYa0hyC0UeQxCFBKFH+HTLUw201eSZ8VkGUqCdQ5sAFUYQlVFKEgQZAY6aLfs05kwTBAE4i3YOAo8EqaRDp5OBg4oqUx0uUas3CLVltZegXECSeIQ1cLB1qkYiQ/orbYJKSLkSUi2XqDVHiGshbaNIuylWeltJozOyTpexmRG0cIhSSMU6pEtZ7ANO0u63SClRrsT08zIi1Tib0e92iKpDuFxQiZvEpQZSOEYCw/JqjywzhPWIbKVFv3ORZLWLXVsgnzuNS1NwDh0G5EkLmRqq49NkqwlZexHdX8WZLuI0LD/fRK9dpDy9neXZ6zi1YzdbdzV4/S2zfORPHuTzH/kyn+63qY82ec3N1/HeH3ovU2/5Xq4Yy3jk1BxPPHmMM197mv7zT7I2n/Iz/+GvecO7buJ773sHt9mExZNf4ewjp1k6+PPccu/3M7/8B1w4dx6d5x7FVY4k0dStIBaWPBXIUkRttsqFs5KkHVNVB2hWz7J9JOYNr93LFVe+hf/zv9zGUHUSJXxhpZ3gxJmzPPGZPyCLt7EydxTT6YPRTE9v43t/5Kf533/t15na1uf0qYy2dghCSqUKNIZI1gRkF3FZmUj2uWo25oE3TfDv/volpuSVTDdSzp49R26G2b5vB8dXDfVQABbXz1m9cJGLFy4QIlg8d45GqU5qFZEAZQ0qTUmX22QrEmkjRKzQ3S6636GfaBIkKkxxhce/1jlZktPJHPVaHaudD8xLMrSAqBoRSkva61CODNZqwnKJuB4jlKSz2kGqgLHJcbIkxeiEvN8mbFbQuSQulTB5l0CFlKo1LBlJuwfdNepDZaJqGWElwinSrqU+XkGhSIzGuJBARjRjgVMRUaWCMUX2yGDalztEqrFCUy7H3hLR+h1TO4eRrIuBkYJMWwyWPMsJQkUYBARxGRkosJrIWrI0LXztA2SRFyAUhSjZ+c94AVxQ0EdMmpEZXQiFxfrVSS/1VqLKkWep35SVLKxMdaG1YkNApqTfV7FYq7HI9efg8HtrEMZYGSCEKgSyhWkBhkD5zAZjvKYCKb1mJsA7wSlXcI09yUhECqfwyevWFo3CxlHQ6XRYW1v7pg+RzesV0Sy45AD8l1xhFFJv1NlMK7rE08NtFCi2KFxeLioU6/cbiDw3Tw6EFOvWkeuF0wBxdZfSAAa/ts/NkesIrCh6SWPs+uRACGi1Wpf8PuuvndgoRi4DEf/pa1CUSUlQKuEQRS6RKIJEDZicXq/PU88+z/atM6y2Ozz90jFeOHaa93/nd+BkzN8/8nVePHmWtX4XEUhEVCZZWWB0x3Z6KylTU02mGop9QzlPff0kH/7bx3C6yxVXzHDbTQc5cOAAk0M3sW9ilJW7R3j0yAXmDj1LcvY8xw+v8J++/iDvfOAW7rn2NsZb8/RaT7LSFqixO7n29h/ixLn/zNL8AugOhAYrNZ12mzGjaKiUtBNSmh4jLFU5t6xI+4qG3M9I/SVed/0Qtxzcy+5d1/OzP3U1cVQt3jMCCzz2tWc49vWrmKxt4/SLL5AsrxIGjgN7ruHGG1/Pxz7+OWa2ZTzzTIe1viSuVgibI9jGEB0JonsO060zrC5w7Y6tbJse4sEnFpmQY2ydsDz69EW2bR9iplGhlfr0GK1zZOCwyQaz4RU/NZdd2KjXiz1o0xTgEorPRlE5aJDXaSdy03t/XRMzoPwMrH0LLrvzicli8Jibin6BxyDWXY6K23i6fEFrKj4zUvqpK0C/33/Ze/7VsoQUNAZ7Dev4NWx8eRmSv/7vokkbULnWe4jNNKF/BCy4hEp02c02J60PgK3BNGjd0eryZvKVfsY/FqogvLSa9//wj3LNtdcggDzLPIKuc4QIfLKqc4RRhDUFl9ZJAumDhmQQoIowHom3vrImLzIK9HoXlOXppfHxSmKyHON8UJhzhSuSAxWGWCGplCOCuIw2Gp1lCGuJ4zJ9l4OT2DTxb0YV+tAjCe21NlJYL+wLAlQQkGUpNtcEQmK1JtcaB5TKMYgAbaDeHCEIQoyzZDpHJzlZukK7m1OJLVneJ9MJYeRYWO6QpBnLrZZvWOKYqFYmaETsmJzGrXW9e0ooCGPJUL3MluEJWlnA/MIiDke/36eXZlQnxigNj2KtpLfUJeuntHsJy52EyVqJcq1OtTnCFVu3UwpiVlpdTpxfIYkFew+McvHcBZZWuzipaNSrSKG4sJgwuWWaMC7TyR2pVdTqNfoi56Qp09KgpaDnJCudnPbJOeh06H3yv+IunkUIhVAB6B5BlCOCSWzWJxifor5nitKIZPHhJ+gdWfRJgcUnR4aSsBkz9Nor2XvP9XzgmoDDhw2PP3ma5w7NsTA3w9T3v5/7Js/zA3deweT4OG2heGF5lT9/6ASP/96voFua8bGQA/unOLhnN1c0riAuH2Zk9w7+7MOP8/TXnmJpfg6TZCSdHIG3hsaBcYIt4xH3XNPg4sIQDx67hz/54+/l4MQhRhpDlMfuxIU1TOaQgQPXBpcgRAoix1nJpx4W/PiPvZulC6dxJmf3wdfyE7/5h/z2Ox4gmA6ZOztHknSRAuIoptEs0zGaKMlpiJDZ295Fac+NvPDUx4jPNfnAd72Hv336WXbdcJCbb9jL3i0NcqWod3LKF1vErkvr+AW6c8tUK9CIY7qdBBPFOOcwaU7eTXBJj5X2Go3KEN21nvfsF9BN+6xklubUBKMNn8yaJoZOJ2OtnTI2OY0Q0G6vYrVB5zn9PCGKpXcrCiS1aplyPSKoxLi4ysjsCK2zxwgrDXprbfJ+hyiE0vAQOpPoOGJoJCaslHEodK9Lb22F7uoaYTkirA9TqtcIA0V3qY0NKtSaJfJAkac9TJphRURcj1DSorMc8hST5WAdpThGAzaO0daSCQPCUkYQhCFpolnr9kAIwijyyL7OSNMMGUKjWfL2x1IghCPPM7q9BGN9oWadzwJwKHTex+QpYVT2B50zPichjLEmJ88d2phi8/WHobV+mirioNBg+UwX4yz9JEFJn6juhLdFVlIU+6rF6ZQgjpEqxM9rvX7LIMhzL1iW0uGERQmByTyNC2Qx0QA/BLBeWC1CL5KW0k8eREBc9u5vVvsAOWsMy8sr/C8f/PcAbN+xwzdDFNMXs6F9WD/s1g+1QQG+cX3xj3UKzTqKvmnyvPF4G249l4+9Lz/ABnT3AQp6+VwAZ/njP/4T7r///m94pn07r9/53d/h3/3iL256DT0FbSBkHhRUtvCV92sj9VkWPPJLJhMD1xjhQSuhFFFcolSpMDQ9w3v+8+/SCyLmDr+ImdxCN66xcO48i498ERzkZ89g0z5hHFEuK+LQotQEaZrQ3LGNrXtGybornH32KBefv0joHKkWyFBQqipGto2w+8arePNrr2NfvcVLpzRPHTnO8ZOWTM6y+67XcHO9w627xwmjMh1rOL7a47HD53j8s39HvqzZPVvi4L6tbB/bynBcQYUrlEdG+cyXD/H8oS/RXTtLurZKstZFSocuGue+E9y0b5oDs7NcXJ7iE8du5ff+19sYFi8QV3ei4gmcUGAoVPkpOA3CAJZcS46dNvzgT/wr9OoJ8n6P+9/zA9z5+rfzyd/4I8IrIx579BmSzirVcszoaJOhsRrLeUK102dS1rjynR9gOYSzx08ytDrEO+65gU88e4Ibb93HFTNN6uXAgwWrbT78l/+Vl448x7PPPcNqawVtvD17mm9yEiuGWAOKN8CpudM0Go1/6bfnv8i67957eerJp9a/39yoD8TUmwtm8MDwBsXvcrqM2ETfcxsF96bd4vKKd3PB7r+8/PE2wAY3uIIPfvCD/NgHPvCtvgT/7Gvj9RAbEqHL6vyPfOQjfPd3f/fg9q/YhXxztCJryXMNzpuICgzVcgljHVLGnnUpFVIZ8iQnVIXAwgiUEoRRSNrroBFFJoFEOAlWkOea3GoqZbWeejwYh7i4RDdJvLBFSFToKT7SWeJIEYYBSZ6ijQ8iChUYcj8dyAxKhr6AKiLc/WHjKVAI0MaR65TcOuIgwuSGVHtOpVLexlRGnpfcXlkkDEPCOCRQilxYDIK4HCCkIDIpwhmyDIYi0NUajr73PA8jgihCuDJTY6N00eTdlDRx6DRCBJKVqEMwNMOUrKPzhGQ1o6/BZSkOS2ulSz93pFlKZi2VahWlEmwccX5ljSQ7TRhWcS6gHEdsu2oLVaWJDIyWY7R2JEtd8sYII9sn6bWXGY5HcL2cbg9kpcGu7VuZCUJ6geJYCqczhzGO0SsmaQTgvusW2p2cbmZJco1Le2wdC0hOzdHqtbFnFpgdLnPjwa3c8a9/iCNLh/j9s+dZ+tgXyb56BnuuS7qiWfzSYb7y9HlO3LiVO97xFu7+8bfxfdUJFi8s84sPfC9/4db4+FiduFripqsq/MAbp/k/3vgdpHf8EB/78BE+/qWXOHKqwmpimZ94Fkpd3jR2JW+74320zvbIluepVBULw3DxZI7uQSmGoCRYcxU+PzfB2vmcB3/zPHt3/Cml6utRpWshKCGcQTjN6uIi+vn/RFyvUqpVkHqBYP8v8qZb6zRrVVpRDFYxVq9y/XjIXOcMHA2w5L54RKKsJOvCRKRpScUNb93Danuew597nOHmzYxuC/mrxz7Cwbd9H/u3TTLVlJAbVs7m1Nc02fwcQ/trhNuHCCysXljFxiG6t4DIOuSZJOnmpP2MOIro9wzzKysoEVAKrKe3xXWGS4pjp+fJmiXqzQbOOrIkJe+2OXtslfqWncTK0O110NZSKZdYSzKiAEq1IWwUQBASVSpEo8NgfThfa7UNJieMIlQoUHlKqVrCComwESYHbVOSfkJQqzFcrdNda5OlBhdkmJKibwxhJLAqxigBQRWZR5DluNRTwyqBQ1aHyEqWPM2wpQglFZWKREUecUt6CVk3wwiDlJqgsCONFAhh6TuHCCTkPXSisCLHCU8fzLRGC0cgZOEO5FFdAjBWAIpepwd48WgYKVBe9GxMBihflBXyX2cdQRR5UbHRPucgUORpTmEo5At8vGAvEMr7w8uAzOP4SIfXVgmPZkoccVTQmwYonPDc1VLswxF1rv3zViGB9O5t1j9JrDaF93mO1QlWevqkMT4derO14SA4cgBKDUCbddrJZbSCf3xtFKqXNwb+oTaJ5IQvdAcIeQFWvvzxvuH6f1fU+60ur0HxBh+DBkwWFLXNr4NZR2AVUgmv1RkgvVicLjjoRQM3oMYNUEprHdV6g2sOXsd102NkQcCx0VuYd4IE2DkzTO3GPTghWO3ntKyjrw0lYdkSQb/VYSFLUBfXODDTYP9kncm3vonzvYv8+VqLkw9/idZXz9G92Cc5dpHlxYSvf+Uke2+Z5U233cmb91xPRMjRF0/wJ7/z6zyWL/ChHRPE1TL3Xt3ktQd2cM3BvXz/vrfw3NNzfObxozx3usxqt8t0fZkgNuytTnLHtW/kxNefplYtYZt1LvQCTr3UIW3ljI1aqs0m5/UkK3OTuK7j9396kcnyF5HqOgiHGWgaLZas18PM/QHR0AGkayHDKtHQ69k9W2K81mTNjCBqo0yPjFJTfZ459Qz2dAkjOyhniJ1EphK9atlRyrkoStz6/lt45vnT9LIxpupXUZ+GB5/9Kje84fXMNmLKgcOkhqznqCUx33PH23hkepj5hfMkaUKapmhrCKRa/+wN9Jjf8vTo22RJoQoaJAV1s2j612l9bBL8XoqKw0bxbqz1RhPF58ZP7V7WBjAAFYo7v+JzGtAJgY3tZh0P2bTHvAr2mm9lavvN0YrCiDCM1yk5zhqc9IW9scWgaYAQK2+vOLAQBYsSnt7TSTRKWoS1yGJzA41SAUIqgsEGZx3WCLT1vtyBGKBenhPsjLdT1VoXB5nvMK0Fk+SbPjV2/Z1ljPcqL4cKIbxdqUNgRcGZdg7lrLcEDJSPc88NyqQQlchVhBUS7SDC+uKrFNNpr4ESaAyZ1mTGUKoNIcKcqhvBpIbAOJRx9DswJmDbgQOsLCyx1uuRZIZ+rrBUqOoOGZJeP6OXZCROYHNB5+wKcalB3u8RR03GRqvUyiErrRZVEXqBc6VCX0t6mcFJyfEjJ1E6I3OaxvgY1UqJUpqzQuzzGzSstbskxuFCRa/X5fhcFROH9EoBmQqYChQ7qgqCABsItqoqbsSRCoETgghLJqE6OU1FGCazjGNnFnjs8AmOnXyBn77/zdy8TbCy5w4OrZzny4eP8+XPPo1+6BmytQ7zj57k0y/9JQ+XP0SpZKk0LT98m+FIWOa5Q2ssnlrk8ycdzz96nNGJF3nPuye49Za9XL1vJ1874jh0eImFkycZm7mJv/7wE7z7fVdx+3fdTTymOfmVx9gf5pS3w5nDGUEOlKt0egpxdp4f+6kHOHDbDYTdP0O2joJ7HS64g7R1nK+5K7ihNoK8+nswvefIV59HrJzGvvQrhLv/Lb/+I9fz209OUN36Gm6a3cmf/fwHUNKiArBhie/8/h/hrjfcy3itSrNs+C+/9jM88qUXefpLp5ieht1DlmPnztMLG1zzjtfSlI5IOBLrWFntM7bSp9p39J7u48bKICyum2IuLLKwUmZlaZlQSXASJUIcggsrC8QiZ6pWJ0kStBWkeQgGSoHEpZbFtqKXtCgF3u43DspomxGkXZzKMbpLkvXJdUwtjlGVEqVY4nRKmlhMWyGzFo3RClrFjDTq2CwhTbqkSYoTIbEKCZTfgvtrOd1ejzTtIpRibLpJdWyMXOcgwUlJaXIcGUV0uwnClRCBQtQEofFAQRxGOGEx1iAEBJUIVYkJKxHJaodSqYQzGnQRYuacZ/5QTAaVwjnvYGXSDKwjzw1SWE8ptG7DNSgKEM5vih4CET7NWClUwPqBk2Y5uTWE0usQfEKotybVxoAMCMLABzwWp7iUEEWF1WhBKxHOgTVo55OXo7hCXFAUjdHeWUgFGKN9gSc2kGQvbzDU6lXQGX2do5QgUgFIiclzjBVIZQoK+UbBbY3FZAX1yQHO4my+sd8rdcko3BUI3MZQoEDgXuHMWS9A8dMX8Q1vN3gsP725hALtLhfrrde5m3qDTbzawVfxDYkYr4pljUXn2k/91pcv/r3Oz6GUIo5j7xwI61SNQSKqdT4d27tPDagl/sUb3Me5hKWLF/nqP/wDp06epLl1llt/7CeZHRslUH7aj4yYkIK8UiItii2JA+GIm0OEwjC0w/DM/AqPn11msmq4d+cV/OIotEZmOfr6FR46Mcdzzx0nOUS9goEAACAASURBVHSc1aUWzz+Uc+Zry8Qypdo0bBk2vO8OyXk1yhPPLnLhWJu/esbx95Wn2Do7xn1v287evXuZnNzJi3PQWpijPd+nOnwVX3rsCPfcvZU73/xWjnztc/TnjzFW7VPfJ3nuCxeIugI9so2544tsH7O8833vYnLbDkT6IZDHEPL1ODtMmvdYYJQtcRk382ZsfhbTW8Wm51CuR9C4j1/+wG384bF93HTlaxjvr/Dsx/+McqSJqoK8Ns77f/hH2bl1G7U4xGRtnvziR3nobx7my596gZ279tPJM+ZPz9Gu1Tnwuisoa42QEa1ujyhztOcu8ht/9Fv88j0/xxuuv4snvvok3ZUOq3YVjKObW4wzbCqd/X/CvepFvd6zzQMCg33Ruo0U50sCvTZPKjdNDV5Gw9lEr9qo8YtJy3pdv3Hb9c9JMd3cbF+88TN8Y7JhOcorb2zfbutbeI7fVHMwcNYQUnnuKgJhfQS0EH6WYPGHShAIbO6FdLIY9Sb9xFsOqoHv7uBFNp6L6yzauHXrPmu9PVemM88LRvqsIAWBkmjnNz5tLJnW+KPPec6/FeuaASn9tMA5DdY7hzgsQvhJBEJ5RyIpyLLcFxbCK4OMg0B5QaYLFDL06Luzxtu4KoWgi8RgMs9LRiryfg96gtzkZE4hjESGfpSLq6DzkCiqUG5oNBKTtVlrdejKshdbY8lziYhrRGVFKgImZJVMhbhSiVqtTKNZQ4UlaqUaJe1YSwKM9nayEWCFo32xTbkcUx4fplytUq2WEDVLbzVlpd2mHEaoQFFSAmcDUm1YXlxFhwFLqcHEEUKFCBdgooAUSXe0zN7REjPlgDD0epELqaNZj6kqGJKOa+IyE40yaTbOpw8B8wvcfdsU9+yb4tot27h3dgdnb7uNv3n2HGuPfIXW/DyrSYewFjB1036uvOdG7hpfZOHuKU4eP8Lp4yc4f65P0p7j7z66ylNPrbFne4OZekRlp+GQUjizAnqZz3/uc1x5y81s2X83Rw7NEZlz3H2N5cNnczp9h+mkEBjiySHe8ZbvoVQ9i1tdRIQJZF/CrpzDZQnTpTOoNESUt4EaRtoxHBegNI3rPcS+q7p84Iq7eeLMEI985TDnvnaIOIT73zTKa27/AW6483527r6KShQRBZYf+Vf/hmDXYzz6yU9y/uRZ6pUWpCVmr78LxxaCSolaRdI+fYwjTxzl/itvJz/Vp751CJEokuVVemcv0l9doB+WULml120TxTWs8pkbuU5wVlAdrtDp9UiLYLBACpw2xFIhjCE1GTISiECRDvz40z79fAVnUgIs1mTr+Q3OaXSW+OIgcsgAWos9wlgSxCFOOpzIfAPRy2gJw1CzgapIlAy8QYD0B5kNS5TqFYJux6PcKiCqROS5xZgcZQrqg/BFs7USYoGK1PpAWAiBkmBz7+1vc+2tglNPBQBHv5vQ7aSUTBkTeEchZ33uShj6JOCBwE4UB5OUEpN7RyCkv85ZL/Z1OMJIFUnxGmedT0YWFicpxMCe5iOlp076ca5dTxCVSiBQqMA3HNak/lh0FECFQzvjJwUFaGGdAWcRSnmTBJ1561rpEWUQCFs0CgUI4s+8AS3Ko3EG/LRWKazVIDyabLQPexSFUHawLuGxbj5bNjg9m/G3ATy16dvCkk+4TRdf3gAMvm6mGLlLrt9c9zi3iWqwSROw/nwH378KzutvuAoKxABBdYPuqljrUxshfUNlTdEU+OJfIJBqIyV18GexBaV3UOgYIOl1WcxyVpaWKJ86TaYiGiNjVMcnaey8isqOK2lXQ/ZUA4aV17/kztG1UI+hJKFZhgNO0k4jtM156gIkqx3u3DfJ5MgosyPjnNmyhQv79vHIhTYLzzzHwsXzuO4CIzvGmdm5m917dnB1dY29uxrMnXqK5Qvn6a91MTrni5/t0BxZ5MCeMXbUIxbRLK8FOLuGdB2++sST7Lp6L6cnluis5Yyqc9y8S3PuGUWrb8nOzBGEksae3Vyz/yAqbOP6ZxBBB/LHcG4I6QLqahS0QEQzSNHEmQpYh1MNpD7CFTsd791xB18/AU8+/wLLR04xPKy4+96tTO99CzfedDPNRpNQCoxOqJagH27jHz7xGUr9r+NUjbAyxczuAzg5RBAHVELB2RdOE/UcE/Uh7tp+B+WZCmEgmSiPMlUdIcg90KFzTd8mHmRAbGhecC9D0l91a32auAE4bP6dBkX7euNrC6HzZY3C5sbhZT9iQC/yHdUrTAUu25su2/QGu8yA5ui4bHP6tluvtHn/09c31xwU04IBemQZxGYPZi2+gVBK+YZAFYcrgzwCSxRHBVes8No1PqdAqgCMxjlBXtig4rxQy2hTNCQOh/Ux4BQCY2cxTmCMBew6R7WQfBEQ+CGrNVijUTIokKfCjEt5EZ6QClUI//IMX3AAuvADD6REBf72wrnCJcTisERKUK1U6HTbSOutIJUzmH6PJDUEjVGUFESliLhaRWjBympCtLgKoSAUEqkteb9PYlvU4yrGaIKgRFiKsKFAaMtQUGNhrU01DqmXFXEAGQFhtU5JBvQ6grTXRdiUwGp0biAX1MeqNIaaxJHPmEAqsDk6TSgNNVAh3qbShSir6K116DvF2mqCLUVoF9DtCHLrE1gvzjRhssHkeJXGUEStrGhYx3LPsiAlvapgW7PBa0fqCD3Lg0/Mc6qd8ejRPlvKlq2NMm85eAOtgyHZnhdZHitx7swyq6tdcpsyPBSy/Zppbp7JCKMZzi9UOXl6mtOn12gtdHjm0Bnmzi/RXl1i13TA6FiVyYkhFhbPMxZZTj7+eWav3Mnw7BWM3PQGlp55kN2NZW68zfKVx1JWllNmKjnfMTnF3p0HcWsfAreMwODyw6BPokyTbcES2BI6X8J1Y0RuCEa34cr76Jz/FOWRnHt2Xs3Js2d4/JFHKPVz3vzmKd793W/mlnveS62+BYd3qnEy4K43vp3VsT28+NUnOfX0E6TdNZqTk1z12n0IWaNe7dE6eZLsyBzVcwmKc2TzEdFrRlg7m7B4dpWVuWXSfg8RdInKw/SlwImCY6xzhLEkGSSZpp8YHy7oy1PWsi6REDg0AokzDo0BoTCF04VOE2+HKhVWCJQMCIoKLYxioqhEqCKklHT7KWEpQgvpP4MECBViXU6aFYJGa5BxSBSUIZLIUKCqVaJqCWsyPwoOQpQSZJ2s0C4ZKATBojA7cHh6kEFQKN7QvRTrDGGk0P0+eZb7ICnhLULzNMVojU4znC3sRp2nFgZhULj0+AI4LEwREIIsSzDSFg2KLJxJfaCjlIWtspXFIWP8KLtwZlsXtypZfO8nHUjhqT7WaxGEKLgyjgK4cN5MSApP7RF+1O6KtsVaQxCEaKMx2psfKFGIW4VAZ1nhDuKpkj7cyDcu3rttQ+wmBT59WkoE0qPU61v4ZUW6u7zYvozhvxl4G9yPwf56KeVhgzo0uObSQ2tw3eX2fJfbMG5+hFd3F/DKayNRdqPQufzVGjRNlziZQHEubjCrL9GCOC4pZpy1WKfJjM/DyC5e5JlPfYKg0qAyPcvo/gtM3FZhfmYc0SwxVI9oxJKygshBO4MVIchLgvFmhW2U6WeaQ/M9FhLDM/MZdaHZUq+z78phWruuoHlhibM1yfy5VXqtFcrNiMmhJqNbR5ipCa7asY2VfQGLC/O0Vtq0lvscPTLP0tIiR0602DJWJio3qTXqdLuLDAVw+oWH2bV3N0Oze2ilCa0Vw0hDcsMdXT75qYv0L5znmp3DXLe1wUhzFLKHEcyDy8F0wNZQbpiGmAAXY20KfYuQISKewYkJss6zhHXHrRO7ePiRh3nhxaMMGc2db9jJm77jTnbseRNChoO/IIEqc+X+60iGZvncR7/AuRNnaI5WmNrSYOfeGRwRpShh+cgxmF+jpKs0jeDe/XcjawG9cymuKxgrj1ITZSS+EdAdjfGFVkEpLD6br0wXf9Wtwd4xWJdPAQbmDW6wL63fb2OPekV7z0118von4pIP1eWAgrj0TuLV6Kj0z7M3fnM5B7aw2MOtO20I48eZouiojLWESIzOkUJ51N4Yb8EnPWIvlVep57nxj4HAGVCFp7TRecGzFJ6XG1iMc2AMUkiMdmhnCcIAtMUSMJg1WwQo5cXGQniRnzbkeYazligUOKuRMsT7jipQPtFYa0cYlzAIH85kva1gbg1SZ4RRACb3h61UOOMwacLwSI1qNfQoYpb55ylDMilJTM748KhHXFWIimKsWePC3AVMf4WR2RFwgkBK3wjoLpWgylJP06yUkHFIalPKQtJNM9YuLjM6OozS0geVCQWqRFQfYrKuWF6U9Fa8I4uzhnKtynizSjUMyKwjS3Jya0kSP9IMg7hAUz11aygKWMm72DRDOe1FWkYjUoO+mJF32mTzTR4RDcKto0zsHuGarWVuGVWcnstYcYrlcUXSlLiyYDaO+Kk7p3j+1gl+76OHefDESXZOCO6/czf76hn/04Eh8mt/kC+fNxxdylk69SLpo7/FrDUsLCwyWmmxZfRWtm69EXtbD2sWOHXiC5ydr/Hgp0/z5LE21dM5+69McWGTehKylTPkR/+e+p3v4PrveRcfXrjA13vz/OBP9Dh59gW6K21uaMAv7zHgLoD+bwjZho5FRApZihDdNk5bGLuJrHMSffIsoagTXP06rJUsHX6R0dfcRlxpUJIrlDlGXHb82q++jqHpf4NQQ+Ra02936LfbjE6NI0tV7r36Sv60OcQJgJJjcneF2SslW0qSlTPP8dKnPsMuM8tb976Txc8+Qzi5g+UjilNnWrTaK+A01bBEWa/RFRLKTTItUdbhrCTpZSR5zqkL58jTnJIKsVbSx7DaXqFRH8aIgHJUAZthsoxGpU476RMEAaW46t3CpCCKFLgQ0+1SHhmnMdIgCEOsA20NUTUirtQATWocFklQqeBsTlwrkwuN7vURUhHGEYGKKNXKhPUyQSAwpZBISowMvXg31yRJSiBzQuvtWQMVEChvmexc5BF74cMXs3YfZzXRWI28n2CNA1XQdJxDBY5atQzSOwFZ50h7KVE59ui+kh5UKLRFQngUXbii2C6mpAaFlQKtLTJwRUCWBOF/Rp77JOlBboFxAukcVjgynaGUIhB+fzFmkJJsyLMcbQza+qmn10CF3o3NaVChLxKFFww7I9C5D+CzVmCtt25GeAeiXNuiKSmmEM55W2Yp0AYKFibSCiTK01SMKR7DJzGLzQfuYGSPWz8711k+lx2VAlEUKn5KPHiUzfdxbEL3NwQGrNv8bZoquE23vuTgLy7foFFs4iMP7vFq7xcKANVBYQHpJ+SX1jsbKKunXXj6nXclKW7xCijqpU0XxVTCYYWADNK2PzuyJCHtpojqFP3etSwEdeozDXaORuytK2ZjwcWOY8UJUidxEYwFgmYp5L4ddRa21fiDr86j15a4frbGNdN1RkN413QF+/b7eGHVsNQ3rJ7+GtXWU9R0Rmt1mWa1zWjztYwMX40jxZhVbrjlGVbbDb708PMcOtphfChjeKwHsklZh8zwAsm5x5ndfTtJ5WYOPeMI8ws88P5tfPbzn8DJnDdMOd42m4G7CO5DIJYhWYaojqSG06teYFQ5iElO4ZZOoRq7UaVZbK7pLx2jsuUWlIyoc5LYnmJiMuJHfvJe4upbEUiMMSTtNuAo1+sIFbJ/eox6uUkvvUg8opnaqZiYEAwpx9riGY585tNcv+91zMQTpC8uIsaH6Z4xzJ/o0FnKmKpOUx0OMTZDC0En63tjA6txonAdYyMBeQMF/2d+T/4LLyE2qIeDBmH9d4INnZN7ZQrVYJ+4vClYb6I3TRXXbVQvvfPL1ys1Kf8/XN+klal/oY0Fbb2zEFIgVeBRdOcdMpz1hyUIVOCDhoR2WONRtUqs6PS1t/qUijzTGOOFcINkZaUkIgyIwpgksQh8EJh1nhagdY4xkij0B5szXveABBUG+L+2whVjeV8EGKSM0EicEkDB6XT+UCcQaJsRxqEXNJvC8skoumttFCFaeAqGEKCcRamATAuE6eNyTegkoSyRRCFBSaBtmyhtoaIaTpaRMmZyfIzz549yYmmZfpozOj1GZXiYydoQVZNSKVVYOt+hr9YgVqTOYFyESFOWlzuoUCLjiAiDsyts2TpFJ8+p1CSNsiJtOXrOUmoOU4oqxDVBIKHd69PVhlwEdNopmVR0E4PVjtwJnIIs75J0E3IlKFUCnBRUwphKJeTC2kWyhQ753Cqu7UgOTdIe3sqZ2TFO3x3y3+0bIqyFfO1wn86SY3k2xgxHjKiI/RH87rv2s2qu4ktHj/Ann/8ssyri++7YRlyCoYUWb7QJO/Z3kNfdzB/8+t/y6NGUn/3hgH07L1KOQ3QQIKbuY2zybTTG1tg6UeH4C6d49MsLPPjJRb7/3QH2ygYrwxHdJ77Alk7E1Nt/kkNv/3F+5/7riIVjeMtbOXDqUW69Nqb+MwLyfw/9HiQa1y1w2ipQtbj0AiLYQTy0nfiqDGnPYMxzrPV3I3t9KqMzBKWIyXrCnsmEpFNnYvbngCG6uWD+/AUe+buP8tWP/RW/9Ju/wPDVb0Vh2RI6hkJJuO0K9vzgz3LDa/bw2V/4JZ44pXnv1fu5mZ30Hlmln24lPXeSowuWr66e46qa4cbpcarjQ2A7nFrrML+8QigEeZ6x2l5lrXORjmmzdmGZqWic0dIQQsWsGcloXKPV79FojpK5CK0dyliquaAcxBiTYESAihRBqDBKcbGfMTk8TK5qaFVBCk/Pk4GkMT6MdJpuq0+kFEFcxiqH1eAqylOXLMQOojhCRZIwLuEM6KLJDmOFEgFJX+OMQamYJPfXKSHo9RMaFUmapAhZhcAj7hKoDFXorXYweYq1OdJ5CpBxliAKqNQbCOmpiFZ4x584Kgpq6RF7bTzaLzVQTDmjOEZpRZplaG1QcYhCQijJsz6uSH73MQISKyWZzn1YmRBYC6nROOdQTnoQQwovPnbgpKDfy7HWOxcJIZGiYBHrHOnASLBGFwwph3T+dbfaYmWwnsasQoHTXtvln6/XHEipfGozBllQJOPIOzNZZ30hlPs9MZTSawPcZROAQRjbxgU+32FAYfEXbqpHBjQksY70rd91cH3hGEZhOTv4OVAcwOLlE4JN/9tMHGLzbOJy+tGreQ0QUilF8SZz68WRFAP7x+K1wluqcsnfzV321V/u6WSbJglsNF7OaPyIzPpPgRCYbov2sRdIlhMqlV20jk9ybqTJS9Mlbt4luHeygowkz89lJDVFu6ZwsSRSkikFv3TLNF07wcOnTvLZw4fZGkXcuG0IFQiGuh12hZbavmE6a7M8/rkv8vyJHt/3rjLN+iqIHMIxKB+kUr2LqNLnrffC+VOneOqxC3z9RIs73hDiZhqsVOukj/w3pmyV7bM3IW99K+/YOYEUUN/1GN9xwXLd7dOEtyswn4JsGXQfshxCA4EGDJgQ5H2o8jBi6hzI8xgzTJbNIrMeYWUMIeGK0TbdbZqh+g4q9XtxLiQ3sNZq8eRH/xJletz+wANEI7sQOK5tWp7sS6r7bmfH697J9FCdl/7u4zx9WvDuu+5m+PwI+UlL3qvizixxcX6Ihw4/x9Uze5mZabKctXh+5SgN00AtKh9oaD0IIQaf2fUJUUH0c+JV1SAIIf224DwldDCxHOwz68W82Nwkb4AJYhBKyYbtqth025d9Jti8h8HgxXr5pPOy15XBAO4VRqbfLmvwmrCJOvUtrG+qOQiUP+istv4Qw6LCElYbnLXIwcg60ZggIAhicu3RK2usF+w5SNMUjBcb4xzCae/eISBJvA1qcYriEMRxCWNSnPW0AWs0OO+8YWSAcZBmGusMSkqEFRBH639EhSFUFrdOPxLe61yAsQFa4BFJZ1BBQBT54sVpjXAWZzVCCJJEU674IicIA+IgJDQ5XaNJu32iwpY0cDFN7bjYXSMKG8xOjoAK6aeGzHSoRSPkM1PkrkepGeGkQBrDeFkyIhu0u11mRpsQxWRCkliDwtJK+3SzHmEaEeY9qnGECpv0ez0q1SpV+kjXRZYtFRmTh5LGsCQU0O2skaY5VkaoKKBaLVMnpB5HdJUgSy1WQxALJkcjbCWg5SrIsIw20O5k2G3jaBuRzr2A7a5hV+ZxS6cw81v56peWOfXWmxm6bpj7djdoJIbnD81jqyntqT6T4zuRcUBDOq7fvpXb3vt2Hm4ZPvOFP+K2HVewf1uKKq3S1ysMux7/468+wI+2Mn73L77Ax44uc3C2xO0zTZ762qe5/bUReXoF5fJWXnPjCNfesMj9b1nkpz94noPXLzNCRrarwodfeohDD3yOK0f3Mvq2T7MqFDO/dSNX/8Yc37kwjxjXOP0P0M9hSEDb4RYtGA0zChqSY0u/j5rvUk9BhQ36Q13MhKGbtXAsgUhQoeWmgyV+4X3bgRoIyyc/+rtslWe4/64DvPP9f8iZY3+DW7qJ5RzWjOCBd76DO97zXczN7uXZT36Zjz2yzG/8x5+h9dk5HnvoK8y0zzM7dh+98ir3v+c67mjNEASC2kyZaFeTpUNLnP6LL7DY61CRFp33Weosca5/hsQllE3KopOEEmbrU+wYnqCdZ1QrTRKnsDbDGUsvNay0zxC4NYYrsbcLDiWZichkTLa2wgUpGI7KuLxP6DRRGNCYGEX3U0qRolSpYPPEF6tB4IX+cchwYwSV930do3OQEbnOkJUIFcWIKMRpjUkNSFlYlWZUxsbJsxSTpNTKIXmaEMcSEUm08Tx6DJjFNsRgs4zAGoIoBhWTa2+XK3WOigVq3ZFHYUoxCEmaprQXV7DOEAQKGYUoJddL0CiOEYUGyRa6jVCFYDPS3KJ17ueUgcRaR1SKAa+RckApVJ6WiALh9x1tNNZqHI4gCnFWIIPAb+HOegtZ68V51qSEYYzF/85+KgoyiP2+5izGOPqpz0WohDFxWaGsQWtDZrymSxL6iWikALvheOMkaZ4Vzh4+uV5JSXx5Sm8B523QW8Qlh+Y/pf649LDfVLRe8ngCr0Wz6/d6+RLrDcUrPgHxDS5/lSwpiim68rk8m6lYg1JlgzpUvG5F8rI1A1MOW1CT/HJ+3ORv/bIuyr9XhPM/weY5znaw5ix5mrLrbXeSd3pkaydhsU7nZMy5Ry0v3LmNiZ0V7h2L6a7lnLzQI4wN3aqhXh1CSEFFCO6cneGmmXHO9hJeOPUEV47NMDuekNNG2x6N8TJveOAd3JFoHvziJyjVzrBvYpha0KKVPMKWmQhrdhJFO9i1d4Rtu1Y5dnSJT/z9Bfbtn6PpuvT3TfNXH/lz2mc+wrX776D0H3+cFLj+f3s/9/zK/8XOcgClZXDHQfegHELPQCeBSgiVOg7Lau9PkWsLlEyAjbZiyn1cmJOZeRBdwBDElrvvmeTGa/cCEeB45slPs3Mo4fXvvAcTRvS65zD9afrWkYQ1/vt//VMMH7yGjipz6oXTfObLbX7+376bc395guTZJ2gQU91yBWmlw/HK87zv+95IrR4RjkW8cO4w4qWH6J3PKIcVOkkbhUTKEINEG+1hzm/HQvWbXKbQmcrCbObyz6+4pDTfuHTz9Gzjlh6oFsXl1tnLGoHB4/0/bxKXNggb6xslE/9/cX1TzUGmNXnuw35KgSDRoPOCN4znLA8EfEJDEHrkyh+KliCKQIY4KxHSb0KiQN8DJcnyBKUsJrfFdNor1wMpvGOQ8pMFiSQKAn/QOp9KGgYROksRxhJEAmmt5++mXaRwhIEC4ScV/W6XuFolDvwoMNcetfR6CZDWeP2Bpw3jREC1FoI1COXfMIFSBHGE1UDfkuWWZiUiiqsYa+n1ugyFfVQmaZYUcamEGK7QMwGHFpboJymddsaMKuP6fUTQp9mM6ecrXNAR1UqDZr1JeWgYKjW6mebJl44g89OEusfK+ZzVcsrQVES0tEhAiWNHTxJaSzWKicMyHecYqZZI5xZYWlhF1UrIMKOz2vFq72qdcqNOrCIqJsRoQVkblmSb1mqPsFRislnGGsXZbp9OxVJtJpitW9FTAXmuyFY7mNMvYteeZuGTQ6w9NsyH79nFgdc2uH1PxHW6z+fOBZw/tMCuPcNUJ0oklRp5UOHW+jyVG9/GJ5YbhP3HuFLNUYkXqEbjiLVnCeoH+B++52pSq1lYbnN0boEbrw1ZXO5Ryp/A9DLCxYAgnGV0x9388f/8CT7+sMTpLl94vMsLL+UkfXhp8TmWH/oQzTveyluqP0Bp3zJ26u8R4TSYI7h5CztB7BSQCywKHYa0w3Fm07OkuyCIZglcg1L/HCb/IOVtGunO4ewSe5spQ7vGULvuB7dMr3eYA+PDjG25jubWbQhl2HnlQUQUoXTG+3/6fWSqgh2exba63DxymFM/96t89i9/m1PPvYRb6TOhqqysPcZiVuG+L3+Wuw7ewNTkLGvnz3P8D/+QwysLLLUTKE1zPG1zMV1mNW/RsQkzqsRYELBmE1ayFVRX0DGanoFRIzjd7VIWMFQbo1xusJa3CVWDi+021izxf3P33mGWpXd95+cNJ9xcuaqrc0/P9IwmB6WRRpKFUBqSLQkEmBUZvBiDbYEXeBZs1mH1GO8+DuAHjDFgsFiWIIFEUBajLI1mRjOa3DOdQ+WqG8950/7xnnu7qmfAWpAtwfs83VV177nn3HPvOe/7C9+wb2aOTNYZWYdKG+RJg7IMbHV3aKWKrN3CDB15I2F7a8jm5YukSUZez9ENUK0MLSXZVBM/CGBtdIbNElwAM3BIVVUrrUURSDLJZpLiekPUsId0jlQKWrkmZDlZq4aq1RluD6GsMPJ5DRsKjPOYYXRdl1pjg4FRQdqoAT4WDownOEHQnm63j5KQYhEyypJqnUKiKUcjXBWEGQfGBkIoETYgs4CzMZDWIsUDXoC1BYLYrUyyCFd0IRZLrImSk8a5KKVMQIoQA34PwblKCloglaAcDaNvnxYoY9JXBQAAIABJREFUQfynBM7JyCkI0THbVFytREiU8giRE0IkLToX+QsejwyeJNFIAaYcz3Eyeh/oHO8ihnncxd2rkBMX0WjCFqrCyvjxXcCW3VXrvX2E3SCl+H+4IlE4Vpe7AjG68oIr8KOrj/h88IEx5GAMbQp7V/K/dkNMDPYERFicVJPPZMxrMcZMAiARQiVTeiXw2U1OH6u+TD7D3dkZxE6SCqjJ5xrAO9xgm2f/4B0kzRmcqlNbuJOscZB+b42HTcrcQpudVyzwov2SG1qSlrWc2hZsXOyzvK9Gva4ZqRpSJhzKA9mBW/jkoMZrzKPU1AUSDYnIoLyEyo/yhpe9CCdga2uNwo5YWFAMBz20/xzeDNCuAfkJDl+zzPfMGJ46pRHe8+4/fZbzT3tcd5Mk/yijM/eQH7qB12RfR+elnyEcEwg1QzCr0DMwB8yl4DRB1XCqiRWLdPTjmNkErW6Jcsb+IYL/AHragr9MUCOunwmk+VFk+3aC72PtgEPTc7SXDpDkDTQj0nQZlER4x5ve/u1kUwsMkzpp0eXYbJd7vu+tfPadv8vJT19iuoCsPsPOmmR7kHLnzQukUwHVTOg+dJrwuae4dTjH6cETKC+QIXLE4u0oaSQZda1xxuFKi1CyMtp7nuB1723z/I9/JUbVtrxyzVYdTnEFQrjb9wOoOmtXwYj2dBjZw5u6Opbf02V5zh6qNGNchBjXIqTYvWmMU/+Sp/w/eny5FNu+pORgXP2CmOl5IFOCQGSNu6o17XwgFeBMiQu2UpYYt0ct3jpATS4EH0KU6RMKH0qSVCFlQAgP3mOtRKk4mWkZs8sk0fggcDJBhUoNJKla6c6Cjj+dMdEwSMVF2wdHnqUoEfC2nLTkZACpE5RQUd7POZyN1bzYLjd0ZmYIIo8k5hBwgz4Cx6Dbo17P0VmCt0OcLchqGY32EgtmSNbK0HkNrXOklewbTHFuw9PJHQ2Ros0QUxZsEBh2e8jp/XGhHg6QiUKnEqMSluc6bB+ZpzWVUm9M0eos0G7P098e0dtYJSsKVNJgUChc6ZmdTrF9RSoapGrE1laJEY4gSta3uqTtESKXtNttLJZ+4dkZGdKaxqY5w1LQ2xrRadQ4OFujf37AjvF0FjqEZgtqDVSuaOYnWPR384FftZRdy+X3vp/hQ9NcuO0oD7x0i689dA1hdo21nmF9BZrNnIXjMxxNW9y5/wiDpM+Hnl7gYn6AVx8cImfOINMNfO8p2lmUtE07KQ32IwfPsrqT0mpKlmoSRh2KXkCX72Nu+iKvvWeapPVy7n51jX4xTTBtwrMP89TP/Tx33vZiXq5XeZQBz/hjXJO8Dfw/g9CNs4kVEX5Sk/hM86lQ54nmLNeeW+PG+iZzgx3Ms57Oa36YwVM/g0xfz7v/5H3UveZFr/s25OhZMCMycYplfZJcL4JZxW0/iLcWvQSlWeOJUydZWFxiplHnkfc9xP2PnWVr9R0UvVPc/Y13c+11t5O15kg6LbxWNLTndP8SH/vEx1j52OMMn30AaQtO1A/B1DJrW0P6I0XXC5xosO4uM3RbFH7EgQB1kTJ0nqXWUbQIBDcgCMdwFDB+SEsFalJSIsmSNiOnKQpPiQIvCf2SGV3SSGtMzTSYmm2hdEa3O8KMhjTzjLSeofKEkCiCFJT9ArOxg7cjXOlASLKmQdUTTAmi68E6gjF4VxLQJALqSqC9jZV/JTDGkOSasl8Shh7vmNyXWgsSEcn0ItUgFFESUxJkbPULU+C8wBUuFiN0IJQlToLKc6Qc4/YdReGjDLKPAbsPVJ2QSuRAjIUOJKFamEIIKBUw1qFUpcw2DoyVQtkiKrC56IegYlaEMyVaSxIl8bKCarpK1lkEtJZVsC6xIe5fJwkqBHywschC5En4EOL7rcQhlI5dgEiAthQ+gItyqgIILpAIR2zpyEqaOuDElXo9VFKCk6pb2FNrm8hWX7UYszvQB8Y0hL1OxVfGnuUrPHc525sDiCstB7Fr8RufV7gKF/XXeUzOI3ZbojMtE/flQMVRIZ538AFCLKqJyecBY3nYsRTklS4EVzgJFRleVtwPWbXxvbU408MOBnjTQ6Y5+26+nhe8eJF2dpQPfD6j17c89O7Pcvn4fh4+kXP9Qc8dUx1Crcd6z7O14al3ctqtlI7OOdBKGEjDhy5Mc0dnjkOtFUR6EdQOlIJaGu810ZjGlX0oV+gXCVme0E4SrJvHD1ZJkkeot1c5ce0+VPZGpvcZyqJDGBqS1fNsvPM3WP6xn+YG1ecsgS430hRHQJytTr+a21RKSGKX9ExocD49yOGtk+yrX0RtriL8DMnS12O3fhmhbufjn30nR+ZuZmYqAbsG+ghKbNCWF1HyIMFeJth1gkgRtQM41+fs2grXTXcoNoecfOoCg7PnKC99gTJs8OK3vYxOex5da0AtxylJsw4X3Dbv+uVfp35qh4MuZy7Ad9/4av6vR/4YUaZcv/gSZhqHQShSt4l2G/y//+LXuXZxmROvuYOl24/9xZXtr7LbJBpR7oUQXS0lOp6L5Fg9gXGCGyYTxSQhEru7CePuguTqE989I12dTO2BHk2eer4OxlfX+HIlBePxpRGSxy1moryalKIyqZBI6aMSByJqgUsRScRc+eKDt5F85yuCIMQWUuUsKqTCM1Y4ihObVgJb4SSVEKhET7Bkksgn8D4S8kS1SlhrSNNoQhQvsui1EILHlJZEaUQI2LHhj4fgPUro6g8mC5CQkkRr0gpKRACJi3CI0iGUQwUPNgYcwpQIFyEUpYNcBIJTBCcJEhSCKaWxaaAxu0Cet/BmiCl7eGfoGYkeOXzoYnWAYKhrTyEzMmu55sACPtGItE6aJkjp0SKBUZfpLKMMmn7QaJWQK8Fw5KjXG6hyhFbgbIlDUWs3IJH4smA06OOlwpWB3tBRU03QCjNw9Hsjaomm2WlwZLbOcD2nr6E23yadatKZqXF4MWNWeDrdVT7Z7bP+TI/NyyO2/+wCF0pJ48bHaNR2SLYzOtkMioxTD53hXJby6hcc5oa2ZDTdpDuY4ZH1Brfpp5nJIDBEJotI26eeFdCGzRVPp9nG1CxFCRZPobZpbZ5EtKdZPjDNfU9uceuNt3P08E3ga9gLh3lm+B9Q5iMs6oyTTrA1VNhRD63mcadXUAcgqPjPa4nTmt83lpuSDGE8ZtTH6jZyeo71R56iNt+m3Pk8c82cTgZTzYuQbMPabyPNWRr2PHJkYDhDsBfx+hYcYO0maccjupuMLmyz8/k/QySG43cusG/fN3DXHS/lwOHj6FqTel3iQsloFNAbOcJospCwNVPDXO4xvXCCJ9aarDtLNzTohSmCP03hNlgPXaZFoBYkTWog6wjvCGZES0lkcDjTx/mSVGq6CIbWUUjAlKQiSpB6oZDOIYwhqzXJ8hyVpOAF3lgaeUIylSPTmBQ4wAmBMY6yOyLJA4zd0EtPUo8SpcXQIEYjgh1Ft3FZI9VQS1NsEcUMlNY453B9hzMOpROk0pULsQOtkS4G7PFxTzARHuicRatxJV3iTUxEsB7hLAiJ9xGDH+czR3CRzOkFVBJFSCnROp4PlaITVDJ7SuFt9LUIwVeO6gGlE5AaQlQoCj5EmMhksZIoEVXSAgE59ljw0WHeOYdK1MTdeoylFULESpUbV7BkDO4rgnY1S0cOg4wVVSdARZZ2TJrCeKGN1WYpEwJuEijuDij2Nt6rqvNVa+Pe7sBVowo2nysxunf52t26Hz8vdi3GzydN+BwZwuf+8dd7VInSlaA+TL47iJ+7rAzurnw8MRObvI6/IFcKz/11rCgoqC6rENUEAwI/3CGUfczlx+g+k5C0Zvj6F72exwKcf6bB2fNDNoxjbSiwS0Om0oLmIKGZtxjuDBl0PWtpwvG5DgdywVatxqZpUxuuMk+fVEKgQKp5ZNgiSw0Gy2gIWdbC6ej9UCoH7hJqdAmZzdKZmuYL59a45cQrqdXmwTjsyll29PsR9jHaMiEUbWwZhRlEWMBvBORs9BqJSb6mKxI+geNa2UDYIc5VPMGyzmj9DKoxhxt+hk5zhmZjRJIOInxl8EGEXycNKwibgTSAIIhDQCD4AWlDEra2KU9fpjhzBqlh3/EmrX0nuPbGW6k126hET+YRawOuJzhy0zWcGz7Ow6cu4/sDFqb3YdEcWXwN8607qKk62BWUKwiUXPrUY8wfCZS3Xx8vhfDcavkeCc9d46tNi+dqCM8e7bPneauT++IqlbNJyvB8pxeu/jPsOsRVLxBXH3hXN+NvSkHizxlfIiE5qv/4cTVIKHzlYyAndPNICI42BnLy+HgBdi6gkuTK5OU9wkeYQPRLiIup91E2UCqF8h7nPUorhI7eCN5FLXBXFFgfcNYhVXwD3juC80Q9cYnWSUWktnhjGFmH1rXqBoqSpN6HiTqRlLpqwwakFqg0QaeVCZEPSKLjqaukGjOlGAwGeGNJhUP4QDEa4ILAaEPQjtxaRJ5EN0trWNCW+X37GFgNtPC2yc7OBpkRDIxhu9ujyDVCOkjBpi20FRyan2OlX7I1sgxtn9IrmqqOBFKhsM6SKYXMFAJPYQ0hU9BIaNfqGJMwLFNa9ZTuqCBXUBYDhFbIICktUBiSNEFLH1VPCSACB5cabPem6ZeB+lSdWjNltqU4oiWuD9/51gO4i0O++NQslz5zhp2HzrD+PsHvPHuG+eub3K4LjswPKPqarYvr+Ok6LbfBddee4KWHapxcbfPM9hyz3QWk2yQhIaOGECVC91F5SWi22S8Uqzi2dxIKNUCIATpkPK6vZ+bUBl988PMc2Xcz8lCEa8lDOdf/6O2E8jSE/czWNWnd4soL6Obt+OIJxI4jJIGQwygLPF0ENhXMDywHc8naJUevNc9Nt9zF6nt+hdlXLjMafJKX3Phm1OBZQvdDiIWjhPMfBulR2sNwjdCdQTSXEO1DuBB49uQpDi3PsPPgCqc/8xRHG5c58NLbOPyN38Qts3egRIYLFutLLhddFpIazSzj2n3HObF8gtELh5z71HkuPrVO1l7kgV/5IKcHQ3ZsysA1wF1A+VUCnhN6imU1y750CZ/m7Iy69KUi1wnWC0bOUJoR3eAYObAiQUmBUgEtAloqpKrR0DDmADkLZeEgQJYoGo0E2UxAjsUCAlZ4hBK4siSraXQq8Zbo9mtihb0cgSgL8AanNE4qQhiRZBm2VxKsgCwG1OWgjGIDHoKOXgFSS5RWYMREghTnI17fB7wpUVpgPDhjCdZWmOsKXqEq+Vfnq8LTGHoYiLYCkRgnZVWgMB5vYgBP5TSrpMTLQEBDsJiiiOuN1HGedIEKSkuiopyoqxQ4lFYgYnKACig8QVfVLSEmJpIihMq/IAZvlogIjBNyPG8RJ8+IRhGMqzgQosmkTiJUKIhxlzZElbMQXZmjaZyDq5KDSVeFql7CpGbCOFkZT/pX2vdXjWp3uwPYPV4K4orx0PhrfN5R7Tv4K1Ckq7f9m4MBvhLwy8p7wleCH+PvaELQ3F05FRHjMCYo7y6cxpf6ye9CjLM7MdnnmM8XfCQ9S6WqMl0AU+JLx8oXH6K8eI7FfYf4upe/iMb8EerL13Hq86vsXBjy+JZj5cAO1xzMeKHo4oQlDA3GWFQtISu3WVraz+1zKad26myYDrnq0tIjJAmCjCAUQg0RiUP6Jm0h6QfPoJ9h0nWS0MXTZovraV1e5ezZR7nxyAsReR+RBJLlGrPfcDu4yyCX6NTa5DoapQpOgPk4YQQhOBCagfSs4NiU0LQlU2nCmYsDFuZvp5NDef6PaB++Dlt8nhuPvRX6fwK2B0kT+o/E+06XMCoJ2RSk1yCSKXwIXL58mYPLc2w+cInRhdPsa/SZueEapl9wJ8u1AxGaGBzGG4bW0JQJqdYsdhb4lu/4Vj5x8GN87MP3sbqyykAKeHSZ/TP34Pw8O6PLiOEKenQZh2OhtsDiwWXqU62rrqO9sJnqmb1V8XDVZv+Tx+7EN/59VbAvxp4u46kiTK7Nq4sHwcdkYrdx2u6O2V/8RriqKlKlJWFXGaSaX79aU4LnKjb91d7pl5YciGqxCJ7gVMS0IhBS4/EQLHE1lFhrSNKUIKLUXiBCC9JEIFSUOA22+hKlQOooDZrJKFvqQwDnEFXAH4TACU1cqhxCVtKoQxDORjs1F2dEJROcU6SKqKTkot54IKClZtDrIWoZeZZQFiXWeUQQCOdxMpBIFS8GH9+HKWPAn0iB85YsSSIKpRxhfAkyxQaFMw4vPL407GwPmZqbJQmajY0BbadQIkUmkn4xIgt1DBkrGzvMtXJajTYDF2jqBNl3DDY36HvBZm5RTcv0dIvOdAOVes6uPMPIBEQjQemE+XZOd6tgfWubtNaMN5ERCDKEKFlb2aZd06SpppZmtJs5pfQMhwOUSPDGIoQmCI3zBakM5HVNmihatTpJovDeEFTG/NEZbs4UW6VHBkgCXFy1rD9d8tLXZbwxT5i/scPnsqM85qD/kfsY9ZfYXj7AF9QzfPahB1ABjt95C3/3upx3/9LPs/L9P8udUw2O1vexVEtZNQew2+/mgDSY8DBJmqOzDnk+x+JcH3fqIQ5kdZ5KFxhtFaRDw87UAd6RXcN3/pdP8MNvWaTV+hR++yQilYjiaXA3Iua+h7B6H9cdHuKXDyHsvaD6pG95L8X9XeyKRc4HVo45frXo808XpvnZi2vc0Gnyvvt26JWL/Juf/WYO3vP/UKxdpHbi7fjVP8aXDyHzLmx+DFE4xLEcpjz+8hnC5iai0UCJnGLY5Z3v/AT33nUrTz9xgVO9M/zwP3456pofJKk1KAFMl41ywMn+Gl+49Bj/5OgrKPM65wrBTCZYOtBi9u9cz83O8+AXt3j03z/Iys6zyGDRQEpJHUVNKG5OjnMiP0GeddgM24Sizw4QdJ0yGHZswY4dULg+icrwUnOwMYs3joEbkaeSWgpt3cBpiQswHBiCUGSNhEYjJeBw/SEqDSRagpIk0pPXM8r+Nm4ApCkqSxES+hs9dKsR5UCzFCk0Wmi013R7Ja1mRtqsIVONzjVCCZRQlIXBlSVCamSakGYapVWEOlqLcD7CKQLgfex6uBhsi0rIICCQOo0GaMIhta4gGVFwIK2leB8ww4IQBFqKqPxDiN0G59FKRxEExARy6Kvqkaj8UkIIWGPwoXJun6jExO28s7FC6H2UN5YBpAcbu55aaqwVODf2HxCgdvmzBBnzgkBcIIOPx/VxfkOAtxZvDYnWCOGxoXKHJ3ImhJQV36GsoE6hcp28AiySSk2C00m0GsZKQXvWz+dfdyeL+ZXX7nl6F4zA/fcWn3HtaZyhjH+Ir2hM8z9siKpSOTln9vwy+R6qv6Iqt4idfOdsLNJV8qZxm3HnKH5ZYwgaYmw4KHYlXp7gY4KqtYqS4ImmHFn63S7T8wc4duPdfPg97+K13/JdLB6c5qN+niceuEj3yU3W+m2acx0e5BJrX3yEmdk5bjo8z431kgc+8RFOfO3/wtEk41B9miLU6PpZ7OgLtESJLx5B6g5StUkTjWKbsPMwHd3mUnIA311FiZzV2iE+NZrmlR/6Pd70utsQ3A/lDIEBuA3wR6F5D2HnAQ7c4An1JTC3IGoHkbe+H3fuIr43RC0ozuc9zrLNm7IWv9+9yPfWD/OuDz7N3XfN87fuWkYd+Chu8BTp/L/Fbf0WUp5DiBUo1hFhBJ0lyIaEnc+BOBq5bEHhzID7Pv4or7ntFh586AmWj6bc9TUvRrRvR+mEMjiCM3R9yaXRDoOyz0vbB3AqZdsKZlLBq17zCl71Na/AGsezp7s8/MBvcWH9WRJxmhqGRjA0gyLVgms7L+D6N7+Mzk2LVxA3u2/MPcnilQBaVFwdESYX3ldkPG+HcJwMw8TTJc5jzw3P90j3TuCNzz2fidDQ5L+rD/rcve9VN9pV3LjS2v0bO740EzSYGPmkWlK6SgHDFpX2btSgtZVbsSkLhGIy+ThjQCsSBd6UeGviFypVNA9jkqeBiDAcD5Qhqin4SrlBqmjONOqPIpFPZ5jBAAClNEqleG8RChRxP0GqWEnDMT3VIRAwxhNCBZ+oSpsKjzcmKjZUpke5jp2RrY0eUki2TUmCo5YoglRkrTq1fp9utwcCMqVpznTw3tNcPsDw/Dn8cMQOgqHzbG1s0mxMM60LZhqena0VVlY9IatTeEmWhegVsbmOyBbI9TTDQjIaXma+mbPTc3S9pFlPyOttGo2Mtt3h8LF9iPoMWyNB33jaU3VqzhF8wvrKNkIKpqcbzEzX6G71aDXqGNIYHCUZtSRnv6whcCxNNRBBsrU9YnOzoPQQ5h1TaYPeNsx06lEaLwhqLc3dx2psC/j1X7vEXa/u8OYXT/HY8Rv4zeAIj/we3T/9XYYzderTy+isxUMf/zz3/+qn+fr/+//kvb/4y6zeM82rX3gzRzsz7Kw/yPziUfJ0m+3+Erp7Hr2xBhga8+vUjiawozmSrbPW7WJFSUuvcPmVP883PPl/kE69EaHalN3PMDr5G2TvO0N498Nkv3MC/5vvRN1+L9t+kSdedy8v+7PbwKUwapEesHhpWDrv+N+OpNzwrz/No/9gHzoJvO0NBakQoBLyA2/hvo3f4yXqhSSdDxBWN2F9EEmBS0A5JAxBthWidZgwcy/GH+K+P/oZ/vWP/RQ/9vd+lMZNOd/yjrchmi/h/u553tg8yMkzz/DsFz+Bqs9y7e1v5N6bjxEs/M5lyY1OUJ+VqLogyFj9vff1v0vR/yTB9yPWXdRpyhPMyRE/0jjK4tQbcInjzOhxHt16lFZ2CCETLg/X2XFDLtkN1uwWiRA0dc7BfJFuMSBoaKc1MpXRaU8htGa27hmGEYORYGgEcqtkaamJzBxJQiTqK4eSkNVSVCuh2W4y7JWYUUE57OOFJGu3seUQrVO0qqF0xEEPdgwajREyKvgkunJFdzhiB6s2O40rHVprdJLgyhG9gUPiSbMkyn1ahw+yqrRHjJAQILVE6oxas85g5FAZyCROMN46vC0whaEwAaESpC+g8mdxUiKURkqHE5Vss4tzndLR+Kg3GFWVXEEgOsSHMsIWi1FBqsccq4BSCYUZYJxDKoevqmJxAVJInSKDpyRCIYWIhmWESIjWMioMKVVxr6o507vIyfBV1yNJM6QSeCx+DKMMoFVAigqWReUOrWLHYuzkvHvOh3FXfRJx7Gr17x1jOdMxDGb3ujmBD12FBR4XNyePBnHl8V3bhwryMumMUHVaYBL0/k0YUZYx4qPVRLEoTLpE417OOBAaB02iMuiLPFX5nGBLSDGRkpVVEhuPJyB4tFLV62PCK70nSVOyWp1Gs0UxGlIWI4reOqP1J3jbj76db/7Gt/If3vlf+Y6b9vFn7f38aVviTj/C2fvOsznfYK6zj7Wh532ffIgPdy9y77d/Kx9693u4+5593LB0hCxYghlQr+9HyR7DcoFkdDJ6BSmNrm2ipjNCkTCnL9LtrpOlGTsnH2bjP/8RN/zmv4T0RoSQmMHnCJc+jXz8YXjgw6i3HyF85NeQL//7bP7x+zAXfpWFf3Q3hA4YjV4ocOUWx2RCieRHPvtn/PY9x3F4/td769SmJSI5CM1v5mLxPg7JQ6j6OnRPgtkB6RB1QbDnwEpEo4mo30BI76IoJOef+RPe9rffwjt+4G3c/YPfxPFbX4JRs2yUPY4nTVY311k7/0Va89dybOYA7dYi3gse7MOxACqpxABCYHPT8gPf/wTlzqcZ+Bq5DKTpAvX0AAfw/O0jR2gcfhG9919ECUnztoV4lfjorRI7lcQ4zboJYVlANIRUEWIlvlIdBHGl4DC+nmFvB2F38B8dxOVkHnpOYlF1DSadyckYR5hjaVQmx7la5ODPHeHKe/1q9Z57PpjVX3Z8aVKmUqIIlKbEy4BKaxQjU3W3o7W6EHKC/5UStIpfh3eeIBRBKEajEpxFKxF9EUKUXTOlpzCGer1ZcQJMhCFJVb0WRPDIIFBAniXYEHG49ZbGWUPwFigx1uEdaFGSJEkl2SfQqUISsbdeyIp8JauKlASpCaZES9AyKhxZ42Jwo1N0RUq0QTAwnlRLVL/HUqdBW6nYiTAe5SVT87Mkok+zAf1eD7PTw8lYObz28CxhtEYY7DDfaiDzFoMCQt5maDepH2szu3Qd9WaH4dBz6tw5lvc3OLW1Q7ffY/XSNheePsf6M+cYXbOfC5vb7K+3qcsGXqTktQSd11hfOYOu1Vk+tEBRGPJUU2vUWcwaYB07XtNWiqBlDBaSDIoCnSY0BMw1OyRKE4JgexSoN1IurAyYz2NFFKWYaWpqKSzkirf/1BHOXyyo9zyLrYwnvvYo93/6GlypCXVLCE1Cf4Bfu8DMa+/kI+/4Ze4+Lnnq0YyTq8/wguu3+ZabjrA9+ByXzj7B/Ow9NDsWl59jc32DC49rDhy+l0s7nydZOcvMfMnjMvAj/3aNj/7DBuKfvxx+cj8spqTt15Le8jLC9c/Cd/0Mo3/1r0je/BrsxiO0Pvl73LnsWHnt55j6rpsYdA6y8u/up3Fbi+Wfupa8/AJn//6reOIH38VnLw540Y/8E+74lrfSC1u8ZyB504kjqPLHEP5c7G5lQBOYBoYBUkHEgKwS+n+MeOpdXF//Sf7eW7+LN/7wFLe89OXI5gnOuYTXLRzgE+/5VTbczVxz0zdRazXprwzp0uej/Sm+tp6zMBN5Lwi4sAIv+XbLoPcvSMKAedHmoJLMacNIDPhBtcwl4H07Fwi6QY0WRh5g1SgulSt4sY1hyMBHzkGPIV2fU3pY1iOs7tBMcqbrcyRpg9bSFP3+ANfdQaYBkUflrjyTZJ2EwdoOqBSRagQWKRy9czvMHKojWhm9ckTwntbyLFlnmv4oSgS7QYG3Bh8c1gdqUzOkDYVMEqQI4AzeQLNVx/S2EZTRZVkTy+ZJQpqMoq9JAB+qgoK3GFOSNDLQGiVSzLCkKCyqHmhM1UBiAGG7AAAgAElEQVQJrCmxpgTvYvANBCkxpcWUNqopERCJRKcJDh2bo9bE6j/RMd67CP9RSRILKNZggiBJE1xhyNPYrQjBY51DJZrUBoJwCCFRctwyjz4tKI11JYmWeK7ASpIEZJJgjGG8yBlrkUhQVQVZULkxy0jEDoDUWFMggohy1FoTiIUUgkArXSELYoA4GRVmNwbvsUDi/zzsUFXijpCWv7jlPt7n7m2k2B3MXvX63X/sqqjv3na3V8JftY3+lR6RQxfhd+NcbQzbQgQcVXAkZfzcrnotRFO/CEW6EjgFGaF0Vzo2QIXHDoGJEksiK4y2d5jRMEJ4ncVVhnmDfpfHH36QpfkO7/7wH/D27/t+vvv7foAX3/5SBsdm+PgXl+gXirwTECLBra+SSsfUjcf46Ls+yCuPKh55csSpzUtcv6/GdVMdhuUW3cGTtJqvRDc2KUc7DIdDfL9Fs30H3dHD6J3H6SxK3v+FLqeeHvFj37eMf+9R5Dc1QICuvwyO3AEHz8PL3oP7/Z9EvuZ7cKc+Rjt9DJ9sMPy595K99nWY2iG6P/GLtL/na0lf3OQFbpV33nUraz//6zyzusltP/Tz1KZOsB3WuBhSrps9DuYXgTLeo2mAREDmwVhQeSQrhYuEwQdRWynT4nX84s/8BN/8s69mZvFmCjmFJeFwKjnz+Gfoh6MsH70HY6EclPQzOG8zbkoV9boco8S4/yT881/fYfv0v2E6jLixcYhjLUOWF2SJ4+V6mS7w8QsbtLYF+uH7ISnIj09x+9+9kXf+g9/C1Q3Now1WL13mzOPnyBstXvL6u3jRq+7k4PWHyRo58ivpjVAVlncnBs/ZxO+9x33lSP/fHVewkFdVO56z4a4nntslYM8ju7b9Kptuvtzz35cmZVpajPV4IRkZT4KtFDw8hKo1KSVCCtIk4vylElX1yxB8oDSWRMhIPp6Y+gWwHgWkSYqr8MHORwdlpaIra62WxdaF9wThQQk0gsKMKvJxpVRCQFXZpMOTqxStdQU5khjnSJKEVGmKwsRjZDkISILHqgQtNVLGw1knqdVqGG8Z9UvKcoQMjlwrCp2wNLtMOSrJJHRmmqSJwhcFNvRIQkY7q1MMe4xGQ3wxQpoB7VwwGio2S0twO6TeotIGzUbC2lM7dKanSWt1jBnS3d5E+4Ju30GW0UwdszWPKyRt5xn2Bgg0orT01lYpgyCp59Q7kkzXmWlPszkY0qwlBO9Y39gGayitoiczZJqTN3Lq9YR6s8FWGVhuNTEiIJzHm+gie3SxQzCBfQeno759qslTTaIl6yPDjo2tSRsCl88N6XjPT7xslv/2H99Cd7vPObXDpXf/DuLUKssvuofemS/SqPV4arXN7FyD3vkuHzm9ytnHFvmBN7+Q5eVVSnc/m9062ajBnNggzBdcLJ5la9hj33TOlkppNx2/8E0CfmEHyh/Avep3UK84gpzTEb8qj4L+QfIfb+Of+jnklCHcsID7+BPUzgT0a36I1vABfkl+AfPfznHvBc9N/+w2Gq1Njh/ICI+X7BtOIcUmmfttXqjnSfSPYz73dpjbQtYtTIHIRWx/pQFhwY88odfH9vusfeiFbC58mJv/99fxgmNDlhr7GPUtjYc+wH/+3Ge48+UnODrVIQmBvP8si8lJ3OAAt4oZ5qcUSSIm1RVjDBsPfBbvtziA4DoFR9OjLCcHycx5Pm6neAzNufAMUgQyAbgS5U+z4YaUokSQ05Qp80qz4TOkrDOlW8ylHZrZDHneJq3nHDi0hKznmJFANXKCTNGJotXMqU9lmAAhq4Gz+GGJdwKZSozQFD5BGAcqx5Cw0wukvgClyOo1kukEWxqKgaHWCvQ3+hTdQH2+FZPbJEOkGUEFlGpS9oZoLRDSE1yJMJYsTxgWBqkVznqctXgcSDBDR72dIpKcpF6LHCjAjUqsdwRbTOLa6Gdi0EmOSzQU1fQvJMFJSuNxImoRaR1hkc47nLU4Cy5E1SKpRIwRrAWdkWVZRWKuKlhV7J2kCaa8osqh5Jhv5fE4EiVi4lERvKQQk3kNrbAVeZSK26VC5DG4Cuqkqk6Ecz46fXtfBX8iNsiVjjr4QWCsRasrhZLxGAeDYQxDGAeoXLW2jhsKu8nMVy/wu4izV8MdrjYo2rXbXZjhipAddj873uFuiMBX2Ur9lxyTAKiSAY8jAoh2V1WDj74akZ8nAYX3FmstWqmKsFx9vlXiAJUMJGLCt9MqVo8jYslXsKPIz/HGUErI0iyaGSqFlIqd/oCf/kf/kKze4Nf+03/iVa89zVu+9du5ZvkWesOSc+mIU+9+DwtTs0zNLDBcv0ytPuLJjSYL0zXOn1nn8kXF+X0dXn7DMVrtTZz/FMPhLNqmNHQXn/TouYuMTJ/p9iw7Bu44POQlow3E756G8icId/0S7NcILUHVQewntO5FveENhLVfQC69gHApR6x10Zs1xLXfSFo+w3svOq7/95/jxOlbmPqGE9SSPnJ5FvfZgqxsIzhNPZxjn1hAyhtwp34cOZMhdACpEMqDUEQdE0soR4RyA7t1mOGpQ4xaT3Pd976RhVlDqlvInR6rF5/k/ktnOXTtIWZrOb50NMQKiSwRdpolkZPnspqU4vXeXx1x9r7zDMtz/K2szQvqgv3Tt9LUGQz7PNVv8YxSnBenmVIK+o7Q65I88zCf//jHuXhulSRvs7hZEIyj4Tto22T4bJ/k1XpPqv0VG4I9sfbeGv7egsTzixFUu9kFVbxC5I+v3ytD+nywo3HHsqq6c6Xr8NzPaBec6Kvg4/vzxpcjT/iSkoMI9NdEGVJD1KkWgKTqi0fnPgNZpisp0Vi9iHJ7juAdQlfVJe9wwUelIu9JkhThFCFEt0YhYoHQVovUuP9c0QEqXWdJQoq1BkQ0OgvVGbnKkdk7h9tF3JMy4IxFi2iYEZdEQZJoKMoIVapa/UIKgrMEBH5kEJXbcggxOXHBYUoLIlYua0GjUIxMj53ugKyWghPUailKCexQ0WzMsl0EMDIaGfW7DPp96q1I3Bpaz5w0lIWJQUww1OWQ3EvsoGQu93SWpzChhvU1hv0efmC5dHENlSaxJdzLELUMScpGt0eawFQtJXgwhaVnC1LVIAx71Gs5jSylkSY0hCfUE8yogCylNwJnArmOJPB2mpKnCYmUNFNFPVGR76EFCQGlBP1+IKklHN+n2T+d8abGPP/yjwsuf+oDhFQjjx9m5dmTOBNYPHYn/TNPIM4/TrudkmU1Hn+wx3/N1nn9LR2OzpQUZsQgOERN0zQ95NmzHLn2JtToIh968DxrW45//KKjDNYuoMrT+I8ViOsCYtaDKyrpznnk/n1IqwhyARYXYHiB8qefpPx3v03y7ddwTz1jOChon00IybexffY/0jg4yzU/+kPUXvwSQmihxD3sk1MQlghPGkgKaARQglAGRC9Ep+0Pe5hSuGPLrNjb+a1PPEj2HW/i+hccp50Zts5us3ryk/TXT3HbjYsszByhn+Uk4VFq0pPUr6ObzNNUvlLkiolvLwhOljuI3s/xNcKyrBpolbPlB+yUZzgeCj7jRqwJyYFGi4GTdEtJjYQleRgbttniIDW9wLzWLMhtMn8Wm7SZrTdYqjdQWYM8r1NTGVJm6CSn0QxEhqwmzTM6szkyTSk2eyS1yOsxxhGCJCWj1knxOoNgkc2EPARQCW5oERnRZVgJgtcEBEFZlIaiZ5HOgY2HCwHQAVMYlJSoROG8xZYlwTisg6AlwcZA3dhK+UwlMcz1HqEkaVaJCpQl/VGJNQZjbfQ4UHERMcYhQglErLWTIpKbPWid4p2rSJu+kvmsnJalR8kURCCE2LCWkkp1KAEpJ/wBXRGNgwikiZ4UNaSSEULiHLiozBQCCBeqBc7HwkyIOubxGAqEjApuwSM8E8WTUAV5MVkKMfiXKsoDBlEF/BIRNeOi0pNj4qA7Hj7sWqp3PTUO1ENs2Uw28X5ve36vmseuzOL5Fq3q8T2NArFLa5wxQdfvIlrGrcfJ09+EIQSM/csiYX5XuVNUKkUVQTnscrDenTcpOXZSrlSOxpUFomzpeJ9jmNIk8ZOy6qz7qssQl30lJd/9vd/L0aNHAYHOMtpZxtd93ddzsWzQYsBtNxzjcEOjcs1/ecJjH3qIpWsOM+yNOLO6hlaK/YvH6V08jbr4Raam2gyGCU881aO0GS862GGuUTC0PVLpyaVAmh6ie46ZhZsQxVnue+hpDs00eGH7BG61juhfIDzqUfOAirzHaKLVgakmwknIDsBNArGzgf/DR3C/+yuob3gtd+zr0FnbINnJ8eFWbO9jpEsHmPvOb0PPzhMoUKJGQzYg5HBxC9qN2DVAEWxAlDZ2ZB7egeUMlx7l8kabJx97guwVr+DQgQWULOhe3Ga4vY40PfYvz9KozVJoiQqn0aoGeg4ja6Qy8kHG3iL9IOgOTtO4+BvcmxuubzfRWZ2Lw01aKBou8HDZZ01Jjh2cYqOQOCNphJyOX+TSpT46u4t2Y4aZhqDht7l2akDthgX23zhPu9OuiOdf4Qi3aiXGRCDGi+Pr9+qCxOR6v5qIvOuaHrutw7iTGCqi8niu2LvPCQ8h7D3Y830u4i8qgnwVjCvqcFce4apH/v+ML03KVEXpPB8iEdk5V01W8UKO7dCAFIqQJJWxWFQVoiIYayVila6yaZdEdSFjzBXCVPDRFkGIKINKxN45a6K8X6gWISnQUqKlxFftVSHA77o4JLIK5m1sWemAFhJjDLbq20kRwDuU0DgZE4WqQQGhIjOHgK20zBMlEZNFUDAc9JGNFJxnVFiscWx1C7Y3B3R8AKGot3IajYyQ1+m0p+gPClLGhD8xQRQM+0PqjTpaGPrdLUylnK5koOx2cShamUA1WrikQ2+kuHxpBe8E21t90poCb1FZhhnOobVFJClYixlZBIFEg8w0CqjrQCeT1FJBKhyZN7RSydZOnxyJDpIgJCYIrHGIJLpW50pSV5KajJfiTKIiYVPDvpZCJZrOUkJTCm7L4cyTBZsffIjGC2ZIZuqY888yffAGRkwTZJOd7jpa92iSYbdKPvHZi/jVGV5/d4f5qSFKdFkdKYZhgYZZI98aIZSlncJ6mfDgA22OZft5tv9+Vj72B5x41d9h6eg+fLhEefojJIcWcWuPIGeuQ6gmdArE3XWGUnDpt9/P/nnDrd0Su5giDrWQ9VtANtg+b2jd+zqU2sE+dQl57G7EiiU074/4zFEglECuEMYT1mxMFAoJeQtHg7LnyG9p0b72BPuKlGe+cIFzj61SjoacuHWB2cN11myL2vA8eW0D9CJ9eRib1NDJGr7weNkmkHDqwjZ/+IefJQkf5CYNx/M6p9Q0Z9J5hmmb0z6lX/SZKT2pNChyOmmNaVlnX3It18mCsn2MvD5Dh5KZ0SU6wxmK5gJJpqg1EmwicMKjFRRDT9rUTE23KYeW4CCrZzSm6wTpQUp0qqKajw04I/A+odnKIdMYSgQKTTTfKkpLogWJAkSsQCotcT6gEo3UPhKAq+qlNR5fGJy16Ho2luOJJk5SUPZH6FYNb2wMpIRAqSgDmsh433urCF6BdxES5C1CxXlKCInzHmcc1gaEH4FMESoGV8EFhAtIpatAPTq9u1idYMyN0omqIEbxPWhdQUKcJyBjZ0EwqcRH40YVg3cfrmDKpUR4X8EzUxIZF0tjy3iOIfolCBmDfVEpusUiTOR3eS+iU/OkOBYTibjYVhLPMi4agYhrHxd2ntOSDsQKDXHhniwz4yr95OfehODqJTNctVTtTQD2Fv33VA13dSt2t/yjfn+48vrwV10Cv3rGriLqc57YE4xUQZSgMjnb9d1NeAjjtTDsKpKGK7K1u1UDg6xckqVACEWoEkdR3VOveMUrueOOO6JIh43qVq9/wxt5YrVgrqVYbOXUJCwGeOSyJf/MSebuvo5ev4vb6bOweIBhaIGssdFdIa05KCWDnueLJzV+o8PLbpkmT85g/AjnErSfIvU76P4myJJcCwZrOZc39zGVLbBz/r1s/um7OHzz60mXckJxCT88j2zPwOgJRPtOhGjCcpNweBZjA6P3v5+pg0vcMN3BdwJyaRqR7COEnNGZLtmbXwtbnyfIRUT9MGJkCMkZoBYhRIkCMrCCMCpjhdrlkBzA25QgLXpfnXx2kY5RnH3qFOurjnoL5va1yDsN+i4jLdfQ2QgvZwmiQ1ASKYfgAkHmeCl48uktHn7oCabCZ3hJJ2VxYZoz6SwmrbOtcoY+YTgaMVV4hBe0Qk7eTOl0GkypafY5Q29qidZUg5msoFluUqsX1F65n1qWUctqqF1+Al+xseeyDrv+/fmbPt99PukwsptAvPdV43LHlQ7muNvw/DPH1Y+KyTG+/BCeL8vY1dD4n9Y5iCQ/j6lwusZZMi0iTt/HFijOoxOBtQYpAjr2zSOxD0+WZARr8SJyEmQQeC+wzkM5IojKGRQFMnohjCFBsf0dp05nQShB9AyKzp9xoowXhQ8iKiUhJgQ9USULsmo9WGNje1AIRLDgolQqjok8qq/ck7UMCBErirXc462olkrJYNgnTQXKGkYViXG7VzAqA3WfoLIULxLSLItKJE5C0UN3ZklrNepKodOcTqfNTrfL/PQUdrhOv7eFTxIa9QYhNFg5c4akNUUrTdAikGaKvN6g262BypHdAc70cGZIqgMN7Slsn5aeYtAbsGZ9dG3MFUktpxgUdBop7UyiMAgbM5QaivWiRNQs87WcIki2TQymChvdX2dSjR7fIEKS/n/cvXeYZFd95/054YZKXZ2muyfnURqNsoSECAaRJMsGTDAmGK0B47S7DsCLDYvBOK4zXuzHa6IjGAM2ILJACBQQSChLM9LMaHLoXF1VN5zw/nFu9fSM5Nfa3cdreI+eZ0ZT4VbVrVvnF77f3/erBdYGCss5k4L50rDQt6xL6sRSkB9ewmUxne/tJZlIGJ5axUQ6ztHHD9FIRzAty7Glw8Szx2lHgrKs8ZUv5oholGufpljb9EzPlswM72D71BIHv/1V1p2dct2lLQ4M1/jY2+Z5U+MFfOfkF3ngnt+gfm+Nie1X46L76N39ftqNH8Ee+jJi8nWI9jTe3I09cZxsMmafnWDhg7eydvUq2jvHiM7SKLFIWzTY/VBO/Pjj6LmbkaaLji8mP5ZSmL8lnjC4RYmacajVVeKVOVhwiCsbLOlVLB6exey/ietveCNjrT5HHnuAr3/uizx6cgurznsW529tcax3B7s7Oc8QD5I2zqEv19PL+ozGoP0cujAUxBzNHLfdcZib/vp2dmzfQefILLW0QXt0K1PtC1mK1nGgn7Oxs0RrYYnvLdzJ5qjOzvokE0mduHE+z2yuo7F2jmQERKlxCxNQjGDWrqNPQe5LsrJPL++ylPcoc4u2mtZQypLrk+cGoUHXJFluqLUbiGrgVWqCTKYR6CghSmO88Zh+gTcGESviVFKrR0T1COslogwpSFEK0DFxvaIGConXoXNadoOwgSN0t5EKnTawpUH0c4Cg0IIkjnRACJwnkjKgCUVI5gsdfD6EEsQqUOJs6eh3M7KsCDxtY8K+IiKo1HqkCh10IRRCOBwVqrGcHAukd1gfuOJeBJU0paMwBLzclQr7p1QS7cWy14C3YeZisPcJKbDO4VGB6iEceIuQAhV+cKzsaTnvA5KCQCYxnkr21IGQqpoFq1rAVSNfCMXATFgqFSgnVQGzcq2E9E8f2jtzCLAqblaiC4SMPTTuQhBeMdN86plPSP5PUzU/47Gnuyqf9h7EihP9A7yWTxe+KiZtlcjL5c+4PFtRVUWn8v4qcXFuOf4NqLaIgfpR+O7k4N8MzmNokiH1Mi1jgCQJ4MjhQ7TbQ3jAlCVax3gBG8ZWMdvtME/BUDqGcIKZYxnZcc/Bb+9mapViY7vNlGxw9MQs7WSUvvfsnz1A03VpRpo8T/nGbRnNoVEu26YRZUbfpMh0M8PNh5h/7DOMbl7DdZeNs+erkr235pzfvoBDi//Evs/+BpOv3EbcGMb1voeZv5dYX4Jb+CbKvAyf7oN8D97MUUyMM9drs/j3n2By4+XE65uoDXWEK4l7gpkHjhM99zDs+xxy1VUwvgbTz/HZ19Gjw7iFmdAoSKuUqSzwWYHYuYW+3U5+9DHqssuuZ7yARtJhcXaW3bd9lfnkmWzYuZHRIcOiOc50YdjBYWR9B5mvgTOkHqTvI62nFBFHenDHnSfYff8cm89Zz2K/ZPXoELWpjawe3syCqDHfM2xcKkiO9/jOY/dw+ZoJ1o03qDdbRMkaNraGiCYX0SMCn0cIM4Ycj9EXTtK7ex6ZS4Tj+6CiPuXoPXgzyx1/Tl3zp24/vVA+VQxUz3WelSMUomo0O3dKzve0V69QBv6VAmHlCj/NFdX2f/i5e/J1+jb4v/8mn5pakXV4W+JtibMWrRT1eg1rChQEvWzl0XGEo4LU0cHR1JYI68AWJFFKWfQCtG89hRPoKFBVCpNRCbPhnKUoDd6pqrskcaZcNhRytsDb0BEMcKIPULkQeC9IoxSPw+QZwgXFEmctlkp+1ZUhIGpNlETYymLeWoE14SJSWgeM1zlq9QgnQhD3hO6csw5VoSh5aahphRIa5yXp0BC5rjM+MU6sQqD3HmZOLjKU9WisWQvpepJ+jgaSJKZtLGvXTPDQni5aeYbHhhibGqOzlHP00X3EOeSzhqUTR2iscqzZuYF+IWi12ywudDm57xHyTkkUS+zcLDmaB/c9yJr1k6TDLTJXsLAwTxwPYaygOSJBGSIZBrVdadEKptoNavUIqSBVinZdUxqPxpB4jbGOpSL8OGx1IY4ngoXc8M17j6BVj8u2N8GvY6YE+5X/iTv5AGJsFHXO04h/7Lns/83fY/XmDdT0EfoojJyEPKWfP8q6SFAOl3zps8cx0Xauu3onu6Y6HHOHuSs7ykhbMmcs0WLB0FLBs+Rh5u1+mlrw4mSM9Y/8DeVnPoAaOUn7vBbiob8luuxHsH/2PuQ54Ccj3D/PM/zqYa7c/ttc+yu/zNtvuIjn2h75zUfh/vuZe/Un2frPv0zxz79OdOFZ2GQXC3/+z4y995XcuPOzbH5TSm3aM3yupz3u8H2PHE/ID5Yszazhm1+dZ/etC/S7ike++Hv83tOgcckIz/v553FNejmHH8v50J98mdf8zJvZ0SrIa5chVIMyzyldRu7HKPJNxNqw+9BJ/uwzHfbPa/7gb36B7fK/8Pxrf58vz97CT1x2La1+xL1f/TzdYpELMfxTcYSGP8GkOIvJvqBRlpyTz1CIH+P4zb/J+pZnaPQskg1XEj/nKvQ1bbzwZA90WHzoGAvHBapIKLWiuSpCeUkjkaS1BOoxpgiKWj4Nw61FWaCUIKrFEMX0c0hGFLHWOIJPAEJSG0nxmUXVK7nNbkHRySmtI6nVgpuwjCiMC4IEZYnQgTttrAFjQSqcijFWUBsZodvpgogCHVBppIrwwmB9ABqyXg9TdkkSRWO0GQrjfg/vZUXbA600URphTHBKt2VAC4UW+MC7QNdibOaRLjQksA4dK6wtcLaSbkZU+wjEkUY4CVqS5TmuMj2QJiT6vnJh9iLIxJaZIYlAyeDP4H1JaaqkTVAZpIVmycChHjx5lmGMQaoYaQP9zy6rxzm8iFCckqyUziOQmKoZY6xFSRUkTYU6bc8fdJ1P0yDHPyFAL4fwFdKnZ84WhILiDMrRytdimV1Q3b/imacd60kKA1bC6d+n0foprxUICZWrNr76/lYMIKvQ8R0g24M1oKU4H5RcXEURcgR6UPA7CCaly4PNAx6TCNcfIjTsvHeY0pJLyVt/5ZfRWqOUJopjNm3cyLHjx/mZd/0x99/+Fc7bupZX/Pir6JeC7PNfIz++Hz++nfSCp+GGIvbdeicbVo9RlyfRPsbJDfjiKKU7wZR2mBHDv3z+MNHLL2TX5BpGkowlf4wjbj/1Rky/7CP7fVaVMzTcEXK3jqQtedrYpSSHP4szjyPbfeLhNmL6RtTaa/Gffi/iqnNwJ48gFuap/8QF1EZ/np9+/Yv57299OsN3fQN34CjSPkDxwb9h7L2/gfnGr6OvuJ5yfxNO7EWe02Dfb36Q8RvWoQ9bahc4tPYh8NXa2Lke+dL5PHjzPfQO9FkUR+iteYzrtkuiDau57LXPR8kN7Hn4GPfeucQFl13KRGLIo61oH2NtBqrE6hrODoP0HJ9d4L03FezaMM67f/+V+IUX8+733MLXD97Ga19xJQdvfZwjD+xBZH02ecMnTx5ltXmM0cUGddunMT/DaHMBK86lc9tfM7a5jZo8C7V1a0BKLNQvaGOOFvh+RfWuTBf/I1YQXfDLiOCZQqJhnf7mBsjXqWF9WJaWHjxGimWnZVH9t3zs5YLgyd7RgHq04rXP+N/vA7zl/8oS/1/wiKjwlte+7gbO2nEWZZFTFn1UXCNJo6pTwSCGYZBoLdGRwlWcWWdLTJERRxCkNQI8X5Y2JAZJDIDJegECj2OE0ng70NUWFIVDCw/ChQ3PV7rdAnBlMGlTqpJAlNgiZ3kozzsELnBvAQj8ZRXFCKGr92mIlQQrMC7wiyUQJ5p+P1CodD0hqkzQyrLEeUgoSVJBEtVopTVipen0ehw6fJILnv1DdA4fxZkeznsK4zFL84w1G+iprcSxgrLA5hbnFLVoCWP6nJjLwUuSVNMcbdGYmuK+m79FGkm0SMFZjATTajGxeQPrR4Y5duwkB44ep7+0hDSWQgimS08vh0uffSmNdpuZ2Xn279tPbyHo1YuROpuGU9aOjdMaamOdJY6aDA+1mZ4vsUJQa6Q0myn93DMuYwoHCIVQGiUlQkJuLdI7cno0Y4eTYH3BpO8wG03xvLfeR+f+R/Ezd0L/PmR0nOTsNrVNLyaZvp/hpkTEDYpMYI4exPb2cfHZMQ8+ssj80T6XnTPCm1+3je3nWPYf8kxNPoO/+8inWTe2xHN2jTI269HzlqrQXl0AACAASURBVO5XMmoTGbWXCqL1OfJkDzINC5bycxkyFahnN5AX1ClmPEdutGx42x/j7/wIh993Nx+9fYZvFZa/iuGwV8wDaySs/dW3MHzD6/FpRrHnLTx67U3cNVrjme89n/VX5ZQH97L4sZLJX/8VfuKC3+Ku6YK3jgguu6DJQy+Y4unPXc3Hfm0fH711jrfdMMFVV6W41Tt5RP4c3a/czNoduxm9+CdwM4coewLROpuRRoqcluyPD/DeP/8gOzdewQuvejE+GeF4FiNunOemW7/IHfvuoLn0OJfQY1wkfCk7xvvWvJLxTS/BFhbVMrTPmcLcci/J+BRqwxhqWxOxJUWMKPycg7UKu1hQdkvyhT7Z3BK9mUU6JxaQLYkVEA/VSUbqyFhRzHcCfUZa3GiDIuvjHehaAxFHqLamtbpG95HjYCwqBSEKoromm+1RXzNCd75HkRmcklhAtlooKci7XVSwByLL86AmFIOKPcaBjBJUFJNnBXnXYvI+cT1GJxohwBaGvDAoAaYX0A8AnSakI8NEMZXEX0mel5RZji0LoiSqMlSLRYXE3QuclGRFiVZBlMGLCgk1Qa1Ixw7jgoSzAIQYmEhFCAm9bAnnBTrWxHEEQpAbgzclVIaLeBBSh9uAvChwLlCxVKRACsqKKiSpuv0izGN1+zneg5KaJIoAh7GGorQ4HxCVJImIYw0izDkFepINEs5Kh24oMHPyJL/7O+8FYNOmTYFa5X01KL0igfceKSrJ2DO5v2eo5MCKzvQggT/jfk4rQvxpNKOVKMUT0IoVkX0l7vChD32Ya6+99l+Nad/P68///M955zvfEYQ5quUruo+UqqIMhXNRVNcJhOtuMHSepEk1L1PNybjwHQoZGmRShhkXRChSZTWjUG80Km+fYvl6Hrz+QF9ea0Vaq9Nut0FAvV7nF9/xdtrNOkf37+c5L/lxfvKTxzn+wFHMyXtQ2W4awx1GzlnNyNQzaM3uZnU7JRd18k4fM3cEURzgki01vv3AEeYen+ZHrtnFM6/aSLPtWOwIWq1L+OKn/4iLLtjEmtYQSd8hFi3lPX2iyQ7RM2MExxFZBibG90r8HdOIIY28fCO+WaOccWSHarSe+V9h36eZ+4Mv8IH7Zxm3GS9teZZcg8x7RiIY+oP3o87dhXcHMHs/zfw7P87BTes5/5evIRreg3nsYex0E3HhG/jwz/witx/Keef5dcSVZ2Mv2sFIe4T7b3yUf7zxcX7lrbtYtT6mV7uS+f752EP7GZo4Sn39c7Az+3ByFBkPkygFGcyref7w4x/jpU+7nvWTmzEipteX8FDO3bffx9fvvp+d/Wm2yyBI8NDsLD91xfUk516CmVkk3lhDpwK/ew453kSurSPWxohxFb5vA6JFaHrEQE0iYwlqJVf//+560QteyF133bW8L5zJ63/CfkElkc8T95JTcwOBjn6attnKx1bFxL/K4Tud/PikNYoQgve85z286aff9L/6kf/d11NBDj71qU/xspe9rHr8kwuzPjXkwIUKTVZ8WOss1gadbzdIwJVAiBKTg3NB2UBVnEUZR5iyRKlq86/Ug6SApJpFMLXaqa4UniiJcYbQNZRBoWOg4zyYNaDIkOjKCEaiZXAidiIkrTquFJWcDTKjQiCEBidxpcOLEm9BqUATQoZAG4giAbGIY4eWnkTboAUtJHGUEseOfsfQrLVIdYRHkTlIm3W2bt+MXZgnjR1WRyitUBI6UcHJTo/h3kmEqxFpDZGg28/p9Q1pGjE8MYQmDElHaYwqupy7ayNOtel2SnoLXfozi3QeX2Q0muVb332QzCWIWoqjiVWgainbkgjRqqOjOiM6plavM582mZk5xmzumFw1ykKRIKd79PuG0ZEmyJxGpEknGpgKfpYocg/fPbHEVL1GM5W0Is9QTVCLJYuZYKSu0ColkQKHJbdd8rLPRtnnN955Nn/02WEO/NM9+PsXQNYp9/YwD/897rzN9A7NI1yfaKRObfUG3Oxx7j80T19AKSTfvHOG6XnBZz75c1jzHU7uuZc3vPGHGRpNOHL4EO+789vcc9MBTA7vuarO9ihFL0ZYr9GbFegWsV1EPG09/lMzuO8sEP3aetasO5eXXvazvMKXxN2cK4EfS2IWrWMVjg14yhKyP3wfndv/Bf0jW7jrfXdy6Z+/iIffczuin2DuNXByC/FrX8PLznsH77o6YuK/rqO94Xno5IfYkZxDFNd48wcEP9l/hP/x1vdQ3HSMF1zX5bLhb/P4lZ7ugdUc+vKXmJl8Ns3157E2hftuvYd0y9n80n/fwy/d8CtsG4t5/MHvceONd/DovavJZj/HvEkZF45MlHzbD3PD1A/zD+9+CeVHobGlRrIOhClwx3Jab38WsqYQtQgM+FmLf8TgbUlx+0mK0Zgs70HqUDVBPJpi5hcpu32GtoySDtdRWlbJfoS1BbPTJVFiSFINOEqXkUTBNd3MlyQTTbQ0SOFwJsJYgZeLpFN1+osLOJMhkzpSxkSuJJlcRbG4RGkdSI8rLJ3OIiOrWhT9QIuLtUd4SywEMtG4ehvrHTJS4A34ElkNcVs01luUEgglKIucpDFE2cuxVmAKE+iFSHw1iFkUQTFI6UrBxQVJU2sckQ5IKICMNdZJdE1jul20GijQV10n4TAmRwmHkipIQUuF8Y5IS4yPKE2gjGhdGfx4TVkG9SVngqOyL8Nsh6jme0pjwVicd1gfVGkYOHh6g7Vh7ikEtLD/4iDLLFKC0kEtTiqNNzrMkjmHtYbytIT0FPfXrQi4nJaorwDznyT+nB7QTw/44oz7/fLhT+vvPeF1Tx1tENgHn53lgP99OCf4v7SkEMg4oizNsidBiE7hPBgbZHAHEuKDJRBEcVwZ2AWH7jBpFkwAESucryv1LQREUTDZ6/f7SCGCuWBp8AQlo+CREa57K6iclC3/+MlPkkSaoeE2SIM9fwetxPMbP7KKX10bM/PXX8HnBtOr0XngBJ07P8G6p53Libv3ENdLmuOrSFeN4DrTfO/oSfJE0bUxH/74XRw85vjFn/8xhN/H0vGHuf4VP0+kHQcP7ePBvQ/w+H17cKXnP102ibZ1hK0Hl/GhBDE2gbAgzroE/6Gb4OxRoisvpK/H+ePn/iQvmmxiFqZ5RbNGzdUxpqApMoa9w3Q1+Tt+keRlV1NMDDN/+/1MvOuNHH3fF/Blgn3MI5MXcCKd4vOvfzs/9tKNvOqF59GoPx8Rb8frUaTUXPV6x8U/fpx/+Z238bQXbGH1tg615ChLGyTl/DhzD36XztjFDLfbRP0+CzMLuNYwv/XpY/w/L38TDWvYu/sBHvreLIfvS+gdvY2TvsXWyLG3sLjmGp538cU88yVb4RuKaGtMemmCX7AIAepVGyGSQXLVAYsOcgeFxe4tYUuC9YZofW2Zcgb8a436f9f1ZMPFKwuVAUrgVogfnLnhPKna2cr+waAYWH62f+JhVjzmCZNTZ/6zOmc/6HvNv7WeUnEQEnOP0IpYCfLChI6YlEgt8F4un0DnHVnWQ0uFUiGRl0IivCDPysCPXUH+Eq6SJpWBpuArVZCi30OpBCVBaIUQUUADfKApxFpSegdlAYT34IxFKhc6mUojZdjUHB4dSYRXKMJQY0DSPNZ5nPEBWpMSJVwl8xY2VaUVwlmUkNgqWVAySAdqBSbLyXQYlDPeU9iSIQH97iJGCHIbpASTWKKloxaVlEsdZhc6aKXwCHpZRlkaNuzYSEKMKUtmF5boT1tarToYh45L8qKgFB4jPEtZxv79R2hMjrG63SQvDEv9PpkPndjMFqxrp9SihMQYrLEMRyntKGForMHaqXHSKGE40QxFAVUZaqSh4+RN+N7w+NJQQ1ATnnYqSSJBJANf2lvPWE3TTNTyD8Xa4Fq7VCRk2TTPaY+z9ppVfGziddyy7zpk6bh6osOtH/knin5Ke+skdvEIS4cP0ZnpEilF2dNMbTXkccz8McXeI33e9JaP8+tX99iwSdC/f4ZDPsKPbeDVr/lVfvi5H2e+cxcf+otZXjLruGK7JmonuIk2HOsgDhjE6uOIKxssPqA5/MsnOfudw/xMs8ftBy1Xt6Y4/5lDtF80jhl6Okq2kF8+gb/yXBY/dx8zt9+OPXw7a2cNf/i73+YVv/oqVl2yg8e+8C3u+ZsvkU1+kLc8L2HbT0+SnvtSZG0zcJSIB0H9ZxrDgnr7Ul7z1t/hzi//Lf/yue/y7Kv30X+oy6ZXvIFut2DItTi6fw/ffvRBJsdKPvSRT/CWV/00xw99k3vv6pGymh99znUcTzK6G89npF6jXkQUWeC5X7F+kvTbbZpXSNReg/teH+IM3yjp33uMdCHGLglQCp95fAluVYyNDUuLDl9YolaMGFKIXJC0hqAniRsx9VU1fFmSz/exFJBEZD7HdCzGpYH+g8NnGTUvKVUlxagckfS40uH6GVGs6ew/UZmpK7Jujq5phFKUJ6dJhxJMllP0c7yQaJ0QJWlwOkbiDRhT4IxD6QgVRwg8QoROmowiIqVZmO0FJR3pQ9NCBoZg3s/wdkC09WEIWClknGJMDsIjMUExRkBpwt7kXBggDvTt4DIsdYQr8wBnmzLwmJQOlA8V5pdUJeSACPRDY0tEpZCkqgAYaDkO6wzWW3SksF5iS4O3YX4CB8aH+QnnDI6wpygCkiGEx1hPaYIMtNIqeLXYoCxUmAIpFalMQAusDUmoswMAXZwWKE8F2yowP0n3bvkJy1SAM6B/nrRmWL79dJOiQEc6dd/yoaskdpAgnKlt7p/8RX5A18APY5DEr0RNTIWWOxeQ8GVTueqkOR9ilvKEvdmdOqdBRx6CEMApUoQATGmQKjhlO7GSu+3w1VA8sDycPDk5yR//yZ+wZmoK7x1z87M89PCDzM3N8bKXvpTz6obfOr/Fp294OQc6BaOR4yyxyL233kfRbbLxvGEWD+1m6eAheijSKKLfi9h6tqDphji0P+He/TP85d9/hldfaBkejyj3TdOLBe3W2Vx59cvZtfM75Pl9/MMHH+Yl125ndEwgh0YgbkJvHmYKWNiDuOZcOrcdwe7dQ+P5m3n+uZZH757hknOuYPR5bdTmNXi9EekU7OnAjnX0/uY+Ot+4H2q7UZnlpt+/kSt/6Q1EYxs4+Ln7mNl3C4w0ef5LtjLyvC2oiesRYhzYD2IGxKXENYhrDZ7zU+/i0bv/iZ45xOqpOnbOM7zrSvK8JCZmZu8+XLaAVxm337eXN1/zwxx8/A5mFuqsqo1z+YWTdNqWbGgNaZLSNIKlzNOup6xvDxEfraEuEHDQ4Y9bfGLxDYd/vEB1FX4JiCQ+9/hYwJhCrI2wCvRIgkxCQ/Q/Mst1lQDFyoQ+FMQi7HMMhuv/reOsSOkHle+Ka3fl/vWkCk2+KhpO23zE8v6z/KDTn/IDsP61nfjfXk9xIDnwE8OQmiCKgiNjMN45xevySLAZzhhKYYNSiNJIITG2SsStReIDcqAlpTVIqSsJ0cDBdc5gjUGpqNrMQvEhfMX59x6cJYrisCFKqk6frd5X6MbJKjALBl3AAEkhg9V8cN4MEJQxBqEUXgapVZwLEL73FcTuKr3osGE6Y7AYrJfk/T4QipvS5KgyY3S8SVZWfDonsEJTbwWEwQ3UmYQgUpLhVo2kXqPRapL3LRBhfUa/X5AmNZbmlmiPRIFjXGQIlxNHEouiltRoNpukvSWUE0QISCPml5ZoJopsfposicFZGlrQbDXJhWMkglqrxlAa05QWaXMit0RvEQwJWsUIETwprIpZ304ZSsK5M6UjN46a0tRqgqBQaylNQdFfIFs8xtLcEbJCoZopm0fH+dErzmbTDjg6n9Mq5th61THaYyMcPvIYJqoz2lhNb2EOX19i/u4TdA+XlKXD5lA4uP/IUXrpBN1986QLXUSkMV3Hwuw9XHjdduYP3s+RKyax+5f4zteWyMYVPzTp8fc7oo0tvMvA9Ykmhki3TPGd93+Pmb7l4je9mh29w4ztaqKffRYkBSQvwq/qw1nrqQ+dhZWK/hd306oJNvh1fPq2fVyzp4deGqa18ekk+77KJW86B33OGNS24TsHwD4aEstH34+85FUIsYqtO8+nd3QNB7Jv4uQsY5uHufkTX+Tiy9Zy9MA0J6Z74AR3PniEi8/eTrczi2WUqak11FhHP1vPBS8R9JcSJttNOscsZrok6RX0dmfYu3dzz1jMliN1Jq0hTbu4eofasT5OrsUtRVhXw2mNGJfIjTFe1Oke7CIciEijE4VAUxut4esaFWtkrHAYRAQ6ikFp0pEE6wsQDusC9UU5icktoi9CwSCgsAa7lJMtdBCpp96o42MVeLvGIiNCkNJBWrHsV5J+SpHWYmxpiNJ4ee+wtlJnUYHCKEVImo11mEp+1HoCYqgkQmtkpBEyJPjehQTLhelhpA50H6EipA6JslBhMBoVDCCdDHvX8jCaFAjp8cahpcJWwgmoUOgMaCDeOaz3YEIn1liDjHS4j0AXEcsGVYEvvmxwVbnW+uW9plKDE6GQD8E0FDmuokoZY4L8p/BEQoaZj6oAqOjkQKU2R+CrO6iomiuCZzUgOHj86Q07/8RA/aTwQQhKT5hR8E8yGfAUB4nFAEV4slhdBfcf5JlkX9GrXDUDV916qgBw/oyBy2oYU1Sc6sp/IzS3bFDNEgIIDTMhQxNncB49QfZ7+fliQO0441z7gDps27aNG15/A1dcfjl53ufv/uEf2LZlA72FGeanT1CWBm88O4di3AVbOdB3mMLQ7C9heoKkXuPgzGGmVp+FHVoky7sQFcx+bx/Te/r0ugZvI3JKTvQXKPUqsuPzxP0OopZilmJ007Bx+xbyxcfYvGs7/f0L7HmkS31jm3XnNeC4Q66aCE7GNU20YTXFY5KjH/8aeVay6YbXMRIvEl+6FbmxDaqOFxfC+gLWjBF31sCXF/H7j5AOxQwPreOzX7uHFz7WQaY7SdueWB9i/TMuQk6Og1gH/e+C7uMLDd0ZxOSzgAZrdpxP98TnkfQQuk/UqPHQV7/Jjsu3cOCx7+J9jb7xzGcdNk2txudLSDXCqrE2qR1DyyabrgBjNUO1mO60ZVXXorqWcn+JOdbj8UixfjqmkRpEWiCSAp06vG7hO8FMkVhCSwYqac0j2wrZVKD/4+hEy6vaOwbo1pnzBE82R7S8h6wAAJZBguXh5pWPPwMUecLnPR2dFIAXZ5YQp9///3vYgKdaHFT6/96DQ1RqQ66iiw4g5qqAEFQdLYcTAovFeF/Jgw42pbAhBUMhX21sgTY0cHIUldmQ0qG6DR0/EEiEDwPBOgrBWCtQIsgEiqqIEJ7KKEghhcL6ikcpw0XoXHBvVlpXr+/xpsTJgChIwbIsoVJQlGXoUuJxxiKcpTAlWkmyrMChA6TrLHlZYKXAS1e5QWuSOCJOYwwxtaSG9QkQnKJrsWZotIVJUvpll1jHNBspzhhiKTBlGT6Mc2hfUtce36whG20Sb+l3MqikGhEeaTIwOaLMWZyeww+3SOKYRBia9RjX7+CLPtoPo51HY0kjiyYgNrl35DpQrISQODxrmwnee6yD0njM4FuvzrMtCvoLMyzOHWOxcxRTzFKotRw5kjOZOs4ZVkxIuGnecORYxsimNYyPpRw7ZHFiiMb4JmQ8S1m7h0YtZ/ZATlE6ZKoZ3zjEc5/3bGrnT3H89r3osYO0a336nRPs+e7HGF3/bNpzJT968Rjf29fjG/fkHIogWr2AuNdwxfUN0tgj+iUpjvbWYf7yZ7/M6qs2c/3rLmZoWkBzCuKzYff74awrERdvwd73ILVtE+iXPp1k3x3IVTnX7riUt3zkE2ySgl3XvYqdP/QSjLsTdek20Otx3ztE9+jXYczRXH8J5gt/Snz+JMS7wC2ybeIIkzsKesPTMLmKhz95G2dP1Jg9ZCHZzNotO3n47oyfvPZlfOzz97Fh3eVMtcbpnSy4d/cx3BSkj3mKesnMwYzohGdVR+MXNI3uQzzy+EaGmmtoRyW608F2ujTqBr9ZY8skdPonU+R5GnUR2DmBm84QUmJTidIC4SBqKKQMVA/nBQiJSmJEEuGFozHRIu91kEpUEp8OJcAaiypK4kSDBFM4iqJkqZfjC0drW4tisYvNC2Ssg5Z6LNG1hLyTYW0Y/I9iiYgiyrwMw85VcT4YqgxvySEJakHOOkprccYTJQrhJEJUmtmi4tyWBusGHXagGvJ0xoAOM0uD4iD4CIQmCN7iIw0udMlDk8QtBxoVRVUXV4S9ytkKLSB4vGAD6umCIYHWCudNoIVUe2hQFT21jwqCiaSzJcaUQaa5khQKvztfFR9BbcgYEyiYeKzxxEoDEufFMrVJMOjKgTNhtiOUF9UHObXjV3+fog8t3/wUku8BKiCq4C5WBNon9TVdkaye2aR7MorRMvnoSYuUH9y1fI5coKOxIlH3hIRlgKKceo44JfNb+VsMUBbnOWVwhq+KzVOvNTiMc67ywQh3PMGttnrNNatX89xrrsFayyOPPMLffPSv+fGXv5jNW9axfv0aSuPo5YJ6rLioIWk7z4GeZanvGF09Qi327DuUo9Mpaula4nIeIx7Fpovsf2iRoixJxobZsGEduy68CDU1SffRx4iHTpDGgsUT+1mYPUxcO5e0zHnW1ZvY+8k7eWD3DPp4xqJRRMcLtl8xjFJN6C6STIwzc7Dkrk9+idErL+AZr7sSefg7MLkNX8xC9y7EeBvWb8I9fB/xFVuQi7uwuosY85x31mXc+Jt/zBVb1zPymp+mtWYIuXgLYu12vBjF736EPPs60ZoLUDn4x29CjI+A2gp+jo2ruxQmx6YLuCjh2J6H2XbWDJ3pDuPrzseLFsJJLt91GXfcd4hNa3fSEAnTx/qcXFqkax21aUkRZyweNrS6mmQpQnYdMpvh2MkxVo22qYkckecIWUJT4NdKXK5xPkKsVsiNAsbBG4tuKUQ0MFz7d7+sn9JabkSsLA6qtdxgqGh0K92+Byjkacc68+ArrvnTaFSnbjx1rCc85tQOeeq9iu+freZJqGADAPD/9D0+teLAB+g7dKvCUF0URyFW2GA+ZIVA27Bxa6XwNnyJtgpAWmtMHr5UrXTFf5UoFQdTH+fIyxIpJVoppBDkRRmMimTlZYAMKIMkQOImrwyPgtyh8x6FIkjA6aASUtGQEBqlNcaXYEMQjpRGIimMJ00iiixDOI/SkkhrIh0Se5tn9POcOI4DFJvnRJGn6JZI5XBeVTKIAh1JkqTB0fkuaU2RaE2aKpqtlEgaukLTTOv4dJiiMJgiI7eOE8cXaEwFjfY0glRE1FWNIs8ZGWoikohUQQ2Jzw3JErhGHZV3OXpshlJBKQu8sMSdAlGLmTs5R1HmOKvwpgBXMKQko5MNlnKDWsyI44I4ssiGZnh0lEhKRFeRKY2OY+pRjI9jysKR98qgLpVokkQhhMLaQPXqz/boHTzGsZmjnJCO9duuYqo5wsKjJzg0X5DbDo8dz7jxtuNsXzzAkeJxbvvUF1i3ukWx2OC++6YhbSHjnK07R+CxgoWTSzTHFVc/9yz+9C3vx9Nn285j7Jn/GG7xbtZ2T7DqbPjMn36a67ZrTNHhZMcz00p4dKbkjX8yS914PnNwgXVvWY3eWsfe1WX+D27h5lVDfOMd1xLN/hlsfDqMngUHHe4DDyNueD1MvJLyd76IfuFr0Zc9g9rPvRR5kUDcN80ffabJA8dOMHcyY6o7RH3jNsr5NnHrOhZ//ed4fOk4+oefwbbrNsDDS7D0bhh+Ib7YTf/IY/QPLRFPSXbflvGad78Z8/hHuHzns3HJxbiyzpuvfj5z05brn3Elc/s8u29aYObIQRrD3+F//Ofvsr65A1N8mziXTNkpzh09j6c/8+mUDz/Aa4Z3MrS2gZo5il/sopojCOqY8RGKAvyIJnm6IrkiwhcGoTWtTTWcD0FD6uCsWxYFdmYOp1t4Ww/OunGMFRqpHElTQeTxpkAah44jEgnGGJSKEboyNUfiEw21Gq7fR0qHyXLKbnBM9sYR12u4ogy8Ui3RShPHGlNIcJ4yK0JXEhdEdbxE+hJTGaYZU+KcRUuBwdBoxKBjMMGosDSOSFrKIqicGW+XFTLwDis8SsSACzKPFToQRapCK2RACmTo4jtrETLQlso8I4piQiIe0ARrwgBnWYb5ADFAWIUIDRLnwnFcNUi6nASG4c9BF9e5QBfyBMpJWWQVjSjwzb33FMYQ66oQkpWTsBt8DpZRVPDYogCtg1cNlaFWqPtQK+gmwWxspSvx8j2n/lpRKJzK509JlgpCh1ueFmbPOGDVmQ5NJgag7IrA88SO3iCjfQI1QMATqU8/WCug3QOpbJYH0we3D4zgnAuzIHJATRt0X50PPh5SBqpvJVMbrpVwTGvtMhNAEBIuZz0yDii5rFRezMChefmUCk6cnOYbN3+Dp1/9dP7yL/4Sbxz7Dx5hauNmztm5CxGliCwL6B2eR6b77Dk0z2S2wDEzy/3338zFm6d4dG+P2X4dapY06nPexSMsWcHJk/NsOmuI5z3rcq57+usBw+hkhxP9m6hlB5iYiOkcn2X/1z7HjnUxtpxhIaqx2Bhl794lvnDvHkbKkv82Lan9p6thbAT31f2cvPko965ey3/7z6+BuQ/Auh+FeAQe2YPf/Q246BZovBb7ob9CvfFdqMu2IXdNIMY80dFF3r51PYeO76U4Nke6bhg9shXXaSLHLiL7i9czu1bTuuZpNCKDOLQPyg+CvB5v7iI/eS/EKV5Bf6bg6je9HHvyb9n5rB/D2VGEStmS1un3PZds30x32nHg/kWQJ1hcOMRNtxxhw/AaTO+7JJ0mk34NG3ZsZvLsNv7wYa4eW0u6LsLvnw9N3LQBUYRv17CZh1UCvUsiRkRQnSxlaDKIJ/kN/QcsUaGlg7Vy3ukpPZ8qWT9jlunMT3a6/OnpCMKgMFluUAwy6zMRypUJ+JO8xvfTAKihwQAAIABJREFU8iv+/N9dT23mwIcgRTWg5vHkeU5OoMXEcUwcx5T9LrkJUnuhYydxXuKtDZ05FVSKQCCFQslgrFYURRXwCWol1aZWq6UURUEtTSu30aCp773FISidRPkyaITjMd6hPQjhSWKFtVBaU8mvxmAhjRMgGDeFOSuBpKR0BoQNuuk+zEt4JMaZQHkoJUWWhy6it9gyJ44j0jQgAfhgEhZpQV5kNFt1Op0FEJLIGrK8h4sUsoQ8KzEmQ+gIFcW4MidqNNj3+EFcnlNXUEtrpEmDmk6ZywtMt08rcdTrdWwakytDazhm8dACXe/Iun0aQzXiOOXo0ROkU6tJhxMK4SmWCjLXZakwiFVTjIyPk83kaBfkWIVOELpFt5fRqA8z0WrR6VuyIlAPppp1tBec7DukddSUoJFqGhJE5rHeYmagsXYHmzdtpzG9wO7bD9Bek7F2VZODOXz9W1/h0PEDJKzi1lu/yPgFz2BynaG+ZQvDec7E1En6jY0sDb+DLc9u8cY1cNen3seoP8ybXv9S8DlSxqR6LeeNvpi+9PT5CjKu89rfX4+dzZGH+1y30/E8l/LAbMRP/ck+eguW5vUpstHB3y8QxwQb3rCG21/9BmbOewfDv1ZDrbkcpg/j7v8T8jyDnzCo/oeJ/3QIMfGPMHcT6upxYBviypdwNP4kU0ryla9+iE/N3ce7PvhBbn3uFVx5yy/wiZ7g0p/8BZrbhrjl47/Hc949BE2JF328WOKhRzMOfSPn2rUn2HVextyRmxnf9S46ZRPnNKo07P/sF/jtbw3hbvkEpZih9IuUxpH6Nm/blPLO4gCjxzTSTTFPypGZh7n/M3t51dh1LLk9yKXDJKKGkBG67ONXr2Upl9QuidAbNXKrQjRBCkUUOZIZQfdkiemGYlsllcpYv0Mytgpd14GKJxWuZ/FSgC+JmxECFSQP+4a830cJKG2JlBFojVApURQx0mxip0/QX+iQ90pMvwR6UKvhjaHfMSRDKXqogTHBHNFFEbIsQ4fcWmQiSVoJSRqT9QpMmeMrbXYhFc6CSusksaBfhMTZ+eBQ7ERMVKuTlyWiMCg83lhMYRG1FMoyJPIVt99LiU5TIBy7LLPQcfdgXZBJ9t7hrcV6sZycWs8yUlE4E4wJlUSgcM7SiGOyPMf7MLw9UIMRLsg7l8ZQ2Aqd9J44DkpMRZlXM1tQDWKBB+s9/aqpEicpUklsmQcEJ00JSWNAXYQHUeYhIBMog75yd7YrWvoDesugk0dF1xkEnEEwXw7i/lQXevDcZfr6cjI/+NOdVgD4gTPzk0XalY97kjh3Zrh/Ktzk7+tVJe3LKntiUCRURRTBTwSqxG75nPtlRMi7sB8PEABWdGEHUt/LRZ2UKB/MQJUKVNcgs2uXC1yg8suA0eER1q9ZxzXPeQ6tZotPfupT3HbHHXziHz6FVp/hIx/9MDYveWA+57yRmPG4y0Pdfdz+yF4mt+5g24aCeO1mdtYOUZqcfrqJvHElG7cnvOTl8K0vvJeLzj6X886+CrAIFFq2WV2/moIbcUWXxrpRzt/Ugn4f5pa4ZLXjAr2J2x6Y4Z9ufIDOnCV+7mpwh2GfQExF7PrF53LB2NPI3vhfSH/7LPyqc2D2M/iFr+MOn4R/7CPnfhP9F2eD+WdEOg7j48A62HAumXOMpQlf+7O3MfnK13HRtddy5Nd/h7W//xzuXFzgkl/4Mzrzd9HtfIvVL1pLkGbMQMyx/74uzeYiay80JKsyssWNNDb+Et3MEacRZrHDkT27+dKeCP+1b1DWFynKOfIsYU1tiBeflfLR8gRrplMca1iyjhOP7GbyYJNdE+eQu2OoXg3hNDKS+JpHDKeURhCdpxATEkYEIqmaq84jv49Qg4HcKJxK7E9XM6NCHsXKOvVUvn5G0l/dGK77ZTWv6kkr1jItaTAzdRo8yjLyeWojO/W+7DJr5vtg/Tt+h0+pOCgKG7pvsSZRGplny9J+ISAWZMZQZL3qZAb+sNIRQmlsGTp7USQRaJQMakVCQJEVWONQKsFhUFKidTAi8kJSjxp4B0ppdKRDoVIGFYZuP6iNhA5KkBcsS4eUnqzbA8GynrhSAqklonJ51rHGOU+e9dFa0i8caZSQxLWgViIFpsgx3mKKLt4JkihBENxevYyJYoX3ghKBFh4VSFdEsSKfn6NVj3DSkbkCV1iSTDIRRyzki9jCoWtDJI0GcZpw9MijJMkoFsvcyQ5LqWJi3SSrNo+TmEc5cugw80Ix1iqRUjHfzcllm9GpEUakYCkLDrYjacyGuMWxPhRFj61rplgsFpnJC6LhNhPr13F0/yFEXhI3BXmZk+eOlpxEkSDpoxNNXUiatQgdp+F8AesmmmF4XEu0FpWZjsAsGprrhhERpBiaqWLTujF27+vyaGnYWIP7H+9g985x8VUbeeNv/xx/+rHvsv3CX+OBW+9AdL/Lxk2HWbfjMCe+8mG++tEaX+qdZFRmSBxf/fg9fOJ//hVju94PchNCtKi3z6fWKPHlDF60cN2vUbYlZv8CN379JF86VufWj76UL33os8SdCBpNxHaNulojj0sWX/ibjH56CrHzL/Ef+Et6n/8aeZ7Tfp6huNkjNilEbqE5h39oBvO7DxG9YQbWfZoNHx7m5ne9kUe+vpu5O7/E4SsuZb8v+bvrr+Htv30N68qvUnz3UZrDXYSUQAL8LMXed7Pz8r2ce5GGuZLD35xl6qfO5lNf/wqbk/0c2n2cf/iXGQ7ufYRdccQ93ZJGItmxaSsTa5/FyfqP8oGzEj65o0O85TyWij6daTj2eI1b7y74tbsf4c2dv6JTrGfTWc9mZO0WFowEaRi+ukbrqgTdDoHBlR6bhURYtxOGUhGKd1OyNNtDCU9rbJiTD59EHV4kHW8Rj7QQ9RreGbqzHZIEZGQwOHIsWbfD6HArJC59Q2FKLJLGcIN6K2H+xHFm7nmcZGocnSqy+UXSmkZgKXpdasMJRBKnJDpJSbVgKeszNz1N2qyhorT6zQYRAqE1JoiRVcJCAu9K5rqGNI4C31+E/cYXXTJnyI0k1hpTlnjvUEmgBBW5I6lHYSZKOLzw2DLDS4XxEMVRQCJtcGR2A862L5HWI7UO59VYpNZIKamlNQZ8b+89qIjCgnUCpK/2LB/2LCDwygkqU2WJcQ5TyGUaplYSFUU4JKV1eCqKlA1SzEoapIiJdRQKEu3BCayXGG9w1pAmCcKH5k3pqwFvW1Lk2fJ+vzKZPA3i9yvvX8ELrv5dQcuc1nY7rQN3+kzAvxlcq+7mU+oifl9E6v/T5auxlqDOYl1Q3vLeI6RA6wo19wNQ5RTUMkAR5MD4jFMUJF/pjUsZkKsgMT5AFYK/hTUm0IadxVb+F2EmRqGVYnh4mI2bNrJl2xbaQ21u/totpLWEiR9exfXXvggvFCemu6StlLX2/yXvvcMtOes7z88bKp10c+jbt5NarZZaGQkJJAQiGhtkwDiOjfHYrMFhxusZG9ZhxmHHjM2OZ9fm8Rh7HNYGM0SRjVmCEEIIIaHcCi211DndfO9JVfWG+eOtc+/tVrMjP4/9LJp9n0ePbtepqnNOVZ1f/P6+35wP3Ppl4kbC9TuneNW+bXz2oRNccuHb+ModD7G9cYptO3pM1R9jfv9JPvP+Bh9feIA9rS73fvgbXHbN53jbO24iG/8ZYAhIibPLIZnEu5xAV/4tfE1hTx7ns18+QjK5m9/7jbdy7Nt/D2sZZFNwsUKKBPfEAuVfvZf0L14OW34Pbv0N8gcPISbWiLZ0cdLAtS3I+zB8GH/ng/jlJvIlV0LrYwz90V4e+423M3fyfSQf/ihrX/wMp1P42r//OX7wd38FPf9hos4xaPZARIQZyddg5z/Pnu9LEWUfu7pI56Sldu1W7tn/ALsbR7jv3hUe+NZhVg4/yUW1lAfmuoyPJey7+gbEyItYbV7A/Vskvz1Rosan6fV75GuaudOSZw6VfPjAHK9buo2i2M3kNVcRXzmOyzTFkZJ4uyLeqcPHCYYKD8i6Os9z9//dWk8IGATs1czNOVSk51ubC/vrfw8gQZthSTxbm+A7mYuNROI7CzL+/2U9p+RARxKtFXgoiwLwNGtxUBO21TBcHtRSo1ivw4R8sDYoHeNNTqIlscwCNt6H6n2A/Hg8VYXPB2YOjcJYh/QObzxWWYQskBUcyDtHLAq8F5UaqET7IBKU6ohe0QcfhM60inAEWlMtNUqGSiTGEimBd4JMKZQPLDyBmSmIseX9DnGkccKT2xJvggiSVOB7PWQaU4siFBJr7XrVpT4yjHcGGUek9RpZLSV2OcuLOShDa7xB0qjhhafodBmuZ3TXFsitZXosQWvI3BLIYWZ2zRK1UsrF06SJDFzTts7hgyskW8cYboyD6JCXOXP9DrLXZ2p6GJ1AMpTQYpblk0vMHz9DXKtTFIbp8RYTE5OszZ3B5D22jE/z+KMHmDJjxIlCiggtLLH0FIlguJUSJ0F/QekKx2pDFdC2HTIT+DJAEoQURM2Ends0zU7B8kNP8WPXXstDu3fyiXsf56FHRrjl+usY2TJDNJTwxDc6PH7PUxx88DD9uT75iqfsG8Sw5NKdmqsugS996hD3/vHP8pvv/nEa8emgjm3ALK9QHvg6eu8YnfYZ1NYa1786ZeKRgk/++y/zQ++7gboVyP3PQO4QF1yMq91A9+Tv0HiqgWgepnvXacpTfeJXXIZ62++T3PQjyDSBhocI/JhAtCzufQ+ifmcSse0nuPri/Tzw2FPcdtjw67LGn332i0z+2Pdw+tc/ixgyjN6sGf6pFqR5uC6H3sGBvztJ/QLLxJWSpQOCietbHH7sAK978Rv49KcafONhaO5K+P4b9/DNR5r89tvfRNrKWO4rKGBWOPSxDmvjk9xz+EkuLTN2Tk+x4/XD7H6l4efMFfTn/hP7/8tX+eLB4wwteq7bfjnpSB0KR3HCYNYCrIXS4RR054tgAfsGEnBJTDQT0ZptMH//MdaOnGC0MUFzMiGbSSlzhys8RT8iisCjiYBMefwIqIammSlsIimXA+QoykIwLqfGmNg2Rt7tExvP0PgQKhEILVGxoL24Styqo+sJsoLRyGZCUwyDEkit1qufZa+PiiWRjjAq4PuND3MyaSJQSuDKfoDDEeCPURajAVfmgK8SN7ClpSw95Balglvw3oNU9IqSKNEoGbqFzlZVWS1xAqwLyYUtTajwShW6pt4RJ2mwZ8aEZMRarAGpdcCAE4gmnYAyD/bPO4stS8qywHiHjKKgXOvBeouvqEyNC1VkYx1xnAY2NC3xGEpn8DolkeG7FEWBMSUQ1N+l1jgPsQ4diBLWrwUMKsVn4843I3w2t/2DqBuDF1jvNvjBsGz10rNBRc9a56CIzvPaORCjwdsO3uGc5OP5twSyghENhstlwKRt3AuxuYa60a6xzoT5uc0JwHrltJpfcRvJnrUWayGKNiBMg+s3uPdRFHPrrbcyMjzMZz7zGfbv389HPvwR4jjm7T/3s7Q7bf71z/8iL77hBuJaivMSYzzbhmu88eZrieOYk2uOOx9f5OUX7KA5PMTqSy7l4N3HuP+upxDuMN25ZbrzJZ35LnqizkuuGGLbdsejd3+LI3NHecO/+Emwx4A0zAR2TuBXDyDGZyj6R1BbprjxVcMsPb7EkU/fzsU/8z0oJ+H4fpiqI5pX4/MCc+gg8cIo1BYpPv4U7DTIy9+AeMH1qKveC0kLGqHj5ScacHoF/4UvIH/wShi9hZ1X38/tBxe48+gi8zsv5c2/826a//FnmP8PR2ltdaSvnEHvGkWoAm9LWHwnp754mJHrY6SOKF1GMjvDypnjXL3nOm77ouFkVzH7ggZ7X3wVh07VePsrrkTGiq6NyYSi5jyyZ+k3Gjy9cIY9NmV0ImVoa8y2yyNkOQNrP8Gxjx7g+OMnmW47praNoVsxWI9dc0QTClR4VjbD8r5b1llcZyI8e1R/y7NsUNUZ86w/w4Nk4tyZg/OZgHV2r+qY83UeznfksymZNxU/vkttzT8VvPK56RyIaurdOmxpwZUIpyvs7saFl9WF1jpU4EJXJrDZICVChbcTPvApW2fRUuEjAc4ilcR5iyssUgiUCPMH1lc3xDmE8GgZ2EdMFAW4gQi9CiFAKxWwmqLi8ZYS5wJ1oCNwqBvrET5U4vCC0hmEjnG2wDpH6QQYgcKi9MDRBZwwzqGUR8swOFlaA8aE7+Yt2ILIOZJYYgpBHMfU0pQ4Ssi7UOqCWiaRuqDdXabTzTHdHq2kTmMooqEVSkXowXdvd6jVa4wND9Mp1zCmwIuSJK5h+8t02orp6XEaQy3W2mssLXdY7XpcucLQ1BC9co3lzgKYkm0jTcaSmNr4EPU4RjnB2MgIemwUrRNqjXFqcQOFxBiD9R6vNFFm6PULms16NSsiArY6d5jFgs5CwdKhZWrjGdlkRjQcIXNYnC85880THHr8GdzeWRq7LuR1rxljYbHOw5nAP5lz5Y4J9r3hNRy4IOHzH/sjilWD0h6pPDRg21VjfN8P76ToH8NPnOTD7/k7+v0eqYoYVZrR/hpRe4V/GOry1tc32bpnF7WLoLHnCONbzxB96CncrEZcECGnhigO9Fj70GdovqmB3PNK/Fc/Ds8cJNo9TvL6K2DihcjG+0KpYeFDuM/chz9TR/3w1fj33gqTTUT9aupbvsFNY6epHZekEZSP/g3Xvvun8Ee/QeyOEe8qkbbEL1tc0ae8b4mpKy3aSDggSXcmdOtXMzvxEhrDWzk1/yCHjs5RyxY5rTMmJ3dz2xdWSC40jNcSxss2p8qjbJ2+lNsOPs7e6RaxHubhtmf58CKvHHNkM8OsjTQZeqOif/cSzX5EtHuEpQcto5MC0zcUCwa8R6cC0ZBY5yl6OXEzqirPJXEkEXFEY98UQ6VF1iNWT8zROXOGbHqcZKTGyGwDBZheSVnaMNiuaigsRb9A6jgE2s7TafdRODyKKHZImeI9SBkgEN3VPtlIM3QRXaBVDZSfEqTCSoWs5O0HQ5UqjvHe4IylNBZjgi0CMKUjigRxpMB5isIGsUNX0ShXQlDOBZVg722gaLUalArD2Q5Mv6S0BhUJjK+Um43Hi4Dp9oRzeqWCSJUItnIQnBlrK/pRF/yKJHRBI4WvMN3OWSrLhKRygZWt1AJ0FFEWZTWfFap+zjlwgfEtkYqo6rJ6JFJ6cAEiUvRDMuNdsJEgsc4h8YhKtRkXAqLNuN8NOBHrQeYAXhQ2cta+UoYW/rkuacNJbTjys458VjIgqjmQs48Xm3bcvPv5zvn8Xr7C/VdynYNuQDUfEJ6jjfuyEVAJhBjQSVfaFN4zuJTeh4FjKSqVZKpk0G8oJRsTKCYCEilsazTq7LnwQoaHh/n+W95Altb44H/7OxYWFpg7M4dxhvf9+Z+xvLrKG970JrJUB3Vu5zG6DlqSNSzbZoc4oMGeLLlyyzA7X3YTDzyyyv0PPE5vuU+SFug4x4/U2XHVXi66cJwyP41oznPn3/4ZedmjkQ3TwFAr17Au595oiVteuZWouYexkSVqI0fIj5xB3fUgfjpFTA1DNkHx9QPYR08Rv3oGxq+DB/8ClldRF12F2ns1Yuh6qGcBpte5DffpOxHTlyIuSfGP3An1YdA7SLa+nxtGV1nqtmgNx5B/m9mf+zn84n1EtWPIcQ+uwPcCSsAdnWfoclBrEtIINTyBiV9AK9tDnDY4cqLDyso8zWYfMdRkeGQ799/rSS8STEkQZhEhC7LmGE+cOc3WkRrORDzZtmRlj+01gW7G5K0Jspsl4nBBY6qGSGN6857RazUiEaCq3893V06waT37g21WXz8XsjjYvim8r7YNGpebOgab5w824YDOSa3P+iyDHOLsoehzj/guvZj/xKbwOeocEFiFPIQ5AgIudr3SECp1YSgOBL5iOgEqRePQvpQ4X+K9HbxYAZAGCpACV6mPWmOqwWWN0Aq8rNqgLhgwwtCwrLoN+MqYSon3oGUUEgPCw6SEDsFElbQo6ZEiVA+dcxVO04MUATbgPFILIq3QOqIsiirB2MherRPgJP2+JYmDk1SEBEUJh5cSJTy4EluGIUAVBe0D2+1QWMh7Ja4o8XFGY2gk0C55CSYMhnaXeggFmYRCCExZkBclOQW56RLRJIod9TQlieoIm2MLQ61ZY2ioRg7E2jPU0GS6Ri2CJIqJ4wRNGb6zEPTbHcZbDWQZBJPSJEHpmEjGxElFRVtarAzBjy0cZcfg1kqcgrUzObmVtK3EzZV0F9Z45OAT7G5uYVEnrKBppQ22zTQYHVniybZivPTMjhjac2usLizS7zicgaQJL7sxZcfOhJ17U+alZToV7LgA7nn0ICcPOzrLArrQ6BtqWnNf1OeqacnS6gojk5IMgzUeUctBW1jxeOlgtY9M5kiGUtpfm6M2VOBjj9yyF33p9yJkHd/4AcDh2st4uYIYayBf8DqsvhX+YQX/1gbSdBmyXSaVYNkZup/+OKO//OPUtmWIbBei7vAsUh5bYHW5IDpk8Ts9tnCYvmR1IqU2eiGjWy6nUw6ze+cWnng445HHj7C8oNgxO8kddx8hOpiyayhmi4pxUZ3Ri0/TbQl2tAUnW9CLVtFlzsrCJCvKkzc101fvZGJ4GjVfYvuedrmEnpWsnujROZOjpCcbiRBRhIw8WoAajlDWE6SIwUlBPFqnNjlCr+jSXe4iTYmq11GpIh1WYDxOWpQKQmQ6TvClobfQIxIOa4KysShKkJYoTfBFN1TOJXgsuKCmrmJFJGKspwo0BWVRUlpH3gsCikQyDNQO2IecqH77vhqqDdWxCjGBjgJ1sHUl1hZAqIojK+GzAeWjs4iKH9RYixQBIFiYoMjuKmE2a6uOIxUVsZQoqdeZgIIvqyhZHRVZQ3AkQg4CuMA0ZCt2IecDnbLWIUBzeIRUoaIrBpVksx4k+iq418KDAikjxIAC2ofCixAyCKJZj6ha9CEwDLSl1oXup5A62F4qPYbvtDycW/dfd4/r3pRnB+rVtkEQ/2zfdU7CUSWA36mFsD7/4AbnOttJ/4+BCN/da6BI7QdzGkJUA8LP1prYEIsK10RWfi9U/yvl7UHg5MNMwWCFAWfW4W6DZGDw2mY6yM997nNEUYQ1llOnTrEwv0iv36fIC4SEhx/Zz757HuOmq17F1n1jmMJwci3HCUXHeYx0TI3B0VzQKmC85jh16AxzcwusrJjAYDahuOGqLey8aJxkIqGvLPVMMD7tWH7sAGsLsNg7herlxGWJ0DWOxkscn02pT9Wot0ocBi88RCVeSsRa6A7icmS9RDYyytsOEF0APhbI6auRo/tADEF8EwBOd0E9CeOXQpIhHrod/42D8L0pojjGmO7jGimYHvaeL5Hc8iPEF4xDPBE0ZcwibmWNvGtQSyVi0uP7JaVKMGKYONtJ1pwhtzE7Z0e598T9HDx2iKHhJjPTCfc88gz1xZSLEkkW1aA5QjKVomow3RcsZmBFB4yk360BYGLJyN5xxIQh1iCNIK459Oh3F3zoO62N543KzmwO9An3NFSZz7FBm2wH64efc/LNJwt7PLf4ecO6nM9mndup+G5Zz/XbPdf1nJIDa0qsNUH1WCm807j1KhnrVTEhfWAX8o4gThQMlXWBMtTZ4IjBB6eHDCxDhSOJEwQVXEcEqW+HwfugtixQm4xaEGWTItAdmtJW4jCBt1uriIBdC9UxoSpu8UpEKEhrh2qekJpIe0y/HxIYWTVtK8l5KSVZPQuMTS6oThpnsQhwIHRMtx9oAdNEo2VQRLbGIFSEsyX9jsFLjU4apFoxt5qjTE6sNVmk0VFMFnniOKZf5OvDknnXsNazkBiasUcaS1Qaet0+y2tLGErSVIWWshTUsxRaLaSFyR0zpLUE7RSN+hBlaeh1e9iii/BQbybgDSurXbo9S6PuGW22WO12EUmder1GUquvt/YSJ+i1C5wBZwVlL9y3WCuS4Yhoqkm78HQPd1k+tsqRbx3iWP8+bnj3T5PMxhRpzLJ0yLUuvWOP8NJLrmRyV8b8Mw/wxU98iK/c+jmUdDRbsG17zGu/L+PinXUOnenzsc/u5+V1STzpufBFmm07NM88ZXjiUMHJjmZmqMX1rQ5f/9wck3edYd8VGdu31nnqqznX/PEsIm3A5+dxB5bR28cZ+ZdXkP9vd/HA3R/nmr/+BfywhOhGKG/GPfkY8qJ9IQmuvwL5qgVkfxWWatAv8Z9uId54ELG6wpGe48t4Vq3hpntXuO+Dn2T7NSXNC65E0sT1C+RDpzn6WMnsJJx6AJJtnnhrjYX2JWyduIi+q9OVNV720mtZOH2C2+67n7nlOUT/G2g1jlptsdL15PE4ZuRGjpxY5saZSzm8JNANw77xPpdlJU+fyPBzjlx6Lh8StK7L6J2JOH7HGov0EaOK3lFDKUsIGl1IFGnmSOsRVgqE0/iyGnqUEmccOtYgJHKkjhYCkWhMt0updcVqVAbu/UwR6wgfSdbmFL5tKZ3DKUniA01wPNqgmLMQg4g1QkYoDWktweQGlSgkgXvdFJZ+t4exjn6nj1YOn2hcAnEicbbEWdbx/UqwzuOutERJgfMhSddOUBqDVAIVKaxxOOtD4O9DIUJFEUiFMSXSU7ELVQGW9yFhr9yFqOybRxFHGkVgFnKEAorA4VylvF45v81hq7OO0lisKYEAhdJKUZZ5qE9IgRIKXwWFcaSDTSTYU4lHaYGXBPpVH4adN+yiD4Jrhmq2KyT0zgbmNmcM1pREiaLCHOA2+ZUN2NAmKIvY9NrgFbHJm28cXP1xjgMdBPxVorFOb3rOTEMVB1SHbFQFB7fhbJd9TvVwHd/0PF2eswN8NrFIubMdv/ehcy0GMwcqDDIPzhP+N4BcyOrybxrQrIboB3Ai2FBQHlRNe70ef/if/5B+r48xhvGxCW588Y0cPXGMRx5+GGMNUyMzdE4V3HvbQ2y55GY6azkMrCPCAAAgAElEQVSn1nLGxxv0nWW108F2Frl6fJrmqOboU4/w8Q9/gKeffIR6WjI5Itm+vcb3vG47460xHj9xirkTbXalCt3yzFw7xNRiwqGnVzlzBop+zFCWcdmw4cGvPMHUtkfZdsksYlWSH8+Z/pG9ELfwdz8Nc2eI9szCzDTFrd/k+Ke/wM73/1eoH4foKnxvFDqnEBNbwmMcvwD56mMIOYN/5gQsL8EdEbz6KGJ1lWOl4SkEaWeF7fcuc7r1OSYv6BGN3AhZH3od/Mku7dM9WqOOlWegPusp4xbWbKdZm8QQU0rNS27cx6NP3MODj7dJF5ZxXYujRXmqxbzqo4YuxogpZJRz7egUc22QdcPuZp/UJax1Fb7rMRJm6wLVjCiWw/2t7Yv/2R7Rf+o1SH5Djcdv2Aix2SZUULoNw/Md0VEBVlc9+xWscT1JXt/Ln5U4nwstepZCcrX3d3WP8p/hwz23geS8j8l7qDghN+C9rYTBfLhZzmOcQ0cKLypufBcG5mQ1YGzLomLHgEgn60xFjlBBi6Iw06Cq8VfjLHk/J0kV1oGUtlI9VhSdPFT4IUCPpKe0tqrqeYRIQIhKfc8ivcPh0ICXEll9fh2FwWNhoZ/nlKVBacCHCqFzoGUYqE5ihS0KtJRkWUo7L8jSCKU00piAf/cWYoHyYAuLjlNKW5KXJbl1qKxky9Qoic2oKYdyhiiWtIZHqEcZK+0Oy6urQVa9liFFiW+fIRKTrJ5ZIIs19VaTCE9nqc1M1mU8MkTOQ9FH2JJU9pga1jQaQwGOIDS+tBTdnNWVHkL0aC8uYsouw+NTpHGC9pDqOljF1MwspdcUpSBfK0nSmGYS2Go6pcEIT9kuKTuOOIpojqWIVNLYOcKZp9aYe2qO+QcOcnj+FG/95bcgZoZRkSDOIZWWpDfPlz/wKf7dn97Mex47xJ2/+14W7r0L4R1pXXDViyJ+8JUjfPgjK2yPO9RiwfFlzx0Crpn1fP0o/NhbZ7hgb86FZzwn4hF+8rXfi137DP/mHQWjHc8lo2PsfM00lw2fpv+B46RvexHqzTsxH3wGe0cPpWuIA4v8Qel47zuWmcregN7+Atxd+zHv+19JbrsPgKg2i9/+Vrjvk/i/+ClEXkfc9gk48MNw4TMc3xtz8pTljaljtSZ490ePccVHPDv1aZKGRIxKLqs7VjVMDkF6cYTYnVHbeQMvmP0T8Amn2sv42NGbGEW/4HXMvmKSU/f8AcdMjXd8/9sYufI6dBZB9zRpfooXv+ZlPPrR+xi99grEkCdS48ybjOEtS5DsoLXiyBoCVRM0d2qGTcZdnyh5yZIlnU4Z2ZFCXuALSzqpsYXDC0e50EckIQAtc4d2EtHUJJMRzaGpdeOdNjT9lZyy20PJ0Dm0xoG06Dii7PTRkaLf6YFSKK1wRU63vUbUSMnbOaQpcRQRJzE27yJTTb9dohIdCgrGUHbykCT0C6ioQ53zlAaE9iQKunmOEhZTlFgPOo2RKiKSiiRJKK3AUSC1JM4ypI6Is4je6loVxAu80CAt1gYqULyoeN89WRIC7yhSFMajVBSC7coW90sLNjCceaFwLogrJpGsEhSFsEF80YuAxw42SyCEruA4BmsDvXKsJCiFKYoAR5KAlESxJpKSTq8fYEFCEsVxgFYiQ1GjgmlaZymcQzgXwn4VYys4kfeheGONAwKuHR/gTd7k57H8mzD8A5yvr7afp04/qGQPWG8G3lyuB/k+AKjObe+LjaQjtPb9xvmooGTnvM93wtV+Vzvw/8EKtI4bVVS5Ph/gNqBpVfa0DqEYJJ9CVt36czo8YgMqFMRDN66lkoFO3FZ05M55tBbEcbR+jTudLnle4J1j3yX7+JM//lOccNz8yps5eeIk113wYhYX5njfJ/8Tt/z8zfhaxEUjKfuXC6Qv6M+d4ej+x3jND+zkw6cX+eBvvpvlY4eoRQXju2Ne/qpxbrxsFx/9xGO8cOtJVnJH3vM4BbOTjkeOel77gy9maOoZ5vMasn4hl2x/Ibb/97zv381zyXDJ+Mh2anuHYPY05r6DqBteibhxG+6jd+O7fYST9B45wqfOdPmFdy2jh9+JcDvx3/om/vD9qHf8OgJQegg/+ib8Q38D3/4ERNOI3/ognHknXA4HbxP41ZK9Tc2aFnz4r7/GtRrG0gfwM3XSCcVIVlBGgsaQI94+hB8foTH0OuLsjXgUnTLHK0/RajDzsrcwm+3hxGNf5GA5wtvf/EOkO7YjfInor1BPPBMz0yzsP01991a8LsFPUEpP1spBNkhyj0gEMhZkW9S6FsDzZa0/rVVBQg62VYnAwN5stjUbjcXNSYI454zirK2Dv89nH85mVzt7J3G+A88z5/A/43pOyUGkFVkckyQxuQzoWA8YF5g9hPDrxkVGApNXA3jeI4REC1PxKyuEVggZ8MbSWkrvUVW73VooTRArk1Ki4whry4oBRGGKHFcaJIoojtHVkyRFGFIWXoIPImSxBG8cQoKWgqhC9VY6Qti8xBU5UlFRktbQRYl1JR6L1IIk0iHgTmKWl1ZBKNJMI5VE5aFtmcSCLFEI54i0otmq0e70QjAlHESaOIvRHta6lrVS0swy6HdI4jppPUOomELVOTl/jLgWYbUkTmq0WjXGZ2eIdEKuanhV4kXOcLNBMjrO8aOnGKsnnO56zpw8TZJpGkMNvPcceeJpxtIm9bFh8tKyvNDh6PHTzB2dp10qXjY2hdYN0lqoMtSSGq4UYEu6S128zjBEdDoORiCOYtpLDtOwlIXAWYXyErPiiRJo1jQXzNbITgyTjm5nz9UXoZXm8IpjV6vJLmNZnFvgmRNdbvq3v0XfSV5+8V6eHGqxKAJcQlvPO7dJ/uITq+y9OuHIo312FZbffn1M7ZqYP/jTDv/hD8b4r5+Zo3e84IVbNd93TcHtv/kJ/q8vrfJnf387O/fuCy1y34c9C/iT/zfm0x9G3PRm9I/ezMKXHufJt/0Rl02O80GVI7ofQLrbkM23IHb9OPT/44ZFKQv8M3+Df+gD4LYi7/wI4vYrcZ8vED+0h7e8/3vYe+84/8ubf4tv/sk4n39acvzWZcwLY9yYor+/oD+muOqlnidGNZfu28vwyE9ixetZa6/xjQcPcO0Ve8i0RqYpP/w9LV7+qos4Uv4o5uhxfvWdv0bz0a+ya8clbBmtE60d5O7lLVxx2YWYeoexqI50kjaeobEdRL0gKBY3BToVOAdju1J+7S8vYflYwehMjIwAGyGsw0sQWYR3Bro5ed+EQVfj6R9fRNQVY5MKnQi8VtjC0j61ii08xlm08HR7FtsviUUf28/ptkuSVoP6zAgyjcA73FqbWmqo1RT1mRbWKUohKPom4OOtweR9uktt0rhGoiJEIilKD9YSZzEqkfhI4yvInrMObwVF3iOqpyRRjHeB+hOhKfKCsrR445DOo7wISVEsSWspRV5gC4NWYF0FLTQhsRED8RQvwDjy0iLiCKwI3QpBUEYcFCR86IIKKULRIU7RzlKUweatKzS7krLXI84SVJRgRGBqo5p9KH2BElFl00LnQcpQLsGLQMccC5wN7HFeKLT26xViHUcoEWHLEk2wpa7sgwwJhNCBuMF5hzUOa/MKxunJ+2bd3q+jVdgINjeYcb5DUO43OfDz7Lce+p9vePA7RPQbVITi7H2qauC5lIfP68wACIBc8C50xWUFBZIqwMs2KvyKsqKvhXDtnbVnIbHOVoqtug8DCFgViAXhwpBcqApW5lygFg/dbxv+VposyYh1St4pSFoxX/jkl3nTj97Cl+77PACXXXUp1niWctDW8oKxjMOnOtAc42W33MJwknDj9CS3JhnOKzpdT5w7XjuiuP3rR7nuJVt57M7DXL8r5dIbhsgbMV+/6zQ/8rOX8LHb7mGL67JrdoqWnufxj3+Kv//KMX75z79InNQIv9USppehfR/uoY8jLn0r8s2Xs/y+D1D8w9cY3rqdnx86BU/8Muy6BZH+NN5dDf3LNi6aszD3ETj+IGx7BfzLN8PTr4f7uvCa7+dffODVfO6vv8anv/hR3vXrV/Abc5LlT+1HvG47dqXErpb4kYix3Y65WsrslhuQ0Rtxbpp2t8fcco8tk2NoIaklmlteNMUrrn8DbfN68uUV3vO3/43dT7W4YOcemmINvOOJlYzZmTG87NNQMaX1OK2JkwxlAOnRiWBDNv15ttwGXG5QRJAM6BqqDuNm1KKv4JWcPXdw7lzC+h//2CD+LBjS+dcGOcA/7tTPt/WckgPpwNugcpzEEUXZC3MANrTbhZBoCYVxlLkjjjTCmwD3MWWoZElJliY4azFljvEeW2kQOO8o1rFnYabBWXDeAg5rivBDEBUfd8Uzq6IgXDRQLpY+VFiEc0FXQYbtyld4X+lAVFkilfqodSgtibWi287RWhHrGCQkaUSea4z11BsNjHGVYQ2c4cgUIWPQFi0gijReRbjIUKysIVoB8ywJ+OeRiRYKhTY9vAJT5rQXexU14klWTs0ztXUCWeRE9YJaXENay9yTj5BkLfJuD6UccSxp1lImxxrkScZwq0meF3Q6HYpykbGhjJnJUWwp6a/1MEYRuZjh2jBq9zi9lTZRp83qiWPUxiZpjU/RHJ6g2+5x9OAcvcIzNJKQRB5XGnorBWUkscbR71hcDqmSjEwrBLB2xtFZdSR1zZ7XTXPxD2yB0nLy0TWWrWQ4zynjkoldQ7zgsutZcJ5jJ/rctFPz0LvexerUOKc++kG8d7z/a5ZjpWVeO664qk5mHb//6TXmPtDngx8a56/ftcDeNwn2vkTAEyV/94cLvP9pwadue5Tt26dRKiZEDxEIjdiyj+gH3om983bMHYdoTl7NC27/AosvfTV4T+xB5KcQ7/9bOHSM+NPvxj/xSxS/fRpz/GGil06jrpyF6x/H/+Qr4E/firi2R+c9t/O5f/Xn3FWb4j+/5yewh58ivjlmaPQpxKwn2rkT1bgSR0LUeAXXIxF6F3mpKFaeoDz1LXbHl3DrX/4Vza0tLrzyRcxuu5CZLGMmFbjds3zlA3/GatGju7ZI0SmANwZhPlswPNkk8jUMKavEnO5BlAmunYAoIQy/+iBE1ZjQQQSs3UeqmKLn6M73scYwvDWhs2rIO5ayk6OUoNbKyC5oYL1BJoJe19Fb69Jb7mLbBWkkUCNNil5BfaiFGIGyW+CEIxqtUfQ8wkBcFGhhieoxjfEtmMLRLx3JaA2NoGz3g0iiVCSNhN6ap5uXSFGCL4kc6FijYrFuL7AlEOG1JE4TykJgS4+1BVJI2kWXpFbHeomQCqVCgpCX/RB4dQnV80qoqbQGLyDJUvJuG1cYVFQNLFtfSTg6dJQF6IaRWGMoSgtSo1VcKS6HDmWozBsirYiSQKbgqzkt521F4zyo2gu8iLBCEDiVgsK8TtMAnyR0ZAFwjlh6dKQpEPSLIiRKaMo8BxzKB5VnqdS6UrPzoSUvXKBndQSdGOFLhIjCTJf3JOpcT1c5ahnmzTY2h0B93eeu+8mNoNMP9qvWwIn7AW5m09oI8KvjN+OU/MY+AxjSuYxFgzOvY4+ez6uCVAgZNEjWt4mgdWBtNRguBjMGg4SLs5KjwPji1yusAXIW9IoG0CGgSohteAaq9wjbLb70VSc+wPx+4R2/yN49F3Hz976EkZFR1tY6LC0v8r//7u+xuLjIPfd+E6klOaCM4UTbMDzSZGJsiK7zHF7K2T0Sccvvv5svvPc9rDx0D8IYvnFPl1OmRzt1XPPyvSwdnecjnz2Fl4q3vuMibvurB7jmTQ0mhGbxkdN8+Z4zfHNulN/8Pz9XJQaCMHUrEaqFb25DXv4O/JPfwveHaL3xh3GXXU/x278GeYlyCnH6Dtx7C8Sb3oT86RfiT38M99F53Ikvo77vJYids3D6Ufjot+EHfwW29sj/+i/4yjdvJbrken7i3/wSbuUMcm9E9kM5ctsQsn4ZQs3iRYZKLmAWiZCTIQnvHkb2Vmi6UR666wC18QbT2y+intUZUYrhSMHECH/0r36G0hrKfhdvJULEofPjHVkjRroIIzU9J2lb0BHM1Kqv/zx99l0Vs8HZv16//psO0bpno19pK8a4wRrAE53bsC/+HBuyvuMmyN05Jzjv59tcvBi8z6Z/ffesf4biyHNTSFah2pTnOUpJjCtRQqK0DphI54OCqQtQHOcEgsCOICSgojBIJyRUVIEIgVIRslI3LcugcRD+C6miJQ4BvtrA1AoEUgeub+kFeLPO3KBl5cxVBVFSwVAKKVASShvgSEKAt0FkSKtBN0ESRYFOxDpAKEon8aggSKQ04WWPQ9NsDoEyIINSMM5iCoclJ6KELCbNNGgdMMZ5n14nJyKCRDE8OgFFTm9pkc7iCi5JUVLQW+ri2zm2U+JG+vi8T5bVsKVB45DOUfYdHWuo1VLGZmZQUUxsSxaXoGtKOsKTrqyg9BB5WQSVZlOQ9XOGt22hceE0suxQa46Spi0imeIsrCz2yduWPhHJah+hDXGUMDwSs7Tq6C0UTM4oZFbR7XmII0E8LEmMZy33xELSrEuKvuKB0RpXjyUsW8mCj5gve5Rzpxi3CXNPJMxMSnbv2sP2fddxauYB/KlHGJ+FRk1xzwHD4/d1qNcVajrhX78l4d/+yjJvfwPMTDvu/Kbjtrs98b4x/ub3/5ILdkwTRVGFMxzgDiV28UmE1ajrfgDxzAHKI09R3N+h9V/+jpNvfwvShEF011ki3n8H4n2/ivypG3C770HJHDHawS908PdH6F/7TUjauJVPcteTS9x5qM/J5inKz38Vf5Pg99/ZY4vssD32DKVdGDtG+bIm5egoTb2du+68jUXfpjXeZEc0xo4tX2XnDS/j/qfnuefjf48rJFNTu7n+mhcyO1nneL/L1plhdH0Kp0vSVHOi06WVjHHGxkQqpuc1pRdcVPfUG6ADvDw4FQU6FvTaBuMcIpX02iVlbrHSYEyffNXTXzakqUDFCqElcTMK99jIEPQ78D2D7BboSBANZTQnGrh+iYwDA4qQgrKX44qcelOTd3P6nVCZ17FCCYkrLUrHiErIEG/xxgRKzkKirUcpH6BILkZJT5E7TJ5TOHBCoLQKlJ1eYp0NRQsfWFysIIg32ZyknmGcxdvw2dJajJMKV1i67V6Iw5RAR1FFtwxSR5iyABuGQgMUyKCSBFMUOKqkwgVWi9IFCknnbKh2CfDWITEIISido3Qh2pMIhK+U4l2lnKwUSiq8dTgnwcWbqmIDmy/RSiIQGGcwhQnQJK0xxmGrz+FtSUQYLhfCI6QODGo2QJecc8FmKoOsbLKuhpS982fBEUJAuSHCteEIREVKAWz6lOcLTDY39Z81C3Ae5qFNLz7nrb46V0DaPBtG8HxbQrCu0D2AZZ2VDAlQVffHer8+zE4VMAnEehI1uCtCDsTNXEX6IdE6CAeWZVn5SQ34dUYwCIP5zvnQvRKCj3/iY2RZypn5ORaXF5Eo9l16JdNbt3H9DS/hmhe/lMcXDJOppmNhCU+3KBjVkqZKOTZXMtwUXDozy7evvJnV+TVc7xFGZgX1pM5d+xeoebBIJvZMsmMy4m//6gBvfFVMI+5w+xe7zHVjRq+7il/Y90sMjwyzUTGunjNn8f0zoYu3+1Vw+jHs6iHcUAP9rvfQ/fVfJSnAC49aOIR6+POI2dNwxcX4HfcjogbUO/gjZ8BsQbzi9XgVQ/8LPHHXaZ6eKxivPwn7C4rdGV/8PxaYGZ9nTJxAx0dwW4dxF+/A1TJSOc6D93wWxiKGasOMJhHN5lOM7b6Ip8+s8vBtdxDpFlOTW9gxM0WjplkxJaNDNawLs1NeQM9YYp3SdgotFD0niIDxKCQHz3d4y1mffv27+LMq+Gchegav+QGMsdp+ThdRVv2HzQWG9WMG73XWgP95Ps85y1fnkYQE/fnfqfx/X88tOWAgnFLivQTCUJyDSgwo4Ja1rihKdXBeClEpLQp0pKv8L7B5OCEqMZcwlGyMCTSCBIwklcP3VfViQOsmRBAzs3agLGqqaohCaShyh5ayupEunKfiCfR2Yxjai+C0lVaEqpVFKlEpUAqoHOdAQ8E6j3AbD5gQEoUHEdQsXSVr7/OAh5YyMB0RSF3wElINWRSFr+Y9SinSLEO0gspqM1NoqXFlH99bwQhH0cvRzSZJlKHiBFENGzpjKK1AWAcip1ZPWVpp0+3mtLIhciOIXI/eaheR1RBKkbVqZKlmbDgm6NVF5N2Cslim1zasrfRwTqKdIEIRSYXyIKyjWYsQwxG2MOAlKoopCrC5Z2UhtFR7StAXiiIQU5E0I5QTrB5ZxfkDrKye4eipBrfceAVHVgzX4bi+kXGwHvNtDYWBuw9aLr5JoZ2nmzvyNDBp7F9wzG6HqR2w/IDj8FGwF8S87vUjXHf9DQE2IcB7A9aG1pMC0hfj5f34lWXE5A5kKeGBbxC96jKWM0XeCwJUkoJ06Qxj/8+d+KU1xPHjRDsUvjMPYgLxipfidyxCfoDeh57m+MEuW2cU11+bMnttgpElV7z6SlqZpXj8GToLZ2i5ORa+tEpS/wKNV1zDxRfP0kkuIRkaYzib4ljzBI10N1c3drA8tZ25ds6SrPOtTs7JU31mWgmPPHGKrNEka9bprBV0XUoRx0zqhK7SFIWgZmGoKUgjgbGe3Hqk9WH2xTr6NsBwdKwpeyVd4yiMQwkoekUQtIs1WS1CaImQHl/mCBeoe027jxCW2miClJpoqEacRYS+Hrgy/MakFAhTYPslsmL8KkpHkRuE0GB9EB0zLlTfixCASCXBlRUDEKACfloogfVgjMVbE4TDEAgpMaXDO0OkNeBwIoh9ucJgigpyIYIdCSgghdR6XXRR6kA/6qugvjQWIRUoTSAYUuvBWKiwBnafoBbvQnVW2Oq379cTBFWdy1WD/ILKZlHNQHnwPlhCVyUJ3lnUIPALpgcYYMQdvuqiGmPwgFRBdwVnUSJQmrpNhA0IWVWabdWBCMkMIkBSVEXDHKrJrrJ3Z9ftQmA6yAOqYH6zc61228wfPugYbAa0bDo83I5qOHuQMKzPIwzw89V1OtsBDWBFg0r5BqTIn7Pb83/5qoHg19mpNvQHBsKTrA+5r39/L8666Oup0qZKqhRBSG1QRBkkFFprkjiumLvC+wljEKLyrUIyNjbOUGuY48eP0+v1SJOM1776jUyMb6M5NEHWmmDReqQX9JdzGo2cbrtgWUTEwxF9B5HwXJxGTGQxh7VibtXxtUe6vPCVNdLS0rYlpY5xHmrOsWWrpjXpWXmwz6KPaO0e5bLLdrF7x+XVva4SVOeq76tBb8eL40FBeXQX9J9E2HnExdvpTzewi32IHJIF4hNPkny1j3/4MQTHkbub+PknEPWtiIk9MGqhPEj5lftZXOlz0WUjTF4+Tn1HExFLtl13Na3hnPzphxFqFdGfp3jQoZPbiK96IbO7ZvGNOmk6RBQnrKZtEj3Gdj3EUJzRcZo8TjmUlwy5kuFUc/jkKs1GDa8FpXdYFKVXtKSiLyTeBtK2JApC6caFwkIkq6D1ebequI7Ngosb5YZ1lfDBMD0CLzZDGKtH328+3UZ6fD444+YEYVMO8pxi/UGB/vl4pf+x6zkmB2ximQstSykCo46rfqRCOLRSGMsmxiBRiaEFA1S5qXAiXxk9XCUX74OolrBYZOhCVOeVSlcVlYHDD21Si0B6f9Zr3g/4nCt+bm/xMjCwhAqZxW96IEFUeM3BY1Thc6UKHYWqC2GNCeJnQgYefgnaBdGh9fa9DwmIQSCEC7Kt3gdqGIIyaxwpfClweZ84iYmbLWpRQtnpkmYCR0Te8yjhEGUPV3rKok89qyOTJFyvEqTLEUJj84KydCADq4wrPd5ofNbEuxWUzym6DqcTXJQgbGArUlpijcUWfZwrWFssKPqCWGdkQlPPUuIoQCv63ZLWSIwcj+ku5ngbdAhM7ii6npNP5MQYkskYnws6Sx4VS0aXDEWnT7zSY0TPY/pLrBbDdOOU5kiXlbnD6M4y2ZlnyFRO28G3n3KICwRFCbKEvONZ7Vs+/w3Hu3+xyUNPr/DkVx29WcXLXjvOa2+8voLUdnHlg/QXVvAe4qFhtLwM2XgxvsixcycR2Thy+yhy7hme2v8F0lcPcceXl7ho126mt4xT9HusPfwEbv8/0Lpyks6UI8oykukZxEsvxTzwSXz7NP2vzbO2bNDbI7ZePsb2N74K92CHV1+7jyKqc+y+pyhPHWco6rJ695NMaUsvP821N72JZOxSlsl4RmkSdznNlTYz0w3ql17OkjEcWOty/FSbTtGjk8QsnenQEY5YKdZ6klo9wRWKPoojhaDpBDsikBHkzpNbR9d6IiDyHmccpQrPtnXglMBrAp2fjvDCUGslOOvRjRihoGj3ET6HqLK6tkTHgjhLEUBcT8CBsx5TOpwJ0J31YVUHsiooGAPWe6K+RVaJQFm4QCDgN7japTc4uSmsrAZ/pdJheBdTBasiPOvkCOuI0wQIM0/WS7wogrJwngedEzGoKnkQHlMGtjKlZGBtsg5PEISSYoPScVDE8EKF37cNNs/ZIPyoI4XwNmiliIGTtojB38oRKYXSshoyHXQsDU4orKkUcL0Bb1GSKkly60Gft8EmOsS6cq1QKlwbT2BW84GmUohqmJvg/FylrxApgQu8sQhB6JRKERKiSu0Zf/7AYr0ouxGBnu1MNwWe4qzjqkB1fYCZ9eTk7L0Gg30DutNNx1fvvTHrcP7Pt7lr8D9NKe+80KtwDTazSA18MVApylJtXz/yWedVUlaDzoElK4qiwMiXZZRFgbG2mjnZCLCEEAwPjTA2Nk4UxfR6fZRUvOi6F7OyvEa702VycopmkmFWSlIPKQXeO0oraBtLre7prC0iVlcYLpaoK8tyF771cJ/m7pColj1YcyULKyV5GfPml27l8UMHOX53n6EXjXPxlXvYvWVf9VVKcI9TtsI4UWEAACAASURBVNvIqI6MxxFqHBHvDCrmqyuIxg7kaIf/zt17h1l2lWe+vxX23idW7qquzkmt1EqtBAoIkIgiiGDwGIOxjc11APs62xfPA3M9NowD2MbYY4PtMTmDEVEIC4QQCq3Qiq1W51A5nTphhxXmj3VOdbWCrTvjZy7yep6urtpnp5PW+r73e7/3zWcfZ3n+EeS1G7n7qwfZddEuSv1lzHILHjwIrRmSK3eRZy00EXLrDhgegmPfwbenMPuO0paO+oYyAxecQX3zhfj5lHMuPAsjNXOj4yRyAZrL2KMNqiIlLRY484Ir8apGQygaQqC9I84K+moJm9aOsWAss2nBcrsgc4ZMKVppB1ECawXWSeJI4oUgR3LCwVqgJME6y8Jig3vvu5crrn4eUaKftcnxarPEU/4qXdCiu034pwjuV328e1XE7gm751g1b5z+36prn/pFrN6yCvToXfNHfXY5XRL2f/9un1nPAaFhyQtJFCcYk4ceoC73S4gQ9AsZ9pVCdDsBujctQ7XB+vD4ipIRIpRHnSVScuWctit/irPo7uIqZDAn8oSGKaxHSQU6wgmNcUBXntQDxpkgv9otMRlncM6gHDjT3U8Ed1QrHM4LHEFhREoVmsBEKMUWmVtBKBABca3WSpimx9sUYwPypoRHeYf1EoXFZE3wYJyi8DEg6XSaDNf6sLlFJppSkmCNB59Sjuq0i4KkNICUFikLtNSUSjECj1Ka3BksHh1JBgeHEFpQOElRFNRqJZwbZm4xp398iERCLRIsTS/RWFgg9ZpybOi0JU5GCJcTqxLWCzqLHXwqqW0cpNpXCzrqzmF9kJKsJAqVlInLoTFTCIFrG4p5S2MqpdwnGSwLSjGkTUdn1iD2NIjKTc65pp+5/stYU9Lsrg5zz1STl5/t+MZdt3Do9ts5PDnDcH8FXYkoXMH9N1vKFRhZAIFl0YEb10TD/fz5+xZZPAlvvlLx6su3okpvxfsZrJvELP8eC/ftx0V99F/8PCrRf0aqEUR8DWLjPK45i4tS2pe+lm/+2s/z9j/dwG8cyXnzj72S815wFZWJk0z80u9SJDG1527i8T2HqL1sC2t3b6e8cJz5f7yD5ccs9XMEjZrnjlbCgdnNXCRuQFw8hBEnKMRmNlxxA14ltNw0w9d9iKH4Ur74mcO4xYQtfTAfw79Yw29EMY2hAR7oePoKiFXE9sF+rhzq42gBNx6Y4opzN7PY0cw0BCNoMudZ5yMeXhDckcMF/Z7rhgTGwmIRqli+sKEa0ou1JRgtKDoFiXPUqhLRnwTjQRNRHaqSTi4jXJfik2bECehKGecyyn1J8OmwHqUylBTkzYKslWFSg5A+9AVkFrQk6auRLrTC30IQJRHOhu9T1iwo0gK0QNcUkYQ0D87jOgqVw65MGMaGOUApj5ehu6jX4Bs5i7MW3aXteefRQmC1hjzM9HnRoyJ6PAbpgqpZlCgELlCOvMPZ0AsgPAgXwAMvPBZJZi1RFKqSwWjMAIHqiHfBOd6YUMR2rNBBbPe6UqmunjwgRKi+umDaZrsc/RCMyW5FMSQFztqQdDlwolsZpdsz4EIzsheSNCuIYo1AYb3BGROAGBfUl3rVCCvpmmMFhTcvIbOWoshDAHgalz/4InRXHFbq+LBC43niOC2e7a5Rveudamru7Xt6MnGq1/kJQTGr9l8VD/QoAuH2TmUvqzY/64eArkme7/YChNfA2iCy0VNMOaUE1R29vo+VfoRgULeaXlEUBd5DEpeo1qoMDQ3TXG6QZSmCAOwZY5BC0lfvo5N2uOvuH6JV1O0vjNAqol6L+fbNN2ELzxWXXsOm4U2oTodNFw8xncLAaESBZiE1bBlw3HvgMab23ofuZKzvrxMN1NCyya03thkdlWxud1jKLJ1EUiLC6BE+++29tCcNbxsvsX30IqS6Es8y+Hl8/jd0jhxCj55NPHQtSl6DECVQZyAGW/ishR/awnKr4NCeT7P7Fy/ky3fNseOn38bI5i34W2+h8+mP40f7iC85n+k7bqP+muupjowipvbRufWrdI62qJ1bZnmP576lmAsbG1kbXYVYm+BYxjHCyK4LcEKQu2NUdz9MiU08cu8MKhUMVAQzAha95xKpyEuKicJTByKl2FDVxNUSSw4emG9x3sZhJjoSUXji7vtV95KTHXjIwFAdhE05OT3DPffdz7vf9Xvc8cPbUaXo/+TH899trO4NOCW9e/qjq6sKpz28KoFd6VZamVN72cCKEOq/dSPd/Vdve3Jy8awYpwE6/+vjmVUOpEbpGCc8hckR3lAUvYXVgRTIJMK6UOpyPjjoBmceUCI84KwhLQqECH4JSobEwUgZUHYRkgXhHJECHcdorZBCUXRRQ61i4khiXNpFu0Qo8+PRCpSOyK2hKApi7VccfXGhKdAWjlICCAVdWkGRFeAF5XKCVl2UzniIIpQPiJ6OJNZ2Zd+Mw3YsRWaCm3BeYHKDxFGpyOCdUKnjCYFUojSxiLGqRLMo8HENYz3t1GDzAulybJSg8hxhcsprR1BJjM0LokLRTguWDh+mf/1avLAIV1AvV6gPjzJ7fD8+GWSpKUhqa+krC44fuoP+ZCfV/lGimqZeK6NPLHF0cpEiLnFs8gSDQ0PEqkbWzjCZACoYMUS5VAcURZZDZhCpwTYzTs6klLaOU9cam3uyRoFdMuTH2pRa0F7WmI0JqqKJ2gX5HYtEJyfQhcTs7Gey0Ng+xabI8Y3Hl9i5uUNfnLAwvo2TEwV97UXe+tIz+dz9Bzg4VdBKPSb3SA0mkmSLgp/5uWP0nSO54SUxuy9KKAqPsQfAfBeb/iWdpYKoViBUhll+jLzSITYGb46DLOErCbOz+3ls3+e5/tqIvY+l/NV7Lucjf/9ZZvd8l594wWXwrtdzz7G7qJx1hC8eTDl5y+1cmu3ljS8Y4WM3Wz7c8Pz+RnhQCq694WW86c0v4oFPvx/fOJez3/k2Zg/tRQ03SdZsJorG2Tjwx+xJc37yLbP80if2csmk5xeuPpvflpKmN2gnGTCe2zuOjhCMlQTfEFBKPS8cHWI/QA3W9UkiofjkVMEuJZBl+PmNgo0lQZY7JmcMx5qGXeOaRAny3JE5j4okeWHpZAWx82SLbURZUR8uoeIYmzpMZhCy60wsIKpEgSMvFCZziMzi2h7jBLIiaC4uk07nGJv3MG6QoSEf4+gsN5mfaxErR60/IqkloVpVKpFOt7AEr4JKOdBhkkhDZknTrNsHEBPHcUDunSEpRyzNN8B54iQiTjRFlxIjvA7ovPIYk1PkjqTaT+4KEu1wRYa1GVJLOnknmKnZgmCoQqDnZfmpwFsHEMQXArykcALvMmRc6dIMA9oazM8gMzmCIGoAMiQceY7QhATECxASLYOcqHWeSFoiBTiB9SF7y/I0+KqILgosJTKSK3QtLwTGiu6UKoO5mrdY6yhabVSkkDrMh0VuUUIQhAEVOgoAS144srwgz9MV6pIQEmMtWVGcNuevVFJd10bSn1rEn7RQPjGo7zVRr0okesief0Jy4VeakJ9wypXF5ykWJH/aHitjFQX5WTlWghtCYh8ColMwW68HALpJUa9y0MuuumCA7PoP+W5FLZzbrygRaa3ROiKOE/r6+vnkRz/P297+FrzzXR+jQEmrVGv89Jt/li986XOcOHEcHSlG+tdwIjuJljHCCd78hp+idbJJ6+gy+dwi5f6Y5kzGLDBQhWVnebSRc87mOlUdMzm2jeN3Psp54+OcdW6FWx99gPsOtjgx2aaogYk1Riiax3L+/CP3MnjmCK94eY2xdQNdM9YJ8JN4898xaYGuN5BiH85sRagrkd7iXQNkgos1C0uPkLr72LFLMT2f8d73v4nPfuQvuWL389i8ZRvmN36G6cYjRGMP8P1qgf/hJ7jYbGNoCe6+qcVXp9q8c3vEgVKJG65/O+vGRpi+55sIt5WRKy6nNXsYPbgOFVeJ1Ba02saMtTz38jbv+t4xfurcDZw5XMUjKbxDICk52Jt76kqgpKcJRNZzXq3McaBUhmpFsejgwY7j5VIiI/ixQUGC519u/j4f/vBHuOeeuyny9HS+/bN99ChGp+pgT0kNeuIxgQvqn2Ju6p1zBULgqWaJU2lI75xPU0ldOeBH/TX/388QnllyoEFIiygKsDkiirG2IIl1QMaExCLR+K5LpwUXzISkliv36IxFecuKHSmCWAskCc6pVdJsDlcUOBsCnDiCWOswwRU5WmqiUgXjBN6LQB2yBdZaVJKgsCEhkArngsJJHCusCBUKHUVAaDgUQiAih3CBNhDuOfDtpRDEQoSFU8qA5lkTpFGlREQxnUYDZx1xJIkjhRSekorptC1xXKLcXyfp6kZHUZnqUoORoYhWK8N0UlzuUHFEdbDOvffeQ9+aEfpmFukfHqY+MIJQmj7fYE6M4DG4PEXHEVF/Hy7LyFwMrWUS7yg5SVwqcdFFWygnMYkXCFWnNlJlLC5RSM/E8WOcedml7H/oIQomqMY1+qtrKA2OMDNpGJxL6euT2GqMHihTLKTc9qnHGdk+wNb6IL4N0w/NcfKxadJOi03r11BZs4Y151WZP16w/ysnSQ/OMbJmgFrfGLc1EtYsVFk7Cp2FeW754b1sXLyFeb2bT9+4yBVXX8tVv/FWSmtK7BwUqKkl7nrwW7zikufzpQ/+OcudRV74s6/jxi+8i4e/PMuJL+W84kVVRs++iHptJ3l6M63iPmSnIBIFzapjedrjH2yxbc08mXsIs/AnkLyBPd9+lOkf3Mbu0QG2/uanWPzbXyDauZ96nDFZanL7ZsPVF/wur576da6/9iFefYbjwIzng3fl3PTFJV67W9D8AXz7iOK6Xxlh96UNaN3NjvM1+oKfZnbhAGNrC2wlYcbGTOeemmqzplxDy018+E1jfGbPbfzWjf/ADbs28Mm//BDR5ut52IxzxubtrB9ez9GoHzMQc/ZaGKsojk+mLEvBkYpmQsG1Q4p8QPHh4/DrwGYF08Zx30yHoYrn/v0txiKoVjUykqQLhpnpRQb6K4ysraJKBb2mbZM78sUmy7MNarUyKooQSYSOFO2ZNqrVIp1L6cymFJlBVzWqfxCXpUha1Po0Ko5JmzmthRZ6qEZuHOW+mC2716NLSaicdXXSzfwCkWgRVeo4rUhTG+YKqUjbGVG9glQCrMV0UrxQKCVwwiGjCJuHpn9tc5z1xJUSOoowVpDlhsJBuV4mK4rguZCHJEB6Sd5uI3SMcg6wmNySFwWmyBBa4wj0p5CQBO41UpPECR6BMQVK6lDtdB6bFwgFJR1KkM500VmpsaIg76SUSzHOFJgix4oAmoju4uc9oZ+jMBhTEKlgFGcF6CjBS0FhLFmWU62WMXkHqWNiFWOsJy0scZR0FdQcxgdVOSE8zgQpExUnFM4glURqhXKWIusEkCTPg5iCDMlZYctPMfOvriZ0/3qG0fepZOL0BWo1Beg03vATFrIVspE/tWSLU1uffjyLswMfsLQeI2uFBsaKHBGh78Tabt/bqWTrVCNyd4heBQiQGlcUAZntin0IKRkZWcMnPvw5fvO3foU/fO+fsX7dOF/75xt5/5/8KRJNEpVoLbQRheSsdbsYqA9yYu4Ia4bXsO2MM/iLD/wVL9rwMnaM7qDUX0LUyjx2TDG4WbJmMGFhpkGzvcD2uMnjBxK+cnuHt91wFUuXXUMUecraU2+22TG5n6u2ngMzs0S1MkebD/OdPR/l7lsOkX/nJC//p8uoDlyHUoNYcxfGPoqwBimbZHFBvrhEVCxRX7uM8cfw6cdA/ziP3f5tSo2TjI5vp3LB/0127z8i1+2lntSZKjeoru1nrP8SyrOLvO91/8Rr3tjHJ76cc/+tS+w6Q7P5kpi570bcd6TCq37vIsZHMuJikuGtVRjeTaszQ/+AoNCaZSsprCMSnorWCNHPf31elRsfe4CJpmdMZDx0752okct4xA5wwdpRZFzF6whVkoxUoapBNSwmEhzTkAvBuWVJkcDHl+C3BHzpk5/gc5/7PHvuvhtrilBx/FGPU/+VsVKh7I3eXNBtGO7NAXJl3lhlmMYTmYriaYN2v+rn04+nThz+9f3/445n6JBssb0SvZAUxgYnUQkaDdLjvcGr4AwsTYFWGi8UFoFWgOuWemT3kt5D1wgojsEUQTtdyMAxFhLSThsVxzihgyW6C+VoY4rQVCUtnWYn+BxECoXA5DmIgOr16AJaaXCQlCp4V+B8WOy996GfAcIC7wUGH5p8vUe6QBWSOLAG6SU6iiklmjgOSk0mjxF5jsOTmtD4OFgrYVsFJsvotDJc4RHW0sznKVfqFIuLKBFMjMCCbRIZydodZyJsQRQleOvJszRQO9qGaiWi1e6E5+fBtguaEryTZCYlb3bAeiIhKJUFLB/BZpLG9EmSeozXmlI1J04FmeswPz3NQmGol/vIh6BiJXd/r8092WMcefwOrv5P13PJNZdQlsBSyr13Ps7AWIV9d84we3yCsmmytb+Pen098ZDn4X1tkokWrYnDtBYnWTN4Htuu2Mj4GTEdDxMnU47uP4KduZ1XvuElfHbPNC+5/nIu3bKehU7Knbft48ajJxiJx5l69Djv+9v30TSWuOz58h/9DcXCEsWSwSH42seabC1v5czrL2Z5+aMcOrjIxrJB1iQ6UdTX9mEkHDrwyyzNLNM/IKiXPkFebuEvKJgbN/zx77yFc15hOPj/TnP9f3oeZ155PgePF7z6+hdjdYPXbpLc2pDs3uH5yZJn5ojjMw/An76ixKeKATZteDHbRl7A9AnNt278ENefeQwz+W3EWS+hUhpkHZJ+pVj0YNrL3F6qs0Nprj3vUspNy8//5H9hYeEkWn8YI8scr1apVbei6rsQw4PcsfsVlOKE11/suHitZkk5dGa5dqjMH2Tws+OCsxNB2zmWrAVrqAPHFpdpN9MgoScFSTlidKzCcqNN1icoJxrvwWQFNrMsL+WYVsHkTAuvI8r9ZfpqCUuHZ+lf04/MPZWhBHQVEUUILcCVqAxqTKtJp7mMk1BbUwLlqSZ9+KqisGDbOd46TBHUzTAmiAlQQFZAkWFsjtWKuBpjTYoXIeHQQmHSDK0kxkuipIRS3UC4nSNdEBLIigLb7QPwgIgVcSnGmwIVK0yhsE7iVQTOIpDBCdkH9SGdVJBaUWQZUQS57VIeRRBG8LZAKI23hrwIVAulAm+7sEGiGe+Rvqe87VAi/GaMwa+ivQjCsd6Dt+G5RJIwx9kiqNXIUAS3xmALs1IwD31SKoAhhHYQ5y1CeFQkEEoFt1EJItaYoku5KhxZHhzccT7QoEREkbFCOxJChISC3tTcu98QSHr3VOj+Km4uPCXS9qSm4RUaQFiE/SqJ1JVrrU5I/CnUsNc8uPqY02RQwwHP7kCp65MRaECrOFK9mCXwz1YqMCuKUt1sQnarYeBXgFQZPlRoF2R1e4W+SMfgY97yc28ibXR473v/kJ/9uZ9hoD7AltFtHJg8AM6TTkeUZJ1Wa4ksaxIlEW98xU9w1nkv5utf+EeW56bYOz9D1pfzxje9gfqIxHiYnzTU+0usWT/EYppw74kGL75yBzWtmVtscHxpmXZWIIqI2YPz/OHHP82WHevYvEbi2g/T3neS1lSDLI64+WuPM3bDW6iMKtLsYZaXZ+mLWog4RsVlSoNbsGKBufk/ougsUSr3k+jP4QamYKTGMXucvTe9j027Eo79t/u5+hfeRm3tZvbc+SB/8/UPIhLPy68b5VsnNTe8zDPQzpiczHj4uOI3Xj/Cd90Wrhu4nkrpXCZO7Gd+6hDbL1/ANR5EjF9GLCL6ERQIcg+uKDgSxawVimu2ns2NN32Pv73pZhrtWUr6MayuMVOvU6mfiewbRw31M7BlB7FSvGSbpxop5pwn956RRPE1K3hrH9Qk3HPPPTz4wF6KIu9x8fiPEKSuVhZaGSvB/il55JVZZlVS/IRdV853unhCbx45NceIVT9P22+V4AGrrvFsGf9ec+AzSg7wYbFyNkfFGik8URx1m4BDWdw7R25tcPlcsWQPJmhCiq4qiUJK3X1jBUISzIFMju0qcTjv8D0XTSlxDooixzuB7iJd+MDZFSKUvHuYkpASmxuELLBFAdKj4qD7LbqK5YV1CAyiy1+TIrgge+GwznSfX1i4nAtlqqALHgIA4cFKgxMgoxLlcoJXgQ9tu70WTiUomaEUlCKIIgJpoUjxpkzRMchYEWmJihOkSDDeUylphO9KEAoRejCcBJFQ7i+Tto8FPwWtUJEmLsVkfXV0G8pRTBRLVJSBSckai+SJwfoGSwuG3EjSIkYkVVSUMmcLphuGk5OTHDg0g4xOMLv3cZbmZpmcP8n2YztoNs8g9zE3TsxxTqVDJFLKbpIBPUcl0ZSrFZrLCwzLiPaDD1Dy/WgbY80wSxOLtL7xAI/cMsKS9zR1kyUzRcdGHH3UM5x6Ltpe4v7HD3NwdppOe4GtpuCuuz9D7icxrSU2r3sORZ5x4IE70THIShkhU171yrdz0e5LaJhJjjcn2DQWEy1qpuYspWofslpjvpOy774JzhIFN39Gsd/OcNZOxUBV8blvtXj11Z4//0jKzMGUCx49yfbxDhsGPL/yS7vJy5upl2qcywyxv5fYLTGcbeDtkwcZP+t1/Gp9G7d861+YPjHJ8655KRtf/DP86q/8CR/8w8toTk+SjIwQ9/VRUpqSF+xfmqBfJ+xxkk1RmV27LuTNv/Zr/Ne//BDJ8iyxbwEdEp8x7GeomX4evHOOwZ2v4bM359TEMhvWxFx60XYO4BgtC9aVBBLPI0uGe0+mbMtzshS8sRS9idFBu5mypA1j1Qhyg0hUMJ4piqCY5T0mT3HGYXyEzhwmyolKMUXmguRlRSNijRMCUxiU0qhIYfMsKBVJj1QCJ+iqncjQi4DvNtoKfFEgYxXUjRDYvMC0c5yzEDtkLcG1UyQl0DF419V7D4ZQQgVwwjuLimKUJxD0XVfVDIsxOZGOEd6uuKN74RBao0VA+7135IUJCYAKNB4lLF5LUAJNeLzwNsgGW0+SVJDdYMyJgL5KZOgNMHm33yB4HRjnED0VJS2DUQAhkHXGI5B4ZyiMCVKs3ve81oh02Ne6QAeRSqF1BF2pU0lvXup6FhQmNFb3EGEp6ClHyCgKstIiqC31EHgdBYpXEgu8LZAriZB8wpT/xMX0dG7/yircW5W7/NzTgvuVRoGnqgucOsfKY//aorYq0XgqUsCzOivojQCJAnR7VZ4sASuEQMjwORDdhOEUqupWjNOEkN21N0iOuzgmzw1ahaS6KArmp48ji4LzR9dx9dXXML5hA0dNSjL+HMTJx6nV6ty/7/tUYkk1HqCwhriS8Nzdl/HBf3g/r7zwxQym67BtQywM2R3TTPsyqfaoDY7m9BI+KlCDFQa9YMtAxN5j08w0F4msQbfb7D9ykGYxQ101GUl28sgD93Ni8gEyERMNjCHUFM+74tcZGFhP2z5I5maoV8vItEqj1aFU2oJVNRrNBZpzRxn0bR662fOIiLnsnD6Ozs7S6gh2rlN8/Z8nmZtc4uKpE9SqR9mxRVF93Qvx8QgjFcH1Zplacg+RrVJtxoy3Gwxtvprr4/V87gvf5QXXbGNobBfHlhUf+IuP8ZvvuJLO0gJxvYrUMRpF4R3LRYuyUjwObIwSLr7wfOak4mN33MFQa44+30HEhrreR7+cxOf9HN4/x/CGi/ny3oyK77B9tMrGsToNrxjRniEd1B0b7Q7tNF1JEP8jJAZA9yt8ql/gVNB/qmomujuuyJU/YYhwwJNP/Yzmhl5V0p9SPnqac5ySUP3RShr+vafAZ5QcrPBEpQoKQr73AimEDIGsJMiWaq0weRd5l2G9koTAoQd8rNCKRNBTNqYImt+IwMu1rguUyO7EF5SGLCKoLUiJKwwI3/Uo8KeQEylCIO5t11m0p9kd5At9N9GRoovSoPBIVKQo0qxrsBEa9EJQIhH2lHyctZasU1CJIxQeoYOygCJojPf0p6UITcNKOCQWoUCVusirEEE/WqnwvLXGWhN03mW0crySIiQu5TqYNklSIooUUblKUqshFVTKFcCQZx0sedBldxlFvoyxy3jXITcWS4xXVaZnlpl8qMOJtM1c25POLGIabbAzxFMP0pqfYTnPcPYIM8UUxzr9PDR3F2OpIW8M4f0++gYSkmgts7lnTZ6xcHQRZhtE5RJRMoCrV/HLcxy58wGOd1J8PMjEgKfYEjG+63xa0wljlbVMTWQ88tgDeJUxUq4wNTXHllHNjB9j7eAQlDVTE7NEusTLXvtabl6Gpbu+zuj5l1Ibr2HSO3G2Q7kksFEcUFLfj+mUWF5YBiU5lnrq4wqTS5ar0F7IuOf2jE0byszc3yaO4fBjxxHpcfq3aa56WY0TDyxgL72CM+oFi80tLBcpfXGdcxZ+QLN+HruGd/LFj36Vk/EE5QHNGRdfysg3/4XP/PN+LtvRYcOuNcjKOnwkyL2gLykzKmEZkF5QGx7m0he9kCtPTLPwwy8yfXCCzKS08g7ldJZyJ2G3PUbe6GNS7WRGxzSNIDZzVDY4nnNZHyUBsx4WjEcUDmUNuQmBbuEdpTg0sKbtAtfIiHSJ1pII6DEgjEUQ+oG8MZQrMU5H6EQjIkHSX8ZkHiEVeQ7CWZCQZ5YkUdgYrIgQscA5Q14EzwMVyyBn3EOrlUBogckyIufxcdeLwjrIFT73uNwisgwtw7zgiqCioyKJDGrAKOfxMgTnUsmQAEBI8nsTu3MUxiGFQUuPVQIvFV528XcVAv+gKiS6EsghpFVaUNiiG+eGc9FF431X5cV3g3acx6vwWgrvQmIkQ7+BNcEMLYgKqYBmQxf5DwufdUHRaEWtqbfIiyjUHpxdQcp6fVhS6TCX+SAS4JwLUqVd0zPfW0NFzxxLBvBDabwI8yfeY71B+fCaWgjPBfe0y1yvefj0Iv7qhTJsX8HwnPGaigAAIABJREFUT4HTp44QXSW3FXSwe7auas4zCXCeaoE/pWyyAhf+BxinAiPohkLiVENmzwfBiVPu0VIKejK2WncrW1LhCf14EIAzsZqi5CyyaHHOYD+1yNJuznEyTZn0FlGSnDk2Tm19HyeOHmP7lnOolNaw2FhmoTlFxdTZ99Aefun5P0XZrcUuGeJmi8V7D7G0sIwYGGZs5xaWZUyzA3Qi+lSNPPWcnDpCrRLjc09rucNIPUL6QdbW+rHllOnGNDKqccmlV7DPeKYevpnRbVcSlebJswXwHSIFXtXARhg/Rp5CkS3hhGTJOMpDJbARWWSZOjHL9ESK9X0sHZqlMuiZOPAgsycaDG8b45ydNVrTLfzOa9gS5Sx2xhCiygAOnU1QJLsYq4zy+eOfIu00qAxsYmTjVqr9D/OVbz7C1Rfm9JWG0aocwBERegyrApa6CfnY+BgXxzFHlMQevIupg8dZzpuU1RKxltRkiTP8YVSnynHG6UiIZguKrEN90HPGuhiAhgcjep+HMHf1jOqeraOXEDyhE2mVWNDp34fVY2U28v5J+wR1odOrEU9UNevBGd2rnHYHvTnvKa996ub+Q49nlBwEBF11KwCh8VYIGZCxLm9fSgE6oIS9xEoCqvu7gK4TnscLjRehHF8UBmMNpVIFeoF1921TSnVNX0D4XmOcRUvV9VcIpVi6C5hQCqGC+gjdqgQERSKhQrAhhO82UXfpS0JjrCNKIqTIcSa4L0dSEEWBq2utCSopUuJcgckDb1v6AiEdrmfEJoK0qjcZkdZoYcE5nCnQUhFXq6Ai8KC1wgkZmgulRrhAzVJaIHKHwqGVDK7LIiJvLlCq1YNSS7mCrvWRtjuUVAyRJlvukJs2aEtEhvVtsnQWZIauJpTLmlbRYerhAzx+LGahKWgsQd5qQycnKjLidJ4BnXMsN6TL+3l88h5+2BwhbX6Px5cNy60aC9EkSXU7HQFTE7MMsYHp+yZQeYz0llLkSeoRdqHJsYXHEdkjJHqM5XaVYvhszh55Do2WQSUV9h6+H7JpNo30UYoq3Drb4g3XXs7euZTILrFv5nGaySznXHwp1730ZdxxMKPx+N3snZ9h52KHc0qOoahCo0VwjY5GmE0TGgsO2/Rs2+m5df8yL/qJKgMIHr6/ycOP5eQV+NBnm4yuUewe0RS0+f5ei37EcdEFtzF1t2bt8Dqm1q9l2WxG2jIqWuTQ8iBjaj8LS00G/RLSHGd2fi9rN+/md9/zTl7yol/Gv2SJdrSOdXKUoQ01Uq8YqI5x9JHDDKytk7ab7Jme4XCe84JrzuPg8u18b1Eyf+Iwy40l5koFgw3Hjw9PMDv1Kca3v4Z042XM+wFuPzDLWVNNzhzYiji3ylSXRbBFgykMEZJYOQpnEd4RS4i1JyoMRSN4WHjjSARoH5JPbAFCUumLEZEGpRGRQuMwPshupgudoEgUCfLcEkmFkWDQECu88dg8JykJdEVji5Bw4CxWebwVOGNQhIZfoSS6EgfOdCvFtC3C5uhyBSsktijwhSGSMViJ8EUIuIXrotwemxscwYCRrmO5FBJbeIwriGoaRXD1tibcj/eO3BSEkEuuBEzWBf8TYwKSL7pBmFaaSHb9TrrUxN4ctjLHCdnFy2V3TgOExDrCXODcSrAcgvBAAfIS8CFYk93KZJAjdisLJl5gvAMRwAvvwlzsvMe48C/xDiF0ty7abeUT3T5iEWiOgRUZqJHW2jB3d+dT532QCTwtsBZPWlx7Bf2nUhShB6T1tPZXUM0nx+unl/Tpvhfd/cRTHNC7o55ayVNt6yLoz/bigRBdiV0E1ppV1ZtTz7pX4VkdOPWkeWMtGR/vZ3RsEKUV8wtNTk4sIqOIRjNDooiTEuVKhdgL4uUFrtoyxJ6ZFjd98/Mcr5URsg7pY5yzfpyxi9ZQq8P2LWdSi9cxeXKa5UfnaD6+xLnrz0G2PeU+8CWws22WJiYR848RpxuJ8mEGN61BZ4KlxQyiMtONWRK/yGiyjqm2Zdlqztt+JkeaBZFf5q7pA5RGypwxuo3dl17OxEyHyeP7OdBYYDBpUxEKIarkhUUpSVIaYbmokzcNkRxGDwuOL81z5gvWUnKKA48cYi4tmGu1OXhvk7WjZc7ZWWLZTHNizyKbmg2GB5dpHi7RVx5haXiYVraFipQUfpGlIqZPnKDdXGBTn8Xmh8jSYTavH+fH3/QafuU338+WEcWaaIyBNTGq3I9DkOgyBw7NsXZ9H5OTx5httmkqeNnZ40wzylcnMk5MP8a8WqSvnDJetVzRX8XOxQxveiHZ0BZmliQHptpsbeYMiAHYFLHoPF4qYh1RdGWhn1RdepaN1cpaiF4Pwilo4VQVYbUssqcnLbpSbXi6gF30Av9VgMbq2adHoRSrtneroSsVuZUK6MqPH8mxqlD77zKeYeVArOiBi65yRqRVcAvNTSgEBGENvPVorbHGhYq/lKiQGgStcIJQCDisDUZqhZOIwoArwiIP4C0q0YS6g+gmGS788x4pQ5kNGQU0RQYpQOshNwZBaObqUoKx1mHSNAT2SqO0RusYIRTetsFpypUS3oMicIGjOEKJiKLVgqQU6BRSoLHkS/NE/TUiLVBxCCCMgzSzeAN9/RXyTjM4MkuJk4CWAbErUqyQCK1B+dCb0emQZxml0hBaiZBcRDFSSFzRJq7VUBGoJEGXSsEecaGDjDVFXmDTNkoYFI5iaRYrF2m3Z6mPegbWDiLKS7TmZxncMMclQyN8+n8cZXYhxZX7KY+NMliqcnJ/xoVVx4EC9tz0AwanDpGtH0RmkxyyFrN1H82+AR6capMtHGBtuUnHDNI5vB9Z0zSyGrlYoCIFlc4jICrUSpdyUh4nokW+7xi3z99G9rxdDCdthsZu56xtF3PkeMLDR5a4+KpLOXJyHkeTh6ceYmp6inPPvYznX/My3vmOt9CYbkAKP9j8VS7ofwMXXPISyvER5uUIeWcCVX8Jk/N30CymWDu6jpFxw4Z2xqHF41SSnEN7DPfPenb+Tj/Nv1qg//KYV109wtQiPHB7i/yRFHN/iW2/MMz+t/8xj547yIEspt5KuFCX+MTcBD/2whHsD2ZpzwoOH85Yzk7y2+/5e9ZVd/L8X307X/vnL3Pzw1/giiuneN2b3kG9Nsg3Oo73vuNDvPSnn8uJu7/DbR/7FLYc8ZL/6ww2De1m8MUvonXLl1h+9Ie0Fwxz05Y/OlBw9bZ7eX0+gShPM7v7etzFAxz9u3v57V8u+MCnz8ENRSzNZWQnmlTTlP56hWpZYNuCznIboTxr+6tkDUfHONYNxuAkZjklb4VkoRSDriQIFMI4bG7I2hBpi/LgIxAUSBOCcNdpoYcSul8w8A6tNKoUo2MJNqUUVyhaWUCrBQjpKfdXUM4zN9mm3FcmijUyNiivg0fGUBXrI2h3UDY4sRdLTYyS2KKDLCfBOFGAigUuz/BxCZOGpmOBJBKayHuaWYc8rmKMo9PskLWbCJvhZZhBrBdI6UKl0nsKa0LVwgaKj5CquyDJFUlQRBdcIOiOu+DbhnGeIssxrot2dX0PghiC6yYHHus9eV4gBSTlMkpKhAPVpYk4YRFx6Cmwq6B37xy6q4jmvQPRNW0kJBZaii4FSdOtpRBHMS5LMSacP/QvFOAssY67PHRBntkutbInELEy45+2wJwW5ncXyKej95y22PMEVK+XMPjTj1/567RVrXcPp/Z8Ior3lNWEJ2159gwh5Qrtx7nwbsLpRnFKKZyzqB4NLLyVxJEiiSVvfP1uXvaqK4gSw/dve4gvfOkeNmxfz23fP0TmHEObt7J959mITs49n/0c60YsD7c8rdlJbv2nv6ReG2S03Mdh77j++Tuon3sFM4uDzC80KOJ5hutDFEemedtVb8RNdciaMyRFik7nISpTGr6QOXGCox/+PltfexHy7I0cXMzoE1CNH+DMjefz2LEORsKmzX3MLy6DyHho5gAzM9Ncd+W1iKLNB/7mvRw+Po1e9Nxx0Q/Y+dwXUa/vwipFJqpIM4MqXc1849tEup++yjrixDDgcubaRyjJnO/fPkN5W501F6+huPcItTOGuOysszk+X9AqH6YEiGaVgctHmfvr/8Lxy8/l+FyZjfQhrWFfPsPlu8aw9x+lZCL23vFRjJ/nost/hsH6OK98x1u56bs303/w61x+2QvZfsaFCF3i0dTy+392E+9853P51gc/wH17H6W+eZA3vPkC1lTOZOza1zL71Y8wMdPi+FyHfVmHO2nwmvNv5gV+muXK6xjfsp2845m6a4q/u8nyO/95jKzdAS/QOu7Syjy+63b9bB2n+qxOS/tPPaeVz/6Tv++nPesnvQarqgarA/8nXV88ccOpk686buXKPQDjWYFEPLnS+/9lqHe/+91P++B73vOedwOctfNsBgcH8XhKSYTsBv/ILg/XBZ3xPMvRSiJEd3HtZnQq6upuK4lHdB1FA33IWof1AtFzZuwigFIHR+VOu4nweVA16eJvtsixtsAjQgLQRbmsCy7NsVZdRNFjnKOwBmsMhfVknQ5xpFEqCtUAIdAiIIKVSg0lJVqJbuOgJ007gTZchKqCM8EVVWhJqZoQxSWUUF3MzhH5rIvYOkpJBWMceSeHoqBaSsBbsmaHcqKIEouOHJGOqNbq5KagXOlHqAreSop2St5I6d84hrIdoiQEBF5GSFXB5ym6HINKqA2upVodJIkrlPvrTMwe56FH93Hjdw8RVU+wdvwEgwPTbN7aYnx8kT2tDu0NOVmlga23KF8QMXnnJAdahpb33PCGMpWozY0fO4JQAlWCna86i8lJR3tasXgy48jBGS6/ajN75zLsmi0sLN5Ha/kWnN9LVK2y11bZvu4GLvqlH+fcK1/KwNh6GtVpdl8zjpp5hAMPGqJWQUc1mFUdpo5LXn3RRr5+85eZP3aCkbUvJGuUufUzH6RpJ7ENoHD88bv+giuveDHT6QyH5+9lw+DLWCxfzyPTn6eSnGTj2jNIqpdwywOHuOZcyd5bHuW9756gstOz8zLNzX/S4Ow6/PXvn8v9B2b46JfnEZvGeMO7X8jYruv4i5d/hR/74pVcdf3bufjKdUylE3zoU4/yrjevY+fGc7hXzbHx3DJn1TQbCoEfj3mkU+UnL76UkTUt7rxvglt+eB/Tc3fy/Esv4zaX8KK3vpQvfnAvd33tNkxxHLRkecai7riLcvYoz7t8nPVnruHE8hxiMUXWBccmHd8+XsDsPp5bXuLK572e9hW7uOVzt8DFGzlyxBDNttgRtal4h9SWelUyMdPAtxdZ2webt41xYrFD1kxZO1ylyHOKNMNZRy5FCMAxVIbrFPMN5g/OMn1kCUEOeQfdahBFiswWLCwssTy5QBQbVCwRXpF1PK6wxMoGHvxyTlSJ0Ek5KJVZQ9Fq0ZxbROaSdLHJwNoBkliQNxoYF5x/RW0AFYUmZpvZkHAbC8KT1Cp4qQGBNQXL84t02hArjzEecF0J0BC46zjGueAS7I0J38tYkQtNkZsVJL/np+K9wFjbBRvUStkeIUjTFF8EydYoTpBKY6whzzLwFustRZ4Hqk+P+y6D34SONMYGl+iisOAFSmq8D5KmQVAtVELSPMciuhXMUIEUzqO6i1WaZaF6K3oJV1AZCpLQoTer15StlA6CC85iiwJrDXiHAry1FNbRarcxJijCCefJ84w77r4dgL56f+hh4BQ63xtP1z0Aq1G4pw7muyd4mg1P3vf0w//tAMjjueGG17Bjx45/c98fxXHP3Xfzve9+l7iUrNBFZJdGK5UiWgkEgw+FlEESXGuNVpJKWXDJpYNs2DxHvW+CM87IeenLR9h9WQ23ox8zZClv1xx89BEO3vMw23Zt4ORSm5Yw/PrvnI/LNPMzBhEDJc/ff/J7nH/pRZCW2Xv3Q2StjB9/4w184Mb/wbqzLyKdegiRP4yO5nH1CrPlOiNbLmDLLzyXc950EbONlOmjs2zcVkIuzzB1QlMyOe0kZS63pG3JOaMVbtvzA5ozs2zb+lKm9h3koftvZik7RjZnEO2c9/3aHzI4MMpSNkHHdKiVLiDVu5lofpX+Uk5/7VzaZpDpxiKbBj3HH7+T3//jW7nuteMstzL23XmC3UMxb3rRizk4+Sgf/84+dl55Jec//1VYu5W7/vtXuOg/v4ltZ/wkW85I+P6d93Lg0GFefe2ZDA+cyaFoio1njrDOwkBpgKLaz5It8ZwNGxgcMnz820c4OrWfSrTM+NhGTsiIl7/8fP6f9z/CY4/cTSGa6JLGLmWUHriV/niBV1x9IdGgIi2aqE4HPQiP7s+55YRjm93PGcMDjG4+h2y8nzvuPszguUN88kMf5tAD92HTYGTqvEMpyS/+4i8Sx/H/r5/d/9XxiY99nMnJyUA9fIp5oxcrPpHzfxrlqEe1Wnn89GucNoeJp0sTTt8//L/KGnJVdaM3XvDCF7L74t3P9Kn+Hx1Pzl1O3/Doo4/ymc98BoB3v/vd73mqczwzEzQtg76ysxRZRlwqISON9cHjwDsfJPUQpFlOJE3XDVUjtAourcYhhCczQSZQShUUjUyBBrwL5kLBJdUjrUNJT6IkzhQQx8GozFoUoLUIvGJb4GHFFj4rLEImJKUQSORFGhqpCb2Bcb2MUopSohAC8jxHKYlGkDfblEsRQgYEL4piksRisw7t5SamMGitiJMIU2TgQJciINACnBMQV6j3lagMDtHJC2KdoKMcshxfKNLFBlYYUusomZjIa4QtMNpSqQwxP+0o6w7VepmkPoDwnvTEcUprBrFFSg9hM0ULYXNKyTDVwTFQMQiN94asNclYc4ID9z1ApS/mZNNyeD7jrM0FA3FBguRdbxT8wfsK9uxxuH7D4qCjfHHCwncyKjUB4/24BYtxS+AF9U0Vqp0hFg7vY2p+ho5LaMRN/uZ7/8Ql5z6Hb08Nsubss7hi+3mcvWMQNdGH+ofvMT0a84Nv7uOk7LBuS8xzn38en/jSLVx1Ycb4zjU0ZQnbmueSWLP7mqv41Q/8N7L6ImpIYmenKbXa9NnjnOgI1BrJ6972Db6Zn8n0Qcv5IzH4fhYXvkTf6K9xwfh1TJt+pmf2kyzcyBuecw5zt3+MbyF4318P8J29OXvvSfmD1wDXRfj0ECdGLY0lx/r5AqU7zNgUtkqmliW1gfNZqj2P8evP4pd3fJr9fzfFut94jDee/3o+//ff5If3n2DD2BJX82mKaclka56Pf/5m3vjai7H2Et77oS9w21deyRdvvYU5pTnrg6/jjuIGvnXr99nzy7/I/OwSty0VJEuHOPDQcdafuY4XX3Me8xc9zH23LqBqjuWTbW7am3LXwbs5+3t/x5998h1s++Tr+NwdC/SZNiM1h5KS3AtiBScfm6WOJCnXSLQmzVPiskc4RW5ySpUykZKkiy1co0VUU/St6SOqSdJ5TW4MrrlMX3UTcS0ibUFaOPAZ/VWD9DH3372Xs55zAbFoMXtigeZCmziOGN00RP+aMi4vMPp/cvfe0XId953np6pu6vByRH7IBEiAGWIUo3KgkhUtOc96LHvkMA7jMI57xrtH3vGM5bXNI0dJHtmysiVREkVSophFEiABggCRw8upc99QVftH3e73ANIiz5w9s9LWOe8Ar1/37b6361b9wjc4eWMjPfAlZi6FMGFs6yAysNRrTarNhDAKEVEAWZuskeKLhCBKwWSEg33EzTppmmFyB3TlexR6e4krTdq1NloGRD1lVOCRJAlZmpLEMak2zu0V532irY+Oa5i0hecHWKvQxlW5le+RZZogcBwqnWl05qSR/aDQhVEmcdLdmBTWVeqzBF85YzFtLWlmnKGacJU9J82K05CXHqnRKAHKCxysSTjVIZQGDGkSO4dpIVCBAiRZmhEUi1jluXVGO/IzORcCJJ5yBGZtcZ/TaJSQZFY7XoGxpBYUAuk7uKLW+S7iKQcpy8c9X/8aGzZseCVbww/c+KVf+kV+4ec/DFxUaRSroVM2h4iaFxGxO5CoC9xVcxiZ7EDMhDu2yVWchHBcOITI+XI5xCuvMsq8e5wfyr0Wi+/5OZTNYKzlgx/8IM8dOfKihOzlRqe2aYzmq/f8KpU0pmxb9PlNIpkQCo8P3aBYeEEyPd3m1ltexcSP7aA2ucR9n/gSQ+MFius3YYstUtmi1FNi7d4R/sNv/SwHDhzhLa+9i727dvDCiWMs+lU+9JH3U/c3wI4hJvauYc1YP9Vzdc7f/TRLA5bHvvI8x6qnuOaqDQwPlXn2yRfYsdlQHu1lKk5I5+fZGPSQZPCXX3yGVnmRQr8gOzNPqf4CYXqWRgp9W/v4d+++m+9Uerg81PSKIhhL3H6SqPRaNvTcSMX0U6k8TlHV2TlcpD71RR6VHn/xx/v4+P5Z1qoKb7hdEGwqY7P9LPSmNI43Ede2MDIhCTVsKtCIBQOl9dTDEW54/yDtEwdZOLpMz+3H2bfm/Xz7i39BZWqWHcWYy4yA5q3U0jV8/tsP8Yc/9zoeOHCEf/rqQ3znm0/wK//p92gKySd/5zqe0lfzwJe+wqGv/SvHJ2c4OVulb+ExThx4hi1XXsGbb97L/FLEMwenCPoTTj19jk/cs8j9B77HvpvGefP7L2fjr+zhhbmE3//Iz1D8lZ9CssoU0FpuuulmqpWKg5gph7RwxdeMLjRn1WTxPB+wDt2hc7g2eRCez6fVPBetNaVSiSzLSJLE3QM5lE3k8EttdDeY7ihpQX7PwAXwJ5vffwLBJz/1KS7bc9krnus/SOOjH/0oO7bv6BbCV5qfnfs/5wnJVZDHTickVxrrwjd5qe5GDhG1K393udBF3YzO4y/xmHtLsXL8/PXVavVlz+8VwopyZKhUKE+gpEALIHMnbyw4v2OXRBgsXiCdfCGGJEmxMjcyc85nTpEjTTBZihAGzw/zi+aURqTK+QJCoIKAFJysIE4pSQqBzsDzfcc/sE46kLwZq7Um022szRBIMmvojRStdhurfbT0UNJ1KjycPbeUFrRGGkcWDhRIC4kBGQSEgYMahZGPwadeXUb5ikIQ4kcFQgRpW7NUrZPIJlZYgrBEEPkOn6FzDXOr8LwiUgVYIE0MutGiPDDA6HAA0kekGdnCAtpqTFLH6DaiUMCLBJ4wSBWAX0T5BZSKkGER4QcOahAVWX/Z27htcC0P/9Xd3PfV0zQWM3b8hCJtabzAdWveeZek6FueOqzpX45pFSXzQHm9zwGvh2qcoBBEvsdPvnUv93/iIEfPLFBrJyAhiCSNgs+rbhhmvbeNF+Ykj9QN3ztr2DTZpDh4lKPxp6lk61kzsh6vWeHLD52kuX0ro5ykvazY702wZe1VrPMS7v7y92j4+7FzdX7kits5OiU4WJmm2jJkVcOGK27irus38LE/+0OO9CdU3nEDP37Dz3N0+bNswzCVChJ5kIHRAgN972Dm1Hd5YDji8v6Qf3xwib1jmjffpvjc85rfEZbFJOHx45qWNIz1R6wL1rOc3MDzx/+UUEYsEhDIPrb0Xc/c2gH++vzPULyvxLaJb3L17hrVuYBTx2Kmj1XYcPur+JeP/xZ3XL+e52tTNE7O8+PbBhl547/nR+96L4Xb/xO/+O6ref36PtZe+yrEn9zN/j//DwTxDNZalpdimgfOM18xbH7Dm5i48vOUdIvzWrM4ranVTnH8mb/jj35M8tP/x09TkiGZFCQFsH2CelLDNDJk4DNSKlJSgqgg8cOQTZtDkoUWQRlE3MLLMkIyYpOAVWTzi2RxiXY7wQiNJWFuconyQAF/YBjSGOn1oApFisECa7dO4LfrREEBv9XE1qrEvofJApQfkSwltMIYIwTSCpQKKA31Ebeb0AgIcPd0eWiArFHH8wTKZLSSGM8kyCxFa4NXHiDsKZGlmrjZJksyMm2IU02xp0TcaGKAJG5B4gQRkkxjdEzaTjHWVeYB0jRDSYHxXAfCGONM1HJYjQpkDne0IJ3ymE5TIuUhvRCTJW6hRpPlEqJG647rI5KVKleWKYoFH6V8rDX4nnsPawXGOhdqJdwGoa1FW1DKRxuNzn0JOmRSnTmok+c7LwZrHdVLCUGaxHhBAXK4lBC5yzOWNNMoJVDkwWxul21FrtAUhCjjvFushWyVCVqpVKJcLr+SreFF4/9riEOWZtTr9e7vFwbZK9vnCl9hlYuCgA6cyeab/eqEwhXtZRfSY4ztclBWPHpYeZF1c8IlqGqFh5E/x/cDskyzAseCnp6e73+C+TGM0e58utIqliReYGbZ59jXznHrbR69uy1Gt3JYXMi7XrOGrz2wTF8QUEZzpnmMRpKwc1s/h+ijYnx8YxiIQl5/zV6evucoh05Mc+zA3Ujf4BU1jQ39vP7m11Hx+zi9VOSeRUtpaonC2XO8sPhNRgrn8KLtXLl5E+1anUOtKs2+AtWZsxTKfRyTG7h88xaqc02ePX2cWvgsZrbCe/a9jocOVThZqTGznJI1FXtvvJ192wb5yG/+IaffciWv3beb7UPXU01PMohl2UisfIGe/i34ScJy43lOlwbZXSjyuf2HuHNjxIlGkafTJm+SGU1d4XuzTcojhqFSiaIap55YTh2vcbOMaKAoyhJB+WrOBwkHJ/8OeWSI0dF7uWxvL/edXWBmcolt9RrF8REOPvYxXrvvCh6dPkt/PMO7L99GMrSbX/7N/8y6N3yEn71+nBsLEcXbbqc8NsTB736G3laMMTB5rsJS42nWXnYpay97NTvtvZTMMv5cg7mpJktT3+G5B5aQ9ZjbPngN7Vg6jpcSzlPJk93gL27HJEniAvHUkiRO/RHyzlMuUqBziVzXXXSENZtX5W1nDuavWQ0FFEI6Nck8xnIJssjXKdtNDlxHKw94jevKrka2rF4aRO5vEEbhy8/5H9BhjaFeq10IgerCLlcASZ1uXxc+2b0mLyZSv2gIsbIM5dew2y3JyxDuC7kQ6Nl5zwufT3dpardbL3vFWB5dAAAgAElEQVR+8mWfQX4+SroJhcPIYm3e1vS6P54fgHTPs0I6PG6myYxFG0A4ZSAh3EZshcWg3WRU5NW2zolZhLQIpdDWbfy2W+lxOFoneuoqNc7bxbX1jTXOSVg59QYHdcpVDw3O98AajE4hS0mSzFX5pHTuyDpDZylZnJClGVhHIPZ9hSfApintSky7kdCqt0nixDmZIkk1ZEZQqca0GqmTeswMaI3nK4RwcnJKOg3ypJmRtEG3U8hifJqoTDuiZqWCbcZ4IiBtJS5QMAqsj5QhQXkQ6RdQUQkZREgvQHkBXlimNDDB+NZbePvbf4Hx8qUc/W7Gdz6XUm9BIGDAk8ShwPRKBkck29cHvOGNG5BCUFS9zJ/QzJ1q4ylBISqw5dYP0lPejM2K9A1sZ8O261m/5VJuuf5q9j/4NN4LX8NOP0lz+RwL1SqnFudpZzPIxgH23QB7biiyZkfA6NqI3RMbOHjapxJtZ3B8lKFQ0p45zTOHPwf1Re4avYQzZ2c5NfU8leYUTXyU38sHfvLDfOFTH+Poo/fQwGLW7UFEO5gtvh6VPUJ/YBkJN9ATbcNGw+jiHI9kHmPCsnskwi8G2F7FvqsD/ILgkzXN2eOaoAC9Q1uJ1LWU1SnScUla3UQ1i0ixBLLEyNgVvPFnf5nD36nRIsUEEWuGI9aW4eEHG6jwCNuvfhXTB6exkxkqmuBEcTOH9z/LtVfuxjNP8/X7DvGV+6dYWvZ4+83X8uM//5tEG9e4Tpa1iFbC4rk5Tj98mP4td9DuKXD1TRGbtyukaqFbp3niiU/z9b+9hytLCf26Sm15iXqrSegl+O0mfb1FEIZmo0FtoUJrqUHge5R7Azf/bIxNm2RJkyxrkKUJWaohgyhU9PR6lAqCxlKFhUqTdqOGSVrEy1Vq04voWpPRXoVpacgyevuLjK4dYGS0jK8z4oUqrVYDHbeIa8vUF+ZpL1eBDJvG2KTt4HBWEwQOwucLga7XsXEbjHEKYTn5H3CSpgq3Rki3yHmewo8C/FA6Er8C4YGSFt8DVxZ3hQIrBJ6n8nvYd49bjacEYRgQBD5RkKsBZRnCajzp8PzWaKzVSOUKHzKXVxXCOiUmkVfpjIMvBYHKceNurfSUIvA8fKVQQjrtfiMQwkECPM9BgzrSsxiL0RadabIkI00T4nabNE67a6C1BmGdh4uxrkLokpKMNEvyTqnNOxhOlUl5ykm3KrACJ36Qr5k2X+/+3xg/GG6tqzfJlZ8LWus2r6TZFW7D6m6BuKjTAHlcvqqzcIEHQ55QXAjByo+7KuFY7c1g8u/SBXC5Ydn3G3nw1q3C5tCKDk5Oyojrrn0Hdr7AycebnHkuIc0cX68gJWmYEPVpwsIiveVFdm8bxmpLj7+OqTNN4mZCFCr6+4bYtesOisUx0jgg6FlLz8gEY2u3sHndBpZnl1FTj3PpmgIFMipLFc5Nz3Dg1FOI5jGePf0NSmOawTURwyMRa4cGWaiUaUejjAyV6RGCysIpTp99HL++xGvGdvLs8+c4N32Y+Vadhuiht2+C1950B39+919y4pnHiFWAKI1h/DU0/C1Ic4Si8impMTw1hvV82qrKEeMzJAxbBkbAixgdKLNlvJdMwf1xzOJUk/4xRaG0BV8M4gUV9GiIbo3RxhEUfVlmeO0edlzzRiafnsR4ArwBNqwr4umUcy8s4PmLjGy4iumnD9DTUiSlCSbtAMsLy1y7ZxcFe5xvH5jn4NkWvYUeXnP55dx15zsobJnAB3oAXW8wffwUZ587R/+am2mVIm64dYiBUYMn56gv7efAU5/lmfuOsLUsKPm5aexFUZuxpitxbPSKoEHnx5gcCp3PRuwKHNxY9+OmZR7ck8eaq8i6aZblxZSVJNoY7bqYWnfV0GzOs1qR+7xwmuZ9iRfdKz/MowNThXyd6Vyjzonn16Jb+V/92ov4WZ0EbfUxuwkA9oLr1vkuO/923nK198Oqg3df85KeEi8xXplDssBVoYQEdDcDkVI4Ap/JM0mZY3WxGONa6a6tItGdwN6AYKXlRK5I1Ml+OupD7kIYV53RFrRltZmeMU5y1HRaZ+StXaxLFqRFSQVGYoTGGEGmLZ7n43Wy7lz/O8uyXEXFVWI6LWOjNVY4PXmLwBMSJUCnKe1qCykkaZo5RZQ0BeGyZaFC4kSD1uggxZMCZTW+LzC+wlhHTDaZxqYGIxUkhrhaJVPgeyWEMc7UyPfxwoBMgM0kNpVYXwE+KioivQjpFxB54oYFYRWeXyRSG7jj1jEa55e5718TvvWFA4z1WNa+2cdTHkkrI4sh8iTDwyE7rtuN5x0Gu4b4XBM9X2NkuMgNd+5h3Y5buPz6YzSGBxlZcwnr1q5H62Um1hX5xO/+CVvHnyEcWENPuJnpdCNzSz14zQZ7r96O3NgD/ZKgpuhPimSJpdE/zKweZte6Esyd5OnDT9GoHmBbfw8DppdvnniOxbSKKEgGesfZtnk7tGp84TOfpFld5srRteya2EUqFGHhCurx4/SHI2gxQjNNqaTPMZlWGQsupXX0WXZtHWMqq5OqZe6YkCy2E74zqWmds0yUBEODa/HEDnzxeXrWe8wfa9G7LkGW2kghiHoGufmdP8bpf/oYjUqE3xexdpOl1G5x7kjM7OJjXHLt+/j4n9zLlkv7CDcM8+hJn+CR7/JjH/kw2dEHmDlzkql6xNpMcuNl/Wy8412cO/Isx777JOnZUyT1Kq16wsxTh+ib2EpW2IZfPsdwdYlm0xAvZdRaB/nWFz/N8Ihhvi6RpSK9coBh1cDTFhsM045j9GIVlWTQbiN9iUpbSJ2iTIuk1aZRj2nUmkRCEZY9vCzFFxobaNoqY3lxiagcUkyaBFLQatSJ6w36RxSRUrSNJE0MXqHIQF8vQUFi0jbaWFITY9uGtNUka6co38eKAF8mBL5FkTkybu5CjjbodozQKcILkX4AnkFnSe7z4apUHrk0qMnvxyhEZBojlZNKzizSCkxq8aQgtU6BSEpJkJN9A+GSA2E0QrmkQQCelHREAXNzdaTNJUKtRikPhFMg8qTCYDBCIPINs9NGVsrDw0kUO3mhzjpj81XKAzKEdSZkyNx3wjrjMpeg5P4H+YaLscRxgh/kqnB5EUV6CmNNd+13r9FgMgc9yMMBmScfJv+71i5YsDl52pLDlP7/MC5OArp9AS7cFDt7yapKn/vdsvLfleevhnF0zMe6lVY6MKA8Xeg4kK0aq4/V+Y/WK9Aww8t3Xax7Ubdq6IKs/A8ClCpxxWU3M7vnEGeOP8Thx6YoeZZ1u4sURNFVC7MEa5bwoyHWD23H87+DtVtoT08RmDYbNw1zxTV7GBzZyZbLzjMrQ3bu3ktU9PBVSl8Bjjx4AD95npt7eghnYX7ep9HOaAuPsW3reejoadJyRll5FNsKg4c3PMZsHLJzs8fM8SmOnTtGXDvL1v4eBuJ+Pn/oADZoEvQHbBrcxobetcyePc0/ff6z+K0m6/uHGSz3YwUoNU6sT1H0etCiTJw2aOpl6iamJLfSnj3IJet3cbZ1mrGSZLjosZzUOVhpoec140MRxWgtkjKe36S4tkBjtoHfpzFkKBHQM7ierZe/lvrTX6VVLyKCXjZunad6KqMxX6GVnGN84tV8+mOf4dbNe1kK+jk5tUR/c4mbXns7J6eeZWZ+lKrw2CRKrB/oZXzPDdSXZjkji3jTZ6m32jRmq0wnx+kb3YguXULQd5Z1O5rUipBW68w3nuCJb6/jNWMQjG7vCgp0oGudeaS1zrWJ3TzrxJwvFYR3KvuuBrvqyatw/3QPtRKHdcRhOl2G7u2UO3Zjc0EHK3LY0AqUpZPYdu6x7m8/7AmCWOlCrnropWNvwUs+52IVttVrzksdq8PN7aYRFzYN8uO/eC1Z7Vr/Sq76K+McCNc995RAEiBwkoJWkGeeFqzAGhC+h86S7gRRuV17mqQIDRJHxrO4jS4KIhCaNHVt8ByJ5CakNugkpSMjCgarDdIXTvLQmLzy5YJ843lI5Sol1uYJgHSteyVd4BxEYY41FUjPyRCiDSaNsUojlNfFkPq+574IZy7qKv45UVlIB2mykPsUaIxO8VSBzPoooRG65QiRnkuAFJpCsY8sbiFzuUmRqzxpI2lMLZAJwcA4FEtlVKmA8DzHswhDbGLRKkOFzmhKIFFe6BIynUt7aYtpZXj9LgFQEt75ox8kiEL+23/+DR7+ixa3vynAkx5bleGZmmZ+zpKmHpPyEmTUQ51hetsnGYpitl63jt/5399LTzmgfmVK7xs/yNaxnUwUizRiePr5FFP6LA8+8xDv3j5HOZjm5PISNe9aWqVR7vjAT3DPE5OM15qMtDPmjiTo4VPc8tr1fPFbTcaLfTxVmecLh44QEHDn2g186pFDzGRNwqF+egZ7WTs8ypuveD2/+Qs/iQNwWHZJwY25lO5lfsRz5v1cIyt4gG+fI209w5OnQn5k+2v5yqmjjF6+kaFwlp6szpCX8rWWgIOa3kSxdSRifW+ILyISsY6yEMycOEjP3uO09Fqs14MXDdGgyG1v28sL+2dZd2s/Q7t9ev0m6ZkKp07PsOvKQZJyD7X0eYLKHFFrgKhc4NsnW4xNS67e3qaiFlk4F/CoDtl5ieK9P/1LfHb4fs58+8tUDh1Az1VIMJz40pe55D3v5elpGB3SbN5X4+ghjT+bMVX5Onf//Rn8/t1s2rqNQjpEKpcYGRukvbTMUFDA1mJsI0HXm2ijiZfm8eIG5SFFajSVxYTqkqGsQqIQpIlRWpM2G7RbDZYqC4yvHUFLEJFHpgSJEET9RWILIlDEbYNRgnJfiZ4NvRiTkMUx7bPLJK0GInPJQBAaJDFRZIjKAZmxGKuxmcFmFtNOsVogsgxhQ6TnuXUiTdFKgPCcoo4UWM95gFipXGcxD5bcAmDxlSBpZwS+RxKnZGmKkCLvarr7N/JC0iR1mHFtXEAQBPkaF7jPpjOE75FZF0e6ON/kWFs/N1oTWGnwA9FNELS1BL7zfrFpQpwkuOVJYq1C+SGkFilyHVprkEISBPln0haTQwKEdGRjLwxpNJoExpGayT1SrHCCD55yME2ZF0jSTDq/BTpGj3lb2bqqntEpwvOwQrgujVHYrjbO//x4earf/4Lxb+x63Yc7lbvVm/nFQfnL7ezdR1Zv3Xm3u3OAfPMWQrpEzJoVoIF1HZvOq51HQbe98dKfPw/ibKbB91ZKi7mKGIHb73yleP0H/h3//DcJp5/4MmOtNpt2j2FFyFrZwp93craJicjkRgr9a1jWgwy2nmHdsGDvpZdx5123I0XCms0pt1/zNjYWS0RS0WjDuckqU1Pf4/wLp5jw/oF6YyvV7BJS2ctlr7qNdW9+G7sOzmJ8n6WpKvVqjD9o2XnpMPc/XmUoKvOVM1M8O7nEuFdm38g6PvfN55hJYjbuHmVkuI8d4+sZ88v8+u/9Ll4YobVlC4Ix4fa4YVlghlcxIdpuD7SnaLRnWa6X2ddzNc/MHmRo23aGVYV+PwYyptoSe75Nr4nY2DdCTxABBSy9FIygOneYkY3X0DIhfiixQYiOylxy8w1MH1tk9NrtlIpNZDuhMW+oVJcZHivRLgyx3DiAScYp2gIqCjk8FzO0LLhqImUurlNdkJzOBKMDijfddhf39uxk+pGvkh49ha41SSoJxx64l71vex9PzN7PjssSqmMNzp+O8WbbnJn9Al/5RszQ+I8wNNBHMSpQLJW6M9Jox+PszKcOH2n1XHadgrxQsFottHOMPMsUdhWkSKz+W/4aKcgzgIvuFdudv5aO15MAIbsFDLHqBR0lux/usVIU6pzKi5aOi8+xk0StfqLN6wldaOOLkw1WJSAuGVnVPezU0/PvQFjc3rD6s3X2yDyX6L7++4xXxjkwFnIcPkgSY5Gen5PevFwuNN+kjcFYSej7XZiOtRopFakBJZSDC1gNVqLxCAMfrZ3muHPz1PjSnVwh8JyCiJTuPXRGB9IUx6mrnmmDyTK0zghChY8PKFKtu0G+Nhrfk4TSI0W7C2csGI1NNVFPCas1Whh3TkgnM2gNshCRpa28yGfI0oyw4COkQdqMVrOJNBnWaKSfoa2PHwaEfoSvLIIUbSHLAmya4gVFTBaTtVJsJgg86B/o5+yp89SsT6Qg1AZZKCGtRzQwhE4zklYTpQReFuELjTICoSU2E9B2iZOpxeiTNdQNo1jPafWGfsBlI8O8ZdMmHj56hGQ6JRg3rClYhpShrDzWrO1Fz0YEfXtJzjxJ1t/mxrcN8jMfvoyR8m14YplnHjzEq9/1DtaFASYzJG3LzlHJh/7xbv70zbegSnXuvG4PV/Rexf/11dO881f/hKxPsO9Kj8aRCkHb49pXb0Wyn//+z9/jQz/xfk5UJAeOnCGZOURom+ydOsbH2vMYNcH4+FvpG+ujunQ/f3D3L6P6ejGxxbRazC+nzMzEXLqhQEEKPlcrMtbjsd4uItJJev1Z3rD13fzxp/6O3/+5K1n0K4hmhT6ZUq+n/P1RzeQ98As/309fvBEVjpBaizW7OXPOsO13PkJr4R84+PxG+gfezBWv3sF9WZvNb/pFtld+j5PnWtgwQgyM8bn5jD+Su6iJIXa/aTPf/IezJCZlzxuvQJ5b5vF7Ps71d76VYqjQ9SMUsvMUbC/3Pmq57NKIiWvvYOvEOFPf/hLPfPELLCwltBZSDt/3JfZ94K0smXHOHHmSUs8iCoHogaX6UbK58yxM3cfz3xZsGOlnz5UbWTc+QdR/KUtLHpWFJiWl2dQjOXvoFGltjr6iM+3SwicKizDZpHJKcsklYxQ838GMpGXtujU0ai0WlmqI3gKBMhAK6u0MvxDSMhm+F6BlSJxJ0kaKVwzAJJRLAXVVwlchvq8JgKhURC8v0aw3UeUSJktJ6w10ZmnVYtJqzcmbqgxMMzfnAi+QaGURwq09fhAQFIukKNrVFmkrJs2aXYhG5vlEPb3oZotQgUgEWapp11sU+otgBdLzwTi3Z2stYcnHoLCpIdOdBdepCmVpitWZUxkS5GaNDtoYeD6ZMhitHJcKIE1dl0D5NLM25A7x1liMTigXfSiUMFmGETaH+FhS7ZIBKUKUztvQHWy7EE5W2VNOUtoYLBLPV1gsygqMTrv8BZv3DXSWYpEY49SWjLFoLKpTAHFObXhSUioUXslW8P3HD8Bm39VFf4nqmFi1QXbGxUW3bkfA2m7AvrJRdzZ1kXPj3KMOFpY/3m3f0z2yyCv8FyKRV5oXRutccUj92ydmcu8QK1yFOAOswdYTbGKQ45Gbn8LBZq/bvJWe41s4e+JZdK2J16MZCKGU1on8YXoK/TTiEqXxW2ke+izldYK3vGMXe/ZeTcHfgNFNzhx+gStuu4NISNLMIq1l3WiZ2//jh/i/f/wbyEIvr7lmD4cW+zhwrsWuO+8i8QKu3NxLei5hYHw9mzZrmvEs//rEWd7ymn0cW8yYPnmU+vkT2CBmrNDg2MJJgp5XccnEmwgKizx/4lG+ePhxBi/dQrKoaTYmWapnJG1NX1GhETyeBIwGktA2wJ5juBAhsiu599kHeNctr2HJLuL7NQqiwalWk69PNznxaMqvvvdKWN4DchBLSJIOMb0Ao3e9n8byJzi5fCObx/fSM9TDtF+if9c7GK99jJmZNmvXDDOla5xcavNGsZGYiKveehmfu/tbTFwzxubd20gWqhx48pvc8KpbaJMh4rNEYoQsHueZc4JNo4ptO3exc6zEsfu+xOn9B1mYb1NfavL0Y1/ljrveznNzT6CXn6e3f44oyBDDlkyd5M/+/s/oERGvvu4mXv+GN3WDeAcnzC5CseTzzNhucC6lQFiL1barRrbalbgb3FtHmL/4drZ07gl3/C43wdIl1naTWEdMyLsOZhUUTqymyfzQj5db8jrdk5fulKxKKSys5g1cTDoW0P3OLvjDxWvZBZ3PvGQhxMrj+SSR4iJs2kuMV8Q58AIfL/AQyhEcy+VesOQBb0aapg5Wb9wbFwoRyvcBgck0WbuNEJKoWCYshETFIl4YQce1UQYUS73ubEyGlAbP8ygEAX4Q4PkeHUyV53m0koxW2ykeYR08IQhCfC9AoMh0Lh1oDEZn6CwhVMqpImmNJzoQKYm27our1WPq9ZhWKyGzFq2gUauDzhx0Sci8tQZ+GKBCD+lLUm2wQqKiAL8Quu6ETlHtOjJLaC0s0a408PAgg9ZCkyAqUugbdKoBSQthW6j+IjveejvbNg8iKlWq5ydpLc2iWw1klmDqVQp9ZaJyAR+DrLcgxV3DxMCihjMpYlkQ7BkkPjjP9LEFkuVJSBpsvuo67vjF3+V03TD9BzEyLdI73kehHFLSmm0KdvdfQzb3FNSr/OLPDfBrv7CeiYE1FPxepk/8DwauXcf6sYzxqE770JM8/Lu/z9iw4a2jHiOb9vF4+f189LEin/7Sg/yX9/0Yr9m1nm/+y3OcvPcMGwgIozp//dR97N/wekZ23cgDX3qK7333UebOvsAlusqv+wn/29E5rFRM7LyKpal7eObbf8bJ52bQpgfSEqq8CxUM88m//G/81s+9D4ACgneXQ5ra8NnGNF+uLXF+vsGzBz7OicE62r+eed1H7EuqBcl3luDMXxt+6vd6+M690DfUz7ZdHo32JM9WT3DzWy/nybt/m77i25noLxNkDzOZpLzGlzy4PIzYsYOdWzXpfI1mdQt3/+0f8F8//inWiSI37rqW4b4R5mcmOXXouywvP4WszbCmb4RHHnqBU41B9OhlPPK5f2WMaRafaxG1WyyFgwzf/i7e/Vt/RP/6AQiK6BNNHv+LzxAs17n5bTew6U1rqY1LslFBWM7oKTfpHW0jR2JOzEyxtqdKeznj7KmTLCxOoUUbP9C0lqps3TPGps0jjAwPUvRLqFjg2zZhFrOlGCNabeampphbnCf2fNo6o70wSe3wYfT8OQpBjUJPm9pihWYmWK7XmVlaQsgWkWmQTs7TPr9AOlMnXapAZQkzXyGdbaBrLZRJEJGP8H1aixXihUVkEuNjiEgpFHyM8tFCYNDENiHRCc16DZs7jCOskxO2HrRbSAM6taSxk+QMPB8vTUiqNTAZaaqpt1JqrRQrFDJzLuYKJynq+QHKD2i3E9qtJs1GijV5l0A7HK8Urtpm0WC1czvHECeJ2yyRBH7OKcAFblY77G2hVCQqFgkKIUEYEIYBSJDSqbwJpUCCtm5jD/0QJXwnj+w5yeiwVEJ6Pl4YIgMf4UvXxhWucyjxiBONlQIv9AmjkDB0iQRSgHFrlxXKQU+EE18QFjwBfs6j6Djp/rCPl22Y24tiEuuIxasx2qv+5EZ3U131aI4rlqJTtrNdiE8ncOoqIYmVCl43BhOiqxBltXbclu9naGUsJA5Ci7HQNLCUOePPPp9srk1zuQVJHaxm/atuo//KWzh9tkXjS0sgB4l61yNtQEknjCnFqBqmeexr2PlZfuYnLuHayzfTEw6hrKFVPUBpxwb6wpSiSljcv5/p7z5MbxEuKSkG97yOw73v4VPfOsXi2Wnec9O1XL19M088Mc3y0Tob+kucq83w4OwC0wNbMVLy9KOnOXbyLHp+ktexxGv1Mn/wyAnKhQI33noVT3/nY3zrnns4dCQmTsfx64P0rrueUt8mfuPXfp1P/N3fIICigOs9Sc1YHomXOB1bFivnOL/wDU6V6lixh6pWCD9gSXocmTGcfcrwMz96CQ98RzO6bpBy2VJPl2kGhj3X3MCpB/6Uvv4PMKTOoPVZrLWsQ3KiXUKt2c2aoSqLU202b301d7757dz/0GfpVwG71l9Oqw7nzp1kcvIZ6o3nkfVpBou93PvYMVrldcw3JMcPHqPf1KlNayKbMR/0sev17+NV73g3A1vHsYUB9NOLfOsTn2Bbz1qu2rePwSsmWB4NyUY8vKDGba+6gjVbClBqXVD57XAqO/NRSWdYK3Nn+A7kugO7Brc+ZVlGZnSO/LB5vGTyAu2/dR852DZd2GPnYdeF7RCcOyZlJuchiPxzKSEdNJKXh9H9oA/XIVmNARKv6Jy+b3fhYlLCi554wWL0bzxlJelwDYWLV0X78uskrzA5kEKB9DF4xGnq5BF9txnazjwyFpMlF5DxjAGDRAZFt5HZDM/zCIKIIIiQ0iNJU9pxSqNezRnxIFB4fuDq+1IilUcURfh+QKIFGkmgPIf/z1LA4ee0NmAloee6BZ4f4vsRvudMnkzsNmFhQdp8axUyv6FwMqrSI000rXqLLEtpNVtYGZAmrnIjTIbRKUm7TsFX+IGHFZnjTgQRnrC0FufRrTqKBir0MEJRr9ZYmjxNfalGo9FwvgpDg/RPbKS8ZhQlFc2FJbyeIYJCmbjWYP7UOVqLNWyikTLEpE2IE2ha9HJKerYFTQtLGjursU2BSAXmWItoosT4piH8aBCQ+EXJ6Joyd/qKxWMW3fLpMwmRyfC8MkMDGzl0+ilM0uT6Sz12bF5DX/+dSP+96OQY+//rX/Mj125jTf8UmXmQpcbXOT97L6r5AJ5s8wcf+w1u/u0fpf/Ga5mbE/zun/8Vf/PIHONLx9g9qjm1uMwLzRLX3vQm9GyF6vkKg5Hm8mOH2XL2PBWtuLelSTKLsBlzpx+jUZkFHeNlU3jKonSCbJ5ivN/Q11PkwQef4IZ9N5Jpw9bTJ/kvb/0R1DceRh23/Ok/T/GVxwy/8a5/ok+cIGicY7aV8cBkgX98XDFxZUBy0OeS6ybYtf1aWjZm/8y9jCTjHNh/Cv+Kd5OmjzF7+iGOHd3PkZNfx2QtrumzvFC+kYPTZYJSH6MbSvzLFz7PG975m2RWU4nHaZlelmcqnNg/TbrpDYyM9vL5v/3vXH3NJnZfNkTkzXPn9buozEXMJhY5WeESKSnbgJN6LW/8pb/i8u2b8aOAVi3huW88y5FvPMPa7QOseXUfzQFJ24O0zxLulPRd5RO3Y+5/6DxLU2dYnDnOWNNZGCgAACAASURBVL/l6ivXcelV69i5KcA0YzKbUlgzyLrtI2ydKDNULDDW0yAsJ9TiRZrtOkm1QnPyHJNnF1hcmGG5sow2zjugUAzo75UEtk1cbaDSJrXZWRZmZmk2q9TPTVM9e552ZRnTamFqi7TnJqnMTFNfmEUnlrRaR9fa2NhgM0Ncb2J0htfXT1AuU+jvI+rvxQ98RKgI+/sQUueFBB8roNWuk7Vb6DQjUD4ysZham7TRIm4lWCmJmwkiaVP2DP1FifKs6wJ4EUJ6GJ06KGHm1MwwmmIokWQo4fxSpLJEkUIqS1CMkIHE4PC9gR+gpMydbA1Wp1idojycJ4tJyOImadJ2fgJGQ75eZTojM4YkzUhTA7hWv8UghAYFIocvtppNdBx3W7zKU3i+6iYXSdLG861zc8dijSNUB56TPU3SDCssXugRFUIKUYjyBMUochBJkctxvjJpiheNTqX+B2aj78Btvs+4AALQbcu/OEHokDz5NxAQnQDIQUpd56qDA3YBlHEEe+hWUkXuWSClJE1Sx1HxPBQXvUcnYOv8KIUoFBCZRbQt1CxYCS0LdYPX71PqK4CMwFq8gsf63hLXBCVaxwTokKKtQabxvVGkP8J05Ry2Pclttw4xPDSBH9wMYjtJ9Tiz993N1Zs34ck5tDlOtfYY1eWHkekZPGn49x95J29449VsXLedo0fr/OPnH+Xxs03WNGfZNOpxdLZB0DvG5vUT2JYmDIbpL1h2PX+KkWrKYktweDmj2dT4usXx/Q/TbIAXL1LQ0xT8jELawl88zI2XFhgZHONvPvElPvIffxu0ZrCyzB9/4AOMTy9x/ESFrz49w6mpXt5z6S/j25OoZIqFLOKh2RLPVAvs2jiIniyy8/I9jPbuYiE5R7V1DtXyOH7mFP7mt5G1H2dp9hCzc4dZrp1BkbE+hMlwLzNzKf3DY8RZjfOT59lz5U+iraaZDdEUIUeeO8XR41UYvZqRgTKf+fTf8pobd9FT0qwZlOzaOEy95rGUWdRym62hRzMRyPHLuOmun2Lf3m1QDFmarfLYA99lfmqasXWjbLp0ExPbbmO6PcXjk9/EjFZ5+uiDfPT//L3uXDXGmRkK6cRihHB8TmNdkVV5qnt/ukK/7cLZVE6GX7mP6Yo3dKRKV0uTduBJ1uKC/rxo23GZF9Al13eSjBXYXPeuy2WcXybQ/QEfHZ6tG7b78+IQ/sIFqQP3uWCx6lT7zfdbvFbeY3Wl4eL1V+ScpA4zaeXwK53MV7JevyJYUcf+2EntpaggwGZx/kFNjnezKE+SZBplnUqHlI7wZ4wlTRN8T6Az53+AcJfRIDFWO4URR+1ybqXCkmrjeAjWdSYcZ04gbEaSafxAIoXqkvFUflNI5YOxaKu75A0lfQidMyq2o5ikwFNIT5LFCUEYrDgxW0cezKSiVWsQRD7aOPKxCiR9Q4OoNKG3HIF18oLSGtra6Zx7OXeiQ5qWWIpDQ1TjipMV9BVSelityZIY4ha2pcHL8Pt76fEDTByjK1VaM7MYKygM+CAyTBzDsiA5dQ7xuERt6EOWQmQosTWDmdYkDy0TvrUXeiUULDJQlIq9TPSOMVefIZ33UUMZxZJHX28PBTXOw/d/Bq0z7nxziYltN6G8m9DNGs2DH+Wqdxp6iw8gOYGyOxkbFdx4yzJB+jf4eppNgzfyj5/6POK+h7k5anJgZAM3bC0zO30djcoctrcH4/Vz+lzM1kCy17RYPHGCQy8cYHJhloaNeDZLXWFMFNDtJazjqyOURgrBUE8fWEs0MoQ3sAsRhxx5/j7e++73kFQrTD7zLLLxTjZuuJ7LLu/j8x/9U3b/5wEioyjXBKfSEZ4/nLF8z3E+8I4yX/wm/OEv7aOVnmDufAlrt9HSzzK/9nV4Jx5haccbkMqjtHSC5qGvMTV6KeuKPgvees7bfdTNMmFYprR5H+fFbpq1JQpDvXjFkCxNqS0tc276KQqRDz1Fps6eYSjzKJRGUUMRtUMLeDtHeD5O2awKjA0O0DeR8cJsxq2330J6T43j800aU21OP7FEsZzxlteM8cmFmF5P07SWVpZSXzJ4g4pz9SZv3ybwWgHjvT7FVLM0vcjzs2cJo0F6Ih+rBUZZtEqp1RdJUoH2WwhVQ7c0OhboTNFuzCNsmx7PQ9oMqw1Zpqks1sm8jFRYeooehUChPEsjTUjbLVoLNdbsWoP0LFkdsrrGCoPKjcrwLKluoI0AUcBqEKGHihRkGukJEAqhQpQ1rgMQJ3i+wJmVGYyUWCuJIg+TapSv3DoiDF7kYaXKTQ49nK+7IdWa1Gi83LE4KERoY0ji1HEbrEYq1351nIOVIo7INzqRey1Yt7OSaSednCQdZaS8aoaDV0rhuoqutY9ziLe5u3sOm8pZU3geIA1GOZhPp4JntMUtUxLr1BwcO0BYpHQ8KM/3nGxg7iCfGY3sQJ98v6u8pKQiabdRnocVHeCLW6eF8l/ZVnDR6OJg+X4Vr//Vw7XnxUtkCbZb6b/w45ou7GfFkbg7xArcqNMxcDxx2xXdUOLiI7rfu4Gazknm1uD2uZUAzgrPJb8Xw57yzrfIVaxsXWMOxojRCBEoMAIbg6lpOBqj9gYQCKzvYLel8hCDg1tpVE9gmxFSBZT7eyiVR4nbhoNHv45OUq66pZ9C+RqEWI9pPg+Nf2X8So9APAasRzDB+AbLQP8kynwdaa9luHc7n/zrf2JsZpodfSXqayK2DgXMj4xRb2qiwTLzmY9d1gxj2I6hemaGh/cfYq6akaVFsjgFJUllL62ls07S2BcIZQk9n7HRAawx9GxYw44dmzlz4hzfe+EEH/7lX0PWqsiTp/GSApvX3crkacmh/Yd58y1lpBGEseQsGzl5SJDMpOy7vMjXnvP49buuYKHxPWKzCYmkbRos9t+Amn6E5trXE1FHLC/QLhykGfbT63vU5RDLXEFiJaJQRIk+KnKcNG46qWXfUpmvMT0zyWDlJKUoIBjsY352hkJpmKhQIvWgPtXCW1PiRCVjwgsZLoY0Q0tFhFxxzRW0Goscmutj9oUKJ6JleoJxrtu4h0f1SbZuicgKPjPLC2we382OHXv5h//x53zofR8m8B0krZPMZvkapHXOM5Ad+nrnJuimBznKRHSDeDftTP7sFYndlZd2PArcPeCMZ1U3AXDrZac9pi+4zzrv1dH+fxGm74dtdCBZHTjVqjWgE/pz0eP5C19EEs+zNrcGvei6iBddqm7Y332jC5ORFbWol7jArzApe0XJQQfH6o6ZqxEhHPk3n2jCuozTCMeEt8Jh3KQUaKOxWHQWY41E4VxJXZveYfh9L3BypDnMJ9Um3zwt0hqsYcW0SLiiiZe35U1u5iFxHAGTw52McZu3yS+mw+iSV3NyAi+usiOUJAx8l+RAnlErEE5PPCw6yJIQAt/zkIG7GX0vxGqN1E4SMMti/ELklEWEck09T+Ir8D2D8jKEbqIIyFVZ0UZQm5lHxDFWOdUJLyo6EzkT056ZwS+V8EfHUdInm28QPzsNR2cIA43adxU2LGA9H5Tn1KNiS/NzRwjuWIdaq1A9Hn5UZnzb5cw/9w3i77Uo3hCytlfT6C+gGyHN549RlLB7Z4nB/nVgM2zrMfTpx1h7+xDCawERWbyEF55l7R5LGB1HchSzJJjffx8Lzz/Pzs1beP0bb2L9YIEnz8xT7wkYHyyxwVjs5Cyz9Rb6zH5eOHuQ0/PnaCUthPVoWInyPAqFEayNnOmTZ5ABUJzA9+v45RjZM0oYDVCOMmobi3zr/m9iWimDyuMF2cvS+TaHHzzC/LkGZ+rL9BZ2Q/tZzj61yKmjIb2jWzj51AxXXLmVJFimTQ/KFJGtCmdrcMWGtZx66Busuz2jt1cxn9U5/OQRdl9zgmLvIMPRLHJtD/VGwOJSH7t2Xse3T9ZJU4PUDYTMMAKyJKEyt0iz0WCwt8Tx5w4hZC/br9iG9QQ+CxS1pjIbo8MeVE8Z02sYGNEEm67jzte1ad7zMCemJ6lOpZx8us5lNxeYuLRIjxdzdsnSXDS0NfjrioyNTKB7PbZu30p/YQQSRdr0CAkY27IeU1siadbRJJgkpZ6kIBWpSWgnGpkJlPHQMqSvLyQq9DDcV8ZTGegUm2a0ZuY5X40Z37k1VxnTWAN4HlaBKEWkKEpFgU09dOwThArPj/ACSRo7qI61FqEtnu+DL1Eqhwni7mdh3cJjbIrVBk3qWuFJSmIkxggKxQjpC4SHi+4kCGmxJs3NgHQuVmBQwoXOoiOVqjykMAhpsDbNMeG4gkEusuDWVldIsB1FDuH4T0IpjNZI4ZyWLQZrnQqQtBKsM//pyJ0i3HqmLXlrfQWDqo12nVUl8XISn0B05QaFtPw/3L13mCTnfd/5eUNV55mePJtmEzYhLTIIQCRBgGKmmURTknWWrGj5JOss6iRRlnyypXtknyX7dLZkUZJFUYFJIikwgAEkQIAEkRcLbI6zO2Enh56OFd73vT/e6plZgKQgP/fckffus7szXd3V1dVV7/sL3yCFr9wlmTeCyGRWkR4yJJXE2dRzvKzLxCIcOgy9hKmUKOW7sP44ugRZgRAKIf/HkoPvvtENe7KgZtMaetUQm35wbp2v922ft4nL4H/N8NtsGFKtV183XgL4oElmfDpfrc0CgQxyYa1XvvLBRPYJMv8ErCW5soSdXkIsNZFXygg9xnrlRAqEBRdbkm8uoO7oQxYdhJqwOkRp13U0LpzHjNeQe3rZNtCkVKpgmynpzDjVfMC27YPoYBhYwbVPIFpnKY9tx+NW85hknlxvg7CUoNQMgnlcS3DimceQNmXP4dvZdcMYPTnFsakG4ViV0Z4QW0tZW+2w0myTzl7mzIVTnFua8SgDGxCLkFy5SKW6A2sE5ENULkUU8qhCH8UShMUY2beFrbqXyp4202qSZ198GrtY50Chh0lZYOr4FEefOM/q/BKrSURe70DET3PqxXmay2VCvZupi3X2j+0mYh5FH9oKoqRFJ5Hsrg4zc/KL9N38VgplzdzMEh2j6R++jiDIUw5qiL4BWp2UXGmQvv5hZhoJ1oB0ETYniG1KvdFiaaVBo9VgpFrh+PETHL7pbnqqIam1BETkraO2mkKphAglQegoVQS50X286u4WC195gYtrTa5MtOkZqDG4rUh1IKESaybjmNZSyqprsBa2SaSvzBcKBdqdyJtFplmnS0tE18vFZd4DdAPQjUt7I8jsVqG7xQ+3XqR21iFV18fDrUvvbkj/ehjdehaRxZ7rJl9281xD9v8mHP73+Lg60L86jP923ZF1ToHbmCc2aaZ9m/HyosW32m/3a1l/5/Uuxbd50bcZr9gEDeG1sk2atUxliMT4yi6Ze6mWYAUCf1HiFF1FB6EkSdLBbcLB4QwCz1kIcxqp/IRu/DqfOVKm2QSa4YCNQ0sQgfYScNbhnMEYf6mZNCURkjiKvOKI8CQa6wxCFHA6WwwyorS1BicgzAUE2l/gWnU7HngcHQ5rU6T0JL5AaWzqXU6tFbjUgU2z97PoUokgTNHKexkAoCxpZ5V8EUTSQKQhUlkQCicMjYUlRLSGzFco9uVRgQ9A8mEPjclpdG8FHZZQOoeJm8QXZ1ATpyAXw1CIi7figj5EfwWxVRNsDek8tEjS68jf1ktuZwUVCkbvOsD8iYfoHGlSvL6fak4yEEqSNUuxrtlRUgyVioQqxbZOki4+hKxbZCEE2Y/lehZXTzFbP04wKAjyFpfOcv6JM8i5c9Q7NaZCybtffzfHp1rMTkyQu/tWgjCgtLhIZf4sz1y6Qm3+OWbWpjD5EkFhkEAGFIoOIQuEPTsRZgAXhIgwRudS0spNtNbOElRWodNGLVwkiOYpDlnUfB/toiM3PMZk7wAvPv8Cj/3ZnxPkQj73wizN7VVmTybMf/0KvVGVnW84wEN/PMW/+/A+JpIa1+dvwtWWmZs8Q9zzGu7YUuOBiQ6vi6bp7V3B5ppMn0mZOH8SuXc3hZ41+uIWUadIq9VPwXbYNtgBVWB1ZZ5O1PTBWWqJaw6zuobRmsVFS9/OJfbmY6pBlS17ApqdVXKdBLHsaJUhLihGh4vMLB7i1a9uMD07T+u5FpeX51i42OGr31jh3rcXaaYNVqYSaglEDYHI59l2cCdLgWTg+kP0mDKd5RhVGqBcLFHat40rJ5dpzy7RSRMSoJlYCjIhLCrWEosxEo0jCKBa6aWnt0xvWWFNi6gDOIV2KfX5Oa674xDCSUw7AmEJwxBsSJDP024Z77ItBE7lkLmQNFHovEVYSxAoX52yKSpXwOUDlHCIXIgxYJIYlybYxHsHSOkNpEyaksYxcexwqcWYHoQSqAC0xZ9zm3pVHhdgTOJlQfHJv+coebiHdxnOWt5a40zmX5A5d4qsIOFr616FiGxO8qYLgtQYPxdJQVd11FfvMghR9/ndCo5wILQP5J1DOrLqk6+wKam6nmrri7YQkGZQIbIuhLEGYR2xlIDySmpaZYGqQSrt5yW6AWTmUuqcd4tOE2xGuPUVf4GQ34EMS3b8fjXY9Lt7+ebvkvHSwtzGku2u2i42ZQQvbbd7zHa2uYujflnBb3PQs7Hob+5aCJEpXnUThW5glenLd2EbV6nCeC1wBGCuLJE8dwoxNU8+3ApVjYuqUCxAb4DoEYiKIH22ge0XhNcUQELQV6Z0cIzmWUl6cYncrsP0FetoqYnbUOqE7BssUAyrSCw2Oo1tn0EkFqGLIPpw7Gat+Q1iFsgXQeoI7Dxzx1+kp3mJuY5iZ0GxddsgJ0+dZW2pRt8NYyjrKNZrrM4uMjG3xNrSOBcWLiAHBtCuQCCqBEGCzBfpHdyNTAZI8hIdtpHFAqY4TKs9T9jTxDU7yMunGQxrVEYExbWt1AsdxNb9zOSKfPGhh3n+yw8zumMbT0w3ub6vxJXzKywdmWP0moPYvn6OHlnlZ1+/n7loij3572Np+QSNpIXO7WZfeY1vTq5yq1siV2nSvtygMR+yvDTLQH8fYaHjvY1WS5g4oFiM6S36jk+9uUKqBCmOKEpp1xKS+irVIMfUdIdd160xqAcpFTT9gzHGdMjFFrcGrQBUj6JSLtCIhtl/07VcPznP8ukaSytLnDk3Q7A14pZrC7QSiVppoEPN9MoknY7kVXvvxDrPbQqbrQ3QifUmss5mHkvr13sGe8mq1P4Rt+ka7l7Hmzpk1j+nSz6+SkVHiPXulxBZ9815dUchuwZsYNzGXAZiHcL4XaFu9v/Q6MokbyYSX5UIbSZ+Z2PjfK8/snmH6wnUOofDbUoeut9Z97037aP7HW4kCf9j5/kVJQdaSbRWGwcklZfMJCNRCYFQGofFpgk6CEhN4itrUvtF2ToMkjS14FIC6TGyceq8+EKaeEJf9wM66Y3McMSJyfBr3nHVGJAiIE5SpPA+CM54bE8KJFGMTbyZmZYSpX3XwaQxSoWQdQCUdNjMzCifz+QJU4MV2sMBvEUbQlqiqE2oJQqNNQ7hvH14mnQw7RiJQweKQrmKVQqtLVpJOnGLqNXA2A6FQLBl+yhR3cue2tRL08X1NirnaKeS3mKJXE+eMBdAkmBaKfktowT9g7iOBSVRskS+UiGKBaydwH3lInLkXYithyFQuOkctlWn8uOv4sL/+Vn63QhB3w50ocnO719h4aMhHSOxtsRSyzC9krCzFdEs7+TOwRp5JXFujnhqhdYzJ9DKAgnWNohFnpNTLSYmF3nVAYNoz9Ne+QYP/Icr9M1YdlZKtPpLtAuKT3z6LD/5Q/eT5EqcOT7No0+c4viLj5FTi7TKOcpbD5EfuIayHmSwNMzY9dcjkgpzQS82ihBFCHMxgamxtFJjZraP/PgsyeW/YXHuOI1Gk/5cmdeP3UxjVy+Db/1hwq1befH4UZxJSeKAz/zVMl8+8AArn7rED5RTfuLmBnPLJzl1IOCB2Ygf3f9+wrUX+eaTX+fY6RV++QOv4cuzxzi9ZGkkHSqlItuqVeid4a8+M8kPvafJ7mvfxelnHqGnWGDbzhyf/8LHeddP/ROCNMcLCwvMrTU9KVWlpI0pRnoM4+NNqkNjXFk6x9lThh9+3b9A3TvEZ/76GKPbDzA34UhtzPadJVZWHOW9g0y9eIIf+advI6iW+MgnP0NrrsG5j7R49zt2s3CNYjBvME1Lc8oQtRtMnLvArW++n2J1gDCytFsxLZejf08vk6dO0V6ZJegskaSW1cSxUltGJBHb9mxntL/I9IqjETuq0tButyBdo7MaoPMWmS+RLw8xfPggN4WC3r6AwEpiHXvYUC5FSwH1GKM0phUhRI4gn8d02tRmV+jdUqFY1OTzigSIEwvCoXIhpAkqDCAxpJHBxLHvFgp/X7nUesdgY5HWY2uTTowMA8JiiNSCNE68a7A22NgSRYmHD2pNYr0CR2AdUaeF09rPWUKiA+1hT4HEmgQpJEJqDA6XSaUqJbs9Rp+oJDFR3PGSqtovnCKTbXZmMxFQeMiPTRESAp0Hsnkmk3vOhaGHqGAyoQRfaZZarUuN2riDcxuKI0lqAOPhSGhsRihWQYgMJXEnRoSBl3IVFmsFcea5kNMaIyA1XppJCUXwnZRygJfhZsXLA/DvlrF5MV2P/buV+W6xik2faFO+s1HR6/abs38zGBHOZcIUL6l7ZhFPVz9+PRlTWWKbfT9dmcdukCWVzNZPeVXggJTYVhupQ2Quh9Q5XDPBzZ/DzU0hdt2P2DKIk0BHgDWEb93J0p8+T/UHt6J2lAkqLaoHOkS9PSRpSM5WWFyzlGij8pqkvI/bt08hhMKxTDp3FLt8BhU6oAM0sS7k0vwceb3Ktr4Y4mWS5jJP/bdHuc2VuFgdoVnRTC3M8of/5Y/4D7/+a1AoMH56geNHx5mbGkfLGq3egOpth6kM7aFqSgwP9DMwPICzIasqh0sSREGQEzE2iag1YxZqZQozNTrn/o4z58/hOjG7+od556HX0dleou+e+0BKkpUV4nqLxRXHxx5vsG3XU5z8w0v80h0F9pbmmBArzO8SPN2IedPgj5LWj/HsCyeo9u7mtjv2cG55guMzHVIbo3WV7dUC80sRTx9f4LYb2wyN3srEqSfZtn2EemuNiYkJDt54GGE1Z5aXaDTapIkjTZqYzjTbSjFPn1nj4M5rGF84yUCf4tDWw+hymfOnVukd7Wf2UspwLiQoCzoJ5PsLLF+5xLv+8VuY/csWR45doXZ+hQvScM/1u1ka6WWbqhOtWBotsO2IsxeP8bqb7mVoeJBm5gqupMKYlCRJPYxTdhESLvNTyboAWTCfXeyb7psMQpkR6oWSGVw74w24bkLtr1VjDNZ5Q8du9dtzETy/pgsj2ri2N7Uu/n+UHMDGPNH9WBsJGd9ystxsiNhFYq3XB7rcp0372ugCdN+mG/13k6+NbsTGgXj8jciSMuc2Ojp/33hFyYG1FpMmWTYoPPnOJnSRaz5bTRDOm4913TYtnqTsKycOEWg/4a0T7rzMX6Azd0ip/N6MwcRtrPNmQbliDiE0OIVLIW63PA4aiRMCpUFLmxFooBW1EVpnC7Yn6wUyh5DQjtrkcyViY5HOUchp/8VYi5Taa0hLr7wkZIBWkka9jnGWfC4gX3AELiUvIG4mnlwmFEprrIS406ZcraIDRRDVMbaFyjmCfJlSuYQzjmJfGSkitBbocpGwWkLmQwbDMeKlOUxUI7EFXDumduoSu9/4ZoS06P6d6GKVYNih1Ci1JxewnRcgvgQrFxGXd0LpDii+EXocvL6f7W+8maUv/BnJOc3o//oORswy+8YqFBpN4jOT3HGgzEDF8fBffZEbv/83aFz+BUSkkNEl5Pwi8nQLMQDQBvl65jpfpv3ccxRPL9O7RdIyCV//6WXe0pT8CbDvfe/kp3/9V1lqhPzGTxzgyorgmT//Ao89+SXmogV2XnuAW197P2eG3sb9u4v0K8eWgsAYyefOely6mqkRzdVZW1wiXTyFmH2S2YVZkihgOzMgWlyjetix/S4Gtnw/H539NPdvD5lrCZ76wG8y8cxDgCQfaD7126/mB08OEf3dWf7i6Bmeahb5sR/Zx4f+47s5d+EMpanLfPbYBZI1w/dfXyZpf4V9QZuFuZT6fIXi1ohz8xGfOxrz/v98Mx/45U/wB/9pJ/e+8dVMNAKmGoZ3/Oz7We10GKuUefSDD3Lx6TOgFWqgjAqKnHjqLPvfeA/18xMsNQUzPaNcuifPQL/i5huLTB55kT1yL/l4O/OnHNfdLhnPa8z291EYhrvui5htLfG5v/kMtpHy3/90jrf9YJF9+zTjgxFz1YSJP25w5NgJ3v+22+mvjJCvWFQ0jqvNoiuD5O0sNl2jUs3Rn0T0rtUZLwrmaxVsPWLHyDBmdpaViWXq0t9Tt965E4xD5ooExTJhTwnbN8TIXSUWT52jXOgn1JAkDerzswS9PRT7B6DtEOQIixqBwaw69GAZgpKXCjUJslCk2Ff0mHspaK/UCGKD0NIrhMWGTqOJI8WWe9FBgBQaJy2pSCmEAXHURNiAKE6JWxGu0/bd8HyeQAis0qA1Oh+Sl5K1tRatVoNCsejnVCWROiROEmLjTcWk9GZh1nm4jXEC58yGNrjwi6bEUSrmCYICxqRILRAYknaT2BgKhQJJanFSkhovMYpzWBP5OQvv5uwhQ2BsShpFOBnghCJ1XsIeKUiiDn56dHQ6HVJr0WEO2VW7ybqt1lis8wG/1spzE6TGpolPspSfp7T2HDKlNGlqSE267kb9SsZGV2MjxN6swf3/5XhFCUsXY735oW5fYdMOunjrblphsyDn6m7B5qqo/81u2keayZSqDJahlDf+s5kKFngIay4ICLJEYj2gsGCjmGDvNmgoWkcb5NbOQeM0TF7EDR6C6vVQHsMNSMR1eapv3E3jr/+awptuI3e4h5JuM7BrC6qxRDJ3ltvuGmXyzAyTp9tcc90/ojn5GCLVYCYRS+OIhWkYyINo4biTf2YzKwAAIABJREFUtfRhOHqS/OAqQcHRWW0y9SdHuKe3zAenEt718z/NgTvuJ4pz/PEf/B7zK23Gv3KSLz35dQqDZXbeuo2hnTeyNnozt/Yr8kB/TjLfFlxe84GiXOvQXo6o1RrIhfN05idYWKiRNAP2qCkEde4dvIaRLTfR6BnmkdpxXjsSstSGD/6rD3Bl4gxWhuzoyfOH79rDz89XWJr9G/71J+u8601bedc/uoP3330jy7V5WFnk0fFZtvaPsGMojzTn6Rd1XjzeodMoglvl6TOrNOMSd795lA9+5Gl+9We2cONtdzBVT8n1jLJvT46OMfSGAX/6hx9m8sw0pW0DVMZGidqaz372Od7xL36EicdfoBP3MTdwgLGtAf1F2DIsmDozyf7SVtqNgLQG/cOSmpaI/rvIFQX3f/89tNIFnjryOBOTk/zt44p33r2NodEcreISzz43wQuPnaXULvL2w4f45Cc/xi/8y1/k6JGjtFpt2p2IZqOBEwpDN9EFJwTGbgT2wm4kuB7iLNavUbHeKcg2OodxjtQYD83MLnqR8Q9wmQUCfv401qIzhcf156z37rpV9u/S6sI/YKw3hTcVtl82NnGcujNmNxHbeIrY9POm87LRuuzibV72Llf3cDc4ImITeWE9VXBXz9ffabwyEzTp9WrTOMEZRxiClIFPBFy28AHGJJ60nMRZ21qilEZp7asTWUKRGEfabaULb2slrCVJUoSQaCSBEhgEadzBRDE653XGUwwqFJg4Bq19FVGAUJ5F4HkYFmUSJAItpc9gM5yncYLYJITaY3wTFC5JCMK8T3CEBhTGgLUxxUJALq9J4zbOCjrtFBNbCj09WNdCCI3KaXQuRAWawBrSThvbjkEYCsU81iakaUyadij2lDHpKlY54jjCqZRCbxVZLdKYuYIuF9D5CqKTYOpNSgNV5r5+iuKOLfSXJbqSR/TlCa4rUb3zH9N+NCZIIkS6BvUJXGMRx1dAOdZ+7tXkf/GtyL27SVttWn+7CqUDfOL8I7y1mlA52+LBr9U5ciHlru0ho8v/ickRh2ssYZozWNfC9YC+SYI6wJXlJ3n/bz7J4ZUa77lBESSSteclW7bn+K+XHO/57d/l9te/nVatwDcfXODpTz3NpcmHmK3N8n333c9733gfds8Wzk6vsFOFLDw8yWMXm1xcbLEatRCuTjrzOI2lGXAJebdC6GoUibghKBDl86yFVfYXfpJ77t5HOHKBv37w/+CBX7mV9z/0ep79rV+guTrpYR1OIEjZVWnz5OsOcOILf8KHr6Q8OS/5unFsmUm5ZcduThz5Ajv7NC9cyPPV0zXe8AP7ubj4Baxx/LcPzfEzP30nd949xAtnPsG/+ee/z81veBM//88/zht+eJ577vs+Do1dQ1Hm2VLUvO8XXsO5UxdwiUFWcpBXdGZX2bl/GyKqEyUJNh7kyuUOD5/4c/7Jfe+mM3CI6q4aC0sKam0qHagMFrjt1iL//mMw+IMFbj18O2lc56tf+BJtE7Pw+Rrc7ri8E0Sf5o7bA+afa9H6Ysyv/PYX+Yv97+Pa/TspbQURBkTTF+kN2pRK0FhqstZOsAiu6VMMDQxjlSCIOiRJykoU4UzEoWt3MTvbIFdwBAxSUgXcap167QIjo71IFKtT02jXQSuDDBRaQe/oAHFsqS+u0AoVOhcgYwgqOVReE+QDTMvr/ps0xaKIai0g8Pd0YknihDjqEEeWVGmi5TW0SAjyIcVymfJglbReJygV6KQpYS4kUAoTSogzUq8KUGGG4pSeeVQsBERxSBIb7xuANyoTcbIu4ydURut1wsOMBMRRSqEQEhbypJlbsZKKgtIY5yWTTZTgXOohPtLzBSRghYdbaie9R4FzCJeggxwWiXG+kpzP52g7u+F8aX17HimzBMMi0gS/VkuEcDhhkDrMWs+A8DwnPwN2Fw7jYUz4zkk+FyIIMEmEsQYpHIEQyG+1qH0PDrGp+r++EPMtluyXoKK+0+hCBARZ5+Yllbr1rk3WnfBcBD+6Bauur4SSGx2CJElRSlIqlpB4gjnWu4Xbjjf4kjoEKZEjg+TuuI3kYUvYbkC9hmiegYkJnFS4nCJ59lb0r9wK+/djagXSM4p2Y5jnTy5yeKSF3rXCg0+ME1rL2M4+qu2/ZWVLgGuN43oHcaIDPSBGisB11Nsv8lt//GF+aFAz2FOCjiZZKFIe28anzyf8zH/9IAMje6itwPiZGuNPTzMx/gKXFud5yw/cy9DB7UTFHLXIMSolqydqnJxKuFCL6dgEGdfpTF9kaWoBIVL6zTw5t8qgdtxYLBH3FKgXBjlY+p+48d4K52a/QWfhc/zqD9zER0/cwJ/+2g/T7qyROo2wFmeaDOdTPrJ3mOnPfYg/WRVEseCUFpRaltGeIa5MPsvugQrPP9YhqjtevatKEk/QacGnPrfEu995PdfdHPHUcyf52F8+yA13vorf/Hef5wf+2X3sGdtFpVAkkJIg7fC7H/1fuHJuGqFAV/MYYaHe5r77b8W1V1i1KWZpkPErK/RsfZGbth6kmR+kZ7jEUkcgWyn5ZUexoCkMaD76NcdPvTXHDQcOcubsLk5deJE10+DM589hDlkmSoat1TwH9wuWZ1dZeaTGf/7gg/zvv3UPv/sff4fPPvAZHnn4EZbm5zl/8TLNZotOJ8nECnzpWWbwaykEqbN+myBLBrxru8sMM7pJruzeBM6hhFzvmWWNifWqtqObGAsvr9r1UrB2A2bzvZ8PrA9fKJAbk8tLJpqr4u/1LGIzyGfzEzb9/LK27NUFiM1ZRfctv2VNZv14NjoKV3Vw/p7xyjgH+ATAWLBp4tV4cvIqnKQTEiEVttOiE0dIpQm0l8oz1hDIzF+gnMdaMKnFGK9WIBCkDlTG/LYOIiDIFwiERjhDkvjFVyBQSmOVx9WZ1HcsVHalChmgdICy1uOY8YoSQjiQkly+mBHAFDLLbLX0+NwwzHsog3NYYbEY4o4lsSBUuN4yM1mSgQ6wFhIcSlqkjUgaTRRgXUo7sdiiQimDkF5BpLm8SKcxT6FUJAhz0GkiWjWSSKGrec9xaC+R1lskzTaxK5M010inQ0pbWgRlgywq9NYy1Z84RFx7J5y9E1YfBpMHeiH6Os6uESSWpb98BrE1YlVe4bkTD9MQM7zlkGbrT97FpSdPc9O+mF3XaZ56vMaZBy5x0305lk8nlIfn0KQkTjH9N46Dt+Z48swJbr60xo0qpVdpcrJEutxkvmD5V7/7OzR3vYYXj5xn5htHmHguB0tt1Mh7+OXf2MXc4ABHmnnURce1xT7c5CJfOnOSwd3b2DFcIphYwqw+id43xP67Xk2lN6JYWKMcQm+un3KxjO1Uuf6GPlrtIk99/UGWjz/KL/3oG3j/Rwo8e/T/orm24C95GQKadrvBG17/Du6/bRf/9Jd+gw/s38/ULsGZluEvpxb54E/9W/aNGXbdf5B733Y/e8JDpPEQD345ITEpL774CFcWrmXb3mvYe2A/w9XtfON0g8mp83zkD87zwIf/ilwY+AAgMVyaOk+rGUMIUljCZkKuUqUTBNAWyHIJ02nQWJhg7sgoszdPsv/gVs6mChm1CJYjSh1LoVDCRJAf7EHEDmsK9B84yB0//loe/7NHSTodHvpqwr1vVdw4JOkMCr5yr2LtAcPq4gLNpVnataonzBd7EENbaY37hAvbImq26bQTZF4TFmYxQQE6ffQVBMN9kpXVhKW5CZJAUakU2DYwTDGvSaOEtNEikR0IJWHQIm6uIXSB8uAQlf4Cwnjyr7QCkTi0dL7arlSm1R6Bidfl8JQKEWlCWCxgRUrUiomaLWzcRmlFmsRIkfruo8qhpMC2GiTtDiofopAkicHEqU8s2k1UWCB2BqFDr04jnZcpNoYglyeKIYpN5nouSZN03WDMT7QKJXwX05rUk6ZRXjlIQj6nSROfYJk08uIHJvETrvTSxSJJvWRq6knCnp8liJPIt+F1gBOZX0G3sIGHh0gt0Ur5INNZQi3oWM+3CrQCIbG+/09qHFYYFL6bIbLOQYonLAvlF/vuwo+xpM57t1jr/REQcr3A8+3G+tqzeWH6bsQVfZts4Cq8Li/Z3o1a3GZllq5GePcjX43c7Zo9dcuBm7epzN+g+3pnUm/iaciCsY0KqjEGkyYorTacrLVGFYuY5RaU8IT90QLyrlFM/XY4uRemHge1E+IatM9Aq40sC5p/dR69r8jS6RdZe2YcK2e49nCJ4hvexPzzj3HXPTtYXI6YvLjM/Pkj7LtniOblNqWeyxAaotkcyaKldyjg0sIR7r/cZLQSEMo+hO0hba/RzOd497/81yQ9O5g4fZ7V83VWL0uoW4Kdd/E//2yV8VyJ8y1DsWbZllOYpQaPXZph995hxpYD6ivzuM4swXUDvPbOQxSKMYWwQVFrikGBXJADl2dka4koKvDsI3/HQF+HQzfcyR99SfKFRz5EywD5HFL2kraaHDtxhje+8T28/yffyOve+zP8wtY8tRSmY8Pn5pdY/oOPcct1Obbcdoj73vBm+gtDNNuOo6cNqWrw2Yc+wute/+tUqjvYt9cx2N/HkfEWx84e5dy/fx6tHUr77y6ud5idn6bjmoTDIRUb0ROl5Hr7aAYBsgXlkUGiaJal2ZCFiUEag2uMDW/lciLYkjjak4awA1oFpMZRHsjhYoAi19xyMzcnSzz18DdpNVb5/PN13nx7wJaSZm1Ikd8laa60WAxP06qvUiwUufuuO7nuwB6W5uf4rd/+PQqBprbWoNmOfLFCCgIpSK0XbfF8TF/FdzYTXMg8EpRUmIw/JRDerNG4bB5RG9myvxky7kw2f8qMoNwNhLtJc9Z1W5dF/W6cP/6BY3MlvishenX3kfUk6VuWXxzrynHdeL3LYSNbEzbF95vi/W4C4cUn1iebze+y+cfNUCL3LSbIbzFeUXIghMfo+3a7Q0gvveZdJMnaSAYLqCAgcCbD9HvDIYdfyLxpmMkktjzeWEuFMb7S68jaWE74FlhqPaxh0wWltUKHCq0FaWwwMiMvZwuty04pCmTmrCykQmhFalKCMMR2zWSy022MIQg8gcfilUCkA5MaDKACRdz2QYBz1ic5rTaVUgBCk6YRxkBYCCn0FHDtFsJBqhzoNHNSNtiohpIpKEGctBEyQcqYTqyJGg6RlxR7yrgkxiYxBoEKJXqkSqgqXgu7u8g5r/Zi63VkYRgb3YOLLc42cGYQ3CGkOUE4c5JE5mnqGo32RQ7dHiPWLAuT89SudIhkQlqM2RcabnhniS98s4l7by/NRUM0H9FaVlAS1KfqfP6PZtl5Jab8uhB5uI8lM8rRo+cZes0vcmzpAHMvPMfChTqNmQq9oWbnD9/E2NB2rrt9kP6OoDAZEy+0ODZh0O2Ikb1DqGJAr8hx3fBO9g6V0T3DbOsfQcoEaKGFIHAlWg1FTwTTF9aIxj/JmFikvO8mPnWiypHjj9BYuYxzCb7db8FFWGs4efIMrdoKs+lfct873s6WPQeJxlu8dmsO+2rFvNnCtWP3cP3+m6hfafNr/+Z3eOrccYyFRmOVT37xSRZTwa2H34BMBhj/0uPsevfNHH3sCBPj4961FHCpr8AQCESfN6uynRRnoVzO0WwLlAXrEuLGCksXLjO9kqNgLtA3MEJ+u0DVHMGsI1qA5SHDqw8HyNYKrVqJ/v4tvPbmN/D0wHOk0wlzzyVM7nGMbRP07RJsuz7PAg2sTZicOMLo1l56y73oaBWaE+RKETkTIZoxMm+otS0rsyusGEO1Okr/3l6KIqIo2rR0StRKCfsq5Pr7qNcaLCymRJGmLBVKGEKdInWToGjJlSS5QpbcWwsmJsCBlQgjQClMJ/XQiXwRm6SQJggsadxBK4FJU0TgnZCVDhA5gzbOzxs6h7MpEuO7FLkcKxNTJCZBhnm8Q5rnMjmbkrZbqGLJEz9xntvp62UIawiUIEkdaWqvEtjQwnsOWCEzZSOHkt5XoEuIFhn2tgtZtInFpLF3sMV3T23mnSIzn9HUGKxNCIMAkS2g/phMd373AXrqOVJObOhnp4lFKU0hp+hEUVZ88tVnYw1OOGSgEE5k8a1PBlxWibbGZk7LXj7VGIclI1tnUCSH/Qct1N+VScG3HFcT9jYviVL4b2c9aVhvxfvXuU0XxrrqCl0Irc2e6yuHXfWtLrygix9mfc3PjsJl/LwuQTNbpJMkRstw/QCkzryCKvkMt013R7goQfQOQONWrC14KK7dinN5RHwcNS2wvWU69cuI/AwDu9pIm9JcnSNejLGskeu0GaumjO4b4OSxJV71tt1ECy3ieYuJi8hCmfZKjcc+9DzXRwm5ncPYgR00awUWJy3la9/DZGM79RMnWJ2T0MlRrIaMHO5jsKfK2J4iZs3RTCIa7ZQLKwYZxWwbq2ClZWwwoHfLFiqFAYJ8mf5SBSlTEDGB0GA1JpGEKazMd7DjD7BnS545vZ1nLjqeeP4FFuanSBOHUiGKJtbWaLYanDp7gb/47AucWH2It7zlLpQuke9YbswrOrcUsMURtvftp784zLNHjvHAV7/MTHMJcnmmrlzhQ189wutuvYa9u26iMxKwcHqcoXfezoNf/CrL04uYOMEZQ9xOMArUgCA31otLFUmcgIPecoGVpqSIA2Kay0vMTS2wcugacnaZnkoF1TCEqUW3JGkL2nnHzbsUSb1NWimwtX8H+3dez4uDp2lfbnDxG6vMjFUYrCh6yiGjg0XGRUpqGqyujKPDfVTKBcq6TK9e4/7vu4Go2eCpI2eZnl8hjlOU8EZoA9V+GknESq1Gs9PxPC4pCbTCCZHZc/hCqLO+qCqFgwyz7vAxWTcBSG267sLc7SF0pZ9NVvD1savLJHuze/F7ZRr5NqN7Ltbv8yxAfxnEMtvufe3ZgAl1P//miSn738tdv3wfiI1E5OqD2dh+9ZaX8Aucuzqx+w7jFaoVbSJQSe3l8TLVoW5yYE0mP6gDclnFyxM0/OuscwjntdJNkuCcx8B2mdVSSkSmAe3b4wKTpEBG4LJmXS5LIlCB9wgA5yts1voKvtvUdu8mBkqilCK1ZkNRBIeF9YndpEl2I3jcsUSipfZ4Y+VAOr/wW4cMtd+XCFFakkQJSeTI5zSFUo7YdCBJUNogAw9fUlZCu44IQ4JiDlwbGcQ4YUhj58nJaymuYLKASBKWSgiRgySkUCiR1mqk9Sq6XMQlErfYgs48zuawuoyzqXfaVHfgOnWwlyBdI+2EpL0WOSrpGXZ89VLM4pfHaczFxNZQzTluKkNewf7+gLico3Ylpn42ZXYWliqCuyeWWTnW5vDOkJ6bdtIY2sHpYyXWcqMs1EJWJ55HLJ1Ft4coDd3K/ut7yb12jHxfjssz08xMK1pLIaoFazEc2FFh22gPUcfSozXbq3l2DB+kWAhor65512cqmCigsxYgGjGN+WNcOHaBreE8amAbV1qjfPaJYzRWTuNlFbIyHtZXyQFZKDCxFDP94JeZaTS5Zu9BVibaHL5xkP6cY7VwkP7+G1mc7vDgp/+Oj3/8E8hC4PHG1vHss2do2wL9b7+H224cY6D8DH27D1BWUF+qsVqPuXB5luWZK/78Z/eBn2AtziYUgiImSYk6XoHEuYSos8rkxcuMXXcQVRDkRkL0TIqYiaCR0mk6qpWEeC0ibgf0qR5u2n4zW/ZsY3qhSTTbZuIZx57dmsEDmu1DcGZAoCLHhdNHGdu2n+JwgFi8hKsdxyy1kbU18rUOtIBYUE8NM6spI8N9zM7NE9gVtpUj8oFgaj5mrt4hbXZwcUxtTZCmITv6eumkbaq6SaXXEhY0YU4gbQIuzCr83qzLGl/3CAo5nMxcyZ0XNPBwa421BhXojOzp73utFNYFWBLCUKMqZVyaoLWH6MhAogJNGsW4yBAUCujQyzpKpTGdxLfFTZpVZgQOjbGgpX89wmYwH4sQCpkFd3ZTyxzIFH08fNJa4+VVhfDmYd2OprWexCwEqXU4J4nSlED55cBm8w50MbqZz4HzjqLSgtNhNr9KjxP25bz14wu08kmGc74bgkCIjPScrdrWCUQmOS0yWKcT3cJJtmw7kRkW+X24bvf37wv4/x4uwStYa/7fH98GxvDyhXXTyrrpxS/zScgqoRvdcs+VE0JApiff3Y0Ez1MRPllbN6piI3GQ0sO/rDO+StutBLoMp50LvCuysRBbXCuGTh1nFRT6cHEMsg8XBtDsQDqDaK9h2z24Yhs9BLKacv70Kgtzz9O5soaaSBktpowMBFhZYqiQI8qVYbpGczphtSmIemHnygKNiytUbhkh2HkDDTHGUl3TEoMsLCuSpTPIpSmk3UthaIDhsQLB3ipBXjExv8LCckgQC1wsiJxkuC/HaH+BZtvSnw/pL/dSKWq0lETNNsoJEAVspEgiAXFMpzbL4uQcg7RJywc4ewWeOHaWmSsXscZhjUKlAiVrWNsiCBWVrSMcm2ox9fDX6KSrVFSR0El2bQ+pVqDes5tKfitHn3+BTz3wGT77tYcpDBYxQtPpdHjoiTOEukDllv1sG6wyVNJU9lxP1F5jdbnO0kqd2cVFZhZmSWUMLkGlkjR1JDJFupRyUCDSKQkWIRzWxbQ6aywurzA4MkylIDGxAGWRxkBsSRLoKVgvRWocfWGVnQNj7BjbSTy3TP3iPBefl+wcLFPakWNrr6F/W0iYGBamT3NlpoVpt+gLm+zoS7lr3xZEu05vq8VMfy8dIzAqR+ICDuzdx/jEKYRsc+7KIrPLTUIVMtTXz8W5WerNjk+G1wmum2BBm+4Kkd1LUsr14m33drLW4sXhNhJzB0jrroL+fU+Pl8Xc7iruALCeCGXPypqNL/nsm+Ypkf1ZP99XVfs3Dec25RSCrvSs2LS/btdhc7LivtW+vs14RclBHCekaeKDZhWgggDNhja3E14/3FmIOwatA6/GYU2myW1xNiWJBdaYrM3uK/vWGiyOUGowCR5o6xU5utebSRO6rkSp8/4Gzgmk9u1bE1uSxJIYyAUhucBv90qE3o8BCVIHGQQgxqZ4rLX2iiJraw3CMESH2WukQudKWNsmTlqonEKmEmUt+XxIGEqSJCGQzisxRQlpu40oCIQWpLGHQyidQ4UanVX2RAiBgEBJVOCdVdNOgs470pbFtGsIp1BBibAYgAqJZhqo6hCtqWmEDlFBDhXmsVETVVW4+kWcDX1XQVWgcCdJ9OcYeZhG4RSNYovGdkVta56vnTnNp+djpubaKCUoOMdBDYd64PN/sMTP/W9bmRhPCedTonk4Oyn51FJM3/Ur3H5Ic+dbtlPafh3jZwZ58UiNQwfv5Y///Fd57y2jbNmzBTccoLYts//2EeqNGeZrgs994yLjV3qRaitjI33cdWOOt93ST8dBOZDkA0GUwORszFCzwekXJyjGLcKgSNKs0JxXEF5h9vKjVPvmGX7Ne/j8czk++tCz1Ge+hk3rPjFYTw42/upSCZtIkKs88dAn+ebnEpSUPP6gZmTbCHf+0I9w9nKdp7/6KT70+78HZFjLjKNi15qcevY4H1yeY/CX9yJjwez5lDe87rUMjhSZWGzw+JELvPjcU8yev0Cy3MGs+oquzUukNIg0R38pZiF1tI31GvtFwfS5R7nmllczY0JyFUVpoIOp1BFhC9UImFjuUC766zhMJVurg9x202FWj00TNyKWjlgWrpEk94SMhi36bwuxTyVMHB9nfuAyQ9tCwvlxiuIinRcamNUWNECkipwsUC5VKQ9U6B3ZzsPf/CI3j3a4ZnuRXnKsdQxHLi0w2GhSrg6RJgqZKtZyFrnWxuqYcqEXXQi8h0BiUWWFUBpVCFBRiuukqECSrxaQgcZ2UpJ6ExkoVD70nQUlgYQwsESdbF5w3vsDJdH5gPxABWEAY3AuJWlH9G4bpbXWol1vInCZfr9AhQqiFiYFZxI/iUqFkyEmTcjnAkSgkSolTRNMmmKkWPdHweGr+5kHSWoMSWR8BTcrkljnkNpDhOKogw40UmsQCuV8xyRqtb0poe8ro5T2waTSGOs5Fz6hNTjrK9BhGGx0P53dWHAzT5hAC4yDNDM7UkqhBOjssW6VSAqyYxWoIOfPj/CJjsn8WJy3ZMbxCheMDZYbL5U07D7+XTHWq2LdnsHLP1dXHrD7LP9Y94dvfx66sb8UGwHS5ipel8zeNYRSyieD1hjMS7oJZGuAsS4jK2fHZC02iZFBiDMG2+z4AlcK2ARRARZmcLaAcCmu2A+qBxsdwcrriAun6RQN0Z5BmoFj+vIkR66scO7CFFJLBoUh7IfCkmTyxTXu+Yk7WJhsUFiNaS5Lzk1bxu0qbxmZ49ZXDbLzvltJxWFmL0vWVjWF/j0888U/5E2vupbC9m2klTWKQ71UBgrEaZ1G2/HE2XmurPVTLZTY0hdyw5aQAyNFWklMTy5EKkEnglbHkEs7zEwtUZEOqQvEazlMlGJZpj5/jnLPPPlr38ZXv1LnuRdeYOHycZLGCi4V4JS3YlAB0mlyeUH/7jGSVkgsp/n4h59GdgzVYp6dAxV2Xr+PV7377YxPzfNf/uiP+PrXH8fpkNh5QQHrLI2pJb722BFsu857778XF0sWryS87+1vw2KZWq5zfGqa504/x+zUBeqXF4kvNjGFAm7IopRF2Rw7qgmXUt8RzeUlOpeysnSBLdt2exPHYogtR7jEex8FRnClmTDYH4CDAMVodZBb9l5H7cwUazMLXHmizerBgJFhzXAFdtzZh32ixvy5C5waP0d9tcHB7QF7v2+UMdumKA0H9+8i3RvQ1kXqQQ9rQS/bxnbz4uMpNxwq8LVTlzlyYREtcoxWR6i1GpmpoyQ1XRl5s46oQPjC6Tp8xnUl51knPner21dVuDclCd2k4numAfkdx8YM8h1JyevP2pgAuoRsuz4XvSTb2BT++2Rh8zM2eqLrs9F6yxLvlN19bPP7d0/6Kzj3r7hzIIR1kjd6AAAgAElEQVSH9OAgjSN0qD2OkqzN6pz3CQg0zknaSQtrQWtBmFNE7Q4mxav46HwWuol1/L9Q2vsCWOOdiDE4JHHkZUKV1FhnM3Mzh3EJCt8yd9JX07SW4FKsU74DICRhoAlDjREOk0RZJueN1bCONBW4TEYuaTXRSYDWAVIFaKnRoSZOMuMhJckFknxgsFFMgqDVNqhcgWIpR7GowcagHDqnEcKiA0EYemyzKPbh2i2QMWElQId+8VJFTWNyAWwD0yph0xBMByUjdDEmKA7hnCHs0cSXJmisNijt30XarpH2jhKIAvGFk4jmJFol6HAKW6iy1vdTqNs/zgv1Z3h6uMClvbsY//xR9r6zxN2PtLl2l6LdssgrKZWG40Tq+M1fn+ae3QHR7goM9eGqmsqRSb74kTV+6sdK7LrxzTz4qTM899XH2La9h99/8O9494Bivr3M2WMtrr9lifvvuEAl3cFQ5V4e/bPz3Lf3IMOvHmZwpMpIIaAkBSaAxchL5IZaoK2h3GmTLs2y987tLM4qLp53SJuwY2yGiZN/y90//s8YHNnDB/7tA3ztG19jZfU0SWcFD9RMwEU++3IKrx2fkqzU0IU+wkKATWPS2F/LsYJVNH31Av/93/w2x089SleNHBmCTH1vya5gWjG1Wc0zp/+G++7q4xOfHufzX+mjs3yMAXuJ9//czzH+vvfyWz/6MyyLGu21FnEjxkYOY0NCtUSzXqdcFSAtjcU28dQc6vXXcfQrj7D98M1UR4YR2wLmagUudlZYmixz3w0V1mLJYmKxy3X6y23e9KrX8sTHHqcu1ugNU1ZOpBz9eJOtP5Yw9LMlFp9bwy06Wk8/z2LfEiDY4ToUplZJ0woz8wnOhaQ65NJ0g3e89XY+9OhRFEOstVc4PtlkNTC87u0HaHzkeerCJ+aVUKBlm9XleQaLZXr6txC06+R7A8JKAVnoxwqFJcC5DkJqckWNzktvOhhIL3jlNDpXRGiFTQ3y/+buvaM0z846v8+995feXG/l1Dl3T4fJI82MNJpRQgiEhIRYxBgOHGPwml0BPguGXe+wXuMF7AW8gsOuOAgjrYUloXBQHE3Q5NQ90z09nXN3VXXl8OZfuPf6j/tWdfUwgHzsYyPfc+ZMV71V71tv+N37PM83ITCpxerEOYZ5ATJUeKJNVCxArugExbqNsTEmy9Cp0xsp06JULWFQThBsBF5QxITgabB+4Jx4tEboBN+XaImjPtHl4MsuhJ5pVDcTwEiBwTpubpZhbea4+Rg85bncBozLOvE9pPJIrQtfA4lONIEnUJ7nJjpCOi2CdSFr7Xbc5eWC50mCIMD3fYcMCIk0xrmlCUkYeijlIYSmFUOWpmAypLEoIRDaIgJ3Da1WryZN0do9B79LD7bGkBqN7iI1OrVr9AFj7d97WLzVUfePdvInbkze3mqtHbf25oPa3fjWSMHqb659tXoAr+fxdqlgAtcY+J4i8D2UFM6IoIs8mVU7SQG+b1FGoqSj4Dr+t+0OySTCU6TXZlD5CFXIY3yLrVaRO0KyV84jmnNIriPyZWxPlWTwAeTbBGevv861gXEmlhXzl55n87tHecC7ytaD/Sxcq9E330LXEt5Yypj/3ec5eGeVic1biTbsRhWWCS6f49T3JnngR0coD36Qx//8S2BiUk/w4pmL3DcQMNeaon6qzi13LdOfv4rHCDmxhTOvzXL/xo0U+goUcyG5rhWmlgKsRErwpUCjyZIE4jYj2weorwgmpyw9eY3vTZHULrL1XXeSK/byu3/wAq+dOsbU9CS1lQWypIlIW2St64T5cTIdkSYeOmuyeO4avcPb6CvlqPkZSdLGCMuSyZEzkkrb49//q3/DG+fOOGcwC9IrI4MGJrXozllWpjcyebnM9NJRDmzP8+gzM7ygBpg/9zi7Ng7y8Xvu54Fb7+Yv/sMfMLulwsLULCvLMZ2aJRv0yfs1Ou0Wg0PO5MEsr5BFRewtW7hw5gLDmzayqZAn2xAiU0MWGgLhcWAoopEmrHRS8tZSCgNu2biLI/4RAhExlIO5M01UJaGyI2P4PYPMPNtCzxo+smc/ubAXjzrm2kl66zWytErtcge/UCTNJESW3XeP8cxzJylEO+m0Z9k7voGRsQ1MtTt85rPfQfgefT0Vas0maXfvc2J6D60zd01IV70Z6/bHVY3N+p1i1cLXGntDg7D+mrH2Rh//g7rWdEfr8gq6g4n1z+vGrnKzw9nfcaeshxLWGq61m26gk65BMzf6CLp/i5Rr/2bdva0aJ4Bjz/xD6/tqDqIoIheGCJOhbYY13przhu2+w9ZakiQBKdAmww99jFGOA6wzLOApN5GXYnWy6w5AH9O1Ll191l1IS0KUDwm6kzCdZWitSbOEzGSkceruc20Td9M4JT2sNYS+T+B5gCRLNZ6SgIcKJSbrYLTjCotAIYRHplPkKoVAp6RxC0/4js6QpqQmJUndhl4uh1htCIsV8qGgWMwR+grdrCPSmDCQlMZGsCLF6BhhU5QCP4C03YLMIqMAGSjnilRKyGg7kWFT4NuIIDTYjsDmIrwel3zamlkmrdVQcUznTJ3WygSDt2xjeWEOX4RUcpupNaf5zspjvOvfPcCXhz5Oe0bgn/gG6asv8vb/WOT3DvYS/FYemy2R2IS4pYnPJfzJn3X4ly9aZKyZPlGjvWuM8bv28pFolq2tlPLAZiZ+7/PolZThzQEbSh3+5X15dv9CiD9YRuo8UydTnv3aBRqdy9wz+hQff8ceTNrG1pq0m6NcDHKMFlv89rEiv7yhgkkVE/UF2maFgyMD2N4xbJJjZFfE7o2a2nKHVpzjzh/7Q9p1zT/7jW9y+I1vUWtcdpoUr4wKfGyWYpNGt1FNux8vN7lNm7OkTZdM21Pw2berl5//7z/MZ1+8E3vydzHpBCKvXMdgNQQSWsbB+VJhbUJtcZKv/W+WX3jsUR57+TfxG6/SIOH09Sbv/9FfQpk2SU7h+T7WKvxSHj+XpxRprtVSxsb7aS81UG1LJASxDpk4NcaW+7fihTnqVtMqWRa3RQwHhn1+wrkGSBlTbmtyrZRG0mawspl333cnX/3aAtNLde7xLB+sSj7zjTzLdyZoLySwUAkNVWo0J5fIZERjIcfVdkxJHSDHBurNmCw+SuNYTLPd4B33v4vF66fwxAR37srx2HeP8uKFWX7xd/453/rKS8yeu0pVaTaWQ3LlDmMDlmqhn3BoHNkziLU56tc7FAqCxmxMIA1+wQeT0bk+S1Qu4ff0uUI7yzCJ0++gDDLIkbUUZAaTaKy2SKuwqSJtL+H5gizNnAZIuwFBcbgf35dYfNqNFLSzQdVJSpTPYdLMFflZQqYzEDmsFMTtFiiPIAzACkyqYVU3giu2rU4c5VB5yCjEI1izVQaLzRKUtIShhx8GNFttklS7SZml69Dmk2WJozYqhbQCF9ACvjIgPJwg1dBOEhIsCoXRhnRdcJu1Aq01mdEI7WiTDhUVTiC9NiyypGlGph29TkkX3pZpZ/G8SnlxlDdDkqQYi0NxhTvM//+43hLlYPXo7U7f1qMI6w/6db8n1k/lHFZ/U3EjhcAPXMp0GHh4niIXBWwc7WVuYZEs0zRaMXGSdWlojmYb+ILQ8wn8gFzQHWp0+d0IyOI2IvIQzZh0foXg/WOoXEDt9LNE/cMIFdBYuMrU3Kts/o09vFR4CH9+kezCMxSiOfb+t5t438Ao8v37seYamkGydpvsWo3R55f46sttZLPF9OHzFO7eR3XTEBur8/RmKSp/kMU//wMKuQhVLtLjCw6MD9B7bxFV7EfoAnPna5w/vAD2NGO9T3HH3t3YFGwjo9MuEHsCRMaTswHvr0acvTKJDSU9pYhqoYDMVTCJYHQ4ZKCiabczlLeDUnkvcUfz6c+c5sTV51iYb9JJFbLST0+xSNrokFvsIYs11mSoMMCqPM1ai/bss0yc8Bkp59i/a4i3v/MW7vih9/HslY1kF/4QMdBCXs8hmh2sMsiyj7naIeu0kZRJ0jnOnU/4zqOKR37j1yid+Bzl5gnapRKPPX+OP/uzx1C2Tr0a0d9TwfNzDIz3US4VKYcZpxZbbB8v0ZhNqZiItoyod/Jcmephy85+fKnozXvMWbDaUi145AMPIQWLsx1oa1Kd4QXQU+zjHXfdxvkTxzlxrsl9d0GfiTh8SbDUGxNVdxBaKEQWv7WErdexJkcyV2Cp0SFfuAcv6YHGDLqxQHo+Q+uE7XfdzfSJ5/ni84fRuZgPvn0fH77zFj74K7/M9778LH/9rW9wefIaKnAC+9RYpPTdHtkt9I3uUo6Mvekac6hZV6e1anvKDTx/leZojP6/e3n/f7pcb/AW/P83rfWA4d++hZtuFWJ9o/UWiML6B79pEGJvQg7W/eC6x7lx12sP8/es76s50FlKliYIq92BlsUo4ZADietcDAJPCTpJgu+HztLUWDIrMGlG4Ht4Sjl7PwtGO3FckiQIIUl1Quh3nV+Eci5GJkMK1RUIO76ytpZO3AZrCZSD4YUwCKEdJUlGWKnIhwF0hdJ0BdIS598ulCK2HlmWYozGs4YsbQHdqAWRgTV4gcSalFa9jecrtLZ4wqA8SbPZIR9KAqXxAp/MpAhtCAo5xPwCuXKIbc2hIseHlqFPrjKIaFzCb0qMTVF+E6tjRKuB9FPCoiZbblMq5wnKRfxiHzaJyOoNpJ9gymXCvhgzsUTrjTPYaJSZ+iQ8e5Tye9/LfDzK8deuUM9O8N7//Flmd/cTLH6GE7XnGH/HHJ+6RdJbVhRDsKZOq9NEJgklbSiOWXp+zeOPFnv5/O8s0Tuh8S9fopSf59a35ylcSnjpiUUWYkXWn2PbwSoPvKtK5/xVRg/8GngBOlsh35/Qu3uFoy88xa/+yXk+1TiOL8/g9Y9TGdlEudDHucdr/LuP/yTLc5do1xI2VkbJeg8xhce5JM+Wusa2DMMFQ0/Vp0f4NF6b5Zf+p09x9MxTtLWHkBXC3hx+uUQ8f4a0vQJGYG0MxAictaCbDEt8Jdm0YYjq+DhL+UG+98VZ7IWv8Kyps9DqQ2Ue2Kb7wLfaEASQpo7jgkYnlpWFFbKlGT7xoY/x+vw1BvqHyOHzqU//r5z+1ouOBlAQKIsL86rVWF4xvOe9Gzh8bhpf5JC5AgjQrTz5mZOM2h4uX1hibOtGhvMFmn6LK50aUy3JgU0jdDqWUl+O/nKASOs8//olNt1+P/Kx1/Bjy9Ki4dTLFoWg8Nwgm3/rAJf+4hjPnriAv3GWu3ZHXP+uJV/rY4+nSHWRuXSCZnadvSrkq1eO8P737KF95QQrV06Sv2OQnvvv5cSX/xMHNvTzypGjhJ1rDETLKCuIETQX20yc6dAu9dOHT5SCMRGezBFfOUtpbJc7QNIE0+6gtMHqhM7CDKpQJmummAyE75AFiXFOZ1qQdTKQkqhSwWhNkM+h2y1sJ8aaBOlJcuUCZBoVFmnV25jMOEpdmuHhQeYKdZdYLh2dMI7RygclkEDSjqHrxKE8Hz90xXzSidEGUApPOUpXZlzOgTbOFtBaUJ5BBQFZapEotwdJSRRG6CSj2W6jpQWrUb7G8xVKeqRpTBiGODBYkhlLqjWedVoBKSRKOrXwKoyvpEB5isTE+MLlPaRZNzHZauJM4wuX+q6wID3S1KXXuwmTXKPcCc9DpxolIMsSx3WXimwdZ/jNaxXS/oFYdr382K0b4UCr07j1v/BmnOEGirK+4HHiwNWcA7pc664wHYMQAl8J/CCgVMoxMjLA8HA/Jm2RZG2EsIyHZZrNNo1Ge63RHawW8FSAEQHFch7h+aiu2Ud85RIqMJj5eXRHgl9A9eap//5nyP/kgyxN+KycPo0sFtj86/+K9miJe0sVvty+wJ63r7Cz6hMFgdO+2EWSbAGlW3gyw45C9CNVfvrBg7zwH88y2syQF16kx+9heLwXtdDh0tFZmlEPoq+H0V1DDPVLTGuFwtBH3TDNNBm6BfJLU1w6fYLPfeM8P/9gG8MbqJ5dFCvDJI2A5rzlR2+5ldnrVxireKieIRI/YkFDwyj6NNSXLNXIUix7kBrmzy7wV199gedffpo46CXq6aW0tYgXWmrXL7E0PYuKPdLOFbAxRd+SL4UYT1FXeUbLEfe/82680c3MhlXOvjSHnZjkOZNBeysqnkPoBGEE9uoU3nAv2UyK9Q1JErOwUOfCtTls3OI997yLy80FDvSNsvPQFZ586nGOP/YcOk5oSI8gL5FpTLqYkCYR77h3C8+duUw1rGLyMR0TYWMoLU3Qb3NcnGkx4vWTGJc7cHXF0EkzdgxUGanmiJTE6CZLjRWmGg0Gt+0hy22iL1qiviBRZw3K5iiLUQZ+8RbOfuZpCsdOsmtHmUpPQOs1SbA0yGDgYxoRy83zeKZFIVKcunaW2x/YSnzmJO3zr/NfPfwB0mLEG489y84tG/inn/yXBJ0mD+wb40IVXjh9DU+ASA2xNgjP61IeWRPzm3X0PbF6fa3SitboR3Zt8G1sVwtm7Vs27j8oa007YbvPf62etzcV6Wt0oNXhN29qKuzNe9QNcODNRf06HHMdavHm29yLewPdXP93uf99f5Su79OtyHEprdZusiEVnU6bIPTdZAznzmGsddMxL1lzZHAcXotAufRR5ZoEF9Zp8P0AYwyejNZgWayFNMUI64J6zKqmQa9BVYHvLP2scV9L6Xi9riqEVDtluDUaa7RT3Ptyzbvc832sEBiduOelU7zAx/MDfN+5n2htiDttMpN2iwCLJ5yLkpSWfKnQ5YimGKlIEkOnXSMkQ/gRXhSgfIEMPFToo1hEFDReqLCmhrUtbNrGtx1EGJIuQyYtQSGHTQ3pwnWMtqT1IYQ/iwrc29tstWlMXaK3MsfK/FHOtRa5tX0X+Vv2EoxUOPVEyqXhzTzYC80jp7i3Msv+zZqxYkaAQdLCqgw/SlwD1jCYaRwX8rkVpqKAyyImN9thb4+iMLQZdXGG80sdztc0D921iYHRHv70zyf4yDsf4LFPfY+Fs5eYahn6N93GgbseYOTeO9jhv8Dvvv4oPzPQZHxlCTXRIVqADa3tLP7hV2huGmDgXe8ht3EbOojIpGQjEtk2XGtZloxlZbrB3MuX+MzXvsqZ88fpZP2oUolgpB9yms6FV9GtGKzubk+rRY7tFlaK/p4iQ0EfWXGEOMuxeXaOSbmRueZVwsptdOLXiTuLrHXZXg6ypAvxa3efVpLFTaauTLDn4F4ef+UYXktxz7vu49/86q9z/EOneORX/y1pM3acdQ/8kk/Jq3L0yBV0luJFKVYKhFZEMsA2LyFG30/t4gpHrs9QzvVgtaGklmg025w+22Sg3EuUKOY6mlxRUhrZSj2qk8+H5DoRCysJp88LHtjay2cvB8R2km0DLaK0xeR0h9PJOJ6+Axl/hzDr53o6SROB71eoB/3E9iThYIHvvPQ6h7Zatmxo8+qR55nILBu330pxYIHJ44ssLa1QkorRKKOeSEIvYqm+SPvMOXr6a/QODxP19KJ6+zCdFURYxKIQMoAArPaRoZuOSc937j7akDZBdtqgBDazSNud3red85CXD0kTTdZxaeVYic7a+JFB4pN1ug48mcakmiAUGAJHP0RjhLM3ltalGmN9jOnC48JlCCBB+k5MrZDdcCC3nynlHDzSzJAZgRXSBZ4pnzQ1aO30JS44yOmbVBSQGkOsU3eQak1qE4x03m1uYub2GIFEKd8JLFfdi7qbvbUWtHEUISmwuMmyse44FgIXmJYasu5jCanwAqdtMDZDWkOWJSjlJoBWKrIMhLJI7SGF2ztb/wAJ9c3T9X/Uqysu/4fW2nMR6zjSb/GLskuluEGHcJ8d0WVyCSHwfZ8gDNgwNsAdt+3l0KFtbNncB7ZNEi+CXUaIDjppYrQGGZI0Uo6/Ps98TVGJCuwYK2E6dWyaIZSPzIXYXEb72gx6YRnf85g4/Chzp46z9d47CPb1kea2M70ywmRvP7sjy/GTv8fBynWGywklP0OKFIFCiATPqyNMC2INHYnIMuSFy8wM9DE/OUn/xWl2DeTwd23BzE8zVa9xrZ7w0D1bmV9scvVyh13bD3LyiWPUTrzAtU6VbYceZGznLVT3bmckf4G/mnuFD/U2CVcWkVcX8JsRBb2B+MphvLEyPQdvpZEZIh8q+TwZEqUtSwk0hMROtzl/bILvPXuCqekJOmoD4VCF0uYqSWOG+uXLxPMdROb0RAocGmkAEVIMc+zbPs6WwkZqPdsYaGv62yvM6D7mmtfIVe9iauLrNOsLGJ1i/AhbHkA3as4NsNWATJKJlPbKPPXlGsMjIzz+jdcZua2fg9t3MdbXz/lDt/N7n/o0KwuLkGkKlZBqT4VAVXjtyHl++sd/gsef/A5ad4ikQNgapi0QlQP0N+H0ShNhPco+SD9lvlFHpimjPRWiSgFjwfdDNg2PcWFukaFSyICoMHG9ga9CtvcOMDcb0kkn2bK7g7m0wOK1YYy3HZUOI+svoMIxFupXsb6FfB9JqNBM4ldzPPPNF7nnrgFy1SYX5+eZlwE9m/ezUvs2D20vkzcNPN1htBIy0lPkxJSj166aIqyyPG4SI3eLXCnkGtXlb2l+Vpv3tW//I99L/t4l1hXf61GAG8yYmzADIW7U6azbU8UNupW1f+sVW/dorHvt/vZ+7FCZbkr1em3D6mOtfev7a8i+z5wDB7kb6E7P3fTfOSw4DrfEuW+kaYbyBNoITGbWnDxcJ+nsS43J3CSm+4f70lmlKuGmOEZ3XUAAFSkH32QZdCc0SjoaEEIhJAiru3M46fyipfMkX4XQtc4QSrjAIA1WG3cfQYDpJrZ6YRHf9/D8oBszbcgyi9GWIAwcXK8NWWaIDUQ+oDUdazFWEhiJkmDTDqoYgVIuBVNalC8Jogg/jIEA026ivKabVKs2QqUQZnieQ0ayhSVacyvELUtpKI+/6RZsu8Xi4gJLkzVac7MI3cBrzdMTznExbvPM6SPs3LyB4p7byFb2M9KjqHKVPr3CrrJla9UnkBkizUgXWmR5g/QdpUAEElFVWC0obRQElzXz1wzUNIN1y0I7x+NHW8wrj31bSgRJm+sX20RJnbPHZvjSo8cYNA9xefE49sSrHD/fYtNtW3jnJz7Ip194gpmBEfoWEsJLdeRyheroXpYai1SHN/DadEqpucKuQUFpU0hPoIg9SRZYZo81OfH0UZ54+lEOv3EWwiKix0cOH4KwiW6ec0Vn1kCKiJQ6FekO746AQqCIylWK1X1IVkjTBqysIIKUpfYg1WoOhYasidYxaxe1UK4IWH8FdAu1kycOc8vt+7nzlv1cnZjlpcNned+DdzM02sfvRhHpUptMZ85dE0jyCbpPELYDZBiQpimZybAFaOYMM7NT9PRsoFAs4xlL1lhmcfEaMrVctx3a+SadSkTaH1C2OWTHo+gZegOPMB/QU/LRnuTU+QbpUsTO/Xm0hMkIvBh2NjQLZpo+itTSGoltEeV7MFGew81p8sJyPthL0zzHwHaJqLQ4+soSO+7Zz3KxjZibIBfXGe/P2LVZsHEvNE6l9Pdqmp08gaeJZBMvWUa0Faq331FfpAQvcFkDYYjuWFSUQ0iBVRaUa+y1cYnDVmvngiakc3wyAiU9QJDFGmNc+I5NDcqXZO0OUgauSLO4hkwIksS4orhrSrA6jZdSdK2IQevMpdZ6nvs7u/A3QoEwzp0Md30r6SGE00IZK9DWDQ0A0szRfZymYHVyZBFKEQQ+WXxjwmZN1xZZQqYtCIvXpfus7tt6jTzqDlznwSBItXE0J+n420Iq51AknCNT1m1k1ao7mxB4vkQb91ytzTBGgO87JE24YEjVfe5CiK6t5g/+st0pnngL1xCH1th1X4OjFa391Np9uFu4MfG0N4SDatVYvHufspuaLQSUijn27tnCwQM76e+P8FTHFfuy66ZmLAIN0kcnOapFw8K1DN8EDIfT6OXDiGAYXTdklGnUVojbDYRpIkwCMyfoeDWOn3idre/sQW7pQ9RLVCLIsULWPsXIiKQUBiiRQNbCJCnGNwiVOlTeCxCRj80kQZ+H158wQYKpWUbrMF/3eP3oNJTKbN/UT2txhqzZQMaKyXNTPPrki2wtvIMLl9/gyuQTlF8fZ2T3DnbdexvfvvQKzf4N+HMNmLEoU0VVR4hNi3L/ICdnE3qForcqyHmu6co0lBXUz7V545XjHHntPOcv1RGFPGo0INiyC2OuOxeyVOB3VvBkkSUm2FOQNESACAW9PUXKQ5sY2nAQZVdIVqaxforJ56knJSrVPIGwNOpzpCZxCelSIfwI6vNuQm6dJbswlqyTMDV5kdENY+zZvIWJ68sIAjaPb6ZULFLJF5mbmyZNYrJOjEgEXm9ArhqyuLLEPbffzcuvH6GhY4igERqyuE1foZ9imCMSiryCnMooBQERAYXQR0mB8EKKykd5IZkVjBRCRnxLvhLSbFlWFpbRcYGNOwokyjKVE+SNoNiJ6ZglIlGi05pDE5HrHWRZpMx0lvAjwbQ3htFNqjsHmF6eZWVJMrRnB+1CzDvvqLAvLxntsWzbW6Uu+vFrMPH1Ju1Eo1Ptir/ucLobM3ljKN4V668Gn92c63tTXbtGL/pBXjee383F+PqpvttPnAD5xqv15vJ9HVK5VsfbG6jCOnrkGlHoBv/RnYOse31v2t/eZGf6fb7m319zYFyR7w4x57+qhFo71IQ1TiNgnT2otc6hweguD9dz8PdasW6ck4bA6x5OTjwsupkFxlh3gFpNlrpmYNUKzvM83CxXInCTr9WmwtpVWN6JHdeKOtsV32kNVoE2qO7hKPEwQpAr5ta4pMakLotBr2Yr+EiRoY2zLdRd3l2n1cb40mVLpRlhIIlCgcxFCD9A2xRpMzeZDHxUILBGYmwToWIkMYgYVAK2jVfx0IklvV4na0C76dNJM8rFFmKpxUq9Q60xT0oNvyCZb3IygT0AACAASURBVC/Sm8sYGernaDpDKZ5jz7DP1vv6uas0T7HxPbZW2gyUA8JAI2wHk2iOvJwxtt+jr6+EkgaR18iiRC6lBIc8DtUzZidhrqVoZvD663WeaYa8+0DAOwc8FtpL1PyMtx0MOP34q+T7htnq30K1b4qzE4d59dHjPPviEPvf9h7u3nSIi3OzlCdmKCznsOxCFjZTHK5Qvu0Q108uMb+8QG8WsOwbFlfq7NhUJLuasvzUaU489gRPn34M5DC6uINgSxnyG8lmX8fMXMezEcgUTIgnND3KiUTbYUCl0kehp0Ac7aHVeoGsfh1FxlyuSozH7Tv2cO7UGUzW6HIpu3CbyRxdbXUCKVzraS0cefUIP/YTP8UD997DN771FC+99BoHD+1hY6XCQ+94O0+fOM7C1etktRZpktJMV+jZ1ItQPn6+gI0TZJbCsEcyEDJ14hSH7txFf+SjlxZYnLnM4sRVeoIyxk+Jl2qIuETgVTDCYJdjeooJBSnwJQz09BBUizz2vTfoCWJ2bBznpdcUbVWkv5gjbbfomPNMiEGMuUZLZfTkNSLXZnplgp3hIK9e1ezY3UelOsP8Usz8gs/oe/dw6th32VKeYsOOjFuGFfv3K8I9gpUeQ9sGxPUSQVjCFxGkGtuOsa0YP9eLVQrhBUjpuX0gS1FBhNWOpiU9nMUwChV46E6MwGCUckGA3YI66aSkcUoXB0RgkH6IbjewiUGqgDX6pJQkqbMY9XJO+9Edp3T3RLGKa7MaWLMKb2dJilAKugIwge0OHQxKOlczSzfXQGsn8NVOOCw9yard8+rkR0jnqqZF16Ft9X6l6k7abNd6VTpHECEhzVhNMtariKiQrgnJNMpT3dA91UVqjRu06AylPCfS9tzABNklzGjXjAhjsEKihHQDHdsVDZquTbX9u2lFN61/7KjBurXq5bE2VxPrpmfdZd4szLtxPq8dtqarJVl1Ilqb+Nku6tD9GWNck5lkGWlm0MbZ2Po0kTJG2A7INtgYMKh8wM6dkBQszeUE0z7P8skmYf8eREeiK3tJGjNQVNigQKe2RFBIKA+McLY+zbBuEw32MNgvGPdr+MkxBkseURC6nBgLSRwzebVJ/3iRfG4YRIqIFFiJF8eoTT5b6m2u9nsEjYhGK+PK5SXO1iVv21Zgf6/gWm2SSk9AVPaYPHkULSRD4wfpiGucfP1lTh19kfLZO9mwYze7+7Zw4WqL3fMJfmsIL7cJURwgqHQIN44ze3aZYlQmiQXtxQ5xIhjqD8imMuqvXeWNF1/j7LUpCEbI+oYpbg8Q+SrNc6ewy20iAoRKECqH53fYUfZpFEKolOgfHCI/OEqc20tt+VH85QniYsRicQNaBWzfsJVzp8+idQKBMx2xViE7baQXIW2KDDyM9kH76DTjzPnz3HH3fdx9cB/ffOIlrl2fZWigh2pY4P47buV7x99g7twV2rMdTHMJYTTjYxt58cTLfOJH/gmXZ69Tz83TKvp0Kj4r0zMMbB5id7VEyVdrhaSS8uYyWsnutWbpDxRFTxFKy9DwOHMLNU5fuEBvKWbjyGZePizwikPESUTWWCE2bZbEECK7QBp5lKqatN2gWVuh3w5x/kqb7fsHESSsLMQkZpDCxs3MXH2eDz/YQ1TvsG1TSGVzBaIcS+c6vDpr+frjZ0m6Vt3CFXprl80Nsf6NstfYG+L79cL91d9bc9T5gV12DR1ZAyvF+trc3vSz9kZa2c3oiVjXGNy459Wbbv7+6s+JG4+whgysvrardK5197ZKh1zfZPxD6/tqDkwWkyUdN8lXytlaWY3Cc9On1fdbSMJcHqXA0p2aZd3Ana5bgbEgpNflwbpUzyyz5HwPI8BInDZApW5SH6eonMLrJkgKqUhS1xpICdqatWAibQxp4vQNxmonwpNuE7cIkjTB9yMHhdmu5y4S6UmU9JzYWmt0lnUTBSUCS9JJCMMA6YfgKQIPorxL4M0HIabTIUkESuUIynmkD4Q5hLHOeUkbsM5FRIgYL19wTUHW6qp6UhcKFYEqCgr7FGpA0j6a8MwXFyhXphgrV8nvuYOtGxQMBExPWqYvR8yuGPZ8YB/9PcPEewfRoxkf2C652jyJWfw8m6sphUCh2xlKCNKsxO8/pfiFYcMefyO9uZhQLeInKXaujdUZn3hvkS1zihes5VTL8uTXL/DD/829fPyeZZb+7DxjB0uU7xtk5XqCfm2Wjz7yezQ++wjFrTHHXvf4wucF324s8Jv/4g949EuP8K//60+SLSVUe/dhwn0UggnigSLaU/zQ/Ruom4CZ5YCLJ9t85xsX+ecP7+SZP53iwhvf4MLyC3hBCUo57PgQ5QMfoH3sCWRtBit8bHoV4RUhWaDP8xChh1/0qPb3IcbeQdA6Ry2eI2wvo2RCLBTTTZ+RrTvYvWsbT7/6Cs0sRki1NiEk7SDCAoIYlOvKnfWj4fCxKYgNhSBi+3CB2armhaPH2fbAvfyn//C/8Itf/XOOfOEx5l85S722gm5m1F5ZpLS1QLFaolApkSsZxHZBEhnaL16hNXCOq5mkNTVFPH0VlfMweYkyCaFQyHZCupzSjjv4rRrt1NJKE+orCX1DZUZLW9D+BbbYDsvn66RXJSOVKvmc4NWrk7xNbeNzWcD75DBXRItl02bExuzK9RNFY1z4xqf4pT+9l4UnG1x8NaU8vp2nLzXpmZzipz5o6NsXoPoEMjDYtEnlfo9Cp590qoRUAxDnyBYgzfKYusV080ukL1xgYiYJcgESQSYUUhhUJPCLHviRcy2ygrjZBAzCd9zAZKVDfWEZbIYWOEvgMAeeAhliKCB0hpI+CBda6Aee2yONQViBCgJQkrQdg1EIJJ7yEYBOs67VMu6AFsIdfF0U1FpHNwSQnoDUILB40llQxnGKlJ47KY07HYx1xX6mdddlCDKbYrPUZTh4oUOOuhRJAOV5CCxprNFaY4QC6bm91rpkU6NdyF6q3WdxNSTHaINSzu3GWoO2GiEUWRrjMiVcOGRmMnQa4wscImEdQuFgaP19Hxg/KOvN4Pz6w9ZyU11z81oFBcTNEz3TbSJvaP5stylwP98dplJrtHj62aMg4N3v2k+7s8zIYAFk4gwObOwQY9ogHDIebvKRZY+515vMvjBJ1HOaSnkj3mZDORejxrbSWjLMXjpLtpgx+uBtFMI+7HCeYg8MSE0zncS0/4bBku+yslONQVLvFHj0dMb7evuQYj+hdx0l6oi0Aa0lMJb7bhtn4JLi4rzPbK1O7WSbd33svdy2eYmVLzzG7nffhuit0J6awx+p8Rs/9z8QP/Vvecf7B3j9fy/w5MsLHJ47w2e/+BS/8ysf5Y9+7ZNUtmzFL25GFwbw/RpZKSC1cN++XjrGZ3E5Y+JCm2tXEx68p483/nqJuQvPsbQyT1DKYSo+rQ09DO/Zz+LLr1DKBDZrkyXzqFwFm15hX6WHtAqDo3ly4zuRfXtR8RRL8QKl5hztgqFmJK04x4a+jYyO9fGNF54gkwovKADCmSMsz5Ib3YJtGoJQYfGxqUKnMUeOT/OwdTTkHcM5ljsx1+cX2DM2yq//s19GH36M43/+LabPX6HTqdOYqDGxfBF5xxiPH36SzeObCLfkmBDz4Eumzl9l08BmyCoIXzm0T9xcJLvPmdOddOKY6zPXaGWaq3NtRnf0EuQLSH+aDbpJ/VoNPRGwacsG0voMCwtN+tjG4TjgNrWRGVlH6mUiTzFcHsD6PVz91pf40L9/gEuf/zZaDpD1b+TkTI3C5Hnu+ggEI33IUCNEjM0SqnsL/Navf4AjJ+e5MrmAjrsGyMZl11hhujOXVaqL6Pbidu1aEwKX3SGcQ6WgmwP0A73tdN+1tXr9rV3S1ur51Y2FdRQhVt/vN6Erf+dDumJ7VXPgBpoCutrfVUGzyxmTNx7LWhdA93/h9VaPPPLI33njb//2bz8CsHXzdiqVHjzfJ4ryGKtJ48TBX/LGASQEhJ6iawmO0a4hUJ6H70myLENIhR9ELgUVsSa+Ut10PrphQkpAZgRK+fi+R2ZvzIG0MfhB4CaNWndfJIXvB27yprMuJcjZcAmpSLVz5wiiAqC6+gaLyVKkMPh+6IoQ41yRrNYEgSLTqZuwYZHS2dMFvrNzlRJs1sEzKUZo8KFQylGqFLBSYIVP4PmE+TJBsQ8v148MyohwGOFZpOogbAvbjKGdgdXInEX4Fr8E1Y2Cbbd7HDlteea1FS4cPUelM82obBA2E9JCnt96+Rzh2Un8W7ZT2r+dvuFeRqIC5UAQ2iPUWpkTKnYSRKdCsOM3OPfQb/I3/+KzXPjCZcSVeQY6TfKzHdRWiRwCTnToC4osZIoXr7XoG/N4/746wWuTjP+4R/VAjOrMEtTn2Ppwgejcl6i+q05+d8KW+33e8UN9HJjM8ZWjx/jPn/8Cb7vt44yUf4yLcwWeXn6a7L5NHP7hn+G/+/2/5NatGziwcZixHsW+PQUefMcoD/2TKb577IscW3qJ6WCAcPfPsveXP8ZtD7+PuS8/RnztJJ5VBF6OtHmVkBYVX1EMC5THe+jfUqJ/rIditJ3FlVGi9pOUvSbKBqRZHlUo8Z4PDvLtJyaoNeo0l5dJOm3WOmypnE5GKpTvAruksUg/IGnB7fcfYnBggP7BHkSQ8eS3v8vb3/ke8kGBD+25h//iRz7A2FA/Lz59eG3DSJcy5HKLsk2o+iBrksXHZsmRkU7OMPfGWdqLi+R7InoKHpMXriEyTTHwqIZFSomHnlrgxTMTfOuvv4ttxPRkgp3JIuONyxzNAiKbcOrUPG+7405WlptcPH+RnBBE3g5Gsxw5cZWRgQLnbYnvNXrZ3ruTx2tPsHlLyIPv3sqXDy/xuWs9XB67nfL0N/n6H0lKB1JUr0FGBqEMpBZRs6hyiD9wG1L72OU6phYji6OE1WGIJSJNUUGIly/gBwHSixBBnqCUwws8lK8QqsvBr8V0ljugExdyFgRY49OebTg9uALPs0gyhDCoUhHqTfxciAhyeH5AFPpEOYkko91ICEtFkk6GTi3aClKTreWeqMBH6y46iQtdW80GQLuhghtGKDJriNststjc2MS7DkRYTZqkGCmRiq4jkLMwNVLiq1VdgQvIUp4r+rUxmKw7hTaWNO3mJ2hDlqaEviRQrnBHSofGZikCi+8rlOoOQjLd3RGztYMYYdfCh9qddjcXQbsAR+0MHjAGaQVWZ6Rak2aaZqvJ4SMvAfDJT36SSqXy1mdT9+D/x7q+9tWvcO7cuXXf6R7Gb0LVVzm+6weaN0031z1J0Z3grv6876m1z4LnKTzPQ0pny5wkmmY7IV8ss2nzVrZs3YbwB0BahGiCabqhUNZxSIKvEUrj5STFcUVho2Tqeszp5y6zePRV+ioNvMXrmIV5atryuW+/TP/MNOGdtxIN9lPIRRQ8j1CBYoJOR6NEiojrSLEP0f8r1Lc/zHOf/n1aL5+kKCaIkhm8tIbo8aBgEZNzlHu3c2GuwWLSpn9Djl0jDeTVE1TfM4BfWUB2zhDk5ug5UMRf+gLh3g5etcno/UPsP7SRjdbjqRee4rHnXuBDP/orRPourkwvMmWuk+4b5urOg/zJl5/hvj2bqUY+1bLHpvE842MFfvF/rPP4y89zZOEEywO30H/vQxz6ids5+LZtTD9+ivb1SYphGdI2tjlLSdQZLgaUqgP03jrKwI4q1f4hAjVGrd5Lof04PZHGJEViU6ZnsMr+W8q8fGyRTpJy5cw54rZzBlRSEQQlApsRBDkKpYAchlAIvLBI3JDc965DFPNFipU8tZVlZqenGd+4BV/6vHN0Bx9+/4OoRFOfXUHh7N6b15vIlWVMZxqSNsPeIG8vHyJvNffu2kelkO/uO+sS19f9B7C8tMKZ0xfZtWMXr3z7Oaod2MYUOl5kxvr4psOF1ye4990/xIUTJ2gvTBCqPKHaRm8WosQF+rcN8NpinmVGyFWKnGm+zPiePHtu38pffv0qh6PdLBZzjJoj/NOHQ/yhJjLMkJ5GiAx0hsgsQaGXH3rvx/neM0dZWWm4BlqqrvvkDevM1f1BStnVgSqkWtXsdC+odQXqTz/8MCOjI/8P7gD/760nn3yCV4+8Ct33EG7sGmL9F+vWjf3zb7/frPvdtR3orZDa7o3rHdTWblqjMgFdLOrNKcsWS5qmtNvOhOeRRx757bd6ft9Xc7B7x24G+wfwlCDRbqoeBD6+7+NJ2f1bLZ50AmKLxPcCPM/H8z18303Q0sQ4v/+uqNgxOFxx79MtyjPn422tAOm4uygnpHMx3gLpe92DVXcn7zg9iIQwDNA6Q6dJF6B3kI9S0ukGBGvpyKtUEk+6nIU0SUnSFKM1SgoC38cYTWYdWiBthhKW0FNEkUQnCaEnCQsRUTlPrpjDDz1yxSJWAtY1QyrI44VlJ4b2fUQwjvI3IYJhRBghgho2aWFmNaYFNnX8NBVBbkRy6wNF7vI03zqf8cXTLb52fImJyTk+vm2Je1XKH8+02blXcGjXDuKhQ/zPHclOJZgWuxnvHSGROdJQUB7ox8//HO/wx9j50M/wf/zNy3zz21dZbAoe+rkAAvdCmlMGb1eF0x3B8Zda/Pz+gKGHAvpv66M8VMBTBi+fkNsk8PIWtQFkUSACgQhCgv7NDD34MAtfu8LdfUO8ceZpri6+Rulgjjt+5WNcv+ND3CI1H37fHXSOn2PmxCWypiZMfILQcs/kG7xYW6R1z0fJf/xhqh/ey+agzAu//znC9ixWBuTS60TNE2hdp2wDesNBhvaFlPtjyoO341d/jvNvKMYKX2JouJf6XEqjY9D5KtHoncj8J/ixXQs8+ugTrCwvuQtL+qByYDPnECMshQAqgaSkJE3jE/XeRXbxOxw8eJANm/cyMrqTd7/z3TTmaqQ1g55pY5ZhKOrltq1bmZubJ9MOWk0zaNUzmouarOZBYiiLgOWJSVamrxHPXyOeucqli1cZrkp+6qP3cuX4aeauLdBqQeJF9B7ayc//4k9y4dnnaC8usNKJSUoBH/6RHXzzlUk+us3nm0fOMrY1YsP2Ab59osFR4P2j8/zp3BT37AjJF3q5WPepd17l6aU6/+VP72Ba1fjusQUuXJthe+E0f/OvA4LqLKKcIZRz/CIzLnQoDBE9m5FqF3qihplYwbY8VGkArzqCLA8Q9A6icmUwHibWID2yxQZmpemEkEo60WwsEDJEGkGQdwGL1jpxchgF2DRxVB0Bohv+p7QlqvQ73nzWwcYxupNgM0NQLNCp17FeiNf1ezbGuBmKchksaSdxomBjYNXpSCgUxokUjcZ0cwGMyUA5IbVQntMSQRcZMK7BEQJtwFgXEonJSLXTSBlrus5tmdvzstTtltquZQxY4xADq12ishDdfQ4HAcdZilSKIAyR0k3c0szRNsEhJu7vU13RrHaIDU6jkKQuG0YJF1/ked30aGExVpOlCY16nVePHgZ+sJuDr3zlK5w/75oDa7np4L3pHL3pEF375pvubR1togvHrwoQxdr3WOMRrzZ7Fkm7FdPpxNx11yGk6sPSj1D9CBUgZAK6gW223HtuJEJoRABRb8jY7l42DWQ8cbjOk69Mc/rweUTtKge2rXCgt8VfnLzObfcMMTS0kytBL8e1oFd4NOUWqoUh2iZEhRF+fgehdxdbvR42HPpZ/vSP/5ILLy1S7M8zflsFlEFYD653kJs3c+z1Bbxam7t2FynuzJHbsIkw34OkjsplqJJEBhpRVgjPgPJAVggGbqM4ch89VzJuHxrntcPfoJnNM3jvRsyeEV6ZmOPA+Bj37BmlfW6CpBlDCspKAmW4187wRKtD8cc+SP8HDjKyr4+ejuXVb75OSTcwXkSlcR6veQWZtegVBfqKYwzfG1Is1ygNPkQ7vZO5iTbDxWcYGBpm8XKLhgbZt5Hc0K3k8we4e6zNH3/6CzQbdYSn8HMlgqiEp1uEnqLgacYrig15ScH3WaFCz/jdlBe/x679dxLlexgaHGXrxi2EfkCWaPRKgucFHLz9EB/62I/ysZ/8GB/58Y/w/ONPERV6qS9l3L7vXn7k3R9haGCIrRu3ksYxQRA4E4O3KA7d59LihwH9g30Egc+xbz9KtrBEI2nTt6mXnbeM8tqJSd53IOSv/vop7nnPHpaTHEeupEx5cMvGeb50+gJvv7eX5bSfVnuFudoZjs03+OGP7WbBLPH1o8s0W1PcuWGGn32vROYuQeCob8J0XGaTFVjVg8ztQKrNfP3rz1BbbrCadJ/L5VZhgS5KcMOBaO3ftktx7NZ9q9eTEIJPPPzTjPyf5L1nmGVXeef7W2HvfULVqZy7qjondStnoWAkJIKxhQFLYINnbLANY4NtHMae4MHpDlwej8e+HvtiM2ODMZhggxEgWQJJSEJCAakldc7VXV05nHx2WGvNh3Wq1BICy8/cD+C7nqe7Tp1Y55y911rv+08jP6jFwf2+OKBN73np97jOuz9vDlq76eXuf95t6/c/H2J40fOIl1znd+Fr5kGC84wU1hok8gWNxyspDl4RrUi1aTsO4Tn/DpRUXpBsLd7NxSICjUnTtj18gAOfS5AknvoThCTOoJ1AgX+MP3JI2onKiDXVtiUzoJRDC89DNtZhpIfiwkBhpUBFASZLMSYjyyxNk5IPFbrgRcS2/TfaJCPIF0jjFKUE7chQEJJUSuJ6AyUzMCnSekFkq9qklTb8x57PAZLMGZppQtqKwabUnYHQkdQTRFPihKLYCzrKYVsWJwpkRhC3KoSFjViToHOb2pX0TgiuguA6hPx/cLlZ3Gzq7dXmHW7Z4AqgNjm6b+/kP97YydK9DR6+r8nHD2fcfvcKv5iX/BCOk08c5fldZ7h6t+H9UUC/LrKS28ac6SfMtyjG52jVG4Slp1C6ky1Lv0WpdZjLB+FdO4qIvgmcXYSVGmzq4XR1gLmlOv1jZfbc3k3t+Tqdr9uBCnyKLTJDRJlf6LwiFPCpq9mJWar/9U/YXKvR3RHSccNbyE2MMbhlA909E4y7KeYeuJfi2KtYnHM88swi+06eJW/7GW78Ob/1iz/FX/747Txb6Gc/eaZXM9wjU0RDXWSVIZLVQ2SVFfLxIv0KolyBoeEKsn8D2zfdSS29lOdO1hktfIy+q3tYuifCxpYsFBQH+7nysou4/FVDfPqD/0gzjpE6BEwbfzN+I4pDCYUWEhFI0hxEdUsxfp4snSAzEc5JpIWsYakfbSF7LZWnF0inW8yV5zhbn2NyYIL+/o0sLR3j5PwScasFsaW1uEqYy1OeX2WlUqHZanqkawUyJKtLK0ydnmPQOi7uG+GKsQ4mrtvIgw88y1kX895bruVz9yc8eewkU1NVnviHE1ywcYCvziwwl8GxE4Lh4YixS0ssHz/Nn85C2QTUmwmROUEujngg3sstg5rDh47yeGee58sr9Noalw4NkBvXkE8R2kDmEAaf5BsIkBGwExsXcHOG9FAFs1gld8FGwks2Yk0OtMZlDtuIoZ7RPDpHljWJekJkvscXAM0ECDDNFBkGyFyASVq4uAVx5rv4QkJm225CGhUEBF1FqMVkcYZrJV5k7ASZk5CG5Lv7iFOH1AE6AKzFOIsSkjROEXg7Pmf9d65zebQwSB0gAkmWJpgsa0PlliDnrZmF0r5LZP3chAShHC5rz9HSU3T8fKfb1BTbDttWfuNoMho2BSfam4M2BNx2OxKWtuGCbPPYLVEQer2AEpgsbWur2nkyYYSWIWZN79DWDliToto5CYVC5OlKWYbSEmcgaTYJchECi5YQ6leec/CCy8b3X5VwPo3BX7GO6b+4EHjRL2s3Os6vD9b0CFKe35F7gU+N8WJ06UAE3j4WJPVGgzPTs8QP+0DOD/zqr6JUN0IMA5tBbUGoe3H6FFTrIANYSbxDWqQQXY78JUO8/YMD1B6Z45FHlrjv+BIPnV7gLSM5bgpSjj/9MB3j1zHZOcaEVORlREsMULYFgmAJZ2YxaQ2pzyHFGH3Nv6DQqnPzhSEXbNyIyG8EO4+LF2FgE4uVEUQwR+8mRf/2AbLZKtHOiz39VVXaBXILRB0hUqCt6bOC7MBT8MB9DFUchdJeLnvNT9Ax0E1pZJCwo8DkUD9m6mlyPTuYa4Tc9fgCi0urdLTqjDW/wRvf9Ub+6IrLOR3lmUXRWkmwszVyAwWSahfNc6eRS+copCt05jX5QoG+sVVUzxY2j/4oJ5dGadYOMNx1H6UdQ6w+mAPXoFkoMj46xAU7NtDXq7j/7/6JIB+Rd70InXoKRpZihCUgIyeLhDLEdAisgZ5ai97Gs2TZdqyTnp5s/XEghfDBmlKy+s0F8ps6yE8WEUIQhRG/95EPecqHdeQLeaIwXKfVaCn5zV/5AOfOniWzDickXaUObrntFt5659uJgoC0usDK7Ayz0xWCrhLv+K1f5tMf+RCnTk1x+MkZCqcStmzdwNdPnKaWCzl1VBL09DB4UUrt7AHuOiUwdJI06nTHz3Ks3M+59EKumXCcO32WxwpFZs8d4aKxXrb1jqJLGUJVQbTWAgyAEFSIkF3AZiKZQxrIOa/XzJSmu6+fnq5ups6eoVavk6Yptq0ZW6PeyTY75DvGS+hUP2hj7R2ubb/XL59PEXqZ9+1euNH/fBnk4MXEo5eOl7zG2rVtuuOLABoHa0nM61qP73zJlx2vrDhYg06V8guadT6HgDWXCwvSer5tZrwOwPq/YD0ozVnvDOBom0a3HR6kIrXGU47ai7Ez3tFBeNduDN7+z1nbXoS1D6fCh6UJ6U/ctbldCLkesLFWzQqlSLMUrX1Hzjr/fE5KrPGcXR3otouSRThL4gTOKZxpYo2nTVm8ONBZRSGMIK2TtbnIUksyK6lUahTyES6LfaATjlArkvoiKurEuQDhciAChOyHsA9ZyuPCJ3Hma7j6KiIvcSWNWWiQzFj0qGNog6LvtSMU9gT0Hy9z8pur/M9Hq/RrgTvdZPngfYtYEQAAIABJREFUAcSZR+mduJS5ZIlQlhgMB9DqSuJ4haWzX0Yv/A25iQPky9/m516d0E/EyEUC52qgOnAWjt5X597lRRZFxLWXDTJ9LmNi9FLcVA07FiM6ne+QmqQ9kVhsw0LZEX+7yuq9dU4/FXO4KRnZtJkt1+6gIxIsVKp87YEpLpanOB5vpPrkfi579S5es2WIyxYT0jTPA/e9mfv6xtnZ2UtuXtG/0MSWq5w+e4BktRfqy3S6cxSCCiUV0tsVsVzqJxgcYOe1t7M8K5hd3kdn50lGxvcSz+1isfIZmmS4sI+uwgAb8glnz04hJwLk8fW+H0p5EWnSinBCEomMKAgRyqdzj/RpbN2ytNqivFJlabZG3FDkTEZtqUnl3AzLJ6ZZnl5hobrIfDaHlpJIxmidIx+E2DTBmIw0tWS2QdJqEccxWZaRGdOecAw1Y5g+k9AKNLaWEGYNJhpTlI8u8OiBZ9mlJBfvCrl8sp9Dzy3wt1OLDOtJAllA2JRtcZULa5ZDNLmnEFDZ+m9IH/8kDy4nXNwzwdbhLu45+DRTTnHj627lywcfo7JUZW+/5S1XWkQ0B4GX/gsA7c8zZyOEGcGZrdhvnYCDM6jFFqR96NE9yL4hhFO4liFbruPqBlJLurBINNqDLhYRSrBGfnSNJkqAcxpTSzA29QFmSQpYssyQpQqltbc5TVKoNcBKTJYSN/1meU2Em8QJKowIshZO+qAwk3odkbf/9Bx9axymvZGW1vpEZBMjtG8YrHXChPL6JJ9fZr3rmRQEgSa1AiksWnntk2vPG1oHfmMp2nCmZ9i2UQmHaNMopRQ431chcxatZbsooC0Utn6uxM9NJkvWwycF3gXNOrPunqRUm7okJHErodlqtH8X3mDB+g2dMLaddu/RBKEFSn2vVBzx4sXk+5gnLL7L5e9a0LxUCOjW+Lrr13gUW4j1ILm17qdbew3nvBOW9QVdZhRZZsmyOe772qMk2X/nV375FykUOhGi4NFJ2Q3qJNj7Ia3jcjloGlwlxi5bZLelZyCk84YLuWZzk/HTi8wcXuCz35plU2eA2z9P69Ij9PcNIQq9NEyMEhEduoQUu0gqp2jVn0fUFlCduwhaz/P2Hx9g65ijsAGghZN94GD+W6d53OUo9Q8w3JXQaCo6S5fhVmq47hgRRHjzEAMmwRFDmuKaGdkTTRrPWZZOp0zXc/SOTzK6a4IgazC93CKejRkWVRZtP5UD0+y9dpxru4o0G5K4mjA7dR0HC12MdRQoLThsnLKyUmVmcYlWNQ/1BgNqho7I0l0qkusu0ujqJ+gvMbnzOs6dyWglz9Pdu0gp2kuyPMLc6l0koUbnxugtlOiQCeV6lWA8T144EudQUpDLaZQIqVYCjFT0qoRioZNYCKLQMTwaIRuS5dWYuJlgTEoQaAp5tX4cqVBR3F5Cl4IXUAABw6Mjnht+/rHnD0CiXI6ZmVmOHz/ZzisRdBZyqCxl9egJOsICO7sFfUHK2cUGB5s5LprYxJVXD3LBcI19h5Y4eGaW4fw28rob4jKTrQWKdcWxtMmJzhLBpltpnPocz83EjPRuprhSpnzqIRaykAve/VpOnXqUpLzItks62DFeQ6g5UDGQ+MNeahA5oAdhJ8ANIY6f5heuuYzq5guwHYO4zVspbBggiiL+25/8McePH6fRaOCUBeOwYs0Frq3bsV57ua4H+sEWHKz16n0ezfpk0B4veW/rN52nGfhuzZXv0C6cz8dapwbRbqT7pdQ3htauO+953ZpDkn+UWOM7vYKP/pUVB0q3xXUSKSRaejs/rQIf+e5JZu313jsRmcx43pmSKB1gssQXF1L6NNN1MNa/MePW3sLau6Vtc+Z5shbLGsVKriMLbUGL9V1rHxoEWTt7wAkvDgSHVMqLlFWAs6J9oBqE8K5EUoALQKo2ScqBwoul0zQjSxKE9JQk4xyJ8SnKkRAYNEEUEORCdBSAszSbKTKLwUEQRmSppVldJrACGdUQgQY0QgUIMQThDyHUIG4wj13dhwuWcdLimp2YlRrlp+vUTkmKo5b+iYjbNo8xN3oRJ8IDHHn8DKJqOLX/CCe/eTeb8zG2c5JIp3QSARpnHEmrgk2fITk1g9AtrrtBIwNQvRbXrOAaHTz2xZT9jzQ4mBl6tg8yuHWQs6fnMUawKQlQpSYq8raurp554VvD4jJoPZ2x+I2MqWfhSHfA6I4+Bq6/gWXVTXnhLEkTIjHEvgMNNr3xQlTrEEurggGRMN5Tx4RVbnnLG2kMGw5OS8yxFZKzC6yuLFJvWBQQ1E7Snx5HsIJUkkIhT2tsF9t3Xk0hN87h6vO09CoT4/30Nrfw2JNTVEIwNqB/cBvjG/YiA0lqyyS65Pdezq3TXGSuiA4ENGoUQr8hzlyIQFEsFukoBdSN4cHHnqNeyzPZO0KmJYtnjxJXVpmdnWNudYnl2ir1tIohoWHLZBKKWkCoaCYa4yytJCZJMu9M096ArDkNCOdRt7p1LKZlDsUNulfPMTEecvbYHI80ISh2syOybAo1rx1WDGnHNzPHlRiGmhVWFmJmkzzNzhvJ6i2USSlu3k5D93D6yAw2PcF0Bv3dd5Adj7FLMYMXKi68KAW12uZJ026dahAR2BLEo2QPncIdWEEWNxFe1o/LDxBcuAfR0eG3wlmMXWqRTa2CsEhCov5uKESsCXhdu83rkhaEOWwrxuKpgp4SKEgTn42ihERa60XBOoUwh5KybdXpM050KNcdZUQ7X8C1RbvOgpCu3ZBYc25Ya0ZkCC3J0hQlVBsll+2mgsZnZ/ikYuHEOr3RGVAqwGF8AF7bmUNrSZJm7S6jD2mEtlWpkGgJWqu2oNXTUKzzjnBIn2osnJ+fHK5Nh/T2pmINphYg8Y5xJnNo7bVdUqm1vDOyNGWNA7OW3uyMd33z9M829Nz+u7/7WHPa4AVufrvR/v3Y+nsR0r42zgcFnPtn/+4X3toaYuAvr7uCnKdBEKKNMjjjCzrn759lGbVag7u+dDdvfMPr2b5jO/l8ASH6QZQQwQgUwTWPgPQuWy5t4Bp1mqeWac0k5If6GdnRz9CmUeY3Oqbtc0ztP0w0nzF/+DlKPUWKkztwYR9KWnJoLApjYlw6gzPnMHYBoS2X3diLiBJEIcGli2SNDqYeWWHm+UUWOgts272bXCGgvFQjSzS9BmSxjlAWl8WQ1cE0cUni19/nm1SfciytRiz1ddG1cZyOXXtYTjVBuYpFk7UiZsqOngtGSZdnWFy0dBcMff1NsgFN98SlZEXH2UWHm63TXK5SbTSIE9AOwuosw+YkiWyic4p8dwlGNjMythmtelioHaWzZOjvGEJWI04emqJaFFhyjIxsp6dnCKEcloREd5M2Y68bCULCfAc61wk5h11dorfku+FG5ClEEX39RQrkaQiYXywz0J8nF2mkku1timcf5MaK68fbi06JNR76SzaBWmtuue020jTj1InT7QNOMH38JOmpKUZzBbL+AhNjBUoDeXJnLd88fIJrr+ul18C2rhx5rRiUlgMty+UiJliYYXE+x5zoo9a9EzPfIMhaRBObmJtpsDh/hHj5IPOuSKnz7VQOVZC1JgN9CX2DVRCzIDL/14sQRAfYHoQdwsWD2CNnEPNNbrj+ZlyWx3UNIiYmUb0dOODkiVP8/Wc/z+mzU6RZitBghCPJUu+qZkxbU0p7jWO9ePrXNNbpU/CdjQfciwTB6x3/td9fFl057/bz0IQXzU/ihdf63mjuix2T/rnxiooDqVQ7Mlt4kEB65x8t9HkLlQ8Yc1L7xb0dSiWkREuFMQapw/aHk4Ix3ufcGYxx7S6+d0NSQuOMwClJmvkOohBeBCiVRODzBjLri5QX7AYDwJBmKS4zyHbSaLukImgj57ZdZflNhEA6D/cnKUS5CHSAMxC4DENGI7PEaebfn/8IaKYpadakp5TD6jy62EFUDMnloJBTVBugrUaoHC7IkQmNTVpY0SDILSEcSJ0Hl0fqToQIQe2E0jgivBen94OpwKSDwhSLX53l5FNN8t1z9G9v0LtnMyNXXcW/n+jhP3/4SU6fnOXwyXm67/kG+e5lJq/5FViZIil1UF96DBb20dXMqGlDOjND394+0AnWQdIytA4b7JmYT//fTapFQedQSi+WLM6jZC/7njrM0K034FZOkG+tknMtVD3DxA5bFmQaKk/C/LLm7J5OlneM8+ar9jDTeTX/eO8p0pWUzcMFLtlY4sGTW9k0mHDJrWN8+bNz7C8v0T+6wmB/wu13XsPB2ZRHDkwTnzrC/NwZjlcMoncvpcIshdY+epIzVE2NhirSUkOMbbyeqy+8hrvu+xyNpMbwlj1sHttJ7d6vc/j4pylccjViZY6hkU0MbNjOsl5l5+Y8n/5oStLyAXlKh0gdYWSBsAN6dIVACCrGEpuIYmGUxBku2F5i/0LMfQ8/hVlpMXD5RTRknpljT2KcZH5lhYVahWqzSpLUWI1rVOMKPV2ddCiBiiKEkBgMrbjl0S/nQ5U0gHjBlzgvYUM+YEsUEDj4WiXlA+MlxpcTPrpQ5+5vVPiW0FzcU+QtWztpVGvsb9Z5W7fmmXrGF5dgigEG3DV0TP0OvQ5+5IY9nF6p8A/PfosO58gJwen7DhA/V2eo5hjrtgRjKcJm7e6+ABng0hy0CrDcjZvZQPqp59B7r0Jf9wbkjt2Izpy33zMCV8ug3MKdXMYcXkL0dpLvGUH19mCTFGeydjqxQ0UBSbnqUUK7Ft7iu+JZ5vVJUV63z1sAiQwCrPSLbCAlBoUKQ3QuIGuf7i+EivmgHqW1p9QIrxeQ0iGVwWS+mx+0u/jCenTAKuktT9s8TSG8YNha52MwfPWGCn2omnVrdqEK19YsgECoNejcghBoHbYbHM43MRw+tdl6Z7Q1FIB2sjvSFzCxg0Br370WsG61LwSpNGitPcJFu/Eh/OejlGatYySEAJOigmB9ffB1hJ9f/7WO891g1mqatoTyO7t97rzL6/qCNfu/F2gAL66L/Jfh9SPtUHVr29oVR7Va5Z/uvY9Wq8G27Tvp6+sDEQCDkHsDQvbj6nNAigszXDhNfV+dxek6heFjFEZHyQ/vYHj3dt45vpGPfrhFrVrh5OFj5IopE2GTzrGbEPEsabGDeOFpdHIW5ZrENsNmxyiObsZRwQmDqcfYhQat2Xme+sQZWsOd9HaViYzBmj5cKpg5fZzSRTdia/sJW3WkqSKyps8baoHRitb+jGpQorx7CDe5mUsnr2A52MS3npmlM7OMDEg6iwVm65ruMGb88hLfuLtMobtOZ1ed3r48u3aNsVAxHJpaRSxOM7NUY9HmodRHT65KoX6YrvgsM8bSsH0Uo0EGhnexbXycbzz6MCInGRjbQ08qmT/2DIeP3EPpVTfB7EnGxzaQK3WRBJauguLU0Ra1ZkLYXSCXLyLCDkxUpLvP0qNmyHUETDUS8qURch0DhIWISy4a49RCk3I9ZnQUcjn1HcXnWrH8HVvd84+7l2z83v2en8NZy1e/dDeLc4tEUUCnzBgfHGBbCOVGixPlmJv39jJUa/GJI/Pc94UzTHR2snNjDzdu6qBeXeVQeZnbx3I8cHaFJ1d7WSn00ze2kfTEXzIRRFz2qr185ZNfYHH+JEWTorOU2ccPk+2LGZfQ3WWQhRho4qliAYgusH24tBcag7DUg33sMHLXVcg9lyNKnYjAx6876xCJ5R0//OMs7z/D0+SpJA2aWYt61mSlXCZLE5L2qWWxCOdZJ6ZdSP/Aj3bnvm2o/8L1L6H+uO/WTHkRD/I7n/vl4NAXgwkvPF6s3+he5rP9l3VyXlFxkLX5/rJtlyeNIFR6fVFZSzYWODIrSFIv6M0yS2oz8gVFlMuRZdaL5wQooVF4q08lBU5lOOHQ0nPyjPCha/kwwrkM0+6qmiz1DiGZIxdIUpN5dxHhiwYpwQowQvqFHMBZTDOmoyOPsX7jJXXoLRUlFMLA04WcQ8sAIX3RYlstglyAbgVYobAuQziDkxbSlHwpjwwDnPb6B5NZmg1HIVciCCGf66VQ6iQsRGhtEYQ43Y+zCUlryadFByV0IYeUeXxqqkOEN6IGL0WUymSLp0jNEQZvX0R/+yCPPbLEA5+pUbrreV7/2gN0ve7dfOTP38j//POP88xDT/HUgRrmY8/ztoEnmLnn4/Rev5Nn7zqAmzrFjo2OJ54x5N+suX6wTPJwC1vNKDccB5+BXCZoCihYwaZ+zdagzqbKDGO3bubMcYHbuIcnvnmMntMVNnU06btCIkoS2a9Ijhv0zYrJ4WEmJq7D5f8dxXSMX/r9B7ila4GNu/ZydqHB5//6M/z2r/4wd/7Mb3D5pTE33/CTxDuvpTw8zLU9AU+cqPPQJw5x6eyXuefcPg73bqHn4rcxc3iJ/pkl5MoB0nzMQK5AIbedaNPP8ObXv4p49mGeePSr7H7ze7jk4mspnH6Gx2Y+TaYdxe2XEx4+xer8AgflNylt7Oea8AIWTj+LdRkqV0SpTqQRxJVpIqn50ctK3L2vSr2aoooj6OJraVX+gQs7RrAdPoG2Qy1y8NkHIctRL69STmC5co5Ko4IxGXktkFqTuIDECaIwIJAaaZX36bceIcBZAikIZIRC0MgSBJI9PXnevXmAnSNdLDcTHnzmDH99X423bZf8+lievzkET80nfH1+haeWa8ymGX87nGP4+k0cPrxM9lxKwWpur/8ev3rhVpitEyw/w+XX3cpl26/nz37l17HK8md/8UVW0fzCgONtvQG0vD2djwyVkOWhnsedDbHfEtjHNxPtug35lisQG0oQBX63moJbNbgnlnEnTiNPzxIYCV0DiD6FyBSUa7jMevRAWggluquDtNoWAgMiDAmLCltp0jnQRZJmZKnDOU/FMdaSxjEmU4TFAsZ5eqFJDFnmcFp4Vx4HLrMIBLmiL14yayGLPTLR5gvpKPLhiJnFaU99FMJrApwDJyRZGuPw6c5SK6zJCJQmSzIEELSTQuM4I7H44iPwtEnbXhWiXIAOcmAyH/LYRix1oHEoslYT5wSBEijteVJOeqQhywxZlvqcA6nbWQiW1Biksz4h2uK7c3h3pFyh6JEBXJvc5EBLMuFF1dI5TxF1Pojyu4/zYWrWKorvy+ENKM7LsVgb5y2ePsV1rdhcC0FbrwrW//ce7e0Fv30fIX0Yn21nZag2BOWXpzX3qcwz01iz0E755Cc/w2c/9wXe97738va33+ntd9cSOoJLEKUEkjq0lrEM0XHlZsSxpznw6CzNp2boGZpn0+X7yG2/g1/88If5ymf/msUDRznyzDRZM2DHTaM0Dt1FYe9lHPvMp+jrWUKrmMXFJuF1fWwqzZA8cwahY1ZnDZWzAteSJEqSzwSjA3kGkjm6VERu5wi1cg7TtYGpA4/QX56mNJgQDuchl0cUI8xCC31rnsHeixkoXg/yCmyc5/NfOcUt/VU6x3dxYN9JpJnjwks38NGP/B1XXJdw5ZW3M9e3nWJHjgEJU3Mxxx9fZNvSU/z9qYPondeQ6x5m9Vyd3vkqcvEZkr6QSRmi+y6he+Or2LV7kLRymoe+fj8/8v73M9HZSfnk05xdfow0Z+jauJugGrIwO8tqVmEw6KMr18mx/Y8SFTSFngHysoektkK8eohoMuLO2yb5xN1TrFZa5Lo2kevYTHdpiZtvfdM6VeN7dmXbReT3PDbbdJIkSRBC8DM//7NsGB3nTz/0R0RRjht3DXLHnW9Fr5xm+ulDnDo2w+OPrHD5bsXP39LHp+45x5mlJRbKZaIDIeVWxq/t6aJ42w2Yzz1Ds9JHb1zhTc2/49rXXYY7W0PWn+eO9/00l22+nAOf+AJJmPGZP/w4oSrwvou72TFQ9I3aNG2fIiHYQVzcCQsBbirAnZ1Abb0UccUkIq/btvS+d0ET3JkWYm6ZX7zqLdRf9VamTJnHj3+bw2ePsW//PpZWV6g1asSJw4kXEpK/T6eQf/E4X4D9vcj869Pmd1B//I81x6M1Ov7LvNB3HGcvh72sFwgvEUKffwyL7w0VA684BM3zyqXQ3vpLBUil/KKdZRiXeqcPAJ0jCAKE8NHmSIF0ljhO2kJlz/e1dq1zZnE28zB7OyDN04A0GO/jmmZtG1Qh2oFkzosBwxy5MNdGITLSNZ5yEqOURCvQSiAJSFuJ7+rhWBNTCfweRSgvPMU40mYToRxSg8p34rIMJ0OccEihPF8ai7UNOgqdCFJCLQikxFlJK85o1hNkrkgryTCNKmFWJ9CQi0L82woRzjuFWFqQVgijyH/VTgIe8nfKobt66ez+cZrLJ8nEHi7Z8Dyj+w5x/1fP8aP/rcmbP/GnXHRZH3f89PXcdNEV3P+l/Tx8IObzb/s9LhiIeO9wxEZR5cFzjr96OOPWENQjGZ+/r8o2CabpqFQhHwp2/ddOdj9g+MZMwOSrL2DH7iJ9doXy2TqbtryKt/7YB3nfT2vG9zpcTTD7tKVrl6b8xZi0T7AkYLFvgLmnAs4+9B6m5yWtSj/DOxs8/K0Gi0EP1160l//wsQf4q098mNK2SZ5GMZQ6tkwnHP3oUd7zJ2/j4lzCfUJSfP0HCEeuY2H/cYaXH8PNf4ndJcPZsqQ4todNF72Ggb3b2N5b5ud/5w/Rl/4W1+++kImswjcOnOOeIzn04B1cvuEGjh4v0MwFTIyPcduuHp46fYRm4jdVrpVipQEXooRirEdxTYfhPiHIUNA4CNPHuLJ3iD978GmUcFy4fTtzUZHZOGOit8DWvbuYPXmS+aokNpZWHFOxhtRmxFkKWrLUTGimhpYFJTWhEjQSQ2YsKQK0JB/kyMmA4SDgY+/ZhP32Kitqla6L8rzz1Rfw2Kcb/PKTB3nv7jF+fudGTvSX+dSxKZ6stYgtvOFMhc+uLPOubsEdk4raapWtu69Bf/x3ML/xu4jBCxEdvWzZnPDhr/8RRsHyT76PXzu7ylB+A/kzEfYTM8hrgRGBCCSuFZA9kmCeLqL6boSeXYifugDCEBIHdeMF9Ecs9qvLwEkIGuhNkwQXjML2oj+25+tYkyCt98+2WYbVAhs3QAeojoI/txU4JXGtCgSaIIx8JoL0ib9xPUVFOXQhxCUprpVgMq95ElpjsxiZLxAg0aHvV7k26pkkhlYzRkqfkyIChXMZSTMFfPhYYh3Idsqwc7jMECcZTigCLQiUxqWGOE69UJMXKEyhEBgtEAoyLDbNcHgnIecMZLH3u89StPIObNZ5AaATglzk0VUlfdPF4EhMhtSawLm2nsHSihtkmfFWgqRkrdRTO6X0NDAczjiiKGwHoymshVarhVQChadsgg96S515JUvB9/34ZyWOLxEBvnQRPt+VaA2tX/cUF945PNDaU73awyM17eeDdsbG2mt4alwlq5LLRZw6eZKTx4+zddsOXihIfFMIJZH5XsL8BGlzGbNpkt39+5l5+jBPPTHN39x/mtsm/5iNV2/mDT9yM6c3Fzny7AyPPbPEPff+AdsnenjtWB/DJcc3H2pQP1djd79DdC3yzBOLjElLvWoxdUd+uJOeN2xh7FjMocUCo9e8mp5SjEpaZA1HseMC/vDd7+Zd/2EbhV5BWoPsnCEshbT2LWK7Q6ooaqsjVMpzrB7/HywvK1jto/uiGnc/eDdjGyfpHBzhsUOz/OoH30HY18VJC9uMI5hJef5bx/joZ/4XV5QSHhKKgTvfRyspIs7NM7h8HM59ky1DeU6fs3RdcjU92y+id7yLoijzt1/+POM/8itcMNRDOr/McyeafOX0AIXJ67i4bzPP2phGsZu9w11s6FEcXZxmoWowjQy31KShuhBG05UP2TkQsbVgKJPHhRqz8i22Xqx498+9i2YrJp/P/Z8dlO1hjOHE8RO8653voW+wn1/+wC/SVSyyY8MEwznNu965i+aj99Ac1ozc1MvgVSMcf7jCH371SX72NRfxrtddwL7nDvDYoTMcmlul2cx4/9wCf3btCHde2MftHRaBonT5bYifeC3ur/8WilchQsO2Oy5k61svw7YavP5D/4k/fW6KUuetyDNVXHgSscFCR+jF8WkO++QSNHdB7lLoHkZcPeCbC8ZBw0EFmLO4gy1gBaEz9OZRuobz7OlU7Lnlcmw9prVQ5r2/9wEOnDiCc1VsHJPZbB19+//DOJ/Icz4Q8EoIPuJlCoUXEuDPg3/XOUprPKTzCoPzf/8XVGSvjFYkaC+APozI4lM+09RnAAi0d8cIQr8ItgWH1mSYLKUZZ6gwIJ+PfNWM8dirBOEkWarxjuDOowLGi3QK+QhLDhUIpBbrwos0TVBSoUWbMywMTjqvJcgcNjNEyiFEgNIBoVZo5ZOVncsw7U6tFN6HNyrmcDiSah0n2oFD1hJpiTOW/r4CxqY0mjFxkpKZeL3IMJ5zgLUGpSTFUicuX6QZZ4QdneSCgCAAJVPSNCFSCocGl9GsLWFNjY7Oc+jBG8G1QOQRwiKkRuoS6Dqm0SAo7GBsbC+NoYuINj7Pay54gt7PP8snHpzjc3efYdMjn+OO1wzwrp+6gl+46GdJ6UOwzN//948wdtWd3PRjliuOfozj958m/7Cl4yaYQtAxIJgcEmzZGdA5VqD+tgkuPrWD8tkljjxZo3OgSJ9r8ty9D/L+d0wyc/8Zzi00IXOUjWMuS/h3PxTwhMnRXwwonD1L/0KdjtIos+U6d771GuYiuGH3Tno2bGGVEu/u6eEZFSKejDn6pTOsPv1PLE1/hSerp5gMUlZ6LoS3/WdYnMc+/WXcygJxYx9vHOnna2dOMjw4RtfQJej8RYzIHMfKlrIZ5fLxTnaNhjSrESebitbKKUaGL+DyC7t5+p5vE6c9dHdtYNP2Ae794gxaCozO+5PPJoAkigJ+991vYucVMfnj96OrVfpyBSY6unmyVmE1bdDT2c98HDOaCxgqKTqjiOMHnqNpYDXJUErSWYiILZQrFfKFPK24ickMWkjyUlBttXxRYLzbrQg1AAAgAElEQVSGxTpDIzH0KsevbRznhnzG9MdOcDBLWNWO5lMCE4VcNTHMP/3mDn7zr87w5Nwql/SHvGl3D9m+MkebCXMu43fvm+UX3vsWbv2ZCezhb6OveAdMh7j6NO5jD2NbCjs5SvSOKwlufxf9X/x9/su7/oDKoWlmvulI9hsGahr1b0ukjykaT2rMkZSg2Iu++VXQvw0qEemZRdLnE+wzRxHHDqBKl6DVMGwcQl5ZQuQk9pzBHF7BzFWpPPUomYbChRsINnTgQodpJWTNBrKrAFpDPgCtEUFA2K+xzZhWvYpzBhkp7wIUWFwrRuk8TgmkshibIZwkUmBERFLPcEqyZlzspMRqAWlMqH03P01T0qRFEAosBhloLxTGh5wlSYrSgjTJEEKRy4VIrTCpxaSZTx7GovWaj7eHltPMIKMOTJa8kC7fhn59oJ5DBRpD21BBBIAjHxaQQq7TyhACl6U+HE04gkCQ2aQdHuTDH700OQDttVbOWJQFZyyZceSC9oLik8/IF/JkaYqzBtHOdfGNmu8+//8gdfjW6VPnk3Vf5k4vxwleo4HI87pza1bYawHSa93f9QVeCB+o2f6+1shZHl1Y07P5Yq0Vx3z2s39PtVrlQx/6v/AE1QCBBakQ5MGl2CxFBUN094ySdA0z1L2ZazYfZvCJg9zztSPM73uIy7/8DG98+8W85s03Ibouw7oQIZs8ddfH2fhDf8D1N3ybxtmvUdv/LMHXy0Q/HHIuCegeEAz25egc6SPoGSC9bBMTy9tozU8zXxfkogid1Fg9823ueM9tnPncQ6hGiyxLaSSGVCiufk0fJ20f/fkC0bGDdKfDBMVe6knKzdfv4ZyyvO7GCVyuhFURk2HEtFRwOmXqgWWOP/8Qx888xen6Wbb0RqwMX4q+/e24U6dxi2cw1QXIznDJ+ABPHFlgcvtudO92omCAnJMstyRVO8zlQyH9HZKjC5pzS2VWpo6xeXIzWzcU+NyZx9g2eAVdpT7yhYjKkqCYk6RZn0cObQsw9PX0cucPv5bRHf3of/wf9JYkWwd7yCUpd33hLr79zNP89gf/8/8nx2atWuc3PvDbLK9WWVxc5jd+6be4cfMk79w1yahqsvjnj3PW1onzgiTQRKUuxjeO8fuvvpr/9RfPcqDUya6JiKuDEXLJIieyKsdqFT7xJ4/z1g//On03NxCJRYxdBRUJ8Un4o3/CuAHEFTuRt1yC2nIRhd/9L/z0v38/6Yn7qR2tk98iyN3WB5dswJ0ISA5KOK1QmweRu7cg8r3QkpilOua4gadPIMoZonsEERZhvANxQR4yh52zuJMpbrlJfHCKc8kSppqQ0xFpkGJS03aJk+vn6w/yWNt4v3STL16y839pN3/tcf5uL3n0i3QJ3718+G4spTWW0cs+sr2HXjNV+F7jFRYHEi11OzHYYlyGkj6Mx7tctFPahPaTqPBiXpznYSolXuBltTfkUjgkgtRYYmgvUiCkRkkNQpI5hzQGrTz8bUxbhGxBB4rMufYCDUpIH7RmDU4JrPLPY6z3+ZZSksRejKQDjWwz4JAC4yTCJugwIDMGk2RkaUymLM7ERIU8Eou1XlwjwpB8Lk+1FlPIhzQrdVw+Iwsj4laL/nyI7uigWl4hrjjyOUW+qCl2d9Ksr2DSRZRuFy65PkRQwpgEqQqQVdoiyACfk9CB6ujHmRAXV5GNTkq53fRcMc7Y1tvY8/ZncTOWL959hIPzLb7yjQq98//A+N6b2XfPl9h50x1s2L6HQjEiGd/N6J67qY78JfFRx8ROhWw6ilmR0qW7UKU3Ebld3PuZPyY+M0V3PmVi5yBbf/atbNy0m8F8RPxjyyw89Eka++8hj+PMEwlHl2F4ULN03FGda7FoVtnXo3j9297I8AWvoaPYyWI1z4lZQS1uoe4/xX3f+AsWZ88wsFBlubzAiXiJlpbsvv2XWBy9mMbRKdJzh+hePcp4MkeYSsq1c9guRWfxajZ072LDRIHBXZrFfV+kvvffcsWmjQx15nj03GGePv04EsfurT+CCUNcZy/9uS0MdW6loTuIhvwGCXwyrpItlLQEUnPv3Y/yyIEcr71+mFtfvZeZlQ6e2V9h5fRBbJbSiqvUFk+y0uwmlUUWskVqjTqjwwN0h34j10ostdhz0cu1GsUoJIxCsiwjjWOcTQhk2xLO+E2sxbIYt/j49Dlu29LNcscYu3b2k2VlTHMVV5A8c65M/0HF+y8a4pPPzfH0Yplml+K6XsHRaUUOxZkkYLk1CqNvINh8Mzz6GLaaQ55chWavX0DOLGC+8ij66km++h8/xWW1KrMCmq2MntFexJt+gv0f+TuyowlyOaZLFuje2oMpR5T/8Rg9v3AxX/5/P8iWqQUmWwWCbBKnumGwiBjMw3QDW6mSzi3RnJmnsTqNqVSwHd0gFbqnE4qgkoxAlrBBgAs1BMI7ByUZKG8hmtUdNo5RLkQVNFJZkBAWAi8SVjlEPSaptXCZATTWOHASKxxWCA9nJwYlFS5NvBWhDtBagjRkSQy05zOpEFaAkSRZjLFt6o8V2MwjpGmStedGr7cya9CwDlBC4UxKTmufb9Ce+4zJsMaLpQXabxqV9CLkNAYkaZsGpUTbk9pAqEMSk74grsahtcI4SRxnhFHoBcxizZXImzdorUmNgyTzlFCBRyks/njLvABRCUkg//VoDl4cBNS+7jy60JpbyPrSut5146UX1p9PSOEbUc7Ths4Xm3p3EeEF7VJ4V771AsP6790JyAQV16BcrhHHMVGUBxvjpPbZP66d5RMWsVbh0hYy7aCjuJXC7jF6xq9g/Nop0pWUxx45zqn5As1DC3QMP0+xdxPn9j/Opqt+jO6hcYQbpti/m97xx0iGPoqZcXTvLiHmYvLhZsKRaxDRlUg3xJNf+ATFbIXObhjctY2hi16N7O+lECqGdryZ2rN/hmicxFZj6qfrLJUFvX05VvZnpPUas3qe1YGQC6+/mtLYDkIdsNoIqNccWTMlmVlm3xMPcvbUMbYv1di3tMiZRpWOkUH2vO4OlvsnyA5Pk85O09c4RzGpk08NzWwKhvIUC5fSV+qhdzAg1xmzPH+S2vab2N5bINKSo8vnOLE8TV4pdk3uJZMg+gYY7h6hEHZhggzdmUGcIDHklCQMVlGhJicEBx7/FtOLE7z7zouZ2Hor3Z3DnDx9hgcff4Kf+jfv/OcpRa/wmOzo7OB3/uA/8ZNvey9xa4XySpWnjp6iENd536WjxMM72LCji6w8A4ElFjC7uEAur3nzjdv40tee5ajWDEaKzWOaUzMR3RQ5tdpNMx1Gjk8ikgrMzEBDwIkFULsQrTqcmMJ922C7JIc/+im29JY4PbWIEwn5vsuwE69n+R/vxx6pIlYqFLuHUfRi5x3pqWVyrxli3+/+AZujIoVkEPLbcfk8oitE9GiYjXGrTex8nXShSlauYCstenryjPWPUnZNUpeRmAQrHVJIWkn8f/SZfr+N7zJ9vOyV31tm4NZ/no+EftcU5fPEU+c3PdYaTOvAwRoK+grHKyoOfBKePu8k8X7a3tVDIITCofwC7KznYYq2gNl5xyLbFq9IsebOJ5FaI22CEsZv8KXAQ6z+/RljkMJ63qcQbaGhD//JtEIZH4AmhRdDizXqj1T+eYRulwAGrQNE6kONPG+0HU4UG0xaQwuHkZ7TZWiLnbOUMHCkxrQDlfwiIwwI6+kCNsmwIsO1X9JpRTNJcFkNnCOzhjjOUAHknSCLE5pxQkdHAa1KqKAAstDmuGogbCvKFdYprDWYVJBVz2LrVbB5kEWETekZmOSK0jDpJoftvZijhw7w/Kn9LO9/gO5vTLMj6EHftB1VHEYEAUFXB6WugPB1T7JojyH7oTR8FV2T1xNsGMO6HbRWh9h08Q/T3DRHd8EyuaGDQG+hb2w3KiyS9NTpUI6u8S7kmbvId2hmlgTNOcfAzhuI9nRSaVQY7Rpjx8XXM7OaY/pcjXNz05ydOs38yf1k02UWjz3IYqtCVUSYUi+FLVfSP7mHGEd8ZB/h/CnsakKUKEZkkaOtacpJk40TFxLlLqB/ciPDEwmnj30NMzBB9+EJtgx2EOU1y+UGs2cWkarI9p1bSHM5rOqks7uX3sEeQi2RZeF1LwqEEygdoLVC2YT9R2a4pWuAXFgk7A5pZYrENv0hpTQqr0jThHKlTM3GCBtSVJBlKT05QSwgTQ2WlLyW1BopBR2CUiRZSitN173vtfDoRWZinM3InGA+zqhmGUkuhGaGICRVvdS0ZqT3DF8+FPOWsRy3DA3xyHyZgwtLXCtgt5J8MxNUHcRpHiFHkGNFXH8N+w9fQcwlCLkHETRQ7jh2JoEDh9kglnluNWY5tQxMRBSvyNP49iwy6SadniVsZojN25EbbsQ0+kiTgOc/fje5/fvIxTVksAUR9CB0Adc4DnMduKSCTRKox8jqCiquk9uzB3HhALldQ6j+og9haqaoUGIkOKk8PSdN2xtnEFGEjEJwCcI6bOoQ1m+C00bsg9CkxoWOTHlxcZom6FwEyiMAzq7x0PFdY+GRTU+79A0FLXVblOvFcrL9D6HBtTya2EYns/YG3GsP7Do9UgjnxagIT0PBa5qc9SYIFn/Z2+YqT50UvgKwKMgM1rTnT+XnWiV9iqrFrVvAWmcw1iKERa+lj1rR1n95Lr1zjigI/jd3bx5t2XXXd3723me6w7v3zVO9V6NKVSpVSSVZk2XJli1PyAYbY4MNzWQgARJoaFYSSGgSEpxOGrKSkDC5MdDgAG2C22DiATxbloQka1apBtVc9eb5TmfYQ/+xz31VGuxWdyDLZtdaVXedOnc+9/fbv9/vO3hytPBQF2ttqcrlyYSy7KB7N9NX7nPwzbPcS2+5Pun9RfKsJa/A8aLE+zLLF1/iKtxuX/2uP1nwHTIvndtXNJLbSf/S5Xk+/vFP8u53vxu22SDePNRZT2q22QauyEBUgBClFANDYww0JnEF2IFr2Fw6y/NnztF54gSVaIK9UzsJmrMIVUVQJahVieKYQJ6h8+izqHqNyvCriaauR9Z3Y+00Jq8wdd0dKNelURcMTI4ShFPI2jhSRtjKFLXwuxHrX4L1YyQjLdq9hGJRM3jwjWzmhkQoRod2MDqzj1ZPsdTOWN9YZfHsWbYuXKRYWqdz/jjtjXWeCxsUMxNMTR6lObWDTCqy589RaS+TrSvqLqZqeix1l1nNUmavPQrRDENTTaRaZWNzg7w+xKAcYbQR4KTg4nybhSVNHA+xa2aUIggQaoCBRp1KNUY5i+wJQpWQBIrQSpJaQqAsMu9y/sxl7pwdY/8db2Vk8ghCJog4opCCPXv3/PdehNsrDAOO3HCIn/6ZH+O3f/N32VpdRxto93JyU2BqFUgdQjbIgxAdFCTVNk+c6HHnrjq37N/P8blLLK21mSxgby3gUjdkrXDoIoZoBJIBWLK4Lz8CcyE0jyCSk6A3YSVDriww2Cg493CLnpQ0jkyjdo2gL3cRjGLmVggyg9h/GBr7cUUNnVoWP/Y01cvnUWPDEI0jwprvjLRXYCXGZV2cdtDOkWkP6Qzq0BTx/gbf2nsH0YOf5dEnH6Pd6yCMv+Zlf8L3Tby+1ib/lUCGXgoXuvq2e+lBXhjHAD95Lp/wCjH+ypnbE4v/H+uVFQdcIeQoFZYqIKXCRTm+sPjZq5BeHaQcrPoRuvSSoqocwdp+ELZeAURaj53tJ/C+MlJeOMIw2E54QpTY3NJRFK0JSoM2gedG+IaQAid8twYAP6pHBgjnXUh9IQMmL0iL1HMeFMhAYLRGa4Myjjj03AqhfHEUSK9uZHVBECmvaIIgCLybsxNQGEPR3aKS1AjCCBX4zb4urIeQyAoibCLCAZAxzkU4J3FOIkTVKz05gXUJxhaknXVcZxOcxcmAXtalMz/vf5ftTXqBJU4co4OSRdfjkScWufmmfVz7htdRqY5iXYTVFmEEWh0guuZNxHfPQBhRO3QftT1vIutBb7NH1o15zbd+Oz2bkkSW4cThWivI9WVWdcGWCBgYvZ2Qgt7c56nf0mTgiYh2uhu553aaO8bZF1l2hROcOLnBs08+x4W5JdrtZbYWzrB46inaecaoqpIM76AdjRINjzE0M0M0tZONZ/+S3rktkgFJI2+S6IhVCuazFfY0x0jELQyNzjCxs0ZtcJn5504j9tzDddYyMarohIKlzR695RZROMT4njq1SkhAwkAjYWg0JlSGbLWFUp58Lp0rsQSWUBYYHXBtM+LkSsbK5hKLbUm+5RWmhAqo1xMq9Soud6SpIakm1KVBFynVsKAxmKAGE1w7o7XeY629hS4KtBWkRU6mCwIlMdZ6rkuQIIXCmMILEcqA+1sZqtKBC5uMVGOiao1NLZgdiHha1Xl6vseR0RHyQrCw0uG07nBHHPNlLRjEEly4RPrwaeTKYZLOUTj2x7j2JCQ7kLGFwSZq3xjuqR5H3ngdn0yfpXpqleE6uKAg/7MHyYarVIWgEsVUZw9hp17NyvEqZ80Ez3zss9wjDjAYr0IwCckkUmnc+jFEczeu2/INARERNgaRe4ZI3nwb8rZBRAQu05h2jssEIvKSug6BTT3233djLSIKUZUKUpcb3MxuF8+6552DvSywQIYhWoMtDFEUIAIJ2uBKEQQQGIGHM/aN+8riIQzC0tSRsovbJ516npKHOvabFl4HX0pJYey2XwJC+VhT+q87Z1+Q+5RQOKm2HY37uvnW+KaGtdqLGskStlJu9h2CAIdQPq5qDcZqrCsQlAVVGYd8c8TTGpTw79f7JjhPgKZUUBICqfxmVAhK6MvfhSVe9O/LJOByaNDPN33C8dWK4H1S4PYU4kWPc+V4+UxXn9t/EtefOnifIGsdSiqyLGdhcbnMVaVylFNlYWEwRYorUp/ThCJPM/J2l+5mxvLGBpksGAhz6pWc02vrnD65wMHdg4zfchgpvTkjzjcVnNqJGruP4PAkIkqIZ9+JTGZKiW6DKRTXve5ecpNTiSQR2hclvQ5dY0ilojb6Oig2Mdkq0f4p4kshaXsYOfsqarWA2TCk0Alnz2wwf+E0a+vrZN11Vk+eZOXcBbppylhUozE9y3JthpG9k9SnRlEBbJ1/it6ZnMqYpNYdIjc5bb3Fil5nrDFOyGGqQwPUR0K6WYetXhfTuJZ91lGrSzYdrMy36axZmsMjNEcjQiUJXEStFlKpKPLUors5cVIhxudvoRxKFNiiw+kLKT+w7xBj069CqJDLc5fZWFtndnLyv3ti8HLrB97/XVy6cJmHvvQIbmsLgphjK20qzU1Eu8dgs0muQ0wItaRCSo0LFze5fvdO1jYyllZTNnSXQyM1PrksmBEF4vmL6OYUojGC2hjHHXsQ1nYhxBgM5IhhDUMDsARTdx9l6eQSVZUSDQ7guh30E0+jg4BIepEHteswhZ2lcz5mrRWw9GCLw1OHPYcrHoNqHchxq4swOAqtNk6FICRqZADZaCJvnkHuS7jLTXJy8RzPnjzuYZB9Yu1Vjr3f7OvrvY2rY8UL73NF3ejFxcTLcade0vW/isD8wvPLSHbV+dswyb/pyYHvgjlC5SFBRniSlVDSc+t0jtYFKgioBBVUqShCSeAVgUIWGZFUZP1CwFqKLCUvCmxhkaHEGD+WDVSIDAOsU1QqCbowWOM1YpUQOKV80tYaK8qkqQQC601F8K9LaF2OsIDMa1EHQejxVtJ3c6TwON5MC2wBCEehDaawVAJFmkOmMwhyghCSSBIKMNpgTIZMqhBAPDBApT7A1sYGwmics+RFSrXWpBonCARZzyKUpt6YQMkqEGKdAhtgjH+d2nljFqz3UbAIummGiGcwxrKxusXipTnOHz/Jk596jI8e/zw5XcZUxn03j7BzxzCmtpOf+fcfZGc9IU4UBkORtynyLlkeEJtvYfKe95LUxlEqoNtJuXC5TXu5RzXM2LVrmqnaOEp4o6m2rdB++DOstaYYmp0kHq6gVy12YYzW5Cxycpqdt72fL/7V56hu9rjlDXdTbHX4zl/4R6QbFxkJOjirwSnCqIqOB1kIphi89kZG6sPofIP1yyfQD3+UoVAgxARZZ5gb7AZZusDns3n2Vqq8Y99R/uj8IV5zXZ3p5hrdNGXo8N0cP6e4c6rG0ETI44Xj4uYmLl0gGtpBZSpmKgioBQOM1auMN0JyctbMKUQIkXYIYSh0D2cMw4MRB8YGyEyFPE85dXqe0yspnVSgtSJWAfUwZGxiGJ1bulua4eYQyfoCadqjKFL27dvF7NQoUxspJ5+6wPz6Jlmvg9EFWmusteSlAlgQhIRSEaqEwhisSVl3hl+Za3O4LtgbO24UVfYFGSOZ4Wwr5P1Hd/Nb9x8jCZaYkRVePTTOHyyc4+56TNzNuE0oxr70WdYfF+ixSaZHEoR7F5hnoF1g7Sxy5AjynXvIP/lhou+6kbcNCsxHnmTzqXWWv2iYbgY8/8g5bhqo0RweozI1yqqRfPFPLnN/OEYY/SD3Trwau/kFMt1BJjHCbGLby6iRozgdYzYNJqwS7J6g9o5p5J0NRCiwqcauW1xmsB0NkULGCorS/0CDTsvoJCQySjxzQOee4CskYVIBoSgKgyu87jrSx5qoVsE6iXTKd/OVJVClMRUOJT1fCAEilN7QD4nRGU5LrPCTAFPCRSwSpC2ntx565ErYpCpdTy0KGQSoKEIVBdakQLnhw3fmpRI4KbcN2aw1ZRHiJ7BShAjr4WUe+97vbpfvAw/T7MPpTaYxwpXamaUxofRpIFBBCelUJcfAFyDaCISxKCXLAsy/j6+HKnrJxvgbPqNfwfVerU4q+seuev0l17iUnmW7YPPnihc9ItuPK6QouQgOK23ZQLtybt8XQko/JVIq8FNwqdi3dy/f/33fU742WfJMfDFpHRTaQjCIKTStjRZb68usnF/mzFc3+PRjD9Bjnf3xJm97+2EUIeH0TXzbT/8UjSjwBn9YTOEn7M5FKI5Sv/YOwnAAgaObFnTaBUWqUQ5GRoYZkDUE3oG70C2KhQv0sga1kQGECzBbIa49TTExgxwcYfhVb+CxL36Z2ev2MTo+wuW5JX7ndz9O+/IZdtbWyLo9oqCKrA/Qqo3Sre1l+pYD7KpWaXeWWDz+GKxcZDiyCLWL7sYINxfLPL5+knm9zrUjo7z62qN85uw073uDJGKLvDJAGA7T2pQcHA4IaoLljqO1uozKOjSHp4gaiqaQVMIKQ5WAOJR00py2W0ZVJLXCguiy2V4mrgji2PH8hTXGb37X9vd7/NhzfPWxJxhojnDougN/kxfm9jX1sz//k/y7X/ogX/n8A1zUOX/89BI3zQTMDBTUIkOTAJM6OrLC647M8OnPPEyzdoHrR4coOgXPL57jDWN1wlOb3FUNST7+ObpP1pDTt1KthghxN/Qu4OYcYsdtMDMJRyT2zDHkrfu48Ydz3Ec+Q+d4h+yCIhgwrD59npmJGZLJfcjRJqtPZpz5bMrFZAJRvYuje6/BnHsckTQQsUDkPdxmGzG8C9cG2xJQryB31wiO1hAzESgwmaHT69Lt9Urfqf9vm9Rv3HU1zOcqU7OrYk4f5nO1nHI/gPcjjbNeIv/FLuzbZ7/McXFVYXDlScW2K/cL4tdV3ixfF8/0ovWKioMwComTxHeidOHJbSogyw3eCrl8Ma7vBgrWiRJqpDAOhFD0Cq94FAX+cfLcEEmJjXx3zjmBtZ7I7AUcXOkm6xU+JKUevCpNfExBXmhM7icWgZJgtGfcyxBZTho8n0FTqSSkaUqeZlTigDhUiCAgiGNSU2w7wvthV0k6DAJ0oekVOYkVHgIhHLrbo1tItNPIQJLmBtcq2FzssHR8jsEdU0yMKWwnQ+iIJIrIidBqAt116KyDjCxBUiOuJQhrwTnStCAMYqQzmKxNt73GXKvN5lOLPPjp3+Ph557j3EZOT1YwRccTPEOBSgIe7O7j+NZdvP6mCer1CBmAloowDGj1MubXBQd2N0kaswgn6PZSdGeDi/NL/MkjF9i98hAf+YNP8PMf+l1uOHyIWhzTNYrn2gMkCzC8Z4jFL36Uwb27Gb3uIMFbf4Fjxxyv+v67sIs5x089z5PHHuaL//fvckenRc61dPITGK0ZqtaoNWdJJm/mW254I4vdz/Dkpx4irGxQmE1sz3JttIdMvZ2a/DBT2RZzRc6C7XFtvcZPXnOEn3+6y4/fuYsDt45Q9J5h5fI66vq30ny2YM/OgDARBKcygsXMb/yjAb73tgYfOVbghm5hbLTBVMXScrBwuo20sHdomrmNBVLTYyKRvKUZMjsWcu5Ci41cUK1VGZMhvaUekoBGVKO1lXPp3DyBCHGFYGtxBWHazI4N0jOwdewSPH2JXs8wkkgmI8eWDUm1IxKSVAZ084JYhhgCKmGEtooU6FlFpns4Z2mlGc4JPnd5i/sbXb7tmhpTacCvffxxfvjNO/jc4wt8dmGNMIy4OxzgP6XD3BSE/Fgg2R8MoBwIvUk4NEjR24lgN4gYXIJbTLCfEMQ/+V242hL5B/8Qtdhj5NuOMPoP3o6bu567vuN7WNnMqO2ZJtxY4sTc/8m/yY/xvuof8cMHFOk1h2ifCODsM3QW5xgMBpBGwdYienMZoaaIX3UN8Y/sRUyEOFkaxPQ72RKoBngNVIXJCnS3IN0ypC3DwLRCBiHRVILthuhOhyLP0F6IE6MtQb2E5PUdhXVOb6tLmETo1OHNEUPPRRIOihST+2aGDBRRJcEFEpNpVDn101ZjhecWJZFCZ47MKKQMcQiMzbHOEiAJwsh7EuA3eg5JFEi0jHAopPTwHxBYoch6eblpAxA4Ib3rsvB+MsbkOOMwfYiRFOA0KoworPbkYW0ojEVISVjCVSx+OitKuJEroZ2F9kIOQeluD5osz/00s1RYQv7dmRy48s9LChjXBxOVm/erc2o/6V7FQ7DWlgVT/5q98n/+prsKRlSa6wnfgHKiLBVZGJoAACAASURBVKCEAAICpTDaw1nDMCSpJERJ4rkrhSUMFFiN0Rl5ntHuZfTmWxy//0947NkTrGQxPReQpS2y2DFUATUY82DrMENDB7j74Chh5CdGVniX7HZXYK2kOZAQhINAyb3TXS6ttrm8tEp17TQPfOp+vv9f/CJDAzUQPv5sZiFBG2qjVTYe/xLN6w4TTd9O1ryJVksycesMtmV49JGneeLZR7kmLkhahi4zLKyvYrKcnVMzRJOHGJ89xO2zs6ylJ/jyH/81td0brK9dpmkazNQOo4MjVOXHGW+3ONZrkwYZt0xOcXTmEH/6TMp33j1MY2dIZ+4UWdIkSEaptS0jI97MUK0VBFIT1hQD1Ro3TkU8uWypTx6kWa9QCxwrmWV1ISWykqM79/PQiUcQwrB3IOHuXUMMvO7oVZeJ4w333su9b3zj38rUoH+t5ZmXq7bGstFpkec9WqubCCf5wvIldu1rcO1sg7Cd8eWPP8rbvn0/9//XJ8lUj9BJ9iSzfKYzwn1TFd5UDajEDSgc0hbIWg23PgTBsBc7cCHuokJMCeQ9R0F1sB98FjlYZeCH74Pr78CdM+w69nN0L2wRH92DWFngwUtf5ZEWvHXk+7jtBkG2ZwoyR355jnBliygc8Ko5nU3s+hpicBp1WxN5tA4VuT2dM1qztLLE2sbaFTz934Xa4GUwP1cmAS8kKfdlTl/umtqWSi737S/2S7ji7v4yn9tVE8v+klK+8LyXUTx6JesVw4qcdT4pi21MEKKk9fbfeBQIhCvophpj2SbHSSVJQi+bIQVoBE46VBhS5HnZQXEEylc3xmiKVBPHVbK0izMFUgRY5yVLVRCR9do+0Ctwzk8WpFNIoYgkhIHD2RLDCSAkWVrQSzNsmlJ0HSqQhKGfu2s0KhSlGapAhQHWemUl6wy5zXEZGKsIlcPpDE1CRTnILelmizzukdHDuBZZPoRKZpHVKutFyubSJolQVKTlfPsyjckdRINj1NQA48kIYehdFjdtget2UXmP9soqTzx2idXnTvGf//A3mZoUiKFxhuox17ic937LW6kfvYvdk8P81cc+xcf/6mGefeJBJt7+s0w3qghrWcshX0xJZMTB/buwArptSyAdkQoowkFGstPc8/Rv8IP/1+N8+j9eSzO8nyBr0lV7aHUso8sZdmKaoL7Eru96N2ZzjvX187Qru9h3c5PsVId8MOYDv/xP+IPf/z1+8QP/gY9by+tGegS33sTz2W66RUCn6NGbu8B/e+JH2C1D7txb4XS3SuauoVadYF1Uudj+EDeLjGU1zWU7QBQq9tZG+HL7DvZWNbd++xiiZQmnD2AbBV/4vQV+6QOHOfXfNtCpoZJ4J+Ph2g7eevNr0JnFCsl1Y032jSYEgWVuoYvupuydOsTS8ilSZ6gO1tg1G/G6o3U+8Nkuh0crrKcpqRPkmcXlGYMVQS0yDEeChjJkxrBuDbk1JGFIjqESS9qtLVbXO7S7mq1ahW6nS+EMmfEQg1Aq6qHfTK7lBWkucEIRAA0pMa5Jajd4rrAIYnYNjdBD8oGHFvil2SF+4PZr+MLTx7ntzQO8aT3iiU+s8mudHtco+Df7fobh777OY8iXFGI1xP7VOYRZ8MZjYgophpC7YviHgziVo9/1FuxcF/XtO3GVFPsTv4X4nkOM/eRd6A8eI+jOYWPDLWMDfOngCMvhArW3zTKURzz13CTCtjg4eInN+X9GIxmnuFgnuO1egvv2IW9vQl15/oBx2GUNGmQc4KoKvboJuSCdW0fVKp5bJDQoDQZsUZBtac9VKhw61RTaEDdrKOFwQvnJoAy8qWKmiSt1RBSgIkeRFRRFgZSOwlh665vIOAYV4aRCWwkoLBorFQiHDEMkFmxBnlpUEJEEfltpShJ7f7NpCi8hilI4KchKhSJjHcb0qFQigtKNOC8MBhAqvNLBcb5rHEQePpkEEhd6V2ZntTdsE3hiduHlV6MgJCwlW611pMb6uNU3kROgAq+85Ywlyz1PwuEnCpGyZLkmCAPi2G9e8+LvCDmwTLJ9v4P+we3b4qVzjz4voN8YKu9RqkZdub/DbXf5rbEvaMD5POhvW1t+B6Is+oQgTBKQkoFmg4HGIFLGgCDDkhc5UmdsrXdYXthk8+I8v/sHH+Lw0QZi7w1MtDNmBivcfMshoum9DDeqPPL5L/ORP3uK+kTMzP6D1KMAnKNnwK76RliQ+IJP69K5W0qsqjDVfYbFJ/+KP3jgWT7wj24izE8g3GFyG2MzSyUDBgYgbDFy9+sxm5fpZA6bNBisxujVAltR/ON/+Q/4lX/57/itTz1MRYW89eAm6t338nR7hp5x6F6Ptccf4Yk//w0OxHXuu63J48tN6rW7icUQSyZjfvWj3Cq7rIaTnLc19g7MMliZ5HK6m91N2HlHhWI1J9m5h/OnDZsXUl579xDrpzKccSSxpBI0uG5qF285uh9r/O/yprEqI1WFNpZ2p0BowY3XHOX0uccRSZWJyQb7rq0TRIZ//acP8cmf8N/dpXOnGWgOMjg8+jd5Vb5kPfrQY2SrS0zENQpiWsby8IYhFBWm9u/m2MVljp9Y4TsOX8urX7ufJx99gjt+dB/Fg4s8+eA8z13qsacmeOfrfozwPeOwaaAbwXmHe2AD0raXmVZDiAC4NoA7Ykgz3C/9HG5JIt59Czz/PJw6DTfvp/qT78L86qPQOYOtZrztcMBbKiNk1Q7q1Q0GMsn55UGGql0C9VXyy48SNadw52uo11yPfFUDRgMIyra4ddB2/JN//k958qknvFuytSUE3G7zdL55V78BIF547OutfpFw1SFZ8mlf7q5fa5rgXqYoEOKFD/E1+RDi5Y+/eL3C4sDLmGrrCELfzQt0TmGLbRJEX9pUa4nFgBElnjrAGEORa4IoIC2KUt7NIZ1Ee9VQhHDe5bP84ELpDWg8byAk16X1swp8osx9x75/sUkhvc65MICiKDTWmjJvCwrt3YC3Le7LhGsLh9VQr3nsrlQgA68aUeSSrW4baXKCSGGEo5drWoVmYytDkKNxyEYdpf3nkKaO5ugYymbobpuWsTgUSjWwSUxLVHF5RnN0gvrIJHF1iFiFoDUaQZintJdXeOqxR/nKgw8wt7hBtrbA7A2TGO2Yau5j5/AOKirn3378MSp/+VVGO5ucXtpgod3j8Ktu55/97K0Eocc/R6mhMpggFWQFSAWRlASqhFYFUN11Dfve+0Pc9Wd/n5/6hVP8hz88RDMaZqtTcOHSCq3Hv8TUdVOE2SXS3igtOYtp7GS0GRKFg3RNyFYjYaDepLH3Rxg+sJuLT/84D6ysMNh7jNsOKM5ry5m1JYreOjaaZn4AVpYyagiGRIowZ9lIL/P2SNN1uzltUhSGfbbOnk7Kxzb/kv/5fb/MxvNPsec1Y1w826J7Cf6XH7iT8xdtKaMryZTGiIyxiuLNR1/D2XXD4rzj2tdM0FSbrF9awcVwYDc8cWqOXtrGWkNIwHJm+f0TOYONiE6uSTV0rcUgaJQSkN12F1NJKBJFpAIqtRhZl0iXkcqY1a0tuu2MUAXsGotxmeZioYml7+gVxpAVFiVDYiEJ0UiXI0VAHI8Ry1HS7hlsHhCJiDN5j8XVRaoywlrFvzh3hh3zF7m9NsrcX+RUbxri3n98NwcX7+Wvf+cx0uVP0P2tDxM6jbKTSHcLZmscUXwFaTWCFHq34x45gPuO/0qLQR6fX+Pg1DjtT22x1m1js4yhY08yLyW3/vrPYv/041x84DnW2gUTUQWjfoT535R8oVNhV6fNHgsL7YhTLuP1t7yN8O99D3J0EDEdI2oKyomB7Tj06QxCiyPHdHNEpEgvLGGlQlRjsAKZe1Kb7sRYZ0tPE4VMEi8csLnh8fWR8r9j42FACP/b1VkOVvn7KYeyxpu6aYOMYpxSfb3KkiSc43AlPl+XY95+58d6QQZXurnbAms1YRSiBURJvG0SqbUnCidJiHKCooQEFdqhdYG2hkgEHkYlJdpo3+0XEpMZcluQ5QVhFPqEYf3kkyAEoxHau8jbwPsZyDBCWEMg/cRRSUEQeJKzlII8y0tIk3dJNtahc+/aK6z2SdwqnLAYk3+d+H/l7290RJG4OkNuEwyuLPeiLNzHP7/cG/MbfrtNaPdNJle6VItt2JctpU0dePiYvDJhcEIShhFxpcL4xATvec97uO++b/GTLiGQOifvdDhx7GkuXLrM5sYWRWuF6157EG0du0f2Mlqvsbq1yW9/+ilqwUNMLFziwZNzzPVy3nnHtdz96vHyOQWycET10F/bpf3C9kyo7KYlsweYPbzK0Yce4jd++VF++ld/CIuik2naa2uY1SVqo3VksY4umvSCKcJAEEcBUkQUTpHGAZU4ZurWf0jj4gRnv/ph/uKJNrOLc7z2nm/lwUubLCxdIuulMHiQcyOCuTNdhiXURYtO9ywuvcybaiHaHOBUvsGoqLKnqCCWVjketbnvHd9B6/IFRg4McfGZdcarTfYfGWarVUKJBeTCUXUpQ82Y/Tt3sJE6Nrdg79EmQnfJu4Yo0kw2epx+7hLtzQ08CrnKpVbBxa0O5+cW6Dtgj05O+WL+ZTZff5Pr1jtvYWtBE5jHWJs7g9MVIio8trLAeJYTqQinNb/zpUeYfrTC0V37WPvTLcbu2s/tt7+dA+cnWfnkAvm5zyJ+5QJSg1DXQ3EtbjVGbB6HzIBoQfQ6+C8d7H85QW5j5i+sMf3GQ6z/p3Pk6+tIZQg/tky3WWHHv/8pzJ//CSt/+hUvDd1oYNsP0f6Q45m5Jns6lxDJGBvG0gtg5p47kW++GVGLYEghyiaKcw6XO848dYbTp55ndW2NPPMyzFZbClOU3NK/G6t/pVy5Zsrp5dWb+hcUBn2Yj78tRH/m+eIN/hVRA66CLm5LKn8NBaOXiC286IW+kknCKyoOjLVebcM50l66raIRB4HHSBqLseAKgxQOpUAXOVIqVBgRKk+207lXCOoHT9NX+Oi/WWOwok9+lt4ozDh0UeBH8D4Q67zwJkmYbUKZcZ5YKoUgMxnSQP+78WohFq2ND/h9hnP5oWldoEWACsIy8HukcVU5Wp0OSTXAON8gNM7RzRybWjE8EBHGMSKKIJCebCNjQiT1aoJJc9rdHGMkqIhopIITPcbGB6nVApLIa7R3ez3W59bopYKt88/x9DOP8tTJE5yfX8TkmnZb87ZX30u0ukVYlfSilOW24vXXjbN46gkeOL/Meppz951v4we//8eYHq0CAlNAiEIEjkJAiqOpBFlmwTivsIRAkRCqHdzz5kN8+GMn+eC//i1uOvImJoeGicMNxqcHOPv8F9l97W3IJUFciZCNutdpNwHdbkhl1Kv93PWaCX70R/bxcz8haBtD2Es5M3+KjpXM1iP2X7+bU2GF7rqjt5hiepuk+Qah7TIdFsyrvVzq9RAUHAoFNdPhYRw3zFxPNTrJ4NgMRlURGQwGEZO7Es580XBgj99MnV9YoT4wybfd804C6VCB4sZJw9LlLWwNkkqdpu2hOw1CpT1pFgG5I+waJodheqLC8mKH1Ap6GgySMFAYa4ish2V0VAJKoJRAaINC4GxGoQuyIqeXG4pU0ggDBpKIigpQwtLNLF0rUFLQ1ZpEKZrVKklYx9iYnhUkO7+Ndw48yIPHzrOWCbrGELmMHRIuFhmndEYndzywYaj2tthzvsu75Sa3jezgoUsp17VbjDtH3V0gcEtg9+JcgnCngXUoWrD1JG7jKRwxexpvxXQuUI9GqaiUwjxJtNJCh4LiQx8h3rvO5Jss1XMpW19qE8arpG3LYRPSxBIHEUFjnOuP3E70rnug3oR6CKHwChaAyy32bIpQDpMWuKLAZRrbLVBJhKrEXsknLxBaE+CwvQxRDRBRgDMWZzTCQVhJsIVGWIUISrUd4QmfxuQI593Kw0qEVH6zmPe65YbJYo1AyrBUNSsJxkJgjEE7D5WUyjdBTJFhrUGoEFFyr5BghUWFMWEYYJwG44sK38B3JXdKemU1rSmM9iZlSvhRvLFep6ZMkFZrcAaTpyUERaCkREWBj79GlwlE+maIFBSF8Xh2ZwhD5Qsm0ZfW9B0p47ySjnAOJQGlPCTJyO3JrzGGoii+TgZ4mY3zlUb8N9Targe28UP+eN9M6Orkuz2uv/r+/WKhDwHwH6Q/rw8fKh1iKT9n34kTJZHd4qyHdPlGl0MqwdTEGO/77u/i1jvuIE4S1lc3yQuLXlvk1MmnOH15jla7i8k1WQqvecNNsLpF3JS0rSWsxty+t0Hr4gU+fex5Fra6vPu97+ctb7iXetWrT1nrCITwpubl+wkBYx2KEsYnAJcwMLiDQ3cc5fOfOMYnfvMPOXjjG6hUDGFiCaqK9ZWTDI9fA5uGqFIpoQoC6yRaS6Ka5+vd85pxLj8/yrEHFMsmp7na4fmzT2LajiOzTerjO1iSCVnP0bmYYjurdNLLJG6TaiViRe7l/EaHiiw4XNOsdzfJ64Ps2z1FHK2QDAyiUShTpVapUKlKluYdwyNeVnh+o8UNR66jof1UTUnBzoajtd5DDASEQUDkAtBVQpWT4yEXrl1w8pmLXLgwh7GGvjdGklTwm7C/nQu7/7iVSsKt99zA3oM72Ji/zOn7P8NTj5xkKY/ZzDOm44Ka0Cz3Opxtt+mmIGwXdXGRA1ML3Nzcx/TkDGeeKpjJcqo2IiieQhRnQF+DKyqI4hmwy7DkQGSgLyNkleHdb6eYX6A6eAexPQubpxFrm5D3MB/5MOqIYXASsidX0KfmkNUQvdJjVzZEVWXIOKU6tYva9UdQr94PcQTllApbTt20pVjJ+M+//2vML8yT9lIvIuP8ZyClLJ3jv6lHB+W6igsA5fvqDxWuTAncy93H2Rcev6oH8yLmwUuetS8SJLgCk+x7sDjYvqZfylV4ZaODV1YclJ0xhA9AAi+3Fgb9u/sn1MZ6jK0D3beQlxYVKBy+YhQlmc85W8KB+rrbDovxe3YhECJASOUdmI03zXACrDVo64sCbTVhGGzDnkrxOJwzfupgvYqSxGGcxWhv+iPcVTwJAGkxzqBU5N9OmYyzLEMIQW4kEgPaOxjLqMJAXKUicpSUFNbSy3JwotQxD7xbcquHkCGOAAKLcgKpFJUkRNgck3cpnKSTdZi/NM9TT11k6fyTXDz/LIsbq7RyR8UqZien6a516a60CKKUTeG4uCXYKTdxWUpPOOJwghuP3MFrX3c3CoGxkGWgQn87145MO1o5GONwMkeEXkLSuBBVneJV7/w+2vUTPPflM2Qjl+j2WmxkKeN7h6lFNdJUURMRoYzARRSpxNgAFwRI67HNM9OKm26oAkM4NrEkzG21aA6NM1QbJUojKtkWe3qOxco4G2kXbaFCyHAQcjzrsZWvcSSIsFpyGUsrrPK62btAbzC8+zCLpzWqaDIxO8jWCowNOZoDcHk5pZFIpoaG6CzD2P4GIrc0VRcXZlTCBCFDkmKL0GyVOOEAJaDiHA1rSQQUwniFqtJvQzhJqCRp2QlMQoFVkEtBiMMU3iwrFIaBaoCzIR1r6faKEuqB18/vq3HhPK7dOZQM0ICTgmZzmKmhQ+jG7cjFh4mkZEhJsIaqKxDWUcOiHJzOu/ScQV/scO3cFu9rrDI+eiPrb3kT9oFH0WsZ1rVw5jS4FoqdCGoItsBuebM/p7C0mbrvbXSTOeLGBCp06KWbMX+xSJj9IfaLj2LyOrU9knhWEbzFEZwRZPOa2cEqbuB6xOgM4cwg1f3XI/fPYLYcbBlkKKBwuNRgVjKKuQIxKDHtHNtLvfGcE6hqxRf71iFCCRUPESL0yjrGWh9ES5lHFcXei0TrsmPmHYhF31U4s8iqh1kgvWQyQpbeB2Wx4rdt/ufuvJgBwsNznJAgFFIprJYlerQf8KXHdjtHIMtmUBmZhfB+K84aHCXx2PpOPU5gjPO2idY7v6NKxSLbb5SUPgZGe8nRwMciB+R5vg2PdFis8Nh271wPUeShSmI7MSlvDGmcj6n4xolQAuekj0mUnfGSl/Vy6xuffPyi1d9wXI3zuWr5xPki/fCrMnL/Htu582vAkOCqc8tH6G8K+kKmoiSrUz7n4OAAURTQ6/Vor3e4dGGVjeWzrF4+xVonRReQiJjx0TF6qx300hZ5z7CcCXq9nEaxgui1aIWC0aGD3H773Vyzfx/CibLIE0jliwFjS25P2VCLhMG3vABC4qFpdt3xVm63u5k7toU7sEGnZUgaEc1mkzCPKQpBLLzEr3MKoyXGSZyUpWQvzE4pJscbODVJoVYwapDzi6uMT+1hOBom7kgKvU5Tw1Jjms3NNZwWJFGNipKc3thiY3OZaxpN1rsRq+QMjU0yO70XbEp1tMba2ZxqfYAoSdAZVCuQxLDW0gxWFHl9mCqCylCIMFCVBU5ppPRu44EtiOj5fYOMCTHUrSGRsBmHLLnu9vckxN+ypG+/WEUwsWOYpDpAkSniIKISKMaTEGky4sISOEMdDc5ycn2dTtYjn18luLjJbXvb1KctnTe8CvO5ANtNcOnz0DsHegMhdiFogFuCtF2qMwpckjHwjrvJe+eJpnbievtxpy9gn75A0Pss9ksPIuOdJDtBHYwpmiBaCi0dzZEmtnYQOTKCmp1C7dmPmGjiUgdpubfLHVknZf7SPPfffz/3P/oVtlpb5EXBtjqYKONo3xTrm3xd4QS8cCN+9Ua93/X/WjChK+uqz2N7qvmi4y/7Irb/8tFNsP15/788y9dcr6g46OMtBaLs0kkKrXG68EnI97LA+c5ZXnjOgcfKWpzxGDO2N+1eqxtnMcY7SSp1VdVlBQReStAU2st/lmxhryHtCcbWOULh9ciddCUUuNQGl2AKW0qnOrTRWJ177wTfaEEgUNYHVIzxiiQCsBadGXqdjDBK6BlL4CzWOFQQUWtUaVQD7MoS1hryNEMXBRKFwluQp5lGGENloI6MKiAVsZDgErY22mgrCLoFRmyy1dUsXp7n4b9+iLOLZxiuGGrNQSIjURnsnR3nscceJ01zKs4hnGEj63FyY53BumBkaJDZ0Ts5ePA66hPe+K2wUJTXnzYCm3kZyOUUohhSkRIoTS5DjIxoDE+yc9cP8D+9aosvVD9Ho36ezOZsbQyysWWZmLqFXt7BNmMyFWJSgXEhlpBkSGJSh0kcS2uaU8/nIBsoJbnmxhu4cO4EKh6kW9R4/Ml58nyewxVDPlYDochkjdBZCpORd87TJGRYVTmeS/I44bbmGNWkQXOgQr2acupkzsjMBOOzIyyeM+w8IpDrhsWNjNmRBmmjxWN6hZ03TLDczsh6XWYnYxIboTMDeYfR+gK5EUgCAukYCAy1AJZzh3YFuTUIoYiVAgKUhLYTaCFp1EIyKdDCF8LGWbT1G8yBWugDsbFkxpLjyAuDEgptjYegOENuNJEKMNKxlnbpGkN9eJaZyRlS3eax04tIqxgUoIQnp646v+kYEXDZQYpiKI7ZPzjE1MwsSe547d/7XpblOOqh5xFLF8Bugl1EihQh3g6ugS/EBynCabi+QN7WoHn7XWBroAJCK8lWlhAPfpqst0TxYAe5FBHfETH9lhjzORAzTdh1I27Hu2HHIeSEwaWWfKnwDsabxivntMFcSklPrGNChcgCyFPQGSK0yFoCocHmGhlKRFWhXISLC0SgMEUXl2blptbijIPAG6E547CZhwzJwKBir3Jmip4XPSgKnPQbMykFprAEQYiNAm+Mhi/2nRBealn5zrwVCqTyoVZKJJSbZ2/iiBBeScxaCme2FTiUFARS4uUoDXkv9ZPRIPQO7VpjjEM4i1LRlVG0vJJAnAgQUMYw79Bu8d4Nroy/onR9DiPvY6DKQsY7X/oCJ1Dldeg0WlE6YvoxaqAkVgZl18qWjaSXTxcvIff2J+GwjdN/wfoGyfV94vvVb+tK8r7S2eujjARscwx8Uu+TAsvSsJQ18jm4vFN/ElGSuZ1z2zLcXHWes4719XWOHTtGc7DJxNgkm6ubnHn+LGcXz7GjETLQjDG5pCIiJiYHee7Z58g6GQMKMp2zubVBd22ZoRHF3mtmuab5diZ3TKFi3wnvS4QL4QtoZzzXILOglMOgEdKiReB5eY1xRobHuWvvbTz3Z89RGVhmsxVjXUJVhww0dlOYDFcN/fSp8MW0E5IgFFgNBDC3rFndjAmTSWrVCjtvvJ6zF44xXRlhcd7RubQAvQUmhzUDuxoYEUMwjEKTdTfIlk4w4kLq9TG+sAWzY1WmBgeIoogkSYiCjO4FzdSRAWQcUaSOxgjQc2z1DDuaNRb1JnkoaIxV6RYaXRSMDUVIIzCFRrku9WSddmoJRExNZQzHjurQAFLB8csb/wOuyPKSuOoHs768wtnjSzz38DnOPHeJkJh6uIkqcvLcsGUdylmGpOGEc7RlyPBAk5HJMWrjo6i4YN/7X097PUE+u4HQhVcQSi8hVYYI3+2nW2IUJ2NsdRoO5IiDkBy5BzoKKgdwFywiPId47KvotXXM5xYRrxkiunGAaP8QXAB2j8OuO3Ejb0EM1yB2OC0wWwYROlwXpHJQWJZPL/GZv/w0v/7R/4NO3iXPCw+h5AoMRpZO8d/0qwwy/fiw3cnv/ze8LGpxG93Yn05edV28lF9AiWa56oG+BpxoO5hdfeQlsf2Vfe6vqDhQgUQqURr+QBjiJcKNBmF98NCunBAICueQKiAMQ5RUJbbWgDEYq1EqRDqBNgIZxBS9Nk4IwqtGJNZaEAbnDNo4P5UQeEUi6ycMKghK1RMfwAtjiYRChQorBEaUmF7KDpnOUFHsk6Kz251FSo8Bk+c4FfhgKyRhJSFPM+JIIWxAtRKQJDEyCkm1wYoAq0ICYQkUxHFEJW5gjSWOE5JaRBhXIKjgVIh2mo3LK1yen2dobJBKNUFYSLc6nDrxPNWaYUAapnftY3ZyiqoKmE9XeOaxp4lqMeM7B1ld69Fe26JmYataJR4IodYVCAAAIABJREFUuPngrbz7vd/LgRtvotvOCSoJGkgqgtVFSwzEgcBJQatr6eUZi2kPlS0Sy4QgGWKrHrMjjDF5yL0//mZ++3/7BSSX+Zb33MtXn+pRWcu5/qa9zC94+UgZS2w9pD4kyOZyJmYUphrw0T+f5xf/1ZMEYplm5dX8r7/+a/zTH/1BTj39BNKGKDVMt4g4XayStB/hHeP7kWHA8dYKp3SHI6pCwTRf1LsoRIs3jI7yrmuv5zMXfpX3vP8/0nvgQWZmd1MfC6hkMD0suLzkGAwLDs8kPPB0QRSM8PffN0p7rsPQDotKhrAiIOgUqF4Lm+dMDTZZzy8gEMRSEgSQK8maE0w1EkwuWZxrMZBArSbpGkESR+Quw4QltE1rnFSEYUhW5Kx3u4Ra0mrnZLkmqQUM1iq01lMWNjsUtnRjLvvWAkstsmwVhk6a8uyJL3P6+JcZUQG5KRhSNbasoTBgrfAGcThaDgSaRjTCe/ce4mdf/xai9/4Q9isXYHicyV/8Xopf/W3MH51GpXcgOImPw3eCaOPcCbSwZOPfz9Af3cj6vffQ+Pn/HZ7ZjduKkfcNkHxogs03fyfZ6d+mWslQYwK3Cfk/z5CzAeonbscOfS9yaBe2k1GcvUixfJn1kzcz8rYKKg795rvnyFZ6tM+tohJQRYVgSKKGIlQz8jvjSKCMxUoBAQQBqGHQ7RS3IYkCQZbmFL0MZ62XZKwkVGqK/P/h7s3jLUnLOs/vu0TE2e6+ZebNfausrMraV6qKpRaKRQQUUESEVkGxabV7ULHbaR3FpWewtadVGpVWUEFoZBeEgqIWaqH2NbOycl/vvp5zz4nlXfqPN+7Ne7NKumbGmcZ5P5/83Js34kTEiRPnfZ/n+f2e32++idQaEQWKozU51Z4EihRXuDA3yKCYIZQmriYI4bF48sKQZx1kJHEicLSVCsIJ1juwwWzNeotxYgX9cYXBYTEGpDQ4G+g9UocA3XlNlqcBwVwxj4RKkiCURHuHkBGh/yn8kwrS1CKVRpeS0YF9ZChMho4ivA90J4QsHXc9Mg5Oy8aF4oUAoihClPvEsYAixxSlW70DHQdkU8jwPp0P5/3Hxouq//yzGOdlB4R16/zmP7eKYnrulWWxiXPNzMGzICQCIVlcNnIq+w5KpCA4JJcVwlJWMEszJs+eZeLYEViYZX52hkoNupxh3faLGah34bDMNGc5dvg4cT1h/Y4BThybQzRTIuUpKlWinhqvvuRVvOzmm2n09Ya5WIdEVmtoNyFWEJUxR5F7rLS0igJlmmhdQ+iYLFHUKwrvFHvfcBF/9x9/m4tvuID+zbuYns2JdczIxkFmZsO6SyQRiSSKIFu0xL0CGys+8XdTfOtbx+hJ5ti17WZ+7rfezs+/+19x353fJNEjGNHLbCfiztkx1p2+k5++6mWMz85zdnYKly1xeXWQQm7ny+2tVJjgsp272LYhYnrmHvbe+BaKg8cY3LmeOBLosn9wacmTKMvGXs3+ozkX7hmiqwqmnVOrg9LVoNqUWozJEN7TqDZY8opIaKqxRcaSZ06e5q4nDqOj5J/8yftew3tPlqZ8/b99lgP33IdebJF3OvTHA8x0UnwKhRGkzpFjmReeCm2Svt38zK3Xc9Ut1yN3XIA/swRJQte/fyX2tz4JTw0i5E1IfRZhAb0H8iGwx7HVdfjrLyf5dxWyn/4NKn/wq7h7EsRojNinke9dh/2Dd2Pv/3X0kECMaPwBgz+VI7bXEa95Bb5yM6LWhW+2cVML2FZGPrWe2mVBQhkH6VLKMwee4Y8//VEWO02MN3jBuURgOflWoixY/HMe54XlL0AU1/4OqwP/VZPQmmzivHviz20vSTVrjrf6vGvOfz6CsUyTfJHr/sfGS0MOyn9WCBCOIi1IKlXyIsMYj0MgtMZ4i/RQSapA8BqVQhBLD1LghKa91MYrHyB7FwyEhAScJXPhNThHntngceCDbKmgoIQgEEASK5QO5kfCBxVSJOEarEOqJBhLCYexFustUaUSGhbToMwhlMIjMVmHSqIRAoo8x3mPFy44i2pJkXWoxBpRGtQYVyAJaj9CaLwrSFSFerWBU6EBMfIWIwjUA6WwUY1K5Dl57DmOnxqjMV5BC03WypmZXORsS1LZs4V3/dTL6BOC5uI4pyYOY8Zb/MKPXMvui2/gyOQRurs3oeJhJpsZW0c3c3q2yYKf5a5PfYQ/+Q8Jgxe+md/7kx9DFp5DJz31fpi3EBWCfqXo61UceSqDLktfXz/R0gRjh57m/vEpaoPX8NZGxh//+Wd42Tu2MhRrnvuTP2E828bLf+UPmDw4x5mmJt7UoHsooZJ7GkoiYsOJCcOchrGZL5FO/joxjqR4iB99+Y04n9Gv63RH67FiA0eLbyFCxwJ3TD2P8pSIkGZJ7+BpH6Hcfm6s1ehecnzxTMK//JkPkBWC+x+E6352B4keZnHRMXCVpu+pJj17BAsnOqxXgmhAwVCbk0ceYnDxFfT1xdjCI10LHS1Rq3bxyClNUhslL06yqeZJagq6I/bsHWD8zCInFtuMbGjQIyXaQcXCkhUsjmf01mMKFJ3ckRtDVVu6qpIYRa0Rs7hkWOhYlijI84L19TrSV2ineYBTEbSzHO8DtO20Y6EwdIwhdw7lBDdryb3ZPKl1pC4o+44K2IjnO8AAnl9+5fu57R1vI7p9FLHk0O/Zg7t3Dr+tCsM34TYMkJ88Q8wSsfq3kB/C208DB4k2X0nyjj2M/8gkI5/5Cub9Pwmzr0Ve/GaYUrglReOdP0v24b9B0SZ9IqWTZRRC0Yun868fZdI9iq8M4Pu2YEf2Em28gd5tLR748EfZvv0C+jduwhaauYMz1Db2o3o1ugGqHiGSKHTHJ6Fs7iOJS3Mwgd7jcoO3UHQ8CIX3Ghk5hDQ4byhmOyVFSyArKtCRrIXCU7QL0KVRoi+d1REgQpKgI1kG0oI4Cc2bKorJTYbzKixaHpASIxzOFRhjMXmYZHyZSLgsxxRp2FVFqEgTRQE5kD4EWM6DM0EWU2mIYwUyQZSFDVcUmLxDkZswywqHR5AXwRPDExqctYKiKEqqSBmQWodLQSqBjhRCLaMYFiUlLisQOkg/40rXbifI2gU6ijGFKyuZHm9f0nrxQjLsi62A3wdjTWPymg0vtm/YcK7B71wgE/KLkNytTgR8WaVnGc0p6TuqpLeFdSkQ12pJQlyJ6EkSWmMzNE8tMG8iKtvX86YfvZQotyy2xpmZmaFuPG969eUMjOxicv4Mr7l9M6mRWCT1Wp1mJyelzYNf/AMOn7mSS266lle8ZjvewuwixDVYMIKKAq0EceSYn/KICtTqDURzjrGJWSYzT7W+nn1xwR2fvZvbfuIHyY9+h+m7nyGt7GHgVW+kOZ6y0JHU1teItUQDsRQgHTNNSLXk7HMfo33iXvokyIlv8HNveZDCNtkzuJlGdSfTacp8ez+Qorznc498B1kUWOep616Gunby+FJEj3mUW7YP05k8zcTwdq665TUYA8efgd0/OkQ2ExKuqAuSuYJkALJZw1AVGt0CIxdpthaoRZuoVFRA6FwbKGgXghPzCbWezaTt59g5EJE1HN3r+tm9a5TjJ2f/qR+/7zm89/yv738fpw4epGIMo4ni8qrmgdl5inbGXAb9QrJJQhee+7OCzYngve/7RdbdeiFyKAnUxA0J/niKH4nwF96Em50FM4VSVVT1NpiewGefA72EftWr8Td30/5ETv2vP4T7md+ATT8FXVvwSwLRXSd6w42YJyVCdMi/ehabxZBUiDKPf+xBWu7+UAwa2QrD21BDG4kGOhz/5L2su3ALUX83H//Kp/irr34G4w0WiytJdpEOLt9CiCAewXIB+P/TW/9PPMTK3ODPeyMrvifLc8pyAF9uX9MbwHlT6rLzul/z44VnXxPwrz43y8DmedSmc4nCS+hHfonJgZNYI3DeopTEWhvULVSApp0JPFkda2Kt8aXLaKAgCZwLJjDO5gFJcBaBCwZCeHSkg+lQyX8VQqCsIO90kFGCy5aCSzKC3Ab1BWlsaMgr1Tk8jkhApCVeaoo8LW+gRyuJJHAJiyxHxzFq2YXUgZeSSNjA/RYmVO+iCgJD6g2SGGtyWsZQq0T0VOo4Z5lNM6I4ot1yzE7NUY+b9KwfRiWCdivn7MlJFluQOk2tp8plO/uZmp1F5DkjXT1s3bEZXUk4euos6yY8t//wFdx/3wPc993jnB1rMZ45mnnGt+89gDWfZmigwYiU1FWM6OlmU2/C3HzOq1/3dm4cGGK++hRHz3yRs7NvQ9QVDQVFIVjXBS0Lz7Tgwh648JoareOKuZk2h8/M0XGjvPbqi7nz3/wEHy/ajC86vvRH/ejuGn0br+GtH/zf+O0PfZ3RkS1c85qLOJtXOXIiY8+FVZ5qG3Y+02LD9gp/8emT3HHHOJFuUKUAnyHsElJoLAZnj3HBLse3/+EJtI/5rbd+gFMHn2KsucDpPGPOZTyQHySSXQypi3ioM81VWzw/f9suGm341F9+ibf/zLvhmxly4wK9V9fpHHOoVBLrGiePLzG8XtKpdTg4mXL5rhsYa3ZRryryhZzURJgopi4X2L6xh+9+5xFqtsU6VSMXgqMzGXffeYpYelIUU7rAxpouGeG8Jslb1GpVWmlQ0JE29L/4rGChaRjoi5A2p1tbTCwoCoV0MDa7VJrteYy3GB94yZF3NNuO3gSWysS3V8OtXYrxJUvLWapKc20cUQO+lWYcA2I8PUIhJsYwY5P4xVHsjEfNWOiKaf/1l5GHDkItJa9E2Myh+V3w9+BYQgiFEgtQn2bk/1iP+8wR8sUhFA/gjnjsl3+Q2i0D2EcqJFbhJFghsVFMFsfYbUM89MwiG7tHmRC9xL0j7NzZh0ifpLb+Ddz4oT3YkxY7mWMmOiR9DSojVfRoHdWlQXtsp4OZt+h1PVAJajwutwE+leEGZc0C6wWgcaWCmCMgdlCgKxocyCQCLXGFR2lNnEBWeJyT2CJU/r0AGcug4COCeAAiTMQq0qRpaE6XShDHCucdaZ6GJmhCkm/8sjxz2Wcgg5yzUsEvRZVcbGsBKyiKAleewzuwxgfjRB2hkmowKlvVrxSc3B15HpJIrUOTv5IObwuKwoTrli7Qj0ToSzCZCT1eZVk8x1CvOpQMPS2usHhnkXi0iiisodnpkCSVsHA4j/XfWzlkRb/bixfC5N+nC7zgPH3v5VVydQkOd56gyLll3vnQqL6cFFjrSldpMMaEdUqFY2kVqGlpXiCVJo40SknywjA/P09PTxetrENtuM7QwCB5rtlz+Vaef+4pJh86ztlFw0xmaKcdvvalB8hbi2zfs5Hh3KMaXSQ9XfRUIzpLhste8Xr2bd7Bk4/cy9gJRTPdhtCCWIB1gr4qzOYC6z29NcnQaEQ+L2kvFoxPSmo9G9jmxjn56d/nwWyR1rzigb85jq8mbLjgJjZccC13fvUoQ4MD7L5qPUdnPfWGo9GlOJNZhsZzuocjPvntCcYWY7q7h+khBdeEpXGipIc8m0LGc9x269X8x/d+EuEVX/7Qx2kefo5j0wscn29yeHGaU63vUK+Msr7nWr5w7Dne+MYR9l0yjFvMeeqJA1z5xmsp7uiQXJKAVrgmKCNQMmJmKmdwg2LWdBAqZqhvlHYeBWZD25M7DSKlGnsGGopi5gjVfIZ+vZ4ztmB+IWd+uoWzL95v8//mMGkbYQo29Va5fLDG9Nlp5tM2A41+3jTc4EyrzbPzLdq5pQr06jqMzeIXU3xXjM9BCgdVSXHHY6hsGroltjeHuI30n8cv/XWgykXdCLWAXJdT31fBPzCHjbci3aO4xwzCbkXdGuEPa5Su4WwHr7twqoHv60FuG+HMI3MMbNjNtO+md2iQ+pBAyEl0/262/osR3JTj3/3hb3L/Yw8yl87TMWkQdwDwDlMUWGtWKDhSypUG5X++w6/QF9eOUIjyK8G9R6wK9Ff+vtyjtOr1y2I93+OUKzTQ1YpFYpkjuUJrOpcS+FWvW3ON/4PxkpID50NgY50NTYQ2vHGLpzCll4EMahmmbDAOHF6F0oH/n+YZWIvSChHsiUGUPGCpA1fS5CwXfKx3yEjhTY5SuoS/w41wzmGsKZvvHMjAhVRSYa1luUFMlkZq3oWKjnU5UiuE9MGx0osgYxkp2rlDaFFmtzKYHElBvVrB2IyicCidoCJF5jyZi0hlxNLUAgbB7FQTk1u2OsnG0T7i7oSGc3T3RSihEYVl5uAJLtq9nfmZaaSOmZ6YJ/eeiY5iIrM89vA437zzKJOnp8gKSU/fAK+5/DKWjs/z1Ow0nTTncLZEXixgz06zX0Eztzwz/jGwGa3FFtVI8IUP/iU//ss/waKTKCR3jIe+ikt7PY8e94z0QtaQLE04NvQMMTO1xMc+/El+9gMf5C9+44Pc8q5f5uknD1Af7mX3jVfzm7/2b7n2pnczPLKRJ57K2LAtZstwzGOP59wwDAODgt/51Dd5+ul/oJP0MPCqD+Ae/Qrp/INcEMP7f2AdcSWinRV01Zd49Eu/y0W33s57Pvgyxr5S4fiDR3jo6BifXBgjw2NdxkzlDTj3AEWfJ920j/y5Oa644BrEkTayu0O8vpuorrGLku5NEZ1nYOe+GrnJ0VKxtVLn6AnJ+kHIFw0usch8CdGZoeNnmFMJiYjxzjFfpBRakylFEUdkU3PE1YjuRpXuKKIhgkv1Ymap12osttpEUqKVRAtF7izWWM7OC5ZyR+FVgOCVweQG46HVKahqST2J0UqSdjKK3BIp6Es01SjInCpjeSx3pCU/c0TBKTyFFWxTmiXnGRZwhpi7TzxB99F93JJejt6ocAcKnvxIwbauDpWZxykmnsfGvcS1jajXvY7FT96Pahm0dIg4Q0YZYv8U5smMyo++i8X7v4h56h+oiZP4O/8l6t296Acj2nOaTCv8YA/de/cSN7axp5LTfcMrGekbwU9nRKfn0duGcQs5UTKCukDh1ln0VEY8n6EbEnoj0ODaHUSsiLoqOAF2KcWXjq4uCw14RAKLxxIoe9LbUtY4NBfLSoxU4KSgyA0+9UEtTUNSreBjg89cUD/yoGJJZvNQZDCewhq89EgtgvGZ9aGi5VwQHlimk5SGMkIKYuGxwpMbRwlKBDqRFIHq6MpeFRlkFrXWOEzgsohAy2y1OvT29aMIfi7GWgTBSd5YS5YHnRkhPM4FtFREAoQkiis4RKkcBzqJwzIgPMYFNzMpCUZoCFQchfnQCyQKB5iy2TkhJimbmI2xaypQ73nPe6lUKitLyLJ7MCJ8NCsbygVnWU56TXVsGQpf4fgLVlN0gFWV+lXDn/MUWMvdXzVKxGj5GMv/93je+ePv5Bd+8RdXH3DtwngeyvFiFbRzu5Z0qlX7itXvq3yjy42Gq/scAvd4GY0IggRdjTqRDjLbCwstTp2Y4J67jzB7chobN9i4cR2XruunmOrw/OQMzZZlcnGOzpmzSJtT945mlvPkczMYk9OamKH7saM83/0MF71mL7mTyAIemhesqwR7kbNtTyMBkwiyec/6gV6ef/oIsxPjXPX6N/HQp/6My3/s53n6O4+zdc9eOhR88ytfYc8Vr6Snu4dnDqRs3V6laWBqwrKl6qnUBf/n1/dz5PFv0Nh9EX2ju7DPPkbnzH1c26d424d/m2qSkJ+6H5edZf7U3Qxtv4LX/+u3Y9OUtLB88dNf5jMf/yyLhceIFie7biRnHDe4DlPtI5k1bBzdjJvMkEMFsisBJcELVJfETsDQ1hhXWHoSTW49zUVJrSqwmYfEo2yBLntzksFhfvAtb+CeT/8Vrh7T0z/Mm268jd27L6bZWuIVL79pJQkMruU+iJnIUihhbTF3JdgTJaWZ5SBx+bnwlO7pa58rD0RKcOb4MV62pZ9aw/P04gI5BZFUjNY8T+cWjWZHrU6uHP1ScNr38uQjT3PV1VsZ2dSDqIGddEx82TE0muMP34Gbz/BdI7BhK1x3McVvfRIp2sgGiFobfAFjHvecRf/k7bT/2zdQE3ejeyZg7GrkDTHyiwn5tMA1YsSOLegde9HVIYYqOdXLL6MS1RBTHaQH0VeH1CLiOmq95H0/+3O8i5/E1UNi/aJx/2omjYc/+eM/5sypM6uo9OcUeFY+C3zpV+VfZJ4RK/S/Nfyble9v2HN1v8P5F7QsPrbmel8wMZyb8IQMv77u9a/nq1/76j/+Jv+R/37PhOj/QaFl5a6cD0Wwqh5S3qs77/w2v/RLH/iex3tJyQGURg0i8DODAk95QQKEVAgly0bjgAhAqYDhBCzzNG2Q6FvxUQOElDhnKUxOXoTkQEqB84TuemuJI41AIkuJUevKxi9bOpMuw1Relue2SOHwNlTMcKHRuCgcOiohXwThoQFdCTAdBGRkecHLU0OkPEkStKrjahUlBEW7Q9HpkOeGvAj+pFGiSZKYuBKDjGl3BEp3ofEoLFJ7TFxFCkWjpw8pFHmW0e7kmAysjXngwUNIV+PmK3aycVM/gxs2sm1wK3nbc4OxmKUZcq/IhSQvOuRn51mcavP4wYOMz09j0iUsnjvv+SJRspcf+qWrqdRhl4a5HA6lgoNtMFVPw3kOForetmJA9nP5NZfy5Tuf5OrXvopjx59heNs2ZBJx7LEnuGLHdZiFQdy6KgPrYtrdMUZItrqCsUdafOHQf+WxZ6cwWqIbI9S7NrL55a/i0S8/zKIteOzoIlfuqLKuS5BJx3Dvfv72P81yUU8vzM4w2tfNNduqPHsw5cnOLNbndIr7SeQcla691DfuIpk6y/bRTRR3PUjXKy8hGuyCjiJSAuMEPnOIjkXHBuELbGoQuobDUk8kbQvML0Ixj63U6NDLhgQmUs94muO8QPU3WL93PZOPZ6StDlknYx5PKgV5YcmcoLW4hBLhmTMmCIkLJejtr7GQQuaDfn1hC6zxOONWXGyt9yglqCWaSHo6hEo5zrGtJ2L7zgrrdgie3t/iwWcL3phA3NQcbMNx53A4IiDzkOE50TrO/oe+zra/rTF62xtJnGTwFRHyqUOY9gkcs4iehMX6ZXRfv5fJzyckHei5YAi9p0L+7f9CdMu7ULfWEHGD5IIr0F3r0H49/oRA/YBCV2o0XYTuHqB73WakbbB0JmLwltuQtXXI4X5Y7/EblxA9dZzXYCNEHKG6HcJrcBKfZ0gTigYiiZCxDOX4rAzGrQ9NwkoEjqALjsEiC+IAzgTjKec9PpJIB8Z7fCSwWQE+IJAqFjgbEgAwSFn2Fy3TZ0qlICnAejAmeBsELDOIe3rCPGdd6JFCBJGDAPe6oEBliyCHWs5rvuxjss4jyyAGEc6z3HBsCOindQLlBUiBVBIVRRhTUOQ5Qqgy2A4zrLFFUItBBPO0FdJpoFs5HIjgvqu1Rslg1OYJMqYmcJ6CcpzzAckQoUDiyqAnJDPnkIMD+w+U76GsbDnP6krVuWDZr/kJYdNqRY5z5mOclyycU/dZ3szyluXjrlrolxuF10YXrF30vecXfuEXuOKKK150DfufMVZzjJ215HnOwkKTyakW+589TXdjgIteNkRjcIDBoREGu3pxGexMC4rOIqmB3GTYtAPNDq2FlBMnx5kZO4VOO0weP8SDX7+fdLGfK9+xAaVhgw/P9mQBiwashsTDSStYtyTpGxjA2pQnnj7Lthtv5ORzjzN60QV0FhYorGHz+p34Th3fq+ntVyxEgVLUlVomzrR46Mi9HDpZUBkcJGoM0pw7xsLiMXp0zFze4si9d3D51evQchxTWURznEf/YYFX/PBPrjRv3/bDr8UJ+Nxf/B2pWWJh8SF6dES1e5Cop5/IpPQ1ujEPH6by8h0IFeaR8BwIvAVRWKR0YC3SlnGGcGgtKBwI10Yqj9dVCp8QzxwjqVWZQ5OnsLNrgIsvuZRms8mjjzyMXNVP4lwQM5ErAaVYkyAsB7chVvElh6PcWga3UoiVY67Ucr0n1pIk0sy4CjtHquwYrnD8iOeWrY7aQpUnZ12gnbqCWAiMg9QZzpx9lk339lNVhvrunUgpqO9TcPYQNhvDVwS+az35wFbifeto1WNiu0TlFbsRjUX8w/+AuPoW5GUxNBKiqy5ENC2yexjfFIidClkbIp2fprJrF3poK+QNzFKN2mWXIJNe9FAVukKBmEoUlN2cAiXZsnUrokshu/VLDnLPnD7D4088vpKEL8sxr8wt5T3zBOGaEOCWYXCJyq7MA6xK1FgrSHDu9+XXrv25eq5ZQUlXXcf5SYkH3vTmN3P599Fc85JGea+OHTv2P9z1JSUHUpZ67kis0KA0ztqVyo8sU5LQkc5K9V+WMLe1niDzaZCoUl+81OKWgiIvyPIMa+wKZIIUKEdpCR/e1HITZ0hAVIBjpC7/5kMiQEg2cCY0TJeJg4eS7rQq6xcglCJKIjAO4UtoniCbWOQFRrhgLCRliY5IvBWIPA88XRmBK6hVY6pJQqUSI2RCYSxRpYa3Od5nRElMT/cIzcJRi2okWtBWkBaGpNWGImZqYZFbbrqcm/cNsGP7ILX+QVxWx4sYKxNk3sarClZH5FmHyeenKBYKRrauY2zyGHmWsjhreeapRT7/uc+x95pptg5fyqbhIXoaCQcQrKsDEqY7HtUlMVZA1ODSiy/gC89+nctvuoVvfudh6ht3h6Tt9DPc8Iof4NFnwZmIQZ1w5KRjbnGadXMneOKRo3x9/+dp7LqJ7RdcTdZSLJw9QjRqqMcVmoXh288tkruMbZsi6FfsGshoHt3P49MVhnzEaPcgwyN9XDa1hf1nm2TeY4u76a2MsLF2HcP9w+iapzbrSJdyoqSGiit4IxEpWCVQPYJioYkeyPDK4HNFb2/MUu4YqgnStoHI4q3EyDom62F7l2CuBfN5+ML0IOnpqzEdK6RULHVyvBfEkQrPXyxZmF6it56glQxysdajhaRWjcmEp6I1RRq45MH/Q5AoiLVECBkcciWJd4SRAAAgAElEQVR0VTXSSIwxGOsZrHv2rhfs3iUZbUhm8oiR6YKZVpDijYWjTajGWMBSsOjmeP7577JORwxcejvxaIV1t0RMPXIK21kIdJuBXuQN1+OavYhNl1CYDlktJopyOHQf5vAo1be/BnevJ9l5AVx0MczV4FQb/+CTGGPIRUJUHSGO1tOe6GD6h2gXYA6Oo2fnSEb7SEYGkb0K2dUDKkJECmKFMAIocO0MUXN4DbIeIyrBaVbkFuEdQglYdp0NnYcIY4l0RKeZYk2YvL0Ep4JGvzUGFDhTwtfVYHyWt1OKPLipe29ZllFe0Z+WAkWoCFoXvFTQBKhRhsZeY1wppGBCw6fUOC9KRRiHwCLR4C3eFqURW6hyIXUZCJdzpwgKbwhHFMXnjgMIJVBaYgoXTBhlFJBYgheGJVzjckXIh4kQKVVYMMvFLqC0ITnACZwz2CLHWEozyQBf+7LPynkb0NdSfen8EdZg8YIK2oq4RjnOTwzWqGisTgxW7eRL6eqVYIoQOp2Lw8J51xbAxNrjrFQLefHy//fJOJf0hGRRKUWkdakYpbj66n1cvLVGo78XpWt4F4FQbBYaUWR4nYTCVprRmetgOpb9Bw8xdiSGjmX6rGfq7CQPfuU+NmzfxtC6C9kwXGU2kmQCahEgBM0CVFWQt6FnqIcoafPcxBG27L2Oybvuob55Kwsnn6e7VmdkxyWMT4Czkj6tOXrMIlpN7MwMh46d4dsHH2TdvuvZc8HlnDmZMjV+GkmHS66/GrIFmnOzPP/o88hqSvdonfWVHkxnlYqTEOy59EKq1QozZya54xsPky7cxwUbtjFQr1OtNgK1t+kwqUHFQbjAG8CVVeAK0E5R3eG7LYUmTiSF9dQjKDKLUC58b0kwmYbxE+hYMbVk2bBuiL6+gXOJpRAIKcrm9OVPbvXTtyoxXf51+evxgibSc1HpcvK6xhDLe+JI0NPl2LJFcNHeBBdLBqZbzMxbElmQyowWBd5LegzAEgvtE5x4WFLt7WLz5m3EDUnXFZLmEycRWKh3IUYHkTu24peqcOnl2BPfxfbXEX4Jf+ZZxFAv+lXX4J82RFfuBhNBU8HCEn7/KZyIsKoX2bsDYbuxsxbXXcOkFjc+j1pooYe6kN0JoioRcYIXwb8FqRD6/5qx2TLKdu7W+ZWEYPlWL38aa/qBzuF6a275yh4rhYjz9zk3l675MJfnE79mCjtXFGHt9PP9POf8o2Plkl9a5vbSHJJFMPXBa5wSpSOkD0F4eVJXOslqLbHWlQuiQuHITFHqfRukFAihSvnAsjpWaoFLETTNjQ/eCJEAFSmCRniA2JUMJ5QCnNRIGfoVvCtNhAoZKn5FhhQBzpVS4KwnUaGpWODLhEehhUCrhE7eIYk0wtpSazwkIWlhcC3AWfJcBkO3DISIiWKJNKFx0lsLzmNtgPeTWCAThSIhQdEVa/oH1pO0WphOh0gZEgHCWOxSi1ktuOiKLfyL976Gob5S5tAKfKeNWcyxzTaiMoA1BaIzh8w7RFj6L+jmx6++lagWo+I6Jw61+dPfvYtvPPSXfPR/+Tyv2PgBLnrZtWy6ZoRrdlfIuxRn2xXunXXc0GcRVcfYqQVOPnKYD773tRy6v5+X/8B7eOBMRFKvcNNNL+PUsRk2XCiYHzOMPTnHxP4Wz59+ns+2vsZc8RSy0cWem29n3+A6Tj/yGPc/dw8PPXqQDbUKBR0GEzg0YTgdebZtrnJozPNjbx7hL/9ogqqMmM1aIBwDQ5vQY4fJKXAU7I5TrmhYhiLJ5GGHHpui55qb0QsJLObQX8FMCsQw6H5D3cxhfIahiky6qMSSVsuHJhXbhEYFWxkin8qIlipsHEp4ekriTJhIbKfFwolxFuZa1Ot18qIgEgqtKwg8lThDLWpSY+ltaIwTLLUNeZaz1FIkOqKvS2OihJazyMKQaYnxnkgrhFLkHtpFQaMKjYoiy0LVORc5Y0dy/FnLuivhwp0xdx7IOLNo0U7QLQRVBYc8dHmBxNLxnufTOeLFo9ygjtFX6WX2RMrZ8Q7kCq1jVM8Q+961i/xDjk03vIt2lJIdf4Lm9GkaV1zDwjc+QeVN26G6DrqHEOvqCJPi9h+i+JVfYWFxElUdRZgBFscts+kSQ7ddzJm//yo2GiBxjq7+EXr2XkL9ZYOIoUHEcBwqOqYsoMcacr3idBwqfMsVBA8+Q2mNS4PCkIgjZDXCLhh0kiDmFxGFgdKYTMUxUjuKloHCYk3peG4d1jjarTbG2ZXzOATBwMmtuNsKpZDCoQheFE5opNY4cqwpyLMC4wxShJ4E70o5ZG8Ai9YyJAbOBkqks+G7LwQyDlWN3Fq8V0hCYSFSgqhcPMPcWdJnfDiGVGLF70BKWc5dstwvwjiHtQWqPI73BcIrEAolQ93M+tLUz9tQ3LCydKh2pSuvDj0kzgVzNylLZOL8JECUFbi1QZIvV97lBXxNBe68iv85ne3lQOl7D3d+QrDmBcsoxbmlbXnf7+tlehXQIYUEqajVq2zash6nLuKSPaMoURCc9Ry+MLjcI7IcogbO5EiX44oCLaG6rspNW65ExtcgZMLhR2Z58EtP8vh3vs43f11wxbXvZ/0NG+jZVmVzjyJPJGmiOdj2XNyAlvK0JhZJcsdrbr+CyeNVLrr1LRyYjtl86fXUlGNxLqXa61iai5k/3GTmQJvnx45ypHmAyfw4UV+VS266kt0qpvX0IzSahuGN+3jD299AvZaweedOPven/4G0OMJorBiKR7j1x9/1giR0866t/Jv//Vf59p0/Tl60uLS/w5aGIy4gP20QC4bKlXthzkPV463At4E6yKojMu3SFykJLuBSkBXhARE+w9XqQfrYWCouoWcgRpx2zMy0eOXrdrNr946Va1FKhzjBGZZRArmKsrK6Ar0cUIaAdRXnfAXNCr86Alq3Mt2VgbAQgoHuiOs31rmkXxKJDps213j4oZTTUx36ZEQjBuEFJ7ylxymEW6JlCw6PHaE+dZgNdpJY1uiMd1gcN0SiBlEo0vRd2Y/9uqf3Le8m//Ic5rFjsH03cuMW8rv+Hn3jNqh0QbURuGdxij9+Cv+VvyZtzaBHLsW366QLKaYaU7l0iOZ9T2KrA8SZobJpA/GOQdTmGqJaRdZlqVsPlLLJQr20AHQVCyvQF1fmnIBonisAhDu+tsHWn6M5Lr9+edtq+uILz7qCPrjlKs6aNGT52s4lIisvW/OX7+uZ5wXDv8h7/F7jJSYHASb3tqTkFjlaB8i8yPNgLCYVSF0+GB6kwDhD4QxFYRDeIZXGI8IihwsJgRKgdDDrKjKE0kQqqH5kWZBwE94TTJAsxgapPqXjQB/wwdxDCAU22HJ750rbBRcgSK+DyVlIX/CAsS5A8Upi8w4AWZ4jvQ/NkcZirSdd6lDkFawt8EgqlRiLABWj8Ehp0UpTFAIVJ9Qb3WRFhm1nMDNHrdqFTyKkLhDFApkvoLNEVFH01SOG+/rZsbWHV/RX2XbFzdRqvZA9B2YM8gw7XYDeGuiWVpE1Q7U/rvXSV9O0J2YRJw9hB3uIBvrZtGWIX/nIO3n29kMcmnqW46c+weDffoGLPr2R7WoXn9eD/MRV13H1ld18a7rN8cnDiIUTbOo46p+1/NrUXXTy+7jm1h9gxzW38NzxGl/7/b9hpvMAhb+InAmsOwPMI5REVbvovfH9/MpNF/Lnf3qIRx+cpSobzNuCE80ml1clt3cpetYpuvfW2LR3AGGGePZLY2TNjEfaOTWp6FKasfQ0UuRIHwMpN/ZN8fL1c/i4xdFv/Q3X3foemJjH6wJODeDnhxE1TdTwcCLDDfTRmc/IrKDQcHrCcflVMa1Wh3ypSZYbnHPEYpF9w4KxQlEclbgi6NE7Y2hOSnZuH2BmKkVVK+AknaUCJ0HUBd19CXWpIZJknUCFM7lhvMjYNNxLrdZFKkDnEYm3JNYz1cyo1gJdpCgK5tsOm8Pm3gjvJLmH+47lfCOzpAb8t+CK9Tk37Uy497hlqiVQHnZag3eCphekTuCQGASnThzi73/+h3nH267mK5++lxuvWU+8tY/5iQadqWHyTz1L9OtXUDx5CV2734W6b5DmPY+w8Ng86//wY+T/9cPo178b+1AV6hC9SWOXDpDPn+aAh9E9b6bZOsvMyXtZVP0c/tgnuOEH34PuOoHaANm0YfHZ/UTyEphtU3l1BN0akQiUivBZjfaDiyRDGrAIvVzzcfjcIDXkMwuIRCG0CJV5Z4KC2VwTITRClxVzAXEELoZ8wZIvGdI0xwuoGo+sClQiyTtFMDcTwXhQRxphCpqLS8QVjSyDdIEOfgqibLy2MqivlTV55yl9KoLqxrJTfBJHOGvQlQoiz5FeoKXDeI+gpP+UCYorUc84jsPrncHmFuNNcEY2JkhES0m0jC4JudKzlRmD88GZ1xtzrgLmcuK4XtIYApLivEdGAeWIojgoIoXINDjDA3iD9KGJ2QsZkJHlQg+roHbvz/UbLK8p51X2zh+r4flwjPDXc38+t0AFx+dV1Vi/KkU5H21YSzw6d2zxUpe6/1ljFXYgBVIoKqpCEiu6asNIqfHmDMKn+LzAZwJkX+BBW03RCVKlUsUkGorFDoWZRnV3I6s1tl8xSNx3HRPTbfY//RzH7v4Co3f1sbeyiSwZ5HBfN6981QZ2XVThwYmMhZkzVFsdhjuedtPwl6fGSBfv5paf+jFOq22cfGqOR/7uScZm97NkL2TOnCHvHAbRIuqKqW9Zz6bX/gjv2NnH7/3BCfIZQdXHnD1xjD/+/Y/yjh+6mU1btvC29/0qrckH8C6nZ+Mt5+7DqgRhOVDWUY24mOKyTSdYN9gkn5tl4fEjrL/mcpht44ccTHdDnCCSEpibs9CoUywavJKk3pMLz9CIIs8ttsixToA3VHXBaH/EPN24gzFmaZIvf+7PaLfH+cG3vHvlsgSlB5NzZbN5oEqzbCjHKlnbsql2+X2sTl7hXIKw/HcpZPhMvUdFkmu29PPciZwnD00RR7Bvd8Q11w+RPtwmzWPqLmddmlFB0pIxaeZouxgvFGcefZAjSyfYffNFPPvpb7D39ZeQH99I2hrGjNWxR2eRPzyMOzVK5Sd/hvRrf09xtIWKGtR+8Zcw3/oa6sY3YL+Zoa6oQjXHN89gz+xn0goGX/0mmk9/k3RhnlwPIL/0CKOveyWiOoEaisgOd8hPTJOYEcSIQe6SYd5Wgd5L4UPS8RK+mMbaED8uFyM8AQ8VcsU/RsjVkMAy4TIkbsvKPt6vLW8s09df+Myt/k6+2Pd0DaC5DIe+YC9x3mu+r8f/zRzmJSUHeVGQFQaJCE12zkCkoCgQOkISFjPnBB4LFhw2oAPWk+c5sZKoOGHFm9gFGD24kyq8K0Kgj0M6jymCcgcOorKxrnAhK1VSsdxdYa1huenYlc19UazBWrLMlTzv8ourCRQiQuXMWI+KBIUJEoBCUuqFOwrjyIvQlIxz9NSrCCHp5GFx1k5QeOhvVGnUInIbmhS1K8hQFLnAWUkiFFZWKIQidwXzY5MoJalEXVSqXfQOdVPpayB1isxP48wB/NF7kLpAjWxH1nrIp59H9xW49kF0ZSdkfZips5hc0MkNE8e+yFOfmuXeg00enk5ZdAl7k5Sv3v5h6ulGiuNN2lOHyOwZXhddza/d8270/ZtJxAKZnyIjY1718aniKOO+QIqYQ3ef4sTdf8fp9jNM2iNY10FwGI9AihFqO95K/2t+DXOqzW++ucNn/vNXObb/ALSeI00PI+w8l8WKmbzg42MdBmYU60/ljD6ds29zztxMBZN5GjZUXKcyR8coNld3cagzgXc5E9OWsWML7Dl1it1+Djl/DzZVOC7Ddxq4hoABqO4VZN+METsM7bNNlqbmibpgx+37ONyG0UpExRuSmiL3mtlZy+iGKoeP5fT2epoW2kbQ9p561mF4tE691mDy9AzNdkphBSpS1GpVhjd20Z5J6bSWsMYSJxHGOhp9dXCWg8+eIqpU8FLR6njyIg+JqhLYwqPwaCXIPcx1LF0VQbsT6EJOCHLp0Q4ePQtj0zmv7os4W4Wnm5ZHM2gJQcd79inJOpkw7T0nTcodEyn+I1/lgppm8KI9HHjyLBNzY1y8e4jo7fvg4Y8TX/J2lu7dRnTxuxl+2xtZ/J27OfC+77Luqp+m8tBukjd0o7ozsq88zdx9f061r5c7pha4YmqJzcrR1TfIQPVCFha7Ofzl3yHpehvrL4zoHlHUNtRwS0dwR4aY/yNF1zu7iLZqiAWyT6G766huj7EFvqS6yEQjjMKnEPVXsGnoOUJ4bDPHZQXWhaZeHWtkLJGxREXgcoeKIrQQ1Csa58Nc4LLQb6SiGO+KgBBKCRa8ESgszYXFgEgoESRKJfhYgFtuHtWQVJDekWfpipOndUXg+EuF9RKpqxhjUFIjtEBKRywhLxunKzEgJKiAAiglECZU27O8CImB94FPvaoEplQUkCxjMMbhJBQ2SLMqJUFCUZgShRBkuUVKVtBQKTSFsKWQxBIehZeyXFs9kdSkrWZ4DzIguKuTgHO6/uV271aoPst86u81lgH/NXzel/Ca77FxTQV+9TX+8x0W4RZw+RhMfAfZGIZ4EFSMT8cRFQv5OCrehM/B5jnGBAGQ1sRdHP1Si+88Ns2BSY8RmuuGFb/3vvejO92YR1sUs6fweC5z8PWP/CGqZwsVNU1mT5NGFU4JxYHFQzxv2iTVHrZ8boKF+ec5PHuIY0tHWUqbSPEA3kfUKvvY8sZ3MnTdVSQtw09fbfjGpx5DTJ2kmHiW9vxRomKePa0aX/+zj/L3H/lP/PxHPsb8qXGKzhKXb/wet0EIqt0N/OIsCyc86WRGY1+Fyps3wcFj+Ezg9RZ8qvBVEL2gesA+L2GDJBsz+DQlHqiQbOllzkC3EkQuoI4mF0jvqVQcS+15evpS5k2FoY3bOHTseT7xsd/jh37kX+HxGFOsNJUDKxST1fS65aBwuQdmRav/vKRn9XDOBzaEDMyKnlopSiEVWRQcrR9+xjN5bJLbtg3w9JhlYjrnVNvQ9Alt57m2K6I/7udQ2ubY1BR2ZoLsiccYHmlQ2bGXkw/fRyXLaVwwirywC049gtx4Dfknh4jf/C6i6XGyO6eY/fAE9etvh4M96LdE+PkMc/dB8vu/idy0kSf2n+ay8ZRarUqtUaemN5IvaGY//yn08OvovSwjqSWQgG/P4MYTijOSyitjSCgNNkSATV6C2bQsmSBrCgqsCrvPm2xWeoxW+p3WIpvn6EcEb4VVSGNZfwD82s9InCMfvZS5au2V/v93vLSGZOfLxjpZQviB6qPKCnrhggqGKhe5wmQkMg4wnfBoGRoxIShneB8+3NCrEOFdB60lQiiMCy7LQkAch0Y97R2F8zhC9ayTW2QUlRq6ZSWrpApoARKNF5ZIhuxel+6hkfLkaYohyNEJQaAPFBl4RaNeCQiIVkQ6otFVY3G2oJkaFpoZ1nl0lFCtVfA+C80QogLSob1HIVFRTKQbCBaoV6u43GGLDCcT2mmGrFeItEfXY6jVsVGFPCtQRpK0l3CMIwc2QlTHRcOIShe6OogXbajW0baOThU+aZCoaeTMcXq7L6Vnp6DrkYLkrnEeOfks//6a97DhN16JSqoUn01JvjJE6/nvYtv/mR+RnmfcJHexxPWv/1Fu2XUFR//qL3hw+nl++pLbuKnrWr5w5H6ONKfY2b2TybkpIrkeSc56aRkafSPX3fZW3vq+Gh/9Wsx/+baE+U3MLd1F3jlK3be4vqrZ1BPxhVmLFBqUpAEMLxbYsSZxB3RhEQ46SAwaKWJGq11c2vMyDs8/wQU730xt7BJOffAYqrkd92w/1eu24k7GuLFp5I4l1Ob1uCchvi3C3B3Tf3w/uuck81uGmJ9bz6Kpsm1ThcV4PTafQkY5lU3bKR6fI5+sQS0i6hTUjaerrhgZjJluZ/+dujePsuS67/s+d6mqt/brvXt6FsxgFgw2crAT3CkSJEiZIkXJ0UZFh5aiE8lHpuITy0kUU5JjOXbk49jyUeyTKHIkU5tFUQs3ESRFkAAIggRAggBmAM6+T+/L26rqbvnjVvf0DEARiqKEvOf0mdc99apfV936rd/f98tiXmBMiXGG0gWcV+Qrjs5kRsgHCAJZltCopczsHMesdVnpDXFliUoCWZIy2ZZIk7I8yDGFpTAWXEw4UyVY6ju8g5LA9LjinhvrjO9MePKxHjcf7HDiK6s8vGEYC5IblOBSplE+4V6gbwOXgR4BLQTLKD5nLdO9koX/vMhNP/Ygtzxg6f/uR3nu732A2z74Aeh9k+aPTeDPTBJOjNH5uUPU14akh1PkTJ3ioYusfvKTXPrGb3JpsMpaWed73vDL9JeO4xPD2P578eO3MnjqCS71b8dsPM35Ly2ys+45MDqFGp1DT6f48Vvwj+7BmTbyRo0ckTTf28IuD9EOgvKIVCBUQMoArSxCA5VCpyCkwg4FzlsSHVBGYgYDfF4ivcSWCpMbyLIo3iUCwpb43MSOny8RWQOdaFxZUAyGoGSE/gVJkmqcEDgTRZJQxAHyUAk+EbsDLvhY+CCgU0VwabRbUlSQpQQtwAdHkJVBkYpakiFkwJjKAclYabRlgZACnWYE7yhNnFOQUqO8J6gUQaV462wkXhChsr8Kr+QWc0csxkT/m2hRVeAkLgRcWaAk2HJIhXLcBDAhpWIwGOIqPQfno0BlMHbL3MeOq6wgOy+FG13TTbj6rqtYilA55pcW+1+yrnHtWwlIBSG4zulf/2JTyXjzl4QQvoP9dfxLBZHYQ8iMpL4Pt/5l6BwA3QHVRCQ1ZFoHUeJVhgoZqABZSUIPNVyhXruNw1MSpnL0k6cZrA947/e8leYP7EUIhZvsoB5NsKeO0+w+zP0NuFAu8DnWeM9/8wGmNwzH/vJRnh0c54Pf94McHrmFjzz0aSZau8jVLi4Mc8Y7dbTLuaPpmbn/PbzmnbcyfTjlyVOaP36uQA0n2LjyEOXqaSbCGrfevocf+Ce/yP/4Mz9DSyd8+td/lZ2thL1H7iY4FxPgl1ntkSa/8/FfI3hLO0jKh7ps/Nol1LCgPjGKum+ccCLAWA+5pwahTlgGeVjhj3paq2cZzjjKkXGcqVF4heooBmoEaXuIVCMbHXyxQbmUosdHSPuLTE+Octfdr+eWW45gXYUkCBE+LSuGsqvD99s2ldhMerftte2JqxBbP94cpN18LHAxDhqUlhOrfd7+4H6adc2l0xvcfsseLj36Il+8uM6sz5hpZqykTRq2wQ1tyAeOSyHgZCBozRUUZS/nTeUqvY8scuOP/ijh3DHK57/G8n84z8QPPADFPNl7G4SLntDaR+3v7iMrPGpWQltTPrzM4LN/RPeFx+gVBXl3nDt++FfIzx2nPTtDNj2DCy3s8fN01SHsxedYPzXP5HSd5tQ4cmwCMQ50ZvHHR5H7NNRjkSX0PWLk22cHET6pEYjIrCaIhApVgLb5fEtiLLkV7H+LOalrVni5l1c7PNunFl6i1rztnn5rk/Jd0Dl42Q//yozkK0oOrIkYXJlEPKsTIs7vJSnCC3AxeZBaYkrQKsFaj3ORW1vpJOLHQmzxiyAipt97gs8J3iBUZCdJdCUFbyNXoBISpCbRASd9xdcdZwicjbSlbInO+Di/UBpCcCgZ9RWSNEHrBOsKgrXIIHAhwp36FTNBs54wLEq00lXyI7GloT06Rr64gggBH+ck0XiCKWjX64w06qSpoDCOfuEZdIeM7mhQdxk6ZCR1TZqmUWwJUNbQTkrSWhxG7fdLkkRQTxJyaUlmDiNUSggZ3kp8PkC15sALVJJGlpPMERo1fNKhmWjKnuBLX3iM06cVN931en7kH/0XHJm5GXNJsPTRBda+9nWGF57BFCdY8UPK9O3MTB7igbvGmH3TQc77ks+5FqkO/MiHPsgTf7DGuZOfZ8Wc5+YdO/hn/+DX+I1//us0WMGGHosrX+CRzwW63Q/w3p/ew/GDo3z8S6/GrT1C2DhBSk6nk3LOCSbTQGoNcxp2NFKmxpqoosYXLq7SCIJRnWFQeKsIZChSWn6d97/2x7l1772ItREGZ1qMMAsbbdyzPtL11KPitRkOkY0MfVARtEKP3kg2Armd5/Hjn+atd9yOTG8iTSTGSHxh0WaDZqdNt94gH8jIWiMCAxlYdIrJ8YyNy+tMj9YITc2gbxjmnlTB+uoQmnXs0KEQNLI6o5OjLPYGrOeWYANJEIxoSaoky/0hDshUIMiY+KqqS1oK6AYY76TsP5Ryx50d9t00yYFXN/n4h5+kNi1YXVKs55CGQN97Nhx0lWJZxKB1f63F7rTJU2XJhf4S/9563nHxGA/+RYsbO3X8/Ao29Fn+7b+gdUsge/ttyNnbCGEcX56FmTncRkH+0GnOPfY5Tr74JS53VxlVij1T97CndZml9Sn8rjtY2dUmOXuS6QfvI+nvxDx/gfkLR7nYPUe5sMac2cOU6KLWFzGrI5Bpkk4dkghJDIMAigiGiqIiYAN2aAlJwJc2DrWlAaEDup7gu4YyL2LxQFZ4ehG7CLqdVeJkJQSPkiB1DaUEpRcRNuM9HoEtDKAw1iDqtdgNEK6qcwhcWeKExIsq+McjnEWnCcYYJBU1YfWv0oogFC44TJHHjimxAZBoUMIjZBXUhzjc7GxAaYkSLlIlJ9H8RrX3BJRmmBdbHQwhK4iTkEgiO5tSkkRFO4QS0e4JicRgq04sQhCcwJhIebqZFCEExpaY0hB8ZHcSIeCdxZTFVddRQac2/YgPsDlO6q+v2L+Mn7keWnSNi70mzqowxWGTaeTbdyaugQ68TIDwne2vRUxkN+dCZA3SuRhnhoTgouaCTEair0xl1NPQjhBSgqiR6gRbCJ7+/JNYO8N9D7ye2d0tZqfncGuB4R/0yI8dx106h+0uMgySMP4axvbO8OY7U0aO7OPsU+f5ZkhpT/H/2iEAACAASURBVCXc//4HefEvh5wrLjIhLLfdeTd3v/cIn//w47RYxol1zhx7iH5ecOtr7uGet7fYNVXji7WdmG/MIXoLtGue6blpxuZ28NO/+D/w2P/+m9z97h9kx+45mqMTFQHJyy8pJRPTY/EbB3maYMsENShBZoTnPPQV5IFgHaxaQksh7xSgBLI9i8xW2Biuspr32DszA2oCrQTeAtahQkDVMgb1OqJoglzl4vJpbuzfRL3ZprvRJWwWKyvbvKmkHQkIKhTDNhjbtubCS7acgC26y9hsuwqpcj5gXOD8as5Dj12IDGNesGNHl/qNNZbPQTcPlL6kVxoG1jOV1llUgVQFbp3YRUgyzvcHnJs/z/+5ofj+px7m9vEGyfACYeEKXg8Z/vlXyW61qLtvQ0zshKGDMCTU2/hC4B47ydJDH2Pp9POUw5xGs8X4/rsYa6+yluzA7p0mFyVqMKD5ugOowQjuhWXWzkhW1lcoyiEtI6j5ArHew63XEK0aYjqSdwRzvSzYt3gihNwa2FZqk4r++utZKZMHFwUH2dY5FPH6Bn/VdlxVN9+GCroOr7hZeNhKELY3gLbTUm178VJT9x1bibhm/T/9lK9M58Bv0pL6LSzXlhpkACEq+I0Qsb2NjnCKEJBaxlmDECs7XlRtJ2Jw43wl7FMNsUgZKfS88BV9anRLUm6hlBHeYcoCYx1SSaSSFS6tGt7zUahIShFpVqUmICtlUoE3sZzmEbFq4AN16yiFIASHVlGzwflIlZTW6gRvcCYKIgkc9VpCqhWDMhCUpDCCwoBPJEp4Apr1jQKNoZ6UNBsJrYk2Ok3JKhZHbw1mKAlGkaQOkyiCniEkbfAapEPIHKE7CK8RqiLr0paQacBilx1LRwecPOo4t7DOzekVbmvcjjcpJ//sDPMPnWBp6XGG7gpSTKCzm+m8+Q10GzvZubcJeeD0+We44C7xzulXcei+V/M7v/NFrpSWgS8IWeD1R17Fb4pVElmSJCP0y1Uun36M4WCOt77rA9x3b8qLTNE7eifdhcukuWEtFFwcFggPo0lCR0sSkTK0GeUwwQbFhoNmWqOt62RpRunrTDT20Aoj3Dx9gKlOB+FqhIkZVGiROwuXuyjm8YklXx8yf3aBr2Ypd2Z3sO+2g6j6DuRQ0CjrTM3llH7I0FpUTeP7dURuUYknGVFYLIOepbNDUTjB+qrD54aOlngb6A0MwXrKKshCCfo9h6op8tKCjQPoLgS6A4tBERn3JIUHYw3rpcF5UHhkiEJ9uuqoNWsKrQKdpqLdlnQ3Sr7x5DrzuWF1o2RKB2YTGHqBkTCpBTeMJ2wsJnTqAhESQOOF5a6G5zMm5VgBzWKN3vNf59Vpyi2uS6ELTjz5OFMXLZ3VcyQ7X8D5DvmVi5SNfQzWDc8/dYH88rOUg0sUQlIqOPjDb0Ece4rJuVdRjk/is4z6wSlqkxNMzc0iZ6doLkzRO30WTl5ivbvMqD8Hap0wbMDXEkhB3ZZC6eOX8nFIEAgpVYVa4vo5BBufbxsJAYKNKsTlxoD6aAMhFc44vLHIZopKVdRNcAEvo+hXaXJs8JUWShQ/E4mK3h5BmtTwWuFtZCYTQuCtqwYQiexGngrzr0l0QqhmkJAarVQM8KXCS4mT4MUmzaonCEXCJjFBHDx2IeB8JaIlPE6IOMi8ZbwDAbVlxn0VLG9yqAspsSYSJUghoBpU9iFCKV3wEVIVAoFIBOF8wPpY+xceIFIzWhcHk7VSsRASPHEgervFF1c966Zj3fSy24aQr9cs2DzJtVX/q4GRCC9t2m8/drumwLYTv+R3XfO5qit4zef+jl5XP7gQCmSHOMUpQLj498oMEdRWgImKjF7eCVzP0z9X8M0X12loy8xEnV3ju/FGsv6lVTYeuUJ36bkI3Usm0VNjpG84wHBqlF03JtieZ35hASMHvObQESYP7OITH32BFWvQZU7PrJJ4aOslsrSE+gTDhXnOPfssWW2UV7/2CDftVJyhydruWwj5GhkXWN8wPPaxTxO85b7v/V4O3Ps6mhPj2xo93zpU3NxPfuiRzRQ93QZpcKVHXCjArRMGgfLyOitscKmWsq9/gImbp2F1FCUF9WSAqflIS+xD1EgqEqTwaOlQWSwIdtdzdh3cwfLaBsdOHqUzNsvhfbfH2SQZ9Y22AsVNvuPq84fgEUHwUgb/TTXcbTtx623i6p9fPc/Oe9b6Bf3jy4y3G+zf1aHX6zGhA7N1KEQsik43NaLVoFhs0BmVKNfEaMlIZrkhC6wO2hwtBM8sX2L5kYc5kOZMygFl0mXl8iqti47apQswuwtvLK5X4NQcZjnn1FNnSM58BVMMo+FrNxh/+xHEleO0b7gdV2shdEHSluhOi+Z0BzHWQu6t404twEKPYmWZtDgH+kZwDdyLEmlTxPhVGuRX8jRsoT82u3/br1tle67VHNlWaAhbxmmb6dj+jG3+7Fp79Fd2BF7GTr3MQd/2iP/f1jUdk2vKKfx1PvcrgxVV4/YhxGq+CALrLIjITOR8dFoiULFmiC0BEKHifECUzI4zBHFGYbM9J2PlzsXq3ObmkGJTkp6twZSYJEhCcJR5jvGgSUkjDDc6VSmrzoLdag06H3DBIZKMEKIzDYBQMsICyoCzHqk1xkbjkGiJFxKTlxGaUxIhVd6jfSAbaeANbHRL0E1sGaJQWl3hC8+gEHS7Q7R1OC1JbI0wkpHoFCWzyI2OI4QS6ROCliBqeJ9ByCKbSqKQchIR6lfbaSFEp+FL/PpFFr70NE88sszivEFTkK5eYunRs+ggee5zq5Td46yKVcr6DK3xN7J792Fm3r2P+SWD6fYpTl3BnX6RG7N53nHwR0mzhLWVC5R5TiJT6lqTqT5OLhGSBtPNSRIkpZmnu/FJHv7YO/ih23ZyZB8MD93K4sIiemGDfv8Eg7JLJhxJmiKVpjAJixuKPCgOdMY437Uo3aJTG6GhWwTRYv/UIQrTwQ0G2OV1agbqYwHhEwbrBoYbCPMMNqxyxS7wWP5lPuwl7zz/bn7mox9kZHaE9PJOJpjkrjHBqYVjTO6GeiPFLmuE02RjCbWmpxz0Mbllbk7Rz2HpikHoktI50kyyujLElgFCxIqKAL7wyFBiigJXWIb9wPrqOgEdOetFwARYH5aURUnPOBIR904qBEnFsW8V1FJBLY3t1CsLjlOnepw6eZmVHA5OSg7sEUzuVay5SEXYCYKRiRpfvTiJv7TO1OQYg6Hh7OUl7leBe199ByvPPMOaL/lsvsiJ3CO1YtJJHs8vcKQnqJ9aRE88g+5I7KrjQphgZWPA86bLHuHY15LMdRQuUYy/tsna0gid3ePVUH9CcvBW/PmL1Fs5tZt3MeZmMKcO0fvqOZafewi78Dy4Hqo1hztaw/c8iWihdyf4wiGUAw1BxyKBFwKRKXwvMv+EoQUCUhHVjYsCOywwjRSJxhmHKyyNkbRiUYtKoUo4gnTYvEcpFVorvA+xXSxBpBqhQMsGpTNR18QRO5jWoLIEsclvXpXKda0WuwRSxuFGEWcllIy6A5vCPFS2J8KPAz44vDFIFZnTfBAVWsZHdV1jKza0ir8bgZfgbaQk3YRdBojVRqIib/CxP2GFqmyni7NdhMqmhQqZE9VxfdVNJQiokpc4FxZ/jyA2FKSWqOSlrmAzcL+mUre5tgXm17jdrYzn5Z2wEGJb9+GvdlQCtvDe2+cgrv8QIVz7/XfDihSJEPXO4zCn0CkCFbVBrrmoAXyB7y/TfeE4J57aYG1pjXo7xy2MMTgxCYXnypeHuHKeDTlEjN1Ic8d+WgcnaD44wvqGw+Yl+cIa6cZF9o477r3tbUgpWLu8gPQpaVJn0N+gf2keky6S1NvsnJ7FbGyw1D/L8qVRvvnUfu6caXPzFLzQkLRm50i7BefPnufs7/4xmfZ84H/+ZbJWc/MPfcXXxA8D6axCvzrFLyjcpRzO5zA8hVszLHRPcmz9DF8LGXdeeh3v+I3vBZ2i3Thj6RjNxLOWr9LwEQbofYQaq0Sgk0A56NFf3+Dm1+xn8GLB0vISp88f5/C+20mSyCoW7PUB1ebaZMnZzACudri2Cs1bm/0qx/4W9351DoiMjEURywHtTDDXSUl9ycyoZGQsYd5opIVWLSMdH+f4iSlYXWRiZhdLF64gB8vMNBMO33Ebl554jhUk5y4fZVATvKrdINWOk4snOXQlg+fOoA82EUnAdiVrZgeD+TVOds9ysObozNRQjRQ146jfohiu16gfbOB7HlpNZLtJ6A5QmUXf3KG2v4XduYPihYuYEy/g1y+Cd8ipHbgXJcF45IEEOaGuj8df/jlgU/cqzj1FSOPV+HAzedi8rvBSW3S1i7CZUAS2lM2uVmBe+lk2cwyxHZ64ddK/Yu9Wg9Pf4ebmb9rpeMU6BxCrTlQ0pdaaOLzrNx0fJBWjSBAenUahNOc8xpZA5CJWMgblQQq88GgdyE0ZBXtKg5ISraMWgneGvDQkIbbVo/6BjFzg5AShkSqrMGuxuyGV2GqLKxHVPx2WtJ4ilMCXlTMnziO0Mo3VSRRZqgSpBL5qdQc8Cu8tRRHwQYGQ5B6GMg6iCqBWa5BT4ocWu1Gw7hMGeSBLFLMzLaZH6tSTlPWBJwRHa3yUIh9AsCQioFJJ0h5DKU1wCa40SOURaYpQ9ag4bRwIGYWMyiFm/Swb3/gYz/7xw/yniz3QGd//+gf53nv/DkuXahTnDPPJTm6rr7GjfYBs907mXnMjjTePslwIZs8MuTzcQNZOcHj2NG/s7uP07d+P15rO4EuMuEVGk5Tb2ho5pRGtKXYqxVwmKHLDMPRhcIHHP/UXzL7pPdx7SwsO1FkqDlIeX2Xl+ct05QqzOsUHRWEluZR4oSBJ2JE0mMkyEHUICinqNOtztNsTdHzKlUuXEcswqgcEJ2nt0ITEMFy9wnDtGOv5KZ6xK/y+3WAZx0fNp/mJzk8zc2CGWqiRnbf0f32ZvLHG+P0SXYe8scbQrpHUdjE9Klna8DRqCrlicQOLsB5tArVgqTcDbiAJShCCovSCvADvctpZA5VKrJA4E7ltEi0wxlI6x2BgCdYzLBwi1WQJ1JSiU08ojSc3jkQJFtZK9s1onjuXMzjuKF3AWEikYF8m+OAvNGjvauGCoxxaVtcVH3tK86b9t/IHH/oC73jXJM0BPPxHG3x+WPKvP/SPOfVf/TR7XMkwlKx6x8dlnb8v2/zBsEtTKladgwXP1KJgVMCf+FWEKHlX6rgp9ew8JJh4XYaxHXq//a8Z+8C/QtTH8a6DGzQploak+9dJSo8sLKRNksMNxg9MMnpyH/aPHmV46k+R/VMEU8f0SwYrDUZ/cidutUTUPGqsgr5YEfe2cwSlsf2SfKVHCIHaRB2X90FqZCLJuz1UlqK0AlOihCEYjzOOUJioUyICiQYpYgJihiXWOFwQeKmojzcoigK8ASK1srVlFQDH6rsIImq4uIBMPFIGSufJ6g2cc7ET4KLQmHEWZwucjXoBiVKE4DGDHi5Akug4jyCq9rmKjEHOVrSihIq9KDKYOGeQKtsSVgpVM9QVZovmNHiPKSzWlCil8DJQSxOC1JFkoaIolUKiZBI7GJsicBXzineQV1AtpUX8StOXupJtQfnLuZnt/3+9D96+tmKmbYOE8fwvEzdsOvTrWZG+BdzoO9w/v/yKWU98qWo4M0RUdLdIXc1OhGjvgyfYHNe9Qv/Ms5z9zBN84oV1Rhp1XvOOH2DH7EHKNU25ENiod9g7PUV7xx6ad4zTuHMEeUPK0MDIvGXdFiStS9y2T6CnD9DbfysIwejS15hUkps6KffeezuN+27kP5z7HW6QkvG05JthSM/k2PNn+fqnjjNyy2H2zyacfPa3eN2h+1G6wZUryxzcs5OJRPLMpz/D/T/4PjrTU3+t5EB2BNmdCeLuFJ87iq857J/1MYuXyLsLHCsu85XhMosE5i98kbdn7yLZn6BDQnnGkH9jiJwN1HfFBDLXfbxKUColSwXLXU89s/SunGO42ufmw2/m3W/9Qax1ZDUdqcNDFTNU8ys+uK1C5VXYytV96/22AeZtO1RuYzsSXN3oQgSMCQgks3Mtmq0aKxsD3rivwQM/sQvRmMHZPs541nqKs0tNXvXG2/mTX/593vRTr2Xhq4FTT6xxUdd58Gd+nCuXfoUDzTEWV1OWjOHFrMPNtUk+deEs4/WUhWFO4xuGthaUQvFcYUB1ef2oZ6Ldo/2GOslNs3g3i/nyR2m+7YOEoAihEf1fWaAmLcoFROlBafShEfSeBv72OcKX9mNf/CJhfYGQKMzREtHLyF7XItgQBe3Dy3QEt66TZDtFqRRyi150q4C8mXyFzWvut6BI8ZqKlxQwxGZxeZu6+9ZJrmswXk3yKvKFrdbkt15C/LW29v+366/XIPiW65UlByLCIkTwFR1edJKpVgQJzgs2hXXw4IInSahYfxwhCJSIoj3Gu8gwVDXTg6AaygOhUrRUUe8AS+kM3jusidAliDdQCkCmJEptKZpKnVBLE8BSDEtkUkOJyGseJBhjCC62+wvnUFKSqNi5UEogiU7UhajybAnoamYhiqd52pkkrUSX7MBQ0wmqM8mgkATZZGJmlIl2RqokpQ00hWd0bJRmvUExyFk4fZz9h25gmBs67Q6SaoZCaGzhcKVEdwboNCWoivc6aPJeD1kWpPUxCI7i3AvMf+7P+dJHHufjueRS0Pzk63+et/zgA0zeMUv6rOPiJxc5uFsg5HH2/eSbmHzbHTgrWD5qSWdTHq3Nc+SGwI7eJL3iLp4fPcBNuxoo4GK+zIaDaZ2iNko+8/krdHwgG23TF30K0aMlYEYpxu3v8Ze/0+KBf/pWLj7xNE88+hQUZ7k5a7GjOc1ULaOVZZSmoG8KNkqDGBZk2tBpjiMU5D6lbxWXh4top2jXU1RjB7KVI7L1KPjU1KS7E3y/yZlvzHFhIeFM3keHy2ThAo8ffYRGp74Fw6jtSbjxX8yQ/cUD9Hs9Mg1+ZJJStFjsQTJ+KxMT93H+xCeZv5xT4Ek0aOUZdC2pTBmdbLFjapysXuPCUpcLxy8TSkuvO6SWEJ9AEYO78VbC+NgYfeO4Mt9ldS1KltUSQVLXaO9ZHxiGxmG9Rxjoezg5X7LatxgLhEAiYLYl+F/+uIOeEiANwgQSM0pz6gA+BE7//mP86i+Mcu6Zk3zpqYJ8RvLP3zrJ5Uf+ET23Tt1b3vfjcxx539tRyXs490v/kP/1+Rq/tGD42SzhnlRy1Av+p4HkF0dvZaL2ImFkwOQhT/0WSW820Ht2QKY8cuwy/vIZ1ORNZIeOUHdt/MkJwgsXER1BWC4QOkXuqiPu24HY+f34Dx9BDs8wXFykGKwjzI2Y421EQyOki636IsZHIUS6T5lmyJohbdcwg5zB8johRA0C4aPQkc0LhJSk9TpuYAjDAZ6qsZlqnImBb8CS9/r0e328kCStBrVmHVNarHdIJN7FIoBUmkFekGoITuKIuhQuONwgx9Xi7/PO4ayNNswYSufwMgEvkDqNlUcBtihxxPsYKUIFBI+suiHFcIjUCcZbrLVVcCEojUXpBC/jjEIsXMlKGM5TSzOGpocpiuhIlSStJyQ6RapKcVlInA+URaSEFsIjRexNQKTSFB4ajTp5MaS0Bu2jwmlwV6lMpdxkKaLq3r4ckejmD7bBLrh60KZ/uv74wPVOdbtIkd86aHNg8Nq1id3YDBiq77fBmb5zPfb2ddV7q6yNLYdgDV4GPBZbGoIpqTU6BG8pL55k9Zmvc+bLR/n6QHKsN+AXf/Qfs/cNe0mzlOKSo1fkzNwANpxn9r9+A8lMBzsMlOse2ZS8kPa4daegtjLOWuNmejphaiwqfJ9bvsIgNMhIKdZKVs72GbcBpmuUeoCkz560zkytoNX9HE9+JuHVP3GQtSuLPFecpd+bR7Th3/7H39i6HbGz9de7FzK72hWSTUX99R14/REIRwjeM/rbj5P+9sPMtHp86E9/FaGr+y4h25egd2pqV+oUwxJdU4RmJwbiXqDqM8zO3MO5Y5cZG7mf6YmzHD36FdbWLvJjP/zfkg/MVnE6wDYGr4Cr5om21JJDRUsrI6Q5eM925W+oZnO2De5XuUWMVZTg8I1j1BNFhuXQvhG+7787hGhIED2EA+33oWu7sOSsfu0L/Pwv3875Z57gm0s5M3eNcu8tY3RP/Ud6okfNLvHuX7iLzk3vxM2n9D7zR/xcewf//pkeP7d7hJE04bFe4Ggxwnv2vopG+2nCxDyNm2uIPU1sZzeY+/Abj0B9g3BlAzmzHz05QigzwloLFnvQBNYdNDWinSJHUsJMB/3wHgiLlGeX8LKJNOO4hYSgQO2u/ZXboDQlxlqEiB10H66iRLZ0VKqttAk1klX38BqF9m1QoMhmtHmebancZqdgGxRp68ebhQ7BVq/n6ljD9cmNuO7f78B1tSKzzXb/LXQOfIic6pvOJ9OSVCcoJStcq4MQ+YaVzCqaUoNEkipBaQqQEiETnDVV0SRUCsbxRkkBzlUZ+xb2TyCVRiYarEHJQJIohMggBArrYnAG8YG1HlyJUIpgLZaA9PFmKyGxhUMkAp3qCM3ZFEkylYpzaSlsjlISLRKGIVDLUoQNpPU6iYzYTxcEaQgVq4QgqBQVJBoROylSYEtPn5yw1mXQLwnB0Zkax1Oj2MiRZgNcpEms1VsIJ6iNtOivDchqliRROFXg1vpsLK+h7RrCCwaLhlNPn+Cpz52klHvY2dYMZ9/JkR/5HmbvnGXxYuDxh7osXTZcuPANHvwnP0FyeJzlpZLFMzl775jkE0/l/MRtu/HfeB6EYuLwIaZ3l7hTPWw5RUdNM5eUjO+8G3PDW5j/2KPc1bqbZPoKXz09D6HOTKvJlWGXYQgcXn+I4fB+eivP0ciPMtZIoTZNWXp0KrlcFBROM7SOoemxL2kikiZrxjKaJrTSOpnPKF0KzTokgWJwkf5YQjaeUdcBagZrVrlw+gwXjeFKLcHXd3LP9FuZaGRIoV7SCRRKMPPmOifnA+3hkMw7Jus1XLPOyccu8yY3zW+Vmom6ol2TFDLQ60LHwJ1HdlOIlCKH9ZUBeX8DFUqyVEfGGBdx5qVxFMZz2TtGmjX6/RIfArVMVXC4QDEsWQ8R8x0IeAVGwDD3uAD1kQRtHLb0TGv4wI0CRrIKoyrw3MTT50b5d598Abo97mun/MGfzTN/2nDHIcX73zXFiebtFJ89yb/4h7v5pf/jPM/+Xxd43UOf4e7dV/joE6f40D+7hU+86RcQL3yZz37kCxw9n/HnH/oV/uRn/3smkxK5P6XxXsVwzXLmdw13/ewe+uuHKVe+Sjp5C2pMQRgg0xbylgxuuRH/jSG0AqKuQHjwCqEctR+fIf/UBt5Y9LQiu7mBmBCQWHx/iBBJNbvkkZnCC4HWQEiQGHSqCS5QDD0uKIrFFVRaQydRnyBppDgLqq4R1mJ6RawmJbG7mLRa9LoF3gVMKCnWDQwGJKPjBFmSJAlOKgwO6x1aJFtBc5EXCCURxCA7DAPOuUhRaiOEctPR1zJJ0JEC0RZR3Z1qlqCyalE3RUTO77IstvaEkAKdJFtdziA0KqljgkcptWnNo0GXkY4xTVLiOJ5HJjGIR0SqaKlULGIQSJIULQJF8AQRKiimAC+p1zXOOrTOiPlAwPpYxNlcm3SOsXLPNf716qo6BnJzVPlvVqp6iePadsprewbbHfV3Zd/g6qqixaQ2CgIee/QRPvPpv2B2apIf+r63UawtYLueS08e5/wLiyz1Ozghuf+B97PnzTeQjKasnHLMHyvpLRpWzs1z188/gOykrC+WEATpeMa5ecub93Qwxy8hO3WyA3XsUCAWSryvMd6aQ0tH67Z76ddHKb4+z+0Tt6P2LPHoV46yc2Yvaxs554ddJoxg7/KT9PMb+L5bH+STT/w5pxZPcPsdt1V/E387CZoU3P/jr+GeH7r7Kn3odftSJpDNKlb7moZzZAiyLMEU0FsdcDhv8JWNkuX5p6k3RslaHQaFuvq5t04biz6ygki7SpzLsxmsfvskNBApSuMopIgVVhFnE+rNlNNXutww1+KeHQkPHJKQNmKWA4RwL0+dG/Lc+dMkRY8D9TqPPPIsyy8OuOd1Y0wd3MOyP4A/dYGf+vnb+Je/+jin/t0THLlZk4k6Z08c420ffDO/euOPIs49zmMf/jwz+45w312v5czv/SnNrA8HJklfm7H+hXl87xgTb2ljb74LJMiJBiIJgIdMI2Y1zIzCRUtoQlRvrToCOqDe2sI+1oMpUFN11A0JYkSidmTf/r6KOFsliPYs+BikJ1pvXcftw+DXvnVbgH99l9PHPXP9PdmCrW9Kvmy/59VBL0t08LLru9z+fJv1CqlMo8JxEAmpEigCxsdBQGMdzleDVF6S6DiwRzVgJwIoleKCA2sJzuEq/J6gmkuQEIJFCBWDoRCQIuCVit0BKZGZjCPEVSYZEGi5OaysAIGJtDMIGeFOUkW6U+88xnmyNEGnCWnV7vPO4YytEnyH16CERsoIa9IiUMuyiOy1saoXf39g6D2ZTnEyI6CjjoMM9HslvtEm31ijWU/IsfigyFKN1pKNtXUUijxArd4grWm0klirMUUgyR3SFTgcwVuE9/ReOE6xusL6fBdDxuXVIQs6ZW3guHFsF//gp17H7j3jrJ/P+eaXz/DZR/+UQ2HIvbe+mr076vgNECh2Hhlj4OA17UA9H5BP7iS3Euc9tXKNUJ6DMM1FWzCWSppJjStBcXDkMo+efpo7uoYOig0l0VKxszaNCZJ6f4R/+09/nXb3MmOJY+gMa8MhPTPkspeU1jA3Mko9GWOtN2BWK5qdCebX16Aoaac5nUadiZldqMYoCwvLpI2E1TJHFAMa05PU9nToX5rn4mCJVXoMlaHZafKqu9vc+u67oPC4zCMTiZBXbXfSEMy1MoJSLK32MaVlZk6woXM4NwAAIABJREFU89ZJPmEHOJnSdQmJd6TCU3jB2A3TnDq+hCkdgzzQ61v6vSHGBnQi0ApMNfAZKvhZ6eFid4ixnqENFA6cCyhn0EqitIzUmDI6CxkCSTWDmmaCrCaxJfRN4COXPff99jK3/8gMfn0nH/7IJf7woacZKse73ngjf/jHL/LGtuN931Pn8H0HGGntYf6h4zx7qs8fPrLKysybeEPzHHfMGMTddU4/JvnypxQPvH6aow/P88LXlih37qc5t4N7/97P8if/5oPsOeEYPZMwmSomOw68pv2613L2tx5i7kFNY9IQ8i6ifQ+ikYJSqDs0oecJXU8oAqImULc2CHlCZvYiz0/hjUdOpdj1AbIRRc7seh4HcpOA6NSxpUW2a1EQsaaRaUawiny5h8eAlah6hm7WUDWNSjUiU8jEUm44RC0qitvSEoRm9dw8692icsoqQu6DJBhJrZ3Q3ejjTYQ6eiEJUqISAaIqNliHNQZbFqgUvE4ovMCZOPCoRSBJEoQ31Jo1nNUY6zDWVCrMCh8cpTF4U8RhZ61RWuLRuKpKHz/XJluRwFoDUlXCjhUNYhWIGJMDAqUlQqoIn8SB0hTDIVpDEHFIOXiHVTLaD6FQxGciCPDekhsXq6LeQ5R0xNmrVKZUVKawGTOFirVFXFut46ojvQZ9tK3Cev26irV/uSW2vQpbx25VDzdLu2wfYt7+3u8iZ10NaCMEMkkJwZNozVi9xu52g4Vj30QOHKQtNkzJIKlBUmPv2DQ3v2c/SS1hsGA5843TnHniJDu0Z/9t+xhppxQbjqytEYnCu8CeLCCNQY6PY6REGEtic4TbIIQ6J/qGO8czfJZhksBIY5FT+fMc2LB0kjYe6LRbtNIOyAS5mvJv/un/xle//EkW1ubJTY5x7tqg6v/NBEHEBFFqSarTrUAxFoe34cVFfI7aaQJIuv1AmgayVNEYr7GOJYgGywOLdn0wjiTTQKWT5DdPfLVaLEWk7g3bYG0x/4n15YiTv+ajvvQ+V+9VUlDLNLWapt/LOX+5x1cSx9isZOdTLzBz9xFcdy//6fc+w4kr84zOjHLrvsN8/FOP85adhtveuZPpvffg+hkbJ05z/nyXE395nuwN7+fQ0ueZviFjIWScP5py/quKg4c7nP7cCdaWS5o3N2ju3snsgw/w9d/8LHOpZOz2FlktJQiJECnJ7oOsfP5hxl9/A/ic4HYg0ilQSQzSdkooQ2QLhEhH3UwITqLumESsl5BJ5GSkxhb6+or7S1eSaBKtt8Qht64924N0uXUeiagEbjepi2MhI6rTc3VWoepcBUGVTG5LHsS1ViPuIragTC9dYStW3Xz/9d2H78T1rbq3r3S9ouRgs2WmZKxjWusJCFxZUeVVt9O5eJxOYxU34moBIfGmRMrKAQpZUVKFSqRI4L2sEoaYpTvvo6S5UhAcm6Nx0XFGnHcQAudB2pg0BB/wQRKsQSGrB9dhQ3SAaS3BhoD0AeEjpZzUEePvpYqYYyGjWImMrEeuHCJFIFEJWkUe5KBg2M8pvURqTaNWp6klOgRM7ihL0EmTVCmc9RS2IBQFWaroFQW1tI7zCmtB5A4XotKqLYfgAi5TkarQe2x/QFlYhot9uhcXGYqMQanJklF2zOzkVYdvYk+jTrZc8vTTR3no05/lwuLjTDXa3PR3/0tqzTp2EJmOsqAxy57RhsLkNUwW5zAaJifTBnlLwdknjjE2eQ9JGDBaq5GuPcljV45y05zmxStDbJmQEqEOVjkG5ZCTGyfoDjQTsqSuFU5LhmVOGjxeZow0RxlrjVFXCYohY7UEl7SRqSAPQOkQYkiz7NNujiM6LTZWlxAhxYucftFl8dwQ6x2LLmdV5qxLg6gbWnsTZm6bAOXxeYFAg9axalBVa5othS0DmVOx4p8oOlMJC/kxhC9YW7GkLY+sCUanFIPugLoEpUIUH8pLqLDjw9ygtNhsOoGSpFKQakE/L6FyYgkaTOSpD0GgE4l34EJAyLiPGoTYyUqglkSVz+Wu55tF4F/+54LZ55YJheHZF3qcmrd0Zqb45lOXaVvLkbe2uO2Nk4zPTXPxTIM/+stLHFtx1He26eTLnF/v8hVfcOTyBd7/M29lpLwXWZ9kWTQpVYN2vUky2mHf2+5j5V/BISFIkyZr1nJ8w7F/zxzu4lnae6awFy5ROkMy14JOH6GaoDS0Nq8xkHtETUBLIrxA3tAmGcvw/RI/MNAvEK0M4Q0MPUEGyCIlqVIKkQJpCrnElxphHcn4KBSGxKe4oLFORZMVAspaTPAUhYnDvc5jSoPzDus1kj71RhNZT/CJwAhBP++xthwohn3wlsiSrFBSY0qPSrNok4gVv0SrrQE57+yWtXU+RMMZoBhGe4ZU6EQQZOw0SBlp+WRFxmCtJU03OyaAUjgb1UEDIl4zxZa2QQg+DiAHCN7hbYlQSRQ5UzI6PQQ4F+FM1sVB6GixEUKgZIgRVNUGCAGMhbK0JIkE4bfgE9ckB5tecCsm3167F1uHvHQe4aXY38qBbJ3zmhB+M9G49tRXv9nCB29jKgnbBzyvce3ffWvrMsci1/p6l1NnzjGaJuxttAmrXY4tn6Hb8yR0GJudo5BDRhNgo+TpL77AiSefpbhykdHZKabvfy0yiJgQSolwgpAHalrirMKmKip5O4eqeRgpWTu3yNxtr6amBaOqpH/5IheXTrN7LuHk2SGpqyOlxWtPaT2DvOTsFcNT5x7n4vJFClNgvasoKP92gyWxbV9GyMnV15v/H0QgSQXBSXSIeHahBbrmWOkfRznDxXM9dtywi+ZIDaEHPPnsl9BaUZa2el6ACr7mtwWMm4xEW+xKW3AitgWkXN3XFdQlFjtjBOOCxxiHVpJ2KyFH8OVTQ9Y+coWxLz5D8Jd45rkz+OYkNmlxqXiRMVWy556dzB7ai67Ncvz4PI994Thn1y1T+6eYHixzYr5AjFxm4sAe7n3fA2SNWxAqpadbJM0OtUaTdKRF59AeuhuGTCmknmRlbRXvUtrtcXx3iWyqg124iOp4ZLsNYgwhddyrtaowG5uXMXpMBKIUyOkM0dGQSkQ7QTTUNXbkW99TuWlMrjnO+wg1v2ohRIwnK+rT7SQFm/AjcX2nIGwmbi+dC7kGsrT9PdURW8H/1i3dLFaErWTvuwLB+DdYr6xzIGT1EEbnEx1YVfmoKkyBCgYkJFJqrPPV/Fu45iGBiq2o+rlQqkoSFMHZ2AkSAnxkHBFCxgq/D9tYi6pWXcXk4W1sgXnv4qYSUWzE+Vghc8FHSnUkWI+O1EZV1UYivUI4sGGTXzxuNGc8Jh+SJAnSh0iZqmLgKVIQaQ2hNWmWkCUK5TzeCpwBndYiL7OHEAzWWbSq4axBpPWommg8wYHy4LBgXazaNTKSVBOcw2wUeFnDW41QdayReKfoNEZptObIai1WvnkJLTXHvvoEzzz/BbRfZOfB19I+spf8coJEkiQSP4CkDFitKEJKMhIgd+heTqM9jzowyVceGjKnd2MnS3x5jvWFrzO/tsH3H2jyxClL3zk6SUpdC1Z9n6HtMnBDWrUp1oVk6FKyoEgEkdkJyVhjgiTpEAhkqaTWarFeCqys4UyB8xYhS9rFADnsIlKNlQ6nLEaUrA96zF/pMUgDl92QMFqjk40yuWeWkRsnEDoQbBnnTINHZh6hVfxCIFNQDhrSAxZjSup1TTnSwF+SDPoeIx3jowm792RcuthDjU1gTS8a9ipYlCKQlxbpJLVUVNTxkckoUWCDR2qJzhQJksTKCNcwHrQg+IozXgpEJhDek9UExgZyGxgMAnkRGWk+/UJAHusjxAAINDptGp0mq+cu8ra3jHD7G9pM7pjk3EXPJz5/hs8f77PmAn//fX+Hpx96ihNLSyileUut4LXvexfHHttByBpcsBKbNdk1PoWq1xnZVyMRko2QsSEn2Mhznl/d4J2pQgybjL66yeCZZYbDKwR9nvrMAogxomCBhBRoCUQWk3usj9dlRCFTDYnDlyWiBmTghzYaXi0jDEhWVUEJZIqgIkuYdwbRbKIyhxYDXN/FTo1xeFNgsJQVtWkwDltaTFlGms9ak0YYkNb/b+7eNNiy6zzPe9a0hzPdueduNNDoBgiQ4ACOoiSKkkxJriSsKCXFcZWjRHY5ceQqJ5XBP5ySIsmOVf5jW0nZlqyKqxJJLsqSJUu0bJmSTFAkJVIkIIAAG0Cj0Y2e+/Ydzz3D3muvIT/WPufe2yBoyLFsIKvq1r33nH32OWcPa33f977f+ypkxxCMQsRAVVUMJ46AR0SflCNJggC2rsmlToUHITA6ycw2IRmhJWnlVrWtfV2M4KxHqJiYQ7JVNAktSznMHMFmS1wK1oVSSY0sRmSM8/gdEVMPRmwLEz7M5722DtbuO4CUyTfDeyIkE7SYgmilWx40KdDxrRxjiJHGtYWXINEiUSB9bKOsdqSCzoG/Dy4FfOPHDy66hyhCBxZxAfuBwKHx+r290SZvnAa8cfP0W3ccTsLGk4qbt9cZlCUdC3Z3yMU7m4SQsTyIyHIFpSLDa5vc3bzLxS8/x/prr6DDLjdC4FtOL9FsgjRJYhwHMkBQAt9odJmqvkpVmGxK6BXc+SPHueMnMdJTD19jd/0GU1tx4pEOzz7dUCvPkX6HRlmmjBhVY3ane2xsXaduGqx3xOjnfO1/b0fuYKMqs+S3jS9UqhZnIhBb01WpBbY0+BjZ3JgwWKs4dmqBpaUu3nt0kaeYxc8Ucw4gZPFwIBhjC/cdvBrvb5ydceDbIDPGSGjljF3j6XQ0na4hSMmNbc/Nicc8dwehtxCx4dTyQ2RZl2b7Ek9+8DhHHz9KXh7npZc3+P2vXOHLF+8xRPOxH/h+vvqLT3Hn5jarJwourHUYPP6tbN0YEKXmZhUpFlboLywh84xssYtCM46L1PIY69s3wEXOKIUQGeWDx7BXXiD6DbRZRpUrgCF9OZkajCElB4J5UC9KCV2FyNLPvGj0bxgzWmWYHa/5a1JRLbaGE7OAPRCQUe7THZklZu2rZgljOx/sTwmzJO7we88TP0jKaHBoHjk4K8a4f27hG8xRb9nxb/dB31RyIFTyCXDBI4VCSIMgIDXJ2bPtMdQyBaFJL5iWdpGCdqTCOYfWWQqAw2xFlETnEEbNq11KKxAKIZKsoPcxqY60XeqZMcylPEgNxN4n9RBiqsKiBM61VSYhkqdBABkiXnliEEgZkZGW3+axcZZ0SHwUNFEkaa4Y8LZJXGktcDojX+qQ93rEmC7MNlfBe0eeZ4TKMa0cmTEYZRACqipVJpQU8/sqoohS0dh2oZ8IlDSExhGbptWG7xCzHvlKBzOyZGNHX2cIUfHqK1foXNvGTWpu33oe4e+BgQ987KNYJ7Drkc6SgFzga8g6kmHjiVGyuCJodiua6Q55f4favpOXv9hwdnCbjWLIS8Pb3Lp3k/ccWaMbN9Ghpmocx7NV1nRB3ewSgqeRE7zfxYoBnoBylrWuYaPWqCaQiYxpkxrWM2UIumQ6GTK0FuEsmYxkKsNLwfZ0CxpDXhqiEYy9pWnA1rtcu32bzVhx4ex5Tp17gBPnT3PykTPYvTEaUMYkdQjvUZlMak9SJ9nK6MmUxcUJ0+2GsrPM0oVvx11+CVvvIJpIZiTn39Xl+itj7vUNk21HNnGoVvbSCJjSTvCubVlRAik1yJioZZkkGgFKYFCEsU2JqSAFjO1lGyVULqI9jMeRvaHDWp8CaymQucTrDGE9uYkMliNHl0esjuD7f3iNVR3ZuKb4jd+4yc/8k5epg2S1m/Hxh7+T3/30V9mYTnjy2Ake/8QT9I5/mDvrv09lH+Pi7R1KWXDhwbOJL64Ehcm4Jo+xunuU4d4WV0ced/E62ff+RcLoefzVJezGBtx8FXPsOUy+DPkaiDxVilo0LdpInDhQkSg8MTbpx0QoBbGp8dYSHAgUsgnEiU19Rlq2viQSoRS+aXAWZK6RBYiYkqngLb6a4HzDVGR0usl9OxUfRKI25galykQpdA2etPhkRUbmHYGc6AWxnS+iSLx7E3zrtC5RtH4uPqT7WyWkUoR2zgmhNUVLyULwlhhd+gGsq9BKE0PbzKgTkokPRGOAiFQKLUTr6pzmuBAlMUa8d3NTM6VU6oOSgqZpCD4i2zmy8Sl4cTHOVYq0VDjX4EmfPXg/X8lSRU7QWIsuskShFKn/Yb6U/BtWvTml50Cgv4+yx/1F9+Bu4n7KMPs9q6a+4dp1MMe4b6P4Bn+9/RKEdrSBSVXVXHrtBpdfeY3aOjKVYVTB9rRmbGvee/bd3Lp4nc9+5Sn8aJvodhlLx628xntwe1CspHtBEJEarIcYBd2BoG4qpJkgdUM9WuPOs4Ezi1vcM5YX795FTCY8emqJzO2g/IRR3XBuaZmIZxwtrmmoZY2146TWNUuA73eY/fd66GbX0azCnAJWLT2NC3irkSZn8ND7qP7oj6ibyL2Ne5x6YIF3PPIo3exR+stLNLaB6PYZDweS+nRpi3lRQNAWeea3QApmaQPdeRLdPjcLd7RO3PqyNNRRYBswHYXul1TZCmIyZSXXrC1bjg2GrGnD+77nPB3hWb8W+Be//lWefvYm1iuOLg149Mj7+MWrv0BR79A59RjLj56H8gR7Ozfw8TgvvnKHD50/O1eOElKRdQbcCQ+yOFzh1rBDVm8RNjdR5z5OtDfwukcc7SGKW4iih1QGZDddo4p5gSS5h4ZEH5IgSoNQkj9Okjgr4M56DQ6X4/fnhoNy9vuJ6MFSRYtxHqIMiX3n44N53KEPKOaN4uL+ueMboAqHT+xbeK55g2n1fuf5bzbeHK2IpMihxAzSVYAnuLQQCinQbfnDVhNyIwiuTnKAKlFvvK1RSgMC5xuCCwgiKqQU1E4rikwm99gWPpqlp02TEIHUZALGGKyt2+ZAQcSBjPMg3HuLim3phGTW1ss1TdOAlFjbvrcSYMVcqUOZLC2+1iWTIJMjiXgp2Jk6siDo6Iyio9BFxtTatLBmXTIjiVVD4x25UThnybuGUktUjDgXwHmi6mKKDrkxiMYTXEiusDJL8ohOMNqdorzDRE+nV+KVIfaPkuWOrhjRxAluGvEEIh5fX+e1ccOdpsLpDk5pPrt1nr+QG+JZSQgSFwRegFEwaATdRzKG14eY6U0WBh7UJ/nSTzzHoFzgu777OD/z+ds8d3udHo5HBorf/MqYJnZYyDRallQu4lyihoUQ2XMTOqZHLhRRaEqhON0/SW2n3J2MiUzoFV1O9NfYrhw7wy327B5aCBwKTYOTU/Jun2Zng2gkqpsCResnBNMgtGf1xBJnnzjFo+8+x+rJowgpqXd2ibmhsRrhc6TTqAqEnCBNBxkAW0EmaDLD9p0xxUrJh89FPiem7FhHXTs2Nz3heM7I71BfuYYbW3wTErIjJEu9HNcEprZJTsdKYjKNzHWieWjBxDrC1CV1HedxQdAtdXLeLTW08rr1toUQuH0nYutUIW7XNEQmUIsD1LEl4pU7HH+HZPWIZP3pm8hVTaFz/LDmx//+c/yrL06QaErT4b/+yIP8pZ/+STZv3YYYcCvvofuhH0NKx90vfIbx93+UoEqOvOMU5z5yhjgZE/MOVbHKJ7/nSV65NeSzT19nY1ew+Y+3OfanvwR6i96Ty/hhF3ftDhu/8DOs/VcbyLX/FJGtADl4mQzh6giNI+5WhGnqK0gOcA65lOPXJ4SQGvyE98Ta04wsZrGD252iezlNlDR1TH1MytPUnig0WSfincPVEHSOLjKKGMi6BaG2bUVeMh5bqOtEHzRZy7mPKWFRhm4wWNtgA0QpEEiaxqNMRoiQFTkI0tzWODSeurIIDVKqViltn9IgIzjvaIJrDR0DWmsScObnQXMMERkCQpnEz55VJ2OilEyrMT4EclMAYs5/VlpTlobG1sQYyLIkdenbBVUSCUIlRJKAMgIpQos8JAnU4ENruiYQUqNExGuVVOWkQhmTAoB2JHlBeSDga2F84usWlnlOMNtSSISI8+det5YcRBFIi9WhXob5ivPHW3pnicrbGemfVBW3NzaQW5LY+u1085IyKziqDL1ejzLP2dm+Qr+/zK7zWB/oHTnKd3zih+hoQVhlZmuRkHEBeYDsqGCyUZGJbUxngWq95M5vbdEtcx771kX+/q+9zKvrI871Awsanv/yCGEWWO1kRDSNVUSrkCEheLvTIb6l+L4VUJtZb06MCV0URiDKJI/sK4cuBeePRGS9x3hUMZlUvPvxk/Q77+LnfuGnefeH3sGXf2ePye6Y4CUz+d9Z83MKDPeThYTjzd67RcwOaPSnJ2i3S5Fa8ncVLK51mU5sMjVUhqLbp3fqAp2Tp6j/4Ld59596iHI04t71GxQnlzCqIIzH/OTf/VW27jlkHHBy7Tif/PZz/NT//TNsV3fpeIVf/CDm2Mexwz2Gzz2L+/Aj+HzA0jtO0D8xIDpHQNIMHuajn/gAFy9e4+KNyGoD1Zfv0nn4KsghxfkjxGqAv3Mbv3mD4vEPQudxkGWaF5LEJK0SDJRZOx/+8e++ucHujGESWwGF9pzOKT5CzNWiDjUizxK5+xKD+TmbX5aHMAAOpwjfeLaZIZ1z9aJDO347jfu/+5sbb45WBIkf6wOBSCYNaEUUCkySEyV6JOBraJrUECwEKCERQiILibeeiEfqRBkyMp2UGCJZpNUBFwl1cA6jNFFKolBJ8lMqdJbjQ2pCjiRd+CgyIhHnHEoEtFHoTIMjNRZ6x6TyLAx6ND6pqoSW9iRE4hUrpTFEmsaBVJgsw0hBUzt8EymKkipqqqpDni/Qzw2h2mMQHTbuMixzjFEMBprKJ+MzHzyTOtFQCBlBOrzQ3FnfYrVfYFAQJBhJzBW2sdigmda7mGDJM4OTmmo6ouxm1CpDB82C7rEYNdlgiasvXGK8vY5q9uiqKWU+YKoU7/zYOxltRTbuRe6MA0sDyRMnBbUVbA40d7445vjxjN7ZR6muOW789CYXVgZ81+MVzw6P8tqtm2zuvorJHdPbr/BR3eWLdgUdJ9zdW2fidhEi0iRNKKZNTRANhYYFpciAzmCR21uOkR2x0DlGka9QN4rVxQWa2mHlvdaPAjpZl/7CCiMEm/U6D/cGLC8dxemCzd0xQktOLy3SWR3QsZHq3h7jvIPKC2QTqJygcRZZ+oRoETG5JsstO8/dphrtEs+s4I8uILuRW6/tcOKj30n3H/4synu8iIy2HM/+823e/T1r3H16xN1rgcnQ4kio2J3NEdam5G9WhRFSYJtUoeotZKnC7SJaQdYx1DZS2ZBcuaVEFyIhByES6shkGvarqgIoBOq0gbVl4s5NOmcDdhjY24wcO6X40f9+EdHP+dG/d5Vnrk5RC33ybIHueJuSderJCIfmiNQcU3lCxXzDx/78J/n8z/00/+2f/VPU1+/y1d96kW999/fhveNbnnyEf/Qrz7D03h8innk/z3/tJ/ifnsn4f2oPucP76wRVIh9YobMC1aWnMfL9CD1EigVoMmIdCU6BjfjNbdRql1h73OYe7t4QtbiCKCRxaIkqwenBC4Ioqe+N2uA94kgmYKqncVWkniTkJTQ29QIZTRQBjCEjOai7kByIQxQJWajH0NKApJzxfTW1SzKR3geEUEidFm47rTCiQOBpmiYhl1KAMYnfbyfUtce06HrwHiUTyimUoWmahPYISW3rZAgpJDqTCbmKSb2triaYvINScj5Jz857lhdMJ2NCSIllBKKQeDzWpn03rkmFk1lQFlPPlQsWk2mIaS6zdUOMIKVGCk0SM424KIg+IWQyzjxoPFJG/Dea9F+3jqTvdX8wmBbyw9u9wQ6YN+IeeP71IX27WM/W7G+yu7TLA0HD25gIXFvL7nAvFZxaxaraNmg1Ya+u2KvGCN9wYWmFZnydqXdYlZMNVjj68Ar1BPbGMGwiawPBoAQXBNNcMLpsWVgz6MWTTJ6xVM/WHD2S8/CDnps7Ay5+7SV2JtscVzVifZ2zWZenWGPJDfnilUs0fkwUnipagjQIJC40JD21t1ZSJotkwFUR8DqipMKYgsGDD9NppsRpjS8kz730RVZOw1/+4f+Zj370w0xH04RiznoK2oR4RjyZqyTNkwFxqIAtWvr1/fz52RACFo52GU8rfASZKfLjJeVjK5jlE/itL3Hmwx3G16+ggIcfWeL7vvMBgs75pc88xQRLfuZRSpezGIfoeIvxeAvbOco7asWK6iIRZGXOQ594Py/9i9/gL/3V/5Ktr77A5qubrL3/NFJJHvno4/z6L3yJ09/957ir7/DixQ26/YIf/DPJwT64q6BXkMdXEGiCy5ERCD5RJU2GKM3+9/7/cK6Sj4RAKpWKP61q2gyZifOFcf/NZj4HwCHkcdZz8HqMcv/4wz6aI8T+BCPbwvfsOTg89Rwc8S12vf9JjTedHKSzldyRJ9aSiQKUmN8IQmvwHpXrFIDLBKPbEJBaYHSO8xOk1OjGtZw9icBT5JomM8w4t8ElSF0qTXAWRdL1jgKa6PEIsjzDV1OEiAg8WinKLGdqK0K0hCiRyiB8QhKMypBKIQPkWfpsKTmQBBWT3bySlEVBRNJEQWMbCuGxDkRhqPemjEcj9GgH7VY5dWKNHImcbHP99i6V0Jw71aeylomtKVH0TAHO00walk6coOyU1Bt3iT4HYxASGhuQzYTKB6TwlEUf4RxTO2VkxxjTJcoCVUqkGrA3HXLr2k1OnIHuUgdvezRTSz9XvLN7hO7CKhufe4b4Ax9mpZtxpCvICExvwuYNWDkN3ffmFH3BpU9fY/03rvFYtGRbFfmTH+Fv/x9P88yrN8BtspxpPtpf469cvsbtsEtGhFghiGQyI1NFOsdRMCi7FEXBHnBp3FDEIduTuxwrepiwyXQ0ZNNLrDjPqdMPsXOji2j2UCTN+DtDy3YMnFs5h+o1jKaWmNWUCx2kdOS6w/KpFaIDMfFM7+wwsSOWTx6HkDilAAAgAElEQVTHlIYmOkxoiI3Aeslo3DC9vc3evSE3r16lv7dFf2OV4bqlWRnw6HecZbDYR941eFsz3rG8/IVN1tandCpB3KsxUSFyQ1ACiZ4J2kAUWBuobFLfij4QvceYdJ0qJciMJO9qhnuW0U6DKUOi4PhIVUWahn1I05Dk39YMemlA78w29d2EiIUMjjwk+b5PlAxOL/Hiv7zI73xhyu2xpmMKSldQ+MjP/uEO47rAB8+jA8V7FgwxRITqcG37Okvnz/PCpass721x7niPOLXE0rD25CP0nr1CdulzGJbw+Yf5vb2v84Uf+kXe/w/+LKY/wsk9fDWFjkQuvBN3+woiO4EQU4gdosuJQSJ0DgsaP90jTqYQKkQnELXDTy3eOtRiSUTRDKc00xolPSI0+InCNdBUIQX7dcTWESEs0ddtL3JyIFc0OGvQMie6tG4hQMnI7vYO2dFlom0QTUBnAmkMIgqyLEf6VHzwwRFIxQBpFI1r0K33gRAKawMugDKaUhUEPMGnRmaEIgKNtUSZqFVKCLLMoLRB65TEJDqRIAaXBBSiw9YkOWWSGaNr58K86CRURadiSPSpBykzZerBICGQvnVxlrnCelBCYJROFKLo8a4hk4LGh1axKDXxJV9nQXK592QqmToKKbBWHpru46y1OabqnJhp/82W3rl6ywxV2H/l/oIxe+jAY3PIQOzv62AicOj//e3TfbLPIT6YLxzkDr+dR5JGbpBC4n1IialM5njOjbCu4TPTCZ+XivGkRquMU8ceYG/nJv/n3/wxfuJv/HW6uWZQClSM2C2wUygXIDutMSVc+5V1zK0pi3iUi8izp/iHf+c11tfvULLN8lKHQnf51JVbXKu22VMe58YYJWgQXB9u8er6VWxoDgVb/i1STZ1VeyORbqfEKc1kXLOxvsviSsnKqVNcm+xSNzU3L9/lYv9VPvh4ZDKc4BvHgQjxEB+9fWD+/4zGdGDzpEsgxL4xmgApU/Ca5Yblo32UAecF5Yohf7CkOHGE/spR1o7cZO/6CJ8rfBY5+/CAdz9+DNVZYP3rT/GLv72J669yhj4LHty45pc/f4vJZAkbat51rsvxlRwQ+CjZmW7TO3OGq69dY7lw9Po69TRKSe/Rs+S/+yL6pafpxnNcLgWfuXyFj/y9f8qpH/kzyGKb0Oy1x6JDDDXIHNGimvN7/9/FPRf3G7tDOHwRhbBvSKakbI9rYoscpMfMfs/oXPM1td1mX1Ht8OQxEzrYp4alv2dKVPsf8fX8orfI5f7GYz6fxvsefPPjzSUHsaXhyFSpQkpc9EgfkzuxlHjv0oJGgs5CDMnMh1Qpsk2Tgu7GEbyfVxy0lgQh8HUzbzKmrTzH6Ak+oLSGlo4QvEtmRF607p+zZlGRFLesJ3hPNa3QLVUgRIFzgaoJlGWZLsTW7TS0kpS5yQjRIbRJlb8A1juqoNCFRmtDbSLB16nh2QVcVZGZALmh0wuEScWtm+vUjQehmCKgoyiNIV/M6XY0lDnSWkyRE0TqVfVCkWlNmadejlIXqAhNlbG7M2Rqp/T6Sa0lk4rFpR46nk7HI9Z0l45yslxi7ARIw3InZ2F4hzgasbjWhwbcLoQhLA4kC4OkMX/1ly8T/uAiZ7ZukKsC0XsX158N3Lj9Jcb1dY5nhuPFIj97+xabviaSXJqjiCmalTlaG3qmx8ROiEQmHmpRkMeArmpK2cE6x+3xECELlOjQ3L3ExFl83dCTnoVul7wzYBocxxY7dEzDrd09TA6dBY2RMBmtQxMZNVMWFwdJgHFSM/UeLe6xcMYTrGc6tiitkaakmTQMN/e4O63prq3SERq7OWEyhm5nzOc//wx6aUDWKRnbGtcEdrcD/pUpp4+XuCbB9sRIUEnKLCs11ahOmvutnIKQoHEUg7xtMk+VX4/ETjzORbJC4hrP1IJ3Aecirt0OCWpZos9ndB7tcLybc+v5e3RPRkIOR1Yljz2c8fjpjGZrj5/85xV3xxFfewpR0c0UWzYQmkinF6BpeLX2PD+xfNI1iLLHyQ9/Ny/92md46J3nWCnOo6PA+dhSe+C6nTLZ+Roxf4zl/vu4u/k8P/5Hm/xf97ZZWTpC9H2i9wg5YHJ7A5MvE3ZHgAdlEbqDCIrYjJFZSCo6oUFmiW7lqiEBgVwoiQpCE1quuyZYi+rkiRYjBEGCbwL13piqqskKjykMyqQAVRpJPalBKeJwAlKQ5RqEJ4SC1QdOsTvdY1JNQASUl2hnUVmGHY1xeTLmEUaiZIEUYCdTohBY2SClRBuNUpKmCQnRJCTuPgn29iHRmEIALWboRKrwmzwVIrx3hJhMIRMNLU8VfyGTE2jbeyU5UPWWKbmUKqk4ee9TPwNQN0lRSCiNyTRCawIumUbOuN9EhFR4n34rqYlCtI3PMVFDBRAlAZHUkMRhedGDof58oRUz99DDgPzrAvt5xAivW0Lnhf19UtHBbeJ9C1lSbYrtYixet7tDC/jbtdfgvhFn10vbrB5ECmCkkDTBUU2nlFmR/IayErZvslPtoDLDnRvXOXPmNCJo4kQgPBSFIM9BxMi9z6zTee0m+ciispK4cITh1cCrV75OPdniiVMLZFLye1dusjmdpoxbSS5vXmWvHuJjYOoramfn10O64njrREsHAlaJQGcGXTvCZMq0gB/6kb/MlR//a4zv3GR3e8y99T3KNikPIRDCPmIw3108uOuUsMookqRmOJxI3P8xUu00KdjpIt3PpmPoXujQf+IYx48fZU3k3LjxGqsPCFwZObPS5cEzi6z0DMPdDf7u59cZykixU9Ff2UVGxebYEXVgadkRdnZ4YddzYVJzOkSUyRicOc/dr3ydE+94ALO4jOgOWuXigK/g8miLexe/DOZJlpdOs37rJf7BZ6/zYz88QskHIOyRTA/6RPoIlQGCf9fonFYaow3ESOMDSqpDaMxszpmdF0hI0P5xFnMRBDHr92h3cLBR+eA5Olj5P+iPsC+PPM8W9mmQ89fOPtpbvxjxerLUH+8mfdPIgWC/+1tIyUyBaHY4UxNvqjgJofdhoRmfNIbWT0AQAqmKpeJ8YZqd3INfIoZEY3KuaW9cn06+UhB1qvpH3y7AEeEsInhESNQNEVPSIGRyPo3C4PysTyGd/+ATLzqo/YaXdHmkBocgFFpmiCjRKsPoBHrUU8dkd4JZUGAMZaaRwTCaBLyXaGNonEtNp0qhtUkO0t4mycNgkUSMSjSKvbGnu1QiY2A6rubuzNJoXFUzHk8JqgPaY5SiGHQZDxvwY6TMGPQ7ZCHDB00vV5RKMrq+S08GVOVQtcJkA/CCyQsN2y+/xvAPnqK3UTOQa8jyBJw7yS99aYt7w2fw/i5R54y95uJUEUQHGSti9CipyVRBN++Tm5youngkRpcImRGiRqkS7+s5DUIKTSkyOtqghGdj8yZd3WOsoOhIMq2Y2glr2vHK5h32xqMkDznZQ3UzqLY5sbBC5Ryj8YTYJnETB8OxR+1s4xqoJ1OkFORFQWMFu7tb7DlHb6mH9Za6qpFln/HeDjc27nLu0RPcvnGF3Z0dGh9pQiTYwMY9y7Tyrflfgjq1SIlmFMkdU6lEPwlSIqLEFKm509s0qdR120jfvtjX4GzAN6nHABIPVZ1SFE/knHpnn5OrHV57eofoHOUaDI5IHj2hOX9GIwvBr7865JlLHodg+UhGNwSanTExBtaO9Lg3mRCD564X3Bg7/O4U2ely5OSD3CwHLC72MHmXaqIIIckIf+3iVW6NJ0ynFYuZ5djqGnc3Nc+PIp/6hRf409/xBEf6XWLjUapLrCWys4qvBaGyCCXQZULqQlAQUvgYnE8qUkImlR0bUZkhugaQKXEIEVFmoFNdGxGQKqB0RJmA9knRSBqDNGlhFkoRdOLqh2mVqIFS4Jxnah1ZrgiNRYiQPEoaj20suYCiWzDyMbkytx4ImRTEzLRO7WIu7RlbCDuSkIw5xJ2mu1ZpqZUDnV8Xoq0gMld28y0an8ohSYEtzT2tEpFI4giQnKCF0Kk6N1NNi7Gl87SBSXv9ESHTmgj7c6MQc58FKVIiIZVARwgxIGLEhwTfeyCI9GXCfQvHLAGIJJrFvvKHmDeA7gfkbSB/eAe0bpffNJg42G9weOwnBgc2TjP3N9j89Qvh23C0cVdqSA9z+oRspb998DSzCqsQNCHQ+Iad0Q5lXvKrv/bL/MgP/zdoDyLmSJmQzuaGZ/rKNs0zz9Br+mRqAdFbwB7p8YUvT9jZ+irRbiPCArvWcHtS4JXCMOHyxlXu7t1l0kwJLZoU2usx9Zv9Bz5mbzDmbrpSYnJN0c0Yjsece+RRBp0ut72gtpb1u+t8+cufo7auVRY8SEo5fK3tY2UzRCvOq+j7/kscQtkWVvpoLRAqeTBkRtJ9d5fVDx3l0XNn6HjB+rXbEMYM1iQLyzkPr/RZWykZ43lu/R7PvFyh8oIHTgzIR1PsyKNUZOn4InfG2wTXcHk3srHniY1DFDm9wRLbpqDsFjgyvCzTnBMC1y7d4Na0YhTusvpgZFX2uXvD8PJG4CufvcITTz5B3llBFh2k6qReA5W8pP4kzpOUoi2yiQPzDnOg8eA5OXAyDiRthwsHiRmWXiPnQf1Bb5T94P8b7fIbvl96o3mM+rYAKgWI+OYbkO8fby45kDL9eI+PHiFaUwy5b0QnhAISF1tKxcwcKpJgNkGCTZP7p2M274eYjNKkTM1TsZ1wZj0BPgSsrVOVrV388kyn5mbvEpzZ9ik01qWJM4KWan4TS6XTIqkNzrWcYFq5QBcQMRkCzXVyW43x1H+kCF7iZOI3owzRRaraMRlOKTs9ovBkQK4NNpfzpmnfNCkhCRIfoPYB7RryfkmwNmlOq7T4D4c1ZjAgi5HR3hgtBL1emVxU65pxZZE6Y2JBCodCkuU5FoNQAdPpYmKGa5KpCKZg98Y2erhD2FlHB0e5sMhk6Bk9Hxg+d5WF6VeQ5gFc772I7iOMjy/zS//qC+xUr0AcMnF9blVjhuQEIVHUEANGarqmQy/rkSvDVhBoVWBUB9oeDi0NjauJzmK0oVQ5S6aga1K/yc5uhY0KFwpyF5C+po6WaT3ilY07DEyBtROq8S6x1HRk4PyJk3QGHWLjCKJBGY/wkYmt8NdGBAyNdRgtcJ0pthGMRnepBIzq5GIbVU7/yBKXXrzD7uQaj5xd5aXFHjekwobkchtDZGuzIfqIUKH14pDE1rFYZxqlVeKmq/Rc3s+RskErgcwVPrRGgbL15hBJMcvPzXYiykD5qKH73ozTH1ji9EKH7HrDCxsjskUYHBNcOKd49KhiqSe4PHJ86vkJzV5E9RRHjq2hhpF7NzYwStBZ7NNs7JDyXclwa4/NF17k6JEPMMhzzj52AdUvsCEn5gXeC6SP/P7XL7Mz9SzIgmM9Se/ohOde1kCHT33qEsfjKu968AhFrukMPLk5hpcrhLhHaBqEa8A4ZJkTRDI6owm4xhGqhqAzpARnbUIWSgkqAwIheqJO8qXeeghNQgOVwOQK3078Mz6vUCByRZZpgnU4l2RGfYjY2mJtkxYFwChFCBHbOFzjEUbTXeohRzbJ1olWTlYIRLfAWwszeo5P7f5pPkr8fuK+gp9SyQ8l4PAtYipVknEWszmkrdanRVkkHxWtU8DvZ/tNC5kU6ViIEIgzh2QiSkoaRKqCapNQXEFyag8hqQwJ0vFrK+xCSoQIKJkOhBQioR8xfQaco3E2JQZSpmTk4Ij7vw41WMI8PhDsV+xmD4vDLz8A5x/cudjfkH2a0MFE4CB9KO3ncCV2f21vi1XzSiFv65EQAtEaQoU2uEmStZGIREKIWJfQrcb51OMiJUaP+fRv/jofeOQJHiqXGXS6SVJ8FGluS+qv7dCdXiYO3otfXMEvLLI7UPz205eoxi+iYs2t7XV2qgEVJY2Q7FXXeXn9ZWCGSSVah2cWdMmUHP8HPGbfdLTXg8405aDktYtXEWfPcGztKNeu3mQyrlhfX+c3P/3Pks+JvD+Quh/Z2n9krnkP7QV66EmUFHQXS1ZPLKI1BN9gCsHi+R6rH1/mwmPnOeFLtq/fYTJep7sAS8uaCydKTvVypBFcGY156sYGk01H/7jh/EMX2Hz6DuPhmE6vQ2d1hfFrr9K4nArDcGtItbFJefIYudIsnzpGkIqgDUEZYsugeO75q4yd4Viny9GViK48UhQEFvnsb17i4fPvJR8cR3UWW1GHthLyJzLigabiQ48e0ENoCzIcRAnEAdDyDe791HiVdtFmbjMq0SFI6MC4fzf7zeX/DqlUb5PxppIDqRRSa4IA7xoUiQ4URUjNgUKgpMJnmkzpBKd70fJckwRqdGnxk8gWZfA0PmBkSiakUvsQUfR4Ej3IewciyZVGIdAtvSNRltpJs216Dj7SeIEioQPeB7wQSKXJ8xxNRGidAn9iijRI8n9Kzipo6ZqKEURIcqyepGbiQpo8pBFoGah8jfc9ok3+DzFA4yVFWVIokJ0eoXZIaI2LJGiBXlrA7+6km9ULmibiXUNVp+/qSaZL06qiMAUuliiTjv1oYokOFkrDiaUOw06fYlCiuyURmYzpnMTWimZ3h6sv3OLGK1/H3bvCQrPFvcpj1CnO9x7GixX2wjJTp1FR8syNipujn8eFTRQRGyq27T32WvfqrtIoNKUuKUyOFFC5mj1r6emSxnmEjGgRcN7gokChqGNkGiIFESU81BN6xXEmdpt+3gUi06YiyMid4QiVSY4srdBM9pg0U1yegzT0ehnLiwXeB1QpQNYURMR4kzt3hsSsS9ntoJf7RJNhp+s0cQPvBTdvbYHqMTh2nH5X8PLVW2zf+iMeWbpAzxiKLGNSNfgQ2d5u6HZLmuiJNiBDTJKTmaHoGIRLqls+JtnUwkQefPQIr714Fx8jqtToTKFDoPGOyY7FC4gqpvw5QlZIytWcI391mTNnM76tc4zrnx/zK79znaPvlzgrOP2A4NwxwXIZuTdx/N5lz5VnA95Cp6cYhAtMqwl7bp0FXXJ9Q1BPYit9CdvXLvMH//jn+eR7HiLvH+XCd32YW/cqRIz0taIe1eze2OD5e3sQSt7ZW+PRRcnu4GtIZfC+y73JJl/+3CX8ayPOnDnKsdM5sSfJsgZZhaQMIiBahyoLvLcIoWkmNW5qU1+P0kRXpWa/eoIocqKNuGGDDBJbV2RHe9TDMTL6pLATZOu87sBD9J4gBcQ0n5g8IXFeCoJ3ROeQ0dMpJR7o9noMpxNCkxqQXYgQHXu7ezhVtKpDKdBWtHOPiGkNbBO64EjmSE1AKUloEtdfyETPEVIhpcC33giJFpmSX+eaRBtr5yYQNN6T61Rocda1SQEQSE7zrklzUkxFjhggKoVo5Z+1zoi+IaYDkiacKJHCpP4GMfOcSbKmQipEcAQUSX1oRgVpJf7EbI5OycZsHHYk/gZjFpyL/WrqfMyC/ENwvpzTA9qN9jeN95WeX/e+aWcHGwUPvtWBTd7+0IEQh49VbNe92AaiKq0/jXcoUgIZAwifaGVSCH70p/43/twj38vjZUnHOqqpQpljHF0+RRDHmNqSqonYynHlbs1L1/81wY0ptOKV9RcRJmehd5wmNjx/87l0D4pZYrCvR58CMsmsJvtWHULsSwHfufQyfOgDvOeDH+bytVus7+yyvTPhmadfTPLrc9PWN9hZ+93nvPTZdSeYU6JnKELeMTz8vtP4JrEF8lyxdLrPQ//dOzjZL/mW/EF+47PPc3XnNscv5ISgOb2mOTmAXAZujfZ4+saIr706ppl4eosFg+Z9XN37HLvVDqLs8NodyXTdU/ZzhILdyxe59fQyD61+JzrrcuTRs2zvNeRlMmh1tWPvzh7PvrZLV6/yvmNnWF6q8XtjikGfSbXAy6/cpBZL+GBQgdbb5U8qMZiJIrj28MZDaE04oJZ2sKoP+xQg2C8O3P942uf8rwN74r5t4nyL2bPzQsd8nuPQNv9/oTF+s/GmkoPkymkQUZIZ8C7B79ZFQnRoIplRaB/A1wTXKhiIJElFCEgpkWiSO7JAS01mUjXQNg1StsiATBOO8x7vEmXBuyT/KGVyIp1MKgQNZSdPXN9WtSNEUBKkUFgfUcYkM64YiK6i9gqTJWpRp8zJswyQCVLUghBVykgB8DTBEd2UJmToEPGty3PWyel0Mvq5xofUKIOWSCHIZCCXkoGOTBuLDLFtpnEMd9dZZIFhCMQ64q3HB4+PyeZ+d3tKLSeU2pBJgQoOEaFuDCZLVCzvGrzTiNgjBI06cZyi0IjGUpY5KsvY2pwwripGI9irIlnnGPmyIVbbrHYcF/T7eOBDF5isw+V7OffyRbIHNX/7X75A7V8h4ogixyER0WKERqg+uSnIhCTXOUYXdExOJ1dsb1yjdh5rRxRZyULRR0RBriSFXEp9hcoQlSKajKmfcHSwwp2hRaiAixOaacP2dAcXBItLPcosI0wC3lYIETh/egk7DYwxDFb6CO9pqgqjAp3BCVTnJCE2mH6HqAR7jcX0FlGdTfTuDuM6w/QC1m2zfmOPIwuSKxfv8c/+yatMlaDXN+yM0rUdI+ztTcjL5PjiGo/zEZGlILE0Ch0DVdVQ+YhZ6IOvUhVNRqqqRgiN6RUwbDj6+ArrV7dwLmKEIO9Flt7V5R0/+gmyfuS/UDf57C9f5isXd+idC+xc9zz2uOBYJrh5PVDFwGQUefolT5gCDr7t8TWyvXWu1CN0XnLsweO89OJr6EzTLRU+CC7u3uNvPfV7fM/PfpriL/wwYhnOrJUJkWtguD3mf/3P/yJ+POTJzgrHdc3lqy/x+19vOPLQd3Hn0qdxIfLKZkW3GIEyNOOGY6td+mFAOcgQqiDYSL05QcgtEJ46Rvx0iq9ronPEeg9XpXtRCIPd3qWZgp8KsrzENw473EPaMc2kxgeBKkpEptFFQT2qkCIt8ODBNkyDw3RK6qFvdc0lXibFMmEUeVaSRY8TgagkwjlyUzCy0PgRWkukZJ5YqMwgokOLpKLkQySKpHomtSZET+Mt3iXkR+pA4wLKaDQBF5LPSowBv9cglMal2L2tjEXKIkMajW8CtImIIM7dnZOdRhJfEDI1o1bOo4Il+tBW8dqGx2BTI7LOsS4psom2l0EgMCbDh4ALLpkxtoiClAIXI1qbpJgiEwor9T6PV6q22tYuuoeUiUI4XMqfP3FwsYz7lCIOL973j0PqR/MineB1qAIH3zLRmGZvlX7Fb7jwv93GDK2B/QA0hhaBbwtxPobku2JMuh58On7WpvXyS/deRhx/hAuLx1lZW2QtO8viR45SXQvcWtdsFENujDZ55g8zKnuRgGDHeVZ6a5RZwZ6b8uyNPwQiUmoCrU/GATZNZCbbmQKut3pDeKfb5Xt/8AcBwX/y/f8ZX/vac1y9conh0LNT77XHeEYlev13OawPP6tUt1ddTL+T6o6g7JZc+PBDZL2MzFsWjvU58e4znP22j1MONO/Zepkvffl3sXJKuVgz3J3yzhMlK0pzc93ipOPl7YqXblW4qSRYwfc/8W78rRv4xtI7cpzV06s8/9XnKdcWWFntMJkGnnr5a4ys5a8sn0I/+R7oCJb7CTGITeDuyzf5rZ/6eXrS88HVVfp6xDO/d4nOOx7hf/zJP8/f/F/+FnUFk6llPBwhlEYX5Z/oeUk+WG1xpUWJZ94EB6mNIc58UcC30vOHPA1mNDL2CyQH3uUbvfGhOewwuHkQpmSOONy//dshP/i3pRTBm0wOJpMp0+k4VfiRSdbc1RBSd79vAvWsuU7LxLeNAe88rtV7DzGSa42OoHQ6gT6m5k0lIYbUsBxDbDXfU79B0gNPCiEBqF3bMxAcWSiQUiclkBCRQuGRlEVGXpY4l9wOk6JRwOQlCIERnsZaghRkuaGJnhAktk7uyjIGoncoKdqsNlLbml6RU3RyVMfQHfQZ9Ac0e3tMh2OkSwpKQgmCF4xHNVmnQ2ZE4luHQFEsUGQFfmIZTRsqB7X3WGspByXRN5Ta0OvkqXI/sWzc3SWUfY7kHbamQ6TMicowmlisjWg5pM4NS/0OYxuYTKfsThxdKbB1TRME3nQQvQzVPUnPlHzh5i7/9Kl/jYgZWfEAx448ytmH+9wd/So+Vgg0SnSIQmKxSARdWSAjlHmP0nRTE5GCaRAs5ots1pt4BJ4MR0SJSCZhUk+QWZfcFLgsZyoDVkhQU2KRU0VBXdW4sMe42aVXdCml5d7eLq6p6C90OH3mFMePHuPu5pj63og7d7ZR0ZGJiMoyls4OsFh2tof0/BRjcuzUIScb+KLD0O6wvbeJH27DbcmknnJ3+zYd1fDqdsWw8jTR0+/nbO9M5jd9Y1sncKVQRiK8x44rPDJVjY0i6yoC8OqVKXt7lt6CpjQaFwWToQWRoXuJ/5v14cy3n+J9//E7efKJj+D1EsvVz/P7L97kmY0JGwL0kuSh44JmIjj6mOTKq56XLgW2dyI+k8SrgeUFwZEm59ZgmWEfmmu3uHn9FqsnciabgfHEUnY79LqaW7tjHvo7/zudn/4b/PXVj/Gxv/Y/cPnaK/z6P/o5vrr9GutOYnSXH/iOH+CpV5/nDy4/gzI9PnDsAp+7WjB1UxQF0eY00wyz0GG0t8uCa2h2LUJrTG+BbGWAG28RrCXojBAUUhXIXOOLjMmNLcLmNkXU6LLEWk89rnG2ixYlvuohtUR0M5Q0iKKkmVZ4a5FySLCa2mmCkDgUSgV8PUabyGRSY6vUD1P2OqmPqdCEUSA6jxHQLQ3oEl15XHBomYQUiIKso6nqmtxovI/UbSOxMopmajFaglIobTBxZipGclTViiAlTWjauUIQoyE6B8hEPSOhCkoJ6mqaNOy1ngdVUiTaAdIkdFMk8dEAaJXNK3daJTqSc0k6V2mNnTQIEVvD1hlNSZHlOVGCa1oqlEimbt4l2lZykk9BuA8B5/cr+EkEYj9Z2K/0zxSM9qt7M7pvKkJchuAAACAASURBVOy/uYVozt2eVaTvAw/eqCp3eD2fNUe2Aat4eyzW32zEttclJXqzpGw/efK+7d+SApMlU9GZwotSyRVZi8BmNeSWq+kZxbQw3Ni9h/+tTQSGT73wS3zwu76Vxx75ONd/94vUYYLSHbYm19HZMaQpW9WXVBKXUrWB8yxBE20DvCMkiYH04d/auQEzo7/GWkyWce78g5x9+QG+/sLLNJXl9OmTvHbtRttTKRK8G+6/oAQtADdXJBLMCpopYTZZxmB1wLEHjhG0Z299yLve8+1853/0CYTUdNxTvOLv8qqz7GaKxYWc48rR2MDSCc32uObFqyNuC4W1OeFKxTtP91iuO7y0vIbVl6juraP1lAceW2J43XHn7vD/5e5NfiXL8vu+zxnvjeFNmS8zKyszq4rVE3vi0GyKgyhBIiURliVbtsyFvbIWXnhrwAYM2BDghQH7DzC88cIbQ/LCsAVDtiVZJkyTsGTTItnqZjfZY3VVZlYOb4qIO5zp58W5ES9eVTVVFMnuLh4gkZnxIm7cd++55/yG78D9h4/wEvinX/02//p//Le5rQP/yef/Hd74D/8mX/kf/xFf+rVf55vvPubMLLDzA/7c3/ir/N1/8H/wpMz4wultHj045fVbx5xdnLM8PuH41Vew3v+J3xetTS363hjvaT3uvbavPLSvRPS+46p9oOP7nArq0aYFpRS57pZ+yPFB9ZE/bePDdQ6qewcpRhRTF0FbUAU7SeEVBGMdRRLGGfKYqzeBKhhdpR5LEYpWk2uo7LgCjbUTznKrYlQqxUFBkqrmo1R1M0bqxiXi0NtzU7YaEcVIShE1b6b2XsWzaVUlDEOIWOdqtU6ELLqqDqSKWVYojKrKRFhHGTqUNfQXZ9y6c0LTarTXWOfRuoFcXZetCBISMWu0d6hQA4PVVY9IVXlqG89St7w4W3G1KpiSKVnIqRoUxX6NiCWLJWghK0efLdknjhYN/XqgjCP9+QvGZFDL2yQB33gslpfnl3inKcrTdRHVNHQpMkhEmYRqAdtibj8ic4g9XxLLgrWa8e0XZ7zzD57Rh39MZsTgseYApSDlgKYg0lFY0KeIqMzctjTOk4vQNseYNGCMJqNYD1cMosm6pfVz5s0c6xo2RXG2SdxSjhAHAhGtCs4pGj1Dx8TcNzw9e4FvI0eto2kbILEZB5rWEcMApXB5tSEOHScnnlP9I4xpxerqilIOmS0clEK/2vD2u1e87C4xpgZVQxfY9Fes9QFpcY+FNJj1mn7sWY9T8DMtIkaD9hbXOLw3UAohROaHHt20FeedhbGbFGPGQh8KDqlchNaxuNOAiyzuOhb353zmpx/wkx9/lR9tArn8Bv/XN7/D//N/nvOiZNRtjZRCaDQ/9kD4zsvExSXIEnRQrH9bsKNw79TyY7/8i3zr732FF996TLNwvPbjd/nyb7yFs552OefW4RIrith1XK0HRoH/7PGvsfzb/xwVE/nyqrbR7Ql/65XPcOvbv8+r5ys+Ye5waeYMT9/mJ+5+EmLmteWce61jLpqx22AESCuUOJjPyArC1SUSIs3hkhQ3hAiYShqXLjB3jti22MUcGQdsDpi5oNgQ+oF0vubg0W10scQxE7s1/bojjQNNW83GlKW6iedCPB8pVjMOPTEV0OBbCxZW/YgHrG9wJZHiiPYGoxJHtxXjuxnJBat1dTlWCiwMMVaVIG0wWqONph8jxjiM0lhTuwqSK9m37zfVd0UUOSukbLuesXoMTJCnMgXjicq50o3H2knXOxayKJTxNL7Cg4poUqkBSMkBVNW7V2J3sn9aW0QMIWSUyihl0MbWqr9AGDvEt1WmVRtKKcQ0gsogipwSSnu8rV4O7AXouwrebpO+7h7sq3ZM7/6Ahv71Br4l2O6P98XwCrbus/sRvppe335mX1ryBll0t0t/tLODIjVRM6b68AAVyjKRwbWeFFtK9USYfowAthQymZwzb5+/Q5LMty6/S9ss6DaRl+cvuH3wgBfhkn/4q/+QX/uNf8L5haJPHYv2gD5uGMtI0YIxpZrrMTnYyhYTfo3dkr1z/mGHWWwTrapCVs3+/upf+zdYrwe+8pXfQ6QKJxit6rM4wYaYxAnUFjYkW3gV3HCEnroISiuMNwiZr/z6V9Be8+i1+5zOZtw1Hbk84Uvf/l1+8xtPGQ8dSnL9Pu94fZF4Z7Wi6wv2xDM8FjbfThwN8PrDJa9/8c/z9/6rf8z5swvuPzji3pun/M4/+iqz40NuvXqPj33sTa6evaDvVrx79pJ10fyn//Tvsvj3/ieWfcIPGVEN7uiUv/6pz2J+/5t8LDruvP4pXn/jYyxmLT/701/gz/yNP8vte7d3MO8/6Y5QmVSitv/WWyWZvbGD/ehth1G95+fbHs41/G07QfU2cWPbpbwJZdyuUfU/2xTkvfd27zykxq1yc6n64Rt/DOf2oZKDFAMpJrQ2NUGWVItUomuLc8qiRQtK1aBX65p5p1wXLGv9NNHKZLBXf661mgh9CtDkkqrhWkpVJpWMiKmZoDARjoWm8SgDpVS7c0Qqtl9bclGEmFBq4ktoRVG1rU7JpBzZylyVUrPMVAQ/tWmlTPwIUxOP5dzRdz0pZdpcUMrRy0AaqmTpwniKCEE0KQi6CLHU6qNkoViHE89YFJIMQyqYUgNKMZPqitIslzO0ZEaxiPIYZ9B5JHQjtmS8bzg58SSpUp0hOYqGaBRjEELIQCAijEowiwPcOBIk0g+Fvk+szi+5iBuSsVzGDUol8uact578PkkugIJWDqMdVikMMyBOVb5c1aGI5JLooqWPgdW4pogDNVJ9WC26RHo0XmmGtKGoiFKWLIqoNd1wxRA3FJVoVUPbNiijGcvAqFr6mHHO0ge4vIzkdMZ8ecJ3373EeUejLfP5EU1jiJcv8KawmLeMQ8+66ygU5r4wXiZSF0g2MWbFZkysh0DOI9p7lneXdOOKzeXIahNvzPtSBKM0KENOijAkjNeYtsE0nixQUkEXhT1wHOkMTnAHnqI1Y19IY2R8NnLnrqfMM95m4Irvnj/hS1/+Gl/56jlPNoFhDq0TjlWhmcPhSeG3/olw2EFCsV6DPhcOWs3RyW2OTz+NUt+prd/G8uytNWSNbuDOwS1SyrzcrImieDibcVE0V2nk8vljGgyH2nPPt3zOz/ilL/4M/u3vYGWG1w0nukWu3uHNo9eYqwFvOhodcdqxmB9wcHhAPw60rUKlgriCtgZ1dER2ML7sSRO3gpIrtqYkFIJ2lReTUjUXtK5FHbY4lTE2U2KCHJAxYFXGLmqFdBz6+jwYzdBnWufIMaO0o6gK5ylAjoHF3Fd4EQqtXZ3jYyZLAONplSKlxDAZ7rTLGdrZGpTpSZVj2vCdq0tkjnFS+8nVcTlVUYUQM6nkyUOAicQ8ebyktFNLU6pCIo2pULWcM3mSUQ4ZrDEYZ0BbYszXayp1kdJUZ1qtFMZoVNEkocr6qUmQIdb5a4wiS8aKv4YoTZ1YmORRS0GrUvlhBUoK1/N+0hK/ObYwn/cG+nIjiKgbeX1N3vfu9499KcGbtIEtxqi+orcY7w9olH/AaX0kxxZiofVEvt8B2mFbmZ5aQ5N07RTcoOq6a+o124wd75w94eX6ksa3LJojnnfPOR/WZMnISqFp8eYWmYKzLUUSfbgi5EOcsRQqJK1MkDiocA+Z8BTbCrtWVfhDK/NBv9IPzdhPEAAOD4/4yS/8FH/xl/4S/8v/+vchwb2793hxdkZMcQr+6rXeCZWw1/XS1UVZ6SmRqFkwOSY25xtGZ9Ae3JsPwFzw7urLvP38G3ztW094pgLFaU6IHNmMb2DWRn7n64F7SbPRhvFKaDdwcjjn5PTjzJevEyIs7t4Cq3j2nRVKDKYpPLz9iHcfn3F2foGxns88eJWzAKG75OJsjXZL5vM599oDXr99yKe/+Bn0W2+j8gFuWHDx1St+L32ZX/g3/wL3P/Yq2lYO6N7F+xO8L/vTeuJCTQ/0Fo54sygw3QG9fW3rUyC7okb99P6CINf3c/ed18dkCxn7XmvIe4sbcu2P8Kd5fKjkoJSpxaYrCUnpa8vrsl3cRYCCUUKaOgBbhaFtrSHlBMbsSL/bCZCmREFKhSClXKtbxliUaIquRj91s6mQH230pPBxXdEyxkxmaZWVb7TCuGnRVNNnqzARxhqUNjU5MBaVq5GaIOSUd10MEA6XM15eBVSp3QtJ1QNhVBrtFU0BEUVMVXa1bSuHoORJvlUge03Rjlw0OIuJCS2FVAoxFsxshvaekhKIqw9+UYhowtBTEJw/ZN42RDH0sTD2Nakq44gSha0yT5WULYqFMyRrGdGscmQzdgx9zyomVPKcDyu8nVNIPF5/vRpCUd2Ava5/BxyxZBLQKoVRgGRiHkki9GmkiyPeVi14oV5/UVRSOZlQCiTBWoU2DUkyl8MF67gmkYjSIjLHWkfbGLpNx1BChXcVWA+ZxQp0uyFERVNalG9BDOF8RPkXtEuLKoqry0uuNh1ZC4tDw5hHlBS6rqOLmW6MdENHLpHYZ/RCCCIMudCPqW4G01qQi6BTRpmqIBNCYu4dIQnOgTIa7RSlKLAWt2xAK9yi4rnHYST3iSiZ9s0We2rQzcjLq8c8Xj3h//6dt3n5dGSjwDs4PRQeeoit8M65cPVUeONU8fxSuHoKNigeHM549OBzYE6wuqH1FqMzF+9uODx0RFFYpenCwLoPlAxZVf4H2lGK5biZ8bBZ8LGk+FdOH/HozkNevvuchEJL4kQS85KYFcXtNiM60TjBe0vbzlF2xtAFinL4JmNNAhJubskIKQuFCClXuVSjK8QlJUwK1expzHRdolm0GKdpHECsXcU8okp93gC0tUhKxBARFH2faJqjmtRnKNt+Y4GiwGtNiGOFFZYa6JZSSDHikqexFsn5OsAq2yCgdg3KRNzVUqoPQ84VnkiFHQqVSGe0I6FQUiGIMAX9GVCKIUSM1lhrsa7KUZYJo1ylbKfEYevgpqo0rpB3m502ipxAm5p6KF3hSCKTmseUGOSciCmCgPMOMXV9NdrslIpUqtcIrSvHQFUJVKb1+XrsSvIfjP9X73E62FXfvsfuuofhfV8XYRtobnOBfVzvew6ndtChbTSx/fefjlG3QWGnDzoVsLbB0jbAqcGq3rt3U2IxkfWRRMqFPow44ynL6h7f51B5CjiEQtIBrRRzZ1EIm/GCF2uLs7XYVSTfDLJkV5udzq3Cjj4KnIP3DqUUP/Lmx/jLf+WX+ea3v8WXfuv/o53PMJdmSg6u56XsJHm52dnSU+K2lxjnlBlLQWuPMxZU5GLzLt9+94pvvPsWT7uOYa45dMJ9VziyGbGRdzcjq4vEp08dT58W+jPFUlpeO32V+6/8JIUZC+dxhzPysKG7WHH7/pLoFI3SvPPynPOrDpOFWdPwmR99k7e/+mVCaPnkpz7HK3hO1yOffvUhR6e3WL39jFgKsu4Jb2XWKvHo3/r53Zz7fnQNtpf0+p7Uv7ddwuvHeytxel3l361Aau/fH3TcG8va+7sON7/0g8/v/avaR2Cuf/CJ/6HGh0oO7C6TrOGy0qbi/KdmjqiK35q0fsipVqTqc6PRxlZJ0pjr5rjdSJRMFSyF5ERJFRYkIljjEGrl3nDdbqrklOk8pLLplZmqZ7nglK54kJx3RjLbFbbkXCe/cWhbq2olZ7R1mFIlBncdp2kj02Scb5k1hlnb0DYzRFtCUiQ0kno6FSBrxljb9a2fowXiGBFlyCLV9Ml5giictyzsHEJgiCMhZtRS0YeMzeCUQue8Iy5KSWyGyLw9RmnLGIVNqEZvkgylT8zaiayYhBoZWEyu5M6xGIIIsKmkz2AxOFJeUVQiq0JWPUx1f6fB6bKrtmQRxgzziXRdJBPSCDqRS6QxgNFoaVBKY5WtaUIplfyIBtEoahUzpZEhrFmnnq08nkZxuHQczRaEJ0/pooKUGceEtx2LRnE+vMvnX38NEeFiM9B3kXFY0fOQg6uCaHj58pKLzYakMuNLw3yRUVK5D11XtfzHcSAZzcuXL5B2VpNfbXdlDKWvK6ApVBtjO2vAVHfjfhMoYnDzFmUNpYykIRO0xXqPKkIpCeU11lcPhHLgOHmjRS0yj5894+U7L3n5PNBpQZLmeK54eCq81iTe2WR++2uFu3PF6T149lhYf1cxc443Tu/x2U/9GcaJS9NoQcmI1YmTwzkve8tqrG6qRiskKR7HwLGFuZuhnOaN+/f56Vuv8OjxOV94+Am4TGxGMDJyoM5ZSsM9+wpX3TOMj8waw3K5YH6wpCjF5SpiQyJkx0GbQY/EcQAzoJslxXhKnqRjQ8YZMEdHDENENmtU1oQs9GMm2oRnwBpPirFi9SWhTCXfp02Pv3OKDkIYAmMSQqxwBztrSauhBlQacha00XSbQOjD1L1LtcJnFTnCXFuyA68FU2q3QUKkUAhKaJoasFcVtFoMGVOdAzUx1qQJRmS9RaQmCUarmhiM1bgRY0ilGkHWuL8G6TEL1giiNUZptK73MaRCKlUlKRXZeWkopUkloSa4w7alXShobQilkHIgp1jXN21qx8/oXUVz+liVxZSM9YYySQFu/yizvxXUivW+jB9MwdBuY9y28beB0b7Sy1Z17iYmeLtX3SA4y/7R3hss7Ff89qq3+0nBH1Dw+6iNbUC0vW4VC72FMwBbyISpcAnZcUyqoR45kac1XKsK05WcOLt6RpGCocUZj1KVpIpKWK1pbYX/rscNm7AGamfiZnK2d3/UNli7Viz6oxAff1Dj9PSUn/riF/lX3/nrfOm3/xkhRIy1mGhqgZJ6fUXK1P27TgJqQQEUmu30rEl7/bcoWB7N6fqOt58+JR+3nA09caEhaV5pDQ8WQsvIs6Hn954HXmk1hyea8/93oD9ruNue8ObdT/H6az/BWAIH3tKFkcAGmsy9e0c8XTsuNmcImcZa1uPAt+Kazz885fw7C2ZLxc/85T/H/a4gX/om9x++RrlKhFHR2AGjCyeLW9y/fwpUSXl2MZq6+UD+CY39OFZv48kbncj6prJXmNgJGOweje1a88H9yht1BNl2FlTdG7bHfM+57Hc0rr1dPho1iT8OmN+HkzLV1cQjlkQKEZ00UQpIwjqHNVtymCXmiGhLydt6ngAJ71uUVpMykamQnklL3GjQUqqrJ1uCXkaKom1nFNPUFqZRWAUpjOSUqqa4UjjfYL2r8CKkVhONoNnCloQQxqr/nxLGTpKopgYBRhm00lWHXWQyPFIY67ElczUAqpIsRRTeQZKApIBVQhcSxARZo0xDHgK+RFoSWA/OVsnFMWLaGbK6QB+fVG+EMTAbCklrLjcFXxQud0iuEIDZTIO3nJ0PhDFhGkUSSDlzfLhkEzborHConfTh8a0T5o1DXVyhnWc5r+26lRpxZo4pwuliwaKJPO4D3+1GivE1NqZuyrVyVIhSoVNKCUMeKGQMVbdeiyXmjMjI3NytAYipDof9cEEoHVdD4Lg5YCwQQsKmNSGONNbSuhlCqXyMxQGnh8esw4b7J7d4vk5oZXDOMWs8bWu5f3CXJ5uechlJIUFJNFbx9OwpTxDmM8tmKKzHwEV/QTcONM7ifMY5VZOSYcOqGwgCqy6ghkQSIeaM9a5WabWqiZ3UxCWOgZwy2tbA0BWpkJYhgDFkgWhrUDq7bRj6jLYwvz3n9BMHjFcb7PEB6zBQLgKhT/z+l4aqJPWaxSTD4W3PcpkYQ+Ib7xaGDfzKLyj+8Tfg69+BcqW5+/ED5m9+gU/93C0Gl2Am2CXMUqHNmnIuzO7dYt1X5+KZ8ZhWY0vLZn2GVoVD7/jsG5/lL/7oT7H+334VLgxin+NS4FPzI7xyPE2BkZ6FE5aLQ46PHce3j2gXc/rNwNlqhW9aDlNHnK8wZo4yQvdyjTus6kJZBcYhkruAl8LMKrrNmqJbjPeYZcO8aYlFoV0iiyF1glYJbSrR0R04lDWMm8hm1RNDIAPKasawwh00+GWL5Mw4Dmy6DjPq6pyOgMqkXJ/pedOwk18sGauoggO5qhChM0kUVimUNbtgXmtFGaqJmnUGpHYqtAFNIY5jlVVVVUWmlIIyhjiMGK8raTkVii6ISvjFARBxE49BckKCoEXRh1grHsiOwKyNxRKJI4jSGGWqizJAKUieNixTfTe0rn9XpTjFGOPUPakwIuV97RBK7fLpyT9iH4c7bcu76umu+7sfo++Cctn71HUQCze7AFx/bBdzfFAh7ya3YQpId12J/YB0e7ytO90P+W79IccuENlex70K6rYDti2oTSVWmBK/LYFWELKkCrNTmlAyrfPMW0OWxGZYI2huLx/iVKaLF2SpcNvt3SySduezG1v+A5Mpn5QqXfwRufYfNB9v377Nr/zKr/Bf/hf/OeTCrVsnnJ8rrq6u2M2paSpuzV+ZeD81qZ7esDdvpUAMBb9seP7kCvdtTX96RJqBvzXDFc9hO8fZM1bDirevRkIs/PLn5vzv3yl86yuBk9kx93/kR5g9+kle+diCQCIfaxqdOXCVh1mewsHHXuX56iXWOO4cLbh9cMyLyxX/89/5H3j17gPuHh+x1HOWVpPNCXIB2BVGFT754C7rY8/xF97gY7/44zeKCd+vxKBeMz3BlmU3xzXsUCnb13dP+dRC3ELc9soOe53F7bG3gf81LHLHUXhvE2Hvb7k+wPbI01d8wKL1p3R8qOSgHwf6YTNV6B1SMl5rxiKEOFJKDeIkJUoG5w22aShSSDlTSiSTiHmcAu+MMQo7KXlIqv4H3jmK1HZpSRlnNSkNVctZbDVc04IzjiwOkYJznooJn9xNpZAl4VwDJVOkSvkpEbrLS5z1tSpf++vVzty3VEOmSpxWVB1zshAGBU5TDISxMKRIG3WFQqEIOUIueG1p2gbrWnIqdCkjpaG1CmfBNIphHPAUBu24WvXkmCmxQi/SMFDEMI6R3A84pVgsWmQ+Q1nL4b1D2plh7DfEdURCYZxZZseHMI40WnBoXNPS3pkhqzWbGLgMhew9Yg+xCpqi0eMllzaxNnAla4Z8Rimr7RoIIsTco7TDakcoAwulWaeeIgGTR7QeaFzAmYbMgpDWtKaltQ3WakgKxFFK4jKsayW5JJJkrIZDv6RtZrWSZZYoc4hynjwmrDEcHVTjukYJrUoY4+hi4OnFc7yFZatpvCIUOBt6xvUaJBCVJkpmTCNDHMnK4GPhDKqiTBZCgVQKzbwlZUFCqN0LVQneNTmtLeItZK7kiYMiGTAUEWKpSkbKGXKi8iaixbYON6ta18tbS+zxgsv1JXaMvHx7oLvqWb0dGc6F8VlBfWLO770D3xkrLO/Ffw8//Vl4zcPLrwoXjwWVLW1zj3/3P/pblMtCowuLg1eZH5zRhAsuLp6zWdzi/mEgliqxOipPkgbdPeVkccgQMt2Qefn1b/O4dwTfcGY67OVX8K3FqgOWszk/IiONVSRvKaZnVJp1iEQboJ3Tn7/DfGkJm3e4fHzJ6sUMjGN26w6LVkiqMG4iKias1E6iaRqOH91GtKBpq7pYHNCrjpwUm8tnyOEhzcISS+L8agRrWJwc8/zr75CLmtzQM7rMyEtD6AdEO4xVONEwKjbDQI6RlDPea3KsbsAxZjbrDcuDGbaxxJjIBUzjkZxrMoKQJJHHUDcV5yhmIidPQgraVCfsoRtr6aNEQqgyy0UKaI2xDpQiU+qc0NXNHaVIMaA0jKGrhnlU1TZlNGM/UJRCG41VtZZujKZI9VuRUiGbQsVGWmOJMeDc5NwtFX7pvKNtW+L0uyOCsQbrWkQUY6jV5ep6aurxucYYv69gvLf/3uAHbIt620qfXG+i7ycM78Ex9oL+761MtL95v3czrmvvPl/hg9/3ERuKG/h2rSr/bSvdqM0EBZu8KrRSWFsNGUvO1QBwL3hRtVdbD6w1q9hRsuLuyRscLe5xefkCqzW/9+TLjLG/7v7s+jhgla08hV2Atk0Ur3kpFa57DXH6qI1SCo+fvMuDBw8oRTg4OkI7x+XZyxvv23YLrq8vN3LjHRRJ1wLF02+eoYywvGo4PJ8zPh2xZwr9+h3+u//md/n4XwDvAut/1vPnP2E4NvCNr46sN5qlOeb4+OP83C/+WfJY1f+WBw9RylPyM7p4wXj7Lq8d9cSUuQqKUKqssS9XPHzwiPUmsblKzO+f4kbN6mtvM7gB0z/Gn1hoD3jtFz7J7Z94Hdf6vcTg+ze2Bbjts1uofDSZeDdQkwet9hyO97uTXD/111CwbYK9TzZWe8e7XoO+1/ign+57LHxUEuI/yvhwsCLj8LapLqelmlMUVSutamq3a2SS5xMkp0mBTdAolG0Yx4jWntZXfKwUQZRUFaE0gtGUMKA0WGsRhBA7vG2w1k6LEdUOukDTzKrUKaXKACIYZzFOkYoipYHJIBRFXVCr/KaiqBrcaXJ1KUaTKbUdbw0pTw7IXY9tZ6Qx4Qy184DQbTpSqRwFZyxj14H3NN5jDYSsYN6iQiCWjISAcxajhWcvNxgjeO+nKmSVZx2GkbZdYBpLkaq+tIk9w3kE34AoVkNh5mY0rSUgwEgqjuVySR4D3WbD6vyK7vELHiwWmPYI0c9pm8LMWKyec/68wx8ekGJPkpGcBiReoKTHKQ8kGuPxxqOUrVXSojEKVMko3dROgrZoXaXOMhotAU1NulKsZEmUIinLkHqUpJ2ra58DRcGMzNx6FEJrDSnOadpjSlqRNwNh6IlWw6xBxcTFukPlgSSwAUarCKJ4/uIZzlqsKRwczHBWU6JB/JxYBhKarA1SqgRupNDHiBKhbQyN8YxB0Yc04Ww1jfdEncgpXasp5ERSFlukym7OPP5oye17R7z8+lOKc1gPVme80TTOMqwCUTTxsiOajFhFjB7TNhx82vPgl+7y7J2BsYwMb0P4rUL7Uvj3f1nzWy/grX8u9M/g059+wN/8t/81Xnw9cfrwLiG95NCvhlOccQAAIABJREFUODTPydJx4uGsXDKkR/RojO2wKjGMmVEaYgFHoVHCi6tnfMPBJ4/uwaPXkf4pq82aiNC0HucPaa3lYryg8Qbfzui046IbaMIZy6PbvDh7zoktZJuxLuOMZtP3pHcfM3YjikoClqzxs5bN2XNeXq25//nPk/uIdEOVXmwLJUDMwqYLZC2oRtMetjXg7i9x3jJrF6jJvXjWOvpRENFVKjlXWdGIIBrszGFyLTLEnBjGgTIOSA48+e473D69VZ9LbXCzWX1eS0S3njh0k3+AR2mNpSDKoAuIUsRcCHGkG6rkrXGGOFazN611hfNIIeSMsrp2SXWFiIQk2BxwbguDnLoEVKikbxtKTlijySKEXEghM8SE8g6vDSFmJEtVIJKCdZohJLyrvjF2ciAXVbBe4UpdAbXSlFxdq6uZlYEMWk3k53hNxtdaT7CVmhjvF+PU/ra4lyG8P8hX+7v27u3XEp3b169bEd+rE/7eiu+uqv7e433ER+XcVeGPrefPDpb2nmCkTJC4EgWVJvU/auCylXEUmQzTLAxBcLbB4VAlokvgsF2gZESrSmwvUqY/QCm1EzZVZj+o6n5tuvfRhnYppcgp8/jJE155pTrBl+IYZi1xrLEFSoGuCZmicot2XTURjNHXyVwRJBQ2paC04mu/+piv//oTUIKbeX72Pzihe9bz+LeFYxd55Urxlz4755uXkS//6kC88Hz+53+ML/zUz9Gdw+xwwVA23GvOWG2ekvUa1UReDE/p8mfoRNPM16S+J4ow+hOGITMncfrKMa5xaEn4Wx519xWkrMne8ebP/AT+9iHGV0jtD4I3cj13rhP9LWl8v0O47SIoRUV7yTWUra4i29Km7DpcZerkWmt2Xgo3ErvpuPW79n/3607Q/nlN/5u6G+/nT/0wjT+OdfFDw4qsNdVEB8UYU3UxnWSitje4yu/FKZDcmkelWrVSUoNp6+j7gRADUhLWN3jfEEOccN81yTO2EpSN0UiOpFxvnjFV0xlylXYrFbNrdJ3cRQw16Yw750+FYL0n6kxVRII4xKkSqGqHwdiKjdeT5Jm19URK/a6QKuG3/m61wzCmhGkVyliKVE8E5zIxjRgsy0Vb5VWLIg6ZcRS0MRNGevpdJ+MsrMGTmS/m9FZXdSgKWiWMNoxSK5jtomUxXyCi6TeBGC3d1RoVR4Z+zTBGCgc8yyPLeIn3FrRjjIW+H0EJKa6IIqzDFal0eJ3xSrC6wZsZM9syMy3WNKANQwkUmRyOjZuqUcKQBjSJjK5KL2IoEjFKYUxDSAlBY82stqAZSLlDEJJohhxx1jPkxMXmAkPh8OAYnOFg0XKxWhHCSKcMfRbO+nOOF5aWWNO5ohFlSDkRcmBmNdYd0bSOQjWtU9oQYmIYY1XbULViam2hKI1M88hoVaEWGbB1sc/FVPqGqpUxpRS2bUEptLVYZ2mcZbH06Ndf4XKdUNJzdGw4vuNojjRXL65YdRnjgUkvH6NJY8+tBzOGlwV/fMT49kvSkwSd4uSR4t6nLP/1f5t4eQ6+Ndx/8xE/8Qt/jbfPW+7eXTK7LNxZLnl74VmXgaOTBYeHn2TVnSHOk1ShjAOGEbu8Rbp6ARSWc885id9cX6FvPeDR3BGS5cxoLmRgkEirljjX4ucnXJ2/g1cLjDbMtObAOVbZcXx6Cy9CN0bKeYf3Dj8zJDmiYBjWgRgLzhoMlsffecnsyHHx+JxmZhEt5GkR3qxG8pDwdOjlEqs1aQwIitBl3PIY23io5sL41rNenbFZX+FmM3AV5ta0Hu89RgtdHBn6QBQh5IwYh21ntDpRyohxHtGanCNaV/JljmMVNdCKokCREWpSiNKVA5FT7TY6R5wUhyr3t6qyFTTohqZtQRIyVX2NMUiuFTKRGqgXJodkreq81AYtVSHJIoSUd5KVZlJEU3qCS04bACrjvcLZKr3KFNRLydMaJmwFeiscolaH7SRVWN3sU12wt2MXzG8D/P1Kmezest8deG8XYH+z3WrxX1MYrmEz19ji7fe87zQ+sJW/4xHuZS4f9W6/mngm9d+Tt4W1u4ooaqpeT3CKa2nGeqGMNvvgixonTXLeRWtyTmgN3XCBVYbWH9GFFamEKUHQk8JYoUydoG2QIXvB0nWCON2X90A5Pkpjf56mlLm8WHF0fMjR4QHz5ZynT54TxxHYorjUlHzVwp6UKnyidO2rlFzYKnjlWH2fclcTcuMUKcCX/s7v8uovnODbhBs33HtdWNw+5Nd+7ZxhA6evnPDw45/g7sNP0UfHcuGwfeF4OafrLGrpWbhjDuevsR4umfmW7ATCBcYK+vAW4+YdjIPP//wXiDkQTw659Vd+lvlsjmkMWWns8RJl7Q+kY7Ad+4IHFbFVdsWJm+IEch3g1w+idvCgawO1+uZtB7NC1G84IE9ridz4/g86sb0ZPXUtFOqjnwn/IcaHdEiuG49M5JtKSq1t7gLVLwQhT62blBOITModApJRWhAzVSKkfkYJ5FiNg5BKFr4285lkJKVWBVOZ2tZSHURFMlKqosw2MVC6qnIYo6FUbPGWzGb0lNwoUw3XlEJUdTeOJSJFUM5vdz1KUShtJwlXTUy5uvxSDdEqWaxu9t43lfxJdXs2BqwVxOoKw8pQazsJj5CLou97rKtGTNZqZgcLdL/Ba4V4R7IKJRmVhZAjsYD2GuU0xtYFytglYRUYRsUwZEIqjKnQx56XY8fdxYLbxweEVBDRHB7OmLlEOluRU8YacMbgjcVrw8wd4q2hsfNJztRX6UVtmXIzssjke5AIkhBy7TAIZEloqepAWgnKWAzQ6gaKEJNGEUFZjPE4WzHVESGHESWXGNF0FubWU1Ikp8IogbUIzXzJ8WGDTpsaXCmNVsKt5ZyrsQNFvU+5GlMpbShhxLYevd6QUp1/WtfWL3oiZjJ1HVVGkdBKE1NBa1u7JKUgJYFW1ePCVblc6SJa9fTnFu3mWJfRytPMPdZpch/oLyLjJjC7ZXAzi2k1pkCYN+S15vJ8YPbjp/hlZDA9pRs5OdGcj4rvfhPiAK/fnfHZN+9ycvcNNm1iOVP0zxSffPiQp9+8w2++/QJlF9w+PuXs/B3MGLGuGvJtpKPkAaWnxdKAtobi54zzY87Tik3uuSojl/GKJAbVOMZRkUVwTUsWsKr6exhrWfo53XpDUh2iaxU6m5ZehHR+SSh13iqpz6YYGPoNt15/yDj0aOq8l6JwzYzl3Rnju2e0jUJJYdgM9N0VWltC8rSNoHTZwVPG0BP6NaEkkkR0s0B7X79LFCVEcqla8UrAG49u52hXaNtZdbvOTI6mGlVSVXlB6pqQCplI1qoSzKcK+Zakbq3G+AYdRmKpogclQs7VYMw5qd0rsZOqUe1IoqoqUYoDWaq6mmwhbASK1C7sVpFmK2lZuwQCSk88iGtteadcDRSNrl5pqqDIdZ3L9Xcqpb6uFfU9uZBzdXHOpbq07+94W63wa/jPtIEDIjchQvXn14H8e2VJ/8Cg47rnv/fd/+KxI0vuMpM/xIc/EuM6GaodnOuKpahth6ESZkU0lbhdoyutrwOZ/binyARfFWE9XBJSpPUdqfRT0FuLahR2RZRdosLNS7sNrUrNPurpfj8uy5/g2M72YRhZFnDtAmcNs6uOFFPlR0rlepQt9Ev2zbOmALdMmn26mglew422z6/QtAcc3rnDeHWOyz3HC88mad56q2BF87k3X+GNV19htjyCKDgLIcIbD1/j8dvf4exiYGY9hEhYrfAY1HxJUD0pr0hpA0YoRvHxH/sMp6/cYzZf0LYtVmuUtzsQ4T635wcxtuTu/fmlp2v6XnlRteUavK+TuM2cp+LCXvB/3QRQ+x/4wKXiJr1me2/r7N8mBju40r/0b/z9HO9fq/8w40MlBzucnVRfge0Fl0netABMD0UlyaVpM9XTAiO7bC7GWDcjNSGPUibLtPmLnlpBtWpumGT6ZGs6UY+jRWEo15MCzSQ4zP6sqKS8uqFtz6UW6hQYWyuGJUMpNaPUUHOZ2ho0xjDGVAPCkqskIIqsJpgS9YG3zlZcsgIpmWZmMVaTpFB2DoCT5CGpmjgNI5qGZtbiG8fSWsK4QZVEYw1eOaRo8pirNKeZIXpOKJl+jFhl8G2LURmMJmvNIIp1yKyGS7rVS+ZywvGBRWmLM575zJGtcH4pxL6fEjJ2cLzGzWuApTyBCm9qxGGUxfsquTikkQokEqxAUQZjHFkSqkRU0VQxxqqc4ii0zqFFkY2iNYIyDoytfBCtK1ynFPqcuezWnJfAkXOIaARLTpFA5vbyNou5hlyD95QKSgdu+QXpKjPGxBgTSSsyoI1DW8Xs4IBhHCkTOVWpSkYvRbC2QUpVOjLmOpnMRbC2Et6rpKqhTNU10zTklMghIBnWC097aw4U0JYQYXURCWPPZpMpsRCDqZKW3mCUYXE8ozuPhL7gno61ZY3FjIJXiifPhfC8xpOPHt3jzU+8QXEt944LLo2krufR6QGvHC4JV4n1MnOcN4xFQR+w2VGUJuZCKet6n7Umlmr+ddi2YDTnw0su+kukJMYyEotGQs+GgE2F221LFzNFBxoMWnsWM896nVA2YjEghlFZurFjXPWMMbBsPTOjwUBKLdiMXSzoL7vJ1VehlMV4R7MwuMOGxgkRGMZIGEecy4htsDpSQxIDIozDQM6RLJkYMsZYzORlkkRh4kiUKorgjMXPPdY3iA64WUPuKlxMVMaaamqWRSp0SEs1LssRpUsNxpVFpAbQ2lT+gdIKZw05CyVVFTaRqtdWW9UZbQxClXs0phKJiwglDVX+ViumVJs0uTIraysHQerapSaCcUjXVbMtbKSUgjeVe1W2FX4laFVA1M71WLaV4K3akIKcAjVxmPwPbu6du6rzH7gn3Ij+/wXvfe9LNxKK6dy/11E+REvgo7FZf7hRyuQTtAvctsF+LQpVx+sJ9kWpCXEpFFWwytQC3lR53creSilMpRxCCnShx45rtKlzUqpE265qp7VMe/i1z8F1WjD9b1ehhQ8Ot354xwdBLhR1TwghMYaMM562bdno1Q5GVHaB4f4Dwx7EaPr/9OOSy3UHZxIP8DOPUS16BBsKthiu1kJ4AY3RfOrNT3B65xW0dSy0YErda+7fOcZFePnuJVENLI8MjXOwGfF2yeHRHYq1rN9+FzSYWcudBw84vXtncnGuakC7U991DNQP7AG64XOiqgDE/kKwnVd6H1i3F9zvmoo3s9cKP2fLzblea9i+dTrGdefg/bDG7fve99oP+/hjOskPZ4KWp4qrUaiUJ3dOMOga3Ekl1UkupJAwStBKo1Ul4hktKFNb9TU5mJIHZapDseTpBlbM+taVsHYRdNU5jwkQlDagdMXraqnBmqnJQZ5s3nMuWKN3LdmSClIU1jXEOIK2GDUtftpUIrWq0JKUaoUAwNjqF2CMQagKSgBNY+lz3lmoM0mdGWNpqDhkpRXEydzNWJyzaDTWKkyJ6KJxVjHzFte2qDGwaByrGGj9DGsdJWliGBmHAT3zSEpsupFBCVYcdgP0HZsxIUrRFeFl31esfugoydL3Mw4PjoDE+vICRyF0Fzw/f84mDIyxY8gDoyQKFQc9poJWM6xxRKVYOEdjHYPe1PuS6+xzSpG1QWtXA/wcJ514SzeZ2HktKClYY/DOQlnQaE3xLc83l5Mud62uYjwvQ0eicD6u8G6BdfNajVGRQk0ADpZzyhjpSkeld3jM4EmhELKgRyEKLJeOWydHmMVtrlZrUs5IgiyuVs+veuyspYTKlzDGIkVRJKGtZ9uWVNqgXEMsGaMUjdZEo4kCgiWpBUnPgEQMibPnYw0Acw8WWiMMPcjooHiatjBbFIYLsI1m/VvvkHykvBhxAn2CYaUwAZxWHLzxaeY/+kU2Ch46MDGi1AbPOUd24LT1jFLYPP0aeX6b9SaQ+koCl1RbqXma632peHYlA+vVUy7bGS+HNSeuxbcz+pA5H9eMquG2Uby7Sixah+96nKxYzOfcDh2L5ZL57IjYJ85XG56vzjgfNuQARqqZmW4tXkN3abCzGWNyJDSh6ymxqqlYBKdG7ty6BTZgtKG1nlQWFUI0a3BWSMiuypWSYFrHcBVw1lDFBCo3JBUFKhNSTQLtfI4zGh0DRYMWwTsICDkFSg4kCllVd2prHZSJ9FkyMQa0LlMBQ+0qs93QT2tO5QuV6foqrcgCqUxJi7OAJhWN9Q5KxDcteYxVLlIpjNXoUgnSFXJXiyy5UJNGrYFcE6KpGmm0QQpYberayVafHNBVaCHmbVVXJmflmoxoY9E5klOcPmduSJneUAjZbY5TkKqASUp6GwnVwty2snZz7/iDcK/7CcKuCbCDGX2Pz+11DeRGYVHxXmfVj9rYwopKSdUpeQsRgx3vyUxKVdqYui7Ktkg2KbuUPfUpmZKDUrv4cbqmWl1L5BJrcU3paa+Ua/MpRFU51KmKOt2Z+v2TY7Dewo6+/5frX3r8wXNSsVmtyKWwPDrZFf1qNVvfeJ/a+93L5Pt0rWrD3jOx7UsoKPD0S9/k1Z9fMFcBL0KfNHFQ+FEza2D52k+iTx6RFSw1qJwRRtaXT2lKJHUDTy9f8jHvSCef5cXmBWaz5guf/hyvU3j61t8nChye3qu8UK2n87/5cL4vyfkBjBs8gL1uFbBXod+feXsdhF3jcPvz+qdCLrcvCGh9M63dZhTv6XLujrdrDG3NHPfXwB/icSMB+qM/kR+OkOw92nk0MJspMJox18B8HAMphLrRFcH7WvFNIVImLKOzNe9TJWOnBV2ZGiiXXOX7Sqrwoi1eNhXBNTNA4YzBWb1NzxEl5DSirQOrK0G61OQErdECudQHUU93PpWEzQFdpLqmUs1iSoZRW3JOuJwhxGmP0aQkKOPruVON1UrOiCoYU1WIUAlRDqUV1mm8M3RjwLimmqlRK0GqJHTTsN4ENDMWztL4WpnuNmuuXlyRx1wVj9QShUZywFrN8cldXqwS42pEqCTF2Pe0tkHjWLQK7+cY7/HNjJQizrfElHjnyTu8eH6GsZ6sQMfM+dUTuhjoc8JazdwsGJRFhQ3rtEKpqgCFatHGMZREGSxON/QEggSqIYRUKEUacNaz7Sg453DaIJJofAt5IGMwtmHpDzmw8LxAm1v6MEzSkgJ6YKTDKYP2DZs8UmLENQuU1rx49i3a02NCnoGzqNZiRBNmLWXVE/MVElqcUbRec+f0Pse3Em9d9Li2ZQyFEAZSiswYiMagwxUqK0IRYq4wpXk7g/+fuzcJti1L77t+32r23qe5zXsvKzOrS1WDVYKQQ4FEgA0TBwRDM3DYHngiBjDQTBNw2NhEMEFhewQM8RSCKRA2DpqBCWOwwBK2ZbmEKqTqs33v3eacs5vVfAy+vc85976XVVmSLGdqVVTed889Z5/drL3X1/ybuKHf79CSkRBw3YqYJwiBXD3d9pJGxdSOUqUSCCuHqCf3E6QCYyHtMskXQiNwENzBQan4+8rFSnjxuzu6t9ewgqkfyQHuBmEbPZoyIcJbX3ubb/zLP8VPN0qjwo1U3vzim9zdXvCFNy/5mT/2Bv/f92/54PlLEveoeqrMCQFCVQfBHhhxsya3K26q0qSRYfOWQcnqhB4c97vCcJ/JjIyrp0Q/0Be4HXoOh4Esnp/t32D9ZOJf+sbX0NqTXrzk/u6WfhgZNPO5tqMUYchKKLAi8MYXv0a4uGS12rJP73L/4gP29/cEp7yxrvTtmi7uKHFNqg1VheDB1QM5CVkU1USZErtDTy2KSMZ7oc7JdhsMAkbw7O4mWmeSnWRHq8WeOXFFLpN1mEolRJ1dOWcZZSLMwgPmDgvjOOKcdX4KMGXj2YBjGg5ztXUOTmePBPwK37R4MaPDouYMX2pBBEJwVt0SCyxKVlI2J/KU0lzpd8TGg87H6QKlTJZY+UrbtgxpMOgflTjD4IbJZChrWYIXN2OiLVEQPME3KPnIBzhf+MS52QH2HDZhh1eXavJc7T+OJUA8C7yWRu6PW1Jl7kyfx2wnzfLle05bOasbntcT5/d8yhfwHzFk7nYvXYFSq8EBlaNqkTl4P6zk65HTIcd/n1SFlt8XuBFHJICqkstMRD9+bzVFsHnNOw8xLIBaEscwmwZa58HJZ++8n+PNfQgGb1ErBOSUmPY7JIY5ofYo5cj5EHc+P8+K3fNUPRbn3Rw9iMGzvRf+tT/z87zxZiBPd9TeczcFGrcij47NZcezL7zFm1cXXDhFqnKohdg1/Mp/8d8Q6sjnP/+Mr3/9HZ6/2POb/9f/yh//hT/J3d2B3W5P9A7cCt8JX/zal6z7zeILdSqwPNzpT8dQDIr68DXgqKI1v7Y8s5akdXl2PHj2yFGm+bSdU/S/dOJO6dxDGN6yjeOHjw2G82v+2ZvzP8n4ZJ2DXMgpGU7NVbxviQ4j+qkSYiCKmLqP9wyDEfesnW2LiifSNi1DP5KKVR68OrRmRBzOBXNWFjFVIKngHaqmHx58MCUQKloTxXd0TSSXQkmzPrM4Sqp4Z4ZmJVc8RuBDhaZtqbFScyGIQ4jkACuJ5H6PlIoPHXWutLYhUHOCNOKDUCQDCamVWiph3UBN1CJMSRjHxIuxp1ttaBDSlHAyY/ZrRDXg6dg+3TLcPmd3cw9FCbEhrDbkdMPmoiMFhwSPD2v2d577NDJKy6WvlP1LtB9Q9ZQgeCJOHak6Nt0Fm7e23Byu+Z3f/TbPk2fon3O56WhRptyTU+K667hlxdYFxtSz729ppSdTeXP7JVQiU94x1T2HYUAoXDz5KiEHJr9GxDOVA+N0T3CObQhU16DSUgXGtGPtPBPK3dhTslIptLlj8g0vaqRtDEv9pIlIBdWMCGxXa6rbMoz3VG+qWEPpWTkPObHfHRju76hqiU1cbai3N1xfRny+QAQ2F4HrN655+kaDlwuGac9eGgY3UURNLrdZE9LEbgiIb9CgBJ2YpkQjLV9858u8eH7PYX9H0Qxxhdu8QdspzeUl0zRRDz2qI7kfqO++IHaFWAZW25a8XdPXkXa7YRwOdNsV68vI5WUkdp47RsbfvsffJZrrPfsPBg7fn6h3cHkt/I+/pezXjqvG8Y2nl/zM6pJIBiote1L/LocP36OpmXe++IzvHxz79JK7mwOqgSasyNHT58FgZcHTBE+qwu1hoK8Hbu52xC7wtFvjXWGfM0OA7WXHVIS7eofPI/1h4n63p+TEm+st/+ijys/oG5Bhpffo/Xe5fe+7PHn2NmsCb2wbDkPmMCpJPVkH/Lvvc7XZ0Hjhww/veffdj5iGezYxkF+M1NvM5dfePFY1LzaXSOdIQ8UzoEDKRpy9evMpH777nKdf+AJahf3ODPH6UKmpsr1q+NwaDpNBw7brDkfmsDvg8kSQnosN5BrJJVn3yrcUBVfrTMoUckqIRMBgOFNOzOx1dPY4cIuRosxcJ1F8bEilwDTg/azLr5VxOOC8w7uANp6SEikbnMiHiFRT85JgXUhxJjNalSO50TvM5FFs/yiKkg3ioRk3Y6NR49RkBSfLM9CUaNRAd7RNR1iMCuPHLwXLEljhWHWTYxv+1JY/feB82fwJoo9XgpWzF87XYZ0ThOUnnFW2P7uj6kK6XCSTjQy/mGsthmNwilecCOqdyX3PxdAjBV1PCi9OgnlkzEP11BE4dWLKqRMh9i1O/HyOH4RR1mHQcobk/RRFmb+H4ZwhFEqxxDrXyn4Y0EM5BZ9Ld0r1aFDH3FE8pmtLMr08D4Dl3NRSCVV48dvfpWk3DM97OlXGZ/D/vJ/przd86VnHl7YbLn1AqCCVIInDzXsMhz1vXK2R2PCdF3f8w3/4G3z1na/wH/4H/z5/62/9b/zxn/tZHPB3/+4/YN1Gfvbnfo7YNHPQLcdmxqdpnHdxLMl8dSYdfz+r9uvZzzqbAT58v57m9xl0yR4aipzdCx+zZw8RRWfFkEfp9x/Z8YmSAzMmMwyjVfQCUgb8AleYM7sYHI5KcBDahlJNK75owSkMKc9OvSZLWqvV6hbLeFVr2xukyC2eLrO+syl8qFZCjIa1O+IuZ4kxN3skVIOxGJZc8NGUfkot5DEjotQgBCc0cwWFtkGy8QHKDBny3ir7WQLTWMwDQcS6KNkwiWVuxXoxGJJkh+pEmTwVI4tVreRUiADBM+xHUjKMeXCFgNL4jK46rtcNZTZuy0WpoZoaTlsZ7g+UbCpPUivN1HO9fWL4/dBBrQxpYp/gyeUV/eGWgzrubz8yF92aaMOG0q5IEum8ZyMrYim4lMnbSw41k0qizwNjHhGJXK2esfZC46LBneqKWjekfIEPypBHxpzIc9DhfSC2K3I6ULNBglrxNFoZDy9Rv6HxLSUf6GueCXaJlAaa2DCkHTGuuLi4ZrPd0HYN1IHhbsfLYSBrJjih1MKYXxK6FaKRVeuZpsyhH5hu7rlNM1E+KQ2Vydh2BHP049kbTznkTNN6hkPi5nlFvFIRdjd3jOM4S6FF1teXhKtrQlCCc5ATNJ7QrMysCuXiyTPW14FaR/Y3L0mHSLzq6N5Y0b+8JfUT+b6jvQgc7npIBWkD999P5KHABN2V8PbXPB98S3F74Z2f2/DGFxs8I9QP0XLD4eZDPvzeb7KfDogLXPrA19+8JqSB3a5nTJU07si1GhFfYNVsQfdIGUjq7f914nfffZ+77TXrMrKbEs12wxfe/jxpFKbdLVISSQubJhA9aJnYhMB3X/wW63/8Hm+9fUXaXNJsL4mryhubhpeHnu16TcSTqrJPPePzkUkzxUE/DMSuQdUW4xd4Up44vNizvYAQCyIj6xKQbsXhPtNPyliUXCbqzXNct2WcJoax4uIKL8Kw3wNKQ+BAovUBBXb9ACXRNA0f7XpErGKuAvhIbDqmWojRn7DFeKpvSVPGBUedYY81J9JYOUwD4gNd26Az09eFgI8NzjkO00idCt5HvDOCPnimsYdVRxVvxlPZRBWyK9SLQGMaAAAgAElEQVRaKFXYrjpitH1PRUh9xsVoa6Pzc0XMuBK+adA6GnEV80Nw4iB4DIFk6mveOVBB0wQSTW3OWrizmMLZUjD35x+YccHDNvxZMK6PXv9JhsyQqNM6+5oF98F3ndYk5uDsk3QnPitDMQnT6COllCVGX3oEuDmoMaf5/AgiI+Saj3CM8yqxMkvtzt2BMnfFFFPqWkihwuzMPau3uUXh7azaXGox2JLI3Al7FbLyaR6vNeerZhx3+r1SJc9dvUxdjnPppuicxM2cyqX7ddoAlFysczC/bAIDYp4CvYkWjPeFH3xr4vKiodk7vv5vfon1tkWYQEdqNvGFv/iX/zO+98P3ef89R9u+Z6poFN66XjH0B4b75/yd/+G/Z8qVrotcbJ/xve98m/wn/g3ouvnAHyVyx0L6v7hrJ2f3sHMG4S6lHGO/+ekwJ732onMOOUt8LS7VE8xLT+2bxy7tR4Wvs6ICcPa5V8/H4/dyLIp8yub8owLK73d8QinTRVoKq1gXa4NrMafRAqRsSh3eCU30hv/XQhW74FmV4MRw/WpBmzqZFYcKlQrikTlxQDxoMRlV38xH7nFiesxSFfFKKXZRnWNWlTGDn1pMc9gwkYJqNfKiOMMmZ0scnDhUlDQmSknGOagADufMQAjncc4I1latcbjWJCk1V7QUpnHCe2/cghBYbbYMKZNTBhWiOMMvi/kd5Johj1Qq3jdM08CI8HI/AJlpKqQxERzEGGgdjGXWpO46kEggMqaJOiXSYECHkud/h4a42tKpYxoPaO7RMrFPlUlgyD3ezddBYd1eMDhPLSNaDzjx84JQESmkYqS1sSacCzhvUqxFR4JA8h6PIzhHdDJXWs1FWktGnS1ADqFZtagLeOfpp4Npe4tj261nOdQ9IXSsVxesVx3qKs61tPGAp0Xr7KdBRan2UAkBEWWYEv2+pwwjcntgqJmmu0Q1kEYoYzYYkxdC44mhIbaBohNxXWEaiSGyG4yDEdqVEa6zp+wSqelo/ATVWtESHU3XMN5ODC9esH72FqHbsPGOuGnM1KqpFviVgbQfIY9ECt3TyO3zQk1CHaDxwvWbgbfeafj2r0+EAl/9+hOefS6A3lFrJvXf5ebmOeIL68uW/eUadzOyXSnXrfD0cs3LuwmhEFygOodKQ2w8dQxEJ9Y1k0DXrNhePMGvtoyjZxruiKXgvSlNXT37HO+/P7FazWplkwcf+Pxba77129/i5Y3SXkTUO66unyBNpe93DDmS6w7FgwTWTaL1W+ruBfdFKcWbxOlmDcOBEcGvN/RpJKaAeDP1an1AaiZVOPQHhlRQUaJXhn6gcS1FzJG71IlxGmi6lpwTSqXOAbk4P88USGodK5WZJxT8XFHzZHWz4pmRO42M7Gc4hQVUKVembF4YwQcq5kpcUfM6QGE2MENBc6I4qE5QsYBq6ah6N5tHzh4DTdOScwU8iiV1wSklmNtxqUv4pjOmvFLUFNiQJfiYhU6dcXxqSUdtdlXwPszgPygVU2vycYYm2ThKAwILT1XrmdQpnBIFkePiDJxgAa8h+r1axVu+8LQAH/HHcFzkT6/MJxWOgcA5hOOPwljgDq8PPU6B/jmUyALWOgdYs6b7g8+cXGfVnXgkzjnyzKM7SkEuE3fZg1c6MgYhUpGH1/EzX0SVB4FiyeVoPmd8AkBmzpGaKaYuCcLc1TlyNeaqsgmo1OO2fTDVssPtxPXTwMVF5MnbLU8vHHlQmiJ86Ytfom0ctRxIU8/7736H/+q//O/47nd/QN+P7GvFHwaaGLlYt+RaGfsDX/ziF7h+cs1qveHqyVOGIfGNb3yFEONyeJ/OcQz6H/osnDu22++nBPfhEB5Ago7X4PikPJunj0/Cx5yUB/vBaW7Pry/djU9tPvwHdC9+MilTJ3hvgWJKBZ3sYpY663RzIrwZts6D6PEEihghyrmlomUGLqpKwRZMW3sqTg0daUzQmWTnThmgc8YFMDJwPmtt2xUL3hkhxTvrGriZrV7MjTg0JkdqN7wpnBTNTKVQsqkU2dfr/HAwo7UQQV0wZSNxxGiGTFrN0M26Gkq3ioQQ6FYt4h27lKjFpFzHUVk3W3PeXXL4mUcRXECAscLYj/T7nmmcWDWRy3WDCw2r4C11kgiuhQR5KuQKY7XujNRKxBZ+7yIhdAQf0bxiGg9MdWCYFMrEQJmvV6BrN8abKJGSzPnY1h8je/Z5wHtlUsXXgogy1QQ1EwWKmPoMYvCPXEdEKtTMTOc2LKtW2mC47JQz0zRStdI1a9brayOEesdqtaJtW3yIKJmcTOXI7AIitSqlTCiK84HqPGNKZig3Tky1UqWnV2V7EZFgOPhFQreNkW7Tgq4Mc54qvvHU6tFaKGpGRDE2uNBSq6ccEiShBpvLrvGENtC0kcEP3H10Q/vGhs3TC3zTEHTFMBiH5eKtp+xvX5D7PSllVmuHBkepznwXNoHohXYDOMd4sHvni2+3XF9m0B2qgZw+RBmZUs+QkpEMgycGM/N742pDI8LL+4ndaIubARMSrQS0mhvvpm25unpK8Z6sAecb2ralC9aR26w7dkXQ1QWtS4gbmHREnGPMA94pU63sD/1sPtiRc8/9/UANlaEI4iJNUJJA1oHiArVACJHQBCrO5HnF42JgKgeG6YBSKOKoB2G7WpN1Np2rlZIrKo5+ypQ4BzYuzD8tIcg1I25+RhxrZULSAlINbjMHS2EOpsykrBKjeVHYvV1xzlO0ziRjTGls4UdVOSq26dyu1lpmj4R5wVKDIJZiSjHReeqUUDEcs/eeqFBmsx6ROicCp8XHBW+L6GzEVmHWU7dnWym2fyE4fHBWWJH5Mwv5bu78hiBQTXbaaA3BXL4fVNfkBBc5CwDVStivL+4vL59X+VmC+MXf4XWr1sP2/fl6+6AQ+3Fv+iM0dIarOOqsLmPVez32DWbS8fz+B8HUbDJrEF2O1Vhrj8nME9Gj2Mby0SO1Q04V8Adu10tCt3zn+Yc5zZFPsyHUJxl2/54ntEtU+Mi0T07J6rJ2w3JKTidVjtvhuB3EPHa2Ty5oLxrWF3D9zHN95fn+b+/wzrFdNXhJoJn7+zv+yT/5Df7+//l/M47G6yylmEBMVVbR88GLl1xeXeG08s47X+Krf+ynuby8ou97Pve5Z8QQjwmn7eGnK5s+h7GpnkzJlvG6aXVejDgdywx+W6bs2Z/OXz8WGz7mHJzy44fFiIf/fpWf8KkYD87Vxzyof4LxiZODMEue1ZoQrfgQ7PfZhY5jhlVnVY9A9N66ByUTZ9Ke8wHni+nU13qEbWRdFnIjpWjJBl/CKv0qYnriVY/tuTSNtpC5ubKmShPMMt4FgyItRmilJKQYAVnnNqjOUqdTLqj31o1YZo0ywzIEocxwJ4/Ja1rHoai1HO2ha4uvSpzfa/U50UqtptBUUsXLijyMVBwxNAS1ToVTj5SJEjyH4cDu0JNTQQi0UWnF0cUWZaLUGYdcM6re+AmpWBuzwFo8h1LwsaE0xuGoZeKuKq440mGk84Gspn3ufcTFhkAl+Mg+RDpd431D0UzVib7scXM1M5eRWidKnXBakBBJFFoXUK0z/KOyaYMFpn6uLqKUWnB1IlVlmkZyKbPiVETaNRebDV3j0Ohx3ioITgySJhJofKbGSKqVMpW5YqYcxsz9ITMmC8IEIU0TBRiHe3xnc9OqqA4fA6GJBALjVOa2pH1XSgm3WqHJEkEfIhWPpok07hCxhCt4bzyYUnA+sz9MdB/d4bypEI19T99PNJee7dMt/hCZ7oWaK1MQhrvKOFq1L24aYihUqTz/oNIniGvHs0tlHfdouQeeUKYDLjp2uxtu7+7YDYMp9UwTucKzlWdDxzRm7ofJkigSpEIrLX1SooNVbFl1a57f70ljoJPCZWxZrzrER55cbvng+x/h2hWRgJSKZoOz/fDDG7YXz9C2o58KZGXMIDlzMyjbNpHVYXZ5lVTM7Tx110TniG2LNIEqkVqjBfdpQBGGlEylp2nYvbzDO89+VGLbEJ0nH2zOpKTomAneDBPxJimc1AwNtczGZrNDMLXYfeyFqpWCPVMWwrZqRVMxqH5ws+LPXJxQjxLOlGFMuawWxflqXhliXTGqyRcvRERFKVVJxbD9eKjz88RrNNdn51ma3QvBU2fFNnvWzNVkUePM5EXJzVrxOasF/GU2SZvhtGnsrbrZtPg5aPReZv8HR525DRbMPFoE56DmgQHWa9eax4Hj+cdf3ebjGt4ri7+clvUHHQc57Yfhp08fPJFhP6WL9icchq6do/z5WHSObJbrcB6wy6Mox83zWZjlTuG4rXOC8qnbcIJiAGfk2bk6/gDfvQS4HC+iLPvM0rf47A47vyfokJ1zzubjOcFbl7zNuuHLdZC5e3g+B+cKqQJLmPTGO58jriaGceTuTgmhMlSl3QYaSYgeEDIvX9zxq7/6j83xXAuLGlcphVoKt6r047u8/YUvEGPgrbfe5mtf/xrAUYbbeFC2K5+2xAA4Jruii6EtqD7qBsyR/dEh2V5k4R3Z5ToxYo7vfyWwPyuA8Pjvj9762rHMg8fPy39x45VG7YPxugTnk49Pxjlw3qrCKsTQ4DAlhapGVjb4zrIomRGL3SEWTCNCFM+YE81MjMzMbnjMFS0/63rrXLlNBbzdoCmZaZnlF7PpmPenB+nycKtKGTOrrkHTaORiLBgrSXEKUzJfgBiDkQmrGoShaUmzWdCS9EiV44O4pAnnI+IigpLyyJQqRT2lmGY41bGfKllA72857M1HgGDE6tXGUxhIQ09fhOv1mtC07PY973/4HlISui5oGch5BAm06xWja/CpMo09Ok2UVCn5gGs8Iy3XjXVqRlWGUsljQZrA5996m6yJsSj3uwP7IaGHnifbjigdogON94iL7HNhd7ijaVaoj8Q5GUs1MYw9k1TqdMc6tOTcU8pAO6u3ZGlB1aRavcGF0ozZ9D4ZZGwmUlbnOAx7pCht8ER/dewKHaYRgvDO0w27PNFPiXE/UFLPLk84PJfXncGVasZJpWrlbtix249IGxHXsF61OK+U+x2iE2ncU4Oj5omSJutSjSO7925sIfWBWouRRWNEpYNujXOJ1aozV+9hQhkIeGLrkbY10vswMY23OFG6dUMuibsXNwSnaJ0YhkyzveKjb39AlIJXGKdCup3QUY1w2zokC2HjyV74we+MNE+Fq6eeplU03VGmH6J6z/3NHc8/PDCM96ivSKykeuCj5x9w0JGnE0jxszO4JTuNZGp29Cgq5lKOOJ7f3pFK4Hb6kEkC7eUauhXx4oLNOuCnHWUqDKESqUjb4DKkaaK9+hIalMEpqYyMZc+FE4o3r5DWOyteixKi0EoEKbSxofpK7AIhbPjwo5e4Btr1ilAjkjI+BuJ6ze69j3hxN/HRzcRmC01wVAeZQuttdV6tLxCpjFNiUmdKP+0T+ucfUWrBB47GYg6hW695cfcSaVpibObAs8VLoqFQNJFzPpk6qgXszhl3QFohNJFpHBFvTqMinuAtOCha7fk2GZywzgtV8IIXh2A+CWU2cKQmai0E75imgmI+GMHPMM6cKCoGERNn+HBmf4ScCbHSte38DLQlq+SEd4WcEz5GQObExp63TjwSWnN7nwskwZ+TVRdYxKOKPa/+Do9rVEt2cJ40LEup/qgPztt/zfsejeOWH2can5IF+/c8Tg3wY0B+1M5fqvrODD3zTGQ32UZL8haZ3arOkvmzYMrNHZyTv/Hy33meLVVyLDE1g7N67PwIZ9XxU5uIRabTfdqizp9wnNS5rCBVq50HHyxEWrg0S7dAhKMU4pHAPecNhiZSs15adPuxbl/NlcNN4t1vPmf/8o7PfaHlG//qU7qnkSdPVlxdRpwcqOUlz5//gF/7tW8yjAPBO0ZmZbOSKdnu79Dbtf8zf+EvHI/j3GH4/H+fxiEixodCZrh3ORZE3AzVMh8mOb5/uc/PH0ULR2ExxIUlHZBjQv1gDjP/PNvIOZzy+NpyUx6nvTzaxqdoPEhKf//Pwk+UHJRcmKY0w4gizcox9EaCC8E07kueaOLKdJFrPZJT3QJaRYgS8CKIb3AyL1ZOwIHWQC2GB6/iqDi61Yqcs6lyMAfqbpEVHQ1HrbO0m+pc4feknHHOI2RUhZIzQRVcMIJVVUqyG6yq4l1jXYCaSSljMv6zO/OhJ1DIJdO0laY1GIvgabxwKEpoNrhacVRTC5lGXLNh2zWkKZO1GOyjCdzvD4xlQqqwP0COK2KzxrcZyT2HaUcMjsuLNT401NIT1DHmzO19olFlExvW244cIkEc9/2IR/CrFbH19C9uub3v6YffYd21NE1DU5VnraddCWH7hOe3LxEXuS8jedhRVKEOTGNiqImm2eAUUj/Qpz2imca37Mc7HJXGOzovVHGIq7jgWcWAaCFlc5BWJ2yaFQUlUUh1Ik8HapqI7ZZutbWKSpn15qcdQ+h5/2bFpIZzD97hQ8uVBHZDYuxHgu9hSgzj7JHgHW3Xmk581+JWER+UILDtlDEnfIgEtyJPa25vbnj54iN4+ZzWe8L2Ah8CHqHttuAC+/tbVqsrmrbDaWHlegaE9ZOnhLahIvho839sBNWRJhfW6xYtEzomVAuhVtLNgVwGaw1PE1CJK2HaJRiVNBRy4yijUDqQsZKAP/lvNTxZt9R8z2H/bcax5Te+/R3qS88PfnCP3vbgPXndIOuGfDfyQXVcPrnkWRHKlHkxZLIKU61kHKv1muQCQx748iay/vw1338/8+aTz/GlZ2/w7I0nhG3Hux++z20aiG5F8g4nlU0rXLctu4+es/E7KBPUQJ5G6PeUTcfGC7jAWCsxKt5Vhn5PWa1ZuciqDmyaNTkVDoc7Lp9ewPgCcRv2Q6LgkeKou4FJEve7e1y3RpvAgKNWYdU0jKqMpdDfHdisGjxCcAnfee4+ek7wah4soohO5JqIoWOY9sQ2UsUb6VjMWK3PhaaNUKAUu2dN0hH6MRFDwMWAVofmjOLIJbFq17CIKojgYkvO2ZRhBKZpIhfj1LRtgziDI1bB5GZrgaRktU5miBEfPF4E7xSalv2ht+6ENzimmZZV2jawXhsZu5QCc6CfxgnVwnZ7wZSzPVdnLpfQgFZCqGbKNHu3u0XSEjivXC+ymsbrmo9zqSif/Rd4sCifb0lPbzimCcuiLXLumfDxQ+bPH2EDZwHZSbnk9cnLZ2Wcchzrep3/QRanyuWlpbqPghYEMz9bcPIPItWlU768Pr/0GMIBHJPI5VpaAe4EznMzSPS4v0e4ymd86KljA7Nqjn+Ib1+OVOVxkGoxxalQK6dNojO52xKG1Cf+9//279NuGr7yr7zF9vKC4aaQpfKv//wFdfKM4w0U4bD/gLv7O6ZxYhoTJeXjnlQFqvlHOe9o2tnMk0dBrvCpvjjO+blAcSpIeD/L6i7wNj11pkpZEtbTNmy+2r8X5aKjxOmxkKAPyuvLx+vxefRjhn6SN/3RGp+MkOzdfMEMMtT3k7XBS6HkBCjNrKYhOJN5LJUQZyIkgXFKoIWcl2oaZoxWlZIxR+G0dCGE2DhzHa2Cn5U7RJzBhbygWSjVneTCqqkq5JJYr7aoVoahR2bVIXWO6D1udvOd3a2oVcxYCCPyFbVHYQiC851hnKnUCilVnFM6H1AP1IFAxYXWsvVaoRQ0BG52I9E5NGVLgrKDnBnu7umHjIQVIWayDoRSadcNh9ueTTSoilOBqaDANNxRkvEtCo4dQihKE5T9yw/pLp7hNZj6UhTim1dcjZWmW5MPB4ZxYDf0HPLI5eXn6FaXjFOhUEjTPa6M5JwYmzVoZusjGaUfdozplsa3eC9sW884gZZEzYWXU0V8YNs9JecDOx3oQkeIG4a6R2tlwFOppDJSNeElUFNmkkJoITYrJLaQD0iZCFmZXCJV8F7RIFahT4mLNtBnYTfYgtW1QinONOFXHT4XDkm53e8pZaAJjth1fPGdLzNMiegVL8r26RUqHbvbl4xpwuWC9w04j9aB2G65vNzgQiG6PZoSQz0wug1Pnq2Z+oJUm69VE9dXjidPLnn3+4X7IVnMnC0CFA962NFsO1Iu4D01K+kuocVRciauIn7l8F6pybDnl5eOL315w+eePCOGa3YpsNvfE8d7vvO9nhcfTOTRKoFTBkmFdXR854d7LrZXvPn0gtYH3M3Aul0xJdhPsF6vWbUdEc+LIoyHwvUbb3PROVrpqQdllwNjf0MbA1ULKTta35JK5ZvPX7LxjotcoCjP9y/YJyPW1/2BLzy9oHWOrIFB4TCMaEo0rqGPmXUQ+ptbtFSGYWL3g5HL7YrrpzBUxXdrvPekvifR4mPHhCNKIIZIiOZmHiRxfXnB/f0eP/uoVKmMfU+IkaqF4CNNGw3LP1hVSkJgOAxsrztiE8hTpelWZHEomXGcGPOEOkfXNVStuFxIqTCVRKplVmyLdI0zGBHV3NBRXM60bUMqEyVXsoK6iPpAdS3rNqKaZx+K2ZldFLN4BCcFM4U0vlSpinegTqhzRyMEz2rVUpPxWbRm2rYlFyVlO56Ss0Gfcj5ytnIFEcVHT1WdFaNm19cmnj3x58CSUxB6+tN5j0AfLdJ6liCcpQ4P4lp5JXsQnSuzj2FIyxuOP0+VcOHR2xFmsdXP9JBXzgMsJ9CStHpUE/IqRw6BkyWZs/cLC5zkLDjSpZa6nEQ5XjOrli8O8XrcZp2TCeZNFS1W8GOZr0tl9TMeOc33oRnHzbNXThP3LBWYobhi7ujLlDthYB7eI+eV7Grdg7broMLl9QWXTy+I7cT1RcPTp0+43LzJlBoTaZHCZhX54L0b0mQGscCRS1WKorOhrHUy3Mf7TXxKL89SHFC1RGEZ5wUJP/PClvlqqJFy9Gj5OLWl8wR3ITIvsLEj9+bYCfjR9YlFovbTdhpfd+ivP47XtGl/zPiEUqbMjWwFKnkaWHUdsYkwY1hVKzEEpnGYL+Qs41kzKRs23yFkrfhoUKNaFSfmOqsquNAiIkf8rSr44KniZhy/7Yltz0ihYU4OqppxmnOeXBIlm8ukk1nGzzmmqgRXwEfTH5+vto+Rw5CsYlcDIEed8W6ztSrO5MnjQEppTjYCdZgMs1uxh4prWG0a3JzNbwIMeSRnM2NKJVPU0W23pGEiSMDVTH+/x19c4tuG4IWubc3VOWWebDccijBm6PcTTk1KMwTP1bOntHFl7s+14KWapr0Xbvue2/tCzhP9OKIucnF1Se3vqXWii5UX+3vG6Z5SE6NEajmwbRvDJaOs2jVPrhrG3S0xRhrvmJpAziNTHhmmRNusAVNfCT6SgKkkmtUFvk64GCk5MSQl59GStRBQUfI0UjVbgleVfhg4qCWR4iNtE2iiwZRUzKF710+sWzEFoVLRMppMbBkpTct2E2mSMI2V9eU197c9+7uRqe+Rq472as31es3ls6f81j/6pwx39+gMG4tNw2q1Ydzfom1HKo5UK5RELoUpHxhvX5DHOfCbRiCjw5r92BGur9jGNen2JXq4QyikYSSuhKEf6TpHbRvS5Kk50lxGxrsDZSx4xKAABeJ1w+V1ZBw7xoMwHhIiB24/3PHRe5Xvfn8HGrjfFe7vE8PB5sXnnm0YR8f66oKn12veQnhrp2gKfPTRPWMakbhhGJX9YaINLd2m4XIV8OOO3/nhh8YV6RpM8lX5wfMbLporctPhg+dyu+Jpo9zc3fD+zS1KxodAaFdsry6ZvCUEIdiDvQ0eomMg0wD4huyhpESZZVGnaaTUFWG9Mjd0hBoapn3PmHuaZmMdJAdaBNqWMHtg+LalUshpYJomUskM6rmIxiOy50tBa4JmQ/HCersixoD3HmkjCuz2dzRdg+8aYsaUy0o6BgS1FmvZYwu8eCMUl2LKJaUaj8E5wYmS8oQLEVE/B/oe50yLLcTGuEjFoGxdaJhypdRCqUoQ41wVFXORN6MYUKFxJrSQy+ygO3vNDP2EOGfwIOdNtjlncArOCMde5/Z7qZSaLClw/qhmdFpc9Bg0mtCEPUfP5QI/bsF5wFF4sIJweu/Sll+igo9ddR58iocvPP7uz27H4HzIUtaXxdDsvDNz1h2ZYVuL0ZNqZZF71zmQephIzTAjDBpxhEo4qHUh9usMa5/BFE6QwglEv+QZZ4lb1cVY7dMWNv1kY0mCTodq/EY/C6Nwzvs4cjascGW0hEURTE+u0u68bC/HRMF7x+XTrZGFNZKz8Lv/9IY/8Y2vUDN863e/x2/+sx/y//76t3jx4sA0ZfOayjYfFqiZn58DyMJJAvhsXYdSF0PFhTRvgbhzD+//4zyD+Zl0gttZYvHqcS9iDOfJw9L5XBIGOV5w5dFD0H7OSYFisFQ9286nu0n54GD4vTwfP1FyoDKTcUWP0njH6r/4Y0ZnE7hYW8fZTlU1XLjzM2egLpUjNYaOzCQ/hxGQxaPILJ2nqNjDbsHNqc7GMGIwItThnMd5Py+4ljjUWqxiiKOoWqIyJytOTZbUskkHYt4MuDjjjOW0GC6VGR/xIYMWgwIopkjjZ7326qjVUYtaxbVCSplxGMhpRLWSamWaMl0TicERtBKdY7VuQAttG5FSyKkyTpmUCz7DatMy9gXXVhrxuGJwhf7+ji401CHPfq3FAolmjW9Gpn2CGUeNKOI7Vts1aUokCho8rgYqCakQBbwoDtPX9s7Rho7Vpd3E3lYMnDcjqIK3rL5MJrkqZnaWVaHKHBRZ56kUBy4SvOCkUASqJvKUKHP7b1JhmDKBTIPQyiKXWvEIMa5w/YDH07pAdXaTBsnUVGhXnhoNZK7OsP3infE0hgOjtzklIlw8u+LqyZU56lYz2WubhhAcE4X2akshoCkz7StjKgiJ6W7H5qJlxNwrRRQ/62GHVUfQyLS+JHtHGfbkwwTZ5pH2mdh4mlUkVehfjHTPVuTbgWnMlMlI7HnlqE3LB3eRdz9MkHcEpwy7TCmeWhy+ZsqYKT33qIQAACAASURBVFNFXMNm23GoE6tug8uCJiGJ0A+JqC1PVxvenXqGYWKYPTviasv9/Q1b1zLmysu+ZxwKpTiaGDmUxH4c8W5CBIp4rtaBvhb2aaB4YO7euejtnBc94nWjmDCBOo+qMEwFdGTbGRHXN5VGCjkasTn4QiCTitIfBrsHnWd70RGjmCRuLYgLTPmApspUxJ5LqrOviKOWiV4qUTz1MOCkkLIiPtGGxjqb4gmNIOLIKKHBko0Y8OIoagIHzjnUzWRCtWCsCQ4X5ra3U7RYNdE5j3jjBTTdmpKzFSaW4FsrOU+k6nFnCmyCJRTi3exqbaQ3xbxetCpRipEn3NwpUyuiuFnyeZqS4aNnfxfnPIjJMWpZRCJs4a0ItdicNYyynyVUbfzyL/8yz549PT3/zzsCZwvyqcg9V6QfVOB+9GK0kPpev8A+7hqcv/7xFTBV+LVf+3X+3t/7P14Tqz5KUM4+s0BEzvf7hFo6q06efbTO1doHJM8lcOe8gzJXR+dq73K9H4+qytXlJf/5r/zKWfL06nEu21v+tnz/8tbzxO7hcb4+YVsw9q87r692jU7V8wfXRsxF/D/+j/7i8TNHKUp59WgXidrjto750KN3zt0Sd3Yu9dFxn5dzl+t3hKydHdGSwCwJ0vm+iBP+xl//62dn5dXPLcnYMvFPsB05Ve45S47nU3SqOMuxweKjp0rl4knH5fWarg0cbg/89Fff5unFNd5PdKtbvvzlO/7UnzowDJPFPXVJDuy7TFYV/sZf+2unxEVhkVU1mdpTYvdwl/VszvDgfD3uPixX+/V30NnlepScHD/3YHunuSMi/Ol/70/zZ//cn8WSg+Xann1m3uZpjp72/7yp9brc9FUC9mmi2L3ozq7boyN7NMWX/T1/Lrx4+ZK/8p/8lY958+v2h7O14KzGcT6WebN84uMfd5zecv4MeM2+8Oq1+eY3v/kjNmrjkyUHisXQCFoE5+Nxcp3nJDkVVB3izhj7Z23KotXIzfMxCMw+BZXgqgX8stxYlj1WrVZBqQpuJj8JplFuVqaAt/0TTthfMX8FrSeZVWRWGZEyH3qYZd8cMTgLgJdOAJgs4Wz4Ytxn64YsF8GFSIydKaNMptBTshnF5VRItTD0AyUN4AyfX+d2f5hbs15gs+4Yp4zXwpgLqRQOU2Wqig6Z7sKDU3zwOImoVqZUuXt5i9tsIJtsqUqlkpEoZoymI9SMcxWVjJKIqw1jGqjB0UpH8IVpqibzWjyNNxhQgVmNwXD4w7C3G8PL0VQpVpCqKJY4iObjhEgp45sVteYjOdY7k7kVNZUhC8AEmJUYvJB1hootpHbncGJdCRDrmswVUhXB1woEVD1qFAQQ07bv7w54j5Hby0TqTQpOnLNr16xou5HgoImBEANOhLRq8V0L1YIzCQHXBFbB9PRju4EQaFYR5wrizHhPUsZlpQkNwpZyGPCi1NGIsTUteGBrSef7Ql3ZXNWs1GwYUp2EPHle3sD33kuMu3tWMiGTsOszjQvs7/ekweZ1bCIXlxte3CqxEYbdSElKUnh5N9LUxJvrhnHK9LlSM3iFknqYRuiULA1eHI3naJw2ZiU2HTV4BipSKqu0YxozUxlNjrSqSX86R67TMWgtVVFZCH4O9UJRx2GaiMGxaiJtCPg84JqG3TCxFoc0lVKgpEzjABdo2oBImcm4hZQPjGmPCozZzXPVKhKlVoRCqo6SLSnworimwc9BYEWZciYzWkCO0raePhdz6xZM3rNYJauCHePs0+GcHW/B4IniBKfWSQgxUDTTNB1DORyrjFSl5ExG0dDgvQEZRcwnRtWSHlMmmasr4mZTtjnYEutqOkyhzandH4u3QJ1hjSBHJT6DTRbEMd9XgHOozGIMOYEY12oZf/7P/zneeeedT7I0PBgPE4jz1x/+fv7n16yhv6/xi7/4i/ztv/0/nQUkZwp0r4m3lyTH/n3qepwW2iXxWT5sb646F6zOoCdLRfIYBMji+upm7D4/Mjn4pV/6Jf7SX/5LfyDn4Q97/Oo/+FX+nX/7350D1no83ofJwQIhWXRXOfpnLMnB4vFwXqH1S/V2DmKPDagZGryMY2K2BJOPJp642c3cnTlNK1xcbHn3h+/+gZ+Tx+OoNqWw2+8oJRNCoGlMGGExcr26hq98RU5JyCs3zMOI8as/9VPsd7tZXEWPRN6UM4sPwzLcQqJm7oDO16Tq4o0hR47EvNegr1bm9ZV/zKf7wTmX43eeZoGevV/4O//L/8zP/8IvfOJz+Gka/+lf/av8zf/6b7JkXq/c1Y8CcuBYUNDz9+jjRPzMufzHJAePk1R9/PqSlHJSPxMR+r7/scf3CZODbEEepottN6BVq63yWgzzXw2io2oEuIXh76TSD4VSM023RsQd5fmmnBDxiAuUqoiYUZn3nhAcqWDsvfk5LQ5zInWOximFE/4u5UIBWsccRJejpJtUS0xK1dmQaN6Wt0wbDNfuJRhZsMxKQ85RhmSmZWoJjHo7wbUArSdIYZpMJhVpGLNS5kC1KGa25gNOIg4jIBYR1DkSQq6KeE8eDgwZcoFcTGIxjyNpzHg8qolSipkXBc8wFm53B7wEUzdBUZlw5cA4When5AlxMsNzhCSVqiOrrmGlZuo0BEH7ERkn2iaSqvlH5Aq5KI0xxilVqOKt6us8odj2NRssbMrlSNYyr4BoRMqaYelqkCk6O2tLOEIeREyBJjce722y56qECrGJhGbFrt9bUBQj+Dg7vGZEHRJa7vpCIwUJ5h5LHpmGkZ6AaMVV8BqIPrK/7ynJE2PLqovExiPeDPyqCPdjIo8DqOCjcPnGltA29P2BBISuoWkbRCr7uxfk3UD0t0yxpd1GUM9UlKuVpz+Y4V5sGtJU2O8G+iGz3nTsvn1L+0ZjHhOdp2mgCR5/B5nMD5vE4WbPth6IU+XDQfAVPrhVpmyY9KiJmhLXl1sO08h7tzvyzc6q6OrZHW5xeUNFaIPBEMqUub97jy9dXrP2gUN1PFm1+LbSREh5YOMdq8tLkjgTGSiZj25fEkuiFCW21rFzzgLaPEvr+rlyR61UTYjD+AJtyzQNDJppfcO6XaNTQ9HENE60okgtECLdqiEdejKFNEzUWYtfHaRpT64Zr5laHUMyQmCgMOSJJnjEe8aSiN4Rm452syV2DSVPdBdX5GxQsVKN4Ca1ULNBcVywRLFIYprM+0RCYLZvAQymWPP8jJAFo2w+K9E1gJnk5VqPAUGeCjiIjcGBqliFRDH+gddKG5s5YLLFopRkCarRoo5FFScKVUi10PjZaHJ2c3VLZW0mSQqW4VQxw0kJkaZpoBbyMBgsqpySgx89Pn610rPgeX5lft0+94eDPDmHWDBnesv+nb1rqSKfBVsPvB44VVfP9/sYWNazjtA8DPogyySZq4zurDuxbPkU5D4ICv5Qzs8/v3GeZL3WhZj5uJfzJnLkmiy5mDXFbL1fug/H82rfwmleLTyL0zk8BuD2y/FzihWyzvb2uM9ylmD88xonoU3rdK5Wq1kC3vbRz+vg64Lr14/T304qP8vxn7qA5zLEgoI6FmWqJZZfkoIjnn8+7zZHTwnEsp3HN7JiCYm9f0mmeXg/zcnFubfZZ3y6c3qmLXPpkSrb0gV41IE7nv9jYK+nz6u+Oh9f98hdahXL+X70htfdg690An/M+ETJQU6JaRgQDGpilAKTH83JApNqPXf8Yk4mDnJBtZjHgJjRmZZEnnG4YMlG0xjWPtVsWtzBE10wAk4pVun0llkj1m5vm4hQqCkfEzT1tujaiahzV0JmxaSCI1hgms2vIedKjIZt12oteucCWS3liCGCG5kOmZwmasmMCuI9bdMS2pZUk7nt+tk1OhdCG3EedqUwqafWALky7O/xoSOnhJNKbM3cbHAtAcitAxKpjEiEzjumYeLly3vW0ROo5BJmnXNl9eSC8W6AlIiTkaOKOFwyOIapMQnUgqsGLehkpK+JLhg8oVtt2LQbIvfcT3fkks1DAGcmT2pJ11gVF0y21WEOyaHdMtUbpnliuhlXbc5MjjH1BNfNpmcC4v9/7t6sSZIcydb7FJuZe0RkLdN3m7lCoVzh//87fKQIydvN6aWqMiPc3cwAqPJBYb5EZnVn35npnhyUVGSEu60wGKDL0XOY0sRp+cjx8B2v2+aTykhNlVwwxYWoRIgYIUYsZta2uFiYVpbLih0iMRdMEior29JZwoEWO2XAS9pWISfWdaOkQIpGnoTjU8YOR+x15WSR7z7MdDrny4LmmfA8EU4L9I0SAyUnjExdV16O5VpIv64rqpXl4owwk66k+TuqeQo4z0emtlBDoaTg4/uYCFNGZKGfF0J0OHmcEhKELEaOQno+0DXx+nNnsZUPOfOP38+U8yv//DEwP71w/rhyWVbEVi7tF/73//FPfNxOnJtSl4WonSlFfnw+8LuPH/nxH/4rOU9YF7ZlI2rHWieuC90Sx9l1N9bzhYsJx7nw9HLgd5/eSCFSQuQPv5xIE8x54vnDgQig0Jrxh/OFD0//gGol5EgQyBJIqbACazvTaJSnZ+I8sfRKt47lghG5dIPzCUmRdHyhEtFeWbcTTR3aeDhM/PCbH/j5JyWmTFDlKSW0K8ulQjmwLRcU133QHgkErCiWKiVmWoeqwtad/aKUwNYrSQI2KJJ7b6hCqytVBesbORcQh+RI37OablRbCD4WB5wymjsmyoAkCUhUdyp6Be3jnRBCMFKImCnW28OqGUKghREFHTSWe0FobdX9BfX3MdBdA0KNkj0jImo342s4OSlCTskzbSXTe2DZ1r+wCnwe+fvVLffA469s+jcxCq4BZru7jj9/5nsDc+x5NbjckPJnvge2vrT/NbJtzoMSQ3hYkL1vPCro7Cx35/wrFu5/b203/G/G+R4t3kFy4bPtZYf43EFIHtxLGf7w+NC76K4vd8N/9N1VxfvBvr6Rt8IdROlqpcrfaEDerksQUkxXqnZ4Z0jLu53+wvV5xmAvsL3tJ2N+ua8RulLkjhPt3wURZKczth2yZGPuunfO+DxCvT+0h+F7Ywra1/hbYNy9QP12hzuwj+wvPZ77AMAtG3CNII3v7iFNIu87Y3cwvvzwd+jc9fzXzOb4/kuZU/YM0NcFar7KOdDePSJ15exV+qpU2YUrfMHMMWHWaer4VlPPODj1p5CtEhhqpONGpnkmpQBa/d+djq+PgjqDeZ7YO9fA4Tdrc/VcEVpt1wjgqEl3nmFkGKwBiB79j5k4IjaRCBroHbbaOJaZEDMh+gLdurnCb+4khsHdva5B15XXy8J3Ly/0w0zIhdA3zpdXylOio3z8+IsXa4bZoTpJvPhaIt89H8ileGGzdAKBukVMGl2EZa1o3whx4kWUpsbx+Zmikal5weP/8/ufOKaIWCSXI8epEKKr6/7+pzNRXBs3SKL1yO9/Wnj95Xf8tx+/Y7XGVjunvnHaVvT0R/7x+/8NCkTzYtGfX3/m97/8nun1QszeN8+HI1MWQmh0zuSiyAYVI5WCamNdL9TeiRK5XE6sKfFUCjlGtt6YD9+jdI7zxLqupByY52nUjQhvb698/3JkaxtN4OlwRM1pH+enzOvriY9vHmGGBgTOtfL0YWZdL7ydG2bOfFUOM+u5YrWNcWyYJQ69k0SQ3lhPF7o11m1xAbUyYQaHaWJKkZQdtpZr5B+/m/nn04bk5FHsZhzm4jL1x+9ZLhdCVNrSOP/ykQ9TZ7nAdz88MVljqQvreWX7+QJR+OHHmQ//9QmzznKpbBtMx4S1znf/5Qde//kTBWNtjf/r//w9P77M9LVQRVheN3/X0sQvv//E2+l/8t9/eOGYIuv0hLvRnVWFlylTm3IoiY2OhsA//eN/54Ns/OFPv+N8Uf5g0ESwEClT4YcSOVvhu+cjQQ1dFj7MmTBPtG1jVUXyTC6RbJ20rRhnpqhsTYhpcqrjIDwfn/jPP858vHS21jldVoIGfvv//YFk8GGO5MMTcf5Ai4WzKin5OX7/6USOMyEYiwmclJ/fjA9l4+fXC7vyrwASMjZltpaYDpM74KUwTxmlcVlP1M2ovRFTIE+Z3pyWuZEIKqS4i/1txOcjr+cNVaXWjT1Yo6aIdXLxBTXGRMxOYoAY2+ZEDDveUURIeaL2yrZcBv4/YmOeSTGRc+DtfGHnl4/Ra3py9OgzW6cxdA6Cs7npVjnMDqfy61OmUpgOz8i2svWVq+k2iptdRKn6+AgegY3ffhgP2CPBt1X385gauJF0/9f4eRf5vh3vVxbnu7V43yYEX7tcjGxg/xFUOznFUcR4y1Y8RPE+ixp/e23Psgjhrg9ujpTAVcDu3jC6b7ceuP/Crsw0j1sOuDA4jecAhF8LhO+iuu/bHSfRo+H7d2j/0se+3+fNHHw0CD1uK1fIlwsmDoirMOykm1KFw4C4wsavXrJw5+Dcnp0nBXaygv2adhiL0Xr/rI/Dv8aN/53be4DgXgB9+/7+y/2fz92JW4byy0GHz0989z7dPZP9s1/zue5hS1+TQfg6KtN7UY2UB3d3RSQRkivFSnQvKcSINKUPzF9KrnIsZl7sN6A9mBfgpZxJGJYy5iMG7S5q1Fsn54mtNVdNtpGiD2BD6AV1mEoQZy5qDPorUywEV3cOwtbNDXFlQHBAJCAhYkRIibd1c6EjHDPd2kZdN3KZ6G0Bds4mL75OQdhqhehsSqUIh+kAwOntxJQKOQJaaa3ykhLPBzeYBEV0UBZqZmvK0/zE68kcvhDEMYPd+HjZ+PFw5Lx6DUTvoJr44eUDur5hBpftE0tNYInWGockPB8nPp1PqETMGpHKhw8F5pkYlZRW5NNHsq68/Jf/xtN3H/j55z84ba0axxj4zXQAybw8fcfbtqGWkFAQVj69vTocSuBljsRgXCpsksjJI6GuuunlleLJAwwFMUxdsC5nh0W1rnRrpBy4rAtIIBIcjpYztSqQmeYnLxTujW6KWmN6eaH34RR0dXrakKFnpnKgnT+h4rCreDlxOQvaIk8/vrCOIvpSDixr5fX3P3M4PhEE1/dIgek4AfDPp5WcJubjRNfGpRqVxvcvL7yWZ9Lljd7OWF9JsXLeBGtKrmPchkSdZtoHo4gxz4UUn5BJmF4U6Y16Xnj9w8IfTn/g8upR6mhgm7Et1Vmj1Fiq18JYM7Ya+c4C89MzPx6/Zzuv6LKRcNXP3/3pleXtjVw3UkwkYDmfeTk+EefvONgnDuJqv9WMPAXWBr/9/Udi3/ivh8xvSmY+TOSnmd9+3Lg0pYTGcYq8lEJfIqe6cFGH8+VgBAvkEOih8ceffiblA8GE19OF5bKRU+aYA/MkxKSgC2LujC91RbeOTIHGhnWlLYm3U2GaA7+8XVhb56kkUgis3VjXN7ZavdiYhPVKr8omPh8k6ZjIUCEWrCfW84Xj4YBJZS4FGIunQSwzEhxmJ9Hxu9Y7pp00FSQ705ZDGzeMhgiuoWAeXPCop2uVlEkoObNsK4YSQ/SsaBBSmYguZLBbOKh6AaOpISlQa6N1/15FPJsx8EYhxuG4NM7nk1+L1eE0DSVmE2pXznohZmelMoX6oHPwxaXlK1aKdww5f0ej6zHCzLsI6rv2xRXVrlHRvVjzGsKW/fg3A+i+mPIalR6WVU7pFtm9Rq7t7kz/MdqISWIDZrcHSu8NnnvD1SFG3Drg1r3cP70v9dnnkIkdLoO/OzbOtDsheIT9Sn0ut9oGvce6/Bu3qwEv/uP6vnz2qnz9uxNiJMRwZbcKErzmS+1aK7A7av773qd7f/k/qkobUCdnMBvqz3eOHtych1u+aJ+u7GbgXmsz93divB/y+HS/5XajjviVrMr1x639Wl3W/VEfvDC4O97nEX/bD2Z2hW69d8Ts6uHxV0Hovk4EzQwVN1htFOXdXlp1GJF2YsyAkVLwIl08pZRSdraGAXVBOqJO1amxQfbo1S5HrjqMySBOybcud16xL9IxZnJOWFe0edGedgVzFcIwYEhq0LorgxJHYdhQ5Gtq9K25sRoE6xWLo1o/QCwJtSMmnRwTAWcr0tZBGylF+rawmvPXp5h4miMxwDwnuoxJq4HE7s7CfPB7FRnR7XFfacZEWGrnfNmoChInr1to0BHWzWlUCYnWOnWrmInjubu6cnLfSALz8cnrMvJE7UZvlVYvmG6kbFTzgmkVIwUl1zOXkxck17bQRYipDK5742250AjuoF1WzDaWFighIbE6zCgkigVqMpp5hD5HQCDEhIUM4g5UV8dI5pTA2sCAq0M2zKOcMSSMwFqdRcadw+SY8iBIN5ZaicEhOa01p+WzDrhzYN0gCOXpiJhPpORCComgxnZZfByr0nt1eEmJxBwd1hQC06EwP71wWTttPblzuHmdSa1GOT6x9cj2+gtTDjQqQiVmYTlvoJ1lVUyUtSt9cwz+VDIpKevHFaZAypBFybEQVDl/vHD+1Gmbq3XHmJhLRI8gpjxPxZ11E5ZN0MMztSmSBJkmCIneOtI6OSTOyxufeifEjAqsofEyRSwW5vnAeTljAt+/PPP8w/f88adX6utHvns6kEOihkh8OtD72fUDSmIuXqT/aetU56riMOdBp2ls1Yuy68W4dGMqQkkOz5EQaK1xRpjnzKoN60azzkLAUiFHQ7LRtg3UCEHZllc0BE61ohK5aGDdHOIjMTlNXfYsWokwZWE6euak5BmJPrc0NbRvlGmi94bQsBBGet3rYuid+TBTt+qwPTMnRgiJPNLw6rPuLlfrjoK6gq0X9xlqDaHTqqA0Wr8xIe08IVqrky0MXRcddT5zzHSrSMiU2d/12tqY53SIO7pwpHavI1LdfE4zc/XXsCvhKq0bU/S508yLGPtXQ1p+bXH/C8bM38hPeA89eViouS2Uj5HrP3/v75ZauGYjbtlsL4Ddo6+PrtE90OZ9lG/nrL8WIH7D7dFQuu/525i54p73KP++ycO2+3Zcf4cRlX0/Tm0/873h+djPNj5+rKl9cD/+F+/469v7ftnv+3Y7/+vXsGcz9zF2xaLvsKAB37KRPRDxAKneG+witxoIuWUj9p/7eL/Bsj5P+byHfL135u4fn+1z43/09i5R8DA3Xcc3143MvkDL+tDX796vxwTbu8zFY+GzfbbDn29fWZBsNFWCCcH68FKC6wLEQFdcdGdMg0Gc5z8MTycIWNhZRTyq27ozvNi6EkL2ATokzH0wOxvRHoPQOwVDUxdN29M4XoDvHnOMwXHzjTHIvcA0BQECIRhq/gI11ZFec7YRVV9sw879bQFKRrsRS8ZWJYrjdg2H+pRgYIqYOJWqdlQbBkyl0FunG3QTmggNSLl4H6qzkSxbhcGZ3syXFR286TkWUhJahxj2LnA+oVWVHCeaQRZBxJ2jGBKKKwO7fdPZ6sq2Lag1altouAFPcGrSIBXVPuAOY24RJURIYUTtzQ2WOugquyRMMhI2RJL3q+5Rh50mrBNDAUkg0Z0EQMSVYpNEaq/Uunnx5mCdMXHYBCY0g7X2UcQcSQE0mCtSa78VOzG0HuKY9FIiTTNlPjKXjjZFDcqcCAQinde3hVwSEgJG5FC8St3MZd2Ph8Th6UAqB5b1Qq9eNC+iKAFipktEN0VbpTXodSFY8zqDqIQ5UXtFxxgsOZNyIcbA05NyuTQu50qPEA6Zw3MhhI2mAYle5O2nEs6tMYV0paXcbdKSI23Z+OWT0MNKw1nF5lSomxAlISG5g6fOqa+h87ZUDimzEFnGdGJRSDkhJfChRJ7KRM4TkiLgBnxOha4u/KVB6AQu3bVGTMb8IOI0+3TmKPx0qbRuvJmfKVrAFJbWuMyGdDzAECJi0MwoJbO1C63rKPAfWO5pposbxt2D91cjK8RILoUYICWvYekGIYq/a6ZIMHIM3ieqrOczYq6wHnGHeOsDmjYcDcWDGiGA4O9NM59DQgwIDu9pzeuZgiSP6I35y2GWrlOAjPkzhOtcFHq/kjiYCEb0gIaBWbgu/iE4V3rvzgpTe70WIe8zpu7sRiNSFII4zaoqMQ1npPs8pXim9OvalxaqL0U+Hz/bI8l/M3PgnQ9zhUjc/f2ljd/jsz1a53PZlYno7gAPvfGwbstYkN+d+P1O7EXO33rb+8PuHvRdh1xt9ns4z70L9f5Ij4e4FVPeR1TtduzdIdjhRHcHee+U3bcr49Tfpf3rFOmr6lWDBN4boHfj1O5gXvddMrwB457G9G6DPUvG/aPd6eZ513/7O3P1T8ah9szDbSz8NcWx/57bjVDgwQt4GMdf+n2fQ66MZ1+w92V8/1i/8Jfb/u7c3LtxZLsPbvz59lXOgU+UMmiy3LAIUYhRiCkiKs78MRYbMyXFeMMd0j3d3czpBXvnSqvdKqkNVWB5nDSCAWJoCDTdO20vlIWtbm4g7g6JOItPG9X7Ibi66JVKa7xA3Yyu5gIcGCk6bEqHcSF72syUHIWqQkgR2SIhCiUHtMKp9ivbjpdjeESPGOkmTCmxanf6whDpErlslQ/TkbZtjuPuxrZuhGCQilOb5eSRv67MyYuvCQlBPVMi6n2VEzHNDnkShwKJAilzqZuLhKmxtY2trWzdo5fn5YIk15MIw8kLU0BDwGwjpUxrG2YVpBPzTNLm1Gfm1ZWGCyipQB9aEnU4ff5dYZRjUtI0jD5Xst1aI0hEULo541FrG60rzlzlnPV9zC5dzVWlg9E1IBG6mBvNQ2cjhDDSq4LpYEtIgZAT5VDIubsGRldnczR36sDIxWFNaCbNga7CeloJyVVyDyU75KmuzmiDkfJQmk3u1NGci3p5PdFbpSQoUyTlQMozal7vsr8XXQSxTkyBNAksG60aLQu1uaMsKZEnZ58QCRxL4pe3BjiuvaHotlCrebH665l/vsyYdCQHjscnpufEuTt9aZqffWxZR9pGNlg25Skbn7qwhUyOsCFsptSYOc4TjUDtSgwyDF2H0Z22FQtwyJmQPENX1VhrIxA4pEwJkUjgUBLah/yiDwAAIABJREFUF7baONdKFOG5TOSQaK1yWiBilKlTSiZLoDWlF9i2hW6uZr41aA2ei7Oe2WAcw6CaEbQ7lDA7/alEQYPQmjIX4W3biDgkspSZVCL14s5pbxVJmYin5GvvWPC+dy2F7ka+jaivuEp7UyVhPleZsm2V1hpzBpPoDpTqrS4qxpFR9bmjdaV2JaWh6zFEJAnOBNV7H2xDjhMO4nURGpo71LUTU2Q3tUKMXuw3aFHF3ACN0UkIQhJaq5iO+WvM71/f3keHue3/+M+7rf52bWfE/uwq3ts8jGDIXaTz9r0NY3PHa39udO0R/ysFp4dExxrm40iCcKXNM64YY4ShPxFGtvxbbjfDVO4yAPtnAHLHHOWf3xv947P7Hwa/CsN45/wx1u4dLvS+M68G7d0ne8T2b+sc/Oufa6c7vt6jMXQ1+NwyHX/a3Zdu6/iADOEum/XZnPDuQPsn7+FecgtcPRQii929lwb6V9m7//7avb2+Q3v28Xo3fq+3uA9MG07tmDv2PtznkvcZF7v12PW7By2K6zlhh4Tt8xZ3+3z5wn+9fV3NQc7kUsCUYOpGXHDjWltFxHnim8jAurUx4frACDHT2+WqOeDKyMHrEcQN+Z0acB+ovbs3EDBc5iCM4zW0G60350APRk4eYbM+2I5KcWMbcw5wUywKdetOgznmqGCCxUg5HEAisVXEjDA4f22oD6IOp4kxEaPjFjUax2y0s0dprVVnm5m8KPr5+UhbV6aSCPFAbEYqE6+fXsnbhcvFlX2DCdmlXznMgaMl3upKKYmUEtYbOWQOLzOvn95AOzlGUso8i7M9hcMRutFDwyJoPLK+vdIV6raBNc8QpIxop23VWWbwQsScCjEXlq1zCCA5UruBNbpWWkssfaGqkcShILsmhNYLW914NXEYkAhdAjEWDlFJ6UiZjqhktt7p2+qwGWls2zbsXKdfbGrMxwJ9pQJenK5staHdo6Upb0OBOrojQUTihITgcJXe0NZAOmor7W3jp9dOmSOpZF+4WuOpJNqlU6JyiDAdZyQMRiFVylOhbhVqY7MLy6XR64pDzN2pDFHIIZElsrx1dG3OhNWEtSm9bkxPBQ2RKPnKBqHmmZccOv/v704c5ugCVk15/enCpz++8f1TQbeGbs77H4IzBv/meWZtKxGYDoXLuXE+ncgIAeUPH994mY88h4ncK3Z5Y1mVX7bKP333Dzw/PXlmpa2U9Yz1isZCTorFQJoi6eUFeXph++OZn14vqK7MSfgwJZ4PT5zWyvMHofeFuvn0JkEoEc5b57J1ZoRKQHIkpsBbcyXltl3IeSIFIWRxy14nLtvFqWwvytoq83HicPjAKoFpemZrzbNwvfG2nonrk2dutJFSpgOXbeO5ZIjDFkszC9Ba4DAVgqy8PB+p6+KZr17pS4XmDtjaKqlV0j65Bp+4qyohOmiiK/TeiEEIXbAw0SXSWyX1PrIB4xrUnYlunhmQlMkpe2YlDpV48KyQOkWzSXAGNsEzekGozetookRijFdlT4dQNSTIYC2NEN3BCBFCLAztbYJ4tVTKfg7rnhWUGHEWsfw1S8FfaLco7meB+ds//6btBlm5i4COa3uIou3RTG6L59VUElx4c0T0baxB1+grdxFUHgOG4yJQPEh2/YhhOO2GAXssdpzrX+He/55N+ILBcnevsEf6v2DX75uPre5Cqx6Iktu++wF2Jh7Mbt8N1MEuUHd1FB6uhzvj9deMp2+sGUPrxKPzhs9/V9rd0V+7y/YQmd6zBqMPdH99gCslLwzNqfH3u6zZLVt08z72AvJrBoGbg8YIsNxVpnyj7eYQXN9v7sa53M049y+4AMptfrl2+Djm+OcqKHjfR8ZAOdy5avt8t5/vPhN5/9rcQ46+wiH+KucgS6QELxTuqoQk1GVxQv4RkSoputQ4Tg9o3YtimnZPg5ugrTEfJqLKtSjZzCNz2nWkxj1N34YSqqkXJScJXn/QAiEMh0IbXhys9C5uME3RMc7oFWOo3QsMRSJtWYllAolI3pVKAevknMbCLKScsTxzej1B9/MJ5jCBmEmh0NpKRuhdERJlKjy/vCDbAu1MbxuEgsRMkk6tJ+jw8dNHxAJp6Dl0K7TtjWJHwqhlMIytN1oDLcLyhz+g5uqnPXbmCdbLytOhO5RFQUmcuvDbP/zEjzmwdaXWRpJOipFy/EDSzHl5o4zca4qRlGbgALJQTenLyuV84u30ytv5jcNBeDoeMTrT4cCyrCyXE0EXNnHnpqmnN2OMlCk797oBMbK0la5np1zTQO0Xtu3CPD9jbSXgYjDfH144t42UJuZgnC8rtQ2VYzW0Nn7Rym/+0/e0VjmfXVyub50PH56pFjmI0am81g2jQxASQs7ZaxVU6QL0zuEAMh1Rcb2NkLJH/XpnSgeSBNbW6SK8/PhMXp95fX1lsYhZpFfo0j2U3Tu/+eE7XntjuyxOjUtAyGR8/NOVNCUkBda6Uc/K8ThjrdElYDGR5kyslXbuYD6hf/fsbEhrgyVO1EvnEI3+duY5Zb77Tz/yp4+f+O3PC1MU5ixkOvVy5vV1hXLk//hvP7IuHoUO3UgmPB9fKPPMqg3sZ9omoBmpULbOP728kFalSmBK8DIFPjxlnpfCL5cLhzhxXp1ONYtnM14OR2pvkGY0FjYpbGT6WUlRiNMB006ZZ/I0s7ydaSgxZN7WMyknphyhGb/8/JF8zNf0dW2e6ViWhTyfkOjieK7L4e97zLMXVA+GKUKAnNEknC6dafb6p5wSXRvn85muPtkSEm3MGzkmZzAyJZaEbRtVOyEF8nTw4MSgD00pDr0VPNuzq8IDqSRqN1ptiAwYJrtanxcSxpDGIp2uBqqYEcEzBDkR8lCbHsKBNgqVnw8Ov1uXswdmTBz6RAJTSvZjamvu1MSEGZRp8izFnk0L8WuWgtG+tKD/+iL/N43L7oukyLvswW3hvkb57wzGh6LZO2NxJ+K4HmE3BLgRdcCAcd0ZSPvPPYp7dU5EGCGvq4G6R2q/9eZ+ofep2+bj/u1WqOp2kT4YU18qUr0FZL1o3/S+6PsuAzGy9reI6+eOwTWueu8s8MhY9a21+8zVzhak6uM7hOg2xD4kuTMk30GAriNVhDiyBlfkhNz2cSbIYZTqeH532RfuzvE+v+DBo3D35d3z+4bdYhmIBf/Dfzy+/fL57e2O7V1dwW1+uXMuHvzsve/sfeHM/WEfnvPDuzKe00MW4yv6/esKkrvSqg1v70bgVIJHQ9XcQD8eMqfzmWZCu2yYuTFNSLRdc6DfojVmHXoFfICr+uDsgxh8miaPjEkg5USSRGyNy2Ub8CbHkEeRK3bXNDgrSXSsqJmiKCkWUgps1dP1MeweM9TqmH+sepwtZpoap9OF2BumShQXU4o5IzEgMTDbxE9/+nlwsAt0eD2vPKfA1uDD8ciyVGrfSCGyWqG3V5p1lEgJgZKFmAyN2WkKt5UQoMwZsURbNnpfnet8XZERke1b58OUWeuFWjshF5o1ems8hQuSvuOpBFo5IOIK0DnDpSpPh8B2uqAkdNQGzLHCtlAl8PH1DXRzYyXO1Lpy/uXE04fvCH2lHGc0JX760x+JBLbtjIpQ0hAVO85MWYh2YO2ddV1dDTdmLibouXKYDgRGgbVE1BqtvvE0f8fb5ewaBZKY50IIkdPlNCYm+PlPv3hNeYBAQqxzfvuFGBJL8uWn5KGtgPL8/TOb6ICEKFWVZoGiZ56nQN8qy9loCPNhpqSZkJTT24W380aYCjIXxDpgpL5SV7zgPEXm6UjfgNZ5Ojo0x2s0HIojKXhNwohWS3JGoNMCme6aEoar21YvkNcONHUIHJ2sAbNAoRN0dXVpFVrfmEPnN9898cePJ+anJ56eJg5TBomwQrDgsByUrTemAN0a//fHSjora4eoO6a087Y0Sqz88vENWidp5e3TyiuG/nDk0+VEOn5PbcHF+lBXzraOSkZDYNWIaiSHSMIpjk9NyQG2dWOrrl5MhF/6xtQ6L08viAh1ZBXm40RpC1s50Ku6oNmT8PKcXEQQLxCWQUv69HxknhLPU+Ft7Xx4OiBAXxvr1tmWM0FeSE/P9HpBtRNL4vR6Zq1KGqrF1irNoJQJh+c7hWjTilnEQkQleUZHoIsSs6uG+0Qmg9bXlcZjThyHhkfK8Hx4YqudrbWboilQ1wVEkZBGhgDAiDhrUe8bBCckQALNOhGoimssmDsA6KAzDQ55ikGQKHSL1NYI0tnVlvcATWt/SefgW2mPEebPbG4bEf1rVMg3vBmx+0f+y73S70Mb40+HofSgUyA7jNWzR/vi7gGqfRkfUcHxPzvu+Ftv13vq9+mAq+GO3MyYm1DTDWb1paY7TSn3x8J3eMcP/7nxu9ss+9+3c+/b//1qDv7lbR87cdhhqvcZhPu+saErIFfb/Drm2WlIb2P4vrS8a3dSmZGVuT/mvQvweF2Pr57XEnrfKzupzWe7fVPt87zHnxnEX9jk18QC/9yuv/aiPFzHeI67A/6Q0Pvsmn+9faXOQaW3OnCzneOxEJ+e0a6D0lQoMdLURm2AQYyjgNCZRoLAPB2JOdK3DUFJMRDTDARaW92AcbUg0iiaswFDkuFN9VYdyoQSiI6XjwGRSJBETAnt9Zpa84lFCTQkFdTEHZWuGH3Al4SCstbm1ILq3loJoCk7sqg7lMbli70g2JmXBAmdeZ6dbvN04TIUkU2GcnTHo6US6C/PZBOqGlESZsayXqjN6D9fmA8ZbZ26nanNlZE5Hp2ZxMUjCGLEEHhdKl2HENLmynpTjvD990xpxuqGbavjpYOyWYcIOQa2KAStaFvZVFjDETC21sipECiIJGqHFo2krlFxSBGJHbLyw4cXahcsGCZCGcqrOSVK7B7JJRCm5IZxW71uQfbxGzlvG4iSklDyhKAc5plt82cX0lDgvTiUR6jj/QgIEW2VPBU6TuHYFqVME88fnjFW1nXjfFkIk2PbtTdKSgRgPTdEFtQS5Tjz8uFA74IEUDFUInmaiCliy+JjEyHmjNLJ4pHDdjkRk1HrgnboEpHocZZI5/K2cDjOSHNMeq8Df9476VDIoz/aWtkWZbtszNnrE6b54DUzJkiItObY/jhN5BwQg60pb28rZc7kKVKOma0b61LRHpgxtHeevnvmfD5x2TbEhIpRz6/EcuRpeiGkRO+N0+VMbcZ6WbHLmRwnJBawzh8/Xlhr5cewcCgTsRSay4jQV6+7WFsnjuh2a0YsgePxA9tyoqqiMYMa67rQzXg+zP6OlkJOEIIhKNYuVBEmOk4S6kZwykeWy0JM0YvMgUMqTE8Heq2EbhynRIrdU67ZyBnqCrUr62UdNkVEh+hcSAVtirXuFMgRUgosWx9Zw+DOFo4Pb9qZSqZbp6QyKIY7bhMJKReP1qshI3igGBIzIU1EXciSBwTCR7bhaqRxGK7aXc1YuVGNekHyEEHbGj14tq71jhikkJBgpBzprRGjsK19sCw55z7RB1yzW6BGd97zf632d7N197PeTKP79XT/NMDN0Al7BuFG1/hYOPsYGfVd3KFQdivonZmw16ZIeKAYtOGM7dCn64JvN4P1m2x7wga56vM+GqejD+32+R0K5fqLiAx2IXvY533zb+2WrZFr0uJhG8Z2/nhtMBXuTsR9nPfbbDvGvw8H6nqf8q7vrgapjrlMhkOg1+F7h7q6NncYrgv2XfbregEPfa7jYPeFzbfC8dv79BVm9L//dg0o3MbSPp9ei4zZx9pd7cXdO7CPef/1YaIaGQS5G7+fvzuP2Qn/Tu/GwD2D2IPeyFd0/lc6B0ofdKHOEb4HyILjVkdhKdXYasVwMbPdQzfBU1HicCJnMhn0WgMjxzCUcY6j601KzM4fbmNhNDdutSukQM6FlHzRtu4MJzEOtVEd50ackWRrtOr4e2QwArUKBJbqRYCewlTAF9s24E/alXAdDCMjMdLxcw7kEJFuWG9YyNR1ocdCiIUyRIwu1aN4ISasdmcnah3to65i1C2gNmo33LlalgbdMdCEiMWACpzWMzmGq1ePOA45qZAEKg0dImFqYF0pScCE45Sp28ZSK7UbS8q01mg66EWBoIWQJ2KEYJEQHD8dhoOScqLpRi4ZEHJKxOipx611jnNG2kqIQtNG7Q23QcLA7YPEiEgYDCxeD1JywqxgDOpRjJxdYE3pxBBcJTaMY2m7wglCdOMScRajmAptW6CZY8u70ayBCiaF3l35OeVCSs4ilSMOMUobkU6OQhTlslQgosqI9so+G3oqN8Bq5pSbEsgpkrJwWd1JVPUxnIJgQZDDTCmRFKHVhm0eCLNxzF3ES9XHSdsapvA8TagIOibZKoFK4/lpIj0XelfWrVOrEUmkKfFyCHQqJQo9J4faGUiI5JhoeO2ESaXWyrY1tFUvAE+JIGNsmxviOWR/NmLkYEiANwLrcsEwNjU0ep1IXVckrqy1k4K/o6oV0fF+14ak4Nm7GFDr9FEw+/Jy4HRaCTF58bt2RMpVH0DHeM0pe23QECuM5k5UEofoLEvFQmKtSj6kseAJBJDkx1OtPj/h89S2Vaf/E3/fJDpURQbbmafwPWonMmhOR6Q5xOiEAzYWbXycESLdAp3ozoCMyH2vYw5oYL64uupyxLR7gGI4p55tMKaSBkDDSCndcL7s0VUvdnbHxefuPb0chv4I5grdOy3rv6z9+1nu3xs8e9sjZw+G+F0U+cGYGmvO/UL/3oB/NJb2COyjZ+RBnf00t/2/cKRvuj3AI8b42wlq7mxF7vn9Pfjv2703Xh77+jH8+fCc9kg48oX9Hi7w5kzsz3X//BtrjzC42z3vDtotiXU3Nq+/fe4APGpR3J7Pbtg+ArJ4f4R337zvz8d49fUxfOssXbJH5u8dsc+zAfu88n6Y/do43YuQ97qaPyvKeP+c7Fa6/K8xor+aynS/aVeBDIMC1EXGfE3sQ8VWQeIQzwAkkILRq3PQS0j76oWZ0buz3kDwAM4YR459ww3isYDuPRFDQC24qFqMVwXmpm687oa/6h7dAVPY+kZrblxKGJz9vTuTjAkxKmbhmq3AjNbGPWlHeiOF6DhgU2epGZg/V1N22sneddzvRCoZC57Ob3Uj5EIUX/yrdlpvmBkh+OJe140wGERSjGDR+fu7osHZd0wE0UbTjSAJ50rxQRpjIIpne9SqW5viVGcBc0EqFUqOBI3UMDCvYqzbiZAP43kAKRJtcgMoJIJUGkLcU+kSMOtDxClSchyMNoPu1IxubWAhPfLv3epRtdo3F36K0aP1hGuhdIjpGuXR3ijzgd4WmnpxVAjiRejcIkMmkJIzBIVgw9BzZ0Z6J4lTV6p21z+InhWKKXl2QgOCEZI4d3xKo9jHaLV7VLpE10SwncrNHN4UcIM1DDrYEEmlECLkyaPuqkoMgSgBgpGniZyEHGHpxoaL8qWcySW5EzlOIQpanTs/TtOVRtQZewJxcqdDRVgvLiCI7cJAgtCQrZMlkcqMjUJqqUI0HXUrjWDuQC5bowShp+xj2roXtIbAh8NMSAUJQhJ/71v1+2u9+Rgdc8YOpZq0jei3w2FadyM4xQStM6XAZa1sNSB0rG+YGvOxs2p3EgAzH1e1ItJJafbouRq1KSE4zXJvjafi4mBdFe0e/TdxitqCIBK9XoqAJHXa3AgEdWYx8IxnyoPJbAg62nACcA2WGMNgzfLspRfneTYyxUg1uxIbhBivsMmdYMENIVeYB8dW994wCQRjCLB1d176PgV6niFPE7oTRHDLQPgE2ggx0roHY4IZXRmLzZjH+2AlkeBzzVe1x4X+Vzf5O7fP1t13H7xnyPnSJV+jcrIv8F8y7OVhD64G6m5U7ee+WcMPPTi++wbt019tV2PzLhT92AO3JsOB2N+De1jLZ+6T7Hs/9v5uEN+Mo9uxuR7NDa0vGcXffNd75PTRRr+Oq3svbN987+PxjdzG6pfMygcnas9O7BHsz64FHgTQfmVg3zsw32rbTdzr3/dD/ite6HvHbT+ifPbdvsmNjcv/tM++f3dw9v9u2/CFB/br7evYiqIQUxovskDIXoss4gshe5bA8QUheKR659CPorTV+f9LLPS6ueiQuNEYRLAOKbrQVbfuBcutu+DQqCwzGxF1A0IhiC+2YXDjEyJ0pVaHC5mnDTwCHQK9NbqCmfOVMxZy7Q5F0b6hzSN06mFeWnWDJIhjmx0qlKl9OCLXCJwzLRURtss6jBkfPqZG3Rr1vDH9cEDbChb9mGNgpJydGnG9uIpzEI9Yp4lt2/i0rkh0gbVu+OIfnFN9CxGkeMEnRozKad289qKIR4hNSXRKNCqJqN1pX0uB1hEx1npmLjNdGjagMVmKG+O5ILb5c2YoEY8XPAantM0lOQa7N89GbAutunMgMZCSUFulds8ibb1impDo/dS7csjJ2VlGOn4vTi/zzLY0zytZI0Rx3nZTL9ZdFcP1NUqJTCVyOVfoNu5dCTljkmmt06NSLZBKuFIJ9p01KzjdTSTQx7hZ1oqZEVXJwehVr2u+Ki7qpx6Fl+hREYsR7ZVcIlIBL3fFQmQSJeYyaDgVsQhEJCTKHJkOkV5dqC6FQAAv8DaHfgU8au73m5ijj9XzaUE3zxDEKDT16PHptDARsSDEw4H5+QPHpye204qeXnnTld5dJ+J4KKgYLwR6Vc6toighBnKMHJ+eOTclimsYbK3xtlSnyYyJmDNTcG2FrsLaYSrCee3U2j1CLuJR9d7cGTXl59dXxHDhsqAQI59OZ+ZpZlWlqmct+7YQpPKUXlhrY1lW1m48y5FIR+vCh8NvCDFSt06tfu3WwZKgrXpkPzgNbszFxePK0GUQh4vU1pGtOuwrRHJxPRbr6jVP3QkRHD/rNS4d8doRs+scsNdpBZERxd9FWPa9/D3aKUp3i0ckkETY1A14B2z4fCh4FjLGhGz9qnWA+Pzg6EwhEiB5FiO04QThmS7n7f8CVOBf0r7iML8SD/43bffGuMHtfs2+sGi6mXSzgey26e1AXI36e6fhYZEegAr1bfei72vw+rPtv+22w1p+DUt97eY7R0vuPvv1KOkX+kje/3o73n3UdTzsO8/km3cFvth232A33D3geDPqwxVG9AghvDpHBnZVluY6SHd40IOK9P07dLWBeIiOe6ZzzzjcahX2a4hBbkX832gzdl/ohu+/fWnX8fzFd/wLmYTrC/LZfHTXd3/herjfVcYMZLdr+2tc4a90DhIhRl/ARgQ/pIzWDROvHZhy5vV0Ied8VbkVc+zsOgrvmtoo8DXAWSBiyR7oEleoDRKIuNpt1Y2UEwzDpO+ZhphJKQ8aVY+WxuQR2YY/l3l+QnujDuN0zoVL76TgUe+bGqAvwq06dr/3zSkTVYjFi3F766RSiGlGu3K6rIgEYskIrpNgzaFXS+/QKjEe+flt42iQU0C6855vp19wka9RrFkiqypBjZITPUysq9LNVaDjNNHUmI7OQdza5jUbNiLDVjGUnKCJ8XZZOb+dOEwzH77/AdWNbA5LMVWenjKXN4NU2NRI0xHrC//zd7+lHJ85r2fKNDvOPkaCdA6hIjkj4UDvlRgyqo1lO/mzye5Y9QbkTI+R8/nE1nYixXiNEIXog67WSokz4FARZIyVjj9b8QxIHI5DitAClBhIUlCg4RH6apEUh0bCODZ0cs4jeqpM89HpKMWY54mPp5WnYExPz/S6YO1Cl06aMrp2eizU9YL1jWCuI3DaOtYviERK9uLTqk67W2tkXT5R8kQpGTGjb9Udpa1yKLML8QUlpsBxLkwp8MsvZ7ZqbM3QKoOyNbJtnVwiAcfVB+1MJbFslTkEukXW1t3xSSCi9K2iNRJDJJRAzpHnkJnzjOnMx08fqf3C03CiPr1d+NPHNz6UwCyK9cpqSg2B1TJTFM79laXDYfIi54zyigv0zTFSt8ZSN1SE5+PEZoocZo7TzJS8mLya8Ho5kwSadi/sLxOtrbRt46Kdc92GUxyIEiHPXlMRFJJg1ZDoWbveOyuZNBdKENrpxNbe+HRaeZqc/enT609Mh2dyTEzzxNbhUiv9csJSIMQMoRFEkejO/pRdbdw1XSAWoa0bZT6wbQvbtpByIZeCVWFpjXXZkOiq0wIOl8Jo4k6Do+g8qyDijisitL4CRjN1SJkKEm+0zLsxGaeMLIrFeIUsxeBaKK2u5DhfxQvNPAuo24rhJApxZN9CFATXjtgNhDCCM67u+7Wr9P3K9eVF79r+HnbY7ljZneEtt0Xxy8Ez//Qx9f8Yin3vFOy/70HbHUd9jVLDFU52wxzr3TGGYRbjFUb4HyCG/QCzuGk/wLUvR4d90Ua3oQlhcE8D+5C1EdhZ3MZOd7SZjwbQNdHgXz5mDb7w27fcbDhBIkPXKQTPkA9K3t2QvToG9thnJtcf/vfY5n7E7m/Q3mPhsYOvJC/vLgoZWdBrUTpDy+U/SLuXg7jRj/rv4QsD3e7mlf2T65+fJRM8MIQ8jtQvsU7dT133c9C+iYV72t+/fF9fV3NQVzfcQ0El0pYTuUzsxVXNurNgBAbMxeiCY6LNSLiQ2S4SlMo0Llwx1KO0edzAwN+nHB1mIh7BlRCc3k/c2FY6FUElYZLoBnVbndOTgdPfoR9mLOtefAexTC5atOODW3fIhjbWdR1Y7ITWDQHmvHOAu6gXalj0aO66XiAVovjy4FHBwKVuZBLrItTo8IbeqxdMDwhVDA5vCNmhLWJCKYl/+OGAKqx1QzDOKkiY2NqKEAlhGpmXTjo8MR8nzufKum6YRI4fJlKIXLYLUYS2rljfmJLxdg68rhdKLmwS6CkQnmd+4Acu5xNYQnsjRXfeGo3WG+unV3KZyKk4JEMCaSps29mFxyQi0hGFIoEfn45clkrMmXVdaeuFIELJM5Ijb/ZKt8FH7/gxF9cb9KvESCpCiuIK0XWjxIhMiRRGwMIELNAMNm1gDas+nopk0tNMjxnrZRynOC0bl1qlAAAgAElEQVRqMP7z4cj50yv9fPKkUyqEOCMxs24rvV4oKYCJG1Ip8pIz21r58N0L63nBDKaSfBx1yMGpJyN7tgLSdHOAYnLRrG1Rfl428jSTwwG1C7Uq21AGjDkPFpQII5IdU3Tn99L4dG506ZSYCWZsl5UWIwmYS3AHujuG34X3IMlCyZkYXTfi9KePnNeKWuN1K/Q8BAqb0hQ6Qno6sElGpoAGYdXmY7UtQGTZVickiIk5J3rz5x0Ughp1qxgNSYmuRiozqUDvgurA1pvSQ3QWJ4kcjgdKiizLhc0K//D8TAiRqQibJS+AV+U337/w29/9M2me6U29MLmeqduCaB+QxAKzs3icXl+JqSCmfHo9U6bi2hII5ZDIORKGWBohIiE6bG7ysanda4C2uqGhelTOIOZyXThVlW0zcok3w9AnOkLY4WoOT4pEzyK06nCpbUUmf2YxOXWv9c62etatbysyKDBb20ZdRuey1sHUpoOAwQZM0mh1ud6Li21BmjNiwrZePHMhXg/Vt/o1S8G/+/aXzOsHuAtcF/Hr31cD5vMo4L7re4gRPEb0DLtj2Nk50H29uy8O3KOqIQYeuc6/0faAvX4M1n85QfJ5H98OJTywR73f/t1u/v+jAyj3jFT3vt79/l/++BtrN6vyVhz7qJh8EyN7zOroA+Tt8554X5R/O/bdn2NLHdjeL0e47Qtn+dYH/K8FG/7KBNW7+eevY8/60uh9fI9uW+5ZauPm9v16+zqF5GFkq3g6PiLoeqEb9CEYFqPziscgtOoRrJA8om/d2AbuN8TOXnDRVUnRiHGi1+a4bzFP7cfgx24rBAYzUKQUZ++gV8fS5jiKpL0Y1zO3nW2po4ja+aRzdO8rIl73GL34tG9OHxhL5Px6GTAWPCVEJKfike1WiXMmTRMhTQ496B21RNuaQ31MifiLpHhUqFuid0XVccTRASGoQW2DlzwEplI4pkjMiWX1wsgYItt6GWwqB1hc6ArrmK0OX6FxPjXW5rWxMSiRiXR8Zvn0iU0N2uLwDw2wfKLkjLYFHTAN2x229dXrFLpyWVaHLwSwlEnlGUSprXrxJEqtC/lwJOcDfbuQkl+ftkYl8vLd91y2zTHiMbtBlRK9KZCwvjIfJ3LJXqx+blQ1yuEJw4i5EKPR64VaKy8fXjifT4ScR80ImCpbXceYUPLk7Eg9F5oKx6kwfQhsrbPWTm+NUALHaSJPgda92DYkN8pyEEI0tmV1HYwcAWVrnW3bCBhvr29EHDLStRJKwosChilgHhlpTYnNyOn/J+9de+RIljS9x8zdI7PI7pkRsAtBwn7S//9VAhbCChJmds4hKzPC3U0fXovIyGIVmzw4c2HLgW5WVUZGRnpc3C7vRR2M2TfcgpEqR59//0R/vcNNjgiXUkTWByiV4i2TYwnMWAQvy8RqoSWsz03n8L4Fo1xYfChxKjLjkhN1pdVCH3fGHIzoACyxsYbhY+XLtkpMIKCVC8Urr69feVkWqE2Yd5t8Ga8wB9d2kQxuvaqriPH1a8fGxm9XeUdYyDRsu2u/r+vGUitfXr8wQh4bIxWnLpcLxZ1q8gdoLxf+6dOFen2hukl5aXZh57eV1798UVeoC05WqlyVsQndGLPz5faF23qDgD6NqHDfpuBYVGqpVA9sbMxp3OYGJuWiWp3WjN6N211E/b51JbNNpmHFK5OSfAHHcEqD5sY2Bi+XyvVyzcRB14QvV8Z6Z4yuIkp6qAxz7kMuyDZIwzPBG2OkG31b2MZIHsVe7ZbQQqmOm4jzYSG1pAE9jOiTmINg4rVRW005Uy35MwZbX39oKfh7jH/LkOBRnHxeNN+rGh/Y6/hoid/f/Bz0HhVR7MPAV/KlbxfgU2Jw4Iqej+nXHSLu73Xnt9KjeyV6x0LnZs9VVzg8TR7vzdfOgW6+V3//NinwN0ExKAk+12zPn/lnCFHfEpSfgvenrtdjzExWLTsA+uftbBxnlJ2D8/Cv0Hp3Vuv59lNIGdN9E90wv7J87Hm8zV2Nx/zAx8mDXjsnXnmivpm8/N+b58xHsD3iMc3vvPpTD5ofSg5KFdY43LIqktWRALExFaDMIbWNQCS4mn4CfSbkIzaR4GxoImPgUej9rps3Bu4lCbmBzaBerqzberRnzXZFCCF9xxgESQack20MnIl5UaXuUNQNVfc9Wz0xYGpbEnNe6qJuRxcuunqwLI2+keTmgoclR2Jwu28QU/je/UGU57kUI2LQu6BXxKCVCsUopmQr5sStsixXlgIRnb6KdTjnZL3fud1WYhrrqMwJpSiwbNUZs1MuC+s6iOhEBmNsr7R+oXhgdLxJ3cfNqA1i2+hTydoIZFbXV0qTysuc8gSYM3A8CaFG3bH50Rmzp5ILzH6Xgcp+K9RCDOd2f2WGq+MUyEW3Vjqd66Uym0spqOgMzUtjG8F9W7Ufm0TyJEtpmAnvLqO8vM5qpY5XQdaKs5RKwRjbJqOoT6rWkiZdunkarSx0c2p1CgPzYNeQqUsVt6NP+gbbJh8Pwc4ML1K2Iq/FpRa8NUZfk3ug9nhtggTFdiPMqK2KsG3iwNxev2BTHh4RQbSG4+mCjZJNV4crdkneKqWdQVDJc2JqITM2GfKZDAe3gKU0luvCX7++Mpj0IcnNOSY2lSzfe2ebCiAtoLOp+/P77wyMcHEhmEO8D5d05jZDqktiuoqHw4TXL/yD/U5xdcxe7xu37U6036R21UT0dhcmfnuFz00+ItfahEdlMr3wj5+v/OXLV14+LfJB6YOohTGLzLsw8RYMfGlYdLrBX187S6y8XLW/+zqZo9PduV4W8EiStTwgttGpRYRidfUCokPoHunZYt+5HzElBWqmYGbEwNy51karquQ7BpkICtajZ0QfQ4WFOehDROFSKraLHOCET3UZmqBbk0Jsm+7L2J2VVaEr6TQfpL65qVtSW+V2v4sfrUyaYGWOe5qhTfq20vtGxM9Kme6rzLkeuC+Fb1/7dxznYNNOa+HH5Wuev8M7x/xOEvFo23+7r4fcoLO3+B+wGHvgvPP3Xz8xgL1y/GwYd7z0CDx3qNF7e3gzme8b03377jN/4b2S7XveB3+W4BRQTPnE1ThE9J4SpEdSdpb5jeM9e3Rrb147fczj6jcVFfdNdnnlZ4x9nis7v+fRQXiW4fz1xqFk9uavoPAAtE780f39Npk7y4/+0Tg9Vp7/TjyKGKdCxB8fzWP8mFpRSu6pMmB01KJyy0XPRI6MMTKggf1SjKnyQCk7RMK1bQwFzzOIqWDcSxNxJvkIMVNvPuKQCYxpSSZ0tvRdEEJXkn22YxUtsMLJWfHM3H5kaLardESAFUpBgSTSOZ8Rgli0CzEnfXaMoG+bKnpJ4hl50UthSCd3RijA3XWt3YmwIzA3c3ZRnkCdhOJoEZ8DmCzF2EK+CiJKWh6TlGGaX+lzS8lErYYzOn39ilQDuhp6lvKFPpgMaf7PwUGWdJghvPq23QXTiP08ByM2PNrjqe+GDSkgpbg7Ebv75X6+h/ZdPJWA9BBpy8IeakXR62D42LC54RHZFQkeUycN/uXlkkndrowllSCvJlfbqqAdxjGH4SQR03StTKBPasq3YiWTV53LMAE4xh7EZXeMUrAYSQQ1WmlSs6n6biWKCO95ibnDQI7elrwY7KGw1NdOaYId1VI0p/GQ+/XZcRRE2hDm3l1OlV6MZqncBNhiSizDE4M7wVKhZ2y83m5YdSUHXbyfakrCJ4CJ3KpuRKXWmkm3zusYXX4nenpxn4MuGaMk8YogPmawjZGeIVIRuq+bEtcuadDqkvGMmLjLMMytsbRGS0ffmGCl0odgTtXVwRmhjlqxyqVYFgcUmEqxq1AWwa1AAgZYocdk3Ff8uqRhmAQFCkVQQNStdN+vR137xY3RA8OlQpWf1ceUK3J+B0sFrdJqXu+qyo0+iAJelQDOkSlGyiGr6ieXeQWTEn3YxRfAsJoQpymXdxENXbKvW6e1qiIEgNsh1NDnOKRU9+fdnHruEqkktcn74+dEBeODnz/Y+qni9VMf9PMjF8CnIPXtOBKFU/DyfrS67/II6s9/14/PC/ATNv6dJd7y/Wd35uPA/wTjjCvfo8mnAGo/LxFPXYPTBufNns7N0/TbeXbj7du/6TgcO3hKYJTI/UzA9J9xHFC5t9fgO+PbV+zdH+OjbeKcdOvkHHfJOUl5c6M//br/8gsnBpDlkHMXJCDsFNjvz6I/+KJ78fp536eE7pRcHe+xN+f5uAbOn/nmwWamhfUHJ/4HpUwnEQNP+T13Y4xUqXE9NMf+/YJMm7IaHAmdMU+nzipowwxmH0wbUv7og7LIZwCTnKD00BVujghiyiaohRZbBYGRLpYK7EpxGHM3KtXnj6HAJ5VAduyd8HGCIsmHQTdabZIvdIOtT+Glq2AwzH5U4Za6oCBUTqiWBEAF1o9M+8gwvRAUtm1L10EDC/rsDIy5TVotgiDFwItRzSm1sg6kTY9InT3u6YiYSVExSuihWxz6+hVvVwmIhjoAtQS1yNl3hiBXwa5AZRhVHRjW432hCAnYicOaV60BqpIrlCqPzNTUIQhcyi7p16BrYVJqk+Z7ETwI82w9TpyVUg3Kg0w5xiTcWHunRpUik3s+3CfUynQ/zNB2Myn6yuydQ1PGpA7jTKKvuNdMbFzBl0kxKczxKX6JeyrIFKAW7D6TKFvEwWgLY27JXwnCPRWxAgsFjMtlT86UbKZLiQzuzHP+knQUoetpeKogiKxugHml+qR4wbxRMzGde9W3Svp0m2OPaDCDvq2s20qh6b4LPSis5fkpwuYWM2qplLJQrXLrg1oUSPeZsJ5SxRcwBax7W9oslYrciHTvjTFVGc+Avs+B5bmbhGQ2zblcGoQ/4FNmTCuEO//69c6YTnQd914KWJaG1cp6e2V6U+EgBlGcUi/UMqV6Fem8jlS7LnPKXLAavnfaDkL8pNaFwBgxMwlz4r6lpG3ex/YwWBwzKOZUq4cC0p6Mm4krM1ECOzNI9/RhMfNUGFIy7VaYpo5jJPQwJrSLuBHyOXHc9BmBun5eXD4oKPmOkBnlNiJBjHE82xRIeKqIRSbQ74Wxf8uwp3/fi1G+q9n9dxr7spgfsn+wnnOnA3uKzw0OTc3jYB8L7SMMjeNfe7uPp2N42xF4A6U4QW3Ep/sbvuh/smEZi3zzVfaCUiZix9y8qXZ/f9+PDfZ5z/IRT1fv6fPPodH+sz1fHX+e8SYZfrquP/i+h6LTY0I5Zup5B98k23Z8pp3uCY5/bY+x9vN9PtcZ8Pqf6DSck4T9+39YODjGR0nS42p99/yd7id7en0/V3Ha7G+f5B9KDiydQfvYZCx0udDdgF0xJ6X4ijO6s5uc7EpAcwxBjqagGeaGTYnojTHAM7iG1LWR8ZqCV11gxU2kwD7YxqR6o7WFUkQQPsq1JgywgjZBh0YmJVYqpYpgOnJxdKtcFvEGjFx8S6GUmlnygDG59Y2XpbAk2dCQLGFfQ4u3ZVDYu3DBpio8KUtaS8Mx6vXK1uVPsJvjzD7SSXXyuskXwlOlZ+2T33/7nfl1JUpQI0Sg7h1rF7Yusuy1ChJUkInYP//rX/HLC8VT7akadXE+vyzyeqhGn8GYgz5gnfBp+cRYb2mylEZdXpkYv//2D7x++Ve2mZXnMSjAtt5YqlHrVd0TLyztQm0L63bLSo2qM3MOtr4RNil1EQzEPZ22V0E5WsPpCpLMDnnHMTrTnNvrSrWhCncplFIoFf6yduquvBIK7G0a69p5vd1ZXi5pZmZ4dRxxArwuRGwIY2Ns22C5NIpdxEPoQwlQgdKcL38JWr0wJvQxiFgRyCfY1kGpKUUZLsjYxfEG1EUB2eiou+Z8vr5w6xuUKhx5GnLs/h/RO0sNwfMS/iKzKp0XF/ElicRBLQsjOp5GYoS6AH0Ozl4hXuRD4qVIjrTIh0QJZGO5vGBz0m0nVkobv3ihNcmDttZSWUTdxJgoeXBV2JfmWAgetHhhXSeXRcRw0hRQt/bEx0z4lVGbTP0M47ZOpk1auzI2mex9Sm3/5eUT27ap+lhd0fq2IUZUMIY6eKrAd2JOWqvMPiFkZhdmhHVKKdzWTddaTR+XgKjIk2Ks8iNxV5ejLZSp/VLsSBQCPWeYUvQSBkmB/MyiSakFxsbs+/NKz0iZoynxdwI3XdsUKYMtlwJWMyHTc+O2yhxuPzfZeFDhpiqhco+jc+Be5NXA5Eu/Hd1Ocat/dhF5U5X6oU3/HSPgc1Jw/vvRKNgX11Ow+BS7xyOZOr13rzy/2xM45RZmj+BrN/f8ZsTjQz9SNvllxzkhePr9u2/gm2vkTeHzedsk1J+C2afKtfEm6dpP/l5h3Tf9tef9rA4FnKLT/fXTtu/8/1tkzCPjPecMb6/6Z7iSZVB60op6k2g//RJvDuwXHIpx/Yh14VE0eKRWj4Th8cZv9pT7OyXAH8CVnj9/d/t+r0DxKE0//e0n5vwHpUzTpGoGQovcRLrr2Va3khVgkfaWZVFC0LV4hxdKrfQ1DpKiMOie0JDKcikEMrzqKXXae6dMVaxj7sFOw0rlUsR1GBT6WBV0ueRWS2vMNJ0yRBCM3lmnUbsR2bmIgPDB6CI0L5dF5luYEhyc6hu31zvMVTKRpXG5LqxdJEum8N5mYGGq2OWcjJhcFxFxt9EZty/84/XKy8snvtzu3NeVNTYZdy2/EdGwWDGvWoBiUlvlf/yP/xsrRiBVFaIT0akYzMLaJ/cxuC4Ly7IQsbIRXD69sH35AuuNbQb/vBr//b//v/y3/+N/4+qfib9+hfsrFpNLuTDLxF8uvPgnSPjJGAMLx22hLp+h32RcFWBjspXPLIvRsTRZCy7FKM3oA1qrMPdAbVCbjMe8NoKpynUIDnLbXrlcL0BWoEMKUkyTotC+vtreAdI+IXj57TPVdQM4UguaLinRYtCsUGs5YCNenHh9JUbXtTICto3Fgte/rPz++Tfmppvbi2PF6Ntg+fSCUfA+qQGMlb9+eaW9iJg7x0zHXMdiYHMwe5GB3JrmeDFZkT/B0l5Yx1dqa4wxWO+r7ufRhf/vBqXQrTB6pDa0sSxDBNYJc6oSPbaNS62wXBSszsFGsIVz/fyJfrvhXrF0IY8ovFwvRN+YfmFZLmDGGJ3Pn1/4crupeu7OGAr+wfj8+R+YdKqJCD0DrDrzroeUt4VJRYT2oBC8vFxQYqIuo5fGtS30focSjNcbXiv3MP76Kufuy8tnrDZmKSzFMoiVktlY76yblH6WKkOzNSbteiGs0YDbbWYnrcIFLJw+Vz59/qTiw5y6xrM0Ya4kLVCnSg+9Tr1W5uaHe7IDa+8YsLSmh9mcxLYyPSs3RZ0ob1VdAHreN5NaC71L1cotCCvQV8ZM2CW79GDgbOqwbCu1XQXfchVWlGhMZDrpCdXUfaIEMHh9las2zDRgq2z32+GEHqHnbpT7Dy8a749vq1tP4d45Tvx3CApEbH3vc34EA/yohD5DVx4B6AFV/eC77NA+83J89X25Ph+L9qef5rcr/K839sTpbVL24fb7D+9v/za+fJtznCFkEM9B0vcO4E8w1ccwP6BFR814n58399zT9XeudB9/PHlEvBlnCc54+ttb9a7c61Nid0pc3nQaftlxfJdTUI89PB3eecs5iTh2EzuP9rnTsO/xhw7Dno/i/fEomPzI+LHkwCteL8To9L4l898xu1Mz0NpNpBwY253BLs9meC0KZi8KNCLdksdQ1a6Ugi5K4W6DYKYOeGRvvbqlYuTg0q6SyFzvhBVK2xU4jDGN2+sryyLcNFHTyVgY+pka5vskbWtnbCN9G4ZQJlmdHX2jFufTy8IYQasVWxqRCYSHY2NSQoH0/b7y9a4KbI+NTy+fuH7+rFNyv4EV/ufX11SeQdXzUqj1QkneQfVG9EGPjjozgmOwDepFeOJaK24Xvn79yiT4/fNvbKOzzcHrly98+fKFf/gv/zt/+Zf/J1eddIEm+O2//le+3ifhTvvtM1bh/vUL/f4XbPtN1dUkeFpFcBsKf/nyRT4Lwyi+sCzS83/dvsrnYXThs7eVf3m9U1a4tPQ7Dp3nsILXelR7Lk1mWyAd5FmMpTrrfU1oROLnY3fWNqwY7dqUfKbUbLss3F5vdEsuQKssdWEO2VK5K9Gcc1JqYXHpve/VYS8LNUnwPlcpvsyVapIQtTSzWuqF2+3GOnSdk12I62+fVJmuToQnHETgplKu4IN1nVQTGXeMyORZXZ+X3/6B7X5LFaBGbY2vX2+AU33h4Ck0gy5I1LYpOG21SFL2noTAcpHiVgiWwgZhuo/cG0QocCxNwa9V6lLznlbH7KXIRfp6/aRuVK3i4sSgr11eJG5cXxr/uFxZt8n//NevBJLDvF6UZLgXvDaYnXUV/Gn2Ha5TgQIh8vTnz58Z5ofr+KdPn7h8/l1SnVbZto11rBR3Xj5/YoTRWmOsnR6DUqAWxeljdG7CC7GUgldgTPmGlE+YOZ0hvlKKGPz28gnzYOsrMwyvF1qtbCI/YLYKTmZG7yt96pquM7gu9YAYbX3SFmNapBu3OAYluSIRwf2+JbfIpII1Nqql0IMBBF4bVkT81k1U6cnrcpMzc3UVK3pPWGKUfIrmAhAya5smjkFMGJseftWDmBtmDfeqLuefYTwV+r/F+8Z5u5+MTp4qzfbW4TWDhKMJ8Qwr8mPxPyUb55LfiRfy5xvvhC1P8/QIpt4JMT9M8Z7ObQLhDyx2PLTmvzmOU0KipsOvPfG7J8TPdP8+dC62vQugs3GW2LV8/RTfs7/41Aj4w+n8OKn+M4ynJlm8lwjwSCw+mIfzFH40U98Qzf9g/Ox1/kPJwZjzyIZU6TcsOpe6KHgMw2xiJq3t0buekyYVobGtkg/1gjGkbGOFMGhLkzrR7KxdJFtdhApoR6REWsJ93AtWK9sE6qLuWZp9RMjbwB3m2DATTr+nGdXl5TPbfZXKR0R2JFTpbaWwzYR9jIRcFJmV1eWCDbCSJMAqeEHcBWPZepcD8lBV0Hxh8eCyNGJs4E67XvEBVirb66sw2bjMj/qGLU3WUnnckaRk4conYtEG67YyQlXDslxpDtv2KhhKSC/o+vl3igetNLZ+Y9IfQaE7Y6jbIaUWEWB7BIXJp5cLfbslLL5IWSkkWVuK8bIsUnMaX7mvpk7PqEAQ1sAXSnOW6rQmGVfwVBeSG3ZpUg4qCZkYIwP3Aus22XrgKYtbzIUXnxvTKiUlGi2EjzcP1nuXb4WBREHlkTGnEtvr7xfpuOeisQ0OeE5JEjchx9/rdaGHYWNQXAZ/VhsT46UVvn6VX0NgDBdE52WpzL4J3TIfLcLAuPUp3kh+n5qJ5eur9Pj7uhITeu+EyAq8rhvbVDcnsEOGb/RO4OCNMTdakUu4zWBQ5SgdLjfqxLSXKoOvmZXtkkmBHuYTolOXa/Z9kndBsLRCCZ23giBvZkG5NLZNqkd9rWzbnW1o7lurVORvcHm5iATcA0oBG5gJfofLCyX6Com7r4uKBCIgG9ML21++qAsx5R/iIXw/fZN5emu0y6ICRSqp9ZCc7qVdcBQcmwVtJxRPpyfvYpKSw2aMJDvjNTt3lXXrkh8Nh1JFtp/qpu3SRZaGQ8UNxqRPJbVjdpoZy8uL7uexSU1tU5dxzCS+l0oNmfxt0zAvacgoAQhbGpdlYc5VXdcsEwW6N0fvCStbs7Bi3LeVpYnLMnpnXVeIoNSC14lXJWGjI3WuH9C8fh72FNdqvFnOTlHdsU7+hwQER+n0G9zz7vl0xgrrtf3/WZXOtYx4uMvuXJvTsp/V2/zN9m0e1bq98JW/Hsf1CIp/7SD1KYyxPT16P7TX1udq9v7/5w7Cty7Jp/Py0VHs5/oN3OYJlrQnavZtAvmrjrfka3ENNeL0d8t/9cJpnshzkgWKCD6Y54QimR1eUU9ze5yyj4Pf50r3n2CcWlrP3gL7X+NIrJ4SqUemkL++07H5Dndh72IekMTT/h53n727nz8aP8Y5CLXgpd2vQNC8yl8gzV7cRbisTRjniIFZpC4/gMtcq9a8CHX0o0+sFcbIbzMnMx2RzRZtmAuwuZIEkTa7zLemoCVzduZIdRzfs15VzNzAagNSn3fGcZJmBGEKPiK/i5kgTIazDXk7mIxNlSj1ydJ2pQPoQ0F5rQo4p02aFyA9E0IPytouqppeXhivXw5nR53ETEZS8UkwLcEclqUwBxR7EKtHcjb6EP5+mlrYxVX19RC2fbvfkcN0BW9sY8Dsquym3n1ZLqqmTmW1tRZ1aWKXyZwsRZKQ1WHb7vTtrhUwjM6k1UYrRrgMs1oTDGPOKSL43h2yiRdBivoMZOpmCtNiYGVgS6MWS9nGKYnH+6YkcMx0nE3ptLlBJNRkBjEm01aKVZal5tyXhLhYBpGk8otj7IRDwVYIsAHL5YWxdYYJO78HdC+Xi4KxMaWk5KbOVS3U2dUVYJf2HcQYTCuMJOULmqIuw/31hlnLS1wk3PTso6Wij5vv5tEI8LKThFUlHin5UT19QbxIoQY/3usTPn1amH1BlOyUwmSmf8hjYS7utCQdzzxWpQ0KdKxUxli5r5PNReKfiAhrtXCpRcpjWcETHKwwXNe4pd9ITJFkJUs7uG0btm1yGq4Lu4JWza6jEmQRhW/3TKyL402PMCumcxBgM1j7SBhaCha43ttqI2ziFKzkCY+ClyqETq14qpXNOenrmiRsPYf0vLHkEVUZkB0LpGBTgR9dBil2aa61Tz15Rh9YVXeltcIcK7UYPcRRKpBmbiZifuwk5sxls6I3p5L+aoLrxQx1B+Yg5ZVk6BYiy4cXSc6OUJcLyUGP+aNSpvtC84Obf/POf+MRH/yahYGnv+9VZnQLPO6Cxzt3ftmjivqUETz3B+IdOc8MQmeuQ98ebzw+/JeOlnbs+jkQeeDZ3yaS5+pqxKlSfQTu5z3v/4/He3lzbk9bwnPwdQRJjzecuhW/9KR/M9+ZpKwAACAASURBVJ5j/tN8nLZ5StlOyelx3X/n3o5z28D+INC0/aI+33ePef/VU+F9PJoAcdzOsH/HNyWHvLwDMk7V9f/YIs9OPO09f/r43Bzzum9ynJvH8/pb88bvj59QKwowlz5232QGFDLkURJZc3EMvMpRVOoaOlIp6wS+4zX3gw8gVAnbyce7Prh+0oT3GRSLdC2YR8bKlG6HO0RWbSVByqHvbSBCMp5yotn9SBJfYLk47rdHVsvnkClbUZAp2c7J6JNh4i6oCusiubr8C3q6vWKR51mqIOYZhNZKqU0KKK5qvj5Zld45NlTXLGxzsrws9Nebkq0j4EEY6W3Tfm2fb8MmeEixyVPbPlKNpd8HHkOysVnJX65XYlkYX295P4s46VYhnNF7JgaGhcitgjwJ5rTzRiC165NjMvpgsiVJdecJ7LK1ep+CTsmPOinj6JojQ4TyGKSyUFdiQ+4vjNlN57JWbNsIMiB3Y2mLYGRDPhvunudgClseJnlSy4pVJLQjtEh5a8e96Eiha2mFbgqGewbyW99YUgnLiuFItpKRnQeDGMFIgu+eCY8pKAyJj96Jq/puM0nX6jTMMSRTSXbgzHHUfRuWuRcKXCO0LxGFdR0Uk5uvmfg1Uv+aeX+mTPGUt4jZlF8CBrMflXFzF+cBpKwTofkGMGny19YOVSpzo1rBvbJuyfFJFajjmaKjpuf9XEse0hzU2iC5Q7v50dzli90Z01JBDXwn5ZoLGjg6wtlLzat4UbHAd4iVJVSNfHLKf2CfexUgVCmOvBvdMkHaVdpQwDlGKs74fi2nIhGIY2KBZeAo/5CZcrl2BIazy1Hbg0xac66yyLK7I+t5HIdPxRiCROr6DjApnuWjkdqaOjX5HffvspfuxIfQM/rHxkfV4DfjPzDm+tHl7whb3lSn3y6i+6J8rry9rd69t+9He0XXya5ipSLJCWZ0JBy/eqB6Ds7ffJcTQfbt93yqOj/NDXlvfvseoRceRb5vZ85+/en8qbFnBfnbaU6fr894/PP2HMUpyPwQ7vJBUvXuSfj4BPy8E/B//vF0ydq3z4V9ip6v9/2R8Nj2wyA+HttZFsm/6awdnaH3Et9Tsv4D3+cHfQ60mOwfNsLUJk/bK/eSgUvAyMrzXiYxEZD7tuvtKzAKAHdKawp0qtO3NEEzI5L5rgVako6GsLI6ok6kYmMpRaZnPomRcqbh0qmf2S0Y0NxTX1oLsDoKnp8zjiB1h4T00VmuTk1Ohe8LxJxs3fDUIS+15fvyvw54UKta10eHIAZRlDQs13aYyBmqjs4By7Iw1oRJQZppNcZ6y+r+zKqr4+UC/VVBtnFAkdwLHqgKXCvb2A5JxfCg2q6sIox5bQ2Kp/KRMXvFS8XqhUJhvd9x5D8gKVuZl810n/Ysy8yY6X2h89FaVWKSF2sAMwzmSFMzuTRGylAawXQO+VpddinnWSrMiUXHoiqAciOmbpIZBbMpGH0GhTH3m2imjrxlJakwsJSnlFSnTcGeBGOC+3bn5XrVNR/gFKlczSkVo1axPrlvG+v9jrWqSrTJMKxEMOvEZsGLsfa7NObHVMA5JxEiK86sRu/8GndndJHRKY3R1TMwr1Jb8uy2mLoxcw75B1BYe2SuoeMeIyilsK2T2sRRGEHq7Udi4VXpHyG8Pkk8pnieCwMvSJqzM0PXKQ7b2A5fhsV1XsImczz4McLsb0pIhvhG5HVk7rQm3Lu6ZekNEFBLZYy73p9PojApm43olMHBf5jmRDeiOGOWVFJKnkMk6T1D4zk7rUhNLFzdum19ZWJUSPhL0rY91LlQWoaVlG8NdYaG6VlSyHNvRjDEFTAZQDqqEok8r05JvV4wy9B8ptzrHILx5YI+Y0KSzU2apzKRTLO0ibg+A5e/S1EHqpSacz1pbaE2JYN9TLZtlV+GwdhWds8FK+1HloJjRXh/2CPi/sEc4u89vrvonar+R3XP7dSJfxz/h3FLkIRwFPC/+cCjA/HU5tdz6LQVexC8z9EvHyYdlcpHUPSomcaxzXsV0fOL+yZvwVbvQpT+IEGw0/+1n9NnxtNGv/g4f8e3f3l7Xp5OwvGet7P9w59s33423/nLny0h+HCcLvkjYD+dndOtf/z1cd1/J0E4Da0pj/N6Vld7cEPOB/Jz4wcJyY3ihRFa9NbRsdHZG9HVg+FG1EJNrP7W5aA7A+a2KjmIiduSVXktbgVPn4GgtEcQYNlC97qkKk9WAnfIhDctcLNnoC+N8B6d6KrEzlCLHwvGmIxxyweKToG7jvV+u8k0KbICaHoYeS1gJYl8Pc2wVPWcXUHE2jufXhZutzuvX19pxcAb1SyrfZGl0DR3GhttkSyhkg1gqBpMqRRX8BlDgXhpjfvrCtYwfxCPVMUdUBe27Y5NqMW5tAu/f/rM13/5Z17XVUFEn6wpoflf/pd/YjoUnFYXLY5FsJzf/umfgMmyd15i102RZjx9A4YkTttCrDcwYb9ra3ipuDdVZL3B3Li8XNnWjW0MZqg/1GrFmcyUOMWU1ERMSrvgZWL01IVPWNEYWS0fWfVNRRfLrtSmgLZQMTrOpFaj1lSgKYndj2DrgVmhJPkZ0+epA7XQY1Ct0mdnaYsI5psCq3UdXK7pjZEV91avwn57xU2J60wzsBjBpb5QXAkaUxKwUZze8741HXUp0BGxVe11Z6zb4U0wLJfPGBgyZNuVcjaCEkEJue56ETl6BIQp0K6lJMpBhmxmVbA+C/p2J8IPgQDHGXNLlSx91zDP+y91+av8CgJ10LY5gHYk/uElPacFV7teF5iFr/d7dgoKPqEtD9L1GFktD2esd1X66VwvV9xNEL4Jg8ms0FyJ1doFjZkxWFoqI5k9lKPwhJ51VTFNiUbM4Hb7yrqueBMfY/dvqU38CmPS+wp+TahWoZNKTK5uqlmaoNWF27byelsJg0tVgqRO3MK8v9KKCh2TbD1lcF4KbGFKBiOw6ZRQQua1KpEvMz0KOrgxZxWcMobgGQR964yIFBeIIzFWj8AgvTwCQUH34srPj++vOE9r2zuF3H/v+Ew8g+wCnA7ibFxmb5y5no9RIZQXZ+R6dhA4H+kru5zh0zv3il3se31b8ftOQvIrjPOc8iYQ/9Ed5DB4Nkjb9/3GYGrf+v3k4//v45Qa2ZvJzGLv/utzHvtWcjcDz73Yu9OTjrd/5y4+OmfvvfQrX+w5jNPcPgL0t92u58vylKh9N7HimPOYp1dPid5H/IRzYnFIMp/en/iVP/x6P5Qc6OClZT7SYIy6QFfAKSiIyMdWYB2T2q5EBOu6Mraekm4LfdWiRlacB5GLITA6pbpUh8aQRKEJyjFGYvtDRl6nbyvjqiTzhSX+351wVUfHEAfCqcL4XksegsjUtxgMIlWTBIkiBMXZ7hvt6liI0DqBHUW8hdr2t1tnXbVYRJ+0S6WbESP/tsOO0PecI1Ky0BRE9k7BaEXE360HS2ksS+EvX/4KASWlP1XpzcSnIzfhKLSlUjzw0inXwef/9r/S/6//k20zannhxQyr6Voc18OVOcYmn4VNicwYwdwGL58+48VZ15WYK+v9Rq07SkwPl8lOsBWWPnzS+ysxAqsXalNgOPsqMmnyUmR6pWBm3G8ZrDbGumKjSxI07x1XE4hPV7kYj03u0uydA3NemvN6U4UZT++GPqht0qMzYmA9DnhTddhQZ8mKI3Pipu/mlRKT66cXKlJ36ahFZQSXy4U5g/u6sisPdKC1xrJIRUnV9WCpVVj3Oan1QmwbkyQz49RmTHaCqo45YnK5XNkwtoCwwpbX3nVZKAywJvWu3tkiGGFUM+5dcraXpRCjY2Zcr5+4LhcMZ1tfKdW5LBfMK7e143GD6LwsL8wx2MbgtSsYD1+4Li9s6yv3LjjZvQ+2OfitfU41JskYTzPWMbExwYM5OxaTEqE5bwsU577edb7TLCxq5R7q6hH9WOiDyevtxvXzJ/EoQIl+cTzuOLD1zuWlUUzcoW2K1H1dLtTLlWJ2dGmUgEiy9PX1lWAcHRvzwnK50C4tTRQDRsiTA0GzlkUJh7E/bAuw4cXwKpnbkX4Yngn23hUpSWYZE1o6sEc1xnQlNDOopXEbnZJuyRPUWa35rFlTIStEkmZCjBVDZnlVk8aYxto1f1bURVTHwo6uWlsuBI75ko7YYP71R5eCX2ocy+LbMt17I3h2OH13h3bcpz8f3rwN0p6P89fHv+/37jsVY74/9f8e4wkD/mcITnOoYnz89r0NVQB902l4E6c+jf2MPt1HP3Ii/2B+/4Mai/8m45lbkOP4gm/7YI93vf3tm2k9CgnvfWZ+8lF0eGx3JAjfvOnj589744eSg22sMrQyGWxRLmpRx4QpmMY2VKV0TzzyTO34cFpbwIxtlf6/SHuhRW6oEjwS29w3GXypYmwsZXK73XdYdup5c7izuiehLlbMjOpNBmZFFeTYpBt/uSwKsl1QgzBJV8bccsFXpjZTieR8M/R+p7SKe02jMwVKo2+UomMOOCQiB86yNJo72yoPhrlNSTEuL8wRTGupGCIIRqmCRxVkwjXHYL3dWIqSMm/OnCJ7z9nTURjMnZdrSXKLKpFfv9wJv6l+bo12MQrCdVtptOr0KaKjmdxpYVJMcoflcgVzfVaENOkvXQ7B0QXzCqk4xYDaZIBXDFUgi1ydx+wZYM2sfDYMl9oRk9435oysRmd7OAK7f5WGexigqmr0VaejLMkNUII1ZtCKHHN9x/eWAr5Ij35bqUuhpeqNIC3GUjUfY67c7yJ1Vy/YhJfrBeuwFQVW0Tuzd3xCxAq1MYYUvEqpXJeFTy+LiPhIy75YUJcmZaUOt9tXYf+XJv7H2nXtm+Amc0ZC4xr3jqr6oIp3zfZ5uLoyBF9vdz2UAlXUSuNiIQfhLiOtWpylGKVV6AF+4bauTDov18q1Fe7rQH0T+Ya4FWpEdo50fXp9EdyLoUB3kwJW7/6oCM/gpcqN9/W+SrmoLZQ0/6N3bq83IpJJZA6mTqNfPwkq12+p/b9DxiYvL1clffYwrOo0Xm9feHn5JGnV0gW/yyo+Lo8JkbUnVjIZKwvExsunz8SQLOu6ij+l5EFSvdVdTuJzJv9HXbQZU0UEA8KZ4073JR+1SgK3L18PeedWWkqEThn9BVxKpYdMGEf6wJTW9OAcoQR+KqliDrbbxqiXNOJLftJxrxvbtiq5aE2JeMKLdjWuOSfb9oCQldpYLgtQ6H99JRwlyP4zodt7VUIy0ji9/B8YDT4OIbkzZEXvAAY//nkKyo/jt6f9PL3peM9pQX7zZb9VBvl4Uv4TTNffbTxDIZ7hFD+TIHwYxvzoZL2d9tMR7TzE44B+8Sg1Et7m9mg/PXt1wAOC9SYo/bi4/9gGO3WG7DRf8XbDx/bfvvr4QHhU2P9E420l/3iCnC7893OmjOXeuRDPU/R0b53m7xtuQ/DcvbS/rfDwgyZoVYRPJNV5vysQt3hQ2SwUpPdptISljMRXg8iOOx7dC0lIfHybQjoMhxE7lCcr0nMnR+JHgCA8cU+zLOh9pp4+Ik2n5FxrC1YbW++MtR9k5TkHhuBIy7KkHrk08md+JgTrtlHMcaqMzGbq40+XIlFCkXZH5XDD6kJgbHNy7yK+tlagLpQlibuQEBRTJ8KC3lfCQ86vc4f0yM14zJCXQxT6cEYZMB2bwbbdshsBmBOzKyAwwCZb2EESrRh4oXkqTJkcrXu/J0xMGOuJmKFWQnNpgvIoIDSsQotCuTgx79m1KGDOiGBd74y+Qkn5ytA5h2CbK601EU4NObUWp7hzv78y0zF298KYE3YYzU7e7jGxPoX97qre1iJFKsxEDI4BfVKrUx3CFASPEfTRKc2ofsWLPCDkFTWAC7d7xysyUxvBnMYMp68bDMG1lFAGxUOBZkyKy8sh5pCEJIK0BFPwkyQYR5HnRqlVakA+6FMJgBty1t0GblPwNy+0ZWGmxr6Xxq7nvRPt5QbqWDWqOc09CfxOmBJa990ALSgOVoyC67ttq9SlUi7YJgw3plk6lidEZbnQR6hSbogEX5zSiq7DvA7M1KkJ5HWyLIV1bOrYwAEPq8XZYtLaBaZea4tckrdtxcuSHAcpDpXm/Gaf9DlTEBrxYJQ8ifybC2WqWknu60ol1FHo4iFEBCOmXNIzuK2uB6M4B04t8hrZuTbeFrBC32ZKnXLAEUefgijZTA6KKswRQTUO7wN1x1SBnlMy0H1MJAb3ePBbccqy0O/37J48Apu9U4EZ664oNwU1m1QlHu64JywtF/lt3WgLtKq/zfcqX98de8gRz386fn5Trf9g/FvEZHZaZA/Z0Edkcyyqb7/th9Xu8/seO3lKIB7xpZ2gRo89w76Aax8PaNHjk4L4Q4zxf/oRz/8+V7Pj8ePzD48g52kndtrmnZqrnV+xpxfPQdH3h9bdX328l9+ceQZHMsSbuZvfnKjzDoA4YHa7IMSzApIl6/T8+W/VoZ6fE08p9y/evdlrDQ+Vosgk6uPu47fk8OdnxcdE8Pf/9l4J46MH6yHE84NP3h+EFSX50ezwPIg5DwJEQKr9aPE2oG+bOgcZnMxQ1bEUySuOCZb4cal4SN4vTg8RJcKu1j0cBMYwBRZz7O2TrAiPATaoESl7yb6TY0J6HwmbE7RoT288XcjM7QiyzYwFkQZHiJipwBWpJJWaWu1BqYZRFYDVVB8yg9LgeK/gUu6PJ5hbIBB6eklMUv8lkNRkZ3m5UFy4/jEndIgNYcwr9FWkS6ktClcrZ2ElQzFUadfCOYgQfMGLZyfGKLRUdXHyVLIr3rgXKDvx61EtNisJVSh58aXc5oy8EPUw0WfV5AkEEVUVbrMMWMEzgO99vyQfZJtALrcWciDez5HF+cG0V6N3O3NJZS6XRY+wGEnIlLxsiXo8nIocqYgIvKqCPCPwmQt25CmfSiJG+hHIx0OzJJhckkfZlXUAFLSZ78pDSk4sdrUBZ45BqTWhLHKRZieZJ7GnFPlGdIN+l8j+nNtx7Zobc4orcFal6WMSvSuwt1AS4QpixkhCuevzzJWYeClMdL3MlNONXYo1E6DwwIYMEfdkY8wO3sTTMEemXw/n13pZiFEoYxyKPeIxnMhVSnVSEtLpI1iaHVDE/dlaqqeClRyd5wjwoLRMROcQ8dY9nzHpIOx7wSE5UG4QRsyuBJ9cAE2Js+XzbncmrlUE/j4D2oXZNyVOO/1jKKFtBmPbqKVpP/msHH0wtsGyiEPA6Pk87ZjNhCKCFgotzmNsjOjENHZW1pzjeNYeBOUxIc8P++eFkmIFBfJ6iBgibVsqJvGQdvx7jv+Ipf/bmuX7gY+Cl7edgOdxxDan9xH7XJ2hHOdF2h77f3rrHmTZEUw8fc6fZBy8jiMAzBee5Bo5YsbvXXdHWPmUmH28Lce2+2eeEfGPNfdPgXc/jf15BezR6vNrTxs/vfH9F84n6RTHxzwTxvctzvN9fsEOOet4KhY8J9a/8jgu7TO+n3eC7yOkfZZJfkqp3r7l4EG9Oa/njlCEnu1v82w7n5d4vs/eyyQ/GD+UHAj6EarSph72TCxxZKIwIwO4qYVy9JSs9EqxKh1+U/cct0zY82JLLoMkBjUH000v5IXkxSQL6S7DLpd6iII3BWtnkx1V0fLCtMfkrttGIEMq0jhppAPzTtJQJ0CTXs3YhrDHh8RgBG7Kwvbquu1mbUyZsM1Ul2l2LNpjDua905q8CvZ5jSxgePWH7vzu4WA6nloLpRZiGLZXHpNcaY6URSNE1BxTjqtmMhpjPJIRT/nJXPnCJOnYqrPebqoaS0/xCOrcZALV90g1g/794WtexOsY8whsailEkQ7/I6kzXZyuJEcPtbLnCICw4aUnFtsdi0JJWU/QMdUAT5nbyTyICWPKo2KXjDUX6Tr6nTEn67axbgNZ5ho+SW+FJBKZ47UxMsN2eyQ6HiMDaPC5B9VKfJQhqVq/V9g11zUVs1JByksGkj2vSyXOwaC6lIe2MeSXMVMmdhSR9YuCud2ga4bMwkSi1jUcJoL/ToocYdgMZsLfWq3ECLCE1s2Upc0HTCkGVjEvrGPonMSkz6Hvu/tCuPDrMbRfVcGVkFONZVmOjtTM5CpM8rTVCmEKiAfq+PU+aK2qkpVKMDNyceFRgHhUYV1cDcBKkXgBSQ5OL4KUItDxiT2e96ARY6gQMUbeywqYa6lEwhf37hNDviE1YTr7ebdd3Sx0reo8K30WjK6xe2jsnx+ouyroYhoMZqdvTvGJSNUydeq0AMztToTc4S1KyiX3gzc050QNg0j520xGShHxu+um3SWPI4wx1G0pkN2LvyVE/c+3wL8pXh/jCC/PcJ892Tx/jXjz5lx/vhee2jlR2DtV8VwlfEIXxZvwwXgEUH+C8e03eZ69XCKO++OIHb85GWeAygeB7OnJ8KScc4aQvZcM/Imys1MYmD98VIF+/qJ/VKV+N8F9Cjx/4AnwTqKcf/6TjOfOyY8lnvvz4hFDnff3hB7iTbfBHts9Jxd78SEeL52TsTh/7o9d8D8mZTons+/yg5Ef7FSgZxVQUm2T9DiSZOLUQbdmxLa38KEShxTjSB36MQ0vC7WApSnZzErvGAO3BaSKSKXKtdUa9/tNwVcxsEVkvgyMZyoLSS1wyi12m4nPk5GSocU5kNutgiQFPGPrmUg0vKR+++jE6HiRckutTpDwIoRekOFVkmaLUcywacy5sWbwX1FluafrVWuV5Xrh9es99c0BK5SlEhT66FCWDNgtlZaC+zawuuA+iOwWzDnwS5Nyj9WUWcwbO3HlkXj9YpaKKwpsvbRUdUl1olAQlOr2BEOkydS8NzOY0EMmZYSSCb9I2aXfvrLr5u9dh7BMDr1kFVsuyYZzub4QbaOvGz4ro+zyn5ORcp77Bb4rVxnqyjiq3DqOtSUr6g2rxra+irthhdIuWC3q2vSJRcj4yqoqsDNN+ABM0pejpzfE7LSq0NOKcPVmC2OmQlIGyoZDKWwdSgkOqMhMIIfJwMtLFdcBqedI23+CS72mXVLlKia9p5KRFbaY6r7EYKyd4kogSm3p95Hmf3mdNm/Uy4V+vx+O1NUV7M65PgpOObfulRmD3m+Mmfe7FS6tyjQhJrYsOv5U65l95R5Ga4IEzTB5bujphbouMvnzUnAK23qj32609g+05innqkDfCEZRQjVrqlW5ETTxXmYXJKsYS20s+bkwKLuvRVZr9ofxzikKnB4wR2dZ6tHVMSRZvNdarFVaJLE+IUh0dUUPzlDsyYGum7pULtcrtQnWg6WHRfpKFDdm36CoMe8xmGG0ekn+lO6jEg9S2e4UHen7IDJ9ye9SCNQlrLWI+0PRz9NZswPmJj8Fr7txXJHk7phyhv/p8b0K/WmR+yBA+LcY+9r4zd/f2e7dN/MMsbK9coM9Ftg9/Y59Uc7velT59t0dJcPH3/b9nguCv3hw+jzO6ZntJc4PtuEp2Izn/50uKTudsPersn94gf1pgtH3xt/y5X7uPfGzbzkHvaf74gHxe9TRf9Wh7xLH93ubGLx3/5+v6R31omKWnV5/r7z/5gGS2350SnZok5Z0O92DlsiKPz6ZP5QcLK2wNEvtbliWC+v9LhnIAClmuFrpWWktpVCbqqpeKm2ubBNKtuXNpKxz24L79q+04kR0tlQalHKMKqiHvv868WHU9kIxUyQewa4vXty5LE0ykYDNIZ+EUFAyY1ITy0ygpGDAdt+I6swyRA406HOwrZ1ar6qqbzfCHa+Ch8ToGIjsaapGWhqPleZsvUlfnawAmpKPPlT9DUi4EszpXID77Y4Vo9XC7MboCLPvYHQsUlloh4MUx7b0CsiAb0aaOZWJmYi/MxOfWuS6TEn5QtulWif32412vSo5agW6oGF9dLw1iqPqqaGK61SSECPoM7gsSRTOamyMjemCLc3ZU0JSGux9GC+Xq4QVXV0ZbKHVmlXg1NHvG7EFw5x2aXjX9eexsdvGWVEAVqsSIF3zaZLnUH2ydblpt8tCmQrqWwlKaaxjpgRr8lCiHMnk2EmaXhge6jLEpJQmp++yEK7ETW7Id67X67GW9Wkslyuj3wWlWzd5W1jFrOAVXU/IMA6MZqoyT1wYdbJDR0EGbxtrTBwRT/s2WbeOlcJ1Dpayc1MSpuMia4Nzu+v6iZnwvbKAL0oAvQgiMwc7Riays2EHP0UdwVoXEWxpBOLo+FQ35NNSEG/IRLDODpwBf/36CpTs+qWnAhBMer9R0i0ay3ujh1SV+salFpZWKa0Sc1J7sN5f1R3zXUK3MebQ3BZ9xto7EwkSOCOTvY2lOEupGXBrIRublI52bwzmYPFg9M7aReafEWyrHLghVaFSKz851pRauI+O1QuxDchOneIewcw2kkvlkop25LfitRJb1/PJ/VBfK+F48pLmDk0c4imsfaOV3TVcz8tLq8yQOpK1Qk/YotWSBQ8oiLhuNll+qpT3nW2Vyf7Evv5tx1NV9Ru87+PHg0DshsUbDkboGj3v9N10Z++kfnMMb6ODdxb6P8FQY9je+V7nKOYP1KCO7feAi6dA8xFb6Se39/kyKnQ8YIjnM6DXv626/rIjv+tTV+zDDd/5696ZfYLpvhPs8hy2vp3TJ/jXH1zbv/iM59iLrucZeeervzMXet48nimC0e7bvq9CdORVvD9/u3oi523y/nic03f2+8H4MUJyFe7fRuwIHgWpXRQ5lQcLvQ9e2gJescOxdSZBdihA6ncdrEkydG53Pl8abSm83laysEifG1ad61JUgSQJgmGsW6culb5tYJUiiC3uxrYN7n/9yuXlE0trRAk5pnqlbzdq1TLct862ShN+WVQlHquqqlaauhi+QATb1tm2Lf2C1LIfc0KsQM3vkvrvy0VQoOr4HETCXWIOqgWXJZVQMrmoLlLPmCFjJ3OurWCtsPlkjhWjUMqS5FEEo5mwbRuX6rwOV1IQUxKgpdB7p700RhesJAJGbbx8anh1WlVl29NRwhwUWgAAIABJREFUdgvwKlnKbV3p95XZuwKvHUs/J5e2MGsooETXgflkWRSYddIFuJbkZTiGquCR3JLr5cJlafQ5gCUfbmRFHSKM6/VK7Q1zQYFabbAoaJtdiaG5sXsLCVKyA2qU9NQmYmyo0H1AhIxg21Z632jLC+ZGKcZixtpnBvvBbQ1KletvW65EdBaBtqmlMUMJ84yg96BYTVJxyu7OTsfY1pXry1UP193d2ER0VSDq1KUxRqffRGJu++KG6/rfg+CrkYx+tnWVhPBSpaWfSW0de0DijKGOiNXKdr/r3ORzYdteKd5Yt8CLlHMO4mrWHbxUFgt1Chi0Kt6Bl0JDlXcRX+X54aXxut3kxpyux+pmkC7dnW34QRhulwWLC5flQi0JC4qgd8nMeoVLKbTasJjEdpf62bLQx+CyVEG7kDKVmjMrcGXawFqRahRBq8bcjGHGHKvCcSsMgvu987Jc1D0LeTSEByW7QbELJqSHRFkWwY1sYfQ7u7KWW2VOUdD7IBXBEvo3lWRca2W5VrZtY4tgemW9vbJcLnIsby07EZ0Yg9qMfv8KiCsCQUzxCazAtdaEHsrLouxdQkuIVREULraBzUwK816c6VgtM8hff/gpcH/C4s5zcH8q2+sPp8LC/pdTQPtH6+ib/R3dHn/sMLJi8LSoG8ed9stnCh9Ee983yfp2F3FOvN5ENIfB0994aHuw9BgZbf3qycEx7EiKjvHEq8k/nd/xdNF/f37tzb9Pr+2wlref9GZud2j243+/7tw/7t3Hbxz/z+Jadhb2wP+9e+Bbw7P3Swz5FMn84Q8KNPt+9pbPN0nB3yk5uN/vvL7eVC0uDebgsjRVWM3SMVILFhHcb1+zmpYTNqV44/VFbfO1J75wyLU4kvhaG/gkxqRvTvXK3DaRIJdGIJx+sLF2TfpISU/mFNGvLYJE9DttWbTPkrj/tjB6xyxdlJdKRM9FUlAks4K7OAE75lxkXnt0SbyyFIhI7PwBmXFGD5loNRdlwkTCpsjnwHNRtpKX1ggFDVGYDHoo2KnOcWGN2CheWG+dmSVKd8mlfvly03ewrNYiUyusMO6rSJte1DlYFsyhVuOyFMwb25AZWb1eGH3F5qDYYLqI0VvfDg+IiciRmoUM5l3B2w53siIjMBktBaUqoHdcMAiCiI2eUBXPRCvmpF0cGz35Hqo6XxZB1CB5KaDKXkJGihu1FrbtlbmTnPPmiQnrelegmtXsOQOLYFmubJsUYCyx9DJYm2koNeldbcNiTntZaPXCHFK96lPZfmBcl0pvEF06/eZOTeM995ZwFANbpFuvMrWUigx6CEYXQ/C4OQWVEQF9v5VTphIlnstlYcxJQbC1UlJVbH80TSUn0QevN+d6GRRX5XhOwZEAqSf1G+u6V/H1MKntos8LQQb3x97cE2NX1f2yXBIm0wmbvK4b5jucRjChPnZxgtz/rqxkUFtlbnKeDoI+LHlMnbrv26CPjWriAq23Vyx5Pff7TV4CKZM7rchsjV01Rvehl6D3yX1dRfYmpCyWCZHZSM+VgbtMAXVdBdUabTE5hIcpAk3vCzyw2ri0BTMlNR6BNyfojCGOgjts25Q3t/tBiFYHUwnm/b4CSeA3eUhgxn2905YrxGSa+Bg7TjusskP/xhgEk9KaihG1MVECP9eN9XWlj+DlqkQt3Ni6OBD3dbe0/JnxzgIV77wee9D37zFOVbe3h3Ksi89BvJ2O7UGo3TdNXwvzR4LxdpE/Vez2bfZq7BF8nRblpx7CHgf84rnBfvw76Cp/eRpHcB6nN5x3scNN37lQHs6v3771/Jl2+ut34/54Pse/8jgrEj1oFvZtB+/4myb5eN9xA7xNH54n7zGfOd/vTNsTROy0lz1GPfZznOdfd+41k3FAD79J8uPtNXm+1U9Ebc7X6fsX7H7v7Of5gDPy+NynRO/otsVxzjjfmz/wNP4xQnKEiH+7GdG2Uq38f+S9S5IsyXIldlTVzD3y1nuYYdYtwt4DtgCBQNBYBMlNoMkJexUYdu8AIsCIzRbBDtgTzNETDNkiBFA3I9zMVDk4au4en7yVD6/wgFt0kaqbmeER4W5u7qaf86HCShLZFIArsPWW/IPDmW1LfX04ScfuhI6QAMmD3lpjIJSTtxgDttYHoIqSQbaAOH33nmY08xoExAdaSqR2RhR7oMk9wKAvSBCFCqQIqi7YbjeSpxM/DacTcARViUwrByPJtVz6BRCjKkowSdGp9uOzuzBY0Ss14TVUeDGrVGxJiURIoAj9B65bgwnHRwgcx631xGHP4I/wHSIJqJakrqcbPkUsNYN2pXOv2prvd4jSfdh7R3gjbCRGGiM5TByhQGs3RBSU5Q2SnYFd2symCzWYdAloggXFGH2XbEUS0iEgEbPf6EVRKv0VQAUfCKvpPUm7TNaMeG7p/H19gzs5KUXpdCwgfGQ4pSHpMG0p5aiEFFlF7wm0UkVdLuR8uLAbI5N/EpiUVw8k9Is3pPfIMWQnxUDis/SB1gdMSRb2DHYdgwZgHrxJYgb6+ZiwkjLAdFVWMJC67R4YY8fOj4RKQUg2LaXsD5VaFEMKK8TOIFKSnBsBXG8kD3MusrJtCoy+oRZ2L9qIHWbjsmFJSVJkwJSUCfRwQDpqXTh3QTnaPsbeCdGU2QwVkqtNMGQgevqTJAncUzFoeEektPB8oNG1mjwgqGVyR+8BA5WyIq+PQqjtL8nDCN6LCKQUMg0Sx2iHepYVRAg8NlgxbNsGEUOtAOi4gAjBFoFI4ystimpM8lzBlLInsTIouSw5togBTY4MuQ4DkfAfD/A54vmMA2Vg6Vw9VbBIjDc1jNYIQcvr4UH4UmvksEQfOTcMI6hEdm03IByjdfTmRNqp8pqvF7TR6LeQY/hbb49RwL/ANkMf/nJePO8X7ic1kP399wNxD4GR/Z+plPaQb2AmJ7MamE/fu5j4MXz651CK+pfcngOdx1Dx/OMpQDrht+94H8A+jscffnr87q74DIz3bOyXs9054OYWd4Hpc1fsMzOO8/XxPnmVeb84Jn3OTR4OGq8r5N/Pdh6S8z39lGy+PEV5+E3u/vzsk8LPP359kVy/6BLNv98l7fjcM+dzUqYxi9isBJK4SphDgIEQb750J5YMmFRTBWPACjsOu918VmMgDNh9OBc+zUe5air5CEqlgsp0AjQtbLmHJ8yJg6bGgFTUkuya7GjWhzMooblWKCvLUMpM7ooJkjWHCAhsPz4q7mDPskfqvAssuwKR5EhqzpPESUK0YyYOlso1DIIiK4piBy5M8mK6TJ116uZvW0OpCcVKmcs+Go9dAXEGgwqeOyCnBCLVZZDJGehyu6rwgewd3hrxyGTt5pil6kveyJoSmSGR1U6wYqsGVlIFCPIckAnK9JRmUJyhU+iuejWvd4Ck95AD384uEecCgkFSSdK4u8A1FWkUEKv0aRAH0EFH7IQdRQBKJ2Sa31FRClLg25Y3d2LPk1RKUzdBsl8oMaqBMYC62D6uc2xsLmrCRIbzPq/ohOWkzCoiHX3HgDQBYkq8BsmooNdH677PXU01rZAgGRfk70zitAYTMsk5zHyNUpUqlBIOkGxvU+ZGIrXvnUmZTD8L3md8Xypq5aNAksugcoRcMyC0UlGXis0JCcJMZhOW5r0BymOe/gdj+L6KS0ptCkA4jBwPSDUm+B4OiNJ1eqnwzvth9I6Byc/woyrjyYPxyO4KPSPEKiCaJGGBhkE0nxOpZMaOwqyuewb8igCvu5Z53/Lz6X2RakVQGjXKfJYQoqY5h32elwbceb6EMfGenAEmRCHB8wOYSE7TI3KzfJdknt3aAKWlfXQgIjtu00uE5nJQwBuVtCY87vPbi0X9X80aH88/ySkgOgc7jzCfF9s97OLuhfs/zUTgDE86Vbsjr+vxhiNw/hfOp37mLT74+bQJcq2YYzP/fk4U7oOl2cyRh33vK9jyuWl5Tkq+867B3M6OuHNmxl01eX/InvZ5+IwXPx3dhlzNHjsSc0E7Z2KnwP/bULDvf9If97s8ZKOnfeaz5y63fegqPM7bfZhfV/rlNO3jVbst1+ddZvUuoZbn/V9sn5QyZfDOA2ZddXigFkp6zoNzJxE5HChpfhUxjoBEgRgMGjNaBhDwmHrtWSUMBlMYAasGqyV13DnZtSg1v5X4Z8BTwo8qPFz8ScDVHGW6igpUy4FBnx2ExPEC9EtgAkKeBbHdDWaF3Qxh0ND2a8AFHMLgWdPHQQAMFAxnUNZ9oJrCSiq5ZPV9qgd5SHI4RiZeYICVFU4RBvp9pDtySZnCjAZncqFWsCwrScabpL+EJv41spLs6OFYl2mRRWjRGJ2JzJx4AoQI1rVmcBb5OsmarJQy2AufdfKAD5q4SVlTYz/3zQB3OKVEJZzJnDDg9OgQTbjHdCeO9EEQEohN5nVjIAl3iLOjUMwgwzNwVUKaZF5XXi8abxWYsRJPV2LZkwOBYK2FcDRBktnJ22hQQBZM7WYRTUIpIFpRssvlodAITML3tm2UqRTi180E0YGtD4ytZQeAc2ia2RVTdAe0VPJkVKns5Y7ebtAguZtdLGBsV8rpZuIJJYxKxaDuTNglshvFpL33gQ4agh2k/kgJ2JTf9PvgRcFkragBw+GW8plqKHXF+mWBNEJ9qNAjQAha3zCGoyzsOGr6DTDYPRSz6D7sCZ8zcjRAKFiGuFQd6xvelooGx2iO0Rs271Ax1FqTsB7JNXHyX6LQXM2mmpKn4pZBJFBWKhZpKXtXQ1QyISFZWM2Y3EYmhMIuQc+OZ8jIQFGyc+F74UKsokTK0k6PBczuBhMqqjXROHISo2MmW0jfAs8bdHSU9IcgXyhlg0XRe09RqUzyhbwaVaBLQfcpHsGEuLftM0vBx9u/khjradmTh7+cg80T/uiuI//4gZgJ2bG47kn4XF9m9fa0/+nX43P37zoiiYdc4pe3/cSJ7WnSOcaROcrAHnzicQznS89JwYtPPyVrJ4y3fP/jPmV590KNzPtgTvbz4D287/jtaYf99RedCf7tGPcJx+Nj8MXnnApM50P6vjf5+Dz2MY/7f2W+7zy7TyNzei7NeJvvOCVg8nClXjx7H8nJ8wPPqeJPbZ+EFaVpmQS6O0o+FFunYU/mJogecGOVRJ1VMVWF1RVFSUKsCLiyMkqM/g0iCtOsBsdRLWW1rVCNJUmjJoL29ZZVuAIIK9gRju5OUp8qRqdKjYBVzlpsfyiM4LmYAgojBEE6VUZuVygGynIhfj4GliVlSpEPFlHUy4IFgxyGXLBHGpqF06RpWYnb7q2jtw5x392Y+3C07QYgSL4tFdABHYo+tpwwrGxuWyeMCooZIvUeiFDE6OQ0ZDV6ZA/DVCj2xFJ/BsvkHqhmZTNNTcwECCqs9N5hhdKtVQqK0TF3qQs2b/BbSq0KSaijX6kkJAwCkepQDgDjht5ulA01Jm0mBc1TNnWqwmTFVxJSEu64vt8Q09CrdagtUBH03tOrgXeJiuG6dWil1CaJ0vR3oNGUAdHQOgnjntV504LhJA5XW6AGiHcGhqXuHS6owH2g3xokA8/etkxaBEUNy0pystxy/iphK6aVevJFEbExYaoFtVJy9x9//IqWCmB061aUsuSYOEq9oK4FNRVmRnNEbwjoDsthBkPM+aqGMTaUsgBSkktDkjtdtgd6CAxBiE0GmLBCqdi8FlN/3/uAakWkp4eA3J1SFwBUzTI3RCkIUXQVvC0L3qqhqKINx7Y1bK3jer2iWCU5WXgsJOkDouvu1TAS36JaWB3XgvANbbvBEeweVaWXQlmgEShCou2YHZnWmNykP4SZZRfA4UPYIeEjCyqB4QIrDLKXlUpPPhx9AJpdkhChySDYWKPpYyYXalRXArsafTjMBUXG/v1qhbDI0dF9YDiwSErYpljB7v2hktLMoLN7AHUp8GDyG0HVBpLJHa079LLsELdilCKO7MYSnsTFhuIHA34b8NZSeQzYs+dPbZ9YWh5ijd95LPCiijeLEHcHdMJgn6uqZ1fZ+V5gLtavq3lPW0zFr/n73Yv72nns8YuImD6xHYH6U83zRRH0M9sMVOe1e7pCd9fvPjD+afWk72R7FSQC7JDJQ+dsbpmEvbhdzmnVMZ57pYhr8IQ5nr6M+53G9z4p+IWM9dzi+CF7JU/dxskVBACJ+4TinKQeiYDsn/f42fsQZyZ4/313I31/mDsX6vPCE59WK7JKT4CCBb29p+FUMJDMQAJpIEXX3YRZK1CKIQZVYjooTwhEamsrDI4wEBowWGU2NVRToLO6rApgcIE2NbQbMett26iIo4SqkO8w0HsDYLCyYKmsVPvWAAlcLm+ZmAxstxsNkdzRWmSiokmqbVzcL280GfKO0RqGO5bLF3ZHVKikE6zIK4ANjjaAiIG6UPay2Q2jk/y89fRaKCVN4RRS03tgbDl+A9voKFoAOPoYGIOB8+jUQmd11LFeLoAxORqe7qlpE1YtXZvVYEYpyAkZuV2/Aom/hxpKOMq6QougtUgcssDbO5WAvMM0E6Fg0qBG8ypDx2gdGo51LeiyYvSBSykYY4PVBVpWBAyydZjOeeIIb/DBCnpEIMRQitJtOZgkrdlxYZWeC7kPx7ZdAQiKraywqjGAs0hpVGA4pU53Qy4vcAgu64K1KBx5HKDMpSKyC1aZ3BqJz+39htv1HwgtspImgMC2UVpyvVzQuqMgVYaYguFSV/SN2K9Q4Doaet8AOBYTGNKwT8jbGa0DAlx+uEBAPH+AlXUtBkXNJK4weWwDvQ0ADV++fEFvSaq1SkLv6OyqlILWG3pnEDoGvRN0T/TTcdeTGOhsWcq8n0HlIT6GmHBs/QZDx+XtB2ip8DFQTVCWBcj7WZTfR9jRQhL8mNCkoPeHb1jXN4RqdkcGoBwfAQ0QkZVxkr8AbxvWWrMK7hAr6L3RrcApYqDJI9FJUBYBRgbJYyScRgCpqJXdxsjX2WUpWFCxbRvdtfvgfgthiQzuCUUqlY7NgU6C/eUNkKyo3YUr7LB2Z4LVRxokBqGKNSWgRZDckJSHRfrDBJ+3t+585k13d4C8qxs9Vm5bA9JQjcmJ0Y17EbTbBpSK7nS19+Rl/VybAJi0mt9tPPC6Srq/eq4af/zuY7+4P4Hnaitmie/1B+4csL3Euh/aQRk8gtrvdjuXJPfg5VsX/kUW8JvnnHs19D5A4l6vPu45OP2lBKuziv+bz6GDl3P6tA9u2oP4/chjwJ6APCYDj0f0Xc/zu+1z5zHx/ucxfkXo/nDM43h9Mgc43vpyPwCYL52fd+dr8bNxDkgKTCdbd6ylEobi2BViZFmA7vwPDlOaplFyjwRctmZZbQ+C8lGqwZYVo/fU5xdEGCuulwoVh1ZWcimeQlIgfGVtvZQs+kzVmoYYQqnBHhit0wTILB1IHdfbe1apU8LSA7IUXG8bSqFsYrFCx2eMJG0uTH4GgxfVdEPO4yLuXik9KKwetzGlApMYZwaYoYhibDfAE19PLAWhRIsghqJv7DZ4Ok4DjpEBlRkhNGPbEAB63wjtgOwqSPABd1aZ6U5MyNSqgrCCtRgUK2U7ndhjGnkJjdCMwUm4AYvBR8MYnUmh6Z7wITsGIwqDeQAxHGN8TaLj4IRuDdIHHDSn8miUmDXj9QXgfoPqgrcvP6C3gRAGxj4GhhuKOKoaPRMAGISutloBMMDdthsiArUaIhqqEerVet+laFWARLDD1gXiA6MLIgpsIWFzuAAaMCsgtGzCLhKiVQukGl1qRwekYLulAlEh9GT0wDBFqQKTZcfvDx8IGbDlAu+OUhi0OUvlDKwjeT1lkrR5D27jnYpHHpi6wprEeujCpFgNUgCxAEAoDcSh3sgbEUJPzAC9vKG1Wz5NKINZJLC1Gy5LTVUb3e8xaEEtC2oV+GiE+ZnQnFCBWgS9bbjh4CosC5Pndf3Crkrw+xU02hMAdb1gSn6qCR3CQVfn4Y6IAlUG7GpKDxBRiCTsSgYcwIIKCCU9fQBQ37tSIimYkM8iEcW6UMoUweL5cD5+XYBqrMJfr18R3lGLkmCccr9LsQzYWUGbMJOyLnh/b7her+SngKFKVKPqs4CJ6OywmUG9om9XPh9HZYlOqEy0VMWts/DQO58JWgpqrfBCmdreG5NPKHpzdO/w7rAUJvDRjyQRfFZ2L1gvFcUd1/b+maXgU9spDn4Zez0VL3/G+OxIw+IThf3sUj0ewBP8ZK8J5us4qv6fqHQTHnZSNPrGsXyvG6/1KUl6HJcz1+PDXskR+n9rSOWcYO3J2/37jo7B/OfY5/se6Y+2qah4X0WeZz3n35TUPb0tE9a4+xPOCe1pu7unZzISODpkpznwmEgfucs34Djf4XaUfeTu9/mLCE7PjuMhcF/nv78n9g7BPpbY33+XYsS8tg8DGtz3Y3L0T1+Az3UOFDsuW8yoziGKutJrYIyU7hOHCNsXnqQ5kopHBvIVmuQ9cP1HMQY3IROjmw/Roqi1pE5+oPcGFye2NtjNmFKOni7DojSwogKgYLlUTPWQScwj9Fsw0mmUyiKKMW64VE29cIXVilJWtPcfU2d+Bi7UTddScbvddlUjAeVRzQqiB3qq/0gSQVlljiTiKiUQU/PeIRid5OKe56Sa+Gs4A6egpCGr5/y+EUCIYQyBrZVBR6o1iQVaJGFWUv/bBFsfWKzg+vXHNP9SwAd6UAJVxkD0eQ8TH84MlRKzMCZVSMM3H53nkHxkKOFK25UStHVZji4SeL0DngRPJjoysdmWuHcRRDpsK8Aq69YwokEW4sIjExoSNgGMBg1gUfJTrFpCyCQVeHgTKQLVNK+/oN3ewS4Wq7acbWnCNTp6J/6cU9OwXFYgdK+yk5BuiBFY6kLIWSlZ1Ve83zaMMdDaxi4LWOUegzj5AsEYYJCf96wUKh5FNHhzQCsShcf7zwViFa1tcJp4oFhBWVeMbcv53vlg0AJYwfV2yyA+dfCTS9N3R2Laj5sy4VnGhu7A+nahO7ekkZ4qLkuFiCPsUCvi8uK78s1oHfORZwL8+te/wrZRDYmJpwFR4FCs6e5csiMUqaBli8FKIAY4RlQESLgRCeqdsj/QolgEkOJ0wSZ4itc9V6XJJ9raLbsRTLqqkn+BEGzNUTIpCCi2NqAAlsUgUshnUkEbC4sNSAIzknCa84IeG4Hr9QoRwMqCriPJxlPRBpAkq3veOyR8E3JIcQBgu8We4JsqrCyAGqwYYgya/CmfC2ywUAVpS74Fixx8NiBmB7DAimIE0Hzsrsk/x/aJePmfbXsNEbk/Ijn/ZSa9jxjh076zDPeooHP+4Q52dA6EH7kHck8UfPim73bbz+ZbXRQcZ3mMv9xdj4i7q/PhJ5wrqPcf+MEhfPuwvutNHn+ZiWtO8BmyPvMBniEpIrkW7891YKZzx2c+H8DddX3Y6eAmHPfCLg3/fU97AI858DkJ5r/xsN9HxYE9kTtnDg+dsXNiPD9NTmN7/qY79aJMyu8LHt/ePrciuCeBTlMRoyaumtVyEoUVVgWbMygIyG5ooqLsCuSZRU4WEVDCUIQuvmrZ/k/1oSTR9tZYsZ7qPoy24RjQJNjy2UB8bymGEGBZqPs+ekN0QjeaO6unOTasKvP9aiRJ9uFQdYSNXQ1mxKABEoif99Sll+ipBsLqpBoredu1cZHf+RJGOI5HQmNYwabkKAOL8EHlICgJboVV9lIrJEjERcolqgiwGLY+GPx6ACYHPnrCNoRwlXkMXOiYkJgKxX2UDtgRin67zumZCVFWBrRCSyrmRACh9GMQRVkuGG3AxQ+FJFPIGMnVlr3u5ilnCw9omcfDyRsDCGFg5MLgHh4ZSHfE2FDUYbZiuBCfrgOSeO0IqvGIHZUJFpZ0h+DAA6EkBjdmV/QYCEKviiq2QYUYEaXjbur921S6ArH8ApKPgUgFmpzHM8gWEtsJUSLhuveBkcowkWzmCKQKE98vKiiSFWcxkoqFXS6goLdbdh9YXQ/QEE7CYcUgYDKoKV0qkjyQHkmMZkBK+dFANYMulPWcD/JQywdbpNLVoZAETWnOlKtTM96PPni8hapaEQ5IpPoPsC6F5nDQlGdNyJTQmbzksfkAoTrCrpGkbOlOuNX5HEEm+OxuuABVgFoW8mmScDyhHSNN9qoJtq2h53jBAUtCtvuAIyDiTDxGYDE+iwJIPgATmTECReJQ1gqSs/kv0LKzRvUtzpmlsMtFp2bfYZSiQniQz+P1vM+yVe8siDCBzm4tEsqYalDEWnO8Y/BfH47ex074niIQ3Z3PHLYHqVH7qe1uKfyJ1++3eLHLzx0bxN6neZDumxyCucjmz08x5Azyz+95tU0lLdxjuc9E5Dh93+lAnv4myAT2uw+UMkJ/CDin0MN5O4L6uBsnycGYAcyRdOX7Th4UM1o9p31PM/JfMlP9HW1x95OcJt8He37YwprXQPZqtDy9On96CHl/IvmaicqLr/tut4PncoIg5nZ0JXV/DgXwJIGM028xPxP36pnn67IvfPu7Hp/H94kBC1H/tIH+dLloKpKIKFApQ6hqaU6Wga0Ihhu87+U63rwiEI/U4qYyCU+FFVSqDsWu8qPKgG4O5hgdPrkARpOgEWBgm6TaKZ1ajWRUkUj9dlYe6c/GhVKVxzf1xNsYUKME5XAuMEMdxQdgPIYYh7JHpCZ9+ABSiWdkaDiEcqJzcfExIJ7BvLNC/Ugi8RkIgAHNvLBWCkqxhCwIShgJlcFJJJquwPleFc3JmATyrCZCMmDeH7aScq8pNRpCbkNkIsXZlTAwGjWJVRQtCB9JGqWUba0Gq28YtmF4R2+AiKciDTszkhVRAGnOleopGYBq+kYMZ8X45sk70Cn9yQqqjDSQS3iOB3K8nPCMQHIreG6SClIwcM6A0Cmak1mqJwnL0kLyvJpCkcGtCCFDzuqxloMwHcP5eurRm9b0tZA91goMKlgpFba2lsldEEeeVlxMRNKoTsBumwqdikNJ9iU8EsBGAAAgAElEQVScifVwVWAIx1UDuxxnxCCheVYbZsA5aM7G3GhCwei14O6Q7Jh59z0pEjVCUs4PPwQJ2tSk4nVUzkMplh4QBdCAWqRruGciH1hp7MzQbVYMU5mq1JoLP2GJs4I+3GFWsjKe1yflOIc7PDJpynkeSQinQ2Peuyn3Of04TANdwLnc6Y9RtSDALiCCTuMx8r5XJsKHphmffX3QE4O3q8wHF0ZvaZ5IM0TLxI9cg5R3zmRqGgBqJmJ37Xn+wPcE8vwCCM6rSEM/U9lN+YQKBMkJ4xyg4hRRr72TnNxSEEBtXuNjufrrv/5r/P7v//7+/cf2WPs6AoRHDOu3qmT5eHkI5X4q6fj4lfM7/+2/+Tf493/y75/ecYTyz3/XM9QlYyva9zxElt8sPZ+TA9nf9oB64VfITD74v7kWvF3e8Fd/9Vd4Fd09FiR/avtoZM+v7dfo4bTuYsf9teMA7q5U7vT//I//gT/90z/dK8LzPUfilGveq7F4jGln8PMBtOX83WfY9dOcO53oR/NRAJRa8Zd/+ZcPL5wu4P6ne/z26dRef//D+78RtT/s8/Dj/YV42v7wD/8wOZZ807lzcnzjnJ/3H/uYsglrBzPvenHMcj8/cL6r4pT7fpAMPnza3/zN3+Dv/u7vPjy35+35Ysrjh/+TYuH7hEfuf325vX15w5/8yZ9AkHzGuy8/zXmcgvXT582xepxTe8EBx/3x+L7z4Z7P//hM3H3m/nO+72//9m/xX//r//XNEfkcrMgK1Cor5o79ho8gCU+V/IPeBooZ+sRP51nQDYCLlBaSKgMkIMOFLq3tCmBKcyrU6j4PrBSYBKRQTrAmzIRfIRChnOZUBVE17h8MRuk/UEjEhOy64B4D3jrlTysdiAMFAkJnVNOcLeitoHnneG8YAxgiux57eKScoUHQs7opVCHies7EplNNh7rmHCJ3Oj0vxmCxp7yiGlv/GA7RmpVmyc9zbM1xWRdo73uVeJIOR1a01So5GjHQW4NGJFQonVbnpBMAUEgp7IQECao+qCRVMvlqLQmcYNJSi8FVYbXAWwBCbL+ZAVZZeee0hUBRS0WnIwErxZodDBC3fr211PHfoMuSyj4V6mBnRI3EY6EJVIBV21oKoVkI1FJRLxcgGLwNv/GOkcHfh8Olp5OsQGzZM3o4uwA3Z9KhSfy2WgE11AK0G5OrooQPSVakI3kAYzg8OoB+uospvVqqIgqDThdgtHc6QQRVgqwYrtvxoA+nTKYrk2fLpKAsFaO1rCgXeGL31SgKMIPYMQai8xz2ygMkK8aAOTX44UxuZwJQpDARKRW3lLlUMKB2FVjlPNFaoQsViDR43cegqZiVlLjN722dUrmWfB+ScAfefniDqqIPJkoKQEPQ+vEMsvSeIBkdmagjWyTsilkxoA10DHJKZIYnkTLJ6bDuDbXUvXPi7kBhtX1ZFt4HIqgG9OxsHopgnl0T3hdAdnuMHgYSFBUYzoQzRBAZhMNZESK3JwstahQY8JbJQclk7HjQi/BB7UlgJkTQAGe3pfvILivgI3jMIAeJ3QKO4RgD29b5+WpU5TKFhaJY3cf6P/xv/zuKHQRlj1NRYV+gsnCA+QCZawIyDck/vVxR5oIYR1X5RbX54/fNTY7/59v/83/6T/jjP/7jD771X/f253/+5/if/5f/9T4cOwXKwEcB2/N2JsDv4UFGDWdS6UfEyP398+X5/XpKpPLvEYE/+IM/wH/5L//n50/2X9H2//793+N/+nf/jmeVN92j/ObL+PCcCIncBXpzYzJ//7Z9zM95wF2Ee5rXOMVbx4fevee///e/xe/93u996lz/tW1/9Ed/hP/2f/+3p+LCU3Ixg+S9eIKH4Ph4Bu0wwdNc/yjCf0xkiCDQ+3c8PZt4HP/xP/4f+LM/+7NPn+tnt8c59DE5/LQPHpP8V8+H4zz+4i/+4udJDkSmko6jB+C3G6UljQZAEC48CC5OrMw7dlS2ERrTekqQ1nRa1oBpZau/agYzQBvACMfbpWLQaYuB3qB5V8/gIoZTo98jnVePYGBrjQsyIg2pUlc8F06ZJmkRuG4bWiMOmtAbShX++JV8ASmKmou1QxCu2LYbZFkYnC25sGZ1nNKvjtYblkK5wt4HRiM8RYNJDpTwIYXii/L9NwQlBj3gvWPYwmNNCMRoPSuyAq0GVEVdvlASErE786oIg9+g2RHJxAO1BAIM2qsJq6fuUKsQDRKxBeg9K9glFVx8g8D4mZ3dGJFgDdmp4DRiwJNIWYvidtsyCeM5E7phqHWliR0E6Bs8VY84u4nxv7z9QA8KTioYClwLA+S6MgnMeddHg48tVWQqylJQTdF7oI0tydieiUiB+KyWrvBUh9Kih3MzKhOPfoOpYcmksy4Lom9QCNbLG+qyQrTgtt1w264kL0PQkUlp3osecXhNcAogBKhjA6KiBbFy2+jQMaBWcbmsuG0tE7gAvGHcGlAWhFNtRhPuFJ5wIRC+JxjsEkARZhw/oWneUleIUge/I8dSK6FVQCYNglpW9LFBRyZGiEzzA+t6wVJ530rhvby1jq1vOzSGvKKE4NSK9+uG3joua0W1HJgOjM0x+g0bFFZWiClGC2xtQ6krvDVs7R2GgiIFKgWA4bJe4LKk/CpIkjchkVwUWg2t9d3nYusDZVlQiqM1dq0kYVnLUhMGxER2DLpjFzPUlZK4s5gwxqA0MQQ/vJFXQBfvTF4iIIXXT0CFM8nCRaDjev1KPsaEbUVkiOZ5LAYPQwPJx0UEpRRsGzkjCskOakEUQbu15BiwWDFSHKAI0wMPKidN47R1qfj6vtEzRHX/bjqp32+BGdzMcuDB3Zk7nKuS+3qRScRdHe0U0OzkyCy2xbkY+GJNm0HsXkl+WO9PqOrnN39nm5z+3Qs350EROZ3vw3be70VVUeYf7i6M3H3HXSCS+92Hquey5MMBf8fbS7MukaNotCcMR2I748p5D9wN/17eldM8xSkZPn/P6ZtfXLfHY4kPgsXvcZvVbMmBvJvTp7l3Nhe8S1YfYDPPT6Lj7686GvfbfQEND/vPLtl+cL+j7ejGfGOff4bv/VRyMNDhSM+Azuo6vKPUQtiMKNa6oN1uuA5HsUL5Qg84DCgVEHYVaGwlCXkJWEkH0rzZwkcGT4Uk0QB8OOpaETHQtwZVpalSH7jUSt8FsKu/dy2M7s3iIOY9XUmhxkrYcFDdA6jF0BuVlLRq6ugDs+RmYnAYYQzsN6OUgj4awiilKMLuyFSQodGwoW1b4r8p+Slm8E4Sr4rAhDAHLoCdyjXBariJYrWC9W3Btjmut68QdZSF2sIWFaUaWmfXIvmcUDG81RXNZ/WaylEl4RFT8jPAqqJAsLVBszWkEE4ApVSsb2/wfkvYAkm6ZoW48kht/HHF7fYOqxXLWoCquH79iuXtC4nkrcNTyCqyov7rX31hAHSjxCsC0HLB+laJ0a8Lbz+nalGpFb2T5Ezdenaral3QB7H8UivhRu2GPrb9/r1eO5a3N0QwsQIEy7Liev0KKwtMFUU1oR1Ad8fbUjGUSZYog7t1eUOTgroQMjPcYULZUC+G96/vqMvCIDJ7gaUUjD7QhXV5705omQhWUcrktoZpmlUyGSM5uiLARDNUoHXl9EKDgFyJSdhuQTI1hqOUgmUxBn8C+MbrDwT6AKpQ4rZZYxI9hDyCPiuKit6phOXRMFpHLYZ1KSgaMAn0vmG5rJgEwqoCN4OZYqgyaJ0KXtFgVlG+LDADWmtoG6F565KGeBCU6FSgqhX2K6H5YBGEC12O1aDFUNcVpax4bxu7OUYjuL51IDSNywKjbfl8SggbAqWyI/J+vdFRuRZs/YZiFWoL1cYSjkdexMD71tA9pXc9UtLVUOoFQGdSCd6zw9MLJuh1YlbRRuD92oBokCBRWL1lC5/BssMw+oZAz6IKxQ2ghh4DLoLbjURqKxU1BNpvKQvN+0AjO0BZpBjDUUqFg502ig8Al7eV3ajkLxEWdiIg7gs2MbPzmbe/nv8+B6cPO/ycS9YpHj0Csg93++63xyoxTr/fuZ2+iBqeuBYP0IYZ43wUb7zqJnx4kJIB2necHXx05HuC9pN/xN3cPyq/D+2BV98xr80HRxXxjQv1/5ftIV993O7hZ+xbyv7T+Z2fGci53/27j++aP/kv52Hzwfa5zgFtRiEps0gjHi7yAi46LRxaDbYBxDOzihkYqAIslwuAkYHv2Ct+hGoIugpG24BUUwnvGG6oCqDUJPyRJ+D9tjs218sKBKUmt60lPhsoMoi7Bag2P7KbIKeLnhj9PjrWt7dU4iHBVRApBUgsd6Q7ryrVlm5bS5lNkltpQAbUWlk5Bc/LdeFpChWSAgCKIUAnVYSgd8mAkZwEBHieAN6v71B1qt3wkBOLTXI08e3ESntWdXx0VKdy1HBWhM0m1QUQ71jXHxhUD3YOAMG43lAZj8Bs5dj0TodfcVzfN7y9fcFwejCoGoZfCXUw291kIxh0WXZnWkzn61mAJHRq9EE+haZcp1C2sW8dRSZEBdiGY7Qbsdcj8H79kWZYVjDaQGZYqCsVpLbNUYuhFnIklrqmedjUtBd4p2yrxQS90cfDTYD2Dq0kcAr1T9EduG2NevsBFCHnpOfYIRSuiltveZ4G0YLrraOPgJqgd0J8aGAFGvZl9T1mZwGBbQx4MBhv3fd5tt2uWNcLTAVbdJRad6WvFewu1VSXsiTBAo6bABBDrQIIoWOqiosAgpZEd8FS6YtAvo9j68CXHy7orSckylCXiloJsfMAxth2k5eA4LptsKxCT98STXlXhwG9J1eF19KMDtURrF573iOEDzmsGhY2IrPd6+jtCg1A2oCUABKiU80gMVCXVLMqDjfyNkQoZTyr5G9vK4Yo/VUksNpKJ+xkhk4OSMBAIo3tnAM2JwpglXDC4XAc5Oua8rPb1ghDyjkHVLy/f0WtC0Rih+60raNvV7g3mNajrS0CgPA2eFCBKXkN7EYJtnaD2gpNeAeSN1XqBdXI12LyRRnWMMLbzDckIIrKaHryOTgFpD7hQ/vaei5F3yvv+OQnCe7UTu63cwZxKolNOMe+x/HTK5nF8yfdZSu/kAX7MQadBf9XakjytPfH2x62xhSdkIfX+fnHVTqVvU+fEKdf5dxB+E63vQGSnL19Fj52UnBUoOPh78BzLvfY9Tmm/fOAna/iDHFfQZW+86G+2+7OTR7P7fjD7ByeuwGPM3fv1Nx9xN57+MTRZFKQbYandzz+7Z/hQry+i18nNvKwx/Or8Y3ff3r7VHJgail1yEAJ48bv8sEgCCTcige+vF2w9Y6tNXia/ZgAI0ikdTDJMAEwAiMSAz7GQbxIYjKJvoKigE6lHlGgFKgy+G+dVbEQwRAGSN5bEisJP/LIyqk7zBY+GHMBMzNgA0ICik5yXyd0wFSoCT8Mi5GEyTs7MsYkkVanyAgCCOL/EUCxgoap3iOoYmloJRjbtgdHrP4NklTHTF14M3g4ru9XQBw6A4eIxN0PcgDEGNFDQII0EzCzJHcKFXREha63QWMsJHZc3OHJU6ViC024SPilEtVwx3COjcBYpUZisMNRUgKNyR/7QGIF6BsryCeJx6JUlBKAqiqp0+m9w6phvTChcifRWAjuRuuN5PGEYoUEBgHY0EqDLy0GswWlKMSZQI7RYYVkZRrmGccBkT4cAanC94zAuiw7/CHScXpCMzxs90hQnQRwVosvK2U/meglSffWmQxtHGBRgQb9GVxoTLcUR3MmfMDUzE83aydcBjJgyvx1DKAuCztByuMcw0E3YcCR8sJzcQGTUCkLfDS4NwgKBJTs7J3mXigTO68YISg1sG1bclkyKPUpM7oma5P30uyiWzHyG2pBz+TAx8ClOrZ2ZWdnx3SSJE0sPiVO+yAxXUVguiBMsdQ3+OhMFB1A7/C4wSQT8QA8A/NSFIaBER21FPQxUgZ5wC4X6v0DVB1KwnY1Qc2532E7nr6NQFkqMNiZoBQqYT5iguGO7XpLYvYkuAclfzUwemNHJghttBQB8HDo6WFNCWiOyBiRSSkQ8OQ6CWQE+nw2KmE2Iwg9MuF5UgCBnI7enfeeAQjC/+ABkZFBB+/XSAL9c1STi2o+JyOfxy/Xw5wX/FH2czlenovuhF7M8F8wVX/OOcNRGD8taPnjKy7C9+4RcN7OYQCH8VRB/ql+yYzjzzith+3DEOG8/475On20zOc9j+NMmvxlbt+O/F52FHB6EJ73POfT5whY7v5698l3t9DdvXGeD6+TjO9zk5c/zufFA0Boryk81iv2Z+oHCRhw1COOz8fpxjhdiXhWODsKEr/bcb+HNOGoFrzee+70W33nJ9WKZuWLvAAfI42wKMunSc7zCJRSMeAoVTGcr3mGWPDYFzEBdmY8CYp9Rqd5f0UGbyRuJtgVEYFiCRMYBwZ2+iogcnFNLFo4NfVVjuoYK4JBRRuV5CYAEQM+JDH9AaQq0kj+wnR0RQbMlklJzIQhCE2CUytdVbOiRyMwqEFTMSky+ITT/MyE3IQIhySZmGmEM2A4LbAiIPQkx0cTTzQnryqDUIK18iZRqt24ZgDfB6RS592MCYIEXaNDhPAs79CguVWkHOhwOvpO2U3CYUjyRo43ya2CGCMDEgAy9xYUo+nZtGKf0B04YUtlWeEt9paqKoOPkIR+Wd0DJDK92RnpSSYulQT10dgd4HcfMq4CJVk2aHrFZItEAE0ICiHzVOXifCQZH8p9Sn2DCPHa7h0ivIbhAY9OyMboOKRnc666Z3IphG/hkJBk1eoIyiIkyackos8RL+mDoHmtOQwdViqibegR2Q3i2cZwFDEgbep4HD2TkHSSTq8BM3Yewtkt2FqHhzIdFGaMwzuqLAih0s4YI5M4ozrQvH/zuLEHjLNzM689FX1a5/NikoMjUra4LhgR0LoAWuDCzovHgAXx857Pk5BJOuY9FPOeNwMCqUIGkp41aK6YMC6Vo6umlmIBWZHd5UHz9UMBjMo/EcDYidQZHLhn15Swxrm4CQhTo+IWXaKRz3i1ssvTihjHzVn5J4l55LM2n2sQOAKlrgkRxCyrMyFuA6lnDESS7IQdmmRO5XMzr8UDdOgsZRjnCrWcl+kjkLmTPZT7wPGeTIsdirYHO3FUBvdF/7xYy3E8P50I/FJC1ocFnhfiSKbmcwI4gvlvnPr+Lkns+rlj87hlovzNsf44//hOtwy6f3oXPEzu04snLs3De554Br/RoT1/sXzr+n1H2xFsP/7wqhb+OICzkjB/fUxa73kgj7K4549BPPz8k3Cu347h9NhQOh/KHgN/++t/k2/7TXbet08lB3OsaAXM300lDa4yWKbYNzwGREnyGx7pOuqwGBB3kvmy2l9rQYiglgpBx3BJme9JqnW0NLCyvQLn/EWmVKUyONnVVljZQ+rx72oBQqWbMTplCXNBjFR/MRHCA5ya49VYPR7dk/RKrD2DWk5CVSBMM5D2zA8IQ7LKB7AVSxpCKgglbp/BMLkDAlagERuDiKwGR4y7xWBQJzS9HCqVX4yQJQcDXImEaphga52BQwa3UHYYaA7msJHwkyRniguG8Pp5o0OzAJDCIKtWuv4eHRQGtDYJl/uTkcfsLSE2cATIBelDsJgzbXFgolVVAF0rttstuxXnawews0KDNFEAMwgMfrZJIdxF7QiEROHO6wRRhCsJvhFYLyvdf7tT6jNIAFctTChdjmBoPofBZEHEYHWFiKOPWyYSTOIQSEncARkEKyFdq9tGWVQGTwyC6fasaU5W8hh7Bp2+B5QA1aXGYKdoryA5g0XVmpweGtJN3oqHYzSnY7T3FPeRqboJjfSqCJqfaQaecKTh2lGVNJGEMU2+Dufy6IQClen/AR6TmaCo7VA/kQRvpUQq4XEDbXS6FneOn6YLshajNGcYxApMHJBOroAZtNCt2McgP8AKYjS4IOVCaeZjtUI6O1zDgapHYMUKej7jnAnNLEZMVbEZNkyfAM4vxej0uogYKeXMBMpU4G1AjCRmFSYhAE3KRiBN/IJJ3+yk9IJSSrq+UzJ2u12ZcHqnPDAMB45DsL6tVOJVRQTvV/dIN+R8cGeHRIuCTUFK8478nFlg2bcZ6MdUmjoFofPfUzAap9dj/8ur7Uh8j/feRVqvF8WHBf4VzOL7DpGO7TkeeY5k7vY5FYVebS///hTB3sdGkwB+hhTtiaDkMXwqUftet/nMm/fZ/Wv7Wccx289O2S8r00/b6+t2TrDnh+/hcpyvwy8kNfvG+ACA5MC+ggWJPIxgXoPfemQeiiGvDvWbjbzfYjvuqceMIX94+Z2P7/l55sYn1Yokq+oDtSjWdc2gKb0INKuE7jQsg4La+QJoEo7blgMeKIUPlt47Qg1lNZhe0N+v6EkitAy6ZwU0Clv7M3gZPi9QVugkcfUikHTFnYQ7K5qB1Q0QEouPxNsT96zQmPr8xDD34fC4MXDTNBpKadRqgSHkR4x5fQIMUk2gtSaUoCDM0PuGcdsADHQfrL4nj0NkAat5imXJ7kx0YJBAqlb4c7tlha4ilLClqfkegx0SUaQaUMK3zKjVnwG9B6Uvo2eQGgEfDQomQWUpGGOgemV3wIEwg8g03erUpTeBwxFRsFRyLW5tpAlY6rELK9/hhI9x2vL8YtxgtmSVlBCaZakJ1QFgjtE9uRyyV9StMMEbyXkQU4xtAEvFxQgvAkBoB9h1YkX3qEB6KMQWOl+j5zG2k9MsAAyapEkadomgLCtKWVDEE8tNjHpvge6B7dZgVvbAnDEkFbBG7+QApA9VKUwUe2jKxE75XEfVgu6O6D2DLt0rxds1XblBEirJ445SLxDw39AOQYOjwzs5G1tccflCjoOV6WsA/PrLG663G4oUIOVrZ/JR6oKAkGckvC7LymDYnVX4AUAsOxxCeFoIk20TPtR3DX4ReG8APL1OHD4IvWkjsJgxwQ9gyo6upWCAkLBQJU+gED44oVySfgi7aVkBPBIK5s6gPc3mRIIJIHj8vm1wN1AxeLo3M+mKUEhBnse8V9P4cQxsbTt8QYQQtKUySRvC+4pSzZw/YzCpKVaZWAiLLeJO0v26Yn27YO/A5T20tRur/+kaLidzOdWV96XT42GklC5Go0uzGcq6pgQwAFWUQlUjAQs64pGwxON5vwd/LypoR3Urg6O5Up6ThXO0hBcB/GPl8zeI8J8Co5hv/6UGq7gLEl9u5xfj4c9PgeQpspnJ31PCdR9lneVPDzlJBlG/hHF/Xa8+nWvkWT4mqvnaJz/tbqx+01G7S8hmAv8LSBLmk+LVmcxZt29ymptPcfT9Q2Tn1czyzt6ZfPH8eBxHeaGC9DMmw+f8/NzIO3Z4+P1x8kHuPuO000OH5J9+zJ/jHIhhLSu8DMToqNX2Q2FFHHBRVDWUSjx9qYVV1D6wqAPKgOOt0DG2j8HFGXS/NcFuZKYZhLcM7rsTHrPUksZmI6u7oHJOyjm6UP2HwWUgGqu5HVT4kHD0vqFcLrBS0z3WjkmkxNBHcgHY0aCxmU0YkZNIO9X7LRzSbnx9XbBWJbxDDH27AdHocGuGy1tF2wSXSyH6YBAaUhCIIBb61rY8FkoWLqowXXHtP1Ju00rKraa2uwLbrcNAuEXbGDRNoznRTvhHKLkXSt+IEENvdJg2E4QCUlZoMdxuf5+wkqzGBigNORqkpLqJWcosEhIWGFirYCnG4rgDX680qQoXZIjOMF8HVAqKVZhVIPXrTQW9Kdaq+Hp9B3AYk7UxIVSWsCkC8AOK3hqsZnUZiZmXkepOBMP1tkFKzQCfHaA2BhCFZFIoROsByeoDUpmEujMpvnxZAQe+/vgOCXo/FOXc6EOw1BW3llCqQJLLG8ZoJImqQAqx6ZRVJSwvMpkQUJVoKULPiDITG0/yr0PrAr/9CITsvghw8iKEwr7sbEgafxUDFgDCpFARTAwR+PLDD3h//xHb7cau2Lz/FCjrBbXWNB1jFZ8QprHfIx4MdhF0kr51QEKwVHareqMZWl2oKIXeOL4gRIua/MCyLvjhy6/gQkgeIBCrkFLRnBh5z0SpKCV6BwAf5EaYLVgqtcW8V2x9AxbySiZOnvKtga+3DWGSHR4g4KhVmVh4h2uOZYAE6cHO57K7jwf6aOhb8gmQ0qJpKLjdrpClMhUfaUZoAoNR6jcG51p6o4w+0PpAMUWpiuv7lR1ZUGRh3DY2nkqFWkXJ7+nuGMOw/cNXck/KkvG5QMKxvK0Ynr4matBS0fpA2267YpuZwRaaH4r+uD/vd07ChEryj1x6E8KJfEZNKOdTQPqw4N0p5dxtr7X2gfMid8C8cFrc72KC/cO/82DpOYvKf47gHMjxzIF+papyN06nceS/p899sf9da4dfsY/9WUp2BqdyOq5fxsbA60DznELUu6HJc/+wYyane0BO78DD3nEXIe/X+MWRTbGC58D4+9wkYZJynntPQTiLdPtzZl4DAXazXSCLf/uPz58B3EEaj/z440GUHeJzf0wq8jvJy16nmafX5XROP/P2OViRDDgakMG4O6Ulixla39B9ABgIW3C7NYze0UanTrgZVBZ4Vs95UQk1CHRUA2JsuGUlm8olkyQH6uyndnsMoCfsojsrcb0lZlsIj7BUqPGRbqDhKQ8JtG6U9csqmY+xVwxD2SkgDMixbQ2mhA3UldKtzIbYdVhqgQvQbj+iLrpXKm+b00bNAqzWI/HnST4WQ9s6rBjWSqLuNvppgpKvMHkT7o73bUuoD79bjE+u7gEDXaMHDLaQt0AHYKBWo367FzR3bJ0ystuPN0jQFRowTi4WWNGuXzkm6WarRVFrQdsaluWC0W8wMRQzaIouIhVziOsmvKj3DUsVvAelJiOnWpl69J2eFcMBTbpJUwF0wQhBXS8Qd9x6x5ZE5Qqg3TpKqckboXRtXd5QVLEm2ZgBEkh8VkUfN5S6QKQATrM+jw39+hVlvaAsC+AGjI5lLWjtlnyoN8wAACAASURBVCZulL/0HBzxvldbEY4QwwiqSl0uF4whGOMdUQoE9GTgvaH41eUNvXXESOWfYjRtE4GWBWMMQsKiYmuO9/evuNQL2s4UZ1LxZivCCmJs8O7YGmVN395+DQ/H+vaG23VLnBY9R9QJR/OR/IeE3P3D3/8jlsoEWQKopXBcgw/j4cS0O0g6HkiokwDLeoFuV1yvG5WzCqFuEINHS0nQwoC93Vh1HwKpXwh/g8Mqg212bgbWtaKPgTYGDdNag5WK0X7EUg3VCpQMX0gEFqsQpWP51ulhYWUFeoPYAtORqk1CInsEvqwXIIzSsIWL+nVrWGuFuyBa7LoLxOcrBCQfW1lY/RsbGhRrMTplu3Ou1RWQBYiBYhXNrzDjfc9sJFLZjEpcntUpKwbVgmWpeH+/QsSgEvBagE2Tw8MCQvNZY1MsptjSQbq1DQArYy6BCl6LLYBoHRXZdRUBpIBwNQoN+HCMOBzn5nk/rQPAKUl4fu1ba+V98HQKkO768/dL4X1nIsPgb5Btv/9NPvj5Z/4WObwmgPtreR/M3kdaewj3In777gvYeWIzLD9LYz7tuE/BoxMgmZi/3P+nArcZ8766iWawLL+s9Gtuz13AePn6TEQfezGPD6MDrDVRJLNK8fDM+UwsfTq2/ft/sVC65+2ThGS200MJD/HeEs8NtE6ZzQjH5SI0zBok4hrANr4x8KYySmfVy4kZ37aO9W3FWla03pNkq2hoEFG01tKsBwxwzOChGGm8VZTBWWTlz5R6+lYrqtoOAypmaDpQtZKYnHCg4VmRloJa2A9wzIQ0co3sWekfDKLUqKveOyAlycWECJRaUuJysg1TpUMExQS1UPmJVX8SE1sX9C1VjiRhMSC2XUDJwuYGu9CVWNV2mVBW9hZ+XzgCHaNvKJcvadzEYF1SMaj3LT/T0lXZEu7R0a/vGN5JEk0IUw2HoMJ7oNYC1AVIuJfVBfCOcIGtFd4bvEc6BRP3Xgpg6TgNEH4/hlP3vig7Gs7XVMkFaWNAikKMmjojQBO4WhBRiCFXVvQ1IonxlOgUEWLXx8CSEKOiKxWMMki79Q3bdUNZV2rkmyJZ4XDvaOk74J2JFuFwhvev/4iiBnp2UKkKuypWR4yGPsbuA8E4hipMHqm97wPqA0UMYoa6rIhIt9x8Yo3WsdQVYxK/g8vQ5XLBUhdEH9huSNUhGmLBCqoQIrLWBUMAjAGVwNCSwgDZTRiO1jracComlXSTzgqJ7pwXYsAlzQTJvUHC9CjhqSUVm0KwbTesywoNQOuyE/+jdyawfcNSCudiStdaqazum6GHonmj/Gl6DFSrfPZMx2qlWZ5kUCkJh6P7OtV6ihVsfUP0jjCDlcr3aSeHIgP/RCyimJDrojQNRHKiSimEfyEwIpNOVaAYMDZ0GFAKZHji90EfkXBUsXwuCL1WBDl3eCuIsjtRjcpVvXUqrynfP707SikYg/uUQkgkhDwtHuqG1m/kdYgwibUCqQsMLa87HbhFBJd1gVnBbds4xiEITc7Y3ER2VZojbp+vn+FEpxVib8PHXuCbgdPeXQDOa/RvwB2Q+UQ8/e2F3ObD539/2wdlz73S/6rvclyXffeneOscPB2J2t5B2KFBgdnVOn/Djq0/5WWPsIhfQsx038GK58B1Jkl3A7z/cb9O90nX7DpEBpfP33r+6VwUny7N53vveY581xMee1dqn5XH+eh+3g/z966Tc5r3yY97hAPdvUfk/laaXTXkcbwazhf7/9zbMS/m5Ln/lQ27++9+0dDIzzq/+Z/eVfhkcpBqQInt9yQSRpJrw1NJolOlZXoQzLNqrZOsaU75Uw8qy5ugRSp9KHG/KoKhRlhFQo9CGGiNwO7QVVTz6AmomDCdEIOYwKfBVwbQxNpXqBTEiF1FZY6heycUxAfc0+1ZAzXJz/wbq2kDkgRoSooizabmx5kyqfEg/4FSokozt1LQxYEYVCvJ7kJEQq8Sn01JytkFKISQmLKOGZqqQSTullIRUIzR4IOEbNqAV0RIyp8m7nu21ABMIzYE4J0042IF184KuYqwC9PZoWHuYqf6Hq+NSgZuUw0HoFqQBy51oepKzOBJ4El6rsuSUrR0c+WDNdB6p2Z9KklVKRl0RUqRSi5gGcAiFXeMUDZRZ0AYtp/z5JEEHKKGZS0YGOx0JGHcR4eA87f5ALTshNSpV+PeUzlqBkDZ3bndCEWxQtUeU/4HwbZd0foGCBMRE46PLRcAghF+QKUcgPQd+hFBtaED6pE3vwhNCJ3QljY6oMEEFifn3WAwaSYotlLK0wOiBSZ0bjar6G1i8ysJ5ippnyeoWkGJ3EMeeNsoIKBlIaTGU74VkQnx8WCmMd1GOGDfCBlSzf3t1FrO41lKelyc3IAHk20qomleM0L8wqdqEADJKr4Absk1yOs1cl6KGfqg4zomByE7ZwzG6YSM3hDRd6x/Hyw0QLCLE5SFcMXJEfAAVAs8eSGI/F5eFYy2QddlzhwIJOWMFbcf348AX0lOiaB/g+W9OiVbWbTgez2NHzneVD/j2xeEj0xi2fAyFfTRIQhCNAFIjx2GmA+j+2A+7gPMXeLvvP9+T8zF6CFivM899rftQb5gKkTjXJGdwda9Csn99riufr/bI0l1jmmcXsWMFPbtiFuOKutj12X/NJ3vPe17ei+v2/li3Y/6y1j1ux/3nIsfncf5okSue3HafY57PptfNsMeP/KUXN3HpA8/navlcffPPjt+EVsOCM8Ze13iRTh8/PbwHHry7HhxD9ybyp14G3FKDh9yv8eETn+mDsKrzl3+5f4APtruJpC8+Ptvd4yfgxUF5Ro9/DDoAdgVSMUeBgS+V/i4kAMYkS3vNDqSIEeAIRsVQKIjgnKoKgoJLloDAekZyO8DwIDQVPdFj5KlJO96AJKQEx6o5A0W0MIOBB159/pJvu4pezoy0MGe1TK+EsQ8DiUeV2MmQbEvYIyMSX6MQbUUTYJmIPb94Ue1JpUtOX4ZVQXAfQIZDEkG8gy/IwKaeGaIohilOOEK0cSPQxD7jcYRp2b51KJgkIWUj0xl/J3LkANA1+qgrOI0bpL986gtP/qA+GCgFLE7ypoI3AD1Y2FToxqL1gWKtuPMJ1af0qOJdReBOI+rpxv3hEMrZA/6pwwn0mMBihwrVk1prEe4RF1WiAne339MT4ag6V4f0CzzRv4dWXFVBa+/c95TIYvEVw9kJbbASrmbE5r3CpxSowyKCWshZKan0k12hYpmZ0xRVdH6IYdJGBJ/9hxL5gucW55wJ44h0y1EwlpUWMl3GrKJCkpQGWgGpBADpCTXRID0HuG8EiATTQ8mIZPngBQAUC00MRsOw0jCrMJU0fvIJNVTNSl9Ljx5C8J7TI3cJFOBu+3qU57J9fCARuzSt/Q/ILdFA1Cjk7oKdsOw+cT3fCq4j7zPOyaRGHtyelTAPSKvt6UQArk7KkKuzBQzAHlULBjw0dJHgwh5UPnUyqIKE4xdrSrYKSu17t1vn/enaPJxjByPw4xkht+U5PWeiRbng6ZBn4PuxlOqNSIABYUH8rrzHtIj8Mz9zmo15yXmcVG8W3gf/n3cHuUXP6xpCefcq8LtU4Xt/gs++ObvaZNjyh5/egogzqe6w4Ty9/tdTx92hknc/fziMM7jLMf1enG4r+Ew3+l2jMWLE8p1+e5aPGRKzypO57T2IfU73Q93CdopCdiPIo4XPrxvvtft1ZjvQ/Fi7n0wAK+4Ay+D+FwfnzsFrzM6eXH//VOeNT+RL/7ke+TF388f+Pr+x7eykG9un0oOuKhl8GQKU7a4kZVdaYRiuJDsyoUV2R4fJByXkhreyMC5E2pTCxAD4g0whUpCflQRWSFWSbdXEQCKjs6L7mPHSHPhYwBZtUL11CoNkACaAfrUuOeCHqkoA2w+dhOyWe0XD/o2mIK0CFa8TcHKZlDjnTe4YBpS7cGO0PnWTAAxBHsamaym/CiowrONDo0A2cF5tU2TaDthHqySms6sVxP64knEphLJsqxorScsZWRA54AUZLYDqq4wKaK2PYPeui6QYNBK2JWj1IU3lJw8GAQohQFd327UoB+DlffmWC8XdO8QmfrznBdW0mTMGEgrmaFUGPJAgUGLoRbOBRkDWxtUNVKlA68D0FQ4yu7OhG04PB11aTrVnF4NvTd4BJZ12Ymuwzc6z+YDehDDQ8WZoNyjqLISHfR9QDhaa9iaozsx/DhmG4B5PkxIdVmogpTXy4WQtphdMzDZUiEMK1AhPaV+/YahvAbb7Qp3J/cjmCyoIJ2SFTJGBtzHtBcIlmVBSwI/1FBs2RWlRnQm7zNByGdIG0jZVN2r8x4CLaArtGdiEQxax/B0gk4Iiwc0pYI1O16sIcSp60P9fjGF4f8j7822HMeRbNFtZgApj6zu8/+febs7wyUCMDsP28BBLo/wHE5XRV3WWlnhEkVKIEjYsAdJyVPC0nxQTlYTpjNVUsJp/Fdq5XwS3d22TYGlLvQyyO4bZGSCx2Sku+OxEZ+veS8673CoIGE7vB85D5ScgMhgWhS7i6qMvTgxk1QfA71tiJEkeT09lBM+RX8UdmXGCHTf8GaCdV0w3PNa8XlXrcAh9FqR6T2QlS7heId0FFshWvaA30djJwWEr+UX2K+x1oqeyXg4MnHOvc6Fk6dgfEIdYj8e9iTiSMOwJzAAEgJ2kA5jRvnngspzSCvHYu8nD4Zjnfu41D4voH9125sn/8zAVwBe0dj/BoA4jfZhPIf5JnYi5XPkHkeSFUiPnHlvvez0PAdKfy7Q+FffnpOCA1SQc/Ac1D99aE+hc8wP6IrP8t/M6U/nO5KKeYVmx/d8kktifjq3ylX56JfdzoHt/E37z7qOxflDr2j452cPX/jJ+MjzeVk024sXe6Ho9F3+X24/Skxf7n8q+uBVUeDpUH/w3v1ScjB6hw9KPiIcaoatO7TkbaGS5kEOqQYrBhkjA2Td1TtKNcRo2LxRrlQV4oKlUltePKX49soSHUrHNBSCwMPRQ6hGNIM6pwOpe6AWgSDdllNeNfqGDsAWSmfW5UZvgt5zZezojWZGEcQNT/fjklrrzEXGXnWFBKUenfjg0KxOjsD2uNNVVgmpMCmwhVKT22Pbg3vvgdaIUy+FGGUrBVsfQNDJeLijtQfWdcVogUipxaIBFUMfYOU5A361Cquc4KUESDieVUPBaA5oxVqyqj8C0EDRQp1/U5AsWoAokO6E3MzFfeoOS1afNfA/v3+Ht0bzKAisLPjHWggZM4EOISwrHbPrUomZDnYaUvMTYkDxDWMUaFZmVYC3pSLGhtCCHml2ZYBmYldqhVPzCVT2YdVUrZCYbEBdDFYKeqd6UO+dajsCwqEkAGNi17eOdamUgA3snBfvjiHsbnkmsSKsMJdaIVaw1OyE5SqsMrtjCzAaRioPmQeG3DkGVlFqganmPAbWtze0xx3ulMoMIfGcYUJN3kXBGOQO3EwBSbdgnIMu/n5P6JQIdfTVSKZt28YggRbSdPAejloqk/S8zgFDDMnkzQFb4EJ8v6jAfGCMBi2Jje8D98c7eQ+qWKoBWvgMANWB+sYkf96PRem1gHQYXxXo2zvvy+RfEIJj5Mik54M7cfUSQEs50v7YmLimbOnWNgBOd/WssmrGV1vfMBBYlPK9y7KgmFKEAADSM2SCrs0Ub28rEIHRCOcanRwBH3kvAujdD8iUCMQWLNMMMI3LAtxfEShVmQRLhavvhQzvA7IqgHSDB3LuCgQkag+h4ZnuHhiCYgu27QGNTGiCynClVMRwdAzKPo9B2NtlETkKOedNJP3STgvoM/RkD47A/RI4iQsmRZ51W56DnXi9hj3Fuv9W2yfZzbzme/Xh1A3bt6e4fu52jjWvcc452JWnT563c2KWSWn46X3J5+CvfVEOWdLnN/L/47Lz/pl9Xr8+6umDM5F4NU7ydG1eH+qcPMiP9v2FtkuiFc8zcBZVKFyBp9c/lAfiOMCHoTk9b+K0f2SHfT6zIvfdZZxxJAmfK659bfvsDvnZrRPz9/yRW+yoAPzp6sbXfA6sQsuNGulG/e6BAXiFZEteLWUHgzU5pMxdIHY4TMRglTKc+HU4vG3oqYQ0HPRECHYgVCglqMXgrUOFhLrugTE4YdxHOrQa6m3N4ChhTb3tECcB0B8b3m43tHbH4eTr+8gvRnlMEZIUrVb0VCnqnbh2KwWTQNm2BpQ3iDRYzsjmHeEbeusYSR7etg3b4wEtAm8d9fZGvfNisIXQEu8b6qI0RouWEJE0kJqmXJoqJsPxft/SubjApAInHLdHUM0GAmAwIwYNqcpKTLWhp5ttRx9O7wVltXxRwnNG27BtDaEKqwXrsma1l10fqFG6E0Zokfcd+jDXMQaZAQ2KtiICbWs0YUqZSdZlCE8Zqe6jqdYEEYQUvL39ho7A9v6OERVLWVBquhbHwFIUtdxgskCC3ar3tqHWFQsEj/uD/BgMhDhu6wqMB+fB7EgIEPfAWirMQPneYOUOxeDbhnq7wdtAXRTFWJ22YpAyb6WAu2JEw/CBsaVGvwhkvUGGA73DoyU/4QZvHe///c77uBCm5FnZt1KhzuSOvhgdpQp8oyKRWYVJQLztXssxHJNU6O5470YzwghgPGDDsa4r3t4qidJOWKCEQ4UeFgCx9qI1k6wAlPdakQKtxL/Pa21KydoY9KYoJihCzDuL1ZoJTt07amVN2FhW3Nv2zs6kGYqS3wGwQ2Fm6H1g2zaqSGUWVEqSrFkCwmO7o357gxSBa8FI0ztTAHpDtIFSOOPcqR5lWlCV0rouBcksgIfDwFtINZ3TM8n26Njud5KrB7tivJ8LtjufD6UuVF0anffCUoB+R4AE6BCSA9TIL+md3UhHqliJpCN0Pud6p9GfMdD3ERhjQ53ysIMGbiKEz7VBOWKiuQa7XRj47T/+E9M5xGoBStnJ+8AM/nZA3Mf1AJ9UqfY7IOYFebmQnj+/V0pf7Pjzmt2vHZD+cHtZRTwSgh+ZkJ1fnZyy5wTuCJbyOp3hYXHZ7eP3ip9fmV9xk/0/L957/sl7t0ZO5p+4Ttocq9kVuGyfTftX+dnle/x7qRa9guvM2sK5Y/i8HcN0SpLl+Tl02vnlQT6+safJp87n/1+3LyUHKtSz11kl0gD6FLtL59HhrHKNRnyxWI69p4zmhtoUbHMrFCTwhQ+8v2+oZjkZeKM9Hhu+ffuG20rnT19WIJ0/ESSYYhDDyyyvo90H6rLicW/pYTAXqsjqNHB/3InjN2Krp0ygwHIxPYK5rXeUdQFaR9HBZMZ7Jj2G5gEZd1YncwF3Tyff9HXQaWgKQXdBaE3nYoELsezrtxXRgJYwrPBAuMDVYEoFKBUqO/lwzNpwGyAJ1QaK6F5NEBS4N2itGBvJh6ZgkF8qynDE4OJv4SRmRqD3hqUW9Psjq9AkbJoGbjpdbRlEugP37jCwY2OlQJLsKxkAbt/vaNKwLtOsKwChj0XvA3XCbVLMaPSAuyFM2L3QwnFrVLjSUrEsK2qtWQkFEDSA62Go2kgGVgbsb1ogWhDeYIXnb90xMNC3xkSntyQwlzRiW9AlQJqvoyphYbCCkfr9dVkxWmciKMBiBe9bYyKsAITk3GUtULvBA9jGe+K7K6RWrPoN3/7jN/Q+8L39D+VPhVK+3h2///4dVugdEgj6UywrNAK+3ck3iUCMNES7vQFDMbZHBrBKszMXvL9vIDufxmbTgKz1juGGbdAx1ySgMrI5RHK0FkvDs5FBLrtKLiTEjzESDlVgpeLx/o5bXShMICMx87rLqULSwVtosGcA6rrisT2ooJUdmQh+PxNCx4iUoqwswUfkrIgRdmagKZ3o3ibZ1SvCHY/R0ZNrUFfOfVWD3SpNzmwBoKiTMC6BZV3RhgPeofA0rkvVMmJ24H3OOQFSvU1Kxf1xh+KRVgHB77RtnF997KXcInxW9PZAqTcsS0XrDbMi27cGDcIyR2/57EkIVnRYWWA2EOkDMsZIgjt9WqY4gZhg0YKtsVP6/mi4LQUxONPHyQTtvJrOZ5coeV2T0HeBRXxc4S+VN5VJdo5jHZ/jgnNgyiX/GXt9gXw8VcOeFYz+zu2fVQyfHCJuM9G6pFQcyqdx+ngc7PdcPOnBHxKPp+1j/vDhbU7bc89nBr+/9nb1gpBT8nRUj89xaOAc2B4DJ+cJfvRwjsHcVY2ObVeFm9nJ7gp82ueT7/yrS2seSVeO8znQf7rHZzLwqapQnHqPR5R/Svrk8tbxsRfKVM/7/ZPGOT78cc3cZ6eD75/e+xu+75eTA4r7BHkAGaT3OCRGCSsaGL3BwQXenbj1UpTKQx5YlhnYBeCdEpXpQBtJNC1FUSAZjEu6q2InJlMSNYhJD8B926v5UKRRF78vgipH4o5aDK1N/DQhNEUEMEXvjtCCQRkUYozhzIOSlCiWRlBzcRyd+4PVT1GDFS74GpEE5lmHZBVXhUjnCPItVCWJ3gW3paLJHaOlWVIwyAwoHhs9CqxWCALeee6pTEJZ1EYlJtDNeXvPyqEZq7+Fso7b2Bh4hxMuJOQpmAqit3RajvzujmoLAo4YG+EnudAQrhLYtkZZURGIMbAbTidsBJ2Vpy8BEDChY3BP5aoCQ6kMsNw7an3DxOCrALIofAtKjW5tT5oUNNmCKTyhSQCDUSkUUN2Go/U4biJ+JVClRoGy5M3Eh7+qohjHZhLYZyt9KSXdmVuSYElC/f0+0IMKVFbpb0C53EIJ3e0BqEBKSXldxoo9FGUx1LYCgyZfKgaxQAyOKQm7upO4fXQsBlipmZQD3ge21uhIbpXSsoVeFKIO1QEzGrwhSd6BSOy9Q02w1ts+phwmuj9HKoCpUla3j8CjO0rlnAoPYKRKmQTFBLLyPJ2lIULFn07yr1VW6SOAbWNFHHCEVmL+M+GIwUbao3tKzRos11aHQCLQt0b4oJWs3itCgsTllOiUwmsqw/HeNvReUUqFpbGZaIGZ8vsNOoBb8mGmElJkjBaTD9CY3AgUGsj5kPwoFXZpInhNAunYzq4ZuUeZaDjyOel7Z6ZtjQmVESrnHvCxkdsiSvO4TphnXRVtsOsnwg5HBRWa3BukFhSlspKHJ4/LYMaCjg92MrzPvtN1Cd2x6/wP9tZ9btfg5PrvUwyff598CmbSgadg87y6y/6vD+9/UiP8pbdL6LLHlPlqgN3HU+JwBP+noBbPY8NXiIA5aq38R2SAEeeBvwRfe9B8Ou4H+Bf+Xa7AsT0HlLP7sqsRvYxPn6F45yRqCkUdSd4+lz/AxA4Rg/mXXA98nPEXh3MBmUKd6wPgC0eiwP/IaY7v4/8yazod9/TiV0bqzPnYtcP2nPxUrfiLE/5j0P+zYsRXTnjcoZ8f5utf/GtSpsraOtU7jmqPD8/FFUC271X5EGPQK3tLPEBZUAHJr4gkNgYxyVoN2gOYjqaQXSHEtO4wiUn4dSdOWkXSXRm7m6tI+gCACzZUU+40nh5yoOoJ0qhsLoRIyc8cTM1AUlV2iUqIQLRDBxggJedAIlK2tAFJRpbEPZhOOcgMYDOrHT4N0rj4Wzr/QjUDMnIoqP6TsqnmNEArlvulUs0M7oTXREVRrCbOnBKVQw1VDb0zsNJgwCrwTO4AOBOPWgu0UMpS0lCKbteTN0F8vacWZAIy4KlIM4makrh9hbPzIEKfiKC6FUdvqsZQGQlBEjKLKYPux3OMESg6nxscE5WU/3QyJBA0CXMf+7WzYNV6gJCcUIP74LVIdRtWljkXwwPHjMzrNQYr13l9WidnpG1bOiGnEk8IWmcioTJVonx3lqUzOMnEdkpOBJxjo29UwJEk5PMq7waDaoqAkVgfhGYR286E0oNwE6s14Wopb4qUGs3gYF1WzhHeCXx/NIRYdhmm7j3Nu+hRQhgYMnkdg87JAJV1RlCjXxMyFBG7upRCcqFUiND0bD4YB7Od5AsJ2ghC4MAAV6YHg5MADR+oeS8ND3pIFMqxRt7XyKB5DCZayFnGgJoLwDQqk0xIIwKRXiLuQdhj/g5Acg4AgCCi7AHSxPabWQa+SJ+ISR7LACHP606xBxXZ/UMikqQPdltmXG5lAVRTFUmyAMPiRIDXvSiLB1vvx2KTp5OQhPfR3Xs450xEjvvcfYodnMPBffE+BzfXat/zsnMJ6vG8zUDqx4vVfB7v57mu+B///qW3F0pFp0Dx4iR72WMGnafXzpHGOSk4x6Gnsd3XRZGXQ/rrh6A/3/Zka27nYOErn5bTGJ/uoDnCsRtFXIM4Ob12DpIlnng4Txfm3yEx+LCdYvHrUD3NU5x3et5O98x+3GMkZ8Fq71acuhQfspRXcyD+0MT4w9tVGOD5PC/O+/ydX3US/sT2RbUi7NjdiSaPoKSm6oQBxL4QBrKabZJV0gExYm7DqSU/K2IzGbDUDcF+WRlEaRyLayQEhtX/kYFwchoy4JCduCiIULrOgkHytjWS9jArmlRolPRpEI29MCbi2QH0XW1oVlRFgEh8/1w4+VsGJAbcA603iCvqUjMIQkp+Osm0yYoPz06GkZQNAepCnPkIpEpUp0qKZvCiCkFyDIykmhiEVSC/o1pBFUWZVdApQeuDkKqUTBFQPUU6lZoYuFCiVRM3HVaO9SSQCaEAwg6SmNHdbN8iVaAAaM3QOrsAAcRokDCEp+pU5xPBrMCsIAaTFKgibLb8BooEbrWShFzYPZCULp2dhpFJq2Sw2jdW1EXprkufBkMfAVuSW5GVa8nuw1IYgI1MfBCSCRMJwUNYfeUl5AO8VkVvAEZPLwNe37a1PWinb4HDwE5T3xoQKYs6psaz57WmSlUXErmRsrkiwGNrENBVF1P3PiT5srwnPALbCEik4lB2ORRMpCM7LOEksSOT56OSmJdSUsa1R6LzjEmbCwYmAVpTFIC5XExsvqUpXSqWLcsKVcIHe/ecJwNjELIzJUbhTB4jHL2nIlreG/M7YcqCnqEVQa8TDya1ze+xCwAAIABJREFUvY3svgBSanoQZMIugt1/JCVNxbAncUx06FkRpwAc6Ufh7uxOeo4RSE6XLIqUwiRpBnVsRlE1aQT9PkRSejnA3+ugf4kWiPCaT48GOmmXDD5Y8HAEonWUqtmdI9lcwoEkQ/O6pndKUF0psks1O21TVhX78B6L5eyazGHeSanzMnyops0FN9vAM7Phq/vcuurqH5fw43ZALp7VWQRyWf9m8efX3a5B/DkROEjekpA8P33mtN+rw8r1H1SOu5xyniSvC5+n56BjrspfN677Bbc9+TrG5ymMz91mcpxJd47ZXCAvuReerslprr8O7uN6rz1/8N9qwOd2FAquak1y3uUp1n0xwnuw/3z4pw8fA5z/J0cM++z3guMOeyVT+7Pts70/S3A+XNpzUeb8LP1RYnh6Dl9f/2MT52vJgXMhJsyFCzpb2UdwCVB3fmTVkFVKSgGO3rEUylmqZaXTBwAGtm1r8MgqXmqjz/WpWMWjb6BLKhVAPMsrY2wodaUufB+s1vdOJ12bwRgAkEAIoWSpJa4jUh1JIViXhfKQ8+YUgRqDOZIoubT5YDteDBidhlnFjHjsQYfm1jYqqcygt9LluKhiWSt9IYSLNSvDQGs9A96C5W1Baw3f7w8G2ZNPIAEYgwTkWHtCizy/M0LQuqO8FaxmKGrEIaeMZxfeAHuFUhRSOO7vv29Ylm/o445aaaamSglaF0W7v8OsoBRWu90pWWq1Uqs+K/A5UgxKHRgxYIN/U/kmgOjQGAhVVsUzUSim+ZsFSQAhhMQCUODtbUkfB3YAJLtZ3R0QT2IsiMWPQDVBrTSxYtLKoLhUSRJxwPsMANNkDWBHRAq0CAwTFsKuj5YFIYIe7GAty4LoDxRV9G0jlKeSSDuaQ0ph1Tp5KPw9hr41PN6/kzgPkm4XEag0eGeyKoj0K8ibOxhkDtBET4DkbCisrGjv39mtA7svY9tO/iHO7xETBkhp2fu9Ya1LEpF5jrK8YbQHtu2dfAZh54EarCDfB4HwnmMj8FBIGyhGp3AraViniujkG4VT25/8hUBrDwRZtOiNFXlE7M8cUYPoggvWPR/iU01M82FRSoUKE0urCwIdSKdyqqUt6O0BsYLQlCcUAKb4fv8dZivNBpWCCu68v30k72pNwzeQ68Fnm6cp3l7ygIhidDkWtH2h47VHDAhKFgyY5N5bz+7aSHI8r/zIDunhhwEg+PzsvadZmmApNaFnyGcW7wMttnMRPKVpwxuKljmdAJHsnHxcQ44F+wiTzqTI6YnAw5wX6U8C9T04uiYM85jnTsHcjjxiRmPXY1zx4p8EZX9i+2xhfxUf/NVzHUdhkjmVseTD+8h9jiRtBprPuvkXGMSrxOo0rrui1oc9z+M/v0NgBnR/z+/+5297X/j6Yy/bhRsTcewmpzkoIBfsdOTLMZ5m1Yz5Yr8Gx+sAsntwfJovXoPbX3l7McqME4CnBOFVsHsUKa4vXxPm83YoTB0fDCAhSx92xn6HzcTxb0zOPk8zzif5wtPs4wD8+O8vbl90SAbG6OiNkYEIsBRDd8e2PQCwLf8fv33DUEE87gmFYaWfdTV+R3YhGOBLqYjRMAKs7iYpeQxKQ1pd0Xtge3RAGey5B11MpWJdqZ5jWfXs7QHvA8tiVPKIxACbwLEgnMok0Tc6sSZ6ZGaOpqyU5zdlAFoXSoiCWurDqYU0WmeFtDdAFvo2+EBdV7g3LGrYWseIDg0GbqWuQH9HNSNOPgThioDgsXXc30mcXUL35EnCAaSCk64MDAYDVyuKHqkrYiuvZoBWBqMDWtC3DT2rqdOwLALAoJmUB8cpQlDf3gAAi/wDCjoXQwQjOqJ3VCPBcYdVhWB5WyGg5OqIKbEI3LJKbGbYHneEBEKBwIDZkpj1rCBHJk8FUCFExsQgUphcjM5AewyasOmAe8cIVrKrLahmKMuK4ZSVHBGQ4ZxHEigGKlFpwsKU0rWIwBCFi2OMgd4atCy4fftPAEzaKLvrqCPQQC38MZhYhghsoWQktCRXQxCdxPH17Ru27/+NWm+Y7s+tkX9zW29Jpo6EcbH6653Ec380wDtut4VE1jZwv99ZYQ9jV0yyk2MLBA5PfomKwobDdVZHLInkAxCS3VvviO0OQCnxqUvC2wIRBcCG8MD793dANH0/uJDOyHL0ToUpYTdmrRVqoBdIUSAGUBTVVpKJJQ3DRnbMQKnhxxCgLAywB/016vINAy35Q1TdgZK4TiL6hpAbPL0DRDm+SzH01oFQlOWNLsIA2nAs6y15OHTUViv49rbg+//8NxCBJV2nhwdMmUCLKWpd0vnY4e2eru6aClFOx3aAHgUAcKqyRqqFKQJb26C2ABAm7KPBw+lJ0jc6i6vRwC3oQN9yfRqp9MbVTFHqwk4N2GXB6HzAhqNawd0fcAn00dEeGyVRJ6E80gVa0wfhxdozfVW4zQA8xySfmWdM+v4egGfi5SVvmP8QJqhHgC2XhX12suRyELmM7XnThC7u33/f+/wL/oU3ORUIT699HMcZke4jdey6x4/HWM3rdFF/uQT28pS0va5OzuA1Qi77yH6+X3c7V4xnQZH/zkT3ZUL4PNtwGpZrwvrZdn37uI7HK68//6uP93m7wH/mJvLhmTFjddEjMf7wmf2Y17/3LoEe98Il98h/PqsUHY0M2f9f9jX157/t1S7PKKAXe7z+0M9O+BdhRM/b1xySx4boj7wwaXhlXFSmq69oweaDWFZhcBsjjZeEgdoIKhnVysBxYm2//eM38GlFDHeMwOiO+/tAGx1iK4Pz0eC9U70HzPbMDD64MA0PWDEECsQWavknYtylEALDchq7BGNAI42qRoNQ0gYiKZ+4sGMQfWSbXBKWoNje71iLoQWre6IGiOL7e6OBFjpuv73BQrDUBevthuEBF0MbA4uyIt1joHWnrn5OisdjYwXSlCREdzzujTCfDHABQAYrvt4o+eip6VJN8YhAe/+euAVJHLGgb8C6LFi/rXjfNnZfZiJUCt4fGyuMJyjM/b5hqYbltuwJQIwN3gMolUZRSeBubSNZsq5Z3WpJ/AQiBpMDFYg3GCQlbyMhR7GTcKMISgUWATCAIYpaKrxvJL1q8lm2gfq2QAqDUjrCKmCKrT9QJKVhxUjMTvforT3gbcPb2zdECfQhGIMh3IDBe8Njm1AeLsbl9gbrBff33+HeGZibwbDl76ywW81KNggZa6yELAKgMkjtTrMujAaUFdYFYqBC1jZQ1VDE4UWSt5HywRHszqTcrkig+8DWAiKO27ff2GxJOJkuBaNWvH/fSOJvjW2G3eVcoHUlR0IEJBEXqJK7ElHR753CRcPRxsbjQ6CloiiT9Fn5Wm8L1qXCigCg3KiCAXjvG71SbjWhdA0I4FYr3tuWkBm6LEctVAQqQAkBgkl57/Php1iqYohhjA0hBSMMo5G78nDBUj0xg+RB1VoBcbIXCmFU9JTo2ArnBgYwqPzLeZnzF9N40LLLNXRXhlRR3NYKCWDbGsZjg0dgLQVhsXdVYjAxYNlhsFuHmWg2QAg7rAsN6gg5BBCG7h0eQNs2qnupQJPfMZwdkeYju4j5jDKFdcH2/k6YXXY+ihwSgQOC6B3YNrT33/fn/cWn4BQ47n+fQvhXiinnul2AQTswq6PXgImL8Sd/x9PBXmyvgorn7/LLb3ss/uPB+Nh1uf76o4FwXN9XweurOGTnl5ze+BrF89faPgvmf1ac/fDOuct1Lm+frtGVcPx8jOcs8Zxw8Huq6k+Tj3/1TT78cRqL5+keH//52Qy8dDFPgxtPx/jM3XuO74cPXb7Yv9/8P29fM0EbDqrrGIopIkpWGAVmXMijN2zvQVURNVa4W7b4S+JjB/GSPWEUgGT1S7N9H6kGwmrkTYUQnlyAxCm5KIOGQaqBbdvoEAwDwngcAPCG8LKTeiUGRCvJyTGdZCXVlIhH10IogZomXIGVdfEBrQY3S9lPKjCRxBegrqSm2RAQ6S7srhAYxnC0NlCXguGGMVryHDjNigHeN8SURTRhdcYHigAdlAotla2B0TaEKEKAOgaasyoqElhSvahIANrBWiHhI+ggybRtoPgNK/A+BmqtVFJJYuJI2JgZ/SPMjMeajtV0D+P1bJ4V/UnSVXhvsNSgL4XkcAAgztkzGKoYjzurzxB4KfDeoMs3qBhMaIo1ScaefJLurLRDkO7I2AmgmrKSGoFve6U5A1/LrgcIN1IrABp6p7qNu6CPjmIBJkdBhZpI1+skys75xfZ/QaCgritikGdD6ctOp9oOFF2Y+KSqzG0toLY/r5tqJrqaZPTsYFgtqDV16oN07fK2Yi7LmgmfeMJIhmfQ6AlVIrFdMZK0PDBCkxgsNF+TJFAHEN4wugOVrryQilCaBUZM/wol5wI05xMhtIf3J43iigYgjkDBgKY6GBWGWqoTjfREQUsYX0R27ehd4WqQWhAdCVMkHBE+sKyp3JSE+/Se3jX9tVRAbI9rCTlMLlImTg5Jr5OB3jqKGHTRlL4lV0F8YK0V37+/Iwq7SCoKLQXt8UAIn3P39433cuLABSDHobeLWzXxacC6GBMNW2Am2DbDo3UICLGMqUImJFm3nkpDCMCp+CPF0myup+eaQ0qqqcXYDdk4JwiXUwV6owFlqbz2PU0D47SAThI8E9BrJY3PrKzczTmRAc+H4DRjowMfP9f/Az4xOQhxWsQ5HT4GPSw/fExELqXFn1Vqz9/jJ9snccnx/t8dGzDqw1NZ/9Rt+eycMwJ9kRi8TJYCe8d87z2crpG8qkzL5f359+z2/DsmCsf2/NsO6cuXvAAgxVTwyQWbYx77v16e6Qfz+d+ocYAJ1znd/UcyilmAOCdTuTb/6KCn5Oyqhva66xjzPOBz7aIONQsgHxK8P56Yxem/O67vZw+ajwfYPyf4yrf4cwnk10zQUkGHmVQw4DZj0JyunB2EWcg43GJRBjR6mhQJxkhCI38XiYZWEntPbLAoUusc8Oj4dlvR+kDvnguzoiSfYDgpzD1ImBYlrVlFUIxLjwchOcMDPgLegVulik4AGD5I0CsLk5YIAKzwMtDDrmTCRFLgLphsRD5f5VjYAoAYNKUaHcTDyxiQceA6R09YRToH++gYzjNTQJQLRQTYeg+HaXZBEpPNygEDHM3jhlPm1DJYMLGE/MQeALTeoC0Ao+SlpglYeAd5IQUh+eBSocIPsMszaiVcyIJzQ5xJjfeOILczZSY3aFXUtSJC0rCMJFItqWIDOipr6qir0HuAsJS6Iwm09QwM+GBg8GKUqBQmM6KsVpOUHhnIUwYzoDADSeeDBGQtBcMDdJ5N2EonxMO0JNSNDww1xdgaWnI3NPkKAKs3CiZ1ZsrWgHPBpLoT54c6pVcjJVvpRi1w0HiMUq7kC5RiEDG4d/RGPsach+4CkQFq/5K/4qPDrO9EWV7rhGxZ4JEeGWV9ywCY4+AC9ISPCACNgAEpm0gIEhOkg9g6k/1iBfB0LxdBXZf05CC2nYmbwZ1JhaCg94HhAoCyw91poqdQiKdaV6pi9eZ8zfjb6TTNDh4odEZVJz+Iv7WW7HhR6x8e5EtlGDMyKFIzqhyVCghQi0IKBZRjBLz7hM6jFsvkVOjU6fQjgTHxMRHI4L08gh4qRY2JtHrKoaajcdG8huzOqCgd4oWdid7YHRWll0HrZHmTz+V89grAIkEjeT82GvFJBiXB56uZZXJC7oXn9aNaHBWPTKfS14mId33641hc4vTKE6493z/ixucVby60V+jPeU/J6Hcimc4B0J5UTDz3rKzM73SpaP+xJOBL21O34+PbH1ftP3zuPeDcj3IZ3rzsz2feC5mTN+B7UPP0/WbrIA6s+49+0xzj0/KGY3SPUd7laX/xbc6xnwdT50TpGMgpjHEkua/HZdfVj9Otsp9yBo6RSfT5ANzxeOnPBX3/StuZK/P8a47i/xwTnCfiqTvwPCPnvXK9Dw5e02XiY1655yvveZ3OiUqkyev58H95m8Wjn91Dz8WXUzrFd/5IlvHz7WucgxzA8EGt9oVBCjxJlqqAOrHHEem8G6xOpnMsB5gBPpRERc2giTKfUyKRv1atkERYSkpBYg/SzBQ9nUf95OTJi68pb8rKOqvOgdHJfRjDEWVqsfO4I51EA4MFaZEknPLLiGZyILybIycZUjM8n8yE7qRca4iRMJjXyH2g9UDNVqCPVA4BA7PIIGmkLCWfK/zRNEUbByERSVrDJHbS2RZIj4GeyUJlYGpqJE1m0HQfHX30vHaWgXmaWbFkiQjDVJIq07RqavErkwpA4CNhWSrkfgLZWUhohBya7xEJSZkBjirMSgaElH8NLWws5O/kTZNGWko4h0gG3krPi0MJiIGbgEpJ3ZNQroaQVGQZJNGGIEnKaXKWhGP+k9ffVHf/hdY5/r49IAhYXZh8uqe3BAncRRVu47g1s1INZQdpjml+hBXiIGkaALo3Kn2Vgt7YcfJUohKhBGUHGMD6oaQVg1CdaQ5HTCWDTwXhXHkjIuNbfh9JsmoE50kIYS8m7LZJVtOn5Gw4KJ8aQDEmkRH8ISIJvcGuuBQylX9ArObIbE9Inh3BfZmcMgHnehvw1qBSMsGKTKZIpufcjexSRkIMOdfnb0d2FJDHbnnP9e6oolAjlEdVAeVCoIgk91PhKXxATdFTjhYpIgCwsOBjwJaV3SVnEiW7oVjCJHmnIMVS872DBKpGGJyAnhUOsACh/BWs5JP8zqnE37W1B/oISG9QXZk4gYm+iqAPti2mIdmEilsp0FnvVYGG7UWb8xasA+0LZASuC/knsAdBJqdzId0D+WO/D87Icizw+wu4Bgh78PbJeV9tz0nCqz1/lkj8qfrgUyDzle0ITk8B5Pl7yQzyL5/YTyl6BEDnN2a1dH9vD5ZOe4V8eA2XfeXDvv9O2zkh4zr66qof9y4/c8QdAWTietwf+aR7EfQenbP9vzn/z4HoK3zX89X99TsIl0m4v/T8HMgdcreTotP+hM1Y7dUprg8WPEMZr/vGHpftQfvz+ffD/fEnw7zHX06vD8H/yx0+vLI/256Tqb+4fa1zMINZAcqyolbD/f4AsgKnxSDmhK1kC7+PDciAg9Ughzq18aVQbUZSsUcyePI2WMkHg6AQuhAfRKrYb5id1Gh1l9YkQbVkoEzTJg8SnCOooDK8MwB3QotUwIXfO2Uu0ysAYHXQtADeYWXNSoAjlI7D7pQsJPRJYYXVzRhtr/bBPb/2oLJJyaqte2Lga1ZW+Rtbqj3ReG4G2PmbR6TjcirAuNNNNX0cIFOpPoOQDPpKKTvspw0aUkniqDmz0hROaJgWPhvFmkZjCisL/E5FIEJQCOXqLf0PLBOLwkqxzkAtKOuqoHyjCmFAkcRyQqjAoNksFXoMPgYaWlZQ+X2KGUwywA+mDgrAqkFcdsIt/RgUvW8IBJYiyTHJBEUCsIrRB8wKFV16h/eEUolhZHdsdi+6j1x8mRyVWnbFK3fOh5odGPGatgIOhNCsrxT41mm2hwCkIpxE7EgomIDXWozwqMd9o4Nz4ubdHbd1gbjgMRzinRX1onBNYyyrNFjrrAyvVTkHpu/IaCm7y/kzwA5WQGD1cCeWILyHHSIBgp4UhKjR2G94dkhE9uQxDLyPcl7FcAa8I9gsmDwlMLFmkcAoGtA6RHxPAMIHBgSSXgm8z+lSrVZRVkMgzfCEY2hCuJ9ZQhLzmgwMjM0JgwThOubkJVgxdASibwzInTAzEtZn5wnkKwlXLktYoY8JdNFLMOc9VZeyOEFvDnKMTEtK6mLvjNVcEEcp7EDMbosGvG15zyfpVti5YRcmn5dD4MPgRldtgaK5MxHGrEKCpoZ5DuZs+Z2fJfzOMJ8ZzD9X7eZa/mJFlnwOIZ7kAU/B5iE9+qx+9ByszcAJR9HkVHb9TK3o1fYyEYgf/JD9e/84CnuGLvzZ7Zw4eSRc55IDMGK5BqYZyMwO4KnUf4FRvEiqIj5EQHgd0r48xPmL/dts17z1ZXg/HwPHfufA9sNcON83T9PtNCFfmCefzn4c/2Ma++tmCOd7ZWcy5a09HzkzoBbVT6fZkS+fOgBPk3V3bb/kGzm6crqH+GX2BO24n+ZzdF5E+dKj48Nv/vqux8Ff3XhPJ/+7b8GvEZKRWutSqKzxvuGx3fHt7RsALoQRAPpg1VrTbTRYgazLinWt2N7vDHZ9UDWGEQ8QQGuEFREeI1iWGzYnzpfBPKuWGpG4/07JzghWn1WgWtPQiYotw0muHX1gWW9J5GxoHhmoZvXPyRkIp7mWBPFKSzFqt2tFrSVx+4TxSFV8f7R0xHUgLEnJDHzhHVWBUMIeEOQNhABWC8ZQaEnX2s5q5WiN13lWo82gYnhbKwBDqZXBBpgH3O8NWljh5dgBMCrXFDWgbcTWl8JOho/EbwuW2xskcegugC0r/PGO8Gm0NqsjBkeBieG2LmjbA6M1bK1hiMJQSEKVQF4GtMn7KAoZjZj4jIL6cPTeUPImXpYbRAStNWxtQIIyncCgEVRWdXW6agvdgWnKJ2geuNWVXYcASaoZSdSi6PDkLVBdCQCQKkolExWEY4gDCohrYtGzOvxwBBw9OvoQLMtCR+DEpUcw+F2+LZAihJEEACd8JEQwhPMWGZRGOG5vNBijxRrPAThKETzuDxgWSM4VJiySCw9Q4Bg2WKVPgrCjILBRHUzSeE4MohVWHFt/AMIuET0cyJ0RDYQRymcLg/WRidLt9g3DB0Z0yrMqEI33YakGYKTS0kDBwLqu6AEUMdzv38HOnMBB+KAVpeJO1ntUAsu3G7wHelA1q2cSoFkw2LY7QiqWDPJLXQHjGNfCe5Lyo0yueJ9ViFVEfyCig/L+TtlQKyhpRti6AN7QR8Py9htlVRHps+FgY4V+GBIAtKRiE+FDAlbhfdC7wiydv3uHgtyislRAFIOaAaimsCLQWjF6YxHFKUpQTGF1gUUguqM7RRZqobdHLUzcfPCZVZcKOPke7o7et+zIGSIk+Sx2CVYg9B0ZvQFpWUgFtMfxvJ/PGGRh5hzsAC8qoq+DyflqJIdhHuAsQTrJ/nwrjsX6EqCdj8koiu/Lvi+Tdv2wSl/rji9Tg59ur37dD4OCv1DOfUX8Pc53hKv799rHIfZxyE/sHcTPfu+RTD3vE+ednl85fTfBVxKyX287zZTnYB6fz83nBPq8veImvFI0unSL8uTXBOG4j3C61v8O24W/cs6JZ8B/uhjnHsEhn37kThyz83NlngOXz1/ED/bE7vxkk1Ny8Ewc/5Pbc6D/1Fm9ftMX+7863Gff67PE4gvbFwnJgAcVaR7vdyxvK357+waAcB2kyRccWMuSsBRAolIz3B2jAevtRmgGlDyANlALq9XbNqClYJEFCKoVTQ1tMWKBvW90lb3doFixyJ3RqLFqp5lEPNxRghCLUgortyLw4VhLxRgNVhURA+3+IH7ZO8SyExJcNosZ6u0GIKu7ooAJvAu8AbXS+MlAzfvRnZKZIKZ+tEZrAjNYWbAUYbIDBlCaOHO1Bdv9Oxd45yJXVVGtsKMSAqR2uaUL8BgDS1XU2xvG2EBoFgPCPhy1KFBuxKmrkqDYB5bbDSqN5NllJenaG5MksKLrzoq6COEUj23DMhq+rZWOzJHY9OBnMYilngHeCBpbhSgKgGqp7+8O94YqxKu3PgA8sKwrpTr7A99/f2C9vcHBarwWXpN1WchliQ4Po6GVCG63BbUKYAsCCuvEYmN0Bma9wZSGYxP/39uG0Q3VqNiyLgtuVlC1Y7SBBxwVNOZSY0AvHViqQQYQ0tCHQKWgiKHIhqqCsXWM5DuoBvX7MegZ8Eg5WFWo1R3rXRK37u4YraE1kljb4x3rbQWEUB1aEAxsjSo/RQNFSZbvHhhhgBje379DxVDLilI4JsMNdf1HdiKIfV9qwSjEnlcz8mvkkDucHJLe7qi1AKGpYsV70kfH21vFWhICA6CPBoVRZrVUzB6WBqFO9+8P8mZSTo7KSoGtPbAuhrJW9ORcwJn8LLdbBq/s8KH09NQgxKbAMKF5DBANRYD748E5HYP3DgARenb0RpEEkYJQQwS9WEYPCPquFspEn92fnuaFZaFwgXQARaEwPB6ODiMEqhJK5K1Dq6bykUHtBm8bYmxoj4GCowvhWfDYhgPpOWJVoQMYyvuw1oreqfgW+ZvMBJGqUCKUU1UItge/MyBoyWASkKP09o83jO3OpCaQCbMlh+b19iKs4X8zsOf68yK4/ABx+RgQ7YorcT32PM6xiOdw5eo/JSb/t6um/6wa7R6zfBZ8Ttzt07bz0j7ZPihN/YlK6J/Z/195ExEcM/eKO+f7P/jwDxKE8/GR0/cCb5EMWs/H2BOEc7D4h37Or7OJ7OpBAvkwjjNh+stTLbAjTs9Fi+M8h/fK+Y5/fjL9wg2bL21fSg5KJc8gEJARVCBaFvRxZHEBVnSLGu7vvwMxAFWqbIyBdV2AzopwqQsCaWjmgtbT6CtvlghmiRKT8JvVeE3Fk+5UErnd0EeDtwaA8ASMBmhgCwO883UzKtBIIKJz4VVAoNC3Fb45ym3NoCsx9pp+ACIoVvBoDyA17OFTpchI1tQCC0cJh015yQe10NdlTXIpuQ0QJkVilC4xByu4YruBnFmFLUuqwHh6FQBoibGfqkC1oG+NSiTCBcKK4e22QjDQkvxJdRiWOr1tEE/HZSHMyr1DVbCUguaEOgkAJBylqmB5u2Fs75SgHA0A+SZWKnp/YNvImeDFy+5R2xh4FgNJ5w1jNAwVaOiB4e4bHAzaRCu0LCCvYEBBs6liPHbA8tnJTk1rDQKhC7YZqpHcmuwIFFGMwUCy9YE+6GDdH46xfoNq4OEPxOgYY4PVBVDFGECBpIkbE8BHd5QZCGW7sawV/+c/vsGh+K//+m/c7xtMBXVR2KIQF6A3OEC9/LLCbEFPLwbfGurbDaYLuQ49IPJIg0FFKZWBe3bKYOwKVCj+8SxDAAAgAElEQVR5KCGwUmBRqOa0vBEJYxWJQUNZVvTkoVgapoUqFBWGADkfhC4NdWxBSVldCorrrk4lZYGsC9rWUG83CBx9PI7KcAADiu2xJSGalWCJAQnDLXkqtiTfoA/0Ebi9Lej3d/KHMpHsjRVyWxdgDIhVEIpFPkhrdxRXVKs7tBGZtLTu6P0BVZJ9RZeUVQ4AHVoLylL5vAgktt+xvq0YDzI0DIBOR/YeMKOJXHvQ12VdFogq2hCIBXr6XhTwfoGxaEFp3eRfVUNnbofeshghyI6iYns0eNsIf+wDrW0AArfbb9je3zEikw0xWBXUkomXO0IqfMhO8vfG7gYMCeFkh+H99+9YlorQ7N5gFmFOi+DkgwE7l2cSnfOBz//La/4SmjLX9h8EtJed52J8xGTHu0+VtUughvPr58++iHLj9I9niNQXvuH/6vaiySE7afwog14cwnMNOP8dMWmyB4fhbLhFr50TyfVyvT72FObnL5t8bQz/lTd2WvnvC9QlZg36atYHII1hcVS5nwJXFkAUk69z6RjMgm4AmOIfc56fICzXZGOS8V9Vzv/6Fpd77m855Mvjy3WQrjvJwceYj4/jvU/uw3NX4PgPphP4+ZpxeK/cG0TWUk4Fh/m//Vl3/s8pgTnleTgf8g9tL0v/LzLA5wHZn4vz+fv3XrSvdQ68wb0ndr1iJ9CG7A8aMxJJh3cuagJIuv9GAI9tgwAwC/StYaqfTCdPwSTXkmAcYBVQgpVEUYWBDqjeiEW2VOAY6XMgCmgtJKBmNRZCzHUb7FIUy4pmkivhgVIUvj0Aq+giCWsoNDlLfC+EZN5gjgIfUz2JqkeRCcuUQZ1cADF2EQTA9tgy3AWid+gQeC7EWxvQYigjYSY5vrUYxqhwOLatAQuwWNkfMApAS4GAD3jqLA2oBALUhjczlOkS7B3bCBQdGNt7BuFBXLkZSlnhUPTedklDM4VgA+A7H8EjEL2h3grWt4LHvcNHg4hgKQpVVverCZCGV5E8EQlgZNJVbCFPIxxvtxWrM4gCBJE8AklFpxn0SklSe94X2+OBALAsFbWsDIbMmaCBfAgAEEmJGwClGjkJEtiG73NMG+E90R3b/lAhv+JWC7btjjE8CbxU1kES3UtRrG8rNLse8zliVhAgKd3HAPwOJH8gukGdUpUFgKwVowpGG7CEkYl7qnCRvN3Hg4mgLQgnTEslKEv6dkOEpmMxoX2lEKLkXTGywqtCdZzRCUcZKlTsEeL2W2vAUjgWUjHAYHnJ+2vEyIJAIZnbAzIalirYWoMU2YMZiaAvwaCjLzkNSJEBGuH1wWeBQCBagEURbYOpoXuS/U8QFCvpfTIlbn1yVzr6CNRamJRrQqwKE0kmH+TFwAciRirKFQwfKCIwpfBuhOABJpdTzcqS7Ftogc0AO7kI5DE5hvfd+b2WwmdbBtBluWWwzWdKamuhVMPWOzAi3cupNNUdaINeBjLGrtilAB5bR6kCs0r+wUh4Z/Jliij5KMSXcOwSJgjx7OT57kZ93g4Cq2AqE32EP3xYvvdK6H6pctGN8+fiGtzkGzgXvy8B6Cmo+Ax2s+/4/6Cq+iqoeZlznLbPlnoOx+e/Ye+MIPbAfhLXd1I2nuRl8z/xdCDJYNb9OM48R0TGncCuknb+XRc0wlMiJYLT/r92UnBsgbO52zG/2YWLXGvPXgP7dTn3vCIuYzLjzWcK7ITH7fvIWZmIN8/HeE9PTr5xShb//u052P0w3/6mbU+KwHViTuZX57i8ms+CyenY5+05mo9jjI8ODMCn1PxbOPZxvorXLOTTLsZ5i+P/fnRLHOd4fmr8aMQ/eelTuJBc/u+U9X7+xV5sX5QynaRQ4vtHzyArcrKmNB4S/mKlYKoThY/EWaeqkbBKF2kOhOEgLKlcbqopNQoVyOhQsSTxBXokjt1Sx13zQZo68SKJlQ0GvpJRtANJDOQdKzkRiFXWHHyaqEVQInIkOTN/2v67ioLt/STfhvFMw4OwJKEeCJV2knyYVW9VweiZvASDqBAqM6HwW2mStSOIZTYH6kqYlGVXg+cbHB/jtYhUkemjE3MaFJFEHJUOVaMijY80TeKjqJSaYTBHpYMmdloKJChz+iEb9wYUViI1EycBIMHAqCihSfOmmJm7mlARJ88tErC1ElITzrmlhNMUBbtALulwbBRmAWBSEZgQC6CPDgTdlIc7llrReocqHzyiCgyQZNo7QkjqpJZVASDEssvIAg4fPpqVpeiN89MYeLrT/GpyO5dFc+VlMGYTOpYeBB6UxOTYDagZia3JXwAwnQmocw96LJB4GqhVATfeYzmukkZyZispMU4J3QATu1Ko4ONLhTen5v/kYphAEso2zWrNDFrBh2aqhokIoGWX0pTBxN8S8hcBjK7ZHTtKOfQVoMSoquf38jQg4z3aB+Vz52IrWZWJi3dFqoLlfWtW4ZEJbEQmngGTNCzUGUDxWgSCikTw+RJCEtqkSkgOnfpS3vbAmsqpADKVu7hQUxWt5aIzVa+6+3HPjZOjcCAFDBrNG0Mxgo7xCo6lez+eM1MmenQsK7tp6p6BOp+ZCMr1Tmy5mu4kbCR0EeF7ZUyNBpVSkng9iyQfYvUjkJxQh3OsuDeG5rU6r46xF9f2l+Y2A979jfM6HKeFVfb/fLKmnfC/87u92HF/5U/ibl8dS57+/XdueyCSFWN2cOa1OAXpz2XemIFmXK4Hr9UBLZIZNJ0zLgAHx2wGqfOJLRmIzZMdF02Oj//t4/C/vu2B6Yst57g8zWi9Ttb9ml33CpzDznOSfeHenAK6z+Z77ny88icSsx8F+T9LeD8c62kK/mx7tc/+fEEcKpCvPpvqh8/nfv7EUZyQ6/svBvWirpZ/n5WQPnSC5jmer9EP4viXv2c+2y6fi+v/Xy7GV67G6UE69/+Lj7yvJQemu8fBNPqZVb89o06g7vAgPnZWsbhC5uIopyGIrFgRUqMT94zrb6RMJXbJTQhgDkjvJKbG4AuJqeVzkgverKZrBunD2R4/MkZk4E58+HQ/nsHDNDIJkcvVFqPj7WNriDFQigFGboD3njrTsj+Y5ySchnFTb5ydCAYaVnheUaEcZ55yDCZhKsBtXcghCMDHQA9WnJVZTw4czaJa64BUAFmJBCvXKkolF+eNMx1XJWjQhfSukKBqztBAoVsSTGPybJm1K6EtvXNgigmDIlAucyqrBKjZPiuaWlKa1EqqEzG4MmVQLJTXT5lOQ9HIJIeTwlTgOqUzC1QH6lKx3R+7ggxNozjPtt6oVQ9+RgSpjZ/8AEte/NR+N4EE3XA9IyBJWAmQ8r1GyM4YgTEa5WCR6kMRKcdKNSsA0OhUWsrAyciGRxgDagaRDNqR0rMqDDRjzE5SYJigGqv3W+f8kdTz17Ji3B9peMa5qlY4mUUI+/OO7rxfEMktQYVk92ZeByuFhFarGNlB4jNAMmgxCLWETkTQQPv+yE5NIVE4IWGiCfFyVvZJinYIBnwIysJ99m4DHNU05Vrz+ZCnMeWMCQADKaWanamQDHQlk5pAqq2xk4dU97GUN+I1YtBfTZnoOVW+JDk8KgkNyt+9q4hFGr2xAQlyIxwe6SMghwQo8jlmmTCoGlyEXUQIuw1ZQoiYSZ+iiO0GaJoyw3RdPkj64Qn9MSaNmkppPkn8GaAECHuMFGRgEhfzkh7P+09W+rNCznyG5z+OfXDEnnPBxV7hy78v6945jTgf62NqwUOcqoR7FfdppZbz51/+kPNRL+c7B/7z7/3xvwd1+Bjp/Cjqenrp06BOjgsxiy9n3PMxhh9P8nmsIql0dg5kPwbC52u7w7hmXIW4jMsht/lrpgQ/vFRP0/FDwBjz+h+f3hO1F9Xl5/hsTxBO71yC1EsAfE4eTjP1nJE93YJfuiLnz8gnn3k64OfHnUnpx/vxQwfltB1vHT/ilPbs/yfPFwTXsfvhD34K4uclm7Hf/vyc98NlYsxnXH4u8i7IY07Rhg/x9/Nj6zmR+Ootc443ZUI6X0T7fzSj+wPblzsHmgZj0/EYoEa4Z+W7mKBvnWTYalRnCSBUASkoptTWtwIEHXtH9CSWJqTIbZclRQRCDOKOFoEik1RMpSNkcBYSkEIzKUS29J348jqrfOE0t3Lgdlt2mUFJnXwzQ39sKKYQDCAXW9SCWkomNbwIqiTvRQTujRIklB01RI6LR8cY1K7nMRkgmLE9ubVUp9mTCEOtgtbGntioGA3iesPwBgQlUCWlTEekVCMcpRYan6UyyXYnGdNqZVKQjtAKVuEDHSHkExTNIDi4nyox4hoj+RcFplROESEfo7unIlB6Q2wNtVQsxZJoS9hDi5SkFFAqzAxV1h1GVK0Q6w4KUgoEfQCmhpoVdzFAFPDNcasGWGWQa4XvI70CiqKpY7SBEUxORAVbyplCDnMlVUXbHqDyqkK1As2TIJ3jpZoqWUwsEfxeutwg3hmkBRDBOTB8QCuhZ8gktJSCWg2N2RPKnNcguTkc2JK/QXvhNBRDQa3J+0iPAxVWfL9/f+D//KOQCBEMFAOOJRMGSw8Rb50wE98QfYMZuRRLMZg4VaNGw7IsKEtB9wFD3n/IgLo1OphD98A3pIB8j+BYe0A0Cdijo6qge0tvjQzCwxHBpE3NED1hSBI7vIgdxyXhPJE6A4rH5jSXS/NDS5na1gc0plTogIajSqANR4fjVldKhkIQ0TF6g9YVI4sAMQN3Wj3s3cTuA300RMoUqy7w2Pj7vcNDYMIOUx897y/CFt07xAMm7ACQX1UJvRJgbI6WSf3YOqVdU/64PRz3rfNemEUFPnxRofD+QLlRHS4VIhARcAkUKELphUCPD7JwFPTNcO/oTq4NTQ9BKeXp64EjAAWOxf28yGd+AyYvABCX/Y6ARXZ4wDmY+QATel40P1999vXv0Pg/sL7njsbpB3zlwNfvM58R+9+ntz79Zj86ZFw+/FVew/5bgVMxO/af9DqQ+xhAnb/Jp6/Ecb7rNcYeRM3fcf4MA6vnJOazs/8aiYToESjKaY4fc28miaegHtdc9sLpmC+e741M/M+f/+zfr+YdX5fLdfvDv/OTY//vHuuYz8+JxDU+PzoqcRr5nSNzLtoCybf5wbc6JdyX+zGu7+OTozzf0wnfuJ7i+TM/HKDPr/I5O/j0EE+djb85N/iiCZoD0T1b0MhFnX9DK9SCATeAunLhNMkKWMQOWSi3ComB7gOhSmlOH4jmgDogxmMOYsIDjjEA0YqpkAIfhNakQ21vSY41geUICYC1EvLhibUdY2CEwAsXXkwIwciEZl0xfKBml0Ql3Zu1YrQNj61ROhKCtnVWHUvdDd9EieEWq9geA+vbiloXeG/wrQECYruTV1HKkrrpnOMqClmANgSIxlJ2dxRb0NsdNKsKFBsZq06+BPXyI6uQTHos5y2riRDiuYsq2v2OiMagOHjzqTBBwuiQsqJFzwCFY/R4f0d0kqjVBGW9QYZjtAeDKC34z99ulMkMmqH1vvEh6z3di2XHX4/tAYyBrh0CVuEFguFMdMIDutSEOwGQwHorqGWB1W9MDJEdhzRQ651VbMlqw55pa8V/3G5Z2aVi1bZteLstiPEgRCnNyVRSqlTIQ3k8NvTEgEvzhI0wwAUcpoG6WM5ReoH0xkRMrMBDsd2ZOLkJhgzIeGC0jvdesN7eEAis6wo62KbepVQYmIBVMfRwBAYggd46/r//+h+sy8pHiNPYC1rpg6EMTKeqVHTH2DpCA1A9fAYGH7CjP6DKxC6kEJ7THhCA98Tg+M9OTlkWjNYYxJaKFrO7kk7gACAFEgPRA90bBOnF4Buo7yOsmgdlTjW7btv2SOlNhQsgGKiLsgLujgFBdwDjAYnAtjUs64K6rkAEtm1DAFhLxa0usLogItAaEBs5N8uy7AGNJZxotIYGig705oghQBLef6vA4wHCeqiXCg+HQbEsK7beIdIR/ZE+EyX5HJSH1WJ7JV2Eqkg+HGVZmDjtwa5hWQV92yCYhm4KhKCNTkf1SOEGZRGjd3ZB2gjyUVjSYlcgDR6hBb0HiqaZhgpG0HE+gpyRqoat3vfH/Q6nOi0BH7sGx0I4K1tHYLuHMR8/j3MAfshvnvX68wNzp325/BBgf6hQytejpler9vlH7L9yfgO8PPbl6z699sPTv/rrcnj+an9FFp7DdK4sv/jZlLg9xvBHX3KGXhGT24P92Pu3OXUM5vFeBXX/attnCcrlSl/m0isTtFnI+4FB2n4Z5eN8Rl66mGsUXh9njve5S4XzYSaE7nW69aM08fxVX065P7oJv8d+7qeTH7/vL5zlPPfnS/rxeFe+xnF7n1+X0997x+CU3T3fIyrn3xaXwf3ZYyZDp4/bc/XhK9tnGcYssuwnPZ/jr29fSw4gu+Sf9w3ihOGMYDU6QN+B29s3qnAI0HvPDJpSpvfeUWEkNILrVBESXx/+IPE3zZggguaNjr268EfrdMilCo6WitE7FiO0I0bCAODZQvV9tESBorbrl5fKgJY3+iABEiCcJx2Y1TSTkw6IYL3ddqdXE+ryW/xf9t5uS5IcRw/8QJp5ZFVr90ravZs3mct5ST2djo5uNGd0NNrproxwNxJ7AYAESJqHR2RmVVa3Y6Yrw81oJPj/AQRABmCOsbXF4aW8YSONcIId5QYc5SohJl92icRSxQE56WlC2n/B19/+Q5wbWU0lWGKm75cdW9qQd3FsPdTBlwi4HhW7XYxUKxhXdcy9CBAhcfxlZlzfrhKBBwlb2gSQ6q3LX/YNwA4ixmUXU5LDgEzawLteNgYxzzKNet4IX359EVMk9IvZ0pZBacN2JL0olVsaXF6wkTiLi4MDARp9hyjhVt6w3cS5NuWEUm7YLxds2wuQJfoSmMUfhZJE8SECkIFylVClTAKgGfjt7YpLTqiFcdwEGO2bjLPfvr61S+y2lHF9uyKnA6w31u77jsxJwTSBLhnQC+PEXELu8hCQXvGyX0QQPQput9+wJ0I9Kn755QvK6xtu1yuu1wM5i08DbRcBhKmDJMFFCb8mAv+acWPgWmUschKH+so6XiGa8HocwH6ASAQgi1BlDv4XVFy/fkXOOxKSmpftSHtGZYkaRChN07VnQrWImJCTkAzCcX2FiKYJjEPNCQsqVb2DL4nPhgb2J8iNy7+9FSQ6wGUDZQkvnGrB9SbmgbVU1OMG3hLSniX8MBgVFb9+ueBgEif52xVcbthSBrFE9Em4YNtF2NqOIhFYUsL1elVHXYldtW3CDdGut1kLVC014SgFt8LYUsZ+YQXaN4Aytl1NC+xGaWJcS8FLSno6w9i3C/btBdB1BbdXZI1WVNXXREzY5M6QwjKP5RZqOSXbaMMlbziub5BwpbL6bymhXjbcylUck4nARU08NQ2XQ04M0oa07RK8VP1Y9suLbKgEWRM44dD7Y8xhW8LUCo3aO6Bv9KyC4EzdF8kAzEo48AVE7eF3AhIfPTX4Hehh2/Cwy0dTHp+EWoouyD1MqtU2X5GHidp/3Dr18wsGHyYvxN6xB/FAEwMQjLbscSaYVYRP50sxQMrUnWTn6FwU2v/D9BN1WPczG5BtA9FeqRCFPFuR/BxYhZw1gc8XcWaadNam7P/oWpEHa/nnpAeFAyECYVNQXpmxXy4SLhGmrcoASSi9lCSKSaksUTgAMOvlSyo6y4a5ofBVwzVWATMqCHA5wBuLRj9tyFDn3bShXA9UFGTKakpcJLQj9MZjIs1f7gZIWcI/VsilbYWhR+yiWavlJrfJIuNgAlVGogoubwKktl0jmFYJVfnrLziOA7frTU2oNLTnvuPr1ytQCfW4oRxHA72mTTAeqR6gAhE+UhaH1XLTi5LE+bPUKmE8sanpj5gdiQNsQi1X0OUF9ThAsFuaJXoJpYQvX+TCsFIOpFTFBhwXuS8hialXLRVHEvOMLxfROOeUkC5y5wQfN9SCdj8FSE5JwAkXNV36+npg37I6VF5BvANVQGsth/YHABTUIvcB7F/+gk0jOUncetF6X152bJeE7SJOqKUIwBXnUzkpYmZQFZt2ToTX1zcQqjpVZ1A5xByrSt2vOesN0EnCkdYK5Au2nSBODhCB8Kh4uVxwHFfxgcYByjv2lwsACUWLAmyqXStVbMiLLVxJHJvllmNCPeQ06nb7DVwP5I3wQlm1bweAXYUmNAEQrH4c24Zab0gJuCTCtWo62kBbkous9JIqhpj1gDbsOQGcG4DgqmExtyzOyMTY8gXpckFC6QBRwSQT4e12qFiRe6wBE9Chh+/qLF8Zcj8BQU/vWAMDQMyJ9I4N3sSPAhDh15zGSr3J/MziFExUJSIUxIn+ev2rAFxCs6UnVHz55ReUCjFzu15bO1YAlSX0ckpF+E1iprflDZkYiSS8KkEuO2SoaR1I/T1InJpJfGsKs5zU6QV6SEmjXAnA3jUgQK0FpTkLV61v91UptYpwcbsib0Am8YXJm240LOtkLYcIs0WicKW8S+hbDaNcibFfNjATLtsuItghdyAc5dZP+WiT0zEWYWHfsoS13VPzZeAqp7aNuAsAY4Si2rTH6JujS9Nvs0fYdCMN6ESBZ7dtN+8LB48VLLTN+9PyxEKl59R8DgP3ZPfyN/Z8mq62dKwPKuT3uKSFtbUHJcwdVLn8PMQiouYjOEoaaQyLqipIU074y8283b03HwMIMNPAlLTqw6lD674IiGPZI/efpxHO+98j1p9AtweRBD21oWbm2E7TdB74r30E2RUR2du5jpZncuPF974BY5mns8/N2ACzoV0XYsYvmrnUxLjN/5NTqUUdW4aPp55TjZr8/hOhCXlYg+KfPY82PZzARrL3mLlxa3fHuwllzXzOhBMru42FO9Vrk/FMyBwEounv8duRuj9bLJfGxvwUPeZzAMamUT24iKlKqT3qhCwoCde3N9EkavzwwqJ9PsohggRBDYy77CeRazappN0wDInkQxAb4ES72hpDG0scKutRkHM/vi6VkXYxyahi66FRiuTSsEQSb1/K3UBq7sQqSBSIj0OuCRsxGAWlAmkjgI8WtlJ3cInAAtFGykUDhMoFWybZjMsVXE2DKqynZJFkuGkMxfGRcdk31J3VkVNCJaYimlBA2l/cpwk5MV7f3rDvuzg4EkRwgkRASVsSUKfhVdMmMeHBLCcCqn3Ytq0N+rRlseXe+kVVRAlpE9P3WqqaAIlwcNlfxOypSsx+27HFnEgvMUuEfRdtt66voLzhuF6BKpdbbXkTZ0uN8LPtGS+XXTc3iTlfjwKoSRiRCDKVgYMZr7cbXl9vYpLE6mSaM66vb9j1IjCJIIV22nDUQ8yCdnF0NydQ3hKOWrFfvsCukEpbxuWyAZVwlJtEmIGYGaWc5O4HIonFz/34MmfSu1YqjquYG2Vz6mVxCudrwRWH+FhcCGkDLtvWeCoG/hlIlXBJAv4ryXypLGFeKW1i1nK56BgnGf4kkaFu5Sr9uQEEAeGZxOyODxaH+tsVhUVYOG4HtrzJBWiJmtOr8FRxebmIDwIzQAmZMrLeW5Gz1bOCOcuJDH8FuIBZnIKlkZIKd1nMcCD+EgyoPwfaXQTluOkGwVq31E1SAIBYTx/F54dVo2/zhkhs+2V8MlAYRBKOuLKGCr2Jz0faNmRK6rita28pqFXucRAwJMJqBpCTrEnNLpYZIPGzsBvfCazBCNRxeN9Ri/gD5CwX2EkwhIK0iRllKTekTUC8xBtIKIf4DjABe9IIZzpPkeR0DMcNGYyDBQRmZG0nXa+T3CaP46YnvDWC+rD2UwBS9ru/71uQzH5um6c3M5g3UnGUHR2Sg5Pz6e7btYjeNOAxTeqing3MD28XoNvnENKemSk9QJO5Cxloo2XtPW/WTGPdycr3YL4lmcGKlzt8GaZBN4Bl91/Mhc2gdGU2874PwhmQOsl3FFBdBdamQXPeDIgfY3jHTeDpRTkwtxhztr9xm0s6L2O2gfeOW6l1vPUIk8sTZHqgxjtroAnZeu9Jsk6CJffb3ro5GdLr3/L+ZNKPZXyQTBCbvnb1tPz92tOAOrofgWEqYL0WmKnWGBSh8xL70hBNsvQ8j6mxKd5XKLgEq+b+DK1kTt9+nzxNfezkgBIAccqslUFJtG+yMIspUFGzhwy7OEdjaDPLxm2g0ZYF3dBqYYAyajmQN4nKYzHBTXoDVaSkkWCqAGzOCUk1qbZVFMgkF02tRvcg2cRLqaDENtPChKwsTo+VgKMWoIgD6JYUcLMIFyaGynFfwZZ35D0Dak5TmVEB7LtcolXMXlS1DCnbtXzQOPWi6UeC1B1y+zERJLoPZbDetMtFbkgWISCDU8VRVKiqegGcRuOpDFz2DYed0sD2htQmELfJphsQV5Qifh0XmNAiJiuZCMgbqKpfhY7mfdtUk5t14mlM6JSR1XSkqENtgw5M6rDefQoIXWgiJjVVqagH60JrJ056iVbO2icVx62oM2hFrepfofIbsUUPkgWUW6x3GdLEEgYzEyTyEiChQMF6c7WIfkRoEaSIEkBJQsFCHW438d8ouniQxetnyScToeSkgoLcV8sQU6RaKgqL8c9xHHqh3aajWjpOLc1ALBPWIoOJv4hUNmULj1vEvE3HHUjCiSIryDcNYIIKWWKiJX4I0ldk9zcQ63izuP/ajyTO9YQs/gZV1oVt28SkB0dPq/9kNTUqtbR2STlh33YwJaSs0cHYzHDEHCvvmy7ArPOob9qVxVTNLujiypDwynBx/Z2QS9Dxn5pDLyc2cQEJFpXIxoe6JlUZOwRdC46iIUJFMLKxXyuj22IZ6E4NZIFYQ5aKz0Ut0GhMKsibcJ0zULMKF1LX602cvLmKEJKTCJDtXkY2sUdOPUlPbWUsFz3JkfWjqJaCdSyf4WXbuOUB7NLlliBuiuMO1QFJtBEe0w1/O6BueXRsYms3t3friEXfSAF8zkA27Omf2uBjuFFpEYcEXTrY+hNKNjYfKNRjugAsHcDV/jHhloYP2+XLsa0AACAASURBVG9a2dyfoqAP0OcFhdNv3muaEeS5cWT45B4FbbS2Sd9TpXyfprM0tLA7jVhXpQt4Hfjerdhdvr8/fa/yFgh3CXh9UgoafGrCT5+zzo15KnEpoJoQMIw924NsHW+9eSYkOV6Wi0QoehQxPkraIMN06bmO5T82lx48OdCY3KWgHAwJ4KO7JiW5s6BIzPxaJQoKc9+cc84aRnNr2nM7pivMCmakKgZ4UhItWSLWGPubOgRKHA4zIVCvYzVz0XjjW8ZO0HsVzLZXzAZy3hRcyUYkMeKLaDAB0ZyWAwkZ28uGDAm7KLhX6pvU3plYtaUgHFUuIdo2iWYEvoG2DZWqCBYA9suGcpPbiKE3B+ctgUm0laUycKijpgJSuZssiWNzRYt7zQC2bcftdsW+a1QWqKdFErMuygL07F4JQOKy5+2C4xANuIyZCqoVr9crxCJlE/8KJmwK7NJlB5WKvOU2NxJlcBGTkEoaxjRJ7KHL5YItAa+QsUEaYrKy9OGXlxcBLjqEKxdwkpOEo4pA6IWXctxQOSFTAtEvKk2IEyrlTeL/Q4CiLdZyKgAktbGuqNpAorUstcidaHYXhWrrs8WCzwLaajlwK1X7KqvTLxpQo5xBlXC7iu9M1kgzcmqjEaK2LIKw+WYgA2rKtampTikFeHuTuZR3bFtWs53a/HG4in+AmJXZEbg4ZXMSEypo1CqL6U+qYa6sce2h/+MbSP0nbuojkJPkeXnZNRKZQk492CGwhqzVcUaEQzFdogxshHK7yuGACii1Vg07DJTbDUDFBkbaJO5/ZUHjRHbhotwtUsoByiLcZHVCl/oQGGq+qALbwYxyO/S0Jst4zzpXpSV0wUxIlFFJNfAspxDHYbd+A+TCnWqg4yZgMItTeKo6hpjEWFE0GXIqIiMadpEZJQ3dm6T9SE2NxA/HFC8MqBlDRVXgLvOQkHG7vaImOYnYc8K+SSjger3K3TN6b4wIAOKDRFBBq4owk5IEVKhaVmXxUZD7S0bNqfzLClAYUP4Ms8jiUdlHYwGixo775g23UVlIX48HuIOlHpUocuN27qbgmMv8FnLCSa9CNBlqz4d0C61yOwKYvh3Bx/zb4wV/AOBfY2h3H+q0mRtoW3U+usDOQ9859vof1PvCKVA7D658L/CcUutzlzKYIk2PWnpfVsjSJx6LP+uDRTI4/r2WOgig3FOE7zG0C80/RjFhzkWtM5ijiYvrV/uqVeuDQun9prj3ctXG3z7vzko0aE+rViOD68tJ4brcfT8knS90tHxtKWdMiofTYbaqBd9pJ/pgvz1AY358r4jHCn/w5EA2iaI+cqXecKsS1jLZqq4ddr1xM92QTUDAwbZdwNiw72KuwSzRWeTyrwzOGbfrVwEZ246879ig0Y6yRPyoTACraVASR0EUiXgjBwxFbi+Wnb05zspCKZE/CGI7v+WsUVIk9GqpBXxcxbyDDGiLXXcm4GABfESCL8FAhpqGsNzyWouaHpWCnBh523EcFamKWcO2ZYj5gw1AuaiLchKNaiaUK+O1sIITIG8SvhGXC+px4HoTjWRhsWE+itjRWwx9MVUSx2UQoZZbCwuZcxJTpVo0Pn8V0KKX5GwJ2C8SYaVWuw1ZwU0BaBNTrM0tVkep7TZgVLEJTzmB9LRmywnYs5x+sFy8paH/cdxYgLR2Wj3kZllxZpX2IjWTOirjejvwly8bNogp0pYy6q0gXzaktOP6dgNYtb+ZkL/8KuElm7M6QZzMxUTkxoycXkSg0zH8crlgQ0HKF2mDIuFx63FDogvEYb77QMg9HQRiaeOjksagF0EugXG7vglvSLqgU9OOp23DJSU506kV5XaAa8X+i5jtbPsGJplDtbA4/mpEKEBA37bLKY2cREjbGhAExAm2VHGmTXoPxHG7idlKZaSXDaCjbaRUDrz88kVs5Auk3FpRWU5o9kooSfqtqB2smF3pjcOqUbfj7loBFFLbfNG/bFnMjcpxCLg/bmAUmVspIWfg5UVO0rZdTuYSQQRvFYok8ICYxpGe7slJTUYtV6SUJfBAyrgdVxGasIkQps68zOLMW8tNBNxDfI22DDWHE7C976IEOY4qc542ueDxOLSfSQMoiDkPbB0iEXxrKaAq5mhEekKUCGAB7Uc5UPU+B7kZHBKR6cYo9U0VNHLmJIIDhJ+CfveMCsJEEkL5sDtkkgmrjJvOa/ABkI77ekSlFnXzkQVWtlTtF9u64zbZppgm950HxeO+7oUBPbJYOTf3v/s6PXL2Q2hlynL2HpgA7aPknVl74/WoTq04rG3B7VnOzgegyQM89fMY+UV0Df3baGpBDUD59MrQx09vVnKT72yfLtT9LvJZZPg+mXAsp3Md/oevuT+Pf6h5tJ0gdBm2YQYzFrJTTgHqayGhC3o8PfsmR+TvTt8+5who61M1u6kBz8/+N7oucH/fv7E1oYeMbXkZJm9YPwof3UxefcGY27yhYdSvrOsep6V4jcfa03/DJ3+vJtDH6SHhIGW5pGi/ZAAX8CFRbxhArTeNO5s1TryENc27mlaQXHxlmky5HVRsizMkigcKozCjFHGa21CQLoS0v2j40gPHjVGptBlHGjYx7ZveNMz4su84qgDd601ikBe9HGnPSX0M5NbcvIkjaGZJkwEclJHy3sMpVtFQvt0ObPuL3NEAiKM1AV9f33BJYhIFBaRv1zek+lVMnDQ2uywOpfk4yM3Oejk0AXvWYP60IV0Yv1SxNS/1ABeg5E3ioRPESZUr6DhQiPBLTjjA4LTpJXIVt+NArsBF7GXENChnbPuGbd/w+rffsCeJZFOrRDDBcUN+EadnifAijtD7tsMCmeybxE6vFsnoOLDlF7y9XbHvGXlPMCv7UgFGxr4xUA/VWMtC8HL5gtevb+q3sCHnXTakeuD6+huOJGFZm1M4gHpc1SXhgpwY5XiT0K6XF4g/g95ardO5FobYoIk+6LJnQMHuUd4AviJBNORyOqRx4LPbkCGLeU4i1CUiJMiFZVSLAOxasF0uIJhWV8B6TgCXG75+/YoMAvYdt6sIrxJCk3AjCUG5NTt7Rq47EgpQ5R4QETwlHGxKBL4xfv2y4yiEt7erAH0S/5rjKMgQsMj5grRJZDA5CfgLynHg+iq28BKV54Lr9cDBACFhI9ITgor/+I/f8OWXv4CvNxHMVYNotu1HuYmPAGmEny1ppLKiJkR64zMRtpcNb7eCVIoC100EgipmYymznvzJHGGS6EFv1xtetgvK9VCwI5GYkDb8+uUFV7YFjJGJ8cvLBaUQLjvhhh2lFBxUsF82icClgl6CmpqVinp9ReWK//R//184SsFlk5CgXKuuCwlgu6SOwBAflVLeICdOMl6OWptmUWSsqwAC9c86dBIlgoyXSrhsG0jXH1sfWbX/5vBPIGyXX8H1UD+oiutR8Pb2G/b9BdumEZO07JRkThUNfavaHAAizFUmXPYvYCIct9KE0bChhL3FQEyfF02vp+h/iVW6Cq4B2XMtoYf++iwgsBF42yZuJpGOv58GOH2OvBNvFzDer9MIzD2QbLbY3OPsj+8kUAGF04GVPb2XDsiV9VPSg6cGDfSbpngpAo8/lg9a/63MUtb8nbEexMOefl2Bk+e/Bz0Kak++btp5iNLnTrr5EkAzATNOqP23hzYQ6n4gfeyfl+bKte8X8+ubx/1nm+7bmvxhekg4uN1E07xfduQEXMtVtNPlQILYX9+OWwOGlxcxmTGfgutN0qVtU2dBtS2uFoefAL6pc53cVppTBtSh76q2vHJpl9hgI0PtzAGAwcUu6mJ1Ft1xVIlalLZdF72Cl8sXyOw9JLTovuPr6xsSEX59Ec1w1ZtwM73I6UF5a3Hj5QIoBTKo4tRJeuOu3kwrMduveKEdhQniiFmAUnB5eUEtBTe99ZZRcaOKL/sXOSVRP4ctM+SSsQxOpKH99QInFlCWmXHZL8iHAuhydO18qkggvHy54LhdBTjQDr4dYoaUvuD425uALRVY2sQ6Dlx26UOxQKi4vr2Cj4zEJFCcCInEr+Gy6y3LkOgYzIzLZQPtO17/+h9yGVhm1HrgVhl/++2rnEpUgI+CvB3YLju2lxek+gXpeJNLrza5lKseFZwLtsuGnSpu199EI0oZR2WUSrjsCdcikWnMtIhItQAb4dA7CI7KOKpEaPrLf/oLdmZcLnKp1m+vb7jebnjZSCLbbBcxRUoVtJFEMGKg3g6JerRlbCRCVykJKDds+y4XmFGVy8B0EcrIzZe93SjMNxAl/PLLX3AcN9ze3kSTvl8AFHUCP0DE2HcR8AgFv319hZjfURO0a5HgotejSrtxBQ4JuUlEuDCAIvykfQcj4fr6hrztcrcIWOZwStgvX/AlJdR64O2mUYDaaRpAecPlJcsdI8ygXebc7XbDtmeJBASZd3ITcEKlA/UQx+ZSGUyHnATkjJc94fVWgKJay7QhoWBLFdfroVF5KvYsTsUFwNfbgeut4nLZ8bKLdp8BMVdKtk1kUTxcr+rYK0LjrRSQGPyDCNLPpYiJkoFdNfep6CY3RY3ut5ywk5hDvh2AhEdt+qy2+dxuV7CeGl4S4VYZr69XbPXAZf9FFCikplG1Aho+16J77XlD+sK4stwtcpSCVCsyCioKUt5wuVzw9evXZjZEGl71ppoH8dW5ARdCShIKmPkGlnNZdaNGi7YFWU7bP+s9qG25SxOP+YZUiz/UyZttgJ121bR1rOZsQ/7+93Jzvrdhn4HFjwoUDwHOj2WpjETBQIUv84ud4sZ31WkDSa0mPGg8vWa/rY0k+zfXdqEkbJ63O0s62OoRi7o2FyqELB2VP0urLlo/fiefD3zBPDV9G+Xsome5IE8ybMSPL54USGqz+5lPYFb8dZBs7UtETfGJYdx/lzsEvgt9G0rl6a+hPuTH8dBGiAIUL/jpgRTierE2p/Npu8nkmWBnJ5vvk0szrkEfGtj0se62inySHhIOWJ2NcQOOlHF5+QW3t5uAQfX+TBDb3Zokrjnrjb057/iybRpmkdomkZNo1UuVC6eOQzbdnAnbJg6KRTfWL/miwFMkwAoBP4kPlGrOtaKBrDeN3LNBQjqmLM66taiPonT2nrLEG6/ih7DpHQJibiBOe283ifCybS8CGhgQe2ESIUGMBEBJLxmq1G56/suvLwBRu2WXASRmHNc30eJvclLAEK2p2K+rb0Sp6rC8gdKmt0gT2JwKwWDaxb45ya2nr29vuN3EuXTfsoAv1QzbQn/lr3KSo1GXtrypTweD+AZOJNrfpALScQPjAOmdEberOAWTaiWZxPkx5Q2FWUJxakSYW6m4Xf+K69crEjEyiQnMy4ucErxeGaXekNMGuR34hlQTtk0uiKu6CXEp6qy+AVlu5r3drqAkWn5x+pTLsWqVmPkpy63PW95wPW56q22WEy1mpD2DXnZwuUn/pBckBnYy0yPxBTnKgXITQYIBjQold0YcVU7U9iTbA6WMDEZOsoFWyBiibUeuFfUqtuNpSxrWlfHy5ReUq9yJIOFuGduW8eXlC/YEyW/vx8hcK4pq0AkQM52XF+yXDW/XN1yv6lzN4jRbVQOeE+H2Kn415meScsKXX3/RAAAHrjcLlydmUBJPXx26SUyCWsQwSnK3CKvjMiSSFSCC5JYyjir8pbwDDGxUcSVq0ZUyJbk9PAPXcuBWDj3KBcjCBW8bcr2pDT06kEYFp4y//HJB4YrbrahAnFBQcRziaJs2OVUsxxWJxdOhaojhLWfki94gXiq+vspJUt1lLucEmYNbRimMnHe9BFKdt63OYs8ocxWE4/YmvlnlEMFeOk6UIczIKLrpy23LKfWQo0WVG9suc75AQs5SlfL2JCZChQj1kDVP/LJk3iRTyFQgVwnXfLlscuKYxI/mKBUJFYetMzAfsGFT1X8NxPc9Jpr7AGbj6wQCohZ2UUCUjl+STT7aEfdIOGIypYYBYf9UEEAdGDVTgoZ3zVfhzu55tlG+t4EuBYpWge9GHVhC4+FLAV2jLftANWd6zwr1vjojCc/bzWOtnzwAsibtmuv1yRCPAOcjqMWA9ImstvzkR2tKCejw3muM7T3FqDVu3IYPNBtbr0KeTvsdv7ETsDZlhsL7/QcmlNl68keLBt9KSdvVBE1Pbdw5ZV+/1M/WpdXAsL7R8PHutMyEWSmO1YSOgzRYuLo1x/5y/hrkIhh9lFTgV2n94x8vPzlh5BvnzGMOySnrRWGigd22C5jkplWJDS73B5BejAXIZpOSHMGDCEwZSFvTcCYxygYOcfS87OKwaJtU5SJH7LaZkEjtXEW7boKCaDRc2C+Q3Bia0J3wNHzkcRxI6pwHEptgsT+XDdkuk8oau1kcKcXmW4CoAAOJ5pJRD3VQtk1LpAexuU8EoCBRVW2DxHhnZhQFTlvetRPV/p8OiQaVxUEWeZdQhCQaVnNstnZPOrArV4npr4OaS0XVOOaVuWkfmCX+PCqB9aZaAgMkDqeFGZfLrs6N6lROSW8QFh4q1FxEHWRzTjhuV+TtAtZbrsHA7e0NVUPKVlTUJI6lO8SHImfIRU5NZylRX4QjAYHiI6H20qy+CZA6MNShWMeI+WxUSPSirNGgzGSCAIlvn3sUouN6EzMabZsE0Tzb8lOPG8rtpraQ4rCcuICzCA4MueGXq4TJTXvC5bLJSZKC5bzvoEMvPdOY0Yk0uhQRaoIAeVS1tc8iIOeEL1kjaQFgJtxAAsi3HVyKppX2Pm5XcTaF1ge1aa5ABrwEfBlgpUpysV1JYr5FGQUSehhJhcdt0wveClATUiYQCo7adsm2/2mAI+GBRLCXKFoEKhUpFWwvL6jlJu2QEpgIt5uYvUA3z8RVhMS0oRBQNMoSawhPkNwe/OXlgtfrm/g92Dtw25hFo1fAfKAcwLbvTUPtHdeZq5oMqiadSMMqs4Streo/AOk7O6mR+iu4Ms2rXQpXNeoTqYMxM/K2IWswB0b3V0k5IecNoCJtgg4ikr4vpYqVnG5slQvsACpnWY/k9IRa1DQz6ZRocWh3FMiU0FDDev9KCNtIbVmS9nTP/A5p2GetjB9sow28ookB8rd5+xIQjbUHtIU+nP3jXvaPRo+OfgdE1rTUDg/IOmBaY9cYY1v79C2NJA+t6gSM9iz8sA+8vbsC46kRfsf2/1HE7T9NiUgkfkmtJd16p8kAN19troSsesL2QJqW2gct4prt4XDfphbAOUhUadHnPwc5qf3RL+y0xeZ6yMsJq26N9+l6endyae3rlQb+BGfMxD1fGx2FXlmm+P708bb8Xt8/5pCcMogkTCT0kh/Rit0AiBlNZah9M4MgACfroOZ6qAY/ITMgcdlFGynaLuCyQ0xt1MRBTHQkEkhRQA6oRI6izsai2TNJmvSCsFtl7LWC8gY7EIQ76iNA8ods/jbft5xArJspAwdYNfYKgvXytwQgk4Bp0+o3dYwVA0iuZOERJe69ODUWpC3Jja1ETetKrOExtx0pbWCIBlTaMivQ7/bFpVYwyb/EFUQChGtlHCUBdFNzIWNP+uRW0MLOEtTkSYWynC2uupRRuTYNado0dovWm+3/ahHtuU7cos7F0FMEEYgIXBi5VGDLEiZ2s9CqClRgdt0sNxLrTdV2EZcFwk1JtKxHEbOyRAkVFu3GbnrN7cTE4htniBCZUhKncb2Tg1WzK/Ino5QDpchNzGI7TxpqMyFxQU0AFbtESy9no4JKG4ra9Uo/bv19FjCOZpqy4agW/YmR1NZ8yyoEEUuf34rsBZQUcG/IWcKtppxlHBwFXBhbYr3YToQuAex6H0C2C6wUXFa5ZXvbxA/DNjyi1ELBSuhYBvhmw1qcZRPDwnrq7iXJWSbTUVRr3FU/ooVPGmVMAwMUAOKcTSKE1wILc5RBcnpDuwgcKjgSkbRDO/KVudHOU1huns4p6T0MclJhkJRUWPJH82IiJhF+mABsWfykuOKofV7nsFFlyEmfbdi1A1XTbut8knC/BNo2ICfcrv2yRhBj34T73O4hs83JAhNkgPXCNZJoTGJiZsLujs0pPKDCh6wjei9I054lDZ8KJNr05EiUAJ3Gjbprz6pLIQNmoc3ScdHBTwehyW3I3DNCS+XyikDWcRY2eC+vfKfNuglCJ+9/FA5u7C8KsPV2YYoif9lokX6ztjeBImQUvltXxz8PF6K1BK7hP9EeHzk1+H2p13IyYQtjM461Zbu47LxTbTPP8nnYclk7Tmm3WBPcWutB7Wyu93PQxzq2m6upZYkXYq0NrB3toS+FyODLULLvB1n3vaDm//anjkEw8Gkbr+SefJRsFCxmnuvXZR0memehasdQI6+P9c9DwsFvf/sP/J9//98K0Anb6w3l9gbS6CVHc+YUoJUBXDbRMhyl4CgH0rZj11jrpRwChPYXJEikINQDtyohGwEJMXo7KlAPiagD0UwmAOWozab25eUiFy7Vinrc8PZ2xbXKBWX5ckHS434i0QTnZICYJd48ZWz7jrevwMuu7o1VbJNLLXpvwQUg4btUuRE1ZxKQrxpqC3NYjysqKi7bJt+XGyT8Y0bKG47jhuNWkbPc2tyiypBEiSECaP8CCxGLtGk0IuB6k9uG5Wgs4evX3wCqyCSnJ7ciJirESWz2c8LLly9yWkIidOSccL1WXK+vEraSBZAJIE0apl1AFteC46g4CmPPCZf9IgcDVXwsChhE4uyN/CrtR4TbIWElKypub6+iaa0y5S6XhJcvFwcX5CKqN0pQKIrCGdfbVUwiNgnFCpb+37cNh0ZaOorwl5M4r1+vNzXzkmgtX5PAudtRkNMmPgelImW55IvKVQSelDWClIRvfX19Q9p33A4JdZpIouswJSSWUL21Fmzbjn2/yK24pSD9Jlrxfd+w7XLicRwHjuuhY4f0/owNOe04yg1bEoGtFnXsT3I7doIIx1wYgIRQZciJxe32KkI4i+8BkwjTqAcKCG9vNx2nCTnvqKViv2wSrpQstJQIwNfrL/j6VXwRqgpWKWfUytj3K67XK5gPMcOhLBfEbfL9UaqEDlXNPqrMh7cDyHvGnjeJ/sESsaccYm4omjBSsxppp23PeH29AjiwZ+B13yX8atoVkDYxX6MXM7YvF5SjIOetnRK9vb0iAdgvv+DtetMoSFXf/weY3SlAllOYLSeUv97wsr2gkgoLevr3dj2wZ/V9qdD1SaJZHEXXvlKRWAWPKgEB3m4H8pbxcrnItypIY0/4+rX39bbvuFxeULgiU9EIYnJKK5u/3GlALEJ4E8nrgXK7YvvyKyjv2JIJ8yIKvX79DV++/KcmGLACCSa0cMrbdkFlxlEO/Pu//39tvZeL0ZwurglifSMXUR2wjcbuzWY9rSQi1NS1qSKzkK4tGkXOiR0mQJhQZempabf1VMn8Xzx/wiRAhH/9n/8T/+2//bf3N7UzVAycbNIPfvsZ0jb5X//2v0QZAW4OlFZ7O8WZ4vAbKErchQM7zaIedUgEL9U/D1hBspb91AtxNtYtjZgR2yzsp9gg4Lffvj7e7jCQ/HDTfJw+0Ed//etf3ak82+BrguwktA4N6P2MuBQdimqaq3+TmtmJrMytX/s22Ea9CII67lXv0BK2clR5xwD++3//7/jLX/7ywQb6Oehvf/ubhpGmdoLZdFhj/xE0+A3a+Ld7Ygi9vb2JYzC/sz4lL0DbAOtmQ/bWr2+hT3QO/tu//dtjY36ik0ngx9V7g74Bf8ej435KE+QIxr/+67++z+U9j2sieofDJz3pSU960pOe9KQnPelJfzZiXt7kgrR6+KQnPelJT3rSk570pCc96R+PHjIr+q//9b/iX/7lX9yT732uip/ZCPFz9J7d6kfz+jtqmm+hv7dh8hHyjpxP+l6T4p7VNTDaaM/ntOPzz7BA7bh3xQMRcH7Cu+DtNL+hTKBNpv/xP/4H/vmf/xkA8F/+n/+3+SpZmqR3xPQzfzOnSHohUL+4qTkym2nLeNLtjvpb9CF9ybX2stlF5ekmwZKn+YwM9txgNFttMVGoLXKSN5npds7d69dMmcx8Afrb2Bcnc1KzTjXNszKZ243hzfxAee2mWOPpvvGfJjOuRBJ6Nw5P7qYSxgOLz0h3ADdHWtIb31lNMcxBv/dPUhMhaiaFzhE+iQ/XcZTGV7s0rZltOL61nWo1p/pI3mbbjMfJ5duz6ZFpgO5rZIEDQrk67loTuTFPRBrkw6JpiQlUtruK0P03bBxzFR+75O4vMZ+x0AbN3AjdFLOZ+3Qeau39ZZRsPrS2iGNsjJ/vI+s4s/iWbyKSe04CbzYGZVBLX/a1xKJdeR7Mtp/VZDnyIHUa53Izc7M51PpYx3AS/yY/ZqwwiyI0hj22aGfj+tX9ijqf7TeRGyNtZUFfP60sqUxKeiO9N9Fqqft8srEFl2OL7uXm+dSP3qxp+G1s+VDAnluZr2K63say6wg/ZlPzE+M29szEDSMP1ZmyAXj7+op///f/jXv0kHDwn//zf8E//dM/PZL0SU960pP+DmmU9r+jcPBwmR/57mPfeACUUhI/riHLjByybWBagbHZa5OxoJt22IDJbkJFs5sG+U3cmd56e2H718DSsNm1d85ul8xLxQk6Z73n8wYgkefCMwPTmgsN0IHVgTQIQlq+PvAhG4PISeIHY46QrPb/cEJF4EVBgLV3QtJoWRTTmtCW2OXbW8DXN9yIbYIHiZN8iDxlwGOov/WF+YSY34m1tQe5PZ/Y/qvwkNkBbubUhUjfkYuh3qMrpT7mkEJUrgazWDNKjIzs+KZWpwa8tN0opeYDA1cWtJ0ZwDiFjKc2DoZ3SYVju5Iw+Beg9403We9Au7dxtXFjkcio963k2QFm97GAG7epg+nGh2PWDWsyAU1/dzCsigONVhm71QpLsW5A6B/XOkFWkC9dVvqwf9vzrBr9Sfy4eptJhEbrsyiYU6U+n1zFmFnXEp7GnJtVTTCzsdpY1bKG5p7WQVY/ivYOi2FOcT1on/FKKwAAIABJREFUCiQaWtrGT7sgVtLf8vtGQ49FK/omCiN5kCDHpKOE+aQnPelJPwN9y7p0D6yv3tGdTx4B/t+4hiqw79lFoNxdhPu785ONrlk07aex6GtiWrem4ZaHsBKnsIEruYki4A3as9Umu2hK21+XTs8dTjZ+3P488eO1yO3agrlIRVTartS/a0KCMturNuQwNE0DZ009//6eOyh2WzETMHyAvODTQe7M7Cj69dMNdA1oY9HysH97KWwNCPf9oA22b2dtvf07j5WRenv2NkbAdcqTtanL8+6UHOZQh0rzRwyYJAkDuX0gN/f1lk+EXRzGZGs2rZs7z4vzKLDqYbD+28bQahA5QL5o46gQ8N+7MdnkUj3ZgOt9P9iCEKECG/ex1YVyL5C4sKitDnEsTcLAtFx33OoVFoE192HrLavg0M920nMmGIRoba59mpIl9GWfVz3q0yoU8UwPCgdPwP5daLWhfTiPNpK/lZs/L32PdnzSk34XegTMj+n/WOpgLk60vjk7UEYONKlW02o76mi9Fr5te9yjUEkatL24me74vZnNHAggdBONFra4lWZAwV2YpmWSXztPgJtoi4f7GKgDiG5W1LfZuec60AComTfFVqDAt48sFEw7ejM6SE2hUNNW+ug6TYAbAFmUoSa007g2LXcHKo7n1h69Kf3FXOT+28yJQO07ez4KnR39OSZNMEAElxHQITxroEhC0Tmw3jMNgoHxaUC6gX0M80H5HspETNK7fmje6kBf+7bjy/bRbF7EkVft5956NKSPvN0LPmPfBBMoPQ2sdiI4glL0+y9aPwztNG/W1H7atSYjpGknPToGuhAS87Z+T7oOeJMbqw+ZBRGmbmh8hWZxf3dBSnhp2vxFHoFMZsM8VkMiX5bWbNVvoB61jdq9T7HM8VSxD13qlXfz9ZEd6cefHHxkr/uhgHectfeS0o/hpa+P8/O7/Lg034uvj2IW/+miTz/L1mph6JlaorOPF+VS/6cDCpf3uEY9BYwT+nuQwD5ah2GAGOAd0yzH6ApkRtCypvH9YtCPE26Z5dkk+Xj/hY1HQZ3ZYLcNZ1HqVBMFDmay5O2KvW27Pmx5TGEe2f9oLDm8L39VtQceF5VTP522HstuaWYXPluJjuhEACIkshsvuk+EXM7pgbDLg/v9EJ0n/17/RmzDpunTl1Mtwr4AMNdWDgMiBJmGvAFmD9QFoTFXmElMADNu/PY+ke88IBxNQ/xvogi+7LcBL7HL12DFTM0syfKPtwCraEJWbm3lBY24ccwMC8TSBBY1B/Ia4ohQO/9Nm82QEdB49+E0Ja3Uo4NS+DqgYtLUsly42NpN+49IgwJzHLXWZ/40yDTurZecJprdd+M8MZ4NazNHs8JJOGGey0Af2z4MrIVl7zzbJ/3Ex8yuzK/HC5DMcuN7f+dPHjVtmzTWNwNQDm3Whb5+KtXrQh5At49TGMujvDMZO66Wl7YE9XLDhLW2GL+ztubev8JS6v2lPiPd7AkB8Ht/KQYDuobBhcR9ZF/48cLBEvX9EeT4eHe//uCGSsOPe9/beuTT0zygw67xHfFZ0BgNz78FKC+7l+/MmyH98vvlkIlb6L1hZdtCmMy24I9pv7n+MzD41rzu5vejBNiflNbO2I9KuN8gCU8Chg7q04H3mXI+oLhY8rT61u92n6u7ASCu/rSgZ23adEDHqY5J+Sy2D+smbsAvBVME6uUBsAv2zs07Riblbo4AhKA4tuce+cTQioPQUx04kf/Go3gDbx10Usixa8R1no7rrmuvdX/2fuu3b7MxOiXrQK66dnF91vju/NtmZCCvnQx5AUFNWAjxBKEUd3riQFirM6FpOT1Y7Txwa2NrhiQormnWex0jIG53QIwCQcAa4wYzr6vNWVn7KJZq4Kz3jeFnBsulnNTr1rT41nYeGPu+H+vGVpYTLAbux3fL+ezK8SC+Ob62Z72vAlYM5VXdo+OgvXdCM9dpoHGJa+0zJ2Y4HyaVisOSy1HZ4Plpj8g3xsCXE5hnPBbz89/yncj+bQ5Nc+5kz2I3r6L0DARBLfZnFI70bVtntF1s3g1F2lrez5/u0+/gc/CT0R8NqP5oGel3pLstfWdS/o5cPOlPTc++/RFEdlGegSM3T4ftuD1pwNCO3qcNTsGTFABAzSu8mc1Jd5r2LVFqzsykoMo7h64/1rJHbR/afgkyA6gpjxEuQsFgr3f7S8sxkyDLr2m1q1NRNADo1RYni+GJ0sU1pm7+c/3GOgUzhVW2BvScPBlqOrRPN8HxxQYkfAd4NVYayCylj7UA5IF+A+4ElH0+PXMG+oVaJlQouA2mT6NwheHkhBn5bHwNggxrP3j79vMOpKmt7Z0vq1+GBzCXJlw33jWDdoKw6KPeNbFNPY1408n9KkjMc2hpGtY6dsgfsX/Ovg95NE5NCF1xH8f/Sn72JIKdgmgD2mdTz/UNTf0kY9A+rVxV2F3cft0+jcqLqViOQqI/PZrSjoLbKAUNwlE7HdExc+ZT4un3Ew7+aFD+A8m0Kv3BIOFP/XbeMTFiBqYB6Qp9CButBOizPIbT+Ek5/f54ihk+ptweM+U77x79JhY6tze5dz2PSQEyzMz3QMxY1qOnCHM7rZeESVPyUO4fo956v/98newmG0/3Bp7rHANNIU/N8nQezZE0QusPoGfq04cF3Acn7DkSF/LM8ZB2OYY+QwoEJxOTO1lTj/zB+nvUvPW+8M8HLZbT7IfTAxp+A00rapu93X5KxoWazDQBxg0GO0Fopxg6B2utbtnu0NjaJIAfFRRM4JlXJW74OFZZ21Q116MjruXfra3HdnMhN92ixFp/bzcf6j20ObM3hTJhjoBqJzfd3MibOXiN8eSkayi+AkwurKL715sjhelECL4dc3SmuQ3D77sg01Gt0lZglIJWx1bYMNbNbMaYbECYJDRpi+xjzT5u+Nyf9Cr1h8ysJzRxzgwowgFwM6dqsLmd2FB7b+uiB5E8POu/7RQIQPMx6Jp4tyuwcd/TZBclqPtTUGPQnI7PqNdrjTGaaQ48T+57xxcAMQUkDlGhaMjHagEAtVR0gYti5C7fdOHkQOqnPTHsPTSU0//wfenruxR6ybVNY6KvKZQSuuLjnY3IpuniZOqMHhQOHt4B/34pIoVAYRg8tCevwd9c5Hlce9/R45I0gp34bABd44AH4C/GjhPxHihf/Z7XoZjNqv6fGWv+m8+CorncWPcISh7KcZlu2RA44/vxslyeQXuzgCwnTbTSjri3d/mU79cA+m4dVsw4YOTziw5zCxA98G9AZvlSn312BE6tOu7+04th5zsbBuHbd3iYsvse8wAzbzz37agXHTfeidfms7Bon1GCM+BuIX6GPo3ZuKN85qmXRaOqm+cEHiu4JtQkNuErkw8PSsIaMAg1zSY8TKLWeENruHrCIokseszGL8/fGmQIypvx+3eo89rDYba6jNrbAZj0Uc0aMEeBWK2W46TNBzCcKA1tpe0dNcm2C3IYKnb/wQimPHGL6oOm5WX50d8DoHClx6C9nVpN21xV9eMO3drUCaCuyNjGCug7tuQ+Roe2C878TUtuoFBH+L19dTXAFqh16q+YcM7Wb/BxQvSC3Tzy/ZXSynyQeru7tcafakUofLKfDexUxDWrV5NbenvBtaJzPwQlsAy0XEZfd86ot1DPy69V5Nql7XHUQ9B6Psn9x3dfZICmLpP2S218/lwnBz8DnW7cPs3JA9scBsmrLQ3v7cUnfTEfPlJ8R+t3Z0UMeykG2flBxqYtduL6fp6r705m8N10nxEUfhR9L17W+dxd2M9yWkpeltnHwCENf/Okcr/TV/dOwt7VaPx+ffyooPWRPD4KwVc9dja77mYwpvsGWWBVRDcncv+29c/tvA5UBMdLOpnVDlS3Dc9plGP7mk042jikAWyNtNYWz4mnKCLG1wD6++8ZWNAiL2O1CzF90+8gqefCWn8+qdDZiO0xjhoTCioiP0StlFD3zmvfY+b1ZOjrznErQ6pFHQxbCllE0ENtrmpgoLaDmaghbiLQ8tTAC4hjvQgG9G34Uvj2Eer1g4QPDZlrmkXVxpOx8URgTmeO4ot33NsijrEOnI0lEzZ9Zi3uFMMx7ebUOJ09D+GBg7gm1Lj7EkZF5qMI4Ywe/s7VdRSUeXwQ8u9jqxED7BzoW51sK4TzO3KCgb1pxbQM+phbm5BJWru0sQnYMYEVpB93x2T/2u/Tne84nz/aD58MZUrxzw9MuD+UvEb1jOWwlq0WtWEivIuNozDxAJOLst//euqCb8ZBvpHuQZn3BABL9pll4mxjuUc/k0DxEfoWAelMwFvltwaoHc289/XcJ/dGxOf68JxoweBoahLSnxxpn9kufwNjI1tSjt/1fVMM6cce51VmLdOYx3mCJUdnH7lPokZ2vbW4zdUJCKcxtD3o7oi/58VDKey227DJD6FALR+yzbx/b5+LecEM7vylW2bfGzinkM1QcwQJJYJ/03JHEB6jPJFemjYDWp+3N7noNwSP780saWx7qZEXVjy/AYBalmymUtTq4duMfSPZCY/uc8H8wz6z+wmGbvR9piVNbdu1q3GudmFiAPwjUicbEdF+27/39TgVLDn6z1g/W719I4mJkAtZOyoTJtQsD8SUJY5AOzViiE27fLae9OP4pTDmvUlYLzOeSvV+60DWn6KsCvXle0f4ocJtrfMYYG7vpik/WaIi2HfmXRNDZP/vvlnb2TfzpyBE9T/bF1O/oX3nTw4mS89xzLt37RmTODv7KEN2wtaahANDYQ1ySg5TBpjAQD4PnlvqHn3u5OAzOO9PRx8EDa5N5o313mdLqDa8+zjR4q/PA+3PSB6PlvU9wfy7qOlPWtaPIb9wfOg7t6fKvwPQHrXL30ifAfCepx95OPFe1gQTEJSvbyxr+f27ma7m752PHAgjIrUj5gYsWpSXqrtVQrdOXDWIGzB9f/PhQYFh74t86H/tvbfR7zWikDeTPbWsRsZMG9vB50QNUK1T2H0J8d0dZz9yHDH3m2txNo5abSYeu0kGWuMTpYZIrG4WEagB1oUGPTiGxqJDGq/plvIU2tu4QBceqMH+mMeoVQ0gZ0gbTbRcugbmWuIoTLNLO9TLr1GWlQEp+H8DM+OfbqT5dvFKCvdvzFF/NbcAau3otdTy56yEvBcxp82vYb5Fjs7NSns2rsz2Z79UTwSN+UQNvmwtX2sY6iWtx3EMEImApk69fq6MY5+GcTzXh9EvzYvU2JiWxCiYnO2NdtJmSe+1ZVcQODTmJYZQCMEua/YKAjPPW53MuC+1323yeeGi7z0f3Qc/Jxz83QsGT/rj6B9C8nzSk/5Auj+/JA65RHpJZxskcF/v4DGNE9SCTfeUfITJPPwrX7F7RCmCkZhyzorCxt7DacqeOlf2nhnKEtQb+DlD2XfyippaAthsnyk0gYB+c5K1dx1olSFSlM+/5T2+ZzUJU63xaG5xSl4RVtfa7cp1yGNWngXfoGF8hR3BtZGdxnQsy6F0+U7+20xzBp4NLJ8JdM03YDEOlqZC6ELfZILIMaVvh8rVCURRAH4X1PkJYdB7PO2AjPWGbc/Q71AXaDIRysd56ipEWibXLuycMc5iRufF+XHuStVZh8NCQMSZYOC45/Cz1WUU9k147ILjYm57yTdk+uOwyr3emZZbru3U4K6C4gP0QYfkxQ7wM+O4EWf6Bgt9PFSCgclWcljsV+YNq94clRknyU6fPkZdSv6ITWWkexye7PzLjfxeno/W8dsH9p+bvnf9h1H4kYWDaNYKPzTG6Md042qOfWIh/G7mRAtajfqVbbKlfZSTlu/pB4v+/cRyYApeAqMWizk+pxsgFmxVnJRyytOoYWVbtxrbdhHXmvcAOpvWemYspjOtpwkEEbp2p9PoQGrfEs9ravfH6GV5u3DTKCYXb7zZvz8igARzJMebvjoNdDCBpT5xzSHX82pkl8dRclF7vKlFb44+rd33hp3H+Op1ikffekF40szqKFS0PgklR8GynbowMDQHw5uonJnGnPgxTOXGOUX9aAQCwqMAuwqkMI1QA6fjcBuPZH2F7iwSYuJkyJ3Bq0vXWv4cvrNawnHvBcnTcpd7QJMeOk/QdvBjn/q8Zz9GBvA9ng62585heGRwDljh+sdp0f3Xtgb0MfDOHF2tB0Npoe6nQpL9o3PC4sfq2CIXBSqOt/d3jeBMvzglfGRf+KRD8g+WCFY7zGdoMRD848eKGbf66ZDrp4KyPxL0PMjBP0jZf3Q7f4Y+yfM7n4Vj45+E/vh58Dh981JHiBvWd1qeGX1f67gi9jX5xAFMKfzzWtd2cmA/u3U7UcjNCVTccKpaHjj+TlZiLVs0mQYih68cXqUTHRfXOw3pwI4HFn5DrrUiUdTiBfvkVjcOe9J0guDKXDmntny9VOXq5M0NYnqs87DyqRXameMBmujpS3sWQElvG2qa4v6d9L4PI9ozJv3OxqC3j4++Jg6EWaEQU7izaEPjP9H5eWBkJKIphQmDjTt94IVFOAXeyIuZW9Eyeo+2wQNzupsgWR7k5u/Y9yaIxLnh5e0RH3mgO/rGBKd+o6HCPsxpFEB8unkehd9al7u+ENMXlk2fU6MQ6JGdN/27ezMBe/TXR4OZPRGA8fymr2v660QgaSdIWslRCB0pCn4ccvSnZz7v9+gTwsEPFgx+B5qEhGlhwJDi+5X589JHOFylffTZk/705BeuJ000tsvZKjKuQ6v030tP8hGKe4epsmaHXWbuZj26+bZN39vvTBpRB4XNxGDMXAUeO8Vwj9A1aZZbR3rNDt6nBSY+g6Bjgox9B1/gfCo7RUHh/n4E+X6utMu3VpuzA0FLx0lnZjIDyN4S9o+HVHZiMZ4YhGg+jfdZUordZqliCFkA981IfD2CdtcJMiqljcqGaD7Sy4/Mje0QAWiQsXhMO/5tYKq/6XJXFISMP//vWG9pf9cXjcP+b6/n4ODaOYAHeIEpdu0xVumERmG2DeP27SwE+TrZ3/f2gJW2vU07jmWHokch4yzfcbydLaj2jjswj19yqDv3G/dOxm1c3pyM2lZLK2vdPpHR2QplHn/t9AUnfW6KmGmVdinOLGdO6AeHMp0lwofoW3bDhRT6XhHrVCcSWttAHsn5CZ+e9Gel5zj+0XS+jAvNOql7iU/RzydoFm9YQekMXDugHk0zDA54TZxHR+1QYQDRktSA0sCJ36BxFmFmBmotd+oCh2nU+ztlehr6wugMrHtUn1Zjdt+EdNZKQ/6IeQLDJu4FLXtU29VLLf0chjT+tOua+qVm9h/fVoJovNmUF3w6uwtk5/kduDCQ3pzbm1Y7OrWygh8mQ3Fee9okCNyDjuGkSsdaY7FVczU2/GOekgUFogq08mcE7Ofj0ZXUZaJ+X4ZIj3fqJYmaANrG1Ch4j8LlfGJxJk75PqX2r3OWXoD9Mc8Iv4Y0DtTHedAN/6IZTmdonJK+P2L1bB6PfeyDGAxonn16cmN+SKt1EJM1+VC5Xiy5HJgLuNEJ4u10VfOOs4cjP24tXahqQJRCNXz7Rs7OlAuRPhjK9CTDM1u5e998lO5tfu9ilwjoT5OHBfBeHnGDetKTnvSk92ilthjXJL9pjlquh4SE70DxyD5ufJW7PXMDvgpOZ3vfWaAQ5VaLcN9MRjqmtnCQ8RiczKbo5BjeMaz5cWjwrrXvSVeatMc2zgn6jiygtdugVbc21Ydo0gid7yVhnx+edzY84KGwl/lIJ2Yq1X57AOyew2+Fi8HZtPut3BVYY/humM1lhhqze9raiVwdep6NB8dsv6G73/lgyHtyDp6EqAFVcS9zBf6CUOD/8fj5DjSwLjrBbw3IMjCY0ZADl3NNQpfEp3dOnPrciw/m/JdpFxB9rFb4hkeO+7xdlNS/mcyB5sIWcoHkdGqXFWfXCNQbFG8CrefHgf6x8+2X+jjNpwg8/DUKUmjfCV/D+sC2nsR/Qx2s70IzxjF7j77PyUEraNy+PriNPWgLdSeDcbm4u7BOk2pKsd7Q3+Ohp7+zkT3pST81Pcfs96JvBfXjOvV4iasc3qeUkgMkHaCBoCHf+wbTtfvejplDulIKukms/jHazTcTDAOt/V9mRs6p75iWVRBiYp0nMwD34bihWjUZYj/vQXIEx2M7mlnOvHtM+Kc1GNlOv5YxVAiK6ixtfiIUj/wcYGKgh1a16EAGKEiuTor4RUAmuZ8GrJo/AvWWI5J7Gbga4OBuB+81560Ihmv1NTlNMmnfWvm9bmwHDe0TA2qgHrI1CEAmHGq4UBt7DayfgQJXiQjYtJ/H0wPXdr3KTozhEVgrv9V/t2ihs9MXK1fLWY0xa6rW+uQEjSZY6ycUTa8CyA+McxuXCOl7Qj/Erc0f1eHaeOuBDziywvP3JkT6kyIP0INQ0up7xkWfj0t/D2lE2Okbw3xoXEQpzUfWkAqbQP2Qwc1bz/PIo74PJ0QtL1Ln/Vi7ca2L6x7QlBAUWXiP/rFuSL5Dn924n/SkJz3p74niRgN44B8c3yjuef772i700YRtk7yz1p5pNQ0IeVDntWFWTpQ17khVPXF1Fw91mYf75k20jFg08diA2FCPAZCsQEt4s6qM/opaP/vbwPoKZAJMDGJaaLHP2rq/EqurCF8E3NYATqeinZDCBCQanI7PCh46jSv3WLoTu5EvhtYTY9ujnSIQDwLpSmqns5ZxQsmKnQeoF22AehBoZ1b6hxN4fURNsOi7xdy+901IvDqZWpXKUVHwrgPsI1U54+sBOjW5+xAtvuUueK3uD6GzT4e2891AQx6W3s//03nXkrs1LTDwsfp/J+HgnULn3eMkG1dr38gm4S7yO9kvHtLWTZPRHcesBiMt/nrSk570pO9KtjAt9kOe/nDftOffpuro5gcOrLnz7fF8dkblfQnvVXARQe7sblO1wqYb1McIZgZa746dnDRCPr9YT2UNzZzonY3Z0seNo4M9DkKRJfYbNjcByYf49MpFat8JT5Xn9p1OdSYt9VBHP5YcqGmnC65KlAh2x8JKaxvICT9WBId3A1gM357vozz251ikpXN2+mwnCaMEqqCaQ0xmS9P/nsCzF1Sa1v1+O89i3TmtBOvzxIgnEdamfgpS6I6Jt6ljTjhdGHyZCrp/+05F+wnPCS827trwbZMCvk96j80LYfdUuE8jWJ7xYlyT2lxs/JEIqW1dHOrScxFOvSLFMWhrWB8p/kNJ2MP/3heorZUsXzOpW24aq0n5AH3snoPlsdIDFBam4duWZ/vPw0TDv6tix7RneXz03SP0FCGe9KQnGT2ykX0EXARa7AmfJTsd8NFsmKvE3R5AaAi517Zre8ca+z6CkdMLp+wo4oyGd14wEB+DsBPrPzHEpwGyoMVdaZx55nmpuUd//jGtLmAmIqP/g/A3toND6UEAiq+XxY/CJqFp2RtcaqYHJsz4IvrgMpOKsfhVefeMilgLCXcrzCmiIOCLCIo8SUn+XTPLcF8bCHOO6F0AEoDVgCrEFKs6QOiVlGfNHXptYSNvgL7lw+4ODnS+fG4TtsdihNH8jAHA3ZRrp3jnp2BuLtt/mtDT7wJoAiwB7Gzfu8Aa69frHsuyMQCX9t7MWTrsO87vTgEae8nG+TBn/fo2zC8RFhYrNPX1o1/K2M34Ii9L0dLxEvnqDvrRvKhx0ZQkvp3HPibtKwa5gAzv0cdODj4qFPQPz3e8M2GBxiniknySi8fpe5XwFA+e9KQnnZPHbfY7/vHOh9/MwLzeerhPpkZ7h0TpZ5uUMee0aO6/8FmeIisDJM2tDg04zXYsc2bD6fNoSzx9H8CwqwJmXXHPegBGbW+PNuohzQqEuLYOGtdxg1eNrndSbILRUjp0glED7KHIMftFX1MYa778EP0Fc6t6XWJ0cvega4i70mSUGVKFoXKmdnftuoxY5WUgIo0WFND6nKd7FS01XL3DEcs7k9eEl3BKAQWAuIt9LPcuqEh9U5P64oduSOocXQwrV58ZRKMLkTo+Fq264rB/z8M4hBPgmM9D4IZcHFfD6aT9oCas3OvD3k+x3+zE4P73NgvfTzM8AO4NrXM6c6QeCvERx0bn6+Bk/QEePhit6HekcIz7OZD9WWj+hPRPetKTvjed64y+A3120TLAOiqaqAMQrrbB9B1pAnmjAmihNW0fKgjyljEtjwZWSLHOALzJbQcDwCZw4Mt9EuAru7sLhsYI+U5gNFQjhW98jHEvzNh/Z2ulUaDxgkxkqeMqmvha4RR55NCh+5vPPpJKnIDWINY5Hn0ZLo8lraXBYPU0jDEpZ8YBTdMfetdFKRq/O+NtNAuxELFeCggnB/2TcPLUa6BtNeQbipxNrNjKbFpgez4A6nicM1XFm6z5gmUqcZvLoeSzBahdHsg6H9zJADvewBNIj0J6rCf5OWF9Z/V25jgr+eUxZMuLv1bfrkWcsH74BWT4hDVZjFak9aJhlLP7w9VzXlNo+sivouFMya8fmm8b+9UmbFTOpJTabeSP0O9wz8EHtr8HhIDvAdxXy9TPT39Orp/0pCd9TAh4eNX8bktBLK0yI0E2q0QERtW9qsY9tm2O3L6Tx15TJc+Smo9w2JwiuAw21O3SKEYz+3HASva+MeKRvVAYQhRCiMa9eLhltWFM7iD5XnMNONZCrTZBxvEo9ajt4wiER97HolgFBA+qIvWoM2fMrooY8jsDXgY4wqN7o7OXwr4/uIPgIFdRzy+IZE4T6vmVfj1rrHO+gqjqymxjuBXb0X8d6jo62fcx5cegDx+5nqCn5jEjaIzHFIs6aRo3jXiYg/YiRGpyz895i3XzYNSbdM01pOFXRMrcO30oGHdDv45Mj/PHhK42Mvox3Amu9MKN1Se+8UoI+HpMS85cF1kfVEyvPdzz+2s2NZ7m8eHKbn3OLc8mz7Y6ODPKVqd7ZmWRPuZz8E30QUHhSY6e7fakJ/290x8q9q8KD8BncSTNHDdMv7u6tN6EIBQ91qiXAAAgAElEQVTZQK1PjOVy57WHDf6QT+4BYwxxOOU1gS5nfw7b19faPQCgRAFQRHlp3tQNJ/DYRid0Gt3FC0aD8JJIQ40GFWb/LsKfkJ0k/cYtxmMxKyeZ/TV5/4aP5RkEjYnuM+1aS/9yYBIhnqgr00E9V2gbawNub5G04F+cCC+nT3EyXhdj7yzTRbdPWY0fvwvJ1kD8vWxXneUv7/LpR5OXdyMbgaZ+9fn4udtqcCog3KnDmM9QJT+jpncO2JfVxXbjWhgEgYVQsGJAS7c1JeVR6ht5H2v5/oT/DmZF90YYn/z9AC2OWD5rXvTnp6dg9aQn/T3QD1/BTpeKd9aQAITSwuylX1jWc1xs0Gr7Cw0bSSFfZydtmi/vMGml6X+6CYZtbLYZsksTqzhpcpfK1zsa5hHYU8cWXak8f8/tWwdEFC1X9PsTmnZYuG9KSdvkTbPn2WiCy2ju09SH6xg6J7La/Ivj89j/Mxn4YY4nSb7aANS8QYW4QTtrjPnTpRVolPy4/e8R8OjziicEjtHJtnwxrq0/2edDHfyF/vAnCa4hnIADdMG2vbdfNncAPWXyQo3je6rXLOFNbTTM5TAlBsHCnsf5vxhBXjg14ZP6755TFwokyQMr4HsCNPV574MndN5mHv0YC+3jx+XQpu00QvOhUKa+10xHwSa0z/ANhudWdj9ZsNOxlgp2KtmCEunzRL7PKfan9kvVRcabbaWU8R79jicHPw/9OWvz5+T6SU96kgN47vdHvnuYThN/IBdmEFL7itBt9JvNqu77s0kGQ2z6HSholT4DLe530CSy7otmVuRbgwMI8PcvsIE5Asj5Ltjx+ig/NBpOOKL5R+wJ/669cSYpLV0D3P2JoAmtjhN8fF1800S5hnt7m1bSAd/x36l+jT9GrREQmqa+2b9Hxtf11zpa8kRJUJQ1Msc8HIZ9h+ay4vOzexac2MS9/f0w9OBqFCbn+abjxyNpf2LmvmtyYS8y8GcCYB8TNOVxZswW+fTj0QqLJx4rAGxCSBiKvkyKzxc/2miN0bu04qyCjc1ZBkgb5fw6WmOROtietNzG3jwWrSt8aF5X5UXeHtRTr8cJa/M8JJgQ3/vVCfPU1wKGnuj5HEzQcLwYw96peOwMW4Km8ToIJJ6v3rM9v2jCd58+4HOw6txxKTp7P0hBK8bo/O372oInPelJT/p56UMAH3FrPFtdv7mQe2V7OxEP7nSBPrOHtc1rigHOAFDdBt8v72rluSo0zVvb1wykcf+NborghYNeqJTSb1jw4OodWmqzTWhZ1J8X2y3HTbgJUg1UdW4ew8s+sg4Nz9FObixvIg8O3DcEgGP4Q8QUA6AZfj9CXWLSPlRhczgBWNc9mrBFO/jRmdz18OoYY0kD+JzgyQqfkGt3rQPcTbYwyE4NII4cWFhKGgSmiSXXh+MIai+m9hvnm7Nb96cersB+KjYIKTaXh7E7R+2iVqw5cVPgPU7f8YRrDNrqx0IUsoa5ODgnBL6GdiSVn87Cnyrz/UlkH2O7jpzOgmvqmYdXPNQjzjSvRBk/jT42i74UaQ0Y5taKuoD4/hr4mHBgYvFEjy62FP8MI+BJT3rSk/5+6Vsx+3fC/I8TzRuUcdIArrO3aZq74SPSL+TL2sBODPEpKaPt8QBD3IbHWvYaw5HLM27cA3QKeXvVrgdaAcC6unXTny6g9OzWm3MDSI6DFNphvL120A5aBuPzIa2kioC1vR0bbNDoS0qe9uXTVhzNVWY0rAKjj6/exL8GLoOW17jgxUVcAWn2IRgFM000tYmV7czj3OlWA/UDzpzJQKEV08Ha0DjLeTQ66Loce32XBfeTL/9hBJE0tIWNXWpd6wxt8JCQbFVxcmWsC/d21QQtwthcyXX+rRy3vjQN95zulOvTF72uk4O00+TflycjQA/hTF3H9KUk9lerR5vHd8pZTiS/nva2sfVTxgcvs2j3M1AUyN6jHxitaJZ05nfnX/7uG+KTnvSkJ/3kNKyqn/z6fg4N79hXI+g42UWj4pbmh65kb+az5HTGd/o8hTQN9TSNbi+/59G2f7QSHSLo5hFoeazsyk2I6ScI50jSTKEC4BvMUU6j1kwVZ720zG3ujrcmPExljP10plmcoHUw2Tnri/n7dZ+ze5Y8YDrLdNGWZwx4oSqeMESeFuLD/UlEcxoTEBv/i7CQLdynZtIFszn/CNZHQL2YN6NkcMa402rHyKXGfJ/gHVyeZrP+PfBgZi8z+DTzQMI0TBxon0LQ3kPqdwBi8G1xdQ2Cx8Q97uL1kMYpBWw9AOBu3/ZrG4d55E88ZtGHWhQvcqdsvTYqSGvaML7dPYJmAulNnchP4tUJ6wk9JhzcXxlOCrs38dcy4D2235Uan/SkJz3p74zehwCW8N5O/jGRItFiXfYAzTaZYSNeaswHQGV8sOXsFXKB26hBtMyirbvLkcfoMxx++byaD8OKgjCBfoMv1/aNZKP3KiiftfEp35rdPgMOTIx1HOpN3kzF+I/gtoNNV78pMxOUHti3F+g1noT4rg6SjTNj8v4fdcgtctXMIQZgHHJXICVtt+rr1V0Bvf17yNH45ewUPZ5Qubej6cqgyba6+E+bn0vIb+ZxqK3+amIZ3qNe/yH9whTuXDpRjsxMi6gFD2h1XLRfB/FznjT8aPXkIamf80EjjyhQn9AoRI129+uPFMB3uaixYmyMy1c4zWuniD7RbGI4js3p9NEzBFtFrIE6sB/zm04STV5gBgrrzczeh0Z5G4SHsfx79IPvOXjSk570pCf9mYhI7zewUJQe9/p06AqpALjChkkA6YYfdmDdHNMCCNiGOpxWNHx6wo+nBjlMe6Zq0ruAmWzjTXCf9oIcjhHHy9mZURTHUaO8kH8WDHtA68Goz5+mb1YiRHNUHsD36PA4gg5PXTd6h+X2/gTUeu3mQg6cTGxmpI6Vj0HP+kwEeQBgv/s+tuz7Gfa6+rxXXzNwcvHtmqtVfmNEq3fJm/95OeShPBZhjM9TPppwWfYfpfxdCuuAznEgCNKe9yAvS4La1gu702OeJd4342yMNYVHRRPg7CPLN7b33PY+ilFfWyicwJ7R7yMcPDCK/6hB8aQnPelJvwd9ZI17QOf7HXNbpPaav0nrPiZmp7n3pHDEbuxUScLHTY+hUV2ehKHBVLDgyM8ZwqAp/wi+SfNg+O3Ja/xO8lbeuh8A3m1e8vzof31kEdv4zYxgpUOebeIX7TaUGbWQ7J6HjPW1lmggkrtw1e5uUE1lcz512fjTJh8NRk5CxCwqlNcqqGPkBOxTGAw8tGOsxlk3nFVZ8ukO6/2Ze7+w4e8/QofYB6GR7w2N98LP3rO7m7Xl0UwvcODGss1fe9QcxJOcg93j9t4KxrB+9yV3bpZfRtlxOjN435xNs2nmN+f8tbYh17YAiFmBss1Mz5cpJBj+YDII8OymDgjjBJN5JGPC2giwKEZ9LfMhTWPT9HVmip52pjQY1Rp6itnq/KBp0QeFgwdXw5GGo6OPCgsfLO1hit3wAS3Bk570pCc9SN+yqozL+OlaOAGJb1tBu7KMO0BrR+QxjOgS4GsuPYoJGhif6mPadw+4h9wMPLZTfgybtH0RQH2PyMJwx/0NgVPbm/zONgOvccMG4m7R22Dkaw5XaVFLuiNnMOMBI6mwMJoUKbpYdzW7trSSGphgjw0659zhII/CkMfypDwsrrD1ZhfOFHsB6uyFve/a1RWN0Ywm8OcHgmU/1AnDKxp60NchmrO4cdgmoPWVB2jOmMk/b+ZFNIycsQ79UWgFJx3OEYN6efHkx81JXxohCH6BWp+PYgqHTJqfjct8Ej5tLNOKiVjsFLGoSaLus4AZuzP7HFnJC4vcP4Wvbl+3wCz6BQtxTMl9aUVzH6NtHKj4Esp3g0/bo60/ttb5PEIbhEosxUQTDOLq1NdCLXHiJaUYoretgYv2u0cfv+fgMaFjQXdGy4P0hO5PetKT/pEobpHvUEv47Wstc8/HgLUHI72oBVemXWvChX836GnZmyxEp8HJSREORyw2uQlA9iJ9zdBiwnveW91WYTR7L0Sba8wnKTNDrdxVU62ckidwYyBx5IvR+mRUbK3NhSLANa1l53dhakQU+seEmuYfEUCql1JcnhjEK/b1jm25JJ7+QIOYPoxUKNqNO471GIsx4aDzjOGkw+y3OXwj/yJ853nmYeJaGywPBIYHJsyFrgoDYIb0/pmH32Pm/eTHS3Oew5NVg0OytY53knI8H/17W1NMKDs/IbgfDWw9zt9lDL2W6zZlBiqqChG0BNhe+OjKB+6CwaK4d8F512ZEARVdoJk/ce2BoU1GhYC+f+RE5uNmRZ8SDNb06Lb1Y4WC53nBk570pJ+fHhYSPvpls21BS2eRWPxjAYH9RuPZSS7s4gg6L69hVMBYHUCES9cvJlo5jPY/TUk3atb83+xQ1gRSPe+wTXMBpKxNeMhf47bP9t9zO3tNnvw97joRknnhZQmAWnMquDLQSRTazfD/ZF60ZjMIZDSMiSUDLm037zjXIc7tG98Fwa9pX8eS3UnNSh5BB0mr3T0KR/E3A93XZcaOQ2Gj5hh3wQqhA7NwinVCrU/Pm/68rEF4AxBuIwfOgPWKjwVfUPGrmedMIkj8k+bna022G7nj/HffdS29fw6YbmEMlxwEUBP4mVHdCR3gQ9rG08C4DvGwMLoEHpcHobm3w9lqbM8r+zZyRTnhIozhUSj17WOC2KTcWJmBRnpQOJgX3U/TiT3eA3Pru9NTKHjSk570M9IZuPp0Zng8wwh2+ypZSpEnHln6RbShMijQMnBXI8JZav1Fa11d2miyQmEfbMXo5seVFRSgbaLNWZhHfepksAM4IDZrxkPjzEBhbD+rj3HJfXe7B8jI/ScZd0tkGDX8nUcHqOw/1m7hhGPNw5mTq7TLehCNAoRvYbJadQmxf927Nj4jl47XveaHXpd5OAiKrvVb2kXNMMJPL0B6wSIKIRxS9m9pKDAKfJ6auQm7bxf8yX9rfLbqo/gf5bkLr1Md2U4wXL96AB2ZXQhoaI3fBAV0wcG9BpFDuK6+7L7yzrKuAo1Xz9e7Qo1bn2wuusnt2dCx5kZYk9k62u/z2Z4Q2r1k7RShSyBB6LF1ROvoTcMmXtxcpeQUJIt+aRGLDPy3thnkFqu2punBCt6nBy9Be8LoJz3pSU/6c5ChjjWQeI+C1owWYKGnXP4U59UEH7Wn3RvgNMwGWM10x2vMCADUdtYONtrGapo/dDDfNuTGbzSf8dFhmGuoUynFbXGDYAKg1giauWMJRJBIDaS2nPQ/E0CbmlSBKoemXOL4po1sRXOzRHCpWlpKKQgZpkBOLZKKIZ3q8ROYGSnFqCb+AGjma1W/xyPdWB6r0wDNqefv/utQkpycDF/NvPWviQh1PAV7nN2JvyDAjBh7mi9OQgqPHbgcgPk9KLbq/zOFwFpF68ofCovjtwtVbU5SEDMa6Jf/ElD7pXeeqs3v82rdp+XRivEsjFR3ojWn8YJH9M05KbB/x8AYdqoJI4EJLzSc90vjJUXTy0d8BZamQn4LGL9/ANM/bla0NJT7JK20LW7CPulJT3rSPzqtYc5nv36cZD8zkNtt8eVdnZZvrw3r+n0HtpwWjeKHAhpWPAzfmvbLqYqnDTHa5Q/Ay2kT41+WV0vUtfAhldMb9ur0dz7pAhgG5LSgyUTLf9elDPec5dTE8zDkZT0xNFLQ7FLo414vLyCsTTRcjy/wGbe00Yk8VMwx4uWtx4QJ6vJRHyxjimVzG/jtgql7PkqBS4031v1JQOUqQhUlaevPTEM3ZB+d8x9bG7o2HDwCZC07dRAszaAC90pqW7MfmbMbskNPxzEbTmru5X8iqZvj/djwD62j1r9jhE+i0NVNkCHyRbs8uP+p77xPxUpzH7IJA8YuWesR3rj2k45kzGq5890fAIYxbeWvLvAb6XHh4CPi/5Oe9KQnPemPoWk3dEB5Wsf12YT45a4DIkKtFS1KugOels40pi129oBtLd0Cx4aN1b8njglHZ+F+ojHAfDaQ50DEoKyz432/LU927IsTBOMtpTQ9n7XavSKSHY0vJ97762grvjDoDhrlJShwGfL4PGCrlQBk7TsxvKAuCfn072PiITqQA1VxjLUWWeRLbdw05eI9IYy5ccvLudB5GwWa4HANAVneVIsQTTaaaRruBwg1XlkrQugGLLX5CCw+iNy137OQGetoAtuU1TKf0VF40V4LnN4EQ/0hoN21HXPTjsfco/DO4TK7VcHr/jNQHJixep3N6/Z8Fj58H5vgEZbU/nlPw84zg1wkr0dIhf6gfGivOJ7oLY7Z7rWXXepI6XvdczBValj9HxEc2ifnaT8jZD/pSU960j8C+fXxYVXNu2vzAqA2EyC3iQqiQri4yh/XO0Vgd0w1wGdabq+NXDuLBhOAD+qjgj2v8WFlBsFGQi52TZ3uxhgEkFapCKDHSDWhVMvK/0YHl6P5kmNW/jE761qBlJyAMH/iAY1/P+pMDaR2HD8C4w7w7cTozIxhApY+K5eN135PcCH88AJUzyLCRPcgtG33r2g21cE8KLZEEJIeMNWwMmKF4frfIUTM5UYtO0XeGx9AvyTQAeRVm2nakZ8VtW5YCgiTiDWDL494h7S8SD6W4g4eA1jvwps5fauAdw89L219VuCeutlO+DzOvTCEgxDe30+mXL5vfOIleQHBhST1GnwvVE+1YtcmsY5hjNuQamvcUH6ro751PDyCtT/hkDz+fqCYseO91B4a7OEcn/SkJz3pH5LO1snHsPQ91aqmCBsZTy9lNbcNe7FaO20br57b5usUS2Moz3HDtC3Nb/5+E/dWr970xTtlNnMScoIER83uCApU3zZUbwTIC2CjgCaGFewgZWWGg9YkAb2Evf7UGXOycWjM6dMVYPUlS9oRE65MlUOVMFzuNLJABBpOJ2z8NN8T41vHwzh2gqDJc1uP1fEyUHhhY3cwJZqpl7Fs7VFdPIFXx7nxswI1/z97bxptWXKVB347zrnTG/PlPGfNs4aSSiUQIIEwSIDVEjRC7sZgfhhDG3DbYK+21cLdbrPa7bbdy4AXXj2Ae60GGzcsQwsLkARIlCY01KCaK6sqqyorp5fTm++7wzkR/SNiR+yIc+57L6tSUpU4W0uV950hYkecGL5vx44dtd+honikkRHfmcRN/g4B54rvjbicEcHn55P+V2m7gjTz80a+UOsKVwN7RTsOZ0JUN+r7lattBzWqyyboGDHXkLbv07ItMNOtVL8fCCYQoxriZwBgguuOGKw8uDemUtRKtbrnqlHEakIQI3xzIja6kC/ATuaKr88JyTVLs1zquu/akIRGGmmkkesgsQP5jl6pMZbCb8ADPBhxPwG4yYc4MgdnzXmHkZznez5R14/5qbuSLEJUjnokYCdSvh9QhXfNEGBPAkQPupL0QIAWd0L0IlbFgK170uXFMMAlAFq4sQgLYkTQJnwSXvZnDMo6y7kx2o8hyJCvLsRkIHhamArI8NZF/3d1r4FMI9JVvpkiOpPWbP2m3ar7TbhZdeGq06H6tqxf/i5S3zpiMIl8mQSpSRcqbiUV0ierIfnWDIFstSd9JiE1xogVpwQcGcCtygXwbdOtkoKqLlTB1iJp8T67BQUdTegIPt+qMHC1qcZEeSc4j1DZ8CtJTuI2GBsIqqlKYpWSIrmqKUcruYoatzxbNkky5FhgZNlTVUza/7ZGviTyAKy7pw8awYQ3+mg6at/pGAuz1bkSQV49OdjhhNNII4000sirl3RK2VJewficbkw02qPPBDDG4I2BuAfzCECarZHXpshWN+NypdCwDqhJveJUEiAVgWZTKWcKdIKVtko6QjqBJEThHmu/orxWJVEBbAULa9j4y6DEVoDW2oMbdpOKA3gGTes2pkYIHjZykxTGyEoAnYlEj8kdyUtGAKpQ0HoKuI1B0QRqWCd1MLmSW00biO4JUhv4hkme36LhujqoOWy61o0kJW0haUGesN1BYuHVCs1y/TJ1wQuJcZuYNJRsV9vhm1fOQvF5oba+4z5magkdEwL+FluSO/GO7LPugWrainydUPJsHVuuupvxP4J4qBpWZJLv4j+tAZ+lEn/3pGwwcTQ2X07PgLwxQXujRiWZinx9Vg4aaaSRRhp5DYsAxKhOeOJCAEjpZOjfD6lJMFk3H8mQiJN0sta8FMByTtscdOWT8jN1UHJCfvG9Gotp8ntCKtEErMJVMc+H95WPDlOft1XLRF/JPk/ufQV2LdHaQGumIfZJFeVhT1Hw+pFy4EJ+96oOsVsJ/4jJgydgk+omwdCTN8fG70wCvpT+mASQJ75P1ds1yImo+lzgETtAWr6a6p/dPlRljVoCsW5LDBjkVlZyAgEOX1JCYdFuLcLcUYaxf33tE9H9nZoN6owTNOF++t5El7w6vahuVKnSq4oCJtEhSYQ3snM0qO3Sr6GvtWlvWTLfeOyqgz1LZqsXrHxjyMEEdr7TBtJII4000kiNbI8SJjwnQTxbmgP4BMkNfVsDutTS7l1ykhNaYzCaWK0pvs/ClvDURSGksQ3UmEgKTO3NujKnunpXBIpna4kHpe9znYZxceoOLHM2cWci1D6SC9cvoDKy1wkOBNjnFAHsSuDdEZwW0jLN1sXJEq/I1EZ8ISXST9oAwjciSBc0A/lPUIHTSOsiyTsBciZJz5ZtMvmsXJvQhKp6xIQueLmkhLpGBxPKoBKgODnM5KRvkyLQ6hPGubJEBKCmEdpv5FJ1LmLMCfhb+fsm9X+fkC8TCyNbGhARe24nHEUnNDL7T9LneQxQpOL6NqFoJnm2qlcsoSzk60LWC0djM+6aH6pkaCHR14OLX4joVm3Kwjzi+mksoQ+k40260TldZYqH+pCukoEOtpAdkoPrCdsnsK9GGmmkkUaur0hH3MhdYLKwP30KUCvGeIRnUvcbOTHyvyZJREYPSq3IPiwkwQNJn+lEWyRtCQi2kjrAWwkRym5Tqm6Sd4kkLgeyzDsDUqi6X7gyszuR/ctE/0YWVXeHQZ3/Lo44MJlICyBDL3pQZsS3q1VagnEDqHAOhgcwIhsPC/0BedU64SqsRIVKMbAxni85CBrqhQ/d8qA00BB2zbJRq2SKss3QFjq4RENhEIhWrEelsuQrNWWqdW+p6VcyjbpcqslO7gtxe4jzlADThyyO1RXvJD2zdsBI9dcxuROrkZKCRWA/WnWoL1eEk719I827Ws8x0JYl5V6VZEJOhwnVGzgDwUBPLIfNU/b/+hKmK1gERG02fU7qYA9/3D6EKcvOn7wWIapp9Sxmm/uNNNJII428IuGx9VWMsemrcdxv+JnJ/qyCGb7Jk3rlxTqSwhPzFnpbixmnWmMt9a/HxCQqmHghON5MKOtWIoszQVcGr2n6lVCSFP8r3YES7fz71h8aEQEwnIZITxHV1VZNHaX/WvFWRgn4E7BluUtaGQHobBU+kbd0ynRrkxPXpGU7tjyHkKhbSURaanTmRKquafY/vo1t0Qai9F0B00fjZlD3tbeSFPwlLabuo0c5bUEWAF+f8P8kZBT1ALReRzOxqmow+pZ6cb6Eaj/ih9J73tJOov/UEIaJheGOJq3yfuXFtaaaZCorY6IcoUBclu2+t1RHkhjj9oTJfALBkUaAeNVwe3mFoUy3e3xnzzf0oJFGGmnkayjXYD334gB6ZDcjqgJek0yW3oLLMczrdeAkvKU/Aaocsz48nwKTGmKwExGuPfE/9RNmZTPyDomDjFWfnr2w5VsR+BVWRPEMX/PG/RQoGRPVjmJEZYLRlh/V2njwLz8RW00ZhIQoJ/y+qxOtfdph0/PWEiLdoP67BTw5KQWEcLb1q0NR+EoTiIm3qKdkN1aw9obkUOHOJCXr2lcgcDK9uhUuv3JT0wfTPAi1PDvWRrQJabVOo/3I59PiVBy3Kjryf+vgcKxDBKbjqgopJatn8TjhOIvrn/L5MO5Q5bTjKinnjdisU2BUwaUqfDPbLV35BKjn1pWozAWPGw+nJMG8LIN7x7AOBkmbTb6DW+WVJJ91l187rAZr7HRN4Ouz56BmUG2IQSONNNLIK5cqVLhO6aZgXS53i3mFJ8t4ZUFYy0ysI8G+r8Kj4UcFsHFoVH9hgrUXlclEbrCU15IMIh0m4f568Fl9hidz73qhmCxV/fSNL18A4vXuTAHZS4BOKqRFAKB48jei/iV4MtCO2NnTnWUZJuwl8Wlot78h3FOE6DRgJgUB6Mr6rW+ZEvBobl/hJfmUA4MyvwihJ/rWPxcAXnJh4qoG13slhwnPe+qxo77o26hwo6n0t9o84gyCl06VTNdrJ9qXTI7bMGQdhR4nsaxkJJ50OSt4TDJ1qi64vUm+GZXTmCQsp/EHA8qyMNiNiIp4IG0iW7sYbm1sCLQnGUNcP5rkqSOwvgPlwVgQ7TxKx9CgNKL+CbvnSimyhEKcus7fRynON4zhngDV9M+t5PqTgx1aVxpppJFGGvkai5yhdihGaxi30S+K0FObPAMa7f/2QNVP0JHN0APoGOUYpOdbhUhHk8zMW4t869r2IFStx6nVVhIbCWojtyE3/0viEKebujcwCQOYQsmJPvhjh3fYpSSApVBuBhN5pmz9GoOyLG3du9WhUL4YALI+FksIvY0LWcugw93RADK52oNgRU5pLGM54+Kx8zOlDm2IWCdJioTKdS3DkyEBmA2n4VcrAiijJEH+BKY2dZ9JqLCknXiMajjthOREtRBLvTtbXf1V1dkKcvlVICQEy/0dR2uqcTaaZNidBGYNPAClpI1wroEghO/sdY0/qFch1LSJqiUlF+SvJ5RkUiX5fhf3hbTO47FD6h0/p1Rs0Ah9XKRv2IUypK2ZCADgw9jsYY2CdBqZZoUu2b5ZujrjMKzcfXz/qY5tk+T6k4NrWH5tpJFGGmnktSkePAnUXokq5J+14TG3wt8BRMMe2uSX093lmkm16nKRWMbiwzoAACAASURBVDG3LEDy3LYcg0HjJIvxNZCUYNgMBMDfmpwO+1NXYGENuYn8+WVdOdyREcFodx6CUshSFVlBDyDFhl6jUZYaWabcKki1Tpj0APWOClxjKRzQWldKTzD2rARiiCT1ZOAUKGXA9FQbnjOyyroKMkb7Mst9ENKKzWRWEozQ9kW6FXqbgq7qnVS24+0BSiUQ2JMYkdWkTIy2N0l835rnPSitIa6VB2t1jTff87XaZ+0AENqa/099XmElUBCziWkjja67Q5H9eytiwM/ufLturaYSqHtC6vKWxpiIwIq61RMaDRCdzyAVSFemtpPrQA5qmMh2a7WNNNJII428NkVYpN2fkNbP2pXpdMIRrgC1U5GfgwMykxbJ6vK39FMWaC6oZsEPuzLU2ahM9SUmAvZ5kz7snqlOqpEbEJdXYhYKdRXCLdoHtrVMkswn1ImvG1dWi7wFpKlYBSkycHuXBMREw6TlIdabkPGeBABGawvsTdjozAnYr2V/COO8zdetWngfbSJ7erTMUzE8pajuRA154M6uWSqplxSYVq3FrqZqG0Y9EuZTt4NvOlx7kenbf8NKl6dFiNqw+JNd5uSKUV1Pidqxb0IV6hiRN1/HlTKm1Aai/ZDvjuHQrRoGwSkJtyhjXDjWqKji5HC5olTXxWRxJAcycpWxJk0/DsSkIV2BjIqQ1kvUD8Q3FWlWo3uF8cDAhlOdLDHglwUMARYQXUse86svFPV/6YYWylalMbya5sKwmklhcqvyysjBVmt7272K6quNNNJII4289qRqUbQXGaCGzcLxOxIp80TuQQU/L9wG7J8helBwR9hihkgsiCaZVSZNSV7jFHya+qlM+oXXWhZFWZKfE+1jEhirxMUn8WBwoToZ3E2gXFItCWQmKBC7MTGpiq2NvEHTfzEiKKVQlqUvW+R25P8JUYNiLU0gDq5cROTJA9eL0CwCQCHaCvl8HCtyBlZ71Jx23yns7wjAKgWHcpM968PvybYQbywXAM4k16IS13yjRDj/raJk+TqZgLP8JXff6i6ZQvxcwmmin8YtzaWgVQYk4P4tXdmCroFXJNupAaSbf2tInAnvaugKIbJtS7ZbocAOLOLB9azm7IO4SiYkye3IESpjvBWfFNWrUMeIjGjDFMZSJhspxPY5C0JcWcX1dRnqlp9ND5HcCVx/dSsHrwDZ75BDNNJII400cr0lmnXqR2OehCJYUfN8BIekiZOtkdJ1g5EkW/bEK8bEVmj/rwcxMSryHtT8TDSrU+07tZ4BqRhEmyFj7Gfi6wLUBEJTY5n0CYdMa2u9dqmDdTKBXKWAziUd9oUwOJAbnznMaWyardNVrj74TyFWcdjVjBQBGtBGCyIXV3tad/w3W/z57KgqIAukUSkFrW0axpEkq0JsRY2g6ASQGBmFU/Dl6j9eUanQAZtO3UVxl7/LVvjIiPYQ8q9L7VowU6AyKcGM0vDW9Zh+R2FKkxQn6uW+nyebJhTdiGej/ivbsF+lDAQwcn/y74bNtOleqAqZ9sWMVwJ8H9gJiRBppDp7guCe87oKcin1kLXhx8qQTESiQhSpyvbnqK4g8g19u6ZPC4PLtcr123OwBfOVd0zNtUYaaaSRRl69VIBW+sAO5gkigoomX0Z7xpOGeGJ2E6+fFOOJauKJr37Ctla4VIfqc26S9XNtWhgCKL5W9a+VzgmclyUodeRHbsYOpCk+lI3DuNbmYhjO+Md9plzHHnonVlS5ouLJAcgDah8S1IFBijOILK7hGvm6IyIfiUi6TtioVASjTVwH5PRWyq4gmBKWhIT7/kRtYWvnNOJoSVVCVWlvsETCEODM+oF4GPlcAr5YRFORQFFyJL8hV6wgQESBSYmO5Nax5VaGWBUqmPi9SDm+Ll6rYFAjwGPSiLbHuTGInoTRQlnsvg+fZLT6B0F46sPzEsgTWX633rWrXoeaBG3/8WMM9wDZf31n8AnxWCFd2XiXi/EDTjXHrTWLSbUkdy4eGGobDGC3JwS24euaoCqP8sueRLCuFRciE6VZVwDZKyqGix3MA6+cHFQU2hncb0hBI4000sj1lToDTPxAaiqdcB8WKGgdwhCmS/d18db5V4QhIOYIm1D0indVkNSAAiKIsJ9fL6iWgTc4EqNBbA2c4kUOCpjZkI3UVKEqTgm2BjI6J0ECGIgba+2W5Qz14W2aIVUGMcJiX3HpEG/Iqlcq80kaMjBah3SYxGkBqsgRP3/4AaB14evJgn4LpoqC8zK+PJYzBAWUNe1DkfGbjAlAnmeunjXYRccDf639ipIihSxTtRuUGXyVZRnIk6jJijgSlvI0jnwkKFgCkiXAF2AKqP0O/odonPLL8a8KKUvEr55EDAa+LTIEluWu10YC1IQcS7LnXyP/fCUZtypkm4cSxEDG4Z8Q9Us+69qYMWxFD4RUjhJcTvgrCTlmsuFeDTpTpTYMxX/78csYkFKO0PtuK6snTkeUhcuT/pYrHbHrHaL7oRyIwq3KKFkxGSRUmgqPDUmiFbDvh00dKxi9ExsBtpNXRg52mnojjTTSSCOvfZkwpisilOI3W+Ws1VkLcAtEM9tWM7DPMgCbCAHHf0TJScDNeINBrIRQwT9dpLElYTCeqExUW2BTjs7E1yMXFCMAfsTJYpKljUF1o2AAeBEAohgOlVqDoCPgkGUqlG8L1xpbVp08wj76AdCxL7WNXFS6Dc0KWZb5zbfW7Ye/hkVf0Z4EHYimUgqZsu1GGwQdXJG1J0kBzut09QJwm5cBrSuYyZfdtlO2zLLlNH2u/s+dohtPYEx8GFdt1U/kNXFb9/UBWQs1b03iSE4n3/1qrfeskokLK3UU/Ufu3ZiYMaWkIQQHqIJUiGKHWq8A3klfwsCThngviMw99Dm7iT70QDWpDLX5hmejlS1HeOxvHgcCYZTf2qT3KrkJAuRJQ9WNsFZI7t8Q9V1DKIiUJ/oq2z7a0g7JwXYaNtJII4008pqWLY06FD0mQYV1BdHivvFzT0gyROuRQD4CNxFhMAiHJDlLoJ8jBVgSAEYCWkqst1K38ECdxHWgjRH6VOuHECZsG99f+dCZk5bpTVQJASRHelXMi+SshJxGAPKx+rJu4Fc6FCmUHD89XrcJQIlCmFSGSgy02ZVGG+2trL5+XFmVypCCLcqUxUKKAFdGbcJBaQbGrUaQaE+urLBWau0+Abc5pYDSeiwhPgmBv3tSL+792EWH64D1R41UNyzHVc0Jh/qGcJuqQ9bBBU/cIgaVPmFPsqWOwfwbFUHo7zpYBKp9SZDQSfniFv2hKtIKLvchhH+NVyON7lPnGhYTs2pf3cqa7bt5on7oT6yn+5PriUKI20r5TPW7RflFKYpsRBlid8NAqDWPjRE7EG2Yx0yXbUpDJKmzP0hejMshnt1qQ3v0jst8oqunkGtYOahac5Ia21qpmtQaaaSRRhr5GsuOVnqTyVC4uQBhspPzVCAR4W8Y9r6tApU4RSYdbBmusZQSfDjDOiuijKAS6wzwcjyvcIRqSOO3y1UP559cAzyCVVjeC/ZdyPqhalkZSFXDorr8DQXM5/FcSCX9hB6AkANzElMK6yNg3Y9sHVj3B6LgBk3Kfil7AFnY9Gu0ONBNoLtglIwcqX2+HI+eQ1vyCoHWBlmmQhpeP/K6KQrfhkmDrF0mpJUTld11GzIWAkCHp3xbMNrt9WDCFNet/EasqJYrQfEn8n+zxT5iKCn/c+nrlDwGO3FFZLjUsB9Ako3AJIhcxfl7E4RXAJG0Z1HffC3eLBt0MgBIrpggSga8TwaO7FkS7tqeayNwbYRXvySptu0u9H3WVWuNLMvs2CEKGtzHwm+7j117w/5OADTF/wniK0UlF8L3YRIjCacns77VhLGMiXrUlowcj6pjcq1Ll30xeq6i9hZXJsk1kIOaRGsYXSONNNJII98Y2fnQP1kYWnqjYwJdImuXAHQwJvKtjXTxls/kDlF0kCzJzaCwk2q0zzMFXFtMmBVyUmPMiwyfbnavxRCSAbFLgQdpgpwkqpjaSdtEdRRN5mI1xIewdJulOWsGzfyfKFtjEOiZrAcGyQjYlcjHaM+UElZPa7FX7L7DISVrQWnESkSbCUZPJpHeXcmbToNvuCVJAdhGgJ3LznRHmpLdd5DuSFLkHgyvscHENuNDXUIWy/cI1x5jQB3lx3VEsj2Y6Pt41X274UvJPhvPyfxdf30S6JPbwE3yfmXjdwr8KU6rTird11834V/Wjy3aBv47wXIEWcRaYiRXYEJ0skrnqlGQ3XGqnbjewr4dgI3Ho5AY347HDG6Z/H9uq5WwqSZu73KVMO25/Iu/Zbqas632fkhmSrgzorRDcnCtU07Mqq7HhNXI61G2mNUbaaSRr48IwL6z5x3IMcFK6EGZABiRtQ6BGLCFN41yFNSpAjkRONOp4KfXyFpaj9urE37AZTq6HvKoAo3UHSh9q4IFDSwQN8mDCPXFG3BD9BRb1ohsmfg9LrXW4oAl9wz74DPqtpstGXhZWsAuOxKse1cwn38c7z3LMgd6nWuPtuRAawNTBucea721f6mwZ9WDlyxTKEvr6sSEgNsC71mQ5MCuHEm3oxQEhg3NEZHi9uWbmNi86t6rRLxiUExxHpVPLgBsuB9QeYLfBTkOTb2eqtSRkjpfe3DK4nd1j0Vdt/YY0MArY2CgQDX6mOqvFP0LTXRacFGeyI1IPEIw4T3D+0hcOXgFIeqizurPZwcIMklMuCSJSnL145T7l0ODSj1TVyjIFT1AnCtCPt/0W/BvY1JjgmifvkGEupL9UUbs8imygcVXRzze2qTjVRavtyiDJ2aBG/s6qrd+VOVVnnMg6FIdnYwaeM3tRv4SSc0M2kgjjXxt5VpIgRM5ITEoC8nVgSoRes+jBvEO2MDGkxU/4wCLC8snLWc81YcpOZ6c61YMJvvexuQk9ocO6HaiNc2DavhJPwov6YsVl52t4l7zLazVPisBkNkNRrr3RJ7CQl/l3FW0tm4zpAikENxYnCaSFhljdSS3JyCTwNsDbS5g+EZygzH/zjK7UbnXa2E8LlGMxyjKAH781mDN29sdkGOyo6z7CQygyNawAaxvuQkRcIgIhmQoSQFF/cqErEsJxMI3k+0nJhwM6vwl1jz9aIA/rCreJSMZAwN4n04dY4BXPZJAcE3ynIiQFPCtv5D2V3b1qsCx9GVjoBFO4w3VQi5d4/6KNwHHroAk3q8H1Pa/vrL9+9IVceJ+DJeEX0Vh/USdhVcCMpahmTn9dByQbkCyjJ7wRUCddaKIpUU8gq+IFSJ+NgRyIDemwNfbJNG6fnybNMJHgRFYAR7TdzAvXL9zDiKZ0AMa+UskkhWL006pnjA20kgjrx2JJvxkIonAiXjDgmQV3pGvRQYjvuDAnYGfkIXhLehB4m+z/djBE7lONt1VorPEb6Fy06M6igBMeFyAFTLhkgQLKpza6yMLGRPXaQ2IYmt5WHEwMWAjcmDBBGs8WZDOJI2zsBGGyNex9/Tw2FBBZcpFE7KAd3MwdPoTcspRlCW0j1sVQEyr1fL55bmCIsLsTA+jUY7hcIThaIyi0CAF6FJHVlGrsvu+RkMzmQBgxMZopSzZUU43XdpIT0yIAEsiSpRQWRYssppBUIy8Q9hViq2r4jtb/dxTO4EzApCGGS6segSAiqjtSNcS97q/zvkGkBp87w3ic8sVVWPmS0uzb6Omru+Kd0IxvF6cjwSmvg1xv/Ab210dRETdppCu5PC9dD8H/yIiGO3aAonoOq7+eFHQ550Uqm6VQOqgnCtd9PJW44tfvXJK+PqFXR1E/K28ujxe+uEi7gNA1Dyj9+RoGd8LV/mpiAi4cSe8EIq4U/kakYNGGnENX28AlAOUwdqPtg+h1UgjjXwDxRjEJ/ekt4U9b5slahlCMAIcJFDHdTIkxT7V/H/GrvIshSoQrNU9+k9dOZ2xw/BvB4KsMgJAeRtjSFsAl0krHlFoUhgXSSjoxoeRERHKshD1EDb+WnCdKuEs8KX2dUUA2u0WWnnujOI5RqOhDTta2tUI7d43xqDVyqAUoZXbSFbGGEz1cvzA970dFy6u49Kly1hcXMLy8joGRqMYFeE7EG8kh9uUat2jJF8MZSFkufK/LZgvg0Veqahxpe4t9kXl89RaRxvOa9tvlEYKGFMUz/+JiSc3G+9CJi36icU6XemQ306qp9L7qdrit7T6+x4oO+E2It16RAkjCdBUlEHqk1jj68YMWcaYBFlRRNBQAgxLMif6pSM/UcJSl0QnvuY33Ps0uKxJnxeKpt/FJP/GGcuHaz6ak53sAdjapipu1rbp7d6vyisjB5X1L/+fCRI121eUZSPfCNnKtrCz9015FkZfAWWHobKDALWvMY1GGmnklcqWES4mSABVVDN7M+B2oJIyftj9N4AnCb6FzVHMldVY+86QPBHEyCX9dIOlTSFM9NVy1VjYZN5RPlwMqoAXifhJ+rpH1kLAGHaxsPA7gOJEOQpl4FWPLIuj5oRXIvuk/22t6ClBgt9UzOWO3T3CgW3GAO1WCzMzM2i1c6yv99HvhzMLhoMhtC5hiFDA7X3QGnnGtWmQ58A7vuUobr/jdvz73/40vvCFJ7G+tgYYbV2eCm0tmnJxya0WaCZTHsMqcFuxBEc567ggfE5/PsnZahG+l3Y7t5X7jtq1ZWKMyS4dxtaXrCv5hez+DPiVjMgIq2samhQD2ZgqoDV6NCJFfK0CU73uHM5TQN04r4qEthO1E2PP2yDhJhZ0svRGpedxMGmg0J9IdhQedyaA0nhlLxAQXWr3fYLrmLSS21/JJvxEKqQpJQopGU++yySjQYXcRN81/KzoEF7071HdCxNgERc/2SYvPrEg1n4FIxntKCTmV7O2kVd/CFrtUlFyr+EGr18xAFDCtk5pgtqZaL1u39eXoAEoHKmxujTSSCNfC7k2WmCF5L8SkLlrEUB3TxrxTJSGn+TTuxyk0MhL4SlpzUsAf2plqwtlKnOSlkufNm09QcrNhOmmxihPMDAQkEKUOXArA6ZOxinGbk4kgJbLLQIoPidKgh/yJG8sENbGIFMxUJNkhGABpfHhO40PK9lqtQAQ5uZmcOTIIaytrePZ505hOByiLLU79bgDrUsHQGz92MPYDAgaZAxuufVWHDt2A97//ndh2O9j5fJlDPuAyRTGfO6BQ+fa6ZE5wB7c1QhQyrqUgJtCONnZlGVUR+RWHwJWU84VJf6mcduFX0gxop58M5yEZbYEvcZ/3EkReCQJ9F/btQULvClqD3y+XIQvXZsixW5VCViNNNoGGHNNcHuMmM/kdMSb4VfEqNJTxuOdCkZr2Tm8bqE7BboHwJ247DZvK/JtgvsxuRx46zznZkmfwqS+HvZkiPK4Mcd2R0m9DBetUgehXqmm/TiC54sU9hSBv18Ski3Sl0iMQah+bqqeqi7zjr6NaHfbydfdraiBgq8vMdAweugasgKohcj/LxIxsvBArXbBlKsw5jJQrkOP+lC92x3bFiPdFhrEaTfSSCOTRNqWXqkYBiRupuQ5PCwkUI07QAJa2d2GAugN6K1qPWciIiPZ1JaP5BvxhmkGCFKjKAMjIGUN+POjl7yXgECXjJ3cowg5bOWWcU44PQbrRvxfGPtqyicBT0CSBgwew+nFxoMgr3tUFrhNygoaGoqyQMIMA3JCnitkeYZjx47i3e9+J/obG7jpphvwhS98EcvLqyiyDGQxO9bW+9jsb9q8dQmlgDwDyqLAQw+/iBMnjuDuO4/gu77jZqxePoM//+yLVh+tUZQGmVNOKcBo+HrzG6lhNx1r4mgz7D/N1Ei5PR7CX12iZq7hFHiC2678ZuSt4SQ/WgqSfX9A3MLklOcIV+S2gpioRVJDMKgubu+EaZLbh21RO+v5lX6XJBrI/CQyEHcGPu9iMs/mQcC9YHxF1dZP/H0SgJ3mIcYCD+a5bdM2dZEQkyhfN9BJ0rBlUk6HyopCUoot06K67+dOUHeDr99Y7hKLDBSyXIrs2MT1TKK81wCnrg852G6JYkvw18hrWzSMGYJHR1I9GFgrk41BpgG0ADO0xAGZHax0idVLZzC7+wCgnwCwCVNegR6+COreCr/3QHTERhpp5NWL7EmvhChoo0EmbGiLjVgU/WsfCLHq/dwl3S0SsFElBqmLkAB1PPUKFxCRqEhD/hEm6ZC1qX/WPR+s1g6AC4jPVkq2WkKCGMOWQyDLcoRTnE2UmVKZtWYn5aP0Y1Eos0HwM2e/bnYL8uE4hYHFa828jALo4bMKiFTkSsQAzxgbzvTosaN493e9C51OG5uDTQAaTz39HAabfXS7LUxPT+GZZ55H7/ACzp9fxHBziDwDprs55rsZ/uN/+EO87/tvQp7P4x3fcgyDtdvx8MNnbGjUgjAIcS1tNSjCWBuUhQHlQMuREG10cCXilQbrN+UOwLKbVHljNn8TUhS3Pc7NNZw8z1AUpa97YtLI32Ery2piDa7bSJt+e0lEU/92/q5SP9bL//btwN5gEBy5mNSQDCmBv4S84s3FVHnepNckabAKgCNIWbyvEZEAUW6xpCMTrODGaGwR9y0J5fC8EwgOk2RpmKwlZdy3OP1QeUShrhiUk9PfTCgGpM5RXdWMvMLKIqtJJFZTF4C3DxDBdmNTeW6rRiBPQyaX6E7mhVdPDrYjBk4a6Pd6FAIhg1JTAAYAKcBsAGgDyGDMAMAApA5iPH4GWXYISu0CDDBcX8Mf/Mrfx/t++hcwNV9AtdpARkBHA6YUsbMNSGWgLJ9AIrdqOWEgiF9pWlsjjbxSYT97tpylU0kd+ZDW0pTsG2fht3N74jZTO6cxKKjTzsYWDykn4Ka260+2lrK+achW1tF4C50FlH4zq3ebCECgLMuwSiJUsf7u2oHWqoUw4gv+lr2gE7LBG5DDc9UKlFf4O5YlA4TSgUNOx540W2qDzf4mnnv2eXzxSw/ive/9HkxNz+Gf/JMP45Of/DSWrl7A/v1zOHjoKD7ykX+BX/2V/wb/+Bd/Bc+dPI3BWh8HpnO87/7jmLr5CPJWF6R6aPVmMTU3jYXZHN2ixFqpUOYKS8MSgzJoSu6k3HFhCQz7t6vcWqWL0ranVitHnufQBugYoDQAKYVxUUCXpSdOhS7sSonwj1cO+THGYsTF+zS864lzXQlIMP4ecrOstIb79iPyqS5O1YTTrJ/AxEoT/GoQ36u8QeFqXWqBuFQJutSJ3WLAyyCM8QUrJyaWrk9rB9xtE9XeFcznbALY58PjmMCyHnxCttXBF6lqR2ei7d7zY08KltNvBpP0yCRdducSecCVZyv3G1sOQQSNqGPXNrhG+XlEegcSFfXiaMWL25KBQYn4yeCeJFetUnKc7q+QOm0lTbSiRrYRAqgNmE3YCVIBGMKYEYBNGJPDlKehVA+6OIti/AiGK2dw4YlzeK6/iT//P/8p7v/B27DryAlk7VlQ1rVpZbM488AnQCcfxvydb8b8d3wfXjGFTPzzGmmkkVcu17qBOYqIUgNP6ogAg2/GIwbGTWr1eVc8MozYzFjT5VOfXSTAqG6lMkza8keAFdV6iQHNVrLt4roAMnJy97H9HWrJMrsBvKQyqippdc0ye+SVNsYRlkRBh874nAIGaMYAjz/xNNqdP8R73vPdjli08L3f+y4YvQljxtBa4bd+819jo7+Ef/UvPwwqL+DK81/Fk196BJ9/ag1vv7CIwcUHgYVboLIMcwtzOHHbIXzhgefx02/ah3t3d/G/PXQJf3FhwxEEIFOEjiKUxpZXEfxJ2QSFbsuuRk9PTWNqagoEoNtqQ6scBsDq2hrG4zFAwPrGhg3nCoC0A1XGhpJVGdmzoyn2QSexr0YLt5f0A0ZXSfiBk/V2pwkfmUmLUgpljJ45adsCyBuWI1FEMXisz8X3s3hVD6JvRrkiQHAmPuG5KL+InIRTj7XWds8JKUEkWBtHKhL3HkkcdhIsIXbxE9+ozkVmUloTKi8QkK0NG7Kf++bxSmBGHePZgaR7VdI9VhFd2MoL4xqx0deBHFSG3EZeT8J0mqYBsw4Qb07OAKNA1AaQA2aEkrpA6yC6uzIcuWcRP7CY4aE/W8LS4y9gariOzqGboHa/BeXmKsz4IsqTj2L+rrehe+vd0OOxtRq12yJvntRF8y/HAK8y1I3hZQGAQHnDextpBOwGcA2TkrWuClAMJJbEALp8uELwpFUd760PubCoyZ91PhSVv6UlzSQ3PfpxYQgDSLZW3nryIBKMszPGhdd0kXCEFVlLq7GvCfj8lMrCKomwtspnKm971wmeu9nvPp3L7cnEDPazzO0dEKs843EIZwqyG32zrBVfd/cUWZeddruN0XgEACjLAoPBJk6degG/+qu/hr/zd/42iEoYw6GoNUi10e7MgjBEYaaRq104dGcHswuEhZlH8ODHz+JNjz2L/MYN5AfeiHa2G8d3Z7jjh27BLS+u4rOnVzEeFbhhKsfIAIsDjSxX6Bd2z8FMr4N2q4USCp1OBzcdPYwnnz8NGEKn3UWn3QURYW5+HlPT0/i5n/s5/MHHPoaHH34EpAhLS0tYWlrCeDxCURQo3cZXriNuJ8Edxm4EJsCe8QCgdIRJOaSuNQP6cKq01hrIMlmllVj3ROQitdo2wZGfokbk+xBCW3d/iIirUT6i2UTC50CkFmxKiY17X6n68xHkpm0uR1hJCxtv2QrNqy62irSr4+RchyQPTtf4MqfdNIXucf9JhoWat+Jr9n37V7T6k+YauQeFvZWT3L74Qu1+ErhO7T+aLKc41tHVr1RF8rGJIZevBVIn4/lOpoOvDYKqsVTUstpGXgdCsJukMrdaMAbMAIQSdu9BBqIcyPbArgJrQM2DFlq49Z1jjJc/g2cevYjh6gg33LsL3alVrJ/+OObf8CEc/P4fQZblyHo96OEAo0uX0D18GOQmAKkDix6ugjqzoMyRCBdSz4wKmNJAdXIgJxhdwpQlQAaUtZt2F4/2yAAAIABJREFU18hfCrkephhphZab9MIGOAf4GQgI4lCfYFDMpycUtaC85r26JfhwUyocAICwwIdl++Se01sbCXbCg+wmobSKysxQwa+UUFxHHPZRApTqBmE7NRsH7Bk8yXe0dmDVnXPAwJYIKEtxYjIMFGUBrLr0tTb2lOEaFwOlMgcgNbQmFMXYR4KBAYpxgeXlZTz00COAGcCgBJm+q+Y2jGoByNHqHEFuDEAalM9g7sg0bn9XjnJ5DV9+4CLu3VDYk5/A3qkW7j48i//j95/Bp5aGuGkuhybgWC/H7naOp/oFTq2OvKW5PyxQGoWpXhtTU1N4z3e+HUvrA1y4eBWKMuxd2Ic7br0N7//A+5FRhnNXL2Hv3r344Ad/GG99y73ob/bxDz/832NpaRn9/gYwHkNTGdxXiJy12zVZ0Rw9sXP/18adv+CIsF3FcViGQuSnmEiTb7dsyzdJ2w+g0MAb1w3sfgnwC4H0MgGUaaS/g999TFD8fdYNoT25EltNXd148MxEKnKbSQ8yC/WW7kUKEYVk/iE9pZQvl49C5U7rtvlqT6qMKJ9Mzfcxl64SKxhhZZLT4yfhVpK0J2SVQ9QiV6tgCLGVgEq/j/s7/HvguvEjR2z5ELwJSP7yYwSSy5AhTOWYtsU+ktB4rml++JqaV7nLTGQ+jbyOhDvnEDArsHsQOrChDudB1Pbs11AORUcxs/8e3PyOy8jbpzBYHuHsk+exl17G9IF7sXb2q5g98mbowRijsy9g9OKz0IsXgQOz0PtvQO+u+5D1ppHOnJR3wYGyzbCEXhqAui0bL9toGMXuBtqhGANjpJ9tlhZMyPWAVo008tqR2OXn2sS4k2QDuqlasSywNx4UhRsB3ERuRQggjIjcY9v3N1N5imd2CCt7MsnHP7weJr4c7rK1ziTEiN+UljwKEzOTG2PcmOMnbH5dg885iK8HSzTnwSA9ACkRZtGThJCOBS6h3PZgtDhmE7+XZZmz8mp3wrB9Qrv9CEZplJowHAxx8eIlrK2tYGZWAbgKGyRyyuXdtu6hDIQpQ97TmDu0itveeQXqs8/i8rkBivw0Lo8Nnn5uGW+5Yx++8uw6NscbuO9gD8dIYVeW4d5eC8/3Cb/7zEWUqoVhoTEaF8jUCO3BEI+fPAVdlshI4Q033onv/vZ348Y7b8Mbb3+TrbNTT2Nhfh579u7G0ePH0O608bf+1k+iv7GO3/6Pv4OXTp9GUYxhtPb7Loi/nZ9anOuR1h74p20ncvcxot07AiHrmz9OBaCnFmbGgzXkOW3OfK+6Gde1A07Abdr2xtik/aT6+G/odPZtLCp9yEcSId4zYUQ7ZqLJZNboNM9QsLBCYVcZtAfpcsJPxhWuOCbcNVaF6jgB2MAq3GfNpIc98Pc5+Y5voldS157U718uBNS5RsUGjapEbcWlGxMPqozH2mhxHoWrI5dPddVze7k+5KCuJUNwocZq+00gBFAbRp8DzCKANdj12RK2lWYA2jCw4JtUDyq/GXvu6GOq28W5J87g6pkNrD/8LA5/17uRX/1TTB+8HeXGMgYvPonRI19GtrKEYrmLYlQin24DR25FNrvXWmjGfVBrGtSe4pkTZliivLCJbG8O0wcwRUBuABTW4tVu2cFAa3uNMnteSEQQ0hBpckm1abeNvD5kW1pbO8lulaAAIokF2v8SFql6hRIgBDeZSZNfZAVDZLVLUJPIN/yIyxuTkFoRSccuSIAPI0kibKDEEQwAeKXAA7A4fWnTZIDPFkhOxxYpdndJxyID7+HkgU1qoXV3AVhiYP3tbb3JyEhKEXLnasneLZyOducPGGMRcFGW2Nwc4tHHnsT99+1DK78Kg02AeoAunMFFgagLcFQrNYusfSv23jVEr5Xj1FfO4fLZi3j69BKefXEJP/lf3Y2zw8s4sFbi7b0cR0mhlynQ/mkcX8lwqdR4/NIAF9dHmJrq4fD+PTi7eBWf+eJXkVMOZYC7b7gD3/ct34vO/gVkKwoD1ceR/YcxPdeDahFG4zF601P44Ad/GEoZLK8s45N/8mc4ffo0inEBA+s+Re7IaOXcOYqigPxqsn4VEUpiNy8O2xm+vyfPRKLNS3AZyAbFdzgn/2oAg4F8GtbMyN8xyK7thsmAwHlzkAF5s7a7EEXuSGGjb0jQrh6ydd+4KFgKgA592fWpsAAhVt1c92KOoqBQarFHhsImZgK8C2LU30isdAhAHvp3Ulq+blKXwxr8aqorIv77+m8uyaS770H5zgzjk8buKklBNJ7UvsnfjGzucoSk2oYyWSYFrL82EQNmnZD4fyOvY6EZGH0JpngBZvwMTPEYTHkKungKevwEytEz0KMXYYpLAAik5pC134jpG+/Fzd/zBux/yx48ffJ5fPJ3fgPACKAxhhceRrl5Aa19+9A+Oov2G+/F1C33YPPzv4nxS1+1nUGPoFdeBmBgysIuOQ5HMCsDYIWANYJ+pgCWNTDUMIVzKdLaWS7cAKWH0OWmX0lI/6+ddUn6UzfSyOtRjPj/tYqPLkLko5Ow5VQCVPk8wYKuOnfAdNyXE6YHPGyx9JZxkg/4n2wx8wYC33e5z8Zl5mt1JkJbPgsQ2GUEsICQKIQRZWGfbj58SmsN7cYLmxfroxFpwRZW9zsupy0/uY3HiuyGYgu0KEytIg/5LxD2VrRamftbW92c77zdgCvJiU27LI11U3LWXi3qURvg45/4c4wGp1COT0KPn4ApnoQpn4cZP4Vy+FXo0Uno8WmYchmEHCpbgOq8CbO3vRX3/OAboPa30e9v4Mb9Xai8QKvbxXd/20HsWujAzLaBY7NYXsjx3NU1/E9/9XYcm++g28rw1jfehp/6sfeh0+lgfm4aWakxp9qYVzPIN9tYe3EN+qkCl55ZxObKBorhEBkRpnpd6LLEyP3983/vZ/GhH/lBHD16GFPTU+h0OshbOdrdNtqdNjrdDjrdtt0ErWIQpYhC1CQOa0kEjvIU9RFhxeX2Z/z/YFfgasltaNXcThj0+VUCXklyll9FoZ2mYsFgIAHeMu07bwDQNhurKT8f9DHRu+z2A2Ns9KygLgjk98JoESTAGGNXpFxfJX6eGJjzKlcYM7ThzfGlL286mkiCI4mLX7kgBb9XQMzfHKOHxy/u97Ew8TNxP0twAH9LuZITDTHunch4wOnwdxC1HaVbszrkyyDGjKCTHE8U4sYhxhf3Aa4Fg3/Nd23GPLqR17MYvQzQQZTjszCjJah8A6rbBfQegOagB0/DoAfVugEKS0DxMJC/w+5BaB/CwuE+7rjvMr701BU88Okc33fTH6F7YgPtVhfFSQP90jno/gCbH30AKi9A4wIoCtuo27sBEIqLJ5HNHUHx6adRfPo08qn7UM5oFBc3QVcU8vtmoY52QK3MdiA9BCgHUIBQwJgSZTGAyhZsmQCMxiPr70iELMtB2u6zCFEsmhbcyGtbtm2h10B0o+gYSQ7Sh9YIn4HIBhmb9qIuRBAAF8ad60XB4iV0qKM3W0bjqClH5Rpr5fURIMEIC7+BA+yAcde1tuCZIwJxWFM+N6AsywpRsCcL25wkQOTJ3BgNo7XbfBrKpZ1fvP1PbCHkvFNAa1dES7+B1la7QZYTSh3vV1BK+Y3KU1M9FEWBLMuQ5y1MT/dw6NBh/A//+B8C5mX0Lz+OXC2iPTUL1SbALCBT8yj6T4Cyo1CtwzYz/SyQfQuQ7YHqFDh252VcXbmKLz98EX/20ZfwT//FX0eLVnHmo19Bfn4Vcws9zB5o4X0rBtlwhPmcsCtXmG7PQnUPoRgM8D/+wl/Db/1/D+Mn596Me3AX8s8N0en0UFxZwdRujfnbj2CtWMdGf4CF3gKKYoipbhtGF1BU4Cd+/Edw99234J//r7+Ms+fOY1iMkXe70OMC5ajAeDRC7uYKMyocFjeAOw/CflPrklJC7PcgQlb3zQGEEJii/RkDOGAdHSLq+ob/loZPPQ4ScDuTu9if3/cvougd6cpGztqs68Jzku3RRgBPbcIqli0fnw1RZy23KpRlacE+yJ3snPQ/A7snV9nwubxPJgK9aaIT7ilKNwHbcUaL6EiRmr5oho37UfntPffVJF9LH3OGizR//5yqftvacgljgf1n8uFzFVey6JcjPYnifrTmIZnCKs9OpQnp0siOhagNqL2gfNr2clMC5WVAnwdax5F1NMqNcxhf/SLMOEcr2wTtJpC+AGRrmD20C0ff+X343Yd/E88/fxbvvNhG9+i9yOYvQd32PHDPCWDfP0Kx/hHs/isfxvqn/jOW//yjmL7v2zD97T8KAMgP3YnhJ/4M+oHPgZ58CRh/DugcRH7ir0MdmLdEYNXAdDXQMaBOCRRDu0amWiDqACgwGD6KVus2aOT42Jc+jZPPP4u9nVl8/7u+B/v27EOWZciyhhg08pdFknZeM4cEn33nW2/ix4mT2XL+iQFttCogu9sW6aTRVHxaaU51AIKtu84yGeXD1nUGCzqAMX6AqKoiR6Gp+oMLsC9dRpy7QabIEQ7tLKiBBHA4TjgrNqdVlqU4s8A+Y1cINIgyv0pCyupflCW0MQ74Z8hUBq01Cgd6FeUw2mA0GiPLtMujbaMiqQ6MOYDu7BFAb8JgDJSLgDkDtG5G3gPGS3+BYqMPlAp5q4TaDZjiBaDdx4G7b8E+vR/LJz+Kxctr6I77eOb0eRy5dx/m3rEXp15axW/82yfwCx96E/6Lf/Z5/NL9R3HsvW/AJ85u4O9+5JfQbWf42f/5/8F/+KEfxfFTF6Ae/10AC6Cpo2gd/SD2f/vNMCrD7m4H6Bhsrqzh+Rcewz1vfpO1kOddZJThvvvuxS//8t/Hv/qVf4+HnngWN33HW4FBidWzF3H15XNYuXgFG/0+MNLQxn1LaJiSLbm+4YUmacJmZemq4wz/vlFFzZhX2Pz3rII17faD+NW4mumHr0dvunbL5CYj5XGqdtccPwEpiA3DzlIetHdtykYl5FU8/4TPR+4zUG51BG4zfH33tS5RxqVbEwnIxKsY2+PYLQeJVzR11874icU93fhb2by9bYLxc7xCxSegbzWAhqwpGotqK8sTXarosROKcH3cigC8oi/RyOtLaA6gKRDlQDFGsXIJ5eWnYcYrQLkC4Dyy6TY6B9+CzpE7QbMEvfoZlKuPYnT5OQzOPwG18iC+9+0HcWX5Cj72qcdw7uUHYLKToPkhjFpHe3YO028+giuXPoEr41NYWb+E1Qe/hM3F004HheGDD2L86OPAlcvA6iVgcwxqG6Ak6JeHGD+1jtGzaxhfHtgBHsoNjgOY8jz06HFkqof18SWUZYHxxhjLV9dx9tJlLF66BAAYj8d+ib2RRl5v4pfka5bF68VEv7wLANVMhkiRSTXvkLVxqw32/5EuJnow/m0CMGNXje1yjJfl+f8AuwwaF9aSrfV1roUGE941xu59corw5lUP1KI0gvD5AVI/dp8YF6VdiVAM8g2Kwro2skXa6OAixCsVxlh3oKIoPDEhIpRlifF4HAiCs36HlQ1HCmDPS+j1ejAAhqMRtNYYj8cYbA6xtrqOl158CX/zJ/9b9Dc0iHKYQR966RzKq8/a8V4vAziD1sJhdA7fi/bhm0EzJcqVT0GvPonx4ilsnnsIe7PTeNdbjmBtRPi9TzyCYwc7WDg+hXwhwzgvcanXw9z9d+Kf/8sfw667D6BcWcI7b7gRv/SR/w4bWmF6Zhbtxx+DOncOtHIFtLEEGoyhugQUCvrZPlY+dx6rjywiH2S4/c43QGU5VEYgMwCKF6H0y9i3/zB++mf+JpY3Na4srmNjs0CpWjBZC5vDIWZnZuxmWtGmpPU8bmdwLlhlTBbcE7yXgUURAmB2gLzUGqVoT/6eCeCfrcFEhDxTIVqSa8O+mRLiiDswKHXpre41RnIfflRr16456h8TTV8szotdjYxfQdNae9LLG5Al4QnGBC6js+7rKinyrjri/+Cy8unIQOiLRvRRl5eBgS7L0Oe2GDR8PgZR3w2ETCTAuolhSp4PYt2RwwqSNx5QyGtbkUAf8bestfiTeM4p7YkVu11xuXijvYGvx52g9WbloJEdCA+KJQzaoPw2UOsqSF2A7q+hOHka1L2M/KZ5ZAsju0mZ2tAdBT1cR5aPYM4Osf7iVZy+cA6PLHcwygiPPn0Jb3tjC4f3dAA9QLk+wNpz/wylWURRrqBzYhOr68BzT5/GzS9/DsPZWQz/8x+j9fgTaC8vg4YZKAOodwdgWtDPDDHqrMPs0VCzHYBGGKyO0Z2btSsK40WgPAPKN6DUYSgD/LuP/g5OvvgSUJQ4vnc/jhw8DGOMn1AbaeT1JlvYnba8GxKQpvRo1opcKIBAIuLIGnYSIsWAh0FQeIZPxeWnTe1sLt18qveif+sMZ0JXdgnwyRDChClNcCZKoFotPB97y6etIxl6USnl918EwsHvCX1F+qxrlmVeX/bgCPe5zhWUMpU6MzoAFOXzt2VWRCjcioNdFeUQqCWMtmQDxsAo685Ulhof+tCH0GrPgbJ7oUbL0MMl6LUVFE+vgaaW0LprAaqXwWR9gDRMm6AH68g7I4ye2cTSy1dx6kqGJ68ojFo5Hnr8It77HVPIlIEuNnBwro8fe988SnUFx26YQjazD+ceOItycwV33tvG3/35n8Wez38Jc2evINsEqOyAsi6odxuMyVE+NsDaxgXQ8Ryt6R5AY5hhCdPrgKgFM3wBwAWovIV2ax8OHuxi94lDKEyJ4eYYa0tXcOXiZWgQhuMxUz2Lt01ou7Y+w3cLwCttbwEQkgNvdW4svj0LgOfdQihYo8ndCLhfgES2WFf6hfF6cOQgSfstoSVfJgbHst371QJjojJx+ZmR8MofCTDKuXgDQoSUxRjB93gsQHAzCjrYccTvSTLxKpqvOwbQol783gb3b2X0cLpHfVP8qttQXHXNIfG9A+ie5Pbo91LxmEYh8IEE7T514jYV7x/x34zL6+5pGKgJsD88j6QMk+U6kAMujmwJ4U4j30xiAGQgdQSqcy/MzFVo8yUgv4xyuITiqQHU7DLyvV1ku+cAjKHaBFJtZNMK7V0d9MZAF8A401hf7mNwdQnlYBp5twTUEor+JzEezyObnke2bwa9W3roDPsoiqdh9Pdg44mTmL28DBoUQEFARjD5bpixwXBxgPJoAbQBPRqivLqK/MAcyqKwnW+0BNJXoFodgLoYU4kvfPlLWF3fwN0334o7brwZu+bnXdSPbGInb6SR16fsyIYVt3s5DycAojLB1Bi3iAjlBDNedcaIE6nNI8nBqlWd/GNQXc3Vk46KxsG6FqUqgTywJehgYB/0ry+DBBSacxcWZs8jIpKjauuEAcNWY1YweDhbq7MYl84KzLcMgLzVxne+613IWzkU3QrTWwPMCLp8HMivoNy8jPFDA+R7riLfMwWa7QFUQLUVKO8gmyN0dht0AbSLEkUGrF3tY7h0FXquA6hNzO8a4v635BitnUF3djfyE1OYvnM3Rn3C7l0reP8PvB/lqUV0X7oMGmv3DXKYbBfMWGNwpo/LuIz543vR0iOMVlaR5TPQ49JuMxteAuVroPYekOqhzMdot3IUm32MB5tYX15Cf2MdpAmbxSjy9ff02H2IansKHSJwV0cYpJuJaCM+ApbmdAgcsiciz14Div7S2niXIwXyJycHnWIybC30OgBhAdM8rE6IAZeN3ZAC1KdIH4nPWQdutwYWqIYSVMG0ZBz17dmeW+A30wrdaoXIuzx5TSVTE+XkEhn5jCMgvBpYwbIRQUr72eRN4r6uvS6APwyt5iXj/xsqOH1MAn0ebMi9FrdOQTxF6jtFNdeBHOxswmnkm0DIbjYimgZaNyObbQGtIbLpZ1EsL6H/+SvAi8toHc+A1S6K9jRm988DyJAd6WL++Ay6ugecW8Wjz25gb7EMMxxiNGwhmyFQd4QWCMNzA7TaI5i8xOz+KcxOTWNYnkOvKLGmFVAYlEUJ0lOg1kEYBejxIvplGzSfQ00BZmOIYnwFveN7UYz6oNEKlL4Ke4bPAkAdXBpdxsbyCor+JvbPzuOuW28HAGR5vqUFoJFGXsuS4PhrFnZFkcCDN2dK1CoteAzS/d80Gep4K2mKS6SdSaTHVthqgrEPOJLbFmC4yVWQAbtQQA70aWEpDlMzl89b2djFisuRWN+UUm4Tcdiwyq4ODndEM7cETkQqhI10Z0vosgQ4LHRksTRhs3JUbIpAiDwUjchuEM3yDFzp7AZRlKVzVwo+5ESEPG8hz1vu0LR5UPdeIO8BHSCbfwHjq1fQ/+NLaO0pURxuAbu6KNtTmN0/D20UWrdNY+8ds+hsKtALS3j29Cb2FcsYrg1Q6Bx5W4N6I+S6wGB5E+1eCd3ag4N3TkP3FTSuYn5mDosmgymsuxXyGZh8DwxpmNEFrKsWVufX0dY9ZGsDwAwwe2g3iuEGaHAVmVkFtduAmodGG5dGK9i8uoQsB/qrq+ivrQNEGBcFdFF4ciD3nfA3LROQphSBNw8b6AhwsftXLRgzcZvl5m7K0Eb5OzK81gnJkPqFrw/fni1JIe9yJiNxeZJDYbXLXxRAmV1/2ODvDydD6Pc2dj73IVF3CE096Bz6XbSKIgaBdFUSKhBl3sxtDJBxz3HEJ81LVK+/mq5s+tDMsTI+XVlX4QPWvFMj3Odqx+BoDAvppUQytJ2w+mNX+pJUBVHxexc8KYhTC6tRO8M218+taCILalYQvnlEdvwcoAPIOj8EQ/8Jrf3L2PWBDZRrl9F/7hxe/p1FLBLh7T/7bhANAL0fRu+FVoSjRw7hx3/xGNYf+GN093Ww2QJa4zXo9XVoDfTm2hgtXgTKqzBFC+PlFlYX2+jgIfReeBjoX8VAF1CdWzB16Ceg95QYmz/BKt0KnMugyg7y47uw9/aD0HmJwfo55KsPoLN7DmrhLpjsZhgYPPryl7A5XAMZhaneFBZ2LSB3xIClIQiNvB4lTPPXThWM/GHgAaNSCrosRdoiP6IIIHAgI08EoudrUogNce4Wg3ln+asA4kgBn3etuwVbar1Oyb3IXQH1z4mycl6yHKSCr7nRYfNyWGVwbhoQKwoUJn+Lk+wzZWkAaL8xOYrowvUggBW7Rvl9Ddr5uos9B8bAn4PA/uZFUfpvyysedk9DgX6/j5mZGVe+Lii7BVl3Gob+EO0De7HnJ46iuHIOSw9ewPlPnMdKt4X7f+bd0ONVwByDyaaQtRVuvf0IfvwjN2LtTz+KYvcMhjQChmsw6xswmjC1q4Xhy+dB6grKzTaGV3MMNleQbz6IqRcfRjnexFgbdGbvRfvQ+1Du2sTY/AnW2vdgz1wJ5H2Uu+Ywf2IvTFZgs/8y2ksfR378NlDvTiA7gmExwFdP/wV0OUSWt7F2dQ2D1Q3ve1+41eXwLUKbVWLlgL+7PXguAE7+NIEXxO3VNjETrLwAOAoSwZ4HIHcH8C8+vMp/G2fxtteN7yt+RcFtbJcrSX71Q7STsijcHprAxn2YT9igO/JwvWqXMbJLVXo0n/9r60W46Dp0KqPzTFod5NWVMK5UtZn8blBIrkAaUdZakE/ih+QNfhyseWUCRKDKHzwOpLpuPT5XXIgmrCQYE1zFJqZdl8AEua57Dl6txaqR17YQWjBmAKNXAfTd1QUguxcoB0DeR7awiOm3voSb3nQBR9dbePnFU8D5dTz0zGN4+nyB3ozBT7y/h8MzU9j7zhvxFx97GpsvLuHuewitOQM6O0SZFSjQwqClUWYZ8j0z2HvL3fjw3/t5/NT0AubKAtN73obe0e/H6I5Z9F/4fTyydgHmyDEceeMJTB2dR9nNQNkSHvn4v8Hx26aw+8QC8tn9QLYH2uToFxv49Q//BsYEzO3Zi85UF+12+xtZvY008poQ3mhnJfarlZs2OQwpTzXKubxUNiIq5S3iNp0JAF/q4H9tNYFX9Y4eq8zaCZoxDBKS5J1+pYhWJF2A0gcDvAr6MSlg8AkimHFhN4rC7QkQ1thU+KwD3lTMIIqBvrUiar+52V5WyJSNdFTyJmbjjqXSBq2WtTxOTXWRZRmWl1fR6bS9P/1gMERRjDEeFzh79hze9Ka34Ctf+Rx2zROIxq70++x4rwdAvo78wGksvOcMZt69jNF6hheeOQk6s4pPPvIYFtcK3HRc4b3v6uLwzDT2v+ce/NGvfxFvurPAkRsMso4GXRyhUAXGKsegDcC00Tl+AGawD7/4D/4BfnZmNzooMHfkAzC3vAube0tsnPksHlu/ANx0G256+zFg1zRa0yVGg9N4+jO/hxO3T2P25r1QvUOAmkdpCFeuXML/9Y9+AzkMWr0uKM+ALIPKW8hLF36zKFAaEzara7bK2j5giVXYoC7bgmwrLMoBseCiE7cf7QC8UgA5shGIQ3heKbcS5a3vfN/ppkILZNJHsP0uDXfrmztBnEtg+0GWkdcwMxJQuxcq7jRC3FKhdGGRfUb2Z09CyEYq56th5YPHnCpZNwbJypkj3EqQ55rBxa6ECt9+seoZNOYoUfJaqLuo7MKaH0qGyrWQRciX/4zyMTx+BVLJumRZVjG0y7E0ldrxlerGw63lup2QLKu6IQjfnEJEWHzii+jtmsb0/jZ08TSy1ltB1EIxvopy6QmYrITu7oE2feRze/F7H3scz5/TWFkdY3NYgEhj/fmr+J6DGTo/sowbT4xx7pzGlx8v8a3vyNE62kNxpcRoVaOjCmQ0wOZ4GecfP4kfvGEGR47cgvGlS8BMD6vzl/DUmd/G77/wEH7yv74H2cGXcFYP0Ls0jznawG985VP4+fcfRXfvUWSz90Pnh1Agx+LyWXzkf/lFFMNN5O0OfvSHfxjf9W3vBjkfR1fab2hdN9LIKxWzxV87EeVBbUiBAB+u0Eo8gaYWSBMQTNDChI2DPEnKVQp2RaruZTD+uocbW3TPFLgld721Vlp+o+gnYiL1eIPddADkeW4BCj9gAB+GUNSP1galLtDKcxvdBs7FfTocAAAgAElEQVTNSYWNlTLEaXDhshuJw0qABUzWoh9OkLUEzqZlD2MDkGUgZZBnOZABpdYgUmi1FNrtHONxibW1PozRyLIM2hgolbvQlVZvm3yJstB46D/9W9z/vv8S0wvrgFmDym8BVAvl8DLKyw9CTy3A5LuhAejuDP7f3/8qTl1QWFsdYlCUeO50ibMPG7zzYIbpH1vFPW82OPXSGBsE3HlHjvyIHe+HywazaowCm+ivXMTGuT4+cMMcDh67A2tnTsMc7uK8egKPvnwGX7z0HP7GD98JOvQMnljq4wY9heefPY2nzj+Bn/grh9DbewzU+06UahfGKPHQkw/i137914DxGO08w9ETe7F6/jIGK0PAZMiotHs+3AFa3kJM2q6Uicg+AbTKKDIk2pP9htpoQMtWyNb8sFEY3E6Nsf1FwEW/YRWWRCgHnKthUEO7IdduW60MZeFcABEs9OzqkgJrACAF6JJd6AK5NZDPmqhvRXTZuFUvt5oVb+B25NiY4HrHW0iAQJKNWD1xOguTgq/boHcgGf66/0bslMWrFPHKAbh8Yk+G3GvkF34k4aAQwpVXakIZXYxY/nZC7P4Gjbjy4RZUSD7oxkF3/olYMYhrIAgTxljV8F71PAhg0qJJKtdp5WCCfxUaiPXNJKXuY/7E7VC5AakSWetuABsoRn2Y0dM4+/DjOHVqBRudObzh/uN46OSjOLprHqPpTeSXDHS7heN3TuG9nU3sXRng4c8s4fZ3TCE/1sZjL4zwF58oMXe6j7/2gVn0drcw2iCs93OsjrooZqbRvfUGfPbRk9joHES308do7Sk8YYb49h+4G59/9Dl8675DOLYwxuJgEc+Pu/gbH/ggsP8Ayt4CimwGZ/ubePTpr+ALf/C7OPfCZbTahDvvO4CbTxxBpzOLSxubGG5u4tje3d/oqm6kkVcu25nltxGOuw+4yUgbf7hPWJYH2BUnBSlwTwRLldgAWFE1AJtgPZPAPV6HcHAHiEDETkTSAcF6pC78pInncVaQAVMlZTcJa21gKIAQBjtsac7EabA2LYWMYsDC6YVoQsa5ibDFGshztyfEhLj2cBZGUoQ8y9FqtWzM/NEYRVE4v/Ogiy+zIxyj0QhFUcKCyAyzs/P4d//3/45bjx9Eb9ccKBuA0AfMBsphH2b0OJ5/4HE8d1Fj9sg+7L9hHk+98CRu3Lcbw119nD9T4PDRadx5LMO3ZgMsrI3whT+6jPv/6gxG4zb+/GKBjz83wu6rQ3zwfbOY2dvCcA1YHbbQ110U83No3TyDP3vkMazP3Yhdm+dw1iziypzBvXfdgs88fBLvPnoMt0xrvLii0JrfjQ+88YPAnj0op3ajoFk8s7KMr3z2T/HgA5/CxZevoN0l3HX/YTzyyCJmjtyGXSd6GC0v4fRXvwIDBa0L54YFF0IWgFLQuvTt14JGIyzHcpO3a2Hic7LfvnRF8yRQuIkxeSbn3sWfSCnlQqpyH/NK+PT4QDwmH+S2AxsDkBZ7FcCAOILakW5WV+VpDgPxTJHdp5D6vPN44E8lhiPKQXi1kfu3PHmco5ZJgwEpcuE3q9b1uJ9wvYobwurOBMOWMXnAEzp3jdIkagYWQeYqroXGHTDnVwaSVQ+IyEe84shEhigMOlxQU78CwTaXupWViWi7cplqi5fK9SEHCcOp1Ycf3eZ+I689sdY+u/7Xnt4FoATMGEALg/FFZNgNo0vMHbsDx+ZmcWE8hQeuruGxz37WHll/JMN9978Rx4/OYe+B87gRF5H32zj+whpePDfGpakWRnt7uLS4gZcWgUMPFWjta2H5/Bh6SJib01g6exE3jDtYzcfYdzjHeVrD08UQG8cO4dCb92Jq7yaWzAbmMMbswixmerM4dHAGm2aIcTHG57/8cZw8exanXnoZLzx/CsMh4cgbb8Pbv+u92L3/BqwPx1jpb2L/VO8bWteNNPJqpDLmR0vhtU9UxVsM043GwqIuZyqeNCmedKKcKpMzwvuQE391QuQf9nETlSkC+2DrIxg5JAWLgZvf6Ovy8eErKWzMlRs2Ix9uQVAi33/33xSAGzhXoqRywqbrcAha5I4EDQ5pH6z68hCqkJY2GqTJrhaUhdtTULhY7ASgCNZfsfpQ6tJvXs3yHMeOHcPf/pmfwtvedr8DfWPAdKF1G+PiChQtQOsRdt/+NtxwdBfOmQyfOXcez33uLNqdDvIbWnjPe96JA0eGODB/EYfNFWT9Do4/t4avPj7E1d0d9KcUFs8UOHMe2PdggXx/C4snh5ie6kBhiOGlSzhctLHcKnD8RBuPblzEi605zB47gMN3L2B6/xAXBqvYNT3C3gO7MLfQwb59PQzMCBvjAp/41O/i2YuXcOrpZ3D2zFmMdAsH7jqOg3fch9bzD2P+4HEM1jdw5YXnURQlyrIIh96p0O6YxMVCADTIbeRmlw228su2IUUR+Y3ANh9eARCQVbj+BHDOBNGmzacPc1cQHNze16FtcNsMuNP+oUj0FW6zTheFcPaGbXPGkxSN4IokobsnNATAkVY4UgsT6k+lCrt3whWpbKjuqD8Kiff9pKcMx99Avhn270ywytcYAVJLfnq9AtUFy/NgnkmFfTE8Q0FDLb+LGCNDRTnaVEsQUlIhazbEndrJ0sHX5JyDtKLr1GhIwutDeIICChBl7po9XbMsDcqiA1WOUGZzWLj9Ruzp3IDs0gi/9Xu/g8sv9VG2Brj9hhux98B+HJ3P0V0v0JoBuid6uG33GJe/OMD6EBjvaqF3eAoXnxvgmZdLrC0NcfXcGLvawC35GC+dvILeVBsH7tqL22/vIS+nsDhYwMyBW9FvXcSJb70Xiyc/hfVyE3NtQq+9hGeefQhXN4bQNI8//eyn8PLZRQyGGmYqQ7szg7u/7TuwcOR+bBRdjIsh2pnCrumpaMBopJHXnUSEIB1pIyQx4XUCTz6yJ8QAlZMP6ddfF3NfMlkaYR3bblNerBtb4hjSVB6aMIEzIjcIweMlqnGl/P/Ze+8oSZL7vvMTkaZsV3W1757pmR4/s7vAGmAdFlis4AgChBEhAiJIguaJj+TpeJJ4PCPdvTvZ0+ko6ngkJZ0TJD0SJB+PxAEEiV1AIInFAlisN7Oz4317W96kibg/0lZ19+6AWLwDyP69N9NVlZGRkZkRv/j9vj8X3ncsoKX7QaeUiChby+5Zk6Ixa9WvQEWRCpEgF6Ot8RBVquBT/62lLxO5fkR+8jK0DriuDoszqaRdqq8IcQ5qHASKgWlZHDo0xwc/+IN86lM/gYz4fThOzxd4vo3luyizwuRdb2HC3M/KmUs889yrbIX8/s13nGDfzBjj1hqFjo9VkGTm8pyqOFz7SpeWL6FsYk9oVhZczt/w2NzqsXahy/GDeYqizdblDmbOZv+dY9z+pgzLGyYtez/ZsQl6+Tpzb7uHhTNfxNQOpYKFdhc5d36LasdFiTJfevzzbG428XwBRZtcpcTJt70d3z5EfmwTt9OltjRPdXUJ5fvoVBErokDcSFAXJIW44mkliX1jQstR+GsqiDiRhOLvkcWhb4akfhH9ayEN1CfWNx1mMErmQKzAhv8ZUkI4F6JrpFH/+KOIsmtB5Pnia4WZtnJFx3dYooM/RfJqZCXQmjgGIu4r9VdrjdApRYYB3hEJtH2KQaJUEVoFkqDcRFnYhosMjjM4gQQMSd/YgCKQNucM9hWNTSTWyfTj6q9Pp3cWzLcNMA7pjg/2KU7xEHUMbATPfcDVKv5PsMNVX5O+c+VgJw3rtZrfQps9+t6g2JRJkFYvWOweWrXwvRaep8iIAl73LCo3A9YkQth49RssPP4nKG1RsQ0qM/u5fu0CN756laGew0fuzZF/5zBWzuChB7PoG/Dnq6COjCG/vs6hOck3zncRliA/Ako4aOHywrrDT37kCOWTBd5WOcDt8iSv1A7w6le/hSzdQ1b1wOmwstxgfeMCN682OL/iktU+DcNGGZJCxSRbKTAyPMvdt9/L2ctLdAst3rR/ikMTY8B3phSkUYRtCvKtOPrt0R59BxRum99ZHyKFSu20j+nBD4PHk41aRMiXSNbANvRvG1T4mqPbbs1Iw7y7kU4CpVPgG4EQkRLaQtQ+vo+0EBYi/zo+lsiR0flxlqJY6Ep2vMhdK+2iEvlg91sjNEoFv8nQvSiN+CdWg1TfWseBq4ngldy+aRphWtIgxWVSdTm4vmEYTE5N8bGP/TC/9Et/F4gESBftN/C8HsoX2Fj43bP4hSNgjiEltG6eY/mZJ9CYDGdMRg/O8fyTf4pY3mAuDw/flSP/QAlRkHzwB/L83hnFElnU/izW6SqHD1mcf7FNvmJgFRW649D1HV7edPnZT5ygcCLHRwvHmfdPcX7J5+LLX0KU7qKomnhdl2tXN1ldaTF/s821DY+M9qkaNtKWlIoWRnkIa/QAd594C48+NU+7I7j8zW/Qqy6TsU0EoVIl+jl2YDEIFKco3iASVKUAhERIwixViY4ZK4OhexKhEmwIgZdyq0lXYI4yD6UravdtF1Hf0cd+jZVUYqEgRoJEyU9cViLFPIhRidzh4tgXkaylILYlURCUiiwV29Wa4HiSwCAZVJC1TEhS4wkelJAJH9DhDejU+NK9D7orEj3rlFI1OK5t3/seoxjgUSlFRcCOEUupMaRdhNK8I/080jElWqdHkPSVts5AonxGiuTAK470gJCHJlfbWezvfw+x9Svi67cg5Xx3KiQPQB3bX+13JoDt0XefYpN2VJ5HK7Ry6XUXUH4baWSwc6MYQmPm3glYCFFG6Sa+18JqarqNNj/6az/J1MI3kYvLVNe7NDoORV8gMiAdE2zJkdkM1YzkiefWOHIoy93357nSbnLyxChO1+SLj27i+grpw//9O6/wsU/s48TxLUrFKrdZTT53ZZPnH/1vmJ4tMT2uaHhd1n2Xt76tQqFjIqsGl9oeli2ZGcuyf6ZM3j7A6d//DMbocU69610cmhlNoT3f8cNL5vxOHH6P9uj/D0p2qtdtFhUgSpqLOJd/3FWEjMZodPg3RCn7ztdptC8NoEWoG7eIGOl4804U8e3CcHrTT50a3srguFX/sdQ9J4rS9sFFAr0UAj88HARiJhtzxFOijEPpnrROYjsiYDIRWtJxB1FGorQglL63/l01ekdRMcdkXMTfA6uCHysZw8PD/ON//A/54Ac/EI9da5du+ypau5h2CStXxBAeVuER0DZCjOCpRbTTxWwp0B4/+SufZOLVP8Gr1lhe6VEqa/JaBvURnAzaVtx9Kk/vssv5K1WOHMlw9/15nl3x+OB79/P0M22eOtPEVwrDhX/96Rf42b99mMmxKjNDLRp+kUfP3ODpz/9X7D9cYf+4y7Vai8yowdH7h6h0LGTV5JWWw2jBZP9UjuHhPN26y+P/+6+y5E1x/vGv0lxfBd+lJwT4yfOKYjuiR6qVwlUaw5AYoXKF1qjwhRsiCfqUUmIaEsd1UagAxSUR5g0pQBj4OggWjmZE37yNAnb7CtYlUxOtgzgVGca4RP2n5noQwBxYMQxDxsXQ0rFBkQIbtE/WUeA+FCgoQVB1cOFIoYl2sCR4l77fkzWeWCpi69gARfN9MGPYTgkFouD76Hh0ne2uNbrv005H0kHX0UBihZ/AjWpwAH19RUpUSosbCLPov2ZKkA+aD4rzaXk5rUSlFKMIvJD9Lm5p/CHmo6ku47DslAKkQ4Xh9Ui8ljlXhE6Qn/3sZ/nIRz6yW6Ptv+1kB42+vu6Q9uh7gZT2CLd5tPbxnHXc7mXs3BTSHAORR+KD3gJhEWyEBk7ncS68+lv8m393np//6VGspsPkkIPp+DTO9dh8us3Rdw+R+WuTyKxGW2VuNB0ur23h1toYLZepYUFWSTzDZMm1WOhazI7m+OPHaqx9q0rbMhCGydxEno+88zCn3vlz/A+/8atsLawjlUNeKIYswch4hoN3DDM6O87zNxq0t9p4DY9qzaRoH2bfyEl++Ic+TstzKebzHJic/o6VA6WSNAxp5FD0/7dHe/Rdoz7LQUrQfS3l4Nq1axw5cgSA2QMHEDIpmBWcHiJkWm07N0EAk42bSLiIrx4pBwkCmVjqdSwo3KKG0Icm9mcZ6VcYgoDH8LrBiX1m98GiQtvzhAeCUlowV1rHAZPBtaJzZf/G29cgQfwRAh1mB4oEoyTgOBqfjIOIdWr8UXpN0zSRUsSWCC+0BhiG2feOAquAhRkWQMtmsziOS6fTCQVag2KxwBe+8HkOHzmEEKC0i+ts4PcukS0cBjmKEBaCHtAAIn5v0ql/mq985cs89ewSn/joMGbTYd9wD1oeq19vo2uK2YeGyLxtDJFR6Mw4r6xtsbpZx2t0sboek8OSrCfoWjZXWiY9w6ZgWPzpVxusfmOLdtHGEgb3nRzmnW+7i/GT7+d/+j9/k+rCOhnpUURTyktGJrLsO1lmdHacJ85vIeptmjWfet2g07bZXFFcvrDG8bfew6VnX2D95kI0SwKF2LDC2AMVz5Xo2UsRKFoyVB51yOfzGRvTNPosMZ7v4fs+hiHwVXR+IPArHbkiEfc9qDQKgoxWkRIrCDJkBe8/ypqlwzkVCtMyXTk7mDdGlAJVJetC90/ulAVKxIJpVAAtRqulHKjGHLn6EBvWIuBAxZaSRMjXqTEFiHhKgNeRJSZoGRVWC4bUbzELh9xHwXJKFOxoPUc6fqTIDCLxifLXX7AsiIlIXkYfnwnXbhw3keJ70T2n32PfeTt83qlNNO/S44xjYfqUxp37B7E9rqNPOQiUrE67zdraanSPOw7qO7cc7GgDSw+1/2ENanN79L1HOlQM0AqtXXzVRho2maGTGCJHsDmEubeFiSAPePzWk7/HcKbGbcW3k8mc47mvrvPR9+WwFhzMEcHYQxmGbjNY/8M6Fx6tM/X3DiNnXHoSMmN5jDGDOa9BzVc4dY+C1Ey2fLY2Onz+mU0uPNfl537mTl54ap7qZg+0z589tcqb3rXB3/3Zn8dgFMd9huvNy7yyVGf+uRtcfLrN7PUlJqckZlaz0pO4OYH95i5nX3iRL/y5zX13PsBUpZIIFt+GgpDOVhAhpmiF7/koz8Mu5NG+j9LBxr3d3WCP9uiNJrHjx1sl3/fD2ryklFsRf48ElPQ6iQSX9BqKMoaIIP3LwMauQ8EgEBB2Uwr6hP0d7qVP396hi741HUCs2ywBUWrJ0BMgEQhlFJka7lqRQBch84P3H18rRKBJKjTH/cbDDYQwQyaFyBIUVGCaMhbSohuNrDEyrH0QKQcgwPfxfYWUEVqbQsMJApKFgHa7jecF/vWWbTE3N8d/+A//nn37ZkLhqodSXUwzi2nfgRQFNGb4/g00Vszv/8Wj/ys/eGqS/NDt+O5NXvrmOh95bxZx0cE+bLDvrxfoXnZY+rMtrvxRlZl/cAwqXXpZE3uqQH7KYNprU/MUTtVlOAPTLZfTV1s8ftXjxlmXX/w7d/PYH50DJCvrHZ59ZZVPvLXDf/nzfxuLcdq9RzlTXefS1Q0Wzq1w7qkms9dcZvcLVrMCr21gTmaY3j+MerbLqUKe7uYiUjlkMha+rxAIXMfF950Y3BGy33IjhERIiSFNDGlAqNzZlkkhYzOSL+D5HsvVLQrFAlIImt02Pd/H8Xx8pZACLMvCD+spiAiBJlAWlK/wdUqoFfHMx7RkYK2QRgopDuor+L6PIOUSEykvUTpiAVImFqMAI1BokurLAoE0IgVDpwLiE0whme4i9TdQAJSfxMhE6y0W2sM7imp7CKIK3cQKmC+S9RQpBoJovYoQbNB9V+9D2VNrOV73keJiiD7wfsA4GP+WxDMRGTpjxaGPz7zm3h0+kxRSH76tgTavdXaKojHcAtIfDS1SWcLcT0Do0tg37tfv741zK+qfPXv0fUhJ8HFQfTEoC6+RMhsjBwoZ/u4FC1YpVOcrXL9ykROlHGNjJ6HVRRgW50/XeXlacMchgSF9nAWfzrImY8JmRzH/bB3rrZLMdJZK1uKI0aOsFGbPxcJDao9sxuI2y8LRJus3Mjz/3DKzhzNM7LPYXPbo1lp89g8+y8m3/wgHx5qUC4JiaYypyjQLlTL/8Q+f5/y1Bot1QWl8iNxQhelCAbE+jG1uMX/jLA/eeR/FQvEv8LyifwrP9YJ1qBS9VgvlutiZDOhcgIywXePfpdfU51tdT3+Rc/boLyvtugXc2v6S7IFx+ssQ3RQgQmG/H/VM4YPRHiAICjuFkkUidIdDSaGLu48iSoHaj96lEcltSFvqZhPcKtkk461TR236lYJEGIyQvARxjWMQBsaZuuVt96O0xhCCyK1DiiRmQoigDoFhGiR+0AOCRdQ+HF/khqS0QisRF9+KnqfSKmVxSHiUF1a2jsZnWRaTE5P803/6Tzh44EBQSEsHfubSyAXZbBAEaqIXzAnto/wOqvsNLl84y8OHppmuHGXDquK4BudON5mbEtx1ROC1XbqLAndRYUjNRktx88kamQcluWGbqZzJfiEoKB/T8cjgIlHMTNtgGWgF9RXBt55c4K4HymyueVRXFGsrS3zhj77I8Qc/ypGxBuWCTb60j0MjE1weKfPZx87w6uUai21JbiSDzNsYjmLjcpOcLclkBc+/cJNmtRH70Ud+/vG7DqXKSMBMUG+JNAxsK0POzqF8l7JtMjc+St6yWG/U2GjUiFRKicAUoELWL+MYhKjOMf0KQijM62itpeaySgWWBwXyBL6v8Xw3uJZMBOAEyU5bwUIFQAToukrNm+i476uUsJ2sjSgdf/SsImQ67QKVWP7S60LE14gU8jQfSJTlBDCL71knqz4Wc2NBPmVNS1kVXnPvGxhbYhkgfNYifmaD7SMlZff+0l32r8d0UHpymu5b29so1k7is4iDwuN++q8v0xaF5CGGz1YGKZZ1lBRhh/vZgd6YgOSdbD27MP090eV7k9KKQcCedIpJRVkrVJDOTHlov43wagh3nS5VhKU4NHaM7NAMN9vXEfkiN5Y20d0AIVDY9GrQON9iyFFsSIma71A5ksUfzeBkLQqGiS8lJa0wDYX2g43aykqOOzZP2C7rlzaZnqpglSwqSIbLBi3fY+HqApWex0ilTqloUh4uM1as8Nb7HZ74o+forDm03S6jkz3GpgrUbyh87bOxusbi4iL7Zw4zMT7+7T41Aqbq02p1OP3CeUp5A9FrMVTIM7l/hs7yPFprckdP0Ll2BaNQJDM13b8OviOlenCdJdjkHu3RX4iESFUcDTe3NPRGgqgRuxkkRwfZf7KR918jPr3vp5RIpANtRPT9lhLQY70kgQQF/Ztx1E5HfsS6X9kYHEO/9VD3d6W3nyeSNCH9KroQYRyoIlX3NvC/likkUgfxHYl1oV+oiwV6nWRtiXzcdSjcIoLsNFLKWBGLOo/OjdQiKQJE/ODBg3z843+Dd7z9obidjhWTKM+9Isia5ILXBK8G3jodXUXaglMzdyIzJVyzgGvm2FiuInphAK/I0ll0cK+7aFezIST6epvCHTl6RRsyJjlDoqWkjMIyNL7nk8lphGnQ6pg890KL1XMbzB0bxxo2mTEh55n0XIeFKzeZdBxKI13GCmUq4xWKmTJXNxRf+9wzdFAUOzAyZSEtg9aCSyGfwW31sGwbhAxcfpRG+2pgRiRItQSENELLgYFh2mRyQ5TLY4wUyxR1h2NjZXq9NuWsyR37JzBMi0eff4n333Ebz924wcJWlci33g3dv+KllUbhBWHdiwh9Ts81FVuLDEOGAeY+nhekR5WGjF2YBCBkWNHZT3zMA6uTwNfpoOd+YTgWtqN5o8HXOo5V0al5rrVC6CioWSYoe4j2i1Q7ELGlYHAdpeXenYGNxMVpW6NofQxSygqxk2uSHlzbqSu9Xl6ffpfG12qYHktaQdh+YZ26wT4eFiuPg532X39b7Eb0nsLzBYKdnYd2pzc2IDnFpGPmP9iEPdHle40SBNAnWMR+GFDlo/FBCxQe2vfB7+D7LsptoZ1VtG7gFucYP/wmpJjAUQrfgMl9Zc71NLbyWLvoUanYUBO4K10aXZ+mLzmWl8xaBlVH0257eJYEJDlDYFgSEZZTUEpTLGXJuFuUDGisdZDA+HCB+09OUBt9hIsXm3Q21mm4Hp6XIz+ap5KZ4gcfuZdzz19ia61KbamD09HYQyaGNYbUWeqNDV44fZqR0WnGx8ZuyaUovZC11riuz7X5NR577Gkmy5IDozkOH5ymZFl4p58FT2HmK9SffhZrYgxpZ7BGRvpQmj6DYgrN6aNdh7YL19yjv1Kkd/jUP4VufX5EisGgX3TaN1ZAf9bzlICbvnYU6Bf92I/kD45v+8YZIXfpTTXtzhe1ihD5+CyRrNEEnYxOS9ZcXywAxH692/dw0WcJiRWDgTEl8QnEaGt0vtYB6BFYC3RYXC4dh5HEGcgBP3IpI9AvstyEaTM1CEMgDSPlXx79E/EzjLISTU1N8sgjD/MLv/Bz4T16QRxFWAchUAuC9J54LTzfQztbaG8TLTp4+UNMH7sTIfbR9etYBYvKeJGFFzUZ5bPwisPYVAF/S9Fd6+F0FS0lOVUUHJQGVzo+nqFwC0FF4pwBhiUwPYHvaGxLkC/YZNwaZRPWF9qocpa5mRLHxg9QLd7DlctN2hur4GoKEybZUo7p4XHe+467eeWp8zSrNbZuupi2olCRIA08Jak3HMb376PZcuh1nAgCC+dA8C6i+RZYc0QciGxIE9POkR2qMDp1iMPTR6A6Tz7rYRsGs6UJHjp6EDOb49rSJp+670GypskTFy+yWK3h6yhWJXgvaZezKIC4X2FIxiEFGEagGFiWiWEE8S2GIeNMVXGwabhGg/njo1TikkOYojSY4knMgUrNm75gY516PhE/CAedjmNIW89EeO3IlVDrQT0oWauS0DUu4h0kcxytUqs0WdtxPFGKJ8RxBSlEPqo63YdWhH43UZ/RurgVzribe8+OnGxHViZ2+JZYHvuqTsx+4rwAACAASURBVIioHoYYPCHpP3oSfb8HX9KhVIrAdS7t1LgLdt9H351sRezG5vfoe5M0Wnsphc7FVy6edtDaRWLieFVo9aB1BqE9tFWml5mgOXSKSWHRAnzlIdU6k0NNPnRfhVe/YvC5L7aw24qHhtvcNqSxfMFiVzJqw50PV5g4up/zGzXqV5dRp3KURZcumqItkSJIJCFcjSUtKlmD4UmbQl7Q2eghKTP2znsoVT6OVzlDtnuJpQuvwsY6k9Jh/1iDfdY4d3ziFC9+7iydCzXqKz5rQvBjP/oDXLxwnm9e+CYXbtzgyOIC9yuNNF77SUXPCwKmqBT0XJ8v/ulLbMlhVi4tMHvsBJlSmetPn2bSk2SbPRp/8lU66+t0biyi2k3Gf+gjEBfX2UkxiN9M/FkkeROT07axtT0F4a887cp4b40jaw1BTKtKkOdBPTYWlJONVw9w/XgzD5WBHTe8XSnMGpKGu1JI3K5+uInTbYK4iXB0fQpP8HskyEf9R8JFf5cpgV0kgZlJFqLouWmiwOLI8hBsyoAO/NgjbSpyJ1GasMJtdM+B1cYQRljATMeCnRRGKs1qJLAFA1dKBVWRhY5TlUJwf0GgsoFhGNi2zbvf/S4++ckfDYLONWgd8Hpf9eLn4Hp1aHeh/izSyOHZI3Szk/TyU4wLkwYa7XsYeosT0x7G3WVuPmPwB5+rY7UUH52+wZgNyhWsu4KxjOae94wxcuAAi+ev4DW6MCspiB4doSkZoS+9r5G+IGPYVHIGI9M2BUOxtdghM36Q8RMPMlT4IdTYOczOOa68+CJDnS5TBzuMlreYzQ1xx4/fwfO/9RKtZpe1Sz3qJROzVMTrGvgYGPkipp0JkHU0vh+g2lISZuAScaan6P1YloVh2hhWhtxQhcnDd9EiT3ulyUptngcOznBodBhvSzGUE/zKx36K2vISn7r7XvKG5Pefe4GG08MyDJQI0HTDEPG8MWSgAHjR9EspgIYAJNiWERSZM02U1rQ6TmjJD1x9DAkCGc6ZZI4oFSgICIGIq59HazMK5tVhhexkDUdKUrw2wrVALID3B7rqlAAe6tDhHJSpdqGYrwUyNKFF8TYqZZWInoEYAATSa28n6nOvSa/f9DqN7z3hWYlKlOYZ0UcR31MEMMQKzy70WmNMgsAHfmeQ/yRKUHrc6X76rpm+izRb05CkUxoAIl+D3ljlYJCppoYz+NsefW+RJihGotH42kRrB6EM0IKes47uZTGFgR5/GGnlQWaxEFS8Kwhy5PwbdH2bRqdBc2sD1bH55//idj71yRfItT3OLCvGc4IHJiTvnzN4uS7olg7hSIP9zR5jC02GVA153CJvg4EAaSJtG9mz6S5ucfNah5UpuGPOolHXtFpdVmst5gt5Dozch9s6zvCbj1M0LjCavYHTbqByGU7uO4p+N5wzr7Pw4hZ+XXL/8Qf59L/9dziewS/+5Kd48K33pfjg65sWIxIiCPZa2DJYN8r4pQK/+6VXmLRa3Dk1yl+bHCa3VcX082S9YXBrmJsttO8nDGsXNT4yUETj0al8aYJIcEohIvFZeyvvryK9UYBM4LMebpzhxpJOr9d3zcFdSCRuO31ZNkQK7Q/naNr9Je5LJ4hl0DI8R5F8T2/McTv6FIP4Oqk+o2Jf4cgH/iY3lwg2/YqOSGUsEiJRBIgsAimUPxleMj5DSJSICpslHu6+56OkIEgdDaZhgFDJCMPrOK6HaVlhZpgQ5RVRNeXAJVRrjWmZaB0qCX5QXTfK2a+1ZmZmhqPHjoLWYbJqC616CJ1B+R1ct4F2MpjSQM98AGHmMUSWrO6Q9RcR5Cj4V2j7Q2w1luhuNBkdLvLf/cOT/NSPv8iY8jm9qjleFjw4ZfCmCYOzLZNe+Siudrij2kO2tyj0wDhoUsiE7mCGhWFnoCloLYT8fgbuO2aztqRYmmizWO+xlimxf+R+3MZRJh6YY8Q8TcFYwe00IGNyav9h/A/2OPPHN6he77J1qc5WfZnZ2YN4IsfCK+doVBsBOCM04AFJppqgQrIIBexgnrquB9KHTptOu4tvjVPVFs74m7HrFjeUyYgqMJ6zMaoN/GqdnJxAdpcoKZNyPgc5k3a3BzJQGQWaqNid7weVsC0jDEbXYSVkARkrRKykRvkuPd/D8zUqzKyEDrP8hGOXQoAPruOggVQdNFzPx7KsYEl5CiFCbwHi5RvEsQSaQMoKEIxVq6CRDJea0hrhqwQqD5Xo/rXWL9hGfURrJbJ+JSs+qPIdHY8sLJHTIJGFZIc9bTABgRDEiRLSQnnfyk4XYdMRb0rtqyJYg5HFJAYYIl7Azry3H7xIAyXRMRFjLGnq45WasCp1NPbkd61VDJREFAMT0eNJ9Z/Eg+2c9WiQvmuWgz36/iFNMrEVmrZqI5SH8Lto5WCZw/h2DqSJIQRtX9H1eljSo6Q1rujg6Qlaroc0BVNTx7Enpmm5j/FvP2Pxb371NEtn60wVBCdP2bRmTaY2bW56HUquyfAYFC0bw3RgvYectkEZdBugPBPfyXP9xSqTZRNzWDNaEci2QMkR8hNv54FClo4GbY3z7ItfQ/WucfuhCaZGfhpPf4nDZLkoR5GZNpmiRaMDv/DLf4fxsX1srNdot7q02h1Mwwz9f8WtKwgCclmLX/5b7+Df//E1zi72qG0s0ml2UfkO40WDB7tbWE6eofwUPTStC9dp/dr/xuwv/3KMasad9b0YHf9NhKLQnCvTTGHw706Mc2dmukd7NEhKK2QYZxRsVIPzkhg9S2c0SaP5/VlLdpp3Ot7sdjNx9yFlO+y+ggDpTa4ZoZ2pccZLaLvgH2cnSbsnxK490W2mUDsN0pChHKTDIlZJ6tGg4tPgCMNnNZDJBQ2GaaB8Pyx0FhaaUgoldCygCiGQphlU3vUTJy4pA+E1QLhTmWUEcf0CKSQKD6XAMMIqx56H4zo4rotlZ9Bomn4TU/tot40ALHsYP5MN+b2k5nko3SEjOuSJ+P0MzZ5LITfK6OxbkGo/bfdrfPoPMvyT//ZZ3JUec7MG+4/Y9MZMJus2l7othvOK4YMm0rGR0oXNkN/7Jq1NjWnmaG5oVs7XmBw2MSswOiKp5DSF0mFGx+7hUMjv1cgkf/b4/8O+0Tr15QbXL2/yYz99iGNGlpfFBGaui1XsMGRqChWBaZvolqY8NoXGpF2r4XS6aMPEx0tl2xGgFb4KhGHTsEAaaAL3m0Z9i0uvfo25uz/Cmm9TW3qVK4aLUXApSZeR3hZZMUu+NEnbbfKBo7cxXsjzPz//FPm8YHg4S6vTw+k5gWKIxBZgyqA4GTpwFzItMKXClgJlmSAEvg+er+m5GhS4gK8kSIEZBiorpXBRaF+jRVC4L0LlTSnxXDc1Q5O9I7KixelAIS7856csUZElIArklkYS/B4jWqFVIK6LEgMB9CkGaaRbAL6vg+D4lFUiyqgU8YBEbx8UuJOuB3lK4sqYrPed9/f+MaYxEZHaj/t23N2smIM9b7tcooQN9rud3732/h2948iyE7+GFEPUqfFrpXbuKEVvTCrTXSwGu33fo+89UlrjKg8PhYlGiDbKlGgq4RwNqiR3/BYah7xoYfubIMoIbdJGoI0GGUxMY4YuVaqbbZzyAX7271Xw16+g3U2y5QLjxRz6MzcoXdvg9J/VGR33OXJnhmJBQ8eHNijbprdi0ambtHo91jYV+UmLwmyWyv4cy6sOS6uSxVWbsbJgBRgVkmOzb0X6c+StFtde/VOmjk1TVDaZ5hLD5Vnc2QmWrizja4GdHeL9734bTs9jYXGZ4VPl4GHsIqsnJAYaacZGirzv4YMYiy6v0GLrnOL6jU3+vOFw75FpWFtHMoKNjecabG2ssfwnn2XyAx9BexfQuomQwwixH4QZoLYiYLpXL7zM4rXTDGVdTtz9YWrXvsb4yfdg2HmimvdBXnoBwthbcH+F6Y2wHkSZO+LvKUQ+UJohchCOrqeTk2ML5O6KQUT9Ix1ULPpGJPp/131H6duDEgUgUm7S6OfgNaO7IkYDJREiuDMyGQsaocAiRNjeMPBDAT6dbz05tz8FrB+mFI0rJ4fuRNHAIheDOHe8jFKYyhgx1hBeU+D7XuxfLkKhME1SCjKZDLadQRgSx/dwtcJGAw2UlQeRCY00gSWi5dewhIupt7BUFyGGENqkhUCam9jGEEKU6PQcqtUebnmOf/DPhnGWz2DYHoVSnoxvwucWqFxe44nfX+HEWyym5zJkM4CjoBnw++68has0q8sOWw1NftKmOJulsi/P5jdb3FgzOLZpMVQUrKCZEAZ3Hn8PKwtfx9SKO0/sp9sewWu0MWsGsjyNrjdBd8lLgUKw1W5SKU3S2qyjw/SiQgTxGoJAvwtcdUJFTWm0ERSPE1IgTBMtoF5bwrLWOPbwQ1xqnKK+dpWLN+rY5Qz37B8nv7WClDNkRQ5H2pycneEfHf8R/uWXH+M3fv2/QEqfL37xcZ575lW2tpo4rke706PX1dx2uMzh2QKGUMzPb/H2O0t85s83yGQsMhkDXwk6PY3n2axtdPGUxPGCwmrKU3i+j+8Tp7z1I7e0aF4PKPHx/A33m/T3aP4GMQ5JRWUIFQelEcJAqcglKQIN/P5K4yT9xu1iST8G5FPpVFNrM+WiM+haE7VLdRvQjoxQp/hCSurvOykYqBg4GOMNA+5CO4nsfYHB8f1HrmsDgvrA59067eNFg80HeVp0TszDkoexg7i+K72hloM9meT7mYKF7ysPQ1h4FEAIDGEGYcpa0VY9DOGTERoLGykmUNjUvRtor46pu4BJT9l4uo5lFbjJMG85cJLM5H56zlV6/gqr8zVG0ZQXVnFWuxi2hdPJ0R2ykcrDVDbesmLtksPWhkfXENSzNt11xe0lm0y+RIcetY0OtZdfQBx7JxpwtWCoNIWly/R6G9zwb1DyJ7CNEe7aN0Rz/TwLvcuYfga347K5WuPNH7udXDZHqVS8BWFm+zMToRBkGJLKSJ7Dpmbr2BF6NYfOzTZLVc03Vls8nIX8kI3wfEwFtu+w+NLzlO4axS47CDOP113G61xGmxKZvx/LzuO6LpcvneaV5x9lchIcc5FDo8s4tUVMoxSu9gxG4W5k9ggCCWGWl2iMeyvzrxh9hxpCnLlm54N9AYn9qfrCIM7I6hajVv2DSQP7g9fdfj1A6FAX2a48RP7Ag6f09S/ClRrv2andN9J7tikNum+caeHD91WQSpRUkKZO0oxGQpDWJGh07PohYqGn75lENQt0+PyjQmY6FOQ0oZuWIs4KEw5bBQfROnQxUhpk6p0IYqUil8th2RmEMJBofOVjChuXIQxhBYJemPawrXqYQmELjSmLCFXE05K6uwBeFYsuvpfHQ+OpdUyrwA2GeefhO3AnRuj5N+l2NqleC/h96foy1Y0mul6k51iQsZDKx9Q27oJi8bxD1/fYcBQN28KpaY4OZyA7TEtpajeXaV46hzhwD0oLHGB05CCGclnPTVPvbXD66hYvnr7Bqxfn6VmjGCoLnsZ3PRzlsrG6ijNUwOn1UL7GD4tgidAHXglFXCA3FI4Da1FKDRZgmoKxsTyzB0vUTtzGitulvTnPfAO+tdnlXXmJVcwgWhJbC4pCM2ML/rNPvp1TJyZZWFzlbffMcvKAzfJ6jS9/5SxXmm1MS2BlTeyipFIxmDw4zEMPVhg6WEQKA8uQNNqaSzd7PPXcFtmsQc8FaRjB/Xg+wg/mlwJEXJMjtRzZLhyn11QSh5MI0zISNEWqZoBOUHgiy1mKVB86HeXM2Z01JYJ7VIk9vMhOwnKftY9dXHSjE4Orpi0Mu108qsMQjXkb7cQUdUoBInD/3c3roF8p67dYDvY5eBvRek+E//5xRVt++j0n7cQA33x9ekOUg90u9LoA7B59D5HAFME/ISwQFmgPoT0MYYLwEDhkhMCSJhKB0i5tt8Nme5O8bGILn5by6SqfIatHvlghC1xoFijLcTJUadcWWXphi7FxcLsNshq6Nc3VywLZNimYgnLPYO1Mj2tXFVstiSpZyJkC5VqXmcIQXTWMtDtYVpfmwqt03XVyRoWukgiRwZAmnqnoDM2x3LUQXY9W1aC23GZzeRPddsHVTB6eZGpigkplOBU0JW5xwiarUYbnrXUhaxjsOzhBu97lZqNKZ3OBp5davOlYhkxFYvoSQwgydc3G2jJLz36VfQ+9A5lR9BoLdKtXUcUCQ7n7uHDuKVZX13n5pSdZXb/E1KEcnr9MbiSP7s2jyCK0RMsiwnCQ9j60LIRuD7d6H3u0R/0UT5sIQdMDAckpBH7XzU0k2+NOwFj8+bXM8dFG2Lcjbu9L7Cg8QDToSFEROq0gpJQDnXQeu+3FHQX/9bss9N9zOvZg8H77+krdQxqBTGcpQhC4g+ioTTreKEyFGitnqTFtv3AYXBuhlkE1ZNOyAhQ8BINMIRHCBGEjtEOIDxM4rPTISokpTIQWuLi0vDabnQ0KskFGaLa8BkJ45I02uUKFLJqXGkOMySm0v0l9eYnquTqVcei26hSkZnO5x5alMUcEBUsw1DVYer7LxcuajjBQIzbmZIHhdo99hSG2vAp2wUP3qrRXLuJ4G+RkhbYvKBo5hseP080MsbB6ic7WAhcX2qzMtzFyNqIn0W0P5Sh6rkO328b3eriOi9ZRDQ8RK1k60gSj6RFadDQalEL5PlorTDvD8OQ+SpbBgRMz9OpbVHsOjeYaz652ufdEhsqYQAkPqX1Ex6FVa/LAHdO8+NwrmJZi/3iGw/tnuLZW4Iv/6QxTUwW6bRfH9xE5xcyxPAdni8weLTB7pASeRmBQbwmmLnS5Pt+hWu+htMLUAk+A1hLha6QKPNV934/3tigrkQjvK17XmgEXueBHrZN5pmVSS0Hr9FyL0vMaDBYzjBDzvvk9uCYEA7+nF7NOd7cj2r4roJcWhAUkrpGJNSS4wuujKHEbPcDnRP/xtMVg94DkvwBqEylk6Z+2/d/fPq0g9POaW7/sG6Ic7DzwPfp+ouidZaQFhIV7VJDn2hYCX7uUZVDYRQC+36TTu8hiw6fZ89DlCh4tan6DpuoxlAUtMhzXW/z2/GUmrCbj/gqrl2qoMx4THzK4eRUMX7Ex77K0quiNCCb3GczgcPrJDmsd6OYt8lmbtx0ZRq1vUSweoN7OkM1IypOKDdVkfvkpRsfuo0qZqi8oSE1GZhkpHeLS+jXmL57hzAvnuHF5gcZmA9u0ObDvIB/+4PvJ5XLB/X8bqyZyVYiXpgjYw6srDvmszcyEhTo5TXW9R3ttnsUGrLiK0XIPyxZg5KAlafsuF752luE3fRhhXsFpzuN4Jo22pGLl+MLnfpNXXzmP1B63vanAPQ/mOTxlIpRCCQ9DV0FaIBR4X0d7dyLMSTRZkHkE9k6c4zucKXv0vU6Dm9S3fb6UcaGjsJO+46/bpxBxyb9dXYW2IXzJuhpouA1FG0QABxWEWCUQ0QnxJfosGlqrvr4HEbaky+geUv2khBLfT+IJ0lVik35TKRZlgJ8qolSTYRpIpVFhzIIOFRRf+UgRWCSCLEnBmIOqvsTWiqgmRewGo9MKRDDoBKkMi1yGSHBWWiCCBBBKOQg0BqCEy7AUIb+XuN4Cze4yyy2fluMhKuN4qsqK3yVruORMgZQWJ1WVX792ngfLa3hb69TONbGueoy+x+DaRU3GUdw432Nz3oURyfiEZBqHZ/6szaY0cIdspicsbj9UhmaDXPEgC1WLkdE2ou2y2ltjaeU5KqNvYUOX6XmKimWQy1YoDx2k40gqM3WKKz1W5zfwux5SmEhMfBcyuTzaDQJ1A8tAgFIHRpnANSYKgIUISdYo30cIDcLD9zyUMNGl/WxtdDi4P0urdoherYtTXWWxBSu+ojLWw9MK35eonqDR6nLha+d4vLXFj/34vXS7XdYbLvNbXZY2e7znHTNcvrzBUNbn0BGLtz4wxL4xO+D3KIyMB9JktGhzu2ny0Pw4Xcej1fJY3+jS7gSZl2RY3Vn7CfoeuApGgnyiLOhwzpIStoO5ngjTQdayRAFN5qKOUfN4vcfrOJhr0dw0BlyMBoX7fsUglfdsgI8NCt1J9qCdLZ07Ze8ZaND/JRyCCrOqJYdTPCC6bqicx3xiu94Qt+2Li0rPr757Sc7RbD8ev6Odhj5AO4EmcaxFmre/Br0xbkWDm4cQrznwPfreo2geGcjQLKYR0gYstAZTjASMUXVQ/hat9k3mV8/y3IbigX0F8rLCoreKEi4ztoWpa7zcPc9Ja4w7W8sIW7CyYfDCyyYnygZCGqy3TQqmj5PXeBq8Jcn8vM+C2WZxTVH1BMIWHB7Jc3dpnF976TpHH36I+fmzrCwssbnWZK3hU/+d/4uPfGiD8f3vY6lj0cZjaMhgulDiha/1eO7JNZaWF2nWNjGExdzcQX79n/2P1Fs9crlsmB0keg46SRn6OpO4b9oLwfxih3ffliFbFBgzOap3jHPxbInmxhKX10aZ9X2MoXFcP0dvrUq31sC3PObP/RFd26E8eTulqbt4/Iu/zvDIKuevLtHzO7znHTO8791jTE/UQXUQGqRlIEwDYRigFfh16P0mqmWhuR2ZfxgypxB9S1xs5xh79JeO+gN5d5S4b7GjFKIeSKPh5p82I+yM2vWH7Ol4M+1H6lNy+05KQbrRYJs0eimSa8WbdNw2Eu9TbkIaouxCIj6h/yKDwcpJ9pLUPUXHRSDsK+X3CTvpSssx4k+UqjRxIYpcjaIc+IZhJNlaRJDNpS/zE4FVIHgEGkmgIKhw+BFSHI1ZGkaAPob9aKWC6rbSQIqg4JkUGtPIh5YTkGRCft/G91ap1q9ybf0qV5rwlqk8eelw2blO0bSoGArP3+Ry7wYnrFEebNxkyDJ58aLBylWDYyUDIQxW2xZjWQ8Xge8K3Otw46rPTbPNjSrUhCI3YnBqZIjDdpnfOr3IHe97N5dPf5WtpRbNrsdq6wpb1U/zgfevMXPgQ1yqdSnkYChrUiLPZ790k/V5h43VTZxmi3x+CCEEm2urjIzO0lloQIj+C8NAWjbC91GugxBG31qRUmLI8J1FkiDJ3Jlf7GLUzvOuR97CwUNF2msVVq/nadSWubg6xpzpI2dvxxNF2s0zdFQTZZv8xAcfYWVrka8/fYWGoyiMDpGp5Ll0s4a0fD764THeem+RsRGR8HvTQGTMILZMCaayGX7mZ47yUz9+hOvXW/zL3zzDK2drRJmXHDfMGKTCwqUicDsTIqiPkOjcSeasIIhdxOlRB5ee7/lhsT0DLUKlODqu+nlBWmjuSxccgY7h1+3KdGRtiNZpUtU3UmSigmxpSqcADdalTK3XtBVj8MT0sIMv2xIhRB9ej42m+VGK78bPfDd+yU7gpO77A4SWwNQ76bOOJGlhkzcr+tpGle2J/r0O7WUr2iOUVrheD9vMANFWmU51FaQl00qhfI/GykVeXbvEU2KCn33zCbYocrG3Ss6QlG0HTyue6daZk/Ds2fNUKrO8eK6B11V8/IffzFX3Jf7V/7HMf/6TZQ5MZzFcg5s3fR57pkdusox9doPaiOLudw1zz/33Uu7eyT//+7/C1Y6mkdHcefIEtaUWV69XGR0VlIczfO5f/x75e5e55763U85mubbUoDx3J5vL17h4+gm6TouMaTI+Oc6Rg3PMb9TI5YrUWj3yWRvLNJASTOPbE5yjfNK2KRgqWDx60aEybjM0bDA2V6J68s3c+Oo5Xl7a4NjiAvmKIH98luJbPsV9z36V508/w9lXV7nrPR9n/5G72dxYwNmq8d//0kfpHK5w33SJtxyCqXILmg2oNdHDFqIHWBqMMI1cJgNGFmHnEbqKX38WId+KOfIzICzAIEyB8kZMmT36S0xpYThCCyPf+lSr3c8Pz9nlSEA7WCVuxcR/yzSgUIjUZp3WEqI0hiIlBETpCXcYNUCYYUjGwos0JAb9AkusOOgoHiESLAMBIaqXIKRMFIEIVYyPC9I54tFB1pgo5aIhDTTgeB7oKBe/EQiFQmAaRl9QqGWZeJ5Ht9el5/bI2tnQlzzN7zURUozW+L7LxrUX+Ea9Rqcwx4duP0iVAme6S4zYDkNSsu432XC2mMLjyTNnmZw8ype+vsjJfcO8+WNFrmyd59d+d43/+ueHmRzN4dUFL5x1efGaIjtcwDq3wdqY5r0/McFdxz/AwosdfuN/+V2WfJN2XvP2O+/i5vl1Ot4W5YLEthR/8OufofiOLR55+yPUl6vUrTxmZpyxjMO3Tj+Br7vk7SzTY2OMTM7QdBVNV+NoTW1tCc/t4PbaOO0mniaO9zCM0AVLa7TUeH7wrG3bIpMbwjAskCbt2gblokWjcB/nezbZYYOZEzO4N0+w9PRlnl9Y5675m0wcF5yuLzFfb/DOtz/Iy2df4OUXF/idrzzFWq3B3MESt+fg8KhF9+gY7/I3uOvYMKMFH6o16HSgZEJXQEaDVGAYYNkIw8bIFJk7WuRf/aNT/P7nV/jy4xvUai6ra22qNY1rSnw/uA9fBzUPZCxcJwqnDAVnPxTWg9obSR0PTehWpJN0mUIElbmFEGg/WL9GWNDM8/1YiE9n1RPhnEepOBNSpJxEgqvWPlFBurCD+KPSgO9jGDJcG0mTFNy+DcnfjcSuDbf/ltxGsh77Dg6iHGJ7UoPXBOx3AkEiheK1ThSD95EAG4IkOYLWftgwDYbsTt9V5WBPDPn+IEMY5OwCUbiQr4OAuwhz87weppXHBbaaim9cNLmwnGf/XJ5ap8W6cZMRs4IU03TUBo5zhSlnnRHhYMsCzy0O4Y9Mc6jcZkhc4/rjNfSywlU5KP0MmdwpMu48ndpv0y1MUhIO5SOa24//LWYKJzl78WtcbPp4juTPnn6VDz/81zn2VrjZXuPiq5uo9R5Hjh5C2pKnnjxHr5tjaHSEHzjU48knH6NZX8WQFoVShbljJ7j3kYe55ggeHM/iOoqu46OBrN2/HF4XAhr4FAAAIABJREFUYw+BeBFq7B8+keMLz7nIhqJcMLDyGS4fPU7tP2V5cXWBR/QhjuYzeN015l9+jpfWurztw5+kcf1pzr/055w5/3XKRZ8ZqryYsXlEtnjPe0eYmfSQ7ibC7qFLGgwNtkK7nYDJ2gai3YGMDTkXTQdpZkAsoZx5pL0PZP7bubM9+n6mbZvLX4xE6Fbi+/4urkSDG1+UIpBtFoJoJDv/dkujYbd7SYXnxvtzEhgdtohLhvb3sW2f32F8fd8Tf8I+VDJtLQj6DTdgEaCqItXW83xMMzoWun7ESK5AGhJLWMGmHj5HESkOMaIKvvKD4QqBaZqBMCZEWAdBxYKeYRgopej2emjgM7/9Ozz26JfI5fMcOXyET/zNj3P02FFuXLuGNGBsbIRnnn2Rhx95B//xD77IesujMFbg8JxFrVNnw7jBlDWKEHNUvev4zjqTzhYV7WHLIk/cGGL4+JvZN7qOWbvKwjcb6BWFI/KIyt8nN1JB3nySVu3rdK0yRdFj7KTknmP/CMNtcW3py1xpBq4uj33zZX70XT/OqQcXqD/1Elcutuit9pg7PIc0FI/+yXN0/SzHTh5k375Nnv7Wl+m2N7HMDHZpiMrMLMfuvguRH+IPP/1psoUy+cIQW6s3qW06QcVgKTAsC+15IYIeCJ1KKwxBmKFWo30Xn6D4W7exwfmvfJ4Dd/0w9pjFWFZjDg9x5eBhat/I8NzyTf6m9SZkweLk8Unypsfzq02m7rifkn+TD7z7AbJlk4Ko0Vi+zpWMzXtlkw//yD7KuRbS6yBMB11UAb/PKHSvhcgEAI/w2gG/z3pIOth5mxPHTFY3irx0psnCkooV1Eh4lIKwSrMO048mVj0piDNtQRRHl866JeJifL6OLGQBEq3CAH0IipbGCrYIXJz8VCYjSGoEyPQ+lLJSGlEl0j5En3Auy76xpZX6vlWbEpYTnhPF6aTb9reJYjEGLr1NNo/4S9pikVw+ASEC3hBZ8sJDQsd9hKMKv4USmNBhEsKUtSPtTpXShJKEDANWEZ30HP2N0rTfauKVN0452HMl+r6lJOVVMBkD16Iw8wYaYeWRwiBj5Bkp2bztznu47fgxfLtFw+6gRJ4Ry+ZGawGlqoxKsKTmUqfEglViaKjI7HCB0UyPhbUtFuYF48U8pYl7sXK34xuT2EXFbcce4cnnvsD0kVFGsuOYYpRmV+AoQblksVrPcPpb55ibOs3h/bO864EfIN95jPM3N2mcWeLu8jTrmy22WhUKPYuvf/NL1DdrGNojIzK86b77uefdP0DNmmCjKjhU9nG6Lu2uw9hQhrmJYv/i1ezuIhcqBoG1MWAVlRyorkutGVSCHttnMnE0h4fA83w2V7q0uzmyIxmEWefghInyqmTGT5AxbpLxNsk065y/soXRbfPIO8eYLLUxRQ9ND5o9tPChqIOcy64bvDMdMgjXQasaZHIIS6DVVXTvs2D/YjzmPdqjW6Fo/9kdzU8j8aLv5+1WhgQV3E598FsKPHttjWHb8QHULS4YuM0FSsRuFdvzkiQbfp+bQuxOAkr7Ef65DeiL8LhICQraq1AYS1BSSBd5iny4A6FNaY0b5qGXUiINIyxmFsYKSAFCojyPSCAIhLuIX4fuRZE5RMr4PnzPo6dhbXWN6lYVaRjM35zn2rVr5HJZWq0WmgAlr9XqfP5zn+fG4gIdHz78N36Io7NvoWl30bLImJnhTP0SZaPDsNQoIbnULbNglxgzspycHCKjl7h2vcHaimR8qMDQxEMY1nFcrRiZOMnByRpnLjzB9KEJRnNTuF6Bbq+NloKhIZvNVoYXvvYKdxw6zakT95PxMrz07DNcX21QPbPI/ZMHubm0SZf9dOUVrt5YoF6tYeGRFXke/tAPMX38DlSmzFbH5+jdD6J7IA2bTrdNvbqBmclhmAau46AQYcBxGPOhNaZhoGViNZcINIpeq8nmjYtMHeuxcT1DTgusssnYwSxnNXiuz/pil5E5A2lbVEYEplYYWYds6W4mzQuMWm1qS01emW9g+13e+74JSqKGNHporwddB20ohBEIizguWgfupAiBFl3wfcjmkXaZk6ey1JuKl8/UwvFHMyylIMhAqA5iU8KjKWBak65zIFJzOxFIg3mtEaFHQezCEy4xKZKUpIGlIUmXmlagA0VB9bGF7YJrpOJHcTLpQ2mXKJla6gEYoAd4S9C/7vu+Xdnfne/EZ6b4YiAuvN45eqcf+4qaxlaTQQE/PbYBjSWJn0osPZEs19f3Nt1l8NnsTG+ccrCTBrVH32fUb46KKMq9bQhJzjbZN55lzC+x6dZY8bbY6DSYtooUjSBwykTQFD7XulNkS3nGZZWDhRqd3iYvr3dYrQruPFEiV74fYY4DGbLFYaaPzuE+0aIhSkyUZsnIPPWmz1LVoFTKkpsu0aw5vPLcy5gyx8HZI9z/jh/k7P/7ea5cb8GLV1BiBEco1ls9VlcW0aaBYUrKs4fYf/x2hqfmuLKuqLZ8Xl1zcBsduk4PR2kmhzNkbAvLCE2aQoQKwna5OmRXIAJUT2l4dd1hy5M0WiC3FLlhKA+b+OYwqCtsVl3aPYuKmcfBw1JgmppOrUCGMtWtRW5ePc9qt8ddxwymxwSmdvA7PbBcDFOB4yGcEKn0fYJiM6Gm4inQ/x97bx5tWXbX9332PsM9d3z3zXPNVd3V86TuFpIQCAxCCZNxYqMQMMTLJpEIWbYJTpyQ4EVsbMKyWWbFEBAIEgcwyIARIIEmNLTUaqnnsebhVdWb7zycYe+dP85wz731Wt0Skllu1a/WrXfvmfY+5+y9f7/f9zdJcEOECEDsY6Jn0b0PI6rfE8dSjJkfb9EbkcbycL8+WH6C8ih7Ijm8xnXyrgOvynhEyljHN47l4sig8cm9Jid539Q4I/ElL86kXHiE5OUl+bhglBljW5n7UeqzL0aCCcTxSCO/3mQ+mbzwIzKhKK0oexBSl7lmAEiRKQap8BS7dFiJ3+KEZSOHyoLI3D9Msj+viJkka016L5GKML4hjCKMMfi+z/7+PiqKMktDGhz68ksvx5mNbBtLaaZq8+yGTXb9DutOjSkrpJw8iZYRXPWXKNdLLMkdDlX2eWVnh5f2fPYHkrtvq+JV34KRFdABU3MLzK0tEz7TpyNr3FY/hoxgs6lpDRzq00XKKxW6rSFf+MzjvOlt38yhUw+gjMf5j36Cc1d72F84Qz+cIbJddjshyt/A2DbSEswcv53jd9yDNXOIa01NPwpYve1BensdpG1R3zhLMGjiDzoM2i0sy8GnDwSZghA/d5FYEQxKRfHjlzZuscLq3fczlC67LUOxoZkuWVSnXJRdx6iQnd2Qk1YVrA4RCheL+uwU/VaFslNn+/Jlrl7doGci7jvpsDQjMEOfqB8gnQiJgkCBnSiQSoFjTaz3FhAhZEhtSnL6tgLf9A2znDnXodtLgat02U/Gb6KI5jWCOHDYxFaS3FxOZ1J8WE4dNnF2J5EpqLFfffpdINBGZ9aGVO42ubkd78qj4HHblmVlSkM2lscsBDevIBMbIAdQjAUAZ/M834d0KucOMqMD80/jwLUtt2aMrQuTh+UaHkt9mnuyuc5M9P1gnj3q84TCYPJH5FSUvAXiNei1ayh/GWQO+NyiNx7Fk1hiSYeSVcGPQvpKMG25VAT0VEBXOPhmluVahflam6Jzmf32Bs9dDOlGFksPruAW7wRRQQgHxy1RmnOw3QJb+wNK9TmKXol22+f8tT5Ti7Pcfdcis7Nz3Li0y/MvnOXCbpfy8pu5/a4HmFtf5+VLbW7s+fQGbVrNi5y9vIOxLYztsHLHQ5TnjhAGFlJLImXoDBS7LZ9BZIi0JohU5tNrJgbwgWM5t6Bobfj8+Q7VKQchBXuNiP19Ta1oYQrzRFoz6A8JAoURkmEEnd0Bll0i6A+Q/S57V6/x7PMvUa3CW+71EMOIyMQGAh1qcCEKDToIAJW0LBktJgKUhDA2fcfpCFuY3geZzEF9i97YZHh96NCXJpH9fyBDiXdMNJwTTBkhZymDexW5fgIZG28jFf1jQURM7DhYEcp6foB1I2tOTrC//PljFofRPcT1AhIENBM+kk/ueqmCkF4r++RiD3Qu1iD/rrKiZ4krQvo9VVykjF2PpGVhpXEFgkyoF6nwpjVKqTgGgdH1lNaEYUgURkSRIggCwjAiDMPsE/gB3W6PXq9PGAQYDY5w8WQJPwzpacmSU0AS0TMRPVEgZIaVWpn56j62OM/VrV3OXlP4lsvSA6vY9t0YLCzhUSh7FGcchO2yudenPr+Ma9tc3+qz1VbMrcxx112LTNdnOf/8ZZ59+Qy7QYnptUc5dfo+ZlfXePqlXRodRa+3xe7eBtd2uxjbAtvh8ANvwynNs98I2NntYYwkiiTIItK2KNUqTM3OUKvXcVwHp1DAdmLXLJk80zSbT/rRxqB0rFR55Rqrdz9Kq7tFozNgd0/R7xkqnoN251A6otsb4nolpFtk4Gt6zYBydYGg18Pp9zn/8jmuXL3C3IzgzXcXUN2IEEk0iIVqYwui0GCy9V7E4E82wGWy3iuMjhAiYmXZ5a+9fQHXGR/bGU9Lx5FgJHQKMEZk4zeeZ+MuKKnSOFoR4r/pcxmtEfnxna+FIsgrrXkSuUUgzWyUWsJMNpdG4bXpNrL+pXMwr+WP7jzdkGXpyRTo5DxGQvXkEjSmk6RtpOtOrv3Jlefm79y0VmaZlHJrWerDIRi5dmXXMbl1MN/ZyXvP1kmRe775p/H6pPNbAcm36CsiAThIVpwapn4P7aiNDmxa4ZCm6XPMOUJYCXAtj0hZ7Giby5uCa09GTE1NcdddD+A581jGRZkQpUIs1adkebSu+tS/o45bL9DcuMbG9TOcvOMoR+pzDHqCrc0m169sc33zE5RrLd7zwz/MQw89wW/8h+fpNYa4DKh7XWqHJWc/OQRZ4vSRB7GcFQZ9zQNzki+KiIdmba4bSX2myPJMiVLBwZJibLKOtPAc+54UiBLGvH/hKt//bRU+uu/zhQsap+JyumyDVwVjUQg62FEPLWYwwiNotGjsaey5Pvr8K/it87hoHp4WLNUkQQSqYOG6EseJ0cV+S1EtgLEluBYMgKaBqoMoA/saE4CoCvAsEA7IKq+GPNyiNx7dlG3jy9QRsqw6Odl6MpWgEKCT9DipEJWZ+TPBOIfYT/Qw+5Y3UuQUmqztRKBJL6ON5qAbOsi4YSZYduaCkJyglR7rOwA6PkYrlQlLeaN4uiSkKD/IpO3YzULnMrHkhao4O9BIishSn8Z+FzHYYiWNpdV4RawEGCUQSiUKjYVl2WgxnhkpUwBsC9u2UZFKUqySXSvtEwlyrLVGRVH2rJRSCaKcZpEBpeO0n51mm6g7YG1qGlm/h72wRT1wuBG2caTFiruCrES4lkcQWVzXDpfOavbOw+ryHHfcdT+OmMYyilCHaOVjKx+PAu0rPnMrs4iyxebOZZq9XY6dOMrh6jT9jmDz+h6vPPUSrzzf5ciRe3n39/0Q5x99kl/87afA1xRFk2p9yMA2XPnCEGNVuP/UW2gOypx75WWa7Qbrx9d45qMfZH7tBI7Tp7t7lbAfu5wKIVChjyUEODaWlKjEHSsVqE1SxRoh0GjCIGLrzCW2nvw4U0vfyWZ0jOqiy5FZiShWwUiK/j5CDdFSYrSNv99hf09RWOnReOYpgv42s47m/mnJQlUyCOP1vuhIpA0qNAw7inIBjCvBdUmMG1C2wRPxeh8KxLQEaaOUoNdT+H6UjL3YhU2pOIZDJP78IwtRPNe10VmK0zzinqL3Qo7idg5CskdzL1FQhRxZ5hCZPJoaC6xJxTy5XFrXO29UyKw4chzuyBQEGGPJY9nFgDhlsYj9nfLdnFyXTE6JStofIfyjwH6ZLgIHXCL/PF6L4+ZdmvKKz83njTqUfzfZwTkrhzYGma2d6dqcU4ySk15PEMBX1XKQUaohTrykW/TGIVc61J0qAkkkigRhxPmgQNN6M3PVH8YunGaxuEVdXkNJl7/YnuLD54qEDTj68Ekqs/81rl1HqR10uBMzwuo6x+6cJxxGBINNLAGe66EGbT73kbOsnVzj6HLI9HIRaUN/+zKXnvsD/tuf+iXe/2cvc+qRezl5qIStOuy0FLoRYtk1ltdWmZ0qMBtGtK/2+PALDe5zu/z6b32U7XYPx5G4ziiYL0+ZcJT75H+kvy1LsnvxIr/4y0/xzFPncEUDYWu2mwqnKkHYGHsKJTxCZTM0s2yGivqMz0DM02rWaTY9Gj5c3w+oHbmT9maE6vpIQgyKQc/QjAT+DnGhJA1mYNCtEHo+JtJQd+M0p0ZC5CLMYayZf4IQiTn6lpJwi16DRjnHb6YsNaeZOD7PtOKtOWPAa427nEAwamgC3xopDjdbH0ao4xiKlrowjEsU4243B1o6kkO1zhC8tMKwSATELA5B6ywdozYmq6abCuxjz9KkfTLZNbM+pPciJY4bp49WURQL/cnxcbxB7BqkkpoGSulRnQUTBzuDiNHvRMlQKraIRlGEUlFsmRBxitPMwpR10WQ+52mflVL85vt+g5/7mX+BwCaiSBiEvOCXEIXvYar81/EKh1jwNqlznaEo84HLdZ68aGMLj0MP3El55gdwpEcQbmCiJsIu4s2uceS2WYJ+SDC8huuU8GzB/o0dnn1ig7WTqxxdGlJdrqDDgM71Z3n8k7/Lj/3Mr/GbHz3LN3zHW1mv+wSBT7ttoA3SmmJmcZHZisVsN2R99hDl0hQvf/RDnFg5zn13HqNeEtSqFcqVKq7jUCoVKZVKuF4By7KwXRfbK2K5RSzbjgVdy46zUlk2EknQa9G4eImZ6W+iKH1cu0doNPs9jV2RgAPODJGxCU2Znp5iRyk8b4+OXqa5U6PVddjpaXZ7guraaZpXh5ihj5QhUaToDTRNH4Kd+D0YLTBdjWmF0A9BG8S0i7BiC4KJPJ5/PuTnf/EMnW6I1hAEiiiK3dtSWVQnYweTG9uWFf9OlE/LitPcymTMxXK4QOnR+JApCp9YwNIUr8rE1Zkhdo0boe3xOXEWrZw1TcTZuazENSlSURyrk7SZpuKNVFx3KRNwD7Bm5nD1g/eNWQRTtyiZY40TCsTEDynTNWZ8RcsKzaX/EkH8tbht1tvxKXeg5dfk/mXbDpCvM3es3DEmJ8jkrZ5fir42ysEt+johgcJmWrgcdg9zx9TD1Iu38fTViP/5F1/AuD9IX34jv/IHPh96/xbbn+viTC+wcP+7mXGmsY1NZ+jgqxIlt069WOeViwYXm07LJgpsip5gekpRtgN++V9/nDvvfxcrU3OUKw7FQ1OUTxbZfOrPOPPhj/Pn/9f7eWlrk2j9OHPrb6JWOMJUtcZ995/GLfg0wiH7vqF9Y5/f+cM/4YG7F3nk9jmOzleYKibpTL8C2dkQuxV5tqC9fZ3QsgicKs1dH1mwCMICxpJc27pKs93CkVCJtlBtwf6NGeRwmt5gSHPYwSjJUa1R7S7tywZbOCjHoatc/MBjZbaGN+UgHQPNMK6aOVfAyALm3AD6fpzFwqlAWMJ0Aavy1X7xt+gNTSn3GwnFqaD5Jc/KIfwHM2dG7jGTR+UYq0x8ltM0m2NkRigbY1cYVyPG+5Vjlsl9GWLUXqdmgTETfiwwjB2XUwImuoNJhHRtTE6gkUkswOhZZtutmO1qndYvEJnwBhBFEcboxNUnVhBSgS6fGSmKVOYeZJJ9WmmCICDNUiSFTN5bLAjZtoNtp1WSIYoUvh8QhCFhNGpLCInjOFkWpDhbjUBjMSNcPvL7X+Cwex9Yq/zx4/v8y9/aQTnfzwtb8/zsr+3w+d+4QftiSHHpFPN3/XVm7DoSi8bAwVCh6k3jiirnLhsKwqG5b4O2qVZgpqaIum1+7d98mke/6W8yY9uUpouUj09hzwVsPvnnvPKnH+NPfuFXuWpL3EN3M7twLzVvnZnpOm95y/1Eap/dSNHuRoh+wEzN5p47ZnF6V9k9/wKm16RgFJZWuEnKTct2kZaFbVl4jk2xYCOFhZQWkjiLjue5VGoValN1pjwb3bqBrNXp+g7ddohwLILAxViCC1fO4QcKjyHFYB/Vthm0j+CGMzT6Tdp+QFEJ1qKIqN2lfRE8z8GXDr2gAKbE0myNQs1G2Bq2fYQnoe5hIhtzvo8ZBlD0wKpiBg6NGz4vnW2hVIrg5xT0iVTWyhgipYgihYri927bFq7r5GbU+AxMsWednKvzgmcyd9NsQ+lcT1OaTiL6o0D6pIcymXeInCVCJFYIiW1bWUHAMSPACIue6KlI+hT79auxOTy5suTWlJzSkt+fWQ9fE+x4bcovOSPQMXcjk5hC1m56z6+uIIwtZ7krpPUlXm+2oq+ucvAqPmW36I1NZSnZ2Bkw9DXD0GbgzHH00e/kdy6U+Te//zzbF3xE4DBz+Aj3/2fv4lvXTlFE0ld9bBFhmR5RtItFj7U7bqczhMbeOcLBNYwc0rdsrm8Z/ILG0leYO/4WTOk+9m5oyoMB7/n7j1KtRQhtCJs2g06Rrphiz1tk6c4jbO9tMrtUwJ3SBK1NZq5eoBQ5FJ0KfQORgWGk2B8GdJK0poYk7VssjeQQiYlJlRvvR44dpzi9Qn8Y0t5rMWhoblwOcaTEcWykVjGSJ10afZuOr5lbn0V2r9NoNTCWxeG1WWZXl3j6mS6rjyxRsBVBHwK/gN2RiH6ACRXR0z6iWMfMzRAMLaJhgDhSgtCGQGCaGvw7kAv/MGEKt+jrhcbG6Fe6HKeWMTNi6qmLRbw/Z3tnVJAr42kjR+CRUDCuC4yZyEVOgI6bz6NdN1sARP4+X/UeBZM8MPuZuQswzreSAzQjhSBtIHUPyvc5RTZjK0AaKCzHkVFGaF38CGVmNZCWzHHz9DnJrMBUjMamOGxeIBi/KW1GwcQmsygo4iDR0UOwrNjtSEqZBNmqkUKQE8RilxCduRelz1sCZWlx/31voVQo0fYl9vwpyre/g986U+QDf9GgtREhjMv6Aw/w8NvfwduWjlJE0I16FKXG6BYq2qPgaZZvO0l7oGjsvIgJd4hsRSuy2NrT+J7Cji6xdOf30g5W6WwGHKpb/MiPPkC5EgMj/q7DwC/RtqbpVJeYv22dza0N1o9PEdh9rN0rzO5sMSsrWLrA/Y88xL133sm7f+AH+LvvfS/f/p9/JwJwSlWWDx+hVK5gOQ7CtpFWbDXwCh6u62ZB4o7j4BQcDh07hlVdotVq093v09pRbF9XOLaF49gIFSBti6F22O9b9CNYODSL2bvAbrtDtVZgfX0Orz7Lcy/2OfJNq4jBkKHvoAcudpd4vQ800ed9xNoiUbFKOAClI8R6CXwLQoHZjfjAb1/ml99/nnYnRBuIoniQWFJiWaMYCmlZWNJKEHxr5FpHbCWKIjU2p9IaHZPjOZ0PsfCfYNoitn5JaWXzaiwVcqKtZNapDIWP/6XWB4itcllF77E5Lcc+mfsXNy8FI6vipJUuSRrAyBUyRfwP/CQXH50+MQFHM3PcNelVaVzBOFBUzy+1KeggZFLBe/yMm9yN4h+5Z5DcQLrGvA45/WsccyBe5a5v0RuDDOjYF/bwTIXAMhSQVOZqnLEdboRDGnOHWVMBRg2ZXVjirjvfhMGjMRxSsCIcq4ykiNY9TNikWlmCUDHsbNEdttHKoWqKDH2f1mCP/euPsbp6nLXFefauzFFxi7R2fX70ve9hEBYZDDU3tptcvrZNaALCuofaD3GcIo5wGZqI5nYHXXBo7m/gOEdAxKZQhMC15cg1L73LAxaEsclp4sXr3jvmuXC5y85OnyCQuEWPRr+E8DoIIXAkWFIQKMHOvqIXeFTmptj+yBlubO5SmKpy4kiJV85fo3uhyz33r+OW54m6HRj0sUqCqA3mhou7vsYgkohggGMUVsWBloGZaRAearcEVg1nfZVb7kS36MuhkStMIrCmzG7CfWjE8ON9E/I7TDDJ9BopSjY2zVI31LE+HNA30iZTxjexN0UFhZnYNyIB42b1lIma1OqQZIeRo3SMk72It+u4JzJWQqSUGYI/upfU5zpWDkQur6CVWBBEJiyNFBYhRtYEIdIqyToW5kjdiBi5MMQnxVWaiYtMpT7ypAKDSJWNGEWOrUGpcGUyxSYViKIoiI8Ro2w9OoroD4Z84g9/h/kffDfnn36OsFDl9F33ccPvUpw7zuFTPiXX5tjJOzl27A60cWkOhxTsCNeZQmDQ0T5SD6mUFsCP6Lev0w0GuMbBUw4Df0irv8v+tU9y6tiP88LTczSGTVwxIBpK/rsf/+/p+R79QcSFy9vsNHYJRUhY9WjvRXjFMlaxT2sY0NsdYpclg/4W8/P38+Y3P0JtdpZz585z8cIFHMdlEA7o93qEUYTjujiOSxSG2NLBsgTBcIDSChWGBAYsy0OaBtKW+D2NiBoMBwXawyKy0EULC1cClqTbN+w3DQPlUZmrs/HSs9zY73Pk+CL1QsQr53YJLnV46JFDCHsJe6+NND7SFUQdgWm7FI4cptfROFEH2zZYBRs6wMwM4BFcU1x8ucuZi12GIXHRM6UxE0LoCJhOKmunsmRqQUNkWatIwLHU7ScdrGlgfJpxKxtnWmeCazp/tNZESo0p/5ZlEekoVrTzgr1JM3VZCHJpPU2sUJvJpBpJn9OqznmenNkBRfxrLClrjh/GbY+scePGgpygPdasyXYnk2rinEyaz9a4MeH91ShneR3fnLNaZOAJB/ZttHl0XH6NeDUl6iD6GisHKYO5RW9MEjjCAgGLNZdeFCEQrHiCoi2oDCTO8TsQyzMIaShXZ1iYW8OOIqIkDZ9jeRgUSvcwqs+0Y3A8h8Z2m3ZjG+XOYLtVjD9k0NRsXL/CAyc1M1WJ42gKZQ/XqXPXI99O2XMZtpqcP3seVw+4ePEq+zcMjpjDiAIFW4DyubZzA9cNWZw7TNVzYqYqwJYWtkzSsKX8NrnT2LUg/n0IQytBAAAgAElEQVRz9fY4Q8ih1TJu2UZvRhihwVE0egbj2RjLQXsS41r4gWZ7N8CrreC4Lq3rl9nfbbN6qsbRQwv8xV9cZLPdRYk5ZNkge9fR/pChY1EsVVDDEtHUIsL4uBHYlkJ4ErPvIypFTOUbENU5kKdAWGPv6xbdoteiPPMERubtSSn5IEaXQ+YOIjN2TA65T6/3JZWCHOpHwvJT5j7Wv1xywBSFnFDshRCZcJMJRrHWkB3zapS3pAiRmVcSIV6PMfLYECCyAOC47Th2wbYtwjBKBK84Q5EBTBIoTZKiNA1k1jrN+JLrzAF6f9q/ODgxRUxjVyGVuIKkylXqMhSF4cgSMhksSozi3rh+nT/5ow8ShCHPfO6TrB1a4fmnnsKuVKk5cPK+e+HEXbhrsziFAnNza8xUp7EiRSgFRFCwyyjto1SENAPqrsEuOuxea9DrboIUWLaHHg7oNxVXrl3mwTscyp6hVxAUiiWKpRnuefM7KbkW3e0d6qXnePGlPhvXm7T7AlfMI6RNyRb0+22u79xgOpQcWj1MteBQPXKYFy5e5umXXuba5iZTtQpGSprtDkopyqUy9ekZCk6BVquD328iTUQQCYwyOMJQ9SSe00MWp1A9cDxNJDStIZhCvN6rkhUrB72IZge86hKO69C4fI5GI+DRhTWmjc8XP3eNdjDE2IvY1SnE1gVCHWIKDoWSiwqKRNPLyEEbKSOsgoWwwLQiRKXEJz7VYuelPs+f7dAZKBSSSOnYtUiQCNqpMj2yyGXJBZKZpbVBiiSLVqYUJwK4NVIg02GXVe/O5sroe34VSLMciTRuJ0H8jR63KIySHdxcJ0Xk5uaYNXJiro5NWzP+fSzDz6tQds+J1TFeY0xcNyA39bKlKodwHOR2mQZN56//qtbMnAIzmYZ1PF5CpDc0floOXBnP3CTyZ020+er0tc9WlCIWuU23RJQ3BkkhKDkFIH6/FTseTgI4XS7ghwH2wjp1dx3HsQmEJIwCZvx9ZKlOK4ooSINl+kR6AMJi1mtRnK+xc6NLc/MazqqBehWCAN0wnN+1eQAX6NEZXmeGMo++9V3sdAtMeQ6L83OUSwUK5SK7200uf+FF3NsO09fgmIhC2Ka7f5GiM+TNb3ovTtHDN4LuIEKFIcW5Moa4gIwrYr87ZSBQBpHkLJdWDokwBq0iMH0qNRdRcMD42LaLXanSaIHSZXA8ojpEXgHfN3TaguO3H8co6Lf20b0hNTnPfHGazkByeQ8C7sPvbROEPsNoQLTfwztZRy/M0vMNs7Nlik4JBu34+fhdRHsVOfu3sI4eR1hWMtluzbivF8qy/aTvXLw6Cv9qlE/jmNKEMS3blrU7YUlLq69Onpt+TwXeyfSjk8wtHyyb8sNUMcg2MqFTiJuF6HGkzRx8/aQXJhcMGR87Uijitkx2jVSQ0UYn5WFNUmVVIDJkVaAy16DYeigtC9txCYO4mBm556US4UxaFnZa8CqJTdBa5RDfeFsqgEkS64UZKQgk23WK0qq0n2RCg21ZWW7/rMKzzAWTJue/8tLL/OzP/FMKhQLFcpkP/u6/o9/rA4ZBq8F7Hrwfb+0484XjCMdlYKAQDahHPsKt0QwiyrYh0gO0DrElzBa7FOfrXLvYpbd7AeUKKHmYYYBqGM7sOLzVdQnCPbrDG6xVVrn/TW9lq+1yesGivrqEW3SwXZfGTptrL16kcNsxBpGmZELo79Dbv8CUU+Ktj/wowrLYH4Z87PFnee6li1Sm6qwfXqcXaJ596iksDDPzSywvr1ErV9nc3mHj/LO4BRdpWzhSMFsrcdttaxw+NMOT1yyIFI5XxLglmh2BooRwCkQzRZRlMegZwsjj0OpRdKjpNncQg4i5QpWScmn2JBsdi0g8iGqfJaRBv6+wdIS7PoVemqYzMKwuL2JHHgQ96Aeofp+NL3b5Vz//Chf3QnphnPBUY4hCjU7GcIzAJ+i4Jqu9kXc5i8EvE1eANulIHf0dIeujSsmpoptXNnSsZeTmCZmLkWBUvVsIkdXfGCkZZPEKk2B8poSkinm2DpBZD8Dk5i2j3/np/SWk43EAgZvWp9RCmtZ0SDsqc88gtYiONTe2OBkyk0jGmyfg/AzXGFvwxtapceF/NN/T55GCFdlamG5P17IDAIBJ+o+QyjSH4tyiNywJGGOeBpiyBMZyqdkWRUtgIYiMYLurqXkuvrYwaAwSZWyEs4gq7rNcLxGaHjeahsWq4t6azydqFsNQc7EV4WsFakh7v8u5rsuJf/AwKMn+VpvCbImZqWlO3eax9lbB4594ht4rl3jlSoOF2XmwXARVSvYiTrEIQuIbeOy5G7z08g4/+d88yhUFRJolW+AK6PiG3YHiUMVChQrXtrMFNwp9/M4ulnmeau0bCfdfwrQ7yKkTROYYAxEQXnkSV0Qszczgui5DVWC+doyliiTUgs+3I+YdxXFhs7td4Nn9gBXLYtB7iL1nn8GuSdxqBbF7ltCfIbJ85ioOBWsKmMGIKlGjxfAzPuX3/hyiMp24C6Rv5hZ9vZGZZDhf4VXIM9v0b07IhhzvS5G23KHpYfFQjGGzDPHPMcEcPx+3N0+gYhliyaiqcNY4o2PH7yIVZnJdzxhkviOjfemGDLkTyTkiadmM9hkTy0NaRyNBZgyljH/nkVZBDK6IxLUoDVyOLRpxsLEKo1FfM0T/gAyAqRAjYqXDJMHLIlEOVJKeVSk96gNxutaRX3f+8cXuT1JKHNdF6zjwWes42LnX71PyfYS0cGyb+vQ0C7OzTFlgOy4ztoVnSSSCQRSy3zNUCi6+ifuvNWhRAncRU2yyUi+iGh3O3YCZUsjxWsgzFckwMJxvhSAUOuqzea3LTKXAyRMPgBbsbrQorE+xsrBE626Xl/YETz/+Cv2XL/D8tTZSC6TlYYs6RXsBxysSYvjC2XP0/HkQSxRmevztn/yH+H2fD/zKr9Du9lg7dQ+u63Hh6S8wP7/MxbPPIYRF0XVYnfZ420NH+Dvv+S/old7G//uBf43puBDVCJEMVZfwytO4tmB9vk6ABKvOfG2NhZJgqOFTzZBHK5r6wOVCS3G+HbFqu/R6j7L1WIvKSRfC8zDcI1iYQlk+izUXS8yCVUGrDuFmk8bH+vy9/+c5Lg81gTJoBEbEqStNMglNOo4PwKftRBDXY4p0rBxPpr+NlcbUvW00/rRRo+NSC5cxYwHDKRsyRhMGseUqLnSW1g0ZjcmxMQikMTBCgmVGhf4gVwcgVU5IZeix0m8HsMDxxSar7zBpsUgBgQmrI4Ix98D02Jtk/AlXp5vvT4weDqkMNaEYMcpmFOeAGt3TWGxZsqZkf1+tzZyC9Vp0q87BLfqakASWPI8wUPQig9GCCGhEkpXZVSoiZCvq0hAFykbiRD5OdJmVOY+pIKI9P0vrygU8f4/K2hTzC0W2L3RpPnmdne8KUZ5DteZh9T2assi6a/N05HPElKhKh3rF4hvfdILfC3uY3mVEs4s3V8OrBBjPpXrHt2ILQScY0pY21ZPzHFmZZlPAggV9IQm1IYjAN+B5FgVHYqx85VTB1rWrfPDX/xU/9COnsYvfQESBgTA4ToWiZ2MGfeygy/KChbuwBs4c3YHhhaDHg8oh2P0U2+0ex+Q8NVGmOWhgsHjH8TnEmedpz9xDSz1EHck973DxX/gCMw89gpSboAcY3WDz2hn+7f/2IRrVOX7K8m7OIX2LbtGXQSm/Sitqp4zESoJYR2h7yoZGxbwgp0NMKBHp18lsQqNjJ/KYH9C3TDi4ySIyplLkGPUBbUGGbk50YOwambCR9i1FTA/oVyobGEBpk7lvKKWB2DqQ5kdP05zqKEIASic1ChApTAoiDgqNIoXtOFiWjRCgk2PTDiodBxNbVvxu0mtmYGEmCMRCQ+ZKlXyXSUYjrPTaI1RRK5VlTppUKrpK47ouyrZRtRp+v8+zjz3GXd/4DvZ9mHEFLWVQosj8jEtZBFyLuuyHJQqRxI1alMQWy7MetSCis7LE9lOPU75jhfKMx/RMgb0rffaf2GB7AG7Vpep5WKZI2yqyWrD4bNBnRkzjSYf1pRnedNcaHwo60LuE1fApTRnsYoSYmqN68m1INH1/wOHbTtCZDXhb6WHuW6xQF4Ju0WXtxEne8qaHKdam+NznHucPn3saFWosy2PQ72F5DlPlMou1MvQvEskH0VaJwKlQLJYQtoBBHzvssrpkI+aPI3SZrWGTy0GXeyNJuPtpNjualeU1hNJ0/S5Fx+GbDs8RPf8UjfV3cK0RceyYx9LMgHDjPFP3PoAUGxg9BLPNU596nA/92rNs+JqzbU0kY3Rem9GwTlOTxqzKysZ4aoGSQuI6cVaiUKl4DGZIvxyfh9okZQISwTNn9RvF/iTAYIJw65vmZjzCpZTYibtcGIa5WiJm7DpS5i0SGq3IKSUZ2nCTMJ81N4lnjF1/dM7NyH7+vhNhXDDyFMgrHBPKgMn/MjnFbMzi+DpJpIrBZP9zjU0uROO6QnZgpvTkrJ83+TYdQF87KeJ1NH6L3rgkhaDsOBwuuuz04OWBYMfYzHgunlegKYuU7RpRKIgiDXh0WMO4Ps6hRfZbglD1MXaLUHRZv62EP1B0bnQJ97Zxbc3s4VkO3TXPovToRALb3qMohxSAgpQsFAsU5+ogi5zZ2Gfj2jXC9nUK7HDY7tAa9Ph8R7GrBHNTRe5arrIqYmvBpwNQQlCQgp0BfPDliJ9+3x5P7CkCROb+uHz4KD/0E/8rWD2G4VNUFsAqe3Rti1ZRU1Y30KEgaPSZWz6CrC7Q7fksiiZLJzWfvCzRpTLlex5mx1nn85+4xHS9zpv/qx/gTz/y7/Ff+AwrgxBzKeLDv/ARyve9C8QieniC4ZUAv7FM+ejf4a0//lP8jb/7Y7iF2M3rlsHg65MOzKj1FV4pA98y6JzMbJ6C46PD80h5IpWkH7JTR+496WeyzYlfhnFBI25b3HR+Pmgv68PrtFmPGG8sAOezgWij0UZnQZrG6Oy5GDNKjwhp+tOkUJbJZWTJoZgZCmgmco2bOOBYRxFajRSA1P9fRRGB72dKmZAyFtJEHDdgWfZImBp7WCNBK8toxCjQNL5vsB0bhEDpWCHQWsX55pMAUdt2cF2XQsHDdt3YihCGBGHE7u4eX/zCF3nfL/8Kv/Qv/jkvb/d5YQC+tKkXXFy3QFOWqNg1Br4GbQiZoscCFEKcQ4tsbymE0yWkhV32WTriEQwUnWsd1P4WpVqBhZNzrJ+YYV4WaEfgOtuUhMIFyrbNbKlIcbYOFHnmwia7NzZQg+tUxB7LVpfWcMBjXdCux7GlKW6fLrEk47SYnwwlv/K+/4/9vX3ONOHZ4W2U7/mf+Jb3/ASFWgmnUAUkZ69d5bMvPIWRbYx8nrn1EsZ2abkWA2dAMdrJ1vvVE3fQp4wZ9Fn0OtQPaz5xUVKoV6i8+Vt46Yrg3PO7LK6u8cD3fR8f+IP3Uz7/RQ6JKlc/fonP/9EZynd+K5gF9OAk/bN7/MSP/Vt+8p/9OS+1IAri8aQjEDrJJWVEklZXJGMxDaofVSwmGct+GOIHAVEUgUkUimzopAJtMlaTVL2plSE/jsYn08FzK/2euq1lrk05JV0ntTjybkqZFSztD0mxtswyztj5KleEkJxlMbMkpH3PoeeTv8djbkyCtCcrSnr/egIsSF16snUpXivMJAgxSckaOVICUutkTpB/FaVC5zI7ZW1nJMaez01B5V+6V8BX23IwoRBkGsuXMK/cojcgCZF4EBg8KVkrSdoRCBUHRtmOwBiLZs8w7dhExqMbeZStLraULN+xzvWtFv29IbubDtO1KjNLq1jFXSoVi+s3Po09e4jVmcOo6w181SXcv8JttSWaXZsoGrI8XcCxLdbvXeDsY1toGTLotvD7mqmVU6zc0+dKY8BybQo/hIowLLiSrh/gOw4D4kKURQt2t+Ajf6wZXrUpfpvkhAYv0jgYLL/F4NJLiLm7eaVfZChqKCeCgsC1e3C9jStDym6d2vIC14dDrt9ocOexIwT2VX73P+ywXp2mXjW0+z16SvK21Wl0f5P6d/wPPPfUk8xf/WNkFHGh2eLh9/0qn2lZ3P+ut/HMZ15kbn2dt3zvI5x+8CEc246zi/xVv/9b9FdOI2b6ZaBVCY1AqXFk7qbCOSkinTPHixTRS1s3jDE5Y760wJ7uS2MexnSQzGI3fsaozXHzf+q6lDLvyXtMv4jURC9ShURCrtjSJDao8ww/FWAMOQafpC01KTIvMkUhdSNGCIIgyPolElcpiO0wcU6i1GUj9xyTFKPSWLFSkCKsOY0gjy5qPZ6BRcgkt7wgqdosCSOF0rH7kVI6yYoUC1JaqSTlZZyqNYoihIgDYrUxhFGI6iuCMMD3fSoXzhHubFCuHMexi4nyItEG9jua1ZJDLyjiMqQgQToWK3ce5vLlXZrbPby6gNlp6gvLWMUm1arN+fMfpFqeYsGbxR34DKM2UeMq98we48J2yOq0hVeyKZZd1u+e48xnttFWSHN7C20qzByuMXd7jyuNAUeqUwyGmpWiRVUaun5Ez7YZCsE/+9//R44dWeXffxae+kyRsLtO/7jDz/zMT9NvDvjtX/2/mRFtvvOb72dg3c2ZQQllTRG5As9TOLqHaHSS9X6a2voiz21so0M4ujZPJ7rCb//RLveuruF4PfbCAZ7jcPd8ARPsM/Pd/5hPf/JjnDhzlc12F2EpDvev8kTHYm9/Cz/Y58UXttlvDfD7IV1/SKjisZMk4kzSjgqiscD6VJAdoceZspDNgfHUnek4Tt35TDJ2bWs0To3OKbgTAL4gdgeKtMoE8gxb1yZRbMfbSj9jQcvpnDNxLI/Remy8jwUjp3NZpPM+JyCLrMYxk+vaTYG+B1EiUJvcgpSBJAccl9LN1sZ0Xc6dklPEsneUnp8+0Ky90T3Flt2JDiRr5KjdJLYk7ZsYPevXoq+ucjBh4vny2dIteiNQwqsxJkZlFj0L29cE2lBAEOmY93q2Q6gUkbKxtItlHIrWDBXrDNPzFpe2NWq7T3luQHX6EJWpF7A8h+3GDQjmGA7WWFlZ5vJuk2U0ZddhvxfRR+Brl6KActHGciTN3SHNApjIJ5QD5g/PcGMj5O47BZEdL6oZzmcM6wLsxK0i0tDsQ9C1uNIyhEuxyS0KNbYv0c4MZ68IzvRtmu06Su5RqPgUvQGN8xfxShaL99/HwFQoKsNCTWPCHo+f85mjwEpJcfnaBvTbHKlY3H7sIR47X6FV7jPj9GgPrqG14a7bZnnybAeBR/jKdeZqK8wurmNJi1q9nlWSzL2FW/R1Tl+JSTudvxlKTZ6ZjLGtTAiPs+GI8f15xWCsDznFJRMucqh3zmSeMrVRi4bxgL70nBGKOWKlZvy6+XsU8Ro05vubCUIpwjm6x7x7gkklJZH7PfmMcseNXBlG7hoCkxUlGvlXZ1JNXOjJtkfvjzjY02RuQRPxFiIfjDwhlBiTuDSN6iukrkZSCqJospgViZBmJW5SGhGGsUUh2S4smSCRsbISBSGh5dNvt2leOsvJlRVKJQ/bCCIDRkHJcRgEGpSDNg5SeNjWNBXrDDNLLpeeCfE2O0wVp6jWVihPnUUWXTa2LrDbexDHPkp5us7GXpMlDOWCy0ZjSC+wcYsWJSkoFm2kI9i53qc8HTFQQ1zPpb5c5/rVkAfvk3SMwMktkxaGw0Lw4L13Y0kYRhG9oUSELq3I456776LXV7S2vpc6PoePrfLS5SJnBzbd/jS4u5RqAVINaV/doFhxWH7oQRodwZQD1EJ63R5PXwpYlB4rZcWTL5/Bbu9xYnaalcVTfO5CmXa5x1K1x6Vru0xNl5ip1Xj+fAeJR60dcHavhR1KLGnTHgb0QoUmVtq0EUlSABGXtdEKY+JYlpFOLW56x+nf8XUibzWIzxtN45FAKmQM+GWFBE0uW04SdCBzAn6qlBgYIerZYjOiuAtpxq20SrmV9FPmDmJsbZh0GRr/mlr3DjhGjJ+QBffmFY/k/kRy2EHYu8kdN6Kb1990vRpb18YWqJHSlq5LI5Qjf+ujOINRm3lQRYw983yPX4908JdXDm56GJP7/9It3KL/VCkZz1XbQmnBUMWBSn0FQ2XwHIedfY2LRc0t0hpUcN0hFRlRnS1AwabfGuDv7+PWjzIz60EA3UFEGA5QSlBYX2Nre8DyapmB7mFLB4TNINK4SuFiI12HTtew3w1xwj5YbWyrQtiXuJGmXLAJpMAHKrZFATgpIQoNoYTpMpw+JTg3EMx3DFaSfzwIDQgPa+EEzzy5zXbH0No1GKHwvAiXAL/XpFqtUj98B5blUbMGuO6A8/3rKD3DsVqT7v4Oje1NFoXm8OIaO9Y6H395l9P2Z7nrJGwdWsF4NR65e4lPvFTmtO1Svn6DO44vU5yaJWoNKcxOVEGeXA1u0dclfbmZigDywXUiUfJNwqTzbCZF6W5uY4QSxseJcbQ9HZc6H78w2pUKzJOHp5fOu8RkzeX/jgGBXwINvOmEcYEJRqkeU1emvHUiE8TzVxzx/ISvm9GBmTIzfpIxybMQ8UYprTiN6QQqaJKCZLYd89zMnUnKDNkfcy3KPSs7UQ5i4WqE0OazGqUCkbRtdC43vdGaUGtMYsGQloWFC1Ji20mFWxNXdu73+2yceZH1lVWmnFNY9Tr9CHxlKLoumztDpj0HKKGigCmrT1VGVBeKBJZFv92i3J7Fq60wPVNAB4J2N6TRHDBTW4TyAjt7AUvLZfqqTdFyUMYQhBpbawrCQboujZZmpqgI6FGwNJYoEw0EBaWxXQdfQCjAk5IicEpC19fUHMHavOD4ccHOdcFcxyQhNYJvePs34wlNuxvx7Kf32e1Cp6WxCwrPjRBhQDjs4tVqTB+7GxPBQkGzLVpsdBtoNc2JWpP27g12b1zjnlqZmcoCG2qZz5zd57T9SU7d49Kzj3L0yCwrs7M8c6nIHbaDffVFnGhAEBmMKHC5cQPXsQj0IH78iSsbIimUJZO6GtlIFAhpUDoGv9JRMjZ1Uz09LyRnc0AiGMWsZJm6kukliAsHxicmlombLHl5JSQZu0aAGFdy0/lhGFdYMSZOC2zG52DG7MZxiezOSYCATLK/SRnJBwcfIM5OzsP8tScpm38mO+jm2Kjx803ahBnfnjyhsRYnYzMmO5xburMNIlt70ixyr4/+8srBQcxn0lfqlkvR1zU5lmTGi5WDTqjo+ZpmYAhDw0YD5gsF6k6BxkBS1FvMr96Ou/s81eky/XBIq9mkuBUwt1BhsDlEhg71epuAc1y53uPQ+p0MVCdO5eksYEmHYS8gZMDCwhLSaeDOFegMWri9Pkvry+xt7HP6ocNoP2JoWdgliWdL+gaKAqZtONtSzNiCo3XB97/V4XdLgu+RCmsYEARJFpMChFqy0XcIhiHDxkXssoMt5zBtxcyhRQb7fcSm4Pg3FNnfvcEzZ8/T6YV89/1H+O3f/3U2dvr8tQWH22ePs6lO8L7PPkXd2uT0/TOI0lHuPfUIcyvHkP6Qb//uGur6AP3x3yN64gV620OiN5cz5UDcUgpu0V+SDhL2b849Hg+yLPVlDnkUjPKaZ8h43tclvYIUY5lPMmtBBvqnjHbMFpA7fOS+NN5/MoEjQ+PNSFQZY8RC3JyfPEPyZeaiMG71GAnWOrle7Ckxuk56W/IAJj4mHgiBZZmMqxsSn2djCKMoydSSFFeLc1MmrkKZZoYxI7emtDUrsSLotDhLdtPJc5FxcbOsOnJyPSllXKQqOdLKqiXHnUtvR0URCrBkAdt2MEAQBHQ6bc68+AK9Tg/rO97F7fc9QNvYDLAIQ8OlHagtldDCpTcwOO428+unkdeeYma+hB4M6ex3kFoxt1BlcGMAvsvi/BZ+6LO9rVhfPs5AdYmGHdziIYwSDPo+QRQxN7cI9h7eosf21i6eZTNVr9PeaXLq3nWCTkBQsSiVbIwU+EbgCZh1DM81FCdKkkePCBzb4YnzEd9FRNj3CboS1wXpWgx7hmt9h3AY4u+9TGFtCeELHGMxtbZA0AoQ1wx3fVuZz37qGc5cvkbJljx8dInf/6OPcWV3wN8+4lGv3cOTjTJ/9vKTTNt73PvADAPrNt75zm+h4lUQQvMtd5bQNwao68/wtuWjzE2fBvdldoY9BmEfRykQAoXCJGNcSIEtnezd5pFkS8biZpTUuxjJ1ZnmSqJSjuYHOdQ/+ViWFafoVaMKytnwyubLqwTjChDInPA/mpB5RD7O5mWNIfkpkD4SLQ8QlvMMMDkndpPL32/SohhvM/cQxtrEHHwvWTTEpALxKnjEKCD4AMgiWyKTNSaZt6N2D77mJMncu8r6LcbX61vZim7RXymlYz12LxQUAWEkodLc6GjObEdMVS0Qhp1eROAVaJg1uvstVpam2Jkv09ht0t3fY039MZgKyw8v0d2TtK8E2JUOc7UegQr58Kce451vejs929DobGIPO5xcC7n71Am++OQenatPs9Ps4Nge3sIJlk4tofsWZroAro2NoKDBV6As2FKGhSlJSRu2uoZNAe95p8Vgs8MXHv8IXft+jq+vcnLZYrsXESxPce7MHkH3EhTKKKdMRysufvZp5qvH+OZ/tMJOt8nzr1wG0+P7v3GVn//nv4ecXeFO5yrHT30nFzjObz1xFtN7kf/z136ehfoyUtjoM4rwxSHNZsQffvQxHvJ2OPXAPVhFB/fEItV7V+MALxkjOV+dgNRb9J8yfQX2gozG2GyCHAuRCghiXFA+EAAafR+hlDe3kfpJG5G64OTbTYT/FL3M78iTyQVFZnxXjG8zZIj5aFNOYcm71KQuEyJnktfj1weyAOVUCbJEDm01JCb9vBVhZN6PN8RCv9YqThsJpPkf8wxcRQohTabEpK5KI8UgsQKQCPzJMWmW1kyBkjLxuRaJwKixkxglldQ4kFImrokj96dRIGvabZn1xbZstNKEOoBk+8maMesAACAASURBVKDf58KZM+xsbhL6Ay5cvszqqbsor53ilR3D8oJNN9D0hMG4JSyzSnevxfGjU9w4X2arM2C4c4F6bwMhy6y+ZZmdjQBdCimVd3CKBbqDPn/6F5/mb7z9XVwJBvT2t5l2B0xXfe4+dYLPP7FD45VP0Luxx/TSGktHF5g/Oo/uWzDrgSVxjcAoiLQhtKCh4PCMhasM1zoGd9rw7rdDf6vDY5/8M3qlb+eR22u4FjQig79U48LZfUz7LBhJ6NZobzfZfuJFFupHeef/sc4L567w/PnLnF62WS4I3v/rf4KcXuMh5wLr9/0ov39O8NmNJ1gpN/inP/u/sFBfRhgL9URAcHHA5WtNPvfEU9xb3OP0m95Od6PPn7/073h88zkkNrZVoFSxMEbT94cIFeZmF9m7TYNRpZCodA4Ig5UpvrnphAEjsKx4HOl0zObmSKoYR1FSG8OMBNJ0zKSKpG1ZSQ0FnY2fOOA/qXicE4jH50vyN1kXUkUiU3EzBF2OlJPkzJyRLtEHxlegVJiXE/f+ajTpYiSFeNXz8n2Ln0FeZb/ZXWm0PembSGMExpWIVL/PXfomLp+PnRhz54xvIut7XuH4UnRLObhF/1FIAJaAkiMpOS7LZXjbkuaxSx32t1p4IuT2Y7M8cV6yJO+lVJ1m5ZCP323SuBZgaoZov8fGy3D6yDEGVpGdYUTQCrE/9dO88wf/AS9eN9zYeJzV2SL33X4XlzYavPTJZ7nnb34zf/4vf4nGnqK8fIy9vQa7wzrl+jauvYIjBP0AOr5kviQIMVTi7H40ehoieGRe0Ioiekbx0Fu+i24ocAy0h4bLzQhTiNj8zO8xbFxgZu1BKtYUw70AIfvc8+jDeDWHjz1+jhW3y8kjVf74YwMqjx6h9krAtz/6t/jQyy/yuQsfYn6xys/97m+iP2TovvI45twFru/3ebrn80zP593zb2bVXSXcX2bq3cv0rzzP2R/4PYruUUr33sPsj59CFG4q4XyLbtGXRWOZPPgSxqhU6H4dXHaSucUb0x8my2CS+gKM9IVRD16v2pspCK/arUk7xPjWm/yO84aPvCUhx5DzTD4RZ9DKZAKCtNI6B0lGI6UQCLRKgizFiMFLacV3YSUKQ4ICWnaKpI4jqNqAUTrzMY8zwMWkkuxHRlpoo7GsOPtQfCMqs1pgUreR9MLJO9A6tlwkDVlSIrVGpIJf1n+JUhGIkDDSfP5zj/Ps089QKBWpTs8xEB7/5d/7R0ilkUELbEWnMsOidT/VqRqHjm0jgh5+V6OLirDR5coL8KbbT3O5D/t+RLh5HtH9Bb7l+9/LYxcGXL/yWR6+6zS12jwXL97gzOMv8tCPvIsP/P1/jKkcxar67DX6NPwqZW+LgrOOayT7fY1jC2penGK7ImJh6HpLseAKFkvQCTT/P3vvHWTZdd93fs5NL4fOaVLPdE/CJAyAAQGQBAGQECmZlGTREkVLXklkUVbtlmXtrstrV60IWjK1lte2Ukm7WsmyFaxEUswJJEGCyGEwg8mY0GGmc3ivX37vhrN/3Py6BwQl0pbE/lX1TPe95557zrknfH/Z0hTe/PCPstKQpFTBat1moWYjRZOFJ/8cs7nAQP5e9E6S1kaHREpy9N670dLw2efP885JHbPk8MwNm/zJXeSumbz7oQ/y61/8PFOLUzz49vv50E/9B+Q3bGqXv4lz+RpXKxbPVqu0ZZp39R5nJDFGc3WUf/6FD/Ge4gg/OfnDJHPjmLtG+NFP/iwI0HUdFBEwekL1mAHPmVwQjZ4FqqqhKH7GbDvQtrk5CkRXlB9vRsvQAbk7N0Gz1SSdSLhaDI959Z9VhJ+oz/1HOiCxw/XkLx8BfsSwIGSv9HUe/opyHdx9c6IwLC8x5iKUX9x+X+resrpNdrr9pWKAOrp9dJnWdwsnum7fnvw9x4+W5PfFiUcXi9yKPx757VsKCN/ARvrdZQ78Qf6uvmSb/rbSVkevPxd0AUIV7MiD1bQo1RtcqwiGB3vYWFugqCYoDN1BodxhcelFaosNOvUO9A6wNrtGZsd9FEd3srL0Ja7PrvGX/+GjFN76Ie7af5RWqc7v/dlpOsvTHLvrTr5yaYFOywKzjdNoYpkaydILjOy9n3rbQWiSpC7oUaFjgulIMgasdCTJpCCVdKVFSVuSHMhwZsFmslchlXDY6FhYCZON6QaNlVnado5UoUg6oVGZqZKzO5x4i8H5hTYTaQVto8lUpUJFMzhWXyTbO8Lj0+dZaK3w9rffx/e96RFmP/wCPcvzXJl/maeqDTbMLLv0vXyg5xQj6jKKKWjMJzA3crSaDq26JGut07xeBktC4nXh3Db9Pae/idbAp6gZgXfFrTtqnnO799/2JAygd1guOEOF6+Uv2XQIRmvb5Ni3qf5o4VBquElSJvBASqiV6HZADPvvtTN2X4n306svBPjCi+Zio/r9dRzXaVSEyYhckx0fQRABPW6IUt/O3++tY3soyONSQkmjD5okjpf7oLsvjnSCdtimhSTMm+AmvYqPoPAiysSiMUrHNQmRLtPh27pLR6KoEhQN23bQcNvRajZpNBpUSmX0fA85uYZMJumkNNKpDH3ZPKXSIn1qmv5dp1hZsVnfuEpnqYXZsBF9GRYuz5M78g+RyhprKy/SnF9l7Vd/meI7/wVvu+ctnL+wxPUrz6O215k4epwvn51GokKrit12cNpNUtWzjIzfQ7luoegGGcM9gzodieVA1oD5lqQvp9KQkobpkAbS/Rmem7W4a0QBYdHRLdp0KM9WaK7O0BEDFAbztNoCud6h17A4er/BSzda3Nev0ljdYLFm4wiLo+0VMn3D/MXll7GUKh/62X/CQW03c7/yDNnVBS7MvcTj1RaO1c9d2aPcnRuhX1lDMQW1uTR5mUfYeTAh2aphLptklDQVq4qqaYQu9O5csDyztCCDr4hnKXZs2w2HGVs/fvbkzWBZQizMrwyYADCMBLY3t3xzJU1TPcY0EjksIkl3qwnnsRDCbY8nJHCZmZBJiTLuriYwXAeqn3+oa1cItAii++Lm3SuIWHYbqXooEPAfCPFMjIkS0jPvDbJAuKaHjhPTCMRHPfpX9D8/wtCWTYrsxSLGaMnIuMXa763xN8KsfHeYg67B34Yq36MkI99ebF6PqhCM5lOklB5WyyrLGxs4KZXhokLZLpDIHGJsTFJfX+HazSnMWgWtVWeto5Fs3WJYzZMcP8XZS5/kZqmCuvonXC7kcDomlVaLof39zDfv4sSOFNfyecgmSPUP0q4s8sqtIifvMrDbFinNQVclUkDbkRiKoNSRJHGzOtuOyxikkyprDcHuvGSxJSl1BLqtUFlxmDnzDM1WHZJFnNQgST3JiLJBenIvLSfHiVyb8wvTlFeW0A2VEalAWdIaUijdEpy8882M6AY3P/44+15bQTbKfGOjQY92kiO5QcYTScbUMlprBakaaPndaJpBum8H+Yk3IVRQhRqTxAJbboLb9PeX/loOyN0UU0/7l7Y6wtzIKEHM8hgzsWXr4gehjBxgXcmKg3dETX/oNhHY8lj9luSbGgSOj8GBGdUURBMQee/1pabRA9zvsz8+vmbEM0eS0gHFT0jl99d1DHRsG0XVwpcEwCtavyuHdMOYesnJfBONAGS5phVCUZCeGYnw/BZ8e2P3b7cfjg8UhRJIk73bHoDBu6ag6ToWrimS42VTllKiaCqmbbumTHiMBALNMLCabSzTck1ZFAVpOzgCUFS+/tm/YmBwhF17x+kZ34O0O4wWFVasHoo9d7JzV4VOu8Hs/BxmvY7WqrHUUZlsXmNsdJQV5TCvXXmCmUoZrfy7XMunKZdryJRgeHwHS61jnNqV4pVMmsSuCRK6Trm0yoX5Po4dMzBbJrmkRFXAkhJLgqYI1tuSrOJ6yyg2pBHoCZVSU7Cv6HC5An26oF5XKM3XuHnuRVqdJiI7hJMeoWBW0LM2Tno3HZnlZKHFU9evYss6hpak37KRVWgNKKxNwzvf8YMkZkuUrn6F0dl1rFaFr1Za7Nbfwt5snomEwZAoobZWkYqBmpnAlJAeO0iybz8dU6KkFFRNI6mmSCQTVOpVrKbl+pvgMW+OxBGOZ1qkYDtOYGoU5dV98yB/mseYat9uv8scJboSFeFLy90IWEFeASFDUOq90w1u4PsLeXtMAGgFRDMBBxosGZjfuUA4otEU0XXnL9+I8263E7NX46ZOBDe7HH+DpsT3HoFECtfh1/HXmgzv+3h9s7w/LmzYagfzfTGEv091yz18taEITTOD9naVC7SRUcaMb03fXc3BJtXrNn0v0u2YQyEEGUNDzaZRpUOr02K106KQM0gLhUZHxciNMr7vCFfmF1GUDWyzSlsxKNdmyK7lGNz7ECfe/P28eO4MC2cvMNVooWuQ78uT3F1ApnpQW6/RW0zRUxhAT2dYvHSF1+YPsFZuUkinsKXEtBw04Zv9atgWaKqXcVK6Tsq6rmBogqGUxUJJ4lgCYUpmFsvMv/Yipm2S7slTzKXJSJN6o0qifzeD+STtjWVW19awmyYpodIqr5LSUsyW2uwc3U2/rZKcnkZ55VUsoXChVaCsHOb+9H6OJDSKagMhbSxlBDuZRu3pp7NmoBb76X04DbqNMDtuls5vNfDbtE1vgESXyC04G32pmH/4RSWJ3XUQE2i5knMnXi7kRbre5UkW3bP/doxAl43upj5svr6lDXLsvv9sGIYxxnBHOyZCk4ew7ZEwpgHQDyM+uZJUD6RH/AuiMeYdR6KoETAmRAzwhFJA97ofotRnDBTHZQCi4xCPyuK2OsrU+QAnlC+4o+5LmqMCB0VVXQZAgqqpaKrimULhOapamB1Xeuz7OijSYW5mGqvdYcfYENlUgmqnTTGXIO24pp29Q/uoNdaYXlpFUapYZoWWmqS0donhXC9jvcfQH9A5feEct15+kRuWRcJQ6NszSmbnKDJVQGldYWCgwNDEKNWVNSqrK1xbmKS00SSXSmE6EsWyXaApBEgV2wYDsBU3tKmugKopGKZgJO1weUlSVBSqtTaz80ssXj+N5dhk+3voSyXoLNdwHIdU3w4Gskma64ssra3TX0hBp0Wn3sRQEsyWWxzcM0F+o4ly7jLqzC3qUudyJ09F3cc92Un2Gg3SooPEwFJHcFJptN4+7r7jIfY+cIqqA5fOn8Nu1ElkEkgTDENHbakxCbv/rRzH8TRDrv+Q7TiBVio6pUOb/hBoCn8eeI7xUYbZXf/e2vdeGvjPRBoRANSI+VrsHV1z219v8RUfoW4zHl/r5nM2oWwjZCbEZnDv1x7dn/z2BvX6d7bY2/wtakuByBbbUTz62G2eiTE5ktsFFwo0MWEjYntxvGx0b4nng3k9+u4xBzEbrG36XqSocCJGkQuWI2nYDi1FI93XQ2OhTN1K0mfYVJoNOmqWwsBBsokXaOmL1JwmQrMpt1aQC7fIJBv8wE/+z4h9n+C6naC6XkIognQmT9oaoZjucPrF59kxVmRs5xj1apvp8hprCyVmVzc4sEt3VaGmTVoBQ4OOrZKSkrYDmirRFIkQEgvoySooOPQmwG5L1stVXr12gcrKDFp6gOKeHYxlbWSlymLVYnRokAMjgse/OUVdSobzaVKOyasLC/Ts3c3GnMI9+4pUnn0aMTPDZCrPs9U8X5F3cndyhIMphT5KCMfBToxj9ozQ7kuTHk/SWtdI9qsUHkkhUp7o1U/uuL3otumvSZvjfPs27vHoIt1nYkQutuX1TZL+LQBBV0til6MMQMi4RLKnyq5jT3Q/7TESETDhnpddh/8WZgdRqWDcRMK/50YMkjJuzuP2MdKXrgbK6LtkaOLkeAyG4pn2hL0NhyYAVv6lwP5HRFxBQqAjRYQ58PojFOEyKMHYeRoaR+IojmfD7mE66TJMiqriZ4MWQqAqKoauo6gq7U4HVRHYlkQ6NjgCRddBCDKZNPsPTEK2SLK/n0SxwNJajbqVZDDR5lylRSE9RKFnL5nEJdr6KjWniWI4LFQW4OYchwrHuft9/xT15c9wtSJpmC0MTSddGCDj9JNLNDn97NMcuWMPE5MDvFpZ5vz6OquLZWZXKxzaY9CwbLAlSRV0RWBKhZSUtBxIKBJNdRGsI6A3KxA4DKUEimkzv7zElalL1NZuoaYG6JvYxU6twqXqBqW2Sn+hj4khyee/fg2RSjKQS7K6uMLqepmJkRHKCwoPHu5l+s//lOOWhabneLHRx3PcwankCAfSHZLmClIUsVJ7MIsDtHtSJMc13nfXByjeo3P25gucn79Os16j2N/DytoKbdMMfEsC/3lFAdv2vqcnrXcizsH+3PTmkkI4p6PTNAaW5eZ17+4FMpKBN/6cP8VjQHqL80l4DHTsZsQ0J/7G8H8lsn6iYDr6RDDvA+2dx9hEroUrrEuq1s2IxBoS1xiILUCPCB+OjM1WTEi0cGTfEiJg1rvZm5Dn8r+NAyix/TH2hNhy6LekbYfkbfquUvey65ZUNE2LmUqL2UobTVUZSBbpzTZpNBV29I+xVqlwfWqF73/nXfzpJ2+SmK2CaJLodXC01zh34b/Qf/ou/tXbfxTlXT/GfKuK7UCPMGgv3uK3/uN/Yn25xA/+9Hs5cPAwF1+d5tOf/Dob0+eY77yd/vJN9iZ2kUgUMKWDZts4QqdpSzKGRBEOti1xLAfNUVFUB1uojGcVXl5c51PfOMMrn/xztESC7OTDTB7Zi2otUC6vkh3t5b5Hh1lYrNEuzzPQk0BrrFMpraGpKS6sCx566BQ3/uS/cp/Vpj+T40yrhz+pHmF372F+zHiBDEUQw9j6AFYuD8d6EVIhda9OYVxFKSgIHXe3sSXo2xGLtokY4Py2H8V/VEbArV9tOK/kFoemb5IQP2YjID/4JwQh0okcyBF8EWdG4t2KXrttD4PDVCCijondD/jlfGldgITjYQBFYNZjBwnMYn33s7cSrr9AAh9lEjwTD1WL+C1EQJnA9TcIwFik2UGceVUE4AAktmXhOzMG2gfpAkE/ao17zfdZ8KIO+UyOB8z8d9mOjbAFQlEDgOZHhRHCjdbk911Kh3a7FYy1oiioAgzDIJlMoukGDjAyNMSHPvhBbloGG5Zkqa4wmCrQm2tRqyU5smeA16ZnsPQib3voKJ/98gKJmSqKWic1BOX605w/36K4ez+/+M73ww+8nxv1Elk1Rapjsnz1Cn/0B/+Z0lKJD/yrn2V0cDfL8yVeevk6pZuXmes8yGDpBhMjh7E1A1vaKA7YXl6cfNbti2U54ICmKAhvv7+joPLpF27xpS8/yeWnvo6WypI98HYOHZ2gsXyJttVheH8/R+/vY3GxhlWeY8dIntbGAu1WDdNJMFU3eOThe3jlt3+dHylkqOsFnqiO8HjjAOPFCX4i8RyKM4JU92IbRaz+AnKyiHSgtnuN0QdGMQoaD+y/n/sfvo9Wvckv/dIvsfCNRWqNGu12OwD+pmUFPiZIVxPlSFdboipqoCVyv7n0TOUiknL8SFhuBX5IVJ8zjpq/uSZ0DtKfe9KfmO6MiJojCRE65vvmTdKbp1EJfzQQghQisu7xzNvii1j45jURzUFYwmdS5Ob9MNI2t1icKdi0xrcC9JFRez2K73/R10TrFPHbMv5LMKoiFA4ErE5EmBOWDLWK0XeIyLXb0bcusU3b9NekbwVL6h0LXVXZ1ZtjcqwXI5dh30CaopIhoWdo2BJbz9O/4y04uZ9md36MnJYkXTPRqjWSao3h3kUe/4/v5mOfvsG1cpOilmbUyIDVYWlliuz9x6iqBn/y+5/l2tkp9u7bzfg9h3DqN/nUF2dRlVE6NrTNOopw6EidlCPpyTrM1eaoNTdII8ioCdKawsXZMpevXOfctXWeP3uaM+e+jJrOkt17F0N3WxxTv0GjVGZRGWL04Bj7Czt44skXyIs2orTClVcWuHjRYte+/dTLt7jyO/+eB5pNSvYQf9l4C58yf4Qj6WX+Xf7jZNIP4CTupK1J6slFSn05Fvug72GF5AkNtc9jDFTcUFAqyKa1yWxjm7736G/EGoqIROr1pGZd5IY93Dz3gjNZRuuLSyDd293H+dZ/vZE7W0obfR6EuFQzKjgMcM3t6hVeHoLAIZIA3EQ75MgwCVU0+7CiKBHzgsAoA5BeuEkRMEa3BUH+j+L+BP4GCBwpsT3/AP99sfHwM8z6dhv+h45hIumZVHl5EGw7phFpd0zarRaKtNFVBS0ShUkIBUPXyWWz5LIZUqkkhmGQzWT417/4YXaNjnBs9yDjI31kCxl296QokMYwsqzWW+i5HRRGHkXN/Sg7skNkVYNUuY2oVSlmGxjNF/jSr7+fj31mlpttk52JPL1agk6jwnprhfSbjrKBym/9yh/jVDvsO7Kf0YOjNErufl/I7KXWaeI4TQAsqZJ2HHpyDtdL08hOkzQaGdVAlXBhpsSlK1d59UaVp174MjduvopW6CW77xhDd3c42fkiU6sand4Rdu3dwYjWwzeeepF+w8ZcWuSFpxZZL2cZHBmlsniN13773/EuI8nZ1hh/1PxBzsg38UBmhl8ufAYl9Q4c4wgtdYVqps5CUudifZ3m2Dy/8omPstEpu+JcBVAFiUyKx/7PD7Nz5056enpIppIgBJZtxeaNqmlu2NogCZ4HHSOe5lLG/xeRH1VVAzApAqAeCS3quM7nUZDrMwSB3D+YbiFTEWY7dn9cZtbTXHlr0fEYG197FV0D4aPfwtdpK6Yg6GXXn2LLO69Lryt/ifJcm26JroJefZG/Y6ZN0Sr9dnYxTt1lY+2E2Dr+VqQ+9thjt735kY985DGAH/uxH+PgwYNvoLrNI/GtDpRt+vtLW039mDpQEZhC4AhQhYKGwoqlks8mMBWVjBD0aCq6nuDyBhzYd4TS0itUmi2qVWibguSYSk8yydprM1TmzzBQzHBjpsQXvnqWt9x7lBcu17nx6lmqq6uM7N7LoSN3cGTvAF/93HMkDZ1M1qbYk0NaHeqldfr7+jhzc46mmmREyZKSSRbWW7x4bZ6ba7OULz3O+Ph+/vgTn+WZM+extQKkdpA7CG8VCZYqGW5ttCgWktw5vpPZ1y5x936HZ79+llsXbXqzRQaGdC6cv8TBVpkPPLyXLxjv44LyVkqdJsPOi/yvx/8hlOrYVoELygBT2UEqPT0Y/RbDowapI0mEIRAJ4R4UticpkLhhTJWorfJ/r6+9TX+XqVwu8xu/8RsAFHqKqIriGuIIxZtDkRW8SfgWAaAyerTFCkVONOIIPCYFC0+R2wJ//0AUW2vI3PtKKK0XWy8D314/MF0I0QeB66P3rA/agcC2PuxW5OAWYZ2KUFwpqT8sXjHHdrBsK8IouGX9ZGyODLPQBkyCB+RUVUXX9QCY+Y7Kwk/KZneBNC+pmW/GIKIDG5XQCoGiqF4ces++3HcAjXwf32xC13USRgLDMBBCcUNgeonXVFV1w7QqCrphkE6nSWeyrK2vc/yuuzCSSXRVQREaZUejkEvQFAp9iqCQTNJCY76dYHLvEVbnnqPUMKlsCGRSITmgktc11q5cp7J4ln17dvOFr5zj1lyJyX3jnL1W5/rZ01RX1zh08l4OHxqnN6Xy8tMXSGoqmaJkaKif2toa2CZGKsWFxUVaaoZxNY9iG1yZK3Nudp655WtUrn6d/QeO89Hf+H+YXSnhaH1oxSGKE/BWmeD6RpaFSoWDu4cYySZZm5/i2LjNNx5/mcWLGhMTA5hWjcUb17lDNvifHtrLH8uf4Ya4j3rjVe7JN3j/3gdho4Nt5XlJHeFmdpB2b5rcCIzsNZgT8zz8Dx7i5//lz9Pf18+e3bsRQtCsN3nslx9jenqK1fU1ms1moEEK5rGvHdgKwUqfL3TLqao7rzUvwVlsSeDOH9XLpRGdn4GGLzpH4gsywsB6/i22Ewgh/Lka+iEoIaPs7T1BOc/ZObbmiL83ej9qHhljWrx5HDIsm9ev35/usK1En/H7FtQbbpeh2V/kXUT2rNi6CvsZ/CiRiEz+J1XCvoR+HJsFOP4e6AoyokIZ936n06FerwPw2GOPfYQt6DtoVrT1dh5XCm/T9xK9nrxPBio8N3KHKiQ5XaEnIWgjaQhJ3kii2YKUA0cGUlwv7+TQvT9Ju/JnWI3rmG2b0pJNUe3gZKosMMwXz15i79g+7r97D//145/hBx56Gy9+IUVdlJi9Nc383C3umBjn2P27WFue4crsHkw5w/GJIcZHenj+1bMc3r2Dyy89QXLPBKcvX+GFMxfYKLcYODTJDz/0Vn7tD79EOZlGHxqmurBCQlq8ScvTVhM07CL9IylG+xT61EUS2WnOXGyTKkny/RXQKlTKJsNqix969D7+/KXrPLv8NIm24Kia4C29Oah8jkVrlWfXzjGj72S8eB93Hj3C6AMa6UEdJQsoINuhk6DIuEwBSnzz2abvMeo6LP4GFUWkaP7e7h1vimd1E0i3fPArggRJCBE423ZZEXc1N+Io69u7+ze7BX5dzED0xAn8CcAzB5Ah8oiYF0Xjj/vvCGRzImxP9KIPKnxJvm8+5B/ogbkQIRgJgL0dUZu4sAVFVVCFFkjxRESbEAX2QhBoH6QQngTVCtrhtssdYDcEpIMjHU9C7PbVzZIb0UJ0gxxPIhyMu9dW4fVXCD8JXjgOeFGO2p2OOw8UHyRCKpl0tRdS0jEtVNMkKSWJVMobf1dirSEoGgr9SWhKSQNJPqUhO4LehETtyzK7sYdjD/wMlU/8Lk6nRKcKG6pFVmsjtSrzcgd/8c3nOLbnII1Kjce/+TTfd88Jnv5UAltUuHTlArt29nFgYpzDdw9TWp3m3PX9tM3XuO/IHmoti7lrrzE+1M+l575M7tAxPvXE17l6dRZT6Iwd3Ms77n0zH/mNv0DsGseZX8Aq1SkYJneqeRpqgqbSy849CUYL0KfPU9Vuce5Sm/yGILljnXp7A6tWZV+PwUN3HeNPzkzx8sLXpl2DwwAAIABJREFUGLBs3pzOcmfKxK4+zpJZ4umVs0wn93HPsUcZv2+EoeMqak5yQO4nUTD4P37hX7Jrx06ee+pZvvrkEzQbTU6/cpr5hQXq9RqWZW2pbXLnTYRh8Ka/3WUi4/sNOI7jAWIFgRMwllK6miQRET5FtX0CYnMzsmhD87pw2QW/OJG2bb13xVFk1FdpS9mziNQfe9fm+R8w2X45X84W7cMWbQo1LG7EopBZd8G48PYgIT0tiBMfaxE+HTYaL6GcHzrMq8PfHzdlcvfr8cctUndgyhUZK7+/b5S+M8zBd+xA2qa/63S7WRA/QN0Na7FhoqmuBkETAkNTUFVQHYGS1HAsB1tAIgkjaY1VM0du/32s3bxARzZYKq1SXrFJ90lUtcrqwhSy06Q3o1PIwqhRY229yuDkHhqNMmtriywszHLq2EFOHt7NV+bPsTE3w3pWZ3ZORbTKFAeTnL06RcvKc+n561y9eZF6q8Rg7w6WLpb4VP1pLs3MYwz00Gm1UJp18pkEeiNByVlHTQ0wnGrRr7eomxKnUmTt8itYtXXaxTblSoccSd51bD+fvbDIN6ct1hqzFLDJGnkSTh9XGiXslsXlTo2M6jB6+AQ73p4mu0dFTYLTka4pkQcMUAgkIcA2U/A9TMFh4dF3JLQp4aHmWs/4UFtsOdcC4BA9FwLAHZdySSc0rYm19DaSThmELdwEM7zH4uzCpgpu38OgDcHB70dekdKNIR8xFULEmYIYq+L1M4i7HpPm+Yd8mG1aiIhfQUTF4J73Sgy0g5fMynuH43Fe0TCyUT+JQHgghKetVbznIt8FH6D5UkqJoiqR2wIfQkk8RsB2EIqCJR00NFcq7GWiUj0TJ0XTAQXLdrAcOHTP/TheuYRQUFQ3Pr1iC/pTGrYtQYOcCqmkoGLnyR16C7sOPsXU1CVKjRqddUmy4KBoVZZuXkcxW5QGi6QUmz61RmmjwcihCaZPl5m9eZ3yxlF2DfdzdGKUJxcusz47xXrPfq5em2Gk3yCR03n1+iwtp8innzjPxeuXSehJsmS4eXaFT68+w9X5ZQoJFXOjgmG2yKUyqE2dDWcNIz3KeGqDpGrT7NhYpQxrV6Ywm2XMfIfF1TZHe/vZ19/P5y4u8/SUxXrzOo6wuWwP07B00lSxWhZXrBq9UuHV1c9y83KR/k6aQn+ee+4+RTKX5PiJ47SbLaanpnn66acwTYtyuUSjUafT6WwyARTRleXjXMeJLC0XufpO+n4+BEfa4ETqEK45ir+cu5lFR4Tma/E1AW5uhaj1ugjC5frtC8zsFI8RpYu6tRSia67H1k73o2LL3zdTt5GPCBkFArFI+K7ooxGmx98S4/c3vSryDaIClrANmyB1wKfcbr/z2hEwbeG1ePtuz/B003eGOdj0onB4ugdqG7d875EMuGDwtQZSSq4sbNCXhXxax9AMMkYCgSAlIG0IqlLQciSq4SZ12V1MYDHCxNH7Ma0q9YsvU1tu0qhBKlmnvVGjVziszBg0WzWO7+7hxWsbjOwqsHLDoFEpsTI/R6vV5vD+PXzxc6dpb9yk1RpmfqVNa22Do5lxSk2dpWqCZ1+4Sv+Awt13nWCsOMEf/eGTfP7lr5Md2knLaYJpoluQ1ntY3LBIGAYpHXqMGmm1RaWdpnWtSmt+gVZznZaQGMkEQ4UsUkvyZy/eoGFlSTgt9ESW9WIvsyODKKUMdv0qbdXh6M40ew4mKIwrKIZAKiCSIG1cPwN/hW0vrG36TpGMS+dgi0P/26BgasbUAq9fn79XRPmPuPww8pfPNHSdqDJSTvjSwOg7vD75wBmJl5sgGtHIA1ddScX8/WwzIPGfk0FbYs0KzmYnHGMZCk26RyZg+p1oX3wQH+2jp4GISUfdfruJ1jyJoqfZEcKXMAei0kBKCSAc6cV19j+Ayxg4/lg6/psVhKq6dumWBYBqGKia4ZpfqSodW9Jo22TGJqm2Gtg4JHUDXdFRUUkpkEkqrDdsHNXNuWCgsLOQwBJjHLr7IZp2jcb1GWr1Ng1NIZmo0SpVURIa166cY6S/yGh/llenKuzc18PCRY3y8jzry8uMjw0yOb6Drz7+Ku3yNC1zDzdmFug0NMb2DFNq6ixWk3ztyVc5eryfEwcP0ygbfPYzz/Pii6fJj+yhNDeLrDbJJlJoSoLlikWiP0EmAX2JMrZIUCtL6tfLNOcXaLXWaZYEhVSavnyWtbbgY68s0jAzpGSTeqqXleE+rFQaUUpj1aboqA47kybXk/OstWvYawUassHzrzzPgw8+yLUb15i/NceZc2dZXFjEkQ7tTgfTNGMRiGLLI8qvQjBn3bwXIigYMBI+AA8eFB649DMUhuc3hMxmoDHcgsL4+l7djoyZx/gNFMKdX91rRhDZjzbtIUTqjl9xp66IXIgINiJmQbE1JKJz/jb7k+hiJLq1EZFfpNcXIeiqLsq0uH/7QRO6j/Itg4tEtz9vzcdKSRktEh+LN0jfpWhFXRt07Ktto5i/r7TVUgrUkY6XZAXXYa7ZsjhzZZaxPou+3hTpdIG+bIGeVAYUBUOBBBIbN8RcA8FQRmG57jAx+SCiU6ZVmcOsLLNeaVMUFpqqUd9o0KxOwcI6mYfehFlV6NXnSCUcOuUOG3OL3JqbZ+fh/Ti2xBR1VsuLSJmgYa1y/uOX+dXH/i0f+N9/h7kbF3nkzf+A9777HZj1Nr/5sc9jNavUFubJ7BxG17w09Oogc5U5Tk2+GSUBai4DRhrmN1g+/VdsWBZ2x0IXBm+Z3MlALsPvfPoZGtod2E6TXL6PsYH9vOltb+LUwye48cwyZ/7qtynas+w8votMNk9nvo3ea6BkBGpORTYdN2KJtrX0dpu2CUKJMfCGpEUQV0DF5OIRqXn8btf+Hj2YusxltnzZFtXE/xSRf+WmEj5o8M2CNrUjOJnF5ufwjJFkRNKPl2cgaq8bNX1wH3ZNB7w9TUq8JGSe6ZHX4NBkyn9vvK22LWJgK3bIRzQOKCAtAAdF1UJTEQE+X+TbRtu2jSS0YwbfVCFEW+G9CAILtDsCW0rUoA6CvRtcB1dHOJ5EV0EoKoqque9QVfRUhnS+B9O0sSwbqemgpzl9aRbVUsnm82STWQrpLH3ZHFIoJFVXKNTEDSHtCMFQRrBUhyPH3k2jfB2zVmN2tkSpYpEvWGiaTmV1g+bqRWp7dmEeOopVFfTrN0mkVKyNKsuzc5Qn9zCyfy+27WAqNRZX5hhINli9vMqNuTl+7md+jg/+i99hbe4y3/fz/xv3HDvE6VevsfF4DatRpTo3R3ZiB6pioalpbFlgqVbi7sn7Qe9AoRfFUjHnL7Fy7otULAvbNDHqSf7RqUNcnl7mEy9N09TGcZwmhdwAu8ZO8o73vY2B/iFuPHuDS5//Q3qsWyTSCo/c/TaG7zpAdizPcnWZD3/0F+nvG+B3//P/y4VLFyitrweago5lenOXmGmaH51KEYobwtbXWuHzfN3MvxelyZuc/rntL3U314UdaBLcWSJCDRQi8FMgMlei0bP8eS4Ud08S0jXJCRjdGHCPg/jb2vzjz08ZebfXZhSIFguWd3QP2er8vN0+2Z1TJbqP+EKDSL1d9yPcfKQMwX4QlLqN1rRLtRHsb95DMadxovug/4giItvYtwYN391QptuMwN87ijN73d93c6wSKcGUknrHotm2sNoOa9UWr8ysMX/pZaatMqRMSGkoqRHuufcdnBzKkdY1VO9MbrclzabEUSQ7BnTW6oKRPfdzd0fBWfp9ztxs4Wy0qPYkaLNKQe8hTx+nvzHFqeGLLMxeIzswTEWvsrSxzMvPn+WDd7yfnRMFyovrdFavcbOk0azVERsNVEVj+erXqS2soHceIaUlaTgN1tdWXCmGptO76w6sxhqduSukxBz9g70k84uoeoJsopfq9Vu88vkvsVbfoLrRJjfYx/c9+gCrc20+95XrrKop1MTdCPkSP/TPfoF3P7SD8WENS8Lewxns6Z+jceb3WDm3yOjJKqN7Uy6gSLobgJpW2aZtilJ0WW46R7p+ez2Kq6bjB1qQCZQQGG+uc6v3dMXoFgRqdOkD0+4yW3C9cotfNh8zES+JqO0zEZOKKOCPeUWEzs5+Ta4pkA9A3B+hhCZRUopAMugfwAF8cKQXUtI12/C1CmG7fBAWdsJ3LPadIaOgXkqwPAm9+5wMHBdDaa4alHWkRNpem4VwQ5MiQPGTk4WmVN22yT4Q8qWf4CY/88dXeOFYhZeRFwS20MkPjdK3a4JOR8W2NYoDIxw8cpj5y8/zlek2Mt3BSWTI941z5/EHODGUI62rqIBlQ6sl6bQltiYZH9SZKykcPPZetKYBG1/i6mIHZ6NFpQ8suUBfeie19Q5XXniNo/0N5qdvUNgzjrl8i2vT1xm+tJu3vvUUu7z9vrl4kddsm+b6BuODQwgJi1e+Qnu9QgYVXdFpd1pslNa9/d5gaOIe1i8/i+wskdN1hos9JPLzqGqCnD7Ilaee5crLL1CqlanXOuSHBvjx976Tr351inMza2xovSjaCRR5lp/4xX/DD781Ty4t6DiSXXvvQCx8iNYr/x9oaf7bF/8C54UUlmZx/sZ5HCQ//bM/hWPZdDodLMvCduwwVGlkStP9HbvWr+5l5Da9OdTNnYegPRQISIcgA29UAh3Vjqleojw/5KmqqoHEP+Yj4M9j73npuEzMZiYgzrjaXjm3n77WDW9eK55JlO/k7IJjv+9+O0JJO5vWXLDXdPENm6nrmdheCPi5RLx9ycf04TslweBGKLCrCLSWEWGEiLc1bICIfz0pty7n9T9gzt4gLt/Oc7BN33GKrq+26VBqmly7VeXs1TLnpusUe1L09Nawkr00W4L26jLWxgqqssZz82VmDvUzfOBeTvRl2ZWQZJMOt5QMz8w12UOeI3lB/2AfeWM/bXmMpa+8RnVqinaphmXoNJIWWrtNUc/wan4nTvIBzLmncRob0DdEKlGnbcOuYwOs3rjO2vwKMtuDkc+SUxoI4WC1TWzLotXcoN0s4ZgdGjM3sKXD5KNHaV49S2N1g1QmTyafQW3dpD87wIAscvH8Mq9dukypvUzVERR7izz89pO8+Mo8txaa1NU+ksV7kFqVf/+f/hlH9/WgpiTnNiTTHbijKPjRj+5j9fwH6d03TCKfdtWw27z2Nv13ID/+uH+guuBRBhFzAvDhMweRsywgH5NEpPGx23JT8TfAtrgUMhS3LxOXvvlHdBRwbF5M/mEucUF996HsP+0E4xB5MCgjEMKPLy9wIoyHH4UIQDqgqm79vuNvd5ui8d67B8w3z/C/jR/BSPpOCELx6vPb0pUzQuA6UgbRjQSKqoHwtCYhaxj2TPGin3iZcoWigqKhagaqF7UoWxxhaP+dGNl9ZLVBUqkChaJOnTW0wggNs0RjZg5aZRqpdZ6dXmDqYB9jdzzIAz0afbpFWlG5qSR4ZrHFoihwV0FBpkbRTh2ik5il8uwU1ZkZ5FqNTsKg2p4jn9ggmcxyLj2Kk3oQeemLWLaDqjbQjSa2qrDzWD+LFy9Tnl9HGxxBFxaG0kJRbOy2hW3ZNOormGYdq16jMTeDg+TQe05SeubzWE2LxPAIqbSGZs8xkB1gyO7lyaeuM3f9OuVOiRYqvf29PPquu/n4p8+xWrFoG5Mk9GFyRcm/+df/nBMTCqZw+OaqwFRArS3ypxf+LY/27+G/XfgKji5ozrepdRpYjoVQ3dwElm274T6RoaQcl0m7XUSiIKStFw3Lsm2XsXBcEKv4aJ3Noj1/bvnzOip0kBFALADbdn0S/CzKomtdBHM2eEJ64DbKJMst15tbVQj2N4s+InM0qO426zwCvKPBA4IOdw/AVrc8lUq3MP/1nhGEfj2vh81Dxit8ThFRNj5kuOLOzS4Fvh+R66ESIYxe1c1YbkXfXebA10ttaxD+ztGW526XZMlf4H7h4GCVEsuRNG2Hs8tNCqrKktSp9xYZzRXIZDWO7xjk5NFd1GyLpdIy8wtTrN+cojmzzIWv3uL6C1M8pxYZ39vPg28Z4o7BHnqHC5y5UuK5/gH6i4LR1CDH7/hJLr30a1wdK5NcqZKWJo7ToGyrYEBm8TKmpqKlJb3JBClNcvXqFK8+/Une/cj7eO5TL1OrraGoadTcILmcwlzVwZEpVCOJ1ZmnXb+BcIZxWmU6luAH90zypdemqTTayGyCkmFwYu9Bevvu4uIrzzM/f5p2fRapGAz2pDl6uI9LZ6dZXjVB76FYHKKnt59Tb1Y5NFngtaUms2uStUaCVkdhdkPyge/X6d27k0ROd50DIxKbbdqm25MMgTnEDpCtchB8i5oCSWRg1ypDFb6IFewi9zSM3Ba+7D7+bHcd/pmuhFlBo4W2gPThf7HDt8tsgqjZUHeow7B2If3ShNFBRBdDJGXgFOz3UMqoPX/4nKKq7hh2MRSqGh7imqbFhsAfO5dJiSRbCzrjiiF9UyJFUXA8MxK/kOL1txsEOI7thSn1nEQVgRCuWRB4yaj8KEqqxxDgaTCEQDp4kk8VRTPQjBSJbIF83wBjk/t58Ad+hOdfOseOQ0cw0kVUTaOQVTk4PILVmmSt02FpfY61xRkq83PU5hc4/+VZbrwww1Oil1P3DnHP0T4OFgoMD2U5fXGdr+0aY2euzeDAcY7sTzJ7+Q+5ZlVILVXIyw5Np05ZuuZU6aUqpqaj5xWKioHZbPDahfMM5lTe8/b38+X/8jUatSpGYYhEJkciWWS+KpEyhZY0adWvYLV2gd1GtjawHZX3TR7mt7/8DXDStBWDVi7L+OgYPb138+Izj1Nefol2ewXdSNFb1Nk/0cMrz15lo2aipccYyA4yPNrHyXtTHNhX4OWbNaZXYGrdxqoLdiX6+M1f+1WKaYOv/tNXWJibp9Fp0DbbWI6N07bd8LDed3ccx5Oke87tjhUD8T6o9k3MhBAIVbgRrbw1omuqx1zeRmLtTaWoqYpl274eKQLp4us0CC8g3LnrhtHtytnht9XTivn7jN8O/31BSwLxu8sIbWExEzwTUnxTipsd+VqKsKgQwsuuHI6HP56xdwTVhz6UoVYibKiMdMpPCRlaJIYmWy58EsH+4DJW8fRjoT9J2Bcl8l3i2pbob9HWu23bypH7dvTd1xx8G2qMbfofR1ud73FP+PCAjV53bQ5drn6j3qZjOjgOlDuS19qSpabFaDaBktMZz2hYJlyY6XBjDfYMGIyqGrtzw1T7c5wpjrCgnWFufo7lxSpWp8H6xjJLKzc4MDnCD586zskJg2uzl6lXEiz39bOnbyff96730Pjkb3N1o07TlmhOB9XcoE0NLZlCWpcxTRtSOpbWoVK6ybXXBD94/9vonzjIWkVitU0GExY/+RMP88k//xiKliWZbXLmfAMneZP8YIfeQppSxea5+VusNjewnXWsho2yoXHfe/4xLz53mursGVprt7A7LRIJg2w2wfqKQ8k+gNKro5gpEpkCe4/2cuy+Ub55eR29U2DvsMGkolIrOwwc0DHSrsreH/tYNKJt2qYtqOtsB0L5zLddkX/YeWA4CjgCKXREsh4K7CR4EYVCsCHiAJvwGI390dX211MO+ALPEDhHYxNFjsTogAjwEEDw4piZcKSgqrr29L600j/s/YMdCCX3hGdcdKxDPwJQNTXIAxCPKhMB6jFg5I+xAtL3Y5BA6ACK8JOmiUhuBFdyq3jOxIoUoQTYC0+pqJ4pkBBI2wFFQVFV1/7bkQjHl6hKECo4oCR0VE1D2hIpFZKZFIN7DqOKBMlskd7de9h790mahUH69h9g775+CukU5arD1FIHKRwOjiTYnzU40jfO3EA/V4qjLCcuMb8wz9xcCcep0XhynutTOQ7tG+XR44c4dcDg3NVXWMv1YAwM0DOyn0ceeSeNz/0+V9YUmlhgNaHdoePoqIkk0rpIx1JJFnTaVo3VlRvMTis8eurN9O4/TOfiNFQrHD26gwcfOMTn/urTJFI9SMPmy18rcbM8w+raKsVcmkpD8uTsDE27gbRr2FWHrJ3mrjvu5eUXnqdx81Va5WWE45BMJkgmDdZXJSV5B8aQSrudpTDYy8TxASZODPL1C2skOkWunv4Su3YcZPLAODsGEuweSaNqgoceeZhPffKvKFdLWJaJ7TECtm1HTGF8AYCXL0B2HQ3e/In6A/hzLpCWR9ZkdA2pqhqa8ET4boGfMTeiUYzNY9+0TgaJy2JBDTzGxhcyqKq7HnAcL2Fg/IVBe31hgnSRtJROPLuvjDA2hPtRVKvh7w7RdR7L4xDpZ7ghbLUrxP+IxBaKSOlDRiAcniggDziESK3RPSpsf1TIsKkdcvN1nynpfs7vfex7berdZto2K9qmgLYKkyVluMmYlsnqWglD11BUlZVSmRuzi9x5eBIpNF6bWWZ+uUy13qIuYV5J0Gw2KA/3kSv2kMmlyRoqu3KCmzO3WLqyTI4Ww8UUA0N9HN65g4IGE/t2cnmqxK3VGuW1VS5dX2F1wyLZsbnzxF760iop00Q2lqirS/TvPMbkxH0slZ6hvlHCsdqotHA0aLQdUnYL3UojbQMnoaPkBFPz66T1JLnCfpKpZbKpCnfuK3Lq1D2slC/y4//onThOnVSyn0LfGCKl0tM3gNaT48b0EuVSCbtZId2X5eSB/SzNr9NsTFOuzLFRq9O2NZKZLHpPnvWKwFTToKTRnTaDhRonjo+y0DK4OW9yZEhBmCZ6QjI6qDM4pKDq3j5xmw1im7ZpK+qOMtR1czP3sFUxomC7a0/oAsK3A/DeEenzBXGb464aw2cEzpbaAf/BzUi++8B+PYpChCjIjykfunrgg49uiaLf8qihhM88+MDNL+9LYH1QJTyGKxLANPJKXzIbBUre9YAZi5gVeN/bBTlu4cDhkyjz5kYb8rUGiqoiFBWpCVBVVE3FQeD4ngi2DUKQSOUx2y2S2QzJXB4VDSyTRK6X/NAEWKAmkmBkqDcs1s9dQE8lqNSaJHWBoUhyssnN6TXK11boUzvsGi6S7R/g8J499KYMenoyzA3B3HqVleUFSpeXWF3vIOtN7j45wVhBpeY0cKozmBmdgV3HmZy8j5sr38BuSFTLRFFMbLVNo22TtpsYdhbbsVCTCTqqytxyhYyeIlc4zHpijV39Kncd3sHJO49RaVznJ378B5CyRi6zi56BAUyzRs/AEIbMcvnKDI16FU2aDBV3Mzm2g+WFNZqNKUqVeSp1E5QURjaPkkmzXlOwtDSoSRKdKuM70uydVFlo6Nya77A3XSepqoz1G4zv0OnrUVAN18Sn2WxiWlaQYdtNgCcDjZsSmPp5cyaqnZPh+vRzTwQz05dWe3PWiYU0JTa3A8YBf57iaSS65NERnOtr67rXc0wzJ7tMh2RU2Ni1GLvW2iaALEKfgy2j9XSTv/fdRsYWMiHey7pMBf1SWzYoKoGJMDWh9iDcB4P9kMg9b8/Y3Ef/PTJ6If76yDffpHXZJJj3/SEiTMrr0HedOdjWGvztJ38iAay2TUwJCUVgSdgwLdptkx0pjSszc1y/dp2Rvh4SyQQvXLjMc2cv4giBJVXOTy1xY2GF9WoFs9PEIYFZKbE+OkKyb5RcXw9jg0mO7Bxkbmaem5fP0ahVyeVT7N27k7uP38PA6AT78xPsPlDj0kKJmalZNq5fo1GVfOxrZ1i1Td508Ag9aYnTXKC5XMIefpADx9/B7MIyt6zrtBplFFFHSptmo0HC0TCESbuloaRzDI72Urmlc22qzmjPBEzcYmdfiwfvP04hv5sfec8Ihp4MNiCJZG29zJm7jtNK7OTMSy9gbdRw2i3ymTwPvOVR/vT3/oyhPR1Wmi3WGhZCce1wZSZHveMg6osonTS5tGDHWJre3gafPb3C3twYhtLi1nKbdC7FvvEE1Y4kJUDXQajCFxZuMwjb9Ibob7rnuuBC8RL5xIF9qA6PHo7eP8HZudVhujX56yt6CPoSyDgMf70j3XunDI9cIu2Old1aUBe0hUjfuqX8wTgoAscOgi4GzwR+AFFmwivjSOlK5T2xn4tVRKAVCNoY4AAF34fAcZNLeMnN4lJRGUhdwza6DqS47F0Aity9TMG1YdZUDT2Vpn/fJI6m45gdTC2BrepYpkVrbQUhVFKZAp1qmWQhT66vn5SWBMtEGD2IVB7dAClNKqV5Nl5YobOxTmF0lNpqjYHBLENFgx5dsFJZYPbGZa42G1wfLnJo/wH27DtA/8hehpMqR9/Uz6s311m88hrVhSVqNZOPP3GGMg5vveNOCmYFu7FEo6Wi9Rzn0IlHuXpjmqW5Wzh2BUEL27HpNBskpUpSWLRrGj07Bshnk1TrKtem6uwbPkzh4DT3HO7lziOHGRmZ5L0/tAdDTwXzWyJ59QLMTd9JSx/mxWefxq43EIrN7p3jTE6e4Iuf+iKDu00W6i2qDUkyo5JIJLDTWRqmRKnfQpg5enttRkczaFqNc+fX2ZMbodlYZfe+O+kd6cUxBNWOg+Y4lNZWOH/uHM16w82urSjYjo3sWiFChoA/PnndWRGE/IzMfFehJ904sZLQLCnQAriVB74DARvhMwLCy8IdMX/x5qjLiDj+RZ8NDcC49LRX/mLz15fvwByC1TgD3m0CI/x2xBgI73/HCbKEx5z7w9fG6pDRAsFi8hl+v4/dnITfT8/8UHSNObFhD/aBUNkTcSAO+IKt8jqEkaeCfSIi+Y+2SyIRMq4Xie1ZImTpgurfoKn/tuZgmwACEPDEapUV02FnyqAs4fmNFhvlOr8w3stHPvsEncUFHjg4QSGX4XOnz5EyOvzlUy+xVqmi9fbQN97HnnyOW+cuMffKNI7tsLo0D/IlNEOQ60tx6d79vPu+U7z3/hMsr0uu3lzl6nSJP/jYWXa89QTtTIWTu3u488Aw9qFRSuZJnpup8vQXPsa50/MsTy0xuWeAyZ1jDKUOoVXPsXNkkEMn34yla6wuXcNqCmprGyBtVhSR681mAAAgAElEQVSBIt1ID/mswdG8oDSU5Jd/8xk+/At3satYIGlk0NJ7kEInqenuwndqCGmDcBjstfm/HvtZbtwS/C9nnySVFNjSi8iQydO+uswiCdaWBZVSC11tkcTGTFiYdpOU3WLQyDJ24lG0yaP84TdeJT1nM/n2nTx3/hY7J0bZ058iLcCyJJWWQzEnUBRQheLGn9tmELbpr0EyAhy6JVxbUpdRb1wb4R1xEfOi4MCLAW8ZO3DZdJ9IfcETYWZPZBBL3xdjCuGCXl8i93pLIYDn3dKziBCumwkIovP40nsiZXCBfNgVl2lXokDEk5K6krswh4GquoDM8RJJEak3GBYZQkAXMLnmIo6X9TgEcQ62baNpWixxmRACVVVwbNdMw08m5WssFOH6DQhFoOk6qUyG3rEd/PhH/2/qeoL5a1cwB0ZpGBlWF5Yovfg00gFzfo5Eu4Vu6OhJFc1wUJVhmq0mxliaHfv7cJobLFy8wfKlZWzbZn15EfHqyyRSKj07iowd2c2OwSIffPQks4sK56/P8vzFW3zhlTa7Tk1yX9bioazKfcd30zmxi5u1Fi/fWOb017/Ay8/OsHRjnqMHd7C7f4weLYXWvEzv2ACH73kES3+CRmWOdq1Mp1IHabGsgOLYNDsKBzA5VFRZtQW/9FvP8msfvpcekcNI70FNDCCFiqoa7sSwKx54NLnzjgGOHvwAU7cc/smTnyWXNTCbTYRuINUE7WsrLEqD0opCq15GdkzSikVKNDCdFim7yViyyO5HfoqbmuDFZ25RKDvsf3CMr15pcvJUmt6cTgKB1XZYXK7xmb/8BL25HlKJJM1mM5jF4dzw1pOUHkiPMwlxvBfGzfe1BhJQY2eIr+mKryQhFDcRmjd/VA90h75HoTTdkRJVEZiW6xchAjDqraaIZDswSQzaLAIHZr/NSve7tqAwp4LXFqG4cz661ru0pG6ggGAIo8O0WWKPZ4YTwHmCPSm2hxKOwxsVh0TNpaJszlbZj8PzvqtW0V1MBtutLwQItA6SUBsbbfffBubg2wmdtE3/Y6kjJTvyKfoQ3LJh3pZk+3R6+rJ8VYGHP/iPqXQcyrZkzrLZfe8D7EsrtMoVMu02rFbYmdY4vrOHQ29/K0vNBf5go8TUiy+w/tI07RsV2gttqk9c5tpL/z977x1lyXXX+372rnTyOZ3jdJiePJooaTRKTrKNJdsIG2NjjAHb5GjeYgGXh4HLIl7sB48Ly74YjLGNwb5cPTA2jtiSLEvCo1GYGc1ock+H6RxODhX2+6NO1anT3Qpwr++6hvmtNdPddap27aqzf3t/f99f2LPsOraNlx8/xtG7D/LqV6fJrxX5zZ9/HyfsRXqGOomnkxweS3H/sUG+b+ftfO+OeznzzBxffeIqkwsxCg7s6JhCmDVuSg1wdNedLF6bxl67RiqTZK5HcuGZArX1Bh1Zj3guQd3o4Bvz21iZqvEnv7BCR/djaOZ+hD4AQkcohYdHo1LBXfgbdCuLbiYQ3jKy921MDJv0prPUUh14sSS9PYP0J+DUzCnUTAxPr6B5NpY0MR2NyppiLGGzKCwOvP4ga2WPi49dpad7D11jki+dOcnhu+9kpCtNNi7AU1SLLrG6Yn1yndyuDLIjRhDDIbYog3ZDbsi/Sl4ktEh5XgjGAZ8p2xi+QoShJ8JqBoZE1BCIhvBExG/Gd4v5C1p0YPt109tc5VuEH0T5TRXGC0cW69ZD0L7IbrGcbwROkcU7CtBc1wvfoRD+jsCu5yFFGOURAnMZeB+V1wRFzZ6IIIlZhOFZIFBC4LpBkqMfauLH+be66SmFbdvNPVYEmtTCzaiQAuV4fiJzEyBJvyyS36bnh4km0hkOHDrCocEebE3jcvdx5jxFDdg+3En6tn0gYK3mkveg4jhYuAybgup6nkW7jpxbY/9AlgP9GQa+UzBXX+Sj6+tcefgh1h+bprJQoXbZZmWxyoVMmrm1Iq9/xSt53d5b+C5pcuHsRf7bf/mvnHOW+PxoL1Yyzn2Hs9x+YDuHD93ED950H6eemuWz3zjPs9MJ8uUy/elVjJjL3uQAdx58NZfOnCSVXEblUsxVda6eK1Jft+np9kjlssw7fazM9iHKHh967zK52MMI/RjC6ABka74vl3FnP4TZcRCp1pFGCqPjHrYP6/SksuSdTmRK0N/ZRUqr8cy1Z1DXYnh6CV15xJRE1iTOusdY3GZexjj+ztt44qkpqvUe+nI7SQ8qvnD6BMe/47VsS+nEdXDqDnYVUjWL77nrjTzSn2V2foZqrUatLnA8Fy3cfVg1jcXmeBAtQ71lyAYIOFLNRkTHuGqNhSZwD4zL4NqgLGkwvkMiIDKm/XHoNY0UGVbLinr8toR9TeY/MKSDSjwQGNrNEJmohyDYqTw0vCOgP0J2REPtAoM7xNZBA1sAZYJzot1sUfMbAHp7haVgogw9qsE5zftFczqi7QbfV9vcGXmeKNkSGCvPu+wHroiItyH4wH8HQTniVn+CBOgXEvG88al+YwrggQce4P7773/Rxl6gnX/ztTfkWy8Bw6YAF7A9xSOlBnO2S8KQ2AJsIRjQBHjg+FqNDtRRJFxFXCiyKK6uFDkxN4/rLfCTR27D0iVVu8yUXeCRhUU+++R58l96HFXWsKSJJk0kdcxYhcFRjfdst5g24bETS8xcXae+ViOJoLszxbt/Yi87dx9FOTGuzLlcvrZCbekqnf13Mru6wKtf8zLKzhrnTz/KtScfplerMckaJ78wQyqmUIO7qMkU8ZVZfuF3f51b90xA5ZOgGgjrCJi34NTnmVSDjMczCK+KV7+KV74IlVm0eBLZ84PMnX6Yj11aIdM9zqFUmjMPfJgHvnqRWDaLnbR489vfwcvuehkpyySmu3zx7z7EVz72JdyuLib27SGXG+TMhQrKynDnm2+mJ9ZNV0eadMLAdCGWdxi6KcvCJ6ZJ7I8R355Cz8b86oRBMtYNlbohL1HaPAfPw21NTk4yMTEBwNj4uF9Bp7noBBVvwo23iNoXW7Sn/GuCXXnbw2baWc7AC9AKL2o12R5HG2X4o0+z4f7NdtqT7yJnRtpu9SnoY2S35OaVamOlEM/DjVYWaf4X1F4Pnjm4SNckrheApnaQL4RAatKPKQ9CLIRASq0NXIC/mCul0HUdISVus6xl8HxCihaIEFH4EuQntCq2SE3HsCziyTTxdIau7ePc959+nb6+PixDgqHjCcGgFLgKHCn9zdhR2AoSniIhFV2e4mvXFri6Pk9vwuFtew8S0zXKjQLnG3k+d3mKbz5xjvLjz6KqGjFpomkxhCqQ7HDYvU3j/mGTaQO+9vAc85NriLJLytAY2Zblre/cxe49t2BXDZ6+2mBhehpVq5LqOMDc+iL3338v15YvcfqRz1OdeY6ErDLlrPPE52fozgnqY8eoLa+woy/Lu37uxzm8YwRV/DCIGCL5OhTdVO0i8/QxHkuj3DJu9VlU6TLCySMT3cjOtzDz5Jf5wPk8r7jpOInZSzz9xX/gn09ME8tkaKTj/Pwv/id2jI6RNHXs6hoPfu7jfOHPP4+xfZQjRw9TrMSYmnPRMzlue8Mh+sxeunuSuPU6Vl1RmJ7l9z7wPj74lv+X9N1Jfu+D7+eJk0+wurZKqV6lVC01w4CCPAQVhvEExmc4zgWE1W7a1gjVGvuyaexHKmEFqhGGs8hI6dAmKI9ushZNto/mJYYboeGP7XZjoeVtCEBr0JcWQ98ygqJgv3njFsOuWv0QQjQ9GC1DY2OydOtB2vsSvLzQ04cfvhfNGQp1NQTzon0qjbznzYnRQfsbXjSqPbE6Im1Nb/Awth2LkDbB8Y33DwwlIp9JISiXy8zPzwd93BJN3DAObgjQPniVp8h7HnVP0XAVM2WHT16v0J0xOZgx6DI1dClwUKw6kNMFhoSUAN1x8ew6NafG0wuwPr/GvYdy9GYMGl6DlVKRpdUqn5xcYvqRRynPLuPml0mmDfa95uW853CK/swy1Xo/iwvnmL9+jqW5VSp5jaVFDd2Kc+RgL6MjaTBiXFq2kI0OGl6NQi3OvqO3slYq8sQjX2bIPsvE/jX++mNXmF20qToGeizB2K4x/vT/+QhxbQpV/FOELkH24HmdeCRoGN3ElAP6GCgD1ZiDxiUwjyL1BsX5K6zHDvON85JHHnoG9cxnWazk+f4fOMzEobcxMLybdCrju/FRFFYXePDpi/zjX34Sb3mZzkyGeqKbA69/BySTjA1mGO6IUZ68zsKpKe44dissexgp0JJg9FronQZCF0hTR2iyNUHdkBvyIvKCQL4pUeNgfHw7mq6FF3tNxOu5QThDyL/RAh3RRdA/5jVjGYJFV0XOa/WtfRGOysbkaqX83dVbi33zPAK2TUUwUAQMRUN/2jwFm42mVp5RcIoXMpBC+AaSF7JuKgRUQUjQRg+IFmwQ1qQWW4DMv6emyfY2hQjBSbDXgm9s+R/rug7C363Wc9xWmIeQobERth7x9MiANVSqmZTsF5XQDBMjnaF/1x5i2U7SQ6N07T9Cdv8t9GRNbssZpA0/XKSuFEUXsjoYUpAVQKOB69TJ123OLroUFvN87+09xE1BqVFhtVhmZrXC30+tcO1rD1GdW8MrzNOzc5Sjdxzku/fE6MusUKpuY3bq68zPTrK+XKZc0Fhd1TDMBHfePsjgQIK1usV8Pg52moZXp1BNcvyeezhx8gSL5x9nQLvCwNg6H//oZeZWXWwVI55JcdfLX8YvvveXickZVP73EbEeFH0oL41LEsfowFI26HvAc1H18+BWwdyJ0BoUrl9kNf0qHnhokauPfwP78mOUVY3vfcdBdh79YQaHRrGsmP+OPYfC2hJfOXmev/3AnzIQM9BjKcyBCXbcfR8kE+wczjHSaXHpoWcwyood28a4/uw0e2/ehYi7fPhjf8aZs8+wvL7CYmmV1WKeSr0SRv8o5eE2DQRd03AcNyxtGY7hiM5Ewbc/XvzdvQm9fK3cA19vN++7IWVgHIhmMnPUs0ATzMvINRvKbTYNV580CGaP1n2jS5mMeC5CNpyIcbsBeAe/y+cB22ED0T8jXkZE+xzZHoaoQtY9moi98frgFxH5PWjPnxeiTH3LAGv9HZ2XCD0FUQMiBPnB35EqZ2EfI56T8DkjBkPgnXgpxsG3Lqwo0sEb8n++tH1XQpDVJJ4EW3pIS2Os0eDcbJ3askUuY9GZ0RmMSTolzBc9qgg644I+U6NTj5PD4oBT47qe4fF5GzldZCgpODjcwUC6E5FNsJqzmF0ss1ooU6/lSXur9HVm6EqCFHX6OvcwPrqdUjFPrVzi6pVzlCtx1qolKpfKZNIJOjo6WLQ9Uo6gtngWd92vojF8y91Mn6pjlqe5537F//j0FGvXSuyIebx9BOKxFDS+gBAz4ApQqwiSSCdHTI2A3oXbuIwqNxAeaOlRlJaluvogejJHf7YLy73G8vUzWNUiP/Ceo9xy/A109+9FN1IQJAkJQUdXP7fcnORr//2LzE5OY+pl+kckQ2MpYlaCpF7g+skn0FZtxrJDeKfn8UiijyYoLdnENQ0rAXapRqI3hRazQONGiNENeYny/EbBlmdHmcEogBZRwL3h4+bv0eo9gtZ/PgZRBMl1oSsg0samZMKI4RCN0Q3gwiavAVt4EoKuEyzToo3NbJ3TPB52ps3mCfsphGhtNKQi4UUIELLpaWgBLj+Ux2vmSngRMOZfGnhj2mKlUeFmZmFIQPMNhHkNREBAhNkVke9BBe9QKYSut7w0nkIpp+mNAKdQYPbsGbR4itj0LItLefrdNPmxUZyVGNnOGH1JnR7TNwgWi4qKEgykJX2GQdbUSVsemqoxZ8Hnr1Sx7DJ7e+OMdnXRl+0k2ZliJfMaJhdL5AslPGeNflmgtzNBVxJ6sjV6O45TnDhApVyiXFhnZvoypUqCqcVl1gsmqVyaVCzDmm2TcgSV+VM4xd30T+ygonnMXFOIxhz3fY/iwx+6QrVQ4o4BjdcNaMQsDRqfR4hFcCoIsQxeCs3rQFODYHTh1M9BoYK0TGR8CI849dWnMdMdbOvsximcYHnhIr1JxXe95RaOHruP3sEJEHoI6NB0OrsHOH4syadlkrX1Bbr6yvT09jE8lsIyEyS1NS58+SnSXo4erQtrssj27DBu1aE81aC0XKPT7KKrO4suJCg/vMj1XJTyt9VTuCj82PugnG2LDW8O56Y+tPIEWscjPHQIGFu6Ehm7oV76Yz5g/Tfj4uha1M6Wty9RUUO8XTeJ6HtL51RLX7cgmX1CIADgLT1SwX2jGH1zF4iSCK0PIxe9EI7dwmPQ/rRbz7uBVzCcYDY9V+v9bfqk6V1sq/gU9rr1/bfmn0iLUYPwJciNhOQbskmCwStRGFLSZcHhhGA5X2N2rsa1eIxsZ4L1DpNDnQLDhoaUlKoKwxUYlkDqGvu74wx3xXjwSp7VcpXr2JgrBfoNwZGUhrppFzNFl/WaS604T2Pqn2ksTXJhZo1t/UskUjvoynTSmUmhNIvBbTqlSoxzz11l6foaK8tFUpUqia4+kiKGnVzGmz9JOpVk+8Qerq6tEUtOcGxfma8+9GnqizUO9Rq84qAOahK8R0Etg+OCFkMYGVBlcAwwJ1BOAWVP+25a2YvnCRqF6ySGx9D0GGkjT481g5OE177+VRjxY4CJbTsUl5coLs0zvHsnwsowkE3Rl0ywoIOXNBjYv53eXhNtfYXl68vUZmcYoJNtqW4qzy0juxSFGUGp7pDrFsi0gZ2vQWcS5XoIoaGkCitXbJ5F2Pr4DbkhLyKhcdDCye0gICICgRIKn9ZssWMb19sA5EYXY3+NamfNgqVOBL+3E2obvNCtxU80F9uWcdI0ZmiBhU0SICWxsRcbTtuAMGRzR9og8Zj2LtG+VLcW8ujmccHzeZFSQ0HCZrCAbwXY2sCVFKBEyDCGERcqksDa6lSrbwo/90B4KNdBoGhUFJrj4DoOniexerZTr8Ga2UmiL8dgV5wdOZ2JtMBwfO/GWsnFioFmSrK6xoGeOCPdcT53bpV83WOyUMXBoccQHE3pqMP7uLTWoGJ7VBfPYBROUVuY5Hx9ne3bVkgkDpHo7EJ1deEywsj2JMVyjKefOkt+qURjfo14skoi20VSWmQTC9QvP0L/3tdQGd/DmuuRSBY4vr/Mxz/53+iwHY6PWxzd4YK6Au6jQB7qebBSCJEGVQFHB2sXOEuoxkUwt6HEIK7t0ijOkRzZhdR0Os15cuYSPdkUr3rdKzFjt6KQ2I0GK9OTCM+lZ3QEzUwxlEvTm4izXHWw+rrp3z1MT5eOll9mYWqBxvVZ+gYH6LIz1GcKiBzk3ThXLy9j2DHGu0fRdcF6fZ2q8lirFBCuv6lZsLeQQOG5Ck3IkNVXqrXRoD/2Wrsnb2K/gbDiTkTJQ8Y/0J1IYrMXGL+tQdumG5sVFh/AhrZvYMj4Q12TLY9W8ybt4DViMMgtjINWPP2GD0K9DnSv5elozWVsrfSbQpJeWNrNh60W3vBFRJpvL+nammI2fB8BmbDxekFbP4O59fkIw2AqDMbBSzEQvqXGwVaWzw359hB/4vANBF0KxrsSHFmpUFxc43rVIJ/IMN+dpD4heOVgAiMGC3kPu6YopSROTBI3PNJS4/4dORpehqvrq5yYmmRZ6OgDMWKmItmo0Slssj0OoncHTz78IM9NVbjruKKnO0/MtJCahhu7Dcvci2a43HxQsj44y5UL85w6ucqtd6QxeiXruoU9fRq3rpPY283w4B6+85adCAEde06zrbjO3RNxjLu6wfsy2Gvg1cG2QTlg4P9zF/AwEFoHMj2NUKu43nUa7gjCLqNbSaQm6U7U2D1Ux8l0EUveCZhUajVq5RKzF04x/eS/0DvwFmLd+1BKMZyAxY4k5vZxtt35FroyKZ750teYL1nc3L+dsXqGxtkCbj2Bt5ynoCxqA4pYo0Zi0cUwDKSu+2UUNemXMItO7lt9hze8C/+xRQUL6Etji6DJcHuytdwHQFi1pehGIUgEeLbfKYT6QTneyEoelgwMY3lbrar2/0KI74ULacBqtgODKPgJkjI3PvumvzaQh633FQUJwfPRfqagyelLFK046Vb8t2qWj2wlQgZGwMbvJRqHjQgStYPQJX9vggDVBbkFbU8SxjdHQYhvRESNkPAcpZoFmPxvQgBSajildYpXn8OpGsRiI5SuN1jMZZnus1gfEbxqOM1QHKaWHOquoOApXEti6JDRJO/Y30nNy3FydppzCwss6zr7ei1iJnTYZcZ0h8R4gmqpjzMnTnBhukrqHo90uoKpeQijG8/aR8zcg2443HnMZnF2mmefXmD+Wp6bjsTRuwRKxKmffxhL9pDtPcyOsSO84aZRhIDc/s/ysktT7DvYhX4QcB8EJw+eDXYDdAWG8ud7bwkPE6F1IXMeaEu4bje2k/Tn+1gGIWA4W6E8Bj2dg8QSx1BKo1KtUCsVuHziEaRXI9f1GmTHDpRSbE8JPJGje//tDB19LdmYyZkvnmC2nOTevTeTm01gz9Vw6xbeUp6FvM35pVluGt1D70CGpdoKTy48S7weRxc6COWPMSIgX3lIIdCEvxOx65ur4S66gtZ+AKGBGSqNCj8PE1dFUx895SNK0QKzrQRkwipYwaiSQrapRxQwB6x1AMxluDNyS9fDqmcRL6GvLq2freHeyt1peThUmKgtRUsvN0577WUGIJhH2o5EwHM0EbiNnGh1IDpNBYc2SADsN1swoVcnUo40NASahl6wt0VINKjg45bBF3iIWqFKrTlgo+9jY5L088m3vloRN7DJt6sEi5mmwWhPmj/5x/MsrpSoV1ykUSBR6+Cbz5aYun2E3HCM410WaddjbrmGMh3clEM6kUVqGjEBI5kM2/fvZrLucfHSY4x39tGXs5F6GdstEafBba97DTfXXR765kNcWF9luDPB9mwH12dOMrrNwPNG0PUuegdT9A70s3v/Oh/5xBT7blogTRlnIM2/PPcsZ//mBHv6bsW69VeoI9n1o9/BaLLA/uVriLiHUg+CXQFLh5oLNRtFFTIplNApVP8BUVrFdARS68KJV1BJG9tdRlFC4aDpiu07Etx75z5QBgrF5QsnyGlr7N47wP7bf4r86lOI2jhVD+p6nFe+7l4OfMfLWM92sXh5mkdOlvjRH74L+2SBmccukVtZJrP9Fuxkhd1v66Y81UA0PMyYhtYfBy0SO/z8dgHB1O/Hl25FJWz4eyvC44b8u5B/jWEQSsD4bWDR2lm9F7tHAPdV00ghZK/a2gsXxyiBtrk9FfklXPyhZQBHmcCNC+BGRjLCyj/v64ms+kFYbot1FCHYaVV2kWhChQs3ClRzx+Ig7CLcB0Epf9fkZvKo26wQJWXTOHBboKxpYhACPFrPLrQmSHN9eO95rh+LLARE7hWEM216QBV8Nwrl2DjVMp43j3P2X9g+cQ92qYRdqKBW05SnY8yddLly1yi940le22NRLdrMlG0M06Ge9EgnsghNkkRw60AfB3u7mK1UuTT1JDu6BhnorGBTxPUqpDpj3H7fazhWd/mnhz5PLDXPnp4cKb1AvnaSoQED1x3DsIYYmcgwODLMlSur/NOX5ti9d560qlCZ6OFrX3iA4tQXOLT/LqwDP05dCA7+6lu587c+zra4gbDWUeqqP9/HdCg7UKmjEiYkwMMjX/07tMISlmfiGUO48SpKr2O7SyDKKFwMy+Ouu3q4+eBOlPLLn5478xDjuTrH770TTzeplGdQtWGqnsK2UvzQ27+TjkM3UZQW1y9O88iTFX7pF+9j5pNXqJ0+RVZYxId2UI+XmUqd5U1vfjWptIneZXJ25gLyGZPqrI2lx7AdG4nElDou0t/kTfpgWxcSNIGGn5eD8L07nvLNiWDN8Jp19WUzFt1TQaK8ao4vCa7CU24rfj30WPmeCP+wP+7C87YQKVvGQ3BGCOSbOyi7zfyDqDeOtnMjehg21lLaaDiPaJb/DY63DI2WRAMTN+pCSGRsVJHIA0SNqNbhdmqBtmMt4yYICQzaaUurELQ2YGv70U6CtOUahq9n4wTmh4GF8060d5F568XkRljRDXlJIoDf/6GbcVw/GeqJc6v84V+fIn/9PK4T41o8xvVbuji0K8bxPo1x1+aZNcnKTJn+vjhW2sA2TGxhMG6UsEaPcqJkckvjMgMsYurrGHoP1J5Dmrt5zfGjuMolXyqwtLbAyIhJpVJGd5/A0ypoJQupjZLqPsYv/FiFp88aeK7gn78+z9nTNRqrglLhi1Quv57E+E3cbdyDfvAaXtkDbQS8RSjZ0AV06eBqoOJ4WoKGGCZrnMbp0hHaTqTqRG/MoJzfQu+SCBZBlRhOu3QOdCE67kFRwbFLDGUzxDMTWOks4NDRPQZSQyqX1//Y/diY2EYKVW2wPTXHPT/zA5z9h08xc3ISsebSlciwuvgcS+UkL//MY+zZPU6mo4PqwjprDzyMc1MX4284hqbLYF33JQKKArAihUTq2g3Af0P+1SIQYeUR13PbuK8XNjXaHOCb2PEwnoCtDYCt2osufxurd7SGfTvTr8Cv9a9pz9sqbP0sPkMaeR4RXaRbMf8BsApbar4gIf3cA9eL7PesogAM3wvQvFRqPpgPAHzoHJECITUfsNEK6XAcJ3yGYLfjgDAMQBtND0S0UhQQljdtvSg/sVUTeus8z8GtrHPx07+Gme3B0xMk+o9jJUcpFRd4umzS3ZNm8VX93D2qcTgrydhwfk2yPF1meChBMqlT1RPo0mE8roiPHOXhosW9jdMk9BlMXWCIGDRm0MydfNcr7sBBsLg8R82pMNCvUakUMbzHse0SupNBJA4wvnOEnx6wOfWcgfIUn/qHy8xfVajSCtL8Z6pX7iC+/QD3mm8i97ITqDFA6wB7EUoO9AC9JrgGyASulsYWA+T0M9g9Fpp+FOG4KOdJlPePmF0ayp1H6FX2dynM+AQicwuoEqtaYKUAACAASURBVI5TZryrl9zAGJppAVXM2DAIifRcvu/X3gOxHGUszFqenT0F7vnZH+IbH/kzLp9coNMzMBOdrC3CeinGyw/3Y3Z4yJRB4YnLqH85y82VXibL59A8gVQ6rqdwPQBJ0oiR1DVAous6NbdB2a7hNsevn5XQBN6iOX4CI9cTiGAItumhaobwyJYeKQ/XbRqSiAjgVJH8G7+NMFk4oluCCCgVAtdxw7EXWPotD4DwQ4AiAHYj+A0Mm6hs8g5GF8dNeD8ocbp5YWwVNWhn3p7PANpocwcVyVqhUxvDeFosP+GRaNub6fTWvLH5uaPSMkA2hCVuOOelyrfOONiKpbkh35YSWKu6BprUUMCe3V385M8dp1A9wicfKFJ1G1z6p5NceyzBY4eG2Xekxtt7+1G5PIslh+VpRczSyfWl6DFijKZNhFbjxEwHg/owx7pBJK6Anof6cyAMdKXIWjHinaN45bMUa0msRJqcZaAaXTh1iVz+JHp6iQP7d6HH3sSBWxK4XgqcBN7CZRb/8ANs+70/YsJcZ8ouMVcfplO+GdQkiCuABraGEjrKsFBajIsqzkVrF+Mr5xkxr5GuXcZdWiNx4AM0Vn4aod3Oo098jnQ8x/5DPwD1s6BPoIsV0kwilYmybVTjKp4n0TIj2E6J5y5fprOjg2y2m/MnrvL1C/MYk7+D0y259d13M7p9L1oshZEw/DAMoZgtzKOSHp5rc2LmDLHzdbyTs0z84hsxu5I88cULfPlvTqGZKWRtDq80i9JqbOvs5sCdhznwzlegPQ9AAl4M6d2Qb3P5t3gNvCbDGLL9ASagCW2Vt3ndDd3szR+qtfYGLvMoENnM6rcfbV8ymq7zJmqOLty+gyMCRSJsY8iebbhfAETC3UlF++IsRKRaSrNpL5JP0XQBNNtpVQzxKwUFC7NsVl1pPW+QONrqbQRANP9uufx9MBCUZwxDvQXomtZkgv1jynVxES2ksvErF63QEt9ZoMISrUpAEGGuNfdDcG0Hp14EUUYKB2lajI/XOHrPON2pW/jbLzSouopTf/VVru4a56sHUxzarbivtwvVked6wWV+0SHVkaAjZ9GpxxlNW7iyxgNXeri7s8ZEbhZhXgOtDDUHNAPdVXSnO3EaMZzKNYr1BLFkhk5Lp1EZxSvNoFcfxkwWOXRgAj3x/Ry4WeDRharauFefY+lP/piR9/9X9sl5ztUa6PZtpMQOELMgpgAdGhJPN8EwqWsxLnpJLsZ2s2/xFCPpC+iL1xFqBHPsvTTWfwNpvJJ/+sofcXDXq+joMKAxCdogulgmw2WkGkDV51DOEh4JZGoQ2ynw9NlzHLppP9W8w7Onp1i7ch196ovY/QZv/PXvIdM1gB6Po8d0f0gpjyv5aT70a79LbrbGgUQPnULyfx9/K7/0zb9B2C5Ht72WvuwehNAx7EU0ex7HLbO7e5DH507zzYWzKMBVLo7j4glfn8OEdaGhlD+GHM/xE+IjOhboZ1D1yt9XIRiPLR0J9aB5peu5bSVAwzPDMdlKKo6e01Zlqcnqa0ILz/DCamEiYhQE/Wwh87ZcCtGu9UJINipFdBaKgvMwHHBTLt8L0QkvRpm0G1/tc44I/w/KDm9u279uo9nQbixsfu/+DhTRexHOLy9lVfjf4jnYNFf977jpDflfIgIiYestNeqMa9w6kMTxEqTeYPGlYoNLMzprM2Xmzuap1izs0Qv0J11GXI3uVAcGOksX57iq69wyPkSnITnaY1CoxrhQMtlBnZRpoaSB1PtRbhFJEc2wqTVMculuappNrebiiTKeuYpVXgFvD0a8l6+fe4J92+9hW/92QKA6siTfPYcuTyJEL6aTw61VcBqX0PQR3JlvoqUkGL6bUAmJIyw+o2q8Xkg6ZR3paajkILqxk/XzHyI5sBun/NfsHr0FQ9WQ9kOIWDeq8BfgFtDcIjgz4PSC9MA8gAsor0LPYBqzaFM9exFx6SnGt6XpvuvldHcM0d0zQCKVRtM0dI3mxC0YiQ9gaAbeRJI7fvqt6K5HKpZGpmI88dAajz6kuDKdw208h1a5hGuXGY/r6G4areJ/Vxtry/sHt45Df2kOxxvy71mCqjcRH3jb2hjGvQo2sI5Ezm/FRXuRqj4bQfpG74GILMbtSdERb8OmtTjKwrWP9/aKR9HTVaTrWxslQTWf9vrhwRWiZTjhVx3yQ6mDJOMAeESMojD50j/uhV6ICEhqPrOULXDm46CgPf8zt2kttL3PZjjRxrDojSuwEKAi7951XVzHQSkPKTWk8PdRUAi8agmvXmb5mUc5tTZLLp3lvd/7f/GQI7lyZS+l2RqTpyqU1iUrQxfoT3psd3S6O3rwiktML9WYtCwObuujz5TcPmBSqCeYKgmGEg4JPYbSDKQ+DCygU8D1qrh6jJzZTVVrUC03aBhrSHceaddA7UKPdfPlJx/inmPvIJ3sBk/h5lLUOipI+1FM2YfR6IV6GddZQnpDuDNPonVI0AOLSGdN6HxR1LhPSbKihnKryO69qIpJ8eqnSPbuxM5/kCP7X0tOu4T0bIQeRxU+Ak4B3ctDo95kztKgD/kJwV6FofEuWFqjcfEa1sIU2yfSdL3iVfR2jdDbP4RpxdA0iZQK13PxXMH2+BA/+rM/ysmvPMrJx5+muLpGzlul5mocGnsXSWsvVbeGql9Gqy3huXV2xy2GYt1kzDS61LGDsSH9eHU3moyrJJ7wmiEtTa9Yc3hoQuA2vQNqk47QBtzCz5vhQX4eQWSoiYheiPZrg/nE8zykapU79Yd5JA8pvPfGGwdWcStcLpiTWqZO6/9NHspNf7YTG20iNn7Q3uYWKQjtXUXRXilUbDov2l4w3wTHtuLVo92XG45FS6wq/BIRMjJ3bTYxnl++pcZBtKzUDfn2FbHFH6YQ5ICSrTi2I0F13SCXMzkXKzD53BpLzxY4UWgwsSeJJ6sslebREMQ1ne6cxfkzJxjedYiumIVJinKjm6K3HepzmAI0lUfggNDQdIER68CwV5FKUnUtHFVBqCKIHi5ae9l2+pvkvCqWNwVO3A8nsIokD2wDlQXPI5MVJPQ4QnSAvBnR9VVUrYqqNFCmopZ0uOiW2GnGWagW6NNTXLxaR4kExw7cgVz/A6QYQmljdKYchH0d3HPgZaF2DswYItYAp4Sq9UJsG0JPofB47vwkHbkMq/NLrFyeZPuOONnd+0mP7qbT6kIKiaNcSm6FfLnEmJVFkwaumUATgljOInV4NwD1huJLX77AUw/Oce18hVKljFZfxywX8HDpS/Yyum8nvYdGwxhPYMMkFYC1SIJWcOoN++DfjWxVGvTFRErZxui5RO0Df4AEC02EkN5SosB288ZEz2O4btlOextty227X3/T51u05mPw8N7PU70jZDxVG9ho9anZFi2jYGOZx832k2i/vwKChOEWcRuqYrRyVBDr3fZOImyqQoGnENG9DgKAF35HzdRj0apy5LrNEplus7a6Jgj3WlQebsNmdWoSWW+Q2nUAFp/ijkN3kE3386xcY3mqwOyzJYprDtv3JNApc700jYEkZRpktQYXnp1mZO/NDCViLJLGVYMUXYHyljAE6GoN8BBSRzcTmEpDd1YRSlJxE7jeOobrUpODXJLbGXzmJN2iiu5OgltBSBctVSK5fxhUBrwGPb06sUwSRD9oAtH5CKpcx7PriJRkhTrX3RrjRozr1TzDVo7HThWZGL2D0W4LWfsUUgzgaZ30ZSqI+lVQeT8EtX7Fn+8Tdah5KKsbrP0ILYHneZw5e5nBgX6uPHEet7bIxK4cmfE9pEZ20m314KFoeA5lp0zDqTNkptE0A8NKc/jWo8RjcTpH+8mv57FtwePTJrrsod6w8ew8ej2PrJVQuGzLDXOtsMRiNe/boAoEslkHvzXWfPZdhga+QiCUn0ofGgrBGG8qfBCfriLnBKoBzT0RaBEBretboDs8R4hm1Zzm2NsQBhOO6TYVFM0N/jbrfsv2jRIAW6D0lyqKFtoOnjgovRy2uTGXKQrMW32OPv/mm0TmhI3NR+bUtvOCPjV3Vg+iA4NCAmFbkR4GXpC2EKNgyngJi/y3tlpRJCDrBt749pethnq1ocgkJbcmNJKawBQZXKW4/OgahRmNxR6FMBrYayvoQjIy1EdnbZ1rs1eppoYY77DImhbJRB9lx0LzSkhRx3NW/Jh5mUDIDDGrDPWLJGSaut6FqtSRdg0nNsg3LlW5/3qeIzfvxkgqlDONsquIyiXI98HoUdTqGbI5cJNd2FdtYjt70cb6cK4vomoeIg4N3WGBEiMVhys0INbNwvIsNVtw/OgekoPj1MszxNM/h6p8HeWdQ8olqJ1DUIV4F+g2qlJBuA7IMcCkVlpiaaEEKxUW5xapWR633nEIJ3OYhGFhuw6uXaHueZQELNUKTBhpSkpQdQVJXRAzmiysqzj5VIFPfvQxlqcWkQ0HSwhymiSLSXfcYHtuB8M7d5Kb6PO/t5DBUK0Jo8n6tOyCJvsSeIluhAL+hxXRNA42lRgkmNObi0uUKWxrILhka5MhNAxeyhCLIoGwL7R5Mzcx4+Eg3tqY2MwwRj5qsvphP0XLeImGMQddCsMlCMBJdLFu6pQbJFr67fn5Cl54raQZjhGyhj4Ia4V8RF6Gaj8mCJhBgeO6YRsi/Hr8EKdo6FUI9JoVZ6KbSnmeh5QKXdN8L6Zp0qh7NGo1QNI7OM7M1csM6imO3HQTYl8HZ1yb+eeKFK9LFnsUZ/UGxfkFstkcE30ZEqLC9ZlJatkxduck3VYKW2nUXAPpVUmKBp6zgCZMpJZGCh3LdKFxnaRMUzF6oVhESJ28zPLNyxXum89zx52HkFoe5VRQzgqisgClfhi7DTX3dbrHcrhOHOe6wNrWgxzvx51eRNVd0KCkGuQpM1R2uYKNHh/g6rWL5LJZJraNEO8dpFZZJJG9Hy//lyBmEd4yOOsI0YBYF8g6qnQRDB0hdJSnUasssjhfJlmcZXZ5geEdWcZu3YuX3E3cMKk5NZx6iaqU5N0GDbvKNiNFyZVUXUHMEhw4vJ8Dh/ZTrzk8+tgK8ViBpcIUJoKEFCSRZIVJd8xge+derua/SbFRxvM8dCGR0s9FsF0btxm2pgkNTcpmyJvAdm1sGrgK31AQIBHNELoowy2gbROvjTrTzFOQMhjizbK9gi0N76aSbCYINk8IbbkKrvuC92/+EepeO/Ju1/VolwLdDj5o1/H2Cm3hNc/jZtgYDtk2Y2zwMrQ1GVoW/mnBHuxB38IehIZQWKOI4D1HP2+1tcXxyO1eSL71YUVNA2HjhHZDvv1FCkF3RmOx6tKT0NkpHXKDFsOZTj7quJTPnmTx6VlKHTE6sl3EzTjPXp7i6eln+c53fj+nHz1BfWeG3SODdCWSSLtALNGDlAUaThdaYw5ZW0fhocfX0DNJvLpJWq5h1Few7RpOdYHa73yRsY/9IXp2L0JauI0p3PXH0C6soL5xAu09E6jnvorovxk7b7D68V9m6LfvBSMNjoHQS+BVSFUVxzNZ3nXyGf7iyCB6w+PufRl0I4MSFir5BlYrf8+A6EAzq+DMQW0BcBAJAe4iypEIMw5mJ8I6hO3qzF/7Oi87cjcPfPCPyO7q5dY33AvGNlYaVTKaYq1YJL9yDWkk6OzbzURnBteDKxVBvwJDE2E5wkIFfu19p6jPnUS4DpaUWHqMmLmXQavIfcOjxAf2Y192Wfn6DB2vHgVNoJsa1WLVT3LUfHBSK9fQNA3DNDAMHcMy/J1xNRm6mm8o67e3vNDC+4LXNX9GGb7weBtDRwTUBgt1++LTqkq0eZGNLtpKRdaJyPnKi+YGBM/TngjZ6vfGRDzR9ls7r9/qS1DiMWqDCOEbShvv3bqqxfIFu5VGzwq5VNlCH0L4PK1q7jrt5xX4LG60aKKmSVzPDd9DwJ4GRn4A7qXwf6IC1l8LDY3wuaVf8tgnAFpssv/M/i67/rO3ylpqUmLF4iRSKeo1E7tRp1Fep7x8ide++1d49/f/MO/7wH/h3h1jdMR6+aLhUbv8LIsnZyn3JujJDrBW9XjsmfOcrCzymje9iSe/9jDy9gF294+i46K5dayYP9/X7W7M+mVUVSE0Dd0qoGUSeDWDnFikLPIIYeJNFrH/do6xD/42IrUPISRO9WlYuY68OIM6fRLtR/agnvkC8pZ3U/jyl7FnP0HPTxwDPYtyTKRVwKtXGdZNquj8zpnT/PmRQRp1h7fe3Umi0wK9Hzf+WlarXyEhOpCxPBRnwC6A5iJiAuUtgKMh4klEYgxl7sCu2SzNfJPXHH8FH/rVn+O2d93P2P5jOFoHebtCRvNYyudZXzxPqmuCodwAmWQXtiu4VIExBLrlFwOwHcX1RYff/M/nsEuncFQCTVNoVg8ps49t0ua+bSOYw/v4zqFuinaJleIqUjMRUmJKk2KjBFTQhEZctxBSkDBjaJpGoVak7JSpew0/9EjgGwHK9y6Ec4dsjeYoOy9EEP7WCj9qFTJQkblHRozrDRZ2VFOF2JTgHN4zMo9FmflNhkfTk9Yqs9rSqabWhKe17hMF9c/TueZHgfHvl3yNth+csHG+2eo5oQ3QtxkdG38KIs7C9vMiBsWGhwoPRw+1yL+Xts+BeKGThPAhwgMPPMD999//oo29QEPtf/7bW7oh/4eJUoo1x6PoQbcu8VyPyyWHL8zX+NzHnqVUWyLV79LTGyPu1LBX5+g73E3l7Bp3jxsUSCNSWbYNpLh90MBuXMKpnCKZOIalr6DceT/mtKKT7ThEqXYGWbpAIlXjasHjr/4pzweOW6jlDyJf1wtpDSEUKBe8NXA+hfP3/4i87btRFYW6dAauPUl9tkDsTW+mkRyh/LHPYI7nSP/wnSjnaVCvZO6Df8Hk/BIjb/xZtr3szdQpcc5+goPiDCgN4c5A7TI0riNMBTEFjg22hXLjKGMnmDfjLpcpl9/Jpz76Rxz7nm1s230U9N2se0kGTY2p849TUdvo7u/FtEwaNZvuhOKKYzGqmyTiGlLzF+3lguJdf+ww8+dvJ6vq7Ez0MZE06UlKqsZO7jVgTeic0ycQ8ThxUUE11pAjae742Vv5u1/6O0q1ArEBE9uwOfP10+hWirveeBs3332Ikb3jZLtzSE22ANYNZf22lmiVjBda+CYnJ5mYmABgfHwcXdfDaz3PCxN0oxt5EYkL9rGzCndQ3RQqsDFsINKdrfMCNvB3bV1vGSpeYDhskJaxsuEa1d6WCPzs4JcZjbwjGXkGuYHgChOWwzaVX7oxZO5F2+dAmKAcvs/mKYau+8eb52nN6kWuG7z3aDiHD74CIyMQt+k1kFozmToCqKSmtfUrSlYG35Vo9q+154RA6gaJRBzXdZFSQ9MkfX39fPqzn6OE4Cff/nZ+5Md/iu6b7+JrV4s89JmLVOrLZIY9BvqSeKtLGLJCx2ia6qU8r95pcL3RQaIny77BBLs7HBx7EqdyhnTqlVjaczTq69QrHm4jQTq7m2LtGfT8WdJ9gi88XWPyYpWf39+NWv0A8rt7QNKc7+vgXUfVPoP7/30Gee9P4V2+hrjyFN7sReySh3Xf62kkxij8zp+S/bHXYR1Po9xFvPph5j/0ES4trnL0vX9OZmQna94Cc+4p9ooLKE9DeJehfB5U3p/vTQ9sB+wYykui4sdQ7hDumkmx+EY+8eHf542/cJiO7tupMoSNRadwmbl0kgoTDI/1YtsKXbnELZhxLMYMg0RCC/XqmxcUv/HRReY+8WN0CJcDqREmUjZWPIdpDHG3DmvC4Cm5h0xSojXWqFcLLNZKPHjtQW7rP0yNCmuVZcp2EReFbiRJx+LYdoFnls6SdwrUVYOG18CjOTZdN0y/F/hjSmoS13GwmwarkM0QJVoexWBOCEKBovodhsFsAPqBbgVjb6PORHXtxUIko2FKUko/nCkSThOM+daTtfoGIjQfohdEPQTBrBNNBG4D6Rv6GOhXG0GxwbPQFvYb/Sjsb4s9EUJGSIbgeMTY2Rg61GZsNeeVppTLZebn54N3sOUqf6OU6Q35n5aGgkFT+p5HTbI3a9CTlEz88s2Uqi7XRI1LX/oKrKyw/+abWZ28RHe2znMrBv0dccrLFR6ZXuZSdydvvWsvWauAbT9BtdaB7qRIihVS2RJr7lXqTp5suoOK8OhJ2/zWawyc919ANt6DN/Zh5P5hSDaVV+TAuB/tLe9ATf8BIp1ADPXhPpnHuFBE3PQOLPsCny2B+sSz3H5JMPSrr4LYCr3bezHOOCQLKVArGOpxJsQQQv4g7tWfRqZthNWAuA6aX3oNDfBcsGvQWMetlSifPkap6ylu+rk3MZSoktY6sOsO1vRpvnLuFPtvOUhvMoFQHnp9kbS+hHK6GGGIeEy2sQaNqsvM569Rtmd5uZlifxyGOnfQmdyGWZrhVDHHRU1jkVliSmAhsJfqxCaf5rGvfoVivY5upOlcTpC0oMvsR1ppGpN1jDsNNKnxAvjxhvwHEdcNapeLJmDdzGxtkuhiRmTxjsTibHSnb4wzbmPct3KTb3XPgM17no61hQw0WxfiedjLwA2/oV9BvffoQ7QWfkL2vu1dBcZDAHpUq0KQECA10UzWDOYq1ealUcqLGCAKkG3vVnmuf1TKpjGvYzdsHNtG1/U2EBYFKGH8tufhuR66bviVaZrfR3hPIVCOTb0K8Xgc07L8MCNDZ7VY4se+7230bpvgj9//fr7jvtP80M/8DIf23UK55nFJVDnzkY8z1DdIV+8wpfkpurN1nlkwGelNMnN1ialJycWhTr7jyB5yVpG6/VWcyjCmGyOtF/CsdfLOVWp2ga6OflYbirt31rjXW8b5swtozrtQR/8eMWqAIUBYIAYg/ha0t/8Q6tLPI0eOoZYSMJ/HWEsiDrwDq3qaT8/Z3PSfH+Sm776VrnccRGrr9E30o51wiNUToM6TYppROQjiGN7lH0D2ZBGGAqmBpkDofmKzcqBShfoK9uo4lcu7qXSc4sivvJPeRAFdZhDr6yxMX+PrM1fZc2Q/6UQct2qTlNcxZR3ldDMi+ojFZAhPFVBZrDD71Slqziz3Wh3sSwoGum8jrZmo0irPVDJc1DRmG5eI510MV0NrVNDqM4zr3UwtT2FYHfTGe3HNDgqeg24l6E3FWSjZxGJxSrUqmutiSAPbdfDwfG9Z6BJTvtHgRsuPNvWkqSoyyFsJ+q4UntOs5tUcn4GLTWsaPoGBLGVLt9pgdKBfET19ocproaHRrMwXXLuppGfbJMMWfwTll5/3TluS3UHfo86Eds/FRk9DSzdbPNxmT8JWt496MMJeq63n5iiZEzpjI3PvC8n/YuNgY/ciq0LU0roh39Ziewq3WaLPVh5xBRXb49qqi6nDUE4jo0uOJyW/cb6IevJBuvoz1Ds7OPHMaaxUnN2jR6ldO8fCzFN05xKMZzq5euUaH2/M8tq9KbblhrG9deqigjINrMYa+vIVOkbvxqnN8ejpcyyul3jPrYdp1HPIwmW80x5iQCESCpSN8qrNyVxD9HUAA5DrRX53AfvpT+P87k+gv/tHeNW2TpyF6yRooMx7qC3/DbHeEXK/+FNo/RMoZYB4OQlpAgbMO6CXfW8BOsp2EJUa6BruyQJ0ZvGGxlivH+GfH/8s2e/9YXalezClIr+4RHHxFK6zxq23HsBI9FOROqaaxJA6GDuoyRiW5uG6ns8WCKgiWLTzxObfx0/EHfqyOZx4htnKKpeLK+ySFk80VqllLPb0d1Cs66znBQnDZMQ6hFbMI2LDpJId9OU0emNlDpbnSN41TP/BPnpGurEs84aC/juT9oVugwv8BaSNXY6EGwdVRILk16BJLwqkw0aCVjZ7CzZ0ctNxf4OlFn/ps/LB/gOtC6R8cRe5iC6owQIdgo8NA755XpQJjbpHgjsFteNRrWfWpfDLPqoWm6qUH7/vuu4GBrT5TJFjEZIQx/Ui78//wPc8eCG4onkPL+wr6LruG/mhtyXov0IJf/+FwIMQ5JU0rQzfUFGen4uEX5rVMHR+87d/m/379vvPJCV96SS/+/4/5OwyDCY9dm3roceQHJGS3zi3xuTf/xWjt+9nMV9k+uIlkukk24ePUL96mtnLjzA03E+5ZnHxuTVWCzqv3pNlJLeNkruGo0FcCvR6CWOtRuf4K2gUL/CZh59m10Anr0odxa73IIuTeE8p9H5Ad8FroFTN341ak4jhLtB3Im7PoYSD85cPoX7nJ9B/5r18z+4+9PklEjKHJ26lvvo5YgNjdP3u+9CHB1A4aGIbMQzwBFy3obPs76rs6SjHQbh1lKbhPbKO2NWH03OIqZUOnj71dTJveBt7Mj2gXFauTFPNz6HrLkeO7MdI9FMSgoQ6i6714hlD2NLEki6Oo6EbPpAuKMF69Tm6l/6Atyegv6OTqpXh7PoVUkqSw+CkvUxRE9yyc4Bry+CUIGdl6Yp1ETNKLGkjdGQ66E845FhFc1ZY0WzyrGAkTcyiiWw0d0NW/niQSuK4TmucCj+h2HM9hBTNsRUMyYiHbLMVjqcUmlK4biuhP9Q2pcJcl2iIkPI8dF1vIxXa4TSb5oog1On/Z++94yS5znrv76nUOU2enbxpNmu1Wq1kZUsOspEcMeYasDEYDPaLAeP3kjEm2XzuvfYFY3hN9Mu9NuCAHCXZsnJYrdLuavPOppnZyaF7pnNX1TnvH93VXd0zcnhfwK/FPvpotrvqpKo+5zzP70lH8w5og5qLnGq4JIlm65/XZnUIqmmptYy0TmsOaPPk2vq69R/kWNt0RHNbay2aTU/iH0Drlca3Jj2FX/hXDUXGGhBU/eDtHz8AcHBF7fifgxq/c+2AdiSKRFjgosg7koSpkdRgIqNRupAnspLHioNezjLYPUA6XcHSU+T0Em4hS7h0mYArSC9bPPBYhFsOBOlrB4sVsjkomFuJBqcoTz2NGVFs79No01IcvV8w2nYrU5dOMXvPDXQeIwAAIABJREFUxxkZfBednbtQLOLMPIrRuwuVfRAtvhOhmyhtARI2FSvC6slpOu67j2iuAlt60XZ2IIwIZqyT7MHnCf9oOyr9InI5hxi6EzftIiJHENEwyCLYEqwQYKOKFVAOoicFic0oQpjl0+y583qs3nbChSLnDh9mflHHTHSx46pOlJVlrqJIqUnMoIGrx7GlhaZr6GIV4QZRWhip6Vy8tMLn/+UY8cBlNsSCDHYmmA11Uo70YUaTzDoG0VyJ/rIinc4Q1ANsTkZIBoNEzT42awqnK4EVDxDWHYJ2loAdI/SaEcSSS4AAOvq6m+IV+iEmj1l+n1tzg3l4bkLe9Row8BjTGuHar1lv1oK1YoA6D2sRAur9q5bvNa2/auljjfCwznj8vTcfEuSLG6gVU7KhxQc/Q68KzdX32fzcTX2/hNWjHvzruSuJqmVGStksNAjqY/PcBVpBVx28ULUCeIGTwteX53rkxSR4woz3bBLq2tvqoVgChAaigQZ1XWegf4DNmzcjlaJi2yil2LZ1C7HuCsGgTipsYgFR4OKyID0jMS8tEHSzJJRGTyBJZrmMZbazWinCchrdkei2xuKCxTdnIrz2tjBd0XlcO8uqDGOIjYQDsxTHHyOQULxiW4ziZIgzYzEG49cze+k0U5/7Xa7e+2uEhuPIwnnc1TMYHRtR2W+htb0WoSQqnEHFFWURIHtiiq6vfoVUIAZXGeibUmhWDDOUYvXxZ4i9bxD3wj1oHaOQ2IObKyJCxxDxJJSLYJig6yDLqEJtvx/sgNQuZDFDImax+5XXYPW0EVzNc/SJJ1ks9NA93MtAP7hGmaWypFNdwohEqIgoKLN2UFkO4QRBj+Jo8PTBaR6+/xSJ0AwboiGGu5OMBbpIJnqQVoRlWyOeL9GXdZmaT9MZSBDvtIhZMaLhbrbr4HQnCcQsgpU8ZjbE0pJkbP44V2/ew4lFjfDqJaySScnVcerua6JuFRC1E46riStEXRb2Jnx1blXnaZPg7WtD1/Va2t0qyZZ13QQw/O6FTRtF0z9r17l/aUiFEg2ViAdw6i6LTQjDW9+sq6BY04/PCrFuogNa1vx6rFQp33ta5zbN78cv3CvfuvdinPz9NlwCmyGFP6D6++ED/2FuRS9hU7giivwQkoao5ktDoCOQonoSqK4qABhCR1CNuF8dmyYzs4qes2nfmGBk4zBWQVKycwRMjXIoRaEkqZSWiBsl4irC+GSJ56IhxC6D/lQMISuURRIjdBF74hRxM85QZzupgsXJwxPYwWtZsV3yl57FmdiNmi2COY4qPA9ZB9wZ1LQBURf0CdTCFGJnN8rZyaGnnmbLnqvp7GlHS+qIcg7t6CUIdyAXjyH0GZS0gDREE6w+fR+BDtDSoCuF1q4hpA7CgnwF1THMaj5FfmIROzODNtxLf/koRbuCU5lBmQPIYJKlfJmYGaYsNTThIEQCR4WxZZmQqUCCplzKZZszaZujl0qYQudVb3g1EyfncQ2L8MYR4pEBlvMGC/kyA4EA6cwqS3OLbIp3MBhKErMEgaBGX1sPwryEFRHoZgC0AFqqD2OwjXIph6hoVf+wkAJNXFmYLyNqZgjfD0qoMWv8GTtkSxM1gbOJJ7bGDjSybqw/Lh/z4qWmnl9wWGNmaG1wbR9CtbTbkDiqB7Z5QKfBZKtNN0GWNSPyZAq/F5W/ShOLrvliCyFqMQetzNwzcXh+056FQcPzL9Rqpy+LlvE0x2343mLtfXnxE0pKlHcegn98qmalrAl1UlJzPXJ5/LFHuTw5URcUI5EIZbvCpqsOcH7iMtlkjN1btyAdReb0FJW8y/xkmv5NKWKJGEbJpWKXCVoGBdnBSnGWoFwlortYboiLE0WeOR7hpqujxISLlCFKZhQRLOHMncCKdrN7sIPxsSLps0tUAptYsW0K5x7HnXoVKmSgnLNQHodcDuQsjMdRHSuo/EVUKQM7+pDuKI9/8xGuvf31hEJziIiC1QzixCTEupHTTyHyl5BuCopZpOGy+uL9BLuCiLk8Rq+GFtFAGUAAVaggN2xheTFEafoCtlrF7Oukr3SUgl2mbC8gIiOURJR0sUIoqlGWGrqogNZLReoIKgR0HSFBQ1IoVXh2RnJutkxbWxsDr72DS2cXUUaAyM5RpJtkqQA5KvRZAdLuKgszs2zekKAnYBAKCCIRk95kJ8I8RzBmoaSFm4pi9fcznMuzc3Q35kSQC6vjrJRWKDllHOUgFdUzGlq2f79bmn9u+edt3XXeA7bCA6iNbFh+V7dGhVbteAOEt9ob1kuuoFAI5dudlKqPqw7utdp6W2fra7j6qOZBvBS1LnB89et7FDXXxbVwRr2U/+N6zfksK+uNbU3K1Pqa9gOu5rqi/qjffRz/juBgHSh2hV4WpGtVUFCnmqkxm69gGoJYtGoWLCuFe3IMO5PBNcO44Q4YGeL8o08y3D9AkAy6qeOIFMowKJTO06MKdKRcXjw+i9D70Hd2sykpKWnLLLvLhKJtrJQquLkylnTYmJjDETOEeoJsSw6SEGPI6SNowSnMjg5IP4KWuAl1/F7oC6NSAdRMGuOWPrr638f//QdniW/sJawXKZ4ap6PzKKVPf4XgB38Vxr6OGL0aldiBc+4ygdtg8XP3EnljDyHDIqg7mEkblXfRIoOkz0+SW2kjfWGO/OUVijLCwvK36Oi1ySZS9O29jpFwB5l0luPH57hm/z5SegUV6MYVOtIpo6gefiZVGEe4TC7M8+BpyDghfuY91xBjPx/7w6cYu/QCB7r6CRZ1MsfP4BSLxNwyxwt5kvoiPSJKsuIQKNl02JMQS1A8dxijU8Po7kNsGEHfkETYiuDGCM6yDbZCORJhrJMe4Qr95yFPU91ifq7nzPeEAXwsvO6i4pXx7/2qSdO+RqPeWlq1fm5YMdZl8E2CS2sfntQufLx6LbcVNZSgPJFZNdx26kKGT9PoDcvfkncackMj2WDBVRceX4BkkybQH09AAxzUAj41Uc1ZX3+6miuVlG6TwFTt3+f2VRu/khJN15HSxTv9WShVDwKtaiK9g6wUjqrGPLhSUalU+KtPfQpd19ENg4BlMTAwwMLiIj/5y7/H/PgJRod66e9sp2hGqBw7jZPPIUoxROcAxbhG/vgpBnp7Cag0WCZS60GWBWVnjnYUHW0uTz0zTSQxyjWDfbSHJSWxTNrNEI51ks6WwKiQNFYIxbO47jChnhC7Owawco+jJifRokW0eAzSC2jJm1HP/APiFdsgMw+VEtbtm+ns+UX+/IMH2bV3kNLhafRT48Qyz1H+wrcIf/BXkQf/GvOOt+MspGB2Bm1Isfi5+4j9eD+hcgjR5oBRAVuHQD8r5y6zutrB4pEzlJYl2UCeykKGZJfLaiLF6G13YFohLl5YZPKiw7Yd22jTy7jBPpQLSpZQhouSQVwVBuFyYWaar7xgsmsgwbtvfSXu6o188uPPcPbiIe4cHqbw/ATZsWlEqUzYLXO0kGdDIE2XdEhIl7CTI5GdQoUjFE89Q3Akjt61EXNwkMGNAwz278F2HHZ1Bzly4QjTyzOslLJUpI1ru3WLlrd2GgHrAvUSIl0V+NeAtfefttZ6JupzW6uvIVWf9H5g69H6KuR6YL1qLEBBw7VRUc3wU1+vtf+aMqy1IqBG6z7IUivX8vH75Y7rGgLw73O+XWRdxULjivAXa7JSiPq/fquCX4lQ/Wm/d63fv3O2ota8r1fo5UrePMo5FQp2hTbLIu04vPueecZPLVCaPY3IniJgTNGxt4PUhjuIrVyiI6ShGUFKFYGzOIdTOMv+jUGOX5hnYXyZ7QMd/NibrqG3T5BekUSjV3Ho8S/RFncZHd5AMO9C1sY+XCTQkcfcp6O15RD5JXBDULSRzy4hQjralk7oT+GWBbljNuGb/yv69INkP/sIDz45zovpEr+WssnKGCUkMR1i73kfgTe+FSwHZ+6fyPyfn2Wqu5vhd11PYrSMTB+nfHiRwO2/xz++/4Mcnsrz5oEQO/cNsHDdLoY2DfDil8/w1W9P8Oa3DLJtTwwSIyzxBspjY8S7pgn1XocqrCIdAYEegoaGKGoskeafHn6ATV2buXbrfqQIsFox4HiRk4fP8syJM0SWZrmaIikjxDOLM7z7mh8hsmUPylaIsCQwEkUdnkPvjCJ6wogeC9GuQ1CgigriohpgZwoIaoiAQDO1l1J/XqEfQvpeLAf+bEXDw8Poul4XLL2s51Xe3vDtbTXVV2MCfH6+645FNZnW/ZK2avrX+9wQHOpV/H9Ug+G/ZL9+Cd6v3ayP29+G/4Goxz00ThltBjmNuhrSdWoafx0hqGcN0nyZnxrPqrDtannLMutZiRAgXU/or7k/adU2q8J8tV3btn2ZjBoCQSAYqGVEcmtBn9XfUGga0nXRvQBRUfU11zQNXdcJRyL1dh3b8zmnnl0JFIZuEAyFiCcSWAGLSCTMB37j14lHQ1y+cJ4Dr76Ln/tWnuVT87izL6AXzxJJ5Wjb3kOy60ZiK+fpiVmURQQ7V8TJzCLsCfaNBHnmxDTpS4vcdfsubrlhmGSbYCULsdjVPPC1v2Dv7iF6olGsgotasXGOlQj25DBvthDMI8olsC1UsYI6tIhIWmh7+1DxMHYaSpdDBPb/PObl+0j/z2/ymRNpOtwyb4pKcjJCCUnKgPif/jn6rj0oNYV9/sus/tGXmejrZfeHXoWZGMO5OIa7EEXu/Ek++yu/zrOzNr+5K4q4fhtyzxaSiSQn7r/Al+4f5wO/vI2uQYti+AZWSrtwLo8T65gl0n8rTnoCqbehmwksTYOSYJE0f/mVL/GmAz9CX8cgNhb5gganihx59gSPHznJjuIiWzSFhsaZlTTv3v8jWNv34aZXMQeCGEGBPJfBaI+gbQhDX22/R6BchQwqxi9d4szYGZ45/CxHTx1lcuYy+WKesl2h7JTrQrYrXaSsZqoya0HuUrq1k71F3ZVI0wRCVWOEvKxdmqbhOG5t4/ABjpp1wrNk+VOXNicAqAr1661pTddrza6/1/jPRqiva+mJ/LU+/OCgvj80ie40Kjc+NvVRH6vPCqIa99ejpvSlav17Tde0hjKhte/WkcLaAyxb29K0qiN4NVvRTG3M62crugIOrtC/CZWlW0XUSuGoCo4sYBHgpA1/fCLP6X/9KpXjL2AkLMKhAjJTZMMNe3Dm02gyR7QjQrx3M276BGZpllJZkr6YJTO1Qncqyv/++49QyJ4mO5ujbWArgVCApeUZnnn+WU4+cRhXwU+9poue4QSGUQFnGZE0QG+HyWnE8C7UN0/A7Bz87C2oyi4+duOf8urOJEGVI67ptOlhyqUKpshjIXEqOsKUmNdtRnvrLUx95tsM/sbbOf1n97Hhx64h1pFD5YvYvT/Gp970Vt7z/m3EX78Dre1WEFeD6KaawkgDucjXPv4R2tuL7L31WozwVWSkS3nRxi4VyCd3EEj1kTQkKxenMDu7+P0vnOB9d21lKKEzM36ZZw+e4cLBDnJTD5A2kgwHdSrFCmU7xE9ddStXfXAvxfscAv0CvRNwXNSCg7EvXM2sYQhwgKyEnERJFzlXhq0BXFyMLgs9ZdZ8j6+Ag5cLfb/gYHBwsJ7K1B9E64GBhtm62Ye1FRys50rkDcjvXtAMCpTPQOCBj2YBoAkctLr6tAoL62k6PYZbl9fXszg09+uPP/AfENfan17LlgKNjCy6F2BJqyXEG2/9VdQPkrJtp3aQVc1toiYwubKaScp1ZfM7EQLTstDNal/SlbiuiyN95WrCmP/QM8sy6+Py3J0qtg2AoRs4jlO3ouiGQTAYJJVK8cBDD2GZBqZloIRDpZwnny+xlOzmV17IsvA3n0blFrGiGpZZhGyJgVuvoXjuMoFImVh3D+F4End1DKs0R6GkWDiZZnUuwx237uO3PvQOirnzrM7k6Nm6F03YnB8f48XDR7hw5AxSwfvfvIHIhgSaswx6ERG1QEvAxBRi+3WoP/sG7GyH2/azOtXFX7zhL3hjfweysky3GSWodJxKBVMUMJXCrhjoIQfr7bdS6e0g/dRJNrz3Lo599B62/c5d6JkXEZFRppd6+Mpv/Fd++r1bibxlL8L6EdC2AkmqemUBcoHP/NrPc+PrNzMwuh9lDZN1XEpLFZxSnpWuG2hPJTAKOQoLGWQixe/883H+x3v2YZbynD4xxvFnF5k8GqQw+yhLZju7QoLJdJGh2AB3HTjA6Du2UbjPITQq0DtALdkgQB8NVdmOIaACpF2oSGTZobxQ4MzKRSrlEp9//IscOf8i88sLVMoVXOni4FYDkKWsB9FLVQWGipq1Cm8PoG6N8wLrPeCtiUYGI88S5v9f07TaHG8I8f70wNWsWg3GI31zXaufmLy+QqAqr2v1NUNtyTWyoilEK1MTfgvkd6YmYFCr23q/9thr8MZLpWNd01YryPDtP17/rVneoJY5rQZYWsGG996F+P8FOGgM6gq9PMnLltEwY0tAgtCRTjV/8kpF4/6FCgfTDtKVvC5e5OGvPMaq1OgZtLAzkyxcOEe2VCYa7UDmFxndZVMpOcxMOszNSgaHI/zRnRaRgSDFhQBlV0dvGyE1cBd28XGKpSf53B89x817etm1I4EeA62nF7JTMDaNGAlCoo/iiTKZfzlOz8d+i4U//R8881ieHcPX0P/qAczb2yF4LYgQvJiBrf0Uv3Ge0iOP4RpPEIpE+cbZOV73t39IdGCQ2fsfYPyLX6KUsLj2dV1EbtuIiL4OobUBc8AMaG+rvSiNciHLiYP3sDj+AnuvvZXixTydt99NxVHYDixOL7B4eYLOXoPPP/kkP3n3z3Fh8hBTizaRQD/7+zeRO12i3BsiFjAxbA23Amgave0W4rCGOaTBmIvK2mDZ0C5RloOZNpCrgFlLOStA9VhoOwWuAUabiRbVEZZYd+O8Qj+8tP4W33xxfXBQLecPKISGYFBt2+cK4GfWfutAU921TM0r3zqqVt5UByr1hloa9rftAxrr0kvNadX8ocmtqlXTSVUoklLW05nWGTeqdm6CJ3SrmtDiaUNpyhXvCftCeOcS+ICXB0Ko7a9+TabP/at6mKHVZDWQtXa02kFWfsHKa1c3qt7F3jhd18F1XQzDxHUcQFUP1bIsNo6M8K9f/jLRaBRXuizMz/D84cOcOHmSkaF+3vb2H2O5ovOPUyXGci4dmstescrBbx1iVekMb7FYGjvG8twsZVcRDiWRhSX2XFMhveBw6byDbWvs2BTig7daRIaC5CYCVCydcM8NhNu2YJeeoVg6xKd/7SA/+7addPYItFQYLRGH7AycnUHsikBoEyv3jGEv6KR+6q0sfvKveOLBArfuv4PkjybRtw+DtQ2kVd3vr95I7r8/TXni22jmeVzD4qGJNG/5wicw4u2MfeLPmTt+DGtDiJ2v7CByywgi8qMIAsBpIArabTWJWVDMpnnyq/+TeMRksH8b9qKi/ZY7KZddbAcmz1zALWcQoQrffvEY73zDL/DCya8xu5JgU+dGhoOdFCZtyj1BEgELvSQoVyAcNmgzDcQZDWtQQx1zUeUyxF1UzEXoEmNFR2aAoIYsSVRIYzWU5/j8ixQdl0cOP8zhiaMsZZcoFUuUKxUcx8bFRYkquFRS1fm7N6ddKWtubo0FKGsWxiYAQOP8Xr2uyfZpzaGeFcvL3lVdFNTnYt2lyXMh8lpZBxzUM3Z594XW9F3Jl9oIWqixsdXH4Xez8p5D+Mr6zyrwNdT80bdmG+HSjbSpon6v+mHdvbPWnwcAGmelNPpqWHMa4EipWhih1nAGz+dzzM3N1R71BwgOWtr8N2nnCv3gSamG4CBE1ZfQtUs4lQJCN6k4krwtMAIWK0pnrqKYL7rYuSILly+STMU5du4ilPO0GYr8agY3lGHqwUcok8O2bUqOgRuMsfXabj50xzDFmSmiOJhBi7IbYiWTYPS1B6hkvsrlswG0k+NkL8+QD2lc96N7UBdW0IeDCHMJbBe30E5xYZDJf36U6YU5tr73w3SKGQI9MbTRjSAmwXgzqqAgEsSdzmE/8iT2PZ/BiFeY3X4Tnz93ijsHB+gf2UTBcnDOfYnhn70d0ZlEGNdB8TjIeZTWgZocR4z+IoI4IFkZ/zK52ScJte9F17t54ovH2PfqHVyemaPsWIRS/Zy4cIk9+65iZkEjGreIRiJQiZBfCLBxq4m9JIkGA+SXHOSKg5FxcCfKBFZLHMnrjDghOsICK1hBagUCUQcj2Y4qGEjbRAV0RKdAbNNQAYnWY6CHNYRZ2/SvLNGXFX2/4GBoaBjD0H3M1/O/r9Z7Sdca/3dVE5B9TLbuCtA6Ev+BYi0DXwMWfAJEa0MNkNJIJbqG36xjLYCG1rA61uq//nMGlKq6GGl4wkLDeuI6Th00rCdMVEFEc9tA06nKtuM0jbdqnajWFlSzxkrp1jPH1IUJT0tYA2yaVgUW9bzztQBmalYJvebyVEMUOI6sgxpvsHX3ENE4pVk3DK677jp++7d/h2uv3U+pVOD3P/z73HrzdaAqHD95grbOfkavup7B4QFKoQTztmCl6FDJ5VmamaStLcmTR4/TFQDTKVMsrWBry8w8/BhlPU+l4lBwgoS7kuy+uov3vGIDhalJUoZChENksyGU2c3g9ZupZO5j/ESY4NGTzMwvEd/Sxrbrh1BTOfThEMKYhaKGUxhidUxn5v7nmEsvs+NDH6cj/QzGrl2Ibgu0Mkp7FRQVxMI4ZxapfOlfkEcegaTO3Ob9/K/Tx/iFnTsRI1soZU5i2MfZ8Nbr0TrioL8Sct8AI4QqCVSmjDbyE0AccJg/9nGkUyQQ24Jrx3n6q6e48S37OHrkNNG2QfLSZDadYev2bUzPa6Q6gkRDMUrpEMKx2NCv4ywrYuEgmekKRs5BLNio2Qp6tsyRvM5OJ0IqIRFGEWGWsSIKPZZE5k2kY6HCAjGg4fTYTM9N85l/+UdOjZ/i8splcsUclUoZ23ZwHLv62/vOAalaC2Rt/lb5vedS1Ory0qQwqKU51g0drRbnUl8R3hpW/jVaveBpt6WUTVaH70TSp1zwa83rtXzgoiHU+xG2t1wba6tJ6d8i/Iv64UPK992vlMBXVqxRZDQnPGjcEy1Dqdf3j9Y3Pv/ziNYyopH8wLNY1LOWAYVC/ruCg//wQ9C8VExrfbyu0A8leb4DNdO36ypKFQdhChRVgKAHBG2GoFSWjGXKmNkCri6Ymr2IVl6iUjCYc6PYUkeJOVI9ZcbP58nlKgQSYTaPtnH3zW8i2tuGJi6jxCU0bZVQqUS5PMnkM4rO4Cp9VpxJWzE+r7hcyDH/jYsEZsvcem2Y0K44wpJoWRf38hwPPzvGLT//Vnr2lLFIQHAA5cRh7HnEVomIXof7+DG0DVsxr9mEyNyO1lmkr3szWw8ehIVFZGqA5HX7cIuHEKlB0PqQjz9NIf8C9HUSGdyKOvlZxMYhMPeATBPWz2AEl3GtGUpFi+RgF0qeJRyLETK7CCe7GNSCDPZtwnYzRANJtJJFaaWMnZ/jyUcydJUiaNoi9rIklAuSIk40lkCKiyTdYULt1cxRQpbQhUBUTFTExLX1KjDoMRBDGqJdocqgBbVqELK3R1+hH15ah+d5DOh71J0BnruM16CP+a/TSCtjqtfy6vu16et1V9tDFD4Gud54a+XqrNDHQ+pCh29EDaHDq7o+sPDrM1tTFTaeyetXNNWpCy9NAntzy9SsBJ7blf89CSFqqVNFXXNYN3p4aUaFqK5jqApueEJV7cFqz1kVwGoHS3nvo+WZZc0tqf5bimo/Qq9ZDzQwhFGPl/CeQ1AV2gzDwLZtvv3AAzz1xJN0d6bYfdVOrt5/PWYwzmq2xIsnzrBr+yjKDrG6YqPli7iaYmJ6jLBcZXUljutGcVGgzdC+oczYmTzFok1iIMDuXSPccf3tRHsTCCZx9LOEtTJhLUc+e4Hp51ZoD2QZihqcKcCFaZdSNs25ZQilbV55IIy5NwWBMtpikfSFVZ4+M8Mr3nkXPTvSiGwPtA2hViZh8WnESB4VPYC87yD6tXdgXb8H2SagQ9LXNsjotx4kv5qlbfQGQkM7EfkMIjGIEhtQ37yXLIcI7LiNgKtQY4/BQBsYe0FOkTAvYxsSx4hjlzWSQ9045SPEOzqJtXUQ0iJYqW4G+zZScTKkQp3IFY1yNks6O8/E+Twd5TCaNk9lTpAsRUiYCUKWgWKSNneYQLdAqxQRykFIDRwNFbWQFR0Z1tBGDLQ+gRkRxEiyWFhipbxC2a7guE41tkC5VSBYWyy6XvVNl7Wzkl3lT3VKXQBXqmYZEKKuRKhPfVF1s6ueo7AOIG/SvHuA26dAUI25Xp2btVUnmwFD/SDBlyLfEqiv04aansaqEy1lapVbTJRrt8HvvLnWkx2oRnlRv7NWGaeaBtxyT7VsXN/luVsqv3TZdegHckJyEyq7Qj/U5KUw1IRWM6NroAdAMzB0C71UpOgogkKRLducn0/TvjhLxrS5eOFZhrvacWWQ6YUiMhxHuHF2Xb2LYCLH7OQEsTaLm1+xk1de9VrAJRrfxkrlKFr5DIHKNFZCcunQMTq7dFRlDhERBAc7YDbHfY/MEMpVuD5pEdq6AyJRVCGLe26S8rVXsW37MEbxMei8HQIxWBxHnTiLKhyrWhpOPA3G7Wib92PcuQ3RZcEivK6nneWJc2QvnKXUs4H2wf2UTqYJ7r6ZzKOfphKV6OHNaLEcAVkC+RAoAyXPU1o+Tml2iXAihJ2x2XbbXVB8nu4NO0AfQrkGu9p7mFp0CFeguLTI8mSJ/EoWLbDI+MEppmN9aNnTGIUACSdFKd7N4AFBOF9kcxcEOyTaagWKLlo0AGYQNxxAukBCQxsRaP2i5v0lajEGV6x6L2dSvr/ftaxqgIPmKbFGVV8nT3z2dneBQolmjXyV+Te7y3jCdF0gbuLDoulCQ+tX/7Z+Ua/fZvVf3XLhfWuKNVjnHfgH66DAAAAgAElEQVS7EUI0spR4gk6Ldq9V2GjKdCQEypfupVlmrwYdC1UTFLzgSeW9S1ET2HSqJyf7gEz9ub2XV62jaV72Ii/4szouDxxUAxOr+7ZUsmb58Nw4tHogOr45UMgXODd2jqXFRb70hX9l06Yt5IoVpucytHV2USnYRONxzs7NUzx8hJlgN1knSGJ1mVWzwvmxg+waGeby+DKZUhAVNDADSXbs24MRznJ5Yowtuzdw63X7uGHnqwBJNLGN5XIUrXSWeEJgLmWYO3mS9k4dVZpGaw8TGe7m8kyWZx+bIV62uaUtgLm3C0wTNbeAk8ki9+9m27YhyHwDun8KtArMXUSdPopaOYwwllAn70fb2om2JYnYtBsRN2BR8qaeDuYXLrF88jiRbT3EU9son80S2LGZ5Xs/jL1nBNljgraCKTPgPgR6EOU+T27mAlrARDc0ZNFh++2vhdwTDO46gJIJBAbtGEwvOcQqsLo4w9y5ApIVSoUFxk8scznag5Y5hplP0Kk62TDYS8+mBMFSkS0hCPe4MFMBTaAFAxAM4AYtZAxku8DYLNCSAtcWyKCkrEoUKoWqpcCV9aBzJVVd26zrtTNvVG0eCelLRODNicZ81jSBW8cWourH4s11qeqB/ev5wa/rh98qBK+z9dR3AtFwzWmyEDR3tG7dRtmGG5Tw1narIkH4azcu+oX+6pWGwC/WdtS0t9RdjFqft9ZcdctogSL17aZZaVMHbdSx2VryFALfAyv4gYADAJR4idFfoR8mUq5CN6ts07ZdNM0gFonXTIOKilnhfMEhaTpYbp64WOL0xGmSw1sY6DEIpDqJxct0pTJUwh2smrfQPvhqbrjOZeLFLxBUK9y0fR+4K6DH0LUwqcB2HJHHZQlN19h25yiqmIWVPMPtNr3bA/Qt60x+/QSFiTTmvg5EKAfpIkLoJO/azK9uejOlX/og+ge2QSIBhQuomS8hZRr+Mo/I/iPab41A7wkozqEnk6ANQ/d2nJhBKBTn3KFHmZ8a440f/e9MfeSX6PrYa7ikJBv2vhqrv435819i6I4eMGpBiipHZiFP9lKezQOTpFJlysUJjOTrsKWO64JTsVk+dYYHzodwnjyEa6witQKOq6GrTu4eDfAFN0d7JY5LG2nXolzJsvT0GfZ07MRy59EKq5hmCM0ykIZCpALYSmBu0tDaNLSUhjCpChymhjDEFXeilwv9G/yGnjtRQ5un6kroqrDZnGGk6oIimuo2rAwNjbhXp94P1AXhdcftY2DrMbNWdt/qm1wt4+n41zbg94tu9NP83XOH8D/f2ob8MRjgHdTmj39Qyq3FHTTOLwBwXbeh+ay9J5eqK5fXpqsUogY0pPRAWwMY1APAa69Cug03IkQj4Lsq2Ak8dw5N1xG1tnRNIJV3FoKL6/qCQ4WGpglSyRR9PX389M+8k8GBIf7+H/6B5194noceeogzZ84SDIX48B/8IVv3Xccn/+S36Ny+m96N2zk/M028f5jhPgOSvYyISaQqUQ72Uwpsp60/wK3X27zwyCfYsWkruwY3gswhtAi6FqEjuBdbLeCKPKGedrb0JVClLKRzbEs5DMoeYmezLD9+HrWYxby2E1iEeQ2tJ8CW/zLK1shVlH/39wn+7lUouxOW70emn0AtLsNXimjZv0f/81GQD6KJFMTawRyE7hHsiEYsm+Lhz/8V3W98M/te/Srm/vKTdP7haxgTij2vfBe5zBFK5RfouaETTKP226wwP1kiEs7RnVIYCYdyYQKj8+1UKjZK6RTTK8yMz/HEJQP78YO44RyKAhU7SmcowU1bgnzVzdFdSFHUNrBgS/IL8yyt5BhNbcJ0ZjBKYXQ9jKM5IMGMRnERWFs1SEpUHLDAkQ7L+SVml2dYza/UMl65eHEsnr963WroW5N6NTcoum5UXdZ881sqCfXp4gmsVQHbsZ26m6F3W0EVCGstWXdaLAVe+XrcQXMXTZY+7zveNeE/fdxXyV+2+rAtmvrq2lSoquLTZy71xuXW12Yzaml45jVSujaurEOqkQ3NT16WplqnDaDR9OCt333P5z1/7Uma35HyPfx3pv+gmIOWrEVNSOwK/TDRmiBBR6EZAqcsawtfgqpqnZYzNqG4xUqpwuOHjjCzsMyWbYMMb0jyz4cusaWnnxeOnMMon2JT3wwdQyZLhy/wxNMxSosn6Q/l0JWDiIT46J/eRKj714AUUAI1BWoSJVeBMHL1SWShgrw8zwvPLHB0wuJnfuVtnH/sn9icDGLt7IBkAKEZqIyg8onnsD60Gbp+Ex7539iHnsAt5gnclkf+TRmxKYH2xi5Efxh5qYR6PI921x2QOo8I9HHxUwd47oFnyCx9ibd0hJiIapwcHeZ1772bpDaOu3wGlyzBnTpE21H67+Eu/hWychQlS4h8mZWLGpFXfIxjF8u0GzMsTi7y2KMLjL/4LPviYY4ul4jHLTaO7qR96AYywWtID+j8dHcFvb2LimtTzsPqksHYBcmLLy5w9/I9BLVeklu3E796EDESovRiCXNjmMCggQjUtjRXoVzQInpde3tlPb486Tvt8R75Yw76+wcwDKPBlGsMTLYEECopq8ytSVj1BFXRYESiodXzZx3xByI3tGrrj1+1MLRmduIx0sZnz9e2qY3aeFr0cE3ttboeNdyAmsdXd1Py+vKRB1KkrB7I5ErlCxD0iQw14aAasNnQIHrv0HGduqAgNIFRy3qk6vVVrXzj/WtCq+s/PdcPKSVKSQzDqGuIgVrKSb1u4VCKWoYaF13T6ylPDV0nkUhw552v41d++Vd4w9138+TjB6tn1Djl2qvSWcqU+Kev/Suvv+tH+Ma3DxJJRtm6uY9EIsTXjkyxo3eIBx49zFD8BIODBcJRh4XjUzx1KEpl8TCjqQrpnMOua3p47/tuIdjxHqr7fR7UOZBzKFUGpeGuPoMq2LjnL/PVBxYIdW/m9juvYvL5b7AlGcLY3w0BHSECuKeyOF8fw3r/Ruj8KHzhQ5SPXEJ0FzD7ish7bLSNCcRP9CJSAeTjadRyDO3mqxDJcQgMcvLXX8ljz/8VA/IE1yQtJqMGp0eH+PFf/y/os49jZ6cQ8TLWRhMV6QTtj3FnfhmXeYRdws045BcShK/9MM+dybIpNs7zz2Q4fGic1fExtkWCHF4q0tkRYue+G9HaXsFKdBNur8bbuyponb2USgXKWYP5WY3zl2wunp7j7uV70PVNdO2/mudmTpPJ57lhz40kd3dgjWjVjEVSIR3J2NgYn/zLT3LmzBlmZqcp2xVc16kFH1fnhSslrqqaADRdr7u9eYvEs0jVBe+aq48/TqA+v6XEdWXdGuFptr14FrTmdVMFprI+3/3xN74l3rwQa236lfxrFBGicRCbv68mH0bf2oW1SgZfzaZy3uf19oBGDf++tV7bDSVCK5DxtrE1SUJqN4Xw998cKO2Nw6+M8PouFPIsLCx419bl/FfAwRX6vkj6NUqaaF6NgLRdXNsFU8d1FRVbEgmb5AtFXFdSweCvvzXJLTtDBGNRxlZznDz8DFNHH0CXxygup8kulCmkbbYPhrlmd5Jt22JYpuL4+Rhve/fPErJWAB2khVuYRc49gda3nfLSZTQM3IIgcz7D+P3nuPET70I4Ai6egIhCdGxD5vZQeP9vEv6dA4iBt2J/7FO4KyfQ33A95hs+AplfBD0OuAgkatpGHswizl1EvO+ViK5349x3im9/8T7uffIJ2pIhfuexF5j+xdugUibSZxK9qRvr9UMIcmCGUJlFZh5cJrBBJ7rFonjZxeoYIl1+FR19N/LUwRnOXphAC+XYuCHOwTNh3n73tVghk1wJXNuhQ5Qx5h3s3hjnV7P0uwE6k1GMrghlKQkLST7ncvlLJ1g4nycYiLN1tJ9ATxi9y0Dv0DA7dUTQv/BE4++V9fiypO8XHHjZihoMpXEgWHM2oCofqgrBtb4anTaPgbVpP78fcND6HOuBgzVxAt8nOGh1JfKDg0Y5Uffp9wIh65pK/0uBWrYXT4iqZgoRPoHErQlZjXSO1aDBappHG9dxGoDCJ4A0/QZK1VyNqilTvVSqXqYi711I6dZdRbw0lUopLMuqlfcHnYOua5imxaFDh2hva+Ozn/0sjz/+BIODg3zz/m8SCYdZya7w4d/+PW6/4w6scBDHVZRKNq++/WY+8Wd/wb0PPcih03Pc/Kb389qrkwTjUQ4vZjjx4NdZnX4KnAsU0yvkF8vklmxu3J3g6r0p+jcEkUpwfirOO977PoQzDiKBcmxkbhyZPo7Wu5XS/EUMI0J52Wb+8CzZyQL7fvNN1f3+9HOwIY5IXIdz1KH8f/0t4Q/ug8GfpPzT74VdoN/9doxrb4PsH4EeAxyEUsgTZdSRJcRqGu1dN0L3+7A/8xB/87kvMnZxjK3X7OVnP/nXzHzgtQhNkNhkEX7DRoyrkghKKCMI6XnGv7xIx60RNBOcVRMtOUSm/Ep6hm7jy/ccYz47SzwhScaiHJ8I8443XYfSNZbzirCqELcraKsSuyvKmZVVdrph4hsSqJiJqxRBJcnlbS793WHmJm16ujvp7E2hohqp0SSiHX7hN9/LxOQ45XKZil0hl8uhlKJQLOC4Tj0vvhAC13ZQrsLFrQJDGmte4WXJaaTxbQie4Lje2RiNesJbm8onwPqU7Y1YAq1e1pufHtAVLQK8pyPwW/j8wcdNa7t1P2hZP/XrjQr/LuAA7z3wEuDA25ta2q1+9z2G8FkjROM+VN9VHST5+vbvLbWuAEWhUGBhYd57H+ty/h+MW9EVIeSHl2qzVSmFtBWGWXOZ8SapqYOmYTuSQMDAshTSccmUBDlXEA4rbrumk0crDuULJW7qD/DmV17Puc1B/vnrx8hmJbGYIlBxEW2KxOggu2+7Dsc+T2rjPI/85SfI5x2CVphUwCJlZzF1i2+op/jxt4zS1bsdYYDZe5H4oIPzua+jD4fRtg5CohvnxAKlz/03Qr84gBh5DTz3aUT6LMamzRjX34LQOiH1F9UHyn8L9fVvorIRtFe9FbX0aUi2g9mL1nEv+7snGemKoff2UnjuT+n5kz+B5WcR8jRaLA/FLMotIc0K8mKOjmt1yBuoSYtAX4ySdhOd3deBFmN+8TTTk5cJB5eQOYPB5K187XOXCWy16ItbdKkyRWeBjv5NnJwYZ2dPkiAW54qKzESOAwmFTEQwIwbRV+3AHC0TEoLQhhCZp8v03hpCGAL0mn7hyhr8z0HfHResQ82aJlnT/jVM3Y1S1ITlVsHfq1strpoYdb0X0XpZ1N0R/PWFr6C/uKdpf8mnEN7ZDD4AIKi50lSrNov+jS9rHQEaUo2nDxG1P6Im1NfTKkq/4KJV/c0lfg+FureA0Lx88FVtqu69GO+5RSMVpOu6PhOfdzI1CLS6MAeq7hIkVPXAKSUVum40ZY3xZ1fSdR3Hly1Jq6WCTCYTRMJhAoEAb3nTW4iGo/z+H3yEfC5XdRcRij/66B8zMTXFK264gV/6wP9B0AiSCnYwlRXc+dZ3cKcGJTPBI1KjfLbA3Vuj7PnRu3nyiMOjj12gkFfEEhAsOshO6L96LztGe6iUJ+hcXOLrf/KHFG1JIpIgJVxisoSrmTygFnjvO3djJXdjdi1i9Vi4EzO4//R1tJEI2q5NEOym/JUncE9PEHz3Rhh8FTz5Bwg7j371rejb9yLMnZD6ZPWdZr+I/JuvIXbfiDiQhOfvh0Q76BvQeg9zd8cKhUongaROaezv6P34n8H8wwjtNFo7UMghpY3Sy7gX8vS+zkLM6qhgANXVi63fRFfPAaQWYGJ6kWxmguJynmIyRm/0AJ//u3Ei+yw2WwEi9jI50ybSuYGxiXGu7mtDOgGeW6oQzZYZjWm4sSBWOETsDXuxDy+xXJgjr4oYE2He+amfwAxYzM7NUCqXqJ547VIsFpFKoRsNUFCdj7I2lwSa0urufl6WG6mqh59peIHJ1ECpwHXdhqKQatpbXWuea03AtrZu/FnKWtdttSUf+Kax1BV+Z0CvbO1Tq/LB117rkl7LAkVde9/sotiqzV5b87so2etl1otVWl/l4b/Wuuv5wYhvT6oNvnESe3M8hD/+6XuJL/x3BwdXghxfXuQxxGp2ovUWhMAuOMydWmXwQBvF1TLTq2VEwMQM6CyXK4SDRYZNk7Yhi45gmZPHnuPbj9xPeryEVnYJdhi85XV9DA11EIyHODV9mn4jj2bY9O1TpC8rMgs5Li3bXMzmCOhBArEA5548x2LvIvHOEGHdYfmFZbZetwkRMlCzq4iMgYjECLx2GywvUfpv/0jgbXuQbXOI6DAicRMIDbQ+QCGtA7BtvqqJSu5EqBz87cOon/sZRCaNU8ixFNBZwKHj2wexU10E23KIyC5EwAA5g7twlvxiFqtcoVSW6KYLpkZ+NUiirxvdSlKWAfbsHCK7cJ7HnzhGNG6xbcTg9FmBuRggE4aZYBwnOYrKLTA8lGA+I9BjLsGwzZBuky22g1LYEYh3BNCjJqKkcB1I3hxCBL+3DeEKvbzoJbxdv/92FPgZVVVD5Qn93vUWtbygmVnX/9QbqLXRcnMtaqhdrukXpV/c93cn6trHNQJ+DRkIVLPWzT9k4fug1BoG7DHbek73+l0/+BGN96KoCu2qKkj5QpqbtK8ASoIUCiEUmlZ9IVXBXcOLNWhQNYBU1zRqEYtoulaLR/CDtKo7hVTUNLyqaf/2zmjQa+4jVSGuEXRaKpX46Mc+WnU3sh0WF5cIh8Lkslkct3r6bS5XZPrMEufVNPNT83zkw39A2g1wYWYCqyvK0OAGzHKRET1MZzhIxCpy7/3389zhQ6zMlDFsl2CXwU+9ZRs9fV2oUJ6Ls+fp0IsYls3AAcXyuGJ5Mc1ipgilCqYeIBi1OPHwGSK9c7R1BVDLWcqTBYYPDCJCJurcAiIVQN/UjhY1UJczlB74XwTfdSMqcgmRuAYR2QnCAm1DdQpaNyGuvQiDe6AsILuE+rtH4QMfRMzPU5Y2U5aFyq2QfPhp7LYOQt0liN6MMAuo4mWchQmK6TKBkk1+UhIwilRcE6cYIdbdhW4mKEmL214xyje+dpQTR0+SSEYZ7rM5eVoQzoUoWS6BSB9OcgB9ZZnBgQQzy0DSpSOWI6IMssUESirsMHT0hkgEOli6DM8//SxfuOefOXHpOIZuUtc1i+o8daVbE+ZNDJ+VSSnZAKpNc1NVT+xG1U7+bmQp8uax96+oCa3eQXvV7IVuyyKmDqbroN8TxH0WAUFjbaraWmhyz2kBDPVV6vf/q8vyPrDxPZFPmbDmXjMf9faBxh6yrgNQ/floGDB8tXxArPFK6ve8388bVF3I9/31V6pbIdfh9/VMZt+DKPDvDg5U0yZ7hX7YqYE+qTGNqsZB06uT0S44lFYqmIGqL2vFkUhNIAU4SErlEssXzrF95y6y0uXws8/y2Lfu5fBzTxOPOIxsDrBzR4pUe5hEUCefXeHiTBplGsTbJRUBvVs7iHaVmJldIVNop7NthOHILBeeT2MvLhDa0YHW14shTYjq0DEApTRqrogIBDF2jeL+9X0c/epTXDX6enTnZoS1FbUSRZ16DG3/rYAAYxCx+WZEfgp1+TBkszB0J1SOgrHIgnA4b9uEjCLO5CrH7nuInl6HaHwYLRaD4ArB5SzZpRKpHont6rghDTPVgaHfghUcpiINHKHTM9RNz5ZR7GPnmMmcw5qapq9vI8G2NmKmJGCEMeNhzGSINmGi6QGEKQgHBO2GSU6CUgJsCAYEgZCOtBVOXhHe8IPLO3CFfkD0/wETNATMmhAgGm6hfmXfurv6OhxVIOr5Jzz3ooaBfG3WoAZP92nW6njB30GL9rB+mMDaITVKr8/y67jE889VfqbfAhI8QFEXBFSTkORJLH7tnVKghFrjVqBq5araem9fbbSnedaPdbSstV+IqiCgIURrmeo9TyDwB4YKGhpEv694NQ6hesaCbTvcd9/9lEolXMdlZHiEd7z9J5hfmufzX/g8pVKJjd1byC3keXjqIbo6urjzrrv4ysFnyRVyYGgUsqtk52bYvnMnK67LQw99mwfvvZf5mQu0JSQjw0G2b08RiQdJWYKLszNMrRapWDqRlMQ2BEN7erGmFplfkjiyje5EDyPhOU4/ucDm5RkSgY0YykQXBiJqQOcgZOZQl9JoGwYQvTFKj57jyP3Pc+DATyACd4C2GzVdgOLziJ37qy/F3Ax7X4PIl1GXTkLBgfb9UHoKESww7jrMKGiXBcqX8hz9+rcZ6q8QihuomIvOCkYmSyFTxuyVVJSB3mtAeCNG8HrMwGB9vx/ZNkD8xR0UZtLk0/MIbYaRoU0EOtqJihJaKEogESGYCNGGAXoQYSpSQR1L6hQrCqRA2BAOCLT+ICdPX+axow/z0IlvoZkCW9i1cy1qp2LXAALeHPNWg6pam/S6RdnvxuaXvlsF0GpdzwpVm1UNlx/Bmrnugd4GDm9IvU2xQ37Fo3+5N0nKilbRsg74fX2so+ev7z5r5VOFWlNjvfSl63Tq/97qCrnmGVqb8AOOlqJ+ZcZLSPVe2abA7dZ2v8MbWY+uSA1X6P89KXCKEmEKMEHTwS46uLZL71VVzYZjGXSETebLLoVyBa1cZHF8hmuvuYZ7l1f51699k3MHDyKcPKYluOnaLnZs3MDTh6dZvpAhYiqkI1g2dCiUmc2aRK/eQOegJNodoBgYYFvvzawsf5PxC10kgtCR7CG2cZhkeA55eQI9piE27kCtTONOrKByGbTxJU5nbUY/c4lYx1WInVtgYRn1jQdh/60AaFoYFdyMmp+CFz8PsU3wzp9GzH0KNmQpj/ZSns7TrxeQ/RFOHb1A4VCZ9ug4RlsQ1W7RGa3ghMA2wOyJI9q6MeMHiER+DNsRVJRbDZ8IBfl/2HvvOEmu8t77e05VdQ4TevJO2N3ZHLXKASQkUACByGBseMHGiQu2uTa2sbGN4d7Xr3G64ICNbcIlvSYJhEESQkJCeVfanGd3Zyfn0Lm70rl/dFd39cyskPmY67TPfnZmurrq1Knu8zzn+T2xZesV7LkrxcUjX6dsxdhx5bUku3sIhoLoThHDStM52EP23DyRziZkUKAJjaLSCcTKIEMEywpdCIQuMEKCQPIyML9MPy41bniNbvaqEu0dUX5lXtW6n9YUDRpDfPyj1xTiyqt6OID3fuNMVrj81571ylWvGg5WNu/GIeovpBCoWrJk/Tx/7K83LyEqqkYlhMKbV/W55Yr5VJ+xXh2lWnZQ+uKFfdPxgIFTTSgW1D9nbzwPuNUsug0eBk/Jq7zv5Uh4Z0jhazilFE4VZGha5b/ruhQKBSzLAiUY6Bvgve95H0oqLpwf5vCRw6xr6mNuYZrnzj3D3iuuwAnqTE6cp3lgM/FQCDOdZvrCGBs3rOdpU/G5z3yZ9PgIYcMkmTK48epmtg5088iTI2QSi1hKIZRk0RA4OZOpTID2l8ZYF1qieX0CLbqB/padZJYe5tSxLtoiDs1tWwm1RKFtFndiBpnUEDuuxH3gOO5wEbIlrNElTmcsrvzr82ittyPoRp09gxo+ibbjqsr3oEVRkV2ooS/B8JPQsR3xM2+HyY/BljCFjd3I83maQhZWR4gTh87hPlWmuWUcNxUm0CRIRmycMFgGBHuakS09hOIvRwvchuUIyspG6OBEIwxcewdL4U5mzj+JpeLsvup64j3rCOgSrZwmHFC0dHaSu7hItCeCMFyUimBLCEYdEBV5LyMCqQuePPIoDzz1zzhKVQpOCFV1ZLm41fUhZCWMDEW1s7esehRcFKqSiC5FbT26qlopi0qPDJSovq4AiUpJ3KqXoLqOlFMFEbLRs+Ap0QpVb1wm6qq3UopaOzFVY1M/y1XXbRVs489lXQHgq382KsdrK/gVgLD2mzV9XK04Vpun/xlqA9afec37ec/UCLQq4K0RitRfrx5ArUJGa81/5bWAL3Tzhej/Cji4dALIZfqPSrUKIjaIgKCUdgnGJZGWIOHmYAW9O5ApK6Tt0h0xaMbm/ILiple9kmggwN6WZh5JNHHBCGEWC5RyDrc2Gzx6cJr+jUmmLywSNMu8/IokWk+cx56c4va7N/D0yVEYSzOQDDOwzuTC9x7goSfmePsf/AOtXQNVgWEjmorQewDn1LcQfRsQe27FLh5n8f/7K1IbNvFT8YuI8U+Ccx3CegMEbwP3nYCNshRYJcg9A3NPgtsOv/YRmPppOJ5D7biGK37+JUSuFfz9Bz/CTR8d5N0LGtmHh3C3J1AtYZyxEnYyQMtmxUIkRCq1m2DoZbjswjJLjM/m6Ug1Y0hFUNfZM5Bk80AT6dfsxM3m+MQ/fZ3WmRF6O3pIxYPopVnG3TbWdTYhDJuINFAIbEAG42iOQGqgBQRSu8xn/6Vpjb3yRV8qPDmtajHCdYu4qp3TSAqUqHkGGm9cV4pXJ+r5PAIr8wPWeCTl34xriu6KM9fIT/DM/fWNeK2uqX78UBl/pVWx9svDRg0hUI3Jya5SDQVZauEYqr4nCk02NHVS1dAgTWq1SjCaJlC1nIZKYynLsmq9CSp5IU4D2GlMYPZMkao2X6VUpfqk61Ysy9Xmqa7rYlkWmq5hWzamaaLrBvFYjFAwQnohQzAR4C//9JP81DvfxPPnn0G5ilRriu6OHtJlxZvf8Gb+x4d+i8IVV7Hz6uswOjp58vEn2HX7ncQSSTKaQalUxigrbohq/PDAJDuuaOPc/nGu7AuwdWuCcszguUMLvOr1g3zryWN0qQL9Xe1ExAJnnv0+jz6zwPv+8rMYwTCVOpo2IrWMyh/CPflNxNbdyJe/nuynv4r5vR+SbO3gbfExuPBHoF4J8p0gt4C7CaVssBWYRVi+H2bPQtc1cMs9MPk+OJxHveR27vroy3jwi0/z+GP38d/fuYlfWtRIf/s44q5enKyDk3FQTQaxDTAfCdHTcR3SuBvXbaNQLDC3XKattdzUkL0AACAASURBVAnDVYQCAW7dm+LaPbeRt2+hnM7wF1/6Cuunhhno20BM5BDKZbSUpLu9GamZxGSwksSu6QSCIaQNQhPIQOX7LpVLlEpFpFc52wPp/jWIqCWteyWJK0n2lbXkuA6GYaBpWqVylVPpi6FJDQdqoWtCimrCsKznr+DWGp55OTg1dvPlHXjA1nGcarldqvOprE1ZBdyevKg6PXBRCCWqncUbZYw/msj/R2NVoirzKlB+6fACFnnfJSvO8IDOWscb5+T3sqxl/V/Ls9F4vHIXv0djZeM3D9y4uFXgVjfU1LaCGv/TICsuRf+XqhU1jPmvMs5l+rclx1bYZZdARDYct22FaysCoYpr+syiSUDZoCmCAUkyYJBzXObTFp1NBvcvLPLdr3+ZU1/7PB2qwFtvTDDhFgh1J9m8tZOAbXP+4ChTU2V+72NX8tjfHaf7lhAdbTbOaJFD31N86YTgrz63n0Q0tMJS4IA6gyo5qHP7URkXkoOIln6Kr3sFzJSRrkQLBZHdg8ib70R86Och823cL87ijv8QefUW5I4U5I/AU6fgl34XoZUxv/IlDn3/KBdENy95//toT19A3xzAmj4GCYnWsgER3A0YCH07FeZuxnVcnNI8TnaYkruO02dGCDVHaesZINmUImQYDdLCdCzKpTyW6SBEuJIQ5joEIwE0ZeAInTKSvAmaDt3BigfHs+xcZrf/2vRiKhXBWtWKDG8EHF9IixeasmpdqXq8+6XuWCu96Tvm+sNlVngWGh0X9Q228fyGl7WLGnT2lYP557OChKfwQ80Kv9Jj4iX8NSQaNoQS1e9WsczWJlfzkri1cqIV+VmrLISg4kjw3A5VS6tXFlJUlaOGe1a9D9VN360iEA+MeEqJFwLijV3pggyariMEtTl5Coz33Qgh+e0PfJBNGwd5/wd+leamFnK5PKZV5s//7OMsLCzwt3/7N7S2tPPRf/wCSV2RtvJoVplowCCYbCFfFnQ3G3xucobv/MX/YOnQ0wxGbW7fE2NSFYj0tbBv7zoWh2cZOT2HEpL3/MYOHv7EEbb+TJIUeeYOW+x/SvHUQisf+5uHiYY0GpQxiqAuoIoO6uQPUMUkon8f7oUxyh/4FZgtI5VEj4aQG69GvPmNiLdcj1p4BPXledzxB9BeewcilYbpE3BxGfGO94EoUfrLP+d7T0wQ3HcLe+6+nZbCBPomA3PsALIrgUzsQeh9QAShD1aAsmjDsYo4hTHs4jJFK8XZoXEibTG6B7YRi8QwNM33CIqSY1EuZHFsDSECSFyE6xCMBpBuAFvoFF1B0QFdh56AqiUS/8GH/4BPfervKBaLtXCZ2v+qV8gLG5NSawC/yrfONE3D0I1KaVPHrnZHrgPXegUuia7p1X1GYNtW7b66rteS3D0wUvOUVe/peazq31+dXE8jb+CpOo+sBDw1L0PNMOA713+DtYSTZwzx3rvEptloRGgELytVfJ8o8gGXtUPsVzk/Lkn1Db1uwPHd3y+DBA3ffX2IyrFCIc/MzIw3rzXvfDms6DL9WCQ1CERkw2J33cp/21WUcy6nMg6DCY28K1hULouWRcks0p9o4sKUSTwiWJ9sYWD79QztnqZ48Jt0bhK0RxI8fnAZO2sSb4oQ7G3jF9/UzEc+9Bzv+bk4iUSR/U8VOXhKkNq3nk/+5ueIxkJVAQg1VK8UKj+KUBpi022wOI4zM4xzfoHgF39A5vV3ESxaKF1HKy3C2UfQvjYPd78BtfMYItWG6BKo+Uk4ZSLe/b9BplGF+xg6OMapEYvl1iUK3/4H1C0dfOU3JunqyNMubCLiCKr1AZyX9mLHfoaI1snR5x8iJ0rE21N0h7roSB2ke/e1nJ1Ic+iJA5gFh5aWHnZv3URrMsCiZdKSjIKMoAIuui5YKjuEQxHKTkXAW67ABToDEAyKukHlMii4TD8meRbktTcyb2NWDRvwWlZ+76da2ehnTcv+j5jTqjk2Ku6XNjpdAgBwqdCkF1ImKu95FtdL3U2ISuiF8s+z+r7rOI0ejMpD1CooeSEdXliWW3vOyvu6oSOFwHacalnpyubv2I5PGaB23KsypVy3UrFIyloPC8uyUK5C140qcKhbGU3LxnUVmlZJav7Lv/44mq5RKBYpliYxdIOrr76R1vZObrr5Vl76irsZNwUbm6MsmCZW0MAu5xg6cpD9jzzJG3/mgzTFYVdbO8/uu5Ol+SJu5jm6t0BnOM6DT86ilyxEMMj6K3vY3BPgjz5ykPf/cgJDZvnm1wrMqRDr73wJH7vuozVg0CDvHQtVGKvI+11vgYnnsKePosIpjL/6KrmffRuhsoutGcj0CNpzX0NrOYe46Wbc3UcQqV5ozqHOjAEbED/1/6BIQ/6rHH1ilvMZjfYLJyj9cJ7yzma++qtTrO/P0WE76MYh3P44zhWDuNHXEpZdPP3YvYiOEC2JLjoiUVpaTtK95ypOjCzw9H0PoOtxerr62NS/jmTcYME06UrFsWUMGVQoqUhbEApFKNkSTWoUXAgBXQEwAlSaiVU/Ak3T0DW9YuV3GxOBvbwWVbXYVxR2gaZXwIlt2bVFats2jmXXwpDqlvaqxwCtNq7XQ6MCNrypVNZvLdzI8fN/tSqXprGKajxR4Yeaw6uBg/wGCrH2PidAUu33oda6ZqWbof7nC22bHj9XZODKa1fIEp8SXz90idE9ebTKY7DC4wE+meVxuaqFTPrBS8WLW5mcl+uE8MGEFyF8f6LgwC9bL+sq/7lIuRXvgRGsf7PZtE2prHAlSF0Q18G2oTBfIBYuYrll5pegZSBC2YCwdNmsC46LEiEnS85U/P0307zmHXESBsiwJB8SLJoWD51e5s5XtROKF5l/3iRfNui6vplb9w0QizUDIERVYXFdhHJBSghfhXLOQnoMQi3IlIbKPY2Mr6PQH6M8nUMIGxHIoOcVsaeCqCd/Hy3lIq9ModILEOpA3PkmECfAGqP8jf3kZtJs3p2k6+YNNG/ZhpvLc/P7b0YPOeSHD6PSw0RDDunnskT0b5K8+SauuWk3dqAVGYig6SGm9EFiToidG1Js6ekla9ksOpJzNizkCvTFQwxPLBMKh4jEwuRKNkIGsGxBi65hCQk2hF3QgxXp4KKwXDA00C9z3WX6saiiCPhd9N7+16jUNrrtFdQ2oIa42WpFHQHVRMF6YzUvnKFyj8p7q7qG1qx6dSDgt3T7T6v+Vb3Xautj/fmgIXfBp1h7jd3q4/qUCeEbn0aPgaLqbRAVC71WTeythGZUrqNaDagCBCpW/EpJyMZKQ5X4b1lrCuV9VsI3J1FVgFaqFA2fhW88pRS6rhMwKr0NbNtG0zV0TSMSidTCSFxVsR5b1T4LUkhuuP4mUql2vnv/t8lmswR1yVvf+C46OjbgqACxeIAuR1E2HdKjacYnfsDCkiQW6eCeN76FcwvzbJXd7BKCTvIMu0XG5m0+990sr/rpGK2GxI5qlCQMLZfJSYvbX9mGDBaYeqSE3R5h22AHV27pJRpNVp/Pk/d25ellEML7UPYZ1NIQsnUrsnQClR+DOBT645gzedBthL5EcEYj/GAZ9eDjFXl/Uwdq+HlEz1WI3u3AMShPUP7SfrKmxS23dtJ29WYSnd1oRZNbf/M2jJDJ8tHH0OUC0obC/hnCgW/RfNvN3HzXbbihOLoewdY1FmSZmBviys2t7OjtZcl2WXYk5xyXZK5IfyLE8fNztKWaUJqkpBRSGlhC0KprFIRANyGkgVZ17Jmui+kqPv5nH+Phh7+PouIJUnadf6WQ6LpRyS9xnNr6r5W/VWDoOqZlVdax61YboNXDdzzlcqU+p1zl65FRt4y7ql7xqOZpqK4lfHznsbYHJLxCCN49/ON5nFdTdqtz98oTexf54XGNO6ogp0EOCC+dvzbUj6QXs6P6cwjWGsH7FFcbVOrPXXdi1DgeBbWcDLFieE8OSN/ool4FolYQAjwv0Y+mnyA4uJQP5zL9ZyAhWBXXLlRFKZUBiW26xAoKlks0xwxU0MZ0gKYAy46iPeEyMzdOeX4ad3aEzojGsNCZW7Q48HQeo+DS5Ni46RJLpkM5G+LOtw7w5P6jTB0s0LolyRU7+ulovQNwABPXfhxraRolQujJDWhiJ0JrAjGACmRRIoSIhVCd2zl/8Cna376Nb/3jMfZedQP9mwaQ2TTmIz9EFWcIDd5EYTaL0dOG0bsdmuI4J76EWphHleYoaRazMkQp2ExP/ytQy2VSTa24WhQjuQm3tIgmcgRazxDXupgu6HR3txOOdZBBZwRBh4ijWzaO1IjG4kSVImw7pEo2juMw4yqCkSCuZpAxBTgaRkASciU5UzDqQEKDrQFAgqNAE6BXm09eDim6TJ67/F9S0rRqc64r/crbZhsrnPgVWbHi+pqX2wMQQH0/99QBVdslfHa4+sYvPItf49xXWflWhBxVjARV6+UKHqiNJ3zzWuP5V31eDRNVDcxVsSbW7Ne1Y37gAfUQIuW61MOC1phD9Tq3OlWl3Nozu9UcAU/RqcVxa/7ggcaQI39uhRSiFs4R0AMEgkEAAoEA5VIJJQSGVvEkOFXvkRSS2blZSqVy9bWGphls3DDAqWNHQEoG+jZiFyHRFOOh736dnVd2s2lDN6FYB60dLYj5POPTFylNThAvL9MS0plzJNOzNvufyKPnXfTJEmlLYGoSYUa49VXr+P5Th5g6VGTw7iTbB/fQ2nQd4KCUibK/R3luHhltR48OIrUNCK0ZxHpUMIPSIsjUBvKOy+z5I7S+Yztf/sRBXv3GN5FIJRHDw5gHD4GzjNx6E/nRBUIbB9F6BlGyhDr2IGppAeUuUzBcFgWIxADt/begchapplYcLYYI9qKJfCVcdG6KmGxnPC3YuKMboceYRpIWghQKzbKxpUEqHiPkuMQtB8uslBeddBWJWJiC0lCWQCiBNAQBR5J2BWcc2KpDWAfLMpmYnOLeb3ydfLHI9x98gInx8VrpUE+x90qLVpLMNZwqqBJUw8a8UDNfHL8/jM5boQ0W5xpWVw3rvXEN+1nHU1jrarh3uvIp7A2lfZVbO18IUfEErPQSrpQDfnnkAY0GMMAq8tkTfKp5bWK1511ZBah+y4ZPp14qtDadtaohVW/ZMJ+qIeMSm7by/fZ7CBo8Z3j87oGt1UDFX6L2R9FPDhxcxgb/YckqO2i6qNXorpGgluBUSUhq3Kh1DXQhkAqKORdtuoxmm8RSCdK6QuhBWuIhhjImO5IaRy/MMTp8noW5BdpCEWIbusmXZjh71CQWAzNjIYXDonKxXIORWXhu2MUVAQZSEdanOhFyN4p5lHsW1/wOVuYCSiYR0RuQ2mYEBogWiMbBKmKLIsVEivTUWXru7iVzLMfcjkE6dl1Bc9kkf+4cRaVjbG9l6tg8ot2gKaTRVLjIwlMHGB/O0bcvzHJYsBBqQzMGMbPNIJMEhMS2gwRaexF6AEcViXYfArGO0rlFzmWgQ1oEIhplFG1CwwoYzFmKolPZuIO6QSyuk3dgMVukoylI2ZZYJkR0yaJStCGZtaGkIKlD0KgrBlIItEtHPVym/4r0Y8jiS22GK+P8fYf9r4B67fK6B8E7tzFJTnnv+d38DWP7lAbvZ8MOuxo81HqweMrMijCklYBD1C9c66lXFfi4VOK038ngrgAnNc+Ep6C7IIRbff6VAAu8zseeklFTNqSqKnV+OOB/eMAfRqzqk3ddtzovQTAQIhaLcdW+azh+4gimWUYXlfr3tmNjGAYDfeuZmp7k3LkhArpBQA+ga2V0TScSMihl05gFm4JsRWYlTpNLObdIa9fL6B/op4zG8EIWa+o05bLB6NBZrFyBdU0JUgPtFEqLnDpskUwqyJfJOlAKaRiBIBdnBAcuKAKRELd0xGhPDFQUfzWDUkO45n1YS+NociMi9AqE7EUIHUQKEUvgmnnscJR8IEguM0LXbX0sP7XM7I7NxAc3YzS3UFicwdSjGNtbGX1ihMiWKCmjhDE7wsITzzEzlmf9tREWA5JiuJ9O1YdZaAMZq8h7K0RkXR9K6tjuLGL9MIpOSmfnObFYZn1zGNuo8FJKSEwjwIylKKuKAh8NaMiAIu/AfLZIa2uIxbJAsytW4oxSpBBMWmBSyTNIL81xZugsBw8d5tOf/kcKuRyOY2PbTrUsbV05roQaaUhNVioVoVXXnsL2PC6stibX1lxt3fkqA1WNDTUALFau3LpSX72ykUv+hcYKPzXearWHYDXgVz5w8gJUkyf+Y2rFgR89N783UohVYmbFHH2Ke037X7tow9o39JlSfF9DDS9UXZRrfscv4uPXPvzhD1/yzT/8wz/8MMBb3vIWtm7d+qNH8+bs+1QqS0XUJnqZ/v2SUpVk4nzWQsh6KT4Az13n2PUyZsqtbJreZuSUXcysQ2nOwp2xKI3nMJTEiWpkVEW4aUpxaLHA3rYIEzNzzIoAM2mHsOnw5hv7yWsmC1YI5UaRMoobjGFHYuQlDA1Noad0bryuja2bOolG1qHp3Sh3GNf+G+zyNLhZhFYELYAM3IRQEuXOABLbMcnnJ0gvHaSr2SKrbK7at42hw4dZGh+nc10H6srdzA3ouIEzHF/Icnb+ItniME2hHGfuPcdnTxUZGAwwUg6y8co7eNmNd7I89AzlOY1gzwDl3DyOELh6CGSYkLaBBdXE+vZmHhjNkLdsNsZ01glFvlTAdiBvKsZNWHYEtoJxB0oO9OkaS0hcKYgEJAQlh2zYokvmgS1RwUC4AtI0WfEaXGaxy7Q2vfDCWF5e5hOf+AQAyWSyDg7UCmvii9kvPet8g3eB2uu6Xr+6vOmlpt1YKrD2o/FU3zazUtm+1D1qqswKxlkVH7yml8Gz1tUrqHhel3oyMLVzpN/bQF1JcFZ4GDwLoNeDQPjDKKBe+UXUK73UQIGohJFIIRoeya3N32uuphMJRxkY2MAffOijHD12hIBuEAlHcG0Hy7YJR6K8+fVvZWx0hEK+QCQYoTneTLFUIhKOcdftr2TPln30xXoxlgQJN0xhOsMNr7sNJ54gqOtkyjb7h8d56PN/x+59VzHsaExP5dmWinDLni7KhluR906UbMGmHIjghCPkXMXZ8zOEugLc8bIu1nV3EgoOILUIrnsaZf8ddnkJ4WZBKyH0DoS+swLinGkQASwrTyZ9Frt4llSTTdZ1uOmG3Tzyre8Ql4pEfw/Wni0sDhi42gkOzuQZmjmFYcyhFuc48dAYXxoqs3V7kOPpILe/7hfY2NFB9uIpzCWNYPcApeVJ3GAEVxpImUSX/SzTxKbOZj57fI7OiE5fUCOlHAqlIrYryJYVFywwXUFOwbQDZVex3tCYUoKAJggHJXldcM4RDBqSWeDapCBYLvDYY4/xyU9+km/f9y1KxQK2bVVCwtw6v3ldrgO6QcAIVHtXVN53qqFjypdX5DgVIFpfZ6K+RlUd7NfBr6ol7Guahpff4vXr8Fcmq8gS1cADfsDfWONf1PTHGl8K/3v+ngr4rq9q2NU/xYr3G59qtQCreTNrGrZYfW988mJFOCJ4yf6+BHBEw+ew6hkbDq6ca1Vi+b0kovH0upfFf61/bFF94tWyy7IsCoUCAB/+8If/cNUJ/KQ8B35Bellb+Q9BnlCZG83S2hOlYDrkixYhQyMc1iuJbUJV6idTsYpZBZtQPIByK9frQcnSaI65ZzPEO0MEghEuTmvEuzXiYTCLRSbGZ9kWWuLixSCPHMpzx/XbuWHvdeRQtIXh1lvL9EydYV/PBsL5EhKXYrDEfc9+jCfuP0P5yWmu/YM2Iql9BIwtuPYJTOcowjbRRBFLtyjnHSgu0xQr4Kpp3NKXENptTJwZIXfxKOviURK3/iqF/Z9EtA0RCUIppBhvKtHf8UoG89P80es+z0tvMRgaVTz7yDxndk1y05U66fkkJ6fD7Hn9Nno3NCOcMZo6BbLzSgrmItGoizI0CkqSsxVBYRPRDYSI87O7ouyfGOY7545yVXucZx/9Dlr7DZx3muhvaaU9lmBJBnHDGp1xQUQXGHkbUwqWDMkSsCsssQOCB7PwGqDTCyH6t1w8l+nfNV0ieubS59es4vVcgxqJFbvUCsW2fngFMKieU9nA6kCjsUrICot8VbP2hzgJtXqr84pteN6CtYzn+DbQlST8pzRsXaLmKfE/iV/5r23SAqplY+qDeYc9xUJUeg241TG9MCPNBwpcVa31XrUE6pqsPnvlHNu2a+UlKyU8feDDf3NZCUupfLyyek9VU3iElLS0pvjrP/l7fuv3f5Xf/r0/pHddD9/51rf5s4/9KRKdoBGksFwEWzLYsYXmRAvj8xdJtaTYuHkL//D3n+X2nrsYbB8k1BREi4XJBZvRXJ32oGJxLs3k1AValof47d9+P599eJF2o8QrX/1K+no7CElFKF+gd3aImwZ28MH3/Sxb9u5l/e42Ruef5LlHz1N+dIrXvnyASPJmdK0Jxz6M5ZxC2DaaLFAO2JQzWQJOhlgoi6tGcUtfQBhvY+jAQ4Qzk7R3byK8++cpHvosdJ4gFoozH84Ra4vTkbyC4PwMf/z6/bz+rUm+/D2Tkwey7BjUGdhjkE4bHBsLc+ev7aO9pYxRnqOpN4xM7SZfnCeRFNiaRsYRWLgYwiWsG0CCD14X5b4zR5nNu7RT4vih/WipqzltN7O3ux1hREEPoIUlzVFB2AA942AbgkldYgrB1pDEDAruTcMmAd/95jf42te+xsHnD+I6tsc0lYpiNadYxdovZbWktaiDAsu0auvOK0Va+Rsc28VWTvVaF6rgvbKGVa0vRv1YlUcFaLqG68s/EFVerTISmtBqPOWxSo01q2tTVAFIQx6TB3YaXXA10FIHGBVo7qFxtQJQ1wwdDTJmpSxolG0/utjBanqx1eFWUq1R/ApPjMDnxVG+YzUDvC+0UNShT02i+OSXl6vVCCAuTZerFV2mGlmmQ9tAHKtsEQlpuGiYpotZsAlEdUCwPFcgGNaJJgMEo5WsqNKSydnTJt19BraVQ4WX6Lx1CyxAU6eGacLSgoWQOts3tJIth/jB+QVuu2ETPU1RMuk80wtLHMvkiagYU+dm+J/HnqWls4UNvTFSxgyFU8PkJtKUdZ1HHxkhFXkZN17VT6l8ioWFOZoDOURQRzNChBKdOKKDhYXfpZSbJxLtJah/CyeShw2SbDzOP33xv7H1lk5G//gI17/p9fTuu4qLw/P8xofuxozGeffLUzyeluy4Et4QNVk6X+D+xwUffXsX3y2vJ976Clqie1hesDjx7AmueNUSbvoQtF+JrkWJIwkjKChwLZMRPUBKCPZ0r4clk/f+5qfIWvOExUmkHqEjEqUp3oee3AotcZq37EHXNG7fAH1JSVEodMdla1jncw68KQHrVkR9XabL9K9CdW0eKcF2XBpX2hrWtxcIybnkbX7ERrpW7L//mpXu+QblvqqEvNjN2tuYV1oc696TF7hWVbvEqhUeClVV0qsvHbeSmKxVuzA7rlplSZXVJGSqCp7wJldBF55bxKdE1UGMqBe4rytAVa+G5sqKh6KqKQT0IDgB7nrd7YRFiN/6rd/gvb/yXpriTQx2bebsxBlwFcXpAGGZJJtbolBcJhAJ8nNv/gW27X4VX/3f/4vMwhTPz01QTJR418+/k1SHpFRSzEyY3P/P38CRC7zunT/NgfEc99y6hb7EHsaWc+zff5KphQwdoRZmpmb4wMefJNR7B9MLk+QffhLNGSE3mcEMGnzna6dof+u7iHRKSqWjZNLzNAVziGAA3YiitQ5iscD83O9QLi4TjfYRND+Pal2E7mYulkfYf98H2XRdG+d/53nu+eivE0n18cOHn+GPv/YRRCTMu+/p5pvjGm97g6IlW2R4uMyREZ2PvL2DbxQ3cmfyDcRC2xgdOcn85Fm23DSPyhxGdL8UQwRoRmAhKFXl/XkjQA+SOzbv5p++9T0+9q3vUrSXCYnDSCPGeCxKJLEDLbkOLdVMYsNWdKnzpm2KeEBj3nExlaAtpPEVB97bBHEJ+/fv58jhw9iWWV/71dCzeulS77uHYCiEaZrVZHMXx3Fq69GtxL7VGaCKZmvhMWusc9d1axby2hjVpe44Tq2Tt9S0xnAWt17+FNau+HWpUp+1UMaqhb6KSlZJoboi7eMZXkgGXFqOvRi54a98tNa8f9zQqerovnFVQ9ilv/vzWuQBjFXn+EHXi5jbT6TPQcOkLnsO/l3SSne/d8y2LD79+x9h/XUvYdu11+C4Bt+4b4T3/+J2hJS4VrWEnlLIaizj/OkFYn1NZE9kmDuaIzthkYwL2l2H8VKMogGBDQo3kSObWySxvoOCnaevq4VTs3kmMxk0t0iXkDxx6FnK+jJWxqK3+2qW01mePHAvWrKEJSVOdoLf+5Xf4eq9O5ByhHT+XlqDGio3QcbMEgj1I4xWcmaByYsnGTCKHPpBgcOmzq5dLbQnQjx/vMRr7+rgz/7+JJkzJm+64yb2XpXAaLEpWDdiG104RogIaWz7II7KYKgBxPIQtN1DINLJ//+le+nu7OO2l7+CqfQMv/Ob/y+f+Zu341rN6NFu9HALCoOSgunCIk3hJFNC0iwlTZbN8alZ3vfVe2lfniTpFOmICDqjATqiUSKxBM9me+kYvJl00UGz8mxo0rh5WyeFcIDxIGwPCJJSEAFCl3MMLtMlqFG8+5XpRrnv73PQu67XV2pQNYSkrB7Tf8CnzPuV+OrrVZe5dcu378QVQze+dlVjvkLDHGpbTT2kZvU5l96ParXh/dOhrpc7XoYw+EKi6kmIdXDhTwiW9UHwvCCVudiOW0kQ9u7rAyM1kAANc64kCVML6fAUOc+6q2myavmVFQVMSnRDRylBqWyhS1mZhRIEhSSk4Lqefl75gd9iz7X7OH02z+c++wNOPf1XpLpaMDMWqXgSTTcwbYtAOMD//N0/4j0feC8fetuHCOc6sHM2Ec2mLx5h3ExQNFzmg2OUgpTABQAAIABJREFUxDyhZoPmDT2YlNk80MH3z8xQcgo0ayCyGZ49fhAjUaY4V2Tr1lfy/KFHuTDxHIEmhS0ETmaMT/3Jp1jXmaBsP41p7iepgcpPsmxmiMZ2YGthlpbnyMxepEuUOPhwgWeVwT23dDAz45IrCq7YFedvvzBE5mSZX/vZe+jekkOFUpScPThGO7YeJM4iRetRJE1oVgRRXICWOwhEu/j4n/0Nr3vNm+jftJ6jZ07xmU99nr/7xNsoZpIEWwaQegwHjaLrMl9K0xRuYhgYlBKrUOTRoWH+9KGHaUtP0eQUWReXdEUjtESjuMEkx4o9dAy+jIVsgbCd46q+OFt6m8mHAkwHYW9AEBPwvvf8Mt+97z6o9hCAilKuSa3Biu4lngeDgWpVr8qaNE3LZ4Wvr1WPTXRdqzQwcytAwnHdBu9XJXm5HjrjsZRdq4IkamvZm4O3XmtKqx8EV0OOKkbuigeh4tHwewoqQwsff69l1a+FLL6gTtvI1w2GBZ9HQTVc0ygzPIV9lQVe1H78i8n7jFfPt9GD4nujerr/t2gYo+5BqL7ygB+CfKHA3NysN/aak/6JeA4aPvw1wNll+r9JfkvbWm/XgYFj2zzxhc9xfugkW15yA2YkyPHpZcbGnuWxr5znmjtegh4I4pgOhbRFLuvSt62V7GiRRF8SUXYJ6Tqi2YCFLPNjw5QXxjGSnaS2bUXb0oY2E0bYOpFAiMWMYnlpjCYDIoEop88tsHfbJiZLZcLKYVFZTC1OEkskede7fpnv5QXDB+7Fbu3F1h1CzhwB4eKaFkKPYKgQjmrDKkSwihbJpiZGCxbrX7oB1wkQDFjMjC8ze3KKewNZgkWTjT0u2YVzHPi+QI8prn+dzvxBg8iNP0My3IRpt2G7LkGpoycTOEaMYDBMc8AioufRQxapQCvv+LnX8yd/+Qhvun0rvYNhZCCJ0gxMBK2hGCEp6UAQBKSh096R4t13vILlY9/j9NFh5pbSlApl8gWbVlNya2iIQk5jPrYdKxknrySPHs/Q3xFly+YwOpB2K2VjQ5cZ7DL9i+jFW7Q88e1tmyuvF6s2ROHbpBs39KpJuz5aNTTnxcxnLSNWw8bpgYHKDGo/G69bI5DAF9t8qY24olrVtPuqIuP1GPAey199SDQoag2fiW9DrMUeV2O/vQojVMub+s+uJZhWrbaOqihjnqIlpUDTKmFIhqEjNQ3XrfQrsBwHVf08PHClAXFdcUNXGwW3xBM//A65jmYWixqCKW7auJVAT5SLwxfYuWkL8UgPswvLjE2fpjzp4JQtElqUeFsCx7AR82kWTgxhLk0QbOrjO1P3sffOm7hq4/U4riAQTvDcsSkymSEGe3tYWrSZnCtw7Z6dzFo20W6LKebIazm2bdnJS+98OT8suFx4+iuYiU5cMY2mMujKxrUdhBEloEKYbopy3kFYIULxBBNFh023DVJ2DIrhEvPTM4wPZ5ldjhAum3QOKMYvHOH8yRzdW1sZ3JsnfTpC9IafpinYhFZOIUWAAAU0c7Ii70NhmvUSASNPMCLYuLGf17zxDj76sQf4hTdeQXO0HV1GcKSGIyQtwShhKehREEAgwiE2re/jXS9/GcsnHuHYwXNMlJcpFqZJF11SMYNbQi0UswbB+C4w4oxmBMuncqxrD7NlMIwCFlxwpYahaThupeeAU+2U7YUKVRdwJacAsCybmuW5ugK9pobSa6bn4yUhJLhVtUCIahO/RnVaudUwIFHJM1BUQEAl7MjHR7UGh6JBRHgeCKDi9aizJ7Iab1TPb/DAxtr6i+dBq1cw8smWmryhdowaVzUaRld6SupiSzS+9q7xexW9c3y67mrzi4/zVwvHVXNpOO7Nw/c1rJa71ACcTzrXz/c9Sx1YvDD9RMOKLuOCfyuqLw/HzuG4y7huAaU0AoF+bNdEKB2lFGXLIl3Is5RNs7mnj6Uzz2OZGUJBjXjYIESZ4tIJnn4cNl3Tims0USoHKWUFqujiOi0Uh5dYTCjsaQdhSoIA5QzZbB6tmMdlkvSZEJFWSXN3igsjeQxdQ5njJIICQRDbMpDRCIl4mHzAomQuMrc4TiAZ4LobX0qumGdxJkdhyeHs5Dh9Lb1siLcS1NowbYkm8ujBXtIlm3LZRqONpuYgC26KSHuYQSk4fnKc4YUyoW1JTk0t070hzhVtzWgEmRvJYk/mseaGkdEE5oHvMNXVScZNojthUobLSHaSvk4LliFqzmFm0oxdTNA/eBsvu/klPLR/iBMji2Sc03T0Qkf3JoTQKBLgkR+eZdPmVopzEwyfPc88gsG97aS6WpnIRBg9f4zFxUXmMgUSCyX06AztToDN6wrYyV2kg11k0ja5yQVOp1vYcWUEM1BJalPyMp9dprXpUpvqj7hq1ebqT5NbWZqvjhl8gUC+cAMazm6EGZ7arbyDDYZ+PwjxxT+vPFZTwD1IUBvg0k/4AqED9aTOehKnZ4VrtCjWn6RmixXVM8UleHKlxc8XliA1Wbvetn3dY/3WwOrfshqaJESlnYthSAK6ZO+edWza0ofUBaOjsxw/OUkkGWVyMoPuKCLJJC2tKXRXkT93lj09YZ6eynP4uSeZi0UIGAkoniMWk+y7oYdYR4DW1n7CNGMKh7n5EObwMrduuRGRsZFxE901cYppCpkCWiGP7Y4RTdssXJjiQtsELesGCIR1Su4M3c1xNCeI7YIeidHc1ES5bFIuzzMxe5G+TQP0JJrI5bMszeYoLiuOjZ8n1R8nqbeC7MB0qMj70AYWC3kcEwKGQSAWIy3SRNsjbBOCp548xbIhcbtDnF/M0rkhxjWdrdi2xsSxMqGpeZz1BiKYwHzmPsb6ulnKJ2jWg2gqx0J5gu62IiwqUkaR2cmniackbV27ufGG63nw2SGOnpumvXSUnv6dxJq7UEgKrs6DD53iqmvWcerwIcZmFjBjBv0bm2jrTnFuKcrkmadYLuSYThdoDVgQmabDDbA7bJNP7WHJimJly6THipxebOGK6yMUHBdkpXsxbqValXKcagO9ehhdpceAC1Vvl79wV40nlD8/oNo7wOOJKrioKavVxeyFAlVK63petkqScAPsFj7ru/J14hD+2/tKlfp++K3yNX5ZwXmNJU998mYtjbc2F7/K7Jc+axz3wvRWWOLX9GxS5/NL6burZE3tgdcytqz2UqyUU3VjQcOAKzyfl9YIqpLjku979JPPObistfybkLeg5mdPI/UxpL6EQkNIi6JVIlMMYcgoi7kMEwvz5HIWMSlR5BG6jW0vwOIIwcmLmJlxRpWiZM8wm10iXYgTIEF3IkQhm0fHYv74DLKgkCWFVrIJOBnsUIBgcDuF2DILU8sUTkzS2hJlybKIlEsYYoLWWDfzGYOZnElnZxvlUoFyIcvY8jiZXIGetl42r+vls/f+L85fnENbdpnbu43chkFUfAOKizhGJ469hNIGKLqncWSZQLgDjDwtCYtMbojlbJbR0SyTjqLn6nbiBzJ07+1goLuTmSWbQChIItMMhXZEh471yPeZtzcxa4ewl1ymcy4j+hJh1UfxzDCao5FfzHLxxBJ9AzegySZe8YZXMvbc04wePU3vYp7rw3GamjoZsgX3Pz/KmGUy+dyjHPjed8mFgrzjF65gXbCX1MbNFMw0sxfTzKYtZmZyjJLnZeXD7CtnSQqTpsFrkFs7mX0+zQMPCdZtDhBN6mi6oqHDyWW6TJekFUr9JahevtB/Zl2p8F/duOxUTbnwNti1rHrehl7fGquvGjZBteL36iS6tZV7UZ/HitEEjTpEQ5UU1v5E6sZGVc0f8M5sVAn8FUg8K6QHKiqKmpeUXE+u9PpDCF+VE63aGM1xbFzq3gVPSZBS4rpOZYzqmJoEQ5cEApKXvmQDd959JcGww6HDQyQetmjv7eDRJ8fIFE0S63ro6uhHZcqcm7qAEbXRwoqkKDPy1P3oeozWUJxp4RJq6WVTaisLmWbmphYpiWX6etYxNTrMrbtuxlxIUypahB0b4eaxAkHC7TtIR+bZG9rF+fElzoTOsKOrl1C5RHNTnlRsB2cni1gySGdnhHLZppTPMLw4QjnvcMW23djFJb7xnS8xOr5YkffTU5S7N6D0Iq4o4ejNOE4apW+iYD+JEWhGBiNIvUhTzGIpe5bF5QzDo1lEZ4jY+iiJcybduzpZ39PNmckiCSWJB0NgpxCtAvORB5jVdzO5CLNphSqbLIaLBDZ3kT9xnlg4yPT5HxJPBGlr20YomOTON7+a80/9gBMTz7HPlGzbFiAQbWHUUtz37DD5hM4TX/46Z86cIdHbzGvesJ3uQA8d23ZQTg8zN1NiKlNmKp/nvMxzm3WQlFOiOaiT6t+O3RJh6miWh56ALVcGmZqaxixbGEawyisKpevYXndsH8+4VT70mo7VwIMQDd27a2Fu1deOW8lJ8Dp0e8yhaTpSSF9p3SofO6pSNMu/ppWo5OYLgXJUzbPmG66WSi9rc2uA/avChfy/V/FoA6PWrmq0tF9ig7xkYm6VWVep7x771+L6V87c8zSyCi2IFeeslDj+KkP+ylB1I4jf4l8FUQ3gRdVkRoPRxfsovHDFVXdem34ipUz99C/J9L5M/7qklMv3v/cJXE6RSM6i6ecp209hqtP84Nxz5C2XY5MnWCzNcNfeV/C3n/k4p4eHybplBgZLnDr5JJ/59LfRDElrdyuvuueXGJkep5CzSIab6exIMX1ulJ6XbSIrDPK5KczcOXDG0OIxZmSI5nXbaX/tLgZevR2jI8rQwVG6N8bQ8vMszgo0S2HrJjnNZmlZsr09wv7jB8guLJBq3oksBjn+zP0s2BcoLToEHZ2fe+PPsWNwJ0UnR6Y0SiK0g7K+i8XiAQw9QyLShdT6GF2cp7/FYWzkMF/82hHi3Rp9m6I88/0RdiUVb77tVqaXx3jouWHcZCc3vOrVRFqv5qm/+DI733cP6zbfQ3d/J/PpSR58+ABveMUWWlsGmTYyJLsjpAKSZttAb+tg0Y6wu6OTaLTMc0NLHL0wBs4Y67sGmNJDXH/9IN98ZI79h05TNmeQIYm0IHRqP0GxxFWbuujuayHt5NAyOYwml5Fxm4PTLkZxhk1hk56BqxHr2zhyeJzExiRdIY2ULjC0y3x2mV4srb0t+EuZJuLJSkdRGi1Xa4b2+Edewy2+6vXKHIAVM3vBVezf7xtOrCsm3qtVc20wwq++i6jO55I5eL7E4qrJ3/e8rBHaQS1ywOsrIGXdoloDBIi6pVJVjhsBo2bVlVIiNQ1NSnRdryWDapqGlFqtw7GuS8IhwVVXt7CuP0M8Pkd/v8lLbk6ybWcEuzdKMWoRXKczduEC46eG6dvSyVy6SFE6/PKv7KCUl8zPWsiAQEbgnx86zPYrdmHlNE4ePYtdsrj7Va/gs49+k45Ne7Dmz+GaZ0FbxgwGmFdh2jbuJvXWHTw88jQd63vZd80VtHUb6IVFJkZcIlKR1wtkbIWyAqxvDrL/+AGWZmdZ33crCxcucvbU4yybk5jLFXn/O7/0OySTreTMaUp2gWhwK2V9J3P5R4gFFfHIICUnzmIuTXfSZHT4EH/96ee5/s4O8vkS48dm2NMa4HUvfSnDs+f4+mPn2HztNWy/7nYcq4dDn7+f3b/+Bnr730hnv8Fzh08wPjHB7dcP0ty8nnF9iY6+OCnTIRFOouJN5NwIezs6McI5/vnZaaYXRwhqOdpau5g3gtx88xb+/DPnGb14Akvk0QyJKpQJnjpAJJjlln1bkQmJaeXRzRIyrhgesdg/reh3L9Lf1ELLui3YHUmOHB2naUuSb332C4yeOo5TKlRDcxw0ITBNqwoyK0p1BRhQ4y8v/8RTGr0FLxD13BRAuW6tmpYPTgMQMAIoRd3b4GMhfygRVT5CNfJgJefA84aJ2lxldf2vKu8pPJBPzXvnly9+L4QHfBqUdFF/ggbru7gUTPBf3Dhu7ZlWnecLBfRO8/2sDLUaPFSGWyv5eqXcbDRaiDXnvnaIkLjE+57XwLIs8oU8cOlSppfBwX8GUmrtLV8phkcfx9YX0MMZYuElAvo8Us4z0LbEgz94loPPn2RpOU0+USQUC/DME8+hN7ts29dJpmBy4MA4MhggvilER0rn/NAZBvsGSbW2c/9jj1DSikxOTjFihchHwnReu50db7iZ5FWDjDwxgt7bxUSxyFK5jAxJWtrCPPvsGbpSeVQshojHCEjoDRtctXEDf/KFRwi2lSkGLYLZMOGFaSgf4Ey2TLAtxHv+26fJNK+nLBQxvYhy5tCcIQKhrcSNBK6+k0KpjMrvZ7C7H3P8izxgSt5xxzoWBYxOzPPu7UXW3dRGM2nOU+bkU8vEZYJtu9fjqigTo8/Tvm0r4eDVZLVBjK4edl6VYOnpAq175untu4OLp05wbugMRTfDti0Z3HIHpglff+wRbr1mCzs3D/CNRw/xyL1f52fvvpuokNx2ZSdXv+Ymojt3M3LgKPnCLEMjaWZm55gePkdECq7at5PeTSbzC2WaU7A8keb8hWWOnHSYHG7mzlsGuPLqNnJZh/aQJBmUVUvki4sjvEz/9ejFLIuGPgdNTdW9WdWaHnrU4B1fwyrmP8/zEKxlqVrlw1gFLOq/xeqzG63+VWVBrCkE63NdeY0/NOJH8Y+nZNT/KU8HAlGv3+44ngJUD43QZD1kyAsbcl0XXdNrseBuzRJZKVfqgTNdr4SRGLqOpmlouk40GqWlpZVQOIxhGJXjUhA2JNffPEA0JYjEikTDWYJ6mkCgwM7eMkcOF1ieyNHU38S663sg6DJ9Lk202+CG23Zx/OQSF0fTaDGdrr0dfPDX38PwufN88+v3YUmXlv4UE+kx7nr1XTyTkQTXt3Moc57vjxzh2OwEO7p2QHcHB06OM2sJdl65mZb2GCdPXqQzVUJvbmLRtnHTi3TpGkFb8qUfHGPJmEJr1onPNxPKHiNfHGKsZBPtjPP+//5PDKkokYCDLtLgzCLdMYLBLSSMJCV9H4X0aSJiinVNYYpT9/JdS+d337qe+89l6FGL3LNL0XNlE0mWOSNsjn57jq1bBujs6aRsuszNnaZj61bCwZtYkOvp2J6irytG/nSRlh0L9A+8jsNPPMjF8SkiySy93UXccjOmCZ+5/5/5wNtfSabs8N1HnuHEM0/y1ttuI4zgtTf3semNd2IHo8wMnSeTm+fsaIa5mWmmL5ymv7ubnTu7aV/nkE6bNLcJZs7Oc2JomZOngtjZZl56TRfXXd/B00fGGNn/GKqUw3UdisUCplmurCWlcB2nFvKnaRpeRExjgr2LkALdMNC0SvVBDxDXc2aoe7lkpTiuYzsEAgFc18U0rXoXZimRmkSTGhUvgFbLiVlpKKjxWrXutgdW6jzn5T5Q04g9RXslYPeKJfjlS10OeIaCCq2q1eF9HvUPqK6F17wFdZnj9wb6hYGQ9XEuLTZqKKPh/vU/Rf0077vyTck7v/b8DbK3EXKIlSWmffJsZf8FhNfn4DI4+C9BynW8HRlUJcHNLM3y1PMHOHzgIuVsjk1bg+AsI4RJ0VVs6GlHKgOrGGJ9Wz9nJ5/i7POTrN/bBBs3MDbnMn9knFgozC++/XaeuneIo89N8fhjz/HEE4+RXh4nY49y643X0NTVQSYS5VgeHj+XZeH0Mv+HvfeOrvu67nw/51dur7johQBIgCAJEuwSJVGUZDU7rvFLnNjOc/pM8pLJJJPMjPOSrFnpeTOZ95I1K+0lzsQex05sx7ZiOZJsyZZsdVLsFQRA9H57v79y3h+3/S4IyU5iz5u1ws0FArj3/M45v4vfPnvv725HHomSEcusL6cQJUk6keby3Azu/TuZiAUorltMFtvwhLoJKEH+9qs3WVGeJjW3wAd23Uslr3F+fYGLyQWy81lO3PWDvP/kMf7yv/4+56+fJtTfxZH+e9m0KwTVGBkziylu4fV4CHkPk01Mc9mbpCcU42sXptkVNBgbcvN3SYPHYgoVxeLJxTSFeIk9fYPsHz1BxdjLsx//BMceuRvLsxdFBPCqUaTVyQtf+3O8uoJSmaaryySVNJifSbNr0E1k+EOcf/HX2bd3N1NFi42lOd4RUjj1wV/gx3/233BOjLOnI8hen05/Wxuuu04ws3Gd9kwWoSrkMiVWljZZ2yjQd+T7iIRmGOqycJcKmAWDUmYTc/0sM+djTJwYYiEj8LsUXCqARK+1Rb7Dbnfon0JO4yAYDNbcz03h1RTyzWve7FlrVDcStAhaJ4jRTL5tvVY4BbUjDMExgmoFoKZQ3hY524pEOmZyhlI0kT/hEM61cY6qLI11hEBVlaoC5ijp6MwFcCo9dRRXUZRGfwNq9paqaq1oKE09RVNVdF3HpVcNA03T8Hg8dHV2cXBigj/90z/hp3/6/+AnfuLHecc73k7AH+Dnf/4nuTA9w8VXF4m1QVcXYGVRlAp5G3YPeIhvmlCGiKYR9Hm4dXmTvfd0Uto1zq2L65RXs+zo7uTD7z3F1z99jYvn1lFwEfRqeD1lYt0qD95zlF17R8lGopR2TNA3ej9D7f1cm/w8abmKxxPl4NgQuXyGyVScUkcQ/8YiPmJcV4aY2LWbQjHAyzcXiCsvYK7G+dfjj3FlLs755BzTm+vYKYW7jr2fD5w6zkd/6qdJ6Rn6e3cy2L6PtISAGiFlpJHKdUL+UVyii2R2jklvjv5wO5958RLv3+ch4VW4UrE4ERaUhcVn51LoiTJ3HThMb+dRkpthXvvSlzn+yN2U9AO4hI5P7yOxWeSNN76ASwHNmGRgyM31yymscom+vk583W/j/Iu/zl1338ezC+vE4nM8NjrC4LG3828++n9y0XWcBwaDjKgK7YPDiLFRVtJzxLJZUASpeIGFuRWKtNG55yTR8CJD3RZqOkcpb2Glb5FbmmF5MsLeowMkLT/lTJzdu3eh6yrzs7MU8jmklDXPkYrL5UJVVQyjgmWateexqsAjwbaqnZENw2hA6/X8BGf1wmpFomazMU3TUZpHAUrDc1U1HhRFbT7HShWsqlfhcvJZkzeaXjPRwsdNfq06PuxtAXtweClbONvBu44vHGeBM4/AaRc0TwinZr4dCFFN0naaBE0l33le1L0KLb+1jGvMeRsA4tyQaIRe1Y+t+j20VHUSzk+hvqf6Z926JoBhVr5lE7TvunHQ3Ogd+o5TnaHtWnKPEFATnNWYOI2enlGS04vEJ2cx8wbtQ+DRBbriYTpjs5AsYQmTnm7J+O5hnv/7Kwz3j2HjIbm0SXE1SVusix/44V8ksVFhbT1Hx45RhvcfJdbdzYmDY6SWC7BxkV29PXhdXpIbSfSiweEj/cSvXWDs3r0E+4MofotQRCES6mDm6gblcC+BmJd2SmQXb/LsG19A5Db54b0P8c1rc1yZu8FGcY28rqGJdj76b3+OX/uN3+Hq+dMMHZ7g6EMP0+P2sSqixOxXcWtBPGoXimjHsk1QL/BsPs4u22Q4EARdw9BgosdDyG3x2YLF6s08QQk7B04w1Pcowp7m4vLr7N/1TizfIFKpMpfbHWJo9BCTT36O7olRKrYP1SzjJ8f6osXA4d0E2g5x+svP4RdRXG1jXCj6Wbh8jfe+40E8wSTTCypTKQVL1zjS6efwznGur81BKk7EsvAoUDTLrM8vMnj0vayVpjg04sY2TdKbOYIUWU3fROYGObC7g942F36Pgq7e3hH1Dt2hfwxt7ZBcReccArhFSd7mWatC6E1hLprC1KEhNKhFSONADKkK0jqaedsSjv1sladb+x40hjnlfcPgqN9PqwXSokTUY6UdMzamqSlV9TKksrZn2xG+5MQ1hRBg1+BQx83atoVWqwnfzC+oGh+6rgMCRVHRdRfBYJB9+/bxK7/yK/T29+PxeHC53ASDYXbvHqO7f4idQ4eYeek1CisJhG0Q6QaPrqGrHq7EbdbT0NkR4cDYAGODQ7z49HX27jxI3pDEby5D0cQbiJFXOhju2cPCSpK9xx9gYGwfQzuHGd+5g9e++irdyhJ/+ecfJ+APEfOFSS4u8PrLX+BYb5QXbr3GvhP7ae/1EWnzEg22szZfRh0Yo63DRXspy/Tk65y9/nW8pSw/NHI/T5y7zuzaTVLkKCse2tuG+Kkf+RH+7b//KMvT1zn+/vexb89+/LqfhPDTZr+OW2vHrfaADCNJkFcmebmQYrdtsCscIYVNOKCyp8OFolt8vmixcS1Pu1th3+j30x4ZpFyZZCpxnfGd76TiGwBpoSgqwVAH3d07mfrKk/TfNU4hr+EXGUSxRC7romfvEMHYUb7+yb9huO8wcfcA1xM2maVl3vnoSVTfGhdueliqqIR9Gge7ouzbMcrk+jxsrNMhBKiQzWXJxnP07n+MteIN7j/gZ3klB8USqpVmIzOHme7n+MEunvjcJ7lx9QKLs9Nk04kG6m/ZVqMBmWVbVaW/Ef4jkHYtgVipJ/WLpsegnkNQeybVmsIvGjpENfa9Waq07gmsXmvXH/h6GJPdTGRu4R0Hbzd8ic4cJAfvCgH1al0NPnZ8KUprBQ5RX39bkKA6otETBNHyvVE1qTH+zY0D52u2tB3vOxV9GqpY/Vbr3pL6fm6DLBzelduaoNV/3pqU7LiGWm5TE2BoBSxac6Gq85j/v3VIvkP/U0gC0jShxtDIWkqSDSgCRXXR1d7PPQ++h/OvuDh/+uvEtBL739mBonjw2UX0vIGdAcMqoLeN4vYFKavD6IUNPGaa4cEoj77vETy+CMPjYSodp4hGe+hsi2BaZVwujde+8RR24Tp35XMUaSe16KfiHuClF18n1tfHtXwFr2ajI7ELCpYo0dEfZCmnMhjQ2FiP8/rMIkYpy70Dg9y6meHK3BpldwFf1EdPbICJg3v45Mc+xqVLZzHTObp1nRFfABBE1DB5hgkqAaTwglWgZK6ylM1y2PcAqZvP0Ds4ilCSwCJ9QZV02SSRSGMnJJ1+D+2BMAohEIJwxEP+NrNoAAAgAElEQVR6+Sah0H6ER8UWoGl+wr176d85RH5VxdsVpq3fwqcUSE/lSWbmCEYeZi1uMdi+jEvxkC1YVDIJlNj9dC5foqjlMA0/uYRGRvHS3dbLY4+8myvRQXJTVymuraFmTfKVJAvnrxHedTfL1nUCOwx2q5LUqsRIrHHxwhdQoylOPnAXQX9XFZHBqXjcoTvkoIYO/BZxN1vJmaxYE0BNN39t2poBUFfkW548h2LdeAG2/V06/pMOIb9VYaiP/ta34nyzaYC07EfcPrQR3uRcf4u9sTVcohFk1IjTrr7arHIkWkM26mtQRXKh5lWgGgIhah4GIQSmadXyGASaptHR0cGHP/ghhoaHGxuStkTXdLq6e5DY9LsDPPLuj/D6i1/kyquXCdk2ux+KoCgegjKDnhPoIYHHF8QVGsHtC1JQR3CnrxLSyowcGuLo/W/DH92Dz06S63oHuwd34vXogIVRLLI6c4EzyXPcE0lQWL7BWspFuajR1ruT/gdPEbi6iOnTyecMCnkDEfQwvLeHa+sl7hmOcOn8BheXV3HZBhORfqanslyeXcXbZtEWirIv1sOOUA+f+u8f49q1S6ilMiNeP11uD6qAoBohxzBhNYyJF2ltkiqvEy9KJjwnWZ98iuG9RzGKN4h6U4Q8Chslk0QiC0lJf1eAoDuCwI+iqoSCOqmF6wSix7CkiY0b1Rsi2reH/uFB0vMSX08vXbsy5ISNUS6Qzi0TiD7I/HKRMTGHtKNk8gWomKhtO+heukDRnccqeEjHFTxRF/2dgzz22Hu5EBygNHkePZHFTNlk5AZLF28SHj3FdPksQwfyZGIl0puSQnaBixc+h9aeZmF2hnRqA6tSxLZMbNuqGgZW1SCoK3+27fAE1HlX0kiMVxSBtGUrTzUYr1XrltS9CxIpmwa109NQ72UgENWu5LVHXYEaWNk0BOoXNUOYWrn1tso8je28ScUh0TyP3izn6Taq3+o/4jhsubwFhLjdQ/mmU4vtxzirsNVBierPjmPKcYGU0tEpXrbM25z/9heb4Um3Ay/b0XfVOPg2Uj/u0D+RZN1Kt2yqdbGpMqAlkWULEdQQKKgKjOw/QiGbYf78OWa/Mc+Bt7tQhUabAoGiQTwDiuIib3Xgie6iUKjg0ZJ0RyRDY7s49dD9qFRwe7OMH7+btkAnIVWjbMFG0kJt62Hyyivs8KXwtg0RYQ/r+RyryTyxfXtYW84Rsi0ilgDTjajkMCMqXlugqYKFeILzswtoFcERv5+/eOkaG4aga3SAnu4wEa9GRLP5+6efBKEhhcBvCWI26Cq0KSqT1igjoowLG0WuIexVKpUuIlY7abUd3DH8ahm3raBKmxslSWa6TI8/Qk+4i5A7hkDFlm3YZbAF2OVpSkYXQmsjGgqQR2Pg2CniUzexLQ/eUCeikmXl5jzlooUv5MXd3cV6ag1N2oRcg7jDIa4tLNNnu+mJ2BTJksvZbGoaZSnYPXqYktLJZiBC4soFxMwCOcNi6fRZvO1vp+gdxt+pEPCtkFPz+PU8udQbXLruwR9TSKT6CfsD7Ny5646H7g69Kf1TZWHN7GxcvR0630pN1LAp551CfctLsqk4bA0hEFsUgtvW2bKVlsTDbXYloFnYyzHuNr5xOBOaQrl1TL1xVNOWqQ6sqewOD0oTpa3Lw3qegSKa1zu7ztaRXmnbKKLawyASDnNgfJz77ztZ3VS9sW3FRpo2BKuhDqqicPDkwyzOTjP76ixLpxOMndJRhUaXJnBlKqi6BMVHkU680V1kM3lcMsHoLj8T4+Pc9cD9qEon16/+A8dPfQ+9/gC6UCmWJatreXr2HeHq85/iIw/HmDUENwt5Sq4A++97iMjR4+wNDoNQMcslpGFDJYdsD+LJVmPNLy8sMb2yQa9U2efx8FdXr5O1VXrHdhGNuujye1HLOZ78ylPoLh0zX6bNgpAUqApI4WKaUcYpI5Aoch1p5bArnUQqMVJaO7anjShuwhqUbcnNvCQ7U2ZHtI3uUB8ezQ94sO0wdgUsIbALV8kYMQL+DlSvh4rbT//R+9m8cQO7tx9frIfiZoHsqkmlaGOFfHj7u5mZvUbRM0zY04aualxfXKXf9tLZZrBZSFHJwoYIEggK9uw+StZuJ+l2Eb98FWUjTiFrsvzGRfw97yCnjhAbEvi8CYquPFa8SDZ1mpfPSGzNwOvVKJlgGQamWcEwa4aBA5OvliFtPKi15OXq92pvgy3Pcp2dRLO6mHQi+w2ttIaC15ioGQHYDM2rcT7VULrqIKex4uSfFpdCnV3YSnVPwpZrbx+2DSbQfPHNROPtlZJoWawKemx5X1CtyOSYo/lZbbOv1gUbxppjkdqfpPk53l6+tG54ydZzrsWxUPU6iNrf0hnW1Bgrm3/vb0Xf3d6qWwzRO/QdJAnSMJuCwgDKElm0kKkKGHajk7GqCHZ0dHFi9wQLczbWRgFhVQi4FHyY+GyTSCCEWnbjCY1RmT+Dllll355OHv/eCTx6P4qdZXNllZi0iKgCaRiUM3liPsE9H3oH+MOYrjZ6d/Rz9EA34UCRw297kDI6gzE/IUVHmjretjDRiM0b00li3TrrJZvlpVWMlWn8uQza8gzL6RnceoTO8F6i/hFS2RKf+PtPEBrqxxvrQXX52UxmWVxaxw14BNwyNXK2m5IlMew0ukizI7Cfb06+wp7xo/h9Eq+aw6eWyVeKvLBaZH1OsGdogM7OQ2juAWxsTBkhk9fwDxzHNq8S37xMJpnCJ1TKQiB2PESk3UW5WKZcdlPRepixexGlIKZwM3r3TqZmc5w7vUGsq4tILMrU1Zcph6LkpMSopNCsOLKcZ3qtxFpG0tndz76772XfPXfRMxSrrrVmMXXxNSKeHqzQOBuefkJRL/5unfAgSPcqL579Gp954m947utfacYz36E7tJX+SVZBM861EZcjb08kbKlIUl/KAf9vJ+zr89XxjOaSDg9BbVg9XK457q0FSjPx7s3uqfWlrR/N1gTK1m6tzW6y0rar4Zy1MIqmcrTlXqkJdllHYFvfFVSRV1Wpx2nbDaRWrTc3UxQG+vt45MGHECi1815C2UbkLUTeRBo2tlX9C6iKwsHhEXa172J53saKF1CkQcij4TVLBDSFoCeAWvHjCe2hPPUcnnKR+x4c5q5T47i1ToSVYXN1jX6Xgk8IzGIZu1Siu93HAz/2Xkzdj+ntZXx8mANjYXr63Ew88hB5U2FXuw+XqRKItNE73EkspvHytXUOTMSYTZrEF2dhYxFvOoFYnmEpM0PA00V3ZAKfu5epuXmeeOFLhAb78UZ7UDQ380sbpOJp3IAmBDOmTlG6KVkmpr1BQFeIqAO8cusNDh6+D03JEtSK6KLEWqHISyslNucUDu0ZJhQ+jqIFsaVKxQqRLXoIDt6NUXiR1fVpjEIRNwoVzYuy4yHaYpJsuoQtw6SVXhatbqgEsYSb/Q/u4evPzrO6YtDW1YHX72b6+quYsR7S5TKYcTQzSblQ4NZ6ifWsZGBgiIkHHmbk8F46usJ4LIXSaoXJcy8x0L6fTe8eCr4Ogm1u/N0akR2QLJ6jfzTEyFgP0aiPcrmEaVawzGqCsFn7qpcibXi0bFkLO5YND7OsIf0NBL8RclOlesWirba9rCmfDd5UlEbugVLv0FznnwaYUKuAZNvVL0d+QyN0qaaAN42M+t628lHdkSkdXw3W3oLMiyb3bUX2nWE72yHsjn/1z6jV89dc61upt/W/RfParRZM/SBt/Ff7fKvvtfgjBS0hSo3rpGOKxgvNstK39VjYLrZpG/quGAfbJ4PdoX8USbnlQXK8VndhG9WkI2FJKNmQtRBlUDo8WIkyxUwJu5IH2ySyYxc7Hnw3C8kK+aeSYIZw+bvQND+6adKuWHS6+ijOvoBMrPDo/d08+tAIIXcHuuKikLqAb7CDoB98aoXK2hLzzzyHzyPZ5RW0j93DWvs7+dq0j1dePMt7jx2k3e/myuVNNqczBFGw1DLPz91iOTTMxL5RZm5sMDOzTG5jldFynJ/05PntV2dwu1xMHB4lsfwi3/zKpzl/MUnJ7kTLhQm0HyQQGeKLX3yS3/7NX8c0TTTgiKZQMSyuVrLcKJdJF0qsrj3DUqCArYxQkF4sRaOs6UwX4MZLFT70vhFuTKqoriBtMRcVM8umkWH/sftZfeNTuJRjRNw6mn2dvGUxKAQLZS+076KtTWIX8mD38YMf+Sm+8dqXCKAw1DGKJv2sra2xuHiFbHEKkV8n6PJwaXKN5aILy9/JtfM3icg8uQ0T3TTJqz7C++7m5Pf/KLHRHkQginU9w9knn0FJ5Dm6/yg9h3eRbndjxnRUV4EDowOMjnUhgnksy6g9IndMhDvUpDq6XRfH3w45ZYdAOOryt85z+/HUPLOain0zAbE6h2w92xwlhsSbCK7bPRCidl/buMed0nQ7cjgc6vK4Hq+9tWRifY26MtSyh8a91cOGqgqYrKG4qqO0qdNgaehPQiD0quNeWlZVgZPVuvRKzRpyuV1oWrUCTFs4yu5do1Wlx5JQlJC2qknRQR0rUaKYKUElD9Km9/C9hPefYHmlTOGZDChR3IEeFKnjsw3aFZWY2kZx9uuQSvDhD4xwaN8gflcURdoUM5cJDvcSdJt41Qrpy5fZeO00Aa9kxKfQtv9hLqiP8sTLyxQ207z/7sPsHxrgwvl1srfy9AZ9rOTjvB5PsR4exFYUrpxbYHZ+GTu5xinS3G9l+IM35gh43Bw7Mc7l1/6Kl55/nsnpEhWzA60QIdh9GH+on9/9nd/ls3/7aWzLwivgqKaQqZicraRZLEtSmRVWkt9g2V8CMUbOVkB3kRQaUxs2K1ckH3rfCK+etunoieLzSfJGmqIu2TNxlMVXP0Yw9D4iyhKWtYQtbbpRWCh7Ubt20xnJkVqvMDB4FycffpxXzjxDSNEZ6dlHqQAry/Osrl4jX5hB5DcIuf28dG6Okr+bZEFh/sYsQatAdsPELU2SepiRB9/LkXe8h+hwN3gjmFfSvPh3f8cOfwf7Dx0ksn8H2XYdI6YQ8BfQ7SWC3UW8HRJbWrVnSUFVmon09edOKLXwoZpCryoKaiPJuKqom5aJaVuNnghIWUtatnFq3RKnXKn12pbVSmai5gCoG8t1r5ei1Koo1YyTuiGhCqWR3Fzl5CYIUfc2NvONZM0IEQ0+4k0VbWeTNmflpeZKzV/e+pD4diNeaip443PCyectO5W3XVdzX1a/nIPfUm92DBRbxjovc4IZt11/+37ejL67noM79F0kgfD7ECY1w0BCRYAFctNAjeoEIj5UzQsIFF0hEvbycChEYVIgK268dgHVKiMI4fONMp+cxS4tcur+EMPDg7jcd4NyCttcY+lL/4Uj/V2EPDlsOU2++Abxza+gGFMowuQnf+Z9/OCHHuDggXEyaT9//BdP8/VbBdozK/QHTFbTeTbKLg4dmMDKlDh3LYFfs9lza5HBpRSVis7rCZNCQaKZBW5dfJX4WhphmAQqM3jdFj6ziCt+lWPDNmOD3Zw+O8d9b3s3lm3Tnkryhz/+o+SefxlrvcxnX13gpesGP3b4t/CLZbTKAlnD5nw6zJfmPRzd24G54GN0fD/93ROUpcFi7hwBM8jVycuow+/HZor0xhnWVq6wnryGtA0G3ZI19wGWUy5Ud5BgW4Cz517grvt+CRtBwYyQl34WluK8/uJ1jO5T9Ha28Xef+TjjOyPs3hnBq+e570AfuYxOwpSQLrFDEXilyrrSzts+/FFOHd2LK+Qnkypw/tWzXD5zls7uTnYe2sHInseJWynOrH6dFe0GWdcqP/WvPnjHMLhD33GSgGVbjpj6puK8jR+f2wTYt7MA28vEVnzEqdL/855zsfUXhxekxRNSU4Butz+aioekWQWm2Tiq9iVrnoXaXAhRK/9YRVuNioGqatUypVRxQgHV6kS6TigQIBQIEPD5eePsOX7hl/5j1WNQkpCRIJWqkZCx0dvcBCI+hOqteou9KjvCfu5xByjcACw3fpkG00bXelD0LpaSs8jSIo8/3k57+04019tA7KGSnmTtmT/k7pGduJR1TGuSVOZFUskXUIxZVMXmFz/6Ic7PvkgmL7l+LcvHPv0NXprN0V9YY2e3ztXVLK5wDyODO6Fg4XF30uYTTFyepjNtsFEQXEwaFAs2mlXkxuvPU8gruCoJ/PYyPpeJzyigbV7iwQkvPZ19/PGff44f+9e/gLQsYskEv/rud9G7FGfyZpIvnF5lejnCDx/8NTR5E628xKbh4YW1AOcyfg4MxzAXfIwfO0xX+AAblTlSxXnUgsqNmSn00Q9hll4ksXqB1bXLJDO3UDEY9MCC+wjLaxXaOrspGWnmFuY4cvfPYNomeaOdgvBw9dI0Vycz0H2CrliIT378T3jX2w4QDpj0tSscGO4im62e92qyyG63Rr4EovcgD33gZ7j3yBiK383mWooXn/kaawtLdPd30rO3hxVsCm4F75ibtoMeRo91cnD/IEKCpgikrMX812qR1FF9W9pomlZNeG8kpTYR5oYx4TB0haiWz9U0FVVVmop/jS/sWhJy3XvWyJ+pGceCGihQf+aRteo+Te4BmpW+nPptwytRBRQaIIAjlLERwuMMC6R1jpZk3bekb20gvJU/vm6QNed6s7Op1dx4q+pE0n6rPW8zf8MgcXhDRLMC0nYOzYZB9i3ou5JzsLXz3h3655BDONWTjyy76louWVjfLKD0ehFBHTQFimAnJfbpLPpJD/gU0CVCE7g8ITr6j5DNnKYz50aJmPjDIaLtMVSivHr2Exglg4Mnw7T3HUWIfcjKCpWl/4td7+xCVZ8DOYAiR2jv9HDogQqq/WlU+RA+Mc7/+NiXkZNT3B8OcG1knLv6PeSVCRJrG+ghHyheJhcL7PaoHMRgZWqZ59+4yOb6JpYd5JVSGUUTlLU2zNwmiktB92goukSgsG9XD1gSV083vmOjeHMaky98lYff/X70XIbRbApPxUN/10kmCl38xX/5fT7ybokq3XjKLtbMfmZmymw8m+H7PxDlv33D5re//zAV4wrpgh9N7Kdkz5AY+CDK7JfJR74XlxYimJ7BWHyBtK+XoEujXYkQV45TsnOomk5k6BCLlQjdpQLeoBfhU8gbRcT6OjeXXybq1mgb2sPK+gYdhkogEMPwSDI3MrgHe5is2PTjoiukEu6UTCUNjp28F6uS5eJijPXlFDetLFFflnefPMXny68ytseLIUKkyyVQA/ynX/99fvM//zv+48//Lh6351sgEHfoXyZ9u0q1cIys+tDr1UOaRsJWfMyhMFehRodjv3aFqCcvO1a6LZnPsXL9wm+xV+eYZoUU0TJXc07RUCycK9s1JUQozQ7GziWEoiAtC0TVkyIdqKgE1K1IXn0XdUWtpmDZtl0L76gqZra0sYVWa0ZVResURcXtdtHTHmVkxzAuxQUlm069A+NradT+2nlvCWQR7KSJdaaAdq8HvAq4JIqi4Qt2EencRzZ3he6cB+HyEW6PEAp3UywYnLn0WYyKzd2PteENnkLQi5V9FSX7tww/3g72UyCGUMU+hvZ4qORvotmfQZUn8SkTeJMVDitZ/F0amZ2jHOv3s5QZYjNVINzbznJRJb5aol+FCWmwdGORL75+lmLRwDIClEoWiu6irEYxMou4PS5UtwIquDUXg/0dYErcQwPsP36A2cl5Ll95nUfe9X70fIbxTBrVDDEx9n0klp/j3LMv830PSRTbjafkYpEdzJzRkWsWx+8P8t9fgz/+kbtYTj6NKSfQhIuCnSXZ8x606c+S7fxJgqoLmVyl5H6DnLuNgK7TrrSxqZyiYFVQg0G8ng6WK0G6S3l80QCm2ya7nmd1dZbpjbOE3TrtO/cxdXOKSKgHVzBERZjkVg1cA11cLlvsVr30hXzkLJuNlM7x+05gFpOcXexi4+Ya51llfyHAoaEu0vsKdG+ssmIarCfSLMyk2MhneeQ9xzn9/BXy+QqWrMb225aNYVdLmVu2jWlZqKpCo/hmjTfrnKGg1Hi22ZTLsuxaKJ8zUbnGP1JWy/jWfjYtG11XGwZGo3O3qIIKda5sKMiiqvArjYSbKpM3opvquILTQeBQmJ3nhyOKycnhjbUa+MXWBigtt9Q0PJz8jrzdg9AyUtZfq4EAjTdaz7zqTdmt8yNvN1xqVpuk6o3ZimBsfamZkN3cS+MkrnluWl51elC2sxi2oTvViv5XpUZQYO0BrDcekRJzPUnlwgxiZQ0t2w2+UWTCAFRwaSg+gejVKT+5iPZAO0qHBigoHh+hg/eQfOF1jCtruA920hPuRK/4sfLgX43TE/TQHu7A7QoBCaR5FpHZwNU3Cko7iB2YRh5TzODqUFFdBpDDzF0kuXSO7OwCvbvHOHX/wWpy1oU5St1hegI6A5aBz8yzPFcgN3uVyZkrrCbzlCUIdEyh4gmHae8cAiuArevgttG8NiK6E0vJ4I2UULxRIpZFTEvTfV+QMy+lyaYy3PK1ccUV5OrZK3ztrz/F0sI6s6Ucw+5RLPMiN0/fZG7Zx/DRu/niM1f54KP3ELeuE9MH8WseiqUV1osBTra5uPXKEof3JvAFMsQ34ty6WqF7aBVLhPG4lujqkGRzPjIpH307eshsZJB4sMtZbM3GdAlK5QqZlEYmscpIr8bktSvYYzodfYPYloXfV8IrTVLxCrrqQno0CoqkN6aRrwxy3+OPk3vqRXILOTLpMpeubtAx5mWwW0cHlnI5KpZKqazw1I2vMnbwSLVcHXfs8jtUpRYh+48C3GtCu+X321F3Z7iB8xvUwwRqSofcbrZWZb2uJDS9E01Ff6twbYnxry/dEkrQWvnoNhe/U1jKZuWWrSikc89VJV82fpbSQgrRcL9vzXdQFJC2QFWqPgHbphHeIaXEklVlzlYULKq9DVy6hlvT6OvuorOrk0g0zIFgHwOmG1+2AtM3IbQHuV4BVQePguJSkDGF8hPz6O/sQQmAdGvosU58Y4fJvnER8+IK2qFudnaW8fh8WFmT4GaS3pCHWLgTVfEBM1C+AoU0rp5hEO0ghqiU5sC7ge4BVa8AWYzMG5jJaVYqJgd2DrP76BgKcPnMHMFjw+zyKwwbZeLxPAvxDMWlm1y7eZF4qYSUKhINU9Px+oK0dQyBEcTy6KjuEorfjxLswlKy+NrKCG8H3YUUse4Sq7qbK2dTZFJZpgJdXNK8XPrCM5x+5ik0xWauVGCney+28RJnvnoB09WFp2ecb7y6zIcfOMKt3Bk63MfRKwbZUpJS2ctdYY0bry5w8kSaYiTNzNQa8YKgvXsNiyA+9wK9vS4SSR1fMEZnNEY5XUBKD7KUQnoUDGFTKFqk4oJ0epPd/S7OnHmD+x96B1G/Fytv4PcW8UiT+HoZT8BP0a2AS6W9LUDJHObeRx5m7tPPkM6rbK4ZTC0UCQy6GB/uwKOnSaUlOdsmvCtGR88u9nTu4sLr06C4KJcNKhWjBswqaLqGrBjYtf5H0sEvDhy+8dALRy5Rw8tFlTUt20bVtFaerDGMplUbkimqgrSruQp1I6CeZF83qhthQULexluN06ZhMNR52m6q+1vziQS3QQDbI/LVNbcHGm4f/1aYxFvK1YYhUj8rm3u+vQrT7UCCc49iy99q29W32YxwhFY1cjjEdnf0rYXBP9M4cC66ZQN3tJPvADUNBAAss/pz2cRaScD1OTSyoFXAPQD+CISVamlTVaKE3JQuxnHtC6D3+1B0m9CBENmX3ZiJMi4jCLaNNECaIK0o410e/G4fijCxi7NYyTeq6yoqoCJpJ5WfIpNfJOiWKCIN1jTTz88Q2ZjEsEusyxL3DbQjNEE47MYfDaCakvRqkpXJedYSCVK5JRK6iWuoG78I4FN0wmEBqhdXtBdh+bF1DcVlousmFU8nqWwcn1JAppYorsxgZjfxhyqc7N9LpssmMLQHT28/U1cucv7V13FpKl+6lGN/5yZr51cxFtbZH4jga+/gyfNlXB1RpNaJJjpJxpdY3ligd+jtuNUM59byHDCyuDwWHjdoRpHJmVVGhg00T4BCNgnSjaa6ia8v0BmJIBSNRClHwahgWpJKxaCUTRGx8yytJTErHhLFFKnSCgPBAboHAmSyRXxulXIW8ppE6xboikolGCUo1zh2fA951eDCrRusz65y7g14/JEoadONTy3hK9ukciXm1mdo6zv4lm7QO/Qvm96qms+Wkc3wgxa3vmy8fpuouS0BoWkcOEt6NjR20RjkmMOhIGyZp6VBknS8CY25m+VUxW2G0FaDuWlHSIcB0epuF8JhmGwNN3LkVtQ/L+pr1I9tKRt5B41PrW7nOBJBG2hoTZBrtS7Ig719CBTavEF2iiBaZg2WboJugmsYwgEI6437UEIeCq+u4rs7iqKCHlYJ7AlRuODG2CyhyTawNqvnvaGiyigHuldwaX6ghJW5jJWZRNiW47zvZj1zEWklCHpMhEgizSmuPz3JcGWFguGi5FEQOjz55NN0tncRjAax8hXi8+uszK+wkYqTLayR9Nj4d+/AbfsIuFV8fgWh+3CFexBmANujoLvKCF2jrIfI5lL4lDzW5iyp+XkUMnS4DU7uGCfbYxMancD2+7l2+QqTl64R6x/gycs59ndtMPvNVULrOQZH/WQCgnMLBq6OGFLpRKeTqYXXMAjS1jmELuO8sZzjAZlB9wq8uk0hl2V6bo2hAQPdGyabXMflasM0TPLpNdqDIaSisVHIULZsTMumUi5RyacJ2QXmV5IYFTfr+RXarADRQJRyD6ysJfB7fGTXbTyaguZWUFUFIxgh7PZy370HSJ8+y0pmiZWZDK62Mt/zcBebFRdtqkkub2P4VXxBP56gH6/fj6qYDc8XQlSjC4RoovO1x6+lNr8T+a4j7bK1Eo4iqq4sRTYbmNmWbDzjdUXdlnbVm1ZjLIlE2NXQIEWAtVWnrYc4Nc6EJnBQ58aO9+8AACAASURBVNNGSF+dx4WzWEGdH1sBi+3ONic40Vx7mzOwBRxwFFxoOY+aa271Nzg9lo2RW1wATu+M83Novv/mhR62bLN28NT+bvXzxPmWY+/bhxB91z0HrRu6E/L8naQtQlKIanUioSBcLrS2MEZZg8wScnMF0VFAdO1AViKQDyCtCtqJDgpP30ToWRRXCKXDRXBHnnAsgrRUpKFgoWLYBqVkHKIH2NV+A11RkTKDnV3FXL2KSgkoAQqmXSaZ2CCdWifcbyMrOYoLSVaeu0woIVC7duDd1Y/UFTxIdu/vJ52pMD+3yfTNRRYXlon6i8iuNgb27sAX7iKkBQnrPkJd7WC7SKJjlQ2kYqNSRq1kSWbylBQP/kQJY2mJzPIt8tky/lA7YztH0EeC+A+eIGuUiU/PUSmUUDwBFldh1lpj5ivr3Ocpsf9QGW95nQPj3ayWJIOeuyjml1hcWWFzM8mRg1FmcgaTK2XyZQu314Nb8+Big/n1EiiL7Bo5QtEoo7pcuH1ulpfn2T3QhSpVri0ssrqewDIlwqdiluOIYoaVXIiOgIdUdoPFNZ2x9hF6+r1kryXweH1UEjZlYeFud2EKcIXd5NaKHDgyTtoyWUksMb80y63TgtyJIFYoSIcisMtlchmDcjbP1esXePTQKfRgJ4qqO5ChO5b6HapSMx4X3gw9cgrv5mt15X3LWIdQr73gkPDNcXXDQG4Zchs544tpRRe3H9fqkagrKA0lp67715WX2uot23NI+ubn4wwFkCBFI3GzHlrVsrMWxK4p3KVSq1Jk11d3mFa1MAxR62JbV7Y0lwupKIztHCFXrKB5A1TyGmpJgfwicmMZ0ScR3V3IUhhcbqRqoh3vIPeZKxjtBfSRGLq3SKi/RKktgmUoyIqoFmUo5bH1Clp0L8PtUwhUkAms+HXsxC1Uj6B63qsYdoH15RV87iThTgO7uElxcYOVZ87RY3vIDu3D1ddBrlzkyqVLPPRjd1ExbK7fWGFmap5sah23p4jsjjEUGyTY1k/Y9hIOhfFGwmDrJNGxSxVsTeKy8lilHKlcCUPx4N8sUpqfYWNxCdXSCLd1smPHDvSdAYLHH2Jzbpns6jpGqUK5KJhblUzbq1x7Yp0fHnczaGXIa5Db3cFqUTISPUUqeYm5+RXaoi7aRyJMWwWuLZcwTBtVDeDRVHJGmfm1ApYssHvsLvLFFJGOIIVSiUIuzVBvB6rUOD89QyaVw0ZBKjZWOQ6lDEu5CP1hPwtr03S3hegd6KFN05iaXaC7w09+1UQPq+gBsDSBFnRRXClx7wMnmErEyV1aJr64yRQ5CifaMUIe+imTSxtkUiXSyQ02yz4OToyB9HH54mWSyRSaYWIaJpVKpZr4q1T7DDSeR9uudkwWNBv2OUJ16iVPq0pn7dmERsiQTS35Xlaf93qHZVHrGmxXrRAkEkUVDb5r8dw5DwtZN46bRoCzv0iDzRXREnZUBQCcBnorteALtymmTu537E7Wlfrb53PO9Wbx+qJ2P43pnGfslj207qmeUN4ctl1CtXPt6jKOxbbNtah7I+zqaarU8AinofUW9B0JK2rEljqSM77thhR3aBuqM4fDzS5rP5smStiP6+BeSi9sIvNXIDcDqwvI2R0Q3QuBvRAG9rrwH+6i+OpzlDYF/u+9G69dJNAdQy0msDYX6e4IoQmF2TPPM3L0ZylPPgGWQJgJRH4RZWMVQoAoIRkjWbxCefYinvgq7k4VM1Ng5ZMrjAgfX3G76Lnnfh790I+TLwlK2RJ5S+HWG7Ncm75BRhYYGO9j4ugQN5QdTIQ1PEi8Chg2XE1IhG1hpnKUkmXy2TxWagVlY5qNtQSlvIuguooqyuwJ9tA1MITeuZdnk+e5O+phPV3gy5/8Wy6/9k0sxYUqFH7z0V5+ZdONxfM8dTXPrO3lX43t4Ucfu5dkehUtm+LqahzTcrGvuxOsedrUItMzZVJxjXBAZy1t8vKNDO8/2c7f/N0ZfjTQSU9fPznbRc6EsUMnKJsmHip85UvPcv3CTaSqERjqRBVevvm1aR774YPEbyyxXtQIhqIkxiTtQY32mMradJx2EcUlNXKbkv4BQUpXMX3jqB7Yt3+Mzfwac5+/THxzjWde9/A99/bQHVHRPGnmlRQXv7iCWFV439FDjOx5AF+gA4TWckqK1v/u0B3alqqKsdJA/rdV5evKRu3nFh/yNkBRizLekMWigaJLWa/403rBduJDCIdJ8haA1JtghA03u2jhja2Cte4hqM9TDZlQGkK4LmBFY8o6KGk75rAsC13XUKgq/2o91ELIalImoKoKLk1DUxQ8uk44FEbXdfZNHGHnzhEWZxZYPbvIDrqQ+RuQnYXVZWRsDEJ7ITAAbQLGdIL39ZF7+m/gkSO4DgTxCoNAVxtqLoGxMcvInjDLU6us3iozuPMdlKa/XC1qYa0gUkuI5Dq0e0EY2OxjI/9NuD6FuzODFoJyMs/qX68zHvTzKdPFuz7wQXYdfoBiSeeX/90vsJbIceubN3jl0hl8HUH6D/bR1h8l1znBobCCZktCusJGERay1T49ZjpLMVEml86ixGcwNhdJJnJUChphdQVNVDjRtZtYxx5y/ghnizc5FvWwvJnl47/1X1lZmkIKnS6/i199uI9f3nBjVz7Dn71W5p3+KO8ZPcL/PjpOKrMO6U3OLcSJBdoYiLpQ7EVCpJmcqpBNuVB1jWuLRTJFF0cPhPj805f4mY4+hvfsY7UgcQc1OrxuKpaFW5b53KeeYHV2HX9/O76eGJWiysvfmOF7fuIu5l6+SpkY691lerstVLvCrh1+ErPr7PD1UMzpGB6Vti5IKgo5bS8dmsWDD95NvrLKy6cXKaQLPPX6Eu++L0pHW5asp8RqOc/SjTVy2Qy/93M/zcj44/zKL/8qZ8+cJZ3JUigWkVkLywSLGj/XeNJCaSiSwrQb/KEoUG+8Ue1AXA+Hqb0pJVYtZ8aWElEPFWo0YK0+/wqiUQpVqdoJNcOhyStNRFs2jxW7NonznHGg+VXwv1kNrFFhqXGV87oarPAm50fV3eE8C9gCZDjWbXg5a7qsaM7vcD861t/OUmnCEq1nkvOsafUwtAwRLT9QD/ly3k4LVNLAHlo9HS2gxbcB5P+zjIM6ItPY1h3XwXeQaoJPSuxSGatYREiBoumgaOD34bn3GOaXiijFAuQTiNw8rMaR4hWkS2JcuAvtZw8jhvqxygbGpQq4+zl/Lc6BzgLuDhdnTq8xO1/g8K4g4dyniXerCGMJ24ggySG9ErVPAybIFif587/9AnvMDA+OBBG2RnnZRbC/jydnKtz/o7/KzolTlIsqs9dy3Hh+nrmZcyyl45x422EePjmB3RZgPlmkS6hkJjOcW6ownaiwUa7gFiXK89fYmF8HaRKWSQIk8Ssl9gfCGCEfaU+EAd8D7Dnci4zM8tw3PsFvfPhe/vzsOJ/4nf9AIr6ALRSkVDCNPCG9wp8MxVj/o9/gi1nJpZzgsimJ5Uz6Q22sLp2jy68zOa/w+lKefUc62cido1SQPPtCmve+eye7xjzMb6T4f//bZ7j38cf4oz/5Jg88foiJg2N0RtrRUQnogj/4m1/ixpUrVCoVvF0RhF+jsJzgoYePolkFspaBzEZZW9E4v3qah4NHKbij+Np95AuCkmHhTRq4gxp9fQp//YrkvffoDPYMMLFnjGfbwiSMNJPPzPDwTov1LgXNpzIxGGXhoM3yzU3+9OPP8h9+8Qg7PNXu0YriqXkgtZr7sXaw3XaG3TEY/mXRW5zVklqiba1cYe21rcr2m7nx699b62s71YPtrmmdqymUHeg9TaFWD2NoyQlAtOQZOG4H0bKXLRto3NhWdM9xvah3MG4idPXvtm0j6uuLViRWVWsx2YpAq1Upql9nGiaKquD3+VCQ6IpKJBBkT88Ax44cZsfAILrby659ezGCQ5TkMuZLBko+C7kkIjcJYh6pKEiXinHmONqvHYfRUcyMB3VSpZjv4MK1OIe6i2hDKf7hpRncSIaH04SLXyTZ7UIW55BmJ1IUIQSi0wfsI1u4xO/96Sf5SI+bWCgAZQ1z04u/v5fPFQ1+/P/5K6KxARKbFjPX0sy8tsj8rfPMJjZ434cepXNPP0WPi2RZ0oVC6mqGywsVbqYrlCwDrZKhtDRNfHEDIUxi9hoe0nTosN8foBLykva2MxZ4FxNvC3Jj6XlKGy/zi28/zicujPMn//5HMK0iltARlo208nS4Df5qZwfLn/8z/jipUCrCdWETLFj0hNpZmnuVoViYMxfLVPKS/p1hzMoc5YLkiacSfOB/28e+g0VeOX2Zz33qGY7cf5Lf+u2n+YGffJjRoZ0EPT50oaDbRf7gs7/MytQyQgU94sbCwk4XePChI9jFJCnbxIrHuLWcItBzlUO9Y8hKH5GuImtZGyteJGaZ+P0efDGNT5x280MPmewb2c3k5DCXJy+StrJMPj2FfnA3a36bvmiQ3G4XG6uS5LM5/ugvv8J//r1H+d3f/U2e+OIX+dpXn2NzfZ2bU7fIF4qUShVMqx5OJDEdubOmUs0nQFCrHgSqWq+Z1SwXrNQtCylrSfRNZVepG9o1PrZrDKipVW9YnT8aiPyWI6PBxwogWwsh1JObt2r4QhEokkaOQ11VUmrKe10v3bqc2MYQ2GqQONXpevz+bdTUvluMhzcb1jRyxBbFvuU0bYSF1dGV+l5a1mjEL9bHVA/mbUH4xs3UgQ9nsYVvravfSUj+X52EAE1FDQSwEnkkEuFVUCIanoc6sDL3weWDsHAaTDdIP6RfhuI6SkQl9z+mUPYIiu4VZl7/B0r2HMfu9uH9nvexee41xvdajBzycOn0IpOfe4HD37uLwnIZl38BVS1i2UGSz2Xo+iEXM2unOTWfpCdQwSP8qKKTSj5Oxm3yA7/4f5P1DTM3tUTy6i2SN92oWfDteZife3c7636dKzmJd8Nm0OVBbuZ5emaJweEYe3o8tK3mMFJXcR3p5j2PHcfnN3F7inh1Ba8WQHe7kRUv/f1eihXJ2Re+RvL8JX7oA+/lP31W8OWn/oBSoQQ+P0L1Ik0XG6tXGNp1hN/6hffxrg//LD/WPUguDPOm5AvxPPMf/UNOHAoxfNdujp+8h069H9PSeOmcTUVkeerrn2JsPMT99x1gaHCcvlg3X76e4+KNc7x68atYlJHCRNVUSqkShXwR02eix3T8XpNoIo+/awcp1YVdVPDF2sgXciQ2pli7ESXRF2dXzxCzQiVWlmjrJsV4Bd3tQpoQ7fSg2hLb1OkcHuWxj7yfL338i2Qzm/z9GzkeP+Fm3O8hElAJTOjk/6xIQrtKMbtJpRSpgRw5ZKWAOzxYQz6UN4FT7tAdqpFo4BLNF/j/2HvvIEnP/L7v87y5c5ocdnZ2dzZgI7DAIl/gHS7yjuQVeZQsBpUp2i5TtFQ0JdG2wp1KKpblkl0iZZqmLFGki6c7kj4eeTkBh3DAAgtgsXl3NsxOjt3Tud/4PP6jp2e6Zxe4E1kyizJ+VcB2eJ/w9rzPL31/4V71/Z0EzG7H0Q+98P3g/h96zNsP7fnonu+7EYydizr2QjdCsP1tV85A97TQRgLa1wBKoqJ2OECkFFLr9EbYypOIIsLAx7EMlJI0Wy4Lq8usf7fMj3zg41ixJJpjYu5JYHx0gkhPwIVTMPcsGPvAK0LjIrgNtIxO7TevYp6Osz7/GqWN6yhjlYefSBP75E+z9O2v8KGPTrGy7nL90jJLF17l5I/upX6rSTJ5C2yJu+jgz4dkf1Tn5upZfnK2xVguxBYFkFnCVoWaI/lbn/1XrNPP9PlLlG+UqcyZGC2N2AMf5rN/vZ/XPY0LRZdUPWR/3CDYqPC12wucODGCUbKpbqwgW8s4YyMc+NijxJM+jtMkbjjYZgzDsCF02DMep9qUfPvz/56xYY0HTz/DP/2Cx7e+8y8JDaedkK3nCBs1zr1xiYOHzvDrv/opfuIX/yH/ZCBGScINN+LzC2ssffa3eO9jeSafOsEnf/LTZK0+qo0Gr1wICfUaf/hnv82PfPBfkMpOcPSIyfhIju9eq3Fx+hyv//1nkcpDaG1F2K16tBouYSrAHnFIhy45LyTe10fZMEk1BenhAVrNedYXBKu5PI3+Kn0pg+XAoXz7OlkvRyxWQDcgCBXpfgsHHT/UOPDoQzxu1nn+K8/SqAd8/myNTz9tMZEyqQ/qxA+YzP9hk03jKo1KERJJ3vv0kzz+8EmKayv86t/7DEnHYrNSp95otZOKNR1ThyCSWx59hbaVBKtk1JYPW83MdF1vN9XbaqqmhGiHCykwDIPuhGIloYNBCLaU906PD9g2KIQQCE20m7PCtve/26Pde7TF1t7UNk+CNhrXHXq027PemyfQUYy7iiPcc5p7DnbXeX67EKId3tA5+J1rd4dCdsJ47jdH99htNFV1ekT03tPOfPff030R3h4wpSuf6n4elPuQ/pnPfOZtv/zsZz/7GYCf/umf5vDhw/d83xEA74QYvBtW9OelLjhL0xC6hm4ZiC1PFJGCYkD4yjxCOKD6UFoOKRRKuWA9iJBvosnbKGOVRnMZVy4y9SMarufScpu05jaoFat4lU36RZ2HPnmIF796h6OPTWBEOo2lOq2yj1nIIjL9fO6fP0eq3mLooQHip6ao+/uYfmGRwtP/mEtrBe6+dpX5i1U2ioNk+uMUPnKAiRNZxgYs4kqQCxSpRsRr8yENGTI84mCaJhnb4PBwiidPTXLiyF4O7i8wMpSmvy9LIZcjk0qjixh5S2fmSpXq9z/PQDLAOfAIn3vL4YUXnmezuIDfqiI0DUN46MEarXoNTde5U7R57UqVyLBJOkk2b9c5mTM5s38ZLTfBgT2nGM3vZXZhhV/8tb/Ppdlpapt16lWPO55Jw8rynqMnGewfpulv8MiT+9jY3GB9vYhba+DVWrTqLSJDYaR0YpM57FwC0VTYVoo9Axk2ahqG72FEAVEY4bUiJo6coOHXSFgWVhShlSX6poaTtqg4sCetiPkuhkE790HEeGP2Ks3iJs25BukCZAc0EhmTmpngzpcWSScMjh/bTzpbwDQsNK+CrM8hMFFuDaHpbeSJNrOXUUTkeTuJlbDtldh5FN89w/+5U7lc5jd+4zcASKfTiN3PwD20Bebf12PVC6Nve7i2P+16tR0a0A3L75pT7Mj/7tCj3bvbre+3n2dxzzWdzsf3Eadbjrsdg6Pzfvs+RbtkJJ15tHYTKraUA22r+ZTW9Vp0dX3ajkzoCktQyK7mVTpoOnXXo1yvMnXoIIlkEuVGhEsN5GuLaEYcIYdQegqJhxI2mIcQ6nU0eYfIKlIpz2LmNxl/BFzfpdlq0ryzQaVcRVSKjBYUh56e4KWvzXDmw4fwNwLqizWCAIxCjshK8fuf+Q7jhmT4gxNo44cobeSZu+SRe/LXeGM+ycILrzJ7w8H1cqTHMxQ+MMneE2nGChZOKBiOFKIBF5dDNlouB/YmafmS4ZTNg/v6eOz4JMcP7+Hg/jzDg2n68jkKuRzJeApLi5ExNG5eKNP83m9x4PgBFqxD/MmbLq+9dpby5hJBq4pmGBhUUO4GvtsCTePmusXZSxUGRgfwKiDXXE7lNM4cWMdPTXJy/yMUkgN843sv8E/+1f/K1dlbNCpNauUW18IYfX1jnNp3mEK+QCBLPPbeg1ybvkWtXMWrt/BqLdymS2Qp9IxO4tAAhm6gBToxO8lIIclqRScWNAkCj8ANMXSHgb0HCGWTXDLBQCJGquXghCZaTKfhQL/RwGm5xDIOcSeB70uuL8/gl2o0ZuoM7tfJ5TVEwqba1Fl8do103ODMmaPEkn0YRJhRFSsqYumKB/b2Uy7X8LwQXQhihkHctDk0todEMoaUEdGWom7oOrZltkOIttpzyE71oe3GZb0ywdjq2dFR9rtPYSf8J9yqsthJuhdbZwCxc9K39ceOQ17rPW9CsFXIR3Vf1gMqbBcT2O0Y70L57kkG3n7f+3knVGrHvug1KHalC/S+ETv3szt3a9eW7jvPTr8JscvTf+/99Iztmrybg2pCQ3Q1Y+zEWgVhQLPRAOAzn/nMZ7kP/cWQg3dQGt5VJ+5H93uqfjC8o8IQoettYSYlRO1qAMoNEIYLrQoIGwwBmoVKPIhauwsqRehuEMkm5CUimaQRrvDarXXmL5Rwyy6WCBlJSY71Cda/P88TZ8YJsGgWXfwFj/XlgJtRyHsnVulLCYaPjJE8+BBNeYC5RYPk5E/y0vefY6RvgGFH4o4NEDomoxNpGNDQnJArs0WWigahZ5MxDTJpjUMDcRKxOEqCrWk4hoZpaDgaNMoNtNBD13SCwMSvCyIRUlm6hltfYeDQBEthP6/e1rly+QKV9QVkqIGyIQwRKkCTEaahMXDkAHVpcGP5Gu4XV3jxG0mEp3FoLMHgqEt86gGknuOlV17nP3zuD7h8/gr2QBzlh4RRxNzMBi9+/wap0OVjjz2FERo4VoEf+/D7+fB7zlCsuFydXeDyzUv4YZ2w3kRb9wktndDUMTQfkwRDSY+qFHihROkKMwkrSzfZO3Uc0zBBKkLbQ+geGg4ihJoXkDDbCoYlDIbSAxybOsyFhQ2KS4vMn2swkYvTP5Rk2PYZPpYkVozYmL+FO36UbGYMIX2iym1aGy1kaRldOQg9gTIT+E6S5ZLL6OgIi7PXKGQNChN7MYaP4Ls+r3/rmzz84Q/jxBP3Z0rv0l896vGo3Z/37CTDie1/tnvXdEZvOYXe3uO3I8q3DYMtb9i2YO5eZ1es/87yXQJcbO1B3X/n2wmWP/gWd9bo3Tiqy2TY3Seh59lXqu1N7Sg6oruT69b7thsVlGzXjte6FCLA0DQi1a4AJZVCaDrxuENfPkvDDdhYWiFouhBKCCVaGKIsD1VZACMOMoJUPyqeRm0ugEwTuGtEooEYs5BZm81WhbduFpk9X8QvNUnYEVNZxWjOoFaXPPX4OJWWhrnmUZ/3WSwFbCYanM6vMZjRGX5iD9bIU5RqfZRqBubQIb7/0ncZHximkPVIZdI42Rh9owkoCDQn4rVrCyyU4sSwsHRBIWuyN58mGVPISJCyDBzLwNQ1TBSV1TKOJtENC7dhEniSKGqyuXYLv7rM2MMPc6Eyymu3S9y8cYNqcRkZGShlQyDRdIWuJE7cpjC1n4rUuXL3Tf6v/3OeOBYJzWDvcIyBYY/4kYdRWpo/+MIf8aUvf4Wr09NYORsVSYIw4vqlZb5lXEY1fR48cAg9NHHsJL/w1z5BsxWwsFFhem6eW7PT+FGDoNpALbYINJsoFqGJAIskwymXNVcihcRwBKHWYnX5DvumjjO/XmJvJgtxDwIfHRMRtnvbrVVKZPw46WSC8fwIhyf3c315k43FBW59r8b+vhyJKYehVMjQkThOMWTlzlXeenORVrXGWC7kkYNJjudszFjA6IP7KU2O4WLi6jEa0uHIocNcvfQS+dw+3rizzO3FMrZuMzE8yrnpGxQrdYTQiYQkjNq9PCSSTh4CXZxA0F3iV3WOxo4R3wkb6nICtM/Gzufd/U86Bvd2SdStVYS2VRK1E+7TbRR0hTLuxC/18oIe/bmzyXsZwM7Z7sy5NXALxGiHWe5YJDt8QymEUNu5Azt5uN0sSPXwrp4op67tdPbaY8Ds5rNdxlaPI/k+yEi3sfIfE/r/FzMOtqyQ+y76rhKxi3ZJtPs15ujxY+1gVjL00bBQKGS9BX6I5jgoFSBSFlTqyLqLCD3QDERiBGm7RPYJovwNqtlNNgYMNgZS3L1yjRlLsnZ7E8sxiMkIrxqigItXGzz64zmqM5voUiMMY5SjLNcX1tl3fZkHTmYZO/kQXjjM+lWPctlFk1kqV59j4vgkZmGA5IAiMeSQG2oz29V1n2a5ReQnMUyTVFqwL6+xr98kUGBq7TrgkVRUqiFG6OF6QbtcayiQXgStgDBcIsQjP2KxaUzwxjWfl9+8zcrsNEGzjAoVMvTQlQbKQEYmGmDG4mjKxrSbzFyfYXq9gmPbLGcTTJ46wpMjSa5cmOa73/4G3/j2d4mUjqyZaGa7FbxXLjF78zbfUw0ePjJF2lFsrDU4sG8/jhlQa1TZd+gwwwdHuPLmK1SWSzTLLlEzIExGKAEmELNCgoSkGUWoSGCogEZrA7cZoicidFNHy2jQVGCFmFJDQ4GlEwEyVCQtmwf3PcDca9cps4a3HFCZUdQfUOSyHqNP5vG+WqS5uklrfhWfflRQR6yvEa5vEJVKtDYDBDGknaFqJnFjKVbrAQvXrqEGQ4RXQmtGxAuDhH6w1f1Vbnsf3j3Xf4VJ7RJU70C9RuCu6j73uXa7Gs8uw+BtttHL5d5OYHUu/OFQ8Pb6Pf/rRiy61rvPvtQ9L+4zt9h50fs7tr/QtLZxIdDQdYGht72QMoq20IMt5UC1DQdDFwjZDkNqGxcQd2xGBwqUGz6B5xKUqshCExUJwsDDyNqoah1VcxGhC7EswrGRzZDIPoXsv8BmokZxTz8VFPU7N5k1IlYXi8QzNsLzCSuSRgOuTzd5+OM5Nm9uoIcavkyz2lLcLTYYvrXKyUcKDD/yOMWVBOvrLeoNncjTqVx9lqnYQYzsIKNDCdJDGolcgSAIWV3zaVSbIA2smEF/2qSQ1diTd2j4AUnbRNc1Wp7CbYaIwMP1A2SkCCMdWgLpNQnDNSLh0Tdus2RM8dKNNS5fvcXGwh2CVrvTswo9EDZKmqjIQBNyi99bGHaV8y9fBjck5djM5dPsOX6I9+/L8sr3X+OLX/oyb7x5HqWbRJaObkgiKWltrHDpYkjGUuwdypO2JWvLdR48dhK/VWJsLGDqyCEuze3h6vlXKYsSzc0WUgsINYkQCl1GJLUm1WREqxqhqQAZNKk1N2g1Q5pBgMhoePGAoO4jGz51KXCcGNIS+GGEI00KyRRHx6dYjt+hpJZp3Y0oz4HVL8mnIkYey+F9tUhlbpVGqYbbFlhkwAAAIABJREFUDPE90Ps8hoMmlhQMpvpQaZumFqNupQhzA1ixLNrGMkcOCrLpBMP9FQKlEzQgZpnEbJtIKggkUVvr2HnWO55t2knBQqqtnh87XZS3Q2RQCNUxoLv92WxrzR3Hw7bxv21g9zoMdsJudozw7VO++9r7ZCLfi1u+PfVUT9rmQffx1N9jiHQ7MsQ2B+rdR8fJssNRe/u5dN1DT+gR26hj9yYUtI2jHYti6+uuKICe+6Jjvf3A3+HPZRzc7wd+16P4dtQtRjp/5S7bYNu0VL3Xq871EmQIUkdoBlG5hmy0sAYLRJEPg1m0pEP4+i1EdR3NUIiohW9L5OETBMd1VpsXmXUiFmIpljaaHP3IKPvjguHRGIEboFZr2BWXqhny0h9d5ugDabzRESiMwYEYfeE5li6s8+hHxknFDnL11Tss3rpNfqTAGxeu8eS4TWhXKNYkfckWw2YR0Rwgoe+nMV/jcGGYxF4TJ64TMxSWFlGTGqbQ0GGr10KEFYUo1yPdF6fVSlIvKjAl6ViNYG2R0dOnCWScr/zxBV558woLS3NslmpIInRahGENjQwKmzA02wbH7AqZgo4d0zC1iNAMcJImsYEUzXgOp9nk2Re+zCtvvILSHVTgo1lJNFEjDCTSX8erCtYWbKZnz/PQ/nEWX17h1t0kbnkBvbnEU09+gIFT76Vy4Sbx/hhlvUR1s0HkgZQWmqgTRh7JhE8QRNRKkmCtQuSkWFpaZWBYI5VOYOcNPMNGxRSOLthfsGn4PnU/IlIhMStiamSSvuQAS9oMcU0QlUJKt2o4p3yyj+cofrOJqOu0bs5SXnZRUpEmQCwug8zhrWmIyCYyYLO5wdSH9nN+ZgXTHML3iqzNLqIqPmMPPsSJ974HoUNls4Rlx4gnE7sY9rtn/q8e/XCeo26HVdtbRo8DaKd/AXCPUOsWgvTGJ3cLxK5qI51FuxswbQuxrrXvqeTRtXxHGL6TIdM9tifUqYcHs+WM220g7Qjezn11uezapRtpez5NY6uhmWXgeh5SKsIwItrqlKwJhWEodNUOSzJ0gaGBaQgKuRSmLVleXqO1uEo9mUJqBmGtiVQBWp9NYnkJI6qhR1Wk7uDHNeTBk/infeZX3mAunWKpVqfmBhx8zxAHbRg/nGZzuUa21CTa9CjVAl78wiUePJWlNDqB0z+J5VRJzd1g5WqJxz+6B1s7wvRL30QQIE2NO3dmOTNq4ZmbFDdDDgy5xFlFbw5giHFqczUeHN5DLGcSt3UcQ6GJiIYUOAJC3wddQ4QKIwjB9ymMZGk2NEqrimQiwrQaqNYmQ4eO40dx/u1vv8TFG1dZWV2hXm+gCNFpEYRVNH2YSFqEkUEUNqjMrZLtM4ilQGghwg5JpGPY/SlasSyJepV/97nf5c7MPEozUQI0M4kQVVQQIf156kXJ4lya+bVrHJ0cZuZ7M1y7PcD67fOM92c4+sApho73U75wE2fAYSNaoVGPUIGGkjpKlXG9Gn15QdCSeJU6nl0nMOMsLCwzPD4KUZOa3aJRr6KWmtT9kDMn90J/ATcC0/WIGSb7h/ZyPtnPAjYJDerzLonBCHtvRPZMjrUvV1Gbivfu3UfMzKLLKmrlJsmai++ncdfAcnKEgUTZsGdvHy++cZNs5gCt1iKFZJYThzLUUXzuC8/RP9RHLO6zurGBH7igJPpWqE0UhVuJy21jVkpFJCP0rXKp3XxA1/XtruAdNKBzZjqKfw8yKGgbEqqdvyC4l9+0UYPu97SdVmq3Cv52RsBOJ5RuPvB2Ykx0XbPFkHaxup2Gb70RSt1mQrcjobfC2TvT/fhdl3WwxZ+2DZlt+62DbOzc2LYt091pujsS7G3oz2Uc7Oi17yoH70wdRb/Lk6YCUHrbEBXazvPWIyi7BOdWNQG2PE9R6CMDHxVGhAtFrPdMoBs6jeXLaFhYyQJ+ZZ27a88x+T+e4WrmFH61hrb4PGLlNqf/9ig/PjSG9vQhkKtEqkUU+ITFGj/zfJE/frkFvkfl5hJBMEzfyUOcOXaTPq+FGT9E7TvfQHMDsnuS5JM+P/ZYnv73ZdESeYSKU1v1Wbo+T8tfZCzzOg9MHEbJEOWGhEGWim6SNHy+s2bzvqyDaVqUW01cv8VQOo6MtasgxXMG+ZTEa0UEUY6RQx/Bc0O+8PkbvDV9nvXSKl5LQSJLJmsSVFt45RSh6yOjJrqpY8QStJo+Xukt1m4bFJIOB8ZyPPrYXj7+8z/Jc3cmYfYPwVpAy9iIDQf0CC1pIhc8ItcFxyaUTYrFm3z1axof/Rd/nUzhT7C8BQwrZGZN43/6x7+F7hep5WNk0yl0zSFVsIkns/THQu5UW0wMJQkrEZYvSRo6rrSZX0yx/0gWTTdIWTrCFNSEJJE0SNoGmq5R3/SJWhFhGBEQEDNTnDl1nNvXrrGw7HF4QnE4bvDCLYfKuIud34euBKYWYqkmYbGGxCYoxig3m9jGMQwxRFRzUfVp/Fs+jXqFqRPHaKwrYtk8k+9/gnNf+k3uzkU8+VOf5K2XLjO+/yCn3/MkutFuuoTYgnPf5QF/deiH0po7nrktBEBJQCHfZty2R2sLPehBAnosjC0/vmJXuE6vuO5BoTsOwS7FfffUO7e2Izi7OWlvee2d7WwvQLfnjl5B3yWYd8dAd65v/9cWyKbZPhu2bWCZBjHHZnw4x3qxRBiG1Fs+nheiZNROBJUS09CwDQPTsHFsi7itE0QeIYAGbq3C9MWLgMGwlufzL34JZyDFTxgpCoMHQBg0S3Ms1y4y8emHedV8GHt4HjlzjlR8naO/OMqH+ofR3nsEKeeJVI6o5RIuVBk4W+bPzrWg5bFxaZbEmRPkRguMpZfJhyGac5jyH/0u8UQMI50kaykeGCmQfyKNnuxDhHHW79SYu1xByTsMZc5yfP9hVCCgEeG6SQJdoETECxs2H8za3J5bQto62ZRDLp5AOGmkLxjosykkI1puhG7sJZE8QKsZ8nufu8rNxTeobDbwIwMtXSCdjBHUXGwrQeiGKOVhWCboMVqNFt7GG6zetBjJxTl2sJ/Hnz7K6Q9/iO/PjhHc+V1EzkOLO4haC2VItISOnPeIPBedLH5Y5O7diOdfcPjA//CTpPNzpNxbtNIpXj4/xx/8wfNoUZVaziEec9BNm/xwkkwyQdIMmW9J9o0MUVkrEY9CpGZR9+OsbmRJHMqhCcHZV17EyAximAJvdZby2jK/89Z3+PTP/k3MKIEbRRh2RC7Vz+MPneLq+be4ebfJjzwJ+cjh9QVBJesirX4MqXBMieWWoVZDRTZBMU657pOIPYbmp6G2imqU8O4GSBUycfwBlq+U+ca514liPh85c5iPnDzEM3/7v+GFP3mZL3/nG/heC120E4pDpdCEgeqKYUdJUGrLCNg5c5podwHXhCDaquTV0VUFHQNBQ8poa9yuNN4tXhFt5fZ0qhZ1Shi/Y38D1WnU2Ou22Dnj23DF9nm+n8OrOyyo2wGwHXKkdubdXkMoUDsNJEXvlLt4b/cV9+Ezu1wT97nR7ftTXbyvZ+42rAC7ZxLwdoWYuukvlpD8rmLwQ9IWAqB8tk08oYAQCLv+dAoiH1S07TETmt5uaKUJvMV5VLOGaLqEi0UUFvbJcWq/8X9jnz5Ca+oIy/WQ9epNDv3Lv0djOMv+/ix3/BfQChf41KMaJzIWuh5D0xqE4RoiLGKoCqblY0/FOfnUSWYuNXFKIRmvRkxbZe/BDE6gM3tXsuxCkMnRt3+Ug49MEMsGJCf+Wyz7QXR7Eid3kMTgJH5Y5t9/4Ran0yVEeRoRrmMZNRzKbFyZ4YljEyhahPUKlm4RywzQ1OMsKAMtgLoLulDEYwLb0QiWmvzmv/46rzz/p9RqCmWnSQ7nGTsygmpUaa2soJoQuSvIcB1LBQykLFIxA6lpjObiPPHoCY48+TSbuaOw4tK8codbjVU2Snkqay6bpTkQBlp5E2OkgJQ+wjFRQhDUQ+qBzs9+4v2MD45AIcPk4cOcOnmMVrLG7OUruMKHlIZhSEwloekSVBt87MmjXJpZRKgYGBYtTKqtFOPxiMk9CVZqLnEBGpJWGOAGLjOlKknbIONY5LMOyaROEDWZXi+RzvRz9vwsJoLhjElag801E+/6GOM/9hTFK4uE8+uk9DrDkwr3TYmxliJFAbPRh1sq4tbukjPiXKgvcvw9+wnnlilffxPdKBMfS3D2S99jMBPn+DM/xeHTp6ktXuf2688zfvT09tPam9T1Lv1Vpu6E5Ew606UAb4ufrfc7SnT7n90gOdufd0b3NDa6J/z03r38MHKl5xLReRbfccQ7fiO63uxWKO43QGwhBO3kSYWuazh22yDIZFJMTo5y5Mg+HEfD91skkxajQylSCR3bFMRsHcfW2TOUopBLkUglUZpOtdFivbSJE4/zP/+DXyNlG8RdSU7EqIUR//pPf49/duIxMj/3SUqpUZbLG7QKIZP/8L+iPpDml/7mx9BPrPHUoz4fOqZzOG2hazaIOqG/hB4VMahjpSISh1Kceuokl14q018LiYVFsokqI+Mp7MBg5o5kSWro/f3sOTbB+NF+YoUYyfFfxLROodnjJAaOYudyrG2W+eJX7vJIpoTcvI5GFceqQn2d1twKZ46MsLo+T8E2yfcPo8WzbCqLZWVgSkHNFcRMRSyuYSrYuFXid37nW7zy4hfxozQk0xQmB+kfz0GzRmtlFZoagTcDYZWEHlFImKRiBqHQmOxL8KGPPE3u2GM0nAmipTrNa3e45q5R2RhlY3mBZrMMErRKBWOsjyhwEUkH6Uu8ZgRGjE998An2Do/TzMU5c/pRRvcP0jIqLN26iacF6Hkbx1Qo16NZKiEbNT706AO8eWueuJlFWSYNlURGCcbikr1jcRYqHu87doRkOkkoIqxUjL3Hj3FgfIjz517j7uw10mmdZC7JTGmTXG6YZ1+eJu9Y7MnpCE+juhJDzuxh/9/4MEsvXMdc26TQ75JJKLwrYG6kSYkcRrWPavE2ulfGQGPaW+PBDxykee0upRuv8rGf+QinH3+YW69eZWx0iF/5X36b27cu8KFT46TjNovFKpYuUDIikqpdEEWp7WZpsHWs2VFWYSunYCtcaLdRruRWvwSpiKJoG1noKOLbjm/uzwt25z7d94j2oHu9Z307KaiLaXUb//ef7z7fiZ1x20jpliXUfWlv8nDHIdE1dsvbv7Pn+26BbUT1no1131uHJ+8kNndDIJ2/UhAENJtN4D9RQnI3rPIuddNOiJCSETKsI/11ZDiHEE0ENZBllGqgohYi8hBWgqilozvvR3eGUWGEDDy0eD/S9dAMGyPuEPoSd61K8+Y0iVSCO//9f2B9aZ49k4PEjw9j9e/j9jmHW1aCx2zJaxf+KePpOwwVQhzcdltzXQMCDLMC1KEZQAUQNu6bl1jJDjIz6+HcLXHYNJl6zzFYmWGpUWO2HHD64H7sRI4//INrPPOBj/Hq//MdNs8/x3wtTuHA05x8+hkGDh3h9C8/yb+5/C1+IlFmsNVELN3EWHfpM05R/N3niA4Okn7oFFahD6VpSBQDCKJQsekrmlLSKHmsX1zl333hRZqNFXz7MM5QguxkFmW5bJw/S2PBRwQB0IZAUQJkQBjZpOJxHjq6j4nEBOWBUdYbBsdX5lgdP8CKd510/nFWV7/F6so0MgqJBBgj+wjLa+ihhFYDcJGRgV9epbSxyfjecV586yr5TIMnHzrOf/3jP8sn3vshfulX/xHl9TIqCnGSJoXBDP3OGF/7+uv8nV/673jp7HMsrC4QUyaaXiWse8jcwwy7gvmmS9QISeoa8WREsVHi+myLkWyGgVwK24RQ6ZyYPMjFpRWGMjaWSNOs1bl5Q3LmgXEWZw1q35pmaqJKZrFEebnEYuMYtnoYu/ZF8MYpNmYJdQMjOUgjnkdolyFtc3Z6mqNHEgw9YHLr2gssAiNTjyIMi+/8/q9z961zDO85Suj71IurZIbGaFd2593z/58ZdbxzO6FDW7H0W3/nTp3znXKeu1J3uzzvardw3pWfpnZDErs9edz79T3rdO/9nRINd8/VmVCI7Zjpt61upIntvXU8n0K0AV1NaJiWie047N87xNNPPciZhw+yb7KA0FxUVEapDZANVNhoI256DK/m8+KLiywVNfriSWq1JsvrDQqpYYSV5MqNS6TDBIlaHSMI6dPh1x98kKvTZzlSfZLYyQlKmWPMlJrcsBKccRS/8itTnHogZDDhYqkALfJAVwjhY1hVhN+CRoRqCWQY0LpwkaWRERbm7jLcWuV4X5qxo3uQqwssNCrMbPp86n2HWZjb4MKbDR489Siv/PE3Kb32TW63hjj25KeYevgUA6cf4oHxO/zmlW/zCwMV7M0K4sYqVj1GRkxRuvgc9uEhck88ScVtETMj+pIpEG1+v+EpKgrkbINLZ+/w1e+8Sau1QZQ4RWJPgsLBPlobd9m8doPGkoeIApRQGOjbiqZUJiknySPHD7AvcYCZxDijxTrDapXVvkFW3TlyA88wM/NvqVZWkVGAtOKo/nHC0hqGUlCroEKdSHi4m2uUi2XGJ/fwxWe/T/9jKR7cd5gj43u5+6GP8Xf/wWdxV9ZRYUQsb5Lvz5EVfXztG6+zvrJI+sQRQgOcKIGpS6JWhCw8xNzr13jZ0EmYsXYYjWoRYqObCQ4dfoDvf/frzPVnwbJ59dW3ePyZDzGWsRjUMtxdqGAqh+NDwzy7YFD75jWOPtxCu7rM+q1RfP0odjSOqH0Dw5tktXITI2FDYoSWo6MZM6iMw7MXLvCjn9iLiK8yM1dj1XTI7X8EyVd5//EChruJalWZKDiMFzK8cbeIbHgEYYjcimJRbIUPdaoVKdplTIW2jfjdE/Cj1HaSL7RRCdH5vBvdoz3XjoEgtpAEtWu63vdv15vgnkpFnfHs9DPoBgl6pu0yDDr8q8f4ELCTk9Dx1N8HLtgV8tiNgHTCrrbzAu53D52xXShNh4ftGGVbzSt3hUz2ln79IeBj3u1z8P8BKVAuStXQDBtUC+WvIEQZQR2hNRHCRSkN3XbA/Qreoo5fN5DCITaQR88cJyj6BFofjVKJVnkDHIHp1Egm1inlQ85fPc9IJk3/AycwTgxwKi5JyzXSZo1MzCThpNC0EMIGUWWNyFboZoBQJpgxRD4GESSOW6TDBo3pFrXNiJG6YrOm86ffuM7oxDBnjoyi1VZZL93l8B6NxYuv8aU/+S6np/4uzdplZl54hVfeeI3cxDH+1q/9l9w6+3Ua6f34xSrGUgutOYS+5zCka+j7R3lzqUV8tciBfApn0EA3DIQuyNpQveFy+ewVvvvyy1TLBiI/ilGIMPYcxPM28OaW0bVB4tEbJMw8G95tjiRDTMNm07QYycfITBwhOfAotWgBr3Ybp+bRKCTYdGtMjAyhvCLS3SSQPsIy0CIdTegQhWhCIXSBRKCkgZA6MzOXGR4b4smHTnDz7grPvTbNB584zkT/MEOZDLN3K7SaLdxSk2DTgxHoPzHAy1fO8dBDj5K6k+PVK1cI8ialrENQKZPNjLEvmSRjmpgCHCEZS2cxhI5jmNimjtAgk8xhGhYnhgc5l4xjixrZXB848N2XbuOqHI+c2c/mpsGGHWcokWRMC9kMLzBu7qHhrqKZDvHCAH5Scn3pErmk4K7YRyL2MtnRiKaoc/dalQc/8H5K0TyvfvuzROsXObGnyd4HFhCV/x39zib0/0Mw7L/sw/Uu/UfTfTHuHzhE2+qYLLtKAgkEkZJ0RGtvudJt7WC7nvkPqpTRHZJ0P39h775733eE304i4W6jBOgyTHpjl3vn7BbQbYNBIZS2PVbv1m6E2C69qFSEbZtMTo4yMTlOPGVimTbSW0LTQ9ohpSGCEESIyhq876k0tbsBoSvBzqKlDxLLn8Itt7g+XcKvb6B0C6WH6N4G4xOSmQ3FC6+8wKn8xzHG+0j1OeyJR6SidfYOWBSSCRxLQxNVCBpElRaRrTAsCdiIuI2yLcxQkDhhkm5WKJo+lmtRqQvm10Ke/c4NxiZG+ODpPaxcu4AmfEbSMWbeeIU//fr3efzoP6I+/1W+/idf4JvPfYuJ4w/xyZ/7KNPVr1LtP0phaQGxZqDpY1hDBxG5JsmD4zx7dZ1JO87wgI6WkGham7flbcHmGzVefP4lXr98m3rdRGRHMfsjjH0nqK9fJCi5GCJNIrpO0iyw2rrOE1mNshZDxTQGCmmSowdJDTzKRjANy28h41DP5KkHafaODiFbK/itCpEuEaaBJnQ0NJAhugboIJVAKJ0okMzcvczY5B4+9t4nuXRzkbqrODY1St5JMJBJsTBXxXWbeBVBlI1gSJE9kSPen2JmbolEPo2eieNnTdYTOrdv3mByaJy7r75IaWmRVqVM0KojQwlSQCjxmlVq9TKx117n7twit69cZtSxGE8IkgNj1FotZl6dwTdyPPb4fpaWNLxEiuPEyIVVqnKaYXMP9eYCZixFfGSU5aDMfLlEWreZEQcoJBSpvTq3Z1epVx0OP/EItWCRn/n4EGOux4Exm2c+sQffsnHnPWZ+r0bTDwlREEmQajvmffs0iA4fYLvcr1QSrUth79Jr0TW9rbtuIRFyKxC++2R3VO1OZ/JOceLueWCrGMD92Muu0NfuMsVqZ9Nb63XnSXXtt2ueTs+FziZ2DIUdHiK6ru/wkDYi0l6hw3O6R+zOperhhdsOjB2kptcpp0Bovb9LF1rANoqw655+AP3FjYN3vYbvQFu/jWajGWmQLogYaBGIEKF8oAk0EfgIw0QF6wgDhGYSlC02p3ViQ2vYWhLyhxFBEycvID9OfeYypgooPHgQT8+gpTVEWjDh2KT0Esr9HoW4T8Ky26JbKlQY8to1j6nD/aSNcQwtRJhuGyavldFSkgcOx/AWkxSFQtoG0+duEtt/iKmjCYZqZQJbIxyIk4wZrL12icc/8Az79DIT4xG3r9a49OY8l1ZKvPzy+zlz5D3cPncOVa+zjwKGPYVu6eiFOHZ/jqzhQyRoIKmUQuYX6xw/mKA0HbJ+4Tbzl6+wvLqEMIbw8lmyR/oJAwOv1MKst7B8Fywbwgb7HMFA3MZOxynkU+RGDpLIONSMLLJyHSNaRyJZ8WOoXJb9k1leP/8qbtRCmDa6ZSMCUNUilpNGBKCbCqWbSM1GV5LL12d59PGIkf5+SsUy1c0l1itVRjMJ/tqPfYIvXzrPrdevUF1YobXpUxLrOFmLO+40Y2MjpAp5Jg/vZdlyEWmD1cUFMlaeTDbNcNxu10xX7U6UnTPeOcyGprc9ba0qQkmarZB8fz+JXJ43SsuMWZukdMXCukDofeiJOOWNEiY5bkYFsrJFTZfELRfDkVhaQMIZ5dK5yxw/PYytLVNdchFmP5V4HxtXX+XwgQ2GT0pyWYfcYBOhvYGVAtW8hEgdB+H8pZysd+nPST+EbaCkRIl2P5Vu2HzbA9Wl+/eUJe2W2GJbBHcJvu6nuaNQdCEF9yQUiM7K3WAEXTt6R/HTGSnut/b2krs9mzsvt29zy8DpLrvY+W0UCqnE1vfg+T5351YYHunjwP4BXLdGyokQmkRIH4QLqgWEaJbJwDDkTEVrM6S5EeAvS2x5h3hkM5JPkki5bG7UKTdcBvUIS0QMPHqUpooRJgTxgs6oikhq60j3OQZSBpZhARpKSlqtgIvXAw4fHSBpTaJpddAiNC1CBXXMpOTUsQSt60miqkO92WL2+jKJ/Yc4dCzOYHGFSsbByifQWgFrqzM8+v4PcNBepG/Q4PLzK1y5focLDY/Royd56sQHOPe9FzmjAgbEOLo9jnAM9Fwcqy9P3qtjGibVQLE016BalRybSrB20Wf13BXmp6fZLJfAGcLry5E/2o/fCDDqLlqjiRn5aJYJYYOpmEY+7ZDKptD7+kn3jxNLxagZOVRzE0uu0whihFEfVrzAgYkUL519kQiJZsXQDVBSQH0T08kgXIlu6UjDgtAi8n0uX5/jve+DydER7ty6S6O6SaWeJxtP8zd+4sf5w7deY/ali7jVKq2wRZkiZkInl82QF0MoTWANmlhjBlpCY3N5lT2HJli/c4u7165QK28SBgGhF6DrOmEQkculaTaryDBCSsljDx+ndbdIreExmNqLK+usl0uMJsokDagsQTY9RlhXNBplNJXmZpgnT52yJrCcBoYIsHWw9RxXzl7g0Wem8NYWCcoGkTVA2UxSmXuVZx5zcLAYGjKID9hg2NRGDf4L9wz/2795CS+K2tEHArpxtk5p0m6rvnMmpFLbyFtbEZbb57NjOCix49neOe+ix4jfCYoROwe0i4QQPd2be8501zy9nKDrItVBErqV+p0pOg6ITg+CHZ6kdt6L7uW6Ff5OMvSOgt/j3N/Fh3a7QHam6TUQ2h3ZxTZWsG2Y7PwqQFeEzw9AZrvpXeTgPwn1WnSanmhHungVEAph5oEQola7mZnyQDZAkwhTw8ib4JiEoaBxyaO6vo4tBjD7a6QLDqlsgVDPUm75zCw12Hc8zejYGGosg4hL9qQ1amGDMLxMwlIYQkcGEoGO1A5yraVhLq0z5KTIJgNi8RBdeYjQR+GxfzhP/HCB21rEnU3J4q07PPzpj3JwoEhw4TbZ4Rzm3hx+pQmjZY48/RDh9S9g5HUOjNkMiAxiuc7Xv/ZN/s7PP8P6miStsuSSYzS0OEmngZfPUt1sMlRIYpg2rUCjVZUsr7mEocnsc2sUZy6zWltFz4+SGunD3z9EvDBMdfommusT020CbwFhx9CCEiOxFHpewx60SI0MIAYfRdWXkN4qibBMoEsaWJRci6mBPLqTY91r4UmJ0Ex0TaBpoOp1zNQoggjTlmiGTiQMDKW4emMNt+WRTqUZzMXxGhYLS4uMZo7wYx/5CMHUCFeyA9w5e4HZmbuomkvp8hrmYcWly+fZMzLGnpEcUlshnsni36pgBz6mbHtgNbHThKVHRdpiTJUK8SwIAAAgAElEQVRKlWazgR9KGrWIqK5I9NkoJ0VBVSje3MCsJ4nZcVTgsVYusteYYElaJPQ0nuPjKYXth/RlhnBNnfr0OcZ/9BE23tzg7qyFt3eKhfUNJqx1Dk4ZxPpiCDtC6CFEFcyhBMp9HeUMgTWEENZfxiF7l/4c1OVDuxfy3yKpJJpq1xLvyRcA6IL+oQuiv7/E7V2741nsTvTtGdYlyN6Bupfpjt2lR8F4e2H7jtvcukCIHSWkI/w7yY7t5XpND7m1dKXW5M3zN0gmYwwPtXM3RKoAQgLVduU5tWUg6ArN0jEHTIRj4pZdaksrVNc2MMIc+fETFAZ0ms0mbjMg0h1urjSZejjH3pE9aHmLeBpiGjTDKmF4kZRjg2yXgNa0JJ4Y41pL4CysMexkSWcibLOBiMJ26WsUh8f6sY8OcH1RsVpp4q0HnP7Y00wNFGmtLTI+dQiSGt56C2tfi6OnTyKv/j72RJ4xPUX+DcXr9TW+863n+OWf/yCLiy6b/XswjEFs3cSJufj5NOWNGofH04TKpFoPqVYCFlZC/MBk+utLbC6cZ9UNMQdHSA33E0wMEc+PUJo9T1KZSCRBWEG3bbSwxJ5EHjWgkRtxcIYOIDJHkM11IneRVFilaWs0pEkkHYb68mh2mpVWnQgNTTMx9Ha3XtFqYqVGIfKxbQ2ldFSgo2TE1Rtr7Q7WsTh7h1KsV2qsrq1zfP8+PvXxH6W8v5+rMsGtC1fZLK4TbfqUr65jHZaMjOwlCH3MPhM9HVKplfCLLsvT11menaO4skqrXiOKQqIwwrJtZBDSsjS8poZhGIwMjzA4MMDN20XK1RDTFTiag2bHyckG6zfWifsFkvEUzeYq5XpEnxhlSVpk9AxuPGDd90FYZFIpXE1Rv3GWqZ97H2/+3h3WrRFq/YNsbm6wxy5y6JDA7E8izAghPFQQkBqP89M/dYpXLhR55dwNavUWHT6gCQ0ltlTTXQn8Gu3wo3YsvtgudKCk2JZp3WU8NdHx/nf1QumcXsF2uqbqFEfqWqvDC7o+3Prg/txE7Hq9rbi//ZCuNXdfILb3/HbgBdBTwKM7BXt31+OeOe7Jc9hR7nuch9vlhzrJ4p1ZupEd0RVR9IMNhL9QQjJ0/vA/cJ3/31InPhWhI4QONBB6tq0AagFCtSCqQ9gE1UIYEqFJNEthZ3UykwZrGxFzby2xfm0aIyxiBmXCxWW0uMUXnz2HUyziHNhLfHwUJ5nCMEwcTaCxRBgqQCIiFy1KoGd/mfrkT3H1a39M8dwV2JwjoRWJyRoiayBiwFoZxxlg0ze5vVSkb0+SwxMB+voMqRMJrKEAEc2jh/OkTwxgVL6JOVHHyHtkDiSYfGSCQ8YgL549y1tXr3P82AcoJE5TrloserOYJ4ZZPXCMP3v5KnvyKYZSceKmIJcx2TcR55/9HzWef+syl8szrKVzJE78CCd//ARTx0YpvX4Xd2UVSwlsAV51kaSq05+wSBdypKcK5Pf3kRscwNRGqdWTxP1zJPQWIrIJwhQiWeDMmWGu3ihTKlVZnlukVimjpELXdCwzjqkklmESj1skTIEjI7RYitCN8fDDB8hmMiSSCYSmmJ25y+TkAQzN4GhuhKdPnWB0YIDiwjpxJ4bjONRXamj1dok+IVv0xQd4Iv8wMRQnJiYppNOYhrHdXVXs+g8g8AOuXp1mav8BLr7wBma5xZCqklGrLOoJjKDB2uw6ew8ew200KC7OokcRhnWQQmgRyTmyYwnWSHGrmmagr59Lm2cZfyDJvmPDfP/iJs+vxSiO7GWw9Sq/8GmB1b+JsD00I0RoIUQBwgdhpUFmtp7l2I7b5F36K0ndCcnJZLId7tEFRXdTR3D3xPF2hNJW+E5bnu90KO7p27mdKNfxJm5dIeiZs2fN++yhR3+Ae+Rdt+HQkxO4Pb6r8lD32qLbNO98voMWmIa+LdA1TUfXdTQhMM3/l703j7Lruut8P/vMd55vzVUqqQbNkgdJtpw4dpw4duzMAwmkwwPS4T1o6JUFNOt180hDoPOA1YFAJxDIe4QQaBMyGRNjJ3Ziy6MsS7LG0liSSjVPd6g7nmm/P27dqlulspOmszp5a/m3lkr3nmGfc+7Zv/n7+20Nx/Wo1T2CoSjdPX30b97cCAYpIJQq+FXwKuBWwa8hNIlQfFRLEGzTCHaazC/6jJ+cZn7kPJFwlYyhkg2GqCH59jPHCc8tENq/h2Ami2kF0TUNU5EozODYEkW4KG4ZRRlGJD5GpfudnPzGlym8fIaAP03Az2GICiKqNuT95AKhxGYuTZfI21WyPQG2dNRQZ0eJ3ZFGD+cR9asYVo7IcBCj9ATmgI0arZO5OcOWoR7avAAvHT3C8dMjvOnOD2M425jJF5nTFqlvSTO/ZTtfe/IYBzZ3EjU0oiGNjmyAtkyA3/v8Es+cPMq52hjlju2k9x9k+9u2s3lrO3PPXaQ6O0vIsBB2Cb8yR5gq2ZBJNJUktjNNalOaSLwdhSzlikXYOUxIc3HrQWwRJ5pNsXU4wcjFAou5ItcvXaZeqyMATdHQtAA6PoZhEg7rBPExhYJihnFrAQ4eHCIWjROKBllaKjI7PUMimUHXDPZnNrF32wDVxSL56QWQotECO+9h1et0xAwCqkphrMDoU+cJ4PHKU88yevYcldISrmNj23Uc28F1bJA+vuuj+NDR3sXum/bz//zFF9nTu5VEHXqVOXy/xKJioNgVZq5Ms/2Wg0xeG6Wam0UlgKb2kfI1HG+UzJY0p/NBSjKFGTa4UDpB3/YwW3b38tBjY5w2+6hFdTbpp/mZdwm0TBlhuCiq14C/+S64AiOY4vbbHuTJp45RyC81+EM0VkhWmvyxnBlANDD0jX/Lq4S3MuA6w37t6slr7clmdrBRx9A4URHKWt24xuhutUnXRupbbdU1zkFTBi2zfavMWlP8rKyHNjWLkMVKMKE1oLeROlxzD+v0++oxq/82FsCt97zu3KaDspLAbSl0XvlNJY7jUK2+dkHyj8Q5kC2C83VaT83pqtJYsKUISgyhZhFKBqEGQamDV0CWK0jXX/GsheajRXTah1L0Jj2OXSjz3Il5jr98jfLYKDfvKLErUeHrl2bpHI7R09NLPdLLU56gU4Gy0ks00I4nQviqgRFKoepvpl8J07XjAzzyT89w9PuXccsKO+7LIlQPgYqctVEy7YznJNdOzXLPzhihrRbBrh6MUAJVsVH0KlpMQdFdRERFMTyEqiKUIGqon/DQOzFPL7E3283o+edZKF4jNBBh6D0HSQzsIOi63La9Gzk9T2kuj++CJlVUFfY7Mxy3q/gHD5B44CDZA2l6FZOXHn6FoFtCqjqh+hyB4gVcJ09KhkiGu8jcYhHJVgklBlBCD3D1PHRGniCVTlOadliq+HjhBMHuvRihA9zeXebv/+FRpqdnkAI0M4gZSqG6JUxdI6B6tIUUuiMKGUtjxg6S6LmDWOklens3kUh3Eo2kGNoyhKnpuLaHV3QQUqW3v4/7330/73rvu3jPe9/DsecPo6hB6lWFdKSbj37w35JJpdnU3Yf0Gr2iFVVZXlBmY34SiiCdTWEaBiNPP0N1ZrbB4GGdg/ds5ZmXrnDPDpPvP3WUVG+UTH8Pz50sc0Xo3LJpnn+5fIX+bQHMSJL5JY1K5RTPX8/xwPu3UtIrPHMxz5XZefqC1/iNDwQQ5mWEWUUo9Ua007MRvgS9HWFsQijdoGYQaoBlidW40RvgIa/TTxqtj6y3OgeRSARNVVdUa2sKvbUDxloje+Mg0UogrtU3aNm5PuLYel4rbeQcbPhM6yJ/P9wMFBtHDJehDE0Fe+PK0S3OzvL3RudXQbVmY9dt9h/Yi6KnkCQRagqhag1+8krIcrUh76WCED7CFJgJi46hBL1JlyePFjl0dIqLx6+glsfZtWWJnYkqXzo7zS23dZBtH2bMSHDag7RQqSibSAQzVD0d1TLRA5sxtH1s0mJ07f4If/Hf/porR3JE24L03BJHKB5IFabqKJv6OXliAbVYZf/WCMFBi2B3H6YVRVBEDbpoEYFieChRtRHEUjWEiGGkbyLUdjuRKzZ7s50cP/YoFT9H9mAfcriDl8fn2NPdxf6tHZQvjmOX6+CC6isYqs9t/gxPlOuE3vF2UvfuoGNbnFhVcvyxU0RkBU+1iJcuoZTHUN0qCREiGemk7aBJKFIklH0zVftm5sartIefJZVpZ/FKmZIvUJI9BLN7CYZ2sa+zzOe/+DUqlSWEpqFZEQwrguZVsDSVoObRHVPpCikEdY28jBHv2kcs9zTDuw8QCMbJpDuwazZ/8PufJhXPkAkmOXHsJEePv8yFy+cYu36NxVyO7f2DFMsupZzN2WOjnDh8luJcjtzUHG5pqQEnqldwbBvHdRH4aJpKvVoDCYZuouo6ZaeClC57s214uQJlp0qqL8nA9g6OnR7n3t0W//CNQ9z21u3k6wGOXXOY0WFn7zxfPzfKHXekyNspStUi88ULnFoo8/b3DzMvC3z7lTyVyiT7euf46FsVFOsKwqghRA38OvgO+ApSiSGsIRS1j39+5BkK+RJIgVBUAlag0dq0BYqzZk0SyUqgQEq5ZrHElX/LwkQ2YT2s2vuKaBQ4rw9GyOWahtVo/dpAxg2wnGX+3mgF4ZVxN0ovrokq3HiBVdglaxyLpvxYj30ULae/mvG/PgFy472sypvWkVszKIImCqHFYVFWV5b+YZyD12FF/ytJGCj6MFKWAYlQ2kEdBG0PQn0IaZyHYrmRN1tyoWSDIRGZOOYt7Xx4dwe1VxY59dQM33hmkUc/e4xPDMW4R3XInznMWPcAQ2038aCmogmTKhmKMoqmVTHdadx6EdUYRSrDJJc+S6w6ys2bdO6/tQMCd4Ach9oUZAbI1Xqo2jOk+sK039ZDbWwGc+dNKOpyxwDhg2oDOcAGPBprAQv8qevUvvp/0bZgEIjcTOgtH8ZozzSKs4w4ojxL+fxJlMRWlgqCF8+UOHZhnmA9SM/El/jZ3/3f+OM7b2ZCs7jmKswUPeSlRUJdYexiiurcOPXZWSKVCbpMHTMRJtM3j8gM0Nf5Dor1TZwfm6M38lfEb9rB/GMGXv0q9QAE2lLcvmMLmwfDfO2zD+MrkmA8iRQ2iuoj7TqOkOjSwVJCmKqJtBSqhiAtXbLlw+DtxJdWw6bxwXMlekBgBg2krlE4ugBSEjuQXu5CIPiDP/3jBi6wxfBvQohUVeUPf+/3efKxx3E9F1sqxKMhHnzXO/jgT/80ne0duNUihelRLp+dRU/G+anf+GUe//Jfc/TQs5w9XeH742e4bfcWvnP5IrO6QWhCw9eCbL4nw9zZE/z3iwp4UeyqjcUISknjyfx+3r5VZ/zKWY4YAc5MjRIrltiX3YaI6qAWQdTAX26tiwqqBdIABsHRQGtCOeSGgu51+v8nrTeEW5Cy6w9c2SNZrmtq9SY2Puu1aR0utqkEVzD/60Zck6Jf/vOvmorrHIQV/LLS7FDUcqgvcX0PhEDxJcLQcRwPiYJXrlAfm6RYqpAr1PjU738KVUshRC+wA7SdCO1RpDkK+SWQOszXwKmDpUAygrm/i1/a20Xl+5M8/uQcj5yZ55/OTvGx/ggPmi7nDj9BsPt2BiJdDKkqqrCoCYNFGcEy5pHuJJ5dRNHGQPSSKv4R0doS795nsnNoEAKbwZ+G2jS0b2Um141izJAZ0snsaMO+nsPctQ9EFbQSKCYoVWAJcGjIewlS4LzyLN53vkbbokUwcjNvePe/I5SNEEwlsMIBtvV0ULxyGD25k/mKxUNPzzA9vUC4UqSv/Bgf+a2P8ndvuYNLUmPMERRna9Qnlgh1RqgXM1TGLsHsOGFvgUTAwgwHSffMQ2I7W3v+Deemk1SKR+hJfpvwjkHmHzWAMpVwhM29Heze2UsyLnjkL7+JFQki1TSKZiMQ+E4dT/HRcAiIMIZq4oQVPF+SWiqTLh3Gkzfh+Qr+8nqkpUKVE8dPcurkf2Bzuo9P3P/vsPImucUCNdtGAt974Wls10MTCoraMNx8KZmdnkXXddpicUQojOtLfKESDlkkogGOnzpDRFX4Pz76Hu69524un5sm3tPFH/7+73BTTztzxTqvPDtOMFVh1/ZNPHLuEqVIkAunVYIdSboOOORHT/DQBQVEgnqpRKJ2hHOLHYx7t3HPFsHVSyMc2hlhYuw0B/qybEt3I6IuKEuN9+17y4xkgmYg1AQwhCGCCBcCUkVXFBxNJ5ltI51MMXrtKktLS9i23Vj3wG9KBNYEvJoc2+TztcHltXEC2ZheKIBYESnL9Q7LNXlN/l8ZeSXDsPZ6TSjgqmuwHna4TkqJ1vM2gAstD7ESPGjd1erE/KDAh7xRWK0dbWPp+VqB+FYHpFUWSt9fkaXKDyEg/5XOQTNy0noXr9ON1PIDNfFewgChNTCnAJgIYYHxi6BdBh6F2iwyoIFqIRcXcU97qKkyasYkuGeY3YM30fPOeWZOjPNnXxphd8rAulQm03cROXAa0kMs+mVMESShBxDKdmw3Tyn3LZTcn6Gl96PUzvGzP5PE0CMY7Rb4Y0glBb5k6skRXi7n8ePt3LJvD7PXc7R1vR1/bryxgEzAQygG+EtAHfwa0rGR5QruK4tUn4H5OcFIUZDZspVNw21YwmN2YZGXL1XZxgwzoUHmnpjkljf18vZ3beGtVYnjKRw59ku8FIzQ52hUZzysokOyVuPa3DilfApRLZBVxolEKkTDCRLZIHOJNtTUTQzsvJ3r10ssLh4hnZogM/Ag5as9TBW+iK25YPUQtzqJKxWuXJ8hc2snoYuTlDwXX/EJWCrBWJDFuQCOopLUysSDQaQepObY7BkIUl8IML9YYalYoVSo40uNRMJYZVZNIbI7SROD2Nyu6custkGrMtM08YFK3ca2HTwpUX2XQ48+xuhzLxC3wgwkAtzVYzGXK3NowWBbqp2bbrXY8/7NXD42ypdfvEI+fYC2UJbF6StssWfZU7YZKzrM9W9nfu87Wfrq5zgyWWX3pmG6NgVw/vnvODkHH/zVT/D4yFNU5mfZEVW4Y4+NUM41Mlq4DcmsaDQwCAnwN4Pfjn/2AnL+LHJJQSpJtNvegOiINQSDriKUjaPJr9OPkX4IWd2atkeA5y0r+pV8dYvSXAXU3hCuaxbureBhmzig5XHWGwM3nrtWcTYdg/WdiFpbIG4wVOOYV8nGrT+xUVvQunyoRMomdKABdm5tv9o0DBzHwfcEruehLReWOo7D977/AuM/98t8/nN/QiQSRQgD1L2g9IJ2BeQ3oZpDxrqh4uHny/hTHmqqhNpuEbrrNt56k8OtE3NcOz7Jn37tErdkTNQTOeo3nYREEj/STlFWMUWQlBEEcSuVylXc/GGC6mm0+E7U+mV+/df6SCR9tE4b5DxSJJG+YPyRYzylVOhq76Qz4ZCbk6Ta34o3PY7I2AhDR6A0osnUkH4dbBtZqmJ/d47SGZhZEJyrWmSGdzC4NY1SznPhmk+pLOlRiswFBpl59Apv+eB2fnYojecKCkWPs5d6eMGMsKWm4Ew6RGsSt5Bnfm6GUjGOqOTpMa8SiSokAinMdIh8LIOSbGPbzXdz6pVxbPcJsl01otYDlK6mGC/+JV7QwLA2k7SiGM4S4/MumX1dBE9ex3ZcVA2CQR1NtSjkwjhCJaMtEQ7FKPtgqpK+XhMnZzE+nadSqlKvGTz99Pf5+tf+nmKxiG3XKczn+I2p/0ShXKBULi239ZTUHA/X83BYLdv1pI/netTrdRKhCILGfEH4ODVwBRzo6iVmhsmOXsZzFygtVvje0yH2pfp5/weGENPjPH90guevTlIM76Ij0sbU+Hn2+uMEFxXOOHXOxLsw9n6EpS//Ec9dC7O95wCp0nVGXv4KIwWL93/iV/jvL3wLr5BjZ0+CnQN5hDK2LO+dBs+pOihBkFmEHACvHXHyJH/8jnuoz0v8RA/s3IXZk0FVVf7Df/w/GRk5S6lcRno++D4+4EkPCcvtZv3VbOFyqmDFpW+FFiFobbe5amA3MxKvzuitCxquN/9Xz23B+K+cu3rNtQXPr+JOtNRKCGWDzGNLBmXtZcTKvldfo2FdMKbV0JYtTyOagRPRaCKxnKVYC+FaXRW6Me5ql6kfRP9K56D5Q7fgRFudtdcNgnUk1v2nIqUG0ll+wQaSDELVIWgi1TOI2jw+LjKWBrFAcXSC0rkKVlYQas+Q6ekilryN9+jHOfJPTyPLLpHLV0gdf5KufUXMyA4MJIrvgZ9H8xcIKCXQbNz5wyhBi+RgtNFK1fCRzgJ+pc6xr4yxMFumEpwnGk2iWD2UClBZukp3d4ZAOA96CelWoVoAt4Ks2viqxHmlxtI5ybxrMrM1wc72HYT27mUsryOLMwR0lS3Zdq6eqbBzd4ausMnMmMfi+CzRSBnFcrnt9h1UgzA9DepcifJcnrGFIlUrQjjsYC2Okapdou7MUlQEEVUjkN7K0JZhqiWbYnUBLRKis+1WrAXJS0e/SyWVwXeKdHf1079pK44uiUR95haCFAt1fCS6aaIHQxDNkogI/IkrJBIKjiao+zqBQAIjFGNTZ4iFqmRqsUA0XSaTSix3Ymi+W4EaVFfe/HqWkELcwB5CCN73gQ+gqTqPfPNhfF9gGDrlfJGFUpmAabKwaPJkwWL/HW04+TJHz5+mnDPoDSvEsPjIgQhxy+bxCwXu1qoE5+c4ulDnkpsmN/QmZo58m3i5zOabDlBaKnPkqadwS9cp2gKtYFM/U4e5OsGUQritCmIRhLt85xYQARLgtUG9A+/QiyBjiNRmRG8KjCAiFqSJ15ZVFzQFYajrUrM/QrZ6nf7V1Bqx22Dn2hS1WO0C0ooTaiqb9bJ/gxlOM2q36mDc6KfIFuW3ehbrjl3dKtfuWL6ndQM0P7ak95uFxT+IViKViJWCZGB5tfplQ2bZ3/GlxPNWizQRHm7VpVKpcfbsOY68dIRbb72FaCyGEAEQbQjNgqCGVI5DrYy0PGTMRopFCpcmWTpbJdY3gZlN0TG4jUj6dt4VO8ULX3sCw1e4evI4ZhhSw7uxQgMYQqL4PtKbw5D5RuZPKeAuVlGCEdp22gitBkYdWZvDzhc58dVx5mfrkJjC6O7AV1LkF/IsFa7T051BdeYQqoOslaC+hHQrULPxVagfqpK7LJgzgxT3pNjZtoPgrr2cm5BYS3kisXascISZacHQzgzdQZ0zR5ZIhMsEglW0oMGB/VuoBuHqdR9rrsDc9CKzVQfHCBIO2QTmr9JWu8iiW6KMiW6ECWe3M7xpkOJ8niVngUxbDxkrgDNVZuSV71Nr78av59g2sINUNos0NYIazM6HWCpWQVcwLBM1FEMNxEnEfPyJqyRTGgVP4ihBwnoQMxSmI6UyV5f87de+i+pUGTl9nHMjZxvtS+t1aggKpWJj9srGqr5Seo3aWek3OvYszxYpGway5/vMLMyTCMcImAEURUNXNKTrEzUM+i2N6ekFhFZnaHsc9XSJZ4tFnn3sLN069AajdO21CGg237mQ571WnfzVCU7ZIa7qm6mnbyF/+dskXZdtd97OuaePcvb0CZzSNEt6GK3gUHmljlauE47VCSZKIPLL8l4FAkAMZBLhdyHLSbznngORpPvg20ELIUMxRCqFErKQUvLLH/vf+YvP/TkjF85Rd+oIIXCFT305k9BkWF/xl2OlzVqDlgYETR5rCRCssnjLuitNpmNtZH6tsd0CpxENW5U1oy1fRtKyFstqRmOFVoIfa0d+NdN6BT61wb4f1JFoQ4O9Jb62vtvRSh1Xy3krXaM2pEYq5tVXUlhLr8OKflwkmj+9tzzhVSCG1HYgCCDFNEKU8TUPqY7hzwvs3AKliwUWJ10CbRqZ/ix33HOASlnn+qXL5KtlRk+NoIcknXv78XJnkbEk5akTsPQKQXOJXKkK0TrxYC+yUgOvjOc5VBclFHOMvjCNkwgSjTokRAW95qLHshQXZvGtmygWltAXl7CUAqrhIaUCbgC/LvE8A9keQRvqJdK1k8HO3ZzNx6kVChh+AIRA5oqk2hJMjlwim3YQToiyouILjZQuSMZ1JibraNdnmJ8aZ75Sp6QlqfsWMbuIuXSBgDuPEDauloDQIL19Q7Snojzx/UP48Rgdnb0krRAL519icuYYyW0PoC/MEjDDCE2Q930GIgbXLkxRtx3UQAArFMFQLeq1OtG0yvCAQa3qMF118AiSyGxHqGX23XEzc0sO6UyaQEDHslTWyaQG065ESFr3iVcVBLv37kH6PvVqjWeefAbTMOkKKeza0k+fpUCxwMRikXLFZ2cbFKTDtfFF8rZCTzLCYH+c/Ow0A7LKrQMZzk9WGLnuMOoG2RWcZbB0hXQ0xLaeMLm6Tvpcmur4FCENTn3nMLVT82xXBDuzGorlNtruqj5gAFHwk8h6DAoRmMvC7DRiaDOibxCRSCJ0tfHwHsiSC8Uqvu00MgiJECKiNZwFZfW3eJ1+DPSDM9braNm0aY1YLSvwFcN9nQJd6fJDK8Ro4zTz2ohcU9GtdR7WB+U2ur+VbxtE5FprA5qtDFeco3XRvpaHWrb81z0jy0p6+blW3YTG8/pS4vkSHx/pN4zDaqXCtx99nPGJCW6//XYGh4YQQgMZB30PAg1YRCp10GtIdQJ/XlCfm2Py9Cx63CPcbhHrTHDHPbdRyCmMX77A5NQC1qmTKJogPdiGk7+Gn8pSuHCIgBhFYYmluoOIVImH+vCLVVAr2BUPuwD2nGT0hRncbIR0R52QU8b0o4hwnEqxgB/YR25+mqCfx9DKKJqP9FVwg3h1iYeOGMhiJDeT6NhKT3obZ/Nh7Pwclh7DL3to1IlEA0yeu0R71kHUouQDAk/RSJk68YhOZaqGdm2SyakrzHsWJS2B6xnE7AJWYQSTIgEhUfUURmyQbM8A7ckwD3/7WUJb+mlr6yVQKjE+N8LU/ClSu9+BuD5K0LSwBRvbiBsAACAASURBVFQFxC2FaxemcKWPGY5hWWGE1HHdOtG4YDhoslRxyJXqmLFNCCPNUmmRcu46Y/k68y+dQa0XKOTmWMwt4Ng2rueABM/3VrJtDQfBW5X1smU2L4d7pfQpVSpoSqPtbNiMoGsqXRGVTdEAu9sTlEp1ymUf1xbsaoMZx+PymevkjAB97VE6sjql/DTD1LhtRxePnSlwZk6lYhkMqUtEylfJxuNs2RRkYSJN27U4ei5PWKqcePQF5Lkityc0upMKwnAbWSFlWd7LBHhJZCUKhShyNg2zsyi7hxH9wxAKLi+kKpCuRJQ8btu0i8mddzIc7WHBKTFbWmChnGN6Zpp6vU7dsXGkbLRBXeY/b0U+NCPbosWIXzZ8mzy2bHC/Vvx5jU5t1jKsfr0h+LDqILTcwwZj3ZiFWHcDy05NU6asHNsKL2KtHFtz/8vX31DGrRd+6/2XlWnV+qwtd7wueLKy/4dQv/9TsKKViwt+qIu9TqskhAZCRUoX6ddoeOwaIEHtASuL0GqIag5JDGtbD9HwecbPTrAwUkScvURh7iLp7e/nnnc9yKlXjjB+5gxz8/Oohy+jBE/hXvs+iZ3bmD96GHv6LKG4Q/5qEfMtaVR1CjG2gKxVqFVcFq+AGQphJkyMgEk6EycbU4mLRYLd/YTDKrmST32pQLi0gNCXMLt0lKCO9DW8soPcbGBFBjEit5Hw9+PYYZ57eYr9iRLhaJyFgsP01Yvc+dZtPPT3r7B9r0v/4H78dBdOIEhWSM5emGL25ALZwkWml+aZjbcT7dhGeaxAZGoWc+kqvuURD8UJRrZgdL+BHVu6WJw8zaXRMXbffTe9bZ14U2NcmDmBHQyT6NyCqIWpVQVz+XliVhhFaoxdGQHFx7DC6HoKxRU4uRECcYt7bsny8HOzFJdcTGFiBnrobCuw5+aDKGqzk8trTPoNI6hrSUqJbdtMTU4jpaS7t4+f//jHOP38cUzT5A2727nr4EEShkNx/CqZ09e5dNqmv9fmzu1RXkZw+VqRy5NzXJ8rMr1k87GhMOldg0zoc0QX6nRULO5yv8dt9+9HXp5DUZbovHknXd27OFb6Er7hc/zxp9EchbsHArypI4oseRBwluepDn4MWQlBTkdOW8grGZT+HYihdkTUBEVpOAUukPeQM1XIF5GFKr6uIgZVVNVCGGqjn7WhIlRedxB+nPRajoFc97nF4F5TbAiNGoNmmn6dLliB3yxvvzELwGpBoWRNLuPGrELzw1pH5Eao06qDsIb/xFrFqAiBL1vT6y3jttgQja/NDbJR1LeyrRnBFCvRSd+XOK673HGssaCW7Th897vf49ChZ/F8SW9vL5YVXB7dB20AgjZCL0MtD6QIbO8lHjjFpaMTlEcLmOGTpIcvkxx8gAc+9H6eP/Q4cyMXmLyaR3oX8GQad+wQ6VtvZvrQE5jGPIpfo1ysYb4hgaZN4Z+bBqVOccanvKCgaBZm0sI0Ddo606SMGlGrit7eRrUYYL7gUsvnSJfmIWFjZAyEaSClhleyYXeAUPJWLPMAvreVasXimZfGube9hAh2cPXyNJpwGdjWziMPH2fPPo/B3W+hEM8QNAxCtsPZ8xPMnV6kK3+GS8VFlP6b0YNR6pNFwjOzWOUrOGGNzmgUPbuDeM8+hvqSLE6NcO7Sdd715rfQFrCYmbjElcULOKEIya4BvFnIFUrYpsSIxvEdjbErZ9EMFSMQRVOSOJU8bmmccMzibfvb+MKj11kqOhjhGLYd5urEca5ceolcuYznuiAlvuevQIcai3c1sgFSyMY7Z3kBMEWgtkZxZUMfGLqxkkko12qEzTqxRABT17ljZ5pNQYvB4S6q80tMXFtk9Hyd3i6HB25O81gdZmbKnLlS5czVBYpVh48NhYns2014doR4KUq7qHKv8TI33XcAeWEatT7DXe+9j/5kP5cefhJHczjx7SeJOCrvuznNYCgIlRrSdBGmAGGAl0AWLVgwkNMh5HQnysAexHAnwtIbc94FaUso+sjpKmK+yHt2v5nKfoUpWeLk2BmuTF9jZOQM569eJlfMI6XEleDjrzXSW+SLooiVqHjTyF1xIFoc+9ekdby/Kg8a+36Q6BPNc5qeyfqg3jrdvkYm/oBagOY9rM1ONG97bRDjxpvb4NobhFCakM/WtINYHn/Nys4/gP5VzsHrKv1HRauaVOKvKL5GW0DRKMYxg+jmLkQtB11ddMZGibRfYOS5S/zZ3+S5v+dv6b6ph61vPEBf+y5GT41y8UKNl/70Cwz1xDmYjRGzPC7Mqzzz/Ry3BFy0nhwXTi+SFhJZl9RLEl3VSL9/E2+8ZHN5IURiaC+pjhgBCtjFKuH4dv7mP/4X3vb+JKFuiVdXKF23MduCuCdyuFGDqqJQDoVYUnVyI//A/JxALqUJDda4dK5KSY2xY/sA3zs2xs/9yjsxElEmfUHI8YgX6kyfXOQv/upP2BdzeEk3Cd35Toz2beTGFsgUryFmn6Y7DnOLKmb3FrI79xHuSxC36jz89BPEbnkfWzZ1kfDqnJgs8y8XdALd72Y41c/oFajpGtlkkj1tQa4XFlms+NhVD5c6nu2iCgtN6mzviNIfUXAUE0eVWO4kocqz/PzP/2eWSmWi0cgPxVw/DF26eJnf+s1PUrcdHnjHfdz/1jezpbOLNk3hvfdtQV48RU13MXqD7Ni2nfihGn/13GHes7+dgzu2MJyZ4/DJ87x0rUCp5PKHLy7wW7tS7OsKcrM0sGdLJG66A/Fz70Z+9esQ7kMQILFF4c2f/1WkpnDHH/02D524RNragboURx6/DIMSETOQigG2iX+phhw3ELFbIJJF7M6AqiAdHxwfShIWBP6JGigFhOGgZCKIjggkdWRd4s9X8Ct1tJ4IIm6ussDr9BNFrWn79a+ndd2D5UDoqrJ6FQeilVqD8w19v6rc1kTA1uN110AMlj9tlIX/QRC2VudifeGiEOt6kbMKJ1o2MBRA11Rcb3Vwf7nQb+USvsQXq8rasR1Kno/ruly7epUro5fZum3nyrUFyzBERUW1EihWN6KWx+/pYCBxlulXznP85XG+/sIkd3d+md59fbzh3ruZzCpcHpnjzOUlnj/8JQa6Y9yzZYJ0TOfFF10qU2WG4x5KOsfIyUU6VUml5ONXINAeIXFfP+1XbM7NhcnceieJaB3VruFVfKzAZv7qNz/Jz/5aP0Yb2GWJM+GiRwycszncuEkZl3IpTbEwS370OAuLCupShohe5onDz9PZ20sk086psRw/96vvxkxGGXUk3Y6LOlnhzJFLfOmbX+GWmMsLukXmfb9IrRZETM2Ryl9GmXuR3pTB9RkI772ZxOAOkj0RLLHE0099h863/AJD6QT12UXOXa/x1HiccNdt7Ej2cswvUA2kGMzE6IqqXJybIFfxcKse5GvUFB/hq8SDJkPZIL0hn5yr46kq7sLLTI3Oc/HyORLpLJXy3IoTIABVURo48+X54UvZwNi3zP+mY7yK9240nmhPd2FoQUBjIT9FLBBmUzLNpniQD713APvYLFWrRPLWGImdbVx9scRXXjjGR9/Yy/veMMTps+c5cuE6I1NFKhWX35tf4L+9qZsHtqd5S9BHSI3ILXciPnQv8m/+DvRtCFlj070D9L1tB75d402f+V2+cPwSkeA9KNeXkMYkolcio0bDOaibeEfzUO9CBHZBPIPYk2mwnO1DzYciMAf+uYa8VwwfpSdLpC1AOKwyeGAHfqlGda7AL//fv8HI6AV8X+L5NaQnX1VWKIrSuI5o8FwToqMKsVLYvDZb1yoVmntWM3mrbN8iT260y9clEFuPFTdse9V6gTXR+xviGEghWkz4jce+ccgbHYVm3dUKJGslUdAqu8QaObvGS/gh6XVY0Y+dVIQSQvplGh0glrMHQkGoJlI64NRRtSyRaCdOpBctNcju/hGSm1/hK18/ydSx62z95svce/8wd7z7Lu76yIP4Ioykwsv//HckBt/K9jskw7NfY+bEM+gPL5B4h86iomOlFdJJnWRXHD2axLlliO78Firz88xfL2NEgoSpMnn6Bd77C3cx/70XOf/tBaTrUnUdFpcEb/lgG2MySUQPYc4twOJRApHN5JdK3POmnZQUhd2d7YQTaUq+wVuCFhM+MO4w/UKB0ivHmbl0iJcWzrC1J0K+/QDigQ8g8gX8i6fxi0Vq1Yvc2ZfhxXPztPf1E+kcRlg9xIXKQlVS8NvZmQ7QE1epVVUmyy6TF09zcNMQA10BnnvsJGo4yXYrSTId4sTxAkFDoIUSje4M9QquUDBMk59/34dI9YUxX/oy0UqB3mSETbEYjz3yGE8/c4jf+uR/IhaL/QjeveA3f+23GRubwK5V+Pxnv8B3//4b/O5bb2eTXqH4paNM+hUqhsTWFTwzwPCOIf7gt2/ni188yblrMwx1BTl4oAfKGufsPOeXinz9b17hHf/+o+z5+E6CMyOIvrsQBRVZHYO/fRgvryE3DaH9zAHE7rsJ/s4n+alP/xaVcydYeryK97xN6KfakW/sh6s69gUTea2GYkXR9gwjwmlkXUXmKvhXPeSpabgwgdLeD8EYojcMA1ajeVXBx5+sIRfr2KevwHAEJW6gxMzXHYOfUJLSX2kV2Pj+WrG21qT7WqXaVOav1q505YwfojiuddzlyruW7MFGNQSvldUT+K9yyfX9w5vFzrKxmlMjStyMYC4f40tWFi5souYky1Flz0dRBJ7vU6vVeOihfySXy/PZz36GxqpOeuN/RUUQQEoH6dooWpZ4ogs73kV7aoCDQ+fpOHyabzw6wuSRa+z75hE+8LH93PuBe9FSt+FjIanw7EN/zpZ7/pC73nKU8vi/kD9xDOOJItZ7NSZsk2SbIJsJEO1IoaUy2KlB+haHqMxcYaYkCFgWml0md+0oH/6V+7n2D0+glmu4nkPZ9rClyhvflWXUT9EWCGFePEvC6UAPZyk7Nm998y4mkDx4bz+eEcZVTPpNgwkPuOow9t0FLpz4Hheuv8RYbZyBzhiLHfvRPvhzyJGzyNlreKU58Ma5pTfDs2dnGdi+Cz05jGVkCEiFxZpC0e9gf5tBOqJwfk5jcqHA4thFBvsHGOgO8NDYCwy33UYsmiIYsiicEwRNFTecQro1pFIDPFKJJB9+8O34wQWUrz5COAgDqTShjiypRBpHeFwZu7I8OeRKlxfX9VYyBysr/q5EgFkDFWmsFOzhC4VwOEsun8dzSkSsGAf7+vi3N2+mN+CQ+8tXuK5Wsc8KaqqKGYuyebiPP3z77fzJZ16mLRph70CQ281OAvU5LrlFzi8V+dKfHOanP/9JsvdVoO4iOm6HggK1UfivD+N6bYjbdqC+/VbUwVsJfPr3+NgnPk750pMsnS0T3KJiPdAGt/TCqEb9tApjKtpQFrFzCyKUQlYV5HwJ74IHRy5CwUFJdSGCUeiLwK4g1D3ktI8s28j5KrUzV5lwFvCKNpZuYhsOruMihd/4bUSTh8QK33m+12Sg5dabcpXfl03rVqN4xVFo4efmOkGe3+ys2JQTG/D7DX9Xef9VJMTaErrlG9lInNwQWGkZez0UeQ21ZlU2GPnVMyfNB91gzJaxW53X16LXnYMfM616hsuKwq8iFY1G0bIPwkCY4Ua/Ya+KqOtYopNQbzup7jey5b5rkPd46unLTNcrvHS4RLjzX0hv2s+Vl77HwK33E0t3oKoaXmwb0b5j1Lp+HfekR2YoAhUfdSmB3n0fwrwXRbbzwkOfQ+QmiYVdUpuzZN7107R39RDSVbpuq1I6/xWc69/GxCX/8hwzi5BKmuQvuFTmy+QVyZm64IEH30Mws40ewyRXFIzPutTtGlzP8exj/8jVsXMMlZeYLlc5Ua2jB4Lc9eFfYzbZSXlkEnt2gmRlgk3uPLodpjB/BqXLJBjdSzrSRyKrEu5WKF5+ieLO+9jcFidmalyameDw+FlMIbl1+A5cRUXJdpINd5AJtVNTVKy0C7UaiqwR0HSiYZtgyMYnyrOPfwejLcXPPDhM38CdpNt2s7CY53c/8yf88ac+SSgU+p/OHDRTpg997Ut88H0f59KF80jH5fpcjk8/9ix//rZB2LKXvuEU0lmEegFCOmfOT6CrGh+5Z5hHnzrLyOgctc4guwcVRq5ZpIkwU0+Sr7RB6BaUnTfD6aPIJQ9GZkHZhRL2kblF/CcOofRFOf7JzzEQtal4EqdSI9jXi7jzU0x96a/xL+ZQSi6BeIbgcCcUFMqPTBH86R6O/fbv0F4ukQ12oxg7kG4MJWwh0hpM15DFKv5sGXuigJNfAEciKw7G9gx0ypXCztfpfxH9AKWzSmsV2HqlemM0a1lhytVxm6sKbzj0DdtbLyRXD2tGFTeo1VmjW1uyCq1G+xoIcmuMcaUbUYsyXf66USRRCAWhgr9suNi2sya70nSCHNtBVRVUVWmBNfl4ngu+wJUNp6Ras6lWqwQCYfArSMVANLubKBaKGcH3FXynjKgFCFtDRLZvoW34Hna/ZwJyHt985DTnp2DxxatEOipEs0NcffkQO9/2MULRBMgeAqnbSW95jvrAp3Fe8cnemsC/VsFq24rWfjfCOIjqZ/jeX/4X4iwRS0DnTbvoPPgezP72hrw/8CvkjnwKtXQeijVKF4pMz0PHVovZl+rYVcF1c4pcu85d999LILOVXsNgYk6yVHBxSyVqV3O89P1HGL16hn3VMoeXqkw4LplN/bR/6OPMJTsoPn8ae2GMtto4UbeK4ajk6xdR+0KEgreTiSVIduoY4Sql6+cp7n6QbekwpqZyevYq5+euETUs9g4eoA5onX30pDYRMlM4eh0j4UK1hpA2IU3FMhbQDIMACs899hgko3zyV9/Af/70t/jWiZPE0m10bOrnpSe/h+e5CLEMRUPgr8yldZmnZfJ9uWI0+s33isRxbUYuHqU9uwOEi+dJXr4+jfBq/M4bN+P338zQvnbc+Wug1Ci5DtemZtCEyi+99yb+3398jpOjCj1hg8FelUvjFhkiXKu2USu3IXZsRdh5uHQZlrphZAYib0KtLiCvXMN/roYM27zye19gV1uc8cszRFSfYO8deFs/wOzf/CP+uQXUikeksx+NFP51j/rZGQLv7+KFX/oVtiejhLXNiMhepIwiIiYio8FoGblYxpsq4cwUcIoFqHm0ZWP0d26ipNo4eDieg3QaRfvVeq2xGvuKk93qBDRWal+l1TB8s6avGSiX647yfH/N9pUk4dqRWvi86XQ0D9gg83mDwX2jpBA3fGiltRtfC4EkW+ZXa2e2NdnJG26lJZPSlJGt0OemfP4fCMS87hz8RJBAKEGk79IoCALJ8jLuy9EnWZ1FujaSIBIFv1pBURPErO147XDH/VuYGh/l2sUTXP3Wy6j1F7jrjQ/gijiONMFXQERRAzdh7vgojvciTlAQHHgjwfSdqOE0vhvBqRrseeBD2PYSluETixgIN4JhWdjCoIyOuul9BJJ9eLPfJH5XlKU5jdKYQ2rPOwiHslArsTeYJZUdYHbO5uJCgaXSEgtjVxk/dgxncZFAbopI3eWinkQdGuDmoc2E+wbILUxTOjJCSC/hlAMIJ05c1TlTGcGpuOzedDua1UegLUkoUeH6uaPom3bSNW2QCqkoumB+0eHqJRdFbaO3L4xvqkjfwgpahOMGppCwoGAZUTRLQZNKo+4gYCKLOcbHXe4dbGPTjvuJZjejqAHiCfjVj/8C4XD4R/fWhSASjfBHn/kkn/3MFzj8zGEsVSFuWNQ8F9f0qY7PIVRwtQRlodPbu8DTZ6rc3Vfhjq07OHlthgsXLrHfhH0JjW9MqniOTd0BKRsYYdp3Ib/6LRjTIDIEZhmh16AageuzbDnYy+WHj+JWfFJ7u7Du3EL9qeewuruwRxZQXBctO4zofxOeG4EOnWt/eohsqUw0oCCsMMLMgqnCwhhcsZBuFdmwjdACHngG2t5+xFAINR1E1jxEUID6uoPwk0Y31tOszQjIlahoK/Rn1WhaOWVdgWBj+zJ8QKzq24aeX/0L6/XwjQqtVQm+urqTN3xqQoSakcs1x8obj13BPa+5nabybckeeN7Kb9MwDpdbM4rGWiaKoiJ9iaIoXLw4yuc+/0V+/dc+QaPgXyAxGg6V5+N7Ln51AenaoMQaeHffR1USxAIxPAvu+2A/Y5dPcvHcCeYOHcGUz/DGO+6jLiKYvtYApqpZ1OgB5M6PUHeexw5YRN/0Acz0dkQwge+GsGs6+3/qF/C9CpGQIBIJoHjhFXm/hIa1698jFh5HLr5ANFuivKBRvFSj+22/wIJTx5PQFe4gnupndrbGyNwCpVKBydOnWLh4ES+fwyrMEqs5HDXbie7fS+fAAKF0lvzsOKXDp4mZS1QLcYJKG5o/z+XKKH7dZ+/A7bh6O8lNCTzvOlOTC/htA3RP6ySjKp6A8et1ZqZUolaGnt4wjq6BFyAYswiGNYTnIHIKlhlBVzQUT2BGIujCgWqeyXHJ3f1R/ui/foOJiQV0Q8OuV7h64Sy246zMj1VI3NpWlEqLcyr91fnVgBw14cKNiLfn15nPXSEd68JQdYK6QUQ3qboOrilZvDyFqphUzQiuYZPO1HnqTI23D5R558E7ePr0OcZG59iM4KaExjcmFYRTw3XVBiQonIGIh/zqYzAVgcxOCJ5GaHkomYjZRQbv7OOVr7yAahik7uxHGwjhHD1BoKuT+olZNM9D3XwHpPfgKzG8iOTaHz9Fr+ZhWQpCTyKCiUbDivkx0APIegmpqgjhoQUkQgug7OhB2RHmY+4v8o3H/4mnnjvEUrlME/ffdKoVRUERyspv5S3zUpPXfOmDUJqefwvHNrN6jTGEooD0V8XFCp8qKzy8kTPxarJmY+N9+V1uINpaacMYyPqRboALtX5+jUxry33KZhCiKYs2mKOKomw41g+i152DnxBqRKUECK0hRpZljMTHcypIoSN0AzyNeq1MJb9I/mqJk1cuUhVVElqNdMzGkkUuTjq847430bF9N1Y4gqYoCHyQHp4XQgTeiDm8CUUzMGPDiNBmanUfu+YhfJ22/s34wkdVJIYi8esVvMI8VScIloVitIHWi1+OoLV1o9YDmKnNFPUe1FCK9p4wjm/yncePMT8+g1fLY1eKVBbnKY7PMFW2SQbaCe/sIRDKoMZCqGGVytwocvEy9kwIL2zR7vgY1XlO1Kcp+3PctGUri5UBtnRHiCckqu7jW0EKboxBC8IhhZIQzOfKVKYXCMcyWHGNsKZiCYOQqRMOqEjhUrPz6EEd0/cJB0yE6uHZBVJxgze8/QP0D7URTW9G1cNMTU1y7NhxJDq7tm39kdUbNGnHzmF+5t+8n0Q0zrFnj+KYBt8ZzZFNhQhoLqlYiGAkhFesIk2LLb1ZLk9O0d9usCUZpTzTzuncGLe0h3GmFAY0SeTsBexHTiG7dmMSgfkOKPiIegxiKURfF9ycQI7liN50K5mSizx7DqtWpX52AdXzKVQ9Ir6OEY2ht/fh6e3kn5Jcq5vkrnRwc/ub0bx5pB6HWBiEjVyYh85ucBSkDVKqiEgAfXsGdW8WkdVfhxP9uKg1Hd7S0m45sb+yb73SWoPRvUGzboCbXZ9pYG37vNWSw3XRvZYMwatBjVbBBY0/fqsyXxvv3/hmWnY14Uitq7quQBXWOQ+tT9AKh2jYfa2RupaLyEaBpaKoaJqG70sURSUei7F1eKgh34XWOH1Zqfu4eK6PVHQU4/9j772jLLnu+87PvRVffp1zmBwwg0nIGYwiGERKlCjKCofH1oqWVuKGs1rtyiuTtrTHVrCC5fXKklbJFkVbpEiKpEECTABBEGEwwGACMLlnuqfzy6HivftH9et+3TMgKVKi9Ad+58y8flW3qu6ruvVL319wiCMTr+nRXK2yem2Zs9eu0BYtBq02Q/0BXrPOQtPljQ88wMi+gziOgyFk0t1WQ6z7kKkHSe3fhmGnsftvRxm9hIEi9BVCW4zv2UOsY2xDYOgIFbSJK6u0ghQyk0K6k6h4CBX3IwenMcIUbv8uVsNenMEi45k0tbrisc8/z8rsEsov025WaF1foLxSpuxpiqlBcoenSKcGcftTaBnTWjhHVJkjWMqgCi7TXpWKV6YaLqKNBvundrNY28nBQw7pTEQzEkRBBk/l2e2CkxUsKkFpsURU88iM9Sb83jCwscinTVxH0m6F+FENK2XjKoVhxYRhBcuIiXWL584uUQ/rnHz5KkGkGRodJ1fsp1pvdz1v2fVcuxEDvV6gQumkShVr0SxKb4SgITaQND9o0A7qZHIjmG6OkjJ57FKZwb4s6YrHyGAfro4IgwhppdkxOcTLl2c5sCPNnt4BLtUDZpoldg7m8a5LtpsK88nn8coZZO8kVjOf8PtahNAu9B5A7LRhRwq9UCV/7A4Gl5rYZ1/BWgkIowV03KDWjskZLnZPHnNsGq/UQ+mc4HrLpXx5lHu3vQ2CEjrTj8i4oHx0rQTj4+BLVCRBWMihLHLMQh4YQA7bTMV5sk/n1o1nrfVaLn/ihJBCJsq9FgmSoDfe205icGfsZqW546jY8nqvMYd1Q2Dded4JH9pwS7yWN76DDG6txNaZU9eFNna/hlzbXJK1e/ZbeJToGB16Ey/blJh94w9dR1PE+jnUpsmsJ1dzI2//ZvQdGQc361D5On03pInjACktkt4REjpxikrhhxEqsmhXS5RLZcrlEpXVVeZfbvLFl54nFDXGnAbHDk/TM7GddN8B7nrPe8lZBoaRxO1FUdKUxZAmhrmb9OgBpOEiAM8PWK546EaTZqnG1IGdpNMpDCFRSuGFkqh0nVhpzFYDkXXRoYsQe/D0GNbwIPbgrbzwjRdQS/NM7RzHbpV4/Csnqc6cYdCpYhNhmmmc/kEKo30ETj/NgT56czZhVKU2N4+5uISTSuEaAtkyyYVNGq15rrbnuLV/gJ78JJXGIH1jDulUCy8IcAe3qMI4jgAAIABJREFUUykJpoomTkqyGmpajRb4VbL94/T0mFha4Lp58imXjJ0wmKpXwrQEPdLFdgV+1MbQHlP9RQ7cso/C+A6ETBIFAz+gXCqjhP338vSFENx7/x3USi1OHT9PWfl8+XKJI57DZE4jlYfWHoWMoOY5jPalOW9YlEolbOUw3NPHTGkRL1OkP9XimGsyfPk6UfsV9NRu7BEbER6AcAjtK4RRQJuDiLEcevEsYtRgdPcSenWZcKmKH/Th9I4QPfVVRGEQc3ocI5+nVKly/MkyrcIhcr17EBODqMWLRK0WWmmMpg91D+Ea6LqBDiQ6nULuyGEcyiBGLJCgo6Sax+ts4x+Auj1eN/mrmzaS6jbU+PVSfd+GkNnaKXTda7/l8O7kvW++8UZs4eayZyMsalMC9Nq2pNZ3Z15rSvk6orE5abBz1URgb53f2nzUVsOgG12QSQKrkBhSY0iDkZERHnr4wTXP8lpuhlJoFRPHHX5v0ywvsbxUolpdpTRfZfZshafOvEwkK+xI1XngTbchrAH6Joe4/Z3vTvi9KVAkir+KFYa0Maw9pMcPImUaQUyt6VOreahWk1a5wY5j+0lZLgJBGEUEviIqLRArje3V0YVcUsqYffhyCGt4AHvkGF/+zKMMe5rhPkXr+uo6vx/PVEEpHLeH1NA4kV0kdHpp9A8wmDepNhZpzy1g1+pYjkvKBNmwKQTLzNUu0xBN9g6MUMxPslofZGSbiYiqYLqY+V6iqmC6x8RwJbVKjN+oYmifXD5PsWBiakEqXaSQsnBMQU2F1P0qhi3pkw4Nb5V2q0kqYzCcN2iW4ZNfPkMQKCIVo+I4SSRBbiRzdj51BxTrqjq/trCSD7GRTLtlCXVWrEQTRW1sywY7zXzb46tX6hwLXCZzIZYJvXmLlC1pBylGe9KclgbLC/MUrRy5bJFr7TZ+psCg2+SenEP6hVeIlrYjx4awshZEByEcQJcFIr0Tsv0wJKB2CcYMpvZdRi/M46mkx5Jhpwm//hyyZxhrcjvCNZl7ZZFzT2v83G6yfXsR2weIz58CYWNEMTLyoOEh0iZ62UAHNmIgg9yZRe51E0eQBOVp6s0GjVZzQzn9JvxDSolScRdC2XnlxEasvOgUD0ju6da8pvXndhMkYHO51C20rnB3eEh3CKVY/3+rDtzdXKwbU+3wyvUqQZ3/xQZX1Wrtd+rXZHs3mebmeSbGg2ANJNk8Zj2GSXf9/a3pdeTgH4Q2LzZY40VaEEXxmhWtUFGI77WoNT1KVxaZO/0VXr1wgbmyjyeyCN3G7TcZTBXIOSYzepTl5mHuOTqEbRlJWbD15BxJO5T05G1MOwmNiaIYFfk0my0uXl/EXH6Vs08/R370Z3HccaQpCZWgFpoYLYHbZ9O8+gpOT5HUwCDseA/VZRjeO45qKVZWSly+8goXTzzB9mYdzR5akc8yBoM9/aQGJnGG9nDn1DSN4DwvffFV/FwVLywTN2N2pPfSFkcpyEfpbbdZ8EJWlcf23l4e2nOEv7gQ854H8vSPplCqjtdsExfHyAeQzwukAUZNYYYKO2OQz+bZM2BxclmR6hmlUHBIm5pmpCktebjSYap3kNnSHIEKGO9JcTgvufbs58mN/DSGNFBxzPj4OD/24z/2d44YrK8GrfHaHmEQYAmDdssn9kIqlSbDGFxsRoiGz617chSFw5nnLnDo/mFmTs0yu1RGC4fdTj9P13t5YCTLPXmLATePSKdAB0jLQdeyQBYhLRAWNE2YkcgH90BrHvXoHEIJnLsP4TzwMARjjH79BM2VALW3iIp8lssv8IR/ibelD3LbAYN4tJcADZcWMBfLOAKEjpGNOtrzEZkCck8O474CIi3XePUa5C75e7ufr9O3pm7UYCttDivqCGC50YUzGQSbBHIXEtDdLfnbmYveJErXz3dTSdnRLb7JNTqCuusC64d2O/Y7GzcrLMkOpeKkuSFbkIU1BUB2eTa1WAtrEBvx5qIzfwSGYSSVbqTEsi1c18WybRSCMIoxDQkqJgp9PM+jUW9TurLEzInPcvL8DCXPIhQWWvmkB0wKqSKua3CiOkUxt5fDu0awraSHiCJBKoJYohW4aQfTygMQhhEiClmt1Lh2fR69dIHzz7/IyL5fws7n0ULgx5Kab2K0Bak+h9q54+R37MLs20+c3o3fNBjYO4pqxszOzXPhymlGaOI2FVpP0Io8FjyLscEhzIGd5IZ3sG+on0ZwieOfO0nPaINGZYmCKjCc2k0gdlCQj9Hf8jnfbhGZilv6Rzkwuo/PXIp53xsKZAZNWsvX8eMcWAVyUcLvhQCzFmMKjZux6c3l2NVv8eKyojCwjXzaIWWAChTV1YC0tNneP8bzF5cxTJjssblnrMCxbUOc+MM5lNakXJfFhXmuzFwlitWacqjWlNK18JS19aDW1lAcK1gPH2LNMLixnG5SPjdRfvPpHJlUCgNB2wuoxAGVSpNxIXmxVmJ4IsWOkQyp0ObMcxe4881jnHjsLL4KMCMYMvp4odXHm8fy3NVr4zi9CMtEiAhhWAm/lzsR0gZtoVdNRFUgju6CxgLq45eRo3nSb7gDdh9DLwpGTpyludjGvX0QXVvkQnmBk5HBQ/ldHDkoCCb6iVf3IBfmsSpVLNFGyggadZTXQPYPI4/kkbekwe3we0WpXGZxaZFqvUonmVh13jvd6Z6c3DPZQQe2wIpJSFaSg7DOmgSbENBNhQnWDPfONbbEDm1lDTcozEqpbx2Os1XR7jx+NhsInbnRlad0w2y6cqm2Iq3dYYw3GA56M/ohACHl5nGbDJxvn77LUqave/++I+paRAkJpExKO/paQ5Qwcb/Z4vpchebcEn/0p3/Atl0uZv8YPQWXYuzx4AOHcSb3UMymOHv8RR79wkucPvMcw+//AFnHAq1pRxC3Ikxp0NOTR6OJouQFlUKiDJtM1GTq2mP8y48+wW//y9tJubPIuEAsewhCjduK0bk8wm5RuPVWVLuK51UIrF56Rl3Ccoh2TX7wx9/JZz+h+U+/98fUWxE/esjDfOudnPfHaIYmdd+nObvAqcf/hAN2gXtuy3OhmQe9j0JhgKqwuVj+JHeKNlWryHWdw3IH2Vbs4VJzHxM5xdjhFDICcv1EZsyr32jw/T8wyOorPlppLEvg2imGskO867a9qEijhWBn0WU0a2JITbMdEfsRt2w/wMrcWXytcfNp+iZT7LltnPydP4Y0LbTWrC4vEEcRw+NTf69L4uK5SyxcvsKAaxExRCXyOVmPMYTL5MQIbSH5L5+7xAeP9XPsziNcvHCayft72VtpM/PYLJ+dX2Gba/Ceuz6I+8gImBJqAsoC/WgN/BqEGkQuWXEDEu53QUvUb/4a+mqIeNtOSMfoP/9L+L4juD/1DuL/9CIyWEFLg50TeT5yfy9Nq4F1NI8TGiw204iowED/At7ZP8LtGUfNZ5GH9yIP9SCmHLBkoswp0C2NSBkIW77OO/4B6AYR0Z2w1j1uk0K8pgy9Vux/ckCXN6zzx4bQvml0zzfxkomuQZvn8lo/ZPO+dcWgS3HYfOH1X4aQYi20ZzPQn8jz5BxaKzQiyZXQnfKlG3PtjEeIpM69WCu/KJLSl5ZlIqQkl8+TzReQ0gXAB4IwQEQ+tXKTpfkK1dl5/vjP/oiDR4vIqf0MNgImii5HbtuPM7aDnlyKZ7/0BB/75Itkh9Js33+AjG2igXYEqhriplxMV67z+2QeBspIMdh+metnvsBfPnWK//sXjmKFFxHqAAEOKlC4gYZsFqw6PXfeS1yZoxVo1Br6GpZDVMrkf/yFf8qvfeTX+bPHXyQlTR7Z38R8x/2cakzgRYqo3aL08gle/txz7LFzvOHuAieWimTSd+GIIquxx3z5c9wh2pTsEWZVhu35MQruMNe9KSYLgtFjLmE5wBmbpHQxplbyuf+BHsrnfXSscVyJa+bYPTTBGw5uR8WJVD3Yn6I3JYliRbMVISO4ZdsBrlw6jnBSDIzk2bY7g2nF/PYfP0esk3t0xy27mJlf5vzVeQyRGMoqTpAlKZN3oFPJax09iNUNimDiuE7m0qmeI9joND4+MM5wJouLQ4hDPVCcqMWkjBRju6Y5d32Z8+fLvPfgIMfu3MHpF1/k2E9OEz29xImn5zm70GZb2uLdd/9zzB8ahGoETRtmFPqpKvgNCDSYRYQhYLsJRyxoe6hf/xX0igE/fCtcuoy+cBlu20Xqn76d+N8fh9ZVlBvxpj0mD1sFvHQD41ierGcws5KjJ9XAlMcJ557DLo6h54oYd+5HHssh+iww1tATpdF1zb/+tV/l5KmThGG03i1Zx/F6PoFYD4rRqPXwl+53a8OL33l9O2p0krR7A9NYU7i73vHXEDbrh24JFeogBqJz2q1KvRZdUGQXutGlE4styMVGDkTnrAlflF05EZtn1e1A24JUbDrXpqlvutwNtoh4TRvlBnodOfgHJqViojhcFzBmHOE3m1y5dJ4zZ0+zWqkTVea55Y37CXzFcG6S0Z5hIOA3P32crPgqg9dnOH11meteyL47b+e93z+xtmYFhtZYaRMhII6TGNiuNQ1CYvWOMHj3Izzy+cf4zV9+mg/9ux/C7cvQDmLK1Sb+lfMUJvqR4SphkMKXveiUJOcKpHCItMSzLSzbpX//e5l4cAdPffzn+OizJ9l+9QoPP/hWLnuSs7PXaVWX0L1HuTykmbnSYEAKhowWKniFxfJJ3tuToa4Oc6FZwxUR20SegZLH52a+xD/76Z+jvThHelee0rxHVNK88y07KJU1wjBACEKhsPAZcyKO7ttFydOUKzC+L0dOtWlVmkhbcHRvlidffoHqyhKxoXFzaeqRyxcv+fzEW4prT0dT7BtI/tKKpIv13w/devQghkoTVFOszpwivuLiiDRnSotcrVcpunls4fI7X3qaya/Z3L5zP5XrHtbRPvb/bw+zvXyYS39wheDSl5C/dhEj9hFyAmHdi670QvUEIoiBGiK+BR6bRn/8CwT0cq20zPCbduF/YpXW7DJKe6Q//WVqPS5Tv/eL6K8+TvlLx2kt18mN96HMZ6j/bsyp+RzD0SqDtkPNHGHZa7HrLW/E+L4jiJQNaQFWB9oEQtBthXC+swSp1+l7Q1sTkjfiYLeKqG4f1w3uufWtN+rxXePWwgYS22JLTPEW6+GGKkk3l5uvvb0zS71lzDpD3IxcaBLIP1Fi1gYLkSAKQqwrfZvrokuklYjVBFWQmKZFKpNhZGSEn/jJn+SRR96GVjEKMKIAv17n5ZMvcOXqNWrVGlFzhSNvO4zXjtjRv5vBQo75Uol/94nnyIjHGJq9xNMXlygJwfsf2MObHhpKDBzAUBonb6Hp4vddnlakJDV9gG2tBnc98w3+7S99nX/55x9ECYNGO6K+vEK8ukBuuLjG7wu0rDFsU5CyDaSwCbXAcyzStsPEvf8HvfN/yatf/4987Jky269c4u2P/CBfmSkzt3iVwAsR/Ye42AdXXqkzZkFOVqk1zqK9q3x/Pkdd3cqZeolBI8vuIEW0sMQpa5Uffv9PUL1yicFb+7n8/CojxR4O3N5HpaqRZuJc8IUio1sMFG32TE9SamkqFdh9exH8Bn4zxnFCRotNXjl1hXqlhGEIDJHhciXgXKXJldnruJaJEIJTF6/hByG2ZeL5QdL0TLPe/A4ESJnEdXec0mJDrqI18fpySNZUZ+lsNA6Meen8s/Qe+QHGeyfwqjMIncKRGZ5ZuMpAvUnWTqPiiN/9wtcY/6rNvXsPsfSnFYbfvo8H3/wjHJ2ZYO6/zuCd+xucXzqHjAXSPgzqFnTNRdRPgx+DKIPxFvj9Ouq3XsbTKeZKZSbec4jVXzmPV61iGBF2do5GX5ptf/IRwj/5Qxb//EsIKUn151CVz1P/rYjjsz3sF1cR7hil2KLlSqbf+gbkI8cQloScpNOyAw3a15w/fo7z586zurJKEAQopYjDmEhFSaK+2CwLOm+hIeWawa3WagVveYnRN2E3mxXlDQNDbPrczK/+th71mx2zhWdt3fZt01rSNN28txsZ2Nzo8cajWbcINiv/Nxn7bSAJxoc//OHX3PmRj3zkwwDve9/72Lt37/r2TgPstS905rS+/3WP4LckjSIM28m/KKa6UqVa8ShdvsRLzzzJyy+/xPWlZVSzRali8PC997Mz1cNAQRBYIcue4N7tLgOtyzx64jLzjRZvfeQ9/OwH/xd6B7KJByvuxLEJYgQRAlsKwhiE0ijWnlWsiVsxqWKb2ZPXuXjiHM2FGFYq2LUZ8mM9LFw/iVPYCU0TCxvbdtDCQGqJ7xs4aQPHEAz1m/RkKnz6rz6P0hEFw6KpmzQbJSb707z1oYPk9vdgOXl0XMDwPYLmEiJYYrpgs2jezourK9hxxC2WxFABL0Yhdx67nb6hgOLwEKRtorqJRYbidIaly5r+UY204MJSHSkdbt+5A8cyyY3nyFuaVqmOIwX5rIuONa+euk67eo3lWpNIC1KWzY7J7bz/Jz+E46bXFSTDMDC+nY7I3wV1zlvsz7H/tl0cvPcYo2aV8sJ1/BBiBCkjZNr2aHttym2fa6UyL80u8tTJGU498Qp7Zy8xMNLPufMlzKaP6WWQ9SZi8RloKQiHEcEriPAqwluE5gx454n9BfJH34eqBDj9+8gMTpMKKziqhC0j5ItPYuz3SN0pcHub+E9ewYwahCuzDMkaObuFkdbY41n63v0w1oN3gXDBEQir655FoJYDZL+V7Hu9jOk/OHU8YlprKpUKv/u7vwtAIZdPPKZrjZ82uaC6PGzdOmfnL9FxnOluo+GGq67TRvfhjb036AE3UcKTzd9sDW1WHtY7MXcdt6nqEB2wQ69/6e55IA0DKZL8AMNM+EF3fHJnrO6ElwgQ0kAKcFMO26Ym+fkP/SxHbzuKVlAt1SmvNqhevsgzT3yBs+cvUF4tEzQ8mi2HN9z3ADuNLIXemFIcgxTcPmbS257hE89eohx4/E8f+he84+3vJFdIui2rmKT0oUh4vRYCUwqiCKRKwmAkoHwFUYiTDZk7dZ2z3zgNjRzMz5BSFdwei+XFV3B69kBV4NgpTMtCIxFKEgSSVNbAlYLpCZPK0nmefvJ5tI4pGBY1XcNrVLhtzwi337WL/K4eHDdPHOYx2zXa9Tmyskp/tsiCPMCJ1WXyKuYO1+Bau8lqNsOhg/vp6Q8ojo2hXZNwxSLXk8UuulSua3pHQRjw0rUKk7397B0fw3YtssMZCramvFClJ+fipizadZ+ZC8u0y1dZrLXQSBytuHpxlqefO4PnB3h+hB9GNNseLc8njKIkfEwIdMdQ3LpuO6rcmiLa8WB3lNuuxbfuUZZSYJhJDspC+RpXa4tYfT38+NsOsTwzQxCZxEIzYAX0Sw/P9yi3A66slnjh6gJffeYipWdfZXp5jp6BAq+cK5FuBRheAVG6glg9u8bvBxDBy4hgBtFehtYFtHcZHVfIH/0RwoUymR33knZTpFQNW1dxCBHPfRHzjQ6ZozFGo0T48nUMv0a0MseYVcO1fYy8IHXLKD1vvx/rniOgHIQLmBtJw9rXBPNtfuaXf46Z2Rk8z0tyOdZ08g6y1+kToZVGoddDebqNho0QyK73tvsd1htG+zr/2bj5W8L8Oo7RzQM3QIcN5OCGhoqdikndfE6ITddL8iLU2hixwRs6f3fxn+QHqBscIlt54AbSsJlEF9/p+m+DL9/kuM4xYRTRarUA+PCHP/yRG07Od4AcvJ58/HdAgjUIO2nU0Wr7NBoNzpyaZX7pElHtOm2/hVIgApOD+7dx8cx5/NU6KVsRG5rFRshSfREZl7F6HKYzt7B7+zFGpwcBgVIQxWAYIulMGGkipWl2JiCTmt0KgRIGRq6XkWPv5pHsbVx+apbBgQzSUiwtm0xNCPr6thH7AaadRlgmSgtUKAmVRDiSTr8R1xbksmmksxstL6HcIZYbmrHpUQrZIRZfbBG25znqCpZye7iuLUKVwbFcUkbMmdlT6FaNHcU+5puSsjAp9KYYGd2NiOu4vTarF0MM0yE/nKaxrBkYTgoCLlZChvIO0YrDfNln5+E8sadQgUdfRpMyEgEqlY8j5xidmmZutYHfrFM0JRm/xrXTz3LLvd/X9aC+B7TmNbUdiyiSnD/T5upMBUPbjLptZOBjBSHNQJPVMQOG4tUwpOr7+PWIoBWQzji4MsO2n34E+alTcC2AcBUdlaD9NaQxjZDTIGLQGbTqQas2Sldxf/wwprMHmc0iDI1aPIL6b8vI5X+DnmmhvtDG2JPGmUhhfHAcrkpSlw2MgV3o4lFE3xRyKIsxOAKug/I0oqFBKTBF0lVT6ARydv7+jKzX6VvTxq0Xr+XWT0IouhTxdY9U52PN1b8+ohP2I9b14u4jN+B0NoPn3fu+pUfuJrS16+mNoUdbcY6N4zbD8ZsrJ3VCQYD1CkodZeaG2eqN41UnnyZxeSK0JikuAfVGnYX5eUbGxsjlitQqDV45O8vSymV0bQU/CokjQdZIMb1zjFdPnqG9VKOYg3KkaTRazDaXIa6Q6k8xqu5m16599A4WIYngIIwFlglRrInjpKRq1JmsiACBj0AYFk7/FBN3/QBv77+T81+8yuCwoFaGsGow0O/Q2ztN1PZIpXrBkMSxREeCCIm0DeIYMCCblqQzvUhnO9q4jkoNslAJ2bl3P8JLUTpeRgarHHEkC7n9XF02sGSRlJVDxiEzi6cRrRp7+4Y4UbUITJjMZBkc2I5QTdL9FnMnPHIDOcyUS9BQ9A2BrWGuFLB7OMOZKw3qQjA1nkH5MSr0GS6AIUFFMYZqkjKXaXkRhnBwZMSAGTM2VqTHhc9+7TRxHKOFWA9LSm5bEga0rmTpbkWVdYWv87zXu2d0vVobSuSGMpmgUIpQBUxMbue+e97J3OxxbCPFZDrECNrYXkyoFHliHENxyg9o+B5BXTEVQdq2sA2b7T//DuQfPY2o2cCr6OAiBE8h5QRC7gIRgM6j46QSkDJj3A8cxRTbMYp9EB9EnXkI9cXLGKv/L/pSi/jTIeZ+h/SBAs6+HMyBmjExR/ehivchBnsxBovIviFwHJSnEHW51qtD0Sw3uPDKOf7ibz7GxZlLtFotwjBM7t2akS+FASiEKdbQueTuqbVQHsVGflMHUUyQPLVJIU6UcbHGezrGWsKINj5vRKq3GhDrz+eGgV1IwJawoHV+0R2StHZdvbZ9g6+sGRRbHBM3o25+22W1fIvx6/8lQVSiw+dufsS3I4H/1sbBjcleG0z1pojK63rADbTRMhwiP6BVWaa6vExpdZb5hQX6iin6i0V6lUT5CmEqluaW0EpRaYbEvk+7XePK9XkGh2327drD9tGH2H9wL4bdqa+cGLpxpNe8GgKhNH6gkYbG1yGSEC0MMGxsw8bt286228dJm9eprpzG92q4g2M02hrL7sUwIcJAh6AjgZYSpMSIwIg02oRL10KePtHGtgR9+f3c9+67ef65p1gtNQmqq/gLAfV6GZ2tEw079EgHbWeIgjblWkC+VcIhTzUe5Epgki2m2DcxgteaZXz3JEa7jggNnEyKVNqi7YGVhThUSVxtbJCxXfr6I5y0RaBDDAlO2sFSEmKNUBGFdMjMjIchbdK2TdpSuKbETqW/9+th7YVZnJvjleOnufziMrOXr2ErAcTIOCIOYsqRItYKRygiIiIzxcRAD3fvnCR9eDcicOm/dx9+lEF89SLilQgR7YHwPEK0EdbutaojAVpkiPPbMN4ZoxbPY77xdvAyoCTG8ATCa8OnHyWa+wZ6vokeMDFGc9i2A3kJ903A4J3o4hFEph/MAO0HhNc9zD4zYeKRRMca3VSIPonIynUP2uv0j5++mSDrVo43tiS0jhh0KVPdR91ULAo2yZKNE+kbtnc8tR075WYCsNOEbZPzr4M+dDz7a+fZZOh0xSNsJDpumfXa+E4oVGeqek0REZLkEwE6uWa9XufyxYsMD/ajBgapLFeolOeZm19gaqSXEdNGRYntLoyIxblF0JraYkgYtGjUKtTLJfoHbW7df4AD029jZGIIaSbKZpLoCmGkk4bLCuIo+S4M8HWEJEBJB0MaWHaGTGYn23sncdQEq6vPId1e7FyWli8wrR5ME3xtgA8qiZ1BGBIZaZwItCl4/kybVy/6uI7LQO8tPPjuu3n88c+xtFSh1GjhrTYJ2iWCbINgOM2Y4+IrQei3CYMmhXYFmxwL4RAXA82t0z1M9GUJw0VyvWPIRhURGqQzJtI0CGMwMxAHKmmREpkUcilcW+CkTAIdYQhI51yM0ECFAVL75FKJc8UUNilDk3Eg0gFNL1zPA1ivhLO27vSa4r8Omm2oqJsU1K3oV7LE1Ma67mzs8gprrRjMZplM2+S8EvNXr5OSJhAh4xg/iPFjBUJho4hERGzluHV6iAN7p0ltm0SSYeD+fXjLYHzpHGJ2BBHFEM8hhIewboHYRmOhzAx6aA/Gwxo1ewbzXQ+g5yQiP4jM7UDIMXj8KcLZpxAzdZiyMXodDNOAPgOmpmHkAXTxDkTKAgKUr4jmfcw+Cx1rRKTQvub6xVk+8clP8OgTn6cdtgmjiFglHvL13hBSQgyGYYDUxGotV2ftrY7XSrtveNrFutK92bkkEOJGx0U3s9hwHIj1cRug3w2ujHXkM9kmbhy3lR+u8RXRcQ507Vq/6maVeWOuHUty6wJi69eNxnqda96MbuZ4+06dcd9VKdPXUYS/JW1hQoHv0yiVWJ25yuL165iOZiDnMjQ6Sm8xj6EVpXad5dlZ+of7SOctqtWAdqVBrm2jnBR9gw7TO4+wa9cOckWL5cUWvYOZ9QUYBMlykhJMIQhVUrWipWIM5WEgQITUDchlUtgqJj+Z48rlEqZZZWx3hutLMZlCht5MhlqdpDqHJcCSOLYgasWYhiA0JS+8vMSnPnOKtFhgrOcBDt9/GydePsHsuQvYKo1pT3C1JThdrzL66o2EAAAgAElEQVRYPslbd+zF1ZK5aonFdoMDTh91pjjlD2AYHvuKBaZHR1n0z9EzeivtCzNke/uxswYyhnQG6m2NayuKruDaoiKTdtl+xMFrtrDzFhnDQSOQQYwkye+wrDTnr1zGjDVZx8ZxYsxcgW233vMPsCw0S/PzPPuVr/K1T/0N6XoTy29jygJ1r03gRahQo5UmRNFGYQmP6ZFdPHDbbbz9TceQhw+jrzXAdnHfsQflraJWVkEfRqg8kAU9CUEW4ll0SqIPPoD5k71Ev/47yOEBWJlAyxzidgP57hTxpR9ALZ3AyMYIV6MWQ9SpCGPahQe3o9yJJE6hVUY1PXQQEJRMlNSYKRswEaYBlkD2rpWBfZ1l/OOhjpzRmx9Ld8jMJn9PR6m+4RybomTXd3QrTes1zjvwQvfJOyhG5xpdZ7nRVX8zPKGjoOs1T37XwVsE41bdAdjIJ+iizrk6Sn/nN3Riz5Xq9iImJxUy6Yws1z472w0hiMOIernE6uw1qFWpVGqYrslwIc3I5HbyjkMYB1QaVUqLSwyODJDpsVmcb0GzTirjYBeK9A047Nh9O/v3jxHFMdWyR7bobvB7P6lFIIRIauvEmiiMacYRlm5jiIhYSDAN0ikHWyl6dxQ4/clZdh0ISGVNyuWYdD5NXzbLSiXGNElCBG2JLSFqKSxTENqCR794hWefe5WcWWW8bz9HHrqdz33+US6eOo1rjRCQZbGpOFmrMFR6gffdcpQVv8FirYIIfXbYAzSY4Pn2ED12hW2DYwz0pvDUDD3D+2idu0zP9ASmITEkSFPQaiscW9FvSV69GjE9VSDjKsJ2Gytjkk05SdWmKFwriQmGkSIwXEwZkHNNpC24ttDgxPm5Nfe+2Ghk163frCWobJTi3byYhBBJ4i3dzlHdtcY2Fq5GYwgwDZOM4zBZyJOqzzF//NOYcYgpi1Q8j8iP0VGS/BwT09SatGwzOnWU977pDg7eewQxOY1eaoM0Sf2TW4nnLqFbQ8AAQg4jyIIeR/sRqGvo3n6443bMH7IJf+v/wdg1jX5pCKbTiIMmvL0frr8bNfd1rCJoQ6HOBLCokdMZ2LkDZY0jRJu4klSjU74mqkqUobFcG22YLM4v88wLz/Lpr36WZrtJpKOkGaZYCxXqeLSlQMcbYUSKxKjtoHrd4UKd0BwpBKoTYrgFleyuOKY3eam73//Nz2896Vhs5lXdLGozP9u43tYKQVuNlq1+8g6Ksbkym9h8gs75u793c9Zuo6brV20kam84Krbel/U+EVv56zeh7yohuYMibLWMXlcAvjnFcRLSUy+XuX55hsunz7NU16R2jHL3Q7tIaU27VaZUWSJYbXHv0R30Dmyn2i7hukWkkaUZKnryBWqtgNAMmX3yU1w852AN3MOP/cxtCCWoVsFKCWINQiXVxRwHWgsgHHDcFNKvU6stcbXewLCHOWgHHP/C80zfM07OtVj9xhdoq130vXkPjZWARiiReQfHNbDWytUbIqbeFDSBpflnqVz4M3pERKrxLP/2F84QqRaj6SIDqTEia4hy9Co6lqREzAszr2IEMXEYo4RFo2c3L3kWdnyRQ4NpBpTg1cUVHvrBNxMGisWrkrHxPKbtEoYat1/iLEbYeYFfjskbIF2JdkOa7QW0P42bMlCxRugIw4gwTJu5skG2MIIdlhhz2hhOiGcIQr+FYSSl/75X0S9aaz7+Z3/C1/775xCex6hrclfK5JlSDd8LaYdgxIIxCUNovuaHjDqSH3jDWzjwzrci9+ch0MhDRfSMh5YSPbwdPZ1DNSrIuIGRfht6ZQFaX0Pra8iJ3RgfKND8aJvM//UzqF/9DxAfgVvuQNdsRGRgPniM6HkHYVSITpeImhZKpnEcA/WHp2jpU5AdQg9MwvA0cmAn7nDE4ldfpmd0EHewiDmWx9yTf50n/COmrpocyfcuIdatm3da62xWrjd77V7rMW8uF7rJR7fpHDffcxPq6G10nFWCrYL/ZkJ/43PjCh2PXHcOwvq4NeVBiI1QI6U690egBRgy6U2jlEIaSTdkRFKHXQCObeM4FhnLprVSpb3UohqZpHf08/Bb92G2I6rNRZrVEqavuO/YTnoHtrPaWODeu8bxIgMlDDLpDI12QGAGnPqb/49Xrx3kwH138dAjO9GxoFYDOy1oxGAn+j+2Jakux0gX3FQGXS+xWiuz4iscq5f9VshTn3yKO3/0foIrT1M+fgE/vY+eyR3UlnyaoYkzKLFNiS2SCkxCxFQbgpaExYsfx5t/il6pEStf51996CVC1WRXzzC51DYqUURLX4TYwCXmS2dPQBASxpq0kac/O8rJwCQXneXugV68yiKViR0cue0+Al+xcFmy81APQcVACDDTGrsc4RQE7ZWYPleQygoi2aLZrJEKx0ilDKJQI2IfiPBiwXzdxs0M4dUrTBUtvLRBpq/A5MQg1foVfNWpONSpNLThZZZroeZJoZ2Nt6X7X7cRKREYhlyvWtWpf49OVEzXNjiyYwpbQa21SsE12Z9yeLpUI/JDGiEUEAwLyGjNs2HAlGvwUz/8Ywy/eR9i0EXEGjFgJ/y+T6K3HUYtVMBbxpAm2n0IlufQwaNgtjDu6EU/mMH7XEj6V3+e+Gf+FWLiJ9A909AQiGIK84GjhF+TCOERPrFEFDjgprAxUKdP0tQnEcUp9PAUDE5j9I9h9wbMf+FFhnZPEKdt/tvnPsZffuETRCoiJk6awiEwTXOti7FYq/S19kny2Un81zoxFKRYq3DXua8aYja+r4fu0FWVTHcUZL1Fue8oxqwZKTfyiaT6ULfivpleKwxonTfcABesJQV3x1mKDSdKd8+XjWt0bCHx2s6QDp+9OVwKHadAlyGwjnR2xmzhla9Fr1cr+l7S2gM3TROtNX2Dg0gZgtmkt6zZf3SSV155mVdeuMLCQoMlH6p+my8++hxepcTUzlGGDIO0YSP7+xjI2zRrIYfuf4RdfaPMhS9x5ZXP0mjfBlYiIGIFWRs8DYuBYNiB/gmLoJx0jlwsG4S6wL7xAV75vV/hGb9KtWFRWx1A9uTJDt/Kne/6YT7+sVMMDvax49AQ5chksRwxNmwxGyiGFkIK/SaPHq/w/MWQXH6QHjy0riBbC5hWjlh4KKvGjh0VfvOvP4bQks/+2l+wfPoUc/NLXFipcbVaZrH5BIX0ONP5O3hmeYE9Ix4feHAC29ecOH6K295yN5wIEX0+zi6bqBJhxAJDmlRKkCsKAjtkqRkx0T9F3bOwLIh9TaQkypI4MmZ8uMjzTx5neLSXUcehHrdpRxLPD3G/x5FFQgjiwEeFPv2OwYM7+1i4skDVb5FNFbi3L4cba768uMopPyYPFIwURqmJWq2j/Ry0gLYG1yD6xhnE/CIiFxIVTbShkHwa2h9FxyHYWYTVj7DbZP5ZDv3sKnE0gpDX4IqNrh9G7kvBeRODFFpV0NJGpwrEqRx61yTXvr5Cz+B26kYBM9NH30QO4V3FLBxi8p8MoUoxss9FDrtblLLX6R8jbZYVnc6jN08Efi3a+ni3Hree7LsmxG84a2dfl2GyrtfrG4Zt8bB1CeHXkKzrhs26gGVdIdk80eRDabXmsUy+x3Gi/Gud9IjpCOhYCAyZKCle28cwDGzbwjAkQRhRLpcpFvI0/TaZwTSDAwMEgcX+o9OcOnmcxW9cZq4asxpEtLw2n/3kk/jVKrtumWLQjzGzedyeHIWURbsZceyN7+HA1A6OP/skC1cNGt5OMDf4fY8LqwFEWtCbgv5xk6CcplkLuL4kyfWMsi2e58rHfpOnvRqNhs3T/+UyOpNm/Jb7GNt/F4997jyDg/3sv7Of8yuKbFaRLRjUvZjBhZDikMmffGWF+ZpNIT9AAQ90DZrXsZweQm8Zaa/y5jfdxX/4+b9AaoO/+hd/QPXcaS4t17hUrnGhvsJMfYVCepyx4n186vIp3nt0lAO3DqBqPi+9cIW7vv9+/Mca2EccMA3iGhiRQAqT1WUYHJesRG2EYTPYM0bDtzFNoKnxtYEWmpSl6csZhKsXSQWr9FqjXIsjKtWAykqDOFJJd2OtkR3vbKJJoXXSQHTrOk6MhiSkJQkxSppQdUxVSPbrztJcH0PS08L3cA2T8bzF4V6LlZUmVd+jP9vDmzJ5rtZavFSu0wgTfl800jBfQtc8dN5B+yCFgpRB+NhxjGAV8gZxT4huNrH4JDT/GK0dhFUAo4oxHJA+nEZ9fRVlTyPVcfQLMSLejtFnoS+YmGYKFbfQZg5t5lA9ReJtQ8w+u0r/2B6WVY7i4ADZQYlgEat3H9MfGEEtRPyv/+b/5OkXn6XertOOPCK9dt+0IgrD5J0XnXsjieOYOI5vUHQ74XmdpOQNA6DzIm9FNTf2bcUKkst3udzZ0I83zpG4Pjbzq60ehZvTJv6hu4/ZzFf0WslW3T1s62F0I5Hf9LLr177xuI3fuoHWwo0g6rcWxt9RtaLN1PWgXhf+35q6bpQwZBL7WRzGyfdw+fwsj3/hBV5+dYH5hibbP8z3v+k+ppwh4vQQkcpwva44v1zlwqVrzJ6b5cVzV3jp+FmefG6G+Wsl0k1FfCXDzoOT+DqxaE9VBCUPxi3N1ZpGC2hLaNciCimboFTjM//5Sd76sz/CK994gqM/+vM02zmyA9OMHTrIn/773+f+N9/PyHgP567EZFMGPQWT83Mxew3Iuorf+PwZnv3ixxEZh/EH3o1Z11TnT3FXr+QXf+/Xef/P/RT3PbyHbcU55lfO4fYW2HfvPRx65xu550feweStO3n8U4/SiiJibdEefD+RFTC6I8XeO4/hXG1SmJjCaQukE2IOmci8A5HEyhlEi4LsqIE2Elg9Y0tWSoKcayQeH0MjlAdhiyBscX61xJGDhzj79SfRUROZy5Afn+bwkTvWoc7vZeLskTvvZs+2MRrXz3K2XGE59Il8wXTGYlEZzPqSXZZJv7DZ66ZY0L34NZNUb5GBg9uQeQFlzex/jnBTixiXHye++BixO48xMITxgYcJn/46OqwhsgFiqhdx18OwEqKeCzDftQt/eYHozIsY8SzGyA7EXSn0V/6acCUixEGPj2A/8CBmzyEyE3vIvPUNFO49RrZvGGNVYkyMQwCyJ43IORADnkJkzNd5wz9WWpMc3dWK8rn8upcrUai7hO9NhJbaIrhf61F3PPnduQyvBThvMStuPOd6rC5dgn6L0vBa3j65OSl+vepHx4vY5emTnRArIdcVDw1EUQRs1LBHJMmrhux4jWPiKMZ2bEzTRAErK6tcm1/lyvUyi5UWWafIZz/zLGevrLIa2YxPTHDvof1sL0wRpYbwAoeZSsD5+VUuX5rlyrlrnDx3hRPPneaJ49fxS1XskoVczTCxY5hAC6SGp5YFaSClNfONpEpRS2q8cshIb5pzz53n7Mtz3PXDb+H8s09xzz//MNfO1dh11/3Uo5gvffZR7nzwTkbHezh+2mfXhEM7EpRXFDsMTcpR/PJfv8iZL/4pPUfuoX/nbYhGQGv5HPf0SV4un2clWOLBu4rccSjFSnkGT0T8yn/8PR4/c5xT8xeo+21sw6EdxcSYNMd+BjjP3rv3MjY2hbMSUhydwG5oZNbHGnUQtoVAYqUTfp+fNgjDmIwjEFpSrwmyriSONZgKHTQQUZuG3+DC8ipnnnmZvAxJpWJWtOLSUpmLM/O0Wh5CgCHkeodspRSx6jRB21hyW1YSHadzZ/V1VmCn0lFnfUg25ImUgpVGk8OTRQb70lxs+azGEbEn2V1wONmWREoyZVkMSZs9bpoZ3UdckfTtnSI31YdICdSK4tqfRhSG59DP/iVx6Tg6U8OYHMH40XsJHn8cZAtRjBC37IKdB9FLIfr5EPMDB2h9/QX0/Bmk3UAOjyOO2ajP/1fCsknkppD792AfvRur95aE37/jLfTcfRg3zmLEaYzBYXSkkb0ZRNHhgbseoOm1eOncy/hRUrZUd5TktZuTOMyTENkOYtAdemhIY61CoNxchve1HBRioxKUEBvhfGLLmA668Foi/bV18RsPuKHa2do1to5ZR5LW8o82GQtbLrrOZjYZMVtmtfZbN/EoutCPtbls5W2bxyWVsqIo/LuvVvQ6fTe0GcrWWiAMA8u0qVdbnHjhEuMj47zh6A4GR4pkewcoZvqJ9+3gVg2x1yDWkghJGPnEKw1apTYvnXqVa+deIqhXaDY9nnjis1RXRnjXv96FlRLsc6EWwuUQVhXoGDKx5ooSpCqKgVQPb/zBu/jo7/933vSed3P6yc8wtPcONJILX36Cd779hyhdTyEnJWOTFnXXwNOC3Q5cO93ir577KPPtFLltO7GygwzkMrzvf38XH/7gFzjfKPOJ3/kN7r5vktFhg2arxMgtLo/9wcd5+//wIVLZDAAHbj/Eb/zZb/OLP/4/046aNFf+mp5MlmzmFjK9/VieQyqXIXzsFPaDuzCyLtoTSAlxABgQ1iKEE4OIUF6Mk0oRo0g5kiAGHbchbqPtFF6cYeH40wihKSsDXQ0YWG0iDcn30ijorArbcdh71/30j6T5/9l77yjPrrvA83PvS7/8+1XuCt3VVZ3UrQ7qllqSJSvYsmQZYwvjccIMGMzCGcaz7MwCG84uw2Fmd2fZs8MszLKwxmBswMbYBls4YckSsnLqnLuruquqK4dfDi/cu3+8X6yqFrZHNuw5/T1SV9V799133w3fHK689rscP93LIWMFMRfh0pLmqlfherlCXBks+ZqqtljJXuL685Jeq0r3ww9jOYK+95vIE+cIvFl0XCF6opSTB8iMdZPP2JiBIHrPbuxD2/D/7Lcxf/ZXMN4dRecV9u37YfdOhJ9EZ01ECkRykOpsBbNvG9HxfbAiqa5UiL7nTqiaiIQFIw5iMAmGDAPclQFKhpKpcVMq+P8jNHxkQxea1t/hzfDHBssANIPyNnZIXbnfoe5f78K9TivYYBwaFgxFO1XcGPv2PWThWNegndC3uxWFVgPZ7L1xv5EJxDTN5vMaCIJ6VVTRcnsIM6loqBNkjaRUqpCqekTtFK+9eoUdo2Pc/lCSzJY+Eqkeok4StMFhJVCVHL6I4BPgV6r4a2VKaxWOnTjLtTMvI9wqs1NnyWVNlqYyvPs3dmKYcNSGVQ+uuVBSoAKIB3AhkAwtBYzuGSfZY/P4F57ngQ+8nxe+9CluefAxliYvAoIH7v0x8nNRDEuwY1eUGUOS1LAlCDh/LMvfHv8yK+UEA4fvQlsZ5ieOsTrzAlucGOfzaxzu7uHBtw0yOBBHGGXSyQW+/UeXuTZ5jXyhSKA0RXeJklthW2IrFb+IOf8Z+uIGiUQ/0Z5eHFkhFo3hfeM48Q/egRAWeKEVp4nvsz5mRBF4HiKQWBGrju8FFR/wCkhDIJwUhpXh6EiGqYUSF5dKqFQ3yrcItA79TJQK/eAba41u/t6+cZp7tMHoIppF0dqF1ZZ82XAvqe/75j5TTLl5xrZGeHBHN6dPFXksqfGnE1QWPVbyFRZdl1gd37vaZmH5JNcft3EK95G6/QimLRj4sIl66TW0yEHGQqczVPv2YY91k0vaOAri/+wtCCOL+vqnMN770xiPRdBriui774WSgTDS6KKBSApkYpjS6hyJHUewuodR81CrBkQevR1yBnLYgj29oQ5cGmghIZCAJJZIEEvEsEyreXSDIEBKWXejaTC3Dc8b2TQJtpjbUKBqZQarC11S1oW1FloIA//b16aJNZruhOH9jcqN9X76oNueD6WZDUqM9YLHJnhuUyX5eka+Pg5Fo5Jy432tdhtlobbxtLtKbmjWVOk0n5NSNIvPfT+szZsiHNwk/98fhEtXz6MvJZZl0dWVYnhskD3j/Yz0RUgloxh2FO1LtBKklESQRBP64infoxivIEYl6a3d5O4cJajUyC8qTj23xqljf8vWPxxkdMd9ZHb0k+q3kVFBJgYYsFyFvqTAdiRGTWK5JofuHKYns5uxwwlqyVFAsC2doHfbCDIrkabEy4K76LO4VOBC9hqXpyc4N3uFsfsfZt/4EMXFCgtnz/HymstP/PP3o70yQ70p1tbOMnfhMvFhi3TgsueO+zEtpz4hgngizsE7D/GJf/sr/Kf/9dPUKtNsyWxlLGESt22oRWG5ijXQhyQCSoAJuizA0siYxqhWgIBAgJAmEdugVlPEDY0IfLANMByCwETXIsSCIoZQZIse24YHuf2Oo22MRptm4IcsLDScKETpOrHcK+wa98kHURZfdVnN+hRr4MiAmqm4rhTDgUDoEmXXZ2Y6IH4qyh2Pvg0RM7ESgtxSDl0KkJEYorubyP3bUZcsom99FHXymwTFCv7sCrI3QfWbf0nk4x+EooEc7IIxA0oGXCuiv/IkQSEHTgZhDaErGdx8HuOWA5TOThLUohiWxOpJYI90I3tNRDwKpoGQhCnmzAYl+KFO4U34QaBJYFo6z9aVBofTaR5vKuwbXjt6PXFv636dMNH4Xdd9tzvVZy2XA9oFkY5BtVPPTd6zWfsN9xoEX6wjlLptn7ZuKK3rtWJar5WEQccNE37TV7heHKsVlCzDirpaEwQBNbdGpVwkt7bEYnSa7v4BHn3oPsa2xIgm4gjDRgcSlCCtJEIn0dJAE+BVXSqZGowJUiNd5O7cCq7g+sUKV04UOPXK4wz+P1sY3/0I6d1pMhkD2xb4NmgpWKjAaLfArkgMT9CViXDgyAg96XF23ulQTQ6THjOJOwbJnkHsggyDr5cF5VmXudUl1lammZyb5PzCJLsfeQ+3bR/gwok5VpezRLSFpwsslkpQKrN3tQe6TAJZJVMp8eyx1ygVS/hBQKB1aFlxC8wU5+lNjFMtTbCjb5yhuEnEcKCkYaGGNTKIqJlhQUUftCfA1Mi4xiiXIKoIkEhDYpsC19MkU6BqVYhYBFrguwHCdRjbEmd2GVY9m5XZJVZWl2kw7EKGfQRBI8tQpxgrm4HJbVvxBtu0uS/q+0c22jf2kdbEHMmBIZuj4ybbdmoqOsH1Y8ssZzVeoHEMn4qpmFWKQSWQFCnWfC6fex1n+xaSdx1CxAyshGB1ag1DSUQ8ibGtH+fgVtQlm9ijj6Ff+wr+3Aq620CYBv5TX8b52PthGeTOIcCENQ0LS+jHXydwK4joAMIYIsg6BCjk9gGKpy+jqnHMCYE93IO5JYHsEohoJMT3dYbeijhE7AimNOsZh9qPUwNpCKQRpo1tl6SaArpouTW2P9eIJwj/bbhxhfOp29o1rBXtGYpay9JpBuqsAt9xq+N+I762PWBaw0beYJ0gsFl1+MZ3Nr6jgXfW763WxHT22/6ylsWhYZVpjLY+te04tTWC78Vr6c0RDm7S/u8TmuchJCK2bdHf382h23awfWsPjuEBAegArasoZSF9BWYcHShQPlL7mNLEiEp2ZAYxbt2KMG0Kq4pIdIZvfO4LvPTly6zsSDC4d5S+0TSJnjhZxySxJYYSEDEC/FqN1WwRcznHgeFRzp5yUek0xbIk0dtFZqCPc6eWqPl5SqUk+bkqK1N55uYXuFq8wjIzJMe2ceTgThJulGr2GqWrMzzxykU++i8eZttwH2N79nDheA9T1yR2TwXh3ML++x5gfcVh27F57GMf4Pf/4xepVMpsT+XZ1VPFQZOfyBEngr19AOELqPgQtaEGwgYhFIbh1wutmECYi9sw6ghdeWGgrnDA80lKi1hvBDkrKRdL+EGVqLNRMPjhQKc2CjQzl04z+/rXKV7+Js6Qj6M9Zl3NtVoVtEHakSSlYKkQECgLFXiUNSwU14jMTbL7yms4OwdYm1jAK5WQdiycB9lDethGLxhE3/IAQTSHf/EE3sQa1sHd6NVZ9OJVcIbRXgLhWIh+hTq/gn7q65Rza4iBI2izm8rcGpVKjYiEYDaPdmogQLo1PF9imymEFUfEBRgiVApp0J5GODcxxD810Bv2YQtuxJ+3Byq31wtotyw0M/3otvR7b6DsajHs7XnB1z9Qv6rbtLK8UZ/r7guaxH2Tr6r/19A2Nji/lhZx07439ZVuc09CoFQQuqj4mlq1SsWAXFZgORb3vv0o+w6OY1AJ3xB4aK1QgVnH90mU54WJFJTCNEzMqMGezDDy4HakFeH6hRJO9CIvfPPvePELF8nu28LQwQH6hlOIVIRqxCTaFyOQmrihKBQr5JdzxF2PXV3DXDjport7yOZ9hofH8KseF87OU/NLlIopstMlFieyTK9MMVudIm+sEB8d4e4ju5HzCnP1CrGqBrMLz80RMQWXlvM8f3qOO/tHCPI1Xjs/yZmZaVwvIFAN/36oKpf58jL96VvRfoFbe3IMJT2MiktlMk9MRrDHB9FFDxGXaGWGuMSq43vTD1N1q1CDreoVoZWGwCujTRvtBxAoIloQ67WQlkQpge+XCNwSOlB195WwyJ2vVX2PibqCo3VO9Lo9IgiZzXWu5s0do+sPNWplSFFXCkrBSHeEoZgFBY/ZKZ+YGWPSFVypVohLi3QkjCHJaY3SBipwyQcwk1uka+Yiw9eO0zXSxdrEAn4QoJ0UyujBjmRIDtioJZPYA4/gi1n8iQm0CjC2dqMquRDfJ0fQJQfRZ4KqoM/Nol74JsVyEXP0KH5Z4K3m8CMxbK0IFvLoiI+sBvgK8BWWTCJMEAkBUiCUYOfundx24Da+88x3ANF0qQmZX93ECYLQOgetgmeNIF2l285Vm3zQeX7bJrvt/LXZCDY5551HPvyxUUnR3l9nY928rtvadLoC0WE5avZTx49vxCtvqoNs/94bWWU739a0uDSeb39n+1j+IXjz3IrWY+qbvMAbQF0CFgKkxLQs4qbB+NY0pinQ3gpCF8KFrSgQXSFiUaA8A6UFhmFhmwZeuYznLuGaNr7h4BlRxu8bZMsL+8hPLHB66iJzl2fZJrroc/p5MZLhrrem6d4dZbLgsZxdgkKW7ppEFar8+cw81dJxjrzjPkYOHmSyqHjmT17l+tIJymqcYpDFdcLSRFQAACAASURBVOfBKOH0xIj0ZRi//xHu7U/xja8tMXk+jxNocuUCf/PZv+Kxd91DKh5j7+F72LN/jPzcKwyOfKhtKkTbr+G8mFaUSCXLSGqR4cwaWruUrkyQPnIb5MtoU0A+hnbDKDxpg15VkIjgV3z8QKNMRQlN36DE9wMC36tXY9RIXAbTBiu1KDpqogoVLl58BSHzDG0dJdPV+yPaBy1k8+I3vsAr33mcctUnCBQHdxYY3ZbBDUxWchJ8TY/rsa0mKWgT5YWm5pIwWV5e4OKf/CHx9xxh+uvfZfT+WxBGN5UFB0pJ1NU88r4u9HIPZvIR6O7CO3ke90KN6C/9PMGJpzEODqDnFOQCxD6FWptCrU6zWAvIjN2GX85Su3YS1x6g8MQphh66CxmvYvYKgpLCv74api/1PKQtkUkjLHDja6iq0GrT2Po34R8f1tGGDuX+BlebNguAbgkGm3e7nqlvac/atXuh1que2rRxuZ24r7c2tHMJjd82IcQbPq2uvZNtZvkNrXVL2yiaNLgu9OjGXDTeqZtZmzqZAoVWjWQT1N2JFEppPM9DWCZ+EFBzfUy3hiF93vvOt2AIAe4c4KF9jXYlkKrje0nginqKVBtLgl+qoGuLaDuGJx3srjjb7x7h8plbyF5d5Pil15k/k2Kn1Y9rdzOZTnHb0SR9e2KcWq6SW7tOpFKjuwqr+Qqfn12gVnqZhz76UwTuCFNnV3j96yeYX71ERe0g58/j165jxMHpihMb6mPnA+/k/ozDf/r8NWrLLnagKPseUSPO9i6fteIyF6cWOVwYYuVKhU9+5hVqpRoqCPACVV/nUECQGBhmBNNbYkf3ddKxPJWVJVbPXiZ1z52wVgJLoldNsA1ERCBM0FkFyShe3kOh8aTCs6C7V+K6Ptr3UBgIrYiZAX0JWK2KEN+rAiPDcaSVJlsoEPj1uDRaKUsb1h8tdFgYrblHwo2glF4Xm6Y790lzCze03jJcU60xLcm+wRRX530uTGexTbhlrMiOXd0UXJdi1cTxXLqMgMCXFDHRrqKGQ1EI5s6eZPIv5rDfuptrX3+WvY/dQflCL0Gpl2DNQS0VkPelUYv9WI/8JPqFp/An87CWwHnfowSvPIPxlm3olz2ELUFUUGvTBKvTLNRgy633UT73HWqFPF65F/HcRbY8cDsiXsLaYuJOuQRLOQzDBtdDRgxkQiBMwdvf/nakljzz7DNtFjRRz1rUOtAqUM00s8051I15rrv01fGGkGIzWQB0KGg1zmUH+9l056Lp+ldHB2xOhNrOcmvZNlgSxfrWN3A9ambybJocWwJGe3a4Rvft8QZat9rfCMe1RtoW9N5oJVrj6BAC6oJq4/z9Q3Az5uAfDeoCAi2iKXQB5ZZh7ThCakRiBGHF0OVliPjgGUizH4I4qlxBqbBYSHn1VaZPrnH8RI7XJkrMuRHu73f5tX/+r3HcDOp8DW96Ed9dZY+T4kt/9klkciuWWcAXC3jSpWh189XVE1xUVexoip7nl1l87hgTC5c4UzxLsZJHimOgDSLOOP0HH2bHz7yP2pzHLxz2OPXUefJXp5HZK9QKl5DeHPtVguf+8vM8/eef5rFP/Apjt4xx8bkJBm99wx1PIpOk4q9SyxqU5gPiRsDg+8fg9DTaFWgxCJ6FigBJsAYgWAoJgZ8LcAtVDEfTtXeArAdpU2KiMExQSPyKJhqBciVPPFklXrWwk70EVoRP/eFv8av/w++1jUbThsHexLVvMViB7yMNE21HcLWL6fucuixYu77KHcNpVgPBxKLL+axHXkQoKc1tMZNeO8WKr7leynPq3BrmtUtsGYgT3bKNpewCpZV5Brq6kfu6YfY4cvAw/vEMcvRBovccxf3SRdZ+7zrxe98K0z0YB2yI+PivTVF9+mtYQ4NcvDjP6KpLt2NgD/QSTeygthol++2/xey+n8RuC6dfY3Zb6OoKLMdxFyT2UYnsJow5sMOc1hhtCOwm/OPApjSh82KrgJis31NNrlk03Gk266NBwOvq/QbhfiM61MB/64lVyxe33vU6c0GncBJe3MwNcD0T30yh2M7Yt3EdrVSIuq2PRrrDRpt6z22MYMONIVAq9JkWoVZZ1scbKIWJIBKNkkmnSacTBO4qSnuw9CIy0Q92H0gHXV1CRAOoLWFYW1EuBK4bVrn3A6rLLzDxcpFnX1/h7ILCx+TeLSaf+NgnMCopgleLuCvTaK3ZFyi+9Zk/QqZGccxlPD2La0WYRXImd4ErqkYk1sXVbyyRy17m8uolJsqTlKsFpHgNtEk8dojtj76X3rvvwCl4/Nwhj6e/chqxfA1/8TTV7CRRb5WDaYNVBYcHBvj2xBRTZ9ZIJyMEVY96/HYoRLUtnZQGph1BBoK1iRpLlxbJao+52RNsL25BuRJhj6JdiY6E+fFlGvSigRAB1VkXXath9Uawt9mseQEZW+JIARGLWkVhSEF3T4ylpYDeLZrsvKSoFMNjAwwMpvmbv301tGYEQXPvh2PtFIobewEIrQpatwqnNfaTaMNwdYZVKR1q9qTANCWpqI0hJK5p4BG615y8BNmZFe7b3sPp+YCFnMf1ckARm4rSHE3YdNsZLlXLTK2uwKtLqLOnGBhI4GzbxdRLL+DU5kmmtyLHYzB7EjlyFPepXqxH/xnm8gLuU4tk/99l4m95ECZSmD9molcreE9fxHv1GcTgEOcuzGIvVYnFIkQTcaLmCF7OYO1bX8XqfRfp22rYcRMSGl1ZQy9G8OcMIg86aEcjLEksGWe4b5grC1dQKnQhE7ozkFYaBgR+KyZA12dXtKokN+e+sQSNdRC0Mc+dWun2867XXe9QaqxTPnTGG7DhuTeENv6gjeVv9bGJC1PnIOpM/iZ49cYuza3YjZZFoU3x0nSp6vyCUIj53miweCP3CVF30Pryl7/MY4891jGw9R8o1s/iTR7ge4CW1gqt0apGkH8JgiIYEYSRBBlBqyRoF60dtLLQAeB5IIu4pVlQGs83mL2sOPXqMq+fP8e/eeAxBj5yCGwT/WKA91QO95UJ1Nrfs1RdY0rZPK2LHPjQ27nnyK3M//kT/PZrX+DnPvIR9qb38q1nv8t8zsXJjPHXp17BtFOYqsaBqM/Iofu49dG3cs+70jx5TvHKRZfIzCzLrz1Oee44W3pNPviz7+W2H383//UHP4xVKzOSMtneFWFsbDtH/tv/DSEN2osttUNDwy98qL2QpfjZaYxCgdhQP9a9Peh5ibY0YtiE8WS41fpBn/UJli/hJrJUtiXxk2NUDJPBtEG1EkBQRMiAQMRYODfL6Re/yJKxwOzCEl1dwxy96+3cf/+jYZ7ydWsEvInCQb3nphZKUS3lWVs6ztLcyxTzw5QXv83kEydZKXl0K4u4tln0DIpukj1oChVFUTuUA5+aX8UQNimvwjvMMlv2P0bqA/dj9PlUvvFNiosWW375o9AVQ9gJWJCoZQWDNrriIvuBeAL/xTyVbz5N/rnPkNMBpWgvWz74rynPT5KwK6QHe9DpEcrHz5HLRfCXc4j8EumYpm+kB9k3AH1D6Mwgcmsaud1B9MmwylRFQ+ZHH+x9E9ZBuyKp7Y+rV6+yY8cOAIYGh0INOLR8ZusEOWR22rWAITQVVY0aAG3LvMFy0Hxty5bQUQehTqw3TdXXpqHtNOlvLhxs+Pw2zXBzbI13NPsBv16LJtR+NoL66jo/KejIPiJa1V0bgkT4TOhS0cjvbts2sWiEeDxCVzrJwVt38Bv/3U9gWwbCTIERAxFBB3HAJVAOKBM8QLkgCrjlBVAa1zO4+JLLCy9eopgr8osPv5v+Dx4AKVFf83CfWsK/eBYv/zortTxXlcPXdJYP/8YvMJStcerrT/JXV5/jo+9/P/tT+/nklz9HPDPOXA2enbyMaScwgyp3JXy2PPBh3vq+PfTtivHcJcWJiRqRazNc/+6n8dYu00UOqXM8Mz/DgR23kMRjR2+E0YzN1FqOPzs2wUK2Qqnq4tX90BvaUykMLMPBxODorjv5hdEPcE9sL1bgEx/uxbivByZAd2vE9igMRBES6NOo133cxVepjiiK3RkqZi9WJs1QxqRY8CFYRZsm5YJi9uxVJk99gwn3HHPzWVxXceXKIqfPTBEoTc0NQIfxAQ1tbDMwuWP/tgRIodvPkKBzh7b2eINhFYBjG0Qdg72jaR77iT0kYybTl3McuW2MyW+fYbmq2C4iuIHJqm/heTF2osmWAooiRskrEyiFhSTt10J8f8fPkPzlB1FXT1J56SQ1P0Xfx34SMjGEk0JfCtBISBtoz0P2AfEU3uNLFL/+GQoXn6MgoBLvY/Cj/z258y/R328R2TJEoGNUzk+Sz0XwFtYwCnP0D8RIbulFdvdBzwCqawhjLIOx04KYQLkBUxNTPPSehwjqApcX+OH81i0JhiHxPA+tdVglGUFQTxnbiFVod9GTCBQtX/0W1IX5BlJoO//t+KCNPd6wRq34qo2wkdNd36Az3XO79aDVZCOu6exRc8MBrGu6acEzWjVYGnLCjXBgwypaqVZYWVlujGvTxj+A5WCDYWWDlNcx6vXXb0IbCBAaoRsp/iyEsy3MfqDCwl3arSAjSVBh6fpQ0A7AttAyjm1GCarw0rePk10zGdq/n3d8/CEy8RTe9YDKnxQpn7uCv3oFVZ6npA28vkdI3zLMu++KE9mXZCKb57tVm2S34q5ffA/HvpXlnLdCIT/H4e19/MGf/jp//Ot/SZIl8kGOM2e+xtnJK7z6zEf5+L/tYfdIhG9e2sri0i5EYRnJCuXlBYQQ/MZ//l2e/L/+M3vechf7HngrpmUi6kWCbgTN7AYW6GgCPzGCWaki8ib6JQ+0DTGNqgSw5iHiBrJfom2B6BpCRiLUasuczx7jyPbtCKMfS2qCIHRzkaqCHXcopeKochwt8syvzXJ24lXuf+BdP7LVb4AQgmg8iRO9m/6RI3i1gE//9l8Q2xlFTjkU8wGVSo1sRbFUc+mKJliRAlsoxrsH2Jrp5VS5wsTkef5Dweaxk09xt64y0JdBLc4i7SSlT30b52AN8+69iK6dCCuJLl9FRfthVeA/PsPqd7/J4pVj5H2DrmiUkcOPkIpcw7F78YcHKGwxsSavkXz0AE4lQ3AhR3ZiivzCDN5MmYyySQgPVgsEs2F2ESNigSnQ1e8hk8xN+JHBjcgUhJo7pVqWAFV3y4FNCNwmuqXNXIs61OyNq01f40YOcN2pef0Hxv39CppKtczpN3pSU/9eIZopTxu1DlQHi9EyZ0gpEITBx2HbUDgQUobCEgodQK1Wq2e20diWzcS1OWR0NxgOSku054FSSCcB2sCw61YaKwBto0Uc24rjVQV/91dPYke3c//7H2Fsbw+pSBLvqkfpd0qUp06hslfxalkqRhK//y107R3hww/GSe5Nc+zZy7weWHQNWtz1S4/x7BfmuVi7Tv+ay9G3v433/MuH+OJv/y0paqwGBaaf+SPOnXmY2+5/G+/+eJp9Y1H+5sw2/PO7MaoFUjEby4pQnL7O2WvXeN/4Tr567AI5v0qgoVjxKVbdcK6EpBGP3ljpIHCxo3EWqovkTIsgtg275EPWhBdc8B0oa1TFh1kPkTaQfSG+N/p3YkSXKFazLPhr7EsMgxzGMTReIKkVSwRln0gqRj4RozSjqfkaERNhHIMRBhZoHVaybjJhTVm1zvyFB6Fp8NaN/9cZDhp7q2l0o8XMCQGB0ngBXFup8JkvX0BKk7hjkU7FSOyNwhXBWtmjVq2wWqlQ9KskI3EWpSBuKO4c2gl2lIv5AldnrvDv8jYfe/WrHP2UIhIsoIrzYFco/dHfETlSxXzwKGJwHEo+ulZEOd2wIvA/f5W5J/6MxaUZAm2SSaYZPvR20uZ5pL0Dd+cwvpfHLmZJPnqQSDVDcGqFpUuXWV6ZozLjkvRM4spFrOQJrjuIGIghEzSYvknEiVCulBFCYAmzeTZ830erukVOhkKiICyU5vt+59msM7OhxTKot+y0ALSygjWCyNuCixttmmu1uQjXYRVsajo6b26KM9e5M9FwZ2rbGxv/WPfSN7jT3JKb4LoOZchmeHjdtYYuNrR4bVTwrIcfQDjolHJuKgL/S6HdZinRREECUiIMEDqKkE7bLgGQYEhQPt5SltzFMolEP9nlBVbPncAcuYuqZbL6rSL5s9cpLlzA9TwM+xYSvb2kPrqdxUgEKynxlnzWrszjVc/zgdt/nERXiqnlJVYrAlebeJbF+K40gkuIviTdxlbMlRVy+VnmJ/+e6xceY/SQyd5xE3fnbkrlCsnKeS6fu87kf/hdhPA5/K5HGb11H9Hu3s6D/wabRwhBUFAIILLNQUgDr+ijVypItYw2fNzrBVYrl3kxkNw+dTcj79qOEYsiaz0kzDi7xzTlwMf0NdIykK6N9gXC1hg24JbILuXYtmsLZd9lZn6OT3/x9/n5D3wCoC391/rMJm8OtPoUIAwMKcktrvCVz/5HXLdEouKx1QooxSU1y2Y0JTiwrYfZCzG2Jgx0EKHkwkx1loMZRa63i2u+yRm3xNzZlxmLm9wVcanZOQrX5khOaaKvn0WO9qIzUbzFHIGxk8pcgbMT14hmrxNTRSKmxDeg+yO34b72GtHtfaiYBC0wDwwjlMDpMjDuGSCyP4k3NUxwYZna9AzR8qtg70Vs3Y+aMNAKjFtMwj1u3HgybsIPD25gLWjHPRs0aY2fDaraoLI30Lo3GOOW1r/Ra1PlhVhPSNfBeg1eOxPQnslEbLCWd+r2mhZ13WlxaMQTdBLNTstD81a7L7GoM4m0CzTho7LuVx1qRus3ZPj9OlD1eAFRF4DC/pQK/a1zuSJ+YCPNWDgMywn7lw5Cy9bQDAkotFfFXciSPVdmarpCVJ+lP1LDSNmUtWTt20VyE1PkV0+h6cKKHyQ+0kvyvSMsRiNEkoLSlRprVydJmms8uP8RYuk4l+eqFAOTmDa4NDXBlHcFoa9QiZr0Z8aQ16cprpxjbiLN4uQDjOwzuHW3TXn8NpRXxHInMbA4OrIHU3o8NTXJ9XyRSuCjEQR1//zQ5Uq2TX1oOYBQIfT2297GjvExTGmhVwxqVY29WEGoeXQOKpfnmHXnOW86HJ64g63vG0fMJ3CLVXztImNVKkgcP0CYElGycQwJMZdsrgBeifxKha23xllcrNIz2MW+2y1OvXgJKSVS1qsa1xdXSAFBY0foptAbNO7X10e2ldxt7vtW0iOgofyTdeEzoFSpUa16DPUkGB9J4blVZM1jZ1SzJiws26Bvi0W0N8P85ShjwwbKjXPdLdGrc+ztDihUu7jqFXi9WuTiy9/iSDRgzNG4xhr52hSpaU302GXEjj4CAoJsgC+2Up0rcuzSZfpzU5gEWAaotEn3Bw/hvvQSif1bCbSPTMcwtthIDJwuifHgMPaBBP6lUYIri3jLUwSFBbBvReyI4h8XyLKNHDKQAkxpNs8Qmro1zQD8MA5HNHBNIwalXvtAU7e6tc+8bsMPbYqGNjewZuxHPRNZh4VwnftXB/pYDw1c8wYWhfZsReubrHdL24x3aHoCtUNj+HXhpolvOnBiO++9zhWpOdx1HW+4rm/4Xe3wA8YctGlQdPtgOwd0E753aJmLbJQKwgWVBkJYgNEymTWUcoGLKsySP3Oek8dWKMViROwIvT0ZqosBolZhaVpjC4WRyOAk4sR27iK1qxv7QILIqo9XdfEra8TVEgcGYfjW+xCGgV6ZxvE8EpEovTETIX10RhBLmPRluphxK6yszVNdO8OJp+4mvX2ArY4gcfsg+ZSLP2+RiBV55e+eIG5pqgdvJWggXSlvOAcbJwXMfoPYvQ4qaxFcKBOcqeDnp/Fra6yUlzm5ep5jniBX9fjAY1tI9SQxawbRIIpcVqyYSxhdYJgSTwZofAzLxolAsVjB98pETAcv8BBKMtAz1CQC6zMRvPnQWPPwXZOXL/D3T3yVF577e46OSm45HCVhO5SVpOZpHCUI4knMbbuYO3aB7Tv6oRawemGSXKnA3e/9ICtf/RbJwKZUzjNZypHCYdzp5dnFCxwtRNELK4hrUzgZE7PsM+kuU8vm8dxluuwK3VttItsyBGYMQ1/GHB3E6OlGE0UHJiIp0ZUchhNgJONY3RFUVxK/O0OtR8BEEV28DqUB9IINrkJhYe60W1Vub+KGfxTYSAzfiFVvWQA6NHUbHn0jhn99VYMQz7WKpr3x++sPtBHrTuLYFGw2ExLWEeiGoNL0ca436xScWo+3UTUaaU+bbg71vOFa160JQcuPvsHqNNyLWrESreBEFWhqNRcpDbLZEt09UaRhIKWFMCyEXufWiEZ7JfzVGVZePcWx4zmqq8tsH99OyopRmffRpSpLM5qIpTCSA5hDW4mPbyWxM421P4az4uPVavilJQbsNfq3Jhm85a4wt//iJDEMeqMOgz0JjEGTqRRkHIuBVILsgsSrzLE4c5Ezz+4jOdLLjig8XTjHcH8Su9BNdn6B7akMMSug4paZKxYo+wGeUk3te8gkt9O60N0KLUBp/KrHK1MvcqL6GjE3wj09RxnGRJeu4LllpgrXOF28zjltsVao8LGP78AwHaLFLrpXTcgWWFV5ensGEJagioc0BaZhYBg+xUIZ24DupMHqkqJWdqmUqggJtmMgtcTzwkDpVo6XdRrqdveR9Ueik09rxdys22G+HzK7PSmLRNTCEpqEqnLr7XHiZow1D/AVprTw7AzW2BjXXz7Ngfv2snx5lsrcLLZhc9ePPczyV79FzHBYya1wsRIgZYIeafHc4gT3FmPMz69gzVzFMTV+VTLjXsfN5hHuIrFojfSuBGZPApmOYOgJzPFRzKEUqhJBWybCUeCWkY7CSDtYXX0EyTRebwJ/UsJ0FV24hiiPoqcEQRBF1SxEBOKROKVyMayULBq8fCdX3F4FGa07jmSL9tal+vodpRTrWfLmX009htjIj65HNw0cIW7gh39DOvVGeKsz9fNmXXYYMNa/6EZSS+PaJuxT042zyYtvLti0KyO/l7iDmwHJ/xSgbWGF4aCDMigFhtEs0EIQIIQRSpVuFT+/QGnyNDOnLnMl5yNXLA4dOczew0coL0tqiwovEaerJ0ZydA/Wjm7iB1MYozYVDdL3EMLDjpSI9/iM7BinNDqOkAIrd4W4X6UrGmE4IsjmqpjpHnqTcXrTkjnLxQ3KGJU1Zl48y6V7I+zflWD3/jhLsV5m4wG7DnazNjtF2pBU1rJUCgUyA/3f17TIiEAOG4htJhqNOxjgGxK1LPFLAdmFGmeWfPK6wlJPFhVRGL0GEgNRULiTVeyMiYnAkBrXDPCVjxQRHMei4scwBQTlKkHNJ2Yl2Tu2t+VnvWGR3jxYz2zNTE3y9JNf5/Ev/TkRM2BsKMmhhzLYqTRKK5SvqVajnJ01Gbmlh4VZn769JlbFprJkkysZ3PvwbZx48WlGhImwI9RMyapMs4c403Pn6ZcaRyucNRc761NGMKtqGFaevb2KvowieQtE7kyhxF68c9/FefCXQEZD4UDHUGUf2eVj1AQiUCAMZDqCnXGwtiXRL/Thn3kVdAVdyqOqCu1HMAYNdFVBpJXa7ib8iOAN1WSbNG+nMTd4sEHoO5ilttZis98bqvtG280UWE2eTLeYifqzm22ZG37WJox/S1PZGnFDWNC6+QftOst2JWWL4Lb8jLXSBKLNRN9O5+vmftX2DQC+CqjWXGzb5uSpc9x91x1EolGEMAGB0gHaV0jDRGiFqoYBxrlLp7j62mmeOb/K+PAoB+/cT1/vdtxVg1pB4SUT9PdGifcfJra/m8ieOAyY1BRIz0VIj2g8R2ZLFJEexxseBSGwVs+TECYjMZtD49uw7xjj5PMT9NsmaaeGpyso5eGtLjD9ynl67jjAoV0JZi5/g6Hxu6gZmqnlOdKmREZMtqTSXF5ZIkzD3ZrfdhmuQ+kiwmJZx869xvPecxSqBVKRJLUDRXYbGYKVs3jlLHN+wFSgycsKC11rYIM5aJIgiT0Txco6XJm/jCUFCI2yPZQw0Epi2RYlN0LMsfBzVVTVp1ook1/KYhh1jkuFgp9WoYCAUiit6uk4W2vaZg9rxr6sX/xGDSOl6kytaG0BP9BEIyY9mRixqIkfeOwYiXH4nV2ISDeBX0X5JtlShMllh5G9PcxcrrH1UATpR5kvW/ipOEcfOsCx559kPBalMmbjG1GKIkmPCzOLV7gqNFJr4rNVtBAUsVhUVQyrwG1d0NPtE7/bQI8kqRQcvAvfJfLwr6A8kEYS7Zoo10VGNdIF4SvAxBiKYfSPoEe70a8P4p1+GbwiqmajrnkIHcXYJbh1fC/5Ypaq5xKoMPZA1S1ojTohDWVnK99//YSu08w3jHLhLQ1tZ3l9drWWUC4746NEq5PNsqU2lHR10Y43gjfy6d9wbROrRWdfG59rda+baKgx/Ibwoztwqd7wrKAVa9GMRUCAvPH42+HNKYJ2k9D/F0KLkkkrhvBctKpC4IMw8F0PfBdpOGHw8eoixfMnuf7COU6XYOSet7A9sZuhsQGcoTjaUXirZTIDGmFmSb1jnOjBXpQPtRWNiAtmnSrDcUWqFsOtbWM5009vMtwOy4U85cCi14xj+pKrE0UyLqS39VDMruF5eboswZaIQ5f3PBde6Oa27bvRNVhezjG/kufesUN85Lf+xzohaGzG72+jCKtdfydwDsVxDu0CvQutNaVjUyR/63F6alP82v/9K1hRK2wrwExKkvdFMa7b+F4NLTXYERQWVV8grQwD3bcyuTxDxB7HjASsZSf40z/7P/jN/+lTIGimqnuzod1VovHzq3/9OZ7+9tcwgO1dNm/7pVFkVIAILRra7yEwduL1BJRff413v38L2WvTXJ2tEAxbvPPOfZSmvoRySlAtsvf+MUbueyumcSdrf/1JfsYe4nMXPR5O22y3BVM1wTOVGB/IHCGReBXdvUR0p4M5YuNmohjRCTg4qgAAIABJREFUO9GL30E4JVSxgIz1ITMptLbQ2SgUC2FhoqoKkU3aRAzG0A/twIj2QWUVf6lIUHURRi8q60FcYgw6YWG0m/CjhXUqq4aGe9OmQiKl6CDG65n/JrSb7tnYaDNlXSe9aAvk1K1Ks1pvNr76R+gWk95EMDSIYRuj1qbebdeVdQgdjW7acHCnub6T8etkBkMcYciweFYjosGo441GViSBQGlFENTHGSiCIIzr+Oyff4HxsW309nQjjRpCWqggwBbgRJPowKd2/SqrJ05w7ZULnK5Ipj3BTz/y0wzdvg3LtBG2j5evkhnQKLFC78/txuxL4lfAK2h0VDDjVNnTpYlkM+TiOynbJr0JEwEs5NZwRRzHjFErBqxNl+lWodBfoYwpXLbYDr12jWTpRc49l+TuXXuprRW5eH6aQnGek1MXcT2XqGVT9mr4gd8sANfI4gRNb5u6FVFjEKa09ZXP+YXzoW85kK2t8dsv/g5ohXJ9bGFzW+9RdnfdQjJZ5tf/4L/BsIwmA+mMWHR1pRk5v51a1cOwJSKawvfCdLJWtJ+u5F6uTJ2kpIrUAs3oth66uxI88a3TeLWgQxbWWqOCMD4kIAyQlaKRNrKeNUmGbkK6nkCjfbcrraGNMRXUmUBAGoLRoSRRRxKRATu3xnnw46OIuAQqiMBC+1sJxABurUrl1Kt86OPjTJ88zvWiR/+hFId391Cc/goq6oK/xlt+5hDdux8lWLLJf+dLfDQ+yJ+c8/ivBiNEFLxSNbgUdPHO1C4S8ddR/YtEb41Af5SVQpW5xWX2dkfx5RqyVEX2x5DdUbRno3NxKBYhAeQDSJiImAnbU5BJYNp94C6jprMEngseOBWbn373hzl95TSqmMMNqLvThZE7pmlSq9UIdNC0yDUEiJDBl4g2V8WG5SZch7a6CI2f610Wm4vZJso1BX3dIR001rTlSdTot7F265VZYt1vG4XDTswnmmNEtAVHNwSfJqJtXG7hnzBzUx1bN6SINmmiMwmDppVhrtG0gel182+h27HujeGm5eCfCjQJnMSwE0CsjigFGpdKdhYUeAWf5YvXuX58ga7bHuSQY/P8+TR73tVHYjROaVVz7bRLcUmxMjPHgZ+/E2MwQqUUUFoN6B6JcnbG587BFGpqAaQkNtxHoi9ALXjoQJOO9TGashjYsRN1ywFyz0+wv2c/kmVOz8xiWkmGhjNcW1mjqgUH/XNoNcYTn32W3sE0P/lz97U0AKLz+96cuQo3+bYj2/hXX/7lMHsT1PkG3cxNjoDooMFqwcIJfAwNMctE2yar0yV212IcK/isLF0g3Zch1dPN3NxK0y3ghwntiE0pxS/8i19l/6E7+M5X/ph3D66CFaPhXK31LcysdfHE2fPIao59kQivvXaJtatFtm+Lcs+j21mxbiU4fYWf+sW9/MHvH+Pil85x26suO8aLvPzkK/zEv3uYX9v5IfTiJc5887ssXHP59X/1bzjxf36KhF1Cbs9gHbHxVoqs/c0EQx99Cb33CNqykGmBsCQaH2HYYQaivgx61gMbsETT+iUkmG+N4x+roN0A2SdDl6KEwBh0EMZNweAfC9qV6W9kSGikc2z54Hdq1juYY8PYcC182SbqsI6RrHvn+hF18PYbaxQ0xnXj3bReA9jIaMK6j29yBE2GQa0LTAgZu7Zc6XXt8oasKPX7DW1lKCgYzUDARrp2FShqNZdsvoi6eo0vfulxDCkolcsEvmJwoI+fet87qWUX8PKK669eZvrcMiuVNIGQ3P3Qx9h6/zbspMPKFZ/5Cx6lZZ/V6XmO/upDyLhBftFDK4HT5TA973Hf1hTuheuITBRnZ5SgLGDJQylNd2IQSyri++6kHE1TOznH/p5bMbYu8fSLZxga2MZavspMuUivJxlffZ1SbQc/vu8RvvL8l7iydAlfKQIEFd+j5vsEdYa5kfGnMTeGkG20oMV0KR3gKpDIpqa+4pVBge8FVITHiyuvcLp0iR3bxppuXa0iZAI7ZjJ8sI+VvI+o5DEQWNKgpjTems8h0c3LFZM79iZYqPos5aBYriuBRFDX0DZEPF0PNG+4kGkUDWZVbErPOiwKhMHHUoA0ZB2Vh4HqkZjF1YUio0MJ7tpi8fbdBjhxGj4jWt/N69NFTl27hu0W2R2J8uxzp1m9WOEtD3TRu3uUVX8X6soUP/eJffzWbz7Ptd9/hcP7LBwZ5eqV8zz6aw/wm7t/lmDyWZ759BP07zjCW+54K5c/+wUSThG5oxf7boe1J+ex8iZH3nEYtzLGi899jbvufBjD0mgdIGwLMWCg+9Mw7UMcsMN1E1ogLI18ewLvmSL0aUibMAgFCnzyK39MpVYFKZBKIA0DYVn4jby29TlpWAekkKGwQOgK1mCSVViJrsVMtwnxzblvs2KGdU1k/cC1MdINPEbLu7nFlzfO/Gb1UOrX112pD2K9kXJz6JRPNt0zmzSnhZtag226O2+yBxsxLh3v0DSFhjA27MaKoXb4gYSDDYEQN+FNBWlZoDRK+SivRmX+OuW5JQpTc/hY5Ms+q9Lg6nfPsHNsJz/5noNEu+NUVnxmzyzx8hMvsTvqs++OvfSmDVQp9NHr2h7FdTW7omFVW53pwgvCgiRmrYIRrKB1lIvFGkNxSMRMFlzF9p5Vjl16kX1ZQa8VpRAITEOyp28bnmGQEL0sTM9y34fuoas79UP20+8EIUOGFKhnQKBNIAFhQDpiojAolV2CQJFMQXpLjJP4KBllrVomKJbwawYR7B/NuEWYPSUIfBrp3O65922MDA/yyd/5BAPPnGLwniPo6jhfffwkTz1/kni/w4+97V187k+/zjtH4cH7B+nbcxuSMfKvH2diqsLjj0/g7n8/h8pXuCVTwjuQYOrvY1x+UnDLcJTZJ68wf3wBf2AImUyw46c/wjP/yxNsqUWwBiMkYw7JIRsRGNg7DrD69adI3b4Fu6cfvCJEtoPhhAHzWx1wNbqqwdOhpWfQAl9iHOlB7EhDoBAZEzkSD2se3JQN/umDVijdSOrYxk+vI8A3hDc4/29MO9Zr5Bo8QRuB7BjV+mf1pleaQaGdgQEb3yla11pEu+Uv39D80kZsIUxi0+hANDqqN2wQcYnRTJEcMjyawA+FhCef+nv6e3sY3jLA9uFB9vRmmD9xGllUEE+SDzzKsTjCh119Qxz+yA4s26Iw63L5lUtMvHCe0WjArXftJxM1qa76RNMWwjbwXc3OKFBzEf39uEiE62K4FaRaQ+sIp/M17huIoGwb1wroSs1z/uoJ9q1qepwufDTdqSRdkW4CDORKlP/5E/+e46e+SbFaoOb7eIGHUgGGEGHgcb1SsVK6HmpmtCxDtPB0na8PsxipuvVFhhNq1AthCRnGqQTSRTkVVoIFPvThD/G5z30eJ2K39gcgTUFXxCQQadZWKziOJJ0yYAROVUsYdppsUMKQLlERYOkadjRCtezWXYDq61tnyqTYWBejXVhsCCk3hLbnDCmIRkwiUZNCvsLkTJ6n8DC7oe+7xxm+72783G5+7/e/yNXFOYZGBzi89wh/8fkned9Owb0fHiM9fC+1FUHu7DkmZsqc+vIEiXf9Sw7Pfo2RfXGuqxhT56NceVKyb2eUS188QXa+SnJvhOjWIUbe/5M8+7//HaNKkrklQTTugGUhZJTIjv3sPDGP6cyGqXPVCJhbwDTC/T5mQFWH7qGKsOp92kJ7YXIKVmuYFly4fok/+synuTYzhdYK5SsCP8AwJBJBEAQorbBMqxnMHVoV/A3HOrQqtCz4AoEwWi59DY18EKim0jBMHdyKZdD1s9juorh+edpRw6bLyLr4oYaF4w2Wvu3h70F6WDeg7/HeBqWJbo+TXFezQxAySd8jEf6BhINO5K5pBCXfdC96E6AukWspkHUfVCvVRXDlKn6xQnxsiERXP1bPGquTLnvfsRdDS2TW4/TxCV556hWKC2fpHxjk0IPv5v9j772DLLvOw87fOffed19+r3P3dE9PDsiBBKPAAFISRVGBstZWsGWpJK12ZXlrSy7bksu1K29p5Q1WsCzZcmlVkkuBokRTpEiBBAkSJAASIAAiEcDkmZ7u6Zxfvumc/ePG97oHjKAAaT4S0903nHvil4O0w5SSAoFwQLTAsCQBOXwjlCJtoTEtH3lSs3FukRN3vxGz4VG2POTqC3zixWd4512jPP/cFk6gsWWAkROoisHGwlWefLbFz/zIz1KtlzBMGQm7gwT9FZiqwQ0nUw0BsUlNgJED6WtsIfElKEOSywds7D6DcJuszG+j9AgTM1PI/DZ/85m/5D3veD+WafFKcLOhMiNENqZpJkTp6acf44N//ge8OLfBL/2RQ/FPHwH5NNuNHp5ZYWr8Tp55+HPcNC448d2HGT12EKswwfKczwc/+hJndzxuf/tpJjeucHFukR3b4fWlc/yjX/oJLOcmZKGCMzqOMT5JsVrHKOSpnZzC72nKJRO7NEqz1WLx0gZ3/vARgsXzVE7PonfX8AMfY7iAKLgIaYGQYZy8CdiErkKSMCGRD6JmYRQMtARZscIKyTFHcANPvLpBhKk7Yxi0o6WW7b0MumCf6wNxA3rg+j58OsmNSMuV4pNszvKsCDHw6757LPP17KsJ80Ci4Y3TLiZN7keEY8Eh0Y6LdHtHfVVKYRgSrdPaCTJ2owgCet0eW9HP7e1dtja2MD2fA8dO4O02ePwrZ+l2JbXSASYOH2PbX0O2eign4HMff4pLzz6H2Vpj9OBBRu87GmYHy5lILaEHsgvSNPDJ4RkaE4FpgFEOYMJn/cwit7/tPqwgYMzosnHpDGdXLnDP6RGeemYTEzBNH196tPFotbvsdDY5M/8Eu50mru/gqyBikoO0Dq6QCDRGXAUu0oorrRFx2kkRZrAJtewqsRQprRBa4Gk/cu0JJ1SqAE959Nwu2zvb/PTP/BRTUwf48R/7Me68684o3SUYOYF2NfQ8PGlgFiWm5bLbfR47cFi83MCsKQrlHMdvG6UyVedvPvh5XMdLGc5oewaRhSgRUjNbRyXuRCRpb6NBJnskFAQjlyStcf0AeoKcZTI2YmPmTb54vsu53+9R/uOHQH6Z1c1d8mPHMZtjnHviMW6ZkJz4/uPUZ4+ArHP24jwPfOwl5ruK299+E9MLz/LoxR1Oexc5fvdJfuB//cdY3gmEadOdPEBxx6FYrmJVSlSPTuB1FLWahcyPs7S8AcriWH0CtXyR2u3H6F44jz3pYQ7XwXYRwgBhhvjeimZAESp7DBAeiCELoyh49Itf4BOfeYAzV8+z297F9dyo1oEiUJpAKwLlA2ka00SPnTliSulU6RcJ2VoplAitENkCdKHw2a9JD+deEVdOG8QZe5KNRNs0VgoMZivSOqzarJRGGjG/uz8hizOc9SseMnVR+nqyz7skRoxUTTGAO2Nlzcv1I24v+8x+BeKuB99at6KXRcw34GuDiMDo0MdMCIFVLFM9eoLC+BRmrQ52gVy5Tn3co9vq4e90qU7X6DVX2F05A3qHO370R6FawNkUGJbAtATaC7Pi+QiCQJIrgXYVdHuYxU3k0CTXPu0xEXQJaoJWc5udxXnqxQITQ4onO22aTsBotcpQvkRTdHDcDj29RC5vYppGQlizw/m2zVzWzC+INFVp6kNTBGjlozyNmTORU8dx56/R6irsRovhoM2JExOcPHILQshE4/Ctt4SIgXY199//ER78zP2cOfsCLcehgYdWBlJ0MJTH2HiVAxMWhcVd3vie00wcqmGbo5x7cYsHH7zEi0stmp7mLXe8h89+4H7Wl5cpHikxcqTC0Mm7WTwnUdLg6moDV+WYmZpBGAZGQZLL5VjtjlH2pnC6GyxvaO5wdjGGbkbg4M5tobZ2QSwhy1NAnijfLpjRvAeEyMrXYQyCBeRNhCURVhRYHw/9BrwK4PrEQb8c6dBkiFR2McOrKmP+TlrLut3s626092vXe0TvvRST+0wWpPCmTlK79bcp2Esg+0MQMrnKk/u6T2DIQlggLWRYpIgL/YVSR8JoaEJXJEDLqCaCUgRBgOulGVh2c3nOX12ku9XCbbVZ3u0gsKmVA9qBYKxeZ+3sCmcvv8TcmUu0Nq+hVZNzHry1lKe3ClYpxF0iCN0nfMD3JYUaBK0AaTSxCm2C4jALD/nM5ixEwWBleZ7G5iZDJZvxmqLbatPQTY6MjhEYDm6vRdfpEIgu7fYmru/hRYyfRkX1MAAR13eIGROZuqn1CYqCfleeaK5VHMCsE6bMMCQIjeO5NFtNfN9ne3ub+avzFPJ52p02b3zjmzBNE4RGoClYoFDoQCFzNkydxJmbx+koqhVBfShPzjR5/AtXsAoFPF+BDhA63ksi6oNOhWUdZqgSapBBTDeMGty8WifhB0ak5a5VcwjLwFHQ62maDYHYVUjZwgx8xqoG43VBtdnlde89zvBUDVOP8bnPneELD1/i/Eob38jxtte9jw8+9Ic4G5ucvr3G2NFxCkdvY/WSRAnJ2fktJisj1IdHEZaJUbCxczbXWhPU1TTrjQWE53DM6yGHbiJX69B56RrexgYit4pZHCLU/ij68L2KDo0fXsaCD3/8r3n4kYc5c+4s69sbOK6b0N4kPiM6C2GWKo0iCNdaRTtAitQ8lxzf0DqQCG2JZS7eSgP8RiRlCkSmNkm8F7PLktJgEbcb97F/VfuupzECOlWEZmAQQ2TxzaClIgsprtl7L3u/78IgCh7oP9lvJ/W0xD6N7YVvgXCQkdb2XLkB3zBECyiExLBylGZmgFATpfwAM5/HzPdYenIO6UuMusR1m0jDxRqpkT96PNJWkEixSmsMUyACjZmTmJZC+y7adDFMm/Zlg9Y1gwOTgoVel2vb22xv7fKGEzXa62tIpdBakZMWBUxa3R7a93HwQ//MbA7rv0UYdF3QgQKhkYZG+Aq352HkDEanD6GEQc9VbG01Gd3pcupd76bZanL56mVmpmbI2/mkzW9tH0MkoJTm0S98no989C959vmnUYZGFjRWtQ6lMfztLYYqOSYPWBSCRay8wZHbDlAg4OyZDR5+dIWnvnyFns5zy+FhOk1YXF+j2dxFl6aon7obszBBc+k5/JsmWNvqUrYLjB4+EAbMSYksjiJHj7HTGWJzdZelpkFwaQXrTRWk20VUy+iOIujtIFbPYE5JMEdBWuFAolpNBBoCjbBDDR6WRJjGDYTwagC9Pz3oD+JNr16/mQzhTFRcqaYrfiLhj7PvDlgKwgDPlGjt1+f9vtt/6+UFmcFvf82bMRFG0vYlEAdPEjO7pJrlfteEjNUhvh5NjNZxtWUVytSEwa+O6dJst7l8bZEr3gKe55MzbWwzT8dTmFaeQ0OTrF9d4PxL5/GaWyh6qHwe88BM+EUVGvV0pDEVpkD4GsuWmKYC0cO0NVrlaF82aS+aHD4oOLPT4dLaFoXA5dbxEu2NTaTWaKXIGzZK+ZhBEAZIC5eu08IPQotBmqM4rnehCdQ+zFj8b+J+FY1dBSRa2qwQEbtkGSIsnmlIlArodrs4joNt5+l1u3zuc5+j2WqysrJCrVbnnW9/J3NzVxgp1UEZeD0XYRmMzBzCU5qeqzCbsLXeQUiN5wdMHJxk8dI8XiwYxP8N7InYTUUnVpHoMZ0RaDK7TGf+iZu08xaGadDzNa4hsAo5cvU6ujxOsLbC1GyN4SGHvF4nXzI5fNsBcsrjiSeu8fDnz3L+wjbSKnF6ZpTmjmZ+dYm828aamKZy5Ba0OURz+SxKzbC03ubo7ceojg9HzGyE78dOsLZeYmHbpuh0CK5tYt1VQThtjKFhtOrg7yyGaHz8NJjDIHPhwCJ8rwOF13P58rNPsbm9zX//+F9x4eJFup0OblT92DTMUCiO3YdiS5AOrQjJOesTHPc5jpnzq5NnsrMskr3VB30LEZ/Mfo465pXFV1Ht6+w1Ha3zIIOeeSZVMOwzrj3nInMrizyzypSvxoNEfemzFggy2ZK+PlJ8IyD5VQwCQtWPlAn+FUqFQYDCR6sOyvex8prm7g5uIMhPTGKUbC6ca/K6N1UwSoJACwKtE/8+U2vMssBrBUjtYFoGqn2IrYc2qFVyTJ+q8PTjq5xf2qHg+4wWAhbO9nCpUioYaGGx2+7RbDqowMfTUUXQWBv0KoBswI5SKvRTzBkoP8B3fLRSHBw3yakubrtLu+0xPBwwVL2Z+x/8I47M3Eq9VsfO2a9IDEVslZhfmOe3/tP/y7lzZ3B9F1E0scfyWJNHsceGUBe3OXC0wNS4SePCOUYODmEYNq3tHT726ed59oUWllGmUhziu998mr946H4Wd5bJKUWQO4A5/jYEAd7KNXo7x8jX6tQKVYrjZXQQEmUxfIjJE0fYaWsuzUsWGiYbj+0y+cYVkE3McRvtDqN2GzhXn0HWi4hSKXyXsDhaErApgZwREoMbfoavYri+eVnE65otTKH3tyfsUV4JiRD9QkDf81krQvStrL08fnMf2eLlR5O498R/p6Ppf66/4X2DG8m6gkRaN+ICuToKqtckDF9MkKOfSUG47HhFPDdpphUVxZVJFfpit+ngBwFyV4aCtoainSdv5cNEAIYAoWg1lyjmi+w4XVzfpzo2yevf8n5sKQgqad0uKQUSjWkIzCK4Oz45s4uhKvRWc+x+cYd6JcfsLVU++qGrzG+1OV71KSNZONvDN2tUTZOup/DcANcFHQQEQtN2OgSxdUCHmvo4oDSsvioSZiSbHSWhEVnmSKlQYBAyYRLjORdCYpomhimjmA2N7/sopUI/c6Azf5WFawvcf//9TB+Y5sj0IT71wAN813d9N+VynW6nizZ9Dk1YSLeF03bp9hQrq7uYBbj57qOsrvTYuLZC4PgIYr/sjOsK4UCy+0EnY0qZ21CmibnD8J/YzRVASEmpatPrumglMYoG1MrYU8ewx4cIWgscu2OCQqdFe6sNh0cwpE1js8V/+9Dj7GxLDLPCeHWUt919hD/95F/R8BsIZUD5Zszhu/CaLbzla3R3bqIyPkl1doxczY7wvUSMHGH6xCzz820ur5vU2pqdZ7YZvWsFZIPcwQqqZ+MvL+FsL2KZARRuIRA2lmnTarbptLp4PZfWbpPf/s+/w7kL52l12vien+x/HYTMfxAEWNJKrWiRkjMIAmJPg5gx11qnWQJjV5pIUJQRTReZA66VSnBGaJ3Iqg2yZ73/fIdXsljoOioSkSYE1WkD0U+dWBv6LAzJ7YzQEl/bjyZmrWkD0nT27b5xR/gm/c7ecfY1pFPhSQx+5zrwTQoHN4j/Kwrxxsto5TDCwjGWIRmeGUV5HqvPnsWuWRy6ZRrP0nz50bMcOD6K39O0u9ByIW8LJqvgB9CzJcFVl3LVwKoO4a8ENB/sMlTPcehkwFK3yNyVVZZWV5iueQSr8xyuDvG5RpkCXVbWF2l1N5EmeGaAYRdSqfpVuCUMO9Re+Gg8qZE5gcSkcvAwJRTS9QiEz+rmNT7+0B/wP/6TX6RoVyJi/soNKAgUP//Pf44rc+fpul2wBFZNkj9Vxxo/QLD1FOMnFMLbprWwwfhUife+bxZMiweeOMtSo4E1OkkpP0NpawVDrdDpbONaVQ7YVaatGkbU/4Nvv4PFp7/EO959N8HGLmtnVjh46Ba01hx93UmeevQi5ZveQa+a54X1x/jrx21+1vUQlkKrdbSwEbUSVmka5eeQKjTahg6fZpjVIv8qXPwbEEJCZb4aIYlBJxrR9K3YOhhn/knvZV3kBtR1A/2IGIGIS++j3Xu6tpfkXs/kTtyH2NQf93PP8yljKvSAVi+h6vGfKfOQPidSTRwpYxhr+wIVJJmMDCMM5IwZnDBQN6r+KuJ0p6Hm3JQCx9W4nk+cI18gcD0f0+jRdh26fo+cEJwcGsHpLNL1fTxpYVaGGJqu4HQ0ra6g4WnGqoKqDb4S9HKCYM6lNmpi5MfpPuvRe77H6EiOI8cC5nfKXDx7id3ODgctF7HpMGUWeVCPMRQ0mJu/jK86KBHQ0y6BMABJoL1QWCL2DxdIISNrSqa4VbI28VzGC6migmORVSZxKclCKHyEgkAcqxFWmNbaBQHSD7MBua7L/MI8P/lTP0m5UOCmO+/gaLnE4vICTz39DO/9ofdT1j6brofKCQ4eG2NipsTTT85x4flFep1eaDWIlUqRkJLEnmQ0sLErTH8WK9lnJYhHm+wiKaiOlej0HALAsAXmeJ7CyWGs4XGCzSc5cFeBzvIClhAcOT7Mfe+cRkmTjzzyPB087AOnyfs2Vd1ABiu029t4+TEOugbDZhGJwMznmLn3Ni4//Fl+7Ofez9aXX2R3YYfRicMIQ3LsnpN8+sNPc/g9P8WmOc/5+TWGnsnxI64HlkIFy2ANY0yN0d3e5sKXn6Bl7LDb7DF94DAPfPozPP7Ek2xubdFzHJrNBkpHQlsQ1oUwTANH+Wjthe54RrifgyDA8V1idy20xjDNUOHp+2SOViadsky8H0JLUxognmYZiuc7i1f6z2myo5IFS8Q70lTrqZCSsvb9eLKPGc/sl2wfrmfPzCpPr6c8SVLmimgkIvN81iqwT39CN7z0Xsg7pskTYibt21bn4Aa8wrBHjRZtaSkYOTzF8MEJFAoVKI7eepp73vI6Dhy06OxqSnmo5AWGBndX092G4gjYMyaGDesP79B6fJsDRYXcCDDec5g//t15XjizjO4sMVTMc3z2JP/+Y09xxbGpFw0MOliFHAePzfLjv/iTHD5+GMMw9uv5qwekIJ+3sUwTp+2wfG2T+nSZkZlprM0V3OY2m6u7PP3gi/zwd2tk4ZUdj+u6PPqFR1hZX8AXLvaYRW7Gxj5cpzR0hOnpeRqLDZAC31YMz+a5942T5OpTrL34EB/81DpbssZEsUrVK1IMfP7bZxdouCO4nsfh6Rw3HS5FX7PYbm1SnJ5mZX2TktNibCwPvkKbkvLpw+Qfu4h16QVsNYYY/SE+svwlvvPX/4yWaXmGAAAgAElEQVTZ/+UfI/NdlNtCe05YmE/1EIaNsArwKnEluwHfWsiSV61Ukv0jy9BnCWo/Ez5gT8i69ITq4IQo7yWR1yGqA66Cg+JHEsgHfab+5Fr2pbTRiFjvI8xEyhgh46JMfa/h+eGFZFqiDxjSSJQkImLwQacJ/qO+Kt/vq6Pi+QEQIGSYyjOQoRJII/ADjecF9DyX3eYun0XS63lYps3h6SM0t+f5D7/yr/n13/wtynmTelEgA42zBW4HinXIHTIx83DlT1awl7sMWwGGB8bRWX73Vy+zurpMWWwxMlyhYJX5w6/Mc9XdZNdQqKBNzjRwteLq7gYXVy/hKa/Pf9pXYXxqOAuCMONVOPNCSqQhwylI1jC0zsT++VLKMP2kIIwVIQxMhihYWWuCIEi8LCK7TciIRRp7pQJ6nR5X5uco54v86q/8Csdmj3HrrXfx5nvfRr1eoDI5gWpt0/V6LF3aZGd+g52tHTqNDoEXRA2nDFjflunTEqdMZPZ2GH+SuRbxZXbeYmSqipAaLSXFUQv7eIH81CSVoUkmxhfYnW8R2AZBDo6drnLXrVOYxTqrL3yWP/rEBsboBIdFjXqg8Vo9/uxzi3S9EVzlcMfJMtOjeUCgtGSns0Xl0GEuXb7CeN6jXDVDzaAhKd98lOKnXsI89yQlfZzzBZP7z5/hzb+5zOy/+mnM/A6B1wStqY7WOVY6zm/87kf44pdfpNtz6fYcHMfF8/1IUPNRKhQOBCAi0mmZBq7nkcvlcN0wMNkP/GQO41lSSoXFBAOVEfBFlBI4nG0p0oJyUXqVPSJAUlcksw8TH/vsWvWhJo2UmW2JiKx84jqYaABelseOOyJeXquxT3MvJ2DseSeazD2YNJJb0ikVqavR19DuNykcDBCBgU7dgG8hRMRH6BB5xpoYwzTQhsQg3OimZVGoFDEMgSF8rKJB4ClUB+hBqSrJF0H7mvVPriLOrTDR2UX2bBg9wvaLAQtXX6S1e41jQ3lOT0zxgS+/SMPpYEoFvuT7f/J93PdD92HmLArFwqtfMIhOhxAizA5U0NDr0tgW/Owv/gvav/F/88gjn6Pb7HFtcZtSsRK99spsYq01jeYu//b//Fd0nR65goV9zKJ8xwjjJ6e5yS7z7DNnGTsm8W04OFTkpqkaU7UyfnORX/7UOmtSYba6lPQW5bLJQtPHNBWjUx6ms8XFHZMnV1ucDgKElWP09F1ce/Rppo4doFiwwVdhkJyvcRs+55tbdFdXsSq3cmT6Vl584XH+twcX+Y2f2GJo5ABau2jtIGQVpYcwDZtED3LjsL8mYC8rvr8VYTCuIE6MEKeivE7G7/QFiIhhqm1PNfp7X9nvuyGRjrWLkfZODz6//999VElEFoJMv2JLx34pVTNKxejxiHkVscUhYkkji0GcnTNLeJO/+1R+JEJDwsxEOKlvSjRRRheFYRgEvoMUoUbe9V3a7RalfBGlwLYDLq/NsdpYpVAosnD5IsdPHQffRHVABlCqSOwI3y994Br1hUXsjovMlQlGZtj9is/Vq8/gdja47dgElqH52IuXaLo+UitMw+CZpXNsd7dROiCIAo/j/ZDuCJ0ZV+zqEY4/UAEiCDkwKcJUk7FW3jIMVMQwxoxcbGlJ1rBPMxr+NA2ZaFLTdJWgRDh3rV6H5eVl2q0uhWKZe9/6Vj784b/hY59/mKnxOkIFNHc8Nh2HheUNlA7jPoIoMHY/i1KsvQ73sAh97+PYiiT+QGeeJUyvLQTClMicQeD72CWL8m0lqndOc/DAJBOBwdmz55g4ZeDm4cR4leMzw4wUTLY2lvjlT63jlATFjRb1iXWENllt+ViWZmzSQzY2+OKKy/ROhwNKYdp5Rk7ewfxDT3LsDaeRPRfyBVQABApv1+eF5jpXnn0EXX07U6OzzF95nn/3mQ3+8z/botMexhY+hrRpNnyef/rLPP2VszQaLVqdLl5kIVBaoRX4gRcf78iqovEDjyBQSTa+uAAahAKUZVrhNU3IP2idBOxn5XWtVbIXVIRTEn5Dp+c4dt3qd+MTfaQpa23ow2CJBTTetSluGMz2k+IWEf1fpJr+uJWM66SO20v2UV8LkYVgP4ya4fb3dUWK76XtJ4JF36AzuCkWa5Umm1b4enDDcvBaAxFrZtgjlwkRpgczTAM0FOoCd62DbnQxtIHMl9CuT+cln9azKzD/LHmvgFGYRVSH0KdrfPRzDVZXniJwFvH8OutdwVKziiya5NUuP/7Pf4TXv+1uaiP1r9l37dUASRCh0BimQX28xuruNpOjB6kWiuSFRbfXo0mTv/jgH/AP/9FPY1lW+u63ALTWPPrYIzz40ANcXbhMq7VDsSgpv6HM8F1jnDp2gMNWmSe+9AKm5VAeMpkYzXNyqMR0vURPwgOL8yxedZFGkRM3jTHczdGc2yAvPQ7ecpAL83N0Oz4tN89iUxB0XMyaRdEuUK3XsGyDAEmgLfI6RNRnnzvP0m4H7XpMDLkcOJDn/IsFOl6eBz98nnvvqzB+cBazUg8reIscGMYAk3gDXvUgSAoEvqxWSqcCgMoQSR3ZumMXmpjBg4j/7/tW9sL1tUUJcc9w9pHeeC/3H/v/ZttNh5Zh+lNNWTSYlNmP2kh5PtFPpHU4Nxoiq0EqVGRH0M8OZIWRSPMYMZGBUiQONkqH3uxxH1XIPIUa0/C6jJhuP1DRu6FLhhRhALPQmq5wEELgBQE9p8eOaZLP2fz2f/mP/D//9lexfY1hFRCmje5qOnM+zaeXkVcfwzQOYRQnESN13OkyH/l8k8bOF8HbotmuI3SZTSYg55Dztnny6lPsdnfxlEdcA1qFkxPycJmsREkV2GhWU2uNIAhCd6nYehC/I0WY4CxZeBG/n2qF+4So2BXFMFIhIqMd9YMATeje1el2sXI215YX+OzDn8EerYHQFE2TVsfH6SksS3LbrTM8/vglUttY/LNfHZv1UU/MSSK2PaUa2YQp1TA+M4yZk2gdYBpQzBtU315j4o0Hef3MLOx0eenCBUzLoTJscWCiyOnhMiO1PGu+wyPLayxd9bDtErefnsK65tDbblLOC8aPT3BxYY5uD650TbZaGuX4iKJJKV+kOlTDMDUuFlpZWISVul965hyrXY8h1WT6oGasUGBxrkij2+WDv/0ob3/PPbxw/gJzC6usbTZYWdlgc6dFt9fDddyk+nW8yjEfkBXIASzTjIrhqT6tf7y6ybrGArVM5zicx/RM6ZgJjmI7+lxnIlyzJxEJJNa5OFYkuzeToPdMt3V0PYtZkv5lLACpoJgy+sQjFDCoeIj3R7YtpbJ4KCOAvKyVoZ/x71fG9PcpK+AkghsDj78MvCLCwSAdGOzIa4SffHWD2PtrfFzjHWfmDFTJYntuCWdhHaPj0G34+NsFjGVNodsksAt4dhHfqtCWBk+c/Qrt1gKGbjN++BiH7jnJM//9s2ih+b4ffy+vf8frGZ0YCb8rshvx2zr6bwyieZFSUKgUWX7mKQ5NTzJ1YIbRsUk2d9q0Oy6fefCz/IMf/qeJcLAnJ/LXAQma0fDYU1/g05//JI89+TDbW6tU6xaT900wcfsox2anyDsGK3OrmOUONcNkfMzk6JjFVMlEGIrLuy0evrJFd8enMm0wVjuB7Pqs7JyjnMvTlVXa6x10YKENk16zwc7Zs4zccwc5w2T40AG0JdFaYuZMlBLgKZ47v0rbyTFbqnNkpIAxtgPCwJcTPPvUIrfedQ+js3Uwh5B2ASEM+jDdDfg7ABlyOKjwFoMECaIo3L4Wsngo+57WfSQwg7syGUoGmP5s00IM0MDMp1P6HhJllagwB3rVR7D7NXeDskZW6M0yuDEjGjMVqWYwHmusgOgfTx/DoTNVI0SYuz2xTkiZEW7iwNwonabUGMJAK43re1HthADXd5GupOc6fOUrz/Enf/YnvGH4OBPFAqYSOG1QO3nkkqbkdPDLJhRLaKvEutZ86czzeL1FcsLnysYV7HwFzBJe4LG4M8dacy0cgwCNigQckcx5dpA64zuVzls6seE4ZZ+mNlAqswI6mbawMKRM28kybCKtQp2smAgtTfH1QAW4nkun2+Ha0iKPP/E473rnvaAU+VyeTicg8HsoQAUGKpFFdV+72b/77kSMqIjWMc51GvdXGoLxg8NUh4qhMKo98lWDiXsnGLu7zp1HTtFb7rK2tUOu2qNmmUyMmxwftxgtmHSUx/ntHl+6uk1v16d+yOTA0B0sXrxAs9WkXKnQExXaq20QRbQ0aC0v0Zybo3bTcSzDZPToQXzDQhYl0rBQAbi9gGfOLePrEgcrIxwc0yy1WyByeGKcZ55cxM7bXFle4dLiMksbWzTaPZrtbigY+H7k7iVCZl4IpDZC18OMoB/oUJRUUbA56IyAIMNCaAPF5dI9MnAu94PoAUHKkO99JovTBrUX/eRrMFHCnmdiIeA6NG+PHoPruCUl+OtlCqgNfKNfgOj/xp4vZe9nHtbsHdtXg2+pcHCDV/hbggHpNauBydVtAlPQ2tgiuDDP7mIL25hmdGoaYUzgUMc1TYya5MWrDgvrT+J5DWYOjjB70wy1IxW6foNb33ArP/BPvo9SuZhKy33S+7dxvN8ExH22cha4Dmg4feutXLh4mQtXrtLr9jh3Zi7JhBHDNywgRBqL3cYuDz32GZ4//zTadJk4NMT4sSlmfmiWU/VhJhzB+fOLnFleZOqwoG5YTA6bVG0wtM9OR/H8apfLiw5eTzE5XKUup9juNmi4UB8e4tpSF68tKBRtMCSdxgrPf+ELvOPoLLI+SnVqlE43LMRkCUHQ9Vg9c5WFtRY1o8rR2jCTOdh05zhx21EunFtlaWWNtmvhBSaGpzAL8rWz2DfgG4PYPeZlqHOoae9npMMbeg8lSgsA6ezbiYafQeLW911NXGSzT4AhU5lY978XK9Sud2aTzEL0E+lEF5pReGgRFzuLWo76ez1TflYbmNVMxq4vseuRJHStSS0z4UsiCcIkYYhDflchjSgbiwq141KGjLbSCu2D0evyZx/6AO7x+7itXKOmBMq1yFkHGD8wjejM0BYlAu3T7nW4dFWxsP4EOnDAkKw31zB6uxQLI+y6DeY25xJhK3bv0Dqyfug0OF0QPwMyZlUywkNscUqz/KTCQpixJpz3kJFM10ITWghiYSl2DQ21ripZX5mNh4kCMlWg8bRPp9sJBQXH4abZKZxul0a3G7kPSZyeh7PaTdrs22D0/5n1WZdSECV7S/Uk0doahkFlpMT0yQmU72NIn1KtzOixCQ7+g6McsjXH/QIPrlzjWmuT0UkD2xBMDlmULQ3KY7HV48XlNnPLDn5PMT1ep+zN0OnM08OilCuzuNzD7whKNRuNZmXuPJeeHuKuyXGM2jC1mXGabR+rKDGUxm10WHrhKnPLTcZzw5wYmsAKtvF7uwQ5iQoKbO42efzRFzCLJq3dLts7TTo9j57rEgR+VMU6FtgjF7EgINAKU4TxNnEhuSBaN8M0k2taq6iUgUyEA509A31CdUYbnjlTfQoFUuVAcr4zCCGVD7JIpR9BZQWS5DynRzBc3+gsJy1nlRAxykv6cT3kGY1Ixc+/DB2Nt5pI56FPaZHl+fYRsK7X9oCs87LwLclWtMey8TIduMFXfLsgnejRWw+RrxTZHhpCPb9C3Z+hfNsw/rag2c7hj5Swbjf5xH9apOteQUnFm77nrdRGy3z6rx6gVi3xv//mv0hSocJX2divAZBS8pbv/E5My+LOu1/P/Pw8X3j083TbTRqNNlubm9i2HRbV+QYha9Z77swzLG0vUaoVOHjkBKOnqpz6zu/Ct3a5RyieOfMISxuXGDqgaO72uG3GZsg02W34+IFPqxdwbqWL35ZIX/Idh45ScB02/AbSrjB6bJrFJ58jVytSrdkoLVlubvChR77IbcduxXr9nZTKBYqFPCpQuJ0e7Y0GD/7mX2AHLneOTTKa11y7Ose1q/ALv/pL/Muf/GV8V+O4CqfnYpgmNtVv1RLcgL8F+FqC3OJzHhO7Pv/bmOHNEKdYI548A7H6PNNO/HTfW/0m8D6Bgj7C3u8BIEgyjQzSnJcZV7/bQaRz7FcfZryhEhVf+JuUGFISqOC63wyJd6hVDeMRVMTcxtl7EjtD2oPYPSNiLHUfQxN1S4VstRIqYpBC7sIQYTYkFfkQu56HVJLntufI509xqnaAEavOsDVL5e4xnGuKxZWAhrXLmrPLk88JXO8yCsFu4DFSGKJkF2j4DhdWngc0UhphNQYtiCO9hdahFSHeCpHQlLhFJfOhM1YAo087m3j26+h9Ee+vaHkjtwvDiL6bEQySzFBBkAhMibtJ9G2lNVJrPM8DrWlozV8/+AC9bpfnXjrLwakJcpaJ64T4LXVnidd9z+4hGmRmI0bxJ5GFR4rQBaxYKXDidUcxSyam5zI6k+fg3UeZfdNbKZQVp7fO86VnnsCVPQo1H6fjcHgiT900WNtyCbTP3K7D1XWHoC0xAsm7j5/CXV0n8D3ytWGqk0Msv3AOe6hCfSiH4wqenr+Ep2B2dBbr9pspV0pUizZez8PrOqydn+fz/+UjmN0ubz40gyW7vPjly7zQ7BAUC9iNLTxX0mj6jORzBF5Au9XFUyqcx/AQQSQghPsySNKSWoYZrY0CHQmukUkmEe5Ig/ZTS0O6tmiRBKRn1yRJLUxqNdrjWpQ5h6mAEJ/lgTOlVR9j3ffEIEOr+9BZ8nyS6VkO4J3E9Wh/bLSf0BO+lsVNe3se49k+PJZpYD93pME+iGj/fi0uwd8g5zMoqez/VIrQsw+8tpnK1wRkd5wAmTPIjdQo3XSU/OQMK2e2efaxS6AMTn//cWbfOsTlpxvMLz2HE3Qwpc2ho4cplHI0O0/juZLr7PPXJMSHy8rl8FwX0zQZnxjj9C0n2d7Zxe04/PTP/DS/8zu/y8mTJ78pQShMYRjwsS98lGawy/d/3w9z373vYlFdxdd5SuqzXFg7x7nWCusIzFKOU/UcvqupVUyWHY9ra1222hrPsHHOBdw0U2RUF1kvD9EqtPBaTa5evMTBm2o05gO2t5rUR0eoDxXYWtjiR/79rzOsO/zLm/8HTv3M+1hfXuLZD32CFy+fYSNfwyzWuPvt9/Ls+Uu8sNZgdKbG9IERZkdqbO1oitUK1fFx7GL+NS8U/r2Fry4TJKACTX+OgZhhzQoJ0S0Rs8R6DyGI3XAGIWaNY61YGBsX54Mf7GhWwxee3YitTxjqLC2PMxXtSxQHWt0vI4nO/BsVcU2ZWkMi0aggSPsZuxNFYMjYbUYgDCPUauvU91nFGtSYAYqEBhml8Qz8NKNL2tNIExuoZE4t28bz/MRdyTQMUBAIi61ekxXfpWoa9PIm13Y28B/cRIocH3jxz3nzu+/llhPv4tqnHqUXdDCtIjuteazcBIYuhNpdwsgMQxoJExivmRSSQPkoFGElBcJYN8IiZYjU0iIgk7c+sxY6a0FQ6KhWTsJvRUU1U21+RqiK0svIOO5gICg4W8RMq1BoUoGP8nuUigU2d5pUa0Us06LV6aE9xfT0FFfnr4V7SEbB8Gpgd8T7LVnHcNeGmbzCjWjlLCojFcYOjqEMRXOtwc23vY13vee7EUJS8B7ifLDGnO/SsA3qpRzTpo/vKepVk61WjwvzbZaFgevkUFcVN8+UGPIKnKmP4JoGvbU1LKvHzKkajXmftfUGUzMzWMrj6fPz/Ni/+zVG6PIrt/8Eh3/ph3nxw5/m+c8/yuXVJbatMuXyEG9533fxJ5/4DAttg1a3S8dd5XDtKI1ug512j7OrV2m6bdwovkDo0AVMxwJRZKXxfchZYXCxlDLM0CVCYUH5QTJfIj4qyZGJ9pZO40/Sw5gy9ikTHJ2paO2TWhj7Mrpx+tlUbE81+wNMtA4FjwQ/hBJ7//HLtBtfFANMuUj2puh7Z2+tg/Td7CeT1vcgpD4TQvTcVxcC9uk8fUHJ+zw9CDcCkv+ugwAzZ1IcK2HX8wgtGH3LDLfL2/FdhZACaQpGb4KNrb+hEzQoF2rYxRLVoQL18SpBz8me178zIITAyuUAeMMb30qhUOGxL/4UmoDVpQVc1/mmvxEf5P/jf/41kBppCHzRZFw7KC5wbRfOXYCmWcQYUhA4OKbNrSMui61dmh2QZRN82HjOp95WHDla5+gb3sFzf/UcV1+4QnWoxE1vO85n/78vUp4cpj41zrEjR8gLg3PdJovrSywqk3/91J9jP/Wn1KXBkLDJSxuMCX7k1jupzS0wu93DmjhK5Y4jmIbk3je+gXt/9D6qI9WwQuk3PRs34LUAIdOc1WLt1bIPEhcpROIiM8jQDz59PaXs3n5Alm/oJ4AZASXmQL4GktenqUuuZcab0chleUOtFH5U9ZVIQx1aB3Qf8xsz/xC62ARByDS5vpcyQxnhKuKh8QOV/G0YBipQibAU+3HHwpRE0HOcdAw69JuXIvTlvrpxlbbb5sX1c9h2kXbbYW1zlbHaLF2vx19/8q/5+Cc/ie+U6AYdyvkaHa+JE9TRMsAwgmRGfBW6jAzOXuwgpOK5UBpFEDJrOnw21ugLdIYRSoNR+4VHjZQmsSCUtRTFgaihYCKSnqSLGgkFUQYdIWRYT8KQiQXHUQJfa/KEGetePHOFYrFAMV9A6QDh+xhGaIWJazYIKSLXF5IaDIllJ1voL9p70hCYtoFWAc98+lmMnOTYycOMF/JMiF38YIGnLjzPExfWcEZshPbxtUDnLE5UPOZ2d2m1wR6z6V1VtC76DPfgyOEqx976Hv7y1z7M1vIms8eGOXBslC99+Dkqk8OMHzrAaK1GR+zSbjo4m9vMa4Off+wPsX/g9xmTOaoih2mWsfMVfvS2u5DPv8TNrkWuNEPb8VhtbXDHqVN88olPofATIZzIKiBNI6l6Ha+JFBJhCFzPRekwFiYJGg4rBkYB9wGxpU8pheu5QJg4JevKpVRYIyGc2wEBQYOWmv204zHeicTo1MJJRjDNCJdZPJEVGsJv9f+dhaQg3kBZ5Pi7oWtc0DdH4S+xEBy3fR2Ep+NRX084yXZ672XRJ33t/UTW3egVtBzsJQLXffLr0FjdgG8hJPsyRNIyKp6GhsDxkZYkZ4b+46EfaUDH66DQFIpFLMvixOmjfO8PvpsP/eHHB0y614f+vM+vXnZysG9SSmZmZviffv4X+K3/+BvoIODf/PIv8fP/7Bf4nu957zf+HQSmNDHzIWPg49ILtlnqPM+Z+ZcwutMsqk12zSYVw2HS8sjnJXbB5dxXHKaUpCcNdnchv6MYHi0yPHEbhfwsRu4y5clRSpbmxUcXsItFckXFweEZtlaarG1u4PQ0bz11iqWuptfaJOg55LEp2RUOForcUq9x6jtuRV9ZJFgDpyUR51we+A8f5d0/872UaqUwW4qRiTV4Fa/rDfjmQSkVmv77IA0ohPT8xNq7+Fp4/vuLQ70cz55lDvpJZj9hjasV76c321fjFt/LuDtl/XSv2yUxcD+yHKhYSyklaNVfw4CYmU0trGEsQMgQeb5PvzCTGb8OXXdin/dYAxv2I9RGxxmmYlyNCLPOZN0QhFZJQHPX67Gys85Gcxc7l2ekPI6rPBY2L0fMk8AQJfKWQKGxrSIaRdvdpueXsS0bhcINvNCFKWNPiccFYQ0IQ5phP5XGV16kWdZRTEKquSV6J7Q2ZIXMjBUhYsTRYTrUMK6AqJhcuP6hm0okkGmNn6THlBhSoIMwyFsh0DpImHmBJkDiuOAHPr4fChGWYSJMQAtmZw6ytLqK6zoZAUX01fhINcQSQRgjEd/XSuN2PXb9Xey8hbA0ti3wjDUubT3BxaULXL60zFZJo42AKeFTtwLyeY2Vc3jprMNxabAtTXo7mnIPyqNVhsZvw7ZmEGae4SMzeNrn8jNr5IsFrGLAkdGjXF28xtZOG8socs+hGmuBwG1vo7oOObNCNVfkYKHMqZEaR998C1y4gqt9KjmT108Nc6g6zIcf+xie26HrtWg57bDatQgtYBCug+cHiEjwEiJ0s5MIkCKyMMV7JRTK/CAgdagTGIaZipciLnQWng0pIpeiRFmeWgsyKorEWCeiMyGFSOIXstr1vn2m0+JpoWdNirPi+9dFCvu56+zzSBIbEAkAWRzZL9T081LZbG2D7WazNyXXZOqO1TeGwb7tQ6Zj17ts8oDrwStkORjs5l6N0w324tsHsSYw1pAZpkyuaa0J/IBer4fCwRCSSt4kZ0oqlTI333GaH/25XEqsuD7T37fJX2MLLISgVqvxzne9i2eee5ZHPv8Qc3NX2draDgn4Nzig7MGN59v3Na12wNLGFq3eFrvuDqWaz3RJM20pHOFwZr2H7gaMjuVYWvPYXgQryHN69BCHpt9EIGwK0qRqSiQd2q0m08drtFyN53XodTs4PRfHUZxvb3PvO9/BpaefpdvrcOLUTdw6exTzhYvcPHsCW+ZpBSZ+4IDTxdrpkTOrVIYrEaPSj1BvwGsQXpYj3ufZmAhHVFgH9OGALMQCwX7XYx/X6EIfsx5dGvhmRjut+9sRMY/ZJzgM9CfDnPddzu7dRLsdPZsl3pokKDhR8iVMx2DwZOaD6DRINsMYCOICTv4exYmUMtKWpoKUJi3mROZayH1EGnRTIIQRVQkmESx8AmJe3g8UhnTxPQehBI7bRSmDvJ3HMHKgDZR2MaSklBNIoWj1trm27WNIk0BrwviJfootRPJbpKEPM5cp7RO7mGXjR4SUYTBnPD+xkJX5L4gFjmzl26gJyzRThjNyoUr3kU7VsZF7SAyh0JkNMBbowCeQIYOptKLd6aK0olKthC5kiWUinvuMvzwxHY3XIp6MLANK5H8f0tZi0cYPeqxtLmEtbbG4uU5D+vieZNyG2bymagT0RI/zGw6iFzB10GT+nEt7Q1KRFU4NH+HQzJtwFNSsHD1f4/e6+H6XA0erNF1wuw1c18H3FN2eR9vrYFuS4WoFtyaoeeMAACAASURBVFSkmMszYVc5XR3j1OwxbCNP0zfwgzZ2oKkXchQro9zf2MJTXXq+g6/8xE3Lj9yDSNYmtAwIM3IpChQEQbiOScByaEkUSqFEf1VxTTjP8VHPHiVJf6B/so+IC5qlf2fbG7QqJlQ3G/vEPpC4/ez/QCyAZL81+H5WrkgEFDHw7ADtjIWlRNWRVVwM4K7BuKTBhrIKmpeD1CrxisYcZD8HWQS5X3f2e0XvM84b8ApAsjQCoswbhpnJ/RshXMOQIBWmgEPHxqlUC5imwdBonXu+487+zbfPsiafSwj4aw9yts3s7Cw/+IPv56knv0Sr1eG555/jxMkTvOGeN3zT7YeBhALlm+zswka7Q8/yUAbU83nGij4V6dLsdlnY8TgxbGLkYWs9oLEkGa/WGZ+4ielDR0CCaQtsO8BQPYK8op638ewSTc/FUwGFXA4Li9Vdl0ZjGyENSqUKs0cOc/Mtt9JabDBUHYOmR+BpyrZkuCYpjuU48vrjkdYsJJZZRvEGvPZgP3P8V38H6NPk7SXASQhozLhF+2S/7yUM8L59EXt+D4ugZfoS3x3ARXuozr4Kin4alf13z4uxpjtiiGJ2UWnClI1EWsKYwYn7oVPGKMlrTswEyBQ3iohpjgQEhEh8mJKx6Si0OeQWBpjijOYzal8R+YBHwokKNFoFaBEQqG0EkDOLSClDjbB2MGQeU4MhHEDRdTv0vC4aQRAJHnvXJp7XmIZE2YoyGuPBWRdCIBH4pBVv4zGErkKgByM+o7f7stlk1mjQb1xDFLuiU2FPp71Jgl9FkFg/lApQXY1hWdTKRXzfJ1/IEyiF46QupVpphCEhEnQGtbbJmpLSP6WhWC3QbLZZWNrAHy6y47sEZRMZGIwWcowUuhiqx1anx1LD5/SYiWcJ1udc/EaJido4E5OnmZ49jK897KIE3yPwHay8ppKzcewyW70WoCmaFh0TGp5H0GkyXKpSzuc5fPgIx8wyB4ICtcoItDwCD+p5QdPp0ek1uNZaRwUePb+HmxEM4qrGhjQy2maR7EUpJYEfhPOfceeJ1yi1oEVnQkcrmTmcYeYvjdDpvo6tDYmVSsRCZ/+eyO6BrGJh707KbD0d71ORtB2/mW0h21ziaplVGqT6hOSZTIeif6ORi7SPfV3X8Qz0t9Xf8f7f08D+rGA6UPsh+1rW4v910IFvX8zBdUd/A74dEG7OSCqPNknsCxrvHWkITK24+603Mzo5FCJ1ARC5GMSSvogPST+zmJrqvo0D+yZhUOI2DIP77ruP2267na+88AKf+cyDKKU4eeIk9Xr9m2pbE/pU+r5kebPNTtejWK5g5nxGKhNUCh12u2eZW3PQPcXrTlp8aVFzdT7A2cgxfmSS+tG7GJmu4BsgSiZWNUfJM8m7OYKGSeXwMN32LlpKSoUCVskGKXnqkccYro0yWq1RsoqU7DJ+roZqa7CbGCJgfKRKqTiMdXqCI++7nTiA6YZg8PcLEq0bIcOVtQj2E9j0uRQ5pNf202bFAkREK/fgin7mN4tPYtLd766iUf3av69xhFnBI/UNjttMmYeMPi+8mhB4jSRk8lNmUac4UfS/FxZUS8cb+mZHXY/fj+URKSILQDhBoYwWBr4mrkcZgi+kwNAy9YkmyiKjw4rBvtbkrRyWBb7ycAOFEBZ5AaZUNHtbBCoIBQJ8QKB0kFmHZHFIA0FDtx6lfERm7ZVWGRewDETCUNadI1SyRilZkz1D5qfsq4PQr2nuzyylVPpMHJ8QM6xpUKtAe37qox5ZXFrNFuVSASmgUqmglMb3/dBXPtkX0WpGBDMWVJL90SdYgu8phCnZXGuRX7LQBySerbFKOWS+gN8x6FouPS9gccNFeAFvPFXkby4ELM75DBeKjJ2YpX7kdkamy7hCQyWHrU1Mw8QPIGgYVI4O09pZx5AG5UKOgg22naO56tB2AkaNAmMjU4xYVeztAN3WaGsHKQIODNe4uOVyfmmBLy48ixu4kcWIRPPvB0FYrVsakbsWSYVipRS+7+P5fkYwEEihE0Y6rnMQBnmnxf+UUpG7XBxULBMNuFIKHQtzsTAo9uokNURCdaJ26LcsxvssPhM6Ph3pHsmCyPxM5eIYG2a0FAMvioGfSf8yglDiIijSfiaB830v78VjWWtanzYk+fAeJJoIUVmBIGvF/VrYcPnVH/laIF4gkfkvAjHwyA3424PBwyDDQ9tqtnnpK5cwhSZnmbzxO17PxIFxYlekrJl8r//c3z0QQvB7//X3ue2225HS4PLlK9z/iU8kyOobHb8pLQxh4bk+GxvbFBqjtBZ8An+I09X3Uym/my/uBjz/aI9DPUVVClbmPbY3FUoVyJkz3PO2N5AvjmLbFYrFUUqVg+SLM/hOgZ3aGEMVh/F8QDUnwLDo6BzC22FyYgpPCbqdAKNYpDgzRjdv4eQCPGcNo6yRI0XqNx/i+LvuxMznEHGcyn7mzBvwmoKvxyWsb3fvw7xnXWtSvqvfVB0H0w4+GLH39DP5+/RBZwlG6MKSMpcpoz7oyxv2JexB7OYTB6WGWXH2jDCyAqRjjxnNxA85o4HOgtLps0JKhDQyhDplMTQpsxU2KZL0j0H0M3G5idNFiyilrFKoiFFVOvRxV1oRqACBwDJNcpaJaRpoNEoHKHRUzTj8VtQYbbdHx2kxXBnn8MQpTDSWIbmyfh7X75HWMghCVyANpjATjW/W/zlOpxous0r6H86LTvroBz6+CvD6MjDFUySQIqy0LoXAMMKgainCYFd0uobJeifrHtWUSLaQTvuhQxejPgVtzMj3sSZpjYTV1Q2kEY61VK1SrdcTy2k/cwaJNSmSQLKucvH6+oFibWGH7Y0WzUaX5qbDzlyP7YsuXb/Mx/7yKg+c3+GxRZfLX+4x62jKBsxdcOm0JSqoUR86wp1vuptcYRTbLlMqT1CqHsKyJvCCEo36KKOVHuOWR9GWiEIZZdqYus3U1BSOp2jvuvzxBz/AJ7/weTqWpCt79JpLUPDxKjZX3FXO7FxmrbPJrtOi7XZxfA/H83B9P4mbyc5j7L/v+0GSMcv3/SgeREX8sMQws+chiiPRAX5kjYjfCdsMrW5Kp4KZ0mnK0nCPhOssBBl+ZG/f4nfifZEsvIgZdIEhZeTatB8OinZ6git0ss7x/wYRQuoeRCIrZi1eWXyW4LE+61fyYPgj0iTEqLMPb2VY7KStmEYPsN/XsxR8LfTgRraiv68Qa8miILBCwWK0XkfghWnx9jwb/fpaMgt8EyCl5Pd+77/yG7/56/zFX/4Ff/aBP+UHf+AHsG07kwHh6wNBmInh6MRJ/s0P/l/REggeuvZZDlcPc2Zhi5UnfErLgvf+eJH5ls9Lj/XYuiq545ZZvvM930trQ1OqlwlUm6Fcg46xTECTiWoOc6bETpCjo3OYdgNbuLRbHq49itP1KRIwPFqmWCuC1NhVgZiZBNVCWSYHbj9JfnYqCT7++7HSN2AQpJRJwKeKiFU2bqlPyZVhjPphr0AZ7/dE+66ybib6enRsrwVO999LCe/LCBsRQY90lYmQkjKbA4Q77XGqgVb9QXzZui99ncv0N8jEFGStIYn/PDEPEjG1KmSsIBQ4YoFA9OnxRMJoBa5O+hHPgoxxu9Z4gYdpQs/VWKaNhYUIPKTyqObLoHshYy6NqE0VMtZaJUx+lhlLZyVi4JPvpsGo+01Jn48GYfs6IAlQ1fr/Z+/deixLsvOwb+1zMrPuVV3Vl+rumWHPDIe3ISXREiHJFGzZBmRSoB8EGIYkQPaDYct6MwzYgP+AHy2/CHo1DEMSIEMwJMAEbEEQZEgyQQ1IQqKHFMmR59Jz656urq5LVmWeHeGHiLXWtyJinzzVXdWc7tlrpisz944dseL+fStWRGTkuW5IpqBm9yWrL5VaMFwBdBxuXfUulurYMjb1yFRtR+Xiuoy3v/1tvPHGXVw+PkKaj3Hp8iWcPT3zTE9igHLe7RwAZmDaFrCZU0KaAZxnPJpnyCT46j96G7/zj78FCHB86Rh/5r+/jcfff4y3fwu4tT3HZx4I/tzPXcYfvH+Of/mPTpE+OMEf+Xf/GP7En/hFPHoPuHLzKnbpIV47+QE+ePgdpM0jbE52+P6T7+Dx/HO4L8DVSw+we/oYT1PCo3QNT86By9jheDtjnp8i5VPItYzzl29jfvwuvv/Ou/ib/+wf4uvvvYMPTh/gad5Z6eac6+lZlVrWU7C0zFOaKyAtY4QA5l40TRM2UlrrLqXSGFO2jfabaQI27m6kTmnWJnJ1cc7eDwDUFaTSjuxCNSbf8IajqxhlU7tgu9nUdiyhb2peS7StFcTboYN8IoHa4oRJc93XyZhfxzprod5fWuHcHCJxrOqlNZvkpHvAmpcL8hzIwVJKVrLNYzfRZHR1tcoLFifUusFHcOXaZXzpp9/Cv/8f/SL+7J/7Rdx981Ub+DtiwK38Uyjc2aZpwn/5X/xVvPXW5/HX//r/iL/8n/5l/J3/9e/guB5/+ixEyfwq1QpH3/7iG38G/+B3/h7+yVf/Ibb5Gj735Se4+upN/KPffBf3HghuvXILP/ZTX8RnPv/H8O4j4Mb1I1w6Be5cu473rl/FQ5zh5uYE25ufx/GT9/De2RmebDPO8QGOcR+7O5/D46//PqajjC//yT+Km6++hHefPMLdv/jnceX4BJsrJ+VUiu0EVOvnp7R6VwFw4exALhLu0uNATYPEDbbt32QxJJcPfafL/zYdVPA3NHqNlvLDd75ikCsBKBNy9E1WAMutW8Fl0mtLwxvKU/25mcom3ExWTVC4spdA9xc4aNfbjK3sAOQKmFJrUSTz39HRka9+oEzwakosxz56OZUTpgq4MEOjlHTSNGE37yCS8eD0XQgyrl66g4dP7+N8fopJyl0JKQnmPGPOE5DnShLdeh/KplpxdVVBAMikkCLX02tSLEcCWCXPqQc5ud6boe3FcwSgHheraZMFdqr7o+ZUgaySLLLmGkHVI2dpLE4p470fvI+Xbt/C7ds3cfP2Dbz9ze/i6empaV72iQhkWzZtl4vupLp55XIEbS4rQOk8YTra1PspEjZHE86ww6/9zd/AT/+lz2Izzbh8+gHeeENwcucl/Oqvv4vzJ4LXf+wV/NhP/hRe/dxP48FTwY2rW5w8zrhz4yYen76DlBJuXH4Vd278ON77wbdw88oVnO6AfH4PJyfA7vLrePL213EJZ0iXT/Dq7Tv42gcf4G/803+I61ev4V/93m/j9OkT3H/0GDMKiN9MG2y2W+zO5miVriQ/57LjoOy5KWVQbIhl9WWeCwPLyNilGZjrXRUQZauljCtYnmTCVohY1vEk1aOBN9tooMy5Xnrng0idS0ulBmyStW16O7X6q2OJg/uFmY5tG6J0uNn/Yq2Tf7ZjE2ei6qINUmIgM1x0Y51HyKSkUyF7Xu0xk/qJ4/lYTisaMZ3liUcuDLHKxyUipQMfHx3h5Vdu4y/8xV/Brds37ez/cUv89AsDimvXruHLX/5Z/PKf/xX803/x63j69CmOjo4+1AqKnU4gPtBkZJzunuLlm6/jlSufwTuP/wAv3zzCvUeCd76RIecTvvzWK/jjX/osjk+u4MYEHE3lVs/PvfE5/ODbb+Nbf/A9vPaln8DP/cLP4x//6j/A9v2HuHZ8GdN0HffSPZze/y7kCEiT4M0vfQFf+OmfwvHJCY6OjrCdJmAzGaBSTVf5NIrbrfaJglHzuBefYnMOZl3oXNeeQqShhP8YqVO+Qv/bKFz9s420mVTMkkgTvJ744fnvJ+CQtoIhc6ugzcdqnbQ3bgv01Qgqk0TuCPWLaRJAKmHIKYyxutFTAY6mLSLAVPy4z89nzHkGZKpjSbGSbjYTci4nJNmlzBlIeQdJwDkSHpzex+nZExw/voeK4iDTFlOakSdAZj1OVcs3o/o5AGTrzagrHaEktRQEmDKQJJAykam4eMHvimhPg1PyJGKGZ6sjAbDZiJ2KEyy/lShM9T4Jax5K1BQbaXmqtpWsThCcnZ1jToLp6Co2x1tcufawPNudV8srkPNkipprEXwFquQHSAnA+Vw3ixciNG23eOPLn8e1G6/g0bvfw/YJcHN7hPceZrzz9YSTacKf/snP4otvvIaTS1eAbdkX8vjJDj/5xZ/A17/2Nbz9rfs4OQFw+h3g0fs4eZJw6/bL+IE8weOn93A2v4PNEYDNEb76ra/j/sNTTNsjXP7gPWwk473795BSxsNHD4tvP6bg+lUMWbX4hMl8XcGp7+aUym3JdQzYyERl7GWj5ELdekBA3o7kJQPAJL75l9vUVOs310r1E6ugiQRAnGxsAkIrzQyhXQI/1brlFa+sZUFGjJxL/wnfS4xPVzmUFGiZTdQITYfx3NsaYnjQY3e/9hsNqqGexSX6ObkV7UtwP9BQXX/E8OcfvtjEXvwqj4+P8eZn79Y+ukT25KLq/MRKa/XkSeeN11/HL//SL+Plu3d9kxpoAHkGGdnkj6Yt7j+6jw8+eBfbp2dAEjx+nIEHgmOZ8PLdH8Odz/wUzmSDq0cZ07xDmp/i6gnw0pXLuPvS6/gjv/Bv48rVLU6nYzw4y5jSOa7dvoWfvXsHv/b//AuknHF89Tqu3bqFazeu101lEvudrRh8euv5R1Ke0RKjVucs/YcKD+0Uow64N9Z6G+DbcD7286rBWNWLG+NiCDF7XIhfl9f9iEUGAfyzgt0KMHMmQFPfMfbgIjGgImS9zO4zLVIuSdPfFUwVd4jZb94lMqLfTtPGNtamnMzlSV2YspQNnwUQJKRU7hjQEUh2T7E5Py0rFzkhY0IqtzmUlQ/wpU5j8ia5N/Zlct8QiHqe0ImS9V1F/5qvnFMhOlSRxX0zk0MVjVeB59nOOAOzdhmVYUdPU8vQCYS3gZyB09NTbD94gJNr13B8fFzO0VcKWP/h+sqAER7DqwZ+vZ/kVNrbg+/8AOn8Fo53M47mjDRPePwoQz4QXNpOeP2tL+PKnTeRpg2uHGVM84y0e4qbVwRXMvDgBw/w7d0HeOVV4NKNV/Dk/g8g9x/jvfsP8ejRQ2w2l5CQMU9HeOf+fTx68gTTZotHZ6cQJJydnZU7GeZdcSGTsh9mnmdbKeSFHr30i1d4UvaVtpxycQWy1uVtIqOcQmQGh9ofNuqaO8MKqxC/KXZF2K4Zb3tKNox0cXj9WwCkit3paGIQaQdjHSX0jkVL04gjUjc+ceL7xikjSctBuPGX/RYRLWQA+45UL0U7OAygfj3an7VPPpY9B4fgp0Xfr1VemPAmYwDuQ8pt/RmqIxyx9QmqxhGbZpBz/fp1/NzPfhmvvfbaC2mf52dP8b3738L9R9/FMRIezxuk3RE2ZxMuHW1x9ZXP4sqrn8ckwGUBZE7YboHt1St487OfBaYbuHS8xTd+76t4+Y3P4P33HuDBo0e4fnKMH/+JL+HX//lXsJsm3HjlZRxfumyXJbUdU+jfVT4lQpPss3yihtYcBoMyw4qCn0wxmzXw8HRkMFm2bjr9R64LGYehivGKnIM3Mb7r75dbuq0i0OpJ0Dd8XIGT6cCgsY6H01SshfqFgsv6t/ZH3aQ4p7KhdsrRGp3TDptpqtZbga4YsIXVVytczZxzvT3Yx/lygZWeBFRWDnSfAdTKmcVOVFHgobma6sUAtqpEKzOaP73tVusjUZ3q+JNzDrsplGh56Sgxo/Zg5MMCl79t74Vbuj0OvmV5IrwBs4br309OnwByv1iea/plJYfLuuoFJWgIde4oFbYConU+nz7GJE9wstlhA+DxbkLabbB5Krh06QjX3/hJnNx8DRsBLgHIeYZMM/717/0uHj98gA0y8vlTyNkDPDi7hTMBzh7cxwcfPMB8doarl0+wg2AH4Mk843yegTRjl3aYJsG8m8sxrvCbqrXes/YXA9Dlf9O0gUwTpkmKW5cv5/gdFRCIKAGY6oWBGSAXLluN4n174oXP+/mChR5etnEfireVAFuiJYD+oGdESvaNWjnEPBKNQZpfJbYHa2eu/yhGdsGzuhjhDiUx7WthJZg5+f6xQ+Q5koM2QcpgICxir+IyzvPTZJUPI14Zcb+tDNvlPmn9ej8pMuo0+my73eLO7Ze6FYaPLBn4xntfx+78Aa4ebXB6dBmP5i0E17Cbf4DLVye8dOcm7ty6iZemjA2Ap5Jx+eoVXL79Gm68/CVcfulf4//8+/8bHnzwBL/0n/wV7B7fx9e+9g2c73b1AptL2F7KuPvZN3D5ymUADn7cEiEXj5Kr/EgIA1XbwIYyrxcwMTj1R5fqFVRkP07yol6iy+TBYylM6DGW3Dwn+I5RA7YWbsaQ+rUd/el6s3+vpuXuVayzhtO/fRMxMpCQwvnuuQJHdr9K9dk0bcgwkyCygZ68k6SCtnqqUbZ9BbXMrDwqWA3Hmdb4UPdfaF7M6JOxm8vlZUg7A9Apl1tv2zE8V71LPNsKFutRrmqpr3UgSpQgAIrb1JSyDTMaUiapXGSy+FVSdW9KRvYABfpW/nW1QfcClDzRefxSNiYLgDy5O1EiQDzVlRjdh6An5pw/fgzZblDIU7Y7Dgo7qm2tIjNreYTJbIWotp1NBdc/+We+hJeub3H+AZDyhEfnWyCdYLfb4NqNY9x+9Q5evnYF16YCrE9TwmY74X/+27+Ko3yOu6/cxpsnV/D9dz7AN37713Hrlc8g5yMkAHOaMOct5Bg43z1B3kxIgrLvJAObbbnnIqVyNwG0/AGkXMjmpASacVoF6uXo3tnas6iBINe6k3LU6RGdVJTyXO/T8/6q+1GiZOp31L0yu+R5G+cVHF3RUQmrcfodZUj3GnnMfR9ntazRNiTVxxTqLVbvYoRR23kcn3RdpH4T3vF45102HJzA8WT6Rnw8CmJNVpnKfnmO5OCQaQDtfEKk8ZMHJj8NEgYAkw+HEluXgk+KHNr2Tk5Onls75cHu9Rt3cfLoGA++8xgP7j3Fm6+9id965xSPrl7GnctbvHH7Gm4fnWCqlqsJ59ikpxBcxTQJbr70En7xl/4CfuZn/yj+3t/9u/gP/r1/B3dufxVn5+f4+T/+b+Hv/O2/jysnW3zpJ38C165fj9VrXD03wGyVT4XYpPaM32XvzxpFuWPKLxtSC3Y7YXKyFyVcCIRQsHaCzBauJl9DZZt4bfI0S63DTyYScZ8AJ0mhzLfA8+ZpEcHIMc14ApPG44QgHMtooKmkOs/JXLgsjeqHo/cI5KwTPoVDdSOaJtu2oJb+6MaUMckW22lL5CTZ5lCzZKZU/eOzkYdJNvVeG/ebniD1FKZ41wCjIwd1Dpz0roekQE4AoJyMpkAxrnDletNx/V2BUUrYbjd2C3K5qVnruGqg+w64zRDgTamSXADTppCcabs1t9E5JTx6+hT5sZKm2mq0LJLvEyF7p2/6BFvBSymkOWGbBPe+9jYuXbmKJ+89waWc8DRn/OY7Ozy5eRWfvXOCN65exfXNFoVUJWzkHI/ufw9PHj/GtVtXgO0RvnnvIb7yW7+NL771BXzjD34Pb33xZ/Dw4UM8ePABrt58GVcubXH68Cl2cyquazlDpozz813VSOpleNx9a3tM5Whda99SCBKgF9bl6ooGW1UJMeQC4PWkLe0TCphzTkjzXPc7uKScqwsQuQtxnFayQCDZzSliPJ/x3hZ7m+s9HVxx8D6s4XisEbJcZIqnkNXJ9C+9ScedwdjHcfIoVO+gUmGDx9J0zCteCviLS6DmBUbSzYjCDOYCWY8yXWWVA8QtVc95TUSAb377m3jnu9/F+ZPHeOPNN/Gf/4X/Af/Lr/41nDzY4Is//wZevnsDgh2QHyGnU+xOH+HK9bcwTcfYbIFXXr+CO699FhDB73zln+GNu3fx+P67+K3f/C3883/yj3H58gY3r7+Kb379G/i5n/tZ3Hn5jlmEP3lUbpUXLqFR8ATWWM2a4B+Wh1wooxU9NUG3Fn9/u0eXuJrdhTHQ4JNtjRb9r2OjmO7l0rDTtDHLIAPJjUz1tl4nQdNmg2kz1XPjc8XdZfKfZFO/nbDTy6dIq3KzsR5BqcDfj1LdbrbIabajIYu7z1wtuaXkpqneb5ITNpOCELFszmkG1PKenPCwLsVQqi5FXiM1lyXdeoy2yvZo665UyPXGYy3PCUYFBSGtnBLmLHUVw6sQiE0WPoRX67WSlYwpZcx5F+JMOC9x73Z2fKeI10vZIF70EkFspxmYdzMKBi3Pp3pnzMmVY+A042g74ckHCV//nYe4euUYJw8FP/Fn38KV6ycAzoB0inl3irPHD/BX/9p/gx+88x6++S3B8fE3UVZMEl5/6TLuv3+MJ/e+i1dvXccrd17C0dGE61dfxiad4ngjeCLAnFHv1ZhxtD3CbrcrxK/Wf0q57kPLdtdE0naSEmSbgd2EvBGz96urlALYuRKmDBBgV/CcjGDaAcZZ+be7qm2m4u7mRE73InlFCt1UXepE77zgi9O8vcbVfj9+1w0drq8ThNinzU0ROuyI3YExmYvexUKa0FMlANK/OkB0FSRRh5kWxsNgFLlAXhA52Jd8nErGlutVPl5pAC8ZA5+1Wj4NVud28aPL03MiCGUCzHjl1ms4ylucbIEbt57gt7/7t7BN13GCx3jz9c/g1s3rQHpSLS4PcfXGj0MmPU4V2MgGMgnOnz7Br/zHfxmy2eLu66/h+PgXcHLlCj73Y2/h3r37+MIXPoc7L79c8/AcMrDKJ0MOmg28QUx68ZOY8bw7459BuU3K9XnsL+yeoJtA2w5Gk3+YgBlWRrhvcXXtmEHoKOPLhdFOnDpfO7A1sx8n5eEnv6VYgOoSVCSlcixoAUVm3q4nqhSgV1w3KLeDFRlN3tLR40zrnoap7h3wbwXAZJZgdWUCCmHZ6Qk1unNYgLpzFwri0dTnJIJMfvtByC3EVxR8Bcc3gKvFWesxMi/bXDxNXty8CbaShDQTAZF6G6+u5iTVpMSjeivgnJApD24Bziljd2J7UAAAIABJREFUl3bWAJLdlOz7D9I8F5ctqWfya91WvfVCOTXNy2bC9mjC9miLD955ghs3ruL2nRPc/eJVvPzSEd773lOcpHN87rOfw6VjQdo9xNOnD/HNr/8+/rv/9n/C/fsP8fTsHI/nGZsnZzg5PsLta5dxer7D1ctHODnaABvBk9057j1+AtkKvvf29/xCv+ratdlusctl4/lunjFtJmw2G4juLs9iK1C51tFmU/bMINebu5UUlYGhlqnYvDgizuqGpNb8OQMixSKv9S+6ApHZddH7perjtQofLxj9Wk3wyqE/H/3t40kd9LS98gIAjU0K5id65pIBOh3LYhM05zio7mJcJlPmxmaHNgdCem2q+jFfrLstyRww/z9ncvAMNqNnoTCrvDC5qI1oh9bQnwLsf6G0nhIvMt8ZGf/q67+F8+MZN195GbLd4Z33v4sHD2fkSXDnxqu4eukSgDNALmOzeQkyHYXBJVcL57TZ4ks//TM4P9/h7W98ExMS/uSf/lO4eu0adufnuHbtKi5duhRcG4RHsFU+fUJ99zCjTQmrFr3ySgFGHkYTJuBmRaFMumqVG6TaPAz2LlkIJ8Nf25jBx7Hq1yG5nJdLhEhBo7ClKs3kDhT/akuTSECIugIQtYwqAEnF5IpN/UZdMHJNNum5oeQ+pQDIjKX2LJZQyglTpqOUKwAyHCQSAU/Wuwa8/iw2JirZ86nWcwaHwT2kuvIAZX/ANE2YZDIXlbatMq5xt54aMDvRad2+3PrrRE3qGOmKcp2W8hEzaZdvPds1LiarIvXyNHK/qeUu8PTZ9SMVdIu7X7yLG69vcOlSwvaSABvBo0dPIJsNTjBD8ARAwvv3HuLXf/038N69ezg/Pzdr+nldMXq0mfCNb38H83nCtUtX8N799/H9+x/gPAH377+Ds4eneHp2HtxuUj1GszQ5Pc1ng81mMss/6HQir3g+3UmMvKU5A1PGBL3BWMuutlUrRKOHtexSV0dpTpgbwD7qo2yM0BLXsuY0eBziFQHiD51YuMxfo/ndwfwIwZc6byiA9k/de5B9D42WaPZGXA0FrpOVh5ZkruUQkqe/Bm1cxw4qhb3ywtyK3E9PNbM3i/qv8ocoTV20J278qInsG0Geh2T/+f1738drtz+HL7zxBeT0EN/7wb/E2XSG63eOcflSxgZPkNNjiBxhmu7Q57TxL2dsNlvcuHkLKSV87q23cPr4Me6+fhciUq1D1WWAwc3aBz9Vsn8llh/u6dfkm+3L9EufNDBUcRQrw/EONInTQ7Q2AgqmXQ/JfnY+gLCpPqxM6PgVLGljknJIN/DT2Dx/DKASueoo8FdFFNzyZkAF1mbfrGVdbpMtfVPDxEUEodNiKlSrfbvgjslXeux+gqJHQoLbdwtgNvAv7gVd8pBIZy5ALzMDY1SKAbCMCrY2FD1FSpkB+2m71TjXvBLQAmOLqrORpmw6WxsU4Zpw/U0PGPiViuTK4kumPQTcpr08DPxXQDhqW5pG2ecAXL5xDacPH+HRu6fYPZyAN4+RjyfceOUEl08yJD8G8AT37r2Hr3zl/4XuG4GUMprnGfNuh/sp4fTpGY42W2zlCPcePsL7Dx8iZcEjzJBZcHZ+ZsdiAhlzSvVggWRzh5K1efZasM5c298kgw2utSgnWsHT7qDx26oAtS0RwbTZWH9RL57iGjQj1zbrc3A9Vpfqx1ppLX/bj6LzYWgdUIZINdKuKsDmUX5c2pbwX1WbOJbp5mYuG/tVYp8oXUj3EdUw7PpEBRnc52IWgthRsZZAHPfC4HzgpP/CyMHHZXld5SPKvnqxUbf+udbh85XaR1698Tpeu/0q7t65i/uPvo+/9X/9GqaTjNc+dwVHx0+Q0gOk+YOypLp9s+veWk1TvQBJRPCzP//zBWTU5Vo7LhFiP1f5ERA3Px38SeaJt303eOggkf4KRMC97UPY+CGpuT+NJfceIzIDd6PONQhwMFB/NwXoGVEVj8kslyW9CaVvqQ99bjNYy0J1K0AmGbiyCV1V0LD1WwXPUi2Pm2nCLu30cVk1nDa2mTMhOz6o5GgSWag7IWBTdzbUM/vVuqnf+e20WhxSQCuXkK0yaZY8UwUEqltIiX+urj++oXLEKbNFQFwCnR94TV/qcZtOXcrJUGLkjXJfQaOtpMDbUTm5p0AkBYhcLuHEIi+A0m5Srlmlep0z5t2M9771AR6+9z7mp09w+uYlXLp2E8eXJ9x96QRXLm8h+THm3T3cf/97+N3f/f/w9OwpFBPnVO7AmHcz5nnG+dmE7fYIDx69jTmV8pxrmJQydrP3hwxt3vVOjHrbt/vq02Z6AE58M/xGPSuF+lxLn+vKmUJKcz06l1a0pNzmrS3ON/QmzHMB39M0lVOTRHG9nvok1kW5nRgWFm93Ecbr96yvNOMU2qMay3fZq1Ev0PM2PxgkhUvEiy226xyfUV/hPROZQjPh0dXH1uU5A2U/ho5tWiiN3ofIC9yQ3IzcC2+4vFa48sMnKyF4/sIDyjRN+A//1C8hpRnff+97+Prb/wYP33+Ey9tr+LGf2eL6yUuQLNjt7kMkY3OUIZgGncUHcpkmbG0ZuIKDdtBb6/VTKaP++gy8QGOhuHzC0mMlOcLWqqxjukNEilE36BqWKkDOotiraGNgokldJ1Ne5XArXYT27azTzVLthGQAvtl0WwGXWkclS93EWa2hepcIWfTm5C5HGq+j5vK7fpPyHPRoXZUiQZkhxRkpXNKolKxYnWk7dHbjIm0PBZDtqFolLMnuQqj1Fa4kK8RESZJbPGkNICuYLiC0rHrMFagmN1SIg5diWc1Arq47Um+7pTLHJNVNydPUMi0GEdc1pRRPtFEjSf19EgCp3DateLdc4zBZRslEVgwxeqpOguWfirH80D0P1XScc8b56Tm+8n/8Jo6vHOHzX76Lq9ev4umDhCTA5//4NWC3xdnZAyBvcXr6Azx89BjnZ+d4+uQMaTdrK7ETn2bUPRFzQkpl43HKwG6egVwMQ+W0onIs7LQR7GbBdrPBdrstbTZnnO92mFPCpl6uZ/cyiOajlF/K5fjS9phQfafts2xuLi5L2gy0XeilaBOVr7flchFaIaze5vWWEL00MIitKDixk0qIIQh3Mpiu1Ka1Le+VrI2iH6PM3SpEIvFX+0wD+ni2OOrl+F7JUUjBB08j70oQoN47oiUZx5CL5AWRgxb2r7LKKkuirg/ffveb+LXf/r+RNxmXrmXcefkVXLl8DZvpGnbpBLv5FJcuJ6CeWLJvSLOJtiEFqyvRj6romNz+rG8j8g7Pw2QSJpZmjA9L2Uwa7J/+m06TNm4G90txxOcGajiE6hDX8puYJABBpTq6pwfZz1WXSS2pPWhXjQJRMvxa7z7QDZ0oKwGJLkkb15WmUY6IlEmwye4+s1Hipf3eDAgO1spGZVo1bMhfSnTzsxRonRpVkm7C1ccK7nOrP4Fxw0OVHMhUNhcbMSiAcRI3eiioyXoRG6jaahkWgM7vxcp2SmIAHlL82QlHUZMpNzP77zWjWjbULRROTpLLqToztR/x1sJ9RE+00eizZGyOtkACbty6hhu3b+Do+Awv3TjGSy+9hBtXX8XZ7hi7PCPJjGtXjvC977yH3XmyE3FSUveijJx2OD4+xvZoi7PzGane8bCZpnLfQ663Hmd1YxFstxsIqlV/UzaxKhnIKO6pgkLeNM1tbTU7cjXLKWPaSK3tHMaJFn9KfZaCC5tU40AJrETC4kcxSGzoNvCcy6lKqa6OaOTDlXAa09Q4ZntDzIggPByMpcavZDIaCTCYT4X6hvaTOD5EG4RvbI4XBcLqTKQlBkw+BHT2gTft0Uqhpn8AQTiQHDwrmugzmGNpLH614pZVflSEj157evYUDx4+wOOHT/DyS2/hP/vl/xrf/M7/jvMzAS5fw6VLX8R285JZCJd6im/yevZlxFU+7SL0M04OcWJ361sBjMlulZ0qkN0XTz/xNKDeACzC6TXjbzgFNqVx2pHMOCa+eEZpSVF0GXDLot8ULKF8CuhhkOhfzylVALVBmmfoPi6PFWTtU7CSUc+/dIuk6cqGwmwAhFcsMlCP3ZwCT0t6eo4qCQUcMJBVLvrSminAbUrx/PVY3lJ9y1HBXqYJn3ywG8u+kg+gbpBFLdeZLrWiclcApycAiZEIgUzABgI9hz9pmeVs304yYXO0KUe/0pGxmoc8J2Rb1fI6TjlhM02WJz0RKpl+Uu9uIICZcrlgzFY5Jktn2pS8bTYTbr1yA0fbY2A+wu5c8NV/8S5+4cc/j/lWxu9+9Q/wla/8G/zGb/w+vv/9Bzg722G3S9jtErU9IgC7GfloC2yKK05KCXnWFR+/N2ACiNQmnJ/P2J3vjEhPgkBSwx6bnDDTBXvKKNhoPomAKaK782TMM+8v8DafZiWbEvYgtHcn+AZmWPnaakSux8S2rbQaAsK+IK3HOpbZrdq88lMegBuKElINm6hstC+qeyGXn97t4Z2oN0y4IcNMCYA9G6pDZTvIN9pxLQqTkX3yh3LPgQx+v5jHrLLKp0PUWubLnxPSnPDFN38Cf+VX/ivcuH4Vd269jhtX/xKOj7Y42lzGtLkEkSMbSAEmAi0EopGlJQhrR/sRldAg9opUH+FRDLkD5vVdjqBA3W38iVvqXA0FfUwaFhNFC/Z7FekUkwC6hzsODPS5H7NbuwtWIL2Dxa26tEi/UZMvjwqlpCsKZqGVbu4rmFow1Y2tetoSb2JWi2uqLjnW1aXUG+x24OjLXQPYHot23wavfLR1H1YKcqZSZMBf82Zjm5MGL9P2QipxDmfWelh95/q7nwY1kd6Z4o7WULU6g4ySIpWkYY75qy4r6nsPVDekSgZTytUNXex8/fJZ2TOy2WyQtY6IgClYZSvufJ5xdLJFOp+RZuDtP3gH3/7a9zDvzrHdCP7m3/jnuHnpN/D0CfD++6e4d+8BHjx8UkmB/ucjvpbivJsLAUxOiAS6KXiKRZsSRDLmCq69nJLFmamu2LjbbbqlqoNZxqfwXAmjb+yO9WdzGFXnZqNzXHFxS50Bgfc/lDj5ngMTKatypQ/pM6qUJWHgblF1M6ylUf6W8I779Og7C2NcYTwxW7q8UuGKVgIq5UK5QObaI6WLFAImnV4jOZAcfDhEsY+9rLLKKkVEBEdHR7h96w5u37qD46NjTJsJl45fNzBg1jk3HSiCQQ/W5OIBcJVVFmQEutWfuJ3Eugm5jw3cNtkCFybINl4FfHowuH3hH+YmbKu3H2u5R73wbTAd9unCwY8BVgXEKEd+6uZFw64VXU2i/r+qMcEPf1EtsFPZVGyUxsHDhkiXgmfTJ5RF0an8TEZK9KQnQuVVG9WhcZuoKxBejhK+DaOOtGSvtWvSEataKcnjkS6cbY2PdVyJUyn71m3SN6WzMZgpYgf0JunAVCBJNR/qWpapbRTrsF7QVl2xIEYObN8XCkBOc0LaJZw+OMXu7AySE9JcLpt7+O4pjjYbTBDszhOePj3H06flCNNU7xfQ1Qv2yddLw1INZy5C3F+tnTAQbY/6VbJLpa/zjLrlhPCgcoD1Yz8m1+/OUBLtRLeUlYJaTSucDlWLLraNkJ26AhDryX7XPjFJWKHkurUVQPE4WdgNt33t8Xi7CnueBN1zLfNsbUpHQdUH/r2mXSq8Vw6RVGhQzRNvbNY+q+PSIYj+OawctMDEJexc96dmfVq5wyo/qhIsMAIcHx2X20v1HHC13oYJdl+HObAzrX1uFQD7xm2gJwFslb1w7K4WyQzdgyz2bBQnQBNoY7IrE6mCmCaGJmyMz78v76KKkTgomIm+yEnBkcTvgAJI2Prfp5GRqn9/dAlQcCUVSCHm27LlQDsAhZpPJgZWCOZ2M64cAeotwtndjESxRwRl4aM2Eq6m0QrTgg4K9G1MkwKSbKVAgQsTgFYfbrf1KBuut56olkh1JagvFIG6JLXArl9B8XrLDKRz0aWcvANMAZBpvioonBPm3YzTh6fYnW2w3ZbL2Xa7GROAJ5jK+kjKmHcJu51u3i5K6e8lP4XUpZRge59hfItKXX9NQNbVFwWn5f1U4y6HDiSvZz3ByDKjZcYplLLQMHFRR2jlR9WJhITjEUx1FcDdhuy9EZxY1+ZqRhVl7mlq1IC3yZzj5t2QE56W60qJEmp1GdK2OxThiq//hJUqFIMHEHUOUTRxj4ZqMd4Vy1uTGfRB9jQ4RD4iOTgsscBUFoKvmGWVHzkhACOTbqArewoYSMQ+LuHHKqvslWaCPegTssrpz9ZCxe8Bn3iCVZtFfNOcuW84DPa060qB+QATODerWNRiIRMEPizI/k7D+ywoGisQkeLOM6lVPmSPXJoUL+Zy+osCLOdJDky8vJzppJSBnMJhAgqw9PQeSrl8k1O1jjJwqu5E2agaFYG6oHi5MA+KbmKxjFqSx3lRVyxdTVGaqDcJx4/4hCMtG1JRqgNJtmw07dDBXtkgmwi8eRxiSRAozCnEEtuWutQocVEyRmWTgXpbHVnDNeEMXvByz5Ci5zzPSE8z5vMZmzruqxvavDurJK72l5TKZW+5ug3pSktOyNjUFT1Xjg1JxerNVmvXVZ842acT7XLZP5CRYVckNPUWyKEWekPiujZNaYb9N9m11w3deh+bFp7tf4JROStuzb8S8amutqdUbgpPMvV56LPkxKBZRnDSU8c3bUO2WteKhO9C5DXfhWMxuQlJev76DT81BXd6tD7UjcdeLu3zQwzzH5IcWHe6MBz1ewA+MK6yyipFBHUMyNEiOyQFq6zyDDICci5j485cN8+q5bpdkh+mQlZGJgIOBGhyrOK34zaEosX92YmET6ygjkNR20tU8Cn2MoIkNN9J18X6YwP9j5ilEo5PRMmVKBWQAhxtN+EkEgdqpERWKyCVh1pAU7E4Ayi+75AAAPT2YXcnKi4dMx9FmjN2dgb+XC3fEtMPBc9ZzvGJNOC8EoDybHJwCcFUSYkIkHkve2OpVSOrUgoPOPI7L89zrX/dZGpMIOsFZk58AD/elB27omQrc16tCkQQUhgg1M2oEDMnJWq1rndZKLnclM3IoqnnhDlJuWVYBEfbbSF/GZjPZwPumnoBuyUv85yR0nnxqbeEnQgGwl0BczE+FV3tyNtaj1PdT5EFtom2qu95qJVT3NO815brHnzvDoAwfuzmOehDxQQnBNp/svVVy734xmc2VJgLEs+ZenkgteR2xKrqxu9UXwtBq4jENg3Pdqv6RFyZNDSJ963JSW/c7xPH5kACKISNg/XBEl0BfF9G0HWPfEhycHHEq6yyyiqrfPJks9mY+4mIIEsahiMMXv/u9x9ctO+sAN+OHnwoUWxYfr8oruZ9nYvZNxgG4+IzjZ8n2mBpVwRckdXRdutHOA70a/CxH0tIOEItu5FeuFuJWYTNEly/gdh5/YXo7crxkJtjoH6r8TAswaAuLV3x+K3uG+tkMB1GZB3zPeanIbBI4/YzQF1634KuEJTw0cCSErCxw968Zq3MgmJAPdA/AkBNv7nMzd5rG8zFVSc1ANSImzS67RLO5jPMO19lUn93QbnEzY/ztCyUn5tNabupuANNUu42KKSgxFbaqFihT1MLfsvehblauSvGLt8HQOl1r4o48dK2UciTtw2uO67wSiWFT8RSol2/sUps3WQGDUfHI135G+FsoW4VyKjrA+xpkixKpjqw7xSjVdfHDHol/DeTBya2UT8OrSsTMjixqU9r/3jM8gL3HFygxOE6rrLKp07aKUfnuzgfr51klectEV6OJKUUjhJs9wPoNlEyVTWTn4Sog9tFMJxJ+LYYELNN2hyJTdrBcibmvxtyNwDeThrK00hsaPodEZw2hay+356nXM/Ld8udg21f/o/lIvAz6ztLZAMWAtiuz/UYUS+q6luvAAS5r2JR235xOrLTlgIrGc3oWkltadAGXXHC0tg3LUZdBdFXsZrdDBr2f1Qgn3rfiwBQw+ZObn/1ccRODLlcRZHJjidt3YX8gjupde4XztVH5JoUYjcQqjrnOWOX/bKuXJ/p6oDlW/tTANf+XmvEj9akVbGckSDwm4+LdV5Eyt0BWg/12TzPTgzMHz4HhKdlODIC8GZjwRTC+AZtU61sFIaS6xJ56KfajmkTdrkLYzK9tGx4hVRd8HQVzlYEqH1yvWrv1CebacKc+svWhPWnZ3tFK8jyHYlk0BlaR6N0czMmNopYWs34yJFAx6nDcMVzIAfjyWYpfRuUMRpqPhnS+9qussrzkHWT/iofpyzZx9y31rC/TrjIQOpBdZA6Gbo1m9+1Lg8H2eh8nB0AdwUXZe5sCAf8szCPBp10Yq4WuBpBOVt9MkCV2CKZUgDigBhAtNOLRE/O4YSVwHjam2mKQEF/2pn0Nf5K2DLtiUC14iv60W/9zHgG69EiGRRpbXxNOSv0NJOrBmmqT1dI+BQXy7SCM3X7AVMoToe09AaoiJHCtkhN6s3Uvf4QB9P8sNSZt5ni/z85+TOiigheUDd309n8wTqdqdS1jlBP6MnZjpQ0zy4G/0Yk6ibhCry1ravMc90YX4GsrbCkTO0sglE1xCfOD8W7mei4WK0AWlmxGhA/OYnPzBf9nxKeQHLpV6nuikziMt3CXImA+dbbSl2rc0mj3MiczB2puOi2Y4aWrW9UlpAzDx5cIfltM0GXJlLHDfc58vglxh5Saupcwf0QUdc2pW1luGmZ47TTpcJLC/MC3YpaaRIHoL6AiD+aUKusssonkyKv8kmQkSX8gK8CMSjx+FwZLNPlFyIPKplDBAmTYwP41LqeQ8ieGLQuERZaJ+TczjMOeJp5dFnY/5eBVPctkfrqaoBqwc263J/gx7MraIrRxvx2VgKCFa1FUyaUewWIwBE5c8BRrY8yqhlaAbCsUHnbPK6rEwqAWadsYdxcS3WlpwtRGY7aZ6YCHrlhtMXh5VAK1TZmM7lFK+wapSynITOkT7FAE4lEjpZZ6htOTjxOA+W60lGJWdkz2zXW3nBKQFf3skj9HkDda+428aQJ1tgcBDMnjPQsV7JUeEs5pYeTj/tAuHxonwO94k36Tg49q+EujIFVTMsow9tBSDO3mjh98Xooz7QOtU/6ilN7nGts19LEPKjwoFNsTyFkQ7a0fiSMW6prKEPtz14ow7ahn6kxg/WKEknWkrzgS9A0Rw1jHxCGT5KsqwWrrLLKJ1MuNtPo6SkeWgFN3CRoFjiKxy2eA/tX5wLkE/ReFqFWRrPENkEIkPWAPwIknnxMS55wK5DOwa2ATlQxUOHhu9kgw6ydnFfBBGcttILSWoUbLmRUjB542WNhjhX7hkGtEJBwH3190JzGAgVFVWciAPq9K9TfOKChYhmMxbkEt4UM5OKP3pIZJyC1/dXk/Bblhj8QuzXrfMh8LWcqU8Ny8OzzillTXRZ3wXxEeuoPPW3HgabX6RTAHOVf/BZqP+FHTDc9vaoA+XI7huJ+drPS7dUtp1J3NtXDeBUAvbQjw1cvAHcxNDCNetxnGFq0rOFE2EoqWR5zhl4IrkrbnSB2ClUth0nJjLhV3PPobTFs7KU6U4KgilntdxZ+Jg9Ur7Dzv7z8alzct6w98Rjq/9RKoJWejuXkWvXUx6GnMZV7NUKOtc9qet0Aie75IRD2OZGDfSN7Lyu0XmWV5yurq9sqy3IxIQihq++8TkxmbaMYLEYzFhJw4ImakleQ4BtACeDZ8UaucW9QihN2nzPpJn9X2yD2sH9EC7Wn0Frh2M97miZz9bGjRAOpKlZYdfOwCV7zIvXEpuS7EpyIFICimzUDENX3qBdgpVzdQbwkjAyJwkIF5xIKUHGJWsG5btWy3jeZurkVvmJiRKvWpwI3bjvmFgX3IddP+hRUv3ocbKJTavgDkbDpFkp4uM40xgBQJbQNhnUTKRX2lTQxlhOZ+vLxuvJyV2JkWinIp77B5c4tu7wrkW4mB5Spgl0FyHrk6TRN5TbopP0sglyvY/+t7EMA0pzstCLu5GVzewWlRnIk6OpkgUup6C60t4XrXh+YJuJ9VDfam1FiszEy43e1uRuTaVvJQSKCH63y3kczhW9FgTi7GCnp5HIDYJsxhGq5XUnRz6xdKCkR/hZOdik/xnIW5vb2qW+K9n4a3eouxggveOWARMKPVVZZZZVVPgZhAHKIGL7PAIQ2wjXAmWGA+f8uJNRaUR3eagztaoNfOtRb8UZaS8WlI/3io3Lkp4KVYrrM9blP+sX32vcZRACkfulzPUvd80cTeI0zVZt6mnkzYAGnc54VocBXG1zvVK20CvG5jDLqRthJGtJTwYQzCSrPbHGl+lxLN2XVK4LwaaoEpnGJKYCjniHP5DFn5Dw3DE/qRncFT76qYZ9K2w5K+vOcOKLeTYKyHfazcDxWLZoHzyPj1JRy2RhLbcmzx38ToWPEb+CXntFvHYhLrkfuP7E4S8vMgB5XK6iHKZUYN5tNvSE5m8uN5lN1KRzVgb8SN9G2oaA/s7NNIb7TtKmERHNR26nE/TLa/G2lrYbl+zm0T/M+CaWMkx5NW78VJQKAHYk6kaVflZwTWf8zuQ8BmDZTPeo21qORlEwtpSGeoPisP+1BsTZeOYuIxMSGQVoJsLGF4s4gVz6uT9e/lpDnxT7MnieJeRqT/bF8fORglVVWWWWVT4Bk+5+DKhgmCGQjtzDfp162kC2n5FH3k5bGFDcxjye3aJtlV6Uc5twKGAR+dn4DbltpfZIBGHhc/Ky+E1p5MFegsFkYINTS56/Re1HHDq9QeEFXZn18Ek5J4YvbRKQeLVmjSbW0+Z4EZOhZTVl0FSKm4aAx299BP60nstQuSYRoYhh9/FltRymXMzIB9LfTZiMXfW2HxOr3F4Cs/RjykCya/Tkj3uib6LI7QICpkFRtzxI6bWz/qKdqKfA2klOJQwNRqwuRMQkC5F5SbbZzztFNysigaiyhbHj1QYhBaA6ZpMWVgKa86qOpWuPnuZYZXR533aYIAAAgAElEQVRHBTvWP5NRgjO1UNnDjdLlxYUr+N24FiKAkwxKq/xsDi6x4izvU07UPBpioOH3qwbghZODAzRYZZVVPrKsrkSr7JPW4rQ/bOMvT1bI+HcE/ntjHzXPDp8y63DQaYAgMAm2ti3LyMicgXghGVmR2YqNrJZld1OwMqiBYrdz9wk+AFJPI7I6aKyVsLjoWEu23lfUG0mWW06VqCjIEtFVger6wjcH6zeYIDl18GRp02lVpoCeyX3YrSQC0neyl60cKW2+cK7+nauFU2FWlpZUSvgRVhsMT7YW/2YVQgH9EGAK2MqecyyH6AXTtzkDiDImeq3rizLrHsNJqKviJiT+SZew68T1r9dqOKngjcfcu/IAyHr9tC4vVCIUvimrYWcvivKBAzLpJXIaRfWnr+556i6meUy6SjJtGnIxAbohHzwuKSlxI4AXs48pfBO55pmJSMvz+BQkdXPSdHW86lwRI86v4UftqPyjm871dyvXtmj1UbsCUp/FXvls8gLvOWiCrLLKKqus8sMvGWBQdMhpRwMYB40gAJHF75VxdE9qnA4qXC+g3DmgwKcnNP63w3X9vQ/b2qOXJy6b7APpkgBKoL/pKoII9IaBzBE1JINP8MmA7WFmwGpGwOD64G46wvGroqoHKmgXtRi3QJoBN+XPLMc9MLRckx5UkB1oCcdISgRcVHKhzN3CTHpi9K2WqSfcgiUtM+FnRMyyxV3170hjD/ba1YCwD4z0VPAe2h01PaFHyBm50TuSYyqb2hZzLncbTJPt9PX7LODH3CpPUoc1/tf7fyUbTGqbttnyBK+FbOl62yofOAkGJouDN9l7HErSR+Va/p49HeqP3A4ZsBvwBmgTdabCjPlR7SvVKH2Fx0h4/x6NO8PxM+RJ+1ckFE1EDRGhsQ4om5JZLL9EcFTHi/B6lRfvVnQgMRjVyyqrrLLKKs9LDjDk1GCOP4RATzMpA4Qio8V0NJ43sEPRpOHrbtIaRNJC99yfWWpvx+5Oze9moec3CgMA+qfJYgFh4/nKgVAG7KQltq5H8E2Za6qoPWhgkag5W+oiakHLYl0uxltyYtURWZtFmkPcFfQPqycSipCWK9iDpxA2xkfG4RCvEQR/0OliVDGsCjk4X1qVtTSlq7ZOVT8NJwcQaGVEq2Xk/UF9o814Dj80m8oFw56a6tpmm3SDbtwWM/VHJwMiQitt2fuqM1SyUAupGDPivLm2FY1OXI9wahIses9jRj29KZKFaTNZqwo/Sc1oqGixphsZ4oJVJSfYI6OKHy0VNPJMWLfWX1CtiZ+HS89nT64Oled0CdqeTtw+WtH/KqusssrHKuy2AIwBoodw5NreQBzDIZhLe2qAdqaF296i5BCiBVt+Tn/QD34qTkhKP6a/2xNC+tTbpX8JEThW4vPtycJMz3RvgRMegQhbEB38lo2g2VO0JGu51htNfdUh1kcEURH6FEAaUZam4SelUCkw0MwaXtFrW6haVgK2q7K1MgLF7D8FY9yk7+C3+mq+wjGvgZS5P7m5gOkFWNyY2lWDJl1rXwQEcwhMhCc0sNquFDSbmg0BqPrk5GFbXbgtO08q6fjKUw9rteiUdE6TQDAhpbnUc0rIU7mxeFZywJVtOnibZ4LAKymsr7n91G8nkXANNd/a3HZK3djctT9tG5Qfh7u04kF5L206uQ6WPd43JZYfa0+hfzg5mcAXr3md+IpLBP6B63F5iYS9FxY+1DiVqPSPwPdrcJ671bu4AubjfLYgeSKKf8Bq8A/NhuSVM6yyyiqrvBhpsMD+sK2pzL6N/vAM823JO2ebmAkae7wDbNMCfJ/kGLIMTImsXjCN95kME6fq31moHYwFJVsrIMUx2r6akcvRpg0A0ovKlFQpYJk2E5WrA/sCMDYGlsrRjKwW6SntfK9nyQsyItAGRvSsJReem7b+WYmCeSeFYdU67fWmPxOVY4T2lhkHcJyWfRYJYFxR0f9qW7RNx0TwtG02eY5/K8Epv4d2lwFfBhGgLcGA96VPp3lAkHQMfgggE1wnEsq61jci4WMjJBl2Wg8aYOunCIm/s/7r+Q9rA9qewVHVk4zygPnV+LQ6RiDXThaqtyKL6DGkvheELwZvSX45CWsqpzoxAUBMr1t50yGJjkAOr6ksWHp6iFCEh4itWRmYz8HlKShpuqiao77aC4fLyO6ieMF3wA8ROVhllVVWWeWHQBh4wScSP8qQ3tIE7BNdPwnHOZZBbYdqm7SHCgIDRBXtcYfHGUD28CO1HEZSMTWANX5S9hYggD/Ps58c4toayVGQCwllP873BbpjkOfFgo0ErKNguYPEIU8TlNDE+s+Ny9k+1S/e39LsRSFSoNEZHCIiO7LggsOCAJ8SgTbF3Hy0rFWfiq7SZAeFQ8jpHalmpgWQrfYjgtu/Vy05BnfPEQutScXty5o/Jrr6qj+tp5XMjF/EL+0iZcuJWL4vwi8I07sO6J3mK5cNzJCy6V7zk3XlqM1/RNfwWvOGuDzmSNeuNbzrpNlyN76LemfH19oPFtrcaAWUF9c65qoBDmUueK7koO0cPJjt6zirrLLKKqu8MAnz48UWIwav4QhARMAa4msmndY/XgD3TIECpJYgSABl7D7CFnrFGhH2DLPhz/eQkB4iNhIszgYDFqLz8jELNiSUUwtUef7Xzaf+LIIOC0+EJp6T3mij35FLk9aFg3bSWf99hmm6uGCoBZaAJhUrkyHL3wXEYLwJtYdvfNTlCPz0LhjxWdyUDL+0jj7jjZx7i4ZYcHs6EbscZWELcQM8s2/q9pUF0jGskukjv0OD2304+UpjoPZsm4KnmjOtJiyMFZX9FX39puOJLmfr6kr1b8C1tQRR8iSQSd3sfNWxBcGTAv/wWGzFwHXN4IOxuH2OrfBLIp4VMn506VmeYXcz5HTo9l//fOx42QRr8sFcqHUd2reZe5+8oBuS9yvQEbhVVllllVVeiGT69xBhO2DE1MV3nv33+2V4ById1M7xJwOk3IRp3RkUgJpOHHu3SkGnlISMiVvPDFwPmIZnxn2T1VVBnzfW5NY9ogN0BnXiBO0WwAg81YdaSkHR22hKbE8FYh1Ey4LIyRgINZkf4Z3sxC1A7eAHpmlHs2nUseo9cPGxxBj3UZY76+ooL02T6NLOftyslk8AYwOlguucU0PPc33XAa9WPe4Qjd1UXcBYASYTIVrrk+MS1P0uo0LsvlAC0ujbmgTav6wliMdcuGa7P6IG4yi0P0GpapGUE6a8MQMA781gVyF2b/QN59z/aEyp7zxs33+6vkti7bmyDLbYl/0JXveB9OVB21oQ05ZUC+MfkSsq9tinbWxrY27ANl30eJF8TPccMHOJIdrTGFZZZZVVVvnDFR6m4+ZVGY7ZI7DSWvGWrPfN+SIhnrjXgKyNA8ACeuO4yNFi1r9tUgXsxKH6e2eNHGgb3kgPKsxaz64TDMLaXAbLdf1t5tzk7hteSfBPI8AVGYQjEKsEjoGISAzj1ugMPTZ2mKbUhHPbCvSdEzHzmw/tqP2oiYKt4jnmi84bajFW9/tS+3E9PUybD2nKMQbwM/xVpybauBUme566sBFJ93qikHSlKCGftYAcGC/HI7WNxn0PNbYBiGb9Ylb29Hut727FoLZPolk5Nxd40feBGIR4BOZ6FXRgckX5N4LYlsaYaLEe3SPvYGPsWgnfMvmQ8CMqpcx6IXEuQ2mfEYkfrJodyA2eJzloWMpBQQ8Mv8oqq6yyyjNL9D8GDhlzw6ZjcnVg0NifNV4tbEwgGGCWOdyxR1VFAZOd9tJM/QZc1dJYk/Hs8IQn8bxvBkqmqKpQ/6XJN3KZCjgmCd/CLJegbxSkxHlXJ+fFqS5T2gEIDMAOalkl3/jrBaLVoxtxNaNubZymqZy2ws7QGk/Nr9YTIA3g8IoLVuYRCo+Zp4Q8r2NZwA9NdbLO4fe2XXKb48gsO9TS1HocmGVFl9S+2lOG3MGs/ivxnVJeDj1cXcjtg1acRHizlwgMM7eZmvHI76KurP8eZB2t1U4KIn7XQmvvt2j6Dv+R9T0B/qz9btQnvKCCG9mgzXTtpPs7AvoetMe2wTXIcarbV8zmePfJ/iruCcaSu1J4woS5SyQ0Zv6oi2dJXuDKQauU/8jhl/p8XTVYZZVVVnnO8uwGmODmEsB8Twza4zkZuGcPFMO0Q33WNBh80SSr7hxhEt+fL/anbxMbzT/dt5YVnt49/+6+wO8lxJFzgkwbS6rTpoL76AWSaZ9HRHV8Z4ClbgAnOZHS33LGnMppSCpsmdU9EZNM3cpP9FOuO00asBUyRkhUal0d0vLcl385fFfC4iCSXcg0RG4I0FAy/9qEDwyPITcdcdkywYHCfjJM8y7vA6b7lQ3VRAUi1pbqQ81SQwK79sfRgMnAKHPcwvjJwv0bI68QykDWIOqq062u2cATW4fmFUxMKF5zBSyBRbzPWuwSvym/DcpoIHE1LvZqgdARriw6njrRY4MLu6XZSWUHaUPN1jO3pHn94LA54TmRA60AftbwJ+p4VqwrIVhllVVW+aGSYtSjDYaNxS6E3QMKbCJM/VGaHizb/5bA3IKhzXTVR4I6pwRw76C1T2I8/yx4P1VSoW5ILQOCgxy0r8QWIAxUNW47CnbGfusedtpsmvAOhowM2e85AHmZpFyMIGAkgdz4IUevFo+3FGFDgoaI2p+MAVcOD1zFkdvSOFZNO25qjzqXdiwWiYWduI0wMdDf3b2qbZPRutu3E964XLDOFIhS8UvXYlg6tUjzCcRW1BVBbeSal75Q++IbuMo1xKE9CrQNmomo856hAJr3AtCy8ZiStmzYvSpN94hfw+9Xo1W8EEDTaUgAt1bbL9M14XGtBG7c6kXJtBvguwMclis9iAVpx9M2ji5N/Vrop/bzkfJjWY8yXWWVVVZZxWT/8vaHi2+vhVRN5/aB/mgQjluVcNDs2iaDBtBID3D0F16yZxeeNM9NHP6RyMSmWky88TUTemiEczOJ1IvNFhFP93hUvgyadJNoeT5dYK1mgBlL5plKXF1G9qYUWIj9m7snfer72qWStxDPcvEN4291CWmKOw0tEcmldIZV+8zi7TFWVyxPtpR3STbuWEzQFr5oPi+kS4n/omvSoJ4YZHOfM7LXfNL3dl1hGPURdksax9K1nUCO+rFvCXb3IvX/pFdzG3Zn5W90OXi8pb4ddGTjC5NnhKHpIHkO5EBZyYf9cpVVVllllR9WaY/CY/jAlrkIfMYX+oz3KgxThRkoMyDNSTlqNS/6kQZNdMH6FqzFNf5qSVf871N7ts8UcLiFnrVkIOD3QPDJKBmClOZCHjqkkT3xrHCaTIKWJTqZxcpNDMCr5TacFlMBpBMT0cK0NBzDDWbjgRsZi7k/hE/Jugn3x269Chiw+7n0Cp69BgReL7XWO/jqbZIV8fsByLhu71qiGKo1E64lHB5PfGIQ6eQruKTph23pEKEYU5L2jdWw6xoK3sNyeQeSH3JPZIDL3TLfKeVvuZPLBWDWyoljr0enim6Gb7Ip9Cm0n/sJUwhF35wZ1eiSAjmNxEB/ppzbHg+Ryb9bANR2mpiS0BzbQel+Yjq0pCDnTMe/etasdrgx2m/LdWPtWYNY3Tg+L2V4OFB/DuRgmUcFWZnAKqusssrHKm5BPnxSiGeVMziMwIexTwuOHOyOrYfR5CpoHeq7bX0BdLnlMGCv/bimVwGoF7pGkBVcQzROKhN73+YZmtXB+eduKvQ/jRgoGFAmBM9I4wYSy6UBovBpNtfojV2pTiL1GFHXZ58biZZ3n7aqxwk7Mu3zz5XTWkv7OONG+P4bzwfpGQM8I+YgWzRv5iUdVSW9bEu4TgdEYMSpQnypf77H1G8/Fqha+E4owtx2Ev0hEuPKQIaD3pG0pOriMh5r217i1bbfTozdjdY2mnLHwvGhjZHjIJ2NYF9AhIDBWMTjQiRJ4Vjc0HaW+6J3atT9Qtzqax+fpnH/W87horygew5UtNNQkJUkrLLKKqt8fBLnpQ8tOfPESxMb4mSrOLeduhQMO27xt6LniJvljCO4YLNqa2xbEjJHuocIT0g+X3VgjTInG6mXG43ZyGiKG07WjWU3TJEc3nyNgVGC4fjKCix8n4fU/8f4FO4rmWl15H0iFo05esfn9j1pF6ldJIx9CH+pQdhtJFsc+wlCK0L/lngoZINHlC6VsuS2qEktnDbU6FMiaxjzXheouskZfR2NczQqS85j+6Sp16U2NHy6rLX/1qe998vWjaZ5H/bPkBsXV39HCqT5m+MmAj7iXU7WRuWtm95HpbOvTpvfe58raFtXfdp6aw0Qw3RsXCDyX58rwbBiCypI+2Ao04Uhnkmk+a8XXd0d5ZkLaZVVVllllcPFxtZmEHWQdLhlhuB/dKMw3BOnaNv42fmR+ATmWIYthjXugszKkr7QLcKjvOSa/sAgupyfeBKKzTU1Lt143bk9hah98jU3k0bv8k3uvxTO9gDC7Zs2hyboCnik7G0I7l3Z/7NjOmNheHWOrMpL0unHiI02rof8HzqjN6XM5WGYoQH3hQ25Woc3b0pooEEXj4T046oBK9O2lIXoQG2nCcHuS4OvCnGhpJZ5h8DKRhg4Ul+tUTogRWjHnjdAprKJ2HoRkar2+E5XYQ+AHrzzBco+tq5XLoHIwXdKErzPjz+0srH0ahkSCOdVVT9hib7gJZC6vLpEhy7qHeO+K06e0Bfx8AhqTZXGjEO6ynM7rWj4SHPft7VVVllllVU+LjHj12GD8dA6R8QgTFojY2a0gy4vczObkYsn/Ez/UlJ7Pw+bHPdh4TBXtdbC+rcI5jkh59SUZANfGp/7BYjY6RhuYK2Ww1TLaDylZ2SkutfBAcOI0Om73DyLpxW11ljKe/c70N64mnOz4kBfNcnulecGGQL/cpDnezKa8NoGBL5Sgr7MwictxtmvRvdCOEQOrzz+qElMGwoSB4Bbnw7IgL5nI/3oe6Cs7GWOZ6ALlyffDzAU9tOifCwpEmuC6i7DTj7S15270oB07O2WYB48Jj6R3pdEujFRPBCPTX1d5XH9tUSRDCytW1LnBjpYeSwpHM6g19OKVllllVVWMVm0XDbW/PFRh4OTczTehbRyEy58eBAy7FPwJ+V/eqRkuxO0QnhSCPBDh5an0vFpKa2MUGPUsQ3Rn+CTWxzVp8KATMFRzmgPSPLTVw67g+CjS3cO1POIEgdFeTgGei7yrO41F8UWf14cY9nkC+ujukl7QG9jShe0rfLdBUA/BvayGDJ1vkisJF4s5APderN7V61h3weyrW5o8oq5FUBb/2CXxta2ry45I7ewRfLSP3dS5uzggq0Ae6Wza7SrBPquMlkvmQ+X6HPcc9BaFPh1oO+L8jH351VWWWWVT43wRB/svAtG3+V4xiOxL6drZBSvJao3nu5ZBaDNxTzJoQUhi9/zS4LYdQ4e2fzCRD/wU+cnqZuF2z8UtDQgBFJWFAbW1dEGb6YJ7rLi/3L2JJSxvyrFnHqARxbpbOfg0zGPTR1m+qcr9pz3gBq648gstKA0KBMhSSZkXB5cr2NwzKpzqemvnsRFiIJMutpvgqWZw7r+h1Ke/cetjilaAHSNRTgEaqBW6x/ul47Fy79C2aWuojgCoK4YWDxNnvQ0nvJ7Rt3d3xDeqKy2WW4H+mfQomnwLYEPfxAL8NPHYt+MJ01F/eLdK015kx9/iU/NCWJJqwliElWHTA4Z4GWD3o2vHyuGLlcLf3fjxeBP7fd8wtIhaPtjXzlYCcAqq6yyyvOX4aEk/dxDMgZfwZ2X/PFDNNmnRckXWx9HVrgeJGefuOrSuLpmtyFNf/Fv7e+gzBj4CGI4B1N9Ei2Qtclf2hQEoLsNYpL8RFdXOFc9gC5ZodgFKPcUJEIH6gfeen6PLJkODKL/frUyi4ZCBOz6vAH2Y9yqZEQzEcu15QvjNQzhIAZU98mQEIRVKSGVDkQhQ0I2gL1L1mRpy6lhdvs7Z5tKfGa6+ZGtllhwq9kDHJs22f8qoRpz6u+tWLRKi9S75upRul2c47EnRlHb6gJB6lb8pM0TpxCP1e1vI27IiLV5CW3Y3eYY2DuxaPc2cRZ9BSZCe0/Pn40uSeyWeXJGFmmbfCybYT9jJr8sz5kcrNB/lVVWWeWHSgK+aAHkwHrJoFcEqYLRZir0MIOPhcKUx34pUwd11BWJLHFi78pPPRcd0ImzBRn8rhdLt9lMOPQXH2DsXu8CehxENB8YAGFdYRN1Z7mvKLy1ujo2sNz7ygwr24ClHF+NC8OApNZZhC4tsI5NyN9aGY7SCxtv9fNs7amQifpdVxmdgwhlgJTJaI6kreU1cgthvYZCbVZLhEmTvRQH5kEv9z3vXOyGPjxKNGs9hKxF/duiDKSANW/3BA3ypvqNpIeuFL5pt/sQnxKnjgLVZhdWnPYQwPGqmcR34YNxTKMqt1WVnuk3HzbjDGp/abq3DOqj5CwOKkb0U2p0jcczC5oxTTxcJBdEKjIAcZLo7VCcQB0A1Z8zOdhnuVB2ha7BrLLKKqus8tFkZPxmzHqRdZ+/igBv+GtNs4J+BQ0Mgs2RmAA5oUiHfuru4rHz1OeuABUUk3LBV3lPBjtINnigFsRwhGWWMtEa4uAQjop1XmOk7Na/bMe0j/Q4ZC5U1wfiCPRyCc6Bni8xhfi6V7JD9hbAAFIP/4Du+bJqwU1nyGq48Q70OagAl55T3IMw/SPpf23La68+o7Ly59qPwule4YscPjt4FcTSuKitjN8ySTpIWlJkkVD6y75wC9rw+NDuFXiGcliqArRjEgFzaqdaim377+pCV9+6Ylc2W/4u7l0+AoqMGvVgANnT1DQGH0P1p+fhInlxpxXxq8NnpVVWWWWVVT6CHDbt6/Q2kua4PjgosTlOfKoMx2haMnTkYXYSwcZ0ewd3RVmyd463RC6YCBdyOzDJ2UsDAZPUk1kiIyqXQ/m3Q02NYDQW2g6ULStdLIpkfaxlV+IW8C2sXfLdLyDSJn2Vk5GuAJiim62GwNcSIjxzgNF6puRhnfCG06VTl2J4t3rCytVTdt3jKkqTb10ZQl/qoYyDH/24dnoXoWXxFTIG/JovvkWX4RuXKsJv+5LUk2m0jbCuYxnQHVqV49WQNh7uuhoTjwdOGeGIeMnlalEdbYMN4GayxAoQ2F3ilfSYUhF/3+gwXOCpYXUPRuBJlsdyMVn36SCuMp76mMJH21qf1+dNPIVA9OXqRhrPGmr/6KjGAe34xbsVDQYKJk6rrLLKKqu8WNl/I2gUBvupTlqCxk8+lUlwmpqtkAOLIduSs078BPriZlzQN0oYGrAtrkubq2kBjIRLvTo/bDoHfskcN7CsMzAqDzKQ9Y5ZYJoc4KSMCrzavBB56NCPpjIAHITBhVEFB0ADIgjRdGCZ9lKg/STse+jTYF3DyktDoiL4HbTHTld/zuf0j6y9fRuqNt0BWGJ9e9S43x4tTbm3G0wNoCroNLOxwE+TaiJtatLAXwWpwuG80Q2iILcRe+76Ocl0iD86R38Jl2nzUS27vbv0byYdrcoEEEyhHsRyDcoo++03+rc61qzk+GcTX3RL9DTqN1RfqpWOI20fb13FdGMyn5qkX2Z1PbPxLuYoksT943M46pjyx6uu7UEI6mLk7mD1WOSgxbKsR5mussoqq6xiklLCZrNBhHaATOTuYOC+mfGWJPiAa4QtKNagrflvFJ2CwRZYUBj+g+ffxmWjh7j+1i4Sm6ZAMAIkJIsdbyTUb4P/O31bixDtBQ15MIFr/Km6ILTpd0L6xIud2IoYv8sV2S5bnvfasGPaS0EvxkGL9f5cjYkLZDm4yF0UxeCZ8YFh6OeRgwXyi+ztCU4ERlrYF5naR8gzt9D47R5q16fUsjOOhy3lFD6eCuQZigSQV4t6MmN7d+00pgjyS5SplJjlv8SScl4wMOQhl7STgJD7G4X3GmSW2sNhbeRCQpHbX4ytHpzOiyUHTBlXWWWVVVZ5IfKh9l4uxbV36q9TIbnklDQIhNrsnP1vxvs586eU7qJCZoDNGl+rbybQEFwR1LLWTKYLBdbmPZ4+4kRE89FaASFkdaR9DLy4EG2So+m6Be0VFIkQuKFv7Fmr+1gWN2bKIMAz+bQ73xuDzUarJm4hs3rY92ExEBEMZGvcckKNa3scbC7ta0CGKxRtDlwn+l6a2BtS2rqL8B4CXpUAxvUUi8/j6gEyl1h7spavquxbUcysBFnG/eWCSG9h78NcAG4XDAee+Lhdan+wODK5sUXDOkLB059da7X4/EAFt96Lh9Oox0sqI03pr6jj+NhodhsaEL+wohGfl7Ex2dtDbjp5zvcckKx8YJVVVlnlh0CejR2MHAtyA6q65XXznzY4jADb+D0BFw3dhl2ePtqjGzvl7YfZ+YW8/hnsNKBqCGWXXF0o3oJV+3Pg2W/erZR9ahfZz1pLfsFNVHoCDOdgTaGppzE1Cyk08UXw6xF3v3RuNsvRC5THxTZSf81cdrA94S0oy8wcO2TeQzD/QWxNITMRr+jOo+lF9KjRRPzcbGinUhje/RH4ah63N4t/ARCr25WRUU+5vSQsuPrQqsHImUr7GfdRX5GoYSY1BnBeuG324NkzpeEqgKd68eh8bIjHDXuhW10ZoSADwbDI2soF8RCvUFGXSft7qfzrdy3fIXLCfTzEsrBKGrgs+tU8XmzMow3MOuYpCbXGagGGeWF5cSsHzzYfrbLKKqus8iHlcAPvCAKPxQ2easVq/Ix5ThLfwOpzfAvyBxZuNlLv0aw9zs/mYUG3gdjmajWPBhUqyOF3eVx+jCGjDiWn5o5QwUjAzcFyq89IhQb+xFTHjKe3xDoYDptKWYbW2/3EgK2VMSTDxGeQCxqn1XtoT956hMCcNh+hxuLAcG/ssayoMsJJ90vRMD9qreKU9rhcvMSWLhLsXJlq/kOZZNVztEun5iVwJMvwULn27o1BAHsTIb52rvK7qMfkFaIAACAASURBVK46PjRtjolLm3bfPPPC8wMlpEXAO8THD/p2Ht/Q8+Di5Mkt6hE/pkhb8tWMh2xUaNlqrd9CqSqpGpRVuzlZ41ASdsh08eJPK2qDjInSKqusssoqL0BaV5QDviiTz0UuB/S7TrEC+Ln1HCbDJ8GRBbCN/4Kl+TjX+0rFPuHzviPg0mdktRzkPRzbugg2QiYqgXFrJOdAva1C1qwAByf0tOHgAAMZ9Z4Af29pw+tnEb4uoZzOh4nT7YMcJo7uu/wPjKCHCIMePgbUomrceXjTPYNeQbvRVsEbn9jUKtmmRmTA/mwAkKk1APj1m4IHKTXLg7g+IzXaR1nvxkBfWRXYL1PS2Gqk/byuCIpF3ZZva0zfU7lUrJFEVT1lsoAxTpgO+sDJU7XcS6cJfRvrM+4TElJiQDYsSnYhjB0l0alEYnejxHyCiEC3kkpxd+QYbVuO+bMY6n4pqWPFIV32Y9mQ3BHUgXwEN8dVVllllVVI+vGUTZ/YOztkJPDNvG6No4ktZzsCkudXnyuzgwoiBmECr9awkZV9j3KWDc8nfS8+gY4ivMgXWuMQkTKh5jgT+4kpU0lC09k32+boOuS4Itg3S7RmKGRowM/qBmlXqLPKlqTKsadQsJLzYr6H3GUUrjU5GtdrVi1G+zm6Z4MKasnHUAfEdqauXU28ppGRqAoUuxUWAesSTp5CC0NZ/LnQL4GKDQnmQnT8PVmOOX4H964b74eRyQL12i5VcEZ1SzlMrB9bG1SGW/baZOpfcSO8N/6wytetajR5Fw4Xy7yvAX/qhIFISu3KIm0sg/5t4eN7v2TM0/UhKf6tfywdOxqHsuiC5dUYj77lqKZKlkbuauVVU0qh7V9c590G61VWWWWVVT7FcuG8UCaqqf5XTuuRBthE5NKtoqOc/FEmwchUxABdAwKLETKArSFKDM8a0Gu/X0AA4BP0oi/3NIGXCaSuUIzC77WIdu4ZA6mWypwTMlkaKYDp0W/IbtPjhBiU79HgAmbWu6AsfH7QMoLrEUjOYfQwiNZhhrezCz2MnkEYdi7qGBAngXWhthIa9R5liMxIsFpzcg2RARCs2gx22+8OsLz2RDP+3uepWV1Y6k/0Wygbi6M5p78B6u6DDxtHDpVDjnLmcUE1ssSt7+m4dnDSTSIDojAK16gwWGACkJFS8lOZLowUNMZeXHYfy8rBghFnlVVWWWWVHzIxGElWVHWqaH3/+WfnsdBYtdWuprZdfSj2rdtI26V5s7Eb+BnMfotgYTwDaVQBNLX+0oCa4XzjJcfWgJlwbGm74kB7E4b7ByzfpVD4lKcuMX66sHrA3zDh4HsiPEwkQXYClG7CZLDS1IFZtLUcL1qZoWjYulw+FSzVF8cgbTvqPmnayH61TDIXSUtgQoDyplSXW6i5jQDszpdJpUMAen9ZHK+wiUzUdwYrBdDmx+f5p649tS4pUpcfuP9x6xh2MYn1WuIJVKAGYP2FIizEbtLyDgQnJmhuTOJ/62lN+h03hdx92z1t0tNwOWashp0Gm5IDRWv7PlnrR6nzd14S4IK08uJFFu8/FkOn0ejACC2vj+m0olA0F7yPMhr3VhKxyiqrrPLRhLFuzu30dMj3ETCLRmoHeOTof9yA3nCsaB5c0MOf1gk6+wMN1uSnBbUxryKD9DWqxtVB89NBdAKre92dhNOBgcackpcFhw8bCxvAU//hG3VHZRHdIXo+E4uYPmh5gFVLhSMaNLiBAGphzJrfvrCiAlD/blc6XMTU5hk9mCq4zOu53bgaLmHr8FvrNiH2Y78sIN6LvuIgA06Tcw5n7S/H00akv3qZp44AlMT606EEfeNDfEDtIm5c9b5h93sMNeMEHLjtI18tAPdP2xpbIPLNI3UnbFcgEo9V8Ysaj1IdfnqRrh31sT4bSCG7AtbfJ5lsHNJxoq8ef2/x0ZgWiZK3iX508rJrjz8mxQY5HsuHJAfPBuEXQ/dkZ5VVVllllZE8O8bfE8kFocJEB7Mg+6bcwek44t+GqXW0lM4gv06AUie+AIwvUHcEOkvM4w8XrayUtoEitspl/unvgpWvKOQ/lTCwBa884CgsfNhQ3JRhCymWXWc4nIKFPHjXuolRFL12Id8jOBK2qIR3F5+pHi3isrR3d1lXq69S5jlY6WMaw/Q5vgF5a9PqjhxF7SOLH/EfuXtnt4YvaLfIb/at0CyZ+BHrZxTEeeygLOyRskyOm9snE5eM4SkFjWYdseNks7/j/QfhAsL2m5DLSDJj4kQWurplvVsGNCYZ3M1y0FM8bHbtAnZXwjMqKF4dbLq1rbxWwpJHY48cOvoXOZAc7J+Nusr5MJaqg0Oussoqq/zoSAtslvxFl20tDpnRPW+/pL/Un9vcW2hpu3NLKeFb7DOejJrJ3RCnoFw0xEdNDiMI6baGvgamlH/bY1jtbQQNHFc4ItUQcAuI+F2c6DnYMG1pLL/hY2Yf+otEYBaCRkDTXeZmLj+wDah8+kmnVzRPxnjYhpwb956ghTMJ95Mn/XIkBv4dZ6wtc9YFRgzcD543xLagrd8sG0Bal88BcWG83CWA2P67Oqz6BQbcCmmSYxlyvwzx7xHv4ZWm1TIr72LbW4qNs6X3Iugb/mqRbDbl1O2VqNxhX24UABsx6AYXHwu0rZeFl/1lNX4cSZQHyrV9lWfcRthoEuON487oQAQ/Ta4ZtZYH0D26l3i0mGz8bvN3AEv4kCsHsUdYhwm05mI5oG2vssoqq6xCsse46WGeOdY+QrdwmX04uikZxunJi+IBm1YJ0Ki1T6NmYLAE4DOKi8pkE6lH7qeEeIqif1NhBZBDwD5OXe3EGUGigoI2PwGEDPz/GWgY5B2swAj9zPbLAphoqyysPHh2QtxdxUhII7ogwMonaMZMatQOmwqKrg38Lu6xCFGRHrY5d2ENogd+sW5DG2jDSpe7UUwlnMQjOxXAaR+ICz9ayMLqNGSYE4kMoM+Sryzlxc7vLbktS8nldLH+YKJIPgLR0mxrbyHEGgnhuLW3+4ZUIkETqEGg40zU9tTnfokgxZOROAp/3pPoVnQVghu+h48APsZTmod3CLbc+xGsnobGMhlp5zIVbwBUYWF1qqrIkLutj34sokH3ADmQHBw61bA1Y0X+q6yyyiofRcYj7wgZxif9dyMzVB7+rtbBAhQmpMSzNp337uvZ9UF7+s9I+wgOl7X031pLa4vfF91WdDKvQM2ITBa3nhtq8DLtYmvAeXS5at7V88SXKqMtmaWZtQdB1QoIwDYXZypr1glRP7ZwUjUupOugpuhLyJY+1KI1UJT31APH3wKsphmMiJKmODyNv3W16NKjel4IJwt/GZlqXjOdCNmpj/vTbiyymF9ZhtcRZB6Av3w5wwlR+97YeKMWC5Vnh+GaOm5PFxqntyzdRV2jIYECdJt9W+WMuDiV9P6RsJ8YsF4ARrcOg7OUUIh1G8ZJYnvqWM6+vycYeMi4sJyexo6mDeZBRXqfbY9X1Y3shxTFR9hzcChhWGWVVVZZ5YdbgmnPfi3H9tEk10yGbEVPtvkyl2NAD0mTJsiRhd9UMtAKe9uBmAWQGeKp308y0G8v+GiDOoUJspcYxbT2hVicYRs3JLNE7/1oFA1ZF/elcWE8g+LaBwxJR662vSWuVviFQJEAHaQ2KaMaqE7StC5OaO+f4/SZJzh+Jytvo4nhvVKvo6L8sGbXtnlMjbVd+OeBibTfXqgDcdlR04vPIjGw1bkc3y59E3jHqL/3qWNvjlrXK7Pu74uPg3N7U6LAVLM9njVWvBIemEGDg4zT0lIT/eQilUmeg1tRtcr0hL4q+eFSWGWVVVZZZSytj2rvDhNCa6CF5+3vHlYEkGkyi/VwOBdBSqmAHnMhoUm6WubVcqZpBRDSqqgmMg3buO+EXPCmuwoi/aAXt+4R1Ai6LW9W5XCkT27f0mQcwPshacRaaTCk6b7fghzTlD0O3Iv8ISIpn8BtHi8BUtWDrhnzdMH5dB2CX3p9XtoT1FvH0yDS1FtNB5oLbay+MGPt84vo2bJ0X4YVHPpWYmjp3jVpVd+Rpb4RTsfBArljfdC0G7bEg0BjDslYPXVoMjT6kGCon8FxBZ49qjM/JHlULj7OdWRqEeS6EeGQfQbBA87GHH0XTz4KLaZxv8v+EboowWMgwlt2P4v7FbL9vtQfKEdN993Pui52ryryXO85GLH3EUNcicMqq6yyiksez98NQNwXwTOneIE+fpShug/ppUyOExzk6+2oo9h5g2j5u06bCnaqpTTT0r95+iiYzL7pb3+ucgHHnKBppPsFWENNz9PJqT/nvU0j0+8UC30zRi8GHSv28rlwdCwlRVAqAu4fQykqmL/Y2G116gGindx0a/Tpzsxp+YdZc/UI2z4LSzLa/BuJRx9Bi32HrcKwRxvjSCHhbCy9rnqi/6MWT2/p1zyNCNuBAIiIRxZdUaBn+9UNDU668Nq+lgsxA3Fz/h79h9uaA7FwQCzaAYTLJrIQLs/hwaqhnTmJ0FYdx9WFcbRtq8xcF6X35XeSS/rlPBiz4t0KI8OCr4bRxmcawzhPOWek7EQvEJ7GdY14x4XynO85qE+8XPYKk+yVJ6yyyiqrRIkTSztY6kDbfdV882yjqwHInA3wM0lpwWg/ry75IrfAn6ZYe+aWv1F2hqd9YGm+awAtAQ79Mh5d+OEtyfo9H7PYfV+twuUvB1t+0g4GG0YHwCL8OfTE/0iiuo32GyioGZOH8i2TnuU0cHGRUrrNg4s/aZ44KeQ3peR6Vdl62VND/9WJVYCtS0RimPpIW4rEm4x1j+7o033NV+uLXhswtdWo2C+HRw9fZEzQFYABfjcNmhPDMv1cqjftU/3KwSDTF+LJcUp90hXsUzpaUhZTtqIF06Z4ed2gzGSBQIW4K6HQvl3H00A6Fjq9cZpuquAT4JaPMWZ5rvccdFPSkgLPezRbZZVVVvkECxtUFo1WHc6NI25vtSxhosXsgIFXBCITMlIAtB5lDgqby0s3e5KFy1ImE6sr9Uwy2ijZwTyaY4YgzHyQWwuloGyXkEByynuaXAmwdi42gxS7/Jse9Oe+ohhUQ5cAhQ2Pu8ZEUEfJX0e4JMQZwH9DEhUQLd7RHNnMnjx4mwgluMgNqo7q/tGFiUi1u0BtEKorhdZC3xLV+q7TaxxbKKNnbflGyCpS7Os2ezcc8HgB6irgIO5alrmJMxIdqoimLtqqWW4PpNj4TRBtdZYRcV0to2E1jco3x1OVStENGtOIEEnr/4/hWOUEgiwlUn7hVUEn8d5f7B2cAIzG7/JefNjk4bZ+MAXwH/NX7qght6U2/wvy/NyK2vFw3xhwwftVVllllVV6uQhHlgnmo1lfHABOMFhoCWeblArOIPTR6BhgS3BfiRPF0rnv4ZQdc2vymDtAGHSIE8zwYqMAJOpX4mF7vKAbgKF2UrekN/mME2L9nVYICtinvMvgM84D3U1g6SgIGU2mXE6N20LO/A60gt8CNwc8tpejtWhX0JPI7QwBhPV5iasrPbiFLNyTy+SBN5gqMLqQaPblac8MPZdnbqn1tmlFZKBvqrosbWJmC622WdeBaUK0RMswNgCYdKP/AKfHlknCftx7AS5VfWgDTXvgYrQ2E2q4DRbUgABTQ0T2W9NJB64nJgj1R7Rl1PIQgR6qkAc37O07WTO4IVL5BTDOaU193fHeBb0x28MRsaZ+b3dDdPyESAiaIEQctINmiKnuq32Hge/nQA5Y2RXxr7LKKqt8VIkb1/Sh/6mgNExC9k8bFwOhi+gFkHOiSRRqcrOEBXrfQa/akruJWbkIhLZHProFPof3TCz8hMFmkgugbTFrSzmmSOgpxRfcgGAY2Cdx+1zA1nR7oUv5ZN1jwqMQyfz1GQztkZCG6r0EKEzF0aqI/44YOhATBiLB3b4jF2w5XqoQaf6ScEFbVd7JgqHnPj7vDzGv9le3HBfeWpkrIRhv6gSQBz7fmnJzEZ6TsFxatozq1EFhi3vH9zcsN4i+KYqRlxJ/bvqJhJ9B+ZAm5TW0pXZsonS67/vvtL87nI7AWgSYqoGCdWN/fO07elFj2PwulBaRyZExYi8Z5Vw0dR8/asILGgLh5M7yUBOeZILe5RL04qwHtb2mM73XuG1lqRE91OGivVvAc96QvMoqq6yyyscjFw/vH1Jk+YZcYGygnWwZXqESEYO88NHhCtG/pAeRCkZW3UQ/miU7nDVOY0mfocsET84hsmzkgAncIRuso3W0t1R+KKluYAZes26xLiXXEQTNV4uFLD6jc9hvAW4B7z4rZv+uxfdtTP70kHLpw0TQuI8g7ItlfzofqRu0egwU6giR/dq2yQVZ9GnUBJz5lL0PLej+/9u7tmxLVlQLUf3vV7WlWlB1x8jF/VBgTsRYsR+ZJ/Mc+cjcK8IHIuoE0UDzpBpfparmCe573OkSeeOLE2E54A5pdh/BCyZv5opd1+361G9uM5Dpshu68JPtdn3c72xohCzFeFHYXSrNU1X517/+Rfzc0RevMl0bdujQoUOHPkd3caczxT4zxQRr8/wZMjF7idi/sjqTdQGu9UZohQNn44Y0zknfrneMqpYQHb3O7qDbLs74Q+OfUi/LzevxqzkHXzdgJHKxWZBNnEZR74KntOzdRY5KrD2CBAGwhGAAy4OY4tpfUdqMPw4DxUsifQGmS3gQ4QrEJA6eyEAr/YCWUVSF/GHB0aisGP9XloWazsucUi710CqDxcy+bKxFQwrvM92rjgEIyYnrep2PjUpls4bwEBLTXwq7g53+SAWZ/UihA9leN6Su884ejuJYuKMy55TtLIpu8YEQgF+Kkc/9mGVwCNVu/C4fLYQx5zIe9dliHHVzzuV9Ao3wsCXkwYvCCwfi1q8pcJMJ5stuYzo8piFPDZrFXVlRHVXr15pfInKJxHz3fi14Zhy8sySbeqpCd0U8XPIOHTp06G9HGxfL4zzaPK8FbkH1Jv5YZDxGQGrNMp1pnxkcGD5Tr6xceFRp7+qn9tbYGUkAFLctwV57xZRWKowIgRo2IPA8FuH1nv+BOWa7Lo32BuhoZQhfmy7G0GJBlAagTaGlXO4RKAzWamwbXuPK+aZM5UWscBzSNAxKGEPgPs+kIHtiMvWMQpPgtUE5ozXZnmgF9N/LK9BVMvi9iDasqmGhsMNUQDmBw2iZUBrILKppVHpoCRoBCoW5X72yl98W8TS9vtSdq2yw87K2L0Fw1uX5sC8SzLYDbCXXB+KlTFy1fHzXFN/estTxMfm8+x5AyBmUdtktJFmMeTLmMzBE+SrShp2I0YT5SqYRs5yRqIAaygyFwZ2STGOv14LL7+hbbyvaLlZSTm7/oXTjFDp06NCh7yVd/niTXmlhEsF5WOk/Tz8S7VeKZXEtILmC01yf0OOJvsawECjvwoMm2CfvN6KlpUHv5+b9jjq2AYF8BU2+0LsoVtlROIEwsInUgELfGVgR2wxo0eDBcn2qpezgkAa1wA1APxj57lBm5tWtvvhHzLg6Tf6h/pQymxQIjxL0W4Kk0Jmqz8ijl5z1MlirnOPVuy4P5EjktY4kAJIJDNI7r6L2SrMQjCPnI7hFz39R6w6s68zfhf7h1ZvwNJmG/unCdqohM/Ap97nC7wTFbpRIjF1kmvV+rTAliYltSSeQrhYF2PgR+I1iFUY9WYobAyIqBEBIc9k6nsBskNwhGfnqOY67a2PjUgRtnhNbdRdSxCxLfiKer585APm0Fb7tKJwKDuo+dOjQP4N2s90TgGt3Bewq84yPvBv91aiqMjyzGMNbQk8QDOZhYovV2wFH4hVjsOM5unVjxbptoo2Pbv73TsDCAGfKzpoFd/DfwW/mBIFDpgKYfNMu6ofov5Kh4ChMloAS0zIg4ZzUOuBDJ7bBNAP1EmAu5W9atcIgVxvgeTWmALgV/poqZgrQ1ciPzVvPg9Qy6LkbBSjgLQOM9nuMo6Vv+qJUyhkVV2cyDpqsLrsbIzRBMhavbv8niAcrJ2Lii5G7lHWvVqmcVpOm7OrcwG9Lelu/3o2ST9tjfMflmvxG3W7Y0xwHxdem2Esuuj0L+Iadqv28u7a4VkIG+qXLu+Usj6FB4nMuSuy9efAB4wALrD2b1gpwvFXGnadk+bjHQ1q5+Tl0dgwOHTr0V5K1P3Lx8cUt0zQIonWfwxJrMz5VdFlGHAgnaFs/LlVvA+nhEHiyNutUXcwD24GBw2CLgRPbQcWAkVxvEPyQb40KSENhkZwbXtCuXJy5UpKoL5EE/CcIVHhA/YzAtG0agSb1UBV8OtuQsCF5pvybjlvBIN7k1AioMgUVrB99Gwn8WtQOXlPq6nGfzxBuOVhdzl/EH3iuZTFLRETkunQjHyXPOslMVezlsk79we5wmGuua2DAdJod+rrQLGk3llxM7zFhk1f3eE6hX2AcRL7CwBZC1Z0dVXn9+CG7TDyuc4yi2YBz4WIXbsBclPQE7IFM8LzANsIkDiFAondAXZOXet7L5rPhXLlibPJFB5Y+IUn5PoGy57aiQ4cOHfrH08bFouMA3gA6Fgf68MDbStXzBh8cW9x3CKLLvfAL4Hrm8eqS6g7c5LIJAGpNNxybHLa1DQcK48uZYHkusK9tVrEYqnOOLZ89BRa5RViPXrEfMmVS63vbRZtq9UGa76WbSvRyqNfmGsDMn3RjB3VXQaBrf+d5Bwa6XZ30DEJMKoDENF2exzRVT0XW8KKFR73dlJuYX2J+eFu3axv3RDOFzAe9RyKnj41ZZQ+c0jdW15afwkdlwedFPOO1Zs95NlTJ6yKeTFSuqO66rqmjr1KWFwI7HRt6bhxsB32Z/OLxJ0xUQeVO8+aXzBOHDh069BeRNT/u16un8+sbtNYBYfx37gz45aQYQ7Mu8LxYIX5173UcNJ4rnXuzkh1C9MAJs8ui2bePQn5aAKWwwA9Z7YACehXxmwdRti/ytuYaq+Qa724vSI9eYXPWJmcmYhOw+mFF9XrV27TKy3nA3Y3EtMOI4SsoGfRhDHuCoLWf86czPu+nr4gOys9vOlABGeIjFu1aQC7+7TJ43UVrr9SH4GjqDBpyJiJqErcR6V7OKcr04pr4h780lJLPYbJhEP3sv1w3GvCP4DbAv8G4SsUV8bSwlRB6RIn3RpEY9FEdSqJdVth5caOJ67GqJwbX4vpcUcC/9mwSbtybMj3hla+xbxU2OUzM+GflHSqu543shV/z7mRcvqLd7MT42IhLHkCWPs9knktUTV6vYo0+wOfPjYPbwqanZDlZvSpaTqmfMx46OsbDoUOH/q7UAWamijhX8Ls+39N15c0xHi6KQCYhJoMXDi3VcWvmbkcigNSLwHElB2PqizUtHfX3kjv+rR+ugtfg1LUmrf+Gr6xC81fQrGt5hCRXhhVCVtbXE6Ko31QzAScs9tOk4TKb0DKbDQr4Af3l7XDguHig5SGpAvjXFgDxB+Im/y7LFrADTm/6mlll7JEe9SKTjvXJM+FWXVNIfYz1zJdxm1VYGvMjaWBwKCmg8wng1PpY+1onPEhQXbE+5IkxXMILMx86BEa1uSPwDrspGE7QF17UNLJ4LI9bm8ymsRzgPtvRhoQ17Yt84nomUXFOMzwnxofJutYtOhCNwGblc5Ui/3Ucxs9XMRJF8iOAMc9y+fGBMxURvxUtEiLOhi93m7dryP3l5byhZ8bBk0WlLkiFWUgY1vmOvnLu4BgKhw4d+l1pD5X7H+sC4WnQZcWLfF/pW1QF9SdY8WQKi52aBYjC2Nbxe0Is94aWuu8+7PNuwap+YQeVNX+98731OgeYM3qR31qginsQAl3Q+qy1y4ZewZmm8IIAM4tK4Db8cCl3uiW/RdfLHx07bglFHegSdXDRha2gUUiGVWLLhpxrgGPAXrKcZ0L8f4bnKIc9eF7EAoYdX42a/OCuk4nr1wCy8V4TcPvD2l6qGmSy3aGqABMzNticQopKn8XzSJeAsVJ+HIvHMloH7DTw39OAX02mIoBSqdW0KByh9peIJk6fFkSpr8mMhkE2INPQ7p2PxwGqa0hWyBfnuimqrmfb3m5Yjh0BNBhdr7SkExFRN/b7eaD2v7aT3Eo/6czBu0n+a6XdtevORPmq4bBb2Fu76BvqO3To0D+L+rmKIEqbgpOXd72PZs9DAdwYsuLAARcu3MyONbaHy7D++x8aXq7EoxXkAWPXFe/5FhopscMKXn+Za3eRncoIc8oc4xx24AgH7aNuWmQVyhEDL2/uPmSwEkeTh820kAOwRBi9HkwwCuW0ANX/ibAVKKm07YoDjc16mygIwDQcbJxAUkMmCFLLWtk02fcyKiAu+DAYwc2IBPgg89BBridLRC7yCk762q/xdZFLKFpahawLKtN47lpfjcgMQ3LdDRkG7uPD1SgHAb331z5+6vWxI93QLQ9Dz/aBTF5u8fS6kGLgwLrxbY8K4FECPnYgfygv7iSZ5HmPzI2coEfcqEzkrJ8fCfjDGNCGcb3wo4YJ2hmlww1mDSB3fivVObNJQOPfTw7wuQGBsY66QYpb5kUfJ+/przmQfOuxyjmNVPMTuwlLtbW6L5d46NChQ8+pXQd2XodM0Wd6Mic+DCXqs5rkgTYHIq8M0VAdB9/mAhUhQCLDs22xxuEuPvGPXyxFYOf1kyfPFz6tYG2QhwdQ2ETklQCBUKDo1ZSlDoEBlpXFPgHdKMfBbQcK1NsmtS6LZ3geYdGHZRlM5IDAC9fMelOMqnLccchk/kFGWwGhWPfYtqA0/jhCaSqBcaLUliz/Cq/2uuYvIJVw7xVpBFIHfg6eoF2z32PrphglBuCPrqLEKgSBmgj3gdsL3cFbbk0XEsWlbsxIbTzZEZ6mzFtUadG2uqtS2QwRxI6BQv5iaIIZp3RdJrcr/rJOv3DcOI/zDcp0/hFf5CZGyuHg2HWCtl4+FlYWVHLuYIdI9rWKxlWiPt/h7mk7J9dwosp5EVmG3aW7oTMvxJyH+vE9NwBLe5J5qAAAIABJREFUvYZ9/X7t+PXGwd1a9YWF7LPGRKfKO+pV+cNVHjp06JCIBDycvyp4lfv5sqZBx9bjTCux11HLtBpHk3nOtPzD3wVbHtNreZARAb9VKfizTUU7WwqTXupfyo1qKE4fc8SuhUiAHy0GSBg9YstzAp0TJGtpF4F4cbzM6bakXv8iDJBCBbFrmYnRs385LMri2VXuUu9Cttzooetf18rSAIm2pFFEZbr+sk1Ha7TRm0KNeO7W6br7gjyVHGVtryBwHbCxM6OcRg21IeWTu3Gg9E0I1+BRFkAY8Bx2yrAO4gHbH79LP5YQlTEe8mzAlEq0nDm5Id6WjFAX0eSj8hC7KyEvrWq8UD3wrO7E6KeA8V9xKjDghrJB0dxgrl99J6dG5a288VkidjErH7OhrKeuq2BoQViZj+FhCOWNRWlovF8lzlWmk3bT7qFDhw79Gvo9ZqHXjx8BCNqDcSLTa/WaC+N40DrgRWhxUngeS+kCdnKRo/Ikt9eBjYImxyLZ8qwSYMTs1W7379xFFLJTQk7Gyv2agEBFunKnMXC7KBvUrevjp5tFhXGuwv9dvIe2y5I83b6vqZ4aqWsJD8ylqEyjIvVNhACVFNzzkzx3XG6CSsX3VlNAfspdPMSdS59eoVG2tg9DYnAX5hnNMsmI7M20Ox4+Rjn+0Uhfy2UjpSUYLPUmpydnm5arjzEMiWQRHJGxR2+hrHrjkIiIezGshlcV8nJjxwgqcscH6gXYCrWBj/zwP884uFHsTxRGv/pSa2fx36v9/EV6E1M2kvBk/9cv+4cOHfrtqcNum3T8xwoA7Gax2dLiFWXP8HhSYl2xtmU+RA/Xer92eh/HArzGRKdXNOK5A3QVLx8YBs6ae8EzrIhvy/HKdGZCb2YeQs0y0/MK9agKe2KlNQYCQNimR5S9sUtIxYLJMoHqCPOK20jIwLDFm8k2VWfQDHkpeHUVZBKyL7cUupe2CyFaQiDMJhi7CDil/Qg4ovAfwFvLFY7qQBvGA4Th4LpcTwc82skhQwn1rgZWzRu7FpzpZ2wQ3cXbKA91CutVuO0HIQZSPY9Dwzjk7HWtYwFqa+v3cbz0GIL5Jj6utmfnnQc2sr/mOKvfdvD5kpqI9cd4nToAzgrf4Sq9ISIir7pzIzLylrGiOkKNhhPEpQbwP/Lk/DhSXYLfIYgm0o8cNzEYsY2KoWV8q9zIx06Q1tba0M8zDj5rGGijWFp/37TugYcAO6BLvRlvy/vnZNTRH8wZdIyLQ4f+XpQTfPOy8VA1CZYnDKDQSfExGlvTIqpjERt4hYEd0oXvVGNR9N2HmHNxQYOpsaZhXsDw2IRbVIp6DIDQrBPPH+RhaAZktb1cVxoCjF85WjiqdM+ecK/xIWcMb0oggAv6ixZ7TYFNvOblXRQXPXc7Su3YNKPbaLDBtd3wsBLKkR6v6UMnGv1Ew6CCmaUsN1rKjg4aIwEcCUmP/vG+Y0N095GuYgRB/1gYrnsDDNuQOpNtjH73mpqtogrYB+Zk8BftDexs8YNAcxSwtjPlVQC9SmnhTF9BLPCRJkQCcW7F5NNeYfRkO0AHGlbTY0/mYSlYCEPuDMAx3fI5gtgF0hw7dZ5KA6zBrsJjGxsxQh9nY6dCuA6kyKuzA84Y6EX2whA9Gp5ZnY7JQcJn8ABM/n5hReAleJx2ZOiTvCuiK+EJDw/44wFz6NChvzPtwmre5vtoRQ1AJgZuvHHPGLIAJuO/tVxVleZxvpcZArRdrPLjUDh3I5jr2EpwkqsczbMAnNOx2CG0vukEgYvRFrsIkZDBYjDplk5XuIF3eQeiIyxgvcEnnscuRQLZemWhexI5/KS2zxpeqwmz4KuF4j3WAzsB+GyBlg683Fpo8L9fnetAzUPVArjtxkRDqiJ4zr7qLzqqO1kI8uJv0UvNVpdgg9iQhKJVYjeJdFCq/ESqgBYDVrAc7HvyZ8eYjGdP5ivYuYvkzQTQqdRoX5mb6k4SskLC0GVYoSYF9L5xXlCYFbRHREZIj3GesEfIOJrzTfSrZjFWey+yxNiPRuI8iOOFlW9VCMl8W6Jx5/OgxQC2fHlLv9w4oBjWu8G8CAVGUmNRexLq9x0P8d7Kk2fUTRe39sQndgywrkOHDn2c1iX919Tz8QIaq6IttPdMtcXtGrvxbnF+CyhhZsuCHvA71rJuRtw9LV45xFFiAIxrSYOuuZhmvbkcXNcVW/vZTATMyMRSdEv9MqPUFTX222IhlvRsTqNmfJ8AQQ3yBCvSsnOSTKf5k/J3Dzx5HEOGfSPDqFgW22LslKe4c7FzfBHwDHdlFOBoivlD64NAu8pVUHwaRZolXIqliQOClkdA5uspBwCIYHzVobNigA0ukdqfHH63u+Eqdo46g5kGoreiyhvAKCQ1T635EsOUcnwHgs1xSVVChPxu90eqDKvhtKbTGL9Z/8DWgw+N1jKfq7r7c2PbCvJnaJVMnWO9wLbivJJ112bA1aaSKt2phdnqtsDLEYIxspiAB1BEMjCwzcBfvdHoHf1y4+CZF32K5y7pUs6cmLfbgThC6qBhwT45vHRA+6F/An1kI+9nlf0zefg2QucPPPoUy1t0X42I8jgqx7lzLWcH2pdy8RFsewcgUyyrLPoq49rAAqQShIwn16XsddPaqJWhBBssp7EIx6lUNlx0QkCc8xHtTWAQB5bBJIrQHOJmBRH+uHr1Fb6KFKDkBkx1pNEM/BAD/Bm8s5wy2ft1d/Fqy0MdzuYBqCuyFQ7/qKhquV2mtMdsgGTRPCg/YrYX7YM2y5RZJ5cZYhEyWsFm1KtQD4DHtu6CBDsscc0+NAd1Lj8YLzNzjyzfdaXOnbrNvOkhJmseEWcgD1JnIQsQNpsfAMNiin5vdjVEusPGGuDYy6qzQBtWhsBf1xdLD5gMWU+9TPw99BN3OdlY8/xKmwDZ9oufoGGNu30jMY3dOmXn3KPiW0rOw5hX8nyDQF+b+FzhOwQ5XnBMXY1eVvr9wooOHTr0j6Ibh9uhn0DvsYVGzPpruMbDAzYSNCW2hc6FjeHzTcVYJCzuOhdJf1W2/tvCHcz8APfZBATVk0oH9gLc7NlcAHMFKMjnppzFQNu5pdHuCMMnc8eVow50AWMzsMp3cSBW5zevKpBqDbTSrrfE5SUEpwZJ7Tw2CkiaRe4J7nYGQk/djTVuzM2alvbhOZIEVj9m/4btp6zncQDWyvcBUGnTgvFMDMo7DhzUUoLZBvRGe7eWQaIiYqpjFw5kQeF/o7ApL2SvOGB3O0fQjxE6E83f3zSUQ7HpzTp4twT9OdEyanTdsdyX0k4s8H/OT06Phgbwkn8X66BykhbTJk1mj/NZ+G7q1HI+4oZ+U+PgAxKmbJ/M94VqOll3XCydBc+7bcWfQet0eOjQM+pw4RYrfpB2jrEvl/vF/B+pp515DDw5G0pYU0u4k3j/cz//Kf03/tZ9estDb+7xNenmqYKK3RMqgSuyPMzngBTSxBdWoXGBk8EJuQ0TmnkqCFJsOoAcDwEhNmUYQ9WrVs8CTO5E3ZsnGh998286RJs7jCOSHtfSyAyRyEPEF5SJpZCG6OQpBDp6TjU/fpZgTWY4VObFj0ItzQV5hNH4avrB+NAzHwCef8WHuvxunw2yUg8ha2SDQMcNhK4MsaLmnr/y5fwi4HP9fk0DYIQ2oWz8lhovM0ydsvMw9L1+cUAlt9USRA+FnKCcRSciF3zJ18JYpJIVDhNDu8NLH2Ox7CWVEJduJ2oWvJ87wBhYyIzGMTXMbz6y9TvAtXqcy9KwURjnMODNw/gkeI7RNft69IOCUTV7EdkTGBQoCjDYQnNANmSsl1aRsYhiumm372YuBlpD3tIqa5fXEwP/NzUOfi7hhPMdZeGi9qeAbl5GDz2hJ0bfn0bvDMZYDJ+U1RjNd/SddvBfPv5uMDw+avnDCTxRzlpYA1LfMuQL+oavNueV10rm1ruFoROeN5PpNS33bhvPLwTXzKQu/QqJUN/uvPjklXy9eE4HedZt9G5R9LqQK4C4S50BANiaYZGrzmiABMp5y8hIlUAyrUgEl0PWV+KNBYgDGLWsB2Poxy7QlQd4q2c66uL0YiavAE/JIrZBgSXnj/oMdY+hUfNM0rCqxqjrIHjHQQzxR12LV+I3NP+EpdTQNFTq2AydEpdrwstMZYKwE9uVceIMavvhDbonLvscLDULHXQ1D6GS6Df4KIRgqBQS2lTYJte5FqT6eAOdWw8GC9SZJZvujQK9OBQqDQ0l1tM54XLaz5kXXKvsfUjndpo5QWTMeWCjlZfe1z5GIMGmb9uD0tDQMDpqemyf5oHtsSPk/a3R/z4mN1+uWeg3Nw665aUo8p0HzN9TWfs0vBgo/MtPeZ5YOy/oBhGQ0v3E3YJD7+kdQP4T6cNg2RcY3eRpCtyXzfG83c7YjeOpzrPvKntLjQPzw8W9kyfg4vVFU0DH0yMm1BcxLBTr0zXPJwnjZE3KV3NtAl5EJs7bfIagia/s5Dr4gWRhpQE2FdQXvW51GB798eZVFvo4MDr/pxjgyRv+TQdeecIG3jkv7jL0N6eMMqsfOcYd8ZQe38G2yxC5llyDGnkEb50XGP6M3RJIR7sYWH4YJhmGMu6+H79fJjIsI81+quApPPPIp8x+SgPA9SV0aWk6h1AU+J/lenmXihmDWpR7VUcCwHOQW2Yaj/19+ahBwF8wAHOeWOdEFdapep1mwE6ENO0UoDR2M1HuNuQc4u+zP7opY3/wfF0/M74d53CV9cNlzF+IHXRw/SpKA6ZJjQDQF2joXaaic6dScw7LziIeQh0A55k1egfzMZ5b8scsi3L2qfIOUyTzX+bJpv0w44gZzmdzvsY2vqHf3Dho1bT8fLP6fWaHAHq09uFdaXci55gymOjesdIAq8/SZi75pUST4h8Gxf8sbp9RB7D+mrLSoNjl38ynsKz9dbSbZipf76ejBdrBMweWG2o8b5/qiwJQeN6ZYM0SMppYAIJMz6FEHKcssXA7Xt9vlWMoh8UKH1LZCpSfU9nKi6aXV/W3zrcY2/7u43IqsvkgssNqiVAk4msW+yL8AyEZUGuB1i0fbfwx/JFYKL874MXFDkS1PDQBq48/IwlGc/IZ7gKgXAOUZdoIEwKUh3ZBjIbwwDsorW1nZrLP3RDYfJBN0vjGnZHhFGSjArAvGdIB93Hn5NKyg1MMlK7chdzo4qeoF9Xw8Vt+fLxEKI3modWurEbJ5uMEQ7qyApkrKN7H+qPs8Fm2y6jfQ7dwWLtxtpMeGPBe8jIvVMOutgjnRunaPnnwAkJUnBqNfWx/VEHAv+wyAgO2fNCx6qCQcnxknfzNjYNfTHWhib2ZeDD/x8mtLCCyvnqyQFvz62eA558Nouwn8v5dtDNQvsJxwaudpgh7DIR057ukVXVtM79v6Ut8xCTkE+9a4OIpruSvec7O8hbnwHZ1WviiBXStpi3GGj4+Q9sNzq5N72gHiB10U8UfL36i9QVM4d8odvRCxt+lW9I7qtHkNSQBeIWFMBbqDfrjA6wAxnQPGBmf5m7EeotQ3kzimek8BuqmyvjYGaCrBBnKuyYqohATXeGZg4fXC3Y/TCJcyfnw9ne66aFMP8KmCsi6LnVu6NkAjcFJ49X2tmCZo0C840kL326otKNMInzJZTPl1hm8HDYV3GVmWfs9GPHWzo/6VQqv7/Jy9uKNEevFu3wWw8rfKnNcGBj/geEjJW3sjlWwOBN2uxIBbD86iTXzU42dr2FJrrfYJJ677+RYiNaU2efX2oa6S4LzkT9X+I3ODWoV7loUwxEXUzJ8Q+tVfBTMj7ysazzsUHkZ7+RQ+cqHuwxlzMzJ2s91iTY7iQ39QcbBZ1a5h+Uui1Q+0y7ZnVzRsCuLilRlw/pu2HtQFSXtvGT3B/m+TnRfsIjgiUSq2zgP87Nr0Vd5y9KWKR9edjJ61+XdlW08kdeKPk/1hg0U3XL7Bi7MO7k2uDo8ZAu7CB4a3rhkLnCbevOmrndGb9c8DeB7Qu+w+qeGyt00Raq+k1gtYCuMhjbbxjHunulgAAmp8wVeIbqpG9gkAM7KKthuLhMXXJCF8+8LH6ImApVrp9E1grG413mnLtqzvV5ZN3G4gWBCgDqLK4BmUdQdWF6NBXroHs5oky59vhg5bGGHobIsUfNfP6rtczR6Ph1kRMhPs3zW3wP841WPNeyk9MnsZ4+fxrnZitzGqw7wMEjmcvwsh+seyFJYVimZ0Z+oH6WbSQfHYzcqJGTXji33arvALM9dRF9a7tCJjNuGRFV+/PhB7UR2vGWql39Qd5FNGGP46ErcUPtoWetrW6D1IScIKappOeytjHeQZT5BuUUhogoH5eHZqP8CrkCmZc6oO0nLjgb1M2kYlV+ADswHk59LJJ1oL5LN6FbchcWx4vWsB8jdAEuDTWL9z+uUGYPd0R9kHPw96A47HDr0p9Ofqts/x2T+TWm7jTEJt85p63tebSoAYpb0T5nIm2Qwtt0XV93sCCkX8b6WAsR2XjoTEXvBZ3MbigV7eZ7tXh0eJX8pa0sF5O2TsWGQuHV6Z+MaInEGMx88cMcNx4pXAwPyBYhOj6yf8eibheDE4u9xBnkFgCKzr8LNjnJ1kI5yXitt29imsbnjk0AMd8PMLI4TOIR/USMh9K1vOfCx0Q3gzzGgTkPfd0p2+nJdV1w5PBuVtZgbJ1W6WW/o5JWAFHf6RPwwfWlRP0QnC0NOCHBFXrfjsV7nSWUr/cfNQP3X9XE3HHP3STe8VL/D+nHDlZGGHsxRGt+9QGPKeXIm0Ck3zeONPmg1AGYZ0ZeynweRfqJx8KfA4IZHsCrpbTcJQwlLScve7erD7aiLIVuLriVpH2Hxpk4whL+VjEp3VlZO3ochre1cUnS7MM2zfkCsEngqk1auH9khoMloH4+5q/3eiXzXCl/1UGF2AK+OY6xX+ySlvI/Rbnl9X14HaDAvwboili5rLakPQ+D/a773u40lwXdMmx0GUWkeLgnWp2XscBwwszsWVAuQiRsEUT0u/k2VeY4hIWO382XyyvQL4KUGjDnQQQoBCQcto6QV2ELZUsQKXnsHsQEkUGZaZjY0tiYYc3lFRV61Ktwp07QLeFq8sf62KKjGraisd94/DMhmbPYE8wM0lg89hXA0wjAi7APljonVwT1WVfulNtdbxOuFRdOy85w7vE3I6/b+wsPdZlpCVZy/IlME2I3OqZf3Stle18W7eXVXHwH3VMDQe4UyRSU/e+X69SI9rPgEoGZ0rNtluxC9C24qQ4W/Lj+8O0afl2ntlbaZ2XvAdQcP5ocRFrwC18t8VXaLHKhL7mLh2aeVTBT7rJ0qVvmZjFuN9BJ5vV7Ef1eI62KkcrlqOVpd4AnqYP7LY0QkPxpZNl/XNRm1HlTDd1aeLDEPjYMPoZZJ32wYfMei+RXabEPNRyMJ/ogHjwqHYWQ0rD5F2mhNXaSCvQ4cvwPsTZXOv35XJ+3q/ow5Y+/74sZwwcF+l/5rVLYDoxqYfN95fKGs/u9fRb947KvcyGXzHB93qvTJ4bey0RliXoHxz927j3ORBcJw4VIZPiwlOK70oWMiCQ3ycCMb3h6Hn8u9WH5QrcL+lVK/x1pa5aMz+81cTB55CPuoLcXdivBk+2O/DhRANIBsrCMMgAhPyXFcHdsmOb7RUx+GjldRZRWq088NOyJQGn9mp4aXGO7qJ/0AWbvHfJ2CKtOWGwPiQM0i75IPBYQI1oss3txUK+DLvf/+G/sGS8YqQXd4uZzgHHYpKGTM10YoMAyOqTdc3vxd9BL/xfrIsHR5Rjrkl4H0VFuQYp53EUgfrKGxbLZ86Ri7wz3OqfcoG8w0a4T6cpygnFes0c4LMGUStjIBYy7HOIbOtDOMch1tKh8esEOIZ2WGvqELAzKVUmO8F33sqlxtNcs5teineLk4lrcLGmpDn2JHf05Y0beDsSfUgDGTerh/Pm/4o9VVUgO6MgsYuD1UtGH1dpfA330I9Nwt5KzsdZuc4/Zv+i6qKKnAswM/Z+Geca2r8iWcVJrV7Z63pYBCWtIwAvswbcMeaHv2jUyf1/ZAFHcJrCT5kHI9p/stkufyppUGMsVHiGDyRdBzw0bPWvew8lkm8O+e3mp5t2ICMD/54VhbvJLPSHyv1wsAb+b3RG0ssjo4FQbuE8zywVVc1nJwObiOmPjiNUZ+0ugGBbACS+o07fNE64XEOhSAH6atjZMAZFW24sBbYFzDPNKxwQCW59+0Y+C6SvR4vtE1FYnznxTjrxzqVCWzHPF0+aN+386/QxbVOaXXFWCtm/dcFhgqUncRkiced94eLf2F3vaYcw1lx32NxgLXB89Jft7Glb/dDjf2q8js28m2t32FgAbtw/xcZ919oRLg3S5kjnTUx5qX5aLdwAmH3Su8NXiLot+MSQWs5PMPzeOphy1W0QLztewAAIM0JxX5+FSgJBTWadv0f3KwSkNE4MIDFTeI4oatKS/faYJq5R2W6+ihcfDdK9ffgMr24Ps0Ip+VIx6e6ekDnb5hoQWbur4L5S6TyLvfn+VtWXM9HYK2BaTe1fEg0Ud471bKLxoI26r+EgP5I/Q783c3RuZy3Vj9Xfje91O3EHxEiXgB2pe5q7OUBl7vOzs7npnn4YXcoGo3KAj8Vg4B/CCowuFOcCFA0XyzBfIzR8Er6YDor4dFr1/dea0GkQHf6fEbQM9DAbJtCUZGWIZSmcDx+NeMwZdM2NMBrfnMv6rsIMleU/a0bPGuAfKn89kSfw6YmeCxA8cyYUdZYCga6jYaYUV9TcenA5wHC0O08jy5ARxo8B4FQyEzwF/0l1iGygizhIOh2gK+Y2BmYViF2acJU9Ng4zMEVbfGq1d5VsNm6iBC/VnnBC1pfPyk3DRBpXI+N4JflsFNaGAvhouX6FFoLmeYV5wf74OXn/vQVR7YG3kGA95TG1h2grmhU+v5INyZYYfDel0oe/NX9UVZv2bZF6RRge+uFNpfUwBjOAyDbL9Bk1V47kbdeYojPrdzsFs5/jTaeTHeeIsWegQ4veyPFb0Qzli1LGgPee7RuPhgl/EEO5/9ahC4sVt+K+0rzHxkg+LQL6In/aH7ifl7Kihpq6J8SLELGnqS/IlSEn7K7e3xM/9OjzwT+TJs+jMXYyBBPQKrDdP5q3jLK09eokgN77F4u5ba8b83NnBNHzG8DCLYcOgQfFRChlAcxJ7P49aTijxanqwAFouycefELO/Zxzh7e63x2ihf5FMd8c53HfBYgHn8noBRYKfE6w1UX4CbvbL5LQAuoi1ANVzswV/19CNky52LqNORbEmO5x78f9zRqnwtvN706wCo/FVgb7vRGAQ9KmXXPsBRQnH3DpZpnOz4yvCm/Mhg1Xc0Qkd/J6BHXQIWHPCuE0X+D3F3CinT3kMjYvwfFygYA2RshxPuvCxTcuv8TAH66xfuMHTzbdlNAN+DiPROCjO8KMF3VsO6ymVA/TwN8D6NOr8k6/Vio+mO/oKwot8O1v1a+mzT9Xvk9hHLccn7Edh0x+7m3QHUSbhIHfqZhItJ8/YL4+U5C1oWjY/k3T38gjfC2j+bBCbjG6bgFTYjwJLpGiDnixt4AD3u3RfAXRiD19VSNB/54jqYv8oXhv5U40RiAfbx6ddtjmYiAJpuU0MGqAGFbQSmAFg16yW05KBB/UQACMABNsiXDkhrAj0TyzvQJ8XHukJmaYAMsAca5gxOzl320Y+wI2djCyPyKHON/wBQa3TZioyKFDugRTjTCyH5vEI+oeEALnHHh2tFMJz644YjDm0KLKL+Tz11z7WILLcQRfOtv1lrv9O5keHNWHAdV3zvOh5FYV/xWJOSZlcP89e9Wa+u3RXzbs2M9robv2ARA1ZelvNHsW8l2kSGwHyA/bTwJyKvF4iE50Zq1ltANHXkxWnSUYBG2/h1Xdes8f268Dnj4EuL5W8EeHbteNe+drfB332Jo4/VacsfkLxP38W0Pq3yQyDpLmkzYkw+ho1+dyPiq/wdw+C7aSdP4//R8RMLg8Ki8QXQ/Y6tDyuN3Yyzhr9PDF8PO0jWxgHjscglsKCQBzR2AFSZmlxylXpwIXPwWsCW4AKNNw8lozUkxyRBWvzt7+cd9yIDZL1sv1ySRy/0IUFlAO44pAiGRXE/qmpzgw7W4wmFvMo4LzroNEs/5xAFA1cufFR4hdc0C/WrTuOmoZnF4ncTvkTAPDO50TSKvyQuLcoEZJR4Hr1gx8JAvtDmAJ6zHNRPcoJP1Dp8aQZtxfIv4d2IXmT+l+9uXNkgAmAqyhdxzD+vq7Zh5ot+Y28+gl5vp5OHiale4h74l+XNRlyP0e9h+EH9aHgAy9eoaLbvlbsXUcXsJ69Xsw6UCwoR9RJv7Hm9jG/nUV282orlK4RtmYQeV2DsjIy815ybYLcMGjxk4ZZuzjkve4lLDEPakC5wZOT8tnKCjyJtGVBbg8nmQfHSxGVdmmm78kxM5LXOj0+Wrz/nQPLvTN+EE34pHex56JfRA0v0N6VneH1xH/1E+modD7wYE0xFCAZkG6AkjYaxyOY7BCe06AFQQA+50hU9XqCUBdRm+YVtw/4BJD0NiBpGkCkxZCVBgLch0kF8tYMicz6EY8YlwIRQObhjQcDAYNnw9T/s1AlaLiEgLDLAvEVi0LsNMKnOoLxVyqSKU+rvCeZt9kuEKRVPbuYcHaIXXHfqgMxkXtilYVwgyHEW85+KiLwKAEEBeEVEnafVeI+nuPOiOs5yYD3D4pVpwcz+tGi/FZHPYhZDmfoTwDgylEaUGzjzdqxX6lxwe7kRoSQa+oIv9Ah71ueuj4wdGzcyPGFewDBaHlfn+tiZLymESv10wrqr6kDfjSAfN9jnNQTO6bryqlMXte8DhVE9jccQAxpT8y9sEzkqUKaCRk1pg16s3fE+O5/NKjbRaDcGAHw9BL2AeCiSx0Q1JtxI8t09mFcUdHXy7g4M1JcnS8gxDp7S3ZqDpVOiAAADQElEQVT8M/HAukb+LcnH8KG/I/2ZHfvxcKLPtNMXlwa0t4vXXR1vgD95oW4mlgJ6raSm+uiqSyjOAcVEhu41Y7DABS8HZhuWyEuOTSKDYtR7NQjEocfrZeP+8p3XLspRAhF36cNLDUZSB4CZVS5vq3ONQZJlYqw8APmAywjOAEeQTJgurQAo+fYgJnV+5wsOhGRw7nJk7/A4rD3KkUDLW2MNSr8ulaIuoNo6ARa+rACv0tRlGn4+LsEwAL3GsCK9ElDGplnXV6oMXrF6EZF6H/5iLJWdEmhSNcbpz3nNZ+6CGuXB8DtVGKtQl6jKFcAz9czyNVW8jhUAsG5LohmgOgxLaBQZRMFL9ovXk2caREgTPfwqdvh8POcNXEOHc4Lh0lmcRvUtwzcehM7LhrTIyXrjYdwGR5WPcu0Vj7xCJd2BCTbFDX25YyzpkXHw73//+0MHGQ4dOnTo0J9D//nPf+Lv//73v+RhjIO2EjAfcvIiXj32RGAc2MuirFyIEd6u6xcCF39wayoVj0NNmzf6QJoImVCskMAUAXh3AUsJvwkwngCe2jKX6wm3lnwegoE3sZHxBEDMwXRe4/mSPPMw+0QcAK1hQggW/feluoZshMGVBYw4/QnIbPz2uOaRBUDtpfNDUllChG1AmA4CUha1ZTplEBnyQAUCRGkz/j/PkkjJz8ZIeL2lyF1W0Ov97MaSh7284HzFahxkv2b93n+SQDdUD4AwAFpqQrl5Cjgm3r2/GYxiWkLiqWXQKWismy2vpXRElE3GPBi73vf50biSdbIwDs4nw/Z6TcMs5Z2CzRlr1h7efDQO3PKjoVVMXQLvAfqttLXwrQrFr2MpxKyXmOWOoM6xMtpnrM8eBgXPDfKYQauJ/WkczTr/97//k3ekd94x1W/7otWhQ4cOHTp06NChQ4d+E7LuDm+Rcjrs0KFDhw4dOnTo0KFD/1i63Tk4dOjQoUOHDh06dOjQP4fOzsGhQ4cOHTp06NChQ4dE5BgHhw4dOnTo0KFDhw4dmnSMg0OHDh06dOjQoUOHDonIMQ4OHTp06NChQ4cOHTo06RgHhw4dOnTo0KFDhw4dEpFjHBw6dOjQoUOHDh06dGjS/wNs36Xoz1nYugAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The visualization is now nicely centered in the images.\n", + "\n", + "We can also easily visualize the alpha channel as white regions on a black background like this." + ], + "metadata": { + "id": "DNfyVL9K0bHN" + } + }, + { + "cell_type": "code", + "source": [ + "opt.images.show(composite_alpha_only(img_advanced), figsize=(6.5, 6.5))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 384 + }, + "id": "PsCu_Waa0Vwi", + "outputId": "36754300-1af4-4cb6-c416-3ce39454966f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAFvCAYAAACFPEoUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOx9eZQU1fX/p6q7eu+ZYYYBZGaAQRBkVRZBBQGVJUTFRNHEBeOSaFySGOOOGg0nJkTjIcbdr0QTRUUCigi4RRgFQZRF2RkWWYaB2Wd6eu/6/cHvldVF7V3VXT1Tn3M8Ml2v3rv1lvvu+9z73qNYloUNGzZs2Mgv0LkWwIYNGzZsaIetvG3YsGEjD2Erbxs2bNjIQ9jK24YNGzbyELbytmHDho08hFPuIcMwmkJRKIpCR4pe0fs9FEWl/c3PgzwT5iv3jlAWYVopyKXnPxP7RqkyxL5FTm6l/PRAKIOaepFKI8yL5CeWXunbtcorJ4+aPiT1XAxa+49U/xTmIdd31I4dqTrONK1ayI0BpTK0jkk9iMfjopnLKm+t0FqZ2fjwTKC3cygpRj1laZHFiLRaFKJSOj15y4Ffr5m2USa/q5n01LSrVmWsRoHK5ackt5pvVSOfWpjVtzPN0+qGqKHKOxvId+teq7IU+17+gDdzoMjJptQOZreT2PdLKUKp9GLPjYKadjZrAtKbV76NrVzJy2/DXBqelNzHa6VN+LC6VS0FvUoxUyjRKJ0FZtV/vimmjoB81QFKyPZ3ZYU26QjojAPcSoPMrPrPZrvKTcRm17VeKivT8qzQd7IFJZorW3VhmvJW+gCzLSGjO5UeZ49a56TafM2GFmeR2ry01IGWfEkeYuVkytNnYxWkJKcWOfQ6IpWcp1rykspfi4xqHOx85MOYMRM5s7y1OvL0RFsYBb3OnkwaVu671XLNagan2Q4gOe5XzkmmJqpAqhypfiLndJMzJsT4YKMctGbQQ2rz1uuo0+tgJf9Wel+pb0j9rmVyU/Ounj6pVbZM0GFpE70zvFg6o6EnwkDuPbn0mbyvlB+QOUet1YGrF3oVmdRzPZaglogNufezQbkopZOTQalPaLHCtSBT6kJPH8mVjwzIA+UtjHBQAyP4JyXrVkt6qfzVyqaWYtITv5spMp0Q1OQP6Bsk2V6p5drJnUte3yp5SeVpdHw4GZOk/ytFOcnJp7d/Wl55y0FvBWTiQNLD1Wu1RMSWkHKdg6TPFf8mRiuofc+MtEa+a0VY/Xu0UqLZgFIf1duHybt86PUdaH3P3h6vAtnk2LVY2FZw2NiwIYeO3EfVBGUoPcukfixjeWe6xOW/b+aGCyO4OClLWY1jxgqWthisJIsN60CKJ85Ff1HrU1Ijm1reX0oGvp7SWx95bXmTCjBCWRvVmYSyKEU82LDR2WDlMWA0lUd4cSXo0WE5DxU0igKQ47G1cOOZdiyznUhW7vhmQ6pdc7E011O2mn6ohT/N5fd3Bmi1iNW0g5FtlXPaRKkDqn1OoORVNnrS6EhQUi6dSVmoiQ2W+k3L0ltYhp40eqHH4d+R+4CRYX9Gh+mKIefKWwv4HUcNP0xgdJhQPkFryCP/PSM7mxGhUUqUlBkwIvrAjDKAk8PVbGQGo1fdZiPnyjsbu874nTtbuwzzAUqDXvhcir830kqXU/JKE7PW/PW8bxTytc/Zk4S6lVU2DEZTlbfcANa6RNES8SFWublY7qlRbnIyqZVZ7RKfn0ZPvUu9q+Zb+O/q4XXVPs8kxjbfFKrYmNC7KUSJ/smE289XqkUu+kSpv2SjL+XE8ja7MdUOeCsOWC28qpp0etJk8q6RNIOReZntqM4GjKZj9PD5SmV1tOgqqXqxwkSkSnnn68wpBi0WfKbQEweqFka0iVqryEhHjg190LJSUrP64f8tTKOksJSMHz1RXvkGLeF/JK3RSj8nlreWTpPP0KNgs2khKjkz+Z3OjDKyCavIkQ1IKQk5ukvuNzXPxNDZI5YIzNJtpm/S6UyNlG3YdWtDCp1psuqsUKW89e5i7Cg8oxXlNFpxq7HKbNjgw2zL3SrQo//kNg2qfU8JOQ8V5KOjcatmWMYdrY5s2LA6tDh+5d5Vo8S1jOucb4/n/y2MxbaCgtK7EcJobs8KdWHDhhoo9X01Y0LKKWolqjDXsuhS3mY5HeTiKjsKxDql2q3/Nmx0BCg5ytW8m2vFCWiLpjFD3qxZ3sIPlQtJ6gjQ01hWtTBs2NCDTMaycGev1fVCppvF9ECX8u6sXK5RsdVS+WaSn5XrzYYNtdCyM9hKVrgUjDrHRww53WFpJShtXOCnMROZNLYV69WGDSMgHJ9W6utmjD01PjZZ5S3mLDCz0qzUIFqgdvu60jtyv2vNx4aNfEJHMz6ysSrQZHnrrVyzz9wwAmZWshyX3dE6rQ0beqB3DFiBMjFj/Kr5rry+Bs2GDRs2OitM57ytZlXqsXS1UhxagvDFDvyxYcOGPJROL8y1RW7ZaBM9sAo9oOV0Nq3P9DaYFerFqshkUOrxRYi9n6uwz3yIpsg2jDhd0crQYsjJKm8jlAp/h2I+INMT9JTOSLaRHWip+0ytNlvJ5h5WMQ4zRV5sj++o6AgdyAjo3T2ayQUBRitPLdu4hf/m5yEV5paLXXkdFVJ9RU3/M6Oes2H5Z1V5G8ntmsVx2fyzPijVVzasU+H5OHraMNvhsGJKROpcD2E6qbxtpW8NmD1BZOVsE7HwOH4+NvIbehSMXF6ZdHSp99X2OTM2W0jlbYQsYmMxX/nebMLs+skGjZO3Oyz1Oq7UbE+3O/4P0HKQlpEnKJqhwK0OOYtbbb8lvxldB/l67k6uViOk/s1U4KadbSLXsYyCmg6lp8zOsCLQ2qm1cs3C/LU6cjNtg47UhmrC4tT6GNSktWE8zDAoOp3DsiMNainIWW1yceZyeWgp14oRN1aRQw2MoleM2hFNTgHNZ8hFgpn1bWZb36YpbyHHaPSH5NNgzAaMrI9M46NtmA+5I5WzGcWST1Z8rug0rWWq1ZNZ3R5vK1wbNmzYMAZ5RZvIWYRSy6COELyvdYknturR8r5WGbQu821kDrk6VuNvUuMQ5W+wM4payzWyGZyQSd5q9JahyltsCZXLsMB87FyZQm4QAuooEaWO0xnrNZ+htJFI7netZaiNlOkM0EvTqKWi8uZUQblOp9Tx8r3z6JWf72jS63RSa+nnex13NpA2s9sue1Cjq4Tp5aD6MgY1FrTU9t9cWWr5cq6KEU6fTBQ8XwbhMzVUldXr18bJkGozqYiMTNrYanH3UrSfGVvpzfx2RdpEiwI2k/vUyl13NoXC7yRSS1hiZamtGy0K3UbHQaaK2kZ2YPqpgkZAqxy5lFuPFa3FCalUth7LgORvlfa2kTuY0QesbHVL/ableSZlZwJDOW+z+TMrdYJMYTSdo7bulWgvpTxsBW9DDmI8upX6TD7QqGqh6QLibCDfN4jIyZovGxpsK9yGEEYoYyv1fyPDZ838Hrm6NiVU0Mz3O4tiUeP0FRtQSlvhlcqzYUMMYspOaoen0vtqn1npHBa9cijtQ8kEeRMqaONk2ArXhg3zYdVxZpjlrWb2zDTvXM++mSIb8lu1o9noOLBa6F+ukKmPKVNY6vb4fNt2rXUpJEVtaHESysVeq9kWLZTXanVqIz9gJMUpNe7F4szz4WAps/MhMDVUUMs263znsjOxRrQ4adXyjHbUiI1cQ8nIsIoBka2JQUs5avRhRpw3CbuREiqXjWJkQwi/k19GpuXIKWmj689e6towApn0Iz2WeGeEmnoynDYR29WnZiuu2N9A5mFJ2YBchIfUN4lt3RfLR+k7lJ7bA8GG0VDaK6BnB68VV956IryMhlzeGcV5q9mZpGdLu1UVjpFUhNkdVYrGUUvHiO28tGq72LCRD+AbbEaMJcuf522FGTlbSiuT78wWf8g/HyXX7WKjY4E/zrJtKGRj27zR48UU5a1XkRhJm5gJNVSFmKfcTGh1hpB0qVSK+00tvcUwDAAgmUwimUzKOlGzOQjtFULuoYcKkfKVZasds0mFGJmvIQ5LGydg9tkuRoGmadA0DYqiuP8D0h2Lf14FwzAYMmQITjnlFPj9fjgcjpM6v3DisvtJ54RWB3+u+4ka/5IRq2MtaeXKM2SHpVqLraNAbHmnxvmqlJ9aq1nPM34amqbhdrvh9XrhdDo5Zc5X5Hzw29ftduPyyy/HunXrUFFRAafTuMWbWZE7NsyHFoohl/RIR4Ki8lZjTWqJSRZLI2WpWc1aE5NJGBUiDJ1U+w1qO7HauHmpMmiaBsuyKCkpQd++fXHKKaekWc8kjZQid7lcmDp1KrxeL1avXo3evXvD6XRaRvHayiA3UGu1isV4S72bzfGvNK6MkMXo75FV3kpKNF9oAqNhZCMY7fxTajOWZeF0OnHDDTdg8eLFWLx4Mf71r3+hqKgIDocDDMPA5/OBYRjQdHr3oGkara2tuPTSS+F0OsEwDBYtWoQhQ4bA6XTC4XBwSl/4Hynbho3OArPj4S13MFU+Tgb8CAw+1K48zIKUIzGRSGDt2rXYtGkTBgwYgKlTp+L999/HBRdcgB//+Md4/vnnUV5ejj/96U+4+OKLOXpl4MCB+OCDD3D++eeDpmk4HA6UlZXB5/PB6/XC7XaDYRg4HA7N3ysV726j44EfLqfVADRjRS7XJ4VyqpU1G1FyqghLNfHeRlqO+Q699SG1KSCTOuHHlJJ/p1IpbNq0CRs2bMBFF12EYDCIM844Aw899BAcDgd69eqFQCCAiooKjBw5EjNnzkQ8HofT6cSoUaNQXFyMZDIJiqLgcDhQXFwMp9OJwYMH47zzzkM8HsdTTz2luMmB/zdZEQDgLH6WZZFMJpFKpTi5bXQc5MtYl4qgUXK+Sv2uxx8mBtXeJjklki0PbC6gNQQvU+ihGNS8I9wg0NDQgM8//xxLly7FjBkz4HQ6MXr0aM4ynzx5Mtrb21FRUQGXywUAiEaj8Hg8GDRoEBciSFEUSkpK0K9fP4wbNw5Dhw7FunXr4Ha7uXf44FMxhKaJRCLcRACAs97Hjx+PxsZGbNiwARRFIR6PS4YmStWJUr3YyC9kU19Yge6TK1u18tZKAeit5FwNukziO420mJWoFyl6RsvkwrIsUqkUvvvuOyxZsgQzZsxIy5s4MP1+P/e3w+Hg/ia/Ecv4rLPOQktLC44fP441a9bgq6++gtfrRXl5Ofbu3YtwOHxS36AoCoWFhaioqMB3332HZDIJh8OBoqIinHfeefD7/ejXrx+2b9+ORCKBYcOGoa2tDQsXLuSscaXvlKszG9aHmJUrNh6yCa2WMx9CAypTqNoer4e71TtYrDTIhFEwBPmoDITyplIphEIhHD16FG1tbQgGg2BZNo2ycLlcopMafyBFo1FUVlbC7/dj1apViEajKCsrw+jRozF27Fhs3LgRR44cwebNm9MoEIfDAZ/Ph549e2LHjh1IJpMYOXIkBgwYgLvuuguFhYVYunQpgsEgZs2ahSuuuALRaBTHjh1DNBrFF198YdMoNkyHkeNcTJ8Ix5WWyYmSE87lcrFqhdf6kVKWrpWUopVkIRA2sJxFIrcSIiGBw4cPxxNPPIHx48crtoVYWfF4HNdeey0mTZqEvXv34qOPPsJZZ52Fe+65B8FgEACwdetW3HnnnaiurkY4HIbf7wdFUQiHw2lOoC1btnChi7FYDDU1NfB4PPB4PGhsbERlZSUSiQQAYNSoUdi3b18ajSKMlzfKoOiosLIRImxDqb/NKJMPsx3pUnnyf4/FYqKJFEMFjRImW+9bEUaHVPI933q97+SdvXv34oknnkgLMSTPEokEksmkZPnACd76b3/7G6f8hw0bhlmzZqG2thbRaBRff/015s+fj9WrV6Nv376gaRqXXHIJLrnkEi7ckFA05eXl2LVrF+LxOLZv347vv/8e7e3t8Hq96NGjB+LxOOrr68EwDL755hv07t2bC2kk/xGKx+VyGUbBmRHhYAVY+ZuEkR4EZoYnKznYjagvPZErknnJCcQwjKy0mXC9cjNotjuV0mzOf56rDi+MGBHKJpeegO8spCgKLpcLF1xwARYtWgQAaGhoQNeuXTV1LJZl0dTUhObmZqRSKbjdbkSjUezYsQOTJk3iHJZutxsTJ07Etm3bcMUVVyCZTGLjxo247LLL8NZbb+Gbb75J2615+PBheDweNDU1IRaLoV+/fojFYlw8OUVRSCaTmDp1KkfJkF2jyWQS0WgU7e3tHC+fqfLm12m23+9okBtHSivGbEHOWZmJTFp9UwAQj8e1W942rIlM/AmpVAqpVIqzbAhvzLIndl3q6ZiFhYXo2bMnKioq0NbWhs2bN2PChAmIRCKYMGECHA4HKisr8cILL2DLli2IxWJ4/fXXsX37dixYsAAffPDBSdv0y8vL0bVrV/Tt2xcDBw5Ec3Mzli1bxjlKiXW9fPlyXHfddTjllFNw5ZVX4vPPP8eSJUswatQoFBQUcJa9DRsdDRmd5y2WPtO0Zlm2Wr3UYnJYKWRIrSxS35lKpRCLxfDZZ5/hvPPOw6pVqzjLXKuyoyiKO2nw1FNPRWVlJRiGAcuyqKmpgdvtxtdff43CwkJQFIWHH34YPXr0wLx58+DxeHDKKaeklU1WF6lUCg0NDYjFYjjllFNw2WWXcdY5kdHj8eDRRx/lrHQA6N69O4YOHYoNGzagqKgIx48fz8i5aSt/YyHXd9VGUpm9mrHSWJeCYbRJptyQ2ZWlRC9kS45sQo0DZtSoUXj55Zdx2mmncQo4U3qA//f+/fvRp08f7hmhMfbt24dDhw6hf//+6NWrl2g7tLa2gmVZ+Hw+0QOwiIInSj4ej8PlcmHjxo245ZZb0NbWhlgshvb2dlHu3kZ+IBfKm1+2keGJemghKdrEkCPh5BS3Gus9GwpTTsbOwElK1bHf70ffvn1lt7SrhVhES2VlJfdvYkXRNI3KykpUVFTA5/OJ1jtR8D6fD/369ZMtg6ZplJSUIJVKYdeuXVi4cCFCoRDC4TDi8Xha+VaCFl9LR4Qcr8x/LpXG6HrJt3pWpE0A9VarGLQskYwaYEqdXqqcXA1uMwap2pUQRVEc35zNUCiXy3VSRAgfNE2je/fuipy1sC0bGhqwdu1axOPxtB2ZSjG2NrIPI4y6bLRlriYJpXSKDkurWSv5BmH4XbYhPBkQSJfp4MGDeO2117JCKwjDpOQ6J1HexcXFmsqIRCI4fPgwYrFYpuJqhtZ2VqoDM8Pi8h2doV6U+pOmaBOzK8woBSfW6YVKlB8n3ZEhRjMQsCyLPXv24PHHH0dzc7Pl4pnVKi+Srq6uDrt27UI4HOZ2coq9r0cpaqkbK9VhR4VUHLhR+fL/nQsDTM03adqk01E6pRGNoYUyMtPCErNi+RNTIpGQpVAI533s2DFd5VsB5Ps2btyIBQsWwOfzobCw0JTVhNkD2WoTqI10ZKtt1NBBOb09Pp8sX6GsauTWGjqpty6UZONbEnx4vV5ccMEFWLhwoaHXmWUbZJI6ePAgDh8+jAkTJsDlcmHx4sWWs5aEgzJf+n+uwe/j2eK3jYxEM0NmWctbT4Fq+EyCbHRcMUvGilxiphtvtK6SHA4Hrr32WixatCivFTdwIjJlw4YN2LlzJ4YPH44xY8bg/fffF62XTKHUv41Y0RFFZSv2HyDWv42uH+GqykjKxAx57R2WOUKunZiPP/44nn32WctNYnrAsixOP/10/PSnP0V5eTkefvjhXItkw2B0hH5qNBRNLj2bb/LBYpCKG80H2dVAbFlOYqIXLFiAGTNm5P2ASKVSaGxsRDKZREtLCz799FPMnz8fqVTqpEsg1IJvVfMdYkZZ8UbVeWcLd1QTcmy041IM2axvQ0IFjbYSzfYU65VXS0x6plDDeer5Dn6dil0gvHz5cvz4xz/mbnzP58FPUSe25dfX1+PVV1/Fpk2bMH36dO652voTUiE0TcPpdHJ1ZGT4n1zZYk5nGydDq+/JKGS7PZS+TdbyNloBSsFMi1cs71xb12LyaOkYQmtaKg0/2sLj8WDx4sU4++yz4fF4OoRioKgTR8n26tULM2bMQCAQwPLly+FwONK+Xa69ST3wd5g6HA44nU7ugorGxkbu6NlwOKz5lEIzLEMz2y8frfp82qRjFPLbU6UAMes+m4pbaRDITVp6B5AUHfTKK6/gvPPO4+6WzGewLItYLIZYLMbdq9mvXz9s2LABO3bs0NXGNE0jEAgglUrB5XKhV69e8Hq9qKmpQVNTk+z+AGEkhB5L3ajVYq6sQ6sqOCNgJIWixVBTSmfoqYJKEMvLKOtezgLNdccSyiAXjqSUj9Z3nE4nZs+ejcsvv9yQ80tyBT7VBoC7eIEoP6/Xiz59+mDw4MGoqqrSlDdN0/B4PKioqMCll17KnWK4a9culJaW4vLLL0c0GsX//d//4d5778XcuXO5M1Okopn4ciu1VzbCBrX0nVyPl84MTWNbTWZqOpUebtYsWMXxyJdD7SSihhJRC5fLhdGjR+PBBx/sEAMylUpxExDhpI8ePYpIJILCwkIMHToUP/nJT/DFF1+osmSJ4qdpGm63GxdddBF+85vfoLW1FTt37kQikcCIESMwbdo0JBIJtLa24t5778WePXvw7rvvIhqNqipDztggZ8qQ/mGlcdSZy5darWdSnp7wabl3shoqKHTM6FWwYg4eOSeGGU7XTKBWFrFv0rLk8vv9uPPOO007dCobIHHs/L/5+Pjjj7F9+3a0t7fD4XCAYRjO0SgHfh8iE8KvfvUrBAIB9OjRAwcPHkSvXr0wefJkUBSF0tJS/OMf/4DH48G8efNQUFBwkrNRzOFIJgexv/m/C/uEkvxa+3NHdYAKgxSMjss2m3nIBKo472zQJx0VcgNGTCFnMrEJeVePx4OLL75Ycz5WQjKZRDgcRiKR4La88+mSL774AqeddhqKioqwcOFC/PnPfwag/uwaMkDJeSjEup81axbHrSeTSdA0jba2NjAMg2AwiN69e6O1tZWzvsXajShofjnkd+E3iiHTcWfkKs7GCViJ48/pJh2jK6AjWBdSg1zPt7Esi7a2NsutPLSAoiisX78eDz/88EkOaJZlMX/+fIwYMQLhcBjBYBCVlZVpR83K+UL4z1OpFK677jpUV1cjkUhwnDqx5GmaRkFBAYATdNSqVaswYMAAOJ1O+Hw+BINBeDweOBwO7io38p7H44Hf74fP50MgEEAgEADDMHC5XFx6OQteql6EK898bF8jIVWHZsAKY0p1nLfSM7VOOCNiNIUVJ2Wt5lqZ82WUcmwp1ZUUBSQGfn6EDggEAtx7/P/nC7788ku0trbiqaeeQnNzM3bv3g2WZbmrzSjqxEXEVVVVqK2txY9+9CPE4/E0qkXJmc2yLJxOJ3bv3o2XXnoJx48f595zOp1wuVzcAV8kL4Zh8OWXX+KCCy7AX/7yF9TU1GDJkiXo06cPioqKEAwGwTAMGIbBSy+9hKqqKtx44424+eabceutt4JhGPh8PhQXFyMQCCAYDHKKXCijXmRLkdlQDzU+ErUwJFRQjzPOSFhdIWmJjjGKoiKKh68MrBB5oxUjR45EMplEY2MjFi1ahLfffhvxeByffPIJ922BQADr1q3DSy+9hFQqpToOm9Q1eYdhGJSVlcHlcqWlI5Y0P+KFTI6LFi0CRVHYsmUL6uvrsW7dOoRCIfzkJz/Bzp070bNnT5x77rno3r07/vrXv3JlPvjggwiHw2AYBi+//DLmzJnDxaeLUS02bAihWnkrKRUrcUFCCGW3SjQKH2q4WbW/q1165wPcbjen0GbNmoUpU6agsLCQu28TAN577z18++23YBgG4XAYgLoVHv/3eDwOiqJwySWXoKCgALFYjNusQ9KSeqyrq0PXrl1B0zQYhsETTzyBZDKJW2+9FU6nE/X19di7dy+2b98On88Hv9+fxn8DJzYCkUnixhtvxIcffoi1a9dyHLrW7fiZtrHY+LXymLah4WwTLR1JblmvNS+pfOTykIpCUZLPSMh1fOFvar9FKj+p8lmW5RRfvg5AovQIVVJeXp6muG+99VYcOXIE+/btQ0tLC2d1a52gSVqPx4Nly5Zh+PDhqKio4Dbt8PMjt/uQv6+77jqwLItt27bhP//5Dx555BH07dsX3bp1A03TaG9v53a1irVDIBDA888/j5aWFmzduhXz5s3Dpk2bwLJsmsWv9huyoYCt6AzNtkx6y1CSU23fzYg2UVKScu8ZrUCt2IHMzF/JIUfSJhKJtCNfrVJPWkBRFFwuF7p27Zp2p2U8HkdhYSEaGxtRVFSEtrY2NDc3I5FIcBOXVCQIP28SWtjW1gaKojB69GgUFRWJhhwSuuSvf/0rbrrpJpSUlKC0tBQfffQRnnvuOUQiEfj9fsybN4+ztN1ut+gEyv+7V69eSKVSKCsrQ3l5OZ5//nmsWLEC0WgU0Wj0JCrIaKVsVD5yiqkjWfJmfYMW/WHY9ngtH2OkglOKJsgVtNQHfzITe09v2GBTUxPuv/9+MAyDgoICnH/++Rg+fDh27dqFLl26AAAOHjyIESNGYO3atZg8ebLmcrIFmqbh9/sB/HBuy/79+zF58mQsWLAALMuia9eucDqdqKurE81DyWiIRCJYsmQJrrjiCs7RS8oTtsuwYcPgdrtx5MgR+Hw+lJWVYcaMGQgGg3C5XBgzZgxXptrz0mmaRlFREcaOHYstW7Zg586dOHDgAGKxmCqDxwiFwv9WufysqICzZW3zfR968zACHfJsk1wrbiKDGNcuTEN+12KlqHUOt7W14bnnnuPC3Hbs2IHhw4dj586d3NL/+++/x6hRo7BmzRpUV1fj5ptvttzAJPHXfM6YcMPDhg3DmjVrEI1G4ff70dTUhA8//DCNbuBHnhDwrXGSdzwex/LlyzF16lR07dpV9B2WZdHQ0ICpU6eCpmnU1taCYRicfvrpGDRo0ElyagWx7MeMGYNdu3bh8OHDmhzefOi11IWKSc5fpIXWy0b4ntllCetUj5Gm5j01+VJyis7lcnEP1Th9tHDamSpYOX6PL082Fbma8pWW8FJ5SaVTApGBTBBy4YoOhwOhUCgj5WMGEokEEokEPB4PgBN1E5laZfgAACAASURBVAqF4HK5uFt0jh8/Dr/fj0OHDmHOnDloaWlBJBLhIkmIAhfrNySahKIoXHfddXjggQdQUVHBPRe2y/79+9G7d2/QNI3m5ma4XC7DT2pkWRaffvop5s6di1WrVnFUkNY8hFAaL2retyLfLUS25Mp0ha005imKQiwWEy3EsGgTrTDKeSmXdy7Bbxw1kQ9i72u1lsTSkt+lnF5iVlUmS0KjwbIsHA4Ht4WdyOvz+VBXV4eioiKcfvrp6NevH+fg6927Nw4fPoyjR4/C4XBw8eD8PIVlJJNJ+P1+PPjgg5yT0e/3i9ZHnz59uH8XFhaa8t0URWHSpElgWRaff/45EomErjyE0Ms7W6U/WAl66kRLsIISMqZNctGoWj3vVqBRhFC1LMpy3aZSKRw7dgzdu3e35GAVTjTPPvssrrnmGrz33nuIxWIIBoP45ptvcOjQIe7UP/J/peU8mSRSqRQeffRRXHvttZgwYYJqmcyI5ojH4wiFQqK0T6bli9F6wknKiKW9De3gt4vsClwtbaKUkZ50WtMK39GzzDMKSnSRkuNRjlNUW55eyOXFMAyOHz+OYDDIWaxisuZq0k4mk2mx16+88grGjx+P4uJiVFVV4Z133sGmTZvQ1taGlpYWjnJJJpPctwhjqAlNRNM09uzZgy5dunBb15W+taWlhaNNjP7WN998E/fffz8OHz4sqcCVqA8172h532oRI1LjO5vyaaVOtCIej4u+pIncFHOs2eg4EA6Ep59+GmvWrElLk0wmsXnz5pytZoRnks+aNQvl5eX4+uuv8f7772PTpk3cRQ3ke/hnhwDiA4icQeJwOLj/q0EwGDTlggvicD527JglV45WRmfRUTmNNtHbKdU2jlqngFEwKlRLKS+11pZWvl24bP71r3/NRW3wnw8dOjTtdL9sQawsp9OJUCjEheb16dMHs2bNwocffoh7770XLpcLwWAQdXV1adYrfws6yYeiKCQSibRzw0kauTo2A4899hiefvppXVx3JtCyqrUCrOSfUQOtKxe5dJqVt1UbkY9sNGYmy1M1zshMQruUIEeDEGri6NGj+P3vf49x48YhHo/j8OHD+Mtf/gKKohAOh+F0OrN2M49UXZC/A4EAKIrC2WefjSFDhqCtrQ3PPPMMHA4HotEot/OSbPAhTkiWZTnlSHaiLl26FDNnzkRJSUlWvk0MkUgEjY2NaG1tVdwmr8eZLRUsIEVBWH3M54MCN4O+zYnlbeRH5FNn4ysOAqVQwkw6plY+lMhHzgDfu3cvvv32WySTSYRCITQ2NuKf//wn3G53TgcLPwKEon64TCEQCODgwYP4y1/+gkQigUAgAJ/Ph8bGRgAnjnLt3r07aJpGY2MjmpubOQvc6XTC6/VyR+gCuVl+33bbbdi+fTt2796dprjV9oNMV7N6HJ963jMaerh/s8qXMjLE0kulVdOOHXKTTrag1omoN6QoU4tLbTn8/6dSKaxbt45Tis3NzVwkxq5du7h/ZxNi3yqMimBZFkePHkVtbS0uvPBCbNmyBU8++STC4TDmzZuH1tZWTJw4ES0tLaipqYHD4UBLSwt3+FR5eTnuv/9+DB06lAsRlCqbDyOV13333Yd3330Xx48fT7ugQSzyQGz1plVxC6MatHyDVQ0kK4JvaCiNaS39KSfK20gOWimqI9vgV75wUIk1oBQvrcU5LNbgejzw5B3+hhYih9PpRCKRwLp16zB+/PiTeOFsQqrNKYpC9+7dceaZZ6KlpQU/+clPEA6H8dlnn2Hw4ME455xz8NZbb2Hnzp2Ix+NwOBzc2S933HEHZs6ciXg8ftKRsGaC1Hk8Hsebb76JY8eOaT5RkMCsyItM+1VHhV6jzChovj1eDXdjVnie1aDkVMxkmauXE88k9FKYHz9UMJlMora2Fq+88gqi0SgmTJgAh8ORE75RSt6SkhJ06dIFHo8Hd9xxB1iWhdvtRjQaxZVXXolu3bphy5YtOHLkCA4fPoza2loujLC0tJT7TpKvmu/K5NvD4TBWrlyJvn37IhqNoq2tTXIrv7Bd1YxLqb4hXLXoQWdV2FIwaoWmyXclN9jdbjf3UGzpJiegmsgGtWm1wsy81ZZNyhf73UgIl1pyVr2cPERZSTkzCY3idrvRp08frFy5kjvTWkwmM8GyP5xHIud8JZg+fTpefvlldO/eHe3t7aitrUVVVRX+85//IBwOY9u2bRg4cCA+++wzzhFr5je0t7cjFAohFoth8ODBuPLKKxGLxbBw4UJEIpGTvkf4byUY4QSXglweuea/86FcPQaB1PZ405S32rRGIVP+T09ZclBD5ygpUzWKV0p5q7UEhPmT0EAxq43QJ4WFhZg7dy6uuuqqk6gTlmVNPxuFZVlEo1HVjlOpOkmlUqitrcX06dOxYsUKzvo2Wwl89913WLt2Lc4991ycffbZ3JkyYjy3GNSsfOXSZ1N5dwaFbvQKTa3yzugOS6X35GBWpVqRrpGqQ7Hf5XhxYZSFlIKVs7yUls6EbyX/579Dfo9Go1i8eLHoMj9bg0XLQVBiKwpSVz169MDnn3+O0tJSs8RNA8uy6NevH0aOHIk///nP8Pv9aG9vN9x6k3rPCP7bpkzMgdBPpqhD5RIIt8eTTKWgh64wUtmqddxlE2qt9EyXxWosHClLXk1Z/PQMw6C4uBiVlZV4++23UVpaKnlbjxUGOn8lIRddoTT5GSUL+X84HMa7776LX/3qVxz3Tp5lMn7U+EGUqBWldHLvWqHNAfPlMJMu4delLtrEVt6ZQW3Z+aC8+f8mitrlcuHss8/GtGnTcNFFF6GyspKjXQh1YoWBzK8boiRpmj7phqFsKB9SRiKRwJ49ezBx4kSOMhGuerTkx4etvE/AVt4iMFIxG6VclTpOtpR4tpylSny5nGxyaeTKEf5OHJgejwcFBQXw+Xy4+OKL8dBDDyEcDuOTTz7BZZddpqocMyHn0JVKZ7Y8GzduxE033YQPPvgAFEUhEolg9OjRaGpqOomu0pKvEHL9UGrlwc/LKopYK7Ipt1Gct1SajM/z1gqzrE6tZeey86lxWgrTGjFgtcijJn+hVcqXlRwC1draCpfLhQMHDuDo0aMoLS3F6NGjNZdnBqT4fbl0ZoOsXEpKSrj6JRcdE4gpUykYRc9JPbfKmLLxA2QdltmwQMS4Rz3IB0dKNq0ZvvUm9p8QYg49odwE/IsRyDI/mUwiFoth3bp1eOihh/DSSy+hW7duuh3eHR2JRALhcBgAuF2sFEWBpmkwDGNYuKIZk3u+takV5FUjg1YZZS3vTD7YbNpArQy5hJSyFlox/ElMKa0QeutZTb4kb77Tkl8eUdz8PBsaGrBx40Y4HA4wDMM9SyQSaTx4rtsm1ygrK8Mdd9yBZDKJv/3tb2AYhtv1SVFUWtigFISrITXKQanelVaLVhjXHRmkbvmneUrBlFMFtVIm2eK9rQg1DmC535UGrhrnlVieUu8DOCk8kChlh8OBU089FdOmTUNZWZms9d4ZQeogFoshEAjg+uuv5xyokUiECxskx9Iq5SP1t1o58mmcZAIzv9NopyWBmjbVvD3eiEKz6dXPlaUgR02YEWGjFloicaRWCPx8+Jf3lpWV4aKLLsJdd90F4Adrm6IoMAyTtt2+sykQ4ITSjkajOHToEA4ePIjJkyfD5XJh7ty5YNkTx9P+97//RUNDgyqjxui+LdUmSn9bEfnav9T6ZwCNN+moydBqyLbillp2qo0gEKYjyk5rdIiR1ARfBsLLkv/TNM1dEDx27FhMmTIFXq8XHo8HNE2nHXKl5wb0jgDSni0tLaiursbKlSvx6quv4vvvv0+rjz/84Q/o2bMndzGEFNS2rbDd1PYNvW1kBW65I0GpPg3fx6ylU/H/bbTT0iqTjNroBikrSmvYmFYnpRoOVCodyZeEDK5btw4rVqzg3nO5XJwiYlkWDMN0St6b1H1JSQmSySTKyspwwQUXYNq0aYhGowiFQmhpacHMmTNRXV2NeDwuS5vwIeevkJOH77cQ6x9alLAVlXa2+pcWiljpuVZ5FTlvLcts4TtaO0CmUHLC5QpS9ZHtDq8UZaL2HT5SqRQSiQQ8Hg88Hg8YhgHL/nBRsJXaIVcgjshYLIYBAwZgwIABiMVimDRpEpqamjB69GjE43G0trZqUtzCtpHyb+htA63jyW5raSg5i9U4k4WwL2OwoQrCCYjQJoQyYVkWP//5z3HrrbdyZ2SLvd8ZMXLkSDQ2NiIQCGDGjBm47rrrMGDAALjdbmzevJnjuPWe450J7OiR/IVq2sTMBjYj72x2SOGyUWq1kglFIZafEoxWmHz5nE4nAoEAnE4nx32T3ZaE6yZXiolZgMIww44EviL+7LPP8Nxzz2H9+vVYs2YNCgsL8ac//QlvvPEGhg0bhunTpyMWiyEej2fNJyDsY5lSl1ahwIykYNWWk8vvVnUkrNRyX21sqRI6gvIG1CltNREERqUTax89oU3EyiZwOBzo0qULTj/9dCQSCVRUVGDatGkYN24cysrK4HA4OOXFPzJWrB6sMOiNBFHcZGC3tbVh5syZAIDGxkYcPHgQkUgEHo8H9fX1SCaTGfdVYV1alT7MJrKhwLX2YTXGmxh0bY+XcqDJPVd6XwxGLd2EERpa5dALKa5RTC6joDRhSMkmBbFwMMLD8SNMKIpCQUEBhg4diksuuQQjRoxAUVERCgoKUFhYmHYeuNRJg1rkyieQ+g+FQvjlL3+JKVOmYMmSJdi4cSNisRgikQh3W31ra6tmRzSBFp+S3OSdycTe2ZFJiK5RsATnbbRyzWerLpMwLTWQss6EUTp85U0u6fX7/SgvL8d1112Hbdu2YfLkyejTpw+cTifi8ThY9sRZJwByfsN8LhCPxxEOh8EwDKZPn47+/fvjnnvuUdx4I9V2chFIYpOt8N9KxpcS8mEcSU1G2Vx9qJkE9TgklaBZeVvZwSHstLmSU00dKVnrZkBKSfOtZL61TNM0unXrhmAwyF1/NmnSJFx22WVYtGgRevfuzVEk5BsIVWLlAW8Gtm/fju+//x5jx46F2+3G1VdfDZZlMWDAAGzatCmtjtRCax9Sk05uolBTrk3JWAe6LG+1CjxXil5PqGKmIDOrUufOpMPL8WxyZQkVNbGmiaL2+/0oKytDbW0tevXqhfLycuzbtw8sy2L06NHo27cv/H4/+vXrh/Hjx8PpdOLcc8/llHRrayt3oBLDMGmRJizL4ujRo+jevbvp16PlCqFQCPv378ehQ4dw4YUXcpMgy7Lc1WpGQ40lZ0T/s7qCttJkIle+Gtm0WueK2+P5GSsJo0dZ5ruzUmu5cs4lIYSTgZplsFi70DSNAQMGwOl0orW1FYFAAMFgENFoFNFoFEOHDsWECROwePFiXHfddZgyZQoWLFiAUCiEMWPGYNiwYSgoKEjLs7KykiurqakJPp8Pbrf7pBMHWZbF1q1bJS8r7ghoaGjA0KFDMW3aNO6bk8kkDh48iPXr1yMej+daxDRIGQD5zoHnSpHnqp5UXcaQSVSJUU5NLcglraM2EkdvtIjS+0Luk+x+3Lx5M4qLi/HBBx9g1KhR6NWrF7766its2rQJt9xyCyKRCN544w3ccMMNoCgK0WiUu0ldza04u3fvhtfrRVlZGSc330EXCATyThloBWmLZDKJhoYG/O53v8PGjRuxf/9+jvM2sm+qteaEabVEi+Vrm1lNeeuJ8iLI6CYdOceJmudqYVTHNoPS0eK8UTMgpJSuWtmlyhIqb5qm0b9/f1RVVcHr9YJhmDT6RCovqcFuQxx8i9vhcCAajSKRSOCBBx7AG2+8wV3WLDxCVwmZ1rlS2+lV3vnUJ7IlYyYKWu6ZbuWdiefaVt7qyzZDeZO/yU7IwsJCrFixAv369QPDMCfd3ELyE/5GNo/wz+e2kY5UKoVQKITGxkZ4vV70798fR48ehdPpxFlnnYXq6mpEo1HurkrAGspbSQ5beZtTjunKm2zSAbTFd5uVzuw81ORvhvJWoke0UCvCSYDvrHQ4HPD5fPB6vRg2bBiuvfZa/PznPz/JsSn3PalUKm3jjY0TIHWUSCQ4yolhGEQiEcycORN79+5FY2PjSeeXmElbaOGAtfDdVnISqkG2ZcyERhGunAEgGo1q36STDZitdI2KeFHTmYVKUMo5KZRHbWiWmudCy5kfBZNMJhEKhRCJRLBhwwb4/X707NkT5513nqwzkS9/R3U6ZgpSx8RPAJyIQnG73WhtbcXEiROxb98+bN++HY2NjYhEItxOTD6yZdGK9VkxGjTTCAqxsjoCtKyUteZJoBR9Ysg1aEYpyEwgVZm5litX4LeJ0HJmWRbhcBjV1dVYsWIF2tvbMXHiRLjdbtA0jXg8LkqpdKTBZwaEk6bX60VVVRWmTZuGvn37orW1FU6nEy6XC9FoNO28c7E8jJaH/JbpmMgXKsVMOTKtQ7V1JVeOLjNKyuGltlBhXkZCbNlhNuTqAfjBmSX3vp589ZRHnsXjcRw8eBA7d+5Er169QFEUd5gU4WU768RnBFiWxWuvvYY+ffrgiiuuwPjx49GlSxcA4HwQ/H8LL7jQ2/ZicmgZi3xL3KjxY2ReWsoEtH1/viHntAlgnOWea6tby1JTryMpk7riUyhEUW/btg0LFixAIBAAwzC48cYbwTAMEokEF5liQzsoikKPHj1QXl7OHZk7evRo7Ny5E1u2bOF+I2kJJUVoKXK3pRTMpgIzgRUscDldYJZcmeQr9q5SfqpCBcWg1uHWkZyWasuXonDkokTUPJeClveElhWx/LxeL1wuF5YvX44+ffqAYRjueFdbgWsDaYNUKgWapvHee+9hzJgxCIVCWL16Nf773//is88+g9vtxowZM7h0xAJPpVLYsGEDtm7dKqnAlfqaVHo+zODb88GZmWvlrcZZyYeuUwXVQks0hJZ3tSKX3LsaTpGfRiqdmMI345vIcpJY4SQ++a233sKYMWNw9tlnw+Vy2Q5KHSCDkJz78vbbbyMSiaBXr144/fTTcc4552D9+vU4++yz8eKLL3KOS5I+Ho/jwQcfxI4dOySjUoxSQGqVfqaKKVfQaxBpLYNPz2hVzrrLVQoV1DOjG/lcK6ysvJUg9q6a/LSWKeWIJE42t9uNBQsWYOzYsWk7I9VGIdj4AclkEhRF4be//S3WrVuHaDQKlmXRv39//POf/0SPHj24tKROjx49ikceeQSvvfYaZ3nzKS+Slu+Q1mt5a6XmxNo93/pENn1hWp5ptbxllbfH42H5HYQPo+kQs6zLXMBI5W0GxJy6xGFJURSuvvpqHDhwALNnz8Y555wDj8cjulrIl8FqJUSjUcTjcW6TFB+kPm+66SYsWbIEbW1tac+JkuY7APmrJy1WtNrVspo2zxflbYZ8Wic6uWdSv0nFeetS3loUjFZllIkzjkAtD5gJMgn1kXNaZmvC4Sttcg8l2UnZs2dPzJ8/H4899hhmzZqFX/ziF2npbZgHlj1xCuMf//hH/Oc//4HD4eBOagyHw0ilUiguLk477CoWiyEcDnNnqme62tUbvmb1vpEN+TKhl0xT3oD0JhM5dHTlzS9PKZ0UpBxHZkJofZMjTMnfa9euxamnnop7770XxcXFeOyxx+zb4LMAvi8iFAph7dq1WLBgAV588UVEo1Hs3r0bQ4YMAU3T2LVrFz766CMsWbIEGzZsQCwWU3Wtmq28c1+OEcpb1mFJnCXZWs7nOlokV8j1d5NlN1HiANDc3IyrrroK27dvB8uyOHz4MP71r3+ldTD+XY02jAHLnriNyOFwIBgM4vzzz8e4ceO4s9KHDBnCnTFTXl4On8/HhRnqgZSho5Ues/uAOqg19NQYoKqiTaQ83dl2RloJctwfea7W6pazZIyOxpGC3+/H559/zqXp2bMn5syZg5aWFrAsi5KSkrSVV319PSiKQpcuXeyBaxASiQQcDkcaF06UNnCi3pPJJBiGwZYtW/Dll1/iq6++QktLC/dcbmyq5bmVFHkuo7r0wEr9U03UkFp5dYUKmhlyozd/pUrIZWcTk0MLN6Z20CmBP7iFoGkap556KhwOB3c5bmVlJRKJBCiKgsfjSZM/GAxy5dsWuDEg1jNN09w56ORWIj6X3dTUhBdeeAGjR49GRUUFduzYcZJSFfYLtUojn5SyWsj1+3yGqTsstXYGIzuOFZS1UQpaDpl+J3k/EongrrvuAk3TiEajnLKeMWMGEokEampqcPXVV3O7LsnZJx11YOQCfOpDSrkyDAOWZTFlyhQMGjQIw4cPRyQSweHDhxGLxdI4cz3Qy3fzn3XW/mDEd2vJQ5XylltSSaEjzuBCiC0n1aZX+j3bAyAWi+HFF18EcEKJeDweJJNJ1NfXY9CgQXA6nfjf//6HcePGwefznSRfLgdsR7T8hcfukjFIdsNecsklqKurQ3t7O7xeL7xer+T3y1Eoeuss36z0bBgZ2Z68ZL0ccvwWeWbkoLGSN9hsZGIdASfXv54QJeGymh8zHI1GMXjwYNTX16OkpARTp07Ft99+i4aGBs2TltnItC7zBcK63r9/P9avX4/du3cjEomo9rHIKXlhXfJ/IwqQv7IU+9uGfvDrX6k+NdEmwkY1uqGyNQCNohq0fr+Y4pTz6mcqp9jEq3YFVVlZiUceeQTDhg3jtm1PnjwZ+/btQ3l5OZeHFQZrZ7kcgt92DQ0NOH78ODfZtra2SoYJSvHfctazmr6nNSKlo8MMfWiY8taCbMRaC5HP1pdWxW0mR15YWIj33nsPpaWlaG5uxv79+7F69WosXboUZ555JsaMGZN26YCN7CGZTIKmaSxZsgRHjx7FmjVrsHnzZrS1tcny3URRyzkx5dBRlLPVeHkxBa16FS3XgGrONuELoeX3TNOa8b4Z0BpmmYtJT4hDhw6hS5cuaG5uxj333AOHw4EpU6bgvffeQ3l5OUaMGIHhw4dj4MCBmp2zNvRB2B9aW1tx8803Y/Xq1WhpaUE0GlXcIq/Ft9IRrWphNI6R+Rr5vvBvqbNN7CPjbJyEX/7yl9i9ezfuvPNOLFu2DLt27UJ7ezueeuop3HbbbSgsLMSTTz6JHTt2cCFtNrILsupJJBLcsQY2OhdMv4whmxt6tHjbs4FMHZJiVruR9SSV1xVXXIFLL70UNTU1+Otf/wqfz4enn34ad999N4LBIN588008+eSTGDlyJD755BNUVFTYFIoJIJY0afdIJMJFldTX1+PYsWPczUdyTls9/aajWNtCmPFdQms+W9SM7ssYCDKlRcxWrLlQ3Go2RIilk4KawWeUYne5XNi1axcuuOACPProo5gyZQri8TgaGxu5w6uee+45zJkzB/X19SgvL+divzvqgM8F3n77bbS2tuKnP/0pCgsL0xRCPB7H1VdfjTVr1qCxsZGzvKWc0+Q9sWdaw1vNoh6yBTNl1qO81fDduo6EtZV3ZuWJNYSYp18uHDMb8p9yyimYP38+3G43Lr30Ulx66aV4//33UVFRgUAggOnTp+P6669HQUEBUqkUqqurccstt+DDDz/E9ddfjwcffBBDhgzhdgPayAypVAq1tbVobW1FMBhESUkJWlpacPXVV3Pc9tatWxEKhbj7RsWglbdWE4ViK29j885EecuONqmYYLE0ehWzGiWWCXK1mSCTnWpSacyqH5/Ph/Hjx8PhcOCZZ57Bfffdh5aWFnz77bdgWRbHjh1DKpXC5Zdfjj/+8Y+gKAq7d+9GU1MTLr/8cnTt2tVQmTo7mpubsXfvXlAUhbq6Otx9992Ix+NYvXo1d1yBmvO7lYwHsd+F/1abrw1joGVi1G0qGalEsh1hYZZCV6r4TCNyzFDcwImzMp588kkuZripqSnNCVZdXY0vv/wS55xzDpYuXYo77rgDd955JxYvXoxrrrnmpEsFbOgHy7LcXZZbtmzB559/jgULFqSNEWHYnxarWu3vtoLWjmxHsljmYCo7Hjx3aGhowGOPPcZZc1deeSVSqRRWrVqFY8eOoXv37vB4PFi5ciUKCwsxe/ZsfPbZZ1i3bl3ajef5vJwGrLPlOxgMIhaL4ZNPPsE777wDQL1lbMTGKbEVd762KR9W+gYxWbTKpypUMNPZOZeVls3BKOW0E1pJWre0i5Wj55kc+MvwefPm4V//+hdmzJiB0tJSlJeXI5lM4u9//zsCgQBYlsWiRYswYcIEuFwuhMNh1NTUoKGhQZJ/zQdYQXGT9nvvvffw3//+V3V6NemkFIYRfTJfIBeVk2/IiodJ68YBs8u0ApQiUszaQcm3LoXWHE3T6NGjB77//nsUFxfjD3/4A1paWrBixQocOHAALpcLRUVFoCgKc+fOxdixY/HJJ59gx44d2LhxI4YNG4aJEyfC6/Xqkt1I5OsmEyJ3KpXSNREKVw9iDjExBSZGXeZTvSnBat9ixIpGUXlr2ZUlli4XdIiVGkqNTGp2XWpxKGWC9evX4/TTT0/bsXfHHXfg3HPPxY033ojGxka0t7fD7XZj+fLlqK6uxsCBAzFhwgS43W7T5OpsUNuHtdIkev0ufK5di3xWAZHfynIL61ZJVs07LPmzttpokkye6wU/X7MbTM1STC/1lInsUktiOXqnoqICbW1tiMfjSCaTKC4uRmlpKS6++GLU1NRg69atKCwsBE3TKCsrw7Bhw3DLLbfgo48+stRqJx9pALX7A5TA/265fidXR2IKxErta0UY3d+U6tveHp8l5EKJUBR10t2GTqcTNE1zz4RyPfDAAxztQVEU7rnnHtx6661wOp1wu92gaZq7rfzxxx/H6tWrMX/+fAwcOBC1tbVZ+7aOiEQigWg0ipkzZ+LZZ5/NtTg2LA7NB1PpmX0z3cijt7xsWQ1GLSXNCgUETpyFQXhtPpcq5FX9fj/C4TC3zHzmmWfgcDiwfPlyXHXVVSgsLMRZZ52FM844A1VVVQgEAqAoirt7UW6jTr4uX9YDNAAAIABJREFUuY0C/0JvPliWxTvvvIMHHngAra2t3EFTUpDyj6j9XSyNXBlGrQhyjWzJraUcNVEnujbpGKlIxX4zO747m3HjapCJ/4CfVuhUUlxe0TScTieWLVuG22+/HXv27AFN09x7Xq8Xo0aNwurVq7mbWYjyoGkal1xyCUaPHg3gxMXEBw4cwPz581FUVASXy4VUKoU5c+agf//+uOaaa3R9Wz4gU2NArD7i8TguvfRSbN++HYcOHVJ0UuqN6c7EoLFKCGWmsLrxoFUu06JNctnYVutsRsXlSg1Kpe+laRr//ve/8frrr+Puu+9GUVER3njjDSxdupSzmt1uNyiKQt++fVFbWwun0wmfz8ed6z116lSEw2EEg0E4nU5UVlZyZ5rs2bMHEyZMQO/evVFdXY2dO3di+vTpnC+AcIGvvvoqioqKMGrUKO5CBzNh9Mor0wggYTs3NTXhwQcfRFVVFdrb2xXLURN/Lae45d6T+q0jQMzh3xG+NSect5RDxcgKtWrjKDmJ9Dra5N7x+XxYs2YNPv30U6xfvx69e/fG4MGDUVBQwF2qUFRUBLfbzTkqzzzzTPz2t79FMBjE7t27sX//fqxYsQIOhwOFhYXweDygaRovvvgiQqEQRo8ejb59+8Ln86Fbt25IpVKoq6tDJBLh5OjevXvazehmg0weVl32h8NhLFy4ME1xy0FJbq2Ti5TTuiPFQgPmG5JS7SJXj2LjVWvdm2J5mxWjrPZ9qwxOAj1cpNY8CYQOSpL25ZdfxqxZs8AwDJLJJEaMGIGzzz4bH3/8MQDg2LFjKCwsRCgUAkVRmDlzJoLBIHw+HwYPHoxUKoV4PJ6W5+HDh9HW1obi4mK4XC4uOoWcgpdMJpFMJgGc4HvHjx+PhoYGFBYW6v7ufAQ/tppvtJALnvkQM2bMVD5Grk6sOv6EsLp8apHzY+CsRnFYCWpWJ2IhkaROCa8di8UwceJEPPLII9i7dy/Ky8sxcOBARKNRHD9+HEeOHMHWrVsxYMAA+Hw+fP311zj//PPxhz/8AT/72c8wZcoUAMCAAQPSFNA777yDX/3qVwBOcLeRSATJZBIulws0TaNLly5pm078fj8CgYBJtaUN2VCMfPDpLWGbqfWFiPHhcvLLfaNW+qQjKDyzvkFvGLAU1L6neHt8NmBGOfk2IfCXTGLLfGGcNk3TKCwsxKmnnoq+ffsiEAjA7XbD7XZzkR+FhYWorKyEz+fDCy+8gIKCAtxzzz1YtmwZWlpaMGnSJDzxxBO48MILMWrUKPzoRz/C3XffDZ/Ph0QigV69eiEQCKQdUsVXCK+99hqqq6vBsizcbjeam5tRV1cHhmGQSqUQCoW4jTtWuKwhl3HfUhSF2GRshjUs91wPTSL2Xr7F1ecScnWulkpWHW1i9YgQvnKxuuLOtIMTJ+MVV1yBP/3pT4jFYrj99ttRX18PlmXR2NiIYDCIcePG4dZbb8X48eM5a5hhGDz66KOIRCK48cYbMXjwYNx///0IhUJob2/Hvn370KNHDzAMg7lz5yKZTCISicDv9yOVSqUp71WrVuGGG27AnDlz0K9fP/Ts2ZOLHY/H42lprTCosxXlpFQ2oUza2trSon6Mjv6Qs+i1OtGtPqZyjWxb9YBCnDf/MgYtjac2rZEdIp+UtxBaZCZWt9frxbFjxxCJRDjrNpFIIBaLYefOnfjmm28wYcIEjBs3Dps2bUKPHj3gdDpRV1eHQCAAl8uFWCyGzz77DPfccw+qqqpw6NAh3HTTTVixYgWuvfZaXHrppRgzZgx69uzJUSDRaBRerxfhcBjjx4/HypUrUVxcDAAcJ+5yuRCPx9NumE8kEnA6nZZQ4rlALBYD8ENb79ixA7fccgs2bdrEXaggZo3pVcBSkOtr/GdqlHe+tWU25NUTaKD0e8Y36djKO3sQcqJEAfI3efh8Pi6kT7jMJv9Fo1F8/fXX8Pl8OOOMMzgrj6Io7uAjkmdbWxv69++PVatWob6+HmeeeSZqamrgdDrxwQcf4Nlnn0VZWRlWrlyJRCKB/fv3Y9myZbj55pvh9/u58kOhEBdlUlNTg4kTJ6K+vh5dunSBw+HI6oC3Ul8gvgeKotDW1oZPPvkEs2fPRlNTE5qamjjHrq28zYMVaWDTlbcePszIdFphlQGrBcJGJBRHly5dMHv2bFx11VWgKAqHDh3CXXfdhTvvvBPnn38+F13CH3jxeBzRaBQURWHVqlWYOnWqKOdMLD5CdbS1tcHr9XL5JBIJLv9kMokjR47gueeew5QpU3D++edzzsmGhgbs3r0b3bp1Q79+/Th6JZVKceXG43GwLAuGYUQjYjoDWJblJsy9e/dizpw58Pv9ePXVVznLXOwdJWhR5locpFJy5IvSFtZLvihv4W9Syjsno4gfNmVGheqNlc41+HLTNI3S0lLMmzcPV199NQKBAAKBAPr164dXXnkF48ePT1OC/MHldDrh9Xrh8/kwadIkToEK66Wqqgp/+9vfOIvY5/PB6XSCYRhs27YN0WgUjz/+OJ555hm4XC60trbio48+QiAQwLhx45BKpZBIJFBYWIjBgwejrKwMALgLGshW+Wg0CqfTCZfLlXdtYiT4dd/Q0IDVq1dj6dKlSCaTGfVXLQ5HKf+DUh75OqYAcxypwtUx/z89DmA+VFOouaBNsk1xWM0Sl1uekg7gcrkwf/58TJ48mYuLZlkWiUSC29lIILSK1Foa9fX1aGxsRO/evTnrm7xTX18Pv9+P/fv3g6ZpVFRUoKmpCRs3bsQ555yDrVu3YsiQIQiHw6AoCsFgkNt8w4/jJtam2CFYnRHEWbl+/XpMnz4dsVgMiURC9E5Ks/qt0rjrKO1k5neooZjUlC9Hm/BW0tnhvPV6wY2G1RQ2H2KNLQwDHD9+PF555RVUVFSkLf+MVoQkT1Ku8DeWZRGPx7mdlzU1Nejfvz+3zCfUi8fj4erc4/EYIltHBOG+Dx06hI8//hhNTU14+OGH08IxzYYa5a3WwMoHRW+2jEZEj/H/LaxvKeWtmjZRs/TQEjGRD41uFqRCMPkK/OKLL0YwGDypYc3gi/n3UJJyyCW4yWSS46rdbjcKCgo465FhGI7OaWhoQHt7u624VYBlWXg8HowdOxY///nPLeEDEC77OxIypTGyCS1yqu41VqsAqbAqK8koBamJiyhRmqbR3t4u6VgycuJTym/79u3Yu3cv3G43PB4PF8vNdzw6HA6Ew2HZY0w7K/jRPyzLIhwOIxwOg6ZpNDc3g2EYXHzxxSfRVkDurVopZ1qu5epIyKQuDaVNzIpKkXtXivu1MvgDgMhM0zS3Q5JYP2vWrMFpp52WS1HxwgsvwOv14pprrknbbm9feaYOpH1TqRSi0Sjq6uqQSqVQVlaGSCSCUCiE2tpa3HTTTdiyZYvkblYt0PNeZ1DIZn1jRgpY4V2KovSd521l5HNn4w9OYnE5nU4UFBTgtNNOg9fr5aJFco2bb745zZmWSqVQU1OD3r175ywUKx/Aj6gCTmzSOXLkCFwuF7p3745YLIZIJIJAIICJEyfiyy+/xMCBA1FXV5eWhxSMoDfs9rIG9I6fnN0eb1aIoFR5uYScXDRNc7eyFxYWwuVy4e2334bX67UEFwogzZGZTCYRDAbTnhMnameEnJXc1NQEj8fD/VdZWZmW3uVyIZFI4JtvvsF3330HmqbhcDg4P4OacrU+U/sdNuTBnzyF9Z2tOuycI85CIBaa0+nEqFGj0NjYmPWdiGqxY8cOjB49+qTO2pnDAGtra9Ha2pr2G2nToqIixGIxxGIxLmqHROfwj9etra3FkCFD4PV6OUcxn1rrrHXbmaCnjfNWeQudk3ynkNVB6BJiaTEMA6/Xi6uuugpVVVV45plnLOn8GzBgANavX8/VcWtrK1KpFA4cOICWlhakUilOOXUGHDlyhDvBkd//UqkUYrEYmpub0dbWxh1h4Ha7wTBMmiL3eDzo3bs3PB4PNm/ejPr6elx88cVcWqNPYxT6iKTGTL6MpVxBaeWjtf701HXG2+PFQt2k0oulVcpfqVyrUiV8CGdVMiBpmkZBQQH69u2L8ePHY/bs2QgGg9zNKlaiTghIp6RpGqFQCPF4HF6vl7uVnqCjWItyGzHC4TAYhoHT6UQymeQ23ASDQW4Cq6mpQbdu3cAwjGKeBI2NjXjqqaewYMECtLS0oKWlRdOkKDcm1cZt5yuNIqZXcvkNWssW27RnytkmYlxPNiNOzMwrU8g1GrG6KYqCx+NBly5d0KdPH7z55psoLS0FgLzYlZhMJtHQ0IBgMJi23E+lUrK3yOcTpJQe2cTU2NgIl8uF2tpaHD9+HMOHD+eOAUgmk4hGo0gmk/D7/Yp0GEVRCIfDcDgc2Lt3L3dJxkMPPYREIsFZ60LZMvkuMRk6AnKtsPVOHGJUmW7lrcbqzsTz3RmVN9kEQ6JMXC4XfD4fLrvsMsydOxcOhwPxeBwOh8PSx6iyLMudWxKLxbhJKZFIwOv1WlZuveBH3PCjSGia5uK3yfG4NE2joaGBU9pkcpO6po6AhAqGQiEkk0ns3bsXf//739HW1obPP/8coVCIo9uCwSBisRjC4TB38Bc/P7VjV+xvqXT5hFzJrLdcqRh/U5Q3H1rjwI2gO3KprPU0EH+SIwc3eTwe+P1+xONx9OnTB6tWreKW4Xxr1sogDjj+NntCoxAFT+LX8w3CPsanLgh9dOzYMVAUhdLSUo7ecDqdaGlpwaFDh3DaaaelHQ5G2pQfrcDf3bh48WLs3LkTw4YNw4gRI7B+/Xq43W5s27aNo1ACgQB341F7ezu2bduGFStWoLi4GNdeey2efPJJTtHLnZsi1SZqqJV8QDZkFRqvRihv/m+647zllCy/A+SaMrECxKwWqdmU/Jvctt7W1oZEIsH9Hg6HEQgE8mKgkLC3aDTKRc7wkY/tLKa0+ZMTUdL/f3CBok7cHtTU1IRwOMxtxCH/djqdXPuKHePLL6e5uRlNTU2IRqPo0qULzjnnHBQVFWHy5MmclR0IBBCLxeBwOJBKpbB582YUFBSgvr4eFRUVcLvdnNNbjCvPh35lBIRj0KwypP5WU7ZcGtlJVA3nLZVJJso6000G2VQIcjMreUYGJaFDSKwuf+AQS5S/Mad79+7o06cPmpqa0NbWhm+++QY1NTWgKArRaBSpVAo9evRASUlJ1r5XL/iXEJNYcP4FEPmiMIhTlm+4JJNJJBIJ7gAucs0bacumpibU1taiubkZ+/btQ319PcaOHcvdL0roJBLXL1YXZEIgKy6+HOQ0Sb6MLS0tcLlcYBgGx48fx5YtW7Br1y4sXryYs/S//PJLhMPhjGnNfGk7MeSa/840XcYHUxkNo5WvmQ2ktIQkNIHL5UJBQQEKCgrg9XrTwr2IUmcYBi6Xi3sGAJFIBKlUCt26dUNraysWLlyI4uJiPPHEE5gzZw6+/vprUZm+//57S4Xl0TSN1tZW7N27l3PWAUiLac4H8DfJkP8Tios8J78RK3rr1q346KOPuGvoNmzYgPvvvx/Hjh1DfX09d3SunA+D8Od8pxXJX7iaoagT56+T44E3b96M559/HjfddBP+/e9/Y+7cuXj++ecxaNAgeDwebkKQg1h4m9Kka/WQQmJcWVlGvdDNeVvBajbSklcLsbA/mqYRCARQXl4Ot9vNXeZLDnAiMdCpVCrt7JJIJMJZc/3798fy5ctRU1ODRCKBPn364MILL8Qf//hHTJo06aRyk8kkKioqsGfPHktsowdOXDAQi8XQtWtXAOBOGSQKK9+st2QymXbbUCqV4qxmfl8j1jHZAr9v3z4MGjQIH3/8MT799FOEQiE8+uijKC8v5yYBLXWh1vol6WKxGEpLS9GjRw8sX74cV155JbZv385dniEX202gVj6rW+aZRH4YUbYR6XWf520EXaL3Hak8jHB26oGQLiFRI926dcOsWbNw7bXXonfv3tySlS8viUh48sknsXHjRpSXl6OxsRFHjx5FSUkJd4b3gAEDMGnSpJPKtOrgEENrayuqq6txxhln5FoUTRD2L76jr66uDr/73e/w2muvIZlMclY3RVHYtm0bKIrCgAEDEAqF8NVXX2HChAmor6/Hpk2bMHv2bDzzzDP43//+h/LyclOPgSUO4q5du6Kurg4Mw3BX1jU0NHCrIrEVm1J8uFK5wnetBqtHn9jK20SIKW+aplFWVobXX38dlZWVCAaD3Il7YgOUKIRIJMI5+oATN9fMnz8f06ZNw+mnn46amhqUlZVx1IpVB4QYrG6NSaG6uhq9e/fmKAo+dZJMJtHc3IypU6fiiy++4KiwAwcOIBwO4+OPP8Yrr7yCxsZGUBTFOSqJszIQCCAcDiMWi+Gyyy7DCy+8YMo3iIUzkmvWHnvsMTz11FMcTSf1LmAr71yUq1V5y07/ZtAbRuWXaw6LL0MoFMLvf/97fPvtt6iursaBAwcA/KDg+f8Rp6bP5+MoFIqiUFhYiNtvvx1DhgzB3XffjdLSUo7PzEWna29vT9sQogUUdWKjTm1trWiYmpVALNVUKoXy8nLOycx3WBKuuqCgAAsXLsSSJUs45dizZ0/07NkTTqcTzc3NaGxsRF1dHZqbm9He3o5QKIREIoHjx4+jubkZv/jFL/DYY4+ZVidEZmIcENkB4LbbbsODDz6oOi8hNWTldrQy9NSdqigVuUwZhhF9mKuQwFx3HmGFEtrE6XTC5/Ph9ttvx2WXXYa+ffumKWYxiIUXkbS1tbXo1q1bTrfGE+Wkd+Ig1io/vtmKIAMrFoulrXLq6urgdDpRWFiYdqpiIpFAOByG1+vFG2+8ge7du+Prr7/G0qVLsX37dm4XJN9iJX6RWbNmgWVZlJSUYM6cOabVCT9Khe+wSyaTOHjwIN5++23Mnj1bMfxX7LlV21ENci273rBBKcvb8nuYhbHkwt9zDf6AXr58OYYPH45+/fpxvCL/xhk+xCYCgh49epgutxK0TBxvvfUWBg0axFEOPp8vzeKzMvjUws0334yLLroIF1xwAb766it8/PHH2L9/PxKJBLp3744XXngB4XAYPp8PN998M3bv3s1tsGppaQGQfigRf0J2OBzYtGkTwuEwRo4cafo3CSk+Qp1069aN2zREJhnijOXXh/DfNqwHXaMrV5yzUIZsly9WHrFQE4kEdu3ahX//+99wOp2YPHlyp+n8/fv3R0lJCVwul+UO0pKDcDm7cuVK7N+/H1VVVTjvvPPQ3t6Ojz/+GLFYDAUFBfB4PIjFYvB4PFi5ciUXCun3+zFu3DjcddddafH9+/btw9NPPw0A+M1vfoNevXqBoii0tbXhn//8J+64446sfStR6G63m7sblWzwcTqdYBiG48KtYhiZgXyJPFEDzco7l05CK4LURyKRQFtbGz799FNu6Tx9+nTLy28ERowYkWsRFCFGUwE/7JycP38+WltbsXbtWmzevBnxeByHDh3i2rKpqQkvvPBCWlw/CSWMRCLo1asXbrjhhrTNNcT3wbIsfvnLX6K0tBQOhwM7duzAmjVrFGWOx+PcOTGZgn/faJ8+fXDbbbcBAKLRKBfO+frrr+PYsWOqLoPIBwjDBDvCN/GheYelnthqMyrNSg0hDOejaRrnnXce5s2bhwEDBhh+JrMN7eBTGURhx+NxHD58GPv378fPfvYztLW1pW2B579H/i1sa/LskksuwX333YfRo0fLykCg5uTFSCTCWf1Ggv89kUgEbrcbLMvi7rvvxqJFi3D06NGTxruVxpse5DLemy+DnnS6QwWBk73OWmG0w9KKs6iwwk855RTMmDEDv/71rzFo0CDRNDayi1gshmQyiWPHjuHo0aNobW3FsmXLsGjRItTU1GjerSpU4OPHj8dLL72EU089lVP0TU1NnNNT2G+t1B+I7+Z3v/sdqqqq0NLSgtbWVkQiEe7QMauNObWwSj3nXHmL/a0Eo+Kzray8hSAhgSUlJaiuruZiv63SkToq5PpFPB5HbW0tnnnmGfzjH/9AIpHgFLZUH5drL+KUJbRDPB5Hr169sGnTJs6yf/PNN3H55ZdzPLOVQUJDjx49ik8++QTLli3Dnj17UFNTg/r6elE6xaqTEUG+WNxSaShK52UMVg0VVKu8c63kKYpCMBjEE088geuvvz5nMdudCfwoj2QymeZAjcViuPXWW/Huu++CYRjU1dXptrbJv8eNG4f77rsPEyZMwLJlyzBnzhysXbsWDocj7Vxzqys5PvgTGuH+R44cyW08klqJW/278lF5Azotb1t5ZwairBmGQVtbm628swB+e7e0tGDbtm0YNWoUp4i++uor0DSNvXv34oYbbtCcv7D93n//fUyePJnza5DzQ/gx4/xY63zoA/w6DIVCqPp/7Z15cFbV/f/fz5onCyGEJYABRJQgEZdioShSGEW006ll0Wq1LR3HqrS141rtFFHst0VnLOBYtaCgU9uCoKK4lUJAgSIJoKIoSyAkQCAkIcmT5MmzP78/8jvXm5u7nLvf++S8Zp6Z5HnuPffcs3zO53w+n3PO9u247bbbEIvFesxWhNc6/b2yTXhbEtdlVKHxGz5NmnabVohzjOwrwTAXUt5kxWQgEMC4ceMAdEfEDB06FNXV1di1axfuueceQ545Z84crFq1ivufv+VrMpnkvid5cgP8fpabm4tJkyZhyJAhPTYY4/dDNwxIdgpumhWWWmSV6XubGC1A7RbIWvB6vRg/fjx3IgrDePihf2RlZzweRzgcxowZM1BTU4P8/HwMGjQIHR0dqK+v73G/nlnagAEDcN999+Hxxx/vkQ7/HFK77a5aIFE5AFBfX4/rr78eNTU1nG3cbX3RCWWvlAfDVli6rXIIdptLSB6A7jL0+Xx45pln4Pf7e4SbMYwlHo8jHo8jJycH7e3t+NGPfoRYLIajR48inU7jscceQ3l5OdatW4fVq1f3uFdPe2lpacErr7yCaDSK//u//+NWLfLDDd1Y52QhD9C96pcsSmKYh5q2YrrZxOgpldI0zWmdhHSAqVOn9ljAwTAeEuFDbM4//elPucgPoNs+vXLlSlRWVhr6XI+n+xT5EydOcP8L26gbQ+3475BIJNDW1uaadxCTA3b2PTNMS87ffEIlTmhcwory+/0sVPD/Y4b5gO8M9Pv9SKfTiMfjaGtr466ZMGECvvjiC4TDYe5avW2F/w4jR47k9i8XRqS4mUwmg66uLixfvhzRaNQR/SubEYZTy7Uf1Zo3qzxlyAo9n8+HwsJCzJ07l/uNlZ9xkBWC/PhjUu5dXV3429/+xn1H9l4xC7/fD7/fj66urh6OSoIbnHpiJJNJ1NTU4Nlnn+2xRbAb2jF/BmR32Zuh9ctq3kraid22ZakKcULD8nq9KCwsxDXXXIPnn38ewLeb4tvdkOzEaI27o6MD+fn53Ba8qVQKkUgEn332Gerr6zmbbVVVFXfKuxkd6cCBA1izZg3KysowaNAgTJw4UVVklBPJZDJobW3FO++8w20d4GbsqAe1MlLNzNSSOG+t92jF7pWYXq8XoVAIl19+OdavX4+8vDyEQiEkEgmEQiFX7bznRPjRHPF4nLNxE5PJoUOHcMMNN+DMmTNU6WhBrHN5PB7k5uZiypQpeO+991x7difQbeNub29HVVUVZs+ezS2R17tK2mycVtZaI43419p+erzTCtVsEokE6urq8MILL3DnHRLtkGEMiUQCPp8Px48fR319PRKJBDKZDEpLS7F+/fpe15slcPga9tixY/HRRx9x2+O6sb4zmQy+/vprLFq0CDfddBMnuMlvThXcgHj+7Myzpvhtp0SbWIVUBVmp+fDta16vF7FYDKdOnUJbWxu6urosyUNfgB8BkUwmMW7cOJSWlnJaTn19fY9DnPltw8jVvvx0vV4vrr32WmzevNmVAptAFjpVVFRgxYoVvVZUMpxD1ghvu+FrX8FgEPn5+SgpKcH111+PoqIihEIhm3OYPWQyGW6PbfJ3NBrlnIV+vx+jRo2yLD8+nw/33XcfNm7ciP79+1v2XLN46KGH8Pjjj4sqRE5yAvZ1sjLaRLifhNHalvA55DdCIpFAJBJBU1MTNm3ahFQqhUQikbWNndidU6mUZZoaiTCJRCLcQRitra2IxWLIZDIIhUKyDm0j2zE/TNHj8SCRSBiWttXccccdePXVVxGLxSQPoDa6X2lBafBwQh4Jagc62jxnreatFCVj1DOEO6yRTyqVQjgcRkVFBX79619j+fLlnE2W3NPV1YWOjg5D8mIlyWQSEydOxKRJk3Ds2DGkUim0tLTg2WefxeTJk3HFFVdg1qxZhj9X2CELCgoQCASwdetWnDp1CsXFxUgkEjh9+jRqa2sN77hCrZN8UqkUXn/9dfzmN79BMpl07eEbmUwGf/rTn3DDDTfIXuMEnCKYaTEjv7LCmy/knFZYclowzb1aUJM+sR12dnbiq6++woABAwB0Cz7y/EAg4BpzSlVVFR588EEA3fbdp556CgsXLkRxcTHnjG1ubsaXX36Jr776Cjt37sS8efNMyQuph1AohGAwiPLycgwfPpzTxgsKChCJRHpdbyZNTU3YuHEj/vjHPwLoHpid1F9oOf/88zFw4EBdZWalWYVmxXW2mnhkhbdZmotZ8AW60c+hidkVDnapVArxeBytra04cOAA9u/fz8V6A98u7HA6mUwGAwcOxJgxY7Bq1SqsXr0a27dvx3XXXYeCggL4/X5s2LAB27dv55aBRyIRvPvuu3jggQcMi1Qg5UZW+pEzJEtKSlBUVAS/34/Gxka8+uqrvQZ2o5Cajnu9XgwaNAjf+c53euwJ4iZI//T5fLoiZaw0WSg9ywkDKG0e1Ja3arOJWtsN38tvZIXqHQjMskPx35NsT9rW1oaKigpXT6nPP/983HLLLWhvb8eXX36JF154AatXr0ZDQwPefPNN/P3vf8fevXt73JNMJvHcc8+Jmpb+MhXUAAAgAElEQVRoIeXIvy8ej3P/x2IxxONxbgvYnJycHgMkYKyZTCxNj8eDCRMm4Fe/+hXmzZvHOa3dqu1dffXVmDx5st3ZyDqU2oNaxZPabKIHq0Y/KYFsVScSiy8lkRBnzpzBpZdeym3Sr4RQYNkJyUNxcTHmz5+PG2+8EdOnT8fvf/97nDhxAkuWLEFVVZXkMVn8wSwSieDkyZM4e/Ys1XP55UA+ZIOvQCDA2ZyJdj9q1Cj87ne/w9SpU3vl3yx8Ph9mzJiBu+++27Wx3XzmzZuHH//4x2wxmUVoVUSpzSb8B9A+yG5bk9zzzRKMYtEnPp8PwWAQx48fl4xEEAooseOm7BTmiUQCLS0taGxsxMyZM/H2229jzJgxGDx4sOyAlMlkcPjwYRw5cgTV1dU4ceIEdu7cic8//1zxffiDAT+KJRgMIhAIIJ1OIz8/H/n5+Zym29HRgUgkgj//+c/c882IfuHnm+xpcubMGcRiMbS3tztm4NUCMQGNGDHCtQORk/JNGxlDrqWFemgVmkBor3dCA7YrD/ypfWdnJ2699VY0NDRImpL4QoasyiQhj+RAW6vD0DKZ7jC4s2fP4pVXXsG1116LcDiMVCqFrVu3ol+/fpyNVKq+L7nkEpSXl2PatGk4deoUbr75ZsycOZNLX+q55DCASCSClpYWThMMBAI9InbI9clkEolEAvv27euheQPmOa48nu4Tc95++208+uij+OKLL7B+/XrXL2y55ZZb8PTTTwNwliCUQ6qOnSCDzMD53jIVCCvJjkZHhB2BdOJ0Oo2GhoYeApk/2so5ucgudUbuikeeLzeb4g8y/fv3x8UXX4zW1lZcdtll+PLLLzFy5Egurlqpg6RSKbS3t/cIl1SaGZGyysvLQyAQQCQS6XGgb2NjI4qKigCAi0suLCzEVVddxZ3mbnYbIKaxxsZGrFmzBmvXrkVxcTF+/vOfm/pcsyD16PP5EAgE4PV6e+xpIrzOScjlyQmywWgsNWplQ4HpIRqNIhqNIplMciGDNGWye/du7Nq1y9C8/PWvf8UTTzzB7cInBdn8yev14rrrrsOZM2ewf/9+DB06FNFolNo27/F4cMcdd2DIkCFcGchpp2Qwa25uxo4dO/Dhhx8iEAggmUxyJ7oMHz6cSycYDKKrqwvHjx/Heeedh9raWq5sfT6fKQ5MAnn/VCqFsrIy1NXVZYW9OBvs99mMpafHi9mDjcJJmoBQUJCP3+/HihUrcOONNyI/Px9er7eHCUDYUcLhMAKBAHw+H6f9GHUGJtlsyO/3I5lMorW1FSUlJT2uIUeHeb1eTJ8+HRUVFVi8eDEymQwqKyvxwx/+EJ2dndz1SnVw3nnnIZFIIB6PY8qUKViwYAG3IIQIO2G4JdA982hra0NNTQ0uv/xyTugnk0mEw2H069ePizJJpVKoq6vDNddcg9bWVvh8Pvh8vh6bK9HmVw5hXXm9Xlx//fV44403uNmB2HVOhz/b+uijj/CTn/xEdF8eoT/MSf2PBqvqRY1/UArTdhWksW3b7bgUw6z88Aco4QcAlixZgurqak5jJHZaok2Sa8n2sbt370ZNTQ2CwaChZpNAIIBgMIhkMomWlhbRPTkyme547Xg8jpaWFqxatQrl5eW47LLLcPvtt/fo1DSd98yZM2hubkY4HMa2bdtw1113oaysDGVlZSgvL+ds3PxZCRn0cnNzkZ+fz5WPz+fjTigi2nhdXR2qqqpQVFSETZs2AQD3G3F+qvXFCNuJWFv2er2YP38+Vq5cidzcXMnrzObcuXNYt24dZ5rSgsfj4ergggsuwL333qsYIeUWwW3Hgh0p/5bc9dRtk1bz5muHwigILjHKQrGjsu1qYPzGQqJO5syZg/79+6Orqwt+vx/jx4/HnXfeiXQ6jZycHHi9XuzduxddXV0YPnw4hg4diry8PMOm4sQWTPa/TiQSnH2TQE6oOXr0KN555x2sX78e33zzjahzVU3ZSrURr9eLadOmIRQKYcWKFRg2bFiP/JCQy2AwiHA4jNzcXM7enpOTA7/fj46ODpw7dw4+nw95eXkYMWKEaWdHejwezqzg9/sxcuRIzJ07Fw899BDy8vIMmyGpIZFIoLm5GYMGDcKGDRswZ84cTW0mGo0ikUigsrISjzzyCA4cOMANfvz+7xahTXCKAim3GlRsFq7p9HgxjDD8m2k+cSJ8gZdIJLBt2zbk5eWhoKAAo0ePhtfrRWtrKwYOHMhdP2zYMHR0dKCkpAT5+fm90tGz2IdvyyQLSviQZf179+7Fjh07sGnTJhw8eFDURq3VhEaezX/m9u3bkZOTg8ceewwLFy7EmDFjuGu8Xi/y8vKQTqe5TadIvsk1eXl58Hg86OrqQiqV4pxttKid/ns8HgQCAQQCAZw+fRpr165FOp3GokWLNIV+6SUQCGDo0KHIZDIYP368pmeTBU5VVVVYuXIljh496moTiVMENg20PjCCbdEmbmkAWhurVPRGOp3G2bNnEQqFUFRUhEGDBiEej3Na5LvvvosRI0ZgwoQJqK6uRmFhISesiLYHgLOBa1klKiX4M5kM4vE4/H4/AoEAtmzZgvXr1+PEiROiced6EQo4Mrht2LABRUVFuOCCCzBp0iRMnjy5hwYZCATQ3t6OUCgEn8/HNXqy3UAymURubi5+9rOfYfXq1dx9YvZ0JeQUDTLFJeYev9+PQYMGWb6KluSDX0Zjx47lZlRqZsSZTAaffvop/vnPf2Lr1q09nNL86whOV8S0WAbMxMg8UAtvNQ3fCgclzfOlUCOQteZdTsMktuRkMonDhw+jsLAQQ4YMQW5uLlasWIEJEyYgHA7j4MGDGDx4MOd4GzNmDCKRCCorKzFt2jRDGoKwXqPRKPr164f8/HwcPnyYi0s3WnDz4U/Hyfa5K1euRE5ODmbPno1AIIDLLruMc+6Sa4gzl8SZk8OHyYrLiy++GD6fjwu1pG23St+R74lvIp1O46KLLsJtt92Ge++91xbhLfad2lhzIrhXrFiBzZs3o62trde2sEY6fRm9EZqm5Pp4VsV50yLV4OQGKCOmi/yKIUK8vb0du3btwu7du5FMJpGfn4/GxkZUV1fjzjvvRDAYxJYtW5Cbm4sLL7yQ23iJf1IMLWLvJxxg/X4/93c8Hu+15N3szsoPTUwmk3jrrbfQ1taG+++/HwMGDOBC8UaNGsVN8flxyDk5OSgqKsKOHTvwxhtvYOzYsaiurtblxJOCaLsjRozAnXfeid/+9rcArHVW8h27BGLOIYOI2CyNXxbJZBLV1dXo6urCwoULUVlZ2SM6h29ic5Kwps2PEzRuNRjusNSSuN57jEDLLECsUehpuHJOOmEMcigUQl5eHmbOnIl77rkHmUz3sV5DhgxBeXk5YrEYhgwZott5SaOFzpo1C1u3bjVdeEstAOELDa/Xi9LSUmzduhUPPPAAVq1ahVgshmQyiX79+nEmFI/Hg5qaGtx000147733UFVVhQULFqC1tVV07xW9+R48eDCefvpp3HHHHbZsOkY0Y7Fnk1lKPB7v8R3Q3fba29uRTqfR0tKC2bNno66uTnaQIz4EJwlwKZwisPXkg9yr22Gp1QHjtIqmEcJqps/C39WUD7GV8kOYIpEIotEoNm7cCACYO3cuIpEI9u7di2g0iu9///uIxWLcPuB6Ggd/gYvwe6LVWqFtyZkm+OaUuro6lJeXIycnB5FIBB6PB08++SRuv/12fO973+PKYuTIkfjggw/wgx/8ADU1NaZtKeDz+fDyyy9j1qxZjtwtkh9RtHPnThw8eBBNTU3IZDIoKSnBokWL0N7ezsXH881jQmXH7dq3HRht1hSS9WYTLZVrpJOSBn7oFdFuOjs7sWHDBnz44YfcYp5Ro0bhu9/9LrZu3YpPP/2UeodCMSKRCDKZDBfJQjSqrq4uLFiwAB9++CHC4XAvG6ednYXkL5lMYsKECbj88svx8MMPo6ysjIsuIfbvgoICeDweTus0eq8Rj8eDu+++G+PGjbN1T3aaGVggEMD06dPx1Vdf4R//+Afq6+s5gS1VLmKRD07XuknbdILWrTUPavpX1gtvQL3AEToNaJ9Bk64wP0INh6/xdnZ2IhqNwuPpXire2dmJ6upq5ObmYuvWrZg+fbqmfaMzmQyCwWCP94tEIhg9ejQX4+uUjZXEHL+JRALt7e2oqqpCYWEhtm3bhlWrVmHcuHFYtmwZdy0/zM1ooeP1erFgwQJccMEFhqarFrm6P3bsGIYPHw6fz4eKigpUVFTgzJkz3PYMfJRmm3LlZ2fEiVgehW1Gq9VAb770CHB+OlJoijbRkhGxTDh5ymMkwndU+p8PEeb8Q4zb2tpw11134fDhw72mujT1RLRUUv61tbWYOnUqOjo6JO3CVncAJYGQTqeRSqWwcOFCzJw5E8FgkBt0iOa9bds2TJkyhdr8I3cNP978888/x8CBA3scF+YUjQ/ozktLSws8Hg/uuusuHDp0CM3NzWhpaRF1Qkvh9DBAp6Olz6hpR5q8Xnq96VZ644XPpHku375nZj6l0iYCmUSlkA85nT2RSKCpqQkzZszAoUOHeuyexxfmwhA/wpIlS7BhwwYAwL59+zBv3jw0NjZyNnD+88XyZgVKgxKJStm3bx+GDRuG8847D+fOnUNNTQ2AbiE7fvx4VXmWUjDIJz8/H5s2bcJFF12EkpISLjKHnObjBMg79OvXD8uXL8fx48dRV1eHhoYGdHZ2qnLaSrUBrddpQY/SaFU/tgvVwluuY2tJyypo8s2vZDMbJA3C6aAwL6lUCvv378eyZcuwe/duhMPhHu9IlpN/8sknPe7fvHkzLrzwQowbNw4VFRV49NFHceDAAdvfVw7+ewnfsbOzE6+++ip27NiB//3vf3jxxRc5k09OTg63iIegpRN7PB4UFBRgzpw53PFgsVgM4XAYiUQCbW1tCIfDxrysCoSDbUNDA1588UVkMhluR0ay2RiZlQjrWSzM0EmCTmubFOvvVrdxLWWp5npLjkEjaTmtYfCR04KlflOjyWt5d6nGx/9s374dVVVV2L9/P2pra9HR0YFMpju8cNmyZdySe8IHH3yA4uJijBw5EnV1ddi5cyf1FFrsYzfpdBqVlZWoq6tDU1MT9u3bh46ODgDd2veiRYt6LaNXi9frRXFxMX75y18iEAhg2bJl6Orq4g6gyMnJQU5OjmGCgUbICNtlJpNBU1MT3nrrLS58sKWlBbW1tdxJ9mLpku+EZeOEulWL0/Js9mBhmMNSa1QHYI0GLiec5f6X+k7ue6vuT6fT3H7XdXV1GDJkCAYOHIiCggKcPn0aL7/8MkaPHo1LLrmEu2f//v248sordZW5ki1Pry9D6X6h0IrH49wy8NOnT+PNN9/E/PnzAQAPPvggnn76aU1mDTJAkfjxY8eO4fjx41i1ahV+8YtfoKCgAO3t7dyuh0b5BaLRKLxer6Izmh9pEo/H0djYiNraWnR2dqKiogInT57EsWPHuK0Xsh2lfmalcLfCn6dKeMtlRs/0xgk4yeGkBCmzVCqFtrY2bN++HcFgEH6/n9v+NC8vD7FYDI888ghuvfVW7r5wOIxDhw5h4sSJnHlBjYYgnAnwMar81LQJYj4h9Xf06FH85S9/wXXXXYfS0lIEAgFcddVV+Pjjj7ltd7Xkp6mpCffffz8ymQxGjRrFfX/u3DmEQqEeKxr1tqVoNIpAIAC/3y86y+H7NIDucieLa8aPH4+Kigr84Q9/QEdHB3XUkDBNhnaskiO2hAo6uYG4xcNOBAQ5Xszj8aBfv34Auu2xRFDl5eVx95DY3jVr1qCwsBCxWIxzhtL4AsQ6uNT3ZiI2aPCXyLe0tGDlypV49NFHkZubi/fffx9jx47lnJlqn5VKpdDV1cVp4fn5+VzUhtfrRSgU4rbyNaIMBgwYwA2oiUSC2zaBDBbk6LdkMsnt7ZKXl4fJkydj6dKluOKKKziBLlwxKaURuqXduwGrNH1VDku3aKZacbLTTgx+JEo6nUZHRwc6Ozu5LWMLCgp6nI5DnFZ1dXVYvHgxlixZQvXOch2bDCJ2tg2+ppvJdIfJLV26FBUVFdw15KBkteny8Xi6t6Ht7OzEwYMHEY1GMXLkSC5kUGunFfNlkHTC4TB2797Nff/MM88gGo0ik8nA7/dz70TqgByQQQ7RIPdJHVfn8Xh6bBGcLTjJL2MWqqNNsqEwpBox/3fhd1aidhAhYYR8TYtoXvxY8C1btqC9vR3JZJI7T5Nma1kyOJC8SaGns+jtaMIy6+rqwty5c7nyqKysxNVXXy35XCmHHRF85FNYWIi6ujpkMhnuJCLiINTrR+B/iMY9ePBgzJgxg6vj22+/HaFQqMfWwOQQhv/85z+YNWsWdxIRbZ6knJlK97gFq4S4Hme+lnvcf0pqlqG3UxANkOzL/fDDD3O/LVy4EPX19QC+XepMNC/hBlnZQDqdRnFxMTo6OrjIk+nTp2tOj9i+E4kESktLEY/HuTL797//jYceekhTuvwOT+qE2Lz516TTaUybNg2RSIQbrMnmXJ999hmefPJJNDU19TKH0fiqslVwG4FT+4WizdsMW5iYlmsWZjhZnQrREgFw9lmy8RCAXhEXwim6UnnQlpeYCUHqf9pnayGT6V5Ac9FFF2H37t246qqrUF5ejj179qCzs1NV2yBlRQT21KlTOYF72223AQDa2tpUn3JE0j116hSGDx/OfUfKJJVKcbHqra2tXB7S6TRisRgaGxuxZs0avP7665p3TtQbbGC1cFPbXvQ61q2QE1JObrm8ym4JGwwGuR/FGrMR2CG8pQSI3nxZER5EkweiSYdCIZSVleG5557Da6+9hnXr1nGbTWnZZEiuLGmuFV5vxCyDn45UXrxeLy699FKsWLECpaWleP7557F06VJOQ5XLt1KH8ng8KCoqws0334z77rsPF154IfUshjyLmD5isRjy8/NFNfGuri6sXbsWmzdv5mzZJ0+eRHt7O1pbW7l6TSQSvQ5Q6IvItTOzBhu96Urdr2lLWCtGVrO93LIjl8hveu2WZqC2HojGFo1GcfjwYTz88MM4deoUYrFYL8GgBb0DnZLdXGqQ0OMQ/Oabb/Dxxx9j3rx5GDZsGAoKCqhDB5VmDfn5+fB6vZwA5a/qlGtjZKZ0/PhxbN68GbNnz0YoFOplLgHAnS7U0NDAHQ5NzCf83QGdsqGYk7BqZqBXXkpp31JQhQoqdSa92K2tyuEUbZqfB7kZA/mdfDo7O7Fnzx7OZiqXLi1KzxdDTaNUCmdT+l5MyCaTSaxbtw4NDQ1oamrqtYe5FFLlzn9OJBKB3++nOiSDn0Y6nUZrayuWLl2K/v37IxgMwuv1IpVK4dChQwCASy65BJlM91a4hw4dQmdnJxeSKIwkEcsjw3q09A8taI7zzsZG4uR3UqN1C/8m0Qd8oUZj31YjmMUarB7TiZSmrdQx5PL8+eefo7m5Gbm5uZIaqhazzsCBA3H++edzYZlKWncymUR9fT3ef/999O/fH0OHDsXEiROxa9cuTJo0CXl5eWhoaAAAlJeXI5lMco5Scj8/PSPbrV12bIb6MpcV3lZpnXZqt3qcdEbYybUgNxWX+k3rwbF8QSwnlNUKUqnn899DiwDha6BCQZxOp3H27FkuxE8tUu9YWlqK4cOHc85FsnhH7JCGTKb7kOcDBw5g8eLFmD59OhYvXozjx49j586dSCQSuPLKK7k9aojT9dixYz3qkP+eTOD2Rk6ZsCps0MzrAYpQQalOZHQBOKXh0byvGg3WKLQ8iwyKNDHacveKmQuUhKtZZUP7bOE95PtoNIq2tjZOOBqR57Nnz+Ls2bMAumc5R44cES1z8ndLSwu++eYbJJNJtLe347XXXsP8+fMxZcoUvPPOOzhy5Ahqa2tRV1fHpVlbW8vdT0wzwrxKOaH5JhYltA6ajG+xqvwcc5KOXZq3lDYp1NrkbJ/8e+yKUpGz+/LTJ/8b6SjWotHQRqlota+TOhO+u5j2KpcPpWd6PB6MGDECo0aNQjAYxOnTp/HUU0/h9ddf7/X8RCKBSCSC//73v3jiiSeQSqXwySefYM+ePUgmkygrK0NpaSl8Ph93oHFHRweSySRGjx4Nn8/HmcDUmKn04gS/Dw1KM2EzhKrZZS+HqpN0zMigWAE7qaHQ5E9vfmk1Iq3panWg6GnsejuKFW1NiNqO6PF0h2WeOHECp06dgs/nw9ChQ7F06VIkEglO2Hq9XiQSCZw5cwZLly7FihUruIGERIuUlJRg+fLlyM/Px8mTJ3Hu3DkcOXIEdXV1KCkpwZYtW7i8qXFei72fWsSe15e1c+HMW2rQoCkjPeXoGM3bragZbJwwMKlxRGYLZpa5x+PBvHnzcOONN6KzsxOhUAh5eXncQp39+/ejvLwcwWAQb731FrZt2wav19vD5p5KpdDS0oJ//etfCAaDeOmll7B7925Oeyfx6Pxl7wwGVZy30Sg51+yAdpTUo3Vb+W5KJgGrBhKlqauwLSiZsWg1TSWzjJEDWDwex6ZNm7Bx40akUimsXbsWgUAAAFBWVoZAIIBMJoPDhw+jtrYWALiQQJKnaDSKeDwOn8+HBQsWcN+Rw4KFwlut/0IrTtS0aduuWXmWcthr6U96lClDNG8naJRWkE3vaOS7GDEdN/Javahpz6lUCi+++CJycnJQUlKCefPmIRgMIhaLIRgMoqWlhdu1Lx6PcxtZCaNFyCeRSODcuXOc5k6EtlNwkhAXotU8aDdaBbiujam0Guv5DjOnFrKUPUsJ5q3vCT86RKpc1Nrh9ZSx2L1qojGEZDLdC6Ha2towcOBA3HTTTdwe26lUCsFgEG1tbUilUtyBDWLP4/9PlrnH43FuG1/hniXC6Cez2p0T23M2KVEELW3Qdpu3GypCzSDlhvdxylRYGNHD/14pckAJIyMNlCKRPB4PcnNzMWTIEAwbNgzhcBgvvfQS7rnnHgQCAXz00Uf44osvUFlZ2ePQYOEzhOGFSiYSOyMdnIBV7VfKZCeM4NKTvpY61C28pTqgGxHLv9vfKVuwyoZNk57QZ5BOpxEIBNDa2orXXnsNTU1NeO+99xCJRODxeLBnzx58/fXXaG5u7nGyjVTbUmpzSvfZPShbgZ3vaPSztfqgFHcVlBNoRglupwhIp+SjryBlBlASQnL1pNaxKZUebX5IuGD//v1RXFyMTCaD5uZmZDIZbsMo8jd/Aymx5+rtT0x4W/sss2zswrQ07Soohp5oC6cj13mcFBnjRqwSLFLKhpbIFNrfM5kMOjo6EIvFuMgSclQZXzs32+zWF4Q20NPMIKWxGlkWcr4GI1GbnqpQQTOElRsEoJs7hZG2XyMRdj5aLVTJ6WlHeyJRIuR4OY/Ho7glgZKJzugIrmzSyu2WGWaVpVrbuSabdzY0ACW0ro6yomHRTtfsbuR8zJpWCp1GVrdNpUFIrK6yxfFtJXLmMLfLI0scllINVA9ujBF3SzypW/Kmx2yht/0YqUUJNScnmRid3BZocUK/M7oO9QxA7ABinbht4GGIY1Q9KkWSMLTByrM3LM5bgNzo7pS8ZoMWZSRGlIfeNIQLbqzETbNXrXkV3pctNnw9MeKqhbebGopatL5XtpaHE5CLKnCC0LYKNygVNGRTH5MaQKwaWJjZRAI9oWVmYbS/gcFwI04bcO3ql7Yfg+bUFZpODbHra5gZV+sm+vK7i+GkFZZ6ZYVWTd12m7eTUBqszIi2UQPrwH2TbLHvZgu0/V9vvSndp9psYrTgcrIpgMQNm1X4DIYSTu0bUvQlP4QURsg0mjJwjObtlEaqJuZYKc8075TNDmBG30NrWxbu0ucG9G6roPVagqZoE4IRhWznsmY1aJ0CKQlnp783wxm4XRvVixPfX0+Yn1haBFqFTlO0idJeFNmMsJC17FjHYNBix5J/O1DyNdmJWqe5VXXGQgUZDAZDBqcqYLLCW02maTfb4X+0PMcu7B79GYy+ipTcsCsvgLnmXto0meatgr4yhWUwrEBNf2L9rje6t4RVM/LI7cVs94gqRE+MphPfh8FwO04T4ELt2+owSV2at1FbNPZlQee0Bslg2E1f7BNaZvWa47yzXeDKHbQg/E1uo3ipNBiMvo6TI0zkkOr/VqP7DEuAmQn0wMqNwXAXRsZ360mHSnizhSbdGLnnM+3z+krZMvoebt7a1khM2ZhKzUZMWkNnsqHCxAqftkLkBHQ2lA2DIYUb27fRJhI9ZaDaYSmXeTW7bbmx4vQiZ0dnMBh9F8P3NjFjB8FsRKzg5cIiCVL+A7nfGQw3w5+hS4XaWXXQsNysl/+b2XnQimGLdIzYYY/BYGQ/TjETul0m2bbCUs+R99mMU5YBMxhOwIq+YKcM0vN+lu3nzYS0NCyqhNEXkFLY5P63ol84oe9pMdEYEuetBycUnBnInXrOhw1qDLeiVelQWivilPMprbbBq8UyzVts/+9sFdwMBoNhNo45Bi3boNnAXWjvYgMaw00oRUspQbPM3ApNV2krC6PzYFQ/VyW89TzQSdMNO2HCmcFwLlaYbuTCE9VALbzNEDospplukysGw+mYfdiuHTg9n44xm7jZZGDUaO3W92f0LdTsuOk23JR/auFttpbMBBeDweiLaB0w2DFoDAaD4UIsc1hmM3rtfUoODFbuDKOhMVPStGu3mUtoD0lxw/vYbvNmgulbtAwCrPwYBCmBTNOuWHvqiZWDktzhDnLPVxTebhtZ7UZLedHs+S31HAaDQISAlW3DbXJBSlC6cfCyXfN2Y6HpQWr7SxoBLadZ9ZXyY+iD3960HB6SDdAsd7ejHNTWgaLwVlrrbwRM8PRGTZmw8mPw6WsKkRlYPZhp2SbXds0721BrAtFiMmFYgxvPWJTSrAlO0jTtgmY5vF11raYeVIUKyjUM8p2WRqD1vmxGbFrrBuGRTfDL221l77b8WoWaCBqno3l5vK8N+hcAAAisSURBVNL/atN0gvB2ku1YatpG67wU22JT67s5qVz6IkorGt0Y5mYFatu93e1cbV2yRTo8nCiglKbBUpWtd8c3LZiVvpaZmZ688J8nVr5OEI5y+WPQx3PL3W/lfi1a7qcW3k5uFE7OG4PBYJiBarOJkdqpUdMUJ2rMeuGXjV7zkl7PuR3xw2ah9z2cUgZ2zKwY5mJ4qKCVZIuAsBIx27bUlFrNcmg54aB0rJvWe6Uw4h6tjnQtSJWjmQOH3DP7IvzFOGJ9RAo9Co4W9NSPpl0FCUYIWjtjUt02WMiFeYmdykOTnln7tOt1EhmdNzVajdi1NOFlYt8rfUcDzX3ZNDsyA6cOYnoGWs0HEDu1MNRA09Dt6hBWa0/C9xQOqnK/KaUr9r8RZjgtdSNcHq1XoFoZC66Ub6Zxf4ua93erTNNsNmEjvLMwYoov97sakwttunrttnKmEbWDjZqptRbkhLwwf2oiJaQG3b6Knvd3YjnK5UO18BbrCEZop2qn2sI8aE1L7j47K9DMsDu5clNzn956VztwSAlAsXS0fGdEaBhtGzJC+6fNE0MesXYsnKGZ/TwpTFkeLxUNoQfal1LSqozKj5kVaAVWN0qzUCPo7JgCGz0LFdqv5UxabqxPJyAsTzMGU5pn60GzzdsIpBZAKGmGZghqhnqcZCt0cztQY8tmyEMbkSO8R+0MzEhfmNb+4/iTdKSmunpCc7RUsFsx8n2cUDZmhXrpwSytzUlmvGxDb5SbEwZUW+O8hY2ejIBaRz6lcEaxuE/htXo6SF8L1XKSMHFKXvTmQ8zxq8VH0ZcxwndhJVpnsH1qb5O+JFgZjL5KX+nnspq3cESw0qgvlw819zAYbscJ2qHdKIWWZkN/p7Ek8DHEbGJUqKAV9wDqK5o2TC4bGhCDoQezQiCl0lJjarUSWpmoR3bKCm+lxQLkwWYLLSMEu1RYI23aWkf4vmYHZzBoFhPpTU/qd6cIcb7/TC7/UtfRvIejNqYSQ43JRCwulmaRhJ580ZBNUzsGQw4j2rhd5lmjMVvR0yS8lQSiHQWudvk2g8EwHy0yIVtDeY0elFTv502j1RqJ2meIOVeNRCkcUQw3aw8MhlbcLGjVoiSYlRyu/Ptoy0232cQpFeSEfGi1zUstg5b6jsGwAjVtj1apMyNNN2BGH9a0n7dwKpRNhawFLYsCxByocosxmACnw+hly9lU7ma/D63jTSqYQEyOSF0rl77dqClnPc5WQxbpsL1G5CGhTFL7J9CEOilpM2LPMBKzO4kRZQC4c+Mtq9DTN4VtTKot63luX5cdat+/T62wZDAYjGzBtFBBpalDtk1JaVE7TVKzr4VZm3UJ0zYjqkjK7Cac1dF47LWEaGm5zw3oWZmoVCdanG00MyNamzmNk9BKrG4/hq2wVEs2dhQ9qF2NJWzANOFVtMJOSZibXXdGDUJ6hXI2tFFhefDbj5Q9WmzlsJ7VzLT14HRzl1kKp9b31iW89RZ2X9S+tZaZmSvUlK6Xe7acZieXjhYnL+21bm9TRr+DVPmJzWRolQi579QOmlrDgfWkYSRGPFuL41JTnLdehBXt9s5mJrQN1aypP9/rT9sGxO7R8kyt1wm/lxNeRiJWRlpW4iqlreV+4TVi2rWadGigrQc3YfTMhNyvBV0n6aixXakZ0aXCgfqCkKeJqKC9X60g0WqLVJNnJ3Vgsbyp8TEAykqNGhutXF6kBIRWpUpLXWYjRimPRob50g4GquO81Yb9aGkMNFM5N2jsdse+KwknN5Sh1eix7SqlKVX2tM5nsevN0pIZvdHbV5RkqNr+qPn0eCFaBZVcI1WbB73YKcys6jxymrAZU+e+iF6zj/AaM9qk3YqFU7BSmTE6IsbUUEGjrje7UGmn/Wqnun29Y/QFtPgC1KSrJyyPoQ4tIaY0My61adJimPDWklE19kUzIg6E0xiPR3yVn1qnk1tNEUwYaMON5Wb1TM+OPqEU8SR3nxhyTl7aNMTS1FoXhmrechqBUgb599K8kBpHEW1e7PIa9xX6kuNZCRrtmTkVv0VpBkzbtmiCIaTqRsp3QfNcYTq0Pg05HLc8nr+IgMFgMMzEzXLGFJu3UIsmfwtRmsKo0cClniH3PQ002ruRYUI0qA3BNOp5Ss4dNeYqsTYifB7/mWqmoWpRE0ppVHlbZV7TM9sR679WCjv+M5VMm1ai16xLrterqJp6DJqW1VpOGQlp8iEndGjTkEONfU6rINX6bDKwisUiq613LSYumvTVhrXS3G9kHRsphMT8N8LftfRHgp5BUSx/cs/SitqQYto2qNTPlZBrM1JBDjRKi27hLVcZer3iNPZAq4Q9zfOkZgp22Xr1aMdqngGo7zhS6RiVH+HfamKqjXSOq617vbMqtzgi5fIprCstckUpf1aVk1rfhqlx3mowO1TG6LSkOj7NNTRamtpIFjVaCs27io3ycs9Qo71JlYvdU1yC2o6uRvHQ845a6w1QrxypbX80aevVQo2EVkAqXUPj1NSDUW1Kl/Cm0WbM7ry0UxKz82jE7MJs+7jweydrdnZgxLtJdXw5gatW8yczPKPrwil1q2fAEPZ/ve8kFRViZFlptefLCm+aKSFxJjil4s3GzEHJzjLsK/XH6Em21Lteu7RR91qJrPDW4+CwuwCk7GVi19BghGPKilFc6dm0ThqnYlWetU6ztWiNak10eqAtP6tmznqQatNmotVMpBR1R65Rk77j4ryzDZrKMFsYmZW+mmmeGqElhxHv4mSBZCY0Co1bMcOMZAeOcVhKYZT2JJaOWRWoxuGlNlqB/zdN5AL/WXK/SdlbafIolZ7RoXG0TiI9TiO5diJVJmreWa7slfIs5bNR06a0RFQopad0r9pn0phfabBCQCv5yrSmqeUa2Xpw27SZwWAwGMxswmAwGK6ECW8Gg8FwIUx4MxgMhgthwpvBYDBcCBPeDAaD4UKY8GYwGAwX8v8Aec1YiC4ICkoAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "When we look at the history graph, we can see that the optimization process performed even better with our improved `AlphaChannelLoss()` objective!" + ], + "metadata": { + "id": "Tl9zHwfH-9a-" + } + }, + { + "cell_type": "code", + "source": [ + "# Plot loss vs iterations & previous loss\n", + "plot_loss(\n", + " history=[history_basic, history_advanced],\n", + " title=\"Alpha Channel Optimization\",\n", + " labels=[\"Basic\", \"Advanced\"],\n", + " figsize=(8,5),\n", + ")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 350 + }, + "id": "tsA90jBb6bLz", + "outputId": "24cfea81-9cd9-4fb7-b865-0150cad4fcb9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFNCAYAAAAKBrb9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd5iU1dmH7zNlZ3tlKUsHKUtbmhRRREEFxYJGxWBNjJqYqPmMiS2WqInGxKixdw2KLYoaEBu99977Lssu2/tsmTnfH2+Zd2ZnG2zn3NfFtTtvPe/sML/zPOcpQkqJQqFQKBSK9o+tpQegUCgUCoWieVCir1AoFArFaYISfYVCoVAoThOU6CsUCoVCcZqgRF+hUCgUitMEJfoKhUKhUJwmKNFXKOqJEOI9IcSTjX3sqSKEmCSESGuOezUEIcRjQojZzXzPB4UQb53kubOEEN+3pjEpFI2NEn2FIgAhxGIhRJ4QwtXSYzEQQowRQswXQuQLIXKFEGuFELe09LhOBSFErBDiVSFEhhCiVAixrSHPFGyyI6X8q5Ty1pMZj5TyQynlhSdzblONSaFobJToKxQWhBC9gHMACVzWooPREUKMBxYCS4AzgATg18C0lhzXqSCECAF+BHoC44EY4D7gaSHE/7Xk2BSK9owSfYXCnxuB1cB7wE01HWRYdLrrNlsIcVgIMSvgsDghxDwhRJEQYo0Qoq/l/BeEEKlCiEIhxAYhxDm1jOlZ4H0p5TNSymypsUFKeU3AmO4VQpwQQhy3WsxCiEuEEJv0e6UKIR6z7OslhJBCiJuEEEf1Z3nIsv8xIcSnQogP9OfYIYQYbdmfJIT4rxAiSwhxSAhxVy3PYeUGoAdwtZTykJSyUkq5ALgL+IsQIlq//mEhxANCiJ269+VdIUSoECIC+BZIEkIU6/+SrEsKlme7RX/uPCHEHUKIM4UQW3WvyUuWZ7lZCLFc//2PlusWCyEqhRDv6ftuEULs0t+Pg0KI2/XtdY5JP+4y/X3M171KyZZ9h4UQf9DHVyCE+EQIEVrP91ShqBMl+gqFPzcCH+r/LhJCdKrl2M5AB6Ar2gThDSHEAMv+mcDjQBywH3jKsm8dMByIBz4CPgv25S6ECEezhD+vY9yd0azlrsAvgZeFEHH6vhL9uWKBS4BfCyGuCDj/bGAAMBl4xCpEaB6Pj/XzvwZe0sdmA74Btuj3nQzcI4S4qI6xAlwAfCulLAnY/l8gVH9mg1nARUBfoD/wsH7eNCBdShmp/0uv4V5jgX7AtcDzwEPAFGAwcI0Q4tzAE6SUfzeuCyQDWcAn+u4TwHQgGrgF+JcQYmR9xiSE6A/MAe4BEoH5wDe658PgGmAq0BsYBtxcw3MpFA1Gib5CoSOEOBvN3fyplHIDcAD4eR2n/VlKWS6lXALMQ/vCNvhSSrlWSlmFNokYbuyQUs6WUuZIKauklP8EXGiiG0gc2v/T43WMoxL4i24xzweKjetJKRdLKbdJKb1Syq1oohModI9LKcuklFvQRDzFsm+5lHK+lNID/Mey70wgUUr5FyllhZTyIPAm2mSnLjoEeyb9vcrW9xu8JKVMlVLmok2crqvH9a08IaV0Sym/R5sAzZFSnpBSHgOWASNqOlEIEQbMBV6QUn6rj3GelPKA7nFZAnyPtiRUH64F5kkpf5BSVgL/AMKAsyzHvCilTNef9xssnxuF4lRRoq9Q+LgJ+F5Kma2//ohaXPxAXoClegRIsrzOsPxeCkQaL3QX7i7dhZuPZqVbhc68B+AFutQx9hxdMKvdTwgxVgixSHfBFwB3BLlXjWMNsi9UCOFAmyAl6W7qfP05HgRq844YZAd7Jv26HfT9BqmW3wPf4/qQafm9LMjrSGrmbWCPlPIZyxinCSFWCy2gMh+4mOB/u2AkoT0DAFJKL9rzdbUcU9vfQqE4JRwtPQCFojWgW3TXAHYhhPGl6wJihRApugUcSJwQIsIi/D2A7fW41znAH9Hc4TuklF4hRB4gAo+VUpYKIVYBVwGLGvxgGh+hueSnSSndQojnqb9I1UYqcEhK2e8kzv0R+GvA+wfac5ajxVUYdLf83gMwXOZN2iJUCHE/2nLCOZZtLrQliBuBr6SUlUKIufj+dnWNKR0YarmeQHu+Y404dIWiRpSlr1BoXAF4gEFo7tThaGu5y9C+4GvicSFEiC7k04HP6nGvKKAKbZ3YIYR4BG19uCb+CNwshLhPCJEAIIRIEUJ8XI97GffL1QV/DHUvWdSXtUCREOJPQogwIYRdCDFECHFmPc79D5CGFsvQSwjh1GMBXgQek1IWWI69UwjRTQgRj7Yeb6ytZwIJQoiYRnoeEyHENLSgwhlSyjLLrhC0yWAWUKUfZ03zq2tMnwKXCCEmCyGcwL1ok5yVjf0MCkUwlOgrFBo3Ae9KKY9KKTOMf2gW8izd7RxIBpr7PR1tzf4OKeXuetzrO2ABsBfN1evG34Xth5RyJXC+/u+gECIXeAMtCKw+/AYtIr4IeARNeE4ZfY1/OtoE6RCaS/4ttKWKus4tRwumSwXWAIXAc8BDUspnAw7/CG3d/CBanMWT+jV2o8UnHNSXFxrq9q+Na9EC7XZZIvFfk1IWoU0GPkX72/8cLbjReK5axySl3ANcD/wb7f26FLhUSlnRiGNXKGpESNmkHjKFol0ihJgEzJZSdmvpsbRnhBCHgVullD+29FgUivaAsvQVCoVCoThNUKKvUCgUCsVpgnLvKxQKhUJxmqAsfYVCoVAoThOU6CsUCoVCcZrQrovzdOjQQfbq1aulh6FQKBQKRbOxYcOGbCllYrB97Vr0e/Xqxfr161t6GAqFQqFQNBtCiCM17VPufYVCoVAoThOU6CsUCoVCcZqgRF+hUCgUitOEdr2mr1AoFIrWQWVlJWlpabjd7pYeSrshNDSUbt264XQ6632OEn2FQqFQNDlpaWlERUXRq1cvtI7CilNBSklOTg5paWn07t273ucp975CoVAomhy3201CQoIS/EZCCEFCQkKDPSdK9BUKhULRLCjBb1xO5v1Uoq9QKBSK0wK73c7w4cNJSUlh5MiRrFy58qSuc+utt7Jz585GHl3zoNb0FQqFQnFaEBYWxubNmwH47rvveOCBB1iyZEmDr/PWW2819tCaDWXpN5SKUu3n8a2QdxgOLQWvp0WHpFAoFIqGUVhYSFxcHADFxcVMnjyZkSNHMnToUL766isASkpKuOSSS0hJSWHIkCF88sknAEyaNMms9rpgwQJGjhxJSkoKkydPbpmHaQDK0q8vJdnw2c1weBl0Hwupa3z7Rt4EZ98D8X1abHgKhUKhqJ2ysjKGDx+O2+3m+PHjLFy4ENBS37788kuio6PJzs5m3LhxXHbZZSxYsICkpCTmzZsHQEFBgd/1srKy+NWvfsXSpUvp3bs3ubm5zf5MDaXNib4QYirwAmAH3pJSPt0sNw6LB5sDOeJG5P6fTBeJFHbExveRm2ZTMeByqs7+A5vdnUjPL2NkzzgSo1xEuRxkFZXjctoBiA51qIAWhUJx2vL4NzvYmV7YqNcclBTNo5cOrvUYq3t/1apV3HjjjWzfvh0pJQ8++CBLly7FZrNx7NgxMjMzGTp0KPfeey9/+tOfmD59Ouecc47f9VavXs3EiRPNlLn4+PhGfaamoE2JvhDCDrwMXACkAeuEEF9LKZs8osLtkYw//BsKyirxyqkATLJtIlV2ZKRtH4PFYWbsWkDYrq8Yigu77Ml1Fb/lBHEkRISQV1qBV2rX6hTtYnj3WHrEh+OVEBFiJzHKhcthZ1BSNJ2iQzmYVUxyUjTRofUvuqBQKBSK+jF+/Hiys7PJyspi/vz5ZGVlsWHDBpxOJ7169cLtdtO/f382btzI/Pnzefjhh5k8eTKPPPJISw/9lGhTog+MAfZLKQ8CCCE+Bi4Hmlz0Q512Lh/elahQB7HhIfRJjGBE9wtYeyiXzEI3OSUVzJfZ9N7/Ad2jbZx56AteifkvS4Y+TXq+m/gIJxEuBy6Hna1p+ezNLGLh7hPYhKDC40XK6vfsFhfGXef3wysl04Z0ISZcTQAUCkXbpy6LvDnYvXs3Ho+HhIQECgoK6NixI06nk0WLFnHkiNakLj09nfj4eK6//npiY2OrBfCNGzeO3/zmNxw6dMh077d2a7+tiX5XINXyOg0Y21w3f+yy6h/UCwd3trzqDxecpf36lY3RO79i9OQ+YA8u1lJKpIQKj5eDWSXYbLAno4j80kpsNsFriw/wx/9uBeBv3+5mXJ94LhzUmatGdWvsR1MoFIp2j7GmD9r37/vvv4/dbmfWrFlceumlDB06lNGjRzNw4EAAtm3bxn333YfNZsPpdPLqq6/6XS8xMZE33niDK6+8Eq/XS8eOHfnhhx+a/bkagpDBTMxWihDiZ8BUKeWt+usbgLFSyt9ajrkNuA2gR48eo4wZW7Oz63/wySwYdAXMeA2cYVCaC2FxUM/1/ILSStYdziUy1MGDX2yjqLyKrKJyBnSK4p4p/Zg6pLOKDVAoFG2CXbt2kZyc3NLDaHcEe1+FEBuklKODHd/WUvaOAd0tr7vp20yklG9IKUdLKUcnJiY26+D86HseJI2AnXPhx8fg6Br4e2/Y9lm9LxET7mTKoE6M65PAwj9MYvUDkzmrbwJ7Mov49Ycb6fvgfD7fkEZbmrgpFAqFouVoa6K/DugnhOgthAgBZgJft/CYghMSAbcthuRLYc1r8M6F2vajq076knab4L1bxrDgnnOIDXeSGOXiD59t4ZrXV5FZqDpXKRQKhaJ22tSavpSySgjxW+A7tJS9d6SUO1p4WLUz43XoOxmW/gMK0zQX/ykQ4rAxsHM0Gx6+AI9X8tmGVJ6at4uLnl/KhL4dGN83gevH9WykwSsUCoWiPdGmRB9ASjkfmN/S46g3IREw+hatgM+cayHngLa9OAtCo8HhOqnL2m0Cu00wa2xPRvWM45GvdrB0Xxbzth1ncFI0I3rENeJDKBQKhaI90Nbc+20Xmw0S+kHmNnjzfPjHGfDTXxrl0gM7R/Pp7eNZ9cBkokMdPPvdHio93ka5tkKhUCjaD0r0m5NYPQbx2Abt59HVjXr5SJeD+6cls/JADo981bpXPRQKhULR/CjRb06SL4PRv4BZ/4XQGKDxo+5/PrYHv57Ulzlrj3Lr++t5/se9VOlWf2puKUv3ZjX6PRUKhaKtMHfuXIQQ7N69O+h+azOd1sB7773Hb3/727oPrCdK9JuTmK4w/V/Qb4o2AShIa5Lb3HtBf26f2Id1h3N5/sd9PP2t9uGe+vxSbnxnLV6vSvFTKBSnJ3PmzOHss89mzpw5LT2UFkGJfksR0x2KM6GqvNEv7bDbeODiZLY8eiEzRnRlztqjHMsvo6RCawGcodL7FArFaUhxcTHLly/n7bff5uOPPwa0Kn0zZ84kOTmZGTNmUFZWBsBrr73GfffdZ55rtbivuOIKRo0axeDBg3njjTfMYyIjI3nooYdISUlh3LhxZGZmApCZmcmMGTNISUkhJSWFlStXAjB79mzGjBnD8OHDuf322/F4tO/od999l/79+zNmzBhWrFjRqO+BEv2WIkYvpVt4rPbjTpEZI7pSUuFhwtMLzW2Hc0qa9J4KhULRGvnqq6+YOnUq/fv3JyEhgQ0bNvDqq68SHh7Orl27ePzxx9mwQYu5uuqqq/jyyy/Ncz/55BNmzpwJwDvvvMOGDRtYv349L774Ijk5OQCUlJQwbtw4tmzZwsSJE3nzzTcBuOuuuzj33HPZsmULGzduZPDgwezatYtPPvmEFStWsHnzZux2Ox9++CHHjx/n0UcfZcWKFSxfvpydOxu3tUybS9lrNxiiX3BMa9srbFoKXyMzvm8C3ePDSM0tM7d9s+U4Q7rGqA5+CoWiZfj2fsjY1rjX7DwUptXeaX3OnDncfffdAMycOZM5c+awf/9+7rrrLgCGDRvGsGHDAK2ufp8+fVi9ejX9+vVj9+7dTJgwAYAXX3zRnBCkpqayb98+EhISCAkJYfr06QCMGjXKrMO/cOFCPvjgAwDsdjsxMTH85z//YcOGDZx55pmA5nHo2LEja9asYdKkSRgVZa+99lr27t3baG+TEv2WIk4voJO9F96frrn7f7+90W/jtNv46f8msTUtn8e/2cm2YwXMWXuU4wVlvHfLGPM4KaWq469QKNotubm5LFy4kG3btiGEwOPxIIRgxIgRNZ4zc+ZMPv30UwYOHMiMGTMQQrB48WJ+/PFHVq1aRXh4OJMmTcLt1pZMnU6n+T1qt9upqqqq8dpSSm666Sb+9re/+W2fO3duIzxtzSjRbylie0J4B9j9P+11QWrtx58CIQ4bo3vF883vzqbX/fMAWLwni7WHcukU7WL/iWJ++f56Pr9jPKN7te62kAqFoh1Qh0XeFHz++efccMMNvP766+a2c889l1GjRvHRRx9x/vnns337drZu3WrunzFjBk899RSbNm3imWeeAaCgoIC4uDjCw8PZvXs3q1fXnXo9efJkXn31Ve655x48Hg/FxcVMnjyZyy+/nN///vd07NiR3NxcioqKGDt2LHfffTc5OTlER0fz2WefkZKS0mjvg1rTbymEgB7j4IBvrR1v0xfUefnnI3numhRCHDZ+2JnBuc8u5pfva+kp32xJb/L7KxQKRUswZ84cZsyY4bftqquu4tChQxQXF5OcnMwjjzzCqFGjzP1xcXEkJydz5MgRxozRPKNTp06lqqqK5ORk7r//fsaNG1fnvV944QUWLVrE0KFDGTVqFDt37mTQoEE8+eSTXHjhhQwbNowLLriA48eP06VLFx577DHGjx/PhAkTGr0zYZtqrdtQRo8eLVtTvmU1VrwAPzzie33vHojq3Cy3vv6tNezOKCK72Jc9cFbfBD76Vd0fYIVCoWgoqrVu09DQ1rrKvd+SjLxJC+CLSIQvb4f8o80m+uf2T2T5/mwAuseHEe50sOloPpUeLw6bUOv7CoVC0Q5R7v2WJCwWzvoddNHXa/KPNtutrzmzu/n7D78/l9vP7UNZpYc9GUWc94/FPP9j40WLKhQKhaJ1oCz91kCMLsArX9QK9qRvggOL4ILHYcT1TXPLMCdf/uYsDmaVEOq00zMhHIDZq49wOKeU53/cR/e4cK4a1a1J7q9QKBSK5keJfmvAFQnDr4fNs+H4Ft/2+fc1megDjOgRZ7bg7REfAcAXm44RE+ZkUJdo7v1sCysOZPPPq1OUu1+hUJwyKjW4cTmZmDzl3m8tXP6StrZvxRXVbLfvEBlCeIidiiovkwd25I0bR3HT+J58sfEY87dlsGB7Ble/tpL/bU1nR3pBs41LoVC0D0JDQ8nJyTkpoVJUR0pJTk4OoaGhDTpPWfqtBSHAFQ0lli54IZHNeHtBj/hwdmcUccGgTkSFOnnk0sEs25/NB6sOs+ZQLgDrj+Rx8ZAuvDxrZLONTaFQtH26detGWloaWVmq02djERoaSrduDVuCVaLfmrjiVZgzE8o0gcXVfKIP0DMhnIPZJUzsr3kc7DbBhYM689ayg+YxUsKhbFW7X6FQNAyn00nv3r1behinPcq935roMRbu3Q3oa16VZbUe3tjced4Z/PPqFCJcvrnguf0TqQpoxXs4p0S56BQKhaINokS/teFwQVQX7ffS3Ga99bBusVyakuS3bVTPOAZ18W8EVFrhIau48VsCKxQKhaJpUaLfGkmZCc5wKMvT/OktSIjDxry7zmb1A5MZ2NkXWPjc93up9Hi58pUVvL7kQAuOUKFQKBT1Ra3pt0amPArhCfD9Q1BeCKExLTocIQSdY0IZ0SOWiiovB7NL+HhdKsXlVWw8mk+Fx8vt5/Zt0TEqFAqFom6U6LdWwrT8eUpzW1z0DZ64fAgS+H5HJu+uOMT/th4HYEd6IQWllcSEO1t2gAqFQqGoFeXeb62E6y1uy5p3Xb82HHYbTruNS4Z14c0bfb0cpIQ1h3JqPG/RnhNUeZq+g6BCoVAoakeJfmslspP2c+unLTuOGoiLCOHj28bx1o2jcdgEW9Lygx636kAOt7y7jhd+2tfMI1QoFApFIEr0WytJI7QSvGteg4ztLT2aoIzrk8CUQZ3o1ymKbccKgx5T5K4EYHNq8EmBQqFQKJoPJfqtFSFg8qPa769NgNWvtux4amFo12iW7s3i7wt2V8vfL63wAFBYVmluk1JSqdz9CoVC0ewo0W/NRHaEKD1vfuk/WnYstTCkqxZo+MriA+w6XuS3L7ekAoACi+h/tyODkU/8QHF5VfMNUqFQKBRK9Fs9s/Q1/ciOLTuOWrgsJYlfnq2V1/xiYxqgifzO9ELySjXRzymuQErJjvQCVh/MpchdRWpuaYuNWaFQKE5HVMpea6fzUBh1M+z6X0uPpEZiw0P48/RBnCgq5+0VhxjWPZbXlxxgR3oh/Ttp/QOKyqs4kFXMJS8uN887XlDGV5vTuWJEEgM7R9d0eYVCoVA0EsrSbwtEdoLSHPC0bnf4sz8bxpCkGO6as4kd6Vpg397MYnP/q4sP+h2/fF8Ory05wL2fbmnWcSoUCsXpihL9tkBEIiChNLulR1IroU4790zpB8CYXvFcP64HAN3jwwD4r+76N/h2u1bcJ8xpr/W67kqP+dPjrV6WuLSiiowC96kNXqFQKE4DlOi3BYyc/X8OgJzWXef+/IEd+eyO8XzwyzEM6xYLQKjDjtMuqh17XBfqyNCaV5m+35HBwD8vYHdGIQP/vIDb/7Oh2jE3vbOWcX/7qZGeQKFQKNovSvTbAtYgvh8fhS0ft9xY6kAIwZm94gl12hmSpEX1p+eXUenRLPTzB1YPSMwp1oL93JUepjy3hIW7M819X21JB2DXcW254MddmdXOX3c4D4CKKpUGqFAoFLWhRL8tYBX9Xd/Al7frv/8PPrwGvK1T7PrpQXwXDe7MfRcNoFdCOJcFtO7tGhvGiSLN4j+YVcL+E8X84r31PPudlvNf7NbiGKo8dXcbzC+raOQnUCgUivaFit5vC0R2rr7N64FPZmm/lxdCWGzzjqkeOO021j00hegwBy6HnTvPOwMpJXabIMRhY2d6IVVeL68tOYjXKzmSU2Ke+/KiA9w0vpeZy5+WV1bn/fJKKukYFeq3rbi8inWHcjkviIdBoVAoTjeUpd8WCAmHuzZBTA/ftr0LfL+7C5p/TPUkMcqFy+EL1BNCcGlKEhcN7szvL+hPYqQLj1eSV1rBwewSv3OP5JaaZXxT8+rO6TdqAlj5eO1RbnlvnQr0UygUCpTotx3i+4Dd0ro2bZ3v91Ys+nXRMVqzzDMK3RzIKvbbdySnlMIy3dLP9Vn6RgnfE4VuM7IfID+I6BsTiaOqEJBCoVAo0W9TeHylbDm+1fe7+ySa2VSUwt7vT31Mp0hSrJbOd+eHG/li4zG/fQeziskqLgf8RTu3RKvuN+avP3HHbF80/4YjefS6fx6L9pwwtxlLBqr6n0KhUCjRb1t4LaKfYRX9k7D0d86Fj66GooxTH9cpMDgpmiiXg8M5mij/5fLBfHfPRLrFhfHhmqNmXn5Goc89n11cTrrurl+8J8vc/u127VnmbT1ubjucrV23PjEBCoVC0d5Rot+WuPgf4NAsY0qyIESLjj8p0a/Q188rW9YCdtptnHVGAgCv3zCKG8f3YkDnKHolRFBQVknPhHD6dIjwO+ebLcdZtPtEtWtl6hODhbtP8NjXO3BXekgv0MQ+rR4xAQ2lyuNld0bwlsIKhULRGlGi35ZIng4PpAF6oZvEgdpPq+hXlUNlPaxaY6nAumTQQlw1shsDO0dxTr8O5rbfX9CP28/tw1s3jqZDpMvv+NeWHODhudurXceoBZBbUsF7Kw9zOKcEo9NvWl4ZB7KK/WIATpWvNqdz8QvLOF6gvAgKhaJtoES/rWF3QLhmGdOhPyCgzLKm/+JI+GtS0FP98FT4/2xBLhzcmQX3TCQ8xJdBOqpnPA9MS6Zfpyii9Ip9HaNcvPTzETx48cB6XXe9XrSne3wY+04UMe2FZcxefcTcn11cHrSsb33ZnVGIV8KhrJK6D1YoFIpWQIuIvhDiWSHEbiHEViHEl0KIWMu+B4QQ+4UQe4QQF1m2T9W37RdC3N8S4241dB+r/bQ7ITQacg/CU11g/09QmAbSC/t/hMdiIP9o8Gu0Iku/LqLDtKyF2HAn04clcdvEvoiAqr4dIkOqnbf2UC4AZ/aMJ7u4gooqL4f1wL780gpGP/kj//x+T9B7Sil5a9lBcktqnhQZcQgnmxlQUNb633uFQtG+aClL/wdgiJRyGLAXeABACDEImAkMBqYCrwgh7EIIO/AyMA0YBFynH3t6MvVvEBoDA6ZpP7d/rq3Nr3vbd8zmj7SfqWuDX8PbdkTfKK87tKuvANGWRy/kszvGm68vS+la7bw1h3IQAkb0jDO3Gfn6hmDP23bc75ysonKW7M1i49E8npy3i4e+3FbjuA7r6YA11RAoq/CwLS14vMWK/dmMfOIHDmWffl6CSo+XQnfr/9wpFO2RFhF9KeX3UkqjT+xqoJv+++XAx1LKcinlIWA/MEb/t19KeVBKWQF8rB97ehLXE+4/6hN963aDKi3VDW8N7XgNt7639X/5xkVolv5vzz/D3BYd6mR0zzgiQrTCP9NTulQ7L7OwnMRIl18goNHkx0jlC7H7/xe49vVV3PTOWvJLtffl2+0ZPPBFdeH3eiVHcg1LP/ia/ifrjjLjlRVBBW7etuN4vJJ9mUXmtrWHcnlmwe6g12pqqjxeSiuap3Xzr2dvZNhjLZ8uqlCcjrSGNf1fAN/qv3cFUi370vRtNW1XFFhy20tzfb+XaevZNYu+YelXwJGV/ue2Mu6flsx390ykd0AUvxCC5X86n6dmDGFE91i+/u0EBnWJ9jumS0wo3eLCzNempa+n8jnsNjIK3KbFbRTzMTwBAHPWHqXK49/f4Hih2/RA1OTeP17opsoryS4q99supTSzD6ypiNe8vopXFx+odq9AKqq8vL38EGUVjReU+PrSg1z8wrJGu15tGE2TTiWeQqFQnBxNJvpCiB+FENuD/LvccsxDQBXwYSPe9zYhxHohxPqsrKy6T2jrDLhY+xnVRVvbNzBEvC5L310A706Dz24++TGUF7k8h0MAACAASURBVMGKF5us8U+ky8GAzlFB98VFhDBrbE+EEAzrFku4bvl31Yv+xEWE0CUmzIwByCmpwF3pMdf2c4rLmf7vZZz3j8V+Yrs3o8jvPoVu//fRmDwkxYRyLK+U2auPVHPV55doEytrXIC70sOGI3mmx+F4kPLA+fpa/6oDOTz3w95q+99cdpAn/reTzzekVtt3shzNKeVobilSNp8QF6qYBoWi2Wky0ZdSTpFSDgny7ysAIcTNwHRglvR90xwDulsu003fVtP2YPd9Q0o5Wko5OjExsZGfqhVy6QvwUAZ0GgzZFoEoq0v09S/c7P3az5oC/urDdw/CD3+GfS3vsn1yxhAmDUjk0Uu1kI+juaWEOGx0jvY14vnz3O3s1d3qJ4rKydZb+y6yFPrZk+kv+oFBd4aQD+wSTXZxBQ/P3c6ctdp7uGJ/NtuPFZCrlwW2iv6dH27kZ6+tAiAq1BG0J4BRTvi6N1fz4k/7/FoGp+eX8aGegeBy2Ov0CtSX4ooqvBLKGjGlsS7yaxD91NxSNhzJa7ZxKBSnEy0VvT8V+CNwmZTS6hv9GpgphHAJIXoD/YC1wDqgnxCitxAiBC3Y7+vmHnerxO4AZxiEd/Avx2u49ytraDRjiH7OPu1nTLfgx9WHkmztp2w+waiJgZ2jee+WMZw/sCPnDUjkz9M18b9/2kB+e54WE/DZhjR2pBdWWy54c5nPU7I3QPSfmreT1QdzzNd5upD37+TzQKTna2v7s95aw/R/LzePsYr+T5aiQgM7R/HlpmPM3XTMz8LOKCjnXxYL3zox+PWHG81qhH/871bOeOhbGgOjhXGxu+51/X2ZRTz97e5T9grUlL3w74X7+N1HG0/p2g3hh52ZrDvcepe3Aimr8PDFxrRm9coo2g8t1Vr3JcAF/CA0v+tqKeUdUsodQohPgZ1obv87pdSURAjxW+A7wA68I6Xc0TJDb6VEdPB/bbjvK4JEh7sLoUoPPjO8A6ci+sa9bM7aj2tGHHYb794yxnx9+fCueL2S5C7RHMwqJru4nOkpSVytW91dY8PMFD+A0oD18h93neDHXSc4/PQlgLZMADCgc6R5zPECN17LOrXR9c841uOVhNhtVHi8vPTzEXyp9xq455PNfq1/7/9iq1/Z4LT8UnokhAOwK73uCoCfrU/l3AGJ1doM10aJ3sL40peW8+DFyVw+vOaQmQv+tRSAX0zoZTZMOhmCNUgCyCutJK/05F3/32xJp8rrZcaI+n2mf/XBegDzb3uyHM4uYU9mERcNDtIKuxH5y/92MmftUbrFhTOmd3yT3kvR/mip6P0zpJTdpZTD9X93WPY9JaXsK6UcIKX81rJ9vpSyv77vqZYYd6vGKNgTSIV/5zq8Xni6O2z/r/Y6W7f0Xf4BcA3CEH176xH9YNhsgkuGdeF3k/vx+OVDGN0zjvsuGsC4PvFcNbJ+caEFuhjllVYQ6rTRIz7c3JdR4DYFHnwBfobFn5ZXSoXHy9+vGsb0YUl4LJaaNR4gsE9AWl4Z29IK8HglHin57Xln+GUdWKsMZheXc9/nW/l8Q1q9nsegWBf9zMJy7v54c43H7T/h+zzl1iDadeG0awEWNVn6Re5Kyio9ZjfFhvK7OZv4/SdbTurcU+HC55dy+3821H3gKbL/hOaFqjrFGJob31nr51FqC1RUec0JquLkaA3R+4rGwGrpOyzWV6ClX5rj/9qYFJxK6p6xVGCvXiCnNSOE4M7zzuDj28YzooeWyx/mtJuiFIxl+7N4bckB3lh6kPjwEL8SwRmFbo7lW1sA+8oCAxzUK/f1SdSWFf5y2RDOPkP7u63Yn13jPedtPc6lLy3nneWH8HglHSJDiAz1OemsE40sPVMgKyBjoC6Kg3yR7s4o5GBAu2Pr69zikxN9Y8JSUyBfkb7E0Fa+3J+at5NFe06YsRfeJs5KMN4fTvE2S/dm8cJP+059QM3IrLdWM/jR7xp0zquLD7Bs32kQ1F1PlOi3F6ItpXejLVZroOgXpQc/v6aAv/pgiH5gmbw2xLBuWr2D31/QzxTrYOw6XsibS7W1//hIf9H3eCVXvLyi2jmGKO9I1wr19EnUlgR6JIRz/zStpPC3249XO89gyV7tC+uD1YcBSIwKJdLlE32r+GYX+4t+SXkVZz+zkKX6Nab/exkvLaz+RR9M9Kc+v4zz/7nEb5vR6tj6XA3F6dC+dvJrcOEbYykKiC/4bkeG6TVpLKyBkDWlEJ4ocjPg4W9ZuDuz2j4pJW8uO8Qt764ztzV1MKTx/pQ0Yspma2NbWgF5JRVsTs33K5297nDDAzyfWbCbG96uoUhZI2ENtm3tKNFvL/SdDNfOhivf8i/YE+jeL6xB9D2nIPqGl8Dbdr+EEiJdbH/8In51Th9zmyHIBjFhTn7adcIUO7sQRLgcZoGgmsguLsdd6eGDVUcY2zue+AifR8Sw+rcfK6R7vK+eQJeY6mvlqXoRoA6RIX6in1NiEWJ9AmCI/67jhaTllfHX+buoqPKyI72Qbcf8qwRKKettVZ8o9N3LjFkoLueHndUFsSYq9S/Imt371UU/s9DN7f/ZwD2f1Lz0ADQ4uK2k3PeZtb6PVuasSaW8ysuctdVTJANjP2ra1pgYf6tTKabU1N6IU+Xnb63m7eWHuOLlFUGba7UmluzNov/D37I1Lb/ug1sBSvTbC0JA8qUw7GoIsUSl11f0q9w176sLw9JvBdH7p0Kky4GweCtun9iH3U9MNV+P75PAbkv+vhFF3yHKRY/4cL+0wFsm9AIguUs0O9ILufHttZwoKverKggQHuKgry781sJChujfd9EARvaI5epRvqC0xCgXYZaJhjU7INDSN4oMhThsZBa6kRIyCv3FrbzKW6t3w0pWcTkxei8EY4Jxy3vr+NUH6+s1cZBSUqpbwsFS9qSUFOkVDIsslQyNDIa6+hw01Mq2VkusaUnkqy1awKUtiCMr2DM0ZtGkYBSboh/8PlLKWntGALirfOc2ZufJxsDjlRS5q/wmhYFemCqPl4oqr1+MSTACJ4GV+nmNyU96sam2kmaqRL89EuKLKK/m3q9J2Hd8Ac8lQ1H9LTYTs6Rv6/ryOFk+unUsb9wwCiEEoU6fuPbvpL2v9oBv/xkjuvKLCb1Y/eBkrhvTg5RuMTx0cTL/vm4Ec+88izG941l7OJfwEDvj+lQPuLz2TK0ERUyY07y2U1/3HpwUzRe/mcBfLh9iHp8Y5fL7MsstqSC3pIKvt6Sb7ndDwIwvRYGvEFCmJQXwyldW8OriA37jcdiEnxBIKc37ZRWV0yUmlJgwp2npG56DQHd8MNyVXrPdcTBL3zoBsV7PaF/scthYdSCHeVuDL4dYr1mfGgbWZY3Fe7KCegqM9/JITvUJR7AMhJImLGcspTTfn5omWS8t3M/IJ36oNa7DOmE4Udiw+I+mxvBgWCdwgctP7iovj369nSnPLTGXfKyBn+n5ZVzz+ioe/2an33nnPLOI4X85uXoihe7KoHU1vPpnJvB7obXSUil7iqbEz9IPXNOvee0YgMJjENWpYfczRF+2nXWt2jjrjA5Bt587oCMfrU3l6SuHcjinhLP6asfdM6W/eczfrhxq/n5pihZncVlKEmsP5RIXHmKKuZXrx/VkZ3oht03swwPTkpHA3R9vAnyxWlbLPtLlwGqY55RU8MbSg7y25ABn9dUmFYXuKo7klDB3k2alHst3m8KZpbcULq2oYuPRfMoDLB+bTfitt7+y+ADPfreHLY9eSFZROYlRLiqqvOYyh6GThe5KOgdZlrBidUkfy6ves8Aq9NYv+mP52pety2HjzWUHOZhVzCXDqvdbsI67tNJDdJD3G7QgxW5x4X73ePa7PYzoEWv+XcFndQIczinB65XYLF/uBUHiEprSvf/BKt/6dk33mb1GOyY9v4zEKFe1/e5KD+ss6akZhW4zJTSQA1nF/OGzLfTvGMUzPxt2KkOvN4anJFD0rctopRVV/G+L9l2WVVzOgaxifvbaKj69fTy/+mA9he5KpMQvDRf8y143lMv+vZzDOaXVUjuNuYatnjFNpRVV/LjrBEOSonHYbDW+902FEv32SK3u/aCFDH1UncR/Co9lTX/Pt5A4EOJ7N/w6rZSV95+PV0q6xYWz/uEpDT5/SnInHp673ZwEBBIe4uD5mSP8tj14cTIPfLGNM3v58rDfunE0m1LzEEL4WaR5JRXs0PP3Vx7wZWfc8t4680suu7icA7rV7/FKsovLTff8ruP+uf+VHq/ZkAg0MQStUl5WUTl9EiMoq/BUC6r778Y0Lk/pyqAkbZnimy3p9E2MZFBSNO5KD1L6hKpjlIs9mUWUVXj8JjRWl771d6PwkUdK8ksraszjt1r6ZRUeokOrp5FWerxc8fIKbpvYl+HdY/z2ZRWVk1NczrZjBYzpHU9llfY+90mM4GCWloffIdJlimlzuvellDz6ta88SU2ib7w3mTUI3B2zN7DYUn3SmAwGUlxexaoDOWw6ms+mo/k8fdVQv+Wvupiz9ijnDehY50QwEOO5rJ6MInelf5pqhZcifX92UTkbj2qu9UV7TjRZy2pjqayiykuIwzcWj546aROCKo+X15ce5MqRXekSExb0Ovf/dxtfb/F5XE+1PkRDUe799kht7v2yOtad3p0G3/6pYfczLX0PzJkJr57VsPNbOUmxYXSLO/nZeOeYUJb/6Tz+cGH/ug/WSe4Szdw7J/gF7E0Z1In7LtKCC61rnLuOF7I93Rec59At0YNZJUS5HNw1uR8ALy7cbx6TUeA218cDY7qkhGvfWF1tTOn5ZaalHxcRYsYPGLy+5CCvL9WWCiqqvPxuziYufnEZW1LzGfjnBfxuzkbTeptwRgc8Xsnqgzl8uj7VnMRYLe+i8uru/dziCvLLKil0VwaNtrda+vd8vJmjOaX8fcFu/m7pXniiqBx3pZfdxwtNK/4xvWxzYVkls95aw83vruPjtanmmv+QJG1ycPO7a/nNh75c/GAZCHUF2O1ML6TX/fP8KjzWxt7MIiY8vdCMJ/nj1AHEhjuD3kdKaa5ZZxS6OZhVTK/75/lN7KyCDzW794c8+p1fEF1D4iVOFLp54Itt3D674XULDNE/nu+btBS5q/ziFKxjySouN5fhaotPaKzgxfR8/0mScdmKKg+frk/j2e/28Lf5NXfLbOm1fyX67RGrpe8u1MrkGq12g1XoC2TNaw27nycger+y9mCr05FuceE4anA1nwyG4A3qEs2WtAKsS9HXnOlrU/HctcO5bWIfbpvYx+/8jEI3qXUExQWy6mAOFR4vPeLDGdY1hr2ZxawPKF+bW1LBV5uP0f9hX3nglxZpk42fdp8wv9DH67ENj3y9nT9+vpUDev6/1b1f5K7ihG6tGu79nJIKCko11601z/+rzce49vVVfkK66mAOs95ezSuLD/CKHrewNS2ff+u56Qeyis37TU7WlrQKyirNL/XUvFLTajyjozaRziws9+vAmF9WfU0/0AJftOcEJ4p8Arb2kDbGb7bUL3D2k3WpHMsv4996qmW3uHAiQhx+mQcGqZY2zxkFbuZv01zghmUZLGYhWOplMPE0SjS/tuQAl7+0vNYxG7ElgR0m60NZpXaf1Dzf+1zsrvLLrrC66T/fkMa+TO3zU1swaWPFWhwJ+H9jTCYe+2YnD36pteHecCSvxkySmjwwzYUS/faIVfS9lfBsX/jkBu11RRMIsmHpn8zSgOKkSNYj/c/pp60/R4TY6RCppQL+fkp/rhiuLSWM6R1PpMvBgxcn8+3d5/DeLWcCmnfgswZ26ftCLxs8rk+CObEwmgcZ5JZUVEurM9L5bEKYQt09PpxO0S5TpIzCRVaX/oLtGYz56098uj6Vnbono9wSS2AEElZ6vNz98WbWHMqtJqRWEfR6JZe9tIKP12nPfSSn1AzES4gMITzETnZxhdlRMbPQbY7XEH3QUhSNSVdda/qVHi+3vLuOma/7PCfhIZr3pr5pkoa3Z9k+rYBTYqSWvWGIo5UFO3wxOxmFbir04A8jliRY9kNukFTFYEGAxvvy9Le79YlmzZbzCf18qxu8vhjvn/V9LHRXklfie6+3W9JOl+3L5pP12t80t6Rm135NdSHqg9WrFPgeVgZ4EG4+qxfH8svMiayVP32+laoWTpdUot8eCYmovm2fXsWqPpZ+QzEs/cD4AUWT8dSMIXz0q7FcPFQLZhvbJ4FPbh/PJ7eNIzHKxT+uTmHF/eeb6XWgTRTO7Z9IdKiD53/cx97MYjMNLS7cye4npvLOzaOr3Ss+IoSeCeEUlFWSGOWiT4cIOkWH8uQVQ6odm1NcQaijet2CYd1i8Hil2dI4PMTuJ6RHckrZl1nE1jTty9xhE2Zp4ke/2kGlR3J7gLfil++vZ2taPnssaZS1FQw6ESBkVV7J9mOF2G2CMKedmDAnBy3lkOdvy+CGd7SiLj3iw81lE6/05fTnl1bSKdo/WM7qdjc8BdbrGvsP5ZTWmHK2/VgBz36nNTUyvASGV6JjtIuIEDvzt2VweUAxqM/WpzGqZxwje8SSUeA2Xf3GSvyC7Rl+x0eE2M3YDv/3qvoE/vMNaX7eoWDu/uX7srn29VVmKenaqltaySx00+v+eSzcnRk0VqHIXUWWZUwba3CRW70BceH+8RzWapkNredgXVoI9JBZJ2+TB3Zk6hCt90Lgsom70mNOTloSJfrtEWNN3x4QuStl0wizkZ/fFBMKK4XpUK4mFqBZi2f17cDALlH0iA/n0pQu9E2MZKzuNnfYbXSNrR5IJISgr0Vs5945gYcvSeaH/zuXUKcdu83/K+GzO8az6A+TqNItxkn9E81gruvH9eT5a4f7HZ9R6Kas0kPPhHB+MaE3795yJp2iXcwa2wPwdS+McNk5I9E3jj2ZRUz/93JeWXyAgZ2jGNjF172wrNJDn8SIaumOh7JLuOylFWxOzdffk9qLJAWzcrek5Zv1GWLCnGaZ4TB9jdiw8GLDnX7VF4/lleH1SvLLKogNC+EBSyEnayBfsJQ+I/hvS2o+U55bwoLtGVz3xmpzKQO02IGXFx2g9wPzqxUF6hjlMr0FW1J9BWHclR72nSjmvAGJdIkJI6PAbVrxBWWVSCmZs/YoPS3R4t3jw8kOMlGyCpYx2XltyQHeXn7I8mzVLecb3lnDmkO5bNCXfQI/TzVhdDn8ZF1q0EDI4vIqP7f6hqN5fhNaA+t6e6+ALprWfYEZK3VhjV8JLE1tjUOJDnMSF6553AJ7UwT21DBo7m6JSvTbIyH6f+rQgCY6VeXBC+iIRvoYNLUgP5cMbzU8er5B5ByADe817T0aEZfDztI/nlfvjnIAvRK0L8Obz+rFsG6x3HpOH1PQxvdJ4JYJvfjz9EHcMK4nZ/aKJybMSbIuwv8XEIx4xYiubH7kgmr3ePumM3nk0kGcN6Ajax6cwqieWm+DJXuzsNsE3eLCzXLExvbyKi9XjuzK3Dsn0KdDpN/1usSE0j0+eDDly4v2ExPmNOMEBnaOCnrc4Zzqk9LjBW4S9AqJMWFO84vZyEAwiA5z+qW/zXhlJX0enM93OzLpkxjB7ef2ZcPDU3DaBSUVHrMWfzBhDNx2x+wNrDqYw7fbM9iXWYSUspoL2FqtMdLl8Gu2c/9/t2rZGLp4J0a56BYXRlp+Gel6LEReqVbS9nBOqV98R7e48KDufeu6c9c4372tHgDDi+H1Sqo8WqEcQ7+MiZhhBWcUuFmxP5uVB7J58Mtt1YTOyASJCXPWYOlXciSn1FzqyC+t9Ctm5Ru371mMz7mBNUW0tgyL7OLyagV8DNFPigllZ0CnS2s76uhQh+lhCMwwSdNjFD67Y7xfJkJTl20ORKXstUeMxjehMVBiidQ1LHFXDJRbSrGGRPm/bgipvprjzeLez9rVtNd/83xw58PIm9p0L4HaMJ6qd4fqy0AhDhuPXjq42vZ/XJ1CYVlV0DSk2PDqjZZ6BuQeG+el5paR3CWaUKfdrxyxsYZ8y1m9CXXaq53fIdJVbZvB8QI3lwztQrRu+Q3tGuNXOdEgMFq+U7SLzMJy06sQa3EHD+gc5RdlHRniqJbzbjRnevDiZEAr5RzmtLN4zwleW3KA68Z0Z/JAX82L3JIK4iNCqjUaunBQJxbuPmGm491xbl8iQhx+k4Mze8WTmqvFVAghTDEH+HhdKmEhdmaM0HpuJES4NKdelZdNeipbbkkF87cdx2kXTB+WxENfalH53ePDWHmgerMn61JIlKW50zHLfXOKK5i9+gg/7cpkUUBGgBHsaMRdXPnKCtIL3ESFOihyV/HHiwb4fW6MyValR/p5LyJdDuw2QZFed2Jg5yjW63+X5C7RTE7uyJPzgn8nTBqQyJebfCnKVvd+WaWHuCDneL2SKc8t4faJffn1pL7mduPzee6AjsxZe9T8W4K/pR8V6jSfK78kuKXfLS6M6DAH2fqySrG7yvTcNAfK0m+PCN3NGeqfg0ylLvoRAVXhXEEso/q6nN62WN5N7d5vDtz6F04zu9yakwsHa0I0tk/9e7HHhoc0qIhIYBGiCJfDXG4YolvRFw7uxO0T+5gpheDrRRBo1XeIdAUtbDRYv9Yvz+lt5ktbPQgGvTtEmIGI5w1I5IWZw82yycmdtWvEhvlEyCp0oBUs6hgg+tseu5AV95/vN9YIl8OccMxZm+rnkh75xA/MWXvUL7d/8yMX8MaNo/3e29mrjxDoFS8sq6RbXJhp8Qfm1m9LKzAt/fjIEPM9MJry5JVW8NPuE0w4o4OfWzwxykVphaea5WsV/QiLIFlT/15etJ+H5273E/zA+IYidxVpeaVmyeoiM0jS37tgeGG+3HTMb9070uUgKtRBQVklqbllDLB4cfokRnDrOX34jUWcDb78zVlMSfYvMrbGUqjHXenheEFZte57uaUV5JdWms2xpJS8vGg/y/UumOcNSAR8zbPAf00/OsxBiMNGpMvBeysP8/Hao+a+tLwynHZBx6hQc4IK/qmpzYES/faITRd9Z8CXtCHKgZOBYKLvqTkgqkbaiuhXVUBl8PU1k3ZSXTAYU4d0YcfjFzGwc3X3aGNQU8T2HedqbmUjpsDlsPPAxclcOcLXFTJCd9/2DBD9YJXlAF7++Uj+OmMoI3vEmYGBg5OqP9cvzvYVi/rDRQO4fHhXM7LdyISI0S19u03wq3P6ME0PyDLoGhvm92wOu42ogOI/RqEhY9Lw/srDfvsf/2YHmYVuzj6jA4f+drFpFRolZGeN7UFxeZVf1gFoGRML753EwnsnAZh/u9sm9uHMXnFsPJpnFl/qEOEyJ08GGQVuDmeXMKyr///9DhHa+xrYbOiwJfDQWora6vZeFaTOwL+uHW4+u/FeGV0irQSmrQUrcWxcI9LlYF9mMRUeLwMtLv1u+rJDdJC1/QiXw4zLABjZI9YMDAXN0r/oX0u54e21fhOewJLLhWVVPPvdHr7YeIwOkS7G9NYmypuO+rwRVtE2ikHFhjvJKang/i+2kV9awcNzt/HakgNEhWqltq1Fo5q7hbQS/fZIlF6etEuK//YS3Y3nCvhSDCb6JyPgbUX0X58IT3Wu/Zh2LPrgE9fGwlp2PDbIlzDArLE9efnnI7lxfE+/7YEBV0A1r4IRczBO9078YkJv/n3dCHp1iODnepDgL8/uw5xfjWNi/0TzvJv0e105oiuXDOvCBYM6mZMDw2oz3PuGBRzutNMh0sWr14/ib1cO5Z4pmifi5gm9+OLXZzH7l2NZct+koM9opB4+MC2ZwUnRZvDgFcOTeOLywbgrtU6HMWFOv+p2Q3UxvvO8M3BZJhZdY8NY+9BkfjGhNyEOm+nt+OCXY/jqzgk8eHEyf5w6EK/UWg+DZuknWJZOLh7ameziCrwSvyBOwKyW9/yP+8x1+P0nilh/JI8JZ2gewcAo+NpIigkzrfnr9LTOxXu0OI6U7rHmcVbRLyirDJreBproJ0a52J2heRj6WD4rpugHqboYHmL3K5c8NWACdyi7xExB3GLpjudrVFWClNKvHkCvhHBiw0MY3j2WH/UmOxVV/g18jAmIdano8w1pzF6tWfxGmWyrt6W4Hj0rGhO1pt8e6TQIfvkjJA2HVS/5thsleAMD/FzV3aFUFEN4/d2/5jltgfrEBbRz0W9s1jw4hezicqa9sIz/uyB45UGbTQStlw+w8N5z/dz3naNDuWFcT/6j91I3LP03bxzNnowiRveq/tm02wTj9S/Vv181jCFdYxiUFM3jerOil38+0u/4/7ugP1eP7m5WWzxvQEdWHchhRA+fOF03pof5e1SokyEBlnIg5w/syLrDuVx7ZnfySrXyyELA8zNHUFbh4Yl5WovjmAAhffqqYdx8Vm+SYsPoGhvGwewShneP5box3ekYVb2MbYdIlzkRGtYthhCHjXWH83A5bESE2BFCcOWIrricNrrHhzN/mzYhMCY8RjzDhDM6cP24HsxefZSNR/JY+IdJfL05HbtN8Py1I/h8QxrXjenO3M31KyTUOSaU/p0i2ZtZzEVDOvP+qiOs2J/NwM5R9E4IN9frMwvdpOWV0jk6lO93ZFDpkfSID6+WYRFit9EzIZxlWl0iv7iOJH25KHApBvyXJACuGN6Vv1qq5H2yzreEMPON1Tx8STK3ntPHFP0idxXL9mUzd7MvJsCYnF40uDPPLNhNam6pnxfEOhZ3pe/747sdGdgE7PzLVDOAz+qdSA/SxKcpUaLfXul+ZvVtBfoHvSZLPyweBkyDzR/Wz2r3BghjU1TiKz4B3z0E059r/GvXSvtd028KEqO0evQnW0c8cB1eCMETVwxhyd4sjuaWmoWHokKdQQU/EGtVwppw2G1+wYyDkqKZfevYBo7cnzdvHI3HK7HbhNk3wQgPCQuxM31YF77YeKxaxbvoUKfpOu4Q6eJgdgmzxvbg6tF1P4fLYWdE91jWHMolISLE9CA8p6dTWgMS++rv88J7hdC3rwAAIABJREFUtTRMu03w5BVDiY9w8eJP+yh0V3I4p5SusWEkRrn8gtmCccGgTmbxpfiIEEKddj6+bTzF7ipiI5wIoRXZSeke62fd/rAzk398v5chXaOJCXPSLS6Ms/t14KM1R/2u73TY6KEv9Tjtwi+Q1Ah+MwQ0zGk3I+HDXf5i3DE6lDvO7ctrS7TKjMv2ZZPSPdachDw5bxfDu8ealQQBbtRrNBgYgXuXpnThhZ/28ofPtnD9OH+vleF1sPalWHc4j66xYX4TBKsn5g+fbSEixM60ocEnxI2Ncu+3d+7eAtOf134v0GetNYl+lxQYdIX2e71EPyAdyTinsVIAQfNUbPsU1r/j2+ZpBneYsvRbBQmRvnS6toDdJsy17GHdqnsFHpk+iGHdYpheg8cDfM/sqGdhG4ALB2vu62BW46iecSTFhBLisJnCE+Fy+HkbRurejR3HCknLKw1a48HgH1f7lg2NipCgpVWCJo49EsKJDnXST/csDO8Wa+4H2KIXYdp+rJAV+3M4+4wOQVshu+w2esTrwZ1x4UHb10br1rV1GSIkSNDn/dMG8v3vJ5qvpw3pzMe3jePVWZoHaN3hvFrbERveg25x4Txx+RDWHMrld3M2+Y9F/5waOfrGeLvF+b+fv5nUlzdv9BXCGhrks9JUKEu/vRPXC5L0Dm6GpV/Nva+/tof4qvnVR/SNSnyTHoTFf/W590XtRVIaRLieaVBoaQlcXtjwpYeGokS/VfDKrJEs2J5Rqwi1VkKddjpFu/wqD8aGh/D1b8+u9bzLhyfx7fYM+nUMXm8gGNeP68ET/9vJ6J7BEtHgp3sn1ZoPbsQUbE7N51h+GRP7JfrtX3LfJASCpNhQHHYb248VYBOCa0Z3p1/HKP75/Z5qwgYwskccezOLGdY9plqjmr//bBh//HwrACN6xLJ8f/XAQKdDmJa+4dqPC3f6NcAygimtvrmaugFag/uGdo0xCz51inax70QRlR5Jl5hQMgrdfgk8d0/ux63n+IJBrx7dndTcUrOJlU1olRqNCcirs0byzorDdI4O5est6dUadnWMDuXsM3yTlFNp6NVQlOifDsT3AWcE7P9Rex1o6Tv0Gbjd2TDRNyx9h8v/nMa09CP1tJsiy5qiEv3Thi4xYdwyoe22aV51/+QGl3uYOqQLWx+7MGiAWk24HHY2P3JBUEsYtKWFsFoqFiZEukjuEs0zejfCQBHqGVDo5rHLfLUcxvdN4K2bRgdtKHXVqG6UVHjo1zGKfh2jeP2GUfSIDye/tJLxfRMsoh9nRsxfN6YHZRVVzN2cTojd12/eGMPGP1/gJ8hGJcZgXRcDsbrYe1gyRPp1jGL/iWIEmlUu8Pea/D5InIp1mWlcnwRWHsgxJyBTh3Rh6pAuvL/yMF9vSfcrpuQbi/Z+1dRyu6lQon86EBoNo2/xBfUFRuvb9S+Xk7X0jUmDcY6tES19m/4RLfAF1OA+yUJC4BtzXSjRVzQCthpEuC4aIvgGwYokNYSPbh3LiCd+APyr8J3Kvc/sFW/GNoAWBGflwYsH8sriA/RNjOSeKf0Z1TOOycmdWLA9g7mb0wl12ol0OXjs0kFMOENbShBC+E2kOkRq8SSPXjqYOz/a6Hf92b8c69fEyTrxsS43nNExkvf09MoHpg1k8Z4sU/RrKu881BLU+doNoziYVVItXdWI1h/bO6A2iv4c2x67sFkL84AS/dOHCXf7RH/IVbD/B9j1jfbapn/BCJtF9OsRie8JsPSNLnuNKZjGtQotln5RRvV0xPriLqz7GGjXxXkUimDERYQwplc8aw/n1lgXobG5bWJfbpuoBQvabcJscXzewESuGd2Ney8cAMDNtXh7Qhw21j2kFQkb22eKX9792ZaYA4DQgDoLBv07aYbQhYM68atz+nA4p4RVB3N45qqhnD/Qv8iPQZwejHdOvw5EhzoZbklJNOjXKYr1D0/xC9yzEljnoTlQon+6ENkRpv8LjqzUUvSunQ0ndkPuQcjeox0jRMNE33Dv20O0CYMh0PW1puuDV/8PbHXvf3QN/N8uiD4Jt5g7v+5jQIm+4rTkxetG8MJP+xhTjwyJpsTlsPP3nzV8Ym9tihSMYEsQAFeP7kb3+DAm9O2AzSbMpYRRPeNrnQDt+svUOgMu6xpTc6NE/3Ri9C+0fwYdB2r/Vh7UXgubtt7vjICCtOrn7/sBSnMgZab22oiitzu14D1D9KVHE+vGcPMHaxAEWipfoOjv+FILWozrVfP16rs0oNz7itOQzjGh/O3KoS09jCbHSAE1cNptnGMJXrxieFfKK71+xYCCUVucRGtFib7Ct26O0Kz9Dv0ge2/14z78mfbTEH3D0rc5NIG3pvB5KsDWCBHX3hpEvyxPE3BrSeHPboawOPjT4Zqvp0RfoTit+d/vzvZbzw9G55hQ7p7Sr9Zj2ioqT18Bdl30jeiYDv0he1/d5xn1+e0h1dP0qmrOd20QgZb+AL34y3+ugKd91dJMr0NZHrVSXt81fSX6CkV7ZEjXGBJamcu9OVGir/AF8mER/YLUuiP4re79QFd+Y63rB1r6zhpm6FX1LGUZzNLPOwyZO/y3KdFXKBTtECX6Cl9evfGzg+7Wqsvat7r3A3PzT6ZLX9B7BIi+owbRr+/9yqv3WeeFFHj1LP9tSvQVCkU7RIm+ArOWlRGEGqPX+y7O9B0SpLiEac0HtfSbyL1fk+gblr6tjhQYb31L+KrofcVpjNcb/P+8os2jRF9hsWp11TeC46yu8IogFrJp6Turr+k3lXu/LtG31yX6NZci9UNZ+orTmRdT4O9ttxKiomaU6Ct8OekiQPTLLDntwQLkPJY8/UBLv6kC+Rw1BOAY97PVkZBivV5tufjtWfTzjsDsq4IvdSgUAPlH61/TQtGmUKKvqNnSz9kPqes067gsyBeAKfoOn6VvWOJNFshXQxqgKfp15M1ahb5W0W/H7v1jG7Q+DLkHW3okCkX7x1MFh5a29ChMlOgr8K3p6x8HRwg4w2Ht6/D2FPj+z/6WviGIVve+TT83RO8odmAhLH4GFj4Fqf59qQEoyYacA/UYWoDFXaN73xD9Brj3ayr8E+y+7QljQtZY3hiFQlEzi56C9y+Fo2taeiSAEn0FWNz7lo+DtehN1i5/V58hnH4pe7pb3aWL/paPYOmzsPTv8PYF1e/5wnD498i6x9bYa/p+7v1ahL2xRd9dAN/cU79GRk2NMVmrb5pjc+H1wMqXoLKs7mMVirZCll7mvCSrZceho0RfUX1NHyDU0jyi+IS/pW+Ihl/Knu5WD9E7+JVk+1foCyRYYGDQsTV0Tb8O9751ElFbUF9ju/dXvAgb3oX/b++7wy0pyvTfOuHeO3MnMcwAQ5SoknNQDKAiqAsYVkUFXAOuYdf0c9d1dUVXN6hrWnPAtK4oKwqLKIIi7rooIkmSMAoocQiT587cE+r3R/XX/VV1VXX3Oeeee2bu9z7PffrcPt3Vdfr0qbfeL9U1Xxhsu72A0htHTenf9B3gx38P/OxfZrsnAsHgQAKi6hrLMwQhfUFmmuem8YlF2etH7gB+fV72P5EGr8hHZEtK36181yuJuil2IZ9+p5dAviEqfXKhdMqmDM4gqA8u6f/k/cCV/zz8/hBokaeyVRNnCnf/wixGJRAMBB5L6ixiNHohmF0c+nLgqNcAT39nto8e0LGFhtwf+i2w4lCzj0iD5+mnSj+wQAXP+a+CnHm/SOmPqE+fJiOxaw4LIfP+XT8H7v7f4fdn1HDJW4D/+bfZ7oWgF2xeZ6yMowQ3UHqWIaQvMOr5uf8GzGMmffKrrjg423foy8yWFD6p8FojsxbMt9evTvFwj8qpdCBfWZ8+j94fotKnSVHp4kAziJB5v9Majf7NNtpbBldRcjahNXDJ24B7fzPbPRkePnEI8OG9+2+n2zFpi4OAz306ixDSF/hBpL8TI31S8aQULaWfPEqLVvjb63X27Sr9Wt1vwk8r8hWl7HGffhf4w88Cxw1a6Sf3p2xxoJlEat53lH63HY/DGBpmeXDsdraN7I0t64Frv2wix+cKph4bTDu3XQz8+xH+VOXKEPO+YGsAEcJOydratUZmOu+4gXzNrGTn+MIsbc/XnosiEnTN4apmYghy7U9nfYmBX+83XwG+flrgujOk9EfBvO/GZKT7RekDMPdgWyD9NOZGVlCvjE2Pmfs3iGwbMe8Ltgoc+AKz3elAs523XWY673iUPpFZfQyYtzTfHk/D4sRbZEZ1JwWq7jfhp0q/QiDf6rtiB8bbKYN19wO//rJ5TRaIUVD6IZ9+tzUa/ZsJM+jqe8oP4HobUfqtTWZbNBEW5JF+/wMYB1zzfqdlCmTNEmaV9JVSb1dKaaXUsuR/pZT6pFJqpVLqJqXU4ezYs5VSdyZ/Z89er+cITnwP8Ld3AzseCBz8EuDlF2Rky837qmYIjRRifdwfbMcJhpd/LSJ9VxnX6v5BrGwZXovUIuTiZhvcfmn1Cnb/+WLgB28D1j/IAvlGgExCxXk67cFVUuwFM1kF8RMHA998cbljtxWl3yoZ5yLIg55F3TUTxlYfNS3clL2fvA/44on55byHhFkjfaXUbgBOAsCjJU4BsG/ydw6AzybHLgXwXgDHADgawHuVUtsNtcNzDbW6Ufe1OvCCLwA7H8bM+xTI18r2EZnWm7b5nfL2WyHSLzAne5W+z7yftF9kPueDeczH5g76558B/PuR8bZdbEiKcWg9YoF8AdLvBsz7Wpuo6K0V9AzdUzIzYVvx6YvS7x30/benzYTxwtf001iyTUj//hvMdpaK9cym0v8YgL+BbT85DcDXtcEvASxRSq0A8GwAl2utH9NarwZwOYCTh97juY7UvN/OtrSPyLYxbiuLye0NubaZeZ/ysYESSt8ZfGsB8346EemD9Isi+6v649MZfm20zPvR6H2P0v/5R4B/2W2IqVADNu9XrTzYbY/G99QvyKVWFNw6DPz+yqwy3YXnAF95zuz2pwj026X6H3de3kdbgej9WQrsm5WrKqVOA3Cf1vpG561dAPyJ/X9vsi+0XzBMuOb9biszW1MgX33MVuITS4DGvIjSnwbW8K/Wgas8i3z6RcTMB3P3R2jl8BcovbX3AucuDkf/W23o7Ac+U4F8t/8A+Oj+WUBjDFV9+rdcaLbrH+yvj4WYIfM+PXtlB9ltTemPgnn/v99sqlICwE3fBu75xez2pwj0/ae/h0FMRJXd9iwF9s0Y6SulrlBK3ez5Ow3AuwD8wwxd9xyl1LVKqWsffng0ah1vM3DN+53pjOC1x7zfmACW7GbqAHClzyuu3X4J8PEDgTsu818zZ95X9qSCZtGkWitlA7ikz1Ru0aB///Vme80XI9diA0c6OZoh0r/0HcC6+8oVQars0x+NqOOeQc+eqpfzo3bbo5Fl0SsevgO46I3Z5LoozmUYaG/eymofOIuK9RNc6ir9Wc7bnzHS11o/U2t9oPsH4A8A9gRwo1LqbgC7ArhOKbUTgPsA7Maa2TXZF9rvu+4XtNZHaq2PXL58+eA/2FwGke03ng/ceL5t3ueBfDsnlfte9m3g1E8Z0g8pfTKbkenPhS+QjyuX1PeWtF9EqjGlzweloqCy8SRWIVYylvqmO0zpj4CCTLMvSvr0U2ylyw2TmbvbAj53fBZr4YPWSfT+VvpZAeCiNwDX/wdwz/+Z/0eB9Dut0Xj2yyI179PvoR+Cdnz6uf+Hi6Gb97XWv9Va76C1fpzW+nEwpvrDtdYPArgYwFlJFP+xANZqrR8AcBmAk5RS2yUBfCcl+wTDBM/3veJcx7zPlP4z3gucdTGw19NNlb/GhKP0GelvWGW28z1pfrxdgnKi97tOHfnCQD5O+s7jz03jfIDyEUBzvtluiSwclC5B3EHeXNgHfvdDj6ndHVAiSH36m42vldwrnYB5f5CK5A9XFWcIDFoB8XRR3QVakdS9dKJWQFCtzcB1Xx/NyQHVySCrzyiY94dN+v1+L+nvdRBK30n/21aVfo+4FMYSsBLAFwG8AQC01o8B+EcAv07+3p/sEwwT3Ky+4SHzQ/YF8jXGgL2elh3bnLAH3ulNdjtAuLyuN5CP9YNIqrR5PxLI1wmQvq9Nej9K+oxA0kGkz+h9rYFvvRQ4z4ljdU2HMfCJ0jdOBz77pOQz6nhFPt72f7wQeF9gohbCAzcCXz8V+PG7i9sfJHKxC5FnhO5N0XP0038ELv4r4HeX9te3mQBZoWhCPQrR+91hk36f10qV/gBSWHn6n3mRbGeH9Gfd7pOofXqtAbwxcNx5AM7zvScYEmqOWd2bsudJp2vMs0mfm5U3JRHhIX9ft2NcBnSOG8hHk43UvF+UAsgVvDMw8H5ZSt9DAPR5Y6QPrvQ74baqgK6bKyxUYQDhSh8wLoq0yqLv/nnaXnlF+esRyMVTWJhkBpU+EJ9c0OcvIg1Kt4p+/7OE8WSFTJpQj4R5f3q4cRLddn9ZCy7p9xNpn07+RekLtja45TzbW5hPn5n3XTQngLuuytSpbx33UFqV7tgTCVWzr0HXJSKrYt53JxrtgE/fRwBEDls25N9zz+M+4n7N+1XqEITgC+Rz11OYCdCyyP0S5c3fBa7+TPnj3Wcrdg/p+ym6j3p21VoUOaU/y8M8ubeG6QoZhEUNYJavAfj0R0Tpl3oalFKTSpmpjlJqP6XUqUqpEbAZCYYKV8U/9oes+h4P5HPRSAb7P15ttl7Sjyj9Brtuzam9787IuwWDtVUC2BkYKpn3k31l/MOD9OmHyIjGjzLt073ibpaU7HXkHvbrJ036Fiz0U7L9/3oVcNnflb9ua5P9f4zQU6VfdB9Ha+U0C0T608nkquozZ1nDBkDU9GwN07zfN+m7Sr+ftrR/O+JK/+cAJpRSuwD4MYAzAXx1pjolGFG4vsFHV2Z19nXEvN9k/vr2tF/Vu5HkhJzSr/uVftnBOqb0rf+50o+Y96PXYko/VZADMu8Hr1mifVIv00xx80HS9eunMYJ9EkDqEimo7jfwQD5X6cdIv6rSH0G45vyq1htrJcoBmOS7s0H6/U6uSekPIHo/p/C3AqUPQGmtNwF4AYDPaK3/HMABM9ctwUjCt1oXRd2nSt9n3p+fvd68xu+/jyl9Tvpu7X0aoFzyD8FS8M5gWEXpVyH9YSh9GkDKKBz6nNw1wYkh1EbfE5ak3emIS2Qm0HZ8+mUC+UoT1Agqffd7qrpccpUiVWWQWuGG6NP/w5WmeFav9e0HGcjnmve1S/7DRWnSV0odB+DlAH6Q7BuB2o6CocKn4t0V9XyL7fDI/Kk1fvN+SOm7pO/W3k/JvuTAYpn3nR90OxTIF/HpA2HV54ver0qcV3/aLgAUOp/UcSnzPsUjcKUfI31qu08CmK11B6oo/XQSuRXllLtw73PR+hYu+DM2iOC72TDv33SB2VKtghg2Pgp8eJ+s4BYwMyl7oe2QUZb03wLg7wB8T2t9i1JqLwBXzly3BCMJX+rPfGfdI2/0PpsIbA6Qvm8fUBzIpx2FXyXQzbeevO+4mE8fCAemWUrfsUiUxc0XArdexPoyAKWfBu2xe86JIUQSg1L6IcxYyp4bvT8IpT/C5n33GataCY+fv7Wa9ynWxidCXKx/wGRj8FU0c0p/ABX53Od7llxEpXI5tNZXAbgKAJKAvke01n89kx0TjCA42Y4tMGZaV+nHVsADgKnVhmyak3YQXCxlr+GY973R+5RfXSaQTwHQeaUfMu97lT4n/XXAxKLwNfn67FUHvm4L6LCfaaGvuUz0vudex5R+FStC9LplFedspuyV9OkThh2Mdcv3gB0OAJbvFz6mb/M+t2INQumXzKwZJChI1RdY7CKdlHgyduhe9PI93/CfSRBpIHp/lJW+Uuo/lVKLlFKTAG4GcKtS6h0z2zXByIE/+PO3t7cEH+lz3/HUGuO/H19gHxNV+uyHqwLR+2lRlSI12WGrBbqk30OefplrWj79iqbWTtsetAvN+2V8+p5jLJ9+gCQGqfT7WZ+8KlzSj/r0BxRwOVO44JXAp4+KH5NT+lXN+wUT3qqg6w9T2VLGRsMzHrlIv3MP6fej9L//euAHb2dGITeKf4RJH8D+Wut1AE4H8EOY2vlnzlivBKOPlPRdpe9xAfDArc1rjPIfc0i/M21U+g//Flh1e7bfp/QnFtvvA+XN+91OfuEggpunr7UJBCoy75eJqO92yx2b628rbIHwHl/Gp19R6fO2194LfLTHGF7e7tRqzwFDqsinu2aS+aN3mUkoR1nz/iAI7I7LgF9+tvzxZa/pPgPdFnDP1cBN36l+/iBiG1KlP0SSozGnjNL3xhy4efr9YCtU+gCaSV7+6QAu1lq3MNJOLcGMY3KZ2ZJ5nypW+cxg08yMP5VE7+eU/mZgzd3Arz4HnH9Gtl9384F8x/wl8NS/Sd6vGMinu0zpR1L2dNcsBvTZJ9m+PoJlAi1BxL0G8nVatlILfr4efPr83Og1qMRvB1h9N7Du3uJreK/LrrF5bf79mcpf9gXy3fRt4JefNuV0fX0snDwVDH9r/lhM0jd9uxrph6xhLrptMyl/7ZVm/YtOC7j2POAn7y93/qAD+WbDp5+a98so/eQ7X38/cO+15jV9d50+zPsEV9mnwfujTfqfB3A3gEkAP1dK7QGgINlWsE3DVfqvvxr4s0/6j33ym5ESx9TqROkvzN4fX2wGNF/AC5XhJaiaWcRnpwOz9/lWd4D7bzCrAPrAzfu5KGdH6VOp202P5tupEuzEo/erpgB1WuXM+2XfpzZ5UGatbl8j1MduN3/PfEqwtRlYfU/SHw08dGtyLDvXDa4r2/de4Avko764nzUtl1xS07hk0N4C/OnXwMcPAn79pfi5fDJYBm6RoRB0x0yOdzkcWP6E5Blq590cwX5VmNCWwWyk7JW9V0D27F9xLvClZ5jXbvT+IPL03VS9USZ9rfUntda7aK2fow3uAXDCDPdNMMog0ielv8MTgCPO9h+777OAc9cAi3fLovfHJllbSw3h0uDAa2ZzkubvqWTr+vJ1F/jC04Dvvc78f991wLfOYMurdpl5vyBlj8qY+ooJVQl24tH7VUm/2wpnFXBUStlr2ZYWVY/n6Sum9N32fZ/9glcCnzjYDHK//Czw2eOAP11jn+vz6buf7fdXApsGsK5WLpCvi+Ag3m8Z3n/eFfjyM83ru/833ka3XS3GoyyRdTtZgZ5aA+mSyaFS177zfa97xWyk7NG9KlWsyue+cyvyDbAMbyiaf0goFb2vlFoM4L0AnprsugrA+wF4bHSCbRovuwBYsrsJehtfZFfbK8K8JUn0/rR93vztDeGSIuOLW3TbdoUxInsi/yIyvfKfgJWXG1P9/qcmk4ikPde8v+aP2WvdBTZGSD+U0teeNoMsn9Tw6P2qPsJOy/78hSl7RZaAZCW9sYWZX13VbPIJ9bHbAZTrL27n4zju+GF2/H2JuXT1PXa7PqVvTQqmzAqAuxwJvPYn8c9UhGggnzPwli7DS6e7izZVjL+oRPpllXon+33Um9mytmXPLwpirYrZ8OkTqqxF4TtvkEo/2xHYPxyUNe+fB2A9gBcnf+sAfGWmOiUYYex3klH1Kw4Bnv631c6dXG7Uc3uzbbJvzjMDQ8tH+h1b+dNrIsI0QK7tLz+6ZDfzmlSXFcjn/Niv+Xz2WneBDclKalyV8uulx3ZM9a+ffwT4ysnAP+1st8vNuJVzptvllD7vS1F7gK30a67Sj/j0c+lgvuvx45mfvih6n6tn+pwP3Rz4IBXg+sKtKO0Q6ZfM048eV6Dkqip9io1RBXXRdCf7DdWaidJPvrsylqZBV+SrOpEaJMpYKnzfQfp7HUBBqZxPf3ZJv+yai3trrV/I/n+fUuqGmeiQYBvGgp2Ah+8wDzsvmtEYBzZtzExynPR111H6yj4mNTlrU/mPZwpMb8wK5/z+p1l7FNzjI+D9Tgbu+FFC+snSpFzpd1tAbdweTCho6MoP+n/I3Czei0/fuh99puzRZx5zzPulfPoepV+4Yh2Pzyjy6XtSxdy+9GJudvuoO2FzbdU8/Vh/isy3PndJDDQpLgpO4+Z9N2i1NeXPsLHOLxM4WgGjrvR9li13lb1Bmve3EqU/pZQ6nv5RSj0ZQElbkUCQYMEOhkjbUzbp18cdpc+UTLcD71rWpPi5idStvtXalK17/uhKMwng5n3fj32XI5IXOjuXkz4NYHxgJAUWWre8yxQvkVinDdzy/WJiIH8sbyt6fMH7dH1L6df8Pv3rv2lXA9S+QL4Y6XUdpe+Y73PH0/uaqSI357yipcTXx6hPv2z0PrXVBylW9uknz1kh6bfzFjF6hsv49a3o/QEG8s2GD3tQPn16Xu69FnhkZcU+hBT+CPv0AfwlgK8nvn0AWA0gELUlEASwcCdDYlOrbfN+Y8yYYFPSV6bm/D3/Z/zqNY85UzGffmhZ3+lNwMZHkn808PDtTiCfZ8BNlwruZIF8nKDSAYwr/fV2n1z4ovfv+hlwwdnAOVcBOx8aOE9XMO+X9OmnpM+yJ3I+/eT1RW8wW5oIdT0K2Xc9pUzfdUTpe0mfDY6hz9EL6eeUfoTIqgbyFU16Yuj2qvQLlLrmSj+ZIBDZl/HrD7wML3OZDJv4+/Xpu4F8FN1/boVwthEz75eN3r9Ra30IgIMBHKy1PgzAiTPaM8G2hwU7ZK9zSp+Rfq1uUu5uv8QMGD4y5Uqffphu9a3pDYa4H/cU8/9Dt8KuyOchEJo4bF6bVeizlD6lH7EfbCml79QToCqFsRXnUtVZoSJfoU8/aYunTBZF7/Nrl4neT9thFg44Pn1vRgQj3BA5uAWUysAdXGOBfKVT9koM3IVWnKpKv4J5X7FAPiCLoZgVpU/WsYopioNAmeJCMZ/+IAL5tlLzPgBAa70uqcwHAG+bgf4ItmUs2Cl73Ygp/Zrtcy5U+skg1XAyCaY3AJseAXY9CmjMA1bd6gTyeUgrJ+5xAAAgAElEQVSfJg7rH8z2uT59wB4oiMB9/aQ+uoF8qY81MgjzVKdCBVrSp0/xB/OWZPvcPP3gKnse0o8G8jELh3JcCLGUPX6eC/6dlVWh7sCvu2ySxPfrHqL3Y8cVkX4yGSw7eaHJZaFPvmNcNkDevN+aAm74FvDBFfHYDcKgV9kb9kqL/fr0B5GylyP7rYj0HYzgQtKCkcaCHbPX9TFgt2OBw8406nrDQ8BV/2LeUzVbAUeVfjf70bo+/bX3mh/Wwp2A7R6XVEljSh/a7H/5d1m/kjY2cNLnq9H5zPse0ndNpLz2vtZZmzHl5QuuK7WgUARTSd77QjYBU3Vnlb1I7f2cTz8yiLuKmv5XtXhxHl+WQNq36fzxRXAHV91Bbvi69zfA+5aY2gC+c3Jtknm/T6UPlJ+8lFX6lnk/edb58/ajd5p4l9DqkAPP02eBfMMs0EPXLELOeqXt3yuA/lL23L5svaQvZXgF1WCZ9yeAV18GnPapjKx5PXZeuter9Hn0fsCnT1XhJpeZa3SmYZXhBYzq5zn1NKCSPx/w+/StQD4ifWbe52TumsU7rbzr4M4rTNof9ZlfC8gmAP1G71Oxm0UsrVDV4kqfF/7xRcKH+sIHtQ6ZslWywqKP9NlgOEiln+uzZ+i66yqzvfPHWR96adt+M36uu25EEaoE8qX1LIj0uU+/RFZB+nqQKXuzofRLPCO5qoxdpPcoVfp9dSLZBLZDRjSQTym1Hv4nRAGYNyM9Emy74MFj3P/umis703b1sV6j9x9OFu5ZtIt5r73FHF93FvDhk4rS5n02mJB5n1skpln/XV9mt535pqnt675mtvdfB2y3h3nd8Sj9QgVa8H6q9Bnph6L3fW27zUeVLjNdUxZCrWEKM0UD+UqSflmlX8ol4bxX2nXQR8pe2ZUhCTzQtahPOaXPfPpFXDPoPH2+tO6wc/VLKX3n/vPnbyDFebYin77WeqHWepHnb6HWumzkv0BgoJQpxQvYqnyts4BLe9pR+p5Hjfv0yTTt+vQfvMlsl+5tiJ4qk/H2ag17UpGa9x9i/eHmfRaURPAF8vFJixuY1vUofWqX3xef+u53wZ1NAfN+zz79yPXWP5ip0w4j/ca84kC+MtH7pdV4xKef2V6TPpQtzkOn9RG9z90ZZZCWki6RtllzAvl80fv8mfzFJ4Efvyffn4GW4dXxSWK3Czw4gGJMVptlUvY8Sr+oDG8llR6J3l/zJ+CiNwIP3Fihvf7Qj3lfIKiO7R5ntlyVu6vYtTfbPn2feT+m9Il8H11pSgWn5n1S+syyoGo26ZPSn96QrS9gmfc9gV6peZ+103KVvjOQ0mCSRlUnkwBuhehF6RcNcpseNSTPXS3KXWUvEr1fxrwPlt70h58lbbYyBVqo9HX4c7YHYd5nefo5k2ugPkAI0T4M2KdPk8uiUs5uRT5+rfbmrF/8M17+HuD/Ppnvz0Dz9AvM+yuvAD53vCHCQaEnnz5X+oEaGVUW9An1QXdNoPH1/wGsva98e31CSF8wXCzdy2z5OubP+bAhZ8KWdYkao8V1PI9pqvS7edLnZvbt9zakVh83hKFZ9D6QN+9zpb1wBQAVUPoenz6HpfQd836nlQ/k86Ud8mtwE6kPZX36U4+ZBY64VaTb8QcNuvDVii9LWJ22uUa9Ya7tXc+Ap+yVMe/3qvRj6pwTXoS0tYc4Q8eE0Kt533f8mj86paYd8z5voyh6fNDR+9wlFru/m9cA0OEAw17QS56+T+lD2c9elT7GzPu0L5T5MwMQ0hcMF7seabbcXLbLEcBZ38/+p6VsKdrft454qvTbLHo/ITL+41y6t9nWm0bp625WkQ8wEwRL6TPSn1xulHdZnz5Xy1a9fo9PP2fe93xGn5+9aMGdokF602NmZcRaPSMGtya7S+SxVfZ8BOTzOVs+/fl+pTTMlL1c+55iO1HCKBOMNehAvuSe+YpK/fsRwFefm7XnVuQjcKUfun8DN+/z6H2+ZoW77kFFd4cXrhm+X59+8p5yST9SX8NFzqzPSJ+eTZ+wmSGIX14wXBx2pomWf+Kp9v75y/LHTi4D1t/vJwj6kXA/c0rYbDBZtm/2XiiQj1sG+HsLdsyTfsejzsjsygcFV+lbaVCeQD6fBcGnvgvN+12j+FYcYgdOEqZWG6UPZGsVdLvh6wKwfPo532ZJtd1xAvmmPd9pd6aUvieQLx1jtbWxJ2edsAIbVEU+oDzpk3XMd7wb4OgW5yFYPv1A3weep8+j991JlWddiX4mGqpWfdJShvSh7InxlnUoj8jSunr4pC9KXzBcKAUc+ML8YDTpI/3lZusjCJ9KdVP2AGCfZyXvjSUpe655v+GY9xnpjy80/bR8+p7FQ8i8zycHlk/fITGu9FuOed9K7fMQcdEgPLUa+NqfmQIsPmx6NItVoM9KaY+u/5fAU/CqRMK7x5HZuTEvkKev7WN9GEiefjc/AFdV+mV8/4M0729eC/zpV8nxBT79bpcpfed31t5cPGGx1PggUvbYhNVqL7DCYb+kz9GL0vetlQHYz16skqaLqHk/+axC+oI5B54rT6BgM5/S9wbyefKXdzk8eW88I2XLvB8I5AMM4debkYp8CRnSAMBn/9MRn35PSr8gqpz2b15rXm8O1AafWp1V4yN3CJFsuu5A2zaJx8g4FsjHkZr360kgX/K5V92WHxRjSr+XQD5f8RXfPqA84Q2CoApdNgx3XGbu4c6HF08SuHm/7hhzeZ5+0bNUtm9F4PEosfs7CPN+L6Sf8+lr9jyw6P2effou2YtPXyDwg9S/17yf/EgeXQmc/zLz2krZU8CLv5Gp1Po4q+3vBPL5UvbovZx5nylyUso+/14uet8J5Os4pN92SH/1PcD3XsfO8aQKctBASRMPrqTvvTb77K1NpjgOkJE8TUro/7SQDrXNVG2Zinw+n36nZf54yt691wKfORa4+lP2Z+g1T3/TYybtzFtshf/fiRBeSdN2mXS7QqVfwby/6jZz73Y/tniiwSvy+Xz6ww7kSyeszmTLZ4Fxr18VOfdTn+b9Tsi8X0Hpx2rv8yqVQ4KQvmB08Pr/A457U/Y/mfdjSv+uqzKi40F4h70c2J/FDTQYeVspe25xHk76idL3rQ6nuTL2mFtzefolA/noWhe80kRkp+cUmPepfbI6kJK+/3qTOnfVh5LrTWfWDK70U7eHsoMj+TV9FflKq21S+s1E6W8CVt9t3rvvN/Zn4GZPwFabFuk7pHrXVSbt7KFb7P2+lL203455n39PUaVfxv+sgXuuNt+B9+0KpE/xEPVmOLuCH+tW5CO4AaaxfgGDMe8PM5DPbbMX8/6Xnwnc8cPkvZDSr+DTD66yp7PPGlqhcwYgpC8YHex4ALB0z+z/ycS87/Pp08yYm7Etle4onHqgAmBO6Tv+frfkKZF5tx1f+MQNmAqZ91uueT8ZBKiwEMEXyMfJkM4js2Nrkyn4ccnb7P50prPPRORPUcQU0U8EnfafK/0ezfudtu3Tb21mpZQdhefm6Xc8KZP8+PS9Vv4YIG+i9k1efChD+lG/vwa+cjLwhacH2qjg06cU1loyCW1vYctGO9e0fPqu0i9h3g/lpvvQmgLu/kX8GMunH1P6Awjky7kMeiB9mowC4ZQ9XjyssE9upoeY9wWCDJy4yR9/3Bvyx9GPhJN+oyTpu4F8fJbN36s380opLZDS9QcOErjPz/WFe5V+K9vy1d74OXRddx/AzPssqPCiN5qyvgCwcMeM7KjfrtJX9ST2YdrpLxuMew7kYz79xpj53yV9S+kzxeark8A/c/peK388b5f/H0qjsvocI/QSBFUYvV8hLkCzSZnuAN98EfDhvT1tktWGSN8hk9ZmexLn7VcF8/4P3g589Tn5Alsc3CVmxYrMgE8/5DKIIWY5CdWv8K3QGe6U3RdJ2RMIGDhxL9wJODch9Tsvt5UNEfVmZmbjPn2X9EMTAlVzovddpe+aR0sqfU76PvN+GsiXEBQP5FvDFt0heJV+G0AymaHBI1X6U8AYS9lrT2fXIoU/L0ndIwVfqyVZDlvsAS62EE7p4jwsZY8yKdKsAKfQjZslECL9nNKnZYtd0vdYJ7RrjfCQfr9KP5an713JLYJuJ3lWk2f3rp9n7dx4Pmu3Y5v33WeUx3oMIk+fXCm82JaLYEU+1xRPE6k+XAoh60EMsfsfInpf7ZBgnxyF71P6QvqCOQtOzmMLstfP/5x9XErUbODg57o+spzpX5lzXfO+W5ffNe+Tq4H79H1wlX4ukI+UPjO7Awnpe8qQ+nz6PqU/nVy3nZjP9zge+OPVpv20vn/ymf7s48AVS4Df/hdT+hNJPQNP2z6zeGyVPav/bdsvTe0BebXtTi4s834s+ptKzZZQ+mVQJnq/bCDflvV23QTX8lOmL6qWj8a/88fA9//SbotX5HMnvy0eyBdS+p7MjRBSa03kOO7Tj5n3B1Kch/VD1Xrz6XPwCYtF+pElsUN98j7nEsgnmOsgH/fOh8f9XL7Al4YTeW+95xbkqWXt8LY4YVHKHr+mpfQjS5xaSp+ZzwEzuLlKn9BtA+vuz7fny+P3+V65T7+92dyTVL07pL9wJ7MCYar0E9N7e4sTyBfx6ZctLENKv97Mru+qZX4dPvDze+QLMEyv4dzTe6/NYgk4rIVfIub9MtH71vfhEgxrc/1D9lu+SVUMZLJ3SXyD265r3o/59ANEXTaDAbCXuA6BT5BigXz9Ru+77alaubZizzCPR+jVvC9leAWCCMiPf8qH4sf5fiQx8z5X+jw3v9awF8qxruGY98cXMNLvlDfvU7EPHu3fcQL5+LHrPItveM37HtVE29ZmQ36NiWyFQZf0AXMfSXGourlPtDCRe53S0fsxpV/Pvgt3RbtQRT7LvM/LBTsky336D9xoshau/IC/z6krwTW9MpQy78cC0zjpP+Cc3/a/jl2PAvk43IWLaGKmAqTfqlich47Z+Aiw8dH8sfQ7jN0ryyUzg9H7bh9UvZzSL8qGoD71qvTdZ42Tv6TsCeY8lu1r/Pi7HRU/zvcj4QV+cqQfWGTHNe9zuOb98UUskK9TEMi3LmuDovdThesE8rk19tfdD0wssdvzmfdjiqw9Zf4a40a9d7hP3+MG6VCQ3XjYvO+N3i9pKue19+m7oHvgDeQLkH5MIafBkFvMsr6Af6lWK5AvplBLvGeZwt3jOek/6JxfIUIeyMz7ucA8h/S73cxqAwSUfqi/nv7QfbrojcDFf5U/lpfDDsFSyBH3TJUURh94e6d8aDDmfd62RfoVlL47Yfea90XpCwRxKJUn6xjpNwJK3zXvc+SU/sJM6esipb8u69Nvvgrc84uM9DstuyIfT//ptgzpL9rFbi8YyEevnUHXVfptj08fyKwcnWlzT4j0Ox7zPhEKh2+w9xbn4T59Wr6Y7qVDwG4Rl05A6ed8wkzpu6ZUDj55ceMKrONKRO9HlX43sz6tvz//XtrvkqTjM+/nSJ9ZVABPICpfWjfw+XyTyU2PZgthcbgZGD6EzOIhnz5t29PAH38VbtcFtXfie4BjXjdg0tfZ56g18sGi0XPpfvoC+ZLXYt4XCErAJWse+Of+iOqOuk3Nnx71lJ7jpOyNLciIqqxPv8kmIql5v2Mrfat6X9uY9xetsNt75E6jttohU6kzuLU3Oz79AOmnSn86UfoT5rU1oeA+/RIV+XzotrIAM7p+yyX9QMoeJzbu0w9F73PSD5E5zxQwL/zHBT+PJ93OFztApL/yCv/57uvg9ZLo/RyJO/nibvyIT+kXmvc9LqROC94iVDHSn94EXHFuFlwKAJf+P95Z57qOu+eKc4HzTrKtNRe+DjiXWcFuvQj4+UeS87Tdp1pJ835VpT+2oFr0PuHnHzYpjin3z455X6L3BVsvanV7IIoq/VggX1nz/kJg48PmNREYqQki1vFFRuVvWZ9U9GP94OZ9Iu/OtJ122O0Ypb/TQXZfrvm82e5/un2s7zVgCLXTAprzskA+uqYv4LHTSnz6Y2Zdc5+Jt2z0vg9pyl49+y5SMndIyDXv81oMnZLmfXewp+8HAP73Y9n+2IAfJX2Pe8Bn3qfPdNfPzcSNVn2899pyfeBt85Q9glskhmopxKL3U6VZwqdP96DTgndiFAvk++Vn7HsN2LENoawKumcPJWS/cVV2zE3n2+d85yyzfcrbs5oU6W9blXOdlPLpM9IfX9Qb6QPAr79kzqc2ZyFlT5S+YOuFG9QU9em7Sl9lx/Vq3ufL8jbnmy354rttQ7i8bSuQb0v2Q+eDWredLH+7vb9PfOCN+bdbrtJnaYJRpU/FeTxR8l6lXyGQr9NKJkIO6cd8nYC5H2k7MaXPzfuOCdt9Vtw2ejbvR4rNUJGlg19qno8r/8ns/90PgfPPCH8O7/UC5v0c6SfkTJM57mppzLPN0qF8eJ/LotuyJ1yEdOErT1tFZFoUyBdr28Vv/wv4yinmNZ/Ql1L6ZSL8O9nnGV9QsTiPA0nZEwh6xPZ72f8T8QIFSp+Z9HlQn4uc0ufmfVJeybk04ZhYzK454ZT4ZT79znSWt72Bkf70JjPAjjNXBUdRyh6htdFcozGRBfJ5zfvk02+xinyb/WrPrajmu24IbnEe6iOQJ2hX6XPSj/n0feZ9miS5z0PaRiRivLJ5P0D6i3YGjj4HuOVCsyjQY3fl+11mcR5VgvTJmuN7pt2VLHmshtsffl2g2LzvXXipgF6CgXxOcFvIIsEzZFax9RZS0q+Vs0QVLVVMfaVnb2xBxTx9ty2PRWsu+PSVUn+llLpdKXWLUupDbP/fKaVWKqV+p5R6Ntt/crJvpVLqnbPTa8FIYdl+9v9WYR3Xp+8QnWXe9yhTwMnTV8Y/32LR+9xKQBOOsUm2b8ImKeoDDRg0QeC51puTyma8mh4fPHVI6QcIipR+m5v3HVcHkCn9NGXP43N28+dpnwtvcR7u00/uaSiQzy1mtHmN3U567TKBfAncojbpOQ7R+N6LnWcpfZ95P5nokFl/ekPeL//912d+6RCC5n1ntTdS8j7rVY70A9Hymx7Nnj9+jE+5p6QfeS+EouI8qdIPuD8euTN7zSc/qRVvhnz64wt7N+8D9rMzV1L2lFInADgNwCFa6wMAfCTZvz+AlwI4AMDJAD6jlKorpeoAPg3gFAD7AzgjOVYwl7HUqT3OyaZKIF8ItXo2QNfqwNh8O5CPWwmaScAW+dCBJCiODQ5k3qcBapxInyl9Kmc6viBbcMgKGCxp3k+vWZCnzwdtK3qftU2vu92S5n0P0uh9lqefuko8Sp+3ayn9iHUj5tMvNO97yKGMed8X+2C1rW3rRqflz/qgmI3g9bT9PBLc6P00wtxD+rwiIO+7mzu/8VFgQfLscZ++N1ODxYTk3uO/R9+kK1SG11H6oWfskTuy1zwuhiv9gfr0SelP9kf6ltKfOyl7rwfwL1rrLQCgtaZR7zQA52utt2it7wKwEsDRyd9KrfUftNbTAM5PjhXMZex8WPi9KoF8wTaaxg8KmOObk4lvs5X49KmcL7LBZWwyG5ippC0hTVVLSH8iCegh0q81mdJfALz+F8Crr7BJ2mfSj/k8vRX5AoF8oTz9tIxqJz+Ilo7e96TsuT59XyCfqtl13but7LuNLbjjljwNZVrEcsOrFucJZRPU6szKs8XflyJyct1JBHcFSnrefCQbNO87FqOND5tqjbxf3T7N+76aFkGl75i8QxNavhbHFh/p14vdJvy6MWidWMOa+cl8VVjP+dxJ2dsPwFOUUr9SSl2llKJKLLsA4IXH7032hfbnoJQ6Ryl1rVLq2ocffngGui4YGez3bODPv+p/rzCQr+Y/zjqnaZQ7kEXCA0ahko81VUKUzsNIvznP9o/SYL8pGawml5vthodMf+YtsZX+gh1MkSJOEr5CNTG/ZWNepvTdBXfoXlD/KXo/l7LHV0lzBveipXVP/ldg/9OQViHk5v1gyh5bjGb+9nmffp2lPnJYZXgd60Ev5v0yhXuiSj+5b7z0cCdA+kW+59S87676OGDzPpF+qvTJpx8y7yffdcz0D/jXqSgqw0u/zZDrhU9CeIYHV/pr7rHdAD6U8ul3kC5LTcGuPYOvsrcNmfeVUlcopW72/J0Gkyq4FMCxAN4B4DtKhRyr1aC1/oLW+kit9ZHLly8fRJOCUYVSwAHPB865CnjuR+33oqvscdKPKf0GGyi1Me8DSbBdx/YZEoEv2zcbmEk1p31IBnuqrb/dHma7cZUxvVpKn5lii0jfHRT5Z6eKfG1P7X0g79NvTCSBfE6VQABpZUGOosjq5fuZNh9dadTYjgdE8vQ9Sn/+Mkfpt7PvMtcXtuBOzrzfSyBfRCX6Jlwhy0OtkX33nZa/L+59vOk7wL8fYbs+ykTvx8z7Lun7zPvdjlHQCxKlT9fvTPvJMfW7R94D7BLZhFD0PvWnFjHvd9u2q8cifZVt7/4fEzMRQ2mffuKaoWDXfsEnt9tCnr7W+pmh95RSrwdwodZaA7hGKdUFsAzAfQB2Y4fumuxDZL9grmPnQ80fkOXNRwP5VCZGo+b9Rqbugaz4z/TGzD9NP9r9TwOOexPw+FOA33zN7GvMs4mAJgNE+kt2N9sNq0xQn0ZW9YxH73M/Lh9sQkp/6d7AI79L+jCRqXefeZ/7ZCl6X3f9PkvKAbf2+cy6/DWrFz++CDjwhVmKopun71tlb/729lrtnVZGIORuaG8xEzK+tG5pn37b3nKU8umzY3KR9Ml3VWtk99w3IeHtES58bdavejOzLLk+fVfpp+Z9/lwnK0qOOT59n3l/eqMJVl2QTGK5eb/jIaaoT58rfZ91IxC97/q5fROybttR+sy8DxbIBwBbnHvkwpeK6OsrKf36eH8pe2mbmn3WbUDpF+D7AE4AAKXUfjCLgj8C4GIAL1VKjSul9gSwL4BrAPwawL5KqT2VUmMwwX4Xz0rPBaONUCWyscks973WzJRMNJCvYacBUlGNS/+fIa5ag/kfG8ATn2cHWzUddVNLCDAl/UTpb3jIBPXV6ll2AK8uyK0UvnQqd/DckcW48jx9n3nfUvo1FmzoGSi1J5CvyCxda2Sm9b1PNJOZYJ6+J5Bv/tJ8nn5a76Brvot/WmFeWz59J/c/aN4PpK0B1aL3r/8P4LNPso/hBMzN+1UyBdLyyx1/emnL8enT8+FbObKMT58ySSZ3yFLeKPUw5rcvUstepR/w6afm/YjS54GpALAlYN4v07dKSn8srvT/+EtgzR/LxRLMsZS98wDspZS6GSYo72xtcAuA7wC4FcCPALxRa93RWrcBvAnAZQBuA/Cd5FiBwEaoEplSwF/fAJzyYWC3o4GdDjT7Y7/NetMm/XlJ4Z0/XJm0Wc9IjyuwNHqfWQmALOVqyzrzetHO2XsTi+w+j4fM+2ywefC3ZusOirsdm71OlX7AvJ/m6ZNPn0jfIRO6TqlV9hhq9aytFYfY108XL3LcFK7Sb09lqxF2uHm/A1x7nnndnrJJPx3IKVAqoPR95n06NqT0u92sXTrvtkvyx6VKv2mb971WhRDpUxCl9qfs5a7pC+QLkL7PvJ+S/nLzPPA4jpgJ36f0ebs+n35RGd5YtT9eLAcI+PQjrgerrZLR++3NmXm/2/ZPFM97NvDxg8qT/lwpw5tE4L8i8N4HAXzQs/9SAJfOcNcEWztCq4sBhliPOce8pjK3j66MtNXI/PhAfuW7qdUsUIwR6aJdgIdvzw90vLjK/GX2hGJisSncQuBK3yL9aTOZWHEIcNO3gePfmien3Y/JXpdZWpe/bjiEzOGryFcUyKfqwKrbzOuU9CmQL1H6uVXIWOzA5DKznXoMaO5sK33+uac3ZoM3rzOQKv2ClD3+uepjpq0QEfsi9n2DNrcCcfN+FVcCnxDV6uHJC4FnDBBIsY85BZ98aYeUSTK5LHOV8e+n27WtY7E8fU7KZZR+LpCvYELRbWd95HCVfpH5vuzaB62pJFCXWW1q8/zHl6kPMMdS9gSCmQGvtBfDiiQGgBd+ybXVsBfMmeeQ/oO/ZQM7G4zJvO5GaSuVmZkX7GgPhOOLsvfqY7YJ3lX6tTqw/6lmYrFhVV5tL39i9ro5YQfy1Zp2/rRlBq5nffKZ93upyFerAxuSZWVT0icCJNJnKYGAPRgu2NFsKT2L+/T5tac32tH77kAfUsi+YMh6kdL3BO/F4pDdPP0qpJ8z7xfotH7N+6SYxxclMStOlLxL7jFidSdSLgqL8ySf1Uv6Seosr4Dp9ikWZJi20y1H0NDGldKclz1/romfq/vSpO8sEjQEyII7gm0LNNgVzZx3Pgx49j8DT/yz8DFuIJ+r9LmS5z7jHRLS54uLAGbwpYFswXLb5z+xOHvPVWRWIF9Ss5/IcPOa/MDH2+WBfO3pvPXBVfqu6Z3DV5GvaGndWh146beAOy/LVLtLADmlzwZiyoqgNEdL6bukz6L3XfN+SOn7zPvUvyL1DTClHyN9ZkFxqx1afdFmcsOfOZ4uqWp+kuMIBvKhnHmfVsSjdSO6XacgUhsAe4bSFft6Ufoli/P4gua67azMNK+UCdjR+24/fO2URUr6VHPB6ZfVz4rm/Tng0xcIZgYhn74LpYDj3gAsSZJCTvog8IoL7WPqTdu835zIBq8nPA946TfZdRmpLH+C2T76e7u9bic7bnIHeyCct13WZ7fuvhXIt8Ue/DevywaO494EvPLS/Ln1cRilstFjfQgpfQ/p95KnX2uYWgMnvpvtq9vH0GCZrlyns9eUL54q/bY/T7+1yVb6REK6wKffdUzKAFsNMUD6vgVpYkqNK/12IJAPMObjbzwfuJJ5N/mESNWz+xGC17wfUfqP3WVnalCk+9ikMePffz3w8QPz/Unb6Pj3A/ZEgD/Dz6GlcEuW4fW1nVZ4bOZ/LzmffoTYy/jzCdMbjUuOnj+3QA//zZRW+l0AKj5pHDCE9AXbFsqSvosnvQnY5xn5trjfHUSPJVIAACAASURBVMjU/iEvBRbvmu2ve0j/ULaSGoC0Ih1gotI56c9fypS+k1rFiZry6SmTYMvabJBc/gTgcU+2z21MZH3bsiFP+pbS59H7PqXfzRNWkVLyWVyUyn8map+29No178d8+h2PT59QpPR7Ne+XCcSyivMEzPuAWUBm48PZ8s0Ai01IzPtF5JCSvi+QzyHH9Q8CnzwUuPQd2T5y6zTnGXK7/zo7QyA36WNlenN94YF87Fmn303RgjvU76DSbxkLm/u5cj79ASn96Q2Oed8hfV4SuezKiVR0aYgQ0hdsW+iV9ENtuaRPfv15S/3XBYx14B9WA09+s31Mt50N2hOL7QE8pvRz6pwr/bUBtamyc3kanpsvzc9R3Lwf8umXid5nps2Q2dKyXrRNECOl5nHSn7ed6dcmj08/FMjHffo8mM6HUCCf277vHAB4+Dbg66cXK336vPf8Alh1q/+4LevtegpARljdbnaNyYjav+4bZruIFSyl8+rOqpFTSeAorUMPJEpfJaszTuT91i6B8jx+FyGln96rUHEeR/H7St5Snn7Nscbx9mNBhoQyOfqELRvMeNBgVhsOTvqxWCECFecZomkfENIXbGuoOUE8fbXlU/oJ2c53SD+noD0/rW6b1d134gPmLc36TCo+1LaqZ3X7uXmff+aXX2Dy4scWOEq/wKdPhOrmfwN+n35RJbvQ98CVd2ca+NCebKldFshXa5i0vVTpt/2BfDnzvpNmFoze9xQ4Skm/RPQ+YFI4o6TPJlO3XQzc8E3/cVe8N8my8JRA1oz0t987fy5h/f3AIS/LilUBzMddt9NIfWll0xuSlSJVvs4EYIJHv3NW5s+OmvdDKXvKf323MmM31naL5c27qbFOcZ5uO5xCV0npb8wsIICH9Nlvhq8LEITOYjWGCCF9wbaFQSr9ejNf1GUioPRDpMLR7WSk72YCcKXvBmv5lD5NDCylzwh232cBZ37PTD5S9b6+hE8/EshXVunzATYUUOkz76fnO0VLJpdllQo7rayPfJDlgXzdVqYOaV9Rnj7/HI0KgXwpCqL3+eJMIdx+ifmOLKXvmPcB4AVfzLuAOHKTAkaCnMh9n49M2IA/+O6iNwK3XgT86Vd2G1UC+dL8+4LiPOmEwmfe72Tm/aabNkeTnJp9vA9VfPrtqcS8H/Dpc6W/qQTp03M+xHQ9QEhfsK0hrcg3CKXvIYrUvL9d8bEA8Mxzs9fddpam5hL7vCVZG+57rkm+Vk/UWN0U+kmVfuDnTMpky3p/W/w1pSjyYicEX55+0UI1ocmXNUnymHm5y8JS+sy8z02oPGUPYEsgk9IvqshXoThPUclZF7VGPo7Bxcn/yvrkSZHjinDJbsDzPxduK1cfggW2NQpIn0zYgJ/004JDpKLJp18hZU+FlL5D9t0I6XdamXnftcb5VtAMkXsVpQ+Ya1FApDsxtpT+o8VtpaQvSl8g6B3psqslUmYK2/L8PBbtnETeOwN4iFSOfyvw4sTPygcY17w/n5n3J4rM+zUzcE4sMub9ogIfRLCb13lMoU4RF5pw8EJBhG4XOdO2a9L8wE52PEDQvB8hQLdS2eRyE9xGOdVEanwhntamZEKQfD4akNMFaKqk7CXHFpXGtdRrTOmzBZhCsNwdfFljJ3o/vV4scNAlfeqHo4qDSj8hUZ95n0zabl38SkqfSL9I6bMgwdaUsTKkxyYL7tSb+X6mpM8zRAKkX8WnD5j7lwbRrrPf47+Fskq/2wlP1mcIQvqCbQv0A6o6gy+L498KvOpHnutGzPtpChjrk2veH1+cDUw5877TNg1q44uMIi/K9SWy2bw2bwp1lT5duz1lHweVLSlMGFtgWwRu+Gb+vOBEJEKAWrOiJXVg8S7A2nszxUcEwmvyT28w95eCIGni0Snp07fM+4FV/AhutgFQrPTpc4UQXF/BKc6TthmxZOUWt2HmfU6+PgW9ZUMWGBdT+q6JvkrKXjCQzwm+5MtW3/Rts74BP7YznS+Vzdvn9yg0HvSi9KlE9maX9Nmz73OPuZgl874U5xFsW4itwT0ITCz2F0iJKVefcnTbqNUypZAj/UDw3cRiozaKcsXTBWpaedJ3q/M1J5JVxBx/5fylxpzOP6e71v2tnjWwygTyueA+fVUzCxN1tgDr7rM/D1f69HpsgbEKpErfl8LG4IveT837oeAvSg1kpFlUnMc9nrDnU4G9n2HfV06WaZyCYwaupPSZj5t//77+TK8HmslCUD7ST5e9pcm15/65fXfbCvn03TK83Lyfcyux6P3cM033poTSr+LTB8y1Jkoofd8qlS4kZU8gGAD2TnLtqfrbsBAy7wN+pe+a94FMnZYJ5KPjNq8tNu9zJeQO5MqjHn2TmnlLTf/5wOaS/uq78uf1at7n5W1pNUIqdpTGKDArQ1o+li1/DBRH78fM+8FFcHrw6QP5idQhZwBnXgQc/xbHvO/x6euOY96PTDJKK33P5yjy6RPSZZDLFufhfSow77vfSaeVn4BZ5v0A6fP2+/Hp8/vemGcmlqoWV/q+NEMXNLmVlD2BoA+c8C7gzTcB2+0xuDYPe4VJg4qhqnmfBqq9nwEs28+8JqIaLwjko0FoPPHpUzBVaPDgpB8z76sI6dOyxByTy2zS95nDQwo7F3HNwAOclAKW7G72P0ak3wSgbBMqBfVRVHuq9Iui95P657z6XlnzPkdRcR4X87c3wXikmLk65wTKffrWQjcRosgpfRbYZin9AFHTMT6ffnqcY4rvKXq/oAyvpfQ9RaHIvB9K2ePfXz8+fX7PmvNM++MLTWAsh6X0Pc+IC/LpD1npi3lfsG2hVh8s4QPAaZ8uPiZmrk5dDmyAoYHpTFb6dzpk3g9E3E8scpR+YPDg5Vdzqsij9HmGApG6W5cAMCsFtjaZZW+bE36XSoicxiMpZ+5gSKT/o3cm/WyYvlLJ2PnLMvO+69MvUvoAcuWF00laSOn7BvSClL3c4c59sVIYmUrkMQdlA/ly0fsVfPpA9rzElD4vGgQUR+9XSdnzKn3nu7Ci98so/Y6xFP3pGrtSZhml3xi3KxUCZsKdM+9zpV+G9JPYFUnZEwi2QsTqAvAiITFQcZpC834yiI8vtPO6Q8TGB0V3IHeXYOXXpxK4QL4uAZBNBEhl+wa6kPXBLZ3K4aYyuRXX6k0zUJKa5xYHN52qyKcP5IsOFZXhrWze99wDtz/8u+MWDL4CYWmffsC8X0bpA/E8fYJb1KhQ6fNAvoB5nyt9rW2l75sgpOZ9N5BPZcekx7eAzz8N+P5fOu2U8OlzSwJdi6xsHFSbH6qY9BvzxKcvEGzViClJHsj3mp8CL/+u/7i0Wl+JinxAYmLckFkI3AVVCJZ53xkgOfkQOdExC3fK3pvv1CUA2Fr3CeF6zd4hpZ+Qvs/srjv5qObnfYz1s2n6SpOkyeXAmnvM6+0eZ7apTz8hp0Kl76vIV9K8Xx9DLhKdwzfhcPdxUtzCUh4t837Z6P0+lX4Zn74vrS53DNuXPsMqI7lvnwk8xEoSk9Xg9kuAzxybmf+9pE9K31OcJ1X67DvttLIVBLlboYzS524OutbEIhMwyr+rVlK8p97Mly/2tSkpewLBVoxYYBpf7WvXI4B9n+k/jgbhXGS/M8CnCniBGdioWl2zDOk7A7lVNMWxSCzgpO/x6c9npN9pB3z6IZdDQvrczP/EU4EjXukvWnLkq7Jz6g37vR3ZKnC0rLGbOlik9L2kX9K835wfJw8v6bvmfb58Ml+4hUfvl83TjwTyFUXvA/E8/Vy/YrX3eUYEVcqsZ31vbQQuekN2DL/fD9/Oqiq2PKRPPv2xMOm7Sj99zScDSR9jJnY++UmV/kLg3muAf2ZrHLSmzPu1Zkmlr6Uin0Cw1SIWyOfz6fuw51PNNqewHH9xjSl9ANjwoNm6ZnACV35u0BO/lptatrDAvE9VCadWl/NhcpDS59d/wnOBhSvM624nT4w08ag1s4GyPg7suH92zLJ9/deLKv12wLwfUO9EFGd+P3GBOIGALnzPRs68H5g0pkq/gnk/pPTdinwh836apx8JtnTN+9Z6AR0TyNZpA7seBbzwy9mzomqwnmfX787xwI1J26FAvkD0vi87gPePf9epJSgyaef3k/v0XbQ2MaVf8HtozkviYaYkkE8g2CoRM9GV9emfcb4xGRYtn6oc0l//kNmGlD5vzx0gGx6lTznG3OLgFhMC+iN9irLnfauPZQPg9Ib8fZi/vTHj15vZ/W5OZEsZ83ZdxCZl3W5A6ReY95ftCxz4QrOyXVTpl/HpB4oVdUPR+1Xy9FmFumYV836kgFIsev+Kc4F7f232LdoFOOhFwP03JH1wlgfmkyXXskJLDHem8xOwDuXplzTvh5R+Gug55ilIlaDhMe/7fqPtzdlS1kUpe835wN3/Y17z53cIEKUvEMw0Fu8GPO4pwOmReumA8cmTT5rDHWDSinyk9B/Kzi+CO0BygiByWrSz2XJ1z0lqYfI++fTX3d8D6Xv62hjPPuv138gTG12Pm0Sb84Hlj2dtBBRbkdK3oveLyvBScGASW+BbfZArwarmfetavPZ+2ej9gHlfd21XTyiIjUgullbJ3Q68nwCw9k/Amj8lC+I07f6qmt13i5gD97vt8+m3s/ZzKXuelECr9kE7/zr2fHDSp9/cmj/mjyN3Q62M0vdkMwwJovQFAhev+5/iQJwqqDeAV17SRwMB8z75uDc8ZAaOmDIjuK4DX3nU53wE2OsEYCfmK/cRTnMesOzxwL3XAocW1DFwQeZ9/tka444J2zXvJ6S/6bHsuMaEsUiMLTSpWKHgs5jS72yxyYdIJDSR4aV9VT2ZNDiENX9pltLljSdwvtOQeZmb0futyKd1OfM+9SWq9N3FcRiRtqfNPVUqu++8NK4qad5P+7klP6miQL7SPv2Aeb9TwrxvZb8k98RXXIsmIfVGXumrmlO22VMfY0gQpS8QuFhxMLDb0bPdizB4yh5gSL85WewWAMLpTQBL2VtkCJQPRs15wJPfApz0gczXX2sAux1lTLllyo5yeM37Luk7w9NOB2V9cTMN3nUv8JwPhwfvWLR7a7NNEOMLka5g6EOaIjlm2nXz/IFsggJkpP+0v2UHOObqEMGGoverKP0dD0j2T5QL5KPqkqV8+l37f2q3M50tfQtkfVfK7ju/77EKiO7zRf/HVtnzKXrAdimUUvqe7+b0z5h4jsnldlu1RuIqcO6tS+zWc17idztACOkLBP1gv1Nm/ho5877Hpx8K4nMRi8h2iZH/P74AeNb7gCf9FfDSbwGnfsq4AXY9Gph6zERbVwEpfa5+ckrfGZ6O+UvgJd80fnRSkO7nCSn9mJJrTzk+/aaxHkyt8U9mLNJv5KP/6bMQ6D6e8C7gpA+a1665OrggUMsf5R2bxLhK/4VfAs662EzWLKUfiEMosyogX/IXcKoIbrGL5wAR834Jpd/enJ+gUPW7eiMcuBiqyGdNAJhPPwTfMzW5zGSbWJkArcy87/Y3lIHje2+GIaQvEPSDl/4n8J4Sa2f3hYLo/dbGcv58IK7eYmqEF9NZuCNw+JnmNZUQfuTOctd32+NVzBrjsD6rO9mp1YAnPs/sn5cEGboqLzR4x5Rca8pWmbWGIf1rvwx8YAc7Fxuw1WGa5uiYykNKLhQkGIzeZ6mQvUbvjy8E9nqaeW0p/YB1hvpSxqfvls4FDPl1prPoet5fVYcdvV9G6U/bzwmQ/V9r5t0nRYF8laP3Qy6jhvO5p+Pmfet/Z6GrIUJIXyDoB7VafLGdQWD/U4GD/tyoaiAboDgRhyL3XcQG8pgaCU0qKMKfIq3LgpQ+V9L1cbueeSwinsznubUEan7/vW89AUJryimRXLOzFVbdah/fmTYDvlJZRL1rEQiZbEPV/oI+/VZGLGWj92PKkT8zheb9Mj79gHm/2zbER4QcUvrdEkofyMrgElKlP5b/br1K30kpdPeXCeRzq0jW6nkXQq2RBPIVkX7J73IGIKQvEIw6mvOMiZZ86RStPjaJVDUNwrzvKg5OHoWk/0i566ftEemzgMnGOLCJtRMKNAOynH2fCvPtW7qXqYboQ8sx75PSJ1C+eNqv6Yyk6Z65fQ2ptxDp1+r+c3hhmrLR+zHs8STgBV8Ett8nnJKYBvIlE6pdjwL2eLJ9jBu9z5U0+bPbm4tJv4zSBzwr2iXPTb1hYlDeyiZmqU8/sMqeN3o/FshHpO/8BmoNc/6aP5rJQxrI5zHvx5S+mPcFAoEXj6w02xWHmi2t9gXkzdwh+Mz7aWS1OzDxQL4BK30ifStqftxuJ0b6lL7n+9y+tD1VM9UQfWhtghVY55L+gzfZx/NUtNCyuSFSTs37nsI/LvE0JxOfvmdBpV5Jv1YHDn5xwVoRyWebXG769LS/Bf7iUlhm+aJAPoJr3g9F78eKGwHZ0skEUvrU18WsMl6oDK97Td7vMub9nNJPzPgfPwi47F3ZZNAbyOdYfvj3L0pfIBB48fBtZrvikGwfkX5Zn77PvJ+qsYjSD+W/j02a8zauKnf9tL3EdLz9Ptm++rhtMYgthkLmfZ9K8in92MDqmo5rdTsl677r7Pe50qfr5wb5mlk22QXda5/Kdu/xvCVJERoy74eUfg/R37nvmk0CiKgXLAfedhuwzzPzx7g+fd1lOfvsXriullAgX0zlA+EV7bxk7VtwJ2DeL7MKYyOi9AkrL0/M+81sMsDhzvFcd9IQIaQvEGwt2OVIs+UFfAZC+qRaIz79EJQy5ERkXXYAUwr4ix+aP0JjHDj29dn/UfN+UjiIr0hH8BEB9YsCDznW3W//7yr9h24G1ieljjc+agrP5Mz7nmjtl30H+PsH/X3zkb7b78ZEovQLzPu9mIddqw63mHACnFyWTxEFWM19D7FaSt+Z5LiK19eOD655v83M+y58S+sGo/eT65Ypw+suB83vu9ZZiqLPvO9+3/x9IX2BQODFK74L/PUN9sBJJTyLzPvP/mez9Q1uIaVfNqp4YnFmli/rZgCMf3nBDtn/jXFg/9OAF38j2RFZuY7M+2TmteA5jwbo1/zE3EMOUvJkdajVM9Kn9RDu/LHZfngvo+r4AjKA37xf95SITe9/CfN+vWn79EOr7PVCGu45/HsLFTLiSy275n2+z6f0+cTF59N3lX6aNpjcPx7gCeTN+xze6P1QcZ6WOT42cSJTfE7pc9Lv2hX58o3Y//JJiJC+QCDwYt4SYOme9r5djzJbn+LlOO4NwLlr/VHlNHjF8vRjmFicDaqx7IAiEJHGlnRNr5mY36c9pL/67qQvbJCmCczEInMP9z/NKHEAuO83Zkur9XGz7c6HGbK7+xf2NcqY931IlW8J0q8lpN8t8OnH/PMhuBM6/r2FTN2TrOCQa97n+zjpU7s87dBn3neVfhqrQqTv+vRJ6UdIvyiQb8Mq4I9XJyQdcZHQ54mZ96Ez876vT7m1A7gVKzK5nQEI6QsEWzN2TUz+blpZFaTBVj2Y9wHbFE7KrNbIR3wXgSYkofgBDhqAW5HJzu7Hsradz/LirwP7Pdv0c+oxEyOwMFlKWNVZqd1xYMkewHrHBZAz75dN2asQyFdvOub9AOn3kuftTug4oYVIny+vnK4J0EXmQ0/ItO0hfVrH4YDTnUC+5D64Sn9iUb5fHFWVPs/zp8nAl08C7vlFln4ZQhnS17DN+y5yawcEFgAaAqT2vkCwNYOC+o56de9tpKbqSC5xDJz0Kb3pRV8x9QV6QRmlv11i8TjwReFjuOsgZLVozAOm1wM7PDEjT+7TX7CDmQy4FQdd60hR2dX0vEDKHhAx7xcE8sVWeAwhpvRD5n2r5CwL4GuMGx97TOlPbg/8zV3GQsMnUNSOa0kpykoh0vdmangC+bgljO7n6ruS49px0qf4ER50CjikX9W8z+6RkL5AICiN5jxjtu8HZaL3Y7CU/kS1cwHglA8Bv3MC+oowuT3w7lX+GIXX/MSQ5fX/ke0LTWCaCekv2SMb+GsN4OjXGtI94i9MtcE//Mw+jwLJKqfsESF4lL5LYLWmvZhPSN33ZN53ffrcvB+wtLh15gFDoHVG+l1nxUGeIkrk6fPpf/vl9rXIfROqPxGL3vcF8vEMDbfoU2dLfIJ78EtMf/Y/zd5v+fQ7AHRi3vd8H7lAvsC6AEOAmPcFgrkONyiNUCWQj0Am0CrBSce8Djjr+9n/obXlXfCleDl2PRLY47hyFexokrJgB6bea4acj36tGcAX7mRSxng5XoolCEXvF5F+kdJX9aScK8/T50qfF3dhJONbmtkH97vm8Q+hCpOTzLyfFufpZJMVKr9rteuL8QisssdBSxOH6kOQcveSftL+Dk/MjuHfXVGMhIv6OHDgC+K/D6rAV2/4lT5352y3p6P0hfQFAsEwMRNKv5fc8bSNkqRfBKsKXKA/pNgX7GCb9zkWrjBbntpHsQQh03ro3pVN2WuMG/K49xrg1ovzbfpU/5nfA/7KqSkQgkty3MoQMu/vdUL2mkfv0ySt2y5H+qFV9jioTHOw0mRCojGlf+b3gLP/O7HmeMz7VqGqyPMamgTx5yQl/bGApSTp7/M+ZixRoQqBQ4CQvkAw15FWl+tR6fNULiLsomIrMQyM9Gk518gwR0VfFuzAqsa5pJ8E+D26MttHJBIyrfer9Otj2aJG//ORfJu+9L1as/xEze0fJ/qQeX/7vY0radGuzKfPlH63k6+tUET6uhMPaixKAY2R/vylJuWy1vSb93lJ6l7S5vh3T5OdIvP+Lkcai0ln9gL5hPQFgrmOdK1zl/QT9XP4WfHzSQkD2UDYz0BWJpCvDEKfiyNV+jsy8gwofU76NMjztpfuBRz3pmR/yAJQQPpp2mJSs+DE92QlaIPR+6zEbVm4x1oTjkh1Ojq3286W/E2Vvmfde2/ZZ0dVcwI84i+MGqY+FBWd4n1N74nTfmPcLu5D0fv8OetlTXurQiFlexSY92sed5AofYFAMFSEiEgp4F0PAM/7ePx8rvR96VJVMUylT1iwY/h4quvuS4vk5Pm4pwBP/7v4NWMpe/s8A3jC85Ljknvw+FP81/Kq/grE5U6EuDotIkBaaIY+Q6r0feb9EiWRiTCPPgd47keBI1+VPZNepe9Zqpi367Y/vhDYxJa/Ts37/Sp9zyQrlKdP5n3fAk1C+gKBYKhI1bmn7O3Y/GIFOWilXzaQrwhVFPDk8rB5f3yhmRTcf0P+POWY2WsFE43UvO8h/aNeDZz4bvOayHLxruxagej9QeTpx8rQ5s4l0qcSttyn75r3PaTtTiqo0M52e2YxEnSffBNA3iZ/P0T6Ywvs1Ru9i+z0qfQJ9bG4pSS97+z7F9IXCARDRUrUPQ4+vGgLDWp9kX6BebksUgIpQWgTi7PjfYP59vtmCx5Z13DIN0Q87vGhqPWlewNHvQZ4yTfN/3xlt0HW3o/59ItApE/fMRFvp21KFHN4XTUOwZK/nX/voTgTwLYeWM9K0q5P6fvy4nmape/7Ovws4F335/cTvKTfjN9L33XEpy8QCIYKMu3GFriJoeZRoP2Y93vxr3rbSfoS8wvve1J2zTR630M0y5zCLLS8sRVQ1ygmfZqAUCVFF7Ua8Nx/A5bv52k/RPpEPhXKueaUfhXSJ59+MnGhz3TLhWaJWY6iQD7AT/pEnD4rhrU4UEnzPgc9m+0C0q814s+O17wfqMgXO6ef30oPmJXiPEqpQwF8DsAEgDaAN2itr1FKKQCfAPAcAJsAvFJrfV1yztkAEtsXPqC1/trwey4QbIMgn/wgFPYglP6gQH2JRYCf8e38evVepc9I/1WXATsdlJzjkHJs4gAYEjznZ/nqbmVgmfeVf39Z5Kr/9WHeJ6VPax5Yx3ruQ470KRPCo/St8+rmmqFCQinpO5NGyvkn0LPJS/P65pk+FwyH77MFK/LRdTznzBHz/ocAvE9rfSiAf0j+B4BTAOyb/J0D4LMAoJRaCuC9AI4BcDSA9yqltht2pwWCbRLP+QhwyodNIFqvoIG1NgClPygQCQRzvZEV4gHCRYqArNALYKL0SQHyCUKtnhFOjIh3PiyvPssgWJynB/O+6yuvMuGrO5UCY8GJPriknCp9XivA8xxR7AiRvqo71o+IeZ+jy5R+cz7wZ5/wf18hF0zax4B5P5TXD/i/qyGT/myV4dUAaPq1GAA5Tk4D8HWttQbwS6XUEqXUCgBPB3C51voxAFBKXQ7gZADfGmqvBYJtEROLgGPO6a+Nt95sfLo3JKVvJ3eIHz8MqBJKn+MJzwXaU1kJWI49n5695n72nE9fAVC9qe8ihAoBpS6VCuZ9N1iyknm/kZTbpdS3pC3vMscehJS+lUHgiX2g9ykN0LVOBJX+Avt/qg3QngKOfxtwxCuz5ZXtA2Ofwk/6tUbcauJV+nPAvA/gLQAuU0p9BMba8KRk/y4A/sSOuzfZF9ovEAhGAVSV77g3ATseAOz9jNntD5ARctm8/+32AJ7ydv979YZJJ7vxfNu87KuBX6sPlvTr4/H68L3U3nfvSSXzfrIKoevT3/hwufPdz0E59NwsnrqJGOnTec0A6Yci8F2lv+o2YOMjyWJBE/4+ASXM+4Ho/cqBfNuI0ldKXQFgJ89bfw/gGQDeqrX+rlLqxQC+DOCZA7ruOTCuAey+++6DaFIgEJRFrQ7sM4Cf8qGvKF9HPgQaYAdV7OeoV+dXM/QF2rlrxveLsfnA1JZwal56rQpK313cZ8cDy59baxh/uBu9v2FVyQYccr7le2brrj0AGGI+/XOG6H/yfrOPLDeudYIUvkvWLulf/SngxsRITJkAvuBRNxbART/m/VddBtxxGfC/H912SF9rHfzlK6W+DuDNyb8XAPhS8vo+ALuxQ3dN9t0HY+Ln+38WuO4XAHwBAI488sgKvwKBQDAyOP3T/beRKsMBkb4PrnkfMKlee5/gP74XjC0Aplb35rsPgcz7C1cAr/yBKbFbpndqNwAADeFJREFUFmkgHyn9pK2px8qdzydE+50M3PGjpJ1G/hjdBQ49w7z+6QfMlpS+G5eQnuOSPsWbNLNaFFSsJ6T0n/WPxctVh6L3yyj93Y81cSKzQPqzFch3P4CnJa9PBHBn8vpiAGcpg2MBrNVaPwDgMgAnKaW2SwL4Tkr2CQQCgR9Vzfu9wI3eB0zK3d4nDu4a6cqFAdI/8lVmu2y/8m0SYXY71QgfMMTWaQO/+mzSVgXXAGCr6p0Py177IvG5T5/Oo0mcq/TP+j5w1GuzJXwJFIPhSx8Mkf6T/7q4BLDv+6iPxStK8okCTZaKAgYHjNny6b8WwCeUUg0Am5GY4wFcCpOutxImZe8vAEBr/ZhS6h8B/Do57v0U1CcQCARe0KA8qLK+PoTy6AeJokDEg//c/FVBg1XRq4paHXjot+YPqF5BkRMsn5BxhZya6jkhJvtCgXwrDgGee0j+emTeb0xkCyzlrj+oinzN8oF8VeIoBohZIX2t9f8COMKzXwN4Y+Cc8wCcN8NdEwgE2wyoNvxMmvcb/teDBCnO9lT8uCrgSr8q3M/Zj9K3cu49i+fwlD3aR2RZljQpZdOn9JuRQL4ihKL3yyp9ysag0stDwmwpfYFAIJhZ0Ap6M2reD9TDHySI9Pma8P2i3o/Sd2iDK/0jX23cDSsvB5aUCKRuBErq+oo80WSBjiutlJPz5i8F1tzjv35Pq+wFzPsxy4f7jJy7tvp1+4SQvkAg2DZBZVZnVOkPwbyfLrozoPLEQHZPfIssFYGvWAfYynbBjsBOB5q/MuDq2zLve2oPpEq/IunvdDBw/FuBw88GPnmo03eP0h9fXK7dkHk/ZvmYqWekAoT0BQLBtolU6c+kT9+pyDcTeNY/miC9/U4eXJt8OdyqeCSJu27ONwV5uEKfKEhzy/UjoPR9gXw06aHJQdmCQrUa8Mxz7Zx/3/UB4IVfNkWaSrXrM+83C5T+ACduPUIW3BEIBNsmWsMw7/e5xG0ZjM0HjnlduCJfL6B70kvk+NqkTtpeTzfbaVaJb2yBe3QchT59Hr1PxyVkWzUQznf/XJ/+2KTf9+9tz6f0G9VjHIYMIX2BQLBtgpT+sPL0ZyqQbybQT+T4IUne/A77my3Pz6+6poCl9H0pe8yn/9S/MdvlT8wf3wsW7wYs2sW+XhUXSi8+/RGAkL5AINg2MQyffr/r2s8W+rknp30GePcqYPnjzf9cGbt17qv0o1ag9Pc/1QS+zd8+ObcP0n/ZBWa9CMrpL7NQkosQ6fvcSf0sZjVgbEVTU4FAIKiAYfv0J0oGgI0CfIT5igvLlT6u1YDaOHDQn5tAuwOen5XILSpd66IZit73+fQTNCqm7Pngfv50sZ4qpO/QZ3PSTATc563WBF5+AbB5+JH6PgjpCwSCbRP7nwbcdjGw4tDiY3sFV3vzl83cdQYNn9Lfp+IiSUoBh7zE3lfVp98I+PR3PtxsD3xR/hwyn/dD+jkTvLI2peCS/m5H5dt+/ueB3Y8z1pCysQIzDCF9gUCwbeKgFwEHvGCwAXAuePCeW/51lDFTfueq5v1mwLy/dM9wDjsp6SrLAefamAGlv+9JSb/Y/r1OABbuWL1/MwghfYFAsO1iJgkfsAd+8jVvDZipCPPKgXw8T79kTESap9/HxMW1dPTi0+cTvhd80W+VGORqiwOCkL5AIBD0Ck5UW5VPf4aCG8cqkj5X+mVz2OsDUPruhKGn6H1G6Ae/2H/MCOTluxi9aYhAIBBsLeCD+ggO8EHM1GIvsbXkfehl8jEqgXxlMIJKf/R6JBAIBIKZxUymMVZBL2mOMxrIN2jSH72JoJC+QCAQzDXM0rKuA0FjAlj2+KxOQE9tuEpf2duBYfRIX3z6AoFAMNcw0wGORTjze8CSPXo7t1YD3nRNf9fP+fRnSumPnq4W0hcIBIJ+MeKlV0cOe584u9d3C+jMIZ++kL5AIBD0g7P/G1i612z3QlAFuVgC5WwHhBH06QvpCwQCQT/Y86mz3YPZx2t/Wr0a3yhBlL5AIBAIRhonvru/5Xyf/3lguz0H05ddjhhMO7OFlPR7UOZLdi9ud4QgpC8QCARbI576jv7OP+Slg+nHtoBeo/ff8fuC9Ecx7wsEAoFAkOGvrwe6ndntQ6/m/cmCRZZE6QsEAoFAwDASQZBzJ2Vv9HokEAgEAsEw0Uvt/VLtjp55X0hfIBAIBHMbM1acZ/RIX8z7AoFAIJgbeNWPgc6W/P4ZK8M7ehClLxAIBIK5gd2P8ddVGHSe/uFnDaadGYCQvkAgEAjmOAZs3n/eJ4B3PzyYtgYMMe8LBAKBYG5j0IF8tRpQG82VDEXpCwQCgWBuQ3z6AoFAIBDMEcxU7f0RxLb/CQUCgUAgiGHBjmZ55InFs92TGYeQvkAgEAjmNvZ5JvC224D5S2e7JzMOIX2BQCAQzG0oBUxuP9u9GAqE9AUCgUAgmCMQ0hcIBAKBYI5ASF8gEAgEgjkCIX2BQCAQCOYIhPQFAoFAIJgjENIXCAQCgWCOQEhfIBAIBII5AiF9gUAgEAjmCIT0BQKBQCCYIxDSFwgEAoFgjkBprWe7DzMGpdTDAO4ZcLPLADwy4DbnCuTe9Qe5f71D7l3vkHvXH2bj/u2htV7ue2ObJv2ZgFLqWq31kbPdj60Rcu/6g9y/3iH3rnfIvesPo3b/xLwvEAgEAsEcgZC+QCAQCARzBEL61fGF2e7AVgy5d/1B7l/vkHvXO+Te9YeRun/i0xcIBAKBYI5AlL5AIBAIBHMEQvoloZQ6WSn1O6XUSqXUO2e7P6MIpdR5SqlVSqmb2b6lSqnLlVJ3Jtvtkv1KKfXJ5H7epJQ6fPZ6PvtQSu2mlLpSKXWrUuoWpdSbk/1y/wqglJpQSl2jlLoxuXfvS/bvqZT6VXKPvq2UGkv2jyf/r0zef9xs9n8UoJSqK6WuV0pdkvwv964klFJ3K6V+q5S6QSl1bbJvZH+3QvoloJSqA/g0gFMA7A/gDKXU/rPbq5HEVwGc7Ox7J4CfaK33BfCT5H/A3Mt9k79zAHx2SH0cVbQBvF1rvT+AYwG8MXnG5P4VYwuAE7XWhwA4FMDJSqljAfwrgI9prfcBsBrAq5PjXw1gdbL/Y8lxcx1vBnAb+1/uXTWcoLU+lKXmjezvVki/HI4GsFJr/Qet9TSA8wGcNst9GjlorX8O4DFn92kAvpa8/hqA09n+r2uDXwJYopRaMZyejh601g9ora9LXq+HGYB3gdy/QiT3YEPybzP50wBOBPBfyX733tE9/S8Az1BKqSF1d+SglNoVwHMBfCn5X0HuXb8Y2d+tkH457ALgT+z/e5N9gmLsqLV+IHn9IIAdk9dyTwNITKaHAfgV5P6VQmKevgHAKgCXA/g9gDVa63ZyCL8/6b1L3l8LYPvh9nik8HEAfwOgm/y/PeTeVYEG8GOl1G+UUuck+0b2d9sY5sUEcxtaa62UknSRCJRSCwB8F8BbtNbruIiS+xeG1roD4FCl1BIA3wPwhFnu0lYBpdTzAKzSWv9GKfX02e7PVorjtdb3KaV2AHC5Uup2/uao/W5F6ZfDfQB2Y//vmuwTFOMhMl8l21XJfrmnDpRSTRjC/6bW+sJkt9y/CtBarwFwJYDjYEynJGz4/UnvXfL+YgCPDrmro4InAzhVKXU3jNvyRACfgNy70tBa35dsV8FMOI/GCP9uhfTL4dcA9k0iWscAvBTAxbPcp60FFwM4O3l9NoCL2P6zkmjWYwGsZeawOYfEL/plALdprT/K3pL7VwCl1PJE4UMpNQ/As2BiIq4E8KLkMPfe0T19EYCf6jlasERr/Xda61211o+DGdd+qrV+OeTelYJSalIptZBeAzgJwM0Y5d+t1lr+SvwBeA6AO2B8hX8/2/0ZxT8A3wLwAIAWjK/q1TD+vp8AuBPAFQCWJscqmIyI3wP4LYAjZ7v/s3zvjofxDd4E4Ibk7zly/0rdu4MBXJ/cu5sB/EOyfy8A1wBYCeACAOPJ/onk/5XJ+3vN9mcYhT8ATwdwidy7SvdsLwA3Jn+3EDeM8u9WKvIJBAKBQDBHIOZ9gUAgEAjmCIT0BQKBQCCYIxDSFwgEAoFgjkBIXyAQCASCOQIhfYFAIBAI5giE9AUCQSUopf4+Wc3upmRlsWOUUm9RSs2f7b4JBII4JGVPIBCUhlLqOAAfBfB0rfUWpdQyAGMA/g8m5/iRWe2gQCCIQpS+QCCoghUAHtFabwGAhORfBGBnAFcqpa4EAKXUSUqpq5VS1ymlLkjWFKC1xz+UrD9+jVJqn9n6IALBXISQvkAgqIIfA9hNKXWHUuozSqmnaa0/CeB+mDXFT0jU/7sBPFNrfTiAawG8jbWxVmt9EIBPwazwJhAIhgRZZU8gEJSG1nqDUuoIAE8BcAKAbyul3ukcdiyA/QH8IlklcAzA1ez9b7Htx2a2xwKBgENIXyAQVII2y9j+DMDPlFK/RbawCEEBuFxrfUaoicBrgUAwwxDzvkAgKA2l1OOVUvuyXYcCuAfAegALk32/BPBk8tcnK5Htx855CdtyC4BAIJhhiNIXCARVsADAvydL2bZhVls7B8AZAH6klLo/8eu/EsC3lFLjyXnvhlmlEgC2U0rdBGBLcp5AIBgSJGVPIBAMDUqpuyGpfQLBrEHM+wKBQCAQzBGI0hcIBAKBYI5AlL5AIBAIBHMEQvoCgUAgEMwRCOkLBAKBQDBHIKQvEAgEAsEcgZC+QCAQCARzBEL6AoFAIBDMEfx/3z7cFRk8DlkAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Two Stage Optimization with Transparency\n", + "\n", + "In addition to using the `BlendAlpha()` transform for RGBA images, we can also simply cut off and ignore the alpha channel by using the `IgnoreAlpha()` transform. This is useful for example when we want to ignore the alpha channel for the first step of two step optimization, so that the first stage of optimization occurs without the influence of the alpha channel.\n", + "\n", + "We can then perform two stage optimization with transparency like so." + ], + "metadata": { + "id": "WzRHPcVLA0QT" + } + }, + { + "cell_type": "markdown", + "source": [ + "We render stage 1 without the alpha channel using the `IgnoreAlpha()` transform." + ], + "metadata": { + "id": "gg8-vvF7Za9f" + } + }, + { + "cell_type": "code", + "source": [ + "image_size = (112, 112)\n", + "\n", + "# Initialize NaturalImage with 4 channels\n", + "image = opt.images.NaturalImage(image_size, channels=4).to(device)\n", + "\n", + "# Other targets to explore\n", + "# target=model.mixed3a.conv_3x3; channel_index=76\n", + "# target=model.mixed3a.conv_3x3_reduce_relu; channel_index=76 - 64\n", + "# target=model.mixed4d.conv_3x3_reduce; channel_index=139\n", + "\n", + "# Car Tire\n", + "target = model.mixed4b\n", + "channel_index = 373\n", + "\n", + "# Set main optimization target\n", + "loss_fn = opt.loss.NeuronActivation(target, channel_index=channel_index)\n", + "\n", + "# Basic transforms applied to both stages\n", + "basic_transforms = [opt.transforms.TransformationRobustness()]\n", + "\n", + "# Ignore the alpha channel for stage 1\n", + "stage_one_transforms = basic_transforms + [opt.transforms.IgnoreAlpha()]\n", + "\n", + "# Render stage 1 visualization\n", + "image, stage_one_history = visualize(\n", + " model,\n", + " loss_fn,\n", + " image,\n", + " transforms=stage_one_transforms,\n", + " n_iter=256,\n", + " return_image_instance=True,\n", + ")\n", + "# Save a copy of the image parameterization in its current state\n", + "stage_one_img = image().clone().detach()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "cee03ddb22f84eefa613c6446234c6c4", + "2bb9a8610f0e4d8b91d054cfe9140801", + "f825760c27ee4b80830654f3c02ae65b", + "fafbc35e64814fa4b13e5da2f643dddd", + "5b9280650f144ff882e0d329ff4cb5bc", + "084a58aa0af344a2b2a3fcafa838811c", + "f1f53143baa94a89817ff46acece5054", + "ddc620d6a2c042789bda344dc94b5017", + "1ed5c534ec334eec8d144f912e6beb23", + "84afeb12ab79493a8aa8e3040323216d", + "0dbfdbf943244faea948bfafc16c4a2f" + ] + }, + "id": "aFPWICceYzqw", + "outputId": "36f0ceb5-7b23-41f5-9801-bf18f72033f6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/256 [00:00" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy8zY4sSZKl94moqpm5e0Tcn8ysqq7uxgwxaMxgOASHIMEd34FvwQ2fh0/A9+BuMNsByAUHzZ4Bu7u6Mqvy/kSEu5uZqohwIXZvccFJgrlhL9KAC2SGR7ibq6mIHDnniEpE8Mv1y/XL9Y/v0v+/b+CX65frl+v/+folOH+5frn+kV6/BOcv1y/XP9Lrl+D85frl+kd6/RKcv1y/XP9Ir/pTL/7b//l/ivDANggJrEBEYN2474MPzxtSlDo32iwsZxi20ccNxVEC05lRFhzHwxEcwogwwgOiEl4YLngAA9zh2gt9wPXjShhclpnL44V/8d/8S6QWfvjDj9yvGx//9jN+vxKffsdSlW8eT6gKRaHhTGGEKlEKa9+57xvz0piWiTszKxO1GLU4UhVUGJsTFpxqUAo8izKAut6RCPbzCUrhUoTonZfv/4FShHe/estNZv59f0vvg/7yQvWNZbwwzNjMEGmoLAyBDswPwvyoTCpUCW73wbYbl8eFeWmM/oLbxnfTxqkYnZlAuZROJWCvRFT69I5oM/r+O56vnX/7b/6aTx8+8Q//8W/49s2J/+6//mf89s+/5b/6b/8l9/WZ3//+b7itKx9fryzLwsPjA2IrjDuvN+P1bixaWUql1QtVF15vxroHXk5QJ371Z98xT42/+V/+Da+/+x6eX6mq/JN/9S94/PY9v/3X/wqmiX/4/plPH+/8r//u75nmyl/9578CN14/fcIl8KqIFAoVmRY4PeDjTvRX5lZYWiUsCMsNWwPEHLVAKWgoahv4oLvjCPXpCVflP/4fv+f1ZeP5x4Fq4y/+s7+kTROYEjiw0ubK29+8o7bCtBRKrUzzzN6Nl1vHh2PDsbHjY2cqzlSCdbuy7Xe+fXPizcPMfQSbBbfXjb51KoaGY30HgseHB1qttNoA4b47EfDf/w//o/x/Ds6xDyLAhhMCIHgEZoa7IxJEGGN3VJWIikrQikAIEoETYEbkjyBAOF4niHzbfCEyMN0h8n/zRQlEAQn66BBGt45ZJxiIGFqEUgRRAYFwx3AsHCTv+8u/7nlPIwxj5AL68YGqmAXhkX/rgAoSEKIEgYcgHowIsAAt+RlSCQo1nGFG3ztuAzEHAkXyO2IAqARCQUMgnABEQFUQcURGrguCoQzyvgLHDgVM88EQ7vmdh+FmgKMKp7kxT5VShMC53u/c1zvXdWfvhoggAoTjkQ9AFaYqNBVU8p5Ccik8ApdACMwGYwBFoBWYGqgyROgB3QIZEKFoKVweFmrVXMsIBMk1kYKgqCgiuSuKQKgcP1OQICSIyPsQFCeoKLmTFKEgqvme5A2X0qgtqHNBpNDdYRgSgeCoOBGOmYEEpUNumcIYTphBBBKOSj4gVUXVKaVQSiVQhoMZ+Jd9JLln8k+O2DueEREci/5T4ffTwfnyw2ecYA1DVThPDQu49oEHVIV1W3n+/JHL05l5ec9phofLzL4b6zbw0aFvRG14bWgIEgU88iZVQMF3w4az7YK5MqLgLqA7IiCz4sX44Y/fEwKfXp+xbcfilVY7b94orVSm04RtnfV5Q3F2daQoUgvbMDaDl9tOv22UWFGUXRsqBVPFVaAKorBbp6hTy0zRwloXXATfcqG7bYkE2hnaxNq+wzx4Gnf8duU//O4HMKO68Xie+PW7M+vovPRnpilYZmjeqNtMqDM0qHWiTI1pulN1Z0ghUF5jYbVgHnfUBs89N+XjLBQVxrZi3Vm58bp2iM55Ed7/5XueHiYeHyvdVv63v/5rXm9Xfv+H73m8zPz620dUBR93rO+Mfec8N759mDET3IXuMDz3wdWM0pyizuvrB4oEdhH0Vw/weAGUT7WyWrB8HtSp4sycHxr/5b++YKNzfXnFzalaMzB1RotSqoAKERtag7JMCBWRhpcAD3w4owcWuS6ncKYIigkawXRqSC10y99/fPsd00NQnow+nB/vK/idc6k0hafFiDF4/vRMUWUqBUrB64xKUNVRUZomqpJlpqhTilFK4TSfMR98eDHMBuGOO6gUJLKATa2iBL4PeneaFkSDTDP/6QD96co5+vHnRrjk5iUzPhyVJYwIZwzjdtsIFxTow9l2Yx9GH0Z3oQ/QAAkBt8z2mlmmb45bMLpmdY6Bu3y99X3vIGB9gEINRyUoTWiqzFKoqogHGkLVmgtQMomGgKhQqlIJgkBDKQgiFZFCqGZmLIKUo6KI5zJFZl4BylHN0JJvXINQZdsH7sHsg8mN8iVTuhE2GH0ATq1CKUFRR3EkspLmd3VE7KhkmXmLAJEVkwgUkKIoiqiCaP5xBG5GfKnUAnMTlqZMkyIFhnfMB0YwwulmuRruuHVsGFWViuIueAi7DboJZkfWt0GIMPasZjJVymVJJBNKOy2004Id1Ssiq1FWKGffd9wM8wPl9EDdiS8lmkQouflyE0fE159FCBHyNb9/ATC51Fk1uwXmwrCsaOZgHvkMDgQVVQ4UB9EHpsrwSAgdStFA1AlRkJKFRBQXY8jI54AwLBhf1uaAfIJklQ9QyX3sDiKBWSSqNMtK+3OCc48NCaie2GZlp1Th4aHQzdivd6Q47bJwH8aHv/2R2qBNWbWFyI0jwjp2VuPLU2KY5M1+/SIKKJNWRIQxViIE2gkL+P53n5jmyvv3b1nmwrkoog3KA2UY59uOD2N/3Zlq5fHtW4YWttrwsTP6nXkuLFqyMrY/wWej4lG+wtNWFVVhjIG745GLO8dACEpxpBaizjjO5it9GH/8ww804FdVwDvfLQUzI0YnvPPh053T44lvvn2C2CFWpASiHdFKaMVjx8edLo3BzFSCUgMZd8Q7E8qkhbdPM1UL961grhSpIIpYQrFwkAhmNc6T8fapIlNhr4K0iVcu4IM/vn5C3FEbqIIqfPy8IkNordJqZe8b3QpNZmapxP0VItgbSBHmN0+0N8qn/QfEgl//k99yfnxii5lhgu1G33Y+fPjI2De29QW0UJcLZsa6vqBVaKeC1kaZlmxliiM2ELujqhRVqlQKJRNQgFtgAb07w5x1HXQck4ID95eN0QfP1xUzQ2NQBLQJJSpFHxEB33Yc4a4T2oyqxhhBdyNrUSaDTAADs8HSKlNrBIaL0YpSSgYjgBuEZTskgEYgAuueyXPbNjz85wXn8MTN9QtEFs3eYwzCDPWgijBPjWBw24w+gh5BUaEUBYKIoIdgLkcl8XxonpU0s35BCLb8IHxkDxZe8RBsGKbC2DouwVLy94aT2RTNSmyOFKHWmfja2wpFs8qoKi7ClzXJbgXQzKbEn16Dgojinpk7i/yRcOArIvlSYfR4kIaiwJvLQkRDaFg4mxvLaeI0VeIoJ1GEUCG0HA9Rs5uKIMyJ4gROOQi2JkHFEfvStxZChYISoZh1vPfcRQQUhaKUEmgJpAlbCPNc6H2w3/fsp9zABRHNvNGhdFANtm3Qd2FWo2rlNDdqK1+DOcm/7JUjhH3v6D0D2l3wtbOvG/fnF8w6YJmQPQmRfBCJVpCjH9VASq5r2BcSCPxAWrn+mTSNwLUAimhFQ+mRFW3vg751+rbh5hQNtAh1mqlTPapI9pHZ20cG4dFrhtvBn8hRGPM7CgWP5Cf84E6UIEKo5U/xIgpFBQFiDCLi4GsElaNy/5zgfO0NJZjFKKrM8ww+uH/MzLkIxFQ5P514ve1su7OOwfU2aPPEVGb6ttP3jkwVaQUfBiMwdywC98jMNAJCuXfP//Se8ONYnCKGK7z++BnOE2++PREu3F431AEvMJwYDq3Qpkesd7jd0BJJRGQ5577DzaCIUcSQYkhRrEsmDa1JRJxmKMrYV9wGkyakHm3KoLxn5ltRIpwHhTDn+W5MrfHP/+I3tLmwPEzcx86n+2sGAo5oQ8qJ3WA3GOIYli24FO6js4+NXjqmxiLCgnJWoxLsVwOU6dxoVSk6sTmsH19ZrxtlrBDGmGZ8atQ6aFNQLhMyKTeZeHnZeP78+gW+0Iey9wI9iD3YdmXblfunwXYdLEfv9Vf//M/55rsnlnOhVYj7FevOVAtdlH/4ux+o5SMzjwhKRLCtKx//7v+kqPD+23eZ9LqBKHWuTHPh/DBjEXTr1LkwnybWbbAGiCnFlOGabU3ytAwJjECXhmrhIhOB8uN1w7xzvd3Z7yvr6yvhTmkNOU08vH+ktXrATpjrCYtg750Ip4/EpGGeyZ1klCsFaQvSKj56EpOeRFDvSVyeZ2WqQqkzIsKpQZHg+vyMjYGPQFVZpoLIfzoEfzI4v2S0ZCkVPFuwgmRmHyM3fDeqB6eqZEcHWgtFwAUsgkIugokQIoRmdYmwzCYB4YGIowiuB2vmgwih+0i87tBHZH9rxnrbwILdBHWnHf1DfH7BwhnjT1XEPXvCQbKqLk6IU8n9qVKoRamSrK+WlGCS0RSKVFTAj64zcyVUcQihHSycLY2pVuaSZM3BMTGX7A0l4mCuA3EBA9FA9WB0UVSEKtDEqDJoR3/cqlBF6KHEAcVDlDF2xghs33Ab1EmJEIbC3ZUfXwd1M/Q+6CpImQnudAuKQi3C0ipLm/DueHX2bbDdNkQqy+lEc6dKVgozwyzvd7/vWDem6URFie3GcKGIw1Fd+r4hfc9kt22ox5GgKuXomUfPvrNoIggPRbUyNaWVQvPytXKVLwHjnkSRJ+IJ9YPdV0qtlFrQkmQOCLVVWqtoKWhJQuJoJRMJlnJILJ4EkChyoC/VSilTwoUiKf8UkJF9rUgchTg/SzX3kR/o8Ysy8aVIDPOfqJv/L8F5tIugR/nfEtpNOmG2s103YjMYwizw7VQZs9JF2cPYwqk9s0YVpxJ0VYYKc6mghW1dsd65eTAs+9VJYZjiDtY7ZsbzdaVNM5sXZAi//+ET0Xe25zs+jL4PltZ4/3Shv7zy8ncfWU6Vp6eFUQq9V7bbyv165/Jw4Xy5MMIIjNNBzsynluSGZHDI0git2LZhESx1oogejy7YycrbajIOZTjSCuWbJ4oIy0jJqe8DfHDGkuFRoZvTuxFD8K5oM0ob2AESJ1HmUngsxiw7sucmOT8stFa57ZXhlWgzHsrt+SPrNthfd9yF05uZEcLNnL4H/+5vb2AD31Ye3j/x27/6C4Zv3DfhVJWLFp4uF969eWTvxt4H909/4Pc/fua7X/85b95/S6w3GDsizn29UyWD/+OPz1h3/vKfvWGaGh/+/d/S7zsrJ8KV+81wc6Y+QJXbB6cuM6ciCBO1Vqw7z587y1J5eEwyqXdlKo2HS6Vqo2lj35yxRabXCGIksXi/5XpKGQkl5zNTLSznBSG4bxsSwcObC6dlQmtBaqFOS6KZfkOKcKpTElc+UC2UqaV8ZUGdJupySuLMB7VM1FLY7vdMPhlz1JLtQK0Zx9s+kqgjy7TUAsD9uv18QmiaMmMc5Cw2BkJmNzmyV3oKEsfr0dPJwWIGjkRQiqD1yFQHA+ZRcISiFYoyz0J1qCWyryOrbpkLVp0HV6Z55nR+YJ6UuneiNpSEym3dmWtlOs1odZxKawWZJkqKh8Q8gRRqq0eVziqFNNDC8ELsQiuZ9XQPUKepUlqlHAxpJsBgmmqyhuKIFNqbJ0Jh96PPNjBztm7IEcgeznAn00ImpN2+JK8BtYGChqOROmdI9ppFBAnN/txTa+23FTuYcAuh1QohjOMZiRdC8nOsG9ttYGWlfv+Z+7oiXhEDdlAXqqR+6FTOpzNv3jhv3jzy5ukBThWsH6xvENRkwSWVxv56RUqh9J3ixulcgMIsNVnaTfGALpE9mFRUGq1WBopJQbTgltUxHMyCvQQuhqsQndxbXzR0kiGth/yV6mW2F+6wrTvruuN9oCJMbWKeZmqbqLVkdYtk3hVBS/IBNQpS8rmHB14i9/AXRBeGHEivFShzTT6FwEfHRqIpVXDzDPD/WxwBuB9GnJ8TnA/nSgRsu8NwxrYTwFQVcWWi5hfrTkjBq+IlGb6GUIE4BxQ/cLnQ9kHvxro6e4daThQVllNCxxg7EYaURKM6LxDCuwdnmhe++fbXtKaUfUoZByfGgOvtWPzU/96jDAvWAc0d9UFczjAt7Nc7/baCFqRUtJ6hZn+zD2eehFoKdRuoGqdLo3xdKcE9A3SpKTONbaCtcfn2V2xb5/nvfwAPhhT6Pni5vjJVeDzB3ge3dUOWipwb9y68Djh7p44NFkGaUkan2IYz6AKPc36eeMV7Q4eh3bh9+MRusE5nXGceLoJFIGNnNeHVGhCMMLZufPjU4eUzv/tw5bzA24eJYk6shixQQqheCYNv335Hrd/x/v17np6eUB0ozve//yPX6w2Phmil1isM4/q7H9jMuezGXAu/fX+itJl7b2zD+fHzla0br7c94bieKHXmPJ8ZqqAViWDsjh+mgy2CFSgx0NiYamMqjXGIfMWMEsH5VJBSWPfUZdd7PpfnD6/cXq/IvjFNlcv5zOXhxHI6HwSWHVWgoaLMbfoKTaUIUg/jjccXCYIgNU08NZxlnqhtZvSO2eD5trGuG2OqFE0GF4nDoBD4tsEX48NP+BB+MjjX3g/XzoHNW/aT6dCQ7JmOfszdsbUz1OkKQ8FV8CJ4Sd1zjMTY9ehMI5w9WwYkInuFQ98QzyohJbuLqtDmiVLJf1GzarshFfQ0o8TBlBWKNnQ43v3o+RZMMjvPp5lasrdRFZwpK7kGpsJ97wgbl0lpKvhrpAu5JjvYDx2xtXTi9O12ECqvDHN8vWcPheBm1OhoCGblMIcoBSjuPE6VZalUOVGlHlqyUBGKwKyFJrDUxlRKmjMGbLcUtMeBQEIKFsL93unmvPTOZnC77mmWmQQbTm0TgcG+EyrYKOxmxD7gw519wLrBugbbXtlHwcdHrs83zpeJaSrEsEy8kdW6LgsiyrpdkR5US91435wWTm1J6z4+nJm6M6TidYHDXbN3xxSi2hEABcWSKZWSPzo0X9zxGKlRfNFnySBGlK2nM+l27azrYN8HZsGpVObWWKbC3DSdZGSPnm4h0qI69i/+omzrvsRgipSESJI6lgnEJdi3nd77VzeRitBqSR7Fsr7nxx3vfLC+iP6kR+inHUL3G4LS9IJqQc6Jv20fyGGCFQUtgpmxrxt7VO44kWwGo1RGrazbzrbvPJ5mTlMjfKDu7CbJwEXKBSKW8sbIByetoaUy1UpbJkpzahOqNjDw/YaqsEwnhEDCKKVS65k+DLadNk1M88K2d+7rzrI0ql6YNS1qH16Dl3swijIw7s8vjP1OuShaoX/cUHf83HCFtd8InPOccsi+rnQbXO+voIVpeYMg7DgiMCsQlT6Sfi9SmQjmME6nmdPTwsaZPZRxvzG2e8JqVd6UylKUaTqjpXHbBevB66eNdXNsfiJKI6QyPPjh08q6G9c+2Hfj+dOKFuX0cKJWYT5diH7Hrs+5mdfGtg/iNvjDh5VhH3m5BS+34DwvnOYZ4QeE4Fe/+ZbHN4+cdXCSIBy6w/TwCGfn9x87Y4fiBfPC9WWwLMLl2wutNJbzhW0EPq/sNLbaMJTXdUDRbIFqsvriKRdlAiXlJgcxw90QP1oswEO4W97LGM4YwadPN+5r537f8e6cHmYezjOP58pyKmgJwoyxXpGAcjDw9D2D1TP4Rf5k+3QkZThV0IKJExL0+x0bI9sfUWoR6jxx3QfDjOZp3CkFlAOyk7D+pxihnwxOLXFs+AGu2Kip+fWOetCmKXUxT0fG1h0rgk4FV772BBpOkaAp9G6HOHuwV27IMHYbEM5U09mC5q1Z7yk0q+Iex8NwxtjB8zVFGJ6V3Icdd78nqxjBsMG23TE3xlElLAa0maiN0QMfQS2K1IqeC9YE6zfuuyUtrhB0xINas7n3fUcI5qbUUvAxEZKuz1KVdpqyNxrGcFi38cUAQ/TAxmD3zrXvDFW6FrR3xAZzgaKFMTpbH7h3RINPV+O+By+bZ0870vv8+XpnNed5dfbhrJvhAfPlkuhGs/9pKlCUmBqtCadWiKL41NhuHX/dMxFXJVrDaiNMIIzn1zWJrAZzgeaKtsZpOhyu04J6TYO8Q7x05tV568+0Wpnnhd2DbTWGBk5P5ltKspnhYEE5vMZy+Iaz3hwMKJ6+Y/2TRhiA3XvuLTT1SOtgnXmuRFWkSmr0njqj2mHihnRIxTgUAz+C0+HQf3PPkQMUqvgwLHbkuBe3gftIL64HpVVUC0Zqtp3DxkfeQ4zkEuRQAn5ecNY0/ErfiVDGyDJ9X3eaCg+nM+KBd2cfcNscPUGdGxGekJOgEEyZbLhtg60PllaoKqjtlDG4bgnHLkuhlgJTMsPrtgGDVhvF4yv+t34jzPCev6ei+HD6faRTpDulKdOsmA16H5SS7p++v8J+xU5PjOWBfXWsw3Q5oVPjUis+Cp/+/oXb/c6b3zwmMXW7IuFMp5kg6J9eKQjnt09ApURaxMyN1pSHb07pd33ZuK7O7daRJuhciN1gH9h1xUrgreCtctaVU9lZTkErhX11ttGpW6pt339Yed2MVWdMkrzobvzdjy+sw7iVkja1dVBr5c0370j4dqWUYC4pGanMTJNwnoRoFZ8rtx9v2G1QW6PQYF7wNjH6hnf48fMV/fjMu3Pj1ArTbVBbZb+cabWiyxma8Gl9xbbB9687jeDPPt5YWuH9mwuuyhUlygxxJ7ThZcqqtAtUp5ofMpYSpmAcQw1KOcgkzQyOkSaEsa306w7LnEHUdxid8zknQMQHrklkjeGUksUgQz8I65lIDxueRKA2kN6TEEWJWqBN2L7T9x0/qDPVDNLb68q27kzzidqm9AYXxbwnOSpTEkS9p3vrlNb/nxWc5ZguOeB5QgrJCZUgcsOLUKugVBozXiu7+RfhMLObO1U0WVIplCbpNXUjlKS07SAAuqUQvEKE0q1SSmN5W7hMjUuriBjPW7qUqiseztXSATIsM+M4cqJJsLux9k49hkzEDAnBRnBfB+t9Y986T7Ixe+F03ilnWPaZsQanyWjitEuKxnJ+IkToWpAIpmnC44D/7ojtSFVsT4vh5f0TdQTlTRosdg/EAhlOB3YRughdhX2sjM0wTyFbR0MsDm+o8WmDtQv3MIyAtjNCcXLNFw1CBT+d0VopraElWE4XKp3KLb//iGQqW2WEst0honE+PzB2pavy8ObC+fFCv98Z+84cg4ZznqHVQ++VJKCSsU/PLUu6lvpILe+PfTAN42avhCh3qZTZOekJKSlMiRSg4h5sPSimVFXM09eLaqKSCMoXw7jEF8cly1RZSmGoYgTbqVILfL51zIKW+gbdBmUItQn4wLZbVsiS+0Uj+1jr6fupHJM4YyCRz1vM0y9rTvigzJXaKjbltEtbGtpqgj8JRNOkn+xsIiI9WObckT+ncqp+tRkRoMNwiWze3dm70apSl4nSKvNSWA22YZSSi5sWqEgXS63oVJkoXF9e2LqB5vs3n0CDl+uV3jts22G2PzHPcK6Nx3nicaqYB39YOzGcohPmwXXdjjyWUDr7kRSzNzdu+6DVTC7qTqHQu9N7x66v+HrnjRQWV7551zg9Ke+nmbEp++sVN+N0Xihtoj68I6TQzzNulsEUBStPOQywX8GNvjnz5cTTd7/GBd4Q3NbB82tHQlEvbL5ztw3xwMxZ+yt9c163HKE6SaOK8HLb2fpgNTBP0spCYNlwFMNRDWZ1VCtyeoDSYGqUJjw8zMhY4fZ6bAhPyas1bAvu12Bi4vJ4wu7OwPj2/SPvvnvH9nqlr3ceS3BSR8qOqPF8h71LVmpzqvaMlFMlKmxrjsfd7gO1wfRpy2RdJuaz8e3pQq2DSTpoQ8sJc2c3ox3yl+9J6vUQBkKJwwSDg8AyQWvw7uGRpU2sfaObYQ8T973w6fVOH8YynYmi7MOQIkwuxOhHz5nDCMdHYpZMb9FCrRPhho2OulLMUFFUDyhuRtOJaZrBPInGZUJq/ZOaII1AGPsd3Jimevhv0873s4JzG3ZYl8qhd6Z+h6arx9wRI0X2omhTmgQzOSPnQ5CSZmbzFI+pTlWYjtm/ODQgitA8oARjGP0le9PBzDRPLJeZOlc+P3/CLTF7zj1mP3ieU6uiVWIMfN/Q4hRRygTzU6WIUGQQnlmv1MKslZfrYN9urGJMe8Bvv6PVKRFA36lDiK7Y9YbrBt+9S3gzhHDBd89N5S+4CNIK3YOX55Vyzz6Qr5MNipaKDc/JHe9074SmNa5eLsRlpkT26mMNRne8VkCoRdAQ9NRwKWlEAOYpM3BrFVFNc4IoG4qGE+tO2Abdc8NvjkwKcqKU4DQ728udP358hnrm1E7IboznV/q6su8dq4aXoM2Dos7DqTEW5XYf9NHZ1gCE5fSW09xY6jkD6/MLMgbLSL9z15nSEmGZKGGCBlS1dAtJznECtLlSZ8VFsSPZCorbINyYcsILM2EjNempCPLgXIai8pRscAi1Fk5LWg59vRFjUCLnS7/0n94zdzUHCSciHWaKIw4ehh0yDx58mU2OgDK17NUl0aKUNO+M4SkPWn6GqCIl0eZPaSk/LaXsA6WknQ3JUbFIYT48TzYIS29snRutFEKMRZy9B3sPyhGc+9rp+2AKo7Zgag2dZnzvaUgmXf91aQxz7r4ztqBTmaaJ5bLQ5srz5w+Yja99R9qqyEmSWimnE76vDG7HgLhR50a9NDAhjvGeERlEUitXBn27svY7tQ7w97TWUDNk79Qh0IXtD1fcBZl2ZMkNExF4N3wka0trtPkNw50fnzsRK/LHzxSpFJ25PJx49/6Bse+s28rugx6GzI22TLTLA3WZKbah3vn4YWWznagVSG8nFMr5CbSy3gz3rB6qUNsERbCa7KXfD4P9toJtOTe7O2NzyqLAQq1QNLj+8ZU//P4jT+8rb799i+6D/umZbkZ3wyxtfVpTsmrntDeOseM2eN1yZOzp7TumeYLHJ3w4VwlkDM7uOMorU+rnlgx9FGGqMLlRNXttl2DgTFNLxviY2oljBMC3jRjH2FYEw7NYnM6FqbH5OIsAACAASURBVGay8ggeHha6BR9fVgI4Lwkp9+cbDKOGHhLNSPtfz/fLwMhelIM38cML7l+t/p4GFxKrlalRtdG3nJCSOmWA9jsx0rTAF5dQSWb3Zwfn8x9fqLXx9t0ZEVIDisTMqOBxwNIlnT8+ViA1nVrAJ1LLXFNrgswi7oOoLUeANCveGmnDYt+QQ0crrfBweWQ+LYffkhxG1kJYPpiczXOGb2l+d0sSqyazbGaYWJILPmB0hgRD0laoAud3D9QWnLePTHaHfmO8BOPlhf5yxz5npemftpy6+P1nvK286khxf78dcCyYTwu/fnriYZ757V/8lm3b+PzymXUoz+tEfYbvtzvnU+Hx4cyszqKp3YV3bL2y9TUnf9yweqY+npBt4BYE6b5yD2I4UudENSVh3jjE7vVmeARq2d9bzxMkZOR0R0RCs7k1eh+svWf2P7THrac/VVtl7DfG3umaR6uM2x25Gydx6lR5cwkeF+i3wbYFz3/4hJaV81Oaq/2+UYDT4xmtjctypnfn+vlGoIyRpvJpntIPO7WjPoLWCS+NWgpNFY90AFnTnEQ5hqrHvhNmPLtQFQo74Nx6/kojCSW2DRV4mkoaDLZxzF3mDKnp4bCkpDIxDn2zFFK7SOQjreVIlYKVwEZHDpl2dMcNlBxgdo+spgfS45jvHIdc87OC8/XjlWmeefs+I85tICFUnZIU8oCa0glu2NgTttVCqUnbb/3wluYWyrNYGNk71GyktWhKKRhiG9IHVSakFt68uTCdTsf4mVDLROjxpY5p1ghjt40IxfuglMI0NywGuw1cHWKAd8Q7XQUrefSFEJyezpwvlfJ5p96dGCt23bHrFbturB937O7Y7bAdyiujrvxROnsY974SpOn50YLmwbJMLO/f83K98Tp29pvwh96IbcDzxp/96sTjN2emKZhaMO6vjHXjvnV2h30Y5kF7ekNZFkobObmDEh7sL8+YGVJb9o5iIM6gY56MOgFNFGwwtoGQSQ/P+VmRwtRqCuqWzGWpFSelsRpKoeYwce/YogyEft8w25AZFp14/9goCh+/T13v5cfPoCulLHnCxLZTSmU+LUzLzPzmifU+2K+DYbCNHDJwaURpyDSjHHPyWjGptJL6oR9D07QcHvfdD2nNsJ46qwAn2VGMtRuOsDyc0+C+dUTh4VSQEHbr5MklikuiQkjDuwaEjUzsUvky7CCtUZaFyBl8et+wnqN3+DHHGZL7WVNGEUhoI3EEp2D+ZdjsZwRnK0JTkn2koGXJyNdCOAwMcbA9g8XRFITGICThl5ZCmVMLxY5p9GE0yXGd2+2K26CdpzRgPz7hFvzw/cq+O31dKQLip/Rdhqc0sq0IMLUKmvObHiCeZMG6rxSF5SS4D7Z1YyrCNNc/Tdd8ORumKFpantIwHFwJT1tfbTUBTHSGGeaG+x2Lhp4aU6s8nNIhQ1S0Nn68dsb9ystzp06Nb//yt7wtJ/6svGFbB9frylycUR3bV263G0pDygWpziROMT9OhEhIOkYeGTK2O+7OHoJroftGGGxjw8O49y2reO+ICHNtEIbLYNLgPE/YLmjvLFWpreA34369ppuGxlwabWrUSakTlB10QFsK80VpZSGGouLY2BiqSFUubyfKHJy3B8wa67piIxj3O7sWPn964XQ2lssbpjLx5v03GJKeWhGKZDXrlMP2ljOakDZIi9QSzTzP64l0YCXhKLRS+PR8Zd92Sr8hkYGJCL2vec7V0UJtU6VInjJRVLLNIluAPB1ugllpDzWrnhw1LsCLYqWQQ34Hc6slbYAaR78sXw1BKfscQUs6mUTkq777M4NTKQpiPZmsr8EpUAYmjsYxGK3gqmmrMjtmcFL8LkXwcRzV0FNrEk+cfntdGfvKu/qGqVTm84lA+OH7/ciGO14z6CXywK7hzt73ZHmntHep1MPila936+gkTFNh25zeN5qmBzJ6Voo8MsXTtF9K9i/uhCkeFdUZrYpIeiHdwMIxT4ODzDN1brz5bkG1gi/0AS/Xzs06f7Ab7755y29/9Re0yxvmd7/met358cOd/Xpje3mlr8a4wrQ0prkiZVDVqZFE2b1nrz6iMVzpe0/zQm24KFjH3Vi3O8MG1/ua9xgjN8k0I+JQklmfl4oRRNF8vjXdWfu25npTkVKptVJaat1a0gVWJqUtBaLBEFzWHMNjwouwXGqOqu0n+l54/WFNw8G2MbTw+npDKIhBLY3z4yXdNlUziLckWjoOmhJaHCeL9eFE3xndGH1gXjI4DzminZVaC/e+8Xq7E+sr2KDVSlEB23Nksed8Zi8TrSjnOcf7lpr9X4E8lqRWtM7ocuFwNXD4eugcI2DHuFryMXkQQYTngIfI11MOvhgN4pggCb5AW/35lfPx8TvQYNs31Dpz0aPKFNC0PLnlZmxzkjYhnhnFwLZAZEdlo9YZnRu1TAxLP+ewNUmcuNBp+FA+fb7jAcvDwnJOjN678fzpFW2VrVYIZcEoIkzkWTtbN0ScqkYtwlnSxzru0MrM8mZhGDzvYD3SvNCvqLzmqQ0I1sGZ2f7+SuOF5XSm6AzlhLaC1DRZPzxe4Lwwffsenyf84QJ1YpkeKX3g+iPNhUJjvjyx+RPKmaaV8yzEm8zct2nBn074/oD3Z3y8sPtED1hKSj8dwTWYaFRRyqSYO9X9ICjAo1CW1OMWu+Bu9L6mAaTktAZ1ptjgZb2DObJMRBXi+L3WTqjuhG+MfTDWO6JJevWRx3Lc1yQz5r5SfFBLQaXy/ApxM/wuOTpnOxKFp8uEzTB0IQzut4HbjdP3P9LmhfbwFi2KREVVmU6V3jfutxs7hU4l3A4zS04CfTnmRiVPqRjbyrDOH9cNwihVePP2jPSKuLOUw6PcjmNOWoNIC2REVulOcL2tTLXweL7QzXn+tFGbsXSnj8G671+dVvZlwJvIBH+cOeXDCB+0OfvSvmeVL1pSOhHNY0oGydz2HX5u5ZyXR4LObh9Qz4BQSUdOSKClMszZd4MCZ52O8SkjhmFjUDBUBrWWzMZaUhNc73QbGeiRp+2ZCy/rjrnzzeWBqpX9lqaC9b4j3RnnRkGoxNd/gzxWQtXRkn7MqTb6gPsKtVbOp5mXu3FfBxynMUhsCDvtYAB3y0Hs26crsm68++2Z5ZRzhFLIqQmCZZnR00I8XOjTzDo9Qp3Qh7fIvtFeXlGUUs7o8oBxJsgT/KYKLHnaX8hEeCGssr129tsV70o3Zf5yBEg5PCTH6QzRNDdF7wnxPQkxmYCARZLI2FdJO5yMtLq1gm2wXgcFmKbjwCpLt4qWls8tUmay3pFRiFG+jjztfSBroL4jDJQLSuV1hRFBHdmySQwk4LzMuBWGFfrmfL6+4r7z+nxlPjtPy4WI3LgqUCfwHsSeM6luegzI52yllpqnrsiXWeOcKrHRua83hnXevXtknhoyVzSCs8Zxcmcem3M6nwmE67WnpbIrwwbr/cYiwmWa6Ovg5b7SRrrt1955va+5jgeTHBo0hCZKmStFD2urHZ5cTaugHScpIIrWlInGAW91JHn5s4LzHnmU5RRnysHAijh0A3dK84SF1akY+9rRmlBobhPTdKFvG33buT9v2IdXprlSp8pcCtMys2tqVF0sPbDXK70PNslZzIfLQxrZpwVKYZ8jYc6Wx3TGECyEQUPc8S6UUhiStq0yCdvuvH5/xyVnTS8PD5zmwuvLj9yuW86bqmJ7oYujpwltwjYXrMJn7+x9YzvOP3rz4yvTfbA8vKUX+Jv/cEvi6/a/0wjeF3h695Z/+l/8JdPTI6ffPOW0i3XurxvPP96+Hldy3e5c13uO2Z2+5TztLD7SIE2l1nyA2+55/k4eV0hZ5tx0qkQYt57s7pLNGF0kbYz3G4Iw6cIohmnKBIvCpFnd/y/S3uxXtiO98vvFuIfMPMMdOBSrSqLKPVndBgwbfjBgwH99ewDcttC22lJLNZFV5J3OkJl7iNkPX5xb6oduQTQJPpC49/CePDt2RKxvrd+qpbAHEaCsVRwmx6vTRKCSQuXmMDLeOXRbUS2isqIUTdglEVScpylNjBlVmqRKlBXkpTJy3XEw3ng0EHOCHcL1iaYMWfmX6AfOaQ6j7f/aoDla82jvUZ/jXIhTC804aaiRPXhSzpiOozGdKUEJ1FoJQfzdg05oo5knJ0JRU5RqWIc7QPG8NWozTHe3orxqmacfbOnH0S7nohhH3/lZMtfHT8BAKoqQGuM0dhJGv7NqK0JQKT3Q3X/fT1mcqWkMhrE5GYrLUIlW+riiozWUFpJ76aYFZRTaWrQfKVWOiyFuhHWDJklPP81y36kSLyuloroTI6cssRxr8F7jrEVZK8kEIxCJ0sRX+kKKl0OGEvVWaVrVYjowWhbnNeIGjxsszjnmw8AeLHUFDCj9AtrS4B3KKao3ZKd5VrDR2Ls6nNbI2BRvUiWmysPDynXZefzxA6PRtLsT1s1M48Q0TxxOA1uurHtgD5HlsuJ1Y7QieK3rzuHo8OOMM4hbqAraUT5zhe4g7xeVQVkDRmF07kqxZAsdpauD8k9oCd20oFRUlWGAUljdw9t0cS8LVMwYhXOGabCUlEm5MnrLzcFS9p2aWsdQqj4ee4GUyb2RAt6I2KG1EZVTidneDkZEmrJQchY2E4bQiQZlDxyPIzeHGxHDtKjTIAqu8kN3wQuMGzQeMZpYJ7TElLOMkLSY8alJQgq5hyZSQTcwXn0e5ZWiaRhibiybCIRudLwwrJQWPtLLKKUjCBgGzzgNlBwpJaG6ohu3TKmNyVq8Mx32JZTH1n9vq5WqHfzknbMGdGuQDN40bFUoKjWK4uSsIxHZ64ZuBVMzSo9Yc0L7ATsdmN3IMB8JsyfsEyWupBho9RltwPoRZ514E7E494bS5K2kteayXEVAcwPGGk43XvKjoxEXUherJqP7scPLD6NWYsnEHDBNcTPLXLbGxPU5sC4y47w5vGJUBa8q3gVyrZy+ectwHBlvb9DOMb/9Oefzzv/xv/wV58czH+PCXCunYWQ4HPlX91/x+Hjmf3v3Ry4h85unxFkphr/6Pfc/e8PPjyfWdeH9u3fYHLnJG9rIi+3WayZvqCZRW6bWADVKLrQnI5SuTEdJvOwxkmtiqQu5VmruO0OW00yrG+rFG1rBD5MIFlmjksIkUKbRXCWRuaTIXhsYj3JgfCXkzMN54Xgzcn9/wKkVlXd5ISMvXlTDWCez0CIv7KbkZzDngmpRlGMKph5kMXmDaYqheawRqr01FuO8XCUHGbVUe0BRGbrnVmnHnhv7EnAarFLUtlFbJZBoLaNKhFpYo/iQR1ewSvWaBhmBUeHj4yr6r1sxxjDOAxiDth6rFd7bP70AlMz0VXOoJjUPIAR63RnHtWZJO9VKCJGccif/a7aYJLw/y0y/lihUBWQ+Os2O/0Ji7B/ZOSno1ki1B6qbuIFqR3y82PpKRzmqGqnViS1ZdQVUGawFpQrGwnbJhBQpWYbGtgOYnLFYpdFuoCqDseK+WZ43SqqYBq4JP8gYjTK6v73lgbHdaI+ROWBthVozMQVGY/HeCYc0N1E8Y+QwTfhxwteAa4mqhfB9upmZXt0w3t6gnCfZhj7uME5EsxKS9GdU77HzxJvDvTjzLMRUWEvGh8jj04o6brzaE8uysT4+ManIbEI/gTScGXF2ZGuNUJvYxZrwcksVj7Ciii/ZiqmbUmkpyEippG62kMhcrKkv0oZqCqc9LzUQugqKRGu5S9VWZZ7aGh38KXeiWtlT4kaPHCZLTWL8/gccS7kPv1QldCzLy45iJXslLxsEA6KV+gz2tq1PAbqX1ThDq0Lb19ZRsJiuXchdU0MqlJTFtKIUtUZqy8Q+znA1o1shd0nB9ROoRMBkcbYKIUh62oUs8C9tUFZ2WtBo87JcZB6plBgpBN0q5xGlu2dQdadclQqMlLJgQa2cHlOuZA2mWjB8Frdqk69rjfk8ZvknL86sQCtFRMk3GItcdL1QB1QrGA2D9ygURilSilzffWCeIscjmPmAPRwZbyyzOTHf3VLizvXxI/ty5bI2SkuM84SxjuxGqjZCeG8NMx7Ro0IPEyjNQ+gPa9u6Xc2BMhTlqKmSl9jHOIbaPEY3ivGsesTPlpNxlLyR04a2BwoTl/BMCxmzVkwuaD3h3S3e3aH9wKvXhsNN4X/6n/9Hnh/O/P3//RvQmtuf/ZzTqxO3r26Y7z3/9V98Ra2Ku7c/Z7i75fa/+jOagt++e0+9fiSffwNsKC5U3ahaVFLvJnYcq7IippBZqyM20zk3mhYXmq4MB9BDY2Zn0Jm9Jkne9OTKnsRg8BKja81gafiW0bpxOkgVgJa4Baw7+ZoI1531GlkuO7c3E8OgiW3nkgt536gxCtWgAXtAlcx8o7DG8bgKckaZjhS1IwpDDZLSGPWV2jTXTagNVSMVGdrgreM4jIQC570RYuNxX/EGRtvwpjFYIFeGKvT1qBQhR3LOaD+gzUAtUGvG6oKmEVImIEq9AkqTMiHjZbZ4qWJo+PC4YrRi9ivOy3gHJG9bgaTEfFNyRGmL6jgTbRCPc9XsWyRsCyjhT72QFWNOlCa1HkoBKUDtzi0N7TBK8uunLE5ltYB8EcZsqX3gql5w+Ul+nTadt6popZBCJulANgHlRxryRrRejqrVO/Z1RQe5W8ZSscXQtCU3eYu2nkpW/eE0g3yduEV587UieETV8ZC6m+urdKNo41EYMTYbR7Mj2nVHkspokhAEtKdgKU2GyKqCwqH0iFIDWg0ySzXwxRdfMA8HPn53ptAYDkf8fGA4jsxx4tX9EYXlzc++xN7d4L66Y9t2zj++R4UrJl9obSHVM1VVimqoEjA1UfRAVQNaFVASlC7ISaXVRqmRRsHOInhYLbfsIlMtmm59zivoCy0Duz/NAlsTpd2qLmh0h1WRlI5qojSmWATJgfzcM4XcKrlKnEo30KWiSsW2Jos1y2hKgUTFPpvvMpqCVYnatHy2Te534gcVY5Mo7rLVldYIsdAs3Tdb0R2mZegAaaVpHREiSq/pppfWd2QRW+QzlAqNqpSAqrURI0EV6PSWMqZUDOK9Uz3CVWvPNylFqVIpol9wmP0EURsdeF7JMaOtFTB2EzW2dO2gVilJksUpIpDRiuSV5FV/yuL85Z/9grzvPPz616SceQwGZwxHXB/IVmquhAiD1cyTxhnF5DVNFVK9oIPCLRCzJ0XXGUmWw+svme/fcA6VPUm8KJbGFjK1Ve6OB6wxpAbGaL54ewPIm66miA8rWmucn9F2wIw34Dz1eMQaw+CMEAkokDLESE47Ka8o47B+xHiPdhZz9xbNG87fKcLzE7u+xXJLvhq0qsRayKVyXSyxHvj2X/0LjNXcHm4x2nF+jsSgePXn3+K85+s//yXKG7JPzGVjms+0tsKWaCFQ45WkNVEL6S4Yg5sn3HwU36a2HK2k7lveaTWx54lUG8t6oSyZ0+0tg3X4qceOWuuq5CIaQ5EAwbJstATbXiVi2wwmF2wquEkz3x6Yh8brmxN/+LCQuKBHSwTUMDMdT0Q/YNKGeXqCbWeYJpwWM0KJuu9aDVs9NM3z0xWlFK9vZrw22Cw73mmaeCEHUjLh6Uw1Z9T1A8z3TK9+iU2gqVgrIMIaN5ZtZ7RGAvrjgJocRyPpm23PHYk5QROGsCxOuRqE2O/e/tRZwHJPvp2kk2e77lAbtokqm5Um50LYk8Qg54ESu/EgF0iBoYJGU7zQK0IzbM2yLYWYM4ep3121Fk5vDnKcTUJPmEdRccO2En/qnNMPHmoGI+fqjEK3HvOSnzSCqu8KVhMFzFjBhsQikZtaAiVIylxr/dmRo6y4RRSNEgsxi4jTKpQq8C2hntEBYEre+B25KSjDPv8yHvyEOd1hjcZbiUqZlmHfoTRKCfL16DMyJW84OwyS5B8mmt3JypOapewFaiGkTlcIMvYZplmgVRVyyKxFqPZ2mnGDw4yGpqHFgEo7ru1ARNkmLiPxjFGtA+9RfsCMI3aaUMaDsihLDxMICJusMRW2uIkqqgaUFjQoXa2VYb2IDi07dCrsppf4dOmhXwehdIFPG7wTm+ZhzEzjjjVy39c9z1iqpzUJUtcqM1HrHC3p3jfzcjTT0CshFPTT1MvTpLDG0l7ubrV2610RN5MZhUOrFL6fwoyWDGetLzfvDmUzgjc1xpKSTAnknChWObkLN2oPfFda1z80CtvdTkbKjCZPK03Gg4qOLJW5rXxLHYKOmDxe0li02llA7WUKRMyC6hmH9g+v55Jpbu2zG0hbMUS0KKeTn7Q4//DuB4nS3DhsNQxJoWrlGq94o/He4bXmlR6pKRGeV8w84G8PWGVRylJVY20Xnj+tnM87ZrhB24kUBCadtZHcofYUDLo5NPD+3SfUZ3dI4+E7J5AkveF0xXsF44yynqqsSOA0XBR2S2iNFgNtPdO2CyyfCKWwFenj1FRyCxQUX339JXevZtTpNYaJaAdqLLz79Y8sT1fW9UqpFX96gzEOo3a0qqg//kAtlefLhrGaV18eIQTe/fu/ppZM3gOuRU5cmVzhNE6MxwH/zR11nCnziWxvSe4Oa0ZMr68oOZP2lZIDbXqFmiyv7IRVhrevL+QS+PiwEK6J2sHYwkVoqGqhNkraKUWsiBo5zYQaedz3bkWruFSZHiuDtszGczSVf3ErRv4t7hxKYqZQUiVtjbBZyj5we3PHOM2c604oiYYkfFSTMqXTLEfJvGa5DnFEaYGsGWMZvEFni6kLqkZ0TrR9p318j+3QNfAoO1MGRx5uiaWxlIbfwKWMqZv0u3RTTO5H+NLBAC3vonS7AW0Ul5gpNZH3C7SKfSg4Z7l/dUNVlaf1imRRpJyYcSRrxSXL94CxMuNXFWMrbmhSIRkzJVyIYcFhcN4wj5ph0IScxSFkpbWtSZyXw80JZzWKSTadn7I4c5LkqXEWXeVu0uj+0ibneNOx9zl3PH8F1Y29WsuboVKJKbDvK6o6lFWEZSWFIFEcrSnDTDV9ntoUrUR0K1LK0xqxRrSqzMMuHFDj5MXRxMaWU0abjOoRoFYrdd/J1xW2K+p6kbhTf5DQoqyGXFnXwDBGQoLQNOwRXRVPzxeuzxeW65lSKwcGjPMYNlRfDKVUrpcN6w3TrQZVWcNVrFx7YlCZwQbs2Mc/xqIng56OuNMNQZ9oaoZiKAlKVuSsiAlyArxBFU9R4q5ydsAYhWFHtSIqZ2uUJiAq6T6tlN4QLvWGDWPKZ9tlrVKRUXIlN+HiVq0hZHSpn/+xreG11Fy0VCipCXrkxYT/Qk5URj7T/py9FPeQ+66iNaoJeVC3Fz1BBETV6fq1VmrcUC8WIKM69tRinSOnl1rE9jmBokrCWt2Lm4Xv0Fqvyihy1Dfu5X4od+nckpQ592jhS4Ul1M8FwUDfMelGASRu1ndAiUQqQc1UseyVlHDOYK2WygyrCFkwJp1X8p+cGrU1nR70ExfncZrkDJQVqEzWu8TElKEozdZkiOutojRLDZN86GsQ6Vg3tNVUq9G2oEepFcwJLtuZfd17lySMt68wfmBdVlqt/OzNicEZlixhbFsl8OpSwjTEtlUU8fpMrY68DRSz8nTOKFUxLRG3hf3pAfYLanlkPg5S5z5ZRu/48bKyPm389unK74zjWg2hapL5gaIqXC+0GFiXK6VU3P4sR6qyycxPon5411A7/O7X32N0Y9AZqzSzGjHArhotWZQecW1im245jDMndRLj+37m4x8e+PTjI8y3MB7YVCGpinm20qGyP6Br5u0XhnFUeGWwfmJJowg46UpphdjpciVJ6es8jfLgpZXZaQbjua6Bdx8rS9pY90zdG3UpqLBjwsZhHjgcRwbleDWNnN9/ZH94YH2KxDXzvnzk4h1VyxH8MEwYrwnrIne9JMKUsweUlkqLpiwhaWJt7HnD18SpSqTNWy9znvxISIZLsbSxUKtivjkyT0cmLybzZV1ZQyRtKyUFpmkWhlOVt9FSDalJZ6tGYcImM9MWGVVFHTt7OFgUiuV8wRjN7UkgY3sPHLQiBpdUZeQxTgNx3ckhYWfLwU1kDVlXcsrs1427r264vb1BDxZlFcu6EkMg1R1Q3JxmieSVRqJj9n/q4jQdetu6Qlu1BgPaFDCa0sPKrYdOtRHTWcudZG2626xfF436U42esZJyUFlIZ4aCrpI5VKqikK+h+hHspSX4RbmrRdGSIa0btSTCmigmEZOkYEbfhIgQd8q2kS9XUBlrK0p7lGnkEKhhJ2yJUjVX5QhYgkoUCj5vmJrFWWMalSy4iZa7ctnJf/pPM7UGEhNSMJjuGe0+0JihREXeNVVVag29XDgTt0DcE1UnKonkFdkq6h7QJRIvz7QU8dqRZoP3g+AualdBa0PXJnfQpmjKdSVTWDZVi7fZz156X6ZEM4aAJ8XIEhI6ZPRe8IOMYXRD7Hg501IWiqLR0kBOEkq6kcqEXoIgynHrO6JxKOU+K8jtBXNTikThmvr8bMlzUXtpUOsk9iKlVDGIStyfE6vElUSTefeLoRz9YkYXg7rItPJnM1pm89YLIP1z3UMH8I0vxcgio0jFveJzb07tEiit9YiZ7tC12r3HwkZwXQTCyCciiq6sJ601xnZINi///ScuTlKhqUpWTSxa04ipFee7U0hlMSBoML7hDnI0SkugWkvzVqx2GlxtHGhMTlOM5/b2DdUoTi3iWubdU2QNkeOrI1prUlyIsaBzwVSZCxkatgV0KYRrJbWVx/eNkOC8VJT1+MOJm7sjp1+8pbmCt42P+4U/vPue+Xng8GlAz0f04cCwr/i4s26wRNiAhCJrJy1orqKd4u1Xr/GDI/ambd8k6TBpKdMtRLRR+HkEZUjNM1vNl7PB2YJ3gW2vPDxmtpC4Pi5s1/dcz2e+eD3x9esZ3IH7n/2ch5BZY+JwmjkdBsrvf0d+fODddx+4XjY+HAxusHzx7c+YjhOnUeosWtlAwTzc0awmwnqn6AAAIABJREFUDAO1VMqWUBRRtt3E6X7i+Dpy+vpKYmbjFX/4zSf+9q++I5sB6oQ9jtzeT9RUeHr3QHre0Xvlq9uJyTser5ktNnKztKLZni9oCq8OI96PlDqjtMPPJ5oyncqgaEqCzsqVTinUVAV79/T6QeEw3CDk+0ImPXzk8Y9/xA0W7y3DaeBw9NS7A03fkJKShGKV1vDBOGlde3kRJAlVGyNjvGk6iBkiRVKurNcqjqNkUEoAaUohnFvtwI4sIfNwDZgcMTYzTXB369h+TJwfLuQoMDBdMqQd5hPNeZLxBF27TVALQHywTE4Eq63IUf8nLc6qhGdX6YqpMVAbNYug0pQoULnJN+icpmbIHXNZM1SroBrxdyJJ+qakGLVZjWkG00Ap+XCNlc6Lkk0vhpFd1xqpxDNadYh0ITdFKZnaFGhQukoCxlTGQaOLonjQRqT1kA0ES1ORVi1z3BnTRgiQkoSXmzZyb2kKNRi01dLw7C2UXvkH8obW3cHTen6v9M+jKkJrXEPBlsJAEWN8rZSaqGUnbYFtCVyd4slq7GnEOoP3jYNXeF3QaaftV+x25kBA2UxVhhfMRUXiYFqDU/1eQ1eg6aWurXZFUby6MYuVaR4Hip0Z3Q37tfD2643wvLPrjfFmZDqNMrCvGoXBKgkrjE6SNbk2oRRgSEF2kFJaR7/0gHTpsKvuHNJGdgxDP0X1e58wjkX8l7t8ll2Tis4RYqApT8GhqsFpIe83IwuzVvrXblgrz6r5POPt82st5cm1H22sMSg0ydVe4Nx3xoKgd4x4gmvrJcYdKieONqB7yWOIPZ9tBYfpLBlhF8v/SkLjtlcOyp/jxXmkf/rOGb2gLnJCKu0mSw2FdVskM3kYpUQnJA7OcTwJ0TvWQM0yfNXKY/SAbRLwTUDKQY6rWnPOjVoaa/YkpcB4jNXo8YSphdIWaIXjrPCmMQ2GWjKPj5GiYDgYRjtwPx67EGW4fzXzzZcz21J4VLAviuOkCcrxzMhyraxPZ8z2jNkvHKxj1AZ9uMe7AbSlaoO/PTIcxHOqFMx2QB6fQKVyrQlN46QMOVfefXgiF0VqntIqf12SgJzHynGwvDk6bN64TU8Clhocz5fMdw/PvPnScv/G8e2vTnz1zczv/+Pv+PjdB8b33+MuZ/78mxvG4yt+P3zFYmb8acY4gx3BGs2NHaA2LpcrpWSGHMRuqSHXyhIzywbvPxpujopffDUzHm45vPmKX3z5NX/5b/6S7377gV//v3/gZ/eer+8dLiVszkzXTAkwaRgr3A8DR6eJbiYpzfstE5NmWTLJVk5zBqV4/7jRMNwMI85p5lPvaIsOkwoureJ7TQVbMoMKUu5TinBstcViGI0h1pEYJ1T1DIykHCg5CEtWaawWIqBzRa4ZMovqd3IhGJZaeXqS/O7r+xPaaU6ukXNjW4ogMVPGecswTuwpczlLSsqmwDg6DvMJrQ37trNcrpyfzlgzMB9ODPf3uDc3XC8XlvNZCpcNHI4D3lm0kxNZtn3UU/jpJATNSwlLAxo5J6GRaTmP5+7flO4IUdiKgvRikO45vZfK7j6yRCsRLWoTH6QAkCRf2EqTo7LAYkSBRHgrWTVpvs6FJRSaNvjZY5zHDRI7KjGhU4R9R4UdWyKT1dzdnrgyUTjQLishRnRM6BhxtcmOHQVQlq2nGUtMHoI4WKIBU5O4bpTQvnOVEpyqJPO470HKfVvuCyJJKD0o9iFDjvjWGEulIM3fts95wy4t0+dPlYMLqLAzG6kKjA3GmyM3r254M75htjPNyTbU6lV8ncrKXbxm8RU3mao13VlBdoDYCKGRU2G5JIqKMK1SLISMHNzoqMaxNSfFuqlRlMe6iVqCpD5qFY+pE3cOylIp5BpRuRKynJxy/4HLLFp3akHD1IhuCaMr1IxuGV0SxCBKaso0Y8A4jPdYLx5UCWYXYghid1UKbSUnqTDdLyx3Sdutws7KyYxWUFWTjFS+tyo+Wa0VxjSMpVc8gDGS7+2Xz15MJOQI239N7cA6sfJZrHWgNLkzjlrtjrlegyEW5N7oXmsff9afvjgHsoxONOSSeXpYMFRuZrE/rXvFGQky6xfSNplLixzMxGF2EsOim9BzRhnDoDXXWgl9FNDQKOOxWkLYrWZykZS4Q3zHly0ChSUFYkw8P6zMs+Gff32P917C1dvK+vhA2RYuMdDKho/PfDk67v/1P+OHPPFdmlj//reEDw+wrah9xVpDM4Z1uxCVwk0HjB/Y8hntPMYqUI28XGhFCmtQYvGSt5jBGMVplERDRmrLl70Ri2bJHtUipl0ZnOU4D3xzd8O3bzzaKrx3fHp+5ocfPvDp73aOOvKv/5uv+Pbnt/z1x5mP18KvfvErbv/sa97e/gLlZh6WK9u+8t2v37OvC6sWpVxX6WOJth++lcUNM1+8+oq4ZR5/eGJfnvnb//ABM6+4V880N4A/ENeCMfCwKT5shiFoXIJ7Tpzmkf39D1zPV7IyVG0xbw4wGooaKdoQciZRuFZ5cSqvGaxlmqVubwkbpuwcw0c0hcFLEF+FVaiI+0ZOhbhnmncwesbZcftmpPiJ4iaengKf/nhlmBzOW+ybEXscKLum5IJwzRqjFW/6YR7RWrN5CRLY4UAtjWXPGFWZBjE7zLce3TSmWrmLhkirmtF68Ba070xmOTKXIhjS+XjEmAFjPDEW8vNKTg3dLNa2bqSXY25MhaxkLSnVulr6n//rH9k5pQXxhaFidfcuWovKqrskpBNFTCJ9vtkjB6WzlKF2crzmhTwmyAk+V9rXIh9ey1EayPrEyRix4cUsb50lFKlXx5KqZlkDIRS02qj7RlhWWkqMNCg75CtMB7gZRK0bxbRZS+7EpUqqCqMaWSsqGm0dxkvnRqGRwi4vjHWRqvv/xPUBzQiQqmYnKQPTaFVhmpbIXY2UEkk5dTCVYdQrk1FiMFSGljOuFcK+kfPOh08LzluUGTneO5oZCEVja0aXyLasXNeVfUmEUDAn14txRmHCpq4GVki1UR4TrYCyI1WtrFtDt8zgdpRXqMl/xmpkrSnaU1sjZLpjR0LIHa8MDUwzqGZl+F8VoTqMsjg/Ye2AnwacsZIbaV2NVU2ICzWTo/TkuJpRVXKWKE1zlmIN2QgnKOdGaZladsoeyHtCk2nFYvaIsgM5SXv2FsXNFYzBGE2pGmM06SX32z24pYqWooLsmPg/JWpyreQiBoLUlXClMkY16VvJipCk//WFB/Q5YtNn/HJC1Lwgt3pg6rNjSoTa/7w76B9fnGqH1mTgqxS3h+4XtA4VCmbdULmSa6b4QQbsRvovW7NcI3hVGcyL/DyIcbl1VKDIYqAsYQnkmHDlgiYzjLNU/zlLbZVPeyPEynnJ0L2SsRl++/v31JKJ+4qqGV8Do2o8q4ouGVMS/u4V8xeK9Mpi32owmRykQp1WWWsloTBmwlrPfPua4XTD1jK5Zpb3P5L3lZakl3GPQsAr7YVH6nrGz2Gt5jhZJu94dThhVaKUhVgqSy7ECM/XxseHC3/7+++5nS33B8ft4cBX88SP28r768bl3//A9LcP/Pf/w1/yL//5l+RmePd+5S69w1jN3/39e57OK+FpQWnFF1+/ws0HlJ/ZY+Xxu2dSTLSwkkLm6fEdp5uZb//iC+ISebiA3zOHXDGTxuWRECvb3tBHh55uuMbEXhN7uTBXxagG3DD2mbNiaAO6jJR0JaTGwgFjHb98/TWHeeDuKMjUx4cnWqscJoMx0tNSc2R5esC3hmsNi2JSljYaijdsynBR0g/69ClR206lsK2ZshdW52jWYsqIOUI1jaoqn56vHS/qaGhuRoc1Gus9ztrPDObQIiVXzucsu/x4kIgaWVr18kYqsAeNKjsqXpicQQ2GUDKkwnVLxFTBtK5CO+w09RBbQbiNQqA3WjFYOeIGnFgAS/oHMbx/4uJs/Q7mrdwZKVLmgpWQ6Mvcx9Yqzh5l+kXe9Mtu6ed6I28nLbV3uRSUFkhwbFLQo3Qvk2kSc2paaGYpRzk+qs5l4QVVKEn4nKPUr9WEVWBHj2sN08TZkUKkhURbVsI4U9YoECqjoVpasz1NYLDHW+w4Yw8zZnTU60IOYnfTGmH0aoWp3bzdXuZYrfN8pFZ+19AKWL3REM+rVgKZihlSFSRLbhkXGtY0nPMM3kvFvNGEJEHdH94/UY1hHiRVr8OOc5p8WaRiAQvakpunFU28bIRQpG0tVlRU5NAIa8OZwromUlEMhxuszihdAEPJjZLlz2URUr+yDWUhZc2WFK1I/cNBG6zSxAQtZ9atsO4yS/XKMJ9uubmZOM1QS+K87pScCaliq5jPrS4yqy2FnJPAuqxBW4sdPF5pps7MjXuk1iRGgyJh69zp62nbiEXTnETRrDFMk4Uq8TTVWUlFSVX9sicxuNPTVUYIGjlLlsYqBT1WDU0+nyJ5zeZ0j7ppWod6qe7/bimjpapdbJRGUZLQKzRy93QaqHLslgTt/4+dMz8/op3l9OqGWhuXpw2Mw/mBTCdp18ZEZaxIm7QpNOPINZNrYEBjjUUb2cXDHtm2wHA8cnADcQ+kXDBOLuVlH2i1ka0B1UjPF1opmEFhnaa6uTe3yQpoaZWjtS24wXN3d8tUFacC2+XC8xbZ1kDLH0lZk9qACplpHCi6UrXCTwfsMHH4+uf42zvGIWN0Jr1/ZHt+7DNCixvkOK691OyVIiOEbRNDfcqZnCGFjNLwaVkYneF2HrDWcXsYWUIilECuggCpe2XLiawcSXucUtzNlvfnwHlL/Nt/9zc45/nFqxP3syd8ceJmdJQ+IDfTLW0Y2fJIXeDDH/8gkb3rCEWhkxgf0qWxlMz7P16xTvHqm19A3qn7mao0OUKMkT0tzLyWtM6osdUQd8u+K0J02DwwTkeM9ZwviT0sfPi0cQkJOzqOyvLmZz/niy9uOfmdFAPPSbNcd57efcI2gxlOKD8y3GsIO9v5mWg0efRM3nM7T3g0szI8Pi+czxdKDpS8M84H5mFiUxI9uz4+sucHqnfgHF98+2eMNyeeG6TWRHRqQsBPWZ5hrRWnm4MYYbSV4ud1EaODljBAsw50xrlALkno7EZYxdpZtNfs3qCdJeZMCkLEdykwHB1msKR9JcVILoLM0aVgleREUdIU/5P7Od0oQo8qYlwUZFLH5CuFM5JYp7wUjJZuZzPiAqmC2kilIF2lwqgZB4tzWjyiSpwfuR9304uq+zIzLAqKwgXZpQ897jAYcaJkBAY8ac80DkyHIyYX4hYJRrFrEZTqyx2xCl7DzwfwllZG3nz1mpu7E0u1xLhKUkAXiSgdJmkXM+bz13BJkiI5SyPVMG2UlNmWKPeU0n23uRJbYQGslbtQKYVJF5JpGGngEGV334HGwVlGa7DectBael1S4LJoWo589BBnhzoeGQbDfHei+YHl+okQItuHd5RQUXmGquWFlBplLyQGlmcwHvzYpB06F/yomWZPVolajNTk7QstKUw/ASmahKi1ItbGGiN7jEJUb32nqa0nYhDAvjWgHIdxQjdNuUkCKG8XeZLaAIAZAg3YqybHRqhSLWm01MYr0eMk3JwLxkR8nxdmLbPoNh9hmDDDDHbANwldy0xSSfVCabgtyr87L0pyzaIEH2ZxqpXao15WTotVCoiaHwSpM0hnjx8dJRZaKsR+rzfeSduBll6hwQtoLGfJxO5FtJSXWae0mvzExTnf3soHHqIUmCqL0h1OohWMIzYVWo2U1kglSNp+MixJkP4lZbYQiFnmOqPXmGmSgkcNfheIcMxNfui5kSvk1ivFs0EXOKwZR+OLQYbA1UHC8OwmrDHcjQPTOHJzf0/cVs75A4uFZ9Oth2g84Gn4aeLw6jUyQq/8m//uW375qy/5d//rf+D3v/mB6ES6vz9OuNuRL96+xvmBp6il2jzttFpJUYSllC+kfef8x09sMfJpWfuiiuTYWK8bxgrg+ugNr0dHNI6gPGvMrLHy8HTmU4m8fvWKm9OJ02HkdvA8PlzY1p2H550npVBl4XYa+ItvZ278yFe//JpmNf/X//5vuTw8cvn9J1qB03BLVYateGKu5DWS1pkQv8Z4iz86rA6MdmeaPV+9PZKfGu9SFMrA8wd8HnDFQ01kXTHuhNW3LM8/smwXyVJmEQWtllifypW8FuJS2bVGKcebm1vSnPHzgRxW8qcEzSC4SGE8xZh7zWFl2Tcm0ziZFyCZjNNqVfiU8DVjfaPZincHsh3Rb7+G4z35MFOdYWziqW2D1PGZ6SCRsOVKyY0lWagFWzac1hzGSfSENcihUytUNZCRhBWW8TQzno4cZ8fx4Bm0ZraabAxFa0Kq5FLBFdCVYTIwND5+2ol7JHQOk3MW0ytLpGbkJyzO1sG74nGR+najlNRJvKhYKCkWaooQE0ZJ1q5piCWiseKOoGFVr+0DQgjk1nDecPQj4TmRcm+C0WC8lVTAlsi1ct1WbGuoMorzXzvomAuF/L9LVdR2pcSNsAZKaYzjCNbThpE2eqHFx8i+roxeZmSfPj4BmeuzjEqMk8H+MMx4a7kGBTGxxk6bD0HapjIdcSh1heYw4r1jNp6UEm2RXs9cE7VBKo09Vc4qU7UU+6pWGUwlVkWqli1EUN1IMDh5qYwzVleMgqgV11q5bDuYK/bHd1StePr4yPV8kXYrpPfjZRarleLtwaG8w9xairEEJ7rAdY+46878aWGPGa8dxlnMaNFboeaNprJENY2lKktRjqYse42knFFamugqMl56elyEfHAuKFVQ+1WAa2hS2FgeLpgcec4rOif0vsqJI1ViqWypYqk8qirBCq04AkdtMK2ic6GQKEWhp1vsNGMOE+owEmslhfI5eVRjpeUs9kbA5vxZtW1ASpmmtWBfm8JYOa2EmKRePmVqLpKEyQVKJYXE0jLXZed5CZjBo73FDlbayNNKrZlhGDB64K5pYhJQd6vSXSsERP0C8PwJi3NvVKWI9kimENMV1xRGvODSjtzAakdulWXbmYaRYR4pqrGlHc2I9xZTG67IJb7UytrTBa+/ect4PLBcr4QsRw6Mwh8mmlbsl51UI9vlGZULaTwxOMet1RhvmIaRXArX5UKpgR8/bpgacWVlsIrT8YiaJ/TpxLUaLqWwrCuXpye4mbGHgd/+3Xf85m9iN0mD0w1vLYfjK5yb+P7DJ9Z9R+WVWjLLGqlFWrjoNj5tFcPdDaYp1G4I+07hIykESllkAN3rB9dUsAqc2Rn6brogYO3rFrgsC6PzeOd48/ZnHG9umV3CmMKaEntrHM8X1n3nKUZKq/zx938k7IFRDxjrxTRfG7FsHKzj2/tXuGnCvRm4VMv3yXK9bjw8rYTcCBvo0THPXpi4NyOxLqR9lRyihWo9WQ1kM1FM5JqvxJQYnMcqS8hiFvnD9w98+Lhx1YHaEm7/hNGa490dKex8+P4jZV8p1ycZoeSM1ZrROUprxNZINRNK5mAtR+f51ax4M1lcDpicCbkRVca+9fjbW9zdDepw4PnjE/seMYOgQ2NMVBp7WgE4DTLqK14ojTlEpFGs4SwcJkvaA9dlI8bCumdMyzgyh+ggZ7aYuLbMp6eFx/PK6WZmViPH2wPjaebyaSesmcPhnnEcOd5nSiusl1UWeJMETd3C51TWP3lxhm2hYlgwgKBIrFaoFFFVodHikOnUcZqwZ43KWKtwfgQ0KWS0cRhrSHsghsJgLG5SHNyANw5nQCvpjUxKcTuecF6jDpXUCsPQaKrSWiYUeFo3XG3cHu+wxjIZS9gT6/NVcJlFqOOLUrg24p3DKceN8py9k5dPb+kuTe7GgxUMyzBO+NGzhkDdEstyYQ+BmuTNl2KSOZ/xgFSr66qwoXVolcFOluH1DTEllnVk3wPPl8ufvJo9O6iysH1s05yMMFwTdL4r7MuZVjLJixxfe//MZd1JMXNjxQDx1es7SsmEmOVEcecxduCN/wU2N/QSoSratqC1Y9YjTJ789ht0TMQ1Cv918JJssZ7KSioFQ6/hoKJFjaM1I1UQpdK8VOSpjtV9Dhu6Zq77I7VEVFzQNPz5DDkSr1daitSUehempFM0VTCVxjLg8FRcJ/ytCj42mKpmLKAGy+BcL+7q82E0KUdKk++nomijIEWTWGPZmjSAt7jJ81rEUxv2lWIVSgnZvgCohlMZo4ViiLbEJvlVOo/IaE0pjT1kzHURKmApaGMJMVPbThMMPn5w4C01SahWm+G/ZK39R8pzr8/kajgncM5x/3qQo+m+AxrLIOVCWbodaQpVM4aAsxo/zdAMcUm4o0ePI/ka2bfM6eiYxpFpmDB2xBuFNYW4R2JT3Myew9Hir4WkImmqRFX5mBIxFx6fE1Nu3H5pcH5kGA5wvhA+PGBKRNdIKY1QYDwewDtGP3HrZx7ej59RjUVVMlKQNPuBcfBMxxv8MPDjuyeWZeN8fialSIo7rRUsUj2ufBPzdBFRwemCtZbx6PCT5/h6IubG05Z5eHji+bp0ZH8VsmEDmjzwk7VMVnGpjbUiKX8q1/Mn1usj1h0wxjEdJ6yzPKRN5memcZgcf/HNW5RRfP/wiawU/s3IfLzn22/+W+Lzxh/+z7+hlki5PmMGz+kIfjzh3/6C9f07zh9/i1MWPSlac2AHSlMCtmqC1dCtyQwQRcPISSBXam8Zk7y14uO+ULfK5dPvKClKaLxmWrrgdOPeG4mYlSjAN+vEjkfDWdPh2orBInbOVLgYMQfcFM2pKu6tY54mmoHWIs/XC+ueCDVTauV6DuTacPe3KOuklqRCCaX/6aNEvLrQl/MFbSE3iYLVHqTwOmGNx1m5Hm1VY63FdXC61VaQq5vMYsPacKOQJNc9wL7jnMIazfH2gLWavAlOdHQnQYv+lMX55eu3pKKwFycOn9SzmD1kXJR8m7nPhmyrslM2Q9MVNxgxHOdMzBaiobTSG9gtGEdMgdYy1sE8D9xnK17SemXMiru3A+bNHf5nt5QM71e4bpVff7+g9EAskiIZ/IAdAzcnTw2FtjaaNejRkbVnT4acdsJ1pabAYfR4q3EKxnlGq5lpHHHOUTGkVBm9QePx7iQmfis7LmmjlsISxCNsuj942xOojAqSio+zqJGKys3s+NWf/xnbtnK5PBNTJCTxiAahX1BVo2hJ0f9pNi3zWt0SujXh9rRMsyJybQVU0UQ3YmwjKSk0PjmNSTt/+I//D/G68/jpe3SVCN3w6hVf/uJLnhI8r2dq3tFOgSqkuGNqBeXRaOxLEbGeaNFC1vIAN41SFqMs+uVvI0SCsJ/7TDJ9LiFqSvhRSsm93WhwbsY5y2H2GKM7BvQlj6s5Dp0OEcXnXajsTXKjuXrO0TJXh8Oxh8AeMkn3+aYV4VIIixZhSlfy3mTXQoj3eMmAmlYoGZZeOlxLpaZI3QPeVnF6ZVHYdREQk6UwuEo1iM/bWrxVPTn1kl+t5AhFFVCbGCLEGsc5rNB+4p3zmy++JiXJUOZUaFHapI1uPaqkKGiScdia8QQRZ6qhmoYbK6XulLizR0MS35wgBo0DM7CnnRyl6Oh4HMlGhrpTeWZKhW+/mTgebnjzxVc0ZXn3tPPx0845/sAeFKEYWrUMw4ivkfvbgX1JnPeKso46ziQ9UKJG7QtsT5SYOB082okt7XA8ML7AtbShhJ0SM5M3zMMAWoLN890b6WG5PBBC4Hfvn4kpYUojxcz5ukslQIo4Z9n/P9LerMmSbLnO+3xPEeecHKqqu2/3HQASIGCkJBNfNL3q5+tVZgAFCiQB3Ht7riEzzxARe3DXg0fWxYtghqa1lVlXW3XWGWIP7r7Wtx5PTFm4P8Dj3SN/9tvf8On5iW9/iJwvZ9qL82nMPC2sirktLnnUgZmfJsJArBFVnUY6IobjIG8dVCO1zKRk1KAkMd7kQF0X/t+//a/U20p7fiEBx5iYTpHffnGE58Y//PQJbQtpEkxcOTWGYuyLE4NUGPnoIxLzmI5hbuROIe9L0zNqMGO7fXQZ5q6PloCb5aOfrsMaQiJN98xz4vHt7NTBlDGr2FiYp+gREDXSluCNHlUWjAq8WEG2xK80c0/mtqzcesemExYzIbmcccSMxeQxHjbYqieCv5qmgwRvtjHow7hse2ardbRV2rqhuZGtwmRE3WMeBiQZlDL2GA+YS/KAKAEwxr7I2446qavfsB5Onud6vlw/A+f+1YvT5NE7dTKcxxl8yukQPA/EFRtkqid+xeDs0+viuRtZPXOkezqUmDsmTJVmHSEy5omRZrbtRuuVrx9nSg7cz4EpK3M0skDMM5Jn3pQvoVR+9zs4XzpPVycQXN9/QNcX2vnZ2UTqJtcyHUiHI+V0z3W7cr4stNZprTOnmRR3gt2AeYJchM2E0QNqxfNYcNne5fufGEO5nZ/orXK+VcbojLa4LWkPdAVnor6cN3IStk3Itxeer4oqzNMDQQJTEZbbyu3mtezQP33O9s80yK/cJjMYdfOzePhO/fXko4B2VUaJhPKO1it//99+Qluj2ZVQBqcHF6G/PcykA/zh/U8sGvnqXeT6bDzfGhoyGhNRO6XdWCus68RcZqZ4pMeKhk7TFRs38pR3annyEyD5adH7jTEax8MJI1CH55m8KcXBaLqQcuJ0f0fJgXn29DYxA0tYmDBVLpfGaJ3e3OU5zAhhhvlEIhIlcm5Cu1Q/jU38EBluzLBojNjQoB7vqEoKAcniZgYzlq2SIxzvMgwldbdJCkIuhfs5k4Iw7c9SmScnUlpDR6CPvE//vV4mFfq2MsYgThOxRGKvqPpMNODZpD7frJ89y//6xWkPGA0JN0B2Qa+6DGGANd8RsyzEkIih0IfStgUrgTgFJAfo+1+jbUcLGt26L/D5gM6F+v5K65VfPR54c5coElyPGHwEE8tEnO95c/iaODd+89vKp6eF5Y9ntm3j+v4TVs/oxePYMWfolDIzzUcOxxO3j5HrzRUfqoOJiZyKg44HTEk4zkJQoYly30ejAAAgAElEQVSwamKo0IbS+uDjDz+zLivP5xd0DLL4KGWpC0aAdIJdCN2HcdsqIcC1BEKoxPDC3fGRt4/fcCiRx7vIe/nEsiyfkYsDYb/34yA5Hz31HdWyNYdmtRaZYuLXh4UcIvUyXL1SvmDrF37/D78n6Ma7t1CycJwipynz5Zsj12h8++FnptOJL9+9JQ7j9qHTxfFwyTqpLuhmrNvErDM5zkgc9NjANkyvpHIglIS23foUXSLXx4KOzt3hSyQUrnVQYuLrx3eEoNRxJpXI/duTJ6WBm4bbgme5C2PbuOzKK331GgpouYPywLT//tJg0cqU/DpM654Ray46GFLREBnDT/0SZM8CzYze+Xi+oFlI5eQKnqXuPRphKok3d3vTZkCZZ3LJPj4binWht0Tc5+USPZK+XRfaWjkdH8jzTGw3bDT6WBEzckxea+49h1+0OP/vb12Jf8oPQKetF4RBS35cb6ORxZjDhJnRhitngg0i7mBpUdmi74pm0WMIBHe128RoGZWEzCdiSLSUWU0Y3WPhhw5irdg/fU86XDj85p6+KLKHYtQe6COSSqZbpklmhERLRswHZJqwGBjWMPF6Fw07iW1QbeNQEqdDQExoG2DZSXU6UOs8/fye9Xbj+eMztVauN98ZxRzorOb2m5AhhuAYihw4nYpfV4cAg6GN27oy7D0pG7koodzx9t3MtrywLWckuJXEzJGh0V6JcD7mKdmvhuzM1B8vL5xbZfrwA3f39/zum9+xMvN0eEfIxpd/9QWHOfJwDBzzxFd3j9yTyXpA143xdCHfVso+EhvpRLQD2sseY9pISTlO8Onpxu36wggFDu/Yenb0ZqyIDUJfMWvM08mVVFKQULg7ZlIIO2tKmYK44+n8jLHz43Q4ItMGqntmaNgzRJE90CjSQmRY52auiR23K4zKw6FQckRTgZg4TIWcYNkWUNCurgg6TXtOZkdkMKVGxDg/N8/vPOU9ewZq73z348IUA6cpkzLMW6RrdUlfM3ceKW7/Ggk0kaYjxGnX7HaCCZBQfHxzq0aQQdypf79ocf7nHweHIvz1r++INNZtc79icEFvH20HD2e6Dfqo/qGakUQpIpTgwm7bdy4Tv597OV3oPaJEQpmRnOgxsKFYg6CvERCNdn1Pnlfiw58zGnhijTqm0YKL10emS2YEo0tA8wTZPaVdG4ZHzDPcGtZNadaI2ZjniI09bDgkX8Ti3tLLxyfOzy/cblda7yybdwR7d8ldjE4R9+ZJJM8OnZ6OE7VD36+zqo21Vpb6xDRnZimUfOBxnnhm0NoNwXv+jnn0wXiAz1SDOQhRAr17E+rj7cq1bvz66T1HBr/6s//AFpS/nx4Jx8TbP/8rjneJN2/gkCfezu9c+L4Jtx9/5tO3P5GXRjYwyVg6IuybpsKwTozKVIwxFtbl7IC06UA1oZtH/kVt2LiCdko5uv0qZIIkynxyzlHYQHSPOVTsenWA8965juZm8TEqOUYOubiFLEaCFEIoOxuos1ikaWC9Loz1io4DhykjsxAynARyELa6MvpAa/eT7cEN2uAWtpIGjM7tXClz4fjwFlOhbsa6bvz8/oX7QybeH8hTYK2ZPhptdBg7j1YDn2FZGoj5ANkwPG5ExDcXleQ2vLaHCe785F+0ONfu881P50ZmgDntTa8++5mnN0QzluGJyENxV7t12upcU4BTFJpAG4M0BA3Bu1i9otU1jKfTHTFHQr8wWoXiwauhTGDC7VwJt4F9/0ztgdvVYyBC3JkxEpAhHCdjSKalO8rxSMge3toGhOTm2LQupLhyf3/g+Hgi5RnVhJWTZ64sZ0ZbeP/dH7lczjyfX/ZF5SqR8ZqV6V/xbv9xZo+qcr6tzlq1iAQ4TR48XHKhavDPVRRtG8SA5ELI+waD1/GiO79JIp2AqB+hsST/b9IhGHMIbpA+36gNDn//d5TjgX//7/8NcpqZjl+BKc/vLzzVhe8u/5lkypHBeh2sq6u7DnOkz0f64cQYyvb8TFkW3mkj1Y26LlickeM7xvWG1g1TJ+u5vi661NIS5TD7A2meFTqzEYGsC2Jeo6sOenOSRDRFJTj5IERyPpFTpqTCYM+MkYRIZNZO1sH9fo1dy1u6vnWXD8Z0PJCnzOE0UVJgu71gVsk0TIV+MXqM9BA9ZGl3VLnyqLNdF7cU9YVJjC8eC6fjzJvHE9OUCHgf5BiELQhVxV/jgIo6aGy3d7Y+vNbc/Z21NsyMefYejHdwf+HibMONztdFKWEwWUS0o02R7OJxG4Nab26cdvW7u0VU0OG72JTZTwMf3ErwU0t1YN15M9P8hukwIU8LOkCKayJlOnp7/qljXbFPV2qPbKsLz8OOo4gIEmFKMGIizCfSXDwSEHZFT2Q+zAQ6gY3DXDieTp7ubBGLE5ZnxvJCb5WXjx94+vSRW/UUr7obescY+9m2G4t20zVjYGYsWyANB2CVLNwdYSqJ0zGz9ojURGubixkoSFJC8rmZ7Kel4fX5EEEF6G5O73sQ0MBp5+6sgPOy0qryI3/k8d1b/v1//HfI6Y6XdKK1yu15YTtfePruW+5ofJMbVY/U8RaTQCkJKRNWZvpW6cuF3DayKXE0eq1YyMgUGZeF0RomcT8Vwn4t8teWykwI0NsNYVCk7bDwDbQx+sqwwToGUZV5dCQmLLp2u0zeqEtpIpgir0wh8St9QjklZS6BenqghYn35zNLbYRpIh0yZc4+O5fGYCPhEsqxRjRE1pBIItyJkMzIr0FOa0VoJLuRJZGOM8dT5ng3+5QCpQQ3oLu4wW+Cw2DgpZKjw8Slm8PJhwGhdwdYS3BBvgbjFydb/4//7s69jLUTLFJkQlSwbSMitNXJY2NkkA6MvTHkyiHBkO5BQmFX34wCI+NZnr155F3PcDvQzfkxDCPUTFaYQ0FMIJ5Ahb5tmAr32Ttfl15Yt86np4+MutDXQDpk5uPBXQkvVyxkNDRyuxLkCrFDjsxp5hjuyKUQY+Z6XalPZ24vP7CtL7wsK5fmSIvWB6Mue75iB3a2UvgTQ+bh/i0GVO0+UhpKVbhVI0ajvAgpKjkNggmRI30bXMYnjMDh4Z2fKn3DNicoEHhNmnfju22eRbLT5EaaaCJYM/qoPD1/QGi0P/6ETc98qq5Xva0bul3R5ysrgw9xMGKilo7FgsqM2gTD82scTAkjODlRFExvhLERrGGEXTua/XMZxuH+3tVhdiWYUsq0h01lIp4khxo9ZVQDsSs5zdyd7vzGoA7riiHSTbg0g7FBXyAeIMyYOXd2SEYlYjlDKrxN73g04Oh2rlgKUYy7Y+GQ3OBtIujhSJfMp+FClGP0XE9read+vKaQTU536AMJneO0EYORojfuqimbGkNd+oca8XhwzbcOTI1jnpAijOqe5ONhAnG+MOb5LfZL8zm/+XJi9Mb1SUADOQii5gqS4XmditAtAuqIDnEMYTAlotAMa40QPBrcmUIG1eHQwdzQKnVDo4uOUaMNRz3m7lc9xN/Y6B0zV48owiFHejO29cpojdEFIXhuZ6uwbBCHu9XHRmJjBGNEIYfEFAoxzUjJ6NOZen7hdnlhXZ9ZWmftUKtHwFlvjtfHmwuyOzFCyOQUuTvdufh7c1KC7hEVvTumRcLgVJS3JwEKgYz2ldEW0nxHno8ghjGQ5ljJ+DkNyGdzm3WGCSkVJPgcDzxM1nSw9JU5Cv3jC5Yzy21hU7gqSF9Ja2WgXMWwSdHsmjuR4sbtEXZ7lu0Kqj+FCGEV7LYDvoWSEjkl1iaoCNM0kUKC9RmxTkxHQozEHJzWLwGzgIVIVEgWKFPm9Hjvvr5qn5tdvRt1+KkZegXKjtmMfoUWF+FbTEiOHKdCCImtyG54ccHDXJw2n2IHCehpoklhqUdvsCUnQfbkcDk2t0Eb2U0OTWlt0GvzZ8he9eGOQFXzDjW7pS1KZOzfVYmeaL1Wjw3JJe32tz/xPOWXihDW9QnBuDuE3fLvEWb5cOdI+W3Qu8I2iJIoQWlL5fy8cthF1J1GU2OOkUOZuQ1lG0bXwFAjSiQQmaySDF5WL+DT3ZEsie2KX+c4AL7OMCHkiOhA6wVrG1EmYkmkw4yFwPXlPabCGBHrhlIZ60pfFmpzDerp9AU5qUcBmLJeP3J++pEP5zO3rXs42RC0bzvSxBem4V+GEkghcX98JMbIcn0m5sTbB2+IWHMr3HnVPatxUIfxdFFCUmKCnApz9jg9q4L2wBgJKBAg7fS2VT2BOhbvfIr5IqrWXayvjplcQ+DcN37/w/fMdw+8/c3v0CgsVKQvhFuH0bFaGXmmz0dMZkwyDGHcmi9OTZ69SeNUIqfjkeXTB67X1evjHGFWNCjz5kP8U1CiKC35IhS97QR3cbtWGAQxDhYhJsJ0j8RAaxDwzB0fMhrTFAmnTOQNSQRJEyEXJx2G6BpvEWL2/BHbCw3ChFng09ONoI036UBKgfOnZ8B4fGOkHPhyz/epl5UQ4fBY6MNQqVgXqEKJiThH7wLj73k+RsdxWiCpO5LWtVPrQEKCkAnqG+xWPWtojOY63t0GuW3bDgh4JXr8gsXZ6o0owiEFJLg3MwahlOIPG50Qxmfxdg6eU9HWTkk+y/GT1cULOSSiDg+IZQ91RUDFxy/WHP3flaCBoP7FKbgznX3XQZCQvcW3K/wFD9kts9C1s2wLSqZL2kNunF3a1sG2NbbqAoIQfLGZGb3e2NYXlrVx3dw57xLXjql/0P9cqezcoEjJDg+r9YJIZsr3n2PoQjDW7sZm6wNVY22eB5nFtZ0pRAZh/7vEZ6Y7t1XEQc3gp1OKDimmu8Sv73K2IJ0gSpPCNgZP5wv3MfPueITspnbpisQJbYERlJ4SkhNGRC3SO86MxcHQ0TwWocTAnBJBDW0DmQSJBvvGloOSRMkMogw07GKM13BldVqh7c9hCv79xXLy72W4JS2G5CHAMgghU+LsutYwOX0gJTQmRkiOU1WD6K/BtKGmqCXUIsuiyOg83CcUz+l8xY+EAJM5JmStDctCzDMErwd57WOEQBAv05w9tt/IdrAZ2hCFWF+xZzsD0/vr9OENIdHh35HtB83YR3BxByL/ksX5T//170khcH88eShuUlJK6OHoKJFtQ0w4Zc9xLOVACN7RKnMkHkBbZOuJeBnYthDuTpwOLm4gKMutMXpjXpSIcMx3aBRG85QmjbITBL1xpBN0hed1YJJ4+5uvSC9XPjyfGTZYmmtgT/cnNGZGmZlS4DAFbi+Jy6fM7eWZ28uLp6OZEfoNMJZ643nd3MEwYDTPWtFRXRUCO10wElPm3ZsviDF55PtobMuN6wKX2+oa0RDIKXGcZwjOq6kDlgaqne12RqwgaQLbwDrzoXCa3nB9uVKXlT48ePXNF1+SpsLt5lJK1Rt7ai3EwPTmLUki21pQg++vL9RJ+OvkWA69nRm90XvARsYQssFBzwxpNFGIAxVhWGNoI+sV7We4vbDmmTYKmt5CX5DeuS+DKQpDzqgsxNRJe7APBjIdCdEBV4I58TCAzoUomZgK1jrtvNGz0I97U8kSkew3JxVuDGwdmG1YShAiW3WGbkhOFEAGAJtlhmXqxwvUhfOHlRwHp3wiJeHHs9Gervz4w++hd06ijtmcnep4fl4Q9khDSf7v5uyopJ287Wl01ZzXHAODhOUj3SDU9pkdbLu2eN/+WV+umCl3Dydi9FHQv8D3+pcX5+XlmRTcCpRTRCbISUmxwBj0dSPFSMw+ewvRY92nKbmQOngXUy06fqI15oOQgreSQ+oYlT4GoxvWjYjf03X4m8Lrf3aD1Y6rhHUYIQYeTwdqH3vHcDDUCARyOaApEafCXAKnQwQ9MNod1hq6be6IMNvlWJ3WG3UoQ3cI9ujoqB6qw37K7xrSnBKH+YCEyHq90Ud3PIkq266hTDlwmAqnKfimFZwYvw3QPtDRGRppw7WcgUqIxQN4c4bmEXJjGGU6MJ1m6mY+ajIXX3scRCAW16eOnrGuXOozh7ZhVvcrWOcVA2rmPFtBiKMiMWAhk0MiS0dGAypiHrNntXrok0UszJ+v+BE/LVUqxkbACfgB/ORPkRijRzaaC84Rca1riJ9PGR2GxF1mYQG1BESiBJoa1fwz0GF7/yCy1pXa6h4BKIhnT7Lipvu2NKw26rqRolK+dK3trRpbbXz88BEZg3TMiEzUZaMPo20VxM0HHkLlD2BAfBar5vP1qpASjhx3478/M6+Lkc/YWA2CYmzVg7Duggvzrb6G3P+CxXl394CZsFRjXRvrc6UkoZ5u9K6czxs5Bu6mzFQKp+PBO4x9ZaxOaBeE+1NhO6+8XCpra6SnT3CYiTlzSspRBG2VmyoaOhA4pEQQYeyz0pj9TtS2TlchckDIDDswdKX36gszF1IsTFOmI2xtsK6V+rETsnF8vONwiHzx5QkpM5daWa5X1nXl5bzRN6Otg9qc3TN63ancAsE7iW/vH8gpUdeLT45qI4pwd/+4R7+7P0lxjuoPH8/cHQ/86t0B9qRlnQojHGm18vzphZyUnJRuF9ZlhcMD85ePtPMzY9u4LUatG7V2N25HV8KcpuzO+q5ob/SxN4bqYJw3/uaffuLd23v+8i9/TVtW1t//zAjQjoHzrXF7f+PhIfDVVydygCko53PlvFy5bYNly+Q1+HNIZC5uWgg2sP5EG52SN0JQxua0gcPdb5A4IWGnWUgnCbydj+iA501pBp0GIsT7ezQkVGY8MtO4VuVTq4x2Y7QLTd3tNMy7pXnOxBzZNucPp5QJIfpCtkDKvnhGda/opj4vP8iGSWVK7qmtoaAjoO+vzv3NmdEH55fKlCOPJ6ctBs075WOmSERTpKkjdcTM0wCaUyPnUyJmYXm+0HolhkIQDzBWMxgNRQk9egPslyzO4/HIGMay+Irvw7tVrVZaU7a1oTGQzVvJSYLvntpopjRTppxJJbGpB9yyGKNXr51SIO8igqbD8f1xp59Z8l3WHJ0f8Hv/GIqqRwwE8ZQmVY9Jd0Szzzyj7KAwA22DetvIp0ApkVwSuRyp5mlUa+tcl43WBjZ2u9DwOayaX5d8sOy6zClnbwBtnh7tnbdATBOiSmivAb7e1WutUXLef9Ze/yVBcqK1Su+DgBIxV18hlFMmzkfGuqFd6d2wXR7p6EU/eXL2BCsPeRUG3TW6Zixd+XRZyceJMGVCH7B/jhoi3Rq3bXDo3qxIQQkZ1qgeXKzGNgT3PrhQPPoetUfyVSfZi2NNbfOmTMozMc0O+9qFFBIgx+wgN20+fsB2PaqflN1JbFg3aldum2Ftw9qNZplqCbWOakfykZAE1Y6N4fhVBFN3RsVSCOJ2QjFhEBnmMkpPSPcOtGRnMevw0ZiEgOHIlBzcAO5QgdeHwM3gkUTve2zIHleI+e9F3ADvw//9diM70G5v5KGvQv9fuDj/9//5f6L3xsvTJ7/y1Y3RB+1WMTXu7sQzG8WZp+uyYraB3rxOjBBHI64RRicWYaudflOOOVGicZwOpJh4Oi8sTXn38BVTniFNPscyxYZQe0ZR1jqwECinO5TIslS2Wik5uHTMnglboT814jTz5njH89L5dHuhPl2p9cxX7x754u0D6XRimmeunz6hy5UxvPbq5g4RrHsDSnxucpgLOWVICRWniA8Vp4gb6HL1pvbwK5bE5DT83rnebvzh+05OiVIymROHnJCSCHdH9lhrLL/Djo+k+S2lHAmpMqJL48yqD60FHh68C5muV2iNpoPBnrcdAjadGKmwbAsvL/D9d/+IaGDk6EqjCgeDdBBSvfHpu43Tl7/i4esH5FSYOFCvG8/rjTkYd3OmP32k3i6keCGHyrsZ5pBot8HogZbfoDEyn06kmDl/+oSaMc/3CMZ5u3oq3FgxybT46B3XDmurPN9esO6+yW6DpoO5BA7HmRwKUyyUaKSw59NIIMQJiUJJmSgBHQ0wpvu3xJShPaBj8HLtdHNzg9pGDGemLPz2t18xTZnTaWKrjR8/vngyQPCfeSxHSvLqavTBZd1Aql+l1WWpYwRUBY/pMtZ19WTyvvlMfPWO+pQLMUbm6QQSeBl9b4r+gsX5MB/oPWHHG60HtuyWnGUI2B4sihK10eoe+bcjS2Jw6G4c6jOtAJqDXxeHn6KxViwXb5ZoR3c3iVfJe8vsVeCsuzyO17XiQvW+xzgQfEeS0b3jOTrBfPdL0WV+2hvr5UY9HdEdCi3iHUkbu8mWvVbYxcCCD69FhJwSOcc9QsLx/p/7t6Z70+h1ALqLtfd7y1BlWTe0KDFCVq/ZUgiUPNHNbwUWChYPGGm35O077C58FzEkCDlHcnTEoiqfX3uIrtIxEhYCtVa2DZZrIUjCbPYxbVPS8NNSFfrm/kVhEIP6ImDHzlgn04i6EXQlxUqiU4gUgoPV1K+7HgnxanVTn//hNXztgzH6DhsPDFMPusVr8N48Q8Kb+eri8Bgp08QIHrDkpA+hqzCMvYsbSCF63MceDDUdCiEVJAmjD2xZ/CZD9DmyuLE7JQfS5SnT//lC2SV3Iq5tTvu0V0ffU8zcVibiiK49NhgJ+41LvfKUAAzvEqewNxNDcqNE+O8IMvr09z+gomxTBzEOFogl8fVv73l1t0td4faESUHzCa0X+uqpXSElWBu2NrZQqCHxw/uV9bmxnS+054bcP1OmzJs085gy7frMcrsx331JSJN/4Rh1PUNQjkfPp9y2F7oGaheaGk1mxhhcrsrxFHj37kCaMjLDl4cDv/76V3z/x8QfqzLlt2h4x3q5wMsLy/XKpo06Ir0XtF+wvvzpOuJNOe4fD+RcuG3FLUghgzV6vYC5u5+QiOXOF4gGRCqS+ucatPaO3jyB+pQjc/6C+fAVl+snrvqEUVBNvHz8hIxKXH8i9iun+xOlHChxw8SvwZgRH+8RhfayYiq8Pd0DgZebh0f9/NO3tOXA1w+JQGTUhaTKcXSKKkcdNIFVhFY/8f7JPGhla4SxMIeVsHxH//TCbI14GOQcCTGjzSMyWvOk8VM5ECxy+/jBb0756KnQutD74Onq46g5J3QM1vP3Tv7PLp88TJmcAvMciDGRYyblI7mcaNap1ihzJk1O3BeDkFwOurRBG0ZOR6cqlAMQua2D3pQoKxY62xax3kipoar8/g8/EXIk32UXY3QY3dPdttE4L2fyUXjM+4rsAU3BJY+5kKbAsgxk68w5MU2BZXNh/DRHpzuMscsyXdgXdvHt6fgv3mr/5cW5XC6QBCu7GVYHMbh+VV7DWwwk+dEoc0RTokkiRA+QMYlYNEJ0iVy6DLgOxqaM2mllIzCYY3GLWffwJB0e0UDwwa1pc+mTBMwLSWy4I8DMazATr1uGyuf56midOaknJ+dEmQ7EVECin5Zt8xHDcMmVa4RdH8y+c4qwv59EjBkz+RwlLvKnyPXXz8S5MLvhkOCNEfOfr8auGhqM1ojJ65+UEqnMqLhhfdQNawuldxe9S0Ri5jAZEvVzcM8IyaHZajvHCX8teKe3bSu1CFsdBBF6D8zsrggMUSWmQCnidj6rTldfN0Qrc+oEW7DuG5RH2mWP/rPhFx3in54FNbq1Pe3cX0lrm7OG9PW58c/O8Pl4iK+3jELOwjwLORZKnpE4+2x2QFTPdCX8M3P23h8eZp9PYhSsNbBG3TY/kUcDbdQOjOYnuynrUqEJKQyiBDKR0XX/bI3WFBuREvIuPOl7oFMC8bloFN2DlO1PXXRTgsi+se8EiPp6K/PXHuPnL+xfvzh/fP4DeZ744le/I2D0Tx+wCFnmnfmSHEMZN1JWyhwYCXo+OH9lWymPR6b7N9zCkSVOfKg/kZfOrRZqU2Tz2iIfXt+EI9pN3dc3RsfECMGtVK06p8iGIgqpw0Tj7pjYmNDbiaaJD8+dqhvXXjkwuJMOZeLhm6+YSiCnG72dUXtiWy5cnxfG1gk6iKIOFd69hGVKPt+1I00nZ/hY3xUwnTk7IS68evh0xS9XTqWjvGH07oAw9cH0dR2MfuNe3/OQGnd3b7n78s94+njj+vyM6hW1DcoJSQ9s0Wus/+E377g7Bv7T333Ly3lBzR0ey61javz4fHWTevaHmWWhp8D7TZGYUXnH2wl+9ajo9crzz5+4OxZ+9c0dvRTaNPHdpxe++/ZHHifhd4/CkpRNKkGOZCbGmOhj5mCVHJQ+zXQVLutPQONwd0eIyREdvfHTT58ICF++fUOI0KlIyZyO7ygl8XB3wCwyeiYwiLZR8uQBtt249ZVWV9q2stTCyM2fr97RkTANtJRRCUhfvRu6fsRGRZufsPNeOr08f4eI8cWbB4SIrhsShZD8tFy7ok3pqzKika6KyszdVw8ON7PKCIUhE4sGVhXX3GZ3nWxNmKJSgiHdezN5ngkx8HRt9G7M5tS+GMbnsudfvTgtKxoHW6/E3UwrCn114pqliFl3pL2Yi7WHEoYjGaiNMJQAhCjE5Om+kguSO1IExIl2u3bYSenqUWymRg+vE0bXSo49UBcbiPkgXTFyCFhylpDkSJon99KZ17fXdSFLohydNO+G5l0nOfzn+un3upv5hybi4Tg5Zdd0Wtjr0Y7s9XHYawgJca/F3Z2ie/3ppD8/Rb008Z2+7ryh0Rbi9EAM0RlC7NGKpkiIhFhcSCJeg6PRA376YDRHXejYg5vUN5ZDjr5rT5mUM43oN5f5hBTDSsO2DYKRsnCcI1vAIzVeNx9c2ys0UPF4QfBTM0TCcItUUBfyE/YaTVyyN3a1V2Qf4u913Ng/WA37zYqw30Zsnw0aRmOYsAzl1nxC0KuDx/u2/+yhjpPRgO6p0dQFRsXWM2jFul8lY8o+y27bHmdou5fAtcWmrzc026M2nO+kwd0qMlwlpqMxRmAk1/ci+vlzAre3ff6nq9egw/+Mme5RiP6cafdy5xctzrd/8YbaBn/44Y/k0fkNN8yMlxfzN9MbOQbmXMgos/Q94Dq4VK117Nrp50p7Y4yHneJ2TByKcuxKuvxMqDfqgJT0N0IAACAASURBVLZWPl2EOiKnyUt3izMSAlN0Z1/drgiDEo1I4E4mFhq3sTGVAw+/PVHuJ07fPFAHXDfj/T/9A9/+P98xhcRc7lGLEDJbzbQ10/s+aN6j2lgGZk6BiBK4O9yRy0wPCcUIeoFR9wUdsHyPIdThpPG75BvNNjzhWWxz/GY0JEyEeMT6lVqfuS7OW5r6galN5Gi8e3vgct7YNjcdx5w5ZiNH47tvV1Dlw8vKbdsYtwVUSbuHkj6QIEyHmcNU+OqLeywfWKY7poc3/O4v/ozYNi7nD8zlxv1p8O6kfHM0Pt5uLM8rB7nx7l0gtObGchRkoPnEiMLDXaDMAX46Y+uF0oyJwMPX3xBL4WXxRVSvFyQIf/XNl4gEltWv4iUKVZXztiDrxuWlMlSpwzfTgLKuC5frBZWMhrwnwSXa9kKrV2I+EGJhdEeNxqgEUbR3RJUpeVZK7b74tykSRAlzJAgsO+JzlE6QQFMvdUJK9LGx6ZW0HwzaNtpFuCyV53PF0oalQjoJ8TARp0wsyRPGAlyb/wp9eJhxc+GKqcsvD3fOEHr/h/e0Wn/Z4hyvIUC9M0anBXdvu7pl0LeNGCKjCNkGQ/1hKiliffiDkhukjTWtrHZjvQ1q9TanKOgQ4hCiucoozzNY2mPLfcAs4t5NAGveG3u1pNnYObBqqHgNFTQ53iQGHu4S6zEx78FJ3qH1+q0PWFd3jvhZ6TOr19oh7LPNVw+qqz4M2WsMlfC5c8su6wviORumhjL2usg9fdM0+fVtv8kY4XM6WVJ1fKTLxEklYeKdbKfFO85Rh+3ZoAEkEXb9bZlOxJSYY/SQ46j+enJBY4TekdFJ1ojSkei7OnQYFWkLulTqZcFqJ4qnvFmAoQ5OtqiEOMhxMOXBGpSOee6PCDn5DHC0ldY6fRhJImU6YEBdLrTR6W2jSaDGgKh6/b1jb3xxwrquXJcFQnORfM9ISvS6MtqKIYSdAYz5ic/nUK29Rpcd1wnufBKjlLyTT/zEirvedwz3x77OOUOwvZsbSCX5IlQhbtCJDBXvKu/PsQz5rGF/7a2/aq/d94cfaMH2m6Lw3xU7//5lgaHMQRAiTxS/xoyNtnVezp3AIAXv/J364DRlHg/RxejaCWMlro33P2981E98fxU+rkLDlf6H7UbRxm9PdxznI3/+F/8GKQe+/fY71vUFCR5uWvuEGBx63KMMHANxoXJpgw+9U/vG7emZ6Zx5uJ74+lcn/uov33K4CPm3j9zswEWFaT4yPzzw83ff8cP3n6gysAijVkZdfSYrfB4LqESaBXp3J3vOAUsZk7hfxytBAsfjASN4Crd1Wr+6NjMJ0+HAF2++4na58unDB1+acfYYi9rIyZBTRJeGbp3j2xPp8MCn9wvX68ZYO0ncYOwhWEdKPJCnAylETl/9W47HO/76336D1oX/9jf/F0MH1x6RNmD9GdoNPcFUAg9HY8iVdblxY+GsT3z62Pjpp4pOd8TpBCVic6ReGtetc8idSW7clYnjPHg+BC468y4eKDGRcsRs8OnDC7dtEA6PWDlgpy+p2vjD+/fclgsvH94T88zpzW884Xo7ewxfq7tCiM9PfegbsQ28zyuEnQuLXlG9knd6goqL61PwuL18fNzJ8Q0HuN684z6/AYzb+gQYJWdGN87nZ5QAyUHpc4bTHHl8mHn45i0Pf/1r5tvG6eXG87nx6bnSUmYbwGqwKfEEMgHmV/jT6Y6cHIqHDer5TB+DfPb+SkyBEMovW5yfni8E4DiEsMO2RAcyjG7sMGnHNICQ9jmTbd1PIPVo86DKecCiymhuuWlqVA30rZNG52EdhDw4pkSei1uBuvs7XSHkdUwdOEemNUyUTZRbH6ytsrXKbdno3VX/UzY+fSxcb9uuINodEaiLk/dfBPWuIaDyShl0DEYIkdf07T+1Q2VvOLq6yf/c3hAywCrCzkUNkGPwyPJR/boccX0rXrMb3Xm3dSGoO1liysQ8E7i5MR1jiOMwDCHlPRyK7J1kEcSU9XZl1BvbVhnaseezjxxaJxjcnq+UNzPHuzuWW+GsxnkbvH8eLDefffYBqu7yDuy3gKHOi8qFTmQbgVUTi8GLJlZL1GtDh/LxemPdBomJQ4iO8RBhVWVpg2Vdmcz5UgOjmu617h4luDs1TNjr1+CbpYiP6KL7h8F2nXbCK3zn/vrE0QOLIg2RQWQQzGjd06R73///5DNit1XKn1wiez+iD2NYwPKMTEI8gtQNKRDznkuzc3zBG5p7twIl+C3JXiNL/BHqbWDByCX/coXQ3/zdPzKVxJ9//YYsQqrVk8WGF7Z1cqMvn1+E8GnbuD1dPr/RIDvESLww53DieDjwfBm8bIPlvDC2jU0Kb67G6S+VxykwPx7QLFzeD3QY7x797/r5XF0GuD1hovQ8WIbx4Tqo28bydPZGCvDz90e+//5KGTfmvpIPBw7HyBgr18tGb1eE7rHnZj4Okkyr3o5/xWWM7A4X6Tc323a3uZlVJAjz6eBKlfAO7ZXQfiBKd5H/Dqpae+fTh++RIByOga4zXU9oX9C+sF4u9L7weHfP3fFILkdSfkvWH8n1GeKJETJrd87u6b4Tiy9YF4leWG9n/vYPf0tvq7N1+2DdvvOafZp4OD1Am8h//Wt+82//Dd8r/P1/+i/8fN74b+cr73Lh6zLxIoGziTfz2oBto6+N8qsjxzdf8twz9Rz4eYVLHfyhZ4YClw+MbeHD9z/QW2Oar7x5fOQv/urP6ALP1bisjevLE+l+8M0BliEs1Tf2Yr7JlD0DdBv42CZG579Oe6LSa9oYr86RSG5nolZiAcR4Wp6pmwIuLyzZhRA/vVwYCqIeMdEnJ+TLNCFEJMxor9SxcNs6H3Xh7WJsHBnTjOYTZguMG6e7Ow6nE59ulcva9p5EIIm/tsXnNoy++bXb3Ci+XF2++vXXX5DL//8S/BcX55t3b8gxUHImmLF0r/Vy8ETeEoOrS5rugaPeWDH9PMjyNx5d6oQZ0zQxTRP3GtAg9OvVXeY5Qyl71KBL9GSv4SQEUskggenUST0geULF6JPHz6U3Rtsat7vJyXhD3bwbMjoiXSEMI42OacIIvpuN8aeRpIi/h31mp7rH9L3Wnkkcy9Jd88teU+RyQiRTW0f30U9KifuHk3OAascQci77yeo/M4TuujDivqO6+2Ko0MxVnX5dcyAa2jGLmPp0z/2WbjuyvmF9MOqK9urhO4fM26/eoBapLZGnAxoSHWFtyqbQotMPGSCzcDgmNAlEYxudunbKGDyIkqyjo9EobGTW3lmbsTQ33Y9lQ+vG1nevbN+obWPpHjNh5iSDECcIhY1ANQemib6emuaz4uDBu5L2HJYge1fVvxefZLvM0gxEq99ANvWAqtZ3F4zXkr07cc9rVC/TDAe/uZjBAWJh10QzPBS4ibFsjefzholhYXDdKue1YmXzAOYI6ZAY3WB4KoLslERfD8k9y8ln5lFde9ttp8//ksX5v/xv/xF6R5880Ofb9xdEIm9OdxymxJv7TF0rT5+uUDJydyQPONa9+NVBKTNlmhn1xqgLd6cHDvORU0vcmvB324L2wfHLB07vHmiYdyFDhFw4JEUsMj+cCDmR7524HXrBYmS7e8vhkPj1VxOjK9eXxtY759p4eb7x0/dP1BdY12esNgI3LJ6weXbx/m0llERIEUs7RoKAKazVO593p0FKCtFNxHWFYUIMhZRnTne/Y6jyfPkO7c2FGndHfvdXf8b55cI//pffk9LM4+MbB2BfbogMUjhjIWN5duDX2lgmQ3IkDD+dRyiQDmhtmLZd9BCR5lfvpI6wbOuT60p1I4lxOGbefPmG//X//D9YauLv/m7DtCOysEji258vfLw2lvkAaycQKcfCl9/MvEFoNP7xpysf3i+8i4m7lHiuN5ZL4prvWMKBp6VzvinrcmH0jXo5o22hthWGix7Wmnl/c5uXWSTFmfn4FVZmfuyZXjvbshIw932aMEQYaYJ071kmk8La0bVTx6CPTpGVjJcxtTWOBw8XWpbGGIM5u2BGkrNvl6beRBrBQ6DzCUNY60oIkWM6EV7dJb3R6oKKX90/fLzwX/7hA6kYaTLef7ry84crj9uN++3CwxfvuH/zwPb0Qrst+y0qMU3OUKqrWyDL0Zm5ZSdvXJYbOrZftjhPs2eMXAhYSMz3d9gwWne3+nkN9Ga03ZcXdHeRhN0WZe5k8BmcYCFRhxK2ShClxMib+4PrVsvEILIsm/N39lo1+IbnkqkorKt7Bk+nExriLoD2rqTPH13pcUwCk2D3gasVXuo9KUyQZmelbpurkMSPeDN1Ruyu8HElStxj3oQUoKl4LbbrMqfg0DI+/71KiEbeW/LbmGhaESmEEAnByClwnAttVOpw7IngdPog3hwwraCVqBVSdgKhOkX9VX3UvHTyZDMJpId3zrWVFRud8/OCypHrWVm2xnL9/zh7s17JsiNL77M9ncHd7xBDThyrWMODqoWGIECAHvTL9SgBEhqSWip0dw1sFlkkMxkZwx3c/ZyzZz3YuUFKDwQq8y0yIyLj3nDb27bZWt+60mrGyErwnXffDqSUGO9ekbfGlh/YUmVbMuI6xqoijK55mWtrSkxEb6Ymmj3S6h7XYbquE8QjRm84ZwLBBU5zoFvDuH8uttZ27q9uAV58nrW/KMochU7OK7apGkpShqRJ2rU2KpFEJmeNykhZfbi16bzBGo2rhJ2w02Wfqu+a35b1UIsRkUxvqkgOFKQlgvZWqpdumV4TOUPqahNTTa/HOr+zaCM5RUqMuGCxTsg5KYRtJyGUXHRILErhy1nRMz+oOO/mwGaE99WS7cibHx2JS+TTb95zXeBxVYK6dUpou0bwotjAquYCyJmeqyZiiydfI9d6ZT4OTIPjL358TyHwKRliET5+uOBt5+7odPLmACPUwVJF+Hg947zl8M3PoQvL4xWKkPugCMjngjWZY0jczIUfD/DheOTbYSR1S2yWfHnm8vBASVGtTvtfmGnaOhljERfABIz1DN7irGFdHLkImAFnOvd7fHiqV3qrulsTGMKA+JH3zxNlazh/xDptYw+jcD/NPF7gw3PUcZp0DCPejRgqvZ1x9YKvnjZOdBOAJyVP7Ab266LStzeHyDAFDj//b5mOMz97vRLXjf/jP/yOWIRf/eOFbYt89+23+/Ar8/QxsH58z/2P3vKjv/trPkbh3fobHh8TH+jMs2I8eyl0A0+t8lg7ruvgrLlCs3lXJ61Yo7gXG2Zq9aSn90g1TMORm/mWn355pNH5w287SOUhK1UwxyuUhGuNZiypO7oJtDDTtiv18l7jFXJBSAhJpXVFbWe9Vwbv8dZy1emRCvatMPqTpkxX3aHWXbElRs0VOV2otRIvy35QaADU0TVmb3kzDTQauarG2LUryyY8V0Gs5XBzYD4dGA8Hcs2s5yfa+Uy7bsxHNWUscaX2zuDVm7xdNXbD7M6Z7NwuTvkBxfn48EypDe8NYiDVgm1VC6bruuDlcBFA8g6PlpfkLO2nBaEagxGrBZEz1TRCdXTvaUaBUr4JrWxkGksPWGOJLYCFckk0EUrV/MR3f3igdTivibh4Buco15XLd++gRyxXvFQGU9i6wVm7UxKg1426naFnXTr3l1g6+3mvaY3dUYltdysIw3yPb7Cev1NKeK6YahGnyp9xHPW29QcQh6QzpmxYZxAL1YiCuYr6HLwbdwOL8k9LKWrJS42havZnrYVaEmaY8G6ibI+0mnRXZ2BwltFZWotsW+Pb338kLhvPjw+U0omXMyln1ssDnf2GawPP3iGPK+P7Z7Y1MxwGVul8uxRORjhZYW1NUUZN/X+lNOpWiCwk2zGiKyBd8FlaTbRmadMdEiqn05FxDjymq/J9akZ6I3gNUpZWdtCVxhT0nmilUbdOj6t6OUuml4LZA7UMgliDsx7BE/b99W4yIhiLN7JP+dGYxd7IO3PA6tVF27sCHwTb1EVjRLXD/bNGGkxXr+x1XbmWzjl15tPEYTowzZ7DaaCgjpaYIHeNHKy97Zph6L0qcN3o29ns72AZAp9bw39rcf7mN9/iveP+/oZeG0+fnqk5M0xCrp2SIq0qWrQ1oda4n0+a8GWt2XdMDRGPGEdZVlqMTMnhvcHPHRsmrAw4LNvlmVwK8WmiG085OHAd/+4KxlB6IOfMv/7mX2i9Y73D+oF332fa5Yn8+38ixyvb8pHBB47DzM0XB9787JYqms/S0zP1/D3UhA1e1zCl4tnJ8cbrbKsUes1steG75e7NzzBiqdc/kOLKp/1NepKMHwZOr9/Q7MQiX2qa8/OvoIMPlmaFbA0loW9WRqbJI1aF7O2SiHElxkrJnekeBEdKK3G9cLz/OS4cef72ibytaoVzhlM4MobAY3zkfKn84z//M3FZeH66aC7qllBOoIrGnXPk9UAtnnN54Fodh3rl7vWR82Xl3dPCfeu8oqtlzerE2XTPQ6xcy8o1fiBZh5XANFmsHRAM5VxpwPHuR1gxvLkb8LPnt+cP+meJG9Ir82FW21WJdAyEA71t9PxIi0JdZA82isrhqWnXOhus9VjrNereWowvKpFLaiw4uIAVw5oqpWVSPNNaJYlGOwzSMQjWWM1GOYYdLVP3YZ2lO/37EhG8CLkW3j89c1kzT9fIj/xbTl8duLsfuH97oqKZrg/2wGXYqOuFkhPj6HBOWC8LrTbmw1GxPrWplezm+EcVxL+1OLd1o1WdMHZREXeTQk0q1xnCSG2dZCoUVc+YHeXROxrZhtmdCLvHcRgxPrC1ypYbPjZczXjrMcYQZaZa1eiqK373zlWgdUrZaEXnheyxbA1hfb7Q1ys16+pF8NQKS4yELRCXSuqG3CspVWJWJYmzBluduvth37Wpw6Tvi+3g95Cc+mnPXFR0iXEW6xz+dM80zdy9/pKUOg/v3uGp3NycVAsc9faNGYJYxkMgxpW8rlg7YPyMtc9Ys2KMR4zVW2+NWGeYDgHTN0iN4AN2PJC3KyllPj1vDKlS3UHbtG0jxpd3e9dpOUb3sKLQsSF4jscjwzjsp3ijoO1aGBwyeIr31LJHIeSmTg7fmZzQreCs0O2EYUDsABh8qWATkbZjO6tiJs/6DjTjqFTCdNmh2EELBYPpWekVRnDoct45R98DGaz03ZKnh/xgDd4YCtCkYgeLAfyLTKeqzXEcR5DOcTjqLGGPgNC1ifpinRPevpqUDeUHZeVuSg5EBDcEjA8EOzBPJ4bbe9x8ohtPKp3c9b0LwuDVhUTrWK9RFTY7KBXj9CA21u2KsaADqx9SnJfnhWHcH63G0LyjxUxZI8Zr7kjpjZ4jJulQxDnHEDwpFbaojBiDqM3HWuw0gA08fnpiXTZCKTjTmYaAdZbs71VQv36EVvBlXyoXte/m5Yq0yEEWrB+YTxPLVvj07hMtLkjaaep2orXEJa64q+fwlIlGiMayboU1FYLsaEoruG4xVEwvKt8DhTYZwzQMDKMnpt9SSqSWhd4afhxx48z8xTccjzd8881PePr0iX/4f/4v5nni7id/S0qF8uFMS5W8FobDyPH+lvapcHlasMMBO7zCh0iwj0q2twdS7BQWbm4swzCRn55pqTGNIwwDH5cLcVv5Xc6EELh3B2UWXRdS3HiJctEVgS7vrUCQxjxNvH71BhM6YlWLmrvBecfxOGDnQJoCKVZKrNpub5m7uXMIlhAMyVkIN2z2qPpnhLkXJG58MgulVraaSVujfSxqiD4c6X6F6+O+Jhm1zRcQMtJU2N+MY3CeyYXP+g8vFSeVjKV0w0TH07lkiC1z9J5gDHlfo5ESvcPheCQEx+n2DUYM2/MjrdbPevPu4HgI/PXP7xingdPNDdfnld//6/caI4hF9mDfeZwJ85Hj/ZFwe6Q6y5IqsQi5wgAcRoP3A9ZaYlVSpGsVUwom6MBQGLDWcXMYcT/05vzF33yNsZ7DdCCWSkwXYu20MNGN1aAWBGMCzVS6ZG0J3bgHGr24xAE06Ehqg14YgsHiEXSJ3J1QbafUhbYna4FlXa8g2/6IhrpdVBbYE9Z2Mmd6N9wdDpjJ4Q6NXhQM1aqj1s7xdsbf3FC2DMuC5IgplSJ936vqRS1u19E65cmYXdAbQiCEwHqGkjrdamjs269+RpiPjDdvEYHf/ua/EpcLdzcjYZjYNtUOB2/prTCaDemNJTcKGRNm1RCnK3Q0I9I4MF19gzWSNgNVkNEj0/723gniojOQXVGk+tbbuwMpOtZlb9OcZfCeV7c39FrI64UQLDU+QDN4lBpROwzWMXn15DYsqTS2CDl3SulIVuZvE/3vrUflPVkVpSwpQ9G3nIGdsuf2naXsnktViIFQ876v7G33NypLyIjXGxad6JZc2XpBeqHsk94FXRGnVii9IkMgO41xaMDp9oR1jvubA8E7pvmgHNrbGZoqkhpQjGUIhnm0DOPAeDphwsjX4tlS5XJNuGFgnCcYJ2SeOYyeeXDEmHm+bEp/6kbdPFRajRhTNUsGwZtOd4LtitkdQ8eYxvPjM5/Nrf/W4vx3/91fUgs8f4Cny8a6FWKGOpyga58vRpPAxGiaEiZg3IQ1BWedApCKfkM19VUBNuNgcONAypbSLN0Zmunk7VlRkGYGLJfrky6pF6tfRlZhFGREMubywDwd+PqrrwimMslAyhvX5YleF3rpDK9OjK9fUd5/hI8fMXHD1ErqjdT3FUlXDS0WxBus3XM3uzAMgXEYefgglBWwA36c+dnP/47pcKJ4x/PTJ/7v//y/4Ezjp1+/AplYroIVYfQO0yLNrJS2ct7OdAJ2OtF7Ja9PSDf4cIOzOoVdiaRaictAtY7x6xE3G7bzmbwt9K7vXWvAmY53Sih888UNacs8fog0BDsP3Bxm/vrHPybFjffvvlVz+fIe8R5poxaOCHYIzINjM7tcNBWuSyMmXZ/lWAg2403QqXJeEWl0ibQuXGOil8JQG1ag26AwcKehvGqE1+FRb/r+NlIxkjGmKnLV6CrFtgZNVV/XtFLzH1PEe0mf7XgvQUp1DoTgaHiMdfz06685nY68vn9F8B7vOs7A7eixAqVHKsLa9SIZyxk/Bea7O2YR7r74gufnjW+/e2Q6Tty+usWPgyao1YKUzPVp4eHjWTsvK3TTqaYjRIwUhnHAWcdg91O0dEztTEGHRN++eyTlHyhCiC3sLogKTXDiyL1R8gb6nKGmRLnobVe6UfJbU0xDLpkXe+QLC6fv3sZqd/nUrqusJfICIJAGsSrBDtJuBWqq2Nk0Hdh53a3GFslpJnfwUhg5U0pk2y54UxhdoYcrw/WB3jYYHS44RqMKnIIgWbXApoGt8rmdbVn3UdfzEzlthHnGjRPrCt5PNDuSKiyXd+T1mS/vJ0XuJ40pqF6JB+t5o+RI2hrz3Ym3X7zh8rjwuJ13mmDDhQHrw47s79SsqVTGooqW7LB5nyJ7pdv3thverdfdlQUfZugZZwvWGN7ennDe83y5UnPaU9k6pVV1yEjHBYsbnK6srLJtUxbEe4YbQ32+UkqmoMDnuHVIFW+viER6HwDLZCwMFhuCPmd8wIjBSaW3Qq9d1yI9IuKwAUQcBkfvhlg3ak6kctF3Xy6ahVnSZx10p9PlRWkteBc0nwWNRri9v2WaZr64u+dwODKNB0WHtg0nwnQ4YKywZl1vDH6g1Mr1AhEhPUSs1dS1iiUcjlQRHs8LQ0pMSQ92Uyu2btwMlVYiLRXsEDQrpWZyr9QNxGTcHgSVl0315uaIMYbc8k7s/yHFWbU4a92gCV4ciUJJed8ZOXJMXB4fNGNyOqgzZFMER9vj/YzR945FlTUNIduAsY5udAxek5LNvQkIhm3N1NYZgkKyak7UkknXZ1XzHkZaF5alU2Xk+3PBkhnaM60mSl6YB8f9MWD8hZuzSqhkcrhgGawlvRi0qqINjeYdQQjakrlCK4Xr0yOrc9z/6Eealv3ksHakmYncCueP3yFt5evXB2qunB8S1RXK2MixsDyqEqTXyp078LMv/4Lv6m95ev9upyoKMg242elhWDotFWppmvzXDCY5nHUKOfaGZDQl3DkdnOwZdPgwI2ScXZi84yf3N6TW+d3DRZ8Tpmu0xm7mLtKxXnBHh/RGbo0chZQsJnjGw0COkbRoS5q7J69QW+Y2JIIB6gHwzHd3GB+oVrGm3hmkN3zWfV9PaIpc3xATcIPoR7APtAy5GmJMrNdP1FRoKSsZgUaj6KntBsQFdLmjxTm4QOkLtRXu7g7c393z1avXzOOB6r1ayGLCGWE+HRFrSKsGJN8cR9ZceZ8tLWfMxwshOA4noYolHE+s28bj8zOThxJE8zxbx0nlbqgs5UpMC84fcTIq76jUP4ZuNS3O66cnequ4AC54ckvUP6N8//PJ1n//jxjjmMdb0pZYrxfWdWPbrru21NNaxQavO8gU9zZDRca0hnUD1g3Ks2lFp4gN3UW2pMCrVpGdQ2ONjrqD63SElxCmMFp67ZgCQseHSm0GGZRo61xUIXQNWGdwvuNco5BIvbDWRiyqAS05kmsGP+J82MHRKkaoHZwTrDPEc6bETA+vcGEijDf4ECjrRq8rzx9+hTEN7xvGHjA3P8Nbz+1fDlgD3nQ+fv/If/lwVTcPlbhe+Pb7b1lSZbz9Grmc6ZczpE5bVW5md4q5oeBsx1mNXWhFlS+4/XbCsKZMrpWQOrZXelwouWiURSv8/sMn1eZmwdqG86iDn1m7na3ooSmCGRzzNGoOaSvEtRIXSAWqG3Bhwg8HjHlhFq16A1unWllpCJmgo3u2q3ZO3SmxyIYZDIR8QPemBZGG9Exnw9qMt41iBbsT9uia/RzcSHDKcTLWEYLFOUPvFgS+ON5ymAJ/+zd/xas3bxjtjBHLY9EuwSclIH46n2kiPF02RFTuVxB1oLROTqopLmyI8zDOVPTJs6TGFiuhJ0LPDFZJgLUBVkOaqxi6C4gFW8uukNOpUTvsWAAAIABJREFUv5mD/th5ug+8un2tk90fUpy//IdfEoaJr3/+V9RcWJfrPqpfFS1J+Rzu0qt+6I1xWOd1Gta7CsPdQCwaWNOqUhSkF7o00rJScsYNB6zzVFFFgx8dYgxbUQFAGNReoyihjvV1d8jozepc1EGDDTgsXsCwUdlILbOWSiqZmiKlJLJShHVPasxnO0+V3eLlDK0USkqImTH+Bj+cGIMj+4XcIudP77BWePXmhB1n5P5vGI5HfvST10x94257x2+s45/+83dI3TA00nblD+//gPO3jKcvNVfz+QnJiv60B4sNDmsU4GxNx7m9OLMCznAW6wO9GbbljBE4pIZrKB09F1LRpOXvPj3ireMwHJE9bNdYlZ6lWIjXiN3J5cY6xjDgtkgns26FS2zquHeBwY8EP2EM1NbpcaPUpmBm64miB1AQkFaJiw665HhAbNC23aBM3dZJTblQhobpEWML1laCFWpXnW1phtaFMASOQ8AZgxPDePCE0XHeMqk03tzf8ObuxC/+6i94/eVXXJ+vbKlQLpGY9zVMqzxcr5TWeXxW+PS6FsRZ2qjhXEvu2NzUAD/BEPZuTywxN+JamYjMrFSvT4wufGYZdxEtTgxGNmj185DKzANCpzqL855XX3yFC8MPK863P3utYTzmQq2JJW6k2himo1LkimCtYQzq6HdBp5jBOWq11GJ3EGBmMp0pGBh0UrfFjVw6p8OIlZHWNOfQUhDpSpHvBpzmMurt0REXsMZwuLuhicPVge5n5PSVtuBrwpMYZcWxEtqFcZ6YTweeH85cnjI5V3Lvynstsp++KnbAQtkny/hBHQQ0fC/czCPD4Hj87krarqSYGKeRL775OalZ/tM//D2tZv7l/9w4HU78xTd/CQz8j//T3/D973/HP/zHbyFX7FKpc6OP6kyobVfPSMIbgw8G6xuyt7U1d3yN4Bp2nDAEwuU9RgqFokv0y0eKESiLuh0IgGanHoaBX/zsNb0XtvUCgIghuoo4j23ooYkF5xhvHHfzAXnccM+JNSZSLmA8GPWPGgR3OCnRT5T/U/drtg5VhSheD5PRdpDG1tZ9HqET3ellli8N0FSwabSEww3puhCfMsUEsgwIlVR0JYMzGp3xWMkKQuC9H8gJ/vq8cHuzEpeNlDJzTYRWWHOktYqz+rUfxlGdQK1iSsdXTboOp4nWCrVsSMvk9RnvLW9fzyyXhWdWZuuY7aRGi1IJ3uFcIFdD215cTmYPQxLGeQCxxCu01kjF0LbO4+MF536g8P3+qxu18iwL0iIxJ0q3+HlWnL40vBWGoK2Ha025o85SqiFVR8+VnjPWdtXXOodYQ6mJmDvzNDJ5y7YlainQCkLDI3oTOq1RMV01qM7jvOPmdEdzXqFT4w3m7S+oubA9PeGJHMyF0Fem6nEhEIaB63mhxEoujQJ/4rrXIZBY/Y4U9rbcBUyzimhulXnwjKOn15WSLpQIjBP3b7/ifI189+v/wPX5gXr+Hfevf4z891/x9dcz//7f/4R/8gv/6T9qGCxbo+1ezIIWp9SCmISIx/mO8R3JKPK/dkpLGt0+zBpEbD/sLaHCuPPyRBOQ1rS1sl530yiU+cdf35Jj4t0flFljvcHWTvWdthZ983eFlIVD4OQHWr1AXKgVtVbJbgSwDoxjPLzGuYG1PFHKRl8uGhJlEmI71jmNjDSKgFlbpLVMaRXbNZcFdm1zb3QqU/Dc3Y5EqSzLmWw9yc1saWGLEe8sSON6XbgsScUVxvBgR2oxrNeNEiNpjeRUmCRRe+G5Kv7UFA2VmsJMbZ3LttCBse2I0nkgF+G6bPpn3TLDcOD+9oglkmNn8obZD5yvkTUVjFic9ZQdmG6lYk0FdTkSRp2vlFR0311E5aLnZceY/IDivKyVYIQvjjccB3ByQyqNayrE1Hg6ZxBoDnqOSL7QiiVajziL93Z3MaCPaDrsaVCvX93y2lpaWqEVjuOEGP1Dt97pWZ0szg4gBuf0dF6bJWH5dNVU4+IHKIbeLrpgqTpp9bazLpGPjw+8uj/w1ZeG2TfuZkvNnmsclNZG+xwdYawGsaqNoVFF6M7irWBsZ1k+UorBUhjCwHj6BtzA//4f/yvL5Znzx9+StyvkxPnxe/7p7/9nPn17oF5e8/H9M+JmhuMNd2++ZGmNy+U90lclArauSMcspBgYnSccOk8PT8R1oxxmTB9wmodIC4Gahz8eJGbABcvrVweqWOoZ5nHkv/n5V3z5eubf/e0rWt14+jG03OhLZUmGp8Xy7v0zv/5wweXOLY4cDuTDifWxUUzEiGOgM5qmUOsgdGvoy/e61swb0ipTF8RPVH+j31tRN8bLZ8AEzRp10gnOcDpOGOnQCzFmzs+N83nl6XyhrhtlzVRZKEZjMQRVd9UKsTZKF6R2TG1cl5XWO7/61W+4XC6k0qHD62PAWcPsBppVsqFKCxaaEcy85+3sW4lcsxqjXUcBuI1cNp6ulm3baLlQjVCchulOx4FahUvUp0fvyuFtQIzKa1jSM4iGcPXe9abFaBbzD9XWxtwwzjGNM3ayTOMdW8p8/PTEdSvErNkcRfR0l7Lpgro1vBlw1mP2B73tWqBt360cjjPDPPH8WIlbYTgEvHdsTVvKtEalqqHYSeetFm0x1GbIcccz4qCIQp+soXhdCWRg2zKXhyvjYDAyM7jOIQjP3unNIntkuHSwSt8zxnyWCopoYo+1BiOdmM6KNqTjncOd3hKr4Ze//jXr5RPb+QO9JARYlye++83fsz0dGfiaLQliB/x4YL69JV+eaNcz9IQbDETUBVKgZMfgDM4L1/7AliO1CaXpk0Cka4isc7sdqoM4rAvcvLqjYviYEofDzC9+8g1fvh758VcTEFhfr9S1kD9mrqvlwXm2x5WSCqbAhMXbgToccPZMERXYORpeGsFkqgs029SFsSV6UaJ5GE4YG4jupH5cNNK9syrcxYK0vUCtMM5eLc+9Q7M8tc4WE+frQq/qRmnSaGQGKwzOUKsGXuXWFSlTFXMZU6LTeffuPSklxDqcsxztDSZ4Bjvpe7BHUInFzvEZqc2wbJpGXYnaZlstTJpqdJe4UXKitUqtZn+jC8E51msjZg0QNqLIk46otK8AbPp77WJ679QkT+u7Af0HFOdPX98hrbNcI0YsfjwwDJ63r07cxMzsriwp8/GSwQvmOFGaTtmMoGoR1KRsjMWLCg5qt2zbSkoby/lMTlFjD3xniZqx6e2eIibKht2itkCD7TRppHylNU/JgSaNkiqld5ZcCbZQQoRlw+ZOv0bih0fSNVJqRkom1EIVTzUebAbRVC1aQXaRdJKRbiyHZnDdcTrc4EfLH6bKshbqx+9IuZIuz5QdcfnC8ev7DVeq4bo6KgY3CbGsfPft73T4I57Wk+ZOioofjBO8ymuo1SJmwLmMSVHVQDc3GGvJORFTpHfdxS5xI/fGbz/q5Pn8+Eg8P/G//m8Lb+6PPH36MdMBTq/gfOn87veJjx8u/OuvP/B82fh0Xpg+DdzNB+zFYC+ND9994N13HyhRRQAhPmFDwE03GD8w2IAzVg9v48BPNOvw84A3Ql01wKeamd4L9fKE9MY8zRg6j0/PasrPlVwT1Xi60Sl7KgtbzmhWjsEMaoi/GwPH0fC4KvbUyZ4MY4MiZfZArcPtiHXw6bpgF4N1V00+n0f1m+a6c5KTTrO9o1FJ7YqVTnC7cqomajS0ZGmlUlvmsgmXzXA4DsxzAJ/oNaE2faFbrwHQpVGkUVOm98Y8jzinief0RtST/ocV5908UXPl6XLGGHATWGc4SCBYMNVhl8plaeAEK55coecdK9ka3Wjb+MdbyUIzlKwJwBonmLG5YLsQN0V1uIM62F/aolJ2YXEQOpoE1ju6nOaFdleJa9L9X26YVPFNd2t52SgxU3fcpq1K3GuY/YY0e8Se2qQwQjUDrTk1UndDCAN+CGR/YIuRuHwix0zZVlraA215kSvu4nmEXJzyiQKUnFmXDT+oyqh32YX6qiIxRrCixd26RYzHWI+pBZP11sYIpVWlAWp4BbkUKsLDRQmB27IQW+NX5zOPDzcchgM3956vnOPTufLLT5l3fzjzz7/69uWPzcN149PjxtAsQxOuTxfOzxdKXqg1YtOmRLu5aBbJzR2EUecAzqs/0Vic380O+wRcu6lKixsGCNOB2grLctF4w6S3Vt+jFozRx1qpejDTO81bmoD3luPoVLfaYbANZ8BI0AOid2qtWAvWd42V7+DLnt8z7Q6appbGvBV13oRA64XStx2TItALvatOWdE0evSmIsQEfrQcrAdbaCZCdwj6NTSDGtJF7Yi9NVV0Wd399t7Ju8n8BxXnv34Abx1vb9/QeuPpslBzJl8uCGpOtdL48s5hbWDwR66pqQm7Kid12TrLlik7g3Ur6loPtuFMZxh27WnPtFQxMSENzOwxCCmqUmhwCuK1aNG6g6UbRxu6ksadp5uR6u6UJXTewAlQqYPj6gZSeaCcL+QtUlrC9Y0RQUcCntqh9cY4OJz32Lyro2oh03iWrHS3+ITfoiaftQ75qlHsYnZvo9Lz5unI/ZvX/PTvfsRlzXz3/VkpezVBFWxVXmuruk4QBJpKpJxV69rgA90HdU94Jb2X1DQqr2mmTKtZiYN54xJXFRekDXrnivC8PvJ4/UgYLIeTI5XOZWsan5g31Fpg+Pb8xNYy80PgMA18OF+pZaX1TKdqGlfodCKpNJ6f+h5otBG8I3bNuemys6Re1l4kaIUSL9A7Z6MHonWe0hpL2nB0BmkEC6eT8NQNy9W91CbOwERnWQpxq1xz1XTzMeCD482rE8fDzJdf33E8Tbz98VeEceDp4aq6YHdCjMMM6h0t+Qo03GtoLbPkZxqVQTxGGl0q1gvHMJFLZctZA4FdoD5plsyybfCkQ6OaCteyP8WOd5hhVAGJCHsoH1tuKoTvDSPgP0d+/IDiPG+d0RvczUSrmS0/k7fEdl1wRjhMGh9/CBqNN44DslWSySrWLo1cO7LqSVG77oxe0AxiNN67N6HUTm8V09SXZ17aw6IxAy6gvNKO2niCUti6V6SGHQx4h0wj69VqpF0PtDzSfaD4kcpFB01VJYOGiqfgxFLEUNHIcGMNzilgse3huBWIvVFbQWrUOLyuOEpqQlrW28LYfb/rCGFgmidu3hypjxvtw0KVTu1OV0etfQ43UmmjfhKFrvkdu+dQvbEq2dP1z0tokf783jQst/dOzNc91qB+vsm3BOfrk055nb7hMQoGq7XxQkM+x43UC6fkWKNjyYXWq97OsiM7bSd33VfHIohkNi+06oh1pfZGrS8ANA0cclV9nK3ou1DFKZ5xvqG2/bCSzrhb+EbvuNrdZoi2flbASyeXylohtkruTSPqRT5nbN7cDJxuR16/uSVME3QhpUb39yqasaIYTqOE+HESconEy5NKTa0+R6QrCNw6Q7dgKRhvMcOAWdSOVkphi0U3EqWRU6aWghvVHvYi/tlHS5Q9+Lh31R6b3SDwg4rTzxsd+P3DCgh1CLhguZstgzPcHgLsDFjpDamN00GYZ0swgWBmPrwT3tfIUhuxZO5evWY43PB4eWKNK31RMcFgLcYJmxmVAdo1dDbs010xIw1Ytw1jhOONZniUdaGIoaRJaX4XwYjh/mhJvrIYz/zmFXc//oYWHL1cqTyxriu1Gy543DxyCp7z4we2NdLMkepGqEa/eb1iaid9v9EGyzg6rFTKcqaTmEwm2wbOqaxRPOMYuL09MQ2edlnoW1XGrDvg5wnahbg9UgsUPBVVyoyAwdJdoIaB7kBswfQB0wIta1SdHwrSM+nckNpxVTW52WjGTH/5bHTNAFGKvapk1Kb6QhzfM1Gl0vGqNzaNbBrVOrr4z5T5LRal/PsBMZbaMx3LulVKtfp+plOr3pxO1A5WQLudcSZYy+00aWtuG6Ya8to5mM4XvrOWyqclcUmV0rRWvMA0wO0BHpfCmirD4JndsHN0Pd8/XnlaEtjO/Zp4++VXTCEwuoBDwBzpxlODpry2ALrIWvFiuTvdKZZEXjJiHLkmlnxFvGMKCu0y1sPtSHCdvETyGqmlaL4o0KxToHoupGVVCmBRf2szqm6yFpwYBgmYP1Oef7Y4ja9Q4bomRAxuHhFxhNAJzjLMQVuoIpqN0hLeCqM1DNYwOUiTYxstRA2rOU4Dx9sDW0vEVqliaU1PKGsMToJ+cNqq/lDTd/eBigZKLXpjGZ0QthL3MaChicaVB+cYx5FuNajWBoedJuwwQAh4o9+SglDE4qzFBTVc6/xZgcAanqRLa0H3ga0qM6l3q44KlMTeBZzb0fvG430gBI81hhwLLTfsjmQUM9L6tncSL4Hzap1SiIbRdGqrkQhQ1ffYreqDu+59xbb9v7/MFfZb90/+Xf8T7eYfC3a/cfvuSqDtP7b68wWwVsXpzaqutVfVLNesu0U6dPXY1paRFwzlfhToVJnPpnUxBuMCzjvGWa1yrW+YHSMabGcMCpiOayNXXalZ9FlmDXtknobTWhMYvMZkNIQ16szhetkYnCHHRMtFoW0vlq62F4LRQum9Uyu62w0jjYb0hIjF2YGeLZSEsSiaZxfcD4PF9MA1Z/L6ojnQS+EFKtBbo2TVodumcGz2xYCG7mpSp+Izf0BxTvNIzYXzTg13kmjGsFlLqZVK1YlWWulV6MUwecPNaCm5sLbMzenE/c2J69JY14Y7HjCTxfkTr29G/mVbebxE5mPQqD3R0ztXUYATWV0qsVBKx5OVkNcjvXVS3nDBcXvj2SpcVyWKb8/vMVVwWbikC5dP38PzM/Jp4bI1ug240eEmIbXIetnIWMQfiZeNeE3c3NwRhkAxs1IYujpBZHwLkqlhUZFAVzvSq5sTLylbxnuKCTxvwvq7BVMrh5S4xjPP1+9xUyDc3NK3lbpq/iWtkzosrTIiOLGkVFiWyOHUmJ1QD+p2ef7Q2c468Rdg3T/ML9Rz5x2tK7G87/WmcOZB7X617Hmke/HKC5MXwvGe+2++xJiAiOfjt7/l+eN7alXsZG8dsTAFlQG644AJnuAGrFjMvoZqISBi8BisEcZBbX+9NlKtXDaDqY1TbwQgGkuxTuHRG7SWqF13z4+XStw6W1XX4fhiIN9J7tIFqcLT4zNp2/jlf/kNp9OJw/EGYzzXdQGxnF6NiBOyxpdguldO0jzp+7hk5deakXkqzPMJoSI90dJGiVdVLR0mvJkIUyZ41fka5zDG8vDpmeUaKV1NDN54nLEcDxMheGRP3rOmYf7k8Pw3FecfY+ja52gFaXYHbQkxd51w5gLNIs1Sqyhcdw+iHUfHODqMNAbbYQ4wOAptF3fv0fH749nu0QIaC9fxHb01Rd0UTqHZGNqefqV/Puc73oBNnZozJS7YZrDFknsj1gLXiORGaqqVNEbDZ3rZJ2pdzdat6AktggKxrfm8u9Knnqcjiq20L6xbITivSWVWUaJdhNo6dauEXjlS2VqmlUjnBrEnfaO+nLb77/+yuhfq/qZ8gVADRsNwWtNprhOLmKqx863tIT16Y70U3f6vdniZ+ZOifCnMl58vKH3QYcNA8APBDVy8w+7G9P4nxWyM5pYYa3dki1qmXH8pzhHE4Luqb7zXG2XLVVPIcsO3PV5PDLnpPKK/9AG9g9Hfq5TKtTaVEIjhJWZPb6K9s0DIKWOA8+OFXjrBjliPspTEUGLHNEtxOgQDt3/tHngJtnWA16/FC9IyNKiiQn7VJgdqszTxDMMuxPea27JdV8oWccZQjcFbzXf1zu3dlcIEvDN/ToPw54vzX375z0zB84uv3uAwxKVQuyFidRmcrzt0aWYYPEc/kK4L775/5jAN3Bxnvn+8si5PfPnqlje3N0z3d4TDgW+/fw91pceF9HTmY688D54v3hwYB4utK70U6lWF3V+9eQsu8CQHbTxr1CmneJWihcYRuBlhOXfeL2oDo2VwHuYRjKPbgfzQ2a4boXZ8b0xhZDKBNT2Sc2a+fYsZZ0Dbq0pCBAYzYJrw6cMjpVXG4y0+DOTnJ3otFDF4P3F8/SWtZNbzR7x3HCbPYA1HN+P9SqobTQptiZASpiiTqIvyTscBen0grY9MQyfc3dKC5yoCl0QzjeF4hxlmsncQF9r2B6Wf74XmRIdqpr/M0PZWSjrtj9WqN85OrnfW4pxjOT/z7teRt2/umO9POOKeP6lCEIYJmUZS7VArh1qRbIjXVekKIWBMZ2yR3htP61mHfb2od/KqUZKtGUxvLC3jnTBNhtiFSzWkWHHGMU8DN8eB67Jyva7YPcgobqp/HZ3HG4c3DWf06/amsT49InHly9sjowNGQ6MRtytkA/OgAVkCUg12Q/Ngc0NMweWEt52D67RaqGUFDMItwzhzOB4I25UxLp8Phsk6vLPkwTJMhvntPaVYglOHTGmrfr8Gy+AdP/7JW4YfGsdAiYiD4AxOLNUDTbDd0prqCKWL7uF2+HIHJfM1KBhiFa6pU5reQFbUue+o2K7Bq9KqLnit2ZfqqEKkZGpW7yi7rUyM9u29q8DBiWL8a9YCcgZcrzj0/VYBkYZ10L2FAFiN1QNFe7C/FQyyn4x2d9bozlCsaPyBOn80ErE31Xl2XY43mu7prMWGGZFNfy/pBNfxuw3KWlQQTVcPae87PvHlHtu1hGjOhjF9f3CpXFF9oU31nM5RnIPy8tfY918vf/zh//+flxtT9ueq8Bl3shMhaaUQ10ZNE72qk8JajdTrn3+BUcrF52drp+bdnGAa1kBJid4qcV2VmVs1qTyuK3TB2X1m0fJ+YxsSqoRqtekhY4XgDZuzmvpmdIeqiQmdanSSa0SBC4M3DEEll87o1FV6IVhHE2Hrhd6NvkPRGEcw9KxKo1a1S6wUTNVokNYKte3gb+MRUQKgt57uHL10elVlqmmdwTr6ENTz2zzWTNAN65Y1SkJUD+ydxfsfWJz/wy++oXXDEoVkDdPtDWAYK9RSiKvDGsvgR2pKPD9dgM7h1YmO4TEp0sQPNyy28v585bI8MZhCvK74LXFynfvTxPE04IPFlEQsncvzSskFswG98fFfvtekKmMQK8wHi5POoSsF/PlfIx3Zv4GC9yobbLYzuo17fyYzkGUgegEpTIPhZg5c18K6FUozFDvCesWUjXB3xI2e4AesCK4AtTPOA65VHBeEDTOowoTgMMFjbNCJqR0QJwxjp/XMQ1l5zlHj9MbEzZhYrYA/EK8LJSa2bUC2G06njWFKLB9W1mvk9u6nDMd7lqfvqPFCiI/0spFrpFK15zW6bgH0Q9WbIl4+t7OVkl9cEC+VKzuHCIxpGLSFIwtxy1yuCfzAdHdHqo/k0jQDMyfNurQW01A/6k51qFEZR58eF2rVCS+96XpCwFsI3nE6zAiN3iK5agJZLoWcFm1ZbdN1Bpqzejjdsm2NGLsGHInVg9YKr28td5Phi2/ecDjNfHX3msF5zsuVdYu8enuD9Za1qrzOjDrk7N1RSmc5NzqWYAc6QkmGWBLXuGCCxY5hzw1y9NQpl4jvwpGJuF1I68J2dWzWcjq94s3rLwlhxhjP+byScmFZHTkXHh7OrJeK/Po7/gx8788X5+08k5sQN0MXB0YnmG6/YZrdhQF/8oSxzuIHR6lKJLNW1SO0hVQzUiK1J7ZlI8eEFziM2vr5wancqXfEOaQJxkFvjVQKFQ3EMSi6X3GJ+h41+2fNiE59g7PY3ckSrCEYg/EOa4Z9h6kITGtE12l0xBpMh9YqPeskVKz57K5oRaVysv9/7a6jNNbqRNJ5jNPk5I6Gr4qoTai0Tqrs8DJ92/XeUGiRVcfHS2gRVt+fjd2cXj+/c4SOtAIl0V/a4b3I5OXqY4+0+3xz7n85XVu3/69krH9+c8rnn6vv/4a+a/uf/AK9ZbVldvv3xnT9eti/3k6h06i9UPsfJ7jGBayBYDUXcwiqvqpVJ6696lu7N7VdGYOqg1pTD6vzGKsEO2c91jimyTIOhtuT4W42HI4j0zzihwFrHKWdP+81rRFs06Ap2174Qx4DbK2BOJxx1JcY+lb2/BmdrDZ2HXOptKjxjk5E/a7/L2dv0iRZdt35/e78nk8xZdYMAqREUb1oM0lm+vhaaK8dKVOT7G6CAFhDDjG4+xvurMV5EVVQyyihYoEyK2RFZLj7effc/9jkAUjX22d+kBhTY1iMotYumxYI/aOy9LT8WkDosPuCqsDcKmKuUliEZnAjFo21gZ4TZXrCWM/N8QY/eIbDQKyVtVTC4AnBM31qTE8z1wK9Kl4+XFleLoxD4Hdf7Tl88YDdjVyLJje4mSO1VNJ1opaEX17oVLwTiiGGAW8691ZcE9/oPU57DnZPKYlpmcilsaZGNzu6OmCOB9zhwPz4xKcU6S2TqagxiLm7FHypXB4jaW6EjbIwVVLan5ZGLR1fzjjVGK2joBncHa2D2wW80YxMVBXBJVrrPH9ONONpdkRrx8PJMmXNhxc2mF7hTcDvLWHvsPtOXCvpWqQMKjSMMRhlCekZs37gab6SaiWbIMZkbVH656ZktbWlqS2j5nX71D/P4xuVorTDmSB4EJ2uDd0N6HCDGx94ef4D56dHSk4YUxlcZxdgtx8xbmBeNKVq3OiEIsnP9FY4jjsBbIokYhzvvpWTcnnE6MYYoOTEcolYYxmGA8xX1jRtd2B5yD9fK9pLvTva4UfDYRcYg+N//Osbvn4Y+WJX2LnGC3vW7vjj00rJQpUYo7mphaYzbZFUCt0K2mjcYcTgCH7EGNjtDLXBGhvVKAbj6X6g7Q60srLmM6wGVTTZe1ZvUd2jvGd/HBlGT2qNKXbSckW3xnw9k0tCa8egDd98+yWlw8cfvqfkX1k7b7Sj9UZaV2IuxJjQGJzymA4Wqah7Pa2sdWgt9XpKiXIHtd0PtWSopiYSpu4CZiiEMRC8JQwjNoxEo7YUBUWvFW+g1oAexHwZnIRbz36PU53RRKy2OHcysuicAAAgAElEQVTEaM+gR1JcpSRId5rutB4oBFTXop3d5FMS/VHBaQmj6lJjr0DuTmjh+rTf/tu0BXIJcixkteSU1talfnyrfKe3N4FL76KC6s0IH9gBlHCZyBXBqM39YjXGKnoCfoGqdipdVblDtYbTgh7nvmkINsDn568/fyJv6t03FvLP6s43cEjQSkHR7SuH2NXWJZK3e35HbbWOekud06qj1OsNv28CJIXTRj4bXpDc4K3EW2bZvErNko7RJQXi7RTfNMZay92yb7awVgStt0YzBsvp4Lk/Bh5uAqegCKayNEepjkwiNjGQW6VIXWooexFZqU5RLqm7ICzA5jNuXZhma2RL7F2JTrYXqtrshRs99bZl8FrhIPLNWgp5q9FQrW4+5S5iHQPOCAhnvf+zreQvGk7VNHFa+T//4T8RS8PuDnjn6eN2Zxg91nrc6WGTOlnW3Hn6tGCdwnnFdbqQ88IueI4P9zxNmbRWvvrbdxyNIm4qCh+OKOPQSrx73snqeH98J7EhLYqe1zRpK7MPtKZoa8FqzX4IrFXxee3E6wspFlpQGGVgtejZcX25cvn0PfPlTLAOlkr6PMGXt5jdibI80ZeEKxVFwfYdlht2h1uMVlyez9SyslaH6bAHjDbsTzfklDg//4gaNOOXJ1LqPE5WkgBsoFRDTI68RuL1ih5P3N4fmS8vTJcnhnHEhoALmjA4iV/pitQ7qVQSF1CW2jWoke9uO6jCP33MpCyqFmkyEwosp1XArI2iedtlW/1ZJqAUWkk/TBWhrvgyHdwfPZ3MdTqzxIVUsmQO06nOUYaRriuw4HXD9M46y/f2+xFrPLdW4a1nf/M1vTWu5x8lZbFcWVPm8XxFoXDGUNEkMr0WgvOb8kBJd0qu0FaIleN+j3fw3cOB33w58DdfKt7dVowSk/6NC3gGnqOm2EppA1krHksl1EyYJfhavZwlyf3mDuUHwuGOlAqfHs84P3Bzuse2hM1FunXmMz0M9N2OXg2taIwTgG+JohefkyH3zvXlhbQs9DRDK5xub7DWczkv1JbY+xnjPbf39//OUvv/MZyPn16YlpV1TlQU40nS30ouWLUhm1qjvbRONxStZ0oWnak2SojrUijWk5tCGY8LoJ2mW6Ao0EWao5WFltCvEYhI5bfBMgTR8UpynCFXS62KVDWUzrzKk/IxNdK0ssxpe7BpajSUNRPrQq5by/BWflM3E7hWHecsevDE6wxdWsdMM28mbKXFqFtqldPQ7OhKSSKBEu2vUpCT2M/GQWoKLF5ycfsG0nQ2jq79rODpm1igN8zmNOmqbwPngE7vma6VPJ3FkoOmSaW9/rnijv4L9PftLvnnX68DKj9aBP6qy7+11jKMgVQqOU60Iuu51BgglQjWizSwlg3Floep1CjqDdmVuMoUZ1qrW49nIpeVmDIxbqCM3RwcyF1Pba4QpeUe241YpEXY1DaUuAKFmlbqkuhaSpqUFVWZMQq7KbmU0pSupH8Ti1Z2U5UZcteoqmipkFNhXTOtafKw0lumZkGc2Qp+dZdGOnGtSNEx2+vSWqeKe+INCRfwXLTMelN8WSV0kLfbQ+jXDOf//r/9HwLjHwb2xx1/9c17aul8+vEF3RpmlKxVcziQc2VdErkWKFdyfw3/lg/fZa08LpXb04n3hx3XJXNeK8EOWNdIyAvP+YJJM7FrktJ8vyacV/zV1/c44ynaMa2V//yHz6y5M2OZL1d+/M+/p6uKHdp2D76ickGvompqxnDYG24OhmoaZTA0q1FGs+sJW2Z29wP63Z75cmW+zNjUCUlhbUN5ML6hYyFezmAsef9bjNbU6x9QKnK6PdBb5ccfF/Zj4HfffEnOmpcz1L5Q6hNJVaLfCYgwz7K6+wDdUVaNihmfJlKPNFVw4YjWNyL9yyvNKqq3/HheaWXFKsvRQRoUtSiWVH/R7vY6gOrnJ/SrXKyLoaCrLmHNraKNk6vB7si7d+94/PHfWB9/JM8SoqW6iBqNP+LHB5h+pJWZYTegjMU4R22arj29K57TlVaupO//VRRjKW0pd3V7IPTt79M2EK++UTtGS3N6NY4aNLlIt1HrjZRXXqYXhueVsGRW29hvodLm6z1m7Bx9EIUVRvTC1dG6w4QT2ga6MhRroDmYK+XxIzFVni4R7ybK8iLxLzljg8ftR3yScK9XFdiSYG2KoD2jthLn0qRFLRhhRbVqKOdAGw43B5RSHHcjzjn8fo8yv1ZbOwa0NQzHA+NhxLoBrSq7MeAlH1H26zlSaiFvHk1t1du9RHSxBqql1S21vckJhBYZGEpTS6G2gvMGqx10WXUmNLHAh+cVrROpwBIrj88TsTSWBst15jIvoCq2FGnjXpMMZ4ywNVan3FnWDfntndoqqgjooqlviiC9VYaL6z2hvcYMWl7oXraUBJGSarpoazcx+atWtikLekBbGEIhZhmC3oQDxAr90lsRRdKro0UJ8ltLJ6VCrwbVO94GXBhI/TOlZlLttArWKMwr2qpeb5X9zU/5336pbVR/ocL5xSAro7YT7zUYvIkzp7+e4qJL1m2jVKqUQlF5K7BtXeoZYpmoNZHmWcC9urmTWv/577vpc8WtUd/+Tq0amt7q/mzYUFwpHw7uZ059iRWbMl0ZQjOMa8Pojt9IbyP6ITGudwUmgJGaENRr/KaceiA8qVaNtHWt9E2RVLVUUNQmv79SsiVsbCm1V3rT4l3Wrw6qVy2v/jMlWK6S7sAy/T9wgr9gOL/7n/4WYwzH3SjVa26Hd53b7wZqzKzPE3GZePl0QZmGsQUXPOEwyiqoNdYfcO5AWhMpZWiFOJ8lV3bscudBMa0zORVu7k8M7ga6hErNL4bzUvmHv/9Xlmll/vQsguidBDTN0yTcWiv0VpivUYa/ZFStqJoIWjGagWVNXC8SjVlqpaaF2hb293ucHt84L2ekMjyViR7hq9tvGI8B839lVF6xXaOrxl8j3iqCb9Qq/YxoMfT2MDJxIrjM/d2FUisxrmgFO61g9HC6Y316lHhLY9BulDQBu2Oan5mfFsIWonZ7+g/s7r7g5Y+/Z7meiQV6c5yM3agNLZlHXVwXRottSyol3ubybSh/plc2DFcpjFF4r8l15un8E+dl4VIMucp90w8jbghYCjpeIa60nPi8QOqanjK9Vkqcqa2ypg3s2egevWkLlRKtbfBWrhZAV5VGFTtfrjTrqU2xOzj2hxvWNaNU4XTQ3O4Mh9ETjOX5svAUMzd5YBwU70NnXBvHG4UKmiSLP7EFEaWoOyRArtFrZZ0uoqlVhhBks1pi4uPTBesdw2EPYaD6AxmL6laM7yVjg2bwiikXppywrmCVpCd6o1ijdMka48E4oaU6XC8zvWZ8vKJ/beJ761rKiJSR1bhmOTGslsJYq4Rs31qGe9tQ2WKwyqGdpSsovVFbohdxIaD6xt814ZR6Z11mUso8GYO3GtWU1IhnJ9H8LUJdSOuFtlmJ+savaSU+xda6tGmrn5MFUFJYKq+BwhhDK+qtHkIDvVVZ65p4+JQxaOtFwN4bNUmhbdce7IBWcTslGxVReijVKUVRK5QiqO9gRAVV1kQrBW/6zydHy+iaUAhNYp3FBll/6lbmavSG+OpX5VTG6I4zSBNb1yhn6TTawptV7OfT6Oeh1OoXLOZ/c6L2jU8Ub2mKmfm6UioY69FGmqvFeQElRSKNviZ6ySy1k7p6G85aknhMy5ZnrrUIHV5rIDehiGLTxqqfMcveN38rgmco63FhxDrPYV8IFqrtpG5Yitp4WIerhpo17ryyrApfO9o7lAugpca+KwW+/vzzOm+AmNs45KYSKKFxzFa3+Kqh7gVyzoL2lrwlV2z+2rI5EDCkJvnHVVYxmvxixBSptVGLHFJm067/quG8vjS8h/0o9w1TZro1VLenWUXfWdAVHSOlVtKaMMUSa2J3c8AePGtL1Njo8zPMF8JhhwuBeV5IKZNipuTC4+XKmhLff0BKW6vFKMPd/RGrOzf2gnMzz/WJmjutJ5QZCOMD1ihGC60tpLTIOtGgVU0togLJpTM4y25wTLVQ180RoDu9FdaU2WmHVRrrB8zoccbggOlxZV2h2Fv6aNHPH6DDgiT0jUNANUttjbxWluvMqBXvw8w6r/z04ZmcIreDYkqVpznhzIQ3Eu0/jCNuv8ftD2AsKUvK+27MNAa68qQyoRdNcAW117Q8yOoYrESWvECuIt7v/RXqBxCyXdbA1whKGVz1Gi7V2TpuGrl0zueVNK+E4cDucNw8DOqtDHl++czSG3Ms5NplCLdh3HiwbbjkiuC2LUpbt10dBLdSXcK9epdYGxBRfmmAkuBsu9uzu7nn/qi4Pyp+eFz49LLSSuO6NHwbMNqS8oAplsfHR3Rr6MOA9paH+1u891gjTQDjfRAzQ5MrljeDlPEOJ0rNTNMTDTjsdqjdEXPzpdCCNGJcuL5cRa/dMmPtDEXaPFQDXUeU9pxjItXK/uEOPwZag94KT49P5JwZvHu7U/9qQCiVunF1Amkv10XyN5Wn9U5qmorGOI2y0jKtvcUEi1KdGCOlZGpVkGdoK32tlDoTl0JOVTJ9euV0MOzbwOdzYo2V+TrRK6S8olRnup6JMQIV6xTDTk7lVCSGYl4LShW02cCGUtHa4HfD25BaLXSBVmCtDFNrnZqhxIbamqi0koo2pSQ0ty0rSjUOe4c3A8tPjZIKab2iuqWOGmsNu50BVXA60yo8Pl/JMZFKIufCmiupQOuO1i2tOyDzWtaL0minMR4KlVoyIRyxbkdTntgMSyzENbHzA1aLayKXzqUWsXNtT2JtLLBpRX8WDv2CRuFtze2b86W3Rq+ZhqJ0hbEShqaN1GEEJ7xmfZXqsQmDNqRYGUXvr6ej8Hlaa4yzG8va0GisMZvIXCoWRUm1pSdsHLmcbA3TC5bIYAP70XF/CphfKLx6tPSSUS5shbwdVRupNyiFeY3k0giuiQ93Eg6zqybrtXEAYqEr0tuplcEMO5p15Cr4iOrS/0PZMpj9qxuoobTDbk0HRmv6Wmkly+vZode62fnke7WtNAvVfj2VMqVEU05iRHLj6cdnybVZHN1Z6uCwqhFGJ/B78GLSdZZ5rVyez1u/YkFJhxPqJaJKoUYBiPyuYgN8+80XhGHg7//pkZQXPn1+Yr4upLjQN02m1uCDYhgCX3y1I6fK93/8iRQTy3UijJaHd3tK6aS5sD8euL+/o5Qqhue40ldxWIRhYE2VnCtpBajcWvlAOSrWZJQaAEN9fkFHw9e/PdG656d/zsQ0oZ8qdRdI919hQuD96Ybpmvj0uVLSwn/6Lz9hVWEwhetaeLxkqShXO2ofaX2HbhO6xY2isJhB4/eK9UMizQsP+x3Hw3vO+sRcPZ+eIuvTld/91Y7dzrPTmZwaP5RETlGGT2tcGOi9k+LCmxlN/Qzx/xKIeC3aFftfp1S92eSkjDaMmsPesVMSFXKuirXwlqhg9da5uQEgfcsIGoO0aQtF0qkpYhSMdiTXyrwkaQywRsQOXbpxjO4YFLoUXJ0Z2jNHf8f9Yc/tMdCU5hxhzp2Xl5llSZjR4K3C94BulenzlZwS/XLFasPOe4yx2FixxnD0Bmcdh10AA7kvQielhg2O/c2eucHLGoUbrhk9L6i04A+B8TRQWqK0hLc7nNlj7Ca8ub5I9lKt8hDb+oCMbmA7vUUqYpr61TEl3337Hgvo0qF2docDaCN5PRaa65JKgENZwIv2sJVK7RWl5J5UW9qgTfXm/GgbypWaUC5TqhRdcFZxGDS7INuDFNsqlHWC/gZF0ZrnlzMtNyChVHkFwgTm2MzEaV25Pr/IXao0KBmVpam7dE2ukv7uWsWSaT3Ru8YNnkF7ShIVi8JigLgUSis0behGyoNthbC/xRrH83llnlbWtFKK3DOdhW4GosoUVSUDqCV0s/iWUUqj7EAYHG5vgCTRF03R9ECqmRivHMI79jvNJ6eJShFTRitoulGy6JHfbi8d6lai82cqlr6hs+qVYNn+903hw1seEb1Rieja6M3QssY4I9nAXdG0xamORZw9m9xevofa2rRfBc8bY2KdBZQ0cLWGtnLfa4gu1Sktmwz9zSsqJ37j5bxQKzy8u+Hm9gBa470ip07rGh8czmkGO6Cp7HMnx4zu8miKraJbxzBjjIHu8aXKzzEG082mU670/lr/KMBf33AXvdFF2lkwBpRHCkQcvSu80qAhBI/uVbKHlSJtD0eFiD46gnm8qqN+1XD+z//xb8nLyk//+K+02rn98h1oRdsE5RgxvxYGlFP0oClxZZ2uMpy60Vmlrdo6uraYzZrVVaerJu17SaGuCZ86YwB3sjzdSIRDaprcNGbYS+GMl3Xo8U8f0L2xG7VksjiNNiJOfpWb1Usmvlw2OZjGahHAJwwRw5o7MVVcizglvSKlN3bHLwhqx8efPpPWFatHrNK8PK7EUqjGgQ+s84r1cLz/Db02/uWf/555mjkvZymojUkKgndHoo4kVaEnyFes7eyL+Etb2LE/jOzvDC/nC9fzRKqKam+Y4kJrkf/h8C2nd5rvd4bZGKbryrokjLbUWoRa2d431Ts9xVeyhFeByNuovsoH34zYgtSyyRcLnUynR8liTc7iraUdBsLgid1QtWLnNPYXQ6RUlseADvSuyDm9AX8KhfWBWiUHGaWwflspAas1Q3BCIVGwVlL+pa2g88NPz1ynj/yv/8t/z2++ec+hO2o31KrBeEIYsM6wP+qtmc1Q1pXrlMilMk+RVismSX7tnA94q6llwlnNWMNmGvf0pqhLBByGYbMCSq6yHSvai1WsNWkNiE0SMrqyBG3YH/aYwYB3ErGKPCfNBj6Jw78T1/jz2vKXDud0fqamhhr29JKZlmlDF5s4OIKja4WyRhz/UexCNWdya6TeBaQAet3cBg1BfzfdrbIWjGadE+uSUUmSFWoV90fwGtsVZi/pA/M0Sz/oVtsQ14Z3hi/ej/QuaFpL4gNVTU5yYzTKbjxTl1wg3SWSU+lhc9o3Yu24Ck4XNAlrOs0qQegUuJsjyjm89TSThcvthfr4PbU20nQmr/HNOlW2D2U1nmakhOmtBFZJELBzFus0pjfKHClToUwd1UThMuwGxuBZrmdqi1gyx53h/ugxRvPxaWKNcVOp/Dm48CZ05zU14JcYrnr752vmkCCr25BukbHQJT+WCksklkLbUvhj1VSt3nSxavPWdip0JXdg+puMsDojGbCvj4Qu6K9RCm00WCMSzWrYDZ6bw8gQBop24nCpjfPLhZ9++Ihxe7QdSFOkL5nWDLU05lbRWgwKHUPY7XBNOMlaCikl0V/VLOHnXWM0zCURnON0FGOFcsJ1D9punG+UB25pDFtNiNZa+PgYKTnSjKN3K2CXsbRaZGvbTsgxCANQRJ2DGx7+X9Vb/7+G8+mnn0SqdXhPSytP3/+AbpmDaRjvsBxRzqJ8kAbnJUPO6BhJDabGpspGIi7LJopWGqwEUbmtFOfp+cK6JthI75wzqM4uWLrW2BtHKZ3nH2ZKzG/Q/xwb4cbxu7+6ZZ4jf/jXR8oqp9arcNw5g9VSKQhGSHSlGIIjaEfplZQaSwZV4KQjzkiGKs4QV3HIvPvqSzCa0Q/0WFB2wbRI+v4fqaWzvDyz5k6tllqliBYUxQ40p9A+0Uqk1iIiBX8ihMY+VFLNpHMlvSTy1DBW47zicLplv9tzfvxE+TDhVOTuxvHb9zuMgh8//PiWLKA217bMVN8G73UEN9mZ6m/Hp9r+/1daQSlEBlhlxF43rlzF8rZuDgpn3dawLRRJrLIKm+2HtboplLZa+NeyISnLFYpBKYXu8j44s0nbrAjlddfc7ke+fTgR7cCiBgqJ1iufPz6i08zu5j1hd8MyFVpqlATNGuY+0Sj4YLDWsD8dtxUZUkqs50YplZbE1zonkfVZEsdxZD8OdGdRXigy650o3y4zKVdirOidZtSCEmulietCThMNB9VC0MJrJjFKlE3IcNqfpL5hXgA4PTxg7K80WyvvUdpinDyDj8cjLa/0Vda2vk6o7lC+U1ImLwutrLRYWFpnqojypjes1ZhBbb5B8WJqtd1Rm7gTcsnML4mSKqlKLUOK0tdpmKm101JGtcrg5PuoQeGd4unzTEoF3cBqadYyWtDXw6C52VuJ7HeBaVVMq6IPgeY903WiLoUWK9VU+iB6YWMVpooqxVjDOie61hg/4nednmaUarzMQlGMe4NKlfmawFnc7gu0saRLlF7QNdObw4QHqrIs6cyw97hTIC+Ntorihlbe8hCMBzso5qxIDQnoXiM/GieDkRqtycmjtNo0sJK2APJ8ev3qSqFEyvQ6u6IRbbCtNBv/KNk2rW8Ibnvl47bvuTlr0qaqatuwd23+bJVWGwor4nuoRTYQrQUoslt6Blp02IM1DPuB/f7I/enA+3c3vEyRfFk4DZaDEtnbUhTT85V+idimMChOhxvGMfDxeSWlSG8D2VpindFac3ADzgUwnlwq16sIJUopqC4piKbB45KxufO4Npz3DGPEmMZusOJfNQYfDOhOzRIIUNcFcmEpjawSwyhxJdZKAJpBXoPc5cGVqrh31nWR+++vGs4hbAR/wxiFvr8lLxPX5YVWEiwJ1R3GN1KMpPm6BTdJ8O9cwfSKpbM7QdjpjVvTW94LxCjRFbVKLcPT45V1LphB9vN1SvTWMfPWPhYTSnXGvbRHhWBpFT78JGniusmbPu4szsI4wMPe8PXJoN0ebQ88PlUenwrtOFL3nrwmUl5pa6OoCvcGFcTlbzSEIML3ZUpUwAx7vLH05UIvmU+XhjWdw8FiUufzPKHsEX/3LS0m4uNnaknih7QeO97QdGSKT5zsLfZuh8qduko0Cz3JuoWWivK9ok4QK1ymRLwuLEmhUCxrk7hOJ29y2Zq/vd7W/vK2n/KqzmHjO2FDbdUmut8EAmpLUWtdIjpKzkKyb1+1VanIqPJ97cZn/pmGl/42nLwuuzmjtRINrJKCY7lpCIc6WsPd/Q3f/O53nI4HHu5v4U8/cDlP7EbLeNhzzYopw/PzmSkm3u88p+A4+JG7o+PTh4l0XihN0U1jqRljLXe/eccYHOMBUskUPhNTZlkmEds3WbnVnGg1UtKZXXC8O165ud3xxZcnsgcfOjpIDWGJE+t1osYiD+UiCf67FPDecnN3i3Vhiw5DulG2BwK9o+dJmsp/zXAexkApjeeXs6xiZaWVRBmDKEFqwnZwqoLqVKUw3rIbDbZ0XOlQQJWOAyhVyoOUZpkzPYtwoeRCzJKi/e2XB6idayqk0uglk4uIuVsHPwSsURz2hmFw3N8eSbnx4XOE2tENnDfsDp7jYeCLh8PmNzWEYWTY7cnfT5z1VXpd5o5SA3rsclrPE/Mc6daD71gjXkJdFNp7uhL1EwoWtaMRUTWhlKL4A9oU7k5QumOJz5TcBb3UwrMpXaFd0NZi3R7tAlhL6QsxT1Tl6f6ENhlDZb5eyG2VivPjyLLz9OpIcdnutq/V5tub1uSelzbBihEPmdRKKEkX7F0EGDKXmzNGybC/8oviDtnug97Tg5yYryn1AgRvKitjNq7z9REg3KW3ckJuf1RYTq22lAqNfY07Ulq4RS088t4daEnx8cMLGsV33zxwGA370fKSDddiGD4/cj5f2CEqr2tutElMDjY4wujAWOIlUmPmww8fCMGyf3eHUnCz9yT/c5bUzhnJt1LCTVancUaRe+EaI+p5IgTPMAzk1lmWSO0NHTS1S1FVxCKZ9pbcDGopEiIXrICV210To2m18fnpWd6XXzWcQ2BZEy8vL+SSQWUR9Q6DVLJPrwR6AdVoSuODZtxrQmkMqVHXToub0D03ioWiNdepsk6RukRayWhdsRq+++rIYA1/+njlumTWVaxHy9LoKPww4L3mcIDjfuDbb++Z18Y1n4U3aorjwfPVVyPvH275m7/6hnPUfJ4U+8PA8TTyoj9j4ifK54X+vEqt/M6QpydiXJmWRHcFP0gYmTknVAHtD3Qt2bpdabraSUBUjZJg7g9oGncNYqyUlydascBergfaQovQZrQ6Yd0t2g5gDYXCmieKHcGd0P2KYWW+nOlL5Zsv3rPbjzzvAzkvTJczaX0VZ4uqSqQ+0gFZmtz1QpDw5F7rq91ji3QR8Ea9nqrb5VN1thOzYbSRYC/vwImJuNYiNEMRcE80uZsntItcz2z3zGBkOAuiXKrIGhuc2f5MBy3rtlEGo2Q4D/7IeZ74/PLMF3eB7759x+lm5HAceK6Bc3XYP/2J8PEjfV7pKXNJlaUnqtK44BhHhzKG88tEXhM/vTzhvOPb055hcNzuPblY1iwPivvDCD1T4ssGbxlah9wKJcL81Hh3d+TmuCethXnJWNuwXhiF2iE2WLtE0aSmKGvG58ydG/EWWt7Krlyg9c6npydy+pVJCH//D/+I0oJqeq8pCnEHIKW5+jCSauHjx0n4qdLEs7kFAXuraYOlGkXpldIay1RYUiaXTjOeSqZtNW8dxYepYFVhrpWm4ebdDa0p4rolENROcIp3d4Hd6PFuh/WWv/u7L1imlaefHtkHy84OaAauaeC6Zq7zKnm280y+XBhbptQzvZw37a4ABb1CWReyMzh3QGtP2EmIVaJBk9YqRWUw4sZZu6eUzvTpif2g+e29Z14q8SrV8VN6RhmFCUBz9LLH+pFx76QAYVqosZKrodaZTmG82XOzu+PKTFKStB6XwnK5Ml8melOSVeM9AGtc3qxiMjB6S0OXhxsb8GNexe9vjcq/vJT2t7ulVj+vpK/yvL55PvdDkIpG41BKE7Ok6w3GCTpdhVPNRbTBxjusMZwGQcaVFlWStIFZwjgwhsB+vwNVeTz/hFaah5sRawznuTOnGfs0Mdy953jck/c3+KwwpxVa5un5ynRdiGui9Y6rokTyXqO6Ji4dVQomrmjVKErTKgwUyXRq8vvacIQuWyLG0uy4nahQSubj8/QK1ucAACAASURBVLNcI6QYlaZhF3YcDgPDum17EnKMLlLR+Pz0solADFobdjeiZjqdnPg/f81w/tM//1fGMfB3f/cbjNdEOrU3Uo6gLdrvideZ56cZqxTeiAWnVRh3Dh8MTVuqNdRcqKmwzivTJcEwgLO07W7Tt87hz4sAPro3tFGcTieUNqRVhARtlrj9+5s9Pji8HbDDji8fvuTl6Uw8T4zBMlqPUp4peeaYmZeVsnRSr5RrwreMLldafoSmUVVDbbSqKCmSV0XfHYQ6GbeS13lb61BAweuM1oUZTy2Z/PTEeHJ8+bv3XK3hg82SPJcuqOCwbqRXS20O6wJhsFgqzJGWGrkZelmgXRneHzmdbshFUZum1kTMmWWaWa8LHRmOMOxAicyxt84roaLNFhb2loSwHZyvUkEjJ0PbRO8KRFy//em3+6JSm8pFCBCtYBc8u3HA+j1KG54vH0mlswuS8L6uUGonLSuqdexoscFzujmB0ixZBrOsUYYzDIRhYBwHUI3nyydujyceDg+SxLg2cl6pJfKbcMvdnaPujoTm8C6ideLlZWKeV2KqNBT7JlF03mlMU+TeoHRMihLbqQK9d4Iq23rfUdpj3AlqpLdEtw72O0yvuF4oJfN4Xhm0ZjRGQtCUYn9w7E4HhjGRciZm+f3LFGm5cj5fKLlg/A7rPO4goXP7g/2zW/pfNJzHG4218Dxd0VGBkwv94DxdK4rODK1yOr3qIo1oSC+Z1Bp5e1KbrecErV9zEVHWoIxmGB3aSVJfbbD27cU9HiXXcxBuSEKS4fhuJDjDw+0JgHlJ9JxI1yumRN7fe8bBcbrfE5XnaW08fZr48Mcf8aoQVOF8nrmcF2JcSSWTcBSlyL1SmpSvtt7Ru5lswLkjXhtMvhByo+lBOl7GE9pEdPwMveCCoaD4h/+6EFPhcZqIKWKY8f7E4e6OlgrlGhkouOlCYeBi9hQF1m8Xxaq4zDNNKe4ePO93Rz786Y88vbwwzZGYtyHSjVALxmjC6OjNvK2bpYqLxA2GVhWxWqEUnCSO09W20jbY7pDaGBnKjbNsG5ZkFXQ0Xkkaf8mVS1tRa96GN2MBpxzGCJXQleLhywdQEJeIUeI7HUbHb35zT22d6bKQcyGuCylFns6KEDT76qghoExn5z0HF3h+VLxMme9//4GP3z/hlVRQHk6GMCi+/uKG+7sjU8ykUplzY14mtDWApxqhddxgMF4a1WqplDVhnWF3PGCdx4+BnDtz2VROPW/8cBNUuUuSf+6ysmulRZHWErpnnKrENNGiNH7TG4dTAAJ0cXf1OlOzYj9I3vOvGs793tCB67qgjML1ineWwxhERqkLylfYi70rV82aO9OSqZuh2BsIlu3abkT25BARgxau0TvNvAgvOHctiOh4wAUvSDFCo3ujeP8gkYqn/Q05F65LlLT1ZUW1zM3BEnae3SmQo+V67bycFz7/8IhXiaAT58vEy+WKMlYSDYyhKEOhUXojpkzrYNJK9ZqdugHt0EXM2dYF8W36cbPQLZhW8MFTi+L3PyZqlViUXkSP5ByMxz1tieRc8FT0GqkuMIeBSsbY+HYHXFMk9co3X73n/XHg+2Xl/PjCuiZJWkfkaL01MArnnXDK2sjpHjNKawYnap6SZJ3UVtLJaRJmJWKhDk2GUxuLUhWFII+1vvKhCq8MTimWUslZ4i+7gtHKGm21k1C4rTfk7qt7UPD4/aNEfCgYvOW7r++pDZ7Hmek689MyU0vhWhdaNQRdaEV47hAc437PfIm0Yvj8/MyyzDycHKe9xdsRqwP3t0eMDZxjYs2Ff/njB2KMDDtJ7OtaKjWMU2irSKs4qUoSkbA2Hus8w+BAFaqWAHTVhMprm1vAaPFklq6wG8DV6bSaUb1iqJBn2vqaEK8Z9iPGGmqqm8lgpVUlAhTzK3lOfyddFyocpP3XFbTqpB4xBgavaEbjVKA3DdUSgsEM9s0J0ZQmbhC+NVokXr0xaAhWoaqn6s7hJGqWk9nRteX2JuCdRlNpufD58SNVK/bf3DKOA4fxQB81u/0Dy5z48YdnYsxcrhPD1JjLjst04fHxzPnjR5brlbWv6D6zlipVedbQrcOFHW4Ljs4u0XIjp4SqDdsV1ExTGvvwNVTQL0+oFJkXyFXRzA7tO+FmT7Cev/nrW87nK//0j/9CNwo/wuA9BzrFKfLRYHOlx0zJSUK/UiKXrS6uws3pyOnmwJIb338483KVMOqOVCfojaroeZW1V/c3JRadrYZdS+C3kcRDSVCXt7ybjkEjLFxBkym1k2tBa+GgnbV4pwi645QAHqUJ7qAaeCPNbN6PaG2YlyqrsRLqbfogTdS3B4/RmsFJX6nzjsEN7G+/Zp1XjvsTtYoLp7VMLZHr5coff/8v3D68490XnXGv+fZvHnj8CV4+F4pxPCXL0/cX6J/ZjQe89wy3N+jg+eLhht4rLlgBt9JKLZnrdcI5w/24o42aaX9CG0M2nlogPZ1RvXA0evt8WBqKDATnGK2TlMW+5WO1TE4RRWWZZ1KKUBNGVXSwKGMIgzSkrTnSemfwB5TRXC8Tv1BE/2XDafdi/rWDeOCMNfSaqWvcDKqWrhUaJ7xctSirqVZTszhButIURNdqlNqAho43MBglTvWmGIIASIQ7tA3cHMAZoQDyGvmcC10pgh0Y/EhwUnd+Cgee7ZU//OGJaS08XlfGbFC6MF0S148zy8uFmFZ6XaDOFKOpxtCtpjmH9x7vB3pOKKTF+LWMSbUNAcWh9zfQjAxnLeRopBRJe4xT2HHPbjfy7VfvGD5a/ss/Sw16sDA4R1BSJae0RI+Ifa6QUpba+FpFa9lgGAdON0fm6xOXdWFaMynLSSckvgxQb9L83fQWC9Y6GoU3Yhi2WpISnK+ioVVmQyPFEqfxKCUm7p4KqVQ224qYwI1h1J1Bd3H71K1YCXBme19dAGVZl4VaKtokmlGki4HgOb6/wTqH0wHvPNoY/BDY3X5JXlZ8l/zaHGeWdeH5XFjXxLJcMc6xP90w7gcO4448X8mzZa6OpRnml0heL+yGjHee937PzgSO+xFnwXrp9ZluR9KqZHia5d3pRLeOqkc6ita1RKnMC950Tl5KiLIxUtWI+FGHYUBJujQxVUrqgjdsw7ksCzuvcFbJKe1E6SXxoZIQ6KzEjp7nRKnlV56cg6EpzaISvXTMsrAlsoirY5am5ZwNO2+43XsOI+yOI+uUmC8ra22sVfJ6qoavHhy//cJTNuHyjz9cuF4i+u7EoC16uWL1zHg4MW4tzMVo0m++EAf97kTVhuk84azhcAJXJ278BHHhc07MMTO9TMS1M106y3Ilt4RWHeM8x7s7wv0tuFEcI+eFNCUpQ10Xemmo3onPHyFeOB5HlBtp5YxumuM4UqxnorGWwhxvoTWmcydPE/35n1mXzOADnZGuLWp3wt+8R6ULZV7krGqWlhuqR3w3KH+AdoW64NSCMQNrjlyXyFoKqVW5R2rDw82As4oYt/6NJsNZitxB9zuRrdUeaV2uBsEp7neOVCqXOYuWdbTo2lBFc7Mbud9bmvF0HUhppuSFZDRVaZTrDA72O7PVJFhU16w1UXvF7604OqKAUrUpcmpcnyNaZ9CReVrxznP/TvHtN5ZsAm0Z0d3jGPj8cuWcpJYh5sSHl8w1/Rv7IbAfPYf9nt/+d79lqpW1VuLkyWvk44dHztNK/f5HQgh8++0du53n1CtOw3dffEGpjfn5ItLB/RFlHe+GQC2wXArdKNRhQGsoBkmZD+KLVXSsc+AH4rKS1hVnO/uDk8qJKr1CbvTsjzvGIMo5pbeYlr75nXUnl0RXiuIc7d/pY/j3Q6WthB7nLutKTVE+4FZyX1Lp1KooWUnFgTU4JdYfXTs9CkIbS+XVf3/YOx52jkuyzMVsGauZXJHTtySxF3EkaA1aYZXidHcANNqLTzGnDLXQs0fXyGASs5a9v6TKNE3krFlXQyqRStvc+J5wOHC8fwAT6MZTJmmsqllW6L7pgctyRdVE6yKQ6HWFJn0ZkjlTxZVQRlorpLhSe6Jngdu98zRlqWpE+z122FO7iNSlXkReJ9UzWksxjkSrFMnvVVkolCTtXLU3AVa0Yr8LDN7ywkopbbtDAr1jjMUPA4rOGlfYLFjOaPbBYFRnEY0fKhhUNqimGZxn9IGiR4re0WmUmqjaUpWQ9A4IwQm32cTrG9cCrWK91ErUpt8MDh1FXIpYw1Sh1s7lvLDbJYIVHa33DqsMO2uZc8WEkawypSqmtbIsF2JYiYNjv99zvD1iWiTUTBksJRaeni+U68x8neSa8O5A8BZttlCwLdFBpU0N5UeMM4TgpcmbKlugtYKXaYni0c6CkjpGs5Up1d6JOWOdxnpDW7NUPhjpVPVDIIwBtFglU5aoVK1fXVOVpqAb+wsjwl84nI/nRzAOPd6htMR3NDpRd4wCr7YCLMSb9tNzY3SWUxD0k9EzBovbN5oSxCsEQHe8lXzSr7++4+b2hpylm8KPA94algY9FlwvGKV4d3OHtpYhSHKa8g+kuPL7f/s3YpqZ1onaM+8OjtUJurtETcXAeETpE6fjyO3NnmAhmM7l+RPTZSZfCmUpssr5gRSjcJ4asqqcf/yJfJ043n9Ht56lXKFqDuM7nIeJTksL9fyIUg09HAlG885bSu1MsbEPMzflez5envnw/actZAaMLhizgt2j1MguGEa/w/tAwTKfX7h8/ExLK1aJ28FYx80Xf81+v0M/faD1zMPdjt47H384U2vHBoeic9gdMNoxDCdyzjxfn8EM/N+cvclzXUma3fnzz4c7vAkAATIio3KqVJWspG4rqXqhNv3/mzbrjRatTklVWTnEwCAJEsB77w4+9uK7iLReVizCuAgjATxcv+5+vnN+Z/f2gLUW7wMtBap4+t4zjB3XlMnrC11X1OTuHxB3wpQJWsQFjZjl+Qolc3q3Q7wluwFjHadxxFvB+0SMiT/98ZG4FnICKYZpjrw8X/nh2x+orXKeZ4TK2TTcMPKP//gf+fH9R/74h79QqJRSuS6F6xyJ9Xs+fHzi9mTZj0LnRoYu8J/+429prfH49MIaE/3gaTTWrN0zt92gyq30NCOE046cM58+faLlRGBV2v6gVzmcR5xBAohYvARqzJT5AyZGqCvTtTHNcBg8x123FQsX8jrztM7I5pyLWacZ1qolKmUtnjrc3+jL4OcszjVHpEHXNEkiVkGAxbzWm+sO40SR/dNSMQ0Gqxk246x2qujfomJwojvoa53eYd8TOsvz05UUE85bxHlyg1iqQresMHQdznucvM7pHKkkni9nYpxJKdKaGuJbE7oopKJvP+s8LQT645793REbr9g40ZaJ/PyFvFpK3mJM4mhoxCc1aKWxTBMCjKeC2EZpGYMQrKcZo6Hhsr00jGB8j/OGcTTkXKmm0LuMr1danJiuq1b4ierQGLCtQ6gEK/TiEaM7YVpX4nyl1bzNGbWs1vd7wrCnWy/QEre3e2iN5SWRcqVYvZf2puFdx2F/4jrNPD4/Y51lHEe8Ebqttr1WCMHhgsPVjEhWU7rvsG6HuKNKlk2DECIN0hWoHPcdvu9Y3B6s5+HuSOctIUTmZeX9xyuVv9bflVKJKfHycgHTWIs6zSyN4+7Am/s75utMZx2paZFTyno3hwvLvNCZnlECYdfhreF0eySEAAKXaea1lbY0vU+KWKz1hCGAWHw/0NaVdU2YEuklY8XiXNAThbMY1zCu4UXv8CmtlDJjasaQyVknDLteS3Gt0fv4ZU7EVDYIOaSi7NyuE4ygUUJjcD78lGn9Ny/O+68eVDZeV0xTfoxBIzZ5zbw8nRkGz+2bI+uSSfPCkgwfJ6HvO4ahx4ngRb2ErRTc1htiuz3W9dzuNBUxBGFdMynbLZepx9s3+57eOwJZ68zDQDOGmDNzilzniWWeuZyvSANvhJgqMUEswlw6grfsg6PNF56++8L8fGZ6PjPPiXXJLK0jNa+kObEUZ2kms26Uub4UassM+QXjM2/uFfJ8/vSBshbCnAk2cPN3/7hJ65m0PPPt4z9z2Ad+87e3rHPj06fEeR0x4X57yVVEGtZU9sGy7w3FDCzGUKYVWWfiupBN05hTLgQf8Kbx6bs/8hI83qnp/OMPX7BWuNkPIJ51fEPLEfP8F5y3+IMGgQ9KXsE2FYccanU7nDqelpnHlydOu4F3t7es8kCUO65PH1kuH9jdPdDtv4Y8QVnJVrtPHr76hnEYmao6fw5toafy1dtfIM7xzcPfcpki//qnj2r+rwtGhL/8+FHrSoLZcKQ9ZV54evyEb5XfffWWz5crH89nSlYlOi4rNUY+d5bcPF/1js4HZV2Zwt5ry/kcMwXB7I4U7/l8nTBAbFvBU3zR+axZsR7cfgfSWG3BSmOwQkqKv2lVqNVpr6wVzODYdZbzNZLnyjlW0qxEDVsL17mQUlUhSNgQodA20FlpDUrm5cfPW4zxZyzOfhgouVLnWavjRAfYxgC1ktdI9aLMF1EIUq2wJqNICvMaGdKjr5ox7QaBcoj1eAvSGqlXv+W8oOjIpm+d4B3Be6RVTFM/RW2NlJKW69RCLUUbiUE9rlX9jRWrYoxoCqbFyLpeuDyfOT+dSUW0qhAtrUMMzVgaqkKXuur9tmrMJ5dIKQ7xFosgckZMwW0ni3GvpuqYrqQ8s7bGzqhbKqXMvDRSFkQCjaqcVlP1ruKE3sEijoIjxQvUmVK2+wlqCHhFei7XM2mx7HYj1glTrZtA1iPeU8Ogsz2rb3XfWUoWgjfqC0YLqJx1BN/o+4ZNCynrLPv2sOfCiSu3rOfPKlptM8e8VGoyuKZ1EPvdiWEcydOqpT05g2jutesHxl3gMkWeL4l1WSiz9oeuKWnN4atpfoOUr8uEqZV9H5jTSlgs0WkomtZ05y2wbsdFEVGPca04A8Eakmw2Uu/BOWKZoTVy03pEE1VHsbKF8YOjmkYhbZnXQi1JdYQilOLxQeg3sLZ1IKse/3JrrFl3TdvqNpLShFQzRkEEreF/IlDogWmZVv4aev83Lk4TLayG6bNR2tx6xnphvB3xDfx+RATOj6qA7XtLrUrXttaRgXmaScvC6A2DN3oJNoE4Z8o8sZOKp9HlxGgqb256jLHUpUOwjP0J5xwpJUqtzOcLaV15+uEHaoq86Tuq97wZdlzWyPfPF4o46ANj39Ed95S6kMuFZZqYv5ypOdO7QN8PIB3nJTGnTCuJXJSOpm1buijml5k0Z3b+hdJH/jxVQuh584t3uGo4fvtMyYbL58+UvDC//Jl+HPmH//BfKSnxx++fmZ4/8/T4F2oz3HnLlA3naJCdp9t1tMExdxYfBno38Oc/fODx448UL0h/pGtAWil5paSVZB3GCJd5Rqxh6ARvHXERrF1obsI5z/7wNf3B8/W7julsiM93xOKZ25793vP2beC6Rv5yncAfeXOz42+++SW/+82v+ON33zO9/z17WRgOHe8OjeMh8UMKTMnzd1+94Xb09G9Hiqn8/v/5f3n89EwjMw4d/XDH8VjobwYslW/uB+LquHwB6xzj7Z4UZy5f3pNz5uPzM2NcuDGJmgt1zfSD8Ovjnvnqma6DCkSxcLo5cDyOjAFCXVlfMjMGL4HdLrC/O9HEk9pKNYUqgQYbDaphXQKEtttrnAvlNNc6UEskzS+knJhjxqAv45T0JT0Ex9BZxs4STFB+U1mJRQMDK5DFgNHIZWXGUOk6j/eONVtyrnx5mpWK8HMWZ1saNVbKUslrJa4ZX+3WNqUXZTbosnOC6z21KAoEo/fOVCpLTHhxhA2EDJZSmprhTcHSsLXgTSM4jRvlLErXFocxjma28HVMxGVlvU6YVhh6BxacbSpCXRdM1do+i3JoU1ZURCuZHLOGmEXvtsZ3LKWSatGFuc3wBLYeC/X0lpaJc9SiWLPokSlYBEsfhNgq12WlxIk8X2jBMwxHprZwmZ5ZlkJMq1YGuqA8GVR5dX6DdPvtC9NYY+JyXfCHAXEO773K8iZBUfBybY2cElIMVpxye3LdaiYmCB3N3G3ArU2x3RRkm3VHHXrHUgsrlt45RisMw45+2NF5CGbelL9A7wzeqBgoCLsQOA0e16vvOq0L8/WqJ5EC5/OKiKdtP5eTRnNGObLeM449qxQm0XxkbVu/aM1ABVuxXnBBMM3jREASSGboPH2wKpLVoo1zTZDeYb3F9QNYDykp/NttHKWmJzm3iR7NON1Nt0WiBUyvlRJN3UMoSaE0tZgqn9zgrMWFRsyQtxKjUtuGDBUKRr+vn06CrwVNQjPaHpfSz1ycT7//kVYa7ZoRC/2Nx3hLzKgjf610zjCMHS54/DDqw7EqmmFZMrk2shWm6sgxsO+E0UIQ7T4MS8LmjOs1c2nXhpiKEx1sx1jBZDJ675o+v5BzpBsHtaG5DjGNkRW6gW/CraZj1sx8vfL0+Vu8VUHG+YrxAWmKyHB9j+17bLD0OTNdrsR1xfoesYHgeoxpTNNCLoWXjy9MwXP/ux3eZ9bzewKGh5CZa+Xz5wqlchfeUHPgD//yLTmtzJdH8jqRbE/dIljOew59YNdXRl84dLDrGj98eM+nL5HnpydqqeQ5Iqnw9usHDvuemyA40/j2/TPXJXJd1XViQofrAm/e3mKNYZ1eqDVy+fwd1yfDxx9VM+iDAZvoeWYwHUOCQiN1Hce+43bsEbnyl/f/nbGv/Ie/e0dNHSV5vn+B9z+ANyt7n1niF56vjXdvHwid5xd/c0foe55eFlo1/I9vP2PfP2PaineG20MgDAPH+3dUMh8e31MirOlEP3R8/c0RaxPWTvR9z7jb8+MPH/j+u+857I/c3Z7YjQsprpwGwy5kchGuM+yPJ0I/IkMPTljySm0zQx8w0jGhlseWrgiNwSuTaskgrdJvoXMjC+IMYbijND2eUjOmJAXDtUAnFS8N6wIWQ98qpVWuL2fWvGLsoIVb00LKmbzMSgPpe7oUaAi5wGoa8ZVQ+G9dnOmiFAKT+P9FiFpVzkwrmmLfZCLFXr7eSdtf3+4F9SKaZqgbkdwavafZBrYqcEujO/q1jd+KSEtVX6O0zZeoRm2tUxOwbouxWcRpt2VJGVMbSRpSF6xpBNvIFsbeaTyoCt5brBdi07dcdmpP9Z1TZc/pMD3FBA1yauRUyDmRkmWeJpoIvXWKYXEGYywOSzKGebpQ8kpaJ2opYAewZvvM9OjvXFWGDvrCi+uqELMU9ecqig9x4gm+Z7cPBGe4iRDmSHt5IZdK33V0IRA6ZSSlVQmHsnGMarFUY7RSohWkRcQ45ecYoQ8e75Xt2lBvcBgC+34grR05edrLwpKSwqZNJOXInBpLXHEG+rFjfzI048lF41Q5Z9Ky4C3sgsH6gHjBVNl4R4bWHCLq0tJnbMH7wG63ox/6zUboCMFhcHhT6IOnC5ZWHRmrpvUQlPJoDa2sGg6wVp9diuJb5JXhq+b/VxXc6UOLMW1rPAvbbLLpSbA0DI6Gx7WCNFV3vbFaaNwKzlmqUyJg3e7AGrfTZzfngtiiAfSqjdvO/MzFOV+TjjH2e0Xox5VaNDRbm6Ft9LUlG3zdDL9Gk5nWCF6MNlWlgvUVZ+GaK7EaHnaGQ2epRccRTiwWA1EXNJ2jWce0RGqDfhDEwu5mJKfEfJ7V2CBK0z4nlatNtw2NU8H5whgKtlZcquxOga/f7onJEpPgjaZm5HGC60QYHGW/ww0agm5xoZVMq3tS0aqCSuX840cuYnjeneiHkd/87a8J+x2/ffOOuC58/vBn1vVMuX5PmlfW5zO2u6c//m80LrT2SDWGYsD1R3bDgev0mU9fnng8R6a0kOsKxI0YIOSXmTU24v6BMI78l//6W7yz/M/f/zPTNOGM+pnFRHKtrF6hyb++f8Nu6Hn3cMvLDP/rhwzpGbf8BQGNr417jrsbzi8LP3ya+M27I795GBlCR+cDl0thniouTPhwoUxfWPLCp7rDrYFv/3vEuMbp/sg3bz03wwljDC/nJ6Z55Y9/FoTG8TTS94HRLLje83DzK6bzwof5EZMXnp+f0Td+JVhL/zDy21//il//+mvOL0+cz88IQq4d/vQOe7hh3Aznh92eLgRe4qQ8Ya9VhJkGreLKBWcqtlMxbElOW+RyRMyrT9iqi8davO9JuZDmBWcdXQg05zh6T7peiJcZ552GHWIkp8p4uGG/v+XLx2fqZcaVQsMQ9oPWYSSIJeMH7Xz95v7wE4Dt37w4Q6c+SNdpNbfYShU9k2MMbTu351y3BYHuDE7f2rXpXiqizpEtaUjTWx+C0MTCVhkIrxvntkMDuerie2XjGKs4Q3GO1irFaHlRqujOwAaCNFov6ILgqiFUg+s8fgyYqCVMoTXclnbxooiV6j1+7BDfk0yhJPBeC3JpiVIhpUw1hlWUDjGtytTZd6ocFtGqckNTcoQPiO8QP9BqpGZ9KRhrlPtqDClVrlMibm6gxl8xIqYW0royt8b1OoMzxBgxqLVM0K9r2HKSRQuinNHTQd85jrsODOwGBy7iZKTveqxzFGPIpZJKZc2V2nSntsayleVRTVXUihRN87TAWhwrwrJocsPvHYhgduCdcNx5gm2cTqMqmd6rspoz4hy7cYDccHpxpOa0/eY3YTFXQuf0NJRXcl6QrcTWhR7bjZiybg4rA62o17gmWvPQRO+wrZCTlkY5r+H0tv1nzGvmaVOMX/8HbOFzdRTVpuEdYcuabIF26yy2ORyGIOp0mrqFvI1ycm30vVfTRtavYa1VES/IFn7/GYvzH/7331EqPEc9j/dBjdrPy0wxm8E9Rq7nKzUX8prox8D+1BMxrNUQ+o7bwx7TLNIsve0JNkAW5qLtTuKNdnS0SnL6QYXWoBRSXsklsUwTxjT6fsAYS3fcEWvlPC2KtkxZrVHZKEfHNOzo2fkbdgJHA2vzzC0gruBSZkDoMVxPR5LtMX2P8Z7h9hbb9Xz+7FjmhJVI6YVA1AAAIABJREFUjZnp+aNGwcQpYWDJ1DTx/f/4jhA67k5PqvzlSGuGfnyDOQSO35zIRVhigWVF5itjHzgMHa5dMOuZ6eWRD5++sKaVlJPW8bkO1kSJKx/mC83A91/eY63lv/1fDtlqF6xzHHYHfVjMQgUmAq1VpmUm2EqdPUcb+D9+tafJA8U9aA9KXPj+8cKf/vge8QEfOsgr6bIg9gySuNbGi2lgF3pnsW9+B7Ljw9N7pvnKdVrIqfDtdz8QBH71zQ03x55/+rsH+ruR+4c3zLHww/dPrCnBxzP2znD/7050zvLl8SMtZUyasGHEjzdA48cvP3Iaem5Kz2k8cH9zy5fnKy/niW5/IAzDTznieD6zXFdqTQiVKWsQ+mA91MqHT0/UVrl/d4P1DucMzQnN31BLY44LpiTsOuOspaRG2Y6lsVSek46qgvc40+jDqFeJPtDtdiAObxwWS9/1LPOCaVoG3Hea2pmnSM6Fy7zQamF0SVv3fs7iDN6RK7iq7xaRhilQUgYHXfDEUlibKlU5Qy0NSsM5Jdh1oaPveqjap+HxWCxN+1YV92/q5hjSUiS9hzRaUxe/2Vw0Wkeu+A0rDlsazmnpqrUNttnm6wzVWBBv8GiVuyTBJNn+zS3ThsGFQNcL0neYEBi6gOscL6IAaid6TwzekwVqc5S2nSCAEhdSzSxeaCIbNBmsCWD8xuepGJMR1/CDJziLbGaLNa0s66I78mvDlmw1hyapYaFo4W8uBWOEedstdwfwIdC5iHNCNkXpB6bSfNuG80rBR9T0gLVYvzV+1UgXLPve/dRz02pjXhKEhPhCaduE2jm6XjlO4gaeZ08syhmqtVHmSmyFy2XFAs/PM7mAuznQe8vQBaoBVxLeuq0P1LI7DNSYYFk152sNRnTH0va6hPMdzo90AwxNsMGr33njF5eaqCUCapnbmA/UmnWn3ZxQRrSGvm1g79a8Nqxtav66rnjvMC78FEAvpSpCky0JxPZ5dB5fG9YJYt122hBN4JSCNQ4x0PUdViymqnWvlEKtQpCKmJ8ZGVunKw2DN/oWzvOVZVk5f/jMsO95+/AVU4NZtr5FYzHVIivcHg+8+eoBYxwGr38ax3pZiPOqXYe5ES+PkCZu7u/wu5H98YSxjqdPn0jrSv9qpfInjFgFuWIopdKJ5c7f6dvIXcmlssSGtIyrHTZYwuBp60SaXigp6gOwUfqSaVQMYbfjdu9wfcAGx64fsCI8tgxxoW9V7ZZvHygY5ktUdIe0zbj/Qs2Np89aR2+6Hcb2VH9LjSv5+U8K1uo8h73n3d/8ksvTxJcPF56eX/jy9JE5NmIE0/VY5+ltpJNMrIlMITVDKxtFj4qzHjDEpECv5hrVCtGoUOZsxQXDOPaEITA3oSSYFu0JPSRDkMoQ4JffnPjlb9/y9FJ5fCzENPOHT888vAncDkEb2ppwvDmwv7XcDh2da3gXeL6OXK+DQrmfGjlGzpPhPEU+Pf4rh/3AP/3Tkf3Y8bf3J6RVWjni+wBEhl3g3/3D35KXifjymWWpnC8TPnT0uz15Wfl4fuFODtjdid3NicM9PF/OTNPC9boSY6LPM65NNOc05hgGxAhxesbUyldf3SPOYQZHqYXp6ZFSGq1pZUSqE/O08umHJ4bDyMMwMgTPse+Ua3y5qIBUhHmOTNfIm/tb7oqwPwRGqy/6al43loZzTpvgNufZOFhaqcrWqhmFcv3MxbnMCxihBj2Xax5Q6IPbkhlGBQtrMdJAKkEs3rrtT0HEISbowjVCc6rC5NKoKp9BdZpgaELDgXEgASyIVR+iOA9GtNa9QUlsDJxKLQ2DRYzVioWWkWYx1pCrFs9WejXODwFXIjknXjkcth8gDFqGJBvR3NitdVu0NbtB1480saR4VRJAWahV0+2wCVm14RpQCrnOykBNszZ9UyhSWCbDPEeWVblAMVfKRn8WozPLzlUGC3QBYwyxGaopP4Vzxag1zIjaSJ3TmemaKwh4q3PBXAwpG2JRyh2iCJFc67Yz6/3dhcBugHqEy1U7S2M2PF0LqWhnpngQJ9tIpnE7eoJpdNKIsTLVjrQaLhed94l1GOv0HtmgFIWHuY3qB017bpzDmQ4pe5pZWdeJ4ITOWpK1NOvUZ5w0Mmetjj+sKYipmm11FiGAczTRMuKGgHdIqxvg2erYqVXVGEANBEadQ7LNgjEbBnQ7LchGF2ztVX0tiGmUnFnmBe+c4nhcwVhLzlnRsRiQhrEaYK8xqY21qcfY+oD5uWHrD+8/IM4z3CrafgwdfvSM+45mtX3JGsehG6goWmLsA8f9QOcdNUV839MPA1KrHi86TZWvppGl4boj1hwxBEpxzNHqYh3v8X2lpjNQdXhe4XqZyakRZ6g1kfKiA1/pcKHj5nCiGFgpLNPC+ekF2wZ8C9wcO95805OnK2W+sC5nUrziHr5GTm9Ynh7J80Twe0Q6nPuCsZlzXqA1fnv7Dt8NzOVH8nxl+vRIzRlrBzBqFRRr8eLIKTI9f6K1AiarVC/CU2l8yEoizLWylFWD31W7IIIMdNZyN3Ycu8DTbtCEzvOZtEbEFAyNuioDtQvQBcPp2CNiuHw5Y4xwOh4JXcfzGdao4lPXW/bHgdYqc040A53TK0dcDMfdjl89HHj6fObL5xf+9fGJ//XdCwWl+N3sD+wG4d2hsuuFf/9wxJTGp7mxpMJ8r0aEH//yTM7QvfuafuzZ7zyGwvvPzzgRHg4HpGozmTPgPTQ/0vdHuvMLLv+A7xx9Z1ntyNLtAOH89MIQtGvTmcLOFsxQiR68OyEWihWqCF21mAZuBFqlZh1ttHlCqLwZR00dSSPlhpwNFk+9P2hSZM2I73F+wPukqZslscwTnffsTh0lzTx9uLJen/XoGgbEBWwqyE91HOj8VSzXl2dKKYyHG0IX2J9OW9foz1icpapfsNTtzbd1j1RUujJVQ8neCs05Wqf3MuucKrEFLSUyCyVnWq7kFClZUx1WrCbpxWy7q8NYD7IV20ql2UCrhWlRD21alVIQ41bQ1FQZNije0pqm9ru8Qtkq4KqQqmEtlmu2OAm4MNAEbBcwwx7je1ptpFWZPyKNIQinfSCYvZa95lULdfKVVhdCsFQLteiRxjtVI2XzBTfr9DMoEYOhiCGmxLSuVJRkmFvZUIrbHLkVqJGYYDZQtktj3wWCtdCU3VON4kjG3tEFRzcOiDEMsWDFchhHjDjWeaLmiNjMsVYeTkeqaUTbCE7wXk8kzRicrXiJOJuwtmzN1I5XQMOyJCjw5bkhxvE2dPTWMfQN64UatZfzEDzFG8b9QBh7QjBbf8qmxVvdnXJSH6urr4+hYL2n3x+1iDZooJxiqFW0vCpn1lKwnWYtNRnVQLQQy3h9nkzWZ5UMpjbktU7C6GKQps+OdUqLyIPB2UIrVmsuvVOwWU6aVTWa9XSdzl29d/q72Oo/nFU+cMk6Y4ctmguwAdExsp3O5CdE6OuU4t+8OBEddcQm1GKQqqHSpc644BidSv2jtZjRY0eH85YQLNY4iIY4X4jliTQn8pLB61Fn6A90btBGYNE2Lec91fVULLFqZVtzB3JOfPjxe2qM9CRqaZxnMHiGcEAEpK04aUj2kGbS5QvSPAfpmavlnAzLRfi0FN7tAm93Hbv+HTZ4Irp4l8vKy6cvXN2CiOftyfCL+z25vSVl+J9/+BfOlwvTcsEAd3e31Gr4/GkGDKdhD1RKumiH5+GBsl7JX646rrCWJSXO01ntYbXqsU8craqRo+WFUhceV8cjQj8GfHC82R8I3rGkSK6FVnVMdRoqIVhO9/cY65DDDU4svzydWOaF3//LH0it8v5jxy/f3vGfv7oBZ1h8oQue/e5ANYUskY4ZyWq4ryz0g3BbD1wuiWVOXJ4vPOXEZRoYRs//+fdv+fo2sD9paH55NNRoeHfY45zn+NUddghIp0VRnStYa/CjNlBP5wuh6xAzqABkEq7bMfziDXULIwwYdhjKPFOWhZdz5HpdODycGHYjNSonV0IP4nCd08UfZ0iJtGTIkd7p8F+CIjGXeUKs5Xg4UcUy7oSSMnF3oaDkyNYq6+WZFiO9GMJuT3fTkWoltYL3CfrCbndg6Hecl4klRjLqez4Gixd+EoHCOIIRfN9hnd1W7s9Ua/3OY4xFDOqhrQVMxTvFBsYlbw1N/FTWIiI4q03XzvuN7QmJTC5qJjfo28yiOy+t0XLeGKr6hrEtah9Hq7TX3YJKKhka+NDpw2yS3iNqIqfCdFblTkrCOUc3BGyxtM7+BE22Vu9fGfVjplw0jREG9odbclHWqzJ0hLxGWs4MwdBGj7FaNzhsxvi887QmGNE245hm0nZ3Ni1jjGL/S161p2O7w6rbSuvIa9EZXUU9nOb1tdvKBpMqpE1sEAy+V4DX2FVC0B4RYx3gFLGSFtY0Q8l6F++P+O5AtB0ijVduTi2VNUemOJOU0UY2lu4wcBM63M7zxV242BlnNYpnqOSYeZkrfdc4Bb072hCwXSXWShbH0Vms075M2zlubk86/gmyDd8dbHNGUAVexNFEZ9j6O9fPqTZVrK21dEOPbAqxdY5umxlra51gnZCjavKC0xdmyVRTt5in4Hyn995NC/HG6uciFtsMoPV9lIKIxQ07vOsIYcSWjJSMcQVTCl23w/ueAYO4ANt831olDgpqyHU+YKwjhICIIa7x5985j28HWhXyrKJLTAvOWw77kTUVPn+e8A7G0eLRC7UVy9ANhM7T9X7LcTbi0ogt4qsOx20tuBppBo1lXVYyDdvpdt85Dd9e9bKA9WqMXtcZMY7j6ZZa4TxdMbXQciTPhWnKmt/cdRx2O+6/OjATuBDI80yaLgSBbCopF8V/TBdqXLg5vSHcfcXjlyeWZcV5hWOtL/9MXC+8vempZuApiQ7Iv3xGpHL3bk8smQ9fPhBz5mVaqTiMW5EC1ntiXLjMz6SUtr5Pp6bwVmkbca7mFVMcOKu0AafSvbTC9QpgCd7gvXB7s2MYvKZ6vOPm3R3WBpJdWZeJH7/8K+uku0c/7rj/+u843Ox58ScsBckLJFhY+PJ04f2Hz3RDYNj33N4fufvmxL09YO2O7//yA48fPvM8e+YYOT9PxHXlu8+Rpxj4+2A4DhCOO1roeJ9WmhHunKX3wq4zONfx9utfUEthOX+mNkOm+wk1acXSdcM2uFc8ajHb0bRpJWSaF/r9nv0wsJZMjJlhDFjfs8aFUjL7MBCC52VypNoIdqA1x7ROVLWi46zn9nCrhhGUCB+MpdIQHJWM1L92rPow0o0nJChuZk0a/LZbQNxuMbJh30AaKeftuU96TbFRAdbjQY/rzlFL4cv7R3Jaf97itP2RkhrxnKm50Ir2Rhrr8EbYb5Ex57c6eaPtvqUpUU9RPHrM6ELHbsh4G7DW0/Ud3juWpZByVOdHawQaYnW+VQTq9mbtOwVbrSVAM6SqP9QwbPaNVakMoXqsFaox5FZJWasMarpq8kUy1umOuDW4kGujpsbaItkmYlWamm3q4Ci2o7mG7/Z6dKLQmhIHpFWCOKgwxcaStLhVbGMXlIQw5YyRjJii5LVhh7rKlCDxWqNgjFLvSwOrLbMqnLSGc4IRR/CqzFIzJUG02tuyniPGFObnF+I6MV9mWqvcfHVHt7vhcLtntwsEF/VOXJVl8zQlnqaV5ynjSiPkQhJLwnLcO/ajx9vGOArZqC/WVUvuG7suKN4UbTgfxg7fBd4kzdMqgaNqT2V1OL14YV2PIIjREYN1erSvWbORsSWqgSqqJRgySMV2llZXypJga9SW1pBqMXnFlESaDC1ayhppSfOaOINvvaZTqrqG4qzWVHzAGHWaUauWGqNlVYoPtcj2+611QwMjeOchJ1rOFNv0TlzKtkvXn05zqiG0nzxvplXSOpFTYpkupPhzF+fuG8qycFn+RE1KsxZnsc4TnONwUuEmrtp0RdX+k1Qdtgg1gVglDBx3MNqA2IBYT+i0mfl8fdTy16h/f18izheSKJg69yewjtujUKvnGkZiKrycX/DO8O420Grleim46gj7HaU0UiyspXCZz8RpZn25stsNHPcjxveY4NV8XQ2xGPLSWMoLpa1aO2E2IQxL7m5pvtEdbjFicVzI9cplTphWeXPT0Zrw6dpIa8XExjgYHvaWOVaWNONKpLMF0+0g3JLXmThfaGmjsxvBWE9DrYhuE1CkNlyzjL3Dhx7nFX9R1pklCjncYaOjfXuGmvn8+TtiXJjmid1pz9//l98RxhP+cMdoM8fwogJL8zxNke++vPD8vPLxKdKk0KRw+LJw+P7Kb/8m8zdfV5zL3Nw4XO9YM9h9j1QLNmNsUbZwNdzeHXHOchqdcmhdg5qIlzPWekx/QqzHdTqzFuv/Gl7IjbRU1pq45qh3ce+xEnEyI0FTIOX8meXlBXc84IdBcazFYNYL5Mg0P0MzlKrVEN3gVCDqbrTy/kXb2a7TFbGW7uBoBmLLW5GvQ4zDG+0/laBjpJQKFQXVeSsM3rHGyDqvNK01IEUNm78CBpyJ6BagnTKmaE74evnMusw8PX4g/9wioxirQpm2yjupFakozpFKtgaDo+sDrWiKnW3n1Hmk0yxkjsTrSpoW/GBwwWjaAq1Fkw3Z0UxlmifMkiiDpVkh2aRqm1PvqLPaVxJsRgwsSV1D4XDASId1R+KSeHm+0sQQl5kSV7T62ANN7X0501LRQXCcaGkG2xAb2A0W44RUdPZ6uFFWabyu6hTJE7bOWuVWDS+pMqeGiNe7l1cyeIp6z8YGxEKwBWM91gnFeDrbs67CsoI6WhTt31rF2YqVRhVDwrDkSibT05QxW7WAtdYFazPFePXhWsF3HSffsdvv6OymqNrCYCuDQKqGaxN9+aSq6uLGv6m5Qqez1nktPD5NeAtW/NYDUrE1YxsMJDwVbzuc8xjXgRMQi6kNbyyIwViP2Y5zxnkM6ppqYnQeuCy0VCiLZi+lFZ1/J0vzleK1gFkoSHCI2VNF1EqZVt3xljMtR52RYyk1A8JqtH5PnEYMf8oGG93tbdyuVkbp9a2osqpcX+VmVWQrHq7YkhSQX41eRcq6GWz0Z+a1tQ09OVagFv1esCtGtnVVDL7T0cvPWpzzlKmpYu2ArRaXM5LRHogK1fR0XeBmv9OOlHmBZsjNUKqjNkdeIznOzE8X1peJ3W2j3zfSUqipgUlbCLdQSubp+ZmcV+TuiOkClRWxGekDViC4gjWZ4iK5wfNcCMOO+3cPhG7HfnfP+eXCVN/DurBez7AmiCvkDl4/rFKpW5t1u15gWZDDCdMP3Nzv6EbPp6fMmuDh9gaH4ff/939jOr/Q7VZCzUhwxAw/TplYKs72uOBxkrFUpnkhIjTbI97RBcG5QPAW+g6sY5lXlslSzUCho1T1hzqj08ViCoVGXApiIq0YvEBNqG0xvOCccLB6nHe9R2TgdrhhGHt2MtIbx53PdLZwEMNFhEeEVMCuFcmbSLZW2lqxe0vney6XzHV64fZ4YD8OTHNiilsNpGR2EhU47Y74MELYoVTMKw3ojcNIIwdFp4S+B+spLdBeQS3ryvr5kRojdZn0uOoszShPrPYdbddjTKSZhB8G3PHEZXphWa6sy5WSV4blBV8iYvcYPLlupPbsEO/Y7z3GeLVTiiO9hgrmSYU3L9CqGku2ECLi9ZRlHcYHbKvYstJyIVMp60TJM9b0Gs5v2ir+arpo29VOC6IbMUcQWEuhNkN/uOVnq7Xr05VWCnVZoWRyaZjciGtFSkbaooPkXY8TCJ0jb4W42tlqqTVTksZyus6TU+Z6vkK16oXdyltzK5RWSNbq+zgWKPGnDg9nmhLjm9Y5+BDwIvT9iPU9FUdKlen8Qo2J4+gpRMpcsUEFCeMsU6yYpiJTmhNlTTjXsHuPO3XI2OOMujl623CtcX56oqRCqQtGMkU8TTz9jcVXcG4k5UxAZ6su6Q57nTJpuzWZ9qpGii4uGrk29Zj2O3zX4ULQea9UlqTOHGs1ATH4AW8dQ2hY00jLqsycYPHOcv9mj/eKzWxNiNkRgscH7cSMi36+uUTWJkp9yIUqDuMKNgitWkraEvsVxXwCxiSMEe6PFms6Yt1SGnNmiRU3RRqO7oRSG/Y3uiPmRK2FqTVs83R4aJY5bbUNZYEYNa9rdVSpxlXNApe2raUtcZTFUNOrhqDdOLqz9WSbqM3iTUCMw24NA1h1p8VS0aGn6IshbfypHIFGW3TTt14BXLGoCKkVNJUaE7lGyHqaaQZqWnW3RsMW1G0K4TzGaot7a40gmukUp+TJWEBMo+vtz59zzp+eoVUkLXrpNxrFmqeCc40+aftx13Y4K/jgma+ZlzwjDjUVl0ROC84Kdug4TzPzS8QH9ZCWUtR47DLFFNbgiRuouLaEzQrzlaZzKnLBWeH22BH6juHmDQXHOSlceJ0fCc5ydwjEtjA/F0Jw9F3gkhwvc9UAdovkaaaskf54oNuNjG92+N2O56eJdY6MTiA0/vinT1wvK61cMb6Q5ADWs3sYdJDsoKTI1UdaXnEJzlfD52siVkNqRkULqxJ6ZyqRpmqiC/gQuDkFjgdH3zm8F368VF6WpkgPp4ykwXvEJaAwX56pJdM5hVw/fPXA0Afe7HfE0vjnH68YA33nkGZYL3kTIRZFP/qVnAzFegiVgPaOyrqVCNaGiAKzjFlAKr98M3C/6/myrEwp8+HbxHVOyMtCScLhAWzvsTcnamvMT4/EmHhqDtccOzpahZeoBU+sL0iremxuKiy2AjU3rWLMaqWWasgi2uy1LkhdkZqwrWBtR3WOlBqtJZpR8/ngwYqh2p5qHEvSWJ83HowC0kvWnhNqgZTxwRNOR1KFcyz0WEKPjrFyJi8LeZ5p1oEPOBKOQq0ao9Ohohr6rXc0o0C8sOXQTI3UWliSCkbDBmf7WYvTxC84ZzneHjDGkLcQ6/4QdN7ktSz104cnhuA47jtayfSv+ccS1UMYRsx2TgmAeEsqhVRnDW0Da4NiDCb0GoIedLs3VotcZcOLmJoxrbJOkZIbxq/gGt4GnYXFSIvozhIbrrvRAXnU+M4QGm3rEPX7AbcbMP2RHAZSsxAzNc60dWF6Wimp0K4JXyrD7QPiHcXtKM3wZdb7zq5knDi627eYVpA64+fIM1fWVLiuCWkNXyvBVLwUrBi846/IFK/HrJorucHQddhOm56dOI69pXMG3w+Ihdud2yrjBescd/cPdJ1nH4RYKqdoqKVgctRfsztoV0cT3ctNJgTY28ZOdryxe84vkS9hYectnlXnvM7SW8PONkwt5PxKCgzcf/0VORmNA4rVWoJ11d8f4E3BODjtBjDCfL3oWCyvQKN6FfNiTko9LBapDVsqpVYyIDVhksGYDCQaUT3GGxGjvSZFjKWJVh44K6DQecrWhtaN2okSJ6Xw7Xc9rXWkFPR0F1f1VA8DYhqu9roZNLQvtkZoasKxRnBGRzLOBqAqXYKtPrEaTC6kquSP4PXEVKvqJZ1VAqJ3YfMY/4zFKekzwfbc379DxDHPGWcNx6NTxIbtuFwX3n//yHHfEzjgrNreMoVcFi0k7bbRQWt0Qeir4+n5iTjPgKcZy9ogN8H3vaIce6tOq6R4ykaABrZoDcNyeUZ8hjDhQqM/7vWeEFdIlRgr4gZcd0eKM3E+43vD2EPKkIog3bCFqg8k0+NagjXT1issVy4/fmGdItATXMftw28J455Cz5IK77//nppXDjQ6ZzneP6hxWiL9HJncmXlZCefnTXUFqREpCxIs0ntajpS4auj21VhdYHfsOQ17PAPOOHZhxdvCcBjxwbHzR8TAnHXE8uartwRvGdpEzIU740nLSv0w0XCY4ajKqrVQI5KvBGkE1+iHkcPhyIfPM9Zf8fGKSxPODrgQGJ0uYqmZlMEOntF7DrfvMDJw+fJEjlG/93mls/n/4+zNmuzIsiu97+wzufsdIgIB5FQsFslmU920lvX/f5N+QpupH6Q2I7uKrMoJQETcwYcz6mE7UtSDWtawfEpLABm414+fPaz1LcVYSsWLEKcDuVZeXj9hWmG0GZynjg+ah9obuTS25vC1MHzZWRi1g1EqtKztiKu0fSjILpMzpiNYEMFFi3O77bBBuW/Q4XQ60cWwpBeMgdPze0QsuRZqLaT1jliHHw84MQQHORWWu96stq+YVmi94rH62QWH85FcFmrRpDaDILXp7CUp6MwdjxijE2y6Hk6xQrBxF458xeH8+98/4sKgOSXiGKe6l0o6xfJhwDhHruBMUyapdKo0qvFUiZRWyLXhncc5zabw1pNrplvD52vjvjbmmim9Ma56O8ej7tSwfcdvKJ+oicMaYfInJa0br/ratGJqwTsFh7ViyLWT503XOcdvFK0fDYGMpyAhID6wJUcufS91Npxz+MNE+UYYciWKrn/85Oiucvv8F1IuPMdCc1A2Q94ab395xXnh/KCqlN+/E0oObMfH3WNpeX1748efZoY4coyPxENl8A3JGSllz5J0jMdHjSbsuug+CkSrXkoXAo7dXygD3VjSrVFtY+nak/X7qmzW6mkYyvJGFxBbsc4QwrDbWVSwf1k7zju+ez9Sbo18r5yPE6fjAdNWrvNGruA3mMxIIMLgEetpzmlWSM/0Ctvi9Ptqml3Z6xXTGlG0l0wrdNtopD1uoeKd4/D8RJmvrC8XTFX1jcFjuqe7Ar5oErp8YUcJ7Z5oadFYRLF0d6B5z9uvn8lbwidF5nBRs/qybBjg7u445xgmHaRJDBjZXTSi9MjeEmV5xVr1NouN2EG5S4adBLmpHzfnpPMD0ZdEx+yYVUiixIRadF4SgqMbx7auOwv6qw7nE91GeDjSjCNlFQ8bFLXghgEbIsZ68nxjff1M3Re63Rmai6SisXIyaN5jjJ5xsGwtUS0sbzOfl8J9TZRaOa0Z74Spd2y0mIPoW8YoHqIah7EwDh4jhrofzpYWvZ28SuWaGHLu3LeN4fjdkImpAAAgAElEQVTIdHyPuAquEFzBuoZ4DaYx94bpjTlrytjjpBTxPh6oHZ52X97detbSWK8/knPi+eFZk9IWYVkrn399JUQL/sx5gN8/CaY5KAeKWLL3/NO/Vv7bv/6EJWDDA6ez8HQy1GWlritVAs0GpvHM4Adsv2PbxgmIBvwQMWGEPWZezKRa5FsDKgsbvWXMescUoHl6g5zfNJpiilqWDgNGPMZG7rly3QrH6Pju5LhI5VILD4cDH85HPr1tXObEnNUI/SFajI1q0RJH95beLRT1Rm5zQ4xCsgydXq5AJxihAPel06SBSfq8UIlT4N3TIxeTePu8Iq1gS8b0QG8BO1YkNJqJyiV2Ou1Ob3fq/U4YJ0ww4Aa6i3x++5HleuPBeby1FHsDo1Y9A/h+Z4iew/RFUhho4mg7DxgsvXbq+oYbInE84tyEtwfKulHWhbwT+deUSLkyhkBw7jdzOjsoIANFLLUmjAFvJ7oxrNv2m2H/f/pwvv/rf6B2w1yE3DpbAWNEKWi7i970Cr2SSuXlnvHOMESL36dUVkCsKCIyb0gN1M3RSsfZyGnKNNSpnnJVREaB+QqyWkJRQp4/CFhL9IL0zv22Ya3Bjfog1LIrfozFeIs/B+gO09WB4gZPM0LaY8J9zrg9YkJqxdN4PAwwOrCRKhbXwPbO1jKpNZy5M/TKcRhoIfLh6R3GOh4fKvc18c+2765Xx1rgp6uGzk40QhSeBuHvf/eB4+mRLcOyGlwrbNeMmIANkXGM+PiFhCfkWyKXhRKn33aJYh3bpnvlVGZahev9pr2TdMQKh8MjpRc+3zVcaRh1WuybQ99RFhvBj2CdUcRj0L9+OB94igOHyRMG4Wwf8KcD3Ua6cdjTiTZEUq3IthHDxBAG8iqUmpnvG70VproHXlklw/da6LUjkhXnsm66JhJdqV1iIbULcWrUbMjW0aRTTVJrWQOM0gOct1gXyQKlFyTP9JZYlgglIjYRhs7p7IjeIzHSjcGPAq0zINALv/7yM2Itw3DAiCqRtJLupHVmTgNZArIFqJ3uNlrNYBo2RIINiNuIRVm7apRSPZD2xGhmqXSc1RK8poVahOyMek6/5nA+fvc3lJIpnz7Sk4bXGhFcDBq9oKZKQHWq16UQoqN5wwEYKQr36o6aFnJKSAu0zUOMWOs5jA5jCq0aVoF5y5RSqbtFx3QHwdKHqkZoL1Aa67JhxTB5VGXSrErAgt8DYo6IBKxV5pCIpXWhdMHkhCkNu7NS7E4XmIaAtwOXPrD1XW7WG9t6o/fEqc9ECocYAM/78wM+eIrvXOeVy3wn5U6rWiZ/LJ1BGsZVQoBzMJzP7/j93z3z488X/vu/fKJtM3muhHFCxpFpCkyTB9vpppHumVw26vhI8weaCzSxrK2r22GPLry9ftSexo/4ODA9nKh14239M04q08FhTcD1AdcMtoI3MEb1VNqmA6roIPiBePLgKl0Kh/HIgCfjaMYiUfm7rRRMqTweTzhruVNoSVjrSs1qivACg2u7uL/QekOkQlP7XwE2ETAJv6yYthDHzuqgiJbLtWcVNqAIUdkF7j54/eopmgpXE20NUDeMzYTYOJwdQ/R05+kIQ1OmkKxakn7++BlrPY8PXktjk8mtM6eifXDRFLaQHNI60rZdlN8Rp22Rs45eElvayFXPyRf0Jp2dYNF2YDq0stG7obRAN1/Zc/7xv/5XWu+stdCMYPwBemG9LkDTuLOqbnJjG2EMeK+JTikX3kqi25Fu9YstvbHdC7RMGJLu1mrC28rTeaS0gXSM1NZYq6U2o6LwrbJ8vlG8MBwHrDFEp7d3SUWdD4MqQZwfEAkYFzDdYavBOt0xh14ZeqEaQ+2e6+udMi8MYVAv5uNAiIFHP9HEUdaVljPlTcuXqxFai9xXCwivH6+EaJk+BIJvfP98JufOmoTaIXVDus/88c+f+PB85OHdEV88ISXOEf7w7YiTI04cuRpKBUPB5EKcAm5wePsH8lrYPr6xXl55jJ14CJwfA61aPv3llZ4r56dnwFLFY7yjhoixwrfff9BEq2Gkt8a8bfRt5eXzKw+PJ6bxA0EsYfI40TTxUmGuHUkJw0Y4DEzDxGYHivG/+Xy9VVxpLYnWwHtNgrPeUUvhdptJvZGjeh+3dqHTGEcItWOXzJwr9znjjWCyhsuaKSJVkGip80y6LfBFWxwCMkSWunG7r6S20m1DQkSco/ZKzxs2OIy35C5QlF/ce2fd1NUUjQWB8+OZ3g2pZXrJlKwEBz8MhMFy2l9C97RhU0ZMwvmA9RHvA84PZNspWafTUjphmLDOqyYXQ026QknpTq2NadL//jC9x8hXHs5f/vRHEKHFiITI8Dho0lO+6y8w/LYKQbrCmEW5GZpMvGKjx1mN7c7GkdaVsiXGmvDF4Dx4q5AqxFKPntYar3dIubHeVXSfSqY5oXnF4HunKpNcsqI6PDuq0GOUp4FpgingLISd90OvLAaK8SxzZv50wRwNblQ6oHW6PxXn2Foid5Cy0beNtU+U5lhzhN65vS0MAwzvjjgrvDuP5Ay3pVG6YcWSlsyvnzdcmFhbhGoIOTM5iA+BYTwxjCdud+XSrMudtBWCCwyHiPMPlCzcf7qwXO6casQITNMAzfG5J6iFw8N7xEX13lqhOodYw9PTAw1LNidKXtnWXykps7y+4ZylZ/DRqgWNhjONe2ts7YtMLzGJRjAaN5IkkhZ1gHircQi5rvTaGMYJsZZx8pRauCadIxSvNqpcNDZyGgyt6GqmtkTLC80aTHGKZYmq3RXvKdtKKgXbgybWOY+EQFpuLGmhtY0uXaMxvCfnRqsNccq1UvYS+LbRWmNZVTQgYcCJZTpM1Nq5r5qTsy6VMBhOPuC9xszP97tqcduGbTOgckBrVejReqZRsM0hNKZxIMQBcQNGLNt8I6fElmdqBR8HwhCZjifVF3/N4fz0Ke2huYIfhTht9F5Y54su06OKi50RxmjgcaTURslNF7UMtGZI64r1juNxoERHzY2UZtaUOTplfa5bpbSKBGXasl6RUjkOgW4Cpa54b3k4PxJj5DCd6K2yrBfVSpkvyWWO1jsp3bUrL7AkYb4I4zQwHo8Eqzkc8iCM8UwQixVhSZX0eqW8XOnA5BecFB4f4HjwpLmQSwGbSFvhl5/+DDQ+3R6IQ+D53YkoDu8jpQlLMbjB0H4YOUyN7fVnWgzUcUB6Q1qjrrDdC6Z0hgLnU8R/GPHnB9w4sa2Jkgrx9+/Iz4F3370jTJG1dkptfPjhr+i5MBpLrZlfPr2xpczrf5+x3vP8zTeIA5Eb0WWmsyGPE/dxwA8Tl+SZvMM7Sy6a51KwuGCx7h3WWrYmWj30hfJl1d5hrqKpcvVG6wXnR6yzvD8pde5sGs1B8Jq0leqqyjGv3lPpFluvuPKJni23NeIwDF7jKh6Ggcs2sswDW++UeUYi+KFR1wt1vnNbVra18M3hgPdWpdMFttZ1lVIzQqenlVYbS86aNSsOZ8FbwVjDcAyU0qhkvDcEVzBU0rZR24L1C6Z1egvkamh3vQmtWwnR4IMluiOCwdm4W892iWVUcNxwPADQm1rI5rfP8LUDoWVRBVBIeuNQMr1nyrbo8tQpplKshhSZybNthVozOmIQWoVeVH0Ro8M5R4ud9LaRU4JuERw1a6/p99hvSsaUQhhHjAhbUZnaMI6Mw8jx/KgofSm6rmkVgygbonZqyYpRaZ2SDGkTrAtMJmjPYjoyCj6MmFowtbLllZYS66pliH3MmNiIgzB0y9aySgQ79LpxvX2i5Mo9ZabDwNPB4kIkeqfhwcZggqE+Bqzp1OUKbaAbg+0d3zq1GEruxC6ELhzjgcPjgExHJBzw7aYH4vFAPVgeTmdsDJRZF+KnB4tphbDdyVvBlDttXph/+YgbJsrzNzjpWFlx0phGQw4R4oDgWarg+x5VhyaUYwVrLTYeED9S5pltXSl1o7WC9Voh5U3YCqSmqeIYNbg/uoHgDAONZgxiVa7Y+hcBuAMBCYL4FdszvTa24um14WsjBEMMnjlo8HEpmbwlDsXRq9DzStsW1pxZSqcYVCyv1GdyVWhaR0XzZU5qhG9q2M47KlRNBpYxOkxu2K3qjyfqICm50uqGiAolMF6Hj7Vp+JGAdZHBBryNWOOhia73eqUZxcSK8YzjETGG2+WFkr+EIn9lkNG/+8f/QCmFl9c3MI3r6wX6Llh3sFkwXjDe05vS6sbBMY4H7vPG5b4hO3m99MptXfc8zUZJiVaUcbraAhSs6ABBrHD0mm693O86ZRsCUTw9d6qtlLzQWqcUATyjcfpCKAk6BIFqLFk056Kaxv12J6+Znho9NXLN5FpIWZv/y9uVdV1ZtoXaCg9nYRyE779/YhoCR2kYMfjomHzg7/7z/0paCz/9+ZV5q/y3f/5E9Jbn40QcJ47P3yiZrWtStRVPF0OTQggDMR6wO1Z0uyfmeSV/KtxvV44fKvG0cH95ZVuW3S8bWG8VtyaOQ8QEoaHlessBXwp/GCZqafy7/wDblvjp58/MpbLUxnEMnL99Yhgij+OR9bby9usb91zJc+Z0mnh4OGL8AeMn1mzYcuN6uTBf33h8PDIeJ9IM6wbWVo4R+viOZjrXX34i3zf+6bNSMXyw+GA5tRPGdQ7TcV+LRRqdLBsuBh6f31GNIQW1F2IGUrVsawLTeTx47pfCPDeWlwWzry5a90xjIETACGsp1D1bdcuNVBprzlArdV6gN00AEAvOkjG8Xe9YsRyngxrBt4VtbWzXF764MGvf8zW9JQbFxnjrlZnbldYoeD1OYjXnpla+RAc6q+A3pT+DC5EOvNw+UVL+usP59OGZbUtct3UP5NG0JKP85j0j1SBd7U5fgEnee7bUMKTd29YpvSkntO6C46Zi4JwrpXSCVx2nANYYvLUYqdzXjWbYU7KdvpGagpT6bt0xxmi8QTdQFeksRjDGqNPdNhCjgbtzhlwhVbaayVXjFNZc+fjrG7frwpr1cF5unnHwhPFAOQth7DjZY9+94/jwjm3N/PrrSllXXt5uDE4Y+44RlY5xMEbZyQdBE72oWG/x0/ibm35dEluvyFpoG7hjRAJsy5VtXvDxqKSDrdEyHAbtvdseJ5dto/fKYxgwGHwYub5d+fXHn2lbZkkdLx5MxLuB43HCpMK1bNSWmMvKOOqkW0JEwkCqmdYKW87M28rZHHHBsdw7KXeOtuKlYYZIE2HulZxX3q6N1uB4CoTiGA4BGwQ3eo0vMCrSQGTHlQ7kXWAiVt0jpRlyVjth9JYVQy+aqJ4oVM1oxHuHF62YSvuSgqUwulJUM9tLpaaiMLogu4pLdmhZ2r/Pkb7Do6mZnBatxIzdpYGqmTXGYp0lBP39rSkJga5XtoKsK7VmvP0Sk6H/fDmcYnWzUPLuhf6aw/n6dqX3xvk0AQOtT7RW2baV0uC+QFl13A9AFywrnl121XSELr1hbdA+1KGl7CTEUNU5ACx505zIOemHl5VK9yWv5XwcGeLA6XTGWMeS1C1gutBL47YUjFFjsFjBBwfWE4IQvfBwsmxLZblXluvGstwpaaOkjfttYV4Sn1/uvN02Jd4ZQUKkYvmXH2/88mnmTz7jvePD7/5ACBHe1G3zv/yn31FK5vLpE9INB38gt8r/9cc/4mznGGAII+fTCC4wxIh1QTEotSK1cpwcgx+oeaOVzOXyymW+sqVGrtCXGfqqnkljkbcFK4bnsxCDcDwqV6d4lVlXEnGy/ON//nvW1Pl8Myyp8s+vM+8y/PtD5Bgr4a88uCM9TjQ38LkeaPdMv33GiyE64dtv3vPh3Xu6SaylMPfKRsPUQqIx//IXuml88zwRvjnwTWqUBuuqKdSfP897inRimCKH3x/2VDDPXCvLqhDpeDwhpmFFe9tUGql2hVxYwzgYDsfIdAg00VRwkQkjAcoGrbCsmVw6sWesVKpvdAulR5y1/NXvvsF7tZOVVHBNXT7OqE3M1K5EhqrMKdMLzjuiH3FGgeZbrmzliwvFQBNM75Rm6LIL99UAo+liedZ090HJDxiPMYHn7374jYLxP30406Y3XwjaBzbjVIdYGz1r8E3qMGfVEkJFWsW1ssOmjWokqSB9L83UgCseuogup3unV0MtanaVCnZHRTrnsd4yhECMGvPWjWVOiiW0aCRhTh0xajMTJ6q3NIKVjnMQd8BXzg1jK5VM6wl6opWVktd9SJVUfSKO0gyuGe5zYktgXcHHxrkYxBrymgne8O6HM60VpC7qtzQHyjJzuV8ZvDC6CKZjnWZzmjjpG1VAafwd7wTvHKtksjHqgkiZrMQf8pZpZa/XpevOmE7A0AbLYXC6WzNqKK+tYiw8Pj+QssEMlpfrzJ/f7kxFzeZOGvFoIQz04ZF7dczFUYt6cI/REaMjDgesjNyWF0pONKPY0kKl18q2zfTeCO/ecRg8oekSv79mtq2QrrNqT1vSl2kFcUYTy8VimlrTgvcYND/EVA0kKs1Ctxrd4IUQPDFGmpT9cEaMiWpB6421Zag6dTZ7S9UFurc45zkcJrxz3NThvmNO+u7F3JE3e6yHQcUTYhRapwdLb+ja6o6QEUXqVKFRtW0pGt1oS9sRSHl3dbGDthUqFqcD5mv9nKRKAa53JX0fHgK9GyQLHsvx5EgIgqNUhfOWdWNZMyZvSC54b/FOCIeKd/rv1nmWBrl27lumVLWFjYPH70nCfjog1hJGDeo5ThPOioqheiYGdfqk7PRLstBrZV3uNCBfHOFw4GAi0+gYY8Q7YRg68jAwxA4pQi4czwfmNTOXn9jqhWYDiOfh3DiMmYNVwv277z7gh0AvK2mbSa83YvQ8f/9A9IEPjwd6g950BG/tmTgMPD5/QPyEDA+a6eiEvM3k5aKLdSOY4BE/Mh30C1vWRM6VWpTM98vrjyz3hePzdxgb+dfXjyzryo8/NQYn/O0Pr4xj5Hh6woioagYYxGF85PR0ZjwYHoaRkio/v75ymDzPT08KTo4jpiptbt5fDGldoBfGaSUME77O2J54eNK4vM+frqxr4tunR5wP3JfKbamMgwKdJWV87Twcj1pprZXU4Kc/vTFMnsdvj/TuOL7/FuM9blAmlVhY5zfy+omTCzwOB0oIlOOBGD0hOIpYmhjWOZNSpiVDL46+6K7xMES6hbRVyj7Zbgaur5+xVtiaUFOh1gTN0GZFbKZuEOv0Mgie46RiGecHfcYztJbYciVah3eGUgu3RXnGtXaW1LRV6w1LJ0bVlYepIlbY+owxhvNpwtqvtYwZA00zTQwwNIEu9KY1u1inMXNorHnrTenlxtK7Pli7LxxbG67WvQTQ26KjSU6lVpxX/aoX0WzPGBFnicOIdQ7ro4ou2gpowCkYTLU6XXSGRqaW/dCWhtljDkpRlGOrKtz3QcHSOANFoVoaSReZRk8xnm7cTlPvDFaI3nI+TfgYuL0poKmljWp2tIe1qsftUJtCoXobCePEdDrT7UBxCn4Wo59tb2XvaXZFiSjvRgR8NyAFK1WZwaZDV6y/WChUJdBthUXg8eJIKSOi5W3erU1iDY6KNxC9MJw8t3vnek2U7ukS1fEvgu0F33ZMSK26lK+FGvaQoD0UaPAG7y1vpmGojDEQ4sDnTZfs0Wsep6DlooRAbrBWD01J/NDJW9HbJI4KbHZuj1vQ4Zl08CIE56liKPuL3lnB2EAVh6FqQl3VgGDpirMRZ/fv1+jP4TR6o+RMq1C6eolV7QMtZ1pXQJ0RDSMKMTBO4y6I9/TU9rhLQ+/7V2Y0JKrTFHieC2vSsUZtBdcV99p8R1zBWEtqBcSQsse2rxS+H94/KQ2t6JvnsmR67dA1PzFvBisw+kYV8BHMeMC+f2RbNrZ5Jc038nzjek9c5p2OLaKlpwjRdKJT850xneFwVIPxGDBiaDlTt8Q16YcS0WlumEYNNT1FXXOeGr0/0vszKRduS1I3gTVcf/2Vf/35Z8bTienhgePxwPHxHWW5UddFFUum8Y9/+8zf/PDIx7ky566Jxcbw+P49h2nk8emMtVBfXqg1MzycsdZx+fiKDZ54POOc4RDUSPv8w/c0LIVArp26JUVCdk1kFn+itUKumZoqUop6FU0jmM4k4M4B4was/J51ySrsNpZ/+I9/T2qN2/1GSZmX1wuXa2XNF0SEIp0YHMM7oSyVT//nPzGOnm+/PXM8Nn4XCg3hlhy2dFy+0Uqh5Yxcr4TbFcYD7XCmDp4SHK9vmWWpnH0kEGjhRJSgpW8wvBsVNYPVAzKdNNBHs7+E8eQpOTO/ztSc+PiXF/BCH0eGwTJNDkyl943gDKfpSLUHChNiEtFueBKuJZwLNDuQzaIYzaY7zucPJ6KDtVVq69TdpfS4UwnKetcLoTSFFxhPo3MpFe8Mj+eANRYnDue8FrZNiYgg2ChM0hnE6PNBZS6JpRRlTG1KjTBGsC7ixFJ36aIDnKg5vrXOT39+pZavXKVYrwt9qPSuZWivijdsDRWDC3h0GmpE4/JC9BpfUBuSrN6Ru1K/FCUf2G6xVq996cqT+TK6RkTpbGLU3d41YgHUdtWNoXdBdhCxAcR2wNGNp/tCNBvGVIRMLYX5dkOcI0yTiq8RxChETMOPHI/Wc6iG6jfcVkjbPpQaJ8KkWSSmd4IVureMfsCIkGulFtXtSheFQ1lPGNSU3YpRtm7L0Ay1omqlpuFHvXeFStdC6pncyr4q6xgXcVYTlI3xpGqo3TDFQBDootalel9pVNIePVBRvGYzO3N4XvBmpHerQu/JkXKnbOg6qSZMUekg+4PUrKP5QBOjFPTa2Epnzp1iVcJn2t7/7g+qDlZ0yOFc/61KarvtL4uQnNHYvqzfKVH+XxUVvSFGe9KOVZIEBtEJC73XndWzh9h+mdYbwxC9CmKS5tFU0UyfQRRCvTSlGkjRNY04p4Mfs8PRvLYZzmj6tJrDFGr9Zeaq1gbFqvbW9ghCXbe0Ds4qttM6i+wxDd2Y3/6s/W/JtiVy+srD2dDR8v3jhdI63ajqITdDTpn5ekFoXKVrLqU4hiEyHRKpFLac6K3o2uHxyOE0crssLMvGcs+kLeNN0abbe22U+wvOB85PB3xwajsyjhH9wgavfe+6JRqZsul0VqKl7V++eEccPaYVKCvT85n3/QOgDKO3z2/cXm4cYmAMkcPDCRf9PuUE+8srl/vKWhVxcXyc8BZ+/vFHTC389XffMcSg2H8arSQ6kFjo1XFfJ5YiLCxEZzmNAbGG4gNlzeTlTpqvLLdX4hiIh0gpalb+y+eZj5eVvlwxeeX984HjIXJ+9wEfRy5vMykVuleXzvnhhDtNDI8P9N55uV1preOsw0kj+4S1lXdHEF+53e+4GAmnI8ElnLvz8nrlx18+YrvFN8v5NPL4wwcWF9lsoMyvpNsNEgTg7fONRGW9XqhpY1zuhA7f/P5vGaaJwW84aVSn3NjJKZWxW09xlvh8pjZIpet0c09gW2+rpo5ZZS6JCdStsG1vmOiw0XFLji05xl4JfcOKZ4hHJnNBWuZhUuncNFlah9frQm0wTg860Hl6puTEp19/Vnzn8QGh442WprXp82T9gDGOZlQmKr3TiwYZl7VQlkKTri9R6xnioB7jDmFwWGe1z219d0cZqkGdRMtCbY1sGvX/W733Pz6ct9tCypX1vip986B/UjO7sDsnBW9ZQ6udYhQp4qyl9ravUjTWIDhHjIE0VEqDlDq27FqrvjNW0Nh0TKaVsq+O9h5ANJ7NCjqUMnob91pU32sr1QhJFBgtTn9Wg/JcwmGiZ0MvmnNZWqG4QG1CsGrXMmLU4jWtulzuBxqeEKzG930JBo4Dfoh0o4IHJ/og9C7qfGn6ps1Je7RsuobtNqGVRN0W8rqQ5gXnBPpAq5VSMmlXKOX7Ql1nnG3UvOHCgaEZStoU8N0NiKWnERBCHPQSGlWb7LrFAHUPVbLeIk6UZrPfPrSMqQu9bhq1oYRMfYicVXQljbJD2nq3iDH0mqhVTd21FtKW6U2TxkxpWBJdGrZrhqmjY6QhUnAIIRhyhbzv/gQdRJW6Ke0+qmAcY+m9aLnt1FWk2FVL71rFiFFmrNIQNHmNzn7rGqwoScNZpXdYozyiwTmKCNio/s79YK5bVxfTHm2BsfRWd/FM1eey7pgUMWg4kcUYR/BWZzBx/6zzDpRu+vfpTbNUa1MMiw32f2AY+/85nP/7//Z/6APrPcNx4oenD4h0Nho9b+SaCIPn6d2RZc28XBaWksnzTBxHpuOkn/F+aEuuHI5njg+e+rxSS2J9eSEvC24YwFq2rNyVmhKlFcyWsSL4UV0WhY5Yz+H0uBt7b5SS2e4zGWE2ERFLcEHDYU3GWsf08C2+Nlyp5NLJBVoXLqpKJGQYBx04PJ4fOI1HnDuAcczrGyk3Hj580IdmOFCkky+v2iefHvE+MI0nWoNl3iilsi2FZUv8eL3jgmM4DZTrlfXTR33pbQU3RgbrKUbL2SkYPpwdvxTHvTp+udz5/Hbh7ZoY48D7D0cOQyBVoZTKz//0I63D+f2BYQx8/+0DgjBf70qb3yrOOcL5jATPeBjoZaW8/Jm8XNjefsbEM99/+ECpigu5Gfh0ueMwuA65rRRg8OruOZXC1ApmOAIW990PmG40SHlbWG9v2J4JNWENTF6foemp7fYgJRJek9UMkS6w3umXX+F8JHzzTLVCkUil08tGSlBxWAYO3nH0A6MP3PqNta/cUiKvmc0shNA4Pyon9zecSWvqwdzXGFOI+lWezgDU0sipUOuMsR7nDrqbNJ11ydwvCy1vtLwQrGWaLHY8YIeJ25pZU2EcI1P0lFapvemAEO15e0MFJLtowTnH8/MT1n+lK2VedjtWCNoHmi+7R0vZp2vWe3wIpNr3noz9xto7yC+BrR1q7YjXm1SCxzloozI/3RAxViFNtaGoCL6AebXXVZboHlO//4ytFsUlLgsFq8oR66jNUEwn26odglOYcCsnrS4AACAASURBVEexJ1bYez7t+1qttCqKadzZo9K05PYGjLOMUQ3d3eyhq4h2ENZjdoperQ2xG9RGLpmUM+uWCDRilT2v0+ywZaH2Rtr2fWBqKlX0ukKKGFgaLVe2lKFDyhHr9F0vKOiYBtuyaReUDog12C8qrNrBGaxX0YNzViMUt5m8baxbwzqD80Fhy31XrHSFY9VS6aZgjN62emEYjDis7LGNOOiC2fXMvStmszUt+3PtdKm4kvZdocb1Wa/QNwrq21xX3BC17UTo4mho2hylgCk4b/DW65yiZqDpsn/PEE250alsqWBbJyXNLUnbgnMeFwc6bQ8xYl/P7XtZZNeE76Cuzo7w3JlFsA979tAua/cIwYY1bQ80lr0abID+PwwqfTMi2P1siDU4r+XvVx3O49M7XLA8f3vWXU1T1HyYJkbrMEUngm6cGMzMKRdFPlingbZNH18RT0qGVCqxboSgCcBGAsO7bzFiGDxYA7nsA4xFo91N1Scl1T0PtArGaihSq5nl7ZW6rGyf3+jWYw4n8IE+dNZuuCOE2Bk6lK1StsTBWiZn9dCZDmWjr4Vt28jGcF82cs7Y+xXbGt/87d8RTycOu61oKwsJaOM3iLXIOCn1bYxQMu3WSaXw+XbTXMrgMEEItuLOB/zpHVtakXVmu69c/vgn5uqZq+X0EJlOE9+/+8B31nH98V/Yrq+ktbDUxk+fLwQvfPf0jjEMHL4/Uzv85ZcL6b7xsXaGIExHnfU7PIO1vDsHTXcWVeXcXl5YiuNSv2fgwNEOe45o42GIhDHy00+/8vHlhafJcYyW+7Iwl8x0fEcI495zw5pmWqscjwHnRnx40Id7faOXTFpmtt6Y1wXXHKfjCR8CP7x7JJfKfFuZt87r5UYLgal2ug8QT9Q+s843vFnB3Ajv33E8PbDOv3K/XJDDAy5MhNgBz5Y6a0os+RPQud9mWq0Mn34h+MC3P/y1fg5RH/1aE7nC273SSt2p7h233SmtsaWMfoWyp58faDmzlYLpVu9ya/G+Y9FsnLppuV9RKqD1mts6jroOZId6tZSo21eKEHyMOG8VpCWqGRSjUzVjIPiAcwo0ElHqmeIUnV7l+0TNoFrHWiolF6DvNiawwWKN5jvqm8xpk50bzeheUqex+jNpn9l2GFfS3VIq2qsimkcvgvmSP2K6xhI6S8uyR7r0feepWkeVYUG3XyZqGu5u9ojyL29OEUU+WqNv19YU/V+KjpLypjDpfwOG050Y7Hrg/WdzBhscUQbqlll3ZCJdKKWxpYZzYEUIQ8TUEWP20GGjzNPSNPQnWnbEiNNeujYt2bG6qtqX9s6CqZl0u1Hmu77RxWJ8pBuhpKL9kRFaLaSl6m7T6DxAl4ENaoWqn0kryoJNOesEfu5Up4lb1hqct/s0WXQmsWUcnbFUjNUbT0UHe0UV1TDfaqO3faaAoYuu3ZzRG42m5IMtV0ITLB7nArS9Hy5NQ2+7sqEMDVrZVWgJTbpWyamh07rS8Hrrup3ougAzXXXexioB5Eu10wxUvtySur0w++6ztc5vYcjyb3Ele0iS0URvjD7HvX+lfO/w9E5F6zmrPcsapHYkazL1NAx6aLv+8OOg7m/rdDrprNnLRrhdZtZ1IWVV7jtRlUkcBpy3lD0bZDxMur8cA6b339Yr1hlaa8yXlZw3lusbJRfSfdF0J7EY6di6YKTjmsr+/BAYTp7D05n75c61Vkgr67rSpdOl42XE2oALEeuD3qglY/07pHXmdWXLCTN5jLOcxkd6t1zfVkqpvH1SQ8DFbCqotiO1ClMcSblyz1kNBOmOi4FwKAxx4Hx+xDfoKeNKJ9bO223h48eZ6SkRDoHzYeDwOMC2QSms95tSBlpnTpWT3wjO8jd/9Qzd8Ol1YTUG5yZCcLyfRqIXvGTml4/8+F/+CzKOxO9+2EOlRs2W+fUzwxQZjyOfP/7E548/EqeJ02EAKyz7oxww1PVG22bm2xslZ3I4UrH8+PKGaZUffnfgcAh8++0ZY4VZhJQKb59uOK9i9TA1CJNaumRlOFne/d33CJa2LmqksAGMhcMDQ3Q8RAetMF9fuK6VOQ8c0ki0I+NgcUNlkZump68LvRbi4AE10osxpNsroNJLI4ZwiNgw8Hj+wLomfr7esDXrrjUMPJyf6EYJE41G6wXbBmzVaXOuRSevKPpFg7YdRizBRTVbp42SNb3NGIN3mvPTa9rL3684nMMY9Df3yt4C7kLeirXgg/k3Edr7hGv/AcwOOaqlkHPRW2XbEKslrfWKNuo50ZrVRCqB6guy0xFEVIBujEGc7qmcr7obrIXe6j4pQ7W7wm8KHDGqNPFe1UMiWuMPQ6S1opNb9M1sxGKtfqDGWlxQxYzpCUplXe8YOmN82HsE/TBazbRcKNsCvdIpIJYWAqVW8rZL8NZE6gnTE4MRhkPDWYUNx8EzjJG2aqiu9Ibpqn1tWSCqL9bsserOR4yxepsY1DvYvoCiDd42vTG9x3un0YGms62JbUsK5eoAlma0Vza2Y4yS83JOKlK3Bu8swXvtMY2Cq1qHlAq1K9e1lapUdhEGL0rKWFZsL6SzMoitOJzteO9Vk5wLfcvIvO7rug1Kw4SokZOLrkhczVjTicHvFZyjJeitYI3HO0cvhbzoVBtpqsUWS8obFdGBizEaO9+1etO8Zi1tetMFvBFBRJVgUOlb09mDsfuLX33CvVYlDRpLN5o61vfqSPOg9kqrdzBtLzz6Hn6ku/yKoZsvaK+vlO89P6vHLS3tN+F2yYX7rRAjnA96tYt1eguZSb+0nQlceuf6duP68kpaN8qW9qGEMD2cGd1I3Vb1Ze72JymNFjzTkzrbZZeWuTBoXIDxbMvC7eUF2zvhNKFllzbhpmUdUsWAHzzxOCDB6fRsHBiHA8urZellN8QKIRwZhwETAjjLGAYA0vWFsmQ+/eVPlLTx+8N/wu8ay1YL2/2Vsq1syx3TO1V0l7cNgbRuXH79lZaLZkW2Cq3w/gN8eD4yess4DUireGv49PGNtG5MtiChaXm+aKRibTufFyFMUUu7nDANbBuhGNb7BSeNp9HgQ+ThYUSspZtCTonXTy+s68x8fKCFiZY9XgZG/4C0hXiAlBfurxeCM3z73Yc9/TnSe6H3wrxpbufHy8p9K0ymE8XxHCPDEAgPuir60x//zKVWPJ1xGjk/vWcKECSQS2aeb/S18LaoUGDOG4dh5MPTO+7zjV9//sz5qfI+GKK1DKdJ2bPGAhmq5TgETs7x9vkn5vuFzakG9pvf/YFxOvDaAzlvxEH2NOtKq4XXT1daa4yj9oGyx0CWpiaLbx+PpHnhMs+0aqnd7yV2oawb67zo5xIGSu8axyt6yGrWg7muiVwqQyg4J3inuS2lKNkvb7q9OB3CLkP9isPpRNU4MkS9Y5SJRAye4J265Y1BdoUQIVJah4o611NmWxK320rNesuoMmbvK+j6RjS7TnZXe5hdNdP3SHpap7f2/6Sr7b/WGLP3o/rB9lopqe3/rdFaJq3KS5Vhv82NKp/8OChJvOibpNYGSY25LoTdc2cR7xhPJ2oewFj9+yUdVrVW6L3ihN2V03fHXseYjnfqa5BmKU3IRVir4e26UWXFxoXeKsELU3SUKeiNlSqpG4pRikSlEaJHnMPueEVFk6oXVL70hQbcMOBCRCyI0R0pRTeKGBWKNGP1Db6re1oplLa7jEpV+rzski77xY24V0nWMk4R8Z6D7QQLp+NAjJ7oA60WHp5nSi4Y79VEnQuYHVtqO877neSoInPjPCFEldIZq2KQWti2lTAob6fmTsqZkjItFaXn16pBtj5i/bB7Qe2+A/ba5liLteoAarXgvVYI3mmFx0406KkgYghhhAIuDFirq5jaK7km0prYtkw3DvGKQem9aUCVtbReaHRCsFgnRO80+U2/NJx8sVJ2fdathkx91eH04lSEfdC3da+ZWisHpyXAECLSKrZuiAvY4URpjVQbby+vzK93Xn698vNPr7vYuzMGiN4wnU6EDu8ejoxTpKw69v8ybGqlU2gYyTp8KbpmaFqd7EviiumVYC2PD9rfvb6iXzqJsmZubyuP77/l8fxM6Z3cG+4Q8dMT6/XKdp+pNbHMbc8M7YyPD/hx0HwW7/jdP/xHDHC7V9bUKfNFNbFtw9jKNA701llSphlduIcgDOeR1hqpwFxgW+Elb7z880c+PG/8LmemMXCcIuHdyNPRcp83ljXx+f9u702aJEuu7MxP5/dscg+PiMxEAVVFsETIBfv//4zetHRzQWEBVUQByCHCJ7M36HR7cdUd3BAllVywFvlEIEiJlEg3NzNVvXrvOd+5wXUTZN0pvXL65syUDhC1/HctaYZHWTG9alc8BOKn7wjBg6lILcjLV4xAionSO9lpDF9w0OrOy2OjS6NIpeaqlrpWcLkic0B0xq/XBe9xk/Drjxe1bg255vmYdPwTD2AMd999Qy6ZH58fKbnw+PIKGGw64lzkdHFYo+A1F2fC+TN7FV63Qnc7Piog7PnpiYdPDxwO9zx9vfH0pCSLulWSFYIV5vM9h/MH7Rc4TcguudJNBB+IYVYaRZpUSLBZpBfi1Om1sjyPAGO54qYDx4fPBL9SypDmlZVt23m93ci5s+fGSTwhoZLL2piPiThPlF2bdn4EVjmnV5DatdEY+xCAdIVNJ1tVgPFzFufhMGMMqPxQHfjOGEyIYLT+br3RSsOhmszeO6Y1orMcjzPH04Hj+UgrmVqLJjB5i/dGPxyrNNIY3ZBVtrHL688U0dOu1zbuhxarkhe019Z4j9No+hdrE66rvlF5r6TXjeX5mW6tUt5Mxxh1I1hvcQPlX3clt7WS309Ya3VorXPPrEDqYPTeIXGU0trpE3QOZqlYB+E40btodkY11Ggoaye/Ci1X1uuGt4aSwtBmgg2BZB0H0Y5mDx1pFmjUuuO9/v7BdqztmDa63DHhY2BKUUNqm5LHb7uqUZrRTm5ISVmrIdJrx1TdULztVA9OLFYcldFhbo1eMr0WrDe4mPQuatVf+ZYuF4J77357r3PHedj91qJD/m1dFfDV9XfwNMLsCccOXRm8XQrGK2HDW/0+5H1lzxtryaqt9RbRQYUKLAYGVAyUXUmAGpEILSRtvlQlRXYT9RSXCtaSZs0xcTHhg2742uUVjZ6cD+AUmeNcAXbScMdYMTS0QqFX3tr0blzdsA6ManW176PNH+cc45Y6Kq2fsTi/+eajNoBq05NiM1oaOEMrhW290Wpj33V2OZtx2eyNwxw4nj/josPPjqefnnh+fCbNgcM0WEPJ4I3FiVMMpHPUWrQxUXWhd6eNpbwVwJDmpA2KOCO10MtCbrCsiiwRLOteeLwuWrKWTtsfkW3Hzwl/TIpNdHr6+ylyCBPRBxZp5K1Sbjf2ZeV4/4BPUcUlIx3L9kY6nzHOkqvTUNQiOs8saonydSOEwPH8gIgme1exnLvn9YvwZflK2zLP379qXk+KtFpprROnWb2nh5WWC62psOHpunG7rZztRAiOw6R2rNq1EXS4PxPSxOV8wJjAtjm27cb3L3+i1YzIikuJy90nrA+4eKDlldwWnFE9awlQmmfLjm3vWraVjZefXlieV379d595eDgxmUpC56k+OqZZPzsl1TUMhRDgw8MdpXW+N4F8W/np9/8DxHCYz1g6pm6cLpX5dKHWTN5e1V8ZLD4YDtEqSO3pR56vhec1M6UDaZqwZce1rh7W45GlbHqffX6mbjv5pkHOsz/Qu9drlECRGQiYuuG95f6bz++bs4jQ2kovmhuazhfufvUb8rZxeH1hu11ZXp+ZDhPzHGi+6edGpudKL9CrwU+O5CPVWJQk5LVpVFd676Sk3+FW5b0x9W9enHSFR5Ws3B9rAKvxZfLWCMIQ0AgAcLTW1f7ULd40gndcTgekKKLwmCxTtJyOJ46nC9N0wIeonbRWgbeZkroF2rhv5qxpUcZpAkWcIq5aiqgwQgHUBtA5rBuv10ZLTI4QA1joteoIYXSXjdVY8da1nrbOEqx6Ui1aHbwhV7oAYmhNp6GIqqKmKalvFBVQ9C5KOXDDTWEtDoc3AfaZdn+HxxCMJSZtChQ0eMkrQF8riqB3PYthigFr9b4fvKOWjUbHDbO2MzovtmaApPIrPd8obdco9zCr4iZnNbOHzl4K19tC8o45aa5JtEJzUIMmv+WsAb93x8TdceJynIhtx73pREvj+csT0oXrVmi9M8WGdQY7TYgYktEa9uEy07rQnaVXIe+C3QtPjy/gOsEKNjocB3U6SWPfVUHVqjAFx3GOmvNyrUjJbMsVkU4eqq09b5SsdkFrDC0vemDMwHA6IcNtKvo//Y7poVCLzsy9156KEWVbpeBxh4ngujY1g6Eo8QprNJjISKcahcDpWFgrv16raq+bzm5z1qua1Ddd+c9YnG/Ao+vrDWs6p4OeNm8KBx8bjo4nKFxLFK9xuxZigiSGKXgODxdOKbDenQiitqJPn77l9OEDxgeMMazPj9S8EdJBza1e6/N9X2m1sNxeEBGKVFyMnO4+0FrnKppDWZuM0sHjZGduWQXvc+J4mpgvR0opam+KiRASxkUwgd4L+xAI+BjU2G2dDo7rThlD8dZ08UvWktOahvOe8+WO1jtdCqUIa9N31ga9Bnh0I7M+cXR3nHxUwX4rpCkQfWDdG2sBH4Touy5OZ1U8LgZ7TDT09zEGXr7caKVwf5x17GAC3ni1wbVCv/6RdlvY85VmI+HwEemNcnvFtUaKE6/ryvc/feU0z3y8XDiExjk0rUutZ1k6r1vnu3nmw2XmV58u3D9c2K4v1LxRS2OvlR//8CeW28KfF2hi+Nt7y2GynB7OuBA5hSOnOfHxNw/stfGnW2Pd4HYVttvG/s9/4nhOfPM3J2yacOeJsq7k65XXJfPTbeHuPHF3StzdHTif7njJG8ut8fT1B7oBdzxhQuS2qL/1w+lE8J58fQSj8GsbEsGr3FCKVxdTBUOnZ1US1awz/JgOBB8wLRNsVzH78YQNZ2rOlLxjrUIGfDhgXWJ3GyUXrFXjQ6t6uJRdN+02Ri63raiopTV+NqZkvy203uhZ51HL8CH2nLVWtvolCpqjjnQhBkefZ6xRlYYPitA3xpCmhO2qiw3TjBlOATMURsY4vbNicM7rvpQSzTtKGr+QH1FtekbinXaUu1WOUW9gzIyzD/qzp8Q0z8TpSEgadx7nA2HWdK6Oo1elgmtsXdeUYmsp26qneR8a2jHT5X/qjiKdsl/VDd8LGhoUsNbQ6gZGnTRNKrXttNZ1zusMzljSFEkHpdf56JhCIHpPXjf2vBOsJ4ZAjAeMC6oRpvPS9f0N/khKGh/ggifvK71kyroitXB3muk+4g6Jbc/cXhrJdyZnqClyPJ/wWLZ1p66ZlU0F7SliesWXwnw+cLlMxJTURBwTWIvzDd8ax7sjNlhOvpNz4/nlheuL+j5d8Li04rzheNBb1xQBLPk000sl7wth72yLxwUIU1TtstVZoVU7NYIMCuSNZioStIpp/a3qEnKvKhQIEEfiHAKOghWDfxvYe50Ta2Zmoyl/BJrOia1eeKl5e/9zjxIRekO9qLVj33TYI8fHWYtYnYN2GlTYW6HVhkvz0NcapHeqtJ9f1q7PL/Te6Hmh9c6tVJVv7Ss+Og6XCR89c0haEtSOT4HkE2Vf2LcrIXnmNHE8HfXSPspPnzQty4WoZZ8NNFSkTBcdfnuPc3Fwbq1+sYNKuUaFTQp+mLHVj9e7w9qJ8PBACGpTs15VSwoqNlifdKdrkJtQs6VXi6epNQy1gK3bjbytBBux1pMOJ4x32glFMFilzl+/0gb60zrD8ah5L+tyRawjxKQ6zVahO7AqqTsmQ5pn4mHmeJpobR/9COHH58Lt6crDh3vmeWK+u+DTROlCKRXbKpIzU3IcDpHpeESs5frylbot7K+vAHz78R5CQuYjT8/wx6USfNeO+2Giff7E/nJj+fLMvl/Z1hfuPlvuvr1AqcR94+7wwKfPHwlTAGPx0wEvKjVHOmIzh22jPRVu153f/T//wr5sHL8uuGDxM0yHwK//7gEfPcfZKzTOJrbrlceXHzBm5/VZiHMn2Ql605gF23BGF2eTxp5vWNkpptFnR92FWoVed3o1bHUHaYRomCdLERUEeHYsHW+9CgucQgBKLUirtC1jRHBdTQ5ubIJ50b4A3SAyYX2i5U7dR/NT1PJmDKRkMYRBV9CRkKEqQC4X0uGgWTJer2qvbeevgBD+FTTmj99jrMFHzd2Yj5FWCuve3t0nqowQMPZ9phSM01g5P+5UPuC9xQcLJoBRNKEI1L2O+yYITj8Uo929Lg1jNPk6xKBfCK+LcV93bXU3nWVN8xE9vqvu7tZq4O2wBslQe7iRNtVqo+VMKxVH07LHKHu0DzXJ4XAkxagfprGEoJmgWBVlIFC7cN20EVJbwTpDd1GdNg4sndo0be046weby0ovhiwaqhqa0sqMdFUpWcvpcsH7RHBGN6d9gV7oxoN0jpdZB+xeENOwI8JKvHZav75cwVgO6Yw3nUkq3sJxmvHWsWwrXTqHYEnniUMwvC6RdosUa3l+fOTD4civHy58fDgzz1EpdqIZNrV1jBSQRu8W6yIf7yKXOWH+4W9Y142n20bpjVuuvLbC7fdfmZLn48MJ4yIuHJXi7xzBGKUwhAyy0agUC8VCtw0fDPPsoXaWdWfbKyWr4kZkOESMJVzOOGOYD0diDNCy9gxMp7VCfv2i5o3h99WTU2fluteoRK/mlRHTqadz6dSu9EZ1wkSkV2UsZdENwVTdSNzQmxvR9/w40VLicIh4H1QTJEI8RP7X4r1/LSvlj3/Ah8DDt58I88ThPJF3w+vTWJxGl2cXedfUurHrpJSo04yGBAtTdMRkMWEGl1jXTM6Vuu60XHT3EzfkgqJCbCcqL7OWNCV9wT5QSuXlUZsQznqC85zPF5wRHXeMTUOtXBO1VUopYEamY6mUkinrjbavxKQM1TY2DVrGmM7pcla0xpB7mbdfGf2Acu7U3vlxWXVh1gXvLc3ORO+5S9PodmemKXF3CqzXjfp6pTfDntUYnlICGUQIp2Dl+48fkQ+W2+MX8nqjLK+qREkHxHruPp6QPuMoaqWKXnsB0ZMN/PD1GYzjw/kTk23MvRCtcDmcaLbzer0yRcdlDtjTERPu8Ned7Wlh/fKFlx9+4Lf/5T/zf/2nv1OhiLOsubKXyrpVttzoTel8yTm8d3y8S3hr+Hw/cV02/u//+ju268bX58q+Z66//8JpDvyXfxAOpyPnby9E75iDU+FDzhAt0q9ULJs1ZKtBuyFZzsfAy/PK621lW3RxhmnCh0AYHsnT6UQMgeM8E61RAkGt7EWodef19ScMnfN8xJoRqOQC8fgBjNCrzvLZCsZ7TAyU0ti3gpGMlZXpMDMfZ1o15C603JGaSaZqJm0K2i8YdrbL+YgxlilN2mRyKhn18+kvjo5/6+L87u+/wzrH4aIR786BBKtYD+cI81HnVqKuCrF6kumX1wwjqR79pQl9q1CyOhXecjjrUA05g3E660TUciVNSyZrnS48Y0aNLu+hNTEmQhwg5S6aXzGGs1YLT5yxiA1YnMoKcyGvG3XdKfuO6ZbaLHaUzG0r1FaIpyPOh0FfEPK2ItKwVj2PLmiXNHmDNwZcwHtDiGNGJ0oi2MfrcltjLY2rdFwHLxWbA2a9UatG3ocQCS4wTXcaqZcm1R21Qhl/DzqtqJazdUPtwqHsKkaolegsH3/9tyq6cBZ647qu7Fsh7ze9x0knl8DjnvBTIB5Ra1RMSEiYMLGvmR9/fOTu/sThNOFMY/Kd6hrOVl63lVIy+7ppSfj5npg8xsI0B/7D333Ddd05fP/Ibdn5s6jL6MenlblATQteOvF0wUiFnjE24P2J0gq9DNN66ewVtm7ZqpBb1+qGzjwl5vmo3XkE1zrWdWX9YtkKlL1xfX6hlMKeN9Vqd9XYrmvGhcbZVYx0+rbjnY6H1F3jlFUlagynqSx1zVVn2NbSu2qMm2lk06EMmoIdebZaeNHaTu+GntX9M/s4xDQ/Y3H++j/+jf5XXaBL16Mex+n+ouFF6QCt0PMNMR1BW8a9gQsBH5K2kluj1MbeO0JG0HZ1H5dxRHSXsgbEIb1T9kxtndYzzjnmFBDHu1k6eP3l50PCuqDOmC702tRjqS5XDF0tXiNOvLVO3ZWcULeNtmda85jqmGZPCFDWQi075nhSg64fpuH1hV4zxjPA2AFvYA6G6ixigh5eyeDeYiO6sEun1UZf9cR5FSH0SmoNskMWy7ov7PvGFCLJB5w7k1JUnqyzbMtCrRXTlQpYK7SmIyTXdfjuvMO2TPKOb/7+71lL5U/PL9TWcctCXnf27RlnYOqQJXCVTjp2Ds7QUHi3ixMhzmxL5vvvv+CCZToEjV6wDXGV4AqvZSEvC7cfXuil4YNjPk1cLpE5Bv7ht79iz4VjgKeXhZwLy1b4/vFG2joyLZwmzzd3d1A22q1iXMSHM7Zf6W3RjnARtgprs2xN2Et9TxM4TjPn8wVur1AytjdMc4qFEc9ahLw1Hn/6Ssm76ret14iGJjw9L/ipYQ66OGXdiCkSDtPAv+o1IwxYdK9NN71c8NZoFEPZkLJqvDzqEZXOcFx5/KTNp960V5E3vXrFdMSEn9kQesPJt6rayDSpHM14nUdaI+At3h20Vh+c2I5A0wTj3jt9iL5pbdzXNPpd6LhR9tau7NEQA855jufz4PDojHVZi/KJotrU4qTCbj8pQ6f3oe7JQkiWGJSsgPOjCjXqgChtXN4DwXSaN5p6PO56gkGagaLdVG8tJTdabay3QmuF+ZiwxmE6eGO4Ox21e+3CcMcUWu2sS1EQce5UV8l5IcTAN58+07eNtiyIdRrA00b6c9f7XNk3srthHPgYmei0Wsibtvyd0Zi+MB2xzmLqRivCbank2rnlThFDy2qk7wAAHZtJREFUSGe900unmZ1WVbwwebDd02qg18brD0+4KRHmmfuP95y+/axfNVN5ub1yW564T41D6Fg/McXA549H7u4nblOg7oUtb+SnTO8nTZU7eYTA3cOviPNGEcfrbeWf//yEtY62bVQCZTZYRRKqoaDceH595U8/fCVY4ZwckwdPVTWONyoXxeGnSAiOLNBKp5SNbivN32OD4WntbEvl5bbTS+ZwPuJDYr5cECz2oLGFaVYdbWUGq7gcP5wlGBmITGUI6SfVBiXSvLtXfAiqsV03Wlf2UetCtR7rhG6GImhk2i4vz9r9/zmLc9SYtKZYh5gOADhf3ruzxlq8j7RcyGXVxSxDlN11cbamMQ2mV2CUnSpjHUodyKVSm2gDKXjiQQHNz89PlKzEMsQQuycEz/F0wHldnNI6fStq6C2CCwYXtN0v1iEWzNgk+hBDxOgRJ0hy1O7p6CW+G+0mSzWaEGX0rpX3xrZmDY2dDupH7TrHvDseMKrXo0sn1xt731izLpiaoZtCc52HNPHp4SPr9cpNFBWaaxsnwZDMIZS8UawjHmdNUnZCb5Z9eaXmnTgd8MFzurvgnKEuP1Fz4bbAVoXXrYLzhLt7lT/2TnORhrYHkwHbDb3A7TVz/frM4e7IHByfPn/iN7/6G56vj7zcnnj68x+5ff0C54aZhdPHb4nTmemi99/lENjXnf/+u+9ZtkKXQExwSbPmbH6453guBF95fLnyeM2DGJCpplOq0wgPhNYLe1l4eX3l+x+e+XyXeHiYmRxYqRgr4MD6pFzYGAneswvU2rltlSoZOQlWLE9bY1sr1yVjWuF48YQQmc4XRYQyWEFBIXVvDaZctWFpacq0cejmPxZnRb+7rqOVn3G4oK8n54IUhdQZOtUHbBdK13FQiMpaXl5e3vEn/+bF2co+lqents7t9Ta8lXrCMCRPdVe2DDYOkbQKop3TL5t0AaMcnz7YNjk3au1MH06kKdJNUTxE0M5wzyt04TBFJAXkkNB2TAJjBhGu00THKh40mm+66LhjoDSdh1IruRa1p60LLgZ81JgCi3AI2lE2PoC1TBbanjEC5bbSlxUpBcUBBtbqMGKhDXdBHXOuqqqk6AI+OcK3s7KPclXiYFft6tMfv+o9RQzzNJOmiDMdZztl67QibLWzvL6S8oIPlhRF4yfjhLeJljdVmPQjxjk6nTYqFlMaZn3BOs9pVu9nxmi68kum9Ka+TjuUSLJxmRuH1Dl5IdqGkcKUPMaeOJhvafcn5r7gpWDSHRIOOtKyhjQfcWHmb//jhVL15McMp2LrNKObtMORTOA+TKy9ct2V6DdNCU/AiUeiRWzjeEx89/kzwQrXTXCrEGMlWsflcMDaqGqoktlb53Zb2JaNUgXB0fOm3+GqSNcPn7/DGzjf3yvryaAExn3DOsvBHQjOMt3NlC3z+vVKs4ZePNY7fIhs68p6W3R2Gz21W4yzGKOpYa1beun4dMDHCdt0DupSwhhD3XT84ps6p+r/xCb6ty/OmnUn8QMivSrTMx2T1rzW6Ztf6hCl66hBP/SuKU9m2L6sWoOkbLTWqLmRS8PaQJpmqjhs7bgxHK5FRyXT8aTzUA8ihlL03rjsWte3lvHWkpwCx9IpKcaj6eIMTu+h0tQdX283MEds0s6ysYbpoJYn6wNYR3RGQ4Rer5Q1qzO/VQ3hMYa9DaJaM+pzdWp1m1onOJi9w4bE6TLrBbxkShXWvbO+blx/fMEmhz94Upq4u5wJ0RC8YXnZWW87X59fuS4bKet/83JW9KLxF5x17MuN3itIGWXXaJK0rjjB/aZ39ZIQ5+nWYWohLwrZfs07k4fzZImmcErCHISDE6JpIJXoHT7M+Mnj+oX68kRbVwgnxCcwDUPHpwmfLN9dLrRueXz+QqkZyXl4IRXH4XAE4zm5BNbw3ApgSVGbbtYGum0UU5hS5OOHxLbuLLeVaVcGlA+OOEUMTlVpNVN6Zts2lm3HiMVYQcqOGDvGKI7Lh0/aGT6cMc5QTVGvcs545zGTxfvA4TizdP3+NQxSGz4EEEveMrfbjTgnJjdRxSpHyGuHvXXtiaSUFN9TFI1qvdeGpUAbRmwZ5uvef+6dc2AEbYgqP9pHObttqu5J6onzQU/EWgtG1GWiIwejXjtv3ikDIhXplXmOTEm5OrfXRY2rIqzP6pW0oqeS8U1LuqqdLxcSxnV8Fi3VqlCNYXeV2i3d5vfZa86GZbUqWqdBEJjVjS+tkeuOSMdSkBbH2Maxrgs1FyTvUBsheZ3dWkfDsIsS+AgTvTduL4/U3tnEanKWzKQo3EUwGHUmOEOMhho7NjhCCAPf6fEY7FjwLXfaXpmsw80J5wbh4Y1GKPqBbjnTW+XcPYFItUnhzPaKc0KaPiCt8/jDAt7SzxEnwnd3nlJg3QsihlUM3k9M00yICYvj5eXGNf+RFHTDOM0HXEr4+YQPgVx3tpcrTz8+sm87wVmc91y++40uVFlxpiNRN3A3zdrtth2fNpYC4bry0greCOV5xUye6RxoxmIkspaddbkNx5PgBIw42qbKGqVRG/amhIJbsWSTmJMS8qXtSO18/nDW+2DTjWQbf967SudCiBhjWfYCe+br66uO9t7URIPsoapVR5hU+uldVO312HjoVe/1Q5QgzetVTkQ9wEZT1AhBF7MxnGL4K+K9f+3O+RaL4PzQAKrEqRVRNOVA1DtntevatXGkGCwdZFjv8S6A0Whz66yWm9GrYL3pG2a8Kir2VTWb3iecs8TShwAfjPOE2WG74vcRodQGBoqoIF5yVdEBMnhUohHowSBW9Oda1KJUMqVmglMgsWkNY73mj5aiZt7eCdFpZF1Uf6Pdig6LUqBWw7Vkaqns1eBCQKaJboTLmI0KBmM04s/58q5AiT7ijceJgTYcR6XTStcAHxe0kh5XBX3LdefNVTveRSxGvJqorVrhrAUfjtReuT1/hQA+gvOG+9myB4VV5WK47RZxnjhFVc/gWLedbV05JcsxOSYfIM7YEDHeUl9urMuVn/78I9fnG3PQtG93PDHJkYA23cRFjHOEpKMuywnjPOe80x2kr06dNWsmWHBGT0TEQ8sqEO/y/m0yYumlUYu+WdJVrtk77M1SjeMQNPhKpELr3F0+Yn2irDutVbb1dTR2Gs6OGbNRMmSplWW5YVBWkmD0+zwwLXZgYr0POON1/CMwJESql+6danVk541GG75Fjbh3+JnyjHzwulx+1uLs6pkz0nEG5imoM7w1faNqp5TKvqwYRPMqnKE1S4gR9xax4IZEZ4xNREbi77txE4IfqWJRd9l90w7mvmZAcJPFuo6xNwwQnXJWvdN5k5rtHdZPiFR62f8iu2qGZq3qNY3mjpZ8HREIhX1bNaJt0uTlJg7pBlOUw0rzWNEICkHnm945vGuIBf/pXoXOWPba+PH1hbI7guw4g+JUppn5cuSIzkRNt5hu6VtnWRe2Utlrw1i9HlhfcbbTbVArjqsISjbovfPxN7/WBR4s1MzyovEWtyy0JnRTkChMD7N2kJ3QTGdtwi1v/Pj6AiScPWLjgXR5IDnD5A0nK3TXsZIxUrh++Z7XP/4LzlaMbTzfNras0DJrIBjBtcof/vH3iPMczhdijDw8fCBEi6l1bCya6P3hw0emdMA2Yb0uPH7/hS5wvDvoOK4XfBdOcSYFzxwDziu5rjbDvmeCC6oMO53wIeKvC6VWzuezCkp2rYpur1eMXXBWF9jpMKt1LCu1veSiiqEQNCkgTpRSWW8bPQZVGVmnQcxJrys6hmnEwVjyUXsWbgjd922jbIuW64Nt+57zMqxrYg3ix877sxbnABYbUTlQ9AoKVmOx/n8pleW24J1lChoL3+k4rzpMzBs2cHg9gTdA1vu2IQZrPcEHtXYZEFZKLvom9aagKKDlrMG8xoEzONuoTUOWeGtSNc20FDHQrVZAYtXaarVBtK7qdmlN1ULGWqYWCNFh7AFjPDSdfdWupXrODQGOPo405KYzsNOs5Yn1vK4bf/z6iDTDzYPHEA1qUwuBiCEALQttE/qeyXth3TK3nJlOM2GOeNsVvGU1nEk/w6qzst453l0I00TfNY6wbI28d3LTkCBDwzhDOEagIybT6OTW2GrhmrUcPTiDdQEbj4SglArrO9Z3ahZqqay3V7bHF5xvGNt53jpbEWwdTSUDVjovX76yi+VULdN84HSuqngqbxWVDu0Px4ngPGbfeOzC91sjJvWPdtFMEidC8pHjlDgfZ0pT3pBGuju9JxoNi4rzgVoFlzPTPBFDYKvqQy45A5AmRYakMAOKwmm1sm8ZawUXFUVqvEdqp5Sm4GnQiEbrdKFhKKJaWRPciKccB5EVbBW2tlL2MnS84FDDhEgbB+2QHb5FOvycxfmWZs+Ycxp08J+SH5kgmp84TwHvA2lSNUsXpRZse8E7GUN8MDhCmPA2sJdCrko9MBalojGqCKuJ1HiQpNQBNx2w3pNi1ExEqXqpLvqmpINQW+P5+asS/7Zdk56c43Q6Mx/PI4ukUAo8X/W+44yji7YWZzfhY1RfaO/4wdQN86QVwKwKpb1kZKuwXbHWcThNOq8aRvRfff6oITmlUA0YLL4b6qbkO2e8lsmzocdIP3RMKaSS2XplrZnuKsE2ehWEnSmqiGLfGzVnwtMrccrMyeGtI6UZYzy1FUptPO8V7zyfPpxoZefpyyPLnvnpesN6xzfHC8YO9VO58vjjH5DLhenDh/eZdS2VlrNyhCfPNUPZ4elxZ98L33yaOc6eOei04fNdoIijuiNYz4/PBfNckfpECJ7P337Cx0RMB6yJ9LtOro7ThxemQwB30HHQpt7ZaMDbhPEHat255R0Rr442l9SlA+qeGfdDLwYnEMNEsEIfDqKunBz66PIejhHpDW80Lyw4pTPY2RDCTt4VaNfFK0FBul7TjFIHt+vyJtjGtYz1os6eXHFUUlCcq/qc9TWkoHiWsm/UN6P1X6lr//rifPuLvY/u7Pgza6AbzFj43iu02YdI642RYUQvTXH7MvCW1qg1zFr2qt3F8Z6pMbVBa06bQWib33udO7kQtGtrA8ZorLqCq1UJ5JyOV/a800ql5qx3VvRNcN7Tu3owu+hJa5xS0bq8AYwVQSlNURXWjdfs/RjPqAXpLUyoVZ3/pjmNCELtEJ8OM6VWXquKNcRYldqVqtud0RGEMZbu1AFjvMVHy77cKLXhuqYAy6hautihcGqU0sjbhgHmOKvZ2jmcE5yz1N4oXcAJNgR6H/fTUliXjWmeOFyiikEQ6IV9bdR5GnM+nVNLH5GPzkBwlL2zlc6+N/ZVsaQhRXzQjvXBzhQ8S43UblmzRhmU25UUA3cfPuic0uhVJ0wH4lyYjgdC9MMQ0SntL64jtB1E7YZSBCfm3V4IdjgvNFnAGYvpAk2DFcRaBWgZyGMhCGqk9z4g3RGComasdKw1hOje5+1vRgh9/0HDHZUdVEul1a4kRjq2V5VH5swh6vf2DSj3xg2yxisypWszk6ojlZ+1OLUoM+N4tpruO16cEcF0BWwhUGul3m7U1smloVxrS20qVrBWKXHnuwuHwwHjPClZxZI0dXQIhm3Z4U2e5wzxeNBLdJpADPuWtSwwijrMt1d9Td6DgcM0Q+zIFFXq1qCuKz/+yx8wTrMpz+eZ+aI5ndKE59eFZdn4+rjw9HIjjfvHcfbq0ZOG67Cs1xHhpiqdveqxv7ZMCIH7i5qLL/ORWhvOJL23D+3llz/9meQjhzQRY2RKk5Y9im5QczeF2nauL69I35lOB3yMLMui99++E5zQthulV9rpDNZzXV7Y9428vVJqhSF++PH3N0JwfPj8DZfe+PDNR8qeWV6vaqqOCZ9mDoczJkS2bSdES4gJlwwuTkiI+Hnhtnyl7oVD9MxeUZVbVRSnWKtEPGlkyVhjiYcTYMjJ0avwL//0R410Pz8yzTOfPn/mdO/47X8Satko6ysETzue2daN5eXGsmaenh/JWyavmfluZjpN5LIjJWuFVSNgsCHy+PVKK5qFaoD7uzM+Bmw66Grfb9TW+P66IxhijLTWWF9fcd5xOB5xznH/4aJNp1bAaULcbV25XW9E6zid70iHiTgn7WFsCje3Ar0ZihiM64hUtm2jt8YagzahYsS5SJjnQYX/OYtT3kJbBjh69B51JxD18snb3EYtObUJpSg5xSDsubLngjUda7QxEpIoUnMwO7so2kM6OsAe+lmP1Xnk6G51YQjlRZEjTWilqh65aas7zgFjuyJOhwi/1MqyboQYCdNEmCfmw0zNjVaE61IQtOQVim4sxtBEO4VvftFassaW1zxi3PRUbHnXhlDXaATvPQZL8Jpo3Ed83L4sEPv7WIbQtaoxwMiE6KLp0C1net0IB01arm2HESGhkKxKq1aRKSKUWim1vud8mq6A53Ur9EPkEi5EK0yz5/Z65fqoeBdrFE8ZUsJYSykF6wMBP0TZGoIk1HfYWUheA3mspYkhN+3E+xF9YAXMmwnfOARLoXJ9fEbEsJdOu3Q+ffMdIUbOd2f2xXDdrpooFyz7VihVw4r6XtSMsBemc4Sg5nhpym7qpWOjEjVUTbbTm94l23HSaQKAjBDjWlgXtdQZa2i1sWzbCOZKpGQ5JrWEtb0iRkHQtXbWdcfPM2EaXVsfsLlQh7fzrTuvGBQ9JWvR2XLvam+MQU3rb7rdn7U4RTQsV6cVDSNV9a4DvtVG16pkLd/6aDv74eX0MeF3S9iNBsy2yrpc2fPOlDRb5Y1H66zDjDdRxKhjpXVdYALL+hUQTgelpKX5RGuBlndKadSlQGAIFjSpyyTluzw/PvL65SvTfGCmK2w6OCggvRGsJ41usXWdy2lSugBK5S5ZkOFqt91AnHBW538C7Fmjxksuqi8uldLgZYNtWXn58SeiM5wnj1jNd2z7zt4aeAvesEslS+V5e+Hr7ZHgKj50CFUhaclhcKhLS6A7GsLzj38GsfRdJWPrdad3IcUjBXgS8EtFfvfPTLPj4VOCurNII5gjc/hImhKX08TyeuWHn575cH9HsBeQDdN32qa2vodPD9x/+owz+vVbX1f2LfO7P3xh3zO/ug/MyePPn/Au4kVp652KdcL9KbIuG3/87//I/ukjv/3tr1VwYlDnUZg0lt16XARJlV5X9fYCWEuYLxzPH5nvdUa8P19p6046enzyyOIoxrDcdLM3o1u/3XaMdcznO3xsHLdCqZ3Xtai7JJ5UhJKO2BSIKUIzatLAUY2mi0+HAzElXIwa7hws4XyiH0+st4WSs/57/zZ+FHzvmNrGzNvQhnCf4P93FqeOOd5j8brCrlrTu0QrdeA51CKGVRyVdXoH1MVndZQhhtZVmd+kK57EuDFi4f1iPH7UOy3NFD2V12XFGDhOGh6kcQmi4TADrCVW3kZO7/8trAYTvXVm+4hx4G2nE1Tg7pyCmF3X+7NzKsbuom4E0ZNaRLt3xqjgQNv7ev+tpdGMjppKN+zFsm2Z19eV4+Q5T368r9opzCO8yIieLIVGaYXcdhQcrQE42nnVUwuvd1Cpei9sZR8NLEYHUv213jqMQDVKa8jbirceaZYu6qzQKD81GoSgksdadrWvtYxpO/QdGfa9eDhgY8IZrW7youHBt1vmtq7cT1odeTEo3Hl8FuMfvLdYhLKslHWh5k2p9MI4xTx2zG2t83pflqr+Wmew4vA+4X0ixYnkPOV5IVf9wDW42SBOK4L+1m1EdbMG0TEVetfsqARU0M/SBuXeGjtA59aqcRqFwHnnCSGMeeWAYhvAKUS6ZK+mBO9w3o2Dpw+twBDIgzaXun7H/9dL81/V1moDw3Y/xiYKIO616H1vy0pKcF5d8haUCWtwpuFRnkszDesNYSSIdQPed4zRZoT0TukRGanQTSAvZZStSlG33hCCp4nHdMtt0xLzdtuQLtqwsYNwULo6SHqh9B1pnePxjLGeXDq3pxt1Ufivc4EpWIyJlLJqFubrQrUolLl3fFDD9z4sYOu+gRHy1nHO4oIS3F5uq5b7CN06SpjZ9pWtZmYbmc73WIS9Fm5FmwfGA0FJezYapO9401m3jWsvpGjVe+iUCOGqbirRBax3zIcZg0WWitkF5w9KK0gzTeAIBDHc24jx8FQKL6WxEzTvZtox0dGsJR4m7j/d4Sjcnv+EZdioXEJC1PLwTRNaC7enR25Pr8i6YktjWTSxy99FWvMsrxtd+vtJ4VtHxPPw6QPeW/7x//3/iKcz51/9BiMen860nJF9I3nDw/2JfQusayA6S3CO4+HMJJG8dfae+enLwvXpyqdumQ+RshsaEQnjvpASxMQUtKNeRypYPH+LbZ0aN6yBKQVG74jgHLVaLGpHNKLdl3lyOJewUrGiI61aG13G5i0d4w2t6fqQAQ5gbFZvmbVvPCSG4eFnLc63eYwZEe/jmql3sC4aCYhDD0D9M+2+Gt5btu8vSBeZMQZn5f2FdtFI7/Ye2W7pXd0avao8D2OwI5CmlKoHrbV6/xzbkdbvI2y3C7V0SmtsdcfbgbscErhWO7lnxIMEwRqnMKimp3wthcZoBrzJCI2lihqb32xnvbQBH9adORctkYw0xVAOpIgdX+rW9T2Q3ii9sreipY+86akMrWlQLfylvM97pTmLGCHS9B7shm7GWzUDe4Oren+qGDWnW03r9l3tbVU6y9bYKhiv9IIQ9fPNtWr33Gt8Ii0j44QUYxDnqDIqmlzoVT2vvW4EBx07utI6Z+1Nv7giMk5Po6/Xal6lIFxfr8zGMZc6Tj3FfFqjjg8vUP1fCBvB64kmVYaRXe/5XQy1CjV3utgh2hj3vzFr13unpbyN73wa4po3+rwbV/8Ooj0MMYw781Coja64af29QpPxnjQZuB7edAB9CG4EkdFVfl8Ho5gQGTjXn7E4SykjrVfLVs3ddIg1wwGu+swqhn2v3NaNECzT5AhRf7CgC2fdCvu6kQ6BMNzyiCYP15IprQ9ljkLA1A9qONwf1DwdAr1Wvv/9H7DW8OHbB0IK3D9cQAy16N+RUlSk3zxb7lyXgPdC8p35GDmeD+Stc9s79emJvu98/vV33H+85xqEPTu+/vTKti6ko8YI1rbqvXfRD+VglYl0cOpi2bpVZ0QTTK8czYYVR2hCD57Tt99Qtp1/+m//xHwO3H2aaRbqrPZW14Xnl4VbXum+IrZxupxJPrLedq7XTPY6b/yYGpMDI/c0Z4eSyBGSp9TCn/7wO7o0/v7wHafTgW+/e+C2Nv7b72883Xb+8NOVu/sL/+Ef/pbL+cK3n77h9eWFf/rnfyJaSBbuT4bzXdLPTwwLE5nE+rKR1yv19Zm+r4TySEqZ337+iAmJ2wK9G9z2hM2OaA84Hzk9fARrySWz3FauPyg4zhfoZuH00w+EFIiniZg8Lnzg+XXh6fpC7YCP5KYM3bItRHtjPh6Z5sS33zzQHu41za0JMVjsqN4UT5mBhneeJobHL0+88aHosL+qysnMbnzPEoXO0ivOGuJIwMaakaJeRuYnY+7p2XJmz2WokOxIuR5NThGtBrpOKwzQvXKTQ//fyErRTX1cHEYUH4JK97p5l9+9Cc11ZKKt5D5g0Ji3Jo/KyqSPk3Qc928n7lv38y+7rL4nzll1qng91cqW9WfUCkF3f8QOdcnbOa3nchdD6xbbOs3qrmatnkCti45/ds1IdE53V+sU8FVrJYjX2Za8cWs7NIMJ2pW144Lfxej8a8zC9BwxWGlY67E+ULfMvu34CZpEunlTSemm2lojF0VrKhxOxfGLZErtmqRtheYbqpGQoXzSKiRYDZbNeUN6xfaMN5E5Wko1lN7Yi/oap2MjREeMit0E2PddZ61+gJKdbsLSLYgKNd7GZGUv9D3jaRjbSJPDxcBeuupVhuDbjJi7MKx4TRQL2kZ183bv6qXAoE1YY5RaYXWmLO/vsarVNFrirWdgRsyhupM0EFnBWm8hV9BReLSWfpooIKTW9OcPbXav+r17a4O0rqjVhnkfd/S32S9qaBDhvSPb+19m82PpjH8//k7viJH3pspbPfnX5Hvmr3Ezf3l+eX55/s89f61Z9Mvzy/PL83/w+WVx/vL88vw7fX5ZnL88vzz/Tp9fFucvzy/Pv9Pnl8X5y/PL8+/0+WVx/vL88vw7ff5/ces/2DTj0iYAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Stage 2 Visualization\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAADiCAYAAACrxp3RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9S5NlSXLf93OPOOfcm1lZj+7pGcyA4AAmEqI0Mi1goqgNzKgV9qAZYPgCwkJcSdyKO2mHnTbCJ4G4Icwk7WBGSqIZIJDEY4AZzKOruioz7+OciHDXIs7r3syqqW5MV2OA62aZ997ziBOv4+5/dw8PcXcudKELXehCF7rQhS50oQtd6EKfj/SrrsCFLnShC13oQhe60IUudKEL/SzSBUxd6EIXutCFLnShC13oQhe60BegC5i60IUudKELXehCF7rQhS50oS9AFzB1oQtd6EIXutCFLnShC13oQl+ALmDqQhe60IUudKELXehCF7rQhb4AXcDUhS50oQtd6EIXutCFLnShC30Biu86KSKXvOkXutCFLnShC13oQhe60IX+zpK7y9vOXTxTF7rQhS50oQtd6EIXutCFLvQF6AKmLnShC13oQhe60IUudKELXegL0DvD/Nb0C9/8Or/ynV9GXADBqRGAVgpmTsoGgKogChocs4J7QQARkNCBKD5GD4ob4Lg7goAL7uAOJWXcnGKKFSMPhaBKUOXqxVPaqw3D8UjJmXzfQylES6hCCFrrEQQVQUSwYrjVOiEQYsBRXBRRRxUIgghYKuCOqoAqFiNiBlZwUUyVoIIA5XAPOKFrKBLp2YDXa6X0YIniDiKE2NS6IBBAoqAqqCjuggMhRBAopUcotCEBCtrUPkTqbxRkAxIgNKRcuLu9oz8e2N2/4fnTJzy9uaa7ekqILaXc45YplgFBQ6gdTanVdVDRsfwGEEoex9gVjZEYW4bbV6T9HQwDArTPXhDajnj1tM6DNHDY9ezvD2yuNzRdQ0kDZgZjn+EgGiC2CKX+jQGlIlrrJ6M31cDN8VIoOWMpkXPCzdGuxYG7uyMlGUPvtJuOqyfb2iaDknoc5+p6i0ZFgyBa218MsjkpFUoxijsCPL1uEYzD4UAIwqaNFHeKjfMUQcf57yUjIsQQEJF6Zrz2//3DP+b7P/oxAE+ePOHXfu3XuL6+/lwv6OelP/7jP+bf/pt/M7+fM00/ZRyDqX/dVx+n98j6iy9nY4z80//2n/Lxx1/7Kdf+lL7//e/zf/2f/0edO1NF3upkf5zkrdcvJ/7JP/lv+Pa3v/1Fqvje9ObNG37/X/9r+r7OR8b+FqnzaRwUKj9kHpd1Ax40ZT63jNt3vvNf8J3vfOfLacRIwzDw+7//+9zevgEE9/W8qTy0tsvHd12mM7Wp0xxctUhGIRE0IFLf+X4YuN/t5mt+9Vd/lV/6pV/6Utt2oQv9baHdbsfv/d7vsRvfIVWliWcqn6y/ylvPvTf5+qs/evwxGfRO+TP+8DOR9nbe/j60vtkf+bY+vTr6BR76PjJoeZTPn1MfzTLi0dqt5ff0PJkvPeXMUzHjyIw3LTJoeYb7KKPmmx6p8UpmvbtdD+fBMjdO9ZD6zCpDHpa6yH9hkSuPySDV8Sr3WeYsZchKl16qUUWQEoKOOMS53+0YhoH3ofcGU7/ynV/mf/kf/jvEFTHF1DGctD+SU+Zul0EgtpHQOM3GyPlAyUeCVKVBrz5GtMHVwA3xhI/AAwuIK2aCFef4ZkfOTp8iwzGze3Wga1u2Xcu3vvMPeP7zX+fNpz+m3+25+/OXyLHnanhNG4Wrq0hoIqENtDEQVEnHhOVC3x+QILRXG1wjRTtCY8TG0E2AIOTbAxSjbRVvGvL1DZIHpN+Tm5YSG7omojjHH/45eGbz8VP6cM1L+TrkBPmAHl4hwy29G4Zw9eQG0cigAWmF8ESIMdI2DaUIbkJ3dYUoHI4vUTnyvLlDQouEG1SFEAS8A2/w+AmEDd7ecL878B/+45/x8kff5y//5A/5z//TX+KX/5O/z8ff+mU2T57T7/+cnHcch3tElKa7Ak9gPSlDKdBog0pAeIabMhwzxYTskXb7hO2TZ7z+9/83u7/8E/z1a9SdF//Zf0n7/GOuv/UPSTlzd/uGH/zFp3zvT3/A1//+J9x8fMPh9paSEzR18mpRpN2g189Q71E/ou4oINLW+oWAOHh2LBXsOHC8u6O/v+ewuyPlRPfRC7LBn/7Jj9nfZ16/LLz4+kf8/C9+k9w7JcH+/jPMEt/6xZ+j27bErRJipNluOSZj1xv390cOx8SQMyrwD37hOUrmhz/8KzZt4JMXV/TZOOSCekBRojiCUfoDqsL15oqggSiBlJ0hFf7n//V3ZzD1ta99jd/5nd/hF37hF973lftC9Lu/+7/xH//DH1c99lz6TCqsKqo6CrHxz5zKvnx1JSeSYCrvyfU1//J/+pf8V//4H3+pbflX/+p/59/9P/+WlBIVeCyOdJ+Z6mn9RNaAyx8yzfGu+W5V/vk//+/59V//Z19SKyr90R/9If/s13+dV69eYqUakXCrRgVRRKe21fGo1yxC4NHv4+9Z8AK/+Ru/wf/4L/7Fl9qWV69e8Zu/+Rv80R/9f/OxOjdqLSZj1iQgQ9BZYOs493QUaBNNxzddBwhmxstXn81gSkT47d/+bX7rt37rS23bhS70s0POuba8Zvnf/e53+YM/+IMZTDUx8uT6arpzpWAuCrUsrHH9Mf445aMTAFrbdHytLJ/LIF/K0NH4yEr+1GvfTwbJ6b+TPjir4Hz/urwTyei2+iGYr+1Uvjzz7HmPyqDZQDY9yh9cc1pROWmfmeFmmBVUK99UjSMAXfpmDVR9BKPuXuX6Upn1x2jEEtzrM2CUGzqOxShf3W2WQevy5Gz8Fxm0cog8ct3pHFj6cyUy5rnik1E/yHINC3ia56zKWLfzuVGviVHnY9UnssigMM69oOtxmu6LdG2LmWNm/Nl3/4JXP20wZUOhvz3gVC9GHL04x92BXEbvhhWO9we665bQbGkDhBgp0/l+j6lSQvXQBFEww4vVQcbxAp7BTHBXkAZVoWkTTRuIbWDod9y/fsnu/jXpeERDT2gHWnFiVKSNWMqUY48rM0o1d0o/4DjDMCAS0NBgQShBqBWuk01wxAfICXfFxHECXgRxJw971AsiATRgfgU50JU7drs9d2/uiOVAsER3FWmbQBl6CAOhEaQoOgTEAy4NeAAUK4c6gzwBkOQKddB8hNCCt4gbQsL8Hi+J4pE8HCnpwLYR/t43PuL502uaLjIMryn3B+7uf4RZT9du6sTyAbeE20CjkSbEk5jPIpDF8FHxcQbS8AbpIL64wqIgBoMqbk6bCsVAtOPm+VO+9W2n7SIMCS1WPUx59N6IgjneH0ALqnW8zWF0zJGL4wZ5cEgFhkQZDB8gtk+QFnIvpOzE9gndE+NaDdrAqzd3NK4EV7pgSHAO+30FYCkiMcKxelNTzpCNBse1WjRySqgYMbQYwpuDkUsh50wUJyAghuJ4yXiBZEc8RLRpH1jQzl/YL5PWpc/POq+PL4LLR1fwIl5GJjYJtFVjZHX/4n348khWFqcHjHy0OJ0cE3jMnjUfmWWrLz/fUv5Pn0ZROArq+tQFQM0nJt/nW0DUCa3GZi2XvvRxEZmF9+lxmDS6ST8Z9aWqZMDsZfRx/uhopXazKlvG88W8GtrOnvvlj9OFLvSzQOs3fnVkbWx/x7tyhplGQxSLV3x61x4DJ5xx2Ue8IA/qcMqgVt4RW0DZYzJoZSiaz/gDv8YJnffMwqfk4Q2PCOvZqT6Bu4ddXa97TAbNNViKlwm8rdBDlUEyg87KUxegMSn/9V4f/T9LhMbUr7MBcQXi5jE9AcSncr0WKHPTZvEDVT/zBUi9k+fOY/GoMB51BVnNkbULjQf3yFTvdV+dPG+q8ALml9vXoHSZN448kEG1TqsoCndQHYGszWDqoUH67fTeYKqkzPH2QBGjiLGJgaDCcX+gFIMYyEPP/Wef4tywfdrQRNi0gb53shtl2FFQcrtFJaKhGZVsqx0ogmWw7BQTigkQEYXYREIT0EYYjnvsdWZ3/4aSBjahJ1BoxAgxIFEph0K+O2BkVIyw3eAiWD+QrXAshahKFyJFAqIRi4qrEq4jGkDKEVFFkmBtg21apIBmowx7ig3VwhIixbe4Gc3xnvz6ltc/fEUj0KjQNQ1NVI5pADPa6NU7M0SEiGsCiSCBUu4RL7hvcQlkNqgloh3AAh6lgjgKpexwEsk3pKGnDAc2Dbz45BlPn26JbWRIt9hQeH37Y9yNr3/8raqu2QCWsNLTNkoMFcy4w2g3p5BBAhrAfGDoD3jjhKdXSNPhJgwasOJ0qeAoIg3XT2/YXrUcbu8YDscRTHkFx6poUwFYOe4JrUIjFUxZDREV9TqpM/S9I6kgfaIMBUsQrq/RJtK/vmMYjNBc00TYbow0ZF7d3nETG65DZBsLQZ394QD9gKUO10iOjlvGylBDGDXUkE8RUkqoOCHU8L7bg0EpeC5YMKJMYMoQy+BOGgxiQ0AwUeyrXI7o7/w5Ms+RMc9a73TxmRVpuucsLPDDkM+GyqooPNKw+Zic3gOnmsVaEZilzGLp+zA0Pm+SGHImp+eqVKvbBHTXDH0tRE9I5tI/CLlN3swJA8os3E7nTDViySTMRqVBJs/UaKyBKuRKKYhIFWYfdK5d6EI/S7Tid2dH3vbbWXiJnPtKZMVTTmLGTgp49An+4P/Da0/B18QDffk7adLpzeuQt/NCH4aLMfPC8ye/HYDJ6pk+V+1hPR4x2M0y6BH581idxwrOQOBdYnXl8lu8dosxa13myj+DP9LC0+eP9Z2fPXoXT8CewgjeHhrNHpFBsyw7bdCDcV/fMPbVyTUyzlODGcvPgAdGQVKLs9WYTfISQWSUTSvj21oG1TaAj+fD5GEzw0Sq88frUo0HyyXeQe/vmXInW1UyG6mAx0XYbqsSvj8eECnETcfxmPned1/StkYTl5dFQ8BcOZQjUBvh5lgeUaBBkAYRRcqocA/72pvasLs98Nmh5xuqPG0anopAVFrdEkths3MkOwxHgind1TVFFFOBAOpOu22IOG0cQw8JFTCJUkbbSBNHb5YrFME9IihBIUQhBMViU71tDJQ8cPjhD1CcTo2rfORZNIJmghZsMHppaD++QaMQ4gHUcckwKvASMmjGpT5v01YvTpQDihNECQFiMNwV90DQFqNFJneeClIM5UiQgaC5ukYxYttQvLDrP0PFUcmIF8Qz/bFHCNSVQErxfW1zaXAXzHYgjouBRsL1RwzDZ5gXnj//iNhek8yxPJAPB46HA4f9nmF3R+6PoLGO+/6Ai9BsA2iE0CC9o9Fxq5aCGgKkNFr7Nw2GDAOyTxx3Pcf9kZwDJRh3O2VIzv3dgT5l7vZHxApSEt5EcqPos+vqIUsDjrDPArHgGyMNPcNxj2qdA2UEQPtXhorQtA2oYApNxXyUXDB8BFPUOYwiNUgRH4ycB1LO5JTe+0X8adFaNs0Hzs/LFA7gPAo4HhGaJ3aiUUn+EHRq6ZPF1fHe9DdJIV+L80mBEE6E5vTtgaKxslzK2ZqjRwyuXzbVukzCllUblvW0c4jICJx0nDdTiJ+IVD1Ea+gF1PA+HIrZHOp4oQtd6KdAvtZHnfVre+4DmHjNGiecejh4Bx8+Bz2ngMbdUXRWdH+yDFrLn59Ac5GTwn923tfnH4Ncp0fO/DmL7PupyaCHfV7Bka/Qm59dN4WAP/akCSw9Zsxdy1HmNshjMshXY7xyWz0qg1byZxrfx5t/rpzIPA9ZD/uEtc/gr+CzrKmQcQF7chbZAZPBbkFkk9yZQhJr2CDIuE53WitlZfJO2Qqw/WR6bzDlOMVKfaiAobhA20xDnQEjNJHjUNjtDoRYCMEIoSrJbdPiCLvewB3FMRNKFiwXrDht7FCNRAmIOXbskRDRTaA/Duze7PjoMEAyOoSgShytm1ECWMH6RIgNsWnpJVaPA7kqwFEI4tDVjneXEUxJ9ZK51zVeOO5N7dzRHajJahKMCDWRhlYLaikM93uiwLZTGstsA4TgqBruGSt14X5oa5ibi2H4/G6KOqLGmK6DoIKqIySEmqQiSC3PrCoeaAV5bgXmRB+GeEYpBCkTKqwJN8wY8r6OE5kKAxzPGawmn3CEXDLQ0OqTOrhWatIQcaS9QWKHqWACsesIsWXIhZISuT/S7/bsbu8ox3ss9Uh7jUvgcDwCULRBQvVmihkUq4lNXOa2eqiWiJINUkFSYcjGMRuDG1mM+0EYEtztEn0/8OZuR3CjlTKHhKbrK0KjkGvc60AGNzQ4aegrkNTJnR7AxzA/Va6vn0AADyBRiTGMFg7DtDItDVpfa5Ea/5qNnDJ56PFS3vtF/KmSv92esl7gCo8z5PFKVpJpOfaBtfaJz5/AkMfq8NBQW38uPHZhs4tk/KBhYzL/G7+4P1rt2SPFW7rbqyGrCt2H0fgfhs48ZnNll7m3hFOM9Z0MgKNnqi7bc3xMPCSyWBvdjPMwvwtd6EJntGIg76P2Pabo1ld04iec2HpWDpH5/X6nEBi14bfWpWrb7yl/5oeOCvQIqyZF/qzNsuat87Hz5ATra8/PLQWuefW0BOW0gPMCH6n69NPXNrO3gLxHe2zpg9MaTDL8DIeefDkFLSfXnWKpWUAu9/sMiuYw/0d0ivcCuP7gy9npcQxOENxU9tpK6MyrsnyaCasemWXpqUFyCQ13TKrurTLqMaP3ymW1zm00EprbaNj7EsDUkOH1Hrahel9026Ix0N+9xkumKRA10D1piMeabe2YnP1gtJuIhkDfF9yhBK3CNxdMwFHMC2bG/r6um+pTFajkhJvg+RbBUC/sX93SAVefdHRNZLjdYbkgCSQZ0vcgLdJt4NDjqcdkqEBDteq8e6gLtAZCVDSOoM4co9RF+k+egoCVHsHwXYHrDb5pyYc9JWcGT1jJhOMdbs5uJ4Ruw9c/ekJz0xGuGvqcMDdiBFEhXt1gVhiGvnrGgOCCEEiWcTHcj7gxeqWcqI5Yj/cJCTeIxHHCG8P+JXnf05U9qgbtFQQDvyPIBtFA2wpk4/7+U9yNEKVmu8uKZ8GzsD8KKcHu1adQhKvYcXV9zcff/AZNDLRNgHLE0wG1gjm8/uH3URpIHSUXct/z+oc/4uX3f8DVzYZ200JRPDTEGNAmcP38mmxO3w9oDIQ2MmQoxYmpZjYcxphXMQWNeLchaMdma4QEKRuvdweOh56Xn75k6HuO+z0hKKmJPH1yw9XzawqF43CkiXEE8kdIoBawUmofpqq8NqEhhMjVzdP6klnBhkK2AQvKEJSrVumi1EyEQdm2AqXQ74/VbYwRVWi27Wht//D0gJfOx0fJOAq0x8Imzr6wZF5bHf1QAERG69GYLGOyMi2g6JFGvqVq68Pr6n9QIDIy9sr4J6b/UAsS9yWDYbWQjLeP964XBcOHG4+30CmckxMBNtMkeafP6ZYzISYyZcP8fPHqF7rQhd5Nvvpc46IadecPGeNf9/V7TAadhxKee6XW4G2qyiiDPk91TjxqZ4Dqbc08CYEUFu/WVN5U5Akoen8ZdHLJo6J3SuYxo7iT4mR13dseNJ1f+nnsPw3z9ZOHZw7ymBHzeizGdMizJXIcg8krtWrA5zNIvuXatwDeR4tey4/50KkMUp0uelju3NLpATKtZ14Zi70a/b6UML8q4CDjRK+Ty10gOxRDzYDqIWpVaYNSitb1SFJDyEouFV9qTeIgPoZ+qMxL60oulAwp1UVg5IwXpxypYXZa18XkPlOGSAHKcahJCpIhOROKQcr4MVH6hKUEOswd6w7ZFDwj3kOjSCN4kdE7VSCExYqSMnhN8+4xYCJYn/GcMAy3gqaherEkEMXpgtC0kdA1uBjFGcPrasgeKOqKuKBjX4hV52wd7FytAk5NNT8qlPPEF8YEElCGA5YHotYCigayGUNK4IKPL5KIkvOAU0BqqKCjGHVp4+GYOB6Nvi9IEUJ2YhMpbsRxYloesDQg1IxdaX8LRZGho2Qj9QPD3S35/pYcrHrTpIfoSGhqOss5zGd8EUVrG51qORg9ZCDj9zH5h3j1tHmuVoWR85YxpC7nNILMULO9RMV19BrNmWpGRmJOXYAYasc7BA2EEGiaBkQoqb5VsiRfo76DgoSARq3jINWKISrgymRQ+cpU3EeNXA+tWes6niy25S11H7nQ+dKlL4vWQOEktemjF843ACtZPZ16cNsqbv0D0RIY4bN1EJgru/DxRaM4zRS16oczYebvHLgvh07qsLJszmBqZWWcKyeTcrSSlDOg+pCjcaEL/S2gd70wDxTO6b+fHBX8weWzV2DykJ8z0Lehm+n4e8qg+bmT58P99PjZp5/p/I/r2g/BxjmvemAgXN0xS5q1N2w6OskYmbwh5/2y4tcrvCg87EM/CbHwVT3XSPC07DnUDZAZMVahPPfPW2iq+lruydlNiz7waJMWeXx24kQGzaJI5m2Q1tkw5uevrzsbidlwevKMsQBZ7judC3Iiax7KoFMdYq3/jFoD715v9m56bzAlAkFrkoHBBT2CJicSEYyy3+Na1xhtBLpNQ950ZBF6N7IZx/6AmxG9pjmWpsU14CEylCODDRzMSNloY3WxDXgNl8o9x5w5pMLzr32NTMNnP3hJLAO677GUGXZH2iby5HpL/+oV/f0P2F41NG3giJNL4fjqFhHYXm3H/aWMbatoKxDq2hl1Rz0SBSwb6W6PIiChesqagucePNO21YPhbw5IFwifPCUGo0l7fD+QLYxZ/yC214Dix4SYoDkiaqCJYgFXpelaNBiNfAaWsYMhbUTbLe4N5jVRhTscdz8kpUR/P1Bc6Z529MXYpUS+y7w+JPJQE098/Au/BOGKwzGBJbaNsOluuLl5Ri6QsvPjv/gu95/t+drXf5G26Wg9EdtITgfUBC2wf/2Gfrfn6Sffou0aXv/FvycfBqzvSL1xfzdgQ6JJieNnicPtG9pnR8JmQ/P8EyjC/Wd7YhPZbjoyQkrCpt0QuwbpqmcqD44Xr9keLVFS4bgb2O8SJR8wy8S4YbNt2G4UN2XfO6ENPLnZEppIcrjabolNxNMA5jX18ujupZGawaUUcKO7uiY0DUENVSHeXGM5Mxynl1RpWyVGZdtFVGHf91gugCEakdiQh4HcD+T81YT5PbB6TUzLl5hjEV1YzxQX/FisszvoyrJndUw+j/v7r0OjreWkSufhHOfpaOt9K/YpCwM9VxvWC3u/TJqePomNWRi5rY/MVdHp/IMyzr6P1+hoLPgqgv5krkMVT1NyCdXqmZ0CNCaQVc9Vr6OOa0YnyTYNh4p8JW250IX+1tADpCDzOzqHQLE2VC231eOMXvCV5X5d6Ayo1krsSkmfjqzrMYd0rWTQ7JF6hBf7wt/n56+ifxfj0iPNfiz6Yq7QggbXCnVt8xpSncuc5YY5Sx8/WQat7EWnhayPrOTa2uO15MurYyGrxElTkp+ppjqGVE/rVc3slI+O/XwChrwsPbGyyZ1BP2bpcjZfzmXQ1GmOj/vSMoPP0w5a7jFqvWrkxSq6YQWodOn4k35Z+mEpT7XKjymKYxqfRQ6Bhin1vD46f85a+RPpvcGUCsQwCnmvadCnUJS691RV1sgOUeqLq0rQgOPVc7VpqxdHx01nXTGE4nWiqESaaIgbjeQau1gEj4q3DYiiUujaDU23JaRDrddW8JjxYoSoSKOELhBzRGJd20Wpa3NGKE4eEqoO6hSpGf2sGC5WO8UE3/fgRhgnpAqQvKZHJyNS8GzgBTYdRKkZ34pT1CiWsKMgwdEgmAakCdBF3ISSQbWgYUwegY5JIayuJXJDZcoLF6rXwxzLfe3/XMBszpfvwUhmmNXU4oJz2A+Ukohv7tFGyMkRc0pxCFPqBCEIdO2Gq61wfX1D27YEG2pYpDmmdfNeN8NLphx2dX+CoSfkTBMaNDopKtm17hlWjJKsZnss0I7rouoiPyjJyCI1DTsGsYxeIMEKUJySDc+GjeuPQqhZ/9wEy0ZJhWFI5JTq+IvQtR0xNlWZmzxhISAKLXEBU0GQsICppm0IMSKeqvEAQ9Rpm0WgCE4phZKlDkcZ92wYQ7NKTpSSx4wwX9Waj0XAVHlShZXLtCpucdMLjF6S0Sqzkj8PIMZXEXZ1IlSm/6dhHw+tVwudM/yV9JvL+lD0tmiI88Mngk7OL1p2GxFWXz5sUxahxKnAq8L+XMlZlLbl3AKWTrxvHwjcXuhCP5P0Fh78qCPo7PcCnNaKcf032TNOrj1TqZcscqfA4YT1+NpD/Vi9BWRZyzLVYTK4TDhn4m1VNj3UdB9ndRM/WXtvHr3w5I7FH/HYxX7SQB/boiIn/fsYqDuvFSJLMrqHuGL9xJOCTvbfmsXCOXAbPV21e08iGGSyUo38t47RKZ+V9ZfpMSeTYvo+AZl30MrjNPfbFKY/9uVJVMgMpNftWUDPND/XYM5hDuU8jdZYfz8FqGsgNRsSVj0wqwirLH6fR6S+N5gKEa6uKgAo2bH+QM6FpomIK6FUq0dIhmvAtG6OahrGT8GuIm6FnA0vTh4KORllSCiRqB3PrktNiz0c68ZlLhAUaRoaN1qcTz7+hJsXn9CVjshAjAYlYW9uazY3T1w9u0Ilcrw/ko6JuLsnSCE8v64K+O0OpcaoZo8kGtIwYFboghCCIf1LtBE222m8BT8Ynp14bUg0ym6PRKX5+a+T+oH7H7+sm4SJcOwTKWWunkViFwhXB3Tb0n7zaxRz9vtMWwY21LVDog1S9ogliuSaHbARJDRgV5ALlEK+e0nuC7Z5CqHlagvmRm9HcqKml3coLry5Tez3Oz49/CmhEZ5vnehCnwZaz/i1QQloUT755Od58VHg+YtvEWKDe08aBu5ub1EJNLEFAoqz//5fIinTHgsxNDx5dk0ugZsnwm534P5+h90fyH0iW4NbRzAFU1II5OwMx6GGTCIM0UADgYiiNATcnD4NSMloSjSN0m1bbu+ccswcXx64v9/z6uUdaeiRlGie3PD0pqZmj10DKOZO021RDWy1HV8sRcekgj7Gxmpb9z/LKYMVJB1pVNlu62vi7ux2Rw59wnMzbk7qFekERuQAACAASURBVExb3Yuq9MfRmzZtjPdhqQrM1e+JcanMTHZKuLIAqlXmpjWDnXidT/tcrAr9SVLqp0HuUBwvxspoVq1NawD1yK0ik8Jfr5j4dRUmp+m7P4gHRIApg9Uci+2zEFkDkzXZbEV9WMc1oHJZWQE/AE2GMuS0D9dC6ERonQi8VQPGixdBVr4SzH6hC/1doIkfnntlTq7h7D2drlsZQiaa90BaO6zOCp106AW0Td6AhzJo9ppM975NBi0VeGhM8lUN7XQjd2fl4WDZw6k2WmewNJvupoQ4+GnioxBO6nPej+v+mls4gUP3k3acAlOfCz0HWO4FfDTqz2099b6J6OjZWfaIWhI8TJVa5M5JiN8jMshnYPpu+VMB0iNhj+s2jmuSar/J3M3r/bWmgk8MvrICj2uQuPJezV6xqQ/hROacy6B1CODJILpj/sVk0PvvM2XGcUjgEQhICCBKAXBDzMcNcgUrBTsOZDWKNlg0TIU8ZslIQ0KAKDUVYSyFnIVSBC3VM6OlgioxQQiEpqUR6FRoukjTQFBFPSBjcgntmtlLptqgEglDwYoh2w2ejTJkQnSunmwI7kQKiIweFMeKczgeCGKE0tQ9j+4NAwrMoWeSvIKp4xEXOO7vqyfmWNdgaRuIXj1fmGJZ0eKQDYaeqIHrbSC0HbFrEQm13dQNg6NUcKqMXjxzypDIhyOWFSNScvWE7PuhhlHawP3BuL3NdF2kaRRciLHFjkc8OblR3AvWF+z1niF/yrFX+iTgDUIkD0KMDe2mqZkCS8Y1UFyQ2BG6a3a3iXLMbI/QitHoEbQhSEvXBvx6S3HwEPGmAQ0MGcDIlHHmKpYzJWdiV4GNamV1eaiezzIMFdjkTHbI7uz3ib7P3N7tuN8d6IcCBTYx0raRrguEIHX9WDpiyYmq4FDKMFpqtKbLt1onoL5EUtft4QVzQyjkNMzKYwCaGOqeXMUJEwgZtfW6FotxFL8aWkeETzbIiR+uldyZsZ1wDln+L4akU+vj5wJSfvLxSGXfeXDCbet6nFdjvVAYptV2sgh/kSmOYF4z99ZHf4kkS+eP8sxXaHes+1moxBKvP7ZR1uOxAJjV9hsfnlaTYy2MT4GTPxBuFeMvio3IpLz4GPlzQVWV3jG4P+H9udDPOP0Ere6LviFvmyGV78vpNedemPnZ6w1ZTyTESQ1nGbTS02dDy3hgjnJa836YN3Bd1i/95DbUx45yQJdojFVzEMAWpDbzm5MyZxDmnMrB07Lqp8zyZzlXr6x7Bo73rg15D6rsJ2CKGWyOKOzsmdPTxA3zZczq7bZcsK7PDIZ1ZVQ8zQo78+25sNMaP9wMeFyHPvP+hyMzJTg5X6fsvvKR+XperOaggzMmJ5rG8gxE+lq+TLJ/3ZaTPuCRY5PXbjUOp933E+m9wVTOhftDTxOUGFpoqlWy9Am3ghSrOxUpWE6U/YGBTJIWouJBOQLFjWN/pI3K8+stWF2X5EMhJydaQq2AJdRAc6ybqrYb2iawaSLdNtK2TsgBtYKkAcUI27aGyHkYwVRD7lMN72sarBjDZ29QDVzfdAQzYkns98b+kMlj+Nvw5g3BBrYJxAzdDTUULYBhII5snRCdfKjep7vdAYmR9sk1et0gz1rabUPbNWSPWHE8gydD9nuabcv2+TW0G6zdQjmCDTVFOk6rOlpQGvAApWD7I8ObO7x7hocNORX6VPjRyzf0uXBw57AbePP6yOa6Y3PV0XaRbbvl8OYNTiJfbcnm2D6R3/Sk773mszvjdg8f3Vyz7Vo2zY9o2pYXn3yDGANdBNNIcYH2iqAN9z84cDxkys5o3eB4T9x0tM8D201Dt+nwENFNYggdRRsOue4lZsXREGuq8TSQD3saURpRggTcneNxoKRMHoZ5jc7tIXF3zORUSLnw8tVrdvsjh77QqLDdtmw3LdtNhFDTz+fjDnImNi0e6kbAlYfWpBcEagKJUd82gUIYX6NSQxqHI23T0nUdIQihjRyyUcxpy7KjwxTq6tStA+wrV2pktr1NejycAqmZzrnGqVQ5+ann3OhLIpGab2TBG3LybF15yM4F1XR+jh0/E9pficI5gTute+jJtF/IWY3Wa4jUF0E8XXMu0KtQfCgkPgiNUnAWZisr4CzIzhY4n9RTzmPW/aS9F7rQhX56tH5P3/WSrUHV9PuhiDhVut+F99cy6DSEa125hzdO966NMWdVmxr2AKRUyFCfPH0i0xpcp65WXTxPSwbVKfKheqMcGWXLwtumfpxk0GPy55wPKmOGuDnaYKq6n32eNqQa2HzqiUfbPW1wrqKzgXTxQq4rtDrmyzhPKdAnyLr25k03vsXkOtdjKlseO7z6vXYI+dTuFRhcz40KLifr5zQCZx6wM4D2Vhk0rxOUdRecXrcy/trnDDl/bzBV3T0Jd8Wzkz1QgHwcUCts265uvuhKytAfDDrQbtw0V5wYAuJCM27I++bNsbphi+FDhqFw6HvcCp1WJBpjRMTwYcBpKRoxG9fMD3tKPmKHPepCF7R6UYYDJffkothhj6dEGhMFeKqhfP3uWPeyig15l8n7TOwCrULbJMg9+fYIGJ0YUgwZDA9AEHRfZ0nIBsXZOtVjNfToxuuuylZTjpchUVMUBEIOiGT0WEje4q1gLSgHhIGm6VEpJN8j4og2lCL0gzAcjb53LCUsBF7d7jnkzMvkDAWOx4QQ6Z69ADWG4jReM+o92TaoKJsYcBFyE+nvB+yzPSHUMMTSbOhDQ8oFLZnhR6/YtJHnTzra7DUtf8qQMyG2xC3c7+7xVPh019OGxJO7ga5r2Gw7cqrrx0LjSDBSyViWujlyKGjrWHLcA4f7TL87cvWkboo8rVeSpqZrP/aZdOwpu74yQXO8JMQL2+stATCtWRr7QdheBdpW2e2UXJzhcEBDQK0KgSCBuvi/jHvgCB4FFyGVgplTSgIMkcxwPHD7mdF0HbFpSBprP1JQ8ZpJ0RIMfV2fFcJXsmaqMidbMbS1orqEWczhBzNz94cFsTCiKQRDJ0b1k2rhZ7/Hch5eujZznTG08Yi4VD6xcto8WFw8MtSlbuMcGU+bnXqlZvqcu5z/dWgdziBCTdgz1XGyXI7CQ8cNBOu1ozB7i8IyWYcfhEt82W2xai6Y1jXUdowWyGldxEkdp3mwHvOH5U7z7e9uanQ/+Tj5/UA7Oe/Lldp7cuxCP3O0mv8/zTdhea8WBba+tmdmnRWL9ZOrlxotRS0K+aSELsr8ohyfPENGrrF2TZxUdAFS63or1SA67zklcvpqTCHtozxQcZqgBBXiDBJqFuOapdoxd9JJ+Ddjlumq90yRDefJOs5p3YMzLxubYMVHMHXezInzT9tmTBVYnqKyvNeTt+p8P9k5jHDkAYsXaBnEdRi2r4CGIzWTtSz9tvZQTQa8t7HkeT2dG+g6kHINGsdK2BIyOYd2nnXoBHJUZF4vvxSyzhy49Ncc6TG1uSLc0zraVL9pXp4+uDbBFln2OV68zwGmHDRDqRWy0uCm2DCgbjRtC1qTSeQs9L0T26oYjzOboDV7S1El5cLd/UBUoVXw3CP9QH84knNB27rmqu1qh5dhwDRgbd1E193J+Qj9nrTrUVdC10HKlF1P3xuHgxNJdW+q2zu8ZLooaEkM+9d40xI2N+RDT9kPbMKGtg14TLgN5N0dqo5eUdO/HxO0dRdXH2pHh3FYuvFFsJwIJigB91BD/I6F7EJpM8GspkJPgmqq7Wkh6JGgPdpmkIylewRHm8jQG/e3iUTH4F1NcqDKp6/u2aXC7WZLLnDcZTbbhmfPnpKHAzlVMKgCmy4Sg9LFUPdMaiKea7bEGAKxbSlN9SbZcBz3TnrD1aZlo74w21QgFzQ0hE3gngN9KdzdJjZufKR7bm42yLNMRjBRghiihqe6ebEZEEINA7QKpoZDwZLRhlizF7pVMBmElGHIhTwM2OGAjynJKTV9/Gazqa+XZYorfYItStdEdi7V2zgc0THtuorgEuo+UjmhGkG0ZhIUSMNAKYUhJ1ShaYXj/shhd2C7fULbbmC7haAkH1BxukbxnPDjgdi0hLaBrywBxSR4Tq1Eixw7YXEnH2elvO/D3nrvcsqXrIGPSqJZHT8BSedrbCZe+cBV/8jja7z3uEu6rYWYzDqnf06G+YXJx+mwqoPIJGjXQMNn7WZSckb0eKInPzDDsgimD0EV7CyhOTMQBJzFOrqEqjys8slKq7ldKxD1dwVLvXXMfGWX8J8g3Je+PNGA66kLXajywxOr/vLWLrj7fLK87+RZM6b6t9i7TsuYkwCc3Pv43J5Z3oq3nRhp5r9VKLuMeaegJugSoY1Ko0KnI2hh2kcIUqlRJia2JAqUEcCcvH/MogNGtXYFNB6CQV+U8weyZnxbJwAnpz14Ev4MTGnQl+6Us75Z9cZ00cJUmUPj1tx3euYKZE2o1HWFQ+Z2vo8MooLqR+aR+7R34IqvrYyLSxnruTOenMd/NNTBCpTJUsZ0zQikJr1V9byS5/UbZdBKDs9j8570/mCK8bXTAuIEdcSEdMxQnL43LGgNtbtq6NobkgeGwYixNsb6hOO0KLENhBdXlKEnH48QA2HT0RQHydwfevBCu3sDHjFv2Xyy4cWTK55dt1xtI29+PJB2B7QXSjE+e/0avCA2YLlaTgsDxTJD6rFUatpzMwIBy5D2Pen+jnJ/D0cI0XnycSZ0BVNFc6HpM54KPhREWpAO94JR07gLim46PAq6UUQU2wntzz0nfvScIB1FArlrkRjZXF9BAGuMrAHTwDA4VjJD7yiKeouVzGF/IGU4ZKdPB/p8gGvH2w29FKQRngVqGddPaK+uuL65AdkimonpM7QcKKng7sTYkl3Y3xleWrY3L7ChoSmRj77xCe1mw+6z14gVnm1a2la4vgInYBh9nxj6TCpOdqdcN2QVdrcDx2wchkLz6YH2x/dz2158s6HZbMko5kryFkOwfV/XIUlg2CVSX0j5gAZFrb5U2QqlZFIe6ELk6uMbhpxIuXB4umXfZ3702R4BmthQgJQzOSs5g5Y9TdkRh1ATpATFTUhZMRSXgPoBwYgloDrubWWGpJ7YNlxtb4gSiKq0V1tC1xFjdZMcesHNGY49QZyu24LUcLKvzLA+MQF3kLo+bYpZDzEwpQM1s7pG5S31fCytQM1r+M6Hr5jtyDhzqvvF3d1WJtZtIEakqclAqvkwwCpsDyoTDLEhmiNlZOSrULKpIjYyzkdkWc1aOZd3prfK2eeXSbKELE51q3WSGmpqk7you877nFZfKtAfhcEDWbaWCx9qvk1CZ5TNs0o2C9dJaNdjMobxzR7RszCfRYiNa8bEMSsfsEF/k2gNJH2axFAKvrvDU6qb0ceItN3yzoji46L+C13oMZIVRz89vtCUmnr+/eDq93snZ53UHJHJ6KKgzAkSRAUveU7y8HidV9hgZDYn/G4FcMagIVSEpgsEhVaETVQ+2Xa86Fp+7qrjYMrRlZe7PYeUOKZMKsZtynV/zlJqyD+OapWXaF2iMO3TcbKuaGrvAzxVDeylGA+EjJx+nQ1OaxAlE3BcCp0fM7V9fS01Z8G8J+lalq6+rG1uNUJCEJc5i517BYA16nGEqspc3rkMklWl3Me9fteWz7nypynZxb3uAQpncnnVqaPQdrPaLuGROewnH7hXYTvWtPbvmFYeThJwyer51SvoiOqcofnzyKD3B1MzUjNcqu2xLu6z0UtUO9AwCEJs6r5DebCaJGIcINwJKnWSxpbBCqnOAjRKzfxncLQjXhzph7HUmkBg0zY0QapqnzNlyKgFPDv9/oiIE9SqALKCk3DPuBecsrQBHV2vhZIGvD9ASkgwuo9bmgDejrMu1w2ByVbfWFVsXBFTkmPqQE3IIaGm7S5HcBq02RCbDtWIdJualfDJU0wyzq4ylXF9TTYBq9479UBOxv1d9WodUfrB6FOBOACKjZvdbrROmdA2NG1L2zZoDISmwe5fVw+MV+XeVPEilOQ1C6O2tE0DGnm63bC53qLHPeLGiydbYnTaTSYXGNKYQMQKudQ1ZrQBLGJNg3mhJJA+o8ceG/cQ6572bBAIoYIyUYoJqUAbGjSA54zlQn+sL5BaZURDyYyLzdCryKZrEDEUZ7tpMIGojrvUfQN0nIVWN38Wy6glJJe6rw1aU6snwbXBg2KWEc/zGBJjDdksBaUhhgZv6ubMoYuENhAnptpXK0jJuYYRtk2da19BJr+ZRGYvUHV0nK2pWcmBWf9dm6kekC+WsjXe8VNGOV07fy01K6IfjzAM2OtXNZ3+9Q3SdvgUmz4yN+dkgdRK+da6H9vM/NaLfX285RSILRYqW9q37qLx7g+pfE4AosoInwVwxYEyH5utmPWmU6DC6bjNaOYroipMx9FYCclJvtY0yI8JwKU/YGmv6Orav8244DFLyyi859fQRhCVBkgDfvsa73u4fgptWzsrhPr+KKzTUsNqbq81pwv9zacP+D4veyGtV9eu5cJ6qq7WLU1TitPqnlT9xKh2Wv6k/E+hX6f84fEO0BE11WeuUBR1TZRK3ZUnKGxjIEblJirXTeCbVxs+2XR8+8kVdxbYWUDMuFUhAkMwEjIDqWIVPMloqFCh6nkPZNCy7tXn+oxtmHT8qY2joYh1m9dhg3Lq33qbbFqzjvmOqZwlnvKkR2X+N4IGWfHcSYSsdIC1DKqY6AFSXJopso6mG0dHxqae3rNWQXxu71qarZHyGfKb71/rHbJkSFz35bqj1uJk7dU8UxmmqJD1muXPQ+8NplI27nY9DQ2RhibWjU1NE4iReycngZxoNi3t9YYYjK7JWM4kF+JmCwjDISHixHagDQFunpL2R/KxZ9tFukbZbJ5RkpPflLq/EZG2C8QucP/jH3L/gyNeetomEKgL9MJVHQzVgB17PO8wy+DG9YsNCoR8xHMmM6DaEGLH7s7ZD0ewHqTAG6rn6OUehoLuMpIdTYY1dU+r7IWCkRSyCsddxpuAXzVkDSQNxP0P0D/7DG82aNfxya/8Q2JsKIc7XAtoQoMSYyC++ATpugoMSmL38s/w4wE2hiJsJNLctFzFlmFwSoFWQFToug5CoIsBiaHuTVWOhHIk7ffkw5FhdyAE5frZ12hj5MWzwO0PX/PjP/shV88+5snNc/z2DcP+lnQ4oDjJDkinaAw0EtAucGx6NBy5fXnP0BeePPuEtu3Yti9I+4HDqzd0Vui8cF+EYxH2yTjcHmmvnxCC0rW13tIEsgnZnecfPaGNkcqkhCwNORcOux1erCYpceF+V7hqI9tNQKTw4kr42tNvkovTp8LVkyuePt9i/Z77Tw+wz0gKeJySTNQwv+sx/FTIODV7X8k1K87hkDAE0UAuwu4wEGKgubnBS6EcB2gbEKHkMm5EHSooFkVUCdHnDeM+JM2MQld7MYw0r0Mx6nsBs6LrIyM51fHOAOEYXfmAya9D1NyrJ6pkyve+i715jX//+7Dfw6efQtPBx19HvvEN9Nvfhu0WaVuITVUKm2YGWLhDKtVLY16lZBiZutfsi7UNY1jZVMG5XlMGoPHn2OCvSqWcLI0L4JwUgtHyhwB1nsuZAuyPKcRTGaNwj1HnhBtfelvecW6cSkxqmpmPoTfTuqo6LtOec/OVIvM7E4nzpr9/J2hB0dW0mwfss1fYD76Hv3yJv34Nn30GwwBf+znk5in6j/5RfX+ur/EQkBBryuYRYF3oQqf0nijNfGL073/PihYvy8gn1jJogiBlyXcrq+c8tDGsZNAkf2A25tckQzURmZpxFZQuKH/vxQ0fbTv+649ueB4CX9fIlQtPUA7aspeGfzdkfuTKXxnsi9GROZTAaxEOKZNLnvcnnb1nceJJVZaa2crDMf7NeKBMHcJ5I87556TAT0aoNV+csgz6eYKM5cLF+zJ6l0RW/T/Xof5SlTmUbnpi9b6BuMxtWnu35iyDD+QP83EdN9udQaQs5T1G8xSjPttXZa2f8UBin82R876cDHyTAXkVIVglrE+BnqGqEifoVMa2jBE88v589P1To5dCvx9q2u/QkEupaaXHhQA1LEMoQQhWrfjTprNGtRzblDbaqkXEc64eKQ0EqYv/bezUiKAGNnoTNDbEULOsWUrY0BPjtCC+WvTGRO2IVV+Pq9fJ5U4MEETQUjN7mdSFiQEnKsQgRPe6VqfPdXD3CQaDY4EprbkVPOc5zM9iraMVx3LAgdKANZFhn6tTpWvQ4uSkqAUkVGUxxIBoTbRAUCTE0QLvEGr2OeK4YbBGJDRYaLBs1XMyxdGOFs04pgMXxn23cl/raoYXwxn7khpS5WYMx8Tm2sasigVxsJxxnBKMokIZdExxHgmaibFAGSipUFIihEjT1A2JkyptE7iKipXqYRoOPW5OMR1drGFMNR5rkg4TmrapHrURTA1ENCiW2poCHmNImZwLRQUNTvCaj6cLQhxToDYBAo6MKd0ZE06ITwkXKtAIs5JavaXugvnKziR182dXJZWCK0R0zMpouI7p1G2aY/U9MZ8jAb46moxV43cZLdbrjDWz5+DEFnbKpWYL2VSOLGF+tS99uW5SAkvBDzv8sMM+/RH+6lP8r76H7/bI6zfQdlAEQsCePkWGAd/UsCVCJNzcIDEuFZjCyaY6LdiByRK/hBSc98PYwhNL3ldPy94fPldoXsA72ojn9kxhDtPNjwqSRzJjfQCaFaW3PXtVKWc1T6gCrAa/+Pml4+/HQ5J+5ukRb+7cL1NIXxqwu9f4qx9jP/wr/NNP8VevkNt7SBks4McBvvFZTXhjpW4EGSJ6dQVdd2rwuHikfuZpba9/O/k7L6rv4KJ8w8SC1l4jP9ko912h6rMyPgmIt3khpOp/9dhjAG3toVif8xP2svYsCKM+p1oTVikEU560gasm8P+z9ybPtuXZfddn/ZrdnOZ2r8vMympUjUpSWZYsN6KzAtsMgCAC/gA8wgzsCDMzzCHEgCEzZkB4AAGYCIKAAbZlAjywLIUjHKBSU5aqMkuV3Wtuc5q9969ZDH57n7PPfS+zXknKLLvIX+a9756z21+3+vVdby0bHi1qvtRWnInlYTb4DHWCBkMrlkfWkZ0jOM/OJCoRNiaxj4loDFbM0QA5Y5GTvH+yqz6BBt5XKD92N846e9QvjwrVx16ms5Ia87MP9rf56pHD/Q+1vcaHvQQ/P3fdTDxIT8447c/EmOX4/QREdFyap+tv/l4vj8uxzx/npfs4HnTUA4/AHvPXPHV46UsKbuE/5hMm6+X22spUv+l5+s5HXD1+SPWgpd/vyWHAG19KKYUBcRZpGrJEwq4vQqsVdJQudzebIji7GiXTdT1iDMYZXEpYaxhCIOWA7Is3yGWhbpecP7xkufRo6DBYjGtxOiCaQAMpDfT9XSkGlQTvBd+25H1HjoGYI1kVG4Yi8JlMTpHU72grw+Lhmmab8b0iNxtySshNB1FhyCV0L0OKQjaJKJmEEoMSBQKCWot2EXt2Rr1o2Yiwz4aheoLU51R35yxcy6O3L3GNxS0sqXtB3D2jCxtCd1OQ7hCyv0JMwsdNcTuLhWGP3e+IUhXhcwxZ3O22GGdp3QpBsGZgd3dHt7nG20AlghqHsQ7vHRnY3m7p9gM5QdcHdNdhmxUYRxw2SI4MzhL3gW67xbUVbtnQWFicK7fvBWIceP79ZxjbcHYl5C5h+4H2fM351RkXo5D84fev2W8Dfa7Q7JBqURAEncOL0CJYV4N11JUvm7ALBSxitSAMkd1uQIdA7Hueb4s3yOY9WRPbuCn9bxvY7xlCYO2VRW3YR0NCShGrcScZa7DWoyGQ+r6AbhhfIOMRqvUK8RZpLSFFuq6DOMA2lzpmasj7WJiOmKLUai6GqJgRKdiN6ccU6jd3r08woFP9rk+iDZ+EnmZkjMeGUXE9XHRQpHQY0P2W9Pu/Tf7e76HvvFMs6k9fICGh4lFXoc+38Pw5+uwprJZo25Kdg7pm8Qu/VBSqybIuZsYoSg+mmGckjxazGbLDoQuz3p66545EVCYi/dkImyXkMI9wukrkoL1zqL00D+8bfzTrEWGIw+HDH+bHob3PH3mfmc1DTiY+qkoaY+aNMWMegWKMGeuwjPHqOvbbyEnuxk9sm+Z7rKuo2zv0+UfEf/rr6NOP0D/8PtxskLsdajyIJd/uoV0Quz0sWvTsDLWW7CzN13+a6gtvlzmw/z/y7H3eXm736bkyep3ui7JT+N5xI0/WfeD0/BNhekZzT+K8jprHpEKZsvE/Vih++dp7AvvEfyaDngjOGLy1NL6idYbWWb6yqnnUev7S2xc8qiyXuwEfB+pOC3haEowtQBTfdJ4vLhfctBVBM3vNfH/f8w+GhFUhesM+RoaUZp7eMffGlmgoc8itebmu07Fois6G7FTRmb7PBzCfU6XoNFTtFWM3Knp636CY53M3vdtIV0dec4CGz8WsJSLMU48PHjcRcsonRr0TW83kkfqYduADM6X0RJGZfyGjc2DW32lpfpJx7ZQFyVERNMf1fIJILEIc85LtWID5vp5f0phenwf9aDlTueQp5RAK1HDJJhxlqTwqG5GSk5QQK5hsynlqjklsouSUCSFhLFgMaSj3FVUcBl9XqFHCNozegFisdtNAi5BjghyRFCmSbLm3jO+blTGsXNAYyJrxRhCxBXZbiuek5ChlbFZMLp4HScVbI+PP5BbVlIoHwyh5mi/AaiYkYRcLzHvaD9RvPGZ9dYm+8VVkdcnyySX1qsIuFthKMD6jqcfWOyyQ6A+gADknciy5YilnopbitYiQVFFNo+KZiWnAeottHMbGArgx7OlDqeflnSFbg7FH4IEYelKMJRfN2LKgRs9WQW4E422BKA9F2EkxjLlCgvdQ1YYYSxhVv+8LauEQGIbAMCSaxuBcRbNYIyZitDzLmKqEorgS0mUwYBxZLSFk0Ey/H0gpE5MSQyLG8r0xymYYGIaAy3tUM31WjC0Jp3EQgjFYyWY08gAAIABJREFUL+BNAd7IgrfFbZtSGhMmBXEeSwmPMcYUhQApIXzOlCLUOgp7KY/0qaz5NCbIGzsRptKPQ+7PD7EhfqptsizOrGkTtZmHVDA7/Kp2rFVRbirMajdNt88ZDYF8d4Pu93B3gz77CL25Rrdb2HfQDWhIQEJtQXTEgHoDQxEIsxjUV/QfvI/te+onTwBw3h/rdd0TsstY66hLTVhV07vDIS9pVChl9IaAHi2yn2R6/RNvekLwjUxEfvo1E2Tml8mRWc0iL+Z/fKpv/VI7eewEBiInhybT7USLp6aTV47TfKmfeOfJS4LtzNKbM/n2Bu079OYF+uIZev0C7u7G/dOj/UCxFBo0mxJx8PwZ7BtIA1mEbAzD+ozsPNWjR5i2LYaHz763n7c/TpvR3E90Df0R2gS9fT+/ZKI5ky/okPd4wi9eLpx7qFt1z6lULps2+PGi0Rx2evLkIbn33XT/+4qEMQYjgrOWynuWdc2TZc3jRcPbteWqslw6x9oYagSrgs1ajFJRUY2oNTSiiC2h5RGlTYkhw9uLBaYfuEkdzjmyLeFgmSKci1BACtBiOB0jW8q7Ho11Oo7Y5JU7dGE0shZaLsd+loNMtHEOG34KQ3GwUPGqdoh8mOZhGm+ZHsrhGaX21XFsdZyL+zD5J4isr7bqvWLuXvl6pwbNe304rIyZvHKid04HRU7ecernobsz1+EJD5ruN/46luw4nn/a/9dvr61MiRTshTwMhO0d4hrENQVUICWCxlJmZzO+lCkpDsYIztWINVRNVVxuQ0nw23YBZ8F7x+56x7DdcH6+ZFE3rC+XhCFz8/Qjhi6wv72hqcDQFucTQug6iD3VuKCd8WWAbAaNxD7ibcZaYf9iBymxPlsViPZcIVELSsteyX2H7QZsX+JkNSlGx8Q6LYI2WUkkQs5EV+pnOWsxAnVIDJr5aIhc3+141md++c/+Mt/45T/P8ls/h7+8HEsVZDT0iPZIvIEGcIL3NxB3SL8jhkC4viNEpUuGFHqG/R3qPDhPCgWs4eZmwxACISVcZYi2LyGTxrDrd3TDnvPzNW3rsSEixmKsRVOk396VsDnjcVVLs1xiK4M4xYzhk+15g1EPnRC1J4Q9xjrUGNqlwYhn1bZ0veH7792Q+ozuYhEZk+GhW1HXLeePzkkq9CkVmPIuF6updyOKmyUHJSel325IYWBzsy31oYIBMioZS6LycLu/4/ndFhM6RBVrLc4aYr8h56Ko3/mK1nqWTU3tPYu2wQp0w7Z4kozF1A3i29FSAVkSGSU4GdF8ikWq8RVREkMWxPpiQOhLLSojaQxPteWezpFzJic5EtHPsB2Y1WQNmixUeiTSHJQIPRDsjyN8J8K7KsZZnLNHApUSeXPL8Dv/D9zcIE8/hNtr2NzAdgdDLOAtQ4T9toyVuyPvbtHdDXK2RJZNMRyI5TpEzKMnPPyLv4IYQ7taY2IkjgRORoZQ4tUTqpmcCsBKCTVmPKaHXJ1pXKYc2qPCpTNt5tNvM3Y0GjonQxQjml8+MlVlNGyODGKyjN5/1x+TFnIABpmHggAHBvWaIvwk3Mk9q/VpGMZPaJs8umEgfPf3yC+eI+//AHYbePYh7Pbj/hkBkPoOjYnstwXwJ+6hbTCbdVnvMbO525B+8B6X/9K/TPPGG9jPc6f+xW4HYe+Pcu39L45hXa/anRPm3Cm09UumnZfaJHxOPOVAEybhNI3Gq1GQP9bNG8srHEJ/f0h/Rlox8fvGe9ZNw+OzM/78G1f80uNLLsNAmxMrAi4mHK4UR0+5gFDFiKYeNYG2cVTWslg61EDoAmtfUVUrfvPFDX/YDeBrrLWE0RA3RQEUuPNTHqSaDx6mCcVvPpQyjvGc5RT+rIeRPipBR4Vzkk9eNT7FVnikwS/pNodpEE4P6SEiYBp7zTr7fAz7PCguo1fwZQPkfbqtL51zf8Udz9HD8ck4etSejmh/07HDXSaD+OzdDs96ydj4ikGbHTqMOfd4UP54Q/Or2msrU9ZVLJaXIJldt6dygjOZ7E1REESISdnuAr7y1G1VdBBRQgSJGeP6MTm/QsSi2oxKYcJ6j6sWqKmIWDZdKfi6Ol9OjhJSH+lv9iTryMbgYsKmiPNlUeRYguSsLZWgjalGD1OmXa1KXYCqLcLYsEOHAek6CB0mpYKoZywScvFIqcGQcbN6QSUURckqRIQk5ec2J24UrlWJvmFVPWBx9Sb1W1/Cr89wTTMabxT1DrIvzwgJwhaiKflVqUdjT+r3BREXRyYhlcVUDqk8Jgo5WVamJcaKkBLGGZrGj7mJysI5fNMgUrxQ4hi9KKH0yXpEtXiSuoF+t8dUVXFvh4iQ2G52OEn40KEmY40h9NAHGIZSDNeQcUZYtZ7sQE2DxbLdDjR3e8RsMa0gzuHHXCVpirct7HfkXKDKcyzzrWkgp0SMoTgisyHlSEyBFHtS7FGURVPhaotFqW1B16srW5JSR7j1Eg5aka1hk4rH1zdLosLdNuH8QF1LqWGVC1KjGtDKjJtpLH47hiVpSmU7iyWESM4ZK24ksAWhsI/Fi6px+DEh+t0Xbnkl4ZisMwdhdiLW9wjNHEK05LlZjB3JRorEm+fk6+fkF09LQedmUazofUBNBwTMpDHkkZVohsGQOw+NRypHvx+IKmw/+AirlouuR7LSLleYoWdI6ZjgWjpCSmUOUgrknIhRRs9uOhDeAzGc94mRaL/KqPZpt4P+dk+AOKBqcVDCTxjxNEEfwyAmxfAzUUCm6dTig52bDhUdPb8lZG9CbJqY+sTYOV4y/jtDyRqljZ/kor1l/ylpc4tuN+QXz8h3NxhfQ61otUCHDOxL6ON8D8UAmsldVzy8Q0OMmaEPdM9eMERY3m3xVwHj3A+xsn7cGP94lPTP26zNiNcPrXjzWnulGEDK6Xr0dowGqkIvZ4L7ZO0/yLczAfvktvP73DOkzI3+quW4cogiODgMGHnQxDLv0euSN27GHClbvFLO8WDZ8s1HF3xhveCi8kiK9Cnjkyn5y6pYEpY4vj8IGZMVUVtGwDhUIKZEysWIvqwWPF4/5M7BzkIfIynnUjd16lrOIw9KRWYZ+VBOmTwT/F/iQZOiNB/jwzTOlJlxKCdawfzyw1ejkqE6J8PjsaNXrERpjHM7hnoeQChe6SU6FsE9RPJMD/0hPOhVS3VSkvTApKaJP0a8HF7+xGs6U8o5rsCjcjkO4jRu42Kd+OUEQCWntzptBxnnmE7wRzG0vrYy5X3D+vwR2/1zNrsXrK1gbCI1jFb9IiDv7gZWK0e7alFTgANyVwTR1gWstdRnNXhHUzn6EOiHHl9XCDXZCQOw2QasER48PCMPieFuIHWR7fMtuV2hleUsRJwGfFWjlPpCZkS2rrzHe0/YFJS2xcUC64QwVOjQw7CBrkO3LzB9h0mRLEIydmRaZcE7wJAOIcEyEp2kpWJ2FssAPM3CTYaPNLOWBQ+at1g9/inar3wDv/LYyh42hmoLGtBcFej3/Q10tlgtYocOW1LXETMkW6NWkNbhao+tPaqWrBm3cmhWQi75Bs4CElEGGqlAPLrbMfQB7xuMNxgdsKpUtsZoInaZftvhrMHUS5xa4hAgR25vApUkFpR6S76q2QzCPimhF3KAZgydvFg3EB1aN2xuO26v9/hqQ47C2UOPbwTrPRjBV4Zut2e/vWPolaErNbZUcwn/U4hDLJs9CzEE9n3HZrdh3+1oFw3rZUPjLN4ISzPGT/sSHuqbmiEKQxSSGpLCi26DNcKji3OGLvDB8xvaKrOsA7ddz24ISOUQZ/BNwYeUCM5bqmVdLMIpTIuAYSghln6Kt7VFmYp9EXYkdKR55e7Psk1Ei1EZmh+aCCmMzA1eovoTAxQZAV6k1ANzFuscdlSmcozEjz4oIBMfvQ/NEi4eoUHJg6J2C9IXQVAzaEHlk1TyzbIRtKnQyrPfdgwh82J4Dx+UN7Z7JMP6/By732OH/pBsPL1wCAOaEzH2xBgRKWHGUdOBER2srDIJ7KPAL/cUqs+ijeh1J4rUnK/AgZEUoeI05EJmTGbOYHUse/BZunMm79/IYTn8Hj+XITejMeIVsecnlsRTZjZZrFV/HMaIT6mdyKB6UBbTzQvS849IH74H3R599AVwNXnTob2issEomKnaeS6h7SRD3u+K8BBW9F1gt+nY9E/prrdc3dzS7Ht828we++q1MVmq73sYP1eofgLbzGo2ysiHjVuAJ8b0CJn27P1QaD0plHpA6JyUgpl34VU8SFUPxXJP6NX9pTYuv5LrK2ONSDvyIYezltZ7nqwX/NIXHvJm5blylud7Q5fARkvOBjcqb05HBDcB0RI4LjmD2pJiIMKQAjEWI9C6WvH21QUfmh4jAdvtiSmVqIyD0SePRt9AioFhEGIMRA2QIR2ed8qDmPjPLM/sgEg789icRGJwHN9pGieiopkDcp+eKCyMyHzFVmfGa/I09sxIwkzpLXm6HHiK3KPVxydzWEsFXG7Wn/vTOSnQMwPzPFx/zvuOjzsq5vN8qwmpuNRkhKmO2anSOvGg8Z3NpJKP95+tyenZp3WnRq/jDzNizNrrQ6Nn4S5YcnTY6Eco31RiUJnqTinWU2C1h4hz4J1AU6NqiEMgDInt+8+xVqgqi1hD6y2uMSRniDkTc2K3ucOKcO4s3ljOzhc463DWF7Q8GxHTFM+FAmRKQV2K0EJFpsK4iJCJeyXJ6LUwDe7BE/K2IqQ9xoNdwnAbifvIdh/po3ITIiZlFilTqVKrEhQGlG0U+qx8uA3cAt/uI1mhEcsbP/1T/NK/9e/x+Be/SXXeYryZWX+UAn+cyanknoHDaMTlPVEjKopdCCYoQ7dHkxQEtKrC1hXOJESKFQXNrKSgITpniKGj229LDooYosmoJmwq+U5ePIlMimW3OAeL1nO+bkgJ4j5xtmwwEjF5h+RMzlIQCx2IOKyzZB8QMtoXUAljGpJYglpsvWR5scRaSwqBPHQkyew3pbhy3/VYKywqiyfjJRMHVzxxxqEIFocqGLG4eqBtLYvW0PUVcUTPc7YqMJ+mJPOnkEEStYk0dUOzqFCKhWpfFTTJLhqSqTi7vEBQoigWaLySRorkjcNaS7uqS9Krh+yE5C1hTN1br5bF0+ULGqWpGiao1AILAvJjgHaeC06lAOOxUqww5hvpdO5IjOGVxGxiqHb0SDlxeOuprCv5Ycbirh6ibYPxFnyNWZwRzp6hz5+z2W4YtjtsBokZP8LIx6wlTNdYdtdbuk5553rDdoicrQYuqgUG4atf+Qp/7a/9Bzx/8ZyPnj4tOX4589abb9I0FR9++D7Pnj3jH/2jf8R2uyleSytYNcVrokpSxlCSMgITEf1xeD0my9rh08mfMjewvWRFmzOvk/mafdaTKz7ldgjlmTG70xOOCu2ca82Y8QSFPjG7ucLxWQKDfCbtRJEqfwlg1+eItRgyhIisLtG+J1UN3Q8822fPyl5Lik8JScWLnsUwdANDFjZyx/N9z3u3OxZtx2KxIIeEmwyD98JgOCiq44sY9zGez88Vqp/sdmpJOzF4TGvhnjA9rd+D539SEA48RWe3OCpT060nA13Wyag3J3qc8KADeJKUHClrHM5YKuupnMPXLbsEv/P0muet44PG89GLO/a7gbeNZynCVYpUMbHoIy4lfEokLV71HiHGzHVybFX47vUOUWHhPG/9zDf42i//MkNrGLzhB+//gO12RxgGqqri7S+8xTB0PHv6Ef/s9/8Z3/72b7MloxrRLIDBmEyelMeDMlBo3qQIHBXO4/gok9HzdK7mICFHQ9yRq8zzqk4R/O63ezzoQI/kWE5KZmfO1kCeRbbMeRBQ8vBe+ThBZOzv2PeX3/Okq8dXHP81IodlcuSRh0E7KPCcHJIDiMScBM69Wwewo5kiNTVjjobb12mvD42uwj4abLTY5MeXKSAJCIUpGsXYEvoVh4QzBotgqgrEsQtCSAPd9QZnFVl5qqahqpa4ypKcYT8oKcDQdSW0b72mrh3LRY2IK8K8yWSJGONBDaqhuDPN+F4YFI/iESuIZnKXIINtDMY7quWCKIm0e4bVXGC2x7ICWyvsDLw3hlUsVGlUWaoyKAzAPmc6FX4/Jz5S+PWQaBG+boX6C2/yjb/yr+Ien2EW1QgNrwWqW4ttQDWN762oGoxGrHZAKspULRjJpP1AHrHcHRl1FuMVZyatvNRMcsbgnaPbF8jyLDLmlpU4XpMDNluMFE9KiqNC4oSmtizbiru+ePGWVxXOCGEzKX2l0G3OlLwgqTBWR8uOB3UY8SQxJDWIr2irGhMLkmIOPUkyu50S+kh3fcdi1bB+cjlWLVd6tUQRVNwI5mDLQjYOi8WRqStoG8vdpmMICTMCRygF/j3FjJcENuFbg2urA3EShBCVXQcYoV3VxJSLN1MCXktuT1bBisVbT7tcjO7xQLaCyQXdL2tm3dZ4Z1CTy9r3VVEUhpJ3VVzkp8pUCIFhGF57c/5RmqL4yh9ius2s2jejYjRZdQ4x65ySDHNgaOU6awzeOirraOqKpm6YvCYsV0hdY5q6CGW+QcWQjWHXtOyMxSqYDPUI0R9SJokhmsiN9tx2wneeb7gZAt9IUF/sMAhvPHnCv/3Ff5P3P/iAd959l26/J4bAt37uZ1mvl/zB73+Hd975Hr/9278FJELosDGRrMWYOIKz5NHDWZi3GHtQNKfk5pzzpz4vKUa8d1SVP1GojjJtmZ98Umx5TvDNgSlPBk1jZ9C9cAjp+LT7EmLAOUdVVQcGfwo9K6/4mVk1R+FoCts0xmAm5LmZgOHc/lPtx2fS7imZ9z2IZrFAqgpT+6L4VAvyvkNDIux23Pmq1DxRocqKzZkhlZp5IUS6bHia9/zhds/v3mx4exl5EjM55VL+4bDHT5UpcokEQCYvbSmXIUdJZfznc4Xqx9bu67U/7NyXznl53k70lpePvlqhunfPyfNxFKhfvtvcOzJfQ9P95yAJHHj08XFzHjSBHlkpnilvHd55qrpmQPjDuy377LlTxwfbLfttj6kXnIugKdKkTIwZnzP1GMqXFAaTCAmeDYHrBL9zM9AYw1dbwxfefJM//Vd+BbduMY3n977zHV5cX7PbbGmbhp//+Z9jv9/y/Xe/i7Xw7jvvEEJHCH2JuFApKReZA78t42mOBr37Yz9K/EXpmAMl3Dtn9rXeOz7xkfL//OCsPMqJC0dn83J671fpOacnzIyAjMrS/Y7NDLmn6/leWOK8M+MYTDHkk+xSyNnMGDWtu4MhaP6SM+VovqTnH+/xp7mO+Uehea+tTGUSA31RjrSmgJsraRgQoGkrskZ2/R0+JRpRcn0GrsXWS4ytWLsVOUW6xpCHPXF7TY49cX9LVTc4X7NqWhatZ1F/CUFomwpC4m6zwVmPc56mUhpbFCNRIQ0lL2NZlZhaU3msGAzQ7zbEbs+iaXDe4/0SUzvMWUNztWDxjTfRp99Dn72LP+vJIbK4WRJj5m0N9LvI7Xs7vnvb8X8+2xAploZvrRZcec+bWmFTRm6vAYOzDda1iFuh4oqwE3vIAeI1aAAiogHLFtJT8vA+uf8BuXsGQ49Jmaay+EaoL1pCSuz7gVhdsw8btqG8Qy56LPs640SoxJCGRAwZoRT7NUHQKCSf6HOP3r5g38O2i4SUMV4YwsD29o6LR1fUbYWJz0tx2hEcwlZTMVCLDRHNCQmKBsV0HTEYNkMkpwqJK4wXpAIv4BRS2JNzwLsl1tQ4cbi6JtkVIonKpLLIo3J32xFjZuEsQibqjkBkz4CGAY0Dw5DpAzibEZMJ2he3dLTchUy331PtFf+io120OOdQU4rqWqNHJCNbQDSwS8gVmoeyWV0N1qA5kFWJOdIPgX3fUwI/LbuoOM1UNRjN0G9QFVIu5QC8r0/iqz/88EP+o7/5N2nblmOe0nHDnkBjTwL0aMWajh+sfzqHNJ0RQxH+1J/+ef6bv/23j1bBcvHxOXNB/mP2+svsc0qCHYFbc+ad3/p/+Wf/5Dew3tCYzBNfQu26YUC7gdwF+pvnZLfnwaMF7Bzf/v0dYSiJ8he1482LNZU0rKjQdM3QBXIt5N6QkuC0GAgeP3rEer0khx7NgfX6DOstX/vaW7z15hlf/MIZMVuyrA5y6hRKchLGMB+LAzFXfu3X/h5/5+/8D4e+HvOyjiN1KjTIIUKSmaB6VFpnDx0J8+XVFb/6n/8XNE17MrYvM8zj96e84Z4F915fpvYbv/Gb/NV//69yCKw73GQCGRktm4eecBiH8aYnzz1N8C1Hmqbhr/+Nv87l5eU9BnS4xUF0mvPQe6fMmN3sXWcn/R9/9+/yq7/6qz8WL+Kn06bFmUd02lJQXlC0uyvlF+IeSZl6XWG//iUWTy4Y3n2X4Qfv8Qe/811ePLsmhoB3lq+89ZjWVjyg4sXT56TbLdgG61eIqQA3SnJjzI5m0EnRFoQBzZEcb0AEUz0cS0hME/G5EvUT1072mNw7NIPynuZ/1HDmNFGkyB+Ton4AKxjPnW5vxqiISTGa+NYh1A1eomsTXTjk6UpBPTVSUJkrb7lcrzlfrfjql9+mrh1N43jcKA8b5eHDO/puYJktDthTjOjraHn2fMv7P3he6oOq8vblFatlyxkLcp/Q3YCKxTYX+OaMul4iziHGsF4uMCQeX7agme+/87tYCw+vav7CL32Vtx7CP/i//jG/9e3vsO9G2G1RYjyWSDnS3zyG+OkhRyzrhEJ9L/yMSUGRl5QbncZvRjQPxreJqs8UgxPPy5ymzvjCfV1IZ+eXAILCC+Y0+WAclKI3Z/IYVXRUciZl6XidzH7f65eOa280LMpUikWmMFIOOtRRaTKza6GAI91nkdOaLv/mXEJWj8WG5336FMP8MkosUaCjn2BCLynvJljQsnCMRjSXnJKUi1CEWFztRoLeE/dCt7slp0CIA9ZIKbxWNXhvqaoWpABAxKyEmMpntaWmrRaAK6HEgIoUZD2xBmMcBjAqkCIaA9Y2uMrg6hppPGaxwC0c/qIm5Q25e45rDJojri2gCNRCt01gt9jne25oygDnjL08Y9HUPNCK2Afa3Y4Gx7K9oq7XJXFLKMnwYTsyyY9AB1QHSmWqPYRnMDyFeAt5NxY7LgvXWkPbCjZBthmlI6gScqkhnKNDgM5EnICKRUcUOasgqpjDZiqEbxg6hl4IIRHHRMkUI2EIVF5oW8dwm0ts67iOprwZlFJHKSomlmK7JismZVIfUDXFW2VziUuWETgkJiSDaUzJiaodxlWE7DAqY4hoUYxyKsg4xkpZdaknkwmUgrDEPAErFvABKAQ9lzjflJWQEzEP+KCAw3ugEnTcYHB0V4sRVO1I4sp/KragzmUlayKGxDBEhj5gvMVYISQtQMWZEqKTCoph1lKMePIATq3rOv7vf/gPjwSGOeM4VXI4fF88KadE8Gj10xNlChDh6z/9Df7SX/7Lr7utP76dENtJ3FZImaHr+V9/59t8+Id/iFt4ljbTND0x9Oz2WyQZJJcC3GZZYZoVeRnZPe0Y+kAKkeX5GvvgARU1op7q/ee4XcT5BdYvCoEeLZJtU9PUDvIO8lCKXBM5W1nOFkseXX4VsUts8waIPwiEc4Ge4yidtJwz/+P/9N/za//g7x3n5KiKcD9+XSdF6vBz9DNNIWtTEfFpvgC++TM/y3/6n/0qV1cP/vhz8wntN37jN/m1v/9rB+Vk3uMT8BFOWecpizv+NSnRc8Sky8sr/tZ//Lf4mZ/9mR/+Qvee+Unn3G/vvPvuD7//P6/tfp+muJyi6ZfcpxiLlDhFLaQBQrHwWm+w1Yr66pzOgHGOcL1njycOHeod7o03sNZjkqMdEpV/Rt2uqJfnGFdRYvF1fGwshry0RaSUqCDvCz9KPSCoWwA1SH0Q0kQn4QM+V65+DO11DQk/sr3hxGTyMV6IVyjUM8F+bgg6KEknccpzuqEHHW0OcjvxrXlIoDBTpEyJUTECzhbj2mqx5OLsjDcfP8bVHtd4LvzAhQ9UtWMYBkwyoEK2pbyJy57k79juC9iVpoQ+eohbL1mwIOwGqvefUYmnWl3g2yXGufHdMkYy3iirhSHGyM31RzS1oz0748nDhlX9hO9855wP3l/w7EUJXbfBkI0e9UWB4gnW4zjMhqaMRxHfjZgDr5eZAjBqXAdSMp94VT0CORxn9pXzel+pOZlvPUiM49fl+ar3QuFEXr3spstGOfYeKzwqQ/dknvkbzXWfU4RDuPcKh2PHAsTM7jT1t3yW2c1PVCediwlyVPx+hH31+sqUZoY8YBWcWEIImJRQXyMCMUUUxbULnDWIN9zd3fL8xYaLxRVNvaR58gRXt6weV2gcWF2csb+9Zvv8GZtOybvIOgu+LsV/gYJ0lwx+cYZrFrhmWeDAY8Dtn2NyoF4sMGJIaiEmZBtxziPeUVeX1LKkPn+MWy6pv/AWZlFhLmrEOMRW0INRh+g1Qk+9fALtGebLP8vaL7hya76SlX89JNLNDWl7x/LqMb5dopXl2Tvvs/lP/ktW/iF/9hf+HZ784lfQKwjaoZsB/f7fh907uPZ7oFvy9hrNsSDXaakbYlwBqcjREIJwd7Mnaia4iGsti0tPRWalmWQMWQxxGEgZuiioWPxiAdGQrMWHgSoOsHZoNoQ4kDMMdzviXulvB+5uA8+f9chDqJ1js70m6IawLeF57AKSEy72+NpTLRr6jbLfg0oJ3bTVimSA7RabOirNDHtPty0oelEMxinWCctayGK4TYa+T2yfX+OtUhmwUnLbznxGHSQbCSmx6wuku/ct+y7TdQExpRTUNgZAaKslWEUlYhSsWnZScunef7ElZ1jVlsobztYtqtAPGbWGbC3bbk83DGPOlKC+wlPih9MQ2G9vysYci9ZalH0/kDVztytgHWboi1JkCmRrXTnCPNzqENrzGgLJwZIHmtLIWMbcp4kITUxqtDjPZbU/0TYPVFYO7RtXAAAgAElEQVQgZawqP/8Lv8Duq1/FugpCR37xLt5EGh9x7RmuXiFnD5B6SdusELF8ZYikEIibDa5pqJfrEs6gMPy3f58X33mft3/xz7H+wiPMuia7TIoByXskbiH+AaQPyDoWrI7XoJGcFNySWL+BXXwZt/z6NJC8UiB4abgnYULG0NmPgSGf3SnnPA79ZN0yB+ZxeOLEEQ5egT/ORLxem2x0h0e/4qGnLOy0lXc/jldB7tXDchP5uCs/bx/bDpo3IxpfhFiMfAWOT4sRQCJ0xUsktkHqFbK8oF1f0XzzT/MX/pW/RIyRvNsiCPX6rBinjKH5jd9h+b/9Om9+81s8+NJPcf7Ft9CmWFdJERNvID2H8LulXo5aNN1B6saC0JbYfgHxD/DnfwaRAr30Ovvn8/YvRvuRdu3Eg7KiJMy8DMLIgwqIwsiDRnp4vP5IPmVUwOb3PfFMCKVczaR8jUYqZx3eOWrn8NZyvj5jtVrxc9/6Fm++8Zg/+2d+Ae8rrPPkzVN085RHPuKdUq0eYKoFcv4Y62vaZsUXk/LzIZH2O1Lf06zPsHWNimH70Q3df/W/4+sVb/2pX+TiZ5+gLez3W/rbPR9975/SbT7g4uuGxgYe+fdwZKo7oRLH+crz7/4bb/Kv/fkH/Nf/3T/m9/7gI2wP2VLqfI65wmVQBWPLWORUGPfBJKqT0jDTQg4G1tmnMXT9EDZsRoWCI4rtwQYyCgc6FkadRRkf+J6Oc31QbCblY3qtERBptM6Xs6bnT9rXbOlMCJCviiq4r77dbyfBpjo5qEr6EMzC8nS6/30uJ8flBp8oE6lCiEXGsvPxvf+ir9FeW5kyzlK1DeSBPAzEnDCaMNYWEABSceOKBTFlc5AhBVIciMYVyGhvAYtYj62boiC1HXnIxXBGhWQPqQyoxSEGTGVxdYNvGxJCzsUDowrGVRjrECrEKdiM9R5beUxVISngzi6xbYtdLTFthVnUpfvikfYC1o8wNIgJyPKNokyt34J2hT+/pBHhwgjp5pq82cLFA6hbTGVQ2/Llr3yNZf2QN376q6yfXILNaHdL7q9h+33Yvoum74NuSXfXpeJ9jKirwTWIX2Fci6uFZA2mj6WAsCjFraM4YxCxqLWoMUQLKRXkNGscddWQRMlj4duUIlYKAlqOhWkXqFCldsJOIMbR85czUUsQWzYFvEJyyYsSHT0wqYT2pYEiAwhEyeQ0FXMtSG2SDZIyqoZsKEh9MaN9B7ZCzAIlE2PxnEULSkZIeAAjqC/oPS4XC6sxDjEOxJV8O4EUMxlBjUNQjCgWwSLF8moc5JLjlEqpiVI/SkdPJ4AxhFQKIGfK2q1yxiRIoweqH2IpNiqGShKOApRSClWPylQIWBGsswQUyYE8R/OT+e4+2c6jxefejp+F9cHMyjP3HUyWoTmUz6fVJqKdS1jSYrkshRNdjQ41Q9hSuURbK749wzUrZPUQqRf41RpjHa01aAyEzQbxFVIvRqabWTx6wHATWH3hCYs3L8EJSkRThHgH4RriM0jP0GwKIY/Xhcobj5JR16J5h+YBEc/9nLWPa0LJ32FUpo9DOR/PIlR+XMjZZBQ7GsfumRw/63ZfY3pFmODoe3jFtfe+e90+3BOmfuil+hrn/CS10Sulc2lmVLLEODBV+REBW40KVsmnEudYnZf1l7t9ua5egDGIFc7euuXJT32Zyy++xfrtJ7i2KhJN6iD16PAc0rOyhzJj4d8N5D0qvuyhdFueq/24jj2fK1KfYbu/EeQ19saPsIfk5K+j0Hyw1t/jQSIyIxlTjpS84hyd8Sv9WPpxVMZOLU4CTDXrJoAkAax1WOepqoraO5arFev1GZeXl1xcXLI+P8c7j7UVgUgis2iUykO1eoipWszZY6Rq8MvVWPDdkPZ7Ut8hzRJxHgxkU7N89ADfrFm9/YT6ao2KktKO2N9g0g2eG2xSLAM1N5icMEExrsX4JQ8uG5rVgsdPznh+27HvA7nPo3wsxcs79vtQo89kDiD1erBWnXpnpmE8zNVB9ToO73T5S7OuL32cDK+8zBJe3U5e5MBQXnneIST+cMo9rfqVD5SXP92LxoE5b9WT20wheodRkaOX9KhPHtf7sfTeLA+LeyP1qgn4Ie21lan12Zqf+pmv8ewPvsuLzYfcDWAQ1tlQGYNUJfxqCELtHIumonGR3ESiDiXXaPecHGq2Q4uMcNZuecnl2SV9NAzR0G8yfcgM2wFnhIdn5wUS03lWq5qzs5a7Fzv6TYePLVYd9eoK6xt8vca0C+zlJc5brHdYLR4PE1NJrq0V8RbqtghbYjEPvoQuHmNbiziLpgWqlvzCQ1dh2gapLDiDPW8xq+LVKLk3meXVY/7i3/gP8YuKi689xDQAEb3+TfTZP8G8+DbSP0PvnpPjQLgeSk2poJgrwTyqcI3DLmvO3IKEoTnfMyRlmwyJTNREU61p2xWu8hhrSSiaExf9HUYq6uoN9psNL/bv0/U7+ps9q7ahsg46sGpY1BWNF5aV8j0xvH8d2APXQ+LcLjHtElfVyLDH7m+xYqmaMyQAnZC6gbCPMKLkPb97hhHDg8sVkgTdK85YRBpyhhSUsL2DPOC7a2x7RvPWn0IEcggFtMRAvw/EkFh6wXtLu14h3nHparqu5+5uR5VA1bNaOLwTtkMgpEwfSkhAaxc44/C2wi09trFs7zrCkEhDCU4eRBhy5K6PeBGqCoYU2IWOnD0ilroLSGWJztEn5bbL7IbEto+crRJtU+GqEcij7yEXdMXKOqraEbo9/WZHCP3JHjK2JN7nNIPynEIm5jxo+ntOYz5JpjkUdJ15Vf6k2pwAallvmhJiHMbXOF9j64b16gJjpcDvS4WRqpQX6Aw0vuSsGYd4j12PwAVSqshrTvRff0h/YVn+hYeszlfFGBG3EH4A/Qfo7l3gFnRXDC8xo8MOnMNcPEZMAtuB3pDDhxh/hcjqtbpox/AR1TJ2OZWaJCdx4Xlm/5IjkMdpVPV80kaOJQCmzMtnIJcebYvT65iXT/iYNmdiEzDE/QKMRzvgZ6ACfZrGgc+0TZrlWCcqxfLZjOxXAbcGu0SWDyigShZU0K1BWlfOdVK8460vczAjGBff/Aqrt9/C1hbrTTmXCN07MLxA734XdIvwohRIDxkNXTEEXTyC2mJMB7IlhY8wdo34h5/xOH3e/kTb/f0jUkBrch49TnAQdkWYLyk5XnL/prxEyGYhwHOZe7K/lVOOIDRz+GnG0LUpRNo5h0gBpKl8AZk4W69ZLhZ88Y03uTw/50tf/hKXFxdYX2O8x7mKpnoL9+AtjDeINVjTIFgYDKIWbUvuE8ZiGgt+cUC6VTLaVHS/8BZ2veL8zz3A1RbVSNq9S7z5A754+Qx3scOFZ2g/0IY9oorrBRYG9S3tosLbll/5lW/xla++xf/8v/w6z59viBlImZzjYUystZg5qNDBWFfCCouMMKOzoxdGD5MjxUiukFKeTdSMB02K18SDxu8OdcPGX6cGQpn9nv01nZNymUNbSv3kfMwZPkLizy+dr4250j17xftPH8+fwLNOeNDHGBiOI1W0Sp1QTCneugmEqoz9iK1gTvuqzPheHgsw/wgs6PWh0WPgbrNhyANaCRJBEiSNpGyYvFGttziE2EXEGUxVY7IjYxhSz6CRfr9DxOC8HzuTiWpJagm9ISXIQyAZYW+L0mVtj/Q9ut0x7PakfsB1HbZAn5SuZAd4RGoQUzZTBskR+sI4iKDeIdYXl6VREIe0S2g8OAupRgMMH/XEF5HuacS0Hrf2SLeDoUPWK6SusEtLDglxjkDm2e01TdezqHekD79H/uBd6G8wuYNFhspgLmo0O3KqkYtzzPkFtAvUV1hbgVrcYlGEUXUkjYTc4X2DSFOsmxQgBaUoLuDIKZFTLAiLGawYYlA0JjSMxQgUyJCDUGG5qh2OjBmGYmnJo6AalBBK0S5rF+RUFLqsiSmsTFWovC/EMUHOQsKhptQMM2N8cJ5c90MkmwHdbiELNibEWURKIVijSrAlFJAoSM7Efl+KCKc8Ik0JeQR60KRILl45BAIQU2ZIA46AC2UzOQfDEMlZSckRMmRTyviRi3fLGItmRciIFPAOUiDHgSH05KRjjbGCkRhTIYAipgD0oBhnC5IeiSzpiFA2bVadb/rZJj7xOs2Y0ow+ToRK4CXh9vjHx3tOXtn0Yz+cENvizhtde31A+wENiTwkNt0G7xxnq1XJE3R2tKg7+puO2CW651uwhvXl2YisuQdnkdoXoc9CVTcs1iv6MJDvbgjPb2jswMNmD8O457yCdVBb8IL4FqxH6gfgKjA1oGjagjt7beVldLgxcYKc57NUxnXiQHPj6319t4TDTYzlOJD3PYqfTXvZsjcJLnMGfXrJ6TuexqpPTP/zdmgvbbV7+3L6OJawmIAndN8XJdfI0RBiXbnAjS7/bNA41msjFb41iR4hgCimqcAaxJV8UbGGmBNhiFRGMBLRbto/ezABvIPKgDNl/6hC/aAUs7fFwKh5j5q6vNfnE/4T1Q4orpxO7Us86IT/yOn5JwaWWUHho6Q/+1z+KNcfRecpH6XQ0SOqp7MO5xx13VLXNW3TsFosaJua2nsa5zivF6x8A1EJcaDTjkXTYpv2hAflJHS3e1LKdB/eUbc1i/WSPPRoGKCpivzhhdBF2tUS31Zsux1p1xHDhnzzLmzeg/YO4wayKfJM9jWCI5sGac6R5gp8izWehw+u6AdLVTVYN+AcQCKl4nA4CUobWU2eEYyCF6On9GVm1DzoRxMPmiuys4ma06ADqrHee/4rWrn/TAk60WD0eNJstl99x/trYVLyPob/TP08vMcsH3mmVB1PmSuOc6/XfLXO33fuV52hnE71DZmNpxEkCz8K/XttZWqz2fLd730PR49bV7gu42Im9kN5C7ugMpazakHse/bXO+qrM6rVCjMW9LqLG/pd4Ol7L0A8rrkk9gNht8d7j3Ue2jViPT5aPIpub0qR2aS8iAkJiYUP1DbincP6ivxIRkZicNagg0GTQS3kfYDQI9unSBxKGEVVQVfyuqgssl4i6wXUVQmhU0u6C9x+7yl3H/W8850t1VnN8skK8+z7mNsPaH7667hHVyy/dgFO6XZ7trd7PnjvmsfLp3z5/H302/8Y3v1d9EIxS3BXBpYee96iZoWYJ9j6CaZ5E9iB9uRQlEO/foQ3njNTkbUj5BvCkBiGRE4blJ5gGxQL+RxyJvVbul0RYK1anGvY7wMhBAIFgl3vFJOFKkGbDF8/a9j2Pd2up+o73FCRtgO5j3R7jzYtzl/RxZ697khakpJzMoDh4nwJKqRtT8yGgQXWrnB2hR1zRdy+RnKCfiDFPSG/B9ZSWTuGqizJdY00DdtcAEXarULsCZtrrDUFhjkmINMPmUGE2A/FqLtoSQp3IRGHnqHb4dKA08Tjtx5Rtw37uCUkxbBAMSTviSjdEMli8L6iIC0mrEsYk5EQyd2W/fYOMY7GerxJOBPoQiYDy6oqxfDUUFWexbJFFhWiS6qmPm5dLTWoXjb13VetjuejjMXmji2PVsWTq2cE849tzT/Qo0nzK3v3EJZ6t0e3O3TTE/Z73n/xlLptaVZrvLF4V6HWkcVw8+yOuw/u+N53PiBn4Wvf/Bo2R/KzD2HdIA/WuLMat/SsmiWtq3n+9AX9cMf77/4mj84arr7xJUzelHClqkLaBaZao7YCliAV4s4BRXRAEXJ8gfFXr93lNELnyuwzjKWPprC/SWg45SUjfsCIbjX3Ao3yc2kfk6j7abUT5qovf/9J14xtCkWbQm9OotLu8fk/+nvyyTf6pPf957kd9g3HARtzpXTfo883ZS3XFdRFsaEacyLHkKBi8ErE3UDYJGIWcp/RkDC7a8SAe3KFaTx27ckpkoaBfeoZcuTqylP7hN7eQH8LoSvYEuszxLcYvwAaYNw/4oEeVMjxGpXXFg0+b/+8tlfs6ZTyPWp0z2g0PzKVk5jLxHq08k/POIWrlnkcFTAWAdaihBzF3yIoW2sLyI0xWGupfc2iXXB19YDlYsFqscSNUUwr61kax5vtOW21IO4C227PR7cvePzmm/jFEqwv6L3WEbvEs+8/5/b/Y++9fi1LsjO/X7htjrkufVZ1mW6yDSFSHHAEQRgBgqQHvelFf6KeBehJAmZeZiDMDECRmh6RzW62qeqyaW5ec9x2YZYeYh93M6uZ1d0ssoWKxM177jn7bBsRK9a3vvWtqzWf/uolZ/fPeff9d0nLG2S9Qj08gVlFcVGjDDy8uE+QyJefP2d1+xlXl3/Pg/SSM7ll8qTETA3xRJFsiZ9XKDMjuYe48h6ufgDSo8XznXfnlNWSyfSEYhWIyTIMnhhHYCTGPC2k0bkan8v2/smYQjBOBzsXQA7u9aHd14BIYu/e7Of/u8uB3fdeA9iOt9+7I3uHSnFw7Bg5ikhun/2dHnVkg/4hUPEN/TWJjKqQHNmgw6+80YQc7EodgAdKq7F48bY8Su6D+5BsPtY2T/2NdbC+or19zpRSlNpgVZFlx8MAEjPnU6ALQjIJbbLmn0dhB0/aNDlwpLLqmVYRUZEoimHo8H1P3zW4IdcQqJXBuIKmGSiM4vSsxiRBBp+jEzGhVMgINz1RRYblAus8SmdVOS2ZR56MQq4uYb1CN69yPk85Q1UFMjTEEAhtRzQl0ZS8TIqNKLpyQoyK8KzHbyIrPdAvO7rFmmr9irK94SS+pPp8yvzVBdpp+n5FVD3aLej1LS/tJebZJeZmYDrV2KTorwXVJEpR4DSUK+Imkfwan1Su5TWdEVyNms2RoIntAkWDZoXgUBSkVJHEgBgERYgqB90aT+gESRWiEriEDRFFYLMODB7Wmw1pADaJ1Adi2+OcxjpNqQ21NfRdR2h6uuVAauFWrglR8EOCqLDGkUIOW4e2RSuNVQZlDEksCcMQFfic/Fwmg1EFzuSJVsWWIJYhlYgOiPboYkJZOHQac5r6jhgiXTfgnMXYAkmClkQfIhGNxqJIxKFFEJwkjAm4WlDBQFQE71EKKquwBnrGonrjQEoqX482FkJWyKtMibUKLTn6F3ykqhyTMnO3rdGEpst5V95jraYuXS4EOAQ0ESTsJFHzoD+Wf/5NLtVrw3dEVQ4YwLuJU3afH2z6O7WDlfK4CBQfkNU6/2x6Ytvzya9+xWK9okiCV5r//PlLimLCdHKKrmpUVdJcbRiant7k2lu//uwjTBwoN7eEq8zgO3twxvzshJgGkgQ6tSLGhrOwYDoE/LrFWI82AsOoJhpXmY5rPIhDmhbBIaoiOYe4Ai1mmyt7MEe/2XHdIm+ZDnB0J3YiStuJN6VthGY0NQe8bDUirZmrvUdg1dZKfQMe1es0mv3722t6Yx+R1zvl/m7dMXJvcyFv0RHvRlHf3O//wNrROefnLj7A0JOubpDOI+sOfa6hqJGuy7TZSU1Sis2iJYZEH0FFUCH7YSlBs1oT+h6zucVaxemFQ0VFuu0RiSQJSAHWCf2zJUE69GaJlh7tUmaSbAK6aNDlgOgKVIl0PYglUSOmIFVFjhCMl/MPj59v2z9Ke5sxdDAW32b87EtsHEcW9vv76v0c9+z9qvtuFEVt55JdZHuMPm1pfTvPazvnjjUr1UivCpGh6ym0wWtDaSy1tbxjSu6ZCnW7ZrPa8MnmBpUEJ8Lz6xVf/PQjppMzirJGT2cIivXViqEdiBUs2iX9r3+Oa9fYrmG4BSk0D955iCsdMfVEPB1rdHfFRVhSDA0x9sRoSEBoA2IUdqLQ2mJVC/0VsWsYvMJHuPWwXA+gDEpZQmizEAz7/DDYAlTHBmcrNb/7e3R28u2U0fFi3FdexxxiUrv1w449dCBbv39Cx8y7g66yBQ7z2uJg5n8j8DU6V4cOhzq2Fsf9c1876409ezfZHDv4GcTcp0McHGp7FvuI0i5itheqELLjqg9so2Kb65cBaj1SYHd7+y1Mz1s7U0ZrKuuw2mCUIwUQGVBGIAltyDQwbQKJRERjO4+JHgoFRqELi1EJ0REfhH5o6LuermuwCQwKV5ToFNisbwjW4O4/QUchpOxM6ZTzn3RKCJ4oA8PtNcl0GB2h6KFJKJsVU8InH5GuL7HNba4HNL9ATSt0WOCXa9pnV3SNpms1P14HvvTC4vyCVFXMz0+wRlM4xatXX/DJpz/nJKyZp5aHLxQzZzj96AG2sFB6isozP1vTdivaZkHZdxTRo584StG0LwO6AKsCqk4ws8jimngVacIpfZqy+k5JnE+ZVCfEGFm++hTHholeYKtTbFmTYk2UMjuzCGEQ/CA0NwMk0DJBTHZ0XWoxShh6z6pJvLge6BuhvQzQD6iu59HFjPvnE2plmVnLTdsSVg3dwjOoQNwMKFOgTIU1DmcMng6JgeAHtDZU1SlaORKOPhj6oEhdgGGgSA6tFIXTQMKkhjY5vNIk5UnaMzOWsqqZAjFGXrUtPkSavqcEXNZAR6dEmxSdwNQYNIrUbbJ0qRW0BeMUYTCkYPF+IAbPpLZENH0fxskbQCPKYMtcUT22HkmBylY4pwjiQSn8EJlWmnldoV2Gi3zf0/UDg4GicNTlKTEJXefRKjuw6cCZgq1D9Rah48MI9WEl9O3EcOhWHayOt8o2b99+gxO23VfMDmO6WZCevcwO6hD45c9+xvXtNT86e0jb9vznjz6jKk44nz1Bn52iTufo0qCtpnCGhOeLX3+MDT3nsaXrN6zaBe+98y48egQ2IibQqldo3XPftkyGxLBqsJMBNxNiH5A+QtygHVB0kAyyhsSMqB+TphNkXmHHOiP7+7K/sW8Cm/KEe7yd5Dl8t4+Utj/7W7etka70sQk5VFj8auvxj9O2lIjsvB9f7NZU7Yynuvvd1/eX0l7NT7Y7+R3bH6Kf9Ho7vogjlskuhJfAe2Tdkj5/jgRBIqj5BFVa0u0tadOirSWguf3yhq4PrLxgS0s1KbNDn4Tr1SXtZo1b31IWhsrPwAe6Ly9BJ5QVyvOSYm7pnv+S1C6p6jnGCcVZQqKQ1oIpIjYEcDWYAtkoJFiCfgdxhmRLsI5iXNu8zfj5tn2z7bcZP7uF9ldECI4cqZ0NOly97rfjK2wQsC/8fHeSUQef7b4rCGOtEzKVPHpP37Q4oACMq6id4j1T80BX6Kslt33L337+M86Liu/OL/js+SWfvLziYv6USXWGengfVZWYyuSi8xPN7eKG288umceeSepZNDfE5DGrHzCd1uACQXV0+oqpHrhve4a+JfQDMZZE0fiNRxmoypRzhNmQ2iVhFdi0Na0vudY1NxuPYEEbQgi57hQHtZoks+e308TWaTi0QUe+lpIdkJd2Kn77Z6pHBsHx4kF2IKFKaaT67et+bbc7pNPJjolx0Ce2YO7+MR70gu1GB0WBD57tXRukDr6zu7SjriivzS+H1L7XIlE7yfjRidt1uWPVvy0yus3bOzhcziE8iKZu7d3XtdlvH8tPOWk1WkEsqKJEWUdhW1QMOVdHC8lYlE1YmweG9wkJFjEaHxM+JUpyzYCqKEiFIcxLZkZRa/BRSOJ5eO8UqxVd12KiYFPM3U0lJPWk5OmHnOAflwaFw8kLSlcyn05JJ1P0fAbDK3S8ob39gtgP+NtrOmu5/MKiQ6JoAzedsOgSv/CeV0mQuKScznjv6fc5f3DOBz/6gG71gOXLE5rn17RXS07KgdKCnD1AF466tpSmYWZfUHJGxT1U9wI93FA/mGCmBpM8pEi89CQf8M0NYguwJdd9zzomwvwFqb/l5a+/YLnw/N1PnoF4Stvz/vcf8cEPHzMvCkprwOa0wtI7nCjs/ATxCRkCMQ6kmLD1DDWpeVR5zqPiwp+xuO756G9eENaetOipT6ecXUyQpqN9GZFVj/WJxw9qUtIEr0naEXVB07T4vqd0JaV1oCYY7bJ6m1hCLLAYnMopapIEh8Wpkc6iBGWEUllOtcMrhZeAv7ykf6lxhUUZzaxSTOYF8+kTEI3CErxgbeB+MSGZAiSrvflmAATjNM5ZirKgKyK9jznCmEB1IaMTIeSaFVajnEUXFas+smg8VkNZGR48mKJIfPr5K/rOY7XBaSiIiK1IhUWcQ6JgihJXWMrCURhNZRWRUab/H1x1vHlxcmTUZDtXjSt7tY0UyG4CEb1HZr5OWPr1Nh4sxq13gXhPajbE5S3x5hXJlgxRSDcr/OWCzxYeFTWPmdJ0gS+azyi6BcV6ztnTC6ZnM9773lOKwvDOexXS9ahlS5KOkBrqk3PsbE72biO1KXHGc157CiuUk6sscmYdipgNb9OTUiC1faYjlWd4GWjTFVZb7GSORE8KnsN6VV+Vu7SlUyR1HOk7Qr6UztExBUpDivs6FHJIhdnSYGRboykf8xtdgB4ascPV0XhuWu0N46HF2NfxOLwPe8dyZ0SPMYJv266N4yeNRXJzdjjSNqTNCn/9CkGTbIlar+DG5RwG51j94lOGEPFVhRTgiBSlZTK1FIXDOctsHvHdhO5FrteoYoNohX54irEaWxic7bHGU9w7RUWLTtcoHTDOIiqhiajgkUVH7AckaChPEK3ZpFsoAsXJvazAGj1phAt24+dbT+r/B227Ujxwcu5scWiD5K6+we7luIjdqvsf2ia5s2jlAJli7wSocWUtMSGiEO9RSlNKogJqozmvCx5UJWWzRPqWxWrDauiRV0tWquHjq4bUw1NmXC8WXC+W1KGhmE649959pvMT3vvue4RuQ7s8QW06aAcepTWiIrN7jzDOgYo41TM3FRMXmReB1D9Hwg31vTm2cjjJjCzTelgHYveKpEuiqYhDzLUWQ0uz7tBxhZMWHSMqhFwqRWUDsptfDyJCKPZS8wfv5Tuk0Dr/3vquWyGro+jQ6J1tBUa03tdM3O5smxOsXnuoh7/f1CMO2h0HaBeo3DoiOybO6zZo+/LQKdttcWiDDkCcI+LE+Mf+/GV3CtvD5UK8jLVCD6zatgAAACAASURBVAzW2FGVzp1WYBQi0Wxrm5mtMMjX9Kbe2pna5XxsEVlnUUph9ICKCT/kRP6kIkYL1griI2GIWb7awKByvSqHwmmdZdKNRRnFmVNMNby67Rl8ZD6boVH4dkNKghXIYZeERI+kHt+3pCj0fa7VZKJi4ixFU+HSOWI9yq8grfCba4amY61alqL4ZUrjgr7kqo9cD4FLArdArRXOJmaFcO+84o9+9BT6mrTUfPGLl1x+ek1dNRgXWc/uo1zJZFJRsmYaPVPXMy97UtMgfYOe1yjnsPTIEBhuISwj/YsBdebgwtF0wip4dLsgRcX1R1dcXnb89K+XJBFsAaoyXLxbU88m1GpblFFDNAgGU9YknYUWfNJ4UWiXoymn84hoy6l9QjVv+PLzDYPy9IOjmk6YzWvwAb8KSBewIpyeF8SgWa/BK0dSjr5f0q42FGcF1hq0naJNgXaT/AzIPxaIRhADVmmM0pnuaUA7QWmD1Zo+CjpG1ssNQ+dJkwpbWqaTObpwUE8JXujahFJ9Vu2blShXMYSeGBQq2LxIdBbnCspyQtQDwQT8kGs5hCY79ypmRKksVS7iXDtWXaTpIydG4QrNyawkxkDfZ4VBozVWKSxCNIZkHaItYiLaVRhrcMbgrMpURlFZlOUrIfzfZMRkp7aj9jPpPiKwm4sO9rELXf8uax05QtRFBEJE/JAXg82auF4SqyleNGndE5Yt1wxUpuRhccHgW26aG6ZE6hQ5ezjFmgn3H58wndX4exDage6yATWgTUdwE6KrkJRQJOZWUdjAdJKweoPlOcoWKDsZzzGSmpgpqjc+i51cKCKJwbfge+y2hlvskVzyEe3c7oYf6Fgd3De1R04PYKktiraNKmq9rb2UUOkgMXu7X9mji+rIkH1DTTJVdauOdXj4nQQvjK+O3Pb8fraEuau9yQjKV/fqo2O9lR36Bwz2H2ST3TMgjnlSXZsBic2SpCyxEtJmQ1o43Cjgs3pxzdAPuO+9g3Iam6CwirLQ1NOCclIynQTSUHDrA2HwKPGIsejTCcY6XFlg4wITPcV8isYg7TNgQNk9YJF8QtpAWnlSq1AXJ6RCMfgOMLgUcgmUg/GjcCgz0pPujJ/f0CO+bV+nvYbIf90vfZ3x85Y2SA6XvFuHSI7nNbWdH++c93EAgO1suZ2WtnveFftNCYmZdWRTolSK2hhOSsdZ5XBDA0nRrjpa70nLjk5goOHMnXBmZ7zorrn1PeIMIh7NGXVtePTuBRJrYmvpb3uGZY82p6Ajvpoj2iApYpVnZg11kZhWCRV6VPQ5PcQ4lB6QGJBlQ2oD6bolTSwydaSkSEkIw4YwNJR6oDKBUo8lblKCUQVP7Rbrd+j/dx1QDm1QVuTTRh3UmDp+pDKCXdtnoA+iVfuAYbbvxqiDDqCO+ttRnzhYdzCmPuxP8cBejuuHXe/YgrsHft749oElOm5HDt6bxsOBHTrowuxEVUYKxZ7qvvdZXuuXO4fvIDdK7R2yJHytEfX2zpSFOMnqZaI1rrQYrdgse8T3WRJaFAufmKpsAAYvhDYiWWkY4+qM1haWpMCb8VQTrBphnaCJJUlrEIdRYGyNhMjAQKnBKcFohUqGvkmkKMzuneBMSWVLXAgUXYvpFnC1gqvPYX2DTQOtgr9qer4Mwl8PAxe64EMrPKkf8UcXD3lvck6qp0y++xQ1rWgqy9CUXP/0JbP7Fafv/gnvuHMuHl0iboWogeW6pvWaZ41nWp0we/ynDDSsWFPUBTaeY8s5xliUaXKtoqcXxGipB4fUM2R6Sq0HghpIt/+JtHmFnw0MLvJf/88lw+kZzdPvcPH4B9x78gMqWeBoUTEjOv2qIcVIZEBG9H4VhbaD1Y0hYXj0dEJZ15Tn73P/wvDo8Q+4/OwFn/701zx9NOf+vQmFJHSMhCEjRLXSJKPQtWEQR4djTYX3Ad8lTPJMJ56E4uo2F0qeTBxKC0p7tCvQqaRsbjG+p9v0KCJV0Y7jQYjJEJJmFjXJajZxTgwlhUxQCYZmyDXFksYViqquMU5QeqBMQtQaXU0zkqAUMQrLZUNdF0ynM9LMIALdsiQMgdg0aKNwrmAIkdXNhth2VDGr+ZRVQde29H3H8uaWYYhU5YRiPsfcP6XxPW2zghSwSlGUBuMMflxkWqMIQeHDVqFnN4KQu0aI/XR5OLkImT52tI2wn3S/wmPaUwZ+y7aHfqDvCF8+Q64vkU9+hTQDNIHLyzXXnfBiobnt5jwtK0pVEMo5dT3ng4sHPHj3CRdPHuHmM2xV4heRdugoTk8py0hdTdh0SxbrjkldMCmnrL1kcZPpFNGRtWwozYxiMkFphzYlqAHw6MkEwWKe2Fwfpz7FKShVRKUlevg5avF3pCCosw9R1Rly+j0wWYHpLhKndVYihW1UKU/AaQ/85URgnQ2a0QqlDIwAk9p+PlIt9IguHj6l3y1i+Ns0edOv1z8/aHdzrXaUiJFbsUMHv6lr+UOOgkgivniOLBekX/4dsmlh2bPximf9Da/kC16hePf+BeezKRcX9zmtK+zpCaI0sU/4JGxuBHoPXaI8qXHzCadPQWJAVRko6ppAHxJX656TyYTpdEqgQzOgzYDCo02dnSnVoesCLipMNLneVH2aE/dVBOnR4WPUTSB++R9Q04eo2WNk9h3EnB+Mn7to9rftn11Tb7I1h59v3z8EWF77eGd/kBG/fZMHdrDddo1/BFYdHH9nxw4+00ZjtMmAQGFxRvPhxRn/5fvv8Y7xnKmIazTBw/MbxU1veNVOmWjDw6LEmAm+mnB/MuPEaL7zg+9Rn8woTk+o6oLmcoOtNHZ2wdQNzM4Grpcv6H1kPqlR2rHyCTGCnpzgGVhKR10pSnOOcdNc61J1oBQynyFJY9/TJFcR3QRH4EwCZ7c/Y2iu+X71fTabhk+v13z2auCvP2oJweCjZbNa0XUt61WbC3GnRBpzxzI7WI7seY4y5flYa51JKqMCsWzFKkbboxQZzHnT85atVPiWziZobUAgHDg7b4oYKZFMSrgrGX4X6RU92sy9kyXHG7+2/+0xdlsdUfuyDdoKouTP1C56daiEyM6GpfEa0x4M1RrGkiY7J2vLHhn9eUnkWq0jpf/reFNvT/NTAmZ/wqK2i+FISglLvrgoimQ0urCIGQiM6uMCuZyqIml7MBYzh3zwQooQcCRlGRIYBYXkKw2icONDTghBwRAzCuyqkrKomdgS1bXoxqOGmHlm7QrVbzBkKdrnPvFZSHzaezZaU6fESVWgzJzT8hxXnVCfPCDUBTdtCyvh6sslScP0wQxEYa1ClRYxUHYW7xOrTUuMhuXJFCsalxS1FJTUBCqMtlgrKOtQ04eIqcBOoJgi5ZyqbDCmJfoZpDWcTEEST88M/fl9Vu99SDF7n3L6HsZ/iY4L6LPCWjQ9kUSKEaUSmDxAlNaEoPFBEb2GoLHaYeuSB9UpsR+4eX5JeTpDz6aoIWRBhWKSjWr0kBQWTVQajUYwJHHEAFGPhWsl0Q95pWW0RVTEEHJEShRG5xwi/ADi0dIAo2KN5FiWHXn6vUpZPCMGYHyNQSmHNgrjDEoJShJ2pCwVriCKEAEJER8CCkOhLcpZBEUqBaUMRYh5wWssEoXgB5QknE5YazA2c5z94Anek1IWqFDWIc4Rh44QQjYAWqFNpjkkEaJAkERMMtaPeH0YHRqu7d9vXI4o9cbvv8kZk9dntt/c3rDjPaooSAikriNdX8OrS+TlM0gWlRzrlXC9iax7RRss4kpECrwq0NYwLwzTyTw7smaCEku3CiQfMVWNUVmIBkkEyTxupw2kgRgTg4eoAJ9IDmpbYrRFazfeawfuHKVLKCvQFnFTlE6UZkD6BtoO/BrpB1S4B3GbX5gQ0oi27hcO+5pKkb1CejYEe2OWUdld5GZ0anc5AIeUvu0NlT0a+423AwOzs3UH5/UaeHzgNN39dItFj1bp9+IYvnEXvwsQ8E22r0AstssJiQHxHrm9Jd1cIS9f5L6YCoYWbpbCs87zrPe4XkhngZOLR5SuwkguHG6Lgth5+rZHJ4/4gC40RS5JjtIKUxTEkDAqkkKk3bQ4VaCxGBE0gg0FmnEO04I2KtezsnMoyly/yk0QnSmCKq6RdQ+xhW4JrkDFE5QMION8LAqF3s9kR8Vev3Wuvon2246fNwoC8BVPbUf3vfP2V9mgI+Bmm7epjrZT6nA+3L/eLna10ThjmDjDRVXwznTCI9kwTwnvNG1StEGx8ULjLdY6SBWRkqAKSmcoS8d0OqOczBBVk4Kiue0pZxZTlBDz+iHbbMHqXAcwBg8CgweiQEzo0qJdjUiF1ibTx7RBFfcQ52BS7optOzNQqIFCTpAy8JDHdH3PybJhdum5oWPwBh8sL54/Y7m4ZRjCns6W0p7mpw4cqQP/Y1z/7+fg0bndUXAPaHLbL+9n8buP8k545ze0o48Pvevtsz5Eew9B2UN/5MCrfm3GeCO9b3ttO69q50gdf/sNUKEcdUZ2+VPc2XxLtVSyy5HOTuy+hMDbtrdX8xOhTFkxD4ksFz0hBKYFOJdFB4zW1BOHsQasY3ADGz0wd3YsiplIAj5mZ8xpQxcCjR8gKiQqlMk3r11syFSaXFx1ojQxJWIaCL4jBk+3CRjleDp7SF0WlMOG1K+Iz3+JSK4H5GTAkrCmYo3l72LiU++5iYk2CRtRfLlo+El7yXvLF5wWCts+orc1P19NiQKFDXwwHfjzs5ZN85K2v+adP/kO8/sn6LMT2rbj+X/4K1Zdy78dGkpJ1JI4cYqpUdjCYY3hwbSmLmvOzx2c30fef8wgA316xtPZkvOqZf70h9iLP8P8cIKyNdRPmZmaMzeGopUhqJY4BIJqSQgYQ4qBTeeRpEmpRM8ecH5xAZ+/pF0sefaz52CE+QcCriSoin7ZU5YFi9ay9IZJHymiZmZPMbGj/ezz7KnjGGykLSCKg2KGjx3SQ6dAjEKsRduSspxCCoToUc01ql+jY4vGU8UFBI+0Xe6oEbAObMH8bEY5nzIvpgxJ8/L5C1CKelZhZzPcxYzkA9FHmgFCFCqTC9fN5hWiNEFpgiiqpAidZ7HxzOpcWmUydcjEcTqbM8TIpu2wVlMWimpSghYKBTZ6ul4YfKKqa2JSKEpSEBY3G7rBE4OgbIEZB16KkS56/JAY2ogyY8TkcCjKOHC3yMk4o2znn13U6oAusZsn3gwEHu/79Ze/XYsR/9lnpJeXyF/+JarboLsVyk1RbsqXV5Gf3USerRJtqzBSUfucJTgthPM68OyXH/H3v/45rnwPY8+YVSUTB987XaOlZWhfoU4q9MMpShqUtmx++QuW1zd83KyRFKhTonKW09kE4wzaOWazGdVkQlFadOGRh3PEGrysKI1nXrXYqsZN/wROM5ig3D0wVZacFo+kIec/KQvKAhpjNNaaEcXaPqMxoVfSKFUrOVSlt0sFvXtE2+2zjdmaLrVD8DKq901Fc0b0WFKWZj8wRF/5lW3y7Y7fcIAfHqymds6i+iegL/4BtXj5inh1Rfqrv4KrV5j2FjCo8ozlCv72y8jz1YoXyzWrKzifd6zCjNOTCRc1VKc1Z9//Dpv1wOWrDe2io1/3fHAROS0DfXOFdorzH35nLAkSaF9csvjkM75oN3R9S5kiDmHmTO7fZUFRlsxPT7FOcIUg5/dhVuGlRanIadXgHBTz76NmGvXYgJmj7AmYGiHnUQFoXeQxoEb67LftD67tItC7/8b2hrniH8RPjgyP2v0tIwAjbCW82UVGcuAiM0qcsRibC9k+riv++4cP+GPn+HC9pDIRp4VYTYja8mlIPO88r9qexhh8rJmlmqmvuJgESt/zkx//GG8trvwuzlbMqpJ71cA7s5bQLwh+hX4yx8wrKBpSiix/8jParmXVrHGSKCUxKR2Vs5jCYYymKktcUTE7s6jpHHlwShBPSEtmRUPtBoqTDzDT76GfFNTKMmfGHyfNvxqyjYkp8a//9f/BT/72b/jxj3/Kzc2SvuuJMRKHtAO1cl6PGossp1E+XUbp+f0cvP//EIAdi/RuVQT14Wfb6E3+K+dQ3XGqDnOwDqJJaudEyWvP+KivHEbHdlS/r+hE6thh2lPQ9+d3bMYO9rPD+A7ek21vO3xf8ebjK9JI2VdKxnRXtXekvgbV562dKUXK0YUkOQcqBZBcdBVAQq7enG9krjSN1nmhrTWi9AFXdvy3fSYCQk4Cy+uPhAo5YqDJnUppTRChCZFhSHgfQQyFMnR9QCegb9Bdhw4DKgZIHq0SWoEpFRrDoGoGBoKs6ImskseEBi8OTWAZoFhWeN3zarUmSkLj0cuW+nZN29/ShxXtrGS+6TjZDPRDz3C7wPcNvW+IMRGj0CmDURqsQWvD1SRSucDJ4hX6NqJCTZAOn1o204bzyvNoKJieFJw/NtiJw8wmKFNglSLEQEwDvunw/UCKIMmQVJHl6L0hRkWMKiMrQyIkA6akbRJJPHqxRjlPsuD7gIz5VSSHDJE+CE4X2BRJgcz7VwkxCqNcRmaMwqeCJFCYEm1LbGGxRo1y4II1Ot97PBIHxA+Y5FEp5FA2CtEGrQxKaZD8o2JExUjoWgSFs2BcgfGJ6LOgSdcn+iB4Y7BGSCaCFpIGUTmUG1Ni8JFeCylqxOb+pbXJOVQpjdEshU65f4skkoJ+UAwh5T7JFu3JUbltD9Yj99noPGzH4DExJbTOxX/f6Nq8Rky+g9zd3VwdoHvqjXu8897XW9gczRVjrkdab5DlEhYLGFpU6CDlIswhOvpo8VEzRNgEn2Xqe59z+0xiExMbnzD9Gq0TqSgZrPCiXaJSz9AvsN2QI83JIoPgF2viekPs10iKhJBotSG0AbRBrKGeCUUVsYVHuxLTG3AGUZ7SRtrKU0+mTGaOcqawlUHbHD2S1OUIpYBWDjGH0XGV++BuIj+4saKOolQ7ed8dwrrnh28XCgf06/GZ/hOEXOQAndud5R6aO+KPb9E+OcYb5ehGjBt/RR/8PZ3yH2S7a29T15K242e5yDWejEMZQYJhSJZu2NB0nuW6AdFcXi/o/ICvhNoPxAfnLBc9q/WSZtnSLVpeDj0b6xm6BdppulmNLSyFge52RVpvSEND8h1+yJFeL6NdtQ5bVkw3GmN6jGvRm4SetSQ1oFWkrz1lYTnpz3GVopwZVKlQFiQNIGG8Vp2BiMO6at+2f/L2VuPnTfZnu27mOJK0+8rOBr0punE8Z7z5JI4t2/avfCrblXf+QIlQas29qmJuFKX3uJQwGtAarS1RO4Lq8WlJR2IdBmQwRGWwJlJLYhMjXgumu8WaglgU4HrMqiEMa0JoKAwUXaB0S5RE4mpN7FvisEGnhI/CujE0yhDH9WxRTrB2YLKy6GmH7iBJIMnArPTULnLW3qOYOKbnDlOUlJM5hTJMZoYQIyEESmt38+5esvtg4b/F4nZTr8rUNDhiQ2y33z6fQ4r20V2/+1wOfaXtIe94zLunfWRHjjfYmcO7hxjB4yMLdLTe2TvUR5dzELXa4nhKHbJ8DmTdObZx2wu6g1t/RXttpTV+/bcXi/oalfkCKjWElCNLpTWYUqNcCUlhBo8RSCEhWoEpMGVBMfHE5OjFUrt8wDJpMtArGAxGK8Q4BEuzHog+MEkrjIJpNcUZQ2kL1kPHovVsGs8wRN4pZ5TG8cnHn1FIYjqsOYkbHivQKWD6Hp0iCjDqDKcqSvshLm5I3St6GYhyyTqteRau+Dg6nLacqglGr2nXvwIZcCrwhQT+fRoAAxjc9ZLSGv70dM7cKGrZMK2Ee/cqfOtpVwOfrDY8bwZugqITTVAlCUjq51ijmRQFzuSC3ZWbUJqKf3l6w7vzGf/Dv7ScvjNl+t8uULVGJkLXK7pOs7y8pN80lPceYcoKZWp61bFeJ4bB0w6em6uXLG9e8vDd+0ymp9w2BaELJLPElBV2VjD0kXYdcGclpjjl8triNwOh0JRB0NpiJOBSxLqK85NHNP2KpmvYpBmC5f2zx1SVpSoghshqc0s5ccxmRXawoyK8WpHaltoPGIFCaXAF1BOWWHocXWsYhkCQa3wIpJs1EVh2FWYTcX2JVzAgXDUDjY90MRv0mWsz+uoMdWWZTh1N29H2PZt1jgqo2RkYjdKRFAZ8s2GI0EcNwxpCw2SsIbXyJT4EWp8HmDOCcQXFbE7cCIm04yZXJosUVkpn/1XykNIpvgHVeIO7dOdPecMs8FVGbrf976MJkHJNnPjyJbx4gV7coPoOhh41K1BpjlX3KIoJUV7QhZardInWlks/xzlL3Tsmp+fU8xPaxefE7mM6A5D4uc8OjdIlxq5wv7jkvfMpT+Y1TrUYHbh34UAZZNWzbnp+/eyaddAsg8HrK4Iq8KkFlTidVpSFZTYvsbakLGc8qc55d3KPd95XnD9QFB826FkFhSKhCbHEuDlFNT0yRvkOj4plY62PEOLOl97R3HaP565KkiIhSMr5U1uldEWmgN6Vyf9Ha0kyAHLIEVEqK/DtDOgh8jZevRr/2J70IfIo7NFFkd9K6ei3ar+vvv1NtTF6mW5uic+fY26uUbe3qL4FW6G4hwlziuIRSQJtd8UV16zaGxrrKauKunRU1YR7z3skNUR/TWhaYtvz609W9MMAksWfyp99xklV8L3zGU4HLAMX5zV2PqV5cUW3avj42SvWXeRqsHjl8PoyI+nSM6sL6sIxm5W4wlGVJ8zchO+fPOXiwvDeh2AfnmIfn4MDMYoQS1AlajI5UMj8tv2zbG+0P8ft7vPbOTq733L0/tc7zrZi0fFCeicWgNoB5SnEMfclUivDOydzziVh+xaTIloEdXYPp2qq+h2c3+DjK0Ls8GHFzTBB9zX14Cic4+TBI4xWrK4/Qoun1cKzFPhxHEA5lLK4Z2tKp/jhoytmTlGolrJMTC5KpAtIM/DsasHVouVVb2ijppOaqBRB/YzCak6mZRaesoqymFG4mh+efYf7synf/1NLdV7hvtciRpF0ZNN4VhvP55/8mk8//oK26UlbwE5ptDIkSWxl0mNM+wTqQzXEnX3Zh2xkdKZEcorMFuRjzAPeHuP4KWUg8Siw8/oDZitzrtiaggwfJ/U6XJjFpNTr/eLg/Lf5YNt8J60Oe14+za2Q06FDeeCFH77cRcHy+eVo0+FJ7e7Fjsp+dMJsDf2WQrkrL/I1Jri3d6ZiQoYe5xxFlYu2EhLK7sP8CiiBQmuMLVDGgTbjDUuoMQohWpFiwoeQBRmsZUiKmEZOt2hCnx96zAkpyNDjY0CUEDF4FAMGJwoXe5CIjQOehFiDeJ0XDWMShAoepz3fNY5oLb8GEgmRmBdX7iHaTRFjaUOmI0laURA5M4pBGxozx0dFSIqg8r6/2HRMjOaimmG9UDQeiZZoLWWpeSiOE1UyiObX3UAbE31SxAQ2RjQGpyxDl2l7v/DPuFwVhJ8o5s9LzpoF57Xm3YmQdEHUJa2xDMYS6lwDKLYLhm5gvehIQXIuUCP0TaLbeLTSFPUE53TOX0oQ257oIzF6jKScM6ItYoQhDZA0Rpc4HIWzRCmIG0+zCaybRJ9AO0M9P2E6LanLSD8EBhpEawZvUMkBJaas2ZZDExEiGlNWuOmUWgxJDH6A0Hu6ocHHkPPd0EQPoe3puCVoTTQKV0yYlRUSDAmFyvmTeCD5iN/kpESxBUkiJEh+gBCzGlv0+Jj50qh8D8R7ktUIGmsUInmSFwEvYFIihhxt0kblpFERkh7RIB2AzAIzWmF2lbYPBy37iMZdiOfOq32kYD9ZHX7l9+FEyd3/t4vt7aQTyVTMkFA+IEPHuYLHzmK33GZJaGMo5/exZYmua6Ie6Ntbkl+i0prK2dy/qppE7ktKQVJw0yZCbDidlhRFjW57lMr9MRYFZ6eOSbKcJMerIbLwieANSRRBwCaymqUIfeh42V6xXqx52Uemz4TTFy+oJwWPTx22KKA+R84e4959tFsh5GTVgwLLh/daDmzAIRIvslWqf3O0cERaD5WNvpE2Rhe3RmXrMG254btaIV9xPjLuY9uOkc1D7+rbJndebceQKJV/sngehDFSPXRMZMoTZ3mpdY6Ep5yDVE9PKacnKF3gVeLm6iVWdxS2obSKYu7Qbk4XEptlII6Mgk0PXyw21IVlXk2xvcJqiHpKrA3zeaKsElUq2QR43gdSyPNzSIqQBEk5n3ZIPcsu8ovNp0yXwpfryOS0Zno+5f7MMqssTM5R1Rz3wSMoXb7uQx/8W+fqn3m7Y0kOaM2H7+2EZ7bb8Dqo95ttkBwcSh2/f/hKbXlKjFEFyebRmpw862Us1SE5n1t7HheGrjBsF/mQMGVNOX2AndRoZ/GxI/oO4gqjIhNjGZxBmSlJcj1MVM69f7HsWDjN2WyKCYLaDKgU0cZiKziNDjct6ZPh8ybQxUgIBj0CqE4MVlnSEOmHlo/7z3l+bbkRqGeW0y8+Y1oq7k2gxyFikfUGiTLmYWm2wkdH0brdfLt96zXkdW+Dxue4Y1Ec3+Txj3FNITJS5/aO2DYyJVsv52gvakfJvLvLI8aDyK5P7JyvXQ6U2ilyvY0N2inivvbh3Vn34PUd52cLZG7XW/ui0cffFhn5KFvQ8Ojzt7d1b6/mFwKyXjO5f8rsvODmckPXBqwrQGUlEAPMgNpYyqLG2A7RHVEiIhGty+x5a02IgXYYcGXJpKwJ3UBIHltoxCm6viSIYNFZjKDpEPFopYi6wGtNIwYSuNggEtB6oFeJaBxx8KSkkaSy5zm01Mby3xWGcyz/XqXMlUSYVO8yn/0FaXKfpDWb5/8rDF8wo2VqDR+WM4Z6TjN7yG0XWHWRIUJIkZ9unmG04R33ATom0mZJNUlMZ5H3bOD788RJfU5Qlv/9+SdcDj2hcxitsE5R2YoTW9F1K/q+4T/efEkTPP/bR5ES4YlK/Fmh+F9mmvreKfX9U/q/+Bf4975DsJ5gelaf/B2hj4RuSqEcFy07ggAAIABJREFUE10QF+DXmvVVS+g9p/fuYU2C7oo4RJrbNV4inoCRgNEaVZaoaOjajhAs1szBGWw1o20C65drLl+1vFx6lCuop5bTR084u5hQV4HNpqfTK3w7sNn0GF9jgJPThIsdw/U1IUaiMdSTCdX5BS5pZlHx4uWCdtOwWl7jo8cWFaIKOq/ouob1qxVSOHCOJz/4IdN793gVYJAEMhB8pFl5hs7T3XacnE6ZzSpE9RADbdcgkijIyHqfQCmP0R4fe4Z+YFI5lIZqpCy6wjAEoY/ZmTBdjyhBO41vO1IMOHJid9QDaI3RuaaWs3qUJT0aRXnyuWtbDqIY+5/tdvr3F336jW0/0YmzmQYXDSZoCEDfgVryvonMKsP/pUYjRqIsKy7e+SF6MofZKd2z/5vly58ySUsqNXCvPKGoarr7T/A42t7ggzB44dnqil/d3PLu0z9iqk9IrxZo45nei5zNNX9031HYitJN+E+Xz/nV4oawcvgItsp1xSZujsTA0K75aP0lz1Y3mSbqBz7QkQdO8T99cMbJ2Zzyw+9S/fF/QfX0R5l2JSApZtGA0Y6oXAr66NYc1rTY5RFtEVatRyf58E7u530z1rH4Ztr2Io77nozUWmAUYNkSU4+/ishOxXDff+Xo1zfW/tDCHiMYK9bkOnRiIJg8fkYxpHM95c8rw3Or+H8loVLEiOHh4+8yPX/Mwlf0qxe8/OjfMK3h3rnl4uKCB2dntMWUXiwf/+IVTTMwBFj7ji9evuRsfp/H7gFy08HNwPzePapT4d3yghJFXZzwvNnwH59/jm4TvqkwlcYWmsrNKbWhb5cshlv+n6vneN8T2oYHKvFYR/6bp3O+dz6h/PC7uIdPqB//CeJqtoUwv/Wi/unba8DOm8aPyJ0C43yFDdpH3n+XYf9VtKl9nGNb4yefbpJEVBCcI6UMhBJzeonqG0pj+NOJpvSGf0cu+GtIzE7uM3/yI9T8DJxl/av/E9k8Zya3TJzhwWROnE4ZTh/Re0PvNYMXfIj8/fUXKK15v3ofk4S4WlJOIvVJ5OH5CU/PhOn0nKgs/+6LT7hue/ymxmmFqxUTV3NS1LTrBX275i8vf86y3aD+eqAm8Udq4MOZ5l89cZj7j9APn8DVTY6OuYKQBNYrJMb9ozt0qLZgxVfYoHzzDmbzrW/D1p4xOmzZyckKgNnW7yIxY10mJWpXHHjXMdR2PbI9F9k5wodnu3XUjnl7u46wo8EDKGNyHhev26CtkuGRaMTBfTi8xsP9753Ou0usbU1IvdPQO/5qVilUSXagv9pyDr9Ge2tnyjnL9PSEwhYwCE5bKDTOWlAGUxqKlHNHshMbKZxiNino1x0pRHzwKJVIyWA0nJ5M0DbnNRRB4YNiSEKMQjAZ9WpUriGUosJGRRGFU9GcGMXcWYqxmKZWQm01Vjx9bDA6YVSHURElMkYJInMumUmHQVHpE+7bM/7FX/yIP/2v/pyP/uaKV1/e8qkJ2Lrgf/yzP+N0NuPi5IKumLEuTwlOCEb+P/be69e2LDvv+8200o4n3BzqVldVs6o6kd0tBjVkyZYhC7Zlv1iS/WAC0pvDXyPAth5sCKAB2wQkww+ELQgiTEJkNymwAztWsW5V3RxO2mfHFWbyw1o7nFvVXbeazWT1BC7u2XuvvfZaa845wjfG+AbTsyOWiyl//P1zlsuGWXVMiJ7GLVGNQy8dZ8HTj4FeUiKlQpUrLsXA7TRlFeG5h7lbUbJgT8Nhruhnl2l85PnsOd47qih5HiPfauBq5bi2LCnqKWmTcfTeY5Z1zeT+I0SAIhkRk4SkyGjOPdW5R6s9XJMTrEGrQOpXaCXYGxZMrWRaC3A1fjEhlEAdqcsaHwJ5cYAIjrKsqGuPcx5N20gPKUmFRPgIThCiQSkY9Ty1SanTHDcPhDKCsuA1uucJ1lPXnqZSnB/XyBiRIbIqa6wLyADaQ2IdUYKUDUZqVJYjB3vIwZi0v4dICgrlSGLARUlIwGQCWzc0qxKdZZCkKCLCS/o6aXtAVCXEgBABJSRaSqxOUEkkyfpkecpo2CcET1NVuBBphEYqiVQCL9vaKdMzBC9wNuBcYBktSiq0kRjd0fe/uIl20b6dt2AnDL15/yLCsnWoXmAJ3AgO8cl7/2Vkg1Kow0uE0uJ1AtIihG5rigAdF6RBkEhPplNu9K/SOxxy6Q1QeLS1TIxjKiyf+ewd9g8GjMdjVJJR9fbwUmEB2zQ0VcmzxxWnRwsaN6WalpT1gkiDOF+RK3isFalJKUxB5VaMfM1ekhKE4tRHVmXDk+VjekZxqZ+SpHtcOtjn7OQZy/k50VuWEh42gnEVuVpb4nyCef4uuneAKvYRwaM7chxixHd0szH4LWq70StxZ352lEG8KOxbP1huFMyfj0N8cbS9TNZKQWzRzU192M5Ya13RUWts8vjb+9pln3yp3/6IIfYJKPZfhfGSlymHI+TlK4SsADVDSd053CCpSeMpKRVGaS4PLnEwGvL5L95gcLDPo3emLKxDpXD18h5vvHmbfr9lx6xUhhWK0eElGmspF3Nms3PufXBOCA2ns2PqZkXjatRZhZSeQVNjkPSzASE4hnbFUGpu9RPOA6yayFF5jBGBa4OMIk3J+6+yXM45OX5C4h0r73jmNboWXG0cRVWSHr+PaQ5I9m4gpG7plXcAgz//VgD//xsXqco/Wbh/0hHrSMFH3t+VBTsKadt7b20k7/zWj9NBH3OlW6N+G22QbNVhq/tk23vSJFRR8nBRo6NkT6zrqmMnkwJpOCejwihBroZcK4aMbu4xfC2irYcm8kxZyBW/8OYX6PVyxuMxLilosiFOtPhGU66oq5J7751Slg3T5QnOe+pmAdMGcVTxMHiKGOgXM4zS6GbOIZErRU4V4czCeT1nFk45yDQHA4NMblA2lrOTx+AaSq84Az5cwWDlGC6XfPbWAYObl/j97/yQo9MVy3XNdmTrzATfpq+9hA66mDmwMycXdBAXIjtt+qW48J31vLeObedabJzti0x7G/BxXVO30RM7UaWNDup+pJv03cin2D2haEG8tra5O6aLKO24khfWl1jrNeicwu19rbmV2qbHYnP8i2dbX/XFZf3pZNhLO1M6SeiPB4g2EIBRBpWC7pypJJUoH5GuNUBCtKRGoAtDWFQ0LtA4B6LtDWWMYTjIiYAPgVQJrBRULmADOGWIosO+Y8B5SW5BNZGxgkILtNYIqXC0TIJFnmNcTV1qlKyRSBIkSqwnw9PnmB4WJQR9NeRG8hp/8ytv8/f+6y/x2//zN3h38phGWYos5e//2q8yPLiEO7jGSqbMZEa2LzFDwbMPv8fZ0RPOT+7y5HnNh8fH1M5RuQrvG5yv6bJYSeU5mVS8lSkOjOZOnvPUw+PSs2xWNHbO4f6IS0VBL7tCCJJQT1k0FUsfeR4jf+QCb1aOZFWTNeckjeTsT+5zMlly8mBJIjXXLi0QvZR8r6CZNFSTBqk8thlS1wlKRYZyyaCXsH9lRFMprJcEW+MWZ4gyQdSCqqxIhESPDpD1inJyjmsCzrYU+IVWRClIEEgH0YEPCUophj2oMtAusvANzvk2hSokmCCwtaOuSsoyMClLUjxpdPjQRgqlF8jQFp4KFUm1JdWGJC0we5cxhzfw/YKQGApfEvBUaKJS5GlGqCrsQtOQ4NDI6FBKkOiU4AMz6wjRIWNECYkRCq0TnJGYrE+aZ4yGA4geX5U4IfDaYJ3DOosTiiAiiUrASU7PS6zz1NZidCRX7ZZS8gUKabEVfrvj45nRttCK6Opdtgb5Cw7X7leF+Fhl+ePGx2EvQirkwSVYNViTgGq6/hoSIUHHOUmwJDKQ65QbozsML+Vc+mwkWTnS5w1PTIORns+9+RluvfEKenRANAkrYYgqQuZx1YJmOaHIJyTyjA8fzzifB2blksY2lKsJkoCWkcKk9JKc1waaa4Xm8l6KNJqvn1uWdcN8+pirw4LXDq+T98bk/cvcw3OMZVY1LGPgoVUsGxg2DhZn6GfvkF56ncT0EN6hQkSF2DlToevY18F3Ul5QWGskr3vVPrguR3sd2doqDNqo159TzZSg63O1eb1VZhuH/QXEkPX73TFCbRHHVoGGj6zll7+e7mc+xT38VRk/7t7kcISKgiYrCNq01P6dgSKpSfwJiShJtOLy8Bq3Ll3nC1+6wfCwh3l0xmRpcangzpV9vvKlLxJNStAptWyzOsxAEaJjcfqE46cJ9eoBJ2cNj58fMVsuWJYlVTXDuxqcRQvJOO9zkGreHGlGvR77g4Lvzj2TxrOYHaFizat7txn2h7y6d5vz8xPer6asGsuqcTwPCt8I8tojqpL06C7ezpDFAdKkoNsWEVJ0pD0fh07/fHzq8bPdP+u9v6tDXjQu10d2jtROmGOD8P8EHbROBFwftoMBEmlZoaE1mNXaiRNsaqeUSaij4MG8YpSk3DYpGtWC9EKACKRMSHEkUjJMR9wev8boRsLos4H0uUWeC6KySK346le/SLE3Ro0OcEJRCQVJABOo5yfUyzm+vs/pccPdB8esase8WtE0K+pq3hJixcAoP6NnDF8Yaw6yhGuDgiMneD4LrFZzVssj9m9dYX805kpyDe8F79kZy3LFok44E54PKsfVlUOulnz289d589IeH9x7n+U0YLpUcx/p7KXYgnkxsi6auqCDOvti67bEjoV17djsOC104OCOQyxE1xtxZ/LW0aDW/xKIH9Oraj2nYR1Bou1XtbuoLpglm0hW1xy3A5Y2V/6iDhJdO6UXsjl2zxm3D2NnHW4dKbE518W1Ki44VNv72JzzI6Dny8uvl2fziwLlFA6DRWNdTfCevEjQUmFlm+ZnMMQoWJUlqVKk/Rx/MqeODpONUNqQuNbrDN5SN5ZVVZMO+vT2+9hHc3xt8TESpSQt+nhZ0yxqln7FcrXA6oyeSjhMcjKjyLIhCtoaLKeIriCEFCcMSkMkIE1GLRIe1YKjLoLmCMyi5Qd/cJd8GfmDb/4hT5884BeznKuHV8k+83lintMs57x37x6/9933IPWQBFyc4WNNGFylry7Tiw2qWsDyIXXjsWXb1YYYCd7RBM87ZSCrBQ/qklzCF4XgfvC8HwTvz1Y8XdUUuiGVmmvJCJ31EHqJkY5cWgiBx8sV4ocP6T8+4tHxgpPScTJzZEnADGrK4Giakp5JeetyyvB2hh6k3H22ZFk5lrFkXlsMmiZJOcwLYp4S05RVucRVlkjER8Ni5VE2IqKhcjXLVU0UOXmasLTQOMfJ4ymzScNSg/ANplkgTIJIMk6eHrOYnPFwcUa0FbGxxBAJTmADrILAe4sLjlQpEim5rVIKpVGuxAcorUPlCb1LV5EHB8jRgLJx1GVJVJ4gInX0eAL1PCCCRbmAVQEnW0IObIOMGiFAZwneCapVg2sstq7beirv8XVDkJKTozYd8XiyRGlFNoCkl9Hrj1gtW9bGvfGwJRG5VOOdw1YVSoCWAhF82zX9JfbVx2Rkte+HrQG7VmIfcZ46DbWGCtZ2zE83OoEsBKrfIw4G2KJPQCC1ROQFoihYzhOmVgABKQJL71BLx+hPGhaLc+bPp4zjireuXmX/6g3M5euIEFgtK37wrR9RuRqnG6TxyNRRWUV65VUK12ALS5w9oSojiwqsC9Q+ULqa88qzqDx3TeDS5IS+UdxIJXse/rAOPDyvWN59Qi+d0suOuWQkr4yvE5MVUllysSQVDWfHj6jrCdgZR8UzVvm7FPWcz17b54OTGYvatn1IiGjVYqhRio5Zac0UFBFh7VStZ6J7fh1ctz5uPceftpv6z3IIIMrOwev+XyujzfrrUh3aC2br/Hf3EOJuiupHQYGfDzYTLLMMQsT3+vhigBYQlUQMR1S1ZrqQWClITaQOnlnV8OydI2YDxd2730O5is/fucPh9VswOiA0Dd7W3P3RI05PZ5BHUAGha1wI9K+9iu9HfN+jjx8hJ0fUx3Ns07KfEgMru+RMRU6WjmGi2Ms0e0bylpb8Ue04dZE/vHdEnpwz7i3oa8mt4TUwDeiaTJYkomE1P8LXE6SpicVD5u8fo3ojsr0rHF67zuHVaz9P+/srNNYB6Ren60LrDl5SB3WG+KbZ+VrgiXWEo0un6uRnmyEi29hKFzEXSBaN5f2TUy6P9lmNCoROCcIQdYqXCeeNYBEiSgQCnrl3JMeC7N3IybNn2PmKa0XOYLRHfvUmusgRMXD6+Jj33nmMVw6vHCqzoAOxd4lMHVI0DbJcwvwp83nDsmqBteADzapiIhpWtaXQcHVyRM8oPpcqPrCBo0bwg6dT7p2t6Cczcmm4UVziWt/h1ZRENfR0hQmOxeIMde89zEnGLenQewV9LzgvGz44mRFjxEffAbK08lqITRPZuH6467qnrtdUbNVyW3sl5EYdsU7t20yKuGhbhEgUazeszeJaT11LzhzbP9YRSraf7zo1a7BOfcx6Et09IGXnBIoL52tVzZYUabO2dnTQtv744voKcb1WYwdkdrb3BkrsolK72RbQEegIhNzGpDbO3ibN8eW19ss7UwGEEwShsMLggiP6iEKihcLTNlCVUuKjp2ka0iJHp4YoaYv9tUYaQ9o1HAiubYxa1xX9gxH9cUHytERG37JxoNBpq5iEUtgYaGyNCW0kYtxZAkmWo6LAuyXbFWQARS1Bi7UzZZg1iqWQHdtJpI6Bp/eO+eG548Oju0xWT/hbh4fc7o2Jg0MaLVidPOfpkyd8+5vfxgmLk5Z8z5AUCYNrnyEZpmSzGowBThAy4Lwl+LahsQsBGwJVcCgROGtKbmjBZzPJaVDEqDmrGk6BVFr6SvPa3hUGJiHPapCRKD2sHPPSsXg+QUwEqzKydLByAq8Uq+ARNmCiYJwlXB5o9sYKNZB8+LTBNQ1V9AQPU1bokaTXU/hE4TPNSjb4WCEwhKiobUA5kCgqB8vGkRkwuq0D8D4wPy+RK8+Jtwhfk9kZJs9Jij7T0xnTyZTy7BTXVHjbCs9EGbyQWKEovaMMjoGWFBpeKQyJlAhXtxvGB5QymMEQigKyFF9a6soSTcsm0xCxIbJ0AS0cRgQ87b9gPbHxRO9RSjLoK4ge5yNl41muGrR3KDzBBYLzLBaWxjnmywaTalSekGlFPihwriT6hrw3IEkMmobgPb6qIQZkCLiyxJbhQoRgO7YpEptIwcai3cI1a8G3JqKg29Zb/gpx4VztB/IlTZitIL2AfbYaEZkkiDQlpDkiBIIIiF4P0R9gG2gaj5QCLSINoU3bPLLMF3OeP3/EeL/gYG9EUgwg7+PnU+pVxaO7D1mWJVZWmIEi2TNk4wOS/phk1JDJhijOkcZhpgYnBa5x1D5iXcOiqVGiYboMjDXcOUzQaLwrKK1lWtUUuqRn5oyvXqM/HpGPQOoG71ZgLdW07XvWk5aZnnNmjsljzbW9AY+nK1aN2whshdiQcQTRtYRYP/C1Etg4FtveGBu1tFZkayXx5zBa8b9NENqshx3kblcR7gLNu6CciGzuZ40079K+f9rxkxH2LVr4V2Ps7p/t6/UeEkYjs5SQZvgsJ+BAa8RgiFOCuopgFKlp+yo0MTI7mlNNI8cnzxgmksu3X6E3GOJNiqsbbF3z7OEzHj94jk88IoF8z2CKgt7hNQoNIx2p3QzrZszmhsZprPU4H1jWDTMcZ1XFQAXGOvDlkeGg0EiXU1vFw7M5RklGs4qbgyGvXbtB0tOkPYX3bSuOZjonlFA/i7jknKN0iR4ekFcNRb8HV67CTmT95+NnMz45QvVpKJ13dNCLaV67sYpdpC++cNjuNV3YBmtQ6eK1b5rRdvJw19gNnUe3btxrfeB0uWKeD6ijxCiNULQZImgWAaoQMaKNiNQxUM8dzfPI5PkJ5XLKq9eG7PWHbR1vonGLGbPTKQ/euY+VFi8t2aFB9wy9SzfQ2pCNakSiQZ7jQs18aYhAiJ6V9YTomNdLEumZLx23CsUv7Kc8dQnOpxzNSiIrhrpimCS8dvsVBhnovGqjttohFhY7L3Fnx8il4kAH5CAlBIWZV9w/m7dN6+kiNMi2R2L3tMO6bmkjj7eJda3UX3uy6ym4SAqx8Vt3Fsv6/W1VLRt9sa6xwu+cZ3eq2WkJsrZKxMUE1fUrsQPovZj6ftE526yi7RtrL2tn8W30685xa4e/Jejb0cjxoiPW3qLoAICdcBtsHa5PqbRf2plqbMNsNqF0GbVPGfcT8jxFVzXQgNfE2DpNoV2BqNSTCEeeZ3ivCE3r6ZvBEFc3LM9XZKlh78oBvdGYNBsy6i1wtePs3KEU3LgyJNaCkojXAu8USwe1D9yfzkirhs9deZU0LyiuGPxsRv3oMVVV0KgBUgWsFiS3PkdM+rxyWsJ8xturJaghaTZkHiq+NX/Ik6ZkGST/91yw92jBnf/jX+B8zfOjezw8O+Xd+TO0bGkn+/I2aT2iCQ6dKy6/vkcvv8yNvS+QeEvqap58+IzjZ6d88967HM8nxAAuChYx8MBF5qtITwY+JwPnUbCMgrmvOXc1v3P6kEzCOIkkIpILz5tJ5O1U8Jkc9jPB7RuGMlE8zDMqY5gXPS7vX+EXbr7B6tFzyifHLI9PUbNz9nQkGxnC3mvEJlAfTWjwVH6OdBrhDXVpqWpL4tvIoYoOEQMxaJomspjXhH5GKtM2R57Ivek5TfAcnT0luM5xwROFo9c1vqurNoopZdIudClAGTA9+low0gIVBCoKTnRgKTxj7TBKcTgYI4Z9SGDpalaLOTE2COk4OV5hQ0SPh3gkrT8TwVuEqIBAa68YFssZkYgNom1y6R0RT6ECUhkkKY3KWMkUY9qUA2MSQLBYOaKaEeIKaQzZYMSitIiyQRmP0pL+3hC8I1YluijQXCEv+tsNFLtrk3ChKPeF0NSuotqy7XDxmLXjFWnzlT8mD/mnHrFlRAxSE2/dws8XNOfn6Nu30K/c4lAaBk3gzemK8eMJFJagIw8XkeWqYuIlLCXHQXL1Ox/Se/Ccs+ePmM7nfPvRQ7z3FFKSV4cMuERuE7JFYHypz/5tzWHvOkZEZFVSzUtOH53yzoOHfPNP3sdbi3XwzFlORaC2DX2j+FLPUkfFWTDM65rTxZRvrCZ8J9FcG6f0EsnQBEYm8lYvMkg8+0nNaJhxa+gZmAOevqp4UC2pnkdkk+Ccp15VLQOQaGvgJBBo5RzrvHbfGQJy61CtzZENquh/wvP+mQ+xuYLNGlrvuTU6CBeUx3o9bpTe9oP2v83L2CKf4dMhdv+ujejannjx8hVClDSnZ6heQfL5t+nphFekZv6d9+C7dzm8c5ti/4A5FdW8YipaCuZvnzkKd0R/WrJaTSlXc7734D7HkykJYHTC0N0hzQxVVSL7CcXljLevvUWm3oSqItQNzz54xvHphN/+5neoqhW1Bes9s9pSWssPtOB6r+FGojkOCSsPJ5MFi/kZj8+esFcYDvqGng7kOvJWL7CXCg6SBlkoDg89vldje1P6pv6LfvQ/Hz9hRNbOTAe4XNBBsOtIfUSLXEgNZtvou0sBbsXMuhZzBzwSLdnNxhAWopWZbUykpf6OAiE1KkkoBkN6OmHP5ISk4CgorMwojOKkGLFC8vj8lBWOz476RGMgr1mEyGIOZ42ncpLvTCUD77jx9e8SgmVy9JjHJ+e8e/ScVAoSKRmJO2T1CB/avu5XX9sjSw7Y772OdBZR10yeTZiezPjd73yPxycn2FphfeCRd5xbx2nVME4Mv5YlnHnNIiiOVyueLiL/cnVGYSTXR5pUegpRc7sHdwaavb4kzwW9Kz0qqXgScz48WvDOZEpZtRlBtm6wje1A1YhQAoXsqNSB0DVmjx2pyEaGfxT02kwxrW0npFgHmzbRpRDCNiDTzZdYf+8FXbBJYe+iXLv+SFueI7rUzHZdxHVEU4gLmmPXqd+FJy98uHkZXzSXtmt1HWkTLXXUennuggBrxkQh5Ob3YmxTTi+mBoJAb4JDLztePjIl2nxoGQHX1s4kQiKc6xCHtnlv6FAPuZm8iNIabWgbgvrQNfRVxAhKaYo8J9EGJQSJ0aSpJjEebTT9XCK1ohhrYsyJcchpnbCwirIO1EiCTIkmR/X7RBfBJHidYFVKpQVSa0JxCZkNyMpzBi5yJekh0j7ZcMRCVyxUhfZ9VAVHpCyaiHj0GOtKnp0+5aypcVqSZClpkpD09tDJCOcV0UmKRJHmCXl/RBE9/eAoxxW+tOzvj/EJLBcrnLfYesEqtIjkVWBfeAwSg4TosTFy0liMENigSYn0RGAhBI0RiAiJhGs9iS8UYpCwSAzHhWZvnDAaFzRPJU1tUTOLMoI8y1HGUJsE5x1NAGxA1A5lA8pHvHV4awlRtQhHh1j4IPAegg+EEDsWRAkxsKyWVNYyn5/jXMA1ghAaYqgQSYLUihAEUSiUMa3AlbJ1prTCJJos1QgLBEEjA+DIVYJQCnSKUKZDGzyuaVqWHyLW+vY+osJHifNtCqG3EYlH4JFJG/52zhJjoKzbyKnzrk3Hi57OGmbNZKy7lAPVbcwQI945fB2Q2iClwnV1MCY6aGkuWBd0KqVRMkNI9eM3VGSLKsUtwgTrOMd6Y4udVCx2jtj+vXauPtGN+knw5q6ubDcmcn8MxrQRmf0DxMEhSZ6gfCDLNamOxCwSTKQxkZgqZK+gVBmToElnS+pQ8fzolPlqSUVAaoXKM3TRQ6VDIgrnJKlWJJkh7fXIlKTo92nyEm0jZ9WSw/MzVktNVSZUyzMa53gaI2MfuJ1LUjQ5kqV3WGs58xWiAkWffqoJmUIkUGeBIkRkjBgVUKlnf5RgdY/BIKW3qIG2N12zflgRWOeox/ZhbTstxc28r+lg2fFp18fvzvtHpvBnOV5wvFuyibWS3S0P/pgvdsetlelWAW8bRq5RyJe6Dn7sj/3VHC9zT+s1EkEM+0jbZnDEXg8ODtFZSponHJxOuXE2ZXRjTDYeMlnOaYT2l5iZAAAgAElEQVRF93rEKJh6SVNa3NmEslpQNkvq6AlaIpVGmqxt5SETmqYj7RERnaZkqSHLewjniEuLVILDy/sslgmLuaSpF6zKmpM6srJwOZX0ZSCLEhfBuYbGRRbNksalBJfTpJLGSKqkBScFESMDeeqxiafSHi09xNAZWRdrp7aI90f+eLnx4jP/s458fYKM/HMZP36z/tSne/H1T7qlXR0k1ikRH7metSO1lh/du6IDadafw8agblnc5Bpt2n5BSIRSbSlIktIIyZn1yKStfz5HswBOXIl1jkRpMJFYRJyJWANkbduNmUiwTlCcTnGu5OjohMmqopGRJEnQaYLO+qh0gA8agiJPFEmekBUFCZGMgA6KTGkuXdmnEoHFTGGbkmpR4oMnBNACrqWRjNZ+iKGhsZ7ndkWmFUYU5DLSCMuBUjRFy6ynJIz7GpcYrCyYukC/lyCkgzIQnMOuo0WRjcPUMlR3QQux3V9bG2IHzOvmbOOovKgfNk5S3DgrG2dqJ0p0YcZ3QNuLtUkf94XONlmDejv48Drytful3UycrQ66uBE2Keqbb12AAC+8/knrO3Zg9IZfnu0zbNf8p6ubeGlnajwY8/YbbzOf1sxnDTJERB2QXYNIpSBKTWMSEgI9PEhNFTQy1SQxUi4bYvSsvEVK6A8HpFkGSUHVNIRmRX+YkBQpxZ5BG7iSLihGkb3P3CJJCtK0x2IFZRn5/r+dMD/zNGHIwhbI9BDRM4iDisYJViuPz8csswEmfw2Z5iQjg1EJX1tU7N28ze0vfxVxKUHsa/7195/x3pNzPvzgQ1w9ZxmfE4RFDA64nIy42bvMrV98gytvvoKvIrbyfPebf8JiPufkg1Me1yXfmJ0hpUQpxcG4Yjxw/Cf/4G9T9Mf8q995n+fPnnPvR7+L95YQ4YmPHPnIUEUyGdq6G8DGiIuRmfNoAUsBX18GvlvB34mSzznBW9cEhZb0TcZwaHj7zYzl8RFPv/6A44dLTp+sMFKSGM2dv/46sYDvfPg+LgiMkgidgoREKoRIiMs5YXqOza+DUjRBE22kLiPOQopEh4h0AWwNPuKmxzTe4asKHyMuCrQAoxICUIdAVuxjTMLeKEcoRSM1tWtY1QuyQrJfJAiXgzfUvsEGx5kEEQVPVz16acGeyyhtpAlLnEwJGEzRBwRe5/go8NrT1I5qHlokB6iURYmADp4QPMenjhAs+JLgaoKtWqRKCUZDA7pAIJDRYVTTstulKVmiSJQm2tbYaL3LwLJs0djluSXRkn4iWfoS50vKstluoA6hk0K2PR4+srO3+3YbWWjfkFJcLJJkKyh3ERX4NFv/Y4ZsYy8Riez3GHzl8/jK4mclsldAUaD6hugtj8IxT91jPnfnOvmoIDvs0YSUpc2ZnC2YTVZUZkZ0JaUxiNEBX/7MlxgcjLj5hdstqUXUPH16zsnxgsX5Anc05Y+P72G9RyeGQS/wyrWaX/iVO/x7/9lf5wd3T7n3+Jxv/u5vcfL0AVMXWPrI5LhinChuFx4tBLmB0nusC5ytVqxqzapWHCl4thK8uq/5tTxh2HMM3QwZI4lMeeu1S4zHGR/cPWI+t9h520iyTYWTCCXx1hN2Uh5E56zsptBt52BL+duCD3+ayXnJ0bFibe3+9Rpq39v27l0jhRehvq0yXX+/O22n0NYp9D8fHzM2kWRBVIrirdeJ1mHPly2wMhohM43uGe587fNc/8XXkBgEkqACVePYu3mT+bzk6PkEJ0qcmpMdjijSy2RXPoMPkktvXMNkCd5K5vOKe/dOqJuK6Qcz3jmfMVuskFqjNdy5XjG8nvLf/Nrf53Ta8K0fHvHhj77Nj771eyxDpPSRb0waMiV4rd+COrkW1CGw8o551RavL2pFqgTnlWCUK/7DnmFfSg7dDBlzkqSHFoBfEEMKQoPS2yj6z8df/BACqVoQO76gg+KFmki4YNxu/t/Z+GIrR17UQbKL0stO/snO2ZJKbY5ta6UEwYPogFDrPKXzZIlA9/o8XFY8OD3jxuF1RoMxFSWr4PjR8/v4uqHvEy6PrvP66zdIRhnJMGNhX6WymudPz/FNxSpOcbGhSnP2x1e5+dZlLr92lf1bh8io8R4++OCEclVx/njGk3LC10+nCCVRWnP1oOZgbPl7/+BvYtIe//aPn/H08RP+4F//n1R1ifWBpbPcXXpuFoH9VJGqFo5bWE/tA8fLkkQJZlpwftrwzjzyy7bgVau5fGgwaYJyCaOixy99/ionJwsePThj4gKhDGtMG6E0AYF1vksdb7WNWKN367lqPS+2jgxsdFHcZk5s0i5DuIDxrc+6WQUbW2Pd5qNzirpUPbmZ/x02T7ZLaQs0b4k0trbNlmZdrC9pfdDm++tzbnXQ7rrd/gpsSyN2HCrxwhrdcSBBELr6dCm3jhQRfAwXUhE/aby0MyWlITF9TEf9HL2HIJCxTfeSYs145btC/PZGvfUIKVBGgu4a6UbfeoWyY9dQkigVUQJeohHsjzOMDvTShjyFPFNk/YJsuI9uNFklGR9qiA1K5qCStpFa1EiVEFSKVxkh2yMUY6weEIVhWgeaBhoSAqZFHowh7aW8cn0IuSRJl6wWKcujGc5pIpFkvM/w6i1ikrOYldTLinpVM5sfs5zPsYszqrpkMj1vJ061z8VHOJvMsV7SSwT7w5zm1i1WizmTk+MWCQTS2DLdRCGRdMsytmmT6+kMoe2P9LAKZFJwbR4QwoNqECoSTsGf19TLBd42CCxpokkziTIejKfIAo0VRC8QKIQCGT3S1wQHwUpUbpBC470nOEfT1MQQ0DqBqGhJZiKBgLclIgR6JsFGqANkSpOrBI1DiUivPyBJU/IiaTdiaPtJaCnbjj6hjWRCi+wEIYnJABElMaRokdIERSCiCEQHrouOCSG35ACbQsSudkiKloEvOpKk7WtA41okgi61QCdI2QoErRVaS6Rs58134WDVhiZA6rauKnpMotsAq2s6Uo1AlAIpFDEGrPVdw7h2pGnKl7/8FbIs+9iGdBdS9IToqGPFRrpthGdkY7ivzyHWBb5AkqT84R/8wUY4bQ7axucvbuw18iNACoWMAuVBhEhwjugCofaYvIfJC7xwNE2FTgvGly6zN9qjGPfoH/RwMqESPXqDhPlehqgi0SrSqEAZxtcvkw0KfJRUpaVerphMJpyfT3GrBbapOT2d0TiP0JplT2AUuLjEJFO0CBwMM27evkGeSp4/eoi1DXMXUFKw8B6LREqJDG27BOtc18RW0khwoQUgHp0suKY1qTEokZMLw43xiNzk9LKrrGrP2aTq+gwK0AqUwlqP3ykEFl0Rq1Sq69/hd9Jd2mcdfODSpUt874+/S17kFx9/t78/iYXx4z5/UdCvj/iVX/2VjTLbOFOqVWRrRfSCz7T9bO08vuBVtedrFVme57z33l2m09nFhbRR3C9e6Mfcw8cct0Yr18v1ww8++JiT/SUY623awaxxl8lqzaIlJTJNiMagYxu5RmuilATaSL9rQMeAApJCIIzi4CAnzSVRWHwNflUjlAFlSEcFKNNG4SvP/HzBfLZkcnaEq9u+UKfnC84XFSiJ1oLEwKoODIZzmgYOBinl1UPK11/j7OiIxWzKKkQcsAydTNYKHUDT6vTaeQQB52mbZQfN0/MKh2e4H5GigmKJm55QqRQ9vIpKBwjZAjNi55n9VI7VhXW+QZx+6tP95N/6GZ/vZza2pumf7hydVNg1vHfG1kBnmw2xg9r/RONyE3UQa43Z6ap1uldn2Eq5caba9kjr2inw3uN9wIWIDZ7GOya2wTU1IsuoQ6RyEREUaTogT/v0s4K8X1Ds5fREDxs1QnnqUhOWJR4g75GMRwyvXUakGavSYasaWzsmZyeUqxV2OWdZNhyfzlsdrBWESGMFeX9Br4gMco3bH3Dntc8wm5xx8vQJVYTGRxY+kAYBUqEF6NAa5Y33myidj4HaR57PLZkUDOaWHIGSDXl03OgbxEpxYiA1AmNER14kCKKdLyF2+kztbID1891EczodFGFTv705Om6jjeveUFJ0tVm7PvU6prV2SHbT3n7M3tvK+e1ejS9k3uxqFvHCln7x1S5JBew6Sh0QeKHe6RMurotCxRgv3Mv6Gawdu7jzuy87XtqZCjHFhUOCOG+ZhJRFEDBCtoZXrSA6lG35+JXMcE2DCxGRKFSiEb41fFWwEFoCA09oMwRHQ0Se4p5MoHa8fjslTyGRDVI4VPToNEePL9Ez+2Six43jJwzGJYtzWoa2BahakpDgdR+f7sPBZ5Cjq7h8n1Vj+aMHM6pyjvCa6ycN4kdHXI05V7KCX35b8qvjES7d4+hsxT/5p4HZvCLiSd64w/6v/CLv/vbvc/+3/iXz6TlNXeLcM0K0nXPRKpp2UgLzSY4QCd//7v9Dnkb+xhdf48a1A375a/+QD9+/y7/6v/5Fm6cKLEKkRJCqjlY7SEKM7fOLbaduRSugfv/c8r2ZZRQDd3qK3hVL1IKT70dcKrB9QZLA3r7k+s2UwThh1SsJSeCzv9BjNXc8eneOTEfovIcKc8SyJlQa24zZk2OMNNSrErdasJofYUhJij2cE9S1QCTgpcfaGUpoXrt0kwbJpHHs5yMO+3us7ALraw6vHpJmCViPs5Y4m7Y9mXQGVrYplaJBCEcTLFFq1OgVlNToADY1zJ0hMYLCwGRmKWsHSYKSgqZq2vxf69GRtuGvjiADk7MF1tbsjYcoKei7iAsKFyWJFiRaIJxHhsBgPKbfS7HNDOcEqyZDEoneokhIVUa5nGHrisu3r5NmCXIS8c7irSPRmqIo8IuS6OstrRFw+fJl/sf/6Z9y8+bNT7VBP+34X3/jN/iv/uF/iVKyywVeK8VOAEnVOWmytZ5j6wAqqejnfbIk49b+FTQSt6qRxqDzHuPRJcajQ+7f+5DFfMZ//O//R3z1S9e4Mtgj62mGNzWyJ5FDQdRXiVLyrW8/5emzOVkMyCxh/NlbLCdzvveNH3LybMbjB6dYe4RzZ8TYMt4tbIIL4GwgCsOPfjjEqPuk6oyv/dLrvP36dd74z/8upQv8s3/yP3B8dEQTAhMbcRX0Ek0vlaQIjIeyqQghUIqIEpFUwOLsnKNHz/nqjQJ9oyB/9VWu7g/ZvzNCFCMOvvZfoIoRUqcbw3hrEf50xuDd997jH//6P2IyOe8csVZQe99GTNsWE3IjD+SOQG8j3Tvpep0zHl6grhVC8N/+9/8d/9tv/u87b376y/2kMZmc8+u//o947733tsorRqTc7eUh1g3vWefUS7klSGn7tqnNd9eXqnWrkmKInE/PP7VC+4scm3oFpeh6WiMAlWbEALZujURXNjy7e8yzd5+zn/fppSnDmxrdk9y5DuiM+IWbPHg45bvfk1RAbGDw6h6qyPjB732fybMJ77/7jKaa0TSPCbQIduk0tVc42/asuff+GKkChfkmt6+N+Nu/+iavfvUN/oO/8zf4rX/+z/mjr38DH6GK8MhFMgPjwqBixFhF4zwrZ6msQwZPpgRzJfmd0nJzmLLn9sj2IC2hfnSPoBL2vvJ3KW6+2dVm0EW8/wwW4r8L44WA0J96RPFR6B9e8JxeiFPEF49ja3h2smxNib/rcCm9kwK4/kmxhmXExnBd/wsxUFcNpayZlyXBOrwQPK2XnBC4XAyRwiB8j9xkvH79l7h0sMc1fZXxKGd4NUfvK2QuWNqC2bzmd39P0FSWZOApbl5m7+1XufuH73L///0OZ8dLqmWFtQ8IsSZEcFGydCkhtPVcDz7sIWVOqv+Efm75T//mF/ncjT2+/NV/zLs/fIff/F/+Gc57GiLPfWTWBMYdidZARZwPVI1tnUAfMQIS4NuV5UMtKGLgyjghPSy5LOFrI8mPKsWTQuKtJvoWpPYRlrYlg9C61RPObh4qUqwbzrbPUu6kqEnBpr3HWnd03wKxzbJQqoWNfRepeRGMuxjd4YIeWzt3FyKZ4qJ8D53v82OX9Bq/+5haqe2NdHI27oB3FyJy4kJT6vUpZWyb0SsFcd2UXl2MVm0jVB1BRogvXspPHC/tTK2ayMNJQHgDskdoVuAbRGoQMhJkQEaJESkCge2K2QRtClWUgtIIghfbWhIliEoTVAIiIZIg04woHV7qlpEtCAKS4ANi0YCao8YDRNqGHJVSVF7gHBAFPkq805T0KHVkNNzDHI7JRgNkY9HvHqJFivJzog4sqsecHwuUAVdn+IGhNj3Ol4EizYhJj3gwxkrP+3/0bZ7fu8/0/JxydY6zJSGWtLGliBCKTEfyxNBLC6ZVwqLRWK+hdjw6mjCtPGPzmNg0fOXtN3h+OuHx8SnEsHWeNqtNsOk63QmviKAiIgLcrSJWR36pn5AXmryvqRJYZNCTGi0048MBWS9FF3u4KGkmS3zjSL0nNI6wtGhZoEyO1A0ycRSZQkvJZGHb6zEFXuTUokckEF0ghlb4JDpHSdU21lUakfQY5AV5btBJig+CNHpU0+B8IHqPFpKIxEfZNuSTmig0UUiSJAOlCdoQhKaWog2lT+f0MkOeGKwXBKFJk4QgBFVHZ41t0/tkGhEqgoyYRAAS5ywoQZonqCARjce5hqpsSBAkUlCWFVK0jJEuhDZNIUaiF8SgCVETpSGqgPMR4VpWwODp7kdQ23YeN7Sm3RBCkOc5RVG8/O78KYYQkrKqtn1t5I6ehHbviRYZpEMFtTIoYTDKIaJlvlyRSIOJGlB4EckGBYfXLlGtHP2s5PDmVfau7JNnGVpYmvkJsRH4RiGyApFkKKko8hzfS7ER7r/zkNnpjIf3z5hOZkwmZzg/JfgldEQaRR4x2jDo9ais4dncEGNK6XIeHS0Q4jEHLkWZhC+8/QaTq/u8d/9BywzqHZVt2R7WiCdrP8i3EjRISR0j58HxbOW4P3O8qjN6oxEmNS0FPKeIGEjTK0hlEDK9GDl8GcMwXvwjSVLKqma1KreGCOui39D18rpQut0d0Roqcqc3x6aI/MXIVHd9H1ljP2M7tiwrrG0oy9UWNYTOmXqhYHcnB13pLv0wrp2pHfbJ7lZU52DFGKibhr/UYzMfYhM93nwkBF0GPDrpIlgImtKxnFUEFIPLA7IkQWtFvTqjqS3OGkRikMUAbyN5mhKyhJBojp6csVxV3P/giPnpnLOzM2yzwLkFENqU7SRllCYM9npIZXg2T7A+UPuUyTzwzgdPGBw6xo3i2qVDfvWrX+LDh49ZLJeE4KhdYFE1bfF13BZzCx/agnepcVEwd4GzJvBoBYcjzfX+AGUUGIUPZ5TL+2T9qyidI2TOTwVE/GXxo/+M/MAfZ6hdiO7+TB2pj/7mmohiN26x3qO79S3r7IWPBzfW6c3byAZsf2tX/8Qu4i069tl19EQIheyaP4cIlbVoFDoZdOyyhoNrh2RJTrXwCBcpRc2kPkOfVviiwKQF0aaETDOtPMsqkCcGlWTEYY4Lkbt//AGPPjzi6GjBbDKlqUqcXxBj06axac0ohyxJ6eV9TlcZs9rgQsqyEdx9cMx4XnEpFsgY+bW/9iWenZzy+PkRMjhs8Kxqh1ai7cmKQCjRlsV0DXi9kKxc68Q8WjicUVy5nqJzTS81XCl6fCHLeH5ScnxW8fR4wXzZoIIlENreV1xcli9Oy5akamcS1nO6sSd36O67eRR0qXy7i6b7ZJseSNcQnu17wMWI1Pb9sP7Sup2I2MZDNxTtu7Jz54/INiK6rh0Xa1CxO++mVpn1uS4+i00kSrz41HZ+T6xBBtFRra/TKF9+A760M3W2jHzngePyKOWgn9JUgVAHYqJQMoIqkUKRyiHWWUpbYZTEKEmqBUJBlQhckAiSNhoVPdFkBF0AOTEkyH6A6KmFhuDAiU5ZKWy9ojl9Rv7KCLM/QCGQUjGrJNZBaoCgCTZlhWGVjrl6+SrZ7csMb/bpN47+D19DTacY/xQZTzmrfkRz/5zpkxlH/TGLpOA8XsHJgnFxyN6lQ+Rf+xLv/Jt/w9d/4zexjcc5jw9TYqwhVv8fe2/2JMlynfn9fIuIXGvtrl7vhnsBYiE2AkOKGo2NUaTMZBqb13nTXyc9jZlkNrKRjUmUqDEOSBEgCQgEcHFXoPfqWnOL1Tc9eGRWVndfokGCgCDJzao7KzMrMjLC3c853/nOd0jkNCiMZJpFbu+NePPGIT95Ds1lxPlIF1p+8NEzjDnm8Nmcz9+7wb/5k3/Bd374E87/zwVdZ/He0/Zosxbb9Ras6wyJJBSxi/CXVeCRUXzraMLeUcHknQlzETgOjv0bI3b3R2h9gJRDYpjiVh0XT/4v/LJh1AUa76hcQ5bdwEx2UXmDGcDuRCOj5PhZgw8ghwdYBnRhjKFB0eJtRwyCYbGDlhojNSYfcjjdw2SKzMgkCRANtqzxtcdFQYiCHIVA46NEK4PRGZ3UeKEphrugM1ZCYZFUZDTlkvLilN3RmN3RmFYXRG0YDQcgYDVf4mxAeIEsQI8kSiZqymgg6ZSkbWq8kUz2pnhvKZctF2XN6fMzdgYFozxjdqloakPrG4SQFPkYQapXCt7ggyGqATHTNNbhgqPrQqK7Ck3nJYvaIUMk01co/a9zbAo9+8nyYg0MIfR06iukKRkxg9YZUhnqzhK0Zjw5RGQChoGjN2/xxa9+kcPJOzTzwFtfeYPdGwWKDre4YP6TD2iQlKZAjQ9RowNkkOxMhvh7R8yWFd/9t3/G5emK87MOa5d03SXeLQmhRqlAZgT39gUHu4qvvHuTk5Xizz8M1J2iag0/+tkJP/7oAe8er7h1c4//5o//C6pqxX/3P/5PzGdzZmeXWBdYNZaByci0QqnUbFg5i4hJja8RgZrAJytPpywHxZTbt26jdyRRC5bLv0N3e2RFDmKCkjn/WI8qkpT01hLBcevGSKm27kVPx0syTQjEupR/i36X/r+GIa8Nxa9pyq3Nku9rLzaFw1u05G1Rlau/YmMkX3xOrA0ZbF2j364R1xZfSrxLKKjO+zUZI+Xc8+SDkr3bBbe/PEFhwXcsfvyQtlywMANiPsLs3cNawc5oQLixh9+d8N3//j/wyQ8/4fyko207mvY53jd4t0DKiFKRN45G3N6JfOGdOwyHE/7sp3BZeaoGjhdLnv7F+xwdnXD//jl/8JW3+K//86/zb//9f+DTB484Pzmn6SxNZzFKMchylEwZBmxAeEdUGT5qLr0ndJ4fLeG92wPevnULNZSooaSMT6gvnqGzbyPkAZLihav0/2epfhMjAi5EpHyhicarH27VUW3tKy+mFTaZgS2wqV/3IV75LVegSUx9feLaVqV1L5VGKoMyGVFIVnXLdLDHqNiDYUQPFW9/8W32pjfYy95jPrvgZw//movFiqfzBXU7QZVjqtEOrSk4XkhcNOzcuIvenaLfe4Offu+n/Kf/4TusFp6q9LTtGc6XeL+EaNEqsjs23D2COzfHvHPviL99CB8+h1WzT2Ub/vz7P2eQS75wVvL23UP+23/zr/mr7/+QP/3OX7K4mFOtLDPbIhCM8hwlBUpLpA+p1lwoopQsomcVAz+eOc6EYW8yJd8fMTja4V0RuR0dD54uefR0yV/81QPaR5coVyYA3CV/U15tuSlWCVsYfI+9Bb9+Yjvpc93+XFey6zMzPdAn+2BXXt2+V9qgjQjW+lh9BB3pRen64uM1wLueL1uJoTQnuAriN1NMXE28GNkAiyJGfIiEEDfg8Xa2bPPdrh1IbObseqvetkEg+p5c12vJXme8djDlo6SNGWXnyWqPFAZpBnTWooOgMDuIGKitTewmkdBF7wN1GUEKNLLnblqEkEkZTUlc9AjvEE4xHE1QWqJdi0QiB6NEV9IZdALXQlsFnGhpO0kXNF5GvIjYAAKJUAY9LCjyAm9G1CjyKIm54c1v3KK8UMw+/pj9HcXb998g1ANCndMc/S5icMTpo0DTRgYqUF1WPPzf/45nHz7sAx6bBAxiUpS7wmUDLggqqzkvPVKXWOeYZoGbI4ORGR+eFtgQKKslD595/vSvA23s+Oo3Ps/Th8fMzudUbYcP4Vo2XpK6haeRuMUBOLMRVp6/+bsFby0E3/7858iUZBwjyoFdRdr5BbE5Q7eK0EZC6VHRMNwp0GaKLvaJ3mHPTjgQgb1hxtAogtCM9/bpaku3aDBSoo1JAW4MyJAjpCQzw3RPY4fwEt3VqJA2juAdIXhWdYv1HqICoZBmSJYVZPkAJQ1SZegADoFUGRGFdIFcwc5A4LIx7aTAeUkbBCLP0ZmmGOUIERmNDLq1ULdpJXYSJ1IjXwNkUqKsQ0SwVY1zLa6ao6NlMsyZjAqGRYE2EikDY9XPXx1TjUCUKBFQ3mJjSOy4EK6aMvc1UkJmjIocOksMKVv5ax+ir4/p5as3m+umGLjnq683v5hS2iGGDcUszwfsjg/4/NtfQw81aiq4eXQESjO+JRnsRbyvaUrLdEfDQGB2hwQzxg6PqKyhbg2xa3HO8+mPTzi7WHFyWlPOa9qmwvkG5wM94J02XGBWa6KWPDoraVzkoGgY7mimg4xPng95fhlYVSuOTzr+/G8lmRF86au/w+z8ggcffsJyWbFYrvAiUWOdBxEFA130e+UVN/+isfgoefDRCYNY8MY//z3y8YSsWSBljmtXaAxK95KqyWpcu9bXHryqtmMLM5NrSdZt/nhveNZGa1Mx1G/s15A/rj5f9GBL3P6MDb3jxfP7VY90PdaI4KZ4V1x9197Err/kVYD/wqmt37WuCVRSbhnE375gCpLyYfCR8tLj2kjRSYRKd1IPFLv3hmjdUi8rxmONyQNmpyDkkI3v0cWMizZPrSac49mDGScfzXn8cMnFZUtVVzjb4VzAx4gPAhEDLniWjSSrDE8vWoa1YKQbhhPB4d0Bs3LATx/vYH3k/PKMH34QefzslP1bNxnvT/j4xx+yWqw4u5gRiHiZ1orwAqNyZJ6BVqmJtYDaBx7MKszjC+5//wE3voQMBpwAACAASURBVPQuh0efI+uWCO9Ss2FRovR+70HFa/P5718/2294xUR+8anPmlyffZteb/yG475f/QpIYE5gO0Za//vyl02+8ysEk141eu9UyH7filc05Li9xwlxZYNictU3NihGhFQMByOObtzn/q33UFOBHiqG4x1Urtl9c4jZbam6McYUjKf73NzJGO5kiJ030Pku5rgldqCygqqKPPr+MQ8/vmQ2t7R1S9d2OG/xIeJ9mpkheqoOLsoMNQ+ofEVwlhsDx+dv5EiR86MHE2x0XMzOib4h2g6P55vf/iqPPvk558ennF3MsdbhZSSKxJrSaAqjWfc+CiHiY+DZytIEwbs/Omd50CLdkHxUMNrdYzLIubmXkatHRNtSyIjWgEtaxUl/QBD6ayqJm0a0SqprFOwY1oGMJAZ/FYlxFUxtflj3hbomQ3H1aBM48UobtH68DkWUEKmf0JZluGIsrM8B1ryMTa3xZj9INMbr2c3kg61NZTqXF+3P1rmLq5phsZ6rL8zqBIRxBQxeO84vHq9fM4WkixmVbdFYRiojyxTOevCgBlNE8DT1PEWyQhNiC8Fi23RhByMFCrrgEEKjjQaZJrHwHikcg9E++SBDX16mYvjBEKkzVDHGryzOtXR1hC4FUzYYouwIEqyPqCjQ0qDNBKX38NmQGsUQic4E9796xPLEUj+v2L9X8O7v32Z+opmfSSZvfQ0x/hy2fEo9KzHuhPms5Ec/eUB1+ZiusxDblJHCvUTJ8VFQOU2sA20oMbJjrC3vHRwyzDIeLQq6pqOuVzyuS548v+BLX77P17/5DqHtcHVD51wKpjY3OO14SogNzLPmcl64QFdGfvDjJa0b8HvyAG0yxlESfUm3qmgfnuAvFhSVTTVrYh8pcoY7I0y2gxnsU83nNPM5+9kOWVGQZ6kx82g3R8kGe9mgpcRoTecNLgZ0yFFBMxwOEARsc4HwAm3rlAWQDd5Fgg+UraULgSIqlMoQ2QiTFRSDMUIYQKOcx4aIkzq17vGOTAhu5gLyMWE45fllzemiJSs0JtcUwwwlAuOhQUtHsB0OibMKFz0dngmQKYFokwpbVbdYV+HqOSoqxoOM0WjAaJCjdRItGJm0zkqV1pwLgo6I9C7VqcQkKiB7BzCEQGstOleoTBEDeOu5Kvf/9Y0NMnSlSZGeX3f7Rmw2vHXOI5IaE4Y+q5BnA3Ym+7zz1pcpJjlmX2MKQMLohkFIgfcNXQVqf4zMBXp3SCgOyHffYva85nLZYGxLsI6P3r/g+HTB+VlDV7f4riRER4gBHyFEmWqHiMwbjZeS/LzCKMt+vuDuwQ6fuzWisUPOa1hVl1T1nLPzFYcHU/7Vv/oGs9MzuvkMiCyWS6KMOBkJNhU5D7IMISKRjujB+8is9czbjoefnDJuNXf+8E8YDe+Q+WMiAd+WSFkQi8gVAU9uGanP9to2e8PWS1L0ao7bggXrjBRXxgAEamPG1k0R16/Qw47bCOD1+791Ei9MjldMmH/gWBfspgB9Pe+2PvjaZ6X5tsna9IYs2a64cdiuvf23LY7aOucYILhAdelpq4CNEp1LirFCDzS7d0c0s5pmvmQ8GqGNQk9z/MCQHbxB10guH66QrsHYwJNHKz54WvH0yZL5rMO1JTFYPGnN+picUkSk7CSyMuSXLaPaMVRLJgPFN96a8Hg24GfnE1yomM0vmM9XaJXxX/3JVznYH1JfzjgziovZDEQCKGMU4AVK5ZhMIITfOISNjzye1+RxxkP/iOLW5zkavYnhDGErorN4SuIwINbS+ut95xoE/eqb/ao1tPGNXoSvt9/00muvPPjrjVcFab+iIf5Bx3udSPHvH9fcyLXj+Iq9ZPtzXitJ/IJzTtiGVQRXbIgrW8Ra1S+GTTAlpaLIh9y8cZf33vkqZk+hR5JsBEILdu4p8mlHPZswnEgO7w4YZ1AYgTh8C1UcYdwCX3WIWFEtOt7/8ISzRzPmc0twDcHVBGxvg1JQ4ojUTnBZG8I84MWKTFUcFC1fuXObIit4cDHismyYLy5ZLOY8fHzB1772Br//+19EB4eOnuVqhbXJJw0x1fNHJSmMIZWEOIJNPVePS8uqCRy/f8Ho0OEnN9m/MWa8s8+o0Ig9TSYlOEshA0GDUyrVcke5EUhaV6EpqVJApXo+g0i1tTGElF2SEr+5mWEzB7ZtkOAqrEk38BVA2BoE7GuxXpoGyakgfWQKsKVUKZO0mSfrflhr8YsXtv6ek7jl+qbXwnZbkvRHqSfUCyfywnTeBu62a7+u6r7WnyzZbn7yuuP1pdGnmi+/N0JYibCRXOdoCbJLanDBWmKIOFEgsIjYIZRBKo0WXVLU6hxCCvIsIypBEAERG1TbYXyH1hmqm4JSBCkRwhBEBmiEHxClRxRFapzpA1p4MhXIlKBtLU/PzpFOkjnDYLdgOB3RRENsFGMESgn2TGDnaMTeH30LaStOH6yw4/cI73yDyY03yPMCM3a0y5If/PQh88sFi+NnuOY5MV5AtMRoeydCMBiPyIsBN+68RWsjJ2clbVfSrhZIkQraWjdjkEnu3xxxT+QsmxFV03ExX/Ls2QXue47JNON3vvkmJ+8/oZyXPG8crm/yChAIKNJGpDYdpFMvnB87T3e24lv/8QPGN8aM7u0gWSLjivB0gTtvaFxAaAO3B5jBDnu7b+LEmI5dRianG1xSzVqaymL8DYSK5KHE+Q7vBLlRTDJNUImOmYshCo/qZojoieMdlDLkxYBoPaG1m810nGmCUGTjA6TKUKJAqqSk1wVFG3Tfm8rSkeGFQWYDpJF4oUHlxCxj70bOZB98oUFLBoVA47l7uyPYAl8bLIpG5Fy2kaWNDH2FCi3lTGKtBR8QIUPKHay1NF1H0Xky7cmNRElBawWBiMXiY0KWCqUphhJpNEJEJoVGisiyTlzryXRIkRlUiAhtyEYjlH7t5fWrG2slhzVe9IoMR/KDQ48GSdYdiKxzSOFwQeNERhxmhMzgvKBaLmjnC+4c3WB3NGF/Z4iRUJ2vUi+u3fdQ2ZBhodE5+Mzy8PGMy9Mln/7klNnljHr5CG9LglshZUQrOLi5w2Rvn9t371IMxjy+THVsP3t+RgyWiOTT0xV/96hi/2DMP//dKWU9pOkcD59dsCwr/vb7HzMaKj7/rS9w8+dj7uaK47Jl1jnWCo+WjiAEA5MRg0GqPGXFfOTBqsI+P+XOD76HPbtJcfsQqSDUJd4Ggj7ElXNCvSI7vIseTX/p2yKEIDOGzKTrmQCnBCQRQ0ISEVfZzrXi44YKA9vNBtkExVfG65fd/P8xo8cVN5+/PocNqBeTsVwHTMD1rFkfjG0MeW8JlVI9cr7N5f/tGBsXJYIL4LXCG4n1AhEEOlcQAqHzZDtD4kgS6orVqsYV9xFjzXBQYHGEzHI2K3n24ISf/XzOo8cLFmcP6eoTvF0i8CgFo1HB4Z1b7OztcePoiLOlY1Y6nl2cE85rhAgYHXh0+ZDxKOcPvryDdWOa7pDn53OWZc2HHz5mZ6fg9nt3uXl3j93omdcNT1ZNuo8KCJbWBwZZhpJJCim5b5KLpuMHpxeoD3/CdCrIb+yhRwNCcw4qI+S38QHc/Aw13iHbv/ObTvj8f3ZcUc/jJnh6pVIof3/seIUnia1dgN7+iGt/vJ3xSJmxPhMtwgYySonLSNdaOhVwISPoZIO8FEQXmZ+fIlXgzbu3yacF/p3bZEow0YZsPEFMxhTTfTJjMMPIsu344UdnnJ1VPPzJOdXsCbZ+SPA1MTQoBZmW3HjjgNFkxO2792mD4OncsliVXDyeIZRHCsmT2SmjQvHe/R2UGrCqJyzLhicnM54+O+d7fx3YmQz4nW99gR0dWZzNebis6fxa0TLSxRajFZnOksy5jzgX6YCflg1Hw4xvx0BhW+xyRhZLMlFyf2JoD6e8cTjBhcj/8dMTys4jQ1JC9oFNMJUEJq4AUyWTUraPYbPXeinxwfeZQvq+naCl6vfyviY3hE2mZhNm9HoHL9qgDVi2NXNkLzyjVB9AyyR4IbfmXj8Z+mjpijYYSXtmsoOpsfOaVhjWIFy87tO8JHCxhd0JIiJueUGbuqir+bnJ6inZJ1VfyKT/gvHa3l6eSQ73NK7WuEZjtErcW5UnLnWd+iYFaRAxImNHlCopSqtEiRPeI6JAS0GQqUGrCCC9RQuJEQLpPSL4vr5AEYUhognBEIUCbYhO9b16QlIxEenGL8sKETLyWCDQ5JmhQ4MTdEFgImg8ulBM79+kPLvk4tMVTA9g/w30MCdKCNLShoanZ5eUsxnt8pQYLomhImWkPCJKhFDkec5wNGHv8BZV7bhcQectnY9rrIB63pAZ+NatMbkxIA0xVii5oiobnj31TPYO2b05xj7KMW3HhfVbUsXrruXXnWNPxBM5CZFx2fH00xNu2o7RvoFYIuIKUXZQ+STzLRVmOERNpuQHN7F+gHZjdGjIaGlmNZ3tO27HiPItMiR6nCIJiQihEFGmwAGfeFTBI8wQqTUq03ifqC4SCUJSaA3KoEcThMwQru+FoxQx3ZGrlLJKIg9aFygliEqAysAYCq3RStNmCq8kKnpUdAzGA6SXCOPppKFWBbESiBYyC8JJ6qYGIYlVA1GCyIkx4n2H9xHvewRECpzv5UhjSOISLiJ8CmaVlCgZMTIFVTImcZUsN5heSlXJRGEVL0El//TjOsoftyh9a/xq+81pE1unyUMIvUJcP0eNJiiFRNBYR9lVBO/QIlIMEpiyPJ/hpYbJIUKrdM9EwEbH6bzi+GTJxfMLysUM210SfU3wJYKk5jYeHXB4Y4d79+8wGO9wyTlOlFy2p3QWuqC4qFqezRr+YL/g1p5mng8om8Cz0znOe46fXXJ0e8Jb793GlCXF5YwyRkrf94mIAed8ChyV2qj9RO8J0TPrOuSq5OLJQwbU5PvTJLlkl0Q9IXQVvl7iV3PM7k2uKQmx3rhfDWFv5OwBrRRaKda9OaSUBN9zvuWa9tIX1PZI/vX+LWk9XfusLSRRXLu5/4CJsz3+Xhsirr1hI4YhrqeUrhJRkW1/Le1n4hpC+GIvkGvKUf9PHXHrQW+9U6Y6pkBdSIJMNDwfUwpPRJAiojKNLAasliVdZQmHe5DnSK2QMrVzWNYNj09WnD6fMX9+SVtd4u2c6FYpSFKGPMs4uDHlxtEN7t1/E3+8oDpfsTybUdcBGxQIz2W94P7RiC+/d0DrNGVrWJYNZd1wcbGk6zruvnUPM84QhzuYueKk6ZIioQRnY3K6RMpyp6Ln9LUr7zguPWcnJ8x+XrBXfB5dGKKrEmukq4gu4FazBOj1jtC19QNb8/qF9bN+k7jKSG0T7F/4E16ezK98069+/JJZrJdFA36ZD/vlM1TXk0/XaVavouFuMgysG5NvH0tsHNGrs+mdz2t1ky+e74v3uwdU+qdCCIQoQGZEZYhGEUWifFVti5AOQUAbyWh3TBYFRdCIfJc42kNnWWoKLAJdcDw9Lzk/WTI/OcfWlzg7J4aaGFqU0Chh2N0bsXuwxxtv3WPRBs7jjLZxzOuQ1jCCWV0yKiLvvrPLeJiRZyNAI+Wcsmx4+vSC6ZeO2DuaEA93GAXPSWuJPaCXfA2PFiqpmEbdz+dUCnFqLXnnGDiHsR2hrTGqxUjLwchQ7o1483BK5yODwRwrHPjUs1L62AcLEe/dVUAlJUompoxYq8FumAFJaEIAnsS22dTrElN2XawzP1f3buPTbC3VbWAtbYVi8/wGKBPpfGR/z2M/+WJY27mrObmeSfHqgGm9bwKj9Ve4sjebEC5yvVXF9v7xwriqmVrP1S26+ob58fLffdZ47WCqsy2zxTmTTLM3zUEkGlMxmSAi1GWHdx7ZOHQQ5CHQrFrKRcdklJPlBa5dIJRgOhziEZQ+EJDEmKPyMSYfkkmPihW2dQghMdkQETUxGAISr1Tq9eMjnYs0nWe1qqjKjugNQhXEYsJKZDR1ZDyS5MZwsYyoqmP3/CHjMON+9gAhBIN9Q9jPCLtDPn70nOOzBT/67gOePz3n8vgc25wT/M+JsSEFUj1dQUgQhrG5jXKaj7//VwyU4L1BQbubUx29ycUisqwCoXpCZyv+7pMLjMkZTW9j5IjP3dA0zlFbx5MHM46fX7CXOcyRYQyYzlM3lhBEahRKQjzXCci0zMECx5Xl371/zjcV3P/dHbQOSKXZeXcCHvT+HdRwD3P7Wwg9AiZ0taBZSurgaL1koubk1Ixci/cBtViQ28juvkKqhpoFRdeRWUfuQcuAdRWCSIZEotE4/AB8MUYHhYqKMDzAq5x5J/BegRgilUgb4mTIJB+h1BFSKVyWE5UmFnlaUDESlMBnV5S0iMYHyemsQgbJ7Z0xeEF9fonZyRkdjYgmUrSRi+MZVWWJRQZa0NUNLkac80QURo0QKicqg8pzTC5BJylNIwJd53Cr1G+oDRLhUr1c4yxSJLVApRLtMAbPqlmhswxlMhy//mBqo0Kz2TzE5rql37Y2RiF7FTmVgAEzZDiYcvvuuxwc3qGNOagMPckxk4wiHvB8dsHl2QOyeMhklCGziMgkDA3LuuP0WcnHH1/y8c9mPPjwkouTS6rZh3T1JcEuCcEScCiVI4shk+FNbgzf4JPvf0DXrHjv7gHZtGD+h5/jog58cGxpFyfUl4/5wUcXfPJ4ye07bzIaDvmdO3dTTV7bUc4sf/O3HzPVLbv3B+xlwKxgMSvpOgdoiNC0niBSU0UlHFp7bHSsuo4ffvCUk8uWf/nF9xgVBaIYg1tgT/4KvfMO+Y0vIbOCRI9Q1655/2DrRvSGIq5VkwJKKYzW6E3AEPEoghB9PRXENXKsr7LPCEEUW79vXJdkWdYI4Lrf1a9jpNNY00a3v/XaAK2Do6vLs+G60/PhI6mJpLgiUXrvN+95zUqN3/xYf78QiT5SrRzlyjOvAm0HmZLINjK/cOTRMvI1JlZksSJiUQOJGhqsVDw9nXNyVvH+311w8vSSpz+bMTt9QFc+wrfnBF8Tok2U0aKgGOxwc/Qmy2eXfOeH/yv3Dqd8e3fE4ndvUok7vP/UUpYV1clHPDqp+J+/83N29w45OLzFzb2b3N87YNm0uOD46MNn5NpxeCdnPIHbAuq6o646hJB457EerPdEleideU9lqjx8+vQc3wb+2dEtRjd3NmvFnf8Ame8yfPOrCJOT1s8LcunX1lCybgluXlPeY69E+uu6qf/vG2vxgZfGL7qmL6Sp1qDjliXpY6JtW7O2QVeI/ysO1YvvJGBaSkOejdiZ3uDe/S8wnB5RBcOwyDADRT59G+9bPn3wnDy27OclsijQ4ykhi3gZuLhYsqwt7//kgpPnKx5/Mmc1P6Vb/Rhvl0S/pph7vCqIesBecYfCZvzt//YXjHLJN492qG/lLO9/jsfzyOkqUp98yrxe8Gd/84zxcMCde2+T6wnffOsNGuuTD/fwguOT59wYeLJ7Q27GQFVZ5rMS7wICQwiRuvWsiwCMskiZek+dVw3f/cEjbr11wLs3CkJ0dBF+71tv8+Uv3+Xf/6efcTLruPPWO+y3nrPzGd4nXziGQAwe2zSpVl0apJQUOkMICVLSdo66bVF9ELNmDkhUH0z190iIpLSN2lDqYk8tv7JB6W5uMjtS9nv/VhDSP7cO0hLQG1K2qQ/Gfa89IPsIKQYPQiCVJJWuB3qTsNkZ4sYD5mUbtA7uxDo7Jq6m4vrfdbCfIsaNgiwkuxQ3Nug6aPiLxusLUDhLVS4pGBBNgcQjREQpky6YSRudCBEdNFnMsI1DCok2Gm1SLQuAjAKERCuBR+ExIDRrrqKIAbEmVnr6gtfkUIS+kWBCvwVdlHh6ZWwv+omjUVIShMBqiTQSZIq4O+9obcuqvMAMhpi9ETIzyFyxqDueX5RcnpcsL0tsU+JsBbGC6NiugVEyR6mCGAQ+OMrFJRiJ0BOkFihZUOSSECWdL/A2sGoc2nnUwCO0RJkCFS0qSLq6JbQNo92Ueh4ODUpJrA14Yt+zKMXrgStUaB2ltyHyfNWxKDtkY5ED0LlGTgxSKszRDdTwgGxvHyjw1hB9xCuPJWJDQHubeio5SxSC0LmkRqVASIcUHTLWSNehNWgiPtqUGpUBpRJ1K6V0DcZrFIpYDPAyR7SWGGWffRIEKdHakOUZyhQIpZFGE5Qk5DkBQetiQndJiygQaX2izpQNCB8pcxCdoLFJel9FibUtXWNpm4a2afFFEozwwfc/qQ/LpjAxrhsLbst29j/rIC5eSVlH65OClgH65rBJSDiZiygU8TcRTMEVkvMq0HIbDt5CYFJ6O0PrAVkxQecjvJIEpQhaImVGJgWxkngfsE2DlR50Bkr1QjKRRW2ZLzpm5y3loqZeVXi7IPplL8qRqK9a5xTFFBEzuiYwO7+kXl3y9lST4chGQwaFYG9HU8Yc0YxonKddOEb7DmECk7xAh4BxycEr5xXZOGKninyUM42KrnWAJHqfDEiwQNLfVFL0zcYFLsJy1TIa1kTrkoxrnkNoibZEKIEqRi/Ax69AwLZ+jxvuwdq2CJQUhHCFqK27xwspNshhH4uw6XUhUkYqrEVPrt3P7ayOvDZ/r53a9aTRLx7bya9XfcP+SSE++8Cfdak2marIZl1tLOUasfwt9JqT7x/pbKRtAzaAiwIl+q8XQPWF9q5roStBG9A6icYIWDWO+Sqtn+Wspl5W2GZFcAtiaIkxORtCpaalWg/p2kg5Lzk9PuZAO0Lm0UVGbjQ7U4PWOayGBOc4Wzhi5igmjuFQY/KczAtwHc1qRTAOd6CQRcbO7ggpJc5FYhAQJaIX1rHEPnhPQY/zUDWO2aLGNh3CBURuQASiXQEj1GDIpvdMumLX/ntxPa3n/5VPs7WnvZTV2nrypfm4nqwvp45enGWvnMn/yPXz6jN75eb8GifzWi9+9l9ti0mskf5+Ma5R/6vs8FaMuzm/l6/tVfbienAcr9/Oq/dsuMBcsz9SSLTKMdkQM5gisiJR0pREaYVWBbJnjfjgCV1HMIagJGiJVILKOuZlx+yyZXbZUq0q2qpK68fXxOh7EEpgzJA8m+CtoHGW85NT3EARxwI5GpMNc8ZDiVMCWRV0wjGvLK13TFuHyBTTfIgXFhs6uqaiaSt2DkFkitF0gNSaurY4mYIdgkdEl/yrPnskSc2wOw/zec20bBDOE1TK4E6mI0bjEa14TOk9o1FBhsMYg5QBLzzR9/5Rb9NlX6OUmwxE8ky8ConCFuOV7L1Y25e4CYLWDX4RKcsTYyT2FMCwVUKwJuUJed3+rH9no1IrN/MrRIEQa4W6FCxdn1FXgVA/ja5sw3oivcAC+SwbtD3PN1tN3K7RXYPz6cUQwxXY/Co7+gvGawdTy/mMn33wE8r9Paq9PXZGGYXRRJOnEMh2aCEoBhlaarQsKIocv9eSDSRCRppnE1znWZ5V6EHB6OYNfBBYLwk2UlYtZjRARI2wEpC0pUcYgRhonPV0DqQxxIHmAljGgNqfgKg5/uiCYALaaPb2Mw4OC7pDg5gqvng7spsZpnduUj1v+ehPn5LfvMfO0R0Ohjvsjg3Plp73nzacnaxYnc9x7TOCn0PsWAdSKQrWTIt3yfQOpxcf4fwK70taB4u2QsgzUJrP3R3zxbsDzto7lF3Os+OnWNcyW56zygrmowNGMmM8jGRVR2haZnPQueLdtwc4F/n405KusTRlm2qUoqeOvZFWGoEguEiIkeA9XHTo90uKd4YUO2P8aEjMB5jDr6GynXTDQ4vEQWwJvqRZPSKePUNdPIGyQU5vEcWQ+UrjgkepmnER2csFLl4S/IoCMABIoshgkKMGBaPdMbaz2NYmrXqpkZkhRpX6JERBl2uQGiEyNAUKTedSbVK5crgIXgYcUMVEwQ49syQqWFlF6xTNmSXYjpPjmlw7doYTaA3xuePhJw84fvyYES1Geoq9IT5GyvkC7x0eSwxpY+68Qzmg6hBWJtpNjMgsBftRJ9VAGRocPqW/fQchUAmBbx3lcsF4MuTmnRsgMyyG8Bug+aURN8Wfwa+DlzRX5IbrIdK9g56el5EXB+SDQzqzR5dNiGONHURK3TLSlh1t2Xlrn0Lu0Z48oVsGBvffwWRDhlpSOXgwczw6bnj2oGR+8px68RzfzohuRcQipCLLx9zYfYs373ydp6ef8uEn36WtnxN8xdlyhtaa0XTC7aMhf/T1Q1a395i988/45OkZx+dzThYll3XF+eFthkZzZ5yTt5LB4hLrBY86wf2jPd54y/DpJ3MW85b5yQJcS+47miCYe4kxOZk2hJBho0pBTucR5zVSDsju3yTgCLFBZKO158HV7vxZzlsyHN46QojoLBmVgVFUSlB3XW+0QMtEdww98pecarGRLk4bf1/I7AMxJGpv+sS109MHxbLvH7Z1Si/5qeLaf687m156/5WRvLoGmzPu+clhY+h6o7VtiPuDhjWl26cnssxc+9zfpuFsoK4di9IzryLOqJS1nSiyHG6MQQWJsprl04rLZ88pbt/H7EwZGk308GTheHJmefqwZHl+SXX5CFufglsQYwpksnzAsJjy7p0/oGlr/vK7f03XzejaMy5XM/76Y8NwMmI0LvgXf3CP4u6Y4zvf5Hze8MHDY0rvePD8Ked7hwzHU94Y7jAVHv38DF85ngrD7mTMl792i+NnCx4/mrOalXRly0A2ED2XTiKUZjCeELqIXVlC0OA9Yt4izmr0G7cRRUYIE0Q22aLVvGr2vXy3g/e4zqGM2gRt1z2kf8Lx98V54p/80/9JxhoMvB4wiU2zUliv9aus8ppVvGmEGvraGN+DRPIqiHrpWvX0trUNUkptwCM2f5eAE2k0Wg8YDI5Q+SGt3sUVA5go2sLjtGc3ayhUYO/gHn415/wnz3Hk+L0h02zIZDLi8mnNzy4tz540XByvqC6eYuuztH56VoRUGUpnvHX0VaajG/z0gx9RNTPa+hnPJfz81T4jYQAAIABJREFU5BRTZOSDAV//ygHffmuH06O3WDY5P/r0KU3X8vj0hGww5Pn+TXZlzsHEUywrQl1xeSGQheTdz+3hXECYEfWyYXm+xMSGLFjmXlIHRZYPUUh8FfExEqsWMW8wxzXlQFDlApmPkXnO4a03sHLF89MzrHVonTJMnesI1hKcw9uG4AOZMhit2Rvv0znLxeICYmBgFK232GA3YHGmUw4orkWq+v5/chNsJPsTQmIOxEgC+NMM2mSDRE/nU33PxMSS6NuB9MeRMen2ep98VqSAEPsM1Xo+JZEK6wLOrkFqrgDG7UD8Wvaop7qLuCVSse7P2Asexa2WG/HKR4IEqCuVhNZeiuFeY7x2MLU+ZesCdevQgNeOIk9a9F2TgimRe4KWiEwRfcowBZd620glQUZs7YnCYpo20auUBB/7BqmBYD22S/VVIsrECZUK5wXOA1EQRcR6cBGi1ASpaTx4AaKBrIOBjWQxokSkW9S0xpINIz6XmLxA50NEMaaJhnkdWMxbFhcVtlmmlHCsSRIPV5d0oHNykyNlxMcO5xu8b0lUHkHnIyJ4REjKcatSoo1kmGcMhkNkJ7F2iQua6CdoHLlK6DmAkgYlFUFkCB2Z7AdspciiJ1jwLtLnAtE6JwliOkQMNDhmbeDRWcPtt24wnN4hhppgA75cEpqIdwkBUlJD45C+Q/kG7VuMbZG2I/cWoT27haGzEdt2GBlQ2iFDTZQWHQISgdFjosoQ/XlLKdDaIKPCRoOPCt8GfLAbdCogIUrwkqZL6IfF4fCsbMoSdHiCEHRaJVSFPpiSgsY7bIhElSKstgGETKIJAYLt6Lr0o6UnyohoHIGUYnYhYL1FrikIMRU7Jo1ugSDJiibhvtS4l5AaDivdp447l5AmpYjBE4Mn9D9EnxDY35A3uKZarRXX0kaydmKvnlsjkyFEoopoM8SYKUGMsLGgtg4RLKFaEAcaU2jaIoIOZFqjhEDojCA0jYtUjWcx76hXDV1d4rqK4CpitKSMlGSQZxwd7DMYDrC+pe0q2mZJ8JYYoepA+UgsG2YLwelZhS6mTIc5u+MBjXO03RIbI5UfEKWmUR2KdD5Saow2ibopDcPdMUJnyLYjtBDqlhgkg6jJzACTDZCub9swHBLyAfOLJWQ5+29miBAQtiO6juA6hMo2RmO9GV+B5nGDeIFIlcHeg0nafIqIEqDVldSikoniovp6qHWGSm4cjdTLKfrQZ9vTPd4OpgDWBb6ipwO+5Az2Y+OPfoZTegUKXv/L7UzRegqlqtAXEP4X0Ogtu0cPRW4lGuIL8HfcIOdX8/S3Z1iXgqn50nM5C+ihQucwLASZhtg5kKnew+QZpiiQJlFpOy+obWC5sKyWbVo/bZnWT+iI0SNEonTe3N1hWOwkGpBraJsl3rcQoHPQBQiVTe0zzksmVjMeZ/ggONif0tqStrPUPsPbIZWPCEkijQuJljlSZkSRkQ+H7N4EQ6RTgPUErxgohdAZWT4mCI+wLWqQw6igrDpmZ3P2795FSwOdBZnWEMoglLmGFr9y/QjW3luSVVY9VaifM2I7sIrro8Tr03nbuxdwXeUvXn/Li6981vqB3mHbfnZ7Hb704f1vrxF+vQB4vPDwlW/9h45tqlZqirr1eesbsg3WbJ9Qr+52pbC2vY7FJmDetjmbYC1uX9i4EbBI91VisgnKTPFiRBc0VecIbgmiIR9nyEzShEDoGjw9TdDkeKFpPaxKx2Le0VQVtikJriSElJEiRgSSndGQ6WiC1oLOt7RdSdeWfeAnKKPAELCx4XJWc3pm0GPBdJizMx2hG0nbWWKQ4EZk2jFSFimS36BUhlKaKHOUiUwPPHmmMM4Su0BsHbnWiKjIiwlSKEKwiOAoo6fsIuXSwnCH4c4ORa4QIjLKFINMIENq3Jv8jsSUSTMsYuTaN1TkxrA/mVC3DbPFeb9CIlomdcH1rFRKpfsnEnd3LW0vNkcl1ZeICH2G6vqE6B/19kcpnYC2daZKbYtWrN3ApFpNFASZatOJsY+tIpvkhRCsVf1eMgcxvXRlKbc+YPvhem6LNS1x+xhXe8b2drKxP7+EDXrtYEqbjPF4hyAyZmWgnJfoGDiYSKSInF02GCHYz5Mi0WQ8QrkG6TuilqAEWZZSm4vnLaruwHWYnSn5wT7GBISKxK6hax3lLBmHXBdIYxCNxwuFR+O8xXlo6gHWKSwZHY7SR1ob6WygKzxt4ZjsKQYDePzhMec03P5Dw6CQ3Hnzbdi/i9y/xYUVXDxpePDROc8/eEa7eEiwZxCWpKa8a3qf4OZ4lzuTAz6Zz5g1x4S4ou+QRHKXMgKp8fDPj1senXi+8p5jb0fgbx1StS3Hxy2eCa59k6iXOC4p0GRasDuakhUZ8xpMIXjjyxPivMI+CFwsLOeLLhWxS4nM9hFCE+ol0VvObcOPl45/99GM//Lb/xm3PvdH8NP/CGcPWD3/Hs5r/GJCZgy7B0OQBq0KClci6JBdi28apr5D5oHJrRGrZeTxgwWydYTSMiwUea4Q1gKSYnobzBCpC6RQ4CNFVpCNCi5WiroWrM7nWOthOCQqRYiG4BXOwbKO2OghlsToWJFjo2DVBUSmGBxO8B7aLhVJxigIOhCVZLibA4bFaYuVEasUxIrYzFHCUuQKFxQ2QrPoiHicABs8y8WKYa4YDwwqKmRQCA9CKbJihIuCukv1USpahHWE1lEUBlNI6rbB2xYph4gYGKiICo62rFDKo6QH7157If6qxqZwP643BVg7qakIdkuufbPhKYTQFIMbDCf3ceI2pS14dl7Rlk9ZnPyAe4f3uHfjPhfmkixr+ernP89kskObj+mE5HzlOT5tePbpgtnzU9rVU3x3SvCXRDroKcE3dvf44298lUeXFT98/CFV/QwZZ0npTRR0cheHZN7WLJ52/Pz4gt/9wpQ//GbkzaMJuwdDPnrimVeORXuT2huMvKCINVMtGI9G7OztEYnMGzh8c4wWHj8O1POah48lBsHIGGS+h8z3kbZBRYe+d0SXG97/6c+5sWzY+fo3kV0JF8+IYkLQU2Q2AZUhtHhhV4YraaX+ta5DOIfIDCIGNIFcgikSd957j9IZQpmNAQprCoToe4gEEM4RfYdQegNGJLclOZi+F7CQUiKFJoYtw7VlTTYOk7jix7/4FV53pEbWESnD9WNsU3jYfrzBvDfoIzEhiev6i20BjtCj6L8Vo/86de04Pa359OeB49PIG+9q9nLFnR2F8J6TJzWjkWTnpkEc7ieBpHyKUwUXdeRyZXn2YMnpk0uaxTNs/ZzgL5LwkQhIocmznD/84hfI8wHf+eQhq9UcES5RJOq5k2O8GFLahnLh+V/+8pzDPce//uPA5GDA9PA+j07O+ORxR+X2KcvbmHjJUHl2VKqxOJzso4zkbCkY7e3z3ps3aR8+pTu/5OkzTd16irwAVSDzm0TXEfMVxcEu4mCHh6cLlhdzfu93vsR0amB+AqbCD+8j9QCZjRMg8WJ9XyQJGkF6zTloGhJnXW85PnFrnl2LqF547oVji+u/vvQ6V2vk+vq5emb9e8JT/nFr6J9+fBZQksa1AGr9HKQM8tb3W7+wqYURbJgPSfHtet3KtuAR/fESBS1c+9z0ppCobtKRZYrR5B7Z4C5duMWsDNizFYvTH2JXz/BvfInpaMh5doqKKSDJiiHD6R4NitnC8eRxxdNPF5QXz+lW53h7QfB9VlcIpDB84c4dvvzmPf7m8Ywns2OcPUHRomRGEBmdmNJGR9N1fO/9/5u5N/uRNcuu+35n+oaYcs471thV1SOb7G6BlEXJhsg2BJiAYQMCbAN+8oPfDP8rfrVgwIDtB8MgQAikYAk0QAoaWqQpssVmD6y57q075BjjN53RDyciM6u6ZRRhutkHyMpbkZF540aefc7ee629VsP33/P8g//Q8uiB4J3Xjlj2PT952mOZ0HUPiUVDECsmwlAbydHskLKuaGzKdjxf3YP1hjiFy6uCi8uCQ61JSqNGD0EUxGqOH3qergKih5NnG15//au88o3vYBbvETbnHJeevvRcEiEG2q7NqEqMKBJSCUaywACpKpmMx3z9tcdcr5acnX1KSCGrQhtJpc0NyqRMiZAKpUxuaIhtfJEp6SmBDQOkiDIZbQrcokKZOZFQW3EnpQoQkhAjUimqus7sg3Trc9kPLc47UpEtUoauJ0vo5X9biDHLrstbsaLs7Spuztu4nfvaoaZ3yrrbz3cbFIkb1DX//21efzvSwe0dFONt8f8F1hcupqbjEW++9nibBOTKWMRIJSPExMF+gRYwNhK905MPAeHtzZBhcgJ8QOochH3rSKVFuQGjFFIrbLCEGFBlsTUUzaiTlIqYFD5JBu/xPmblI2FYXVmWzYCLnhgtOg0oV6G6iB0iG5uIbkNwKz744Qode+zKM5oJDkYFft2zWvV06xWuWebZjhTJ0g75F2ikpJQKHz1XQ0Pve0J0CCoQEcjoVPYREOSJIkNIhsvFNb3t0LMjxtWI19/+Fk2bODs7B7/C+wV+FJDVmPLglNKULOcX2MFhZEfsBlxMWClIhUKJbH7stz4JstKkIJEoBhLnvWdz9pLw3g/RRqIf3iMOPSFAHBdoVaDHNUKVoEfEs+ewuUY0a+JmoLg6R7QdddmQ2o59vyQRwSWE13ipMs9WSQrykKHwDqkFRpTIJDMaGRIqQkyKkATCRqyzLLolISq8M3ipccJQjxSm0NuAltRFQmiFMQZdCorJtnuWBMNW6XA8NVnIggnBBRrnkRiErImiRsqKqlZoJZDCEqLDrodM2ZMZlTJSZ/VIF+gHBTGQCkhJErdqcDF6VFT4aLGDz5B3sPmADgMSQVVkkZXS1MSocF5kVaKf89oVTbcDmnwGhUg3fi+5m5Nzkpy4hxQJMaBTQIdA6iylrjh59CaFKuj6Df1mgRI9zf0BozxqlA/VrrE0zcBmucH2Nl+gcYDYIgUorTiejZnVhhfrBVebjq7bEGOBVsdEmu2FN+QOmSiJGGIccX7d8hfvvsf08IjxdMobj1+lC4JPzhuiswyLM0Q5MBxMmc0OGO2dslovGJoWmVq0dHjn6QXEukCS6XVBBnzoGI8KCl3TD5CsYz70VKsNcX6GVBY5nSKUBXuWu+RyAj77zKVgoW+IF89JTU9aNoh6CmWdEVilSdXriBgpUqKWEqOKLCefQJoSqQ2FyYPCNoatgfH2kgoJ6zxWmhtEbPBhq36/FbVXoI2mrCqMKW7EHRK3nbmb3POm4ZbRiLtE1Lsg0U8niJ+FnPLlk2fAbh7LG/DOXst/llLc2YOfy1q3f1Tq1kg6K+L91S6yv5F1J4+/ea9FghggRAwJlRLzTUCmACIQvKddW4Z1j20cqgBlJENjaTvLZtnQNe02fjzEFkFASsnhZMSkrlj0LckONO0aawNKHZPiQKRDCA+iIwkN0uDimHWn+NH7HzLdm3L04CEneweU431eXkuWm0t8c84gWoaDAjMqqPdP8M6xXi8hdAgbGPoBm8CXGqSiMLmbbdOAMoKimhKlZrX2VHYA5XHzS6g8sh7lYsieAftgijyDFQUpOgiOeP4ptC3xag3SICZ729lgCffuI4rDbYMBSHELgmwPt93GTVuRijviCLfd8DtQGNxs8M/ssH9PIXUXLNs9FmP+XSspfuY+/X+Pn5+9bsi7NwMt/LXHgNyaYu9eT34LPysmcRdZugtS3SBMnz0KtnfMbbV6V2gGtjM4d37mjQAAuwR2RwPOggQpRjQB6bNK9HR6hJiVRJHo2jXdakEhoRhNEcpgSk3rEt3g6ZuOftMSfP45xBaRBqSU1MYwq2uiCLzYrFi3G4a+R8o9hHLE2GxfdbdFaUoCNSmUfPzpGZt2zf69++xVNV9568usOsGzywvSsKLv5phpQE1nFPtHVKZivrhCdA4V16RhwMeI1ZI0KjK9W6hs2UFE1gZlJEUURAWL1tEtrokXT1C1whwe86W3W6aHKzZ9pB8CD5Kgrmum0xlyeYnYXFPOW5QNxNkxxWjC44mmtIKRSjgywKSVQUlJSJCEQJU1UmoKU2RdgXgrwBBjIkbohc55/3bmqvfbQiRJksj3SFlVW+/YXHDl2S1FUVe7rbWdq5LoQuNDIIQ+5/tKEX3AOQvRk3wkiq3X93a3xCRgK2ARt2jzrVF9uvOx/ct2aJbYth3FnRi72a2wY0jI7YzX7n78q8beFy6mjg73+c43v0rfbujbNT5FQkw084HkE4cHedC2EOAGy9AMRO9IbkArjRQS4wXCJ7QBbxPteiAWGjWUqHqMKQzD0OO8YDbZR2DwfSRpTVKGECXWS3o3MFiHGheYVHCxWHGx2DD4ASEkZdpQuIqiDbSdhx6UXSI3Z/zJez+gkILD/Xs8OIVHeyVuvuHqckWzuGTYXBB3iEKygEMAlVIcFCWbYLnaXOGsJ0aQ7Gf4MF2RCy9L1lU2wIiUCj59+RytA199+9vsTU94/O3vcvbyY64uf4fUrXDdCnlwBCf7jO69Ti1rnj+9Igw98XpOlAknwElIlcYAJsEq9AQk1XhyM1Q0hJ5P+yWL99/F1ZdUv/kdije+RDF/QfIOzBioIO0jVY3UY8S7P0DNn1HNF6SVB/UxlBV6UmNCQLgWFxRDLOi9ZogKNx5DpSiSRCbA9iilKEVNDBHvAtIHVIxEDD4ZGCy9d5xt1vigCKEkaEMwBaf1URYEKWq0UlQAUhGLEj3SFHsmJy0RNvMWZwP7xyWmVMSZZr12fPjxGiUFpVQEsUbKjv39ktFIobRjsB2L9hpkvgSN2lLCoiP4gVYEnFFUaSAJifd5jsYHEIVAp0ToPKIP6NQhiWADUhtGkxlFNWZUTmmGSDvk/fFzX9uD4NYY73ZuZfvl20NC5E5RSrnwc8HjgsUkhwkSNh2Tkymnb79Be/aEzctPcPMLsC3zB2uUHHH0QEKATTOwXjYsL+f0bZ/nj0ILcY0SgroseOf+AV5KfnL+gvXa0mx6CnmIMQ/w4gkhrBA0CKFJ6h5QE9MeT15e8OTZj/k7f+s7fG1vnzff+QaprFn9899neXVBf/aUdDrBfPkVxOwB09ljLueWq8slaXGBlgODyvhxmJYUCeqUaJzF+iX700eMpnssn3esOosMLWW1ID7/EI73UI9OSa6B/kMoKtCa5GNOdvsl8fI5/k//gPRiDh9fwPFjODiFo2OY7cG9E2QMlABSs19NiFIRpERVFbIoGJU1SiqWdrgx7d41rvrB0w0+y7YCy7bD+dwRTuQbp6pqZvszymp0s+/usP0+231OWfpWbQux3df//YXUT6+djGz2HMpqhZ+9fD7rerWTbwdBilv1ppsNy2cvspjlxX/hi6nPrW1eikweHT0lCRPh+ZVHS8+BdDjnWFwN2PWAbRz7e4miUPRXjs2qY3k1Z7NYZ4pxtBCWec5EaV49nHI4HfFkdcXGBlarFpEqSvMqMV7j3HPAguhAnpDkmMABy9bxh3/0b3nt0X2+e3DCq49e5fC1N/njP/u/ee/DdwlXz+iipXjjNaqDQ6anr7G+WrD4+Bq3WOHMij5FXErYykApqKUiRGiHNbqeMD46ob22rC56iB1WW4aXT4imoXjjPshI6j8GcR+qGYQt8jisSf0G/+e/Tzw/gx8+g2IMD9+EyQwODkiFgv09bsSCrLtJgNgqle2GOoRJSK3uoPLcSZ9uV/rcPGv6XB62o+XF26PyTpGV4+emm32DxNy+rF+E9fnXsWt+3A2rG5qu+Ozn3VdvvIPuVJifp/19JjHdJrB3z55dIXX7jNs7aPfOpZTNZAfvGEVLmRxqsIDl5K3XmR7XLD/4C1arOfbyjLosOXjtGCUrytoQ7UDTDDTLDc1iRfQh/x1hhYgDWikOxxVvHc+4TJYfX77ketXTd4laP0DIhHUfIZIFViCmIGckZgQqvv/jD6mKgd/6zd/gdP+Qb3z1l3l2/pLr7/0L0vqKbnGBPnyIvH9EefwKI1HyyZNrQt/B1UuiTFgJg5bEaYVJiSJBbzd4NNVshg6asTwiug3nq3MevnyG/7BH/fI3qe8/4DsHE1bLFcsh4r1gf3bE44cP+eqX30F88H3Ekx/DX76EZU84fZ1QjmiMoe4FezrSp0QfYWZK6qIiSEVSClXXKG0YVyNcjGycvWEHhG2cNtrhQz63fYzEptsKeGVhOKRkMplR1dXNTK/RWfxMFeVWvDNmnyqR1aljSAxujQ+Ooetx1rFeN+AtiYSMDpJg+y3bGfeEc34rsZ4L9ey7+tP3z+6/4qbxstvCnz8REqRbVb+0zTND+P8JmbJNz/LJJUF5gghoCUYI6v0RQgiMFsgU0KEnpop4PCZ0kjgolM6mbKpzpADV/h5D51lc5mHW/uIaNR2QdUkRFTophvUSRIlUE0TKb75zlt56IGBMYrlesrGaIQaCVIhyjEwF0oAXnjYODJcBMwj+9hunzETJ8+4MJSSTh29g9o5xPrJY9nz6YsmmaQi+gbiAtM4HZZIoJVClgWlJahOxz1xPkRLQkMfxtgXYljKVvaQspAHIg+gvLp6z7HqsmhGM4ZVv/n3Wz3/M8sm/gzQj9Udcrh5SUiKtRdiOJD1OQCtgdjLh/vGYcNGSNo7jWYE0hsEc4JxkowKp9SyXjuHoEfKdX0aefA05PUKYA0gO1Dh3BK1AxA0iPEU15+iXC9K6J7UBrq5IWuMXBoWgjAnQhGQQKVPrFILkPItnT5BFxWh8CFEQ6yVRViArcD3SRYTvwUPvoQtAVBTaUExKdD1C1WOOHhwx2hvjjM6IV519qCg0olDIkaIfEv2Q8BGkDSSpcFFgg8QmgdSRECPNEBicxfmOi8sGqSJRNHg/sF6tcHbA2gaReogNh2VkYjJBU0aJD54ks3pQEJlqZaSiUAafshqXKhVGSiqlt3M6WUESBEUBUyXQ+m/iVr0zd8Kd5nnaSXTvOpJbTnSMoPONuFy/wIXA8cnrJL2H0SM6rzi79ByNJjz4yiusnmr8pqHaO0CNJ7k77QMXi57FusPajmiX4C5ReIzUFEZT1wXpoMI5QXvmCE5QCIFMLSk1xLQiiQGlCqQqSVWZ0W17SZIbUoRPXp7TBcGbzjDeO+CV19/m8OSE5+4aWY2JwwHr5pDnHOHbv6TulqB6grBspECPSl556z50jnSxZu/AoOsCPR0jixGhV7imY/FiYC9EmN1HTPYQxRFCNVD0CG0QwpNwiDSQuEQMLxAvP0FcbGC+AudgeUE8n0A1ws6vKbuB3zw+4LqqeNEFUBqhDVIZpNSc7h1T12Pq6Rif4LJpcc4z2IHBBvohUJoRShVcbTZ01rLuF4QUSVIwGo85PDlmPJrmoeftALnz+XcfEEgBRoPzicEmlBYoBaXOSZaUt8lV3iYR+Ok9nH2ycocxpq3Hyc4yIsVbpajt8O8uIRNp64eVN+ANNz9fdLe7VUiBMeozkrW/6CsB9UhzcjpmuRRo4wgkVq2n7ROjKvHgfklsI+2VRUiNmlQInSmf12vL5bJnGHq8bcBdIGODFhqtFVor5H6Fn5b0LyTDEDAiZ60pviDGhiR6pDQYWRKriiQN3s2JMdNs5+sNf/qT97i36Hi08dTVjLe/9i1eCEvfLBDxENsf8nJ1SNh0lP0KKRvC0DNIiVWS40dHlEbDRYMUgpP7BZgJoh5tWQEF/cUV131HGB0gZg+gOEWohFAjhJ5k9AwPKZC4RqQ54vIp8uUZzK9BLsH2pLIiVWP8+Qv8D75POjiB8RT1ymtQljcoa0wpK88OeQ5WCIGaTPJm3wIpIULwEdt5hFaIQlPWJovDyFu6Ukq3u17I7ffFRNzOCZltxtT12dDUaIFWgkKLm8LqBqi56ZR/PobyY7c1xq6Q+RlP+/+yJz+fCKaf8dgWGdp93hWIbN/H9Jmq6PY1ip3k9K5gjQmxQ6d+qli7RazyR7wT99xUoD44rhcfg0wcHD6kMhXKlCwb6GTg8cMTyvsjFjphtGF0fIocjei6nsV64HzRs2l73NCR3DXSLzAyW9gUWlHPajgd4+aRbhmRSVDICOGKiCPSkgTZtsNUpLIi+I4YNiAtLgZ++OEnPJ83fMlXxELz5a9/i/mz97j8aA1yRhgOudwc0iSN7lp0vyLJASsSKynYO97n/ukB6XJNagYO7tUIbXDFMd4rmjIRlx3XqxY/OWL82jcxe68hyz2EqhmZI779q3vEmCiVYTpWlOWS1J3D2aewXMLKIfkEpQ1JFbzWWf6z+0e0QbAJkoshsLARoQuEUkhlKIuKe0f3KcqScjxiM1hW/cBgLd55ms4RItTlFB8SF5sNg+vZ9OvsYiAEh8fHjCbjrdeXBBEpyorj0/uYsqCsS87Pz7m4vGQ8PkCbCusahqHj2Scf0bYN/eDuzA0rosw0wJS2BsIktMqiKSSPENzcQZJcAO4sQ3Z7WOxiIZFVendbVMrbmP1c8CkpEUbfyLp/kfWFiynfWtYv58iJQkwUhZIUSjCelvmg1wIRHXIYkKZA1WN8Ewg9SEKG5nWG530xpm08mz6Rug47byiiR/kKU44QsmDVbUjSU4xzMSVCwnuLtV32alGSfrOh6WQWOpASYWpEUkidiCLQJ8dwHRCt5Pjv7HNvUjH/4QECzejeI/R0D+sjy3XP+cWarmu37tgrSJttp1GipUAZRRoVxCFkrmYS5GN3QxbuDsBWTUsokJoUO2CAlGk5l/MLik2Ds4bZ47d4+Le/i4wd6/MfAROiPWCxPkEnQ+E8yvdEAkEIBimopxX33zhg48D5jkcnFaYquBQzul7gbE/nG9bBY2cn8OrX4eAtxOgAORohhAUq8J7YbMCuSP1zRHOFulxBE2EA/JIoBEFkZZbClMQtHU+ImDsMSKJ1rNseUdTo0xqFJDYbklFQTBF+QISEDAOExOAMNkiI2ZdpNi2oJmPq6R57x3tUexOcTqAFo70CqQWyUCQliVolG4LvAAAgAElEQVSwbCKpjQwBks2Geikm+iCwEaRKuBDo7baYCj2rpsN7i0sLYrSEoSMGi7dt7nQEONKGUaUQBIgC5z1JaWRptl2UiJIarTJSEGPmHWsjqIxGCQ1sRQQSFFpgKoH+wtH1173ywXFXoSnd8IN3XZnPty1h01zggqMbrtCVZKz36INkM/fce23Eo9dGVDbSmYZyMkPVIxIC5yPXq4F1M+DtQPRrhL9GpoARmnFRUFUFcVbgWkE/CFKQFEIS4zwXUvQkEVFqBLoglQUEi/OLjBBLeHE153I9IBhxctzx+t/9NQZ/yOWTPyWZMdHusRF7EGcUXaS0DUIMBDydkoxHNfdeOSYsO5qNZe+wYv+wolU1g6gYekknI5dPBtYhEkaHpGof9BFCj0D0CHR+PaHPH+kK7AXy4jlc97DqoduQtESoHDf+6TMMml/bm/JMlzR2iVAaZQrkthh/ON1nb++QR48e4oXgw8sFvR1o2w2DzbSOSX1IYUa8XK3YDB1ny09x0RFlYjKbcXp6j1E9xruUXecl+JAIMeFC5tQLIbAemj7eFFOikhSaXODc9OTZdqHv7qptt2/bnc4y7NlL62an3YG3dknZDd0i3SZuN9tOfvYiy7Sf3On8q1xkfyPrc3lpVRu0URyfBpCCZZvoes8qz75TVIahH+gbRzEpKScT0IqYYNVY5usBaweCa8FfI2KLkoraGKpCIycFYVYwfCqwNmCEINES4wUpWZKwSFUgVEEsDElpfFywo6Cvu54fffiEdRNIVnL/l77O6SsPaS7fIyoLcQ837HG5maJbQ2k3SHqisDhT4ArFwcke43FF0wSMTJw+GGFFzYaKGDURzfwy0A4DrpyS6iOEOUKoBEUWTCI5iBaCQ8QFKVwirl8gLs9g1UIS0MyJMhu4h6dPCOWE+Oo7pKNTqr19xGS2RTAj3nti7witRbqAjAlzTyDqCmRG6X0E2+dZbFkaZF3cAFu7AfwY840eQkLKLALjQ8L7lAWPuN2r7ZB/+dokSiNRMtNZ5Z2OODeNq91jt1DZ7ZYXN1+/CYzd8//agdlbqfmfQpd2ReDuJdwpqn7GVXEzd5J2CPINJHenKXLnn3S3kXfzd5Ib0rsZnZAci9UzdFHS2Wt0OiLpCZsui3p949UDDsoJajkglaY+OEBWhq7vWTWWq5Wl6wec60l+gYhLlJBoqRkXhmpckg5r/Noz2IBIEiM8MbwkpZ5El+fI9YRkClJpSLSktCFKj0uR9z99wfS6oRATDh4/5I1f/TYqNSyv3gc5Idg95s2MNkqqvkMOLVE4vIBWCk7HFQ9eO6EJ4JLg3r0RpipZiD26QRLCQNtLFsOAr2eUp2+hxid5Lt2U1HXgq9NXsviVt4g4R4QXpO6KdH0G6wGagHItSSqkLHioSk6P99gkzSJovn+14X3fYrRGKo2QilqXvLJ3zGxvxv3797loWl4sN3R9i7UDTeuJUTKbnOIjjJcrNsOKy/WLbKosEifHx0z29qjH4+wZmiyj8Zg33nybejxmPNvjJz/5ETYETu69zmi8h3UdbbNhuVgSEZj1OqNdZEGcJCTO+0z7JhdTmRIetmhU3Bbnu8bFHSR11yjY7cCUBUjutjc+axa/bXKInPffKE9+wfWF0712WPPs8iOOR/c5mJyQmgXWDrkLphVFWSPxyLjBUFJIiDVEUxK6Dcl7inszkjL0eoxbtHC1oXeCzgvspqeylv3DClNIpJDZtScNpOhJXkFyGB2wTYMbHGIYUwRD4QxliMzKAZ0KRrIiFJJQgO0TrrX83m//KVO14sgljk5qTh/v0wI//uA5n7z/lLP3ntAvnoM7R6aehCeKmI0JlSZFRdNqfDhCyDEivg9pSRbw3qpaCQmyyJxRGRFmnyQNcVhDcJAcwVvWyyfs14E3ns+YPSiZfvk/5eUPSxafKhZX/xoV1hwX+8iyQMnnnD54wNd/+VdoV5KzM8mv/MqI+/uKH/3xHzM/n+O4oB88i4s1Q9vSec8/+Rd/ynsfn/Pf/Hf/Ld/+tfsoVZCWC1a/838QLxakTxco2VPoFvHeJSwTDAl8QsQsoa2lRMhISn47Z5SNgEspuWwHOqBRFdIOTM0LZFPTrDeUJ69T3T/FqTEuVtR7EhEEbpMo0FR6iioU1cgwPpwyPtqjPByhx5pCCIKAtZfYATZXnogkCsWyj6yHxNAmgo2Y1JFCZLUKBBfwLWxWc+YXH4FvET4wtA3Btfi0JMSBrt8QgsO7gVImvE6kcpznTaRHyJTnyGSkdX0etNSSGB1NYylNpNKQrMUH0MYAgs5ZFJK6GChQFEKif0ZX/+ey0u3nfHl+jpqRcnGVE9l8QBETSke0cKT+mlhporhHCIq+gQ/eXXD1wZw9ERlrTT2pqKcFl4uGl1ctZ0+uWZ5dkdoLlF8jpMUpRyQwGmvKumDVGPphhC4OEeEJgr/AC0vAbQ/IAuox6IpUJLwaIQ6O8W2L3WSfquADF2dPid2c75wfUuyP4Lt/j+u54eP3x7TnF5ytfsSjsefg8G20fEJdBr79jb+FMBPmqxFHE8m3f1Nx+fwpF8+eIos1yJ7ly2s2q4brxQJnHf/7//JP+Mq3f4m/+1vfzTQ0JMOP/i3x/Dnp6TnCDqiyg8USznrEZoDBgvdZXlaBVBEVGgqpOUqSymimDx7RBM/KW1JRg644ACo3IC+XlFXNWw9eo3OO+WrN2WLO2l0xmu6xNzlmcvwInxJvhXcYfMf55iXHp6e887Wvc+/+Kc064kRu8bRDzJQxIQgJOg8iJTSJQiWMgk4LjBLMpgqtgK1M7U69WNz5SCnhrM9+MLrC2Yas1Ji5EVtBdICb5OzzOeGu8LqZ3WLXMY8gdjqGPwsT+wVdu0IxZWe52VhBNFiRCF1iuI5cNj3fuzxnpOCg0IyrktlBzbJ3rJcdL5/OuXwxJ6wvEP2cUliQDisDRVUwHRsGZ+jWFahHGDMgu39DpMWJnkIKSmGgrMFMSKUkaYHaeyNTRedzRPTE4Fgtr3kae145MTyaDKRvvsMyvs27Pxqxuh64fu8P2DOOVw7fRsortLjkzbe+Rn38gM3GsO4kX/vVr5Jsy/MP3yUER+CS9nrN9fWG+dUFdr3h9/7xP+eV1z7iP/mv/yHjWYkUGv/yCe7dH5AuFjBfoYoBkQb4eI5YWOhsfk+9Q0iDVInkW+iBTz4knZ0zLAfiaEy/P8WnRD8EjDIYU6CTRgqDECPkKBIKhTAKtV8jnMB3Qx6F7iENFl16picjlBG0Xcyd7ZjvIIfYClqlGzPt1mf6rQa0TJQ6q6OttWBcS+pKbuPnlsq6cyuQW5nx22YEaK23wjE/h226O/dv7BO2BY4QGZGRmfL9mTpLAOnWVPszHkR3aJQpbe+R3ffcVlG5kbf9uenmsQQivxbJNnZSRMuIih2pvSROS6LcY7AFwSa+/8cvGMmeA5EYTyRChywU1Uouzje8+GhFe3VBas4xsSViGaRHaMFkakAarpYaG48w5QTl/hTBC6zoiCKihSbpCsoxFIZURNz4FK8fMywWhGEgRkvfDzx/9h6F2PDwckZ1b8ze4+/y9OOaq3PD+smfo9yGN6b3qSZTlPiEk+MT3n7nl3Cu5PK65M233uGwTjx594esztd4cU7fWS4/vaJbLFm3LX/0vR9w8azhN/7hb/HmN95GCEnq19g/+1ek+YL09CVKx+xb+tEzxIWDjYXBQ9AImVlVQkkIPWOh0dLwremUL00OmbuBIUViOcGUNYfRUbYd6XzOwXjG7JV7LNZrNl3Hhy9f4Jxnf/8YbSr270l88gyhZdUvWPYL3v7K17h3/wHKGJIQtCGAVKhiQhSSdS8ZHb3DG9WrBBeyGJbLc/JHp1+jrOYEVzB0Le1mRSoCxIizPTE4fOhz8yR4UoxIFCFYvOtB7ix2453CXtzE1d076OZuSZlOnhlF6dYi4M4d9FdZXxyZio7WrXDxABTEOIDd4JUFrZDkocFEDyohg0IQkYqthKNDl1MoCpwukYMnGUlQCis1KjgYPD5EVIK01TxMxC2UD1kRDLyz9E1HjAYRE8qDiZFKJQop2NMaO1K4icRu+Y9PPrqgDHPMvWMmhwpTl/jecrlqWSxWtFdXhH69HfjdGfTmQ08rSSDPa8VUIsQ4Jw/C3qQNuZuqt8WUyB0xZUhqlGk/UWRaQ4zYYUVsK6rFM/ZOHhPffpPlU8si9dj1c4Q/x588RJdTitGMyckJp6+9wcsPHdcvB0Z7hxw/KnDxz9g0EZGa7ZzaEmuzbPgHn55xdrbiN55e8MaXWwrTwdWK9s9/QHp2SXp/jjECMVLolUMNKXtH3IFCt/bIeSBeZOWXKEOGVMN2AB9NEpLUNySfCL5A7IfMl/USGSNSapQSaB1BGFQ9y6bFWqBMjSxKolQ48uyOT7C2ic4lrpd5ID8kWNvI2ibCkAUjCm9JPrBcJ5KPKJ8Y1j3N/AotE1KmjJS4Hp8GQhywtiMEj3cDQiZkSOALVNRIBiQJlYosmBF87o6rTIdzLlDphBYJ50M2sNtGqdtKoqcUsoJo+punKO36oQJxc2neXbtkV7LVopQCLQVaeIzwaJPlUFUQNOuBvlkhZhV6WiJ0Foxpho51Y2nmDcNmA65BxgGBzyimTBSFxBhF6xTeG6QcI4REsWbHiVHbjrooatAlcTv74OsZMWrEANiGGDraZk3JgFxfUY8FD95+laQFH78f6JtPac4/5vDRCdPJHnW9RzVOnDx6HR9HLD9wMDVMT2quLq7ZNJHS9UjZM6zndJuGbhjwNvLDH35AdXjMt5oBpQaUGAhnz4hP3od3nyL6ATFRiN4iGg99yGpkKUKUiBTyZ+FQMlFLRaEKxqMpCzdwOQhCURN1xVgITIzIwaM0TGf7NNYx2IQxLUlIlC6pyhFVOUYoRZSBzrU4Ezk8fsC9+69QlCVtF+myXgzNkAeIhRS4CIsuUigYG0GpIoVMWCW28ZlpTFL4m8skK7ZnCqDcDtuHmJXllFS4m720pVekyJYgf9Nx/+x4+53NeaeRfUs/3X5xl6H9Iq6bJPIOBermtSYKIxlViqqM2JhQMmKHwNnFiv1aUx9OiUhUoRlay6azNMuWdrkh2QYROiQuMzpkRGtBUWr6qLBOIaiREjQNUXREkZDSIFUBRYUoRkQjSQpiPUEEkI0nuZ4UAv3Qs0odYX1NsZlx/PgVymLE++9anHWsLp6iphXh6AFF6SlKx97pfWb3XmX9Xo93MD6Y4rsl3SCJzkLoGNZL+vWSrmvp+4H333tC00Z+fdWAAqMH4vyK8OQ9+PQCXs5hrFAqIZZdrvSz9wkklalCKSIIyGhJyyWx6fCuIFQj7L0jXBJ0QyBWNXI8QcgaoSKxdQjpM866tQ0gSZLPCmXRZ4Es1UfMJKKioO0CIebcwyXoUu6NDC6jugnBoouElJgVAiMTQUeUFAxqV12kbfyk2/NV5Q64UrcCDLtiKlNZP0sF/Ova9j+dDN5BzW6es+vYb314xJ09/Vnw6k6Sun3KTbfkLpL2ucYdu+KRW8x7F/fpVsgmnzfb+0cmtHBo5dE6oSOkILi67FjHluqgxlRAHtel99A2A5v5Gt9twDfIZDOdVESkkhSlwktJbxUxlig5QmERrFEyZXqoqkCXiKImGU1SMdNJyymuC8SoSX0WkVmtrulXBWZ1xezREfLVh1xdRi5fepr5JfRXuNkjilJjRnuMj0+49/gNLs8i65XHjEZMjiT2R++yaQIy9QxtT7u8pNt09Nbz7NkFzSLw9b93zenrPVoN0GyIn+amAn/5CZQKOakQ1xtEG8GFbCeQBEmypb9lNpGQAYVAFwVHZkrVb2iCJ5Q10pSMAB0ionPUM0O5d0CMkpgyFZCQMEVNVU0YVSOSgCQD5eYC0RScnD7i9MGjTP9GUISIC9AO4EPMdkfmgMmBZr2Y47ouS8ILwWh8SooFk8kSyQpvYy6MSNmHy2fhsBh9TlFFRMWUrWjIxbjY0p53+/RWLn0Hdnw2OO5ae+xYFTupfu6e7V9wfeFiqprV3HvnHp0feP/DDzmNa8ZxYL7IQaFjQCtJXRhKLRhpmQempSR1Q/bpWfdQVbijU4Y+0Zl91CEczBJidYXo1tiQCNay3AhQkemsAK3xqkBKKFXi5XnH5bohhAHvA3oZGAXNiT7k3umUb3z1PvXjkvpxxaA1Q4z8yT/7EhdPz/nBT17wqZVMPh0YqoLF/n3a8Ce4y++Dv0IpT/SWhEWS6V1FURBVVo7r0lOCfxeZmm3wZwPaoPaQeoypTohhRfSXWHdNHK4RaSebpUkp4mLPs1XDP33vGV+pTvnm6RHtXkv/lmHRaOwiMZ+fcfr4Ab/2X/33rM8W/OR336VUgfs68oe/96/53eYa63pi8KS2JYRAsJ4QIh5JGxODc/wP/+h/5n/97d/h3mjgnhj4L9tzppuewnqkJV9gLm4Nu273FYAWkiSyqagWAg2UWpIKxai8j5UllyHT7Uo1oagOmRx+ier+q9SvPobFCrVuefLRnMXas/b7RKWIUTIgWEWwl47h/QZfDgQj8UoRUmK9GfABrDeZfhEgJkc2fs0dh3ERyF6ORU7yfGTwgiALfGxJPlM2U9rQuY4QPX4bgCEOhO0BP9iWpvE0gyWkxLjTyCKRqinCaJQutheypw2CxkIRA0ZEmsYiVQIl0DpRjwV207K+6rLc5895fXbo+s69uPV8kHI35A9KGbQuqHSF0SP2Z/fY2zvkO996m73DfaYPFcU4ezVdPtvn4tPA2dOWF9eW03PHgQiszYhOrOnP3iduFpS1w7oWn9YoYVEqMhpXlHWNNAppr1kt/xwVNhQCqqJGFjVxch/KKZO9R0CibT6hHTZszq4RSaOVzp5ejNm4Fa4Z+MN3z3mwFvz6w7dQUnH5VuQyGuKFZDlfYPsN//F//h9xfHrAJ//uJdEuOaoCZz+54H/8v95D6YRUoKxFeEe7WGN7R+cVnZC4pqX7sz/n6WrB4ShyUAe+lS6579eo1Ry6AdYyx09v80WWRDa7iyLPZigDRUmSKkvYGoEeGYw5YM/M6ELERVBFvtCqo1dQ0ynFvRPa6wtefHSGtYF9dYDdCC5tz+h4giwMm2iwqYL6gMuu4F/9yGIqQVHBpgtYF/FREpMgBLGlQwRGleBgKqlM9tU2Ou+N9z/tMSryxv2ESIGu6xmNNHuzTOVWKlPvQtjKGav82A3Nb6v8lBtNKU9R3aBat5K0WzLFdl+KLTV6xyvKPfAQ8vzjL/TaBlfcCmZ4F/Euz4YVSvH6Y00UgjfehHajePbBCYurjj/58RVvJENXj9lIQ1sKuutnuMsXGNNBMTBs1iAGChWpa8NkOkIXBktg03yP2G4wDEhtmFQTUrVHHB1TT44pqj265lOsXTNcfwQBtCiyT5+usbFn0bX82dNrzkPFr5++zhtHE54+7qiLEvdE4vqOT5485Zu/+hW++ev/gBfvXvDx954zqRIpWf7Pf/wvcX4g4gl9h1stGZqOoeno+kQXDC+6gcWLM/7R//S/MRtrHswCr6Y1v5TmyNUCsZkjmi1Ksulz/ESRYyiR/dlkpsMmU2VaqQStE1EJClvhhaQSCRkKVKcxkxm6nKEnM+RshNkzhJTYnDfYPhGlwXrJ4KGPCUdiuOjwWyp9SDAkweAiTR8IURCTJIQ8/C6SRyk42VeUGsbVtgmlFC4EnI+8ehqZ1omu7ZEycXRYo7XcolBiS1/d0gS3j90mcX/t2/N2CZEbvbuCDm4TzJQydWz3vC0idYsw7X7adjZyS2lPbE1Zxe1zdjXX3ZpsF/M3OWFMEEGrAqUMta4pizEH+w959ZVX+bVf/TL14Yj6UFDvV+iy4ulPDlldlXzwYcOkT+x9dUIqDH1p6LsP6J+9iwpzqsrhuoaYWox0lKZkPBkRTIUyEm/fpV9eY8IVSghG9ZSkK4bRA1Q5ZTx7SPALnD1n0Z4xzJ8jKdBKknRJjIrlsOLDqw3/9EcveDvUfH2/ZnEQCG950oWiGxIvXrzk9MEB/8Fv/Rf0K8sH//IlpYkcm8j3fv89rhbnaJPRlLCcE6wjtAPeJrpUElym5v727/4z/uDf/BH3p45DPfB34nPqzRrdbRC9hHUHvcsfHogqI4FJIIos3ibK6rZBVipSZXh88CW8KmlczuF0MUJVE8qDh+jTA/S9Yz6en/NyeY5JJRNqlteOtrSMT/ZwQtBG6HgVUb3Cey/HfLAYSNoQEWy28eOCJEbwXmagQli8C8QIlayQqUCPamb1KaPDN1lePOXlJ3+R53iFYD3/hL5bEjvw3iEiuVmr8oy7VNleeGfIG2OeoUo71o3YMXDEDrC62Y/ZqkOym+HbhUOMMXt4/RXuoC8+1SEFFIrgHEPvscJhksfajLYIa9FS4ssKKxNRJbTSaKUQ1mXzSyVJLtKalq4X9ENAIjEiU2hE3AamlAhjQJvs2bR9Y7ZtUlLURC8ZBpeHtLsBFzVWwGAlvWtRQ0T3MDmsmRWSB8cVsq+5PKsx45I+SjoraK3AdpZgV7DtqLMTZRUiG5MaBUKRkoJkSSnPSd0kCVKia4VSGmMKvNC4KJBiO5itFCBv51aSYAiBq2bDZt0Qlg2TSnByWjKMDXT6RsoxYHBW0c4dqRqQleXy/ILLxQXluMoHsfWkELPhcYbwtvLIkRcvLljMV6jXJtRVYlDZE6kQ+TATPuX2zufLdgQIlb1EqkNi9BAtyoygHDMaH2DUiLbr8FEgqJByhC6mqGqUOemNAaUZXFa3a0MgqIgfIl2SLIKkS5EueQbt8ZKbYqrrLClJksydwhhF7viJgC5yAO3650JmCWkffKYrmBJnG0IcIFlicoToCcFnY90USFvJe5DZA0EpklSklPK/J4j8/uw8eGU2oA5R5eJRqKxMs8PvUiQbAwZi9ATn7swp/XzXz2qo7A4RsZPGTTtesKIqJozKGXUxozRThChJaILLzml7daIxHil6ikrmryGwAQYHQx/xXUN0HTLZTPclYHYd2cIgiiIbOIdIDEtksjmBUBqlNeWkQI1KJqMSUiS6bNKtUjZGRqlMwUmRmCQuJS43LWa1wTU9RpUcHxjcTLMZGYxISJFy/ISCYRMJ1iFjx2K55NnzM0aTmno6Qg0W4SyuG3CDv5G09yHQbDrOXl6iTkpqY/A6ElVCipiRJxu31Fi5e4O5iR9ZgKoQ1WGeoXQdmBpZjtDlFFEf0m0yqiySQVLcILWOiCdt3ePzYR+CxHrQPnfa+5jxi0iBszAsPKaSmCp3631IJKFJCHzInTqjInqbTG5txtiJQqwbj5aRps1JY9f1CGGoSkH8f5h7kx5Ls/PO73fGd7hjjDlVVWaxBhYpDiJLJCUKarhn2YDRC++89Eb+BvoE0mfQyvCmYS28MtpoC2jZ6m5JbIuSW1KRYhVZU84x3rjTO57Ji/dGZBap7iZlidYBAoGMyrh5o+Kc9zzP//kPcTBCMEYPhZgcrGSlHMKpxY4+JG4ySl5MbsSOA389xb/+dJP5cb1Hr6eocIPy/31cL7+rtHOXqjYtbRNoGofrJMGDmRqUVZSFQo8UzX5BcBFlNWk3Key8oO3AtQ2+rRGpR+IQBLQYQBplFCKzA/cjSGLYEuNmeB9SorRGFQY1zyjynMxk4DUChak6ohjs11MQO5dNSUiSVduhVxvaqmY6nrA/VSRnWIwN+KEpjkh8snQNtJuASh0xNpycXuCjIxvlhK7H1R2h6fBNRwhpt+cifd9zcbbATy17RUGvIkElhAzD5M3vhEpRMEDpu5IkCRAGZAZ2ishnkNxQ8GQFKisQ1xNatZs6BYmQw4RbWoPM9BBOGiLeR5wbjFe6Xd1ZxUFru3UBB/RqN+mIgt5H2j4OrAsg7PJ2jEyYBJ0f9rkOoBPEFKnbQNt5tqOETImm7lAyMR4pYhyYCtcRAIOA/joC4AXtDvgJBsHf5S5O6SUjjB0yP7wPwU+cv5fMKAad1PVZfelvfqaRuj7ru3t6B5hcf0aAFAotNON8RmbH5HaK0SMQlhgV3kGhE2WROFEdSvVkI4MtLEkZfFK0naBvHb7d7qJKHAKPFAGrBrBI5pYgNDEpYuxIYUnED0Y6SqOsQc8s2maMyhzXG9ooMXK47ZIRBBQxCAiJkCRNiJyuN9za1ISqZWQ1h3uK1dhApZEygQCfLL0LtJtAynpS1nF+ccnz8zNm+1O0lsTWEXtH7IbYn8hgXS5D4OpyhXOO8as5ZREINhLlAFiJGBHB78DwwWzjhU29AmkRegTF4RD7EnqELRF5iR3NkLJgvV4TIqhkEDJH2xKUxhF22MbAvBJpuJNTAO0FTiiaIHBCE4VmU4NvPUkLohC0fdzpnnaZieG6qdmxF6RG6KGCMmrQRJlM4Zot48n+LqLIo41FO4OQamC7wA4YloNboFQ3zZSIL2t1d9PW6735GfSAlxoo8Zkzdx3u+7PePz91M9U5z8W6xvpEQaQKkjoZQtcQnKNdO0igZEuOYCJgkueMrEWHbiiuOodXimdPWtYdPF0lolAkpSlcRx48k+OcYj6luP8KPgnWV0uEkyjpiCHHpxITR4xF5OLiKavtlufrJbVzXLQ14pMJf/Dnt1HFPro45Nd/9S5ffGPC1253qFcKvvUr36ZVJet8wvrThof/9xmLj1d430LYIlKDYdCTKCQys8TJiK6zVJuc4M2L/AsBRgqyHO691qNSg6jWVL1jIwswAhEkXpsBz6k2pOBB5oQUqeszPnn6Hl5v+PK3v8XXXn/A71/uc1pWZFGTkuf3/ud/iRFzxvoVnq0es3z2mLau8DHhm0GfIKIkhUhwbrdFJIaESZEsZozMnF/77/9bXj1U1H/8L5HPFhQXDaJP6G6wx5ZC7lArdrQ+SdIjGL2GvPNPCO0FdfUYszfBTEfo/QcIVaI+PcN3jiokAnuMsik+z3EF1MqwIWcdLcsQOO0qOvBh3gsAACAASURBVOGoXUaPpSIjEAgpUbs1XWjxMYGUmHKEzizFVCO1RpmhMUMlilJjrSTTCZEicdvgGse2XaMySbZ/h+3VFXW3wPuG6B2u3xKiw4fBEAQCQmiEkpj5jOx4zpSBondVQx8ltQ9Elwh1RGUCVYDNS4xVjPcPKDNFZgQhBppqSy8czRaSjzu61M90Fv9W13UmEbwoWq+bJwCkQAuDFobXjt7hzuEbrJ3Go/l/3uuRtkJPDQ/utvzKV9csHn7I2aP3+PK7v8adV99ATif0QXH+/YrzZxXbbU3o1tAvMLHFGIk2BqUE7E1ozYjTk4Ku7mkxSAmdGDREWSZ58KBnb79BrDd4J7FqTFaWuGyPVisaY/CLDWHTQCoRRM5WpzhR8b1PZty6e4tvf/FtPk5jirBPFiUqSr7/Z98jJsVxcZ/OGf7iw4+pqwUbD22VMC5gYkBGT321JTqHsSVWSibRMxOG/eyIt77yNu9843XKh/8nzeVHjM4ylAjItUcIhVAlN835rhFI2QEUc8Sr/2SYCFw+hEyijib4bIQrpjz84EOenJ1zf2/CjIJM54QET08e0rvI0eE9TsOKy6srysxizYhFqwi9pMIQhSSg6Lxj29VIo1FGkZUWYxVmJJFaDpl8CqxVg/NqJpF6qF1lisOlHHucDzw7SyjRo9kQgyHFjrLMyDJDWebEGLDGkGUZMhWk5IlJDtmDIexszQcXtEQawDYxgDPX95kQCqleMphIwwV2Ddr/XOrJ/49rYEQnzk+W/Mc//hFPn695/GyF0NPBeWtvn/Ek51e/NmdvrvnKO4dUD2Z87q19vLJ4bVh/2HB+UrFeVDTVltQtkL6j1LsmCcimI9zelMvzgs0W6miIwuBUGppbK7l1FHn97QZRb6EVXEpL5WY4O6VNgq0daO3ufDU4sibFqt3Qng/n55Xugq99/au0d2aIy0NSH8ijYru44N/8b7/PRB9jxYj3Hj1j21yxWqxJKaK3CUKHcIFu1dCtVxhToJVhjKdIiT27z527t/mlf/EuxfpDmsd/SN4XqNoiNh7RJ6QcgZJgru2JI8mOh/Nz6104+DyhOiXEBnNrhigL1NE91DjHHI7pTjc0j65Q+Zhoc8Q0g6mh2+6KU6Woup5HTzZ00dBGS5M0fZK0LhFSok8tPiWaPr44Q7lG5XLQQEpBZi1Kg86H8yQtN3ofwZA7eHkFm01Es0WriNaOzGpGo5wsG4wvXO/w3mOMGlQBO1D257dz/xOl4q4xEukFTVHIl6h812G9u6yvlF6Qqa4nH9elvLg+3+nF4Fle30EDvxwtDLkZ8c5r38TaKWunWW9L/ui7W1QRUaXkl79c8drtlouHf0Hnav7RP/t17GhGZy2Li8DJxw1XzxqapkG4FSJsyUVEaIW1GXpSEg6mbKqcs8ucrs/oMDgFUiZGmWI0gS98sR2A/c2adRdYqIKUjzFeUVk7NNynS5ID4gQnE88unjB6LihmkdfffoO3HxxiL2YsDh1FHOID/q9//e8o1IT9/B5Pls94vnrKelnTOnCrOFB2vSS2ieZqjRQKpTIKESijo3SWUZrxhV/7ZY4PJe7hv6Y7i9iLDNFERB0RMgdlQO/quBhJSpOyI5i9Avf/IaFZ0W1OkfslclLgRns0UfL9x2eELvL6wQGjPCezQ5bd5bMLotQcHd1jvT6lCh6pC4IsqLZyaKbQRCGJKLZdTesdfkh8xo4MOlOMZoNBnVRqaKwQ5HmG0aCSgxDoNxXBBbq2ZzabUrz5JVaXj9isnpNlBcRA03bEEBg0uoI8ywgy4WUcWEvJD3E611lUuztooJMO2jx5EwUyvJ8boO+lrut6gvWzQnk/dTPVdo7zyxUTrRgNwiWIAd95og90cSjs9Q55yJCsXaD2HSZ5FBEZA0FItjHSBkkKih5N46DtPdY79tcdSfXMDxVGabI+JzEkV0tpETKjGGW4cc90liO1I0hYN46LZkXvOmoXkK1HVoKPPu6JreV4/piihMkb+yhbkk0MSSzYXn6Cqy8HTjZcM0wH3YsQJKFIcjS0T6kj7YxThVKD30SuEUVGNHfAK0IYOMMjo8gzRRCSq14O9EWlEAhiMEAghp6mblgsLtksavb2PCKboac1YnNB6D1NHQhmgjFz+nRC7zuSSAglhjFkYkAc4tCUCBgQ+TT8JFJZrBlzZ+8Wt48N7tVDlj6wlRuOiNwXaZj2ieuNNdAaopC0KcMHQd9sWHYN532EJoIMOLZ46VhstkQXsBj2i8i+GvJzPIK6dWw3LUWeMZsqNi3IZEnSYITBaEsQCi8kEzUmCYsXgJLk0xJlDXZaglYkrQckRkCRC7SCetMN0wZaJA0qbfG+xbsK52t8cPjgiKEfJlLXQaApQYw7y82hoY/aEuQOLXQDZz8zOT4KggOsRBiJtnYoIpUmCTFkLkRQWgNyF7SsyXL72WLx57luAE7xgk4lh4ZZqWEKLJEYbcm0RSlHYotWBaREU69JvUPGnFPl+NGPGi7PrtguNgTfI3VEW4HvE9VmQb2+QvqGGHdmIWmXJSR3Z0gWIHN0cMTosEoilUFZjZlkmJGF/ICgpvioiDExthqjE9LCMggunaA3ClcYfKeJMeJ8Q9sGLhZLsmKEryLIDDvbR1Yr6Cq6PuGjpS4yehKt7/EEVKYgRXzXk2KHiD299yTvEWqYebroiICSOWU+YT7dI+wd0MclvXmGkY4jmYasJWkhqeFpnQY0zjMmxoJQ9zgpuKwTIUDYJPra0W5qnq4CF7VkLwMlE3sMYdhSa4QPJBdRQmELQ1YOiKxQiiAE6IGGG5SiSIky5SijUEaTjQzGKlQxAAZJD88rq0GrwXFSpIhMiUwM4bJpNFCsikwMe1iPUGp4KlZVTVUluq6kbdsh5NFm4FtChBjci4rp+lK6ZjO97GCxm+b/+Hrh6jdorf46u9q/P+uzlGhjFPO9kourNTHUtF3Ep4Y2GdrW8cknPYsJrFcBlWXocjr87rSkazZslgtSVyNCx2Dwu2MWiLQ7P5akRqgUMMFhJSStUFmOzhRmbpGjCUHf2aHng8Oc1hqRKZooeN5Leq8gN0SvCT4RQkffBZbLLUW+pNs6YhLYyZzUNeh2S2wCTRMwI0UyJX2KuORAQwoJ13UQOmLf0TuH8wF2WiWnPCYFpMjIzIj5ZB8hDnDVAa7YsBVX7EsoZNydnyHwcwislkRKQiwJLcRtw6rx9DGRqkgKAS9qUuWhD4hFg9g4pnoQlEdARHCdJ4SENgptFCYzpKhJSSF2RkEmDPS+ZDJiSnQhoa0kKw0q00grSWoIA94ld5DbwRdMxogRiZyELCGTkiJLaCXJdYGSAQH0ztFfdWSZpShymrqm6/pdUP0QTv/XL/Fio/0Xt+V/6e+8oEC9eO30kuxJcO0k+Bmmyl8zJP5MityPKQTUizH0zTm+niQotbuD0qDUzazFWo0QNaDQuiTElmq7RLiI6DWPHzv6bWJxtkLIHkRA6uF3FFPDdnWBb9ao0A2aNIbMKpHSbjIy1HASML4jiQhaoaxAGjAzi54URHsLH+yQKykE01xjC8MUxUkvqXwi5ZooBa7XhBRwrmW7aTm/vOJ43TKbJHQ+xk4dbBbE4GnbCLakKQqaOOSkJpVQmRrYMg6C7wn9cAdJkdBpmK/1SKQeQDSrc7RVhL0DmtbRiueMRWBPsNPrZ7v7R5KkIEmDSyXRGcK2pm571k0ibod4l7rpaCKcbkF4wWGdUCUDM0wOdxDJE13EGE1WCOzIDtR1tcsZ1IM5WJQKO84G9smOTpqNB3fTbKKHelnv8qCQWJ1QIlFvPT72+H6L73r6qqHvWpp6w2azYLNe0HctIQSUNmjARgckjARPgujwMRDCjsYadzXPywOn3YTt5b394zLym716fQcNWSE/9fqpm6mr1Yb3/upj7hxNuX04IdUt9B7fe1IcSFNaKYp8yE3plOZsVbHdbrBKoRAE1yGIWKVI2qDLEevectYI/LYlth2BBYfLwNffgGKSoSbHJAe+ShRFSVmOwXtMBsXkCN+VxG3F6VXPs82STRupmuekfk1qOn7/358h05qSj9nbz/jv/sfb7N9XTG6/Dj885+zZ/0G/eoiOW7wQRJHhU7crskFjMPIIxYo8PiPQEZREWIUwEnWoUdkeW/mrhFjTtt9nP4vcGQeKicUWivce9VxuI8Jmg/i1saTUQ1yzWdW07RNm43OaxS367AHm9px+869woSYwphUFXn6OVjwlig6ZJWTShG1P9JEYel6Elg1e+1EkPJJDM2FcHPPF/QfcvVvyJ+YXOC1Lvv97J7xL4FUZIWlE0gOtD0kQGZ3QnIaSzbbnef1dPo3wfkystp5KtVz5BV0csr9GQvGL2T5v25IHeqBExig5P99w8uiSW3fvcPdugdxCEyStz5HWoMqc3mg6rTm4c5typgiZQBjBaM+CFkQp6ARUQiBDRIZInjx4z5/92RWbusG4BdpXZOGEvl1ytTqnrxb4pqHvKoJvCbEn7lyFBr62J4SBx9sLTasLGhVJDDbSShmODvfpfOKyapHGIq1lPCoYZRZBiw+BunNIKSjKCTF4tuuO/b2Myd4EY/9TF+TPY724wOQubV1KSZ5nKKkwypLZjNxmRHnKpl2SF6+gRMlqeYVLI3xjuDzv+MF7V4zTM8asWHxpzezOhqNbhygZOT95n6vT59juCpESnRrRp47OBzKdMAhyuY8SBfPwIT5taDKFLDLk1GKOLHrf0pZfIXCLdf0BJla8s6+xmcCOJB+de7731NEUhj5TrK9yfAepPWcbIh9++JSu1hxNO2o5xd55i+7Rd3DrR3j2cHLGhdzDiS2OBmEdo9zSL3vctqZ3NTH0ONeRQsC1NVprokgUCaScMM33uT0+5vkrb7CZGp585zGKwMwIcqEhThiceQxRZCQsrR/TRcv60adso+DDJlApy/I8sfVr1l2ib3uCz8ljoneeOwissYNW1NcslucoITk4GlHMxthyhAuKJCR2pEla4a3BFjmTuUZZhcoUOh8MXpIYSBXNDmlTMWGATEY2657txjPPE7lK6JlCCIkxYE3OZHzAdluxWFxxcrpgsVgyGY8GRF3nTEYzqtjTO0Efup3Fcby5gK6tzW/Irjc0n91UJ8Yhz+O6yd9VdSkN3/vzQ+r/hmtXvO4fjPmlX30TYVsuLz/l6cmKzSqwbQGV8+TTBZotM/mYB1/4HN/6Z/8VJrfkY816/ZjTp58gqlMyt6VROUFA5ZZoGckMKDHBymMm8VOycEWjIRmL2s9RE429myGK11nyDaruEd32lDf3NHuFZLRfUnv4Dx82bDOF2iupK02/tsR+SYg1Tx5fUm977h5tMOUIefg6VCdw/pgoJA7FVo1ozRHJSHQIZFOFbwPNyRrv2uE527WE6HF9ixI9SSSCsQhVkpsZt8dHVEXPaflFzh93XKUFX1cdhUnEMEYIDdGSMCRyenKavqQ6vaI+3/IwwArJZgOdqlmFJWnn+3QkLHdFxhvvlJR7Au8TqQ1UywYhJZPbU+JMs39roDjGJAcNppK0UpGUYDIfEPSoQWqByXcUcKAVAwVQxcGxsRCDq+XlZU+hE3MLciqRaIwBpQTT8YyUAqen56zWGx4/fkZmLaNRweLyku12Q5YZtNZkecbf9m7/8TpwwBDjjTyBHb033lBxXxbkv/ge8RlzGLjunl5uoCLDoRbAwEB70UQNZ3sA84wxw4eyaKkpi5LMGGr3IZaSonyFutNs1+dEfYtg4A+fLxFxy146ZT4TXC3XzLKM0eEcHzecPf8e/fIxRb+kVRInS5q4JoZAlBCw5PKYLC3Z94/pZYcrNHKaIUuNfdWiyz3W+tt417GtP+IoD9yfZ2QTg841f/JJx8kqoCY5vRe0l0OOZuoXnJ/VBP+IcfYKwh0Ry3toO6VZfUDvGoLYo5YKJw7ZiCd4UWNHgmxkaU5rXOPomhXR93jXIxAoHM46Guu5k48YTY7QnUL0mu7+O9RyxJP4Ma/hmesAqRzss6UF1ABECEvVT+i8YLP5K85D4qmDzSJQGceiXdP6SFtLSqmYpEDMIneUxBYl00lJe35Js6wZjTLKqWR0MEaojD7IIR6m1EStCUYxnhVkhSJqEEqQjwYAIgoIQtBLiRiC28C1hL7n/dWGeltRXT7BNTXb5YLNds3F8oL14oxqvaDICrSymGyMycFmJSIFFJ6+29ISaPqIC344r0LcZB0qfS3DSLv8KjFQ1HdfizGhldo1hnq35+MAOMufNFP5z62fupmaz6f8wpfeIleQy8RV1dP6hBIWZQR5pgY7c6GI2hDzHBkFRtndCDxhKIaRePQoY5hMppiYkYWS8xPY+ES+P6c8nA9ZEEajpUYYSaYk+biknIw51jC5NSb28yEl3h3zalOTfemLtC5SdxDFnCj2OW3XrLuKT/7oT2ibjvf+vOVgXfHG/Ujjocwl0UAnhkcCO2wwXT89pEWoOUI2Q8jrTlN1jWxNJ/fRdkJqT0ldQ8AhC0VxPKFuA5friFRjJiNNGhd451g+eUoKATCDuDUq1utnZBeKW+98Hp1Nac5KNsKx6SSuX9Av/wOhfUjauZoIJEJopIyk2A/hukYNLmuZpe/B9YIq9Kzclg5BUjmz8jabYkOvFZ2PtGlw0FFKIryBqAgJeuC5LDgn44M04lmseRi2VHi6GGnUG3g5wvtzPD1Pg+MgeASDlkSEQG4yRvlkaAajpQmeJgjaFCmMYHpgKUeWNDKU+xpTDohKkIIrrrm5kT5A7RKh90M4Y90S2p7V+Zp6U5GWp4RmQ3P1lKbZ0NYLfFvhXYt3g53p9RSK5BEp7i6ESIyequlYrBuyckDvq9ahVEA3DWhNOStQQqBkIrcCawWlLpECVN8NzdS0hOCJeYuwhsoF/P8fAvprzeFLF5mSijwvyLKc4+MjjLEUecHhwQHHR8fsTceMigKb7YHM2DaKkDKCOaTznk1XsXo8Y/V4ytPTEd0PPOIwIQ1kmaTIBRvNMCFNESkCRjCELiuD1COkyhCpglQB/TC9CoK94ojZ3jG0PbE9JdKRDGQHY0IMPFl1dCHjcDzC5xZvFKF9zravYacHar1i27RcnH9CcXzAa4dHtOsxfZdTLxWNCzSL9/GuJnRbJB4hFQpDNAJih0yC+aRAK4GaTPBRU1WaKmkumg2V6wgJjBpT2D2CyYna4HWPFwolNXiLkDkpDg/kymRUsuRxGrFKkU+6BY0UrFPE6RlduY+LW2JqOQ8J+si2axg5UKJAK4U2BmkKbKaJOqfzw3QNKSnyHGkT0jpsCWZk0Wa45HopaBHIXcaRT0PGTO/jcH59wPWOFDy50YxzORhIhEBTV7QCmqbmarHk5OSUi4slq3XF/l7L4FYYUQIg7Rz+0g21Iu4uKbmjml47lw1W6wNsfYMR7sJ/B/3V0EzFlPAh/PzPzn9ivQD8082ndPORQAqU0dx55RZf+8aXeLB21E0EfUAQmo07oFlvOP1AcLGa872/bDh8o2T/QUJqSZlLthboB3MHgcPIoaFMUiB0gdQTBA4RN1znRoUAmRxxvP86wo+heg5hS1QROyswI8FpFWidYFbOKEaSidVcnizpthdD40tG6yXbLnBx8Zjp3px7919B2JpUGVwPZ0nQrx4TWeC250RfkYJAeI02OaRI6CtGhSUvFGo8ApNRVZpOlVy2NUddjY8JKTMKs480oyG7Kng8AVloRLAIUQ75fzHSKcXajDhLOVfJ8rBfs4o9W+nxxtKXdwd2RtUQCCThuAOIfNBQECNaG2ISbDaRpo3E6+ejlOhMIY0kyzVogS7kLoAUvBRU7LCBBD4OjrLOD3u/84HoA8l7jJGMS73rVqBth3iSvmtwvePhp09YbypOTi4py4zZtGS73dC1Dd6HAdx7qTn5sXbmr92TP8286if+m3gBcLzcEF0XjD/hwncjyBc3r3ejR3kpeFcIkNf26QmQ4mbSfA2UaG3Is5zJZMJsPie3GdZmvPbqq0zHEw73Zlibk2X79EFRt4qoJkQ1Y9tVNH3L2fclzjk+/JFgXgUeHA1ZmKNc4DNoVALhEES0GPRfSUpQFqEnCLlGhDXEmpR6YhzqnfnkPraYIJpLYtvTJweFIjucsOkC9Spi9ZijqWI2ymg6R7N6RggexDCNab1itblkcWHYe/Aqh3af+rRgKyJXvcK1a7bdX9JXjwldPcTMoFAyAyMJnUQZxXg+QlqLHI1oW0XbKlY+kPUV2XjMdF7ibU2vV3iT4QL4GAf6pB6mU8IbUhymNmtTsMHyNJac+4Zn3ZYqZbQ+0dpjvM3p3AqXAid9QveOuqtJpUXLDK01xlpkMSZqPaihfaBxjtxklGVO0BFpIma0q+EGggPb3XlQYtBPtt4P4L8P9FVL33SslhWb1Yqzpw/pm4p2u6bvPb7zSAzWjNHaoKVGygGc1tIjUkINxFquJ643H7s7hJf2q7ipiV5Ip172PLg2VBquNEmIkfAz3kE/dTN1fLzPt7/9ddbnF6wvLjm5rFj0LZM8IzeG0SwjpURTO6KxxFGJNgX5KEHfQPRDIC9AsyY3lsP5Hvu65LaZQOfpas/kzhHTOweoIkMYg7EFGoUdW/LpiHJvxOzuFCkZECApkNYipOAfyxsGF35XQPzZOvHRsud/ORnz5PsnfOffNRyerDG/Etl0gunI4NaSSl4X2gG1E6ClXTMl9SFRXkFqSCkMD42oIWr29r6AMZbNR39B6HuCSKjJiPKVGc8+2vDssmavnLM/GiPu3aZrt6yff8BgnDMmJUFIkqurj4nhOV/9B7/M8fEt1p9OOU0dP1wqXPucrvoAkRwSN4gMUUhhSSqQvMSoyNwqVJmjZiOulok+JNa+QXZXVAKCzjkoX2NbbnFG0/pAlSK5EFihkP0gXA6+oRHwUI95mEb8sd/jKp1xGRa46IkhIqdfRuh7ePdXtHHBx+FjbgUPMSCDR3hHaQtmE8NzMWIbFBvf0IVEnSLGCia3Muxhjj3MiBlENcB/XYDnVSKGxNhFXBtpt5Gm7mibjs3JmnbTsl0tcO2G9uIxrlnSXD0iuIbgKkLcmU2Edmi4Byxid/wGe3dSJKbAatuCrpiRoY3kqmoQUpAyxWg65uBgjvIO7XvybLD6Ho/HaKVomw6hJMXeZDBeCA1V07GqW1z4yWbqJxLo/5aXEGJwt7lppjRGD8DFdDrlrbffpigLxuMxb731Jl/8whfY298ffp6bxO8X7mpLn3jcJv703zziu9VjPn6kePjMMf1iZHYgGJUKP9KIDOgDuBYl/GAlrBRJWaSZDehkXEPckOhIUUEP0/IVXj3+BZYfv0+9eTZM6HNDeXvGYtXzwUctU1twb28fcTgljXOWzx/RrS8J4oiEoQ2CVV3x/Pn3+PzRu3z+7pdo13s0/ZhPt5a+dVxe/AnRd5iwRQsNskAlBdYiQ42g595sQllY1L3bbFrFBx8GNsnyZHvJsm9wMZHpGVhPykqCtTjfoPVO6OsKhBqT+oboOzZZzkJN+WE359I7PupO6YDGRdR8HzX7BXy8JMQ1T8MJbdezaipkmyjECKM1NsuQoxlysseyamm6nk3XIpTgqJyic5C2w5YCM5FoKVFSsgpQh4T2IGICNzjktd0ASITGY5Un05EyM8zGGu8TXRc4O93gnMd5z+nJGZ9+8pD1pqWuHW09wWhIwaMHeI+U4mAssgMswktBnkLs0uTFZ0NBrwu7G1fAnasZgIjx71Uzdb1unDITfAaXFwJhDPffvM/9N167rqmJgIuJhx08ebjm9x7nnCzg2R9ueZsxb99OKCOZjjWLXCC6BF2LoCeTkJQkKY3QI5SdI+iHkFvawSTFjTFyyqtHX6NdnLM6/xjhIWiBPZyTTQyf/vkFfSd5ZX6AGhWI4zkq/hUXT35AEHMSI1onEE3i+cmPQNziq9/8RWTZ0q8sqzriYmS1/CFNVWGpUUQsBRKDyQwiRZKSHJaW45FB3joklSPe/1Gg7RTP6zX79Zo+RqTOmWS3UHaKsxYXepxIaGmQMUPICfhA6ra0RrPIJ3zaj3nqCx72G9Z9R9P3pGxCPn2T2Hv89oyKFRUL3hGgSg0M4nxrLZ2DxWUYTGuRCC2QVmJGCpsp8rlBGEHLoBcmDo+yVUgov4vPCAOtse38kGlY9SgihfHYsWE2VgOFN3iWVw3bbY3znrqq+avv/4iqarlaNkwnGc3BiBCG/MwQ3I769De4F17w8178+T+zpJAorYag3Tj8my8YeYKX27gb3ZN4aV728svvvj5MUQaXxbADboTcaczEQAXT2pBlOdPpjNt3bvPaa69RjkrKsuRb3/omt27d4vj4GGst2ujdvzncP0kInrSJ89rzv/9PU55/uuEv/kJysAjMviJwKOYTTZsLkolDGHT0WBkHuqw2oHOUmRHkc4gLYuoJyYMv0F5xNPs8eV6wvnifvnV0IsJoRHF3yqcfbXl03nBnPGN/Mkbc22dTbTj56Ht0vSSKgyHrKkgur04w4opvf/kNDvfnVCdTzkXiBytFXV+yvPoRKrbo2JJkDsKgdYFCk7SklJoH8xI1nSBvH/PkaWT7PHHhPLFZUe7N2D88oOo6Wr3CmxwXAn3s0VaihQFZgjOkrsITWdgRZ3HE97opl/6Ck3ZB6wNOJfSd+8j8kL55Tu23PHLPUa1jU2/IxhOsKDDGYLMcNb9FMhnn64rOedZdCwWY8RSlA9F47CTHFBLiYHC76AMpCcYo+i5Qbzt6F+hdYHNZ0VYdFxdrtqsFH3/0AX2zxXctRuXkdowSOUVhd8ASDEVGQsl+oKgDSuzYWDHiwy4nLqUbJ1gp5M5B8yVA73p339BP1Y6Cqm+OUPLuZ76DfupmSgJWDnzULmnKgz3SeEx3uaVpe86rnUsNw4OobxPJBwiR4AIpRERoB+2RT1jf490l2binnAvu3p4xmc/QxYzKZWxWntA7Ru6uHAAAIABJREFU5vsFxiiyPEdnhiR3Dm9DMA6oAX1IYuiAr/+HDe1G4q1x4thY5v/DL7G8qDldQiUyTh8GLj9ecvb4Y5rtJSE4hmF1HFyuhEGPjjHFmEw9JMkFHsk4txRG0+gR0Y5p1ZQuJlbVgr3RmG996atc1pf86AdPKLKcd+6P6StBCJ6wOkH6Hjt/Fd82+PVmoAV1mm7rqGIYNEYTydODf8y5e0T3/u/ju4bYdyidIfQUazR5lvGrv/5fMz88ZHG5ols8Z/3e7/PqKwVff/eI3/vjM/7gu5coWZDSiD/9ox+yPl3z7q/c4yBfMRGWwoLKM9R4iixGnDxuaDaOmdZEU3D/4B5leUTaf4sfnj6iephhy8+R8jvEO/eJZkT8fqLoBJ+3+zw4PmL65VvE0BGePWRxDo+vBCdKsEma0+U5fUw0puAyBc6LkvRwTRSOdnuO6zYQlvjgOO8iMYGJYkAqncCHMCAGThM9dJunhH5DXz0l9BV9syCFjuh3TW8KEAfDibQTFWoZ0UJQmMFp0mrFrNTs7UbSIQlskaO1ppxM0Jmh61uM9wjXo/LxQFMVECXk4wwEhH6wXsc1uJCIUr3E0YWrqyt++7d/m8lkctNQDTXZjcDpxT3Fy5fYT16yN0ji9be+5HQx39vjt37rt7i2oVa7B0WWZRhjmc3nKKWRSrE3n7O/v0dW5Bhjbore4UEzvJOpSLwmE9nXjnjzKKdpBX0QtElx+rTmyQcP2V6eUK+3Q2ZEcigCQifs7BZ6tEemF6To6RJoW3B/b46zI9psRswmXPaSi8U5fnnGu1/5JbQ1vP+DT5BK8pXXJySXDb/GbktMFdP9W3g1Yvt8TfKOVI9wKbJWG+pVi+sTq9FbrA+n1B9+l+7qgrCtEEKiyzuU1jDLM+6/+YAHbz6g2qzpm5r4+C+xNLz99Vd4ftHz4QefIGKBVlMuT2o+eO8hR3c0mcnRvSQECaMZ2AImt2gvPdWmxgqG6d/BnL3ykFdHR4z6wOrjQCtyuvFd5P4B6tYI/2hDulC8Kaccl4k7X7jHZGaHqZ8ukEXJqtYstwqXBo2UlzlBKh5XBtrBDc73W1xzBbGF1LFxiTYkZBqcANVOKO5JQ1ElFfQ1wje8l3cY5enbFud6NsuB6x+Co6kqtusVfR9wPlFfGUaF4Rvf+Cqjccne4YwEuOBeGG/sqHo3yN+1Vupmd7/4utxZ9r/QTA173vvAd77zHX7nd37np72i/s7Xi9o14cMO+dz9YOmlnwuxozox0F1uZ4nxnYL8X7xO10HTCfpRztVZ4OzhOZcfP6Reb3Bdiww9MgXIJLqck83vMp5pSnvCVnm8stw7nqKMpRodUh7cotMlW+9YLp/z4P5bHN++x+nVExZnl7x2WCKxxDaSfEu6OiPXhvlrb1NfVPSbltiOcF6xPttQmpKm8YQ0ZzH9BovnH1Bf/IBuW+O6HjOaI41lUmTs7c/5yje+SvCOeruBy0dw9ZjX3jmm3Cs5f/4JJ63Hmgm+13z0/jMODjNu3TtgnB8yLQ+xtkCkgJzeJgXD+tN2MHrQI8x0zv7+bT43OWSvmNK/L1HLLeX4FVI5xdwfE7c1/hPBHZHzmpyzdzhC72Wk2BO7RLIFPgmuNoHOeVrX0QlJj0JNC0RuCU9rvPesLlYE3xP9ljYkNjub++uGQSAIKYIQ5MYiood+Q2Y846yn7zv6vme7WtJ3u6BR71hfLQgh4kIiuRxNzd27tzg6PuBgf5/RePTSxOhnWH8DYO5msLRDNm5ipX4sQ+raNjrudnaCXf7k9SkWn3lRwS6Hbve6A6i9y/7hxbNAa0OW57z19ud55dVXuXv7NqNRiTZ2mAxI9RmdFcBhBiOp+W/+6atsVj3rKuG0YrOEy6cbnv7wEzZXF7i2BeF39w9IabGHD7DjKZl8hhcrOmGYz0aMMkNT7BPyCa0q6Vzi/Pwpk9GIf/6Vr7Kur/je9x4zKkZ8+fUxqVGDLn11gXGO2d03aDYN25MtBItbWbayY+lamm1PO9Vczt/loj9le/kdmqrBbWtkXqLyfUaZZZRbvvqNrzKZjtmslsTtgvD4Lzm4Neb+L9zhD/7olJMnZxiVo+SERx9dkBrHrXsFljE2WbQRiKJElAekfM720wbX9xTWEE3J/PYRIptQFweYs4L1I0U2vUMqD/B39ghG068dtg28Xo549XjE9PUDYnT4ywvOTi94fl4xSWNEJrm4quljpDMW1xncSuF8xPmE+8EZwXmi3xKiZ9HFnQOmJoVE9InALrc0CmJMbBcr+romszMUGT01gkSMjnjtBUAgiUQULQLIlUOKgGbwZNjWG7x3SLELgmcXPyCuc9x+7AzcxMTsepY0OIp67wczmF18zHAm/w5ofkKwm9gIXFLk0wkyRbrFls55XOuRSqKMwIVE3yVUjKjkh4DTsAu0BDQJEwJh2zCXgvEkZ39vn7mZsvYlrddU24AInr1ZQlmJzixCq2FMv7uwklREKV7Ye74gjyCIKOCWSRxrwev/9E1aDx+fej45cfyv/7ZiebJldXFCCDUxBoSIg525AKkVWb4/CHzlGb3YEIUkt5a9PEdnU3o7IZoR3vXUzYY7szHvfu4N/vRHHd99fMk7b93h3q2S8+eSpvb01RqZwEyOQK4I2ysIGoIceLMp0lQdVQsX01/kqhrj+39F6OqBZ6rHCDXFWENZlrz7a/+Ie597gydPrlg+fJ8Pn/4Zn3+t5J9/85gffbLh36aAEIYUMz743hNi7fn2L3+bid5npCyZkohcIQ9mqOmUq7MTlpsOrTKMzTk+OCLfu0d6/fNsteIHp0vk7POIyRu0dw/xJtF/CDbAK/mU2/MZxf057tlzupNTNmvL2VZzQsk2aM4Xl/QkumIKCE7sjG67pt+s2Dz/iG59Bv4JMTX0boceSLPjW+uho5dg8jlSWfz2Mclv8O6MGDuCr0nRkcKAMZLC0BzfsMGHB7SWikJbjFYYoxhninEhqQU4wOYZxlryUYnUAh89MnhiCEOjvnOliUKQF4aUAm3TkFxP7HuCVINg+SVUb7PZ8Lu/+7tIOVBYbnDt+KKZeplmIV9GBF9qqG6c+W7+fN1MDcXyb/zGb/Cbv/mbnzm7L9OUrh1uvI+7qYG4obS+eM108325gkzCwecmvPO5KZsmse0S//79huVFx/mTU5rVOX3TIERAqoAUEakF+XgPOznGyC0+1rgksCbj1v4erR2zzuaQlVRRsdysSJtL3jjeRyjNd/7jd5nPCr70uVtUG8NywaB9857xdA+XTXHLDb7xUCt8DNSqoa07+j5Q53fZzA7p3Hfx1YbUdghdYOwBWW6YTCxvff4dvvkPvslyWVNtK57+4RWqu+DLbx4xzjfI2CNiQsqC1VXL44/PGJVHZDODChJQpKIklCPE4R5tu2YVl4xVBtpipyPk3oyjoz2US0wrR6ZG+L0HsJ8hbmeEXpOi4q4ZcWesOHjtgGKkiMs1tjDIW1PaZ55u5QczlCQIwtAnzXkj8RGqZaRa1lw9OSf6FcGtaV3CBQb7WSEw185FmsFEpSzx2yX/L3dv9izZlZ33/fZ05hxu3rHurQkooNBoAA2gSXaTzUEcTJMWRZpS+EG29KCQHWGHHWH7zX+A/gKHX8QHh0MRtoNByhJFui1SHKSWyBDZ3SQBdqMxFYZCTXfOmzczz7gHP5y8VbfAJrspWzaD++FGVWaeU1lVe52117e+9X22PKdtTnG2pK5KvG3x7byXpfVd36kPdhVFgnoWGBYpP/nTP8L1m9d58ZXPYox5nJi+2yVWe67fZ9/+UCil5Bd+4Rf+vXdzv9O63AC4mMX3vkf11YWHxeOoWf1K9GCHAEYyMBoZdr64Q9MF5nXg3UeW9x9Zzg7PmO4f0lQV3vWS6AKPNIIkKyjW9kgzR6ynBOlw0rC+NiZOUs7yTdSwp5w2zjFfnLI1THj1xlV+7f5H7J+c8oXXRsQm4ehRwLoWt2yItWKwdRXf3MU3C6gErpWUZxVlUdLUlkZmTPPbzHlIMz+jK1ts1yP2yhTkWczW9hW++ENfWtHoGqbvfpWz91teeHabyUbCP0s+RuHQKsV2koefHGPkOteubZCaIXk6RhP3thPb2/hOsHj4ACUEWiTo0YDhzgR9ZZvxZMLdeUllFqSTm4Q8Q1xL8NMOeypZlxFXtexFqQqDP6sQ1sIgwVrB+dJSty1VU7F0goWT+FYSElieLWnKhuOPHtE1Jb47onOeugsE0c8AGyVRQoIBZRSj8QhcSz07wtsS1/VmxU1d49sF3rV9/OCJpEep/gyjRUsWeYrsBnu7OwyHA5Ik+QvHz5O9+efH0He8rr/4yVzJpe9w0YC93DW7/JmLIuvC+ECuOklPXXv5awmQqld5vXJlj9u3P9Mzi1azLC70XemLbgH0AiyFhCISrL+2jvVwNOs4nnv+4EPH+UnJyYMDunaG7TqktCjpe//ASFOMttGpIZInlKLECkOeD7gyzpkl6zRxgdUpXVszOz9mnGo+f/Mqb9yp+PrHR3zuxYQbOxkn+5K6crRliQpQbFwBdUZ1OoVG4xtFrVoWvqWuOupOcF48z/k8oZ7/C9pliastRCN0tE6aGYZ5wqvf+z1s725zelayPLzPw+aAq3sZn39hi3ffPkOGFiU0kpjDh2cY59navoIKCREGZQwhN/jxBIo1lo8eUtMhTYpKE/KNEQyGXFmfsIwEyblFbl5FjLdZbke0MiBih3Ge7SJhY5yR7RTUJ1Pa0xmzs1MOpgu6rEYnCWezmg7ww4S6USwX0JSBtvRMH0wpz+b47gjvWpZtIAQBSvcxLRVBAUoQZylaa9rpAtfVGJ0h0QQn8bbBdUvwFrzFh360xq/2mJQBRUCJXsStrks+PXB4MW97AW5d2oJPFVJC9EbaHg8uEKTgyc3+YvH4XRdT8/mSOx/eR2nDZCNnsVxS1y2LrFef8li8D7RLD7SI0KCV6JUa6RVkZOiQBDya1jm6tsXO5jQ+YIqATixKW7SMWB4taXWEKxW6cMSbMSL2vfiC7L2FpOipFMeV77mTRlOVlulxxVpXM2lrPnr/DtPTU/Y+/yzZxojB3hW6ICkmntkAEH2HAqlW7h5glEQoQ8DihKSJCqxuAYN1nqqtGY13yNfW+aH/6BWapuJ/edOwv/B8+YOa01OBNkMOwxVKu8vz104paDl4sMayAxe3LI3mZJb2HlHtFO8dXSv44K3fZ3r6kKuvvMqaitnfusFydszy9IAizRmNt5is75IXQ37n1/4PAg1H9/uEN390j7fuC37rjY95sF+hXQ3lPaydcnp8lXtB8jv/6FcY6CU/8TdeZxjG+HAFuZsRrcfMjn6VR9OPMNmQfDxh7dUNhGs5uvfb2MWCtUHJrduCnWspv/9gwcGppY030aZATUoYRLj6IUKeY4aBYR2xJmK+8ckD9hc1i/IBPnT40uOnKfbhGq49wTUntNUprlsihAUEkiFCJehogpABpV2PNvqWUD3CektXP8S7EmfPCMH1btjB9XRN0SNqSq7oDVKilWaU5RRxxJVR3hf/WpINU3QsCHWDRLL77DrFaMC1Z24gtcErTbuoqecVse4FHfJRjNIK1zqCkKR5jgwRyilcmuGSjLRIn4qhXiSkRzv6RBT+HGbGn5Ucw2MbkItkFvyKaoT4jklVwOqBJJ8qyC4sRJyH6dzS1Q47LVlMlxx+ckS+M6DYGZCOcmRkSBJHkvne0FlpTGq40FWMTK8qF5TEh44mynBKgUzx3lJWC+I4Y2805PrtHbafuc6vfCvjkyPB1/Yd0mhkvEYTFbzjdtketzy/WXF+krOcC9rCMnId/rCgVjXWnWGkwznP9OSIj99/i62ru2ztDNi/cR0loP3gPSKjubm9wXA4ZGtjg5OjE/75r/4T9j+6y/nJCbP9+7iu5ne+9i3axqGXJcpWtGHBfPAyx3nGvW/MmGcdW7dv4G9s8yf3axzgy4DpLLFsaZJBf1C8kuDX4PTgHWa1o0gjNkcxey8YDqrAJ8clzhpcOqR4RrE2kajYQujA1/gu0C07louK08WCk5Mpi8WSDotDUN4rsM7SLY5om4pqMUOIVdkjMrSIiZIMpTVR1M+zWdsQ2gVdeUq9PKOtZnTdFOdq2q6PIenqx3MHWvXggda9ElfXLnEobt66yY1nbj4upP4qr6eYVABCPP47P6aFrH544Hzpe5+v04pu2fDww32EkazdmhBlCekoJ4o8g0HAxAqpDGkS9Uht1w9KR4nqvdl8Qx0MnUhwMkWIirqpUVqytzZm7comt1+7wpv1R3z0+5b3ji3z+x0zl4IZ85HfYagjnn9uia0C06MUmXoibXmwTDlpB9hQIrr+0FKWJXc/eJvxxjov3LiKv7rB/OYL7N+7S5idsbsxYjzaZPfKNiaC3/r1/5PF9Iyj+/cppydUZyd85Y8kSsHxfkVsBfbwGzRil+XiGsf3jvmgPiLSgue+/xWG2TZRXKAHOWG+pH70m8jGoc0Qs7tN/NwaVWiw7SPSeM5k2HL9tsJFinemFfXS08QD4k3JZFcSr2sIq/lm7+nKjroMnC1nzM6XHB+dYnFYHPWDjC4Y2uUxti1ZzqcEb5EyEESEIsNEKVGUoyOPUp7gO6DDzfaxTcV8uo91S2x3TttZOusRvkZ4h5H9WSWKNFGkyfOYz778PD/wpS+wfWWbyWSNYlD8fxg/4VJ+eOzo9m3PjBfec9/+NmHVjb2UOx4XWRdtr9VBNvT0YrvqXjx8dMB0ds6ibHnzm2/TtS3OORprEUISJQn5YML69jPsFAN28hFHn5ywnJVsfnaTeJQgEkPTCdJUEcUBhO6tGpShRtIRSOIMGcV4HE5o6niANTWIlM5aqmrBaLxDsjbixdevUtUlv/i7mqMy8JX7lpOFIc4mHMotarvDrZ1zdkLH9HBE7qCLLFOhqQ9zLB2uPcRZS13B3Q/fZ1nPWdvdQQwCe8/cZnp8xMG9j1kfZOxd2WRjsk5RZLzx9a9hbcXDO3eo5ufM9u9jNPzj35DMThrSpiGcvEtT73N2OMQ4z0dfPSJWFc/+wGssZx1/cNgQnCSUnsR3GNXhs03McIi5ZqjckqMHD+lKmKzB3k2YXNG8edRxeGZJhiNUGjHPTzg3JdX8GCUso7WUKzubWDPk4XLB8qymquZ9WdMcY08iunsFtplj63Oq5TldU6OUAyFRFAgdE6cDlA5o4/G2wzlLmJ/QOks5O8B2JW17gvOWtnMIbxG+QeFRIhAZuVK87AvstlmwbCvm56eUddV7ttGDyhfenkr2VgYX1L0nzOwLoDg8pv49vbV7yiBCoLR6ivXzndZ3XUy1reVstmA0HjAoEpqqp4woDcqLi0ZAz1X0ltBPa/cSlGLVVAhPDHjDqhCqOkdY1iSyJiIij2OEhNqq3vw31OhOE0cdMhaoRCLVBYrvcSGwvww0PlD7jvl5y+GDOZv1nK16zltv3OHwYJ9zA2tXN3gmK2iDIYo9xrjVwUPQezOvHgKmN/674BQ7ERFk79TtgqV1lrU4YzAYcWU9pWkCRWKoHNw9XUInKAYTOjlg2qXIkSDTnlhH2ACpqbGRQMcFzi/wXQkInFfMjh8hFNxOXkI6SZTltPWi5x4rtaL4pUQm5d6dN1ksDpk+vIfrOqzz7E8D793zGCEwUhLsEi9675e28zz66CFuAjde2iCW2wSeQVyJEBOJHea0iaEdjYkma8itBOYl7YcPED6Qp4KNkWB3HYr7LdO6Q+sUISRd7LBaEroaIT0q08SJJI0FQTR0oaLzFT60aFcjXIVoHcqeIO0JQpV41aGVAalxIkfIDGPGIC3IBtd5fNfRtSW2q/B2jncVwdV98ziIx50oJXrD5TTWGK1IEkNkDGuDMUUcsTXI+k0pBKZIkWmE8T3RczTOGU0GTDbGSB3hZEQZVQi1JPItOjiixKC0ouwsBNCRQQXQwSKyhJBn/SzNkzBdBesTpPsyOv/0p54kJ/H4SfDUuzzFbw887r49da9PX3dBPaIvqC7++Iu7ddZjXaBuPU1lWR4tmR6cce/OIaOuYSwcG1ISD0AKi1arzp/ojRF9CD0VxMTIJAbZv+aExknQJka4QNM2xEJQ5AWTQcLWwDBII6LIcDivUZEgy4aIpGBqE9YST5YF2oWiqzSF6UB5sjxDOKgWc6QI+KCoyprpyRE7uxNG2ZC8yEkHA4zRGC1JI0Ua9Rz+4+kBx9O7PHr/PWbHR73hatd3GY0QbKQJCI9demxTYh0sz+eoumHn2gA/KJgez2mtxYWWJARy4dBJhBkMYGAIOXTtDNc64niDQQ7bY0HjAgeNp0P2imeFRgxkr4gXHEL2w5++6XCuw4seWV+WNVK1/fOzg+A6RN3LAse6RqreSFcLhZOGLI1R2iBMjbcO3zZ41+FWCLptlzhb4lyN930xLnAoAbESRJEiTc2FbzLnHoQKDIZDhqPhU3Scy+sv1KV6wu57apf/ZVhPzUeFJ1EnhXg8kH8RP87182JN56kbz3JaUU2X3P/wCBlJbC4p1gp0EiFCIIo8Sq7mypTAC0kfKAqZZAgT4bwDesNeoSKUjulsg3WePM8ZFhlrmWSQKGJjmDcWf1aCikmzIYuQIoImyRY4JEsVkekWaxxnaUSV59Rl1YNUQdF1nrOT4x45TwVFHpMOB0RJhF5IUqPIIk0cxXS24t79D5gdHXL48Yc0dUfTdrRNi3eezTwhNgZbneDqApB0bcfiZMHaRkQ6WcOsXUemE2SikMkMJiNC4/FmBJMBci2GeYlva4yxZClsjsAqSI56Y2phIkglYqR6n53gVm1B3xuhtgFHR+c6FlWNEB1C9rO/3hlEdY6yFbGsQIE2pme96IQ4TonjHBV1SOURXuBtx3I6x7VLumaBtSXWLrCun9dWwfVW2rqnkQ+LlCSJGI0Ldne3ufX8sxSDQf/8+jPiB/4dYujT8fOnDoqX88plZt+nOQkXn/90DrrUoXp81QoWfFKj9XcJF/TXHuzzPuCcZ7ksWSyXJOld5oteBttay7JuQSqSfEgxOmd7bqhHGzAOPHj/gNnxOV0hyDdyBhsFndBoHaHUKt9LgZKSZuVtJ5MMaWICvZmNkxFBRWgT40NL3bYMo4giL9gYGCptyJOITkjuny3xVjAYjOlkzmkXcyuFRHliY/ACBrqmjSHJCtp2RiNrfJBYp5hNp+hIsbU3IYshGw6oqyVGS2KjyCJFEkcYbbj34AHz2RH333mLpqwpqxbbWZq6YRgbBpHB12dYLNZaus6xOD2DPDC6us5CtJycLfGyw3vLgEAqA3mRwTBHDiS2bGnLU2SIybOCtQFsjQL5oSVuHSaOkdpTmUAjHM62GCmJs4hi4Bl3mgelp3Ut3cqjU7sWrMU7CO0c0c7QvgTVEkWmL2Sk7oGiLEEoh1QtbfAE2/Tnt3Ylid5VuK5c0foEBIcMDq0ERkmy1GCMwhiB95a28zjfsaiXdNb2VkGfipXeVF4+7nqK1X4mXCKorlhuIVxQWXtab1jVBE+o6d/d+q6Lqa6zLM5LotgQZxGdlFhjCC6gnGAwnuCA0lp863B1R5b0Ro/VssFah5ZR7wsrDEJq9HCdquo4nrcUwpO5jkXToZSmU0MIEjU/JpqWDGaCwcaA4ZZcdRugEx1BwdZGwclpw+/987uUZ3OWR6e8t/gEv7jL+ewuTXPG/S+/QV4MeeWbP47emBA/v0UcHiLdFCl6ZSoXem35dP1ZhE6o5ueIThEtCmIJxTYszo84qmZs3/oC4vqL/OIvfpmoOeHnXr3Go7OK33r3y7z8yhf5oZ//L/m9N77JWx9+xLsHJ9xXlizJcHSIhx+SRVvsfebHOX/0DtN7bxAY4kXK2f4Jru2oELRG4tUpMqrJigFdd87h/tsc7b+DCFB3c5xrsW27mlN4QhnrJW0FznuUFLzygy9ybXeXpBmwbOb8yp0TXtht+MEXFjRtg73fsr69hvmel9n9kZ9CDwaU1RTbOcZRwMZriI0dBIKDg4dsqAwzVHxkFa4V/PHpnGS0hit3MEOHvmoZtnfZWj7i+7/0GY5Cztfe2APbcn3UMRiN2Nq9inAOnKXLNT5WFAOB0JLTLsI1IKcds/kZD48f0syOaWfHPDqYs3Btjz6gUSgCGoRBCY8WjrUkZRgnfP6Va+zujHjx5Q2KUU6+cZ266jh+cETVOsraIfICESfMvMRJxc7miDiO0GlBWMldF5lkaBRJ7NE6IHSCc4H5YkkIlkj1nkQ2KFIFqXAYcSn5PE5kK0a6WM1ZPFaduShzPrU+ddB8/BAAwooK6INHBPHnmwRfRtdF37ELq+914cl4eFRTN45RobCu4p07d5ifnXGyeMjRuwrzoWLvxnMM1zdwI03sz9DtPq6boU2ftlxw5GvbpNvXWZ6XNK0jLWO0TLh64wb1YspHD+5w48aE6y99kW89+IivvvkWL14d8druS/z6m1/FxQN+9mf+Jqdlx++9/QmPZIk3C+JojDEZ4fQhumu4+exrLJctd2a/h3eajgnTI4+rP2Bzb5d0Z5NOziCasb4xxneB+5+83fO3G0fnKlpbsVhMaeoa2/XKWkIbkIJKKJQH1TSMdgY8//lr+FLTdXM+WHSAY7KbI4NHB8dBXfItCZ/77E22Xn4V52qs7ZgMM/JUMsivIOOU2eycOBieW4t4pCRnleTDR3NOTzw7+RZmYJATg5hXhPv3WM9G6Fd2kHmOOarZLixZLFjbWkdJ2Xe3DYRU0iu0OQ7PFsyrhqjTuM5y/+ABs+mM44//BKUykmQDq+mNfaXph9JljBSQCUseKbbHBRubBXvXx0wXU86rOR/f9wSh0UY9RTf9K78+VeFdNBN8eGLOPZ13HJ/WFJliYALv3L/H0f4JR2ef4L1l//R9xpNN9m7ewq2lJOOYyJ9g7DFSWLzwJMKjkgGDa6/QdZZqUZO0EXFVsLmxC4MB+w9xIlxaAAAgAElEQVTuMGsFN2+8xLG3/NNf+U3WVcXf/anv5Y8+PuH9d/4FP/5jP8XG9h6//cYdZsdT3no0I9YRSWLwyykcPGB7dJvx1mf58I/+LYvTUzqxSVkp7r19FxEkN179LDUVXp8wHEfEYsLpyX1Ojx7w/je/jnMddTenbSvKqsJ1DmddT8s2fZfaOtB1w1YkuPXKHqnxxGLJ6XLOvf0Ft7OK9XRBt+ggBK795E/2FEovCMHR0mGbijCbszEakg1j6rrBC8/NYcp5JLgvFLOq5uvfqjGfWWOscmShkMHCx4fETnL7xSscTsfUesAodowTz3B9RJr37BAIhEwiFP0cilK9wlUXoANPA8KxMYoolyW/9Ev/CmcdUdwL/ASXrHKQJlOeWMMze1tMxgUvvnKT0WTElRvXyAZDhuPJYyuAf5/x853ufmFYejkHXarJLm7yp3PQxcF1lbN6wZVeMl7QF5RCrBQ9CVjne1Pnqu21jSQcPnrI+dmUNMt7PzQl0TplMHyBelHy5r/5fR4U69wZbFLOjmirOZ8cvkWW57zw+deJ1gaYvQGRPUY3j1A6oFQgDg4lJYMrzyGTgvl0gewkyTwlj9dZe05wcnSfD6eHrO/cQt98gd/53TeQ7Tk/98Of5WC65Hfe+ue8+OIr/ODP/g2++t4D3r1/yIf6jCPVkWcpIXSIhx8wMhNefv2L7H90h/v1NxBiDStzTu7NsMuW29/3KtIInD7FZA3bO5s4u+TjD7/Jh+84vPWU1RmdbSjLBc5ZbLtSlI4MVmkqFK11eNexd3uTK7s7uGVg7lpOTjo0ETs3ZF/Ae8e79x+yrBVbP/Qq8doana9RXrI9KhiqIcNoE6UVZ2cz1qRAZwHWwDaKR/OUgcsYJrvoFFQa2HInJGpBfHWDcx/z/ictwnt2B54kiyhGg54KHzyVsFjpKQYRCHhwMsPbQNRpzhdzDk4OOVjc5/zgLkm6idEpkelHOIw0QN+0MHgSYVkvUsZ5zI1nNyiGEQezQ+blkg/utuhzz7xOkW0L7QXNWiBWwipa608VWP356PLWvZhL9xfXXBqtCKEXsPmLsGe/62LKGE0xzIiTGKV6nxNHT4cTWiKkQgqBEhIRLNiAMgYdRcjWI+klcBEghEZIjYxipBUI7QhC9PLz3uOEo8H2lKimw9im7+AYhUhjEqPQStBJS1BQAJEUZJFEpZpkZPBRgk8zsuEY2wnqRiJMTC0Vyjra6Snt4nyFYl1+gEhkVCBNgpjPkMITRxLRidVDtVcKLMZrjDe2uPNv54jFlNu7YIxhc3NInsW4zrExznn+2hbVwZyy7BBy2XOoVYzUhmACSguUMuB7MiReE5yiOl/iaIjH6zgnaWcdtvM42/ZD987hcQgpyIqs7zQ4jYljskGO7xp81yKAOE77w66ykKQEbK8UJS1eLGhbS1g4zGiN3AwJ25u0ccrxfMHSx4hkSKTG5GaCl4a27UgTQAnSpaPF0VlNY2KaKCcYi9EdNoC3LVkaMdI5GzvrSO/YGVuG4yHbV7fwbcC3nmWkabUgTT1BhN4Z21oQ3WMOtdIROs7QUYqOEqQaoETGKB+itSJOU7QMGOkZpxnDJOWFz1xlZ3vIrVsj8mFGPNmjLBuUkCzKjvmyQ2QFxAkajZOK4SBBa4VD9kWQ7zuYSgm0EURG4EIgCI+W/ffVWvfBGvrKpFuhs49DeYUAPl00PSZKsAqM/p1LKKBA9N2K1e8uXns6TwqeXPFnr0/R1y96ZYQgnuhg0M9RGS3JiogQYlzI8TbgHXgl6YCmrGkWVT9bE/yKH9+bbUqTYvIRctkgaYmUQGuBUOCloA4gopjh2piDe7B/tGBnMxBFitEgQUQxwXkiKdmdFMjK0SwXBBpc6J8lkYywBroIoijCtbI3j/WC4CRt3VEtK3SSkgyGzE2F7zrqusM1FrusCdIRZCBOU5LMENr+GRXnCUpAFHrOvkSSFnFv5htppEwQnUcGyBKPDBLZapJiQLK1hZyMccOCaubpfIColzlP8pwgDa7r6Qt5KkibQNV5vKUHP6TGy94Z1Ium92JSgiTWDEYpbdBMCk+RCDZ2BkipsLUHIyFVNG1N3TaYssFYi3I9SCyFfBwjUsQo3VOxpPAMRjmJKYiyAq0kKZY00myPcyYbBTt7I6JzQ7KMmJU11vdmjZdnJy5t8u9yfZvd+u2Ag79E68+Ln8uvKwlaCdLMkA9i2o0M23W9+bdWdEhs29GdW1zXEnBPwLAgEdJgsgGhqpAsMBISIwla4KygA6RQZIMBVVlycDxH5569iSZNY9ZGHiUEuMDmKKMygW42I1gLcon3llhGBCMJxhNFGmPMilnSx0/XespF2VOYhyPqMwvKUy17NbtuXuFDHz9SG0aTIaEThA6SPMFEBr1S3JIIRuMBCEdQgqCi/h9JCIKv8VZDEwhBogcDfBC0PtBWNc3S0tFbLJg0JSHGewgikCV9Lo6NRzp6mWihcEoTpOxl+r0HBHGsyHPJ2kbBOAlMUs94Y0CWp9hm1VnJNSiQsme8uOBxold8daE/u2hjMFFEXqQEHMOhAd8Q7AIhDVIaMuOJteTm7ibjUcHV67sMxkO2djaRuqeHI/7/jp8/VTY9/g59DnqSf8SK93D5+12euQqP88+lXtXKdPrCJsE5R2d7T0ahJG3b53VtIoQQJElMHMekSYz0li6NUMrRdAvioj/j4Hqmk5USvKddlL3oBO5SV05AkOikQCYFknOk8CRmZWCver+wBkGc5+TDIe+e14TlkpvbEq0Nk1FKFmtc5xmlEXuTAWo2p65blC4RwRHJCGk0xIE47gWecArvBXgFTtE1Fq888WCAbQOVauk6T1u32LLBtx2ddyBEX5QAoe1tFuI07iHiEFBiJSAVSVAeGSUELxCdx0jItER2EqwmXVvD6pQwGtAVOeWZxWKQSYrRGUmcEaTCWkcaaUCSNZY2BEKkccbgVNQzI2QvAha8J401XkWsrfdd9bXcEqeafBghhUKhUV1NHSxxaggEjFnicEgX+gaIFBhjiNN0RQ9XCOkxOjAajdFGE6cFRnhiLGtFyihP2L06IR9EkHqSRczx+RIXPCYyj200wqqYCqs9eXke6vKWv/BXeype+m3/hG67etv7wF8kGX3XxdTmlQlf+onXqBeOeuGYLg+puxYx2kRZT1XXICUyikFrnFYIkyOiFD1IwTtEu5I09KzEKhSjgWGSQ2cN1kqC9jjZ0jT7OKtomgLXLanrGfnZhOFpyc7akHGe0kmL0AKtLMPI8J/8/G208ETKMkwCo9TTloc09YLf/UBw3GiaK1tMHx3x1i//GsuDe3ipCfSSil1QBCJ0sYk2Me7kDmli2bthOT1ccu/wgM62CBPx2q0dbr98g6/+6ogHxyf88oO7PPvCc/y9//a/4Rtf+wb/+z/6h/zX//3f46d/7m/zP/6Df8ibf/gNDg/vEMUJzz/7gyy6c+6efgVhIc83qMs51p5SDF+jyNZ58PU30OMh1//a3+XovW9x8sk/wVlwnUSuBlul0aSZ5pXXN0l0hlquc/X2LT73o19keu9dzh5+gLAdwXkePXibg8MP+cyt55lkBT/2Uk4mK5Zn71KfbtCcr5Hd/l6SYsC9pGBaBt64O8G4EdvXdxGioGDE4nxJXTVsXU8QkWRenlM1Frl7leiZDR5d3yQul5jjcx6cGB5ODXboiEfwwz96kzhVbBYCk0SYouDszHE2dZzcP+fkrKKcz2jqJfufvIttW1zb7+6ARyYpMt0iHll0ss44k0xGCX/9rz3H1taQZ57fIooEsRHoOEWZGGkUUoJ0U8ATdEw09CSjTWbnFSfTJSrNEUmyEjfpfdS6zvHweI6zFmc7vPB00qNbjwoB3y4I3jNOOqTSJIO1fuhVBU6O5zx6OKUs60sR1Ht5SSkfq51dfu9p4t4q0leF11MFVQh/Kule7kj9maH/7XLn6ks4F/AeNibJY1nROBnx0z/3BVzXUJfnHM3haBEIRYZVkm/+1h9zfG+fxvcP2eA7Gi+pfMIwGpIMJriThzjOub4zAQnfeviQZVkRkpTJWsErV9f4+FsD7p+lHN67S65a/ubf+XmUNPzGP/03PPvcVf67/+LnePvN9/j9f/lHzM4eUXZnPHPjddJsxJ3jd7Blw/rahHJRc3pywPrkOhvbtyhPax698xGb11+luOq4e+fLnDcLqqVAOocOCVFsSHLDyy+P2NlJ0dUakcm59frzSGFZHt8H55HesbCBu5+8x5WNbQbFJnvxMZGsUa7BNor5ccGNW1e4/fkfZikVx53ncJ5RlynDPMNoQzrc7KmC85q4UCQjSdm2UJcMtguKIqbbHFAZgSgrGhfTxkNsiAiV48bVjBvPacapJDKCJIuxDk6nbmVI7Xn4aMoHHz9iOa9pGtvTxoIgiIQovcrz3/Ms9XLO4uQQ62a09Yzv/8L38dyz13jm1lXSNO6H54VAafMYmd6t5jTVgnT0PmXVkCTJd0oZf7XWnxM//WER8kyTJkWPdIbAl370JURwVIsZi9rxyWnARxG+yLj79id88vVPmJ42WAzB1XgfqF1CKgqS0TqaQ2DO9ihnfc/z/rdOOZmdYLViWGS8uDfm0ZHmN89zjg5OePvtfb70Y1/iSz/7El/59a/yzTfu8Pf/q59Ha8WXf+m3mc2PuTf9BpsbN9i99f3cP/uYs9kfUmQK49c5PjxGk7G+9RpGxjx46w5qMua5L/4MfzT/15w+fJ+ySvBtwPgYrQXpKGbvas6rn5sgmgxZZ9x67Xkm22tMH31EVy3BWVwQfHT3XQb5gK3JOoNEcWUYEbsD6ukBttkEkaKLFisVS6WZ1prDo4SBiUl3IOlipJUs5jVCCIYbEjnvmM+WJMOYbLSB3h1RraXIqsI30JghnRf42jPKDa9/zzp5JMhjQZxGKK04OXO0bT+n4JxnPm85ny149PCYrg3Y7omMuMoSlBI8+/yzTMYJr7682zMrmpok0USRwmjxWGhBrGT/e1GSnn4Y8N+xa/T/xvr0/OyF7+AFS+LJuyu6E5dz0NPdp6d4hJffX33kSWklHlPug7Orbpfo6d4+9J5BJsLogNGCrnUoCVsbe+R5wXjSMnpmnd2feInpyQEnR/u8/rnvYW/vCp+cKUon6QYp81nJnT94n8WjGU4neCzOOWpncCpGZ2vEWYoV75NGmmvX1jk6mPPR/fssXQNpxo2tEc9dWeMrTcGjg3Puvn+Xm8/s8Xf+/n/Oe299zK/80pf52b/1o/yn//H38X/943/Jxx/cZX//PUwcc/vWF1jakrvTP8QAW+vbzM7OqcsjxhuvsrY24fijh+hBzLOf/w95+MFdPrrzFZoamqXAuF711gw0+cDwpR/YIItTVLnG2s461z5zneb8hHp+gnSeEDyz9pxH+yVXt3cZRo5xfIIKNdK3VLOUapHw+S/9GDJJmUnDQQP7ZwOUzxmsDUHlRGZIU3fY1rG+k4IStG5JVXfYcY5eTzgwntgGklng4WHNyf6CRFuioeRzr4xWoz0l1nZU7QxtBqAT9j+acnQ8xQeJ94H5rMTZ0BfBQBAFk91X2Lj5OvPjA6r5jHL5CWka+Os//SNsbU24+ewe4PG+P1dJqXrvt+DZWTzDYn6Ozt7m/v1HnEzPWSyWvcdhCE/Mp4N/TMO+LJH+eKOuwOrHsLbqhS0iY1a0VI+1DufcqqD67tZ3XUwhJUFHIDsg9GC0C7RNi7Me3zlCsISm7ZN3ENRdiyPQdv2QoXIWGQI69FWq8D0VKhKsUCCLtTUBSbACbwVN7XCWHhlvJb6G8mwJZYQVDpTEtg6dpmRbE1IjGceaeVNjz2oKUZPRcnV9REHCySTFzRWqXCC6tqf0hF6CUcsEYTIGww2UMZTOYeuO6uyUrqqQShMXG0g9ppzD7HDKSy9ssV6UvPW193HBMRjmZKMRZrhJh6FctjReEXTO9VufRUnBYnlM1S1RAUyc9yiCt7hlg/ULmlYyPx2Q6pTNbESZDdDagOtRwz6Je6LhFYpxwedu7eFax5t/vM9kUSK7mLxYR+81dPv3aGdnnB+eYdGcFGPUWBGKCBnHxMU6XZnCMkWlQ1Q2xFiJ9gGVDsB7rPEEESOVJtQS1wTS2GFiKAqFThTR5pBkLWUR4OisYnn3hIenFdPaYY9P8VWDZoaOBNPIIpQm6JjFvGN+3nF4vGSxaCiXM7q2Ynr0AG89IWikitBRhlI1UjmGmyPSaMwz2ykb44Srz+wxWUuZbIzRWmA0SB0htFmpswRck6x8PXqRhSAUKopI8oDTCi88ekW9UASCDOQm0PqOqjtf+Wb0hnXNymSRAEL2aFQ5n6NWBpDWttjQ9Qfcb7su49qXXvkUFe9iPcZHHqOFny69wp/6efkel/nsFx95ImMNXdcPCLde4futhSTggkV4S+QDRaxwytAkhhrQbYtsGoQxEKLeYFkbMnLybEhRDKhCoGkq6rNT0L0xa5yO0Pl1TLTO/GzJxijmcy9s8uEbd6jKOUlsMHFGPB6jswznHNYLOhkxWt9mEk1wvuH8/AjhPJE2ZGtjvJyjzqd4Gmo7YzHPcCFh42rUz2ClMTbpsJUELMF6TDEi31xjb3eN6zsJ737jmIXveEHExEmK3tgkVAv87ISz8znT6YJcREjnGa9LpE6I4h5ZFUqgTUqaD6iqFtd0SB2jE4WQBrRCxApaj5cgZCDWnjiGJJVkA0NSRDgJpfUsjivaqqFaWmoqGhx+qSCSLLXvaZpK03WB6WlL79rueLB/zOGjI+rGYTuPEj1yGKVpT71xHYEOFXWkuUQRUwxSsiIlyxO0UZyeTHE+9Oi5FEilqKslTVVxNjunLGuc85f26F/8YPipEYy/tOuykt9T8XMRbSHgnadpPDZIOt/LTYsQcCvuv3KeVMJkGNMaQ5MoIuFRTdMjpcYghEMESHROlg0YDoYsqzMWTU27nFPPJBJI0gzibYrROsvzFh08r9ze5Oj+nAfvnSHwZHlKOhpR2x6tdc5jhSHKRlzbiBDBMDs76D1dkKSDEdII9GyKkI7GniPLBHWaMyjGjOKMPEnJ0hjXKLoQwHqkicg3t9nYHnDr6jr3P57x8PiY680tjEoYjCfYNMad7rNY1pwcnmNHE2KhicaewiiEXiHUXdTT5KRaGWqrfp7MBLwOWAWBfiC81/AJRNoTR4EklaRFj5ILI2mBxVlDt2xYLjpaF1jOzwlG4ZeKuQpEKhCkIiCYTlu6to8f5x1VXbFcNpyczgleErzExDHKaNK4wxjNzs6YyShlPC4IzmG7mMj0zAWt1cpDTT0pRvCrWuOCDCf+n8fPU7/4d1uP9/ZqPurPtq0Kf4oS+PS3CZdo65cKr0vdQSn9SoSpp625TmHblk4qnJX4ECHiETIuUFFGHA/J05pEaWJ8T5cWhkUS4+oGVdcIaxFxjPCS4DsinYPOKPIBJok4b1s6GqrTY2xZorQhH66RyRxrDdWi4rlrIwam5P2v9fM7eZ6SDgri8RhpTB8/9DN0O3s3UUpwPj+hcQ06COI4xU9yyqahbStat6BqFefTnBTNZpyTpxlJbAidxGnZs7GlJJ1sMVrPeObqNsE63rt/TFRkxDpDDxxJLPGzY2xZ8+DwBBsEo7hA5Iq1WKNMTqQz2kqshGtyVJYRFjW+Ax2nyBBAWoSKQQuwguAgMgFlBFnaG/76RBMX/QhPPW84ntacLh1LK2nnNdJKlsIhpMe3JW3XsaxahFgiOOPR/iHn8wXW92J0VWUJXqCEQWmDSWK88wjbgewwsaUYGPJEkg8SsiIhzWLqumQxX/TKkCtDd0SgXJScz0um0xnz+Rxr7UpIQvZ7LPgVfa83ixYrZkn/wPY9RSPIx2cfsdrHatUlDp9OSuLTMfDnr++6mLJesuzMiu7joIPQeBanM5rOIlWE61qa+RSTZsSjMeWixnuHq2qCtWilUEKQrORkg5TEOiKLUqwUOBnoyhLvwYgE1wUWZ/Ne5cUkqG6GLo84O3acNA4nAl5olvIZyNeJbhdMUsUzRaA5OKbZf8Br2ydcHde8/Nqr2HHE+6khPgv8SXOGdTWLKO2pSs6SmjWiZMyVvRcQWrD/dctyOeOgmeF1SpIOSCbfTzJ8nbsfdpTTd/jP/tbLnM/W+R/++LcQviJLBGtXrnLltR/htI744zc/5HARcPkG/8HP/CxdM+N//YV/gEdQrO1hRrtE6Q06V2GbM5b1xzQ2omyeZ00OeSkf4YshRZ5SC0V9ceDFk+29xs61Pf72jz3P/fsf84u//Os4qfns7R9muLfO+vUNpvsfcn54l4O3PmHeCVTtKXcnPLP2DPnaFcbPPoe3Z9hqQVRsoIqCwVGDdzC5sobtPG3bgg4I4whVwLWBYdKSp5KNrYxWGcbPbTHKEo7ajnc+OOSNf/U2mhpFy/LkXTrvKUOF8x1NO6PtoKzBtjW2rZCrgWEX5gQcXkQ9l1YPMOmEbHQN6hLhLJ95/XVuPLvLT7yyzcYwIk/7AiqNLhq9jiDUpeIi0IYI7wXdSv2lC/3gcr6WMK9L2rYiUwlGSILt5aC3ck8ZSo5OHiGiGKEy2tpReY+J037QXybYuuXs4B5RYhisD6maGicbgni6mPq2TeMnOedSk5o+6QoeI6KXs9zFwGR/3eU7frrj9Weti0IqEHygrhrK0nHaRVgvKVQgdB3N6YxUNazHS4rhgOFazFRL5l2g6EoWTYnOUoKR0NUkqmAcb7K9ucvW9g4nb3qq6RmH78+RkSbONinyKwyv/DBxrvjgnUd89uaAH//CZ/mf7n6FO0cP0cqSDVKuvvIyRR7xaH/K8aJlqVI+/9IrPHN9i9/4tf+Nhw/uMt68SZSMSLaeRR4dMjt9SBfOOJnNWdbXSJIN9l7SpEXMlcmQJEiEVTRVTd058q2rbL34GV59eY0XNhS//s/+Zw6O57z86vcQbY0Z71yl2/+Y8pNHzO884N6HB7C0VDs7TNJtIjMknewgly3i+BAV5+ikQMynuPOGLF8jGWZgbf/fmUmC9NhFr06Z647hQBJkzNpmSpLHNMBs0fLuu8e4tgPfUjWWsrLUoaP1jq7tDUFnC0HbWBbTBfB/k/dmMbZl533fbw17PGPNd+zbI7ubIimqSdGaKcWypogGIktOgDwleTD8nofAL0GQJyVAgCAPcQwjDhLZSgQlkGwJkulBojiKTZFsstnD7e7b9/Ydaq4z72GNedin6t4eaLUQO7GVBRTq1D5n16lhfeub/t//H1EyYvwK4yu8TEFoyqxHkmaMdq4gvMU0c7SsSMslvUKRxC2GWz3SfkqUULcNr7x+k7Zt8T6Q5RllWVLXNXVd88orN2mahrZpP8xG+0u6IlzA8iLWOhZzw9JpFi6hlIFERNqzOdiWvXyBzjVXd7aolWCiBCPpGLmKSaIQZQlOkUTJINljuHWJa1eusr885f58wYwGOzsm7W+ztX0VNf5h8nzI3dtTdjYl/8mvPM8X/uUx/+gb94l+RZoILn/kKXpLy2TZYlvDQmRsX9rlx/7K87z87a/ytS/+UwYbl+n1t8iuPoYJmunpPt5UnC3eIGnGLJaP8eRmZCMr2B31abeHqKBoqsjKOHRvxPZzP8RTTwz58Y9u8puv/zP+5GtfYffadTaGu/R2txG+YHX3e7gHx7z9Z28x3ruCbzz6sU166ZjeeJe0LAneEYJAJXlXRQ6CJtHkg5QYPE0IkICIAb+IKBEptUUWkdFmRjnOGWwXkEoWxnHz9pT56QrhW5z3zJfH2OCpo8VZg3MNi0pQt5HVdIkzDqUi4LAsuzEGmZAlOZnO2dy7RDkYMNqQjPuKH/jYVQa9jH6REEPA+xSxlmrWOlmPNDxySkcJ8VxHSfEuMdz/d3fuI+s80Hz43IUPegSOHnmUBXD92viwu/bQB51DXh9CBBEQg1v7MAXRQYi4VtD6rogdfaBagc5zQu8GLk1pTIKW22yWfVTlcMenXHm8j+hlnOicpFrRr5eY4FD9HtFZcJZhtkNejLm0dxmh4Z2qopkuieaUkPQo+2N62z9IOX6WxULw4M4xn/vpG8ynGb/+td/Gtz2SBMaXdrj+Q5/EZyUPDiZMnMQUG/zMT/0Qrp3zj3/r74NMGO8+QbKxQ37lErVd0bYz5vU7ND5jWT/Nhs35SFbQ9kp2xyVzoVBBYyIE79h8+nmuXtvhRz++y8G9e/yv3/gDnlvWPPfcD1KMBwy2h1ST+9ST+xx99w1WJpKEhHZ7xM5gl7QYUm5t0TQT5GqOyvokWUE8WiIsDDeGROTaB0VQENdEKUXqybPIaDOliJCOc/JEYYRk/6jmzveO0dKhREp7f4qPE1ZvWJx3tM2SxsB8CaY2mNp0lPQiYFh0LIoy62CvaUneHzBQOzi7wFGRqRlZr2ZQ9BkUGcUoR5cJnsjJZMKrr75KWHec+v1urm6xWDCbzXj5e68yn81ZrSq87xiFxRoNcD4L9ZBttWPn8851v3dc2926SyWVvJChCd6v9/457O8vlk196GRqPp3xxiuvk8oMTcp8saBaLrCmwTvfDR3GSFqUoFTnbGPsqAqD64T5ZAZSYPFrLHXHHEVo8KbBeAgxBTRCm26uoNex/yEjMo2gPMgVqJbecAhpjkk3CekYITtRsCVgkwRTFLx5dMLB/j7Z2RQ5HMHzn8TuH9CYOa1rcEEi6CF10rH5RUvMJOKcFQhB0D2S4WMMdj4OjUXOvsGVF17g8vUtvvHSn2GqCf/+L/woV64/yROX9uhnG+xt7HAyOeR7b72Fb+dkseLNl79JlIqN534RuzwhHL2+xsg70IpYXu00jYJku28YFXPs8g7YQ4Y9Bz7DtAOCb4ihwpy9xak/4n///ZvMJqc0pmb/4DZf/PI/phwr8qGkufUqzekRx6sGExUPThdIpTm4O2Mwuozu75BeKsh0xYnIsZVkuNFD+cgNYVnVFTN73NFfp4cmBbwAACAASURBVAmrIhDahANnSSrPYn7SsUw1O6yamtfu7TOZNvRGuzTtlNpVGO2wwVLPTvHeQAzrQD50OjbiPGEQSFIiHkXHxpIlEqUNcEK/X9IflTx+peSJyyU6idhgmbaW1MWu5bQ++K3rui1JItdiggLvPIv5ihADUYJQCSR5x5LWVDTWIxGIZoEMjiQYTFvjz4UHY8RJvRaJlkSgDREH+CTBaY0TgrTsMy6HpNl7qNHDRWp0AbOIa2cm4EKj4xxzfnHtfRnSewz8faXz91x+z7MXMI8QCCFQe1j67nBRCryAKAVGqU5se7HCL5aE+w9g5xIxKTDNktbUGCfwMUMlA5yQNKHFyYBIVWfb3hL1AFkOGV/5GIoENXmdXn+HS9cf53Rxj/tHRzzz3BM89cR1ru7ukPeHvPBcQmta7hyfsFjOKaVhdrjPnXZGvvUUu8Ul4mSfWE+R+X2EMMTxFXyMuBAZlorNkUEzJ9qEQdHiisCpGq6pjwNmfsLindf50sryvbTl3sE+i5XhT774RwwGJcNxSlid4k7vcnQ0Z1I1JGdLarXgyvYAHRO2rxUkvZxyLxBkytSAKku20gQnNT4GqmoJAgrVQ6SgCk2rImfOsaxrzKoF2yMayf5kiakcIslRKkFKjc8dvnQszyZUdQXRdbAG78D7jsBsHRNJkZCInGQ9n1ckApUEnD0mWEtrTtHKEHVD6xoIlv3DfVywTCfHtG3DK6++RtO0nRCiVCSJ7hySDxwcHgJizTL3QY7m++3VfwfaUB+w3keLzsM6fIzdLIjxkYUTuAhaRqLs5jKs7GaLJ1WNWFncySn0B4idS5jlnOVqTts6rJMkapMoJE1wZNF2BQoZEcESRIHTPXrjGyS9Lfx8nzScsvux55Cy4Zvfuwla8ou/9DM8/5En2ej3ePZ6wrK2nC3PWC5WZLT41ZTbN2/S+oxLz/8UcXEC1RyZHiBFShxsEtohLkZ6OuPypqWfrvBmQpFUjHqWqe7RrvX+vK1Y3nuDm3P47Qeel165SdVUfPulP+PoeJ/RRobCYg/fYrlYMlnV2NkKDueUecowTRhtK2RSInuW4GHuBEp2LKyF92zYQNs22NCipQYh0UU3DzXxHtMa2uWSPJdIXzI5qzGNwwaFzssueQmeLEtwVUV1OicGD3FdFHYBReygRABINCnnWjR5pigKzdaGYLgheOrxMZvjHoMyJUu6OfFz7UshOoFsIeRa5+bhjnnIniceuf79ArUPgtP9P7efSHyoawgXh8Z5otT5m/e86wfAyj8QovhBPmqNquq6dOeFwfV7SZAqMhiWlIMxG9euUgy3iMHjvKOJnbC8yDMOz06YnswYzJboXom69jhuNqdplxhrsE4iRB+ZJlihIBiCXs/p+o7YhGRINrrMaOdppAmoyatsPP40mztDbr79Bs1qyk//zI+xs3eFrcEALUvKrEfdLLl9eIhwNaVoefD2LaKArWd+FFctiJND8B4pDTHThPEVWh/ASq7vWMblCtecIsOMzb7Fm5TVqo9QFdE31Ad3OG6O+Cerl5ienTFfLbj9zi3++b/4Q8qepuxp7Mlt3OKM/ckCFzXZ8RIbFVe3BuhkgEp7ZONISUqjUmor6W+MKCNYKTo4nu8YoZXSNCrgNZw5h46BerkkAGkpaY3gYNbQWOhtjKnqOZWpcTriY2S1qjsJmm6wjk5CI4CKF50kFbMOwkhHFldkAiUbjDnEugXWLYi6RktLYytsk3DvwQMm0zNOjvbZ3z/g9Zs38a7rFCdJgpCyg3HWDWenE6q6xjkH6/11zsp3XniOsbPxGPy7iNkuRifW9hhC4Dz/jzFcMF0KKdFrHogPuz50MjU9m/Dyt77DeGuP4Xib6WzKaj7HmBofItILlO6GsI2xVHXTURMKgTxPppRGSIWNDQrIhEDgEMHiqpa2tshsE6nyLrCTMBiCA9oAIg2IxIFaglrR3x6j+wWLchcnhqgAXkYWQuLTFN/r88rtY8z+90jamqLX52Mhx0wWVO2U1tb4IFBqQFRjbDjBh5aQym64kC5giMmQbPwRNp/4Reo3fhd7+EUee/KTXP/oBn/3v30RaWv+zt/6m+zt3WD3yhWee0wjPqX4e7/9+/zxi6+h2ylFbPjei19CDS+x8xN/m+bBdzi+9acQlwh9DPo6sX8DN1+ig2VvZOiXU8ziTYR9wEbfYNsxCzlCiAkRR3v0CoeHjv/p5VNiDIQAdx/c5N6DN9Ci2wzIrvUpY6cI3p7M8U5wbzhh93pE93fJro0wWy2HbzbMF4HPPNtnrCLCnzCZLTHTu+SqoJeOOC5yvEu5a1eEuqaZHJKrFFFdY76oefPN+/TUFsPtKzQTSVUJXO5woaE6XRGdIUsTkBGF7wJbJXHxvDKW0wkuW5SU5JkG3QIHDIfXuXylxzPXejx1rUDiqZ2hshWp8CgdOhrUCHXV0jaGMtMdrWbZx/vA2WxJJKA06LwkkQm1aVlWFTbaTrV9foAOjp5iXWHpZpZiiESdElXSdc+INB5clLgsRaYKKwRFf8ioNyYrHiZTF/oFaz9zfu0hzGJ9WXDhvM4Tqkdx7O+z7fjo5/gBTu37rxA7utrKw9xLCtXZXEDghMBqjbWBarGgOZvQnE3Yfj6QbW7R1guadoWxEMmRxR4uVBh/hpMB0q4EJryDdIjqXWLr+qeIyxOq7/4e/cc+ztUnPsaXvnzAd176Jn/jr36WZ248Rn98Ga1zru1ucfvgmN/76pswr+iLlrMHdzi+Fxh94qcZlENO/uQ3sO0UWdQIMSRuPkaoLG7VstGPXN82aKZEqxiXNaEBpXoI2VGrN5MDZqsHfP4b71BVE5pWEjz84ed/j1QqNosCoQMi8ego0FFiTpZMXMFTm0NymSF1ico1/SsZs5XndOrYGfUZ9xS2dlhjCc2cGCM9rRBoVC+hwbMylraq8IsVsd0gKsndu6c4C8N0A6kiMjUdfDo4/OKMytSka1V34TsYWaY6MV8LKFIUEoVHiUCZCUQSqM0B1lXUqyO09AQdsNZgreWd+z1mqwXYhnpV8fL3XqVpmg7C7TvseJZl6CRhMV/Q6/Xw51W8R/Zm/ICAT7znWnz3kx9w8d/G9QEDU/GhTbc+MveSRApS3b3eRbBK4aWkna1wqznLB/v0dvfY1jnNbMp8MaVuLMZKdLaNkIqqekAaDCERoCIyWKJI8HpIvvkM5XCP5YPfIbOeK499kuOzBV/642/yiWee5Nd+7Zcp+juk+YCdsaI2lv/zC7c4O5lS0OAXC25+5z7Ftee49slfZPrtP2R1cg+Zt0idw+gxYqNxs5osDTy2Y0jyJa45odRLNvuG/SRHqm6OwbVLFrde5qSd8uX5PVoTMQa+9uJXUMBm2SNNFCJzSEB7WKoVi2TKKEvYTDSXn9bItIccOLCB6Zkj05JBpujFgHSeuV+xsktyVYJM0EVKE+DEtrimpV3McD2NtANOjmacTiqGakxS9JFZQhAeFyz1iWX1oEJJSaLWxdLgSWVHrGMAkEhKtApkOlLmCeUwZXdbsrUjeP7pLcajAb0yfajVJ+myENHNXgipHoqG/rkQvvgBjx7def8K+znfmt//5ve9lff+oXbOeVHtkecfJTe6oEaP77bzf5UPuoCgnwfbopsV7oJdT0Sug9VOVmc4HjDa2mLricdJ8gFu1WI91CFBa4mWGfcenNGe3GEkb1OUJddljlk0NO2SxrQYp9DpEJGMaf0p1jcEDSQC4TsSrphvkm88wc6Nz1Df+gp2/9tsja+zey3ny7/zCtG2/Me//NcYDbfoj8bsbkg+8pjgX37zZd54e5/Edz7o9muvIXtD9n7o52gObnF8+zchLBDJBPKrhM1d6qMVwjl2h4bhYImpD5HhjO1hS10POdUDhDojCsfy3ptU91pe+dItrLU0rWS+nPPW2zcZpCn9NEUkHqECSZDopMAczjFO8PTGgN5gG5X1yTdSKPscThxNG7m2s0EiwVSWujH4eoIWCYkqmGmFTSTH1hJbi5vPUELQH+U0JnByZihUj+H2JovDlnlTETNBILKY1BA8vSxBSNAi0BFfdvbjYySJGYJIso7hylziRE3THGGaKaaZEZKAlpGmqVkkmrffuYPWEmzL4cERb916G2ss1lq87xKivCiIMTKfzdd+yXU6l1pfoHg6zoi4ZjheJ++PslWuE74umQp4L843LtCZskKuyTHkhR1/mPWhk6lykHPtyW2kAMmE1iypmgadFWilUbLomKAy2Q1hZopUSbQEbyF636lbE9Gqe82oX2KalmZVMxqWbI0lgYwYJcFXCAFpmmOEZI4izxVZoUjTAbiC3pWnSMe7PH9pG6dyFm1yYezblwdsoLCbz+COoVlGQkwwlcHOFgyweAXLNCdJByTJZleNSj1VewZtWOuGaKwpKRLNja2WW+/UHNslX/rCn7J3+4i/8bn/iH7W5+jkOq++UfHS65/n2Y9e4zM/8gwf/8hHefzqHn/4f/xDbt/c53Tm0DJjuzxGFXOkjiTDXdSlJ5jffoCoXgNRYlG8tW8oXMam26QVLdNyl3oG0R+uK6MDgj+B2HSb5uJQXLOayJQgU6To2G6iUuuPgFSWTM5IVYNKFGWZIVOFU3eZuQmvva5Jo8CuNJOl4c5Zn0G/z5YYk4rI5TzSMAQ94upPbpNqgSxSdrdzHr+2ycki4Wia0Luk0GGbDVuhvWF2ebNLppoaSIEefnZKmJ1g0m2szLl55xss6wmSFmio6wZlJYmXUI0RVYVoa4Rt19XxQE8bpAg0Pq41LQLGdppBi+CRLfTXJbdERXzwGGNpnMXXS1wwZGnEViu8dYjY4rxlMa9RWpIWGbZxtH6JTjxKp5B0FdQoFUF6WhtwAQKO2tWoWlC39sJ+ztvGYj3DFUP3IR6plpwb/MN7xMUgJTyE9j0KtT8f7mX9/eWHEZkTdDoQojswer2ATyI2SGwEF0Almku9klC32HxA28toNjfIeiW4QImlrzxJkRNVQdkbIUWOFBpSybyZ0TqP84rWFGiXs9PzVK7lHTuD+3cxX/4O26Mr/MovPUFP7fLgIOOrn38HpSU/+zPX0arg3/vUx7j3xmu8OXmT+SqyrCUDsSLJE3QKiJJ062nqaYW4+wohlljd586xZbKI7O1qklHJWb7NPG2w9gTnLUEM8W6K83NwLSp2gs8RCTIh6gyXjFGy7bpbWuNkgk8EUQe0XJHIAp1IVJYyUJKVm9HEU2ZLjasU1dJgWs+0VQil0WVOiIKe6HqvDs3O1Utk1wNFL0MoxbNPbtM6mCwThAKV56TGMGgMw+cfxz59FbOoCSbgfUa0jriYd9p4vT6379zn7dv3EaHBhZpXXvsmdbvE04IISHzHbFakKKWQSnJyeMhyNmU5n2GMucCie+/X2iZdkUEb28ElQvj+eNW/lOv9v9t5NVQLQU5kFAIuClzoEqkYBBs7OToITDrANZqsLNB5Zz+FCGzksPQZNkvIyz5KJuR9TzkaMq9nrJoa6wSYlNiWjDLBxsBxFFfMlxVf+/rLjIY9/vrPfY5cDjk92+R7L065s7/PT/74VS7vlXz6uaeZTU556fRfMFu1HJ1F9naXbBYVOvPoTJGMr6OSAvngHWgCVm1wWgVeesMykluMd3rMkk1WuaEJS5z1BFFCFNj6EG8rZAiI2BE1CJF2WoHJAK8VmhmIiE9TXKLwOiBkQyKWKOkQsosHAhHHDNcG9vcjCo0UKfNaM1lmDMlJtCYXES0ElgI9yumPhyS5JssFj10dcWlnwHSVYEJHdCSip6gaxlnC5Z0hrm5xlSH4lBAkLObgPWIwZFHVvPLaW2RpYGMkefajT/DM8zfoD3LyImFrY0iaJigpHwnAOg3ITrbw++tGfZh99W90rWFN59C+sI4b3uWDxHt8EKwp1B92rx79/ChSUJyLoMaHU70POdYAKRFrAg7nHY2BRVWhew2Xd0v64zEm6k6gNU0JyylhMeHak9tkN0qEV4BitayoZ0v6GIwGVRZk+YA8HyMRqMTRhhbTeqwX+JDQtCVbQrM3cNxWK47MlJdeeYOtSc2PvvDjFGlOVV3mnfuWb7zyKs88NebTP7TLjb3LbI/6fPcrX+Bosc+DI4saeMZqjkxrZCJQgy2SnRuky0PUbJ+ohhgSXnunpb9S7D3Rw8gx03yXlQTvjvFREMQQZ/aRYYkMDhl9h9oRHaNn0D1c0kfLGQKDTxNEmhB0BOVIxBKtWnSiKaQgSTX78wNqv+LsLEXGyGpmaFxk1uYUWUZf5mQKtnMwJEQKNp7vo0TE4RgJzeXdTZatZFFLynQEbcJmkqAIHPU1IgQ28xLQBJ/iFgv8fM4KTRsE9/YPqZuKGFoWqzmvvn0THy0eixQeIQL9MiVNu0QoSRIO7t0lhMByMadtOwj5ORrCGLsm9YEudupm73zwa7bIsIboPRJKrevWITxSYA5dgtUhcB+CVB+KZndzUz5EfHCAeBcj85+3PnQyleaa8e4AV9WYakUIBh+6iqXSKVIVaCnI0ogOEq0lmYZUCawNXcuu9ogYKRIocs3mqGAuInXdUPYy+nnWDSKGSF11ErpFKmiFpBWSrJAkPYXQJQRBurFHtnWJ8bU+TiWIRmIcmDYyKHKuFBLUHnHbMF1o2gZmxy2+qshxpLIjKlBJjk7LLlBOPa1ZEoLpqFWjJlCSasVGr0WqhpVreOuNO8yXkf/sV3+V8eASn//dOd995S1+63e/xU+dtexc3eP5p7f45LOX+MY/TXhHrqjaiG5r0FOkXiG1ROcjsuF1tLqLsAdEdQlPxuG0JU8cuBInBlTZBlZNCHFKjBmRnBACMrqOZTZ2rGxIhZQ5UqUomaKF76pNWq/1cyJCejJtSLRHSkmaCWQiQS9p4wmHRwHtNAmbzGqYNj1Ie5SuTyob0sxS+xKpM55+bozWgbOzI5IkYzza5uaB5Ui0ZDpFy8Dl1YLCWeZyB5wlm02QskSm2/ije/hE05Y3aFWfdw5eo2qmSAIBi7E1OkgUCbGpoGmIpiWYFh8cQgRy6UCC8WtD875j4fMB4x0ISLRGSVCyMz5rDSYE2tgFFEoLgm/wziCixXvDbLUiSRMGaUprPVXryVOB1gEZNEpJRN5VQYzrWCojDuFbMJ0228MlLlrIj8DU1wfAu13Ue32xOL/4SIXw4p7zT+L9jvx9BBTvules59QgzSS5irQWbIgYB7mCYZkQ0ozGFyR5QTIQEBTeeNLoyYRHpWnHkJjn64Oxo75tTIXzAR8VPmQQM3qpw+mWhasIkwn+1j2e/Ikf5tM/+FHeeLVh/6DhC189QOrID/zAJnvbOc9c3cOc3OaWXNJayaLWhNigVItMJFJkpL1dktUBsjkg6i18knI6b5lNI7pRFMOMKhnRaIHzD/BREWWJ9zNcaFDRk0g64V8ZkUneBZdZHyUECRUkKSQZaEkUASUdWtqOtUsrlFboZcSzomkVMSgWs5bWRJYMUEmG8QlSQC4tAYUjYXMjZdBXWNPRoA/6JY2FufBECSoTJAqyENna6qFTzfJwims8Ug8QziHnKTIrUONNVqsVd+7uE6LDhYr7919jtjgBIkopyqIgLzLsoCTPc/I8ZzGdUinJ6dkZzrmOqS+es9QFrHXEEPFSdhCPdWj1gU3Q9zZxPgyS6d/i9UEo23N9nk4zUaHpSBAqD9aB9d0+KnuaAqhNjs0VMh8QgwTfES/1dCTLOjFpnWZonZJmI5JeTmNqWmvwQSJDigoFRQKDzNHGhmWz5PadfZ5+4gYv/NQLnB4F7rzV8q3v3uXF797jytUeRSG5dmmTjTTwPV0RYsOiVoxd25H56IhINEmxiUhKpP02GEfIS5Ym0s4adi8HREhZqj5NNsLGfbxvCSKH6PC2g4qmSmA9IDqqdKmzruOkJYlYdTCvNEekmigDQjq0skjRBTdKKlTwBNHgvWW+sGRpSZEnNE6xMimZS0EqUmHRUqBIKQvN7naKdw7rDJtFgZSa5sTjTEQWAhU8hfPofkY22KKdVdSTFUL1ECJBzrKOKGRzl5PpnDdv3aYoNZvbKU8+vcenPvX0xf/9g/eIWMOBHnn+Ann9CMTo0et8SBDBv0b7uQA9nGc6PPzZvq8PuoCen9/4SFFvfV8Q8YJktmOrXXeoHnmfCxHU9Z/Jh0B0jtpYes4xGmWMt3uYpCQiO2xKXGDrho2NAeN8TGs6pMTJ4QxbVWR0+06JlCTrfFCSBHTqcMHiXYsPEh80PhQoqRhklkDD3K64t39E5VI++8M/z7Ac89p3a27dOeYP/+gd5pXh8Rt9djZLrm33eLsIHLFgvooomRPjCiHabn/nA/LBZRLuIZsDQqrxouDBqaGHI/MpVpQsszGNnOH9jEBGEAXeOvBtp0kpAREQSnf+Jy2RWa+bPRcBsrVsiASERyuDVqGLQ5REJxqhLI4VVW3ARmbzFhM0K/qgU7KQkahAqgKN7whf9i6VSOGZTE5JkpTRcMTBwjOfOLK0QHjFnk7JYgRhEDGyl/eRKkPqPvbsFJvBgoxVkJxMzmgNeN9SNWe8ffslQui03LI0JU1T7KhHnmf0ej2Cd0xOz7DWcDaZoJQiTdOLzv85OoJ4Dpc9JzKJHSfDunN18fx6357LTVzA/NbJmOqqyd32XHe0HuJb14VuuJjZ+rDrw4v2+si8DYzzHtv9EaNij7btdKGsh2nVVS+kCoh6gagnEBK81CSZJs0SYtIio6eQgSyHNFfsFBvsXtqlbVY407K3s0NedOrvpg3cuzeDIOmR0hsPGGyOOZ445lVkaTcQq4L2TBG07Kq9LtCYCCpSJBHZRqSJbF/vmOmqs9vg92nrOS5kaNXDmym1mzG4toseDYjtgtjUaKHpb+5w/dM/S9A1X3/tyxwe3sO2kV/7hZ/nhU//CJXa5u239/lf/tF/wdHBAfX8lK9/8U+488ZvsjEoGfZLXvjhT/BLv/oJ/vibh8wXLcd/8DVcMJidFxgI2Dl8k1N5ienmJeLiAGErytiS2ppwdILUKb0rn8HOvkmQdwhik0hBlAV5Aj/xWEbtAl++a0iuf5rRC3+TxxZf59ryW+xdu05/NMYOS+arhn/2O39Kvzfg2b/6H3Lp2cfXPAcdo8mnHn+K57YvE01B8IrWSbyAH5SyI0IRUJ/WtAtLXpYInXAYE+qlY3aUE6VETmqmE4+fOFb7b9JMDyj6hkR6Dic1wgs2ZMayMTyYzZF2hTJL5vFlmiCYzh/gXUVQ9RpK5wlR4Bycnp5hrOOV14eszJw0lxSp5PGdHkpLvJB4Z3C2hhjQdOKPAcGq6gzJ+wXGtiyqJY21rKxh5R2t96iQIiJIcwbBEWWktZbqyCJ1R3FrjMNayWIhu+qSMh3Up4FUK8oiIwk1SUwgmEcsKK6FDTvHK6VAiHjhyN4/9rSezFjDRx7pRD9MoNZdKIV6iKz48BBfrO8S0PtN5Mh2HSkfBY2LlB5GSUC6SPQCXSQUI83i+IymntOuJtjVkiTZwQXHanGbcqNPubeFTCJhNUcLTVkOeeIHniffGPP60R3mxw9YzVqee3qPz/38z1CMNzleRn7jt/4+33rxJQ6OG6QU/PqDko1hnxtX9njymat85id/mc0HNftnLeqkZnVUUWXXUalnfHZIawXZ5R+DukJUS3pYChEYmJbMBsTmDfAnxOx1ok+JtiSIEseYTz2Zcmlg+OO3DHMGPPbZX2Mz9Ty7fIlev2C4uU1IU3yi+dZXXmdyPGd4/UcYPXYFpdOLQGR7MCJ97ImOCtZLzgZzWuPob26hkwSdKIINmJVDrSmTKwQnRtDORdfB1w7roZ0HgqmpVxN0bElCw/JtjzGRzV6JCHDz9i20hqdu9Dg7OuGtb77M2ekE2864f/AK09l9VvW8o4eN3Xxctd6JaaaxzrJarbC214lUK4WSkuAcPvhu5i16QvA4IiJIIHQzh98vmvt3JEn617F8hMZFzgzcrLuvQ4DWd48HJtAXnhg6RsTRdkazrFicHNNWp9TLOZIhGSlNdYhMFcXlXVSREKol0nmytM/lx2+w+5FPMKfi7OA2s0VNoXM+99kfZbS5zVmj+MKffpHf+J9/g7OpYbF0/IP/sWQ0zHjy6mW2d8b8yE98lkUbyd9ZkUbB6lu3qKqSZvws46pGUlNs/SChscjFhDRa+lhGztBrWmS5TaaHyPIuYTEn2oIgMqwc8+TeJj/2bMpLd2a8dHfOpU//POOrT/OR1UsMqdjc+yvINCUUBXffPuQ7L77BaOsjXPr4J8lHWxdHVqo1Nza3CR7i5pqoQSryjQHXw8O5I7O0xAA6TXBITq3A1gGzEkQViMKxmHtM42nunSC9oQkrjA0sK0c/yxhkGXcePGAyq3nqRg+dCF79yi0Wy5q6mvHkk9f5pb/+GTY3R8D3T6S69d4KwvsO8/9v1vuRqesAskuNzmnSzxOdD/RBMVwEp48iCi9m88V5lzZe/I2EPP8m6xetA9cYAiEqQCJ0itQp/e2r9Pauc5AMWYoSRYpHYAMMeyNGqSA0ZyzbmuGo6IoTswarlrTLGSHmpLrENzOWbsHG9S2ScZ/oGmJdk6YFeW+Dxz/1CYJ2fPud17h/fEy9sPzIxz7KR3/gE5AMePP+Ef/d//DfcHg05eik4Z8fprz81ZxLW5tsbYz49I98lM/81HMkV+Ysl5bjL9/E47GXPkk/kWyd3qeXXya9fAk/PUU2DRuhJbM19niCSDXDradZHL2KUbdwYgcverhkQN6T/OxTOZV1fOEtQ+/681z+9C9wtb3F1eYOo+2Pkfd6+DxnWRm+9kcvk8UeG898mt6lnS6ZB6IQ3Nje49JgDD7BWU/Wn3UMhhsd8kpIsJXFNR6dpgilWAqJsYqVG4AXzKNntYpQQ/vgjGp6xnQzJVWwOFl00y9qTtV6TuYWV0/x9YRlzGmjZrWcU9cL7tz7BsvVBO8dYT3D1BqD853Yqz6wngAAIABJREFUNQKstWitiMGCEGTrJMpbSwwOKTr2R+/d+e7lXJev24udX+s+1slPjBdyMXHNqHze1RJCEEK4iL26PCpeMAASH8JYpTiHrX649eGp0btRQrRKyJKUZJwRoqRpWlrrsdHhQiQIRzARgeM8AlcyQeqObkJGQSK64UCpJGmakuUlEYMPLVk/pxz0SPIBTRvQZ5bgBaDJix5Zb0hctdg2YJwitJL5qqNP1aIbPm9dYK4DcxWQTUS3sJN1TIJCNkQafHDEkCCVJNDRBYtEILMUbEfxLoRCJwWDjR0W7RGT2YLWWiSKx69f5flnnuQ7p4bbDw5589bXWcwmgOD0GE6PIU8LyrzHZ378x7h64xn6txxtM2F1+ACXKsLWCMICXU3R8hK6HOJWZ4hY001XRFJnQSeEbIBMMlCiGyITEJFIlTDuFSTWoxNJXm4w3HmSq8MHPGvuM9rZJeuPaEclyXSJWlNEunSAVzmsWXkEgnHWoxdTlrqPDRLnu82cKktrHbUxWGcwrSFNAgTF0UKwrBzLoylegE8V7TxQTz3VwT2a03vMNj1aeSbHFSIoRDZkWq14cHKMxqAxzK2j8QGCQQiPlLarckpxcfhba6hWSybTCb3TlP5A43NN26cT2ZUS7w3ONkgZESLgncRHiQ+KSMSHCmtbjKlorKFqG+aNYWUcuSzRQiLMCrkOOF0QNI0lzVIyGdcVFkHddCLTQbaduQWFkxrnQbqAFL4bgnzEAb3LmgQPGZ0+AIQuHnlMfLczF++6RfDnEUM9KrDYPXhYsQmxm/taukjwghCh8pGoIpUNJB60UAgtUakiCoePDcFZgnNILZAxEmILMkflSVfdaS0gkTqjPxySDvqczo5ZGQNBMih73Li6x3EDB9OKm2/d5NXXv4UkRSBYnAWGvT7zo2tsbI3Z3r3GUX3KtJ0jThb41uCSErCodkISCtL+DsGfElcrErpzpuvhgk9ykjRDJAJ0d0QGKfEkDPoDtjcC/X6FY8TOlcfYzS1PNXfJiz7FaA+nFVZJCq2YWofxmjboi/9HBFKdMMp7GKewTqJyh1aGLOsEco3vhLeb2qLWmmRTK1l4aKc13nqCkngfaRaBWK+I8xOUaFGiZTqz1E1Ab28iheTo8IgkFWzvBE5nS+7fP8A0Dd61NPWcqppeOKFz5+O9w3vdIQXWVXNjuo5Zt5HWpEFrmllEvJjHRHSQnU7T6sM5mb8MaMAPsp/zCyF03dyVi4TQ2U/j6ezIdT4poRvAl4lE6kgILcGbzn5U15WxsZMEkalGJpJoLPiIUClFr89wY8xJtWJpWmIQpCrl2qUddDHk/qzh9v0HvPzKNxFoBIo3l5FEK5bHZzz+xGP83Of+GspCcXaEmFf46RKnFS7pI90U7T1puYeVjjCfoaIglXT2EwNBJ0QUMlHQoek7Uh+hSfOcve0NxnNJbwKbO1fYuXqDJ5oHjMWK3uYeJCk2TZgfLVDWEbzEkBEurKfzQaXO8FJgRUoQ4IlI4UiCxzjfFUsbQ/SRxDXUQXBsJLYy2GVLUB0hRLPw+NYRp8cI35LIiqbxnE0NbtBHDgecHp9wMlmxublJmkoeHOxT14bgWpJUsru3SZalfPik6FE21fMq+aNC7H/x9W/Sfi6QEt0X73ujh7v+g37/R65ddObeW/A7T6be/3ohFVIlqLRApAVLJwgWsq6Eg0VQyASRFjTLSFu19DcGJEqgtEcIT/SOGANKS0J0xNAitEBmGrwnWo+QCTrLGY7HLOyM+bLBWI8Iit3NDa5d2uHeyvPgZMorr3+H2WSGJKFZRI7uR462dtjZ3OKHf/wFtveuMTh5gHcL5reO8bnGXx4jwgpdL0j1Nlm/RztbQGhIBKREtHPIRHekQokmdDrPRAFBaITO2Bxn5NZT9CoG4212r93gMVPzhJ1TjHdJigEmSZjNVyTeE12gCQk2vjuE76UZudQ0RoPwqNygE0WWCnyIWO9pjcPUliw4EIJTKzAm0E7rbuZcV9gqYipPc3pGe3rKKmpMAvXUdMUOoVhUlsNJgzcznJlRxwwTE0S0OFdTVTPqZsE5ydajc+Pe+7UPcvggaU2Gkp38TDf79JBZ77wT5f15d7ODip77tYtkai1TESNdlw8eee81oiDGLpG62NqPCvvG99dF/gLrQydTwyLnmUvbNIuW6axhOC4o8oJRPyeGwEY+ozGGycrQKTaUXUAeJV3hIhAy0dFdK4lOMqJKsTHg2xXeWwTgXKQ1oXP0UXLj+haOSEOEpESkBYVqKKg5nc6pF5HJKsWjiSvRHfR9uC1WLFii7zckS09d1hRFYNlPMIMMJXKU7GBvRa8k62WkqocymrgKhDpiYkniNOZkiu6VbF/5FNm8pW1qxlsjdCn5e7/+D3j11dceEWhd48aJWNfSWInMUmSScOc7X2VxsuCjG0+y0IFbccbcLFDNDD3cZifXHJ/1aYOgTXr0yw1euDpm0a64ffgyCSA3Po6fnBGrFTFaKqv44sHzQCRPj9g6O+aJL/5dfvJzL/DZn/3b/G//8Pf59p98g+lyQds6fBW4c+su/+V/9V/zK//Bz/HRZ/4WQWUEkbDYr5me1nz91oqJFUz6kvnxXe69+Hnq2lFVnnrRYFYtzr6DDyuMKIgRpGm66pMAERzCe7T3yBB4cNshBJjQOc+3hMQFhXEJxBZii4tdACLWStl9TadN0BuhRSQVniSVpKlkcXLGfrRcuZIQcslrK9UNQeqATDJkVhLWjG3NwhJcoBwWSBWxfoYPDucty7ZhuqyYryx145kE2ckRWEOSwNZ2ToiBJlpym+FCjvUSHwTGd+4mKzKSRDPs5eAjoTUsjcGFSNM+7EwJRNeV4qHxvguat/a48dzwH5o3j3wTLm5875N/gSLoeYUSujOn5wMjEzmaR2oXqVTEqchhbRhpyaXeFiY0LFcNRklCmSFVjhItQnUQ4P72gKTsoaxCNJHgPMYXNHKAWRp06tnafJy+KMivHLC7vUPWS/nS11/hD158g7cfzCCmHdsjHo+jkp6TScaqrZFpxtHde9x86SbPbV2jl5dYlrShZdIs8Ing+o5ianPOzkY0SQkadgcl457kndNDaleT7j2POa1wiynCN4hoePX0KfbNJkofcUkEbnznK1y9usHHfuGnuXNnn69+9WWWixWrVUU1sUij+L9+8/fZvbzNf/53/lOG4yEIja897cyyPzWcLGCZapoIB3/6Derlivki0lSO2UlDUx1QLd8hJD2iyslMjQwdqYmIgSS0pEJQSo2UDikthhJPyltaEZCs6gyA+w9exflI3Xqc7wQHR/0eZXaZ276hbgLnQB0QxBBom5Y07URG26bBmhaICCnI84IoBSJRYMXaWTlCDEgpsNZ8/87U/w9WZD1vQkSKSBojIxuYVZFFFWkUOBk5bi2t8lxLxwjhmNRLrI/4XorIc5Kk7DqUCjb6I1SWkIkUaRTCRbxJaPUQYwRuUZEXm8h0wOWd64wLTVHm3D6d8t//ztd556WbQEbwtoOoC0/wgrPpCePFEKE11WTKzRdfZK8cc2O0y4SaOrZM2wVpDOyO96iahP2DEVZalkWf6/0hjw9TDqZnnFULsvE1kvB/k/dmv5Zm6ZnXb03fsOczxpQZmVk5VLlc5apqW23sxtDQlhBSA0INEkIICbjgP+GaC7jiAjEItYTERdM0attA07SncmWVbcqVzszIKTKGM589ffsb1sTF+vY+J6KyqrLkbnUBS3kiTu69T0ScfdZa7/s+7/M+zwF+dUl0Ncp3PLma8jt/+SrWTrm/v+LVJ59yZ3HGN/+Nb2NKxe/8r7/PfL5ifr2g2ziykPNH/+f3+eM//DP+k//03+Hb3/kaUWqCj9TzjlUdeXrV0SjYZILzjx8xf/aExcrTtJH5WU1XV6yu38MLScjGaN+R2Y6tva7xHYrASGmUiCjV4dF0DPlYSqKS1G2GdYrLq48QwrNpUkIWJVxenPL408cc3zni6Pjop+yEn/z4bRWxf849KuAmBkVuaHnAzcxIn2SGeMNOfKFZJW7+nN0DXxSDblEGBaLvXKVYp5VEKUmeJWpes9kwv7zi6aMnlNOGcnCEyjVqlBG6jqqruXz/c5qLZ/z63/gm09mQJlO43PQzugZUZDgpKSc5eVairCJuAqGKNGKMDgXdYoMpC46P36JYbKhtYDKdELTgv/uHf8j7739M3YgEivo6AbF4lpVB9uqcUQge/eDPqJcN3zx+yNpEPo4Vy26FbhYMJ1NenSk+fT5i4yVV4SkmQ75xPKb2Hc8Xnyep/Xvfons6x3cVPnRsOsmfnH4dKWB/dM6dyvP6d3+Xd371Ie/86m/zh7//5zz+7D2ur+a0tYVGcvHkiv/qv/zv+a2/+Wv8B//RvwlCE4XErj3NxvLxWUflYJWXVItrzj74HnXtWW8C66uOzaplvXiEtUt8PkUCeVdDTAwaFSzKd+RIMiE5MxYEtIzwSLoY8cHQuZLgN3i/wQWZwBElIDruHhxS1Ya2Xfd2PmIXhZx1tALKIkMKqNbrHrSKaKPJshyUTFRqtvNTNt25W+9Qn1gS6Xd2c74hRHyPOGsl2apIiiiQt+h9L+ZcESm3G17sgOZ/JjS/GAXeSxAapVNS7GJAhV4RR6e/dOhlUjvTifvfepAxvYWd7JVclAKp8H3SqGQkMxIldJrjiAHhHUIq8sKgSAccbRBaUOSaYZnRaYlREIv0pgoPXoPVkIeACIHOazqbsViCbUNCzK3tO2mSGC0qG5OPZmn4rGnI0ChADUeQZTSba5QpydUAl+WoYobWGRHB1XXN5dWGEFLnLrWN0pL5FDU6JCtLsgxitya6mmx/gvYNfnlF8JooZpQZ6MGGxazAKUHcXBFIohlCSEzmkTLRbhAhfcQkV7nYdAgRwHfY2lJdVpyd3OOTp3d5enLJ87MrlqslznmEV/gQuFhd89FHH/OnP/i/8TIVo5ePr1heN7z3WWRhBYuRZH3xlGeP3qdtPHUT6eoW21ps+zk+bBCqSDTB6HrENiLxadBdarSQSBFAgBNF8u+IkYiGWBKiJcSOELcN1bTLfVCIIFMnSIKUgdwIBoWmzCKF8gyLgrxUJF8pAVKDMqAzIg4fQWrVFys2Ee2EBxlAeqQKaB2TmaBwoDVEge0C0YMNPrWRo8d6i/SCLmpcVGxRty0q4mMg+oC1FhfB3Vbv+3InbPfZthPXd6ZvIYhiF7BuO02JW6jgFwXtH/cIob8kEkqTKxhpqE1EA1HGxOEm4jzUnUiziC5C58GlYtR6S/AWJQzFcARKY5sWg0Qj0GWJcoHOtuimIp8OkEZhBzPyfABCULWey6WlcxJERqTtuyIBYTLM3l3MaIo2AlyLr9fIXKGHBX61SMbODDHKMC0auhEsZwOMrzHCE4UkRIlSiYKcKGoB0RtIhpDOT+drom3IscxPLUY0fPL4mCdPznl+csF6WVGtN2AV0QuW9QaP5+MPPmE4HtJFSVtbmlXL6dxztQ7UuaCLjuePPkz0rgraxlPNO5rNKZv1E0Q2ROicwneo3tBSxEAuOnKp8VmOlAGpPE62eJnjhSAiCWGUOotNQ4iCgMT1HHIpBZnJ0j6KybxQiOQEn4JR6KVyFRAJIaF9IkpcP8zrQwpM2yCXUMC4o058YcX/V8gaf1ELtJfPz/axLehhZDo/waQPKSKdiEh6HzcnEAFqG6ELCOvSjI9PQ9kRSVaO0UWeZigIZEi01ujJmCChrStEnpHpwKAYUhYZQkqsj1wuO9ZNEn4IJFGehNwq9OQIMzlEZwqJx9crGI4x45K4aXCNI4YcIQXjPKlvXcxKpFVkvkZoRQiyV1+LRHyKtTKADAQf2XQdJ5crFBWKDQvboFeazx7fQw8Mz55fsJivmF/NiU6CUzRriw2ezz76jNHA0EaJ84HqqmFdB06uA42CWkcuPv2Yxclz1lWk7SKrq5au2bBafA5CIvIRJniyYPuuaiQXHZpIyEu0BKUcQWZYZQmid4SKA2I0VG2TkjJ6bygRWa0WPH3yjLIsOTo+3HWcbqvdfdF6Ycbu5W7Nj/3PdjO9/If87D35RetLn59bXlDAjQjF7b9e3MAvP+l7vym04gsF4wuF1xYw7O8apXVS6S0KyuGI3CiMjChbo+yGIrYoIkpqjEz3VpQZXhQ0raSoIzgPPp0fJ5JZrzZDitGYGCOuaclJTCQzHiGKnKZeo3VOLgsGeYEabnM4WKwt15UjYECodHZiyhVUOSbbu4vOc1RvVhtti5mWqOBw1QrvFVGMKE1EFw3FNMMCrp7jggORADFj+lwjJhEGIQMxJDbVxbJNFjFdQ+U7rtyGZ08zzH7Bk2cXPHt+wfxyju0cWI11nlVd8+TxUz56/6NkGB4Fm0VDWzsenzs2LrIpBJvFnNMPP6RpApsGNktLU3Wsl4+xdo0sFkghKV0C1GIIaCwGy9AUFFqjZJo977QjILExEskgerxvsb7tiykQQSBEwBiDttluX0rEbi+InuWglERJ2d+nPX3cC6T3+NDH6x2l74ZRs3t96KHh/j7ua6Hd3N7trhjQj1rEm47xC+eiN54WP34kv8z60sXUqvZ8emK5Ox1x986Ay/WC5XJJrJbIGJiNM7Jc8mAyQIkRWkmuN5ZV41CuBu9YriM+gNAGj8I7xzTTzEYZaiRugkGoyR0IZQjDGQKN9znaZGnA/XiP2Z7kjdkQMkM3SMn2EMHSRp5WgcwKcpvz+WKfRat4/llN6TteWVyhzi64aq9pyXDRY0ZvMH74DS4++SHN/Jz7x3eRg4zJW+8Quo7T5z9gzxfcm04oCoE/+BpSDemcQJj7yGyNECXJcWjL7YTi/m8yffg3OHzlHseHjllmYawwv/o2PDun+98eIYevMpq+yXD6I8z+I+q9r3O1MdT/5COq2vPxRYYejxi9doC5OMMv3wefI7QCBz60LObfT0VWbFkgeIzkj/+bj1D/w98lOJ8O7AtDegIlNb/7e/+IP/r9P6D1gTZ4fBC9XHZqn4e+vRq8JSn03I4Uqc0qQg0IfJ/+i564IYAQLUoIVH9Ru/5A6pjmfLTc0EZwIbX2I4APxACbxiCsRHYbBrnBDEomgyn3745449WCw8OCh++8gikM1+sVyIysONypFjbdhtY2TA4kRkWq1XN8sBhV4IOjtR5V5AwmmqAXWNmR741Aas4/mxO8p/EBGSMiKtrWsekarBkSdM60zDFSEmxH6zoamzpgrk3zVUJJXLwpphKazQuUvd1wpKBPdsUu+GxD2cskiy865OIWm+LLKEnFXhIdkhT60VAwLeH+RND5yLM6Jc2llzQbxwdnNcpZpAvMug2qnjNfn3NZz2mlZDDKGN97SLWYc/74Mw73JkynE/bevEvmA/P5KXV7wut7ewy0pDx+k9HoCO8jUo3Iiruo7AChr4m+Yts7Gxy9ysO/9R9z55f3mQxhrFsmoqZ8fY9s/4jud58RW0lx55cpByuGs0/IJoe0rz9gdvqMwWrJvJOs1wo1GaC6Dc3VI9xGYIqC2CUp12enf4ltO4RdIoLnA5Fkj9Xv/e8YJci1pOscnb3hapdZTtWs+c//s/8CGwKnmxobBV0UhK4luhbv2yRpbl06NiLrh7RTMRMIyFojhaSRvRqYt4liqiBXCudytBRoKeh0g1OSQqRitZRLXJTMW4FDYoUgekv0lrzQSFXivMe6jtwkBbIs0ygtMRqKQjMYlLRth/MuqagGWK83vfhEAoaUTgnG9k7w/ovU/P5/tGI/QB9BShjl8JoSuAk4HzlvIysbKAPgBJ+dNYTOoW2gdC3TdkF9dcHp8jkbNcVnI473voopB5x89CFGwr3DfUaHIw723sa3LWdnH3GclQyHGj0+YjwY9WlBhs7voLJDUHsQUvwUIqLzgvu/+Xd45e3XmU5zqkvHmA3Dw4z8mw8I313TPG3Rx28wGuTcm35IpSWLw9cxq4rZ8ydg4LOFQpYFWe6w1TOa6znKlEQiIcB8dcbZ6WcIX4Nv+FFMe/p/+v6foJSgUCKJSjV2lwTlOiPThr/73/6PFEZyUtU0PtJGmQx8uw3BJyGg4Fyi76Ch965JCY8HIZGVRgmJEjKxIqLDSNBSEHyBloJMSbxStHqNEYIMQSZzFIZ5K+iCoOuhaYXls49b/sHfn/Ov/23BV956/cUf/k+sdvri6Zai6i9CR2q7tmj7Nr7sktQvjEFbafef/h1vX5SAmi94SohepMdQloNklyMld+7e5fD4LipPHaoH+ZJxJrg7y5HFEEYGaSWiK8hef5vq4FW6RrCoO2ZVhbhecLE5oxElNoIu7zK+9xpnjz+hXsx55c4Rxciw/803CK3l5PQj9nzBg+mYYpDjj97CmCE+CHR2iMk3SL2XfEz9iq0c3P4v/SYPv/PbjO/uk5uOg6xlM46Itw7x52s27z1hNjliuH+fcvQpevIZq197g4tKc/17P2K1HPBs/dcxwwGjuzPk6QX15QcQSkyuEhjmGh598l3wHXRLlJD8AIP803eRWlBoiRZQN66/dwJKKgqT88d/8Cd8+Od/xnXTsWg72ijS7Ga7SefIN0mkwTpIZSq9EGkqNATI+gIhJLXQycIoWJSIGEkyUFYa0ysR16ZGCEEeQEtNrgoqK2isoIsSByhhkRKKMkNIQ2c7BJFMa7RWaK3IjERrQVnmKKVo2qbvECXKYdNUPVDtEQK00cTod6JIu2Lq1h5O3aV+bwegv5/oC6oEIPsdM2e737cUVd/PZardG3Srffsl1pefmZKRqB0daWjfS4E0GlnmaBEYjEqMlmSZ6A15YSQkOjPkaERwZGKFdQEbFUrnlMM9jAZpIsInTxrdfx9Ky9TmI9H/otCI6BBRYIQCLckzi8jBypYo0sDqQMOdMjDMHSPvMfdKrkvB6jLDtxqtjzBdQy5TDwVTEF2gXlUID1oa2s0alMQjMLnh4J0HaOlZrTowU9ThhE7m1K0nbs6hOe/vFMmNM5AgH0wpJ8d88P4TFk+WRGsZlSV3DmaE9QZJoLVLrjdPmQ32ODjeZ/hcU3UtNYkq1VxfMc0LjmYPuBhfoIYTRJsTrSL6GgjErYBBTz0JRFznoUtDprLnocKWa5qSuc5ZlpWldY7O+1QepYombbfgb20AcYO0iVuP0SNT/e/bhF5uESkhMFogZdq8UgiGCEIUdKH/F90qOkS/2UMUyCDTnBsBHwJN27Bcr1ktJXkWcF2DMQItVOqYirwv58BIgzCRzES0DJTFgBAzvBKE6DHWYIOldR3TaUSaDFEWBCFxsxzfWUS0aShiO7CoQCgBSlI3ljZGQucQQqKLRKEwWqMzk1CZ3g/oZm2P8e2i9KX3Urz4+/aZdLbj7h3fPrMLftufywtn/0X08fbnIST0OhDZ0pO3aM5Ip+7wQAXyCHFs6BqBbSVCDVGyJdOCXEZiVqCVoa5aXOfJlMG3lmqxoAOCgL3jMbmWNG1ARIWYTghFmVTPmjVifY7wrg+0GmJAygyTj5jMZtS14y/f+5TNesMg14wHBWVZoCW03rKoLpBDyZ3JKwwrQ9l0dHWDq2rUsqIUhtn+iG5oyUcTkCBkQYiOYBuEtAi53f9JIUgEjwyRXCukzAkxURQirk8+NAFYt4HWOVarNX3jAVxH9A58AzvTQIGQAanE7hJXUiBlohfIHo6QKqKEQGuZzq4WZJmkzBXGGIJUjEl7XuZjojQUZFR1y+X1gkCHjy3WKqJICGtiRcRdIBICvGTn1bEb0g3Jp8M7v/Mg2xbq205MOg43PeQXP/n5aqxf1E7Ui+vHz1B6H1Ig9ySKiUjYEpFIoRLqOogRVMSNDF0naSpAD5BmjCnyVGRkGdbk2M4RRUemDSp6mvWaTqYMtRzljMsxSEvdRhiNiaMJLgq87ZDrC2RXIZUiek2UGqUyVDZkNJmis4JHj56wOLlgkGlGRc5kWJJrhYieqr5GyYKjwRHCSMorj29bllWNX22QgzWzMiMbTClHE/JxQIiC0Hb4dkUUAalVPzOW5h1kjNjWJbuGIr/1NgZidCn2Ckljk6/QqlrRWE8bRDLa7FUCo+96EBAQGiEU0oibGCMFSm1BvIT8C0TvUSSQOvkcDQaaoBVGZ5QISkBmQ9AFGRmdh7OLa5y3xNCS5xOOjg8YDF80Xr+9dtj2F7WexMuv/SnrpSf/WZ6hxHZ4sRN100X68Ri0LaR23aaXVCp2RVf/ottRS0iJFEntNMs0ZZGjtEZrw3g8ZDoZsX+0Tzkccrg3pRgMKfMMlUmU9mgRUtdqVrApNLb2eCeQjNGDNbkMoCSiKIkB6qpBeIGRmraq6BqJI6K1Yv+VfTID68qlMzgb4JXGuQDVFWJz3QtDKaIwCKlRQlAOx4ynU54/u6Q5WyFiYFjm7I2H2MqhCLRdxdXqjFceDJhMBwyvNZW3XMtkLt0uKzKTMz2aMRrNKCdTrCrwWuJtRXAeobp0fugV7KJLMt4ORJElkJgtSO13MagLkVXjWG1qVnVLG8AHiK6B4MA1OxAdelEXLRBq2yES/axS7GNQQEpQSqJVKoSFEhSlRCoBOnnHzpD4IGl8xEZP6zxRbE1uO2KIdF2Htc0tMYitOp9IfmcizfDuphZir6AXtnS9pOSn1G3weRt/bpf4ccfmeXlPb9lSN6MVN93WeOv07Ejwt4DpL+xe/ZT1pYspqQN6aNmECrtuyYcFWTmgmJikWz8dopUAPNE5fNdxMMiRUjAuNFrAVf6Euu642kjK0ZgHD99g1W64rpaEVYewgUGZzNxikZHclDfEaMgAGz3WBzIBmYSpiWhj0iWM5koMyDW8NQ4cq447quNkf8JVu88//ouW9XqDKdeUhWaq/jG5zKkHB7jacvX0KQMUo2zK8uJznG9oM8XojVf5+t/+Tc4ePeOjP/gRgwdHDO+9xkoNWVQWf/VDxPUHiJgoRWJLAUMynBwyPX7A//z3/mvC1fuuqXvOAAAgAElEQVTcMY67Dw755qv3yeuG31eeVfOYZfU+X937D3n4zm/wweP/herqhHkAZy3N5x9zPH6Tdx78Blf3Wj66c41bavwGQlcRfUryo0h0uR4C50ZdJ5W2UmyLKd9ffKkIc0LiRaKybalfN5vw9uW43Yy3L1tubeLY86zT4VQyebBIIRgNBFoJWhSZENyVirUTPGsFIbh0cbAdDPS9zLtHCp1azCLigudquaRqG6SoqNYD7j88SMPJlAgypC/TRUNHqQwi0xjVIqVLqlF9EpkGFR0bV7Nq1xSjCSE6Nl2HdY6pDrSblrOnlwndCYlyqnJNNIooFFfnS1xjobVorZntK8oiYzjKGZQDBkVJYbJbJyju3szbhc3NzFR/ub107sTuNf37Hm8cP5TaHt+essdP6kzdQm+AEDzBO2ywuGBTZzBKmqgIwMxAJgJT6bGlZG805GwZOFsGpIlolzMtDDaTbKZ7uGzA5ek1mYhMijHN6pqz0zlNJmGQ8eqv/wZ5WfDB9z5GGMP4lTu0kymtAz8/QTz/Icqu0VqBy4EkDTsYHnB8uMfZ6SP+3rvvMqFlb1JydzKinIwodKQOaz47fY4Yf4Xv3P3XWH7+hMniE56ez5lfXCPNGaoLHH/ta2RyxOzBKdUqUF+r5Am0afG5QOiMxm+IpGAkBSgtiFoThEFpiRYC5ztCdEjlEDrSKk3rHZ2vE1BkAzF4CAEZLHJHiRNI6RKCrlOSIYVAZRKpFMKl4Cl7Rb1Bvu1ISUZTzf6expsBUWYcR8ikppm9giwGDKYTTp6eUL17TutrfKyTGaxzgO9pFMk3L8SAD5IYFbptk6Fmz2vwPtEerXM7+uq2k7Z9bvvxk6jkgi827/1/+9pRS/rPg/f44Gl9oli6IGljuuNKGRnryFR6FJFJUbJqI59elAiRzEiHnz7hoNRkxZgm22O92CC1ZVaOCF3D9dlznBL4QrH/xld57Wtf4ZO/eMzycs3g/hF2NqEJElutESc/Qq3O0EoidUZggM5L8nLG4f4eRip+5x9+l9xtmI0KjiYD7k/GjAuFlo7T649YNoZf2f+3GSnF9NM/5/JywWfPrjjuBmg/5OHd1zmY7bF374SNnFJdavy6oluu8EYjtaGT0IWtt16avxNS4pVBRshMSoScSwbrKgtYLbACutD24kY+2VuEgAgu0cf7tVVAVVoliqpICZ7KkvcNziewQirKLMMohVGSIpcc3skQJsPpAdMI0xhpJ3fx5ZThdIJ1nu/+X99lUzV0vmJ//1W+82vf4N69nzQv9UXry6Ze237PP931M/9UAdsk9OXkcheDXkpKb8ef/oW7GCREMjcFiFvQ5hYoqLRGSkWRZxRFwWQ8Ii8K8rLk+HCf46MZ3/5r32T/YJ8gC6LUuGyAVoKB9gyMZygCd8YlbdS896ylaQuEuU/mHXsG2iyjnh7gLFycXDFEUmQjFmfPsa6lLiR79454+ze+zfXJnMfvPWVwPGJwcEyTFbSdJ54/Qp4/RomA1hrhC4TUSJ0zmexzuDfh3e/9Mf76cx6Ugf3pgNeP9lGNJzeRVX3KYvkxD37lb3F07+vsnf45zfKaU50RhKI5OWcvP+bV2VucHnfsvdKxuVZ0VaTbbPBWEEuJ05rGbfr9D0oJlBJEaQhSk2lBjA7rmkT91o6gFI1UtNHSuRrbpbnZpBIRUL0WAYCQcXef345BOk+Au3DJjkhIRW5S7pXJBEpMDyR5LqnIyITiVa2ZN/DRPFLHmnW7oTQGoyUxdoToWa0tTVejlSCEdG86l+h74AlB0bZtb7eR9qR3yT9qK4e+LaAgWf9sqebQMzz6Al/0DKgEEt8A/mnU4mav33iqbZlC/TyVEL0J981s8bao+rLrSxdTSimKsiC2DtfUZDa13Z0EEQV116IlSBzeRbwNlLkmMwYRUqI8Ozhi5ALlJmDyIcNhhjAgtGBR12xcRSkFykhU3vtPICE68EvaoBHOJDPQGJHBo2OO9I5MZhzmBhcj69ZRhIo8VuBKBt5wf2SYAyefb5iftqhCY0QkyA2qvIOe3CMTGhk81fVzQhDk03sEOeTZX3yMtJE333w1KRDNK4SvEUoyMQ1T0+K0wPmMEHOSIW2Ova6oP32EauZo1UAeiIUnjgzjgzG/9JWHrK5OWF3XzBcLPnh6is1GFPvHzIaPyEzG3YdjpKx5790fsFqumN29x3z9OXZzRXAdRIFWGkQkbJEHlXw+hDJE2yFCYG9UIojMlxfJn0qmdqvJDLGOuP4gxZ5PvXU+F7Dz0Ijb4qnvMgkpyYuMTEv2C8FEw90Mcq3ItcL0xrYLH2kDVI3Ae0F0migCwqX5rxD7QxwjELa1YJoDCb73FJHIAMJHqnWFEp7PPz1leVVRDKZIXSOygCkU2UDitUJoRZQxdYhKQ5LFTGdJSxhkZWr1uzopSfo5lshkuk838CjydBijIwpJFJJ55akaT9MXp8pkZLlhNC7JMkOWZxgjUSog5K2i6TZi+RK6t103Boovfs2uaL1FD0yPpwMffiyCfkFI7WcJQgh4Z7G2ARFRIuJjAO/IVZbEY3ygI9DGhhglWTQMlWBvIOiWls2qwxkJpSRTDbkZoCcztFBkCNympmosZnaEmo6YX6woi5Z7xzNiNPhNh+o6Ip6xbribbagGEeUNrb6b9rGeoOI+9efnSa2PDdJYYgYxB1VqXn/lkL1SsjyvyKTnZF7RRMlwtsf+5JysXXN0VDCaGc5PTqm85+hwhrQL5vNn+GqN7yKZVuTGUAwyYhSovEQqQ1YMED4QO8feMGdaGi4uT9jUa5RSaKUZj0fUTcP1YplmLn0gOawLtPComCTzpZQIkyOUQGWxFx6QlKMh+SDnoNQMjOAwh0xJhkXR+20YhFGITNN5jQ+K0gwRKsNk49RJdZbOtjRdjbUpKU2DuqkolLv9dHOuQ4h457Gd3UnKOrcdut16eIQ+dxI7740X9+0Xh5oX07H44o4ULzz80tf9Iq340uc9GBUSYupcmrNR/Yxv9A4t03xmiAHrIm1s0TGgY0YRBbNS4uvA1VVHUDnju4fYThBDw3AwQGVDBkrTiSXz7gliWGIm+1SV5/njEwaZYXi0R+cCZtMhcOTacr9sEcNAMzF03T7W7aHMmLyY0J2uaasaHdYo1RCNIxaBmEuOj6a8/dodVhcdELla15DllNMZk7bleGQ42s84vFOwqZZ0n9eMyoLD/THLzx7TLjbYNqCkYJBp8tzgRIbOS5Q26KxECEloOgolOZ6UVJsl1/MzxpMJo9GIED3OeebLJd57tI/pqvICJSMqBIxS6Q6XGqRE5yBk8g40ecZgOmaUSWaFYprBUMMgL9Aq/ZuEVojcEKKk8wajcnJdUJshVmUEIp1taW1D25vBn1+c8/13v8doNODNt958Eajadihf2MsvJ18/azf/5Odfigov7safcn6+1N+6pS/tXv1Sl2pLbXo5BvXfH7diUBKX2Np6iP6/G+DP6GTAq7Ui04oiVwwHGaPxkPEoZ1BobFtRV4rBOL12kCeaWussqp/b8d4homSWaWpgcWmpVo5YaqSJFGqDKveQkz1yBDJ41ucnBBcpZ0fIfMT5k3Okh4cPDvEiI1Yt0luEhANTs8obFkNJYwa0pkTIAtSQsJJsHp+huzXGNJBHYm4hlwynJe+8fkw1v2B9VbGpNzy+XOBNRjGecDTJyZTm+N4ApR0ff/gpbd1wdLjH04vnrOYLXN2CgzLTIA1lSHLlMiswJkebHDqLCJE70xKF5/T8CSEkql9e5AxHA1rbsalrvAoJVhUyKWejUAKMliAUUSpUJlBGpJlMpRjsjSmM5rAUDDTs54JMa3Jt0DoVdE7FZDHTSIKDtpN00hOVTRLxrkEJT4ySKGy/r+JN/NkVPQne38YX13sY3sSgPvb0Hbrbs6m7BtutrZp2nLzF3Lm9p8VO1Q+S0IrY0gBvFWlS9tYyfSf2trrfzwN5fPliSmvKQUnjlrShJjgPaKzSxKhSMSUCKlq8k1inyI1Eiyz57cjI9OAIKSTTTYtQOXJgMLkiLzLWF1fUDmZKoDJBkSXKi5AiIbzdOintWU1rLS54pFfoUCKdRemcaTZgaQMXVYvuVqhuThFLSnLuj/YpBPzJkw2L0wZZaHSMRFkxLEsG0wcoOSD6wCnfJQRBMbtHEIKnP/yI+/fu8vY7b3H+pGFxXiF9A0ozNQ0z07FSAiE0LgyBAYgx9nJN3X3AyCzIdAd5IJSOONKMD8Z8/SsPOdUtzzfPuV4suH5ySszGlHuC2aigzA33Hk5YrGree/dd2D9gdu8e648/wG+eEZ1CRFBGIQkgVPJvyEdIM0KaIa6aI1zH0f4RSkSaZonzSd47MxllUWCtpbnVYYK+kBKJsqn7aj6Q6HpCpio+0ScyRoXizQPN/Ry+M4aBMQwzTVFKtIY/uw5cNZH5daTq4PONJuKQtkn00eh2Tdu47bCEJDUcQxK2UJDml3xgXYF1ls8/OWU+WnFw5FA6A1MxnJRM4xCyHHQGKtFeRFEiSIaCEoGWikwHlPY4u8bbDXm7xuGQ430cElOO+gInbM8W6tkFwq2o+seStH/BaFxitCbTGcaQjH1fimwv9512ye1txPALmsuCG2oYt4Lhlpu/+3XblezXi4PzqVCNwRG8xbkmdVuUwvZ0xkxJolQsO48PjsbVKBRGBEbKIErN81PH9XWL1RIxUOS6wRjPZLKHlBkSw+rsBNc6hsMp2Wyf+cWKLld8/Suv4jvJxbMO1XZEYZnolnv5hsUwIqJmbfbxsQR1gIozqsdnDLMrymyDNIFYSGIeUzH16hFVKXhWPyVKz/P5GoRkONsnTAYMG8PRUUE+Njw/OaETkuODGd31ivb6Kb4WhE4w0YrCCITMEEKhZweorCQfHmA3Nc31nLt39nhwNAHRcHXlCD6mjuRksuOBhxjRWkKICBnJvUIjGOUGqXQyLVUgtE9fYxTT/QHD6Yiv3h1wONS8NQwMtGRQDFDGkA1yFlZx3SmaKmA7sMM7eFWgnKftLPPFgq5raLsGaxuc65BK7Wi1cre/oNcy6gsCT9da3JZSsWXbipsdE29V6j2Q93Ou23v0Z4WnX4Ry6sV/3wuyuTF1HYP3ONsQiWS5Tp1Ib9EiI1OSygU6H2hcg4meTERKFHtFzmITeH7Z4lXO+O4R9UVF2GyYDIboch8tcyov8NajZEY2OaTaNDSfnvD2aw+Y7Y85f9ZiNi3gyLXj/qAjjgLV1FC1I1pbIsw+JhvSnC4xK8es2KCzri+kAuSKO8dTStdy4s6pm5rL1QZRCorJHqKtEWPD4X7O4d2Si6slq4uW0d4UoSQfrM9olht8KylzwUDrVOxkGdlkiiqG5IMDYhRUZ+eMS8Nbr9/h8uoM7ysODvfY29+jqRvapuHk3GCtRSnfgxGgQpKWH+aGPEvofBQSYRxSCbLcUAxLZncm3JvlvLZf8GoZOMygLEqMNmTDkg7JaWPo2ki9Dvhihi9mGBdovWe+WO7OT2sbwHN+fs7mT77HW2+91VOqfnxviltb5ecYrfg511/h/PzMf9NNvNgmo+kbiWztUtJzNwWS2Cr/banLO06U3BViqfshMSYVSEZrjNGUuWQ0yNgbDxgPMwalomtXbNae0WhMpgyDTFI7z7rpkLFDxxacAC+ZZhMyIfj4umO9csSBQaqIlpskTDXZR4qM6D3PfUr6h7MjZKY4e3LOnf0pDx/cZX7hWM9bhLcIAYdZTV00XIwEm25Ale0RxQjUhLCSVI/PmGQVuel6QNwSM8FoUvDV1+9w9azhvDllU2+oLhZEnVOMJxxPcopMc+fegOWm5eMPnyOmY44OZpy4R7TXz/CNQkWYlhqtM1AZMi/Qkz1MPkbnY5qra2LX8trDOxgZaNo5XdcSfGRQ5symE1bVmvlS9kyDCEIhYyAXEiMlw0wThMIJhc5BZSl30cawfzxmPMj46lHGQQFvjpLNR6YzpBGg4MnCs24D1TxQNZHPrgOtsKASU8P5lg5PCBKET4WUMexmksRW/bQH53tAz9k0D2mdS0DerRi0paS+nMWkYihtt11etHum//KefrqlCArELm8NvfDU9mq/DVTvtjbhFj3yy60vXUxVmyWfP33E8XDIK0dDok1gtxdpcNramqgVKhuSGUmJxtuOq6s5B7MRyuTMFxVSCKajGSorMMWQ1jbE0GF8g2zWrK9qukpxeDxBEXHza0Jd4xZzoshAFclDIEQeffR9nPO4ThPzAl55QGcD1bJhYS1n1qIu18gmMPq130DlM+Z+xoU74Nk6eavo3OHbGtuumMiTZLhaKpwu8dUzir19Xvvad2guzvnDv/9/8Pa3f41v/UvfwE8HnHaOWAzJRhNGTmJDRhunaWDWLQjxfVr7CV95bch0/BYX60DIXiHPRlThGedXP2CzWaACvHLniNnbr/Puuz/g4vSEppE0UXN5UuHLkukvfZ3F+RmLD97DVgXoN4j2EwgVrouUGu4PcrpsTJUfY7sNvr7i3/+3/hV+6c1X+OMffI/TiwsuqhLvHCZGWutZLJe0XftCt8OIJKBqfSpyPOzQgiQk2KuxuEBY1jSVJG4kn8nID2XY0ZNUz3hc2iQlbntj2I0VdCFQ94fo9iFI/NYeJYiBzqZiSotUCBECg1JiRFKpUa7jwdE+mQpIY8FFVguLKAtEkVGLDClTcSeVxvvE48+NIdcwyATBJlUqqfcwOjAY3cUT8Zwl7q6PibYoBW64JrctxYM7PWAwQSlBVgQyrRkUOXvTEXvTIZPh8PZ3laSlo7wNluzWy4jmrqDaIYXpIykqiR2SAqnIvMEvv6grFXfUmeg6QlvhVmesqgWb9RVC5CA0fjAkSEm9rhAhYoUkVhvC+RXZ/YfkDx7SBsUqTnheDamWFWPpyFSDrytKtWYsW7KiozicEX2F3wQePHwNheRP/9FfMJ5O+OV/4dtM9goWncWaHD3dY68z6KFjGA6xXtJulhT5hs7NOdgveOX+G6y6QBckUk+QQrBef0JVXSKcZ2g0d45nPDu74vGzC+q1x4WC/XXAy4A+PKRrO84//ZzlZQ3FG8TmGa59RhMC6Mg7x5qyHLKY3MWGyGZxwVffeMC//Hd+i6urE67n58zWA8immBgIznN2ekpVN/g2UWyVFAxMRqEUm2qNc5YmRIiOxlZIKdBmq6qnaLo5+VWNv8wpjeB7rkYQMQm1ACUJURNQEBQRQVAZQUqamLxDmtZSb2ogyZc775G9aqFzNvHTe8Q4ylQUCCTRe/y2Bu8Dx+0Ath1Vucm5fnpH6v+7K+5mJ6OzRNfhqku6Zs3Z9QkxShA5Ic8JRU67aXBdhxUK5T3++RmqGDD46jeIDlaMubqOXD9eEnzyesmjAxpyf40WK8xkRNABuzphdnyHvf17XHx2ymn9jLe+9Q0m+xMaIWiEQo0mDKzk0EsGfkIbhti2RcQGH2qiNNx7+IAALJsA5gitDG17xnL5Ab5bY9A82J/QqowfPXpMs9iwiSVZIxkuLAxGZOMJF09PWMwrgrwHeonvPqR1jrUL3J9q7u+PaKZHdPmEajlnkBv+3X/vX0WpyMXlM0Q5ZNlOKHLAr7g6v2a53NBsaoJzKCkwWjHSGV3b0tSO1ke8dTTe4okYkzoisnKYtaPaeKqB4Xpo+DPfpsJW9vMbSvUKsia1koIiKE1Qmi4KLNC2DttZujbNIPsY2D884Fvf/hYPXnnwz3Xn/VNdcYvef/EJfjEG3YrIIYBSu4pxG4NeBvf6FycgRyZFNyEg+rY3K09ql2qoKf2AMQq5uKZbCk7OP0HmJfrobvJuay0b55hbh15WqNai3vw6LhuxCAVzN+bJcoDRiiEW29Q0zZqp7DCxI5/mhA7c5oJcj3nw6mtszub80T94lzd++W3e+KXXoDQsrUcMxxTTPY5aReMz1v4AZx1dc01gxbrRvP7KhNnkK8zrgDf7aJXT+jnzxXs09RoV4Hg2ZnjvgB99+Jjr6wXrRlEGzf5FQ8gNe288ZD5fcPnpY7puiCxexy0+xHVrNsEzKQVfPRpgiymr0T3auqJdnPPbv/Ut3njlmOfPP2WxmrM3H+NsjomBeuN49uQZy+WSYG0a6lCScZEjQqCqHDZAHSI2ONpg0UGgrUBtPFJ2NDZSZJruLEPh+Se+SRT0/ucbBVgvE7jtFc4n9lfrI2sfku+oUml2UQRcTPm5JOBsi3O+B6VTzRBESLTCGPDOEeUtek28UeDbPbT95YUYBC8WWjc0bPr55tRpijugQ/T5U5qNgygTxV0p/WMF2VYoZWcb8CXWly6mnG1ZL6+4O8yYjXKaymFtRJA8BHzwyCgRKktKI1KxaVvaTY2bTogyY9OsUUKyNzNonWG0JoSk8qZi0rXvNg5vBX4WIXqay6fYVUV7foXJCkxR9hVs4OLJSUoirCSUBa47J7pAWDV0DioHfHaGXDe8+cZdzN4D2rjPJg5ZdBotPQPlEa5D+JpxvEJSpTkGNKFdopiwd+9Vnp1d8/l7H/HOd77Dva/cweeapashK9HFgKKwSJ8RY4GTFS7UCLlGCBhPv8V074BL54h6H6VyQrCsqqe4LqAQHIxH3D3c43tNQ71Y0noNTlEtO3Q+pjy+w/LqgubqEm/LpNwUPyLGBu8iUiom2ZDG5LTZCN9t8K7mV776Gv/iX/8mHz/7S5bNFVlpCB1kMRUyTVMnKeQYdwOJujfvtL7vZ/Sb1MfYU/62qBTJj0sIXCPwMdL2dMHbGJrqaU/y1jM9oe/HCv+XD4fzHikE1gWUhCDplWYCvm1xWqHxZDJglKMLnrqxSBUQKkmbC+nR/WPWu4TexIgMaeTS+4APEWSJVIosmxJFYGAXeOdwXUQrgVGSSZEhygytR/iYk5kZgoDzSzItGWWG2XDA4WxGnmUvfGM7pOMlJGS7vgxFJHIbjel/Ere7Vduy6oVWdX/RBE+0HaGr8fWSen7C4vwJxoxQqsDaEV5KuuUCGUGqAf5qTvfJJ8wKzfDOPiFmtOSs2pxVa9Cdx3epy6ijQ+gNUgdMWeBDR2gDw/EE4QQnH58SHgT2DsfoUlL7QNAZejBmOA4I4yCWWBfBzzHaI8SSvHjAZP9VmmWgaQRCFgghaLpL2vYKESHXmoNRydkZrBYVnYVATttGTBvQB0MksFksaWuJMHtETgmuwgaPcjDN9pmUOW0+JHYdvqk4mBT8+l97hx++31F155QjQ+dyCjxd07Ferajrlug9QqZh69JohsrQbgQ2RmxIQMTGpUI+iwoRBUSPtQGtO0JVo6TgcrVKd2lIwgY+QqY0uVJoZdKANI5AxEpFjAIfUvdJKUhS/v3POt44w78wz9Dvk/S8uHXotgXVjd/Zrhu1Raz/ihD8DcL+453aX6T1smDL7sNbgm3xzZJuPWd+8glCKDIzxpcFriyx1Rrftgg1QDpP+9kjstGY8RuvIUJBR86ihpPLhjKHLFO46NBYRFwjRYPIDYiAa1Zk2QOm+wec//BT/h/u3uzX0uw87/ut6Zv2eOaauqp6ZJMUSVESqVggrRgSnNgO7MBxEt8HSJyL+D4I/Df4JshFLgxfOAk8BE4Axw4IRo6kWAIlioMoimSzm91dXeOZzx6+aU25WN8+51Q1qZQiinCygKoz7H328O01vO/zPu/zrA9P+OyvZEy3K3rACokqK/I+MOkcKpaYWNIu1gTfIOUKrUdMtu7Se8W5D6DGSKGwbk3THRI9aGGYj3LWUVMva5q6pyejc5KucTAeoauctm6oF2uinILyBLfGY+lCoJhN2StzzooRdTZi7Q7JCsHnP/MaIfZ8/Y+OWDYZ5SRHB09wDfVqyeJijeuTrLnSmkwpxlnGyjvqCDYEvIemt7gYyKNCCIkIAdV5+t7TLzTrXLGoG+q+Qwy05tT/KCm1QUmF1oZIMlR3UiWfKp/m4aYFNQKj8YhXX3+Vra359UmRvv6ENfB8rHedSvfTG9fXT/r5Jz/+i7dszoEXkfgX/+Y6vfyyMn39zYl0Ta//PtGw4uXfpX9JiIXgiR5C34LLUb7FxJYsNshmSQyWVR2IJkfEBolAOU/fB+gD2dEJpmkZ7e0Qx4GeOXXMuWhzchORhSP2PdF2TPQKITpUrlDS4PoaEUtm2zusHl/w8AePuPvmfbb2p6AjrbeIvMSMRkwmDhMMIpZ09QoRaqToCTFQTfaYbO9yfuwJagpSE2JP3T7D2YhCMC1ztqYVvnesVy2110SnqNcWkxVU21ucL5Y05wu8LxGmIAZLtCts8Aht2C13qIuSPh9j6zWhXfHG3X1+4bNv8lv9U1ovKMcZwQoKPF3bc3F+Qde1RJ+EYKRSjFKDIutV0q+zIdJ5T+18sl3wKZkRpDjeaIlfGXpnOVuvhxaPjX8TFCpDD+sHEZOfnRBYqS7BZikiiDAIGQWij/jghlaJCPLK4+kyTgmeMDCG0khKsS+eQenOCcTfzMMXmTfx2p03FdNNffUSBhAbMAAGJSqUUgMmkJ5bkBT91AAKvOx46WTqYDLmy2/cQ6iC1gry8ZxKZXifFlxwGUZpSjUiBkvft6jcUOVznM5ZBw2jXYSE1ve4rsW5Q4LtEX3HqOjZ2skRfYeIFrv2rNueH/3oGf2qoz1bU8glpYKagCWyV3XkM49YgDAOZZ5BCWEehkoCEBrkcc8r5n2sanhz9+cwjeNDabAeVk1k7NbMxRHq1g1cmdN89CHN8gLEXVq9x+LebeaLJV++/wnGXvPogydU5QGiMozvvYWjwH3/W6ybjmb9kOCTd8AXXr/PZ1+7yTv6Dd6PE/z0kDCZ8qSznFjo5Iwit8ynHiktrVtRFYKtSUGp7yG1pDWB0rdMz5e0W7fof2mP/ve/Rbd6AFiSVKzGRslHa0nPgjosmRaGWVnyz/7p/8ZX/tW/5rA7p+4a2sUKbx1r51IgJ9Ls8QiyyQxlDGa9IDhHGzfqgFcjxGsORyEV7+gAACAASURBVFEQCXghcD5e3X5t/qW9dkAaCEPtRFze9+pOaZFpkZJzKTcqhIqkMwNVLtkZSe7emrC1NeLGZItMG2xzgYxrxpMRRkhyIRC6RQpNjIboFd3ROVEa8tEEIRV9p7CxZxFaYpbogHlWYIxOCKmIjGKRhEiaC4JU9EIznx+wtXMLY2aApm0t3ges36LvLfW6Ybla47s1bbO+ug4iLdArg8QrCsX1selP21D/huOIELiUNN0gf3FQW4wbgUYGB/Frm0wIqSpluxbbNiwPH9DW5yzPHiP9OdvZEtGvoBXIcgq5xk96EKDVBTGuiRcdo+yYqn+fLXVAUxRoY/Ai53wVmCjHK7omm42Ju3u0q++xOH2KmN1EqxnNdMrIaL74ydfJxyXnZwtMKMnKEWb3gO37HcG/QxZOWZw+xHaB2sLN/S3+2i+/xUJv86HfI+ZrdNZTC1Au0IkxMfNs7wqqSUkferQMzCpFrrbQfo4sNJ30jLseITMOPvkZwoMjnj55F0RNEJJMZeRa8dHCoBrH8aPvk2eKV3bGnD98wj/67/8JjexpVM/i5JxmuWDZ9DjryIQDHQlKkm1tUd28Sb44xawWnEWLc91g8JzAiCAEIsi0diJ0NvG4F6vN55U+UyUS1UYNJ4FQEhd6hv2eCLhoAUEYiOkqCnIdMUqzbjt650mqaQpkko0tMolUSfRiQ5fY0B6u85ZS6nQlgR7DVfIe/JUowP/fx8bLxNke1/esjh7R1Recn3xEtEvmZoFwAbE6RYgKkVeEwhIKj9YLhA2E7RqTw8R9QBvn7Bb7HApH0w/JsofddoEqBHZ/n+7ijPX3vk/IRojxPk0+o96ecufGPkpqXGu5WNRk1YS+rJjdfQPx9AmxXuNX5zT1MZ2NKK35i5/5JJP5nI/EHZz06OkKl2VcOE9DjpUzJluCQpUEkWjAk0IxESPyLEeOcxrlqayl6CR791/H7DQ8fvpdenFGkAIpc6rMsOgL3jmVnB1+SBfg7t6YMZH/9X/6l0QTWemW1fkZzfkZq87iO0uwLaWOeCVBZ0zv30c7S378jD5avOuxblCojUmO3sbUKB5iSgqaXrIYAvhNn4UaEGmdOGcIk2i4nXOXwZl3LgF6QoIEFcTQG56zv7fN22+/zc7u7mU15/Jgu+xt/bcZDvj4kCKJQ12On3AGXRecEJKroDbGoeKU7BJgYDxsruiwWUmR9q9Nv4ySYJSkzDLmheZgLMjcErfsOJhHCh0JKiJ0RFbnCC2RQ2QqiEjTIi9appML/CjjrJ+TtZr3TUHnLWeLwK2tnh1dY/a3Cblm/cFD1osVglfI44x6e8b2nQO+/Ok3mJUlZycX5AdjMDnjO/eJZoSr/5jFuuX8/Ed0PdQOfvnVe3z+rQOeZHf4KFSE0QJGBRfWsXKSTs7Icks1cSgFPljGhWR3kvGKuolQks5ERLSM64b5fBv7c1PO2/dYnD8jCEeUisKUBDTvnEqaeMGZPWNvmnN3a8If/PbX+cHXv8NSN7S2pT4/x3Ud501P29hUEFBJgW905w7ZaER18hRb1zzzPS54WjeA4jHiowSZbDAiIlFbheB8mT5jHzxy+DilAAUJqYPhTBmEIAAXuktgXA60u7IwRCTLusUOPcQMcabWMnnKKpkoo3ET3/hr7Jqrz/7SJwou7ztkSUMCHy6pgRtgeYMtv5D/X+P8pLVrTAInN9TVuFFovRRbsn8qr9CXTqYKk7E/nVF7Re0VUhuUNiiZmpN99IPPQ1p5IaY+K6U1KE2QCqVypIz42IK3EGpwSf40M4LROEe0OUSJNAbnIihDNBFRBoTwCOFQERCR2bxibEBkCplnmPkEMknIBVKBkgLONDKzzGcVdpxzc6dktcyRQuJiUghJJpkBORoRJmNc9DhryWKOkAWxyMgnFfOdbaQ01KueKoBSGp1PUfkUbQTagc4FkgwTc7YmE3bHI96NEwITtque8WTM2XnHqpGYah/tFqh2CVoStECJgBGB0igwGleUSKkI6xp0jiwnyKpEljm+EeDT9PBRsLYBFxy97wl6jMwNHz18ljakqSKQGv68c3gbLxHrjcu0MRkqKxDrZcrSr5dOXyyxDtM3IdcvBmFXk1fAIJP+orP68yWpy/sLECIpzSS1IInSiixXVIViWilGI0M5yinKAi0l66ZG+YCU+eUhIKNHBo0QjoCisxZEhi4LwBOixPsO7+t0mAqNChHpI96mxlQZJSoKVAQRU1CaZRU6y6mKhO4uWSXBBp8hhaKzgRBamrZNsqubhaY1d27fxhhzhcqL61+H1y3Vc8noFV1fDAeZwBiNlHKoPsTnrn+WGZ4+fTqUqJOKohACERzeNbg+9YeF0JPpSJmZ1EjtQGcaMk1UafOTSiZe5jx5cxgFo1wyKRVGK6RQBBcgRDIJOjMwnhCkxPYdWVQoUYAxyMIw25kiM0PfBaRPojY6KzHlFJMbTCbIcvBSMjYl0/GI7aqiFwUuFpQmUEhNb2FZe4SeoLKA7LtEhxOACOjoyBRkUhK1RihFbHuiVMiiQJcFutJII68mHZJ1H8AF1vWKWGao3TH1uuHDxRo5loiRpGs7bNdjO493A2ijBFongZ7JbEZsFskjJ7ikTLRZJ8MmHnwkxiThn7jSDDADA8J31eskSapFxgjs4K+RTouE6qW1mQ4lomA8mTCeTFisW7reMp5ME81PglZQZkkMQ2pFDCmZ8j4Zsb7AoLisSG+m1+brdDrl5OSEjz76iP8nBF78hH3jCjC4+vn6c0Dk7Oz0xz7mT3fEP/m2uKngOULo8b4luBZCjxCesjSIYZ3LXCMzTZCSKEOSFR7WjzYFmRaUUTCtNLmSifLiUp1RBp/MJMsSX6+xfYuQJUYMQkJGUY0L8mZE8JG+D+QIlDTofILOzzCZwOSQBah0SZblbI9HlFVFiCUSz6gICKVZrC2OAp3PUK5PPX3DQaDxSBkpM5XUS02W1PJ6izIGVYKuNGqtrgUrks5FFq1n2azpvYXtkuACjx49AwPMBM2qxrYdrvPJviMyrKF05o+nU0Rb47zFe4vzbrAgvgL1QmBIptIzE/yVTbFM9KQorwQhlBBJZQxwYUCeNgdSjEgFQsrkiVXk7N44YG9vj+l0Sp5laY8V4hJNvwrLNj9eAQ0fXwU/7QrVJgH6+Lx9mfYOKcSPOXmHIPTaz9dvvwxOxfXfXUWpYtiPNk3/WiU5+jzP0FpRZZpJWbC3O2dnp2J7a0JRafJcMxopykwgjERogxxV6XsjUwwugbVH6ILxuMSXGdsuY7UwSBQ+OlyfbCwyFZFFQShzrLPYriOPBiEyolGUo4Lx7gxhDH3nyeJgJGxG6HyNygTagskihTbEPEmg74xHHFISKBkZR1lmrBpPYyU6n6P6GqlXoNK80yKQiUiVKdCKPjNpvjYtSIMqSlSZoSudMpZhj3RBcNEGOtez7mq2ijlKlJwcnXFKRG4rPG5YP5a+S55/arjeSkmq0Yh8OiGePMEPZ5AL4doZlI6cEIfpz7WvAwBxvT9bbEAJlT5XOxi6IwRi0zpwLXgbYPLL5DsyVDFFEpTTWmL0kEgJeanQ93yceUWJEMPvU1x59d1VYsXlLVfd5hvQY0idhuXOC3N8EyNtKH7hGrgQN60RL7GmNuOlk6k8n7Cz/TojAl0MrFY1fd8zykbJE0UbvO1ozp+R5SXVeEZelpg8JygNQlLkGSJ6bN3TBwWhQPiI8i2znRnb+9tIUyFkhswKQrC8+qnHED0SgQwNMqTeACE8WT5B6RKT30OoEaLYBqFBZFfFvS914D2y2sWrnL/ZG771B9/lq//kn9L5FhE7MlmQZfv4+QF+PkpIWO/ZKbeYZxXz7pxqLhl94R5rsUeznPIlPWG/zPj22YTVeUkz8cj9KXduvMVucYNb1V3co6/zzT/+LltfvMHd21v89c/+Mqta8/f/+UdMipLPffG/4MkP/g0Pzr7KbGeH6d07iH5FPH3IwtSMyxv83Ft/lbPTp/zw+7/DQkiWQhFvvk1554v43/zv8McX2OCRQRCDHNBkx7KRtC4wLstUbTlLAV7XWYgKJUcgLFG0SOmIITAuRmR5yePjJ3S9xV9Sx15uCJkmqBIiLaCBajEqNEoKepvKxgiBD4HuWrKxoR5IqdPBJs3lhry/XfDGnTE3ppL9sWSdlywwLE5rZJRUuWBaSoJJPUGxbZB9kmbP5yNklhHiiChhVvUJjekDUUPUhi7Psbqk92uc88ijNVrKpEQpDKbYxxQleVlRuw4bLH1dI0LAr5KKmzYjxlXBZGuPxfkJF+fH+GvdUQcHN/gH/+AfcuvWrZddch+/vteyrGsU3+cS09/8zd/g7/5X/yU7O1tMZ1Neu3/AzvaUX/j821Rlhpm25DPN1q0DlEp0W6mmCFkhTIWQmoRFDZuV88Q3e6QpEabiVS/Zry1fn0zozTmx7xgLSZFvIao5YTolqozYRQ7GE7Z2ttmRgVJ7Rp/YxXtN7Sp2KXkzy2lCxWE7xk0klJo3PveLFPmMW+VNxPqEd9/5BvrWfe6/usUbe3scTCr+9293PLvo+MzNL8D0jA+++ZuMracalTjb4w+fstItwgRevfslsmLGD9/9Lgvbc6gzOjNh5y/+KuFr/5r10x/SBIuNkrBqkAKcb1nHjPee5kyqgp35CL9aEs6XyU/KeozeQeeCIM8RwRGKlvl8yq35Nt//8Ed8+OSQuutw3qNlorlGYQCBT0qww7mQFC2VSNXGfJRjtKLaBLDOMpvkzGc59bqn7z0ogw9wtlolemoEgiAi+bVf//f4G//x36Lterz3VFWFVuqSyiBETBQpMUiiX5tHH1/oPz48XCyW/L2/99/w4MGHV4nW5aF1hdan5xRX8uukAzbEgFapKf36k8dhYseYGpOPDg9foHL8rEckRguxQ4hzpFoz3ROwM2L79p0EFEmNkDlSzlJXtyqGCHBAQCPE+xYhFMKM2I+SmVccf/AR7wRF7NcJQJMVJpsRxhP8akW3sswyxZ35FttGMfUt5c0RaqapKcm7jLs641zk/GhdYaWm3/PsvXmfW+MDbhQHVMKwePwNVs0F9z51wPZ0wif2b/Pdh57f/Z1TXtt5lftv3ufRd3+XVbdmPp0gOwdnJ1jfcGFaDvbe5tbtN3j8+ANOjp7yzEVWQjP9xS+gnj1h+eAPsdZy0fd0XlK0ksb3OAIfPDujLAoOdqbI3uIentB1Let1j1aTFMSKBSLryDOFzgoOpjPObc8fPX1G2/c0fX+ZICENiNS7cbkVigCEy3MnLzNMpimNSSwH68iN5GCvxAdo24SURympO0vvA+PJDG0MUgju37/Pf/Z3/g5lWWGyDKX1c/TsTV04SSL99FKkn824CiWvryoxCH5c9emGYT3La9f5+X7dzd9JrdLnMwBKSiqyPMcYw81bB8ymI9547Ra3bu7y85/9BEYFjHTJH1IL8rxCqQyptpMAkBnB4Bm6GeF+Dz6giilIw+ecYpx/xG8Fie0DMnbkaIyZEaoJvjLUS0d30XPnXsUsyxjbhmIiyT+5Syem9F3JayJnohTvnGsWF4pmZtF7I978xc8xMzP2sh3iyTv86L0fMPvkhIPdEZ+9dZ+mV/yLbyypsoq33/7LHH/4fZ4uvk1ZlBTjClGv4OwZS9NQmhmv3/wyy9WCDz54lwupOJMa/cor7N59k+bkfZr6mIXtMU7ivcZFh/UdR+eS2kb25mOqwuCeneBdy2rZAgZjdkG2RLlA65aQ9WxNxlTVlD84Oefi7IR11wERLQeGgtCp9+myVJPSKCHADMB1XiUVwkJrcA4RAvu7JVmmWC27VAlShra3XKzr9EBCpnMOOD5f0vtAlhVJZr3IUQoyIyiyJEy37gK9Sx6NIYRkWH9ZEd2kfWm6baKoDbB3VcG6msnXE6s0hT1RCJRIZ5C4VpFNNPh4aT4vGBg+w2SXShJ8vEwyX3a8dDIlhEBLg2/XrNs6Bds+ElQYUCCJHBaglBqlUqnvssonxcBHighpQCiCMOm+WpMZjdYaZSYIlSUltujIsnRBtVSI0EHokrmYiEgzRsgCXdwGWSLUjCgURDNkxgJnWqJ3eD0HoRnpwKw07Cs4I7AIDo/CqRIZBNolqcboI7iQjDulJkTBRecgTw2yRkgyISmUIdcZZAW6KJmOZ4yUIadlsjPDzO5jxopCNoTFMaIruLM9RgTH8mKBdQFTjsiLpPwSvMF2Gu87KuvYqkr6Ok+eI32H7y2YGmmSdHI0GQzUhU0P0sbC0CMIIoLwgxu2Q0kN8Yq7KqXA6CwZtBGJNpU2r3tObUqslyyHnzTF4tXRIkVkNlKUeTJrDT5VLyLQDyiWvKwKbB5381yAYJDclUxLxd5MM68Eo1LQa4ETUA+VLqNzeqXohUqUW2uTzHoEM84QWTKqQwg62yFQlxUgoSSogJJ9MmvFw+AVJmWyIQ4xBaoJSfFJdSoGRAwE7wkIgnUo6TEylY+zvESqq+WllOLmzZvcuXPnZZfcS47hMxqCzq2t7UuJ9jzPyPKcLM+RKkPqfPBhIRkpqwypcqSapD4kWaQNF3WFYA3yp0Fmg1pfIDOerUyw1HDc9Fjv8CpDC4WJERmSEbDwoAIYIVFCUtuUXKs8eVdoITFSkUmNMDnIgtF4TJVVjFRAlJqwu4sal2TKovsVYdUzNjltKWnrltD2SJOjTJrDMUi6VhNkMkLMpKTKDEEJvA24ek3MNcp4jFLk4xJlPcIH3DCfQkz9fUFIggSkJ0SL63uU1AijUkBGqjhKoVCjnDzPiE2H7SyNtdiQKj4b94or80LgCmcHNh5rw0WPAq0CVanYGucDDcJhFCgjaEIyse6txfkh8CFVs7Ki4ODGTfo+JVOjUYVWaW+9PKiEuEymPk7x+Unz7OqGsjzl7OyMR48eXf4u4f1X7xEh0EpdVpevGFIRH5KfixleUwK2NxGaHJIpy3K5esk18GcfP45/n+ohGx8ShVRZypNiQFAAAmSWkik1Jvl8ZMN7kVcAq3JDVTJHArmOTI1kVwtOO0sXHA5FkAYVU3U8uEh0MYGNJKP63kOwAZGn5EJztYaUyoimIC8rRuMxIykoCcjtLaQWGO0pQgtrKGLGzihD+J71qicKhcry1DdhJbbXWAvRdggfGWcGqRVWgO0aXJBI7dAxko8KYiugc3iSabUfziAv0r8oPTE4vO1TFdskwZuISB5rUlOVE7TJiF2Pa3oa67A+CaqIKDdX9DLgT318Aw1VJAT7soQSI1pGcg27u6NkGFuNiAFGFZiywhQjQipJMZpM0ToJUt26c4eDGzeRUtJ13SD9/eJ5d/0s/Lcjobr+En/yGoYrZP/a6R6Hd/HCe9pUlcXVD88h+xtvHq11usZlQZ5lbG1vU1UVN24eMJ2OuHvvJvv7O+we3EYKj4guSW5LULpCSIPSc5AGIXMSmCev6IXSpuBYlYDCaE9lJHsaFngu+hYbwMkcFUE5T/SB4CLYgPQRM1QyVzYgTKLEKSFQCDKpMcqAydFFxXQyYSwySuFQkwqZ75IVilz2iGaBtJp5VaBiYL2scT5iigpjDFpJnFX0rcb3PcZYxnlG3xm8EkkQqOsQqkdrQ1ZkhFGBaG2isIY4rB85xHCSICNROrzr8dZidJbaF4YPW2tFYSqMqFARQtvS9pbWeVwMae3ETdXphc9dwKZP6bL+EyNSBLSKzKc5VSFTTBw9hUk+jLX3iQVl7WVVaNMT33Y9LgTUsKYyo1CJaMUVrpZeRbLiiCDSXys2S/haJiM2/107QK+jyVevPH13Wc3anG8vLIghto0hJHqiuPyz59bBn5bG+/LJVIyo4Dh6+IgffvgBk509itEYEzKC1kiT0IS82ibLcrQpaK2nbxtGowJjAq1rkFJQ5ROi0DhhKLVmnJlLVFOKHCEkXqTIppC3kUKjZDFkqeIy4EtVKDm8jXRFIqk3wfpAHwLrpqfvIrlMfTAms0x8x5fyyPday281SxZoRmaHvWVL3l2gekdwkeb8HFcfMKl2ebo85QffesInPr3HqzcVQUmaoNifV/T1jMNwk6oouVNs4c+ecvr09/gP/pO/yRe//Cv80e/9NkePHvC7//P/wWh+wN/9z/9r/vA77/Df/v1/xMG85M7tV7kxHbOfRfpuj7PlBaE7ZKws9ysB2wXy9j7i0UM4PIRjCz4nkxI128Yvzokh4OPmEJdIXaDyCmU6pLT4kNTGptUUFyKLpkGJSKYU+daMbDKmeXpOuz7HOfeTE6Y/aUSIPgwiZILPvznijTsFX/naOYenlv1C4aPgyKbP2qhEs4oCBg2MwQMrBS+5kdyca17d1XzqpkFKj5SB3qSS8bkVuGjQ011kJTkNHm17VNOj6g7dOeKoQGc5VCUuKE4Oj8mzgt3dA7IMihxEWENc0Oocj0Zog9KaosywLrBY96lnolWsl0vadoWVHikgyIzgBe3FkrwKqKxMhr3Dv5/tiLz11pv8p3/7bzOejKlGJdtbs8EwcYZW+rJaIKRCDAmi2GA/Q4IQSRKlNnq8h753qXNNeELscF3Lp4vIVhX4X56c0hQFS1UxDYr5ao1uLK6PdIuWtliTywyF4YcfLqjygrc+IcgySR+hMIrtkeHI7tBazbaZUERYP/oOuwd7fP6v/w1W56ecHT3h/J0fcnix4Of/wq8jxzv883/2Vbq65vU7+8y3t5lpQXQjTi4O8M0aFZaMf0mwPdKYgznyQiDfe4A4WUO/ZmR79Gt36Y9O8Kua3qnEI1fJE6qcTclzh9ILLDXe98yn22hdcHSxxHuXvPTGFeM7N+mOV5y+9yGrswu6IeGJA1VBEjGba0uijnGdIgEQBX3dIYxE55Z7t7b4y3/pVb71nWd87euP2B/njMead44bzmrL8fkF1jr6Qdrc+cCyaSjLEiXlNe+4MFSkhv3hT462Xm6mDQfPZfIUN+aIVwigkMkUcsM7F/LqeUPwOBeGJl/FZQg3mBynBOzllZR+OmNjCukukykICXwxW0NSPIzLQ3oTHTx/aAeGHrkQ6PuNIumwN6rAnSzw70zgq+dLHq5rLkhn3EHd0tUtvo/Y2tKcrpAWyqzivcOWxeEFn/zkHqNS4hAgJdtjQ8cE7A3GZotdXeKOPqANPb/y679GXmQ8+eBduuNDfvCHT9h549P8rX/3l/k/f+P3+PZ3f8i9G1O2t/eZZopQR86Wu3TrCO0h9/c92xnoSY7zI8LRIXHRwMMe7Vp2X7mFW67oDk9wXtL4VPURAvLJhLLK0NmKaDuc78nzkp2tLc7XNcumpjACY0omr9xCILn4wRMuTo9pvcNvQL2BZpeTpP0TPTZCTDTXKECKkNR/u57oHNI4puOcv/Lrr5MVY374eIYRimmm2HvlVfbuv8GdO6+wtbWdqlLDXBVDcuCcG1S/Ep0aJYZqyU9n/fxsxo9/nRuPHwY2yIsm8j8eZBm4PmJj0yERUqGNoawqZpMxe/u7bG1t8Qu/8Hn2D/bZ2ppTlDk723PyvGA0niYVUyUvq+Oba3rJJBJXXj8uJg/E3jq8T/Q5QcSHltK3/IVx5Httx28cnTJ1ni09Zt5Yyq5H9oHYQ32yZjSbkuuC09WKB++ece/eiNvzFHu4CLuzAsKE04vblHnOzWxCWJywPP5jPvOFX+L+W7/K8eMPqS/O+OD3v4UpRvzVL/0VHjw84l/9i/+L3XnJrZu32Z6MGGtB3WxxfO7wq0Nka9nNJWFWoG5so54dI49PEYcO4TK25xNscZvm0SHeehqvBkBNJ3uB2QRdNEjd4/waYmR36wDrA0fnK7QMFFnGzv4u+fYW6x8dcnFyTNN1wxmUkigRI3qop4ZLGp4H4uAfuslxIn2IFJXEZB1f+Pl7fOKNHf7lV97l6bMVd2YlvY88Pm5YrVtOz5c473EhDBYbkY2Zs9aKLNPMxlk6f0hG5711l0p9IV5VgCQkrC8OFf3rwhVXZolXJSqxUe1j2K+HB7pGQd0ISHifqm9iEMGIEZy3qYBiTHrO5+u1V+yNlxwvnUzVq5qHHzxicbECoSjzglFVEoPH2YjUg5RgURKlpHce53q8t/R90p/XWqOionGR1G+qiULTo1EkR3OEJjXRO4jQY1IyhU7LLYL1CucFZwtH00fO6xYXIg6HdZaur+nrmq5eU58+wjYLyuImRVZwZ0dy9N67POiWHLt2OOwammaBNNvkoxIpA4IO/JroavCe3MD2lia6JWeHj1m3c0Yzw/5rW/i85p1DyUhl7O/v0Uuomx7iiHoJMd8n29a88rltqskcZQwojcjHODOhltu4WBA9mNxTVMm80GD5qDlmJT23Dm6RLTtivqSRgt5ZcBUqBnpxjicQLydEJAZH9D2jkWRc5oS+w9mkbhRCRA4HkY+C2wc3uHP/Lt+8+DoXZ6dJieW5Tz+F2/Ly0V+ceFdjAyiECE9PE2qxagM+wsoOKn4D3/W6ATAxITKboGTYUvHR03U9y/MarWL6t+UZmcgsk1iSR5ASkqYD4w25yvEqJkNpC7rxWJcQ1XrVEXJoqyWug64OGKOSP5Aa6CQECI7ORrwDEULyQrCJn2WkRg0VHqlyghLkVSTLk8+MVBqhkiHen/eIL3xvspzJdEqWGeRQ1geN8+KyeglpE+utp+sdjY0J9Zbp9521OOdoVzW2XtKcPSMrpuTFlK0qkmN5dH7Mk9U5je3IbEfTNVQhUXW0iWjVE12N69YE5zFCM5satIB6tWQ0ErhYUUwytm6MmdQZwRpmoxG5lLTrHUw2oW/BkyOLLcb7BjHvyKukOijzErygkxOsqBBIjIFiHFAxom1k6WrwDVuTCSoI2uyEFsEKBzFDxxlCXmDxdGHjc5H8hGzXoivJ9k7BRbSpaksSWxHeIrzFSsU4L3jr/qt82L7L+2fPWLerSyd2AETqU9JDZdYi0+YtNi22A1Y4oIQR8EFxetHx7e8f8e6DM56dyfZFiwAAIABJREFUrgguMC4Mq8bS9y41ybLhdl/1ziVq3SZpFpeiJs/jyjx3TlwFTy8HomzW5+Z0u1JIGh4rZXFXxeoXzqTrbvSbwy1V6Daotxxe95/veHH9bF7LVeOzIMQN4HAF3fuYAKC2D1gPrU3Bn4uBzlmc87TrBt93NKdPEEjK0S7jQrE7lTw9PuLh8pRFV9O7nqZr6foOZXJMJtHSImKL61Z4lyo6o0ohpwrb1TRrgQtjZCbZOhhRi4LqXDPJC2aTCX2zhXSOGAzeG0QxJxcFhakYbe8m5VZjEFmFlWNaMcIP9Ll8FFA+oF0k0HPsakxm2J1OaaoJmZWck0yhsVN67Qj4QchEAilpdH1HyCKzeUa0YNep4dsOF0/5Hi8Steje7dvECB9+/bucLc+uDDshAT4iUcW1AItIlJwNwnyFtbPRiY1IXFScrnO28jmf/uznIURCs2Zr/yaz2ZxqNCYvCszGD2fTiB4jSsrh99fm6jB+3PqBzRr6fwFC/tTHT143z+0TXHlJAdfW3vW/H1TVBgNvKdTV5zLcV0mJ0sl6RCpFNRozuaz2KRCGGBXWJRElGa8Sprp1WBdZ9ymo9jIpQ3cu9QbZtqM5O8Q2K6rRHpnJ2JtElk8PebQ+47hd0ruetmupu4YtWWJygxI9MtYI34DvEBEyDZORILiGxfkZOzsakxdMdgqcKslOoUAyG/rm27YDUdJ3EPUYNZLM7yhMVqCMRmqDLCqCqejkBD+0l2RlpBoFVB8plee4X9EJ2J/PUauOkK1ZCUGnPKUbYUIgyGf0wxmUBE8iwVlc1zLak8zHBW6V4bqAC6nXX4U+nSdBsrO9w+3X7vH77z3i+PwQa/sknsMQvUmNEhIjwQ2CXmLYcwPh8njYrJ8QBc7DgycrWhd48GzB2WmTKl8I2s5inb+sLIUQhupVWoUhBqy1CAJdlkCQpA4Y0uuKqc9Xbc6Ka0WnmBp2N8v7MqDczLsYBkVKxPAm0mNsztTNvNwkWdfXxYvAwQaw2zwu117OdUbFy4yXTqZOj8/41tf+EDWrMNOS+WzKbD7j9OgM6wKySNKJjCZY27NuW4KvIXTUdUAqwXi8jY8Za+/IjWK7SP4ptRdkypCRFNwEAjzEKOjRiWIhB1mZEFnWnrqN/OEPap6dOb77uGXdO+q4pmmWnJ8/pTt+Snf0hPbxN3GLJ4z3PsNsMufX356yujji95ZHrHqLj4G2uWBx/hhV7lPtTtHaIcOa6E/BXRC6nkkJr79acXZ2woc/POWtz99kcmPC61+8w/SR4Bu/I9jWJa+//ir1ZI8zcUDfzXn0QU1XvkY+/wS/+PYdMqM5WnRYmVPs3MWaCadii9qP8VZQTiyz7Y6ZiyjV8fWL95nP9vj0a5/kwxXwtOHEL4iuxYQtQiwIPITocVfRG8F1ODw7O3P2dnPadcd66ehtJHiPCg4vJD2KT735Jr/2q1/mve99n3d+tHpOve8yublW/YyXv+e532xCq42k83fer/n2+2BUmvhHXUCQNt9NwKWlwEiRRCDClVrLBlHvfM9i6Xj8sKPSgsJIdkczynFEjTRWaCiSF9ZirSnIkWaMzyQxSvoOZHQ4d4Z3gmUTsIWlMJ7gA8E5RltzyvGY8ShJW0d8kq6vHSJIVMgIVuGCSya2eY7SSdkIVQGSohQYbShNuj01nP/5J1PPfwKCLM+ZzOZ4a5Osu4Negeg9SkaUghAEvfOcXliOzx1PFo6LNtCriI2B89WCrm5YPX1Gc/SQxbvfYLJ7n+nufT5/N+fGGL718H2eHR2ybBvKtuZiec54bsjGu+RFpNA1oT+nrw3e9kgyXrlV0DeO06ND8jJiw5zxfkm1rXn2rECtDfvbW+RZwcpXGKM4P2kJWYGYTtm9O2I2yqk7z3Ldkc92sMaxlDMKMQEUeRWZ7/eMZCCvI4f2nNMu45XdA/byMe7BBRe2xbuWfF0RyRHqMU20rPxVc7vvoV1ekO2NuXNvBy0j3kbaVuA6h+wblHe0saCqJnz5F3+B5uiY9x6/R2MtPmwadWXqAZWSQrlBBnaz7QZC9PjohwptqsbHCJ0XvP9ozXfeO2OxXHO+WHG07BmV5aX0rL8eRsZ4uaaSSIm5OjgSpPxnmF0v/u0GUrmSWr7++CkwFZcJyYtUCzFYJYjNPgCX1Ss53KaG5uCf1bja01KCuokWU6N2Kp9HSIyYGOkstH3k2Ylj2QUOV57GO2rvOF8tWTc1yyeH9IsLFj/8GloZtm//HK/slPz8vYo/+tF7fOfZA56uWhovWK4vKJo5utwjqzS5qZFB09enuLYmOM/edkYsCk5OzrB9Q+d3MZXi1ls7OHHO8QPF3njCjYNdVrEgdJ6uljgvEOPbVHsZN7bHWBdprUcWE7L5HrWeQiyxQYHsme5YhHKMfcSLhvfaU7ZGU16bTBFPay7EApdf0Hea0u/TrHsiFhsgDIJIIQq61YpK59y8dUCwOc2ipe8UdefxfYe2DV3MwRT8/Cc/SfSef3z8Dzk+PcUFd43moxEqI1MBIyIxJtp9qqSnHuENwyH1UAk8yTPo3ccFr41u8h/9tf+Qtml4//33qaqK0WhEnueXidJ1PxkhREoONskV8bmeix83/r9Qq0pKZf5yvX4sSXxhn0ix9jXEn3Rt4pBQAZdiNmqjjCZSMjWezrBdEmGyLvXoxM6hZKJ89Rasjzw+7FmsPR+eW7oQ6SW0tmdRr2jPLmjOzli8922608fsvvJZZrM5v/J6yfrsiD84ecjpqqW1PatmycXijNt3R5TTEiMbVLxA+AuE34IYqQrBzT3Ful7w5NGKnRsl+Vizc29CNvWMvuOZlIob+7t0xYSVnBPDiPOTFl9so7cPuPXWJIledR50TrlzQNAlF2LEARVCKMZzz9aeZeoiMnO82xwzGc9488YtxjWoE8uRb1n6niJu4WOG5x2IPUsHmwqdbRsaEdia73HnVkW7rFktLG0bCL3FuAYrNU3MuHvrDl/6pV/id7/yVd5/8j5Nb1M/rWA4g3K0ihQq0EeFvQaNu2ATJCEY6OYeHyS9F3ztW89orePo5JzeOs5qj0oeHFjnBrAsckkZjANAGAJd1+K9RAiHJLEzNlRDZCqaKJlivU2Livdxg6xdfQ3P23WkeRgHgcFraN01MG8jLBFi+Ng8h8Gn7lJdeTiDYrzMzS4r1X+Kc/PlBSjGFduv3sGMCkxVkOVjYjRMyiqZ6FpL5zxtZ5OSle9QBpROMryJG10hpQEb8HTU9TlBSoJM8sRGpU0yRsAl6eGT0wUni8A7jyO27nHrjm69pu9anh4es2pajhctvQ/0OKztaZo1fr3ErZe41THRtjTLx8T+nG+8k9O1K1be08WUKbf1CcuT92jj27hyl0prrJLY0GGFQ41ysraiGE1Zny8I3Zqzs57q2HFzYtia7/Kpv/TvY9wS+9HvUsldZq/c5t4r2xzcnNEZjReK5aM1USn8Ts7WaMQX9++w7Ncs7ROOmvvU6wDjGbOdXYr2EWoyx8zuE0PD0fu/w8rWhBsZ/qwkrASufYCvF7gIQeYoPUoHS2zZ2p0x357QdY7Dp56d2T7TMvDRk2OC8zgE2WTMbG+Hi+WCP/7mN1ienz834dLETPKyGyTp47jb89jupvLk/JV6TIjPNxGGzeKLEZBJ5U9pjFI4nzi+RksyLSm0wsXI0cphpCRT4A57xl2DrDJUJjGxT/0GpsCoAmG2kLokFh1WgggSbXJ0JrkxSWiGdQ6tJHlVoPKSmFX0ZDivkcGm1yCTTGhjW5SOQ6NtMiWOYuDlDvLtAUHnA916RdasMQL6tnnphfhnHRuE8YP3P+ArX/3KEFzDZDojK0qy7fsImeNtUuDzbUddr1itF6zbjtY5rEiI1aq2eGvpFwvc6oKuXsP5ET7A96zhoxyerNYsnKN1FtoVp0cPmG4pnLmLUZKxkMRoaX0HWqAzjTYFsWuItqFvLYt1oDSCXGn27r1KOd9BtU8RVrE1u0FeFMy2K1CKoDXCBlanHaHUqEzz2mzOWjWs7YLgJA+6QGMyZltTMjdBG4cc76CyKcuTD+jaHrcl8U2GXUT69gh7fETT9fSyIJtMUo08rBmPc95484AqhycPLVpMuXN7m48eHtF2a3qRqvD79+8y2p7y6EfvcXp0iB8QtRSXpA17khuUEPTeEmIkCYsnRnwMLq0IDwSwMhKCZNX2A3YkKMuSLMtwzrNuG/IsIenJC2So4gyAhZRXgc7HFLc2Pzw3bz4+k15uDNz6HyO1DNfO1svKwZXjx1XvWLyU9d9g+qlHJhl2/2lkaf+s4xKhF3LoKx12rwHAOzqvuVj3LM4butZydpq8XS4W53S9ZdW2dCHShciqbmk7S3exxLcN3eoi9dodPYA2I7YlD45OOPWO2ll6D+enT9CVwcpXQSsmUhIItK4lyIDMFDrLiH2O8Et837Fce6pSMsoUs5097nz6s4yyBn/6QybFAXo0ZjrLExVLpmxjfdIRM0ksFPujCuZzatsQQs+z/gYuSMazCYKevB+hRlN0vkW3PsZ2S1zpCcLgXEHfrGhOHtGtLuhEjihLilGJCC1Kel5984DpJOf0yKOl5tbNe5ydr3j8+ARHxEnN/PYNxltzTg+f0a7XiWIerwHOUlEaQ5ll4Dv6ELDDvEr9rSmDi0OhSugMoTS9j9D2PHz0iKbr+cf/4//AzVu3+NTPfQbvHG3XkvdF6nmU8uNzGdj0TPy4YIyX/OlnNTb9TX/ynUgAxuauL76voVIRL7+9VgG4/iBDJcI5h+17mrpBSpmESC4u+K3f+m1m8xli8A2bzubocoqZv0L0kuAVvuvxveXi4oS2b1nULS5GrJRYF1LFqmlwdU1/8hRfrzg/fkRXn/NNl9GtLzjuLSvn6L1luTzl5PBDWrdLyComuSEaTec7utgjjUJmGbIo6eqOaHuaxrNuYFpoRqMx9z77OUxsccffR4sJW/NttrdHTKYjgtFEIekXll5KYqWZFAVv/9/UvVesZVl63/dbae998k1V1ZW6ejpN4kRyyOFIGgZRtCxT5IMlgX6QBFum7Sc9+dkwDAOEbRh+kG3CMB9o2YABwQq0GcAgiENxKE8gOd2cmZ6eDtWV68aTd1rJD2ufc291N8meoXpkLeDWvXVPvGd/a33p//3/u3vUrqF2MxbthKYdoPp9xrsj8nKEHPZRg0uI2DI7fJXSW/y+xi0zbAn1/C5usaCJCm8GFPkEokWEkqeu7XL16i7OeQ4fOfZ2rjLqed66e4iNlhZFMZmwf/0qLjruvf4669U6Qei2PkiSacW4SBwEjXdYkg/qpuq3cL+w0RWV6cGJ+jwSkeyMRwnF5RzCe/LMdFClCJ2fEwiiSuRi5zaZIHY+Rgh+a29SC4RIz73Jx85bUcnO4jbhu/Dbri73rtNM3XNv7ns+Rtl1zLawwE2xvkNpyU0boPNXMRFUpPu8907ze06mskGfnVtXKfKiEyM1hCgZ9nsI76jna1rnWVgHuHQYD/vILEdog5AaqQpAE/0aHyxVqPBSYJUg1zlGGhqXKLuDa2mqmju37/Da/ZZf+0pNNS2pTlaE9RGhmRPsPaJfEWNiLAnodLaGDuecuGcRRKrVY5pS89JSEoOl8b6j/o005RlxKmlijcsNhVa0UrDskinZz8iqPll/hBYLQlsyn7UUZ56bY8NksseLf+knaB/8MfZf/Qbjq5/m2rOf4Ob1Ha5cm4CStBa+8eU5jZAMLvcYD/p8+uAqd2e3uX12yGm95n4ZUf0Rw7091GKIGk4oJrewZ69ycudLrIsD/OVLhLrAl9DWU3x5hkeAzJBmB2ISLNzZ3+Hmrcs8fusx80XFR5+7hBBw7/ERHodHkg2HHNy6wXK14JWXj1kuFpybVVqS1IpNQWC6dWteW0PbBG8Aovtcz5OxGMUFuE/c6kulOCXgoyLXCq31dmNnSpBpSa4lPniO1x4lEs2tOG6p64b9q5ZcSvLYJuYWI5FZgcgLpOkRbUtblQTvEyFDptkdK1rrOJ2t0KZIyVTRA9OjJUN4iXEOJcCYBDOsnSMTsRuaVWglsUEkWKVQXTIF1lrqusT4liy0tM37n0yJt/1w9+49fus3fytBarViOBxgigHmeklUA6qlJLYWyhW+PcE3hxAriC0OQ0DSNCq1vJ1N+8e1BE5o25rVIlHWVusS6z2tt8S6ZHrygP3rOzidWH2GUrIMjia0CC1QmSY3OU5aomtoG8uqjGRDgck0BzeeZnipxr/xWxADO9efoRgM2NnrpwNYCs4OW1aLhixXaKO5NR5RAnfODqmd4X4bkMownIyQzQChLNlgF5GPWD34KrWz+MllnNTYtaCqKqrTB1jv8TJHDw+QyoA9ZrLf47kPXmc9XXH41hFPX9/l2lMHHB7P8KHBCkmWFVx59iYDrXj41m2mJycXXMG5rsvApEHcmU0Cik4ABERwiOhJmVTnyDw4GQhiUzlT9Ho9epnm8PSM1apJsFR1cTZJdYmbetfkZgvfedvvN6+Zbrv4zv/s9SR6QmzzDkgdgq1bixsl+3gBNpHuHzpxkgQ36VKvzaxSPNfcej/X2/cPUaCk3mLwZQhEPNNFzb2jJQ8fzFjOSx7dvU9TL2nKewRX490aFwQuSsrKY9tAdC7NxdkKqRSe+5RLw9ksZ346ZeEclXNYF5hPDzGDjFYEUJKBUFREVr7Bd8mUMVkiavFTfIisyzRfOikUo70Drg/2CQ++Qji9zeDqJfqjAaNRgTEKpKBae06PGuTEoPuKS/0eo/GI+7MZq2A5tp4YJIPxCBEbRNVH90foYofm9HXa2V1s/yoxz3HTnNavWE0fYduWRmTIYoei2EX4M4xsePrZpxj2M+596z6D3PDhF24Q4iPuPXiIJeCEZnL1CntXD5ieHLE4OcM5v/VBqTgg6RnFKDMs6oY2RFxXyJLRd+K84TxyEhKpDa0H11gePnrE8ckJR48e8NnP/QU+/6M/xmw2ZXW6wnZwZnUBjn0R6vZ22Nu77R+Ai6HY9y6Zevdu8Z8W+m0Dybf/PXQdpwtD/1FsfPp55f6iULz3SZajbVsiqei4Wi0RQnJ8coLWGt2Rio1GQ/ToCvpqha0lTSWhWhObGlffIboVhBWRiBMG7yVtq8C77kBsEMHD9BHrVcZ8rnBtzaK1tN5hg2O1mqGP71O7jxK0ZpRlRKOZ+YYmWKRRqCwRQy1FQ7QNTRMoa9jtKfqDATc/8n342T3s679Ff/wMo0vX2d3tM94ZgEgsrEf3KxyCfGgYFBnPTyacrk44aucsXcNJG1D9HoPxCLUcIPsDsv4ebn3I7Og1SjPG706wNsPWUC5OaWdnNFESdUE+vAKhRHi4cn2fFz94jYdvPuL4tOTDz19HiMjtuw9wISVT48mEqy88g29bHrz5JuVqtY2vBGlmKNOKcW6obGBlY4JSAjKGzv+47eEdSOdyiGmebIMKm4xHQOT+42NiDOS57uagOrvqdEERIjVX4kZvNLHmbfSbNkgFFTxKgVQXrfDchjd+YgP/Pt9a7yQue7v/Sbbc3WXzd8VEkbG5/SIEMI3pJqj6NpnqzpQY3wedqSRwS5plCgEjGpQQOKNARJwOuGDxbp30IWyDxWJCj96gh84MZ+vTREm4OqVrP1AHz9p7pHfgPQ9P5ixXNY/fOqZcVJw9PGWx9qxOA945sBbhSmRoIJZEHD5GpDIMBvt472jrEiUUSkTqOuKcQyvQRtHfOSDYmlhPcSHSEBEyZaevfe0uD+5BXo3pmWusXMSWitPjyET0yW7cpHpjzfRowVBnXB5nzETi97+5p7g/vc7vLH6cT964zoevD+hNDNqQAgYRObgZsUQy7Xh0+jr/+Hf+Fy4//33c+PSP44qr2GPHl7/9Omf3XkesZlzpTfj3P7jHm6+M+PU3BU6WeHlMEHtoOaD0YJ3tBM8CIsyS9pfZ47mD6/zws7f47WnLneqEaMukvRQFBIn1LR//4Av8vZ/7u/zaP/1Vfveff4FF1ZwfqhfsdSOWuDVsLn5/l7Vtt3bV+QuV583N20cnPnV0ZsjzjN2dhK+tWo9VcGZBRYmKChkTO5g/WZFNK/rzElNk7O4tyHsFo90xvXHOcK+HdB7hEz1m1BmD8R5aKUpb4n0kywpUPiAWE7xQBN+yXpZ46xlIi5GBvPCp7dx2zxUiZQ1RCIrhGGkM3jusa5gvlxcOgTSMH95FC+T9XnVTcTo93fYCnrp6lT6C5uE38FFQrmu0gL6WYBuwNRtk9c7+PlrnrBYrYvBkQqV5tUWL1pCbyHBvQlYUzJtjKmtZxKTwIlTk6GzNv/zyQ4Ynhn7vFlWQ2MawLiFrBGY0xNVQLWdM9g3jPA2WLqOglwuM6PHHzQvI6LkyyMl6aitUjIRiKLouV6Su13zpK7+CdZEPfObzjIsRu0vP3QenvP6N1xDVHB1a/mJPMhxn/IuHgtXKY9WcVvYo9IS1l6zrmtZ6fIgof4YyOZPJLjujCR+7dpO78pT7j1cJV94skD4go6ZuKnqDIX/lsz/EYjrjN/7Jr3H/MO0/03WItE4whtJVhAh18J20jUuHdPCdQ4qdFluCFyXiBoVSksxo2rZhtVxSVQ3BB8qyQamOJU+qrYM6hy1c7ES9P2sL7etISzbeLHaFlCAET74FwYZyOcSukrk5ay44tncLYr/Xa9NNizFycnLCg4cPmS0rfNXyzJUR8dIQypqqbImTCW3TY7nSBGEIIqe3XtM2DaN+BsFz794DhBBMRjm94ZDx3gHKrfBzRymSTQiZZhW//NIhvXXJTn4zDU23KfhcrkFmPfRQUNcziIKhUWRGsYoCoQR7fcEb8TqPS82nsgk7Q43SaU4FGTE5DPZA5Imt6+U3vsobL3+DW5/6HJcOnmbPGVbLFV9/4w52NcfO13z4A5EPXu7z1W8b7rwFTi3wMsOIMYqCdV1jm4bGeqSdIyvHcNSn6E148fJ1RgPD/bsznIzEdomwDTJqnG0pm5ZPf+iDvPihF/jVf/R/c+f2QwISrQ2xg+IYLXE4Fu2a0llcCIRYdXGXP987Mglcb8gV0vWT5IXg2rWn+Dt/9z/kxo2bXXA/JstyrLWUZbmFxRpjvmu7+16mUX/ae/izfvPuj9r0kN/50O0cidhKqG5RJYFIkILWJkbXTcW/qiuETAFtlueozKDjKcL+IW1jqeuWnpZkUiDaNdE7Qowok3Np/yrOecrVGoXGCM9i6WgaT2YgyyWTy5dw9Qrmd1hZx5qIVBFt4NXbUx7MCybhEr2eYd5IXKWYryJ9kdHf26W813D6eM1zH1WMe5pGpgLhTgFnepdXyo9za2eXq3t9sp5J+6cTne3vpPNLy8DJ6T2+8Lv/jINbL/DUBz/G2IywC8cfv36P2dEhcjVn97Lm83sZjyvNN94SONHg5Rz0hFyOOGk9ZVVRN44oHNIeURQ5w9Flru1c5aNXrrI4qlhUkehLZPCoqCBIqqbl2qUDfuZHPs+XvvD7/MHXXmVZtmidkXXXNDMKKQSLZk3rPXUIRJ+EdgmpM5W+Nse5RHWzb0IojFEoJVgsV1jnsNYCsFpXqVioVCJniWzPdBMVMQZsRzSxUcDZFNhjhOhDiq1kpxNyoaqVciOxfcR5krTR4LwYSW6+NkiCLnGSqYj/5FZOMIgYkqaUkKmIsikcbCDrWx8Uv7Nd/Z6TKR8idRsxypOpiEr9ELwqAHAy4kUgxpbgLc41CCsJrUDnkigjbVgSnIPyjCAiXmesnWPZWmJbEV3NnQcnnE3XvPbSPcp5xepo1Ylcdp+5iqmi2wWsUSTAjJSpUuxdS3A1RiaYlrUS70UnDKgo+kNcI1GCxBiYPkYEgenDMxbTnJs2R+khoi7xFtYrRzE0iJ0dvBpga4NGkitJ2/Hr7+WGw2zEY/sspZpQjHN0DkLa7qJFBjvQ+oCrS9bzI24/fpn+c88xuvYs1Aa39tTHJ5wdH5Ipz4GQPLWTcagN0zOJiC1KeNjZR+d516b0XQU3EmPdBVg5o6zPlf6ATGcEIXG2SZCi7k8OMbI/GfPJF5/nC/0eZ8sV1vnOaLtWrNh8Ot1R+0QW9La17Tw9yXj1hGN6e3B1YUmV5pXGA4mS4FeWADSdaK6mY/9B4qsWGWBmHSYztC4yGNQoFZCyT38AMiRaYSkMSIUxBVIpynVJjCJRRSuDl1mi1XWWqipxjcNknqgiQqYkUvgIUoOzWB+wRMxgkkRrfcB5S12tExOUMXiZgpX3N5V6sv29+cE5R1WXnRge7NoWY1uwh3jvqdZzcqPpj/qIkDr1IabuWm5ysryHrysIUOg0b7buBPuMFvT6PYrBgFrLbYU4tcUd5aqmeTDjegljM0HWDThJ06YZk1jkYCzeGQgKLSAIgUUw1EkgeRX2EdEjjUEagRAd5hmJyRKrl/cWV5ccHr9JEIYPTXbQqodvAmG+5uTwBCMcRSYpjGSQSRYLwWIWUaKGvsHsG4jQWtuxRUVUrNABpNwj0z3GpqDQGU5IrHfYpuoYhiTeeYSA6/v7qNZxMl2yKmtkNxOA8GRdMtV6hw+JoCCGmDpRGyiB3ED1RFdJVFtBQ9EVarz3rMsK61LFz3bsVkVRdHA/0Tm2J+eMvrtk5L12qAQbmhi4CIeIF+AVTxYQn4D+dbisd2MTE51vff+TqfiO/XPxgIsxslqtePjwIc6lgO/apTHGGO6NIkZCDAW1kTjvQBagCkTwGBnZ3xlAjDx6lKQWilzT7xUMJ2NWRUbWsZMFSIQn1vL40YKxdeyZMSq2YFuchaoNDHODkhCCQYTUpZckQoZcCXpSYRkzdRBUD5VJhDwPWJQK5D3wBHzTMps94tHR69zKP09vsouwEls7FqdTmroktOka7BYK10imM4GkBunR+3soobr9kwhRpK+RXsBwiFY9hqbHMNMEqZJ2TlPhnUVEmRoOzrM/HnH9YJ91WTNdrEAkunQVI7rfrHSwAAAgAElEQVRDJ7gQaLzFxQQXih0eKYbQzV8kiuuN4US6JECmIHE0HPIDn/khRqMRQgjyPCfLMubzOXYjBbJh3rzgv1Ih/Du1we+sw/tvYp13Dc4DzvOA9d3vv+kKEGNH/pEkHEJMEOXo3Hbf4lPA7X0gdw7rHCGuoalompqqXmOGPbI8S0E44KNGCEGv6OGsJbY1RgiMEtS1wlmZ7MEo+qMhTgWWMqK3khIRET3Ts5Jls2QoBmRZgKYiWEHdBEyhkL0eHkNbK0RMEh2+I+npaxCy4Mw9xRXRwxQGpUHgU8cTyAuRzvK2pVxNefj4VXrXrtLbOyBrBK72rE/nnB6dkUlP38M4l5wgOZ0KZBJBQOwloXrnPY21NK0FEZCxwmiNUj16Omesc6TSyQe1KYbbsN254OnnObcuX+KrSE7O5om/QKkk3SISLXnsSHGs70i+4ga11c28ymQPqutcKqm2HUkl0+fetC113RJ8yoza1m4p8WXXQdqI4MrOrpzbSEuQ9uvW6Lr9SSCGZDQXhYI3CdX2zly0TfFk5UI8iZS6OG71pA8SF37XFe66X7wdyiekuPj073m952SqsY7jxQqjhuz0C8rZGa6ukYMxQiuCMaACOpOYTDEc5kndWVoWsyMa51m3iRrRtekQq9YVTROoao+gRtBStYFYOer5nHJWU60rok/tNtENjZlCoXqSXpZEMMt5Swgt6+UjVIwUeHRQmCixyqByw6AYYfI+eX8PhCHQ8fTjseWa0DqeH73FXl4yzVc00eJbR23XPDq5T57vUuxf5ulnb9GfSR4+bpj5R/zET95gZ5gRrWAvM3xyf8LN4Rglh4h4B/wxQlxDyQH7u33u3p3yP/z3/zt9s+I/+Ts/QXnj+1hcGbF8uGTdLlitjsjcir/+136K0eVrfPHLd3njW6dUYUTODB2PGQ1y9HDMVNX46InBgjBImScWv+Yxv/eHU17+1tc4W5VUtuWluUYKaJwlEtBK8MV/+Xv8Zz93G2WX/OAHhnz1zZJD20LXvs266pINm+rxRePaZFbi/L9vW5tzznVYWK3kkx0qQQrHgkfHllzA5dGIQV9z68aQxsNJ6bE20DYeo1O1P7Yt0XnKNkDTEhcrVm2Di47eouRsVlF0EMHReJes0CymUxDQlEu0kQzGfdZ1y2p9jNTpQGFRoUKgGE1QWtK4GilzTL6D1JJoFO2ypGkaBjsHSJNTt4mxsujpBE+NLSKAJiC/gxbxv76VCgO6kyqI0WFdjbcOZx3L2Rzby8n7iuFowHg0ZDmvqUvLydFbSCR7hUrBSQtZlOyOJgx6Q4b9Eb3BLqrfBzUkyAqEw9YtJ6/d5umbgU9c3qPMVhyPHHVIOjHTcglVj6s7IwYTwY2b+0iT88a9FTeu97kyLBBB4GTgmVGBIGB0lhKf+BDogRySZ0nY9rd//SWOHp7y2c99P2Y8ot0dUlnBuq5ZrBa0jx7x6c9/muc++AHKVnF8b8msKWhCw0Qck+uG4bjgzJSsW4drSkLwFHofGTV+9Yj7bz7mf/0/XqeyLbO6YlkY3sw1tq5x3pIZSbWc80v/0/9IL5d89kNDvq6HPDjUad4PxSRPDH7zGqxP0L0YIyIopEgV9Y7bIMFXhUBI3RXdAwSBiArnIlVjzzHoMbEONq1FCEEIMdHQaoPcQi/ebytLcN3oz6F4m9c8H9zd7PQn4X2wYaxiO6sivhdv+j2sTeU9eE/Tttx/cJ8vf/VLFHlOkRc8ffMG4/GYZ597jvlizt0Hb6GFYFeNGAzGDIdjHtwumZ8uubq/i9YZ07Ml3kUm/TFZMUTqPqg+QQ7SIRkt03sPGM9LPnflOloqzoaWtnTE1rJqS06WC3Z7A4a9Pk9d28PVnnuPSyY7Oc8/O0ypbYArPYPcKRjlOUpKiI8TbkdOUErT7xu+/tJ9vvz7r3PjqQk/9TM/TnPzCuvCsD6rOSsXzO/d56mrB/zwX/48jHZ55fYZh3NY+T4jcUymAjvDHqJZUFlL29TYpsIUBcb0CfWMejrlH/8/D1ASTtYrpBKcPcwJ1mK9RcpIYQS/8cv/jD/43d/mxsgxfnHM3XsZnog2kp4WjIxkZR2VTSgDHyMidLpTsisoiQ2JRErEkILofUrYWoezSddsA+fbVJ4HgwFFcT43dR5AfWeD5/+2rPPpRTZFfDb/XoTwibc9CiD4VBwMMu13KZK9hehSYYTkz6WIKJnIKFSmMZnC+QYfWoL1lGXFerVGq4g0sHd5B6MNs9MS50oe3P0WhZLs5EkzkgYG2pCPC3ZHu+S9Pv3+DlUAH3tdSb9ldTrDVW/w6d4O13qWaa9kER2+srSh4WQ1R+kelycDrt08YOg1yzrwxt0FH35xQj+XBBsYSMHzQ8OBUR3KcAq6QsQJQmQUheHsdM2v//JL5KbmZ/7GT+L2n6ca5ZShoa5aytMT5HzGj/3U5xke7HH74Zq7Rw0rP6DHnEwsGPcMatjy7dhQtpa2WSNlQZ71CNbi5nf40pce8MrLmlld0XhHdZihBLRNiyfQyxTf/sbL/IP/9ufp6cBf/Nguy0XBfG0ojESLyE6R5tDntUWozqcEleQ6REqiNvIcUm4o73ViiA0egoagaFpP3Z77IBci0XkitmtURlRhEiJsI9zUxUQupNGd6AOIC+ybMY15EOiQDKnpEbs3JTZ36sSj42YYbGuz8knWXC70qt6liyXEk/4npvbVeTfqnSOT39H6jkR7jUmD1PiYFII7NjQBYDoqXi1RQmFU6n746HG2oW1bqrrBeUfjS2zTUi6XtHWgWXsQNWBpo8C2IVU3uqnsSKKmlmx0cOQ2CBGbzDpEvK1BgOluC12QEmXSNNISgrdJwDZuZl4EITiwEeUrdKzSp2IkCE8MLa6eE8MAnWeYIifrFaxXDY1YYIgURlL7JJ427huEj8xOS4bGEnqe05ND6kYRwpDjR3PK02OGlzKu3HiWR/0xh+sKGxvILJEGoqXXG5CZPrOloy4tzjsKZcl00vxJH0AaHoykCidSYDSMCqjaikW9ZkOz6ckIXRcPmeBDi8WCb35jyY2DHpcn+RZqlA7FpBUVYpfB0+lLXID5xSdEci78+LaWzBOZ/8XO1YWfUnAZt9oCo74hj7AOEiECzktUptCZIioI3iOFJYYNHbFjXTX4mKovNtPYTGGyNiUVqiQSaesaEzS5zWldpGrToa5UxLgW1VXthBD4zkaSirYkCNVVUc4Hc2MInbZCGqhMHYfE0hbD2z6I92O9/SW6xFV2h6P3FtsKbGNx1uGsxWpJ4xxF8ESROnBSBZq6BA9BF0ghiS5REufKkGtJpgUEn5gCo8B3sMsQIm25JjQVRWxpdYRcgQzgA8E1eNcmCJpW6ExjQ6Re1ITLOZkSSTNHCIpMQoCmdMjgKEyC9FXVGh8U3grKxRzb1OzsX0aNRjxoPc4DOoKwEGoyo+n1+yy9pG0T1a7zFlM4tOwO8K6r6INL+mhKYIxkVIAUjsNZRdgw7gWFjZ1NCNlRzwce3L/PZJiz8/QeWqbqnJICLSV5rjAS1j4SRMDIkCqxcQPtC3S8E+f2JCQipo57JA3Ibqr1bKluzy/+eUU5nleG/yQv8B15h/dSYT9//e1LvP0eFyqDbBKs7ndPBK2bb9sc7Huwd97tZdIW3iZVQgiM1uRZRlHkZMaQmYzRaIwL/ny2Kpk2uUmoB7khRyDSz3O8DmQ6eTDXNjifZkVjN2dg6xpr1mShQaks7Z/WAo7gW7ytEaKPUgplNM5GylVDkSc2VEi2mRlJP1f41lOtPYUJRG9Zzk8IXhKDZjU7o12vKfo77F0Z8ghF09gk0C08wddI4RkMBtRKU9aBurU0tmWSW0ziR05nr3c47/DeYQQoI+nngmEemK3X+JDYKg1p/2zESJVRFNJwdnJKvZjy4jP7GJnOLK0UWiXm1iKTtCShdyNSx0p2sKSkeycSzfOmmi2evLQhRGxrOT09IcbIZDLZ3r6VD3h7+3Sz3m7M/9r3z59n/Sn740+86c94L90+fTII7ZAH3RNvYH+h60yngciuMyEgiIja+CCZ4gVnk8albR1t2+CspXWW1qViWxShk6PxtE2dGHV1QfSCGARaKpRM/scoQfAO7zw2KHxUIAS+tTRxhbQVWWwQBmKWIp8YLd7WxGhQSmNyQ97LqRuHXdbIOEZLQSsESgkGeUo21suWXHtiHlgup1grCE4zO6toVkt6u4a9K9eZmxHLOjFDoyPQImJL0SvI84JFGzsfZCm0I9M2RbKBpNHkLSE4hPRILcmzwKiIWFdzOE8kaYiIizlRiC1ErSgymrrizu273HxqzGCvj5ICqRJRl5FQ5IrWB5Tr6MhDonVIyVQ6n3x3tTcSGnHTIRKim6FKBS+p5DtGQJ5AFfBk50fJZEshbhI2sT37tylQPE/wz0dJLtpyGpE5l/1Jdph85QYZ83YTPo8xk/+5cDBcSKiEvADp27ohcf5mvsP1npOpy3sTfvjjL1KeTammM4zJyfIMJyzIBqMkUQWszEFGvIzYaoVtSgI1SEtbn1E7xzqKrmLkaMqWZl5R25bWOda1xbnAoIhkQqK8pG0jZcUmwseSKr3l8RJ8oMi6Dy8IXBQsAwgcEslApa+MFbiS2f0zmtbR+NgdyemDjXgOA5RBcWm4yzhreDA9wbgpO8s3GDvFoHialbXcmdWo0xmDviL6FxHG0CqB28mQ13u8dv8RL/2rt/ipv/kDfP/nvo9/8Av/BV/76leoFy1XD/b4+3/7p6mKG3ybj3Pntfu88fXf4SOfv8mVF0d8fd+zOiv5wle+wZWrFX/pL3+Cdf4m9fIbXDroceNyn3vLm0xPnqIu/wUxtMkIZMTkgZuXB3zm+T1uLy13VpawrlE+8pEXnkEKwUsvvUaMlvEQbOuoSsdbJw1vHZfMSouUglylWRWTK1yI2Noju2RKyhSo+47Aw4fNJninE9qw9klxvqmkAGMUMYJ3YXubVkkR/dV7C7JM8dndAUWmORhmlCYdtLrI0VmG7EekjlxyDdF51gtLsJ7pao0uS/L5At3voYuClXX0M0Pe0wiR6FgzbbCrhgZDGQ1moNGFxMRU3WwjiChofJ/gFUvv6BU5fZMxGAwxg4JBr0BoQ1VFRAx45yEKFIamXrOu1rQdvvh7uUJM9LdKChSwnJ5ChHWZNClUlhFaQZguWK8qpkdTxgNDkStcF9xP12lYUwZFT0l285YseExsmT06pbSR6WpN7SUogyDgZcNCOG5HxV5vwPX+kIezJVVbMmjOGLWGTO6yjp7HSweuRgaLvZqBGOMVOCMJQ0W9aPnalx5wcHnApz77LF//5hf5wj//FZpZSagtf/Xf/av88Pd/gBN1k7My8vCPbjPaL/jAx/Y5vezJL7XcPjpk+lLOJz71SS7lOav5m+DWXL85Ye4nvHH3OkenL1PXpxASg9t4J3Jpz/CTn7qBlYKXpxWuagmrimeuX+HalQP++OW3OD6ecu2pCVIGFtOKk5Xl6OUHnM2X5EYx6hkGuaYYaYQSLM8ahIuMpESrSJ4FXGu7WRNoHVvBww2cVmYZgUjZNmRFztXeJWazOWVVYzLdwSlS9U1KiVKic15PJifv19oUEeITL9RVsWNAxk2ZT3A+ppyqiVKBNgZjsi28aivs22VTvhMi/jexNn+V1ppPfPzjvPD88yiZxIU3AcWlg8uApFk7mnqNtSVtXVKtV0yXCxZ1S/nGbbRU7PbylAyrmnW55OTwLU5OZsydwAuNVJEgLY1ouBslE51zba9gHs54fHJM0c4Y1ScUcYCShrPSsZ43KLegxxjEJYIUWAm+p/ADyWuvPkI6yw/+yHPUzYx/8n/+IqvZnHq64uMf/xh/42c+x1RcYhbHHL96SFOf8uynDiguR4oDy5olf/TKfa7fvMnNW1fw9TEnp6/y4gsTRoMR3zy8wslxoKpmeNsCkqIf2T8QfPYjV3n6Up+XpjWL2hLma8aDHh95/haPHk155Zt32R1FRoPIct5Q1pY/+vYJdVOnjlGRsTvIyApJPlC0C0tTegZd5TrPAuBpywrrI7VNlMqbQXfnLNokOQIvBA+PDvmFX/if+eQnP8XP/ux/sA34vHfdYxKUOMsylFD/FgD13tt6R6FDgOqYC98lamWbSG27yPFtt3ffIx28aqPLl/ZLV/fBew8iYpBEH5geHaY5qMoitUIaw3JdUXtPva7JtGJ3nCWmXhFwXnG8TGeIjIpJ5ugbRR4F2BUnbx6yKlvOmqQ5ilQE6XDC8yhEvFdcGYwZ64a78QjtFozqYwYe8myH0kYerTx6MSfPBNEfpFGMnkaOIuZSj7OzOQ9fv8/HfuAmvReu8pu/8Q+5/dq3qE4X7I53+Kmf/uvE3j5n6hrHD+c8vPMaT39kj6eu5IwuWdZ1xddevcvegeWTn77KsbCcnX2Lg6d63Lwy5Pb6gKOTPRaLiqaeQpBolTPa8bxwbcSPfPQWb60dd9eWsKyQPvDRF26hhOSrX3kNYsvBXqSpHKtFw+sPSl67O2OxbigyxV6/R5ZJ+jsZVRtYqYZCiMSIbAJapcKyc46qSXNNGybNSAQlkUZjQ9LXnOyOGYcBxydJAy7LEixTkqB9QgqMTsiR9bohxEivl1hntRJAwHs2vOgdY2tM2rJdkh4BHzbzW90klxDIEJ5IiDZw3PPmyvlODcSuwXLOQrmF93W/SaLRkGXpjAhdxysJWSdPFWMiVXlf2PyIHfuUEERlsKEiOAuiRciIVjqpFAvRBXSJ+CG41FWxPgn7xejxFoJNAXB0jugcwXmC9djKYq1HuoAIASVS1U8mPV+ESbCWYAPBe/AB79PgdZYrvIemCYgQCdFjO9gTtkFIiQmiEynT3flwzqTV2IhqImHUT1S2MiOiaFyDD4nEQoQVsT2itRIle+A9MgYKJRjkMNlRqJUmFDmNLJj6gsNpzcOjOb6sGQ1yxge7BGtY3rmPatZcmuQENNNK0vgMT06mcrTJaPoSmwViqFGhIAs5iBYnl0SxYWHpDr4Y8C5QVZ6mcXjreO7W0+yPRwwzAzHyqU9+CKVgNErVzbaJvPHG69y7d7c7GDcVZNKwb+BtQ+3nZMfbD+7C9wjv8EKbQvPbC3sbaIZOE8RJ98olzsDlsiHLAjZoXBtTk9KnJEeE2A08KtBg8ogX4BqBj1D7gGgcMjYYCU1myVrRUZtryCIus0SlMFoiYyC6gOsSPxcFCoU0qmPedcSgEcGnwFVovG2JPrXCBZBr012CiMpytBBI9d6313e+nmwDngsx0lVt05d3SdzVO0cUohOOTcG8j6l766zAikiWG2KmaKoULAsbUEFSi0BQIrGKRUnR0UcLBUJW2+pS62BeBgaDHHoGYQqEctjguwFlkDhwc1wLwUq8S11VJdKMY1EIYiuwmUIoRRU08ypwNC2J6zXCWnSR0Rv2aI8WuDIyyBVGK5ZWUDlNGwukysiMIWSCoCIu1CjfkoUMiaBVJY4G732H+U5JMcHT1A4rBG1tGfcHXL92nZ1hj1G/xzO3rnHpYJe9XYWUkdW8ZTab8dqr38QGUEqjtEFqnaAQMab5PAFagiDggk/VQCFT3z3GTs/onOlSio7ONYIiOYANJj1d7y7o7wJMuT0k33sI+O5QpvfgPDax2LYt9ic9UnSvc/56Ww0Q4CJT0sX3Ei889v1d59XOi04z6Xilzz/LsgQDE6mL0do22YxMg90xpEKKbSy58QgZ8SGk+dPgCDKwJs32CAXOBwrh0VIiVI6QLVJ21MQx6eBpDXGnQGQ5UuV4BG1I8GwpAL8ktBW2ldjGpyozCZGRZdDrSUKeiKFaNKWTnMwrykVJKNcEAYPJkOmZpVlNKVRE9zSVF6ytoo05GTlGatAKa8DFluAqdNhDR42VDa2oCMERgk/ncgyI6LCto6kcbW0REZ579hajImc8GBAvS4iK0VAy7AvWK0tVtrz6ytepbZnmPaRAGkMQkdpGhFDkJs23JGisJQZBlHKrubbZO5ugTMiOEVIImqbh4cOH3Lx5s7t2ctsZlVIQ/BO93vduPd/t/vlzrffj+Tdzju9w0Nvu7NuDyggJoUrc7qJz4pgUkCpB15lKItbeOeiKpsF7XNPiZToDbZPmQ4t+hneCtqGL7zwNChkUolojjcZEleYNZQYydokdxCgo28iijlwa5UghkToHoWl86hwpKRCxBjfDOg3REFxiVDVKkWno9QWUipBrgtRUXnO2bDmerQnrNUWvR3/UpxWK6uQM0VpGPY1HsmwldchwFBiVYYzGZQInPd5VCF+QhYwgHK0q8dFu9w8xIKMnOE9deZra0taWG1cusdPvszseIoAXX7yFlIGdicA2nnLtuHfnLR4/vI8PXVwkk0xuWVusB6P1NtaKIqF5Ap0PiqEbUeiKDCEkEiTiprmeEGldh/BisBe7FEV1CVUiJEqJifcXkqAtrJuLx+47bG1jW9s5vbiljdgmR+dNrc76xDtt88ITbwzyCTRE8qNdKibeaf/fzS57z9Fe21TMTh8TZB/Ge8wef5tqdcJAerQSRNdHZgbRH+JsoKprRFOBLVm3LaX3RJnauXFVExtHXLfQtBBahPcIH3CrlqZ26JgUlWUIaCJapfleOYT61OJXng2PVF0Fslyyd71PXXqa426WyAeWnYigbloyLXl6b0SjNbNSAy0+2PSBR0G5CNjg2X9qj0yCzE6wos+juuIp7zBGUfg79Mrf56T5EK2/RrCWzLfsGMFg5LHPa9rdA+rLA9zuDt9YRR5WimlrGPUCcjyEy89SvfmQh7/5j7j+fZ/h+3/yR/ndU8WXv+14vNjBxcs8f+M5hk9f4+4Vz9G4TclUo8mXuzB+gB+9Rby9Or/0MSCc5exszR+WjrVrqYLjb/3cf8Rf+uHP8Mv/16/QNjX/+d//MQY7E1R/glE5menx8z//3/GLv/hLqXUvJB6ROlJri+wgTXStWecj4ZyeZbsBn1gX/7tp+3aGGklJWup0Qd7NNgWlqdAEWlrreeONE0xmyPtDQpT4kNj8DIrgLEEFdC/plw3HEttIfOtoQ2TtA65q8MuKxUqjlUThybXi6v6IOOjRDnLyPGc8NlR1SVvXrIWh1JqeV+QmoxgOEyRnOUW5iLEgM01UhuXsOOGB8x7aGPZHY6x1lOuK3u4+eX9Afzj+Lrbkn2+loD1Bf4yCsnU461PSpyQqB4LHrSoYgukZqtJSrx03n90ly3Me31vTVpamLmkQlKXCrNcYI3jmqX0m4wGrdoyXgbpa40OqIq0rwYNHlvyZIYPhhNjfR9qCaYToHUiBjiV59S2aZsK0vkrTpGJEXwI64HYEbS/D5pcgzziykcNG8rjMGGeB0TBHTPaI+YjZt34fHxUf+tQPcRpz/vhYcXs+4qy6ysdHV3n++lWaHcPCN7hQolqHWY6RfY89eB1XnCZbFj4NxVc1tVR885VjbAw8Lld88C98hv/4b/9N7rx5h4d3H/DT/95HObi8myj4pUZLzcsvf53/5ue/RZSarBggc0PIFbPFAussk9EImUta39JYx3JRbaG0jfU42wlIx44+VgiUTxdz47tEiEilyIzZwssEEY2kpzRCJZX7LfB747Teh7Vxdhf39RO3dZ5LXAChC5GqkBvGwRjBWZuctpSojlnJOtfdXz7x+O/VSkGA775bpJRopbfvJVX2Q8cfHDrYawpohiPBYJIT73mqusYMNJHA7fuHRO/JjGBvPODW1X2clczrAmst3luCkFiveXTkaANcuT7BlhFdNJQy58i2PC9AyUDW3EZXa87KZxiWid44IxH3xCEUUmLNLtHDUiqOW8FxneNjwWQP5GQHBvuUr3yd+e373PjED6J3DvjyXPD4JONkdUC/v8fTVy4RdnscDT2VbAiuRJc9jOrhJ/dw9SOcs0QXkCIQmpawrrhz+4yzh0vur1eM93f42b/311DAN1/6Js898zQvfPBphMmQOkMJTVlW/Ff/5X/NyWKByfsoJYh5xrquWU1XDPp9dvoFXgZ8DCwWFd47BBIXPE3rOhKJjskvgvOxK7Bm+Ljm9u03uXnzJnVVkec5JjNonQqqTrrOnr8rdM//b9c7kqOYimSb9lPsIuVNICm2f/wF2FNXQN1U69kErxeLD5ves0wkOLqDOpvEu0Vj244WOySW0zwS2xbX0M3ZSJbzhqKXc/O5Xeq15/hRRetqXN1g6xTE59WKXq554eYVSmN40N8lVCtsWyXCgyA5nUVq7blyeUxfgezNcCbn0FnGwSeGVH9EUb/CWXOLUu/R1A2hVQx1ngqzexJXDHCTDDHucWQDj2vNUZOzOxogd8eI8SXs6YKzr/0+Ozc+wNMf/zDfqjWvHkceLfdprODmlauMr+xxNoJZbglujaz2yJYT4mSKHR7iRJkQOqQZJFHVTI/gpcZz2tRM25a/9Z/+KJ/51Ed46asv453l3/krnyPLc4I0aKUxJud/+6V/yOt33iQIhZQZrVDUzjO7f0ZmMvb29ogiwc3XpaVqGlSXT9Q2dWhDN9sUQugYrrdoPzreCYzRCC9wnWyFpCOnkgKUIkqVGJSBprFsWGY75CebSlzsGDeTjZ3b2gbllO4aNxn7uU3DdiYrmaB8wl63dxUpsbu4B1KBuSPYkILgfRoX6eC+Sqotsic9heI7caLvvXQuBFGpTjlY0OsVyDCAeo73jqYpUWTowuB8i7VrXF3hqopl66i8JzhLDB6TR5QEHVVq83mZZqtCRGcC4wW2TN2tkPKEREJhI6EOdJQkWwAJHTbXVp7oAlnXxpMqMQHFGOllgiJTDMc5ymrMMiOyxvvq/BKIBB9YlxWNgCZ6VAz4Ftal5XhRIkzB/qXLrI528YzACnABnQBe5P4xRloGuePbryoefH3J9ZufZNTb5Y1vv8Hc5Xzx9/4Q4QM3P/4C+7eu09sZ07x2m7PXH+PKEmMM1z58DTEc8cUv/iEnt6mtXCYAACAASURBVB8y2L+OGk2wY4ldz2jrJdG6zpgkie9O43xkUVU0weGi5//90h9wdnrGH339m3hnKX5d0h/0GPQGIBRRaF779utIIegVCTZUN+6JqvGmSrsRM9sYdQqYNpXdC7ZysWLdQQKImxpGwsUXuWY0LFBSorquVPCeXtZVRKTERmirBq0UudL0lGKQSZZ1jfUeSY7UkqbrbOzuDml8pPSRqmyo6xaUJMjNW4qsXcBVFnu6YlAFho3HZGB02g1CC3xwWNtAjGkm0Ce899JX5D5DG42SGUJLhDJEoWijwJEw4z52DIvfQwKKTfUw+EDbWqIPtEpiO9rv4GO3RywCgQwCGQOGkN43guVsjTYtmZCYXNGLGRt9iF5PMegpRpOC4ahPrxxRh8BMHBNiS2DDuJkGVWfrhtp7vIhYC9ZGVk0qXIx3d/GLIcumQERN9HHbcVGxxNCilWe+trzxUsDZCZ/89A8xPZtSrkvu3p3SrjyDSzuorE8x7BNmLSdvHVJOFyghGO4N2Lk25qt3jjhcLBlMDuiPAmGik9jqW2c087qDKeYIadAigyB5NF1ig2fZ1Lz22l1+9dd/l+nJKfPplMPpKZPJgJ1+st3GB+7dewA+0isU/X7C4ld1IiaJwWOdRQRB1dQ477rO4YZhNM0FdNUKQsdyF4NPeVEUiCiJUZLlBqUlVVXjg0+sT1IilEr9d7eBxr23TOoiq9f5/d+b84hdJ2BLeCEuKFVtm6bxQgM1MX8RU3d581JbKEZ3t42A6vd6bfaPEOLCLE3skrpziIlSCQamVNJfkQLyPGN/f4/Ll65w9cr1/4+793qyLLvO/H7bHHd92spyXd1dbQk0PDkkQT9kEIQGQw5FmQm9UBFUhCQ+KULSXyJNSA96GYU0pEJmJFGaGJAEyAEJNgjXaKC70aa6y1elvf4es50e9rmZWYXGsEECmAntiKrMvHnzXLf2Xu5b38fh/QnVomLQ7cYuSIhzS9KXDPopRTel6GQUuWA5nxIoWQsYC+Gx3jJdVrja0IiAdrGQs6otS+Mo+n18kzCuChRp7Nqr2FVXoUaHBUrFOcIbbynmK8tPfOgTLOYzDg8POZorvvudN3EENq/ukQ+6eK2YPnzIbP8YJSVFN2fz8ohbq5p3XnkP4zSbe5cQw5wmCczvH7M8nIBIYuuUFCkzNAnjecVksWJaV9Q28Cd/+jJSwMN79xjd7nHr3j16WUInSai9Z1XWLGdztBRsbmY4F+miG9MQgouaOlbSuDhjIwCtNEoJpHDYxOFcKxbqaBkzfYwZnMUjcUpxcLDPX3z5L3jm+nWeeebZaHsSZIjBnjwPk4W/cRs9Pj9yhgv4IOv9bPyHVP34112mnSf53kcPj9z66BYMZwFubEec+v2z+0eSMO9p9btkKyQHxvo4Y+8Dzjia0iC9RCFQwaPxGCFw1jI5mhGcpEgEOQlBRVZACPR7mm6R0B8ViCajyDOcFZRi0tJbr+MRz6ysaSSUwaNDoDBQNZ551SB0Sm8wZDHuYskjXDqISLjgGlSYoYQn1Y779wWHdcPu7nU6WY+D/QOWIuWtN95FC8HWtUt0t7bIOgWrh8ccPZxh6watFKO9IbKb8M1X3+PowYytvcsUoxF2IFlOp8yWc5wJCJUiyBGyIJEpdeO5ezJjaRpW1vLVr36Ho4Mx927fIXjHeDmnkyX00wRPjDvu3bqDFoqNYUYQnvmixFjTajLF2UbXIkScdUjWSQkoJWg5Fc8++xD3jpCCU+1cAXknx1rLqozU6FoplNagVIR9exvJlOSZP7CtvtQabxf3Szj9+XwR43R+KXz/LvH6Vt/aYdx1a0p1eBy1c96mPVEU/hSGfnq2n22aMzKW8ANtyQ+eTEkJaYKSUb9p0O9jUsHs4RTT1BFG41PyboIxJaaZM1vMWM6WTIyjdh5ha5T0dDdjRivyhCaxyCCxAYx3ZLkgoFhMLM4EkJGKMthI6SocBBMzedW+F7LtH5bzBomgk0gSJImAlTUY7xl1FZ1cs7nVYVHnpMdDvD/GMGGtCySEB2GZTKZIAt4bEucoVoLprOG9/TGdvM+VJ5/lZHGRZTWCRoIJaCFIw4rcvE0aIEslf/Rnx/zJKxm/+5//Opef6PDf/Pd/xOHD2/zh//RHvPDSM/zW7/67qPwiMttkee8L7H/lK9j5lO6w4JlPP8d0XvLVf/I/ImRg88rzJN1A1QlUr4yp7u7jm3UylSJEghIpxtXMq/mpdf7B//LPWTOVCAF//KW/pFCCC5mico65NXgiaUi/J1A6sH/YxOoEgGixo+uKhYgVqFPa9HPFrPDoecwptG+9adoblBL0+hlXr41wXmCtYD5eUZeGfiajKG4ShRfny5Jepuh2U3qpYLMTmE+WrJZtBVsrKuvpdzOevLZF7QPzxjGeLGC+pFXDwPqInx9bD02FP6kY5As2ezMuXh6yud1FZhKUwPkaXxuq+QyJJBUJZdMwdxV5k5OmKZtb2+g0wxLwApY+JpoOj/EGZasfi+jo+SWEwFjHalXHhEm0sDARZwpwDjerokRAqlHBkeAJMmovHO2fIFFc2dklbefMamOY1SWjgWJ7lLO126PTH9FfbtN4D9xuYTYWCEjlWFY1h2NBaBoEjqIJ1KVnvKopgmR77zJeZoynHVRIwAWEjjal/QTpKxIF908kf/7FKR/+8C6f/eyL/NnXbvHtt/b59nde525a8Yuf+zX6G1uIZIA9uM/dV1+nms7QUrBxccDO9W2+9cVXeef2IS8+eZVhIbEDWNwcc/DKbar5EqkLoIMQGYkoEE5y4/AwUl37wMsn3+ZrX30NrWPCnWpBqgXPDVMSEdhfzuNgvUzoDxM2tjNu3T7h+GRKS/dCZSKGfDlfIgQkaYQsKSUJWp0mHcL7lhgnRMHkAAIJImpJ5Z0cpVRMyAwURcR8I+Jsgmti8tZuvR8pUG4NqxLtvMmj+lC0zyGcITBEHGQ+DUBbLa11BXH9fIWMBBxr/PqPej2qq3eWMCmlCEGfBonAKWQzaojpGEgAvU7BYGOTq1ev8eS1pxg/PMGtSgbdLkoptrZGOFthFwd0Ojm9UU5v1aE3LxiPj3FhEfdPEEgVk4fDyRJWFQgXu+IVTEtDmjUMNnfJleXgZICmiPvHi1glDisSd4wWUDvBN/9qhdc5v/m5z3L/aMr/86W3uHN4j+Wdv+Rjn/5JnvrI84hkg2UZOHrnPcaHYxIJ/Y2Cved2+ea/eoM///y32NvJuHz9eUQPyqbi6Mv3mIzHEaooNIQCLbukIuPh5JB5uQAfEIcz/tv/7g9QSpAmkaQjTSSXO5oLheJotWRpDU6mpKnkwqWU2aLk4GgWuygEjG0iyVBZ472n6ORorcizBKPjiIBxDmMtUohYZTcmBvcmIILCKcXNmzf5gz/8Z3zuH/xDnnnm2Rb6I1qx+HOGepo2iB+HCf4bWmv4XvwezpLDNXwYzhVSObsfrPf4Y11pH3DBYkwsrFXEQoRU8XG8DzSVxZpAlkRRed2Sk3gpsLbh/u0DekXB3sYWSabQIWFeV9TOsLOZ0u8VbOwO0FWH/sMh1kqm8oA1WZmUAaksx7MVmoD1htwn9GvBqnQczkuSrGBr9yKz1Yiy7qCI+9hbB7ZE28Mox6IkN98s+caNhM985pPs7Cb873/yXSbjI17+0te5cm2Pn/61n0cmfYTqMjt4k3vffhe7XNHNNbvXt5hVli/+4V+QZ3D92RfpFdAUgck7Jxy+8xBbg9AFhD5K5WQyZ1GveHd6hPAeGQL/2//xp7EAncYEKP0iDFLFs8OEZdNwXK5wQpOqhO0LOUkW+PbrE5q6RmuJlFDZBtMYqrJCJxKtY5wlETitkDKSXIgWJhuca3UQ28QjxLO5O+jirKNpmgjLzNPYtRcC38S9qCUgYjHc+zjus05XTllr1wn6OTsTotWqarug/n0SqkCbREWDQ0qBatn+RMvI+QhcL5xNVK0RFad+qn2sdfttTQQllYqdsx+wqPeBkymtJL0sYbkqma4qvFniXY1JM5wSeFMhhCRRHpcIZKLpDXLyHPSyojKGahFbBMrEuRjjBaWDRRPV3FdLh1TQ60iuPdfFGc+dg4pFCcZEZXQfX3GL6fSkQvDUIAWtOEgKTONpFgadCZJc8BODlI2OYHBlg7Sb0x2MODpWvPkAAh1McxEflniWuOoYfEl/+2PoJEc2HaSCcPce9faASV0Rkgwx3MbnObaWfOddw9wbfv6TOZ3OBntXPsZrL3+Dl//FF7l0/Tf4Tz/xEq+/dcxffeUWB/fHNKua4zDEZttcuniVN96zfOONd1Gy4OMfeoZ3b/RxHv7qj19DdXJ+4bc/x9G9d7j5yhfYP4ETYFElyM4lQBNchfIlAkdtFy3zi4yHS3CsxSdFe2h6AZUTHHqJC74NiKMxyWXLZpNrfAZ1uxlcC+uTyNOkbJ1FxaqGOK1m+LbKcKoqff68DfHA9Q6siQG2sQHjAt1OwsYg5YnLXbIiYSI6lJXl6MEJafAkASrrOZ7HWZ8kkadiesFZ6lXgwd0jkl6HdNRn2G3IsVSunYVSKnYynSGIgFNR92dWBTiRzKxhc2dIlqecNNEJZNqjpKaRmsZBZQVdJ8mcxM9XJElD3kmjs3BtN09JFuWS8XTMqi5/oM34t1mngeu5ZiBAoiPcwrbte+fWnyEEKVFrZ6YkQ61IleTIKhoUjYiIscEwYTPVfKiT0tsc0d8c0R1soJIu9xcZQXqODq9RVkuWzSGuLlnce4N+9izF7gZykCNrkCdTfPCsnn8ChEDnHWyq8FJysvDcfmi5ejGlVyg63R1mzTF//eW/wCVbfPZXPs3+3PLP//SQ+wdzprOKxGd4nZDmPQIp335rzGxq+Ogzexwc9HmYDnhwf4n8+k0+/Pw1nnhilztvf4X9ccnRLZgsBenmZYIuQHbIXUkaDMt6wrIWIGWE/dkVNjhscCgTaGSgFgElAjdKHUXBXZzKRGkaq7CNIlOSq5dGrLzH+DgkjHXkRYYQoHTLihk8aRphtN7Fg742Bu88ponlQCla2Bw+kj6IiArwWYTKBgLWxrm9JI1Cv4+wF/Goc/m7rXD6dQ3/iOQR0enJ1hn6VkNEyvWdzqAbUkaBR9F2387Dic4q32u41o+jQxXOw/XPqpKnXbtH4YrxtUXyHe893ll6nZzrl/boDnr4dXFCKeqwJBNwdTtHJwmkl1BJEkWvg2ZSKeazC3ibs2wO8cKxfPgOcnOb4vInkMIjXUZaV3D/kPrqLqtBB51mmCzBa0lp4c6+Y2skuLgjybIBIPnOKy8zPpjwyQ//MrXo8/kvHzKZzZlNK4RMyNNtdHeDbnfIG7dKTqaGaxc32exm3CTDhw7vvP6AQdHhV3/lE9y7+SqTg1tM74ExgtDdJhNdnBUoV5O5khBWHM8bGm+RWuOaFcFHJk0hArbxLXV2ICwlk0RSORs7Skqjk8geKgRc3RtSh0DloyyGNS7OdIYQfY4INE0FIdApND5ovE9b3ydYzOdYY0/9lfeWqlpxeHjAgwf3uX37NltbW/R6vfYzPuvMnhUGxCM28cOyt2hfZ7ecXf58Qnf+5/O3feCH+N79c7pnz9JFHkuKArHQffbc4nux7io/8mzOPc3w2IsSAlIdg9y1D7I2zuKEAKQJMolFi0xJdgqNRXJYKLRKqUIg6SiKruZSoehmsHn5Anm3S3+0zclE0b/tsa7LavEUtZvR+AXV+CG+nrG99Uk6RQex2UEnEn/vkCZNmF+9QC9JyftDQpbijWR/DFbBExcUadqhN7zE3Tdv8PbXvsXmpZ/kN375ed65U/LXb0y4v7/C15YkdBmJHt1OnwcnnpsPjimSjI8+s8d7OsPawBvfvo/ME371lz7K9OQBD29+i7mF2xZmJiHdukLuwVcrcrNEC8Px/AjjPVJpQqhwrm5hZ5EnQAqopKdRAr9aa7BZkAohFUJoskxwYbOPHfVYtrNLTeXQiaIgi3qECtYDUUWh2zNXx/tah7MSZxRrltj157vWmer1Oqf2sZ6PklKgMg0hogu8DZH3IGbSsdvVxoCntrlO4Fv78mskkziv9XTWrVrb1vmvkR49IgCUlOeSpoh4CZz3QfHsCARk20CR/iyhOi0nBH/6nD7o+sDJlJKCIlFMTcVsfgI0gMOnKcGrOOguJFp5lIodg1ynqC4I5aiqwLSWuJamMc7lCGobWBkoa09VevIOFKnk+YsFrvHMlwZ8YKYiMQDrgqUEGaJY4fWBxicJy6RguTSsFgZSgeoprl9WPL2l6PzEFqrfwdJB3fN0Oiusyaj0NtYLgjf4ekIwU5T+BFlRkDQ5wRj8w32akz3mTUOmU7L+CJ8qrBDcuGOx0vJzH1Pk2YDt3ec5nn6Dz//51/j9n/ksv/Gbz/J7/+Wf8K9evoXWM7QyLPIBPt9kZ2ePl1+9w5e/epfrOwkvXL/CeJpyMql59eUbbFzd5ZP/0T/gna97vvvn/5SmDDSlhM41RDFCWIMwC5SrCN5inIlvjNCAI5zS8/pHKlAeqO05o1y3SFcRdrQxyhFKEFw8AL3z7XChWJcETjeDkvEKcUOItqr8WIPq3OEegjg9WOvK0VhPYwMbOzkbg4ynntmg6Bc8DH3m8wpva6gMetXQuEC1cnhErLgoYnvfeRprOSxrhki6O5uoPKWDYd54Gg9pnkHwVIuagEfogAuBZeOpZzBpDJ1ejlaSaVkhpGDQA6VjU7YMsHKC4CTWS+yqJFGC7ayPFpL1mCRSsqpLJpMT6qb+4Dvxh7lETHITLaJ4r49kLWtgbALIJDKTKSHYzDWDVNH4nGVQGBvtIB0l7AwlH95TpNvbZDu7CNnB+YSN+xJjAoPuRYSYU4UVvllS7r9LuLxHnqXoborUljCZ432kr1dJQp7mOA1ewmwVeHjsubAFsqPIig0Yr3jt1Te5eO0p/tFvbfF/f+mQL7x8RKrnJKohSVOSoEiyLoGEt2+dkCvLs1c20bJg2XQ5OowD9x/6pY+hcsHNV/+I44MTTo4lPtsi2XiKQAIuoWcfknnDZDnHOhBp0bINRaiecw2SONslgkMQWC0jVE+35A9SSUyjsJViZ7fPcKPHsfOUzmMOZwQCOWk0EQXOxSpe0lYJaVkxdRNhLZVQ7WHuI0yzhdgGEcjzDAg0tcG56Mi0itIMUp1hyL9fXf17oX1/CxMTtKncWjvLt0noWS3x3Gj6KfzChzah9xGTf9b5OfdcwtqZ/TiSqfdfZ4lU/No+LdYi0s65lu3JU6QpV3a3cWmOC54gJWiNYYkSngujhE4/R+9s4JHYINmYeUYngUFvi6bqUVNj7Jzq6A6ZsqRpQiId2qXQ1ISDiqasqLwnT1JcGvBSUFl4cOxIEsWlHUGS9RAy49Z7D3hw8zb/+O9/lmXo8U8/f5+yWtJJG9Kupu5sooshRafLg6N9Hh6WPLXVZ7ObczJN8UFw590jNq7t8tMvPsXn97/J7ZM7HB8Japsitp4n0QOy0pHaCT1TsqwrJiuL0BlCKQgW7xuMqRB4LK4lqXCUAo5kS54iBEqrmCRZTa+fcenyJssQmHgPkxVuUZEI3VaSYyHCmAa9ro4jIAhUkiKkwnsbZ2HW9PXBUdcV45MTDg8OuH//PkVR0Ol0HxO65iyR+j576Iexf/7162+2+/A93/yg1//eROvxTlyAUwSKWAe573Op06u1BVXauyZJDGKNaX2Q921RV4AUbTIlSZTkQifBSsXK53gvqR30ckm2kfLkBcmlkaa4uofq9BCqS8g8ve6Spsrp5pfBJDjraWZH2LlDi49RFBnpMANjcfsnNBt9Vs6S6oSsqyCVOCk5mgVCEpOpJMlJkh1m09d55Wuv8uv/4Ut8/Ce3+ML/8A5f/+6YPClJpSPJOpSiS150mC3nvPHelCvDhGevbDJfJkxmhvfePmC43efv/crHefftmne+cYf5DGYzAaOnSIabpJUFPadflThbM1ktETJBJnk75tLgbEMIFhci2YzAUgKzeYxNVAtNlkqC0+SZ4soTW8hUc2gdVWUwZoYWikQpWj1enK0JPpBnEdZMiL4nMQZjJI2K/ocQsK4V4G1lYDrdAufOiKyci9qWa8hgIGCjgBTK+yj14fy5ZGptP2fzUQFwwUVETQunlq0xnR7D4szov6fjxFp25MwUxbm9Hc7fH1rIsCCcMs+e7Yk1w+wPQkjzgZOpo+Nj/vobX6fTyeh2UmywOCzOR9Euki6Ns9y8NyE4F//RAAatBJ0igVHEW5YN2NKyOI6YarIUkRqUdlgXWDWCN48swgdUqugNJZc7CYuVY7by2NoRbGAvF+z2FL/ws5tk/R7PpFe5cX/Bl75xH7U1xO5scPT0ZZKtPvr4LcS9OWK6hLHlM+WcG07yZZFQCfCiT/CG4Bumd99ilfXIigLhLL4as6MaLm92qcqa/aZhtpxRzT0pl8EbvnP3LptdyZM9zU8+9yL/1X/8n3Hp6ovsH1eY2V+gVq+y/cQeu5d3+NXf/nWeubRDszIM0bww6HHw7te5NXmTMPoIm5c32EwFqbC8+eX/l3s33qSqE1xT422JlA6RBPBTsDOsq9pDrHU0wBr/emqF7xOYnEGB4u+0jPCj+dLgacV2RQzSYoVKxiAwREXwEAShHRwPzraBoiQvEvJOymrR0FSRVXBd6V3nY8YYJpM5nU7KsJ8glKTygsOJoec0e1e6bGUdihUEZxCuZjJeMp2WqCReqNOPugr9QuNqSzWu0E2DmM/xxuKsRAuHVB5cRUCQ5l0IDuEbSFJCVpAEjxaB+WJJ3TRkWSfCWa2iyHI2dgYYH2hsQMoUIRS2tDhjONp/GFvDSUqSJnS6HdIksDUSZMkH3oc/5CVorI+Mmq4lclESISU6Teh2c3Y3R3RVQAdL0e8w3Ozy8e0nMTLjlTcf4rIM88SzrIY9TvY2Cctjws1jCleRWMH1/ZK9SeBAaIL2LJMNbBBYP+P44T6G1+j3O2SphnJKL7X00yi6PHGOed1QL2qwCYnsMFmtcBI2U8mw0+XXP/PvoLtDFitHM7uJOvpTdq7usrkz4iMffZ693QFFnmIquNbNmBwf8a03vorvXWLr0hP0ZU6hAscPb1O6iqO5YFIqFssFWnXJchDMENVdqmZCY0t8UCAkzlWxsytbOLIQcTudmwGKOnah1csIKOFJlKSTauaLhmlpaULAEch0gkgyZBvkNc0qZlRSEnSOkwmuXkW8eV6QpwlXdkfUleH4aE5T1jRlhVQxcetkGkFg3DQEGShyDUSYwo8n/zgrE65V69cuK85RidNkSyAiOca5ir88xwjlnSP4iDQ4ZVkS4pTB9d+2FQgY0/D2W9+lrkp+9md/jmG/w9aFTWrvKZ3l6WeeZLS9w63FESZYppcu0KhAtpxilguqo0NG90o+eVJSW02jBCvdBRSmmVDOl7z3+usURU6vX0BVIsyK69IzzDSrWaA0DeWyRMsOqRxSm4aH05p+Iikk/PRP/QzL519CJz3K8Qx18mf0lOLypUs8/fQuP/HiZfa2RwTj2Uk0QcGt175JEwL9rWcpUk2SSBbTE2bvHLN/tOBklbJYznHBUqQBKQyyuY+tF8yqKS5EyKkPDcFFXyQkJLpFLrhWDzHmPazLOyBQBKSQFFlGcIHbD6ZYAiYEhFJ0OwVKxQO1rhZ4D0qkIBOsLqL/cQ2ZVKRZylMvPoWUgv2HY+qqZjVbREhforjxzpv80f9V8pu/9TsMh0OSJEEI+UhS9f/HdV6C4JG1Tpja1+/PWlesxzkfh/BCOA1iHwlSw9nsStXEQNy1pCBKyZg0a81o0GM07FEoRyIc3e2cvNfn0s6THE4q3njvELe1R3PtMvPdDY77BWF8F7G/oOtKmBp+sZ7ynld8RWcEL2j8BsYv8KHh/o33GA8nDAcdpLO41Zi+v8BON8PMK8Yrw2K5oJp7ND0knqPlkk4qGKWSp598mt/8R/8em1eeZr40hPHXSSe3uPrMFTa3B3z8459kb7OPN56+lDzVzTm69Qp3xreR2y+wdXHISOUkmeDujTe4d+ceJ2XGalWyWpXkmxadB6Q9xJUnLFYnbfCuTyGRAQsyFnTxouUK8KfvdQv+iR0YYpEvSxJyrXh4OMcLQeU9SEGnUyCEQklFY0qsbQgijQlU0gECrlohhER3Uob9gv6wx3i8YDGvqOYrvLVILVFS0s01dd0wbWq0jlDZMx8Uq+mnKAkViS8ckWjp/XRHT7u/j1QJWmbOc373EYNtz5I1ckBw1o0VLWPsaf51DrEh5fr7eN9I5S9OZybXWqtKiXP2/jevD5xMVVXFw4N99i5s0uuNcDhEsEgsHoFMc2zlWSxrpPeo4CLtI5Z+T6G0Is81xkLjNYiArX3crGvIUSJjlusDJ2VswyWJIktAFuCEZGUMwsU23WZfs7uRcPWJDsWwj0w2aUTC4NYCtncQOxdYbV5nPBwRbt5GnExRhyt6i5onzZyp02gyJBohUgSRarWenWCzGpFdjq1NGzs/uVLUUmKFwNoF1jQIarxPOV5WaKEJeZfdjW06H/kky96I+bwkFYcM8322BttcvJDxkU89x3ZetMKkgVGWcGs25uG92wyGz1EUMOjmBFGzf/ttxvsPcU7jXIP3LrKsJAIpGgLr2ZxAEKr9tNZD6LRBCmdt1vepSkl5KuGFAGrjTwkFhBLoVCNFDMZ9EAgnzg5YGWc+glhrVESHlXUSrI2wP2jbw6ebIv5c1w1FIUmSJOq3CMmq8kjtuBDicOOg0yVgQCgaG5mbaEV0syxpaXQDRgiMqFDBI00DLuC8OBUDjnT4EplkMZlyFrKE0ElJrUE7hzWGEAJFlqIB4WPnoVskuBCVvOOgc8DjsN5SNav4HiaRjS3NMxIZSDPZVml+1Ot8fYbTlrb3nJFCwGmgqrUiSaIIqQ4NeIdMJLpI2NzsY1WBTI+wSUbo7WD7Gyy7IfDgRAAAIABJREFUlzAzhzk+oNc0FMaxN1+QVp6cLplUKBXZhQKCarHEHR4h0z18ogm2QVsdKb5FHJi13mKbFcE1CGJnsWwCXkdK8yefeoZGaBZlDWZKXx6wWfTYHW7w5BObXLy4FQfHnaOXKGam4fDBQzqXe3R3PZ00oaskJ/NjJqsZq1pSGo0xFhE8MpEoadBhjrMrrKkJqgC5FnqMe0opiUrSKCDp1vDZEANFwrmAkdapSBbWUVY29m0EFMMMpVWEPlmIhHVrR5NGCQZZE4JHaE2SpYw2+6xKw6rxMflooXOIQKrV6WFPm5x4HxnMzhKd96uo/13t8VyV7zFY3PdcWZw5svMzVWtHdVbKbmeWzs2sCM6c4Y9+Pbp/vvf28ysGmc57Fos5ELh69Vk6RULRUdDUuMaxtblB3htxdJSwtJay2IsdmskKM/Es9+eMJgs2Vku6vkPWsnIpn2GQ2MYwOTzCbIxQvU5MFJoKgkcLEWUgCLimxFuJwOE8rBpHLjRFoti7eBm36ailJriGrjxCpznbg4tc3O1w7ckLdD1Y48mloJCB2ckxjYDOtkOnmjTVLOo503LKfNlQGk1jPB5LR0cq9IQl1i9pTEWQMbmJQvKCIHyrP5NAUHhDW+le67mc2bRuO+mJklhgsWpYCyJn3YIkjXIDCDiV79M64pFlGslbiHALISX9UZ8006waj15WLf113I+T6Zh33i45PNhnsZjT7/fROqFl0liP+H6vpfxQ4H7rpORHX/X4nqcb2kBXnGnwnPajvs9LC63NP7J3WW/f8Nh9z76KsD6PznxQ7ODHWDBNNFmaIH2Ud1GZIu+mbG6PMGFOUCf4vEfo71L19lh2etT3DgjzBbauKJYNe2bGzGty4UhkgpIZFoX3sJhMaBwkvQ4yBJypsN6SruM3wNgK21hEMICmsgYtJeiE4XBE8ewL1HmPclWS+hMG8ojt3h4XNjXPXL9AL01xNqCJM0x35zMOHz5ktPkUeR7oZTlBGE6ODphMZqxMQm0qTGPJREAkAsUKwpzGVHFEYh2EhTXbIiit4mdkQrt/3Ll3OqIVpAKtQ5yDkpES3foYk+g0IctzpFJIpXGhjuMyWkGIEg1xfqlqkzdF0S0YbQ1oQtTCC85jawO0jIiJxjsXY0YhEVJgXVg3stpQT7zv+U972yPe6hzWOvqN8z2hM/Ky97fz+Ldn6VHL8be+pnz08eXaMbU+aD2iEoiBsGzj2PVz+aDrg89MJYHewFGHJQ+mniBWCGEZdLskWiF0Qyobsq1A3XhWpaNeWeraoDJBLhVpEgPnJNMkmWFuBMp5tHN0g4dcslo4jPEsvEMpwXCvj/eeqrJkrqYoA72+ppdJfu0XrnJ1r4segRMJg6bkw9f67Dz5s9y1u9xyFxgfdDi8K5l9bYg9nqNWd+m4ittNzYmXJL5EiRxEFhMDnxEaS1AWNcjwjcCMEw4eVLzy5du8dHmbj714gflX3uP2g7tMyq/TabbYHL5A3u3yQG8iswTV07jDe4Tld/i93/kM5e/8Gs3skKKbcV3MWBwu+cpbjvcOljzIlpT9JwhDwf0b36Hbe43f+b3fYVkJ/sn//DazSYl1W4SgIDhUd4De2KQoFWjPZOZb6sp1Y1QREypPNhyRFDnaxgi7Wi1xzrWJYMSVDnNJLxMsDBjXytUEYsUYgfCiZagzKBFIBBFS1ALSAwIXEpwLmMZhFg3LxtLd6bJ5qUdZGkztWBzM8SZWqZwNmNpRlhad1Fy4MGJzs8di4TlYVNy/9120FAwyRV4Iej3J9SdGjF66gkw03sO3X7vLclVT9FOUFiynmrSr6A4ErvbUxmPLAB76oy461ehOB2MaZlOHShSJhDSPTG5JEis3QUq8kAihwHtcvQLioVkvVtR1g0CTSslgVESYfghIZRBujk49mc5O6Z5/nEu0zm+NyhDr8r6Ig/VFkeGc5c6du/SKlF4nI583NLrkuL6FR2EmU1QvUBiFWeTc8n3m74xYvL1NUr1HYo55mgaNIBGGQifotIP14FUf2yiY1cinJMkgZXqs8XPBO7dnXNjo8+LuDjeP73M/HFNZwaIpuaB36BQdKplH6ZAMlidHvPP2V7m22eO//i9+F+EbZLBsDzVpaDjah3npOFYNi24fufspDucnvPvVP+ezv/gJXnz2Kv/siwfcuH/MtBxQ2wTrKnLdo7c1pGsTOsFy94FhMjNYIrwJmYGI7FJbl3a4/hNPQ+PAWJaLBU1ds1rOsKahqmb0M8EzOzmVFcyaSCyRp4Fg40GtvCAYz2I5QeIpRKSYTZMMITUIQZN1sb5lYVoaxrcPKIZdXvjwlcgOWDac3DtkNZ6fOoyLu0Oc80yXFdZ5pAlnCfz751M/PDuTsqU1j55JnMVmZ927dcK1xsW3cI/HE6top2dO9Nyj/OhewN9yOe/QSvHpT/88gji/JnAIDHnSIckdg1GGF4p0Y5vxyvDaHcvyZMb8NYOdzamOH7BtKrZNTeVruiolSTsoAUF1cUHRzGo6Q086SllWCWWpuX1/hStmfGhnSJA198RNGrdkUSu69OkVmwSVsZAJMgWCIbFLLg00v/+f/Ad4ZxC+ZrDVoe9XTE8Cy3ng0FaM00DVe5bFYsbNV17muacv8Ut//6f48mv7fPWV93hwJKjcLsY1CAmd0ZACxcYyMDlx3C4brJA4FIgEhMLZJVmm+NCnXiLVCdSGpqpYLZdRdqGuqKs5BMPzuzmpVpxUAnwg13H2LthI/y8cVPUS5y259JGAIi0QUiOkwoUM6zVVZVhOl5wER9HNePa5qwitWS5qyvkqkoM0DXXT8C//xf/JN7/+Zf79f/y7PHHtKYqicy5h+hFvoH8T69zLOaWlfuyX50bF2uSrDdnf920Rj9y3lRmKc4Uh/k3sTKvTuyeJpujkzGczFrMZG4OCbidlMGnoNDOOlm8xWRhYzEgqQ2E0k3GH6WzA8Rub2GNLuvouXbviWrPgxChSk6HpI9IuocnxQLP0SNmQ9hO8Ecz2Uw7GjrduTnhy2OG53S3G6T7LcMKyyclMlzzdQaWahcxjNz0RHNy+ydHRPp/95Y+jP/MzCF+RZgkXUk/TNNw7bDhcNBwnDfXoKlQF7773Lum9G/y9f/gLlFbyp1+4xeG4obQ7GKdw3pF1B/S3BowuCkJheadqqI2gISJfEAne13jTsHP9Cv3NAYWN9OnTyYSmqVktZggcSnmujFIuDBImFVQWEhVQQRJs1J0SFkxT0diGVHo6AvIiQyndFsmhyQc0xrJcVpQnS8ZVw+bFTS49scViUVNXNYfvPcDVBus8WZZw9eImq9qwqhqUjQzcVRWh56ZpWltYd6MCWkvSdE3sE6UwIny9tTV31oU6l1/FhF6103ztHl0TpcjzcU5rn2f2Lc4yLB9xJL5Nls6QEvGekQr+vIGf3wx/8/rAyZRUkOYSkYCX4WyGpn0CUkXdJ1nEHWWdxFiFWw//K9kKH0IqILWgEhUzQSUQWRJfrHNoHQXFlJZ0Bznee1RqaJrAam7Z2cnYHqVceWKHvQs9EiymCSzGFSZRdPqBrvP0G8d0ZjAnUE4bmnmDbBqMN6TBsQoB33pxIduOS1spDd4RvG2x+wJTexYzg9iDbpow6OQMOxlluWCxTHEhOhIvFE4mGJUymc2ZHN7nwsc/TD7qM73XIHUgDyUrpymNYl4uGM8e0jiHSAoKndHtRcYv0UBZeepGgEiBWD0TOJSoSVLAPl5VCuf+rc1h3XqPUD2pAolYM5b4lp0vXie0nSMhoogeIv5O+HiNVEsSKchUFK30omXn66RY6ylXDZ7YkR4OO3R2+qxWhqY02FmFFZbg/OlG8c5jrY9kkZkkaaLoczldRa0KkRHaKvyGD2RZQtHrIJSi38+RAvKejvDEjkYlsbOgE0GhNHWUgkFqjVAaQeyOJFq11e8QhzdVJALQKnYQZCuyEAcpm1M2Q28qgjPoJM7JJKlEiIAzrSitUMQ5lx/vzMfjVch1l/D0WBDirNofIoZdpym94QBURmUFzWyJDwIlLAkWuVwRXImxDc3cUC4MpqrQrmSaS/JE0e13sE6jZxLtI8uZIIC1BG/xweI8WC+oKocxgayFw/U7CQJPVVXx/UJEEUEBCEVtHNPxmIvDPk88cQmzPMHWSwodceM2KGrrmMzHLOsSkRRon5IGEaERIlAaz6IOOFK8cAQ0UggyKorU0+0r1GHET7f92DYhXc/yRPgRMs4EKaXR2tPpFlgrsX6FTmI3VgLexPdetfA2QfxdCB5DIFGSfqZJdUKuU7wQBAFp3gEBYx0/m0RJunnK5vYGtbGUtcUtSmTT4E3smuWpxDpH0kTKed8KI3/fddZO+ltY2GO2fL56t/7+fEX/1KmdPfYpu99jwZg4hXqsq//nMPU/pvX4W/L9Hl8Qg5PBYNj+TfQPwQVky7wYRHT6/STFJRJRG9zKspyuMIsKs6pZCEciBLqXM9Ad0plCC9cyywlwLtJ6h7WGkqBuAlXtSWRL8NRJkAlUdUVjCjwCj0QSpSYCknIxJYjA5csX8Kainh+RZgIdGoKXGAfz5YLZYoUXGplkFEWcu1gjReaVp/Fr/ZgEiScRDbkydPuKVSnjTN/5/XMKRIqsokpGkd3YmUjI8owkgUCNtyHOW2hJqCFIEdl6lUAkEqU1UkmcAyWgn2ekStFJs3im6yyiZjUsFiV11ZAmikwrtrY30HnGamVYjOf4VUO1WlEFz3I55+gosFjMqaqSPM+JHeO1EfCob/2h7Z+/+/4Tj33zqK/5/tc/L2Hw6PXCufuwzoTetwN1+hji8d+tq/ktPGu9vzk7I9Z7fR1c591OPEuDoqwDdTOjMp5UebRtkIsV3tZ42VDPDc3CYMoK5yoOQ8PcKhov8IlDaYlOJHgFzuNtu3+CwweJdTGeoi/IVYSqdYuEuqlZlSqK2AdBQOKRBKlYlSWzyZhLzz7FaHuTenaAlJCI6H+sl6zqivF8ivEBmRSkqSJNHVJFEoZF7SmNwIuMQEoISdS9FDVFRxBMFNhuVb9ilyWsfVDsuKzpxoUEqRKSJNDp5dHH+iYy9CUSmoBv6f4FcRZRyLi3sAIvAp1EU2hFkaZoqfAi+qokz2kawzSJHAlaCob9Dr2dDbJuQ1XWVIcTGinx1qKlIE0FLoBxvj2rzpKhSJV+lkid2XDboRKhjSHPLCic69g+0jE9taNzEhyPW/q5eGf9m9C2SeW6oHdqmY9u7tOinngsifsB1gdOppJc09vpoLIuMu2ilEEIi6lW2NDQTQQyBZF3KExg0HVUXlAHUCEOnpoWHlMAjSuRTMm1JFcJFZImK+gPHUoI0tE2OlF0kqj83njL/fdOUO6QX/2163z0pT32tp8iS3ssas2D+0d84V9+ntrUBOnoVBuMyk2q5UV01aFZvk7pDhCixAnPewGsUjQqI6gCrXoEKoKpcb4hWCiPH0AQ7cCeBldQLmum42M+8uSLPNt5mi/dfpvxtOT5TymuBMXlrucQuGslL791m7e+/XV+/6c+yfUnr6DFLZxbIu0DknzE4JmnmL31FV75k/+Vbm+XbneDn/7Nz7F1cYs3743ZPyzxncsIt0Q0M3ArgslIV7fJ1R300OC7BeGkbsVHI1UxwbDWOGomM8x0zpqWXAhFlik2dntUVcN8XrJygaaKiWVoS1NKS3qDIpqbswjrEVayNcgZFCmFsUjvWUrD1jDltz99CWcch0cL7k487409Wz/1PN2nL7Osa1aLkrfcNygnS1bzCusDtfO4AGUVyTOCbLj69DYEyc03LHUD89BlOltx/8GExRJmM8v1Dz/H5vYGL33I4ZoK5w3zxQohakxtOTmZc/HiNlvbI44aWBlYLAy1sdiDCakObHclFYJVCFitIEvobvTppCmChOA9zpTgG5rlguWqYr5Y0e9l5LkmGySoRKOlwztLs1qQyIIi61NWcyazGXXT/OA78u+41ro4kdmnxQHTUo4KqMuabjdn58ImLzx/nZc+/Dx37h5wfDzjYP8BzhquPrFJrg3+9VdJ0wsU/YZwfANvbiCYIFTNbOMydrjJS5/6aSal4+BrN6imJ3TClNo4Gluzmp5gRQ3eRrIBn0RdkGrF5qDLz37kQ9xbznlwr2T7gkTmiku9CMU59nBUB+6d1AyvSHqDPrVaYesKKVYE35CNtrHlgm/85ReRQrM12uOFFy5z5ZmPY5cVb9was1JDxCBDlTOUDwhVkJgFw+NvkWUL9NUR9d0li6ZCaxcT4pjlI6RndnDEm+MZLiK+SZIOSZJx/dk+KklxlHhnuTMzBKFwSrfFC8HG9pC8SBG2AedgKenkKRd3NkidIzOWha9ohOFnPnmV7Y0e0/GEZWm4fWiRG1t0n3sB0zI2PUhTpvcKVtMFpjHMG4N0jqESrFY1jbE/Pjs7hUa0/fC1Fzq31k5UcG7AV4hH7rsOtKQMLXQxMkGttWX+bVhr5yoEJEnSfh8gOJxbgYhQGYhnwWR8QFkuSOgwMHCtnHBcHbCyb2PEHFcEbNrlMCt47sMfY7hzgclXb6COJuR+jGk8ZV1jVzMmB/uEyhGL+wrvNFVV0UXwqReeY1bW3Lg/RmkYXVBsF9DVnnGARW359tdfJ0kkv/KZn0cKjZQTlLbgZiSdIanKePuPv8Gd2w+5sHOZvZ0Rn/i5z6EQPJgYZr6AwUVks0C5WLCQvmI0e5Nux5FeHhIay9wcI6VHSYP0ra/BYWvDjb9+FQQ4LFKlaN3h4uWC3ctD7j9sWCxgv4zCv1amtOU/Ov2C4UYf4Qx4iygVOsDVy7sUWpM3BpllqNGIi9sp1/ZSVvMlVVlzb+ypybj00Y8hiw6VbZgeHHMvy1hOZywnM5Jun6zT42R8THo3o9fro9RaqPNH2ZX68dj14wGhaP/7XpqJ83+wLnDEm5RYTz6uL7LuJsdCo3u/SxCZdoVSbYFRnPoiQqAqK7a3hgyHPX7u059iYzTinXfvsZgv2N9/QK+bcvnSiKQ8xL36DYr+Ep3sUM1fpzZHCDHFCMt3GsfKwxhHUqQU/QFpmOOlpTIVNIHJwT5SSLQCJRSEFGMcVV3y3BOXuTbc5ZsPHnA0XnHxqmDUk/S1ZwXMkOwvHffGNS8mOb1BHyXGhGDAzZG6IN/e5Oid7/LXX/xLNkc79HtDXvrFT9IfFdyflBzNakJvD+lrVL3AVzlCFXSW9xiM75NtCprOgOVrx1TGobSNJAreQWiQIjC//YD63gGWONuTpD36g5RnX7zIbL5g/+CEuYNm2mBVStASETRpotna3YifhW0QTQJ1yvbGgFG/Q2Gi/5i6Jd1+ys/91HMEb5lPZpzMHftTS+f6s6QX9qhspFUfGks5m1NOF9TWsjSWQkp0rhiPV1gb6dgFYKXABYH1nEK5fXDxrG/nlqIMBafsrZazpEdK0bLztalPOxsV1qK6MhpcOOdLHvFBoU3Owrkb/j/u3uxHsvRM7/t9y1ljzbWy1u6uXsleSA6H1IgSNaQ1MmQBurANCIYuBQ8G8L9g6M6GIBj6B2RDgGFJvpA0kgzP6EajkTkSNCOS4jJcuruqu6tryz32s36bL05EZlaxOW7OmDThD4XKjIhzIjPjvN95t+d9notulrjY5leTKCk3sHnXycn8DHv1UydToUuP8TLghYNgEWuGEYLHBI0IAkH34URZhESSBkFbVzhr2eSFTgaiWLM/TiFIJIq27QYVRRyjtCJKNEmkGfdiEKELZa5ZfG3Y29thNN4lSVK0UsTGoTGEqsRUNYUxVJVnVbWsWoexGcKtULQYAi7PYP8mwscoExMqS6gtiIggYoJYi2DWLZ3Gi8aamnL5FBOu4bMENUyIW8nWuQYFi9Ml89CwSs7wDWQxiLyPGdzidK4ZPW1YHJ9g2hWPDweIfsLwWkakJG3TEkclJorYGw7ZH2/zrXff42w6wdRFN5xuqnWhLyWRjlx6mjpg2k4o7wL/eZF5b6go3eX1Q6x1uwTGuG6IV+muk0LHtIcQSK1Qsaa3lYHzmCJ0lXQv6WURca7o6xgVPKtZQe0kRwtLCLDwMZX0hNjjW0dYVYx6msEwwdwZU2/FrJYVq8pwMm8uqg1141guW3q9ljiK2NkbYpygFCmukdgsIKOIsrHMpktAkIjQzQBZi4s12+MBVdlS0BInKSpOyLRAOgheYVpL6xtiBVEuL5i1ZBKhYo1OEnQSY9uuvhpFCqkE1pmOGlYKVKSJkoQoEkhN1/bCXwxbOm9xwePEhaT0L2hdrbJcDl9edWSblngcx4zHI4bDPr1eThJHHRuc8IBFOIMPkrZago2JOCI0M1SosLiuwnztOnJnnzob05qaCE0QMVKlBC9xXuJri1k1eKeRXlDUM6rW49U2IlFEfUnmFH0HtjaUy5pGV2gBWgp0IpGjfVrZYz532HKFqyc0PsXLlHhHEWlF23pEMNT1kljtcW1rzMPiMeflhFXZBVemrHCNQaiUWDkGylM3nmnpqZuOLc87h7goSPi17lOLsRYnPE4EQtAEBGXVEjlBpLv7hfUdRboPoKMIFUX0xwPyXoxZrRDGkYqENI1I8pRUQi4C9UJQ17CoPCqyVC6mCoqWCmU8zbLABY8PnmC7mb4ki9CRZBU6hqymtbTGdcyb4VJH4yct4/9FU9vg39dfL2ClV/FAF8Xr8NwvsX5wdW7kGRwRzwy2/2LWc5/ZMw+v0qeLNRRk3YkJbv1xdGgG72wHA10VtMWctraUswJbTImUI2hwWiO2tpE7+7SjHapogBAxMZogU5RytFIRXMCsmq5yjaJqSsp6hhU7oCN0PyIRjn4tUM5RLhrqUJN1NUuUsrikT5CS5SqgaGhXc2zQWBJUb0gSRTgHbWtp6gLvMrb7fcq64tHxCdPljKoqacsSW9aARumEvoI4BBYzR1n4CziPCBbWjIeshctNXQEBKzxSB3zQ1LWiKCQCRRwneG/wIeBCV/jRSUra7zHaGWKrEt809OIeidD0+n2SSNITHoeksI7GQu0iWpFjo5hsFJOolDTK0FFKvzegR0LaCKrlkmK5REQpKk4ZjbbI8vyZfXP1+v987uJdB/anv7ZZf5pd8DOeI9YzKc93jC9wLZfvuQkvLxoGz3SaLosOV978IniVFzpAkOUZ4/GQQb9Hr5cSa4mWoHHIYMEaXFvja9DiDCKHsEtUqDEi4LIUcf0aymnSRqPI0UGB7Irjzms8krZokDJCBE1tLWU5wYyGBN1HZZrICgZpR8BSF4YaRyuXBCuIpETlOWK4T9lq5guDXcxxtqEOGTKRJFsRAkHbOuq6JtaaUZ6xNRhw7/SUaVlQViV11WDLsuM10imZcgykZ7X0FKXHurUIunME4bsY21tEcAQTcFZ0yZSUCJnQtoKyMjgHSZxCcJjQxXRBCuI4RWcxg+0BIjhsEYh0RBIJ+v2MpJeQyxTlHfOJxXjVwSsFNKTUGAzQ1i1hscIGh282M/uCrJ9AKykKjzWBurEY6zqNtzULnpCi65Ov0V1rjPdltzNwgQ7a7L2NaHu4cChXbXBjc5e296wdb8z5WV+ysd9nPMpPtJ/Xr4Vn7fxn2UmfPpkCrPC40GJ9QLUl0neaPQiBNR0ELYSIfqLI+xFDpUmE4vT0lMI4CJIgoJGedBDzhfEOq1YyqRSL1SllWRP1+qgsAglxJLi1u9XpT0RwfbvPSy9uc+fFV+gPr6FpkL4ld2f07THjek49azidWMpyQVEcksmHREITbIXCsRIC9q6R/pd/k1Bo3BOPvfdD7Ic/RtMHGVNgsAHcoiKoBOIBq9UZ8vHvU372LxGuXccsAi6SvG0zrDEc/+Ahdqtgu3zIKN/jhdEtdl9+mVy/yXfvZ3x0/5j8+FsUxYLvHL/Ia2+n/I2/NWaUjQj0KYsl3q64m/e5Pdzinz79Dg8fHVKe1rjKEsoaIXOE3mKU1mylLe8/mLFctXi7MQT/3BXbGFH3MEDHetN4puduTUSQ4pzFOtux+ABRmpIOUg5e3sHVLdOHnm2VcaAHmNxiU8/2zR5KCe7/h0PO55Z/8u05Mk5Q+RApHEI7xNMJdrri7V+9xWgr4zO//hLWtiyqFQ+PCv7oh+c0haVeGSbTlrr0aCcYj/t89u3XEHHEMhh863GV5ex4xvnZnOb9j0i15rVXr9PPI3JnOyz2nRusipbptEYP+rg4Yxh32lj9uNPjaVoFMiDijpUmlmpNThFIh32iKKE4nyMIDPsZ3juqtsUriPsJ2XDYMfbFLWCpqxqCIMpyAoKmLTHC45K4Gyb9Ra8LTEW3Nk5sk+wpLRgMB9y+c4fd3R2yNCJPBHni2Uo8VjjsssTS4tqGRJaEaoEzJdpXlCLQRjH7X/wy8cEdHpxDbWbEjSZyOeg9wHRMn0uLqSradJsmlhydvU+a7hF6uwTZwXa2pWIcS+r5irOyYmCn9FIYJHuUWwn9175EieC9ewV69RBZfcCD6T5Gjvn6X32VQZITRI+mKTg7O+Rtf4e7W7vce/BDHkzvc3jccD6xVIclwiuSbMwgs9zq1fzowZIff1SwnBi8CzjXdkHzGhYg1wUJHzqinCDACI0NjkePDUmi2d0eE/CUTYVbq8tHgx7xcMT+C/uMRwnnD4+QreeG3EJEYAeOfJiytZVz9qMjFo+nfOveAhUVxINdPBGrokZXK3rL99djkILZ6YSiLNnZ7SOU5NQZmrbl5GyJNQ7b2gtNuJ+3icn1zNTFE8AFzm/tCDeDvs+K4j4PsFif+YzX6mQLfPgZg8JfwNrApTv4SldU7G6uFm9bbFNTLBbMzie8+8Mfs5wtEA3gPXkiQcUUIiN/7Q3yt3+V83ngeOXwTUTaxmRqhyZY6rjFG0FzXGLjATbOOJk/IZxNMW98mdBLcTUkseZlJK1vOXs0IdpZIoclvWSHKM9Ib71GayQfPTJEZkq0vM+k7HNcbPHWF/a4fjtFqx4+pMym5wxyyW6c8vGyi6msAAAgAElEQVTinO88+E/cf9Rw8rSlPq0xK0OcbpGkA270G5q24Ps/LFjMarwLgAVxSbyi1lTOfiN6LMGFgBOSk7OW+WrF9njIIO9R1CXOW4wxRGlEPN5hfGPE7Zd3WJycU06X3B3eYhD3qJISGcN4N2c6KXj0/SOWLUxtHyd7BKW5cf0Gw16PxCdkPuH63i2i6zHRm7+GaUuatqRsHNbB9tYeSZyidfQJycDPxYp+3j/gU/6Yy8Bxs203ceWGVOAilboqVRA6ciMhOv3RDftcx0AXLoosG8IPJdVFxb9jJBXs7u5y+/ZNhsP+2geBTzw29UgMzbzo4H22wBtDIlNEu0AGSykEYXef3n/xX5O1EcNpwNx7jP3wMbEYI+IcJww1geakwkcB3xsQVQVPT3/E7f3XCYMRtgl4Ba+5FOccq+M5Pm3ImhOyZMAo3WFw/Tq99A6HM8FsuiCev0dT13w4OeDaLcFXvpaSxj08fZarAtOs2EtSDoZD/t3qER9PphwfNtRzQ3NaoaMecbrNbl5zPW34xnsNx+clbe0JzuN9w0YDqfNBHdx8TUxOkJJGRrhly4cf1fTylK3hNnVb05hmLTYP+c6IfNzj5svXcW3D9JFnJHP21QiXO3wWGO71UUrw4TcDs6Ll337/BJVkRP1tmrqkqlryj4+Jn56BFjjvWM6XIDy7e30oG7y1rGYrzk6X2NZ2bH3r2SStVVfckx39eAdXXkP//EZ3UK19xTpOlWptT36NaHieeGLT1eL/ueJxxQdt7kE/ocF4uQM68gzVPQ5XWCg/7frUyZRxhlW5RGUDpEqQsus8GXFZsZdIxJpeuLKgCCjlkToiSgNZ6FjVPIZYdljoVGjGMqI+2CaOM2TczaLkSdemNB6ED0QI8iwjjWPyRKFo8bbGtTWTB485eXzG+cpQtB4tYJhJRonEtwLvwMQpPo6I7t7FDvZYnbbYySntRw9x50f4doYkQ4oURAk4QujmPrAzXOlpphnnteCp0Lww1OQ+5rsf5iyWFeVsTmMD125do6gk1ekJN4Z3+foXttlVEarVfHCsMCrn9uc/hxyN+Pff/mOePDkil5KXXn+dg1t7TE5bVosjZvWY0rcEd7hWKm4QMkfpmMoukXWJ7UmIEsSkY/sSUkBw3eDGWgPlqrlsDAzWxh0uZ0VYt+47aluNMYLpaU0/glduDKER1IUhzRX9UcSNGyP6vZh+mlHUjqeNo3aKVZtA0yCqirJymKrk44czBouaXq+r4Foi+qMhX/hMztnxgtOjBZHSKCUpSkeg4ujwnKwX0x/rboA11yQHQ3ZHGaZtwXtkInESqkagIkXa6xFUhpc9VC9HZilFseo6fwpi6dFR1A07KknQomuJ0yUdsa+RTYN0FcF7qroTtc3TqOtc4LFtxcpZtDII4TGmYwmMY40LYJ1FpCl51kfpS2705XLJP/xH/xvbW1tclOwvSilXc6Dnuwo/WaXc/P/Ma+tzV6uC3/zN31pf6q5Nfkk53Q0JD4Z9bt64xnjUZ3tryM7OiywXCz5+/weUxYIkzZFCo0WCbRztvCbIMUjBcDjA5D3aNqZ6Mmf53n3ayYLF+SHaaRL6+NAQRENrXJdghCmQsJymzEaesyAYKslWKjmaKc5LRbOsQMJwEFE7aJcLEDmv39wnQZALmD+OKcqIresH+GSbx+dTZpMlQyVI97a4/dIu4+EWx4+XnJcJM3aw7oxgLSLUaBXRz2KkdkyrgjoLyJs9tAj4eZ846mY1ZFMSnCG0NV1gL+n6j+tZKAQ+KJxXWNfBkJ23XeEt0ngirNNMpw3eOEZZQpwKhNXoVJKPFeNxzu7uEPnZlJs3D1h5j0Fg1RCCYN9cx7ctbblivLPN9t4+VVli2pZeP0VIwWurhro2zM6WawHZbvD3f/5f/v5Fx/d5+F3YdLDDlZRmU20R4soxXARWzw+re+/5+tf/M/7CX/zqc7Z61V6vdMg2Ve71PebZDsCGRr17TqlOdNE6x/e/98f8s3/6z/llXOvfFqmy9SNJsVpwenxIuVoSvGNvb5tBnjE/Osf7gEx6RHGEyjJMb4fyvGH14CHN2ZTl+RN82ZKIHJRHqJKAx1qHoyD4mmahWeUpU9dVza9litp6HpsE48EUFXmuifMBrjHI4Li90wcRM9KKdq6ZngVU3mNn5wbz1rB6dASmZSuNufvaHXa2x5weFhzPLZOwTWnneNNJhghq8mSHLNHM6gmtr/DXUkQU0I1AK9BKINuqE0dv6s4PrYlHvOiCJyUFQmhAd5qDztKJCARUHCF0jPMxReE5PSnYTYfcfGEHVUtMsCR5TJIrtndG9Hp90qgPcUpIcxqnsEETZTlSRsymc5rGcHBTAR1ZhYpSEilRUTcjk8YpSusrtvnJFe8/WxL0idHeTzn2p0dwP/HKn6re8OxJF5TRaye0EUm9ehtg07m62jG+cgu5hJRf7vvN/5u7h1SSSHcskcF7qqrkgw8foSQcPz3Cm4Ysj9eJXCdurpCkQhAJQRPlSK3ZvX0LO9hhtRLY6YTyo0fY4xlutUCKHloOQZWI4DrpHtMS6nPa5ajzQXVgIiQ7iSByko9tRFkFmmVJv+/pDQedAHuxZCtNSG5m9IVAWcnZXOFkzO4LN9F5j/cfHrKYLRhpyY07N9ndH9KU8PTxiokZsvQBb047mDcVsc7oZTGVnXNeLbHbETLpE7X74DxRJBDWINuKYFuCMXRlvYAXoZvbFd3sewgaHwTWm44gDI/QCqEULkS0reLsrCRTgf1xH21VJ/2SxeRDzXh7QJLEvPm2oGoMc+cwQXdaXwRCVWNsIDjDsq5ojGFVtR16Y1ZR1S2mNDjjwIf1XHnA2XXivc7QN3IIm5GDIFRH0R8u/VH3b9MR5QIG+Eldo2fDHnH5ePNez/ZOn7HzZ2dy18etO1lyPeO8YSJU61GJT7s+dTLVmpbpakpfxfSTIUqmKOmpcesukkYLiUTjPCxNQAbXVafimFhpYizBO1rjiARIFZNHMVmeksR99g5gPl9ijCFNEyIpaKwD0REyDLKMft4jSxQqlHhT0RQrnvzwPo+fzng6NxgbiBSMe4pxFjOdC4pK0sQpjMb0f+MvU7YJyz+cYJ7cp3r33+C9BCQqehmxDhpFaDqKV9eAm2OXUB5vcVQJcqH5wlaPm7Hgd5sBT6YeOz1iaQaMX3+FwfyI0ekDfuUv3+XVL+yiVES5WvLuH0S0ccpnv/6XeHp0yv/xe/+GxUcPGCnJl778Rd768hf40e8/5vDwhLP6GiWa4M7AVwhRo1QgihNWTUPlFtitGBEiRJmBA6kFwrVgCrw1CG8vbeyKaXWwnK6i5LzrIER0eh6d4KGmqSUnjwqy/ZTP/coeh6cl96slw8GA3f2cu3d3ubbb52tfiZmbwL/6uORk5imfOOT5AmkDq+mctqyo5CnpIOHG3SFJokiTiK2tnLdfGXP/vUPet9C4Dlu7KBqWZYkPT9kZJ3wuHxMlGaqXkO9tk6UpJ5MZRV2jtMJ5qK0g1RGjwRCdS+KBRKYpMolZrErKwrCbd0y6WZTghMAikBGoBCI0CoUv5vi2QZmOanhlBL0sZXc87gY9nWG+Klg0FoVbf5gJOtLIYYR1gdo4+vmQQX+HSCcXn/t0OuHv/t2/cymqunE1V+B34rnAl3VtZhOMPi9kusGuX15Z+G9/87f4H/+Hv3PlPS6Pv6wsdkyP3W1OdDBPa/j2H/0+s8kpSdIjijSDPGN6es7H791H5QNkb4h74UXMcMx3vj9lcnjM8f/1e9iiwLmIPDlg3L+ODQUOQWMKbDDQTAltxPxkj3zkeRpENxzek3zoNB/MFXa5QAVHb3ePQQPV4oTxduCL7+Rr7L3gvUXO7DTl4JUXkf1dvveDd5mfTtjSkls39/mLv/EVZkcVD+5NOKozzrmBsSuEqZCiJNIpW/0UpSqOVjOqgSK6NiQOA1CBLBco4RCTE3xT0a45mJ0UHcRPgJYd8QpEHRTStgQc1huk1qg4wYuI1mhOjkrKFF56bUwea+aFROUR27s9drZHXD/Y4e6LCZHWfLA0zJrAbKlQQXGgexTzGY8ffMQrr3yWN9/5PFprtFbray+Io5hOCWtjJIK/9/f+J/723/7vLwoEF1ofgg5qAesKob8wjwvXcyWZumI1l52l9TPb2zv89m//Sz7zmc/wk+tPju7CTxzy04//x//4f+e3/9m/+IUSuXyaJdaBghAK6HXJpvfMZ1M+/ui9DmKjY+7cvkFwlntlgXEBPd4hbO8yfuEFnjypOXu84uy732X1+AOcVUiREvXfJiiB0ILgaowxBDtHiIZyMkTqESdWEEnFZ/oJEwOHTYqta0Jdko7G6GGfenpE4lpee+c2aS9DSMnZ05jH7wZ6uyN2X7nLvQ8fcPjgEaKuudZL+PN//gvEUcrjd+c8rA0n4TpLB65Zgm8RsmSQd0P7p6s5bdziX8yReUZSbhEngiQWiOUEURU0foozpuvq0u0fpEJJ2UGvZIz1nUyF867bX1mKVAnWxSzmDtfMeflXXudzr9zm/XsfsViu2B/0GQxT9vd3SZOYz72VclI7HheOZSmpW0msc6QLnJyckec9XntDEoLqRKNVjNIJuYo6prPuql4mEpvHv6zrU2ZUz/8FYd3lEBvVVi79xyWzprhyH7gMXrsZKS4Sqov49uLci6zq2XM334uum50kMb08wzvHcrHk4cdPaJsGmhV5qnnjlX2gE4FNI0keaVSQyCBBDQm9AeO/8OtUIaW4X9N++JT5N/8tzimC10SDzyDjrY6NLzR4awiuBntOk3hmx9ucVnCM4kaq2BKBb9YR53OLWcwZbSX0ru2SNyuqYsKt17bZu90DIWkbzfE9jdcRd958hemy4tvvfcDybMqulnz+zVd4+a27PPrBlLOHU47MDtMQE9ppR7olVyTxiFEvYWVKmtUEdyMj8hlxMUJYyHKBqEvkYoIpl1hXQOhkDr3o4gWlOtZhRNKx8NkW6w0eh4pTpI5xIaGqFU8fLTkYx7x5d8SyaDmfVvTzlNFWzt7eFoN+jxdvX6Oynh9OK6aFozg1nf7fbIUxBmMtT48nFHVNRz4rWFYtzjjassXXDuFDJ0/gAsZ0KCdJl0CpdZKC7AimNpqjm5natSzVRWyKABkuiSaeiXkuzH1jb+vk/ScdSxczXSk6XxaswzO/Q6eNJi501jaJoJT655NMpWnK3v4+SsYoV3UqxUIQ6U7tuClWBK0Z9wfUjaWuGiolCFKgdNThoIMEGdbzGZJISkSUI+MROg70PfSSCGtcV8kLjtivyNKInVGPWEkS7ZCAc4LFYko5X3CyMkwqD0oi6ZjojNYslaIa9nDDlBfefoNkNKAqnyLOSvzHD/DzKRCB1PigaZF0TPoSjyaEnBBqCHNcU8GqoDprWB46zGCF0IFrJAgxpu4PyZOMutnj5Ogp5z94wNabb3CnWRKrAaZVHKvPMXcN/fI+s+VjqrMfgFnQ69f4RUnxuGCmI+Y9Tf3B+7TzCcFWEDpI2YtpwSujc96tLEeNwk6atWioRKmUJL3O7dzyuXHFJN1hlmxhju7hixnDrTvYAD9+eB/vDbECh8es9ZcQEhn3u46jbxChhaAx1jEpK6Jhn1ffuc68qPjgScPATln0l8ibHjXI+XMvvkXlMuZ3M4rJjOXJhMnkmNVqzmQyx1mDXRboRiISzXJZ8/7xAl8bXtzrMzWe0nrC1GKdw1lH1TiOFoLBQLHdS5A67jQTtMDJgG27qk0yGqMiTWUcrfOULSjhkL4mjmAwiEn6MVJB7SsUkCiFDS2mbTBWE7xCK41MJZGvkdbjTVcvXbQO4RzCWlrjsRb8Gv/thMMA1J0uiguBpiwRzLDPEVBcdWLPdpY6PS4R1i3sZ09afw0XWODnp0k2g5mIn2yJ/+Ty619h00LvblpSRdx+8Q32D+4gZEcJb01D0DlW52SDEflwxMy3LNoVPPoe7eNTcAJUjhMplUwJIdAEgUFhQo71Ed6cY1yDnhUUs5piEWgSi4hgKCU3ZEaTxV312mfMipr3751y66bnzpstiggpIshvIHc0FRbfnFAvPsZVCwajljQ2tLOWwgTmuWb66ITZ4WPsaoHwLVq2bMfwtZ1zzlzFHxeaVd1QTlf4WqIjxbh3m1ES8+WXRggtOVND3GqGPX9E3Nshzsd8+OQhs9WcfiqQKlCGGicEQvdQcZ84HaNcg3JzlI/Ba5zwiERzsHOL1nkOJyWutSRVySifkaeO3a0XGfeGtKMewYFoDYN+yu7uLlmes1zNSZOEKIpIkwwpOupoIXwHlbh6zUPnQjwdK9S67nzFXsTFDNAlGPiKZV5lLbtSDNw4Ov4s6NVPmUj98qznf8dAN+u1+RAkInSJws7eTYSMLkQhrWkwbcv1NwRIxXB3jxrPzJfMFk8RTw8RTdnNGcoUITPadYcbp3EuoXWygzr5JWpeIOKS1cJR9jw+bYiwbLsIIzQu7qFFjrEJD58scdWCvdcqojRChZigB4idNzFZn1V7SrV6TDN/QpYWRKnCFS11FDFPFbN5yey996inJcI3KNESqZZfHc8Y5QnfWgrmNRTFjFB2jJWDbI9Rb4e3bm1xLTWc6xGtC5jjD5FSkY+uczab8vHhE7IEkkhQhQZLQKQZUkUk+R6SgHZLYjRaRJTVnLO5ZrAzJh1vMy1WFA0MQ0UvKVH9hqy3ywvb1zGjDOdjRNsSrKf3zudQqps3s96QJQlRFBNFa22ddXJxGTN9Egj1l2j9DK2pnyCgWEO+N1V5cVH1v6zWhxDWotqbk7h4XUjWEmHiOR/0bDLVuRdJ8N3snFKdZmSaxKRJRJpGVHVNXTcsl51ep2tqVqXEf3C67lwKRoMeo5FAxz2EVqgsI0ojxOQRovK09w6xZzOESEHFOBmzRFGFQIXABo0Jfbwv8KbTqBKzkmJmWC09LvJIFdiTMZGWNL2UOFE0JuX8fMLs42O+srvP1vUGKWOcFTyptqmdIzMTynpGPfsQ4Vf0BhW0DfV5QxFpVqlmdv8Bi9kCa0pY76GXe0u+uHvG91eOJ0XEol11wtQokjhnp3+bm7uGt4a7LGTOUmbYs4f4ckE+voHxgvcefkAIln7azVFVtIRII0RClO2gdIp2FdpVSB8TgsJKTzYecHPrBoUxPDyxyHLKOFlysOtRacyd0W22E+iHFtcbYK9d4+FHH3F6ckw2yNFZhPAtzjqKZUnbGuqqwVmLpLvOAdnpwPm1D/J0jN9cog+e0Sv7BB8UQiccfVngW9vfxrY2psamoBzWReHL9/2kHCisf6C4SPivFA+EuGLRf7p7wKdOpuI4ZjQe42qLrVuk0ghkR60YQkeZHEVEwx4G03WNjMAJQa8nUVqi6AbSIiW6D192w6wy6XciZnhSrbvZlqrBuxaMIEkUw16OwiG9xeFxPlAWSxbLOfPaUtgOItLpbkm8VtRKYZMMkiHX3nqZ/qjH4fe+Qzk5xZ/8mNCENdwgBhFhkBe5bIdWTTpcvHMd1KFqaGaG8tTSph3Jwo6KQScsZQ+pY+qmx+HE86OPz/jafIm1FZiYphbM5F1mcsmiPmRVPKSZP0Q5R5YHQt1SnzespGAZQ3v2BLuYrknxLUJ49uOKN3PJo8bRWE1oKggOETRCZcTRmOtDz1fuNDwav8KT4Qs0cYWfCvZvvELjBY8nh7SmIhWG2gVaG0BphNTIqIeUcTcPh0XRaSLM65bx3i7Xbtxh+t4hx0cTnqxKbBw4qEvGN3Z4/UvXEMkYJ3Y4m0w5Pj3naJIzXZxTf6+lmFl83eKtQFhHbRwnq5b9YY+DcQ/RWnTrKMsa0XQ05K0NTCuBTBXbsqM2l0oTKUEsL5Wro34fIQWtc9TWU1uPkhYZBFEEkY6IexnIQGjqjk5dCerW09iWpnEYq8gGGVpHqLhFyIBxXXJUGo90Dmks1gScu2xJW++7dKQ1bDQL2qYhuBXuGXa1y8rnZaVl02buvg90CdWm2nfx3NpZbZhprt5QNu/9TGXxUy156UpFJ1a3f3B73bVwGNMyn50jkhx6I4ajMcPRCPXkA0I5gZMPcccniBCDTPEyp5UxJvi1CrrotF+CxrUW4Tz1qqFatpQrRysCIQ30lGRXJZSJxoqOvrZsGu4fLSBNcM7Amq6WeAsxzGjFAtMuaMoTXFOQ9yDWHltaaudZaMFqPmX15Am+lQjv0NIyjAJvDRa8Wzq+MdE0tqAxS7SJ0DKmF/fZ7Q/4cy/3Uf0ej7dewZ4/oX3oGWy9SD682Y3lHnvGSUMIlqIMBCGRcYaOB0TpDro+QpkCHTqYisOBlmzv7zMvWh6cNsQWRk1L1Juhsprh3qtEgxFSb2FdYLqYEumEQT6mKFYslwvk+h5JnF7Y0UX6/BPXvau4bZhqn9ePvjj/Il+6HAx+Ft6zsb+uKrp2W7/U8ebPd11+OhfzJOsu1WC8Q28wxnuH95757JymbdiJM3QUs7t/jeXiHPf0Q5LiFHH+EdK0SJkQZA4qw+qOjjxISRAR1mucAWdq6rJGLRvKlaMqHS51KOkZBo2RikZGKCKsVTyZVJSLJXXb4p0hOEUgQQ5fxEUVpZnTVOe05QlpDKnOCLXDesdSCZZtxfLxY6zpJEMUhlgZXumt2M5bvjGVLJpO+0l5SaJisjhilO3w1q0Br+0Gnm6/Th0EzT1PpBK2rn2GDx4/ZNkW5KolVS3HtcDYgExSlM6I8x2Uq9HVjEgkRDKmaUrmS8HOtVfpRwMezwxFYVkEA0lDXk9I4xGj/gipBgiRMVvOsNYyvLGNd4Hp9BzvLVquZ3jiTQIRNgqf/18Z1C94be76wIV34Rk4b3gmkL1yGler/TzriIS4uE9sEqqwTso2HfIo0mt9PUVR1tSNoSoKrLVYYxBA2dgLUdg2KEhSpAqoSDBIIlSkEPMTwqLEPL2PLwVCJgRSPAmVUIgQcEHgUbigcc7gmgZRNchlQ7UylEuPHXuECoxVhNYRhdAELWgNnM0tHzyd88aywnsLXmKMZ9IOqJzhll3RtFPa1SHSe7JOARuzslRSUGhYHh9RzJZ4KyC0aGE5SCreGcx5r/TM2oiqmOGdISEhUimDZIsXdgJffWnEWf86570D2o8SwvyYrYO3qKzgvJxiTcEoblkaR1F70BqlM3S6RaRTonKBCgYVNCJ4LI48zxls3WDx6JyzxZzeosQqzxaGbNxn/2DIIJbEtiGMRgQB59Mzjs5PSPOU2GtoA23tWbQG2xhM23WxBF3nUV0xlnXfCXy4gPh9oh2Ky+cuzuEypdn0lT4JgXtplWu03tWE6wIdeNFSvYD0deHbs93ZsE60Nl3Yn7XY96mTKYUiCzlF22JWgsqUhGAZ7AyIIonXERBYzOZdVSFPEEFCEGgdg1TMF1NEsIxSiVAR6AFOJBjnSXBo4RioLnEgEhBigt0hiVLiaBtvK5wvWJVzqqpk/uiMZrHk5rUhO+OMnXFE4QLnDnSUoOOELB0RxSnj2fcwx4bHf/iA80mF9AatU5wewVpkrmscOHzbdEkKGcghQX6hE9pyEeff+jHN0xP+/d/6Gidv3uHX/rqkOaz4F//kB5ydzzm8f8Stl4b8jd/8a7z65kvgBP/nP/oHPPnwKe/c/A381pjJ8RbtkaFc3CbPBPmeYvfNl7n5+gv8y7//D3n3/Q9ogoK0jyimRMKQavhw1XBUWc5v3kXd3sLd+w5hOUc6Q2BO1f6AH67g7MxjDw7x177Dr33pNtd3vsC9319CBb/13/xVjs7O+O1//Q1s6BLaNN0hTsYkvYo4MmxZSS411/qBylvefW/OS+4u+wev8tlfe4fXfiNhMhUcrxp+571vsOcF/9Xjhrhf4HqKXHpu7fTpJQcUW0OuDYbUVcFi8gjahqgxYD27vZgsT0h6mhd6XfXp5kGPqnYsS4+KI8ZbA0b9lL4W2LJlumqRMqLXHzEcjwhS43Sn0WCFRKFIRYQILSIY5DBDCLAi4IInVVvgLcZXeCWRUQxtp29WLiuklGzlKSqCNPb4IHDOYK2lcYEaaCUoFXd5UFOhhSRL1rNdSlEVjulsTl0/15niSlVvA696buL5YkPDRfJ1Obh/yUjTnSGvvjE/9V7zzPrktoKgE/WVSuJ9R2mb9VISn9APASVANgtO7t/j4w8/xBczEuVox1uIEOGcACmR2uLrBtdUKJHhZYzofb4TBmxzFk8NP/jd/4h76zrDr77C3kuCdw4E3//WEcfHSx48PkJl8NWvvcn13SFKKg4/uMdH3/9jBtfeYH98i2mRUzWKcr6PbWp6W5pk/xrjO1t895vv8nt/8D3O2wo/3EbMJiS+4dYwJlfwOx8vmI+3Sd5+Ff/R+9gPp+i6RtmG+ep71Frzvx464u2Y9K33uL2zxdu//hbTh4YnT494/e4NXn15l+++9yPmRUGsR+i4z3B0hyR1ZL2GgRX0XMJWX6C14+njGfOpZO/6FsNxzq9+9VVaK1lYyfnJA8LkjM/PFTvaInKDFJJhlhMItGZBmib08xvd9RHd/bRjxtpA+C7tJYo0WRp3A+EXpT5B8BsHdRUmKjqIw9VnxXrOinVjKmyqgnCRQIg/S2vqZ1m/jJ2rn/63d4yZCuklPnjSPEXHkjRPu/3VLlkdP+WDb36H+dmcSFjy4QCRx1QWApokA78p3gVBYzVOvYwLdxFk2DLmo3/3Y4obQ1746++wvZ3y9pcFhw+X3PvxCU9XJY1uuHt3h/H4Bv1+RrVc8INv/CtkPGLv5juUJmIxG1LPdyjnLemWJhqkDG9vc75s+Mbv/AHnZYkfbkOxQq6WHOSSkUr51kkJqce+/DpxuaL57imqMUTGUi8/4vj4kN898nyjJ8je/ojh3oCvfuUzhFLw5IenXD/Y47/78t/kP37nm3zvR99HRQP6WjMY3yFOEgajliTAyGb0Es0wF0yqgnvv1yT5O2zvHfDmr9zCCUnVKlvJNG8AACAASURBVFarKQ+O7vNC3ufVHYNILUSGPI7xkca5EiEU+3vXumBPKpTSHbxvozEpnhUD/f/Pen7/XCWU2BBTBYTqXoNni3FX/cnGB615f7lyxsXndtG43nxzESuv71WodeGyoK67rq23BkJAr2nUNwmuDR4VKbJeQpxApFuy9hhlYHYGdWVJfENI+thktys6e4HQASEMtui0C5XIEdEWUn8FEcX4JuHpD45oJwV7f+UNyhd3uPOOxM4N/+kPnzA5X/Ho3gkHN/r853/ti9y5c43g4Xvf+NdMj894c//ziHQXu0oxc0e5uEGWQrYjGdw6YHRjzPf/+R/w3sMjCpkQ+qDOz+lJw34Gj6YF/2DRMHn5VdI725jv/Afc4pyodgQMZ7M/4luPAx9/6Ilf6BO/MODzL93moPcGRz8uMaXjq196k9lyxvfv/5jWpSRRSq9/QJ7vkvdr4qhl22gyCduDQO0a7r1/zo3b+4y3b/DCKze58RlJUcKyNXz7+B49I/j8fldIdW3TMfEpyWsvv8T1/V2+/a3vcHZ6xmpR0LYtdd1ircM7h3UO492a/hySROO96sgmAhtH8gk+6LJf9axfkptm0dpWr9rglb6ReDZ2YtPREqAu9vazryM2yAtxUUTZkKZcivhKnPM4534miPmnTqaEF0groRX4RnRQvNDpD8mN9HXw2NYQRRFJqgleEnznYAKCxnVzPCGkXaVZagKyo3PEI4QjEgGtNsNqkqAStE6RIsVjuzmF2lIXJbao8bWh18vIMk0iHUvvwQZ0lBBFKYM4IpECsTxhOSspj8+plhYZ1rTRUnfJm/cgHUJ0QXjXzw4IIhDbgCP4lvrkDLea8HjxJVLgr9xOEZElEStcec75+QNu3XmN6y8cEGUJRdNw//59Pv7xR3z95q+jI83TSaCeR5gmIxomjHZy9HiI7cfMp8dMjx4S8l4n/hhCR2ctFUsbOGkMUmWI3qi7fJ5uuDE4rG2YNDApINFLYq2x2Q30Xo9le4RsBLcOdgky4HRE8ALtIUsyer0+Wd8QxYYtG9OTnv1cclYGVktHWQSaSrG7e43B3X3MkaKdVDy59y5NUzM9a0gaQWg7letICQZJShxpkjhQNynSz7C1RhcNynuU6/QhdBaRDWJ00pFQ1I1HTluk1vSymDTWaKBxAWMCWR4TxYooHSGkog0lFghCoYQmUhG4gPABFXfivLVrEV4ShCb4Fm9aVNDoEIiUIShH61lj6jVaSZTu9G6a1neY5QBOdELFftNRcv4KU5EEpXHeUtYNdjOX8vz6xP35fOXm0xb//6SjNq+tnd/zwcKmAglr1tLub5JSEJQiiiIIa3Ye1xJMS7NYUEymYFoUHV29Ct0eEtIjZIugRYYWSdLtMb0NQhFsQ7NqOH1wyO5BzomHvZ5kq69IIouwNcvzKfFQs737MoNxj9Y75os5Tx894oX8Jv1hwDRQl4K2SghBkPVzol6fNlFMq5InTw6x/Qyf6HVXJjBKumLPx4XF9CViMEbqFGkEorGI1tHUZ7QC3isDSa3YvT5j0LtL6L9CFSqmyzm3x2PSXk5IUmzdEmlBGmVs9cYkWUHWrxm6iL7P2M4kUsCHJ4bWG9oa0kHC7vV95o3gvIJqtqTyhtooTOPwkUVIhRZdQG6CRWtFllxSN2+SKLGpBncXFwAlJVorrOuMOayLcRtH9xz6fP3tht64eyjlVTu5hDxcUKB/gq3+NJv7WV7+ZUydrkaFn7R/NkesD0DQyYd0XXHdsVQFB97j2wpbrigmU1zddnTQRGgVI7F4QCoLwaKEQQuNVgKhehBy8C2uccyenKFCw6lxpGnC1p5mOQHlGpp6ycIV3H1ti63dIUEIqrrh8MkT8n7L9oHHO0HVQlNGmCYlSjLSfo5NIspFxZOnxxTe4wdZl1zj6cWKYRRxUntq7/H5oItljEC2AdlabJjhAnxcBmQs2DtYsRePCfk7OAuz5YLx7oA7t2/yw4/uYXSMCooIzVZ/TJrF9AfnJCjGLqcfS0apYll76jrQ1OCsZGdvDx9FPF0KajRTf8aOTTC1x0vboSpEJxZsvEVKSZblXS/+ooMiLzr+m2vXXcvLgO1ZG/hFrj9hk/xc989zvYOrEe2VJOzZY/6EdxKX941N4GydJ1hH2xqsWWsqiXChg3gBttoUCIUgUZ5EOxLXEZpUM4dpQfmAkiCjCOkCwgWEsp3/oYPdd6QaEcgxQnh827I6XRDaFafFi4wCvL6lkMqhQ4uvS2anEw4OUvauj4nSiMZYjo+OOHtyyNs3v4hKMw4LaFYKU6f0ck0+TBC9jDZRnJxPODw8wYx7nYwInkTAKFKc1J7jZUMqU6L+uEMVtSBqQwgtVVVSrwKnCximM0b9lNdvXyPkCctqiq0cLx5s46TH6K5oFnvoJz1G/RH5wJJELTsuIROanVwyLQLLRUtZWEwDve0RyXaPw5Xk/2bvzZ4sTe87r8+zvdvZcq+srKquqq5utVpqqSWPLXllvIwD7CBsMB4TEDBzA0EQBJf8DdxMwBUR3BABGPANYJvBM8IejxfJi5ZRa2n1pq6uriX3PPvybs/CxXtOLtXVcsvyDAozT0RVnsx8z3lPnmf5Ld/v7/ub5Zazo1MWZcV0WuK8p8jzpR2RtJK40UNQuvGFSktVWdxSbOJZtFMlG7tn8ecy5+HS2rlsg1Z086vUuyagetaKvjiDL5LOQlxKB4arwZdc2qxnB0UX97ysOCukALeymf8Sgql6VjJ7MKDKa8hr4nWJyNKGhlAJXCmJlKLX1mgTYUzWwLfBUwcaeUfVdFGf1BGxV0hRobUmVQJTB4xzqEghJWjX1D5J1QJhsLWkrgJ10chmluMp7bZGZBmFaBMIrLciOiKwIQLaNPU10yd9iv6U2cMx81FNr3L4AIsA3hV4f4bzoul8HSbNB+o9oFFSEwAfZgQ3Jbgzahfh6ohHb7xDMJLZJ+6yKTQ/8fKn2T2aMg179I+m/Pb/9RW+8bE1dq5nvNa6y/juc8gDcNUhb733OuVsQDE54pWf+Ay//us/wW+9vuB//j+/wpOBJ8g2fnTY1DuIDtI4ZJogag+Vxx8PoZ8TFh6CIYT5eZEnAYSH8thSDSq+sP8XxFFMtQCJ5uH/2Kc2mnrnFtFiRmvS5+N7NXev55gNQ4gijqd3KHLJWyczkCW3b05ZjO/zz/+f9/gPbv06n/uxn+HVjXWmRcpv+89zcnTCP/rCVzG2oBcKrrcNz3Vibn/uFTafv8lstI8vZmy19zBdyVYWE3yOrYdEWZsobXF0csBsNmVzcxelDButMySQpQofBGXuiLMO3V4H1WojIkPlKiDQkj0cMAs0gZKbYoxCy6ihzAC9pL0822sECYI1rK2p65K6V2JtzbjQ1F6SGdf0OhIaCLSDZzGfMZtOECqi9JrBeEZVVVAWJImht7aGRqGFxkpFGSnc005pCFc39TMMkTzPysiLp12kVK488YqtOz+wPuqOfvZojiePUoos61HOh8yGj/G1x1WObpxyY3uX9999BOUcWx5ReUVldaN46B3SC6QHowVagvXzph/SYh9roK5T9vdbvPf4mGvdFntZwo2ddVqyw5yMmS/5y28/YW094oW7a5z5iJO7n6f2Gxzu57z7aJ/xZEI1PGZnM+Onf/TTPCwF//3XH/P4KKdO1qgGR9hiQitax5h1ZKfG4pn5Cjv11N9+jDstEKGDq47xxYxKgpABFQL2RFD+qWGYzHjjCw+RMkIIw9unG5gkZbp+HdHZYef0MRstz8t3JkQtgel0WFTXyeuUo8GCelGSZIcIUfPdN/6Im3fu8PGXfoFrSYTtRRzHzzG8uc2oXDDtW+LBKUYJ1tKYOMvobG0hhQQ8At2cifJSAfnT8ydkUzjrarhkzLxrBEeeLjAPNFk8IcS5FPmqZCIsm69epj9IQMlnLNx/Pc7HKsOexC2cqhifvIurSlxh0XXNrZ3rTErHpLQsHp0ymgwpKpoGl/MzggdfOfApiehhg0SFQDE9onIzbJ1R+TUePD5Gb/VwOxv02ikff/4m5nQNxjnvvj/lwdmQw9sdQggc3foMxqfkhxXH/SGPj06w0wGiWvDpj91lc2+D//X+GY8PxyxMh2o6pHzwLrFqEZt1VGoRmaMINTMvqN8+xJcF0rUJbkJdjAg0qn0qBKSFk9cWjL4z5n/46v+BkgYhIt44eMyfv3GfaQw893HWhid0bMGPvKjodg0i61K5dUaLFvPCMZ1btm+3ud1OOD56wHjwLn/v+V+m29pgL0uYdjfY73waWZfcHxaY0RgjRvSSiDiO6O7soEyTSAGBFGq5li/VEP5/s0z+1Y+Vc/iUKtpVcsRVNsTKR23qM7mUW7jArcSll2+uXdVKySWS3tQRVlW9bM7qcLXFO0cUNbLpzi8TNRK0UWRpTFnUHBwMePVFwY11STWYY0uLKBWiFogaQphh8wMqryidxPtTQvAoJxAYEhPhCVg/x9ZTquKESRWxWMQ8fHKE6ka8stmh6xQv3tmj291gEXoUi5I/+dp77F3P2FyP+W7vNlNxEznW+LMJ3320TzmbUAxPeen52/zM5+7xB8eOb7y2z6PKYE2L8sljhA+kZh2TZKhehi48KvfUx3Pq4RP8VBNchi0OG0VY1TQwVy4w+q5i+ljxj//Fn5DEKUokKB3x5skWLjHUN14iW0xYGx5z51rF3u6EuKeRUY9JcZuqkrx/NqNyC3qdYyb9B3z5i4/4yZ/7We7d/CzXs5jCGv6sv0m/P+A3/+g1ZF2SupyOkfQiRRUZaqmYTSZLZU4JXoOIQFiQnijWRLFgPl9QVRVyKW/eJPmXKn8hLNfQVcXMlc1Ry7rfFfVcrBgV4cIGrWr55KV1ulp8SyDqHA0TYtUK5uJ1L9dIIkRT0kBj56SUSOnP0Wsnl/f9PtDqjxxMeespZwXBgV4eRkJIRBAEJ/C2QVpDkIQgCG4J6wUPXjTZ0eWb88hG5GG5iY0ALZoqjhXwJ8IqA6uBRqO+6e2x3KhSYeIIETR1MI02mQgo4UmEa2q0jECGCqqCUFTIyrKdBiIJBYJx7ZkVZUNH9A2y1kB+DQVAmIgQDLgG3vZ+AV7grWF+PGX4qM/hjWugWmxcX2OGYeNozoSa8aDm4PGAWT5iXLSoVJuko7CLktl4nxjL83vb9Na3KMwGp8N3ePJon6Iomw/cls2iMCxV91aUGwFlBXVA6AwtFddCjfOWfuWWwR8EG8AFxuUcIXJMFCG1oR7MIInw222EEkgtiCJPltZkvXVEknJWbaCCoLORIt0C7WqGwxnT6Qg/PET291nbisjaGbd2u2gqpu+1sNOawXBB6jRdZ9ktKry1TQPJIFE6IlKKKI4JPqBUSpxmxK02WdbCO0eaRmipII2QQpCmbayTiFqSJBlJ1iLECUE1WV/wS1pSIAp2hfajhUCiaCQkwKiVJG+z0ZQw1KpCC0GsFN5ZnNZUFozPUQKMigg0XbtNFJHEMbZSywLxpi+EXO4DH1iqwkiMMWSpRyt1ZQ+FwLkgwLPGM1GDJc93RfA7Z25duuoHcQY+eM+LoLw5YJaOdl1i85zUCNbaKWuZplzAZJ5TewUuguAIzoJoavBUJBFKg5VN0z87hyChSpjPavonc4YoRlqjMkNn3dDrtAmVYjCfMBElR0dDpkVEIdsQRURaUOYj8tmQnW7CxlobazIms5zHx2eMZgt8EPi6xucFQgWEFhQ2YEOgdgIXGvl9KTRxe4OemJGUFcOqpg4BvwwWfO5ZlCXlbEySJSRpQtBtdIhw6wKtJNJITARpUqNN07RYqC4hdNFpjJSNgA2+wpdTQj5CLEaYpE0Sa4qWASUpJxZfAc429WauqXnS0lx4OpcM0WU05GL2Phi8XzAqrmbgw7lDdJX298yc/CUKxMV9/pqr7ocTfvqBxjP3EAIh1ZJO1vSlsvkM6Wt67RRkQcARCYv0ZSPXFQQuBKSQjYS60BiRUJSGspYUvsBVc0QVUxSe4emCgYoYrdWgJd2NjE7haZUwqmaUU8vpyZggJIuQ0dIJUSLwfsF8fMJarOh2OsikRSFiDvvHHA9GWN8E3z7PIYlQWlC7QF4HKgfWBcKibKScW+u0IsFmPGde18ysw4smqApFoK4sZ+UIbSJanQwbJFVI8BsJIUlQkcIoRZo4sjSQ9DZZWMPUZUhhEbKm3YnptjWn+wVVsYDFGJUZ4sxAIlnvZdQLQR0sYukjuKWymJQaJZsWFR9Ac5sfXpq5S87ZB+b0h2T8gPvnaWXOD0BL4dJXwZVvzsVg+eCn8oFP6ZKxWqEJzjVz0wRU5/BBg35KyQq3WMmsBx8aNbm6wllDJDxGBkQc0FJQBImoHdN8gXAa4TV4u/QRmwBOxgofFFiBDzWunkHdIVQxk2FB/3TOMEuQUpB1YzpOsNbpMJOByWzG4GxGWcyZVjGVyhAGcBXzyQnKO65tdMjabUqdcTrr8+R4TF7Zpu1MUSADKNP4BqWDOggCCsoarEDHLRSwK4d4VzKq6nMfJtiAW3jG5ZyZqmh1LSZKCKYGofBKwtLPjWJPFtconRBUBHodERRRy6C0RoUJRTFnMR/jZ32YnpF2doiimPVugq1TTuOYui4ZjaeEWKETw2IhKQnkeYGtbaO8t5zbla95mSJ3eZ009ber9XbZa7l0DVyyK89aSE9dc+naps/hClG6dN1yG18IrlzeNPJ8PX5wwa6Crme8r48wPro0elExOp3Q3Vijs7kGMidYi5UShyBYsMCiCui6xCyKhosrQRA1NRN+KUMoBUhJJQypUnRiaAQfFDJ4hA8NrXB5nfeB2uYE1xQptta6JK2YUOYEZ3HCUYXArE4IoQI/Q3qLrArqusTZGoMniQMvvajIa8E7fcFbQ8twP0cE1dANVxvbGKRJ0L3nCDaimngo57iwAL8OboOTL58yfdfyW+ka957b4T/+uVfIDhcclTkHg8D7J5bDv/wOb00eobc+z/r2Or/xDztU85zXvvQan3r+Ff6rf/if84eDmP/6zyLuf/Ud5m/9OWHqoLbgHEIEBDm2tozLBT40n5GICoQOmGufYCvV/Bed15jkM/6nBxPmNrCwoqExhqbbfECigkcR0HEbrwJ+eowTnipTzFXF2M/Z3P63yNZfRJ/U9DLLL/78HD8/5vStmoPI8/5iSvG1L/H20bf5+L//6/Tu3uPfe6VD/fJzDH58h++++5Df+8KfIJxg6hWjRUlyeooRHaK4jbFzCDXz+QIhJUq1kKpNErW5e+dFhHDMF8fYqiSqM6RpE29/DEFAeovWKdrETKsFpa/J0qTZRc4ifUXP5xAJhGqTl1DVYKRvAmyjG0lRFTcGVqdU1YJcCiLVQUtF5qCyjkX/CAIkrTa19yyKgrRtaGVd5NkQOZmTCBBK01prYbQmWAVaoXTE9Y0WdyLDl9rZ1e16SYbzwmiLD1xz+WtzOISlb7wyN43wwOqIuFzF8X0kUp45Vtpvq+90lNFev8V4+ibFyQO22212u13CaZujXs78O0NGFlxIqJHUWmBihY4U8fo6Mt5m0VeU8zmTakpQKcJtcfZE8s0/PiT6TCB/yfDqVsz6juG2bbM20XBSMj8c8Y3X30a2riHXbvMTP5bw6r2UJ++8hxud8Bu/9A+gs8XvHxnuPzrh4BtfoZp46tzjiwqqGuVzgq158HiMC4EKg4wiTBtaO9dpbe7y7yTf4SVxwO+8dcDjScFRofAeEh+wzlC5BB08sSuJowSZdnB5HycrilSQJ1DKGfNqkzzfJohrIDZ48V5BLyuZ7lvK+ZRJf0JrMWD0+l/SvvEcnbsvspNFbKWaqtdrqBOlahJXiwXoGCH0shZHXpmlD3NnfPBNby/n8R6EPO+Mtfz9JddfiiXqdXX2LzEmzl9ZnhvLp2mA/zLHD4sj+8Eg86Nd36hztnp7FOGE6f1vkyrNi7e79A/n9IsTDtWMuS6pS0fpwQtFnKRc291EJ9vo9i1Ojir6JyXzcYWtpyh/h3Le5c2/OGF6q2QtTXm+1+GVl9dZJKASUP0u45ni7XfepAoCtf0yW7cM/8bnWnzZj3jvW/+Cv/vjv8yrn/w7/OHE8OBBwXvf+hbj/phq7nBFCWWN0CWKOcenMw5dSYkhSEXUVcStNr3nf4LPJH1+rf1dvnYw4muHY44XjlnliaxrCvd9Q7EzriRWPZLWGoWbUE4G+Fjjo4yZH5OgeP7OLzNbaIbTKVtbllu7lmp0QjXts6UthajI330NPdxk45M/QscktNZibDejDgmhkngnqRaLZf2EQQp9VaHuQ+fsb9kQT9uWyyjU5XDx4nEjn766foUSiGWimUsBVbjy3Ct3WrIpvPMQJF6tIit3HkxB4wy7Ru+bODYEoKhqHOK8ryM4Do9H5NMpP3K9xfqGQW5CCArvWjw4LZjdHyBChAgRlRR4IYnSCBVFJFs7OBuzGChcPcSWI4jWwW7x4PUF/ZMjdk3CzS3Bj95usb2heT44+hNQo8Dxtx4wGB0T736C9lqHlz/lcMWEN7/6Grf3bvPrv/T3eT3X/O4jxTff/CYH771FPQi4oiZUNQgw5BRFxXuTCVXQ1GhMW6BSR++FT7KdKf7TTko+H/E7b+0zrOCslBgfMB4ql+CDJvKOKFiitIPXYCeHWGHJ25oyqinljMV0gzps4MVN0jji058pCOWI2aFlMhgwOCwJT97gMH/M9R/9WdLtPT5/Z436uR4//ck93nnnXX77d34PqTNiEXNydsJ4OmE0mlBVFcG5pcCOwzuPtYEQ7HJtNcrdztYXDXqDWNqghmn2NOWukXi/tHAuraUVc+JyYHS+ZqVEKcUVXh9NH81l6N/Yt2WQ7r1v/KQVS+5SUmGVMA6hQbbqpXCY0fr7snUfXc0vjtjYXCPpdomz1tK4W3LR/EHKKITwFEWFCp4qeEysMbHCL7NVWsUIBFJESGHQKkUKQ/Cq2ZxSIJoU3bKhbEMX8sHjvW245wSkUkB83vxLhKqpj8HhvcF7gXAFkpKoHSOcJakdqnTEPhBKQW8B7bnHyKbHlBSKKEuRkcGm63jZwhM3evl+hg/FcoYdwde42YBKNuhTohJGL9R47bixF5BGY13GbH6Ds3lKCF3yMvCN114nDhN+5LmbbO/c4O2yx4PBgMP3H7Do9wl52bQACsseRiHg3QKCw/sSGuH3JtjyFX5xSukN9yU4HbP70jajcUV9kJMpQSIFQkUgNGUS4YUi1Dmhck0NTCwJqWZcBA76FS+KMetZn1sbCi1gK5OIaI3k3qfxfp/RiWKSB+4fVqydznG9CUbVCGXYyDrc2F7nUx+/h64DphYkqcKWNb31dYySuNmC4AI++EaVL+kgENRlTtaKG7nabA0b1VS+QuiMKEmX3cBtQ2ESjTKbD/a8JkmFQPAWW1coNEobzFK+TItkaRB0s3WCP/+3gn7dMtsSfONMah0hgCiKUcHjhWy6kXtPp12jhMTrCOsCrU4brRRaRSglUdqQaEWsJPopY3aevTnPsnzQQQtwiYaxFAcITztz3wOTeqbP9/R1l7KCz+DAhyAuvq6aXHbWaW1dJ44iBIEsjckS3bQrUJAqRWoMIo2RWReRdAmmhUehXI6yc1Rw+OAIdU09m7M4CZyeZjzezHg+a9PJBJ1Ow3OfFQZosT+6jhAdlFM82T/ClAUbWUrrxh5j1WJeSh4dHHNyPKCaVtji4k+SCKpyiqsFdTVrAo0gkbVGhJhKgcJx0CmJ4ojuzWvcqCyzR3OE82xoScDgySBRhFg1e7Ec4t0CqT2+oyiC4LBf0us5trfEEkG3rGWSdhqhNvcokwUuPwUkR2clW52apG4yrFoqUBIvwaPxyuNchdSSpreYenaQfLmeYfmwQbGvlPM2hmI51+KcpH4ZX7ooRg9cZJIvMoE/ABL1PYf4Ht/9sI2nUD+4+Pyfpu4us7UrpFrpGJO2yTavo6QgMoYkG5JGiixNaLckxBIvFUmng4oTot4GXnSwKESom/3jaxSeYGtcUZCf9hnHnv3THXoypuh5oiSwtga5NSgZ89jsUDrQXjMcz/nO6ydUszkv376FbK1z6GMenw543B+TjwvqRd3IGYcGdfe2pFgMsXWOdxU2NAlOKXKEXVCmCYOs4F0UdafHjXaL6mCGmJSsSYEREi/boBShpREYXDnC2xyhKmQaIyLDcGqRsgQ/IlYx662KbhLIjMC0O0TK0GpNwcb0R55SVLSrgBGN7LZQAYXEC01wsrFvzR/yjHqJiwz5+aT9VanxH9rx0TG0C4bvKjHyIQmCcBEsXX7Vp04VuPLvg+8hBJb0Ln/xi0tzEULT5zAEgfMXrxsC1DaAaFgni8IiRWBQNI3RU6OIFLQTTRprjFIkssnct9IEIoPsbCFMGx9FkAtUPUe5AoVHOEuoa8rhmDkVBydbKKkpewFhYG2tUWi1LmIw2aCeKyBD1oH7998n9jPu7e6wtrnNYUjYny54cjhhMphSz2q8hRBc8xl7S5GP8L6mruaNoBUSmBNqQ5WkLErDAwFSZuy9eJNoXJEf5rSVoK0EnowgDLQMQSmCneG9I9gCHwtCphkXnsN+yfa1wFpL4J0jNo5uqgmmjdm5jQgZ1URS1nA6Cuj+lJQBs2mBEIr2+jpZHLGzuclGt8vOxiaLcsF0NiVJErTW1GWOtVBWzbxa24g0rHoX+hAa+7MMpFbI5Erz4UJwa3WGXkj0X7FBiHP/5Eofs6fX2VOJv9XvLqNlzZKX53vA+8aTXkoPNs15pThnETy9jj/q+MjB1Npal5dfeYGSiDJoIlkjsZzlE4S3iCSmLkvGgwHYAA56ayktlVJUFQ7BRmcdrQzCKyIVkZouikBdBaRQSNVkIgieylpwEu2bOgzrK/A1IjikMkgTg4ybhVnlSOdIZI31jtrWaDdB2zG9PQfXYqI9jSgqyic1ehrYLjzrC0FqHLEyoDXbt3fI1nv0no6uCgAAIABJREFUOy+Qu4TRg4JQj5H1Y6SbIoHgCwgT3HhIuTB89+t7LPqedz72Ma6lNZ/9dMWNY8213jpD7vGQNgWPKKbH/KP/9je5tyb5b/7Bf8S7+i7/3XstDt78Go+/8U9ww1NC7lllcBCSEGpsOWUZYbFqthrqxtn1+SkDpfnN9hrXbnf4+V97joPvjpj+/iN2M81OpkiyFjJKeLd3jVntmH3ta/iqIkhNWEthK+bxMOfxk4Jf+Nk3uNM7Y+vFa+iQciNZI2pdx3zql2i3v8P86M/57tkTvnbSR7495ZY9Zj3Jabda3HnhM3zixnXuXdtlXlmmZc3x/XeYnh6zfm+LVjtl8PgMV1bgAiZJSNevUeVnzMbHpPF1ojQjbd8BBIv2mIBBxe0lQmfxVY6rFiSiQIuacVnhQyDVMbWtmM/mJGlKZBJSI0ljhZRtEIbSFjhfgy8IQkKQTe8r36y1EFZNTANxnKGUopW1CEKQANJ5hHNkSUZta264CiEE7dYmAkVVWSprWeQFsbIYadHi6hZvaHPiikn6wAhXO3isnOAVd/iCpnJBV1nRZf86B8BVqfbLPxNLznFzyHRvvED72k3sYkK9mJB2WrQmMWmc4gTEUULabdHb3aBau0HduU7/2LMYO3RxSsjHJMFinaWeT6mrMfOJ4/2WYkrES901enHM9jXH5nogMQlm1OX16iUCOTDlj770Vf64/zr/ya/+29x+7nn+adnl0WjB1157jflgRNn3BNFQC5QQCCmZT47wrsS75RzbAqnARpLyNGVmUr6wtU17rcev/OqL3G0pJv/kLVRt+fhmTBQlRGmbw6zHcdJh9PWvUB4d4mRCSCL81gbj2vH1tyZ8/jM9fvGTUC8KbDmh00qJTExv7bOUuYf8fUaTCd96cMC91NO9I8kSTRxp4lUZlIlw3hNUhRIN/bQ535u6qWassnkfnHHvA9ae82uebYTkZVzzPA19ZR1cGKNl1o6LLOHfSq7e39i4lIgQTdbdJBkqiohaP4mv8mb/zGd0xqdsbsRUJnCr0yXOMp574S6lNDxYSEajmtPDEl+OUYtDIpcTB0+Vz/ClZVqeQrHFt69tE9Wae+s9Wq2aXurI0ojR1PCt2XXKhadkxNsP3+X1P/zH/OxnX+U3fvbv8ef1Ln9wqvjyG+9wdHjA9HiBrRxBNKIAWmmqYsJiOia4BlUItgQ8biqRSlMevcus0+W9a9f43Od2+Ts/tkP4s0ccPxzz4mZCJ9EkWZeFSXjQ2mT25BGjb7+GVzFCx+hrm8hWi/sHffrjMZ9bvE5iWjy/1SOOIlJi2ps3EKbHvJ8i/RnvHjwhnlo2PyloIdGpxkgaBF8bQIGs8d7RCEcJUKus9qU2nh+yh/62jA9g15fpdE3W5JnPu0LBa35yrsR2lWp8OR1zlWNxjkC4AMKeU/dW7+sC/Wrq1cu6Kd+QomEFLAqPsQFnG1RrYT1vDws6hWa3nbCWGLa7EVkayKKESEW0TMTa7gZxt0Ox8zEqmXGyHwjljGi+T10OSQi4qsD5CcX+ADtQfGdvnfEcfvT6NuuR5+YNx1pXstZKOOZlHpqEmiGzxYjf/d1/xl5b8F/+/V/jLN7h988i3n3wkDfeep3ZUR878ssWJq5pG2RLhv2HBG8J3oGrwVfYsUQqgT19yDxO+a29G9y41eNXf+VVDh4OmH3xATfbhhsdTZx2EFHKu91tpmXF4C++iK1qnEzwmxl+q8vjwYKH04L/8CXLJ170lNM5MtT00gz0Bu7ax0mSE1g8Yn9wTH84YtjqE7XHPH7/Pkkc8+M/+dO0tOEzL3+cnd1r7N26QVEsGI9GtNodfPCMhqcUecFiMcc7R1nW50jVCrlsEKlnsScu1mXTIPfDbdC5uISU5+yJyyqSIYRlsuQqmnoeSK1EweTFvl+9m3Pqn1glGNQHkK+Vv/39nA4fOZiCAN6jpQcVkL5uOKhFTvCOTi+lAioT40XTn0cGjbSC9XYPHSVkUdr0eAgaJRRGNLQ+Zx2uniNsgW610SZCZS0IYH2NEIHIGIRRSLLzSQtCoxB0dBfnA7Vu1EiscyjbQroMKTYRokbGR/g8x46nSF9DVLCzrvmpuzFrt6/Ru7lDe2sDk7V47G5xOnL8s7e/hi0mGCFAdnGqhwuegF9OvMfmAyZngj//4hfZyCKutyK2O11eeOEmLw5OGI2eMIgfUMsh19efYy3u8Huj2+wvLE+e/N+MD97EDffxixnUOQgHSGSyB77Eze9fLLRzSDPQkNJto/iVTxkfVbz+p57psKKyjjrtUG91mM1qqknJZH5C6RxCCyQG6Q3aRah5jK8s3lkePZ7RSRTPb0Z0Mk+2eRuddTBtye6dLp/6qZukD2O2T7fIRIt8aLl/dEQUa8ZFTLe7xtb2HnhBrDQ729ust1N6vQ5RbAg7N/E2J9gpQkZIE5CqjUkjpFFYV6FlglQxiWiU2vzS2W9UIQNa+3PudRq38Ei08Eit2FAaFRmiOMH7Ch8aVR+Cx/qcui6ZjQfoKKazHoGURFFKWVuc9ecH3mKWo5UiiltIrdHaLGFjhfKh6SsTGaSQRFECQSLQKNUoR2lqVKg+hFpyYaAub63LKjWr685N1cp4XcoqroKqi9e4aLr4V4+r97rscF/Y0RXdcHkvqRv1O1MhTM0wd4xyy42dFjJpsXXvLlGWkXTbHC80J3nNOJ/ipiWJcBgTM8/uUXrRqPyIgA1QVTn5fMTb7z5gfpyw1Y5JVFP8ut6yvLw+YCEmzOSAVtQhvfUJHqpdngwyXn/0FifDEbP9xxSzBXY+QQqLlI4466Lbm7iTBT6vljWXdklTaOSnVRWwqsJ5RzEd8dU/npJlmsG8op0k2PVN8tozn5QMJgNGjPHOolox0qYoEWHmMcFZaqtYzGoOD4f0Mk8rCyRZFx21CFGMieHa81u0523MRsb65ga2cOS+oqoCWRY3GXbZOBRJ1ELSFMPKFdVzmbW9XMD7gWDpklF4ms5zeb1ddqRWVJ6V+OTV17wUQi3PIO9XtJ1nje+9/r4XDfUHFU/5Vzf+qv1zMV+rnwkhkTqGEJBRTdTbIduteC4q6eWObLNNlMas73SoRUy7anHfnfDkrcfIumiQ3/QGTjq8kzjh8QRqW5MvRhweWr7JnG5qaEeG3V6H7W3Nx47H9JOckTrGdEvanZcJ28/xpcka3zw64sHgXfrvv8diOKCejgjOomSNVjHJ9l2K8RPsaNowQ1wjhUzwVMEhhGuEaeoSZ0ve/PqI+dk+o7GncoK6vUWRxAxmNQs/ZzSosNMpqhWjQ4IkxlQROo9IZIYWguOTCb22ZbMlieIeOltDxRqhYeNGj7itoBchjCJYKHNL8CVRpEniaHkWCyLTNBBXUp+L+jRzsaTMXkFoftjGh2+Ev4n9I1j2LHzqlh+wQedJusY5XZ09V+zQpTUO4eJ8arzaKxyKcxEbIS7qplZn2bIeXGl1Hog1iJXARBlZllDUFhCspRHzWnEyrXBCcHevS3d3l87uDmmvg4xiHkwNw3nF8WwMeUmmJSFao8zalEHhcOcoSlXMmIwU33w90EsMm1lEqiTtRLGTjLmbnDKNzrBixuanb9MyKV8utjgbOd48fI2Tg30WB/uU4yn1IkdJixKQrO3hq5zqeEAIjeBGcA6cX4p0QHAzbFkyEgHyPn/6hSFFGZjbmjLpYDfWGM1qinHO6eSIsq4R8VJt2KbELkHPYnxZ4a1kOJxzfDJiq61JohZRawuhW4QoorUe09lL6akuPhLEJgEX6A8LvJsjv/J1lNIgNPtPDjg5PaMoSja2NqnqRn2xSFp4L0COGw2EcBHiXKyN1Trg0uw/yze5aoM+PLkcrrzueTokXCRFru6LsLRlja/4NEoVCI3Ww/Kdr2h+4uKQOGctfT826aMHUz6Ac2jZBFTW13hX4Jbc5O52j1oq8jimFlA7kF6iasFWe5N2p4fwIGiK/4MPTVNTF/AO3GxGyEe0kgydRph0rQmMJicIAZExTYNfFWOdxfmljjWS2Kw3BX5RfrFJbQdsBx0rpAYXx9j5hGJwhvU5IvHsRZKbWzEv/MzHef4nP4GIWniZ8M7xJvcfTviT//2fUCxmxFIh6GHFNYI7xIUzEE0w5fIzxidT/vnvf5dWa4Nre6/wb35ujV/4yds8fvIu+dFrfHftPfI058e2XqWwe/xvD+4xOfgO42/8Fr6Y4BcTCJamt1WNUDGq+yrBl7jF+7CkN14iLC8DOg8enK0YLQRfPThFJRGm06LMUqqdHQ5Hh0yGc6r5AIIjyRpeqyxjjIvRswRfNajf/QdTXFXx8i8YNjYU2c4GKumhU8Heix02r91h/fVNDh8uqJRjdlbwxb/cJ8iaeTnn1q3naHV2kEoSScna9etEWmCMREjIsjvN31SfYeuaMq+JdQ+hM3x5inULhEhRupk3HyxVNcZZsEEiJUgRULbJkmZRF4QGN0NKSbebESR4EajKGltVyFCAUFg3Z1EWHByfErdaiN4aiTa04pQ6zPG2aN6brRlOxyhp6HQ2iIQkNgqxpA0q39BRjTJIqTAmRQSBEg4THHFswFXgFEo+a3uFFRPoMrjN5WDpYohzIydWTe/OYejVxr/0JfhnHFjfazztND99AApYCnhIqQlCIU2K0DWnc8cgr7l9fY3N67t85hc/jzIxyIjX3zrirfunPFwMsOMZHWEgypixB66gKB7jRcOIr6qcYj7gO2+c8FBKbt64x1avxY+/2GZTVHxma8Sp6nOoj7l1Z5cNc48vnu7x6FTz1je+wXxwwvzouEEZqwojK7SqSfZuEfdusRg9xOaTpSPo8bYJxAkBKUqUCOTTESD400f3MUnEtU/chSyl2tph0J/ycP+IfJZT5gXdjifpJOh5hiIimqU4XyGsYjapePi4z0t3Atc2IOrcRkddhGma7HY616gKz+boBi44bGGpKkA5tEmQUiOXzl4axcs58efzdLnI98OcwEZF64KucLnY+/L/57jmJQO4yhxfXkNN3cQKEWvoHO7DJP9/wPFD6dd+z/H0Gw7PcCCahwKJ0gkEgYoc8fp1RNTm+Y0Z3lZ0r7cwiQaTEEi5wzZVf8wXR0foOpBpTZZdx0cx1fx9gs9xQO1q8vmAJ8WQ6uAxm5u79HqbXP/cDrsbKZ88esggH/KeeUjbpDyf/ghvz3b4wmCd999+nZOHb7A4PsHmC+qyRGCJVEHUu0lr9yW8LynGj3Eh4Jxr9o932KppVm7FgkJOmA9OGT+RvPGXkp0Xn6O3u0XR7kKa8v7RPsW8ZD6ZY4wlbicYm6JtgqkS9CJG6RZGOA4OR7iNghsbCpO20VmT0BIysH17nQ3boTfYoa79svdfRV4G2u0MYxQSiZCCWK9aCbgr89XkGZ6uQfzbMT76/gkf8vhZNmgVdzZy15dvdNkGCcESvQpwSXZerGCoZRAlpVwKB4hl7VRD9VvZOaVMQ713folyCOK4Q6vdIZ+PqCrHohuBUByMS9I44cXnetz77AvcffWTIAy1F4gvv8/j+ZjXx8eEuadtDIg1Cr2Dq46p6j5uyWIoiwmjYclX+vt0sg571+9wdzvhkzdTrid9dHLKfu+IOq741Mc+Ruk3+IPTHU6PnvDgtb+gGo8oB0NsXeGcRckCaQzp7qu4umB68iYhNLRT7zzBrs5kjy9LpIBiMmT8RPDkTWhvr7Nx7waLJKXausaT0QGDwYzZ+AS8Za2nMUGhFhmxS4imKS5vEhpnpzNS49n9hCFrSeJOG6EyhImoNxN6LqOUDhVFSCMpbM1Zv2A8GfP+w0esr6/z4osvMRqN6ff7XNvZZHtnh8lkQlEUFGUL50FIDaKRn2eZLDpff/Kqjbpqg5b253JScLlOhFiVNDwdeF1m66xoo2Lpl8jznlLNzZboVmgaNwvhmmuU4iKgWl3TPKnp2Xh1R6wQtu+HhfHRBSjqkvF4iMk6mKSNEhGR0mxvgicgVYwMlixKGzWfEOhkEVmqkaHEVhPSaB0ldVPjgsPJmqCaODPqrKFaGUKl2FoijCQIhU62IFgCOYEIiLC1p649YBBIRF0SEDivkToijjMq26GqN5lVC+pFhapuN3Lc7U2QBa0wpLOesXNrg7Vbz2PWbiOExjvJhveMnCdRLRbaYX1N0C2M3COUM3x9RgiLJpCZSahiZlFCFVLqI/iDL77Jwze/yUu7KT/z2Y+xS4dxqKjKjzMcehZv/C+Uwyf4xQHB1ohgm6kQTX8nJT2lf4wXoHpbhGqOX4wQgQYqbpbjBw5PKUQTnC4sg/f7LAYli9GIqihoFG7AB0krybhzbZftjU1u3djj/UfHHBwNOBoq+lZiviF5bq/kVzYOackSkyi0GkI85ua9mLVrm/SPjxmNCm72BF6lbO/eIWn3GExGyCVNRK6vEekWiLCkrOqmGFHdQMgJ3h2hlEWpEkdMcGbZA2q27F3UKOopPAoLtAgiIdY9ohDwog0Igm8kzCWN8p4INbHWRLK1VI/0xE7ivaa71sFECdpLDDFGtzCqwsqCIl9gq4r1duPYlvkUVxd4V9AIARiCrcFZSrdo7h07QFBXFUJqtImJTAuTdlE6fmoXLdGFK99dUB9W4dVqXPlZoEHEzhPez9jk4gMpmr+BcUHzEgJU1EJaeO+s4Kxf8Us/9hI7u7uY7BpSNcqb17dA2ox375cM+gEXW4KRpK01qObMPTif4+oJ9azHfBDRjyLmRlEPJCeTgvH+Pjc2Uz73ynU6IqIXWrhqnUnepv/etxkc98lP3qaezwi2XFKHEzaMYCsK1HKEDZLO3gbxesR0/wGuLLC5hdBQ5qRQKNnsqUAg0gotFVW/ZFCMeC2/T5FPGY9OlmqkgdRpothw59omvVaXmzf2yPOKh+918UHyrUPDVMUcVJ5X7s7Z7Bm0FjR1mTkmkrTXY0KI8F5xfHLCZDIhie8iZRcTxYjgsK5CsJTJlcuG0Czr/r4H+SAsnd6ns21KqfPfrZCoywhX8/WDQdLT9VMrquq/Hh91CJp6zcYlkDpGC4lUCSbr4asB3uWYVtbsH6HwTkK+QDtPO+lQ2xLnKtrtLjFt6pMDyiqnqM6gdOQDg4gUIRbMR4pW6fmnf/QdNlPPK3e73O5sEwWJdTHTcovR4Rln332d2eO3qQYH+KIkOI+RCbHU3EocmJLKPyZbk4joeeYnB1STIbbwy9xeY3+0oDnfRcAohdGaelozDTPe+Or7KK0Y9xvZZ6QgMRJVaHY3NtnducaNvT2yVsb+ozMKW/HOseeoUCwiz43tgheSMUE6hEwRYoGSllY3xnuFCwmz2ZyDg/fx29skiWl64wmNrQsgoGRT+K61oaHKrvbQ/3/HU+HTxeMPsCMuP8k3eIAQl8Dqy0kXLmzPiiGxaqoqVvRjh5ABKZcO8XmmoVFqRohz+WxonFznBUfHQ/qDKUp4lBQUeZ9YK7pxxAsvrPHJV1+hd/MuOt0GFNIH7u1ZUtnla/GYeVVSxQ7imEyuU89GVPOA9WMoHcXwFqGKOE0ipiEhP4V+f8DDt8d87FaHl+7dYF22yHH4cIvpzDN4848Y90+o+u9hi5pgm76KSqXsGUdqYO73CVrQvvMc9WzE4ngfX9EIa4QmkNRSIQWIZX2Y0QpRQ3lS8Lg+ZrRfMRoeUeQzvGhqbK03tLIOL+xdZ63XY2dnm6ODPqcnI06nhsGBxrYV2+uOz6Zj4tgiESRxzfq6JI7W2Npd4+233mbYH3Lvxib17johamzEbD4jTgy3bu9x57lbbG5s8OjRI4bDEaenfcqywtpwzmRo6s79FfQXWApEcM6WaNgP4jwYauKop5Mazw5ezhPQl1AmeU4BXKYGBTjsBYVv+XphyeZqaL/ivKn0OU1w+X5WdlFKtbSXTXPvjzo+cjBlnWWRz0lUDMqjIoVShk6rcTJK2Ti/kTZNo9nIk8URWRIhsHiXo8QGWkqkrwnCgbAEKQlIoqiNljQy617gfdPUV5mY4MulxLZGonFWUFeeVVdtQU0QEi9TFDHG9LAiIdAiz4fkxYLICkSocUkLoQpS02b9Ro9br15HxdeR0TWwHlF7MtunVVuMNChlcMYhZIxWPayPEE4QXAXe4QsITlEIQx0M1dgxPtrnzcU7/Gf/7o/zU596GbeI6FeWNye7TKdnlE++RD0fQjVqHDshESJCoImkRMtAFQYgNTJr42VAlNOlr3PBL728YFguNDyEyjE7mzLt5xAWEGqEUSgpUTIik5qbG2vcvrHDyy8+hyoV9VTzXu6Y1R7xfuC0rvm5+RATCZLQRYo5xuSs77To7XSgPobasdVSOJ3QXdsiSiLmxRyBQwTLert1DsM2WVuFkBIhEggBrU/QKqClwxLjVZNJ9K5ESY8QCiWjphFf8HiREIRAmqWD7/U5FBu8BVcivAXvGpUYJfHC4oLDKIUzmlY7Raq4kWoXGqWSJsCXEGpLqCvavRZCKKqqIPgaIW3TZ0h6lPcI77BlQfAehQEEZVWhTYzSzetHcYpU5soeWiZxLh0Plx6eG7IPM/ThMpy1vPQCsVg9969PW/lwpGN1/5UzKI1jkAf6haBz4wbda7uouNccUgF6LY9eV3SSlFhFWBMIQWKiCKsq1AxCXeHdBJfXVFPJrK0o0dhpwLia/uAId3eDn//88+hgUDbhuGgxzSOmRw+Z7r9PPT5s0G00SiZoGdGJPNuRZSgXLBAka210O6EaHWNlQPh6iWg7pFhWInkIwWF001vOzi3zfMFsdIR3M5w94/9l782ebcuuM6/f7Faz29Of22Te7CSlJFsqV2Fjm8KuwFBuIgoCcPBQPPDAAwT/C2/wwgNFBS8EQeuIwhEVNsLGZdzKFkadpUyl8mbevPf0Z3ermx0Pc+3m3JuJMqWSkJspKbbu2Wvvs89eY87RfN/4hi4MujBEUaKF5t50zMnhIZ969T7LeUd7Bc9i4N1ZIJaRlYi8fFIzGRhUVvZUowatNSrLk+2GnGAbVrNruvY+bjBAx4wIOGeRImJIVFe5nq7xPe7vmuq5ng21fo3oqTXbn22Trc1wQnG3f25biBbb+IkPc4AfZkd/ZTh7/xLXi/cmfd2qp6YASqJUYlnoPPS9SBrkAFDJGF2ApkH7QJmVkAd88AyHQ1ATZktNJGK7FbgCt5TUhSIIRbsULFvP7N0nTFXDF1//e0yHBc5K5o3hST1ifv0dFo//gvb6GW41IwaNFBptDAMFR3lLpz3X8YpsoBGjE3yzQNgaGRzBC1I/QepNRAQEHq00WmtCE2hdy5PVBRCx3TOkhnxUoH2OZMA0L3l4uM+j032GgyGrs5Yr1/LdhWcWQAwDOu945WSFURoZFYIGIR15mafSWcipqyWr+TWDYYnzDqkUQkact+kzqrU88k5z+Y99LvXD2UPrc2FDrdv9jXf+uS2gPN8JlWiS8f/TB60ZNNveK9mLFMSkMLzuvyIme0cQ+p7lNU1QSpWEqqLkdpbmaJZlokKvVhZjNPsTwUNVcvDqKwz3TpFmmmLPEDiZTgmNoDQ5nQ74LCCkJjc52ipUGwltRfQddhWJSObSUEdNOwtcV0uezD/g5ZNPc3x4gOhyKhd5ttxjtZqxfP/r1LMr/PIiFT9QaFWghGHfKAY60IQbvMkojg+QBuzsAr8J6lP/u5ZrOr9DSkGmDTII7KLjqppx+bTB2wtCrMhGORgNSlIOJC8f7XF8dMhLL98ndwbVFLzVBRazSH4RWQXPZ1+uUApUVmC0Qw4lxWCAD4ZvfKOhqWac7E0QOsOVA1ZVxdnTp0wmI/b3JxwfH3F8dMzt7Q1t2+C9xzm/tY5NArVLiVtT0u+KR6x9zR3a3Y7hrU3zxd7dZGei/z3rOYu7IigbQZWebsoOwiV6FtnmM22QqC2db2vDYpMEbin1H299gp4pCdIQSEmD9mn4WmUboohkoyFSSAY6Q2uFGRpMJjBG9PQVha1vcT7SrVYIITFZTpaNKPIJWqZgX0iZ5nOYERGJDZ4oDBFD1VZ08zmhqQm2parnxCDZ2ztCa01e6HS4hw4VLUZY9gYjRvmQdlXhQ8QcvkKhNafDkmKQo8YjBAqExNffxS0umP/h77F855yJf584GcDp52jrlmr2x7jwDGeXILJ0sLTvItyAEF8iyhVBniGFROtj/ucvd/zeux9QuQM6C9cX/4ymOqOa3RKCAzFCHZ6ij+5TuCuMm9NcBxrr8SZL33q3RCmDOPoUWkeUifhmTugaulVNcB6iQ0iFMWNi9Cn5DB0xNAlSVxmZURzs5fwH//AN7h9PePON+xQyZyCvODg54qd//hG/+e0F37muuTp7i+XljP98+Q2+8JmX+I9+/TWMKJFiitRjlBpzeO9VyuKIn7uosQgmoxyVR0yxItQrfL2ATmGtx6OQUpPlB0iRVKZkdpB6RPqNoEI/n8w2xODxQSCEQuoCvCUQEbJAqBypMqSUBN8RfBLpEMGjhCeqDKMHOLvC25qs2E+v0RLvPZNinhirJFsLtkYDpcoZnrySkB+t8dHT1guUyiiKCa2ztLZNMrtaU4p+LlkMCKkYjiYoZdBZjlKCECwbUYuPuXa37d1N/CIKma5JR4rckRf93hLAP/jS2vDLv/aPqKolDx99kbIsCeT4rsK3N8zffYubt9/BzC7ZVw288jpdlLz79pfouo6ssEgDwhyh3Bxx+028v0/Mhng5RwlBq8Z8Y5bz3/zeHOtzGjvi6uJtZrcf8OzZY6pqSWBCPi15+OanKaVl4mb4Vc1ykVPnJY3W6LYmj5GXv/jTKWEWHW29ZDm/op5XVPMaa5eE4BiPTtEqw/klznXUzQcIJTHlhLJUlKXm3/z5T/OZV454+cEDyqKgUCumB5rp8et8d+7ILhsWiwvefueWsHzC8d41/8bPTtifDMh6qXMh0/C4GFsePHzI0cl9RnsH6CxnTUvSWXGHFpMSmG0zbW8BL9wbKUU/AiD1Wq0lYFP1an8tAAAgAElEQVQiJVFabl8p1qFSslO5pmXscMaTHW5pEFKS9u2Pf0T6Y73SRMMAcgz0IxSiJ9gbQlVhz84Z2Dmv34vE4j4UE146vUdmDP/9/2J5dtYh9THIDFW9BW6C9UcEWdGIiDUGqyb8D1+uMCZQdQNWyxvOn/4Jt7fPuLq+pfMGaY44+fwblJMhe+4a2bXUN4pGGlqTIV1H1la8/ug1yk99lihagrfMr89o65r55SL1p/qaQblHWe4DLTE6quqaEANZOWQwyHlw74A3XtrjZz53yvHhIQf7UwoVkaLh7/7cA+atQJ41rJqKZ0+fYZdzri8sX/iM4fWXJwiyzf4RKLzvmIyH/OQX/h75YEg5nLAOUpXJ71TEU4V5N4nYLQ/87Vp/G5tvROymUR/uf/rLSCq7W6rVHbEKQKpUTIhhOzh1HXn7njEjpUr9xlrfKfJ477ZBekwxwXA64f79+/zar/xbvPzyAw5O3kRrg48a31zjmwXX3/gz5s+uGbtnqGGBeOVVbm5uefb+P8N7R1Z4hC4JYYCs3gN7hQ0v4VWFlVcYkdpHfvutyJ9dzXF+hHVw9vSPWS2vuHh6jfUO1CGjB8cMHt5n4m4p3ZL5meW2c7RFGt2S1wtykzH+1E+R6UhmAq6e4buK2cUC13bEWKFVxmR0SogO7yu6bo5tOmSekekx49JwuFfy7//S5zk+mPLS/WMypcnknDe/OObRZ47Iz2ueLlouLp5wczmjm73Dy/cO+YV/5QApNFCiVYnSGV/44k/x0sMb/uj3/4jr2ZyzZUOeG/b3h9xcPOXx29/iW1//S7Is5+LqmqZpsZ1DKcODBw9ZrZZIqbCdpbPdRnjCuSQtrpRKfIed5FpK1Uul04MBKQmKIfaDd1Phbo1cJrvcGVL/Avlmy+8RIsnir5OrHoDalgY2fX39a0RqHVG9WIU2Jv1Mpbm2wX+y+O1jJ1NCSqTWIFPQG2JEhJBmo4iIDhERIlpItFIYlegtSolEU5ESvCM4S1dXSKVTs1sELVNFWEqFVL0Ch+xlwKMgfcsGHwRtZ8FZcA5nPSHKTaVDERHR411HjBaJJ88K8qiJLslvismYIs+Z7O2jtAGdE0NHDB3OemxdMzt7yvL8GUPdQFGSnY6olxbDLDUU1g6EIUaJCAugI/oD8OCpiGYPsmMeXzneu11AGBI91NePE0XQJ7lyTERmA2Q5RnVzlBJ4rbA+WYyIEbxFaIUyJSoX6EwgQoePHiG7nj6XhhNKbYghCeggAoSkCiiFRElJbjSnhwNOjgpGUyikY0jN8OAIp4551GbUZkV9k2Nbz7ffrRiNGuZVYGCg0BolElUvL0eIoDg5nNCFABqkjmTGE6zHq4ASDmKH95oQIYt9YCZUSnDkHmtRDSElxDTYD1xC2ERPbRIxfV/CJOEKlSOF6jdgmmWxqVEISZQZQiQpeSlypCzJZUZQAQ244Gl8goNjcCghkSojywZIoXAizeqJzqGVITMlIQqsc0ilkUKlwdUxYF0KUo3JkSoNyENE/IclU9/Ld+9QqnaD1TX8/KHtUP1zO17w427pT7x6tjFCSk5O79G2DXm5TxRwfT3Ddwtcdc7t2VNmz55gqyUyBFTmEkUkPkPgMXqQAiKRIWkTTddO8EISQo1XCjU65bZT/OWTBuegs5Lb81tWszPaNuBDhsxyTDmknE4ZiJphN2cZNG2bYaXCI9CuQwKj0RiTGYTx1FVOjG2ajdd6hCoI0ZGVQ5TShDp9bmKLFDlKGzKtKLXicG/A6dGIYgjaeIxsyaRisDehKjuOvcK2M5ZzyeVti7WR+bIlNwY9UkiheucQEQQGwyEDkaGyAtFXY4mpRw0ht1W4O8jlR1eshUj88A3N786AzLuV5jtYqNgGTJsrYnzh6g+Tqf0oa7m7/iYiVd97RWFIdPVttZcYibajMHB8UCIne8jREa/cn5CpyHgIt3lEiDwNC/czgpMEOyLSEbBYfQJkvHPWgYCmMdSrFVdPn2G7FdYaMDnaSIrxhMF0wLCdEVrJcpXR9cRq7T2qayj3DplM9sAEQujwvkIqSbPoCCEFQHk5JC+HRJ+UttrGgQ9oPSAzGaOiZH884N7xmOHYkJWRTDm0gGw0oOg0J85wM4flzNC0cH7dsawDLoh0TtOfd1EgCGSZJiumSG1QOuuFh5I6sBDrQsTa78D32j8/XusuKvQDv9vaj3yPi3YR6btPbX3QJhjeRRh2wand9+sZC2vVtV3l3PXDmk61GyxvFdvSD9fiLkobysGQhy+9zOHxCSaf0NQVzXyGra5w1S1Xzz7g9uIaujkqG6OKiNIrYniCkgXIHCEyfNRIP0fQEexhihNjTczHiHKfD2aRs1UDISe4yMWTC2x7g+00USpULtGDEdlkTNGuKC1cZYoqiDRCIAZE16B0gR6OKApFWUq6BbhaUs87Us9RQOvkz4Kvie0KIRzEFiVztDbkWjPIDKeHI/b3Skzp0SLN0pwORkzUhJOgsEozu1F0neXpZU2e1SyrjtxEMiX7JEKxv7+PEoq265jP5lxezRiOSkZDxWKx4Pz8AiFuiEiWqwrnA8PBCK01g8EA5xxZlkGfAHm/HcgcY9wU59aI0kaR+AXfIFhLpG98kOjVa3sG1vq6tQ3D7gyq3efvIqW7ypPrzqvd1z1PG0yMDcn32CUfuj52MmVyzehoTHCa4DqccwSZvtwoYLFsESIyMIqIwHlPng/I84I8NygliTY1iVdigQCMVBgR0DQIelU016WKnVuRRlok5+KjR8mWLIPWeZyw7B0doHWWKGFUeLuka6BqI0WZUw5yhpMJWTFmun9AiBKhVNKV16mh3iHxLuKsYzEbsrw64EvnBZfznM++vs/wJOeVnzmnbTWr+av8n7/v+fJXFps5Fp11BKEJ4nGiwbqOqHKimtAuKkJ7Q3RfJsYVwS+IYoIc/CqyWKD33iIsLum++QfYXvY9ZGNQOVhLDA7RVERRE9oFPhtizQBfLYntCqJDKoEZTNMB5mtidInWJxRKmz7rhgGCsHD883/+DlEJFnh+6eeO+I9//RF67xXU+Ih/96RkWbV869tDrm9qvvGtc6IY8r/9+Qe8diT4iXuC4bimlApVajIzYO/TD2m6hmt3QyYEZakpp48Y5EcIFRAiUDcV3ltCVqEESDEiYogUEB1ge1Q2IlQBMmJklg5QErKZ6RQ4BNLwNSkEHgFRI9WEGBqs61JVw4NSYzI9RkhDRKKQqdKvSpTwKJlQreAsIhsjiwypRyA0neuIwVOag7QRpSLLIqNRTP01MRBcQwge6S1SavJymqouytBWc5rVLc52d/bQ2lHsJkXbw2H97x2FGu4Grml46xYGlxvPs6YA/vArraL3lOfnFyxXS07uPeDp06f803/yT2iqCtvWFCGSxcjVck7jO4b2Ap0ZXj7IsEEzbwQEC76htpbOelqZ5jmFtiGqAXH6CnUjWZ5fYNs5bXOD9Q0+RIr9nyUvx4xP3kOEBcuv/hmzruX9uiYMhsTBmOhcavqdzeh8x1PfJIGMch+7mlNdXRCDRSrLaHqAynK8q3BuSfArRITh4ACtJLlSTKVijOKdrz7l8rvXXNiW0STjH/87n2UyPSWbDHllYNjbk1zff8BsfsDlVUXTWv70a99lb1rwr/+d1ygKiZEWhEzqpCpDqHLTlK1FufmmPzox/uj7rLWiyHN8PzRxfe0dag3boOpOcLUT8KyDli0N4g7R7/uwnL9dsE1mpVAEKYgxYVRaFinoGBagO3i0xwOpeGAypJIIrZBA0zQ8PBkT3ZLVfElnOxZVjZUtnXTQdQQX6AbHaU7O4xtc21KvzvC+o/MOM3iN8uBVyoNz8sEN9tm7XL+95KxeEaUiTA9BQKAmrBbY1YwL17K4zqHcI0bB8tkl3jUI2VAOBwz3HiDxSBpkF8BLxOSQEEAJKBGI+ZKLdxx/uKyppcQqya/+g9d449VDZJmTiZK/v1fStGNu3jhgsWy5ndUINeJyJRjpSKYCmXBIGRE6oVRSl5tgXqkctUmadh/v3oW/mUus49Y7oeILPZC7hZXngl/VCzHF2Ae/rEPp55C+HoHayi2tf7wt7myKOGxFCmJ3l+K1DcgF3ns6a6mrisV8xnvvPyEKyeHxCb/92/8HX/rfv4Rta4KzDH0E7zlf3iCMZNC8h1Ka108zKquoLeBrog8s2w4nDJ3MEuW7blD6EdG8xPy2o1uusM1f4l1N6ypQI/LDnyUbtgyPnlBfnXP5h/+CmXeo4HHTA8gyRNfhbYef3SKlwFTX+HJKW+7RXt1iV7fEUJPlMDx8gBAC72aEpiHYCq0MenhIbhRGSQ6FpmwCX/797xAUXNiWL372mF/5xVcxw310OeQLBt6oNZ85ep1V1XF2scS28KU/+TovnYx58+V9ilKTZTJR1wc5V6sVZ7M5t7Mbrm+uePfdxzjnsZ3HB08IMQ3sjZDnM/I85/DwCOdcir+VoSxLVqsVbduRZ9kmuUoU8lQoSm4k8rwP2tjGxkb653sl2/WQ5y3NdG09cRsvbWxPIkRkLYixprOD7A0/bq22Z7ejEmATQmJeJHtM/cWfRNDrEyBTGpUN8D7gnCX0B1o2GKRpxDpxqIVKfMUYxAZZSH1NSWVHKYExJUopjM5RvSpa+p49zlqIHmkcUca1YF3/JTqUjkgjkFGlRyVQKiJIfFwFSJU2fVLxEGgltkgXHikjRJXe10vatqWtVqzqjmXrWWYFzXjMw5cM02PN6WFBsxLMrWBvVDCejLB1g7cW16vORN8mFC0Eom8I9pZgF4SuIvqnxFATZZ5uaKjT/1xDtDWhWZKOC5mAmHXEHbYcUBEdeEuUFnwyKin1Vq8/JtqIEImGlem0AaVIQ1D3coXRgnltsTFyYy3vnS351ru3lPUlZXtGScdUe+4fFZSZ5uamQeSaxaJlkQkWJWSZpSh6LrpQ5OMCOijqCm1SzV1pQ1aMiD3dQ6rUCyA2GyKQxqbJ/lEB/WA/qRExJWHp6m1FUeARIUB0ae5uP39LCkXokasYZT/IWax9R7LfjRRs2mwS1W+6gJQmISXSEKVGBQg4olxL4ANCIMW2RT9VdyKEhFStD/0YLN412K7aEQvZ7CLWlefNwF4hX0yCXoAInn964+k+5JIfTtX1Lrc5cnZ+ztXVFZPpHs+ePePx4/dom6SGWKpURWtdSxSeAwODUjIZDOiCRlQZTVVRzVYQE+wfvcXTInr6sGsXxC7SrRbYdkbXXBNUQZR56lf0NdE14CpctcBbT9eFhPb6/nhd99PFpHgZBUibZk4RJJnJybIcJ1UvnZ7m0mSZQSEp8xwtIZMwLRTjXOOiZ1633DY1HY4nZ7csu4xxvEIETx5bxrlEjXNurxf4ruXyssbZAYEMhNlU25KangcskPXVuOdRqO+17t5v2SNToeeK796/F1X6tol9jOta39aZbeVhewf0A8Wgz7/4o+30kylS/tVYz1f516HoGqVkXUEVGVIL9GCM0oo8z1N/MYGursDVTMcD2qN9Tg8mzJcVb7/7JI26dy34pHLr2xXeK9rVLbataVdPCUiCGqSZMKEBl3yQr1f4aknXBaKWCN8Xedj6oOAdzpFQ5CiJAZTQDEcjpDEQAkqBVgIjM1TMGJX93xY6Ci3ZH2oyI6lsoMLTApe3FaOrnHJviTaBQvXsi0lJpg1KZBRFSaL35QjRB2asv7JI2j8aIRQ/6P758U20Pvn++fBttI0XtgiSuOODPg7yvOuDNp9t3Xe5/k8fOMeNIOnO79h9XCMNkZ3ZQT1lfff9iYie+ldVFU/ef4IPAZPlvPPOd3nvvffw1hFDYGSypJLnLLkxDHNBkRtGxZBZa5i3itXtDa1t+/hUEGybZpL5SLAtrp5j6yVdVWObc7xrCHqIkKQYz6W5l75Z4leLxFQSCukFQkuEc5tYjZhiuOg7om2Tql8QGG2QqmchxTS+Q0jI84zc5GQ6I1MRI+FwqCiMZNVZuhi4bWsubpe8f3bLYO+GcjwC25Dj2BsqNIZzb2nbjkXVIG1FEWruP7jP4WGeEjxjODk9pu06rm5vsdZSVXWfTJAUPENSzlz3RYUQWK1WrIf1aq1QWtF1XWIW9Qlz8IFN/vQRdvp8XBE3VLwPufY5H/Th/XzrXGGNYt25ZFN3Xpud+LCLYgTCJ27T+PjJlBog8we0izPm8/MUpEuJGe+TZwUH+1MiEee6lFA4jyfHeo3sIloFcjNE5XBwaFBSkuUDlDZondHVK2xb0cxqgnMM9zqE8nShIsiMYEZIGRmUAWlybCjwXUekYzwaJRnqKCgwjMQwVX5Fog0SHSo2pMysA6GIYYBHY2PO9dkZ1+cXrFZzVnUFn7rHiGM+/XcfMSnhuKiYPz7HX32XB3v7vPmTB1y9/5TVfElzZXFdIDSpEV6IEbG6JFRPiH5JDA3RJwUxkb0BcUms/id81eFv2s2NQ5YgsxRbBd9XkASoPE131xEhLIQ5SIkwQ4rCIERktbgCAkJrjMkYjEtemkTuj8HHNGTx3iQjCMVX5grrIwMn+fO/XPLnX/8GD14/5/TlP+Iffqrk1cMBp6/8IieHE44PHzCbOx6/X7OqO7572aC/MGA4naCMRAvB9GiE9zmjboB1HU27Sh0WUqBEjsCQ9CZConUC3tYgdELgknH128IjdQbR4bszQCDUeLNpROgQ0RJsB0ITfNoZUgmEzIgcEFxLcDXWNgTfkRV7SZJY2Z2NqFAokCFJEfeDA0MUEARKGiSC1i0JMeAJaTCdd8SY5qwY1TN5RSoWEFyq/HYLquUNq/kNztbP76J+u8Y+ftqpqTwHT0NvGoLnTiO5c0gINv+I9Af0Dz8Qdc7xu7/zO3z961/nt37rt+g6y9nTZwghUFoyCxEfA+PRgOGw5M3Pfo6TgwmnuWblFG/NDG9/69u89bWvUe69QjY+xa4C1ncYOSEiWD7+U2Ko8O4K33X4tkGO3kSah3S3f4i9WREua6QICAJR5qjRBCEMovF9oiwQZoDMMkxBasSNC5QCOTrg9GjK6dGEb3zzq5yfP0UXOcZkHJ88YH8gefMoIqUF2TAucoZ5zreXkqtOUBQlPgT+u9/8S0bjx7z66Q+4P1K8OtVk41eZDO/Rrp5xdX7B+dktR0cnqF/5R0ltjNt1tEoMC2KYocwJbFCp73+lwpbuA+Y+mOmd1q70eQjrRvDAWlAiVYfZvCYp/4k7/RA/2vXXL6lar4Q6q15u+u7fqbRhNJ1utrdzFmdrFufvUs1uee3Vh7z+qTf44uc/z9vvfMB/9U//V+yqxc5bJCVS5DTnbxFCS109w9kGW1cIc4icfJHQvEO9/BP8ZUujbQr0hECWewiZIdqwOVaEzKGcoIuIyUCJGhAwnFDmOa8/Oub6+oK33/4W+/v7jA8OmE7GDIucVw6gUI66vsAoydFkyiwYntqM3HmMC/zxVy/58teveP0zDfvTAZ87HZPnYybDl9ifTnj10TgVnJDpzBUR4jXJZwqgJbglUk0Q8uBHfh9/vNeH7Z9tsrPxQTvU3ReS/ud8UAi7gepOQiVE6okKa6pX2IpK9OMd1mjBFt3avnz38YVPLNPv0ioVx13XcfbsKb/xG79BUZZMJlNub264vblF6zSr7zokdbzJZMTedJ+/81M/xTTXHBrN+yvNs5Xkj37vX/Dsg6eMTn6CqAe0MwsYjJzS3c5or/+ArrvG2Tm+rYlBovZ+GsEKe/mb2NiwerxExETZDtkUYQYoB9L7hHJECdkIowNlGRA48DcYrVCDfaYjjRSey/P3CDGgi5xhUXLw4ISH08jDSQTZIKXnYFjiheJrc0nnJeNyyLvPVvzX/+P/w/2XnnJ8b59P72sOBhnF/k/gc5jfvMvt7ZKLyxnftC1fsjX/3q//Kr/wiwdIrRlPh/zj//Df5vHj9/kv/sv/lqurG6pVhXOerlsXg1PSFEKg6xx1VbNaVpgsoyxLJtMJk8kEIQTGaNq2xTmP8w7htzaYaHT0dhQ2yVi698kHpTaPu0U9uUaXPqKelwqmcYNEJQbPbp9fxAe/E0elBH2tTLsVY6L3ezZpGuz09n2c9bGTqRjBhwSXSam3eIKzeKsQMjUOGp0TfSDgQOr+qiTpHHyqLAQXEb3iYPAeF5I+f4iBQMDj6doaoTxWemL0eJkCWCU1SsU0dM7079sHBFoPELJAqnEKJqLve6GSGlzCOVL/RgiRtnEsljX1bIlvl8hMUGQDXn71JRwBigFWC1YMmTnL+eqMxkYUAVRO0B6UAeXB1ympDS3EhhhrCA0x2hSAIxFhlm5kXPbQp+txRdUbUIBoU/LQVypSKaDPtkmwt+hnZWQmUfisTrqGw0ymYahdR9PCysAgg1xL1LhEas2RTDTIm4XDxoh1gdkK5KXl27mkXil+6n6kyATlQNC4gDANzq1Y3SxoqxOsdamPSxmkHiNkkq4XUhJDmxTLlNlSWmQgRpeQBNERpO97ZvqNROztu/8OSOqJfSiY7mN0EOqUnDJIFf5+fwTRV9ATD5DUPZeQyOhtOspF1m/GdYCZEo8QYn9aS8Qaju4HvCaSYUwtW6kkk6oVMWwQJecCiEgg9UlZFwlRIVXOxsg/ck/1n7tPhrbw9XNLrEuI6wogm8rsporfHyg/ivAzxkhdNyyXy54n7bG2Q2mNlgqtFEoIAtB2lg+eXrNaNtwoSeslT2vFcrnCFENENgQzRNiG1IC/frxOND3apNQYPdhZKoT4K4gNLiYFJKnzdJAGn5BqkfopiOkQDTHifdo7JkvSuSgwKqKVpzSCUSaZDjRaS0JT0SGpG0GZR0ZGYYocMRoyloLYRmZLR2sDFkHtDDczB7UjLFqOTmsm+zXWdsRgKYcZg1HeI8kGGDx3mxMaJ6JNdv0DZC4xBLxz6b7EtRPcOiexOVrCDoN85+drp9QHXWvqH2wKyD805Oivb+r04tqoT6V/Abu+vu8hJZ1XUmiUyskHe4DhniEp3SqNVIa8nJDZFboOBOexrsLbGcHX/WiHLu0fX0P7jBiWEGYpwHABqbM0lDumYE/3/kjEQAiW4PtBwV6Qq9SDGxRkCrQMZCoyNJJJJtgzERUs3gqaJiK0J5cyob3jEYWXTDtJ1SraNibqvZDUrSCrYNVmoDLyvv/UGIV1HuctRhUJfRIlGyZD4pckKw5dv78+vpzxX6f1fe2fnf287ol6vl+3/38vvnQHWVgP9L4z7PQ5hCwVVO+KCbywdmh9kMQLUgQZ++Db92p4pIG7XUfXttR1g3UWqSRaSjJtQEis9yxXDY/fu2CgFedKcNUobjqB9RFdjMAMQZWItkkxgasIviL6Od6v8KFLBfEgoD0nCkX0NxAtUXQIpUGZPoTxfcHesRaoij4QRCQEiRICLUCoFF0MiySCUGepH3Ay1CACtlrRZoI6E4zK1K8uhyVIwz6CugvMlo4QJB2SRSNQM8f7nWWROx7oms6Bcy1CBkbjgvlNxc3NDd/+9jsMRgM+/Zk3me5NKcsx+/tHvPnmp3j8+AOur293GD2ij61TAuR914+cdWBTglRXFUpJurbrUSyPdy75nt4HbVDKuI1bYog7viVu/M/ztrGb+G8G9m5sMNnVthhw90yVPZVwl21x97Vbe71LJ2RbdPiY62MnUyFEbOcBQ2aG6GBRBELT0HpHGxRZlrE/HKUv1LokTy3UBn731hK9w606tFHoLCP6hGKFHlYLyuOjY7WYgQgwKggqEIQHmWNEjlYNWjiUTsPhbLT4qMnKPbQekWX7OLvEtgtCu8S7dkOq0KpvlgsrFufnfPDWW6ALMDnlg0eMJ3ucvvk6NgbeOnufNhgad8KTSvHNmwuW1RLaFU4NsLkhZqQEyAWia4nutk+o6u1tiACeaJ/0RtInD0iIEqTqg3ZL6iECok+HkE+zoZAqBYpIhErKJ8MyVdtpFIWQvDTS3NSOx7crrp2kbRSfOcwZZgZ/PEWVGZ+eOG4XnlndorQmlhnLTlI/k/zOVWB/5Hn9J2A4ipSjSBUsDG9pL2+YfXDB8vaUpjpFFRlSjJBmTOrdmqH9EqNadF6gVNmbl0wm6RtcfQYxIvUgKfLFMtEUhSBiICpi7ICIMFOIAeeb1FQcVgg3R/oFMAWKJKMPBHwPpStCUEAO0hGDw7saXI2Uk15FJglD+GBxDrxPlWClDdJ3COGx3hGDR+A3+mmEiI8x2euGCw5tmxqeI55eOgMhSnRpkCq7s4fWU91ZUy16nsV2g9+t+N3xNXcOF3r6b9zQt7ab/kcTkjZNw2q5ZLWY959PkkuQqqQoSrI8Z75cMF9W/NGffjNVf3okMQow5Yjh0X1icUzI9hHdLdI1uOaW6Bpce9YLiBqETxPLRfME2vdBBKIAazVCGdRwgAK0aNHKkSlPDJYYArbzxACtyRBIykFGwKN9l3qX4oq9gSDbK3htv0QS+cp3LriVkQ9Ewcmk4DgfQTnB7u9zOgwcW8/XHld0IaKGGVYIzq4k513Ht5qan/zMLa/5gqapiDhOH+5xcrKP1inJFrIgxo4QGhCmDxSS85HqEwisfshy3tG27aZnyvUDrtdL9FXmrU8RRMIdik0vq4S4e4ClazdE8x/F+v8FDvuxWLtBrFIFShXo0yEhRA5CwDrH5c0tjQ0M907o4i1141k2tzTLBb67JIQGh0zIUxBJLGnxF0AEGfFCEaREDjKkVhifZCfyPBWMQnBYF/BtpFMa0EwLQ6YkygQyHRCsKI3jZFpwfyg5LRznzZLVSvCs9QwyeG2/F/E5PKT0gZeajoul4FoITD5G6YymAxaGy9UUr0fsqSIV5KTAuoa6rcm1wegMofaBgA+r3hb7JvhYs1Z8+9v1ISgTbALHOz/fSXrW/ucFHySef80asFoXQtmo9T3/vjtzx5M8+g6zffezxAhC9gXjtZx6DKgYEVL0iRRYa/vnoK4q5rc3rGHcvMhQWjMYjkAIZrDTQqIAACAASURBVPMZT8+uubxKfbD4uHa7FNNjhof3CcNDQsyQ9TXetdjqEu8WBHuTRJGEAJ+KdWH+zfTZZT+bSCV6qTA5KgakbxObQdALm0VCp7BB0WnDwEhyKZAGpIH9sUQr0FVOISOv7pdczCq++f4FV50hdBmfPh1T5CVhvA9Fwesjz2zlmNdVQre1ZtkpmkvBWVWTi5p/zdygtcS5lqwQ7N87wnYzbq4u+d3f+b/4yl98g//0P/tPmOwdY7Kcw8OMX/nlX+IrX/kqX/vaN/tCd2ITJUTJEGPAWov3PlEAe/pf17Uslwu0NkiZ2ma8c0mcrr9m7UPWiHfYtLAk40rqfTtGuEmZ4ibgWSdScT3iY6cAuGtzyX63bIyIgD6xu2PvIRCiIKqwmX8lhEDIJFbnwyeLpj625/bW0s0X+KYmdg4fQxrW20VUjGjZoaUkFyCURKiM4BzBNSg9SAIUJNgzK0og0tVt2oA+bZoQA85bQrRYkXqaXGWTkBttjyYERGgR0TMajHoBiiSZLWQOSEKwCCJGa7yNBOERAYiC1FPjsd0SW93S1UvM1GAGOUVm0FrhgyMEj1aKRWP57tMPqBYz9L7BUVA5UPsDxgeR175o8K7l7bca6ltYPFkRrMRbfQdmFESkTMFKAIQxqMEQESUiytQw3w8PBVDCYJTmoBzT4riNFUp4tLDsaUEpBQ0pYJpkgVyCUYGjqWLvcExlJjR6THd6j9VoSBZvUa1DeYNTgunBHtZ5Ouugc9B0SOuJoqWefYdufMTe3quUmcaoyGIMM3kLWUvX3DLwpyAGCFGS+j0iyCxVbeQUF5LcfDJeTRQ5mP0kPBA7omtTdQNNUjZURKVStZSACkvWSF36xhRR5HgS1zhG2+8zQSSpBVrvko3EQPAd0Xe44OhxQYRM3N4QA9b7nmojca7D2pbol+l2qSxtYt+kwDPQHwwxyX1Kw7q/xZi1eo3DhoD1AaUU2mQfHRjvBKlRwHoA5q5n2djOhyBWu37tzmTxyCfb/T/ACj5Vnza/UESsdTR1g1QKbTRGp7+/qhJHXMQkjaqygnI44uiVRwxHE8pBxvUyp64jV+8q2pWkiiVCgs4MiojCo6RHyoBDgJSUBwconZGpkugDvmt6D+8wvQDLg70RSkguxBKlApqKUkeGw4AwCaEeZY5yGCiMRQrJqy+P8TpH7p8SJhNWx8egW+KyY3W9pFm13N56XJCM9sfICLFuWc5m3F4+4+GB5nQfHr10zCN5Hxs8k8lkO4W9xzzTf9eS59/vjbsb5WwSKLb8882VW2Bz53HHqe2cV3fefh0srXsi/qXY2C4y8/xTf0OTqDXdaT0jZbO3SOeATD2wkXQizpsOUyp+9l99xNllybtPPB+823H5tKZalrhObno5TeGRIqCUI5WJoJhMMIMBmSwRSHybhrsTPFIIcplxNCwYjUtuREUtOrRoKAScDALKSIgtmXYcjyXjEowJvH76ADmYMPcJ9ffTCb5M6FpZ5kwOh4w7yX0reXZ5xaqqkC5gpOJw/4DRIAPfEmVAaMhMREqzoXBt9g+kgFakoe3f3x76q2prOw7ihac+xt+0ITSkQtWa6bB+543LWZvgc+/5gg/6EMR6M49u9+INm+Ju4TDN9lkLEqzPxl7iYkO/8pvftxYI6CGwTZTetmuhhAKpFVlmsNazXK36GkJE6gxlMg6PjhgfHjHdH4CQXC0K6nng+j1JVxuaqiT257VSDkkg0x5ExAmBKnKKvT0kBokh2I7oPUGk7NGonMIYTid71MJxxQotOzLRcZBrhkrSkop+ewNPISJGW/Ymik+9OkWM9hGjPdqTE1ajAdHVhHnH4vyWVeNZzj2mKNkbl8TWQmO5ujhnZhvmb0zZ35vw+c++keLo6Ll8v8BGx7JaEYSgqpZJkTcrkTrj5PQBRyeXTKZ7RJY07YK1yl0qICfVxRhTQrtOptdy6Ean/nhr7R2UZ8162NrLHRPkw33Q1mC2drLtX4dd9b/+uRA3SJjWa1/LC4jpHbT1BX8We0JYX+z+BOfDx0em+mQqrmXJ+1Z8ZSPEQCYtWikyIkYrjFa0VUcXWpQokNKk+WxKYIoS7yxNtSD2YhUheHwIRJWkXVsh8SHSVGkmjVFNf41HOIuKkfFQY0yBNHsgMxBpmF/wXaIhKoWQJOOOazELRXAtbnWNrW/pmhVmbw8zzMkzjVGKpU/UBq0kbdvw9e+eU8aGvUOD7yJ1rdGjnHKg+Zm/PyBSU//uOTfve5priROKELYDW0Xf16GU2CBSqiwxh/tIF5E24uoVoXNJTQaBFpqBLnk0OuHWr5h3DYoOTcOR0expybsx0sbIJI9kAozyTKYFp/eHfJf7vMc9ugefYznao7z5A1QzQziBV4bp4ZiuqWmWc3zrCI1FyRohSMnU/or94WfRxvDweMDjQcO3whNE0dHVM2JoET0dTyATRBYGSDlM8x6CXs9NQ6DToWj2EaEltmcJOXCeSE4kQ1IAgi4GYrRkNP33FhEoIppISRCKEFpi6HrVJkkkw8dIF1xKTIJLc7Z8h++HN+KS6p4uB/gIrQsYpcg0uLal6zpsUxFDIBtME5829D1tIeKjIkSNNhnamFTRiGAy0QcgMv09vXy6yU2C/+/u0xer+us92+/yndi1f3rteLae7S7MvT0ofnQrpmTKu+2PZARrCSFijMHneR/8SK5vFnRdvyd1Rq4LzGjM4aOXuX8gOBzDszpnXkX8SrJUiq4dIIQgzzVGR3Id0cqhpKeNkqgM+68+JDM5pRXYumZ1a+lcoHMeowyFyvnU9JhcG5bVYwINhhUTLXiUSW505CZ6RrlDS09uHEopXj8c05gp58PPEMaHrI5eJs6/Q5g/5skHS+a3S1qv0XnOvfs50gW62yW3sxnn77/H7cOc1T3J577wc+ztn3B2cU6WDVD99wEJ9Ul+QCFQrOdLpXuaHr+fnCL0qMW6P+qjqKOR7ZDM7Vo7p+0HuNMbsUt/+CGY21/VsPb7Xx8eoG6SqE0yvJXv3fS7IZi1HXqg+fmffcTjM0N+VBHigq6dE0PZK2QmFkNpAkoGjLa4KOiiZPLwlPJgn9IKhA0sri6w1lJ3HiU0hc55MNjn0eCAr7fPeGpvMbKmkJ6Xc0VQkqcBcu0ZTRWFEWQm8vqr99g7fYlvzgRV0PjRMV46tLhiNDrg9OQlhEysherP/5TlYoHsHCYrONo/IM8g+msIHhEh14oiM5uZa7CzfxAgNGuOQkKo+u/zb5hBfc8/d+1/PsIFsUPbW7/floa1y6h40Qdtg+fNL9qgBy98jB27Xve3aK0BgXU7ok2CzbDy9e/YpWTdLeYJhJS9CJJnOBpilCDPklz+qqogJvK/KVI7yuj4iOOXX+K1ewKlAh9UOTcXDrsQrJTBumGP20OmLFoEytyBgBpJPpkwfeVhAhSaQLeY45qa1qfPOFQ5e9mALxw94Nwtua1rdLRkccm9ouAg07wTPU30HA4cuRAYZdkrDfv3ptzmD5kVD+mOH7EcjIkX/zfdsuHd92a0naf1mn1dMB2UuM5hW8vi/JxVdcvi5oDpKPKFL3wR7yMXVxe8Myyw0eOqFW1nqVYr2qbuke+M49MHHJ+cM53u03WB+XyViheyF5QLKZkKYafXKQRcn0hb43qJ+y0KtX28ay9bO/koHxQ2byDuqE1u1WbXdqlUUnpcjxUBNnZ19823CdLWNsWOPfaXb172yQ6Qj51MydiS+UvK0YS82Mf5QIgwGqUhvVrnxAg3V9eURc54NECKSJFrhPAQk/BD+iNM6l/IM5pqyXI+I/aDuTrRJkpfYTaCCkoKMq1RKqFQShtkDHRVUsszQ4nUA3Re9kIAqccmBkcMBUJluO42BfAypoRudMA0m2L2XiYU+8RiDxRY65lfv8+qWnFzfku0kp88GqLNkLx8yL1XCmzIeeuDpzRdzU/unzAdSD7/a/epKsvVL7dcLmo+uF5y7Rxza3n/D/6U9vKaTz06QOaGc5Hhgse5jtAEQh0QtsVbgxgeJLlXWwGBs/o9Yg4nh4bxaMJkNMA+PeNisWC6v4csMsRBRld3vP3OBa8V8DkVGByPeOPwPpfn79A8qXlQNpjCsNIDos4RgwkiThH+iLKbk9slo8mAwcBw72HBYDRKCoQxIJTh8OAhn/3MABNqdKyIoSb4GinmIA2CDClzNANE8Jt7AKGfpaJBdAQULuRJxbCt8LHBR0UuQVHi3JKIRciqr1MlCmAUBd42eNcgRQoQPJoYwTULkIo8G2K7hqadk2lDVo4J0W+rWkKCKlDAQKcKbPQOJSy5sUgkMQi0THCvNgNCsNiuQvZ7T8UuzVezEKJI4hakIEcLGGmB1hla5ajn6CaCXUWa9WEgNxWUtJl3ndedI+gjN3fYqAaKH1FSJdI8OKVZ92mt+xCFCDRNDSKiVeJzaGIaSaAVWVGydzhF2Jon3/wqe2/cJ8uO+ez+feK+QLxX0+4FDn/hFWReEIcDmqtrqqfP2B8bxgPN+PghKi+5qOZ0naWbd6zmCrdYUpRDRD7BeIuOjkW4pHaBR/dyTD7k/2XvzZ4kya4zv99dfI0tI7fKrKUX9N5AA2ADTcK4g8PNZkxDijPGhzG9UWaSzPQ2pv9kKGox09NoTDKT3ihiSOMMRyJEsoFGY2ssvVVVd21dlXtsvt1FD9c9IjKrGuwmCZAicIHsygz38PBwv37POd/5zne2B4/hpqd8cOcW6dYOlze3qXbG1L7mxrv3kEXNz+zFqCymn0fAFHH0BqmoSPIEdrYY9AbUXf+7psTUFZU55dpjm7z0mV/l5OSQr33zPQo7ZHPzAcZaRqOtcw6HkBHSt1mpDq31oT4Q+BtTlbx3bb3oeRn9gBKv1TOwbtT+GqNxzv/6UQfuPxkXh1SSNI74xP4uAkeeeOIdxVbW56cuv8hi1vDB8SnTouRBXVEuCiY3b5Iq2B5FZMMxvfEuJ8WceV1STWuaosZMJkQypjfeQnlP7GqsL3hQvsdopBhkI7aH+0TecfLedZQT7O/u4WOBTz1HD86YPDhjfHyfQWL4xM4nqUXC3dtvEUlPb5Shm5KqWqB0jNIRTz/5ONcu75EgiLUCP8P5mLx3KbBNVTd3BedqUIVCyrx9PYhM+ZbF4L1Zlhb8ZKzGMp+3bn/WAvXlWItGO2y/o1o9EpjxnULvWkZ1CQ5e2P+csxpqoAQC052DDw2tMSw/151Lk3U+gQ8qwV0mQQR7LFpbv5jP0LVGK4U1llgGZopUisGwTz4YMntwD1tMeTL7BIONHi/vPcmRPkPcWZA9PWa0s0cVKSopef+bb1CdnfL8E1sgBW8fnCHiiDxXeO1xUiFKjawj0sE2QsVEdYH0lrvTd7AJPLkbMepdZiPPsPfvcjidMBpvsZEl6I2Yqqy4+e49Lo80L40SRmnMLImQ1R1E6ehpg+3nmL1LVMbReBmYVOU8NPg1Uz7/0y+SJIo79+9y/7ikYSM0NHaOqnaMx1sUi4KmbvijL/0pr33tW2xv77Czu8uv/dqv8Nhjj/N7v/d7/Pmff5kvfemP2+a1wXdSShFFEUJAXcuVbWmtw3ptFKwk91eZSLHc/nAN04c/q0tK6blJ1E1RsaTznWN4rM3hrgyiy2R1wAFr59ruujzPZSD3MRCZjx5MYYlEQZ6O6I9y6iYgZF0wJWVCXTecTKdIPHkao6VHKRmoWd6C161DG2SpdaTxWKpqBkLjkRQ0OOGJ47ilC4WbIoVECo0QUZs1sJhmjrcekVQoodHehsJqU4MzeGsQMic0N5y2iywt3atPnsdkWxml71GSYasJtp5TzU4pZxOqw2OkSrkyHiGyHmKwSZKP0EmPqS04O4XdeMBunvLMzj4NgolT3Dmd8c7BhLtVzWFZMbt5i2ndsHd5F5Un1CKjKhcUJwdYYTHe4eYaLyw6GSF1glQWYQrm9SmJjBkNhmxsjRhv73Dn+IzZyYSrSUYyyKn2xzSTBcdvHbNnJakUDPoxejvHfvAuk9kB24Md4iwjSgf4OCEa9YikIlWSoY/pkzDa2ibLU4a9ijiNwTd4r5EiJc9HxPGQanKLpjgM21yN91VQsxFxyEDJFO+DJPZykRU6iCyIhrbEOXBU6wrjwSKQJgEVij+9b7C6aCd6kE13CKwpsU1BFAeesvVtLV+zQKqEJB1Se0ddF0RKo3TcVWzhTE2AujRSCJRwWBP4vFJYpLQQCZyXgQogPEpGbXo7OMFSEOraXBBRcV6EGpjWaRV4YilQMoi0rBsSIQR5nqGU7rDm8Lo8b8hkiwBKtSpAXz3pF4xeuyiZxiw/QwjBfD7/yAvA32QURUGcJPT6/ZYn32LCQgTgI9IoKcK6ICT9XoZzoOOYNMvZ3tzAeCjPThDVDikRe70xcRxxZ3OI8fDsZ59B5Dl1v8/pzTscesvuOGM8SNh78nmirMf3r3+f2WzBxC1wdY2WGp30iYdbqGaKMgX1/BjrGrYGe2T9HuOtS0zwHFQ3yIRm3Bsy6W+AdJy9e4ZoPIMsJeklkChsXWAWJ/SzjF6aUWxI4sxiROBYV4sSIzxKO3YujXnxxWd49Svf4MZ793nw4ARjIEkz4rimKkP7hCUu56H1GlDKIIRfInshKPJrgfLKAflBsYz3nizLOK9m9Khgap0GKNb2gQ7hXw/o1z8yTVPqunrkPHvI9qwzOB5B4XgIJl8bdV196LYf5xGEnhRbwz54h3QNaT9is9dDXkkRMuL2yRFnxYKbiwWTyZS7piLTcGU7Z7S9z9blx7l55z0eHB1wxpyiLdpXUpFv7CJ9g6zOoDxhURwzyrbpbWaMt3YQ1nPjxrtEAq70hrheTLmRUp15HpRnLIoFvtJspAqrIo6qI7QUpCJFExqiC6VQQrOztYWWITjEWxaLA0Cik0GbbTLQAlDn1lOCjHz3UqcYFzyvtvXGBWDq/9/j7wbAOEdx4tHBVEfnZZn9Y+mMrp/N+rZzdSvL7NXD30C0x182APYeRJfpCDbuXKbrYrasTZAJEUCFizLw3nkcLtTtWIOPNNZ5lAShJFprkjQmzxKq6RlNMaOZ7aOynP3eBkkFt4cpu49t8/gLzzCPYwqlKA/vM5GOa1cvgxQceIXDE8cChwy+iA7tWeJshIoz5OIQaRZMi0PSJGV7uMV4PGZzc4c7JydMm1P2k5y4N6DcGtBM5hxUB2w4zSDV6EQRJ4JmdoZvCkaDIUQpk40RlXVUJgQ6zhicrTC24LHHnmW8OeLtd29SFBNGG7dJ0pQ4TqkrQy/vYxpDU9d877tv8vbbN9jfv8QTTzzOL/z8zzEajvjCF36Gu3fvkudZEPZobBusdAp4iq6pbvDvaO+nW8rgh7qo8/dtZXfOB1Ld6ysxk+7vdhb5VqRrfS49NC9ES4F+eL9uXgSK8MOzdy12WgVbYvV8fNTxkYOpYT/lmScuobItZDrCmNCCIo41UimUTkmMQ+kMXE1dLrDCooXD6z5eCOp6hkCSZgOkFOg4J8lq+qOSo0nN2aJhXjdYb8grF/ps5AlSK3SWkMWCngRc6DOVJkMiJVEqRQiJqSdBVryp8Y3HNx6hBMgYne6H82zFsoTwIBReRggLkYVF2VCbinEckfdz0k8kKBnTzwbUMqNQiqo+pF7c4VO7BWYDvvKV13CNYzjaIMoj4q2ISFoe1w2PyRQbxaQvf45bV57jvYNj7AnIbIQwp0TyPnmuibKIsyahEI7h/hWSXkQ6LlEFyDdS0mHOcHeH0dNPMHz6SQ5uf4C5e8gzQ9i93CP61V/j4PCMxc0TVC/hXb3F4sYZxdv/D688v8dPf/JTXH76FeJ8RKMUhbMcFCXjVHJ5IFF2gXQleW/QUtjmCOEojEIjSGQUeoYpjcrHiMjjqTD1KVLEoDrJSw/CIIRDirZpmzU4Efi2xgV5eh33qEzB1MyIpEBLqBeGuoiQcQnS42SrhicUpppSTt+jrTwjk5dQUcrZyX1MXUIZmhTL6RlVUTCbTanyBVnWozfoEUWaWIIXAtehnF5g64Jqdo840qHDeLIJMsFVDc4aFosTmroKKJeKiHRELSoQom2/Ilp5fk/T1GFOKxV401VDY5rl83Npd5c/+IP/gd1Lu6ybmQsZ8OWrH27/zwdTcB7d+au/+kt+93f/5Rqysn68NVlbVtu77FhHF1wiTL57VlaBnFKKNE34V//qv+DKlSsXshbd8Vb0DQhBh6d7XaGj0AzWeUc/z8jShLIsaEzDb/zmJTyWKDEYY5nNT8AbDvIB75zUFPenbJ/eIkkiJpMb4BoykYZMYrKD0jGCmv6lhixviN8FXUlGWUoyHDC6ukdZLJiVnmuuZE9P+PQLv0C6e43oVDCfnLLx3KexzjC9eZ3dzQ2e/dQzJPkGSTbiOS9wCFSUIfCYatY6JBFxJMgSePrZn6YsLXkvR0cRUihOTk74H/+n/575bEpRzJkvSqaTeViTVMQv/uLPcu3aVV566SWapuHVV1/jzp27fPvb36ELfIoiKAQ2jWkDrRCIyTX61y/90i/z7/7d//6RKU7rgdlHfc9iUfD7v/9vODw4YGWMgkVaBWTt/PTgvCPUHXSUHdZkac87c12m03l47+Z7P9ZZsBW1av3FkCAQQhApAV6BktRFwXRaoqIGqSXKnDIUJS9kEbUesP+5z1NVDbNFwWEZcXjzlMVigbM1SQzSaYYb+6RJxqd+6gWcmDM3t2je99Q3S4YbG2RbY4ZPPIa1nutf/zZaOK71DKOrj7H1qZ/hdf0aUekYXX0ecWmb7779Ds5ZnnvqSbK8z2BjHxnFqDhDRwlax+CCemccZwgBSjah7x9tLZTQD18DIKw663NNEYQoHHjLqj+hfMR7f0xH96x1nI+H0PeHs1Nhv/WXHg5Qu3V9vS5l6dauOb0CVk5xF1C1W1aOtmuZJK1EdnsCAhAyCI6p5drRAk/SI9xK7c8YT1U4ailYtHZLCoVCgNYsphPqckHey1BW8x/+9M8Y9Pv8wi/+PCoKNeebI81OumDbN1irmFy5zP10yFunFodkOH4G/AJr75HEMdkw4cTmzLUj6mdEqWDj6Yi4jkne6ZEM+/S3d+hd2qe3v8/dd65TNpL9vqTX97x254SytjxxeY84lrxxokEWeHmTJy5vsTnaZLzzJEIlZKdn3Lv/gC//xas8dmWPz332Rb722te59d4dkCm9/pi8v8G8OOIrr32nVc2TRFFEmoU+c1orzs7mzOcLqqqmLBteffWrXLlyhRdeeJ5r167yy7/8i3z3u9/j9u07iA48LIsAhrTUvy7gFkKEeiWCPP76xJFyFXidn2sX8k1rxVTLYEmEAE48NA87e+Gw1i0DINkyPda4Pmvz8rz6ZPuWoFUggvCJWzJEAqR4nr76g8dHDqaiKGY4HOJ1htVRyKx7QqG9lEgdpK6TJKWpHXVlQViQDinDhHftA2JNA6rNUElNFKeggpy6cQ5jLWVRobTCC4mMPZHSaGmxkQsl2yKk9XznHDuHcxU4F5rbOoF3ss38iSCbrqO2KW6gI4XFRaO9AWfQQuCkJI1TlJSQBSGIXEdUQoYlyBk8FaOehsxzu65ZzErmRYNKNUkZ0c9gI4fYNmibkMQ9kn7C4kFD0xh6slWFs77NksVkuUYLz3CkifuaaCdCziJ0rMnTlPGwTzocIEd9klGfbJjTjyUDDUk+xI4U+/t7ZEmMH40pDu9xOjsDtU/ay+iPt8j6Y3SqKBqDm8zYzGB3CNgYbxvStIfSmtJEgR7nTKDYocOP1MgoR0gDQuBboQ5EaKYbFGBsaLoLhPx7K1GPx7sGCP3JvAzCIL59Sqwtcb5Cq6ZFMfQyLduYhqqchG7MQqOtwSlLVc1pqgJtQmAsgLoJjWMbU6EbRVMrIBQvQxBO6NAvYxqapkLJ0ABZoxBC40VwUkNvKYezAe0KQaHDtw2BQ1BVhQfP1CAFFoVDYZ089yDGScJnPvtZrl279pEfzr/JeP31r/HV1766/HvdYJ77YbU4BaRJLOWyu87f3rXKOLLrIh647YNBn3/9r/87Xn755Y98Xsv0PrD6zwqZOjo6oqpK+qMh3htm8/vYqsacTbFljUUxM4qzyuNOZsQammqOEg6VxiAFeR4jE4lMDEnfk/QFSaKInCBPEnSSQJogs4y4lxNrSewrxnmf4fgS+7uXmKQp6Xifuprj5bvEWcrm1iV0NkIn/UAxloqodf5cMwtzJx7iXYUzC8ZbWSuNL5fXvzGeGzeuc3JyxGI+ZTKZc3wyCcGljtjb28EYw6VLuxhjOTx8wN27d3jrre/TNAZrzbLDfFXVQa3PhmC9C6asc/ziL/0Sr7zyyt9iBv314/j4mBs3rvPmm28icGvzqm0xsLrrgG/pnyFT2dnL0FBdPjQvl/1HPJxNpj/U7/EPdTwqk/JwUOmDDWwDBu/BGBfEYXGYpsaYmsiBcJpeb4iTDdVC0FSGug4qt84GSqhUisEgI89ytjczGmEQJqY6idFxTD/LyPMecZ5TO0866JN6Q6ZgkMTsbGyzs7nD7s42+cY2qrfJvH4XbysGww3y3pA47yOVRuoAXikdBQVcF7IMQkh0lLCiuK5AnHVH/sLVav8NzdiXQjytY75678NZmX9U4xyi9ehdziPuF7ZdRP7hXMDz0CH9Sj92KRKx3NbVY56nY3XHpDsP79fuSUvfWzq+buVUd/J/fnWsbl50xxK4ti1KcNCd94hWSEAKgdRhrdEy9KvSWqLbZ+Xg+JhiUXB4eESSJRAJ6qqmKkukacBIIhUTZwMeFCXOwziJ8dSh3ZlS6Cgh7zmUd6geqMTTGyuiKiJNE9IsZdDrE+UZIkuJ8pyk1yOLBImwmEWNQLGzvY2UAgN4v8C7ktoY6sYi44woydlAsFgE9k2eJWyOhyRJgnVgrMcYgjCbiphMjzGNwRjHcDggSQM7JoqiltXTYN2Cs7Mz3n//NiC4dGkXKQX7+3vcuXOHlYA/LQAAIABJREFUo6Mjmrq5QNET5+7b8vcuGIGAiIkVtW+plrcEic7T7NYnpl/78wdmmNv50gXcyLWDrE231Tx8+LXAKlptDPYn2KCPA+Z95GAqTjcY7b5EVZfUdYnzEusFUZwE59iEiy2VxDiYlI40ViQyIsOjvcXGCd456tkxAoHRMQhBnI7ZGAgi7Ymmc8rSMT2bYp1gmlbEsWLQ1+hRn1jZVno7oioLajw5HoTEGRGcahkhVYZK+ogoR6gYdIqXCiMBbxG2QuKR1Ahnibxh1MvwecJ8MMJ6z9iHRq2umdHDsMMZ9cYGjdpH+hDAjb64ydHhAX/6J/+RB0cl795xyCxB9XPEdIpYlDTjZ7DJGBs9g/dTTm/9Mc5UWOeReYzqbfDSkwuublTY4QeYCO7JBCsVYmgY7G3z9ItP837W4/uTkmuvPMcnX9xDf/e7nDw4pvqzb9LfucR/+V//N3hVU8szvvfut3n7PcHXT6a8cVjzT/QtLu9VfPKFy2z0Yrb7GyhREasC4XvgI6I4QSiNFmM8baMzBEi5pJhG6eMoobDNA5wtqesKISEmRYoIpSLwrnWyGhAVvpkFhcQWSXLeIuSCdKBwFmrnaZo51jdElqAu5F24j9pRNQtm5RQlQApPIx3olNn8PlhLrzdAqIhGONIoIso0kVRoYTg+uY2xlo3RPlrFGDMNimfWYGxDY1Iao4mVIHMLtG4C9CshSjdQukGrGGsMxhisD1mpqF2cvQ3BeRrJEFzWBSgXpFPXKFo/qhH8q1XPBr8WPEG7fLWLh+jQmLY5q1sGUytxAinapq3r7/9bOCNBlt62tF25PGetFc5plEyYlxXfu1nywd0Dvvu1b2OzIa6/g8+v0B8OKD54jdnikMZ6hE6YbPTZyQ2f/+wCIytqWVPlOY3uITcEOoXty5dpehk3q4bk0hY//9tfJDq4y/TwLvPJhHRR8vlXfgbrDSp2zEvFtt1nY3yVfOsT1FXFoqgZ9D1a6dZwg5S2LYr3CBmhoq7J6MXv7akbQ2M8QqQgamivtXM1X/7yX/D1r3+Tb3zjW2xvb/KZT78E3nF0+IB7H9znzp17QKBNB+ZD21/He8wyZv/RZXFC/6owb2jnk5QeqYIh8t63krpiGTQFVaguuDof4Hf74F24tI+wsz8ZYRG27bqi5KqGSClJHCukihBC8f4HlsOTOXZyHy8UYnCJqVHcmmbY2W386TtBRAeB7I1JkoiXPlXTzyRpdpfG1cycD+DDcMxod5eNy7vclopKwsu/+rPExQx3cJeqrFmczXj82uNcunQJGXu8MGw9tYN3nnz7SSIVsSgWJImjnwSOAaZBYBDKdbkSlO5DxxN6RMb+vPN2cVugfyPasoJW8n9Zc/WPMYj6OOOcEwura/no63LeoQ125QdRJqUQeEEAG/2qvx2yledv/123QR0g4Fq1uFUz1xWdWbHKeIfMdQiQnTUBlGmFSXxXpwtBUXptfZFCkGUpo2Gfx558kstXr3D7/TtMzs7Y2vQoJbh39yZl7bj9wYLNK1e5/EyDnBfIqsaO9nHJgGTzWZwpOb33KtY0GAc6i9H9Ps/tL7jcqyjVAiMdxWAAi2CD0s0NLl25zEGUcLesuPzZ53nm+avo999kfnYGC83Wzha/8Zu/iZeGsp5y/+wO90/v8uf/7/c4/uCMf/5PM65evsxjj+2yMUgZD3vEkSDPNeONETs7O9y5e8DJ6RytUzY2tqjqQHmczeYIpajrBusVQmYgJi0IYzg6OuYP//BLjMcb/OVf/hXXrl3lqU88wcnxIUrCO+9cp5gUa+v4qrmu6+h9y2g3zJlVlkecs1fdDsEr6YzXWsbqXMKqC+DAuRWoC45lJ481G6TaVFnXMDrYIIlSbbmQlO289A8xI5SS+FYlssuqfpzxMfpMWeqqxDQV1tRAjEAFUQcvcN6EzxZB/6SL7KwXGNNSvaTCeYG1oWO0dU34slq3X46g2iMcpqpprKduU3zeWEzdUBUlmWxlt9ubZY1pHZogRy6kQqgoNFKTbR8AsU6dClkt1zZnDWXgCqmDo5LoIIUd1ODK4LQBCkmDxruWhoAjSyN6vYTBsMe8VqisgSTDx32KpqaZN/TGKWnSYzge4hqYTGOEiImSEWRDfDYmit7DNlPGmUL2Ikq9R+0rfHJKmmryPEFFCishHqX0eo6t2R5ibrjVhKZyo1EfGVu8jpiUj1ELx8m9Gc3CMiunTGYR3u4itSTRoa5HyQicauUgm6CgpHOE6KqNVoBPMHiKEP6H+jXfokbOu5Ch8hLvTfihAWGAEnyNteFBUXiEMCitQQiMEzhThobNXgRpYO9DcNIsqGyBdQahgrKMsUEm33oDWCwmBGCiwXqPcR4ldOjfJT3Sg7EN1npMHeapFwLvBUolobN30xDVJXiD1BEIFdQgvcdr3fY2IDSNlkH2W0iBNYC3IUCXIdOpdITWSZve/tGPlfKfaBGbNrUNy0WnW7D8hd8/DIlZpeD/dgIES7nbJeocjh1FrbyxCJmaLOujownzSuK8AaYM+pvkg5iTQ09FQ1U7FIp+r0caF9jmmDQXDPsRs3RAqXo4PUXIps0oepwEmWjyqE/kNohpiNPQuiHPUhwOVIMXOePxLv3BGKUThDFhKi8X/a5zO+tXl2Xhu1jfNxh/01isaVVLl+hecBxmszl13XD37l3KsmB3Z5vTszOqqqJpapwzyy703T3sKDJ0T6r/+4lAuu+/rJ04Nz/OO8VhHfbnjNi6Q9fRkLp9fjIujJb6svoz/C6lIopC812PIE0yssxwelqCUGzkKdJqZoCXOYgBSiVBnCnuI7UkUoco4UhUTSMlWTZC9EAOHXmvR5ZlAVgDsmFOmkhyU5L0+yglSZIYFUuQBodiNNoG74niFIlc3lug9c6Dg7UUOcCvslIX5gXra1p44cJlWW33PtCK1q/Pj30gxYXHcj1S+tAAdX3fVldWrK92awdcc4BFu/ade3w71H/N8eVCtmolYf1h5++X/y6PvZa1kC0NMEwd0eLA67XHAYio65rFoqCuG4yxrK/BVRN69ZVVxXS2QJUOVUu8LhFOsrmrwGlOhKF2NVXpSHuCwaCPkgtsUzHsCUSScNYbY3yDVycI2dbBCo8TgriXkGWQLrZRKqZ8/4C0LEnTBKkTkkzQiAqrPEJdp6gNxyfHZFnM3qURUgpGwz5KQRxLsiwjzzJOTyecnJ5RFnVoaFw3NMbSCUQ1prVBdhmJ4F1oazKZTLDWopRCymAPJ5MJVVVhrMG5tvUM7ny8s5oiPGR/RDdzHjGEX9t9bQ76dptYzbd1et66ab0o1LVeNdUBxqv9u2O1AX/LphBrn4Mg+HGuUwR89Kk/anzkYKqYnvLg+huIOEbomKg3RkcpzeIYj0PqqKXcaYRsUDLQoayFSVmCc8T5NkIoaq9xxmLKIjSijaAxJc4ZNoZDhBRsDFNq4zicqYDwu4ZyWlHNK7JtRzZwKKmRQtJUDVIr0n6KkClSDhAqA5ki0UgvQ3d3vyqidCLC2oq6KEiTHB3nqDgORYpC4J2lqU4wdUNZVjgR4USf2TzitPAMI0usDLaak2rPZ17+HJfnNdGzM7zqQzTm5ut3efDuCZcvP8d4d8yLnx6DG3J953mywZgrT32GSiYUMuXNL/1vvPmdN/mXTz7G5b1txnv/hNmDMw6/fp3NPvT7gn6k6emYSKfEWvHTn/tNkkbyf3zpDawo8H7GMB1yafNJLm8/zec+Lbl+9w2OTu5x9NZb1Pce8JnZFRR9kixB6RSlc2wzx/mCujoFZ4kHTyNUhhe6dbADy1ricGaO9SVSREiVoKJAZ7KtipJ3DusWGDdDCd+ijifg5pRFhRCCPEuRUqKTPvgY56MgV2+qFn1QaKGpXc3x4gN8VYIvkVFGlKYUVYWpS6wMxY/TqkSJGq1LFqVlOq8Z9fsM8ozBsIcUEZN5QV1biolBRzGD4YhER+goZj45oiineD8jUoqktxPq9dIIKwTOaaQ3KAdpb0icDFBxqNOrywLTlMxnJVrHpHlKlGwQJSPSNP/oT+Lf0RBrC0RYlbqAbq3wc4kKtQbKg192IF/aveVCsl5HJYRY0nX/BmcXEKDOwK26wpLnfbz3VE2DjmN+6sVnyKI+r339AfPpA2a33uLZa0OeubLFW6eKY6MoDg/I1AYvP3eV4uQ+737jW7z43A4vPrXHSfYUU7XJ/eQO9fyU2ewELyzZxohEChCGnZ3nuZy/Qn/0OHEyYDI/wjpHL+szzIYMh5eJpUZpReQivLdIqen6goXr0yKmzgS55w9REfPes1iULBYl1jYYE2TYm8a0Br2iaRpu3nyfW7du8/bbb4cgv66p64q6rtpaqSABLZbKWt0N6+73j2Z0zotshS1CE0ZPV4HcZTSXTq5YOUFCqAB4SbV0frq5JlWg62L5ewMj/uGO8NRqqdcczvBLkiTEcUxtDMZanv3EY5SV4atFjBCCz7/wBE54TooCYXtIe5XxaEye9bk9mXM2m3Hz9S/jFhWP7yr66RZp7ylQ9xHxXTb3dsnGI9IqAFsqjcg2Mp546gmieIMkG7IopyyqijzJ0FqTZ5t4JGkc46wlNnFoD+LV8oZ3IKdv2QzI0IB3+Y3F+e//g+f4KqASIlrb98c1kLr4vVvq40PbLoAfjxwPhU8P3YqVjHpYE9Qycbrm6l7kXK5lqi7e2c4Odfano4k5G9gAsg3srbXEUdwqzYXFpKPYax2yKNY01HXN2ZljOnubt966SRxrlAytdLz3FGWFTlI297ZIMgnFKVLvo/pjJic3kKf3ePHlJ4kjwfcOYs5OF8wfHLD32GVefPEJPvjOfa7feMAXf/5Jtvc2Oeh9kvnJlHvqLayZMJkc48Zb5MMBWhiUEDxx5Wcpz2bc/tM/YFKVLBanDAcDtvubbAx2eQLFe28cUMwq3r3xJkdHd9nop/T7ffJeTp5nDEdDtne22doe8ZWvvM69ew+IkwwIfbeEECRJQttCrgXmApU/2KAaWtGOpmmYTqe8//77fPWrX2kDTkNRLDDGLG2QED4AzRfu77n7J9deb32O9aDl3E1eTqLV78uYuLUj3T1tn/A247iq9w6OjOu2Lrevzm21HnRCGp3g1/K0hFi2VAqVQB/dBn30pr3GUswrVCNQsUQnFqEtzpR4b8MiiUR4j5atJPoSWQqT3jRNaByo2y/hQpf1umnAexQKa9p6Ji/BeXxVIBDoWCNEuIlKBuQ/jnsopXB0WYGgMtLVeAjhkZiQBbMW4QQ6ClLWeBGyFlEPoRKQEc4DNmQ8vGuwzQxnC7qsjMCAm+ObgoP7D7DFjKI8wjpD6RXeCS5lApQADX47YlinXNuoGKUzek2CsxVDFH0p2IoMTimsakie3GEWPcu1a08x3t2k6ecUxjJ+8QmG4xG7m9vU8QCZDBirkoG0DMbbqNoQ9SVKlYjjmwh1GbG5TdKew/6oz0BvMlhcQTmYVRavSlQcVPakClRLVIR3fZCh9gJf0tgGISRSJDgf1FmsK/FuETJ5QpHKLgXvlgIPtZlQ1cckcYZWEQ6Lx+LtAi8E1ketQyrRKkKSUescq2uMrcFbVBzuQVMusHV4yFWakXb1PTiaoIeK9CaAHJWjbBxlY+jZBOcTjLcBFZVhcZfaI5VDima5yErZoKOwaFvnaZowLz1BUVBI0SoDSrRKkDJ0BUeIwP8XKflgG4FDSA/OYesF3pkPf6B+WOPcenbe+egWndVzudyw5rSEAGwVUJ1HhjrhgI/roKwr9awCvVYBqDun5ULmyaQkEg31/B6+PCW2C2Q1xy1mzI9PmByd4JuKGMturqldjtjfod8f09gBkdP0lcftbrOI4M7t+6hRxbUnn6ecnnLr1l0Gjz+OHu+hVBTEQ0RQbJQokJK4XcskDq0UIknD2iU7KdYuIPR4X7dxje4u6blhrWM+X7QKeG7Z2LALUo0xCBGy+IGKYFrHILw3dJ0PP86tZwd/9IHU+e/XmlN5wT1bR7OX7wnzRsoLtVKINaWl1nkS7mOhgv/Yx3mlqxUQEZxNt0Rhl0CFlCghubo3BiCLFcaFxqA6jolVRJ6mJJEmlw6nHVf2ttHS0B8OMFEPGcf4fo7fHDEYjUh7G+zqmMIZdvSIXEmiNEGrdPn8xDgUoeA/kr4FbhxKQhynbX2qbO31+vNj8DgUXX/G86iweMRvH3Kl1kCai/v+Y5pQj3Zgz49HbFtHyc69/OGZ4PMB1Id9nv8B2x9hg8T5u9E9/ysK8EqsZknVW4Jwa2uFa9V6XWBDifb7GWPadbWtgekogdoRKAYVTa1QMtROIcDVgsh59HyOsEHUwsUSFxXIZkKkHBQzTAWTwyMWsznCNvS0Z6+nkVsjBm4XpUdY0yPzoGKNv7LPZFHw7jvvs/Vczv6VASe3DjidnPDkp3eQcY51hqKYcnj7OnZrBy2uotOMKFbs72yyuHaZs6NjZtMF3/ne28RxRKQVaZrSH/RxzvDss09x/fr7nE3mWOtbuxG+t7WhZVBVVYSsbbA5y/poH+qnuutrTE1jVorEzgWhB2M68SPX3urz8/BDeC3ntj2kkCfOr/0XQrJzWaj1rOTKj1jDEx/65LWihGXgtMaKWPtdrgV/3rVU5I8xPnIw1dSW6WlJnEiiWJHkDSJW2HqG95Y4Vgih8AgSBTJPMMbRGIeVQZ7SlSVSKvJ+HxFBFCkWizmLaU2qJbGMqMoS6wxoGQrnJqfoOCHubSFxSOFI4pQk7pMPL6GjGO8rnGswZoGgRTwFQfIagwDqBjwKpfMQdCGRKiLKcqQSeCEwLtBpTD3FuRJXPwAfKITCO6BG2jOoS2586ysc3bnL8bQBrdl5bIfeoM9TO7ugDKiGvccV5XbKvj4lk1MmE0/VGLYbycA6LvkJiYxJdMwrrzxJ8jOXSfdeQKYDts0Em0H9q68QRRl5/xJ7+SbP5WMkAilgM/c0xYRkW6MXZ8hbryHEp3BXXyDShkgZNjb7MI6ZjbcoK8MHDwrmpiHPJZCgda9V6stADvFeYNqAqSwOUTIiSzawVlM1msbOsG6GdCHq18qhVGjA6EUQ8CiqQ6aL2wzFPpkcYr3FeoOzE7xQNL4XsoWELuFa96nTERZYTB7gXEOSCbwtaOZnFI1hVlvi3DOQUahHkp7aNcG5tDXWGIp5ifFgvKBvUpzLqEyNkA7V1jjFGShpkTI0gW6MRSmHzqCpoDHgKosQNZQ1UaTI8xgdp4hYI2WGFBGdNVCRRscJ/dElTFNQLo6xTUVTTHHN37O087phO4cEL91bOipEh/ysaFfnR4cOyRYR/Ds7RdeipS1FI1Z6iXBqt6A4/DbSOXIpYHZKeXjIwc3bfHD/LnEWk2F4oq8Q/RH7yXM4kTItM3qRpK9qtp9+gsnpiC/9L/8ng/E2X/z13+Ldu8f8x//0LbZ+ZcSnnx0gdYyUgoRAYej6g8WiQYqQlU3iGCFy6OhKa5fI+xrTHIcaTJlyjrLQDmsNx8fHTCanbX1YK31uHd45GmuXgZWUAmNDkXCaZiHotzYUC7cCKisL036cD6DVj9JhDB/d1d89vN2t1eZ1AfyqhmE1nzo0MBwxBJjS2o9tzH4sh2/Vs9prrKVaBlSp9rz03B4draqqPbF15ElCv5+HLKDw9HxBLGuuPv8USkeobIzzlpEtcZsDbC4YjPeJ8zFPl1OMd4yTAUo4nJ0hRMgIRAIQHiUkAoUWVfgbj5CaOG/roVh3XAA8TXOEdx4pMzqVtn9cwc8/vLGyAx89g3dRVOJDdnr07+eAufU1TKzZlPM1NKvYb722RS23dfWZpl0zunOs6wrnHKat5Q9ZGLkUXgAQ3iGFoN/vIaUMrIiqBGepo4Q6OcNkRyRJQioFWZJgTo5pjOHeu+9hrCFKI8ba8YmBYvfJPYrdHKMGzKuYYWNQieLSZ17k22+8xV/++7/gi6N9fv4Lu/zR//0q73z/TT7/9EvkaY5xhvl0zo1vv8r8yicQqsfGpmUUw7NPXGWzF/Pnf/5VDg6PePvtL1PXNVUxR0eaJEn43d/9LX7jN77Iu9dvMy9qDh4cUpZlS80TWCOo6oaiqNA6PH+hXjesH8576rpeXisdSeJGkyQpURRhrW0zU50QxQU/4RGB1frG9UT6xXnziNB+bct5RKULu84fost8XTiKZ+nTyDUb1NVRrdsfIeSqb5kPAL3n49mgjxxMJVmPrf1rGGux1tDUJcxrXBMmsKl96BOk1PIBUCqg2KYJGSIfGvVQVmXgjzYVZVkFKl3tafAIZUP2SUiEkgyToNTlqwIVx6RJQqTithaqNeheIJAoEYpvZWCIIrzFEx5PY9tsw/QoBFw+Cj2P1u7bwYNT5vMiSHiLBi0nRNrTzzSxhiwSoehaerafeJx0Y4vq5gOK2nB/Jhl4R5ZVDDb6bIwz+qnH1jFbsSaWishYrJfs7jxPmqds7m5QO0lpJKoG30SIokA5hxMCKXr0t19A64g4zlBJRi+JlxMhVgaV5nzhU59FNTVXI4lKE3x5HRfFeB0TRwlaDejnjiS2YE9RoglNd53AOo1QA5TqBdU65yiqU7xv2rqfBCdSpIQo8kid44jx80N8s+DkqAqKhEmGVJIoUnjn0FEwnM41WDxOSFSc4pEYD9ILNArjPc41RFqRJwlNlGGsxFYN1nh0lJNrSPNQB2AchIaNYJ2isQ7fNNjGU5VNQGS1wjlLaWrqyuK8IFEpeKjKAuEd1eysfQaDqphUkiQaoJK4rZ3raqoUUiR0HSSdszhXooRu09ghneFcyHRJqSgbSzmfY8zfQ2ZKrNTd/FpiasUdXjNo3ba1/63jQj9QPedvenpieZjwt5ShRq499+58IHCWo0iSJynjwYDp7JjZW1OmixkqivjkJ19kNN7gO2/fYD455fbNdxAqQuiE4caQXi/nk88/TTbY49d//TcxzvPWt9/gzu071EWJaZoWZavxntD0m9BgGBHQddGtJaJTFeuK2tXa9dEoNUQIzcV+LBe/e8dPD32kXBtM+nZehYsSVJZsQBdNQAzDex6+7kIIhOpUsNxFK/PDG94H7rxnif3JlhUAa+ijp23QdgERbI8R9l0F+av2Mj+4n9aP63jo+RGi7U3WbVyff22/Ou/AObSWDIc5URShtca1DZ6jtIeKU5JYB+qLTnCEtcwJjZUpXiisqclUjBeg21pmt+w3UyK1JM4GQTVXSqRI2/NxbbahDb+9w3u1dKDDOtsPa8/HoNX8eI2Ljqp/9Oa/ZhfR9rEL//fL/ZaAyMWkATwE+y8Pf6EIaznrWlrD0r9ud5PnUwoP2aBH1dacD7rbT2rBAx+iqQCKQqtMGfYxxrTCCOcbyQrM8lM6Ozlvyw+8kHjhME2oq7bWkaYxcSTZHI/IkpRbt69TlhWNs4zGI1548TmiLOPr33mLe7ducHr4ABnnqChmvLXBaDTkpRee4cpjz/Fbv50R5zlvfO11ju7dpy5KnHHkec6/+O3/DNvU7G8OqYzle2+8HtSLpeTq5T02RpsMh0OaxpJnOZPJhLfePMYXJVMx58tf/goPHhxz6/ZdhBA0pm5rbYN9sbZqJcR9m7ViSfULAdVaSxTC9ro2OFe2CrIN1j7anxFtb82gBtyCO2vzwnlW6393J87NJ7+W2FxlngLxyCHcisGwfE9XN7ysu+oYDisF3XN2eJmVWgMcPXRCSVK0c823TaN5VJbsB4+PEUzljPeuMJudMp9PMKbEt+ihkJKmcQgvQar24ji0CuIPpawxbTbF4SnrqlXJK2gqg2sMpTHgLHku0FqghURLwSCJaZyjrEt0HJHFKbpVLGqxi86Ut8GUbKW5HQKLXcrGhqK7pp4HB5oU4wWVA+vBeM+71+9ydDjFKouQjiyvyTPF3mbKIBVEPfDOIiRsXbvGYA/ulzHV6YyDwwmVd+wMaoYbMBqmiL5EuIZBmobvMzkDFTHYfxodaeJIcrzwnM08qna4RiGLEm1rfDxERj16W5cCNQJLHgmUFqE2o11kIpXxuec/1WaJ+lTzO0yPv4lzI5wbIuM9It0n1hLnLKlosHZBU0/xTmBdjdYaqXoIX4GvKJoJ3hlG+Q5CZjhShDREskbLHC8kZn4f08w4ngeVvngwItKaPFH4CHTURwiBtU0QIxGBYukQ1G3HcuFlixw0QapUxNRxRl0L6roMzfainEQpkiQGL7BtMCWkwDqFMQ7bgK0ddWWIIk0SKZx3VNYwXVQYA3kqgxBFVeJNjSvmSKFRIiKKY5SOSDc3Q78THa6tcxKpgtAGog3RnWnFKFxwBlTUOsYN4BBKt1myxd9PMLWWsejWmaWNvEDZe6Tj3a10Yn3hWu3uOyT8b5k1WKcP+mWAtn7MgBpFWtAf5OzsbfP+rTscHByyKCqiJOG5F55FRwnfeesG9+/e481vfQsdKeIkYrQxZjgccu3aU2xs7fDLX3ycw8ND/ujf/3GQei1LTGOWanree3SSEgRWwucLqQP9yNdr59V991VtlBARWketM3Dxuqwc2wD8eIxtmx26APasatJW72raRsxV2aGF66IV54eUoqV7rQzJD3/4lcPUDbEWtPMoxs+6txa+SxdIyS6Yat/4sJDFT8b6WH+Gu3l13rkN2dMwNwIIoCNJnOStwyFDs09vidMeCEkcRUubqgCtEqxKsTq0tzCmIY2zZRbR44Nz4rtgKkJEPZbPhQzuhXMl5+dtaKq7en4ESvU+5PmBR835v+bqfMz9f0zGEhAiGIdHjeUSc8FGrD3Xq+feP/qtrAJn/PnXu3No/ziXUVgCep0t+AE2qHuhs0fGORq/2tct6ePr5+gwPgTsIlCXAKjLUFek4wQhA/3NWAeiYewHRJFkvLlBlia89fa7zOYFxlsGoyEvffpT3HtwxLe+/w7vfPe73L9zhzSLiZKY7e1tLl+5ygsvfJb9K7s88+wn+cY3v8lrX3ud4wcPaMoKayxTjS9EAAAgAElEQVRpmvHP/ulvUFcNR0cTblx/ize//1XOpiXTWcXv/Of/nL1Le/T7Q4wJomf372u+9a0q1DQ1hlf/6nW+8Y3vcuXKPlmeYZqmpZL7NkPXUYFb2rhzAWRpVRQ7G7S8UjaAfU1jQoDR1uqep/at7nUXjDrXAXrd/VndWYlcBswdDby7h6sZFP5ZZ79clEZf1n63wNHyUKJTH3543nTTbf18u8m5boN8mCar9fRj2KCPXjNlDWUxRwBZmiJkAnhMU2C9o5xWWGGwOqCv3jqk98jO+fIe5UwwmlGGlwqvBFpaYmmCmpur8dLTAHgdshgqxkuPFpCkGb1enzTvE6cDjBUYZ0NFlnM0RY1Sgihq2qheQVsUnicB8a2cxdmGqippjKVuaoqyoawMk8mCaVlT66DsJ10PW1qqD2Z4GrxvGG3t0d/YI20MCY5XXn6Rqqm5c3gMpiFzJU423Dm8xeWdS2xt7tJL8yCW0b8UgookAyEwzpPGkr2RoLdxiQSPVw4vPAUxjfMcHh4i8SgseT8nH/SIopDVkTJCCA1REiarlMT5NkP5GZzIcCJDKo1FovEo6UgzjfcDbD4MyncerAX8GQKLwDHI9vHOgmgwpqBqCiKtiLSmKQ4wzYJelpL0riCGAXkwKLy3VLbG2xpHTZT1QqCicpzQFItjPII47QMG3xwgfIrwKU4EBb0oSYOYCCnWNaRmhpQRke7hTYG3JbUN8vtbvZgmhqqMMLFEqYh+PmBzYzMUWXpD5BYIY0MdDAJTg7cKRI4xFlfXpGTEMqMwgkYaXBl6XAgriaMGmXu8jEDGeBtQ3q5XmavnICVR3Em2xsTZmOFWTJz86AUoHk6Rtw1z163Rh7xj3ZURywWrQ4HW8+h/907uivqxOrYxhrPpHKk0eW/B4594mhdf+gyvf/2bnJ2d8Z3vvIlSitPJjP1L2/zKf/tfBYltKXn1K69x48Z7/OEf/l9kaYrWkjiKGY1HXL16lceuXePe3Q/4/X/zP/Mvfud3eOmll1gpgGkEcml0gzpYRw1YnvGHfZMPeT0oSQXuulmiaR3X/7yzEFDD87Vt3bXxnLtOnja4D1kI+Yj7+8MYKzvTGTq1pFWEs12dh3Nd37muv5RaO05LM3FBTMbZcC2k1C2K/pPxUcfFQDpcR4X3gYLtncdYG7RYVaC5h2sc3mdNhSc005ZCE+kYpXSb+VqtDkunS4CWefv6CtXuaPRdlknKhBUq3NXmfFgG6uL8/Ulg9MMeF3Ne60/vo2qpujXqYjrs4Tu1OvKjYaDV54alJLRVWL57GTC1q16X2eyCtDZo6qh+3ZrU2SxgyR4JSTCPdW27ShHU7QSEelgpUFKAdxRluQz6prM5URRxOp2D1Hzup79AUVZ89atfoyhKvva1b1CUNfNFwc/93BfY39tFKklZVvzpf/hP3Hzvff7tv/1f0UqhlSTv5fT7fV54/jkA/uRP/gzvHXu7O2xtb/HyT/0UWT6gajRF6ZnPa77xze9x5+4B7793i6IskNIzOZuEenQdWqs676mbmoPDI7RWzGZBrdBas8xOdXVBoTSio4u3fSU5H7A6H3z487R/CXTtXtYDpgCOCBF6CVrbxgCAECEGgFUQs2zd0h7D+7V54rpmvXI1Odr76RVLO9KdqF9ml8J5OufxopuL7bn70Cf0/2Pv3Xpt27L6vl/rlzHGnHPttfc+N4oqylRQEYwjGYz9gHEiUgqxnLz4CwQrsZMob7mJp8gfIH5ASqI4SmShWEoc8gVQEsA2EYjYMXaBhKGKKqDgVJ1bnX1Za805x6Vf8tB6H2PMudY+Z5/i7HMI7F61z1xzjmsfvY/e2r9d/o2s26CCtQWcVRmUZlApxZD+AggoUtJCgGLQHBlT6p0EHbBhTARgnGJxGUZsDJiY8M5gBUiaf2QbfSrZgMmRkA3JaDLclBOJTMza2WydTngj+KajaVu8b7G2IcT68DM5ZsKkhXCtZHIBU+IyYjLeObKFYDW0IaSRGCfidCT0E+NhYpwmhpgYi0UviiMn6PuRMUwcxwFzz7F1l5hwoDWR177rPpFIe+EZD0eOjx8x5Yn98RrMZ+h2O5r2Ams80dtSJVpDdlJMNNbSecu2a2idY4yBmBJDMsRxoh+ukZRwJM3P6TS/Y67/I2YV8phwbovdfYaUG1JuCHkk54AQ1ZXpLIjFyY4xRKZxIuaJHHucZAyZxm7JJhHSY1IOTGFExGNtR5xuCP1TZPs9uHbHrjXEmDkOk9ZtmkadlHEkuY5sM9Y5pQZNagZwYkl5IqajrgSSwFyQpSlFUQ3WWFIO2CCINFizU7cvuggYgW3jCSZD1JCRmFu63SX37r3Ksb9mGA7YREkmLAFbEXIyGGlIeVTKz2zJNEyJOayKlPFRSVAmb8FkDVON1ZoRi+dtKDl6HsSRRcNk2q3WfPnUWr799Uwknm4/t8TUMIqyra6duf7+MeKp09j9pchmjInjsadpWm72Bz73+e/lM5/9LLuvfp3r6xveeefdOf753sXn+Yt/6UdK3DN8/fe+we/9/h/y5h++WcBL4v6DB/zFv/Qj7HZb7l9e8s//+Zf58pd/gy/9mz+BMQ0pjVRlcAGjFUDJmRJ47mX5sOdbazMlUhVSs6cvrw4pC3xJrD4FcHe1BTzXhNpPpp0WQ52hXlIBqqYFVZ5r8caqhGudknJ8sXKnnOb6cmo5/yT78v//tlZ4l3FZ3noRS0SLkEuuifxmBjjkTMiatxdzUhIlKknEGhjHRVFFEFPXuARoSQx1N6w9t1XNkPld+vD35+5f/vS2Oxb0ZzU5+zw5rmqnZ16h+gLLHYfl9fqkf5y8mmuPuTC/09VgNCvdwGpKnl0ir7/MN3US7lvnzlouzRENp8BraTW0uG6bszzLfebZAGfKejxNcV6fh2HgcBzY74+0bccrr73OOE50XUsIgTff/BYims7y+c9/jh/+4T8PIlxfX/Mrv/pPub7Z87Xf+Z05uuD7vu/7+P4H97m8vIdzjl/7tX/Bo0eP+eIXv48vDBM/+qMtzjeEKIDFWs+333/M8Tjw+PFT1a/yxGF/xBiLNRljal3IxOFwQAQt7F5ScmpEQwVGGlKeZqAw1wObJ4I+yJTSivTj9pgt46X/kbluU6HCK+OxODfX7/9S3mMdupyl/rD6kdVX5mmqZ5iNvtXrusy1epiIytMkBiOJXOodzmrNSgYpdqnPy3wkGfTcYCqHQDgemZJhTML2Xof3FgkGGy1dtyGKxeCZUmKcIn3omaYBeXqFCRP3dht849luoirMvmFkZAqBISWmKdJtlDGLqA9n+2CDazzt7oJNt2W7ucA3BisTzKWmNATLuQ3kI2G4IsREiBm/vY9ttlpx3Th80yCihAXeQdds2Wwt96Ll3cO3uOmviVZwLvPqKyOtBT9dYtsOt7nANRssEas0EDTuAuuFL7xh6Pd73s8JkYC1gQebDjBE6cB0tG1B4uk4v1zWKjNh670mSGZPRrgwDSkFhq1anlNI7IcD7zz5Jt5vsbbhsrM0zrHbPtBYd1vrbxmMbbSIblamxBS0GKYRTfAV6fAuImIYp5FpGkjxQEpTeQ8y1k44I3QXlhQH4nSgaTraZscQheHQ4/1GgfbxhixC41rGSWtHXT8d2D89cO/hPby3+N1nATC2xdAqfX0eyXHAyyXWtIRCZap1rsD5+8QYCONADA0pbHE548i4XUNIAbKlnxJD1grg+6fvMsUSTpU0d85MN8QkHAIYsWydZ3d5Qfuaw/otxrVah6qPXO+PCHDZtRAST69GckzkkBiCISTBk7AiNE2HcY52O2pegXF0XaNhiZ+KLnAa2DBbVopwuFVXgWW94kSenTHG1d9LXPXH75u63YZh5O233uXdd77NH3zjTX77K19nt9ux3W5oGs97775H27b8wJ/9AbabjnffeY+2a2m7lr/2V/9t/upP/ATjeCDEwPFw5NGjx/yTf/r/Mk2BGDOPHj1SFtLZ3HUOgCJ1+T4FWN9Jy4UGPZyAEDWGLN77qkAsAi7ewaC43MOpUsPHCnI/sAkrwbm+kTxbQs2Mh1ToaW5XKoyFGpIRi/fPJleME3FWrddhJy/bd9IqmNFPZw22hN4hYNaWWVBWS5uxuVBQ5wkNcy25KFlKNETxOp0YQdbXrOddvz+CqhsvAdIfy3YOpNYLy8pDNCvG83+gegjmEy2uq7J5ZYCSCtLPSXwqOFr/tgp9VteS4n7DHJa2bC7KNEnDtMrlzLw8yRzWt5aJgtA0WhNyHHs1JoSItepBf/rkisOh5+mTp3jf8JWv/i5N07Dbqd7z1rfe4jOf+Qyf++z3EEPgnbffZbvbYq3lP/mP/8NS1+pAmCb648DXvv51vvKV3yGW4rA3+xucN3SdOgoyQghqRPyhH/rz/OAP/iBvv/UtHj9+n69/7Ws8fvxE+5ih6zqsC4gRvNe6mH3flxC/cY4IMAJipITtpfk5V8xiZnCxkH9UnFrrUVlrV0Bo/Xl7GdBnXQo134nOlylSS2vkeXLNSbOrvYsnsubKre5AWSBPw9v13ovhTkyZt4KQQEzJrUuasiOCBM21csmhjM5p7t/yTD68PTeYqk9eM5FUoZSkeSU5ZzDqErNiSIi6Up3DxKTH5MwUIwRDCBMWW573yqoApX6Aw+QStta2uKal2+zwvsO4BqVOr/SaQsKCAWMF8gTJkCOkIgRyTsRxVM9CLsVXvS2h24JYh02O3abhYlsKtnpL46Gxho3zNJsdm8v7hKAvgaPEWCYgCY1tSD7Q+BbvGrpWaJsOI5Zccn00aTeVl75YRYzgrNK5iqiCjgimEHlYaUglEX1IA4yZSIIcmaKORggDznpKTdwiJJfEX2CpTI6GT9bJaIwoYUeOanVUHy2i/kGMtXjbQE6EEJWUwnakaVqslDljiKoY2oaUHNE2pBAIMRAnrQshdkNlUMlkFdIpQtJkfyMOYxZFLGPU45MGIiOCVS+VaCKlcYJJjsZvyCTaBI6oeVpRk9lL9RJ1d2clmrCiFh/nPb5tMa4B42aX+GxWy4mY1A2exkAaJ4ZoCckQyTgjkA02ZYybyDaRTGaatIbBicXnE2x1fpFXoElOF8EayHFixxGKxfLMvFfARl2U/igEFB9y5ye3mpLWvkhJhcvx2OObhj/zZ76H3XZL03iaxmNE6PuBb33rW3SbDZvNhi984Qu8+uprTNOBECf2++PMShRTKkxmrBZ6Ofu3PJcPD+378FbXoduP7vazvJ33tAZ6zwZ067C7F9+KYiQzv1K5hzVxhN73LChnEF6q18vi+TCrpPIZ27+wefYnuZ15De7YpoU3S7hU3VJCa+Qk7CaVORv1t+LNmNeD8t+VWgXcztt7lhL2sj1P+w7egfmQu561nJwzr35ZsNHZces1v3ohKriR9TG5/v9ETpzKoAVI3SmD6j2ey6D5Zs+IaWYvaT2yHHtnz2frznzMmhCnGrFmBjjLTAUepqDkUv3AZrvlC1/4PCJC2zY4p2RET548xRjDxcUFm+2WH/iBP0vTOMbpwDROHI8977z3LuM0qfwxJUIrK/vg/mbP22+/zaPHj4lRCWDatiVnrTc4DENh6EuIERrfzM/XiMEaNVbFwgybkrIV1jX6HLDOZEl3gaFbrQ72B7/HeX2O+ZDTOVfv5dyoS76Dnv8MmK/dlOu860WYL+GesCxZ1SOp8kVJLTCC5MIuSzUUn8qdjyKCnhtM2aale/gq6g6C/ubI/jhiNRuHftL6K5tGcE6Z/C63l1jrOFzumPqe4+N36I8H9nGPM5aNazFWMA46A13jSVkgCRf3X8H7BtdtEAGDosUpJAVLUsgBjMGV0B5pMsIGuI+LERcjRjTJ7uk3v0oKI82D17HNlouLN8gxEMejVoSeRn7ge1/jez/3Ku8MgTElUhgBx+bykt12y+W9S45XT+j7Gzq/xYpl//iJVvVud6TY4vwFlw8f8tobnyEW+uN+HIlxwKL1OJpWld0pjSBgjTDFkUDANxus9VjROHdxG7KF5AXXbbh8+HoBIomrq/fYDwfMdKPHdPdw1tF6Tw4q2JxziDQagpoTKZsSH3qEHCEHTBjwceSYW4J0iAzEFLi5vsY1jnvuPsKAWIv1W7xrcTKRUySZESTT7EBjQB2pccTNhv0+MwyZvh8wY6C5eIhzjsZZUh5JcY+xHaYUWkZ2WHNEM7AGtSLIDpMM2fRKg++ExilF/pQmYky4y46Y4JUoTGNP3+8J00SYJgY8IWeOo87J11+5wGKxqYSnRIhG5hpZxgqvbDeQEzlNjCFwNQ5Mh4Fx3+Ot5hH47QXZeoYYsAImadyudQ2Hm4FH715x3H961Oi1Gjzcqa6zXkFrEqcxpgjDvCy0J2dIpLRKEH7BTckalBKcDOM4Yq3l8cUOAX7sr/woYoSvfuVrfP13v87P/dzPKY3tpuNv/OS/x4/9lb9cvFC6djjf8uqrr/Ndn3mDv/AjP8wv/Pwv8ou/8A/nMAhjmpN+iSxkFB9Hq6EjlAU7x5X3T04Fuy15Kimlsv/ZefQJrZ6VnuOThB/nDJHz7ywK1fwDFIuf9t1aC7Ywr4oUGvXFiJRi+mQ786eq6USJSQ1iSuhktOQDqMJKJKWpWK09dRBrrkFII+qpaldKsluUajj1SLxsn3x7piZ4F6A6tfif7lv3um3oMNUwW+uezUcUJsnVldZMbac5c0udQTHlPFnrVspqn1MChPKvaublZ2fVYxpLBEUqaSCmrOVqB9BwLik1K7X2EnMkS0y5pOyYko8UZ0KgCmoe3bvgs5/9DP/6v/GXefedd3nzzW/y67/+61xfX7Pb7XjttVf5L/7L/5zXXnuVUJhZwbDdXvD662/ww3/hh3jju97gZ/7ez/D7v/8NfvM3f5Pf+pf/kn/8S79E13Vc3rvgn/2zf8av/ur/w/5mzzAO3NzcEGLkeNTIptN6fRmwDP1IP4wzCETUO2PdbSNoDSU/lUFldMSUyK90ZiDTHe+SQSnXvKxizi9zItUxW51kzdI4e45mo231VNXLqZfrRAbOXsa7wN2iu6ztODln4irixjmtF2qLZzWlDEY0xSSdEnI8T3v+MD9QhTMqM0goFt4k+oKN04gRwWW12oecMY1gkdkSVjvvvceIKUluWijVpIgkLe6asqAun4yRPCNvI+j3+hD1CcyPLku9HyGbQr2ago6mASQTQwQTiZOGIIi4Qn+d2TmLj3BwPf0U6HvBOY/zLSkL/fEICF3b0dpGvQ/jpPxeBkw2iNvgXKfJvZJIknAWtfiFwjwzjSCpeNgiOQXG6UiIA244ajHcbqMeulJkOCFITjhJJW8FGueIJHLqdTurRMIs1bmySjIWalx7DMdqqlBF2jYqDDPk2JcD1TU8TEdIAzkciSHQGIspBZRJPUJGJBZLw1A8TA1N0wAlRERMoZo2kNUiYLCot6lahQpBCbbMAQGrQlkVXQXGzjp9GZPDGM3Psga8czijDJJZjmR6UrNRGnNR+k5vrV7XOMiaRyXGIsaQJZJrInXSMMGYQMRhbML6rADfOcT74o21iNVcuJwiaRqZQs3F+uTDlGZr22plVHmzWPDmBSYXISplfq5oqXXnlc3yxFpzh9XwhbQa/rZcV614I33fc3V1BcD19TVXV1c8efIU77U+029/5bdpu2YuSpgyTNPId3/3G+wudlw9fcphrxbDlPLZonyXWvFRFMLn27f2ZxEcVSguoReV1KgqEXdE3+gV5ZMclxV+Oplrq+e2tlDKKSxfW4SNtYXJb1EMdF3mpQ7+AluBPytlrConZWuuhBEUNbta7+OsfNcxm8956x16se/Pn/z2AS/zrCB+xKPvGprnPd9Kv533PzG6cWpYqWvafDfnXgdOZVBevJ3zbaw8Xuv7OIVtMuOqeb1ZeZvgDEik22HqImXNZalNNEd4pPX8z3PExOF45OmTp1xdXXF9fc3Tq6dcPb3ieDwSwsRv/Pqv8+DhwxK6rGBgGHo+//nvxghcPX1K3w9a36l4k8YpsNvtMMIcjTGOY2GjDhqGWGRaLfBeqb0FCjvtaQRErka5sq7Wx5fLw1RvzdqIWECYMbOnZtYrnyGDFmyV53VlHqV6wVtRLXWtl/lcuu5LybOdBf/JvFp7pKoxr37OQRDkk21iZDWHVscXGSQiK7KSEin2EdehjwCmMiEF+v2Rm/0RJU81RFGyif3TG4TE5CBmYUqw2bS0bcMw6OQSEXzT8uprr5JS5nDTMx5HhsOEzyOWgDQR4x3jcU9OAW/BOF88NgZrwRpd4FMcC/uLho1FE2saLN43eN9quF/M+Hv3SKFlGGE6DozDYxrfsukusF2DbRo2WGKG6ckjjuPEjTNY52i2G477a9577x2++9U3eP2170aMhtFtRw2FGHMiRcdoXsG5lpgS3hhaa/F+Q0xwuNoTw8jh+ATnhHbrS52EwKOnj7ja3xAOjzFp5OF9T7e54P6r3w/GksQgEjESsKXO1sPdJSklDv3b+jIUMJCYMLkk+KVAwpFNSxYDuSfFA8Px2+RsITuadovrHuKTICkx7d+HPNB5x5QmHl//IWEaGYeebtzThJHdw++laXd4c8BKwnuHGDByhbEPENfh5ILUbZlSeTeMBcnkqJW2Ld28+E1hJKaRptmSxTEEtW40RASHd/cx6RqJe5y9RGxLY1yp1fMYLci8m1+Ym6v3OR6ecHQ7Qky4Ym0N45GMIZtGp3/2WtDXChK1+PPQq8drzFpssm22dB7MLtN0LdZbppDIWWjcRhexNBHGkeFwrYDRGjCfomldTq0yp4CoqEMyb1G7xNpKtT4Ri9VxWXxffKseCgFssSIZY+j7nkePIr/yy7+KiDBNU6mFMdD3R1KK/IP/9R/wv/9vP4tvOqx1XNy74Itf/Ff4T/+z/4g/+Mab/J8/93/w9a//HldX14RS+f20z99p+6BjC1XvSqClUm8KqpBQ0gnrHORMSlKAej45z6ffloRmpCozMhu5VIfRbWv2viqgjNWxdN4v21fzShWEl0r1C2siWOuwz1QBlKRnWUgAEuP0hJwj3t8v1v5njdHLsfvj2z5o/cgL++a8Hp0m9s+g5QPaytay+mUBRTJ7o5atCT7EG1DD19eKvyrBVTZV5dkWY5T+XDwkBYScpBqQcVajqhzMhjVbFOxcwEldp9QbBPv9DX/4Bz3vvftuIXqI3NzsGYaR4/HAkyeP+Tv/9d/RNAnf0TQN292Wf+ff/bf463/9r/GLv/B/85u/+VW++eY3ub66wYg+936Y6I8911dXc6heDQSpHnylPFdQVfsSgscHzzgFQjgliSFrmoNIqQVYZVAZjhCrY2EVglmK2OYSyRTTeYj6HXNoxpwLKDmDxic7njIFLqisHqVeqhr+vcyntfFntroVT5Wp31eyRIresMwi3dc6HU/lUVj0o5SzGvjsh8/zdXtuMHVzfeAbv/sWU4xMIbK9vI/vHORIyomQJqyAcw1pisQpMEqGGEBK2IpTkgXQzrVbh3MTTTMg4wEJQyma6pSSVQySM5Ky8neXQYYEom5akyGGXhn64lEL8RqrLHERLBFDxDVbsmsx1pGzkLJDrFOQglUPg2gtom3b4q2jKS5jRyI5S9jscE1LNg5r1IuSm1YHkYYYwYiyF0qWwiACmIiRjJGBlHty6EniSLlBcibmhHWGtnXE0ZFCpB8mUj5i2/fxzYZmcwFxIOaBOI2AwTrNQfJGvTtWglp5EpoftBJoKR4hB3K8IscJMaVuU7aMGaYYiKkwmtimvHgRmyI+JJy3tGannro4kYwwxgGmvXrHJsFawAm58Vhpi0UAyK6YCzI5BfJ4BdYhrlMvG1a9ezkRU6GgzoXVTyyJhJg00ybnGDEErDSqnhbmx5qIKIAzDm8aZNMqkCOSU2KQRg0BRslByIYpBcIUCFMkBx0/Zw3WupIjKDhjaY1FnC7e1qkiIcYUQFxyvcj4tsE3G5z7FNj81roPp3/nuljW39dmKtafd5zWyLwwV4Hyopu1hm7TAeC9L6ELiRgC48rTXePEaw9yhnGcEGAKS37UW2+9zc//X/+Ix4+f8tZbb7Hf75XJSZ71xJ63Pf8xVd6o8/OUQTGDeuIMRRjcHo+VE2t1eVk2fkJAaxG8p+E66+1ra+5aAJr5WLklrGookHV2DhN62T7eJuu/njF171Iicg3rozI1Vgvv3Wf/Tu7oZXtxLWfm0C5tS87iMw8oQKoCqtNlZ4ZMM1aS8/Unr8RMNeCJLP/KPjmXPHie5VFb5Vnl+TDmKIyT7+V2ZMnBzOUcrNYi5xzWKrnPOlwuZ41uaJoS2ZASvlF9pBZP14iGGgKXy1q+MNjlnBmGsRj7ItM0knPit3/rK7SN43e++ru88/Z7xBCKrmE0T2pSPXdmfk2JGBXIaM24layeHTdZ92Ei53WB+SpXqowR1vlkC8lUno2kiJCkhuGdAtf1mN4eqGWtP8k5OtvOau7BModqfnn5VQFyrvXoqqzXI2uo8Wk0w+nV1ueqInYNxKpB4GTurwCVlPC/j2LQe24w9fj9K37j175Kt21pNw3fvb1H61tyHDV0LU4YZ2hbTfIO40CeRoIRtvfu4X0DjQ5SygbnGnbbLZKDgoQbQzoKvt1oBXXvNcwNkJTIxXosYslEJZzwLWCYhqfEqWc6PCYZS7QtyW2ILrLx4K1g2ktELA7loh/HSMIRUKpwwaqvzcDldquW4GSIMbIfDtjGY91DfLclmxL2ZTL4LSIWazekGJnsHrFapyanRCBijOZuWdmT6GE6kKQlpJ0y06RI0zqM3TCGnnEQ9sen9MOemN9id3GfzaYjxiNhvGGKEBN0mwucdXSNL6JtKgqZkPFE8UpoQSaFp+TUk6dHJBzWPiRkVd6OORGmAZeT5qbZDqzH2j0SBZGEMxu82dVIO26GK4ZwIPZXmBSY0EUhNw6/BbGGbLXGF2YL2WmCXxhI+28jzTYGrOMAACAASURBVBZ70ZCyJUgJkwNi0rEw0mAxWOORPJIJBBIhgs0TJkJrduplKnWAyKrkG8AbT3Idm6ZDrC31fTJiou5rmrLwR65urhiHiThOEAMXjcc6D5t7DFPi6jDQtA0XXcMYJmKK+KYp11QGoVjyX6zAdrvl3sNXabr2uV/Ej6utXewnv1dBtHKJ11YX/xPgVf574lIv/6xzd17j427OOe7du4eIgqn9fk/f90zTSAhSLHNGQ6pTUmETCyiJqYRCxEJ7K/z+7/4+f/e3vqJjebEj50zj3Un89otsNUxCAV+xOqaV8MlZyXuAbBZweHaWM/kmJ/t9Uj4rFWR2nkZLiOEqbKPcn1p7wVqZLcnGyIm1cGkqqdUS/Pz8SC/bi2yLh8LZ3er3dQ7My/bHrZ2PjSrdlfZ78UCs9rjzBFVvltX31U6zN+PZSKj4KqoVqMqgZ93zCViqv6/lkJn7s77eWkYt+nVe1Q7SE9YIB+89ztlb5zViaLuO7XZbAFOibdV78fTpU2KMDEOPmSzTpGx6Rmp4IDMAjUHX8IXFNfMrv/xP+KV/9MtcXOxo2oYYNaqnbRpCiIzjWO49zyBpmtSIaK0pz/H2exdCIIcFdJyGOZ4OSpX0FayxAkB1/zUYPefR0tBHVhPhrDRyyqtxu2N8P8R4suxTHCfIyTxYG/LqWK/lT91v+cZM816Bsyky6JYxr0BvY6ymc9wpo+5uz09A4Ru6y/vs7nVsLloa77EZNr4lWse0u68Iu7vAZ0c3RqzRPBUxpiQYqzX2eBhxLtEmWzw2gukuce0FbVvCPuwGEYNFabIFq9TT2SiSiCCFQGE8HonDkXi9VwW+E7KzJG+ZsieVYpZidDEhgyRRoGEyJkckBiWSIDP2B1IMyDgipRCshi5mrLOIpBI2p0XKtBClI5lAjh51pGl9p5wjXSkK59sLxLZMOTOGicfvv41pN5h2y6ZpaJqW+w86YgiE/YYUR4YwkY97ePwmXhJeEs50WO8J/TUBMGGntOo+k7IQk3pOrBEtfJcj0/EJMfRM0SpQai2xsNVZq8/iMFwT48BF12BIDNMecsbIBYgnYQmpJ8YR7wyN2+Larjy/A4ZEFK0DlcYjpr1AnMP5jYK7EIhxYDoesdlid4JIg7Mb+vEpYRqwIWPE0bZbRDLT9FTdW9Kh+XSBGDIwEfINmcz+eF3yyZ7Q+C1td4kYVciM1XpjU9QwNmf0lTFMhBgYwwQx4ozBdfc0kCAFoli8NHgT2bmEL8WfyVNx/WvuQLXguMYq+LeWDFxfPdXcuE+6nXkLzhevOQ+iGGEWd/p6MZKT42T2cQofthB+nC3GyuYXi1VQwy9TEcbjFFTB8177UJKH0+wpLAI0JY7HI6ACbgn1WJJNP4lWQav+XYSW0RzB6qFKxcBBiLMkWtjV5jMVi2+lpy7soMW6+8m1BdhVMH4y96AoLwWEr8L96jE1B6HOt1ogdhgGJR552T7+9h29wmsv1Kl1+WV7Ue0D0Ml3cjZhMWDc4RW+y1M1W/A/4LwndcfW3qr5uqfWf1nNpSqDZo9GXubWAt6Ec5lULnynLyLPYdG5rEunZA3zxfUUMxGBiKgMmQ2LmRAmpkI1DmgIXdK89RAjeRyVIdhp9dzZS1TIx+od5mnSta7kRmleleY8IdAf+0JdPi1hicUrpex8mZwKCLDVK1xYOVe5zucgpsq2ajBMpQ5gOaKID6O58uVEKWfdkTADrztlEOrcqM8+F4KQhR/hVBydhuot97w+3/ynLHOvehdPwwIXM+Isg6hz9fbcq0BqbcDLuR6/AE4p0UY1L65GvDxPe34w5bTWU3e5YXd/g/cOkzPWNeTsGDcXCiqaHT5Bt+kLXaMhZB12Ux7MNIyEoFXWrVEXp9vs8G1D641ShZsOMsqol6UUGhQSZrbmSg7knJj6njQcifsjuAakQZKD7AjiSFlD0MQAISKAx5caBBnJqQAzjUkdh544DdjhhqbdsX34htJrp0RASJJBPNmosq4sbgUhe8cUImmaiGlCaWXVU2XbDbgWT2C4fsrVk/eRzQPMRYv3DRvXcK9tyWSONjMOBw6P3yP0R2K+5qJRmnjXbTDOcnNQ0OezIXuLs1ZD/KLBmoTxuhjnlAj9NdPU0+cHiHO0bQ2ti7jiQh6nA8N04F5zDyOZOB0Q8Th3H9BwtzFNhHhk12zwtsH5CyAj0xNyGkmxV3/PNOJ9xonBug6kIeeeJIbQ92Da4np1iOnI6QkxDJBHMB7TXgCREG4Qs8G4HTCS8UrukCIhHcg50g8HSCM+9rB5iPebQizoEGPJYkhZFU5jEiYnDIEQR8I4QM46D73mcIXjoQgbhzOGjU1FyVO2O8qCm0g4p1Yp5y3WOlzTMY4jx8OeEMJzv4gfZzsXkucCpEYlz8JsFmLnNMfls1jbPglv1LrlrAuaWvVqkcGqYOQi4IQG7aNBc6xi8UpVgarKefH0FOU951zIKhw1SfkF92Z1T0tbwEcqXuUaIx8Xa+kJsIVZ8JwJl0+yqU6dZyvsfD9rCSrVCmjmTz1syYtYQohUyGtJgVSSrj+d9+dPfvujzpnZ7P8xn/dle962KKl3ga1n+n2euY7fNrqtzGdnVv4T19ESw1BEhZwcf3K+M/lz2p8FSN26uxMA9uw5tt5SCRdqM6JEA9bauT5VLtc1ZsmFyqI6IMXbEUIobH/F2Div18oVEMKEdQ6XSp4NrIx5C7lD3ZeVQS2ESNN4RGC/78mr61Y2ubW80mNVnzJmvfbWMVj6exr6tpITOZ8BnrKtDEmVUTOb6mycXWSknJx39eTn+XDb2DIDovNjWAGqamis86h8rq98Ov7LlhnQ1/FZoThjZA7nr+N/MpvzyoBcDA7TFBjH8SMx+j03mDLe0V5cYL0jJfXSEAPNoNbhTdMVl5jBGcembWZh31idqCEEYoyM+540BY5Rmdka32BwSLKMMZGs4Bp1yznXFLRp5pcqDJEUAtN0RQoT03EkhUQu1dhlOhYWwIRrElYafPMKYhvEO3KM5OORGNG8Ktli3AaxLSKWptuQvMN4pcEO4x6xFmMdre0Q0yhFdEyMYUIkEUwqL4JamQ1CmJLSc+ee6EBcBHFsN/cwGNJrPcE4ggnc7K+43sP9y0u8s9i2pXOW16yQ80hOezCOAx43RUwaaNsdBiGmhpys5hmJwXqDccomePz2V5iOj8jNPYzvNJhRIvF4VYg9Wq4P73HoHxHjoB6pMWFJmGmvkzkeSGEiTj1BOqI0PLp6DDlzuWvw3rLdbMA4cmoLA1uN/x2x0iMmkfMecZHu9c/pMwwJZCTnI8M4MEyBy3aLt54UjqScOQSLMRaPQaSjayyTHElhgtSTc2DrLORGCUrEEMYDMUykGLB+g9iGTXdBTJnDNJLRcMamsVi3JWZHwoBoImZ2Ss8ckpBEyM6TEHIA8FhjMEaLK4cwknIiEjXsM6qy+GmVp7xla6zCcxZI1TNSF5F0dnRZDGuQ8dlZ78pzeVGtWvnUm5QwVskZqhCsQiBMk+ZtTosVabGgVyFULJUpEyQyjhPOKZiqtLcvviVq2MLioUqzNXgd5y6FXpaVFW9WePJpaM6nUc9sEV53zAc5jUm3Rj3zs1DOWhDTOTfnT82KQLEKN43HuZdhfi/by/adtruc1ItiXPc5C+XWP/Q7+dlC7Pzceb1OrQ6SJe9ESiHX9b09O1eqgpfzez8zDs5K+nk/C8VFUciX0GKZvSlS+j8M/ZmxR0u6hBDm0hq5sEtbY2cQs84lC2HSEjsxre6h9iPP56UcF2JCZKAZm5lFjtVzO8k7KqGGEaMMwaVUCCxEPjFqjdDZjmW079bWnKEFQKw9N9oHfYLGSPFcrXSG1dxY+lRl0AJkZlAnBajNMvdcNnD2mx63JmGS1W6C1k3Nq/Gfo2iqndfILc+ZrOacjrudgaOSTRRWcaP1uXS2LzLIGkPbNs8IRb+7PT+YMlYLnFqBrK7AmDMxKBGDd7vS2RKP6jx1+JwzJaY0EiOqCJewOfGZLJYcEskmkoGYDcap5dxYJSRYOlUfBqSxJ4ZBWVoSZGN1YqSgjHHWYrIruTdGAZExJEZCClTKSOO1vowYA8bOOSFK5Q1x6jE0c0ifsZ4pBnUJxwlyIpugx9t2HtgcEylE4jhCyjjTYKzg3JbcJnbbC8aUGFLiepgYYmKzaTHS4F1hmDE7cnTEKZEwxGwhg42JTdNiMMRJCjwo9UIKCpecmPpHDDdv4x7uQBxi9fgcJii5JCH2HIcrmhIOmdIIOSFxKgrtQJoGwrAn+VfAeYZhJIWJVg7QNrBpixXdgwS1bqSIhIDYETG5eK0idnNBToYU9bll0WTOlDPGKPlITkE5RKLVRTFEnAjWeJwJJAspqRfMWwvZlBfGkOJU/gXENhgTcVbZBnOZO6DeJmsdqYQwxtRDjkjTkBPEQUMWs1FwRcrkosiqpwr1UCWl98dEYhatVfApeHLmtg7TOAFTsFbkF/FVBWohFK3hE6uwgU8DGmq0QWU00sRaTJrvsQ6lriuJaRrLWrEiN6hWuLyyFKYlafgknv4T6FBGAeG5pnNLaOmXMyDF8iWzjJOe/FNB72uL9hJvf0owIasQm4rRjZjCmFUhfJUryt5UmbNetj/O7VNa3/4UttvAKD/767OK1s4v2zl0WXwGiwdpRQ1dP/LK+bC+qXmdumX5Ob326nMtg9ZhYSeGpqKUz/d9u0PanZRPFP+82jaDKVitSWswt6z/dhUCqaRGVf5kaiyd1k5SOZnLOXPO5FIPMcY4K+6rR3kig9RrVQ1/UpwG7pZBbXHW6fWrXrkAtlKbzxhSWiIv1oM2319OyyMUBSaLR4gyZ8yJYe8UQN0tg26z/9bz3fnlHDOejEO933k/lnGX1bbza87HrOVhGf9adqPKkgqkqgdKyyItT3MGyUa01NFH0OGeG0w1jePBgx1WtGCq9WpVPFwdMcDrr19irAMxZGnJkpmiUipK1hyTp+8+Yux74nHAWsFvGhp7wUXbIQzIGEBayBamAbLDtspYZzKI9RjXIGIx3jPevE8ao+bk+EyODnJAUg8Z4hTn65s4aVKZ3yHZEI0UMgWlxxZ88X4ZrStlA6F/SugPDI/fYXP5Gpevfy/ESGIiDAfipGQEkAkiiPFIC3EKxP5I7A/ksefYj4iBh991ibMO51qtefTKGxz7G46HKxyGEAWZIiFN+K5MbDzOtWzaV0hp0kKK2KKw7JE80TkwtqXxOzQ5MRLjwHEYGaRlaB5wDFrjqWsflIl5JKYj481jOpPpLl9HTIeIxZk9OfTsb6459BPv3fR4gc60bEXobGL3YAc58ujtN+lFaKzDt/fotm8Qw5HInjAeGftr0uGGhGEMI8Y27HavM4aR6+tHdNsdm21k123ZdReam5SFOI5kDBvfEcYDx6ffwtkOaxu67Su03X1G05FSwJkAZExWT+A49hjb4H0HWGVWRF+qy82GOArDzQHjPcbvFLjlwPH6hhgnfLcDMSSDeqZQL2ROcDhoXYiuVU+Y+rSyelSDEPPEZtex2XQ4Yz/wnXpRbVk0zwDdrKgvwjRnJXGYBVrdsrKmycoCuNr04lvOWrurWC/1XVZKZ41rVqvdVDxTzCEPiyDTyAkpRoS8Ch1TIVoTgz+R7gBav6cUl0RIOSq4KwK9gvRqFV4b8taCcq0OmWrZ5DRf7kU2NSqpAYMCSus9VS/UOrxPioU6l3G8E/BX5aGCzk+kJy/by/Yns92NP4rRLHMiG3IGsbNP4GyFWSm2OVXJ8YEXnI1B9ZpnGnmtYaRekRLVU80qIvN6ON8ckE9ZD2ZwctbBk34vOCxrOL5zS+3B8llD0FIx/Bhri+G0gpjVdWTJ/8wUY1yhRk8xzjJIWPLTNG9LwwxjDYcqfQ0hzPK1lopYZ/3k+rxnrwzEsIApBXuRUxC15BEt4YZlbV6BS2drYXj1aOkzL16ccv55ipzJoBp+V5vKoCUfe+53ATMV0NWbqF6i+puRRVc6BVTM8qNKBClu0IUV1pQ+V/lfKOBlqWNYCwmLSElvOQV5Kp+MGsaJc+8+igx6/pwpI7SNx4j6QCptrcaJ6gBYU5QuY8B6nfwSiWEkhki/7xmORxgD3gnJZoidFuM1NSFcChf++n/MD6laKio9Yn0Q+sI6csykiBaAS0lpxA24FAsZQxnMUqi3RsjklMgF3c9LSn0TZ0RM2Sdojas4zQXgshjUP8R8DmMMWEvMtljQS85Eyf/wviHGhuTVoxRsJqAvkKTimhan3hrXYJIlJ6tVxzOY3COiIYXGuvJMIlpcq8Tb4kjSEDGYXPn6s1b1DiPDcE3jHd45jPGIcZh8JGJBPFkyGa81pJzBWY93lrZVilznu6JMGbWcZHW5pqQU7bpojfP2nA0pW2LSBM4YJ1IYcH6HsV7HL0VCiCAJI5YcA5LVO6ELsEXEgTRKj2/dPGaSjsCEkRIfHbMWuSqF+LxrkZgYC4MjyOxhDNNECBPGp+I61hdOLT+66ItQQgbU22lFY6xNLFM0MecKfmqeKTgBUmvLzbnFsC6+51bBk/1zPjVm1vfoBbeamLwyXzGHboicWJskr6xouQKqtev+9NzLAvwM69oLaWuznMz3neX0ea7VmfmvM6tcXo3b4h36ZOZbvdxabVlAePm+9kzNluty3Oq7rHu7vv2VYHzZXrY/ne3jn/8CWiKjfpfTNf/E9nbHelL1h5Nj5nf4jhXo3KD3rLuSoiRXGVQtYSfed7m9RJx8X+TYgt1OQeH64FyOWXxky0nrtnPvS17JFl17Na2jsiTO8moNVGcvn8zHzv2ejZorlta6Rq76vaytBaytAMs6zFsf290yfvmbMi71+zOe0dn6rvdxKn/0VHf36e4zLeO2HLLqq5ztvfaSzer7aqY9a27dAeDPP9fXX7BEfSe4sx8f1J4bTDlruWg7nLc4p6FUOUba+zoojfcYMiYMYBzSXNCURP1H77zLzdWB9775mOFwxBihawQzWVrfkF+JtNt7tNsLtOaTwZhKSyiFUjuQQwIJJUQnKb21jUgesUbotp5hSFwfwJgJa0cO7z8mk9lsXsd5Q5iOiIC/d0kKATP25DwyHQPSlxpHTUcWg3Ed3b0NF5dvAFZzaEJPTnumqSfFiC/ZMTGBGHBGkKbBeAMo/fIwTcSUOPYD43TknnFY5/C+wxrDtms19yYFrg89IUZsHDHZ47tLxBowBmcbzdfJE+RADhdkMtZvS9ztBHGAcY+Ix0kD0pJkwtsGMYbh+JiUA1Pcc3PzhMdP3uHBtuWya9lcqudOq2gLtnvARQu7+4I1GSfQNpbGGZx/gIij2b5BSpExKdPafn+lscMBfNNhXFsYGS2Xu8+Q8PRTJhGUSS2MHI8D91yLsx03+yeEcWTsS55MDrhmy+be92DEo/HOnhgzSAOSsWKLRamBfAOTwfqMsTCFPSmM5P4ItsNvHmJkSwxqKUl5YjheczjuOfYjKYFtEmLQnCvn6TYbwjgw5cDDyxZjOnyzwxjHFNU65MZpXkgbp/XGbtXc+BTaLUE2hxqsYrtZL7UrAAIrAGuQQg4QUzzZ54W1XC1rZYFDl3NbEoltYd0BZmvj0qe1dS/PYRBQmX3MyfdPoq2FzmIXKzUzzBoolTFZyWS16RiyLMKoMjTV5/NJ5rPN7S7rcD79Y8lv0++V5XUZB1nOM2sJL6HUy/ay/ZGa3P46r4ksskFOFOu672rhoSj7hRShGqv0WMp7/ZzrTlkrZlKF+Xp3SxTVaYsMMkWJr+tfUYLNeu1MmRPFfgUYUta8/dshFou3ZQ1i8uo+pRJUZC2fM6d8iDAVVr5pmubIh5wr4ZqeSMPJw3ytuSjwjCyUaKgWTBYpdaUwq3pWpd+mrqfah1pouIa0Mddo0kgHPW7Vq9kwV8fYUkHa+rmvZVB9ptWDpPdtqKJTn4s+57Un7zQve5mBqZBDnZQlWYOkvOrjCcAH5oifU0PraihXbelXJfhQJ1qVP6tw8jNZtgbaz9Oe3zNlLV3XzUXOImrhMGurcU6EmDBETDKQIpIT3lu6rmWz7ZASiiUipVhZTQy0xbuizHeVQz7XlzcXxY4wx+Ab6zFOiy5lERKWnJW2L6aoYYaDKuXj4UYnQqsJf+J18orRkDmyaEHZBDla9XjMCdJWQ3HiiFoF6iQws3fDQKE5DuphE1fuN+NEkJiIcVBPVqqagkGMQwScaNxr22RsDFqsWAxI4dmnvGBSX3pDtg0AphTZJWu+UxxHkgRyARnOd1qzRQzECXLECTRO6Ly6QWOCKQSSDIQxQE441+FQYGAkYyXhnccWKlENiWyKq9uTTCTmkTQdmcaBnA3GCpaI2Iwv7o2YBlKa5pfEIOQ0EUPPMB4Li4rmlbisLnFrtUBvAlLQ5xhTsQa1F4ApIXnqscol2d/ajS4+Vr1YlQRAMkjJz/LNSBM1RjomrfsgoiF7RpJSvxegZJ0t81bnmSkLlZiIAawI1iQWV762vu/5lV/5ZV5//Y07LYG3LPPLHsufucSX3zIyyXx8Pwx86UtfmhcmU72reX2aFW041QK3CMQ0Fx/UhUgFr5ktNt47vva1r/H06dPlJvLKZiULlFmL2Xx+43e09bP55je/yY//+I8XQboc0zRNyanRwtjjNBJjUrak0nSRlJnZb3UFfS6r8z1+/Jhf+qV/PAusNfC6q6l8rgLpdLldBPmpgvH48WN+9Ed/bE52ru90pgrJlWVyJdzrOdcgbBGq9ZlVgafetl/8xV84u9/bc+t0Dp5JrPn3cnS17pYuDX3Pn/tz/xqf++znlvOVG1F2LLPKk6LkECzXEpiZter56xyshYxzSnz1q1/lG99489Z9vWwv25+2dv523gqCvWtJPdcEq1K8Mlostpe1f4nVtpX8KLrHOkqhipeqcK+NObfu+VxRPbu/9fXXYb4nmEdO910r+msFXuXVsk89fjYizrr36U2s2fNSCUdW3bvKv4UoYXlOGvan+VLm5Pfl77VHZjEY1b9r/iiUYu4pziF6tceVKGLtYKn5w3P/z5b6GQQZObn+kpt76qWczzNHBpwVvZ0f3eq5wsnfRV1nnSJQPUWn8rFsKuebz8W6yQxyT8H3+q9lHsxEFut9cr0XIEsJQz+LmFgDqSLvTrY/R/sIOVMN9+/fnydkMIYYA2K9UkWXYqbjOGHNRJMGSBFS5PJex+6iYxxu2F/f8O23vk3rYXfR0m0afGNw1mHxuGajMas5kXIkjkeglO+KkZwirlGWPdvtSMaTRrVrjMERUkZsw/HYczgGGBISE9dvf5Np94jutdewvkHQ/CDjvMZUIkzHQcMCUeXbu04BSgzkMJDDEWkaxDb4xpNzIVwog2kEJPUY12B9h9KiR3AOlxPjeKNKeYKchIQgxgMeYzcYMhe2KS9SIuZEPx4hOwwNGpiWyqJoEdupF8+q9SFFCGFgf3NDylrnym4fsNtdELEK7tIBMQlrLRvTcWEvGYIwJcM0HsnTyHAzYI3jjTdew0nCxwPGqLfG+xbr2vLChJLs79i0l1oXyA70x5791fsY2yLG42TEWovverIRpvGp1mgwCWsdjXHEaU8Ie57snzJOEe8usJRcOdQrN8WJEEfG/RVxHMjThLWe5tUNYi0pJ1KyJLMDApKieqKsK3lTmRh7chhgGnHbS5rLVxG/odscaK7fJ4aRzU7p3sd+IBO12HFMpAC28TTOE416SozYeZFw1tI1DbkQYKwF3nvvvcdP/dRPrag563t7tliXRWZmQFq9zTMZQ1ns5/o9zoEoYcpP/uTf4H/8n/7e868A30E7HPb8rb/5H/DlL38ZMRoPneKSAFvJA/LJMnlaOHFpp4vrmg3pS1/6Ev/93/0fXiirW86Zv/23/yt++qd/mhCUcn8c+lkQVPAyh3WU47R/+aQOhRRrVxVGFYBC5vu//1/l7//9/4WHDx++sL4A/Lf/3X/D3/xb//6sLGisuMaO1/6exK+T1aAkt8NSjdHjnXWLJVngwYMH/MzP/M988Yvf/yF3k29/vSWc5GyH5eNnf/Zn+flf+Ie3PV8v28v2sn0HTZa1d62kcxsILYa68jnnZS7GjnnXMy/zudHsJOeIs8vPzayuKZhUDU0ro18J1TfWzvc652OdXcOYalxaXzORwlphXnWUcr2SR1tbZR2tpGRhmhZDYVYSNhFlhlsTR+g92Nm4dPIMcvV65JmNz3tlog4hEkOc61pVA+as/Ne7LuAho2bbclpue/gq0ChyunqxVvlc6kE7zXdKqeSALT6q+VlV8Lz2ZS2YJJX8ZebzL8BlxcanAzoDLzFuBevKGef5UA1z6XbvSn7uOSA8rSeVyKmAuZKiUXOp6oBVQqp6jlrD8aNEejy/llKeXAiBMAVElD4w55JPUZLWrPcY0YmZQiROEUkTWYTtpsWSyVOgsbDdWTbbS9rNAwVRzpPiSI4omQWAuBlYpRiI4wRkrE+zEjnFsSiYgmCxtsXLQJMDOM318a3WaMphIhmD5twoPCkqkyZTO4/4pgxuScyLWqgtxYxEJXhA1EPl3AbEKKsfqXhEbNlecbUhZ0NutwhZlXsRRT/FilufsTGOjEGpcxLeJcRon/R+SgXzLCzuU48QIe0hH8lErbdlNoSUyWOPaS5IwP5wjRHo2g2SE60TfQ7JMmGIWeicx1tP5zdYk5EoCAmRSBhGpuOBPmpeVGN1cXNtJBdqjLbx3Lt/QcyOiCEMkRDh5uYK8Vap243FW4PNCVJiGCMxJ7wx2MbStBv15u2vOR6viBmydWTjmILmq3lrwRim/hpxDTQ7ICPWzouKFs6LELWAcgwDKYRiccqol07AO3a7HSkpY2XOmeQcYMC0kCZynIrrXfR3jM7xlArozozjRI6BHOItympV1s/DG5gXtyWUDdId73BOSzKs/tMFonqOkih/Zl2YX1RzzpNSJsSIpFQMLAuYUgFi77BE1kXvPAAAIABJREFUnoKpGgetX/SjgqlqiVL68hfXHyWhiPR9TywMnVo48RQKmErtXbzNdbE+sXSWxbqClDqmdb8X3RcocyfGegsqEAUkLtmcc6Ju1SvMIvDWFseUBCOVzaqG4WlIpbX2Q/pyB5B69tc7j615uS/by/ayfZRWlPo73rLz8D1YFNDF+12jC85Pu/yeqnHpTFFenNjrcLvVXd1pGCnSenGYzR6NqkPN55NCb85Cfa6WbINhUdSXSIplncuZU9lbPQ/PWIxqXyt4zLKEsI3jOPfdmCVkzPtzD9SqgHwuTLSS5/uq91SNcqkSLpX7Tav7PanTl0Hz06v3p/Zx1dkZSJVnnPWznuN0KBYv1LpfK/w3u5EEKXwYy3XX42aKDFyf/3a43wqcyXwFFo/iMldr+Hf1LC04a/GrLXO4zEOzGAmo85Rl/HJKJOq21XjlEokzb3gBYEpBBUxDYBh6utZinSFVBGczGME5M4eyTWFi6hMmKpvdbtux7Rp2XYsh0Upie+8hm4vXMd4j1jIdnpDjhO/uqffFuOKpCYQwEIc9ah3pcO0W6xviMJGyesFEHN51ZLlB8gTeIs7S7rb4riOEEcRSyQu0EGuErPkx1lpM04FYcg6qSKRUAFUmh4hgMDaBNfhGySOGfiTnSMqBjEWIGgYrRgEhgt3d0wUDEMnkGABXgJtOKDGeLEkhWCGq0OfgyXFYlCNTXioq1fKExCeQbsgmgN8hzSXD4X1C6On8jpTgyfVjjAiX2dK5yM4bxDps8sRgSFG4aA2ta9m2W9R12kCO5BQY9t9k3L/P48EwJeFBq/ly3b2A2BZrLthtOjbNQ44hM4RMP01MY2B6+j6+bXj4+itY0yBsSOOBMOzpp4EhRbrG46yn29wjDCNPnnybvt/z5Om7+N1D/OY+YRogRppNixHLcHiMcW0hnXBY5zU6MovmVsVACjfkGIijMj0qgM0QJ5wB6x1tex9ITP0NMWayb0AcxmwwDJiy2uvLZslZCJMWdhMRYkpMY4AYkRC18N1Jq0LgfEEv/8yZbWa1QOZy7XmBmI9fBMcn2TRGu1LJqgVvAVKLIFuHXizhGvkkbO/0vPppZKlP8qJbLLS26kmeb3Impym2Ln0XqhUrrWnjqyDSdW8RAuux+mT6sq7yroK6Cua1ICt/nVje8sk8WgS0hk6YtdD50L7coZ3I7a85r/dd7uNle9letrP34I73B+56hz7a+3Pu4angZd6+8qKs97d2YV8zs+dgtZbcfbfzTat+vyirt0K4KnCqmnPdV6RQmJ/yrYlANgvd95K/s4CG09DC22Cv9k9kKe9Qj6shf7EYNEMhnHDOFlpzg3MWWJ5LpVV3rhi1Csg8ASjle611mHOcDXRpVuwXQKT6mOYsyykpquKrGhVxMheWZ2SKQXABaWW064JcPWGIRp3Mzy2fAKpKEoecz0GKk2Ue6llPnXNnZwTGyXNehn0FlaSSb6TVc1jP23rtAuJkSXkQmEP6KvBbCDsU4Fbwp/qX9pca3nmXQeED2nODqRQm+ptrpqknjj3HoSgXU0AEmk0pgOU1/CWlRNM0OGMJ4UjOkbbbYETYbC4QNL/Eb++BKfk8YjQELpb6VSb/f+y92ZMkuXbm9ztY3CNyqd4u7+WQI80MtZhkI9PTSGYU/39KepCN6UlGPkhj0pC8a1d3VWZGuDuAo4cDwBGRWdVVfbuLixXMqjIzwhcADsc531m+gwsT+FrBuAhkj8QZXKghVo5pntGQySmhWUiSmL/4kun2BhcDznvm+28I08TsBRcmpsMrFMsVomyIboirlbG8mRfScqrgx67h/MGwl5jC6BBKeqqKZTIw6WfEWe6SwzwnaDIrAi2HAES8uatr7lHbGnLeUC04V5nqnK8LUKww3PZoxA4SLURQHCU9ofmJdPoDUpTD8R7CLcQD23KgZGHyEwThy6//NeSEL5nz6czb138g3nxNOM7k84pm5fYXf848H6t3sFFlWmUFvT0hwXHzlNm2xOn1b3kqBV4/mUcoRI43geNtxDmYIhxvj4SYOD9+D8vG+TES4g1hmsjFAGiu7IgaPEUy6/m1Pc8JSnJkAXQjbw9Wt0sLr9wB56BsiaKCy08gE81rZxafzaw9yyNaEiSjAvdhouSVdH5r9a6KEmYrEJ23YoQGW0K8IAHi5PAuUpisJhUOzYW0nVGFeDgS8DgvpG1hK/lyp6O99O8yg9E3gX5o+3Pcf9rmwvBdXR895OETNB8CIQTblEev096zgbLb2h7mB+NALy1ksv/4RPiwg77msXmHYt9CWu2cJqTLLkzqJaQxkn5iIDW2Pf67fcDzv5/NcbXiSpeQuwLSrHsyXuzFO39ML3/keZ/b5/YvuX3Cd0h3d5CMMmjYL5xI95bYcdcyqG0kMlj3B+VZdo/GZU93efcc2LR+uV3pds1j0kLrR2W/IC1UawAhl+FegxFskEHPw4jlYm9snqMLYFGNhqUoKeULGeb9ZdTCGFLX5rEZq3qmcY8WKHX6pW7D7XsGxT9WT94Qsl3BQtcTfJM/uwwywHAJaBSMKZndCyaYY8SJG+ZgmOeruRK5BKm9zuoog95hMxu7+Fx1UUYA7BrYl2tDZT22mOwd9aa+MqUZsZue1GrY1s5JrTNWAVQppT/zD20fDKZySqynxxomtbA16ut1wzmI4Q6JgSDeQpREzdsUJ85PKzklpjhbfSrvMVa2gIsRraAI6jVzRfIIXirwcAGNQsneForbSSpijBTnDcRkRdXj5nsLP4sR5z3xcIsLkekwGdFFuLXFk7IxZBXMIiGgeErOtbgw+Og7BbeSUHK31Go+G9WoCOI9PkZTtMoKaoq9aiMjaAnXrU7LVB94t1GYdbxkxM/VI+XrojLKcy1nRCNOIrgIAnl7oqQn8voG/IFp+hLCjLqIdzPJKd4FvPfc3/2CvJ1Jj99yXhOvv3vLnb/n5mDAmKwcjq84HG5BxIrcYkWXnUA43IOHg644WfjutLAtC0t5sn0vFl59/SXx8BXOC9EL82FCvOf0diOpsp2fUHXg7y18k4LWMDrFKNC39a1ZgTwoln+TNCHpVAslW7il845EQTSjZbHaeiV0BTfnzfL51rN5LosVBnYBSknommpqn4WmifeUVAxg5Yx5MdVqSvlgoYvqK/u8GpGG2gYfnCOK56yZlHeCjev20sej1WU/SJ4d/0PWkk+ltntXCQRa2GIB25T2DbTVgQAuhE2jnd/DLnYA86k9bNa3JpCqVa/OvVyEhNCtV2ARulBqGCkVwNOtrj10dxBmn6aNybqdQP1SaWnhGhfYWy5wZBe1zZonMhBetHn5IwDQB5366dfC5/a5fZr2RxoPfvT7o8g7Tr6QQVcGrwtv1Ttk0MvGo6rAvmAZvI7Q2E8ZvCZV8R1D4TsBWQ0lN8IGu54wuGsuZJDUCBLt12sED90J/0JfWvjhGG7X9r9WLmWXY635ev3S++2cQ71FbZUWvSCQyygDqzGLRpZwLfsHGaStPtQOtsZfzKtzKYN2Y+tI7tHuq/389sSQEYzW1Ie8H3dpyOXKoAoDZK565Di/u55wiYl2lKWtP22Mg3FW+r3frTNcr9JmDGzz2DxSFk2yr7EQAuu6mrfwGdB+d/tgMLWdn3j7m/9MPMyEaWK6OeC85/H1a0tGdIqKUjDLf4hHY9QShw8eLRkfHN47psnC1ly8IastyrykGs7nrehvcRRVki7mIZlnnA/EWXrC9Pr0lpIS3kdcCMz33xgjX7qrMwYuxMrYR6XPng2gqBqz3XaugE2qh8xCebyHw+29PTDXQI+1ljOjCo/nE1kzwoYPgcPxDiee4HxV7jdCPCLiyGlBqyXDh8lyAtReyAYmfbilW8i1XCR6+jgxyyuETCmP+HgD4ikoKSceH9/iJgjB4dWAaPQB9ZGcT6gKcwwQjuj0C+R4ZDvew/rI07e/4Zd/8l9ze/s1x6MB0Vwgl8yyLQhWrJniQe64uxO4LdzON5zPT/zDr/+et+cTv3v7gD99R/zN9/zZL+758v6IP/6CECajwc8JXTNFVpgfKFJIYSJHq2k1H27xLvD2zWu2LfN0WhHnCSHi/UTwETe/wjvPPN8RRCjxkaLKtp1ZlrdoPhF8JLhQwbXWXDRP2p4graTtjAsRP01sayJthfN5RcQR54kiwjllKILoakQcLkNj8SuJSOGLV3c4cczzjKsA4+7VLUUcNzd3Vy/3VfhDA+Hy7g2hnTm6tS9ZZ8b2UpT8z9TqvlZfM9Q11p9dkMkwPmiFDms/K81ubop/MevYpSXxUw2m3q9UL9MgwPeN17Vh2c9uNXX7+4p0T3MTSs2C+SlbExRaSVequNvX24Vi1LrfhONg3mQAXM+W52dP0uf2uf1zal3+NF22yo8e5vRiJEVTlkcl9rkMavko7xZjzUs1/Kntl9bBlpdaZfaVhXFnBZV+LaHa75qcUXdhFGrREeMe3mSQYOFuraxG6/9IXLHnYO0hkIqFhksfRKGXuKDtv1aL0wxbdr9STElf13UAMfv8dGKPZszrc375fGSYK7nYsxsDtPSNvcPS0cB2BWzEmadLszFf55baUm/mB8dFll12V7dWlQ8C6miEFgZe+8i6DOrhpCMo6mC0rY9dBl0Y/K4W1wiKdkzY1qW7+NsI1JzVsXUWEea9UdtLJRcJIVTCEXNSFGUwiv5w+/CcqZIp2wKT0WKHGPDRwprME2UPsbN34CvduSPI3EGDOLoHwMVISa2GVDZFGwHx3dJbknl1XE1gcN51BjVNibJteF9jVqcZNKK+KXRqbIPizNsjmLcHtxfpLZt5ncR1D0izbvg427mVBMN4UxxmjahgryRS3hAWlEjOk92TZn1veU3U8zOlZKQ0j1W7roU6ikRbJWWlJS22FWXMfRFKque2BWhu9VyVWcFbrDGW6+CdUY8XhBiigUYvRBwTge27hbx+z2E+cnv7RfXACc3LYBtHplAp23FMUzRvTZjw5yemN29wBVY9kc8rJS3cHwJz9BymRoUc7BUpipgLybYicag41LXiw8bKuKVC2jIhOrwLBGcg1RgFDVy1atiUQkorOT2R1u+ZwgH1U7WkCGG+75ugxQxXr6d6csmkXCAtiHjcNKE4cmkJrAlcQVylSXeN9l+ZY0ScY4qNrt8ZW2SYn7HQ7bKhrc9LILVveMM54/H97/GKDULprhR/kjZYnXrfhs5dgKk6PrdXKi+UXmjXrnapwH9qIDW2JgCvLVjXx9jPnZRifJb/WN3fQzuacjF+vtdmGT/rewztq926ObZBR/nwptd/vm9mdov05/a5/fNs1+v7JYDy4y/3Ye+P3fclYGN76/Ddy5aSi+Nf+v7i/Kq0vmvflme/N91CLsBK+74VFW6y4xrQjLfowEiaPaghrNa9vbA7F9er+a0XXvZqEHuHHG55wka61pheLaytA0nZ995WS8rC/XZA1zwzDT+89Eh3741cgN1nQKijDd3VwRdk0Etjak9EXNUWS0FxQCMw0u602vvgwJU9EmU31VV8filfVHev5uUYdiNrA1tDl3inLBhVDBnX8fORdawuzdtmumuX6dCfiZPdg+i965E3HxMp88Fg6nh/x6/+q3+DDwYWSl4pJXO4vwWEeLwzS4Julf0poZpwRfDevENmKYV1A90Sen6sBV43RE1h99OEBCOGKKWQ1gW3ZXLSOlDLYRHnCVPAB2G6ubHcKvF1Bmuukq/WAmGg03SUnMnnEyVvlG2hhAnnJ4ua8wJpBQF3uK8vYOl01w1gaEW+U3D4qnx5V0BXSi5spZBLMbjgPM5HChmlIJLIRdlWA1RFE85F82jFL7CY2Pqy1lpK4pxZBDKoGtgsxVgVnQjT/Iov/tV/YFNYVUma0e0E5QnHii8F1HE+B2MHnAIuBG6PR7ZlISVlPT/wIL/m5u4bnA8E1PLWpsi6LZzXN2wPj6TTAn/yp0zHG7x3HG5u+bd/8d/zy6c3fPPl/8ebh7d89+YND0vm7W/e8GW64XA48sXtnxi1+3YizLfE6U/I2wNlfcu6baxb4pQU7+C0FXKyNTGFG17dfg1pRdOKc0YCkiabh/MG2+nE4+tfGz26KjFC8PDw9omUM6/+xOOdkB/f4oPn5vYG9WKsRHEmeEdOFrb1eF52S0fayOkNKpAcqD6ACmGacC4wTQdEHWmrzI9FmeZb4lwsR2tolnfXiuhdkjU0WtlW/+iaCRB2wXb9gmsNNfuI9/6PbjllUkqVQcnCIMxF3goANmGyJwV7b7/nbGyKhX1DtEptasAf3rHx/zytb6hhBujhHy1MwzeyjIqwzMJVhXRlaCydTvdS2EEjhfhkw+n37kxP7EqFtREW7WEjjW2pebGasmPzQCcN+fmX2Y+CbZ/b5/a5je1qC21lVJre3UDFqCh3+8qQq3J5jefa657307GVfS/veItlJ63QSls7ijsn0vealhuzkxk1f5D2fH2hkjUovSxH20OaQbPthc6b/ldKroyEu1K/K9cGOEcZ3GREI97wwVcmWCunUYqFvlu/G6nEtoMYtT47J8zz1OVbqqy/pWS7f6VYb/uuqsnEFp6tql2XlVq0XpyrZYOGMLsmq4Yx7sazAajIHg0SfKSoGeD3Z2u1Ny21pTH8OfAdaw1z1C59bfxtcshdrJrd6Cc02aOUHZ5VGbQXTq7gUipBVQv7k/H4Or46/la/y0DdcO/qBSxaSTk6IDW9TWpqx8eQYH0wmHLeEQ8zjVK80X/HaIp/Q3qwWyq0aFWyrDCtKX11IEgt9mp89g6jG+9sJK4i5lrt2CpDqxEN1DA/5z14Z6F8lUq92xfE7QV568Oxl7fsXintfsh9felu+uhc8w07v+Da9t7jJNqza/1Vi8O0JHWtOT5AI5wotgAs5tVAp3loWoLfvtAacjfGwWY5CSDVqiK5DtgjYcKVgpQEZbM4X+cRrRuMiPVNsZoNOKLzuOmOeFNw3l7ytJ1wxRO8KbneBbwzd2+uimEpiZxWnMzmmZlvAOXL+68QHLkU3p4Wli2xbQnvExwm639NOFOsUPD5vFBysVetevMUUCeIDzhvDH8lGbtiSRnV5jkSzlthXTdOT0/23L3He1DnKeIoYutQFHJ9vlmlOgWrX0eEgt071bhgp5a/RSk1XtdVsopiL6AH9bmz7hj4hZxWpIL21obtZbeiyWBdYt/0RmvbHiawnzte8VOCjrE1q49eWJGs7SDCwgN6Ib3RVUKz9EklaaGfA9h78In06V3guNqHPU774pl0r/vVGO2Xfr0uqgbw+3KWwc/TxvV18TkMXzwHLM+iR3fp+PxiP7TsPmZZXh/7GUd9bv8s20+8F//Yd+hd70+TJ9D3MpohbwQVA6CCy22g/X15o3cArxFNNQHJuN+2vf+5Z+Jlj8CuLLfdS6+2sQtw1I2U7AahFy651wa0sTViib0L+++jt6zPTx+eeWFGkop23XFcDZDtOv8+Oe36pWidGu0svzps6uPYqLrNmLHU/EH1ET83wJob7+I751poXI0guZqqNlrjFtjB7qVMv3hS+8DHT+o4LsNCG5gZBZdcXLDJ3uet6U805b/q7fvYGkNjHUH/bofm+8++Fl6817vbR1bD1MqDr0zTjPdHcrIaTzltIA4XJkpKaNpIlRpSJICHdbVCvl5zBZ2ug65aM4xtA0mew43lQcXDEc0baT0ZkcC2gVqYYZzvEO/w8w0gFjJYrDBb8J4QDrTwQ0Ocmbw8geZKo+hrXG4wT1MN8yvZLDQNleYEJRdKMitAq2MkKLfHexuHzPYwJJPTSt5OFr1XlK08kJzn9tW/wjlP5mT5IqUgmkDX6jpWSjqDKwYQRTBChhVNJ5CA9xMu1Lyv/IZSjEAhF9hyAReI4aaCtIz4A45EBCPVSYmcE+n0gPOROB05fPNvmOI9a3pDSk+8ef1/I7rw6m7ChyN++prjIXA4/pJyvCenhaeHN5zfPpIP3+DCTDxOxHnmm1/9grsvvuXr0+/4+9/+lm/ffo/kTDqf2G4iKuA1o/lMXr/jD69/x69/91t+9dUd97cHojNCED97iB49zLh4wImQi5I2ZT2dyLqw+W/ICL/+7sTy8Mj5t2+4uTnw6stX+OmGePOKr1/dG0gXs0Rs5Y6scFodPhX8eka8gfFtOZNzIanl2EUpdbfwuDgTDzP69ERaV9J5xcmGUxMIBasRFqaJ8+Mjur42Nsjhfe+KuVYl3I1uf+wFbu5nRmH2fGvqvwvg3uXC//naSJVN35Tadw7nzCronLPaW93SVjq9LGC0sk4aKutMSNLDd39+zbpZHHcPWqjDMmrd0hiMGpiqINCEs0c762Y1IqlZCZv9wjU20k8JEgSb02FttXAKHTQQkWoVbpIdepgN0OPMuxJRngvZn6/94xgKPrfP7V9Ce9+bap4NuVDuG5hApIa/XTL4XZx/ebEKCPqfz87p3qt67u4JM+XV1ys2CvKLEDYdjYZ78ffL8hqjoc7o050TYvBmtC+NKKJQSq0NickqH2vUkrb5cFYuo3udSlfAm7wulRq9hw8OUSa5ltFxEvuYnKuG95pSYiQa5r0qpXA+7+BLxCjXGygstWSHDPqA6acg1XtSnKIa+jy1qBhTf6Uz1bX+WLmLy/BB8c0bVyOmSqZ5K6u9d38O9ZlLJdDINYpjLKCLtP/eI4P6V1X+jLa7+p0VnN9zj81JA24wbiLDeV22Nb2kMmnXmq7e+65nUPsizXuokKun0FimPlwGfUTRXjVyByu7S06gZUCw0liuSmVWaTkk7eFr87EY+KjXLKmQUmE6REL05OJ2AARGEqFlD9Nz3qpRO6PrlAKSWyFbS1qUYLlcpmja1FrCXEa3xSYoGJGAeLE6Ty4iIVgR3VKLUVblT9OK5mRFewERh0rzXghSkw8RsVpELiDhSJFKqlEfrG4rpVpBRJx57HAIAVUDcjlnSlnwlGoBSPWBVor0nmflTP8cFaGy0YoCm+NFyFgi4NY8e8VytLwUnFO8NGbBgFcDhNPhFVIW2yAlYox2tWJ0BXnTwQqsujgjLgyWLhtX9BNzmDn6A2sulCJYHh0WTuU9kAkhcDzcohpYV4iVEj/6YCFfGvCCAeqU2FIiJbOe5LRRxJMKIJH57kumw4F4uIMwGZ16fSHMg+CYpomcMsvT0vPJfFScL5yeThaCFg4WmiXViiEBVSFlwEfcJLhUcAC1NsGWMwHBF6XkUinfr15EaQq6Xn989QsXVr1nVqALC4208POLY3/+tocbar1vc5ePVrOWN6ilAtrBWtcEei8O2KxKHbR8opG88FzGe+/f7YKneeKbZ24Mp1MdAEn974+DBR9idr7s7+41fPeVrk6q+5iNoT3H8Zr2fnMB0D7o2j/47UsX+gykPrefqv1Tcn22d+f5+v7x78/V9+95f1p0QHVM7EaToWvtk+v3H95h4NMXQs/bDWpX9qgE6Te7DEW27zs4EemsfRatMhb23ZXlobuMoV5Si6xr7UsjdshZe63A1npdxDJcU3bA51zTA1rI3n5+I8VoeuHuYKmFeMWUf8Th6ueFgismI7zzXZ40sqwRZNSZ6o+1GfnbOao10KnL/6aT13D7Oi8Kg54ge19HTUIs6sh738kjpM/rfmyTl1RvUCntVvv3NvCXV+FLb6PWE1tOk/3eBlZlL/uzMWDHvmbatXtk2x7q2Y5phoMLAzZ7yGm9wHCt8lFS6COK9mZKXlAXUALLaUGzEo+Vlc5FC8FaUh24MWM4LxhG0aqcC+JmsxDklbQVlqeN+XBkOtySklbLvQCFfH7Eec8039ScEwfFFJa0nWgc+yIOX2s3uflQn3grNmlkFZpX8umNoee7L6p3wIgrfJx6vSsNVihYt8XyqpZHikJRh7nQvIE0MUptew5Gl+4D+DAj0x1oQkvCOA8K6emNrYXjDT7MTPN9t/DntFFy5nx+pORMjLawQ3SIBHA3oAuUpfZht8IASEm49Na8ROooImQR1qykVFi3E2ghevCSmaIa0HXgxKxQMRwq696/g7JSlu9APCrH+i4pzs/gb7idfwV4tlpDTPNWN1ADLV4it+EGJuV3jydyUbyLhODxckClkCVxd3tPDK94+/YN3z2c8WFhmgK30xFVqwPmciGtT6zLidN5MTyJI64nsgRydvjpli///BUxTsT5QC4La14pyxlK4Xi4JcTA4fbI0+Mjf/j+O0SlMvEdCXHi9XffsqWNuy9fWay1j3gXiWFiy7AumXmemQ43uFxqmKWFqi7nM6pK9DWWuvBMXnZvxmBRe0ms21zvAmoUZNpAyAWgam7qTwemxnCHZ9bNGu7avFEWo156XPt+kd0r1PKULIRj3/w+TZOrzVT7Rt1b/bXFjftqWRzrhjQQqeorgKzGGK0C9VOMREZw2Iakg/AZFKgLAF5zw/qa26+5kwrt4PcfVyH93D63z+1jW/cwXHhx3i2DdoV7kEFDJfMmg7oTq2+huu8jw7HXirt9NSjItNzSnQzAOddDr5p3yXfG2F0u+qrLtYs5t5M/9BypHnq3D7LJLpEa5s8OlJpHRweweB2636IvWp6WqtY8Kotk2mfb70ZDdqA2TxMezyJLN9DDO2RQnWvnzevmazhiYQekHRiqryAy9zG3MMRL2SoXMtmKD1teVM67TNSrnnSaemklYvYcr1GujDLoSmO9Auvm0XLvkEHtev267MB+HIA5TSoTJJZK1GSX954Y4zMjgau1qXpeHZCrt+0lo8e72od7psQhISISUBwqdenlaoH3lp/Uqh/3Ap3q0GKD92HGHngwGsaSCRHmo4AW1vPZak4B50crzCol4wM4Xznf1SFuqjkK5m0q22L5Ud6IK6SGipGhReNqMS+RC7VIrlodoZKaB0gRbxTlOa3m0djWSgBRPRvOW0qVFPNmiZDTqbqRXVWSPR7Bu+otqi+2Criw2VRWtj1pL7aoeb5SMrY4ydQbVd2uKe0bJZ0IfsK7naT9KwkMAAAgAElEQVRCSAaKwi2CkLcVdQ6cEB244NgqbWVREAn4ShmPBHJayPo9viJ0U/oDEg6oJvL2lrItpPVUNylPuPklzh8QXTCTTt0gXIQwI3rL4dbCDt+mxLptlPOZkgPheAACgt37vCxoKXgRHFacWbeMqkAR0pZZ143zpizFE33EO4+WFXGFL+5vkFLwmiiaWdZHqy+VN7zaBrJsiXPKpMcHtmUlF7VwNGkVy8sAAmzNFjKustuUXEipvqRFcS23Tc3SZbSawfK1aj6fG6rE15fIQJJee5fa18NnV0KsbQgq48v98qbzKVpbJ83r2sgl2qYKlSL1mfWwLudnIY51LoffP5VzogMQbL/Yu3SdC9CKQpbuSaYJKi27VVBL39TtOnWv/CTjkd0SKbv4umZV2hfYoNBYZ6/CZwZFqv7f2bD61X9k+zQT8rl9bp+oXYIUay+v8Y/zNb+nfdQ7JBcyZjTS7R6Zq7Cpumn3758R6Qw5NJdb/bMIjPGez8cx7ijDh5hXyXBFM7bZ9Z3sFTqdq+QS1SiXa7RSI3S6uHZ9TI3FTdr9675W2pzQvEF7Xlmb70ZORA2DM9mXB9A3gjKg7EQK5ilxOKeVpGL3zFQY2281hje2VVOqbBxF5J6jZb3u92ogxsLFOvDagY50OV2aDlf1wBBCv0buMtlCHq/LfejVit7nbjcAM4RLvCSDxpXxfJnIC+ujfq5NhsszoCX9+bW1Xur4hlInFRTaenA9HNBC9z/87fxgMCXO8qHAWPmKZESMxUqa8k2zMmcLl1LLLdJitOMhHmsdFgw4pA2Jjhg9KWeWpxO+cvOfHx5QVUKYiUUIbkN9oXiPn2PPW0ITJdniFA3G4Cdbnzgttgi8s8XoKlNgY+3IaUGkGA+9WpHWsp2tYOu62UZRAQnBU9ReN+ftRcqLeZTWzWI7lYmIw3lbvAKVHMNZHKYWBI+oa8kKVrh22yhpxZGwQFRnYKqI/U2unrwTEm8R330RQELE4eMdJW3k9QReIDiiE6K3Z5NLYdkEJx4fj3auwpYW0vbIFCaCs4LGSMSFgxUD3r5jeXjD0/evCd7hfeDoAmF+ZUAOQSSaa90HRA6Igxscfp45Pr5FyoY+PVGmiDscUAloiaRt5XQ+4UomiODU4YqQU2PHc6QlcT4tnLNn0UiIR3wIlLLiyHz96itKKayPD2xpYV2eyFui5MJhmvHOc1oTW8p89+Y1UpSgQgyV9l4E0WJrSsU8n4hZsxDQjZIyKWUjyShqYZg0cGqU86ESjITQKDZHMCUdTLyvdsF1OMX4meVTXYUJNk/V1bE/d2se3/Zzt5Llzm4UQqAFHaiAqNjPCrR8FWa7N0ivBMgnbi8B3F1c2f+qlGICrQHDvf+lGpJyjT1vxRev7Xp/TPsACCMguhuSeh+alnTl9evg6dp7Vs/ZBW9lXNJLsdaUmw/q/biuP/Ccz+1z+2nbx6zYn799zM7wzhDxj2g/5PW/kEEDkBrPu5RBTVltrLJ7ONwLA6BvUG0Aeq0mt710L6yr7eeVXBRAxfVoActXrYyxwBTjroTX/U/quHz3KNk9L2VQv4n9qMe2WcvNQyWN8TSTc66lV/TZHglCSqnfQ2qfd5a5vXDs/mh2uTGO24yVbg9XHGRQKyLc+zfIoFKjJVoIZcupbToMaB1ni76Qeo+yO03YgUt7nO35jM+kP9pmnNxdclXOXoHvCxlU10i738DsOL4tDRApxhPY5u/62Aa8G8gUcZ2xsNkAnBgd+siufB0O+EPto+tMOTfhJNRcmx3dUqxw7Pl07uh2y4XshDgfUHGEZgIoGUqqSXzUvCabjuAiLnjCK0scTJuRWJweTvhodOiK4vOKFDVg4hRkfxHAW9hZXrEaAIILTREtFE2UZcVcVxuprOj2iIsT4qsnrShsCRz4SSjrRj49GXV7DIgaQ2GcZoIqcXaUkliWR8gL5FhDgQR/OCI+EkKu4E6QAmU5k3Mi5402jd63omsT9uIlVFdEEy5MTPFPrYgxhbzVMKLS3McLCLhp6vVEixRMxU1kLTg3IX5GwitbfFqQsBG0MiqSWR//oXrynsglsawLed3oVhOU73///6ISOd59jQ8T8+EehwdJBhgFQjwgLvLNl1+xTJGnb7+1Z6/eXpqyEkU4xhvm4AleCN5RUM7nFRBimIjzDfH4NeG8EJeF25sbYogsy5mUCtvjG4x1b8V7uA0HFpfZ1kLaEkkzPkYmJ9xPR9Zl4+HhkcMM/ujJGnASmQ63BFXzilGIx0iMkXg84pISkrItZ06nM/PxsBd4q2+vFtCs1fhyHQp1KVz2MIf97wsFt242Lxd8bXaf3YLTLFKfqjUPVM8dqlY5sx9VC1rOljvUXOdlD5FogjHnyz7rRdjcpxmLgUKHukvv0eUzsS9c3XCNclcwlpld4Kk2j5z2h/uTYqkPaUN+QVcgmge29snq6r3QKWlrShgfgOufNZKQy4fzjwR/P7fP7XP7ke1aBl3LmuchYe+6jv20GpdajTWOLg2egarqoWj69LDXj4eaQapcbi6Dst4Z+qpBzhiam0fJTjJQYXtyAwZtdD166qqN121em2macM6xrZuBkq5r1s1dm3yoKRjKs5xp7eQals9UctnH34ytbp+L53NvG3rL+/E+VGBW8E3mDnTqPW9t8OYhO3lSqahRakhkG6+v5FjNWKrqe99LY7vuGG4APKMOMhpFzYLcbXl9bNfepvHwek5/7O2zwSh98cza/Ne1R/W29nDRSjrhva9Tov16LSS0Ne8cVPn+sv71cvs4AorqbcIZC572BQoUK7C7nE54H4hxqlZacFERv7tkRY0pQ0upQKrmkoi51oIPuHmqrCMLOW9s581cdM4oIx15R5zuyqrQivKmDa3EDVqiOaSwRb0tJ/NISW6YCq8G5NDJQFjeKgALtTbVhjgIwWHUDrWOgQiIZ1uV09NC1mTAxIcejyvOitGqqN2vWJ5R3la2bUVisLCwZgmuL5yWFTCLgg9f4KcvoCyoVprwPKB43ew+PmLerGqpwMKTilTLgwTEHWjbnROPktByRnNiO39HSWdUT+QMSxLIjdnFFt3p4VtSUcTPxFmJ0y2QcSQUU5q9jzg3cXdzR0R5/N23ZFW0VinXnPAIc5g4zjMxBFIF2du2IphXzccD8XgPvEFKZp4mQpxYlg0tNR9MCl6UGDxzbGunsG4JzdliZZ3jGGd0K6xLwjtPma2yQRZHnGZUlfPyaIDde1wI+Bpn6wXWpye25UyIU6X8b7T/m1nPcgHnOzvlS629t67X96Fv2tcJvs82HCysgisPlcmTT4Q+oAuUtq3tYb17n5qnpm3UuW+uOznFdbsc/6caj/R7vhReIM0IxF7H5DoEQMTm4DK85CUL5Y/t34depYKgsgu1JonGsZnwuzxzXD5tP+4JvYNgdy/O0w+0z2jrc/tHa5cGkX+W7afqujawMwClK5kz7sENUD3ziL3kobJvuseg0Z4bgLmiP+e6mKudq0L3tmiXMfadHdv+q+CEFhKntb6pXbu1Utp+7CzaqHvG2nRcG/MGz0jtWwMuzjlWthciKHYPyI6EjJyse920lgmq+mDztLUIhz3n9npjHcZ9BaZczUvePYf0fC27XtO462Pvenbbyy/B5LgmpMqRFrDXmBfbGK91D0czzlVq+CudBRhIIYY+XGCpCv4aQG5rr5SLc9rz3qd/iNJq1xW5mNc9fLGuyVJ6OROp7MNN42jPPISXnse720dQowtSPQqim02Pb8luQsqKqDDNMyHOTPMNRVP1nMC2JlBDvqZneKZpIqXMtqSq5As5GWiaCKAQMNY5jRai5/wB54J5QXZPpU2Wd2jJLKc3lOVMWU74OOFDYDre4XwgpzN5O/H43Ru8Fw6HQKmuTX+YjNUvg1JQWRAX8NM9EhSJ9qLlLZHTyUK6jveICGV7wgG391+bSzRvRmjhonWylIrOFa10lTjzbPhpJuWFXFZy2RApqJ6AGj6VM3ldUQ0ovnq8PN5FBG/06FrYihKcw8cDOT1Q0iNLWsklE+OBKMbS4kis59cEPxHDoVtYNG2UsqAOinNs64FtTTw9npnnwPHmhlAZAO/CHbkIuJmUPQ+nDcqZsv6G6XDLfLxHgs1nPHwFcuDmi8f6kkVyUdZki3oi42QCmTitb0mp4P2EF0fwE4JYXlzJBByuFFzOTOLxXgjOUdQU2YJjKQE/TdxOkSCRnFaiN9fucZrxPvD0mHAhkDWSCnZtFxGF0+MTgFHzJ0cmkbZMWhIe5XiYiEFwNdfNOWEKgVIy23KmpIT3gZLTxfuzJ6pKJzLolpq+i9B25f5it62iE1DUk/qW9VI4xc/cOktf08CrHBsTPktlUgwxAmIe1WYlq5udq4Kh0aarumcC7tO3XThZyMMeRz5S47ZnulsSQUQp9XUvZZynT9TzJoiqwNuLldc2WOyAvn7G7vW6My1I84IiVyp1/CcAuv/Yy+Bz+9z+ObdrAARD6Pnugdi/d/uBTQZJC6W7lkFcyKWLu3QvTbuQKdnjjrGHUMmwZ7GDlGp03QnGoHs3MGNerpERlnqye4OUWogV7fTeIcZeYL7Ds6pkB+9BKqV5lWnX3ri0bXVPLV3W9RFXZRzZ86JaKB/C7oHCAGCHMFIBzguPbjfiUctq7DLI8pOt1ucuk+zYECwNJ4vlT9mYmidmZNxtBtjda9U8TTkn8+RUwnpxDhcjqqHq52aUV2WgRFegMtlWEGyU8uysjNAnrhNltOEOoJOWyyaNJbuC8WG92PjLhezqJscKlgybtD4Z+3TTdQXFMXgS63WNpn6PrvsYXeTDc6YYHrwWwA+TeDlJzjnEOyQ744Qv5h0RtYfuxVxsrrk7i6X4IKDZWL+Kd/ugBSvO633NlXLdjLp7FutLr3sh4JIzzmdeYr+zomgGBKketJLB5fakqrsNe7htrFpZ9yCDOPyhQHEdLIV4oEhdcJVS3B7snpDeLRjiKr02pHJGK/sfUqp3R9BSmQVLouQNybVQrgxPRNm9T82yoi3W2Ig+LIzSgViujxYjqRjsC/05inPgfGU0EUpSdHJWj6lGIUZxOBU29bY5FEVTIq0nxHl8mHFEe2ZuwkeIx7veF6VUdsTafzX2lLRZblIUi+tVMKKOnLoiqDmTtVqmSrE6ODiK7foGGFttnFoDqFRq1BCMWn+aZ8xDUj2XWNKqZiVn2+5yAcnKtibSmtiWjUO0/LlmKdKcKCqoC0alXzIqzsIrr97D3SI0WkoYdoHdqjUKn8uN6NqdcHV9Pk27vk/biDvRwYXlb7e6abXWNQG6V1W/9GK9eJOfcSwiYjld7LTso7WwWbW6pco2m8GS15J7nXnPcZd5Ux/Vnlt7f/iYq6O7tXKYzyur9PU5Ws8T1yPQ7btqAOgW5A8akL70Y7/maLu8Usb2y/8YNKUv/vrO9vEP53P7Ue1D1vSnvNcfgdTfc+q7v3puqf+gG73n/emfv/P9uWoX730L4xoA1IVruh5Tf+8GPN3v/Txqor1O+55vn+2GwX4N2dnghhNf6PsoDwaZqM/H2YBSD2+jhboN3hDnTJ9gx4wth1nqOWNoV7v3HnlxNVg1PbIRMKnsDHbteu20Jjp0kBt1Ynaj6ZUMHOWPG/ZhqqdPhv7aIyx9DGXw3DUwMo61gRm56EObSDNstjnfazyV6kGqcrwr4Lu8aNMvDSy+JG8GuXkBhtrnFzLocs3uy2EoQL0rHMMz0NaJfpfd83j9ptoYjI0x471rjtUPbh8R5meeKRFnjGsugji0bEDBUVDN5GSJ/+tm1vycjHABhGV5awqwrsyHmS+++RonnmmeKTlZ4d86eem8GgqPHu89080rnI9IiJR1Y9sWXAkGwFYrjiohIt4R42wTGlyFEML6/e9tunxAxPPNf/FfVgSrbOcz63lh+/4tIkqcDlZ/yDuc1qTGbCQRmjfIiZQLipDLhg+R6XCHCxMuHil+xoWbCjqVdH4AhTAdaDVc6mpAyCgJ1YWST2g5gxRcCKDFPGDqECKUE6xi5A3V41LyBuXR7pWglJUtPxlF+vQlLqwUTWzLA1kL4idjIvSzAT0tHfSJV5ybCSKwnihvfo2UxO3B4YLVWRK81YjSjFO1cEZn9ZtKMHB8Pp958+1/Yrp5RZhvuHv1S8J0z9e/+rfG3vf4B1Qd0U2c18z5BJz+gLKxPZ0AxX31FUrm4XEjOMfkPUUdSuS7b98aI18+I8D9zRF8QOLB1uO28ubh9zydNubjEeccb1+/Rkvh5vYVMQS++uYLSkqkdQXvUfX87je/Y10WXt3cEafINN1Qcubh9evqZRCkeHL2HGqdru3pqVuhYozcHG8I8UCYD734a33UBB8IPuxMQG0NdCEzSs7Rg2PHGEDTAZRLBbfD5v8RMb5/TAvBQnmlhXI0i1wp1fPq69j2pM5uCSs7j65qIadSo9KEw2EGYN22i3H9nM17R4iekm1zjtE8Lxdgynrbo+emaUJEas5Xe26NWcjhQvO2UYXte5Scn7A1IbZT5O6irhmFmqGlrSMLGxG0IntX4+1z9b71NdXCW2rNup+kvU9afQY6n9u/yNbfyJ/gUh/+/jgxoqSdwno0ltCV+d7Fqow2+QNQNF/cV+r+MN6qK7L1mFC9453ddrei9Os24gbcTiaxRyvo1bVtT4014kGcu5Q/WtDqxdqNYGZQd076se0ZtAgSu71nPkzkWtOyR07k/AwE7SGAnuAdyAppM6Zh3UPhm4OugRLva43TAVC6qvDnsl9T+n5cowKqTtCMjjFGenhjm9c67S0ioRFRmPy5JFXYdZDm8fJ1f6+lTMpq4xfHdLzp9PNW1iijmOzIuVQHg/XDYXnjoeo/Hdu2tXYtg9qx0vpiazUXK7Bs3lO360V1uCH4viCaFC7Z0oe8sxypUOuiNuDZTBHNI+mcBSiaQ0V7qROTmx/3jn5UmJ9RAUv1Bhl6LTX3qWQDHJozRbTmUBVK1uparuQPNVcobY60bXgH3jcPSqMXbtYFQbMJec1K1mTuAivcZEWdqDGVqhQVvHoIRnFICJYHrrCdnlAt+HjERSFMEc1aqdHN22Ue5WZZd/3hajE2k1qpGNBBaa1hPFCrKNeESZU6Jwk02YtQgoEWaBoPRsRZKGUjlxUnmxFq4K0vUsG1Dl7BkipBRKWG78n/ptgWc6mAGGW6x7GUQtFck8d9zflQcl7wLlRa+WpJxzYhHyZjOFEsDwhnYZlbIrS+ubBbBagvaGVKXE+PpHXl5vZriDM+RKDgxGN08wJ4igolJ8sPy8Vos73lI2kWnFoukjhX64zVfLN1rVTlk/VNMg7FS/WI5sS2WQjpVgs/5QIeIcZAQXHFkZ0ji6sU9xYaFULA1yrk2e0eVOqGYkW6zIxg5Bdq67gC9FEutfdn34hftpT2j7vr+nJemzfLGHv0+aZ4db0f/GiwnL14PO/5frQsyW5BGmOU3Qsqd1/7VxtVs+KNYPCT6dJ181ZX/bdXAqd7zsq+kTevYrNeadkfeLccOivUaEJ8ZI16oQMvtUHpGBbHDxzbhHbdw8qlSHgG3K/6cWkH3P/Yn1u7xrsezoeBrOcW9R/b9L1/fvT5H3OoXP/yvmf7zpP/hbWPeQA/Zk5+aJ966dALV8HL1/gJHs9PZF74oCv9qHsNe3PHTMplqY5u4H9hQmQnHbvIq5JLGVT9+7QIhVEmXI7g+rMduDUjVmkVaXUnj5Cqi/Y9erxrkyNNgR4Lso7zMJw5fNz3+/IOJrf2mbOB0aIr+jz0CylS6n18V+E7sUPTA7p+167bwOTABNyibBrBxh7BYXlMpoOORB9t026yaz9nzNMe63LtMrl5cOozKto5Cdr1LAhLdw9fW1MKvZYs7Cx8Y2pWX3/XwL091/GJ7r/ta3OnQt/HYkbOcU2OdcpqLy7muXm/9pD2ulavaph9zD7w4Wx+CEogq8XDiSYosK5LzenZKEVJuVqdxRRO5x3xGHA+4EKmJCWdQFh5ePMdMQgx1IFg7G0tHEgV1mXFLUJ6Mm/Utp65u7/hcDzgj0fEBbYlmJfhaYEYCOKQ0NC5xdOuv39L2lYOt0pQcHcVpJWCJ6BusoXuinkzgkeqa7ecNgu/K5sp0X5immbEObNUi4GByptOzubFWR++J50fmW9mQvRojc01kgKHTJFCQSWzpgfO6/eEUPA01Bxw833FT0pL3M/pEUknWi5WXhOIEOKBrLBkxaUnnH7HfHPEhcBWNnKBQ7xBJBLCZIVwT98xHe6JcmOer7Ki6xmnyv03f1YXtJLWlXQ684dvf8vbh+/56tXMPEfC8WjJhymbV6gsBK+448R3v/k9p4cnXn35C+bDVIGj4MIBL1iR5ZDBLeRVyJsy+QM+RA43vyCEiemLifXxkdPrP+CPnnCYKE/gc0JP5zoHr8i58PD2gcPxyP3dFxwnIBe+P28sSfFyMHA03+BjMO+DU8RnVvWs6rm5uSHEyHw8ME2Rm+MEOMrNHduysJwX4mwgy0XL5XJqYZhsCQTyurE5T5GWVzO0ZpWhiZJmvbtQXy/eOqBbwoyNBvOgaOlekktxtJ/3s7YBFLYtWJzgK1A38LATGPQYapEK5Bu9eBMiu2Cya75PYf+Jh1LvFbzVjouVodFi0q0XuZJL2H5thcjNG2khIOtqtLcyXDOGCME2+RinTzIeVy2MVkNOkBouXdKwFmUP0GmKkW11uQJjs2p657vFT4bn4qoh4edpw/vwCZbx5/a5/ctq735/dkVf+p5svw5hUlzu6f1cQybmDcA8AKUaDmU4G7C9h8Fw0xT0RiRw+d++v9S91iG1hpTbScO07mGqNIO09o7tXW91I5tnx2mNAtG99pJrHhbo8reNrynfY9hYDUtB6nURDORdoYG9JzavFuFABzMjQHUDa9/+WCySyldjbqkeoiYJt9wK8O6hfQa8sPQISr8WWN7YNM29D+1nc4CEGpFQqq7dqdbbU9Pq5KB0qnm7rnTyBi1VBRNjQES1yhzpLIF46Q6XDmOrwbHdba/bZf/UWUyZd9JzzPY0BqnRHr6DbM21WG/tV6yEbpZDVsM068T4UNkQQzCdyvl99RdjD+8AmQ9vH8XmV9IQ3pFtYVo9n0zetmrlaJbqiizFmPdsagqIUh1ViGvJa1b3qdWkKuprAreS181qwhatVawzJZvwz1tCXCGvq3ljmpu3MpqoFFQXVK0ArBNPyZVA4mRgRLIgWtgNx0pJG5QEqbp/nZi3pfa/gVfnPdooQEtCxOPjRlZPVkdOCyktzBqBRkiglHUBLzgm1Bny17KCbpWNRYhpQl2m+GCrFQGKAQARBGflqMSS7KDWTEIRqUyHWA0rLVZ0LSsoGRXfrTjiPaobOT2CGkugOdaM5MIU/oLmRF6f0LRCtvDN5MGV6qlMm3mC1mzew6KVEcWzPL61xTvf2hpxwYBqyTjniNOEFqtBFispR3DRnldRti3x+HhmUpgUtlRIGbYiiBoTnzpPmCPOR8t18hNhuiXkjSKFqTIrBh8sh0odQrAFixXaPRyPxDjZJiNSPXxQSs3dclSbmOVKNREkuBpCxS6FBk9Fb0Ur/ba2P2n5j1KtWS+/ersVCNqeID0Gu71rl7+MF3jxsh/YXj5ZmiYuMliW2v9jGNne78twjQqymoWyftUKNHYrX1fnn/Xgg/r58rEvtz00buynXXvP/bRnngfBVmo4QiObEGo9rbYghmf3Ya31dzzrA68wgFxTEvbnowxKU/1cxjXXcvjquC8UCtiT1V+w2H7YUIZ7vWc4P2q5/tglcmXM/ek69JOc/AHXe2mtvPTZdfvp35+ft33MPL5r/D/uWfwkDtQf2977/rxDXrzjUg2U9OiJC6GhXcG9PEn7edffOhHU7x2Ui87KIOd2j5JtO9JlZRtGO7bVA7rwtDRZ0i07owFybxeftD23jbfu6zs5xA4o+/kXoMv28Sajev0hb50uNRqpAdLds3SRzVa7soOpZsZqfRjzu0B2tr/uZaEfX5p+i0CpMqiYtyuXFqFUo1Zcy4dqjIqYHjfMQTOi6cU+f/n8m5gvKQ/9H9ZFteg65yrwugTlfV4vjMjjE2vKwyhbqvdpPKadOFynP7vuIbRosua1ciJ9nXdvZ/VCCQ2cDWkWVWdrgKyF6X9o+2Aw1YCNEyMNSMnQquURJdZlQcAKxDqheMVK9Sq+rDjJJM04Ci7WEcdiRWCdQjLvTy6KEsjZwgS3hzN5y6zLSpwj02EmJyFnIZ/OgOWtiCreRwMOa1V2cyJtj5S84sMB549WDDafWbeMCxE/HYwEwlfvTy7k0xNZC7rUXCwfLE8oRAtH00yJC847ZJ5RYD2dscK5E+ojGma27YFtfUTlFpyjbGdKTixP3yG+sgcGh4sezSfIZ9ayoighgFGpe5x4gp/MW+am+sJF8wahgIW5ZYkgGUHxWKZaZiVnSKVYOB1r1fUncB4fZygn8vamAkalYPlUxmZSw+PWJ9aH36HLgs+FtNZN8WCKcCknizNeN5wWvCpxmhHxPHz7a05vv+Xuz/5bfJhw/oDkBfKZ6BxyvMWHiZwTR+8I3jN7Yxk8L2ceHk787vdvub1L3NxunM+ZLQmnZH08uoifJo53R8iFNRWIt0zTK27cI1NK3B4P1QqjOISUDEw5JsQbDcUXr74CLeTlydbVZoApF1fBsmLxq0pJq4FxN9uG5TxOlF4hPu+EI9TXv5Rs4HNwKZWyJ6bKS9tM2/iGK9lmsW9Qxmqzn/dpWt02x02/AyJFh/pLz84cGI92XdashTltO5j6RINpffC16HKuRpQmyEoppJLJPddLYNv65mzkKakDxB6jXweQSzFg/pMr1i+1KowuBAakwTLZwjD68XWyXbUoNgvyXufjZeXl49qPGPs/BR3+Z2n/Ygf2ge2fy/hfABc/2XU/tv0E749Wcq5eALfKkhqa1ZTO57fWXmeoX7od20DKEMrV5Dj1ZYcAAAuASURBVJb90B6h0Y53lQmuCpC6b1bwUrMN9hpQaqkjg4wzBbka4VpnrubHzn9hzhqIqqVTxiMCoCJkbQRibexKnGMPvWslMNocp1wqYCwdTLW6j3vuaRvNTvrR5V/FiuKs1E47pxu2ipGyNQMeAyBrBE45p16UF8DV6IIGWEsjxxoeVMotUmTITX5hylSxUjVJwIXB4LaDHBFBq1OkTUwDRM4JZbDSjbD7YpG6WnKkgdwLxH15rGplEqSRWFnqSANN7Vk1tsEe9ie7R1BoQNh1jx2A846cS6eZ/9D2EUV7Czll8IoTo9R0eCgBBbxbAbO25zWzpoU4mZvN4dAQ+sLMS0Z8dRnXF6PkTEmJXAkfcqpc/KXgguM4HfExEqbI8vDI+v0bDl/c4KdAiJbz5Fylv0yFsik5FdbFUp1iXM1TcpwRgZQKLCf4/oF4f0u4vYFiMbrb4wNorp4zkJzRLJTzUpGsseIhNeFNDWyKJFxOQEQkE7xD5hu2x0fy6YlwsDwooqCilLySUyKfEqmcUAoxHhHnyZuQpZDqdZwUSvYVMIXulobM+e0/gBOO0y9w3oBFSpllW3g8Law5Mx++YAoz83QAYFm+N48cCS91E1BvwAirs7VuK5pW0vkt+fwdqo8c7o5M93d0fWt7stpWWKJiPN5XC0hmOSfWbcWVgi+QT2+RONUaN4r3gXNaeVrWvhyXrbBtBTh178QcJ778+sua7+WIIeCkkEINQ0orRcD5mfN54fHNgxVTDpH0eCKnzJqzvaghGkgrVNCp4D3iBckZNJNX28gmEbLCeUsEJ5WmvVnJqkCoz9/VEKmMQzKdhnVsL8eOj8Kn0qmyW120nrdvLuyWvIGutu3K++8f8lLDu7xhl53rA9g/Vnalu34nIp2utJ98Yf1sRsZd0Gk9t1nd9hs+r23yszU1tsycHVKks/CBMUzmknu3GrVs80IVqlC82HQt9060VH3sucXvg9qLOtc7PAr70qhCrM5v9/TJMLPj2VoFYM1PGBQZ14oYq5qgqnUoxtyxH2of9wivxvbiuS+N4l03f8flP6RPH3PM+96hZ32Q9335A5//U20Xm8QLn42f/9BnP3T9j2jvvPwLz0Cuv/v4d3Y0KH1EZ97bfur3ZyQCGuXQCIBGljQdzru4XJdBTVYpzQOy020/H7Nth7rfy5l3oEUzlfG7ek4pNTKgeyIu2dtqB7ucHKMiLqfFHlAZjx3GV56dt3tL0raRU9rrYNH2TutDLqWn2ffxX8jLfUzNQCfD9bVFECUZPD72L+VcySzsCi1MXlXJavJpJ9WwbhfVWje+RmxVQ7lqA8WD0WzwztjaGH83ed1z2ch9XhoQRDF99iIaR3vIfguvvNz72kzo/hxLodDA+R611ujoGxt4NwZWnKV9/93f3ZyH+R2w4pgz3FMPMJCaqhG15Zl9bPsIMKXkbUPwSHAgzmIinQct1B+UDMuaeHo8cZgD82xxmb5ElICWWjA1OMJkk68YUEvbRkpKKY6SBWp4X4iB+e7G6kyFyMMfXrN89z3oN8x3R26+vEdcACLkQlkzaS1sm7I8KWmDEld8FOJxAlXSmsnnE/nNG26DM4BQV8/2+EjJG/Eu1tAWNXC2QnAT3k8WBypKlkRBSKXUQsILTiOOTPAzzh1ZXv+BnBaO39wg0Vf2OAsnXNcnlvURmYxye443OBdYnk5kzawsTNERJYMGVCdQh/iCczOqmafv/84A5yuP93dM8cC2Zc7bwuu3rzlvG//65isO04EYD+S08HD6Hi9Wl0qiMRfafmiMeTnDsj6Rl0fWN79DygOeBw63rwjHL3n4/om0JdgeMS/WDX46Eo/3FM1myecty1rwUvChkJ7eIFNE5ggacG4mpTOPT2emecZ7z7pkc9dsj3jviPPEHCNfff0Vy7KxrhvBe4ILrMGTtVDSYi9KtKLR3377mpvjkeM0sz2slJSRbcOFgDvckosBJGcrEjdFXAjItkDJlJwsLDEKWy6czxuHaSKGGdXVvC41zlhT9cBIpURXt4O0i/dR+ib27N3qVjxTYPtndbe6YMDZT7oS983aNgidcUOQ/t/+XTfovUvQ6/5j0BTaZmebp4UU7ImuTaiWq+tfbnh9X71y2xu7JH0TvWAreqlvzz67VpTeb11uG2op2dhEpRLtYJaqXArbtvXwUFdZkVKyGnpdUOgeCqJqYSCub9zlR4zlpe/eNZZ93BaOqPi2b3WrhzRDMNC8gnqx9qRaFZslta3BzmJVmaZabP37rXZDn/RlXiQd1pfI/klLAr4WaG2+3z8P7/jq+pSXlko/sN/w8vzxl/b+ABeU0i/1qb0/19d81pl3dfBD18f7PvvQ8z7u/fnwY38kIHrx/JdX04ef92OewTvOGw4ZH+0fbwe6vPdL79BL70+7t7xojBqIEl4EUu2eLcyp3dPC5C5mp177YgdoBqZiPWseGNN/q/zrIVXmzQkyeDrq59fjbUChhwsOBcet76WWYBllUFPgGd7Pd8igSmTQvFkmg9zeZ4QtpW6YQgaq8L4XGrmXOKnOGUHGijyMcn6fNaMAb2CxUGMiqjw0ubFVD0nw0XTpOs5U62LttO0tZ0jq/O3U5bsMauzNu+FTxAob9xxZvepDKbi6dhwybHc7DXyDzx3btvUwjFvGB00Z5kOh5tNrtr9zzlWeli6DXJNDFyV9bN3upCWmxxZK/0xUhjGJ3avJYlWMxM3A1CUg56OavA+ByRBQ/+d/+kv+x//uv6lsJEPHWpxmTvV9NEpD42oXvBNTVCu9oaqSa6d99P1Fa+x0lgwntPpDpqw5O1YExJGeTpR1Jd7MuBAIU6gWfWOvorpwS2lu7YJz5n3xk7HPGRFeRreNcDwQDodOq5jXM2hBwpBDUMyVLTX8zQUBZ4ly0FyOihOrNyW1hpHiyOuCloyf6zw0t7RaeFDJCRyVxW5CxNVwQiVT8A7zcklEJPQ+iBh96PnN70GE+eYG8RHvJ7a0kPLKsq3kUrg53teXcUI1k7Zz9fwI3l1uUIWAKhZyVRJlO4NuiK64eIPzM2mzF9xL3XzFgLXzU1fSltOJtK59854OB3O1+ppnpp5121i3tMcKZ3t5vD1qWpXv0p5pNksCFAvD08oW6Qxor2vifD4TfDB61VTzt0LdHL15UnOxPCQBq4kmYs9c95CGEANFjVTFO2ebJTVv8AKvaN16rNNezJX/f/5ff8vf/+Z3gMWC397d1rCwvqO89M4N161b2uDNMmWT/vve7K9/9xd/wb//9//DO9/pn6KllPjf/7f/ldffvm49MiGiu3J+oWy+zyrbLGL9A+2f/+qXv+I//E//8zNP3k/d/uN//D/4u7/7z90r2K1mTVDqkJAql0KUYS1Q36f+Z1eylFf3r/jL/+WvmKbpZx3L3/7N3/A3f/s3NHaiZ23XhnZlzHrblaWuyIzCr44NgWma+cu//Evu7+/f05NLMAXPu/M+NVeA/+c//Sf++q//uh/zV3/1/7d3N8kJwmAAQIO73oJ79Oicqu3g2FW6MD8fqIzNogv73sZxkAQDJHwJhPc0z/NBnvAqngmmunsh8Ho+p2VZ0rquKaVUXt3xdj3vj6/7Sp4h7dKGt/PzYRsUR613dXusx0tnzqkELDkmsZdjujm0GaHW2I9M3ST22zZo6n+8bm8os83kGvn62Uf9ao6lQyt2WIU8Yx07tVmk6y96G1RHzPpU6rGTrmxv3qbbv06trDcBc73bJfeXC9fnazfdCWWd7cQRobByncoolvMueIp2O/q2DQrPlNV90C8J2rbvtUVlnXaElAWbWRRre3Tqz0y1Uaq4D3NKH1+f6XL5juXx8EB6OpgCAAD4b46Cqb95KyYAAMCLEUwBAAAMOLzNDwAAgPuMTAEAAAwQTAEAAAwQTAEAAAwQTAEAAAwQTAEAAAwQTAEAAAz4AQqz6D1MAz8DAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "And we can see the loss graph for both stages like so:" + ], + "metadata": { + "id": "nAd9a-flalLt" + } + }, + { + "cell_type": "code", + "source": [ + "# Plot loss vs iterations\n", + "plot_loss([stage_one_history, stage_two_history], labels=[\"Stage 1\", \"Stage 2\"])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 279 + }, + "id": "fqEpq0geqPd5", + "outputId": "cbae9836-3900-4ac8-e2d2-b79f394e2ffe" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEGCAYAAACgt3iRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOx9d7gU1f3+e7beSu/SEaQIgiD2gqJgRaOJmsSe2GIsyc/EJBqNCWqM35hoNAnG3onGEhV7QWNBkCIIClLkSi+XW7fO+f1x5sycOXNmdvbevXfvwnmf5z67O3Nm5uzc2c97Pp1QSqGhoaGhodEahIo9AQ0NDQ2N0ocmEw0NDQ2NVkOTiYaGhoZGq6HJRENDQ0Oj1dBkoqGhoaHRakSKPYFioUePHnTw4MHFnoaGhoZGSWHBggXbKKU95e17LJkMHjwY8+fPL/Y0NDQ0NEoKhJB1qu3azKWhoaGh0WpoMtHQ0NDQaDU0mWhoaGhotBp7rM9EQ0Njz0Q6nUZNTQ0SiUSxp9KhUVZWhv79+yMajQYar8lEQ0Njj0JNTQ2qq6sxePBgEEKKPZ0OCUoptm/fjpqaGgwZMiTQMdrMpaGhsUchkUige/fumkh8QAhB9+7d89LeNJloaGjscdBEkhv53iNNJnniuYU1eOxjZZi1hoaGxh4LTSZ54qXFG/HkvG+KPQ0NDY0SxsyZMzFmzBiMGzcO48ePxyeffAIA+Mtf/oKmpqY2v/706dPRpUsXnHTSSQU7pyaTPFEZj6AplS32NDQ0NEoUH330EV566SV89tlnWLJkCd58800MGDAAQPuRybXXXotHH320oOfUZJInKuMRNCQzxZ6GhoZGiWLjxo3o0aMH4vE4AKBHjx7o168f7rrrLmzYsAFTpkzBlClTAACXXXYZJk2ahDFjxuDGG2+0zvHKK69g5MiRmDhxIq688kpLw2hsbMSFF16IyZMnY8KECXjhhReUczjmmGNQXV1d0O+lQ4PzRGUsjEZNJhoauwV+999l+GJDXUHPObpfJ9x48hjP/ccddxxuvvlmjBgxAlOnTsWZZ56JI488EldeeSX+/Oc/45133kGPHj0AMHNYt27dkM1mccwxx2DJkiUYMWIELrnkEsydOxdDhgzB2WefbZ175syZOProo/HAAw+gtrYWkydPxtSpU1FZWVnQ76iC1kzyBDdzGQYt9lQ0NDRKEFVVVViwYAFmzZqFnj174swzz8RDDz2kHDt79mzsv//+mDBhApYtW4YvvvgCK1aswNChQ638D5FMXn/9ddx2220YP348jjrqKCQSCXzzTfv4eHcbzYQQMh3AXwGEAfyLUnpbW1ynMh4GADSls6iK7za3T0Njj4SfBtGWCIfDOOqoo3DUUUdh7NixePjhh3H++ec7xqxZswZ33HEHPv30U3Tt2hXnn39+zrwPSimeffZZ7LPPPm04ezV2C82EEBIGcA+A4wGMBnA2IWR0W1yr0iSQJm3q0tDQaAG+/PJLrFy50vq8aNEiDBo0CABQXV2N+vp6AEBdXR0qKyvRuXNnbN68GXPmzAEA7LPPPli9ejXWrl0LAHj66aetc02bNg133303KGWWk4ULF7bHVwKw+2gmkwGsopSuBgBCyFMAZgD4otAX6p7djv3IKjQkj0SvQp9cQ0Njt0dDQwN++tOfora2FpFIBHvvvTdmzZoFALj44osxffp09OvXD++88w4mTJiAkSNHYsCAATj00EMBAOXl5bj33nsxffp0VFZW4oADDrDOfcMNN+Dqq6/GuHHjYBgGhgwZgpdeesk1h8MPPxwrVqxAQ0MD+vfvj/vvvx/Tpk1r1fcinMFKGYSQMwBMp5T+yPx8DoADKaVXSOMuBnAxAAwcOHDiunX5Jx/W3j0FzdvW4on9n8DPZxzc+slraGi0K5YvX45Ro0YVexqtQkNDA6qqqkApxU9+8hMMHz4c11xzTcGvo7pXhJAFlNJJ8tjdwswVFJTSWZTSSZTSST17urpOBsK6A3+LHtiFGQsuBH3kNKB5Z4FnqaGhoeGP++67D+PHj8eYMWOwa9cuXHLJJcWe0m5j5voWwADhc39zW+HRdwLuzJyOX0RnA6s3AKveAsae0SaX0tDQ0FDhmmuuaRNNpDXYXTSTTwEMJ4QMIYTEAJwF4MW2uFB5LIy/Z0/BPzInsw3r/tcWl9HQ0NAoKewWZEIpzQC4AsBrAJYDmE0pXdYW1+pRFQdFCLdlzkb9wGOAtR8Au4HfSUNDQ6M12C3IBAAopa9QSkdQSodRSme21XW6Vcbw4PksemJHz8nAtq+AW/u31eU0NDQ0SgK7DZm0J7pXxQAAm7qaIXmpBiCbLuKMNDQ0NIoLTSYtQHUZ64n8bfkIYPDhbGOisPV9NDQ0dl8UswT9okWLcPDBB1vXF5MeW4PdJZqrXVFdxm5bfTILTDgHWPs+kKgFKruzAakmgBAgWl7EWWpoaHREiCXo4/E4tm3bhlQqBYCRyQ9/+ENUVFS02fUrKirwyCOPYPjw4diwYQMmTpyIadOmoUuXLq06r9ZMWgCLTBJpNBCzGufd+wP1m9n7W/oCf26Tai4aGholjmKXoB8xYgSGDx8OAOjXrx969eqFrVu3tvp7ac2kBYhHwohHQlhSswvnvfEVno2bO758GZh0IXvfvKNo89PQ0AiIOdcBmz4v7Dn7jAWO964z25FK0M+bNw+pVArDhg1r9dfWmkkL0bk8inlrd2AXhH/S9q/zO8mO1UDNgsJOTENDo0Ojo5Sg37hxI8455xw8+OCDCIVaTwVaM2khulXGsGJTPWIimWxYlF/Oybt/BDZ8BlzxaeEnqKGhkRs+GkRbotgl6Ovq6nDiiSdi5syZOOigg1r7dQBozaTF6FrBwoMdmsmub1iYcFCkG4FUY4FnpqGh0ZFR7BL0qVQKp512Gs4991yccUbhSkFpzaSF6FbJyCSJqL2xbiPQuC34SbIZIOO/0tDQ0Ni9UOwS9LNnz8bcuXOxfft2y7z20EMPYfz48a36XrtFCfqWYNKkSXT+/PktPv765z/HYx8zW+S/xi7H1M7fAvMfAMIxIMvC/HDTLv+TPHY68M3HwK/bpialhoaGG7oEfXDoEvTtgG6mmQsAlveZAQw3G8twIgEAI+t/EkNrJhoaGvlDl6DfjdC10iaTdNYAOvVzD0o3AfFq75NkM4xQshkgLP0r1swF9poExNoueUlDQ6M0oUvQ70boJpKJQYG+44CznwKO/5M9KJWjLIJh1vPKJp3bd6wGHj4ZeKljPSwaGrsL9lTzfj7I9x5pMmkhpo7qjeNG9wYAZLIG27jP8cCBFwOn/oN9TucgE14cMiORScL0tWxdXqDZamhocJSVlWH79u2aUHxAKcX27dtRVlYW+Bht5mohKuMRzDp3Esbe9BrSWemh5DW5cpEJ10xkvwk1yYlortfQKDT69++PmpqagpQQ2Z1RVlaG/v2Dt9fQZNJKRMMhZAzDuTFm5p48/l3g5L8Cw49VH5zNsFcXmXByIgWbp4aGBkM0GrWyxzUKB730bSUiIYKMSzMxneZ13wJPfd/7YMPDzKU1Ew0NjRKDllatRDQc8jZzAUBlL/s9pcDnz9gaSdbDzGWY+zWZaGholAi0tGolImHiNnN1G2q/r6sBnruMvV8yG3j2IuAT00HP81BkzYTnqrSUTCgFnrmQhRdraGhotAM0mbQSTDORyKS8C/DDZ+3Pi58A7j0EWP8x+9y4BWjYYpepX/UmsPUre3xGQSY184H6TcEmlUkCS59lGfYaGhoa7QBNJq1EJETcZi4A2HsqMHqG/XnLMuCzR9j7UAS4Y7gd7TX3T8A9dn0dK+9EJJN/HQPcG7C6JzeTaQe+hoZGO0GTSSsRDYfsPBMZTVKDLC7kQx5BdM/+GNi4xDZ7EYkMmncGm5Tlc9FkoqGh0T7QZNJKMJ+JR/LT9FvV273I5PPZwL/PF3wmJhnIPplc0JqJhoZGO0OTSSsRDSl8Jhx9xgJnPOje7lsAkgqaifnvybcYJI8S05qJhoZGO0GTSSsRCSvyTESMngEcfzvQZ5y9rcmn5wk13NFc+ZIJz1/RmomGhkY7ocORCSHkJkLIt4SQRebfCcK+XxFCVhFCviSETBO2Tze3rSKEXNee842EQ6zQoxdCYeDAS4Cq3va2hs3+J5XJJN2c36S0ZqKhodHO6KjlVO6klN4hbiCEjAZwFoAxAPoBeJMQMsLcfQ+AYwHUAPiUEPIipfSL9phoNES8HfAiyjrZ7xu2eI+jBTBz6aRHDQ2NdkZHJRMVZgB4ilKaBLCGELIKwGRz3ypK6WoAIIQ8ZY5tFzKJhIm3z0REXCQTH82EUmeDLaDlPhNt5tLQ0GgndNSl6xWEkCWEkAcIIV3NbXsBWC+MqTG3eW1vF7DQ4AClrMUmWfV+Zi5BM+EaRrqFmomGhoZGO6EoZEIIeZMQslTxNwPA3wEMAzAewEYA/1fA615MCJlPCJlfqPLT0XAI6SChu8k6+33GxwciaiZW7a48fSaWmSu/wzQ0NDRaiqKYuSilU4OMI4TcB+Al8+O3AAYIu/ub2+CzXb7uLACzAGDSpEkF6YyjrBqsQnk39lrZE2j0I7ICaCbazKWhodHO6HBmLkJIX+HjaQCWmu9fBHAWISROCBkCYDiAeQA+BTCcEDKEEBIDc9K/2F7zjaiqBqtw5C+AH78NDDjQfxyldjkVVVVhv+5w2Qyw9Us7NFhHc2loaLQTOhyZALidEPI5IWQJgCkArgEASukyALPBHOuvAvgJpTRLKc0AuALAawCWA5htjm0XRMME2xqSmL92R46B5cBeE+1eJZ6gdqFHbu4SyUR2zot447fAPZNZD3lAR3NpaGi0GzqctKGUnkMpHUspHUcpPYVSulHYN5NSOoxSug+ldI6w/RVK6Qhz38z2nO/i9bUAgF88uyTYAUf9inVfPPBS9X4xadHIAM9fzsrWc3z9NvC2x1dc+z57tUKPibs+WDGx9gNWGr/Qvbc/mQXUrs89TqN4SCeAxK5iz0KjDdHhyKTUcM7BgwEAYULw+CfrUNuUAvUTln3HARPPByJx9X4xzySbBhY97tz/5FnA3NvV9bq41sPLtTRtA24fCmxYxD437wTqNjiP2fwFcEt/YJfSzeTEluX51wlb9CRwy17MBPfY6aw0fqoxv3P4oWELMOda4Inv+Y8zDHffGI32w/1TgdsGFnsWGm0ITSatxBkT++PsyQOxcksDfvPcUoy/+Q38+rmluQ/0KvYIalcHtsqiKJBqUBxqOF/5+epMovjLOODPo5zHzH8ASNUDK16CL9Z/ykrgz/un/zgZr/2azTWxC4iUec+9peBaXHOt/7iXrgL+0Mt/jEbbYdPnxZ6BRhtDk0kBUBUPOz4/Oe+b3AeRsHo7pUDTdvY+1eR9vMpkYHVulKK/eDkWMTyZg5Na1oe4ANaPBQA25+mO4hpYNglEK8x51Od3Do7PHgF2rHFu4985l3+I95IptIlNQ0MDgCaTguA7+/fHqL6dXNsbkxlkvep29Rmr3m5kbDJp9Cm7oiITagpWuZaXXwZ92CQTPy0IsAkg7v6evgjH7DlFTc0koSC1XDCywIs/Be4/zrmdk2DTNuDBE4Cd63KfR0NDo+DQZFIAjOrbCa9ceZhr+5gbX8MvnvFwzI8+Bbj8YyBS7tyebgrWBKt5B/Dh35yCmZu30pJG41UoMt0M1JpaVDZH1rxFJtX+42RwzSTVaH9XlYaUCzznRiZYTpSZBLDuf8Drv8lxnhykuTuBUuCLF+zoQI3g2LAQ+PjvxZ5FSUGTSYFApJwOrpE8+1mN90G9RrnNM9kUAApXwmF5N6dpbNGTTHC+/Qd7G191ByWTf1/AhA0QXDPh2kVQhE0y+efhwLavnOfKB14lYrKSU3313NznqVmQmzx3B6yZC8w+F/i/fYBtq4o9G4ZSue+zjgJebdcC5C3Dkn8D6z4s9iwAaDJpMwQq/gh42/qr+zo/R8ud27aYdSxFEuD+ANnX4mXmWvWG/T5XPS+uTeTyrciIxIRrmMcWkkzkVXcyR/jpxiXAv44G3r45/zmUGvh9bt4B3DeluHPhyLdoqYY//vMj4MHjiz0LAKVVNbikkApMJh5Z6tW9gXohjDcUYT1R6kxNZ+da9lpu1sFMNtj7XJqJhyNfjPrKRRJNpuktX2EQVoRAi2SyYzXTqHoM9z7H3ZOAcFS9L9/58Mi2jYvZKpkQ1nNmd0RYIPKWmBbbAn5JtxolDa2ZtBHqEwHVeS8y6S4J13AUqBJCWxNmKCwX1g9OF3wmkllLru3FzWEimeTSTJrN5Md8czVEzYRDJJO7JgB/m+R/ju0rbU1MRr7CSSTN/xsB3DHCe2ypQyRgr+jBlmDun4C3WqjZlVquj47+CwxNJm2ETbuYAA/lKo/FzVzTbwOmXG9vH3iQc1w4xopEykibCYBiHL8rmkv6rBLAuTQTLgRao5mETOFWuw64qTPw+TP5nUs5r5a2NAaLmvNroVzqEDUTryTZluDtPwDvt7CYt+zj6ugopeg/Su0E5SJAk0kb4f2VrDJwOBeb9BrDXvc7GzjyWqCiO7Dv6UDnAc5xoYhNJoMOBaKV7L0qmzwtbZPJRUUmuRzwqqKTQaDymXz7GXv9+N78zqVCvpFKXANbP6/11+7oEP1xYYWGWAyUWmRZe/cGevx7LGiiJVj4GDDrSODLVws7p4DQZNIG6FEVx5zPNwFgUV5/f/drnDXrI/Xgsx4DznkOKO/CPl/7NXD6/UDn/s5x4RhQYZax7z0G+PW3jHBSTcz+L0J2wLvIREEcucwPVtHJACvLtR8Aj8xgPgk/n0lLC1FSyv6MrJrc/Eq+8GgiLz+SF1JNrApAKYEKq+qOQiYlp5m0M5msfM2OsMwX3BS84+vCzScPaDJpAwztUYlNdUzIpTIG/vjqCny82qPgYnlXYNjR9mdC2F9noVlkl0HAsTcDMa6NNLExsUpWmuSfRzjPmStpUaWZ5BKu/Jh0MxPiH9zJnP4qPHMhsPpdlhOiKhvDncFByERls551JLD8v8Cfhqkdy34CK59GY5Ta5PPcJay+VENhmqq1C0QTTSHNXK1BLs0kmy58cdLW+D3ag0zuOYgFmbQWRfbvaDIpIF6+8jDc+p2xiEVCaEq18iEs62y+IcDVS4DBhwpkYgrxWGXhzFzpZqBxu3dOCv9RbVnOTERv3gSsepP98B87nVUzfuEK9sd73BsZ5+qYIx/NRKUJbVzMclaad6objflpT14lajZ9zr6biI/vBX7fnX3HmvnmufPselksNO8EPrzL/txRNJNMAqjfBGxbqd7/4pXA7UPyLyjqhfXzgN91Ab752H/cMxcBD5/i3i77TLwWUPliyb+BBQ+x91uXsyCTgqE4fYw0mRQQY/p1xtmTByIaJsEaZuXC9/8NXCGYVqp6s9eK7uw1VqnWKOSeKUHMXCtfB/40FHhgmnounIB2fA08cSZ7n6wHPr2fkcqjpwELH2V/1nUT6pUdDVhPC/DWmDihqn7cfmTidb5/HMYKWYpY9CR73bXennPOfjQdBM/+mP1fODqKZpJNAm//HnjqB+r9n/+bvRaKtFe9xV5Xv2ueN8m0gK/fdo5b+gyw5j338eJiaFcN8MdBhfG3/edHwH+vav15HMghc5pr21R70WTSBohFCnRbRxznzL8YdChw2izguN+zz9HKYCYBlZmrfpN6rOx/EY/h4ImBqQb/+mHpphzRMAFWUF7Cn5OISjPzCxLIx1fCQ2uzaaGIZonY/GskgeeVp9PeyKRYXbkGj+dPrOUWFDtWM8Gsyq7nixkeGr1zHdMCXvlFsHOLi6H6Tezz9uL4JAJDlW6wcy0jwk/yrPqdBzSZtAGiYfVt9e1zEgSEAPudaZu7YpXAti9zH5duAubdZ3/OpliJDS98OQdY/LTTFKHSZpL1/v3suX+lqo96v+jbEAVBYhfw6b/YKspLqHASSSmy6Vti5lKBr+YzSVuolEoGt1wINBwH1v6vTYVJIGST7FlK1KlNWTz6L5+eN8/+iJmMNix07+OaBU9M5Zpl0JbWIpnw56qjJIDK8sRPvvDuq1++0mbT0WTSBvDSTDJeFYRbClGLGHy497h0Anjl/9mfc+WUPHkW8NzFwN8OEI5R+FmS9f4O6Uwz+zFz8nPtF9sRCwTw5Rzg5Z8D21d5CxVOIqr9fg542Z/kB76af/EKO0mUO5DXfchyZVQCTIRhsFXhV6+zz2veB969LfgcCoVIHHjoBGBOgBX5goeA+s2tu56RBd7/s9sMmUnZ9edUpW/y0UwMA/joHvsZUBEEJwOryoH5G/Qzsf51vPt4wH6ugla93vR5sKZzLYWnyVX7THYbxL3IpBB+FBEH/Mh+f+QvgZuEBlQckbJgSYtKmPOlVE1AOc1czezHGC1X7xc1CMd7k2QSdd5CJdlCn4lKM/Fa0XHBxld14txWvMxe15iFJRs9kh//Mhb4637Av89jnx8+CXj31vaPvJEd8PMfAJ5TtI7euZaZjJ65IL/zL/2P0/zzxfPAW7+zM+W58M4mbUJWNTSzyCSABrniJdZ8besKc4OKTLhmYkYVWgLYQ+AaWWDnGudnDj7vXPXfOP5xmHNBlgv5PhNBEyp/38s267U0HD8ANJm0AbzMXIHrdQXFQZcC3fdm72Nm4ylZaFT2dJdTybcUhpGF0rmXbPDv683NXF7OX1EzEQmAE1eyzluTsMxcBfCZeJGPKgKKjxWF1Ad3sjDlO/d1ZyCL9dJEs05790OXv8tL1wCLn3SP46vufOf3zAXAPQfan7lg5IsNLswzSXsxk1CRiakNBtFMAmkvks/EMnN5iD65C6iDTIRFDodIAAseYk56cW75aML5+uOChi1nk3a0WFDzXgugyaQNEPMgkzP/+REe/8S/edO2hiQufXQB6hMBq/Oefj8wdArQazT7LOd1VPZwaybrP/E+37Rb3du8NJlkvf/qKN3EHvhwDMqVoINAhPf8R5Ks9/GZNNhjXOeVyET8wavIx8uUpnJaP346CyG2zCcRFiYNsKivl3+uPhefF///eGkyrUE2zaKWVP8Tr2KWRhZY8LBN4JxseVfMIOAkKVZR4Mfz/5/V0TMF31bLnPT+c7F3xBeHLBhVctKqQ2e+8u/pJVTlZ8Fh5uKaiUkm7/6RhR2vfpd9l/9eBTxyKttXu95/7irk649zhd0H0Ww0mZQUoh5mrhWb6vHcZ/421L+9vQqvLtuEZxb49EER0W88cO7ztinJpZnk2fe8y0D3Nv4jOua3QH9BbU81qPNIONLNbCUYitiCWSw4KP5wxWQ2SzOp93aYc/NWkDwTUSCoNBOvnvReuRn/u0thizfhZdIDmLDg+UN+gQstxXu3s8oDPAxWhEio4vtFjwP/vZL5HgAhhykPMlEJQd73ht9vSzNJ2P9fP82kroaZsXwhCUaVLOXP59fvAE+cZc+1JWSSkXwmPPjlm49tjYdrYrXmolFufueHfIuWemkm4neTTWdaMykteGkmABDKUauL/6892/3mAv/Rct9JZY/8jlcJEW4Lj3dykk1QzYSE7CKPvGwM4BTiu4SVnLgCzJVnospHkMlE/JGqyMmLTLywY7XbfMLht6JPN6vJJJtmRJBPBJMK280GWLw9gQiR9EX/F08wrTPbHXCSjnoETaigIhMuxCzN0nywjYythSo1kzzyYWTBqFrY8P/TmrnAV3NsjZCEGIG+foNzvJ+ZKytHc/Efq/B88Z8tbwQnVvpurvXXSPPVTHiXVOva3Mfp11pCk0lJwS/PJFfdx7D5A2mxf5Y/kBUmieRLJrIw3LKcNZMC2EpdXHmnGvxXU9xnEorYveZ5wqWMx75jv3eYuXKQiYiwEMorQvyssmF7CXEvGzbvwQK4BVi+mkk2A7xzC/DOTPbaGnhFQlX1Br4Siv+J/zMrf4b7A0xfSV6aiXCf+IPL/4euhNlMDp+JT6b+TZ2B14S2zDKZbFtpB0RwcH+hFYllXpOEmAa38nXmKOfIRzPhZr1MUiAdM1iFV1Xm/YYA4I7hzLfmhXx8Jok6dxklDpFA5MhG7YAvLfhpJrmqRHDNxWgpm3Dh23kv9uDIHRtzQRaGYlZ4OOpcsSbqnKspVT97I8NMQVwz6TnS+9r85jgc8B5koiKxeBV75XNa+h+2GhR/XCrNxKvzo1cIdTZlk4gcJsrJuHY9sEKK6U83M+0OsMnk9euBD/7M3jfvtMdu/9odOJELnLDleyYLaPHe8fnL/gCVhrX0P+qKtuIzwJNoLTIx58Lvl5ERzFy7GPm8+Ttb+5X9VEbWGQzw0d+EnRKZvHA58PDJzm0ymVnaEGFzSTc52zc8dKJzvLhYsPJMzOeF50Zl0/b3pZTtb9pu7hPNt4pn9lahOng+mkmzKllZInLAXQtNm7lKC9Gw9z8snYNN+P+6xSkpfOUx6SLggleBTv28x571hHubn5lG1kz4D4ajrJPzc9rMMxF9Jjz6TAW+ijIC+ExU4Pksnz0CLHqCRRg9d4mTLFSl9r2S0LzyVcIx+wcrr675/bnvaOCps537RGHBhafYOjmTYFrPTZ2Bu/cH3pBMMLkQ9kj4k4MyRGHDM9EXPwncNsiujKCKwHvmAnVFW3FFbWlc3KFvCnNDIJOMYObavoqRKQ+dlsnk5m7AbQOBLSvgQhDBKGuinJgIYXPMRdh+Dni+T1xcpOqdWnMughCfvXzK8/tFsqlyYyzsZmRCCPkuIWQZIcQghEyS9v2KELKKEPIlIWSasH26uW0VIeQ6YfsQQsgn5vanCSFFr2gXi3h3tcvVGz5EWqmZTL8N2O/7wN5TgYEHejsAj/09MPJE9/ZohbfAD0edZCObeLgJZ/IlQHU/28xFQrZvwa9GFP+BWCtXM88kVuV9jAi+6t/wGfD8Zez9jjV2eK4XRI2Ao2Er6xev6lBopO05ynZ/K1pLkX+TbraP46thkSwzSWcSpLhiDgKu/ckE56eZiGV1ErW28172hcn2eRGiwOTXljUT/tmhmdQqTIwewq6lZdVloSuaubxaGIhwrPLNsakGdixfmIiaCeCsAKwiCK/ftjgXSv2TI1X5VbKJEWjX8j/F0kyWAvgOAIeBkxAyGsBZACvbHQ8AACAASURBVMYAmA7gXkJImBASBnAPgOMBjAZwtjkWAP4I4E5K6d4AdgK4qH2+gjf8NJNMlmLl5nrc9OIyGAr1g/tUWlx6Zf9zgNP+DlSavolomXqc6AgXES1nGs35rzBSEBGO+dvSuwwyXwcyM9vWL22fCV9FhiKMyFT44E5ngiT3meQiE+4fUo2j2dxZyDsV4dr3Hsi6MPZXJJ1lUoKPQRLcfj6kTMIWQNu+YoJOXMVmU3AI065D/Octg99jWWOUyUQksPqNzn2bl7JXWYNTFTfkWrYosDi5cjLiwtwyc2WdocH8PvJFj2fuhOI35ZUBzq+danSTVbNIJmmnSbDbUPe5xIWGSAzJOvs5zSahdNSHY2qy8npGxLEf3QPcNsD97C75N9NcVbXNRHLzutbuZuailC6nlKqKSs0A8BSlNEkpXQNgFYDJ5t8qSulqSmkKwFMAZhBCCICjAfD+rw8DOLXtv4E//Bzw6ayBK55YiIc+XIuvtza4orZszaRAk/EyW8mZ8uL4qp6s5H282rkvHPV3MB94CXDin9nr8OOAbxcwYSWGz4ajwKFXApMudB//4V3A1285zVzpJv9rAnYHynDUrUkYWaAuB5mIGe6cxLlAVpFnNmkLKVkz8StVk262f9w0C3zzkWQSSTrNHvk28OKCWy7+KZuORAL0KpsiF03kJfhFUMl5D9jC1xJsKbOZmZCLIjrg+Zz5oseLTFSmSK9IwkyC3ctb+tnkyJGQfCbi9coUC6xnLrQTUUWTUaLOaeZSzTtaIbS7Fo718tGJ93H5i+xVjHJMNwOvmHlMPFpMBP+fzb+fmSwpdWsme5ADfi8AYrZPjbnNa3t3ALWU0oy0XQlCyMWEkPmEkPlbt7ZdkyM/B3w6Sy2yOeGu9zHs104nLWmtmUuGF2nI5qZJF7m3u8gk5h8yGqsCDriICa99jgerv1THtBH+fbgphkdehaJAn7H2OdIJ+0fBkxa9antxiBFr8velWZaVHJO+i4gdQvkMmQyUZq6MTQJcOPHaaLk0k2wa2PtYdh+X/1cK40zZNv1eo9XRToueYD4ElSDlwqhBMrHJmom42k43sqCI4/7gzEmShSMPOxYhR4IBbjOXOA4wfRTms9Bc606S9CIIVUa+F3GnE97mK0szIW7CtHoISfjsYfYqCuYvnmeLAT4P1bxjVfY8xEWHyqwK5M7onzXFvg+qCERO4Ild7P8gJoi2A9qMTAghbxJClir+ZrTVNXOBUjqLUjqJUjqpZ8+ebXYdP80kkzVQGWcCStXzJNRaB7wMr1U9NyuccAdw3kvs9fotTjVYRSbyNse1BEHee1+7jz0J20KTr5J5ddhYBTDlevs4QgRHZz370eTSTKrNqsScuEQYBtOOugxwH8chaiayecdTKJkCgQuJI3/JhLJvkckmJnji1az1slzKPJNkK14SYoETKgH6+vVs+y6FH4gLZrnRkqyZyNpURQ/gkJ8CPUbY24LcByPDBLKoXfFzi4LeK2k0UWvb/vkiQBUgATj9B+lmRpheWkwm4SYK6zzcAR9yH+9FJtzEJ5LJG7+133tpJrEK9n3kiDQvMhEJQswZ+et+zLS1VWjeJvtTVPXzMkmFZlKCZi5K6VRK6b6KP78Gx98CEH/1/c1tXtu3A+hCCIlI24sKr9pcAJA2KKriila2JkJWnkk7aSaTfwwMORwIhdzaSlyKzgpF3RFbjnMKQp8QYMBk87iwHcrIk7i4hhOKOq9LDcHMtYsJjlylPYZOYa+qXixGhv3wxPyWYUfbxwBsdc5JSBYKXqYmLjT5SjxazoS2r5krwQRPOMa+szw2m2KEGK9m+QnNtczvtO4jeww36YnFCMXzq+AiE0mY8QWCqAFm06yBFH8OVStcmgX+PJKZgjgSks8EcBIEX33HqpiAtUKRc/hM+HlDUeCJ77GcDa+xa97zXpEnJJ+JCC8y4UTgtVAQWxSI4Pczk3RqmV5koiLsXTXqJFTZL5ZJ2ImnHNnU7h/N5YMXAZxFCIkTQoYAGA5gHoBPAQw3I7diYE76FymTuO8AOMM8/jwAfmTVLsjlM6mI+ZEJey2YmctTM/EgGRFxyaFNjeCaCWCPDYXtHwrPe+HJXNmUc45ixJOlmeQgk4Fih0S5x0OWnaess22yila4NRguSBY+zlaB1nyEH/jgw21zFheCXNBEykyHa47+89k0E+7hqFvgcc2krDP7S9QC90wGHpxuj+FkImpT1vEJtRnSz8wFABXd2KtIJiteYt0zlz5rz02GkXVm8pOQ4ID3yO3hobqdB7DnibdKjnj4TLiNn9/ncNROTPTSGp+/zC5nIkPUylyaicdCif+vMyn1/W3awXqqyOBjM4lgmolo5uIaxFaPfkUymbz0M3dDtGxKkWeym/lMCCGnEUJqABwM4GVCyGsAQCldBmA2gC8AvArgJ5TSrOkTuQLAawCWA5htjgWAXwL4GSFkFZgP5f72/TZu+BFBJkstM5cKpNAOeDHCaYQglLyivESEpBVtJuHWVkTIQt/SPgTBzU1SnEwyCSexLXzUrslEDfajyZWNXdYZ+MGzwKX/c+8zTDKJVwsmNkV4Mic+nkDIIZZrOewaYOx31XOIljM/kG9FADOaKxxVR/pwB3y8M3MGq8xc/P5vWuo0dWxbCax93+l/4pCJU/bFcJ+TyjfFhb1SM5Giqar7Cg54QVCLZjBOLHsfw1553oqlGUq+B/5s8Hshfhe/+mZeVQ04yal8Jl6lXBK7gA//xjRfVUWJLcvUocuiZqIKUpCxcZF725bl7m2Am0y4w15EJqnIgN/NNBNK6XOU0v6U0jiltDeldJqwbyaldBildB9K6Rxh+yuU0hHmvpnC9tWU0smU0r0ppd+llBa9r2pds/MhPXGsnYWezhq+dbdanWciIyKsSo8VSs8H0UxkYVHZ018zEc75n89qUNNkPl7iaoj3sffSTORyGA2b1NqV6BiPVQLDpwJ99lV8h6xtOpLrlong30tOkhRXi5G4d56MZebyc8A322aucFQRCcY1k06MdOX7X/sNy6EBzIgdwfL7iOmKjCjSrOTVqCzMuLajCq3mq/Jsyj/5EWAh4TxkVRTUYvQSv599xrIOnE3bnOeSz8m1KotMwvb/3q8xWy7Hs2G4ryV/PxGv/wao32DfqyDgiyCxuCXg3e1y2XPubZs9co3kKDVVGRqVZrIHmbl2Cxw0tBsGda9Atekbmbav3bY2nTWQyngnLvKFw4MfrMW2hgLzYjgWLHmQo98E9vqDZ4HLPgJ6jcxh5rKF/s9mL8ajC0xBIf6Q+HXFmkV+c6GG07Qw0WzaJJrg/IjRMGzNJOTz3Xm0l5wxLfpMwnHv2lHRctMPkkMzyQqaiVwSI5NkfqJ4J2D8D5iGwkEpa7Ql54XI81Tl1LjIhPsNzPvBBaSKtBOCiUfWXGQtosdwO7nRSzPh8wzHnM+AFWYr+TFUmgn/3/s1ZhM1E1XirpFx+0zCPmTC4eczlCFqJuL9UPm7ZPDFpJgs6mcVUD3TKs3Esztj66HJpA3QpSKG966dgpF9mYASQ4UNCiTSzn+o6GznGkkqa+CapxVqb2sQiQumngClsat6su6Nw6cCvc0cUVFwDz0KGP9D+7Pk6G2CUHhRrsklJk3mmoso5HqPYa9iqK9fyW1eJj9ebV8nUuZW971IspMQaR6JeRNfpJwJyGzaO3Od+0xCUUZMsnM/k2CEEy1nq9puQtKiF0m9dA0jSz5PlbNWLpPPNRP+nbnpRmUCEZ3PsuYiVkAgIZb017zTzMEQBHXSg0zEe2lpJrKZK+6cRyhi/+/lEGgR4r1VaRNG2q2ZBNE6YpUIvLoXfSb5huiqKiB7JRoD3pqJfN2gDbVaAE0mbQgu1+Q2vo0p5z9UDBEWs+LrEwX6x3MhEIoKeR6Kxk9BIAqcc18ATr3HNYR/hyZqEk8mAVwyF/i1sKoWV6W5/DfiipgLxly5Jxb4P6HaXtFG4nAJBBWZnHAH8MP/2J/DMbVdPRSxiTqTdFahFZFuNn0mMfX9z5j5EVyAisTt5QOY/wCrNsyj1UTy4/Ayc/HvXKHwA3BYzuek+54/KlR6DsftCgi71ntrJrzkvSeZSM+8i0yi9v/Rj0xEc6VYBl68nmiKG3E8MOY09bk6C+bEeKdgJmLAJumVb9ga16FXBTtWpUGIvxkZXpqJbOYK2uq3BdBk0obgtCCHCjelnP9QsV6XWLrLryxLXjjzMRaFVN4VmHoj2xa03lULUJ9kP1JbMzEFpOhIF8Mw89FMuF1bjjTLhXgnQTNRXE91vokXAJ2EqsvhmNMnUc6joKoYyeZywPMVOjdzqdC0w94nCojbfUqrrHmfrcRDEeCCV9z7ZW0tUcsEYtfB7LNXSCzAMq0Ng30vmUzEfJZomU0mtd84hda7iu6d8Wrn99uxmpFwvRTeGooAIDaphcL2s+tr5hIITEkmWSdxTfiBd9TgNUuBAWZL4lhVMBMxAAw6lP3uFj5qk4mfmVhEvmTiqZnIZq62I5MARkKNloKbrORQ4cakrJmwB6c5lcVXm21npV++Sl4YNoX9ASyvZPKPC3NejuNvB9Z+YH2sa2Y/nGaRTGRwDaOsc24tSfyRc80qXzKMVdk2cb9oLhGyDT0Sd2om1X2Z34Pbsrlm4gUuEP3IJN0okEnAFfCWZWwuI09UJ2fKgqm5ltn+z3gA+PIVpzlNRuNWYONCUzPxuefhuN04rfYbp+9Dzp7vMYIJZ/H7fbtAfV5i5j9ZHRJD9v3xM9mIZi5O+iLkUiqhqP9zyJ/BeHXw/0s4yjqhrp9nLzLiPsTtmF+ByMSlmbSdmUuTSRuCLwgjYYKXrzwM76/chtvmrPA0c13xxGd4a4W92ioYmRQaM+51ahkHXsL+TNSZ/esTMB9wLwF70RvMLJMrXNFBJuYj6ynYPKLg4tVC8EEZMPYMYOVrwv4AjtVw3KmZVPdhgpzfi0hcXYCPgzuzvcxcHJzsgoRvA4ws6r4F4lO8Bjg/GmmmZVT1Aiaeb2+XNY9IGVvBL3qSrWj9TIuRGDPrRMpNzcRHaA0+jCXJ+jXCsmBqfJxMdnztXdtKhGjmErVLDrFsPJDb+c5NhfEqdcScCqEwq56dTdpaVFDNRHX//MhEVTlA5YDXZFKauOmUMbjxhaUY3bcTyqJhfF7D7L5NSbWZ64NVzpaeBTNzFRoTfuC7m/t6QlHBZ6ICz5AHWCXh9Z+wh/2rV80SLOZ9ilUAVy5itnje9jRfM1dVbyE0OA6M+x5bzT98knkN6Xx7TYILEclnYgkp8/+USzgmhcQ7v7H5aCZlnU2Sot6rXlWYeZ0iKuygy5lfZ+sKVjesc3+g3/7MLwPk6HUTZ4uCLgNZwqCvfb/M+eoHAnbfRZnoZ97i+NI0953zvEeCpyRkucY77RaW+b/qTekAwfcWtLUwCdt5VbVmacGg0WBKB7zPPVX1/cmm3PW+tM+kNDF+QBe8cMVhKIuyFTHXNNyaCSMTObckEirNfw83c4W5ryNIT4VDrwTOepz9mAGnthI1I5uGHGGv6Lnw7zwQOTH+B0DPEe48E6+ilqf9E/jxW+7zhKU8E6uLpfl/y2Wu45pJKOq/urUc8AqhddDldlFOgDnPeU0tz1WvgkxUK9loOXD09fa9jZaz6DmL1P00E3OuXQYyImqudSe9cqh8Qp4g3udRYca97JVnwHcZqCZBWcjy/93BPwFGneIez02FsWpnDTM/hCL2M8Kr/wY1z4qmSf7cqqoac+z4mi0s+o63t2WS7ojBYpMJIaSSEKbnEUJGEEJOIYS0MBxoz0XE1DTk0GBu5pJzGSMF0EwS6SzqEz71otoAdaZmEolzMsmjHSn/sYnquMrMFa8CrlsPXKHosyFjwjnmsVKeiRgyKwpirxV4OObUKPiqky8Ccq1Yk6KZq4WaSVlnOMghFAEGKHquiMg3AZbf42ilk0B8fSbmnLmgXf6iN7mpyNwLhNiZ7n5JhRw8dFycl6qCgvxMioQlh1IDQmhmNesX1H24OT/vahbMzGU+IzvXsWvkKlpqXU+QEfx+uTQTST70Gu1s051NKjST4ocGzwVQRgjZC8DrAM4B8FBbTWp3hZcPhGsmcnFHv1L2QXHqPf/D2Jteb/V58gHXTBrLzR/S4T8PfrBq9auK5opVMZOB/OOUBWe//W1zmpVjU+Y8F+A0m3mVb5GLYVoho9R77o65CZWT/ciEX0M1Rv6+hABjzBBdL21HFRnEo5NU4PcpWu4kVr+yNnzOU35lb5PJhOeH8HkGNRdxLarnKPe5ZMjaYTgWUDMRngUVafF7GC1nhL7fmeZ2n5V+KGKHbDduYXML6rwXhb4XmcjfKxx1+tmyaYVmUnwyIZTSJrDuiPdSSr8L1g1RIw/kIhNZMymEA37FpgDOygIjY0ai0Eg5S3oc//3gB6t++Mo8E49V8nFSF8cLX7OPkYWE+FnMtfDzDfAfdrTCPoYTWFB7eHkXf5MYJxFVUT7V3PY+Bjjvv8wElgsXvgZcvxW4YI73GIuwK50E4keWfM7xatscEzXbC1z6AWtvMPhQtj0fzURcfXcfZr9X1cgC3CYxudW0BenHFvIgk31OMIeb4/n/hL/69fchIec9y9VczjE9YX78fsl+QjloIBy3yxUBppmr4/lMCCHkYAA/APCyuc1Hv9NQwctsta0hiaufWujaHgp1UAd8DnBSJC2pAxQKmfkwN9nbHJqJKSy8HPAHXMQIzBov/OC4SYKvzsRVopjs50cmZZ2Ak+8CfrrAFhR81RokIoxfK+yzOrfIRHH/ohWS9mWOGXKEt6Di8/vOfazCciSmNuVwhETNJKCZS8zlsMyIEeDIa1kdrkjcFmTWdw8QFSXeg66D7PdeZKLSTHIVCgWcJMSJYtjRwPceYe/5QkEm+kkXAD9XdD0E2PcPhe3nKZSHZqIqQSQfK5vYwlHbrAZ0WDPX1QB+BeA5SukyQshQsNLvGnnAy2x199ur8PyiDa7tWcMofH2udkCri1T+ci2r0MshCjRx1RwEYhBDSCITnrQHOPud5Dr3xPNY8ypuUuC5HWLyn0hoh13Dmk9xiGSiEnTWit0UpKLDPVoO9NzH/qwinMs+BE652/5sdbkMuP7j96y6TzDNZMTxwAl/sj9bZOFRGDKoQAWc2pko8L2y9lVkEqR0UFhBJrFKe/vJdzEtyzIPCve9WtAGRMhadDjmJHzxGZchhvT2HcdeK3uyecjz5DCyzpIwb//BXXW4DZMWA5EJpfQ9SukplNI/mo74bZTSK9tsVrspIh6axsJvFO1ZAcyeX4NJf3gTyzYoSpF3YFhcUijFSvwB8vpEVX3UY/0w9Ej22m0oexWFq0g6smZy8BXMuSmj62C22j/jQfZZ1kx4styY02zTD28wxgWuSguSNRPx+0crgMmXOGuiyeg9Btj/XPsz10yCOLABuxpvt6HO+XlpbFN+5bTn8/nL1+OCzCJLadGhJAjCasD1GuOMQBOJ+8zH7fcqM1eQ0kEODda87+KiqKon07JCkpnLb+EkV2sIR5xEOu5M72PFCMgZ9wA/eIaZ+SaeJ5zffH4PvoK9Ghm3X6XJmW5QdM2EEPIEIaQTIaQSwFIAXxBCrm2zWe2mKI+1zDK4sTaPaKgOAKNgzVhMiMK01yhmgx90SP7nmXQRcPVSlpXM8cNngUOvdo6TtYVpM4HLP4IS475nN5eSfSYTTIEfEuz2fKwfmciaiYNMyplA4xUNAjE210wCBmDyMNZuQ4NFc8l+A8vMJV2PZ3Xz7y4LYtGMJeLcF4DLP3SafsR7Muok+71MHIS4t6kKOjrGBLinXJD7VeElOTQTP3IXo81ilcDwY91jeG8dHghiZNTZ/iKKTSYARlNK6wCcCmAOgCFgEV0aeWBoT/vHmE9CYueKYELg49Xbsb0hia31SXxZBMc7h+0zKRBkU06fsS1r8kOIu9zI3lOBY3/n3ObnVPWDrJlM/R3wo7dZxWUewdSpH3u1yERhguF+FP4dRd+CRUZR5xg/5Gvm4gl2co6Gl5lLvqd8bvL1LM3Ew8w16BBg2q3MV8Ehfr9clXc7D1QL6M4DgAMvZcVGT/w/4ACxnJB5fofPJMA9tUxMfpqJ+f2tjqNRSRv2+X8EKRV/7M3MJFxlkqORsat7i+BhzAMO6hAO+KiZV3IqWLvcNHzvooYKYu/3iYN8slklZLK5bzWlFGfN+hhn3/cxjrvzPUz7y9ycx7QVCtbYa0KR1is+CYXvfbUVj3/i0RJW1kxCIaD/RPaeV73lpg3uT1Dl0FirZIW5hedxBCpFwpGn3fH0fwGjTmaFG0UC8SoIKUdlcTKUNQLLZ8LnLj0n8c7AwZc7TZji9UXTj7zCvn4rcOVnapMWIcDxfwT67gcc8COnr4wLelU5Fb/n2DJz+Qh9ufSPfI2gZkfP84eZWYsvfrJp9j+6aZezq+rwY9m2nvt0CDL5J4C1ACoBzCWEDAJQ53uEhhLcbTK8l3+NnrF72T/cjKromwT+3H+1uQE7m9LmtuLwPb9uq68+429Ycen6dk+6lFHblML6HSxe/7wH5uE3zy1VD/SLdpp4Acvu56ti/qNWRapx4axa/UZkQR1EMzGk8+XAwANZpWkxEgnwNkPJ8DRzSZqJ/HxyMuaaQecBrBoBh2jmkoV4xKx3FsSU12Nv+72lNYg+kwBax8CD2Ovw45zbbxT8n5ZmIpi5AEa2ky50XnPcWbnn7QVulhUJ9vtPA4f9zHndUITVjnv4ZGePmQIhEDVSSu8CIIQRYB0hxKuqnIYP3vr5UdhSl8Bryzb7jhPDiINoJlkFcTSn7VUIpdTqL9/W4GauQpDZ9L+8j/0GdMELPzm01efKiQteBTa4Q7SPuuNd1Dalsfa2E/2P97u/Fd1YqQ4OnkwWrWACsNtQoH4Ta6DFf/w8cqi/WSesv1DLzHLS+08JgJAjEWCsDK+SMxwqJ7JV8kbyB3FhF/ZwwPPzcyfy1Jucoa6iA56fS3baBzHlcbOPeM2Qwmfi9/z23Q+4Ybtb2xCfAVkz4de4wawtJvZjOfhyYMlTueeuQlRBJoCdDc+1Yr5/y3LmF+s1CoVEIDIhhHQGcCOAI8xN7wG4GUBphRl1AAzpUYkhPSod1YFViArRRalsbs1E1Ve+tsn+8RkUCOqmWb+jCYtranHSuH45x77z5RZUxyOYNNh2/HEzV6EUo8Xr1dFuBcegg9mfBPE+5sRxM+1QTj9wgdp1EHD9ZgAEuMNcMXMBPnwq8P9WMZv49VucmkVbmrlE+BHkXpOAU//h3s6/m+x7EisA8OMBZrrb9pXtc5ryGxY+PeY7zuNFn4mRAX6zCa7vJM736OvV8xbNkZYJSqXR5HiAc1Yalnwm8jVEzcSviGMucO3W1TnSDHfnEV0bzc6tp9xdcCIBgpu5HgBQD+B75l8dgAcLPps9CKEcWkI4lJ9mIvop+KlFIRjEVMZx9dOLcMUTC1GzU1GJVMIFD36KM/7hjHTivNZa30mxzHStwiFXsATCXBgxDTj5r8AxN7LVdCgkdMEUtAHuXBVbLgPCStrnOTr7KRZSamkmrdBMvaLOVMVIIx45NNzMxbWHUScB13zB7gVgC/lYBVupy+fea6JwroyZVOmTs3KET8Apr7A8YhorBCpqNIXS4GUHvGxmFD+3NOgDsJ+FrLTo4Ym4nLQ4mXMTXYER1AM0jFJ6uvD5d4SQAjco37OQ63kVf0deRDD3q634ZM12XDttpEMzqYpHUJ/IoLbZXsmpNBcvcCJ7aclGXHrksByj3SiUz6QUuSQwCHH2EgEE23YAU42V7+DzIO1zPHv90LRQB/WZyLjsQzuc9pL3mXD6+8HA5IvV473Cnnk0l5i53XkvIR8jRwWBQ64CKnsBL1yuzvvJB4MOAb6aA/QZBxz5C2lnADNXEPD/Da8O0LzDuV/UTHJpOSKuWuK8t/xY+bkZcCCLjuMhxGc+Bmxc3DotyAdBv0EzIeQwSukHAEAIORRAc45jNHzARcAJY/vgj6ePw73vfo2/v/u1tV/sC5/20EzOfYBVzL122khHY7ZOZVHUJzLY5dBMgv8wOpWxx2JDbcv+xVwjaW26Sas0m2uWAenSys+xNI8guQD53JvWZpGKlXi5Ce8mHwu3mEEugn8vV40083vnqm0WCrFeOj1GAHvt7z82F065G3j7ZrUWaRF0gVYzPA+kXvKTOshEYba8/BP1PZEDIboOYblScvQjIUzDs8YNdkayFRhByeRSAI+YvhMA2AngPJ/xGjnAn9cx/TqjuiyK7pXOh0nsC5/JGsgaFItrarF4fS2e+OQbvPGzIx3jRQc8D0GubRZ8JnlIdh4Nlo82I6JQDvhWkVHn/q26dlFw1hPAx/faGfq+yIMgCmHmygdWpJqkmUy+GHj1Onf5EUszCdjSNlfJ/SCo6uksOaNCoVRj/izKTb38yKS8G9BrZLDzE+LOlSoCgkZzLQawHyGkk/m5jhByNYAlbTm5PQFc4HYudzrnRDJJGxR/f3cV7njdo6AcnIK/ytQsaluomexsYuaxlmoGhXLAFyxfpVTQayRwyl25xwHCaj6IAC50fZsc4FFXss/koMvYn4zqPqzcTNCqy22OAmsmYhFREX4JjEGrC3cg5GVEpZTWmZnwAPCzll6UEPJdQsgyQohBCJkkbB9MCGkmhCwy//4h7JtICPmcELKKEHIXMeNcCSHdCCFvEEJWmq9tYxAsMOSKul0rJM0kYz/ImayB5VJGu7zqFwVv1GrCZYcG56Nl7GqlZsKn0noHfKsO373RZyzLsP/OfbnHyuXT2xqWZhLQqTzhh8BVi4PV0GoPcFPepAsLcz4vkvTTFPMphtlB0JqnqzXLnKVgvVFUadpfU0rHm3+XCtv/DuDHAIabfzzF8zoAb1FKhwN4y/xcMuC/8y4V3ppJJktdN1sU9JRSx2fuPxEd90GJgVJqmccCRCQroTWTVJWkVAAAIABJREFUdgAhwGFXe1esFbGvGWLbbUjbzomD+0aClH4HzExun5a07Y3qPswnNDJHXpGI3mP993/vERa84IcjrmUlUgD/NggdFK0hkxb/0imlyymlXwYdTwjpC6ATpfRjypbkj4CVdgGAGQAeNt8/LGzv0LAKk5qfZTIRc0tUeSaiUz5rOMmEk0hGGhMEdYmMNba1Zi7V8Ss31+OAmW9iS11u57h4/M7GHHWZNLxxwI9Ynkqn3HlDBQEPUQ3aSbHQGPvd/Lp7FgI/fgv41bfe+0fPyJ1/dLRQ4t4v5LmDwpdMCCH1hJA6xV89gLZ6MocQQhYSQt4jhBxubtsLQI0wpsbcBgC9KaUbzfebAHgu1QghFxNC5hNC5m/durXgE28JuLzsXun84bk0E0klFgkmY1CHFsA5RCScoD4TsXRJax3wyYyBhqQzMumB/63F1vokXv/CvwKAeB4AmPD7N1o0Fw2wlUugroYFghW1VaT+eaf/Czjmt+17zUjcu2FbLoh+L97Manczc1FKqymlnRR/1ZRSX+c9IeRNQshSxd8Mn8M2AhhIKZ0A5pN5gjv9g8DUWjwlIKV0FqV0EqV0Us+eijLU7QjZbNW1MoaHLrCjVDJZp6YhjxfJJmtQRzRXlmsmLTBzieNUJVqCgPtz1mxrxL43vubYF5I0siDnKQXUNqUw+LqX8dS8b4o9leLD6qjYQXwgHRkXvsZCgDl46fkSdMC3smylNyilU1twTBJA0ny/gBDyNYARAL4FIMZ69je3AcBmQkhfSulG0xzmX6ekg4EKYvWQYXadoVTGJoK7316FyUOcfQrSkmbiMHOZRCSbwoIg4/C9tFAz8WvxYAXKBMnqb9Hli4KanWxF+ejH63DW5IFFnk2RwaO5WlsVd0+AnI3Om6j1yeGD6YBop/COYCCE9CSEpcearYGHA1htmrHqCCEHmVFc5wJ4wTzsRdg5L+cJ2zs2TKkqylSxE6PsJ5m3xpk9K0Z7ZQ2K+Wvt/dzXkHEQTjBvukggLTdz5T4uyJlL0QFfglMuPKbexJLj+gSoUabhxKCDgXOeB476dbFnkjeKsnQghJwG4G4APQG8TAhZRCmdBlZI8mZCSBqAAeBSSimXkpcDeAhAOViDrjnm9tsAzCaEXARgHVjtsA4PVShcSKzHlUOQpwVyeH/lVlz3n89dx4qEFLQ0l2jaarkD3ntfSEGi3ucpvmTeUp9fFn3xZ9wBMOgQFuq7p+LcF4C6DS0/3uqiWVooCplQSp8D8Jxi+7MAnvU4Zj6AfRXbtwM4ptBzbC94CZ8LDx2M+95f43lcMm2zw9ptzoKMXKMQ80yCaibZAmgmfr4OEmCMfZ4WXb6gmDzzrUDj7LbhHWDSGsXF0KOKPYOioEOZufYk5Kps8esTRmH1LSd47hejpFJZZ/c0m0zyd8CLnBOgWLH6HHugmUtOQm0Jnl1Qg8HXveyKgNPQKAVoMik2PAQmIcRh9pJRJ9TdkgtBqjWTgNFcopmrlaHBKpC8zFwtunybQdQ6KKW49ZXluPChTwGImknLz3/PO6sAAJt2lViBSg0NFMnMpdH6lWx90iYTMfILsIkjkRF9Ji0IDc5Tmh9++9sY1acTYhHvNQoXukG0jpaSWVtBnA6lwLrtTVi9tXDtT/k98VlDaGh0WGjNpMhoqbisa7ZNIUmJTLgQTqTy10xEIZ9vnsn6Hc14/YvNvqvzfEi0o1m5DCk4waDU0gr5LtoKFzw/MlfjNA2NjgitmRQJfTuzDNc+nZ2ZrtdO2wej+ip6bUtw+Ew8NBOxB/y5D8zDV3843ldrGHzdyxjakxXnIyS3ZuDlbPbTOmQ5+faKzUimDRw/tm9e5ykGxOkYlP1xIi9EDxdbM9FkolF60GRSJHx3Un90qYhi6ihn9ZefTNk70PHNgtaRlnJSVD4TAKhtTqFXNSMvSike+N9anDSuL3p3sglt9dZGAEA0HFJqJpmsga82N2B0v06eglM2jxkGtfw/XExywXnhQ/MBAGtvcxfV62hkImsmlFKkMuwetzTyzXF+89+ouUSjFKHNXEUCIQTHjenj62T3g59m4kUmYVNK3TpnOe584yv8/qUvcNljC5Tnj4VDSs3kj6+uwAl3vY+vtzZ4ClB5s5gTk4+g7GAuE4dmQikjFJ7Lw4m3EKHBHYxDNTQCQWsmJYqmlE0mnpqJB8n8873V1jZebj4jnSMWUWsmC7+pBQBsb0hhry7q+kGyQBVJJ59oro6Ws+H2mUDwmTh9J605f0fTyDQ0gkBrJiWKRsHMJZde4QmKKl9Ko5zDYMotmXiiYaLsZ8LFHCHeQk/eLjr/bTOX8lDpPLnHtBSUUnyzvSnnGOd83A54Xv6/pb1fVOfXZKJRitBk0sExso/aGS+Sgiuay8eXsUnRR2R7QxLrtjc6tkU9zFxcwBJ4+wnkzWIFZM4mQaKe2lKozpq7Gkf86R2s2FTnOUaOgBM/GoathaQyhnUvWjNjfn5NJhqlCG3m6uB49eoj8NHX23H2fR87tjclbc1E9o14IWNQbJYS4iiAiX940zU25uGA52DRXup9bs1E8JmgY9Tm+sQsnFmzoxkj+6i7HGSkZFCq0EwARiZ2d8lWhAZbZNLiU2hoFA1aMykB9OrkbmzUKPhMmlLByCRrGNgYMLvaSzNxnM9DcMqbRaGcjwO+2Av0tOGt8TnIJCuQSSuuR7WZS6OEocmkBNCr2iaThTccC8BJIM0BySRjUHyyZnugsdEIUZKFuCWozySr8JnkWsFnsgZum7Mi0FxbgiCcJmsmTp+JTS6prGDmypMHdjWn8Z/PahznL0SYsYZGe0OTSQmgKs6skWXRkNUrXvSZfFvbHOg8OxvTeGZBDSYO6mpt8xLq0XBIKdTs4cShucgmIBEOB3zAGlZfbW7AB6u2SdcunJANciY5wk38XtTMMwEkM1eeusnPZy/Gz2YvxsrN9daRWjHRKEVoMikBEEJw37mTMOeqI0AIQTRMcpq2omH32nvt9kYYFDh8eA/FEfLxHg5489Wgcqtg56pdhCiULZ9JjuvL4c7yNVZvbcAtryxvdf0uP7NbWjq3KgMeMMnEcI8BgLXbGn3rd20wFwKprGF9F23m0ihFaAd8ieDY0XamfDQcylmmvCwSRjrrHLPWjNga3L0y5/VyOeCzBpV8CM59Ilqimaj6r2QMikiYvf/pkwuxbEMdvjuxP4b3zl1+RkYQLcdPMxF9JumsISQtOs9x1B3vAlBn+KezhlWwM0SIdsBrlDS0ZlKCqIjlXgPEo+5/Lc+rGNzDJhMvueWVZwLBrm8YTuHKIUeXqXwm8upb1jBSGffMxPPwFsf1bdj7Qy7t73bAs/fJjNEiDem8B+Zh/Q6mmYQI0T4TjZKGJpMSRKfyAGTCl/AAThjbBwCwdnsTyqNhh0NfdjJzxCIhpbmFb7nlleXY2ZSytosCUM57EU1WopnMMcZQJ146t9nHVJp+JFcSZkAQH/tWYzKDRDrrMrU5fURw+EzyrbAMAB9+bQdDhEMQfCaaTDRKD5pMShCdyqI5x5QJmskxI5mJbENtM3p3iiMatvc1e+SoeDngOZZtqMPMl5dbn/e96TXr/RYpMZKf59WlG7HLLN/iMoVl/T/LxwQhk/pEGku/3eXY9urSTfjv4g2+AnvMja/h8NvfUeSZ2O/docF8TMuIgFL7+2nFRKMUoX0mJYhO5bnJRCxjXhZlWkpjMoN+XcoRE8jEy/fiVehRlJX1iYxye13Cec50lmL9jiZc+thn1jZ5JS8LbrlEDODUVqpNMqlPeJPJRQ/Nx7y1O7D6lhOsgpqXmoUtp+zTE4C3A35rfVKRZyKFBpu70xnRee45HV9kKbXuoTZzaZQitGZSguhUlnsNIArj8hj7N2cMingkhIgQ6SXX7+KIhkPKhlpi6KtK4KuQNSiSGcmPIpGHy8xVAM1k3lqW5f7fJRusXA6OYKHBfnkmTs2ktQSQNah1b7WZS6MUoTWTEgTXTMqiISTSaoEukkSZ4D+JR0IOM5cXPJMWhU0yQXhB5f/IpZmoQoPFMZxMckW1AcBVTy0CAPxs9mLXPnlqoiCXo7moNM5Rm0uRZ5IPKRiGWJsr8GEaGh0GWjMpQXCfSXk07DlGjESKC+Pi0bAyB0UGzzPJGtSz9peXViMjk6Wu6CzZhCaTR648Eyuay8fM5Qd+B2TtSyRnd56JZOYSHPCqEvReRK9CVtB0dJ6JRilCk0kJgkdz+UUk7dXF7p4okk48EvI9joPnmVz99CKMvOFVHP/X91GfSDvGBCYThZlLFuLyZzksVx7DBe7OppSSeHLBK6pM/I7uPBP7PcuzEc1czvMCzp4zuZA1BJ+JJhONEoQmkxIE10zSHsL8/EMG49Ijh1mfxciuuE8PeBHRcAiUAv9dvAEAsHxjHT5du0MycwX3mcjE4yq54tGTRT6P9d48fvb8Ggz/zZxA8/CamwgxeMCdZ+IkM6WZSzjEK1JOBblUi4ZGqaEoZEII+RMhZAUhZAkh5DlCSBdh368IIasIIV8SQqYJ26eb21YRQq4Ttg8hhHxibn+aEBJr7+/T3uhp5ol4JeydvF8/lMdsbSQWEcnE2zQmIqIwhWUN58o7KJnc+OJS11hZiMvOfJXWI5rbWltGxToPlclE0EzkaC7hIxXNXFkxadE+X9ACnIBUjqYAjbY0NNobxdJM3gCwL6V0HICvAPwKAAghowGcBWAMgOkA7iWEhAkhYQD3ADgewGgAZ5tjAeCPAO6klO4NYCeAi9r1mxQB+/Xv4rnvnIMGYfyALg4CER3uZYrMeBkhYvskRDBTDHV8DoJtDSmrPbB9rHOMK89Ece4Z9/zP8/iWQr6u6IPJHc3F3jv7mdjjxfppg6972XcehkLr0tAoJRSFTCilr1NK+a/2YwD9zfczADxFKU1SStcAWAVgsvm3ilK6mlKaAvAUgBmEGf+PBvCMefzDAE5tr+9RLPTpXOb4fMkRQ633vz91X4RDxKGBhAViCKKZhEME4ZD70bj9tRVYsane99jeit4rANAs+Q+yOTLevUx4HIVyUsuCu04gPe6LmWRWWXYXeqTWOFWnxXzMXFlt5tIocXSE0OALATxtvt8LjFw4asxtALBe2n4ggO4AagViEsfv1vjDqfsiFg7hewcMAAD8c+5qx37RNyJqGaqaXTJChEAVPbx6a6N7o4SYh0/ml89+7vgs+9dl/4QcSSWjtWRiFVWUriPmrXDt6LT998L8dTt9fSaqTouymcswqJU8KcOv6rKGRimgzciEEPImgD6KXb+hlL5gjvkNgAyAx9tqHtKcLgZwMQAMHDiwPS7ZZvjhQYN894vmLKdmEoxMQvm0RBQQ1CcjC/EgeSYA8OGqbThk7x4FyxKXNRPxujwogFcMkJ3k/HMyYyjNbrJmksoaKAup749MVBoapYY2IxNK6VS//YSQ8wGcBOAYai/nvgUwQBjW39wGj+3bAXQhhERM7UQcr5rTLACzAGDSpEm79S82FraFViTk74CviIURJgT79KnG/HU7QUEdBJQPgkaLucxargx4NZl8/1+f4P1fTCmYwHXnuwhJi+Y+rm3JJfdzte2VCTGZNqzSNjLEobqcikYpoljRXNMB/ALAKZTSJmHXiwDOIoTECSFDAAwHMA/ApwCGm5FbMTAn/YsmCb0D4Azz+PMAvNBe36MjI56HZtKjKo7PfzcNU82eKZSixWTiZeaSkTXkbPPceSYcjamMS+AuXl9rldgHgkd7ufNdbKnOrxFVaCaGITngeW0uj7L8AJDMevtQRB+SVkw0ShHFiub6G4BqAG8QQhYRQv4BAJTSZQBmA/gCwKsAfkIpzZpaxxUAXgOwHMBscywA/BLAzwghq8B8KPe371fpmMjHZ1JhhhHzcZSiFWYu5/m7VqiLUhqUOghB1kT8EhFZ7w/nthn3/A9H/Okd63M+OTDO69qf+Tk4mch+DSo64BUMIH+FOimizWusNnNplCKK4oA3w3i99s0EMFOx/RUAryi2rwaL9tIQIJqzQjmiuTiZcG2kNWaumHT+iEcdsIzUqVF2uPuRSSpAM6pckVReGfAiYfC8Fl5+RtxH5dBgHs0lmsKkOU7981y8d+1RGKTodOnVAllDo1SgM+B3E8ghuV7mJpWZixMHF/yUAuECaSZRD1IyhHIkgDsUWDZ7nTSur/U+5aEJiAhaYsWd72JvsMnErrrMIdfm4rvqkxlc+eRCNKUyyjmu2mL3gxdvjdx4S0Oj1NARQoM1CoBXrzoC2xvtzodemoWKTFaaAo6buQzqHcKaCzKJRT1ILWs4zVx/e2cVBveoxEQzp0PWVCqEjP5k2r/k+wMfrEFlPGBUmavjo6iZMGLh90X0axjUblssk9uLizfg0L27K+cocnQ4RGCYpJn18bVoaJQCNJnsJuhaGUPXytyVZOKKaKLaJmbLFwkoQJV69fkl8lBl0gMmmQhCc822Rpz+9w+x9rYTAbg1FbHvfTKT9RS4lFLc/NIXgefr7vBoX7c5nTUTOIlrrNjMSmV2y0hkyUFg3w/ml6LW+cRza2iUGjSZ7GHgFYQPHtodyzfV4fuTB2KcWZ6F+wYoWuOAd5KVV++UeWt34K43V3qeRw4dFmuNJTOGZ/2qxoD1sLjz3J1nIiQdprMIE2JpE26fiaCZSMRheJCJaCoTyduQTGgaGqUGTSZ7GPp0YqVYnrz4INc+XkKFUicJ3HTyaHywajveXL455/ldPhMfFedfH6zx3JeSNIaKqJNMvFbvOwVTnx+s3iGm5F67rRFH3fEu9upSbo1JpJhmwkv2i9c0hKKXos+EIyP5hKxzCoEBol9KjD7T5VQ0ShHaAb+HoZdH7SzAaZISe6BMHtId/buWqw5xwWXmCtCISwU5VNihmaSzntFc2wOSCddAOEEs+XYXAODb2mZrTCKTRSRkVwOQ/RpOB7w7KkylmYhkIvqlmtugIrKGRntCk8keBq8MbACoFnrLi/ko8WjIIcz94HLAC9n3N5w0Wh7uCTkay+kz8dZManY2Kbd7nf/f82vQnMoqo84SaQPhMLGiruQ8E/4xrTBzZSSfkH1OgUyES4oVhn3yNTU0Oiw0mezGeOvnR+LD644OPH7vXlXWe1EziYVDvi2C3/75kdZ7P82Em9gqfYjp7RWbccPzS10Z8GI0l8qsxLFGKkZ519kTcOXR7rQm3i9lW0MSt81ZrsyHaU4xnwnXTDKSz4QKmolMHFmDKjWMZgeZCJqJUFVZm7k0ShHaZ7IbY1jPqtyDBHBhDzjNSvGoP5lUlUXQrTKGHY0pt2YiCGkr+c9HWF740HwAwJAezsQ+twNefY7V25xk0qU8ijIFeYmaz7bGlDJ6LZHhPhP22UszSWUNFwGIbXhFNKeEci2UYr8BXbB4fa3TzKXJRKMEoTWTPQT3fH9//PvSg33HiL3hy4SorHg4bJm9vrO/u8J/z6q4FfDqjuYiwnuzxlWAfMI1EimUOxzwWc88k9VbGxyfIyGiTMAUNZ+Y2aJYRiLl9JnIPeidVYNVocHuLyqSRjZLMbpvNQDJzKU7LWqUILRmsofgRCGD3A9zrjocmSx1aSY8jDWmWMITIXzWL5rLziTPX1qK5/XzmcgO+HBIXU5fbAscCRFlxnwiY6AiFrYd8Fln0iJ1+Ezc51dpO/9472scO7o3Jg7qiiyl1j0Re59ozUSjFKE1Ew0HRvXthLH9Ozsc9bFwyFrdiyvw3p3iuP7EUeYntl8uJBlRmLlaEqxECMHa205EVTyCZNptVuJISDW5ImGizOYXe85HwiFHKDKPamu2NBO2XdRMxPuQyrjnk0hnPTWMZxast87ByUTUTLTPRKMUoclEQwmxuVYoZAtkUSP45NdT8aPDWctgvviX80rEKCmv0ir5IB4J+Zq55O6G4VAIquhkUTOJhonjMyfSVNZw5JmIGoPY68SgQFJijkSaZemXRUP44JdTHPt4LotIJk6fifKraWh0aGgy0VBCNmdxzcTL8c3ldSTkHc0VVfSVzxeMTAxl+Gw4RFzVgiNCORQAuPyoYQCcDvhIKOT4zMkka1DTTMa2L1i30xrDyYxHpjUlnT3umWZCESYE/btWOPZ1rmBlb5iZy9aC5HNraJQSNJloKEEkP0PY0ky8xrPXWMR5nMNnElGoCIHnw17j0bBnCfryaNi1qg8LWtWEgV0wsBsT7CJ5RCNEIhOxsVjI8pm8tsyuAMA1E57/0ph0kljCLEbJr/38Tw619qXN+fO+MeEQQZMODdYocWgy0QiE7lVsNd23cxlevvIwvPmzIxz7eQFDWTNROeBl8ErBQRCPhLCzKaVcvasSMuVoLi7cxWiuaCjkMHPJjcVUDnyeoc+rE89bu8OxP2EWo+QkPH5AF9x19gQAzirDfH68QjGgzVwapQkdzaURCIft3QN3nz0Bx43prWywFfLymQhmLlUkGMBMT4trduGut1jhx05lEdQlnGYjfpYj9+mJ++auRlXc/eiWx9S9WkQHvCpMOBQiDoe8GMkm5pmI+NvbqwA4M/NFJNJZZAzqKFFz/L59ADDNhJMh80fBoZnoqsEapQitmWgEAiEEJ+/XT0kkfD8A9KiKYWSfakwYyCoRi9FcXnW6QoQ4tIHuVd71w07Yty8MChfZAFAmVkZCIQeBqPq8GAZFOmMLcDHHRiYjDh6CLJLasJ52omUizUxZolYTMYkplbVreYVNzaRJhwZrlDg0mWgUFNFwCK9efQSOGdkLAECkfSqEQk4yqVBkrHOZLNYPk6EkkzBb+cvnEZExqMNnImsmfn3CxLne+p1x1nueyCiSFyEEsXAIqayBtdtYDbGISVbOqsHe19PQ6KjQZi6NgoALab4S5wJRFN5eZBKWNBO/Xioq8xaHl8+En49ArZlksgYMqjbHeflMOCqF+XStiFrvU5ksspS6jo2FmX/mhLveB2A74MXr6arBGqUITSYanrjltLGB7fdcZlKzywc/Suws6OUzCRG7DEvEw0fBUelDJqrKxmKnREDtM8mIhbbgTGgMhwh8puPQTKrLBDLJMjOXTF6xiDMMmZu5OMqiYe0z0ShJaDLR8MT3DxwYeCwXubIcdGom9oeTxvXFS0s2AmBynGfOZwyqFN48Sqw8GgYhalNQEJ+Jyv+RlRpZiTkfYtKiCqKmJBa5TJm5MDKZRMPOyDHRJxMLs7I1mks0ShHaZ6JRENiaifnqkVTIceeZ4zF2r84AWK2ug4d2BwBMHtLN5di4/sRRGNefjQ2FiKProggVmYTDuaO5Mobh0BZEZ3gkp8/EJhORLHkujHws00ycrXv5nOKREEJEO+A1ShOaTDQKAttX4i0IxRV+NBxCDzN3JWtQ9OpUhoU3HIt//HCiSzP50eFDHcd6mbpUZi45z0QktKFm9FUmSx3aQkMyY40LEbfPZD+T2Nhc7GuKPqFUxkDGMBR5NwTPLfzW+hwi9pziUZYgqTPgNUoRmkw0CoKT9+sHAOhWGXNs52KYZ56LsLLqTeHZtTKGbpUxX58J4O2EV2omks9E1FIevehADOhWjqxBkc5SKwigPpG2jomE3WTCvysgayYCmZiVhGWzmhyEkEgbVrRZPPL/27v/IKvK+47j78/dHyyL7C4/FvmpSEQiElmFKDZoQBGJNZrpkBombYixZTLVJk6aWBmpM+0fnf7IxMak+TVt0ziTWie1mTC2TSRE05lWoxgRsUaEVKYiEcSgILKw8vSP85y7Z+/es7DcZe/eu5/XzJ295znn3vs8ejnf+/w439NAoSBftGg1yXMmNiTuuGYu666aUzzRpxPxSGzZsCL3RA/9h3VOlnRlMD2TBuUPc00ZP4bGQoGeE4Fj755gansLuw8c4dDRHsY0FjhGkk5FJT+5sp+fvSgxG7SOvxvoOdE/Df2xkoSQh7t7inVqH9vEgbe7nU7FalJVeiaS/lrSLyRtk/R9SR2xfLakdyRtjY9vZF6zSNJzknZKuk9x3EPSREmbJL0U/556bg4bMoWC+vQYikuDgclnjSkbANIhoJ6Sn+IDTXhD36GlrHJLgwuZOQ+p7zUnTXHCe+Ozr7LjtUO0j21iXHMDf3LD/N6eSZmlwdkVXANV9ejxd/vN0XQf7x9M0mDXPraJguQ5E6tJ1Rrm2gQsCCFcDOwA1mf27QohdMXHpzPlXwd+H5gbH6ti+V3A5hDCXGBz3LYqyzsdfuN3FvHDO64EYMK4ZClt6bxCevr92scvZcuGFf3eY1xOCpO8Wwv3mTMpObmnPYvdB47Q3FDg+T9bxdrfmF0cjiqo/9LgbNBMA82F09r6fe47x0/0G+Yqvd/K4aN9eybJnEnZZpiNaFUZ5gohPJLZfAJYPdDxkqYBbSGEJ+L2/cBHgP8AbgKWxUO/AzwG/PHQ1thOV+kv91UxPxXA+g9dyDkTW1k5/+yyrxnf0sjkMqlVBjPMBb3zFiH0v+4jKzufke2ZlLYhe1yhAM/es7LfTcEgue1v6RX7pcFkwYw2nopJItvGNlIoOGuw1aaRMAH/KZKgkDpP0jOSfirpylg2A3glc8wrsQzg7BDC3vj8V0DfM1OGpHWStkjasn///iGqvpV1CifEcWMaWXfVe/r9ek/7Ankn/o7MleZZuT2TnAl4IDfBYxowGhpEa3Mj3/zdRWVTuRQk2lubikNsD//hUj6/8gIAXnztUP+eSWbV2G9dMoPfXjyr+Fke5rJadsaCiaQfS9pe5nFT5pi7gR7gu7FoL3BOCOES4HPAP0nqP36QIyQ/6XL/JYYQvhVCWBxCWNzZ2Xla7bLBGfj68dwXDWjSuPKJIMvNmQB9rvUoHebqyVzzkV2Jlgag9PjrLprKRxfNAuCNzH3mS+d3FsxoZ8aEsbmfl132O6dzHJKYMj5pT1tLHOZyLLEadMaGuUII/Qe7MyR9ErgBuCYGAUII3UB3fP60pF3ABcAeYGbm5TNjGcBrkqaFEPbG4bB9Q9r7uvP7AAAJ+ElEQVQQOy0XxQsSL5p+yr8Fioon/5yTanpvlVJ5w1xZaZBIJ9F7Mj2TbDBJMxxnezV3rprHxHFNyVDdgyV1zWhu6K3HQKlR0ozKnTGYtI5p9EWLVrOqtZprFXAncGMI4UimvFNSQ3w+h2Si/ZdxGOstSUviKq5PAD+IL9sIrI3P12bKrYquu2gq//mF5ayYnzvqmKuYmiVnfzqPcvHM9uKV8ZA/zJWVTpin14ccy3QDJrRmgklmziTV0tTA7VfPpaWpoZhnrFwSyGxalWw24FJNJcHk4JFjFCTPmVhNqtacyVeB8cCmkiXAVwHbJG0F/gX4dAghvYXdHwB/B+wEdtE7z/IXwLWSXgJWxG0bAc6Z1P9CxVNRTM1ykp5JQ0FsvH1p8YSfF0yy79OvZ3Ki92Q/qc8wV++cSTnphHvZnkk2mJRMuPc5Lr73By9IhlwXzuxI5ky8mstqULVWc52fU/4Q8FDOvi3AgjLlB4BrhrSCVlUT4km9KedEnvYgDh45DiQ9hsPdPX3u3V6OpGLwSIPJ8UzPoT0zsZ9+drlcXulnHjraU/aamOaStCpZ377l/dzy7aeA3mGuxbMnsvWea+lobWbZvM4BU96bjVQjYTWXWR9//pH3seE3L0ySPpaR5vRqi6urZsYJ77MGuHFWKs0IXAwmmQnx7D1VGsoMc2W1NOUPc2WXCZcOcy2fN6U4j5RdYtwRA2RjQ6FsZmOzkc7pVGzEaW9t4veunJO7v6O1mS9/rIvLz0syDd//qcv46Y79TGsfm/uaVDo/kc7lZCfgs3MmaZBoKJT/vZXe2rf8BHw2mPQf5krjT17Py6wWOZhYTbqpa0bx+ZS2Fj66OFm22zl+DPsPdee+7txJ43h8/dVMbWsBeu+Jdff1F7JwVkfxuDQNfd5tgtNlyOV6Jtmy0vQp0LvAIO/Ok2a1yMHE6sq/fWYpT/zyDSa2NnPwnWNljynXg7mpa3qf7be7e4D8CyTTYa5y0xtHM72Rcqu50tfkDaGZ1SIHE6srU8a3cOPCvoEheyfDPC0l16gcPmkwyV+GvGB6OwtmtLF9z1v9sgRD7zWZTY3umVj98LfZ6l7XzA5uW/4e7r25K/eYdA4kdfhoEkzax5a/QDK9Z325nkdzY4Hv3HJZfoV08uBmVmvcM7G6VyiIL1z33gGPKZ0MT3sUE3J6JumKrdLEjanWnMzG0Dtp72Euqyf+aWSjWppCJe8eKh2t5XsmaU+m3AQ7MOA1L+knDZTB2KzWuGdio9q/f+ZKdh94O3d/W+5qrtgzKbP0Fwa+wVe6z0lTrJ44mNioNrW9hantLbn7G3PmNSbk9Fiybl9+PpfP6X/hZTGPpaOJ1REHE7MyvrLmEp783zdy99+2PMkIdPP7Z+Ue8/nr5pUt78095mhi9cPBxKyMDy+czodLlhhnjW1uyA0WJzM2Ts6f7F73ZrXEwcRsmH1x9cXc//huFp87odpVMRsyDiZmw2xKW8tp92rMRiovDTYzs4o5mJiZWcUcTMzMrGIOJmZmVjEHEzMzq5iDiZmZVczBxMzMKuZgYmZmFdNozQ8kaT+w+zRfPhl4fQirM9KNpvaOprbC6GrvaGornLn2nhtC6CwtHLXBpBKStoQQFle7HsNlNLV3NLUVRld7R1NbYfjb62EuMzOrmIOJmZlVzMHk9Hyr2hUYZqOpvaOprTC62jua2grD3F7PmZiZWcXcMzEzs4o5mJiZWcUcTAZJ0ipJL0raKemuatenUpL+QdI+SdszZRMlbZL0Uvw7IZZL0n2x7dskXVq9mg+epFmSHpX0P5Kel/TZWF6v7W2R9KSkZ2N7/zSWnyfpZ7FdD0pqjuVj4vbOuH92Net/OiQ1SHpG0sNxu57b+rKk5yRtlbQlllXtu+xgMgiSGoC/BT4EzAfWSJpf3VpV7B+BVSVldwGbQwhzgc1xG5J2z42PdcDXh6mOQ6UH+KMQwnxgCXBb/P9Xr+3tBq4OISwEuoBVkpYAfwncG0I4H/g1cGs8/lbg17H83nhcrfks8EJmu57bCrA8hNCVuZ6ket/lEIIfp/gArgB+lNleD6yvdr2GoF2zge2Z7ReBafH5NODF+PybwJpyx9XiA/gBcO1oaC/QCvwcuJzkqujGWF78TgM/Aq6Izxvjcap23QfRxpkkJ9CrgYcB1WtbY71fBiaXlFXtu+yeyeDMAP4vs/1KLKs3Z4cQ9sbnvwLOjs/rpv1xWOMS4GfUcXvjsM9WYB+wCdgFHAwh9MRDsm0qtjfufxOYNLw1rsjfAHcCJ+L2JOq3rQABeETS05LWxbKqfZcbh/LNrP6EEIKkulo/Luks4CHgjhDCW5KK++qtvSGEd4EuSR3A94H3VrlKZ4SkG4B9IYSnJS2rdn2GydIQwh5JU4BNkn6R3Tnc32X3TAZnDzArsz0zltWb1yRNA4h/98Xymm+/pCaSQPLdEMK/xuK6bW8qhHAQeJRkqKdDUvpDMtumYnvj/nbgwDBX9XR9ALhR0svAP5MMdX2Z+mwrACGEPfHvPpIfCpdRxe+yg8ngPAXMjStEmoGPARurXKczYSOwNj5fSzK3kJZ/Iq4MWQK8melSj3hKuiB/D7wQQvhSZle9trcz9kiQNJZkfugFkqCyOh5W2t70v8Nq4CchDrCPdCGE9SGEmSGE2ST/Ln8SQvg4ddhWAEnjJI1PnwMrge1U87tc7UmkWnsA1wM7SMae7652fYagPQ8Ae4HjJOOot5KMHW8GXgJ+DEyMx4pkNdsu4DlgcbXrP8i2LiUZZ94GbI2P6+u4vRcDz8T2bgfuieVzgCeBncD3gDGxvCVu74z751S7DafZ7mXAw/Xc1tiuZ+Pj+fRcVM3vstOpmJlZxTzMZWZmFXMwMTOzijmYmJlZxRxMzMysYg4mZmZWMQcTs2Ek6e6YwXdbzPZ6uaQ7JLVWu25mlfDSYLNhIukK4EvAshBCt6TJQDPw3yTr/l+vagXNKuCeidnwmQa8HkLoBojBYzUwHXhU0qMAklZKelzSzyV9L+YSS+9f8VfxHhZPSjq/Wg0xK+VgYjZ8HgFmSdoh6WuSPhhCuA94leS+FMtjb2UDsCKEcCmwBfhc5j3eDCG8D/gqSZZcsxHBWYPNhkkI4bCkRcCVwHLgQfW/W+cSkhuv/VfMZtwMPJ7Z/0Dm771ntsZmp87BxGwYhSQl/GPAY5KeozcpX0rAphDCmry3yHluVlUe5jIbJpLmSZqbKeoCdgOHgPGx7AngA+l8SMwOe0HmNTdn/mZ7LGZV5Z6J2fA5C/hKTAvfQ5Kxdh2wBvihpFfjvMkngQckjYmv20CSqRpggqRtJPd3z+u9mA07Lw02qxHxxk9eQmwjkoe5zMysYu6ZmJlZxdwzMTOzijmYmJlZxRxMzMysYg4mZmZWMQcTMzOr2P8DSISGcUE9J8gAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Single Stage vs Two Stage Comparison\n", + "\n", + "We can also see how single stage optimization compares to two stage optimization." + ], + "metadata": { + "id": "bDyY-lhT2HAS" + } + }, + { + "cell_type": "code", + "source": [ + "image_size = (112, 112)\n", + "\n", + "# Initialize NaturalImage with 4 channels\n", + "image = opt.images.NaturalImage(image_size, channels=4).to(device)\n", + "\n", + "# Set optimization target\n", + "target = model.mixed4b\n", + "channel_index = 373\n", + "\n", + "# Set optimization target\n", + "loss_fn = opt.loss.NeuronActivation(target, channel_index=channel_index)\n", + "\n", + "# Setup transforms, & blend the alpha channel into the image using random backgrounds\n", + "transforms = [opt.transforms.TransformationRobustness(), opt.transforms.BlendAlpha()]\n", + "\n", + "# Use transformed output as target\n", + "loss_fn = loss_fn * (1.0 - opt.loss.ChannelActivation(transforms[0], channel_index=3))\n", + "\n", + "\n", + "# Render visualization\n", + "neuron_img, history_advanced = visualize(\n", + " model, loss_fn, image, transforms=transforms, n_iter=512\n", + ")\n", + "\n", + "# Show single stage visualization on multiple backgrounds\n", + "print(\"Single Stage Visualization\")\n", + "opt.images.show(create_mosaic(neuron_img), images_per_row=4, figsize=(15, 10))\n", + "\n", + "# Show two stage visualization on multiple backgrounds\n", + "print(\"Two Stage Visualization\")\n", + "opt.images.show(create_mosaic(stage_two_img), images_per_row=4, figsize=(15, 10))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 537, + "referenced_widgets": [ + "95d38ecf0e3f42d285b3b72179601f70", + "323d89c37c62400ca33f194b44ae74d0", + "baf6d0f46126420395bd64ec76a704d6", + "0c99c38f17544da997a575538dd2e5f0", + "4d3ba63fda70437a9bc0770e6214f1c6", + "99f161d1f27144ec8721c8dd6e841da6", + "6742449d54ea4997b5b85082b7d12efd", + "9ad0d9e48e7a4a7ba7f66cec35a8eacd", + "d7c6b875af764e0a9aac393bb539acf3", + "27d1bfac70e64b04925375e57162aaae", + "cf4d1a9836814fab81ca7688a66d5fab" + ] + }, + "id": "VkQG2GCrS54d", + "outputId": "24623a4b-050f-47e1-a98c-35bc71d5e39f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/512 [00:00" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAADiCAYAAACrxp3RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9PaxlS3bf91tVtfe53f2GMxqOAxMWaAUyQIHjjAEDAqIZkJkDmoEA5QQBRg5ERUpsgA5IOWVsUokl57SAGRCwmMhjAqJhS1SoYGAQ1nDevNf3nrOrai0Hq2p/nLPP7dtvXvejOXsB3ffec/auXV97rfqvTzEzDjrooIMOOuiggw466KCDDno/Cl91Bw466KCDDjrooIMOOuigg/7/SAeYOuiggw466KCDDjrooIMO+gJ0gKmDDjrooIMOOuiggw466KAvQAeYOuiggw466KCDDjrooIMO+gJ0gKmDDjrooIMOOuiggw466KAvQAeYOuiggw466KCDDjrooIMO+gKUnvtSRI686QcddNBBBx100EEHHXTQTyyZmdz77rBMHXTQQQcddNBBBx100EEHfQE6wNRBBx100EEHHXTQQQcddNAXoGfd/Nb0Mz/zn/Ltb/+9+W81BTO0KmBggAASEBFEAiEIIkKtFVVDBMxA1cAEEdq9hvsTCjFGRIRSKobRPQ2Dra4VwUQIIoBQrd0tgmml1kKK0dvC75suGdVKlNZREdSgVEHNMDPGYSCGCKqIGVDbaI0QIykNWOurmWIYJWdEhIfXb3xeqhGCEKPPAyIMKbSxez9N/V41wxAggMjcVwCz4NdUBVVMK8QAQShToRYFFBFIKaBm5FwREVIMrR0jBG87SOuDCKZGrYUQEykNCL6W1MnHPoyYQc4TtDVQs7aGPq5hHAkhzv0V8XFpLQji+yCGdr2vTRpGAGpvFwMJIIFSFFVtewJfdzNU1edGAoSISEBVMTNCbNvXarsn+Pq0vqoZEry/sV1bc/b9FKL3C0HVMFPUaPe3PoTYfmmfmbUl8H1nQKn+7CChrZu1duHf/Pn/xfe///8A8Mknn/Crv/qrvHnz5l2v2o9F//7f/3v+7M/+7M63/T29a6me9+hzNAyJv//3f5lvfetbX6yTL6Tvf//7/Kt/9b85v5ipM5r2u+1/czvGZV3XJCL84i/+Ij/7sz/7JfV6nz799FO++53vcLlcbpZg3a95/zP/0r7fjI7NwFf08z//bX7+53/+y+v4Dl0uF/7kT/6ETz/99OU3yTImke2Y/Z3p38n8fSmFaZrm637pl36Jv/N3/s6XMoaDDvqbTm/fvuWP//iPefv2LQAhBFJyObjm81tWeV82PEtma+Z776Llxx0Z9BL58xJaSYjb3jw7xPcbv5ndcGWB3fH9OGPz5tajuvmx+U6unr9ZHm6XYD7zrD57XgY9NxaZ21nfJ6v9cT0X1zJht1VZ5MfcsfehuzJoGdda/oDLulrrTVN79GIw9e1v/z1+53f+WxA/pNeS0aqUPDk4UIMQCGkghEiMiSElUoo8Pj5RSkFCQNWYJgUTogSggtV+tObV6RUhRD5/OqNWCUEJQDT80KwVDQkLkZgCIFyK+mBSoOSJy+PnvHp44NXDA0EAM374gx9ScmYM1Q+7MTEV4e0lkGul1Mo3vvZ1HsYTYZoQVZALoGCV0+kVr998japGNUMto1Z5+9lnhBj5T37mPwOEcimMY+J0GgnRAcWb1wMpBV8UVSxnKsrFCmbJlyFEJATQChhqCVUjnzNWM3U6I2NETonP/+otl8cJKIQAr16PVFU+/eyRFCOvTiNCRajEcSDEyBAHgggaA7UUnp4eGR9e8/rNN4g2ESjo20+hZuKbr6MYn/7oU6ASg1FKZSqFGAdiGPjkb33DAVUHskHRnClPb5GQkDCQTiMhJSQ6uPzka38LU+Xp7aeIKUEUwoDEkbePZ6apEB1/EqODqzxdkBAJcUCGEyGdyJeJWpXh4ZW/YPUCCBISqkqt3tdSKzGNxBg5vXoNBucffYZIYBxHggRCCOScKaWSq6JKA6pCGEcI4mBSFa3Kq0EYk6Ak1ODx6YwBYxoc6JsR2hj+u//+92Yw9a1vfYvf//3f52//7b/90lfuC9Ef/MEf8Bd/8RebzxbG1VUWcsOH+iXX1zpesQ1z/uSTT/gn/+Sf8Au/8Atfcu+39C//5f/Kn//5vyE3ANz7t6gd7oMpCWFzj4OpW24tEvit3/otfuM3fuMDjGChf/tv/2/+6//zz/mP//E/NkG2zGfv16JIkLZG62t8Ty5kN78a8Bu/8d/wj/7R73yQMXT6wQ9+wK//+q/zF//u382faVMiwNXYWD6TJlDXgnYR4tKUHotS4vHxkR/8YJq//83f/E3+wT/4Bx90bAcd9DeF/sN/+A9873vfm8FUSok3b97MCkfYO/Mvh8qFbPPdmmwRHPPXIrcOT50H9+Yk7LW1f63/MPYAwrVCTUJ49xH7mQuELe/axXyr56np7T0wK9KXvlrj4TvNXYmlvbnv/HHdXu+H3sh3B85r6saM7djeRwbtKSNvZRBX/exty9V36z24BV/7iEpECE0x3v9ud86PnxXZO/JnPab11FzLoBD8Ob1/f/VXf8Xj49Nun67pxWBKFXI1QsA7IwE3FkRMhIoSJJBCxIBaCo5j1K0SKXmnA8QhYmpY1fYuuOVBkGZ1gtCsJaI6H5BTCKQYUQzTgpaIIeQn1/YyCJgypoSpcblMPAyRGIQYBAuLRSFXmIqScwFTBhQrZ4oV7PEt1NqQrCEo+THz+MNHxp/6KcavfQJqiEEcTg4SzdH2VCs6GbUaD69PnIYEalhRypR9wc3IpXJ+upBOwvDqwTdR1Qb+IJdCrUrJF1Srz9f5gp7folMhUIkpEJqlSRA+ef2q7Y6KoIgYwZRgUKtRRRDz9UnjCZFAyWeqOciLcoI4cL5MVFNUIphb+0yEmAJVhZKVVxWitvk00AJiA3F4Q4qRNETC6cHBtai/CCEhKMNwws1A6ha4AmMciQ8DoVmkqlaEguo07wsphlp1C5FALZe2OUuztj21FyYQEFKIxGbNevzsczCIKRFDs1qGQIgRqQpipGHw8Qz+ElaMWpVLKW1elc+nAiinYXTGHQKYkIuvXejWV7tlPtcM8UPQ9hkLw5qZJWBXWGpXiLH8umhzlrs+xlhcJbZmmLb83HLJfvVMa1C4aMe2VpDOxD/WWKz1dTWLsHNI6BK5C2UXfKEx/uuD0LKYs3j5KHuMZcI3+3yrddxR/s19DEFmS/BayAKz9fn2uR96nQ466G8G7b0rtn1Z27u3vaLzpZVq6iUPu/Nsmz0L/H1u7/CGHzwjg67am9u1PhZZWOB1d23/cC53xuNP1uWaqwN77988hyvZdC2DbDWo6z7syaC1nLpek2veuPTPwVw/Yy/z0h49d8a6KF1AzVVv9/bKes7Xu+I5GbS+bzXgzdjvXtef1drfBZCra0TkasJvn7EHzdRklq335nn5t9PAHXo5mDLIxUipH0ACiLtLmQhVDYIQQ6A28FMwVENDlG6VCkBMAa1KLXVe+CBCkIhJf0kMMbcKWa3kKSPjQEoR0+qH1eadNp0vYEqo7iY4DInawNQYR4YQiSKYBGjuXLlCLkqZJlIwUgAtZ3IN1Lc/xEqFcPIDMkqZKtO58PV0Iv7UNwjiFqQQByQEqjrTmGp1KweF4TQ4EFBrVpbilosAeaqcP7vwICPDa7dImSrSPPRKLt7OdJ4XtU5nyuUJgrs4DmFEglDVgeybhwdKyUzTGVA/vmkBAkVwQKQDhEgcRsDI+Yy5xyBj9Pbenn9ItUqQ5HtV1dcnJqZSmLJSCqTkwNcMSg5EcTeCNAZOYyCcXiFpJFIcJEqEEEhpdDe8ClYqWpQ0DAwhAH6IsmlyC2DzIpVua66FFNyOWcvk7qYKWiuXy5kUEkMaIQ2EmJqGRhxMAT/1zW/On0uMSGzaAQnE5K6LAUFNeZrOqBnnSyWgBDEu5ws5Z37qjTIMiTi+AnG31CgQoruNqtkuI/84tGZeV1ogEWRm3NeMakfT1C6Tzo25L4w+OK26uDgG7/TFFtjV/lw1sNXC7WlRPyStBYJTF1H3SVbXra+8PQjd0aR+aGpD8P743lrWx2lZDxfMQRaBtqatIPuq3p+DDvqbR9aUa+/m34aZe2Q8Y5R6x0HzFkCslVqzVu/qmnsyaO7zvWduNGnbX7rF4srY5bfdHNbXnGoBLduO9h8/ngxaH+Y9SdxWAXgXlIhsJMHawrM8ZVm7DQhp7Wzb3pFB5ssT1oBS9sDpPojetQ7tCax30GrI7wBit0qCrQxqACx0oClN8d7bXj+vh4roTbvP0YvBlAhEEWL76WapBCli5od5M6PU2joUyJeCauE0ngjR42IMII4EhDAmaink7JaLGBSdLm4RyBOYkUKzWqXkh9xmAZBmzTKBT16dsAbgMAE1IpBiBIXSrEJ5miiloKbkMlGKUadKiBGNHotDCDyc3iAnqPjMR5QY3BUuTp9S/6pSk4NJyxWVwA//yq0dr8aIVcVKpZwvTAJTncAUh5ICUTy2akyoVqbHR/qrqw1MnM/uRuluZ5V8yc2dMiJa3FrWtDy+6EKZPBZJUQ8yC2AVpCq5xxUNQkgQw4O7w2V1UKrGdJnAKh6tFqgtJiuGRMWgGEJiiFCmiYsqRAETSjZSckASDYoFpFTEMqCoGJY/m7e3mVs7a/snxZCgYAXDHJwjxDTi0EmoVd0ylSIhCNPFUIMQE6pC0QE1oWolVLy9k4P5YUhgoLlSiqECEiMhRaqBRQfgVav/rOprYObxbwgBYzi9Jo5GHJNbJNuelvYC5uKnyq8WTLGRWRtuwayogh4/uEfP8Dxb28Y/MJlZi8/cQMTrq1a/r6HHuxqnvTsfh9Yatz0N7A2w4HYZ9qwzH3ufdUGznrtF23o78+560w8O+31fhKas5ueggw760ugdr9T64NoBVSe5uuadD7oCSrIrg95xuH6nDGquz51ftOYMViBlg8jYWKvaAT1sFGpb/jXzpyaA3i2D3gMsrA78z/G7Gwv9+vfm/ubXLf3Ya+7asnPDp9fAsVtpeF4GSQMp1+BuE0v2Y2n42unK1mvqn28tfH18TX5cnQkkdDfzVV9ao2sZtPG+ocuzl9GLwRQ0TS79JYgzusMUix5TklXbiySoVsqUHdSQqNVjo4LY7OZR8YO8mBEwqhZ38WioUIgzcAI//PTEFl1jPqbklq5q88sSxV3gMHdx01rRZjXSWqnlglbFqmEyYJIwKqiRTicHh+rHeHc5LDAA9YI+GTaOEKIfKghc9MJpSHxyeoViVFW0FEoO1OnibnRphBDoySVCjA5Ap8ld4CSi5haqkn0eMD/Y5ym38YYWp+TjEBG0uEti1eqbJjIDEDNADVW/xqLO43LXOP9pamiZMKvEGFkZIrA2F92cHANYqZ74w9z9qFYI4vNRLWDW3Q8dSAkeZ+bmTE9w4RYcqOpJLqSrt03nJB0hRNSkuVH6AU4tggq1uskWEdQCarG92Eow8Vit2uKfQvDDc1VMPO4ttD1nRJ979T7lUqlVmbKDyZC6OsPctRJB+hzlyedJOhNpljX9aHjjira+yB1IzVqp+aqOpW6ByPY3Z/ieKuWrs0gtzPHaFHP3j53Dw/743kf79OPQEl/AjZZvw+Sv3Cpm8S47K7CZm4+35/YsR8vBY01dA3i7NrcHiS8uyA466KAX0NXpuB9A71/MM98/95jl3rVb1i17uv5EVv8vbd23Am0QzkpZtdf21TMb6rJ2qF4A3+rULrdg4aa/z+gjzW754W33b9t+TtZeg4g+3u4VsHfNvfuvweazz2XHInT1vE04gXfubntLf1YNXfWzt9QVcc+v6/o+Wj9kBn9yI1/Wyrx9QPU+9HLLlBlSK4owmSDSDufNHzZKQqKRKO6idinEKKTXJ2oxcp4ouWBAGjyeKlqlVKNmpQQgDH4IR7AAmLDJo6E9iM+tDaU0K1itqClaPZ5GEcwq0DUWfrgNITIkQSWgpRKCMYxGCAmJkdQSEkwtcGmaLoQQOI0Dlk5gQlYlnwtSBTd/JEwMC2eUgXwJCO5Cpgr5otAO6+F0AgmUvnihUnMmn9+ShgdCTDw9vqWUiifxU3dla1a3DiJjjISQ6LqFkBxEaC6YmxCR0ZNagIOH5j/p4HLKnB//X5SAEik5o7UwjIkYhCTORLQZ0rop1H9xjUMMRpSm1QkCyUArl89+RPzkExgfCBKbG2jT/LTFVHUrU87Z3f20ZSbU5cWynB08yaIVcte85BYtlJgSQY3pfAaEYRipZeJyuZCGB2KIvH3KmBVE1MdSHuesRlI99ioEt3TVOqFVEYOAEaIPPojMoC9IG3eLyypIV7M14NKyJeY6vxsfldYKp40Ka2Hu76J3sZLr4NqPRYtmqWvN9oGgf8fda7bT8vEO7TcM/QXC7jm6dYf7eGvilmXPXLqQz+Wi3OyHkvtdW/ulz4eBphD7irQRBx30N5LuxaCsX9C7sMpezvJnz4frBsV1d+96q1/yGD+4v1NSsf+0e5/fPGR1h1s71lasW9XRrQy6d821DFrLqZeMfxMXNP8qCz++kgnb9t8tg15EtgW6s2WIGafe8vDd561jsK69EprbuLXM1BtLVQda121uZdB9OevdWWcLdhkkS7ffQwa9GEz1Ac1uhLL1Q/VgYlqaaRroiQ56KKvPjVqqW6doLmZmy6HaelihYLK4+Pi/BozMrzWugrIbeu0Gjn7tom1wZy2/QGiYwW9bCXx3tYOilWBG0tSe09OoVz9KR/OkFt1yE8Qtau2wqdWo5rE2iKdNJyhGb8fnq1ZFpGIm5KlQSgE8bkdLadcqWGh70VGOp2enzWMDk0EQiW4Bn88jMh9SfIqVWgpuXfQ4MtMKFukAdLYS9cNm629oYMrvMdDg1rDgDEGaVUnVPJ19R/yt37Zav1p1YTjWNnEDTt0yRehWsfbSyjJ30oCW1griFrtF+2+gbiE0gxAamOozZiBqUJuVDpuf4yNeAiC7b7MnSbF5L25fsy4lZPsyfpW06UR/WRvTutKoLfzmWvP012EgDUjtfPocbUe/c/dXYfh4Rou5+fuqc/2vKznTPuvv6RpJf2haBGgHuFvjmmx+7rawAVL9s3XrBx100JdKV+527cPNWe7HBiFr2sjJjqbsRv70ri3PWe6/R/fdgduBe9uN2ZtpbX2S9QXvoGsZ0o7y77zv7v0rnidXc3ufb27h2cawJKvnrPRY2OrZz3T3JdB0/cweg7co9DzOzm5G864xLbQfk6Xzd9s2uivqbbKK+Xlzp/cHuPUOWX22UVK+jF6egAK4WIsR0Uof4Ok0EgJM5UItytOTB+IPIYJFagmIKTEocRgwNc7nyRM7jBERIyal1kzV4unExV86USOX4hNRe9pDZpe1YXiAEMjVD90Pg8zuYlb9n7cHOecWnyPu9jcVz1KnnrKdGJEhITFgZULNmM7Nfa5MqFa0lPnAPQ7uDleZQNztK6hir183i1JGY/VMglYRjPx4dnAwDG4omn19E+VSMa1czrmlUPcEF8iViVkCUzEHbTWDKVk9PT2lEIeB8dVrd6nMLZ0kQpmae59NhBh5dWp1scyoEqjRQYvWSmlxThIVCYEY0uxqNwQPk8qluUDaIyEGxtcPxJh49eYNIpH8eMaGREiREJuGIEbMIE+TawN63aoQ6XW7rIHVou5SOITktcOK749q6hY38VTz7t6pmFV0mohBGIfRgdLk+0wFH7sIaXwFIXg8XAXJmSLqlsMgBIGIoASGlqY5eKAgACVPaC3uUrl6WWuxdpRdYvy+mtP6luzuHz9Gmx/ZarAw8QZ299Lf2lbILPe9aw0+HgB5qRZw8UffI1ulwl0LgzvS4gPSO4fzzu4sAKxrVGtdxWF94Z4ddNBB76TmNjyn0ZY1X9k5mH4BunmHv9BLfXs0f/dB9z4/fHFMZtPYrlvpcaI3MmjNk9fPWv3/UurK2y/iRbKyyXAj276088hWBq0/31dbvpvmNenNytLSuszJ8l2/b/XhFyKZcUXvw9pS9T7b9eWWKVq6Z2gbLMxWCjNP8lCrT3KQljK6WzXEN16QgLLk5feIlR5E2IfWrAI42Igxzof83pEQw5INCjeuCK3gLwZW3UrUpkJ11W9xc2EaElqMoi7ArXqh3hojcUh4djdfRBH3ZJOW+1qAFGWuJ+R8xy0yZcpARLS53klLFofHNJl4UgkJgTAkenxQKYpWB49aPXvc7CdKA5BmXvaqr0l1AGYtXbiEHlsmiDVdvnZLEM1S5eapObanm1dxcOIWNgd/tNT1iCItDs6spa9XRVoMla9Ps8A1y5bHcRnRKlbdckXxmDmtPXV4L8rssVM+Tu+bp680csnUUinFAUw1xUJLuJGbxbOsdFES2oK0eZCekUZX2ovge08VLeoJJmKL45N+7yJAtGVLFPx7a/tZ6HNKA4bS9r3xbHKHD0nXLngb1RWz9WwtJGx16/qD+VLkr9fJtgu5lWrvtnvGzQB3mvkqlmh5/pUmsptbtxftdn+9rIvG7mMuUhN0swXKP3uJvJbNRrvvhnHQQQd9+bQ6r65Ope2/K0vxc7THXmXTaBM5d1DB+ti9kUE38gf2Elrca3f52OZrb55985ltReUz7mE37ax49BXke1YGXffzXbTOTrcW5f7jmb4+89U6xml30V8of26sRrL9fsPz1+u76aasxih3+71rgVo99HoP3qf1m3ANQt9fmr6Hm59SrRCjJ0o4Rc/sV80tA09ndZc8HHSENHQEhhExAnEQggXiVNxlTgdUCibqhVlFWtrrtpkRZHyglsKklxm5noYT4zh4Zj5VUvRD7DiMnja9GiQ/MF6eLpTsiQ+CBEI0jyk6fUJ+uqA/qkyXC5fLBRGPnfrkm98gjYk3Dw7OtFbEAqKBIUVSDA7A1FoqbJiqgWY+//RzTuOJ16dX1FyZqhIfmjWknD1le80Mp4GvfT05UJgu5Kkw1co5nzFTHkZPFQ+jZ92bJjcGmnA6nUgpkqeMaiEGJcRAOp1aLadIkES0QM3NqlZpsUtu+cmXJwc9ZkiIECL58kTNE6c3yTdk1p7N3OPCMETcFVBrwVQJwwNGIE/uJhdDSxKhRsxGCEYMCRBy9WyJw+kNiGGy1BKrKlSDWtzaZgS0Vqanz1Gt1FJnoNVTpk+X6m6iRFIQXo0JiKgIEhIhuGUM8Ux8vpEjEAgSybUyTZlXrwIxJmLsOfsimBeK7rFdMQRSSL6HhoDQwG3X0lQjpEAcPNFKNXvZ+/wBaPPYK6GzjjnqFK6ZqDC7O9py47aNj3gA3hdUd4T5zme2YuCwZcZrV7MPTlsJtPlKm8CRtYVNbkXkvf6+NM7qy6UtoLr+fE1rn/g96mNaF0w86KCDvmS6eq/ucYxrt9t3Xe/3yP41axnkWvIbebKVWc/Ln96x3SQK7MuD9WH+fVnLLH+u+Xfv92p8snNfe+oKqMr286u+7uv4bjstV9futbUXj7VguK0FZg5xWCn29vryLt58k6yqAbIOgF1W7ZQk6YrbO7QPcNcAavvZTb9eKIO+aDbZF4OpGAMP40hMAzEmKBm0urY+BMYxzYfd2Wx8tcFyrh4bJdGtACkQSG6BagVQQ3fTa4dqbZaaXlcKawkmEBShIg408LTpbr0p0GpbTU9PlMvF3c1kqzkNUUhDYlCvPWU9C2Ep7hoW29ZTd220klEUJc6bzvGjMMy+oh4r5Cm7Q/vXEEmNIB4fNR/CQyCMIwnBsqCWqFoptSJaCSFTS0FLgV5XCyhZmC4XTCtR3LoCQoigKQKGafSxaCFfPPlHbHFXhh9cQkws8WMRiWnJONqW0Fqsk5jPfAjNAhR7Wk6P9TL1NOpz7FFy4CJtLbzIrTSwBErwiaJSTSgK02Vy10sJqBYu5ydPEV8LHQf0ml75XFCDNIyYeAFnEwdDpoLSXENDK/ortMNq25chENMAIfl95iZE38c9lSbEEBbrVn952wT1En/zxlLfLz0ZysemeV/C8v7N3HbxI3/elWzd3l4Gpq+GNkzuistfA6SNlmtjtVni4Hqc5cfEIPOjVn4c26Fsx9GvXX8vG3ecfsktSP7wtO75Elt43Y/l0KNNRnd16hIJd+9gdNBBB325NB/C9xjfwqBWcmOjidpcvuUAbHjVFkD0prpb1fO8as4A2Fp7jitcGz3WIOM2xmYNLGQzXj/k98/lhidd9+m6v2u65mOLDFr4nYgsOQG29sJbr4mVbnbdr+u5XuT76tnX/Ljf05R3dvV57+bdbLNXMqjP3bto48Z3LfU60OpAbEeOXN91PUVb74hbGWTz2U/WNzBLoR1r5fvQi8FUiolPXj+QxgdiGnn69FNyLkgMRIHXDyNqSinVF9VaEoMGezDj6ZypBqSBGAMpRSRERPzv7jdvGKW6RcUz21lLw21eoNXcObBKoJhxfuvFW0NsLxDuyhdC5PyjH5HPj7z5xteJ47BZiJQC9jC6xSYMaHdzmzJVKzo0v9ha0Txh+UKwSCAR44BIJBdvcUzdrdF/VOA0JIYUIQwOPkoBKqFllytmxJRIYYAQ3E0xKKVkPnsqmFXG4GDSJndpU2sxR+a1nswqAw1MVQhJkVGoKRKjgGWPxXr76PeXYe7mMJ54eBhnUChp8JTw1etVmQjBHQ7nuRe8zleIDRC3dOiXy0QpChoIuKNcJWIhERgQccukU8UsYBYbcFSq+bo+Pj5RayaJF+J9evzc48GsklIkxuCJPVS5PF4ctH4NLAwYJ7doyeCuhNXc3TEGeghT0A7K3CKXTg1AegJ8xNZxG763Q0p4AhBHmd3dD6B2Bh6Da3JaCn633H0FB8NuNeqWsT3N4kqpcFfzuNYc2nOpYT8GrZnu8unMFu9YcLZuBwt4WWu4vgoQcu8gseZNa6AV5jUFjwndHjDcmvNxQWHfEdfCbBH0/cOdO5tLcs+MtblkdTL66Ia2gw76CaFwHYeyoq3iZvl8c3ye3911qABXDHrfmrKWP3uX3cgg60midvo68++FH20sLCt613m/nz87mFo/Y6u0WhR6JregbZkPuWWQ3QOh9Tu04ixrYf08cLwFIOvxr8e6TfRJwN4AACAASURBVMBwC4zW8O6aXa9l0BpY3pNBu5am9bhX7S0BOrdj2wAqbtfwysmEJZyizWdYr8N2UMsRwO/p3m/rcS/9tfeWqe9VZ8pW6bUlRLdqiKfe7hs4hl7bqB07xWsQGXh9HgEZoicGsILUZYNqz/aGQfBkBSae7ELq5C6D1ZCaoArlXMilosXji04Pp2ZIclezqSiVBOFExWsT9eAhs5aSfSpoVeaZiy23mxoUjyvScgHNrQCtL3gpbl2qOoIElIEYI2k4UYpyeXyCFNEUSQ+ChOjJC9SL/Go16tOZGAIxBmq+UEvBqlv8rBUtjsmz1EkMWPTECDkrqCJREA00rMHj45mQCqk6SIsxYfUCVjxNefKYJwmBNLgl5/F8ZhwiY4pIqdDSsC8WRiXRDqAthbiZxyv5gbX6XFbXdGQiUYQkgqkguaU9Dy2RgwgiXig310o1d4nrMVGlKlrxwsFqIIGilelpIjQw1TMNhrBUETeMWgsSIrEzrCAeryZGqUZQiKODbIkddjdmouaBcbC4UlkBWxWNNZutbEXdWlpzs5pWT1YSpOcGfF+9xpdLM54SnOP3Pl27RHR+2f9eN7D64Npd4GPSmgnO9SDwutR9njcAZGW9mhU0BnvaqrW8+eD0DhC1ttRsrWprwbys1Dal601rH5TWgghwizMb+Tv3ZwFYq/k2z5p67e9+0EEHfTiSNWDY0C1vny0fd70YXiDl5vd9JYNUZ08Rf8586bYnN7xhx1Iyy4MFEuwpq2xdnH3V7J7ly6B5sMhy3Y4MQphTvS8GF6MfxP2S63EufLLryGYwZNt57pacd1nyeuIuBxpdu3tvzfZps85NcedhHRtovZFBSya/W/kzy+k2Z/PqbIDZatZlu343Ss6dgWz60y6/NaIuY1q+2/bRh7s3U/ug7x69H5hiSbEtwWspzb5nLZFA8Ezby3rOe7KlyhYhRI/d0VLoIlnFXdNoYCoQWsxhBVNEJ6zipoCaoQbKNFGmihWPGRrjiOJAp9TClDNGhDCiRHfjqnU292nRVT0gm5NLODoBqwZW0ZwRCoEC5lNWW20rY0BCwGSEMJDGE6WeyefPkZSwmJA4EmPLCmiGptFd157ObqGLES0XtBYCDmisFMSU0OKNCOJWHomUmrHiiT4sGqqeTCFPF2JyV8o0nKjR3MpkheH0GomBau6qloaRnCtPlwuBgQGDqohqq99lWBRP7mHmLpJhOUCV4inuHfZAxd0DswWQQGxgmOJ7I0RPNyISEEkUVaaSqeZWx5yLZ3SsHg9V+z4Tz754vhSkeGzdGIzoj5nBEpjX4op9PwakWTtFoFRtrtrJ3UnDos2wZnWbz+ANOFn1vada6YZRL2jcCvuqUktL5lHL8vpFf/ZfP1oGuBJLL7772SDXD0RL8oueHr/T1vd9G2ezaJ7u0ezSIeHjnuOv3CUWtCq3gourS9fUDyc7IPFjkOzO7+3f15rU9ov/7FrCtaCwLnjfT5AddNBBL6MX8fF+GJbF0fvaomDzZY0PrSwv0A+wtrn+vWXQ+nD8jn7fj4XZUzr15vt3cnV940Iiqz5sZZCZETb33Cort/3ydjv4WGRQUzSxtHEPot61rs3Tapu/t8+Xd7LUriQz2bEOPYu/+7VLPxcrEDuzvD+AuzLbrtZubVWasdT+vVsvlFUfbFn/DRhcrf/70MtTo9fKdH5Cc6bIkx+EqxKCx9H07HCq5qjeOrK2VjtJKdVTbQ81o6Xw9PYtIYgndLAWf9JmJljFaqE8vvWfUyZFt7bkrEgwUCUE4+H1yeNagtd2Kq1WUymFGBJhTFQNiIFmt0yFCMWEyTyuKYVArV4o9vVp8JTm0a0oIZ0Qi+4yljx9ukhALRDT6AVc9YyUQrkAeSLVSgrSUqPnlj+uolo4Pz5S1efDExtET6VeCym1+TxfUOBcaksQMeCmFc+eZ4BmAxNiGiG4q1wQAfXCvCqFqgVDSQ80MBQ9iYIEToMwpICVyvnp0hzdYEgjIQSGU3MBzEIRmknbi9qWYp69vb2gMQYwo1wupNOJdBpotki3BOHAzICpJ5NQZSqVc/a4Lt9DAhYI4sWZJQ6EZMRUKd0ChhARTqOvXYwjISRiHBFJVMWz8wVQCmLCaXAXxiSAWYvBighek8vUXRT7y2RqTLm77E0NBMZmkQRt6eJ7JkgtpWmIhDQm0nNm7w9I67oPnVm3L5aLukZOtgzofs2OLX20RAfW6smZPSsHvCbZdf87uFoJkrnZNePW+wLqS6YeaL1oyVZCuwuGWVN6v1OL9ccn5WO7k4q4xW9RSOwLsr1tsnaxXK/PWkP8cUdz0EE/qbS2HuzoefpVK2XWfIidD833QYTNWvVNQ6tnSWtvfc/LZNA1bRVRy12zu/d8Nr4+lS9968f+uQvC7uQs5+4tcriVQd6e6hqEbudrDXTkzgH+XjxWtxwJzBZHP8MsfHZjBOqg44b/2vz8tRyaZdB6DVm1d9PWpterG5+RZaurby/bPrhbq/re2fN+uKb9uEC5Avq3Mujuvc/Qy7P5qaIlexHUXuNHdZ6qnnRArSLGXEDVFGqp1OJZ2ESNWD3V9dTqAmlyV7Wq1hJHCGIZq5V6OWNVqbkggxBCaoVurWkxjZTi4gOsNhewtaoQPZubv9e9QK7Nk+klqoLHxai7rg3BwZUFaRkGB08Nrr3GkaDSvosOGGg1qGpJWKlEszkZAVpainIHDWV6olYjV0UlYBI8JbpWLHn/rPlGFqW5yEXPQshirjQFMYghggWI1dO1sxwwVWs7oPTgypYMAj8MJQlMzZJHuyamEyEmUhowg5IriqHNSiXmQKrXJ+6b2czX2sYGWEUQwqJ8x1/CqjrXKdBuCWuvrqd0n3ezg9kQCSEh7WBtLY7Lv/M6Vf7PA6O6Hi3Icih1sB2YnfC66mTewL5cXgHbmUOtvl9qKa0PzFZMa1kCte03a0lM1IygDnK/slPhykrTh9hpzR9uAlPvMW3bunt8XGqLs6tpW664h4jmgOGdVPUOOD/OmLo4XbRk/dNbQHH9O7BoHq8PQE2L2Fv7ONSEV9Pa3iT/kKZplef31+Hid9BBH5lW2vj5g/6b3b6jK8az8Nm1Eu7KUrM+pC48ig1/Xp8ZrmnDSzZ9uyOD9izfrbP9+hk0yFaOXA2PNZAyzC/vYM8WHms3/eSuNakD0Xvy811ZWO9a21YWPiSsLF0y37eNmdJbmYI0r561TNp8e/3Q+dkbcXsXaG331G3WxQVobb+6Nx9Xsc5bfHrb0V0F33W89OqZvcNfkF5umVKlXCZkPBGGiLWDppiBeLxKrYXz5YmAEJqFQRDyxa1YxfzAfb6cPd11zZSi2EU9NXXwuCYFtJwRM+JwIgwQH4yUBlI6oRI4F49nEQPRjKlwmTx9epJKsQtSzuRzBlUv1oowXR7BjCEGqhpWFElKDBVhAqvUCqoBLQNxGIgPX6PWiTpFRI2g2rQNINHf2moO+PKPnogxkdLIpRSezheent6CwNOlOBht2QbTOFJz4Slnj/2qyiW6q+RpGB0M1EqdCrU8EcYH4viAYAxmvBoGLzIbAyEK8ZMTWgplunh/MKICGAOeoJ7kICpo5zaeWMGElkDCUJ2QUMnFLY2XXInRLXWt1q4noRAv6Cs44DIxiMJ5ulCs8jCODCmRi7+wp/DAHMApgLm74UMaPM17rVjNmBbq9EQIkB5OHos2Rk7pwVPuq7tmVgWrQgonB+Etji+l5C6bwZlMXx9VTzohBCC2RIJNUxU8Ng2M0mK3ppzntOy0VOgpRmIIaC2oiSdhwRjHEVUl1+ogi68OSwGzUAszI3v/NpZsTNdA5CONbNau9ZSq/fMVBl4Bx+2tO4Jj9VcXiF2z96Fp3det69v7WzCX4fovIbjC4qvKhLd/iHKr4qIdvZl9YKVt7DFXql9ssx500EFfiNb8xMxmfjLTlV7wnjXqxo2qyXppB9Uvwp9mxee25fdowG5/NeOW6+8opDaeBFcAUZa77gGpXbB49cSbsiR37ts+uyvVb4FY/3Pz+Sw7O59eA6fn3eE3nb0BL8ucSQib5/S9xHzFPVoA1f53L6NrGdQ/C6H1cSOD1v1aLHjSFfFfUP68PGbKbLY+IWDm6cJ1jldxMKXVC7Ma0qwYnlSib2DDKNnd6YyWcly1Be7PXqNzwKBn+2O2JgGoKVWN2Opaefte+NY3f0vhjaJW3TqjBZBWM8o8W1+bN21FZ70YkwMKT6rhBWK9oGyAOIBVaEkcZKV97dYMrW7FILjVIjfLBqZcsh/o0epFjMRTntcGpHp1bUyQsZlcDcSaGaj966A8teLFoWmKYjdL6bLJQwiIuG+v2CoSoaWucwOKwFxA2ecD05ZcwS2GHkMEFsIcPNqfYrRgeHHXOtNm0alKkEqp/iamojPQcKNdD0RtBu5uLbKWNl6X1POexj16xkMRLBhWOlfw/IHL7dYAk2yYXt8r1upcWE9oEruWoz27JTBZB1h2BtGLJxvVU/Sbzi9iCIFgzVqrXzWc2rKiPY3fravBlRZpHnfnpR9/PLuMvjH2G2G+d//653qcq38fm7oofx9D32asK+H9lRgL2b5P28PG0s/++Z7Fs78z737CQQcd9KXRlavCbImZZcHqHe4H6B3r/eY9f/ZZO7KFfV6x/gl+jrg92Nr21x2r+PrvdcKizZDYAVQrsLLu19Yte3v5e8mga+DjH27gRI+ckuvrWObtmq92BfW+rFxZ2zZAUN5bdlwDlbl/+499RztbN731fTMg3H61baOvXz/v7cig7Txtn9Hna3cOmoXqfcH/exTt9UO2iWHBUL2gZaJmX6xSsx8gq/qBO0iLE1KPPQqRJJFaK09vLxiKRC98S/W4BQ1GMXe1iyEhEvDivopRqFSE3PNDEMdECIFcImoO0txS47BsiKm5ZQUU9c0oLbV6yTPomx4nyueZMQzEED0eC8PyRK2FJzGG08D46o2n1rZKavFANLdDvXi9ptNoeM3XSja4VEEvFS2Vc3Vgcs4GdiHwGeMQOY0D7hAXGWJolqbksVgIJpVBsltbtCApIjESx9HnqGSsKvltpuTMdH7y4r0xMT6cSCl40eHqQJMAJSgShJiC17Yyjz2SCKYFNWO6KNKsT2UqPE4TD5+8Znw4gTogruaaZM3ZwU4aiBYIGijZ3TvVfB1rvXj815iopZCni9caS5E6XSi5EJulTBmpapSnjAAxjmiFUgqvHk4MKRJSZ0Ie91SaKyUYkdETdKgzwxQjAHkqPtMRajWmbAxDJKZIUc9iOF2yW7H6gS+mZokz8uMTdZpgHL1OVUzNhbD1JHi69zp5SvqPT92Nsf/1csDwTg1Va1Z3hdyXTw44QrPeNDDbmZxt+3C35yvt4u1XrhT5WIjErGXT3H3cej6vwUdb1T5m2SpxFsZvV+18GLKuWNNFeF27+gGzZQrW1rd+z/rv7m65WLH2Di8HHXTQj0Pvfp86PwGcz+wKkOXdpylyNwBtJX+uAdVz9C75s8cSZqU7/fB8+7gbQCW3gGodI3SrXJSWxdjcANAUzNiW3z4rg/Y8IFafz4DJbvPK9e5srVjXiqoOqBZe2xXB+/FM13T/mhk0rgDG7ObNWgbp8vc76T5k3C7iIi+lKbznab8CztcyaLaycr23Fmjd5YzZXrmA95On7wGm3JpTSoEsVK2YVY9FMs/sZtaL5upc3lT6uQff+GZKiJ42e944/UAji/WrqruNxXkSlkLA87HBaIYka7Erbi9Q1dk60zeAFwNuqdsxd0sDmoq7HXRolpCutXYrQ1BtRW1X+uy2CDV7/afaCgYHWnyWVbd6mNc7qlWpWVvB2a7l98OVNlOjW5nc8qLFLRtiEUz8JbEAiqclz4VR3FoTMDzr4IQWd1NEPWYspdEz32nwg3CuEIwweFIIVcHMrTizSb0fXtsL4gfo2sZQKDEgWgAlWVuX9nJ1zZapgkQsNMaDEK0zDo8T65oFbTFGXqi3B626i16YzbBep8tqpebq7ojt816MuWt6fL8thzhDllgnNRBte5HZwmbqlrRu9dSq7npo5kBcDBXP4lhVkWbhTCE6mDSPJetWUq+t9tK360uknfe/7bT59z26YUQrXdm6nY9N1w4UixZvbWXaqNx26HYMvZ0ZoHws2tXidQHFdgyrA4m1n3ea2Gg3Pwattb57mtJrLeb1Z9dFH9uVM1/92Mty0EE/CeQyfjnYd76xyz/MNtn8Npxnth5sgdTeS7vc/fIX+mUuYrb6uYzAb10DonasgcXI1o+Hs4Viz9qztHNtibO5YW+lQ7KXaC5nHNBB3gpo7Sml+iAalljk+Y28e9fD14Pff86uDLoCo8uF60Hd7qK5Ftl86c3kL9eGlXxo82qr6bw7L1ffXdO7rWnXJ4IFaL8vvRhMVatc8oWimXAJoAVp/u2qyjS1ukihbUwF8PzVVa0BHnedGk8DWgt1KvQU1j29tZSWkU8vhCAM8XU7qCcHRS3rQmiH9moOjNQ8+UWtlZInhjlDX6WWwjiOnrXPoGYj12k1sZEgnmxBrYEYMUKohAADEK0lFlCgZXGjFaut1bhk72aKrpGtRbEqRIVzMXJWytOTJygYEkECY3DrhhIYYyTF4AkugPL45IsaB3cfE68LpQafP37OVCa+XgvjOPDqNGBWmJ7eUlQoGpimC7lkQniFMHAKr0AD58tEiJGHNwGNyQGPJRDQ6u6IIQ4+B3r2OalQs8/j+emRnM+E9i6PoyeBSKfBrU4Chq+DM6mEJ8AzXg1CjJGQElVAaqKYUQqIeMzcVAqmuGUuCEMSTKKnXq9v0Zp5fPsIwDgOxOTWN0+B7romBVLwxBXg73kppWlOmj7KAPwaB7zKefJaV6ZKyYUf/fAtiPUcJo4xa4vVK8WLpSZPAV+L32e1EOI6ZftXTE2K7PZkh/fPQGqWPju3rbRSH5KanFpZXdhq+FYuiXb1/cw3G4+feb3fMIOT99M9/Xgkd+b7/g3cdG4z9zfCdq3j/LDkmTeV65iv60OJma0sVNdCce76dpx/DV6bgw76m0Yrw/aG1oBqyz7uK6duNf3P8J17Mmjmh3J1eefnL2EE68Pyum1bxrPrDbA+WPuXt5aJNZCyWSSyI4PUNeQb+bSRQa25tdzpbbuHxMt59zUA9iHev/cm0cKKvkgc23U8VvtwXst+7nGvkmU+etKxewrMtdvddkctngq34OhWrlz/3WXQ3ufL/dzIoPdV6L2Xm1+tvskD6oVkweOmVD2up7nNeMyMu1N5eL4sWmDcVZDg6XXV/NqwMnm2eqqtfQdcHZarLJFVql6nKrQaVdbSsotpiwnC3eJqxrKDG7cWGQ/DQM6Fp3NmSIak1j/xGKQQuhZDqXUi1ODWkKpoVWya0FoamILJPOW44ckU8uMFrYZV5ely8dpXl4nmzYKKUEMgEokWUXV3SExAjXyZEBFePyRiNIbocVgeJOfxWGXKBFMK5pawnlqcwJASKQZiWFuO2pyakS8FkmCaWq0nQbMnf4iDbwstHh9UacwCpeRMzsopndylrXuyNQ2GmNd0KtWwfMEkk5K7T2oPlqru3ilBGEJkCIFpqpRasRjRIFSSx1apuyW6+2bChhOX8xmtlTS4I2QtFYuBmMKsudFaqVIJzTpVmuWwZzVUrb6tQmgAyutUlark6dwsjtmv7S9gbS+lKaF6UeOYEioeSyVADLZYS/86qNb3eOyKud9oFmEDNlY//JaP5BLnD25xdaZbQbaDJZZ7HCzfWk2Y98b65iU27MNT54Gbw0uj7t42gxD1vWorzeAuXbmPfKzVmZN3yPqgss3ydM9y1S7t/83Hpo+6tw466CeVZovTQnPwPfu6mjXJ1UUbx7Q9BdyNfNl+t2lv3cf5AL39ak6qNF+65TOrQd0dz8YeMVvOl9uuD+/zM1qH123aLJzW4ORWBm2evWrvJjse7weAZlYq2+/2YojW89nh22bdG0/v8z8n13hGBm3jsXcvAHzdNi6XNxYm79Xzz9v0+EoG3c7j2iviVv60X9r3e+/E+9B7pEZ3MKXN9S2KF2FVLZhW3FnNkaiateQF1RFzS3fuHWyLKCApoLlQc/GCtCEQBD85t6KUfqANzazp90V8yj01uxHDSGgWCTH1JAC9EG/NSL2glw6OEhHhYRj5PBvnp0c4GYl2eBHxLHJR2uHZqPlMiJFBFS1utciPT9ScebpMqEGRV4SYqBKYHguPP/ysJZcoZFWqquc5D0IUUIEsMGhi1IGptM3UUro/PmlLtvDAkIBBiIPHU5kJVfHsikWILd27HzwDAfVaRykuRWwDXmcquFvddM5YFGxIaGOk+XJBaybZg0OQS8YwqoA2m890eSLnifQ6EAZBi7+Ss9tPc2d8miqlVKoa3/j6J6RRmvucYbmAmFuexoFhHHnkwjSBDImqStYBzAg6eexdNGLyOLrHxwvTVDk9eFRezpWo1opB4wCwVrAMITmoz4tPr/tsQkqeMr20JCC5GKUqT28fqbV4qnxxcNq1G9UMNSWZu6DGNABKnioxBk6nOHM3/cj1f3xszEz12k/b1gwEWOzo14JsuXjxf19Umh/ryGvtHfdyBs0VdlalbAVF/8i7rpt21oKytzubqlaH+g9OTdU1A6nmyrru51qLNwsyrua8C4ZrC+FHBO89lm3fF/1WqN8kofAv5pPLfHVXpIm8tzA76KCDnqeuMN4odNprdh0ftX397n4BLLFHtrr0vgxacbVrrVK/qMmgjfxhJa8ExFZApMWT3ICSfuczbmKzQq0f5ldAqv+brVfNA2Atg1bTMP94TgYt8qf3UeYY7XWfwsYLYXXvPIY1iLFZRF8nK+rXz+uxARdbq133bzCaIvNqLtft3sggu+/uuDv/2wbnD2SlVOwgaT0H83Urhd7VBZvn7CU6WY5CKznVa/10gLIjt56j97BMKaUWtBqKkYK72qUAQqS2or0hl3aor3OZJWrL7jefda1ZKGpL6yZIbMVdzYvM1pIbvElgFbQQklsfTLXFq3iszyVfMOuxSYVSMlMpaC7kfEZrYYhGDBDTA1UCRO/jKQmp1Wr1M7ZRL2coEWkxW2GIhKBYuXihYBQRBSo1T5SiVAoSkhc1vkyYWbPQVN4+Tl7stTGyOhViDIyn6Cnjq3YoxxASgpDSCBJ4umSvQVULMTuYQoUxjr7eQNHSTMWesj7nTK2VPAWG0dOm83h2oKs4GKseu1Wrw2MTuDxdqCUjLelDaslActO8SACRgfE0YsGTVqh6+vVq0S1/pjxd3OLnjFV4ulTvY6rE4CnV+3auakhtdamCIBIRCYxtbC15om9scwD/+vUDp4eRh1cPbn2LbuWMHdSpIrjLotZW/HdmQr1IqzKVjD6d6dkAe82olEZCiJ5IxXrSA09hIgJJAqnFammvr4bHvFmIVFWf368AS/kg249rbdjmF+b9s2EoHRRv7l8z/v73Rxic7Qi+O5fKM98958rwRXyjf2xy6b76vf3aBORenNhsgVr97ODsq6SbIOj+rq6E0J6L3xpUrgVcu32zDw866KAvl2aNPQ1EsdUr3eKohVHtHtblKjvei2SQrfjgVuYs7ubrG9bMsnfNPYnmrt45+25Awe7Z2/ygIf35VzzIlr7OvVnL0uvmrp9/h5d1UBauEkdAT7hsmw5vpuMGifoYFmC7I0dWt81378mg1T5Yg9HNz/Xc7NBu9kIckPZM2ovkkJvrulJtz3tkDaLWwHC+eUcG3Sj0ZuvgngxqjqbvIYPePwGFKlkrSfCD8WlABKq1Iri0NN4tOYXnE1heWsMtXCiIWivwu6BRaROhLaOcr7qhRUmWEEnQgv9D8mfnkptVxFqihMJ0PjM9PVG1eEHVqMQgDCfPvibtgDzElqkFkOZnW3OGWhnG6Nm+ohBQrEwsBYTc7a3m3DLWZZBIzW69UjO3sBTlfM5MU/G04cA0wThEhuC1iWpPxQ2kMSAxEWLCEC5ToUZAMylGz0onQgqJHmdWavECvClhrSCyzDqGREwR4eI+wdFjw7xOUyabW18UIV8mSvZaWILxkNzKOFX1wsEpMD68Ig0nkEBFEPd684x9QM3KNFUul4zESIiRy6RUq5xqhSgkuhbGY8A8dTotxXtEUJK4dr60/bD8g9PDCQSGYfRx0+Kz1hYy9aQRPXbPrZteMBh87Usp5FwI8YTEwUET1uK1Aia+hlpLgw9GRLy+VkvRrk0b5nY7VxpUE/IqB0qnnLPHFn5AMoNxHGdhdCM3NmBqy2BmQaa6+Ru2gbnDMFBL/eBjUa0Mw9CKLTsIF5E5iHjdvy781rSWQ3NM1ZXWzBUM+sHHUkthSIlhGB0QSe/L1Qp1pt7XgDuCbHXNNX3osZRSSCnN+4yVJpGuGTW76W+PSVgfUkIIN0LPGu+MH3gcBx30k0kLYJgVav0bYwZZcGuNeLbJztPYHuSvFXbXZotdS1G7cXFRW9+5Ve6t+8vV9+vrFqy0amzz7DU4uQVSsr5uByzePnG5HVn3eXvwv9eCzQu0BpO37S8P2X68l6FwBke9/9cHBFmN6co6c6MU2/TtmrbnilkBuP72xtNFtj92kPE+VvYEcvcu2JMvG8vgzTlo6ff70MvrTGFgHmCvpfCYPc6kvFFicAAiAqcxYrhFoOVoAPPAGhmag16pRAmcUiRPmcvlgjuSFVIMSIwMrQjqlN3CIKpuFcttIxuU7EV6c/Z02GMQSilcnp6YLpP/m87UWnjz4DFEl/xIDIGH5LFdpVS3qEjg9ZAgBrfOBCHE0demgUO1wtPjhcs5k89nanMP88QYRi2F6fLI5VJ5eqqcp0zOlU8fn8il0vMHWjDGMWB5ZBhGxsEtIVEiGk7u1mYXKsalVBgir9LIGIPHepWMFqXWJ4pVaCm6U3igZuXy1FLE49kLhYDF4JqO4BbA08MD56mQzxeKQjVjumRqKfMBrqTUproAnma8FkAqQVybgdMnDAAAIABJREFUcnoYiCEQTVATphKxIAwnL2xrWSk2Qa2U182aNp68flgcMCArBPN6YrVkiiphSH7gLNJSomuzXAmpbf5LFUSFh9NIREit34QlI1+PUJFuZct5ToaCCDEEr49WKlPxbH5Is0A1d1PVpVaaGShKbS6tktxBtJSp3euArdS61A0D/vIv/5Lf/u3f5vXrV6t36lqftfj/2lxU+fY13KU2J//lt7/NH/2zf3b/Ytves0sdVF31tFMumT/6oz/k93/v9zbNSr/QVpxZ1of/LZNeurFlvO5Safzsf/6z/E9/+Id+CJ9lz5Um7t5fu6eB/bF+97vf5X/5F/9i0W7ZtU7vjrvd6lHrVMH9lz4fZvDNb36T3/v93+fh4YGNBu0L0vXO6fR/fO97/MN/+A/v37fS5m0/v+p3fwi38vLh4YHf+q3f4pvf/Oa2Ryut4N4z39WnNZkZ3/nOd/jd3/3dw0J10EEfhPohdMvd5B5zeU+6UeTd6cOGGd6z4FzjiqtnPNuPfli2LchrXy7WEVli+9cKn7VIU9wAIKG1d5UOfOuetgJmq/6KrJ67loNN/lu3OqzH/xyQ6td0ax5rLt7d9rbzvADc5fN53a/58UorubS6aucdZOaJ4taA7nkgtmr87gL3L23z9yyHVyBy7d7YP1uPa1/+vGBgV/ReliltBWjr5EkIVI1hjNQIVmsrGhswevY+oyqIVQTDy+4IVE8qEIdIacVxVT2VOHEAEUKMi5lNW0FdFdCAeqVZtHoWv9IL8UbxOKXsIKeqWx9KyZTBJ6yqW3FiS4XuxXIDJkqNgSjinyGYVUT74crQWilTJp8vTOcJLaUlJ2hIt1bq5Uw+V85PlctUmbJr8KdaKd1aEAwscoltaAZDHLwQba/fYq04rClYT53uCSW0rXYpPS7NwAK1CFpaAWLafm0hU9YScvie6/WRWgL75g7XrWQ0ZlE7FjAviOvLYHitKoHgoCPMjAFPtY4DYqnuSmmqqLZ57QWAESSk9l1LI96K/aoqMvQXnvZsf1lCCLMWopUQw53/Gmii7THrbnY2N+LPqm2c1goBO1CqbW+rWRuXECW2l0p8Mr0iMbA2g/e+eNKT0vp/HS/19PTEn/7pnyILx5rXaCG3ktLHffsW3ny4Ztoiwn/xd/8uv/Irv7L7Dn9Z9Pnnn/M//tN/yv/+r//17vfbIS3Mqs/J4iLg87AHpkpVfu3Xfo1f/q9+mWEYPsxAcL/wf/4//3O++53v3gUaewK4b4DOrPvY2s6ev/PP4Od+7uf43f/hd/npn/7pDzYWgO9973t85zvfuQtg7o3Rv1sJ4fVh4Orab/70N/nH//gf83M/93NfVrd36fvf//4Hbf+gg34SyWa5uGRea9+wtg7cGkTs6u926QY4LJ9tgdqdvqzvXCuxViBncf3r7S7xRXuty84fc1IFtn9fyyBhnzcuXWwH8HkOmZ1mRJYxLEkRrtnn9lmbgcxTf+vqfTOy3n/Zgr1tfND6nkW5tyzjcp64WcPV49dj21ro1jB8gWzzY+5ZHK9k03JP75gsP57ZPhvPmRtgtVyzsUzNv9wDpKtefSjL1HQp/PAHn/H27SNPT088vHnFcBqYLm6ZisGQkIjhFQQvsJurA4pobl2a8mcAjClBSlh6IAXj1asRweOiuhtVwTfkGL0gby0ZxCB6cotS4fR6JMVAmJ7QUrk8ZU/hXT3z26uHQJ4mVCuXDFOt5DwRgDqE2RXv1TDwMCSmp0wWSK9GggYuFEIaGYcH8jQxnS/o5DFCermQ8wQSmhUroPnC5bMfkrNgE2hpqeCTEEPkPE1UMy4qBA1UO3GZoEyZMUwM8v+x9y69kiRZft/vmJm7R8S9Nx9V2dXP6SanqSEpaUVAEiDuBEgbfgXtBPAD8OtIW60JaKmNIBCzkUBIoCCClDgUhqMe9nRXV1VW5r0R7vY4Whwzf0TEzcrsrsruhq4lbsbLH+buZnbO/zz+B7quY0fPFCPeez65uaMLnl1w5ikBhk7AC1+nnpIyvibp//p0b5PL7eozsSKyLWROinl1tBSOx3vEe+6eHXh7P5EfJgpCViUeH6AUpoeOEDp2+x0xZqYU6budsfN1EecdrnP0wE53dfxZWKWWgvMB7zsLEfQ22Esxj50v0Isjq5BUSA8n8jRyOp0sGTNmrO6YsUKK8xWoQYzmDez6gPNCPCWyCMl7pCiulEb/hyZTzgMFERsXIoWs0aZMqXl7qjiZEC1ILTI8JStsHDqHZovz9aGvfTGk2RgpHdXTOUa7XmkL9WMT9jIBdD13r+6py3K1XdKWDT5aDtB7nEZcDTZtjJK6AvlcFwBaw11nC95HaIswb/1aL/q63a5ZL9t3s3BZL+DNCuGqEWQFkn/Pbe0tXUu+OUF6ZXJ8/P7/YVzLU3tqT+23a4uzYSt/vmnNXbw11+XP4+2bgdVjm8yhWR/YpK5rs0HPgSuLcr22d27yhFUbRxXn0KHlNi3y63qnN6HMYnKwnG8ncvU+WhcuZdAaCCwwsB5HzuRozQ13lVdgU/C3er5WWy9Hnw2Atf/nMlpkc22PGe2ukQ61dk0Gzfl7shFLm222x9/+oJSz85378rbXt7mmbyny4YPC/FqdHtRQpKCmIOmquGodgpYA03IDmjJl/1VybzRb+Jibw2vOr03wUmtVSfOOVNtvy2dZVdkts1XAPAjtvdR9W1ifAEHKPGC0OMjmUVPBvFtVofYquBQpKVLShKiRD4hm679Y+BvFvGK0Ar8Iljem1X1LpSlXgnicCxQVshZSKXhfCwrX2MjOO0Lw7PuAd4LXFaWyVM+Ps9C4Vhg5JcV5Kouf4IMdI3hBvRjwW2lLbbLo7C2CglQvYaNZh5Q7Uk6klHFiz6yguAyh6xGE2EXbN5d5snmpyaFeaj0tI5FIKaPVy5RUyEWIldUx1/0lJeul1LGmBeet/7kYtXqnCmr3LEvlk9SWJ2X7pVwL9JIBpWite1YUxdgmc6F6A3Uen/UObWZ2HdJ13Ou8oKnWGgqzpYu57vFjTWT5W393bd6tZuDFMd6973fX7Blf6cdmI2xwzta/tr3Mxzg76Lzf74PJTc/eX/TgMcHBYwJfq4Lyhwc+9Oxezwnp50LymuD8loTPU3tqT+3jtndFV32T/LkOdODdxpWtz2KtBC+eez07wuPrS/NKLUDmXX1fHU62wIOqQ75rKTvPM7p2snWOmLR91h4wVuvr7JVq6ygXt67dn6vy5+zc5+vybBDbGPbO7o2AVBbfa8B4ZUs769i2Q2t5ce75eV/pcBFqzmX/53y4K16xbU/P5a/O/8950hsX4mUf1nrJbwPe3xtMdZ3j2V3HbhCmm6EOTmUQAwGh63A+WI6UiJEVEKxIqxic2g1DzT+ywqdxHA0QuGBMft5baJkuCWUhOIRACcb8djop+11g2Dk+/+JLYko8f3ZjfGyiSBCcG0jjiTwmnBe6oSNUgDCN0YDWVOiDYz90kDJjEkIQvIOH++NM0e79yGGK5rEohWEY6Pqet19NlHgy1VshjQlV8H1PJwnVxClGCzdUj4qj3/WI99x2e3JRxhQpJUNOdG7P3vdIVJxTXn3/E4Y+sOu9sRIeJ1Q8KoEcBnCOEO4REnkyoBB8wQWPD4FuPzAMA7e7whBAnUdVOE3VQ9N5TlPm7Zt7TmNkiolYIOFqmFoiKcSSORXL9lIRimCexvuEFCWPRlk+vR5xwRP6wQqFBcH5QnBC9js0eKJiBZanEScTzh0rwUOZAV2bASWeDJH0e3JJxHjkcNix6wbQlo9k4V8lWv9SsSLLlmJj3tDjGGtenCWzd75DsbA+MwRkcB2IebUEcJ2Cg+IsHyqmjFOrraY1Ty9XhsrG3jclq6jWeSjZoWkdv7sFTxckCFeWiHctSs1ocU2AfCy1vdTQ3Gb5kivLcANcoo3a3PpueWqFFcXCxfHl6rffUTtbXHXztWzGZXvTvsu10JozqssVKcSyTalMp7+Ptj5tu//n13MOpNqOi2mgjbmn9tSe2h97e18Z9Oj+dd/tmrCVWCt7OA2SXA37al+5yx5ci7LQaqBqC9uSC3MpgxYPjzZzPiLUEjxC0kKelfdL4HQOmTYMclSjff0k5Plzi0JYS7bH1s9rHhxddWANfmfb5Goj00Xy3DeZf1p+V13KxogukSJSluPIypmBrMZDO2C77hVd+qbvK1At64tY26NXxtQLGXRuKMaYodcyyF1TeC5u2qXe1JwmLT1m1i1W97D1ae2h/A4JKKjgwtN1bcgp3mkFS9X/VCn8tDQqPwU1dOks/qkqmQVcvVntAgUroKpqjH+AeleZqxeEmktGY67naEQD1hZWQAM5DjEaa2c309fBafTtLTpVyZrxdDC7cdUK0mohT1ZLS1OEXChdArUcMa2U2mhjdWMzABRmwgNJ0YoKB9uiep5BoHeO3nu60BG6nqEb6LpghXwziERjIfSGFlSMvc8hSPF2i5zgvSP0gb6Cvi5EvMvkmmfmpfkU/fy/ua49OUZSKkyVis73tf8pWSedVJe1zp6yNCU0K5N6vIKEjDiHFGeEG0Us9K7eFFXIKYN3BB9QEfMOabZcr+r9LDkDhaKjFYbOE3lyZC+zBytO0djA2gTAQjdLXuqfjeNYi/Lm6vL387w3jxJWk0wKrihUilcbl+eOeZ0RkbT8H6xEgG/CQAtOmvf0GkjYCrGLdm3+6mrfi2O8r03v221y9rr8UC1z51q8LnHNNvcWT+t5r+fb9tE8OqvZuhIkj4eXXELdtjYti3K1dH1kBLJhJlo/gtXv1tV3j5RzC2ELLbl4tk/tqT21P6q2kR9rxbm1Wd60de1sX873WUuDM2/Pxlb2br/Fu1aVBirmfKIVytgY3lbC/Tw0bTaOFaVceKUekUEXmrkuayHbXJ1H83OuHHj92zrPtskgdFnL21r8TsC7us8WUtiOscgx2VzUWZZRu6Vsn+bcZ1nGQtvvnAXv2nVe9nEVknhlXK3vyWbwrUDs1kJ45dRt/9W1rUGS1OPN2ONROX92rm9o709AIYKKtxwZX8EAisc65wEpBVKk5ERKaSYWKK0uVNgtymy1S5fSmNUKKkIcjalOi1kQws0O1Yz6OIOP0zhRsnmYgrOco9aHZidPFTR45/EA1ePSe0emWBFXbxaLrBYu2MkArsN5D1pIp0jJhaCROI2MxyN9cPTBAYFd8GSxIrNpjJXBsJCykouFneGMFjllJUfLI9r53goZOwgIHseh89x2gZvDLbv9jt1wIIRgFpswIj7Sd4Fh15uHR5UwDJSgRAFxHn8Y6IJj6DwuBKMm5y3CRB4thjaIozhHLsG8hSETs0NcJp5GjqfI8SEjotwdLA9oOll+Ec7NOUWD6/HOMY4jURxZPR2KGxwuB5w4pmTA6GYoBGeztZRCOmXcrqOvBXqzL8RpIsbRPHVVGS1FiWnEkfEkJk1QItO01MhyYrlkzjl858nVUjONkRgjKZ0omnDBwiKz64wi3zuyMtPAixg4N6OSq+M223vXYvYU9QHE4zSCKl4qBftgtPSas3Fz+G39i6vtmiDbzrqz7f9wvAMyg/DWVmats2+ozIlLKOnltvNxZ+HxTffm22tb3Cdnr20BfndfrhM6rJSW3yP+eBz4tpfLazsPcTUD5TXo+9Se2lP7420fuMZ+gwxqCuqy+Wo9bzaedxgMtz3bEjEsyn5DVuc5RxvkthxWjRDNVUU+a+NVvn4l6z6fI47N9UkrGmxr5eLLPyNVWh1KWBm0Nv9viYu27HPKwmG+vhkrwMCZDGpdXCsh7fYoZjSeDWvz5ZkZuQGeLcRjRmfztazu/7nx9KxdtY++Q/6wvp4z+XP9uIuX8Np2c8RJKabHPnK89XG/M8+UIPglTgkrMKSQapiL72oHCoKBGh+sFk8aYwVN1duQE0LB1fpA3jkotTZTZehz3kNN7jemtGQ1qUTsGKXxBiha65GY21JwanTXKjDFSI6R4Gu+kjeWts5B5w16pZgYY8bRoQUkYOyA0Y6RKORsyvYUlRgzu04IHvOyFUUKeITeBZwzGm/2Hbu9I8ZESoWv7+8t3I+AiEeCR3IGEkUdY65FdHPL7REkZRye3eEO7z2oUCaj8vZiz8TvBiNK8Ip3hd5pJYEQzC/sah0rwXc9ThyKM9Y6F+hCplOpGELZHQa8h+Hmxu7NqRYBHkdS9FYod3B0PpgjySm5JLw6fGMKDB3NpapJyZpw2iEiDCHgVJiOE7lkcs6kcSRPE1OlLu+CtxpUSY3MwQlkJY+ZbBF8qGScK+ACDnsOpSiWulYZGIsVPHaurj/FaM0t/AzEOXwF6c6Zd1VqbpnTRlO6EAo0uO681TgLTsA5+r6zgtHj2hJyVUJs2jq6Ws62M+/qylK13XG1wH2wSPzd2wYo1KtoYQarPtq224+rNZL5DszyaZVb9Z10/HpbW+5auESL13YzgcYij0Rl8+yWA9XPYmNLRCg5fzRvzrXwhFmG6vLFJoyD5fO5gAdqTuY2FOLJO/XUntofaTsTJCu4cimDZhl4dde63J2zqW2PfunFWi1E7d2ip289FlvMsPWWrLDTkv/DxnB35tiYowZs1wVdPCaD5rW8firNs2Eah+3b5P21W7AGHw0gte+UzTqqPCaDrOZluzcNIF5t7dqqfHbO+mkMz9snvSHdmG+pbGXFHDr4HgbFd/TrQgbxATLIkCLizS1Siq48bu1ola5a2ous9I/lGcAarFYj+RkQnPHmB0aWvDeYslAmt3EZKkYnjYJ3HaDkNBnpnjPyAx8c95PV+DEwZbWEWnidbSOVmjrbqypD1yHOGVV3yYhmUAvbUzXe+ka/HmOsx7d7Kip4sRDEMU6Mp5F97/FiHgkJgsPbdFBjh3s4jnYNCi5bCFyeIirKpI6SLE8nZQtB7KuHzWuCbAx/DiH4QPCFUAr74YB2AyVHKxA7TeQCOwk46XC+p0iiSCLjGLOSUiGnQio26WTMdH3H/u4OzZEcJ/SUKFMi9A4XPP3Bitd6iThX8GJ9TIkaEuiMCU+EvhtQhFIUV5TiOrrg6CUbmHLK7X4g9J7+7pbxeIKv3hBT4ng8MlZ69h0ddDX+VpVUEkEDXsSKC4d+jnEtcSLHhEjAecfQm0fq9DCSc7TaUtNISYnjcTQwve9RhJQU743NLyVFc4YslkTpEi44VJ2FERZHyUqMTdmzcMGcIl2QRRnMSkIJDjonBAcBnSneDWwKvk7cIlY/Cmd10lDBh2AFgyXjg2N3syPGyBGj6k8pPT4RZyvWeg7LZu4vVqqVVeVM+LT9zo/9MVpbZ9YL6NwT1QsBuLH0VMm1TjxuPy1x0R8PITYORFn/NWGGzUNleWbnibt6dizErsN5Wy+bgegjXcwmVw9WY2stzc4E/xYWrmDurJTYFqUsNPBP7ak9tT/S9r4yqAEpWe3Y3s1LiQEuWX+5OdWKuXZeQ69sNS9Sqz7Nv1knFv22vdmuT22fNTha+ts8S6v9FvhAw0NLHtAsAc76w/x9WZ9IqXTe2xM7kdmwdi7S9KybaxnUZKHUKKt1r8H03PVxlldDpiLgvJ/D6udjnYEozp7J0v3VfagGtMv8rgWIzXL/kSiNcx3mvJ3LoCZ/2m/bfCYQOe/Ptp7U2g3WQHbL8Qahqq4Lu+Dq+Yg0Y+n7KyHvT0AROp7d3nI6HTmdTvhgNZnwrl5pqxXksRCgQpwS42nk9PBAjgk/7Grymz2clDMpJ2Riri8Uk13C0JlC+3AqkBOkEZFgZBVA50Clq8Cq1i/yAA5RByVBTrhSCDlDBhVhSga8UsrzAIlTJMXIfXlg8hNub96KKUabCOpJKRPHSFClB6b7tyQgSSAXeHuc8K5j2N3hxNP1A857RJTXx8hpSux9R3LCFCOkhMYjQz+wGwa8FIIIr16+4O72jmF/sOGUMsEFPB1TyUzZiqbmOEHYIUVJb41yvlDwwQrmTlMixkzX9UZRPuzAB7R4CkbAoAlyhPuHka9OJ148u+XlyzucMya9mIRpgnjKBOd5fnfH2/sjD8eJaZ8JodD7gPfBcry8DadSjEVv1wWCc0yTVLa7tjh5RAs+5lr4eCLFTMpKPwy0iaQVHFt6J/hdT+gH8mlEc+J0nxABPySc80xdj2irFJ1Q8rwIl2a4UAOVBbMyZVU0FRIwBI+vdaeKKnHKiHf43td+C1R2yK7v6raFQuHh/oGSEyXHmqR5YaJ65/xaYrqBFdvOxnJ1ZR26tPx9pKZnrzDfa9isY6twgnMwAi1Uoy2cuT4o/xGpxDdgTzHn49k6eiH0mnDQFeCozTm3JCGXmlPq1iGRH6utLuJK6MWiwNj7d7EObkDmO7Z7ak/tqf1htmbNvwakrK0X8yaDHnU2nO3XVGADYLpeei57Upejda7KFgzNR27n1xpt3zxSj3S77SOrA7V165xgYD5Pk0E1RzoXI0xyFbCdg7X1/WugpzRABka6Vj1C7b/FSGsXJO0eiGn05Uw2Qs3nfocM2rjtzmSQ9342xKIV0K3W7nc900WOb4Q7a/fhRe5tBcLzOecvN4rA+Zk2fbGaZ+vtt11YgM7Zm2uxg+dtI7dWY63K5jWQs8+K0w+T2e8Nprx37IeBNBkhgOjycIxi0h6aalU4EXKamKaJOE4Wdhc6XH2wiiHCrBk0k7MadXm2B2b1ioRpipAzriSra1TRY6jkDyiIMzdoEcGmgCdPtTCr2h+lUARSJS84NW9ZrhTtJXNKJ6LzHHAEB7GUSq4RSDFzmhIH49Awb1gpJD+QCpzGkeALXbjBBQtz82JqYo6ZNCU6FxCFU8o1TyvRB08fbvBkglOe3Rx4dntL6Ts0F4rzePFWx0iNxrvkTEkRLb3VPxotNC6q4juPEhjHyDRFtAhdJ/T7HvGBGpWIFshZyUkZx8TDw8j3nr1kfxhIeSLnTH4zQjS2vG7Xsd/13N+PxJRJWiioeSC9YxeMkdFutZ1E1AgvlvHbYmzNs+SKQi5oyjW0EUKoHslpsgVPhVoPl4DHhwGVSFatDIpKKOYCliIGSrEaVYiFNjbGxbXlyxamRj6i5KJG+FEXeK3EJs2qhAqo5QmJc/jg8d6Ti/U9jmMlREn1nBdL3zcooQ1sMgOpyy303HzDHD9eF/6PpeduDFDrPq2+vGqJe2QVlyoMLIxCbW63vVfWqXn783e/63XPMkFnGTALZb5BkK32F1fDRZ2bC1SLnNX5+C7bfJor1sHNL2cWXZHtXk2QrZ9hXc+esNRHatfmyqU+UL9/x0P5GPPnqf3Rt00o1zVj3soD07Zpb2Qlg9B1mNyi7M9br8fw7Cl5bAAuaO4812htCGqgZaGPWuva52QLy3y4pt6r6gyk2mU2Z7ystoHG3Gd6Qan512ZMc/NlW0kh2ezfzusQw62raI7myWvMhY/JILvVxiCrq2ciYv0SkTmK4F3GvOvRLQtwOh8Hj5FsLCLjHCTLxTasXpf1qeVqrX49C9HbnP9K+N5lr87aLNtXIZXVRdVCNaWOYf1AWffeYCoX5ZQihMDu5sYY+7QRBRgLHwok8zZN04RzarTpfYdkZ5b7khlCQFB8V5nXUqH3gnghiYUCimZUhSAF6QQvexoxgHMeUWGaTmgpDH1nYYhiTHHTdIJsdaGCA+kcx3Ek5WJ5LVk5jgagXInEmIgxMVS2uv/7S1PSnRO64Hi+70lJOU2FvRQGlOdDoHcOzRbS+OrmQHCBwRdyGUnHieR7VDw7p7gO3hwnNBdcUjzW30NO7ErhsB8Yhp6M42FKjG+PeBFu+x0iSpzu8aLc7DvKsSNNid+8/rpOlt7GiSS63rHLRqGuLthkrix5mjMP9yMiQt97Yhx5e/8Vhz5wONzy5W++4ItfTEwlQVVnY0z0wSFFmY6ZF3e3vHxxx81hTxc6hhDwzqFeSSVz/Hrk5tYKJo/jxOkhW20vJzx3lrMWhp4kQhxH+t2efr9nlyOpZE7RQqK8d5XmXGYPUskTaRT6fcDfdIS3lu/2cDxZzphG1AnFCyIeJ55YHLk4y2kTJeRE13nudj3BCZ0XpqSkojjJKGW25Nw829l9LYr35i3JGNX1aTouun7OaJxqGIESQmceO+fffyauFoD3ykdZLQpt94/qobpAUgZ8nVSQurKUuVkht5VKqUYKkTnvsdG1zhS2m3NcgwbfZlst9ivg0wDjRZBl0xtmT1pdk+rPJZeFrpatRfDjNRNb18+7fXbaLA1ua3VcYsrX3/2+ruepPbWn9q20M4v/9gdrv4sMOrczfdNBHl9J1oDlsT5t1zJX4VSpRWvX65YTWXnMDPQIpttCqwPaLkvq8SoRmre13PQtM/zO3iAxULMOUVddgbYKTlo4mQizJ2q5V8tDaSbnhmlaCZGN/Gm7FIvocs4iZloPcuUyaNfvKsDZhCWe2VEujr9uq4d6Ee63RscX+z4mK7Yge8kxX8uguu+ZwQ/VR2XQFnSxgtarc5QKNC+egaK6+r4a/t+3vT+bH1VxEMGHznJ3KltfUzqoVuWSMylFq9tU8wbEOTQVWhFPkYUOXWRJ7Vdpca2G5p0oIg7vvUUSVqQugGhBNeOl5q+gIIpoXv1Z4l2uIC/nQsqFmBLkjJRInKzOEpWF/avjRFal844hOLxmcoEpKkohS+HgdoTOo4DDM3hHcI7eQczmFSvqKM766VEoGYrVK3JAh+C14Eqmc56h6+eHXGJCxOEGx0za4a0OVktinGIi5YyIrzckgxRCUFxn7HWqmOUiZ1Qhx2QTr/eoFlJODH2g6z2fn06c3jwwVsKFvjP2Pe8sLC7nQtd39EMwghChmV5opCC51ldyCDFnUowoRuYgWuahbUztgvPe8p6SICUxJgXNs0U8eLFaEAXbVzM+BELwdH0ACnqvqBZKUgge8aGpkiCWb7W22DuU3guhetUKlkdleXnazCuE4MyDV8yJ7x2zpSfnMlsupDIQzpYxsWOfeyNWXvLlc/swW2RKCnOEAAAgAElEQVSsj/Wr5cfrk3IBdNqsWR+vqS4FjrcmtDYmmJ+jvW1PxQSPr6tYpsaH189rWbE94ertLAh0+9tvqeQ/Bg4urWhL32ydagv78nuz5ImT2Vj7+wAfG5tgG3xnpsHFSruApq2leAnJeWrfbXu3Arse51eUiKterGsW5/r2W54/T+2Ps83L9rlneiODvtnSf/2Hx865/W0bqr797V2jcQnVW8ugM6R4LodW47sZ+VpQ/uJNWvZfg5EWItkW0bWJTcTSB9q5Ls6/ubbrV7VmkF2+PDuGnv202X/ZpsxGPjcDE+vOUgdRzk60vqr5QGsWQVnxJehjIHjTo7Of7PmswYt9XfOnZ2/QVgady87tfXo3oDKj5zU5fj3Q1QAVq/H4/u3960ypoNmsrw6YYq6U5JUVo1pmnfcUCl2t0VQmC+Gz0lLm7QnBlOBcMuJMMc5pIpVU9TCBSY063ImBjxhriJsVZ9VSCN4K/ZbJSAsiRmIRRwNKHuXt6cjxeDRGvaIcTxMpZU5TJKbEOEXLryqZr3Mml8JD9Y4YOYHjzTEQRAgI0SmjgM+Zo3fc9D0uBAth7Hp2uwFfPBIcp6mQp4nTw8iUstVOUqVXKkDsEAqaHujcHYdu4NB1dH3gVgdT4DWhFFRgPJ4sbHLKqPOEsENcqcQIRifvnRiroO/ohoEyRVLMxNdfW6Hfzhj1UimoC7jdMwqReDri8kSvEe0CGRjzhKjQhY5YDIS+fvNAfl3YdR3BOW6Co+8CL56/wPnAwQdcKUzjBCXjHbjecuUejhNujIRpMqa+DOIFIRA1k0oFNqjVNBNl5xTEmactdGgIhM7bOBp6EKHrRwspPb5ld3vL7uZ51XSF/jBguWcnwGp8iVNKTmQ8zlkoogQHUaAYGEaUMhqg9c5A85hs7GUtFLFZ2pPwIvSHGxuD2axERdz1yXo2q+cl4xxpvWdb73Feu+G7bM2b0WjO2zWsiRbaEt4WXj8rcGuBZp9bCC/1vpmRYH3C7+5anLgalldtgCsFocnmWXDVBdy5WseuAqdGriNXBcDvA0itrYjbPsz5A22utX3OBP9MNysL2Hpqv6emZx+eQM9T+8B2Hkygaxn0W8ofuCKD3tkHvZRTsux3PeLsHGDJVfkj1DI8620biNKWt7Qco23XWKq9t/QUnNS872werkqE57A6q4BFZqHkaoCyPJv54CCs6p+uQspav+ac4CXPaPnb3tStd2Z1XWKh8KUackvJj8if1b1k9YyKcg7gjEzE1nvbrFx6gWYDHLMBdO3pWc73zUbhMoO7BVRfgFk56/cj13f1gmcD4lbOrcHzO4/0/i7WD/BMqeWRmFAt1YAvs8DV2fJ5aaXlbKCUqqxqI0lzVvuopvyB1oRtYTlXUdQcO7Z/Kahzdq5SPRNqdX5KiuaJKea5Mg+WFRIuOc9/OWXGZEQVWjJTTqRcOOViyr6zHJxcDFj1TiyMzMExClocfXUVlxQpzrw9znl66cgpUkizKxaYw5uc83gf6JwnOE/nAsF1dF2g6wKSMhZ/a4M0poSmbPlXKZNywcgQ2iBr2UGCd50VUVZFW6Hk+kictMdkCmwfPDmOTGmqhW11Vp5Srn1GiTkzpURMBqqkKNk7QjHvV4yZoA7nCiUXpmjHWtOBxmg1mHDmqXQhzNYOnFHaO+9oNccEBVdsW+/R+jezqNUx5b2gaoWC25hpLgFflfSCW8YoRrcvKpRiCnzL45sVTDUvlKtVlRvRSS5mBMAv416dxVTXilWWjPqI5eOacLhsa5vTeina1t3Y7PF7VK4Wu1edz7KADVgsgBsmonkfWy/8apxo20eWsIuLVgXOu219j7TzA1ZAN1vEzg92JgjbTja+6yFnCXimlKy+/mitnc+0pI3dF9iEoLy7nUn1p/attqt5kWrhQDkly830fpahUmXNOuRmJWrnJsugvPhtORHf3vyZT/whB3lqv492Dqjg/R/bwl76/ovZhRfqmsFP179vl89t/o1tey5HznCZGe6cm6fJNnR761Fp8gpZl/4xQOGcq3rusk97bTqFVLCxRGDI3IkLj4pdUP1ZZrmzMWFdkz+r/S6/b+fZ5jVdB8ZNKLRz1e9WgGjb2+VhtL7PzHd1AZnXH23ZaivQV9WwayyAj7UP2Xbpx/atyrpnm6u5aJf5Ynoxxt63vTeYKlnN24ARRuA8fvDkVNBiJAtOwAWpNaBk7hiakQoocoZSHuZ8pBAE3wnie1R7K/wqoN6TS+H+wajHXSzkIuQsNbxQcdVjg6p9lzJlmsjHt8SUiTERSqILwjQWSsoGnLKxyMUUOY0TY0pMKTHmRCqFqSykiE4giNA7x9579kHYeSGXzN45tBR23tMjUArdMLDb9dwebgjlSJeEr90JKHSVCa4PPd4HQrdjNwzshz13wx03wx23N3d0Q8eUjWJ+NwTGY+T4+r4WA4aH+xPjONEPe5x40ukIKC4ooe/Y9c9RTeTjCX+4xXW9WXAEfAAJHrfrCAn2LvGrzydef/na8jyckNTuwUO0Asw5ToxT5DiNRumOJw8dPnhK3jEURzhG+l45OKEW58JVr13XFYRCmiIO5QD0+56bu4FTTIxxpB86q930EO0Ze0MoMUW893RDh3cBkWAhlLFwOp3IORJ6wfcdnQYQGB/eELoeHzqcZou57iuTTl0LppwIarlkIQQDeZLBFTQXFAeVTl6QWv8rMaWJlDPd0OGckEomIZziVA0J3uqMyRIS+K42T+W1EQJYu9fPdKPHj3V+jO+wyfy3LFOt7tmh79n1HQ/jRCrG6gjwME2UZhUSwa8ETqgJsxkzC3ShI3i/tchdE8K/6/UqRqYDeHFLmPE3LKbt9+bRKpXVpVnrliRZzJDzEdHUWsHWs8/NwKVbuXp5jPOQkydF+TtvqrXg+DTx5RdfMAwDt3d3xniaM7v9zgh6Vhrn7zQFnrDy/+/bWv6sXqgL17zF+8igx2iz7cPZ6wf0bfGkX/t9C0e8OLwT7nY7nAj3o+WID10gZjOeNw9KqCCrGZeN1MxkUHBuyXlerZla+xOqoa9QS/TMwENmr5MR9ensOVr32fK1FjmRsxUSbrnD5b1ulBnzXPWkmc1lRfO9eh5WK2wNpKqU0wbspOpAq7UfI9a4XCMu+9Y8SI0Qa35eK6PNLMKVOffsXZbGbwruOHPWXe/T6mCy2el6ztWmJ4+GAl5v71+0VyB4P9eBai5GXT322euk4FzA+N6qt2jlmco5gTrUV6a2bGQTdp2mTuGWc6ra/iKCD0JJoHnxdpXqNUsxW0hbzYvKpVGA58q0VmbOfasxVa2ApRBLIRYjIoi6oHyHkKUyvqkSizB6A3Qn5+iL4rpAkIzTRJpGpuIgCadjZBwTKVrRW3UeX4/Z3MzeCZ1zVhdLMk4zUqTmTMFcbdZYPiAqOmVyLGgoiGtJkVbsNyUlZsE7o/nuugHXdYxxNBCS7LxdrGaDbkeRjqSBMUdiUpJEiha8EYhTNOPIBAqdt2LMXQVTndh5vBO8GCW0eIfUXCRzuxfLhysZFaNwtzFl+/jqYUOaJ8gWlSKFxmuSS3Nj23hTVfM+VnINccLQd9VDWXBiYNvSmQTfWSiXOFe9lBnVQi7QibcCzGo5Ur6yqxfMe5WybWt06pXZp9K8zy72ym7pnNSCwo/MI86swe+BfpY18GO6N97d2rXCAkaGELgZOht7zjGEQCiFvoZGSD/UOZurh3bxkgRvzybVNb8gKybI1cK8vnuz8ezcuvRYr69b6oW1BXQBpEvoyUoonWkTrnp+S9Ft99pxV139GG25FuvMmp3r+vaXv2/JJuqP7Xb/4QzBP+q2YUmr8uZ0PPIv/8W/4O2bN3zx5Zf4ENjtdpQa1n443DDsdvzwRz9ifzhwc3tLCJ6+7x+1dM/nWE62+nZ5zo/vcPnldaV2++5bbZddfmq/ZVt7et4pf3Tewj42q/83LABr+umLoXZh2Vn9tvrOFPyWf3w23lYCdJY/VVsX4Hbo6YOnC6ba7kpn+o63OqPB1QgVLTUaohWBFYJ3qEiVQTVSpXopmm/K+7DxdBkTsOkHTUGfWQddZZtu+s4sX5oZcn19srlHrZ7qHFewukdn2VrVew0iZZZBayAqLcpHpBpilnVCVw/lMsxulRu1kgkrPLJZO9aey5nle7XvMpy0OsNaLy4F5EJ0tNrxfJxUDofN2Djvx+WBl/fzpT8ypj/QMv1B1OjD0DGO2XJdqpdFtSJ9MS9NigVwRmFdMrmSEGTFQvVUKSWC99AFI6toRYAQcplQCuI7xHl2Q0cS4XSKOA8+CAkjBUALRY1OPafCw8NIiZEci+VpZRjHTI6x5itZCJqWYlbxCqbMYpEZSyGVQlRtDgyoFQTINWYWy/147YS9E/oh4IfA7pM9vkzEt28Yyz1FvyRmIRXhNCpTFuh3FK8cfFssTOnvAwSfcTLh8gMyeabjyajGn3u05qNJTHCcyKdEmhRCAu/Ma6LGiogr+KlwsxvYDT273YHQeR7GE1NKJAI+FdCIDD1yuCGHexJH3saR0wiqJyDTB6VIQlxCfMZ5Zb/3DLuebr/H+QBRCC6wC56us0XM9wHfBR6SMsXEjQoBGEukCBQJqBhJRXCe4sVAt2ZCAKMgF3IRojNnUskK6WQ0+Z0lVZYUK2tNoesDN4cdJVtxZMOgyUhDFJ6FPcF5fNdRSmIcI2CLoXOFvlPwXaXnn0hi7ISa1UCsmMWpqFBq0WCnwlRalpcabToYXSm6WInmuSnLBD2PZ+BSUV2Jpa2S/gegUDhXQTAgTnDAs/2OHz2/45gyp5iM7bIt3iL0LtgcLAmqVzBmm3Nd5xHvmLKB1VwgVO1d14tna6KgTTBd3sv3b03yLCEKjRWp1Lm/FhileZlqp3zX4YoZc4o248ECaprA/9hKoMnr68ryPATbf2tZttpn7vsZYH1i8vv2WgNSOWe++uIL/vv/7r/lb375S37z+jUlW1i61LXn7u4Zd3d3/Ff/6B/xwx//mD/9+c+5ub3hxcuXMx3zWl+dz9GUC11ZpzeKx+8yf57aH0t7n3l7TQZdy5e8PNR7QGrZGm8eB2ZNxTd2tYvj1jdN3gq1HIUI37u75W438HaMpFLonad13jtHEG+G1JKwIpbKmKycSTdY6ZhYmu3aXAVZZQZKQzfYXBMz66acmYrpIrgFTC3m8oWNT3RR7s8vPUsjc1sDLoM7c95XvXZjkLW53EKBUSFpaqbm+TY1zxvYM1unM7Dq43znVx2bPYK61Pg6z5/agJ2z/d4lM5bQxNV324NuIm3WgHI2pq/Cn8/bAgwXWnpYrr+FJH6bq94HhPkVxuNo+SJULwO5Wvjtohz2p01BKRlKsnA+3xlIKcaMhxZKnChSc328N8v0ZGQQHlOG0cmY1sQ8Sikr0zSSp1hDg6CkjKaMl4J4tfCsomTN9F5Q8RxTBDJdEHxxFFGmIJVSXWYrxSxbVi6+9rqkE8KpmCL+11Pm66JMv3rDzgdu3MBt6HjR9eTiiEV4OzoesiMUxTtFpxNdF9ipcLs/0HeDMZmkzHh/xAfPEAxMxodIHjNOHVI8FM+Lm45nt4LW4mLmGSmkYnWfSowk7xi9wx1PpChMDxMpJXAR9Z5IDzlT0gSlsNvt6I6eGGFKBmzMy6h4F9Bg1+0sfg2vnkCPdDX8LuzsGfqumiwUISFSOB3Ny5ZiNC+WFkiR6XSiqKAqVtuKBJLMYxQTiNBVS5AA2TlSMdCoWvDOI0FIZQI1sg9xjn7YIVLMMlJDr0Iw75nmCbCaUq05J23UVhBkRCG+FtkrlShFnIWeiRWGoFF6t+m55MMJzrLWNnNos8C8l/Kiq5eVR2bzqvOx7fU9DvsttJWuji34lbVTLI7czfa4Fn6gxGJ5gHZvLZRi5+xODX1P8J7b4UAqyl+9eUOvyvH1a95++ZbPf/Frnn3vJYdntxxfv0FL4bM//RP63YAPKwr6qzfg3ffaaqV5UlkpnHIpABaLrim362TfEMIi5OoZzXBk90nfI+TzW2kby9uiJK9lnq7Aka7G1bzrFaG5Pub75Vs9tW9sZ/dRVUmpRjJEMxTlFBc5lAvj8cj/+ud/zrPnz/iXrz5lPww8v7mh7wd2+z23w8ChH/hb/+AfcPfqFdPxyHh/4hf/5q/odgMvf/CK6XhifPvAJz/6jNtPX+CDX571bzF/NtfzBMr+ONp7P6dzLQiuy6AWBlcV1GYEu0Bnyzib974y5JbeNQPX6lzm7jA1Y3XY5ilpsshBDSu3VS7nmqRfDV6hyup93+PEsesHOh+47Xd8OU786uGBm35gCD2H7gXeDUxqBFO3w8D9dOSv33zOQxyrQ8G6Fvwyn7TpkjWCpd6k+SLnMHfvzVCX12BmeyfseIunaCGhqPTtoSPnNJM62KU2Aol2z+TKPF0ZW2h9bYowK2/VNVNN6+vl9wtl/pkM0rXhUt4hg+pxz8bHxijUPq+B+qw2Na/eagzJOXy8bmjc9P892/vXmUqZ8Tga+5p39tBq+AHt4rTmO6kheikZqXV9RDxaPVQFs+TmaQQxpSv0Rj8xxkROiVDUULUm8wg5T1GxML44kqYJDcGQZi2g66UgTpEg5KSgli/lCJyOplh3obopnWOMDi8VUDlBWrjp8jwuHIBWZwiOaqx+cUr4KPzi9DW33vOTbuDH+x3Pbw5ktTpHb8bAmxzYZ/BSmCSx63P17EHf78ytmzLjwxEXPHe7O8BzekiUKePVG827dry43THsAl+fElPOiJhnalJAHJpGUnRM3uPE8nfiw0jKic4pGjwRoUghPVhY4W6/I7zxeI+FEap5D5wTOueNxMIJVnrG+hO0x3V7fAhIGIyUwYUampgRSQiJ08met5SMU29gKifGh4e6fSCmkVQirrel7/iQ8N5z9/y2kmnApI7sIE2WyxV8jzpHiQam0jTRDQPdMCCaQPO89nbBQgmnaUScoxv6WeFdYpur52EGU03ZVAQbK+p9dfEX81xUohRHJV5AZna4dy4wMC+KbaSdGY3Xe21C0FoYxGaLOu8+Vm7OuXd9XvgqmUdbByzsktnqJoDH7nnnHQfvay7iwC4EfvryE2JR3owjfSk8fPWav/6//h3/6n/5P/npf/wf8L0/+SG/+ctfUFLm+fc/JQSPD/7qwrdKj106Or9Uyxitjoifw1JbkrSRaKzAgy5WQreKp0cE7wNIrqGoi+VsTSX7MdtV0TffBlkE7rmwmq2CK8C1UgB0tdY/td++rWXMupVs0RyaEiUl8jSRS13fjyfeivDVr36FE+HQOXrvedZ13Nzc8uzZc77/7Dmv7u548cMfcnj+nNPrr3n96y/5l//sn3N4ccfP/8F/xNvffMXXv/w1PngOz2/x3j06Ptc5kdv5s7RVVFDTW94bf71Xe8Jn30rbrGWcyx94VAadGeoek0GlCltZexw2rgfZfL4m5659f7FdBVFbwCWz/BFxjRqCVk+n1M0sG9rSDnwQOic8C4Heew7djrthx588f8lfvnnDMUa+f/uMTw53fHrzM7pwwxfHB8QJ37+95fOHr3gTH1CBqaQ5aqELgRYOp6rkYjn9rfbVEq1xBqaKrNJhlpIba/I2aZ4qkU1hYOeMmVgxQHZNBs3RCg2EVo/b8pjXnqLFd0UL19PlXm8fp3kQNx40lvXtmgzaPsvHZJBUsMUWhDY9Z4WdZHVsXY0jbZhwdczz9rie9h2BKWm02sGBcygjqpY4V2qYmZeqbFelL/QdLghxnMg50ZLS4pQMwAS7iVpqAl71ejiB6TQiwNBbHCtq3iaKEhz43gaPVB9kLoXjeDK3nipIJnRQpkTKiRgjKaVW5gopys4J3zt0PEuOMSd+cxQeUuY014mywT+nj+syiXugA56JEAS8F268cOgFofAwRsYCk4KmSFDlE3+g8z3qnRXXHTpu9894eXtLGDy+c/jdHhcCu/6A4NipJx3vGfORoB2DCwTvcQV0migxoiUiArvQ1Ula2HewGzxFHTnD8WGy2l97U3Qdxmio2bx8KSZkOuJz4tAHigqxTKgWYqWKB1CnqCinhyOTz/T7gk8BJTPsegbfVbpxe7Ba1GjCPaCZLEIhQBE7r07EosR0IpVEqWF9uVQSglOpOTieGJWUIE4Wrimd0WcHZ3XGJATUOXJRhq4jhAGZJkrOTOMJESUEs0YFqayIMVHoKCFUgo/CGKMVXi0Z5xxd6PBSCKL4LlCk3RtMeVZm178HW8aLhR9+c9sKqrNZt2yljTlOV3tdHOZD5/9v3UoNsbXacGYBvB9P/PuvlBf7Ha9u9uQY0VyYci15kM0L7SnsnHAQx7Ng9Pqhd4TOs9877pznv+h/yifF8xf/w//EF1++4fg3X/B1d4P/IqNB6G8OOBfm6uWLhOBdBrRVW26UFzdbBjNsPUxi4LgptO7suMUGAUqt7VGtfo2YYi3QPl6TlRWwCgbXPlC9r4uXdBE+UgWVhbmslZtroT5P7XdsIjOZhHeOl598wn/9j/8xf/kXf8H/+E//KaeHe8b7B6Y4McWIJouBdVrwotyVwk6ETyl0eaKPRw7dc/aHjl/8s/+Z1//8f+N0hOND5O1f/ZLy5XN+455BcHT+gPf9EiKztlb/toDovebdU/tDafa4lkn9mAwSkXktW8LP3iGD5AI3zR6Ba6c43/Z8GC0RAStZKTNZ3Lw+lVL48v4tx3Hks7sbeteRJz+ncqgpczVdo3DjHDsnfNp5Ou/pBsdu5xgOws/7Z/zJ3R29uyW4PZMYU/OfvvwRzncQHF+nTFbouo7n4ZaYkxGT7fY475himg1RRiwzGllR1kp01MDnUg/Kq+X1b0qMVFCRs+mjTi7vj5ZkBrQqg6QROmU9u4frZ2FG7rrsm/yS1TlXY2B+WQHq5fz21LbgfBXZUGUO8m4ZNBs5Zxmkm/PMIOqitZG8zZGaAf+VSIvvwsD5AQQURqWNC+aBSNG8IFkp2QpvIkpp7jkqY4kLnI4nYswzepyrSLs6I7KFw6goeNsoTRYa1oXOPAdGETiDLXwlLagKTkGJMQKL0ukcVr8oZXLJVoBWKwpWzCoxBKYgxCRWIwgDhaVYn1Ao9TxKrbCtBsQ6hJdBCCJIcOxDx+1+YNBKqakCWfCqdKI87/f04UDqekIn7HbCYX/gZrcj7D2uc/j9AfGdhf6JB/VMJVK8ncOrUETsVqSEJov9FSd0YAuZh94LQ3CMyZEVUrIaXKLerBsolESJkTIeKdMIaUI004VaIylZLagpJ9qypaoUUWKZEFeQ4CnaIdFYGefBXp/BTEcuoNULWXCWP1fMszamREojuSSmalFyoQMppAjqQYMjZ/M4lmyKOb4YpbqIKQW11kMpxeqXdV1VjCFPIyJK3/XmQKNYkd6c0OJAnYWgZiMtyTmT0kTwnj6EOYTVCidbX0pZezOXhFLRVQHgK232VtT5sPrBXtZu8Q9sH8szpW1BBNpCNqVELoXnu55D31EAdZldtXxLsXvoNbNzwk1wvOgDt51Hdj2u6zjc9Ayh52d3B7zv+PJf/z/cp0KZEtOX94y8Zfj+C7puZ94hWRcQXK/wZ/diI8m3d1acPVNX2fxakISygKl1PQw5kyTNA9dC+ZaQk9W9+lhgaq0IrxWU1fnfpy+NoruFRlylNH5qv31bhduIWrjw/nDgP/nP/yGffvop/+LP/5yHN19zGnacTkfG8UQ+ndCU8MVqKD5zwj4Inwy29jqvHIbA7mbH23/37zhOhSkemLIjj5GkHeOv3tC9uKX/9NbqHDq3UrTOVpz1HHp0/ujy0saJXDnWU/uDaovH/OIHe/kdZNCmnVn9HwVULDLlkvDnDGnV7ws6F9Ntsuhhmogp8ZPnd9z0Hbmuzbk4M6QXM+Z5LdwGCzN/te/ogsmgftezuxm4oedOB2Lck1LPb2IhAp8eniOh5+sScaEH5+hdT+97Yo5kLQzDUEvfxPn+pmjlerJkcqVms+s1kisnDpEy07SrLDDX1VC+vK3quNyfCr4MVC1GwPa6hBja7XMrwdTW9Rke6/qZyXyOJS9pm2e09kDqak3bnpvtWnIum1ePdraHroyQa1r7a4Nn49k6X8IW9XPZ/tq9udabD5R3H1C0t1BSIsap5j7YtJBKRemdqR+l2gsyQpwSMY5moS7JSASAm7sX5BQ5vn2DEyU4tRpBypKX5WxRzveZzjluOm9kdgmcWEWf/dDhxPH1NDJNI2OKKFoZ1SpBRTak753Deeir8PKpWI5P72fw9cObgZwLd13HgPBymrjrPD96sad3id6NuGnCxYh/1eFuPP6TAYaBcvs9ZP8K/+I/JH7+hun//Q1f/eUb3v7qga+LR/s9f+8//S/Z3z2nDJ7gE0N3pOs8fe/p7g74fU+O5oXbDYGSlPsvR3LxlIfM8ThxfxqJuxfkMHDKHapwqCx248OJ/d0dz7/3GX0ndJ2wV2c09fIJOWfudkLWwttpJMcjp4c3pNMRHU+UaAphcIqI4oHiHGEYDGQk5c0xcoondkOhCx048N5T4oiWiTCE6nL2ZDU/hHPmQfKdpf29fXhDcELnPXEamU4noloBvKnmzt3tD/Q+4BUkq+XmxYTkzL73Ndk6U7SGxVTiiG4Y8CEQUwIUFYfre4IT0EwqVvzZZdjt9rx4+YnlJuTMcRxJseCHGyQXYjmCc7PSXkSJ4z05Z9zQEZyQSqrg3AwKURRfCr6UDWGCLXTFAF9TXq64l+vGs2LyoaF7H0uJaRbBhXXHAEkfHFELX00jXSkMQfiHf/a3+f6zA3/3+70VOR7vcYeAfz7gbwb8fkCH76HhlrL/GXESPv+LX7A7POcHP/t7ZIRJ4e7VZ+yfv8Df7oz0Zd8b+UPzepeCdAEJAVJleqyF1cQWqFnwziu3Qu87dv1u9kBNOVZhZ2uZPSfzOYZat6x5qlj9SRU0LZuqJbtmfR8P5bfTmsXvYsxscOXssqqf6yZNkWrbyYpPO+kAACAASURBVHqPx2ucPbVvpzWWsB//9Gf8N//kn8zGsvTl5+TXX6B/9b/D618iD69xruA/2eGGQLg7wPAMdp/SPfsZ/uYHcCxoVHIM5CKMCv3hluc/+CFu1+MPPcONzR/y4lkVEWTorXZjzVu1uoB1HlUPZ9ORzg0Li0v0qf1BtlmmWPsmGdTWuA+a+2ut+L13sX9Ljs8lmJPtf5cKsghd8HTe8TZFEoWewqtnB/6zv/NTPrvr+NknAR9PuHTCv9zh9h3d8wPSDej+B2h4Rt79hPvPv+b1X/+ar37xhvHzB3wRcI6vXyZOOvJvf/lXJD/xZ3/2p4TgCV3g5ScvORz2/B//6l/z8PDA3/35zxGEX/36N7z5+mv+5m9+yThNnKYJF8wrPE0jlv9tLMNePKlkYmUIXLwtC7tf8Eaqsc3RNVDQHme7N04M/rSSJILNc0U26/2FgU3B8sLr52ZYW2/SrMErgLt2M16An/eUQQs+a+eslskL6/Nllxfdqp6jjaVZT6HWn13Os2aFbGOwAdMPMYJ+YNFeY+LKOVUFswpcWSpLt7hLVUiVonxj/hCHDwEtFkqHax22R51zJueEBJkfTFHzYuVsnBYq5kHSSkecSyaXxmOyxKhawV87fvBGMd5jxWw95oFqxd2cKDfeIap8b7fjIMJnY8fzIfC3X92yC4Vdn/DThEsR+UEPzwL62Q2621Ge/5iy+4z8/M84/vuveONuGeJXHOQtNyPQ7fnxT37E7sULGByOia58TcGo5rvbW/xhIJ0KFOj7QI4FH9TqL0kHkuwei6O4AGJApfMOLZlUjAL0cNgTXMF7rTW/lJv9QC6F4BUpCZ+mmcrcvC5mFTGqdrv1OUMWoxO1cEpjYpxSoesMMBjNveKcqwnThSyAKM4HxHus2rKCWP5MTJniPa5nrqHSguJU7XkE72pFcvP0aAUnWgouGHhPddw0kolSFJfNC+lqSJmr8cu+0pQmjXXCmLLbdx2TVm9ppee3KucGombLfPV+tvHvCTVHqi441UVeVBG1ML9zNr86QeZ5YhP40Qm3XTbk/M35cVbJmx+xtQWqsb/5ml+Xgduh427o+PGrT/jJp3f82U9vGCTjx3u4DcjLHXq7h/0OHb5PCXeM4accT8rDfWZ/85znP/khipALHF59yvD8Dtd7Zl71UtCY5zVERMB7K4eQCjaYHVAa+ttY3rSO3eA9WgLemeVQ1HLo2r0t9fpmQV+tXdqsXrPcuGKVo26wellt+q23RUheWteukWpsLMHfTZee2pU2z+TVlBYR9vs9f+vnP0dzhhQpv7mlfHmLuM/htUOON4gr8NkOdj367Aa65+jwCt3/BPrvkU6KJijJz1U1wuHA7Q9eIcEhnaexmWmsuc8oOId0lnehMdXi5Oa5bwyas0LbvMIyd3++hscsxb9zOx+gT7jtg9q5crh49a9uzJkGfAaWz2SQrNjh3qWErpT4x/JVZB5j9rr1lVRDfjtn/TPyJ2fARECdcOgHXt7d8tPvv+LHn+z4O9/f4+IRl07Iqz3cdOjzW2NaHn5E9s8Zw4/p9l8wZc+be0GPhV49xXmOOyudE+46vDqCDBz2e+5ubnn12Stubm/55a8/5+t+4Kc/+gkgpKngcZzuHziNI104oeIpImixPFsDUxaxIyLGeqzGRte8duLEUgqueRRXT2UToLc2HrIE072ryebdcqL2XOxQi9dqs/WqX3pF5j1K6vQO5aWBwG1vlnPO7IHnv8v15eHcNLCRgVr7NI/97wBMFS3EPJpOrJCmE1oKwQULwzNVGOcMQKWYkJLpEDQEVD394EFhmiIpZ8R5lETMkd4HgvOEWgMoTubeu+k6pFSK82JsfqakKuMpIqrkEkEKt7cD0zRx//a4mu8FcXD37EAnwi4lAkovAwHoVZiyUTTvh4EhBD57tufgHZ/Ewt4Hdjc39C8/of/hj3D7Dr/v4GWH7APlxWfQH9D9Z6h25Nzhbye6T0fu/j7EB+Xtv/n3lNPEp3//x/TP9shOSF/dc/y394j05oFxB3w3VA+KgHY4p+w/uQW/I42OXbznRbxn9ANJPPfdSJkCvSqUzO1eub3d8+pTy7cSHG9ff804TTw77EgKX335FnGeT59/QrzLPEuvuP//2HuzX1my7Lzvt/YQEZl55nvr3pqrm+yBPXBoEqRI2pANgw+2QUCAKFiAB0IwBBh+kf8SvxowYbkNA5YNm4AN88WyaEkWjCZMmwJbYpPs7urumuvWHc6YmTHsYflhR2TmOffc6iqyB1pdG7j3TJGRkRF777XWt9b6vstHtMszTA8hK7M6k3Lg0WkHSikHcSW4aCohJqH2Dd67EtCKYlyFdQ3WLOhjTzd0HB7sMasdfTcQ48CqW5FSphuEqvbsL2YkTYWhb/zYlZXCmq8Jp4IRV4IfMilHYhxKQJ4pGS90s2GoQB96uouOuqqpXEVTmSLG54szXFeeIm4WyHFgfbUkRIi5lItWzmBNJhvFzMYNw0DWwnyYKH+zZvQzbGGGjEXQCk8R9w0xXisNu21M6MhtKNxmTAiLbg3HbWjJzXrhH/Yw1pQszdgr5mypO68rz2Kx4ORgwb/205/mU3dP+NJrr3JwsE/90ivYymMbB5WBmYVqhlYNavcw4pFk8VH5dP0irqpZ3DkhXnYMZyusrzC1I6+7gpQ1FRoS4d3zMj8PKtQnTMjkNpJDxu7X4CANpW9LbNGFM021uVvWWLx1NK5keHVoSTkRU0ELcypAQ57KDZSNoKPaEujHGJFRuHfH6/jRlffdGFMgv62y2AbdsBPs6fXa9etfpybqNL52HMIzJusn4y83tuG4qpKvLggfvIucnyJX55jDTyF3P4upLTiDLCx4jzb7YGuwC1QtikFNRrNQzWZoUvoHl1hTYRqLDpF82SKVB2cJDy7RLmCOmhJkZS1ZrTZiGoeZV2OZ0kjwZAU7a8Zs1e7lb522p5oLPxl/5ca1vemj2CC2JWcfZV+75tzeBAd3rmHcKcfL2LL03e5fT+CdGYsOZAOKW2OoqoraOQ4O9rm7v+A3vvA5nj8+5AuvvExzdIx97h6mshhvYW6hsuP68Yjbx6jFZIubvcD+3c8Q915ndfwe9/wBDsOfnr3J8bzmb/zN3+T9997j9//hP+JLn/oZfuXnfolUQbSZ/b1D+n7gc5/+HG3bEqNw/27PT734afpuTdeveOPB+zy5PIdcevrNeIfnvqJPAUK/aU3JE4g8VjpkLbbeWbfZ1wt3QSpZZp10YBllSHaRjV0WWjNmc/K1oHQq6duUAE7lgIx9TDD2Kl/HTCbNTdlmVjbbwW5g9XSZ3Y0nvJmLkw3K20w4N77KllhjFxi41vM12rlrfWg3ZvqU9fvL2OuPlZmKKZFzSS9OzdYqk9EuVNRIEWmVUUNJDWjeSHMVp08YHTCDZinZk5HKfHIuLWPWZIR9U9LSx6SMhBd51HRRREan2pTSNGfYIBpZynt6W8RxvVgspYfJIzSAhPKetXfU3lM7ixfBkCBn4pCQ9YCcL7FdhWk9DBXUjrBskZmnenWPOBjaR31BA4cFYhx+ZvCzliw9btZg5xV27iBkTLMAFQqJp0ezG50bIMkoOFvaJY11VLahmgk25eK8V64IKA9F5dvNZsxnDXXt0GwhG5wxpY+tqogZDMX59b7GaCFxyMMMjR1RB1xKWCbmGaWIKZdJNtXlTghEzpPNHGt+KUgLeexHmshAVGEkGYkpk5IhxhLATuQe4zLcAAKaClteHIkOUi5BimhGJ+Fol0v54EhTXRj3C9KjMaESydGQrZDNdH2j7oQWDZeggZhlZJzLm41dNlc11WOPjrLmkVUxjckOLe+8IRvIW59iZzRNwy/+4i/SNM34DtvxYajM7thFYa6jPuV7I4a6rvmDr33t+55rWo+3vs8u0nzjYkVgGAZee+01/MimaSZjZg2VcxwuZhzOG169c8j9+Yy5r/Bq0FVPHhKECryDQdCZgdphDufga3Ib0Zhxdo5mw9XFmrTsScsesx6QmePdt9+m7zpefPkVHIbYBbo0cHG2wniH9R6XDRbLPB1gnSW2PTkneu0JOdHGoZSjiuHk+Jif/8ovFEFHlFXsSbmsMR2z3GmchzIi87uNs6pKTnGzNxbNH9nsU6rKc/fu8fU//mNms/k15HUb5Ow+5e/35J56LOMry9z41V/71dsNGbfMtY2V2kF/J2O2KUm9lnNjNp/x7W+/zsX5xbM8nlvH5tAb60N2/ts1Zq+//vpHPvf/r8cN8H9jK8NAvLrELK+QqxUkEF+hQ1V6hmOFeocmi5k1mGaP1CZSl9Box7O40S5bBAupnF1GoU+ijtu0jNIW5XU60vJpUnIfy7+UsLUBsdt9Xdlm1q59Jr0dSt6d35/EW3+Fhu78f9Oh5ZbneNsp9BnP9LZ8wrbsbNchn/ahTbnaTtnY5qCdv22qIsas1NRDZUwB+A7nNQd1RYXBDJF0uUa9I3uHdq7IxHhPtIm2MRgcPtWQBdEa5+fUsz28W+AxnNy5g6ksZ1cXDDHy/PMvcnLyHIv5Po/Wp1x0VwxDQLMSQgQV7hzdIfYDOgusuyWrtuLhxRlXrWMxmxWt1VjaBawR1EBFIqZSqZVFSjUSE+HR9h6YMfLUnNEpsLh2q0pVjej23t581rc/y93zXC/xVsbzoRtbdtOK7R6sN5/f9KcbgYs8ffFPXc+019x8p2nuXD/n9n7ojp3b+RTTH5++uL/A+MjBVNz0lARSDFRVjbWWlArpQwmmwFkwmvAmFWY2VRiArAyxMKA5a7FiseoIQ6ZPhn4IaIqIsYirmXtbtGgkFBaTWMoCU4Y+FM0kmzMWZe5KmR4kvGYO6tJ3IyJchZ4QIpVRai+lp0YzNkYqgYWDyhtiZNS6cfgEJie6qytSEkhrTHgP060xyWDUkO0MNRVX5i7m/gu88B+/xOpUePMfP6Q5WrB//5BmrzQ0ajpEbMRWC9ysxt6dofUCP8zI64CuhhJ+DkIMfUHCwwBJiUMmrUuvUHM4ozk6JJy9T1yv2Js3RFuzXq+w3nL0wn2qozn13ow4QBpg7j2NKm5xQMzCyq9K06Q/QGxm4QMVkcZYGvOQYeg5u1oRQmCi9Qw5jkQUQohFB6pkF5VFU/rWnHUYMrm/xJBpJGNSIA0WySU4yTGNTDZlY+hzocgWmWhMSyknmgnDQJRU0t0pEoeB2kFlCzlJJmO8wznDfNGQkCJarKX8U1JAJBG1ULobdWQjSCrBlCERyKhGRCyIwZgyh3P2hdktJGQkJihdgBE0oJpJw6jzNfbkaYikDDGOzeDOX9sc7t27x3/5O7/Dyy+//JdasN9v/Ddf/Sp/67d+a/xJN9vmzUKJrLvisuPR455izHXmJd2plxYRFnsL/v5X/1t+4Stf2Ul97EBHKUFKrP/FHxIevIN9eEa+OqV/643iECYPvoF6j3znefToLnu/dII9nrF+55zUJdys4mp9xVvvvY1N4LLhbgos2jn/3f/0P/Leg/f5u//e3+Hu0V1Mr3z37e/xv//B/4GzjqqqeP7OPY73j/j0C68xr2d0V5e0/Zp3L97nnQfv8PVv/Atm1YxZteC3/s6/z9/9T/+TIvuAbPqspntYHEa5xfJ/9PGtb36L3/4P/kNOT09JucgiiMgm2JpobjfI71NvND7JHWNxs/dBRPh7/9nf43d/93c/3sV9zHF2dsZv//Z/xLe/9a0NirlLQ7+1W9vmcCh6XsUGX0epJ5AARtYwCji3Xq9/bJm9H+sYF2Xq1vQP30XOLpGLK6RdImEo60cczA7RxQH5/qvUn3qJ+Rfv0z1asn7Q4RqPrUogJUYQU4Ma8jpiZh5zMiOe96RVAFsj8wp7uFfK63MBJkUNuQ2ki57U9+QUae7tFSKqkXBF4yhobkcpiKn8drfUb/dzfTJ+rOPjPJJbfNlnrMftxlj+vuvU3/6OT4EpO6cRtiQJz1z9NwIqaw3eFhBLhVGKJbMviVkciI/OSeEBQ3uFJItkS5SGJJ7Hcc6Vc3z3/pzG7PNyfoX58R77zx1gu4aj5i42W6x1/NrP/RSPrp7wO//gq7zywsv87X/nb+GxdFn4oz/5Bn/63T+n9hVVVbNe9hwuDvjyp7+IhsiwWnK6PuXx6pQPzh/RtpfsHd0BhCdPHhNzIhlwKSLRMYRACHGjU9WGUADpkSUwUyoKrC3lgSnlkqDQLeusji0aOip5FA63dC179VRQk5/ukdtyJGxJGzbl5DtxynWw7mk05bbqmfIZ7OZannrmt0yCp8Fg2bEjT8+u6fgb1vTGUbuB48fvEf7oBBSjYbTWIjqyqLDN5seUSoQ8arPkMcOyWYSw4eFXFURL5spacE6IuWSfZPRjYiyOtLGl3ntiWYuxEGGQElYo/0xRFZgiZmW7kVspbHxTv0Me2QB97XCiIFqozceyLVGl7wubWxoSMWphUBp6XLvGSoXFl/cxBq0aYAapIPP1cYOI0p1dkvuBUDuePHxCypGjRweoKPXhjDAIV63FJcV7xdiEkYSZO1QhnI8p3i4jSagqj7MOiyHiESoq77Ga0MpgvB01tYA+knslDkpWIYsj9qWczqqQk9JdLsEk1AXWyxVd20JMWC3lcioGEV9QzQ0xnWCtx2OpqgZrLLPK4Z3DSUY0kmPplTLGFVHgoRsdxowzBitQuYoshhASzoJ1hRq0aESUOWU0AYW5L8VECgNZDBjBTfT8AgklDBG1tlD3A+RYEFZrSs+UEXKKpKSl/FQUb7XoQY0IraJFpBjdkESIlH+FsT+RU6H0N1aKIjhKSIkcM6EPJUelBsnl3/UqitILMZ/PP9YC/bjDGEPXteN7b4Mpxuc3rcbrde7T76ZzXIOPYCwDm9L31hqqyjOfzcZDdg2pktqWOPQl0EyKDj30HbbrEJUSSCRFooBaEI+G4phVxzU5gqsdy7xieX6BS5YqV7z/9gM4U87PL+j6gRQtOTvEREJOLFdLZrMG5wsJirMekqBBS3CeIpX11K6mcTWNr5lVFTUGnzO2bopTOG3sO/dtW9L0DGjs5q9uRKh1XdH1PW3blsZh2WaSlK12yPVTyLX7uzt0N2jZfU/lhz7H2rZl6HvW6/VOMMXOtZZ7ZcRcuykTilqOY+N0b43gxPRabMUwDD/Uz/HjHbc802nNpkRYrQhtV0Ts+x7pOkzXIiGU+2gMJgqaTFk/SYoe4czRPDcvgZQrGaY0RFYXa6qFp77bbIx2jDB0ikUwVsagy6CMVSaZ0nc1jERTvpTpb/oRhfJ1KoWtPabyZf/MU8XKjnO9u6887Wc9vaRuojy7R30SmP0Fxu3O4U2JhBt/LF+m/eaaNzoBbLvpyev6SBvn9JbnPT1Xlan0bLuhPe1Q6wiQb53iif6bKUM1srLW1nI8W3AyW0BS0hAY0grTd5h2idAgUqPWoOJQ8VjXcO/kOfpO+d7bb6LnwNvKbD6jqWo010TjeOetd3m8fMJ63RKDYu18/ISZPgys2hXOO8QKzlU4W+HUkkayLOcce7MFB4t9VnuH7M/2caZoxfUx8Hi9pI8DDMKsaor5Hate3HpNiJGWlpzz2CojWDFkMeSd8ry843xPvWxTVdGtLI47Y1eDcCdMfmq+XJsmm8c0CeU++/zbMsMbbsn4y2k2lj5wGTXCdMcec+09toDxdg+9FtDL9ty728eGoVZ2rkdHuyxb4o+POj4GNToYVyJ/jMWMjqYdF03IoTTpZzeWZZXPNGUlVYRIcapJhZ7Sm1yc2kroRrprO15/244053VpoI0JQkiEEMkxgCa89/ixeVzEjBE3I7JZJpQbr92akvqNQ8A6w2yvwWpGY8J7SpAxQI6Z9QoIEd9GbIx0Q8CHQD30OG/wvsKZBuP2MIvnsPM7WPVUc8/RZ09Yv3/O6o1HtLUFb/juW+8zxMBzL+yR24i5d8hqBQ9PDQeN43gmGLvGmYA/2QdjOb9qi2jjVY8xwmIxwzhFIkhuEKCqQGykmpeeJu9BNKHLntgl+kFLcCu+lEqljFVDGgaWpxdEItFEumHFENbsuR4neVyYoxBcziU4GSdxVVV4sczrmso65h4KX0MCEhrAyILKz0mhJ/RtKekSoTYWaw3N/pxVF3l02YM3OLGINRhnQYqGipdIzkLbF32wGAKV8eAr6srjvGUVe4aciG3CVRXN3gHRWiCVc1mLqRqMMcTVGTEGrrqAtTCrhbpyNLYaiSWEOGpRFNZBMKYE3lYyKQXC0FHXFd4XLa2sRZMqDpFhVcSAjfdg7NhH+GNA1Sd0aLMxsI2lbslubH+78/O12uIb59387rbPVhZ8WK/pz84Yli1DO6DrFXRrfLvGGI9pFhhxWDyYBuPn5EExXWLx6j7iLGKF83DG2QePqFLDjD0evP8+p+kJp09OizxAnqHagGlJmlm1S3zt8DPPfLZgb36AUw8B+jSQyRztHdC3HS/cfYFZXbNoZtQxkU4vMHcNUlcbWmBNE++9gMpGoPlW1P3azbr91hgxZY7wdFbpqft+w2B9WE/cRLP/cZkf/zJjA5KNWcvp/csFbRG+3R6t8ifZTMptdcX2cxWh5NsRzJ+IoUoaBrrTU/qLS0IXyG0L6ytct8bEiJ3NEGMBj0iN+DmoI68C9XFN82LJHqkq3YMrhq7j7ME585M5hz91XBBGoO+U9VJZzAzGTigWiJgR3FDykNFecQuHaVzppxoSWo1yGSmR+4G8XsPBXgGnAES264cCsopO2Svz8dfPJ+MHNG5g+jv7Orpjs25C/1JW9PSna6fYOXbKuE+v2TjXqtds0CaQ4llxlk6Xtzl2F4yRsaxvF0gyRqidZV5VvHp8hxcO9tCgDKmn1Q47dLhuhaktppphXIOxC4w9ZLa/z0uf/SJvPniP//MPv8ajh4948N57/MoXf4kvvPZ5FnqIqOGtt9/grDtn6AdSLjbImAS2p48D63bF0ckRVVOxN99n3iww0RBCpks9zjmOq0PuHT+HRuVwsUftHCfes+xavv7O91j3Pb71VGPfd8xF8/LJ2TldX/RXY4z0w7DJBqmxqJnq/5Quxk2GRbY3jdKWUGjYd5/AU+Vw7NqgrV2RG3NnipO37QdcO25Tzq7bIPtaBmvnfW9mtWR8vtP8mACayYZMgdP0qt2eqOuXKde/v+Wz7gZUpWLkdhDzw8ZHDqassdRVjYaI5kgfAzknvBt7oJzl2idnmvDlU2ej1LUvCEMuG3UKeewxyRtkwdd2q+act/SEEw+JSGHmEyiUlKZQsys6lYNjjBJCYggZZ4S68RTjnWgqgzdCjsPIYpeIAUJUcrBoFBjAxIzPGZMzPkbqnJlTepCcNTi/j1QnVHdfxN27T3Uyp78cePj+Yzi/QvKSys+o5jWvvHBAQpjdOcIe7CNWqCvlZD/h2yX54RI58pi5xWbAKIu7nnzoSCcN2nbkC4upMrbORTg2RaQbIA7g1oWwbFGDd0jjS49HDGRX9H7a01NCV8Qfw9gD0oeOZX+F9YrzwsW6J8SeXsoUXdQV0YN1yoBglI1iXGWrwpBnBbUlW5RSoGtbYoQYIl3MxJzxtcdaYWYESynxdEapjOCsIAbCMKC9UleKcYZZvU/Wwr5H5YEaZwVnIIVEiqPIsxqGMIC1WCuEAEMAkxUxmZj6UaRXwULtBCNaGj7FIsZR+KoUpWSTDBPaVRyDOOk4ACFEUsyEkSErJNAsY1qzNEumLGhko/nw4xjjHnYja/T0eJpVcMfJHf8w1aFPccTtPV5bI2zrhurwkNYIxIAJAxICLmaMVawo4jymPkJm+8h8gW0qpBLWZy2IMDuoaNdrHl58wF61j5nBk4tHvLd8yGc/81lmewu+9kf/BFFwOXCxvMCI4dUXX+YrP//zHO0ds2jmzNwcjcrFm2c4zRwd79HMZrimorGO2nmOmgbTrckXFvWOMe24AYSyKqZyiHfYWYPxbpOl2y1x2GVKkpv3WybGKTOyYlKApR3nYPeEE+nINQO1Kb8sSPA19+RHXA63a6Am3UB41tzYjg26uIMI7n6/kQPYLWv4V3E8Db1vvhjrqA4OSWdPyOPaKeunsJRaSlmoqQ+Q5gCZL3BNg6ktQzsQlz31XoV1Bts4GhqOXzmi2qsxdQG2NGbqfYutaqpxyouRIkPRDpAyxiTczGBshTFjH2mMZV/pC7MsfWmWN10LoqQYNnvhpGGdsxawbNSSs7P6GuADT68fuGUNfTJ+AOPG+lR2UPiddT3iRXLNFsj1M0xZgJu/330nGf24a87pDTDvhg3aEDONR05VUNtsBdsM1fQVCnyjSkyRd0+fEIaOnzl8ESMGGyIuK5U4jLUYZ8DPUXdAs39MPlhgGsd8seC1O68yyxWuT6gmHl58wL09cNbx/ukDok38tV/+axhx/N4/+l2MJqwm3n34Dt46fvbzX+ClF17kzuFdalczc3OWl46rdy6ZL2oWew2JzP3n7zP3FZUxHHhhCAMHz58QVYnA0A2EPmCcJ6O8/u3XObu44JtDR4eQU9pYAGMMzjlSCqRc/Ju8c1Mnhk0zAYFSuAd2t+FrNmg8bjcbBNuqlTzaoF2Ydhcb25qBKVDbBgcCT/sj4/ETycbT86hUtOzOgel8u/Zn+hzPAuOufx7ZmXTTjZhsz8e3Px8jmDLUviold7E4s0McEBRrBfF1uV1TeRSTEJmQTcao4Fwpw5JQmv6HWCRcRcrNMEbw3mKdpXKGlDLr1TCSFChIKS80tvSxeOdwRrBSiCkSlDI3o6SU6PtANbPUvgRxmjNNU8r7UgzFqRMlxsTQKpoKIYYEwSYFzRjN+JioszLXkkZ2TjB+D1MfY06ex959jup4RloPPH7wmGbo2Nc1tXcs5jXz5gBxFc3xIXZ/jjhD5eFkLxFXK9LjR0h9BzPfH4VNYX7Ho8YCNeFJS7dO2Cph64jfn6NW4OIKhg7X7JVg0nvUOaRxpH4grxPJulIKtzylw8GKjAAAIABJREFUW7UMCkkMyVZ0Q8vV5QV7RzXzWcWjrmfVrjFN0WqaN56EQXwRCyYLYgujk1G/LeMxhe4+JqXvYwlkTc86GYZsWKRM5S3zpsZisOJwRqntVD5VesViiFSAEV9Y94AQA8Y6XDUvekIpMPSldphZDQghxMLQVqpQGCKljEwSMSSMwGxW5mntJqxmJP4wDluUo8lIKUEdgynFlt6plIr4HyU7qimwHHKhovclS1go4Iugc86ZxHX2mB/ZuAHOfJgR+z4vZyrvu74vTQDJLZvV+GJb12N5pUFjwMaACQEfM0ZKtk+sR+p9TLOHaebYxiPe0H1whSp4D1274vHVI/JeZG+v5nR9yoOzh/z6v/Wvc/e5u/z9//q/4snjx7ikLOYL7t57jpeff4Ff/YVfRKfgFsPQR/z7NQZ47uQOh0eHHN09xqvgldJj2bUlmz2KP4MU5FFL+bGZVYUB0FmMszdil0mAeccdvBlUCBu9HqOFJXD3Hj4rCJk2/8m52JZo/FWgNN+S0+wGU8VsPiOougYG3sbmNJ7rX/FY6vYx3kPnqA4OGOoKUkRiwIYBGxMul2BKjCDVHjKtn1mNaSzhqmd93heB8bnHNQ5XW47NAaZ2SFVIKDQm6j1Lc+jGWz7e8JDQti+Ol6Gw/zUGHUrfMiEAuQRTqmjbIaFHhrZoSfb9xptKo3h9SrlUCezNcIsGU/sNYLH95NvI6plr6JPxlxy3Bz0w7jNy80huz0hc+ztb5/sZ77gD+fBxbFDZ88r/G4Y4RpB+k2WZflccYNVCHPTe6Smh79BP38cYsDHgs1JRSsDFGbKfoX6P+vAQPZgjtaGZzXjl5GXqZJCuI0vi0dVD9hYzKqn44OIhzf6cX/rFX+KNN9/gv/8f/gGSMiYpd+7e5fjkmC9+9nN89qc/w1RmpVjUK/ZBxd5in7t3Dmn25vRhoFbBoSxcYf99ObyC9R7fNJw+PuP8yQX1fAEi+Dbwnn/AOw/fR3MmJDfKFWWsERBDStsskGHLsLcNahg9n1EY+MZ+vHmcOw9jl7xhU2FwI5C+9sx3jrt57t3zbSvCtwHezSoNHd8XncR7ZbqU8biibrvZO3be91YbdMM/GkPwpw7Z+E0fw4f7yMHUMPRcnJ0WtEgVSFg7IvJGcDtIQRqb/sMQiDHhnC19JuMDNt6RNaE2YxGsOLBK0kgOAY0RNJOzYomIZKzLJWIf9YGMgaZ2eGOIMY5isx4Ri8FS14JVZe4slTF4a7FGmFmD5Eweii+TDYQoDBk0JiQpLhuMQuMEn4UcSyAmWZFVC10gz94gD5fU8hoiDf3Fmv7skv7sffb255y8dEL1/H3syTHh8Rk5DMTVe9h6jq0+hRXFHkOyM+LihPrFQ9zRHDl7DOsAi2NEPAlLXq6IDz4gagJNSFpBauH8XSSuEHdFcf5myKxCDht8nyFkhtwTUmR2foUdMoinU2UYgwKfB8Jy4KpTGu+oqgPUFp2gdd8Rs9CrJSiEDL72GGOJOmmRlL6GtneEEFkN43MWJZBIJAZ1aBaiKpoycR0IqbDhWXFYVyGNQavEfF5ReUvbldT2ct1hTMQNCWsN1gqm9oh6+hQ39KFD23P6zgeo9TR1RQwDOQ1UI4V3I0UDyS+qEnhqcUhi6MYeqNJXlccNOWvp22NkpExDJAwRNwb7M+dIGdbLMlcrW8gqZNLWGktPf/SjBHPT99eDqdvHDsjDTeaep78dkaDdfWpEsTbVb1rY7awVnHfFEesi9LFMovgEnSk6gLlTgewjlnLPTIaYycuO3AdSZelM4jKuOTra53PzV3jphfs8d/8e/+5v/AaXF5esLi+5e+85vvTzX+L+wSE6LMHXYD0xJWI/kJZriJB9i8uBg6HFDCvMsMLOMuog04BxyN7o7ImDFCH1xGzJajBf/gJy7y7iy9aZJ8PliiaZyjPCiA3apZu+oA3itnODU8pPbe7TzU4jPW7eGA6zRX/ZmMwPfdY/qDGhj3m0vFN9+zVjOKLeRswEh22ud9e45rEyYfyRTX38T0o4tVk/Uthxx6oCUJx3kCF3saBEOUM+R32Ppu9hTIvwPGJm4GwBukxEu8Jeae/sF+2oyoKB3A9MjpWGCJEdhyGPjVRLEAuu3jxoDQHtIvl0hfYBUgehh+UThAErLUqFUiFzD5VBxJVgO3SoQkiO/OLzuC98trARjo3zClhXhNHF/Dj2zJ+Q8REdw5s7yDXdp+kYGVluc2Yq45vK+m7q6+WPUKGxU1F23QaNTntRnBizIqMci6psMlOdRoLJaIbKOe42c+aVK/IdCNprYRnOGUlLZN0jc482l9j7C1Yh8vU/epPusqd9csVeU/FzX/4Sb51+wMPlGavck7LyyvPPc3B8wP37zzFrPH/zN3+Tbt3Srdd8/ks/w0uvvMQLdw/LGqpmKIaQErHtyFcrMo4cK5rQUsce255j8oCrx3UZSmWR3as57gJzl2E4RzXxs8f7PE/mrfeOOVtXnC3NJmOzHlraoccKhGTph6For94itluCzp1nvWODCunY1KPDdsOmJErS+KOOz3vT7fZ9zM7uvLitHHDnArav2fgxm4nAblB47fdTCSFP2yAExExzk0J6xjZ9NlW/7dqgv0i5/EfXmUqJvmsL2cNY6mUnozg+jILn6kbfL2ctrHu20FLLNPmnc1gQLToBOhIQ6A6bk2YFTRgUTB6FU0uq0Zgi7OqsIaYSlctIYIAU4VXjzEiHbqisxRkZP7CQ08j6AuRsSJoLi1HOm+fjpug+6XgtRfCWmMhyDkYRWkQG0hBIfYe2l5h9T7VocEcHmDtHhMsLYgiE1Rm2CYUpySm4BAsDtsEeV9gDS35wSV6uSdmipiaTSMsVebkk9xEdErSPIVxiLt7ApCU660AFjXOYVbBuKCSfQgorchyo2gxR6O0MmzN0HQI4gdhHYh+pDvexlSeJEnJm2fbEXEgekk7oeykTKX1xSgoBKDpNMWVCHnM+ImRJZCnll0ZL5pCshKEEQIVa3GCNw3pAMnVdY60hpEyMiX6IGJNJOeOrwmJlbMl6pNAX0eCspBxpr1b4+ZyqnqGxlHVawImWjBgG60rpXmnqLAK/iEWRQjKRM0lLiUoYSkmL8UJKmRQzdiS/cMZicmEaJCdKYr40fZf5bb9vydMPY+wGTxvHdMqY3ESLbn5zW0Cluukh2mQMdmtzKJsssiN/oBlNaZOdTmlk/Roz0cQW9ApshcY1QiGvwQhCKvT2nUGj4uYNWEtIgb1mxv684WB/j4PDAz73059hvVxydnbK8y8+zy/8ws8hyyVcXJBjQk1FSkJsB+gHCJAve2yOVKFDuiuku0DWAXUZjWMw1ZfmZIyDHCB2pF5IwZBefQl7sAfJjSQost3PJmfwllKFndu7fTaTEduJZidDM93jUlYxYrQ6qfmVYZj239se6o94jPvu1D+1+0FVdCcuum4MdfrMunOen4Sxi6DuOKJT5lFHO2SMKc5oVIhFDJzcl7VUn6H9nBIRZaYyFdGE9oHJlJUm7lw24FZLSX5lIRZna+PPmAxhQNsVKhZ1ihoHxqFDATnTckDXPazOYVjD5ftYE9CqR1NFzhXmoEIaW8AIFGKLRiW2BQjL7cvgXGm2HRHYfE0Qe3RyuL5m4CdnevzQxo4jew3U2Pzq2c7t5pgbr5l6I28yjU5fr5XxXcscfITLZcenn96tbJ4bIEsESAVEDCZhRXBGqKwdAXwp2disI53dACGCXACKkYCq8OjRI8Iy4NvI3uKIe8/d4yy1nOZu9GMyd/YPODo8Zn9/Qe0dX/rcz7BaLVleXfGlL36BVz/9KvL4MdqtirQNhhSF3PVoH1A7oAy40COxwywvkNximx7UILGBxiNaMctQZSGllpwCzzcevzfn3v4+TgTJpZqmNGjn4r9QiDqKzuX2eexWAejOv6ds0G6ZNZvlOb7u+jlE2ZSey+ibf+izvGHbNvPhmj248f2N+fcsl0rGubwbJG1dmK39EWArPL59o81n3gnEPm4H8kcnoBhL8KY395XDGsh5pNCOhTWvAEyC9TAXQ1P5kR8/M8Ti1FUGUENdz7A5YnMom7uXsSdLCaHUhA5dKA5uzoXRL4PH4DAMKqgacAZNStdFDIqT0syiKYOrMM5TNw1OhGG9LqlB1yAGoikLzJJxJmJSRkd68rZX/ABNEsCOaEh5MKIJcsBoLgx1C8NeE3lOH5MuPd99q+eFTxmOXpjxnX/655x9503uzw44fuUeB3/9y4SzFadf+zbzI2H/riF/sCQ+Mpz/z/8rqzff4tvLjIrneHaPvYMT7t5/lXCxojtdkS++h7aPmcVLnA4kWY8TwJOMobcGlVRQzqqIIc+jpzae2ZFhcDBvEmsVLpLhMgSWoSP1DaoOP59hDCys0ksmJmVWV+w1c6IUm9x1a4ZQ7reIAVOhJuOc4K3DO0/Xd4QYCxsgyhAFROmGFSKKB5wmnCgH+zPqyhI1kTUTR5r0tg2QMlYzznucdwwpklHm87ogDrkfmQU9zoEjUlUCvsJoj6RM7CAKLNdFLNpVFcaCtULXdcSY0ViEXdVkUsosr5YY56gX8xLU20yMgZQixjeAofGl96+9bLHeU80NvgJfKXwf0d4f2hjT4mVO6MZJu21cc3x3f7u7ae78OlOC6A8DOTUXxs3QDoTVgAwg0aDGb8+tCfKAhAG6AW07EEU/eEhsI2f2mIU/4W/81m9x8d33ePKN73E422NvtuDu3jHz+Zzn/TF5b8FnXniOelajF5fEb36L+Cff4PwysO4y1eIO+AY78xixrD94iOtW+KuHuNzickeWFpGAal2MnxUwitoIziF1hdMKwRP++R8Tv/U6sXbIfM7sS1/ENDWaSkbSuLEmf2QEvP5YRpCBp53EcnulsAmydWpkF/a74edMWYOpjl3ZUqv/sMckJrm5xp3ruv7ZdNM7KDKibEhBl3fXx27px0/4UC0gVeoDYTlAl5EggCul3yPwRw5IGpB+gK6HtkNPT8nvP+bSHkE15/Bwj5wjj77xHegivs3s/fR9jr70Et0HF8TTJfWRxdVFlD2fn9H9039Gu+o5u4xUiyOavRMWn/8U9b0T8mpJuliS3n4dGdb4cEHWAcMaVQd40qiVozYWQoumwYjF6QwNA+uLC1LlyN7SfO5zuJMTci6Zfet9+eqKa/LJdPjhjw+zD0+Jn+465VNgpmNAJTvB2PYEY/aKZ3rCT9ugLZB323FTFmHa9wQZJUxk7Le3NN5RO4t2Y+9QGMVHjYOpLCxHJAca66gOj/iNz/91Vo/OePS1f4mp5thhn5//uV/hK3crHvzhn9M/uuDu3kvsHxyxWCxoxIM7wd4/wn5K2ZvV6Ok5wx/8IeGDhzw+Hcg46r3n6L2lahx5ecXqosdfPcR2V1R5idUBldX4IQsBUraCSgKTsHWFsY4meu6p4W9/5St0OXHZt7zx5Al//Pa7zCrDVetYx0SfEillhhA21TGyAcBHgd4NcHNjhUlpo7lOIMHtNmgDwsimrLAkJ9K1OZVHVOdmxrIEZDeDpa0t2xy5qcQo3+f8YfN1Z67svtf0ms35J/bm7TFPX+PHGx+dGh2ueVVGtsxLUzS7vbs6sv4J1hnC1MgdxgsdmfWsc5ikiEbECkZLxmiq3y4IXbkReRTtTSO9t1JKTNKN2spt83LJlRVJ1RK9qwgZW5BzRkFfI2C1BEWAlUQ248RIeVOGkKUIv24bpAvLHZpAI8JAyi1X/SUxz0l6znEaUA+XyzMeP36IaxJmb45S6IXffvNtDpeOPlb4ao6o4d033uHie2/wrYsOEc/L83Pu3nue4705adWR1muG5Rl5fYpnwBBJuaVUjrpN7xgmlcXYzMD5IkBscyGsMEJD0WCymjFT9k+LG5dz0YNx1pEpzZXGGqx1xB1V7lKeM1Gaj06cmFIf7ywmWETGjVQh5pINDDlijRRdCFvmiHeW2tuS9dORc2YsDUVAxsyg5sJkE3OkcuX1Oecyn4xgDTi78/wjRXh5VAYP5ILAGsHkIowcY95omakq2FRIJkKgYKul+VpVmfSgZTQgk5DvCLlMk7bMi79KrsAtm88zr+7aHyakhq2X/FE3nCme1BIoYN24Nkfa5Jxg55/mSLteMiwDUSrMYcO9+/fQh5ecx0ydHTMavPFYY4jLjhwGmsYBkTauWL1/ytWb73J23rFuI8cHLX6+wL50gjGe3CdSe4VcXhREkojqmqwDqoEpA6QmgwulXLCZg0mISeTTM3TdEmsHizn29BSZzZCmxjUNfjHfUus/9Qiul8Ltoq27x8CNoGg3OpHrx+++RtBn+Ss/tLEJoHYM1bNn1jiJrtmMZyHUf4XWzo967GQMNE97DYWxS0A1jYLK6doa0pwYupbV8ookDiplMURyDlw9PkXXkXptqO4dgsD6/Irle4/YH2p8YzG2Jjy55PFb77G+bDm96Nnfu+TwcIU7meNrIXcrct8Sry6RYY3NPZI7cl6BOgosOWK6LoIFwj4YX0iSGBX7vCVVFnNyp4jKNzXGe8zhwSa7eRuJy6aHZze9svPlk/Exx25WlJES+kb2SG8eDztrvRyxyao+a92O+95TmYdnXtfTP27Mz3gdpb+ZDeX+Zg+SHXbTlDcZFTWmrCESMhmnNALCRljMalJVSBw0BOgCh/Pn2Lt/zIX7DikpjVY0NDhnSaqEyzWSDbV3xMueNYGzdz+gffc9Hj1eI3iOD3vkYI6/f4TEQAoDZnkJ7SVZig+naTXayWF77TaiNiGzBeIqDBlvK+4fHBAFDmcVfQi8szjDG5g5x6O2Q4cBZ10p8xv3jgLK6U42T261PzD97em+p51Ddp7I9jWMz0VGMPf2nthnAYlc8ytusyS6E3U/Le1y8z1un4mbcj4ds3D84LaOjxxMlT6Tou1UgqiBlEoZgqqQItsSPslALOiUClXlAGGIPahSe4eKYCuIPYQcQDO2QKvkLGgqjEKFoSSTcyDmTAwJayzGCH2MBE3kkDAG9vcbcoiEtsV6h/OOmITYATaXvqlqgaZI366ocVTVDGcyrkq4aLEpYbsBS6bqAoZItJlgPJ1vgBKihWGAriX2F0j3hHj+Xd58+B2++vqfcOze5KXZd9j/5QUn6xPePX2bNx5/lwuvrI/2+Tdt5s2Hb/Jf/C9f5bhquD/bo65eRMw+v/+9b/Pg6n2CZg7F8MurUz6/epP9iz9H7AHYA86vHtC2V4itmaHo0GG0kHyM2ADZlNIJXQtqEtlFsu0ZgpKcIL6gw33KeN9w6BqSn5PcjNNlKW873p/hcyIPAwOGdois+5Y+DBiEWizYWUGFnJCS0HZlrqhRVAzOFsfXGMMqFupzIWKto6orZos5i8NDLAM5RWqKkG+sKypv0Hv7pbcqCWIdWIe7OqPrWy4uLtCcmc1rpKlJRqi9YT63hKSEpORkyGq4Wq5QhWaxQJPSX7Sl9HLoWezvU8+aTTNnin3RMwsJ8Y55ZemHTDtkjuaeeWUZciJE5Xy9BoX9w0Vh2HJF4FdDKE7Oj2NcS9FvDUz507NN2IapJ223GAXSDltOEUX88O3Heo+o4mcVaeaJTdHfim6OFcGYEhRr15Fjjyn0mUQVvvHgPVZPrjhM77P/wl1e/qmfJfYtl+cPobV0S8dLWck58rV/8o9pH19w/+gEXx1Qz17gX373m/zRt/6UnAtA8Gv7j3hxXvPleJe6nhPcXUK7pj9/TLYesRXadZi4QtIECCQwoJWM2SlBXQDryF1C64pcC9EIT95+G+oZ9s49Dj/zae5+5cvFP9k1YuPdtNZhrd1Bdse1omzq1CcjNon4ogX5M1JKTbPeQNM2huzDs4U/lDH5VYyiizufZztulPXt1KZvhDl3cbjxxLqdcj9ZY0TXXdPgmxo/86TGkmshuQaMHwXqlTwEGHoyAyIBTOTtiye8/tab7KcHzKs5B58/JKXI29/+JnSGOc/hP9XxvIE//fof82f/7I948e5d5s0Ca+/x5OKcf/iH36APPSknPjdv+NJ8xucvvsP9O4eYu6+hOFanH2CGgHEVOQzk7gop6GRZP5JRX4A19Q61AXwgNz25HchOyF54/PAhwTrs3ftUJye89G/8OjKzo6Nzoz9ipwznk/EDHOMCVFHkZgnUh4ziyO5kp27JcAmFvGy3JPxZy3qrTzXZqdEebQC8rQ0qlz2VoI9Mb2MQlVGu+p6FM8S4IhlLcpnkHKFelP5+UeKqJYcrYnfFcCW89c23+eDdJ3z9z77FyeyQFw+esPhUzZEc060uuDh7hO3mBD/jp63l7NFDfv/3fo/9ZsbR3j51cx+xe/z+H/057z95l5wiR87y6wcPeP5wzuf6Y7I9INkDuvPH0K4xvi6frV1BSkg2lJLdjDopvbxeivSMj4jriCGjzlBXwmtVxcFrr9EZRy+G/+3PvsF3Hj3EuwpVwbsCbeSsRQuWUkqfKK0X5f7qeMyWetyYHYp7pQh1M+rJbp7g9hlNgZMIOGOvBb67PUyyeab52s/T2QpAP9m/8XmOQHixCzcm55SfGX3M22xQKf3beYlOera7vWLlo1yzPx9zfPRgSrWUN1kzCvtNbysj6lAeWkpFFFVMeYAlJVeyF5iSYQgjB34mjor3I41qyptFo4zBY1krpU/KGqyy0fCJKWFyoeE2RnC+KsbIOYyWhZvSKCA8ZqhkzFJZV0q9qma2QfacCZgUy+tDJotuHKJgDINxm56xqwAJx/xgjj+aw6xBvKeilC/1oePB++/jv/ltwtU5dWrJekZ/seDqT79L+N7b7HdXuCT0uuB0dcVae95vex6PvSUqyuPY8+KQyWvF79X4mcEtKfTeAoIhURW0RROIwYgvr9ci2qtaGtszQoolIxVUUWNprCP6hlTNGWyFGlfYykQJOVG4BoSUM13s6UOkjwlv3egMTUum9CDllNBkxjTyqB81Ia1m7FOKAW8tzhXB39paKrFYFPKoRRZ7yAlf+pIpLOgZJOArg+LoWlMEmZ3fED/omM4uC1VxxpCdpapqFLDOb7KKKTJmT7Top4xoVx7TKdYX57egWGUdFN6/8ccdcM6M2VZjSq9g2QA+/oL8QYwtIqRPGcZrvsnO8R92nl305vt+pjFwE2uxe/vYo2NCVUGI5LpBjCFbU+YiFru/Vyj9XWmQlxAgDMTsaFdrHr37kO78nDoHTH9Fzob4wRNiamnWK3ToyUFYxcij5TkPLtecdiUzaCVz0a/ZlwHTVjijyP59UjYMsiNELB6lofSeFDZJFS37gkipqkoZpQA3agq7Y7ZSZB5MKj16qZRfqdFRHHwXid1huROZoLjNRr99BFNwtK1lf7ZvIxujsIva/WiGPAUx6s462Vzfzk9b9PraLbgebG3++wkeMpYtNQ3u+IR8dk52llTViKs2/UUBizs4QBYN1L5skikioScnQ5CBs8dnRQakW6MdpOSIp08Y3nmMPb9k1q+hzwxkzrsrHl1e8qRLDLFUXFyYjnOJ9FcOfMScvIC6seJASn8GxqE0KBnRhEhVshya0Cxj4l7JJpNjJg+pVJkkGOuy0ZDRqJuMZfEbrt8ToCDesAF0Nofo5DXsvuSTwOuZ4yPemu/XNTKt8F0rUfatZ9igscSsvGb31x/dBt38AFvh3imoMsSsDClz3nVY75kbRzSmlF9bC8awXEaGrMydkCuLb2bUdUVjFKtF0/Ti7AL77kO0XVGnHm0vSFeO4b3H6KNz5n2LM548GE77ljYnHi0HTotwKuTMRbfkqE641qJ7DXbuGJZC7vLm2jM1IhFICI4iy5JK9iyPQUXOaJKyVrT0zzoR9mdzvKvwxtPUDd57mnqGMZaQhrEXPG2rIkbDMpXNyWYzHs33WH/zVP/c01v+9jU7Wajrz2k38Np4HJs5cm3+yPV81+Z9pvfd2IobR3yIDdoNpDZ/k22f1+02SDY+38fZQT5yMBVjom17pPE4W4HYkkWahLVcYUNbr1dYa3GVI4RAihGxGcRS2RIcXS7Xpck8j0GQMfS9EoZM4zJGtBgPEcKo8my8p/KlaiCnWAgx+tJf1Q0DxhqStdTOsNjbKwxiQyLQk0ioWMRYYgQrlr29BfPZnKOjE3QIEAISAxIjehnIUVizBAFnLdFagvOEekbta74ztKxMxXOf/xTzn3oFXnmVw4crvrLfsIwVK7X8wf/1f/PP/p//l09fvM0ruma9/hbhjfd4/T9X8uqUf9vD2eyAJ4uX+caTB3xz+R6XcSDhgECryrux55UhYteRvXsvsP/KCaE/w4YVjXN4LElP0ByQdImVBmMOyKxB1yTjSGIYgKQQkjKk/4+9N/mVJMvO/H53NDN38+GN8WLMjBwra2wWq0g2yS6JbEASAQliLyRopaV2gvb6I7TQUtCioaUAdaPVaIhSQ2CT7GaDRbKGrsqqTOZUkRkZ05t9tOEOWlxzf/5eRGRFUmQVyKoLRMQLc3dze2b33jN853xfZFI7dN+yP9yiKrao8wFTqUFIylFBEz3nk8dAQiMXVc2T6RInJF4IBrnGSpCxTmxTXuGdwzcVRvaQIcOoxPyXKCwC6IbWtcznC7TU5Fmf0uaMjcJqi5SaxXKBcy3t9IQQI1aaFExJ8KHFBUevyCl6SXnc+Ygo+mhrkHmOl4Jl45CxReLJjEZbS78sCUDrUsDnTdIrUzIRUnrn8DEFS4EISpIPS7RKDeCrxb4MCfHSiX0FZXS3ykNiBJCC4ANN6zu04Wc7NqutwqVNpTu+gQasXP01QkAXhEqxse+JC6Rro/Tos68hZaTt7buIcsjy3j18BFGOUNqCyWiLkmo4Rr16m/z2NWK/gNax41sy31IpxcnROT/+gz9hPD/nOhXt4j7B3Wf6bxVxMOCLoaYuLWejAz6ZVvzpg/ucnM+pYg6hQsWWw2qGjRCnAZsJ8jvbNCea6fkxRmukNsS4Q1QB6U5TykXvpcxgOCWqpCzvhUgF/91iAAAgAElEQVTizi4QRLf3GEVvtAP9El+OUaYg+IS8is5gr+rJV0+hU8vr5lMyTaJ7BnHDuGyO5wUYsusTeMr4/AxGShzItQG9YJBcGeCL33slpr56Vb2IiRLi81myv2dDKIXe3qX40tfwy4rq6JC2PySYIpWemozF9h7ZzhblnWuIPCMqwyBG9tuaWvVoPfzoL99GuoqdxTmxaqnnD1j+cMLxbMrBoyeMC8F5MWSiSr577wFH0zPm3qR5HALndc3DOOcLE49UCzL7RURP0+QSpEJZA8oQQh8RZokpTW8ndsF4CjiC0gQhUgIiBGIbaBpHS8DuD8jLEj8Yo3oDgo8I59fzR6qNDHk3nnasfzleZCSA5zn9JhsO87PfczkNdzV5s0LSU6nxhY2JG58RK6RRiEv2Z1MXaB28iaupmI2Aa4UiyNTnJ0SSypEyIeRKaRofmNQtPz4550aRM97axmlFLQ0262FsxkcnkakLvFzm9PYG3Lx+jYEtCXvvUPmcKko++NGHvPvhT7h59pj9OKeZvEdsH3D2BwY9P+cbPViUJbPRdd759IgPTp5wWEWqkCPCgkX0PFpOGOklatJgd/ewL+8ybac07RJlDRJFDNeJvkG6k7R21DaCGTHOiMomG5RyzXiXQIK6ahH9Pv3hGKFzorL0+0OGvRlRGeqm4eT8mLZtE4CxzoSK9W1cxRopybV6hhtB1Ga8smLx3Yhykg2SF8HJxjOPHfpE3Ph5wy5cmMXLdi8FjpvB15Xnv7rKtX3pgssrNuii9Lzbd7rTvZD9+WuMFw6mpEhim9DBgj4RCyil0vV2iIIUkhAjdZ2II4KPWJ36YlZ8X9qoRFgRPMEHapcIJhKyFYgkNrDQ9bIQIzLlvfDIVAYYk4hsmhCiI8hIbH6ta5EksVnhkxbS6rPaKLQSWCvQNkMIic4sKjPIeglNZKkEQQic0sgo002SOY3MCKJkLkra/jWELZiJEpwlLDSN3uGVN3+N6WTJ6fkC+8o1zLUx7jtT/GGN84EFnnvTIwZF4PbX77C//ybL61/l0R//OybvHNNUAdcFH4HIkkhFxAlAB0zuyKyn1QFTaLTMCDpHBBB+G6EKMGOiOyf4CULnSKmIbp6YwPIS8Eg3wxQl+dYW0g4wJpW/WYDMomPE9weErvdHhQpTC+gyP8oapBIJDYt0OkwKlEHqDG3ytLGJlOdACJySaG3QW5rxcMD2dsmgZ8msxLdJoK6t5jjXEF3bIUudYjerxn0JMfVeiW7uCZUYp7xIKJL3ibZfSd0JzoIxqmtnCgmtEwolA6oL+KQQCNXVWrt0vVIplLrQHYJVvkasyrQxWhK8p21rVFAYkTTNUmXDz97kr7agp8qkxGZmZ+MgrDe51bE1k9xG+dgqq7VZkvW8K1iz+RmDzAtU3iPmDcH2wOa0/TEMhmQ729Ab0EaFdxLvFYP9WxgzY7EMFAqK3oj4QFAtjmhVYlQ6q2a0Fkav7VHmPfo3XsY/OOH6ySPC3DPBEWILsaXygYUXOCGIiqTVZj3GelQmUbnFW0t0Ctp++uXybYie0CQmQWEshJYYHLHXIxqTJAmMwgwG0OuhMkusGhb3n5DtjDCj8qk7k5qjZdJrW93tzVI3YtcrJdaB7eoprbJ/Ush1mUIqxVjf9bVR+XmMCwdsZX0vzykh4vrQui+MCwfvl4POG0moeEw19Mg8R+Y9ZN4HWxBMD1eOEXkPu3+AHvZp0UQv8a3ADHbYvvkKy2Ui8RnfHCNCi3TnuEWNmy5pLBxPz+jv9Rgf3KS4/hIDelw/foxoPYfC4XCE2NCEwMwFGmJCxLRHGoc2qZlL9g3RGWJmwZdJSiAbgcqJdUGkRdg8zWhfg7XEogBfI0KD6peowQCZ5UghqB4dYcoe+cHORer4M/abz8e39ctx9V6m27uZlr8SSG343xerW2ws84uAKHYVQBcOeHzKBj3rYp5tU8Q6oIqrN3WJoxgvAoDV16U/CdFVKhGfWWNY+MgySkTWJ6qcRliaYIk+50z1mJvAMupku6NF9rbYf/UtlnPHbOqR14eI7YL44zPqdk6tAg7H8fyM3ARGX75Ff3yb0c5dPqVisTzlXDlaWkJsCcEz94EqRLwUoCMy82jjCTag+hqpLN5kSRvTDUDlkI2J7YToZmAtQiqiq1K1Vq9M3nA7RxY99GCAkYZMKF69eZte0ed79z5IlVtKIUNAqqSnGUgSP8jYIYQXpZUrfdiVOG7kYn0JSGy7YfX+5A+oDbKKGCIhhrVdWgdpAmKUa4Rxvd2vnvuGrdgkoNiI7y85Lhe6hpc/c3XSXvV3LseBq0qRlQDx1fn3+ceLB1OAkZ3ILQHfpkAoM0m/aXU1Sipa56k6ymxBQnaM0akETAiyzOCkwLee1jmatk4aADHigkNET2gcwcdUH9rhBQGViCB8CqZMZ6SREqkkWaYJ3lFVNZlKQZuIErzCIRFRkhcZViuywmCUQiDIiow8N4h5gKVnqSVOSWqdYSXkVtPEjEXIqeU2Tm7D1k10b8xpGDNbZixONdbc4Fd+859w9vH7PHnv+9z97V9h7+uv8W+O73F/ekYTA0sCP5g95s2Dbf7R732J/Au/Qf6V3+Fofp/q43c4mXuWbdJnCsA0wByopYDMY3o1vcyBDeRDizQ9XLsPIUO0Jdg+9LaIyyeE6hiZDRBKE2cPCbHFD8fEUGOWj8iG2/QPrlOIDI/B1g21D8g8oxYC7DYuBGofsCzJnEUiUUKis4TqEJqEMtaOiEQahcp62HyAlqBkxAiQItDIVIqX7+RsjQpu3hyjARUD53PHYr6gqc8JvgbaxGWhWxKhfRIQRmjWHPkmiUCjNVFpnNAQHcL7JHypFbIThTa26+nwbWIKlAYlBR3TeSJAMUkzzVcJQdAds1QQiR3xAqGRnSwAZJnCtYHFZIHWOvUzCImWch1w/UxHvExtenH4gnb58uYTL4zV1dEZMykv70hP54wuXmMVsDqH0AZZ9NH9IbGJuGxAyAf43Ztk22N61/dAQxWgqgU+GrZf/hJxd870k49Qo5zeWze5/93IB5+8T2PAiQjLM8rMc+u3Xqbc38W+8jV6P/iQk3e+T5i2PKLCURNiy8zBuVK0UhK0QOYtJm/JMo8aSNSgIPoxIRSIpkAIA4MB+JY4OUpsfnmBqKfEekYse0SjEctjpBGY3R1ElpACN1syPf4J4ot3saMBF9s1IBLhjlIGuQp6OsOzuv0xRpRa6VeF9XNcBVNSdsnBLrDVuvvsiqQnPP3c/7bHU6jBJhq6yiCv592F43a1cTj+NLjzF2nEmLQWhUAVfVSvRJcjvB0SdI+wfRNVDihfuokwijpA6yR1hHz3DqXZY/bpPUJTsfPVVwgi8JCKar7AnU9ZLBrOp0e8+fVr7L+6hXnpy9Q+49N3v0+vCnwoaioq2lhTezgHKlIyTJgWZRtM5sAI9FZOoE90I4TLEN5Cvw/GECeHRO8QvT4itDA/JmaW2CsQzRTVzjBbW+itYQoUo2D23idku2PyazvPRGl/OX52Y9P5FFePXfJMNxMiG/TXV7aiuHbeL9ufy5+/cvJuz7i0XwgSir+JTHR9WUoKtJKURU5Pa2Ye5mhUOcYHS+0sc1+wCAVPVKRSkevBIluNcBm2vMbtX/1HLJ48ZvLxPba+cpfe3T1+ePQxx5MTKgNStsTpEdduj3nlt76A3n8ZffAG09kj9PE9Hj5oWIqaJlZ4IpMWZgGcUmAjKmuwuUPkHjM2CNsntNsQLDQF2Az6feJyQlxOICsQWhGnR6l0dlRCaJALiSqH6J0t8iCQHr7x5pdYVBX3jp8wq5YoZfARdAggfZLaiV0gJVa25SKpmvqV1Do5txprF0BeTuYplRyCREi2Ks8NF89snezr2k2uJvxWhuFK5PN5Vv7zbVBc22DRaR2u5EQ255NcJy8v26Dn+jnPGS8cTCklyK0kiEAIDtXRSncKUgnuJ+LahijTZYSODW+5rGiblpWeSAwO5zyVa3De0TqHFqm8LwnwemLXdK2iQIhEOOGjwAdJS4v3EbVi3YtJL0m1HhEDjkDbJv0kFSX5itktRnwlCZlFlSU2t/TKnMworJYg+mAk5f4Wtpejo0I60NHgYo6IfVAlXllm1WPq+gk/+XcTfK5xpkHUFfrkhJ4pKXde4vAnE8TZ25z3X4Kv7vGNu4nsYn54Tk7Ln3/3mJfiPV4Z/oC79Ql1AT9WcCpAREEmYE9K9ouC69fGDL/yOuZb3+Do0QlPPnrAa3d69MoR+IK60jx5FFFAlmvmcsDCCBYho40Ku5ehLfQGGaFd0Jw0BKVpz8/B9EH3qNsWHyEr+yilaJaSZdtSLSqcSHTPRimMVOR5gVKSGBq8D7SiBe/JZIOSGhciRhu0lhirkTJipUIpRS/PGfYLev0e7WJBvagI0aO0xAZDkDGVqImYet+kRClF2wXwUULoaJaTUwnKQGYSI6QIEkLqb3FdY9RKDLJtWpyPOJfQSqEMqREvJArVGFE6NTPm/YwYIs6lUketEirn46okKyJJ1Ph5kaOk7ASqddpofk4ClM+iO03ZnfRXZ74ulWpc3o8uMjvrU6wyWJtCRxvnv/hYRHZozvLjn9AcH6F3dlFbuzDaJeqMYPqYYR9TGj758AmPHpzg3ILoG8L5GUpIxqNrhFpSvfOQuimwX/wmuwNJP5eExiNi5MmDitn8jBvjx/TqM17tw1EOPQ01iTVsN7Nc62UMrl+juH0d9eZrLP/qI45Pv8OgHDHcGgAFMWQsJ4YYNNIqfBRUDHFB0kaDGhj07hhdaKQCZgGPZzlfQOsRhSKGJDTtmpZmUWMLixRq3d8hu6ypDqrr67u46UqbdAvXdOMrI9Dd2BguHJvV7e7ud4gr/rSfXZ4+BX9X5w2XrWAXTT0d4HX4rhSpz2yjNOgi4fg0G+Lf23H5gabkoLG0Z6csP/oggaV3X4FyG7ICb0tklmFKy3Sy5L3v3se5Gu8rwnwG1ZLRaB+blxx9eAwyErIdbLnDzVehmS+pz+dUruGT9yYcFIdom3HbekIB/Y49WgTByGoOrGa8u0N5cwfz+ivEouD8299FRMHuuATZg5jTLAx+aRCZAq2oyhLnPU1Ipb3mRoGyEp1r4tIQakPtA810jugpkArf6Qs2yxqdGUxm10jExf16sdu6Li39hZlIP308s8LvGWjVKil3+X2XEayLH6+u76ftz8U/m32kl7/j6r72tBm7QEDW7+uc+lV9exRp3z+vG6RUfOuNV9jKC86QzF3L0aLB64hXjgenD5k1Nf2/OqB8VGHfuY/wLaqaU2Ql/e1rzM5a/DuPqbbvUPT2uTVOSeTQeLSET96bMG6O2ckfsSuWuD5818K5BoKkELCfW3ZHQ8qb18nu3kF94XXmH3zC7OyU3VsvYwYlwVtcJZk/alBak2WKVuS0Guqg8UjUzj5SR2xpCW1NIxukUvj5Ai8tXup1r/adW7fR/R6LpoJqSeMcMqZ2MbWyF+GyQLw2duO5r8q4V6+GS3NibZcQlxJ/CZuUrEgkVs80bHw2Xl3QnY+3WdmdUM0LlsjN538x756ztsWlf56aZ5sTTrAqUd9INncf7qQjX3h8jjI/gdUyEReEjqRBSnDpl9TWdA1yTUdJnyI97wN1VdOKi1KpGD3Oe2rX4l2L8w6pYgqmgid6j5IGEKjuu7VS+ADORbxPtOZSkgR/AygRkT7RVEtSb4xrPKVSGCkRPpFdeBI9ppIGk2Xkwz5GggGQBdFKiu0aaw124YktCG9R9BAMQBRENPPpQybLBe98/5yld4jlPXysqJjx0t1v8IUvv8Wjh59y9t7HXL/7Gjt3xnzpd/YpZMunP3iHk3uP+eGf/RhdPuDWzQHXm3N0BqMkt0UErBBsK81OkbOzMyZ7/Q7617/C2b/8Ix7UNS/1C8RWSQw5zVRw+CCiBBSZZKJ6TK3meCGpvGR/Z49eocgGEOspzp3TxobFbIYsFCIzRJdKS7JegTaGLAYaJA0tXiT0TxmN1Bqb9ZBKE0KDCAFJ6jkzXWbDx0RAoZRFZ6A0WCnRSlHmOf0iJ8tz3GJJU9dAQGmB8JooAi76LrsVU1CtBMIlFrcQUykpIgXcWqc+5kwBHa26CJ7gHU1XK2ysRgiR+viCIHiZ8hQysU/FVVROShIorchzg3cJZZECtFZd7f+FoytEQErIMpsQK50CKq01Uv0crfhGGk+Ipw6uA6rV/5611zxLbFF0m9xzv1IIkGkSu5Mjmgf3yQ5uI3slanefgKJtAqaXYXqa4+Mp7/3wU1g8JrYz5s0Jtlfy1jdfpmkdDx88oj8aMnr1S+zfytjb0Uw+fUJ9PuPkx/dZTDz7Lx+SVRNuFfBeJsg1xCDwUTK2GdtFj/7eDvn1a8iXb+MOjzmfTrAiwLAEmQOW2hlcq5BW4pHMVUndwHwp6JWW3pahZ0HKQNQtoa2p6mUqz1B5FwNEXOtwdYO2OulGxS7hJFX6ozUiBEIQ6+yfUml+urbpDIhcl8SF4LvymauOx4Vxeirb98wH9Dc3H9cz5xmlFJe/63nXcvVM6eDq91plNn+RxqV1ZgyhWlLfv4cZ75HdvIXc3kXkBU0TEFJiepr6uOW9Hz0gLM+gOmbZTmh9xeu/8h8zLHsc3z8CJdg+2Cfbyth7pUcznVOdTTj+8cecPjxnfPOYssy4Zjx1l4zwPmndlEazmxcMt7foHeyjXrqFM5ZpXaGjhEEPYQqisDilWUaNzBQoyVz2aHxkOhcoqxju5WQWtImwELCUNL4iLpdInafEVgx473FVg5ASbeOV8pwUin9moLTOOlxOCn2u+fQc5+vv8nh2IPWMg/GCoY9NB/cZ1Q6XHOTVOVd/be4LT33N5p71dPJu8zs20ZONtxNi7BiML9CGQCKgmrUt/TznzTs3yZXlyemCY+/5tKmRQSCV58nkMeezOaNPTullDXJ2nxArGjHn4O5bvHzjNU7OT5g+OmX7+nXK2z1uvVZghOP8/iPqoymP3n+AzM4Y7x4yjhW6gKGBXIGXglxKdrKccTmgd20Pdes64u5tlloymU3Zygxm2CcGTaPgzDWY6CmtoFYZlVXMFoLWC/rjEpNLVAGxWeLaKUJ4fFURrSRonaoUBFw/uIEscj66/zEuBGRVEyJIGRPzqgDv/VrvL5XsaWJIWprpGa5sEHj/dKouAUrr1OxFSWBntzYrWsTKTlxFK7u/1yRl3cGV77cKrJ+iWY8rDHQzUO++69Kke156cdO+bNrVjWNXkzg/Zbx4MKUVtpejgsN5RxSSgKRtWoKLzOsGQUDKJBgWQ0hMPlGmnzvob3Xhrm2YnJ+vo0+vBVoJMq3QRnX6GoKeFngfaWtHZFVumHRYUvI2UmQZAph3zC15f0ivDzIK4rImth78RY0oUiG1RWgL2iJIJYYq0wgTWESIUlHevIkUFqUH9EVOnxLvFnhfcdDr4RrLP/ziNwlZwXx+wuHhE773/e/xxps3+NXfPeA7f/mQ5fsT7oyesFNM+f4ffZtqOuXjH95nMa05PVrw5E9O+MHbb3P7bMHIefZUwR0reeIrjMow5R3US1uE376JH0fcJ9/j9euC6792k/GtHrLss+x/mdkUTutDrI2I4RSZB8osMg4lIlqmPhFinskaMzSMDr6OsQqbGaZVw7xuGWYKaw3x1h28VPDoBF01LPtz5OkZlT8iL3pYm4HNiUJSNxXESD8HEUC5SNsG6jbQyByhLLnR2EyyO86wSpABeaFQSIzJyIoBKixwvuZk7mlrhwghOe5SEuoWH5bUK0E66YhCY4pOeNcviW7B/OyELM/oDfpE52h8ixQJkq6rBTFC3QRClMRoOhG7iLIKKZNWkSCgpUiBfevAezQNQgakgqgjUXkUIdHRi5gEXmPqnyqKXprP8erW83McG7D3GlJfH4kb7+k2ww1a7qfGFYj8GW9IO1AUFLdfwgxHqTkWiZ/VyDxjcG0rNZYryeuv77NXWlx7i7au+PBH7yKt5vYbQ86nUx6dndPPAtf6iurJGfc+nXH83kOWZwvmpy1aCs4ef0wZItdaz0DnvDY64KiaM/ct2fXXUDtbxLfuEPZLwuwBvdLx0j/6AtnuPnKk8dkejRwwbxe42pHnDaiIzQNZNIyCxUuJl5FatDgRyA72sUqidOrlq0NEd9ppot+nCeDOl0gp6I16SKk4uHYTKS2n58c4n1DT4JNum1RqXWJBVy6xusneu2TgBKmuvXNUVsZFyfTZyOd0GP//jEsBnLhszC6Vd3C1IoirqOgvx+ZYrZ+IGW8x+OJXOo0mjW8DwVX097eRmUFqxe7+gG9963V8W+Paioc/+ZjjJ4fcfnWLwX4f99ERwbfsl1NEc8SH3zticTRh+uicxaShWTpm//qQnopcrxwSwd3hPmd1xZNqTrl1gNm5hXzzOvGNMZEpsvXc/PpLECVybHF2SGsPWOqaqWjIrUdph85T9UjfF0QhaVXECc8Chx2X2P1xSpIJqGPKaWdaooqcNkrcoqFetGRlhi1s8itixFrTrYGfMtcvfK1fjvV4/g2Jz/lP5Omg5kJv82m04ZnW4YoNildfuvL6JaQaLiEGF4Fa5+mLVBbtHCyqikZKhkVO7QMfLxuG/Qyzv8+BKbhhS7737o9458N3WPgZeV/xzV+/w+7OHtX8OovJhMcf3+fgzj63v1DSvv+EWXPGVpExtEuevH9EO59z+O4DmnnL4txzdPyYT97+IbuNp+cCB70xfmR5uJxiTY658TrylTHhizcQI4s4/4SdV4YM1JvkNwaIfoa3N/ELcPUEmQncYIkwkJlI7jOImmWIBDy1Csi+pje6mzQ6rWZRtyyblkxLCgmvv3yDG3XF9t4Bnz56wJ9+59spMewjk+kZ88WM1jtC8DiXJFxUJzSvtCZGLjFqxlgTQtc+vp4HnW5VlyhM8U/oeoNFh1B1j4kIwXcB1sXzl91+t5oxaesL6wqN9NyvWpCNpPDzbJDcIGa6GsB117muDHlezCXWE+2FxgsHU0IKlFHgEw2Aiwk+CTEJota1QwjIbHoIqYYfLlFNC7GOKEPwNHXNis4yZZsEmU5EACEGpAAlRSfa69cRr+qYJ0SXpdJaQQjUTUAYUMZipMRIReUizjWIJGWbbrKUibxA6UReEDwxJupIOiHiiMCUJUoXqHwLJQu0LIntKTgYxpLoYPvN24hywGRxjfv3hzx68JD9/RG7B4bBIFDYiqGaUIYF7330HpPTCY8/PqTxkpqMT5/MeHK/otgaMSgKtvoFB1rhyVG6IC8PiFtDJjsj+tKjzg8ZDgz92zuEYU5bWOrxNrWBZmeJVDWhmCMHEtWXjITEIHFTSe0CLQ6ZF8i9fXSek/UKFpNzmE1R/QydGfxoSIgS1XMY1ZBFja0dys4xtiCzOd7YJLboEzlI6k8TKKfwoiG6hiAzvLRIYzGZpl/mWAXWOYxJJZpSKrSxRJcyJ3XrqOoW7du0iHTEB0frKhwBF2MSXhZgMpMQzeiJztMuF1gFmh5th4qu0CHXtviYUM20bkJH3R+QKBKl/AW5hOgQBhF9Oj90gVMqMxQ4iCngkyK1cEkpMFrT+oSu/rzGZ/YaXK7d43mFwWtK0UvZoO4Dzzv9lXIlPRwhjSXUjuACrm4gRmxhu7dFtrb7DKyidWPquub8yTFRQTnWtDFiVIWVioKM88khs/MTJo8fU00qqlCA88wenrLXL9g+uEZe5OwPh8TCYLzD7hwgd7ZYlkNMpskXE4QODO5cg2JAzBS+yHGqj+s5nIJolwgTUaXACMiEYOkElRdEH/FE6BcIa1Fpw4O6ApV0xoLWBB+JTaJa172MGCXlYMR8UTFbTBEysZQ6IRHBd2UOSag6RtYGLsW+YV32l44lwxFi6MoRJITUl7i2C88o9XxW6vdvIvi66IVg7dxcvNh9z1Pvf/oaLg6LpzLbvxDjSrmsygvs3n6i428DftESvUdnGpVbYgj0Csut29v4EGi9x9U1wQUGo5z+UJHnSfOuEAvqasr5o/vMj2bMHk1oyfBRc3Y4o4qeve0xqsjZG48wTYFvcgY7B2R7t3HjEcuyoAgtCkf/xjbRS2KuCdbiipK2Ergq4I1Hao8sBVILCiHwQTBrUxWJ956Q9xD9PtKmvlTqChED0miiNbQhSQ3ENoBJSc7Q7alrVrBLiPqzPCKx9hNedDwX4X3O+kkv/d2ZqE8DRC9+g565r7BxzzaC1xeyQU8BA1fQrWfaoAsU6uo1hBho24CXAm8trfccVw0xD+z1+/TLMVvjfd759CNqGmzP0M9T7/b+tR0WVZ/JSZ9mVjEcl/SHkix3GFWRizlZaDg6fMRyMmX6+CFtK6lDTvVkzvG9KWp/DzsoGfX7NBiqLPWP653rhHHJvCzJRMDOz7GjAntnnzjICFbji5KgBWw7onKEvEHkApULcpHaXdo5uBDxIiCsQQ5GKGvQmUXMZrBYIK1GacUoz+m5gBY5Oit4595HtHWLazyta2naNiWqgwdSC47sOASEopMuCOubniolLpwFufKTuzI8KQQyJgBlxTKrVsiWFB2dWkTFBIlcXlqpZ0nEC+mMy1NtVRK/WvfPmVareSOeDqQu0KrV+TZfu7BZm/uJ+JzQ1AsHU0RP9E2C4EOgdXXScAKCiFRtAwQaR2L284HWgwuCIksMeqKLfKumpXUepVIEq6QgOIdrHVXUKCWIhHU/VPQxNW3LSJAkAoQuMhZCIKwkRokSPVCCtq3BZAhpaKKkRWJl6vkpB0OKfoEtDWaQoYclzWTGYl4hmxm4JT4CSrF0LVLmSDXCjrYpd6+R5YkJTNqEukQ9IipDv9Rsf/VVbv/mFzl+eJ+/+pM/Y/voQ34jPyb88AGHleP8ZI61gv/i126Q7W6RvfoK3/8Pn/LtP7vH8He/xK23bvJff/oRLkTsN/5TZmS8/eERDz74gP/+n/4xv/8PX+Gf/PZrHO9+lTC6Ne8AACAASURBVFmpCG5JKwQP7SHBGG5+rY9BU8iAywb4rM+oekw/nLP71ls4mXH44BFnjeT7i5ro04waEugVhketpGkjRX2Gx3BYDSEGdFbie5reIGJ0Kl1aMfWZfso6RqXwPlI1Ae8akA1WW/rWcP3GHsNBRplFtPDkfpGcSTxaBYxtWcxmzGYT7t+7z3Qyw4ZEHCElyQnup4CsyHTy/4UAYTpWPoGwGjM29HoF/V7BNKRrCXVLDJ65S0LEZWGBgIsO3fX9GeXRAvq9DKkEs3lN03gm5xOUhMLKNP+jB58WnpMeJSK51oQIyzY1V1ZNTYjh6UbLn/XY8Gnjc4zV037I2oR1iYuOgWfdxwMCeSEo+9zv7liV+iXCZriTaeqJKy1SS9xkkpIZ2iCNQQ80SgsyIl8Z/zpNVXH28CFxdswXyyVxcs7s4UfMpjWLZcudGyN6X7hGcfsunzw64X/6n/83Xr97m9vf+E12fMVusyRs3yH0tvn08JzpdMH//oc/pMwF3/zaNcr+kPHNX+0yYJ65bmjUhPy6RAWLER6UxJs+NlT03Bm9/jaxGLKczGialiMXaSoHCLSIlAJmPrJsA7quUdIxDwaPYqtZcHbSMB7v07aB+XLGivmqqpe0bbOm0e/1SoIPnJ+ddoYqrktGQ/DEENbPVZqLJt8QAsYrtEyVAMH7VKfevV8Zc9kJ+RtwAC9lqjeOrUb4rOkfNzyv1WevXNIvNAGBEMgsR4+3aKdLnFsiCoNCEBZLaOrEMonADEq0FFgFrwwLbn3tNc6PH3N27x471SOoliw/XVLVjmbesrdd8oXfPEAOx4h+STF+GW0KVHWKr+dsHT4k5iVx5w6NF1RO8Pa3v82/+Zc/5vf/y29x/doW04Mh3jmCb2m0YK7OUVswHmRokVgpve0jBRTNGdJYBsMD2rphOYOJFzypHMSUPB10pZ1PqoCoW8xiThMUi6gZVDW9rGVroCkyhTEpgdfdpkvlRCmBG1Nm/K85fVJVTRJwj90+roy5LGT6dyiA+mnjmQDepv34KZ/fLI3aMCNXc2uXzvbsc18OiNeleyGs94tVQn19thgv+nHihe2aVRUAf/Huu9w8uMFv7d1Bl2O2bt/mP9v7z/mP/pPfQVqLVIYiGyCMYftgh9HtA/bfuM1ids6T9z9iVB0z7C/g4/eYVS2z0wVSCd768nXscEh+4w7/z//77/k//vmf8V+98Y8ZfOM13vjqlDeEIOy/zjJI7h+e8/DohP/1n/05r7w04o27W4yH1yluvE4MDo9kqudEpRjfzVE4jIwEnRNNRt5MMHFBce0ALwzL6YSllzxskvYhwpFJiS1yTlG4KDG1wkfNorzF4OUt/nG5z6NPfsK9936MCx4f/BpxXCwXeJ+OaW0o8h6L5YL5bMaK4c9aS4y+k7m4IEUS8oIWXfvUN2yUQktFmeUoJTFG0TjHrK4IcZXETn3xVZNs36Ve4VWp8zp/kf4fYhdwqa5laANQuZqHW827z5y7P9UGfb41/uKivSF2+k7JUXTO433EhVSG530S4o1RpBvjfaq7Dt0fKQghOWfBpxsqVxGtTHWuwYekAxQkUibq1RBJVjkp/6VFI5Ojt1qlQnZOnrloKPPO0+DwXeO21El/QGcaaSQ+uoRGyeQE122LqBtE2yRa5wA+JIrlSi7pZQ3jkBTCldCIvCTojMk5tKGmrc+JwhN1pKkrFk+OGTWOvrJMY0v0kjIfk/c0u3tj8p0h2Xaf7a2S0VZJlRmeCAiJUI7CJuRsvGV5aOCT0zn3jhfcO1xwVEtmTiJlTpCSJ3WNFIGB7GGFwsmk0RVCZN5NQCUcUSpMHrACpGtpiDTOozoq8qNGsfQyZRLJOIwlWikGVoLtkw/HWKUwSoBOE9q5LkMhVdKwwiOdRllN0csYlJbBoKQcWHLZoqLD+DahmjiIjuhqYttA02JixApSvyNpexaAVQJrNDbLcEETUGANwhi0TsBxDB6lTKLr7/QnknRvmoOreSMEqHV2ouvJEh2zn+io3GPKoBKToDSxExNebfAdKqBE6BCbdC7vfdowrvax/AxHYq25THn6LKBiZfnSPz9t50nvZWXMPmOfWZ1aqE4JXamETIWIdB4xdwhjEBZcK3FekBmN1BC1IAhPO50j6oZSG1rpqb3AqIwsyykGJb1RTm9U0F8WFKM+9HJOYyQXkKlInklUT9MbaloUk2VN3UQOJxXLkNOqgFQSqTULF2ljS45FSYnrGppDl74yEUTsBEl1QIWACEkSoO0Y9GrvWHqYOIEWAYVmJhReSISKLJ1ke/caUmuiTPPEe8fxyRHT6RThWyAJjweZemIS8glCKpSQxCBTTXzHOqR1SkbpVWJDKQprcHWFdythVIcQgkIrhFDrrD7xOXozLzguVUBcOk0k9S1uvjfNiHUC+zO+++9Slv9va6yyq1FKhLZE1RA6coYYAnJZpTLZPNnUpk3sqrZQ4ATRRVxV4aYL+j45DHUALXRaP2XJYHuIHJSIXo98awA65/RwghMCbwQmU/T6BhNTVrwOnpNpxfG0wvRqzueeEECZjMZLFm2DjRojDabT/QmAjJGMiCIiSILX2iTiHhE9LqQdvvZJM/K8FYDEADWWhdB4Im0I5FlEyohuIyqEtVC6uDr/Nu/lM1DS9ONlBCr5JUkkNfjV2vHrMty830ca84x5/fdjPIU6bfxun/VbXg5s2HBru+BnfYJn26BVGVdcI1Br/rVL37+ZBrxI4MTuezeQsW5476nbluPJhLwoOZnOKEY1bYR+f8Bo1EdmBVFqTk8qFlVDO5+itKTXN3jX0E7mFC6QaUsVGwiSzPRRVtMbDshGJcWooDfqkY/61FZzGqBQifm6KBQSRb8xzCdwMl0ymliOJgWtbCl8CtKjksycQxDJpEUJiReSKFKfkF4nDgJRepSJKBEQPhBwqScqOERwzHygiZLUvKJZREuwksHeDeq6YX5+BlrQK/u4rnz80aOHNE2D8G2SrjEZqmk6XylV32ijAEXwbt3PlMi/UjJbycRgrKQk0xotFYXJ0FpiM8NsuaA5TYFYINK2Hh9iIrmAtU1DiAuEahM0FSQ/a2MyXlp+V/aATXKni3kaL+Kn1Q/PyCJcJAE+n//2wsGUd556XtNGTxM8TeNxLrCsUjlV1aYyPGV0F3jF1HQGeNdCoNNPioSOsU91lOZKCZoQk5Cf90gJRQZaREQMSQSaFFMFH7tyK4kLK4rgxAwltEhliK1nWc1p2imKhGT1BgV5ZlFDiafl6PAB3m8xGuZUyymTxQwWU2iWiEVFdFA1jqN6xl+e3Gd39wYvvzTlwHh2dSCODmhkj2+/3fLk5Jj3PvhXmLxh76bhWrDc9hn90RZ7/VvsvWHAWr60/RLCSLQ5o23OOXrvEw40/N43b/J/f/8D/um/+gv8YoIOjlf/+XfY2x3xjd/+B+wuJ9y6tsV3Hp/xnf/rO1RHDb4SHPzm72O39qjqTxMLWeiTGUW/Z7HxDBMfsJ2PyeUu/v4H5LLlay9JtnPLbww9p1XDw+mSR0czPj5dcn+pmHoN4hZeDln0R+S9nP1rJdd3R7z08h3GhabMJcakDN4nH05oa4cMniaAdpKmdNQDx2t3R9zcL9jeMmQWVDMjuhZXC3w7p61mNPMJ08PHMF3Sr1u+fucmLgQenlWpVM8Eygx2+pKsP8D2+pzMPZWDbH8PaQ0Q8G3LcjJHyZRt0kpjlEaYxAbVyjrBzFahZKQnXVdS6JDRoAjEVhKlRHWaZYU1JG6gljYEGucxWqOkpHIpMdC0XamqNITgWNahC8YuEJ2f5Xiq0KWzRPHqMVhbqTUe1e0ta92IeJEtWgVQsluzL4IaJB0wicsMlfccPjxGuZYhLdgc8pKj08j5DN746g69IXz3L/491dk5By6jUIZ+7y7sSOKB5FoxhKzHsj6l9QuOH5xShMj/+N/9N3x6NOOP/+27+GpBWM65OXiXnZ7hlW98je2y5OTGmEXb8sOjGf7jc9zh+4xe/xKjN75I207xYYEMGikU/VyihMPyhExa+npMnFSE9pzr24J+IbhRBnwUnCxqFnXLg9MFk1Zw3EhgQBQly1wTjeKakBR2m9/6vd/HykjPCM7Ojjg8fMSf/NEf8vbbP6Ct6yRSbXKcdChtiMEBjizLyPOcVW2Cc6kso5dbMmvYGQ7YH2/x+s2bvLG7y9m9n9D4JGhdLWcoo7nz1heRVm54MH87juCqF2rNwPTU658dxG32ZPyiD7EK6q2hzR3HJ6fUsyUj2iRH0h+xqCUPDyP7N/u8/OaID99/l3vvv8ues5Ro8uE1dK4pXzVgMq4XY5SNqCzgmgn+fMni6D+wWNb8629/wGQ6x8/OGBjBzVKx//JtDl59mXHmOLi+xZ/+8G38DwKLj2eYcpv9X/sWQThaN0XEHiIYepnEaInlFC0iQzNAhIB/+AnDHuyPBdtFxrbMOFvWLBvH0emCeeN5VEl8zIls0Zo+dWbZGgiGQeGVYFBHyqrFakG/r7BGUuRqYzoLVt3uP3WKr4Io5/Bty+LkBN82hKbGB2h8pGkq2qbixquvYXZ2/1bXzs9txA06c7r9fsNmPBthenoIIdYfilzQaT8rT7cG+LhcnrU+T3eWS9fUCaCLVYmZ93TZvS7x1fFJIRLBWdPw4PCYybJl7v+UN18/I9oBYysZGkHISpwwvP9RzYPHj/k//+B/YWenx+/+7jfZkTn7scCWA/rFPr07iaHyoL9DEJFFc8zSLZn95BG/cvcOX/0f/lu+9/4Rf/jHP8bPztHBcXf8NuPtEa9+8x/QG2tmt3eoNHzvyYT2R8fEpWD/176F3RpTt2cQJDJkqfc60xgWaBr6uoeVOeH4CC09t3YFPaO5W0SWrWdSNZxPK07mDU9qycJLItsEWbDIc7LMsjPc59pb27z5pS+TazAKHj64x/HRE/7Fv/hnnBwd0dQ1UmmMzdBNnYiScAgR6PX6aK3Xfk3bNmityK1h0CsY9Apev3GL/fGY0aCPlIrJvEZISX9Y8N69j/jjP/82idRCcj6dUzcNeZ7hQ6Rt2zUSjJSpKi10PVlr3+MF1t16rj3fBq3X8Gck9P469ueFg6kQE4rReJf+tAmZ8jFRRYeQMvXRJbX7GBIULzo4jgghptdW4pJKJofNu4QfaC3X2eAYIlF25VySrmakK3TsnDwpJEImGEOQUIUQA01XMugaRxCSIASNsygVaerkBrq6ZTGfcXpyTF01IBKEGZwnBo/zgZPZhMNF4PCsphGGmI84cXMGoSL2jnAy5/2P4Gw64ejoMTZzKJmhhaWIOa5qOcxnqL5GWA2zQFQCF89pmimL6cMUhUfB0dEZ87MpVVVB8Jh6ybRp6H1wn8XCMbawUIqFMLSipSXw+PED5HRO254SowS3wGhHkdeYOEfHJYdmgpWGsDglk47YaHrWMMiOiEBGYBxadOEwec4ikpp/lWE2NIjcYPoGWUhCTzEVgmUryIVEhMDUNTjnyHAsG8/prKWuBU2tOTqJWByjPGk/2L6BKGnriHcSlUdc9HgliGUFjUfbroxvWtMGj5MthfaMTYvOe6ish88CuQdV9hFK4UOLE4KQtal5MiTKfqVSaBDEhSFQgrVGlFECkUmUXAXtjhATAYCMESNTpKFkqvmXQqT5gesY/RICJNcU/ZEQfafMLj8vSvy3M55hKNd7CTz7Gq8e2/h/ajp+0SAx3aPWtSzrmqOzc2JdM2nnBKEJynI2lcyWCts/p+jD6aNj3GxOr9EspGKqLUKDsECe9GimixOadklTnSJFpG9zZmcL3HROXdVUywbTLFlOI/KTR+SDAbn0yEwys5bYtnjtOJ9NmX3yAB9qYvTEdoFEkNsGJVwyZsJgRQ5uifA1s4miX0gGxqZSV63IQmRofJIByEzaD5FUhcQbhbGJqMKaEiUETkpkCT0v2bv1JncqRXQtMUQaL2lbj+3dQcYWEytGw5ztrQKpBUJCVS2JMdLvFVijGRQ5437JrZ1dhtu7oAyCLosfcpSWhKbBxUBEILW+oGK/+og/h6Mo6Grn1/ty5xhtGKP4rFN+hkPaxWK/DKY2hvOeum04nU6Zns2YNnNkjHh9StVIjk41dZvh6fHkk0dMjyZkbSr3qadVqsooJFFbYjYhSEcQLW09xbkK6RxN0zI/PmW5qKmWNY1whGnLXBomSJpFS2ki0y6J6bXA+4YHnz4giEgIDdHPwBsy02KUx7BAEf4/9t7k17IsO+/77e40t3t9REZERraRmZXVUyp2NkVKhASY0MiwZEOceWJYHnlse2ZNDP0LogceWAPDMGjJkAFCBiiKFKtIVhWrsjIrKyubyOhfd9vT7s6Dfe57L6KykpmUSZZkbSDw4t3mnPPu3fvstb71re8jl8skKGQ3TEaCxa6i1IZCa6RWGCGYSIfJBFGb5GMZJdYoukKSl8m/0ElBh8B2EWWhExGjAlmTQgQpIt0A8rqQAJ9pIcg0jMrhPm0ukaStgELwl7SnZG5oEDL1wmoCyAQcuq5hiOpQWQaDBPQnqZ7+rI+nDHU/4Zo/yXD3wrR9+/sF6HalGnV1r2D769MVpGfBlE/8yJ6pOlzUouLF4S6TvLBljFxe01CHoLeWruuoq4rles2T+ZKlbchtB1mJx/DgieDsfE7sLL7u2ZysyERLQUu3aplnGSIHoSWMa3yMrOoznGux3YJcGwptaOYb3Lqi3nRE73hoN6w7i7z7COsi00zQZZom01gdccpzcnICmxYfW2IQYCu08uTGounQ9GSiQAkF/QYjPfVGUxjF2ORIJdFKUoaAyAJRa9qY9iAvJXWpkEZhCoNRmszkCCHxQLZznXHMuPXiV5juLojOEgL0XjKedUx2G0zs0MJx/dqEstQok2L9tm3QWjMqC8rMUOYZt/YP2ZtMmIzGSCmZNf0AYAuej56vVGtiogdx9/5D5ssVddtiXbKvSbYIibWUzH7jhVfhTxtb1cAYttLsl49fzMtPeP+Fh+NPbk6ffsJPGZ85mXI+sGk6WtvT9h3eQ4wSkY2IUhBCnah6bkCzpUQSUSICqbFtK8XoQ0hFSAV939O1/aCEZuh7m/iULgXZlDmEJDJA9MOHlo5jMklSeUzcay0UbbBs6pbQd8S+Jzk1S4wKtK0idCI1bEtD11UsF2dMZ1OmkwnWWVzfY4OltpZ3Hp5xWlnuLy0P1xveW7XUTz6mPX88iBVIHDsgBFptKHqJ6Qpa7zhzjrmzbLxDC4cUgU5kOKD2KbCxMZAJTSEMuZYYJVj1kS4EzusGFg1/8OhbvLo/4ddeOmI93WM1O2Ru5lRVzfvf/1dUtUOYHYiR0G9S+ZWQEAX8QDuLaOVQEvJcM1HwQgZvXpvyKy8fcfP2hNkLI+SeJuYFy35Gp3ZZ7E+Zk/NjW5ApSaMk7x97zpeB3UKTIdgspwjr2VGOxXLDex+cY11G73LmDzYcFZHDvzVi53bG9PYMmUl6Nxly4ltMbcuhbXBVR+g9So9AKG6FQAiWzq7RtiJv53gh8UKxGwQhCloXcMHTtWtcrhP90AuCTclUplPDZggR7wbzXimQMi2yMlcUmaZpLX1vsS4CEkKS5B+ZmARJpAaRmiu7ao3tWnyW9N6VyInI5PJNosAKmaNNjhDqz7Uo/23GJabHU4nUVdWlpz2MPuvYqjeRzLc/Q7AbYxL4qKqK8/mCtz/6mHa9xi2PcXVLv6lxcUKg5N23e7T2jDxo52lWa5qu42RdoehQosPKAicMm67GeksTPEpIZmpClimKkabpI5sucj5f43zLt0+/w3hS8htfe4X96ZTV3nWaSc+qWHHvwSPuff9HyHyGUDmuXhOdQ+IRBKTocS7Qd55MOzLjKUaG3EheKSOH44yff/MFdnYKbj43ReQFsjD0wWDjiKYs6HXOY58C2yhh3UeOl4Fc7VMeHvCFX3yel7/YMzECQuD9u+e0Pbg4Jg89u3HJKy8UvHFnRLajkYVguVrjfWBntoMQ4FyPdx7XWSaTGXoyQ8ckVTsRyfC8r5bDtygwRUkx200o4aU80+eZDEPgKTBGEcLgD8izc2w7tojzJajx0ypUyfuE/5BQXRld17JaLfngwUMePT7Dz58QuoZmsSZ4g2MHnTny0pIHyAK06w2i7zltGnz0ZKrFI+liRtt31F1NHwMuBmbZlFxljKYGKSS1E8z7lh9vzhAPlojvfch//MbzvPrcPsXsiFYalDAslg3f/b3fJYgMmc/wXUtom2H/iSjRE6OnbdL+V2QWM6zTG1nkWgZfe+0W1w9mHNycosscMTYEFG0osaagK3POvGIVJEFJauDJIhA8TGsQNhBqiyZgiJwvGjZVz/laQRB88YbiYCp49bYiG0mK3SxRyoRIIjEx4n1CxUVeIDOQQgMRE1PPIiIifEe7OCUgkUpR7h4glYZtH9W/C0nUlTV1NfDkGWzjWcPdVGW6XMM/edxtBeEyUdoyqa7eEz7Vt+rZC/2EgDYOmVT06Tq2PkghhKH/Xg6mrAxqctD1HUoquqbm5Oyctz66x/KjD9g8uE8mFFJonDwEIXnx8Dplpll/uMI5x6a3LLqOyvZoGqTwdGqEC5F1V2ODp4ueUuaMVUlearJMMq8DtfM8Pp2DXPCHD1a8dG2XX33zNs14Rj3ZZ6VX1FXDD37wp6wrhyz2wEdctSbRuz1SpL2o6xzeB4rconVkPM6YGsHLeeT2tR3efPk6zx2OyQ9KxGgCWtD6AidLmjKjEppjrzEiAcsnm8i6CUxGz5OXt/ilv/MyOM/ECNabjrsPFviQ42PBLK6YiJa//tUph4cZ+b5OqtDLFZnJmEymBO/wweE6S3CeLBshpCLGVMFaLM648crL/PIvfQMfwYfIv/xXv897H3zIg0ePqeuauUi2NXUz9CoOczKKrejM5dy4quCnlMRoNbQdhafmylVho89Dyd22aMTwCSXVTxmfXRpdJu6j8xYZQ/qwEPS2x8eBgjdUn7b9TMlMMtALCFImrfotsi1iMubVmiyPGJWEKIwUF7LqUoBWiihSaVHFZJgWARFCUuEj4i0oJclzRVACo8BpgQ2SwiiMkkgRiB68E0ThU8BkNMpI6rqmbi3dYo1rWnofqDvLcWNZdg7vHNgO+jWFcGS5Qvik5rZxG7xQeK2ScIXtaFxPYzvW3tMGz6H0GAGL6OlipAkBD7gITjgskRgUhZY8v7cHSvL+yRNsSOakizbwvVOH7yPeKbpGY3uNMoasTCghISJRBNdjXY1UGVKVBNERg0tiID5gfYsVEaHBxUjtAntnC2a7ObdvzplMSpxq6Bkzl2/zpM94b5WUBTMzZlkXVF3GSTZBoWifLMH15LGjrtecHD/C+xznS6xacqprCgnP3yz5jb1fZ3awi5lO8FFgXZIQDwFkaRAm0AZNjAKTRbyXtKFHhYDTDmMMWuvUPxIFoaoQvcXGFo1gXATaxrKuW0J0BEgS5TGi9VAlsTbJe24bowY1yhgD0SdBAZ9yc1Bb9amQVHD6pMBmiixVwKQkDMdIyChIJZAEvEvVjr/8IYZqcOSSNiyu8ISHv/vi16dL2j9hzPgJCORPC3IvuetDkOIcXdfz8Xvvs95UvHbnNvVyyYMfnNJb0MrT+obeO1Q2QmcZLFf4tuF8fUbbdSzXNVPtmGhLExpWUbFxDhsinR8ADVFRGo0KObPZlL3rUx48scyXfSpqu8jbx468TslXcArbG1AZo2mGNynRUTH1djXtOtGH8zHBORAtvff0XaDu61TJzCInmaJxkvHYcHRQsLM34ujalKjOCXJEHca0IeOjRU4bNDqf0AfN2hZoqcmUoV009FWHiUkB8vj4BGsjPkxQvuakP2a9iJw9gi/9/BvcePE6UqrUvGvd0BSvEEpiCgXaJIVAmar9LkYYPLeESGqTUagk+z/QN9XWM1B8dsmHLVK8ZRlsAeNPmhtPmW1eSahCCJcU0gu4WSJiTL2u/z/Lpa5+dlsBBO8cJw8f8dF777O/u8f+/g73vrek8S1SheQV6FYolaNHY+Smgq5hXc1xbcOys0gC09LTelh1kcZ5amdxMXnm+a4mkz0yFuSjgpdv3WC+XvLB+hxJgkLvLTybaFEBMIq+1fTBUE4yvNB4TTIpl5q2W2N9j8nGQE6MNd47qj4ibc+6brAmstTQ+EfsTBZce1gwHmfcur2HMgVendLHgjaOeLTWPG40upiAzFjZgoii0AWx99hVmxQxvadar2iblrrNiEFQP1gxyR13D3puvnDI137xS6jcoLJsAHsiUaTKBjoFF6l9IPXq+hgI0SODQESJ0QaUGkDKLTIu037wOdbPX9kYEPunl1bkou/3mWcu/qIIW9+un0h0rizfpwPXT9snrrzpp+5B8UqiN9Sa4lMHeuqYlyqPSeZbSYmSiiIvmOYFttnw4fs/YNJ37E4N2ofUZ9Sv8EJihcZEgWgb2r6hrTesektjHUdZTyYDc9/SRNhYh4vQB0EPtCKw6zPGheHG4QFeST64t8EGj4ywagLffeRQOxHpJLbVOKvJioxSSHyyWENFjbMtXb9B6QKlR0TRgrdJ5M16mm7DRkZcBme148mqZ3c3ZzY1XL+5w3haEtQCT04dppz3mvdXGVLlKFNSuYzWG3KdI6OgOt0QrcdET9M0nJ2cEWJOiCXn9pTMrwld5Ogg4xt/82tkRZY8RhE0fVLxlkIhjUToiEspLSYzSElSj44GFQvwHrznpZdfZTTdYW//Hov5grfefpuqrpBte7GOtmvrIol+piIphpgmxCseWHHrPiUuHntKZn8798VlZXrbR/9UEj8AAZ/H4OYzJ1NKS/Iyw/ZtaohTgigF1brF+QhCpmQqJBNTMVD/Ygh0gNvW62JqRE30K4kyAqMlWka0EJjhz2mb9GFl2uCDx0efqFsIvE2VKZwnyhQMS6MoxjnCQGugQWLRjCeaUS7p1kM5326XsEfKnEwapK1VOQAAIABJREFUztZrziqLXTf41tGiqK3nQW1pO0ewDqUbZL9grD35OIM+JP8Xv6GLmlbu46NH2Iratqz6mi4kGeXnNYxF5K4TVEBHkoEPSPoYkHhUVOioee3aPmVZ8HBxRugCRsB5E7h/3zLei0waiUEjY4YeFZSloxOSGARK5anSV9dgCsimCCfA99jKEnzE25YNkTnwwaLlD+4t2FUw04Jfe23M7f2M0exPCVFyeqK5t9Z853GBz/aJxTVi9hyYfaI8gmiwi0dE2+L7iuiXRPuAGAsIIx75e8RwyvffWnH9aMaXv/EGL+qMg8MjXBC00RO9ICqJ0ul7rzYWFyLTQuC8ZN2Z5CWlFbtlQTkqhqbFiPMCYoPyLRqJKcB2lqqtkCoiJBfqMVmi+9J1HUIKpFF457HCXa4fnyqf1qabsi4MMSSJdNs5+tZRlBqdZ4maGMF2Q7IWt9LoCh98Ml8NP5lM/WWg7Rcl7vjMY+kCnglSn+alP32NW/PUy1dvlXjiUwjRlaNdoDoBay1tXfOjP/0+1lr+/n/1X7I5n1N/+A69b7B9ZNnURBfJR/tkozGcnWKbNSfLJ7Rdx6rqGOWRWRk47gULCxtUoqL6DKJg43p2jGHiI9dvXOPFL9ym6zas1hsykRLib96zmJHjlkiWCTkGYXJmh4FWKBwCrTOCjWzchigzxOQG+B6VQ7vydDX0TU1wPWcq5ePf/mDOVMNLE8Ertyd89Qu76FKgckG1MGwqzdsflSxdiZ/dIpoxsThMRsFiRL+qsFWDbVuC7XH1Y6KPRD/B9ytsfZeRWDNRK8b7Jc/dPCIEcAGaukFJxagoUEphjCIag5VJUEUI6Gzy0xBBJaptVhCFoO/tsGFdblpPf/efbWxVCIfpchlUXd3IrlSjiKSeh2EuXh1b6ulFNZW//J7Dn4WxXUPeOfq+5/4HH/H9P/wj/u5v/ue8cOcV7P0fM+/WdE2k7SzWtuTZIeXuPjQ1tBWL1SlVvaZyqSF+ajTeehbrhiYK6qAIUROjonIOg6R0nlIbvvjqLR48yfjoo7toqci04r0zT3NuuRUEo5EkxxBDYLY/okfSCoHqNbKDbnWGbTfI0SFC5ags4tqO+qxNzI92w5kELeCtj1coAa9OBEczw69844hirDBj6GpNvdZ88KjgR+cZYXqDkE+J5TVQBcgpvrP08zWut6nvsD0jdBuIE2KAtzbvo+KGveycv/4LX+b1L79CqRS6UEBMQG2MQGCraWUHFoMS4HzEeRBRIYJIjAOlsNaztVvRmbnwifuZHuIT/zuMn7Lut3vjRQL0Sa8VyEs9sMtjP7UFbXud4gXYdgHJXKGNf9oeFIeS9ZbqF8UWjNk+Htj25Gx7prMsZ1KO2C/HHG+W/PjDd/na88/z6nPXkV1DsBY/n9MGRS2OMCEg2oq6XrJan1L3nt4Hbk4iYx2pGsEqwAaNDwofDMI7ZOhQriSzgde/ekA2G/Ho+BGx68il4LyOvP9Bz961wKGVZGh0zCimJXriqIQCH9E6p24aNmFNLEoodxC5RNqW6qzDdY6uWiEIPJYg4hIRHnOzFFwvBN/42gE3nivJJoIYJOvzjEdLzffulfhilzA6JOR7kE1BTiBomvMlvuuxTUuwFb45IYac4Atc8wDfn/He90452s9542uvsne0S4jQO09lKzKTUWQZZhCj2HSpnUdnJpnWl6PUzgKIvkPYnje++CVeC4Fb77/P48eP+fjePbxzVLJKsT2pGhqFvADsrs63y/woCcVcAHrP7D9X3nGlOrq1FolP0VDT/LukiG4rZJ91fHZpdLjwmlKZSbzpEAfTPYFQGh+SIEVwSbteK4lSCWmMgxpfWlSpjO5dIA5l9C23I8S0kHqXkLmuDyDSP6NSWU9rQAl8GFQBSUmV8C14B75HCyiMQEuZFFXGIh3GWRQRo1MAT3R0Xcdm0+GqmtBbrEhKeLMMSqnolUSZpBJXhkjRB8ooEEKjtaGJkmXwqJjOfV0G3swl71jPPRd57MGIyAZBsjbWBOJFIBJjZEmgjY4fPLjPbJzzN760j0Py4VKyaCXd0mC7Feu5Q8YKiSXLEpVS90uUVoxmU6LYw3PARM+Y6Al7uzV51jM/j3Qu0mRQbVoefHSCbStsu2TtI12M/JsHNW+dtuR5Mk++lU2JUfDKvmVhl5z0DmJDdCf03bsEF/DNOdH3BNcSQ0f0K4g6Ta2wgtgQZE/VaP7F77/HG+eCv/fKi6y94HurwMwFZjZVjJz3bIbejvNGJL49yWjONnDc1pzNN2hVoISmFBqhSoqxReDRuaUIgrKx9LbBuvaiaTVX6W7cd6mSFIMnipj8Dwbl1Wg9xIiPkGTBNSGEZK4a02ab5qpPEsUCxFB9CjGl+kEOSZp1qf9vGOfn5/yjf/Q/Mp1OL+b61Y3mclyideLZpz7D2N/b43/6x//44hxXq1IXD/EsrSM98ZTs78VjW5RnuOYBMPkX/9c/5//43/+3iw0zxlSZUyIp/KRq8FBlOF+QmZx/83//S0JVY+8+RNqO0ja4PimQffz22zTR80LoGQfLmyPBudZ8z3tWwvOxC5wEwUpIHAUBRef7Ab0PdKHHxpb6fmQVNtw4KnnllTucNpp1r6jOchyBs5MHKCw61uSZIssUpl2hfM9kbxc1K5jsvoaWOXv5AXnuGJUN9dpTbzytSAI89+6eU61rVscP8b3jg1Xg7O6aD5c1WS7JjOSl/UMmWcntXcuOh/vtE5wvCKGh7SJN47H1Gt8NyZSzhG4JIRKDAd8R3RKvepzo+fDhnOK9c15/7YjdSc7DJlHiMiURJISu6wOurQcqUyQf+gHt4FF0enqOGOgtmRZoBW1T0zQ1f/Ctb7JYLmjb7mLzCjEQ/NWkJqKU4h/85m+SZ/mV5vSn59fVab1NqLbGnleDzqseH5evTX/LN7/5Tf7JP/mtz7cA/r0Y28AwATS7ezNu3X6OkwcPqRYr7PEZedUxzQp6FTFEDm7f4vlvfJ1732w5Pn/Cy2NN0BnfWfXUIfDRpmYTIosALmo8eaK1+w7nAjJCjC1zGuSf/Anjacbf/tVXWVvFsleEucHXitXihGoj0WGNlpFRqVG+IWs3lJMxxd6Y8c7zhCjYzQ8pjGI6meFdYDX3WDwdnuMna85PN6xPn9A1FXc3npPOs/jjx2SZpCglh6MJt3b22C0sd47gYXdG1W7wscNHzXrj8F2HrVY42+P6nthviK6DYIbMaE4Ull60HM8X/NEPjnnlFbgzGbOwkY2NTEJExdSbFmKgc4NstABFQIlAdBECbKoOKSRS6GTboSD4QHQBk2foPPurnjx/5rhaE/qsr/8846m605UqmNge66c2/qf+5KvHudxfLsGZCxBIyqeAmq3dROqhT76hSkQyLZhODNn4gJ39fW4qzaQLZCHFcBQZaxt4ePogxZVjzYH2vLSb8cNly73a8agL5A7OQ0aDwlHiY6CzfQIYfSDWPUur4N132dkd8/Nff46gNCeN5rxR1HODbStOn9xHxRpFn9aPiOTtGUorJru77Ozuc3Btl3E2Y2ymTEa7aN2zPHf0NtAKx6bquf/xnHa9YnN+wpMmsO4j67fPmHwkKUrFKDPcObiGBO5c65nbFce9g1gT7IhNldg2/XpBsP2wB3XEbk2MEoIiujX4Bmca6nbEd9895rlK8NqdfdooOLEi9Rv2nnb45j0QhWDRWCSRPDNEF3Cdp+sDfeeQUiNQHB7eoCwn/Pqv/k3uPbjH7/7+v6ZtW/wARAvEkFylavHF3LhgyaRXxauT7Oqc2jJ1ruIAz7wmDiyIrXcWcCFo8nnGZ0+mBjqGVAptNLYPKZmSqTFfGAUunT8JOVhUnnxl8JcXnEzBNMQw0DxgcEnlIpkKEedC8rTyDikjxqRSotYSrSUSge/TphODR4SICH0KbqNDi0svJIGkyDWSiK0T9cdkCqkgRoe1PW3T4dqOYHuCSuqBY6MJSmKVAKlBSEYBChfYkQItBF4b6iiTkedw7j0ZeF1LHviAj6kKJCK0gB+uZwjjL0qUVQg0EeLpCQdtzt/5hdcRJmdzTxCWnpPK4WxN060gdkjh0ZMdlBTodoPJDaPxLtKMUdkeB2rEviy4fXvEZOp4dGxonGQ1yTg7W3N6Mpgv9yv6EGldZHXaIYhoKdjJDKNbY0wWuD52hLrirG0ItOBK3HqJ6zuiXyfhBt+nOnV0F/BAEiVPAXhnO779w8f0Zo//LAoqDx9WgRshonykqi2dtdjQ42OglVAouDFK8rl9n45hXYMRESMzru8qciXJ8hIhPDLTmNyRj0b0VY+zAS00UgqypDSN7SMRjwjJfBcp8D6pROLStQcpU840BHU+JMM5qbbzdBA8AQRJ0jpEjYjyIkn2Q5VrO9brNf/0n/6vTweWV9ZWWtTPIvWX5e4/e6T3/sN/+N/w3/33/8NnXtZ/nrHZbPgv/t5/yh//0bfSmWOi+CohyJSgLDKK3FDmJaO84Buvv87OZMY7f/wdst4yOzvHEMiEp/AZwWtOH9zjtFlzdLjLNJc8P0qmfzFT1D7iHSyjoBYSSUaMEhua1DPnHW2ItAH6E0vbrvj1V7/CG1+8yQ+fCE7XkftVT9V5NstTiBYZanamE3I5RTUbjK0YP7eDmeTsZvsUMuOaHDGdOvYPR6w3kqqWtIWmBTbdPYKaszg7puk9deN4XHX86FFHYRSFUZRvTtEHGQdjS+E9jytH8BkRh1s3bOYbfL8m2AbbtYlSaBu28qWCiMINAiqC43lN8XDDl778Iju7Mx4pBz5iRKII9s7Tu46m69h2MO3myQagbXr6vme9WSJRKJlTZoLcCE6PH3N+fso/+z9/m3v377Nary+CkxACziXz4S1it7+/z2//9j/jzS9+8S90nhVFyW/91v/8l1LN/SsZP+3veqaiPJmMOLy2z/LklLP7j2GxwvQ900mOUxKi4ObREW984RWq997mVEauFQqtNH9a9bTec9z21FGwiSmIkRis7+ldT2cTsmt9ZO0a1Hsdr79xg7/xa1/n0Urw8Vxwai1r62iqBT4kQK8wmtLsI/uObHNOOdGMpzvMzC5Kl1yTI8ZGcP1GQYiC5crQa0mbScy7x3ThjM16hW1qTrsATeDeYo2WglGmeeOmYC+bURaCGyOYn6xorCIKj7NQnSzxtsV1S/yQTOE68Ek9GEDhEDLiFaw2Fe/dX7JzsMMdYOMi531AC8hipLMeP6i2BiJeCEoVUDIk/yqXrAYgCQ5pJRBZilei90no4xPu4T9b40r56Cng4wIVufLQ59l/rga7lwnUs4nQJ5376sNPnSqmB8LV919NprZvGi47/QspEYiDpLcCowWjUjLLJtzIdxkvV4w2FYVM/fMhLyH2tOtztJHEfMY0D7yUG+7VLX30zF1AelhLgRUKSYbH0vsG5z02BGzoWPWg7nuOqjG//Cu/hC5HvPNEEOaeYuPo+4amWSNi4k5lch+tBGazJCsNk/EBMhshzQ67smBHZhwelZQjx/m+ovOSZqQ5mzcsq/v4IPCLM5YusOwDj++uEXjGuWJvXHL0lX3yUvLczBI2ntO6hdiDLGnnS5q6xbcLgu/pmya1OrhusCNKFgaSgJeR3go+fLTC5zO++pURHkXXRETXolyyEAgRpFEgI7b3GAm7ucIFsN5jXVpnSmqUUMx29plOp8gYGI1K/vCP/wjn3FNMicuWxMuJc6Wj4Kkk66cr8V3O+4uknqdjrq0x8NPV08++93x2n6mY+PdSSvIsIxCQLpmwOh+pWot3PrnmhQAhYjuH78PFxYsYL9yQU39JSq4kJAUePOMySwlaL4k+Ug7cZO8CQSkQGjfgD2acIwdNfy0iUUeMkOztgo9pGsiYcPXx2GCUxCqQMpKX0DWWxWKdBBR0pFKB3kdElmQwx9kE3zmaJwuk9ag2cEt4jiaGB51jHQRi/yUyk7OnHaFbE88tD23Hh13DAxfoERwgyIWgQuERqJS7owR4wEZxMVk6BOd95J+/XaHyyDxOKQvJL3wBHp62PDjd4LIxUeeIokQbw8HzzxNEwSoe4Ko53cOPeGgtwjqytxuUcriQaAh5Kcgz+PorcJTDC+UNvvlBw/fut2w2G6y1+ChZO8cfP1lgjEp+CVJz3Rh6E7C6I4SWPgtIfUjwjvr8mBhsMgK+uCGmPo39vOTG4XX+2//6P+H6yy9xXyhOO0dZWaaF4GBSsKssoXfYYcKbTCKjR4WeyjV0yzVHB1PGu4cszixt01HXgk5EcB7bVSxO71F1DYt2g84kKi8Yl0mYIiPinaC3AoLAEJNKk4iE4OlsYEuBCwOvN/WkiHQtQeADZFmS8nd2WxXxIBSZUYDAuoAbPISeVb0bKN0Xi5p4hdbAJSqfnv8c/SvD3PnsG9+//RAy9YfpwdjXunChkiikQCrBnZdvcm1/j53gKLoVe6FgLAXX9wrqzrFoesLOEaLc53ppGLcbdpQnhJ7fXz5h0TsWreNQSI5EwRrDAkWGR0lLlglckKwY/F8kdFKzCJLv3G+5FzdUckoQhq++Fmgazw/vruhlRl8cJrAnz9g9ep3CGFZyj8rB5tFH+Lblu6sKQksMFcokIGc6jhSF4LXDkq/cUBz83AucLXr+4O0Vi/mCs+MNNkLwgj/5+JQfHq84OMjJMs2RHhFMQVdEMmGJskOqGYgD5vcf0m42uKGvFJn8z7TIORiPuDUd8yt/7Q5f/I++gNkZsQygbEDFNCcFkRxPjmCs5EXjvI5JobRtKwop2bt5RN8Fmsoi1eC1JtJ9tcxLRkVJ07Y455KoxEUgs1VL5Uok8x/G/+fjyube1RsWZ8f4Zs1YC8LZGXK54UB6ZC5YND0+n5DdfIFQzljOl9i+RwnB242lanqeNB3RB56XOQbFIwyKSEaL0YEoFSshsEPbkFeSZZR8sPD8zltrOjmiFSNuPBd56Qa8e3fOqnF05Q7SZMhRwXhvwu7LL9GICSsmNMcPsPUTfrjcEGxPDCukimSZIc8jk1FkOs35xTcy9t7cQ4Yd/vX3l5zMax7d2+BjpA2CD87WLFrPzo5hPNbkesTNPKMbRVov6V1LQCHV81Tnc1bHJ6nBfVg/AtAySzLS+zu88epL/MbffpN8NuI8gHcR4wLGCDIlMTFRgp1K9DGlUsxCDLS2x1lPOR0hpKSpLT5AGwRaS2Km0c6jn+oD/NkaPxFjftoe9Dmu//Kl4qk86ak+qKcu5CeOcPHjqSrWxaWI4TxPk7LkwDpRcut1GlLsKEEqSVFmfPWLrzI1htxuGAWYOsO+gdl+wbzqqB3Eo9sYBC+UmjJaJspz0q75aL7io9ZRRbgpS0ZS8USUgCATPURPYQSNVFReIUWqZm6QRAu/++4GMxZs5IyikPzyl+HhSc39Jyu6YkIwM+S4xBjNwa2vE2XOSu7RrVc087u4usM1HTGsIfaYTKO1YGcaKQvFN+6MGL0u2FWv8P0PK9673/Dk4UOaqqHzOedNx+/+6BGjUrO3l6FUxq2soM8d1nRY25CPPEpfx/WW84/v4XqPC4OmARElFFoabu3MuHF0wN/99S+xd+MabjTGtg7VNkyzjP1xgesTICjNkIgPfbsqOlrf0zUVu6Oc7GBCvbHYPtFpQxRENFJljMsy2TD1/SBYFy5S8ySNLi56bbmg6W1nxU96maVnIj8tmnp2jl0e6XMtAeBz0vy2DX5SDkIQMt20QvT4QU0jSX0P6zTEwdw0XVVKb4YPY5CtZqARbSs0KRCTSJ36YrQIQ8/aUJ8T8gKp0MagtcDomHyCQkKhslynjD3IVHGA4XUSVSTZ06KMOGvxziJj4pX3ShCURGYKaTRmlOOFIMaADo7MW/YMHGjJqRNshEKWO6isQKsaT4+VknWEJy5QDZVCJSRGSETcGtKlQEcCRijGIp0TI7HOY4Xk7twjM4cYCTIt2BlHllUgzyKyKAjZGGkyhM4w4z1czOhWOV0TaJZz+rbGdg3edYTgMZlEK5jlkb0dzQtHU46mOS/vjfnwzDE99zirAJdodSFwXPdkWjAJkklm2C2SmahSkULblBAXGcFpXJYafolJEN9LCdYhfMDIjHEx4itv3mb39g3edxLnA6a15Lmm1IaoIlEHegJCBMY6fe62dXS+R/QNuRgzKQ2VbOljj3cqofbO0zQdpyfntKGjDh1jVVKqYvjeBXIwEt0qlquYFpkf0PdwpeE9oWnJ+E8beWksNwAASqUi1tUK3JYaF8KnIRqRbaPv1dLzZYPkM5vYZ1jNl5zxpxGXv+ghSBVppQYj7hCTcd8g1aqUYndnyrWDXbLzBcZ5xsExkYppnsxjV71CliPEdI+xXyNzhezX2M7yuHdsrMOGJHaTSYOKCqJEiB5JQEuBERpZKFAyccuVxGvBaR2pTy2MIyaHF3cjRgbGuUdpiRhPko+G1ujxDJOXdEtD1XQszua09Zrl2Tl919LWa8qRpiwlhxPPtBRc373OTlHy4sEuo0Jy+LgjOkO1UknVNHpON01KGHXHpNBc30n9okppXBboSovMxwhd0s9zZLA46QgEgki0ZOkixhSU+YTrhzu8cHOPeYDWg/Thwkcv5TchJWEqyf9LIfAu4KJHeIeSmlGRI7HYxqbgRTD0TKVG7bIo0Fqn+7a7+LLZen38Zc6xf9/HxR3iyrq/4PXH5M/Y1Wui6zFETN8imoZxmb6DRe9BSNR4B4ditVjTNi3OO86cZ2mTAJIJkCmN3q6fQSlMDCbmM2GSuXSukEoQjGTjBR+fOigCFIKDEeyUgXERsDHCZIzWGSLLkGVBNpuxqTVVLVkvN7SrU+YnZ3RtS71ZolVkOtNM8sj+yFO8tMd4d8bN3RmlLvjRow4fPYtThXXpfrxuO5o+iRLtOM21WSSXDikzpFBMip6oClRRImyD2+Q4HQlOEoa+PGUjWmeU2YS92YwXnt+jRrKJAkJEu5BaF4b1E0WydJEStBREn2IYERw4jxIJKScMBqRC4geRIu88ztrkx7NV+ftZGxcA/ZVNAy7Buz/HHpSqUk8fLh0qXqkoXH35FdBw+/QVutZTp7wCKm6PdXFcIQbT8oF2EsXFHqSUJDOao4NdRlKQnS/Ig2PiHZNcMDOKTaeScNRkhpaKmdslsw30GzYRHvXJBDeQDK8zmSFjqphILELEFKvKBKaKTCK0RGYCqxQP5h7dOZgIDkYphltvAqPcI8Y5Lp+gjEEYg5nuY4OmWimaTc/q9IxqvaZeb2iqNd71TGeaIhNcn3r29nJuXbvG4bjk9s6Us43nvApUK0PwaqiwOh4uNoxaRZCGWVmwPw7IQd16kluUAjXKcJ2iKXO8SmBCEIl/I12iwBbZiEk54fbNPWbP7XLmQbQB7QJZrinzDBctAQcqzQct0/caXDIVxjsyVTIuC1yXqLEX37FMfW5lUdL1PapWyW7pyhy57EK4kvBfmStXVf4u50u8mDNpnoorjz89d7fSFZdT7/Ot38+eTMUIPuCtw/YWFZNaig8dOEe0LUTQUg1KKiqVxgf2VIgM/jsCk22bNSMoQIKOChHF0JMRGY1zQvDETqBDJM800hikNvTe42MkVzlSS2S0xOBpe4uQoBXJZDX45OasNC46dPRMDkeD50uSyTZ1Sy0DDZGMCV0UZHsjZKaJWYFbNoz0mqkRHChFFjwxBm7uaPZUzkf711lFzaP7d6nqOeerBSGmylMmUjbdSEMvJMG1EANObOXkNL82PeA3ZkdMf+UQfWfC//J77/L+4w3LZYHvFHHTspYtj+8v2dkf89LLNxGjl8EccNaUtL3jxx+/Q1/NWZ9+RHAdwdVDUB8u6Tpe0Atoazhbwf0nNYWRTHLD7WsZv/Byxtztsunh3XePqWtLxGMtLH2kVpLlRrI/rpiWmjtaoo2inYBXI9zBm+isYDwesy53WIz2OPv2H7C5+yPOQ0npCkAykYIvFpJHvqN9/IhdUVJOSprqmL7aUHmJj5KODKLDdiv6pkMFRzWf03UVXbVGOIeZ3kBIRXeyZL045p17H2JGhnKvZCQUJkbs0iUZ+tAAgdxECBCtpO97mq5DqqSk6LbcWW0Sf1ul/iBre2wAG9KKjghUOUIh0aZJyafvBmPpdEPPyjQ3r45PREeubEKfXlC+fMUnLXIhnv3PX9wQpLWstGI2SmaybecYFTl70ylRCoQS7O7tsn+wR9kJCht4bmQwAoiO0VRya7dkPt1nNbrOrJ4j6pqPnjzEdRUhWnIJ+7lGyJIzOaFvFpiuwiuNlxrkmOvlhH9w5w3Gt6cUv3DAWx8/4TsfPOB8NePxIiMsHUJYzh+cMC4lL778PDLfheJ51tawsZqPzu7TrD/m0dvfol2d0TUrQkgG4sn7IlCtk7v7sUgB1TvvPCTPNdeu7XC0P+LrXzigfXGH5dcO+fEP7nL/w8d4n4FXHD/uOFeC5fmY2bjg+ed2uGUUr4w0duRxeYP7uZeIYkRZFDhjOB3vsrj3kI9/75usxIj3mhFrr5ECdpVItJJ1lagseU50Pa6pcD7S+YiKiQrtbId3DpWic+rlEmd7sA0izxE6Z1RomJS88fodprMx7Q96NlWVVEyJW1u/CwQvUTB+BgPFfxfHFniJKRjwth8QuCESISDaFrHccFBI5H6O8ZZI4DCXtLlmoUc8unvM23/ybR7ffZvzJx8RooXg2TESaTRzNaOyHbo5I0pFJxXIEqVy/v5rr/PS4S7lr15jHnt+57vvsao0TxYZYRkJomH+cE6ua168fcC1W2MYv0wfc867nPNqyb33HnB+7z3m99+j7zZ422G9I4RAbz0CwXqhkSKg8bz97kNyozg8nDGdFvy1Lx7xwlHGnVff5PR4yVt/9C4uKII3LOeW9dKzGo0o84wXb+6ymxtulBkxK+jGgbCzg7vzDfIsQ2eGs9EOG+v54Hd+F7dpeb8dca3PkMBYQgmIpqVatWQmQwO2WeNDpA+pz0Juc2UpAAAgAElEQVQJRQw9MVh858B7mvUGRATbI5RGZTPwjr5qqOsVnsi1G88xHo/5q7DG+LTx01bssxWfT3/3n70Hye1rZZrDIYQrsat4+ufFUS/lqLdV8G3guz2XkoMQhdq2nEhyo5mWGdZ6rPXsz6aUeU5UiR67d7DHJArKVjLVhsNco/HE6Nk/zJgqw5ODI7TX7MyfULVrfvjoLiFaRPSMdQK8m2xCLwyiOkUFTyc1CANyyi9ef45fv/UC+c/tIW+P+H/e+jEPziqOz8e4c42ft5zIho/VOUeHU+68/gIUt4h6j7Muo7Wet+5+SD0/5tE738J1NX1XJeG1ELCD4Fq9Tvf/R8JhlOA7377LeFKwvzfhzos7/PzrU+68+DybJvLdP3yH9WpDcDldFbnf9JSZ4bgouH44ZX9W8oVMo0aabhZxcsSdwy+jdMaoLNnkI5bFmAff+jbnP/6Qh36C7cb4KMkEXNOCkoBrOyZ5shGIriHaDmuT0rePCqLH2RbXO4wA17ZU0eGbGpxDliOQMC0zrh3s8pUvfYl7jx7SB0e12RBqjwpDsSVup9Vg2nxFuvxpat8zSdEz83T77FOp17P5PpdA42cdn920N6REKvih92mA78Mg4XpxPUMnuhh0/glJVW2rPipEvPi5LSsLJVEIVBSpcV0KYkxoq5NpcUoh0waz/QNjkmuXQpHIcomvKQL44dORg/S6NAapXKqGKTV4B0WUyRhPxiglMBnYtQUbGU0nyEzjosBqixWSXEkmmSLYlFGPsow800xHOdYLXOyxoccGd1F+FKR2MEuSQVcIEApHNnQTgUdhUfggUUGwOx1z2AmaStH1ST68jx5LTz4p8UKiiYjosX1P1/Rs1gtsPaerziD6C3rZJfKZgnwAT8Q56DrPRkmW2jEdwd5Y4FFIJAdjwVhKFnWST0/S4Umhre0FmYyUaCKR4CwxWqK+5JlKwMgkTypkho1Q9T0//tEHBO956dUXmWrYLwXa1lSnqQmfEIioIQFPwUBwaVYbLRHeEmqLdA0yerRK6j3RdzjXUTcNpQmMREZwHa61SQI6BMKAJOVF2uDiUDImgFCDeAJJIlsqcTFHEVxUrSKJTpBAMX8FGIkXhtQxilTBkn/+jfTyVvA00vLp468iuE0bWlqLEa0NRZ6jMpMUrmSqQG4VwfLcoGIg9j1Ka8rS0I0MbpShM4HUEe97nOuRMpXmjUxCHxuSQEYhFb0c4YXBk2HJcOQEzCA0U3J0bZfOGrpW0NqELC+7loDGIjEIMlLfxbryLOZL6sUJq/MndKtznGvT5i6SbL8PEL3EI7HRJ9pPBVoreh/xzvLqrRyvSoRU7IwFfl+zrKCzntZanE3ophRQVRnkhqz4f9l7k1hNs/O+73emd/imO1ZVV1VXDyLVLZFUSwljy1IUyzZiGNpkYSAIkE2QZYAgyDabANllmQABgmyyEIwgycaJgCR2YthQLFOWQkuUyG6qm2Szuqq6hjt94zudMYvz3lu3qrqppmVJNMADFPq7t7/pvu9zhud5/kMiWktEk0zMhSWRzcxrI+mMRhZlVrW0nqdPL3j08WNu3rlBoTWVzuR33za5MhufbzgpZnnx4J93DRGJaLNIj8IBJsM5YiBFn7uKo0y6vCx2Pd+tnsOAfjr+3EYalTJFyPB4Y4rM37QWLTPXN/YWQaIqFVS5Kh6iY7Nb0o8ebCITldEy20i0JJzIgkpOFjhZEzFEDI6CIEoEikIXHB/vIZRgvZbYERWys5Ze9gwRCqEoydYku2ag3exYnZ+xvjhhc/HsCg1xqZQXI5AEyWf/tiF5ujZ3TwefmDU9X7pbQapBGioDrx1q2h52Xa6wD85lmLyPNE0PIVKJrIgb9UBUPp9mRPaGKnXez5QpcSqyc4GLVcODHzxm/2iP/aMFpQKvEmHowWXlYcZ1npSIYSwmpGzTkg8kLqNKkh+78/kzI1kt2Kf4Alf2x1vD/xKGePHhFcTp6rfX6/V/2t9wvUM1ilNfvxQvrR3i8nfpeTI1fuQVtItr73eJ/cv/uew+ZHRECLmbaExBVZWYqmQyrbNIWZIUUlNqTVVpkguksaOiS8OkLghBIQ0gI873QLoSVDJKMuRqB0ZIkIJezogoIgZPiRclJZkHtL83p0ez3uhcxLb5fODomS4meKEwgCTQ9ZZda7m4uKC9OGV7nueP93ZEDqTR01XgQoYK2BQQJJot1I2l6T0Hc8HRQhDkHCklx3uKiVQsdwkfPIO1o7CRYNZoKgUmlciUiIMlKUNS4/UW2QO2LhTGGJSp6GJi01s+/eQZIkZu3r1BoQSTUiKDw+4GondjxY2xKRJJIQtEkVJGhKRAtB4Rbaa7iIhIEGO2GtJGo7W6gnBeH+kS1ieuout65F2L1hdHIiGSgGvcqgQjSug5qogXOlY//vjipr2DY3uxxpgSZUpC8oQU6K3HuYBU2bwxq5jJrGqWmwCMFiZ5AUpZekEi0VIhtYGypNaRWibqMi9Qq0bgrMeFDC3TZZF9fSSYJDBJUCqDMTp7cpBI5Ek1OKiKXLGQkzmyrJiZASMTQ8hCGcImJtUeN959DcQcmBK+8wnxfMutezfRhWTz9BmNFGwAVWhm+zPa1Zqud9ycTSnnNeo1wzMf+fbJQMIy2yRshCHmG6yAXbREBEe6IlFykW7ik8XHJb/TWH6/O2X2fz1hWiX+1t/4eb70tdv8dvOUi03gbDcmdWHgdNOyjIpZ8RFGSp4+6elbSxyekoIlhfAjgiG98siHSAiR9+83fPiwxWjFpJT83a9VKAr+4fsd6z6xstloLSTBsyZy2gVqI9FSEC4skYDlI7IAh2ValczqmtRqVDFnaNc8fXKf//w/+S/4N7/+Hv/Db/43HB3XfP1XbvMnv/cv+P/+yb/grV94j8M7d5hUhkCkP3sGgDFTSlOwmCrc5hy/XaF1lkpH5mR7kxqc29I3OyalZ4HGrjqe9T0khRSCeV3mQ0cySJ1hnEURs6/DWBQoTImQClSGmbS9vfJKE0qihWBoB9rBEUQHItsFCMFoNpol76/8S+KL9+LzjEo/6y6laz+kMfX+TP8OIfjL2K4vE8eAAiEIMoEq0MWE1+/d4rXbN2i3W+5/8ph5MUcXJfXBHOxAd7KinGimhzOKRcVsqnm0GnCpZVplDubOQhLZv6WJlrUfuFXMuFEf8ijeYxcrmv4JP2wT/+2HJ8zuB25+q+fnf/ENfvWvvMt30wWPUsOjpaKx0LmeZSP44ydbpkXHYXnOJ48tDz4d6Fc/wLXnuM2a5DwpuNzxGRuLWjCSU0XuOqds9zB4gTvxrC42PHhwTj0pmM1r/p2vLvg7793jd/9wyaOnHZ+cCQaf2ETPbpCcdQPTKrGoJV4ORAktP8AnAX5HZSSv3zzAW4OZHrJbb9isnvH3/97/ye//H9/gP/0v/yO+/PNvcvP2lHaz5dEH36eYTtm/fTvbVgjwXZsTtZggSSbTgugtdrNEi0SpBI58+NtuV1ycn3J+dsZqeUFwAym4Mcl6SZb2KjD/5Tedn45r43kJdHwosgmm61Fac3jrddqPH9FvNkxrja41Q+cRRPb25kwnNeZA0vmA23ZUjUDbmvW2xXqPFAoPPLZLJrLg3t4dlumQk3iL3p5j/Zb/6ZM11eMdt+9/j1u3pvz6b7zHct9SNOec7xRnW0UfHF1s+fB0R7kL3Kh3tE3k2x+12OacYfVDXLsjtD6T2KNHy1w4VZcwmpTV8iALM1nAX6xZrxS/db6lLDR7BxPeulXzH/ztu/zwUce3PljzbC24aARNDLRWsHs4YEziaJ6rYF61WAZ6TsF3iGS5e2Of0lRoWSIKwcXJCd/851uWH93nN/79v8m/9x/+u+wfVczngocffITteg7v3UMVBYXKfo2hb5HSoGWVxSaiJ3Y7UvRjwS3DIpNUJJWQKfsUaX0NefMTlER9/sngVU7JVfX+C+5B18elwe+Vd9WLedEL4zJJetXLkCshADlCJhWXHCl19dys26cJQhBkQOqSsprxzs+9TV2XPHlyRoPkqJhT1BX14YJheYHtdsymM8xihjoy1D7xvcMWYs+iSFif6DwIodFScuZ2+CR4Y3oEcsaD8AY+DDTDCf/03PHN7VNuPLjP/iTya3/na7z15TuY7QkXm8ijpcaGROdbPl0bzpThsOgopeKDj1pW65bu/E8Iww7XOFL0EBxKjt6V48VLKVNf0uiv6gC387R9z++sNnzzW5r53oTFrODv/soxhdznt3//nPNt5NG5oA9Z/KEJnk9WloOJpjQSpwaC8DS0mffuWw7nE473ZrAt0NMDLk7O2G6X/Pf/9d/j3Z97k//sv/qPmUwNd96Yc3L/Ife/+wmHd+8yOdhHm1xo981utKYRKKWpCoXvtrhmR6lyw8WmSB8iF8tTTs+fcX56SrPZkLwjBZ/XjGt7UOIyJxJjXHAVL3E8c1+dodLzBH1skub4vUIP5kTqCjZ6FdJiTO5f7nj96PGFk6kQIrZ3IDRCM/ICsmKKyK2P8UCZXsDby5EgKHnenUox5s7AZSYY86HeAz5kLoYUmasiZF6YksheV4XRICMiJLQAESPOelIMaCVJKmsVSa1IMosFGHkpLJAI1pGEBK2JqkRVc4SZI/Wcgzv7qImgKEAKz6IUFFNNvFEy1xo5kRS9Qg4aKyVWSJrFhNYFnA+ZtJ1GB2Wy14tE0KdITAmfIhBIqSElT0qOIURs8vgu0LvE/U8vWGx6us6hEbw1l+xSwWmYk4o9ktij7xtsGHDdlmgH0mgQ+3li2z9qJMCFOErdAynycOmptGBeyxyEMdJH6Mdqd4wim4GO3aqYckchy0kG+gQqJFyoSVGT8KToWG3WrLcbvBswQwenP6AWOw5vzajKiAgtcWuJyVPEFkZnMVJPSBu8b7C2R5saqQ1ReIJ3rE9P2ZyfM7Q9YSpQwUL0SBGRRiOVQhJJIeH7iFAKEUahFNTVhCXG8bpFwqhiFlMijJbrSWYeQwgudyiExJQagcD7S08pmSe1TC9ifn/EDfisaspnbFlcbnHp+h79BRK0P48hpbwyjEUItIaiNNSzEqkEITj25xWlqJjJgtIYRD3iywsDWtElQWcUfW2wMeIGhw8RH3NhRApBIRVDDIgYCCniUiCGDTG0BL8lpsgqOAaXiM5TPTpHzSvOzxzeRV6bCULSPPYLvFIIuc9gPee7ju1yQ7/d4Lo1YdgRg8vQ2HFJDiPRVXJpdJn5FEJwxdsMMZJcIiWLi4kQE5+eGqalRGrB0YGh6wfaIbIcPCEKkhswWmJjVpYkOZztsTGSgiM4xWrVYmNJDCpDttJA0zdc7CTWOWJw0F0gXUc1LTCVRhJyV8BbhPeZRyovOW0DIQxYN6C1xoyy5gmPHzp826IAIyQp5Op6RggIYnzu0REjrxQJfjr+JcZ18vTlgQCuIE5RCJK3JNtRloL50QwjAzJGjJGQJFYZvClwsxK7lNhhwFlLcO7KI6WUctx7c1HIpUCIHclfEN0K71u2ydNZhYoOh+O7Hz7FWrCDZ24U80PFqZ+yTQlp9ompYLVsaHcd/eYM3y0J/Y7ohiuIOyILQeT5cqnMlc8LciwExxHWFVKg7R3WR1CCU5P4/pOatvccHRbEFNApsLYRGzxurNrbWCOIgMeHUZUw5mLHZt1TmIjzihg9KVkGl7jYbWn7Lp9Bhg10DWUpkLJAyQjRklxWps1yUWKkHzgSjjiKRwmhEFIAkeCyt6MNWRFxsb9H/fw251v8E5JTvVLQu5Ys/ajxClTq2h70QtqYXt6zPgcS+PIP16/TK19FvHBovvwbcgddgpBIBRpJOSmppiWJgEiBW0dz5kJSS4OZaKgkutRQZnNzlwRdaehVxDqHs9nnMowdSi0lUmqUsxmlkwIpWqJf5g6S2xLiwOB78IG+T3zvBycsLlqaxqGS5M19SRNLnvl9RL0PYp9d09HYnnZ9wbDd4fst0fXEUQ05d0dzEiFHZYuMOEoocemplMYOaqQfPM7nc3UMgR8+bZlVmsWeRsiE7SWtS2y9J3hLEgIXqyywEj0xBaxtR6SZZyckJkl6J/KajyVEy6rZsGp3xBBIWGhO0WJgsqhQKpLcQAodiTh2b8mwfwIxWZzvsXagriuk0kAkRYdrG2I/UMjMY4shd9+UEEQpRl27eBUDLwXYVZw9T8ZfLWS/HHtpDLxcNLjeoh2D+MdIpODH6Uz5wG7bUQsDJubDewo5cxaJGByXZ8foA9F5tJEYrSiUGDPDLH3uQgJiVlNLgegtg8/wvOANSgmU1BgFgzb5PYGqMMzmNco5RMgQFm89/a5DisRilqXYZSlxMWFDYqYjE+WIQ2AIGRqXpCZMa2o1QdZH6PkCOZ3z5n4gDHOefv8Roeu5M5dQFNzVe3gHdoC5LzAh8rFQXCTF+WtHXNhA0zr6xuFiuqrblkJQCckwQje66El4QryUHs4HN6KkRdI5yf/9jQ9RSnMwv8Vrs5q/+ZbmiZjzz+MEa29ghxs0z/4Eu9nihhUpjFKXLwfPtcficx5fVZ/IwWZ9wAXBP/iwZV5JfvntijQI9nzk1EY+tSMJjkRCE6XECE9IkeR6EookDN0Q6a0H2WcMHQNJBHp6utDRt1vE8j72m7/F4a032fvr79KvLa49YXiWeV+HN24gVMkQIy6s6d0T2t7S9Y5yvqAs53jR0/c77n/7fZ6dr9gs1+xXAd0XlERkAfVBjTKGbrUlWI9tPEkoUlGhjEGXxZVPRMTnmCThY6AfbE6qQkSIgJSRMMrnDj6RhKQKFSRB1wwj5ECRRNabDOFV094fNT5r6n7uHnwtCfsLT6ZEhrhpo5FKZy6kNkz3phzc2gMC6/U5v/Dez3Lv5gGp2aJiRBYK1RkW3YyN0jyzibYw9PsTNr2jWbYMfSD6SCKLtuwpTfCRXYgMfsCnyNCdE7zD9QM+CQIFrdRsdM0nqx2//Qc/5M3br3Pr8Ii//s6M+bzgG+FNtqFi191me3bBo4+/x25zxrD5FOwKfEeKWRI5ZXYzKQSEkEilSWNHymiRVThjvv4xRrwQeJcYfKDtLP+0dXzzow1/6+uH/MzPTDlIA6uN4/efZnEAfCJEiRdTjPQoEYndEmc9Qe1hreTBMCBkRBQQQ4sQHS2KZVT5Ogwt4elHSAE333ydFCXB9aTmHL+9oKynKFOgdEmMid5eYIeBTdswncyZmAOEjKQ04Ldr3MWSqdR0RUX0uThVaI0XYYTd5oKDYFS7/Gk+9a9+iIRSiShAJUVsG9zZJ8wWMPnqPfqLM0LTMOlKYoQLXTFUE5rjPbZPFLvzHXa9w+0aQgSBZKY0IcJFsKToWcmW1q0Jw8c467DeEylIKLp2wqOl4tsPzzhY7PP2nTf4yp2CX3hd80fxNR7ERNPdoe8EDx+8T7fd0V98QvI7sBvwYdzTACGJ0SESIxQ/jd0qMnR3TMzjZXfBeYT3DM6z3g48PLX8/FtT/tpX9ziuIk0R+MOTgdMuIjwE6fFijpaRQlr6vsFvtwQ5I8mKJ+c2zx8jCcEjRIsXhmVUNKHPXMLzh8TNMw6OXieZmmA9fuhxqxO0MZTTGTF5YvTEuCUmi08ACq0KkJrEQNdsWD56xnawNNZzdOOYxd7+T1pj6guNV86pn/mM59n/y3vQ1SH/8vUic4gvi1Evvvc1Q/iXBSmu/SBlLsiTLrtRGQmVIWgGIbNirxGCxeGc/cM5Xb/DCMevv/cVai1IzY5CGdCS0pdM0pRnQrHzie2sYusCu3VPv+mxNlyWzaiVplYFW/KauHEdMXX4/jF+NNWOaJIw9KriVBk+/offwpiCd9/6ErcPZvz6u5pTuccfxBm9PaAfDjl98n02pxs2p49xwwqGFYydmAS5CBYjMQWk0DlRiB5BojRjyTdyZa8TfIAQcevIZjvwv38jcLRX8Bt/7ZjbveZmGvhk7fjuRZ99A4XDM0FJQ6ks+EDYLvFoopqzdJHNziKMBOUQqUUIyxrDOrYZit9e4B78EZP5MfU7t+k2PbZbkmw2Fa6mcxAarUtc6LB2Sdv3dO1AUU8pTA0iEEOHWy5ht2OvrFkqTXDZVN5oRWIUeLk0541jvF0mUTKz9K7y8GsdqauovUrWr+N4LrtdL/Vl04tdrS86vnAypbSimlYYIxiJLFfc2TwpElKMGbXKrTQlxZWEshzlK/OXDMQAzgakTESZDzCRLIEuAWPGv2osVaRxI8/QwHyw9c6SQkTJhCBinUWTXa+JafT6zV0ziyRJiayy0e50OmE2nVLO5ujJHFVPcaHEB01VVKQkmc4L+mbgfB1AaWRdIeIKzI7JwQFptqCTE4ZoOZrt0VhLs9vlCybzze6FJMmAvAx8BAiNFJJCyHxwG8U6SICsEFIjFTgdeFw5zhwMu4D3IXMg/EAI3SvdKACtJIXOqoD+mtnmZbAVI3TJc4k3Bi1E7vIVBoSk7R2DhwfLiE4JZQRTIXlLJTYB2pCVGUX0JJUV7ibTgpAkPhbEKLKKovAIEVEq891MMQVTsuksVtT4m++y6wd2H36IkmVuqe8d5zDvG2Ls8eEClyw2DgglKOclttsQ+xZTLhC2w9mWYeho2o6u07jWgsnRnZwlEXPVZzwECiVRRVaMzCfjnNhG77OJtJKZ+GktfkymYgpZFVEkFGTvNAHWDTn+5XNYxJWB4OfsTK8mun/6FoZ4PvXzj5emvs9Ldi9vZH9+Q1xVBsuqpCwKprMZr9084M17d0jOkbxn/+iI2eEB6ygJPlHUC5JxSC9QRcWsnhKrKd4J9iYL2Dtkax4TgkNoAVLSaoUPEqMhivE+6BKpKhblfnZI10WGHAaFUAXoClOWCB1YFY7eCHatp3MaZxNusNhuQ3AD48o5dvgkhZIcHlTE4FhfuDy/RECpfN8XpaRQgi4JkhQUtUJLSaUyv0mVE9p2YLCeB2eR3eCZSoWawrs3BJ2Hi16MXYYepCFJxWK/ZJJKulATosJbQAQEHaaIiFlJPZ1SzeYEYAiJODkiuIH+7BQhdU6clEbPj8A70mCJsSXEwGBbQkhU0xJBpNtc0CRHEx2ubyB6gnUE666ux6Wq3OW+JYCfVNnnfx3Hi2t35uwE35NCILhsrSALTW8VfVSEckESNWKQkBLl4QFiusAnw6yYcrR3SLNe04tVXv+EwGqFi6A1BCI2BYJQUMyYFJIaSdAmzyOfJfIxE4q6QppIV3hOSsd6F2h7gR0izgpsu81xw6XjefYtlEKzv19QFor1colzHkTIcksaKi2ZF5IhCRwCU2XfyEprlNLoeo7zke2u53yX+OCRp7JQ1Jp7h3BsE2d9hvurmP0Wk4pUE8lRNWOIE1wq8VaM3dUeiNTTMqtiTheIwjC4QCxmxGmg326JcYsyFSDQswPkyO1Msc8JokwZjSlzx8D3DTIWFPMKEQO2b1ierTlb7/jKL3bj3f3i9hZ/UUOIz9p/4OU96PPEkl4+fl6eK+Az9p7P2IqEeOHY+8L3ulyKn3+x59C/NCJ+sveVHNclgVaKuq6o6pqqqnjj9dscH82J/cC0KlgcH6OAjVcIXWKqKcQSdEk5nZPKCb0wFBGOFod0/cBOPc7Qw5Fj30mFMAINBAIeSdITjBbs14qkFFEZYpCkqBDFBGMKpBEEEzgrHRcemjYjmJyL2K7Fttmj8/paK4WmqhX7i5Jmt6Pd+YzEIqF1QgvBfqVIArokUEZiyswJM0qhqglCGTbbjs7Bh489tYhMKs1eEnxVKdZO0nhBgUVGkSGqGg5vTHDRMMQJwYN3CaRFCE9RK0gV9XxOOZtmY2tR4Ga3sM5jnz7JqIskKOo5SghwlpQcIWzxwdK7HiGhmpV429K6nnXMXPfoB1LI4nbRh6s96JUYuYzNy8dXXakXY06I52ex669/3oHKG9u1MPszFwh/rGSqnlcZvxkdzwF+eXJIEZ+DO8dqglQSpbNcsRQCF9N4IMqLbxgcSmX/lojIEDmXg6uuBEoJtBajT2pOsrRUWQo4ATHfAC1zMA7OEgWYWCIiqJggJFAJJxRRKiZlQVEYDhYzZos51XwPPZmhqiliKMEaJmUNumD62j523XPywGFMzXR6ALoiTi+Y3rlLNd9nyxQfFDfnB2yHATjN8DKZ2AhBSz50SbLceESCKJFS5+qWyp5W3oWcgKgFShqkGnA6cL+2bEOia3I7NKZAcD3RNZAuOx8ZViHIMqHTWtP1adToz0OS+e2VvGxsgtICY2CiJJWSyElNlIrhdMfgAt8/i0wN3J4J9ozgKMEnbeJZ4qpSn8iQr9m0xEdF7wqsDcTkEcJnzLzOcE0zmSFMxarpqYop4fVf5OQ73+T0299mcfMG9d4+Rz/zb1Dokvi9bxGGNc6dYoVikBWmrqlmJcOjC7qm5+DgJsJZrG3ph5Zt29I2hqEZYKIQUhKdzVh33+dJKjLsT5cKoeToNZUTXT/CJUVVZmnRwY6ws5EE7QOLQlArCTHjaq3tEFKhpHm+AUVIIQsCXB+vJk7iM/7/tedcLhRXr0wvVAOlfF6duarIfNEJ/WceueJY1xWz2Yzbt29z9/YhX377LkPTYbueg5s3mR8fcNFkEm45PyYFm/2p6inzxSHOzxksHM4OKA8bZGEITqJLQS8Ep1LjtcMU0IeAi5D0PlKVHEwWSK1JtcG5SLvzCD1FmjlFbZGF56xyqCKxaQODzZKxQz8wNCui7xjR0RlOIQyF0dy7vYezA/1mnbuuBAohKKXgsJLURrESiqQFe4ea2miOiho5mSNmh3zy4JQnT5d8/Czw6UrwlVuKvZnivWnBuo189yQQRSDFFkEJ0rC/P0HqgnU/YbCCzaon4RHCUhSCsqqZzBdMF/t4BL2HNLuFa9asH34bVZRUi310vcDMjkgXz4h9Q/ArfHD0FoTWTOYLQtPTLJes/cDa9wz9jhQd3jrc4F7axMZE8zLe+MmBLP1rPa6dJy+tFFIKBGAfw30AACAASURBVNeRQiDaAARkZbCtZhsUsjxAFmLs9kTK42OUXhCSYa+ccfPwJuvTE3ZKoAwkJXiGYoigCkgh0QdHkBOEmTMrJxRFRaoMUQqajSOikcUhVRVRZmBXej6tLBfLwG4LIQZcD0O7wfW7F+ZP5hBpbhzNOVgUfNzvaKInZmYltRTMC8FRrWikohWKxb6kqiRH5YTClMiD11htej786BGnm8jaed48ENyeG96uDCYkvv3U04REin3uDoms/ltOpjS2onOG7WrAuYAQDq1Bm5KimjJd7COLgs46UrlH0hM2P/gOvtsxOTxGl1Oq/dega4irk1yMSD3RjN6OWmYPzd0WnWqMOoTkGbqG85NnPPz0lK5t//Li6keMVxOnHwW/GztQ4qX9B666TGI8513tQelFjN9zvsr19xFX68hlB+AyMbos0CcYeTH5wJtG2N3lFxSjKJlAoLWmntQcHh5yeHjI22+9zq2jPZr1htJo9m7cJPjI6RZSMcHMDkBVMNlQ7R9hyik7a/AxcfPgBm3f5/OqAmUESynZoRFGooHOBXySJDPHmJL9ekoqNLHQ9E3A2YiqjrJtT9nhC8+TamDVwm4XiTFDcIeuYWhXpJC7Tc+vlWYxq3nr9TlPnwRC35IVAfL8KRUc14ooJSshqSaS2UKxZyqmpkDu3SCokg+++5Cud3zngedgAu/cNByWhi/vwccXgcfbSEoWQiCZhDKG4/0ZLhZsh5q2cYSdRcjc8KgmGYUy29+nnM8YfCTqEr/3OrvH99k9foCZzdFVTX14E60L0skjomsJfoULid5BWdfUkxp3vqFve5auoRuGrEIdHK63eOtfiCGRcqaRm5PPIX05GF6O4byWXiZJMV52TvMvLgvOglEx8voceCmp+nHPUl+cMxUjrXUUMldioxDEJAhCEmRCF1Wu4MSQq9ajRnlSMiv7CdA6EYIg9wpGOI3IBO/sWA2mvKbCJwXSSJRIGML4+h4fwih2YXMFj8zUM4UGEu22RRiNMAqbBATQSqG1Zv9gRlXXHB7epJ4fMTl6HVmUSF2QhhYZC9Lc44eB5UUipDlffe+vgAPRC7rJHr1taAL41nDw2gEy7Rg2O5ptwzolNFAkcEQiWYRCCkFUJVJWFOXdfMPjwNduTfj63Rn67hFpMeO3v3Gfp6c7+iDZWIVbGZwricUUt93hN39EsKcI6RCXPIYkKbXg5p6ht5FNa9nTidszwcplrtPoSUs3wpNCykp9LoAVCS0jpWtRSrI/kSRpGMwCIQQXMtGlgV1sGcrETCe8z5DNPkFIghA0MWXytMIj5Qj/ixFUvi/BR9rNwMP3n3Drds29tyTWn9OdfMzktQOK2YRHj09JQXGrF2imlJMinztiQrQ7WF3QPD1j6Bx7776Bp+QHJ2tOzrPk89B1NKsdiAlSVzTtkKuJqkSoBDGgdMKogRAtzkGwnugCwefvHGKX8f7JZ1VCLdDaUESNEZlArVU2hHaDQ8qImZisVJkuDxavzvOUrv/uC1QtPwMmcj2hunTsfuH5fxHZVEpY5xmsR6psV4BUWAfrrWdqSo4Oa4iGoRPceO1NSAo18hesqQgIvFVU9Zwb8wPOO0t3vmY5Yr+nNmFVwOssBlEITSwmCFFTz99G6BkqWfYmil/9yj56WpP29/j08Zb7D9a0NrKyiWFrkKFk0BOGwbN6+G3s7gIpG7S2SBnwGJKBd+/NKbTk4dMlpfD81bdrWhc57wLOR1xIrELgwgXalJfsTSswSvHMWKZ1z2K+ZWY077y5R1/fJOqaCxPZ4ejiKdSBveOQvfN8oEsRG8GHAikKYnCIGJmZjhg8LjiSNiANIXhsH9icNWxnWw5uKJTo6NYPkbND1PExXW/pdyvqwWOiRhcHSCJT5XBuYP04Q5jDbkdxeIObh6/znR8849mTM9rdDtd32MHinMP5DGkNIY480Gvx+9OE6l/ByPM3Y/0BoVB6QsSS0g7rIn0bKcsFxzcPSTaRfMQWZuw2CkiKalIirKc/W7LedSxdoAZkSDjliElQCI3UhlBMKasbyMldZHQoEfnln9vj+KCCwwN2feQ7H5zS2YH14OgbxXJt2KUFodCsHt7HbncQ1yjVUeCJUuCouXNcceeo5unZjk8ebvjZY0Vxc8LTxmN9xLqIjYnHvaePHptg2wm0EpwVntJojtYWqRU/+8YevphjyyOsjjxViT6cUcie6kBiPLnKj6SNIINCh5IQIskP1KqjTB4XbC76FhUpFdgh0qwHVk+3LA4kVRXomqfIZoM6PiaSODtdYqJnGhRCTdGyIkhFTDL7E4ZA0+1IRLzzLJdbvv+DB5wv13jXZ94Wfwnw6z9lfAH8w2e84nOeNWY8l8qHzz/g+adkX9IXP+n6o9wpuEzG4aVc7Oo9IgnS816YJx+ShZBUk6zKLNWIqukim8azN50zqQqGHrSuufvmO8goUUHidIH3e3g0wWv2FwcUsuXRasNuveXcR0xMVAgG5fHSZfELaQj1HK1mTOZfyslksnzpzoSvvDkjzeeEsuI7H5ywXHX0UTH0im5dYH1BKGra8w3N6bew7VOkbDHGkVTCUTItFe/cm7FrLd+/f8prtedLPzPhtPM0LjLYLGz1dHCEBG0E1QqKtaDSllJrDhaOsjS8flwQ1Yx+chulJE91YBN3rOIKN5ccFBHnEyEGmpjwEXwoc3fJDxTCoYsB5y3BBVJRIUSBtZ5u51g93bBYGGZ7Ce+XuNXHlPOvoKbHbLZZyGPiBIoSUx3nApEODO2G9fkpfrsjOs/e7XuULvKDP/g+m/UO27W4oc97UIiEGK7O+5e16efT6vLAIz6X3pTPYSOaYnxdlt0fo/EqfJ+LUHx+qeFHjy+eTKVcnZcmCzxc5n8ZpiZR0uROiR8dwKUg6qzqN+qoj+anmWuSSASRRqWfyx5XQhsxwgLlyFeQKJkwKityxGDxIbuXOx+y4scIm1NaE33E9tkFXhcaG/PXmhtFaTTTaUU9nTI/OKCYHlLMDjMRTkpMsY8oBNQX2CRYLQNFPeHuG18i7izurOWkqmn8QH+xwbnEUTXF9wHX9fTDQJsSxXifAxmjeWnz5pUBVWPKY0ie4Nbc25vzb7++T/Xem/DaEd///hm7XUvXKlzQDI0mUYHcJ7hz3O4TSANCXBJhBSRJYSSHc81q5zhZBW4awXEpcCTi6PPlIV+PSwjaiAK0o1x98JFCCY4Oa2ShEeUEnyStz6/r6JmYRKkSMkVCSPRctuBlrgLEzAFRZlQLjCEbHwtJCIGhtTy7f0qtZ5i3Z+hhjV4/QwZHUorTp0tsn5jqQG00dT1BRI9MltQOxO2SbnVB13uck9ggeLpuWG5bQnB4a+mbnmJSUEzIUvUyUU2nCEmOT5WQIhNNvYuZoxMSIeTDox2NGmWKIAXaSGISGASEfDGVzMTkYQijpOhIihWXvjyX4vcvj89qLX9+n/nl575Asrw288Vnv/zPZSTAhxFGKhRCjHL2IdH1gXlVMptWkDTOSfZu3EArg1/32ODpdZH96gZHbWqm0yk4j9217HzAx4QKGZaE9lmiVmqCqUlqRj27gSz2CN2SxUTy3t0Dpjf2MG/f5TvvP6LfNTy80Gy6RNdnPxAh5ri4YXf+gOQapHQjRAhAI4Ti3u0phUp853tPWJjIW29VrIdIVLAdBNEG1k2gtxHrM1Zd7jInxJjAftVDt+PG3WP2D2dsJ3sMakZjoQ09IayphGNfCkIf8W1kYMS8RwVRkcKAxFMVER8C9ANRJIKA6D1uCOyWDZv5lv2DCuE7xO4MoXUulvQD621DxjiTFSqFQKse1w+05+eEoSf2HYuDG0wmC7rOc77cYHtLGH2pvA95PqQXO9zPg+2n4882xIjfv1STuqzaFyBjrkbHhBsE5XRCUc2ITT7YuMIQvceudkilmCqNCNl3rB0ykgEJJkWiCggkRupsU6FnmMkh5eI2YdgiY887N/d4+86M4p03uNhZLk5XnKwCF71mcIbUaIgTkAXt5gOG1RnQoZRDykSQiiRKbhxN+PIbU56cLLlY7fjl2xX7E4OT0NjIqvW0NrLp89rhQ0I0OZzWJlIZhXI9i70Jd27dZihnNNUBvResA3jRUojAwUxQ+ojdZnRE5l9JQtSkUXyoMhGhsiJrgGwinzzeBrptz/p0w6QqEUVCdktEsybFgHOe1WpDLcAoUCi0NNkShizjTIgE24NSBB9ompanz84YhiFDxdM1GNxPWkJ12QV6Zcv5EVinz/lfuaGaXnxaujziPk+wnneaxgfp+XV5GYr16vfN54vLsqEQXHFnnPfEmJBSgxDEBION9H3k1mLKpK4yysGUHB7fJg2esLNEXWQ4aG9JUTCtJuASvukZ2p5dTJQkRIAgAsiQzYBRODOFYkG1d5sUA75fc+dgztff2Ee9fpO0N2O73CFCz8ONxgZF02oQJagFfX/C7uw+ye/yHiRH2xVRMptrvnRvxv1P13z7wy1v3it4+0aBXAsu+sCy9fQWVr3Hh4T1OR5FBK0DSiniMLCYaO596S56OmE9PcBGxcZCHyVdaFjUgUkRsTuPd4ldyoXZEBUhJlKwGOnRZaTHYb0jiMwh8y4wdI716RZNyWJPo9wWuTtBxi8jlWK3agkuoUTAKElRlKjkMdLSdgPN+TmhbREpMTUVScBqvWO72RKcHf95Qkr4GAnxVTGv6/F1HeKXXkLnyDHWr0/DK9uml0L682gZX3R8cdNeBEkoyqpkMa3pe4cPgboqSeQbG0PA9wIfAtZl1ZMkRcZXArPZHKUlZbKEEPB2QKeETBIpsh+VKTRKCWJnSTFi+0hUElkpCAERFG002KjpnCE6qHSikDARClEq6lqzaQNnpw1KZB7Rja8cs7e/oJruUUxm6OkRspwRx2umhKSYLtDaMDx9SBKJg7fvIPSEqOZQNJhpi39wxu7pCTff+DnM/AZPbOC82RG1R+iIFnIk2cKNWjItFK0rGaLiRM7wQqPjp4RY4uOUb9xf8v7jj5G//wGiLLC9ROuCr733SwxoPjprcW2HW90ndOeARagSISdoM6BUZH+iMERC26NS4uBAsbGRzSYyxJThkzEf7+OYzL8SRAnalOhDoj/vmRjLOwtHLA3b6ZTWK3b2GBkzl+lIgI65C2NFxOLyohg8937uXb78S19DdD8g9U/5vd875ezMEsMzPn204n/8nx9zMMvVE72+QK0b7Mk3cNUfs9wNxJA4rAyFMkyLKSFYrG84VjUHqsKECCnyj/6Xf8ByGFheLOmty8akw0BqGmItiTqSJgpRKAoGRIJu6PBW0tncAbE2Usgse55iGD15MiwzyIiUEiMzXjuQkFohpCaErH5oTb6uQ+/RWmXVOvXcdPDFKSRenaQvPEV8xox+8al5Q3nxfS8XkFdhhH9+Q4jsd9D3Pd57LpYrfuatN3j7zTcoi5q6rJke3KCe76GKKQKBKnpEa7Enzyhn++zduENLybYfcHKA0qFNgUiJshTUtebLhwXOG+xQcKoWbNQEI5YIt8P5PR6fWf67v/+7mWM1KZnUmQv59lt3eWd+wJ+sB1adp3l8gt2tkGGHUApVv4Ypeoqi53CimBZQ+i1YyzvvTOl7yz/+uMlSsi7ggyQGmYVyQlZvTDF3hSGgbKDrBRc7wcNNYHJ/yV/90pK39yes9+/Si5KT/h4hdCh5xkI6jk2OWYOnVwM2RaLtmS8W/Fu//rfRsiH1P+TDj855//0zBvcpTXjGb/1vn7A3KfjyrQkTGZnYDUEv6f/whKZtaduWWV1RmoKJ2UMKQT8sUUjmcoZMApEUT59+l7X7Fg8/eUSz3qAFKDtkInTwucr/GfH4Mpznp+PPOi4P3hKhFHiZBRmUoTq8gRQFSWiE8ajkcE/OCSFycHQHL0t2g6WPFiqPKiRGl5RF5ifdPSqQStN3NTtR8UzvIwlo9wnRz7Cu4n/9Jx+gRAPTClMU7O/tsTff51ffeYfHredB4+hONgybE1K7RqUBNT1G6UhV75gWgsOJYhY67LLj9q2Sen/G+xct7klgPfhc+fYqHwIDRH/pUZl5FspZGgFtLymXlk/OB96+ccp7957QzG7QTfc5645o/QFGnFCrgZuip0sQ8ThlaekJ3iJ95L1f+xUOb+yT+u+xvFjzO7/zkKFZ4uyO3/tnn/Dxd/4xbxzWHE41U7dBpkT70T/CRdjuGgpjmE9qCj2hVDWBDiEid2+8QV1WFIVC+sTZp+ecPXrG2aefomSWRSf4P+V+/yWO64kUfMaB8fP3oM/bfz4LXj6C9kZg3/WnjpC2sXhwqYp6ibZ44W1feHypsTqWI0fObgiRtu1o244nT59xdLDPrVs1VTlhUk2Y3riNKWqErEAPyNISz7e49Zr5zdfRkwWbkGjsQCosokwYXVGoRFkIbuyVTKYFfV9hg+FTfYgXBhMe4UOJDQt+/7snfOv9P4aqgEKzN19Q1RO+/ks/TycM768t/aanffYItz5DxQZZTZFqn6reUZjAzZmmEp6w3jIz8NVfWLDe9vw/39uys4EhRLxThCgYnCDGjPSJKSPEpHNI4bA2+2I93j5kf1bwaz97gZjM2OzdYesKlsNbKLkkqh3Hs4FiFLnohaNnyLoGw8Dr736Zd37xa6T+AWE45Z/97iNOTjr88DEP1g/4zd/8gKOZ4Y2jitLuKO2W4dE3ceZP2Ox2xBhYTCYUqmBS7ONDj7VralFTyxqRJCTHxw/+X7Z9x8XTJwTnUQKkG7I3aAw5ufvMPSjH0hX0/HqAXoucK0jptd8+j78xVi9Rp+nyNfI5/PSVT/788YWTqew4PfKgVJbMlpEs0yogXP4lMkvrxhTJKqUJF8IVgVCOVYlsiEbWTEnx0pLgqiWXYshE3BBAS4LJrwkCfNS4BEOU2ZBtVEARZNELWUhkH5/r06eMCS3KAm0KlH7eFo4xoMbKhjJVxuIWE2RSVPuHIEqE1SBAKodKHuUd01JRTTVPW0uMPRGfK1eXf5sUlFoyMZIkSkTSyKjz4hKyyWZKE06bjkfLJelZvqmvHd9kb6/g6PiYLmnk6ROS2xG6DbgeQUSqTLQvCjA6Upcgg8e22b9DKWgTdPayg3EtiH7ECGn8NwRkiKgyomWgSoYoSpw2yGiIo2mcFpEiJZJIOBER0qDKOfX8kL3jI2TzlNQWGCVgNAbt+45PPl1xriWrR5qZksy1ZGjOcemCXZ8hdquyQktDLWfEOOB8Q1Md0VUHLIxHi8CDx09ZDj1DPxBTxEiBIqJTRCWPTP8/e28Wa1l2n/f91rCnM925bo3dXd1dPZLNSWRTpGyKlmNbsWTJkQUrjhUgUOwIQhIgSOKHvCdvERIgTwkgJ8hDkARJkMRRIlkzRclks5tis+ehuuaqO59xT2vKw9rn3lvVg5uiRAkJF3BRt845d589rLX+0/f/PgvdfFK4mMUJMdPhEFgbsNaTqBAFoYmCj0J0NSUZkDJ02Y04j6SKDk+sygaElIQQdbikP8Hqvs+KHC+kU79/EIriVOXppJr9wHP7oMQiPziUH5wYVGMMQgjyPCfPC/qDIUWvIM0ykqJHUvQQ6Eh/JxwCi/QOLQNFpmhswLdR+Nlju/WjUEqRaE2v0BiXo5I+SSgQIUHaCuFrvItBz429A1ywBAEXzp/hoUsJ2/0eq9sbvDc/RNgFdj7HlQtkcEitSfKColD0Cs1aXzBIPHZ3gm0seS5prODuNFK1G+cgaAgxgA6BYzId11UhffBYC7UR1KZivmhpNz1SlxT9FYSGTK0jJHiZE4RABkcK5Hha4XAo0qRHXowYbW6QygRZ9egXE4R3BGOwNrCze8hUC7JFn0Gq2ehnODzVYUNVzqjKGWVvgE5yeqpEIGiaAzKVIvsJSjiUbDk62md3eshiOse2DYlWSH/S/Hs6y/cAWueH489knF7FHc6pcxSDiAQ5iUoILvZoii4NHSv1kKeSVoi4frB4DBAiSkPGXuRerlE6RcgBJqRx/XiLdDXBJVirubc/oamP8BL6/YJnn8rprSq2tzeY7i4QkymuarDzGcIZpAgkWU6SwnAoGGaBjYHAjxuquUHpQC4ldyvHfG66ZKqAIAiertoZIhqg0+VzHczfeI9uPXXj2NIGudaSJikiTcjUCl5kBJnjPUhv0AEKPAhPi0PpFCUTBmvrrGytoco7BFtHlIGzeFMxGY+pZwGmOYsiZaOfkShNOd3BWMt8PkEnKfPegFT2SWSPwAIhPJnt0e8NGI5SRGMJQTA7OqJezMmzlERmkW76L+l43xL+ABt0+uxjten+6tMSTPGgDXrwUA+6sffdlVPB0+nbJR60jyffeHzApY8oOqe3bVvSNCVNU4pej35/SJb3SfOCpOihdQbIbmlZBA4ZPKkWpJli1rpof4Ih0DG4yigGnGWafqGQqofyObLrx5d2hnAO7wYczEom4/2YmFeCp5+8TJIXbGysUpKgjg4JrcPMZ4Qm+nCxp6pHfwBF5lgfCpSpqXYj/X6vJ5lOAjsTg3Eu9oz5uIZszCXjXYS+uSCiXxhClBaSntYu8E1DOBtluXv9EZY+Cz0EWeO8RQSHcpYsBILw1MIhpSZNB/SGq6xsbiLrMb6akyoQ3uBNS20Ct+/sU+YaOc4ZpJphpqjLI0yYMpuN8d5R9YdolVOoCmcrWjNmLd/E5xIlWkJo2Nu5zawqacsSQiBNFCI4wjGxzSlf6L55ejJ37qs6PTAnl+8dF7b+JTZMnPr3e13FHzuYylLJ5lqGbw3jwyY6lwKwmiAEjQHTeqoysucgoGlaGhMxnEpJpkdH8eKlRCtFL4/l89a4To8ioFKHCoLW2Vjpsg6NJDhFJj0iCLxXXZN/FJWUsR5P1TQkQVGkGZsbBWe2BxgbYXCJjv08WoNWnmAqnLNYUyH6Z1DJAJ31EJlg+PSX8N6Rpgm+bakODvHlEW7+DhcfPcu5TzyGWLyGt9/h0ZVnSaspzWJGXVaxHCk0ioRdJHelprd+HiELyjv3cKahEBXOL2jMFB8sUqUd4k5wOG8wquaL57foWU946Tv46ohgDyCY2CRfaJJCc24wIpOexfQOZd2wP29xPpZGj32i73FCEJ8eCxv41tiTzxrWxpYL6wVfOOu4pvrcE+vcvbNPqCvOZJa+DOR40o2nGT36S9SLF/jjf/4biPk+VDPqiaWnPEYGkjzlzLkt8kTR14LcSjIjuKwrhrLh1h7MGs9dYyi94dCWhBADscmi5ZrYI8GicMydjfpE1qGEoJCKjV7C5fN9io2CbCUl6ADS4VxDQJAMEqyHysS9KVcBgYPgyFNJEMSFTCByFkpcoAtgZYQKiljJFD6yTkauiW6D7/6SU425yyE67PdHjfdRet7/5qmDnXyff/C9P+exZFGSUjCfz3nmmaf5J//xf8TKaIXRcIi1BmsNeZ5FJsfWEkKNq3dIkoRLn3wC4SYI+zIryRZZMsLP9yn39nBNDV4gGVEKzVsiIxtu0xtcZHZrn8nBlBU5RWGYVxNaG9B5JMaxUnBUQ317woVPatY2R4jXb2An+9hmB++qmLUf5Ay3E7b7Q7Z7GdXkPerpAW/e22c6r5gvFrTGM1vYaLA6KlkhHCHECeC87JxAjn1hAUgfHcXWen7r7YrBjYbnNt9ia3XAVz73FGXa46p6gsnBIXfu3ONMbthMLD0cPslZee7fACX4zku/D9U+4vAG01nLqja0/YAXgouPXWYw6LOWRZHQtNX0VcOGnjM5FEwOYN8ZFlXgbjXHWYe3FQrJoRijQosOJbUx1NZgWov3nlznBBl7FHw3fSOKWxxnAo/bIH44/kyHbRtC8EgESI1eORPzMQJc2+CbFl/PCKFk65FzBOGheZOEDNm/yL49ZLazS7Mo8c6j9AiR5lyTEpH2GG5dYTFvGb+3QyFKBmpBWU+YtxqhHUlvgBWCVmreuTuDFcNntlbJD2fYyR622sW2RygJic5ZPZMwLDIur2zjmkPKyVVu74+5szumrCpaY5nNTOzLMJa4afoYUAV1nFEPS6e6S0qoEOH/zgtevtvw3tjy2Krh4nCHTzz3OMONNd7SDzGvLa9dvUZPtJzLW1rhqLEMnvzr5Juf4vbdr3Ht6qvIg6u0ZcUg1GRZoE0D69tn2Dp3lmEqKaQkN5osBB5JJrjWs38X5s5ysCiZmQWtCeANAs/RzphEKvI0MunW3jFflJhyzjBfY6VfkOjvAfDzAxwnybkP/8wHMfLdZ7KO31/Cpx5I65+8dfobP+ArY+j1QQneYyHfU45whMLGICdJEmTnQ3rvmM2m/L2/93P87M/8LCujIXmW0bYNAGneBbfGEOwUV95lZXOdtUvnEOY2+Jus5xchnVId7FIdjfHWgMyRDNgl5Y5MGJ55BCEHTN++g2kqVtWExh4xLfdxwZIWfawQeCG5dVQzC3M+tTpAB4mfHeBmh7jmHsI3pDpnsJpRjFIeXV2lkI7F0ZtMZlPevLMf20WqmqpyVLXDWd9df+iSrapL4MZErl/ezgAyBKQLBC9preV/fnnBZtHw7MaCc5fO8LknHuKmWmVPnOPGtZu4esalXsNQeQos6ZnHGT36d6nLt3nhj76GmNyC+QFhUrOWOOoBZL2CS48/Si/VDFNJZiSplZzTcwpZs38HFpVnp21Z2Jb9+ihqONqGsZiRidvoUCJ8y7ytaZ3DNQYtJb00JxEhqrl1CWnVcS5EVNUJS/IJvO+DK6N8wNSMf/cgsud9U/BPNT72qpdSkCpBQydUuXx6Wh1XhiMZQnREl2XeePLxx7ro4WsSguzEXn2ImaoOa2a7CMB4j3ce4zxegHYWpSQuqM5Zc3hnI52s76jXAYWIzi8xc6GUBGTneHaF4hDFMePJyS68lZGSHEmSD3DegTMEFwgmnrdKNcmwh1wdYUSKrSSJa9CmprUO5wKpjEJvQmhskDROoUOKCGm8Vudx0pP3Cs5sbDGblYwnC7zI6gzB0QAAIABJREFU8Gi8a2mt42iywFgPpkK4GkHbEXloVFag8pxCeZJgOWojGUBrl/hS3gfl+16HB8ou85EFS91EppWs6LGaSspE0WYJPoNUCkYyQSaBYKa4ckwzOSQsKkLrCEGQ5RmPPXqZ/rDPmbObaOHQNKjKomvLdntI3wp0oqk8DENB4zyLsqStW6p5IBeBHIc0huAccx/7awSRpfBsJjkzTFjfLEhGKUlP42XAi4AxEeLoOh0pSehYciJLjIotK3ghTsGb4o8Q4VjPQQnR6aBFMVOdELHVIWaylO6ETj/uzT+Vznt/IPXBD/EDs4t8f8/7extd07APGGNomoaqqhkNRwwGQxrT0rYGZ1tM21BNp2BbhkKis4Ss3wNT4yuJCh7lDNZYGuNikKYkQmc4oaltCj5Fk9M6SWscRnuEhu3zI6yXHB7MIy2/jCQ4jXGM5y17kxpbV0hbIUMNwiDTlDTPyfoDitTTFw2TpmI8q5iWNbOyoVrYSIffBVKR5h8QJ+mtJUsQ4X79lGWnnA8wq2Nv1WFakUhJO5sh+pLRaAOTpFR5js0kIpX0RQY6Qbo51jrM7ABfTgilwbnoQGxsbtBbGXH+4Yfp9Qty6dAukJSeXlgw8g4tochTEpez8JrFbIFpW5q5RXno4ZHWIVqDF4Y62FitC4HaGCpnQXYkQN2OKeTJ9f5gqPf/fzjuS8CL2McblvuPiqyVUkWJiSID4bs+O1DOEKyhbiwiQJYolM4QOqdxgE1IyWl97DNW0tPiWVnrsZr1OTpc0DQOq3ICMZE5ry1744rFokKaGukqFDVSa1SiSHt9slzRly1zWzOZV0wXNdOyoakMtrUY42PjeIctP84xB3FMaPJgj8MSGOZCoDIB4x1rqqHnA9V0RpEnDFbWCEnCXp6jhYQcMpmRiSxmvNsxdn5IuzgkLFpcGysBvV6PlTNbrG9tsbF9hkw4NJ608iTWsuINwSiUEAycJnFZZP5s2igqagw9aUlwJLamcY6ybGiNRYrA6sY6Fy5fpuj3TzlsH+jm/QWOD4JDdO98wNL+2DbolMd3HEg94Mze/6RPJvxpJMayn+t0T9USmShOvb4cznna1tDUDVVdsbmxwWAwpKwTnHW0bYNrW6rZjDRU9LQmKTKSQYEvE7yR6OAQ1tC0EdqcaYXWKULn2KCpjSYNOSJktC5graPFkWQJlzbXWCwaZtMaK1O8SPDeUhnH/qSOiK22QroaRY1QASEz0qIg6/foKUfma3YWFZN5XD9t01KXBmOiv+h9tLXIZVPKMrnV3cFTAUaAY5kh62FcRVmeQ10xWFlgZjOyYY9RrhlnGbU1+BxSJRnJDJkAZoorjzDTfcJsga8sQijyPOXc2bP0R0MuXL5MqiCVDtV4dONZ8VB4gXBrDI1H2h6N8SzmC2zbYBaODEGKR7YWbLQ/Jjgk0ecq2xbj7LH9UXBMYBfccS3zvhl632wUXTC+fPeBKXdCpf4hpBXfR4/jx6dGD5AH8EpgU8WirDHGMegy9oH4sKWWWBsrSkIKskxFmNTS6RARVxwITMsmZnOJfVbOB7TzJFIyr10USHUGpaEVDZ4MneYs5hPqRYv3CiEkM52SekWS5pgg8AaCsYTSRf59nXQiwJpgDF4ITD1DZz3SJEd1GkFSqMjzr8A4w+HuAXZRYQ5r0qxP/8ITZGurJKMBde8ZmnKBe+mI+vaCaRMwSDYKDTLDyx7eBVwpmAdNkBLTdsxYKJ54/DL/zj/6Of74hVf57d97Eacu4sUK+3e+Q1Uv+M3f/DZSBNLqkNQuCKJG6h5K90nWLpAMRvTHLyKrI/bGNaWJIsZ/1o5142E3wOKw4e7M8tx5zec2JPO1jF0SSmXRSvJkscJ4coPXXvhPyLRnoD110Bido6Rk/cwZ/tP/8le5dOkCIyWpq32ODt+kHu9Sj3dYvPw29t4+l57cprfSR47O45ua5ta73L25z+sv32RbCjYF1Hsli0XLf3vouWViHel8rvjbZ3ucv7LCI89v41uPM4GayP7TmqgXNa+jPhfOYl2swK32Nf1cYaXABcl8ERukjbVIJUkzgXGOshWsjDLyTJHJCPtCxNK68xqtBUUmsDZ+l5If/z5/bz7qCcXnDz6Qiue6FCy01vH22+/yn//qf8GPf+Ur/KNf+iWyJCVVCTeu7XJ4cMDbb7xFouBv/rXP0xv2SQYZ3m3g8oJmv8Ef1UzmjqMazo2GJCrFJxsYJGYCvs1oW8l84alaCyhWewP+7V/8KYSS/Obv/AsaW+CTi+zdu87Orau88NpdvnXDMCx3ydspfTGBVJH2tknX1umffZjB7FX6s9e4ceuQt3YXLI7m2Nbgmtj/Fzq8dvCcSEEs5QiW1KynNm4huqi8e9n7QGMCr40tN6oF1Tff4eLZLb7wmVXe7CvuPrJFrVrm0vFYvk7mFd99+b+hbRtGfY0TCVW6itaSpFD81N//1/nc88+TK4nAUZc7uLaknR/gjg5pb92gtzqgtzqEbAQyw47v0M4m3H79LWRrWBMSP19g9wUv7c145cBEeIoJvDc+YG4tKlVkWqKsO55bcU47jlOgPxx/pkMnOYSAt1GAXXrwPoqES5mi8hzhKoJN0b0CBFh9mWZhsHcryonhoIK1LGdjIKFYw6sCtzDYKmMcFPMSqtZiJZgk42e++jyf/dyz/Pbvf5M7OxN88jBV2XDtrW9za3fC//TP3yRvD+nVR7gwQes5abGNLoYMtx9lwIz+4R9wb2/KS+8eUs0X1PMFrnUR6u89nrgOQqBDSwTAnmRYgfsqGFIdL60QAs7CjZllp/IsvnuL7dEhP/aFEa7f48alDay0zFTDdjLgQjrinXd/n3sv/y+M+oqhVixUn5APSFLNs5/+NP/g3/o3SZUilZKmPsC0M9r5Ab6a01zN0BJG5zaRSQHpKm5xgJsfsvPuNcrDI9aVRjuP3T3i3qzht28vIAQECT/y41/lr/7sv0bW6/0FzKDvY/wpE68fZoNOqNRPfTac7BtLGvQPGlIujeYJe6gU3WsdGuO4fYOlHTL89u/8Hm+8+Ta/8su/zBeff55eVtDQ8O571zg6OOTdt97h8cvn+dHPP43u9VB5jksu4ExLuF1ixobDMuC9ZnsjEh15vRqJzsaCadAEJSkrizEO6xOeffxh/uEv/jSvvfkeL/7J6zh9HseIG+98h0U55//6+rskEkaLQ4p2glMTdLFCkq1RbF0kWx3SP/wDmO3wynsHjOc186MF3kZpBL+EW3dMdt4vA6mlDTq5L8shpOpu2nLfDhx5x0vecNcesjuu+ORTgk8+lHK41WexlbPQDVppHs82GB/t8cbX/zPyVEToXihos1V0oumNVvnH//6/y5kzZ8i1xJmSqjrA1VNsPaW9eQM/GXPl+XWSXgHZOsG22PFdZrt77Fy9zgBBXwjsnqKZLfjNGy17ZcB6wdwYXts7ZOE9WZGiXfSXlzMlBHtcpbx/HnatGJwES/6BbPbpGEnKWOEMSzI2ceJ/fT+EMR87mIqOQex9UkrGRksgyGUmdlmK7LKaMgq3eu+PF1fM+IOVcTMNRMifWKo943EepINIdx4rYkJ2PQlB0nqJ7xquEi2QQpAm8Uer0FUNIhV460LMugJ1WaIJCOVJrUXpFIJAkqCSCp3W+ABCarxx4BxZnsambAJpUpDkfVTeR+qcICqs89y+9Qa3b91FeEdCIA0eIwImCSS6h1IZVRuphr33SKlYHRR4G3j19fe4e2cf27ZceUiytVbwnfwK+/Oao4Mpxjbg6kgvLlJEOkAUqxShJW8OGc8rbNVG8g//fZai3jdOMZ4EMB4WxrM3r0mV5NknNni6n/L69UPK1nOoDTPbYmxFIhOESNnYeoR8ZYvtsyO2z25y7sw6q4OCXHjqsuVob4eetqxvrCLXB1T1gnq8IJQN6ypF2BZtZ2wOHY8/PWC1NawYSzPS1DU8v+N5rPaUDWwNUy5fGbB6KaPXC7QCTIiq6LHS2YlFexc3Y++QUpJnCiQ03iN0J0arBUpInIi9csbHRs/lgo3MQeF4LQQhCDayTQoRtdWEClHH6n3jFEzi+xnhwUzfD3gse2qCp21b9vf3eeONN/iN3/jNKKKY5WSJRmvN2fPnSBNFUoyQSY5QWafT5ZhPDtm/tYtvWlIpSHEo4VhkAXTCMBvSGE01m2CaluBhNBiyMiq4fWefQIgwnn7GQw/3uNU7S5In7M8M88O7KDND+QZPjtApcrRGlmpW6n0WR4e8vTvm8GhOM6+jzII7LRh4gidYaqS8L4gSomPrFMf+oZKyY3uMeXYfwDjP4cKQHC24efMe+fk1vvDwGQ72xyxmJWNlSb2ltg3eOYQYUvTXWNu4TFqkZEXGhfPnGfQKNJF9clrPCa6h6BVY0yMMCnCW9uiIbCXCH7WfoXXFxoU+0hoGpsWPUtyoz0Mjj1+DRQll46n3Pbo2VLOGtqvG++5nmRWW8n6a2R+O738cZ+HpnKEQkERik+D9SbZeZ/E5qEj6FERO27Ts395hMZmSyECKJwmBWjlsGiiKFWzQLMo5bbXAu0Be5GyspsxmFe9evcN8MkealscfzmldgfVPMC0Nu4d38W6BdxXWKoLoIfur6F6PkZmgmkOu3jnizuGCel5h6jYyo4ZTxCXHfWBL+Nb9a+fYznT3QIpI3qNV1JJc7qA+wLQyKFFz684u/Y0VPv3MJcrGsLd7yDQECtmysA2tbQisonWP7TNXSPIevWGPRx57lEGvhxaxV7uc1zTVlCzVCNUjDHpgW9qjMUnRkq8KtJ/hmbO2mdAbjBjYFmUtLs9xC8HTaUPrEowvOLs1IMt11/S+vP7ltf45T6KPNcKpfx/M5v8p4E732aDT1YD31w8+aoilMyvEKaf3pDK1PNsHQYMnTnVgsViwt7fHN194gelkymDQJ9EJeZpQ9HtcevgSG2c2UdkAqTOETAgiw/nA4c4hRzt76BC1UtPgMMrTZJAkPQYqp2oNTWVw1iOlZnOth1aad6/eZm/3EFs3nD0XGK0k4B/icFpxbxLlWpQt8d4RRA+Rj5CjdfqipVcfcG93TDmZsJiWNHWLtzEREW9uOF4/ols/gSWx1dIencAi6d6TnQ2SMdfbBaCBsnXsz1vu7h6hVcLDT5zn/LBg594+cxM4VC1z29KYhkQXSNFjbeMSerhJMSgYroxYX1ulX+RoEaispy7HpDLQG/QQgx7W1riyhKYh31AIb9BhBn2Pf2hE7gy5NbiiwFSCK2nLVmmYzeGwNpT7HlVb2rKlbWPQGGnRO8Hmjnn6eBoclyxP7y/vn33HNdNTk/y0/yTE/XMY8QDr8scYHzuYMtYxXTSkWUqSKooiCptaEUvyzttIJy1jkCXwNDYci9EKAW3nDAkbWdFkliCkQiQJdA6uXaqzyQQhA4lWEKLYWesTSq8JOkH3AoWUJFKQ5wqtJFnikAqkFrQm0LiAcg5pYXq4T7NIqdsheZFHsWDV4KsaIVN0miNlA0LjmlgqXdkYEoTAeneMRRVaR0rUYKlqy7deeoXr791A+8hEknuHkY4q86ysrdLrb3Lz6jXq+RTnHEWe8tD2Ocppy6/9d7+O8BblLT/+456/9tmCX7v+r/DabuDb/+d/RTnbxwqJlBqlhsjeGcTGOdYWbzE82uXlvSmTqn0fVOL7HeIDfm87VsA39qbcHC/41b/zFFce3uBXrpbcGlfUbo6rWwwCR4aQQx579itcfuYL/OzfepJLF0akuUYIiw8VRwe3+e4Lf8SzTz/OI89egQs7SF9x+w/fgEVF/tl7ZMohp2O2z/Z4+IubyN0J4mBKSHICcPk6mLlnPlXojYLRj25EITnlEF4QXCeYHKC0keCgtTbq5zhLmmf0eymVtcyso5+DVgKdaYQPiKAwNtLrIhRKxY0qBGicJwSBThKEj2tASBEp9nUUBlYPYOdPKJDff4OF+PjG7C80iLrvHOJm37YN93busbOzw+/8zu9y/tw5zp09y9/92Z/mmWee5omnnyDPMhKpunukCELjg2fn5i7vvPRd3GLGKBX0XEtQgf2+IxvknDv7CPdu7LF7+xZNawlOcuncWdZXcn7v97+NaVsSW3HpqZyf+UKPNyZn+ZOjEd/8f/4Zh1e/S41CSEWvv0qSDpFnH6Zv9rh4+CovvnedF9++R1NWWGNxPADvJG7QS+ZCEN3+dpJRP4GmSERs5CRVsaeMLphSIhJW3Jm2TOpDppM5f+NvfJ5f+NwV/oevvcvXrrUYt0AJy9yDFhnIM6xtXeGpL/8tHrow4vKlFaQSCOEBS+sqdu9cRUt49NErWByhXqG8dpPx9ZusP7xBb61AVnskynPhE+cQ3iCOdkHkBJWzOs751LRgNpbMyoC43uPmuKZ6e59FafA+RI0PG7reKQghEhH9pfAN/z84hIokRbE6FYmefEfGpLI+0F9qhOC8ZTbZ563vvMLh7l36CopgyK1jqhuaXs7WufPYBnZffJtF3eKsYHW0wtOPbfPe1Xu8+CfvkNialX7CTzybIvsb5Jef5errb3Lnn/2vtEEwFYo8L0jyFdi8SNJLODv5NuODXX79O/eo65q2ajqB67BsbuB4DXXrJzo78jijHsIp1lMhuzll0BKyLllL8OguYXGwsMxqj/3OWzz6yDb/5Od/jHf3K/7rN2ZUheFoUFNagxEaL9dI8jM8+/mfZOvsFs89tUWSKqQMgCcEy+TgDkf7N7l8+XGKYoTfGNEcHHL4yusUKwXJIxuIdoJspmxePIMcriAO74H1BD1ktS24tCfxYQUnzpI/tIIIDQRNDAP/cq2SZSXpPht0v//4QOuT+FBb8/7XTwKc+5BVy6T5fV+2DJqWf3PsDx//zfFRo84IAU6SmWFZUfDEmRGYz2fUTc2v/dN/ipKKK489xoULF/jFf/gLnD2/zWc+9+lIb75kzJSCgMcYx7XX3mHn1i0K4VEqULgaozLKgWN1Y53+YIt3Xn6P2f4E0zr6/YynHn2IyrT8b//H11CuJfGGJ589y3PPSNYeeZ6bR579//G/ZzYeU4oIG8zzTcLgLPLceTbmr7N6cIdff/02dw/GsdexWz+nbdDxPRQxvRJvlD655Z3TL6TsnlgUAc70CSIsNrrAonXcmrTUb9/i5u09/r0fe4rLVx7iV6+X7M0WNGGCrRc0SAoxQOhtHnryy5y/8gmefWKD1ZUcrSWxCcRSLY64e/1NtrfPsnruPKyNaETL9LuvE+qSrStn0Mohq336K31Gj28j5mPEfAxqSGDAT+xKbGUZHwpuzSz2Ro/bewuaG0eUlYEq0FoHbmmDoj0+Ro500+okwDw1704HThEPefy69x9cjXq/D/bx1/DHZ/NTkqRIkSpWjILwx8rMp6No3/U6ORcdCO88SsqTExZdc7MUKJXgPDRVC/hOeVp12lIqTookwVrDonZoLQnWRca+RJOlCq0EKpExG5wm8Xtk1PvRwpEo0CIwnU7RUpKkIILh6EDQHwzJNzKUCijp0VmG0gUqVyDi8QJEJqDY8YfwDcGVlK99k+nVd0BWyJGGqaZtA7uNRwEriaCfStJMAhbvTdycgqdsGnCOdaVZWJi1gd9/dcHt6QG7ox1SoVl/aJtsnDC5txe/OsBmX3JmO2HxTstkvKA27kNBN+I4Yo+LLITT21mHwX3fX9+3kx6X1ztQ2QkeN8DXv32HG3drnvnU5zhX1rz7nT/CWke6knDx0nkeefQKVhquXn2db78w5+D2kOc+e440c9TNDndvv8Y3XrhGbTKCHmCndRR/XCtwOvD2nZrCGc7MSnpHhmTcgG1QrlkyPpC0FpVLkieGyLUh2YVzOOMRVWSUEtLTGENjPdNpSdNY2io2RVvnwEqUlYgQonC0d3gh0BpkEAQXUECaRR0zIQVagRIBkUSYX9st8jRTEMBZe3ID37cyTytPhfsMzL+sF+U413nKGJ6Uv089wR9QnCW6LFjSVZ96vYLHHn2ML37xi6ytrbG6ssrTTz/FmTNbFP0BSqn4N91G7Md3qN97DV/tIVcT5DjDu4ydqUUCw0SQZYI0FShp8absiClkxMengjWtqV1gZ2p5+5blf/+DffzQokaBrQsrOC6zc3OPumppPeRS8PimptlteeW9O9zdH3fkC8u+p2WGKxKO5EVGkAlO5DgvcU7GuSHA1IbgHRpLIOCJFdDgXVepD2RZgVIKFaLAdiweC0Cyc+eIF772BoNsi+c/f5Gdqy9RTqesrmb0iiGPPfk0Klvjzr3bSD9BmSO2tocMRinWzagWU9567SpKafL+Jio0gMAUGX5tyLi0zOoZw8WERBh6VYvUDsECvEM4i/Sx/6N/cZMk6fH5S49wbr/mxu43QVSxH8FIhLBRaN13lbcP7QeJM+OH4/sYSwjPci7K6BSFrmIVMaeG0Mxp3nkRs3eEGEpklSD6GZPSM60tmRSspII8FdTO421JsBZJpF1flDVFgM0kYbe07BjJb3zjiN5qwG9oBkPB5U8+ynh/wtHeBAvg4eKqpl8Irr6+w9H+HnUTob7HPVDAkm0tKzJQCi8LfFAYp5ACtBa41mKNRWMRnbh97MOMTpH3AZ2kJFmG6pjHCBFuixBUi5aX/vhtbH+N5z//eca71zi48wbDVMKZPg9feYzR6lmOZke0vmEtKxmt5Jw5N8T7Cucqbl6/xvV3r6PTVVZWhuACLtH4tSGVgN17c/KmpGgqRH0PUShEmEEwCGdjoBccod9DbwjUYEIwNxDyIYIcQefo06EjluHJ8fjQpfLnuYaWZ3C//YEPhk89eEbH/U0fYYPuO0boKM3vK0aeqiRwqtLwgC28L7A7LvBFWP9yjsmOjj7PUrK84Mtf+hKXL1+ODv7KCpcevky/3yPJi64HFCLhlMHceoNm7y6kDXI1hUFGUwZuz1p0D1bT6MNlmQTf4G2FDBK8p6wb8I6tJGFqAofzwItvGe7OZ3BuSqYUF5+8wOSwz87NXUIINB7O5JKHNxSTOxPu3LrLdFFhjD2mvDr9VNIiRaUJXuR4oTE2JvISLQjeY+qYulZYQmdZg49Uf6HjAciKPlIEpDdIol1aosLeevUWi6njycee5HxTc/edF7DWkG71OHfuPJcuPo1PBLfv3GKULShXc85dWEEnAWunHOxd4+Vvv8nlxy2oHqFuY/Fh1MNr2NuvSFwTbdDhgnw8Q4gaqDu9TodyBpkqRk9sc9Gm/JVHc15+7TZ3D15lyXIgmygg772P6DER71OQnNpzTnyk8ABq58NdonBqjp0gS5aB1/c6Pj4BhZYkeRJPoet/8rhj4gm6iHpJKmGNP26e60715BIkMVhRCW3Tsqhq8lyRpio28UuFl5HZKE80tffxeJ1Ir1SCRGrSXEeonyRSwXbBjwsgpSMRgkQFtAyMD6bgA6urKcG1VFWkYd46u47SASUDKs/Q2QCpMoToYIxEmF9sRPfQNAhTsnjlG0z/5EWCWkOuJIi9hNZ5ps6yiWAzkaSpQGYCISwhtCASgveUdU0uBBtKY4CyDfzedxf84Zt7fOqvDBluFGw8dJZsmDHfP8TaeE0rfcljZzUvvGW4MZ5/KAc/dJuNkl0WQ+J9FxiJziAHR2eajp30B2tSogtoI3XiyebmA3ztW3fYWK/4yf/w52lNy+1vfh3rPelawkNPnudTX/4cL/zRda69+wojd5f980OuXHkOiaOcv83dO2/yjReuYUUP1VthLa8opKRdzzHKc+fqlEHVkMwqSEoG746RK4EwBBYOYQN6UyE3U5IvDGG4Bv2z2GmJ3ztEaYdQjrZsWNSGyaSkbR3BuE7tG4RtcSY6LIlSsToqHEmiIjSLSDiRdQ6NlDIKOYqAShQgactIpZpkER5qqpZlBePjNusfa2+cenYf8sH7nw+nN40/rygqfODhBR0cRyuyLKXf6/GpT32SX/7lf0yWF2RZft8RlhIFeAO2xh3dpn7963hWUOt9xEFGaDN2D0p0gGcSSZZK0hSksHhbIkKGFAl101LXgnWtWFjBW6Xh6KblvaM9rjzjePo5wdaFFfK1R5nP5hjT0vgoGfD4lubqfsMfvHebeVnRtobgPaclloWIFcfe6jDSMKsBrdEYo8hTjxKBkgXBGlIW+OAxftkb0jEs+YDOIkW8sAtwDtdavIiZtbu3jvgX1at84u/8DE9+9nN87cYruEVFtpWzurXG4597hsMjwyuv3CJUBcx75NlZ+v0hrt2lWhzy5mvvIXXK1qVH6GXQS8AVGW59yHxnip2WiNmEwtdk+/uIPMAaYA2hqpGDFNFPSS4NYXOLz6tHuHCv4rf+4LXYI2UcSsXkgHMO2zlAUsBSfPN4MvxwfMj4gPXzQNb09GdDWCZjVAfpk3FOsVxDHkxDaGc0b79AWxnkaA1Zp8hBzlHZsqgDT0jBahptkDOBYCtwHkWONZZ5WTEksJKm3GwshxX83398xNqm5UtfzRl2wdSNt64zm0xoOyKJiyuKYRH4xp0dDvYOaBtzLOocukBHdBngfNhDpRler2C9RtQJWgWyxNMuGtqqIaFEBhuPH6LuVCxuBaROyPsrCFuCa/Cm6yMRknJhePGP3uT8s8/yxV/4ad56sWH2+oukaynpqM8jn3yM4eo5XnzxNkdH+wz9hLPnRmxuncO5CcaOuXHtGq+8fI21s5c4YzyDNCC0wq8PaaYVR/fmrDYLZFOiD49QiSWsukgEUFYRFr6WI/sWcUlAMgZ7HZINCIP4RLtAatkndJ+V/YFDAD/8iz62DXrgeH8aG7SEDC/jquV9CMuYc1l5Cg9+/v7jCyLMPk0T8jxnMOjzkz/5N/nKV75Crz9AqRP39nj9eA/OgTWYW6/T3HgLkW0iV1PEIKe2jv0atr1gO1OkmUCmAhEavKlQFAjvWZQ1PSXYThJKD4eLwAtvtKQ35nzxKxPWtnIuPXmR4X6fw919GhP7z0e54Mqm4renY16/dpfpvIw57KWOAAAgAElEQVSahWGpykXXJyZI84xs1MerIUFkVHVCCIIi83hjwS9QtCTUGB/9bh8iFND7gFSCtD+InMS2jL1Y1hM6Ad43v3uD/bs1z//ST2CDYfzy13DCkp3pc/7x8zz+yU/wxus73L19g34YU60VbG5eQoqAMTsc7F3n5ZfewpHRX9uk0C2JFLhRH6cE41uHpHWJmo4pEkd6NyCGATEAqhrhLGo1Rwz7pFc2GOZrnJMP4WTON15899R0ivtJ29ooR4OIRZljNtBTwf2pQOok0H9wXt4frD+YIDg+zjHM8uONjx9MhYAOMYL2gAseG0Ph+L4QBCnxIuCCw7jImSaVwnY5AZlogg84GzMDbR37AxQh6qjYgFaaJEnwbbwQFzw6VWycWY3Ee0pENgwJ3nlsACti37fSkcmv8WBtbL6r5yWYlkJAlipcU1FXNfcOxsxqS7G+wma2RTqEJDgItrst3bYXiL0PziJMi6+PsOU99nYm3LlbkT18hs2+5rnROcYHJe+8skeWDWnUBotFwFRjbGvQRD2mLBWcWy+oW8uNgylzF+9n0lOoQnHzje+ilYnMfG3LEAcrF5Dbn2e1v0//6Caynnc9O+/fXISM8DJ/34bkwEcjLZQk0YrBKKNtLYuqRYTQTdKu4qCWlcQYpotT09MClffsNS120eBvt2S54uwnHyMTCy72Kupqnxd+63e5cR2ODgLf2rvOG7lj996rXHxola/+q8/wyKNX+JX/oE+eKArt2N+dUC7mPLQq6A0znCwoSoE6qBCVRcwtYRoIZYC5JxiPKAO+1SBySIYgNnHtLu1RTXlQspjUVNbRuIBUAZ3ECl0MKyVpocn6itpA632kG0bgnYzMfy5W4TyCIAROyKhVlmqkTADFUMfqn9c5pm5wVUMIDmPbjtny1PM5lT25//UT+MJHGtYubfLRH/vzL01FIyZItCTPUh56+CJ//+d/jsevXCHLkg4KEE4lUOIc8s6CbwhmRjOeMr4xxm/36a1nXH7yPGerVRIrsUZg9RmMyWn3ZiwWNYkAryIMY2s1Y2WU8969Q6a1o5GCtFD0thLG+7d5+XdfxQqNCzCqSgZFinj0R1gfaorZDnK2T1PVWNMJTXdVtlQLlNIMVzcJUtM6ibOCNhhcW+OtBZGis4QnHt1AErh3dx9jDYmzCDIkoNMEpTVSpwgh0SIhaIERAScE+8ZhZyWtg4f3S9TYs/HwY+iNPtv9CikVV7/7LSYTzdGtlPn1G1x3B9x8Z52tM0M+8YWnKIarfPVv/1W884z6grapuHc0ZpAa+msZQRS4FYEa9xCNgPkCKg/eEpoW5jWhZwk9g7wsEbIHYoiSilEvw/QSglGUIqIMrJNESt6AUhLxkRP1h+Mjx6lej+WO4ExJ6GDyERb3/r19qdUX7AJbzZjcHlMjKC6cZfviOoOthNuv77B/4xCZb1KLFSaHNVVZx75fBV56VoaK81s97uxPOZhXzACXaPJ1TdAVr/7h1wkCLBqmY84rj3z4Cmr9IiOxj54eYMoS0zRdVRfo+pykFPRH66RZQdOtn6Z1eG/x9QxShdQp57d7jPrr7O0eslhUaGsIBBQFUkmSLEXIJApsiwSpPUYK8J6x9TR1g9o7RO1NkUeO4WCTs5/5DBtFwyA1jG+9y733brN/PcU2LUevv8TaWs71N9a5dOUijzx5ied+5NNcfPRRRsMeShoODicoDGujFJkBqSepHKJyiJmD1hGODMJbmNbRF1k4Qm4RqgDRJzCM2XNnCERIo5BRl1As4Y189Db/5zWOgxc+xAZ9RHLkI8/5fSbn9L4f2UCB4732vgN+mLk6FTwte1B155fYrg9f6+jLZFnCl7/0eb78pR/l6aeiDVr2rZ22QQTfrZ+SYGbMd8dMb09IHjrD6lrOU59+mMnuDN1Ab7BOq7ZYLASmmuKMJVUBJz29As5t9qhaw1s7RxwYaIBipMhXJNde+y63aTBC49qWs8IRNs4iLn6G7bUZvdldQjmlrepYIPAeROxxSpQgzXv0h2uYILFW0hpwvsU1i/gMdcawl3Dlwjnm8wUH+2O0d3jnkCJHChHXj4prTYaopeqkwEpHRWC/dajDCfOg+NxBQzrM2f7kcySiZLPXYOycN1/8Y+7c0RwdSr597Q1y1XLv2iYb26t88ovPcu7iI/zMP/gpekVGL/NMx1OaesFmH9Iso6BPUoMc9xBNC2UFcwe1I8xqMDb+f00instA9kCMSJM+K/0U5WPlOrgILWyNxLmuFkDUrPVd4mUZVJ1mEI9z7sS/WvZFLSn2ozt1MidPGP6WUfxHTfr3j+9BECHSSZ/OHPgQIod/iMFUpykWg61OJUsIFZ3RIBBKIYTHOhsDIWMJIWZ6l4KqUkqUVp22SSzpSi3pZV2PlosaVkEEnDME52mEQIVA7qMIYGNFhBl6T1O2uLomH2ZIKWjblrL23NutIMs4M56RDBZkwxqvFiQWlLYoqUizLF65c4S2JVQlbnGEW+wznZUczQxCKXr9jN6Zlag8nYxRKsPJPlXraGxDcK5rrA1oBaNhjltUjJ0hqIS8l6ELjcxgvHuX0M4j3JAo6Jn0RqTnn6Zw30bO3oyZSR/u34eWWWMpY0bGRb2pE/GzDj4SBEpBr0gRQlC3LjYM+yW+vesLESc2X57Up3Ddv3Pr0I3B7JfotR4bD19gwISL7PDu7Tk3r+8xnqxTVz1m81vIUNLO9zncv8CX//pn2dga8GNf3WByb5/xvV1uNTVH45JL2ylJkZC1CcnCIayK3zgD6q6M3QVTIQRkP4DMQOZ4n2NrSTOpaaYl9bSkFZHNDxH7dZb9HqkSpB0Msw2e0C4Fnn1HphKpz5eOghcy9ipohUw1IuhYkdIREup0AtZ1PVX+o6uGH/iauM/OfOhvD2YMw0fbpO93nFzCcQoIiOtdyUi2sba6wud/5DOsrq3jbBvZh5RF6zSyM4VOZdDWBFvh2zltuWAxrnAbgSRJWBuuMHQFu28cUFfg1QAbFIt5g2nt/8vem8ZYmp33fb+zvMt971J7dfW+zAw5C5chh6KoobVZFiUa9ALLkIwkhuwYQoIACrLnQ4IgDvLRgSEnMPIliGQbtrVFSyQSEimJlExS1Ig0TXE4S09Pr9XVtd1bd3u3s+XDuVVd3TOkhoYtyYEPUKiq7rfeuz3nPNv/+f/RIuBkJJDpdVO6/YzxtmHiHEmnS9JNSHqCcn/M5MFNVNpD6YxeMKRZh+L8Jfq5g/kb+PkEa+Iw8eIDBgGJ0iRpStFfxgdFMzE4a7G2JdiaYFvwcT9srBVoKRlPSmTbYk2DRKCFJMkzdJpgXbQFHatA+OAIHubOI5qW4KCcVLhJTW9tA72asskD2rLm3o07TGYF9XSTyWSf9ugGtl5lcjjg2nNP0Vvp8tSzT2LbhtnhPqaxzMuKLJGojkb7BJF68BlUDmYVwTpCa6G2MDUEG8AGcApkTvAJhIQiUVSpotYCq0FL0EridOzQy8dt8N+vb7q+2f45RnIcX9TUJd6ZSGkuJFIqpFSoRB+XSaP9OYNv57hmRjkuaZJY3OmlXfpZRrlXUR/UCN3DyB5lZamrFklEX2gV6OSKpUGHW8Mxh21NSLqkaUbSlXhX8+DN27EIkPXJQ8uSgnx9k/T8FZL2Pm46wrYN1tqHr0HKhdC2ouj2yYoBZtxgWoe1TdSZMSVBpeAlg17Kuc0+dd1EpICJEiVaSLTWpJ0MHwTWB7SUqKAIweM9VC5gjSWdlWxOSuxRRZoWrF25wjqH9MOUV2/sczj2lOOzNGXN/t4NjgYJrl6jGPS49NSTnL90ga2LjtnhPnVZUlU1WnnkmkboQCIyZNKATqFSUAuYe4K1MLagFp9jDcgcREoIaYShYyIqREBYzIOd9B4emSP601lv64NOV+a/2U+n4H2P4lje0nx9y6M8vP/i3TgVs578dGrm6vj6Y0IzrdTD7SMiIdQxGdqlixf4zg9/kOXlAda0i26gJEnTeP8QwBkwLcGU+HZGPS0pxzVCSLJOxubqGonU7BeHqKyLk32q1lHbmuAcWoCWnjQRDPoZZu45MA21SNCdDF0odAHDWzv4ckKSD0gE9EVA97pkl67Rd6/D7BaurmIxzy98kIxJZ5rE+cTu0irz0tKWFmfbGDObMpJKeEmWJJw902eYCmZli7Mtzlm0kCghSYsOQkqsizF6IiPENhAwAazzjMoaoee044oszVi5cJGcKWc44P5exd79QyajdcpZl9HeXYSbIN2IcnaWZz/0PIOVdd77wir1dEI1PcK0DfN5xdpyFmWEXILK0uiDph7mAuo4r8jERF9EgNQCKZDhfYISmiJRuETidBy7UDb6IAG4xU460acLxHjrhMHvbTqsglPxrXjMFnnkmj820f8m653PTEmJSBOk9+A8Wga8jOQSgRC/uxBbqD6G3D6ERRbpF09u0cVKNAoRZwkW908SRZpqRLAEE5DC4QNUjUA5iVcqKk87jwkGExzzuo1t21SjlYDGYkM8bJ0QWBEV4q2STMcV0gfUPUfVWO7u13zj/pgvvLpD4PMEEoSLBcElpTh3Zp2f/M//Ft1cUo/uYLd3aF+7gZATgphzc3if63nCzCT4MiNrC8YzQU1KlmSkRcamVWQOXpf3aYMl4BFZD/30s+R7+6zc3eb7f/ijfOKvf4Kf/uef4fe++DIiXUOqZbQdIrC0UnH2vOajH0t4+XMTPvU7NxlOq7ccXFIq0iQjECE5foGdfcQiFpbinKepWvI8YXlljdHcM6k8vppGp+ciBDLR0XgVYiGyeNxKjgdhWZd86jf/CdfefY2f+Lv/JTdf/To/+w9/CgMIpeisW7SwFGXBan+N/+S/+G/ZOrfF+laBbSfIyT1054jBsmHwbE7ZwFGlGFaOyWhOWkpUVeClYW1NIQ4q5FFLiC1RwhlJuJATVt6DdYHRv/wS+6/vc/ulu/iuxHckZSoxMmqnICWdQoESOAlIS+sc8xpmdUCIqG9Q9LoIqVFZGmEaSiCURuoEmaYEqSPrm49i01IpMg1kkqybxa5t8Mh35C0XO/fU5n0EQ34cb32znb34u9P6Cf821nHbWxDhOMcPY6zj7vYOP/OPf5YkgDSWgVYsJZrv+6uf4PK7n8RWkXrY3bxO8CWoCaPdIfe6OY1IMW1C6jK8cZS+i5GevMjoyoRNq7ivR0x8TcAQRILYOkNyZpXNG7e5erbHD/3oj3BzZ8Sv/M5XQOeotWdIzQjt5hgl0YXmhWcV5XjCr/z0l9jfP6B1kbYZIVBaoZVibX2LJMlpWk9rWtp6TvAeFRwBF+fKiYP/1aSkV+S8//2XmRm4vu8wkxH18AG2rtBtTdHNSbUiCwkERZNIjPVUlY9Idy94+aXf5ujuV/nzf/vHWT3/HJ/9hf+LyXiIy1LSXsLykiGtO6TVFt/5vT/EtXe/l8FqH50IRD2K8OSOo9CSpW6f1gbmFqp5hZ17qLp0bEJ3SSDnc7g3AmPi16aC85owOE/Qlzm8foOj+3ucbef4tubONHZ2CVGHRGWC1sTZ1X+fTn176zRs5LgiGllFA23b8qu/+ike3L/H/HBI4j0rSvCu972HF3/4B3DNFN9OsXdvE6ZHCD1mXpbspIIyyajaBOUUSSOZtSMq5iRZRtpJuZh0qL3gKDQY5/Chhf5l5LUnWR5OuDA64C/86Pcz2Njkn37yi4yGNXL1KbStyMwQZKCUmmeuKC48JfjMz3yde2+8znhWYxcDDFLGgHYwWGFpaZXGeqp5RVPNMdaigkWGgFcghccHQ1PWlEcJVy+vc+2ps7y+55iVDc2D2xjbYmeGLEvodTJSNDpAk0is85SVXyRagp17b/Lpn/sp3vN9380PfOIv8uXf+lW+/Edfx2UJKkkYXLQIJ8i3Nrl05Uk++gOfoOgXpEUH24yRtqSfBQrpya92sc5TGYFrJW1l8E0H30LSFegkR90eQ1lD00JPwbkU1pcgexI7s9j5HtYGvOjTO38FlZ0iC8AThIhNxz8rBYlj9ofH1uM+6FuSHj3mg956r+OO3DGQ7a0cgELGM8U/NiglpUSomGioZEGqIO3J44UQaI3jpT/8KuPJHNUapPNspJq11RU+/h/9DTqdBFsP8cMD3P27oOYgSvaaIbtFTuVSQp2SmQ6T0lPRJdcdsiJlw0oSC6/IQO0qfDAEmSMvX6VzeMjZG2/y3Eef40Pf+z38xue/xldfvYPqnkWnG2TmABksVao4v6758POKr3/uPj/36S9wZ2cX4wIeCSqQaE2W5ayvb+GDoC4bmqqmrWsIDhU8Uvqo+Rcs1rTMj+YMujkf/vAT3DvyPJg4mv1tTDnFlTO0UvR6HbQQZCHFekebKpom0JqAC5KyrPn8p/4RF65d5mP/6U9wcP8WX/i1L+OVRKSa7oYh2XR0NlfoJWv8+U/8GMvr63SX+njfYOoxnWRG1nGkF3JaI6idYmYc5XSKqiXUA7xM6axoxMEh6nAMbQs4WE8JWzmhc43GCA5ufBl//yaXfMP1qmY6rbGtQwB5qvBe0pgoo2Rd1AA9sakFWmvRm3osoV/YuRCP9CuPIaSLK+J38cgV39zuH1vvvDO1IHYQCEQQKBkrlmZRgT8mnvAudjqOW2Rv1wFWMtKeRnXZWGGQi4wxTjlz0uI95klwLiC8Ry4ew3uDqaNor/YBpwQJAhsi01qLpBESa1yc3aotwTh82VI3luG0wU1b7GFJ3ViaxuHbFuEcK1Kwd3aTN69/lH5HUg/fxN29j/3Gdbqdliwz+EQiVgdYmWKdxraKqlbYIMhQaJWQeEhdiKr2YnFASUlICtAp0ge6nZTNjSXW1pdYWR1QDRtc3SJcfAOdVCSZZHXZ42nZHc1jx+nUwSXkwqEpjfMed2qcUcoFrjnIU23LgLWeDtDPNY2HRgQaU+K8PQmaj3HKAoFctEB8ABEWNALOsrt/l+XNHsu9dYrOKnWbELRD6IBOHUJbVoouW2urPPnud7G6sU5jZzRtRVW3CNugaOjljkTDwcRRzh1l5TFNYGwVPTw2W7DZmEg+ETSIVQVrKaQD2knJ/u1ddu+MeHB/TrKeokISoSZKYL1EKI/Pox0jYnLoLRgH1gmEcJF4IngEfkHbLyCRSKXjl4ydqLAAvIbgIUikiLT8Oo2JlrThkX2oteb8+fPoJM4dnrR4xWLTh1P/zKOwi+MZxdOb6PFz4nhvaa25ffv241vujy2yiLf8wMkY3cnfh4DWiqapkVKQ5zlKpxhjuX3rLhiDm81Z0ZLlRPHk8+8h63Ww5T6hmiDu3kJR0+nVsSu0soTPOliv8FbiWjBO4gIopUmEIoVIDiLjxxZEIOiEoDOkj/WslUHO0Txn0M8xIjKCSi/BgZUap1P6Bdi5YfvBIZPJlOOCICIK4iZpSqfTI9EZ9WwabUB4pAqkSuKDxIcIA5QL/LZLHav9nNQpBjYw8zXNWEV9IBfnEaP4YCTfSESUhpCRqwQbYDI+IAtTFIoiH2CtxliJygNKe9Lc0uukDJbXOHP+PFsXLmG9wfkWYyzBtojQoKWhyD1m7mmbQNt6rIE2ZCih8FlDaBpoo+wDIUCuYTlHZAVeFJTjGfV4QiE1S3nBympGL0SJgWPYcGs9RbfPaHjIvXt3Hjqgt8xcvtWg3jbWerxhc2x3wHB4+MdY7Z/d9XZd6egn3ULouqZpGrzz1HXDzZu3uHfnNpMHuyTOsa4gLXKubT+Db45wzQTu3kJMR3T7TSTQ6XcjeQ8aZyTGSxqjsCEK0GulSV1EE8TK9+LoU4qQ5Agk2nmWugkrS4v9sxDblcIibMBJhVMJeS4ZFJ7haMz93RHtQiZFSIHUiiTL6HS6FJ0eZjaPkF4cUnq0jDNfLmiklkgpcc7R1IaNLKHTL3hgAkFrmgNNMB630BKKfFcSiUIvaJGlCggXfX1VlRzs3KItX6DXWUaQ0xiJyohswLlFS8Fab4XN82fYuniZgMcFi/NgjEEEg6Klk3oa45nMAraxtG1AOY0ix+mWIBzBBUTrY5yiFSxnUHRAdjH1kGo0oTWKIFryjXOIJEUKxTE9h0CeJFRh4VPFn/Ts1FscwqO2GneyePtLH7nu2yvdn7y8UwXCYzDfo+Hs2/zlcfwpJZlKOA5m4ly3YDg84sYbN/HzOaI1DFPF5voaO3fuUnRTbL0Pw33E9m2yvCXJDD5RsDTAyQTnFd4omiYWuYJQaL2I4VgURmWczxdSEJIsFlytp5sq1pdzlgdxD1nrCcIgbXxtVqbIVLPcC7Rtyd2dA2Zlg/MLyQkpSbKMLO9QdPo0xlKX5YkP0loghYpzh1IgVZzLbWpDt5uxPiiYAXMVcJN96kbhnEOK+LyljPtHSUgEWOuQi3OhdY7h/j36SzlF2ifVXdpWQhZZaHXqEIlludNjuSjYuniJ3tIKzjc4ZzDGgIs+KEs8WkE5trSNo2kcsg0kVpEIjU81MgRoTGy4yAD9FLHUAd3F1jXjBzu04yOK4NEhnCQAIgQSJfEy+iDxCAw6nKDlTvujRyU8xAlpiTj5/ZtY26mZ1m9nS75znSkczreRiCIVeKlRRkLVYLynalqM8VS1XWg/yagrJQNe6EjtGGzEhSYS7zym8UgRSKQA57BNICygVM7G+aw0lbjQUs3mhMUb2JYNtjG4KrLiJSpSWttCYwOU3jOc1ByOa1QnQSQKN48DrNW8xRjHfN7iXMC4BY+9fwh1qxDs397lJ/67vxeZA4Ohg2cQLH/ubIcPbOa8//te5H1nzvK533/A7kHN9Xtz5tOa1rSseMUWKxxUO+zOhlSASAsypUl8wuyVB4yPRhzO4ed+4Xf4fz/1BT72N3+cn/yf/nt+6f/4+9x59VXmVuAo8HKZSdnh3q09xqMZLjx6hEkpSDsFidR0ZBKpv52NrIhakedxhqUxWUQf2ArwzFvDUiXZnLUMlhLqs5obtzKOJkRseAg4LxESrAzIBXORlhHKaX08CmWSMp62/OzP/z6dtObjf+1j3Lp1izfeuI6zFQLD8z/w57h86SLtbI+RHdPIlrsP3uSlr/0uqxyxFsb4psW1hrvXa2ZzTysSgocHdaDNHJc6hkJ5hIvBqMgF6XevIJ9agRTu78z5pz97nbpyNG1gWRr6zuPTyPoitUIoQd20yFSh++kCQyxpFyw5Qcav1jmUECRpiA4zSZFCRixyQmSzEQrvVISqek+KRWpB1u8gKhNhrceiesDW1hY/84/+MWfPnvs2tue3v37pl/4f/uLHf4hHKjMnvevTsCNO4EMnh8wjh89iCFzJmGwkikRrzmyu0usWZHnK+59/P1Vt8dYznZRYY2irlqMg0AHu/N+/RJZ/Eq0sqQyczwRnV3JefGad7rnLfPgj7+Xezpzd/Yo79yvG45r5rCSRkjX6tKbh7uE2R6ZB9FfJtUZpjduvmc5GbD9wXJ/v8pX/+u/zruef4z/+2z/GKy99ia/+7ueYWpiHDKvX8LLP8KhiNJwyqypK09ICSgpSJVnZ2qK3tMKq7iI8TOuSIAMrxYCiSFleKSjbnKpNCc0UbMPRvMEZxweO+mz0MzaeLri50+NrbgM/b/G1xQqN8II6VSgcXenIZKzOt61nWBvWkwGqGPD6mwcMbZ+nv+NF6vmQ69f/FY3zyOaAzStP8NST76a3PKCeHWJwNKbijbtfJ5gJq+yDN3jTMh21TIYtTuYEmaC6Z/ASbGhQpkL5hV2mCnXxDPL5i7AywAfYv2MY7ypWL7yHS5vn+JHv+v4IoSx6EeocPFKnzOdz/tf/5X/gzp3btKeqhA/NKiwC7VMsriyqzIui2UkVcVGME1I+YpYEz3B09I5JXP4sr+PX6r3j4GCfGzeu88o3vsFrr36Dpra0reVgb5+6rqlmJfjAjoM3Pv0H/PaXXkUqh5KOrVSwnEm+5z2brKyv8L6/8BEmjeDGrSmHo5b7ezVHwzl1NafvMwZ02Tm6y6yc4btL6BAYJBrVSOZvHLK33XBvx/EP/rd/Tm+lz4/95N8hBMtnf+Hnmc5qjmyGk32sGnBUKg4PJ0zKirJpMCEQFgQ0vaUl1s5doK9yejKnahoa1zJY6aESycZ6D0fCpO4STAPtjNYZdo5mPLFccFYKepe6HNmcz1dr1PMWN23wWtJ6TaM9QXm6PpCoQC/Egsm4tGiZo7tL7I0aXvryLfqbl/nID/a58cbXmUyP0GZEr7/Mcy98LyuDVerZEC8CXnju7r3J0XiHZQ5IQoTxNqVhuD3DofGqQ5sMqDsr9ENDZucIb5HOggrIpQ7qfU/BYBMIbN/Y4c5XbhBUhsq6PLuyTn99k7y/HAuRziGVRiUpJ4iEP0G837faSY9vs7eV8fiWN34UtvcQXnWcjj30P6cfynl38njHlz8kE/BY6+PsHJE0QemEc2c30FoRHFgTqBtHU7Xcu3M/ajR5OEByfb/i5f/5H6C1IEk8Aw2bGbz38hLvutDn0vs/zMXlM7x+Y8zRuOXW/Zr5qKKq5iyZddYZMCx32Z2OqBcahf0koch7VLeOGB3MuLsvuPvLf8Cv/vpLfOzH/gp/52/9CJ/9xV9g59YOo0RgQw+r15jaAcPDCePpnFlTUzuHXcAUkyxh49JliqzDqu4xrUpmTUnRyykGGSurBXmeMakLrBX4egzO8OBoRk8JNvsd+ss5T15Ieckvs7OvIzuyD5iQYIFSK9Jg6Ci/KCAGqtLTOhD5Mi0pX/naHbJU8JGPfZy93Ttsb9/EuRJoufb8d7C5cQZCSz07xArHaLLL7fsv02NCjwneNnhjONye0VSeVqQ4G3gwNZzNG5aXanIapGlBB0QuUU9fRpw/R9CK2eGYlz/zFZrGIkhY6mack7A9Kpk5Q7dIcR7mZQMBEh071c4+Xmw+bcMPN9hJnLOA+YWTRlAsakghv11k3yPrncP8ACGO2d9OqVQvHKJfQMvinFMAL066VSywrg+HwuKLj/C0mO0H4j1C4OoAACAASURBVIs6rugG4sZrW4v3DmcNKEFQ4kQZ2lqHt25R2YkQFBMCtXW0rcNZj6kMoXH4RdBXNQ5jPa2Nj2ftw/bg8TvpgOAcB4ejxZsPHSWotOSg8YwM9LKETi8n0zmJcISmRRpDR0kyQC0Gal0iCEqC02idk+gMvciOfYDptOZoUrG3vcvG/W2acob3hm6vi0j6yME10k7KwZ27zMfjRw6946qG1ilKROFjWKhBSwWL4CUQO4lKCmTWwXuLqSqM90wbg7eRdGGpV5CqnNHhBGcdUkciDo/j2CClit+tiYdn6wPzquburTdZ3+jxxJUrqAdHNMajU49Wgcl4ys7OIV9tv0GaaETqGI3v04yG1ElJlTSIpoHG0ksNOkCtNI2BUWM59I67jWfVeVaAIhWkHYkYJFBI/GiX5uCA/VFDawNOSmTrCHVAeIFQglQIlIjQELWY9XNeYBeb6aFugYxVXyHRIsTKjhKLmb4o/Bt8QIiIQY743bAQllvYtlh8OKe8pFIq0o1evPjt7M9ve2mluHfv3sI+Hj7+w4rNqd/eJpk64R1Z/PdxMpWlCWmaYNqKfq/L+toZkiTDe41TcXBeChlFDX2stratwXuHUIFEwQhNtw3UQaN0RtbNSVNLIh3CzKBuybUklQrlLDJ4XCLwWhFUQpJmpGmGVipqNwWojaOaWg52J+zdu89kOKRtKrK8R9rLoXuGtNNlenDA+GB/McsWX6vSiiRR5HmXTqdHMB7vo/QCKkFmGUkWB8hTHevjMu9CyJkfDfF4hvOaTIHwGb1OxqWtTY72jpjaGUmaxUJGaGOvOMSxu6yjcMHja0/jPLPGcniwj8i7XDi/TAK0JuCDpZOBqWfsHYyoJoZc5yRpIGBoJyNEmNOmNcIZRFuj8BSZw2oIQuKkpxYwDSlGROikVqBziBSAXbBTvJFU0znVvIG8i8oL1ja2SDsFadHlmG43SXPGkwlHRyN2drapm0gtb1wMmI4JkEIIcV7uOEl/LJni9L5bdDiOB4DjXvTUTftvda/8Sa2HydSxsL2kqioO9g+jn3IxFNA6iWeui0K9NnjKco5QIGXgyCtAUTpJVyR0OzmpECSyQfmWUDWkAUKqSIJHWovX4LQEFeUd8jwnTTKUiM/L+EA1bqitYv/+LlI42rpEiMDScheyVUJnE9s0DHd2ME17Ao+NMykJadah0+kjbcA4EwumWiGzDJUohEpQaLqJRKQZsqepZxPayjKtW4YziVjN0FJyfnOd2aTioD5Ea4XOUgwGH2zsDANprpE2MK8c1jvmxjGeTNjb2WZzI6M/OIPjVVrjyHKHCjUHhyPm04bxwXxREIPZfA/bTrBJjRAGYRqEt+SpxQuJUxCkp8EyCxIZEnoiiR2/IkT6zKIA6fDlA+rxkMlwDHmBdhG5EbvUbgHtfAx2/6+VST0e7v1rZGJvSZyOvz/8j4iMeDREfTzhOq69fasAVJz6w0e72I/e2IeH82QihEdu/JBVbYHW8QHpQUqNkDFe9D4ikI5n+B2B1jlmkzFSRUY+lyq0Txg3jlkbWEkS0iInVTUaD3WLNJZuqskkKGtBBHwiCFqBSkmzTpS8WCB+rGdREHHsPzhkf3uHcjbF2oZefwC6B71zZB3N8P59yvHkYRdfSHSiSdOMotMj1ekJj0CiJCJJEEkkMxJK0UkUXglkZ4BrG8pxS2Mth9MKOhK6ivXlAUp02Gv2ccais5xAwNLG2CWATiRaC+omxsiVdUzLhv2dHZZXu5w9cwYxHNK0FpUKUuWZTMb4oKnGlkRHlt26PcLNxxhV0uoaTCSVyJRBZgElM5o2MBWGmTMc1i196+khSDOBKjSi6ECWEqo97GyP+WQekUIqXXSnPUpEYg6tolEco2QeLdYt3tKTMP7RvXUyBvHNDDVwomSw2KyP2Ow7We84mVIikCmH45j63GBahzEWYy3eNgQXW4rW+fhBOY9zgU4u0NovhNKI3QGxEEiNjSjsojs0bxqkknTyHGcDu7sTIJBqj8wSVCclUQqdBqbWYVqDShK8EDjraIxjUlpsEHSKguFoyrxsECFWQxvj8YuOVDiG+nCsHB03tF4E3t1UgxC0IrK5zSXsIHjDBYpqzko5I1MDukrRqa6T2YrNfo9cWpg8QHUFur8UMdZW0O2s0u/3Wd7o0YYZyICkQ/AFn/65X+Ezv/izyODJMs37n16jf+YKyx/8D9l//ct89df+IcPp7Ng0ELAYvkwo0sGCcj3CYrSSiKRA6A7WzQltS081pGlC9+I52qZheGebkXMcjOYUztGpA89fvcpSp8vvfOlrTOY1SbcXk+SqjAdriLo/SSJwM4exgcPaMD/cJ/z+J7n67Hdw+fn/jKkYsTv8HE+el2z0Jb/965/lcOKxTSDVgrMDzaWNlA891UOseGargW7TkBvDB55O0Kli1GY8GFs+9/Upr9aG26OWZ+aed0l4clWytqFguQDpqf/gN5i9UnNYWeoArQ6Uc0/PCfJMkiSC1VQghAIt8VrgVISoGhsT+JhYxc85hJgIJgOLUoqOFjjjsdZi6wgbTNMcqSRWBGwING0knahbiwvg1ENtjT+t9Raf9XbX8NBZnVQFTwLgeEGIAkkIJEfjktnckHdWKIoEpVPyTkK/36MuS8bDIYmI4ohLvZws1dQhdrnqtmaaFYzSJYLU5G2FRJPrAZ3qPnY+ZnWpG1nBpkNEpkjPLKMCMKroFCv0ewMGq32SVKGygEo1KWe5+caQn/q7f480gSwVvP/5TS5eOUvv2kdwpLz8y/8nu9t3CT5EuGYQ5J0ORa/Dcn+TfmeVg8mbtG1Jnmpk0kH3z2JcxXA6ZEWXrOmK/tWr6H6fuy+/TDmd8nvbB3TGOee04NLGFi9+91W+9OVXeLm+SWd1BZkm2IMhwdQ4F8hyxdJahhjWzMuSg+mMedUgv/YSo4P7rJ3/DzC6z96wot9peHJTcePNl/mt3/4y1dxh28CTZzLWBgkffM8Zip6kXrZo15K1c9ZWOhQXClqX07iEG7sjJjU0fkDhYCsb0Ou2rGw2sNKDtIfbexk7mjPamTA8Eog1QdIavIhneahKlFLIBVwLEYlcpBQn0OFjMesTe4KTAEnKY/a/Ywt8dGNEBE+80Wla2/8fNKWA+H4452ialjTNuXjxCq+88hp165BCk6SKtfV1BHC4twfOk0lJJ0sYdHPaAAYIpmEuAkfZgFQXFKbBu4RcD8htSWcyZJBJdL5Cx5Qw8yQrBUmhCfsTUpWxtLTBYHWFwVqHtCsR2qOzTdpW8zP/+08jlaXIBefOr/PC+86Sn3maztn3cP23f4E/+uJLzI+OQCqkSlGJor/cZ2mwxmp3i8nRLgeTXaRS9PIMPThHkJpxuUcmGs4kDZ31dbqXL3Fw+zaH29t8YzThj4ZTLmjB6soSn/jw8+ztjfnM6A9RnZx8acB0PKWaz/GuxIvAykYH5wLT6YTKNNzYG1Emr1E7g37xY3Q2nmM4+11GRzOevaZp2pJf+cVfpqw85Txwdinh3ErCM0+ucfZMF7eqIPFkpqJIYPOpAkdC4zJ2jip2j2a0XpPZVc7qAd0CNs/VyDNdyPqE8hB38Aaz7TkHezViZY1UamwQOARtXcWZH72AOf0prdO7LhAecQiPw8jjv/GOosnj2PPtOlnf0gcdF7FhUQiO5D7Ao51qD95FiKT3sLc/IUkSBv0lvAtR5oSoT6pF1IbMpSTVirVBDlJSC02QgrGS7HnJoHUkTU2vrdCqQy4FndlNctdwZmOFNBUw3kd1BclgGTGuEEbS728yWOoxWC0o6wkydWj6BLnE7/z65/mtT36KIpd0uynf9dFrDDbO0Xviezi8+Qpf+41/xoO790EopBIoGej2exRFj9XeFt5bDkY3gUAvT5HFKqqzStUcUM4qtvSEopMxeNe7qKuS7VdKDhvLb97eY71dZrX1PH/tXSznPX5t+gWOZhW9jXWMMZjDI4K3OB/oLSd0ioSqmVLODXcPx4waj/rDz3L+yWfYvPpXmbn77B7MuHpesd6TfPFzn2V/ZJlNLR0tefJMxrnNgmefWoeuo+o6snZO4gwXLmYorSlNztG8Za8u2alK9u9PuTw3XJSa9fWE7noKRR8Ae/cztPdGzGYlNZI6sYzKmnHZkCjBoKORiSQIf1KwVosi97ENSsFjLNYBvD9Jur5ZOPaQoyL6s2O44EPx5He23nlnSogT3v4QIi1lCAFRHz8RGYfBRKwqWmNBiJjBy+N228KxWE+QMSiPA2ER42mdR3iB9KDTgFvAjMCDilXO4BeKyMbh4mQL88YirSBJJNZDUPJkA/pwiuUjxDkvF4gyZwIIsfMkhIgYUQnvXkpZ6nW48PRTeJ0zch2Ge/vs3LrN+oULXHx6i+Wzl8j7S4zKexxMj7C+wQcTO3HaoXXL0mqP/nJGuafw85iEVm3L7t4+8/GYZQUVltJXEdZoBFoLlIXppETlEzanO+h6hA3gFx24Y/SWlAlCJiedP61iQqikICk0usiZTCvaZpEAOw+tI1cZ5y5fZjaeMtw/QJAjfJ9JSHGoOOhnJGZRGZDH79UicgqnsgQXPNY5XDUDU5MmikE3YXM1wbaGg31DVVpMGxC5Znltie958YNsrXR44lwB+RTyCX58m1CPSFeiMG4ysvTawNXNjNFhYGdY86YJNF6wuSZZP68IriFMDHa7QhxE1ikNzHUM5OYGhA6gBPM2YIRHdjzai9h1WjAQB89ic8qTneVDiLoGQaKE4TgzaozFtQAqCtFKhRBxhsyHsGCyjAnanw5E6dFKzWM+89GKHw8D31iYWXQf5cOuWgjgffyMpTFREyMNPPfcezh79hxax0ptUXRom4ZyPkeLSFpS5AlaK6Z1S1VVbF+/QW/QZen8ZbpryyR5n9qOGU5mtK7EiZbaeHSAVBt0Idnc7OBnc8YL/HRrPYfDMVrDkvSoJHDQTjDeYlwaZ/wEzKYNk+GU/taYVOe4EOUNAxIhFImS6DSPunJJhkg0eaZIhCLTAp0r8o2CaemoRwHrA00T6LUOZeHchUs0Zcmtm3dIZIZ0y7ShxyEalWs2BglWgnWBRHq8AkG6OPElAolUAuM9GIOtJviyF+0yVaytZAjbcrg3ZTq2mMai84S0n/HEs09zdm2ZrYvLJFnAZxOwI0TdoAuJ7oBrQLew0u9SJTA+KDFoio0r6N4UsbkPWYB2RhhP8IcluTd0k4xi6zzFYImjwwO6gyUGK6vRIanFIPmCgEQuut0s7Mh7cfL+v9X0w8keOo0C+Ka17X9nE6mHcCV4+D4IIdBan3SAn7j2BPMX52iVIKWiKHIEgtlkAt6TiMjs1ckSSmOpjeXBzdu05YzB1gX6myukxRKVtQynh8ybGV60tM5ifEB3LUlqWV0ryGrJPoD3GOeZTCt2dg9QbcNGKhm6ktpLWqvxXtIqT117ZpOSpD8jbcbgLS4q1gAyzofqhCTrobMCoTVpqihyRaoijXW+muNVQrMXZUyaNpA0Ftl4VpbX6Oddtu9uM5tVKD8guAEjEhqtWO9rrJI4F9B4EumR6IXPjsx+Qkm8C9TG0jYlbjZCuJZEKZYHKdQJk9GcsrY0dQtC0VlJOXv5PM9ducT5s32Wl3Jk0YCs8WmNlhZVAA5UA70iw6GZDSsmjaG7fI7ACutndmA5ATPDz0v8wRhdWzrS0VlbI1vfopzPkKMRq5tnTuZtH+n4CBYzQ8cH8jEc6e2LDv9m16KMvzDZR54Hj3Wp3vI8TjmQ44r/I0iMUxHu4tdHfdCjB8Rx8Cp4mJQ9pKmONwghRHFb7xHWYo1BIiO6qPWc0KiLEOO4TkqiUpJihe5gifWLV6mnM6b7Byyf2WL16gad5Q1U2mVSHnI0m+FChfdt9N2JQyct3aUu+SBlfEtGv+4DZWPZ3TtkPpmykQimvmVsx1gXsCGjVQHVSCZHc1QyYaUeo22FReKI+pRq0YnXWReddUEnSA+dTKFEiGzDSynJoGBvqJiXgdZ4tLSI1lHonMvXnmI0HLGz/YCEAumWmYUMpGapl6AwOO/x3pPIOLqASAFNCAt2YimprSVpG1x5BM0cLSXdTsL6ao5tSw52W6p5izWBbJCyPOjz7PufYW25y8bZASGp8LpENPcQ9gjdlfHWM0OSOFZ6GTPbMmot9xpH2XiyXkp3o0OggtoSDsfI6ZxeEuOnqXdIFUknJrWjsZ7gIpxcaxlZvmUswkkV0VfHlidD5Fg4MdHTlvs4zvT0fnh7K3/H653rTMnY0pchEkGIXKG0YF5GLQUpFSq4CAlzFtMa0jRqRmkZYQrHUCpjXKw+ZxKEwpHQWk/b2sWQYUClLmI7s0UAJEPsbDlP3VjapsUj8FIxmZUIAUUnQ2gJicJbh3H2hB1GEBBSoKXACbDtIjWQkRAjCrIKilTyw9f6PHVxk4/8+I/QFOvcqDf4w9/7Ip/8Zz/Pkx94gRd+8AW6/S6t8dwd/kvu7j4ghDk2OKo6MMgMSd5y6VLG+uUVhq/fo933tNZSz0rGrw/p2JZzieQw1NRMCQwIsov3FY1x7GwPMVXgyTNfQQ8fEHQGslnA9uKBI1WK1GmEJElBJ1UkwpPKQLGS0VnrYe5OMQbaNkKY/KSlv7bKlfc/zf3btyiPjkjFAO032DY50gh6haYIir3KEbxDyUULT8TJ+eBY9PjDInGwUE3RtqKXwdlVTXW5w/XXa249KClt1BsbnCt493ue4L/5H/8rOp0Ch6Ktb9BUb3B/99OMZ1PSBIQNyKplGcmLT/b5KvDl1yY8aANf8/Dc5YQnntH4ZkoYB9pXK9QDxzkNYykYapg6mDYBlQIOmsqTOBCFpUgCXRkp+4+JHgJEgT4lsRZ88NRVg1kM8mdJSpakzEtL2RhAkKUJeVYgxOKgBTwS5+Ng5uM6U38i6/hMeFhueaQhIBYQxOMCw+MJFcS9DsfMSrFj3LYGa+2imljwwx//OB/84AskSRIHXE9h5MWCCj3aamBveMTB3gGfGf0yq+t9zr33hajXlWimzSG3d7dx7RgvSsrKo7QiyxoGyynXri2hxlMOg8cYy6wxTG7dR4WW89LR5o7p/D6BLlqdxfuaui3Z253i2oYza3cpiiKSVqSdWBWUAqUEadYn664h8w6kmkEvRVpLT3uyfsLy1QE7+4bhLNCWlknt6Y8bCmV59r0fwHtLOTzC+5zMX2Rqc14zgryjubaRsj3xzFpDLh1Oe1AFQgacgRAUQitMY2mdwc2HME9JhSXNFU9c6rO/M+f1PzpgajW4hOULyyxtrfADf/kvc/XCFXwQOFdRlbdozE3K6iB2pRWISUALuHhmnaoS3Ln7GoQUefXD6KX7nNvwUFj8fBe3c0R4UDNwmrTb5cwz78XplO3bNzhz4TKrm2eR6tRn7ONgs5KxqCbcohIoQqSqJTrEkxUjJDiGAfro4gRiETgeY9X/nc2gvsUKC2ijJFtIbRRFwXe9+CIvfOhDD/fPgs3sONAUwZ10io+mc8azOb/3q7/B3t27nH33+1jfWiPNUo7KfW7v7mCnRwRZUleetg6otZZ+V3H5cpe6NGwLT+Uc88Yy2xuyc/CA9XLGk4XkleYQh8eoi3gkdTthPPHsbB+Qqh6beQfhWnxWRDZNNKkWJGmHrLuG7gzwqSYvUoqQ0tERgbBysYdRCQcTMKVnMrOotGXpqOLClUusn99C/u7n2L23Q85ZglvijVaTSMXVzZSjUrA7N6TBgLZRtJsUbyF4i9AKGxymMbTlFKa7JK4iT+DiVkFfdvnGV+4zmbc4k5EtZ6xeW+OF7/wIP/TiD3Is1O3MDtYeMJo+AD+LYwdNQHrP+vIymyvLfHl0k72yRp19hraAy+dfgrzFV/v4wwp3Z0w+k6wlmvUrV8nPP8HocJ/5fM7a2fPoNDuBuUaCLnGSwPxpaLY9LI5yUo0X4dGE6o9DIZ7ArR6Z4Vjc8PTfvY0POu48H9f+T8gDfCxqHs/vHkvw4D11U59yb4JqXp7olp4kZItzKV/vkiU90pUeW1ev8YOf+Gtsv36Tf/W7X+D8u57n6oeeJs1SrPXsjt7g4PCAwAzrHeUs0M9akrxhc2uZ5a0lhl+TWO+oW0vpSoavHdK1NU8Uivt+RlmXOLGJl2cwdkqoLPfu7NNWjstnbiPnI3zWjXGcUOhFcSrrLJMUfchSdICVfkoqHIUK9LZyiq0Bldulaj3zicEZWD1qWF5f5cp3fYC7N65Tj47o6jUyf4EdW6CcYHMtYy013JlYnDXk2kKQEIpYIDUhFoKVo6oMuqkI0z1kPSbTgY2VlHC5z5uvjrizfUhlUqRKWb+2wpXLV/hLf/1vkqZRvsA0+zTNHmVtaW2NXvQ/QlWSJoJLq33uNA1v1C0P5gY3c2ytddi63CeEI8LU4+4dog8aNgqBbQO7jSNNJEs65WA2Zzw3tIuid5pGf+EDeCXQXkCQsfAvjwvApyz5GCa6sPngY2frtC2dRkU8YuDfhkv6NggoBC2LUr481jMKZFkOGNraxIq2Wgie+sj8pbRC6kgjZJoIsZM6QWmB0HohSG1pjaFpWuRCY2o6i6+/WTD2eedg0UEKC/x+YxzO2Mj0J6A1kbbdWRFZ7ZxHKkhSiQK0FAw6CcZ47IIVTnoY9HL63ZTMOzoiIOrAZG/GVz/9eWze41CuIbfv896NjPUigGgQrou0CVpskshAQ4kNNRVzLp8/xwvf+T5G1Zw7NysmM0fjWryZk2Qp51YGtFXJ/t6EZ154nh/9yAf5va+Nee32jHL364RmjPMZXheoC+tgZxhjT4Y1F2R0pDojTVK6qkHicLkgeEnjoOM8Sdvy7PlrcF7z5q3XqJqauW8wkyH2lZeZDkfY1vBdH3mKD3zgw3zyi5/j1ht3yOfzyIB0aZ2mNgx3RgTXgm8gTRGJJjRuUTkSBCRWJOwdjvgX/+KzLPk9rm5eYHjgGVcGO0tJ8wEf/8G/wlNPXUXpPp6F7o49hOY1krYmq3MOble0paPc85QlPNhruDdu0V2NVZ4y8/zmG47rh47vuWJZAdw8Dp1u5lG8uUklZR1wbaA9dXibEJiZgKk9fmyirWoRK0ZSEpxHeAhIZAgo5/HB0vgGESJ8ssgVnY4i72RIpahNi0DGOQQlSQARfFT3fqcDvP+m1+lZqVNQimNvE/Mp8f9x92YxtmXnfd9vDXs8c4331h177iZ7JGlR4iRK1OTQjkTFQhAEiRQENuAYSV6SIC9BgDw4QCw/CFCMxPEAS4AdwJHkQTRliZIpii02mxTJbvbcfeeh5qoz72FNedinhnu7KTYTSzS8Go1bdWqfc/ap+tb6pv///504wuOnNcmlX6hs+uDvuTb4hjAr5ZEoRXSCiT8FDZzcus7s7k28hCAFVZRDUfHAmRbtQQ7CQNDIEKFFh0it4qnwXjIPY7I05tITH0REip0ty+GBpSgLnIwIwnN2rUsapeyO9kk7PX7upz7N7lzzrRswO7jDfPcWQcRYn0C3jWhnGGOpa9NUroQg1tBKEnpZh17kydUcnwu80xS1By/QVc253hLrz5xh9+4t9nfuUkrLTjXBvPEq3himwyHrZ87zE595hjdvXeH5P36elpuT+4r2+nk6cc7d61DNZ7hyDyEjZN4jFA5rxhAkQmgsGaWNeOOda7Q7MavtdWw/0FreI8xjxCzlqYc+wqXHHqLXWSGgF0OmaxSbaD8mcjlmVlMWFa4MuNowGt9kXgXqMMeFirvTm4xmh2zfNVxYMmz0aJyZ07T7A7J8jaWz5xBJTt862t3+AnKzqP6FRQfW+4a4Cxxx7E47nqNYTZyywSP545P6dTh+4nsFlD+g3fNveYljbsmph1BKER/NwIGTfQbUkxGHb7yMD01H06oUIyPWO5L2uS5xFAjBIkKGIiNWKwQhqUNFGeYUomL18mXWNlYYjw2jg5qiqKh8jdVjBr2UlaUewzszNmeCH/mJT5EOlnjhimc0mjG89RpSSYoixkY5cqWLlYKqrDhS6o0VpJGil7VpJZq+nOMTS5AR1niKIFkyho5O+NgHPsJsMuHW1TcRqWTPzClv32Brd5O9rS1cVfDRH3oEneX89vO/iysmdG1B2hlw/tw6e5sxo/0xvtpHBIPMBgTncW7U8M1EhBcJhpybm7vMX3+TZXJW+hu0lrdxcU09bHFm7QLPffiHeeDcZZrQJwCW4LbA7aCtwlYRo/EMXztcGZjPt5kX+4xnI6ys2S7uclgF5ocVg9Tw2BmDHBuCkSRZA+FfOrNBvnGBjnUoHaGUXtj3CSew0Sa6d3Don4u7OJ1EASedVHF8H6evFUf3eM9P7rvR++/7vu8bLnI4qamc8kH+vqcd7YETPmWjSOwFhCAXCJzFvCHnECyGRS8GRgsCsRR85PwZ1vodOi1Nux6z88o3ceMJF5cjuhkIYbG1pK4Dkj5aQh3mmFAwDRNWl5d46KnHmVnH9qZlPK0pygIbj4mzhHNrPeqp5PbBHhuPP8pHP/AI37kduLnvGd9+A19N8CHFiRy51CHMR1RlhbNNk0AvRNM6aU6e5fRViRQ1vq1xTjI3nswGorriyQsPY88+zM13XqesKg5dwWy4x/SlGaPtbcrJhGeeXuXJ557li9/4MtdfvUnfToi1Yv3BMxTziq0b4M0Ub0bIVgeZZfgwbZAmQuNFjBU5B5Oal197g46Ys9o/x/7SjElZU49yZNTmh5/+NBvnNlAqhUU+IJiiuYP2Fm8zZuMZrrIUQ0Mx9+zuGKbzirjbxssImxlevlWxO7U8dSGhLSEUzcytPANvPNtTw9wEShuYVg4bAu443mzs8WiWpxCnuqynkQHhxJ5OBE7EiV+6Zwvc64PE0Wt8H3vy+0imwCBRLLTdZcPXShIQQlLqEikcDUUUjghiUim8bNpyxlmCh0hHSH2UeHnMIpmqa4NebJ7SNNd643C2qT4F0WSXyQI+ZIzFGHecTBnbtVQcKwAAIABJREFUiIJbjjZvA3kTsULTkNiWewl15RiNGo6XEDBoJ6wvt8jrksQ6KGFczdn50gv4KMa1+sSR5InVmKUsEEKJsCCtJhIraBkoww42eAqm9M+c4dkf/hh/9JVXuP3mVaYzi7EG1JwsgfODDvsSrvjAw09/kL/613+RyT95jc3nb2CndzC2wIcEH7UQG0uE4S7WmCbIXRiCBGIdk+iYlqwRwmGkpLSBykFwnthYHr14iW5nheHhXXZHNeNQM50WHOxsEqzDW8vTH3yQv/K5H+WrX/siL9+4zjyNyDs5584tUYwrhtvFseS9UAoRxyCKhWylJCBxROweDhl+7Xl+6HLC049scGVwSDYd401Gt73Mz/zoz3L+4lmE1DhncRic2cOXb6PKgqhI2Ls2Z3po8YVnOHW8fLVirgU619SRp6gd/+aq5YXas3FguZxBWjQH9nIqcFowSgTKB5wT1E0ciANUgKT21L6BbalEoTOF1wJkM8gOAkoL1AJv633ABY+SAhtr8jwhSiJEFOOCYDqfI5EkSYpEEEmJ9BJpxfucM/Vnt06rpR0v0Xg0ecSN4gTGceTo/EKO9KTa1yh3NUMSm3+11mitcYvBnSckYZjcvsHut17AavBKkW48iIwiLq61iLsZhGZYnwgKJTpEcpmaMT44CsbEccSFRx9nOqu5+s0rDIeOsqpAzZDSsdZZpZUnvPWOYLnd5Wd+/i9yfd+x9cdb7L0DdrqLkAkupNBuQS+lNgZTm8VnbxREW3FML2/TiyoyVVHnAuM0E9NIq2tTs7K8xoXzH+AVBbY+ZE9a5tWUva3bhKLEjka0L1/ik5/8AKPP3+DGN75OZ7lPu9/luQ/0GCwtcbBd4MqAtxUikcisDXqOMxYhEqSMcSKldBFvX73O8lKbhx9fxRhLttQGmaFMzhOXn+Hppz9MlomFtLsnhBrhN1F+hrIp85Fhul+D83gruHN7l1ntqDKJQbA/neGnFW7P8tGzjt66QxcCnKLd7yN6awzWN9BZB6Q64S4Icex8jip//mgExtHjp2zvNOznHpnZezEX9zq0I1y7+HMKLP9M1v03fl/l/giOpBbw4MW5GoI43j/VeMTOt76G8RanIF4+S9RfZbUlWc07p5IphSQlkstYPCFMqELNnJKVCxc598BF7rz4Fvu7gaJsFPiIFa0o5eJqj72dPbat4D/70R/h4iMPs/X7N7l7e5ty/zpSBMoqwukMOejgJNRl3fDghCBSkGhFJ23Tjj09NcdIj401w4mnshJpHR0peejhpxmOD5ke3mIcBPu2YP/uLsxm2MMRmdZ86LkHUFHM3/+/XmFeFfTXV7i0GnP2oTPUJcyGAet3Cb5EJTneeZx1zUhLNE4kWDLubO+z497m04+m9HtnaA26WFnhyy4XVh7gY8/+GGnSjDkIWEJweLtNMFsoqzCFZrxVE6wAZ9ndr9jdL5mmEqsFo6LC1Z5rWxVnU8e5yhI5UFaSZC36rRUGa2donTkHsuFcK6Xu2T8sukCIowTjXtsI74L7nbar/x8b4wQ8cApCd+q974PfHfNMTgefp12JuPf790TrhlMCX3DcwT7msRwnkic+KMAxh+pIba25F4cUAqEVggY6qoQk0g3vMIo1wjlSJXhmY50LS11MrDBmyt7r3ybPEs4v53QygCaZMqVA0UMLSRUOsCEwY0Q6WOLyE0/y2uu32Lm1zXRqKKsSqmkTwy212RWOV+rAMw8/xM/+x38Z+fUd6rcPcfNtqkODDxle5tBv4/dj6rIZdN3QX5qCRCfNaWc5XT1HCkPdUswrycQE+i4QGcPDFx+n1RpgxtvsjPbZDhVuNOHu9UP8bI6dTrl0YZlPffIDfPGL/w83v/VNJmdX6a8MeOjSKvNRzf6dAmtKgi0Qqo/MWg303ToEcVN8JGM4rXntzTd54mzMgxfP0unvkhcTXN0ljZf4yAc+zsra8nHR1eMhTBof5CzKpMx2x1SzClta5jPDzuaYQknidos6jvGtmlfvjnn7Ws1aFSNygSoaAbs0FdiJY3dWMS48s2phB0I0Ix5oRqWc+KBwUswT4lS8c68POY6BRDimM9zz+JH9Lmw+/H9wQO87mTpqyxq3gOotBCbqqpGvtELgVRO5qkQQLw4QAG9sY/gygIQ4ppnGHizWeaxxi6AV6tI2G042HShbVos2nW+utZ6yqJv5P4sWjUo0IUBRn1YIbA4roSPQgTRuYHw+kkRa8sjlPuXcMB1VCGeYDKeUlUFZxwRBLgWPJYJB13D5nEJ1UkQ/J4zucPBigX60RiRt8vI7dKo9AntIaagjqGvN9d2Erc1DDm9dQxhDnqQsrT5K3upAewWpx3RczQsvv8n/+N//b9zYnyEmBed7JcnyEhc/9ByomFd+9yUOtm5SmxLv7cIgFoFwItFZxNJyC2sNt7f3sU4iiXnw0ed47pknef2d7/Da1bcYuylJrviRMwPmteKNHUU5HVLXW3z+d36P1954g5/6zCf5hZ//LL/yq/+Anf19Rnf2qMoa72YI4ZA6JlERiYqYITCLGoHznoOiZDmf8VB2yHKrR9xKCFGEEQlpHhHFgZf/5CavvXyDG+/8a4wrsaGiKjYpi03qucFUjslhjTMetbC1g9IjE0HUEUyLwLzw1BOHMIG/+2YzNzH3kChBL4OQSvRAEqnmsDISXAikOqAj8KoRh/BaoCJQCxpLIDAvLdaBigKRVsR5hNaaJEnwUjIyFuUlmkBEhBaKPE0IQTQQytBwZAgOqe5TmvmBrBNvdy8uPywS8wU2/YjPeOpZ77VOoBlHHa1AMZ8x3Nvmla99GV/WUBpmu9sUB7uca8f0M023Y4laCb4b4bWhuHGN0F8lWouI6tu0q2sEv4sUBb3Ek0eS4VwxOqjYv34DMx7RzlO66xdoD9bJ+gNEqhg8PsV6zz/6B/+SmoC3lrVozvlHuqxevkxnZZmDO0NuvTFlPDqgrmdNZ23hvEWiEG1FZ6lPLxNcv22ZFzWCnE5vjSd/6OMMJ3u8eP3LHMz2cGngqbU+rbTFa3c3GI7n7I5e4q3rd/iVX/7bbFw4xy//rb/JV77yIi+/9Drz3RFhXlHNd3C+IM66ZGlGL0qZC4X0viHU4tkZTaiAD0dD1jOPThOINEa2UVlEB814VHDt7R1uX/sy8+k2JkyxZsZ0ehdbV5hZgXeNZH+sNFIKRpXFiUC+HGM9DCeOclIx3ZsyOvS8eMUzSHLaWZuP/eQnWdp4gLjVQej4uANljT2eGi+FhODRsSRJNZlSWOuZzy3GOoxxx/DOo2DsuDG6+KKRRv9uFrZI8GUjYfvv32r2TeOnJGUxo5jNeOWFP2RysAdFjZnNGN26QT+WnG1pUlnQiffwaUTQCrt9Gz9qk5xPEHZIq3oD4cbAAd3YoJWgrBUHY8HBrbtMtnfI0ohe1mGw8TDdpTY+79K6VNMftPjXv/8i2Ze/zcgaMmt48sGcdr/P+kMPUhaWV/7oDXZub1FWI4QM6KhJBIVSyLYkbacsL/XZ3T/gYN9gXZtIZzz85Efp9HJevf4S4/EhJrGcaXX40OoqN/fXuXsIe+VrHE4P+bV/+I9YW1/lf/jv/ls2t3b5V5//A/zYcHBzk9lwB2MOUVGMljHtKMVgUItiVxCe8bzgxv6QxzeGnM8y8nQFGYOVOUEr2v2YgOfG1QMOd99gb+sVrC9woWQ628TWBbaocMZTlx4lBLHSzI1jZh1ZX6NSyXDsKUvHeGvEXRx3tx2tKKYXpzzxocd5+KkfJl27gI6TZoxJCBjTcAqO1SxFg94R/iSBEEIvvv5B2fz9mdGph9/r6vubWyLc9+C7X/e0DzqG9YmjzteJD3qvVzlqmh1BAlkU9tppzFKnxfpSh7VBBzGvUNZzMK9xfszFtqTdTrh0LkK3IqKeQtQHzK85RGcFR0RavkmrGhPYRyjDIG0ma+5PNAdbQw5u3ER5S7fdYvn8o+SdLqK9RKTbrDxpuLK1x9/93/8pQ2cR3vHQmiNeX2Lj8ceQKuatr19jb/MGRTHC+bpBa0kamF0u0d2IpdVVrKm4cbvCWI2UGWcvfoCnnnqMq3fe4o2brzNmQtJWfOrsCrNa8/rmRSa7m0wmb/L7X/oyV65c4RMf+yF++qc/w2/91u8wnU05vLNNOS+pzR5CWOJ8QCtp04pSYkB4D8JTG8vtgyHrScRT6ZB+2kElMV4nGNki68QkkWLrzoidzUNuX/0S1s0wfk5ZHlAW+5h5gasNxbTEWUcsF7MUjUfnkrSvmUxrxlNDsV/gCss/LipaGjoi4F1gOrfcnVhGlcMEQAsiveg6qiOEBATPsQJs00W3VLWjrjieURcQx9D0I39zVAySp8z9Xqs/ScSO9uv7Xe9/aO8CpOg9ONuQ4ax1OAfON3CeZjBsAwPS8mTqdb2YxSNlc6NKNURBEVxT/XeLQzGAsc3XQgqC95jaIGiG91nbzGeBZiJylMUo3fwynW86X2pRQT/e24sWYBSrJpmSglgKOmnMXEpcYdAiEKzBGUuwnkOgloIoEXQjxYU+0BO4Zc3BaMbo0GA2NlAKYrdL4nfRoSBWgm4SERDsjzyT0YxyfNgo9OmYTjYgzbo43SYknqjb4dbmLu98+y2ynibNFXmW0el02Hhgg7L0XPnmDUYHQ9xCZvWkiyCQWqLjhrxcVRLnBCEolExYXj3D5Uce55vvfIM7hzcx3tGKIh5cGzCqNO+MBLKqCULw9pWr3Lhxg1/4K5/lQx96hl/79d/g8GCELSy2svhQIxEooYiUIlHqhD8BeBoSMN4wiGoy7QmRJEhFEBodSaTw3L65TVmMefH5P6CyM2wwlLWnrAPeeILzjZOhgWGhBD4WpAI6RmLrRhGwsmAsfGO/EelvKein8FgiyBV0ExCxQMahsU8C6YJzZ2kqflY0Q+maImCTFFrrqQ1EDZsKFxZkVq2oQjPgzvom2RfeI4REK9Vgd8Oii2UbirY4Ujr7Aaw/TfeigVadVG3ukU9/V5Xx3oPo6PxZFHAAsKZmOjrk+usv4WZz5KxszgXvWVcpUsWkfkQsMkLexzjDZDTCxRne1yg/IfZ76DAmEoZ2FpGkmnkZmM1qyuEQX9ckSUyn1aXbWUbGOV5D0u8xHU/41p+8TpwKeusRrTRmqZtwZqNP98w6ey+8w+H2iKossLYpwoiFNLrQEpVK0lZKlmm81xjjUCony/usn7/E9OaUzeFNjDEEDRuDNqvdATenkplJcSriYDzhxa++wF9c/g/45Cc+xp3rW7zz6jVC5TGiwpgZztXEOkHrlFRFRFJxVKsOITCvanRZ0pIVbW2aYpJSBBGjtEQnMJ9N2dna561XX2Z4cI06jKitZTgxuNrg5iUqaqHjNnmiiSJFpR0iAlU3sIiqdMzLimFZMZw2e26tG7PUg+d6ZxHLG82+9Q5jDc5ZrLXHvB4lFbWp0JEkTjVaKYxxC05mU1RjMUH+uJa+qCSGU7j1d7uw+2EW/+4mUu9HWOZ7O+GGL+aspa5K7lx9k/07NxGTgmAdxlriPEJGzVDoLARC0sXHCZPJBF95/Nka4Qtiv4/1MypmZLFGyQjjYDp3FMMx9XRKEmmyLKffXSHOEpxK0Z0OibK8/eYt3KxksBGTp5qldkZ/pcW5B85w8+1tbt/dZTaZUZsSCE1CLZoBqipRxHlM3mkhh1NqIxEyJYraLK+fo9WN2X3li0xmI7yCbjvh0fUlCifZrSBEGZU/5Dsvf4eLFzb4pf/yl7h1c5M//L2voryknlWYqsC6GVrFqKgp5gm3OGdpLKmylnFRokNFT9coFUApvIhAepJE4H3N3s4ht65e4frbL2LCFBcqhpNmULEvLQSBlMmx+IdVHqM8S1lMKiVV6SgLy6iscLXj7r6jkwqWOwmrus8ja5cISYYnYG2N8x5TN1xnpZrxEVIuhsAfceWEQCkPyEWn6lTh689gG9xTjL8P6n2PhZ7uFp0i7r+r4r9oJ937+Pe6h1NS6PcFvMcJ1RGs69T7hlM/V0oSx5pOK2F90OHS+hJqWiJq23SYaoP2ipaOWB8oREsTuhHzeUV5cIiOc4hTIn9A5IZopsRK0GlFKCmZzj3z8YxqeNjQRNKEbnuJtN3F6xyRBrKVHnt3h9z4zk06qxF5V9NpZXRaORsX16jqwK2332G8P1kUxB1SyMXvSiJjiUoVWbtFVSiMUfgQoWWLbn+V9fOXefXWS2yNblGFmjyJFzFczNWJZD6Z4WTEjRu32Llzi0//xKd58umn+aPf/xpmXmPnhroosXaGFhKtU2Idk6oIhUCGgBdNAjIuKpZMRS+qSbUnSEmQmiBjoliiledwf0hdTXnt2y9S2Ql1mDAvLLPC4ubNnKkFkpE8kaAlLtfkSqGMx9Q1pjLMKkdZNegjRWApAUEzRmBc+ka9dCGHHseNPoPWzTxQ45o8RLrFGbQQqnEuYGQD0ee7bJ0/TaHvXfzF73Pvve9kyjm/6FIIvGvmPzXzeDQoSStLcN5TmaYqr3WEswZnDTUWG+yx0IPUzUyked1UearSNtjN4GlC80BVNsp4tVlIZormfV0QxzK93kuCPZKzZhG8N+hH40Nzn6VtCIouJo4ErQi8VBgFwQqSWPPwcsyDSzFrrqbtHbFxpKnk3HN98rOr9J/5MN6DrT3FNw8Y7o4RIUHphE67xSifce1gwtrFPp/9D59icyfw8te+wGzrCl0qQtwhiIjd4V2Y7ZCbDkVVMDvcpZ7PqMoJRd1UYvdlIE1SpH6Z9tISz37mOW68lXH39qs4d/Q3bv5bzlp087zppHhPP1VolZKnPZZ6nqS1TxYsea2prGSpv87PfO6/4cbtu/zeN34F6oIsTYgXCeav/uo/pNfrsrakObP2JLQ/zM72Lba2/xlaBLSSJLGm1YqJIoWsGh6FlIJES3KdM4g2mJkBrxwsUbtt+npINRwxG4348pf/T2prODgY4mXAJWBd0zlyrvl7NYkIoARRLulsKGIBCZ6spxARbA8Dk3mg2LLYOjAFSgOTEbR8oI+jrpuEK2peimkdENZhC49Ugjh1jYRpqVCymcFSlwE8RIkGAaUJGOeozZw41bQzjZ04hiOII4dSEaLVBiEJNHPPysqipUJJ+T0dyp/FCvdhMd59dIgF/PYoFHl3QdE7dw+ki6MrmzgZAlhrcQvIQqeV8OzjZ4nqGVk9Q5oKaWt6l5ZJl9pklz6ITNo4B9XYMBtPwMeE4IjTmFavw/ZwzFwEPvKTHyTKO9y48QbF7gHdMCXECSRnmZUlh1s3aJkWQksO7m4zm0452NshELi7pYiCI8Hx9DjmwgOGcw+ssXy+y+uvfonpzCLsUZVL0E9yLrb7tOKAVI6llqKtEtrtAasrOVE8IxGGThVR1wpr4aFHPs6FCw/wb779a9Q7d1jq52iR0daKa+/c4Jf/11+h24348c88hWg9ROVi3nzn15hOJ2StiEhI2t2UrJUSJQkBBULSSiO6SUonWiMSS2zN+0wrSz/KqadDzMGQ1779W1RScLi9SVWXmG6EDVB63yQ0haMloSUUvcEq7U6LtL2HVIZUNdCywZmMYZERDduMNidMdmfse8t0NuHzX/oCa2tnefbpZzGm5M6dKw1X0la02n3SrENRF8yLGUtnBERLDPcL5jPDZGYXduWbupsPnNZfOUqmgg/U+ONA8j1tmHvn/v37tZoP5f3JXEalJI89sErdt7SqMcoaZD0nW2rRvTAgWbtEtHSuKWSawPydMd6rpkCpBO1eh1ldc1gbHv3IZc4/fp7bmwfceGuPuBrSl5bQOUMtNTe3bpBME9J5zt7uHsPhmMOtHeqyZPdAIgWkGM5uHOKrDslyh2c++QT7h28wvmpwtQDX+PA0jjnX7tHJFFI52qlgvROR5x3yVp9Wboi0pVMrqGJKozm78hjPfOwvceMLX2R+63la2pKv9ulECik0/8ev/n3yPOFTn3ocmawj8osMp7/DwfU7rOWaTAparYQoFkRJSpCWICR5oumlMZ14QEufZVgt4Z0gVy2ksNQHd9kZbXNz8ztMRodMDvewLY2LFYU3WO+pihopFJ08J8o7tNfW8OkEl47JpSCRggtLGSYI1FrGdFyxf+2QiQjUVcnz3/kTbo4O+eATTzIY9Ll9+23KcgamIIoSur1VjDOUdcnK8jn6/RXOrF+k3eqSpq3j7m8I7z6T/61Y3n0d4pPH74X2HUNTuf8+mjTmOH96j9c74V6dvKe/5+0WryvVPfv/3k7XYibbffd9nEUFUFrRarfJ0gilFBtrHZ57fI2Or0i9JfKOKJIMHl4h6i2RXHiCEJqie3ljjD2Y0YpzVLtFq9OhKmpu7u7TW+/zYz/+LMNJzDtvfJvq4C5dCmj18CJm52AHpge0bJtZUXK4tctseMhk/4D9oQQluRoMrTTBh2U6ywM+8NGHufJ6xasv1VSlR7hGfEJpzXreZbnVRetAiDxrnQitc7J8iZWeQsdTchfoVDGRUXSzAR/80Ge5u71H+eV/jKxmrK72yZUkVZLf+fwXef6PXuTyg30eeeIcqv0Yt27f4DuvvkNLa7JUk8YRnW5KmjU+yCOJtKKbxnSTNh19FuM63J11Cb5DX4+opjsU5SYvDK9TmpqDrbs4DaatqW2g9p6qtrjSoVXTNXRKkLYVyw+2SVUgE46sk7KmM24fWoYzz8HVEVVhFz5BEaURuic5HymSSBFpRRbJRtRCKAICJ0QTSxhPMWvQZbXxULlmZEcQxx3Me31Q41PsQnvgCGr9nivwXsHTn7q+r6G996ZqAYFfQIQaYjrQDFETR6TbI72c0OwIccTDOGp/N3LddtGZ8iEseACNQotbwPqOqnjBLzbmoqMgjgQDFm3z4BdZNgt56hAasQnrqSuH8BIvRNPWtI4YQauV0u8mrPRjzkc5PSVooYiziP4jS0Tra8QXLlOPS+qtIVU9YjrzWBPQvkng0M0fPckSOit9DscGWU4QtkIE3xD8iCjNnOAlch6o6gpX1E1F2TmCayRnLR7vLLP9MZGOWU6bzs6JOkmTSEkhyZKYLEsIoiDQyGm2WikrqysIGTgY7tFKM84sr3O4d0imI0i6hOgAzKxpkS+vMp/OKeclt+9ssrW9zbNPXqLdbtHZuIR15lgMJciAVAIdq2MopQ8nVuF9oKoctgzMy0byPk80lXfYumRSTrChkSQPWuHjCBlZpDdIEfB10z1CQogEYdGdauyh+ZHSgrgFiRbU42bugDONXbg6YKtAKAMLab1m4K5seHQEQeWbbpa3AWECsg5o1cA6/MJJNPLmzeBUpTwBi3ICESSm8gQDITEoHdCJQ8jGpp1ruqxuwUT6wUijv9c6VW85PjxOdwEW1xzBqoI/xiS/C85xdP0i1lVSkqQpy6trRGZKblKUMyhvSTaW0YMOerAOKseOZjg/pyo9qm66IkEIUBqlNRGBvN9Bpy3EzTnC1gjfVMi8SqlMzayukHOPVBIzLbGzGrOohrkAGkeFZT4uqEYz2ucHRInCLypXISygwVKRxBHtPEXpCi+aYYQqESwvd2m3M0bTMd55lruLPRIqRJTjopxQzdBmzuqZNQTgypqiNty8eZ1HHjnP2nqPdGmV2mVIoZrzbaGCqWPVdMqjCB8kIRzx6wJ1ZShLg6kFxkvSOMILKE2jUjj31SKIlrgoJYiAFg1UI1QCnUhUJlFZjMpSXKQIciHSIyHWkOYRHZVgCkdderzxVMFxd3uTsq5YWetjTMndrWuIYNHBUJqCvJozrwrKqiBOBXk7YjquFol5YxinBz+fAvY05nNvSfxd/anjztVRF+sHmE29n7373a55d0C5OLnFqe8Xn1FKidaa/tISLnK06wjtLdpU6KUWydkBcrCO6q5TT+aEusIsoCzeNfs0KIXUGh1HpJ0WrUEPtVUgTIlwrnkvlTTV+mKKkwa0w0yLZv9Uhqq22EojCJhg6U5qytGMuJcRZ40kubONDxZIpJBEStPOE5IYHBVKCZJI0e+1afd6lHVB7aHXHqB9xNhOiHWCjVp4Z2E+ZGVlQJKn2KImOM+dO7dZWu5y/vxDxO0+SW+DNG01Y04WyBgVSSKpiWJNYFFglUedvoZfbetmAHusI4KSFLairg2zcg9bNwVfmeSQJcRCokxNqDxSHO0fjcpSQlwiIol3TeEvVQ0vtr2Ug9JM90q89dQ2sD86xN++TrffZlYNuL11nbqcoUNNkmSN8qC1lHVJFDezeJaX1hv/f8wpWiQy4f7G1Peyx/eXfX0vsxbHneP7n3dvRnO6i/Te1737/k77oPuD2NNdqkZZ8PTv49R1iyNCHPGsxEIYRwBS0Om26caKDIFONOm5NWRngBicxZYGP55j6ilV4cA1aBuUIiiF0po4S2gt9Zgbi6gXw9C9x+tG5KSoCrwTqFmgLirctMIUhtoYXK3xIWBpuOjFaE6aZsSxRGmJtQ2UjQX8TElJnsa00kUMJwJxJMmzlKWVPlLBaDIiiVKWu8uM3YRMJ/i4hRNDwnzUFOHWN/C1xdWW/YNDRpMRq2uP0um0yZfPMhpPmv0jFgVrJVCxQseaKNI4L5vJQwv4f13W2MpR1QIhFWkcUXmDrWfMyim1c0gRcDrCRjlCVkQReFMjg0NGTbE2xBIfSYgkHocxvhnEHQnSjiaLArqtcSJg6kURXUpUpIhbEUmsSWNFHgki1XDzA83sNudB103eUMzMSewiTgoCzSf67oWDUz3Qe6/hJEf5fjzQ+06mdKRpt9s467DWoUKFNZ7amUail0CQDXnfGst8Xh1jXO3iIKyMJSBIvcdZTzkzWB8weIxzGOtx1h4POHQ2YKw7DuaPthHSggB1vOmaKFgs5gSVNHwb65qyiAiB2dhhtKAjU2rv2RvPeWBjwIeeeYDlFNJEsPL0E6xtnKFz9gl01kG3OwilCVHM7luv8PY/f5tXrm1z5e4unSceYE1otivPWGpKV+1DAAAgAElEQVSeOr9OyAZ87Y2Us6HPzzya8oejIS9t7TKVCoPE2TlaWnIxbeS//VGrSQMtEAlJEpPGESLUFKM93vrq19nb2UKepKUo2VQSVs736fTb7OzOMc6j4ohLj13m05/9LH/8wtf53b/3Bf7Tz/08P/eXHuQP/unfY/fwgL/zhd9gvLeHqGZ8+kc/yl//G3+NX//NP+Dzv/c1hL0DYc7NzREbconP/edP8fqrgT/47UaUoHbgE4nsapIswlSNpD1A7Qw7h7u88MqL9B64RC9+mOWW53zSZX9nn2LuWVOSKFakq22maZut1jKt7IA8OyDcnOMPDeNYUAPzaZPQHOxYxCLxiRLQsaB3UdFZk0SJppx5pjcd3gSshXkRMCKgdTPUTWZALBBRs2mkXcwniBpZzQpwDhSBNFEoKZjZAMajQkUcSVq5araY85TzgKkD3bYgij1Kz5oqG4tSnfcY3wSnjaDFn+86hu8tDgm5mKZ6Qmo+DatoNtYR9liJI/hbQghN9xnRdIWD9wTfCHFEC+UkJRXtbo+8ldHq9MBOEfUBKmmj4xwZJwilCDLGzksO33yF4e6QK2/fYc14WmvLTErHnoWzZ9aIlGRrlBEVKU+e7bHtBc/XiimaiYxwZkJwE3IxQSmBMhbpHV6kBBWD6JPlEb1WTJK2CGbK5pVrzOsSKosKAi8lSilacUx/uc3q5SUORztMCguRJm9lPPvpv8B4XvLP/9VXePTyA/zsL/wX3HztRe6+9W1eu3uVb+zuUuzfZSMX/NX/6q+xOy75v3/7q/hqC2luMpxN8DdTfvSJLr3BCiutjPogYl4HsgCyE5H1Mpb7bYrKURtPaeb4Sc13Xv0q3eVl1tofI9eWtfU+d4oR421LV0rWowR9fhWXtrgeryIiw0rvDozHuDs7mCzFZBGxahzJ8LCBRkc1SGmJ04r+ap9HL59hOFhifLli88oOk4MZtzevc3f3BndG7xBFiiRWdLKEQSdH+gnOBlSUEMuEOI2IKg26SdaOiMBCLqoRhCN63mKduCUpZSNssYiBTsdp/oh4zvcO/H6Q672q+6cDYjjZaydcsUXSeVyUEGR5izTPSJ/6NMEUiGoXISVR3kdqjYxigtSAYnLrDaabE66+uUVQgs6Fs5Rzw56BuN3lqYczatHn7c2IjW6LC5HlS6+9w37lObQa5ytsNQSryI1GFBbpHF5ovJQgltBRxKCX0umnCDdnvLPFcHZAcThBBdFUhyXkSUynk7N6aYnalgxHU6wURGnCw889wfqFS3zxy1+hNobP/dTP4WZD3vjqF5i5Cb/59Re4c/MdWuUhv/CX/xMeevIpfv2f/RFb21vo+k2MmHH95pDHnrzMM0+f47U/6fGmirBWMDcBWhGxUKws9SiKitnc4INlXEy4duMNZpO7LOsPky/1WVpuUUY1d256VPCckxCfXSEeLFGvXMa2BgjxNpgx/s64QU6IOVIoUM3w99GBRxtQPhCnU5I84uLjl3HrgqWVJYY7E3au7XE42WfvcIedyS3SVkQaK+JIs9Zv4/BoO0SKiDhL8TgqM8M4gwuOewFs/66sE4GM+wsE8N574B512AX3RByZfXh3EnU8rFc20DclFxDSKMI6h7W+oW2IBjEBDUJGhMBkPCO4lDiOeXNzzNxv8tM/+SmWH32I9toloiRHJSlIRRAR8+077Ly0yd3bB+ztHJCd26CrYw5NYK4iHrt0Hro93tmK6YcWH7kY882dPTarXYZWUyGx1YRIWTpijDAB5SwiiMYHyR7IjG4vpZNHaBz19JDrr87Yu3GXyC+Ug0UjHtZOEpY3+gzWeuwdzDDeo5KYtUsbPPeJj/HSq6/z5X/xh/zUJz7Jj/zIT/L6859nNJ3wu698i9HmJsl0l488+3E+90u/xBef/w5f/dZbqPoqyk/Y3B5ifM6HPrGOCvt0UGAF0ypgI4XqxvR6Ob6qmBYW72FaTtjcucGffGtC74GH6ccfoJdJ1uIee3clhXCc1ZqolRE9vMZYt7gdLdPJ9+nm+/g7O7jRlEmqqRAMRwHr4e7mHGEcoqxJM0maSrobGZ31iCjqMJ9a9q5MsXUziy5EjT14KbAColSjYrng60IwAeEFiZIUpWt80CL8ajhUINx3T6SO7Fkcwy1PfI1vlJ3uw/a8v/X+OVOLFw4hNINpFzcjhVw4Pn/sUJxv+FTHHSrRVL1D8PgQMAaCC8dwEO88LjQDYp1r/meRJB1xqY5b34JGw17QRMHh1CF05MwA65tkqhmP2fCtBALjm/d0rmlLjqcFymqEU+wWgVAIRocGOa0IeyCEQuuEm1cPef36Fpv7E2aVxZAQdIfW8jI1Er+/h68tdn+M6mo6gxydxXilkHGGkjHCJMggsM6Rpg1/iaxNyDrcvLLJwc6QVp7TylP0chsU1MUUWxYch8eLAydSijhPSPKEyIP3jUiy8xHeRKwsneHxRyust2ztbjE3nqBSLmycZV/AVSHxIVAFCziUaro6IkjOra2zsb6C9Ye4MCGLVZMQL2Scg4jw4aQrdfRbN94xqSr6SrHc7dKaz4hcgaSRAV1diRBacbhIrEVdE6TDi9BUnBaiESJAcVLGQmpBpJv3cDZQzQMej6sDYZEcoRc2EgtIBElPkrUlnVwSR40NEMCZBcF9UfazlmaotDwJBv0iGBR4nAfnJAYHQWCbQi+18zhjkZVBSo8WDY9My3f3cH8g66iqGZpPcj9H6iiRCotE60RrauE4F69xep3IkMrj6xACSYROOwQrcdJTOo2dC8J8YVsyUE/n3L69zWw0obYB5xVBJsR5h/ZggBwP8dbiJwUhk6SDDnEW4yOFkBE6zpB1QnAVLjhcgLNnejipWfEXGI4qbt0Yk+cxS0sd0n6O6MY4W2LLedPNlRKlGg5cGkckWUyUJ0RjibZQB40PmuAj4khy7uwGeSvjYLTHrKwxxHRabfKsy1WtAY/QC/tUgSoE6sKTr7RYX11BRx7PnFamabdivI/QOlrsH4ld4F/kopLmg2NSVmhjaSUZmTLoWqFoZne1ewndXHOAYF5bkAYhLKF2CB9QkUAsBHZc8DhvFzBcRZJHNGDUmroKjIdzytJhjUUI0FriQtMVNqJGxzHt5YxWmpC3YrqtHq1smSRqCmqvvi4oCkNVWYy9V9Xv6Mw/8henc6oTR3a/bTXGen/d8M97fa+A8f08358KEN/jgnucOqJBGuikRdARTtRYH5gXi3lE1AuVXMnW3X1Gd7aZl4YoS/AiRkaB1mCAmM/w0zG+qPDjKXFvhbiVQKwJsUanKcI3hRKEp7KWfj9jsJqwfP4MhQlcuzpECsnKco/uIEb2M0yw1PMp3jVcD6kbT9TM2IuIsoRQWrQD5yWeiBA0gpjVlTWMqRpZ8dkE4yPiOGN10OMgTRdd6Ya7qBUoCaYM5FHE2soq7VaKC1OSONBtJw2XJNIgNB6P9U18cDJj3DOva0ZFyRkd0U5zokpjRMNPTFLF0iDDZx182oEgCHVFEK7hYCnQCHKhcAGct4vuvCROGohuoMY7yXRU4BHY2oL3qEjghSBIcNJgZKDf65CnCXkvIU9aDDprRDol0jmtrEOatIjjBCX10Qc4Ce5gcSa/tye53yy/H1igOL0j7wsmT/OTTt7rxDfc+/27Xvi73NO90MXTPijQ+Pujf49e5p5z4uh1jgo2C85e8EfQ+prRpCCJY+7sz8j3ZtjUkWQBps3oEikd+1sjbt24y2g4Y14YrFcElZK0u9gAjEZ463GjKTLvkHXaqCTCRwqZJGiZInSCCgJjHVGsuXihRxkU86C5c3vM8LCi283pd1NUP4MITDXHmqqJl2VAaYhjTZpExFlMlMZoL/BOEEKER4OP6Lb7nD+7gQuWg/EBpYUgU5a7XZhMFigeAVo0nCLVILGCCwx6A5YHfQJzhKzpthOcFyA0QjY+yAWB8+GoqUdYNDVG85J2gHaWk5g52mskjW7BYLkFWrNvPEWwSFEjjCPUzSB3HQlSLZAIxrJRaxRBonRD2xDCY4ynmDmMD7jKgfVo3SB/hAKdalSuSdsR7TyinWtiJSmmBlt75oUlOAgOisJQVg3y4siAjmKXJqppkqPTpnnsn76L7R/X9r7Ps//9S6M7T10Z6spSV7apFqiGaxJ8ICzmINnaYSuDqcwieJFIJYiEoigbVb+ydotP2wTkxjTEM+cddW0Xco0BiV9Ix8IRL0UuQoJm+G8jy+zDojVX31fRFDSDh4Sgcg7rBVO7+IGS7A2nfO2bV1jtdVnpddgUO7RuO8x4H1sL5rOKSCYM2mtcfeclvvH1P2Yp7TDIutTpGcTyozz2FwR721u89PnfQ8wO6c1Lsg8+Tn7xIfRShsgTOoMVRNKmKkPTKt3f49yZAT/30x9i6emPs/yRz/B3/qf/hd//jX/BhY0+/ZUB+pkVbFXgXnwZb+ZNFi0blbskUuRpRD5o0+q3GbwtmNWSkUsY7geufXvCx3/s0/zXf+Nh/tbf/pv85r/8Cqpuce7cRf7nX/xF3nrtNV74rd/k5u4uv/u1r3Jn6xo5Yw5mBiEj/qOf+HFWzy7xyp3nubtzg+VeSlUHKiOQMse6FrWV1NajFvsZGuWWoYVnl9b4xAefZfsNx+FoQuyh9f9S916xsmX3md9vxR0qnXDzvX1vB3Y3m6EpiZRGVCDF0ciUYcuwZ+CxNRZgG370i99tvxp+sOEHwzYGA2MwtgxY9sgSRyNBI5CKlEhRpBg6sdPt7ptPPhV3WMkPq064TcrTwkjUeAPV93Sdql11qtba//B9/+8rBJ/4yS1mbeKrXzwkpZaqmLMQjhU+O3RLqEkUwMznDakKyWCg2NjUzA8c86OevXcCPqT1RTd/xcoIMAI1kJgNyZWPFlx6xjISCoPAzQPJJXwvcG1ieejpV7CaR2oL0giSEiS9lgZfB+kI9F2kS5GIp7Ymqzx1jtjncyqlqE1BYTS6LlDiTIjlB328n47x2HE+MHE2l5JiIkoQMa3NteW5JkV+4kngS0JmFaLzHUghUdriEPRe8eDeQ3bu7eW5R58YVmO65YKv/+GfYKTiiZvPEIsRqbzIhZsF5cVLvP2VrzHfO2bQ3aGYjLFPXkOvShiXDOoxk41LdL3CuZp2d59E5PM/+zG2r15h/Pyn+ObXXuYf/vf/K1cuTXjh2UvomyPkpiW++gahm2WxEG2oZGBYFWxuDBiOh5TjAaNHGtPB0he0lBzc77l09QL/2S/9R7z86p/zG7/zf6HcABMH/MLzH+fGzSd47bf+GUdHB7x57z2apmMojumXKw4fJD73Y8/wuc/+ODv+mN2jh1y+VGDFJvOFpBqM8HFI02mOlw67LsAzxQEOOkGRSp67dgv6BdO7R+gAFs/1Z69y+eaE//tLd3iwf8T2eIVRkQM1Q8kOoxKjIBhFzX7X0/qA0ZKyKrl55SIxwNHuktl0we133zqd7UMkilpSFUOklRTbms3tAR/+yDVKpSml4dr441wcPseo3KZtW/75b32B+/fnHOytCC4+ngSKjAqf9LoeC0ni8UQtpvT4TMT/D4/ziFSMEe+zWJC19rTjftrZP2lgPHYCgVSGKCS92mQ+n/P2a+/St9m/sSoGWFPynS9/g4OH73Hr1rNsTTZJ1Tb1SPBsWbP79jvcufeIqt2hPDrC/sgGdjhCTEqMkly6eImQetpW0M/mHB8d85kXb/GRF55g9KEfYRU0/91//T/Qrxo+/tHLmO0abgxw9x/g39uB6JHSUpYBpQSbk5rJZEA1HmCjhxYOnGEeFMf7idoGfuHnfp5Awy//yj9iOWsw/ZgXn73F5z/7GX7l9pu8+c1vcPdgj3T3NsodUIUZ+48Cl4ebfP6zP81SdDzYe5Wyannq5haLVS7WEEN613G86Ih9jxUyN8OUYOoC3Srw2a3L3Lx6g6N3juidwibP5vaA5z/9JA+OBtzdHzLb3aNpZxCnQEehe4yEidGsQuKgWwC58Xn10jbDquJwd8lq1fHyt+6QYsSonEIVpaCyJcIo7KaiGBqe+9h1RsOSgbSMy6s8ufWTVHbEoJicNokLW6GVQQj5WMHxr/1xPtGU5xCnxxc2f3EMWu/7eNJUjyDlOgaJ09ncE5ggkWNx1jBbxx8R6XrH0eGU0Hvmiw711Zf57nsHfPy5wKAa0bd5tnlUjrn7xku8/Md/yMZoi/Fok14Oob7IlWc886Mj7n3tG4hmyqh1FLduYp68gtwoEZOSre0tRDGk7RKuXTJ7tMetixv8Gz/7IvXVp6lvPMf//r/8H/zxl77CU7ducuHyFubZDYJria98l+QapMoFuTCR8ahiY1xTTwZUw5oNn3O441CxnGv27nR89EMf5/M/9zm+8M//T776Zy+j3YStjYv84t/6ce7cfos/+/UBB23Ld9+7zXL2iJGY8eCgJznFp//+J7l47QIPZu/QuEc8/eQ2TZtoWom1Q1wYMG9gunKUMrNSUOCAnU7wdLXBR288xeyBZ7lYYmKkNolnPnWDaRf54hffQwnFxnDGUja0coVRPVomaucpkuAgKBKSorIMKsP2RsXxwZzp4Zz77zW0zqPJNM7CCqgUwmrM0FBtldy4OebylQGlUAiXePNbuywax8MHS4KLpJhYznumh1mF84QJl1KOPzE+nsacLk1xMtKwXnt/RR28D15MJXAhzyLFlEUiBBBiIKw7BCFGWCNUIZ4s/3Q6D5UFJwUhnXgInASitR9OyEIXwSdI2eA3rTfbiWt4EvE0KPkYz37PuaDGuvpMgphCnpOKgZQEi0ULQqznlATRg4tLpq1nN72LrffxK030gr5zKGkYFBvs799l6jxRtnRCcXS0w6WjCdsjjepKChyFTtycWAayYTa9Qwgtyha4zhFdi7UDjFGoqkHYMVO5zd6b92ne+3UevncHKSWr0KO7hsnhIRoYXHyCxmmkeARkv64kskoepiTqgmnniD5wYzTk+oUxV5/aBLXPw51j2tURVmh+7Cd/miuXr/HGy9/m9ddfpw+Rnd0D/vxr3+HR3R2Ojhc0naOXgT/+xre5fvMKH/qJF+inElNfoY9zfDsDH1EOtMh0qRRzsStlVl4ZFJLYNRzu7BBcorAjxtoiuxXvvL1i3kf6xqNkVnX0IdCHQK9zIi+KjGJtjgQeQeuBEGnmHqMSWxuSVQPOJZQCFPgSZCExE01RC+qR4uJlw8ZQM9IKjaCR2Vl7dRwQCoQW6ALKKLIb+UmXR2ZDPaRARYkQGW7OEUDiE6QQ12pMgiTX8LPM6oVIvfYokOsd8oM9xEmnW8lTEYyU8owFAqQ85wOn8t8VY1zv6TP0SQgwSp9eW6zWaCWpqoKysLz88ndYLBcQEiEE2rbFeUfXdRwfHDM9nOG67BVXFiNC3/PoeI41Gg72GXXXsFVBTQGio5CeVvRsDkfUtcR1B3i/wBQlfRS00xXWGmozRlYtRkZ6PeJgmXj1D77Ge7fvYowkiMTcd4xWUGpNNdwgeo3Rr6GkQGIR0hCkAZ218ZfOs1i1bFRDysGQje2acgjL1R269gAVJNevXefKpafwfcf9924zW3Yczlq+8id/Tt9H7r67x2q+YrF0vPL6baSCp3/oWbYnlyiG11ELS3/0CNM7lAMjNWVVklxuIimR507HA82gSKwWM3R0aDOg0hUTbZnuLFmtHPOjJa7xqDr7SS37HiE90kZEShiZqC2UlWTWQRIC34OWmssXLlCXGkGD0QatNM54ooJyXGd10LFiNCoZVSWVqqj1kLocoo0hiUSMmX6TEtRDm+kZwoMIhEj2HlknRekkuqU1m2B9nF6pzwevx2iBf3PHmTdOPI1R56lO52993yOlxFp7Wkw5l+dg4UwGfrlccPvtt+n7nr7Lc2ZSqTw3GBNt2+K9p2lbmlXD7oPd3JjsPdbUGF3yaGeH1WKFPjzAlRZlDbpQDKNhbsDQMSoKxiMLYU7XOaRRCG1YzVqkSlTFGFMmzMCR7JAVQ9791uscTRu86xFKMu076iYxmPUYoam3r2PLB2iViFHnGUBpM7VWW7ooOFqu0Kri2qRme6tmvFXQ+x3afo70kXE95tmP/jBbmxvce+ctDg6PWfbw0stv8u6Dfe68vcty3nA877nzcJ8/+PJXuPzkVZ544UkGo6uY4ZSw3MO5HukSOuRZTQeZIUCe4a1LxXig8V1Ds1ggVUlhBkxsiWjhvbeO2Vt1HCwbCCtU9CwWHSF0NIXHaoGqJEIntsaCxuVb8uB72NrYYDJwhLAgpog1hqgSTgdsXWAqSzVUFJViMqwYVBVjM2FgNzDGrOeMw5oarogp4kO/psOpdYZ0vom1/umvMJSk7xOZHkePTx73/XGx8+ITGVk9O8f5Bxm99teK+TVDTLkJLyUne//k2SGezwkzQ0SlNeVkfVSFRStJXVcolZt6UggUgsJapLYcHy/xcZfkXqYwJb4PKGko7Zjp7j0O2p5OLlkgee3N77LfHnPp+gUmw4Id0WGkYGtkKHRPu9olCY8uKrrGE7uOoqwxViEHK0w1pJFjdu/uc/T6Hvs7exiraJNn6Vo25lO0gHrrCtXMoWUioUhJgzREaUAVRKmZNi3Bea6Mh1zcGDC5UCH0gsViQXQrDJpnn/8wm5Ntdh/e4+GDByx7uHNvjz/8/T9l99ExB7szZkcNIkS++vVvce2Jyzz3qRdYjXrM8DqNn9L1R6Q+oB1YY7FlSXSOREJJidaSjYFG4VjMjokBtB4wNAWy1dy7fcy083TLlsIYdGXwXU/reqT1SBWhVGgFWyNJQNKmPNKynLcoIhtDjTWR3ku0SiAFsVIIqzCDkrI2DEaWrUnJoDAol2XplFZooylKTS88zcIhlWQ4Lugaj+8jMTogEgIIcS4GnTOYP11of8X52QdX84vQ+kSKkUg4DTIxBmIIGSVaF1MxZc8dQqbw5UZ/yna+azQqprXgRIxrhD7LSgeXlalIJ3Lp6+rxNPCKPHgb47qwWxdSpNMdfgJbIgQ+nVFNhIDD43lGzEx2JZ8n2Jn1+TVuPzrXKT05l0SITJFRJGbtCuN6Hj18m8ubkZsvPsNEVgxEx8QoPnZ1yEzP2dt5id532GrA/GiF8z1Xr17GFAE/7BDVFvfjVV7+gz/hG7//RZTWKG2Y9g39MjK+e4AdTChvfYo2FqhXvkPWusuFVJAa7ICga3aWLYOQ+MTlTZ548iIf/uRVZrOv8/Ir36KZPWRcDPkPf/GX2Jhs8o/+p/+GN966zcpFpu8+4K2375KSAjRCZEPm/+0Lv8lzzz7NP/kHv0iZrmJGr5G6O/TuANFFTJ8wSmOsoWvT6ZCo0ZKtgcKvjrnz9ltsGsOgvsAFW6Lmgm/86TFzH+kCVIXEWEHXBpaNJ+pM8yNAXcL1K4KQYOcIuj4ynQcub0suXFYsVwLnI8pANILVtkCNFKMnSkalZKsW1JWmKjQjK9ECjgpN20TaRZNfR2cvqrIU4GWW09S5mDJWZA8Qf1JMSYTIqmudSxAiw4FAaQlKIaUGlW9Rnrnd/02Q/QS562KMycFsvS1650gIlNan70wKhZSKtu/y71PeZ0KQB7GtXIu+pOzzNKywxmCs4Xd/94tUVU3oPX3nODqe4tfXgROVshQyxK7UECkUlfBYq9n3ngvPP0k9rFGqwypDrXucaLi6VWIHmtnyHn3nKQZDVlPB4e6MK1cmDDcmVGOPUoG53GS6u+DXf/lXiSFQViW9iOx1K+zRnEEnGF74MHoARfFH9I0gUCKkxauCqEowFUdNz8FszqeevMzFC1tcuzlB2JadvW+znB9RiZIXPvxRfvTHP8M3vvoHfPf2W+wdL3mwv+A7//S38VET4ka2SjCJL335a/zZN77Gf/Wh/5Jnn3mGeusual6zau9gbIdpE6W0DEYjVvMlXZNl9qWSXJxoNio42ntEbQqGdsK4GOFtyXtvHrG3bDjuAkEIzKQgpsh0vyUoTywiKQa0DFzZEAxHCnkk6XpoFpHxwPLMk9dYLErGdYs2OSGflx3ORjYubVMWho1C5O+kqBmYTcbFZSo7QWtFiD2db/Isq4DN7Tr7w8kesXIEn2cXQwx5Xg8yfeUkgRNi3Vjj8erqX7MjpROEKV/fTtQHY4ynN+89s9kMay0bGxunxVTf9/R9Twj5M/A+cO/eXf6fX/2nzOcz5rMZprDYwhJ6T3CR4+MpnXP0XX/q75XiSVFaIWVJKTxGwjH3mWlyM6I2SAyLIlKw4sJok0uXBszDAatFRBcG2SiOdmbUdcn29S1irfFKEOwme37Eb37hC9x/7x5VXVEOSh4t52wkGMZAOb5O/cTT1K+8jlWJiEUITZAFXpWgK5oI949nPHNpwIcubXPtxgbj6wNmy28xn+5jouTipav83M//PPfvvcO3v/4V7tx7wHGT+L3f+xpN5whxA4SmsImD+R3u3n2bX/h3/y1+6mf+Nm9uzzCTRP/wiLaZIbuEFYrBYMhKSBb9Ak2mVW4MDZe3CrrFEUf7mokZUFeOS9WIo/mKb33lIQtpWKqCi5OCYalYHresupZURopColFMJolrFxRHC8/RQhC6SOMSzz91CWugNPNcTJUlnfUsip7BxojBeMDYSgolGZYDrKrZrm5Q6A20UaQU6X2D1TVKGUJw+JT3vyLlZte5AuWDHH+ZQusvm0L+hY//fi96WvjlmVpb2ExhTrkJ7/xa8VOqU1l7KQ0Ay7bJuWXKomVCZClsnVSex0ywORlRFprCFmijKYeDbHMR1gJUEfYOpjzaPeL119/JDcOUEGikHGFEpJSegzBDtw17X/0yG28M+aX/+D9ga6PgrmiojOH6xZrOtsyn75JST1EPOdrt6Fzg1q1tbDmg3ugpBpscssk3//wb/MmX/oiiLLBFwcz3xGbBZG+KrQeU119gvoxYBQhFigVJlXhVknRJkJZHswVVgk9efYKta5tcuTWm7d7h0e47xG7OyAz4yZ/6KS1fG2EAACAASURBVIbDCV/+vd/izbfe4biN3HntPb789VfwcUBMA6yOaJX4lV/7TZ5+6gb/7ed+Bi6OMRs7xOVbLFf3ia3HdFCXFe1oyOxwRkr5WlWWimtbBpMaDnYeMlCaothgyw7QTHn1z+5z3Dm6LmAHBXZkaBYdx/OGUAQwETGWDCvJjcuagGB3mmjansOjhu2x4uKmJSZFIje2kxGsNi2qMgy2xgyMYmIVVhm0VPje0/uA1gZbRoYTy2oOs+MeU2iGI81q7miWOf5AIEVPFFk+P8VE5HwH4AT0zKv7sR7ev0JD74MjUzHhu5DnJaQluCxd7tcKO3GdUCspKYwmleJUPtn7jE7lbvmJDHb29XFuTR/ss9pHWMPfcT0HFOIZJeKkc36SrMV0xruFx5GphECSToPhCVKVZKY1pbVwwvnmaFzjgid9mzMgMIGSmQoGeBn5+htvsDvb4xeqY6T3GARRG3ZKTVx7fYAixg4XsmT8weEdpOgJ7pBpv+BgMWP/4T28WxGCRjrFdM/TTC1Vv0097Nis7uHmB6SUFwXJI4NAB8cVC6NK8pLMyOA917ClYXtrQtgfsbo35JnnPsOl58a8e/slZHDMVw29z99ZioKzKXG//iwEEUVEk8j0CWN7tAlIrVC1RY8qhFZni4+MiGiZqEUgBc+87dG2J9jIoQ0cmSz2YArN89slW9sFt56quX1vzlt3Zziy+mLnI75NpL38/bRdnmuKPjGdJvo2w9FSS65cFtihwF/V6LFmeL3OEu4kFqvI0ayjCAIZYH4c6ZvI0SNH9HnczmiJtRKjMzplK4XVCo1EJImM+V+EIrgsjV+NS6yxlJXN/gYukYREaoVWMqsSxpN194MToDhb+3lBx5g7gUpmUY3amnUHvcxPiJk0SxLZuyWE0/erTgUm5CnqjNR0PhdbgcjxdEHTOPq+x4fIyrvsMdH1axqgPKMRppQFIzZGSCNJVvDeg3f4rd/6NW5drrmyWSBjQOmSxhq8yeiREGt7BJ9Y9ondg30WS4fvD0nJ8fB3pjRNy/TwESkJVquaZTPnaH+HePUSzeaELX2Ulc+8JHmFcB1SRXQPAzzbRlKrxLEIHPkOGXqeLS1KCJqjio1yxLOffB5lLXdvv8R0dkznA71POC9IyWb51bggIQlC4IyhEwVRKBBgjMcUAV1aVF2gxxVyYU65/4jciZVKUEmPFT2tc5k/rjvmpueokCylwAnFh25uYgcFFy/WdMHh654+ejrh8UJy2DjCYUvZRowaU1iLSDXBC9559wE+NvRBsDWu2NgcUlUrgg0MNyqMLRiqESnAsnX43uPbBVbsY2SL6xLL5ZLhluGiGFHXBc3C4dzi1McqhJMUbB2s1o3oE8rAmUddZrXnIiv70p/MK/6glTC/9/UyEhWjX4shZb+td955h9l8TrNa0TvHfLZgsjHhySefZLlcsljMWS6XdF2X418IrFYNs9mUe/cf0vcdzvWotkMqjV+jWKu+x/usekoCIfUpRUWmhEiRalShSg2FYuEWfPFLv8mlrSHPPzEktVOMKnHGsrCGqHQewo4ZOV65SL9Ywf1jYlwS/Yy9r81QuuTBndvMZzPapkbNNKtmxuZkiLp2hWG/ZCR38Z0jBgPOI0RA9YrCt2wZgdOgZaCJPTuu4aqWVGVJu1NRtJs8/fEblEXJ/fdeZX//gNZn0RXnEyHodWO2hSQIQeKlohMVXlhAoHXAFg5TKLy36GEBgDZZFjvvnyxqYkWgFB3OOxrnKEqP0y3HhWDaJlbOMdoqubo94MmnbjHZmOBf+jMOpof4NSv7uM0oeSsblCop7QSRKgSahw/3ESLQ+kRZGjYvTPDWMSxbqtGAYlBTqwEGQ9c5+pQQ/RIjEwupCB58n9DaopTOJshKce3i05S2Quv8N//LSp7vrWXeD/F+31We8xuR4/yabbfef9/7LLHeF/Hc3vh+UtKn6PPZs0hJZOU6ma1sjBIUhUXpPDd6ilajSDEhtF7PGuZCSimJFGLdjFh7OCZB5yGJLCYSV+70PUQhiQhC3xG9z8wdso+SEAmZIsIqwsBmSqiMONnRB0F3/G5+b0iSMsxMbozKtfBLiD2NT6y6wINHd1Gyx/f7qKMd3rl7nwf3HzCf7dE0FUpZ2n5BXRfYW9cZji3bdh+/mpOiIfmI8C2yA93DRCXGRmBlZmLtuZaSSF2VpEWJO6y5euPjTK4WTI92mB09pO17nM9q2CFIYrSkGCDNiVEShcSJAidLIM9pGdtjioQqLXpQoMblOoc7MU3OiKGWiVo6RHSseoesHFFHpjYytYIGgS4LPnFrQj2wbG5V7E2nyONIh8cTWTpPuwr0ey0JaJuEdwnXwXTm6VtBUSl0odgeS3SlGG1XqKqg3hhDiPje0/aOGHr8wuPb7HsYUwQlsLXl4nWFWc+eHTxakhC0TR4BOQdB5eaEOF2apyyDk/V6EoNOqLbnWW5/mdbDBy6mUkz4PiCMQmhNiI7gIy6xLmrOuPL5tJI2Bbw7kYyGosjJm5C5jXCSqLl+ffNnEukhniWEcAYtZ3fjNWp3rhA6462f/X9W+HhcwELEfH88TXTTWsGANbKWcsEoHh//TFKA0TmVTIFX3n2Pe7v3+fTTjrHRaCGIWnNgFYUuKFWFIEvJ+tjR+57j6UNILTGtCIe7uLffyPSqlCBkz56+X6CloWDCsHdUm49wq+l6jiUjdiJ6VFRsG8HESqxMNAR2fUujYGMyYu6GqN0h11/8EdyFqzx87bdZHe6wbFp6H08/k4x2nfh7ZUPTJAxxremPAGsd2iSkVsjSogYFUp+5Q6/nqFFAISLEwLL3FHjQnqkJHGvohaA2kievDLhyo+KFH5rgbODBcknnE85HmuOUvVSOYp6tXH9FKcF8kZjPoJ4oyoFgMFEMtiTymsGMDMMrJd5FutZxPA0cHznkEugSzX6gbxKzw4AQYAtFqAAtUQakkZhKYY3C5nIKjYIkIWq6lSf1keGgZDCqMYVBCEG/7EkpG6xKIdZzVnHtk/E3wFla74mTgk4rgVSKsrRorSnLwXr/rGm1UaC8ISSf98QJurvuDIYQESKQhMCFXKxFIvP5isasO/AkvJQk74muQ+oCtb5Q55NlSqGeDFAKEj0Pdu8x/cMHfPaHn2L7+avIGNCmpDUabzRWlIAiph4XPI3z+OkRs+kxIU3xvmP20uv0naf1DQkNskceB5QI2FgRw4RyY4aUnugFKUiEb5AuoBxUBCZGUMiEEpFZ6NGhx1iLDhI1qxiNtymeegZ/+C47999isVzQ+YD32RA6JkNuRDSkpIhR48mBLGYsHmMC1maUQJcWObBIq88u6ifFlBAUImDwdC4gLFjpWWnP1EAjJV5Ibl7dYmNrQLlpWPqWYzGlcR7VO1yjmDWBbtZjW7hxYUhhakRS9H3Hvb1dtI0UA4EuCiabQ+pKEq2nHFdoVVKyTdc5jueHuORxaYVOoNKK1aqnaVbU44yMV3WBKXqmBx19F5Cy/56ES5xka4/fe/rvmWBFvhSfXZt+8MfjnjnZksI5x2q1om0avvvd7/Lo0SOOj4/pup7FYsmli5fo+56DwwP29vZYLhZ0Xcd8Pqfve6bTWZ4JDmHdjV9HdiHoXY+PAb+mEIY+D6prcyJKkK8iUoAclOtCwrH0K77y1T/iqasbPDV6gdQtMKbAG8PSaIwsEVGSUk+Ijtb1pK6lax4QU0OiYb7/Ls2so3Ftpt6L/N1NDx3t1mWG5jJRNxT1AaFzpKDBZ+Ne5SQ29Ey0YKEEWkTa5DjwHVFLSlugVyW2k1x/5qME37D36BWOZyt6H3Ah4j2kpEhJQGyARAyGqAq8LAkYEqBUxFqPLhQ6WGRlAVBaI0+8YqTI/pYiUtDjvaf1jk5Get0z07CQ0HrPpUpx63LNs89cZ+vKVW4ffpfeLuiDpO8C04MVq+hYxpbt8Yjt0SYiKVKC3f1HhNBRjsHWmvHGkFQ4XKWwdYUtSywbyFQyX+7jXSSmBkXAxETfB9rGoXRuWBkrKYqCCxvXsKbgXNeBk73x/Y/3/+KDbZiUTsqotfjD+/Kc7zndaT51/hff/009li+ltKaWZyl5pRRFYTCmwNpi3RRfa4hFkFqvqeZnMehk5l7IbJMTkiR6QCRkzJYlSUAUEZQmSUlwPck5hFr7KQKChEwJZSRpWBJSD6nH0eNCopvepy8KJIqkDAstscpgZZnjXYDe96z6iN/fQbDCx2O6Vc98d0kfHL3vQfYIYVgcO6y1TMpLdM4z3DrENUti0OB7hO+RXqC9ZCQTYy0wMtGHwKHvuECgLC19KJGzios3nsWPJiwevky3mNL1Lu+fkAghN/RIHSRHioYoNF4M8bJczzinnMNZ0EVu6OUc7mT2TJxel7SAQnhE8rQuYCoPyjHXkZkWdEiqwvDcrUsUA00xMaRBoC0bVi7Hrel+1k6YH4XM6PKJFHP8XbjEisR4u6bSClNp6pGm2KjQZUk1HtKsOuaNZ9l6mq4nLgKhjWdetFJiKsFgUmKMpigNbZNnJZXu8qy6eBxiEllhI//8mKoJ5/JYcVpn5FLgLxeEPrjPlMza9NnRe03lk2lNSUj0aY38eIl3Htf0pDWXNaYskRhk3sDKSqIM6BjwXq61qmP+g1XmDRNzcaHUCW/4rEPyvn1+drzvjseC8rlK9DyNL9+TO1snxZQ49xRdWKqtC6S+JazmpLXZonOCxge+/eoOV7ZGvPjTL3C0inzn9TlPXg48eVNj/Jy2nRLdAmKPUh1KRmqjsvlmn5D2BUTxCfzqK8T+TaTUCFMixpdhYAjNIaFbEKI//WOMyRX5u0tBrQWhtBgBQykoKZBpE3XpBdRHhtx+9xscvbbP3//8z4J7gS9++R9y/8EegfWMT/S5Nk8JIQukNJTjCaYecXy8h5EdP/HDz/HW24bvdHOiNxwdQj0conRk5/4ewQfA0KM5jDXBlajeYGJiIAKLReRoFhlozagw2KLgcBX4/Zd3eLi3ohOJ5CKqT5RKEJUglXnxiz6c8cZriSgk+qJEDwW7I0lVKS7XFqMVaRYQPqB7Tzx0dI88bp6IPeDzOaoLGqUznF0aSW0VQ6OpTpA2n1Bl9l8YD2tIMs/W9dnHyhiL1pITt+zxxgiBwPvcjUtJZRpsPFlZP+Bj/ZIhRvAn3ZaEc7nrUlhPQuJjvqAk8tpXSSHWSoWRvNS8P6HR5pAUReZAk0SG3I0hxYRVkmIwoG9bVoDRFq0NZWkx1lJfvIwtSy6NCrrlnPvvPMST8ELwYMOyoRyjazfYuDXg7n6HmHc8fVVjY0uzOsZ1K/ALtG6xyjEsFKSCfhqQ5Zh68yfoVw9Z7PwRShusqdGTbeTWRUI4JnZz+r6h9x2khDKKwbCiFZr7K2itRY0qKqOohERRIO0Qce1ZZvNH3H3pn/HszWf40Md/iDe+8CXeev0Oyx6CKtAmkKIkSIXSA1SxwcblTbYuThASXL/iQzcvMa4Ei6NHJFVydAhKD3jiqSvcffs92vkxImWFpaM4wfsJ2hkKLyhFoFkG7u/21MlwYWgoyxqhLTvtjKVvWOIJwaMbjxUWNahRwxplLW03z6bgviVJYCJRNchxZFY3xCh5or7FqJ7g4vGaVgapDzTTJYSOhe/QYokSGoejTx2mFkgveXD7iHbh6RYdvvNna1CI9VzIWl6Zk/Tt5MhrS4qTpPFcIEvwmIHdD/A49bkRWf3RGENVVetGoaQsS2xhsUW2D5CqZbaY8/LLL9O2LU2zou8d3gfm82X2QPNhLR0v0cZQ19XaRzELKMkoGQ0GACzWPT5rC6zRlGWBHW9iRxMuDC2FhLtvv8GqXZGkYM+13H6zZjDc4qlPfYTdac+j+w23LkuGWtC3U7qmIbljBA5jHKWB2moerAqc00yu/m2SGjJ78Dskv8TaEWa4gdi+TLIrQjPF9St618LaKLgalMiy5EEjOIoKNa4pCsNACgwWIWrExSfxiynvvPG7DAcDPvmRT/DKy2/yxpdf5uBwSdAl0iSMcMSQadS6vEg9HHDpiYvUkyHtas6lrSEfe/4mfnXIwWHBaqlBwuXrF7B7cLzzCKELBAWrNOQgjlCuRDlDgccHeLTfQwcXRmOG1RBtK956+Bb+4C12V4e0eFQrsEGwORggrUUPKhKR2XyfzmdlXCqFsiA3E/2g516asmW2uTZ5Dp8WBNdkAaIU6eYNbetonEeiMHJOIOIJbBQXGNUbXNm6ybCaMKzHmFNU6q93fZ8/zmPIj9158oM4I0J9kNzy/EPC2gdNyvU6l1lZlKQJURDSmUeUVBIR16IB6/NkIk4ixrUc2Vo92ieBjKxRUta09FxcJ6EIhLUwVkLJRDEs2Lp5k9gtcNMdCD6PpiwVzcJw750HdNsbXH/xQyw7eO+dOZe3AreuaYRb0jRzQj8F32HMCqs8w8KwkIJ2HjH1xxmNPsJy70/pZm+hbYWthsjNi4hRge+Oce2czrWktSpPURiqQcWBkzSdJA1KjPPZHFpoZKoQoyvI6wWP9l5nfu+YT33kh4nuEl/+ym9w594uThYkLTCmJUZJSgpVbKJtzfaNy2xdvULfNxQaPvbcE4yLROjmkHIM2tjapCgSzfSIvndASU/JQdhk7AfIXiNjxCI5PPbsH3jGZcVwUGKLil54DlZHHLglKzyp95g2MNKaoBSxyrRW2TTrvEIgSoMoNfZCgR0q5hNLaxXFDMouYmRP7HpE3xNXHW7Z0y0Coc8WLrbSbI7ytRcHy+OO3TszFkcd3TIzWc5VTchzc+PvX6ln84hZJOhkvkqsQZi/7Fb84MWUAKHOaAP5zvWbEhDICiw+ZV8p5wNaS5RUSLU2Ss1uVFn9ZU1rOfG4OREAEFlc6hTuOJPY5ew1P2DBmJ9z7hM5V1Bx7qd1OD8D/MTZ1ItUElMXhOSI0eeB4ZBIIpuHzZaByURy5akrxJ2G428e4kYlpVDIFImhR6kemxxKpFz5a4mUBq9HeHEVJ58mdC+t/7D1fE5RZrOzENaKhieXmEyl1Eoz99lYNkqJ1ophYSm1RSSLN0O6wQaL+S6Lo9tcufoPkBQslx3zRXP22YqTBZTfk1QWU1RoY2lXS0QKXLu6zdHRAVVRkJKkb0HbLLEpZfbHBQhJ0iZDnSTEhAasyBS96HLSbVSG45crx6PlksXK4UJCurWJLnktRJ0zKxlFRhgFyJFEDSXltqQYCbpakgpJkBIfBG6WKYYxBGITiU0itNnwNyM0gmIg0UZSV4pSSmotGShJpSS9z9+/Wher1aBEIIkOKATJiXXBdAaLl6VFIOj7QIzggsxm0uL78Cb+Go/zQfK8RYGKgSDA+5zohuCJSHxUGSXOzzhDSU46kevznIK1nLfgzgpxVVHk70gp6rLGSoVKoJXG6Nwx0tYw2ppQlAVDBTRLXNMQY06km1XHqnFcenJENdri7QcPSD6gESgSIfQIOqxpMTJgVKLSGQUcjEZosUWaPJNFD0TIa1JpRGGhtBlH834tc7xWCZUSW1qCUCx8wgsJRlFoTWVMfmWhcbakiz3Lo7vop55m68Jlepc4PloQUlYzVXpNU5EGZUpMMaQejhhNxiAges/GZEDwHcNBRRcsfZtpXKNJTWHVWlYmT2V2qcBGm/3xYvY/SyHRtZGRVpQmf28uJGahYelaWucRfUB1EWUFptBoY5HGZtpLcLR+jrSKajTB1AkzFvgisJA9qBqrNvD9khgdSWUj3+Qh+UhygSgDUkDQgSB7jM000OW0o2/8qbrSybI/tcWQa3XM9x3xLJKdPvZkHYu/uPn913acl2s+v5eUWpsrx3wNruqKwWCAX3P4nQ/EGDIK1XV0XXfKrnDO45xHKY2WeV7RGENRlrkpFzJK7p2nLqs8mO8zemW1wRiNLQ31xpByc8JQgQmO2Hf4VYMTkn5pWTU9gy3L5vVL7C33Wc6niAugtSAFT4o9VneIFDASSi0ZWM1wOMBJSRjfIjBCyOxLIZVGaIuoLEm1xJD3T0gh+zoKjbEWqTXLkGiTyMb1RlMbgxZZGcjrgl4qlrOHVPoCm9sX0eYeR4dz2s5nKpVSaCJRaJAaWwwo6yGjyRhjLa7vqUrDxa0J4/GApu3wPucJ1bCkWZpzUj8Sh6VNZbbxSAktBDJB3wV0gMpatFKECPtH+8zTikWzoneBosvyzEZlOpqyBcI5nO/pwgKfHFU9QVcaM06IMrEQPUOpsHqT2EW860gyQYokn0g+4V1AEInSEVUkqogyiaK0TEZbjOstjCmykNHpgvyeFfovW8EfeJ1/j/z/6X++5971Wc8YKO8/F7yfFXS2f+K6xR/WfovSi/zZB4+PkpDkaQw6Aa8lgpN0+FRB9vSWfyfIcSrEfE2S63JPCYk7h+jlBBm0VQw2h3THDW6/IblA8tmINyRYrTq6cWB8eZswdSzemrFVRwwSYsg5nOywusOoPPs0MJpUKgYTQ6qvEIfP0hy/CiIg1ybaoiyg0MTg8y36NTKY0EZjC0uXBISUTYMTlCarBYMiKktvKprmmGbxgOHop0nBMJs1zOctSWqkynl2TJqUBMZWmHLIcDyiHtYE71ASLmxPmE1HDAc1CU3f5plLpUqUOonskpAMTSypos6NtQSahHcZRCmMxqpcDHfOc+xWLLuOzgdUF5B9RJOLmKANEBGhz7FQCuTIIIeWYtNQDBS+MgQpiU1mhnW2xzuXTYi7fPN9tsSxWiO1QNYmm2ivAjEkFsctfeOJfi2DfhJTOJ8XfW8MelxV9fwa/14/tA9yfHCfKSmQhSIlT/CRolAoqWianhhjNudM5NkXrYlFRTjZFslByDKWIUb8Wu48IEFptE34KBAhYEwi6mzQJhDElDvrJxSJk9tJvZUed4b8C2stsd5wp07JnNaCSCQShZDr+RdTghAE3xFcoD3YJziHd1ktiwTaSMajin//P/l3eOqpG+jRDeJrD5noRyRusudfBPVtNirB00+/gLaKe+++StMsWHQNz33yR/l7//l/we/++r/gC//kH5P8ASSI0RHDipBu4+SIbvQEfqGQ4k4W7gBsUTEYjBjUAV00tIsVFwdD/s5P/jjXnruBk4/4zjd/gy/99r/gZz/zSZ778b/L9uQpjmYdsr6Arjts0xKiJkZDlhpVlFZjtGKzTIxkYLa3QlQWrl6He3sQBGUpMQXMu4beLymsRGHokyYlifCBTXXEM3VgsyqoSsmL24lDL7l7FJjOA49eeogTiQ6Pc3lujpCLaKkFyghKU1COBFvPWlSRMHVg84ZhctUwGmdq3tsLxaqDB/db/FGkfcOjCzAjqCrB9pZC3dBIk8UUhIQgoFKKC4VF+YRaq5xJoXMQVZqiqClsyebWRVIU640KwSf6zhNCxNoqP3ZtcItwOJdwMc8HWSNyh/IHfOQuzNl+6VNCCE/XdYBgOptnPjsi+8ZIlV3ajUGvaREhrqWu1/4sKQZ8zDLw1aCirCyf+9znuLi9zSuvvEzbdviQuHLlMh/+8HOEEPE+8uff+iY7uzvQLmlXc7517y6u7ei7yKQu2RwP+fCP/Cif/ukfRdohzkHJAS4kGj5EUjO2qoarF69Rbw052LnH7HCf6WqB1Jp/7z/9PItl4Jf/8W/QLA4IXkB0pDCj9/dxBLrqMqhBTo5US+cjwhQMxxepByWF7XHLJc3Rgmde/DRXr11HWcfBwQO+/Du/xpUrl/jMJ/8O25efJFEj6m3U5BLj0QqjJE1RZOROGerSMKkLLmxqtqqI7B3NyhMHI+g9pCzTX5aC1rUs+yOKWrB1YcIy5EIr9RETGq7Ye1RWI6XhiYmjvmnYP+yZLzteevVtOiJL2eC8Z7HsELmWpBoIqgFsCks90owvC0yhuFIUFLVm+0qFtZKykBwHwywYdhYP2D/eJ+wn8KDLJVU54NlrH0cqg9SaaXuPRb8DQhGCYX5QItueHaMRDoLN3WPWCRIE4loaPXeo02lRJcjk4vOaYu/vHD5OxPjBHyfBVCmFlBKtNXVd89nP/gx+PT8VY8zqlcdT7tx5jzffeJPXXnuN0WiAMeb0MR/72EfZ3Nzk5s2b7Ozu8sorr3DziSd44okbvPnGG+zv7+NDoihKfvjffhFjLd5F7ty7y0svv0RyjrSc8taDhzTzOf1yhRaSyeaEG08/zaf/zb+LLmqEranvOAq/wKUbCDFgVHao7TEvfPQFmtWCvfvvZNps8nz+732Op55/gf/5f/xVXnv1bVyzRKREl2b0/S6O2zi7QTd4AmHfQytBHyNewmC0yXA0obAeERoWB1OevfIkL370E4w3K/ow5Ztf/Q1W8ymf+rFPsrl1CSGHCDtBTi5TN7DZOdrCZpsLnYuc7XHFcGC5WkeGa8Uur0vShkSoApUUVSFJMjBrp6A6ti6M6KKljSUpKnRMXCz22KqWDKoJJkX+1nXNYgGH08jDnSPe3j1kGVd0sWexbAk+osKajjboqUcDNm1FNYF6LFHWIo3iwtWKojIMKkWPZNcXNH7B6w9fIUwhzROqbFFGcnXr6RwntKULMw5Wb+fcRGq2RjUXBhNKa1CndDT4/6LR/asvak6Rpg/eeT+jQH1Q2tNJMy/G+Njz2hbmi/+XuTeJtS077/t+q9vN2ae77etfvSpWFYvFIiWKkhgykEUpliPJcZTYnggGJCBBMqCNDDLJ0JkFjoNAQIBkYI9sSU6sUSwHsIEEiWyL6tjIZJHF6l69qtfed9vT7mZ1Gax97r3ViCpakqUF3HfPO+fsfc7ed3Xf9/2bVeIi9lUpJTVSSQZlhVYySYenjVDPKZVJMTgErHdIKcmHAwA62yWus1KoKMhQtL3/ZdQlUSmcTPy8+eP3sOs1dRORAUQQTAeG0ajiE5/7AtdvXWf7yh3i4zlTfYZkj5m9jVaSnYHkzp1nkZnkybtvUdcrTlYL9m/f5Gd++cv83le/x//zL/8Jrn5CcJK2WSOkpwvv0IkJW4PTmQAAIABJREFUbXUdV1q0EtgYsTGSlSOG412KQqBVy/pszqSo+OwrrzC9chUvlrzz5u/y7W/8Pp/5oVf47PM/xWiwx3xlUeN98mVk63RFZzNaOwBlQCm2q4KqMFwfCvaNp1m06DJDTLcQRb+HKwWmgHmzpPFzxtOSLM9Z+QLrNXSWIWdcLwSl1igp+Mw+LJXm8dOW2VnNe187pROOtWhoG0vTdgifKoa6kKhcM84HlEPN3nMjdOYxhWW4NWA4LRkUCcL5oFXUXaC2S9aLhoevHaIM5JVIyYgAmTHIQrF3Y4TJND5GfBNoDi2utJxpDUZA8JQFaOXxbqPNsNFfSMm+c/Ejekj5H7MG/SDtB4L5SSV6SdeE9017xQsiI5BkoYVEKIEkIGJAiJQV30ACfUj8nChkX5+VPYE05R1kXxJOJQlJiAEZEhSwV0hPQdOlktzl+PMi2Pp+ZaxLr21SGBsb5UvHhBBwXUdwSaFQ9D8RAUpT7ewz2LnCsiuwwSCiom4ih2cdTRuS2ozUCJ1kMFEWRyAIk+S045roDomxAxJhIESHa5e4TGL9BRxmk0GKQhGEQsWACZ6CQKkUg9EWWTkAEVjXc05PnlCVA67u3UCrghhdCix0720DBKHY2t5mPB7TrFZ45zBKoZREKY3UOk14MtkfZ0ZTFjnLNmWclVJEHRFuI+uqkNKgswxpBNJESg2VBhGT8EhrA1GDytP1+eZiATEqXWOmBEWuGO4qdBHQJYz2NON9Tab7P1krEDYJV7iQOFdRgwoSlESXknKsMYWiLFMp10VBLhVTYxBdRDQBQR9MmT6YMoYsMxSZIQQBXhAUBJ0qU8I6ssygVfoJAbROXCnVl/FjkP9O2Y0/ebsg70dAfGBBO8/2xcSlUlKhlEobXN3fWNIkFnB9YORSEqLHYW2qO1KlY3XPXUgQSE2IjhT2p+HUrmu8d8wWS4J1yJCqmFFqTDmmnO7RduA6S/ASbz2rlaOufRpvUiGzHKELMAVOuL5uJQmhxbUnuG5JiAoRA847unZFu5rTVTvIKPr+LFMWUKg0/hCoEMjw5CKSlyX5oEJIgQ+W5eKMsLfDdLJHnlfEmBQcdSYpjCCapPZoipKtvX00nixaqsJglDzfiEuhevx+kvMtc4MNCmcDUmuyMqepMyKpKiaFSnwQLREqkunIKIOzXpbcWoslIsskkOLrNC8SBSbvjUyJGAVlpckqhSkCeakZTjKUFBgpMNagMXiS/58IBcQL6eayGKFNqnJ5VYLOQRic9WihUb2XWrrGkDLElypNl7Ho0HOFLnOSuBCB/mgM0b//8fNRFaoLwrJiOp2evx5jxDnXV6osi/mCo+Mj8ixPwgj9vblz5w7j8ZidnR3W6/XFPZMKpXQvRCDJshytDUoq3Gb8ALbriNGzWC5ZLZcolyacKDUyKymmu4Cmc71xrhfUtccGT/RJikmaHGlsUg/D0TmXqkECnJ3j2tNe/EMggsPahnY9ozUFtiRB8JTC+gRXDMIQ+zVIR08eA7kxFIMhqje0Xq/n1PWS0XCLYTUFEqRfZ8lIvTS9QiKK7f19MmPIY0eeJeNpLS/GjSRBvCSSIjN4IQgrAElW5vjOJFgSGoVGKp0Ue1USWq2MwCmIMVVKOu9BRxSS0EZs63Ek01ET0hxnJBRFsgrQRUCbpCSW5wajRArcYgYeOt9AMIhoCNEn/nA+oMwrTJ5jvKchI22aFIOipMiKNPduyjLnKd+LSs1F+377mI/du9OYE+fyE+fboA+f/Y8/7+WRvFlxPkihAM5NrDf89fS+dIzSARUUVltiSBWdDSA4KUcHvHd9gk+8TwBUiIsQVIhk7r6pWsUQCf11OhdoVitc22EDyCBQEQKKKA1mOEVXW7hoEmIDlYzNZx2238NJbVAm2dFE67FYHIaIwPsa2x4TfEeMCh+SWEJXL2gLTeeTmpxWyQyaCEFogjCJyxVDGj9KkA9G6LwAEWm7msXilNwUTMY7KJkBDpUlJeRCp4StVJLxdJtqPCaPHUZECqPQMqn1SpmKBbKX3s90Em2Y1ylBbPKkClvXBik0Qug0N2mN0AKhIgMD0ZAqrMHTdRavIyqXyTZgvcHSCURG8kNVijLTDKcFOneYXDCaZAzHOVr2ibWuR4Kp9LftrMNIiYk9Zz8mJJbSmkGRkeUqiW84jxMeRYpFpBA9XO/SGkQfK4h+Lpcg4+U16ANKfvH9iYwfdP/2sYMppaAsJFJlKKMSnCr0AK8IwqVsttSSZGeuEm4VsC5C6JDBEGSv2IdAoHthB8DFFKT4JAdrdHpv0D3OyHisTaa+55GUkmnQ+YtysGBD2L0YaLBRAGSzx+srVP3GURrISnydyrF4178nncN5d3GLY4Kh1EEz94bvLiYcH5QcvPaAp+89ZVZLju++xfde/xanXWDhIo/urrFSQTREpngz4tvffINv/9Iv0jYORD+BxOSwHp1n8fAEW9YYK7HLFbk22N6La+UkopGImaPygk9XkqLSPPBDDGNeyKYU1Q7FdJ9q9w7V7nN4BNbXlOWMQbmkUx50CmJ/8W98mZ/9uZ/kn/7av+B7r73DceuR5YRnPnmbEC3ru4eUwaGEYWdrh529a5zOHuLrGl0KZBaJS0GmczIzoR18gqeTl8jG98mHh7RRUHdpYjQKrg40xU7G6LkB999e8d5by3Pj5SyXFIXk+rZieM1w5TNDUA5PTTbNcZnh4GHDauFYIokSRvsatRPRN5MQiJGCxku6IBjuFIwHmk9MFbkWrL1GRoVxOpWRG4cWGVJkRFmC0EgMRhnyXjE9ZgohM6TKkWpJ17QMiwKtM4ROm2xjHLntyNSKthHU4QcfjH8abSMusSlxbxYh4kaIpZ/EhIQQiFJS16skKpDnKK3J8hznPbP5nBiTRHNZlhTFgOg87brht3/7q1RVRds25PmA/Ru3uf/4gD/8w2/QtR1d21EMKqRS3Ds4oOssNgZEECgrEJ2EWvK01jytDYujOevZitkyUC9qTr7+e6xax2zWsFgtOTs8SVuBOMbnFb7r+Mf/8Ndpmw4bNOgS6yOWGhHWHN8/wp7VmBcURZ4xyHPkIOLxOFFw2Ah21hGzcjxTCq7taJzKOYsFuypHZ0OK6TWKyVWyagepcnxwFPmC8fCUpuiw0SOynOeev8kv/vLf5N27D/nDP/gO8y5QBxhMJ0x3J9ijJxTBoYXB5BXXru4THq15sqhQmWKwW8FJUhvM8x1EMWVefYZQNZTVAV5q6trhgkNIz9WqQJWGyUt7LFYtX//qO3TW0/lAUeZMxgX7E810S7J9c0o2VERRI7VGmjF10/F0sUaoklwNyQvQA0E1HaPQKAFGlYgiQ+uMMsspsysQC6IsaVvP3e5N7Dot5okjIvA+0nXJJzD2qnyCC8GFDX/Pe8/GD22jyCouiwBxARP8826XOVQf1aSUbG1tMR6PuXnzJp/7kc/x+PFjFosFP/TDP8zW1haZMZydnfG1r32No6NDFvM53371O3zr26/SdR0xBPZv3KENgt/85/8XXdtQr5sECSwHPD09Zrla4kIgxERct1FwuJY8rRWHTYatLavTBUcnHcs1vPXad/HBcXTasgrwneWSIAQijnoYYuA3fuNf0Cx+jfkyoTE67wmhw8YZcrbg8bfvY6+1iOsdMlhGVUXEE5XmpJWYGtTKsSsi+Z5iXGacxIKhLMh1QTHaJ+qKvNpFF2O892hVMxqe4gdrVO6QJqOoBvzSf/mfUA2H/Kv/+3eTh1vrUdWY7f0t5OyYsOjQUaJVxu7uDi56Hj8aghcMdhRqBXpBkvDPJtSDT7GoRgyyp/iuobPQWY/zLcPcMC1KBrf2UGPDN37nHqfHK1yU6EwxGRdMJxnXpoLhlYrRzQFRtCA8phjjheTkZEmImsxM0FKQTZJPWx6LpIQqJFkxQKqcoigZAFvls0RhQOQMzD6F3sbovA+sxfs2gn8mffn8dwqo3vfCxys6fWTbHHrBbX//5/lz99TLAdUGVh4IAZbLGUpKXF4kOGyWUTc1q/WafjJhOBwhVYbvbC+qVCWkUAiErCQMJsTVEpqabjEHIZBFgW0FdV0nGolSSJ9EEc5cAa7iLEzI2gEPnxyzPFqyaiWnZ4+498brzKxg6QVvNzWNkkhS0suXI95+74yv/4//C02Xxo8LERc1Ns6xXcvB649YTxaUXmOXM0bDIarx0AZW3nDYwItrz0AKPrWlMAPNWcxRMWdXFmTlFsX0OtloHzPYJiCI0TIcnDKp5rS5TcG5NvyVn/9RvvgTP87v/etv8uC9Jxy1Hp+P2NrfQqqIPX6KiQEtMqbjCdO9fY6OJ7h1Qz6R6EGAY8EgL8myXVx5k7PqWbarQ0x+SuehaR0hJi+22+OKfGfA8Lkt7r7+lLdeO8D6QCBSDTVVZbi1nVHtlOzc2iLKDh8XyLykiwVHp0vqtmPepTVgMDAMjGSUp/VES8l84VmuAkYbcqPZlhm5UKyCYNVZTpcdoUtUok0107lA1/UetZvg7hzymQQ3NtYWG1htuBxExQv1b/gwtPX7tY8dTEmR1L1in93ouuQppZWAIDB9YCNkytYKVC+FLljXGukTDwIfkCFdrHfpoi4r9m2ENjYY2fMYsp9kEqEspiKO2FRXevJyeH/Zrr87H76Yi/sGUaQNo3ds2I/nSMoIiN44eJNp7aM2HyJt6/jut+8ye7rgBpJFaFi2NW27omsXrFykDZG6a+mE6j0VItFZXLegXR4BiZB5UWZLP8ELQpCoXBFagRSbTGXya+isxRQlxaDAIfFRoHQqsF2au7BdTdMs8PEKJiv41POfplJDXjt6lb39Cc89f4VPv/wsV69dxwy38Nkh2tcobfAyw1rPbJ0yoztDRZmpVIXQmswYlEjVJqyg1IpKJldrGyXSjMgLEKYkqhWISJUbXv7EHoOrUyYv3eD65Ak3tx4za2va4Nnfv8KgKtjeVaiJJ44boAMfU4bfSqRXqBApcglaUJUpHs+KQC4lA21YW2idYFgaCpOiougEWc/JkFGk4DUKTF9dESojeYqlrI4WiQ+m+8yINhmhLFFSY0yOkgapDCGCcwEZkqmccwnq9+e5GUzr2nnp9gPBVJ9EiLE3XU6vdVaigifSq2YGn0j4RdFX7WR/TRempYI0OdXrFavlgvl8ge06nHV4IZBa07ZJXSv2ijoBiXWBde148OApr736NnuDjDxE6q5h0dREv6ZuO9b1imXUnJGqhkoqvG3wtmU5n2GthTDoBQsUxDSenNV0XeqrOpNo5ZDS4YKns5blusUHyIqSKAzOb0ioqWpHf+uSQW2LyjIUOfu7V7hz41ns4xaXddz8xA1uP3ubne0tDg8X+LxC0GGcR0hNQNFYT+c8o0H6LhvYWJ7lBNFnSAcSnKTSgUJ4PIogcqQagRrgVeJ/CSG4fuUqw60R42dus25a3Eyw7lqWXc3u7h67O/vsbA8YDA16KBB5QESV+KgBZFComJGpiiyboLVDiUBGTGpoMus3d2uUVGS6IPpBIhPLAVE6lnPL/KyhXjuaxmG7BK2IPf56M1deoNIvzd3nTSBD3OS3Lvrun2Bj96fV/igO1Qeb7INApRSj0ej8GsfjMVvTKUWec/fuOxwfH/HgwQPOZjOKoqDrLK21mw+ja9aAYDGfJ+5V06KzHAs0bUvX2jR+RCJy+yCoW8fx8YLXXn2bSZmzXRi8bdP4CQ3BW9brJWsHZ+SpkqQM0Vu871jOTqkXp3hfQFD9AqwQwRC9xraKGBU6U2gd0NIR8HgPq7qlaR1ZVtCqHOtVgg6fe4JvFllwrsW7jijShvjZW8/xsH4PZo5rd66yvb/N1at7SJ0TiyHRSkxoUUoThKL1kXXnKDLBeKCSAFCAPDMIkaPy5GEpPQwywUA6QODRaDNEZhZdTlCtQuCYjqfsX92mvLWLHg/oTiWzswVL15HlOVf29xkOc3Z2BqgtgSxARA14ZFSJ7xkNSibZdCUDWnkyFIaQ/HGERqoGISHTkxTA+CFCZEhZkukhRqW1ZGMlkTB4lzLjf5odenNOsfF8uwxvihtAwh97LP3b4odY/RevXW7n4/0Sr+ocYhg3yZMLK5HOdsjg8TFinSXGgNGpequ1Pl+D0vftVYlD4qaGrunhgeJcrTmKPtFufW9SD6rfH7U2sm4c9955TLN23BoPaaJlUde09Zp2tWLlArWPzNc5a1QvEhIJtqFZzlgsZokqEQogJFRW1BACtlM4p1CZQhvQ0iJEwIVA3XZk6xapDDrL8UEhg0QmZGM/ftKFBm/xriUwRGvD7et3yENO82DFaDpk/+Yud+5cZ3t7CzUY4fMFOjQYrZMnafDUnUOKyHSoyPO0BmXGJM8uEfA6EAeSQZZRKYcWEY8CWSKVI8iC0FfG8sxw+9Y1yt0po9vXyMOUoRqw7Bq66Njb22EwKNjfHaCHEp1BRGGCRwiDCAoRdOKW+8TLMplEGYUaSRQSIzRaRso80s4trvE0a4fvInUdWc06zk5qFvOWpnZ0rcPaBC0/5019oO9u4ofLfTlx9t5vxfGhrv0x28cPppQiLzKyEAg+sFp6OgIyk4R+kY6RxDmSCql0L4WpWLcdCZhDit6loms6mtUS25s8hrAxa0s4Ok8v2B1SeKREL3260UQPnEuab6B+PUqud9O+BHd6H2Tj/JZdZFRsS/BdGohcBGTnJeWeJ5XoWamTO5fkof/3f/B/8Py1Xf7X//rnyLMlj+eHdK7F+Y6uXWFdy9rl2JA26ynTPyfJy3kSsaADYfo7pPsNajJErPYmtMLSSEvnk2R8Xa+JQjLa22e8M+bQ5oycZFJ5CuOxXcBbR3SW+cl9jp8UjK8/w2hrl1/661/htW/9W/7hW/8zf+WnX+G/+W9/Hp89ixXXaEfXOCtmVBxSZgWLLme2anj9yRIRHJ++aahLQRsjg0FODBVOGryHVmlGOK6JFSKusN2aorjKZPoMZngXMagRJ5FrO1t85T//D5nceYnRZ7/M8uRrLI5/n28fP+CgXvG5H/55RuN9lmHN4eqQ333vt5FdTdnkNN7RLhzDYMiMJm4bZCYY5YFMRirlGWc5u4OSuhW0NpWxg4/MlxYdApM8Qcc2t502YXLLPCfPBiiVYfqEQQBUSEITeZ6TD4YURYXzkIThBEYXeB9orE2KTRT4QDLsVH++qfXNgvfBiSGeB1LxQpofWPcVWVnX55NPURTs7OwRYsAHj5ICrSWjUcVoNGa9qnHWcvTwXeq6pl6tkxVCiCxnZ3gREV0P19MKelWmpg20zYp/8//+Aa9+8w2+8jd/gudv7nE6P+Hp2RKlA816yenxfU6anIN6kEQVlMLaY0JYg1/1buLrtElRI0TIEUHi3YjODikmE4ZjwSJb04gltfXYZcAd5LgoGe3s8V4ccLRW3FGRIuux1T4SnMW1S9bzA6RWmMGIz336S7xw/TPEJ/+UEGp+8b/6WarJNlFtEwZLTvI9CjFn7GsCmtpJDhYdddtx55rBo6ljIMs1O1tDnMgJOAbaIBxckXNyKQmuJcYCY25BNsPmj4hqiZaOL3z+x7h15zaDOz9EoOWnf/SbnDWnPFw8Zn/3ZfZ3X06qYdHz7ux1Grcgc2tCsNTNEuMlYz1iPNhnOLxKiEtibInxBCVgmlXE6KndIzLzDMN8m7ZTWFtQqDGIlgf35rx775Czk2WfDbxYgJQQoCSu3+xsqqS6V8zceP+FEFOGPFwE538RAqmP0z6qijAajRiNRuzv759zRk5OTvlH/+gfc/D0gPV6xXQy4datW2msNKkCZa3j7OgA21lWiyXee5wL1G7FcbNMqA8fESolKj1pQ392tqZ57R4n/+A3+KnPv8jf+tkf5dV2xsPTI5QOxOg5OXuPVe04WAyJwqBMjvcLnDtDxgaiJbQ1eIk0kwSV8hX4gq4bo/Ixo/0Jzf2AVXNaF2icQhyeUk3GVNu7tMsZB0vNOAjKPCR/RxeTcIVtqJeHyeh2ssPN68/x81++wtfkv+LV5R/wC//Zl3nhM3eI6ipHM8ss36WxC8biFKMNjVecrD1PZg3bE8lOZmiMwDvBZDLABUNUFW0F9QD2VMO2miN9jXcjyvIm6G2qq2c04gj51PH8s8/zxS9+lmz/E6jRNl965Vu03TEPVk9RZsj1K58HKfEEDtePOFw/wvgaGSy1XeJDYKQqsmzM9uQ20BHiihiXEJeMs20ypantIUqUVPkLECK1ByNzcj0k0xOMrpJ6rxAI5KXNyZ/tuiHO8TsXfXkzUP/dx98GG/T+ZzaZ/g9GWQlunsR1ROhtATxYa/txJc83v+PxhKoaJjVFYppfRCR4m7hXQSLXS5StEdaihEyIEiEIRqTKVesSYdqHFLhExXJt6bol//L//C1uX9vlv/ulv4xULY9Ojmi7hs7WtOsZXbvicDVk5TJ0VgAOaw+JoUXEBmwD3QKhhkiZI12ZRE/smMCY4e6E1i9Y6QWzmDzfxGlB5wVmMKScjjluMkqleDEPZCrZCXnvCK6jWZ2yWlRk1YSyGvPTX/prPHznHs39Ba/8yHP8x3/9i6C38WLMutzhtGgZcUqV59igaJzn8bxFqMjzNzPaTNLFwHBYIMQQJzK8jwyMYYjlqpghWOFchxATjJkS8jexWQsCpuMpP/Pln6LavU5x4yW6H7pHs7rLo+Vj5t2K61d+nCyfUtuGpZ1xb/5dpK/JXImPHuccg1ighE5wY2AgFEUG4y2BwZCFIuFzheSbv/ceR4cLHou+ODPrmJ02vP3mGatlw3Je955bG5/CBOsXJC/b9MwGLpgSROfrT3z/+hP+BAvQxw6mtFIMigLvLN5afG6SoZpMsI2IS9WmIHpccMoWOO8RMaBkpOk8LoTkMyV6r5t+UydIVS1nfS8bm+BFsZfI7WtXiachIiKk1HFKhMrzRdv3JLPzjeRm8F66lg2uVvQY35RpufSmy9mU/sXzTD+y/+7pu9muoWlXHK1PWceW6d4QFXNK4Tg4gdNlpKnT5tropCYmMBCTDN7g2ZcYfvIzHP7h11i8ezdxk0Ty4ooBmoXEdQoKQwKneoQMCDyzk6dkomarMmwNc3YUlL5hvTgCGSmnE5YtHJ7U7M9WVFXO1u6UW89e48e+8DKTacmr3/0uV2+P2dq7xo0y47kqY9a1xLDENkcYGbh97RqPTo+4e2gZ384YjMeESMLNqnSvyhJMlLQxowgN+fIAI/Yx1TV2X3wZM5pwRb/Ntb1tqhsvk2/fRKscU07IxlfZiRHVrcilR/gFKjQMYsMzmSHgk5FbWWAVzMpI4wILbdOmcd0mhZ1KUUaBCal0LBG0PsmWq6BRMSJtjxyPJEnrmOGcwDUBLVNAr7IsLW5OABKlDEoatMwTJ0uC6iE3SqaMpdngoWVAZzkZuucOpLZYLPjVX/1Vtra34KNB6h/K2kPC+55n/eL7e/L71Gjixef87a985QPPf8RixsWG8KOIxavVijfeeJO27Whbm6oaSlBkOUZrZmczFvMF9aruza6h6zqaujkfv05KghDJdZlIEGmsKmmSKTKCda0wKjBbnjCrMwbTjG1dMcwCq2XEdiOaJeSkREGmIBYZRIG0ET2o2Hrpc5weHvPW176V1NcKhc5A6khXCxqtiYMBwnrE2RKpI1o5bLdiMT8mzwRbkyFDrShiwHcp8ChGI9A5i5VFl5a8tGS5YTipePaTt7HdgtOzA7rg2NrdY6QVzwwMdfA4tya4FcHVTKoBomu5e+zQeWS6M0AuNK5zeBUJIpGCdRTEWBCMpuzOyMM2eXmV8ZVncN6xVT2B5ZLp/k2y6XWULpAITLlLpQv2dEF0ioPHDxmMcnSmyGwDtkUFSyAQZU4XwQvByi5oVoFmfoK3NZPKkSmBp+2LFIHlkeXe8gjoIFoWZ46u8fzI577EZz79Bep1lwi+/iIJFfpgOoTLHn/JvPNyv73wALyYq+Olhe3VV7/DP/tnv/nhgfLvsX2/qtRHVa02z4UQeP31N3j06BFHR8csFktC9LRdlx73iTulJDHINERjRPdzhrMuVVtdup/nLvYCRJ/uid4hukiznlG3S+rQkA0NO1dGDExABItrhwjTkdvEXS6zlNCIcYB0AhkzJp//LOQVr331D+jWa7LcYIxA6Ihzgnoh8TqHcYWYrxBEtPIQW5aLY4Jr2N4aMi4zKgG4FivAlCUmeta1R+eWYWuRQjAYDbh2+wpd+xyOmsOnD9ne3yGTgpulYWFFkn73a7xdMcg0O5MJ996G1aljZ5KhZMR2DuctQScO57BK7oCdlAzsEtNkCHEFkWsGV24glCFfL7myv48ZX0PlwzSv52OigonUKFWQ6YIQHcHXDATs6IKU3hWYYkJAYPMCpKEJS7RQZFQIHEJYjCwwosDSJB5hSBwhKTRKFhhdpTmwN6ru0w0Xj/8MY6nzytRl8lFfhv8o4+rz1/+I9iFz08sZ/os3/RHn5XysX/DGLlqWZWRZgZQa1ysop/Mm/T5J+s7BdSAzYpAXH9UncmhTlj/2XqfROaQwRAHWt4CnaRbUtWFWn9Hhme5XyJChY8HRSeBsFsmDwFlHlVsS9bNEeIWwkcEnblPdfp5733qNw3cfYDKTUBQ6BYz1QuBcBqMqBV6rBqkCSjrq9Yx6HZmMSgZVyUCAjg7XrZFaUY4ndEGyXFmq1pJnhnJQsLU35cXPfILxTsnB0/uMpoZyOGY/V6xKw6pN5t/erlBSsDOZcHh6zP2nHeNrinIyIPiAbTucSloF5UCQRYmNOVl0ZOtjMnmTfDBl6/YL5MMpW+pdxuMx+eQ6erCTOFZ6gMyn5LalJGcxW6CUpRhl5MIzFRKkQamAV+ClIPoOKR2VbLHO0a5qpElWRASw1pPlMnGUhUQLRfQKawPHT1cs5i1dY/Eu7clDcDgb8H1RZyN+tPGUCudrzuV9zwZSnrrMhtt30U1/sIH4sYMpozXDqsK2NRZPxKDHY9hVAAAgAElEQVSNwuUC7z2KDu9iqops5v4u+Z/I6NEiYm2H9clPSsjYrw+R2JdmhRB457HW4a0/D6QkSVZRCJkIpTIRrIE+o7FRTZPQL+TeX2B3043hIvPSnzMNvF6WOGxkn7nI2/jLJ9iY3G1kjHtFQt/QdEseLA9YBM3+zS2mynPFeF59N2AJrEJLsGkzqIRAqxIRHHRw9fNf5Prf+grf+pW/y+LeawiZMNfItBlZn0qi01DlqYrc+XT9wnF88C6yq7gyydnfGnBVgbBrVmePEDoy3Ntj3sDDpzW3jhYYSrav7WGK2/zMz/04h8fv8P/9m9/hL/3kba5ceYXnBzl2XPD1sxp8xK4fUVQTPvXccxzcfcC3HrR89mbB9tY2PkC7bvEmSY1PRyCjZO0Kcl9Tze6Ti8+TjW9z/Yd/nCvPPuWGqJlMd6nu/ChmOAQUIp8ixrfYz0qmboUKDX5dAx2VW/Gp3NCIyCpAHObEquA4wjJEupMTmrrBzlqCgVEpKYJEeciDQHsIViIciCj7YMohN10lKnxUdJ1A+oBSyUFQlsnAL3SpnqqkQakc1f9tYgQbk3dMFAZkggrKCPhAViT1GWWy895zenrC3/t7/8P7zOMu962Pko++3ITo/Xc2PTRe4gFeOs/f+dt/h7//9/+n73uu9x3xgYVus7g9fPiQX//1f8J79x/w3e9+jyw3ZLlhPBxjtOGtN99guVjQrmukVAzKESF6nHc4a/HOE2WCFsXQEWLABoeQCpMV5wbHWnk0DUfzp2wtFeO9kmqr4GoeOJtr1ramzWpmcc3YOAYGjB4gAbkWVDdu8tJ/8cvc/drXufs7/xqjB5TVJHnBaE+9EslwczxOiYynK5QJZNphmzPOjh4xyCXjvSmTTDEg4NolIVoG2zuQlZzOO7KyY1B25GVBXhhe/vyLrFfHPHz8HcarJdu7L7OdST41ynm3tRzUc4KdEd2I3ekEbODNx5bxNHLllRHy2NC1lqCTr9poJCi0xNkBUmnK+piBH1CO9lF5yXD/KsOd1yjODtm+/gmy7atIbVJAX+4zyLfJq2vcv3+fhw9e58btXcZbA4p2ibY1gY4oJTovgUAtPfP2hLp5xOm7B9jlihduDSmNplkLjNaMxyX333ub7333kLIwZJnm9Vcf4DrFf/93/zdu336eDRRFcEH+/SN68Hkf/fBzH91+7dd+jd/8zX/+kcH+X4T2QWnoyy2EwNe//nXefPNNnhw8pbMd5SCnblpOTs4oiqwXsVGJ9wEQwRiDANpQJ4yxT1CoEFyS/weETnNAcA7oaNawbufM3ZpymnHtzjY72qG8ZdUuEcWaqpujhGea2SSco3NEY1DR8+Iv/DXUzj73vvEHuPmCYryLNAJhPLaLLE4EzgwQW2PEcYOMDmMcItacHT8mc2uu7m+xUxUMBURXY6MlHw3xWrFYe4Tq2KpbsjxnMB5w55O32N5THJ++wTvvPmY0fZFSDXhxmHFoBW+cLcHP8e2MUZlT5rv8/gwePGr5Dz5ZoESkqzs63+G1oCo1k0oivKEJglF7Rrb2ID6LKguGt55je1QxEitGN26ht55B9sbiIttC6ZKtbAshFJoMGy3RL6hEoDIlbXQ4BAwqgjJ0VDS+46g+ZCDGVGIfJRxKOHIxQMuCjAWitwkRCLTMMKok06Oev3GZ1835Y/GR4+KPD2w+Ro+9OL/44PPxHBX+Ucedo8WhRxDJD1ST31+Z2jx3eWh88NzvN8gW5wHV5nGeF4xGU3wE6wJS00P4UiIuQbI9znVEmcQkzithKbtDrJMdT+x5Mi56lE5CI53zSeK7hvUajhaHeJlz5daUoQpsm8Ab70E0giqsiI1ju1RkUmH0GOE6xFpw7cd/lJv/6d+g+ZVf4eiNb5MNdzG5RGXJhHh5JokuQ2xPEC2IeZOM3LVlOTukylp2tipG1YiRBOk7umaR/BC3d+i8Yrbo2Fp3aAzFcMCe3uFzX3qF5eoJd995jTvPjRkOb3CrNGRDw2vzNQSLt3OyouLazg6P33nEd95r+PSuZjoa4rynWTW4XGGMZGsUUSgaV2HoKFYHlPIZytEVrrz4w4R6xqSU5EVFtnMHmRfEKIiyJOgtMh0oXMnBk0NCCDzzwjVyYdklCT5FJQhZRtAGhEcZjx8saduGo6dzRCbQo5zgIl1j0SgyETFCYZQGr7BN4PGDOfXa0jYe7wJCJrn9rnN4v+nHqq9sil6i/6Kvyk0wJdM8LaU4Twhf4hX1jz9+QPWxg6kIhJBM13SekwmPVIHYRogSnQmkjkgDrvO0bXo9kJThTJQYKaCvGviYfEqQPdRjU2brYYQb0qFA9EqC6py0fBnCB0kcIwU24fxmbSCAMYb+HsVL1aeU5Yj94E1PhfOA6/J0drkYIPp7fKkqnjKuPpA/PWG8vctf/YmXePD2I97+1lvM5x0hKH7hJz/NdFLyW199DS8zXv7il5gdLXj9a2+QnVrMN7+NOqtRekSMEu+B0OJ0RieS15XMNFJZiALrPAjL+rihDpqy1FAZTrVhJCU7wbFnNFeqCiEy1k7QLo7oskjcm5Jlhv2da7z7eMnvfGvElecLrrygeOPhXV57599yVp8ih3vI0TZeDjl9DL4RTIaCLBwRl28naGTUSRJfCuYxUjjPZN0wGU24tvMMeb5DF0qOj5f45ZyXX36W6dYuolI4Pce6tzme3+X47G0evH7I4njFC5/cZTgyZIOGgE3XnEWCkpiBwpSCwkdqH9DCsg6WeeMoHeiFwJRghEiTloWsk0gviDYgY+wVbpJhcW4USmhyrTBKkhc5xhRolRS1lMyJUeHJUDoDIZAYEBIvuzRAhUQJhdEG2QflWmoykfg9l8dPBC7zfi+3D2e4L3W88/9fnO0il7mpTv3pbTg3KmXLxRLvHOPJCGOSR44xBikEPkRcBJElVby2axPWW6b+CiBkGmPOSQigECgpyIuewxZ6zzQpyes1Vb3kk7efpekiD7/zFmeLmrYVfPLOdf6jv7TPu2/d5/DgmDuvfIZiOOatb9xFZkPUg6dkZzXV5Do+SupaI9sWqRtq79FKIvMMlRmIiq6LnC0blrOG+qShEqCGhtZotFQMiQwETPMCpQxdkNiuxTVzTK6QKqMshjSN5Tt3h2xtD7j1ouTw5Ji33v4mp3bB2tcEqSGraGZgG8F0JBmUFtoDYrcieE3UaX5bxSQ7vbVekWcl0/FzDAY7hJjRtJ75fMF4ssVwa4QalEQVsOGYEG2/KK6ZHR2xPj2GZk591oHVdHZF27U8fHxKPsh59oUbVDJtyLPWkrU1jx6dcXwwZ3X/DCUkMSgyo5lMBhwf1xw+XqbEVky+OeNh2VeZNsHTny+c9S9iCyGwXq9Zr2uqqqQIOXmRYZTpOXPJb2q1XNE5R13XdF3Xq2bSq9hFjADvJV7oXhgpkGUJGtbERKpWUqC6BnVyxI3JFju7uzx87S4nRwuadWBYVvziX32J5WzJW9+7y86NG1z/xAvc/95DTp7MMMdrZHtEVe7QDQRtm0EXEPUZw+1tGikRxqCLDIEieM981VLNG+rjBmk8eWXwuaGWkgFQxsA0y9A+4qLC+oBvFgQZoMzJsoKqmvDN18c8PRHc+ITCiI533v0OZ8sz1u0KGyOyHNIuoVkHyjwl7ZQ7TlDcoIjRIJSgQ3AWI6OmobKO0d41xuN9hCyxTrBYLBkJyfDZ58h2tokKPAtiaHG+xVrL6cEBShl29zOk6MiiAJH1Hlq7RKFx4oSAIyeQx4iUGaUeM82uo+Q+SjqMHiCEIhM7CCS5GQOS3AyRQhGDTXxvofpExF+M8fP91qCL9Sd+4PcmFLt0XP/vh+Dl8cOfcenTz7+D7BXqMpMxKEs67/E9zDzEjb9UL2gjJCLP8ES6riWR5wRSqwQtVxCiwEWVTHwjZEaic0n0Cb2ilcQQyZczyukO1YvPcPbkiKfvPGAx6/BW8dM/9kkGg5w3X7sL0vDcZz/H6qzm3qvvkdkC/d4TSp8zmNzA+wxXC2S7IApBIwRKK3SRvNlEkKxrR4g169OGNivICo0oDY3SifcdAyOtmRYFQig6L3DtCq+BqkAqRTUY8/hwxTdeH6KGOeM9wYNH73D/3pvMmlMqOYasJMiC9SKpGG6NBZmYE+snBOsJwSClJirBDCicZWu5piqvszW5hsnG+KhZLmt8U7Nz5VpSjDYSL2q8O+Lg8B6PD96hOZtjmwakRhnF8rBDqkDXrZgvaw6OZly5scv+tW1GKpLHiFo3LFYrTu+dcGw9J28piGkNGg5zyjLjwbsz5rOOgzgjhkhVZkgk6/U6FU5cOIeRCxHPi/gXyIE+eApggyPIC6XleLnP9XzXEHpl2h5B93Hbxw+mNnANmTL1OiqEDNjOEYVA6WSOp4wALNYGfEjBklQSFSVKiGR2GxNhVElJFAG5EXkIfTm2V1B4Xwm8v+ALE9+LG6X6Ml6IDhHiuXpUMiGDC97IxcQQ+ptIr1wRLw3oTVS6IWXGXrQgbWIvMijn3y4E5Mmc7e0tXvrMTezJjN89XLJqHSFIvvDKHe7cmPLdb79Nq0pe+fwP8ejeMXdfPUXNO+Qbb6LmNVKWeO/7cmOD9zbJtUqBMepcXdCHANbRzC2ttshdBaVmqTUDIaiCZywlk7zAC03rBc3yjC4ThGhRWjGZbGP9lDferXjvqebpPHD/6SPuH9ylyzUuRihHeFsyP13h20hVgGEB7UHCK4cUSEQBNREVPLptGMiM7fE+xoxwMWM2WxFWS4qX9xls7+B1JDDH2nvMV3c5OnmL+28ecXq/5sYkUIUSLWrQETREAz5XFHmSAzUi8fUCnlX0CBcxAUzTQ/AyQewidGB8ko8OjhRMGRDIlKWXilyZ3lw6ETJ1ZlBKoaRG65yISgRTaYhR9vKiGikTqy8iiSIFaUIls2GhDELqlCz448bVphe9L1n4wQXs4vn4EeNbfOR7P177qOz6ZkLpug4hBKPxCKN7ArCQKeGBwEcQRhNDxDUW0cuBCymR8YKMHkSCxipBkuU2Sb7Z2YSJV1KgmhrTrLi1N2bZRl4/XbFYtlgruLm/y1/+wsv8VrOkm53w7PPPMNy+wqO3W5wHcXCCXDQUg23qxtHUHuIaITva4MkFFCbBLkWUeB9ZuY71ytIuLIOxQBYapxROSkyMFMDQGJzQuChw1mKbFflwCJkhywukrHjvyYC1z1jUkZPZGY+evI01Cp8bgtKgcrq2xbaRqhQUmUPYM6JvCOEiIGkFuBjYbmu01FTllDwfE9F01rNarWB3QDYuEJkm4nFhRoie4BVt3TI/PKWrFwhX0y5WhA6ChLp1PHx4ymhc8uyzVzASKhmI3hKahuZoyemDGQdtqrYrlZFlmulkwLp2zGYdTd1hO8eV/Yqy2AhUcP79P/6q8xdj4/in2T4oVpEqxrGv0DqqYUUE8izrK7KSLMvI84Llao0Lga5r6bqOoizS+FHJvT7BfFM/icFDFGQmSYx3XbhQguta4tkpO8/tk13Z5eG33mJ+uqZtYTIo+cnPf5InT55yeO8drl/d4aXPvsx6ZljMniDOakTdkZkRpggslo4Ya2JY0nQtHZFcK1QwfTAgWNeW1bqjXXQUw4gcG7xRtFJSxUgWIwOt8SbgkVgfsPUKbZJyrTGGmFccz0ruPbacLgWFann89B6rZo3NTDKDNznOO5q1JzeCYSmQYYFzEe9TlUIIiRXQEalsi2paBlnFoNwCmeGDY7VaU5SSfP8KqqqIIuDDisgSHxTOehbHM4w27Ex3kNqTybRORGHQ2VWkGtC6Fh9W+BgxUqBkRqErxsUuShm00uddPJPTfjwVfaZcEoMjhBZ4/0bvB+htf6K+Gj9whveFRB9rDbo4aJPQ+//Ze9MnS6/7vu9zlme5e+/dswADDIABRYD7ItkSLYmS4sixbMmpWCU7yYtUknIlVXmT5C9IlSvvUq5SpfLGZcWUK7Yky9FiO7ZMiZREUaS4AyBELIPBLL133/3ZzpYX57k9DRAAQVFyHFunamZ67n363ttPn9/5bd/f9xva4t4bYqzv4jOJN38lIhuzVoo0SfAy1rqd8W2x3eHbroOQApHomBhYE5ndWvkeAhGeHlY+KM6laSVIEoENIsLNpYzxaLGkvzZi7/oGr0xmvHw6pywszire/9QjXNkdMn1wHytSbj1zi9PDJfuvGbTRiMNTtNNkvU0WC4uxFsIUmSbUBDIlI/xPRh9UNxYbGqpFQ9M3iHUJmaJRkkQI0hDoSEk/ieLyxoOpS6wW+LCGlJI861GZHq896HDjCcWNynNydsjh4WtUuSZ1XdApnoSqqBEh0O8KElGAGeOtw7koj+KFoCAgnUNVSzIk/d4GSnfwQVGUNbaqkFsjVLeHl54QKrw/Yzy5z717L+EmJaGyrG1vojopxXQRk1kB08mCe/fO6fa67O2MyPEkwmNMQ1WUzA/nLOc19+vVmaYZ9HO63ZSzcU1ZWopljZJwZXdwAeNbNVEELWQaQIRLdPxxM4o2R3BtnnExTrPqiIpY/MVzKal6uy7xW693rzMlJELqiw3vvcGagHE6alu09IRJCKADLgsYYbA2YKqoLeSCwAHWxsEw2zisWTFBxY5U8BERG1p8vXchYjt9PAZi0yka0sVsFpe6WiFy+iN1DOaci8wurYNbBY0y9ojbzpME/MVJE1aq3EJE4gux0jKKLWM8LX5XYAMcLw1//2snfDB4/s6PfR7hjiiqJT6MkKLHr/7LOXlSced+jaHgV/7+r1OVFePxMbPiAa/f/QqT83OsrVpsZ5zd8aahON6n2/UMRl1K7UDUkY1OCBoxYCFGvOoc10XCJzYMqsl5fT/h7v6U+/u32Xz0Q+Rph1/7N19gkCf8l6MBg0GHbK3HEzdG/NXv3+b2c3/A3/3iZzm/+zKil/ODP/pX2b5yndk5zCb7vHj7Sxyf3gbn6W0/xuatp6m/cJfxZEziRmT9jN0bayRVSWVrpiJwvCi5qReM+jMmD17m7M4rfPqrNd08Qz/6Rbq7XTaeHlJMx5SThg9/5D2s/+iQYa7QylK6fSwOdEy6Myk5mFQcL2awsEjreXRNsj3qc+W9WygJncxHZXPj0L0U2U9oVBeLpikbhIDRoEsIgcrWCKFRIkGKWJ3RuouUCULoVizaIYRG6hwfNHgRr5NprGyKSEcd8C1sQ6O0wocoSigui/Y+xJB+BzuL+yqEN+pDXX6N8GaUxp/iWg397u7u8p//F3+7JXO55GgDVFXF//J3/1fG0ylKyDh/1npT3xZRfFB0tCZRkkECPjjGtYtY9aohCE2QKbUTzGvP737zhNdOSv7akxsIIanKKaZJ0HqHV1+WnO+fcHAw53xc8W9+7cuIpMfk+AjnLHdef57psmI2n9G4yKApvUP5wPjgBFdWPHalQ8gcMolsTMoHAim1GHLsIXGW61mgm3nmC8l0bjg5fUDa22CwtcWrd4/4+vk5H//4+7h6bRepJf1hxl98Zsj5bMmn/q//GzPfx6aSG0+/j70bT9HpbjObV+yfvsJ8fI63Fp0MGew9ibn/HPfv3SdbWycdDLi6PaDXU0jhcCpnXhtwNWt5zfHymOM7L5G+2jAOHn1lD9Xv0b8+QqcZeTKk08m4+Z4rlMse5XLEy7df5uTuGf31HJkorl7dZLao+MV/9PsMBhl7ewPGJ1MmZzMODwoWC6iqKHWRpwbbBISvCULR7XaJ+nGGZQF66nAuFqv+vDP17UvKmCz95F/5KzEJvkx+1Jrz6dkpp6dn7O/vMx6PWzHrhp3dHbwPTGdzrLHYukG2/uB0OqGs6wv0RpASJyRFAy/en/LLv/cqP5Qrnt2rqIojlrMZUmyzmPf5tV89Z7kYc3hQczp7jee+WTM/H1MtFhycvILxjpPjc8raULkAwaACLCcLTu484Oq2p98ZopMzlHYoBwpJLYdMcMx8oKMlo67HlIKyEpyeHVM0NWtXNpguaz794le5ceMKH/6wRgiP7qQ8e3PAZsfw27/9WcpyjnGW4c4etz74A6xtbLOYWo7PHnB+dkxVzZAI+ls3KMuGw4MvRt3AzS3Wdzvs7PTIU4UvCpYhoOqaUVLjmyWn916mrCuka5Bra6iNdbq7A9JhTq6HKCl55OZOLPboCqk7iOQ6ngaHIWBwfkGqnyAEWCxPSYRiuD5Cyy5a99tibxv5E5A6b3/dD4myhNItykbz0H7g3yUbin4HVgnfGwptK2kZ8fYJ0zsV9i5rgl481n7TqhixYpydL+fY4KnqCmvshQsNISbjarRGq6AU0zkR40V8JJkQSLpJlEtJs0BpJbPGR8h53RBEBlJSmMDRtOE3v/iAJ2/V/Mff18ObU8piTghraD3g858zpGrKnTsVxi/Z/8XfpakNs9MzDo5e5fmvBx4cTZnPSyrncd6jfKAuDWd391kbeDZ2hqRZhdQp0gs0ASu6FGLAfefYJOGJjke5wGQqOTufcXJ6j+H2kyTZgC9+7VukSvKJTyTknRSVJ1zb7fAj7x9xePdlfuHF52hOD5C9nA9+5BOMtnZpakVZTXhw/Brj2T44Tz7Ypr97g8nsWzy4v0+n2aUzyrl2dURSJxTNkoUUTMuaLSrSpGR6fIf58QPy52ZkiUbs7ZGudelfW2d6vqBZWG49dYvtrS1ECFR1xfMvvoANlt56B4Tixo1dXr19zO9//iWuXhnS66Uc3j1hMS85P7E0DdS1RStJmgTwkqYOSJHQ6aQtw7VnPHNUVfxjbZyFi8UVLpKlFaRPiPjvqlO12p/ehxYm+lDzLFyMWry51/ru1neRTImYwRIIXhGCbT9E3MhCCCQhijcq1Q6bOYSLhulWkMSw4nlv2cQu/o1iequ22wpKt+pCrVj94qeOlbp4RoVWa/fhjRAPU02EjIrXKzCUaLF6cRBTINrk5eIwu4STFO1rqbaBJaTE+0ujVCJCFgsb+OZpwca0g1IFaerIuxlFkxFMyquvF3gHVW2woeb0j28DDkGNLQ3WNdiwcpltMI3AO4ctFjilI0uMjCxrq1OlcZLKabTKcIkmzxpMY5gvHGVtsNYQpMJLzWsPjsml5/xon2CH5MOcRFl2hoJ7J2e8fu8UWdfkacbWzhU2t69gGijKkmlxQNXEFqvQXVS+iXXQ1DUiD6RekKUa6TROCZyUWKXwoiGEJbaYUc+mjBcLylQhQs3Ab5Jc6eAKSWhydvf2uP7ILm6xxDYVpjwjSItOQEqNkkkUUi0NYmlJjKez2WHQSRH5MMotSIutDM2iIU0ytM5odA8rNJVSSCHpD4d47xBVFFOVMkGQIkiQMkegCEFDEK0AtQARD+YQVixDsUMVIOqiERn/4txIEklQ7LvInL6Dva0Gc2MF5nJ3VbylqX8vbGhvrq53Oh1u3bqFkDJWkS8VI5ZFQZqlOGeJVOThggnTO48jknFkLkJ4k1QCEu0kvj3I4tBTpPRvLDw4KzE+YGxBniXoVKFsQnAp52PPyYMpZVlS1zVH00OMT5AscL5hUc6pvMD42EVyq58pQLUoIrz4StQJUyqJcKmWLKc0Ek1CkOJiKLhuHE3jsK5Bh0BQmumy5ODglFuTCeujnCTTEAzr3cBy0XB4eIzySzpS0xmss7V9FaUyrPGUzZyqmRO8QwiFTAdYLymWC+j0kTkkSpOnGpIUrxK8jB3PEBqcqbDFnKosWVqDzjTKViRbXQJRDy3NUvr9IWkqyRIFIqWuA7kTpIlitNajbuDwcEpV5fQ6irPjJSeHS5aFwxiBtXGzuZaIpa49KokyCFI5lPI0BqrKt7awqqxf7KLLO+pPthH/f7wuB55SSm7ceDQGfmmcnVzZEMDdu/dQSuOsJU0SZtMpTd2wt7dHCNDtDzBNgylrRHBI7yBRLMuS6WyGtw6EjDIDHs7mDS/5Ce9bLlGyRmlaPciUplG88uocUy9ZLhvq2ZjivkVSQKhZ1Asaa6nsyn7aYqKHpqoppnP8mkb2c6RKkEpDC6mvjMB7FQtMWqC1pbSOuo5QYectQSoq2/Dg6JReL6NcTFGpigWJzLHW9YxfOWO2WDCQmqTTY3P7CmnexdhAbQrKZoJzJlaZdZcgJUWxxKFRJnYyOmmCTBJCkuClisK+weJdgy0XNMWSZVEgvUUJhxxoyFNSQYT3jgYo4SONtpQI2YE2vvHBQvAo2SUEhQgLlEzpZrsIoSNk7wJ4DTER0RfB/+W4ZIUwuaCceNuE6k/fht4kU/r2170NYuHi64u/3rguLrkEC3zj3NTb+67L9uO9pzEGXyypqwprzMV9iwXvKM6ugopw+xbb5dvinw1xJte7gFCQKYlDkvjYvfAugI7+3HpB0XhuHy3obuVAiVKWJNVImxJcxv5Bg29qFvOGxtbMz+4DDsmSqqmomoK51digsMRujAhgraOczujqGF9ImUb7CT4y/llJZRVapFil0coSnKNuPMa4SLAiBF4qjs+myOBYzicQOiSZJpGWzT7cO5lzcDCmEyzdNGW0scPa+g4+SBpjKJoJjSnjfZIZIhlQN4ZiuUQ1ntQJ8kQjvcYqeUEe5YPD+xpXLTDLGeVkjNWSkEAu1tGbA5wTaJmztrHD3rVrNEXBYrHAWIFxgdwLkjSlP8y5c/ecg/0JnVTiTc7x4YLlvKapwVgwJnaHlADTBAieJI9aUkppQnBUVfRNzoULGaCLhOkS6dFqP35bTCQePifa3OHyJaJtqKwIKt7tetfJVJpo1gZdFlXDomyQ0qFVIEvAq4AUmuA9zhiUNCTaEazAS5BKx+FB5cBbbG2xjY3YVhkhVl4EfAujCxAZUwjY8DDLDO1PKkJMNlR7M7SMQa8XiqADznusC1gbkDLikr2LM1FpokBILAqCRzjbDsnHjRNVcFbEAe7iRm/1Ux5Z7/D6uGJ/1sTfSJAEFNbBzFtKeZ1k77/ngz88Zv2RB/zj3/gjPvuHL2GqA7yrEfY8avKEqls2pNkAACAASURBVP2ZouhaEBKyHKEzhOnE6o/ZJziLKSbUep1ZdR3jIUkqrGlwIXD39XtsLhf83A++h929hLG7ja8y7LzHI9fWWL/5l3nNrHNYKepUUy3O+Se/9I/pZ7Cee+4fL3nhtQk/9bM/y//84z/B3/vffoFvfP2bvPiVL7B77Q4/9DM/x1o6YuPRDZrlFO8tB7cnLBf7LKclUnlGww7dPCE9OcVXDfXUsvW+PT74Ez/Ay9MFX/39l9judHnivTf4sQ9t0Bv2YXQTK3vUYg20BWXZvLJN0u+hs3NSv0DVHZANKhMgewi1wd7wdT549T6uKgnO0u9toHXSJkQSIVTsZG46pIgdpsZprJfYrAABSaeLx9HJBiA0QiRYK3FOImWGQOFDhARImeB97KJKIUliMREnWmYhEeEBQkpk0iHOVEnKusGY5qGodWug78Se91Zu83JBIa7V3N87OcM/YTb1hveNzGtvUBK/pBEkhWByfsrR4YOWVwmCb8XxWngtQjCVEi0FO2sjOlnClVGcPzouEoKIMgDWJwQ0h/OaRkia5KNs7e3wY//ZjJdePeGf/vPnKBdHVPM5sj5CmAlnZk7pFMbMI1xX59DpkexsEpoMV+aweB1fnVGenSKqkvH1Z8H16XZPqSkpmgUHB2Ocf40f/bHr3LqxjUxmFHaOrXvkWvP0932EWcg49Sml0rhU8K0/fo6jO8/TyyzGGF58+ZyNvWv8j//dz/Lc86/w6d/+IscHU6T7Mk9+4GMMNjbpr/fxviIEx3JWcfelCZPjOVAy6inWN7rkxRRRW8xZST7Kufaex6mk5pt3TtAGbl29yqN7PTaGGaK3B7qL1wOQCqkESaqQOiHpLEAu+MCHEp5+74TaGoSQDEa7uKcqPvjs43jXEFzNl750j2JxgHUlYNEqhxBaRXmJ9xpbQVk0be0qpSpiAO7991Ys+Pd5rewmSRJCCHGGFwiXYL/Xr19jd3cX84H345yjrhtC8BeMhytiJu89B/v7nBwfs76+Rgien/8//gGv399HVg6CpLYJk8JT13OW4QZq8KN87Cee4fEPTvnFf/oVjs6OWY7HYOao6pCFTZmYHGMLnG+i/egUubNOIjLMokeop/jZber5nKVxTNafROSb6PScTkeyaObMFjXPP/c6Tz+9ySc/eJ3BMFC4A2yTg0l49LEnqEXCge8xVxafSQ7PDvj87x7TSTyZ9rz02phFGfibf/1nkEmHf/HPf4/GGu788dfYfeQxHn36WXprfeowZPy6oGoMB3dmLIuK4CryToe9zS4DYZAnB9hJDZVn6yN7rO1d487JHFfNeXxnl/We4rErPUS2Bvk6XvUIMkWqKLuikhQpAuiKEBrgqJ1J00QlQ3DuJQiGbmpRaoSU1749BVqhC5AtwqV9Iqyeu0w88W/Phi6mGhBv6UNWaJy3WiG82Qe9wzWXwRTfwR291fvF2MjHYoKx+BYRFFxkVJRSYOqKk6OD1tvEAnMs8LQ+SMQC3lgJOmnC9mhEN1c8spYwrjSzWgERut+4BOcF98cFO0WP0P0RHn2fYeORJf/6My9x+2v3KKZ3sVWBKu5inOPUzLHO0tgFQqWgUljvobt9dNHDNQE/fQnb1CwOD0nCNme7j2KEpdsrKBdLamN5+eUDZlPDT/3042xsJpThEEyCL7tsbgzo73yMY99jYiRNovBlwZf+8PfoJNDLLCdnBbfvzfjgX/gh/vpP/yS/8Zuf5c6d+9x79RWW01Pe89EfpDvoMNgYUs8meGc4P1rS2ClVWaB1w/Z6zmCQkE7OCEVFMzb0Hulz7ZmbHJYNd24fs94dcvXxGzx17RmSLMdmm1gSGp8zuPEIjz/m2dxcR+cdhFqgOiWf+Esa42oaa0izHr3+JjcffYqf/LFjgq2p65rlGI78nMYUKOVJdWhHeojxnFcUC98idSJmcDFfYm1EDQn8xZ4Bd4FWWx21EbK3Eo5uAdMt3POhVmbc+/6igMBFIvXdkB99V6K9iVKotkqPUAjlUTE3iexnQuCsvajG+AurimxPq1baBaTvEuyON9nhqmojRbxdb66KxPpKzLBCyy1/MUMl4/tEXGd7u9u5J9HObT00eHHxJ76muHit2G0IBDyIhCAi730MiNsb335OF2C2hJfueDLZZ2/vBt38Bbw1ECwiRKa4EOJcQuSz94ACEYf4L06pAC2HIcEbnDU0lSGg0HknDmIaQ1WV1GVOhiYTCc5YfHC41KCSnFwrXOGoa0/eHyJ1IM0dCMesKJkUhrOiojCGgCfLe3S7I3xd4aqCRMUmel1JnI3Jiq0K6uk4ijCG2CqVIhBMTTAWfNvNU4KmdBSzhmtZj51Msnl1m/5wSBjsUbsu86aPV46gLZBiao8Ikd5W6w5SZeisj5B9hNpEYsi1x6UTvG/Q6TpCJu2ejMF58AGfxPsqkAir0T7WkIIIqCTHB48UOm5/EWmGpRQIsrivQ9yvUiUtvbNFRvoEvLjcsRLtvopEFJcd51vZ4MMC5ENn9oZa/iXHcumSi93+cH3vCdPbrcsVSXkp+Lv8nGjt3DbNRQ+X8HCuUek0zpwlaaR61h3QCSpJUK7tOiPbQ0vgg4pD+DUcnECSa9ZHW3R7Nb5pwBokHhFsZCiyFdbJWPUWClSOkBoRopxCvHEyChaaBlNLyhZvnfb6uBDwi0WkqV4sEDaQiTQmCSEQpAMpI0OjETS1Q+qU7mBIklmkdhhrKGvPuDKkjQUZ0ElKpzNECI+tSwQeKQTGSIyJnUu8xxYLbFPFKqqIBDq4huAbgg2t9mPcAKb25CJh2BvSHw3obXQgXSPIDo3vtJBmd1Ft9Q6cF6RZjlJ9EidAaHrdbYRo6HUdTb2kWE7Y2a65fk0wGlXUdStt4TyL+TJqHbl2EFeJ9twKra7Laj+8U0J1GTLxH856c4f3jTb98OtI+5wC3YvHVlD1um44Px/H6qhQ+KCwXhFQIBRJkpElGY1pWj+ksN5RhcDpJPDgMJCna4w20ng2GYMMHoIDZ3ErWIw3seAjE1AZMlzSnQuA0JEBrS6oi4qyMOgsJ+v1WMwXWOdYzBeYekAuUlSwcZZWeIJyaKXivFTtCV7QGQzItENqhwuG2gRmtWVW+zh3qhXd7pDgCnxTgLOx0OoFponsNgKBLUtsWUT7x0eB9GAJpmztR7KabbaNIzjBoDtgMEjobgwRyYig17AhwwVNkA4hIgEcog22EET0SISBI2KoFIuuAa0EUsbOMcJH275Ikh52qR46hPapi/ji3eymP/uCxTu9+ps/4xt92rvzQe+uD/bta5VQ0cZfD7WqWlhWAGftRfS28kGrWZhEd1rB9iwSD6kcoTU61VEepe0+QPQ/AqhsYLYM3D8QDLpd1jb7JPoOvm4QziHx4C3BWawtsd5H+1ESdB73QIiBf2xGqthBa0qaqqRYNgQU+WBAXdWExlAUZUR6oEnRbQE24LVFak2iNN4EjPFknS6ogE4MSEfdBBa1Y1w21M4hZCDNuuT5gGANvqlR7Z5rGnERw3nTYIp5lDkKMYZXIoCtotyCb1E2UmCMoyoNm2mHoZJ0N9ZIsxyjNzBWERqNULH7J0SCaxEfISg6nS6pT0mcIM369Lqb5JlgbZRRLicUyyVXruyRJEOGgyJ+rws0TUOxLFtWbn/BoBzasylEEbE4nxhcFNFu2a9lu+F8G+NHW46PR6K79hx+i6L2qtB9WZ/2u1nvHuaHiMQTypFohQsZQSWt3kQkjsBaghWY2rOoapx1eBf1kvABZwymaagrE1uYxraaJLQiZZ7QJllC61hxULGV17SJRiBCn8QqIQkBY1vqUZW0DkuhVUBJQW083j+E9Vkfb653DYTLFOmXnX8AqUi669HYjOXMeManHtPINx0Q7XAwgq8/v89/8z/8Av/JD3+M/+pv/Dip6ZLVBbneQirF3C1oREkVHEpKpEzxaoDTI0IzIVQTQpjFzyAia1wIS5rijMVRTWdjg/4jj+Huv4adnNO4BVWlOL9ryW2PrcEmLpUUTwiWr5+xfOkO8/kmte1z65mPsbPZ46c+ss1iWfP5rz3g/ksvMz75Er/0W3/Av/rcl7myfoNn3/seMnOHtTxn4DVnZ/DiH9awFORJj9weki7P8WaK8R7jGhpnqW2BDIok7bE4n3HnG89j7Rqj0OWpvSe5OvTkwz6i1yPkVxEqR6suVTOnrGfYg1fQ9ZhuNyVJBL0RyGyDJP04QnZBdJHycdJ0gsteJrhzhBoihEaKNrknx3uLc4bgHcE7dJoCAmfnMSlWOSF4vDf4IPEoklThvSSEJAYsLSxDSh0P7owWmuqwQeFCO9waIEJtwAbbdmlUayvqoiDwnSzr7S572Ml6qIHwnQ38307wuiKMWb2dgLZ7lzAc7jAY7DDa3SPv9bGt1keVGGxTkpTHWCcwDnzQSFKsg+lC8Q//0QvceHTCf/u3vh/d5PSXBSPRIxteYxYqlmaKokEKwbDfIyQ9isENTLWkvvsA5yXOR7IJma7RmGN8seD4zov0RkOu3LrJ9OiIyekJtSmYL89ZnNcsTwLddA3RUZgNga0aigf3WNYZZTlgY7TBjevXubXXZdRV3L53zuH5jLOjr3M2d5z8yq8zyoe89+kbZGFKKpbkQiEN3HvZMBs7MtEjFZ60vk2oT1jUjtI01LaitguQsdodvGK8fwhpj6EasdnbYjsb0B2kkCaQjECkIOP8l3MNzi4w8zPquqKqSqxbEnAMN2+RZgM6+QhwWLUF4ZymecD3/8DTfOIvdWNxywfK0jKZLvjsZ7/A2dmEe/cOybKUXq/LdDpjPl9EH6DTS4HWn3eo/jSXc4579+7zqU/9EsYJUDnLRUm5LHHB4EPUbtzaXCMwx1qBs1lEfDjFp3/nDs+9+Pv87Z/5CNd31ukVDWu1pzO4SVOdMK4OKLGAoZd30EmPov8IRmaUR3dxxmCdjkRT6TrOzSjrMecHt6mXp1x56jEGepvx+SnOGBbFmPm0z/zYIX1Orke4nsD0AuWDE6rCURdr6DTj6Wc/zO5axhM7HY7Pl5yOC4rpCxycnPLrn/kCg06HR688gqZG1Ef0kpQMwfTI89rLFlVlZNqQmfvU9ZJlbXCJpbIVWpVUdoESfbTqMD8bA4quXifVA64MH6XTVYgsB9UF1YtJpJCxU+sNbnqAJJBmHZQW6KSPEAOEGICI+lxKD1A0BDcDPN4dtImbBNJYnBMDhMh4GF6tzuxYEX+jtfw7YD/vkNmtfFDsRIc3xUrffu1laPrF4+/w1mGFtXrL6x5itVZQd2h119qnV2ilVVlbSYXWCVubN+h0h2xcewQhFK72COlYJo5gxqRmSmNFDPxFEuGyTvDK7ZK/979/kR/86E3+2n/0XtICurMF251dZKY4rw5ZuDkylGQ6Ydgf0eRbVJ0d6skh5vQA6zQBiUq6eGmommPE2KBeNqxf3WHn+25Rm5qyWFJUUxYLxfzE0hEd+p0BTgnMtqQ+m1GfHFGWQxqbc+OxWwz6Kc9c79HUhtfuj3HqgOPzl/jsi6/x1dv32R3u8J6nHqETTullKWkQTGaBV19ooFTk6YDUjtHLRexkN47KNqQuUNk5Ck2Sj7C1Y7J/gKs1qdVsbu2y1gGRJDidIpI1kiyhP8pYFjOWyxmuPicJFdZ5fHAYu0SnXYYbt0jTDlnex7ktvCuw5h4dZvzMT78fKTXOBqzzVJXl9u17fPnLz3N8fMb52ZTBoI/SmtPTU4wJKJWidSScMNbRNAYpa+raXCTT7bbBWttqHj5s3qyaGRdJ02rvXWohv03z9R3Xu06mfAgYawiA0grpHMKDkDH49LbtvDiLwKOVjKwrrKjNI+5RSoVQGuEFWkd6ZUfUnorwkmgWq7kp6WXMxlusrW+NFbGqnomH/4q2okELlAxtT0y0NJqXDi4hVKx5+JaGfWWYiBh0hxDFFKH9uRzOWwRRWNGHSLmJ0PF7naFulpydvc63Xu3wmT/MuHt4j8bHQXIhFHWgnY0CSAgiJwTZVqVd25iy8T3FwyQt3l8D1sb7jgCpCMFhbMPJtKA36tHtbtH4OfX8AdNiwaIpGHR30CJnenKOXcy5syMJPtDVisevXcGn38/hg33Oj46pBzWdTsrW7h69QY87R4ecjE9Zy5eUtaHwiqWVGAMmxOw+E44kBGYLhxY53WwbgkIvz9nZGCJ6GePz16nOFyTDATLLmdkp2fomazduQijQomQ6OaE+P2RrlNPtZnSHOwg5BDqEkLT3I0OIAVJtE0SOEDmrGSbaeSUZKU4Isu1SiBVNdxr3RnvwRuiAxAeJCgLvBT7Etn8IrUbFilyBQMC1xB+KECRO+OgYhUSIFsoTWqcTLjNPPlyX/MbFPnz7XOryoys8+Wrfr9L59ptXXa53V+58V+udXuvycwHRMi9pkiQjz/skadZ2LRJCyJC+jPNCoUZ5S7eTYp2gtgIpUxAprqwxpub49B6Igs9/RTM5OWfeVEgUiS2Z1Z6lVdQIvJRYNSSIFFtWuLrBWYH3luBrguxH+G6QcValMoTcoJyPPcs0JQDWVMyLkvGiZltukGiNqY+xdU1tK6RMWO8lVGXD4aJmXTv8MEUhGHY6PPPkTZbLBZPjE0zi8NKS510GeYdF0zCfTch1gUtqKi+pnGRhBXWQoBSpDOTCsVhYljhG2Qif9JGmIEk13b4iFEtOzo9woUvXZjS+JKiMzsYOQkkEDc7WmLKkrhbU1RyZZkjdRescpXMewh/ytjgxQKkeadpFpHFvCdkQSHniiSfZ2VmytbWLlJFydrksKYqS27fvEloGrG9fl92PeIvHLj/+7/d6N7Z4uTBSVRVVVfHqq69x794DJuMxNiSgAtVySbVcRqgoljQNaCXJsghRa0SKbRzGNJxPjjFe8dXnFA82upzOZ8ybmtqXNHXD1EgKL/ECrOoRVCcSQYUKb+KsZ3DFBXQpVoElvnH4yiCtQ0mB1CkuOKytKKuK83lFZ61DmvZx9TneLDGmwAbJsJvQeDg+mCDrDmtpwDSOTGkev36FwWjA4vSMumpofI1OBKP1TYLWHI4nOLtgmJYsCNROsnCCpYstXaUEXemwteWsNPSTDt18HeEt2hbkgw1EsJwdH9LpKUi62JBjQ4dstEHS6RIFqRuqqowdPG9JshydDojohUtdJ5HELrzsxbhgBTNCtuiIFlES7MMYJe6IS92rtwu73spW/qzsR7zD/9786GVR3fCmj/Xmz7iKry7FZ2++4s1dgctB7QoiufKVF/Nml2av3nBLYlwYpUwUed4jSfMLmHogjUgTXyGCRfiaVILsZCgrcV4iZAoBrFmyLGccHt7hW69UfG694M7+PgvTYEWFQDExgsppnJSgMpQeYbzCliWudngjCL4iIAiqFdcOguACoWoQjUU7H0df0hTnDU1TMVlUdAcdriR9ZCix1Tm+KaldTZ4KRKqZnM0pZoq9bvypM63Z3VjnA+95isVkTDGbYYMjKM+gv0aWp9H+iwWDrKRuLJXXLJ2kttC0c+G5cGgnOB8bUpnSyzfxQiPrGcNsnV4vYTnZx0wrgu4itKZoJqS9If2dq0hh0dqxHI+x5ZRURzkkmeUo1UUnOVKlrGI0IXMQPRCBJBmitUZkMiIhZMP2tuHWLcPOzozZbEGSaASwu7vDYlHw0kuv4ZxDKoFqLFGEXKJa2QmIs2qr+bkQfNuscTgXRy9kizB6g9ZZu7Ue8it8d7b2rpMp6yxFXRBUQpqnNMbg8EiVgA8Y7xHWEZoaFTzdNEIEautQiSQRkCbxcFaZB+UQSgENpnFx8yMuKt6rm6J0e/zIVp/KXyKkaPMoqcSFUUURX3eRSMVqhcTJcKlcEpM67y0uNHFyDd+28gXxMHRYIyJUx1eIYBChQaUJIkmxPupuOTKC91izwPtzrJ3wmc9/g9/94q8gQopAE+wZIURtnoACqRCygxfrBLcgNPF5ggaK+FnCam5LxuDZekTVIJdlpJ3WKd4Zqqbkxf0T5GjI5u5T1MfP4W5/hYN5xqnpcPPGgG53i3/wDz/NZLJg9uAGV7cGfPTxqzz74ffyX3/0b/EL/+ev8Gu/8VssmhnKOp56/w8hk4Rf/9qXSaoznrl6xB1f88KRZlanhJBRhqh1si4twcG3jix5v8veje9DyDnDxV0ef98jrD/W4xd+/kvs332NvzjbIAjBt+7U3Hz2ffz43/xPUaoglwteeP1b7L96m/fsddlcX2fzxvtA7eBDNEK8be9PD6meBOXa+7Ta+AEhfAs5hYsqWjBt9Sti3kMoLuBKK8hF7FQFfIidKOtqfPCRSMI7QmguKnRKJAgUxtrIqifaLlRoyRdaY9VKv4Uxfo9VyEs5FOFPy6n+CT9KOzMGIJWi0+nR6Y4YjHYJzuJdTV3F+5w1JdKXKDsmzRTDjSHGC2oLJvSwocOsOKep5hQPvsTBoeSPX/00qczpJes4W2PtkrKpqG2KSDOETjHJFYIPVCf3I8TNZ3g3I/gpQSQxCfcthLb0yMQg5yXKBnRvQDCepppxcD6lczzh6Q88TbercUdfpCkrZqZLr9/nye0Rn//Ca3zla/dZPLPN3m6fJ6+sc33U40Mf/hHu7Z/wq7/xaTyehZ3zyNYjPLq3w9f2jzlfHrA3OGFNVXzjWOBCwqzJmZIj84xBGthUNc89aJg3gve871F6/Q4dM2agJJt7CS99fZ8Xvvh5Hru1zsZOn/EsAdXl6Y/+AFknQ8oK0ywYT+fY4hhXHDPYe4ass0uaDUjSjNXGkTJDiCHg8T7F2qgdppRAqZLBYMAnP3mDlQRFURTMZ7MIDwnwK7/y6xwcnKDUu3Ydf76+w/LeM51OOTo65lOf+idMJlOsqUEOELpLPV/SLCcov0AKi9wYIbWi3+/QWEmoc4ytKMoZRf0ih8cvc+/+76G1JJcbiJBiGkPjSpZ1gtAaoRNssgPJkHq8j6sLnIsD3sHO8L6DkL0oOhvSqNsnDHJRofIE3ekSZENTL5jMp9w+Omdtb4veYBemr8DkdcqmhxF9Hr064Oi44DO/9QK7Oz3mT29xZaPPzqjHX/74BxBZxi//s3/N2XjKuBiTbKxx7YlbPJjOee72K2z6Ux7fnvLcmWfaaJZNTuEcZBmdVLGla+6f1bxy2PDYk5vsbt8kCTP69pztrUdYzCt+/yufpz9U3Kw3WVaaeaF57L3vZ+vqNaSs8K5hNpsjvCGkjjDcIhvsIkRENqxKahGJohAiBxEQ2Bj4c7lS5gjYS0F/xCwEVt0r/f9JSeGiu/NdBonRxb4pkbo8KvHmVtRqvUUueBkq/lYoi7f7eCvY5hu/R1xcnCQZWZYzWtsjywcEU2NdQ7kUaBFImyXSF0g3Ix920aMBlYlIpToMMI1lOT2kapbMihMeHEh+5/OSjD6J6OIXAe8Fi1riyFsf1MfoK5hiQrN4gHcK71K8nxKwSNWLbtpnYBQUFrmskYsSpRJUr4+taopixusnY2Svw/v72/jFXfzpt5iUKTObsb2TkiR9fu03v8F8UWFme2yOOtzcXefqE9f45F/6GJ/53Jf5o6+8QO1rygC7jzyNTDR/dO8+2sy4uTNm3zecnGimOsWHhCUJQSvWVSySfPVOTXe0weO3nsTrgrQ4Yndvjc5mjz/4jeeYnOzz9Id2CEJw9/6S7es3eXb0SRQ1vdxy//h1Th7c5drWkF6vz9ojHybrrJGl3ZY8JM49SZkjxAYhdLEuygakaYLCo1TJo4+uc+vWs8QYLjCdTKjrBiEVp6fnfOpTvxw1poKnrg26rOh0XCvAG8cHFosF1jqcaxFF1lLXcQZv1b263J1602a/gI9+NwnVu/aIUYdHx5ao0Gid4jyIFuqjlQQdb0rdGExjI7yOyLaCB60VIUC/B6YxVN4RWk0WZywegVceL8KFQfnLx84FqqhVv26TJefcxXGHCO28QRsoX4h3xQMveB+PxWDbg0XBKtFaVUV8271wy3hIBodoB9WCC9BSZcShyDJie4Vrcb0+UjgGEY9QEbG/gdWonIwEGq2WVJxFEES5+zapQ0SoAAFC07a5G7wGn6eIZYaUFu9KnDWcnp9zcr7OpKzQKmGwu8dW4iiF5+z+y+y7+7z/mceoGsnR5JzZ4pzpyTk3FwVVP2VjkPHJ7/8A+wevUC2P+frLL9IZDHn2yWvMj+HVz32F+ULT7XSZ+ZqijGKHSgR8q7XkkxQrHXV5QCNz7HCL+XROuPMaqBo5EDwoDEIpxCDhZD7mdz77OTJKUlEyu3uAm1ecSU9TQe+15+mubbO2V+Gtw5QVSSLQWpIOdlFpP3YcAbDxdxBce+/URdcoHrihhV3ErSgIiNX+CJI43BiikGwA4V2ccSPuqxUO2gfiTEAwBNe0iVakWl3pgzln8P4htexbrYsi37tYl+smgvDQuC8c1YoC9K2d0/e6Hr7kG19btOw6ad4jSRK6nS46iTM8zgecdchyineO4CtkcGgXE91m6UAKvABn5lizIPgCaPDW4J2AkOBVgDTF+QpjFcZbXEgQroV1lFVbfJHgG3AFwpeEYFG6S5JtIOrI3mXtEuMVvpuAz0nSHt4VOF9zNpmQHXWYFxWDfo+kt0ZHVaxZT1NNuXv7G4z6PT7+0SdZmpq7JxWTyX2G/YwP9Do40/C+p25QLMcs5sccn2kKV9Pv9el31zn4xrcoZwWdfEARAmfLY6pmRopF4gkCXJZhhaBqxtTG4DtDvO5gqxqVaHrbI5LRHqI/Qpg5AUlZWawDW88w5RJXLpmcTZicnrCr7tN3DZPZlIDCGYNWkkG/gw2S2kpMYyhLxWDQJUk0ZbEkAJ1OhhQKIRVpktHt9iMDFZIPfegDPPHEgl43afVyoh1FNjMu/Z9L//8Pd72d/cTnYrJalCVf+OKX2N8/oKxrsjzn+vUr1HXs+LsqUIuolROQVJUjyIBp559CUxLcAjDRfgJUPoqG+2QJ1DS2wuPvnQAAIABJREFUwnoXu11eIpxAVA2YInajggC/AG8gGKQckGabSCMQvsS5GmMtNpXIbkaS9QhOYsspy2XB/cMTHnv8KpUxiKxPNthk5AOFsRzc/SZ1k/KRD96kdo77ZzXnk5Lb6pj3CsX65pDHr++wPeownexTzhtevK/RWYcnrmxxdvuY1x+cEejS6eScVWOWxRztDYrIquq1xnW61KGiqk5xSZ+Qd3CNJXhPd3NIPugg+tcQskL4AuM8xdJgmwWuKTHFMmph5iOMFSznR6T5Okk+ioxxofXHQqB0tz2LI807tIgSVufwCjnwpv0fVn5/1bF5iJR5GMJBrOJ/j8W3Ny0heKP/eBfrohkULn3bpdcIgZYR+eF7xOtX1zwMTr/98wgu5t4viqIPv754z9aPxxhO4IOPX0uF0glJ1iFPYzIldYpHYJxHeIMuzrBC4oNB+uiDbBUQOIIUeOGw9TmusUBNCA7fCHCSYDVBK6wMGGfwQcRuDhqsQASHoGj3mCS4KtqPjzIsSTKKvUg3h+AwZoGRG7hugso6JInBVTOMaTg4PqPT71Aag5aabLBJTwbW8MxO79HYA566uUVtJSfzivFiztHxhKvXF9xKFWu9jPffusFscoCpzrl9eJ+00+WRnTXKseXeC2OWpaaTdxj7inkxRYaaXHgCDickJu9iFFTVMbVPcfmQ6WTGfFnQiAqbe24fT6LwcCfjbDHhc5/7HJm2dLSlOD9CNA3HR+ek2RK699CLMSdn40imYw2dTkaep9RW4nycvdZaMRr1cM6xXC7odHLyPCWyJgvyvBvnsFUkFfvEJ/4CdV1j2mTJWsfJySnT6RRrPcYY7t27T1VVLNvZK2ttHCNqGzGyne9ZNT9XO/h7iaC+i2RKkCcJjgQbErR2uCCgqWMwqmOb22cpxnoa61vRKxUnOx2x/SclgoSmqvF1RfBRFNXQzp0oDWJFSfgQlrUKHC8CUXFpdsm2B51sh+ClgJbKmkA0PqmQIQ64EXzL3CcQUrWHZDy4Hs45epydxwyWtkOFaAdcPSuWzuBauslIkxETHwTBSYIwxCpV+6HbrkY8JBzYklXyFOF9TfsTJQg5QuAJbkLUuHD4ROC6GcxzZOUIpsI6w/HJCRvbI86WS9a1Zu36o+zICcJN+Z2vPM/+ec3f+Nn/CZGu8/Of+heMz0/5o8k93jcZQzfw2M4ez/7Ix/l/fvNVXj3Z5wvPV6zvXuHv/PDPcedFw7965ZwsW2M43GS8mDIrTwm+RosQdb0E+CzDCktZ3KWWj2PWH2dyPqU82oekQq9JXi8i1fn6ep+j+Rlf+ZefpusqeqHmWl+zlimOi4bppEKtfZnh9iZBG2xZUJye0u1FCGBPfpxUdUmUaLtQFoIjBNMmUiBaPDxCRQieyOM+bokPHiZSq6FDDyIOYAvXtAd3ZBESRP0z6wLeWbyzONfEg7dV246JVDuvFcTF615elwfSwxv/esv1RgOPf0txmVr2IZTizyKReqclpUTrhO5gjSRN6XU6BDQuiHaWziHKMbZZYlWGEpA6AS7gZxaVCpI8qrqbsiS4GrB400ouNB2c8lgrsYGoMyc7MSl27RFhivi79DLCCN2EECwCS6L7pNk2wZxAKGnMgiYk2P+XvTf7kS27zvx+ezhTTDnfzDvUyGJxlkhJbEkNQQZ6kqB2G224gbZhuwULRr8YfjQM/wX+Cwz4qR8M2IDdMNSw3XC7ZaklqkWKlEiRRbKqWHVZd845M+Yz7NEPOyIz760SVQREdbeljYrKvBEnTkRG7H32Wuv71vf1CwhQFMNUqfKOs4sxVkhmdc2279Ef7iHymp1uwrPZBT+8/5hPf+GX+bkvf45//vvv8MGjU5YXhwx6kq2DPtsbI372c5/g2aMf8O752xyfdszHY/7Wz3+ZvY0R3/6tObPxgv3b+3R2ydn4CNuOKUiU6CjAlxVOQdtd0BlH6L1EyAps3aALzejOLvn2PeRwB2k/wHtL0zqa2rEcj5GuRtkll6eXPHx0BEWGdTPO55q2i3TLGVWZc+/uPqrYQJa31mkPSgmqKme5XACwMRoiMoFCJVENkfoQpNL84i/+NWKM9Ps5MXRpMggFpAr+h9XK1uMvd1L14liLTcwXCy4vx/zeV36fp08Pqaoh21tbvPmpN5iMpzx+fEhXR5aKlfedoms8QXiisOl6Y2pwLUKkZMo7T7AFQmS4fEEUkjZACvx74Fcm9C7t3fjU1C38PAWCWJTQFMUtwBD9Bd63dDbgKokelGRFn2AiJlwwXy559PSYT41fpTaWqhpS5rDpJsjZknfuf5vBxgG/9Ev/gHcenvPb37hPOzvH1BPUIOMT4RZvvnIb123wza+9zWwSeFjXfOb11/iFT73GV975Hvc/OGd371V6vYofXj5jsZygo0GTpaJMnuP7ChOWNM0xLv8cobeJ7ZLU9OBgm6K/gRy9hpCnyGjpfGCxMCzHU7ypycwckVcEuYF1Bjs5TIbeupeU5LyH2IAQSNW7ikHW5KCPmvPiusZNKuN5YrCs+6euqXAF135U8iPO9+eZVImPtf+kcZ0orYt2NwEncU2Kep4y9REU9/TzeQqVuHGG9eMfdZ51IsU6IRQCKRVZUdEbblMVBUWeE8iT3YZP7CKxPENJjVM5OgZ0kMQ6yd/nFUgVcfUMZ236bkPyqYxW40WBzyVSObqQdJ6R/fT9OBDeE80isWaCgtCCmyMwCJmT59tIItEcQTR0psEqh+0XyLJHkQVqphjb8fT4lHJQsuwMA51Tbh4wEgtkWPLdxx9wMa35xX/vHxKzTf7pb73FdDJleXnEp6dz+pua7cEGL+++wXe/9ZTjk1PefeLob2zxa2++xolt+OqDc8pqi9Fom5PFmIvlOTK09GQqBgcBrt/DaKiXh3TxDq7aZ35xillMMKLF9+C94zF5UfDJ11/i7HzM9772XTaLyFYluL3VY1TmHF0uiFJSbfZAFZzPNNYYTL1gb3eL7e1NVG8foQcIINOastR4Z1nMZwgig34fpRL7JS8qsjyis4L+YMTf+Tt/A+c9XWdXMZXknXfe49Gjx9R1S9M0zGYzgFUyFTA29ZqmqRXw10LLK3DlaoIm0Tvx48dTHzuZinGN2CSURoaADCLR1oAoMxCk5nyZkKsQk2GukpaoUkP/WqEjZJqsKAhR4J3HJ0kRdCZX1WYHRJ4zPl0Nt5KMXSu86BW0l1x6Vws0QlL8yNBKYPzK04orv+6rvqwoJES1akhV+NQZz82wVQiFJEu9OCKmhRUFQmQgAzLapCQXr7+ltRrN6gRIsaKsiXXlZn2sXgUkGiG3ERSIOAUskJT2ALyTeJM8CoS0rPtnYnC0iylPfvAdxMu3uP3pv87543/Fd+5/C+EHHAxvkQ1A9Dpe+VTL6Dxy+XiPYu9lZjuf5nfeeovxD38L03aI4hV+5qe/xGhzg+N3jpg+XXDn1puMZ3MePn1EJx25LLnXyyh94Hg8o4kSS47MAiLPyWRBr9jm8GjC9HzGpAJXanQdKaxhWJ+xmDrODjt6MlLrwN2dAYODjJ3X7pD1ClrVMpud8/a//F0wARrHnYMBB/sDtvUmPTullB1KRnReAoHoa5SqUuOwKhLvX/YRIr9Cq66+k7ja2OL1XFnn1KmXSuDDSsEMTcAkdDAkxcTgLT6E5CIekghKDCvD6OS4xo/cAK+m1ovHvAg789EUiuuZeTWX0778kw9aI5BlJVlWEleKQHVMlR+z6t3w1uKrEXlW4rL+ykepQCiBUJGIpHM5UQSyMimVSWWJLnmyhbUfnWmvwoo8K9FZ8o+JUWBtUnNCagQ5UJDlB+hiB60Uyh3i4oIYO0yIGC9wnSI4EKpDyiR5j/eErmV6fsSs5xneu4sL5zw6+mPaOmN38Ap51sNQs3fQ4pTlshyR5yXdYJ9Hs5p/9bu/SyY9pT5gf+82r+/uQhMZ1xO2R3fBzXjvwRMMniyruFVW7B+UXCxmvDNbMpV9rMrxVUWwASUL6qXj+PFjGj2mzlvi+CHzySGFbcmF4jKcYqxjcvqIYU9we1ez9+ouxX7F4yfHvPP4mKqs8D7y4P4pIUSKouDW7du8/uanMG2L6Tr29rYpyoKjo2O8D2xt7RBJKoY6y8jzktdff527d++kAEVcV9/XlWWwCDTXVGn4kfP/L/lwzmGMJc9yNjc3+bVf/RWWdc1gOKIqS3Z3tpnPF5yennNxPmY8nnB6fMJivmA6n9Naw3jWEHHkpSKgE1Mk1pjQ4ePK0810xFUArHRBUaoVwiVwLhJ8sucQMgedI0SPrHcXJTXKPyOEMSF2OJIqnu0UmZEIaZHKooSEEAnGUE8vuDx5zMHBNkV/i5P37zO9HLNRHTDsHyDLyMa25/XXO+aXJc10D7l5i6ne4ttf+TbdYk6pNyhHA376lVcYlQXjw0tKNeLuwRs8Ph0zb88JmWBDVLy8X9J5x7vvP2YqisSIyDRB50iRE6Pm4YMjurBkmTepePKoIfOGyltqf8FcWyZnj8E1vHQ7R1Ua2WvJsh55vk/bdcyOnrK5sU9ZDlFqcI2eBJ96xtOnSwqn1ApRildoU8pZIqnod5WarP6LKxaNTYXnK1rhTZTqJzk+6jXiR/z68fegj1Pef9FX6rmziY++flyjXxKpFHnRQ0tNtB0meoLr6EwKmk3bpuSrZ1Aqx+c9SpVR6oqgIaqADTlEicz6aGkposBZS7RNYljEJD4m/KrbXkjKcoCQOrGovMC6lU2OzFLLiyhR5WsI1UOGMSJ0hNjgoiUKMFbi2qRCJ1R31YsWrcUsF0xOHiO3Rwz3X2d29m0eP3sPGUdsD3YIMiKympdfaZltwrjYZrCzR9M/4I9+8ENOHz6hygJ5dpc3X3mNqtdjdjKlmzvu7L/B2WTB2z98iMk8la64t1NRGc+zZ8csoqJWI1TVg6JCi4yyHDHzU+aNIgxKtAwc6AwdAvn5EZwvqadjin5GJXJ0OaC/W/DavX06D3/y7iO8D1RlxWRS8+zxJVmekWcZb3zms2zv7tIsl0gBJwd7WGM5Pj6hLCuGow2sDTgXKMqKoij5qZ/6Av1+jxjX/U+JsqcU7O5sIaXgrbe+z+V4wmLZUDctxlic81fEMyFX5Q1xLeq1XpM3E6rn5+HHGz8e8T2SYOrVTayC0FRRUUQRiDH9rpRGeUGQbiUskaTGgwClXBKk0BqtPVpKpIwIlbTQWAWpMYqVbvDzf1TA3UCTVotyVa24gpdjepaUCiFU8qsirJIWECsPiFTpF+l+lZKp6JMIhYguHSmSwasSGVE4gvB4UnN7ktQOK1nVcKNqs37P8bo+tdK3Xz+WAvu1UEH6HBMiVUA8hNixTrjSRy8JNiFpQgauQLvgsW3N+eETtnc2UNuvMw9/wOHFJX2xw6DcJupAzBq2b3VJzr7eptzco+vf5p3Hv8P3fu/rvPHGp9k/OOC1Vz7NoFdyef89FhcNG4NbjGctZ5NLil5FUeTs5Yp+ENw/a5h5gS9F6gXzEYUmVyWThefJWY15NRJLSTHzaOMouxoxdcwvO0IhiUUygctHitErW2SDkqPjZ4wnC9596wTpJHnMCG6DTGygtw4J0hDEDK0gH+wgCOCXxKyPiAaZVYhYIHRKopAa1uIS628mJtrfui8tXn0v6fc1tS+u0MQYXTKBXFH7QkhJVSoQrKgyV03GH9Wg//xiSknCj064nqc8iBsPrP99vSmJlQjLn+e4Sde6aWMglU4men5lzBkt1lqapl6peCbFykS9lBALKPoIKVDK4ZAYp8hkgVYZMYAUGi9Tcpaq8CnolDIh45mCPFfYmMyznXWrtZshpEKQkRfb5IPXwDwBdwmxTTSGCM6Dd8lTTqokJStFKt4E52hmY5aLEvJP4nTNeHaJ9NsMih2k1LS+pT8w7EaL7PpIPSCUG1ycL/nDb73Dwd4Ob77xKvdG+9w5uE19fsZisaRXbLIs4OjiAUIJNrZHbGUZL29knBzWPB0b7EggS0F0HnxECkXTthwfnxM2a8J2h50vUa3noOijVcHETWm7jvHFGZISkW8x6A8o9QZvvfeI9x8ecfdWn+gDDx4e0rQWax2vvb5gMOqzWMxplgsWix2KouTw8AhrPf3BCOci83lDWfUYDEb0ej22tjZSj6CShBivehNT76Inrm0zngsE/3InVC/SHddrKNFTHFprBlrzxS/+FEIIRqMRUiWp5rpu2N+/xeXlJePxhA/6PS4uxujTY5Z1Q20U1tpk8BwEoYoE69PNJ78875Pst5Kpd6TIkxqpj8l7MZCk0ZMlRYbSFdXgFQhLMI8gLIi4ZCcQk7yydwopPVIFxAqdCc7T1UsWk3PcwQEUW8yamvlyTi+7R1UMCTKQV46dXUshc5qsQPVGtKrPWz94RDOZ8oXPfYpBscMrBy/hmpr55QQVC0bDPaYPjji5HLO1u0Evy3hpmHEyb/n2swtsNcD3JcF6cAEZBQTB+dmYNi4Id1qE8bSzCzZ1wSArmLgFSxEYX5wjYsu9u3uIPBBzgyg2KKpbzOtnTCcX9Pt7lLJA6gwhIt4vWSuDrRWEr2/r+zQrMIWI50pc6uaUWFXK1/vSdSzwE14/V0nMxzj/i31KXO8DHyrmvfCcH5VX/SgJ6o8qot94ECHklXpzdBYXHN4LmqbBWoMzyV8vUxqtCxCSTAhQPaT0IAM2JDXfQlcolRFDRERFkBYXkyJfWBX2lRRIFcl1SuRsFDgiWE9KoFWy55AZWXkHqftI+0NiWBCjITVEiGTpYRUQkSrFxjGIJHBmOhaTC/r9Clnt0vjI5eycSuxSFdt4PNCytWXIM1Bmg2q0gc1HfHA44bt//Daf/8wnuX2wzcHuHaoiZ3l2glk6hoM9jsctz87OGW726fdLbvcy+oXiu0djLq3EbOZ4lSFDRAlFpgq8V7RG4HOFyDOGRqCNRS8uEMsa1za4LOKdQmSQ9TWD23s0Fh5/9TtY03Fnr8fZyYIffnCK854QIrqscK5lcnkBRJp6SmcMR0cnSciq6lPXHW1rGW1sMRyOePnll1IoJ0Xykl15KIbgKauCbTZx3rNcLmnbbpVIObxfteCwpopeT9EXEyjiDU/bH3N87GTK+0jbhRUyHfFdh7MOa2wSYAgR710yWfMeEQNKROKqfyklgfHKX0lpqPpFAr47S4Uiy+LV8+0qgFUrDyZB2hiccwkRIjV0JrpEukhpLfEhYJ1HIleNZkmgolAZIUqk7hG8w3bzFW4dkaukTKoqGbXK9CH7rmZQFbx65wAfCjrbw6gMKzRdJ/Au0jPnRB+Y2j4ESxYmxLgkhjmNbzHeMhhso3RBY8QKzZgncFsIiBZwSKGQokQrhxCpOT+SvDXWI8Q+Lt4i79eIKrC0Fm8cAoXtNOeHFbE4YT74P9i8vct/8l/8V3zt/3mbxz8853/9zd+mITI+POSNV+7x3/3Xf586VJy1C37gDc5FJktDvjQcbCuqUvLHRzMOnxzy/e//CW2uUC/dY9SeM+xOuV8vMdYx8xGvc/TWbXpKcEs5spP7TL5xTujm5FXDgw8umZuOfNyx18v51Bf22R5Z7mRz+oVgWAlOWs3FA08uLxCFJl5e4hct3dISAyyj5f4zy9lsyr15zWiUZOcLLbn9yg7loM9g5xY6j3gXUXmFykp0TGhI9Ga1VtxqUekUsN/YBP0qYUjy6smUFW5e2NfZq08CKSJJc4YYViiJTJx7kVLo+DE2qsi68+8jxvrl4ot3i+c8E66oE/wFha4CunbJcjlLvg5iJTkKCVUmBZHWtATvkMIRveK4G9MbbnHn4HPMF3OW52e8vv8ad7fvcNYUtE5QbY4RvsWZMbVtOF6O2dzcYm9vj7nV1FbBcoIPhiJPF1JnLsi1YlhuUpSaomyYhkAdJF7q9N5ExMmKNmyRlRk7t+dMY8DVbTL2jprltGB8CvefvEORS778S/8RF0+nPPzeCU/ef8zlw0Pa8RjpPX/3b/40O1tbLEOkdYamdUxry+m843UR2OwLDh8ZTk7mfPOt7zNvW/LX7tIPNXeWT5nNp/zOZMxxE5lEwXB7n95oi1vase0X2IffwePIywVH4zHPnl2SzVpyE9j50uephgWmnRKUZ/t2UlA8XZRcmAUXZoGvCg5e2cPOZpimo6wkZZXT7w3Is5b33v0us+mC5bwmL0vyPOfuvdv0qoIYLMZYprMpy7pluWz5nd/5Cn/w1a8D0Ov1+PVf/w1u3drn+aLBn1VA+KuxHnmeJRWr1YINoeSmWTZAWRbs7GwxGg25d+8Ob3ziE3Sd4cnhKdZ6BoMeR0/O+J3/8+vMOsnUZMiNGbJbYNpLjG04nF+AVty7dw8XM6Ymw3Y1NAsynZIsZ6aAZ6M/IM8q+mVH6wwTm9ZPEBkQEVJj4gaZ2GZjbwtTKbrxIqnzCoWpM2bnBY+fPaXXnPD6Z34eV1t+8EdPeHx4xjd++w/pljX1+JKf/+Ln+Om/9iZNzJk3Bh0FLkomrWfDR7aGmpM68OS85gfvP+Txwyc0W32GO30Olo+R7Zx/fXbJrPNc+kjZG1HdfpVt7bmlHOL4fcwiR6k5ztS89/YhNIZs1vLmqy+x/4lX8aalcy2j3RwpNOOuZDbTZNqQyVNKMUFHlRQKvadtl9TLRAEvyyoZLMuExCa0yiUKn5ArtA/WV+VU6OonnGqNSBFvJE/wF3T1vhrrdOf5/eejw8jn96DVxrT+sS7mrY+9UfO7eoa4fmDNtFmfS6wFLG7S4NeUwufQgfT7uje5rmfX7KJVDBeumBzp1rZLMt2hpGVhJfXyjJ07r7G58zKL02NM2/Dmy5+nyIecNAU4Q7UzJbgl3s05W86YdjV3792l6g24bDXWesJikva9XBJci3ctvSyj0CP6PY9UHZdB4KMmyOyKymgZ0MYdyo0l/X7ELVpsYxBC4Z1mdlGAmtNVb9Hb3ucXfvk/5oPvHHFxsuCdb75LHQPN+QW397b5e3/7SwSZ0wZDbi1167hYGrKloVdAWUTev2w4Pjzj2998i7bMyD/1ClvNMdvtI94en7NsGo5MwBU9BndeY5QpDrSnHD9h+e6YaBt02fHg6SnzbklxvmCjzPnSp19mt2/4RD6kXymGPcXEambPDHSXeCHYvL2Fq2sW8znWGvoDRVkWlIVmNj3ivcU5F2djnPMUvR79fo87d/cTzS4YmmbJdFbTGc9kMud/+6e/eWVqXq2ujU3bMZ/XaJ2hlOTk9Jyu62iblrZpMcYkrzznrwobYRVUrSmla4RqbZ90Xaz+8caPQfNL9Lw0t1Pi5F0ylA0hYkNMlS5/bZx5peu+WgjXlZwkaJFlGqdVMlcjIkLqXfFE/MqoK2mlS0SUKxPglEhdc24TkvCcXHOIRHnz04grqWqJylIV2zuTEDZxTedTK2qYEikAwzuyrGQ4GOJCD2lHSKkRQhNlMlPLgyGIiAy7CNmRBYhBEUXERonDoHQPrQuEB4Fd13JIcu0+BedCJ/RLBoRwq8cSyre+MMRVUiqzDCWKtInJuKJswGTikJOafGzZOXiZ/b276Px9OtPx6OkFCxeJk4jZ0+zvjriYOE5OLlF4imFFEGC8pdSOXEnGTcNFveRiPkZsjFDliMxBbg1H1rPowkoiXSGyHlIGdDSEekpzPqfTASMii2nHrO6o5h0DBB2KoCNFlTEYKjaGitoqGitpzxqiFuSTFtUZMpcM8AKReROwwVKcXmDqGWXXUWaS4cgTwgb5cPP6c5UiMSp9h4yaKFaS9DFJaQrpCXFlhEm62AVWnk7RJxRqRawV67l4lWwlRDGNpFITQlihjwJESDTQF1bkc5WQ1Zpac8Zv7hnxhefcHFc0+5iuDC9y0H+SG/LNNbfuD1t3BCaUNfHY18cmxCoCeUo+pUTkGVk1IDMOrXLKbMCg2GIeN4hO01MlKjSETCDNktJ7qv4G/eE2XQOtjIhmnq4hSpMwZIOWRWpCziSFtizUCilV2erdJyNnv+rdLMuSuiqQWQZSEaJgsfDMZoayiSjVY2P7NsvLgPdPmMw9z7wgThwlkl6eMygzZuc1wXSUvQKZKTqX+iRzGWidZdp2nM1m1M4yqm4lilHbcek6ni06Fl5hokbkPbKyj/YTpOuw8zOsiljhaNqG6bimWjR452k6S+EcnU2KHv1BjpAZJkjmreN8vsSHgNKK1ji61iEVKKUYDHOc80wnY5plg2k76qZBKs2tWztkmSYSsdZgjMG7hLpeXk6SgmWMDIdDjHEIkUQp/pTZ8hObh/8uj/UaUkqh1I8+VimFlJIsS7YORRWSiaaThBDY291C+YJe/g6Wkk4NKdQUXS7otMKYBWNnQSv6g21MVMyXEbkyO1UyJW5BpD7DMhuR5xll5vAxrFRnNUKtgkGpEqIVIe+ViGBQWYZUioik6SLTqUMvG0Tfsrd1NzEiwkPqxvBkYfC1Jc5AeM1Gv6Add/hlQ15qil6BW/Uz5zIQgmPaGcbLJRfzGcXekKJXUHUOi+F42bG00EVFrnKyaogOczQtvh5josRKR+daZtMa0XRU85qmaWmdp7Ue4wIb/dQT6FBYB/XSkEtHkJZBMSDLk7FyCA5jGgSQ5yVCRIRzif2isxUK/8KI6+99LYbEKmhZ91mvmTc3kaKf7LX8xT1oPT5qD0r9JC+cQKwYFSso6kN70CrIe65QuD4WuLb2WJ/uGi64jo3+jL8hRPwV0rfueUltIdcMIPDekraesIoLJKoo0h6UlUQLvWKDotgkj5tIb+nriujnRJuxDIIWRa+/STUYMosRR6LnSZGUfJEtkY5M5ZRZQZUFhHJIpSBoUBmCsNr/Jd5HVJ4lY/U8w9sk4mUdzGYO0evIGk9/uM1mfwulz7DOcDr2zG0kXga2epKNfknTReazBZJA2S8JRIyzKOFRQjI3hnHdcDadIvUI3dsid5HStIyblvO5oQkpplXFAK0jOkyhndNN5hgd6URgNlt8wA0WAAAgAElEQVQyq2uGswWF72HRkEFv2GfQVwwHmkUDtZN0izbxqVZ7ftskqp3SgrLSDPo5bdOwtAvaJqnuLeoGawwHB7tEAcEFjDFYa4ixRkrD6dn5VXtPv19xZ3nActkwmcwpioIsyzHG0BmDtXblMRWubmvmzto66cX+vPUauEHA+bHGx/eZCgFrTFLl8P6Ki+hsMsUyPl3gnfc4H/A+0rSGprOIGNFK4ZxHCkFZFKv8ICBD8pwQXUC4lHhJKQkuwYFpca0TOYHWOdEl9RQtAlFG1nZQQgpklOhVdU9KEhwYINABSXFQqoxysE+S0g5ILVFKEURJFAXlcB8RA/XRDxAyclJ7KEri8DamPcZ1JxT5q8hswGwRsU4QxB1iXOKYIOUuUu+jc0FPQBfOabqOoEuiskQ7TtQkNhBhCrFDS41WGUo5EAEVE00tqoy48s4J9gQ3b+BgiBwMyaYWIQzee84XC37vrW/y5f7n+KX9X2V+dp+vvfN/c37xjKBqpPxZpBjhhef992v+2//mf2BpHZed4+CnDvgb//hXePbt+8T5Bf70hzR5xrN4yHk+RW2XKQm5OCf0BW53EzM9p7OOKBUyaIStaGLNEzuhJDISkbeWnoddoDUOFQP3ehLpLL/5Bw+JOiOUJffubvPZL96ith2tMfzJWxdMJx2qNWQiMCxAZ4KslAQJnYCTiyXTseDuUCQ61GJJEAI/uKCoSnqho4iGPFSoziFEgSh3SJK0a8W/lKwm415NjAqEJiIIriE4gzHzRPmTeoUzSVoTaLvUHweQZRkp766JwWF9IJIoNm6FbF2PtVz7zc1qXaV7sQr30YlUOvL5hf7CHvYXMqRMgd7asT29D5Gqiyvp0eiTF9fW3m1GW/u89NlfRkqBrc/Z2LrFJ17/Rcyy4bg1NGGAo8dFmCGJVL1PogZwdxdMqHk6mxGKAoYamnNElBRynxgsOXOqPGfUq9C5QGctPUpiXhB7JSFYTDtDa0+Yfx+Z9Sn3tuh3EtcWGOOYm8DXvvcee8cb/Odf+ptUIvL4g7eYnE2JcoKQL6P1XZwOmMbzf/3mN1Gy47B19LYqfvU//SUWlxMunp4g7QV+VnLuLzjUU8StjKyJhPMLfOFxt/aYLxwnszOiykEVZL5H5iqOF48xuuV2FRkHwffbJEleMORWD0ax5bvv3MfJHDXcZHN7wKuvvYqQ4ILjZDqjOz7h6OER84sZ3rbpmk2kzCR5leGWLcvlklfvjLh364B3H4w5H3c8ePQMqTRVVbIWkWhbQzOeUjcdTWsJwTMajbD2ZiD44virROrPawgh6LqWum75zntnnF4uUWEGMRLe3uD8ZMxJ5/AxR2d7yCL5Ojpd4jrPrdGncdFxXF8SlIRhCbFDdJCJTYTok9EiY82wX5JnGXnREpVgILYJoU8MI6xZEoKF5gFxeU5xsI3uZQzPPc44auN49/ERz86m/Ad3fpFXe/c4P/6Adj7DhnNQfZT8JFELPIFv/tEFH3zvn3NuIp0QfPLLr5HlgpMfPkUzJszOmDVjnsQL/LZkK2xhuhrfLXBbIzotOV0e0lmIKke6ksr3mTUXBHvBXhGpS/hOraiDQMU+w0xze9MzPjvnX54vUP0huuqx/7OvsLHVw4VUuDh8OmZv+w53PvEZiqygyPKkYCbArEQ7qrCBMw3N9Cllf5vRzktpf5EJxYM16wD4EPV1fd/NvtoPIzB/3uM5EYiPuQe9GFFe7TX8Kfdf0R5vvNbN41gLToirf1+/djqR4Pm97/mi/PrFU+EuxvBCQpgSKblSCAveo7MeuwevsHXwOvuv/Qyum+LNgk9v/XUUFc10wbyLuLhFiC11mJCpbYr8FsMh9ERk7sZczgyu7BF1RlwIRCjIxR7IUyKJxdQrC4rcggr0+iPy0Mf7Eu86TLcguHO6yz+hf2+EGg3o7dxC5R2t8RxPlvy/3/gOP/XTr/H3vvQLmMUxD48fsqxPiLJFZZ9BiT5OBo6PGv7nf/IvmPvAeee5+8lt/v1/9MucPjwkNFOoz+lsxhGXXFYN2e0KQUCensMwwx0ccPloxumiIaiMTOeItqARSx52p8gQ2NCe788cD2tH3Tao6PnUIEMJx+9/423IK8Rgg/1b27z6xj6tbems5d37x8zGC57+4EkSmrNdEiojInTag+bzFtMafubz+2gleOsHFxhnePvdB2RZRlHkyb4mCuazCcZ4ZotmJXfuyTLN8dEpIcaVkjIrc95kZzOfz64ozmnKxKvi9ZWB7+qn0vrmZLueZB+RbP2o8WP1TMW4esM+NdunN8Tzf0i8nvxEkljFCvIOK7RIKLnqi4ooKcgznZIn79FKIQVYqUhc/FUflFiT/T5chZciiToIIVMfhEwVCilXim2rZ8YVWiAAlF71Ynh0nqPzHCcqosxRukjqPSIj4GlNAOkg63CmwZsaqTpkzLDe4nwkxgkx1oRQE0UFsU8UBqJNYgXRIlQFaITqI1BIkRG9vu69khKt14hKQMQIQifpdiRER3Q1iBFCl8iiQjpJqOd4F5gt58ynNcuLjma2UvtqDZ017G8EdhXIfg/TNDw9OqJBsJSa4XLJRl2xNRqSVQMuFwoTLLPJlGa5ABkp8FQqSYq2LtE6E6SehEUGow2kDZgLg5ECUwra1tNGjw8BGVMy4iPMG4vIQIuceumZTC1dcBjnaOcGM+9QzoGCUKzTH1Y+Y4Fs5THWOknmwHqH9BZlGoQEpWWqqApFEAopPEL1Vn1TqYFeCkkgqWMlgQlFkk8XxJVwSvKjShM/xAgrP6oYxYquypUv2jVqtaIJhqQi+eOtrxsVw6v/PT9edJlPP19Mr/7ih1glUVKq1U+J1Bla52T5AJ330cWApLoYAYVUPXzsaI3F+jk+dHi3QIqAU0NEDAjR4b3FdC1SZQglyfI+EUUuSwgS6zSZ1shMonNJUQq0c0gbknHi6r0IKfCmJvgcoQpUWZENHG46wxvLbLFEZ4pmZtEejA10xlF3HVXPc7uKRJETusD8coaxSyYyI3QC29TkUrC3vQEiZ7yIXEyWjCczXHQoFRhlllx6FsbSWI916YokpaBflYwGPWIdcMJhczAO2ugQXiKDXFFaFKazdESyzNI2ltmsRWpBEIFm2dIslpi6xXYmVc9lshTICoXOFbnT9CpNWSryUqG0QEjoupWiYlhfPzVd52iajqYxtJ0jBE9RlC8ETX+VPP15jOtgMf3mfcBYS10nid/pbMHlZIEOs+Sv1sDkcoGxlhAbohsT1Qwll9hQ4smIoiFGj+la0Bky76FUiSiHaNlDUWB9hggapRUqk+SlxJmA7Fzqc5YFMpjVnt3hbYaQGTLLyAZ94rJBrEyHrfXU845u7jBdwFhP0xlizNgfRmKuiUWBmRtOLy6YyhyXZzT1Ehk1W6MBVdVjvIxczrqEiJoWVKQXPQpPay1L67Au4kNS783znI3hAOVkaj/IwGbQ4TFBoPyqT0UovAs0tiVTBUFkLOYdQkmi9BgTIYhk9BpXATmR4CwxBtouGZC3zQyCxbqOzNura3JCWdbX41UC9RHr5Pmc5S9u/Xy46v4ie+L5Rz68q6ySnhvJzY/ag8QV7+f6rFcG9FfPfzGRvEGQf4HN8RyA99w5V68mk0Jz6pWXqDynKIfooo/O+6higLfJa1LKAkmF8TOMNXg3IYQO75YI3UepihCTUba1HcYbZF4h0GT5AEFGJtIc8kGRZQqdKfJSgAJlUq+hVAWRiPQp/vCmBjaQukT3egSvcGaCs57xdM5sWtPNHLbzWJuKt53p2B4FhlIQZIlvOk4vL1gKwVRkbLUNtskZVgUyz6k7iWk9F+MZ88UCZKCQMJAAjoV1dC5gffo+lFRsDPvk1tDOl3RIXCExytJhk9hDjImVFaFpOvCKPAu0tWc+t9josd7RLlvaRY1pO5yxSBGTwa5SZHnag4pSrRRDFUomRVlcoGlarHU451MfmpA0TRIWaZp2ZcbrsVZd0fNiZGXKu0b/4g3T3rU/3PX8vnm7Oeuup1f8EIvo44yPnUwJUgDqCfiY1LZiEKmp20d8COnmJd4nOpqO0BOSKBPNSqpE/1MSnLXUbUsGDPtlMsYNAVRBALwNOJs+oKs/c2UlZENcoeQpYct0vrpuJTRKZnrVL6WQ66BflUQkxrlE6BISrQS9TJP3hmS9Ab4aEVROe77ENcnbJsaIDYZYXxBnNdgZuAVL/4wYK3w3JvqG4N8niWc6grxLlNv48Agfnq36dBQiVkhZoatPooQjl0tcl2OjRmmN1JreRoGUUDen+CBAboGQCJUko70JEAYosUu2lSHKGupzvHO0PuPZD5/x1X/2dfZf7bFz7yXO5s84Opvzj778mJfuztn55Ot8/wPHf/8/XuJ6I7K9PR69fZ8HX/lDfuMf/5e8+ZnP87vfMjw7POLR1+/j3JK8DOxuaz61n/HukwWPj2vadi3jHqkGFZ/9+S+wPH3Ig9//I8xGgf1UhXzqKS4i5jRCF5m51FidC4f3kW7p+N63z3jnnUtUXyEzaKZLonP0VUAWkhA1PgiaDoRYaeRlkajgvA00IrDrLcG2yMUl3pYY12JtwNpIpj1SZAiXhBA8oISg0AofNTZkSXhEZgg5QAiNEBGPIJCv6IIZxtR07RICZEpjgRAjTdvhfUCpjBA8xke8s0nRzr9I+7jieHxofcXrYt3NqOr5Z69pdjcSqnWF8cU+yp/0iOsE84oiq5IoRVagZIaUms2dVyl7W+T9Hl6UnJ6eIGNAdB3EmnGYJ1nadorvHhF9h5aOIPvUxS6RBS58F7eiE0v3MqooGY5eI88UA7kk2gVTqlQ5LjN6GwWb2wXzB8+YT6dQ3AbVIytbpFpReAaC6EfoQU51r0dsxsjpmImp8NZz/1sP2L01YO/VPZam5dGzGV/6wjmf/3RGtb2Hkxn/5H8fMx435C+9ymK+5Hf/l3/Bz/7cl/i1v/srPDgNfPWB50++ccjTowdsjDzbfcmXXpJczmu+/t4Rl2cLgg8IFZAC3njjNrfvHPD0j99CS0l4pYDWok8WmHGgnXrmeQaqQGuFFAprYHxW8wdfeZ+syqk2exw9O+Po6RnRtJR56ktVmUKVOVmuKIcFw2HGnf2S6DwXiwYbPEIGfOdxLrJYNqtwRmGMo2kMxjqsTb2CRVESwr/Z5P3/z2NdSJnNl5ycXFA3LW3bMb48Zz6ZsxyfYTrPZDaiaxqaeoHtTjHttxDRQgxE/QWiHNF2b+P9HGc6ZLaB9kOqapfy9l16oiUXLbOzEmc8qszIejnbBxVqMuP0/BmoTch2ULlDReg6j1haghsgtaK6o1BnJ3DxmNolk9HH7z6jb2D31R5BSg5P3mVjYPn7P3tMORxRbu7wW1+t+YNvXSD3XkIVPb75W19jsyz59d/4z7D0+NpDx7vvzfneN99hNIRBT/DFuxmjIvL7bx9zfrnEGEdSAY3c2tvgi196ndO3nzE/BO4UhJFAPZsj5o7mKPUlT/MCLyT9QmK9xCw93/7mY2Qm6e0M6Pf63Nt7hVz1mc+m5LlCZxrrDM5bxpNDvDcsZsfkWc6gv0GQ+oo69KEeqA8JSvzbMH6cPejGs8Q1/U7c2Hzizee/cHy8ecDqpUUUV3T1F57wwvt7Yb+7OkZc0QivmkhWaJTKcqTSaFWgs5LtvU+SFyUy79EYOD56ijBLhO1YxgUxeMx8RrA1rn0XgUMJh81ewmXbtN1TjH1MCI4oJDr2UFmfYvez5NIz0jXttGA5LsmrHN3L2TroIVXk9PIB0QhieRchJLkyyaagceB7aLlNeStHDhbE8VNMa7nsKg4fnfLeN+6zcVAy2tvnfPKUs+Mpf/vTJ+zd6ujtHfDgmeV/+mcX+P6I8tYuD+8/4P2vHPMP/uF/yBtvvsn3HnkOTy/5zr9+n+CXDEeel3dyvnCn5DsPxrx7OGY6r3EukOlIv1fwc196nfr8Ae89OaHrbeJe3SOrLP2JRz6NiCYytzkKyEWi0dWzlvvvHvPg4QWypyCDi6MTurpGCU9eSaoVBV4Wmn4/p+xlvDxQqBgwztE1LvWAC48zlq6FaRCs0du67jDG0XaOtdCWlAJjOtZqzH4lbLGeM+vYK8VGNwrfMeUpKZleFShvzr20jD+SAvhnjY9P80PgUfiQaHwIgVQyORtHAJ/08WSSRg8yojRJVUdpohBEu+6heH6hZBKKXEMER8SFmJpz8QgkQSY0bGW3m1QAUaR+o7jqpUr1DCElSqXKuBIyqWOtzseKIx6RxLUscpQ4YwlhmVAi5QjGEJ1N1LYYCFGtrhQOmQ+RxQZ2GYh2QQyWtVxwkjZPqJMQMwINAoeQPYQoyPIeUmYI3ZELS1+0NNLipEAWu6hyG7RHYKjkOVkEW2QrtTiZqkHB4toWW9dJGS1XOJEQO42jbeYcnhxSjnbZ2NxmeGeHrq+4f7bgbNmya2HWCX7+F3+G4/GCB8cXbBQF/Tv3WNSaJ4ctRydnnJ+f4G1Hr1S8/Oo+pVsyvphRNy4hcaTJLoGSjlfjMxbFJe1BUjt6+qxjPna4ZUCH1OhsdLqCWgeegIsW23mikWReInOBNQ4RA15EXAw4BVkuKPtyZZwcUTHVG5L/kGBpIiILlCEQfSDYgGgN3i+pSoHSMYF7rNAoqZCAjwK37kkLAaRJULgSCWEiktQk0s+Ebl7LpArilc9UModeV+jShf1PE5Z4kfjwoXG1oSXT5w89P8YP7UQvNgH/5Md6c7tGTFLPnybLSvK8Is8KMinp2hoXHIVtkHlBMbqF6wR2uSDENtGHBAipUVkPKSukXBJYEqIj0zlKDamqAVmvoCwDmfYMafCxZaEioqjINu4he4Iooa+ShHLXy3Aqp23T9SLYDts2NIuaIAIqV+l6IQQ5BuVqzs9OELJle/82eVmy88Y9piHy1vuHbN5qyKqSl166w3Db8vBigjaO7bt3KKsRZ2PHyWXN8WVD2y1RGF4+uMVGKZhfXDJdttQu9VMKkZEJQSkDu2LKgS5ot8BZODqasTAeM3MIEyklFP0hRdWjXcyxPpAVOT7Csm4ogLxfYTpH2xkqJcjzjLyfoTNJXmbkuaLfV9jWM592NLWlay1145LRa2exNmJDmscxsDJB9EmhMaR+WO/WRYIXZ9u/TQHjvzvjRTQgmUwmKn3XdWRakQ/7DPtFos43I8Ch1IrmHSxCRrJco0SZEPnoCHGOlYlqXBVb6HxENSjJcsgLw4CGMrY0KhC0IhsdoKoClCBTnh0tsIXGVDldp3FeEbzFmZZmUaPLHJVLlJZIJDp6clpm0wuOTxTD3QNULth85QARLN//4JjecMZod0FZ5Xzus29yOKlZzC7Z39lm1B8wWwqWtuP4YspsMSP6hu3RDnduDfHNGeNpzbLzyTdLaBSSUkY2ZM1tcQ5DS7ajmExrJnNHM3H4LlIIKIuCYnOHumvomhpdKJQuWLY10UIx7BELSZ6XWNtxePgBw9GQwWiIVIJk/m5RylNVQ/K8R6+/mZDyG4nUdQ/QjfXwoaXxb4ge+6E86k95zTXKFoGPuwe9eOqb966TsCiuBCpEOtFHvvxazn99wpto1jWl8HoPklIm1WWpUTKjKPpkeUWuMwTQ1AuiytD9jqKoyHojzCLiuyU+dMTgVoyVAp0NEUoj5QwrG6SwqGyAlCX9qkLlGl0YKmnZlA3TzNFqgR5sk432EDlILFta0QFNP8eFiOkUIgaCbVIRZNkgFGS5phMSBRR0uHbG8ckxstyiP9yiv7eFySUPTmccz5bsLDsWHXz2s5/kctlyfHnKZpFR3LuD9Tmnl5bjyzlnkzHe1fRLwRsv3Wbgl4yPJ8wWHUufLF+kiBQi0hMd+/GYppgyv9tHyMDTp2Nm0w5bO7KQWGSNiIgIRghcDHSuoYsWrEa7/4+99/q1LE3P+35fWHHHc/ZJlXOH6p4Ok3qGBDlDgzRswjYJ0wkwBAP0le0bXxi+MQzZ/4BNXlgWBEK2ZNgCLUsAJVISB8zkzLBneqanp3NXV1c8Oe244hd8sfYJVV097CaHEmXzu6hdZ5+191nn7C+87/s87/NIhIYsKzGVoR1pdCDmZ5AiiDStliZNFfmwZJZXTCcFVdnkFMY68qLGOrDzM8g5qKrGdsWdUuVzUnA0fU7ofY4jsTDn3PFcPEmM/KPz8/QX/pS0/59zfPpkyksqH1DZirq2qEChwwBpHEKCNBakQEuNEU3VX6KbSanncPkRHOdcY/grFGqONsg0JI4jpkWJqC1xFGCUQks/V+NwGNk8hgQo1fBhnbOUddGwfr1AKk0QJWgJSoLPa+raksQRSmmqoIFea9eo4DmvKCdT6qpGhwVSx3gU3tUIW+AROB/OF5oj6F0maJ3Drb+GM7t48gbCFSlSpii9gmSKcA9BNiaYUq6gVI+01UEqg/MPiH3FwBcc6pJcge5eR3efxZstXD1kQT/EKse4lVAbQZlnTeJmasrRPtZY0pUeWilqqUHUhKJkNtvjnbsFaXKFlURy4UvXWewG/Mb/9Bscru+ytPQen3vhOf7r//a/4Q//xR/wa7/yd7j6+Ve4/swL3N9WvPnROncevs1suov3GUtLA/6Nn36JW298wPd+/x5jJaikwKFANIqNPTfhq9k3mUSW6IUWd+5kfO/VMR6BF5KFUBJoSRY19LiqEjhc419SC6wRhDUoLbBzyfdQgPCSMoCkK1ldDZqMxVmqscOWYJCUVnAw8xjpaDmHtA5qT1nOwOf0FyCKYyT5vDk1wqqgQU+lxCl/3P/kfQEIgiBqghrvgaNsCZRQGCzON4G/8I3ctpt7TB0r2UmJFg2t7JHxODD1WBXwuC53XH37eIXkaPNorjsGZOevF594Nv74h2+QQqnn1R2FkgFKBKRpj7S1QBzGSDwHw92mCX6wTNRq0bt4k2x/mzr7EOcLrK/RKkbpgDBda6i/fgfjZiAdSvUJgkt0FxOSdogQ2yhmLFUjKlewqx2qvUBy4Ysom2HMhOVol9VkxN5iQh7E7B+EDUW3GFNMAg63d0kXUpJeQqk0UgR0xRRlC27f/YBZPuDimRbtQYdnnn+Fb/72d3jtd97g/FrEyqDFf/Sf/GcoNP/br/4vxGmHV77+c0zKmNffG/LgYJft0QFFeUAaV/zkS08TOccf/T+/xV5dM4k1lQgQKiFR0FGGK+4uNxiiLwl2D+HVbz3AOIUIWnTDgF4U0FtdozVYYfvdN8nrjLO9FnXt2DnYb4pbFU2ilBV0lxJ67RDVaZKpdqyJIkm/H7C1kXN3fcTwIGc8LOl1G/+u8aSgrCweibOeuj4yNpeNuND80Krrk57Bvx4/vnEk0GSNJcuKYwPKlZUlBoMFhtMcISVTFnBZQVrewpkc6woCHdBKB4TRAlq3Kafb1OUBxlY4QqLoBlGS0F9OEWIMHNA3U1KTM9QVldTEZz5HEKWY+pAkkFxP7jLpxIx6KaNRRpZXuGJC7QpGu3tEnRa91S4ubNZPInISUbK7dZciP2BtJWRhdYFrP/0SDx5s8ff/3r9o/NBWQ772tZ/lP/z6V/lHf+8fcPvBbb749Z8j7S3z0XrJwTTj1sP7TIZbaJXz1OVlXr55nW/9xjd4eGeTwyQg8xqhEkLh6SjHWXZ51r5De2nCbjfitVfX2dubIcIOkdIspBGdbpfetRvk6/cZjYcsL0a02h0O7o+p65qFqo92ijRts7+3zq33vsO5S5c5d/EyC/0ecRQQRCVCSJZWLhNHHZKkSyNt3gjwPKr8+ldsnOofOf31/MlHnjqNsD2e7zx+Bp08iuOLHznixGOGvqe+/0jH/6O3wrEwk29e9Sg1skmkhBRzOphCiubc1Sqk01lqCnpKUpuSg/EuXW9Ien2ipWt0Bhc4vPMuptxvWjPwBEEHpRPCZAVNhnYbeDcBPGF4liBYZLDcRgUG6x7S8iVnfA5hxiiCcOky8cqzuPoQWY25nHxI7R27yylZKTgcBfgqw2Y504N9vFf0znQJYkUuAxAVfTmhnjre/dCi9GUG7YAzNy/TjyT/+O/+Mw6397h8Pubqtav80i/9p/zg1df4p//gH3Lt5S9x9ebn2BrGPHj/gA+21hlP9pBiyupgwM9+5UXu/OAdXv/dt9iMNONAYmWMUpqWtAz8mOvZ97GJpfOFNT66vcN3v30XKyIQAStJSKQlI2mwHhCK2hkKM8QVGucCwplDKc9kOgMsq2vths7XCQi1JI0U7bam1VK8vZ6ztTFhZ3OKNZ5+P6GqLMNx1vRKITG1bZhpRwmSnbdeuGZ+ujmtz/kjD1mQYu7J6h6db6fH6T49OGUr8xccn0HNz2JNCXikakzLrAUvVMNZDmjQI+cRwjVJkJR4pzjyxpLzzK+sGwdij0IdGfXWHm/8ccVfycbEt7Fi8igsniY7ZY481fO/h7CyKZ7IRkDAmBonBEpKatsYCTcS1uBFAKLZ9MS8+opKEGELNzf6C6Mu4PF1jlcS3+qDCppmcZNRHbyDKw/AlSAsUivSZAG8xNoRWtVoJenHA8JwiWoWYG0JoQftcUEIlSeb5CRCcjkKyKOcOtxHqhKhbNNcKVJ053PYYhuX7zccR2ew+QjhDeLMRWQQ4uN74A0iz1GuJqhLNja3KeqKzrkWKlli4dIqcatLP7xBnkf8+v/xG6w/vE80aCOVxBYVaQ9cW+Lv72DqHZCa0Dt62SZBNaIAbPsKIllFmHcQdkgkEupC8r13R+Ta8sDXHO5X2MrP/cU8tQInQNQWB3jZJBxKAxVNb5jzOOPRiUQFkLQEcVvS7ktabUEUzn9923hSKe9phc0idUJSeUlmJVoIlHDQCDUyyzKquiZQDY9aa4HUoGQ094vyiIZYerQ9430ONP1ZTZ9WY+ZnqnouriCxzuKsbxa8sQ1H1zdzXMpgTotVjy8ieHzRfoqYVIhHjp9Hvj6tfPQjZdZ/zEPpoPHvYI7SiUb1S6qAKBRyeJQAACAASURBVGrT6ixSTIfUddn0MsUJKkoBT753l2o6xrkSL2pQhnanRxjEWJchhSeJBFHUptPtYesIW1hEmiOiAh8CPiCfgTCC650Y2xZU4QTpa6R1qEAhgpi4exEftrCH2xhvwVaYbESx/YA4uUqwegHR3sR3pkg7QjpDVGWUh4LX3/yA1tWz9Ff7tJYXufrcZQbJGq2wzbf/5G2sLRCdhKjTwlUGrT3dgUaOxxTFOgiPUglxfYB2lplw5HEfsXYTxQbB8ENSndIVMdv3pvhpzsP6kGGWU009CE/oPL3BMhcuXCB3Jfu7D3E4VBBQuxKhFWura4CnyGZIYeh2NGEsEIGn1dYoLSimJXiFkhFV6djbnZFnhqqyTGYVSkkq4zC2aej1c3QEIZBuziYQgDhd3fsrGDD+azIep5CcFgewrjG/DsOQM2dWSNIEIQRx2qLVNlQf3SEfTzF1jhCGVicgTdr0uwsUhaEqx8QdR9qJWEkuIbyizgBdIkOL1zU+CKkPJLMCziQha1JTxhmEHqUssgChI4LWMuniDcZFgcmG4CqwjmJ3HWkHqIuXUGmN77YQsxKRFQQmR+eKD27dITk8ZOnMy9ikxdWbl4lVi4V0hft3C3a3/oBhntNa6Tf0GmNIOhCYkrrawLsMHbaIfUla7VL5kqnSuOUXkMYT7L1B7AQ91SI/kHzw1gbbdsyhyZgdVNgMIu+J2wlnLz+LV569nQfk+RQdRlhhqFzBYNBvigdVSTYbMxrvg7CcOXeBdrcFsiAMl0niDrNZEzJFUUoYJcdCB97PWTqnFE+PCmIfH/9q183HEKQfcQadBJlPopyfpEzHKrOc4h35k8TtFNniNFA1f+7xM/FRBOF0enZUMGyMe/XxeSfEvE9KaaQKSdIeQRCRTQ6w3hEmEUGcoqIUW0zId+9gi1FzBs19T3vdLgKFdWNCbYhDST9aRgdLmCzEuxIde0TgsUGEKD2Tw4yWUjzTi6nSGhNN0LpGSo/UTXEx7F2lmO5RD7ebgnidUx3uoOqK/pnPo+II32kDNbKu0E4SlTO21zfIy5yF9CbB2iJrV87QW+yz0jqHqTX//Df/gMPDHZLVBVQU4EpD3JJ0YoF5uE1VHSBVTCAEabmDN2PGAureZWT3LGr4JlSHdGSboJR89NYGJrTsBCUH21OqiUNph1KOia3JtCMIFVIIrASpFJGSmALq3OBt48HZSiRCS1To0ZGg3Q1wtSWbFcRRghQB00nF/l5Gnjc9uuNJSW3cvGWoAVCsOVLhe1ztuEFFrW1iLudPFCePEM2jYt+REvPxfitOzUlxkst7POKocC3g47L8f/b49MmUc5i6RCBQWlPORQi8UAgl0UiccJS1QQpPoBpOspl7QXnvkTTmura2WOtBaIRW6DjA+Ro7R4uEaJIpQePiLrxHyIa6IGVDLvNzidamaNH4SaEaSfO6rhE0PVPWNv1dtWmoLCJMQOjGId3axhdCJSidYudGwTrso6RE2AwCBQvLOBFhREK1+yb1wa25qbCbV84DWp0BzhZks3V0qIjjgJWlAQvdDoebe5RZThYW2EDg2jF+6skOYEVLziQB29GMYbjX7Da1QyiFl1105wWM+ADP68fIjM1GiLpAqh4q6UGc4m2JLBzKG8K6YH1jm1tbe1x76QYLq2ssXj4DA0mr+DmGu/f4P//3v0WrHzA430VoiclL0oFABQLPNrbeRaiAwFu6s/UmmZJNMsXCC4jDTUQxJRJtTOl47b0daumYBJ689tgKpPIoJZqEFgjmwRlSILRAJ6oh3lnbLBzjiLUgjCRJR5J2Jd2+pBUL4ghM1biSC91M/lYrINASJxS1V2RGEgDxUTKFIMtypCyIA41SAWEcIL1Aa4sXzeKVoikAHG3xzs77DgDjPKXxVKWhrgxRFKF1gDXNPTfJlKG2TU+WkA3VTUt9LBP+6ELyp/jijx9rH1+8Jz5SJ9c+3sB79Nq/DNPeTxpahSgdNnMSgZC6QamkJozbtNoLTA63mE73aQ1WCZMmmfLeke/dwdYG7wwIA9rR7qekSZvJaBuEIV2IWOi1uX7pHPloxnR3xFSVFNLhWiGOiGxdEBvJjU5M3hZsReP5xgmECoKIqHcRH3Vx8jWMswhbYmYVeTaju3YBHS9Bu4fvDhFTi6oKwiqjOCz5/sGIFSW48dIztFYWuRFAUt3EF23+5A/+Pnmxx7UXVgk7bWxl0B1Pd0Ej7o8oiod4oZpkqjpA2Iqp8OTJAqy9gizfINx8QFsv0lUdNu/tMNycsevH5MZSTT2BhkB4+t1lzl97gfdvfYe9nQd40UjqVr4gDhLOnlljNp2ws7OBkpZeNyCMBDLwtDpNsWu0W4Jvgo+qtOzvZbiGJU1ta4SAum7WQ13bY6EhIcAJ11C6j+eW/1Hx11+PzzhO9zseidhUlSVJIlaW+xjbeCfGSUraslSTLfLDwyYYkI52N6Dfa7OyvMrO9gZVPSJpNZ4ul86uorzgcH2P0ldMZIaLFS6JqA4lZem5loakccDDeEYVWHwA5AKhQ4J0mXThKcTeXYx3CFvhbUW5+5BAgA4XqY+SKTtE5iWhyQlywXsf3EHu9njxKy8QxAnXnr9CYFaI6hu8++bv8eH73+bKc6sMVheaANoY4kVBUJTU5QbOe4KwQ+RK0nKHyldMdYBffgFhILh9i9gqenqV/GDC+29tcOhnTH3JbGywBpT0pL2Y81ef43C0zYP3vo0TGh1FWGGpyRkM1pAoNtbvkc0848keaRJz9sIlRFCBKomimDTpopQG74mihDCMOd53gUc23x8ZiB2nG/9yh+dksj05R+KT7+vjBb0n90jNr/zYN08/zOlUHysoPA6BMWfZn3p+Tj8UQs6LefPYcm6aK+cFvaTVQ6mA3e3bIAXpYIUgaZIpk49xo01M2bRooAxKhfQGXZyrmY53CRNFqxuytrTEYq/NaP2AIivIkrKJ4ToxbuSZbsJqqDnXS9lOa4bhqLlp6RBBgFQdwt41lNMY/wO8rfGmoDzcQWRThP8JVLSI77bxPkeNS7SDqJix/TDng4fbPHPjAksry5y5dg6RC9LqRfa21/nN3/i/6K8knLu+iIpCXFmTLAmEkhi7TVkdNCIXUhIXW3g7YawEdf8qYu1l1P1N5CSjK1cISsOHb72LCWrGLc94ZqinHh15VOCZlgavLcu9ABUojBJILQkSRekqbF6BrfHWkvZDdCiRjVAtna5mNrYc7hZ0OyFSSCaT8vgMAqhNiZvT+xpD87mghGMuKCfmVNvmeufdcWuFO57S4mMnkzjeW08YPkeJ0rFUup+zk07DqX+O5fmpkyljHVlpUfOsrTQW6/wcZhUo3QSOXrjjm2n6rCSChrqldHMgx3HYVPVNiNQCLyUokAqCyDd+FjV4a5HOghdY51FBiBABXjS+FibL5op3jVAErqGiWGNRWs99o+ZGXCLAIvHGIZUniCNE0NyokCFShZS5wVpod9voIMIvdnHSYkJDPj6g3H4fVe6i1BwdE4rBYko7Tbl6boH9wxGv/rAgXLrK4lMv0qlnJCYnlDtUFLyXg42WWPrKLyG27uL3/zEt3aBida0oZwWt584SRIL28ANkXeL8GxxGkmr156hH71EP38F5jzEVxb3XiTqLDJ75EvVszP4brzIxBUVdYnyF8w79p9+j9+ABX/3K1xBnUn7rt7/FeH8dL0vKynOwk/Pis2d55vNf4vf/5JvcuX+fyfYBoVPcvPQ0nSjnew/uc29S4ZMYb8YwfkArWaTTavEL/+aX6HYgq99nZ3TI2/fWWdgviHcLtBNoBOefXSDuBmT5jJnx3M8lSJCRIAtqctFMZiEEaxcjWm1JP4U4UfR6IXGgSCNNiafCkbYh8NDrxISBImpHqEATxCFaaZQOqApDXZUEPkYqTWab3piFoEHLqsI0Pl3KEUiHlAJjDN5bvK+aoAbZoJpONaIrQFk1ik+NAMtchEEIpAo5okRJqZGnzDdhfo7x+JF0tPQ/HaL0qALSx+kX8+982iX9FxqNJG2jltOcevVctrRif/cOs+keSkla3T69hQXCuEVQjAkExKKEAJwWyBZIaUn0DtIeYOocFacsPvs8i2lMN9UkRUXqc2a5Y+Jh5dmXSdptzPZvE+SCoLtGHiQU05JktUN6tkdUbqD9GCc2KPyMg3NfYDLe5eD2H+JsjfcV2dY9siCgt7RIb+WLrOcwHR6SZ1kTMNY5vQ9uEf+uZ/nCVRbPXuf9t7bZ3vqQ2g+pZcHW9oxQDzhz7TJ31zd5/Q//iAeb6+T7JS9eus5qt83e+C6zMqPqdLBK44c7tFVI/8LzfOW5yzx1cRmh1jF2TLV9h2Qy49z9IdprEpWwFlf0eMjzl89w/fwq93e2sQiee/4V0rRDGnYZjfZ58OA2t+68wcFH61Qzg/eOvb2sCXJqj1KSw/2K3Z3pXNa+WXe2bip8zJu4g6ChUJS2bvZO3/ROQVPxs+azqVT+9fjR43RTvxCSKAoYLLabqioCYxtVvL2tTTY3d0mVQ3ZCtA5ot1MuXlyj0+kzWFjij7855fBgnd6l5+gsDuhphy5yAtY5qGvWK0dn+SrLzz6Hrf4Un2cknSVkGFPlDqs83evLBDuG6CDCRxOc+ZBi8RxEAw5u/xHVdBfhDXJySPbud4n7fW588SfYu3WLPdNmo8qRs5qinpKWBeGffIvltTWufO7zbG3MeP+jH5Bn67iwYDjO8TLiCzfPEoQRf/id77B3eMBsL+fswhI3blwgENu8v7nDSGtMt4ObDdE+YPns01xa6vL1z99AqkOE2OXOwQaMD1h6MCLIahLVot0O6YtNOouKpS9+hb3RiJ3RkOs3PsfKynnSqIO1jo8WFwhCzZVr14miiDROkBqkFqRRB61Czq69CIh5IH+USP3ZvkiPfeI/9jn0Wcbjx8YJevQXOYOOECLxseTn8R/4pGPrWCTgKPidn4lPVEc8ph+eiJM5bxFzRNfUBZsP30EHIWGSEMYJ3YUFolChZodElISyJonARxLVcShZEvqHlMZRVTndMxdZuvksqSmQpmQgamoK3pmC7XRZe+aryN0t2NqhHXYgaVHWAdm4oHNtiTBMaW/FCOtY8XfZbUFx5WcYb77NOP8hpXX4MmN6+4ewsMTa1Wcop+d4OLJkVcFwWlCbHGNr+N73SXc3uPDsCxCnvPX624z3t3BhzrSCjY0Zl9Y6nLl+mW//4C3ub26y//AQ6eEnr1ynmxR8uHWfraKi7vUwtsIPd1hdPEe/t8jPf/UmvRZ4d5nDYsiHBxv0dycEWyO0kSgkvafX0O2Q4fSQykMmUyZZwc7uIbNxwWyU0+sHJInC1jXWQjExCAGbG5MmeLKefHrI/btjhgfl8RnknMdUjWOlEI3mQUOXNRg3b6vwJ9S9I4rpkb/sidHz8eQ5pp0e+aT5xyfuqcLzERXVnXp98x7yM6FTn6FnCoz1ONG08VvbIFNKSKQARNND0ywD3whOzBMqOYfehGgECwKtG28o0VC+mp79RgpRKd9A5soivEBKNy9+NwoeMpRNMuVlQ4mztkno3Pwnz1XGFALm0G9zx7ppqp5rzyvdSGcjNFo3AbjzEmlomrWjBJV0cKKm8vu4Sc1stkmoDToJEDQf+tnVFr1OypUzEYHQBMoTdbqk564S7m0gR7tEeEIsSgb4qE18/jmU9RAIwiBBRgtNkFJVBMtdkm5AKw1RWUXgH+L1GjudZ/DFPrXQeN+YkZmDhyiTk7z4Cirp4sMPqNyIoi7n0uo1/u4D9GjEta/9AiLpUh7+Nvl4Gx00n1VdeqJWl/6ZNYZ726x/8C5lUdJJW1xYWML6IfcOMvYL8EGAsDmyPKCTtFjuLvLFrzxPf0mxnguirS0eyIJuNGPBTVFFIz7xzMU+rcWIgwPJsHTMJg2KKbRB4Rv+nm8qEItLcyPfwBHGilYSEGpFpPU8eXGkgSASkKYBYahp9WKEUljm6IiSWDy1tc20RFB4gfKCtgNpASzSO7TwjZKM93hnsNbg5smUReHROK/nm3wT2DQQ8lwQZD7XhVDNxi/FMRXw9AkrhSRJUpSSp5CmZuX6OT3waJ0/6bA9OWxOIO9H94fmSSkFs9nsY697fJxUFj87xpBlGUEYkKbJ6Tts/nWAK6iLmtbgLEm7y8LCAkEYEXpHIDxpME80hSQKaYL3usAa0NKjI0V7dY00DAhN3jQXuxrlJdZrot4K6cIiLg3RvkYliwgktqiRkSZd6xLdiwn2FYoRFZ5+/xqOmD0Rg3fUrqKaHFJu3qV1ZpVo5Qzr7TXKXDPLHkJVIvOMamcX3nW0u2usXunx3uwO0/11hCyQgaMoHMZK4l6X4u497n34IaNZjiktZ9pdLg4W2B6+z0GeY8IQj0QUY9qBZnX5LDduXuaF588yqhOm1ZCHaYk5HLFSQFBLAhfRjwWJmtLvnUOEPTJTUTnH5QtXabd66CAkTSOyYszmTodAB5SVw1Se6aQGIei0YmwN43FFkUGatufVvyMZ2Ya+fRQcWmtRuuQoeDmyvMBDFMWUZfnIPPvLGFVV/aW+/7/K8UmH9JE/YqBVc8ZaP+9RceTTKdlkRBIqIhUThCFLS31uPnOZdqtNt9vlnXcSggDSxQHt1TWibIyyjQn5zFmcl+ikR2vlEq77DsSSIO1BkDbmod6TrHYI7YQ4DZC6QNod+q3zZNFZhvdfxzGk9jV1mVNt36eVhgzOnGW2P8O3ZoyrzYYSXRTIusB/+BGRk5x9ZZEZGbP9+9h6hI4ctXGUBYStFlIqHt67x3A0ocpq2ksR15ZX2J/ssHk4phAKHwWIKiMUMSuDVS5dWeKFV65T+ENmpsfwoSLfC1iuJcm4JHQJcTsmVTPC1gJnO5cJdzapheXCuYtcOP8UgQ4xxlCWU3SgOXvmPGEQEQYxck4P976BccOw1VC4pZ7HZEef48dN2h/7ZH/cU+jHMp50x48i0KcKgp+IYvkn952covSdfp/jJOyYY/XxROr49cdCFOLkxcf3c7qocyR3bbAIRsMtgiBisHqBMIqI4phQCFQ1IwohCURjIi8g0B6BAXuImZ/FYSumtXYGvb8L45oYR+gN3mm8jIiXzqONRUaCOIoR8QLOQl1U6G5M3Fak7RBdGAL28OEi/cE1qvEuIxlhbAHGUO5tENqKwc2byKiFSVYp7JDRrECUNaqeYe49QBRTFp/6PAQx2f46xXgXFVk8ljxzoEOibpf9vT3u375DNsroJClXBgMEQ7aHU0YVuCQBX6OKCYNujzPpgOe/dJ1+X3NYJ4TDPbbvCjrxAX0vIXNIA+evrBIuJNy+U5PVjonuYJ3HFoa6rCjqko6XTRxmLc54ylmBNZ6yzggCTSsJGQ0rqtoym9WAOO4TbYp1AqWbNaWUwJgjNcjm8eQMOnmuER45EY44Rp8QIE75ep5CpU4/Hs0p8bHJ/YQqwJ8xPnUyFWhFO4kxpqau68bcT0iMM3gaNKjhO6rmFxcgAoGWrpE8n0OxrpHnmEddHm891nqcE4Caw3YOqSMQ8wZo67DOoqRCS4VD4RAY20IGEcZ7rDWYyqACTZK0moZpW+B8BDLAuQoQSB2jgoggamGspapKnKtQFrq9AUGYUOVDnCx4/uY5tBKYIiJvKyZtuPTsU5y9cpGDvTcx1QHPXFrCZDl//Jt/SqhD/st/7ye5X0nee/Aa27sGc2gIRoI0WuRv/Be/TKkU//Cf/BpyusOgJ0nTS6x2vshw/w2qcpMXnv486coS3/xnryLMDs/YbZbDGt1WPMg8D6IbYLcQbkxhK+rpLu7b/zdRusSlF36K8c4Dtm59F/wMYWvenRju5BPe/lu/hlCK9a0tFrvwC1/oEy5dITr/Mh/d2+dXfuXvsnHnDkVlESiUEEh5wGQ24ta9nMJKcAHd9oh27PmvfvY8n7u6xOWXBuhOn6fUNaq65t/9qQkyn6GyKbOHd6gO9+lfvkjQbmGkoDA1X5oNyWa7jA5ukZuc3BRN0iM8TgV4BLKuUUqSpiGBUsRaM1AaJTXSNcLlQgqkUoTtDtaLhn9bWlyVzemoAU4A2HkF3jEta5QW6LBhgmkazq3xczl0oTBONapl1iGlJw4UlfNYfEP/FIKyqpoKiY6apGru1xAojXOCsnaPyEevrKzwt//2/8rKyuoTVtePj/bxrW99i1/8xV88ft+TZOrR9z9Kpp7kufDJ99KUfKIo4j//5V/mb/73/92TrpjTMARKh0il0EGA902P4BGSV1VT8vyApcUlut0em/fukY0naBVQe8nDasJ0r+a1j2aoyQQ9Ujz9tc/zU89d5Q9fe4v3v7/LGTmh009JF25Q5WPS/Q9ZjS5waeUyb+qP2Cx3uFkd0JZjnm3F7DjLVu95bLGHKO4wtTX1dJ/ynT+m9SDlmRtfxl67xg9edZTjfUw95UHu+cb9ktboe7S+9SHjyRDnKr72yiL9QZdw9WVGueTX/+k32d3ZYphZlAjpp3PzRjnhg/tj9idTyjohjcdcbW3x+St9vv7sMosXunQGLRbEM1gcF1eew5kK/RMTTDajONgh6vVIFhaQYQJSc0VasnzKg/t/BMIgtOHhwz2+/73bvPzyT/DzP/8fY41pTAnn1d1ABzSVuqZP1NoTL8BjmsQjgYr/mPz50RTJsoxf/dX/md3d3XnPCI9de6R4OZ9Lx+8/R1+kOj4UjyqLp2dp8y3Hw4frn1gM+P/DkLJB9tMkJI40n3vuBlcvnaO0FmNqsmyHTrvFhQsXmI7HbNz9iGcuLXNp+ad5WHgmow0ebNbYSY4ZBSxcOM/f+Le+yu2HW7z1+7/FoN6lc65Lr3cDrTosbLyNDuHm2WvsFprv27c5a2su2k2uJIpBmjFZuMQ+PWR+C5TlsJ5Rrr9L/nv36Cze4OWvfIV33nid7fUHuHKCrSt+796MZOc2v/PRr1EUOePJkGefbvFTL14kWn4eHy/xR999j4PhhM2DDG88iU4IlEPIIes7h9x+eEitFuipkEvtA1b7Lf6DL59lYanP8nILJ9sYcZFzK89S1RX6lRmiKjHDA4SSJEuLyCBChAnp6ioXnnqGOJTU1T2KsgQhuXHjGlonJGn7eAds5qxHCg0cmcHK416p+VWPPf7VHMfJnz+NRp36V4iTNfvY+DSr8Kgl+NEl++SgVM4ZTc4dBcf++DrxRJ7VMV8LhMR7h7UG/IlFx/ErxJEKrief7mHKMXV2yGBhwPLaeZ569mkuXbuCrQ+oqilv//CH5JOcxFiWen2+9sWbTGTE/sb7TPYc9dARDzWJ6vHv/Ps/Q6UVv/PH3yAohqwtStrJMv32c/QO71Dn+9xYWiNe6PAd8QbSjvic2WI5KnipHfBuP2W08DKiuIs0BxzWGdlok/rb/4i4vcQLX/gyOxtbvPtmhagN0s54daPgh3uH/MHWP0EqxWi8z2BR8QtfWSPsnScYPMvtjRl/59d/h4d3N5hMKxQBsVIIOWE0HfL99w+YmgDhYs4tDFlIJL/whTNcP9Nn7UIbnaQMxCKX1mqev/xlRJmjsoz8YId6NqFz5gw6SVh7tqaoaraHB0yn+zx9fRnjK4yr+PDWFjs7Y6bTCms9gY6RqrH3dNYxnVqKoqYoDNmspirNca+5s82MdIU5nqsNagWNwMvpWEXM+6jk8flw5HvbzBSP9ael9J80V4/6rPzHEqwjuuBfos9UI29t54efmlffHfOg7Og62fyCwtP0Os2VOY5W2jFsK07s3Jz3c/7j3KAXMa9END0owoOSDi0FWjXy1o6GWmg9SCU5Mr6VUhHoAONr3FzC9+hw5pgrKRskDYuzBuvcXD4d4lgjbU0ceTrtgEAprLREtoMuB6ysnuXshUu0k11MKRj0u0y9YDqe0e9Izgy6TEcZyXSE9RE1GqcSCBUrqyvkpsJs30G6HNXrEnUHtHurtKYhaWXohAlJ3KOMuxBO8XaI9jltNSYOFDoe4Ioh3k+xOJypKPY3EMYTXIgJ0za61cflFmdzJsYxMTX7d+7OCz2WThrTjnoknR7J8hmm72xz+/ZtbJmBEkRSECiPcRmlKZnWEjeHEmNf0RM51xcdz60Kom6AaMd0okWOFA+9zXEmY9KPKPa3iZbPo5IUQk3tatJsh9kkYD/dp3AFpS+R2oOEWQ7GgC0rBIIoUGiliJQiCkLCIJjTtJqepsZbIsLbBgv2c8hfzw1kjznXzuEFlFWN9goZNoHlUSDn/FHlo5mH7kicRAjknKMt5v9v5jPzzOFIvcmczK1HFmszoijipZde5sKFC59pgX7W8dprr/Hqq68e38OjB9kppOyI5uX9sfndk647fvUx117Qbrf5H/+Hv8krr3z5E+/j5HefV9atZTyeYp1vVBiLIbNpxNJgjX53gMtLJkFEJ42orGO8dUglms1XG4EXEa1Oh5WlPmQj8v1tGITIuE3Y7hL7isRXxHhioTE6YRa0sH6EMJaOysgDRdwaUFFjSk3tPK4uySc12k6Jr0hE0CLp9fG+ppgGZE5QZjU630fLIVIaokiQhissdrp01tYwOzMebNxilo1xWpIqSUsppKwxTjCtBNNK4QwEgWGRGWfiFleWQLUFIlSEKgGh6KY9vLe4QUE9GzNLA3TcJki7jbGogG6vj9KCzfW7WF8StTxlNaQyU/r9HjeuPYtzTU9nU0GXSDF/PO7je7zB9tMHggcH+3z00Ue89967KKWOkZMnT6GTcO2Yqy5P1sixzwcniTjMkZg8/9T39P/N0aBUwkuUFPR6HZIkxiAxtmIyKonjhCiOmQxHTEZTWnFAv50w2RliTEnmG+VVp1PCtM3qyoCtrS3K/U18T6I7HaJuj1C2SbUnkI5uGDOKUvK4Q61meDcjkTlCh7TSLrNaY+v7ICpqbyiKCrU3pN09T9qKiTsdok6PYhZSl4btrEblY7aGOVI4hDTgU3pJi/ZggIuX2P3ufbZ2DzDCo7UkgZcxbgAAIABJREFUVYpAeazNyGvHuFIEkSRUkkVRsRoEXF4UpH2BihTIEC8jOkmnCYVchbMV1UEL70Gl3WbeKYlOElJvqcsJ1uQ41yi9ttoRWsVI2QTrzjV9sN6LefDf9GGfUPseXzN/tZOp0+N41T1SoP+E+z/KkJ7ILX9yweU0aoU4/WNOJ26PJlqftB/50/dw/IyYF4tOikInP+sI8XDYukR4S+UtdZrgbOM3GEYBQdqgsVI0lH2FJAkClhdaUFgOpmO8ibBOY2WEDwRLgwUKDPXBNvgSsdBGt7rEnT7pVNEqalIpCWRIEbaRQYWzI7Qv6KoZ7SggaS9j3C7Ojamdw1UF070RwkJyJSBup0TdPtbOsMWQg6LxZtybPEQKkLomTVt0olXiVpuwv8js9iF3HmxQlAVOCVpSEGuBsRlFXTIqJJVr5m3bVyyLjItdx6UB6FhBGBCphmmy2Bkcr5+s16aajog6A2QQ0daKsi5xYUAcC7w9QEegI890MjfT9VNMbUnipohaFBVVaSiLirpy1FVjRmyOxSaO4i7/qK/sUYbgT6h6J3HVKeGteZzzMVGfo8rcvKD3+PQ+QbFOz7rTC4LPND51MmWdpSxzpGoaW4/uO9ZhE4zS8O8jFWCco7IOl5fU9VGmKRpFPOFxojpGrrAWDBhrMZUB30BudV5inUdGAUorAiFQQqKVwtFQ8mZ5Bc4QiMY0VCcBUqqmSRSB84qaAIs6aWILBEI1mbKtDC4vqG2BcxUL3ZSkLXnpxfOk7TZVV1I6gSWlNn1catk9nFJ+8B5PrUra6QKvfuseu9sTpmYFkytev7tF3Ne8cjOhyi9SF8vYzR18kfPeN36TSTWlpWck3TMs3/hJ1paWOb8yoDKadlZQ37pFOcxoP/0yZnCO3bdfRTtJEI9J2mdYis4yWh+RD0cN9QBPUUnMcIh9558TLZ3n0tf/bQ7f+x7DW2/MPRTqRs4SwGs2h5Lfei2icy5gcSZ5sDXFmW2C5ZQg6nIuz4mxbOzcZewCWL2Kn+UwnrJsDVeLMfGH9zF2RvRshkzbKHcIMkCKFkK3QHcIri3gr5h58OTxFDhX0morin6LhYUONc1GFyqLlJaqGuFshalNYwo3mwESQUPJ9Gi8LcFb0iRASYlzolmctUSEAtkS1EcS/EWNswbhBc7CcP+ANO3Q7S4RSI30qkmcvKcsq/kB2tTzldDzimTjl6aZJ+FCEAZR058nZFMMkMAc7ZFzB/YnClD8JY/jSv8x7eLjnEAxL2oIcRLQNiZ2j1YEvW+2lnm3TIMmn4LMP9N9SUmn026SXeepI0c7dAihmU4y9nYzDvcyyiVHGGtuXl9ltFTSEjEyX0BnNfVwj9t/ukNQ7rPSUyxd+RK9Tp+lpT7p9hi3k8Noh+33PyTsL7D8+ZfJ3n8bN54SpjNi3eapp66yvyW5P/wI6yssBksb62PW77xF0Ory1FdeYnZwyK3fG1KWU2bV5FipVOuE0MR8662Q1f2Enzjbp6hLZvkDZCtk6cKA89awYi2u3md3BOLsdYLcwf1tUue4mg1ZPHCY+xUiXkZ3VsAXICSCsKE7B21UNyVsDWjEdAQeA1jOasF02uKdt95DhRFPP3eTy5cdX/hCwWDhPLXZb7y7vEfrPlJGSBXOE/0fX8D3ZCGUJ4x5rHN6Porjr48vmT+eqsz99XhkJGlMnERN4ccGJHIJEMwmOcODjK3NGZ1eSKsdcP5Mj4taMzsXU+eWbH0JJ2vuvvanTPd26ccV3eVn6AzO0VtaIsJxccsiZIk8HJKEEee/9CXCjfsc3L+LDhxSZly8eIFO7rn7ww+x9RQnHJYQR5uD3W2y/E8YXLzG8tNX+OB3c6Y7W2TlCOsawR4lA5ROePOu4rCM+GK7y8Jqh6zYoXL7LFzv0xOea6YmCHK29u9RtnuE15YQhzNUXXPZ15yrZojNh03xdbWhtAscAg1opIpRKkYtp80f7yhw94bAVw1TJT4LaGblJs6X1HYH6wO07MyTKYNSLbRqwbwYcSJ9/q/f+KS1eoQuH9PrTsHEYv71cS/UqULIJ73h6R6WRyXWT9CjkzPodCmFx/6+J/tLE1TPe3SPkLXjfPCIYnmSVCkBSniqusILiFsdJtmM929/yNb+Dt/93rf52ldfYG1lAVtKvE2IW2ewMuTe9j4ihNU2qE4XxSLBtIeyjq133yQzOYtxSdxeZOnKSyx1Ogx6bUwF7SKjWH/AZJKx8PRT+NGYg/ffQltFGI9ZXFji6dYlHry7zWE2pPYltfOYacDMzLDv/DHp0hm+/PM/w/rrr7P5w5q8mlDZnFndCKQJE1PvSr7xnYRkYEjPbvFgY4O6ekjrbIc4WeRaNiXFsLt3mwMX4q+8CKMc9scsVTVXZ4fEWwFWTlFLTyHDGHzetL4QIFWIUhHt5QQ/sM3cBzyG0NVEseaecby5/SGXr53j2vULXDj/Baqq4tat22SzGVGgmUxnvP3WR+zvjxke7lPXUNWN1RJzlT4pT6TNxbx3aY59NHnQYwyakzaJk/PsR55DjyT4J7jnJ50/f15F5E+PTInGw0nNzdGOfp6bg0jCN2aZXkmkcEgayXBldVO19MxRrJM/iJ3rxAsp5437iiNYWDYlucYQ0HuU0Bw3JM6HFI2XlJYSJ3yDJ4pGHlN5hfZuruZ39Gf0HMmLO1PibUXTf2SxrpFe98JS2QppKipb4b1CCo8MIGkFRJEg0halQpCC8ThnOsmJgogw1KBi4jhg0I0Yeo01HhFH4B31aBdJycULVyBeopYtxmXB1uEDWp2Qq5fOYeuScjSiky6QtwwTB4mMSNvLdEwXWwWUYZ9Sr+AY42kqCBZDOT1EtvqNPL0O0a02ohI4W+OcRSDQQYLQCZNKY8cZdv0+s/EBri7BBKDBeUvtLeW0JhOAUgStDqrVIQ4NYeAowoCJd4jDHQJhCDsxMuxC2jqe2FKHCBGCb4QdnHMI6VBKEAQhcdpFe4f2Hi0KpKjQosY7jQ0sxhiUl8ytenFe4r3CWYnAEkchSkoatXyHtY3xs/AgjaG2Bmk8DgFzpRhhmgPhUQEFmtnh56ou8+qWUkFT2UfRFDUbcQmkAldjhTuukkg5l0UXDQ3kdOXkX/b4WEPmp3nN/N8jaPwIJTjato43MPGJyPlj98D8Hk7uSSo5/7/DK43VEVlWUuRTtNZ0el1anZgwVqStkKrweGqEAhUH2HJMXc7otVrE7S5ep+ROsjfZQ7mC5bUlqjiknGW0dIxpx2ReURhYjTpEOmWgFHWaouMVrJhhyahqSe4djkOCyhCf9+gwZHF1mSKLmM4EdW2oazM360woCBjnjs2NTfaHu5g8p50GDNot0iJHVQV5UVJ5h5A9wkjRWVmmrSxRy0IcUQDZaIiX63T6LYIwwqseQuh5AWIubDKvvI2GI7JsijE5ZVU0cvJRQBCkDX1qlNFOLVIoPCWOmvmu+8T5cfqT/8zj1Mse9UH7f9l7zyfJsvO883fMNekry1e17/HADEBiMBhwQBEASXAhEiIpKbS7Cpkv+2lDERv6F/ZP2U/ajdBGrEgqdkUTorgwhCGAAcZhTKOnXflKn9cdsx/OzaqsmgY4Q0EkEdgT0Z3dmTdv3sx7znnN877PsxS0n5X4nDcKn/f9ntMpL08UgQg9jP//uLDOAjoS1o/0QVBc65iyrJiOBlRVRafXpd2NabQiGq0IqRTOKJRQuE4TazOMm9FpNNjd2SVurWBlymg+JvEVK6tdVBwTZzmphU6nh4kaTL2kFzVJmm1Wk5RIe45am+RFAycmWOvJjcO4KUVRotaukTYlvdU+kbCosceYijwviaKUNG1D1GBaKg6PTslNST6dQlXSbzXo4FBzi7El+aTAihStUpJ+ROo9ScuhW4JSaRQCZSzICqxB6C5Ch2QqgFQRdQYoPIqoBlkEXgR/Q+kY4YKkhawTaGHtlEDKooRscT9+nhGpy+NxaNS5Q7mwB0tJt8X7uJTzEMue2ePtj1g69qdeU21nFvfp7LoWG8ZZ/FXDDWf/X7oqwVmVinMWaw3eWgwVUnmsK5nNg65eHMXYGApTYWeGfH9Ct5+y2mgjsHhhkLFEWkExHmJ9xcbaGjLtU4mUaVmixodEDcXm1jpz5yjynHajTVk5hpWnmSiajR5t02Ajkpw0eozTTYwc4X1BVebgDOOTE0TSoecFOk1Iel187lCVoiwr8II47RKnbaaVIp/kTPf3mQwHmGyOKyKcclhbo8bDkqlqIuI1kpaiGSU0Go44cVRaM3eO6fEhKsvorrQRKsGrLufkCxKpFHiHs4bjkyOqqsCYjDwv6ffXabV6aNVinM+ZTuZk8xJTObY3e0RRRLvdZjar0FoHVLqeAsvkEULUXYdSIpzHY8/v+wdm0fIzvq5mW0wJf+GwZRsUPkdc+jeXfJylT/qIDtyHDqa0Tmi2VgL9oanQOlDuVsbg8FipcB4qBLgg6Bk3NCox5PM8IA21irGzBlNZ5plBRxFRnKBijVcWUyMIZcfhnSOO6mXtRThHGUR3jXNEWiGIkDYCQEUJTkRUMkEnkDiBmEwpigIvQ1mYq+ZgS5QAZwyOAic8XkqcEpTC8drde8g4pn9bk8aavnK0WoJeN2ZjNabfi3CkDAvDcDwlm4/ZWeuTdtqsbO2yuSG5uin53jBn/3SPlkyJU03reM7GSpdf+2f/kh8fzfjDr7/Nj++8QX74Kv/z7/53/PpX/gHvfetdjh89YLz1GfZMyneqku3mNZ585rdZGx/A8IBy+Bwz8zTl/FV8dYI3e7iqwuSnGJti/bsIBc0bN/HjIb7IMEWGVJLO+jreaeYzxfDkDof3vlkHWwbjDUSSI+kRzlHMSnzkUCs9Ok/epv+Jj9Oxc4QvuL9xhEkLNr//FzQbmvVbHeK1p2jcvIJzBucMWimUFEGPy1cYN8L6EuMKkIK00cc6T+R8EEB2BYlKQcXIKOyVnUbITlkfqJqtc4HOHkcSJbWWkwAnWO1IqqqkLDPysqCsKkxU4mzQgrJOIBoRSkWUVR7EdeMY4XWgVg0QKyARSpPEHeSivE9UKOmJ0zZKp8xmM6qqgqqqRXxjlICo1jVw7pxU4m9zPE4fwS+MTr0JLf4+Z79ZelwuYantlKtZOxc1xh/9ms6vLTxKnI5Btdh/9JBH9+7x3AsvsLaxQdpsAI58PmA0LDk4PqARNegmHfxgCLMBz332c+jVDf7y3QHj00NeffQ9nrm2xT/50q8zPRgxfHhK0u9zmvT4hnXMK8O1nY+xEsWsDg5Iy1Xub3+R+ewR1ewhw9M9xuUIKXKitIFv3qDba/Opz3+GbDJmeHjAdDJhNpuxvr1Jo9liNFYMi4w//qP/k6LIyacTrvZ6/NLqFqOTQyZZzsnRjDw36PU1+r02K596no4WKF+RJTP2mxMO3nmTyfBb/NKnn2J1Yw2TPguygVISpRRxFFFTIfGdv/orfvSjt6mqkkYz4be/8us0mw3mWcmdd37Mf/zD/4ff+Z1/yu0bL1MUD/B2ihQWIZaTBj+rsUiKubN7e6H3bgmNWvRHBE6WOhlXv//M1J2VgAcD6Jzjr3O6fpHGWb9L+B+gELrJbHDM66/+gO2dHT718ieCnk6syecjyiJnMp3ipUN2EmInaAFXbzxJtLHN6++fcu9wxHtv/xXKzvhXv/UFOnHK6MEJXjbZbW9xL3nEPeF4fuMmq1dusjEbkM1Lhjc/x3Ay4fjoLbLpCYOTewgqhKgoxAa9HcGTLzxDLJ/k+OEDsvmcwekprW6HtY11ZnNJlgm+9c2vUuUjRpMJjWbKx3tr4Ayn0xnTccnwdAS9Jp2OZ+uFZ2mv9YhtjlUVg5UpVaODnucINwR3hO49jVQtvAtz/tzXNiA0UrVYoBilGWDdBC0ThGyRxut1OazAmCHOnobvdFbT/fM9Fv1Q5xUJi+eW1+y5jRDnbzp7D8s24Dw6qoNNeR7XQF0uWZ/P+6Xja6Rh8bjcJ8KSDVqI3ocDL9qgC7fDn5cC1te1uGPGBB0jwTC0BEiBVAYlLYNxTrNt2VhfJ0vnvPvuj5nOZxyNBjz77E1e7j/PNJ+QVwWrjRUSqXAHxyTNhJc/9wWOc8d37w7JBvfIT97ltz/7Ir/80gscvrvPbJ4hN65yYCRfzzN2VvrcvPYpWrMxu9Mhg42nmfgnGY/exmSn2Ml7FDYnOx0xnytIrmCVZuXZWzAb44ucKpsjlWTzyg7OR4wnmsnoiPG736G0FcYZ3HxCmUgeNSTKO6aDGT7tEe2ss3rzClvPPcG6qxAYhu0Blci4//X/TBJrXvzs06h0A5M8UVfWCKIoQisFGGazGX/8x3/KcDSkrEpu377G57/4OcrKUBQVX/uLH/D6a2+Q5zmdToPnP/Y03U6Phw/GmEpxcjzHWkGeG4QIFUCy7p89u3XW4YTD+FDq7d15G8LZfBULaKRGKb27UJFzYT7Vcz60AAUbJKU8C7J+kg0KhTgfbc1/BGQq9CY5F/qTXC3kKJQM+lFLX0AKQaRkYEdznPHBKymQXuKUBi9JkiC8FuruBR6JskG7SSqJE+CECP1XeKwQGCExLtRaBkPuzjaJIMoLSglUpFBSUeaKqhIIFYEA5WtF5ZrEQAkQcYSXirIqmU0mVFWOiiLikwN8GtNqCeJIY5MYAWipGJcF89KwurZKv93iqSuB2lXGTUoz5b33Tnh0lDHIDde2r7OeNlhR0GwX7Kj3kSsJL3/iCqMTyeCoxwlrfPPenIODI7LZnK2tB6Qtw+nTL9FKE+zwDtnpIdnpIesrN2mtrPLuj3eYTSNcNcK7DO9m2GJKMXgAkUdoh89mCFPR6LWQSlHlOdZKqjLCmhLnKrysNUUiidKCKq/w1lFZj1SeBM9mp8XTN65wPRVsxXC1fUxXZzTtlERVyDTDi4xyfoAXUfhjLVa4euFYvKhFQFXjHKQVBiEM1jfqCW3AW5zLgVq8WQgUCq/AuUW5k0PLgFb6RZkdAkRglEFFKF1SqQhnLWVVIZwn1QFtCptFYKIUeIS3RFISPk4FBKpeuEIFdDJky0SNqIbJrlQIwnxIuJz1XVnv+ftAIH2ZWOIiErAorTjXZ1j8LRbPf8B4ndMB//TP+uBr55udC+QvpqLV7bBz9QqtVkqkAtIc9oLQ0zSupqSpZmUlIlERUVuz1pyjkilP7LSYrmiGjedoNFN+dJhTnEyYD0+J2m02m3Bjd4dpdwVZjigzw2j/Ecp3+cSTV7i/X3D/wCBshvAWX2bYMmd8cA8zbyFMG1dklNMpMtb0Wn2stUxHE+Z5TFUZiqrEC0+z2wEFo8kJw+GQ8WDMLKswxtORglasubnWp5dG7GpBR2e0oilrokmzNyFpJQhpsdWMeTHj3v2Dun7c0UgDW9/BwSHjyYTpdE6zkVKWjjj2QVC6smFt+LAGlGqDkEjZQIjoI2fZftqofZvarzpHch+X2bv45xLVrBBL88xzoZzoF3B8mPUDwclwzlEag4w0O1d2WVnpEWnQkrqvU+G8IjcFlTd0OjGxrWjmU5TSRETs9CRS92j4W7iq4KSKGecVg5NjXKPFRjPB9Ju4m0/TjMBM9hgdHVEUjutbV+m0JMPJBrb0qPgUbyZ4kzEfHOBxaNMm0lCMJ4Cjt9lHeMF0NCYrI7JSUZYF1hiSVoOkmTKdDrFVyelgTJ4V5JWjCaRKsN1ts7bWZ0d5WsrSbMyI4zjoZNQiNd4XODMPNkYs2CkXTevqQhmZrO1U2NPU+etCImWK1qso2Qwi7D/H5X3n43F9XpePWDiWF3f483aly8jz4l1Lx54d6i88niFWS/9a+G7+wrPndRHn+8GSTtDC4b2wlyy+36V9RwbWZR3pmlRL0G426K/0iNMElGQ4HmPLimeevc14MsW95/EWHj44xkQdXNRkZ22FfhqRek2SCNaSEVonPHV1hXnPMVuJmYk2bx1mTE+HmKKku36KSA23bj1Fp5HiZgdkgwGz41M2OruknR5v3NlgLDRFfIQvBd7MKCZDTh+8i488XnvEfIK0Ff21DpFW5LM5lVHM8piiKqlwEIX2lmZLkESQZQXOGLLCEWlHV3jW0oTb66tsaugrQT/uEPuMTROhlUNGAk+JraYcno45OBqEIBbodBpYaxgMh4zGE6bTGf3VPtZ4TOUwVYW1DusEVeWZTkt++MP38N6zt3fMcDitSY8Cs7FSoWw2aLvWgdMZEnnuX/wkYqxlVOmsquGxc1tcSOjJSwH/mQ1anEYs26D/RshUoCuUOCOxCLw1SOfQaTN8iSrQ2ArnUUKhlcRUombV8zgLaaxCdkEnKOmJ4lCE4qhp1IUHCvBBE6UmrIS60KtCUgmonMEag3U2MP8FMIzKBfa1SAlajYhWIyGbzShyiY4TlJTElDgP88og8GgpUY0UkTbJsoxsOoZqglKBxt20E5pbCarRoCXaeCtQRIyzOZPMcvP2LfqNmM//yjP40nJy75RvvTbkq994j0NVMNWOr3zmNs9v99npS2IxRtq/4NrGMzz14u+xP/wMD05jvvqNv+Q/fe1H+Afv0mHMv3pWofu7NH7tnzM9fIvhW/+e/f1THh4M+Ae/eYNrT1xlOKsobJ+qOAQjwM0w2YAqHwa1NJ2AK1FSsPHkLjrS7L92h6ryGNEAX4TJlMSISJM0g+bSYBicM5AkHlLpub3R50svPMtzu2tcW+tg/ADnZojyHtIM0OMf4PyUbPgWxH1kso6xE4TPkTqULYk4RkiNUh0C245FuQxj5li6ONUCAo2vLQ4Bh1KqLr9IEUIDigXRRKBUdxhT1TpVHhWnJEIRlzmmKijKCmMN5DOkc0ingIBoRkqjpEA4Cw6SSIHWICIWjEFBA60OvlyEcWBNhbM2zB8dheyJMWdBlHUC485Z0v52x7nhCdm/x2xG/vzZs0zPBeR8mY3NXzp+Ucr4Ia9mCa1Y/Ns5S1mVzIucjZ1tbt2+hS9n4AxYg/cC5xS5tRwVp2xtNLm622DNNOjYFNk5wicZqx9/iYI2g/knuL9/xB9//w3kZA81fsDLq55bqzP0888zKyWz97/K5PSEd954wNXbT/I7v/EJvvp6xKDs4CnxCgozwJUzTu68ypGOudNaIdWCbgRXnrrK1s0d7v3wx4wOR5RRNwTLzhEnEasba3hd8WDvDoP9MZPTOUiN1jGbSrDeiPjUziar3Ta7/Q7eVzifs3F9gnczZPEAbzLMfMDJ4Yg/+o//melkxmw2YWtrgytXthgMx0xnGQf7xyRJyniUIdAURY4xDh2lSBVkG3S0jv6AkfnZIj3LKJTzl1MH5w7NsiEL13Puky2OcUuXd9mg/qKPRWZ28Xtba6iMYZ5nRGnKC5/6ZbAlrswQTuGtwDmJdYpxPgVvubXTISnnJMdHCCaI6pSnt5/mZnqF42vXmGaW9+7dZzYcMrh3l921Jp/dMaxd3eHK1Y8xvPstpvs/5M7be1iv+dUvP8Gg6PD2vsO7GIoRZlZRVUPGe+8yOrjLw/sryChiJYbeaoennn2G4f4pD9+8R6WaWJXiTYkQ0N9YI0kUe8f3KWY5Rw8GQBBi7QDdWPL02grXdrfZXWkRK/A+x/sC3DgAT5XAuTmUQ1SzhdJ1vxQe7wMVc5iXoRRbyQYgkNSsweepb6Rqk8jW2T34SQmkn7fxU5MVAvAXCvyABSL1eHazs4TbEoi0HPg81gb5S8+IgGpdOL9fQqYvffbyfVp86oLYLPgLdZJUBEbfKNI0GkkowwfW1vrs7mzT7nYRUcS9R49II8U//v3fYjgcgbcMx1Ne++EdGlc2aGys8un+da6vNdjebBAri4jusdnd4uqtTzIrbzHJI777+tv81esP0ScPaZHxmzdjdjsrNF7+PMV4j+zhdzh6cMKDe8e89MVNdm+vMyrAyj5+coSVEjc+JBscMB4dQauHaHWhmBFJx62PX6eRJrzzrR+RlZ6pbONtBkqhWglRI2Z1xdPQlrtvDsnnFRZNJ4GWcFzrNHhpd4vNbouVZorzGd6XbN4cIOwMUdyjqiqq/Ii33vwR/+Wr3w9l5VXJE0/coNlscnQyYD7P2Ht0TK/XZzqtMKagLHNAonWKtTmjYcYf/MHX6nsX9nvnF7dVEkcxAAXlWbtPQKrkWf/U4n3ngdUCPVrMo3MkNbgpl+fnJfsjl3sez489Y6S9PMcu1JT+9ePDB1NSoqIYbz3eWrQQSBm0SbwQSBcWTaQW+lx1phFBpDVKSJQMzDhCaxSgFotCKExpMdJRGBvIKZRGS49UZ/xpVJWlkAZXVVgfylekBKeicP44QemIJI1JIoGShmYzxp5VuXhSFWOdp3ILXSsFSYSIJRaJE6EvR0pwxQynLHamiRJBr5Vijed0kDOaVsxKR+oSvEspxiAqizYFu03BS1fbyNvPI7e3WFtrkEWOamMdrSzpxlVksoGfF0z3jknfGZK98yrH935M2r6NT2O+/QAaaU7Z/SHePKTRhJ3VmK5qU8wOef/9t0jFkNXWnLHdxJQNqrkBX54FSQG5CzTyg70BQgryPAvsKdIF0dqkh3MFZAXzygQNMeMCg6IStJTjmi7oTIfkdx5RtVJ8v0ukmsFxkyDcWijd8hHO9QMKqCzeF3g3R6guQkeoKGTLqZElgQFRXwfgnETIpH6tAu+CA+brbjmZIGR8tiCszfHOBhhaLpaHwouQlfVoYlGhrMUi0dbjnKrvexIW5jlAs9jVz40Hvmak9FhrMZXB18G/80saBoRMi/M1M6U4z679XYwLSZUlp7X+V33MBzeexcMZ4+YZWsDZxvU3+UaXM0ZShs202WgSRQE1EToBZ3FlifOeSAp21lf50q/8CtIUPDw9IO0pOivr6N4aMm4hvMTN55y+/jZHRwMe3btHo5nQWn2WN49z9oaHxKsapRVaV7RbkqdudIhbnoePHlBORqwwwrZjXOMKUhaYaopzU5yQCBEy2pmVHB7OmJcHTE461cSfAAAgAElEQVTHFPmcqvJ4pYmbvRCITWY4YTCypJgZnPEkqSDVsM6cXjHi9O495MY62712YB2VaWj89GmwDa4gVQnrosMXvvgKeTZjPhvQ6/Xpr65RVh5jHJPJBGMN996/T1mWHB4ekiQxr7zyIteubeF8VWfl5WPvwznL4+P6+j7sHQ5r0nl3nilm2Vk7n1+uzm6KQI8ZrqH+a7nN4dwu/mIiUz9pXFw/oTRGK2g2migZ9OyE1Kg4xRuLrTI0IXl5fWcL7x1xq4nUBa69gmoEDcWYCFlWdEyJKwoe3LnDLC9obTwN/QZlsoKzElkdk8QVvhVxfbuFsYLR6AgrWnzu+RYHh33eZZc8kRRxhHMZjgqhws0trGQ0M/z4nUOKyYQszzDSYmVO3EiRUYsqq/B5jlcFpihxlUdHEGvBiizZ9DOaVUlUmCBnqSRSxghCvzUiApXiaeFJsT7HmSqUDJzNTY2UMWdEBkKiVLr4WXEuAwRSJghUnbz74H24OL9lnRg8O+pnfPf/24wPlIIvVR9cnm9Lb7qATC0//ZhPoHYAz05xpgckZF2GufQpC6f5DGGqneYF8r3sOLPUzbtsrxaoQ22DAbyzOCMoi5JIa3QcMR5PQgJUpzRaHfK8xFWS737/NSIpubm7zXF8gqhynn76Sa49+zSiytkbnbC21iFONXF3Had7SOsZHxxw8v4RB3cesnc0oLuySRUrvv3uhCQuSNYkohwTxZ6N1Zim6GKrCXt7D4iLQ1Zkhl7foMxTJiIHlyHsDKsk1hlQEUbAj++eoqXkeDDEWLBxhYpiovY6pppTnU7ZHxVoDMUsJIhbqaCfeG7EJY3pgKP33qd96xq9RooSEUKq8JvrZnCyY0EaJTz5jEenbbL5iKrK2NreIU0bFIWnqgyTyRiE4NVXf8h4NGY0GtLrdfncKy/y8OEBw+GYN954izzPMQtWbURN4qRZ6a+QJDFHhycURWjJcNZhjCGUpXMWAJ3PkcclB+s+d3meALicMPC1X4bzSOnO3+/PXz8/+DHPfcjxNwimLNiqpp4WoHT4kWR9Jd5ROReCKUAi0UqDXGQqBCLSNd25QEiFVJqCCjAUUuEhNL0BcaSRQqCkQKkKgEIC3oZNTIBQEUIpomZKpDVpHKGlOwumkBFVluOdI4kkxnp06dBakSQpPtL4SFF5hRMK7zXg8GWGkx6ftYi8pNtuUJUwGBVMMkNuPT7qgk/Jx57IhWBquyFIrrTZevmT9J7/JO89eI355AizsYbTimj9Jtp0UdOc5t4jkjffIb/7OoO9h6z88j/D93b43qM3aUdzrl9/naia0GwIOjJBNQXvz47ZH2ekwrHaFpRug7JoYcwU7AzhbCBd8MFgeCTD/VEIrqo8/GbSIFUHEXfw8wqX5cxdCGAWcLiW0Naeq1FFZzYmu/uI6vo21goS3UCrBkq3gRIbt7DOo4wEn4PPsbbE+xxUF5RCqhZCeJyfhPvnK5Soa1i9xgmPUEmYN4La6IF3Bm+rwEqmGwipWZA8OFHVZS2hVMMJiSNCOYlHgTQo57BeBQVtr5BCB6FGW1FV5VlWRMhQaroo2Qt13h7hHc6Y0CNVi/G6Olsmaip/pTS4x9GM/20PccGALeVxlqDxpc1GiPPa4EWJxCWHQJxHU/XwjzWgjyO+WGZrOsssCUUUQatOsCBkIFqQDjOf450jShK2V/t84TMv8c57P+IHr32P7f4GdFdRnXW0biILSTadMHjzNY5PJxw+GtC78TTi2lO8ffd1/Okxzz5rWelq2qoiaSvWojZj63m0/5BqMqLHkKp9FSvXsL6gyseY/BHOWxChVDOzgvJ4zslJjiynCFtgqBBRQtLfwvuKcnqIcYbcGUxpcTb0z6WRYE3ktMsxw/cfEjuPfeomSoYyZElokHcqwfuKJIK4ZfnV9VWqck42OyZpdGg0e+E7yxjncsbjEf/7v/u/ePTwgHffvcsnf+k5vvSlX2V1dQPvytrBvMje55fu31IG4UPOq6X7vPyuRZB9VrO+OH99zwEceOGX5uBSkOe5QDhx4e2/YOMnEcecl6pBcPbDHWikjTPEREiNkApTTrFFjopjVKS4srWBB6wzeFXgyx4kTWSjh640sixpVRVlPmPv3l3mPuKJl78I3ZgqVthiiHAnxLFBtiJaWy2M8TwanRI3Kz7z3A3e6/TZP9lBRgp0jCkOcGYa9knhKZykmBlmd46QNkOUGZYSJyS63UMnbarpPtYWVC5ImjgLMoI0EvRkyQYzmlWBLg2Len4lI4SIEKSgGjjXps5k4XxItOECvb5QCUJEhMZ2AxiU7KFkSq02SFkecea1SAjMgI9bP3AxA/DzEUD91PGYNbcQTAV+YiD1+HExkLpIGrZAsn4yQna5xFAsnfL8YsMTi3PLOqlw9vrCKXYOi6EsRKAVlzGTyZTJZEbpFY1mC1OUGCn5wQ/eYnu9z6c/9jQxlmxywgtP3eKTL73EN775/3IwOOXZq1cQnVZgYHUpqnCYwwNOXnuNo4MRh5McufkKpt3huz/6Fi1d8VxU0ZAVzdiz3o/Z7nTYq6YcHBji8oCecujVG2RFh3mZIashlI5SyiBxISOsUNy7N8BbSzUeIwVEaUXcXSNurWKPc4rBlFk2BVPRjDVxpGjGkn4M1+KSaD7i5O59tldXcFvraF1X5sgYsDidIpxDJJ5brQ43b18nm51SlTNa3TWiqEEUdRACnMt58813+KM//BP29w7Z2zvkf/znv8unPvVx3n3vPgf7x7z11rsY48nzqr6v4d4rpVlb69PtdsiyPPTGCeqSv0BMVxd5niFLwFlQtjgXLPkunrMeu/N5dYaThj0Bh/AL23MJeV2Or/6GZeYfOpgKoqcWrSLilg69Nt7VJTlgqrpZbNEgRWA/00oGJ9OHRnbvCH0w9ReSQoXALIlIdOg/KUqDGVXhXCKsZ+PC5wjviZPApLdwCvOsQghB4j2yjkCVVsRxTL+n6LYF40Goz0zThKC1amg0YlZWWsHR9oo0jYgiiRcV3lbYyZgkbbKxfZ2VlQQVN1GRJkHx3E4TrTU9B7HzTIcztKhIooTW7g69G1skW9tEMmYtbdJ2PeLmOkUF33vP8f779/jqV/8INRyjT0f86isv8XtP/y7F2lXGheHf/29vMpidUOSWG5tbfPqZz1E4yBz07x0jBjM6bUFuYG5KMi0QUQ+TC4pJjrAWnK03GIe3+XlGDgkoXJHjzT7eFFBTKS+c8TiKuL67yc2rK7zyyk0sHcryAYP7ij32WV1dJW00aKyvI7QCVvDColSJxCG9w9EOYsyqLs3ztWGrkZ9zH6pmUvLn1OORWgu9Na4AZ/HKIEUcFn6dcVcyQiIC8ogEGSMDvxORBikUVjqcd3jVCAvPiVrt2oV+vagFbrGWwmLPcxOEpAuD8WEzxkOkF0GcpCqrEJw3BQJJVTk8rs64XS5D+NsfZ0QUP8E7XTQHLxKCZ/few9KNOS8DdJfO+9Gv6MJ1KCkR0XkG0lUWZyrKPMyRRrOJlxJpDJura3zyuWdZ7/Wg2eJw5JlOc779lz9kdjpCPXrI7vYm/8u/+IeUUUSpNF9/MOC90T3aj06ZTlJubeziVETelBij6CpNvKVZXesxylPmlaDR6JIXioP7Q2xZQFXUS0VQ5SN8VSC8Cd9ENpHeke3fQ3qDqKZEWhJHGmdD398Tt2+xu73Os7dXiGPNYKoo50d867/8CdvbW9y8cR2VNlBRBELjvcTavJ5rMUp4tFxBqFASsXAEBZ5GmvL5z3+WO++9z5tvvsu99/f40z/5Oi+++CIvvrga2DuFQoiUc0r0yy7K33x+Bs2qx1FFe5a11qBOlixlGc8bjs8D/TPz5xxnWiK/oL1Tjx8X14+UoY/3TOLAOqwxVEWByeakSYzUGk9gZzVVBkhE8xpZBaenntdff5uH947Y1IJGrPm9z38a3W7T2OxTFRknp3tk8yHz+YCrG1v0rz0Z+gSLiuzuCdbD4HRIVeRsdCFrNMhX+xzvzZhNDJQl4PBK4m2JyabgA9OvlwmIiOLkEKOOkdUEiSONI6hpyTfWN3nu2Se5udtmZ72JiAomw4f0+jHKxZSuRGqFTpuEhZqG5Jeomwc8OPTS7+agZrgEj3MzvCtQqo8QGq17eG/wvsS7CidKhIgRdV/VY1x8/i73+J/l+EA2fxGQiPOAZZnN7/GB0FJgWSNGP8kGfYCW+qxM+HE2qC4FrhOVZ8RO4vy8vvZ1zkoA/aVr9LXcidK1H+qYjofk8xnCORpJQjPZZaW7wpWrV/FKMsjnNFptlJDcvn6NfKNPY2WdSmjuHzgO9g/5/nf/EgYD5Mkxv/bLz/PbN6+TxQmTLOc/vbrHpJzRun9Kv9Xm6uoWVSxwsUQVmhUt0Td2ySvPwwHMU4GIumRTz/g4Q5YloiqRSfCJzHyEN1VQWRUa7yKq8RQ7fQeXT/DlLLxW9743GhE3r1/j2u4qT336CSqXkBl49P6bHDx6h2eefoqVfp+o2ayTbwnWGYwpUFIS6QjZbGOTCKmj+vcOZfgAuzub/MMvf4E///NvcOfOPX7w6luMRlOee+5pNl/YYHdnl8PDY7729W9S5AVFUQS/qvaRJpMZRV5SlqGtxFoXSOr8wr5cvIfLKNVifi10Di/PwfPElKvRa3FGJnaWPD9DQZfn4RL9+kfM7H34YMqDtx4RKbRWVMbjrA1tKz407LnaOQtfxwd1ICkDCQGcZZTO9GzcwpkKxykhiCKF86F2ckFT7eFM2EsKgY513akeEAJjg2Ouz5rJgkFXUofaTCGpshJT2VojS+CVp92MWem1cU5hnaK30iZNY7y2eFuRHwripMn62jqNpiSKRMiESc36ao9mmpBUBRSGfDoD5YjjiLjTprOS4ppNvPNoB84rZLpJ4eH+8QGv3x3yZ9/6PhtYdhX8g2tbvPwrL3JKycHghP+gBkzNKXmucSjaK1fwSHIE6UlJe1ZQxZrYeVrDMhButNrkE0OVxbVBWBJA81UoszmbOQKcwZus3sjc0r0QxHHE5sYqu1c3uPnxG4wGloO9gjI7ZnZSkPoC3+qgui2USJFyYXCq8NsLhVARUiQYKUA4PCVBR8zVeYc6tyRAoupAKmTUtUrx3tW9FBa8rkuX9NnElyi88FgRghxBBCIEU0rZumrPhc1TBidNWI/3Fm9LBBop4guJeu9AqqIWPbVhDlpfo6M17XmthYb3Z6WqUnhs2ME5C6b+juzsOR0oIQMIF/aEi1UcS0VVi3jKLx1zZqAW5/7rv9Zj6XYvGV8p5Rk+sSCl8M7hrKsrNiQ4h7WWNI5YX1khTbt41WA8n3IyqPjhj+5RjkY8QclOM+HlF55gmE05nQz5QVwEQpRSURRQugSnEgqhUBIa2pOkDTpKIieeuICEJlkpODlKg4J6VdX22gX5gXJWy0Ko0KdpHWY2QngLrkAkMVGkAhOflmxurnP12hU2b/SQEsqHY2azOfsPH5FqT7m+EjKBcRLKjQFjXZBiEBKpNVKkdVmpoywL8CWRVmgtuXXzKlVZkSQxeV5w5859bt9+gqAYH5B+IXSNtJ8Th1zsSfqbBcbnhBLngoqPHf4ctbr0NEHFvr4mQlntZbHrX8TxYdaPEKJm2QrDWluvn0AFjQgC9qJmxDJVjkSi4h5FUTCa5/z4/glvvXWXZ3sJWyttXvm1l2n2uxgNp4Mp71UzyjKjKAqitEO7v4MRgrgoae5PKcqSssgQztBtCVISSmA6bpDlOcJYhAu9pc4ZbDmr0SoVZp4U2GwWkgSuQEmIIxVYUWNNr9fl2tWrbF9tsb6eMhpajJnjTImX4MoZPo6RSUgYCALrWLAqMgRVZ2j82S8ZXvceqFhot4FGyqROaBRne1LwVRaSLeLSXP75C6h+Ev3z4+QNfB2ALJDnxfF+yUCIx5xz8fzSh1ywQcs/3+WkyRm2tGSDzh/Pz7oIms6Jk4IPeN5Tc/Ztwqv1PiSVCnZdCKqyxFYVSkmSWNNsNGg1W6TNBmmrRaPdQaog7dNptWglGhl3MUYwmIx5cDDle6+/x7qv2MVwY3uNJ194gr3BEYenU7TKKX1GkSuKOKXyKZWQVEKSaGgIiFttSusZ5TkqAhpNlKrIps2gs1rrtIIDkyFMVfeeCvASWxSYco7wJcIZVKSQSqEjSZJEbKyvsbm9wfqNXbK5RQ4rBoMB09mcq5urNGOFESDqvnDvg82V9f6hdYRUQV7GOUeeZwghiLSk3W7y1FM3ef31t4mimOPjAd4LPvbcM/RXVrh54xb7B4fcu/+A2XTGfD4nz0uKoqIoikCeYUxgWq51QZ07r2C5vK7OXFe/CJgWPbjLNuhi0mkxFoHU5deXt9rFKwsb9FHLzT90MOWsoyxKpErQSuOdPnMqJQ6VhNI9CwhjoShRhBvipcd4i6wpekWc4kUIt8qyYjbL8S5M+MoajDP4utZK67QmsSiJk5i406yDNk9ZBe2i3ko3BA556LewHiLp0Bg67TZx2sAXFVVRkcYglGItTgGFrQT9lR693gobKy2ajQipS7wz5P0mKk7obKwRa0ESCbxxYD1r3S7NVoskCr+B2ymBWu/CGPLScLh3wrA44I1vf41sPOLXv/xlch/zl/cfce9kiEkarD/xBL/0sefobe1QDk8wP/pDWvM9/tf/6ZP4xjqi9xJv3R3w7/7iHZg/Qs4f8WRLcq0hcP0mVms219qoOKa79ix37h/x9e+9zXxSks0qzGwfV05rbSUJXtWbV147M9RZm2DAtNb0eivs7mzyP/yLf8zOlW2e/NiTOAeVsTizhzMnnP7ge5hJTrv6LFG3R7vTAulxsqIRxTSjGFNlODdC6yZCarzLECIEvYgIIZpImSJEA+8K8AYvYkDi64xipBYevsR7C97ivK2d7xLv7Bk9uscGgyo1SjSQIkGrYBS1C0hnZWyILVUD4TzGebwLWmPC1zA0Di89ZRSyklKlwblXIqB4NtQqS++xPjBR2lqPIVUy9OQZ93dCjR7G5U3g8RvMYshFNm/5DIv6ZM4N13l89bP9XmGLcwgJrY3N8FlSMRmd8sabb1JMRuSjE9Z3rtDpr/Lucc7RKGOeaOLNda6/8CTrG33KbI4/fge1/xq/+9I6X/m1r5C0r5PbhD/93gOGx8eM7nyTa2tdPvPUdWyisYlmd2cDnbSJGjHzouLPIsFgnHF0WlBOT8kHD4lijY86eBv2PS1rkVBvkcITqYhup83a+ipXrlxha3OT5z/2FBsbffrrfaSSdDdLqnLGdLoH0ymH736Htw+mPBwWdLttmq0mH//E07RbTfBhTVgzxjqBc4I///Nv8t579/j93/9Nrl7ZRoiYK1eu8G//7b/h4cNHvPba60RRC6XqPkhMzYpJnWTQSNHgZ+/8XSQ7WcwZKVWtH3hJLFgsHKA6QSYh9J6Ed3sfJBB+jnzUv5Xx05kOPWBJej3SlRWElIFoKc+ZT6fce+cd2u0ON596hmFleOd0zFgK1EqHrU8+y5WNVZRWuNkAO3ybTqT4xBNtrNzEih5vPZjw5hv7fOxqh5ay9NQYmxhkt8XGWsLNGz10HKFizTdWUu4+OuboJCfLcuZHP8ZJj+t08E7inUIJixJz6g5UIqmI44idnQ36Kyvcvn2Lq1e2eerJ63R6HZrtJt3NkBBTckZZjsj2HxK3V0k662foSWUrrMuJpAq/l6uDK6lQIkarVZyb4P2Y4P5InMsRwiJEDCiU6tYIVYH3VfBFFqQVosl/XSLi73IsZ9QuvnI56LwQUIllEfj62A8RUF36BB5ng85siryMcC/ZILEo91o6hRAX9ovF/Vf1fhPcf4HW+owWWwqBEgKhJF4Iut0uSZIgpWRtbZUvfOnzlGXB//21r9flY56Hj/YpLcxPD/GmZPfmbYyIeOskZ3+eUTVTOleuc+vWFRqb65SzCeLRd1jJTvk3//3LiLhD0rnB/aM5X3/9gNnBHWb77/KZp66zs9nHNGOMEEQavEyIW30OBn3e6LcZjAoG45Ls+B7lfIiLI7zWeBvQW2kHQdM18aGAwgua7ZQkjen3VtjcWOPzv/F51jfW2Lx6JfjG1jGfH1HkQzjd5+Fbd/jevTG5hW6vw/p6n6efu00axziXYM0ca+dYq5jOMv7gP/wZjUbCP/0nv0UcpwgR8corn+X2E8/w+muvs7e3z1e/+h263S5f/vJv0Ov2+Ef/6MtUlaEsKr7xjW/z7W9/l/F4Spbn5FlOVVWhJ91Y8qw4Q53kpTmxQIyMsSwVNlx47dwG1Ul6FRg9L8yvRdl0/T4lzm2PlL5GQesqu4+wxj90MAX+DOkIWaAws4UIVONCSmSNjDnsmYPuCRko6eUZY5OQIar0QiGEwfk6Ij2jO/eBgcPX5UAevBRoJdFRVP8QHoQMzc3ehzIHG34A6RyRlmil0FqHPqo0QUtJqkM/lkxinFdYq2ilCb1Wg26rQasRIbXCe0MC6Dim3WkEcWAcqBAxpnEUUKhEh5uWRjhnqWyOy0us8RT5nNl4xnSck00LZrOcHEtezlGR4MqVdXavb7F98wpOeE5Pjxnt7+OLY25+8mPQ3WGYbsGDgv2TIY1iRKsaYdM2XiRUVYnzljhKiWNFO1H0O022NzeYpBXTtGIuppTzisoFsUJvPPhAVS4IrWxKSDSeNE2I05SNrQ02drfZuHKV1a0t0vYmQnkQjjybUWZBu8S4kiybUimQsgiM86rOtLsGZTnD2hlpEuB1qUKGwKs4TF4hEUIjRYSrdQdCJ6HijHRiUbcuVCjOWJSRujqgqlFIXx+9WIig6uddQMoIvU+2RjqDLQy07csqPOG1YCiE0gSa9JqzW0oQVSBcUfX1IM9dyFpDx3tfU67//RgfMGMXsjGPz4JfdtzE5d3rb3Idj824uxodCyi0ipOQvTaGsiw5PT6hmk+pZnOavQzdKJjNZ2R5Tm+lRSuJ6e9ukDQiptMJs9GY+WDA5tYVurvb5HqDYaYoqvvkRYWryqCrhqcyFZWvaPWg1YxIkohICrbX+yRpC6FK5rFnUp5ivMd4jysFWE8kPQKLcIGOuhkr+r02mxvr7Gxvs727Q2+1T6PdQSdtlJKIyBAbhY4zMlsyG1Tk2ZzZdAYYrC0o8hlSOGbjKVAixQxjoKo89+8/5M57d3n0cI9IK5rNHkJqrt+4ivehdDhJFlTotr5/S+j0R8y0fZjhF2Ds42/4hQzjOWi7pAdyCQlddtgeNzd/0ccHET5/4SZIrVE6qtlFA7LuncMaMCY0j1vnQEK73cCs91hZ79Ne7VFWJdbNcVmGFimtJKIUKbloMc9POR2OKdcjGkktk4LAWIOKI9ppTBRpdKTY6HfJKx/WzyxjmB1QVZrKO5wFVwq0LFDCI1zYg1qxopGmbK6vsrq2xu6VK6xtrtLsdIkbLVTcQNUMsKacgbB4LN5ZrDGLym+sLbGuQtcELL7uaZVC1ZUNEVJEWMLeHlCnoOMWHuV59YMPgdgl68Dfn539ow/vQ2/wB9bWYt35D+bjF+vzAwHV4vUL5/oQe8xirfuLqNfyNT7+beIxtmuBRiwHXQK38B9qu7WMwC3K27XWpGnK6mqfza1Ntne3OT4+5vD4hEaa0ut0yeYZp8cnlOPQ5z3PcoywTOdTnDesbfRY3e6zsruOV9Q2aIQtJ1x96jlUa5VMr6NHp8yLh5RlhTdlYKLGU5QFRoT+P6UkLQ1FM2FnY5U4roiSilF5SkZO7gJ5miskuArlarQZRywkkRC0WilJI2VtY431zQ1W1jdor6ygk3a4h8Kj4pK0hMnoFGNKZrMJWRVIv9JUUhZzyjxjZECIGYiSqoTRaMbdu/dI04S9vQNarQ6NRptGs8HNmx0O9g+YTKacno6Zzwv29g5pt5tIFSRkkjQEutY6qqqiLMpa5uGc8W8RGAu5QILP58Tj5t75fPEf9HHEZST5gzbo8qQ8Txx8cL79deMjUKN7tHLEWpHECa4Kk1IrFQIMEWBAaSxOOKyvanazOjpUgqyszoIdKQVaEPSoUh20UoxDWIcCWs0U7yGSBEc2agRnVgqsCaULiQ5ivZgSkNhGmDBSQhwHMWBUhHWK1Y1NJIKkDiJwEMUxjUaTXrdFp5PS7jaJ07juUfA0W12iJGZlvYcrMsxsStLtEidNZNwIqJtSCCWJdYopcsrTsOhUAiqboU9OuX3rOSoveffuAaYqeKY5Yf3FLZ7/179KrASREnztq9/lz956n+xAk8ib/O7tq0yV5v94+0842XuAfvgqN670eeqJJ3lUtfhBqbj33dcos4zN9YhITtD2h1y9foN//aVf53RmGE4rfvTOGkcn+xzMLHlZUQ0Pw0L0ZYCMy4L12NOPYOvqbbprG1z94iu0N7aYtq6hRJN25QJltaiIVJOkvcP2iz1MXnI4OGU2OmZ8PA63KRLMGjBuwGg6Ji9zNtZ6NNKERtoi1k1UexfhEyCgUCFzGON9XG/mIRhanuTB6woLzNsC74q6zFohVANRw9ACdV4qACz6xKSIEIBWEmctxpf1ZqtrRjWHcaFUxniJkwKZNpBIYiHqj3ZULrAWqjRFArYKwYCoS/PPIWj1M0dwPtx4vCFaoGTL286ihGMxLl/v8kZ0Tke7LHr3Xz+CPkUVgk91rkPknWE2HnLnjTdI0ibNTo+sBD0rKA7vEpcF//Irv0K30yaNJMeHJ3z31bcZHI453WvwSrdH0lzhm3uP2B/NsA/eZl0Ybn/6lyhEzOvzBqf/H3tv1mTrdd73/dbwDnvu6XT3wZlwCAIgQICQRIqmqIkabEu0K7IrdvlCpZKr9AXirxBd+C6uShxXLpxEKkfRTapSScmpWHJZA0VxMCGJIkESM3Dmc3ru3Xu/0xpysda797v7HEwSQYUmF6rRffZ+xzU90//5P3t7HO3t88LzG1y8OKA+u4mSnp9+9kmQCadzy8HRHjdvbbFXGA5LSxivzAMAACAASURBVH1yiKsKMmVQ3pAUM0ap4tpGn50rT3D12R9BjYeoQQ+ZjyhkSuoEEo9xwcOd5muICzlJ/wLP757xRFFwdnaMsw3ldJ97N0/5D7//p/R6CVeubjGblUxPC954/Q77+yf8b7/ze4xGI174xHPs7Gzzoz/6AhcubPHZz36Gq1evxDHqAb3OfFgqHd+N1s4j31G+FnOl83/vfchnCAewyKOgIzw7gm2RZ3W+JtUP2yObc5amLoPuoGQnCTsYGnmSkIzXePLjP0JVldy5c588z/jk9Qv8+PUNBI5MC6wxvPbqWzgL65Pr5FbjD1PePJnxyvE+Z3duwfSEct2QjPqcDS8znc5481uvMxyM2NkeYMp9THnMRy5f44XHH+ekcMyLgtfeGHBSVNw+a2iKOfXpMYk0JMKSVAWJM1zfHLA2mfD0p3+GdDQmWZ+g05xC9pFohAWEBeFQqofupYyujjDWcXh0M0Jjic4z6E3WSFSPwkRpIgcLKLqUI6QcBKTDAhLb/lYIkSFEioq5iqtr6L+EelOrbbHOupEmIWL+YvjqIYNqZW1GOOC7RKdkvP55tbe79s9DCVccK917rsACg0HV+mykbB37wUvTNAapAmuzc5ayLFegxP1Bn1//57/OlSuXWRuPKKqK4+MT+hdzLj62w+HeIfdv3Wa8tkne61MUFmMrmjsvc/XCJv/01z5HqiWJErzy7df51q173HuzAtfnl66tY88yvnjnVU729kjvvsrl9Zzd65/i2PX45lRx58ZN6qpma22bRBVk3OTCzi5//4WPc1YazgrDrTsjjk6PuFM4iqqhOHiAtzXKbaCqAj2fciH3bGQeObmEHm5w7VM/ynBzgzqbMPMZfeMQ0uGFQ+qMVK0xvPw0+YWKz+6eUNUlZ9MjtFac7N/hpZde5cUXv8ljlzdYWx9ydHjGbFpw6+YdrPP89//D77CzfYGPfewprl9/nI985DpPPvlRtre3+cM//AL37u3xb/7N/wJAnqfkvR6T8ZiDgwOc85hI6GWM7RTlFWjdQmo7s8uvzpck0XjvA0KtNcTaszpzWLRTxfsAJY7fyzhZ2nkguwRIi3uF4z6InvO+jSkpFUmShWJbLPGHrnNz6GJjl14CIWOeidJg7SKaJGWoXZXoUODVxXoPDlBagWf5Ql7QuvtD5znSNA1sJEbgrKeR4SmkFCRpRpLmKK2RUqJVihSSXEa8tPOkaahF1c81mQatAh24VKFgq9KKJE1IkyQYgaYhyVJ0lobNRix3GmsMLv4gAtNgmij6vYwk6VM7wf27h/iqYOgbxtqzPsqw1mCahtLBmZMclAphFV9/7S5zLDfevIufn7LZT+inA5BrGNWnThTkEwQpLh3jMQh3TNNIDk/nzOcWWxqubG6wO864WBqqpqE8yQL0wTt8XePmJdujhM1Bwval6wzWN9m4chk9WaNKNCem4vbeKYlqyHRFL3Nk2lH7CkuDkA1SNlhlsd7gm4baO6aNo25KnDUUdUjkT3WKFQ3OGYRIUPjwHBiWuPRIb9q6Gls2oUVCT7tYROf46MVYTHwXDZulwoaIgqGz3wdlkLjYCAtRyBCR8kuvRvBg+jjXg7UeorMCL6N3zctwnRiRpQM9+F63dkk+Cmvefa7zXsHln482qtpk4m4O1fttXVa/7jMubWXZEZgeISVpmrK5sU5tHPNiTj2fY7VmIAW9TNNPFVkicM7QOEfpBTObcmwH3Hgwo1H3uHH/mON5QYqln2h0OqYhwdoU0gGqV+JUhiHBo/HeUdcOIS3SWsZZzuOP7TCpDCeVpV5LsVWBVh7pHKqYM0gVlzaHbF68yPrmGr6X47MsQEEjFr2pC15/8ztI4RgNw37nG4PHkuWKohQYa7lz5y4HB8c8eLBHlidI7Tg7Kzg9mXN8ckpRlDx4cMDp6YzRcMx0OqPfH5DnOb1ef5F71fXGrnrXxbnff532CKXpHPh8cWf/Hndqx/w9YUI/2O0d10/4duFtbWWzEBIhHcI7JJ5evwfeIaxFNjVKC/J+SpJmWNNgLRgkpfGURwZNTeaPuX1W8GBaMPKO4bAHaGqjaESK0RaVDSDJMSSR7EHTGKhqhzCWDMGV7QtsNg2DwtCUM5ppFgL9wqPKAu0sl7eGjMcjNrY2UL0+vt9D6BSlk1g3KCAWwjsmAbauBYIGGhP7QAYPv9Sx6LpEySz2TRocXLTzrSVPCc62VQawVjWTnWndQn6+G+vnb6stc9RZRHW637IweMQiXNzmsMRjHuHgaD34j8p3FGL1HLHIa4mi3D8sg7w/d85KtDqcHvTMzrNF+dRm7S8iUh3SGxfZdpVSsWisWHxW1zX37t3jwYM9ptMzTgd9jo+PSbRic32NylqKYk4znyPwTFLFONP0UknICbTUzlM6yanNsY3gtRuHGCW4ff8IV8wYJJAnOTodg82wUiKyQaAozwZI6dCuxDrJ6VlJUzuoLduTEevDlFHlKZuGcqzwtgmkYWWJmJ2xNZBs9BVytIPqj7mwcwHdH3A0nXJyesLe/RvIiMQZ9DW9TGGbBqxDJZCikCqUzjk42OP2nbs82NtDKMu8mHGwP2U+q5jN5ljraZoHVFWD1hlN42gaS6/XI8tS8jwnTROm0zOstWitGQwqvPPM54EqvWkMps2XckHv936Jouga8W3k6XxkarWG2TmdRCz+9y5uRPHw/OxEpvzSmHlf7X0bU0mSMRhtoZQI7GdCIqSiqesFXMM5gbUCF1nZtNZIoUISp/dUTQ7GUJclUju0BqUStE7BWPANTSCMJ8vDZujdMvlTCY8Sjlp5jIPJ2oQ00WhTYxvDfFrEAsAKlfVReZ+NgaafKSBUMe+nEiGDLyVTglESNk2EI1U+VJCXGqk06WCA1posTfE6CQqSTpAqoTEG5w0eibOe+WyGqytMNQ+wRiWZTMYMewOkcDR1zfzVU8rZjDypGVVzzHzKtAgRpJmaYDYUb711xOH+lC//H/8X1sxprOGJixf4yU98jEJss1duU/V7yL5i92kV83e2yVzDRj3mcFbwf/7R1xlay9B5/tnnP8VzT12kkRbjG+bFPo2Duc8ozxqmRxU7VzfZujhhuLGGznNm6ZipF3zrZM7Z8X1e/OZX2ErmXO7NWd++yHCyzvHxMcbUXMh79FKBVpq6Kpmf3ONo5jgoHNtjxbgnOS1LCuvpqwSFpGnOIvY91pQSBkTA30JbHydCLYSP0aWGlvZWkMQFUuOJxUAXi8/hARsNKedcqDXhbQSHdhaLdRjjFsV1hQhwvkB+Ab6pAxFAkmCNCyxtImw6IBBeIJNsuSgJ7gTbWBpMJKz43rbzStajok1LAbnqXVyetYRuLBwinSiV0t+995JSgY4msVgmlSqdcmF7h5/96c/yzW99m6+8+Of0bU2/rrg2GZLlCc38jJO6pHaCk8JiB1vM+g0HacN/+Iu3qL/4n6mbhjRR/PTzV+j3RxR2iyZNSUc5W4MhGxcv0FvfxeRDhtLjbc3Ltw7BOPqN5dLuhE+/8BxOBGdP3cyDA0QkOCeo5iYky28OSbKUNO/RSI0RChkdOD0lOX5wj3/3b/8nklTx9LNPk2WaLNM8trvFxmREbUtOZ1P+6I+/yMHBMfcfnKCkYG9vn7OzkpOTAtq80uYYENy+FaIMX/ziV3nu48/wD/7hL0Uv33kBcF6UfBcUwegVPH+17idhjgUYbneuuXielBKl1EKALbzR3kcCmB8aWO/VhJAorReuJBHz06ROwEpcMwUPg8kayhkKD252RnH8AL2zTbI2pqotZe1hsM5ZU/H1v9qnODtgdvQmEGr2fO7Tz/HU9cc5rXLOasVcKnyWsHv9OqAxok+mFXmvx73jivnePfq1ZZRr/s6PfJQsU1gs1tY0zRyLxqKpS4O3MNkakuYp+aCPk5pahho4UibkUpAKgZQagcc4gXUNtTcgPGkS0C9SZ+TpGonuI2SCQJClo7CvSN1xbrW/2wT2hEBUFJhEwzx8tzX0/WhIhbbKvvmwQdW2brT5ISfbB3r9cweLJR5CeFadMO3usVBkWxkkI+JoteaQczE1IDpsRDTOWoNJdEiOrAtKu3OO4XDIaDRCKElRFrz88svcuX2bO7ducefOHW7dusXZ9JTT01N+8Wd/hh99/nn+4x/9Cffv3OJCIhn3ezxzcZt00Gd6fIh1IuhUZNjhFif5mOOy5JX/8CVMU1DVDY9tjfjxpy9Cus7MbEEvJ0s0l3oZeIvW66RYJmaDo3nJH//lGwytZ+A9P/Hpj3L1yiZegsfSmBnWeWqrqMqG4qxivDlitDZApSlCKUySczIr+MMvfZX7d2/z6l+9iKYhEw3Xn7jO7mO79CK0/SNXLqKkpDIlN+/c4ct/9p85PplzdDzj9Cyw1O7vT6kqE6KVDprGcef2fV55+U0m4xGTyZjP/4O/zzPPPMXm5ibWem7evENV1ZRlhXOeJEmYzWbMZnPms4L5vKAoq4Bo6xi9CwKIuP+7yPC6hHG2jvblRF11NcVPBAtdryuDuoiIlpSke2/RmV8fRAS9/5wpAUp5VEzmC0EFH/GOjtX8riAkZVw47RtmqQ5MVzEU763D2JCsjwCdapyJOVBShaTRmEMhZMh70cKROoGNkQPnHFkS2P2UC1EtIyQ6TdF5wmiY088SbIzypTrUx5Jao/F44RY1XwJEou180Fqi4/HOhxwv78E7G/ohFolz1lAUx+AsMpVInZKkOTpt8MaCLVGVYzhUCC+Z1Y7Z0Yy7f3GDxjY0tqaaNgyFYTz2WJcyS3YDHM0lpBsbMLlCeWo4Or5HWSWYVNHPPVorcjdD06CwpAqGuSInJ0Fz8+AM+9pdUqVItGSyPkIrxUClyNTg8orheIPBxgb5qI9OU4TO0R6ues+pHKDKDUZItKioXIGbC0w9xTWG/fk8eLNSEWp62AYtYZAJtJYgNb1UBxpfqWgLt3nnguIXIzyCwLInhFxiCmgXlKPNjwoTLBjy3ukYpWwnX1h01tlg5BLrRokAhwkJmAFq6qwNc8+CkG1+lVxszD5GzQJNZYDMOBsKSnshSGT0bFkW0R4hQl01S8hX+Nvwti8hG4/4DFj4aVqJ1Q0Ric4RncOWkanv/vMG2mxivy+3ROctjWmYFnMG4wHPPvNRhkqjhOf23h6Ns2SnFTpNSTNNbT2Jc/RTmKwJEjWm7ksaJ0m1Qg7WsVozm55gE4U1Gc6WeFuyfvkSuxdGqApMXTP3x0gEa1nOYNKjEYqmtpjGoVSGkmmADClJOhKoVJH2YxRcJ2ipUCKGyYVn7uYY3XDtiYvMZjNu3LhF3EB5cPcB49GAs3lBURScnkwp5mUg+5ESKaCuTSgYHY0pa9uhK7HGIoXk9Tfe5gtf+BI/9VMpV648sRzTxYhy7rPzf3+wtmLoCFioSEstbGXutHrbqpL2MLyPhTA9F0b+YXtkEyLQA7frp+3rANFyqCQllMaoAUOSKcj7CDHAypSzuWVWlNSNIaFhkHjW1jVZNiDROzgUXkjS0SZkQ+pZQVkXWCHQiWRtfYRWCYnuoRqNbFKaoymyrFlfyxlkKU6l1NZTlU2Y02oQS6IoEhWcmfkgR6UamQQHRCgmKkF4Gl9TO0NiDRJIdA+tMvI0EEx4lSKkRqoEpWIESrSIBR8V+HZ/a6Mb3bUh8F5EZ15rcHQNL3/uN53vvo9aDEit7AodpVW0MLwVuXBefrQXamVk97h43UcEwc+jNARiEZl6SAatnN/dR849RXdc2wiDWF5fCGKkvtXrQvS/rmvm8zlSSqqq4qWXXiLPMo6Pjzg9OcE6x+bWFi+88AKjyYRZWfDYpR0mkwF9nWBsw2u39pBpTnY0R2uFThVV6Ui8ZzQQeBSKLYw15FbSn2TQn1A1UJ4eYU2KSxS2OcNbw1mxj/KeRllqL+hpiXeWeWN48/ZdTmcnjAcj0ixhspYjpSSRkso55kXNSGjS/hClg96sVYLrea5fusjaIGWQN7jqDKoTmqbh7bdvgncoJTneO0RKydl8zuHhEbNZQVlUQQbhcVaGSFJjcLaVQUH3tzYMVtMYvvFXL3F4eMTe3gFnZzPm84K6DnlRRVFweOgDi19VhbzNdgzPyQLaOci5SKfofvdoGdSijEQ7C9q5E22Wh+bPeRn0qGu/z/b+c6bwSGlRKlBEC4IxZW3YtKVgQU0ppURrDXFDJ3ogenkaPKtJwGibsqJpDGXdkEpJmqWR2MDjCaH6/mAQNlYtIxDHImQCSE5Op5jGkPdztJAMsx7GQ+09OktJs4z1yZB+noVkt5iPpbQi6/Vw1tDUNUmakKSBQj3GLmL+T6A4DiwyEmdVMAK8QacpUskwqUzN9PQ+SiuGaxvoXp+8v450NcI22OqEZm7Z2Aqb/q37jnt3jvjWV/boZTXDfs3WpM9mL2Nna0A26jGdPYNxGTXrDDYGmAsbnJx8k7v3X0FlApUpth7/CIMsZzLbx1vDzDXk2rMzzpDJGkKP+Mu37/MXr95gW49ZGw758U8/Q6+f0csShDL4vGIw3mZ4YWtB69zXGi8E64OEk4mlN76GnKfIsxlFWXAyndKvArzi9v0ZxnmSgSZPHJOeIU00G72EJNFIlTLKM3pphpQJHoWzDitcMHqEjkV73UKppjWoYguGlF2GgaWKyasRpOEDDA8hAwWvNcHwFRpQeKGw3mCtpaqKSHjiME5gvCQRwZhewOOCyRcpr8HbMHesdTip8FLR0wlKCCpbxTmjkC3k0Hu8N/hF8v/3tq0YVO0Pyw2mFW0LdfUc1AKxmgezQN99KM/arVW03MicbSirgr3jI9Y3Jjz91DX2bt3i6MEe3/rGm9w7OCHt75JlGbs7PQa9lI3xgEkvx+70KTd2qM0lGgaB/GRSU5dz9m6/hVCQ9BTOG5wzXFp7jmc/ssl83qcsKirToLRm9+JFpPDMvGU+c5SnDZNJnzxP0Co4hpJejkwVsi8XEbw01lUKae2G4+qYJq/48Z98jtdfeYt//39/gfm0YH5WMBj26PUyXKuYuCbsiUUZvKtAE42pVoC1I9k0hpKaeVFycHjMd77zKpPJDj/5kz//qJ5+j3+//xbFHN1iveGKIjoWWk+xWAoy6EDC27HvEFEsh38F4vHD9u4t9HEU4x1MpXPBoZP2cvAOU58hfEXe16jeED1c4+DglNPTOfOzM6ypyROByAWXL6WU9QZnxQbGZ1gyso0xLs+YlwfM52dYLL3RgGs7u/TzjHE/p65qqqrGK8HJdMbFxx4jzzIq32DKhulBTZ4ljMd9tA57ru5nqESjBgqhl1HwRMq4v3tOmxkzc0buShJgI/kIicrJkxGByrmlj+5G0VuDyHem+qOA1+1OKBEiO9e354/5PjOeHtlW36Pd/8Mv/9BG313f70/BPGf0iNXf52VQd09YlVtLCF+ISj3c91IuESmtMdX+ByHvMkmSFaXZGMtsPqdpmsX7/MmfHEa9tb2f5Oq1q/zy53+Z/b0H7J0c8/THnqCXam6/9hoPHuzzlW9+C+MTdL7N2jhlYz1jbdSnl2dsrg/pjROGG49jXULDkGHmcCPDbO8Bh/t3SHoKmUisrTFNycGNtxF4hqMJg/EaGzsXmVrL1Ja8+NIrYBue2H2cjcmE5154kjRLERKqYsbhwZSNx3ZI+8PF/JdSkiWaT338aSpfM/VPUZzc42zvbf74D1/kpa+/wtnxGaaxTNaGKB2JtLwDZyiKkqqswHuSRGNqi2kMTbOsBxbqzDZUVc10OuM//eEX0FozHA4XhmqbQ16WIRetHWJrLcuivA+z9rWG1GJ421xQloiIlXHvyKDulFsx1nj0HG5ztuIN4jMsn+P9tvefMyUkWoUETmP9InJjbKDtbcElwW6SaKmJaSS4lWdyCB/q88gsDaFYIQNJhZQMemH1JEmfkKsSEgp1orFNjatrmqrBGodGI5TGVQ4rQaqEJNXkvVC3RWpNmmckeYZSoW6ViBTWad7DO0uS1KRJUPxbV3yiVfAyK7UsOKkE2oe6KsGwjHAKb0iUZH3rMYSENE/QSRIXpgSpUKKP0Jqdjz3LuKjonRXcvHHAdPodSg+lFRwVmpmVbOWanVGPyXNX8DrnxA+xsxNm91+C6h6DnsHrBCQc799jHiN9Cof3hvWNDZ648nhgLatrbt+bMz07o+pnnGaKV+7dYZQKdvKKweYGF5+6TH9o8LMjfKbwWqGHa0ipSYAk66PFdXxvjButYZsZzpRoA9561jfPsLZBqAYpDJoSoSQoSaJTtEoY9oakOkWIFCVTlB4gVYZHxXCqCRj3xUTu1AfxIaS4KHQd6csDXjaM1yIyJTxe+MgmKeK1Y7SqqXHOxM/bxbzMt2qJMDweY0Nh1DTthZIAdQ0+eILs4vohz0vF517Ocx+ftWPFfI9b66FrPbBLr2wMb0eB+s4J/kuB2MIrWvzwOaflX+fpFtddtBVXZot692R5ys7FnVDPrd9jffcxssGY3stvIU/nuGZO7Wr2Dw0PnOGVumTrwmNs717jtCkocWxcWiNNc8zBAU15imuOkSRIMYqQBcfRgz3uZClNXYGQXLt6MQTuzCwkL6cpZS7xDfhM4lOFEA1SafrjPkIJnAwMmd41SJEEqDAehWAtGTFAk158ilG2xShbZ3ZWMD2d8+1vv8rNm3eCY8G7SMRjqEqLlD7OV0Gv16OqgqEVHFhgQ7XqiPtvaWPNIwzf7/I8bPdzH3LbusqK6Cg93Ty7IATDulZaLRTeIJCXxy82AfFu8/MHuT1i/QDLaH638o4LeyQOoTQqg3wsIgQ+Zzg0wcOtg/E1HPYwxmH8EUKnZIMJ88YzbzyZmTM7OmYyThkOxpzMZuAtt2/dpp8mzHopxoQ8iPXJhAs7m/imBGfQaRbmcU9AJiHTIByCmrw/IunleGnD87omoFBEigcUnqHOyaRGuQKJBX8WKP9FBiikylY80aF/HoYii0f81f572Z/vtLl9/8/FpQnzLobRu+zt3fW4RC90IwqrhtRyLOKdF86T6DhtZVCLkjj3tN3zVyMI7duEJwk5y/G9xDLKBkHOtwq7cw5jWtZgyLOgJxrTGuOSLEuZTMaMxiPyXs765jq9fsZwPCLViu2rj+OyAfovv42tLK6ecnaWYlzF7bt7OGe4+vgzbAzG4GbItMfm5W2o55ijQ1x1jG2OSfIhUmRY71BC8NjWFkpAlqeUtuLmjVe5sLnBU1fXeOvGESenZxS65ATNN159hUwLJjncebDHt9+8Qa3mVM0ZO7tbDIaDQJ4mJYMsJUfRFwm1TKjSPj/300OeffIZTg6nTKdzvva1rzM9m+GsiX3UUBYNVWnwTmAbF+pNSYX3dXAqRxY+ax1CtIV4Pdba+JnARfkkpIjHu4WxF+SYXRnvxfQTqwaRa62qlSXo21nycHTrvIHdyqAOBDTQ5Yc9ooWdd+VPa1R/kHX/Adj8BFpqjA0RBSEFSkuUCUpoYO5bJvIrqXFCBKIG01qTsfOiJ1wnCVJIFBKnErzSZEmgNO/11wBJWVRhw080FVA2BtNUNFVDlg7QUuKaEiEdUodrDoaDWNE5RLuSNIlFfiEYZ5ok7yGcBZ2EMG2iFwtaJ8HgahmlFj9aRFaa1tsV6JGlFIzWLhBo4uuA126pHVFInaN8xub1Ec57Nowl673Jm998g71CclYqpo1GOcVHNxM2Rxkf/fhF6PXZ8yn33pjynVdeR9QFg57FyBSL5Oz4AOktkzwlkSCVZdzb4smPXqI5uU8zfcDpaUlRF5iBYa5qbh7sMVENvd4Jgy3B9uNPYasGV0yDceMUihFaKiTQVznr6Qjjxxi3jrDHSD/Du5AzsrZxirE1zp7ibE1TzcMkloJEa5RUpEkfKUPxUCkTlOohZIL3AYInvMXHhOBgPIV+C3MlVNxuIXg+zjPnW0Uh1s8S7XQOicK+s3icszhrAiSEoJy2tcpEGx7uLGbrDBJJnqfUvqFpCrRMSHV7fQcxN0upFO/aopnxufyq4Pletii3AsRWdLek0NqcsnDso72OYuWUdh5/iMVUz+ND4u8kSdjYWEerkBcy2sjojdfJR2N0eoAvK6yrOTpxnM1m3Lt/lx8RGU9euozxZ3hXc2lTkPc1b9+f4spjrDkN7I+iH71wjunxMfs6RDWzXs4TzzyF95YHt99EikBkIzOBbwRkClKFsBVSCfJBFoVDiXUh0iVUKOpL7LlE93Eqo3dBsLN5kaeuX4l5UHNOTwvefvse1lic9ZSVoWkMTW2RMtRKSZKELMuwNggvY4Jgao2pBQzWt599L+bew5Oh9f6d/66F/y0KZ8pODpVvowfLudp6FP8L0F+/d627hjoeVdeCnVWEzScZUmVIndLv5wGurkJNqrX1CbZpqM8KeoMB25d2OS1rjoqKg7ePmJ0csbm9gdQ5tW2o64a9B3v0tKTJEnys/7fz2C6buzs8uPkGdV2RJBkOCTn4VEKqEa5CuIY01+SDnKYugyJnDSIWYG/LS2iV4VWO8yo6seY4Bx6LlDlK9VemSqu8x3990I78m4zC90VbMaRWDJNuW/Zfx1RafNylUD8PI2/1XvGOMqg975yB9g4yaDmej5ZBjwioLXyZzi0ds6GWUbO4r+z3SZKEpmkWir5SivF4RL/fQyeK4XBAr5eHFBUpWd99jFpokl4fY+f4qqQsDPPG8GDvPrPZGVd2rzIe9Zi7E1JlePxiyux4zu27x9jqBGtO8T4FYr0oBFtrExIJSsO9w0Pu3rnB7kbGlZ2L3L1nsG5OrRvOKLh/4wG5dDw2hJsP9nj9xlvkQ4VWnjwFLT39/iCUvEkUQiQIqXFpHzucsLu5jbMlh4dT9vdPeOml1zk5mWOaIF+qylBWlqYOTmlnPXmeI4Sgrk102vmFEw/sAnoupaUoKiCWNers421uVJues4wIPXrNPWRjnxv77rh3ySm6MmhFv4k/QtAhaurOcBYXDM/tP9B28AHZAUaxVAAAIABJREFU/FKQBswyNCaFwguw1iCi8SIJ+UTGeaz3eFtiCQVXvbXUZROsT52CD4mCWimkkiSR/UrY4EHIkkBpLZwjEQLSFN94JAotBFJAIxROiPBvGSJoUsXcqLZKciTBcIBUnkR7vPVY50GKWPtKRSNPdc4nKM6esIFHT79W0bMq0s4gxqLEQsUFmwRSOtcgvEOpBOkhUw1Xrl/h8//slzmdVxzPKs5qR2UcW74gsRV7L32VqrGceAVVydObGnrbiLxH3stRWnF4b49yVjK9NyPVkt2dPpk2HL32dcrDfcrjQy6vb3DtiauMr+yS5Bk5ikGmuLiWkm9skPcS6GXgJS7WV7LOgqlJFfFdElKRk8gNhBohsLTU5WlmIlxqjnc1zsxi4eRQgywo4R68w9kqRBu9Bh9geEIolAhkI8sN02NsSesCj7FAvHcx3ynU10Lo6BVpFruvjwZzy9IjlEbJwNLmnEU0DVJEZ4BMkCqNCy4orhKJUjkApmWeFCoSpWTBq+Z9wA7jkSIUAXYx/NpGLUMtrb8FAorO74VSugjJrwqybrJll4r23dr3QtUQQpIkOa+/8Rb/++/8zgJG/HM/9zmef/45fuEXPsdnPvNpnHGcHJ/wZ195EaUsp9OUuplzb/82N27c4ODgkG+/9E0cgtnxEd65ACnSCemDO2xvbrKztcGly7tcu/Y4UobaI0mSgEjYufT4QmBI4RhkntFwRJpmUAePnDFntPBgpRPSpL8Q5AvnUZxXWuR4mUCSMx5Zej3H5z//X/FjP/YZwFKWBX/0R1/g8OCQ+/f3opcvXKONRIXIUyyIK/xCKLVe11Vv34fXOrIpjhkPCbuFF9x1yJBXhNujHeG+PefDMt5/AJpSGVJ1KwD5mPfZ4HFYUyClJcsESTYKjsc05HHsXNpFaY2SglEvpZenbOUfwdVNcEwKwcWLF6nrmunRIYlO6Pf6wfiRgvHaBCkEGzuXcNZinSNvaqSoybIew+EYmllYHrKkaUIMDSnI8klHAVuSqQgEUmQEBbSVubFWlG9CfMK7gHAgIFp+EAyjD9beHbK34tM6Z+i00eWuQfXo82P0iaWTsvX4dyG9izyteG6XHvuhtohKLMkr3umQFurXOlLb63X3yTZaVRRFoOdumqD36YQkSVEq4eWXX+V//a1/R1VWNE0o3dHv9/kn//U/ZmPrAv/0n/zjyODseO2Nt/jWd15hPs+wtuJkeoBzBa+++hpVY/jzr32VpqqZn54EvVIp0qMDkjTl8UuPkemEN968g7OWrCc5OTtjerjHl/7skK999atsbGwwGo346KUN0izj6w9u0R+P+ORPfYpnjeXTZyWTyYThcMjXvvYX7O9/mWeefZbxZMyFrQ16vR6TtfVoLIbcXpRjc2ODwaDm13/9nzOfzwHL7dt3+PKXvsLxyZTjo+MVoyfInxB5krGCckBJLOXQMgoJ7lw9s2C326hztHNmOT6LgzpyxZ+bEwEg0452y8a8dNSt2EXtvX0b3Vq6Bc5Dyx+aTwv0xaO/f1T7AJGpAPeRLtJCiwh5i79DB8oQDmyLl1oHzmJEu6wiuYTzeCHAiWh4hTwspUJRLykF3oZQsJIJEOA4UoTEf6Mt3gZwl/AeK0J9DdHBSwdYolh6iNsNOlqzSoZomg3BjeDNb2sUtPC+xch2FYeYMC/ic4plF4qotLbMIWJhmcdoi9IIH4r/jiYj+oMB83nF2azgaG6YV4ZBsY+bnXD/9X2qWYH1kkwrxpMUPR6TTNYYDXLSRLEnLbOTGW8fGxIt2Zz08dLTFMeY+Slmfsbu5UtMtjdZu7RJ2k/JBORZyubWBJH2IA3RIkSIOrqo4CyqP/uYPyQkghwh89ifwZjSGry3OF/iXQ1ujnUO4wLsECymqSIde0vLHaNJXhDqeugVIwDvYxSpM/kJUR/nY66Vt0il4qIIHpSg1LKyecs4V6VK8MgYPYxeMRmYGdvcPhG/UDKMqfM2ej9C4V4pNdIFVkAXf8vu5u7bDV1GmOffrjB/OELmO98ti2p3BdyjPIntcQso14f8Wm0eyHQ65y+//g2sCcUzn3rqaZ588kl2dnYCE5yU7O8f8O1XXsHYhpPpEKUE8+KM05Mjjg72mM4LmlgAWCcJWxcuoLXG+xpMn0xaRsM+a5sbwaETPfVCSJLhBGsMTVXiSdHK0O+nJEmKla0nvqEtNC2lQqksrgdLCx1dtpgYLxKSBJIErl19nO0LuwjpKIoZr732JolOMcZT1xVFUS6MquDR80vSjoXy4xfCaAX//eGO0uLeAliWLFj+PxzQrulW0WHRJecNrO45qwf8sH2QFtaPeqhfnTAI30YxDVJ4RCxNIkRkP5MiIDvCdkomFLmUiDxQjPsOZr+pK3LpghMhD4WplRSoJJDz9PpDvPfUxTwAQ3xKmgXjzOka12gCi15DW8Bd6yzurwbifr1QvFojSeiF4t46wkI+rQty5aF1t+iZ2D8fQqd/n7aVvmhDAe/aP+/gAen27Xt6QaIy7B82jJZ20+pDtP/yMWDQtpXdLhpS58kMYHWPDAQKFmNClMXHiImKeh/A3v4B9x/sUZYVTV0DntFoxC/8ws/THwx4/PFr0dmuqI3hzt07nM1DDp+xDbP5lJOjQMQwnRcYG+oqDUdjxpMJ3hucTdD+Ago4OQ3EEEkpKMoCU1cc7k+ZTqf82I98ggubG2yuDUnzjDyXDIc5u1ceQ6iEqwTdxCM4m825fecuW9vbGGvIUo3zjsFwRKJDWgzR2Z9lkCSOp5/+GNYapHSMxxPefusmWXaEkpqyLGmahqZpEMIsED8LvT/uCcGZHAMsC+TB0pjpjufCKGfJ0Hje0F6MX4hKLHUQH22H9tj2LitGVGfGnHfwidXPfWeunc/h/aDi530bUwFCUi9yV5wH4wi0gkKQCxFgBDrkQQmp8aZGGBBpglMCgcZZh/Mh90ooGQwpJDoNzHku5jGURQ1OoJRf3L/dJvMkIVWKqqoCqYSGREt6vZQklXhbh4iESFBt7SgRcqKEtSH86IPhplOFkh4hLDrLkSqNiMBQJykEw0JFVkEoChtqVIRivVLFBEe/2lfeWXChNlEwVqKB4n0wFGVCkvcYJQ29Qc2krjHGoJoMbzbY3FIBu9q4wOtvHElvTDKY0EslWsGVa7uYquLjT97ENSXKz1GjNdLtSzhT4W3FePsK+XBCOloPeWDeopQkDXyyIHWMPqlgSHkf6kV5h8MEA8acoUSCFsnCKFWSzqYVYBmBgSkB6RHO430dhDYV3hus7cUIkQ9Cz3kcBuPdYhLLxSSPsCUXYH4OFZVXizEl3ll0EsbBr2hfASKopQy1TFQgFgmGjqHE4UXwujrvqRsbDa4QsZBCodr5bgxCeUjD59aHMfTOxsJvEk/whshoYAeaXQ/CLwzO72XrbGGhR1aESlA82r+7htRCgJ3zSMqItWm9feGiH9bTL54EgLqu2XuwF9a+Uvze//P/8rUX/4IXPvFxdnd3+PhzLzBe2+Qf/aNfoSgLjo+PuXXzJm+/8QY7l3aYbIzwQF03vPLqm2R5znOf+DgbaxMu7m5z+84dXr99mx83FXmehL1LrPo+pRIkvQSZDclcL27+FpUNY1/FrGVCVNv5Jqz/GOkEgfMG6wxVVS6ua4ylrhtu3bzF/v4+SaJRSvB3Pv1prLWcnk45ODjglVdew9pAqvLtb7/C3bv3g3fQPRyBWhFCH2aLEYigfC+FYQvhOy+MZBSIYS49WlPreih99Hj9bTsjvj/bO/eZEAql84V8cnKJGvA+wEwFAp3opfIaIc3IUFrEE5lNXYOUsH5hO97VL0qKtFmPEBwvSZ6gvERlm3FMDVIHqGFL5d6yujrfxDNt3HMkPsoh2dbQot3p2+iTig7d8BOceGLxzkt3UKtB/KA2/857RLveHsJWvcOVghYaT12dc3KhF7x7dLkrf1auI87lXnVkUBsh654jRIe4JGlze4JOYZqQQ9qyS3uxjFq1uVJ5lpGkKcPRCCkEe/sHkdK7WJAdKK04m834t//zb3Fha4sf/bFPsLO9y9Mfe4Ynn36aK1evcnp6wtlsxre++U2ODg649sSVmJsNR0cnvPHWTS5fvcT1649zcfcCw8GA77z8Kg+ODxlv5kynDS+/9hqj8ZhLVy+zNpsxm8+5+uRHuHL1Clc/8hTr62s8fv0pkiRhuD4JWml09Dvn+ZVf+RWqqkYniqapuXv3DkIIqrUC5zTWJot+riJhzGuvvkZVVaRpcFL8vb/3ixRFyXxe8MYbb3L//gOsbSjLkhdf/Cvm8znG2IdihD56zQI6QjySNGQxR+J4tb4/66JufM6xK4RYyA+cWzjmoBs8WTr2WkPuUTJomd/7/vaADwo1f//GFMvJvwrvCC/r5LkXXzyHDxEnlvStWgfTRGqJIkSnlFwuoDAxAp893nYWGYsiwCIOVut9F/H8wARmcFbglIo03B6h242449n1bW5JtKrjBuAWsLQAB2spQEMkbuEmYxHioCP42/6JxAfgF9DAwGwYw9mxL5SUyEShRIJLFCKxeKdI5AWcNdTG0xhLWRl0PkRnQ7JEoCT0Bh5nGnq+xtYlppySjNbIti8QMBSO/mSbpDdEpaNAAe7D5qK1akUPbaKdjAw6Ie8iwsLwWN/QCkaBCw8vz8HYhIvjHWqBLPsURBuZk8ELBCFK5XyAAQpcNDSJJCEC4th6F8CTNlarp41s+tYbGa4Qut5F5TaOjSd6zEX0pIToAY5QbNe7aAS37x++bwsLiljgua2FEwpiLiOxCxlNO3dFZ064D7QQv3ttVQl9V+W6+5146I+Hz1+874f0auc96dYFh4kPSaP37z9gPpszHg0py4rJ2iaDwZBenpJnKRd3d6iKgpOjI/I8oWkqtNY0xlI1lizLQ6X7yZjd7S1Op2d4cT/UhZNiUSeaNiobSziEgqGBIEe06zd6x9uI3VJJa/urs2l7QVMbbty4ifeeRCuquqEsa27dusXB/iFpqkkSzYULW8hYsDj8JDin8F6jdVuDzZ4zaMW5e3+4TbBUYrr73oqH79yx7boQ73Pm/DBn6q/Z3sUADcOgFvVnhYhRBmcWsmrlEou17+Oa8AtHARGtoHQS92QbDWw6SlG8nhRIr1CtC7mjKC3mSTfZewHjaUlKZJQpreHlWa4vsZxfQMi5fad18L1ZH/9/bcsRWbZHOSweKT/eYTl2j13aYavG0Adx8Dxy9vpHf/F+rhp0t+4zrr5bIM2RCyeQcY6yLKmqiqIoFsa7TjTGWG7cuMn0dMr6+oSyrBkMx2RpQppqxuMxo9GQ+3fugHdkWbim0gmj8QkOyeUrl7l85TI725v0ez3eePsGsizY3FhjMB5yPJsxWVvjyrUrlGVFWVVcunyZ7Z1dBoMRvf6QwWAUERRq4Qwpy4qqqkmSBK01p6cnzOYz9vb2ybIMlSjaOp1ahwhcMS8py4obN25S1zVpqun1emxurgc2wKwrg+SKsfLQuEWFejnUq4b0eXjp0n5YHuRXvl/WHESsjp+P0dMVGdSB8C2O65yzlFmSd9kilw8SjfcPIoLef50pL3Be41xgmxJYlAjKhpMC6zpUpN7hrcebBkxDonUofFqXWBxJohBKodMMiUV6S1U3VEVQmL334Bq8A+MCDjrRKYmU5FpQ2bChB4KDAAUQQlAWNUpZTG1pEkOVWqxTZKliOBaBaCJGkpQIirq0FmwQFA0VojHQFoMTMiTn2gAxDDBABULFBFiP9HUYzNYb4gymbmjKCqnD+QEa6cGWwYBSGd41+OIooBYkpDpHyATnUvCWrDcK/R7hRM6WIEIuR+sMXzDXXHoCPNH4aw1ODbKF8CnaKEnw2gFI8CXezWh9DG1EqjGBtlLJFOctxhYI75DOQzMLyffJIBBt6GBUaRXupfUg3MObuNuFaA0IvA/h8mCgORrbhGpQfpmY6JsGgCyfELic3CIxucvAEuR5AyLUqqLVCyIMpY1wykSFvhAaITW9NESkGutJCH3YGtxapUgpsSZ4/aXUSAkqaReWRJoE6xyVNTjnFzXT2hwy7wM+176HV+7Dai28dIXVptOkCN+1lLTdzWLxd9f752MSeydq9b2KGFhrgxcsQtzKsuTw4ID9/X2yNOUP/uA/MRj0uXz5Ma5fv87nfvZnuXbtGtevP05RzDFNTa8/RGuN1sSSDRnWOZqmoTKe2npG4xFeeqytYOEICB7vxeaMjLWjuiqJB9/gfYjKty0UF1WLfpIi4fbefX7zN/8lTVOzc2GD+bzk9GxGWURMfiTZuXjxMbIsJcsCO9psNidJFEmiqetmtZitb2viBYeQc++qS38XW1wNHYKe7nehD5dEEyu6+bnne2gudYz1DybKftjedxNB/qrFGg+lJZw1CxkGXRNd4G0RDapQFiV4eWWUQ+E4R4MzdThXeLxv10D4USIgPFZhHA3B8dRdPwrBEson0XGut3usjcpOe05X2Wo/e9Tm+8P5BMs111Vwg8f/XMQn/EUXlhWaX4xN+3HXF7fI03UPj4GIRrBrDZmVbzsbREcGOecQXqxEqB4F4wMWcLTV+0XFulWqW8PbeayxQYd1loODA4wxFEURcoA6TICtXK3KggcP7nPr9m16ec5kMmFjY42trU0++xM/wVNPPcWPffKT4B2z2RlCCPqDYcxXAqU0SiU0pqGuau7tHVIUJZ/9ic/Q6/dDiowk5uwH0pg22qaUDux6tHu9wFpD0xS8/dbb3Lp1m6IsKMqSb/zVtzg9nXJyMiVJNGvrY46Pjrl3b4/NjQnj0YCj4yllWTGfFwuWu8FgwM7OzkLmzOcldV1HedRgI+NftyZTGz9p9/6leHrnPOyW6S9YINEYOhc1bc93bll4F+ig1ToGlXw42iSEWBBNLPzA3a2nnSHvsC2Izv/fT/tAkak2yczjl50ZHUXdUGtwSrVcayJEAkTIMCF6fIODyi9zdJwPHSzjCyqFFB67gsUP/16GkIOHTGkdjJ2FYA/RCo+I9YFM+K1iLkuMOrVKQWCL82BCjo+InmkhQXoPtUcriUxVEChRYUa0ieDghAjneRNyxfDBCHLxWniErUEInNSREC4qqb47EUJkRag0LH6pAYtUUbnrCiQZLW0V62P41oPoQi0mqWGlzyODXew7Z0usmdKWwzUuEDtUTbOgjRZCIZMU4SzOG7AFmCrcVxqkt7HeQxqonEUaDEVfL1VOb2JfhB9rGmxk2QNCRMwR+ib2VssM2RJJOGtoo0wtbn4xbpEBsF2ULnpaAzbaILwPUbm4kQsCoUArJEIASwSjDLn0rraIuMUfLO4jhYpwxuXn7TpwcX53W1mWfOELX+DChQvvZ7l15vzyH4/y9LStZUwryoK/+4t/9yE4R0elXazlLmSGVmCuXNfHd41RhXiw1pqXX3mFo+PjxbM87JmCZSd0I3cPf991PomFgBbcvn2bn/6ZnwlCWYQi0CoKF6UU/X6PPMu5cGGTixcfYzAcRYeJotfrY4whyzOUVqQ61rMSwVium5rtnR0aY+kPBtGgtrT7StjemrhRKw4PDzk6OmY2O6Ou67hJeyDkTEmpUTpElzbW1xiNhuzvH1IUBVVlOTo64qMffQqBZ2N9TFk1FEVJ05jFWCil2NzcJEmS6A101HUT3kkrJpMtjjpJwdbaCFlp4TthMv7BH/z+O8yo7tx5WEgsowldAdMqXtBGlqqq5Pnnn+fy5csd1tLzN4nY+c43rXK0UGbaqy9DIcEZEifRm2++yRe+8Kfv+i4/bB+kdcay7X0Pi/qKERLnO1+HfWF172nnQWhxzggWtf9WIvfLU3g4etv+7TqRqSA3ra1jnmoaFXTZuVb79/l5+ugQRncX/EFui1UvHl6vSzmwuprDti7aLXkReWLl2FaC8E5D8N4P1l7tEZrtKrx8KQjb/N3WYDoP+Wqf7zwssG3OO3ABTi6lXFB+t/vqQplva6U6Ry3AmFCeopgXlGVJGQ2YV197HWsdFx/bJc9zqrpBa03ey0kSTZYliAg1reoKKRUXL16kaQyTtXV6vV6UKy2ZQ8z3lsH4vHXrFrPZnOl0CgS2W+canK24e+8ee3v7wfnsHaNRilJ9Tk8OqOuao0PL2dkZdV1ycgJVOefoeEpV1dR1Q5sHFXJ0HVor0lRT14HCPE011rqFvGoNqoDAWoxUZ8zC3Gn7cKmLtN6y93aVnZ8LC4duKz9avaHr0HuED0V0ruUfMUGXOkfUPYV7aN68n/a+jSkXvbmeNnoUBzy8C6kOSm6YCmCdDzhpoTBN7HiRBMXdVUG5ruv4BoKmcVhjkVoHWu00wzlCAd+oqFkXivg5ZzvMRJ68NwqY2FaZtjaEE2QaLPfaUtUZzotgCzkbkmKTlDTvB1p357F1ibc2GBAyRFuEBFFZsjxB6Ry8QUCoBu1A6iwsZt8ghUNLDyJgx603OGNRPhhwys0QUuLa/C08wisUMZLgPN6F6tlSB89ccHhLfMxtCjANQ6gdEvOUZBInWMusYju7Y+vJjt/RGlwWUx/RlDejMQG1qTCuYT4/wzQF5eweabbG+oWPBw+iq4Jh6i2uciA0iQpek0zlSJVhHHhbgptHnH2YESEHrcZZg63n4RquwasEVIoXEWstEryQNJF0wFqDMQ2mqWIUL0T2hEpxmJgC1CCQSJliXDgeJF4E2nwPaJUScgZS2qLMztlIZS6J5ZzDMSoa+rFQsI9SIphJgeFPyxhtE20Sq48RT0nID1slAtjb2+Nf/Iv/ZoWS89Gtq/Cw6qyLDojzRe7asXbO8Ru/8Rv89m//9nst579Rm81m/Oqv/ip//uKLMVorIqmDf+gHInGNCAQzwc+yFIaLvo0v3NKpSin53Oc+x7/+1/9jKAB+rnWV8IUHW4aq8b7NJxLESGwLL10afXjP+vomzz33fBQSDS4WIG+aGmvtwmhKkoQvf+nLfOWrX+Xll1/h4OCQPNauU7IlNBEMRwPW1yd85jPP8+yzH+E//sEf89Zbt9jbL7h48Qq/+d/+S8bj8YoyuLr7v7cW8l6QmX/1r/47fu3Xfu1RZy6iWIHk5+F52CZkLzyx0egSrWEU4TAbGxv89m/9Nk8++dR7Pu/fpP3u7/4uf/qnX/xAMKEftvfbVtVnEAgVHE3ems43gaxCoBbOptDiGnYG2sLbggiRPq+0RKeMVIt7LVtCdw0EQ6pkXtwn0QOybD0gIITi/PO+9zud/+6H7d2aeOT//cKQWjm2q+guFNmO0RP3mtbJ17bV/ObuJeQjRmzpdPHeg31EpCPeS3ageivypXP/IIeWzgLnHQ7Hycnp4p0Wkah4fPtQ1kTHlQ1sqkVRIqXk5PSUg6Mj8nv3uX37LqPRiF/8hZ9nd3cXYxpGoyHbO9vRMRCJXoQkE6F0zKc++UmIxG3AwpgLOV0hjz5JEowx/P7v/wFvvfUW3/jGS1hryfMMKXxwYscx2txaZ319xC/90k8hJfz739vj+HjGweEhUkq2Nsecnp7x4PSEk5OziHZY9hfAvXsP+P/a+5Imy67jvC/POfe+qm6CFCyKgxzhkBySw47QYMleSVrol9oRXiq8snfWTpYUtswgZVk0QdISBZIgQYEgAXTX8O49J9OLzDzDfa+quxroIkHdRKCr6r07nDnzyzEGzWFQ2Eu9oLbP483OpTfvDFaDhconoedBo4voKXCijr+rrrvNT9/eXkga1puM6diHN8iA4Tfv67NB4qXp5d380DaYomVNxODaXHZrDHtDUGNPXIgqHkYSXKiyfzhr3nGzmpC4GwkwTxo4OKmEC4iAYrSYl9nuZ0gghPnCTMuEmCZM8wEpAimgFgW2HiBNMyhEs3wUFM7IawGXgmkyB4jejZsZ67Kq3k58QZCl/dWECwhAIa1ULLJWU3YpGRC2YDsBeNF08Enr0bAAxJpKvFhRORX6qWqbUVtOkBP/cpiVxZ4PtbxJjTdTFybNMqYp3IUL8nqLZW2axcyEzAHLumBdFuRlAck1rp69XzM9SU1gsIBQ1OIoESszKK8IJYOQEbBCLEsTSDPNaDBxqBoNtpglsfG1SC0QgoIsEU2DbgVNhd2dj0GUja37JmVIyQa0WZOhkLpewsAOgiW/gLu5acpqArTWFWcwuKXTt389LXvm3GLwolpyqvGq/vT2nPqN6wHUDr5e1GjqHaoHzvBgauCjxhv0JvHuEJmmCa+TUkrmelkQzKri+6BqrKSLi2BBoYKcT5/FXR8IAFtCm0CEUkpLVf6yRGHYt2R1jKpL7AbACIDj8RrH5YgPP/wQz589w1//9f/G7e0tRNhqPF3gG2+9hbfffhsffPABbm9var2SUiytbowoRa20P/rRj/HGG5d4+mTGr37pTfzkJzcQKYgpGdO8y1L3yVApbaDHAG8TWogRwpiK2DNc6f1lYFogje0kE0bWNVeQ+TrpxYqHnT4e9RpZJT0WQydAk1mcjO+Np1Y1FtiVJnVt1ndTIXdCk+/DtgfEmC5RQowXEBEsx48wzZ8BpSddO08tp0OfXvjJP3ESVZ7WmagAw4XeUUnV3QZ0/E1vGYXX/juPbdsmmeizwZlz06Acg7fFhVuRzYnd5p+GNYXKe6pcZq6oHlfT8xt/2rmkB/X7DV/zTJG94J3XjCOOuJ6uAQBvffNbePfdH+FwmHF5eYnnz59jmhKmacY0z5inGctyBDPji1/6Ap48eYrPf/4LYGF89OGHePfdH+Gtt96q3gYXF5cABN/85jfx3nvv4fr6yowbixo1Sta8BJZYLATCu+++h8vLCf/8y7+MwzThJz/9IXJesS6Mm9sjbm+PZmFzrx6psglzAVJE4GjWOqnJJFyhWy1/w9j3+1Lq9acKw1Pg5OO/fSY5kjpzZ6jWps05Q/7iU9B2Qq4o7GWqgLMuqi+il0+NDu+TJ3+wPPNs2qSsaaSbsA0EqwOhNZkArBlSRMGUmFGhZGBdNEN5GVZYAAAgAElEQVQaxL3X7GdAtGJpKSRI0eKroAihAIqaEU5K1kGZJxOWA+J0wMXhAjEqmAvJC+lqoGyaDlWILzmj5AXLUlAyIyXtrASfGy0yttwe6zjMhwNCjMhZE2WQCEQITBGQomnCLeZC1gVSLH23ALi9QZwn0NNLFfKCKKICg/OiIPQw66S6y2HP+CjCYzc8OQb8r1q88wguSxWI8vqRpfNWH9TMBXm9wbraMyBgBBSJuDmuyMsRWFZwvsYqP0KanyAdNPV0DEDAEQGkMUcIGnYGAighJU1LLxCtXRXeAGhS7SY8gYQ0zRG0tlXh4kc1JgPaUm7NjcmGiAiFLUNPSN1GYQALpLDGwgXN4BgkmzlfNSyF2ph53EcgdUNU3BUgUeetauYtjirnYm23eTQk6K4PqjxT7qBumeMmfjkFey9g0PYRI9DCKCw/JlW3XhsnVxwo2DRBPXpchbbXM9ARxkOyrzFCokk/CtCA50PatXEtAzqBfPM4gZZuWNYFV1dXeOedd/DOO+/gP/zH/4SPPvoQKUZcXBzw9OlTPL+6wtXVVWWqy7KAmXF9fQ0iwmGeLLYr4Pvf+yGAgi9/4Sk+/8+e4P995x9bqvxBmPzkqXd3Oc3c1QQF19j1fu3nmE4TjKgyr16/vNMvFhGRpk8+N8Mn+0dUCYUmhJMFATfr6+lzVObptEQdQFP38QkpfQZlvcKy/AQUEmK8RA0Wrvft9BByq8G4zUflkl2JszxIzliGsFXY9AJ1QEVL/Rs74blPQNDwcTsnxRpMJ21sSkePhPKagMxcmW1IVK/RsBI+4T9bLwr3uAKaJabyMFM0bXmwn6c5F3z1q1/DlBI+/yufR0oJX/3a16rl7OnTp3j69Club7VI9e///r/FF7/4RRwuLpBzwdtvv42vfOWr+JM/+c+1XNBnPvMU0zThpx98gHVdq9LreDxiWRYcj0dM5mI+JZWBv/Od7+HNN5/i13/9S7i8POBbf/dD3N6uuHp+g5ubW9wej4OLeT8O2meAmSw0Q2MlfYb6+Q6heZtoTVUdVlf6ukwwro8GsBu4Hq1O27WCjq/5IvY5JJcle+uT/X7ixdO1358XQ+xk63N88+XoATFTnuUOJuQ2oVjjnvT7nM0aEiJiKAgEFHYnNB8UBUyxZskCICoEewwVHBisK8gSWFBQM5OYJqXkFWDGFA9qdfJCjybclVyQpgNCSmBWYTcmF64KJGesy62CqwDQTJAUMM+WNdxTO4omoWDOaq6lgCIM4RV5KZq63CxzkVgBRyJorBAQsm5u1RgTEA4mhIvVkNFYK0CtcbGzoMFdAs0apXNsrnti7kxmtGNRKw6XBcJHgI9APAAUwdDE7iIrxJ4X0oxET5DXBaWsWM3tbUoXCADK+ia4MJbrZ+DMgBBonhFSQpovkWKsNZlscg3oFTBnFFGXOI4HgAQTEYRXrLwYkNJaZIVVS8MAoh18q9zaEelWBdGUpxRsg0s92GK09O4hQEjnCUyaVEAIIhExEAC3pG4PYU1wQeZGMMEyFZK6oFQAhagFikvRYr0UUGzNOYDwdVtTPHdUGQ1Rx7/u27R9DFITPs5p+trzH0vI6NwpgHqg9YhRmBVcDm5j3nAdBi6t/kf31ZBi+/WRrtf/8zd/i299+1v49re+jR+//z6urp6rdi6qVjOlaD7vB/z2b/9r/PIvv4mvf/1b+PDDj4zx6Hq8ub7F+/IBiATvv/9TfOsigiD44TvvgXD5Stquj0P3jWFzY2hAaguqqjsFNvLQzwjA7/TzRoRqxaqr5FSJ1JN6DqygkDpX0/56jUed0hPEMCGlJ0jpCbBRkez0cHIFmP1hLOVFe7m5YndPusPa1KwXfq9/f1d77i3WC0uYBLdw8dCWwTujqyHVE7OBnxDNUrVZrYTO6oTKw/w8ZLNmBYxnpLM6PyPdLVxEkNcVS0qYPvoI8zzjyeUlpkm9En760w/wgx+8a6UwIv7yL/8Hnj59gu9//wdY1xXf+va38e6772qsN0UE8cRJEfM04enTJ/j3/+53cHt7xDfe+jaeP7/CBxa7XArjo2fPcVwW/N+v/x0uL2e8dRHx/OoWP3n/A9zcLLi+PmLNuSmHRZCSJ4pxy5R6mmUq1Z1P3RPvUOL6YPRj2M3xXXNb47bP8J5BKXj2bgxagQqAaDxLRFqhaSLq1hPG5xuuaXcasHuAPPWAbH6+0GBxR1KTBIiZa9UiojFHmkZa40z0NksKYQKlCkyauSfEUBMerGvphCsGF7HsdFbclwgsAQzShlBAnGdDrGiqF9HYKbLgcPd/FLOOkKjAn5dbzZaSEmLSAztNVDPHAKRgSrR9ggDEdgjkdUHJgutcLC5qxXRIONBUBe3Eqm3PnvSCNLFFdXez8YRYTataCNgsI6RAwBeNx6yJuG+7Ck0KSjK4HEF8BKAJLyhM5t5HWkxUCFpkNEHoAGSNPyssGusWJ9VXpTfAfIt8+yFIAkqYFACHiBgmxDhr0g+gq5OoIJJ5VWuTCBiraQAA4WwWCgXcbAVzXc70wP7CmmUnntFUiGhMngKjUDNLBUywPHo1Po6hmhO3V4ilPKvgFHZgVm2WxsGEQKDoB4wd5gh1nftz9LbmVuAbpNeOtbZ3WrlOIXhWN/gAgfXxANQpiVmTXTvVt8ctgOLpvs5oKMXAqn/Pnebv1e0f2/GQzcd2YCtUx9///Xfwlf/1FXzjrbfw7Nlz5JxN6GjayhgiUkr4V7/5L/Hrv/4v8N57P0EpjGfPPsKyAOuacVwWLOuKdT3i/fcnc7UV5Lzil978FVPSPu5cnbiDnvn9PkZmF54+eMdTv+DUr9O79g8AdLFMw5q4Y4FIAfNiVs7RjbOtv2iKgIOGVHVt2iHVxyfX6Ov+t3PuzB4/BVEveObZz+tvJw+Xe+4bngHnBe1M7l3e/W9/LtmLxRV+Mmak3bbNjQKAyrIQOY3B2rRza1kpFkckIsghIOaM66trjXlKqbqSPX/+HD/60T/ijTc+g8PhgLfffhtEAdfXNzguC95665vIWWsVqpCgCr0QAmJKePr0CX7v934LHz17jh/88EdgZlxdXSHnglwyrq5uLLHRghgDirepZBxvF1zfLJ0F6nQOvV8sApii32VnHz8fXxePz25/jPzkRTyovx5ornc+p/33PXCvz/H396DeZYuuzc11vfHiKrt4Wzqd0ENOm5cHU47qRBsZY0IAqSlQNH6KWYBgYCpaQDpYs86BtMovxIrzCsrKmrVvmsBZU6EHyRo/ZFmiENRag7KCYkKIU51ghAQEeweARAEpEC4nAKWAlxsstxHMBWnSlOjHG431ibKi5NVQuFrQ5ouDxmgcDgAFFchF1HUMScdgmkFpgvCCNa94dnODdclYF0EgLQK8HgXHnDHNM1KKuCmLBrcX3egTFcSVwMuqlhZSQBkICPMBFKOCt2J7mLwQHhsYUqsHl6zCbPTYrAVeX0ooAjhgySuYjzguRwgzoqWfK3KEWEKFbKbjst6gcLZStAGIM9JFwhuHC0uOweCcsSJiiQVcGNM8G2MUiBTkcoSwZe8DQSiqtSkonAYR5vkz8MKRLrSV0uKYQEAk1ShoMWErIFxWSF5tvenag63BFr6qbiLkCTtsPIqNPULsDNZkPSWtdxYnAAGSGQUCRG8PGei11MBx1gQnIHVTRafkE9UQ6draWFz8ACCypJWnzKG3QJ3IMxWTUMcDpbvgYSDskyCPL/PEBT0Nnu6bA5BgSSlCgARpjM+sr+uaa4r610uC9378Pr77ve/jjTc+oy59z5+pxi4q2P/H995DsUK5f/7n/xNf++u/xfe//wNcX9/U7EdNwwrc3mpRXtfqpRRxpsbuayF3lWhLjUz7erouKmCy/8kY5KiB9XUFc7fl6may006n1B1UZ4hCQqQnaNn77qMzgG6nj0W9e1s7r10Z3vOSxqvqR+g/piZEb3jQcOGL2tM/egA6LSv08NQz4Ks/q+7lQRhTvHvSixjVtY8rjyKUmtWv2msGUODAopQGuIoVlQ32+7PnzzEvM1JK1YtmWTVp2vOrKzy/uqpu4t/93vcxTQlf/OIXsCwLrq+vtAZpCLi+vsaz58+1nMfxBv/lv/43rOuKd975Ya0v1WKVGcyE29sjAE8Vr2WBnAWoIURlohbfrLPhzygF5s3V5laqXtkzZ9s8RR0kqm1wENXPK3XvGkFTNyHVlbwlmYDZRrqYLmENB+jlid66BQWDBDWK+FW0udZzKLjimyuv6+LuHnDsPChmKlCoMSfBKpZrIdiAEgkgRhRSgTVMlrEN3ajqj2AbsYh3zK0E0EkBmnBsFilhthAk337ccstTE8pjAFIgFFswzBmlBCQLbC+cLfW5WcDENBPMZtqLCOYyRiZAcLCkCETm/6fCETOw5KxCUyYgAkUipFhMQhSEGLCyZzekWh1chCGlQKKhfQpqCQmWhY4FRMXlHAjBxtOLEnoKcICQDYU7kPLBjiistQGyBStqSSZCtqQODI13U1elbPFnjuAmEAFTOIDXFWVZANFDjouOi4i6DxJJtfB49XGhAE8+Hmq6cE1TDiYAxWKWAiQw0Al8LZjZTV4GJlkAK/Uspj7Q5BbUNntoLpFVY8GiBjkWSND1ZyGqAMhS6wcQglUtdy1FqHWbqlWre++4Q1BBAQ8pQ7uruhOG+vvqodEe14Om7Yng2rp2T8+WHp+21g2bCPu1U1352mwnmxbGtmyI3oMxU9DrIxHg5uYGz549w5tv/hKmKWA5zmDRRCQ539a6IyLAOz94VxUkNzfIuWnuejDlqXXXda3Mo3Bdia+d+jkY1tTmmi1oCiefAUCLgRBjOCyP15edPg3U73n/uRV6/Xzo46nuE7j72JsXXbvTy9AohvXj25hMs1b1vGr7IOM/7pJw7l3n/u4mVMyC1OJcxFs13Czd9dtn0YZHnrqUGQ/q+U97wKA4otoOt1R4LG87C/tYmmgFc/3cd/lAiKr72mLZqpdFa5FO04S8qpLVFW151Xj/Z8+e4eLiAm+++TkQAdlAEBFwfXOD41Hlt3Vd8Z3vvA1mwe3t7ZBVr4EiYF1VblrXXPsnVnZC4OU0LI58Ewc2uDziFMCKDANZ5+C8lXEr2DQaLFdo034XYN62a+vCV68FhlJ2GOZWxvnufvr33uyHcriXBlMhBMzThNtF3cFAWsg2pUmhDWkmPDWreXGthBSTBf8LEBhBNDMUIuFyDoMAzpxNuIqYkiYXYBOqCzQmCnlVMyyJmk9jtDpHohYRAFmAlIDDTBBiiByxLisCCIlMaCOou9p0QCkrlpsFeRHEeMT8hBGnhPlSLVQZAYVV04xlBWhFgmboizSB5oT56UGLwa4r1PLFWG4Ljre3YNE+XD59ghgIhAxEwUpqgQkBSIcD4jSjrNfgckRhtaQFwLIdWuYWYcSgfS6igKJkTZUukqtmWqyPLLGZyEWHULigLAVLybhdMwIWBKyAqKsiZwVCmD4LmOYhhII4Z4uTClp4OQBrWW3tFdUWAFZ4zjUhDMlHFBBKZ77hovWmpukCIV0iEhAi27eEIpq5L1rGv0ARYTqAQgIXBU+U1c0v0kGfmW8VSFHEuh5RCltCAgCi7n5cjlaraLZ8IAqOUpwVRIOwWvpztUq6hYRs40XVfORVAZClQE8hgBnWxwAgDVqwE9rIGxSaf2/d8H6Qb5hW08AYEAzntT6vk8hAcAV9HTmgdGaA4aDTyu2A1DH2b5oLqwPdx6Gbm2t89OGHuL29QYoRhwuNaVzygtvjETc3t5VhHY/HWjxaNX4JJWesy1JbXHJuh7MApSy4vV0epOV6VRpcJKXxsLtc+MQbCQ17JNPuqkDh1uEG1E3NstNOd9AnvTp+tkqiX2RyBR6AtsdpjH86x4OqAGtz40mGTgP37543v/4kI9sd92zdjptVvW9/3zezEgUa+I9eay58xqdUZ2QK1sqDRsWAW0VibKU7AGDNDaxoeUrpElgIjkfG+z9+H9M04fnlM9zc3OD6+vrE2vb8+XP97uoKKSXMh8mUdcWsT8dqKbu9ParhIKrSeJomHI9H5HWt8+LeAz7HtYZW59LoqLGe9SfjdNfcAS1+DXU8Tl3vOmvWZg7P8aB+PcDaJGjeL9U6hl59Y9m/XdYwcjvLSQIKB2JwS1cLMwgVIJcBgL0sPSg1unbiVFuhArTFQ3XfO/IX66WCHhWMTS1RFdX1h6WyDDGimnrrM3wi7F4CAtoEcE1LDjBpTSWRomeEJS/QDGTuGCjw9J2wgp4uNJtTmgpDIjWeSGs0CUKwlA5kJs8YEVhjbdS+0bQVHrwXYrLCxqgxWR5Dph+6ny8j1OLAVpG+OJgSUGSIuVcytCK2JhXPuvAkqfXFxs/N5b6q/TcxF0dBUfdBWPxLtcB4/RDXuosWJ7W5oZpR0Cxx2AhrlqZc5y6ga4weiLDPKYDgPsI1PLBqUdA9F2iWzBiogqF6n0gdQxZGYB8Hc2XwWmXWFLWy+oHa61Yt5orVZK8xWWj9FRna53eN2pz7t2PPzHz9ix2Gvi/IGjWm9u6Yn9/7SCCqb2v/R3/01DE4vXLo8ItcEj+5Ht3/JC3iqxrD6MoZKKN0zZ8zI2c605Sqht0tNs7kuaIYat8/gpXtlGxfbADV6RVGrnO5Y14eAwzu9PNIL7kTN2fS+Xtf5lmvcs9OL0db0NEdyWZB6N2ltjxo4D9bBtYecfZdJy3pAZI3xpRqLuAPh872+k23eh40ejVv29gUXVUm6n6/s71Qwd7rHW3PyeYepkCOzE1OuNUsWpZlcJP2+mweasGlYJrVI8hdDXMulQcBgpwtj4AlJ+vfXc/8OgBU+7a1KPXtrv2psjidfD+OVRvLrbtdz3P8/mEct/dgHPlqecI5MiVh5VOEaoaSDY9rCxuVuaH/VYaXeNtrX7tbXoZePpufCNaslp+oucMhgLmvaHY+sY2kGen0u1LEEk0ELbZKKqR69hNNhZoQo1lFombQCPOsD1y1AG20IHDNAGQjwOqe5vE1ArV0FWYsS4bwgikSYiQcLi4RU8DF5QxhxvX1DSCMgII4HTBdXuJyPmBKCekwg0JAZk0acX27ACwgBzZcECbvJ4EFWNas9bDmWTP6kW4AYQHirNmL0oQQIw6HzwDC4LKAYgSi1kPSOBuo1cXqMOV1AUkG8bFu1GITnL0wN3RDaoY5LeIbosZhFbYiu5yhQY2W9jtGRM6YQ8HtsmJZjgikEDJQQYhAgta+siTnyCyY5wuk+RLAUd9MqUK5doYSQBF5uca63GKaPwcKpGntDaaGOOHi4qkWsgtTMzvDtA3Qg4PzCjK3UfVhXQA6gCgiHWYABM4Faq2MYCv6CA6WdEIXJpsFSUICU0Au9dRQX2cuSBPUdTREEAPLyvAsfgK1Oolph3QvtgM1gKvPrWuNTs/90515DlBtfx+sVIMG6Yxw/Ehyh1uVzgvo55NHVHgpYsWSpRYo7K/QR76gPsQnSMu64Pr6uioJrq9vTPlhvvRVmyfmfkvIawHMGj9a2PpZabEIjw2mnH14u88LUSPc3bp5bLV9ft8Oqnba6dNI58/TwUKF8bTowdOJrr4ip83N597hL+pbQWTJo6Ax5dtG3SGEk7np35cJsLZ1c/Q5/wFQa126W3a7woR9qSp3Ay9UeYSIx/U30szMBVvw4GnTj8txMyiCwhkQwbLoJIQQEG4Cnn303BKvBUtsod5b/jwtz2KhGh7fhXMz3HgQkfaDrd5piJa4rHAFUm2+cRYwarPNihRCU6yDwINFb+SDJ5/YutnyoB4cjiEDG2AkDWz7LBHQlKGd8n2k/k2kfR6sZAHclXd6iATyIDBVJ1E/MLG46fJFmsY+CIagfa/7AzQ3pmj1fMxUo25WZqEhr5aeuQo2IItb8o1GhkrFrRKsf5PlvBddLGwJAQBGnlND4EQQCTVWABUQSm27FLWueDdLZvC6IlICJc1Rr3XhI0IkpCkigBEQ4AVkBe7f6/Yu/83ibkjz+YO12K7ZTnRqLVNiMZnIrUxi1jIxYKRTQn5qaf0n0jgq5gIKCW4NEsAMcZaOHWSpw21ug1oCc1lBQlphm0wTQhGwlA2D1sNMoxKizYu9BAHMuVm8ANPsKIhGiACpSyBbXBNMOwUHo9YfPxQQWn0KEUE2s/oUE4jNNRJBwY4vYLfS2SBqgGJb2x5AWuuFia/U6iSpj+lZivMSENxo6X0Mto57Iuvbyd5qVwx/nTscR81L/zw58+TXR+dw4gD4uoOyp6q96wAV0Jh1jYOU02Di10WON9jiJn3gg3TZnDoLaa/h8v04+H9vAEz7+zFRyHnJ5tSV41ya48ZMe4uw778QXiZ5wE7/NGlfFz/PdJeCqudBYzLqF6nnG59rnoCnIAjAcM40cNUSFgz8sreWdJ81OLZ5R8dvZHMeb3ux5T+NB/UlPNQqUN0AhxGRxgIqKGj9O/eTmSG553V9W9qTayIJEjATKHB3zUY+kCYTCYABFHQ8yN0Z+/vq8HdjZNgCDnLOztsGXLVn4Azdg677q7p5HixbNk4eqiEgE/fFh6v13V/XPbNvVzVi1Q9Or+3/JmhpnYecZy8NpphFY4YQIQjoBQxvbM5SM4QQNB0jc1YzlQQt4gtF/ATCPE1gAUqBCuqB1BJCmllNACBqNsCQTDAX1RaDGTQFRNK05b2wExIBHIAwgdfVzKTXmjEvmnXLalwQGIgRWqbKMlWZG5kmb2BIyWaOjVhvVyxXN0hBrSpecToEIKSI6ckBXpVaitYkUuWDQJ3yaEgHHmwYS1khUjQBBAQxoQLOAkJerSKaJUjQ4nQaODhPlzr5JTqW0vgHiLkprYjzpboAFnXniySmzYhapwkF2Q9DK7i7HLWidyBgmp9gvnhigAogJBDEAGOG5CMQEyQdFBARgDABMSOXFZAVhKRtSJN+FybNyEgJpQB5ZY2nIdKaXGIdEdaxMa1RtMyAhQtYgGNeEUPCfLjQGCvOYCEUVkDIbMlKBJYBUcExWaZIfbYWb3ZIYkekas1Efw+mOaqAVQRMGr8F9qQJllQjhGEbNuEUkHvPly2gOmUakPHg9G9YWsDsayfCiWaufmVt68FQC3rtq8m3PetxgK0OnGCaH+yF/GrkZ3NX7Z6IUEhButdm0X5ZfIDd6tbIoa9iaWfdDXZjufqZkbhSZBQ0Ki+19dniEZovPHWPSCk9mgV0p512+uToxfwHaDzIz7l7eFDHA1SvNIKgUz7lF+v3auk/fTvsucJbQblzZ+uF4+0zaAMI0IGoLvNdf30yq0aILUbHiwC7xYlNdvU+lsJwT5R6znvfqmXrFEzVn37e2n8KDqS69YMsm7WfwR3gcw7KZ+SBYp44PQ9yixQwgqLeA6G2zc59qbFXIw9zQ0itVXin4tOFwQaD+/mp8G0DhHRttfi0fnodQLZ5dL4WKt+qz2kP7dTgCtbc2ujXe/cqL5e7lQ/n6AHSivphUhAEEzB7VOxaf90DKuiamKH/S0Bes3Yo2BB7akoyLQCaic7jg1g0jsctBYBaJYTMzEuwTGBQCwoIRAYqTOAjND/XkotmoYMCIM1up/+puxdQiqlmg/YgpWjxMwUhBqSLuWotKFgclrvDca4bUDcW6oZhqKsgLGkDAMvssoKzAU8pIACZVGDhkrtFA0Pj5tJomf2y+fvxmnUTEhCnhCARwgQgIZClhi+rjaECOve9DZZC0qpnQcQ2ST0bPKuipZI30AOLdSpFNH6tqHsnk0CQEMKlxnQZIHELJFhQliOEVoAiSlEX0lJ0Tr24mlhMG3PLnkcsCCgKiMUOQSJLDa9DXoTV51h0rlOwysaiQDmExipqPyvrsA1GUU9zWfU+m0MfCyJCcLx3olwY/z6htq+b2qyeOacM6Jx+7NGA0xnyw+zUImNE409lFHxyKG8FehX426+PQmeGkcXiHQHTENJYdwTn57jjpVXLd87l8fWTgzxL1gJUxjGO+Skob4/QMRiLLv8cgMKddtrplakCqvt40CB8+mV37/3q+tb9rPdJlzCif97GgmN/+BOhcgrVv8ajaVTGVW+j/lHosr1ZPwcB3G5wYZ38IgB3nnOdPNdblMTrSnZ9caDoH285tphcBAEojmCkgirWxMcE9c4i/+5eHtTx1+7b86e3K9BQx9J/eh6E0WrkTxrf1Rfg3c5r7yL6IB7k4Nfu85qjvcsiWebrHhiRPbitX6rz6+9rr+hltm4MOnnwZelBRXvBrO53hpY1E587pKGiPf1cLQkUNI01RIPsBMA0R4BC1X1EEnBQdBssMcOylprenJiQWQv2RnPjA0mtDRAUixmQCzX4TgBQpJqdCqT1XzShgmoTwqRJttk2hBaD1XSV6RBBFDClhJwz8poRUsAcLyoIC9GtFQyAIWU1a5vuIAJqzSwxn1Je1d+2xmRkBucFbFn5KJC6wJEgc4EnvdBaT4DCFkHxYr9BsyiWZdGxCYIEQayIPSEGtfStRa08AVp4NkQCMNeNLhBwudEFanMEhrr7KXIFF9E4MAqAaFY7tUiqgsKgKQImhDDb+hDtG2kCEmFGXm/AIHBXlVqsIM88HwASFADCpAk37LQPBrRhiSHmmPSNeYFYzFPhjFyKpqpHwBxbAgkY6PeDCQQU6twAPRlJSCDOIK/t5e20bIVuuQoQFHcv7Xflmb3Ya4F0aKVeR90md62VP8e1VsOW3DCth2hRPi5tQVFvegehHmTeJ3ed7e9xDVDTInYMBo8HpraMXpmY1EDhQISIaC7A20xPbdyVafLJPFGVUh6PGmMIndLwdK0oU1KwVLWZ9X7d0ySMkLpYgZ8dht9pp50+JvU8SOW2Xvg+w4PuxBd2PmwUaSeKte4dvcB9wq9cCO9b011S22wAwnnQ4AXRIYcTHtTd48/zJEIj+PN051277Vk9f+pByCngQJd8qx+xnl+ojCgQxJRGoGXKSmapijCqYOJuHtTie7tx87b3Mk///fj3sWAAAB0iSURBVAm4Adz6NvLGDhD5u32Mam3DHpEr9XUPT5+h79RU830cXNdOK7wLT95mCna3zlGQCv58Uto67pA0Wh+HtScjbDrn3vgy9PJ1pgIhTVMVKAsXi9kBfNEHEhRfIAKIWDCeASoKXs+HKvghsxIArLFNJZhAv0JTj5sw45tDCCRqBWIxbYAJ/YW1FlPmXBf6ZAeHgzvFgprS3bUGJSuAIvNPS1HTsktmtaJZgosUg7l1CRAYDM3jX4JVPQoK+ABCtHoa+qcVB5Ni2eEWfZeoRSgGr5kECNQKs1jB0mw1AGIgK/xbUGyTqQuf4Hh8bpOvQAyJUNYjEq+WQTBgXW4A0oJyOWdc3Vxpv6IgRQUHgdXVUAMSAYoX2m9oCmhIATCBEJGLWHHlAyJNeHLZMuuxEFjMREvm5QkCc1DwhARQsbg2qHFLrC5Y0dpa2eo71UQERBbPxGA2IBN0LkOcICJY/QDKBQRBsrUDEEpeFZiJ1NTWWjhYN1mw2DddiboBKeiaWtlqUAlZms5WvFrrczFyKZ53XscAW81GZ1I+a5nZMC4abu20LADwsE3+OsgrxAObg6ljLgyuaUvrdTaP3qceNIoIpLRR690wXjcpdpDKcL0Rgai6B8cYwebO6RmbnKn3k+eMoIZayvjM10musbPgQ3QnNM75//fk6YLRASlnQppGlrfK15122ulTQq44OSdMwwXMkWXVnyrQ9/eePwTu8lTogYsqM92aRO3ktHNTBf5T9dM5QHbagPF6ttAKgnkIuNDdvXvLg7iM/LlP+z2AALR6U71A7u5lvQt4D/w2A9bBNKq8ogdtIajs7GnZS3HF8908yMdZeZC4L+DQL+9FAzv2ND//ub/2nAbN3teNjQN1IqDFrJ/yoPNjgeY2Ku2+Zv0q6C2CPm096BPAPOgacBLvU53mbV860O7g8BV43MuDKSIEr6IsZpUSjeHZYlERaEVby0Ai1osQUwVSVMFUW3wag8Mmk1rskAlcJrZBxIQxYc2u5++1zVWYsWbNrBddkrfNY0t00GQoMFQLm6b2hhapIvMHFVbkC5iZ0dpnfc2lILC+KwCgbGbjEFBzMbjrYmYQsdXDcnNk6gYCEKuHlE1LXIrUg4hZUEpGKZpUIxcV6tacdXQCqbk4REhWl0Wd4IiSF1t8aiE43t6qy+IhqbBIEQSt4aUdJCBOBmQ1pswPOlCoMSHTNKl7XyBN2pGzdcTWRY1LggJRIjAsVXxgULE0JuyaGHVz5FDUyBY1aQkRFEy5kCcNXGtNK7WHC2sGwBiiFQRWkLdyMSBl2Qypc9kKhFChFDXNBwxYIUBdK23TgkwpI6YwUJ9qEkFEB6LOaYAAS6Lib8PJxm90hul1GpafJZ1z2+itUACq1a/jMo15dc/xayoTMXq8OCNdUFv3Cechulapy4RUG9ideRuLDdFgiXsRkPnkiIYxtQmxJt0hgNh9qKmPZbt0KzjcaaedPq1kB9SG/1Qg1V1Sf68HQQ8meh50Ny/yWNP+72rt6RSEvWW/wznD0++ypmwtQlurwuAxIafXbX/f8iD/bltHqZWPQSvUa53wUj0nIvsWPLQv/Kmt5Iq1gwxg9MrLgSo40fsdFPk4+vP82tP+0zBPdey7cTgHpuq4dkBm7E4bA+l4kN976vK5BbWnzKaGumCcx6qkBmpO/OriWdtg/9SF1X3nsqTd96rawgcloFiXFTElxBAxTwmFRdNzC8zxTBcVzHKkcSmuvRbEoEI0l6L4IdWRQ4ClyDRrUwyxdswnUxm6AynRxBHkKdMJUwyIJQMLEAlIBkJgAnBdEyIoxStMq1VIRK+PIOSlgCyjnqbKLgbOQrUOUTAXIAMcGtskKLkgJSBNpDFYxDXb3rIsCjgKq5tYahMoIQKWHRCgavEorECpsFlXKlgh5KIWqhA1kceSC1AEUjKmROBIYD5qco1pAoUAsUx8FxdPYTgBRLMmggCBQkGCJTMQN5dSBTCCAAoRkSKIoroPisZ9CQtQuAFZ2xwCRZVTjCAISIoWdE5PUcqCko+QYzGNglnxSgGx2nfcYghzNYxpBsUJJVuNrPWosV6ezVAYIhEMtSbp1tC1p0WmCSuTWcTUetIWB1VYBWEkAuZpBhdzxwQDxLZmBMu6AgKLoWr7QGPVzhyedspVbSDGg6gmx7AD6T5A0eoc8avu/1cmMldHz17o/HWIK5L2OQC0Ao3SQCkclHaHNyxGic4wj9dAqqTgBo42jAJATeHuPvceM8dVO4jhoFd/8x6YPQ4AJtqCppGJ9b7trc3mYsmtvfqsUJ/X088mBmynnXb62ESkGdFccUI4PYvZwQ4Aul8B086a+685bQZVfuEk4tYHnFoHujY6b9R2j1Z/dYejVoqi50Gkqn8Xt7f97stXOA/SdrVYsGolMY8ht4b4de7O7mMHoPFI62SvWPNnlzKCwAFR2ud5VVnQcwVoUi0Znu/nuQIkjY3v33NuLgbwaopD5xXBEhz0vK0fh8FVH+2aOh51EsYxGgFsx2M2Fr46z5tmKzZwK1hbQxq2Uh/QwHD/gK6v+jCGF2UGULMHboHmi+gBMVO2ycQXbECAWTFGfXK93t28fDX74m0myfYv1RVvlgoTNPuNoiBbM/mJ6MB5NetgMUgRQWtSkSfD8BHygYOl2XaBwVwSq+uWLVYBBAUUAygH9QkNWg9KE16IBWk50ENdCO63qlY5Nu2F1VIwy9uw2UTUfTK4XywpIICDS216KWyWKh2n6h9rz2HX+ohmmStEtX8hBATxNpt5WvEJarFiWIbDkBCEEUvLDue2w9rXehD5Z/YwAyYhBPc0qqCMzK+PUHTeorkO1iLAqODHNT96UBAgoW6uQBEUIoq5kbpAqxoQa7G1wzUSBAPVQVOmW1JD7dkGTNUlYwduDFGz9VFFlNbGdpDXjDMkWqzvZAN1S3GjkTtzQft1YFatfWdvfWxEha3g3n2Olnih13ANGqPub2l5dev95zv5ydPWIqXv9+8aY6+2bfHlRRUcb2MG+p/t89ffl5FetB5O19K2H72WcaeddvrFoHNAyj+vmeQGqiIu+nOjk4FRGePGSjHIsZvz5PSM7BJZoPGEdtnmzDIhvllKxue01jcedCKP4pT3DN9hVIidWL027+vdF+vIbSwz9XOc5z8Q9wJqz63ZAc9Y4/pnjGDTp6RzhZMOXHVjr3LiKf86N0fonjlcswGBL8OD+jXSg5oRSJ2CoTN/dH3cjFGnmKYzfQJa/J/d+GCu96Dcw+r+pJYnMDQjW1k1SM7ARCTNMpetuKkErcFEgNYbIjIrgqBkRkoR05xQlgWFs2ZpE0GBF/VUSwyxNlUEGqsjAilFM33ME0Ck72RRCxIzSmYEyz64mMCdBBofc1CHrJKL/h0EuTBWFiCvWhA4a1HhOGnRXU26wCASHNKMEJKmPgfQfGBIA9ePrEVwiZEzm9DooEXrNRFNmo49Z8DsIXldTLuhcWnH42qTHzT5hGhqdLHMgwRo+kphBNEEH4wA5qDaDmZN2iGrgs2kCwdSEENCnGcULljXBWCNNZqm2Y7MRbXxKyNMMw7pgJIFt8uKaQZC1LgkgtbkAQjsgCVa/S4A+XijmRBD1gK804WO/XIFECHGCdOUQFSwHs16xxlEEYETaha/kDRQk0jXAKlmpqwFDEF20EFTrV/lh3+Mip7YgHiryxZqYCPMSlk8Ti1OCEIaexU0XX3JRy0+bBaKaJbPmCxbYN0ao7vA6V5qvw++4N0B/uL9WH+DHwaPTX54uX+49BoeQrVo6gfj4eY/e0tVD7Yei4Q77Z4zJqAyaWHUbKDeF85clQb2SX2eBg13wkq97vX3S7OD5pOU5ta5qmDy2MHGBPt12FLSDkC+E1R22mmnTzdtwUEFMC//hHZfDyzsn60l5Bx/EovlcYG6V6IRGg91HtG/d+hHBRTtRQMvfQEPAqF6Qox9sVZ0FhUdp/Y5kUl2HRDsn1MtVqbodt7S848t//H7CKgxXJrpGnZWA6XkmtEOaIxWRBX3PjY94AlkHlPSUoPrOQ9oyALq/3qPKbGFW7uBWqzXM+yBUGUrNk21KpgJ/Y1BaxDV/oUQLIZtmNHarkGZ3I3rnTLCBuiNIFIsw6Jnb9RrS11XUtvJVuN0BHf304Niptyc5pYbACDRZeWNqRYG+P9jpx0Vazpp1mQF5j7TF1FrBqmt5qT968Si+e2oEwb8cxLL1CfmftWAP9wkCwqa4tpc8MBFi93mAk0hDiCKJSBQq1QpmkShmnR9U3kyiarJ9ua6yxzqZvB6U4qIdbGotYMroKpKE/u7/l9XvF0goiCXmmAt1gYWAXFb4G0kzSpj90v/PGtxQICQxjG5YQawgHTiehgGilC3SFgb9H8ht9p0i1IAAYOlNEtcPQzE1pEnsPDkHNHqDkS1gtV+o66VqhEiAipw7Q5gsnmCuWEJ4EkziHpxuN0jcEtja7uPF4nfje70CXZg31Pz6U5ZVKyZfricbmRneP3B9nixRae0ffOJSxttLrKGV4tUt8v9s60287XTGWDrvzvTG5avbNwBN/cNAPEO7d7rompJq6C0HcaqcA6jEOAMr2vjMH10zsra76uddtrpU0MnloPhyzPnXXNx86+AEXSd8J/NeepKKP19vKCdo41RVL7WCbn3KdiGs9jBSneW3cUeT3hQB4Zcjn0oax3B4+nN0i5s9/RMcnNPH18m8JCHdl2bTjn7voEHDZ9vrzsF12gcBG6pGVzxqfmTNVls46XRvcyVrsaBBkCH+uxT/r/lQVswPFod7+e1vWVy+Nz55MeglwZTIQTM84xcCnJetTGiqcrJ20aeICJATBAOJpLDit4KgFxWzfIGBi8ZeVlqjJAHbRdzvYrxUDUWJp5rDSP2TSpYjkcEIlwkQ7lhArMWZy2s+ePEwYNt7LUUSNGECVPSnBN5WTT2yVJvl1K0ppEcEdKMOJtVTgRrLggpWLZBYEqa7etwmLWOUiAUUc3unDRrXxEv3lZQeMWNJUqIMQHBEzE4qPSNEs1SoxYsLkXfiVYzoWoOrGirLhhGcZBEAs4FgRhaNiYihQRwQMlsR4pmpWFhrGu2LHwJEixuiRhcFhBNiCGqRY4LAs2IISJF2yKWyl1K0QrSRDgcLkAAcl40cUk+alslawbyQMhrtrgViz8KB23nPEO3XwSFBAkRhUkTC2ZAhCBBrZ1FYEknQgXUnvEmEMG9FwIR0jyj5Iw1c12jei3XeBgCUJhxe5srACu5WH0v3YLBT5FSAIoAzYhREAOfDxg1qlsGGDYxdb807RDZWjhVIvSH6mOTu1gC7cALdMa6VBUIzjDaAahft0Ow91F+LHHdizG78sWJKzg/bYz/yRbX1/epgkLLRbvV0L5u0mVBVbFARF0hSjLrVUG0DIVekDKEVjDZyWPXXIHTrGw77bTTp5pcdjh3tm2AxDmrUHV5PgEADmL68378zv+oLmzde05Pyk55OjahKwA/CtMDDxqwSnvOi3iQYjyp53j/agoNIEJQFfbd4Jwlb2ONNQIN/KHnQa4gvpd/iCnf+Q4e1PXL+fX2DPdnR4vtHwCR8w9LoqayP2o2xuL8397ZG0M8bp6IahKNaO3JWXlOMk+jbEnU+jY4qNI1GjbWtm4IeDTiAP0cNkNKj1dFBDFa38hdPUclwfY9L6IHufkBrZAXF4/90dTmPbOlQIhTgto1aLwXNsiwiYWZTD37H5up0YaduoXvHROotSnUu/Un4BYEFeg9lba4iZIIUtQVDVZnSYEKoTBZwgex1OAtlqMUdSmkkqugLaVoDSwDDNkWUoxaSJam2Am6HlOkC57gBX0txoqshhNRHUdN826HnVlvKDBQPFhOi+cKgMAtCJChhX6BAJKgAXneX5O9mRmMAj3CmpkWpolXUAUoYlGxn1mQOcNy1GsiBoFm7yMGcQDIx9+tbQZqRN0c2VOgl2LzogkzQIJcBMwBMR5svSgAZ7Zx6Q4zsn54/TDthVQg1VyqSIG39Ye6NcilVFNuIRkyBYqNRbE2o5qF22ne3AekMYUAUPS07eH8RuwOqfu1hHVS+pv1M8Hmc3scHrb5Pw6dMlBzSbA12/vdn+rFTp4GoHPTQDvwHoP6d0n/4fDroItt0zjcNc5X74v/WH1xxhc6IalauTvm0DPnrUWqNdXbP/rk/ywtoTvttNPHpI4HnXgSdNRbZnq2pR/oPxsu1J05wwvrv4MQXJsj4wl69hzqztwTCwrO/+0Wi759d5L427s+d+2+A+Jhe47K6aicfVsd91P3fB3aM32RUe6o42eOYne99UXn9dYbo53z3dyQydpEw4vOW8O6xEXdehnDGcb531oSBzBuivDxXefnsvLq7RyKVSndrPXBE07ElAhS2/sQVvfyYMpkcrUaBBzXjFIKYjoomCiljk6METElS1UNLa4KQSJNSiDJrC2GToFgqdSLZs0SgRURAkJb0CxqBfJivbqYA6Zg2TrYYJYlqSBYGvIu20m2bDHIKpQTggrcEGQDU3nRtOzzrOBrzYIoBYFWhCkhxATOWd8TtUJ14aiWnEKYDwSKk8NEiJcgggAsCDVxgk0kCYpEAMHq2JjlDDArC0E0PAglM3JZwaWgcIFAtDguASkmSFmxLkcV6lNESrMWTjYNurrnWTHk0lJ+6gaQeo1uIo0dSjEqyC0ZITFC1JpdIMK63IBAyKbRIctGiBCQQkJABMsREEYpmvqcy7G+o3A2K+IEIGG+fIIQAkpZIAJ4OFmIvgh0IQQG4qR+uytr5sGJoIlRyEe+2zBWT4rSZL6wS2tDNrBtLsmen41L0XpZIUFLBmdLAe+HmqhLqCgApxAQSec+hgldXsBTshOjP7iAThMzXDpes/29HUSPKeRq/3sBfPD17vog1rY+687gz16vGl0q+SEn2cegrWuCnxc0aLecb8pwyI6ufEADu+N4PMT3+uMQESHG2DRz9t5SStUOKuxGZRh9H04YK1RRUTXA5BkMd0C1006fZvK939yW9fMtD9qeCVWFtOFBRGeET6mccrjWvqzfeSps9rqEg+WhT5Ntivfu+wr6/F2d0N5166Rf53hQBRCbvtWxqvcC0lnRKs+jduZuqX/fCNScvzRm2s7lnrf2/La1sWXU85a1TrslqufJJ+NTAYVUIOEP9PxfwWSLQM1NvPHnHgyrF0Rv1WlhKW4xaupVrwk1ejt0YAgwub7LtujWrq4P+rONb/G4Ze+fAcHYXd/zZxle2Kx4d0PUU3r5mClrqkYwR4SUkEiLidk46WvV12pYeNGy7jHKuEh9M4mnmUzV7MC2OdQ9jTRznwnIbrVRYCJajJXEFp5aPNzyozE/ZAYYTTKhg6cZ5RSAqDvfspirGVhrIxVYsFwzl2pqc7dQBQQDe8RF07QnlcjZwBxBwGXRtkQHKwUEyxJn2eVYyHyEEygIkrndiRUb1ndbnymAEsBZWxUp6UEhK1KICIcDvJiXFEHmUi1qU1RUwiXXhaquPFrgjkXMjU00h4NZHX2RQWCumPp3mCZdyCwQCQhh6g5I37geIGn3WCKPkq1QsqgASKGZeNdVN6vianUlDZTVVbHYoWcp18UsQTGmugmqexNQwahaUcUOK4VNxcZXoOPqViiBee6RaA0xCiAktVJS87UuZgWV6lp4d6KBrdDeNkLHXDoB1+9p96Mbxy2DO/n4tVIDqIBb9Jz6A9//FiFQ9Qe269ziAemu7YKAHwlM6ftwx7Q1RjeOczf+3S9NcScVrAAmEDxCf3zdu3DBxogAaKZMFzoEFRRt3Ui2GkSgA8fOxO7V8u60004/f3QH/xn2svMgtHOkfdXOtuHnyJvOvqICHZXRRiu4DGeOW/RHgbdrxPhquGao/yhs+Gc73jbnVn2ct+FUseRnZP+CeqYOwrzxbvNoos6SdO6zNhddfBaNo0tDH7r58MHc8KU6rv6vdG2C1O67BwPBk0dtgZS/R2oyreYS1/FnGccdVVpt8t8QCmCAiu1dnn9hTJEvVXHn+JDQ6pTVz328iSCihpBqFevmqI51Ldui7dy6AvZz0T7HS9MD3fxseoOmtSYSizMx5KgcGgSNJfJkCdOkqcuXko2ZO9xmQ62o2dcE2QoC6zNLYcQQcAjJJl2zkbBBZg76MxBpZm9WaxQqqLR6NcGsEGXVbIM5I8ak7lhZF9tyu2LNjPlCNxQXjxWwWDCotUI4I06TuvSRgkLKWScyAACbq50u0rKodWyeVThn0vgEFf51KIoo9IpRhfkYdWxzUesTW9FeLmzFgGMFsgFmORFBiAHzNFVNxnHNyCwIKSHGgDlobFDJGvcjZlFCYKysMWalaFa/w0WEFhF2v2TbuCyWsQUI8yUIAZk1zgohGuDyxBesXoqgmtqTwgRIQQCjiFovQ9K+uwB4XEtb4EQIxSpkkWWjAcCsACbEhICEkDTTYSlFU+VTMDdR3yAKoOyhNS6O/XOaEIKOtQjsOQGTZfsLIUIoQyo4FAXBUkVOVLXDySaUzabtQJOM1w1/Sef7bftiY7garukPr9dFDqR8Pv2zqnFyDV09nJ1Z2KGNURhvoBtoDLmN1+vsz6CRO/muXVP71X1evxsEgf6a9ly3pj/K3EhjoqXTrg2A0IQVZ2RunT7X33O/P8Y629LP4p077fRppe2ZNp6z7bNTfsJV0+/P6fnLlkfVe6rqpeNtZ9rDvI0n7i0RLRNqb73pgU13m0vN3fNHy1azEnlbuLv1HA8SeOhDb7modU/RgFcf31W5V/18kzDC+0OogKryTO9DVx5Ex7yHJiNJf00/p5u6XbVP0p3h5OYBquCt8jEHhx3P9mzdRARKqb1/mBcf5hEAN6+MxlOYG+KrQBWddUnGNdK+75XybZ066BEAMaLK6hjmlzXPwDAu/Tw375P2zAcgKQB03w3U+Q396q9+Cb/1W/+mDlzPsAGgOErlpunUNrYUvGyxSw6mRLgb0JYpUDvSNqYKsrZI7J1No9o0qEQ2UrZ4TrUXKiALWjs1MFt9MnNRgSda4a9gK41Z++CF0AAgekVs04rACs7GaTLk3G9otnEYBleFc2uj2rAwblAfI3srl6Jp0O3RbOs/dPWb3Cro7SwsdXyJoC570sAQUds4CmBRzeg+b/V5NhlNMCakqMV+XZMQzDo0PtuAB5faR7Ba3RQ4swl0LXFEzmWcPmobpNcKKUYyYdD7xlLffbK8O9WNZ5D0BUKeic/exDVTocU/kcXT1QPahLsK+ppbJlHA3/zN1/HDH75b2zrP8wmD8e98vrfN7K66Z3M3IPObv/Eb+J3f/d07rvtkKOeM//5nf4b3f/KTTRtQ21E1bbYuqH01XKe3NjbVM+Qvf/nL+IM/+IOzY/ZJ0l/91V/hu9/97tCescGCTeOHOW+0bWcDLp/93Ofwx3/8x5jn+RNq9Xn6xje+gbfe+kYH5rp2dFq3Rk3RcGpRpHpNf5jO8wF/9Ed/hM9+9rOvpQ9O//AP/4C/+Iu/qH//4R/+IX7t137ttb5zp51+Uejq6gp/+qd/iqurKwAafjFN09lrz/Ogcd+7CHCexjPyPjDVv8/vHY7TU3R3z3vPt2E8yzrR+l4eNEKsUf7w6xtQqDLGHW3YDthw3aZP2/Foj+nn4OPxoO1X1HnhnLuo8vDu/b0151w/6nO7e++e99bmngf177yLB9mrWzvbk6p83O7rQC71952b6RFM3d4ea3IMe86dwshLg6mddtppp5122mmnnXbaaad/anQfmNpz3O6000477bTTTjvttNNOO70C7WBqp5122mmnnXbaaaeddtrpFeheN7+ddtppp5122mmnnXbaaaedztNumdppp5122mmnnXbaaaeddnoF2sHUTjvttNNOO+2000477bTTK9AOpnbaaaeddtppp5122mmnnV6BdjC100477bTTTjvttNNOO+30CrSDqZ122mmnnXbaaaeddtppp1egHUzttNNOO+2000477bTTTju9Av1/7/0HxvvZ4vEAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Two Stage Visualization\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAADiCAYAAACrxp3RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9S5NlSXLf93OPOOfcm1lZj+7pGcyA4AAmEqI0Mi1goqgNzKgV9qAZYPgCwkJcSdyKO2mHnTbCJ4G4Icwk7WBGSqIZIJDEY4AZzKOruioz7+OciHDXIs7r3syqqW5MV2OA62aZ997ziBOv4+5/dw8PcXcudKELXehCF7rQhS50oQtd6EKfj/SrrsCFLnShC13oQhe60IUudKEL/SzSBUxd6EIXutCFLnShC13oQhe60BegC5i60IUudKELXehCF7rQhS50oS9AFzB1oQtd6EIXutCFLnShC13oQl+ALmDqQhe60IUudKELXehCF7rQhb4AXcDUhS50oQtd6EIXutCFLnShC30Biu86KSKXvOkXutCFLnShC13oQhe60IX+zpK7y9vOXTxTF7rQhS50oQtd6EIXutCFLvQF6AKmLnShC13oQhe60IUudKELXegL0DvD/Nb0C9/8Or/ynV9GXADBqRGAVgpmTsoGgKogChocs4J7QQARkNCBKD5GD4ob4Lg7goAL7uAOJWXcnGKKFSMPhaBKUOXqxVPaqw3D8UjJmXzfQylES6hCCFrrEQQVQUSwYrjVOiEQYsBRXBRRRxUIgghYKuCOqoAqFiNiBlZwUUyVoIIA5XAPOKFrKBLp2YDXa6X0YIniDiKE2NS6IBBAoqAqqCjuggMhRBAopUcotCEBCtrUPkTqbxRkAxIgNKRcuLu9oz8e2N2/4fnTJzy9uaa7ekqILaXc45YplgFBQ6gdTanVdVDRsfwGEEoex9gVjZEYW4bbV6T9HQwDArTPXhDajnj1tM6DNHDY9ezvD2yuNzRdQ0kDZgZjn+EgGiC2CKX+jQGlIlrrJ6M31cDN8VIoOWMpkXPCzdGuxYG7uyMlGUPvtJuOqyfb2iaDknoc5+p6i0ZFgyBa218MsjkpFUoxijsCPL1uEYzD4UAIwqaNFHeKjfMUQcf57yUjIsQQEJF6Zrz2//3DP+b7P/oxAE+ePOHXfu3XuL6+/lwv6OelP/7jP+bf/pt/M7+fM00/ZRyDqX/dVx+n98j6iy9nY4z80//2n/Lxx1/7Kdf+lL7//e/zf/2f/0edO1NF3upkf5zkrdcvJ/7JP/lv+Pa3v/1Fqvje9ObNG37/X/9r+r7OR8b+FqnzaRwUKj9kHpd1Ax40ZT63jNt3vvNf8J3vfOfLacRIwzDw+7//+9zevgEE9/W8qTy0tsvHd12mM7Wp0xxctUhGIRE0IFLf+X4YuN/t5mt+9Vd/lV/6pV/6Utt2oQv9baHdbsfv/d7vsRvfIVWliWcqn6y/ylvPvTf5+qs/evwxGfRO+TP+8DOR9nbe/j60vtkf+bY+vTr6BR76PjJoeZTPn1MfzTLi0dqt5ff0PJkvPeXMUzHjyIw3LTJoeYb7KKPmmx6p8UpmvbtdD+fBMjdO9ZD6zCpDHpa6yH9hkSuPySDV8Sr3WeYsZchKl16qUUWQEoKOOMS53+0YhoH3ofcGU7/ynV/mf/kf/jvEFTHF1DGctD+SU+Zul0EgtpHQOM3GyPlAyUeCVKVBrz5GtMHVwA3xhI/AAwuIK2aCFef4ZkfOTp8iwzGze3Wga1u2Xcu3vvMPeP7zX+fNpz+m3+25+/OXyLHnanhNG4Wrq0hoIqENtDEQVEnHhOVC3x+QILRXG1wjRTtCY8TG0E2AIOTbAxSjbRVvGvL1DZIHpN+Tm5YSG7omojjHH/45eGbz8VP6cM1L+TrkBPmAHl4hwy29G4Zw9eQG0cigAWmF8ESIMdI2DaUIbkJ3dYUoHI4vUTnyvLlDQouEG1SFEAS8A2/w+AmEDd7ecL878B/+45/x8kff5y//5A/5z//TX+KX/5O/z8ff+mU2T57T7/+cnHcch3tElKa7Ak9gPSlDKdBog0pAeIabMhwzxYTskXb7hO2TZ7z+9/83u7/8E/z1a9SdF//Zf0n7/GOuv/UPSTlzd/uGH/zFp3zvT3/A1//+J9x8fMPh9paSEzR18mpRpN2g189Q71E/ou4oINLW+oWAOHh2LBXsOHC8u6O/v+ewuyPlRPfRC7LBn/7Jj9nfZ16/LLz4+kf8/C9+k9w7JcH+/jPMEt/6xZ+j27bErRJipNluOSZj1xv390cOx8SQMyrwD37hOUrmhz/8KzZt4JMXV/TZOOSCekBRojiCUfoDqsL15oqggSiBlJ0hFf7n//V3ZzD1ta99jd/5nd/hF37hF973lftC9Lu/+7/xH//DH1c99lz6TCqsKqo6CrHxz5zKvnx1JSeSYCrvyfU1//J/+pf8V//4H3+pbflX/+p/59/9P/+WlBIVeCyOdJ+Z6mn9RNaAyx8yzfGu+W5V/vk//+/59V//Z19SKyr90R/9If/s13+dV69eYqUakXCrRgVRRKe21fGo1yxC4NHv4+9Z8AK/+Ru/wf/4L/7Fl9qWV69e8Zu/+Rv80R/9f/OxOjdqLSZj1iQgQ9BZYOs493QUaBNNxzddBwhmxstXn81gSkT47d/+bX7rt37rS23bhS70s0POuba8Zvnf/e53+YM/+IMZTDUx8uT6arpzpWAuCrUsrHH9Mf445aMTAFrbdHytLJ/LIF/K0NH4yEr+1GvfTwbJ6b+TPjir4Hz/urwTyei2+iGYr+1Uvjzz7HmPyqDZQDY9yh9cc1pROWmfmeFmmBVUK99UjSMAXfpmDVR9BKPuXuX6Upn1x2jEEtzrM2CUGzqOxShf3W2WQevy5Gz8Fxm0cog8ct3pHFj6cyUy5rnik1E/yHINC3ia56zKWLfzuVGviVHnY9UnssigMM69oOtxmu6LdG2LmWNm/Nl3/4JXP20wZUOhvz3gVC9GHL04x92BXEbvhhWO9we665bQbGkDhBgp0/l+j6lSQvXQBFEww4vVQcbxAp7BTHBXkAZVoWkTTRuIbWDod9y/fsnu/jXpeERDT2gHWnFiVKSNWMqUY48rM0o1d0o/4DjDMCAS0NBgQShBqBWuk01wxAfICXfFxHECXgRxJw971AsiATRgfgU50JU7drs9d2/uiOVAsER3FWmbQBl6CAOhEaQoOgTEAy4NeAAUK4c6gzwBkOQKddB8hNCCt4gbQsL8Hi+J4pE8HCnpwLYR/t43PuL502uaLjIMryn3B+7uf4RZT9du6sTyAbeE20CjkSbEk5jPIpDF8FHxcQbS8AbpIL64wqIgBoMqbk6bCsVAtOPm+VO+9W2n7SIMCS1WPUx59N6IgjneH0ALqnW8zWF0zJGL4wZ5cEgFhkQZDB8gtk+QFnIvpOzE9gndE+NaDdrAqzd3NK4EV7pgSHAO+30FYCkiMcKxelNTzpCNBse1WjRySqgYMbQYwpuDkUsh50wUJyAghuJ4yXiBZEc8RLRpH1jQzl/YL5PWpc/POq+PL4LLR1fwIl5GJjYJtFVjZHX/4n348khWFqcHjHy0OJ0cE3jMnjUfmWWrLz/fUv5Pn0ZROArq+tQFQM0nJt/nW0DUCa3GZi2XvvRxEZmF9+lxmDS6ST8Z9aWqZMDsZfRx/uhopXazKlvG88W8GtrOnvvlj9OFLvSzQOs3fnVkbWx/x7tyhplGQxSLV3x61x4DJ5xx2Ue8IA/qcMqgVt4RW0DZYzJoZSiaz/gDv8YJnffMwqfk4Q2PCOvZqT6Bu4ddXa97TAbNNViKlwm8rdBDlUEyg87KUxegMSn/9V4f/T9LhMbUr7MBcQXi5jE9AcSncr0WKHPTZvEDVT/zBUi9k+fOY/GoMB51BVnNkbULjQf3yFTvdV+dPG+q8ALml9vXoHSZN448kEG1TqsoCndQHYGszWDqoUH67fTeYKqkzPH2QBGjiLGJgaDCcX+gFIMYyEPP/Wef4tywfdrQRNi0gb53shtl2FFQcrtFJaKhGZVsqx0ogmWw7BQTigkQEYXYREIT0EYYjnvsdWZ3/4aSBjahJ1BoxAgxIFEph0K+O2BkVIyw3eAiWD+QrXAshahKFyJFAqIRi4qrEq4jGkDKEVFFkmBtg21apIBmowx7ig3VwhIixbe4Gc3xnvz6ltc/fEUj0KjQNQ1NVI5pADPa6NU7M0SEiGsCiSCBUu4RL7hvcQlkNqgloh3AAh6lgjgKpexwEsk3pKGnDAc2Dbz45BlPn26JbWRIt9hQeH37Y9yNr3/8raqu2QCWsNLTNkoMFcy4w2g3p5BBAhrAfGDoD3jjhKdXSNPhJgwasOJ0qeAoIg3XT2/YXrUcbu8YDscRTHkFx6poUwFYOe4JrUIjFUxZDREV9TqpM/S9I6kgfaIMBUsQrq/RJtK/vmMYjNBc00TYbow0ZF7d3nETG65DZBsLQZ394QD9gKUO10iOjlvGylBDGDXUkE8RUkqoOCHU8L7bg0EpeC5YMKJMYMoQy+BOGgxiQ0AwUeyrXI7o7/w5Ms+RMc9a73TxmRVpuucsLPDDkM+GyqooPNKw+Zic3gOnmsVaEZilzGLp+zA0Pm+SGHImp+eqVKvbBHTXDH0tRE9I5tI/CLlN3swJA8os3E7nTDViySTMRqVBJs/UaKyBKuRKKYhIFWYfdK5d6EI/S7Tid2dH3vbbWXiJnPtKZMVTTmLGTgp49An+4P/Da0/B18QDffk7adLpzeuQt/NCH4aLMfPC8ye/HYDJ6pk+V+1hPR4x2M0y6BH581idxwrOQOBdYnXl8lu8dosxa13myj+DP9LC0+eP9Z2fPXoXT8CewgjeHhrNHpFBsyw7bdCDcV/fMPbVyTUyzlODGcvPgAdGQVKLs9WYTfISQWSUTSvj21oG1TaAj+fD5GEzw0Sq88frUo0HyyXeQe/vmXInW1UyG6mAx0XYbqsSvj8eECnETcfxmPned1/StkYTl5dFQ8BcOZQjUBvh5lgeUaBBkAYRRcqocA/72pvasLs98Nmh5xuqPG0anopAVFrdEkths3MkOwxHgind1TVFFFOBAOpOu22IOG0cQw8JFTCJUkbbSBNHb5YrFME9IihBIUQhBMViU71tDJQ8cPjhD1CcTo2rfORZNIJmghZsMHppaD++QaMQ4gHUcckwKvASMmjGpT5v01YvTpQDihNECQFiMNwV90DQFqNFJneeClIM5UiQgaC5ukYxYttQvLDrP0PFUcmIF8Qz/bFHCNSVQErxfW1zaXAXzHYgjouBRsL1RwzDZ5gXnj//iNhek8yxPJAPB46HA4f9nmF3R+6PoLGO+/6Ai9BsA2iE0CC9o9Fxq5aCGgKkNFr7Nw2GDAOyTxx3Pcf9kZwDJRh3O2VIzv3dgT5l7vZHxApSEt5EcqPos+vqIUsDjrDPArHgGyMNPcNxj2qdA2UEQPtXhorQtA2oYApNxXyUXDB8BFPUOYwiNUgRH4ycB1LO5JTe+0X8adFaNs0Hzs/LFA7gPAo4HhGaJ3aiUUn+EHRq6ZPF1fHe9DdJIV+L80mBEE6E5vTtgaKxslzK2ZqjRwyuXzbVukzCllUblvW0c4jICJx0nDdTiJ+IVD1Ea+gF1PA+HIrZHOp4oQtd6KdAvtZHnfVre+4DmHjNGiecejh4Bx8+Bz2ngMbdUXRWdH+yDFrLn59Ac5GTwn923tfnH4Ncp0fO/DmL7PupyaCHfV7Bka/Qm59dN4WAP/akCSw9Zsxdy1HmNshjMshXY7xyWz0qg1byZxrfx5t/rpzIPA9ZD/uEtc/gr+CzrKmQcQF7chbZAZPBbkFkk9yZQhJr2CDIuE53WitlZfJO2Qqw/WR6bzDlOMVKfaiAobhA20xDnQEjNJHjUNjtDoRYCMEIoSrJbdPiCLvewB3FMRNKFiwXrDht7FCNRAmIOXbskRDRTaA/Duze7PjoMEAyOoSgShytm1ECWMH6RIgNsWnpJVaPA7kqwFEI4tDVjneXEUxJ9ZK51zVeOO5N7dzRHajJahKMCDWRhlYLaikM93uiwLZTGstsA4TgqBruGSt14X5oa5ibi2H4/G6KOqLGmK6DoIKqIySEmqQiSC3PrCoeaAV5bgXmRB+GeEYpBCkTKqwJN8wY8r6OE5kKAxzPGawmn3CEXDLQ0OqTOrhWatIQcaS9QWKHqWACsesIsWXIhZISuT/S7/bsbu8ox3ss9Uh7jUvgcDwCULRBQvVmihkUq4lNXOa2eqiWiJINUkFSYcjGMRuDG1mM+0EYEtztEn0/8OZuR3CjlTKHhKbrK0KjkGvc60AGNzQ4aegrkNTJnR7AxzA/Va6vn0AADyBRiTGMFg7DtDItDVpfa5Ea/5qNnDJ56PFS3vtF/KmSv92esl7gCo8z5PFKVpJpOfaBtfaJz5/AkMfq8NBQW38uPHZhs4tk/KBhYzL/G7+4P1rt2SPFW7rbqyGrCt2H0fgfhs48ZnNll7m3hFOM9Z0MgKNnqi7bc3xMPCSyWBvdjPMwvwtd6EJntGIg76P2Pabo1ld04iec2HpWDpH5/X6nEBi14bfWpWrb7yl/5oeOCvQIqyZF/qzNsuat87Hz5ATra8/PLQWuefW0BOW0gPMCH6n69NPXNrO3gLxHe2zpg9MaTDL8DIeefDkFLSfXnWKpWUAu9/sMiuYw/0d0ivcCuP7gy9npcQxOENxU9tpK6MyrsnyaCasemWXpqUFyCQ13TKrurTLqMaP3ymW1zm00EprbaNj7EsDUkOH1Hrahel9026Ix0N+9xkumKRA10D1piMeabe2YnP1gtJuIhkDfF9yhBK3CNxdMwFHMC2bG/r6um+pTFajkhJvg+RbBUC/sX93SAVefdHRNZLjdYbkgCSQZ0vcgLdJt4NDjqcdkqEBDteq8e6gLtAZCVDSOoM4co9RF+k+egoCVHsHwXYHrDb5pyYc9JWcGT1jJhOMdbs5uJ4Ruw9c/ekJz0xGuGvqcMDdiBFEhXt1gVhiGvnrGgOCCEEiWcTHcj7gxeqWcqI5Yj/cJCTeIxHHCG8P+JXnf05U9qgbtFQQDvyPIBtFA2wpk4/7+U9yNEKVmu8uKZ8GzsD8KKcHu1adQhKvYcXV9zcff/AZNDLRNgHLE0wG1gjm8/uH3URpIHSUXct/z+oc/4uX3f8DVzYZ200JRPDTEGNAmcP38mmxO3w9oDIQ2MmQoxYmpZjYcxphXMQWNeLchaMdma4QEKRuvdweOh56Xn75k6HuO+z0hKKmJPH1yw9XzawqF43CkiXEE8kdIoBawUmofpqq8NqEhhMjVzdP6klnBhkK2AQvKEJSrVumi1EyEQdm2AqXQ74/VbYwRVWi27Wht//D0gJfOx0fJOAq0x8Imzr6wZF5bHf1QAERG69GYLGOyMi2g6JFGvqVq68Pr6n9QIDIy9sr4J6b/UAsS9yWDYbWQjLeP964XBcOHG4+30CmckxMBNtMkeafP6ZYzISYyZcP8fPHqF7rQhd5Nvvpc46IadecPGeNf9/V7TAadhxKee6XW4G2qyiiDPk91TjxqZ4Dqbc08CYEUFu/WVN5U5Akoen8ZdHLJo6J3SuYxo7iT4mR13dseNJ1f+nnsPw3z9ZOHZw7ymBHzeizGdMizJXIcg8krtWrA5zNIvuXatwDeR4tey4/50KkMUp0uelju3NLpATKtZ14Zi70a/b6UML8q4CDjRK+Ty10gOxRDzYDqIWpVaYNSitb1SFJDyEouFV9qTeIgPoZ+qMxL60oulAwp1UVg5IwXpxypYXZa18XkPlOGSAHKcahJCpIhOROKQcr4MVH6hKUEOswd6w7ZFDwj3kOjSCN4kdE7VSCExYqSMnhN8+4xYCJYn/GcMAy3gqaherEkEMXpgtC0kdA1uBjFGcPrasgeKOqKuKBjX4hV52wd7FytAk5NNT8qlPPEF8YEElCGA5YHotYCigayGUNK4IKPL5KIkvOAU0BqqKCjGHVp4+GYOB6Nvi9IEUJ2YhMpbsRxYloesDQg1IxdaX8LRZGho2Qj9QPD3S35/pYcrHrTpIfoSGhqOss5zGd8EUVrG51qORg9ZCDj9zH5h3j1tHmuVoWR85YxpC7nNILMULO9RMV19BrNmWpGRmJOXYAYasc7BA2EEGiaBkQoqb5VsiRfo76DgoSARq3jINWKISrgymRQ+cpU3EeNXA+tWes6niy25S11H7nQ+dKlL4vWQOEktemjF843ACtZPZ16cNsqbv0D0RIY4bN1EJgru/DxRaM4zRS16oczYebvHLgvh07qsLJszmBqZWWcKyeTcrSSlDOg+pCjcaEL/S2gd70wDxTO6b+fHBX8weWzV2DykJ8z0Lehm+n4e8qg+bmT58P99PjZp5/p/I/r2g/BxjmvemAgXN0xS5q1N2w6OskYmbwh5/2y4tcrvCg87EM/CbHwVT3XSPC07DnUDZAZMVahPPfPW2iq+lruydlNiz7waJMWeXx24kQGzaJI5m2Q1tkw5uevrzsbidlwevKMsQBZ7judC3Iiax7KoFMdYq3/jFoD715v9m56bzAlAkFrkoHBBT2CJicSEYyy3+Na1xhtBLpNQ950ZBF6N7IZx/6AmxG9pjmWpsU14CEylCODDRzMSNloY3WxDXgNl8o9x5w5pMLzr32NTMNnP3hJLAO677GUGXZH2iby5HpL/+oV/f0P2F41NG3giJNL4fjqFhHYXm3H/aWMbatoKxDq2hl1Rz0SBSwb6W6PIiChesqagucePNO21YPhbw5IFwifPCUGo0l7fD+QLYxZ/yC214Dix4SYoDkiaqCJYgFXpelaNBiNfAaWsYMhbUTbLe4N5jVRhTscdz8kpUR/P1Bc6Z529MXYpUS+y7w+JPJQE098/Au/BOGKwzGBJbaNsOluuLl5Ri6QsvPjv/gu95/t+drXf5G26Wg9EdtITgfUBC2wf/2Gfrfn6Sffou0aXv/FvycfBqzvSL1xfzdgQ6JJieNnicPtG9pnR8JmQ/P8EyjC/Wd7YhPZbjoyQkrCpt0QuwbpqmcqD44Xr9keLVFS4bgb2O8SJR8wy8S4YbNt2G4UN2XfO6ENPLnZEppIcrjabolNxNMA5jX18ujupZGawaUUcKO7uiY0DUENVSHeXGM5Mxynl1RpWyVGZdtFVGHf91gugCEakdiQh4HcD+T81YT5PbB6TUzLl5hjEV1YzxQX/FisszvoyrJndUw+j/v7r0OjreWkSufhHOfpaOt9K/YpCwM9VxvWC3u/TJqePomNWRi5rY/MVdHp/IMyzr6P1+hoLPgqgv5krkMVT1NyCdXqmZ0CNCaQVc9Vr6OOa0YnyTYNh4p8JW250IX+1tADpCDzOzqHQLE2VC231eOMXvCV5X5d6Ayo1krsSkmfjqzrMYd0rWTQ7JF6hBf7wt/n56+ifxfj0iPNfiz6Yq7QggbXCnVt8xpSncuc5YY5Sx8/WQat7EWnhayPrOTa2uO15MurYyGrxElTkp+ppjqGVE/rVc3slI+O/XwChrwsPbGyyZ1BP2bpcjZfzmXQ1GmOj/vSMoPP0w5a7jFqvWrkxSq6YQWodOn4k35Z+mEpT7XKjymKYxqfRQ6Bhin1vD46f85a+RPpvcGUCsQwCnmvadCnUJS691RV1sgOUeqLq0rQgOPVc7VpqxdHx01nXTGE4nWiqESaaIgbjeQau1gEj4q3DYiiUujaDU23JaRDrddW8JjxYoSoSKOELhBzRGJd20Wpa3NGKE4eEqoO6hSpGf2sGC5WO8UE3/fgRhgnpAqQvKZHJyNS8GzgBTYdRKkZ34pT1CiWsKMgwdEgmAakCdBF3ISSQbWgYUwegY5JIayuJXJDZcoLF6rXwxzLfe3/XMBszpfvwUhmmNXU4oJz2A+Ukohv7tFGyMkRc0pxCFPqBCEIdO2Gq61wfX1D27YEG2pYpDmmdfNeN8NLphx2dX+CoSfkTBMaNDopKtm17hlWjJKsZnss0I7rouoiPyjJyCI1DTsGsYxeIMEKUJySDc+GjeuPQqhZ/9wEy0ZJhWFI5JTq+IvQtR0xNlWZmzxhISAKLXEBU0GQsICppm0IMSKeqvEAQ9Rpm0WgCE4phZKlDkcZ92wYQ7NKTpSSx4wwX9Waj0XAVHlShZXLtCpucdMLjF6S0Sqzkj8PIMZXEXZ1IlSm/6dhHw+tVwudM/yV9JvL+lD0tmiI88Mngk7OL1p2GxFWXz5sUxahxKnAq8L+XMlZlLbl3AKWTrxvHwjcXuhCP5P0Fh78qCPo7PcCnNaKcf032TNOrj1TqZcscqfA4YT1+NpD/Vi9BWRZyzLVYTK4TDhn4m1VNj3UdB9ndRM/WXtvHr3w5I7FH/HYxX7SQB/boiIn/fsYqDuvFSJLMrqHuGL9xJOCTvbfmsXCOXAbPV21e08iGGSyUo38t47RKZ+V9ZfpMSeTYvo+AZl30MrjNPfbFKY/9uVJVMgMpNftWUDPND/XYM5hDuU8jdZYfz8FqGsgNRsSVj0wqwirLH6fR6S+N5gKEa6uKgAo2bH+QM6FpomIK6FUq0dIhmvAtG6OahrGT8GuIm6FnA0vTh4KORllSCiRqB3PrktNiz0c68ZlLhAUaRoaN1qcTz7+hJsXn9CVjshAjAYlYW9uazY3T1w9u0Ilcrw/ko6JuLsnSCE8v64K+O0OpcaoZo8kGtIwYFboghCCIf1LtBE222m8BT8Ynp14bUg0ym6PRKX5+a+T+oH7H7+sm4SJcOwTKWWunkViFwhXB3Tb0n7zaxRz9vtMWwY21LVDog1S9ogliuSaHbARJDRgV5ALlEK+e0nuC7Z5CqHlagvmRm9HcqKml3coLry5Tez3Oz49/CmhEZ5vnehCnwZaz/i1QQloUT755Od58VHg+YtvEWKDe08aBu5ub1EJNLEFAoqz//5fIinTHgsxNDx5dk0ugZsnwm534P5+h90fyH0iW4NbRzAFU1II5OwMx6GGTCIM0UADgYiiNATcnD4NSMloSjSN0m1bbu+ccswcXx64v9/z6uUdaeiRlGie3PD0pqZmj10DKOZO021RDWy1HV8sRcekgj7Gxmpb9z/LKYMVJB1pVNlu62vi7ux2Rw59wnMzbk7qFekERuQAACAASURBVExb3Yuq9MfRmzZtjPdhqQrM1e+JcanMTHZKuLIAqlXmpjWDnXidT/tcrAr9SVLqp0HuUBwvxspoVq1NawD1yK0ik8Jfr5j4dRUmp+m7P4gHRIApg9Uci+2zEFkDkzXZbEV9WMc1oHJZWQE/AE2GMuS0D9dC6ERonQi8VQPGixdBVr4SzH6hC/1doIkfnntlTq7h7D2drlsZQiaa90BaO6zOCp106AW0Td6AhzJo9ppM975NBi0VeGhM8lUN7XQjd2fl4WDZw6k2WmewNJvupoQ4+GnioxBO6nPej+v+mls4gUP3k3acAlOfCz0HWO4FfDTqz2099b6J6OjZWfaIWhI8TJVa5M5JiN8jMshnYPpu+VMB0iNhj+s2jmuSar/J3M3r/bWmgk8MvrICj2uQuPJezV6xqQ/hROacy6B1CODJILpj/sVk0PvvM2XGcUjgEQhICCBKAXBDzMcNcgUrBTsOZDWKNlg0TIU8ZslIQ0KAKDUVYSyFnIVSBC3VM6OlgioxQQiEpqUR6FRoukjTQFBFPSBjcgntmtlLptqgEglDwYoh2w2ejTJkQnSunmwI7kQKiIweFMeKczgeCGKE0tQ9j+4NAwrMoWeSvIKp4xEXOO7vqyfmWNdgaRuIXj1fmGJZ0eKQDYaeqIHrbSC0HbFrEQm13dQNg6NUcKqMXjxzypDIhyOWFSNScvWE7PuhhlHawP3BuL3NdF2kaRRciLHFjkc8OblR3AvWF+z1niF/yrFX+iTgDUIkD0KMDe2mqZkCS8Y1UFyQ2BG6a3a3iXLMbI/QitHoEbQhSEvXBvx6S3HwEPGmAQ0MGcDIlHHmKpYzJWdiV4GNamV1eaiezzIMFdjkTHbI7uz3ib7P3N7tuN8d6IcCBTYx0raRrguEIHX9WDpiyYmq4FDKMFpqtKbLt1onoL5EUtft4QVzQyjkNMzKYwCaGOqeXMUJEwgZtfW6FotxFL8aWkeETzbIiR+uldyZsZ1wDln+L4akU+vj5wJSfvLxSGXfeXDCbet6nFdjvVAYptV2sgh/kSmOYF4z99ZHf4kkS+eP8sxXaHes+1moxBKvP7ZR1uOxAJjV9hsfnlaTYy2MT4GTPxBuFeMvio3IpLz4GPlzQVWV3jG4P+H9udDPOP0Ere6LviFvmyGV78vpNedemPnZ6w1ZTyTESQ1nGbTS02dDy3hgjnJa836YN3Bd1i/95DbUx45yQJdojFVzEMAWpDbzm5MyZxDmnMrB07Lqp8zyZzlXr6x7Bo73rg15D6rsJ2CKGWyOKOzsmdPTxA3zZczq7bZcsK7PDIZ1ZVQ8zQo78+25sNMaP9wMeFyHPvP+hyMzJTg5X6fsvvKR+XperOaggzMmJ5rG8gxE+lq+TLJ/3ZaTPuCRY5PXbjUOp933E+m9wVTOhftDTxOUGFpoqlWy9Am3ghSrOxUpWE6U/YGBTJIWouJBOQLFjWN/pI3K8+stWF2X5EMhJydaQq2AJdRAc6ybqrYb2iawaSLdNtK2TsgBtYKkAcUI27aGyHkYwVRD7lMN72sarBjDZ29QDVzfdAQzYkns98b+kMlj+Nvw5g3BBrYJxAzdDTUULYBhII5snRCdfKjep7vdAYmR9sk1et0gz1rabUPbNWSPWHE8gydD9nuabcv2+TW0G6zdQjmCDTVFOk6rOlpQGvAApWD7I8ObO7x7hocNORX6VPjRyzf0uXBw57AbePP6yOa6Y3PV0XaRbbvl8OYNTiJfbcnm2D6R3/Sk773mszvjdg8f3Vyz7Vo2zY9o2pYXn3yDGANdBNNIcYH2iqAN9z84cDxkys5o3eB4T9x0tM8D201Dt+nwENFNYggdRRsOue4lZsXREGuq8TSQD3saURpRggTcneNxoKRMHoZ5jc7tIXF3zORUSLnw8tVrdvsjh77QqLDdtmw3LdtNhFDTz+fjDnImNi0e6kbAlYfWpBcEagKJUd82gUIYX6NSQxqHI23T0nUdIQihjRyyUcxpy7KjwxTq6tStA+wrV2pktr1NejycAqmZzrnGqVQ5+ann3OhLIpGab2TBG3LybF15yM4F1XR+jh0/E9pficI5gTute+jJtF/IWY3Wa4jUF0E8XXMu0KtQfCgkPgiNUnAWZisr4CzIzhY4n9RTzmPW/aS9F7rQhX56tH5P3/WSrUHV9PuhiDhVut+F99cy6DSEa125hzdO966NMWdVmxr2AKRUyFCfPH0i0xpcp65WXTxPSwbVKfKheqMcGWXLwtumfpxk0GPy55wPKmOGuDnaYKq6n32eNqQa2HzqiUfbPW1wrqKzgXTxQq4rtDrmyzhPKdAnyLr25k03vsXkOtdjKlseO7z6vXYI+dTuFRhcz40KLifr5zQCZx6wM4D2Vhk0rxOUdRecXrcy/trnDDl/bzBV3T0Jd8Wzkz1QgHwcUCts265uvuhKytAfDDrQbtw0V5wYAuJCM27I++bNsbphi+FDhqFw6HvcCp1WJBpjRMTwYcBpKRoxG9fMD3tKPmKHPepCF7R6UYYDJffkothhj6dEGhMFeKqhfP3uWPeyig15l8n7TOwCrULbJMg9+fYIGJ0YUgwZDA9AEHRfZ0nIBsXZOtVjNfToxuuuylZTjpchUVMUBEIOiGT0WEje4q1gLSgHhIGm6VEpJN8j4og2lCL0gzAcjb53LCUsBF7d7jnkzMvkDAWOx4QQ6Z69ADWG4jReM+o92TaoKJsYcBFyE+nvB+yzPSHUMMTSbOhDQ8oFLZnhR6/YtJHnTzra7DUtf8qQMyG2xC3c7+7xVPh019OGxJO7ga5r2Gw7cqrrx0LjSDBSyViWujlyKGjrWHLcA4f7TL87cvWkboo8rVeSpqZrP/aZdOwpu74yQXO8JMQL2+stATCtWRr7QdheBdpW2e2UXJzhcEBDQK0KgSCBuvi/jHvgCB4FFyGVgplTSgIMkcxwPHD7mdF0HbFpSBprP1JQ8ZpJ0RIMfV2fFcJXsmaqMidbMbS1orqEWczhBzNz94cFsTCiKQRDJ0b1k2rhZ7/Hch5eujZznTG08Yi4VD6xcto8WFw8MtSlbuMcGU+bnXqlZvqcu5z/dWgdziBCTdgz1XGyXI7CQ8cNBOu1ozB7i8IyWYcfhEt82W2xai6Y1jXUdowWyGldxEkdp3mwHvOH5U7z7e9uanQ/+Tj5/UA7Oe/Lldp7cuxCP3O0mv8/zTdhea8WBba+tmdmnRWL9ZOrlxotRS0K+aSELsr8ohyfPENGrrF2TZxUdAFS63or1SA67zklcvpqTCHtozxQcZqgBBXiDBJqFuOapdoxd9JJ+Ddjlumq90yRDefJOs5p3YMzLxubYMVHMHXezInzT9tmTBVYnqKyvNeTt+p8P9k5jHDkAYsXaBnEdRi2r4CGIzWTtSz9tvZQTQa8t7HkeT2dG+g6kHINGsdK2BIyOYd2nnXoBHJUZF4vvxSyzhy49Ncc6TG1uSLc0zraVL9pXp4+uDbBFln2OV68zwGmHDRDqRWy0uCm2DCgbjRtC1qTSeQs9L0T26oYjzOboDV7S1El5cLd/UBUoVXw3CP9QH84knNB27rmqu1qh5dhwDRgbd1E193J+Qj9nrTrUVdC10HKlF1P3xuHgxNJdW+q2zu8ZLooaEkM+9d40xI2N+RDT9kPbMKGtg14TLgN5N0dqo5eUdO/HxO0dRdXH2pHh3FYuvFFsJwIJigB91BD/I6F7EJpM8GspkJPgmqq7Wkh6JGgPdpmkIylewRHm8jQG/e3iUTH4F1NcqDKp6/u2aXC7WZLLnDcZTbbhmfPnpKHAzlVMKgCmy4Sg9LFUPdMaiKea7bEGAKxbSlN9SbZcBz3TnrD1aZlo74w21QgFzQ0hE3gngN9KdzdJjZufKR7bm42yLNMRjBRghiihqe6ebEZEEINA7QKpoZDwZLRhlizF7pVMBmElGHIhTwM2OGAjynJKTV9/Gazqa+XZYorfYItStdEdi7V2zgc0THtuorgEuo+UjmhGkG0ZhIUSMNAKYUhJ1ShaYXj/shhd2C7fULbbmC7haAkH1BxukbxnPDjgdi0hLaBrywBxSR4Tq1Eixw7YXEnH2elvO/D3nrvcsqXrIGPSqJZHT8BSedrbCZe+cBV/8jja7z3uEu6rYWYzDqnf06G+YXJx+mwqoPIJGjXQMNn7WZSckb0eKInPzDDsgimD0EV7CyhOTMQBJzFOrqEqjys8slKq7ldKxD1dwVLvXXMfGWX8J8g3Je+PNGA66kLXajywxOr/vLWLrj7fLK87+RZM6b6t9i7TsuYkwCc3Pv43J5Z3oq3nRhp5r9VKLuMeaegJugSoY1Ko0KnI2hh2kcIUqlRJia2JAqUEcCcvH/MogNGtXYFNB6CQV+U8weyZnxbJwAnpz14Ev4MTGnQl+6Us75Z9cZ00cJUmUPj1tx3euYKZE2o1HWFQ+Z2vo8MooLqR+aR+7R34IqvrYyLSxnruTOenMd/NNTBCpTJUsZ0zQikJr1V9byS5/UbZdBKDs9j8570/mCK8bXTAuIEdcSEdMxQnL43LGgNtbtq6NobkgeGwYixNsb6hOO0KLENhBdXlKEnH48QA2HT0RQHydwfevBCu3sDHjFv2Xyy4cWTK55dt1xtI29+PJB2B7QXSjE+e/0avCA2YLlaTgsDxTJD6rFUatpzMwIBy5D2Pen+jnJ/D0cI0XnycSZ0BVNFc6HpM54KPhREWpAO94JR07gLim46PAq6UUQU2wntzz0nfvScIB1FArlrkRjZXF9BAGuMrAHTwDA4VjJD7yiKeouVzGF/IGU4ZKdPB/p8gGvH2w29FKQRngVqGddPaK+uuL65AdkimonpM7QcKKng7sTYkl3Y3xleWrY3L7ChoSmRj77xCe1mw+6z14gVnm1a2la4vgInYBh9nxj6TCpOdqdcN2QVdrcDx2wchkLz6YH2x/dz2158s6HZbMko5kryFkOwfV/XIUlg2CVSX0j5gAZFrb5U2QqlZFIe6ELk6uMbhpxIuXB4umXfZ3702R4BmthQgJQzOSs5g5Y9TdkRh1ATpATFTUhZMRSXgPoBwYgloDrubWWGpJ7YNlxtb4gSiKq0V1tC1xFjdZMcesHNGY49QZyu24LUcLKvzLA+MQF3kLo+bYpZDzEwpQM1s7pG5S31fCytQM1r+M6Hr5jtyDhzqvvF3d1WJtZtIEakqclAqvkwwCpsDyoTDLEhmiNlZOSrULKpIjYyzkdkWc1aOZd3prfK2eeXSbKELE51q3WSGmpqk7you877nFZfKtAfhcEDWbaWCx9qvk1CZ5TNs0o2C9dJaNdjMobxzR7RszCfRYiNa8bEMSsfsEF/k2gNJH2axFAKvrvDU6qb0ceItN3yzoji46L+C13oMZIVRz89vtCUmnr+/eDq93snZ53UHJHJ6KKgzAkSRAUveU7y8HidV9hgZDYn/G4FcMagIVSEpgsEhVaETVQ+2Xa86Fp+7qrjYMrRlZe7PYeUOKZMKsZtynV/zlJqyD+OapWXaF2iMO3TcbKuaGrvAzxVDeylGA+EjJx+nQ1OaxAlE3BcCp0fM7V9fS01Z8G8J+lalq6+rG1uNUJCEJc5i517BYA16nGEqspc3rkMklWl3Me9fteWz7nypynZxb3uAQpncnnVqaPQdrPaLuGROewnH7hXYTvWtPbvmFYeThJwyer51SvoiOqcofnzyKD3B1MzUjNcqu2xLu6z0UtUO9AwCEJs6r5DebCaJGIcINwJKnWSxpbBCqnOAjRKzfxncLQjXhzph7HUmkBg0zY0QapqnzNlyKgFPDv9/oiIE9SqALKCk3DPuBecsrQBHV2vhZIGvD9ASkgwuo9bmgDejrMu1w2ByVbfWFVsXBFTkmPqQE3IIaGm7S5HcBq02RCbDtWIdJualfDJU0wyzq4ylXF9TTYBq9479UBOxv1d9WodUfrB6FOBOACKjZvdbrROmdA2NG1L2zZoDISmwe5fVw+MV+XeVPEilOQ1C6O2tE0DGnm63bC53qLHPeLGiydbYnTaTSYXGNKYQMQKudQ1ZrQBLGJNg3mhJJA+o8ceG/cQ6572bBAIoYIyUYoJqUAbGjSA54zlQn+sL5BaZURDyYyLzdCryKZrEDEUZ7tpMIGojrvUfQN0nIVWN38Wy6glJJe6rw1aU6snwbXBg2KWEc/zGBJjDdksBaUhhgZv6ubMoYuENhAnptpXK0jJuYYRtk2da19BJr+ZRGYvUHV0nK2pWcmBWf9dm6kekC+WsjXe8VNGOV07fy01K6IfjzAM2OtXNZ3+9Q3SdvgUmz4yN+dkgdRK+da6H9vM/NaLfX285RSILRYqW9q37qLx7g+pfE4AosoInwVwxYEyH5utmPWmU6DC6bjNaOYroipMx9FYCclJvtY0yI8JwKU/YGmv6Orav8244DFLyyi859fQRhCVBkgDfvsa73u4fgptWzsrhPr+KKzTUsNqbq81pwv9zacP+D4veyGtV9eu5cJ6qq7WLU1TitPqnlT9xKh2Wv6k/E+hX6f84fEO0BE11WeuUBR1TZRK3ZUnKGxjIEblJirXTeCbVxs+2XR8+8kVdxbYWUDMuFUhAkMwEjIDqWIVPMloqFCh6nkPZNCy7tXn+oxtmHT8qY2joYh1m9dhg3Lq33qbbFqzjvmOqZwlnvKkR2X+N4IGWfHcSYSsdIC1DKqY6AFSXJopso6mG0dHxqae3rNWQXxu71qarZHyGfKb71/rHbJkSFz35bqj1uJk7dU8UxmmqJD1muXPQ+8NplI27nY9DQ2RhibWjU1NE4iReycngZxoNi3t9YYYjK7JWM4kF+JmCwjDISHixHagDQFunpL2R/KxZ9tFukbZbJ5RkpPflLq/EZG2C8QucP/jH3L/gyNeetomEKgL9MJVHQzVgB17PO8wy+DG9YsNCoR8xHMmM6DaEGLH7s7ZD0ewHqTAG6rn6OUehoLuMpIdTYY1dU+r7IWCkRSyCsddxpuAXzVkDSQNxP0P0D/7DG82aNfxya/8Q2JsKIc7XAtoQoMSYyC++ATpugoMSmL38s/w4wE2hiJsJNLctFzFlmFwSoFWQFToug5CoIsBiaHuTVWOhHIk7ffkw5FhdyAE5frZ12hj5MWzwO0PX/PjP/shV88+5snNc/z2DcP+lnQ4oDjJDkinaAw0EtAucGx6NBy5fXnP0BeePPuEtu3Yti9I+4HDqzd0Vui8cF+EYxH2yTjcHmmvnxCC0rW13tIEsgnZnecfPaGNkcqkhCwNORcOux1erCYpceF+V7hqI9tNQKTw4kr42tNvkovTp8LVkyuePt9i/Z77Tw+wz0gKeJySTNQwv+sx/FTIODV7X8k1K87hkDAE0UAuwu4wEGKgubnBS6EcB2gbEKHkMm5EHSooFkVUCdHnDeM+JM2MQld7MYw0r0Mx6nsBs6LrIyM51fHOAOEYXfmAya9D1NyrJ6pkyve+i715jX//+7Dfw6efQtPBx19HvvEN9Nvfhu0WaVuITVUKm2YGWLhDKtVLY16lZBiZutfsi7UNY1jZVMG5XlMGoPHn2OCvSqWcLI0L4JwUgtHyhwB1nsuZAuyPKcRTGaNwj1HnhBtfelvecW6cSkxqmpmPoTfTuqo6LtOec/OVIvM7E4nzpr9/J2hB0dW0mwfss1fYD76Hv3yJv34Nn30GwwBf+znk5in6j/5RfX+ur/EQkBBryuYRYF3oQqf0nijNfGL073/PihYvy8gn1jJogiBlyXcrq+c8tDGsZNAkf2A25tckQzURmZpxFZQuKH/vxQ0fbTv+649ueB4CX9fIlQtPUA7aspeGfzdkfuTKXxnsi9GROZTAaxEOKZNLnvcnnb1nceJJVZaa2crDMf7NeKBMHcJ5I87556TAT0aoNV+csgz6eYKM5cLF+zJ6l0RW/T/Xof5SlTmUbnpi9b6BuMxtWnu35iyDD+QP83EdN9udQaQs5T1G8xSjPttXZa2f8UBin82R876cDHyTAXkVIVglrE+BnqGqEifoVMa2jBE88v589P1To5dCvx9q2u/QkEupaaXHhQA1LEMoQQhWrfjTprNGtRzblDbaqkXEc64eKQ0EqYv/bezUiKAGNnoTNDbEULOsWUrY0BPjtCC+WvTGRO2IVV+Pq9fJ5U4MEETQUjN7mdSFiQEnKsQgRPe6VqfPdXD3CQaDY4EprbkVPOc5zM9iraMVx3LAgdKANZFhn6tTpWvQ4uSkqAUkVGUxxIBoTbRAUCTE0QLvEGr2OeK4YbBGJDRYaLBs1XMyxdGOFs04pgMXxn23cl/raoYXwxn7khpS5WYMx8Tm2sasigVxsJxxnBKMokIZdExxHgmaibFAGSipUFIihEjT1A2JkyptE7iKipXqYRoOPW5OMR1drGFMNR5rkg4TmrapHrURTA1ENCiW2poCHmNImZwLRQUNTvCaj6cLQhxToDYBAo6MKd0ZE06ITwkXKtAIs5JavaXugvnKziR182dXJZWCK0R0zMpouI7p1G2aY/U9MZ8jAb46moxV43cZLdbrjDWz5+DEFnbKpWYL2VSOLGF+tS99uW5SAkvBDzv8sMM+/RH+6lP8r76H7/bI6zfQdlAEQsCePkWGAd/UsCVCJNzcIDEuFZjCyaY6LdiByRK/hBSc98PYwhNL3ldPy94fPldoXsA72ojn9kxhDtPNjwqSRzJjfQCaFaW3PXtVKWc1T6gCrAa/+Pml4+/HQ5J+5ukRb+7cL1NIXxqwu9f4qx9jP/wr/NNP8VevkNt7SBks4McBvvFZTXhjpW4EGSJ6dQVdd2rwuHikfuZpba9/O/k7L6rv4KJ8w8SC1l4jP9ko912h6rMyPgmIt3khpOp/9dhjAG3toVif8xP2svYsCKM+p1oTVikEU560gasm8P+z9ybPtuXZfddn/ZrdnOZ2r8vMympUjUpSWZYsN6KzAtsMgCAC/gA8wgzsCDMzzCHEgCEzZkB4AAGYCIKAAbZlAjywLIUjHKBSU5aqMkuV3Wtuc5q9969ZDH57n7PPfS+zXknKLLvIX+a9756z21+3+vVdby0bHi1qvtRWnInlYTb4DHWCBkMrlkfWkZ0jOM/OJCoRNiaxj4loDFbM0QA5Y5GTvH+yqz6BBt5XKD92N846e9QvjwrVx16ms5Ia87MP9rf56pHD/Q+1vcaHvQQ/P3fdTDxIT8447c/EmOX4/QREdFyap+tv/l4vj8uxzx/npfs4HnTUA4/AHvPXPHV46UsKbuE/5hMm6+X22spUv+l5+s5HXD1+SPWgpd/vyWHAG19KKYUBcRZpGrJEwq4vQqsVdJQudzebIji7GiXTdT1iDMYZXEpYaxhCIOWA7Is3yGWhbpecP7xkufRo6DBYjGtxOiCaQAMpDfT9XSkGlQTvBd+25H1HjoGYI1kVG4Yi8JlMTpHU72grw+Lhmmab8b0iNxtySshNB1FhyCV0L0OKQjaJKJmEEoMSBQKCWot2EXt2Rr1o2Yiwz4aheoLU51R35yxcy6O3L3GNxS0sqXtB3D2jCxtCd1OQ7hCyv0JMwsdNcTuLhWGP3e+IUhXhcwxZ3O22GGdp3QpBsGZgd3dHt7nG20AlghqHsQ7vHRnY3m7p9gM5QdcHdNdhmxUYRxw2SI4MzhL3gW67xbUVbtnQWFicK7fvBWIceP79ZxjbcHYl5C5h+4H2fM351RkXo5D84fev2W8Dfa7Q7JBqURAEncOL0CJYV4N11JUvm7ALBSxitSAMkd1uQIdA7Hueb4s3yOY9WRPbuCn9bxvY7xlCYO2VRW3YR0NCShGrcScZa7DWoyGQ+r6AbhhfIOMRqvUK8RZpLSFFuq6DOMA2lzpmasj7WJiOmKLUai6GqJgRKdiN6ccU6jd3r08woFP9rk+iDZ+EnmZkjMeGUXE9XHRQpHQY0P2W9Pu/Tf7e76HvvFMs6k9fICGh4lFXoc+38Pw5+uwprJZo25Kdg7pm8Qu/VBSqybIuZsYoSg+mmGckjxazGbLDoQuz3p66545EVCYi/dkImyXkMI9wukrkoL1zqL00D+8bfzTrEWGIw+HDH+bHob3PH3mfmc1DTiY+qkoaY+aNMWMegWKMGeuwjPHqOvbbyEnuxk9sm+Z7rKuo2zv0+UfEf/rr6NOP0D/8PtxskLsdajyIJd/uoV0Quz0sWvTsDLWW7CzN13+a6gtvlzmw/z/y7H3eXm736bkyep3ui7JT+N5xI0/WfeD0/BNhekZzT+K8jprHpEKZsvE/Vih++dp7AvvEfyaDngjOGLy1NL6idYbWWb6yqnnUev7S2xc8qiyXuwEfB+pOC3haEowtQBTfdJ4vLhfctBVBM3vNfH/f8w+GhFUhesM+RoaUZp7eMffGlmgoc8itebmu07Fois6G7FTRmb7PBzCfU6XoNFTtFWM3Knp636CY53M3vdtIV0dec4CGz8WsJSLMU48PHjcRcsonRr0TW83kkfqYduADM6X0RJGZfyGjc2DW32lpfpJx7ZQFyVERNMf1fIJILEIc85LtWID5vp5f0phenwf9aDlTueQp5RAK1HDJJhxlqTwqG5GSk5QQK5hsynlqjklsouSUCSFhLFgMaSj3FVUcBl9XqFHCNozegFisdtNAi5BjghyRFCmSbLm3jO+blTGsXNAYyJrxRhCxBXZbiuek5ChlbFZMLp4HScVbI+PP5BbVlIoHwyh5mi/AaiYkYRcLzHvaD9RvPGZ9dYm+8VVkdcnyySX1qsIuFthKMD6jqcfWOyyQ6A+gADknciy5YilnopbitYiQVFFNo+KZiWnAeottHMbGArgx7OlDqeflnSFbg7FH4IEYelKMJRfN2LKgRs9WQW4E422BKA9F2EkxjLlCgvdQ1YYYSxhVv+8LauEQGIbAMCSaxuBcRbNYIyZitDzLmKqEorgS0mUwYBxZLSFk0Ey/H0gpE5MSQyLG8r0xymYYGIaAy3tUM31WjC0Jp3EQgjFYyWY08gAAIABJREFUL+BNAd7IgrfFbZtSGhMmBXEeSwmPMcYUhQApIXzOlCLUOgp7KY/0qaz5NCbIGzsRptKPQ+7PD7EhfqptsizOrGkTtZmHVDA7/Kp2rFVRbirMajdNt88ZDYF8d4Pu93B3gz77CL25Rrdb2HfQDWhIQEJtQXTEgHoDQxEIsxjUV/QfvI/te+onTwBw3h/rdd0TsstY66hLTVhV07vDIS9pVChl9IaAHi2yn2R6/RNvekLwjUxEfvo1E2Tml8mRWc0iL+Z/fKpv/VI7eewEBiInhybT7USLp6aTV47TfKmfeOfJS4LtzNKbM/n2Bu079OYF+uIZev0C7u7G/dOj/UCxFBo0mxJx8PwZ7BtIA1mEbAzD+ozsPNWjR5i2LYaHz763n7c/TpvR3E90Df0R2gS9fT+/ZKI5ky/okPd4wi9eLpx7qFt1z6lULps2+PGi0Rx2evLkIbn33XT/+4qEMQYjgrOWynuWdc2TZc3jRcPbteWqslw6x9oYagSrgs1ajFJRUY2oNTSiiC2h5RGlTYkhw9uLBaYfuEkdzjmyLeFgmSKci1BACtBiOB0jW8q7Ho11Oo7Y5JU7dGE0shZaLsd+loNMtHEOG34KQ3GwUPGqdoh8mOZhGm+ZHsrhGaX21XFsdZyL+zD5J4isr7bqvWLuXvl6pwbNe304rIyZvHKid04HRU7ecernobsz1+EJD5ruN/46luw4nn/a/9dvr61MiRTshTwMhO0d4hrENQVUICWCxlJmZzO+lCkpDsYIztWINVRNVVxuQ0nw23YBZ8F7x+56x7DdcH6+ZFE3rC+XhCFz8/Qjhi6wv72hqcDQFucTQug6iD3VuKCd8WWAbAaNxD7ibcZaYf9iBymxPlsViPZcIVELSsteyX2H7QZsX+JkNSlGx8Q6LYI2WUkkQs5EV+pnOWsxAnVIDJr5aIhc3+141md++c/+Mt/45T/P8ls/h7+8HEsVZDT0iPZIvIEGcIL3NxB3SL8jhkC4viNEpUuGFHqG/R3qPDhPCgWs4eZmwxACISVcZYi2LyGTxrDrd3TDnvPzNW3rsSEixmKsRVOk396VsDnjcVVLs1xiK4M4xYzhk+15g1EPnRC1J4Q9xjrUGNqlwYhn1bZ0veH7792Q+ozuYhEZk+GhW1HXLeePzkkq9CkVmPIuF6updyOKmyUHJSel325IYWBzsy31oYIBMioZS6LycLu/4/ndFhM6RBVrLc4aYr8h56Ko3/mK1nqWTU3tPYu2wQp0w7Z4kozF1A3i29FSAVkSGSU4GdF8ikWq8RVREkMWxPpiQOhLLSojaQxPteWezpFzJic5EtHPsB2Y1WQNmixUeiTSHJQIPRDsjyN8J8K7KsZZnLNHApUSeXPL8Dv/D9zcIE8/hNtr2NzAdgdDLOAtQ4T9toyVuyPvbtHdDXK2RJZNMRyI5TpEzKMnPPyLv4IYQ7taY2IkjgRORoZQ4tUTqpmcCsBKCTVmPKaHXJ1pXKYc2qPCpTNt5tNvM3Y0GjonQxQjml8+MlVlNGyODGKyjN5/1x+TFnIABpmHggAHBvWaIvwk3Mk9q/VpGMZPaJs8umEgfPf3yC+eI+//AHYbePYh7Pbj/hkBkPoOjYnstwXwJ+6hbTCbdVnvMbO525B+8B6X/9K/TPPGG9jPc6f+xW4HYe+Pcu39L45hXa/anRPm3Cm09UumnZfaJHxOPOVAEybhNI3Gq1GQP9bNG8srHEJ/f0h/Rlox8fvGe9ZNw+OzM/78G1f80uNLLsNAmxMrAi4mHK4UR0+5gFDFiKYeNYG2cVTWslg61EDoAmtfUVUrfvPFDX/YDeBrrLWE0RA3RQEUuPNTHqSaDx6mCcVvPpQyjvGc5RT+rIeRPipBR4Vzkk9eNT7FVnikwS/pNodpEE4P6SEiYBp7zTr7fAz7PCguo1fwZQPkfbqtL51zf8Udz9HD8ck4etSejmh/07HDXSaD+OzdDs96ydj4ikGbHTqMOfd4UP54Q/Or2msrU9ZVLJaXIJldt6dygjOZ7E1REESISdnuAr7y1G1VdBBRQgSJGeP6MTm/QsSi2oxKYcJ6j6sWqKmIWDZdKfi6Ol9OjhJSH+lv9iTryMbgYsKmiPNlUeRYguSsLZWgjalGD1OmXa1KXYCqLcLYsEOHAek6CB0mpYKoZywScvFIqcGQcbN6QSUURckqRIQk5ec2J24UrlWJvmFVPWBx9Sb1W1/Cr89wTTMabxT1DrIvzwgJwhaiKflVqUdjT+r3BREXRyYhlcVUDqk8Jgo5WVamJcaKkBLGGZrGj7mJysI5fNMgUrxQ4hi9KKH0yXpEtXiSuoF+t8dUVXFvh4iQ2G52OEn40KEmY40h9NAHGIZSDNeQcUZYtZ7sQE2DxbLdDjR3e8RsMa0gzuHHXCVpirct7HfkXKDKcyzzrWkgp0SMoTgisyHlSEyBFHtS7FGURVPhaotFqW1B16srW5JSR7j1Eg5aka1hk4rH1zdLosLdNuH8QF1LqWGVC1KjGtDKjJtpLH47hiVpSmU7iyWESM4ZK24ksAWhsI/Fi6px+DEh+t0Xbnkl4ZisMwdhdiLW9wjNHEK05LlZjB3JRorEm+fk6+fkF09LQedmUazofUBNBwTMpDHkkZVohsGQOw+NRypHvx+IKmw/+AirlouuR7LSLleYoWdI6ZjgWjpCSmUOUgrknIhRRs9uOhDeAzGc94mRaL/KqPZpt4P+dk+AOKBqcVDCTxjxNEEfwyAmxfAzUUCm6dTig52bDhUdPb8lZG9CbJqY+sTYOV4y/jtDyRqljZ/kor1l/ylpc4tuN+QXz8h3NxhfQ61otUCHDOxL6ON8D8UAmsldVzy8Q0OMmaEPdM9eMERY3m3xVwHj3A+xsn7cGP94lPTP26zNiNcPrXjzWnulGEDK6Xr0dowGqkIvZ4L7ZO0/yLczAfvktvP73DOkzI3+quW4cogiODgMGHnQxDLv0euSN27GHClbvFLO8WDZ8s1HF3xhveCi8kiK9Cnjkyn5y6pYEpY4vj8IGZMVUVtGwDhUIKZEysWIvqwWPF4/5M7BzkIfIynnUjd16lrOIw9KRWYZ+VBOmTwT/F/iQZOiNB/jwzTOlJlxKCdawfzyw1ejkqE6J8PjsaNXrERpjHM7hnoeQChe6SU6FsE9RPJMD/0hPOhVS3VSkvTApKaJP0a8HF7+xGs6U8o5rsCjcjkO4jRu42Kd+OUEQCWntzptBxnnmE7wRzG0vrYy5X3D+vwR2/1zNrsXrK1gbCI1jFb9IiDv7gZWK0e7alFTgANyVwTR1gWstdRnNXhHUzn6EOiHHl9XCDXZCQOw2QasER48PCMPieFuIHWR7fMtuV2hleUsRJwGfFWjlPpCZkS2rrzHe0/YFJS2xcUC64QwVOjQw7CBrkO3LzB9h0mRLEIydmRaZcE7wJAOIcEyEp2kpWJ2FssAPM3CTYaPNLOWBQ+at1g9/inar3wDv/LYyh42hmoLGtBcFej3/Q10tlgtYocOW1LXETMkW6NWkNbhao+tPaqWrBm3cmhWQi75Bs4CElEGGqlAPLrbMfQB7xuMNxgdsKpUtsZoInaZftvhrMHUS5xa4hAgR25vApUkFpR6S76q2QzCPimhF3KAZgydvFg3EB1aN2xuO26v9/hqQ47C2UOPbwTrPRjBV4Zut2e/vWPolaErNbZUcwn/U4hDLJs9CzEE9n3HZrdh3+1oFw3rZUPjLN4ISzPGT/sSHuqbmiEKQxSSGpLCi26DNcKji3OGLvDB8xvaKrOsA7ddz24ISOUQZ/BNwYeUCM5bqmVdLMIpTIuAYSghln6Kt7VFmYp9EXYkdKR55e7Psk1Ei1EZmh+aCCmMzA1eovoTAxQZAV6k1ANzFuscdlSmcozEjz4oIBMfvQ/NEi4eoUHJg6J2C9IXQVAzaEHlk1TyzbIRtKnQyrPfdgwh82J4Dx+UN7Z7JMP6/By732OH/pBsPL1wCAOaEzH2xBgRKWHGUdOBER2srDIJ7KPAL/cUqs+ijeh1J4rUnK/AgZEUoeI05EJmTGbOYHUse/BZunMm79/IYTn8Hj+XITejMeIVsecnlsRTZjZZrFV/HMaIT6mdyKB6UBbTzQvS849IH74H3R599AVwNXnTob2issEomKnaeS6h7SRD3u+K8BBW9F1gt+nY9E/prrdc3dzS7Ht828we++q1MVmq73sYP1eofgLbzGo2ysiHjVuAJ8b0CJn27P1QaD0plHpA6JyUgpl34VU8SFUPxXJP6NX9pTYuv5LrK2ONSDvyIYezltZ7nqwX/NIXHvJm5blylud7Q5fARkvOBjcqb05HBDcB0RI4LjmD2pJiIMKQAjEWI9C6WvH21QUfmh4jAdvtiSmVqIyD0SePRt9AioFhEGIMRA2QIR2ed8qDmPjPLM/sgEg789icRGJwHN9pGieiopkDcp+eKCyMyHzFVmfGa/I09sxIwkzpLXm6HHiK3KPVxydzWEsFXG7Wn/vTOSnQMwPzPFx/zvuOjzsq5vN8qwmpuNRkhKmO2anSOvGg8Z3NpJKP95+tyenZp3WnRq/jDzNizNrrQ6Nn4S5YcnTY6Eco31RiUJnqTinWU2C1h4hz4J1AU6NqiEMgDInt+8+xVqgqi1hD6y2uMSRniDkTc2K3ucOKcO4s3ljOzhc463DWF7Q8GxHTFM+FAmRKQV2K0EJFpsK4iJCJeyXJ6LUwDe7BE/K2IqQ9xoNdwnAbifvIdh/po3ITIiZlFilTqVKrEhQGlG0U+qx8uA3cAt/uI1mhEcsbP/1T/NK/9e/x+Be/SXXeYryZWX+UAn+cyanknoHDaMTlPVEjKopdCCYoQ7dHkxQEtKrC1hXOJESKFQXNrKSgITpniKGj229LDooYosmoJmwq+U5ePIlMimW3OAeL1nO+bkgJ4j5xtmwwEjF5h+RMzlIQCx2IOKyzZB8QMtoXUAljGpJYglpsvWR5scRaSwqBPHQkyew3pbhy3/VYKywqiyfjJRMHVzxxxqEIFocqGLG4eqBtLYvW0PUVcUTPc7YqMJ+mJPOnkEEStYk0dUOzqFCKhWpfFTTJLhqSqTi7vEBQoigWaLySRorkjcNaS7uqS9Krh+yE5C1hTN1br5bF0+ULGqWpGiao1AILAvJjgHaeC06lAOOxUqww5hvpdO5IjOGVxGxiqHb0SDlxeOuprCv5Ycbirh6ibYPxFnyNWZwRzp6hz5+z2W4YtjtsBokZP8LIx6wlTNdYdtdbuk5553rDdoicrQYuqgUG4atf+Qp/7a/9Bzx/8ZyPnj4tOX4589abb9I0FR9++D7Pnj3jH/2jf8R2uyleSytYNcVrokpSxlCSMgITEf1xeD0my9rh08mfMjewvWRFmzOvk/mafdaTKz7ldgjlmTG70xOOCu2ca82Y8QSFPjG7ucLxWQKDfCbtRJEqfwlg1+eItRgyhIisLtG+J1UN3Q8822fPyl5Lik8JScWLnsUwdANDFjZyx/N9z3u3OxZtx2KxIIeEmwyD98JgOCiq44sY9zGez88Vqp/sdmpJOzF4TGvhnjA9rd+D539SEA48RWe3OCpT060nA13Wyag3J3qc8KADeJKUHClrHM5YKuupnMPXLbsEv/P0muet44PG89GLO/a7gbeNZynCVYpUMbHoIy4lfEokLV71HiHGzHVybFX47vUOUWHhPG/9zDf42i//MkNrGLzhB+//gO12RxgGqqri7S+8xTB0PHv6Ef/s9/8Z3/72b7MloxrRLIDBmEyelMeDMlBo3qQIHBXO4/gok9HzdK7mICFHQ9yRq8zzqk4R/O63ezzoQI/kWE5KZmfO1kCeRbbMeRBQ8vBe+ThBZOzv2PeX3/Okq8dXHP81IodlcuSRh0E7KPCcHJIDiMScBM69Wwewo5kiNTVjjobb12mvD42uwj4abLTY5MeXKSAJCIUpGsXYEvoVh4QzBotgqgrEsQtCSAPd9QZnFVl5qqahqpa4ypKcYT8oKcDQdSW0b72mrh3LRY2IK8K8yWSJGONBDaqhuDPN+F4YFI/iESuIZnKXIINtDMY7quWCKIm0e4bVXGC2x7ICWyvsDLw3hlUsVGlUWaoyKAzAPmc6FX4/Jz5S+PWQaBG+boX6C2/yjb/yr+Ien2EW1QgNrwWqW4ttQDWN762oGoxGrHZAKspULRjJpP1AHrHcHRl1FuMVZyatvNRMcsbgnaPbF8jyLDLmlpU4XpMDNluMFE9KiqNC4oSmtizbiru+ePGWVxXOCGEzKX2l0G3OlLwgqTBWR8uOB3UY8SQxJDWIr2irGhMLkmIOPUkyu50S+kh3fcdi1bB+cjlWLVd6tUQRVNwI5mDLQjYOi8WRqStoG8vdpmMICTMCRygF/j3FjJcENuFbg2urA3EShBCVXQcYoV3VxJSLN1MCXktuT1bBisVbT7tcjO7xQLaCyQXdL2tm3dZ4Z1CTy9r3VVEUhpJ3VVzkp8pUCIFhGF57c/5RmqL4yh9ius2s2jejYjRZdQ4x65ySDHNgaOU6awzeOirraOqKpm6YvCYsV0hdY5q6CGW+QcWQjWHXtOyMxSqYDPUI0R9SJokhmsiN9tx2wneeb7gZAt9IUF/sMAhvPHnCv/3Ff5P3P/iAd959l26/J4bAt37uZ1mvl/zB73+Hd975Hr/9278FJELosDGRrMWYOIKz5NHDWZi3GHtQNKfk5pzzpz4vKUa8d1SVP1GojjJtmZ98Umx5TvDNgSlPBk1jZ9C9cAjp+LT7EmLAOUdVVQcGfwo9K6/4mVk1R+FoCts0xmAm5LmZgOHc/lPtx2fS7imZ9z2IZrFAqgpT+6L4VAvyvkNDIux23Pmq1DxRocqKzZkhlZp5IUS6bHia9/zhds/v3mx4exl5EjM55VL+4bDHT5UpcokEQCYvbSmXIUdJZfznc4Xqx9bu67U/7NyXznl53k70lpePvlqhunfPyfNxFKhfvtvcOzJfQ9P95yAJHHj08XFzHjSBHlkpnilvHd55qrpmQPjDuy377LlTxwfbLfttj6kXnIugKdKkTIwZnzP1GMqXFAaTCAmeDYHrBL9zM9AYw1dbwxfefJM//Vd+BbduMY3n977zHV5cX7PbbGmbhp//+Z9jv9/y/Xe/i7Xw7jvvEEJHCH2JuFApKReZA78t42mOBr37Yz9K/EXpmAMl3Dtn9rXeOz7xkfL//OCsPMqJC0dn83J671fpOacnzIyAjMrS/Y7NDLmn6/leWOK8M+MYTDHkk+xSyNnMGDWtu4MhaP6SM+VovqTnH+/xp7mO+Uehea+tTGUSA31RjrSmgJsraRgQoGkrskZ2/R0+JRpRcn0GrsXWS4ytWLsVOUW6xpCHPXF7TY49cX9LVTc4X7NqWhatZ1F/CUFomwpC4m6zwVmPc56mUhpbFCNRIQ0lL2NZlZhaU3msGAzQ7zbEbs+iaXDe4/0SUzvMWUNztWDxjTfRp99Dn72LP+vJIbK4WRJj5m0N9LvI7Xs7vnvb8X8+2xAploZvrRZcec+bWmFTRm6vAYOzDda1iFuh4oqwE3vIAeI1aAAiogHLFtJT8vA+uf8BuXsGQ49Jmaay+EaoL1pCSuz7gVhdsw8btqG8Qy56LPs640SoxJCGRAwZoRT7NUHQKCSf6HOP3r5g38O2i4SUMV4YwsD29o6LR1fUbYWJz0tx2hEcwlZTMVCLDRHNCQmKBsV0HTEYNkMkpwqJK4wXpAIv4BRS2JNzwLsl1tQ4cbi6JtkVIonKpLLIo3J32xFjZuEsQibqjkBkz4CGAY0Dw5DpAzibEZMJ2he3dLTchUy331PtFf+io120OOdQU4rqWqNHJCNbQDSwS8gVmoeyWV0N1qA5kFWJOdIPgX3fUwI/LbuoOM1UNRjN0G9QFVIu5QC8r0/iqz/88EP+o7/5N2nblmOe0nHDnkBjTwL0aMWajh+sfzqHNJ0RQxH+1J/+ef6bv/23j1bBcvHxOXNB/mP2+svsc0qCHYFbc+ad3/p/+Wf/5Dew3tCYzBNfQu26YUC7gdwF+pvnZLfnwaMF7Bzf/v0dYSiJ8he1482LNZU0rKjQdM3QBXIt5N6QkuC0GAgeP3rEer0khx7NgfX6DOstX/vaW7z15hlf/MIZMVuyrA5y6hRKchLGMB+LAzFXfu3X/h5/5+/8D4e+HvOyjiN1KjTIIUKSmaB6VFpnDx0J8+XVFb/6n/8XNE17MrYvM8zj96e84Z4F915fpvYbv/Gb/NV//69yCKw73GQCGRktm4eecBiH8aYnzz1N8C1Hmqbhr/+Nv87l5eU9BnS4xUF0mvPQe6fMmN3sXWcn/R9/9+/yq7/6qz8WL+Kn06bFmUd02lJQXlC0uyvlF+IeSZl6XWG//iUWTy4Y3n2X4Qfv8Qe/811ePLsmhoB3lq+89ZjWVjyg4sXT56TbLdgG61eIqQA3SnJjzI5m0EnRFoQBzZEcb0AEUz0cS0hME/G5EvUT1072mNw7NIPynuZ/1HDmNFGkyB+Ton4AKxjPnW5vxqiISTGa+NYh1A1eomsTXTjk6UpBPTVSUJkrb7lcrzlfrfjql9+mrh1N43jcKA8b5eHDO/puYJktDthTjOjraHn2fMv7P3he6oOq8vblFatlyxkLcp/Q3YCKxTYX+OaMul4iziHGsF4uMCQeX7agme+/87tYCw+vav7CL32Vtx7CP/i//jG/9e3vsO9G2G1RYjyWSDnS3zyG+OkhRyzrhEJ9L/yMSUGRl5QbncZvRjQPxreJqs8UgxPPy5ymzvjCfV1IZ+eXAILCC+Y0+WAclKI3Z/IYVXRUciZl6XidzH7f65eOa280LMpUikWmMFIOOtRRaTKza6GAI91nkdOaLv/mXEJWj8WG5336FMP8MkosUaCjn2BCLynvJljQsnCMRjSXnJKUi1CEWFztRoLeE/dCt7slp0CIA9ZIKbxWNXhvqaoWpABAxKyEmMpntaWmrRaAK6HEgIoUZD2xBmMcBjAqkCIaA9Y2uMrg6hppPGaxwC0c/qIm5Q25e45rDJojri2gCNRCt01gt9jne25oygDnjL08Y9HUPNCK2Afa3Y4Gx7K9oq7XJXFLKMnwYTsyyY9AB1QHSmWqPYRnMDyFeAt5NxY7LgvXWkPbCjZBthmlI6gScqkhnKNDgM5EnICKRUcUOasgqpjDZiqEbxg6hl4IIRHHRMkUI2EIVF5oW8dwm0ts67iOprwZlFJHKSomlmK7JismZVIfUDXFW2VziUuWETgkJiSDaUzJiaodxlWE7DAqY4hoUYxyKsg4xkpZdaknkwmUgrDEPAErFvABKAQ9lzjflJWQEzEP+KCAw3ugEnTcYHB0V4sRVO1I4sp/KragzmUlayKGxDBEhj5gvMVYISQtQMWZEqKTCoph1lKMePIATq3rOv7vf/gPjwSGOeM4VXI4fF88KadE8Gj10xNlChDh6z/9Df7SX/7Lr7utP76dENtJ3FZImaHr+V9/59t8+Id/iFt4ljbTND0x9Oz2WyQZJJcC3GZZYZoVeRnZPe0Y+kAKkeX5GvvgARU1op7q/ee4XcT5BdYvCoEeLZJtU9PUDvIO8lCKXBM5W1nOFkseXX4VsUts8waIPwiEc4Ge4yidtJwz/+P/9N/za//g7x3n5KiKcD9+XSdF6vBz9DNNIWtTEfFpvgC++TM/y3/6n/0qV1cP/vhz8wntN37jN/m1v/9rB+Vk3uMT8BFOWecpizv+NSnRc8Sky8sr/tZ//Lf4mZ/9mR/+Qvee+Unn3G/vvPvuD7//P6/tfp+muJyi6ZfcpxiLlDhFLaQBQrHwWm+w1Yr66pzOgHGOcL1njycOHeod7o03sNZjkqMdEpV/Rt2uqJfnGFdRYvF1fGwshry0RaSUqCDvCz9KPSCoWwA1SH0Q0kQn4QM+V65+DO11DQk/sr3hxGTyMV6IVyjUM8F+bgg6KEknccpzuqEHHW0OcjvxrXlIoDBTpEyJUTECzhbj2mqx5OLsjDcfP8bVHtd4LvzAhQ9UtWMYBkwyoEK2pbyJy57k79juC9iVpoQ+eohbL1mwIOwGqvefUYmnWl3g2yXGufHdMkYy3iirhSHGyM31RzS1oz0748nDhlX9hO9855wP3l/w7EUJXbfBkI0e9UWB4gnW4zjMhqaMRxHfjZgDr5eZAjBqXAdSMp94VT0CORxn9pXzel+pOZlvPUiM49fl+ar3QuFEXr3spstGOfYeKzwqQ/dknvkbzXWfU4RDuPcKh2PHAsTM7jT1t3yW2c1PVCediwlyVPx+hH31+sqUZoY8YBWcWEIImJRQXyMCMUUUxbULnDWIN9zd3fL8xYaLxRVNvaR58gRXt6weV2gcWF2csb+9Zvv8GZtOybvIOgu+LsV/gYJ0lwx+cYZrFrhmWeDAY8Dtn2NyoF4sMGJIaiEmZBtxziPeUVeX1LKkPn+MWy6pv/AWZlFhLmrEOMRW0INRh+g1Qk+9fALtGebLP8vaL7hya76SlX89JNLNDWl7x/LqMb5dopXl2Tvvs/lP/ktW/iF/9hf+HZ784lfQKwjaoZsB/f7fh907uPZ7oFvy9hrNsSDXaakbYlwBqcjREIJwd7Mnaia4iGsti0tPRWalmWQMWQxxGEgZuiioWPxiAdGQrMWHgSoOsHZoNoQ4kDMMdzviXulvB+5uA8+f9chDqJ1js70m6IawLeF57AKSEy72+NpTLRr6jbLfg0oJ3bTVimSA7RabOirNDHtPty0oelEMxinWCctayGK4TYa+T2yfX+OtUhmwUnLbznxGHSQbCSmx6wuku/ct+y7TdQExpRTUNgZAaKslWEUlYhSsWnZScunef7ElZ1jVlsobztYtqtAPGbWGbC3bbk83DGPOlKC+wlPih9MQ2G9vysYci9ZalH0/kDVztytgHWboi1JkCmRrXTnCPNzqENrzGgLJwZIHmtLIWMbcp4kITUxqtDjPZbU/0TYPVFYO7RtXAAAgAElEQVQgZawqP/8Lv8Duq1/FugpCR37xLt5EGh9x7RmuXiFnD5B6SdusELF8ZYikEIibDa5pqJfrEs6gMPy3f58X33mft3/xz7H+wiPMuia7TIoByXskbiH+AaQPyDoWrI7XoJGcFNySWL+BXXwZt/z6NJC8UiB4abgnYULG0NmPgSGf3SnnPA79ZN0yB+ZxeOLEEQ5egT/ORLxem2x0h0e/4qGnLOy0lXc/jldB7tXDchP5uCs/bx/bDpo3IxpfhFiMfAWOT4sRQCJ0xUsktkHqFbK8oF1f0XzzT/MX/pW/RIyRvNsiCPX6rBinjKH5jd9h+b/9Om9+81s8+NJPcf7Ft9CmWFdJERNvID2H8LulXo5aNN1B6saC0JbYfgHxD/DnfwaRAr30Ovvn8/YvRvuRdu3Eg7KiJMy8DMLIgwqIwsiDRnp4vP5IPmVUwOb3PfFMCKVczaR8jUYqZx3eOWrn8NZyvj5jtVrxc9/6Fm++8Zg/+2d+Ae8rrPPkzVN085RHPuKdUq0eYKoFcv4Y62vaZsUXk/LzIZH2O1Lf06zPsHWNimH70Q3df/W/4+sVb/2pX+TiZ5+gLez3W/rbPR9975/SbT7g4uuGxgYe+fdwZKo7oRLH+crz7/4bb/Kv/fkH/Nf/3T/m9/7gI2wP2VLqfI65wmVQBWPLWORUGPfBJKqT0jDTQg4G1tmnMXT9EDZsRoWCI4rtwQYyCgc6FkadRRkf+J6Oc31QbCblY3qtERBptM6Xs6bnT9rXbOlMCJCviiq4r77dbyfBpjo5qEr6EMzC8nS6/30uJ8flBp8oE6lCiEXGsvPxvf+ir9FeW5kyzlK1DeSBPAzEnDCaMNYWEABSceOKBTFlc5AhBVIciMYVyGhvAYtYj62boiC1HXnIxXBGhWQPqQyoxSEGTGVxdYNvGxJCzsUDowrGVRjrECrEKdiM9R5beUxVISngzi6xbYtdLTFthVnUpfvikfYC1o8wNIgJyPKNokyt34J2hT+/pBHhwgjp5pq82cLFA6hbTGVQ2/Llr3yNZf2QN376q6yfXILNaHdL7q9h+33Yvoum74NuSXfXpeJ9jKirwTWIX2Fci6uFZA2mj6WAsCjFraM4YxCxqLWoMUQLKRXkNGscddWQRMlj4duUIlYKAlqOhWkXqFCldsJOIMbR85czUUsQWzYFvEJyyYsSHT0wqYT2pYEiAwhEyeQ0FXMtSG2SDZIyqoZsKEh9MaN9B7ZCzAIlE2PxnEULSkZIeAAjqC/oPS4XC6sxDjEOxJV8O4EUMxlBjUNQjCgWwSLF8moc5JLjlEqpiVI/SkdPJ4AxhFQKIGfK2q1yxiRIoweqH2IpNiqGShKOApRSClWPylQIWBGsswQUyYE8R/OT+e4+2c6jxefejp+F9cHMyjP3HUyWoTmUz6fVJqKdS1jSYrkshRNdjQ41Q9hSuURbK749wzUrZPUQqRf41RpjHa01aAyEzQbxFVIvRqabWTx6wHATWH3hCYs3L8EJSkRThHgH4RriM0jP0GwKIY/Xhcobj5JR16J5h+YBEc/9nLWPa0LJ32FUpo9DOR/PIlR+XMjZZBQ7GsfumRw/63ZfY3pFmODoe3jFtfe+e90+3BOmfuil+hrn/CS10Sulc2lmVLLEODBV+REBW40KVsmnEudYnZf1l7t9ua5egDGIFc7euuXJT32Zyy++xfrtJ7i2KhJN6iD16PAc0rOyhzJj4d8N5D0qvuyhdFueq/24jj2fK1KfYbu/EeQ19saPsIfk5K+j0Hyw1t/jQSIyIxlTjpS84hyd8Sv9WPpxVMZOLU4CTDXrJoAkAax1WOepqoraO5arFev1GZeXl1xcXLI+P8c7j7UVgUgis2iUykO1eoipWszZY6Rq8MvVWPDdkPZ7Ut8hzRJxHgxkU7N89ADfrFm9/YT6ao2KktKO2N9g0g2eG2xSLAM1N5icMEExrsX4JQ8uG5rVgsdPznh+27HvA7nPo3wsxcs79vtQo89kDiD1erBWnXpnpmE8zNVB9ToO73T5S7OuL32cDK+8zBJe3U5e5MBQXnneIST+cMo9rfqVD5SXP92LxoE5b9WT20wheodRkaOX9KhPHtf7sfTeLA+LeyP1qgn4Ie21lan12Zqf+pmv8ewPvsuLzYfcDWAQ1tlQGYNUJfxqCELtHIumonGR3ESiDiXXaPecHGq2Q4uMcNZuecnl2SV9NAzR0G8yfcgM2wFnhIdn5wUS03lWq5qzs5a7Fzv6TYePLVYd9eoK6xt8vca0C+zlJc5brHdYLR4PE1NJrq0V8RbqtghbYjEPvoQuHmNbiziLpgWqlvzCQ1dh2gapLDiDPW8xq+LVKLk3meXVY/7i3/gP8YuKi689xDQAEb3+TfTZP8G8+DbSP0PvnpPjQLgeSk2poJgrwTyqcI3DLmvO3IKEoTnfMyRlmwyJTNREU61p2xWu8hhrSSiaExf9HUYq6uoN9psNL/bv0/U7+ps9q7ahsg46sGpY1BWNF5aV8j0xvH8d2APXQ+LcLjHtElfVyLDH7m+xYqmaMyQAnZC6gbCPMKLkPb97hhHDg8sVkgTdK85YRBpyhhSUsL2DPOC7a2x7RvPWn0IEcggFtMRAvw/EkFh6wXtLu14h3nHparqu5+5uR5VA1bNaOLwTtkMgpEwfSkhAaxc44/C2wi09trFs7zrCkEhDCU4eRBhy5K6PeBGqCoYU2IWOnD0ilroLSGWJztEn5bbL7IbEto+crRJtU+GqEcij7yEXdMXKOqraEbo9/WZHCP3JHjK2JN7nNIPynEIm5jxo+ntOYz5JpjkUdJ15Vf6k2pwAallvmhJiHMbXOF9j64b16gJjpcDvS4WRqpQX6Aw0vuSsGYd4j12PwAVSqshrTvRff0h/YVn+hYeszlfFGBG3EH4A/Qfo7l3gFnRXDC8xo8MOnMNcPEZMAtuB3pDDhxh/hcjqtbpox/AR1TJ2OZWaJCdx4Xlm/5IjkMdpVPV80kaOJQCmzMtnIJcebYvT65iXT/iYNmdiEzDE/QKMRzvgZ6ACfZrGgc+0TZrlWCcqxfLZjOxXAbcGu0SWDyigShZU0K1BWlfOdVK8460vczAjGBff/Aqrt9/C1hbrTTmXCN07MLxA734XdIvwohRIDxkNXTEEXTyC2mJMB7IlhY8wdo34h5/xOH3e/kTb/f0jUkBrch49TnAQdkWYLyk5XnL/prxEyGYhwHOZe7K/lVOOIDRz+GnG0LUpRNo5h0gBpKl8AZk4W69ZLhZ88Y03uTw/50tf/hKXFxdYX2O8x7mKpnoL9+AtjDeINVjTIFgYDKIWbUvuE8ZiGgt+cUC6VTLaVHS/8BZ2veL8zz3A1RbVSNq9S7z5A754+Qx3scOFZ2g/0IY9oorrBRYG9S3tosLbll/5lW/xla++xf/8v/w6z59viBlImZzjYUystZg5qNDBWFfCCouMMKOzoxdGD5MjxUiukFKeTdSMB02K18SDxu8OdcPGX6cGQpn9nv01nZNymUNbSv3kfMwZPkLizy+dr4250j17xftPH8+fwLNOeNDHGBiOI1W0Sp1QTCneugmEqoz9iK1gTvuqzPheHgsw/wgs6PWh0WPgbrNhyANaCRJBEiSNpGyYvFGttziE2EXEGUxVY7IjYxhSz6CRfr9DxOC8HzuTiWpJagm9ISXIQyAZYW+L0mVtj/Q9ut0x7PakfsB1HbZAn5SuZAd4RGoQUzZTBskR+sI4iKDeIdYXl6VREIe0S2g8OAupRgMMH/XEF5HuacS0Hrf2SLeDoUPWK6SusEtLDglxjkDm2e01TdezqHekD79H/uBd6G8wuYNFhspgLmo0O3KqkYtzzPkFtAvUV1hbgVrcYlGEUXUkjYTc4X2DSFOsmxQgBaUoLuDIKZFTLAiLGawYYlA0JjSMxQgUyJCDUGG5qh2OjBmGYmnJo6AalBBK0S5rF+RUFLqsiSmsTFWovC/EMUHOQsKhptQMM2N8cJ5c90MkmwHdbiELNibEWURKIVijSrAlFJAoSM7Efl+KCKc8Ik0JeQR60KRILl45BAIQU2ZIA46AC2UzOQfDEMlZSckRMmRTyviRi3fLGItmRciIFPAOUiDHgSH05KRjjbGCkRhTIYAipgD0oBhnC5IeiSzpiFA2bVadb/rZJj7xOs2Y0ow+ToRK4CXh9vjHx3tOXtn0Yz+cENvizhtde31A+wENiTwkNt0G7xxnq1XJE3R2tKg7+puO2CW651uwhvXl2YisuQdnkdoXoc9CVTcs1iv6MJDvbgjPb2jswMNmD8O457yCdVBb8IL4FqxH6gfgKjA1oGjagjt7beVldLgxcYKc57NUxnXiQHPj6319t4TDTYzlOJD3PYqfTXvZsjcJLnMGfXrJ6TuexqpPTP/zdmgvbbV7+3L6OJawmIAndN8XJdfI0RBiXbnAjS7/bNA41msjFb41iR4hgCimqcAaxJV8UbGGmBNhiFRGMBLRbto/ezABvIPKgDNl/6hC/aAUs7fFwKh5j5q6vNfnE/4T1Q4orpxO7Us86IT/yOn5JwaWWUHho6Q/+1z+KNcfRecpH6XQ0SOqp7MO5xx13VLXNW3TsFosaJua2nsa5zivF6x8A1EJcaDTjkXTYpv2hAflJHS3e1LKdB/eUbc1i/WSPPRoGKCpivzhhdBF2tUS31Zsux1p1xHDhnzzLmzeg/YO4wayKfJM9jWCI5sGac6R5gp8izWehw+u6AdLVTVYN+AcQCKl4nA4CUobWU2eEYyCF6On9GVm1DzoRxMPmiuys4ma06ADqrHee/4rWrn/TAk60WD0eNJstl99x/trYVLyPob/TP08vMcsH3mmVB1PmSuOc6/XfLXO33fuV52hnE71DZmNpxEkCz8K/XttZWqz2fLd730PR49bV7gu42Im9kN5C7ugMpazakHse/bXO+qrM6rVCjMW9LqLG/pd4Ol7L0A8rrkk9gNht8d7j3Ue2jViPT5aPIpub0qR2aS8iAkJiYUP1DbincP6ivxIRkZicNagg0GTQS3kfYDQI9unSBxKGEVVQVfyuqgssl4i6wXUVQmhU0u6C9x+7yl3H/W8850t1VnN8skK8+z7mNsPaH7667hHVyy/dgFO6XZ7trd7PnjvmsfLp3z5/H302/8Y3v1d9EIxS3BXBpYee96iZoWYJ9j6CaZ5E9iB9uRQlEO/foQ3njNTkbUj5BvCkBiGRE4blJ5gGxQL+RxyJvVbul0RYK1anGvY7wMhBAIFgl3vFJOFKkGbDF8/a9j2Pd2up+o73FCRtgO5j3R7jzYtzl/RxZ697khakpJzMoDh4nwJKqRtT8yGgQXWrnB2hR1zRdy+RnKCfiDFPSG/B9ZSWTuGqizJdY00DdtcAEXarULsCZtrrDUFhjkmINMPmUGE2A/FqLtoSQp3IRGHnqHb4dKA08Tjtx5Rtw37uCUkxbBAMSTviSjdEMli8L6iIC0mrEsYk5EQyd2W/fYOMY7GerxJOBPoQiYDy6oqxfDUUFWexbJFFhWiS6qmPm5dLTWoXjb13VetjuejjMXmji2PVsWTq2cE849tzT/Qo0nzK3v3EJZ6t0e3O3TTE/Z73n/xlLptaVZrvLF4V6HWkcVw8+yOuw/u+N53PiBn4Wvf/Bo2R/KzD2HdIA/WuLMat/SsmiWtq3n+9AX9cMf77/4mj84arr7xJUzelHClqkLaBaZao7YCliAV4s4BRXRAEXJ8gfFXr93lNELnyuwzjKWPprC/SWg45SUjfsCIbjX3Ao3yc2kfk6j7abUT5qovf/9J14xtCkWbQm9OotLu8fk/+nvyyTf6pPf957kd9g3HARtzpXTfo883ZS3XFdRFsaEacyLHkKBi8ErE3UDYJGIWcp/RkDC7a8SAe3KFaTx27ckpkoaBfeoZcuTqylP7hN7eQH8LoSvYEuszxLcYvwAaYNw/4oEeVMjxGpXXFg0+b/+8tlfs6ZTyPWp0z2g0PzKVk5jLxHq08k/POIWrlnkcFTAWAdaihBzF3yIoW2sLyI0xWGupfc2iXXB19YDlYsFqscSNUUwr61kax5vtOW21IO4C227PR7cvePzmm/jFEqwv6L3WEbvEs+8/5/b/Y++9fi1LsjO/X7htjrkufVZ1mW6yDSFSHHAEQRgBgqQHvelFf6KeBehJAmZeZiDMDECRmh6RzW62qeqyaW5ec9x2YZYeYh93M6uZ1d0ssoWKxM177jn7bBsRK9a3vvWtqzWf/uolZ/fPeff9d0nLG2S9Qj08gVlFcVGjDDy8uE+QyJefP2d1+xlXl3/Pg/SSM7ll8qTETA3xRJFsiZ9XKDMjuYe48h6ufgDSo8XznXfnlNWSyfSEYhWIyTIMnhhHYCTGPC2k0bkan8v2/smYQjBOBzsXQA7u9aHd14BIYu/e7Of/u8uB3fdeA9iOt9+7I3uHSnFw7Bg5ikhun/2dHnVkg/4hUPEN/TWJjKqQHNmgw6+80YQc7EodgAdKq7F48bY8Su6D+5BsPtY2T/2NdbC+or19zpRSlNpgVZFlx8MAEjPnU6ALQjIJbbLmn0dhB0/aNDlwpLLqmVYRUZEoimHo8H1P3zW4IdcQqJXBuIKmGSiM4vSsxiRBBp+jEzGhVMgINz1RRYblAus8SmdVOS2ZR56MQq4uYb1CN69yPk85Q1UFMjTEEAhtRzQl0ZS8TIqNKLpyQoyK8KzHbyIrPdAvO7rFmmr9irK94SS+pPp8yvzVBdpp+n5FVD3aLej1LS/tJebZJeZmYDrV2KTorwXVJEpR4DSUK+Imkfwan1Su5TWdEVyNms2RoIntAkWDZoXgUBSkVJHEgBgERYgqB90aT+gESRWiEriEDRFFYLMODB7Wmw1pADaJ1Adi2+OcxjpNqQ21NfRdR2h6uuVAauFWrglR8EOCqLDGkUIOW4e2RSuNVQZlDEksCcMQFfic/Fwmg1EFzuSJVsWWIJYhlYgOiPboYkJZOHQac5r6jhgiXTfgnMXYAkmClkQfIhGNxqJIxKFFEJwkjAm4WlDBQFQE71EKKquwBnrGonrjQEoqX482FkJWyKtMibUKLTn6F3ykqhyTMnO3rdGEpst5V95jraYuXS4EOAQ0ESTsJFHzoD+Wf/5NLtVrw3dEVQ4YwLuJU3afH2z6O7WDlfK4CBQfkNU6/2x6Ytvzya9+xWK9okiCV5r//PlLimLCdHKKrmpUVdJcbRiant7k2lu//uwjTBwoN7eEq8zgO3twxvzshJgGkgQ6tSLGhrOwYDoE/LrFWI82AsOoJhpXmY5rPIhDmhbBIaoiOYe4Ai1mmyt7MEe/2XHdIm+ZDnB0J3YiStuJN6VthGY0NQe8bDUirZmrvUdg1dZKfQMe1es0mv3722t6Yx+R1zvl/m7dMXJvcyFv0RHvRlHf3O//wNrROefnLj7A0JOubpDOI+sOfa6hqJGuy7TZSU1Sis2iJYZEH0FFUCH7YSlBs1oT+h6zucVaxemFQ0VFuu0RiSQJSAHWCf2zJUE69GaJlh7tUmaSbAK6aNDlgOgKVIl0PYglUSOmIFVFjhCMl/MPj59v2z9Ke5sxdDAW32b87EtsHEcW9vv76v0c9+z9qvtuFEVt55JdZHuMPm1pfTvPazvnjjUr1UivCpGh6ym0wWtDaSy1tbxjSu6ZCnW7ZrPa8MnmBpUEJ8Lz6xVf/PQjppMzirJGT2cIivXViqEdiBUs2iX9r3+Oa9fYrmG4BSk0D955iCsdMfVEPB1rdHfFRVhSDA0x9sRoSEBoA2IUdqLQ2mJVC/0VsWsYvMJHuPWwXA+gDEpZQmizEAz7/DDYAlTHBmcrNb/7e3R28u2U0fFi3FdexxxiUrv1w449dCBbv39Cx8y7g66yBQ7z2uJg5n8j8DU6V4cOhzq2Fsf9c1876409ezfZHDv4GcTcp0McHGp7FvuI0i5itheqELLjqg9so2Kb65cBaj1SYHd7+y1Mz1s7U0ZrKuuw2mCUIwUQGVBGIAltyDQwbQKJRERjO4+JHgoFRqELi1EJ0REfhH5o6LuermuwCQwKV5ToFNisbwjW4O4/QUchpOxM6ZTzn3RKCJ4oA8PtNcl0GB2h6KFJKJsVU8InH5GuL7HNba4HNL9ATSt0WOCXa9pnV3SNpms1P14HvvTC4vyCVFXMz0+wRlM4xatXX/DJpz/nJKyZp5aHLxQzZzj96AG2sFB6isozP1vTdivaZkHZdxTRo584StG0LwO6AKsCqk4ws8jimngVacIpfZqy+k5JnE+ZVCfEGFm++hTHholeYKtTbFmTYk2UMjuzCGEQ/CA0NwMk0DJBTHZ0XWoxShh6z6pJvLge6BuhvQzQD6iu59HFjPvnE2plmVnLTdsSVg3dwjOoQNwMKFOgTIU1DmcMng6JgeAHtDZU1SlaORKOPhj6oEhdgGGgSA6tFIXTQMKkhjY5vNIk5UnaMzOWsqqZAjFGXrUtPkSavqcEXNZAR6dEmxSdwNQYNIrUbbJ0qRW0BeMUYTCkYPF+IAbPpLZENH0fxskbQCPKYMtcUT22HkmBylY4pwjiQSn8EJlWmnldoV2Gi3zf0/UDg4GicNTlKTEJXefRKjuw6cCZgq1D9Rah48MI9WEl9O3EcOhWHayOt8o2b99+gxO23VfMDmO6WZCevcwO6hD45c9+xvXtNT86e0jb9vznjz6jKk44nz1Bn52iTufo0qCtpnCGhOeLX3+MDT3nsaXrN6zaBe+98y48egQ2IibQqldo3XPftkyGxLBqsJMBNxNiH5A+QtygHVB0kAyyhsSMqB+TphNkXmHHOiP7+7K/sW8Cm/KEe7yd5Dl8t4+Utj/7W7etka70sQk5VFj8auvxj9O2lIjsvB9f7NZU7Yynuvvd1/eX0l7NT7Y7+R3bH6Kf9Ho7vogjlskuhJfAe2Tdkj5/jgRBIqj5BFVa0u0tadOirSWguf3yhq4PrLxgS0s1KbNDn4Tr1SXtZo1b31IWhsrPwAe6Ly9BJ5QVyvOSYm7pnv+S1C6p6jnGCcVZQqKQ1oIpIjYEcDWYAtkoJFiCfgdxhmRLsI5iXNu8zfj5tn2z7bcZP7uF9ldECI4cqZ0NOly97rfjK2wQsC/8fHeSUQef7b4rCGOtEzKVPHpP37Q4oACMq6id4j1T80BX6Kslt33L337+M86Liu/OL/js+SWfvLziYv6USXWGengfVZWYyuSi8xPN7eKG288umceeSepZNDfE5DGrHzCd1uACQXV0+oqpHrhve4a+JfQDMZZE0fiNRxmoypRzhNmQ2iVhFdi0Na0vudY1NxuPYEEbQgi57hQHtZoks+e308TWaTi0QUe+lpIdkJd2Kn77Z6pHBsHx4kF2IKFKaaT67et+bbc7pNPJjolx0Ce2YO7+MR70gu1GB0WBD57tXRukDr6zu7SjriivzS+H1L7XIlE7yfjRidt1uWPVvy0yus3bOzhcziE8iKZu7d3XtdlvH8tPOWk1WkEsqKJEWUdhW1QMOVdHC8lYlE1YmweG9wkJFjEaHxM+JUpyzYCqKEiFIcxLZkZRa/BRSOJ5eO8UqxVd12KiYFPM3U0lJPWk5OmHnOAflwaFw8kLSlcyn05JJ1P0fAbDK3S8ob39gtgP+NtrOmu5/MKiQ6JoAzedsOgSv/CeV0mQuKScznjv6fc5f3DOBz/6gG71gOXLE5rn17RXS07KgdKCnD1AF466tpSmYWZfUHJGxT1U9wI93FA/mGCmBpM8pEi89CQf8M0NYguwJdd9zzomwvwFqb/l5a+/YLnw/N1PnoF4Stvz/vcf8cEPHzMvCkprwOa0wtI7nCjs/ATxCRkCMQ6kmLD1DDWpeVR5zqPiwp+xuO756G9eENaetOipT6ecXUyQpqN9GZFVj/WJxw9qUtIEr0naEXVB07T4vqd0JaV1oCYY7bJ6m1hCLLAYnMopapIEh8Wpkc6iBGWEUllOtcMrhZeAv7ykf6lxhUUZzaxSTOYF8+kTEI3CErxgbeB+MSGZAiSrvflmAATjNM5ZirKgKyK9jznCmEB1IaMTIeSaFVajnEUXFas+smg8VkNZGR48mKJIfPr5K/rOY7XBaSiIiK1IhUWcQ6JgihJXWMrCURhNZRWRUab/H1x1vHlxcmTUZDtXjSt7tY0UyG4CEb1HZr5OWPr1Nh4sxq13gXhPajbE5S3x5hXJlgxRSDcr/OWCzxYeFTWPmdJ0gS+azyi6BcV6ztnTC6ZnM9773lOKwvDOexXS9ahlS5KOkBrqk3PsbE72biO1KXHGc157CiuUk6sscmYdipgNb9OTUiC1faYjlWd4GWjTFVZb7GSORE8KnsN6VV+Vu7SlUyR1HOk7Qr6UztExBUpDivs6FHJIhdnSYGRboykf8xtdgB4ascPV0XhuWu0N46HF2NfxOLwPe8dyZ0SPMYJv266N4yeNRXJzdjjSNqTNCn/9CkGTbIlar+DG5RwG51j94lOGEPFVhRTgiBSlZTK1FIXDOctsHvHdhO5FrteoYoNohX54irEaWxic7bHGU9w7RUWLTtcoHTDOIiqhiajgkUVH7AckaChPEK3ZpFsoAsXJvazAGj1phAt24+dbT+r/B227Ujxwcu5scWiD5K6+we7luIjdqvsf2ia5s2jlAJli7wSocWUtMSGiEO9RSlNKogJqozmvCx5UJWWzRPqWxWrDauiRV0tWquHjq4bUw1NmXC8WXC+W1KGhmE649959pvMT3vvue4RuQ7s8QW06aAcepTWiIrN7jzDOgYo41TM3FRMXmReB1D9Hwg31vTm2cjjJjCzTelgHYveKpEuiqYhDzLUWQ0uz7tBxhZMWHSMqhFwqRWUDsptfDyJCKPZS8wfv5Tuk0Dr/3vquWyGro+jQ6J1tBUa03tdM3O5smxOsXnuoh7/f1CMO2h0HaBeo3DoiOybO6zZo+/LQKdttcWiDDkCcI+LE+Mf+/GV3CtvD5UK8jLVCD6zatgAAACAASURBVAzW2FGVzp1WYBQi0Wxrm5mtMMjX9Kbe2pna5XxsEVlnUUph9ICKCT/kRP6kIkYL1griI2GIWb7awKByvSqHwmmdZdKNRRnFmVNMNby67Rl8ZD6boVH4dkNKghXIYZeERI+kHt+3pCj0fa7VZKJi4ixFU+HSOWI9yq8grfCba4amY61alqL4ZUrjgr7kqo9cD4FLArdArRXOJmaFcO+84o9+9BT6mrTUfPGLl1x+ek1dNRgXWc/uo1zJZFJRsmYaPVPXMy97UtMgfYOe1yjnsPTIEBhuISwj/YsBdebgwtF0wip4dLsgRcX1R1dcXnb89K+XJBFsAaoyXLxbU88m1GpblFFDNAgGU9YknYUWfNJ4UWiXoymn84hoy6l9QjVv+PLzDYPy9IOjmk6YzWvwAb8KSBewIpyeF8SgWa/BK0dSjr5f0q42FGcF1hq0naJNgXaT/AzIPxaIRhADVmmM0pnuaUA7QWmD1Zo+CjpG1ssNQ+dJkwpbWqaTObpwUE8JXujahFJ9Vu2blShXMYSeGBQq2LxIdBbnCspyQtQDwQT8kGs5hCY79ypmRKksVS7iXDtWXaTpIydG4QrNyawkxkDfZ4VBozVWKSxCNIZkHaItYiLaVRhrcMbgrMpURlFZlOUrIfzfZMRkp7aj9jPpPiKwm4sO9rELXf8uax05QtRFBEJE/JAXg82auF4SqyleNGndE5Yt1wxUpuRhccHgW26aG6ZE6hQ5ezjFmgn3H58wndX4exDage6yATWgTUdwE6KrkJRQJOZWUdjAdJKweoPlOcoWKDsZzzGSmpgpqjc+i51cKCKJwbfge+y2hlvskVzyEe3c7oYf6Fgd3De1R04PYKktiraNKmq9rb2UUOkgMXu7X9mji+rIkH1DTTJVdauOdXj4nQQvjK+O3Pb8fraEuau9yQjKV/fqo2O9lR36Bwz2H2ST3TMgjnlSXZsBic2SpCyxEtJmQ1o43Cjgs3pxzdAPuO+9g3Iam6CwirLQ1NOCclIynQTSUHDrA2HwKPGIsejTCcY6XFlg4wITPcV8isYg7TNgQNk9YJF8QtpAWnlSq1AXJ6RCMfgOMLgUcgmUg/GjcCgz0pPujJ/f0CO+bV+nvYbIf90vfZ3x85Y2SA6XvFuHSI7nNbWdH++c93EAgO1suZ2WtnveFftNCYmZdWRTolSK2hhOSsdZ5XBDA0nRrjpa70nLjk5goOHMnXBmZ7zorrn1PeIMIh7NGXVtePTuBRJrYmvpb3uGZY82p6Ajvpoj2iApYpVnZg11kZhWCRV6VPQ5PcQ4lB6QGJBlQ2oD6bolTSwydaSkSEkIw4YwNJR6oDKBUo8lblKCUQVP7Rbrd+j/dx1QDm1QVuTTRh3UmDp+pDKCXdtnoA+iVfuAYbbvxqiDDqCO+ttRnzhYdzCmPuxP8cBejuuHXe/YgrsHft749oElOm5HDt6bxsOBHTrowuxEVUYKxZ7qvvdZXuuXO4fvIDdK7R2yJHytEfX2zpSFOMnqZaI1rrQYrdgse8T3WRJaFAufmKpsAAYvhDYiWWkY4+qM1haWpMCb8VQTrBphnaCJJUlrEIdRYGyNhMjAQKnBKcFohUqGvkmkKMzuneBMSWVLXAgUXYvpFnC1gqvPYX2DTQOtgr9qer4Mwl8PAxe64EMrPKkf8UcXD3lvck6qp0y++xQ1rWgqy9CUXP/0JbP7Fafv/gnvuHMuHl0iboWogeW6pvWaZ41nWp0we/ynDDSsWFPUBTaeY8s5xliUaXKtoqcXxGipB4fUM2R6Sq0HghpIt/+JtHmFnw0MLvJf/88lw+kZzdPvcPH4B9x78gMqWeBoUTEjOv2qIcVIZEBG9H4VhbaD1Y0hYXj0dEJZ15Tn73P/wvDo8Q+4/OwFn/701zx9NOf+vQmFJHSMhCEjRLXSJKPQtWEQR4djTYX3Ad8lTPJMJ56E4uo2F0qeTBxKC0p7tCvQqaRsbjG+p9v0KCJV0Y7jQYjJEJJmFjXJajZxTgwlhUxQCYZmyDXFksYViqquMU5QeqBMQtQaXU0zkqAUMQrLZUNdF0ynM9LMIALdsiQMgdg0aKNwrmAIkdXNhth2VDGr+ZRVQde29H3H8uaWYYhU5YRiPsfcP6XxPW2zghSwSlGUBuMMflxkWqMIQeHDVqFnN4KQu0aI/XR5OLkImT52tI2wn3S/wmPaUwZ+y7aHfqDvCF8+Q64vkU9+hTQDNIHLyzXXnfBiobnt5jwtK0pVEMo5dT3ng4sHPHj3CRdPHuHmM2xV4heRdugoTk8py0hdTdh0SxbrjkldMCmnrL1kcZPpFNGRtWwozYxiMkFphzYlqAHw6MkEwWKe2Fwfpz7FKShVRKUlevg5avF3pCCosw9R1Rly+j0wWYHpLhKndVYihW1UKU/AaQ/85URgnQ2a0QqlDIwAk9p+PlIt9IguHj6l3y1i+Ns0edOv1z8/aHdzrXaUiJFbsUMHv6lr+UOOgkgivniOLBekX/4dsmlh2bPximf9Da/kC16hePf+BeezKRcX9zmtK+zpCaI0sU/4JGxuBHoPXaI8qXHzCadPQWJAVRko6ppAHxJX656TyYTpdEqgQzOgzYDCo02dnSnVoesCLipMNLneVH2aE/dVBOnR4WPUTSB++R9Q04eo2WNk9h3EnB+Mn7to9rftn11Tb7I1h59v3z8EWF77eGd/kBG/fZMHdrDddo1/BFYdHH9nxw4+00ZjtMmAQGFxRvPhxRn/5fvv8Y7xnKmIazTBw/MbxU1veNVOmWjDw6LEmAm+mnB/MuPEaL7zg+9Rn8woTk+o6oLmcoOtNHZ2wdQNzM4Grpcv6H1kPqlR2rHyCTGCnpzgGVhKR10pSnOOcdNc61J1oBQynyFJY9/TJFcR3QRH4EwCZ7c/Y2iu+X71fTabhk+v13z2auCvP2oJweCjZbNa0XUt61WbC3GnRBpzxzI7WI7seY4y5flYa51JKqMCsWzFKkbboxQZzHnT85atVPiWziZobUAgHDg7b4oYKZFMSrgrGX4X6RU92sy9kyXHG7+2/+0xdlsdUfuyDdoKouTP1C56daiEyM6GpfEa0x4M1RrGkiY7J2vLHhn9eUnkWq0jpf/reFNvT/NTAmZ/wqK2i+FISglLvrgoimQ0urCIGQiM6uMCuZyqIml7MBYzh3zwQooQcCRlGRIYBYXkKw2icONDTghBwRAzCuyqkrKomdgS1bXoxqOGmHlm7QrVbzBkKdrnPvFZSHzaezZaU6fESVWgzJzT8hxXnVCfPCDUBTdtCyvh6sslScP0wQxEYa1ClRYxUHYW7xOrTUuMhuXJFCsalxS1FJTUBCqMtlgrKOtQ04eIqcBOoJgi5ZyqbDCmJfoZpDWcTEEST88M/fl9Vu99SDF7n3L6HsZ/iY4L6LPCWjQ9kUSKEaUSmDxAlNaEoPFBEb2GoLHaYeuSB9UpsR+4eX5JeTpDz6aoIWRBhWKSjWr0kBQWTVQajUYwJHHEAFGPhWsl0Q95pWW0RVTEEHJEShRG5xwi/ADi0dIAo2KN5FiWHXn6vUpZPCMGYHyNQSmHNgrjDEoJShJ2pCwVriCKEAEJER8CCkOhLcpZBEUqBaUMRYh5wWssEoXgB5QknE5YazA2c5z94Anek1IWqFDWIc4Rh44QQjYAWqFNpjkkEaJAkERMMtaPeH0YHRqu7d9vXI4o9cbvv8kZk9dntt/c3rDjPaooSAikriNdX8OrS+TlM0gWlRzrlXC9iax7RRss4kpECrwq0NYwLwzTyTw7smaCEku3CiQfMVWNUVmIBkkEyTxupw2kgRgTg4eoAJ9IDmpbYrRFazfeawfuHKVLKCvQFnFTlE6UZkD6BtoO/BrpB1S4B3GbX5gQ0oi27hcO+5pKkb1CejYEe2OWUdld5GZ0anc5AIeUvu0NlT0a+423AwOzs3UH5/UaeHzgNN39dItFj1bp9+IYvnEXvwsQ8E22r0AstssJiQHxHrm9Jd1cIS9f5L6YCoYWbpbCs87zrPe4XkhngZOLR5SuwkguHG6Lgth5+rZHJ4/4gC40RS5JjtIKUxTEkDAqkkKk3bQ4VaCxGBE0gg0FmnEO04I2KtezsnMoyly/yk0QnSmCKq6RdQ+xhW4JrkDFE5QMION8LAqF3s9kR8Vev3Wuvon2246fNwoC8BVPbUf3vfP2V9mgI+Bmm7epjrZT6nA+3L/eLna10ThjmDjDRVXwznTCI9kwTwnvNG1StEGx8ULjLdY6SBWRkqAKSmcoS8d0OqOczBBVk4Kiue0pZxZTlBDz+iHbbMHqXAcwBg8CgweiQEzo0qJdjUiF1ibTx7RBFfcQ52BS7optOzNQqIFCTpAy8JDHdH3PybJhdum5oWPwBh8sL54/Y7m4ZRjCns6W0p7mpw4cqQP/Y1z/7+fg0bndUXAPaHLbL+9n8buP8k545ze0o48Pvevtsz5Eew9B2UN/5MCrfm3GeCO9b3ttO69q50gdf/sNUKEcdUZ2+VPc2XxLtVSyy5HOTuy+hMDbtrdX8xOhTFkxD4ksFz0hBKYFOJdFB4zW1BOHsQasY3ADGz0wd3YsiplIAj5mZ8xpQxcCjR8gKiQqlMk3r11syFSaXFx1ojQxJWIaCL4jBk+3CRjleDp7SF0WlMOG1K+Iz3+JSK4H5GTAkrCmYo3l72LiU++5iYk2CRtRfLlo+El7yXvLF5wWCts+orc1P19NiQKFDXwwHfjzs5ZN85K2v+adP/kO8/sn6LMT2rbj+X/4K1Zdy78dGkpJ1JI4cYqpUdjCYY3hwbSmLmvOzx2c30fef8wgA316xtPZkvOqZf70h9iLP8P8cIKyNdRPmZmaMzeGopUhqJY4BIJqSQgYQ4qBTeeRpEmpRM8ecH5xAZ+/pF0sefaz52CE+QcCriSoin7ZU5YFi9ay9IZJHymiZmZPMbGj/ezz7KnjGGykLSCKg2KGjx3SQ6dAjEKsRduSspxCCoToUc01ql+jY4vGU8UFBI+0Xe6oEbAObMH8bEY5nzIvpgxJ8/L5C1CKelZhZzPcxYzkA9FHmgFCFCqTC9fN5hWiNEFpgiiqpAidZ7HxzOpcWmUydcjEcTqbM8TIpu2wVlMWimpSghYKBTZ6ul4YfKKqa2JSKEpSEBY3G7rBE4OgbIEZB16KkS56/JAY2ogyY8TkcCjKOHC3yMk4o2znn13U6oAusZsn3gwEHu/79Ze/XYsR/9lnpJeXyF/+JarboLsVyk1RbsqXV5Gf3USerRJtqzBSUfucJTgthPM68OyXH/H3v/45rnwPY8+YVSUTB987XaOlZWhfoU4q9MMpShqUtmx++QuW1zd83KyRFKhTonKW09kE4wzaOWazGdVkQlFadOGRh3PEGrysKI1nXrXYqsZN/wROM5ig3D0wVZacFo+kIec/KQvKAhpjNNaaEcXaPqMxoVfSKFUrOVSlt0sFvXtE2+2zjdmaLrVD8DKq901Fc0b0WFKWZj8wRF/5lW3y7Y7fcIAfHqymds6i+iegL/4BtXj5inh1Rfqrv4KrV5j2FjCo8ozlCv72y8jz1YoXyzWrKzifd6zCjNOTCRc1VKc1Z9//Dpv1wOWrDe2io1/3fHAROS0DfXOFdorzH35nLAkSaF9csvjkM75oN3R9S5kiDmHmTO7fZUFRlsxPT7FOcIUg5/dhVuGlRanIadXgHBTz76NmGvXYgJmj7AmYGiHnUQFoXeQxoEb67LftD67tItC7/8b2hrniH8RPjgyP2v0tIwAjbCW82UVGcuAiM0qcsRibC9k+riv++4cP+GPn+HC9pDIRp4VYTYja8mlIPO88r9qexhh8rJmlmqmvuJgESt/zkx//GG8trvwuzlbMqpJ71cA7s5bQLwh+hX4yx8wrKBpSiix/8jParmXVrHGSKCUxKR2Vs5jCYYymKktcUTE7s6jpHHlwShBPSEtmRUPtBoqTDzDT76GfFNTKMmfGHyfNvxqyjYkp8a//9f/BT/72b/jxj3/Kzc2SvuuJMRKHtAO1cl6PGossp1E+XUbp+f0cvP//EIAdi/RuVQT14Wfb6E3+K+dQ3XGqDnOwDqJJaudEyWvP+KivHEbHdlS/r+hE6thh2lPQ9+d3bMYO9rPD+A7ek21vO3xf8ebjK9JI2VdKxnRXtXekvgbV562dKUXK0YUkOQcqBZBcdBVAQq7enG9krjSN1nmhrTWi9AFXdvy3fSYCQk4Cy+uPhAo5YqDJnUppTRChCZFhSHgfQQyFMnR9QCegb9Bdhw4DKgZIHq0SWoEpFRrDoGoGBoKs6ImskseEBi8OTWAZoFhWeN3zarUmSkLj0cuW+nZN29/ShxXtrGS+6TjZDPRDz3C7wPcNvW+IMRGj0CmDURqsQWvD1SRSucDJ4hX6NqJCTZAOn1o204bzyvNoKJieFJw/NtiJw8wmKFNglSLEQEwDvunw/UCKIMmQVJHl6L0hRkWMKiMrQyIkA6akbRJJPHqxRjlPsuD7gIz5VSSHDJE+CE4X2BRJgcz7VwkxCqNcRmaMwqeCJFCYEm1LbGGxRo1y4II1Ot97PBIHxA+Y5FEp5FA2CtEGrQxKaZD8o2JExUjoWgSFs2BcgfGJ6LOgSdcn+iB4Y7BGSCaCFpIGUTmUG1Ni8JFeCylqxOb+pbXJOVQpjdEshU65f4skkoJ+UAwh5T7JFu3JUbltD9Yj99noPGzH4DExJbTOxX/f6Nq8Rky+g9zd3VwdoHvqjXu8897XW9gczRVjrkdab5DlEhYLGFpU6CDlIswhOvpo8VEzRNgEn2Xqe59z+0xiExMbnzD9Gq0TqSgZrPCiXaJSz9AvsN2QI83JIoPgF2viekPs10iKhJBotSG0AbRBrKGeCUUVsYVHuxLTG3AGUZ7SRtrKU0+mTGaOcqawlUHbHD2S1OUIpYBWDjGH0XGV++BuIj+4saKOolQ7ed8dwrrnh28XCgf06/GZ/hOEXOQAndud5R6aO+KPb9E+OcYb5ehGjBt/RR/8PZ3yH2S7a29T15K242e5yDWejEMZQYJhSJZu2NB0nuW6AdFcXi/o/ICvhNoPxAfnLBc9q/WSZtnSLVpeDj0b6xm6BdppulmNLSyFge52RVpvSEND8h1+yJFeL6NdtQ5bVkw3GmN6jGvRm4SetSQ1oFWkrz1lYTnpz3GVopwZVKlQFiQNIGG8Vp2BiMO6at+2f/L2VuPnTfZnu27mOJK0+8rOBr0punE8Z7z5JI4t2/avfCrblXf+QIlQas29qmJuFKX3uJQwGtAarS1RO4Lq8WlJR2IdBmQwRGWwJlJLYhMjXgumu8WaglgU4HrMqiEMa0JoKAwUXaB0S5RE4mpN7FvisEGnhI/CujE0yhDH9WxRTrB2YLKy6GmH7iBJIMnArPTULnLW3qOYOKbnDlOUlJM5hTJMZoYQIyEESmt38+5esvtg4b/F4nZTr8rUNDhiQ2y33z6fQ4r20V2/+1wOfaXtIe94zLunfWRHjjfYmcO7hxjB4yMLdLTe2TvUR5dzELXa4nhKHbJ8DmTdObZx2wu6g1t/RXttpTV+/bcXi/oalfkCKjWElCNLpTWYUqNcCUlhBo8RSCEhWoEpMGVBMfHE5OjFUrt8wDJpMtArGAxGK8Q4BEuzHog+MEkrjIJpNcUZQ2kL1kPHovVsGs8wRN4pZ5TG8cnHn1FIYjqsOYkbHivQKWD6Hp0iCjDqDKcqSvshLm5I3St6GYhyyTqteRau+Dg6nLacqglGr2nXvwIZcCrwhQT+fRoAAxjc9ZLSGv70dM7cKGrZMK2Ee/cqfOtpVwOfrDY8bwZugqITTVAlCUjq51ijmRQFzuSC3ZWbUJqKf3l6w7vzGf/Dv7ScvjNl+t8uULVGJkLXK7pOs7y8pN80lPceYcoKZWp61bFeJ4bB0w6em6uXLG9e8vDd+0ymp9w2BaELJLPElBV2VjD0kXYdcGclpjjl8triNwOh0JRB0NpiJOBSxLqK85NHNP2KpmvYpBmC5f2zx1SVpSoghshqc0s5ccxmRXawoyK8WpHaltoPGIFCaXAF1BOWWHocXWsYhkCQa3wIpJs1EVh2FWYTcX2JVzAgXDUDjY90MRv0mWsz+uoMdWWZTh1N29H2PZt1jgqo2RkYjdKRFAZ8s2GI0EcNwxpCw2SsIbXyJT4EWp8HmDOCcQXFbE7cCIm04yZXJosUVkpn/1XykNIpvgHVeIO7dOdPecMs8FVGbrf976MJkHJNnPjyJbx4gV7coPoOhh41K1BpjlX3KIoJUV7QhZardInWlks/xzlL3Tsmp+fU8xPaxefE7mM6A5D4uc8OjdIlxq5wv7jkvfMpT+Y1TrUYHbh34UAZZNWzbnp+/eyaddAsg8HrK4Iq8KkFlTidVpSFZTYvsbakLGc8qc55d3KPd95XnD9QFB826FkFhSKhCbHEuDlFNT0yRvkOj4plY62PEOLOl97R3HaP565KkiIhSMr5U1uldEWmgN6Vyf9Ha0kyAHLIEVEqK/DtDOgh8jZevRr/2J70IfIo7NFFkd9K6ei3ar+vvv1NtTF6mW5uic+fY26uUbe3qL4FW6G4hwlziuIRSQJtd8UV16zaGxrrKauKunRU1YR7z3skNUR/TWhaYtvz609W9MMAksWfyp99xklV8L3zGU4HLAMX5zV2PqV5cUW3avj42SvWXeRqsHjl8PoyI+nSM6sL6sIxm5W4wlGVJ8zchO+fPOXiwvDeh2AfnmIfn4MDMYoQS1AlajI5UMj8tv2zbG+0P8ft7vPbOTq733L0/tc7zrZi0fFCeicWgNoB5SnEMfclUivDOydzziVh+xaTIloEdXYPp2qq+h2c3+DjK0Ls8GHFzTBB9zX14Cic4+TBI4xWrK4/Qoun1cKzFPhxHEA5lLK4Z2tKp/jhoytmTlGolrJMTC5KpAtIM/DsasHVouVVb2ijppOaqBRB/YzCak6mZRaesoqymFG4mh+efYf7synf/1NLdV7hvtciRpF0ZNN4VhvP55/8mk8//oK26UlbwE5ptDIkSWxl0mNM+wTqQzXEnX3Zh2xkdKZEcorMFuRjzAPeHuP4KWUg8Siw8/oDZitzrtiaggwfJ/U6XJjFpNTr/eLg/Lf5YNt8J60Oe14+za2Q06FDeeCFH77cRcHy+eVo0+FJ7e7Fjsp+dMJsDf2WQrkrL/I1Jri3d6ZiQoYe5xxFlYu2EhLK7sP8CiiBQmuMLVDGgTbjDUuoMQohWpFiwoeQBRmsZUiKmEZOt2hCnx96zAkpyNDjY0CUEDF4FAMGJwoXe5CIjQOehFiDeJ0XDWMShAoepz3fNY5oLb8GEgmRmBdX7iHaTRFjaUOmI0laURA5M4pBGxozx0dFSIqg8r6/2HRMjOaimmG9UDQeiZZoLWWpeSiOE1UyiObX3UAbE31SxAQ2RjQGpyxDl2l7v/DPuFwVhJ8o5s9LzpoF57Xm3YmQdEHUJa2xDMYS6lwDKLYLhm5gvehIQXIuUCP0TaLbeLTSFPUE53TOX0oQ257oIzF6jKScM6ItYoQhDZA0Rpc4HIWzRCmIG0+zCaybRJ9AO0M9P2E6LanLSD8EBhpEawZvUMkBJaas2ZZDExEiGlNWuOmUWgxJDH6A0Hu6ocHHkPPd0EQPoe3puCVoTTQKV0yYlRUSDAmFyvmTeCD5iN/kpESxBUkiJEh+gBCzGlv0+Jj50qh8D8R7ktUIGmsUInmSFwEvYFIihhxt0kblpFERkh7RIB2AzAIzWmF2lbYPBy37iMZdiOfOq32kYD9ZHX7l9+FEyd3/t4vt7aQTyVTMkFA+IEPHuYLHzmK33GZJaGMo5/exZYmua6Ie6Ntbkl+i0prK2dy/qppE7ktKQVJw0yZCbDidlhRFjW57lMr9MRYFZ6eOSbKcJMerIbLwieANSRRBwCaymqUIfeh42V6xXqx52Uemz4TTFy+oJwWPTx22KKA+R84e4959tFsh5GTVgwLLh/daDmzAIRIvslWqf3O0cERaD5WNvpE2Rhe3RmXrMG254btaIV9xPjLuY9uOkc1D7+rbJndebceQKJV/sngehDFSPXRMZMoTZ3mpdY6Ep5yDVE9PKacnKF3gVeLm6iVWdxS2obSKYu7Qbk4XEptlII6Mgk0PXyw21IVlXk2xvcJqiHpKrA3zeaKsElUq2QR43gdSyPNzSIqQBEk5n3ZIPcsu8ovNp0yXwpfryOS0Zno+5f7MMqssTM5R1Rz3wSMoXb7uQx/8W+fqn3m7Y0kOaM2H7+2EZ7bb8Dqo95ttkBwcSh2/f/hKbXlKjFEFyebRmpw862Us1SE5n1t7HheGrjBsF/mQMGVNOX2AndRoZ/GxI/oO4gqjIhNjGZxBmSlJcj1MVM69f7HsWDjN2WyKCYLaDKgU0cZiKziNDjct6ZPh8ybQxUgIBj0CqE4MVlnSEOmHlo/7z3l+bbkRqGeW0y8+Y1oq7k2gxyFikfUGiTLmYWm2wkdH0brdfLt96zXkdW+Dxue4Y1Ec3+Txj3FNITJS5/aO2DYyJVsv52gvakfJvLvLI8aDyK5P7JyvXQ6U2ilyvY0N2inivvbh3Vn34PUd52cLZG7XW/ui0cffFhn5KFvQ8Ojzt7d1b6/mFwKyXjO5f8rsvODmckPXBqwrQGUlEAPMgNpYyqLG2A7RHVEiIhGty+x5a02IgXYYcGXJpKwJ3UBIHltoxCm6viSIYNFZjKDpEPFopYi6wGtNIwYSuNggEtB6oFeJaBxx8KSkkaSy5zm01Mby3xWGcyz/XqXMlUSYVO8yn/0FaXKfpDWb5/8rDF8wo2VqDR+WM4Z6TjN7yG0XWHWRIUJIkZ9unmG04R33ATom0mZJNUlMZ5H3bOD788RJfU5Qlv/9+SdcDj2hcxitsE5R2YoTW9F1K/q+4T/efEkTPP/bR5ES4YlK/Fmh+F9mmvreKfX9U/q/+Bf4975DsJ5gelaf/B2hj4RuSqEcFy07ggAAIABJREFUE10QF+DXmvVVS+g9p/fuYU2C7oo4RJrbNV4inoCRgNEaVZaoaOjajhAs1szBGWw1o20C65drLl+1vFx6lCuop5bTR084u5hQV4HNpqfTK3w7sNn0GF9jgJPThIsdw/U1IUaiMdSTCdX5BS5pZlHx4uWCdtOwWl7jo8cWFaIKOq/ouob1qxVSOHCOJz/4IdN793gVYJAEMhB8pFl5hs7T3XacnE6ZzSpE9RADbdcgkijIyHqfQCmP0R4fe4Z+YFI5lIZqpCy6wjAEoY/ZmTBdjyhBO41vO1IMOHJid9QDaI3RuaaWs3qUJT0aRXnyuWtbDqIY+5/tdvr3F336jW0/0YmzmQYXDSZoCEDfgVryvonMKsP/pUYjRqIsKy7e+SF6MofZKd2z/5vly58ySUsqNXCvPKGoarr7T/A42t7ggzB44dnqil/d3PLu0z9iqk9IrxZo45nei5zNNX9031HYitJN+E+Xz/nV4oawcvgItsp1xSZujsTA0K75aP0lz1Y3mSbqBz7QkQdO8T99cMbJ2Zzyw+9S/fF/QfX0R5l2JSApZtGA0Y6oXAr66NYc1rTY5RFtEVatRyf58E7u530z1rH4Ztr2Io77nozUWmAUYNkSU4+/ishOxXDff+Xo1zfW/tDCHiMYK9bkOnRiIJg8fkYxpHM95c8rw3Or+H8loVLEiOHh4+8yPX/Mwlf0qxe8/OjfMK3h3rnl4uKCB2dntMWUXiwf/+IVTTMwBFj7ji9evuRsfp/H7gFy08HNwPzePapT4d3yghJFXZzwvNnwH59/jm4TvqkwlcYWmsrNKbWhb5cshlv+n6vneN8T2oYHKvFYR/6bp3O+dz6h/PC7uIdPqB//CeJqtoUwv/Wi/unba8DOm8aPyJ0C43yFDdpH3n+XYf9VtKl9nGNb4yefbpJEVBCcI6UMhBJzeonqG0pj+NOJpvSGf0cu+GtIzE7uM3/yI9T8DJxl/av/E9k8Zya3TJzhwWROnE4ZTh/Re0PvNYMXfIj8/fUXKK15v3ofk4S4WlJOIvVJ5OH5CU/PhOn0nKgs/+6LT7hue/ymxmmFqxUTV3NS1LTrBX275i8vf86y3aD+eqAm8Udq4MOZ5l89cZj7j9APn8DVTY6OuYKQBNYrJMb9ozt0qLZgxVfYoHzzDmbzrW/D1p4xOmzZyckKgNnW7yIxY10mJWpXHHjXMdR2PbI9F9k5wodnu3XUjnl7u46wo8EDKGNyHhev26CtkuGRaMTBfTi8xsP9753Ou0usbU1IvdPQO/5qVilUSXagv9pyDr9Ge2tnyjnL9PSEwhYwCE5bKDTOWlAGUxqKlHNHshMbKZxiNino1x0pRHzwKJVIyWA0nJ5M0DbnNRRB4YNiSEKMQjAZ9WpUriGUosJGRRGFU9GcGMXcWYqxmKZWQm01Vjx9bDA6YVSHURElMkYJInMumUmHQVHpE+7bM/7FX/yIP/2v/pyP/uaKV1/e8qkJ2Lrgf/yzP+N0NuPi5IKumLEuTwlOCEb+P/be69e2LDvv+8200o4n3BzqVldVs6o6kd0tBjVkyZYhC7Zlv1iS/WAC0pvDXyPAth5sCKAB2wQkww+ELQgiTEJkNymwAztWsW5V3RxO2mfHFWbyw1o7nFvVXbeazWT1BC7u2XuvvfZaa845wjfG+AbTsyOWiyl//P1zlsuGWXVMiJ7GLVGNQy8dZ8HTj4FeUiKlQpUrLsXA7TRlFeG5h7lbUbJgT8Nhruhnl2l85PnsOd47qih5HiPfauBq5bi2LCnqKWmTcfTeY5Z1zeT+I0SAIhkRk4SkyGjOPdW5R6s9XJMTrEGrQOpXaCXYGxZMrWRaC3A1fjEhlEAdqcsaHwJ5cYAIjrKsqGuPcx5N20gPKUmFRPgIThCiQSkY9Ty1SanTHDcPhDKCsuA1uucJ1lPXnqZSnB/XyBiRIbIqa6wLyADaQ2IdUYKUDUZqVJYjB3vIwZi0v4dICgrlSGLARUlIwGQCWzc0qxKdZZCkKCLCS/o6aXtAVCXEgBABJSRaSqxOUEkkyfpkecpo2CcET1NVuBBphEYqiVQCL9vaKdMzBC9wNuBcYBktSiq0kRjd0fe/uIl20b6dt2AnDL15/yLCsnWoXmAJ3AgO8cl7/2Vkg1Kow0uE0uJ1AtIihG5rigAdF6RBkEhPplNu9K/SOxxy6Q1QeLS1TIxjKiyf+ewd9g8GjMdjVJJR9fbwUmEB2zQ0VcmzxxWnRwsaN6WalpT1gkiDOF+RK3isFalJKUxB5VaMfM1ekhKE4tRHVmXDk+VjekZxqZ+SpHtcOtjn7OQZy/k50VuWEh42gnEVuVpb4nyCef4uuneAKvYRwaM7chxixHd0szH4LWq70StxZ352lEG8KOxbP1huFMyfj0N8cbS9TNZKQWzRzU192M5Ya13RUWts8vjb+9pln3yp3/6IIfYJKPZfhfGSlymHI+TlK4SsADVDSd053CCpSeMpKRVGaS4PLnEwGvL5L95gcLDPo3emLKxDpXD18h5vvHmbfr9lx6xUhhWK0eElGmspF3Nms3PufXBOCA2ns2PqZkXjatRZhZSeQVNjkPSzASE4hnbFUGpu9RPOA6yayFF5jBGBa4OMIk3J+6+yXM45OX5C4h0r73jmNboWXG0cRVWSHr+PaQ5I9m4gpG7plXcAgz//VgD//xsXqco/Wbh/0hHrSMFH3t+VBTsKadt7b20k7/zWj9NBH3OlW6N+G22QbNVhq/tk23vSJFRR8nBRo6NkT6zrqmMnkwJpOCejwihBroZcK4aMbu4xfC2irYcm8kxZyBW/8OYX6PVyxuMxLilosiFOtPhGU66oq5J7751Slg3T5QnOe+pmAdMGcVTxMHiKGOgXM4zS6GbOIZErRU4V4czCeT1nFk45yDQHA4NMblA2lrOTx+AaSq84Az5cwWDlGC6XfPbWAYObl/j97/yQo9MVy3XNdmTrzATfpq+9hA66mDmwMycXdBAXIjtt+qW48J31vLeObedabJzti0x7G/BxXVO30RM7UaWNDup+pJv03cin2D2haEG8tra5O6aLKO24khfWl1jrNeicwu19rbmV2qbHYnP8i2dbX/XFZf3pZNhLO1M6SeiPB4g2EIBRBpWC7pypJJUoH5GuNUBCtKRGoAtDWFQ0LtA4B6LtDWWMYTjIiYAPgVQJrBRULmADOGWIosO+Y8B5SW5BNZGxgkILtNYIqXC0TIJFnmNcTV1qlKyRSBIkSqwnw9PnmB4WJQR9NeRG8hp/8ytv8/f+6y/x2//zN3h38phGWYos5e//2q8yPLiEO7jGSqbMZEa2LzFDwbMPv8fZ0RPOT+7y5HnNh8fH1M5RuQrvG5yv6bJYSeU5mVS8lSkOjOZOnvPUw+PSs2xWNHbO4f6IS0VBL7tCCJJQT1k0FUsfeR4jf+QCb1aOZFWTNeckjeTsT+5zMlly8mBJIjXXLi0QvZR8r6CZNFSTBqk8thlS1wlKRYZyyaCXsH9lRFMprJcEW+MWZ4gyQdSCqqxIhESPDpD1inJyjmsCzrYU+IVWRClIEEgH0YEPCUophj2oMtAusvANzvk2hSokmCCwtaOuSsoyMClLUjxpdPjQRgqlF8jQFp4KFUm1JdWGJC0we5cxhzfw/YKQGApfEvBUaKJS5GlGqCrsQtOQ4NDI6FBKkOiU4AMz6wjRIWNECYkRCq0TnJGYrE+aZ4yGA4geX5U4IfDaYJ3DOosTiiAiiUrASU7PS6zz1NZidCRX7ZZS8gUKabEVfrvj45nRttCK6Opdtgb5Cw7X7leF+Fhl+ePGx2EvQirkwSVYNViTgGq6/hoSIUHHOUmwJDKQ65QbozsML+Vc+mwkWTnS5w1PTIORns+9+RluvfEKenRANAkrYYgqQuZx1YJmOaHIJyTyjA8fzzifB2blksY2lKsJkoCWkcKk9JKc1waaa4Xm8l6KNJqvn1uWdcN8+pirw4LXDq+T98bk/cvcw3OMZVY1LGPgoVUsGxg2DhZn6GfvkF56ncT0EN6hQkSF2DlToevY18F3Ul5QWGskr3vVPrguR3sd2doqDNqo159TzZSg63O1eb1VZhuH/QXEkPX73TFCbRHHVoGGj6zll7+e7mc+xT38VRk/7t7kcISKgiYrCNq01P6dgSKpSfwJiShJtOLy8Bq3Ll3nC1+6wfCwh3l0xmRpcangzpV9vvKlLxJNStAptWyzOsxAEaJjcfqE46cJ9eoBJ2cNj58fMVsuWJYlVTXDuxqcRQvJOO9zkGreHGlGvR77g4Lvzj2TxrOYHaFizat7txn2h7y6d5vz8xPer6asGsuqcTwPCt8I8tojqpL06C7ezpDFAdKkoNsWEVJ0pD0fh07/fHzq8bPdP+u9v6tDXjQu10d2jtROmGOD8P8EHbROBFwftoMBEmlZoaE1mNXaiRNsaqeUSaij4MG8YpSk3DYpGtWC9EKACKRMSHEkUjJMR9wev8boRsLos4H0uUWeC6KySK346le/SLE3Ro0OcEJRCQVJABOo5yfUyzm+vs/pccPdB8esase8WtE0K+pq3hJixcAoP6NnDF8Yaw6yhGuDgiMneD4LrFZzVssj9m9dYX805kpyDe8F79kZy3LFok44E54PKsfVlUOulnz289d589IeH9x7n+U0YLpUcx/p7KXYgnkxsi6auqCDOvti67bEjoV17djsOC104OCOQyxE1xtxZ/LW0aDW/xKIH9Oraj2nYR1Bou1XtbuoLpglm0hW1xy3A5Y2V/6iDhJdO6UXsjl2zxm3D2NnHW4dKbE518W1Ki44VNv72JzzI6Dny8uvl2fziwLlFA6DRWNdTfCevEjQUmFlm+ZnMMQoWJUlqVKk/Rx/MqeODpONUNqQuNbrDN5SN5ZVVZMO+vT2+9hHc3xt8TESpSQt+nhZ0yxqln7FcrXA6oyeSjhMcjKjyLIhCtoaLKeIriCEFCcMSkMkIE1GLRIe1YKjLoLmCMyi5Qd/cJd8GfmDb/4hT5884BeznKuHV8k+83lintMs57x37x6/9933IPWQBFyc4WNNGFylry7Tiw2qWsDyIXXjsWXb1YYYCd7RBM87ZSCrBQ/qklzCF4XgfvC8HwTvz1Y8XdUUuiGVmmvJCJ31EHqJkY5cWgiBx8sV4ocP6T8+4tHxgpPScTJzZEnADGrK4Giakp5JeetyyvB2hh6k3H22ZFk5lrFkXlsMmiZJOcwLYp4S05RVucRVlkjER8Ni5VE2IqKhcjXLVU0UOXmasLTQOMfJ4ymzScNSg/ANplkgTIJIMk6eHrOYnPFwcUa0FbGxxBAJTmADrILAe4sLjlQpEim5rVIKpVGuxAcorUPlCb1LV5EHB8jRgLJx1GVJVJ4gInX0eAL1PCCCRbmAVQEnW0IObIOMGiFAZwneCapVg2sstq7beirv8XVDkJKTozYd8XiyRGlFNoCkl9Hrj1gtW9bGvfGwJRG5VOOdw1YVSoCWAhF82zX9JfbVx2Rkte+HrQG7VmIfcZ46DbWGCtZ2zE83OoEsBKrfIw4G2KJPQCC1ROQFoihYzhOmVgABKQJL71BLx+hPGhaLc+bPp4zjireuXmX/6g3M5euIEFgtK37wrR9RuRqnG6TxyNRRWUV65VUK12ALS5w9oSojiwqsC9Q+ULqa88qzqDx3TeDS5IS+UdxIJXse/rAOPDyvWN59Qi+d0suOuWQkr4yvE5MVUllysSQVDWfHj6jrCdgZR8UzVvm7FPWcz17b54OTGYvatn1IiGjVYqhRio5Zac0UFBFh7VStZ6J7fh1ctz5uPceftpv6z3IIIMrOwev+XyujzfrrUh3aC2br/Hf3EOJuiupHQYGfDzYTLLMMQsT3+vhigBYQlUQMR1S1ZrqQWClITaQOnlnV8OydI2YDxd2730O5is/fucPh9VswOiA0Dd7W3P3RI05PZ5BHUAGha1wI9K+9iu9HfN+jjx8hJ0fUx3Ns07KfEgMru+RMRU6WjmGi2Ms0e0bylpb8Ue04dZE/vHdEnpwz7i3oa8mt4TUwDeiaTJYkomE1P8LXE6SpicVD5u8fo3ojsr0rHF67zuHVaz9P+/srNNYB6Ren60LrDl5SB3WG+KbZ+VrgiXWEo0un6uRnmyEi29hKFzEXSBaN5f2TUy6P9lmNCoROCcIQdYqXCeeNYBEiSgQCnrl3JMeC7N3IybNn2PmKa0XOYLRHfvUmusgRMXD6+Jj33nmMVw6vHCqzoAOxd4lMHVI0DbJcwvwp83nDsmqBteADzapiIhpWtaXQcHVyRM8oPpcqPrCBo0bwg6dT7p2t6Cczcmm4UVziWt/h1ZRENfR0hQmOxeIMde89zEnGLenQewV9LzgvGz44mRFjxEffAbK08lqITRPZuH6467qnrtdUbNVyW3sl5EYdsU7t20yKuGhbhEgUazeszeJaT11LzhzbP9YRSraf7zo1a7BOfcx6Et09IGXnBIoL52tVzZYUabO2dnTQtv744voKcb1WYwdkdrb3BkrsolK72RbQEegIhNzGpDbO3ibN8eW19ss7UwGEEwShsMLggiP6iEKihcLTNlCVUuKjp2ka0iJHp4YoaYv9tUYaQ9o1HAiubYxa1xX9gxH9cUHytERG37JxoNBpq5iEUtgYaGyNCW0kYtxZAkmWo6LAuyXbFWQARS1Bi7UzZZg1iqWQHdtJpI6Bp/eO+eG548Oju0xWT/hbh4fc7o2Jg0MaLVidPOfpkyd8+5vfxgmLk5Z8z5AUCYNrnyEZpmSzGowBThAy4Lwl+LahsQsBGwJVcCgROGtKbmjBZzPJaVDEqDmrGk6BVFr6SvPa3hUGJiHPapCRKD2sHPPSsXg+QUwEqzKydLByAq8Uq+ARNmCiYJwlXB5o9sYKNZB8+LTBNQ1V9AQPU1bokaTXU/hE4TPNSjb4WCEwhKiobUA5kCgqB8vGkRkwuq0D8D4wPy+RK8+Jtwhfk9kZJs9Jij7T0xnTyZTy7BTXVHjbCs9EGbyQWKEovaMMjoGWFBpeKQyJlAhXtxvGB5QymMEQigKyFF9a6soSTcsm0xCxIbJ0AS0cRgQ87b9gPbHxRO9RSjLoK4ge5yNl41muGrR3KDzBBYLzLBaWxjnmywaTalSekGlFPihwriT6hrw3IEkMmobgPb6qIQZkCLiyxJbhQoRgO7YpEptIwcai3cI1a8G3JqKg29Zb/gpx4VztB/IlTZitIL2AfbYaEZkkiDQlpDkiBIIIiF4P0R9gG2gaj5QCLSINoU3bPLLMF3OeP3/EeL/gYG9EUgwg7+PnU+pVxaO7D1mWJVZWmIEi2TNk4wOS/phk1JDJhijOkcZhpgYnBa5x1D5iXcOiqVGiYboMjDXcOUzQaLwrKK1lWtUUuqRn5oyvXqM/HpGPQOoG71ZgLdW07XvWk5aZnnNmjsljzbW9AY+nK1aN2whshdiQcQTRtYRYP/C1Etg4FtveGBu1tFZkayXx5zBa8b9NENqshx3kblcR7gLNu6CciGzuZ40079K+f9rxkxH2LVr4V2Ps7p/t6/UeEkYjs5SQZvgsJ+BAa8RgiFOCuopgFKlp+yo0MTI7mlNNI8cnzxgmksu3X6E3GOJNiqsbbF3z7OEzHj94jk88IoF8z2CKgt7hNQoNIx2p3QzrZszmhsZprPU4H1jWDTMcZ1XFQAXGOvDlkeGg0EiXU1vFw7M5RklGs4qbgyGvXbtB0tOkPYX3bSuOZjonlFA/i7jknKN0iR4ekFcNRb8HV67CTmT95+NnMz45QvVpKJ13dNCLaV67sYpdpC++cNjuNV3YBmtQ6eK1b5rRdvJw19gNnUe3btxrfeB0uWKeD6ijxCiNULQZImgWAaoQMaKNiNQxUM8dzfPI5PkJ5XLKq9eG7PWHbR1vonGLGbPTKQ/euY+VFi8t2aFB9wy9SzfQ2pCNakSiQZ7jQs18aYhAiJ6V9YTomNdLEumZLx23CsUv7Kc8dQnOpxzNSiIrhrpimCS8dvsVBhnovGqjttohFhY7L3Fnx8il4kAH5CAlBIWZV9w/m7dN6+kiNMi2R2L3tMO6bmkjj7eJda3UX3uy6ym4SAqx8Vt3Fsv6/W1VLRt9sa6xwu+cZ3eq2WkJsrZKxMUE1fUrsQPovZj6ftE526yi7RtrL2tn8W30685xa4e/Jejb0cjxoiPW3qLoAICdcBtsHa5PqbRf2plqbMNsNqF0GbVPGfcT8jxFVzXQgNfE2DpNoV2BqNSTCEeeZ3ivCE3r6ZvBEFc3LM9XZKlh78oBvdGYNBsy6i1wtePs3KEU3LgyJNaCkojXAu8USwe1D9yfzkirhs9deZU0LyiuGPxsRv3oMVVV0KgBUgWsFiS3PkdM+rxyWsJ8xturJaghaTZkHiq+NX/Ik6ZkGST/91yw92jBnf/jX+B8zfOjezw8O+Xd+TO0bGkn+/I2aT2iCQ6dKy6/vkcvv8yNvS+QeEvqap58+IzjZ6d88967HM8nxAAuChYx8MBF5qtITwY+JwPnUbCMgrmvOXc1v3P6kEzCOIkkIpILz5tJ5O1U8Jkc9jPB7RuGMlE8zDMqY5gXPS7vX+EXbr7B6tFzyifHLI9PUbNz9nQkGxnC3mvEJlAfTWjwVH6OdBrhDXVpqWpL4tvIoYoOEQMxaJomspjXhH5GKtM2R57Ivek5TfAcnT0luM5xwROFo9c1vqurNoopZdIudClAGTA9+low0gIVBCoKTnRgKTxj7TBKcTgYI4Z9SGDpalaLOTE2COk4OV5hQ0SPh3gkrT8TwVuEqIBAa68YFssZkYgNom1y6R0RT6ECUhkkKY3KWMkUY9qUA2MSQLBYOaKaEeIKaQzZYMSitIiyQRmP0pL+3hC8I1YluijQXCEv+tsNFLtrk3ChKPeF0NSuotqy7XDxmLXjFWnzlT8mD/mnHrFlRAxSE2/dws8XNOfn6Nu30K/c4lAaBk3gzemK8eMJFJagIw8XkeWqYuIlLCXHQXL1Ox/Se/Ccs+ePmM7nfPvRQ7z3FFKSV4cMuERuE7JFYHypz/5tzWHvOkZEZFVSzUtOH53yzoOHfPNP3sdbi3XwzFlORaC2DX2j+FLPUkfFWTDM65rTxZRvrCZ8J9FcG6f0EsnQBEYm8lYvMkg8+0nNaJhxa+gZmAOevqp4UC2pnkdkk+Ccp15VLQOQaGvgJBBo5RzrvHbfGQJy61CtzZENquh/wvP+mQ+xuYLNGlrvuTU6CBeUx3o9bpTe9oP2v83L2CKf4dMhdv+ujejannjx8hVClDSnZ6heQfL5t+nphFekZv6d9+C7dzm8c5ti/4A5FdW8YipaCuZvnzkKd0R/WrJaTSlXc7734D7HkykJYHTC0N0hzQxVVSL7CcXljLevvUWm3oSqItQNzz54xvHphN/+5neoqhW1Bes9s9pSWssPtOB6r+FGojkOCSsPJ5MFi/kZj8+esFcYDvqGng7kOvJWL7CXCg6SBlkoDg89vldje1P6pv6LfvQ/Hz9hRNbOTAe4XNBBsOtIfUSLXEgNZtvou0sBbsXMuhZzBzwSLdnNxhAWopWZbUykpf6OAiE1KkkoBkN6OmHP5ISk4CgorMwojOKkGLFC8vj8lBWOz476RGMgr1mEyGIOZ42ncpLvTCUD77jx9e8SgmVy9JjHJ+e8e/ScVAoSKRmJO2T1CB/avu5XX9sjSw7Y772OdBZR10yeTZiezPjd73yPxycn2FphfeCRd5xbx2nVME4Mv5YlnHnNIiiOVyueLiL/cnVGYSTXR5pUegpRc7sHdwaavb4kzwW9Kz0qqXgScz48WvDOZEpZtRlBtm6wje1A1YhQAoXsqNSB0DVmjx2pyEaGfxT02kwxrW0npFgHmzbRpRDCNiDTzZdYf+8FXbBJYe+iXLv+SFueI7rUzHZdxHVEU4gLmmPXqd+FJy98uHkZXzSXtmt1HWkTLXXUennuggBrxkQh5Ob3YmxTTi+mBoJAb4JDLztePjIl2nxoGQHX1s4kQiKc6xCHtnlv6FAPuZm8iNIabWgbgvrQNfRVxAhKaYo8J9EGJQSJ0aSpJjEebTT9XCK1ohhrYsyJcchpnbCwirIO1EiCTIkmR/X7RBfBJHidYFVKpQVSa0JxCZkNyMpzBi5yJekh0j7ZcMRCVyxUhfZ9VAVHpCyaiHj0GOtKnp0+5aypcVqSZClpkpD09tDJCOcV0UmKRJHmCXl/RBE9/eAoxxW+tOzvj/EJLBcrnLfYesEqtIjkVWBfeAwSg4TosTFy0liMENigSYn0RGAhBI0RiAiJhGs9iS8UYpCwSAzHhWZvnDAaFzRPJU1tUTOLMoI8y1HGUJsE5x1NAGxA1A5lA8pHvHV4awlRtQhHh1j4IPAegg+EEDsWRAkxsKyWVNYyn5/jXMA1ghAaYqgQSYLUihAEUSiUMa3AlbJ1prTCJJos1QgLBEEjA+DIVYJQCnSKUKZDGzyuaVqWHyLW+vY+osJHifNtCqG3EYlH4JFJG/52zhJjoKzbyKnzrk3Hi57OGmbNZKy7lAPVbcwQI945fB2Q2iClwnV1MCY6aGkuWBd0KqVRMkNI9eM3VGSLKsUtwgTrOMd6Y4udVCx2jtj+vXauPtGN+knw5q6ubDcmcn8MxrQRmf0DxMEhSZ6gfCDLNamOxCwSTKQxkZgqZK+gVBmToElnS+pQ8fzolPlqSUVAaoXKM3TRQ6VDIgrnJKlWJJkh7fXIlKTo92nyEm0jZ9WSw/MzVktNVSZUyzMa53gaI2MfuJ1LUjQ5kqV3WGs58xWiAkWffqoJmUIkUGeBIkRkjBgVUKlnf5RgdY/BIKW3qIG2N12zflgRWOeox/ZhbTstxc28r+lg2fFp18fvzvtHpvBnOV5wvFuyibWS3S0P/pgvdsetlelWAW8bRq5RyJe6Dn7sj/3VHC9zT+s1EkEM+0jbZnDEXg8ODtFZSponHJxOuXE2ZXRjTDYeMlnOaYT2l5iZAAAgAElEQVRF93rEKJh6SVNa3NmEslpQNkvq6AlaIpVGmqxt5SETmqYj7RERnaZkqSHLewjniEuLVILDy/sslgmLuaSpF6zKmpM6srJwOZX0ZSCLEhfBuYbGRRbNksalBJfTpJLGSKqkBScFESMDeeqxiafSHi09xNAZWRdrp7aI90f+eLnx4jP/s458fYKM/HMZP36z/tSne/H1T7qlXR0k1ikRH7metSO1lh/du6IDadafw8agblnc5Bpt2n5BSIRSbSlIktIIyZn1yKStfz5HswBOXIl1jkRpMJFYRJyJWANkbduNmUiwTlCcTnGu5OjohMmqopGRJEnQaYLO+qh0gA8agiJPFEmekBUFCZGMgA6KTGkuXdmnEoHFTGGbkmpR4oMnBNACrqWRjNZ+iKGhsZ7ndkWmFUYU5DLSCMuBUjRFy6ynJIz7GpcYrCyYukC/lyCkgzIQnMOuo0WRjcPUMlR3QQux3V9bG2IHzOvmbOOovKgfNk5S3DgrG2dqJ0p0YcZ3QNuLtUkf94XONlmDejv48Drytful3UycrQ66uBE2Keqbb12AAC+8/knrO3Zg9IZfnu0zbNf8p6ubeGlnajwY8/YbbzOf1sxnDTJERB2QXYNIpSBKTWMSEgI9PEhNFTQy1SQxUi4bYvSsvEVK6A8HpFkGSUHVNIRmRX+YkBQpxZ5BG7iSLihGkb3P3CJJCtK0x2IFZRn5/r+dMD/zNGHIwhbI9BDRM4iDisYJViuPz8csswEmfw2Z5iQjg1EJX1tU7N28ze0vfxVxKUHsa/7195/x3pNzPvzgQ1w9ZxmfE4RFDA64nIy42bvMrV98gytvvoKvIrbyfPebf8JiPufkg1Me1yXfmJ0hpUQpxcG4Yjxw/Cf/4G9T9Mf8q995n+fPnnPvR7+L95YQ4YmPHPnIUEUyGdq6G8DGiIuRmfNoAUsBX18GvlvB34mSzznBW9cEhZb0TcZwaHj7zYzl8RFPv/6A44dLTp+sMFKSGM2dv/46sYDvfPg+LgiMkgidgoREKoRIiMs5YXqOza+DUjRBE22kLiPOQopEh4h0AWwNPuKmxzTe4asKHyMuCrQAoxICUIdAVuxjTMLeKEcoRSM1tWtY1QuyQrJfJAiXgzfUvsEGx5kEEQVPVz16acGeyyhtpAlLnEwJGEzRBwRe5/go8NrT1I5qHlokB6iURYmADp4QPMenjhAs+JLgaoKtWqRKCUZDA7pAIJDRYVTTstulKVmiSJQm2tbYaL3LwLJs0djluSXRkn4iWfoS50vKstluoA6hk0K2PR4+srO3+3YbWWjfkFJcLJJkKyh3ERX4NFv/Y4ZsYy8Riez3GHzl8/jK4mclsldAUaD6hugtj8IxT91jPnfnOvmoIDvs0YSUpc2ZnC2YTVZUZkZ0JaUxiNEBX/7MlxgcjLj5hdstqUXUPH16zsnxgsX5Anc05Y+P72G9RyeGQS/wyrWaX/iVO/x7/9lf5wd3T7n3+Jxv/u5vcfL0AVMXWPrI5LhinChuFx4tBLmB0nusC5ytVqxqzapWHCl4thK8uq/5tTxh2HMM3QwZI4lMeeu1S4zHGR/cPWI+t9h520iyTYWTCCXx1hN2Uh5E56zsptBt52BL+duCD3+ayXnJ0bFibe3+9Rpq39v27l0jhRehvq0yXX+/O22n0NYp9D8fHzM2kWRBVIrirdeJ1mHPly2wMhohM43uGe587fNc/8XXkBgEkqACVePYu3mT+bzk6PkEJ0qcmpMdjijSy2RXPoMPkktvXMNkCd5K5vOKe/dOqJuK6Qcz3jmfMVuskFqjNdy5XjG8nvLf/Nrf53Ta8K0fHvHhj77Nj771eyxDpPSRb0waMiV4rd+COrkW1CGw8o551RavL2pFqgTnlWCUK/7DnmFfSg7dDBlzkqSHFoBfEEMKQoPS2yj6z8df/BACqVoQO76gg+KFmki4YNxu/t/Z+GIrR17UQbKL0stO/snO2ZJKbY5ta6UEwYPogFDrPKXzZIlA9/o8XFY8OD3jxuF1RoMxFSWr4PjR8/v4uqHvEy6PrvP66zdIRhnJMGNhX6WymudPz/FNxSpOcbGhSnP2x1e5+dZlLr92lf1bh8io8R4++OCEclVx/njGk3LC10+nCCVRWnP1oOZgbPl7/+BvYtIe//aPn/H08RP+4F//n1R1ifWBpbPcXXpuFoH9VJGqFo5bWE/tA8fLkkQJZlpwftrwzjzyy7bgVau5fGgwaYJyCaOixy99/ionJwsePThj4gKhDGtMG6E0AYF1vksdb7WNWKN367lqPS+2jgxsdFHcZk5s0i5DuIDxrc+6WQUbW2Pd5qNzirpUPbmZ/x02T7ZLaQs0b4k0trbNlmZdrC9pfdDm++tzbnXQ7rrd/gpsSyN2HCrxwhrdcSBBELr6dCm3jhQRfAwXUhE/aby0MyWlITF9TEf9HL2HIJCxTfeSYs145btC/PZGvfUIKVBGgu4a6UbfeoWyY9dQkigVUQJeohHsjzOMDvTShjyFPFNk/YJsuI9uNFklGR9qiA1K5qCStpFa1EiVEFSKVxkh2yMUY6weEIVhWgeaBhoSAqZFHowh7aW8cn0IuSRJl6wWKcujGc5pIpFkvM/w6i1ikrOYldTLinpVM5sfs5zPsYszqrpkMj1vJ061z8VHOJvMsV7SSwT7w5zm1i1WizmTk+MWCQTS2DLdRCGRdMsytmmT6+kMoe2P9LAKZFJwbR4QwoNqECoSTsGf19TLBd42CCxpokkziTIejKfIAo0VRC8QKIQCGT3S1wQHwUpUbpBC470nOEfT1MQQ0DqBqGhJZiKBgLclIgR6JsFGqANkSpOrBI1DiUivPyBJU/IiaTdiaPtJaCnbjj6hjWRCi+wEIYnJABElMaRokdIERSCiCEQHrouOCSG35ACbQsSudkiKloEvOpKk7WtA41okgi61QCdI2QoErRVaS6Rs58134WDVhiZA6rauKnpMotsAq2s6Uo1AlAIpFDEGrPVdw7h2pGnKl7/8FbIs+9iGdBdS9IToqGPFRrpthGdkY7ivzyHWBb5AkqT84R/8wUY4bQ7axucvbuw18iNACoWMAuVBhEhwjugCofaYvIfJC7xwNE2FTgvGly6zN9qjGPfoH/RwMqESPXqDhPlehqgi0SrSqEAZxtcvkw0KfJRUpaVerphMJpyfT3GrBbapOT2d0TiP0JplT2AUuLjEJFO0CBwMM27evkGeSp4/eoi1DXMXUFKw8B6LREqJDG27BOtc18RW0khwoQUgHp0suKY1qTEokZMLw43xiNzk9LKrrGrP2aTq+gwK0AqUwlqP3ykEFl0Rq1Sq69/hd9Jd2mcdfODSpUt874+/S17kFx9/t78/iYXx4z5/UdCvj/iVX/2VjTLbOFOqVWRrRfSCz7T9bO08vuBVtedrFVme57z33l2m09nFhbRR3C9e6Mfcw8cct0Yr18v1ww8++JiT/SUY623awaxxl8lqzaIlJTJNiMagYxu5RmuilATaSL9rQMeAApJCIIzi4CAnzSVRWHwNflUjlAFlSEcFKNNG4SvP/HzBfLZkcnaEq9u+UKfnC84XFSiJ1oLEwKoODIZzmgYOBinl1UPK11/j7OiIxWzKKkQcsAydTNYKHUDT6vTaeQQB52mbZQfN0/MKh2e4H5GigmKJm55QqRQ9vIpKBwjZAjNi55n9VI7VhXW+QZx+6tP95N/6GZ/vZza2pumf7hydVNg1vHfG1kBnmw2xg9r/RONyE3UQa43Z6ap1uldn2Eq5caba9kjr2inw3uN9wIWIDZ7GOya2wTU1IsuoQ6RyEREUaTogT/v0s4K8X1Ds5fREDxs1QnnqUhOWJR4g75GMRwyvXUakGavSYasaWzsmZyeUqxV2OWdZNhyfzlsdrBWESGMFeX9Br4gMco3bH3Dntc8wm5xx8vQJVYTGRxY+kAYBUqEF6NAa5Y33myidj4HaR57PLZkUDOaWHIGSDXl03OgbxEpxYiA1AmNER14kCKKdLyF2+kztbID1891EczodFGFTv705Om6jjeveUFJ0tVm7PvU6prV2SHbT3n7M3tvK+e1ejS9k3uxqFvHCln7x1S5JBew6Sh0QeKHe6RMurotCxRgv3Mv6Gawdu7jzuy87XtqZCjHFhUOCOG+ZhJRFEDBCtoZXrSA6lG35+JXMcE2DCxGRKFSiEb41fFWwEFoCA09oMwRHQ0Se4p5MoHa8fjslTyGRDVI4VPToNEePL9Ez+2Six43jJwzGJYtzWoa2BahakpDgdR+f7sPBZ5Cjq7h8n1Vj+aMHM6pyjvCa6ycN4kdHXI05V7KCX35b8qvjES7d4+hsxT/5p4HZvCLiSd64w/6v/CLv/vbvc/+3/iXz6TlNXeLcM0K0nXPRKpp2UgLzSY4QCd//7v9Dnkb+xhdf48a1A375a/+QD9+/y7/6v/5Fm6cKLEKkRJCqjlY7SEKM7fOLbaduRSugfv/c8r2ZZRQDd3qK3hVL1IKT70dcKrB9QZLA3r7k+s2UwThh1SsJSeCzv9BjNXc8eneOTEfovIcKc8SyJlQa24zZk2OMNNSrErdasJofYUhJij2cE9S1QCTgpcfaGUpoXrt0kwbJpHHs5yMO+3us7ALraw6vHpJmCViPs5Y4m7Y9mXQGVrYplaJBCEcTLFFq1OgVlNToADY1zJ0hMYLCwGRmKWsHSYKSgqZq2vxf69GRtuGvjiADk7MF1tbsjYcoKei7iAsKFyWJFiRaIJxHhsBgPKbfS7HNDOcEqyZDEoneokhIVUa5nGHrisu3r5NmCXIS8c7irSPRmqIo8IuS6OstrRFw+fJl/sf/6Z9y8+bNT7VBP+34X3/jN/iv/uF/iVKyywVeK8VOAEnVOWmytZ5j6wAqqejnfbIk49b+FTQSt6qRxqDzHuPRJcajQ+7f+5DFfMZ//O//R3z1S9e4Mtgj62mGNzWyJ5FDQdRXiVLyrW8/5emzOVkMyCxh/NlbLCdzvveNH3LybMbjB6dYe4RzZ8TYMt4tbIIL4GwgCsOPfjjEqPuk6oyv/dLrvP36dd74z/8upQv8s3/yP3B8dEQTAhMbcRX0Ek0vlaQIjIeyqQghUIqIEpFUwOLsnKNHz/nqjQJ9oyB/9VWu7g/ZvzNCFCMOvvZfoIoRUqcbw3hrEf50xuDd997jH//6P2IyOe8csVZQe99GTNsWE3IjD+SOQG8j3Tvpep0zHl6grhVC8N/+9/8d/9tv/u87b376y/2kMZmc8+u//o947733tsorRqTc7eUh1g3vWefUS7klSGn7tqnNd9eXqnWrkmKInE/PP7VC+4scm3oFpeh6WiMAlWbEALZujURXNjy7e8yzd5+zn/fppSnDmxrdk9y5DuiM+IWbPHg45bvfk1RAbGDw6h6qyPjB732fybMJ77/7jKaa0TSPCbQIduk0tVc42/asuff+GKkChfkmt6+N+Nu/+iavfvUN/oO/8zf4rX/+z/mjr38DH6GK8MhFMgPjwqBixFhF4zwrZ6msQwZPpgRzJfmd0nJzmLLn9sj2IC2hfnSPoBL2vvJ3KW6+2dVm0EW8/wwW4r8L44WA0J96RPFR6B9e8JxeiFPEF49ja3h2smxNib/rcCm9kwK4/kmxhmXExnBd/wsxUFcNpayZlyXBOrwQPK2XnBC4XAyRwiB8j9xkvH79l7h0sMc1fZXxKGd4NUfvK2QuWNqC2bzmd39P0FSWZOApbl5m7+1XufuH73L///0OZ8dLqmWFtQ8IsSZEcFGydCkhtPVcDz7sIWVOqv+Efm75T//mF/ncjT2+/NV/zLs/fIff/F/+Gc57GiLPfWTWBMYdidZARZwPVI1tnUAfMQIS4NuV5UMtKGLgyjghPSy5LOFrI8mPKsWTQuKtJvoWpPYRlrYlg9C61RPObh4qUqwbzrbPUu6kqEnBpr3HWnd03wKxzbJQqoWNfRepeRGMuxjd4YIeWzt3FyKZ4qJ8D53v82OX9Bq/+5haqe2NdHI27oB3FyJy4kJT6vUpZWyb0SsFcd2UXl2MVm0jVB1BRogvXspPHC/tTK2ayMNJQHgDskdoVuAbRGoQMhJkQEaJESkCge2K2QRtClWUgtIIghfbWhIliEoTVAIiIZIg04woHV7qlpEtCAKS4ANi0YCao8YDRNqGHJVSVF7gHBAFPkq805T0KHVkNNzDHI7JRgNkY9HvHqJFivJzog4sqsecHwuUAVdn+IGhNj3Ol4EizYhJj3gwxkrP+3/0bZ7fu8/0/JxydY6zJSGWtLGliBCKTEfyxNBLC6ZVwqLRWK+hdjw6mjCtPGPzmNg0fOXtN3h+OuHx8SnEsHWeNqtNsOk63QmviKAiIgLcrSJWR36pn5AXmryvqRJYZNCTGi0048MBWS9FF3u4KGkmS3zjSL0nNI6wtGhZoEyO1A0ycRSZQkvJZGHb6zEFXuTUokckEF0ghlb4JDpHSdU21lUakfQY5AV5btBJig+CNHpU0+B8IHqPFpKIxEfZNuSTmig0UUiSJAOlCdoQhKaWog2lT+f0MkOeGKwXBKFJk4QgBFVHZ41t0/tkGhEqgoyYRAAS5ywoQZonqCARjce5hqpsSBAkUlCWFVK0jJEuhDZNIUaiF8SgCVETpSGqgPMR4VpWwODp7kdQ23YeN7Sm3RBCkOc5RVG8/O78KYYQkrKqtn1t5I6ehHbviRYZpEMFtTIoYTDKIaJlvlyRSIOJGlB4EckGBYfXLlGtHP2s5PDmVfau7JNnGVpYmvkJsRH4RiGyApFkKKko8hzfS7ER7r/zkNnpjIf3z5hOZkwmZzg/JfgldEQaRR4x2jDo9ais4dncEGNK6XIeHS0Q4jEHLkWZhC+8/QaTq/u8d/9BywzqHZVt2R7WiCdrP8i3EjRISR0j58HxbOW4P3O8qjN6oxEmNS0FPKeIGEjTK0hlEDK9GDl8GcMwXvwjSVLKqma1KreGCOui39D18rpQut0d0Roqcqc3x6aI/MXIVHd9H1ljP2M7tiwrrG0oy9UWNYTOmXqhYHcnB13pLv0wrp2pHfbJ7lZU52DFGKibhr/UYzMfYhM93nwkBF0GPDrpIlgImtKxnFUEFIPLA7IkQWtFvTqjqS3OGkRikMUAbyN5mhKyhJBojp6csVxV3P/giPnpnLOzM2yzwLkFENqU7SRllCYM9npIZXg2T7A+UPuUyTzwzgdPGBw6xo3i2qVDfvWrX+LDh49ZLJeE4KhdYFE1bfF13BZzCx/agnepcVEwd4GzJvBoBYcjzfX+AGUUGIUPZ5TL+2T9qyidI2TOTwVE/GXxo/+M/MAfZ6hdiO7+TB2pj/7mmohiN26x3qO79S3r7IWPBzfW6c3byAZsf2tX/8Qu4i069tl19EQIheyaP4cIlbVoFDoZdOyyhoNrh2RJTrXwCBcpRc2kPkOfVviiwKQF0aaETDOtPMsqkCcGlWTEYY4Lkbt//AGPPjzi6GjBbDKlqUqcXxBj06axac0ohyxJ6eV9TlcZs9rgQsqyEdx9cMx4XnEpFsgY+bW/9iWenZzy+PkRMjhs8Kxqh1ai7cmKQCjRlsV0DXi9kKxc68Q8WjicUVy5nqJzTS81XCl6fCHLeH5ScnxW8fR4wXzZoIIlENreV1xcli9Oy5akamcS1nO6sSd36O67eRR0qXy7i6b7ZJseSNcQnu17wMWI1Pb9sP7Sup2I2MZDNxTtu7Jz54/INiK6rh0Xa1CxO++mVpn1uS4+i00kSrz41HZ+T6xBBtFRra/TKF9+A760M3W2jHzngePyKOWgn9JUgVAHYqJQMoIqkUKRyiHWWUpbYZTEKEmqBUJBlQhckAiSNhoVPdFkBF0AOTEkyH6A6KmFhuDAiU5ZKWy9ojl9Rv7KCLM/QCGQUjGrJNZBaoCgCTZlhWGVjrl6+SrZ7csMb/bpN47+D19DTacY/xQZTzmrfkRz/5zpkxlH/TGLpOA8XsHJgnFxyN6lQ+Rf+xLv/Jt/w9d/4zexjcc5jw9TYqwhVv8fe2/2JMlynfn9fIuIXGvtrl7vhnsBYiE2AkOKGo2NUaTMZBqb13nTXyc9jZlkNrKRjUmUqDEOSBEgCQgEcHFXoPfqWnOL1Tc9eGRWVndfokGCgCDJzao7KzMrMjLC3c853/nOd0jkNCiMZJpFbu+NePPGIT95Ds1lxPlIF1p+8NEzjDnm8Nmcz9+7wb/5k3/Bd374E87/zwVdZ/He0/Zosxbb9Ras6wyJJBSxi/CXVeCRUXzraMLeUcHknQlzETgOjv0bI3b3R2h9gJRDYpjiVh0XT/4v/LJh1AUa76hcQ5bdwEx2UXmDGcDuRCOj5PhZgw8ghwdYBnRhjKFB0eJtRwyCYbGDlhojNSYfcjjdw2SKzMgkCRANtqzxtcdFQYiCHIVA46NEK4PRGZ3UeKEphrugM1ZCYZFUZDTlkvLilN3RmN3RmFYXRG0YDQcgYDVf4mxAeIEsQI8kSiZqymgg6ZSkbWq8kUz2pnhvKZctF2XN6fMzdgYFozxjdqloakPrG4SQFPkYQapXCt7ggyGqATHTNNbhgqPrQqK7Ck3nJYvaIUMk01co/a9zbAo9+8nyYg0MIfR06iukKRkxg9YZUhnqzhK0Zjw5RGQChoGjN2/xxa9+kcPJOzTzwFtfeYPdGwWKDre4YP6TD2iQlKZAjQ9RowNkkOxMhvh7R8yWFd/9t3/G5emK87MOa5d03SXeLQmhRqlAZgT39gUHu4qvvHuTk5Xizz8M1J2iag0/+tkJP/7oAe8er7h1c4//5o//C6pqxX/3P/5PzGdzZmeXWBdYNZaByci0QqnUbFg5i4hJja8RgZrAJytPpywHxZTbt26jdyRRC5bLv0N3e2RFDmKCkjn/WI8qkpT01hLBcevGSKm27kVPx0syTQjEupR/i36X/r+GIa8Nxa9pyq3Nku9rLzaFw1u05G1Rlau/YmMkX3xOrA0ZbF2j364R1xZfSrxLKKjO+zUZI+Xc8+SDkr3bBbe/PEFhwXcsfvyQtlywMANiPsLs3cNawc5oQLixh9+d8N3//j/wyQ8/4fyko207mvY53jd4t0DKiFKRN45G3N6JfOGdOwyHE/7sp3BZeaoGjhdLnv7F+xwdnXD//jl/8JW3+K//86/zb//9f+DTB484Pzmn6SxNZzFKMchylEwZBmxAeEdUGT5qLr0ndJ4fLeG92wPevnULNZSooaSMT6gvnqGzbyPkAZLihav0/2epfhMjAi5EpHyhicarH27VUW3tKy+mFTaZgS2wqV/3IV75LVegSUx9feLaVqV1L5VGKoMyGVFIVnXLdLDHqNiDYUQPFW9/8W32pjfYy95jPrvgZw//movFiqfzBXU7QZVjqtEOrSk4XkhcNOzcuIvenaLfe4Offu+n/Kf/4TusFp6q9LTtGc6XeL+EaNEqsjs23D2COzfHvHPviL99CB8+h1WzT2Ub/vz7P2eQS75wVvL23UP+23/zr/mr7/+QP/3OX7K4mFOtLDPbIhCM8hwlBUpLpA+p1lwoopQsomcVAz+eOc6EYW8yJd8fMTja4V0RuR0dD54uefR0yV/81QPaR5coVyYA3CV/U15tuSlWCVsYfI+9Bb9+Yjvpc93+XFey6zMzPdAn+2BXXt2+V9qgjQjW+lh9BB3pRen64uM1wLueL1uJoTQnuAriN1NMXE28GNkAiyJGfIiEEDfg8Xa2bPPdrh1IbObseqvetkEg+p5c12vJXme8djDlo6SNGWXnyWqPFAZpBnTWooOgMDuIGKitTewmkdBF7wN1GUEKNLLnblqEkEkZTUlc9AjvEE4xHE1QWqJdi0QiB6NEV9IZdALXQlsFnGhpO0kXNF5GvIjYAAKJUAY9LCjyAm9G1CjyKIm54c1v3KK8UMw+/pj9HcXb998g1ANCndMc/S5icMTpo0DTRgYqUF1WPPzf/45nHz7sAx6bBAxiUpS7wmUDLggqqzkvPVKXWOeYZoGbI4ORGR+eFtgQKKslD595/vSvA23s+Oo3Ps/Th8fMzudUbYcP4Vo2XpK6haeRuMUBOLMRVp6/+bsFby0E3/7858iUZBwjyoFdRdr5BbE5Q7eK0EZC6VHRMNwp0GaKLvaJ3mHPTjgQgb1hxtAogtCM9/bpaku3aDBSoo1JAW4MyJAjpCQzw3RPY4fwEt3VqJA2juAdIXhWdYv1HqICoZBmSJYVZPkAJQ1SZegADoFUGRGFdIFcwc5A4LIx7aTAeUkbBCLP0ZmmGOUIERmNDLq1ULdpJXYSJ1IjXwNkUqKsQ0SwVY1zLa6ao6NlMsyZjAqGRYE2EikDY9XPXx1TjUCUKBFQ3mJjSOy4EK6aMvc1UkJmjIocOksMKVv5ax+ir4/p5as3m+umGLjnq683v5hS2iGGDcUszwfsjg/4/NtfQw81aiq4eXQESjO+JRnsRbyvaUrLdEfDQGB2hwQzxg6PqKyhbg2xa3HO8+mPTzi7WHFyWlPOa9qmwvkG5wM94J02XGBWa6KWPDoraVzkoGgY7mimg4xPng95fhlYVSuOTzr+/G8lmRF86au/w+z8ggcffsJyWbFYrvAiUWOdBxEFA130e+UVN/+isfgoefDRCYNY8MY//z3y8YSsWSBljmtXaAxK95KqyWpcu9bXHryqtmMLM5NrSdZt/nhveNZGa1Mx1G/s15A/rj5f9GBL3P6MDb3jxfP7VY90PdaI4KZ4V1x9197Err/kVYD/wqmt37WuCVRSbhnE375gCpLyYfCR8tLj2kjRSYRKd1IPFLv3hmjdUi8rxmONyQNmpyDkkI3v0cWMizZPrSac49mDGScfzXn8cMnFZUtVVzjb4VzAx4gPAhEDLniWjSSrDE8vWoa1YKQbhhPB4d0Bs3LATx/vYH3k/PKMH34QefzslP1bNxnvT/j4xx+yWqw4u5gRiHiZ1orwAqNyZJ6BVqmJtYDaBx7MKszjC+5//wE3voQMBpwAACAASURBVPQuh0efI+uWCO9Ss2FRovR+70HFa/P5718/2294xUR+8anPmlyffZteb/yG475f/QpIYE5gO0Za//vyl02+8ysEk141eu9UyH7filc05Li9xwlxZYNictU3NihGhFQMByOObtzn/q33UFOBHiqG4x1Urtl9c4jZbam6McYUjKf73NzJGO5kiJ030Pku5rgldqCygqqKPPr+MQ8/vmQ2t7R1S9d2OG/xIeJ9mpkheqoOLsoMNQ+ofEVwlhsDx+dv5EiR86MHE2x0XMzOib4h2g6P55vf/iqPPvk558ennF3MsdbhZSSKxJrSaAqjWfc+CiHiY+DZytIEwbs/Omd50CLdkHxUMNrdYzLIubmXkatHRNtSyIjWgEtaxUl/QBD6ayqJm0a0SqprFOwY1oGMJAZ/FYlxFUxtflj3hbomQ3H1aBM48UobtH68DkWUEKmf0JZluGIsrM8B1ryMTa3xZj9INMbr2c3kg61NZTqXF+3P1rmLq5phsZ6rL8zqBIRxBQxeO84vHq9fM4WkixmVbdFYRiojyxTOevCgBlNE8DT1PEWyQhNiC8Fi23RhByMFCrrgEEKjjQaZJrHwHikcg9E++SBDX16mYvjBEKkzVDHGryzOtXR1hC4FUzYYouwIEqyPqCjQ0qDNBKX38NmQGsUQic4E9796xPLEUj+v2L9X8O7v32Z+opmfSSZvfQ0x/hy2fEo9KzHuhPms5Ec/eUB1+ZiusxDblJHCvUTJ8VFQOU2sA20oMbJjrC3vHRwyzDIeLQq6pqOuVzyuS548v+BLX77P17/5DqHtcHVD51wKpjY3OO14SogNzLPmcl64QFdGfvDjJa0b8HvyAG0yxlESfUm3qmgfnuAvFhSVTTVrYh8pcoY7I0y2gxnsU83nNPM5+9kOWVGQZ6kx82g3R8kGe9mgpcRoTecNLgZ0yFFBMxwOEARsc4HwAm3rlAWQDd5Fgg+UraULgSIqlMoQ2QiTFRSDMUIYQKOcx4aIkzq17vGOTAhu5gLyMWE45fllzemiJSs0JtcUwwwlAuOhQUtHsB0OibMKFz0dngmQKYFokwpbVbdYV+HqOSoqxoOM0WjAaJCjdRItGJm0zkqV1pwLgo6I9C7VqcQkKiB7BzCEQGstOleoTBEDeOu5Kvf/9Y0NMnSlSZGeX3f7Rmw2vHXOI5IaE4Y+q5BnA3Ym+7zz1pcpJjlmX2MKQMLohkFIgfcNXQVqf4zMBXp3SCgOyHffYva85nLZYGxLsI6P3r/g+HTB+VlDV7f4riRER4gBHyFEmWqHiMwbjZeS/LzCKMt+vuDuwQ6fuzWisUPOa1hVl1T1nLPzFYcHU/7Vv/oGs9MzuvkMiCyWS6KMOBkJNhU5D7IMISKRjujB+8is9czbjoefnDJuNXf+8E8YDe+Q+WMiAd+WSFkQi8gVAU9uGanP9to2e8PWS1L0ao7bggXrjBRXxgAEamPG1k0R16/Qw47bCOD1+791Ei9MjldMmH/gWBfspgB9Pe+2PvjaZ6X5tsna9IYs2a64cdiuvf23LY7aOucYILhAdelpq4CNEp1LirFCDzS7d0c0s5pmvmQ8GqGNQk9z/MCQHbxB10guH66QrsHYwJNHKz54WvH0yZL5rMO1JTFYPGnN+picUkSk7CSyMuSXLaPaMVRLJgPFN96a8Hg24GfnE1yomM0vmM9XaJXxX/3JVznYH1JfzjgziovZDEQCKGMU4AVK5ZhMIITfOISNjzye1+RxxkP/iOLW5zkavYnhDGErorN4SuIwINbS+ut95xoE/eqb/ao1tPGNXoSvt9/00muvPPjrjVcFab+iIf5Bx3udSPHvH9fcyLXj+Iq9ZPtzXitJ/IJzTtiGVQRXbIgrW8Ra1S+GTTAlpaLIh9y8cZf33vkqZk+hR5JsBEILdu4p8mlHPZswnEgO7w4YZ1AYgTh8C1UcYdwCX3WIWFEtOt7/8ISzRzPmc0twDcHVBGxvg1JQ4ojUTnBZG8I84MWKTFUcFC1fuXObIit4cDHismyYLy5ZLOY8fHzB1772Br//+19EB4eOnuVqhbXJJw0x1fNHJSmMIZWEOIJNPVePS8uqCRy/f8Ho0OEnN9m/MWa8s8+o0Ig9TSYlOEshA0GDUyrVcke5EUhaV6EpqVJApXo+g0i1tTGElF2SEr+5mWEzB7ZtkOAqrEk38BVA2BoE7GuxXpoGyakgfWQKsKVUKZO0mSfrflhr8YsXtv6ek7jl+qbXwnZbkvRHqSfUCyfywnTeBu62a7+u6r7WnyzZbn7yuuP1pdGnmi+/N0JYibCRXOdoCbJLanDBWmKIOFEgsIjYIZRBKo0WXVLU6hxCCvIsIypBEAERG1TbYXyH1hmqm4JSBCkRwhBEBmiEHxClRxRFapzpA1p4MhXIlKBtLU/PzpFOkjnDYLdgOB3RRENsFGMESgn2TGDnaMTeH30LaStOH6yw4/cI73yDyY03yPMCM3a0y5If/PQh88sFi+NnuOY5MV5AtMRoeydCMBiPyIsBN+68RWsjJ2clbVfSrhZIkQraWjdjkEnu3xxxT+QsmxFV03ExX/Ls2QXue47JNON3vvkmJ+8/oZyXPG8crm/yChAIKNJGpDYdpFMvnB87T3e24lv/8QPGN8aM7u0gWSLjivB0gTtvaFxAaAO3B5jBDnu7b+LEmI5dRianG1xSzVqaymL8DYSK5KHE+Q7vBLlRTDJNUImOmYshCo/qZojoieMdlDLkxYBoPaG1m810nGmCUGTjA6TKUKJAqqSk1wVFG3Tfm8rSkeGFQWYDpJF4oUHlxCxj70bOZB98oUFLBoVA47l7uyPYAl8bLIpG5Fy2kaWNDH2FCi3lTGKtBR8QIUPKHay1NF1H0Xky7cmNRElBawWBiMXiY0KWCqUphhJpNEJEJoVGisiyTlzryXRIkRlUiAhtyEYjlH7t5fWrG2slhzVe9IoMR/KDQ48GSdYdiKxzSOFwQeNERhxmhMzgvKBaLmjnC+4c3WB3NGF/Z4iRUJ2vUi+u3fdQ2ZBhodE5+Mzy8PGMy9Mln/7klNnljHr5CG9LglshZUQrOLi5w2Rvn9t371IMxjy+THVsP3t+RgyWiOTT0xV/96hi/2DMP//dKWU9pOkcD59dsCwr/vb7HzMaKj7/rS9w8+dj7uaK47Jl1jnWCo+WjiAEA5MRg0GqPGXFfOTBqsI+P+XOD76HPbtJcfsQqSDUJd4Ggj7ElXNCvSI7vIseTX/p2yKEIDOGzKTrmQCnBCQRQ0ISEVfZzrXi44YKA9vNBtkExVfG65fd/P8xo8cVN5+/PocNqBeTsVwHTMD1rFkfjG0MeW8JlVI9cr7N5f/tGBsXJYIL4LXCG4n1AhEEOlcQAqHzZDtD4kgS6orVqsYV9xFjzXBQYHGEzHI2K3n24ISf/XzOo8cLFmcP6eoTvF0i8CgFo1HB4Z1b7OztcePoiLOlY1Y6nl2cE85rhAgYHXh0+ZDxKOcPvryDdWOa7pDn53OWZc2HHz5mZ6fg9nt3uXl3j93omdcNT1ZNuo8KCJbWBwZZhpJJCim5b5KLpuMHpxeoD3/CdCrIb+yhRwNCcw4qI+S38QHc/Aw13iHbv/ObTvj8f3ZcUc/jJnh6pVIof3/seIUnia1dgN7+iGt/vJ3xSJmxPhMtwgYySonLSNdaOhVwISPoZIO8FEQXmZ+fIlXgzbu3yacF/p3bZEow0YZsPEFMxhTTfTJjMMPIsu344UdnnJ1VPPzJOdXsCbZ+SPA1MTQoBZmW3HjjgNFkxO2792mD4OncsliVXDyeIZRHCsmT2SmjQvHe/R2UGrCqJyzLhicnM54+O+d7fx3YmQz4nW99gR0dWZzNebis6fxa0TLSxRajFZnOksy5jzgX6YCflg1Hw4xvx0BhW+xyRhZLMlFyf2JoD6e8cTjBhcj/8dMTys4jQ1JC9oFNMJUEJq4AUyWTUraPYbPXeinxwfeZQvq+naCl6vfyviY3hE2mZhNm9HoHL9qgDVi2NXNkLzyjVB9AyyR4IbfmXj8Z+mjpijYYSXtmsoOpsfOaVhjWIFy87tO8JHCxhd0JIiJueUGbuqir+bnJ6inZJ1VfyKT/gvHa3l6eSQ73NK7WuEZjtErcW5UnLnWd+iYFaRAxImNHlCopSqtEiRPeI6JAS0GQqUGrCCC9RQuJEQLpPSL4vr5AEYUhognBEIUCbYhO9b16QlIxEenGL8sKETLyWCDQ5JmhQ4MTdEFgImg8ulBM79+kPLvk4tMVTA9g/w30MCdKCNLShoanZ5eUsxnt8pQYLomhImWkPCJKhFDkec5wNGHv8BZV7bhcQectnY9rrIB63pAZ+NatMbkxIA0xVii5oiobnj31TPYO2b05xj7KMW3HhfVbUsXrruXXnWNPxBM5CZFx2fH00xNu2o7RvoFYIuIKUXZQ+STzLRVmOERNpuQHN7F+gHZjdGjIaGlmNZ3tO27HiPItMiR6nCIJiQihEFGmwAGfeFTBI8wQqTUq03ifqC4SCUJSaA3KoEcThMwQru+FoxQx3ZGrlLJKIg9aFygliEqAysAYCq3RStNmCq8kKnpUdAzGA6SXCOPppKFWBbESiBYyC8JJ6qYGIYlVA1GCyIkx4n2H9xHvewRECpzv5UhjSOISLiJ8CmaVlCgZMTIFVTImcZUsN5heSlXJRGEVL0El//TjOsoftyh9a/xq+81pE1unyUMIvUJcP0eNJiiFRNBYR9lVBO/QIlIMEpiyPJ/hpYbJIUKrdM9EwEbH6bzi+GTJxfMLysUM210SfU3wJYKk5jYeHXB4Y4d79+8wGO9wyTlOlFy2p3QWuqC4qFqezRr+YL/g1p5mng8om8Cz0znOe46fXXJ0e8Jb793GlCXF5YwyRkrf94mIAed8ChyV2qj9RO8J0TPrOuSq5OLJQwbU5PvTJLlkl0Q9IXQVvl7iV3PM7k2uKQmx3rhfDWFv5OwBrRRaKda9OaSUBN9zvuWa9tIX1PZI/vX+LWk9XfusLSRRXLu5/4CJsz3+Xhsirr1hI4YhrqeUrhJRkW1/Le1n4hpC+GIvkGvKUf9PHXHrQW+9U6Y6pkBdSIJMNDwfUwpPRJAiojKNLAasliVdZQmHe5DnSK2QMrVzWNYNj09WnD6fMX9+SVtd4u2c6FYpSFKGPMs4uDHlxtEN7t1/E3+8oDpfsTybUdcBGxQIz2W94P7RiC+/d0DrNGVrWJYNZd1wcbGk6zruvnUPM84QhzuYueKk6ZIioQRnY3K6RMpyp6Ln9LUr7zguPWcnJ8x+XrBXfB5dGKKrEmukq4gu4FazBOj1jtC19QNb8/qF9bN+k7jKSG0T7F/4E16ezK98069+/JJZrJdFA36ZD/vlM1TXk0/XaVavouFuMgysG5NvH0tsHNGrs+mdz2t1ky+e74v3uwdU+qdCCIQoQGZEZYhGEUWifFVti5AOQUAbyWh3TBYFRdCIfJc42kNnWWoKLAJdcDw9Lzk/WTI/OcfWlzg7J4aaGFqU0Chh2N0bsXuwxxtv3WPRBs7jjLZxzOuQ1jCCWV0yKiLvvrPLeJiRZyNAI+Wcsmx4+vSC6ZeO2DuaEA93GAXPSWuJPaCXfA2PFiqpmEbdz+dUCnFqLXnnGDiHsR2hrTGqxUjLwchQ7o1483BK5yODwRwrHPjUs1L62AcLEe/dVUAlJUompoxYq8FumAFJaEIAnsS22dTrElN2XawzP1f3buPTbC3VbWAtbYVi8/wGKBPpfGR/z2M/+WJY27mrObmeSfHqgGm9bwKj9Ve4sjebEC5yvVXF9v7xwriqmVrP1S26+ob58fLffdZ47WCqsy2zxTmTTLM3zUEkGlMxmSAi1GWHdx7ZOHQQ5CHQrFrKRcdklJPlBa5dIJRgOhziEZQ+EJDEmKPyMSYfkkmPihW2dQghMdkQETUxGAISr1Tq9eMjnYs0nWe1qqjKjugNQhXEYsJKZDR1ZDyS5MZwsYyoqmP3/CHjMON+9gAhBIN9Q9jPCLtDPn70nOOzBT/67gOePz3n8vgc25wT/M+JsSEFUj1dQUgQhrG5jXKaj7//VwyU4L1BQbubUx29ycUisqwCoXpCZyv+7pMLjMkZTW9j5IjP3dA0zlFbx5MHM46fX7CXOcyRYQyYzlM3lhBEahRKQjzXCci0zMECx5Xl371/zjcV3P/dHbQOSKXZeXcCHvT+HdRwD3P7Wwg9AiZ0taBZSurgaL1koubk1Ixci/cBtViQ28juvkKqhpoFRdeRWUfuQcuAdRWCSIZEotE4/AB8MUYHhYqKMDzAq5x5J/BegRgilUgb4mTIJB+h1BFSKVyWE5UmFnlaUDESlMBnV5S0iMYHyemsQgbJ7Z0xeEF9fonZyRkdjYgmUrSRi+MZVWWJRQZa0NUNLkac80QURo0QKicqg8pzTC5BJylNIwJd53Cr1G+oDRLhUr1c4yxSJLVApRLtMAbPqlmhswxlMhy//mBqo0Kz2TzE5rql37Y2RiF7FTmVgAEzZDiYcvvuuxwc3qGNOagMPckxk4wiHvB8dsHl2QOyeMhklCGziMgkDA3LuuP0WcnHH1/y8c9mPPjwkouTS6rZh3T1JcEuCcEScCiVI4shk+FNbgzf4JPvf0DXrHjv7gHZtGD+h5/jog58cGxpFyfUl4/5wUcXfPJ4ye07bzIaDvmdO3dTTV7bUc4sf/O3HzPVLbv3B+xlwKxgMSvpOgdoiNC0niBSU0UlHFp7bHSsuo4ffvCUk8uWf/nF9xgVBaIYg1tgT/4KvfMO+Y0vIbOCRI9Q1655/2DrRvSGIq5VkwJKKYzW6E3AEPEoghB9PRXENXKsr7LPCEEUW79vXJdkWdYI4Lrf1a9jpNNY00a3v/XaAK2Do6vLs+G60/PhI6mJpLgiUXrvN+95zUqN3/xYf78QiT5SrRzlyjOvAm0HmZLINjK/cOTRMvI1JlZksSJiUQOJGhqsVDw9nXNyVvH+311w8vSSpz+bMTt9QFc+wrfnBF8Tok2U0aKgGOxwc/Qmy2eXfOeH/yv3Dqd8e3fE4ndvUok7vP/UUpYV1clHPDqp+J+/83N29w45OLzFzb2b3N87YNm0uOD46MNn5NpxeCdnPIHbAuq6o646hJB457EerPdEleideU9lqjx8+vQc3wb+2dEtRjd3NmvFnf8Ame8yfPOrCJOT1s8LcunX1lCybgluXlPeY69E+uu6qf/vG2vxgZfGL7qmL6Sp1qDjliXpY6JtW7O2QVeI/ysO1YvvJGBaSkOejdiZ3uDe/S8wnB5RBcOwyDADRT59G+9bPn3wnDy27OclsijQ4ykhi3gZuLhYsqwt7//kgpPnKx5/Mmc1P6Vb/Rhvl0S/pph7vCqIesBecYfCZvzt//YXjHLJN492qG/lLO9/jsfzyOkqUp98yrxe8Gd/84zxcMCde2+T6wnffOsNGuuTD/fwguOT59wYeLJ7Q27GQFVZ5rMS7wICQwiRuvWsiwCMskiZek+dVw3f/cEjbr11wLs3CkJ0dBF+71tv8+Uv3+Xf/6efcTLruPPWO+y3nrPzGd4nXziGQAwe2zSpVl0apJQUOkMICVLSdo66bVF9ELNmDkhUH0z190iIpLSN2lDqYk8tv7JB6W5uMjtS9nv/VhDSP7cO0hLQG1K2qQ/Gfa89IPsIKQYPQiCVJJWuB3qTsNkZ4sYD5mUbtA7uxDo7Jq6m4vrfdbCfIsaNgiwkuxQ3Nug6aPiLxusLUDhLVS4pGBBNgcQjREQpky6YSRudCBEdNFnMsI1DCok2Gm1SLQuAjAKERCuBR+ExIDRrrqKIAbEmVnr6gtfkUIS+kWBCvwVdlHh6ZWwv+omjUVIShMBqiTQSZIq4O+9obcuqvMAMhpi9ETIzyFyxqDueX5RcnpcsL0tsU+JsBbGC6NiugVEyR6mCGAQ+OMrFJRiJ0BOkFihZUOSSECWdL/A2sGoc2nnUwCO0RJkCFS0qSLq6JbQNo92Ueh4ODUpJrA14Yt+zKMXrgStUaB2ltyHyfNWxKDtkY5ED0LlGTgxSKszRDdTwgGxvHyjw1hB9xCuPJWJDQHubeio5SxSC0LmkRqVASIcUHTLWSNehNWgiPtqUGpUBpRJ1K6V0DcZrFIpYDPAyR7SWGGWffRIEKdHakOUZyhQIpZFGE5Qk5DkBQetiQndJiygQaX2izpQNCB8pcxCdoLFJel9FibUtXWNpm4a2afFFEozwwfc/qQ/LpjAxrhsLbst29j/rIC5eSVlH65OClgH65rBJSDiZiygU8TcRTMEVkvMq0HIbDt5CYFJ6O0PrAVkxQecjvJIEpQhaImVGJgWxkngfsE2DlR50Bkr1QjKRRW2ZLzpm5y3loqZeVXi7IPplL8qRqK9a5xTFFBEzuiYwO7+kXl3y9lST4chGQwaFYG9HU8Yc0YxonKddOEb7DmECk7xAh4BxycEr5xXZOGKninyUM42KrnWAJHqfDEiwQNLfVFL0zcYFLsJy1TIa1kTrkoxrnkNoibZEKIEqRi/Ax69AwLZ+jxvuwdq2CJQUhHCFqK27xwspNshhH4uw6XUhUkYqrEVPrt3P7ayOvDZ/r53a9aTRLx7bya9XfcP+SSE++8Cfdak2marIZl1tLOUasfwt9JqT7x/pbKRtAzaAiwIl+q8XQPWF9q5roStBG9A6icYIWDWO+Sqtn+Wspl5W2GZFcAtiaIkxORtCpaalWg/p2kg5Lzk9PuZAO0Lm0UVGbjQ7U4PWOayGBOc4Wzhi5igmjuFQY/KczAtwHc1qRTAOd6CQRcbO7ggpJc5FYhAQJaIX1rHEPnhPQY/zUDWO2aLGNh3CBURuQASiXQEj1GDIpvdMumLX/ntxPa3n/5VPs7WnvZTV2nrypfm4nqwvp45enGWvnMn/yPXz6jN75eb8GifzWi9+9l9ti0mskf5+Ma5R/6vs8FaMuzm/l6/tVfbienAcr9/Oq/dsuMBcsz9SSLTKMdkQM5gisiJR0pREaYVWBbJnjfjgCV1HMIagJGiJVILKOuZlx+yyZXbZUq0q2qpK68fXxOh7EEpgzJA8m+CtoHGW85NT3EARxwI5GpMNc8ZDiVMCWRV0wjGvLK13TFuHyBTTfIgXFhs6uqaiaSt2DkFkitF0gNSaurY4mYIdgkdEl/yrPnskSc2wOw/zec20bBDOE1TK4E6mI0bjEa14TOk9o1FBhsMYg5QBLzzR9/5Rb9NlX6OUmwxE8ky8ConCFuOV7L1Y25e4CYLWDX4RKcsTYyT2FMCwVUKwJuUJed3+rH9no1IrN/MrRIEQa4W6FCxdn1FXgVA/ja5sw3oivcAC+SwbtD3PN1tN3K7RXYPz6cUQwxXY/Co7+gvGawdTy/mMn33wE8r9Paq9PXZGGYXRRJOnEMh2aCEoBhlaarQsKIocv9eSDSRCRppnE1znWZ5V6EHB6OYNfBBYLwk2UlYtZjRARI2wEpC0pUcYgRhonPV0DqQxxIHmAljGgNqfgKg5/uiCYALaaPb2Mw4OC7pDg5gqvng7spsZpnduUj1v+ehPn5LfvMfO0R0Ohjvsjg3Plp73nzacnaxYnc9x7TOCn0PsWAdSKQrWTIt3yfQOpxcf4fwK70taB4u2QsgzUJrP3R3zxbsDzto7lF3Os+OnWNcyW56zygrmowNGMmM8jGRVR2haZnPQueLdtwc4F/n405KusTRlm2qUoqeOvZFWGoEguEiIkeA9XHTo90uKd4YUO2P8aEjMB5jDr6GynXTDQ4vEQWwJvqRZPSKePUNdPIGyQU5vEcWQ+UrjgkepmnER2csFLl4S/IoCMABIoshgkKMGBaPdMbaz2NYmrXqpkZkhRpX6JERBl2uQGiEyNAUKTedSbVK5crgIXgYcUMVEwQ49syQqWFlF6xTNmSXYjpPjmlw7doYTaA3xuePhJw84fvyYES1Geoq9IT5GyvkC7x0eSwxpY+68Qzmg6hBWJtpNjMgsBftRJ9VAGRocPqW/fQchUAmBbx3lcsF4MuTmnRsgMyyG8Bug+aURN8Wfwa+DlzRX5IbrIdK9g56el5EXB+SDQzqzR5dNiGONHURK3TLSlh1t2Xlrn0Lu0Z48oVsGBvffwWRDhlpSOXgwczw6bnj2oGR+8px68RzfzohuRcQipCLLx9zYfYs373ydp6ef8uEn36WtnxN8xdlyhtaa0XTC7aMhf/T1Q1a395i988/45OkZx+dzThYll3XF+eFthkZzZ5yTt5LB4hLrBY86wf2jPd54y/DpJ3MW85b5yQJcS+47miCYe4kxOZk2hJBho0pBTucR5zVSDsju3yTgCLFBZKO158HV7vxZzlsyHN46QojoLBmVgVFUSlB3XW+0QMtEdww98pecarGRLk4bf1/I7AMxJGpv+sS109MHxbLvH7Z1Si/5qeLaf687m156/5WRvLoGmzPu+clhY+h6o7VtiPuDhjWl26cnssxc+9zfpuFsoK4di9IzryLOqJS1nSiyHG6MQQWJsprl04rLZ88pbt/H7EwZGk308GTheHJmefqwZHl+SXX5CFufglsQYwpksnzAsJjy7p0/oGlr/vK7f03XzejaMy5XM/76Y8NwMmI0LvgXf3CP4u6Y4zvf5Hze8MHDY0rvePD8Ked7hwzHU94Y7jAVHv38DF85ngrD7mTMl792i+NnCx4/mrOalXRly0A2ED2XTiKUZjCeELqIXVlC0OA9Yt4izmr0G7cRRUYIE0Q22aLVvGr2vXy3g/e4zqGM2gRt1z2kf8Lx98V54p/80/9JxhoMvB4wiU2zUliv9aus8ppVvGmEGvraGN+DRPIqiHrpWvX0trUNUkptwCM2f5eAE2k0Wg8YDI5Q+SGt3sUVA5go2sLjtGc3ayhUYO/gHn415/wnz3Hk+L0h02zIZDLi8mnNzy4tz540XByvqC6eYuuztH56VoRUGUpnvHX0VaajG/z0gx9RNTPa+hnPJfz81T4jYQAAIABJREFU5BRTZOSDAV//ygHffmuH06O3WDY5P/r0KU3X8vj0hGww5Pn+TXZlzsHEUywrQl1xeSGQheTdz+3hXECYEfWyYXm+xMSGLFjmXlIHRZYPUUh8FfExEqsWMW8wxzXlQFDlApmPkXnO4a03sHLF89MzrHVonTJMnesI1hKcw9uG4AOZMhit2Rvv0znLxeICYmBgFK232GA3YHGmUw4orkWq+v5/chNsJPsTQmIOxEgC+NMM2mSDRE/nU33PxMSS6NuB9MeRMen2ep98VqSAEPsM1Xo+JZEK6wLOrkFqrgDG7UD8Wvaop7qLuCVSse7P2Asexa2WG/HKR4IEqCuVhNZeiuFeY7x2MLU+ZesCdevQgNeOIk9a9F2TgimRe4KWiEwRfcowBZd620glQUZs7YnCYpo20auUBB/7BqmBYD22S/VVIsrECZUK5wXOA1EQRcR6cBGi1ASpaTx4AaKBrIOBjWQxokSkW9S0xpINIz6XmLxA50NEMaaJhnkdWMxbFhcVtlmmlHCsSRIPV5d0oHNykyNlxMcO5xu8b0lUHkHnIyJ4REjKcatSoo1kmGcMhkNkJ7F2iQua6CdoHLlK6DmAkgYlFUFkCB2Z7AdspciiJ1jwLtLnAtE6JwliOkQMNDhmbeDRWcPtt24wnN4hhppgA75cEpqIdwkBUlJD45C+Q/kG7VuMbZG2I/cWoT27haGzEdt2GBlQ2iFDTZQWHQISgdFjosoQ/XlLKdDaIKPCRoOPCt8GfLAbdCogIUrwkqZL6IfF4fCsbMoSdHiCEHRaJVSFPpiSgsY7bIhElSKstgGETKIJAYLt6Lr0o6UnyohoHIGUYnYhYL1FrikIMRU7Jo1ugSDJiibhvtS4l5AaDivdp447l5AmpYjBE4Mn9D9EnxDY35A3uKZarRXX0kaydmKvnlsjkyFEoopoM8SYKUGMsLGgtg4RLKFaEAcaU2jaIoIOZFqjhEDojCA0jYtUjWcx76hXDV1d4rqK4CpitKSMlGSQZxwd7DMYDrC+pe0q2mZJ8JYYoepA+UgsG2YLwelZhS6mTIc5u+MBjXO03RIbI5UfEKWmUR2KdD5Saow2ibopDcPdMUJnyLYjtBDqlhgkg6jJzACTDZCub9swHBLyAfOLJWQ5+29miBAQtiO6juA6hMo2RmO9GV+B5nGDeIFIlcHeg0nafIqIEqDVldSikoniovp6qHWGSm4cjdTLKfrQZ9vTPd4OpgDWBb6ipwO+5Az2Y+OPfoZTegUKXv/L7UzRegqlqtAXEP4X0Ogtu0cPRW4lGuIL8HfcIOdX8/S3Z1iXgqn50nM5C+ihQucwLASZhtg5kKnew+QZpiiQJlFpOy+obWC5sKyWbVo/bZnWT+iI0SNEonTe3N1hWOwkGpBraJsl3rcQoHPQBQiVTe0zzksmVjMeZ/ggONif0tqStrPUPsPbIZWPCEkijQuJljlSZkSRkQ+H7N4EQ6RTgPUErxgohdAZWT4mCI+wLWqQw6igrDpmZ3P2795FSwOdBZnWEMoglLmGFr9y/QjW3luSVVY9VaifM2I7sIrro8Tr03nbuxdwXeUvXn/Li6981vqB3mHbfnZ7Hb704f1vrxF+vQB4vPDwlW/9h45tqlZqirr1eesbsg3WbJ9Qr+52pbC2vY7FJmDetjmbYC1uX9i4EbBI91VisgnKTPFiRBc0VecIbgmiIR9nyEzShEDoGjw9TdDkeKFpPaxKx2Le0VQVtikJriSElJEiRgSSndGQ6WiC1oLOt7RdSdeWfeAnKKPAELCx4XJWc3pm0GPBdJizMx2hG0nbWWKQ4EZk2jFSFimS36BUhlKaKHOUiUwPPHmmMM4Su0BsHbnWiKjIiwlSKEKwiOAoo6fsIuXSwnCH4c4ORa4QIjLKFINMIENq3Jv8jsSUSTMsYuTaN1TkxrA/mVC3DbPFeb9CIlomdcH1rFRKpfsnEnd3LW0vNkcl1ZeICH2G6vqE6B/19kcpnYC2daZKbYtWrN3ApFpNFASZatOJsY+tIpvkhRCsVf1eMgcxvXRlKbc+YPvhem6LNS1x+xhXe8b2drKxP7+EDXrtYEqbjPF4hyAyZmWgnJfoGDiYSKSInF02GCHYz5Mi0WQ8QrkG6TuilqAEWZZSm4vnLaruwHWYnSn5wT7GBISKxK6hax3lLBmHXBdIYxCNxwuFR+O8xXlo6gHWKSwZHY7SR1ob6WygKzxt4ZjsKQYDePzhMec03P5Dw6CQ3Hnzbdi/i9y/xYUVXDxpePDROc8/eEa7eEiwZxCWpKa8a3qf4OZ4lzuTAz6Zz5g1x4S4ou+QRHKXMgKp8fDPj1senXi+8p5jb0fgbx1StS3Hxy2eCa59k6iXOC4p0GRasDuakhUZ8xpMIXjjyxPivMI+CFwsLOeLLhWxS4nM9hFCE+ol0VvObcOPl45/99GM//Lb/xm3PvdH8NP/CGcPWD3/Hs5r/GJCZgy7B0OQBq0KClci6JBdi28apr5D5oHJrRGrZeTxgwWydYTSMiwUea4Q1gKSYnobzBCpC6RQ4CNFVpCNCi5WiroWrM7nWOthOCQqRYiG4BXOwbKO2OghlsToWJFjo2DVBUSmGBxO8B7aLhVJxigIOhCVZLibA4bFaYuVEasUxIrYzFHCUuQKFxQ2QrPoiHicABs8y8WKYa4YDwwqKmRQCA9CKbJihIuCukv1USpahHWE1lEUBlNI6rbB2xYph4gYGKiICo62rFDKo6QH7157If6qxqZwP643BVg7qakIdkuufbPhKYTQFIMbDCf3ceI2pS14dl7Rlk9ZnPyAe4f3uHfjPhfmkixr+ernP89kskObj+mE5HzlOT5tePbpgtnzU9rVU3x3SvCXRDroKcE3dvf44298lUeXFT98/CFV/QwZZ0npTRR0cheHZN7WLJ52/Pz4gt/9wpQ//GbkzaMJuwdDPnrimVeORXuT2huMvKCINVMtGI9G7OztEYnMGzh8c4wWHj8O1POah48lBsHIGGS+h8z3kbZBRYe+d0SXG97/6c+5sWzY+fo3kV0JF8+IYkLQU2Q2AZUhtHhhV4YraaX+ta5DOIfIDCIGNIFcgikSd957j9IZQpmNAQprCoToe4gEEM4RfYdQegNGJLclOZi+F7CQUiKFJoYtw7VlTTYOk7jix7/4FV53pEbWESnD9WNsU3jYfrzBvDfoIzEhiev6i20BjtCj6L8Vo/86de04Pa359OeB49PIG+9q9nLFnR2F8J6TJzWjkWTnpkEc7ieBpHyKUwUXdeRyZXn2YMnpk0uaxTNs/ZzgL5LwkQhIocmznD/84hfI8wHf+eQhq9UcES5RJOq5k2O8GFLahnLh+V/+8pzDPce//uPA5GDA9PA+j07O+ORxR+X2KcvbmHjJUHl2VKqxOJzso4zkbCkY7e3z3ps3aR8+pTu/5OkzTd16irwAVSDzm0TXEfMVxcEu4mCHh6cLlhdzfu93vsR0amB+AqbCD+8j9QCZjRMg8WJ9XyQJGkF6zTloGhJnXW85PnFrnl2LqF547oVji+u/vvQ6V2vk+vq5emb9e8JT/nFr6J9+fBZQksa1AGr9HKQM8tb3W7+wqYURbJgPSfHtet3KtuAR/fESBS1c+9z0ppCobtKRZYrR5B7Z4C5duMWsDNizFYvTH2JXz/BvfInpaMh5doqKKSDJiiHD6R4NitnC8eRxxdNPF5QXz+lW53h7QfB9VlcIpDB84c4dvvzmPf7m8Ywns2OcPUHRomRGEBmdmNJGR9N1fO/9/5u5N/uRNcuu+35n+oaYcs471thV1SOb7G6BlEXJhsg2BJiAYQMCbAN+8oPfDP8rfrVgwIDtB8MgQAikYAk0QAoaWqQpssVmD6y57q075BjjN53RDyciM6u6ZRRhutkHyMpbkZF540aefc7ee629VsP33/P8g//Q8uiB4J3Xjlj2PT952mOZ0HUPiUVDECsmwlAbydHskLKuaGzKdjxf3YP1hjiFy6uCi8uCQ61JSqNGD0EUxGqOH3qergKih5NnG15//au88o3vYBbvETbnHJeevvRcEiEG2q7NqEqMKBJSCUaywACpKpmMx3z9tcdcr5acnX1KSCGrQhtJpc0NyqRMiZAKpUxuaIhtfJEp6SmBDQOkiDIZbQrcokKZOZFQW3EnpQoQkhAjUimqus7sg3Trc9kPLc47UpEtUoauJ0vo5X9biDHLrstbsaLs7Spuztu4nfvaoaZ3yrrbz3cbFIkb1DX//21efzvSwe0dFONt8f8F1hcupqbjEW++9nibBOTKWMRIJSPExMF+gRYwNhK905MPAeHtzZBhcgJ8QOochH3rSKVFuQGjFFIrbLCEGFBlsTUUzaiTlIqYFD5JBu/xPmblI2FYXVmWzYCLnhgtOg0oV6G6iB0iG5uIbkNwKz744Qode+zKM5oJDkYFft2zWvV06xWuWebZjhTJ0g75F2ikpJQKHz1XQ0Pve0J0CCoQEcjoVPYREOSJIkNIhsvFNb3t0LMjxtWI19/+Fk2bODs7B7/C+wV+FJDVmPLglNKULOcX2MFhZEfsBlxMWClIhUKJbH7stz4JstKkIJEoBhLnvWdz9pLw3g/RRqIf3iMOPSFAHBdoVaDHNUKVoEfEs+ewuUY0a+JmoLg6R7QdddmQ2o59vyQRwSWE13ipMs9WSQrykKHwDqkFRpTIJDMaGRIqQkyKkATCRqyzLLolISq8M3ipccJQjxSm0NuAltRFQmiFMQZdCorJtnuWBMNW6XA8NVnIggnBBRrnkRiErImiRsqKqlZoJZDCEqLDrodM2ZMZlTJSZ/VIF+gHBTGQCkhJErdqcDF6VFT4aLGDz5B3sPmADgMSQVVkkZXS1MSocF5kVaKf89oVTbcDmnwGhUg3fi+5m5Nzkpy4hxQJMaBTQIdA6iylrjh59CaFKuj6Df1mgRI9zf0BozxqlA/VrrE0zcBmucH2Nl+gcYDYIgUorTiejZnVhhfrBVebjq7bEGOBVsdEmu2FN+QOmSiJGGIccX7d8hfvvsf08IjxdMobj1+lC4JPzhuiswyLM0Q5MBxMmc0OGO2dslovGJoWmVq0dHjn6QXEukCS6XVBBnzoGI8KCl3TD5CsYz70VKsNcX6GVBY5nSKUBXuWu+RyAj77zKVgoW+IF89JTU9aNoh6CmWdEVilSdXriBgpUqKWEqOKLCefQJoSqQ2FyYPCNoatgfH2kgoJ6zxWmhtEbPBhq36/FbVXoI2mrCqMKW7EHRK3nbmb3POm4ZbRiLtE1Lsg0U8niJ+FnPLlk2fAbh7LG/DOXst/llLc2YOfy1q3f1Tq1kg6K+L91S6yv5F1J4+/ea9FghggRAwJlRLzTUCmACIQvKddW4Z1j20cqgBlJENjaTvLZtnQNe02fjzEFkFASsnhZMSkrlj0LckONO0aawNKHZPiQKRDCA+iIwkN0uDimHWn+NH7HzLdm3L04CEneweU431eXkuWm0t8c84gWoaDAjMqqPdP8M6xXi8hdAgbGPoBm8CXGqSiMLmbbdOAMoKimhKlZrX2VHYA5XHzS6g8sh7lYsieAftgijyDFQUpOgiOeP4ptC3xag3SICZ729lgCffuI4rDbYMBSHELgmwPt93GTVuRijviCLfd8DtQGNxs8M/ssH9PIXUXLNs9FmP+XSspfuY+/X+Pn5+9bsi7NwMt/LXHgNyaYu9eT34LPysmcRdZugtS3SBMnz0KtnfMbbV6V2gGtjM4d37mjQAAuwR2RwPOggQpRjQB6bNK9HR6hJiVRJHo2jXdakEhoRhNEcpgSk3rEt3g6ZuOftMSfP45xBaRBqSU1MYwq2uiCLzYrFi3G4a+R8o9hHLE2GxfdbdFaUoCNSmUfPzpGZt2zf69++xVNV9568usOsGzywvSsKLv5phpQE1nFPtHVKZivrhCdA4V16RhwMeI1ZI0KjK9W6hs2UFE1gZlJEUURAWL1tEtrokXT1C1whwe86W3W6aHKzZ9pB8CD5Kgrmum0xlyeYnYXFPOW5QNxNkxxWjC44mmtIKRSjgywKSVQUlJSJCEQJU1UmoKU2RdgXgrwBBjIkbohc55/3bmqvfbQiRJksj3SFlVW+/YXHDl2S1FUVe7rbWdq5LoQuNDIIQ+5/tKEX3AOQvRk3wkiq3X93a3xCRgK2ARt2jzrVF9uvOx/ct2aJbYth3FnRi72a2wY0jI7YzX7n78q8beFy6mjg73+c43v0rfbujbNT5FQkw084HkE4cHedC2EOAGy9AMRO9IbkArjRQS4wXCJ7QBbxPteiAWGjWUqHqMKQzD0OO8YDbZR2DwfSRpTVKGECXWS3o3MFiHGheYVHCxWHGx2DD4ASEkZdpQuIqiDbSdhx6UXSI3Z/zJez+gkILD/Xs8OIVHeyVuvuHqckWzuGTYXBB3iEKygEMAlVIcFCWbYLnaXOGsJ0aQ7Gf4MF2RCy9L1lU2wIiUCj59+RytA199+9vsTU94/O3vcvbyY64uf4fUrXDdCnlwBCf7jO69Ti1rnj+9Igw98XpOlAknwElIlcYAJsEq9AQk1XhyM1Q0hJ5P+yWL99/F1ZdUv/kdije+RDF/QfIOzBioIO0jVY3UY8S7P0DNn1HNF6SVB/UxlBV6UmNCQLgWFxRDLOi9ZogKNx5DpSiSRCbA9iilKEVNDBHvAtIHVIxEDD4ZGCy9d5xt1vigCKEkaEMwBaf1URYEKWq0UlQAUhGLEj3SFHsmJy0RNvMWZwP7xyWmVMSZZr12fPjxGiUFpVQEsUbKjv39ktFIobRjsB2L9hpkvgSN2lLCoiP4gVYEnFFUaSAJifd5jsYHEIVAp0ToPKIP6NQhiWADUhtGkxlFNWZUTmmGSDvk/fFzX9uD4NYY73ZuZfvl20NC5E5RSrnwc8HjgsUkhwkSNh2Tkymnb79Be/aEzctPcPMLsC3zB2uUHHH0QEKATTOwXjYsL+f0bZ/nj0ILcY0SgroseOf+AV5KfnL+gvXa0mx6CnmIMQ/w4gkhrBA0CKFJ6h5QE9MeT15e8OTZj/k7f+s7fG1vnzff+QaprFn9899neXVBf/aUdDrBfPkVxOwB09ljLueWq8slaXGBlgODyvhxmJYUCeqUaJzF+iX700eMpnssn3esOosMLWW1ID7/EI73UI9OSa6B/kMoKtCa5GNOdvsl8fI5/k//gPRiDh9fwPFjODiFo2OY7cG9E2QMlABSs19NiFIRpERVFbIoGJU1SiqWdrgx7d41rvrB0w0+y7YCy7bD+dwRTuQbp6pqZvszymp0s+/usP0+231OWfpWbQux3df//YXUT6+djGz2HMpqhZ+9fD7rerWTbwdBilv1ppsNy2cvspjlxX/hi6nPrW1eikweHT0lCRPh+ZVHS8+BdDjnWFwN2PWAbRz7e4miUPRXjs2qY3k1Z7NYZ4pxtBCWec5EaV49nHI4HfFkdcXGBlarFpEqSvMqMV7j3HPAguhAnpDkmMABy9bxh3/0b3nt0X2+e3DCq49e5fC1N/njP/u/ee/DdwlXz+iipXjjNaqDQ6anr7G+WrD4+Bq3WOHMij5FXErYykApqKUiRGiHNbqeMD46ob22rC56iB1WW4aXT4imoXjjPshI6j8GcR+qGYQt8jisSf0G/+e/Tzw/gx8+g2IMD9+EyQwODkiFgv09bsSCrLtJgNgqle2GOoRJSK3uoPLcSZ9uV/rcPGv6XB62o+XF26PyTpGV4+emm32DxNy+rF+E9fnXsWt+3A2rG5qu+Ozn3VdvvIPuVJifp/19JjHdJrB3z55dIXX7jNs7aPfOpZTNZAfvGEVLmRxqsIDl5K3XmR7XLD/4C1arOfbyjLosOXjtGCUrytoQ7UDTDDTLDc1iRfQh/x1hhYgDWikOxxVvHc+4TJYfX77ketXTd4laP0DIhHUfIZIFViCmIGckZgQqvv/jD6mKgd/6zd/gdP+Qb3z1l3l2/pLr7/0L0vqKbnGBPnyIvH9EefwKI1HyyZNrQt/B1UuiTFgJg5bEaYVJiSJBbzd4NNVshg6asTwiug3nq3MevnyG/7BH/fI3qe8/4DsHE1bLFcsh4r1gf3bE44cP+eqX30F88H3Ekx/DX76EZU84fZ1QjmiMoe4FezrSp0QfYWZK6qIiSEVSClXXKG0YVyNcjGycvWEHhG2cNtrhQz63fYzEptsKeGVhOKRkMplR1dXNTK/RWfxMFeVWvDNmnyqR1aljSAxujQ+Ooetx1rFeN+AtiYSMDpJg+y3bGfeEc34rsZ4L9ey7+tP3z+6/4qbxstvCnz8REqRbVb+0zTND+P8JmbJNz/LJJUF5gghoCUYI6v0RQgiMFsgU0KEnpop4PCZ0kjgolM6mbKpzpADV/h5D51lc5mHW/uIaNR2QdUkRFTophvUSRIlUE0TKb75zlt56IGBMYrlesrGaIQaCVIhyjEwF0oAXnjYODJcBMwj+9hunzETJ8+4MJSSTh29g9o5xPrJY9nz6YsmmaQi+gbiAtM4HZZIoJVClgWlJahOxz1xPkRLQkMfxtgXYljKVvaQspAHIg+gvLp6z7HqsmhGM4ZVv/n3Wz3/M8sm/gzQj9Udcrh5SUiKtRdiOJD1OQCtgdjLh/vGYcNGSNo7jWYE0hsEc4JxkowKp9SyXjuHoEfKdX0aefA05PUKYA0gO1Dh3BK1AxA0iPEU15+iXC9K6J7UBrq5IWuMXBoWgjAnQhGQQKVPrFILkPItnT5BFxWh8CFEQ6yVRViArcD3SRYTvwUPvoQtAVBTaUExKdD1C1WOOHhwx2hvjjM6IV519qCg0olDIkaIfEv2Q8BGkDSSpcFFgg8QmgdSRECPNEBicxfmOi8sGqSJRNHg/sF6tcHbA2gaReogNh2VkYjJBU0aJD54ks3pQEJlqZaSiUAafshqXKhVGSiqlt3M6WUESBEUBUyXQ+m/iVr0zd8Kd5nnaSXTvOpJbTnSMoPONuFy/wIXA8cnrJL2H0SM6rzi79ByNJjz4yiusnmr8pqHaO0CNJ7k77QMXi57FusPajmiX4C5ReIzUFEZT1wXpoMI5QXvmCE5QCIFMLSk1xLQiiQGlCqQqSVWZ0W17SZIbUoRPXp7TBcGbzjDeO+CV19/m8OSE5+4aWY2JwwHr5pDnHOHbv6TulqB6grBspECPSl556z50jnSxZu/AoOsCPR0jixGhV7imY/FiYC9EmN1HTPYQxRFCNVD0CG0QwpNwiDSQuEQMLxAvP0FcbGC+AudgeUE8n0A1ws6vKbuB3zw+4LqqeNEFUBqhDVIZpNSc7h1T12Pq6Rif4LJpcc4z2IHBBvohUJoRShVcbTZ01rLuF4QUSVIwGo85PDlmPJrmoeftALnz+XcfEEgBRoPzicEmlBYoBaXOSZaUt8lV3iYR+Ok9nH2ycocxpq3Hyc4yIsVbpajt8O8uIRNp64eVN+ANNz9fdLe7VUiBMeozkrW/6CsB9UhzcjpmuRRo4wgkVq2n7ROjKvHgfklsI+2VRUiNmlQInSmf12vL5bJnGHq8bcBdIGODFhqtFVor5H6Fn5b0LyTDEDAiZ60pviDGhiR6pDQYWRKriiQN3s2JMdNs5+sNf/qT97i36Hi08dTVjLe/9i1eCEvfLBDxENsf8nJ1SNh0lP0KKRvC0DNIiVWS40dHlEbDRYMUgpP7BZgJoh5tWQEF/cUV131HGB0gZg+gOEWohFAjhJ5k9AwPKZC4RqQ54vIp8uUZzK9BLsH2pLIiVWP8+Qv8D75POjiB8RT1ymtQljcoa0wpK88OeQ5WCIGaTPJm3wIpIULwEdt5hFaIQlPWJovDyFu6Ukq3u17I7ffFRNzOCZltxtT12dDUaIFWgkKLm8LqBqi56ZR/PobyY7c1xq6Q+RlP+/+yJz+fCKaf8dgWGdp93hWIbN/H9Jmq6PY1ip3k9K5gjQmxQ6d+qli7RazyR7wT99xUoD44rhcfg0wcHD6kMhXKlCwb6GTg8cMTyvsjFjphtGF0fIocjei6nsV64HzRs2l73NCR3DXSLzAyW9gUWlHPajgd4+aRbhmRSVDICOGKiCPSkgTZtsNUpLIi+I4YNiAtLgZ++OEnPJ83fMlXxELz5a9/i/mz97j8aA1yRhgOudwc0iSN7lp0vyLJASsSKynYO97n/ukB6XJNagYO7tUIbXDFMd4rmjIRlx3XqxY/OWL82jcxe68hyz2EqhmZI779q3vEmCiVYTpWlOWS1J3D2aewXMLKIfkEpQ1JFbzWWf6z+0e0QbAJkoshsLARoQuEUkhlKIuKe0f3KcqScjxiM1hW/cBgLd55ms4RItTlFB8SF5sNg+vZ9OvsYiAEh8fHjCbjrdeXBBEpyorj0/uYsqCsS87Pz7m4vGQ8PkCbCusahqHj2Scf0bYN/eDuzA0rosw0wJS2BsIktMqiKSSPENzcQZJcAO4sQ3Z7WOxiIZFVendbVMrbmP1c8CkpEUbfyLp/kfWFiynfWtYv58iJQkwUhZIUSjCelvmg1wIRHXIYkKZA1WN8Ewg9SEKG5nWG530xpm08mz6Rug47byiiR/kKU44QsmDVbUjSU4xzMSVCwnuLtV32alGSfrOh6WQWOpASYWpEUkidiCLQJ8dwHRCt5Pjv7HNvUjH/4QECzejeI/R0D+sjy3XP+cWarmu37tgrSJttp1GipUAZRRoVxCFkrmYS5GN3QxbuDsBWTUsokJoUO2CAlGk5l/MLik2Ds4bZ47d4+Le/i4wd6/MfAROiPWCxPkEnQ+E8yvdEAkEIBimopxX33zhg48D5jkcnFaYquBQzul7gbE/nG9bBY2cn8OrX4eAtxOgAORohhAUq8J7YbMCuSP1zRHOFulxBE2EA/JIoBEFkZZbClMQtHU+ImDsMSKJ1rNseUdTo0xqFJDYbklFQTBF+QISEDAOExOAMNkiI2ZdpNi2oJmPq6R57x3tUexOcTqAFo70CqQWyUCQliVolG4LvAAAgAElEQVSwbCKpjQwBks2Geikm+iCwEaRKuBDo7baYCj2rpsN7i0sLYrSEoSMGi7dt7nQEONKGUaUQBIgC5z1JaWRptl2UiJIarTJSEGPmHWsjqIxGCQ1sRQQSFFpgKoH+wtH1173ywXFXoSnd8IN3XZnPty1h01zggqMbrtCVZKz36INkM/fce23Eo9dGVDbSmYZyMkPVIxIC5yPXq4F1M+DtQPRrhL9GpoARmnFRUFUFcVbgWkE/CFKQFEIS4zwXUvQkEVFqBLoglQUEi/OLjBBLeHE153I9IBhxctzx+t/9NQZ/yOWTPyWZMdHusRF7EGcUXaS0DUIMBDydkoxHNfdeOSYsO5qNZe+wYv+wolU1g6gYekknI5dPBtYhEkaHpGof9BFCj0D0CHR+PaHPH+kK7AXy4jlc97DqoduQtESoHDf+6TMMml/bm/JMlzR2iVAaZQrkthh/ON1nb++QR48e4oXgw8sFvR1o2w2DzbSOSX1IYUa8XK3YDB1ny09x0RFlYjKbcXp6j1E9xruUXecl+JAIMeFC5tQLIbAemj7eFFOikhSaXODc9OTZdqHv7qptt2/bnc4y7NlL62an3YG3dknZDd0i3SZuN9tOfvYiy7Sf3On8q1xkfyPrc3lpVRu0URyfBpCCZZvoes8qz75TVIahH+gbRzEpKScT0IqYYNVY5usBaweCa8FfI2KLkoraGKpCIycFYVYwfCqwNmCEINES4wUpWZKwSFUgVEEsDElpfFywo6Cvu54fffiEdRNIVnL/l77O6SsPaS7fIyoLcQ837HG5maJbQ2k3SHqisDhT4ArFwcke43FF0wSMTJw+GGFFzYaKGDURzfwy0A4DrpyS6iOEOUKoBEUWTCI5iBaCQ8QFKVwirl8gLs9g1UIS0MyJMhu4h6dPCOWE+Oo7pKNTqr19xGS2RTAj3nti7witRbqAjAlzTyDqCmRG6X0E2+dZbFkaZF3cAFu7AfwY840eQkLKLALjQ8L7lAWPuN2r7ZB/+dokSiNRMtNZ5Z2OODeNq91jt1DZ7ZYXN1+/CYzd8//agdlbqfmfQpd2ReDuJdwpqn7GVXEzd5J2CPINJHenKXLnn3S3kXfzd5Ib0rsZnZAci9UzdFHS2Wt0OiLpCZsui3p949UDDsoJajkglaY+OEBWhq7vWTWWq5Wl6wec60l+gYhLlJBoqRkXhmpckg5r/Noz2IBIEiM8MbwkpZ5El+fI9YRkClJpSLSktCFKj0uR9z99wfS6oRATDh4/5I1f/TYqNSyv3gc5Idg95s2MNkqqvkMOLVE4vIBWCk7HFQ9eO6EJ4JLg3r0RpipZiD26QRLCQNtLFsOAr2eUp2+hxid5Lt2U1HXgq9NXsviVt4g4R4QXpO6KdH0G6wGagHItSSqkLHioSk6P99gkzSJovn+14X3fYrRGKo2QilqXvLJ3zGxvxv3797loWl4sN3R9i7UDTeuJUTKbnOIjjJcrNsOKy/WLbKosEifHx0z29qjH4+wZmiyj8Zg33nybejxmPNvjJz/5ETYETu69zmi8h3UdbbNhuVgSEZj1OqNdZEGcJCTO+0z7JhdTmRIetmhU3Bbnu8bFHSR11yjY7cCUBUjutjc+axa/bXKInPffKE9+wfWF0712WPPs8iOOR/c5mJyQmgXWDrkLphVFWSPxyLjBUFJIiDVEUxK6Dcl7inszkjL0eoxbtHC1oXeCzgvspqeylv3DClNIpJDZtScNpOhJXkFyGB2wTYMbHGIYUwRD4QxliMzKAZ0KRrIiFJJQgO0TrrX83m//KVO14sgljk5qTh/v0wI//uA5n7z/lLP3ntAvnoM7R6aehCeKmI0JlSZFRdNqfDhCyDEivg9pSRbw3qpaCQmyyJxRGRFmnyQNcVhDcJAcwVvWyyfs14E3ns+YPSiZfvk/5eUPSxafKhZX/xoV1hwX+8iyQMnnnD54wNd/+VdoV5KzM8mv/MqI+/uKH/3xHzM/n+O4oB88i4s1Q9vSec8/+Rd/ynsfn/Pf/Hf/Ld/+tfsoVZCWC1a/838QLxakTxco2VPoFvHeJSwTDAl8QsQsoa2lRMhISn47Z5SNgEspuWwHOqBRFdIOTM0LZFPTrDeUJ69T3T/FqTEuVtR7EhEEbpMo0FR6iioU1cgwPpwyPtqjPByhx5pCCIKAtZfYATZXnogkCsWyj6yHxNAmgo2Y1JFCZLUKBBfwLWxWc+YXH4FvET4wtA3Btfi0JMSBrt8QgsO7gVImvE6kcpznTaRHyJTnyGSkdX0etNSSGB1NYylNpNKQrMUH0MYAgs5ZFJK6GChQFEKif0ZX/+ey0u3nfHl+jpqRcnGVE9l8QBETSke0cKT+mlhporhHCIq+gQ/eXXD1wZw9ERlrTT2pqKcFl4uGl1ctZ0+uWZ5dkdoLlF8jpMUpRyQwGmvKumDVGPphhC4OEeEJgr/AC0vAbQ/IAuox6IpUJLwaIQ6O8W2L3WSfquADF2dPid2c75wfUuyP4Lt/j+u54eP3x7TnF5ytfsSjsefg8G20fEJdBr79jb+FMBPmqxFHE8m3f1Nx+fwpF8+eIos1yJ7ly2s2q4brxQJnHf/7//JP+Mq3f4m/+1vfzTQ0JMOP/i3x/Dnp6TnCDqiyg8USznrEZoDBgvdZXlaBVBEVGgqpOUqSymimDx7RBM/KW1JRg644ACo3IC+XlFXNWw9eo3OO+WrN2WLO2l0xmu6xNzlmcvwInxJvhXcYfMf55iXHp6e887Wvc+/+Kc064kRu8bRDzJQxIQgJOg8iJTSJQiWMgk4LjBLMpgqtgK1M7U69WNz5SCnhrM9+MLrC2Yas1Ji5EVtBdICb5OzzOeGu8LqZ3WLXMY8gdjqGPwsT+wVdu0IxZWe52VhBNFiRCF1iuI5cNj3fuzxnpOCg0IyrktlBzbJ3rJcdL5/OuXwxJ6wvEP2cUliQDisDRVUwHRsGZ+jWFahHGDMgu39DpMWJnkIKSmGgrMFMSKUkaYHaeyNTRedzRPTE4Fgtr3kae145MTyaDKRvvsMyvs27Pxqxuh64fu8P2DOOVw7fRsortLjkzbe+Rn38gM3GsO4kX/vVr5Jsy/MP3yUER+CS9nrN9fWG+dUFdr3h9/7xP+eV1z7iP/mv/yHjWYkUGv/yCe7dH5AuFjBfoYoBkQb4eI5YWOhsfk+9Q0iDVInkW+iBTz4knZ0zLAfiaEy/P8WnRD8EjDIYU6CTRgqDECPkKBIKhTAKtV8jnMB3Qx6F7iENFl16picjlBG0Xcyd7ZjvIIfYClqlGzPt1mf6rQa0TJQ6q6OttWBcS+pKbuPnlsq6cyuQW5nx22YEaK23wjE/h226O/dv7BO2BY4QGZGRmfL9mTpLAOnWVPszHkR3aJQpbe+R3ffcVlG5kbf9uenmsQQivxbJNnZSRMuIih2pvSROS6LcY7AFwSa+/8cvGMmeA5EYTyRChywU1Uouzje8+GhFe3VBas4xsSViGaRHaMFkakAarpYaG48w5QTl/hTBC6zoiCKihSbpCsoxFIZURNz4FK8fMywWhGEgRkvfDzx/9h6F2PDwckZ1b8ze4+/y9OOaq3PD+smfo9yGN6b3qSZTlPiEk+MT3n7nl3Cu5PK65M233uGwTjx594esztd4cU7fWS4/vaJbLFm3LX/0vR9w8azhN/7hb/HmN95GCEnq19g/+1ek+YL09CVKx+xb+tEzxIWDjYXBQ9AImVlVQkkIPWOh0dLwremUL00OmbuBIUViOcGUNYfRUbYd6XzOwXjG7JV7LNZrNl3Hhy9f4Jxnf/8YbSr270l88gyhZdUvWPYL3v7K17h3/wHKGJIQtCGAVKhiQhSSdS8ZHb3DG9WrBBeyGJbLc/JHp1+jrOYEVzB0Le1mRSoCxIizPTE4fOhz8yR4UoxIFCFYvOtB7ix2453CXtzE1d076OZuSZlOnhlF6dYi4M4d9FdZXxyZio7WrXDxABTEOIDd4JUFrZDkocFEDyohg0IQkYqthKNDl1MoCpwukYMnGUlQCis1KjgYPD5EVIK01TxMxC2UD1kRDLyz9E1HjAYRE8qDiZFKJQop2NMaO1K4icRu+Y9PPrqgDHPMvWMmhwpTl/jecrlqWSxWtFdXhH69HfjdGfTmQ08rSSDPa8VUIsQ4Jw/C3qQNuZuqt8WUyB0xZUhqlGk/UWRaQ4zYYUVsK6rFM/ZOHhPffpPlU8si9dj1c4Q/x588RJdTitGMyckJp6+9wcsPHdcvB0Z7hxw/KnDxz9g0EZGa7ZzaEmuzbPgHn55xdrbiN55e8MaXWwrTwdWK9s9/QHp2SXp/jjECMVLolUMNKXtH3IFCt/bIeSBeZOWXKEOGVMN2AB9NEpLUNySfCL5A7IfMl/USGSNSapQSaB1BGFQ9y6bFWqBMjSxKolQ48uyOT7C2ic4lrpd5ID8kWNvI2ibCkAUjCm9JPrBcJ5KPKJ8Y1j3N/AotE1KmjJS4Hp8GQhywtiMEj3cDQiZkSOALVNRIBiQJlYosmBF87o6rTIdzLlDphBYJ50M2sNtGqdtKoqcUsoJo+punKO36oQJxc2neXbtkV7LVopQCLQVaeIzwaJPlUFUQNOuBvlkhZhV6WiJ0Foxpho51Y2nmDcNmA65BxgGBzyimTBSFxBhF6xTeG6QcI4REsWbHiVHbjrooatAlcTv74OsZMWrEANiGGDraZk3JgFxfUY8FD95+laQFH78f6JtPac4/5vDRCdPJHnW9RzVOnDx6HR9HLD9wMDVMT2quLq7ZNJHS9UjZM6zndJuGbhjwNvLDH35AdXjMt5oBpQaUGAhnz4hP3od3nyL6ATFRiN4iGg99yGpkKUKUiBTyZ+FQMlFLRaEKxqMpCzdwOQhCURN1xVgITIzIwaM0TGf7NNYx2IQxLUlIlC6pyhFVOUYoRZSBzrU4Ezk8fsC9+69QlCVtF+myXgzNkAeIhRS4CIsuUigYG0GpIoVMWCW28ZlpTFL4m8skK7ZnCqDcDtuHmJXllFS4m720pVekyJYgf9Nx/+x4+53NeaeRfUs/3X5xl6H9Iq6bJPIOBermtSYKIxlViqqM2JhQMmKHwNnFiv1aUx9OiUhUoRlay6azNMuWdrkh2QYROiQuMzpkRGtBUWr6qLBOIaiREjQNUXREkZDSIFUBRYUoRkQjSQpiPUEEkI0nuZ4UAv3Qs0odYX1NsZlx/PgVymLE++9anHWsLp6iphXh6AFF6SlKx97pfWb3XmX9Xo93MD6Y4rsl3SCJzkLoGNZL+vWSrmvp+4H333tC00Z+fdWAAqMH4vyK8OQ9+PQCXs5hrFAqIZZdrvSz9wkklalCKSIIyGhJyyWx6fCuIFQj7L0jXBJ0QyBWNXI8QcgaoSKxdQjpM866tQ0gSZLPCmXRZ4Es1UfMJKKioO0CIebcwyXoUu6NDC6jugnBoouElJgVAiMTQUeUFAxqV12kbfyk2/NV5Q64UrcCDLtiKlNZP0sF/Ova9j+dDN5BzW6es+vYb314xJ09/Vnw6k6Sun3KTbfkLpL2ucYdu+KRW8x7F/fpVsgmnzfb+0cmtHBo5dE6oSOkILi67FjHluqgxlRAHtel99A2A5v5Gt9twDfIZDOdVESkkhSlwktJbxUxlig5QmERrFEyZXqoqkCXiKImGU1SMdNJyymuC8SoSX0WkVmtrulXBWZ1xezREfLVh1xdRi5fepr5JfRXuNkjilJjRnuMj0+49/gNLs8i65XHjEZMjiT2R++yaQIy9QxtT7u8pNt09Nbz7NkFzSLw9b93zenrPVoN0GyIn+amAn/5CZQKOakQ1xtEG8GFbCeQBEmypb9lNpGQAYVAFwVHZkrVb2iCJ5Q10pSMAB0ionPUM0O5d0CMkpgyFZCQMEVNVU0YVSOSgCQD5eYC0RScnD7i9MGjTP9GUISIC9AO4EPMdkfmgMmBZr2Y47ouS8ILwWh8SooFk8kSyQpvYy6MSNmHy2fhsBh9TlFFRMWUrWjIxbjY0p53+/RWLn0Hdnw2OO5ae+xYFTupfu6e7V9wfeFiqprV3HvnHp0feP/DDzmNa8ZxYL7IQaFjQCtJXRhKLRhpmQempSR1Q/bpWfdQVbijU4Y+0Zl91CEczBJidYXo1tiQCNay3AhQkemsAK3xqkBKKFXi5XnH5bohhAHvA3oZGAXNiT7k3umUb3z1PvXjkvpxxaA1Q4z8yT/7EhdPz/nBT17wqZVMPh0YqoLF/n3a8Ce4y++Dv0IpT/SWhEWS6V1FURBVVo7r0lOCfxeZmm3wZwPaoPaQeoypTohhRfSXWHdNHK4RaSebpUkp4mLPs1XDP33vGV+pTvnm6RHtXkv/lmHRaOwiMZ+fcfr4Ab/2X/33rM8W/OR336VUgfs68oe/96/53eYa63pi8KS2JYRAsJ4QIh5JGxODc/wP/+h/5n/97d/h3mjgnhj4L9tzppuewnqkJV9gLm4Nu273FYAWkiSyqagWAg2UWpIKxai8j5UllyHT7Uo1oagOmRx+ier+q9SvPobFCrVuefLRnMXas/b7RKWIUTIgWEWwl47h/QZfDgQj8UoRUmK9GfABrDeZfhEgJkc2fs0dh3ERyF6ORU7yfGTwgiALfGxJPlM2U9rQuY4QPX4bgCEOhO0BP9iWpvE0gyWkxLjTyCKRqinCaJQutheypw2CxkIRA0ZEmsYiVQIl0DpRjwV207K+6rLc5895fXbo+s69uPV8kHI35A9KGbQuqHSF0SP2Z/fY2zvkO996m73DfaYPFcU4ezVdPtvn4tPA2dOWF9eW03PHgQiszYhOrOnP3iduFpS1w7oWn9YoYVEqMhpXlHWNNAppr1kt/xwVNhQCqqJGFjVxch/KKZO9R0CibT6hHTZszq4RSaOVzp5ejNm4Fa4Z+MN3z3mwFvz6w7dQUnH5VuQyGuKFZDlfYPsN//F//h9xfHrAJ//uJdEuOaoCZz+54H/8v95D6YRUoKxFeEe7WGN7R+cVnZC4pqX7sz/n6WrB4ShyUAe+lS6579eo1Ry6AdYyx09v80WWRDa7iyLPZigDRUmSKkvYGoEeGYw5YM/M6ELERVBFvtCqo1dQ0ynFvRPa6wtefHSGtYF9dYDdCC5tz+h4giwMm2iwqYL6gMuu4F/9yGIqQVHBpgtYF/FREpMgBLGlQwRGleBgKqlM9tU2Ou+N9z/tMSryxv2ESIGu6xmNNHuzTOVWKlPvQtjKGav82A3Nb6v8lBtNKU9R3aBat5K0WzLFdl+KLTV6xyvKPfAQ8vzjL/TaBlfcCmZ4F/Euz4YVSvH6Y00UgjfehHajePbBCYurjj/58RVvJENXj9lIQ1sKuutnuMsXGNNBMTBs1iAGChWpa8NkOkIXBktg03yP2G4wDEhtmFQTUrVHHB1TT44pqj265lOsXTNcfwQBtCiyT5+usbFn0bX82dNrzkPFr5++zhtHE54+7qiLEvdE4vqOT5485Zu/+hW++ev/gBfvXvDx954zqRIpWf7Pf/wvcX4g4gl9h1stGZqOoeno+kQXDC+6gcWLM/7R//S/MRtrHswCr6Y1v5TmyNUCsZkjmi1Ksulz/ESRYyiR/dlkpsMmU2VaqQStE1EJClvhhaQSCRkKVKcxkxm6nKEnM+RshNkzhJTYnDfYPhGlwXrJ4KGPCUdiuOjwWyp9SDAkweAiTR8IURCTJIQ8/C6SRyk42VeUGsbVtgmlFC4EnI+8ehqZ1omu7ZEycXRYo7XcolBiS1/d0gS3j90mcX/t2/N2CZEbvbuCDm4TzJQydWz3vC0idYsw7X7adjZyS2lPbE1Zxe1zdjXX3ZpsF/M3OWFMEEGrAqUMta4pizEH+w959ZVX+bVf/TL14Yj6UFDvV+iy4ulPDlldlXzwYcOkT+x9dUIqDH1p6LsP6J+9iwpzqsrhuoaYWox0lKZkPBkRTIUyEm/fpV9eY8IVSghG9ZSkK4bRA1Q5ZTx7SPALnD1n0Z4xzJ8jKdBKknRJjIrlsOLDqw3/9EcveDvUfH2/ZnEQCG950oWiGxIvXrzk9MEB/8Fv/Rf0K8sH//IlpYkcm8j3fv89rhbnaJPRlLCcE6wjtAPeJrpUElym5v727/4z/uDf/BH3p45DPfB34nPqzRrdbRC9hHUHvcsfHogqI4FJIIos3ibK6rZBVipSZXh88CW8KmlczuF0MUJVE8qDh+jTA/S9Yz6en/NyeY5JJRNqlteOtrSMT/ZwQtBG6HgVUb3Cey/HfLAYSNoQEWy28eOCJEbwXmagQli8C8QIlayQqUCPamb1KaPDN1lePOXlJ3+R53iFYD3/hL5bEjvw3iEiuVmr8oy7VNleeGfIG2OeoUo71o3YMXDEDrC62Y/ZqkOym+HbhUOMMXt4/RXuoC8+1SEFFIrgHEPvscJhksfajLYIa9FS4ssKKxNRJbTSaKUQ1mXzSyVJLtKalq4X9ENAIjEiU2hE3AamlAhjQJvs2bR9Y7ZtUlLURC8ZBpeHtLsBFzVWwGAlvWtRQ0T3MDmsmRWSB8cVsq+5PKsx45I+SjoraK3AdpZgV7DtqLMTZRUiG5MaBUKRkoJkSSnPSd0kCVKia4VSGmMKvNC4KJBiO5itFCBv51aSYAiBq2bDZt0Qlg2TSnByWjKMDXT6RsoxYHBW0c4dqRqQleXy/ILLxQXluMoHsfWkELPhcYbwtvLIkRcvLljMV6jXJtRVYlDZE6kQ+TATPuX2zufLdgQIlb1EqkNi9BAtyoygHDMaH2DUiLbr8FEgqJByhC6mqGqUOemNAaUZXFa3a0MgqIgfIl2SLIKkS5EueQbt8ZKbYqrrLClJksydwhhF7viJgC5yAO3650JmCWkffKYrmBJnG0IcIFlicoToCcFnY90USFvJe5DZA0EpklSklPK/J4j8/uw8eGU2oA5R5eJRqKxMs8PvUiQbAwZi9ATn7swp/XzXz2qo7A4RsZPGTTtesKIqJozKGXUxozRThChJaILLzml7daIxHil6ikrmryGwAQYHQx/xXUN0HTLZTPclYHYd2cIgiiIbOIdIDEtksjmBUBqlNeWkQI1KJqMSUiS6bNKtUjZGRqlMwUmRmCQuJS43LWa1wTU9RpUcHxjcTLMZGYxISJFy/ISCYRMJ1iFjx2K55NnzM0aTmno6Qg0W4SyuG3CDv5G09yHQbDrOXl6iTkpqY/A6ElVCipiRJxu31Fi5e4O5iR9ZgKoQ1WGeoXQdmBpZjtDlFFEf0m0yqiySQVLcILWOiCdt3ePzYR+CxHrQPnfa+5jxi0iBszAsPKaSmCp3631IJKFJCHzInTqjInqbTG5txtiJQqwbj5aRps1JY9f1CGGoSkH8f5h7kx5Ls/PO73fGd7hjjDlVVWaxBhYpDiJLJCUKarhn2YDRC++89Eb+BvoE0mfQyvCmYS28MtpoC2jZ6m5JbIuSW1KRYhVZU84x3rjTO57Ji/dGZBap7iZlidYBAoGMyrh5o+Kc9zzP//kPcTBCMEYPhZgcrGSlHMKpxY4+JG4ySl5MbsSOA389xb/+dJP5cb1Hr6eocIPy/31cL7+rtHOXqjYtbRNoGofrJMGDmRqUVZSFQo8UzX5BcBFlNWk3Key8oO3AtQ2+rRGpR+IQBLQYQBplFCKzA/cjSGLYEuNmeB9SorRGFQY1zyjynMxk4DUChak6ohjs11MQO5dNSUiSVduhVxvaqmY6nrA/VSRnWIwN+KEpjkh8snQNtJuASh0xNpycXuCjIxvlhK7H1R2h6fBNRwhpt+cifd9zcbbATy17RUGvIkElhAzD5M3vhEpRMEDpu5IkCRAGZAZ2ishnkNxQ8GQFKisQ1xNatZs6BYmQw4RbWoPM9BBOGiLeR5wbjFe6Xd1ZxUFru3UBB/RqN+mIgt5H2j4OrAsg7PJ2jEyYBJ0f9rkOoBPEFKnbQNt5tqOETImm7lAyMR4pYhyYCtcRAIOA/joC4AXtDvgJBsHf5S5O6SUjjB0yP7wPwU+cv5fMKAad1PVZfelvfqaRuj7ru3t6B5hcf0aAFAotNON8RmbH5HaK0SMQlhgV3kGhE2WROFEdSvVkI4MtLEkZfFK0naBvHb7d7qJKHAKPFAGrBrBI5pYgNDEpYuxIYUnED0Y6SqOsQc8s2maMyhzXG9ooMXK47ZIRBBQxCAiJkCRNiJyuN9za1ISqZWQ1h3uK1dhApZEygQCfLL0LtJtAynpS1nF+ccnz8zNm+1O0lsTWEXtH7IbYn8hgXS5D4OpyhXOO8as5ZREINhLlAFiJGBHB78DwwWzjhU29AmkRegTF4RD7EnqELRF5iR3NkLJgvV4TIqhkEDJH2xKUxhF22MbAvBJpuJNTAO0FTiiaIHBCE4VmU4NvPUkLohC0fdzpnnaZieG6qdmxF6RG6KGCMmrQRJlM4Zot48n+LqLIo41FO4OQamC7wA4YloNboFQ3zZSIL2t1d9PW6735GfSAlxoo8Zkzdx3u+7PePz91M9U5z8W6xvpEQaQKkjoZQtcQnKNdO0igZEuOYCJgkueMrEWHbiiuOodXimdPWtYdPF0lolAkpSlcRx48k+OcYj6luP8KPgnWV0uEkyjpiCHHpxITR4xF5OLiKavtlufrJbVzXLQ14pMJf/Dnt1HFPro45Nd/9S5ffGPC1253qFcKvvUr36ZVJet8wvrThof/9xmLj1d430LYIlKDYdCTKCQys8TJiK6zVJuc4M2L/AsBRgqyHO691qNSg6jWVL1jIwswAhEkXpsBz6k2pOBB5oQUqeszPnn6Hl5v+PK3v8XXXn/A71/uc1pWZFGTkuf3/ud/iRFzxvoVnq0es3z2mLau8DHhm0GfIKIkhUhwbrdFJIaESZEsZozMnF/77/9bXj1U1H/8L5HPFhQXDaJP6G6wx5ZC7lArdrQ+SdIjGL2GvPNPCO0FdfUYszfBTEfo/QcIVaI+PcN3jiokAnuMsik+z3EF1MqwIWcdLcsQOO0qOvBh3gsAACAASURBVOGoXUaPpSIjEAgpUbs1XWjxMYGUmHKEzizFVCO1RpmhMUMlilJjrSTTCZEicdvgGse2XaMySbZ/h+3VFXW3wPuG6B2u3xKiw4fBEAQCQmiEkpj5jOx4zpSBondVQx8ltQ9Elwh1RGUCVYDNS4xVjPcPKDNFZgQhBppqSy8czRaSjzu61M90Fv9W13UmEbwoWq+bJwCkQAuDFobXjt7hzuEbrJ3Go/l/3uuRtkJPDQ/utvzKV9csHn7I2aP3+PK7v8adV99ATif0QXH+/YrzZxXbbU3o1tAvMLHFGIk2BqUE7E1ozYjTk4Ku7mkxSAmdGDREWSZ58KBnb79BrDd4J7FqTFaWuGyPVisaY/CLDWHTQCoRRM5WpzhR8b1PZty6e4tvf/FtPk5jirBPFiUqSr7/Z98jJsVxcZ/OGf7iw4+pqwUbD22VMC5gYkBGT321JTqHsSVWSibRMxOG/eyIt77yNu9843XKh/8nzeVHjM4ylAjItUcIhVAlN835rhFI2QEUc8Sr/2SYCFw+hEyijib4bIQrpjz84EOenJ1zf2/CjIJM54QET08e0rvI0eE9TsOKy6srysxizYhFqwi9pMIQhSSg6Lxj29VIo1FGkZUWYxVmJJFaDpl8CqxVg/NqJpF6qF1lisOlHHucDzw7SyjRo9kQgyHFjrLMyDJDWebEGLDGkGUZMhWk5IlJDtmDIexszQcXtEQawDYxgDPX95kQCqleMphIwwV2Ddr/XOrJ/49rYEQnzk+W/Mc//hFPn695/GyF0NPBeWtvn/Ek51e/NmdvrvnKO4dUD2Z87q19vLJ4bVh/2HB+UrFeVDTVltQtkL6j1LsmCcimI9zelMvzgs0W6miIwuBUGppbK7l1FHn97QZRb6EVXEpL5WY4O6VNgq0daO3ufDU4sibFqt3Qng/n55Xugq99/au0d2aIy0NSH8ijYru44N/8b7/PRB9jxYj3Hj1j21yxWqxJKaK3CUKHcIFu1dCtVxhToJVhjKdIiT27z527t/mlf/EuxfpDmsd/SN4XqNoiNh7RJ6QcgZJgru2JI8mOh/Nz6104+DyhOiXEBnNrhigL1NE91DjHHI7pTjc0j65Q+Zhoc8Q0g6mh2+6KU6Woup5HTzZ00dBGS5M0fZK0LhFSok8tPiWaPr44Q7lG5XLQQEpBZi1Kg86H8yQtN3ofwZA7eHkFm01Es0WriNaOzGpGo5wsG4wvXO/w3mOMGlQBO1D257dz/xOl4q4xEukFTVHIl6h812G9u6yvlF6Qqa4nH9elvLg+3+nF4Fle30EDvxwtDLkZ8c5r38TaKWunWW9L/ui7W1QRUaXkl79c8drtlouHf0Hnav7RP/t17GhGZy2Li8DJxw1XzxqapkG4FSJsyUVEaIW1GXpSEg6mbKqcs8ucrs/oMDgFUiZGmWI0gS98sR2A/c2adRdYqIKUjzFeUVk7NNynS5ID4gQnE88unjB6LihmkdfffoO3HxxiL2YsDh1FHOID/q9//e8o1IT9/B5Pls94vnrKelnTOnCrOFB2vSS2ieZqjRQKpTIKESijo3SWUZrxhV/7ZY4PJe7hv6Y7i9iLDNFERB0RMgdlQO/quBhJSpOyI5i9Avf/IaFZ0W1OkfslclLgRns0UfL9x2eELvL6wQGjPCezQ5bd5bMLotQcHd1jvT6lCh6pC4IsqLZyaKbQRCGJKLZdTesdfkh8xo4MOlOMZoNBnVRqaKwQ5HmG0aCSgxDoNxXBBbq2ZzabUrz5JVaXj9isnpNlBcRA03bEEBg0uoI8ywgy4WUcWEvJD3E611lUuztooJMO2jx5EwUyvJ8boO+lrut6gvWzQnk/dTPVdo7zyxUTrRgNwiWIAd95og90cSjs9Q55yJCsXaD2HSZ5FBEZA0FItjHSBkkKih5N46DtPdY79tcdSfXMDxVGabI+JzEkV0tpETKjGGW4cc90liO1I0hYN46LZkXvOmoXkK1HVoKPPu6JreV4/piihMkb+yhbkk0MSSzYXn6Cqy8HTjZcM0wH3YsQJKFIcjS0T6kj7YxThVKD30SuEUVGNHfAK0IYOMMjo8gzRRCSq14O9EWlEAhiMEAghp6mblgsLtksavb2PCKboac1YnNB6D1NHQhmgjFz+nRC7zuSSAglhjFkYkAc4tCUCBgQ+TT8JFJZrBlzZ+8Wt48N7tVDlj6wlRuOiNwXaZj2ieuNNdAaopC0KcMHQd9sWHYN532EJoIMOLZ46VhstkQXsBj2i8i+GvJzPIK6dWw3LUWeMZsqNi3IZEnSYITBaEsQCi8kEzUmCYsXgJLk0xJlDXZaglYkrQckRkCRC7SCetMN0wZaJA0qbfG+xbsK52t8cPjgiKEfJlLXQaApQYw7y82hoY/aEuQOLXQDZz8zOT4KggOsRBiJtnYoIpUmCTFkLkRQWgNyF7SsyXL72WLx57luAE7xgk4lh4ZZqWEKLJEYbcm0RSlHYotWBaREU69JvUPGnFPl+NGPGi7PrtguNgTfI3VEW4HvE9VmQb2+QvqGGHdmIWmXJSR3Z0gWIHN0cMTosEoilUFZjZlkmJGF/ICgpvioiDExthqjE9LCMggunaA3ClcYfKeJMeJ8Q9sGLhZLsmKEryLIDDvbR1Yr6Cq6PuGjpS4yehKt7/EEVKYgRXzXk2KHiD299yTvEWqYebroiICSOWU+YT7dI+wd0MclvXmGkY4jmYasJWkhqeFpnQY0zjMmxoJQ9zgpuKwTIUDYJPra0W5qnq4CF7VkLwMlE3sMYdhSa4QPJBdRQmELQ1YOiKxQiiAE6IGGG5SiSIky5SijUEaTjQzGKlQxAAZJD88rq0GrwXFSpIhMiUwM4bJpNFCsikwMe1iPUGp4KlZVTVUluq6kbdsh5NFm4FtChBjci4rp+lK6ZjO97GCxm+b/+Hrh6jdorf46u9q/P+uzlGhjFPO9kourNTHUtF3Ep4Y2GdrW8cknPYsJrFcBlWXocjr87rSkazZslgtSVyNCx2Dwu2MWiLQ7P5akRqgUMMFhJSStUFmOzhRmbpGjCUHf2aHng8Oc1hqRKZooeN5Leq8gN0SvCT4RQkffBZbLLUW+pNs6YhLYyZzUNeh2S2wCTRMwI0UyJX2KuORAQwoJ13UQOmLf0TuH8wF2WiWnPCYFpMjIzIj5ZB8hDnDVAa7YsBVX7EsoZNydnyHwcwislkRKQiwJLcRtw6rx9DGRqkgKAS9qUuWhD4hFg9g4pnoQlEdARHCdJ4SENgptFCYzpKhJSSF2RkEmDPS+ZDJiSnQhoa0kKw0q00grSWoIA94ld5DbwRdMxogRiZyELCGTkiJLaCXJdYGSAQH0ztFfdWSZpShymrqm6/pdUP0QTv/XL/Fio/0Xt+V/6e+8oEC9eO30kuxJcO0k+Bmmyl8zJP5MityPKQTUizH0zTm+niQotbuD0qDUzazFWo0QNaDQuiTElmq7RLiI6DWPHzv6bWJxtkLIHkRA6uF3FFPDdnWBb9ao0A2aNIbMKpHSbjIy1HASML4jiQhaoaxAGjAzi54URHsLH+yQKykE01xjC8MUxUkvqXwi5ZooBa7XhBRwrmW7aTm/vOJ43TKbJHQ+xk4dbBbE4GnbCLakKQqaOOSkJpVQmRrYMg6C7wn9cAdJkdBpmK/1SKQeQDSrc7RVhL0DmtbRiueMRWBPsNPrZ7v7R5KkIEmDSyXRGcK2pm571k0ibod4l7rpaCKcbkF4wWGdUCUDM0wOdxDJE13EGE1WCOzIDtR1tcsZ1IM5WJQKO84G9smOTpqNB3fTbKKHelnv8qCQWJ1QIlFvPT72+H6L73r6qqHvWpp6w2azYLNe0HctIQSUNmjARgckjARPgujwMRDCjsYadzXPywOn3YTt5b394zLym716fQcNWSE/9fqpm6mr1Yb3/upj7hxNuX04IdUt9B7fe1IcSFNaKYp8yE3plOZsVbHdbrBKoRAE1yGIWKVI2qDLEevectYI/LYlth2BBYfLwNffgGKSoSbHJAe+ShRFSVmOwXtMBsXkCN+VxG3F6VXPs82STRupmuekfk1qOn7/358h05qSj9nbz/jv/sfb7N9XTG6/Dj885+zZ/0G/eoiOW7wQRJHhU7crskFjMPIIxYo8PiPQEZREWIUwEnWoUdkeW/mrhFjTtt9nP4vcGQeKicUWivce9VxuI8Jmg/i1saTUQ1yzWdW07RNm43OaxS367AHm9px+869woSYwphUFXn6OVjwlig6ZJWTShG1P9JEYel6Elg1e+1EkPJJDM2FcHPPF/QfcvVvyJ+YXOC1Lvv97J7xL4FUZIWlE0gOtD0kQGZ3QnIaSzbbnef1dPo3wfkystp5KtVz5BV0csr9GQvGL2T5v25IHeqBExig5P99w8uiSW3fvcPdugdxCEyStz5HWoMqc3mg6rTm4c5typgiZQBjBaM+CFkQp6ARUQiBDRIZInjx4z5/92RWbusG4BdpXZOGEvl1ytTqnrxb4pqHvKoJvCbEn7lyFBr62J4SBx9sLTasLGhVJDDbSShmODvfpfOKyapHGIq1lPCoYZRZBiw+BunNIKSjKCTF4tuuO/b2Myd4EY/9TF+TPY724wOQubV1KSZ5nKKkwypLZjNxmRHnKpl2SF6+gRMlqeYVLI3xjuDzv+MF7V4zTM8asWHxpzezOhqNbhygZOT95n6vT59juCpESnRrRp47OBzKdMAhyuY8SBfPwIT5taDKFLDLk1GKOLHrf0pZfIXCLdf0BJla8s6+xmcCOJB+de7731NEUhj5TrK9yfAepPWcbIh9++JSu1hxNO2o5xd55i+7Rd3DrR3j2cHLGhdzDiS2OBmEdo9zSL3vctqZ3NTH0ONeRQsC1NVprokgUCaScMM33uT0+5vkrb7CZGp585zGKwMwIcqEhThiceQxRZCQsrR/TRcv60adso+DDJlApy/I8sfVr1l2ib3uCz8ljoneeOwissYNW1NcslucoITk4GlHMxthyhAuKJCR2pEla4a3BFjmTuUZZhcoUOh8MXpIYSBXNDmlTMWGATEY2657txjPPE7lK6JlCCIkxYE3OZHzAdluxWFxxcrpgsVgyGY8GRF3nTEYzqtjTO0Efup3Fcby5gK6tzW/Irjc0n91UJ8Yhz+O6yd9VdSkN3/vzQ+r/hmtXvO4fjPmlX30TYVsuLz/l6cmKzSqwbQGV8+TTBZotM/mYB1/4HN/6Z/8VJrfkY816/ZjTp58gqlMyt6VROUFA5ZZoGckMKDHBymMm8VOycEWjIRmL2s9RE429myGK11nyDaruEd32lDf3NHuFZLRfUnv4Dx82bDOF2iupK02/tsR+SYg1Tx5fUm977h5tMOUIefg6VCdw/pgoJA7FVo1ozRHJSHQIZFOFbwPNyRrv2uE527WE6HF9ixI9SSSCsQhVkpsZt8dHVEXPaflFzh93XKUFX1cdhUnEMEYIDdGSMCRyenKavqQ6vaI+3/IwwArJZgOdqlmFJWnn+3QkLHdFxhvvlJR7Au8TqQ1UywYhJZPbU+JMs39roDjGJAcNppK0UpGUYDIfEPSoQWqByXcUcKAVAwVQxcGxsRCDq+XlZU+hE3MLciqRaIwBpQTT8YyUAqen56zWGx4/fkZmLaNRweLyku12Q5YZtNZkecbf9m7/8TpwwBDjjTyBHb033lBxXxbkv/ge8RlzGLjunl5uoCLDoRbAwEB70UQNZ3sA84wxw4eyaKkpi5LMGGr3IZaSonyFutNs1+dEfYtg4A+fLxFxy146ZT4TXC3XzLKM0eEcHzecPf8e/fIxRb+kVRInS5q4JoZAlBCw5PKYLC3Z94/pZYcrNHKaIUuNfdWiyz3W+tt417GtP+IoD9yfZ2QTg841f/JJx8kqoCY5vRe0l0OOZuoXnJ/VBP+IcfYKwh0Ry3toO6VZfUDvGoLYo5YKJw7ZiCd4UWNHgmxkaU5rXOPomhXR93jXIxAoHM46Guu5k48YTY7QnUL0mu7+O9RyxJP4Ma/hmesAqRzss6UF1ABECEvVT+i8YLP5K85D4qmDzSJQGceiXdP6SFtLSqmYpEDMIneUxBYl00lJe35Js6wZjTLKqWR0MEaojD7IIR6m1EStCUYxnhVkhSJqEEqQjwYAIgoIQtBLiRiC28C1hL7n/dWGeltRXT7BNTXb5YLNds3F8oL14oxqvaDICrSymGyMycFmJSIFFJ6+29ISaPqIC344r0LcZB0qfS3DSLv8KjFQ1HdfizGhldo1hnq35+MAOMufNFP5z62fupmaz6f8wpfeIleQy8RV1dP6hBIWZQR5pgY7c6GI2hDzHBkFRtndCDxhKIaRePQoY5hMppiYkYWS8xPY+ES+P6c8nA9ZEEajpUYYSaYk+biknIw51jC5NSb28yEl3h3zalOTfemLtC5SdxDFnCj2OW3XrLuKT/7oT2ibjvf+vOVgXfHG/Ujjocwl0UAnhkcCO2wwXT89pEWoOUI2Q8jrTlN1jWxNJ/fRdkJqT0ldQ8AhC0VxPKFuA5friFRjJiNNGhd451g+eUoKATCDuDUq1utnZBeKW+98Hp1Nac5KNsKx6SSuX9Av/wOhfUjauZoIJEJopIyk2A/hukYNLmuZpe/B9YIq9Kzclg5BUjmz8jabYkOvFZ2PtGlw0FFKIryBqAgJeuC5LDgn44M04lmseRi2VHi6GGnUG3g5wvtzPD1Pg+MgeASDlkSEQG4yRvlkaAajpQmeJgjaFCmMYHpgKUeWNDKU+xpTDohKkIIrrrm5kT5A7RKh90M4Y90S2p7V+Zp6U5GWp4RmQ3P1lKbZ0NYLfFvhXYt3g53p9RSK5BEp7i6ESIyequlYrBuyckDvq9ahVEA3DWhNOStQQqBkIrcCawWlLpECVN8NzdS0hOCJeYuwhsoF/P8fAvprzeFLF5mSijwvyLKc4+MjjLEUecHhwQHHR8fsTceMigKb7YHM2DaKkDKCOaTznk1XsXo8Y/V4ytPTEd0PPOIwIQ1kmaTIBRvNMCFNESkCRjCELiuD1COkyhCpglQB/TC9CoK94ojZ3jG0PbE9JdKRDGQHY0IMPFl1dCHjcDzC5xZvFKF9zravYacHar1i27RcnH9CcXzAa4dHtOsxfZdTLxWNCzSL9/GuJnRbJB4hFQpDNAJih0yC+aRAK4GaTPBRU1WaKmkumg2V6wgJjBpT2D2CyYna4HWPFwolNXiLkDkpDg/kymRUsuRxGrFKkU+6BY0UrFPE6RlduY+LW2JqOQ8J+si2axg5UKJAK4U2BmkKbKaJOqfzw3QNKSnyHGkT0jpsCWZk0Wa45HopaBHIXcaRT0PGTO/jcH59wPWOFDy50YxzORhIhEBTV7QCmqbmarHk5OSUi4slq3XF/l7L4FYYUQIg7Rz+0g21Iu4uKbmjml47lw1W6wNsfYMR7sJ/B/3V0EzFlPAh/PzPzn9ivQD8082ndPORQAqU0dx55RZf+8aXeLB21E0EfUAQmo07oFlvOP1AcLGa872/bDh8o2T/QUJqSZlLthboB3MHgcPIoaFMUiB0gdQTBA4RN1znRoUAmRxxvP86wo+heg5hS1QROyswI8FpFWidYFbOKEaSidVcnizpthdD40tG6yXbLnBx8Zjp3px7919B2JpUGVwPZ0nQrx4TWeC250RfkYJAeI02OaRI6CtGhSUvFGo8ApNRVZpOlVy2NUddjY8JKTMKs480oyG7Kng8AVloRLAIUQ75fzHSKcXajDhLOVfJ8rBfs4o9W+nxxtKXdwd2RtUQCCThuAOIfNBQECNaG2ISbDaRpo3E6+ejlOhMIY0kyzVogS7kLoAUvBRU7LCBBD4OjrLOD3u/84HoA8l7jJGMS73rVqBth3iSvmtwvePhp09YbypOTi4py4zZtGS73dC1Dd6HAdx7qTn5sXbmr92TP8286if+m3gBcLzcEF0XjD/hwncjyBc3r3ejR3kpeFcIkNf26QmQ4mbSfA2UaG3Is5zJZMJsPie3GdZmvPbqq0zHEw73Zlibk2X79EFRt4qoJkQ1Y9tVNH3L2fclzjk+/JFgXgUeHA1ZmKNc4DNoVALhEES0GPRfSUpQFqEnCLlGhDXEmpR6YhzqnfnkPraYIJpLYtvTJweFIjucsOkC9Spi9ZijqWI2ymg6R7N6RggexDCNab1itblkcWHYe/Aqh3af+rRgKyJXvcK1a7bdX9JXjwldPcTMoFAyAyMJnUQZxXg+QlqLHI1oW0XbKlY+kPUV2XjMdF7ibU2vV3iT4QL4GAf6pB6mU8IbUhymNmtTsMHyNJac+4Zn3ZYqZbQ+0dpjvM3p3AqXAid9QveOuqtJpUXLDK01xlpkMSZqPaihfaBxjtxklGVO0BFpIma0q+EGggPb3XlQYtBPtt4P4L8P9FVL33SslhWb1Yqzpw/pm4p2u6bvPb7zSAzWjNHaoKVGygGc1tIjUkINxFquJ643H7s7hJf2q7ipiV5Ip172PLg2VBquNEmIkfAz3kE/dTN1fLzPt7/9ddbnF6wvLjm5rFj0LZM8IzeG0SwjpURTO6KxxFGJNgX5KEHfQPRDIC9AsyY3lsP5Hvu65LaZQOfpas/kzhHTOweoIkMYg7EFGoUdW/LpiHJvxOzuFCkZECApkNYipOAfyxsGF35XQPzZOvHRsud/ORnz5PsnfOffNRyerDG/Etl0gunI4NaSSl4X2gG1E6ClXTMl9SFRXkFqSCkMD42oIWr29r6AMZbNR39B6HuCSKjJiPKVGc8+2vDssmavnLM/GiPu3aZrt6yff8BgnDMmJUFIkqurj4nhOV/9B7/M8fEt1p9OOU0dP1wqXPucrvoAkRwSN4gMUUhhSSqQvMSoyNwqVJmjZiOulok+JNa+QXZXVAKCzjkoX2NbbnFG0/pAlSK5EFihkP0gXA6+oRHwUI95mEb8sd/jKp1xGRa46IkhIqdfRuh7ePdXtHHBx+FjbgUPMSCDR3hHaQtmE8NzMWIbFBvf0IVEnSLGCia3Muxhjj3MiBlENcB/XYDnVSKGxNhFXBtpt5Gm7mibjs3JmnbTsl0tcO2G9uIxrlnSXD0iuIbgKkLcmU2Edmi4Byxid/wGe3dSJKbAatuCrpiRoY3kqmoQUpAyxWg65uBgjvIO7XvybLD6Ho/HaKVomw6hJMXeZDBeCA1V07GqW1z4yWbqJxLo/5aXEGJwt7lppjRGD8DFdDrlrbffpigLxuMxb731Jl/8whfY298ffp6bxO8X7mpLn3jcJv703zziu9VjPn6kePjMMf1iZHYgGJUKP9KIDOgDuBYl/GAlrBRJWaSZDehkXEPckOhIUUEP0/IVXj3+BZYfv0+9eTZM6HNDeXvGYtXzwUctU1twb28fcTgljXOWzx/RrS8J4oiEoQ2CVV3x/Pn3+PzRu3z+7pdo13s0/ZhPt5a+dVxe/AnRd5iwRQsNskAlBdYiQ42g595sQllY1L3bbFrFBx8GNsnyZHvJsm9wMZHpGVhPykqCtTjfoPVO6OsKhBqT+oboOzZZzkJN+WE359I7PupO6YDGRdR8HzX7BXy8JMQ1T8MJbdezaipkmyjECKM1NsuQoxlysseyamm6nk3XIpTgqJyic5C2w5YCM5FoKVFSsgpQh4T2IGICNzjktd0ASITGY5Un05EyM8zGGu8TXRc4O93gnMd5z+nJGZ9+8pD1pqWuHW09wWhIwaMHeI+U4mAssgMswktBnkLs0uTFZ0NBrwu7G1fAnasZgIjx71Uzdb1unDITfAaXFwJhDPffvM/9N167rqmJgIuJhx08ebjm9x7nnCzg2R9ueZsxb99OKCOZjjWLXCC6BF2LoCeTkJQkKY3QI5SdI+iHkFvawSTFjTFyyqtHX6NdnLM6/xjhIWiBPZyTTQyf/vkFfSd5ZX6AGhWI4zkq/hUXT35AEHMSI1onEE3i+cmPQNziq9/8RWTZ0q8sqzriYmS1/CFNVWGpUUQsBRKDyQwiRZKSHJaW45FB3joklSPe/1Gg7RTP6zX79Zo+RqTOmWS3UHaKsxYXepxIaGmQMUPICfhA6ra0RrPIJ3zaj3nqCx72G9Z9R9P3pGxCPn2T2Hv89oyKFRUL3hGgSg0M4nxrLZ2DxWUYTGuRCC2QVmJGCpsp8rlBGEHLoBcmDo+yVUgov4vPCAOtse38kGlY9SgihfHYsWE2VgOFN3iWVw3bbY3znrqq+avv/4iqarlaNkwnGc3BiBCG/MwQ3I769De4F17w8178+T+zpJAorYag3Tj8my8YeYKX27gb3ZN4aV728svvvj5MUQaXxbADboTcaczEQAXT2pBlOdPpjNt3bvPaa69RjkrKsuRb3/omt27d4vj4GGst2ujdvzncP0kInrSJ89rzv/9PU55/uuEv/kJysAjMviJwKOYTTZsLkolDGHT0WBkHuqw2oHOUmRHkc4gLYuoJyYMv0F5xNPs8eV6wvnifvnV0IsJoRHF3yqcfbXl03nBnPGN/Mkbc22dTbTj56Ht0vSSKgyHrKkgur04w4opvf/kNDvfnVCdTzkXiBytFXV+yvPoRKrbo2JJkDsKgdYFCk7SklJoH8xI1nSBvH/PkaWT7PHHhPLFZUe7N2D88oOo6Wr3CmxwXAn3s0VaihQFZgjOkrsITWdgRZ3HE97opl/6Ck3ZB6wNOJfSd+8j8kL55Tu23PHLPUa1jU2/IxhOsKDDGYLMcNb9FMhnn64rOedZdCwWY8RSlA9F47CTHFBLiYHC76AMpCcYo+i5Qbzt6F+hdYHNZ0VYdFxdrtqsFH3/0AX2zxXctRuXkdowSOUVhd8ASDEVGQsl+oKgDSuzYWDHiwy4nLqUbJ1gp5M5B8yVA73p339BP1Y6Cqm+OUPLuZ76DfupmSgJWDnzULmnKgz3SeEx3uaVpe86rnUsNw4OobxPJBwiR4AIpRERoB+2RT1jf490l2binnAvu3p4xmc/QxYzKZWxWntA7Ru6uHAAAIABJREFU5vsFxiiyPEdnhiR3Dm9DMA6oAX1IYuiAr/+HDe1G4q1x4thY5v/DL7G8qDldQiUyTh8GLj9ecvb4Y5rtJSE4hmF1HFyuhEGPjjHFmEw9JMkFHsk4txRG0+gR0Y5p1ZQuJlbVgr3RmG996atc1pf86AdPKLKcd+6P6StBCJ6wOkH6Hjt/Fd82+PVmoAV1mm7rqGIYNEYTydODf8y5e0T3/u/ju4bYdyidIfQUazR5lvGrv/5fMz88ZHG5ols8Z/3e7/PqKwVff/eI3/vjM/7gu5coWZDSiD/9ox+yPl3z7q/c4yBfMRGWwoLKM9R4iixGnDxuaDaOmdZEU3D/4B5leUTaf4sfnj6iephhy8+R8jvEO/eJZkT8fqLoBJ+3+zw4PmL65VvE0BGePWRxDo+vBCdKsEma0+U5fUw0puAyBc6LkvRwTRSOdnuO6zYQlvjgOO8iMYGJYkAqncCHMCAGThM9dJunhH5DXz0l9BV9syCFjuh3TW8KEAfDibQTFWoZ0UJQmMFp0mrFrNTs7UbSIQlskaO1ppxM0Jmh61uM9wjXo/LxQFMVECXk4wwEhH6wXsc1uJCIUr3E0YWrqyt++7d/m8lkctNQDTXZjcDpxT3Fy5fYT16yN0ji9be+5HQx39vjt37rt7i2oVa7B0WWZRhjmc3nKKWRSrE3n7O/v0dW5Bhjbore4UEzvJOpSLwmE9nXjnjzKKdpBX0QtElx+rTmyQcP2V6eUK+3Q2ZEcigCQifs7BZ6tEemF6To6RJoW3B/b46zI9psRswmXPaSi8U5fnnGu1/5JbQ1vP+DT5BK8pXXJySXDb/GbktMFdP9W3g1Yvt8TfKOVI9wKbJWG+pVi+sTq9FbrA+n1B9+l+7qgrCtEEKiyzuU1jDLM+6/+YAHbz6g2qzpm5r4+C+xNLz99Vd4ftHz4QefIGKBVlMuT2o+eO8hR3c0mcnRvSQECaMZ2AImt2gvPdWmxgqG6d/BnL3ykFdHR4z6wOrjQCtyuvFd5P4B6tYI/2hDulC8Kaccl4k7X7jHZGaHqZ8ukEXJqtYstwqXBo2UlzlBKh5XBtrBDc73W1xzBbGF1LFxiTYkZBqcANVOKO5JQ1ElFfQ1wje8l3cY5enbFud6NsuB6x+Co6kqtusVfR9wPlFfGUaF4Rvf+Cqjccne4YwEuOBeGG/sqHo3yN+1Vupmd7/4utxZ9r/QTA173vvAd77zHX7nd37np72i/s7Xi9o14cMO+dz9YOmlnwuxozox0F1uZ4nxnYL8X7xO10HTCfpRztVZ4OzhOZcfP6Reb3Bdiww9MgXIJLqck83vMp5pSnvCVnm8stw7nqKMpRodUh7cotMlW+9YLp/z4P5bHN++x+nVExZnl7x2WCKxxDaSfEu6OiPXhvlrb1NfVPSbltiOcF6xPttQmpKm8YQ0ZzH9BovnH1Bf/IBuW+O6HjOaI41lUmTs7c/5yje+SvCOeruBy0dw9ZjX3jmm3Cs5f/4JJ63Hmgm+13z0/jMODjNu3TtgnB8yLQ+xtkCkgJzeJgXD+tN2MHrQI8x0zv7+bT43OWSvmNK/L1HLLeX4FVI5xdwfE7c1/hPBHZHzmpyzdzhC72Wk2BO7RLIFPgmuNoHOeVrX0QlJj0JNC0RuCU9rvPesLlYE3xP9ljYkNjub++uGQSAIKYIQ5MYiood+Q2Y846yn7zv6vme7WtJ3u6BR71hfLQgh4kIiuRxNzd27tzg6PuBgf5/RePTSxOhnWH8DYO5msLRDNm5ipX4sQ+raNjrudnaCXf7k9SkWn3lRwS6Hbve6A6i9y/7hxbNAa0OW57z19ud55dVXuXv7NqNRiTZ2mAxI9RmdFcBhBiOp+W/+6atsVj3rKuG0YrOEy6cbnv7wEzZXF7i2BeF39w9IabGHD7DjKZl8hhcrOmGYz0aMMkNT7BPyCa0q6Vzi/Pwpk9GIf/6Vr7Kur/je9x4zKkZ8+fUxqVGDLn11gXGO2d03aDYN25MtBItbWbayY+lamm1PO9Vczt/loj9le/kdmqrBbWtkXqLyfUaZZZRbvvqNrzKZjtmslsTtgvD4Lzm4Neb+L9zhD/7olJMnZxiVo+SERx9dkBrHrXsFljE2WbQRiKJElAekfM720wbX9xTWEE3J/PYRIptQFweYs4L1I0U2vUMqD/B39ghG068dtg28Xo549XjE9PUDYnT4ywvOTi94fl4xSWNEJrm4quljpDMW1xncSuF8xPmE+8EZwXmi3xKiZ9HFnQOmJoVE9InALrc0CmJMbBcr+romszMUGT01gkSMjnjtBUAgiUQULQLIlUOKgGbwZNjWG7x3SLELgmcXPyCuc9x+7AzcxMTsepY0OIp67wczmF18zHAm/w5ofkKwm9gIXFLk0wkyRbrFls55XOuRSqKMwIVE3yVUjKjkh4DTsAu0BDQJEwJh2zCXgvEkZ39vn7mZsvYlrddU24AInr1ZQlmJzixCq2FMv7uwklREKV7Ye74gjyCIKOCWSRxrwev/9E1aDx+fej45cfyv/7ZiebJldXFCCDUxBoSIg525AKkVWb4/CHzlGb3YEIUkt5a9PEdnU3o7IZoR3vXUzYY7szHvfu4N/vRHHd99fMk7b93h3q2S8+eSpvb01RqZwEyOQK4I2ysIGoIceLMp0lQdVQsX01/kqhrj+39F6OqBZ6rHCDXFWENZlrz7a/+Ie597gydPrlg+fJ8Pn/4Zn3+t5J9/85gffbLh36aAEIYUMz743hNi7fn2L3+bid5npCyZkohcIQ9mqOmUq7MTlpsOrTKMzTk+OCLfu0d6/fNsteIHp0vk7POIyRu0dw/xJtF/CDbAK/mU2/MZxf057tlzupNTNmvL2VZzQsk2aM4Xl/QkumIKCE7sjG67pt+s2Dz/iG59Bv4JMTX0boceSLPjW+uho5dg8jlSWfz2Mclv8O6MGDuCr0nRkcKAMZLC0BzfsMGHB7SWikJbjFYYoxhninEhqQU4wOYZxlryUYnUAh89MnhiCEOjvnOliUKQF4aUAm3TkFxP7HuCVINg+SVUb7PZ8Lu/+7tIOVBYbnDt+KKZeplmIV9GBF9qqG6c+W7+fN1MDcXyb/zGb/Cbv/mbnzm7L9OUrh1uvI+7qYG4obS+eM108325gkzCwecmvPO5KZsmse0S//79huVFx/mTU5rVOX3TIERAqoAUEakF+XgPOznGyC0+1rgksCbj1v4erR2zzuaQlVRRsdysSJtL3jjeRyjNd/7jd5nPCr70uVtUG8NywaB9857xdA+XTXHLDb7xUCt8DNSqoa07+j5Q53fZzA7p3Hfx1YbUdghdYOwBWW6YTCxvff4dvvkPvslyWVNtK57+4RWqu+DLbx4xzjfI2CNiQsqC1VXL44/PGJVHZDODChJQpKIklCPE4R5tu2YVl4xVBtpipyPk3oyjoz2US0wrR6ZG+L0HsJ8hbmeEXpOi4q4ZcWesOHjtgGKkiMs1tjDIW1PaZ55u5QczlCQIwtAnzXkj8RGqZaRa1lw9OSf6FcGtaV3CBQb7WSEw185FmsFEpSzx2yX/L3dv9izZlZ33/fZ05hxu3rHurQkooNBoAA2gSXaTzUEcTJMWRZpS+EG29KCQHWGHHWH7zX+A/gKHX8QHh0MRtoNByhJFui1SHKSWyBDZ3SQBdqMxFYZCTXfOmzczz7gHP5y8VbfAJrspWzaD++FGVWaeU1lVe52117e+9X22PKdtTnG2pK5KvG3x7byXpfVd36kPdhVFgnoWGBYpP/nTP8L1m9d58ZXPYox5nJi+2yVWe67fZ9/+UCil5Bd+4Rf+vXdzv9O63AC4mMX3vkf11YWHxeOoWf1K9GCHAEYyMBoZdr64Q9MF5nXg3UeW9x9Zzg7PmO4f0lQV3vWS6AKPNIIkKyjW9kgzR6ynBOlw0rC+NiZOUs7yTdSwp5w2zjFfnLI1THj1xlV+7f5H7J+c8oXXRsQm4ehRwLoWt2yItWKwdRXf3MU3C6gErpWUZxVlUdLUlkZmTPPbzHlIMz+jK1ts1yP2yhTkWczW9hW++ENfWtHoGqbvfpWz91teeHabyUbCP0s+RuHQKsV2koefHGPkOteubZCaIXk6RhP3thPb2/hOsHj4ACUEWiTo0YDhzgR9ZZvxZMLdeUllFqSTm4Q8Q1xL8NMOeypZlxFXtexFqQqDP6sQ1sIgwVrB+dJSty1VU7F0goWT+FYSElieLWnKhuOPHtE1Jb47onOeugsE0c8AGyVRQoIBZRSj8QhcSz07wtsS1/VmxU1d49sF3rV9/OCJpEep/gyjRUsWeYrsBnu7OwyHA5Ik+QvHz5O9+efH0He8rr/4yVzJpe9w0YC93DW7/JmLIuvC+ECuOklPXXv5awmQqld5vXJlj9u3P9Mzi1azLC70XemLbgH0AiyFhCISrL+2jvVwNOs4nnv+4EPH+UnJyYMDunaG7TqktCjpe//ASFOMttGpIZInlKLECkOeD7gyzpkl6zRxgdUpXVszOz9mnGo+f/Mqb9yp+PrHR3zuxYQbOxkn+5K6crRliQpQbFwBdUZ1OoVG4xtFrVoWvqWuOupOcF48z/k8oZ7/C9pliastRCN0tE6aGYZ5wqvf+z1s725zelayPLzPw+aAq3sZn39hi3ffPkOGFiU0kpjDh2cY59navoIKCREGZQwhN/jxBIo1lo8eUtMhTYpKE/KNEQyGXFmfsIwEyblFbl5FjLdZbke0MiBih3Ge7SJhY5yR7RTUJ1Pa0xmzs1MOpgu6rEYnCWezmg7ww4S6USwX0JSBtvRMH0wpz+b47gjvWpZtIAQBSvcxLRVBAUoQZylaa9rpAtfVGJ0h0QQn8bbBdUvwFrzFh360xq/2mJQBRUCJXsStrks+PXB4MW97AW5d2oJPFVJC9EbaHg8uEKTgyc3+YvH4XRdT8/mSOx/eR2nDZCNnsVxS1y2LrFef8li8D7RLD7SI0KCV6JUa6RVkZOiQBDya1jm6tsXO5jQ+YIqATixKW7SMWB4taXWEKxW6cMSbMSL2vfiC7L2FpOipFMeV77mTRlOVlulxxVpXM2lrPnr/DtPTU/Y+/yzZxojB3hW6ICkmntkAEH2HAqlW7h5glEQoQ8DihKSJCqxuAYN1nqqtGY13yNfW+aH/6BWapuJ/edOwv/B8+YOa01OBNkMOwxVKu8vz104paDl4sMayAxe3LI3mZJb2HlHtFO8dXSv44K3fZ3r6kKuvvMqaitnfusFydszy9IAizRmNt5is75IXQ37n1/4PAg1H9/uEN390j7fuC37rjY95sF+hXQ3lPaydcnp8lXtB8jv/6FcY6CU/8TdeZxjG+HAFuZsRrcfMjn6VR9OPMNmQfDxh7dUNhGs5uvfb2MWCtUHJrduCnWspv/9gwcGppY030aZATUoYRLj6IUKeY4aBYR2xJmK+8ckD9hc1i/IBPnT40uOnKfbhGq49wTUntNUprlsihAUEkiFCJehogpABpV2PNvqWUD3CektXP8S7EmfPCMH1btjB9XRN0SNqSq7oDVKilWaU5RRxxJVR3hf/WpINU3QsCHWDRLL77DrFaMC1Z24gtcErTbuoqecVse4FHfJRjNIK1zqCkKR5jgwRyilcmuGSjLRIn4qhXiSkRzv6RBT+HGbGn5Ucw2MbkItkFvyKaoT4jklVwOqBJJ8qyC4sRJyH6dzS1Q47LVlMlxx+ckS+M6DYGZCOcmRkSBJHkvne0FlpTGq40FWMTK8qF5TEh44mynBKgUzx3lJWC+I4Y2805PrtHbafuc6vfCvjkyPB1/Yd0mhkvEYTFbzjdtketzy/WXF+krOcC9rCMnId/rCgVjXWnWGkwznP9OSIj99/i62ru2ztDNi/cR0loP3gPSKjubm9wXA4ZGtjg5OjE/75r/4T9j+6y/nJCbP9+7iu5ne+9i3axqGXJcpWtGHBfPAyx3nGvW/MmGcdW7dv4G9s8yf3axzgy4DpLLFsaZJBf1C8kuDX4PTgHWa1o0gjNkcxey8YDqrAJ8clzhpcOqR4RrE2kajYQujA1/gu0C07louK08WCk5Mpi8WSDotDUN4rsM7SLY5om4pqMUOIVdkjMrSIiZIMpTVR1M+zWdsQ2gVdeUq9PKOtZnTdFOdq2q6PIenqx3MHWvXggda9ElfXLnEobt66yY1nbj4upP4qr6eYVABCPP47P6aFrH544Hzpe5+v04pu2fDww32EkazdmhBlCekoJ4o8g0HAxAqpDGkS9Uht1w9KR4nqvdl8Qx0MnUhwMkWIirqpUVqytzZm7comt1+7wpv1R3z0+5b3ji3z+x0zl4IZ85HfYagjnn9uia0C06MUmXoibXmwTDlpB9hQIrr+0FKWJXc/eJvxxjov3LiKv7rB/OYL7N+7S5idsbsxYjzaZPfKNiaC3/r1/5PF9Iyj+/cppydUZyd85Y8kSsHxfkVsBfbwGzRil+XiGsf3jvmgPiLSgue+/xWG2TZRXKAHOWG+pH70m8jGoc0Qs7tN/NwaVWiw7SPSeM5k2HL9tsJFinemFfXS08QD4k3JZFcSr2sIq/lm7+nKjroMnC1nzM6XHB+dYnFYHPWDjC4Y2uUxti1ZzqcEb5EyEESEIsNEKVGUoyOPUp7gO6DDzfaxTcV8uo91S2x3TttZOusRvkZ4h5H9WSWKNFGkyfOYz778PD/wpS+wfWWbyWSNYlD8fxg/4VJ+eOzo9m3PjBfec9/+NmHVjb2UOx4XWRdtr9VBNvT0YrvqXjx8dMB0ds6ibHnzm2/TtS3OORprEUISJQn5YML69jPsFAN28hFHn5ywnJVsfnaTeJQgEkPTCdJUEcUBhO6tGpShRtIRSOIMGcV4HE5o6niANTWIlM5aqmrBaLxDsjbixdevUtUlv/i7mqMy8JX7lpOFIc4mHMotarvDrZ1zdkLH9HBE7qCLLFOhqQ9zLB2uPcRZS13B3Q/fZ1nPWdvdQQwCe8/cZnp8xMG9j1kfZOxd2WRjsk5RZLzx9a9hbcXDO3eo5ufM9u9jNPzj35DMThrSpiGcvEtT73N2OMQ4z0dfPSJWFc/+wGssZx1/cNgQnCSUnsR3GNXhs03McIi5ZqjckqMHD+lKmKzB3k2YXNG8edRxeGZJhiNUGjHPTzg3JdX8GCUso7WUKzubWDPk4XLB8qymquZ9WdMcY08iunsFtplj63Oq5TldU6OUAyFRFAgdE6cDlA5o4/G2wzlLmJ/QOks5O8B2JW17gvOWtnMIbxG+QeFRIhAZuVK87AvstlmwbCvm56eUddV7ttGDyhfenkr2VgYX1L0nzOwLoDg8pv49vbV7yiBCoLR6ivXzndZ3XUy1reVstmA0HjAoEpqqp4woDcqLi0ZAz1X0ltBPa/cSlGLVVAhPDHjDqhCqOkdY1iSyJiIij2OEhNqq3vw31OhOE0cdMhaoRCLVBYrvcSGwvww0PlD7jvl5y+GDOZv1nK16zltv3OHwYJ9zA2tXN3gmK2iDIYo9xrjVwUPQezOvHgKmN/674BQ7ERFk79TtgqV1lrU4YzAYcWU9pWkCRWKoHNw9XUInKAYTOjlg2qXIkSDTnlhH2ACpqbGRQMcFzi/wXQkInFfMjh8hFNxOXkI6SZTltPWi5x4rtaL4pUQm5d6dN1ksDpk+vIfrOqzz7E8D793zGCEwUhLsEi9675e28zz66CFuAjde2iCW2wSeQVyJEBOJHea0iaEdjYkma8itBOYl7YcPED6Qp4KNkWB3HYr7LdO6Q+sUISRd7LBaEroaIT0q08SJJI0FQTR0oaLzFT60aFcjXIVoHcqeIO0JQpV41aGVAalxIkfIDGPGIC3IBtd5fNfRtSW2q/B2jncVwdV98ziIx50oJXrD5TTWGK1IEkNkDGuDMUUcsTXI+k0pBKZIkWmE8T3RczTOGU0GTDbGSB3hZEQZVQi1JPItOjiixKC0ouwsBNCRQQXQwSKyhJBn/SzNkzBdBesTpPsyOv/0p54kJ/H4SfDUuzzFbw887r49da9PX3dBPaIvqC7++Iu7ddZjXaBuPU1lWR4tmR6cce/OIaOuYSwcG1ISD0AKi1arzp/ojRF9CD0VxMTIJAbZv+aExknQJka4QNM2xEJQ5AWTQcLWwDBII6LIcDivUZEgy4aIpGBqE9YST5YF2oWiqzSF6UB5sjxDOKgWc6QI+KCoyprpyRE7uxNG2ZC8yEkHA4zRGC1JI0Ua9Rz+4+kBx9O7PHr/PWbHR73hatd3GY0QbKQJCI9demxTYh0sz+eoumHn2gA/KJgez2mtxYWWJARy4dBJhBkMYGAIOXTtDNc64niDQQ7bY0HjAgeNp0P2imeFRgxkr4gXHEL2w5++6XCuw4seWV+WNVK1/fOzg+A6RN3LAse6RqreSFcLhZOGLI1R2iBMjbcO3zZ41+FWCLptlzhb4lyN930xLnAoAbESRJEiTc2FbzLnHoQKDIZDhqPhU3Scy+sv1KV6wu57apf/ZVhPzUeFJ1EnhXg8kH8RP87182JN56kbz3JaUU2X3P/wCBlJbC4p1gp0EiFCIIo8Sq7mypTAC0kfKAqZZAgT4bwDesNeoSKUjulsg3WePM8ZFhlrmWSQKGJjmDcWf1aCikmzIYuQIoImyRY4JEsVkekWaxxnaUSV59Rl1YNUQdF1nrOT4x45TwVFHpMOB0RJhF5IUqPIIk0cxXS24t79D5gdHXL48Yc0dUfTdrRNi3eezTwhNgZbneDqApB0bcfiZMHaRkQ6WcOsXUemE2SikMkMJiNC4/FmBJMBci2GeYlva4yxZClsjsAqSI56Y2phIkglYqR6n53gVm1B3xuhtgFHR+c6FlWNEB1C9rO/3hlEdY6yFbGsQIE2pme96IQ4TonjHBV1SOURXuBtx3I6x7VLumaBtSXWLrCun9dWwfVW2rqnkQ+LlCSJGI0Ldne3ufX8sxSDQf/8+jPiB/4dYujT8fOnDoqX88plZt+nOQkXn/90DrrUoXp81QoWfFKj9XcJF/TXHuzzPuCcZ7ksWSyXJOld5oteBttay7JuQSqSfEgxOmd7bqhHGzAOPHj/gNnxOV0hyDdyBhsFndBoHaHUKt9LgZKSZuVtJ5MMaWICvZmNkxFBRWgT40NL3bYMo4giL9gYGCptyJOITkjuny3xVjAYjOlkzmkXcyuFRHliY/ACBrqmjSHJCtp2RiNrfJBYp5hNp+hIsbU3IYshGw6oqyVGS2KjyCJFEkcYbbj34AHz2RH333mLpqwpqxbbWZq6YRgbBpHB12dYLNZaus6xOD2DPDC6us5CtJycLfGyw3vLgEAqA3mRwTBHDiS2bGnLU2SIybOCtQFsjQL5oSVuHSaOkdpTmUAjHM62GCmJs4hi4Bl3mgelp3Ut3cqjU7sWrMU7CO0c0c7QvgTVEkWmL2Sk7oGiLEEoh1QtbfAE2/Tnt3Ylid5VuK5c0foEBIcMDq0ERkmy1GCMwhiB95a28zjfsaiXdNb2VkGfipXeVF4+7nqK1X4mXCKorlhuIVxQWXtab1jVBE+o6d/d+q6Lqa6zLM5LotgQZxGdlFhjCC6gnGAwnuCA0lp863B1R5b0Ro/VssFah5ZR7wsrDEJq9HCdquo4nrcUwpO5jkXToZSmU0MIEjU/JpqWDGaCwcaA4ZZcdRugEx1BwdZGwclpw+/987uUZ3OWR6e8t/gEv7jL+ewuTXPG/S+/QV4MeeWbP47emBA/v0UcHiLdFCl6ZSoXem35dP1ZhE6o5ueIThEtCmIJxTYszo84qmZs3/oC4vqL/OIvfpmoOeHnXr3Go7OK33r3y7z8yhf5oZ//L/m9N77JWx9+xLsHJ9xXlizJcHSIhx+SRVvsfebHOX/0DtN7bxAY4kXK2f4Jru2oELRG4tUpMqrJigFdd87h/tsc7b+DCFB3c5xrsW27mlN4QhnrJW0FznuUFLzygy9ybXeXpBmwbOb8yp0TXtht+MEXFjRtg73fsr69hvmel9n9kZ9CDwaU1RTbOcZRwMZriI0dBIKDg4dsqAwzVHxkFa4V/PHpnGS0hit3MEOHvmoZtnfZWj7i+7/0GY5Cztfe2APbcn3UMRiN2Nq9inAOnKXLNT5WFAOB0JLTLsI1IKcds/kZD48f0syOaWfHPDqYs3Btjz6gUSgCGoRBCY8WjrUkZRgnfP6Va+zujHjx5Q2KUU6+cZ266jh+cETVOsraIfICESfMvMRJxc7miDiO0GlBWMldF5lkaBRJ7NE6IHSCc4H5YkkIlkj1nkQ2KFIFqXAYcSn5PE5kK0a6WM1ZPFaduShzPrU+ddB8/BAAwooK6INHBPHnmwRfRtdF37ELq+914cl4eFRTN45RobCu4p07d5ifnXGyeMjRuwrzoWLvxnMM1zdwI03sz9DtPq6boU2ftlxw5GvbpNvXWZ6XNK0jLWO0TLh64wb1YspHD+5w48aE6y99kW89+IivvvkWL14d8druS/z6m1/FxQN+9mf+Jqdlx++9/QmPZIk3C+JojDEZ4fQhumu4+exrLJctd2a/h3eajgnTI4+rP2Bzb5d0Z5NOziCasb4xxneB+5+83fO3G0fnKlpbsVhMaeoa2/XKWkIbkIJKKJQH1TSMdgY8//lr+FLTdXM+WHSAY7KbI4NHB8dBXfItCZ/77E22Xn4V52qs7ZgMM/JUMsivIOOU2eycOBieW4t4pCRnleTDR3NOTzw7+RZmYJATg5hXhPv3WM9G6Fd2kHmOOarZLixZLFjbWkdJ2Xe3DYRU0iu0OQ7PFsyrhqjTuM5y/+ABs+mM44//BKUykmQDq+mNfaXph9JljBSQCUseKbbHBRubBXvXx0wXU86rOR/f9wSh0UY9RTf9K78+VeFdNBN8eGLOPZ13HJ/WFJliYALv3L/H0f4JR2ef4L1l//R9xpNN9m7ewq2lJOOYyJ9g7DFSWLzwJMKjkgGDa6/QdZZqUZO0EXFVsLmxC4MB+w9xIlxaAAAgAElEQVTuMGsFN2+8xLG3/NNf+U3WVcXf/anv5Y8+PuH9d/4FP/5jP8XG9h6//cYdZsdT3no0I9YRSWLwyykcPGB7dJvx1mf58I/+LYvTUzqxSVkp7r19FxEkN179LDUVXp8wHEfEYsLpyX1Ojx7w/je/jnMddTenbSvKqsJ1DmddT8s2fZfaOtB1w1YkuPXKHqnxxGLJ6XLOvf0Ft7OK9XRBt+ggBK795E/2FEovCMHR0mGbijCbszEakg1j6rrBC8/NYcp5JLgvFLOq5uvfqjGfWWOscmShkMHCx4fETnL7xSscTsfUesAodowTz3B9RJr37BAIhEwiFP0cilK9wlUXoANPA8KxMYoolyW/9Ev/CmcdUdwL/ASXrHKQJlOeWMMze1tMxgUvvnKT0WTElRvXyAZDhuPJYyuAf5/x853ufmFYejkHXarJLm7yp3PQxcF1lbN6wZVeMl7QF5RCrBQ9CVjne1Pnqu21jSQcPnrI+dmUNMt7PzQl0TplMHyBelHy5r/5fR4U69wZbFLOjmirOZ8cvkWW57zw+deJ1gaYvQGRPUY3j1A6oFQgDg4lJYMrzyGTgvl0gewkyTwlj9dZe05wcnSfD6eHrO/cQt98gd/53TeQ7Tk/98Of5WC65Hfe+ue8+OIr/ODP/g2++t4D3r1/yIf6jCPVkWcpIXSIhx8wMhNefv2L7H90h/v1NxBiDStzTu7NsMuW29/3KtIInD7FZA3bO5s4u+TjD7/Jh+84vPWU1RmdbSjLBc5ZbLtSlI4MVmkqFK11eNexd3uTK7s7uGVg7lpOTjo0ETs3ZF/Ae8e79x+yrBVbP/Qq8doana9RXrI9KhiqIcNoE6UVZ2cz1qRAZwHWwDaKR/OUgcsYJrvoFFQa2HInJGpBfHWDcx/z/ictwnt2B54kiyhGg54KHzyVsFjpKQYRCHhwMsPbQNRpzhdzDk4OOVjc5/zgLkm6idEpkelHOIw0QN+0MHgSYVkvUsZ5zI1nNyiGEQezQ+blkg/utuhzz7xOkW0L7QXNWiBWwipa608VWP356PLWvZhL9xfXXBqtCKEXsPmLsGe/62LKGE0xzIiTGKV6nxNHT4cTWiKkQgqBEhIRLNiAMgYdRcjWI+klcBEghEZIjYxipBUI7QhC9PLz3uOEo8H2lKimw9im7+AYhUhjEqPQStBJS1BQAJEUZJFEpZpkZPBRgk8zsuEY2wnqRiJMTC0Vyjra6Snt4nyFYl1+gEhkVCBNgpjPkMITRxLRidVDtVcKLMZrjDe2uPNv54jFlNu7YIxhc3NInsW4zrExznn+2hbVwZyy7BBy2XOoVYzUhmACSguUMuB7MiReE5yiOl/iaIjH6zgnaWcdtvM42/ZD987hcQgpyIqs7zQ4jYljskGO7xp81yKAOE77w66ykKQEbK8UJS1eLGhbS1g4zGiN3AwJ25u0ccrxfMHSx4hkSKTG5GaCl4a27UgTQAnSpaPF0VlNY2KaKCcYi9EdNoC3LVkaMdI5GzvrSO/YGVuG4yHbV7fwbcC3nmWkabUgTT1BhN4Z21oQ3WMOtdIROs7QUYqOEqQaoETGKB+itSJOU7QMGOkZpxnDJOWFz1xlZ3vIrVsj8mFGPNmjLBuUkCzKjvmyQ2QFxAkajZOK4SBBa4VD9kWQ7zuYSgm0EURG4EIgCI+W/ffVWvfBGvrKpFuhs49DeYUAPl00PSZKsAqM/p1LKKBA9N2K1e8uXns6TwqeXPFnr0/R1y96ZYQgnuhg0M9RGS3JiogQYlzI8TbgHXgl6YCmrGkWVT9bE/yKH9+bbUqTYvIRctkgaYmUQGuBUOCloA4gopjh2piDe7B/tGBnMxBFitEgQUQxwXkiKdmdFMjK0SwXBBpc6J8lkYywBroIoijCtbI3j/WC4CRt3VEtK3SSkgyGzE2F7zrqusM1FrusCdIRZCBOU5LMENr+GRXnCUpAFHrOvkSSFnFv5htppEwQnUcGyBKPDBLZapJiQLK1hZyMccOCaubpfIColzlP8pwgDa7r6Qt5KkibQNV5vKUHP6TGy94Z1Ium92JSgiTWDEYpbdBMCk+RCDZ2BkipsLUHIyFVNG1N3TaYssFYi3I9SCyFfBwjUsQo3VOxpPAMRjmJKYiyAq0kKZY00myPcyYbBTt7I6JzQ7KMmJU11vdmjZdnJy5t8u9yfZvd+u2Ag79E68+Ln8uvKwlaCdLMkA9i2o0M23W9+bdWdEhs29GdW1zXEnBPwLAgEdJgsgGhqpAsMBISIwla4KygA6RQZIMBVVlycDxH5569iSZNY9ZGHiUEuMDmKKMygW42I1gLcon3llhGBCMJxhNFGmPMilnSx0/XespF2VOYhyPqMwvKUy17NbtuXuFDHz9SG0aTIaEThA6SPMFEBr1S3JIIRuMBCEdQgqCi/h9JCIKv8VZDEwhBogcDfBC0PtBWNc3S0tFbLJg0JSHGewgikCV9Lo6NRzp6mWihcEoTpOxl+r0HBHGsyHPJ2kbBOAlMUs94Y0CWp9hm1VnJNSiQsme8uOBxold8daE/u2hjMFFEXqQEHMOhAd8Q7AIhDVIaMuOJteTm7ibjUcHV67sMxkO2djaRuqeHI/7/jp8/VTY9/g59DnqSf8SK93D5+12euQqP88+lXtXKdPrCJsE5R2d7T0ahJG3b53VtIoQQJElMHMekSYz0li6NUMrRdAvioj/j4Hqmk5USvKddlL3oBO5SV05AkOikQCYFknOk8CRmZWCver+wBkGc5+TDIe+e14TlkpvbEq0Nk1FKFmtc5xmlEXuTAWo2p65blC4RwRHJCGk0xIE47gWecArvBXgFTtE1Fq888WCAbQOVauk6T1u32LLBtx2ddyBEX5QAoe1tFuI07iHiEFBiJSAVSVAeGSUELxCdx0jItER2EqwmXVvD6pQwGtAVOeWZxWKQSYrRGUmcEaTCWkcaaUCSNZY2BEKkccbgVNQzI2QvAha8J401XkWsrfdd9bXcEqeafBghhUKhUV1NHSxxaggEjFnicEgX+gaIFBhjiNN0RQ9XCOkxOjAajdFGE6cFRnhiLGtFyihP2L06IR9EkHqSRczx+RIXPCYyj200wqqYCqs9eXke6vKWv/BXeype+m3/hG67etv7wF8kGX3XxdTmlQlf+onXqBeOeuGYLg+puxYx2kRZT1XXICUyikFrnFYIkyOiFD1IwTtEu5I09KzEKhSjgWGSQ2cN1kqC9jjZ0jT7OKtomgLXLanrGfnZhOFpyc7akHGe0kmL0AKtLMPI8J/8/G208ETKMkwCo9TTloc09YLf/UBw3GiaK1tMHx3x1i//GsuDe3ipCfSSil1QBCJ0sYk2Me7kDmli2bthOT1ccu/wgM62CBPx2q0dbr98g6/+6ogHxyf88oO7PPvCc/y9//a/4Rtf+wb/+z/6h/zX//3f46d/7m/zP/6Df8ibf/gNDg/vEMUJzz/7gyy6c+6efgVhIc83qMs51p5SDF+jyNZ58PU30OMh1//a3+XovW9x8sk/wVlwnUSuBlul0aSZ5pXXN0l0hlquc/X2LT73o19keu9dzh5+gLAdwXkePXibg8MP+cyt55lkBT/2Uk4mK5Zn71KfbtCcr5Hd/l6SYsC9pGBaBt64O8G4EdvXdxGioGDE4nxJXTVsXU8QkWRenlM1Frl7leiZDR5d3yQul5jjcx6cGB5ODXboiEfwwz96kzhVbBYCk0SYouDszHE2dZzcP+fkrKKcz2jqJfufvIttW1zb7+6ARyYpMt0iHll0ss44k0xGCX/9rz3H1taQZ57fIooEsRHoOEWZGGkUUoJ0U8ATdEw09CSjTWbnFSfTJSrNEUmyEjfpfdS6zvHweI6zFmc7vPB00qNbjwoB3y4I3jNOOqTSJIO1fuhVBU6O5zx6OKUs60sR1Ht5SSkfq51dfu9p4t4q0leF11MFVQh/Kule7kj9maH/7XLn6ks4F/AeNibJY1nROBnx0z/3BVzXUJfnHM3haBEIRYZVkm/+1h9zfG+fxvcP2eA7Gi+pfMIwGpIMJriThzjOub4zAQnfeviQZVkRkpTJWsErV9f4+FsD7p+lHN67S65a/ubf+XmUNPzGP/03PPvcVf67/+LnePvN9/j9f/lHzM4eUXZnPHPjddJsxJ3jd7Blw/rahHJRc3pywPrkOhvbtyhPax698xGb11+luOq4e+fLnDcLqqVAOocOCVFsSHLDyy+P2NlJ0dUakcm59frzSGFZHt8H55HesbCBu5+8x5WNbQbFJnvxMZGsUa7BNor5ccGNW1e4/fkfZikVx53ncJ5RlynDPMNoQzrc7KmC85q4UCQjSdm2UJcMtguKIqbbHFAZgSgrGhfTxkNsiAiV48bVjBvPacapJDKCJIuxDk6nbmVI7Xn4aMoHHz9iOa9pGtvTxoIgiIQovcrz3/Ms9XLO4uQQ62a09Yzv/8L38dyz13jm1lXSNO6H54VAafMYmd6t5jTVgnT0PmXVkCTJd0oZf7XWnxM//WER8kyTJkWPdIbAl370JURwVIsZi9rxyWnARxG+yLj79id88vVPmJ42WAzB1XgfqF1CKgqS0TqaQ2DO9ihnfc/z/rdOOZmdYLViWGS8uDfm0ZHmN89zjg5OePvtfb70Y1/iSz/7El/59a/yzTfu8Pf/q59Ha8WXf+m3mc2PuTf9BpsbN9i99f3cP/uYs9kfUmQK49c5PjxGk7G+9RpGxjx46w5qMua5L/4MfzT/15w+fJ+ySvBtwPgYrQXpKGbvas6rn5sgmgxZZ9x67Xkm22tMH31EVy3BWVwQfHT3XQb5gK3JOoNEcWUYEbsD6ukBttkEkaKLFisVS6WZ1prDo4SBiUl3IOlipJUs5jVCCIYbEjnvmM+WJMOYbLSB3h1RraXIqsI30JghnRf42jPKDa9/zzp5JMhjQZxGKK04OXO0bT+n4JxnPm85ny149PCYrg3Y7omMuMoSlBI8+/yzTMYJr7682zMrmpok0USRwmjxWGhBrGT/e1GSnn4Y8N+xa/T/xvr0/OyF7+AFS+LJuyu6E5dz0NPdp6d4hJffX33kSWklHlPug7Orbpfo6d4+9J5BJsLogNGCrnUoCVsbe+R5wXjSMnpmnd2feInpyQEnR/u8/rnvYW/vCp+cKUon6QYp81nJnT94n8WjGU4neCzOOWpncCpGZ2vEWYoV75NGmmvX1jk6mPPR/fssXQNpxo2tEc9dWeMrTcGjg3Puvn+Xm8/s8Xf+/n/Oe299zK/80pf52b/1o/yn//H38X/943/Jxx/cZX//PUwcc/vWF1jakrvTP8QAW+vbzM7OqcsjxhuvsrY24fijh+hBzLOf/w95+MFdPrrzFZoamqXAuF711gw0+cDwpR/YIItTVLnG2s461z5zneb8hHp+gnSeEDyz9pxH+yVXt3cZRo5xfIIKNdK3VLOUapHw+S/9GDJJmUnDQQP7ZwOUzxmsDUHlRGZIU3fY1rG+k4IStG5JVXfYcY5eTzgwntgGklng4WHNyf6CRFuioeRzr4xWoz0l1nZU7QxtBqAT9j+acnQ8xQeJ94H5rMTZ0BfBQBAFk91X2Lj5OvPjA6r5jHL5CWka+Os//SNsbU24+ewe4PG+P1dJqXrvt+DZWTzDYn6Ozt7m/v1HnEzPWSyWvcdhCE/Mp4N/TMO+LJH+eKOuwOrHsLbqhS0iY1a0VI+1DufcqqD67tZ3XUwhJUFHIDsg9GC0C7RNi7Me3zlCsISm7ZN3ENRdiyPQdv2QoXIWGQI69FWq8D0VKhKsUCCLtTUBSbACbwVN7XCWHhlvJb6G8mwJZYQVDpTEtg6dpmRbE1IjGceaeVNjz2oKUZPRcnV9REHCySTFzRWqXCC6tqf0hF6CUcsEYTIGww2UMZTOYeuO6uyUrqqQShMXG0g9ppzD7HDKSy9ssV6UvPW193HBMRjmZKMRZrhJh6FctjReEXTO9VufRUnBYnlM1S1RAUyc9yiCt7hlg/ULmlYyPx2Q6pTNbESZDdDagOtRwz6Je6LhFYpxwedu7eFax5t/vM9kUSK7mLxYR+81dPv3aGdnnB+eYdGcFGPUWBGKCBnHxMU6XZnCMkWlQ1Q2xFiJ9gGVDsB7rPEEESOVJtQS1wTS2GFiKAqFThTR5pBkLWUR4OisYnn3hIenFdPaYY9P8VWDZoaOBNPIIpQm6JjFvGN+3nF4vGSxaCiXM7q2Ynr0AG89IWikitBRhlI1UjmGmyPSaMwz2ykb44Srz+wxWUuZbIzRWmA0SB0htFmpswRck6x8PXqRhSAUKopI8oDTCi88ekW9UASCDOQm0PqOqjtf+Wb0hnXNymSRAEL2aFQ5n6NWBpDWttjQ9Qfcb7su49qXXvkUFe9iPcZHHqOFny69wp/6efkel/nsFx95ImMNXdcPCLde4futhSTggkV4S+QDRaxwytAkhhrQbYtsGoQxEKLeYFkbMnLybEhRDKhCoGkq6rNT0L0xa5yO0Pl1TLTO/GzJxijmcy9s8uEbd6jKOUlsMHFGPB6jswznHNYLOhkxWt9mEk1wvuH8/AjhPJE2ZGtjvJyjzqd4Gmo7YzHPcCFh42rUz2ClMTbpsJUELMF6TDEi31xjb3eN6zsJ737jmIXveEHExEmK3tgkVAv87ISz8znT6YJcREjnGa9LpE6I4h5ZFUqgTUqaD6iqFtd0SB2jE4WQBrRCxApaj5cgZCDWnjiGJJVkA0NSRDgJpfUsjivaqqFaWmoqGhx+qSCSLLXvaZpK03WB6WlL79rueLB/zOGjI+rGYTuPEj1yGKVpT71xHYEOFXWkuUQRUwxSsiIlyxO0UZyeTHE+9Oi5FEilqKslTVVxNjunLGuc85f26F/8YPipEYy/tOuykt9T8XMRbSHgnadpPDZIOt/LTYsQcCvuv3KeVMJkGNMaQ5MoIuFRTdMjpcYghEMESHROlg0YDoYsqzMWTU27nFPPJBJI0gzibYrROsvzFh08r9ze5Oj+nAfvnSHwZHlKOhpR2x6tdc5jhSHKRlzbiBDBMDs76D1dkKSDEdII9GyKkI7GniPLBHWaMyjGjOKMPEnJ0hjXKLoQwHqkicg3t9nYHnDr6jr3P57x8PiY680tjEoYjCfYNMad7rNY1pwcnmNHE2KhicaewiiEXiHUXdTT5KRaGWqrfp7MBLwOWAWBfiC81/AJRNoTR4EklaRFj5ILI2mBxVlDt2xYLjpaF1jOzwlG4ZeKuQpEKhCkIiCYTlu6to8f5x1VXbFcNpyczgleErzExDHKaNK4wxjNzs6YyShlPC4IzmG7mMj0zAWt1cpDTT0pRvCrWuOCDCf+n8fPU7/4d1uP9/ZqPurPtq0Kf4oS+PS3CZdo65cKr0vdQSn9SoSpp625TmHblk4qnJX4ECHiETIuUFFGHA/J05pEaWJ8T5cWhkUS4+oGVdcIaxFxjPCS4DsinYPOKPIBJok4b1s6GqrTY2xZorQhH66RyRxrDdWi4rlrIwam5P2v9fM7eZ6SDgri8RhpTB8/9DN0O3s3UUpwPj+hcQ06COI4xU9yyqahbStat6BqFefTnBTNZpyTpxlJbAidxGnZs7GlJJ1sMVrPeObqNsE63rt/TFRkxDpDDxxJLPGzY2xZ8+DwBBsEo7hA5Iq1WKNMTqQz2kqshGtyVJYRFjW+Ax2nyBBAWoSKQQuwguAgMgFlBFnaG/76RBMX/QhPPW84ntacLh1LK2nnNdJKlsIhpMe3JW3XsaxahFgiOOPR/iHn8wXW92J0VWUJXqCEQWmDSWK88wjbgewwsaUYGPJEkg8SsiIhzWLqumQxX/TKkCtDd0SgXJScz0um0xnz+Rxr7UpIQvZ7LPgVfa83ixYrZkn/wPY9RSPIx2cfsdrHatUlDp9OSuLTMfDnr++6mLJesuzMiu7joIPQeBanM5rOIlWE61qa+RSTZsSjMeWixnuHq2qCtWilUEKQrORkg5TEOiKLUqwUOBnoyhLvwYgE1wUWZ/Ne5cUkqG6GLo84O3acNA4nAl5olvIZyNeJbhdMUsUzRaA5OKbZf8Br2ydcHde8/Nqr2HHE+6khPgv8SXOGdTWLKO2pSs6SmjWiZMyVvRcQWrD/dctyOeOgmeF1SpIOSCbfTzJ8nbsfdpTTd/jP/tbLnM/W+R/++LcQviJLBGtXrnLltR/htI744zc/5HARcPkG/8HP/CxdM+N//YV/gEdQrO1hRrtE6Q06V2GbM5b1xzQ2omyeZ00OeSkf4YshRZ5SC0V9ceDFk+29xs61Pf72jz3P/fsf84u//Os4qfns7R9muLfO+vUNpvsfcn54l4O3PmHeCVTtKXcnPLP2DPnaFcbPPoe3Z9hqQVRsoIqCwVGDdzC5sobtPG3bgg4I4whVwLWBYdKSp5KNrYxWGcbPbTHKEo7ajnc+OOSNf/U2mhpFy/LkXTrvKUOF8x1NO6PtoKzBtjW2rZCrgWEX5gQcXkQ9l1YPMOmEbHQN6hLhLJ95/XVuPLvLT7yyzcYwIk/7AiqNLhq9jiDUpeIi0IYI7wXdSv2lC/3gcr6WMK9L2rYiUwlGSILt5aC3ck8ZSo5OHiGiGKEy2tpReY+J037QXybYuuXs4B5RYhisD6maGicbgni6mPq2TeMnOedSk5o+6QoeI6KXs9zFwGR/3eU7frrj9Weti0IqEHygrhrK0nHaRVgvKVQgdB3N6YxUNazHS4rhgOFazFRL5l2g6EoWTYnOUoKR0NUkqmAcb7K9ucvW9g4nb3qq6RmH78+RkSbONinyKwyv/DBxrvjgnUd89uaAH//CZ/mf7n6FO0cP0cqSDVKuvvIyRR7xaH/K8aJlqVI+/9IrPHN9i9/4tf+Nhw/uMt68SZSMSLaeRR4dMjt9SBfOOJnNWdbXSJIN9l7SpEXMlcmQJEiEVTRVTd058q2rbL34GV59eY0XNhS//s/+Zw6O57z86vcQbY0Z71yl2/+Y8pNHzO884N6HB7C0VDs7TNJtIjMknewgly3i+BAV5+ikQMynuPOGLF8jGWZgbf/fmUmC9NhFr06Z647hQBJkzNpmSpLHNMBs0fLuu8e4tgPfUjWWsrLUoaP1jq7tDUFnC0HbWBbTBfB/k/dmMbZl533fbw17PGPNd+zbI7ubIimqSdGaKcWypogGIktOgDwleTD8nofAL0GQJyVAgCAPcQwjDhLZSgQlkGwJkulBojiKTZFsstnD7e7b9/Ydaq4z72GNedin6t4eaLUQO7GVBRTq1D5n16lhfeub/t//H1EyYvwK4yu8TEFoyqxHkmaMdq4gvMU0c7SsSMslvUKRxC2GWz3SfkqUULcNr7x+k7Zt8T6Q5RllWVLXNXVd88orN2mahrZpP8xG+0u6IlzA8iLWOhZzw9JpFi6hlIFERNqzOdiWvXyBzjVXd7aolWCiBCPpGLmKSaIQZQlOkUTJINljuHWJa1eusr885f58wYwGOzsm7W+ztX0VNf5h8nzI3dtTdjYl/8mvPM8X/uUx/+gb94l+RZoILn/kKXpLy2TZYlvDQmRsX9rlx/7K87z87a/ytS/+UwYbl+n1t8iuPoYJmunpPt5UnC3eIGnGLJaP8eRmZCMr2B31abeHqKBoqsjKOHRvxPZzP8RTTwz58Y9u8puv/zP+5GtfYffadTaGu/R2txG+YHX3e7gHx7z9Z28x3ruCbzz6sU166ZjeeJe0LAneEYJAJXlXRQ6CJtHkg5QYPE0IkICIAb+IKBEptUUWkdFmRjnOGWwXkEoWxnHz9pT56QrhW5z3zJfH2OCpo8VZg3MNi0pQt5HVdIkzDqUi4LAsuzEGmZAlOZnO2dy7RDkYMNqQjPuKH/jYVQa9jH6REEPA+xSxlmrWOlmPNDxySkcJ8VxHSfEuMdz/d3fuI+s80Hz43IUPegSOHnmUBXD92viwu/bQB51DXh9CBBEQg1v7MAXRQYi4VtD6rogdfaBagc5zQu8GLk1pTIKW22yWfVTlcMenXHm8j+hlnOicpFrRr5eY4FD9HtFZcJZhtkNejLm0dxmh4Z2qopkuieaUkPQo+2N62z9IOX6WxULw4M4xn/vpG8ynGb/+td/Gtz2SBMaXdrj+Q5/EZyUPDiZMnMQUG/zMT/0Qrp3zj3/r74NMGO8+QbKxQ37lErVd0bYz5vU7ND5jWT/Nhs35SFbQ9kp2xyVzoVBBYyIE79h8+nmuXtvhRz++y8G9e/yv3/gDnlvWPPfcD1KMBwy2h1ST+9ST+xx99w1WJpKEhHZ7xM5gl7QYUm5t0TQT5GqOyvokWUE8WiIsDDeGROTaB0VQENdEKUXqybPIaDOliJCOc/JEYYRk/6jmzveO0dKhREp7f4qPE1ZvWJx3tM2SxsB8CaY2mNp0lPQiYFh0LIoy62CvaUneHzBQOzi7wFGRqRlZr2ZQ9BkUGcUoR5cJnsjJZMKrr75KWHec+v1urm6xWDCbzXj5e68yn81ZrSq87xiFxRoNcD4L9ZBttWPn8851v3dc2926SyWVvJChCd6v9/457O8vlk196GRqPp3xxiuvk8oMTcp8saBaLrCmwTvfDR3GSFqUoFTnbGPsqAqD64T5ZAZSYPFrLHXHHEVo8KbBeAgxBTRCm26uoNex/yEjMo2gPMgVqJbecAhpjkk3CekYITtRsCVgkwRTFLx5dMLB/j7Z2RQ5HMHzn8TuH9CYOa1rcEEi6CF10rH5RUvMJOKcFQhB0D2S4WMMdj4OjUXOvsGVF17g8vUtvvHSn2GqCf/+L/woV64/yROX9uhnG+xt7HAyOeR7b72Fb+dkseLNl79JlIqN534RuzwhHL2+xsg70IpYXu00jYJku28YFXPs8g7YQ4Y9Bz7DtAOCb4ihwpy9xak/4n///ZvMJqc0pmb/4DZf/PI/phwr8qGkufUqzekRx6sGExUPThdIpTm4O2Mwuozu75BeKsh0xYnIsZVkuNFD+cgNYVnVFTN73NFfp4cmBbwAACAASURBVAmrIhDahANnSSrPYn7SsUw1O6yamtfu7TOZNvRGuzTtlNpVGO2wwVLPTvHeQAzrQD50OjbiPGEQSFIiHkXHxpIlEqUNcEK/X9IflTx+peSJyyU6idhgmbaW1MWu5bQ++K3rui1JItdiggLvPIv5ihADUYJQCSR5x5LWVDTWIxGIZoEMjiQYTFvjz4UHY8RJvRaJlkSgDREH+CTBaY0TgrTsMy6HpNl7qNHDRWp0AbOIa2cm4EKj4xxzfnHtfRnSewz8faXz91x+z7MXMI8QCCFQe1j67nBRCryAKAVGqU5se7HCL5aE+w9g5xIxKTDNktbUGCfwMUMlA5yQNKHFyYBIVWfb3hL1AFkOGV/5GIoENXmdXn+HS9cf53Rxj/tHRzzz3BM89cR1ru7ukPeHvPBcQmta7hyfsFjOKaVhdrjPnXZGvvUUu8Ul4mSfWE+R+X2EMMTxFXyMuBAZlorNkUEzJ9qEQdHiisCpGq6pjwNmfsLindf50sryvbTl3sE+i5XhT774RwwGJcNxSlid4k7vcnQ0Z1I1JGdLarXgyvYAHRO2rxUkvZxyLxBkytSAKku20gQnNT4GqmoJAgrVQ6SgCk2rImfOsaxrzKoF2yMayf5kiakcIslRKkFKjc8dvnQszyZUdQXRdbAG78D7jsBsHRNJkZCInGQ9n1ckApUEnD0mWEtrTtHKEHVD6xoIlv3DfVywTCfHtG3DK6++RtO0nRCiVCSJ7hySDxwcHgJizTL3QY7m++3VfwfaUB+w3keLzsM6fIzdLIjxkYUTuAhaRqLs5jKs7GaLJ1WNWFncySn0B4idS5jlnOVqTts6rJMkapMoJE1wZNF2BQoZEcESRIHTPXrjGyS9Lfx8nzScsvux55Cy4Zvfuwla8ou/9DM8/5En2ej3ePZ6wrK2nC3PWC5WZLT41ZTbN2/S+oxLz/8UcXEC1RyZHiBFShxsEtohLkZ6OuPypqWfrvBmQpFUjHqWqe7RrvX+vK1Y3nuDm3P47Qeel165SdVUfPulP+PoeJ/RRobCYg/fYrlYMlnV2NkKDueUecowTRhtK2RSInuW4GHuBEp2LKyF92zYQNs22NCipQYh0UU3DzXxHtMa2uWSPJdIXzI5qzGNwwaFzssueQmeLEtwVUV1OicGD3FdFHYBReygRABINCnnWjR5pigKzdaGYLgheOrxMZvjHoMyJUu6OfFz7UshOoFsIeRa5+bhjnnIniceuf79ArUPgtP9P7efSHyoawgXh8Z5otT5m/e86wfAyj8QovhBPmqNquq6dOeFwfV7SZAqMhiWlIMxG9euUgy3iMHjvKOJnbC8yDMOz06YnswYzJboXom69jhuNqdplxhrsE4iRB+ZJlihIBiCXs/p+o7YhGRINrrMaOdppAmoyatsPP40mztDbr79Bs1qyk//zI+xs3eFrcEALUvKrEfdLLl9eIhwNaVoefD2LaKArWd+FFctiJND8B4pDTHThPEVWh/ASq7vWMblCtecIsOMzb7Fm5TVqo9QFdE31Ad3OG6O+Cerl5ienTFfLbj9zi3++b/4Q8qepuxp7Mlt3OKM/ckCFzXZ8RIbFVe3BuhkgEp7ZONISUqjUmor6W+MKCNYKTo4nu8YoZXSNCrgNZw5h46BerkkAGkpaY3gYNbQWOhtjKnqOZWpcTriY2S1qjsJmm6wjk5CI4CKF50kFbMOwkhHFldkAiUbjDnEugXWLYi6RktLYytsk3DvwQMm0zNOjvbZ3z/g9Zs38a7rFCdJgpCyg3HWDWenE6q6xjkH6/11zsp3XniOsbPxGPy7iNkuRifW9hhC4Dz/jzFcMF0KKdFrHogPuz50MjU9m/Dyt77DeGuP4Xib6WzKaj7HmBofItILlO6GsI2xVHXTURMKgTxPppRGSIWNDQrIhEDgEMHiqpa2tshsE6nyLrCTMBiCA9oAIg2IxIFaglrR3x6j+wWLchcnhqgAXkYWQuLTFN/r88rtY8z+90jamqLX52Mhx0wWVO2U1tb4IFBqQFRjbDjBh5aQym64kC5giMmQbPwRNp/4Reo3fhd7+EUee/KTXP/oBn/3v30RaWv+zt/6m+zt3WD3yhWee0wjPqX4e7/9+/zxi6+h2ylFbPjei19CDS+x8xN/m+bBdzi+9acQlwh9DPo6sX8DN1+ig2VvZOiXU8ziTYR9wEbfYNsxCzlCiAkRR3v0CoeHjv/p5VNiDIQAdx/c5N6DN9Ci2wzIrvUpY6cI3p7M8U5wbzhh93pE93fJro0wWy2HbzbMF4HPPNtnrCLCnzCZLTHTu+SqoJeOOC5yvEu5a1eEuqaZHJKrFFFdY76oefPN+/TUFsPtKzQTSVUJXO5woaE6XRGdIUsTkBGF7wJbJXHxvDKW0wkuW5SU5JkG3QIHDIfXuXylxzPXejx1rUDiqZ2hshWp8CgdOhrUCHXV0jaGMtMdrWbZx/vA2WxJJKA06LwkkQm1aVlWFTbaTrV9foAOjp5iXWHpZpZiiESdElXSdc+INB5clLgsRaYKKwRFf8ioNyYrHiZTF/oFaz9zfu0hzGJ9WXDhvM4Tqkdx7O+z7fjo5/gBTu37rxA7utrKw9xLCtXZXEDghMBqjbWBarGgOZvQnE3Yfj6QbW7R1guadoWxEMmRxR4uVBh/hpMB0q4EJryDdIjqXWLr+qeIyxOq7/4e/cc+ztUnPsaXvnzAd176Jn/jr36WZ248Rn98Ga1zru1ucfvgmN/76pswr+iLlrMHdzi+Fxh94qcZlENO/uQ3sO0UWdQIMSRuPkaoLG7VstGPXN82aKZEqxiXNaEBpXoI2VGrN5MDZqsHfP4b71BVE5pWEjz84ed/j1QqNosCoQMi8ego0FFiTpZMXMFTm0NymSF1ico1/SsZs5XndOrYGfUZ9xS2dlhjCc2cGCM9rRBoVC+hwbMylraq8IsVsd0gKsndu6c4C8N0A6kiMjUdfDo4/OKMytSka1V34TsYWaY6MV8LKFIUEoVHiUCZCUQSqM0B1lXUqyO09AQdsNZgreWd+z1mqwXYhnpV8fL3XqVpmg7C7TvseJZl6CRhMV/Q6/Xw51W8R/Zm/ICAT7znWnz3kx9w8d/G9QEDU/GhTbc+MveSRApS3b3eRbBK4aWkna1wqznLB/v0dvfY1jnNbMp8MaVuLMZKdLaNkIqqekAaDCERoCIyWKJI8HpIvvkM5XCP5YPfIbOeK499kuOzBV/642/yiWee5Nd+7Zcp+juk+YCdsaI2lv/zC7c4O5lS0OAXC25+5z7Ftee49slfZPrtP2R1cg+Zt0idw+gxYqNxs5osDTy2Y0jyJa45odRLNvuG/SRHqm6OwbVLFrde5qSd8uX5PVoTMQa+9uJXUMBm2SNNFCJzSEB7WKoVi2TKKEvYTDSXn9bItIccOLCB6Zkj05JBpujFgHSeuV+xsktyVYJM0EVKE+DEtrimpV3McD2NtANOjmacTiqGakxS9JFZQhAeFyz1iWX1oEJJSaLWxdLgSWVHrGMAkEhKtApkOlLmCeUwZXdbsrUjeP7pLcajAb0yfajVJ+myENHNXgipHoqG/rkQvvgBjx7def8K+znfmt//5ve9lff+oXbOeVHtkecfJTe6oEaP77bzf5UPuoCgnwfbopsV7oJdT0Sug9VOVmc4HjDa2mLricdJ8gFu1WI91CFBa4mWGfcenNGe3GEkb1OUJddljlk0NO2SxrQYp9DpEJGMaf0p1jcEDSQC4TsSrphvkm88wc6Nz1Df+gp2/9tsja+zey3ny7/zCtG2/Me//NcYDbfoj8bsbkg+8pjgX37zZd54e5/Edz7o9muvIXtD9n7o52gObnF8+zchLBDJBPKrhM1d6qMVwjl2h4bhYImpD5HhjO1hS10POdUDhDojCsfy3ptU91pe+dItrLU0rWS+nPPW2zcZpCn9NEUkHqECSZDopMAczjFO8PTGgN5gG5X1yTdSKPscThxNG7m2s0EiwVSWujH4eoIWCYkqmGmFTSTH1hJbi5vPUELQH+U0JnByZihUj+H2JovDlnlTETNBILKY1BA8vSxBSNAi0BFfdvbjYySJGYJIso7hylziRE3THGGaKaaZEZKAlpGmqVkkmrffuYPWEmzL4cERb916G2ss1lq87xKivCiIMTKfzdd+yXU6l1pfoHg6zoi4ZjheJ++PslWuE74umQp4L843LtCZskKuyTHkhR1/mPWhk6lykHPtyW2kAMmE1iypmgadFWilUbLomKAy2Q1hZopUSbQEbyF636lbE9Gqe82oX2KalmZVMxqWbI0lgYwYJcFXCAFpmmOEZI4izxVZoUjTAbiC3pWnSMe7PH9pG6dyFm1yYezblwdsoLCbz+COoVlGQkwwlcHOFgyweAXLNCdJByTJZleNSj1VewZtWOuGaKwpKRLNja2WW+/UHNslX/rCn7J3+4i/8bn/iH7W5+jkOq++UfHS65/n2Y9e4zM/8gwf/8hHefzqHn/4f/xDbt/c53Tm0DJjuzxGFXOkjiTDXdSlJ5jffoCoXgNRYlG8tW8oXMam26QVLdNyl3oG0R+uK6MDgj+B2HSb5uJQXLOayJQgU6To2G6iUuuPgFSWTM5IVYNKFGWZIVOFU3eZuQmvva5Jo8CuNJOl4c5Zn0G/z5YYk4rI5TzSMAQ94upPbpNqgSxSdrdzHr+2ycki4Wia0Luk0GGbDVuhvWF2ebNLppoaSIEefnZKmJ1g0m2szLl55xss6wmSFmio6wZlJYmXUI0RVYVoa4Rt19XxQE8bpAg0Pq41LQLGdppBi+CRLfTXJbdERXzwGGNpnMXXS1wwZGnEViu8dYjY4rxlMa9RWpIWGbZxtH6JTjxKp5B0FdQoFUF6WhtwAQKO2tWoWlC39sJ+ztvGYj3DFUP3IR6plpwb/MN7xMUgJTyE9j0KtT8f7mX9/eWHEZkTdDoQojswer2ATyI2SGwEF0Almku9klC32HxA28toNjfIeiW4QImlrzxJkRNVQdkbIUWOFBpSybyZ0TqP84rWFGiXs9PzVK7lHTuD+3cxX/4O26Mr/MovPUFP7fLgIOOrn38HpSU/+zPX0arg3/vUx7j3xmu8OXmT+SqyrCUDsSLJE3QKiJJ062nqaYW4+wohlljd586xZbKI7O1qklHJWb7NPG2w9gTnLUEM8W6K83NwLSp2gs8RCTIh6gyXjFGy7bpbWuNkgk8EUQe0XJHIAp1IVJYyUJKVm9HEU2ZLjasU1dJgWs+0VQil0WVOiIKe6HqvDs3O1Utk1wNFL0MoxbNPbtM6mCwThAKV56TGMGgMw+cfxz59FbOoCSbgfUa0jriYd9p4vT6379zn7dv3EaHBhZpXXvsmdbvE04IISHzHbFakKKWQSnJyeMhyNmU5n2GMucCie+/X2iZdkUEb28ElQvj+eNW/lOv9v9t5NVQLQU5kFAIuClzoEqkYBBs7OToITDrANZqsLNB5Zz+FCGzksPQZNkvIyz5KJuR9TzkaMq9nrJoa6wSYlNiWjDLBxsBxFFfMlxVf+/rLjIY9/vrPfY5cDjk92+R7L065s7/PT/74VS7vlXz6uaeZTU556fRfMFu1HJ1F9naXbBYVOvPoTJGMr6OSAvngHWgCVm1wWgVeesMykluMd3rMkk1WuaEJS5z1BFFCFNj6EG8rZAiI2BE1CJF2WoHJAK8VmhmIiE9TXKLwOiBkQyKWKOkQsosHAhHHDNcG9vcjCo0UKfNaM1lmDMlJtCYXES0ElgI9yumPhyS5JssFj10dcWlnwHSVYEJHdCSip6gaxlnC5Z0hrm5xlSH4lBAkLObgPWIwZFHVvPLaW2RpYGMkefajT/DM8zfoD3LyImFrY0iaJigpHwnAOg3ITrbw++tGfZh99W90rWFN59C+sI4b3uWDxHt8EKwp1B92rx79/ChSUJyLoMaHU70POdYAKRFrAg7nHY2BRVWhew2Xd0v64zEm6k6gNU0JyylhMeHak9tkN0qEV4BitayoZ0v6GIwGVRZk+YA8HyMRqMTRhhbTeqwX+JDQtCVbQrM3cNxWK47MlJdeeYOtSc2PvvDjFGlOVV3mnfuWb7zyKs88NebTP7TLjb3LbI/6fPcrX+Bosc+DI4saeMZqjkxrZCJQgy2SnRuky0PUbJ+ohhgSXnunpb9S7D3Rw8gx03yXlQTvjvFREMQQZ/aRYYkMDhl9h9oRHaNn0D1c0kfLGQKDTxNEmhB0BOVIxBKtWnSiKaQgSTX78wNqv+LsLEXGyGpmaFxk1uYUWUZf5mQKtnMwJEQKNp7vo0TE4RgJzeXdTZatZFFLynQEbcJmkqAIHPU1IgQ28xLQBJ/iFgv8fM4KTRsE9/YPqZuKGFoWqzmvvn0THy0eixQeIQL9MiVNu0QoSRIO7t0lhMByMadtOwj5ORrCGLsm9YEudupm73zwa7bIsIboPRJKrevWITxSYA5dgtUhcB+CVB+KZndzUz5EfHCAeBcj85+3PnQyleaa8e4AV9WYakUIBh+6iqXSKVIVaCnI0ogOEq0lmYZUCawNXcuu9ogYKRIocs3mqGAuInXdUPYy+nnWDSKGSF11ErpFKmiFpBWSrJAkPYXQJQRBurFHtnWJ8bU+TiWIRmIcmDYyKHKuFBLUHnHbMF1o2gZmxy2+qshxpLIjKlBJjk7LLlBOPa1ZEoLpqFWjJlCSasVGr0WqhpVreOuNO8yXkf/sV3+V8eASn//dOd995S1+63e/xU+dtexc3eP5p7f45LOX+MY/TXhHrqjaiG5r0FOkXiG1ROcjsuF1tLqLsAdEdQlPxuG0JU8cuBInBlTZBlZNCHFKjBmRnBACMrqOZTZ2rGxIhZQ5UqUomaKF76pNWq/1cyJCejJtSLRHSkmaCWQiQS9p4wmHRwHtNAmbzGqYNj1Ie5SuTyob0sxS+xKpM55+bozWgbOzI5IkYzza5uaB5Ui0ZDpFy8Dl1YLCWeZyB5wlm02QskSm2/ije/hE05Y3aFWfdw5eo2qmSAIBi7E1OkgUCbGpoGmIpiWYFh8cQgRy6UCC8WtD875j4fMB4x0ISLRGSVCyMz5rDSYE2tgFFEoLgm/wziCixXvDbLUiSRMGaUprPVXryVOB1gEZNEpJRN5VQYzrWCojDuFbMJ0228MlLlrIj8DU1wfAu13Ue32xOL/4SIXw4p7zT+L9jvx9BBTvules59QgzSS5irQWbIgYB7mCYZkQ0ozGFyR5QTIQEBTeeNLoyYRHpWnHkJjn64Oxo75tTIXzAR8VPmQQM3qpw+mWhasIkwn+1j2e/Ikf5tM/+FHeeLVh/6DhC189QOrID/zAJnvbOc9c3cOc3OaWXNJayaLWhNigVItMJFJkpL1dktUBsjkg6i18knI6b5lNI7pRFMOMKhnRaIHzD/BREWWJ9zNcaFDRk0g64V8ZkUneBZdZHyUECRUkKSQZaEkUASUdWtqOtUsrlFboZcSzomkVMSgWs5bWRJYMUEmG8QlSQC4tAYUjYXMjZdBXWNPRoA/6JY2FufBECSoTJAqyENna6qFTzfJwims8Ug8QziHnKTIrUONNVqsVd+7uE6LDhYr7919jtjgBIkopyqIgLzLsoCTPc/I8ZzGdUinJ6dkZzrmOqS+es9QFrHXEEPFSdhCPdWj1gU3Q9zZxPgyS6d/i9UEo23N9nk4zUaHpSBAqD9aB9d0+KnuaAqhNjs0VMh8QgwTfES/1dCTLOjFpnWZonZJmI5JeTmNqWmvwQSJDigoFRQKDzNHGhmWz5PadfZ5+4gYv/NQLnB4F7rzV8q3v3uXF797jytUeRSG5dmmTjTTwPV0RYsOiVoxd25H56IhINEmxiUhKpP02GEfIS5Ym0s4adi8HREhZqj5NNsLGfbxvCSKH6PC2g4qmSmA9IDqqdKmzruOkJYlYdTCvNEekmigDQjq0skjRBTdKKlTwBNHgvWW+sGRpSZEnNE6xMimZS0EqUmHRUqBIKQvN7naKdw7rDJtFgZSa5sTjTEQWAhU8hfPofkY22KKdVdSTFUL1ECJBzrKOKGRzl5PpnDdv3aYoNZvbKU8+vcenPvX0xf/9g/eIWMOBHnn+Ann9CMTo0et8SBDBv0b7uQA9nGc6PPzZvq8PuoCen9/4SFFvfV8Q8YJktmOrXXeoHnmfCxHU9Z/Jh0B0jtpYes4xGmWMt3uYpCQiO2xKXGDrho2NAeN8TGs6pMTJ4QxbVWR0+06JlCTrfFCSBHTqcMHiXYsPEh80PhQoqRhklkDD3K64t39E5VI++8M/z7Ac89p3a27dOeYP/+gd5pXh8Rt9djZLrm33eLsIHLFgvooomRPjCiHabn/nA/LBZRLuIZsDQqrxouDBqaGHI/MpVpQsszGNnOH9jEBGEAXeOvBtp0kpAREQSnf+Jy2RWa+bPRcBsrVsiASERyuDVqGLQ5REJxqhLI4VVW3ARmbzFhM0K/qgU7KQkahAqgKN7whf9i6VSOGZTE5JkpTRcMTBwjOfOLK0QHjFnk7JYgRhEDGyl/eRKkPqPvbsFJvBgoxVkJxMzmgNeN9SNWe8ffslQui03LI0JU1T7KhHnmf0ej2Cd0xOz7DWcDaZoJQiTdOLzv85OoJ4Dpc9JzKJHSfDunN18fx6357LTVzA/NbJmOqqyd32XHe0HuJb14VuuJjZ+rDrw4v2+si8DYzzHtv9EaNij7btdKGsh2nVVS+kCoh6gagnEBK81CSZJs0SYtIio6eQgSyHNFfsFBvsXtqlbVY407K3s0NedOrvpg3cuzeDIOmR0hsPGGyOOZ445lVkaTcQq4L2TBG07Kq9LtCYCCpSJBHZRqSJbF/vmOmqs9vg92nrOS5kaNXDmym1mzG4toseDYjtgtjUaKHpb+5w/dM/S9A1X3/tyxwe3sO2kV/7hZ/nhU//CJXa5u239/lf/tF/wdHBAfX8lK9/8U+488ZvsjEoGfZLXvjhT/BLv/oJ/vibh8wXLcd/8DVcMJidFxgI2Dl8k1N5ienmJeLiAGErytiS2ppwdILUKb0rn8HOvkmQdwhik0hBlAV5Aj/xWEbtAl++a0iuf5rRC3+TxxZf59ryW+xdu05/NMYOS+arhn/2O39Kvzfg2b/6H3Lp2cfXPAcdo8mnHn+K57YvE01B8IrWSbyAH5SyI0IRUJ/WtAtLXpYInXAYE+qlY3aUE6VETmqmE4+fOFb7b9JMDyj6hkR6Dic1wgs2ZMayMTyYzZF2hTJL5vFlmiCYzh/gXUVQ9RpK5wlR4Bycnp5hrOOV14eszJw0lxSp5PGdHkpLvJB4Z3C2hhjQdOKPAcGq6gzJ+wXGtiyqJY21rKxh5R2t96iQIiJIcwbBEWWktZbqyCJ1R3FrjMNayWIhu+qSMh3Up4FUK8oiIwk1SUwgmEcsKK6FDTvHK6VAiHjhyN4/9rSezFjDRx7pRD9MoNZdKIV6iKz48BBfrO8S0PtN5Mh2HSkfBY2LlB5GSUC6SPQCXSQUI83i+IymntOuJtjVkiTZwQXHanGbcqNPubeFTCJhNUcLTVkOeeIHniffGPP60R3mxw9YzVqee3qPz/38z1CMNzleRn7jt/4+33rxJQ6OG6QU/PqDko1hnxtX9njymat85id/mc0HNftnLeqkZnVUUWXXUalnfHZIawXZ5R+DukJUS3pYChEYmJbMBsTmDfAnxOx1ok+JtiSIEseYTz2Zcmlg+OO3DHMGPPbZX2Mz9Ty7fIlev2C4uU1IU3yi+dZXXmdyPGd4/UcYPXYFpdOLQGR7MCJ97ImOCtZLzgZzWuPob26hkwSdKIINmJVDrSmTKwQnRtDORdfB1w7roZ0HgqmpVxN0bElCw/JtjzGRzV6JCHDz9i20hqdu9Dg7OuGtb77M2ekE2864f/AK09l9VvW8o4eN3Xxctd6JaaaxzrJarbC214lUK4WSkuAcPvhu5i16QvA4IiJIIHQzh98vmvt3JEn617F8hMZFzgzcrLuvQ4DWd48HJtAXnhg6RsTRdkazrFicHNNWp9TLOZIhGSlNdYhMFcXlXVSREKol0nmytM/lx2+w+5FPMKfi7OA2s0VNoXM+99kfZbS5zVmj+MKffpHf+J9/g7OpYbF0/IP/sWQ0zHjy6mW2d8b8yE98lkUbyd9ZkUbB6lu3qKqSZvws46pGUlNs/SChscjFhDRa+lhGztBrWmS5TaaHyPIuYTEn2oIgMqwc8+TeJj/2bMpLd2a8dHfOpU//POOrT/OR1UsMqdjc+yvINCUUBXffPuQ7L77BaOsjXPr4J8lHWxdHVqo1Nza3CR7i5pqoQSryjQHXw8O5I7O0xAA6TXBITq3A1gGzEkQViMKxmHtM42nunSC9oQkrjA0sK0c/yxhkGXcePGAyq3nqRg+dCF79yi0Wy5q6mvHkk9f5pb/+GTY3R8D3T6S69d4KwvsO8/9v1vuRqesAskuNzmnSzxOdD/RBMVwEp48iCi9m88V5lzZe/I2EPP8m6xetA9cYAiEqQCJ0itQp/e2r9Pauc5AMWYoSRYpHYAMMeyNGqSA0ZyzbmuGo6IoTswarlrTLGSHmpLrENzOWbsHG9S2ScZ/oGmJdk6YFeW+Dxz/1CYJ2fPud17h/fEy9sPzIxz7KR3/gE5AMePP+Ef/d//DfcHg05eik4Z8fprz81ZxLW5tsbYz49I98lM/81HMkV+Ysl5bjL9/E47GXPkk/kWyd3qeXXya9fAk/PUU2DRuhJbM19niCSDXDradZHL2KUbdwYgcverhkQN6T/OxTOZV1fOEtQ+/681z+9C9wtb3F1eYOo+2Pkfd6+DxnWRm+9kcvk8UeG898mt6lnS6ZB6IQ3Nje49JgDD7BWU/Wn3UMhhsd8kpIsJXFNR6dpgilWAqJsYqVG4AXzKNntYpQQ/vgjGp6xnQzJVWwOFl00y9qTtV6TuYWV0/x9YRlzGmjZrWcU9cL7tz7BsvVBO8dYT3D1BqD853Yqz6wngAAIABJREFUNQKstWitiMGCEGTrJMpbSwwOKTr2R+/d+e7lXJev24udX+s+1slPjBdyMXHNqHze1RJCEEK4iL26PCpeMAASH8JYpTiHrX649eGp0btRQrRKyJKUZJwRoqRpWlrrsdHhQiQIRzARgeM8AlcyQeqObkJGQSK64UCpJGmakuUlEYMPLVk/pxz0SPIBTRvQZ5bgBaDJix5Zb0hctdg2YJwitJL5qqNP1aIbPm9dYK4DcxWQTUS3sJN1TIJCNkQafHDEkCCVJNDRBYtEILMUbEfxLoRCJwWDjR0W7RGT2YLWWiSKx69f5flnnuQ7p4bbDw5589bXWcwmgOD0GE6PIU8LyrzHZ378x7h64xn6txxtM2F1+ACXKsLWCMICXU3R8hK6HOJWZ4hY001XRFJnQSeEbIBMMlCiGyITEJFIlTDuFSTWoxNJXm4w3HmSq8MHPGvuM9rZJeuPaEclyXSJWlNEunSAVzmsWXkEgnHWoxdTlrqPDRLnu82cKktrHbUxWGcwrSFNAgTF0UKwrBzLoylegE8V7TxQTz3VwT2a03vMNj1aeSbHFSIoRDZkWq14cHKMxqAxzK2j8QGCQQiPlLarckpxcfhba6hWSybTCb3TlP5A43NN26cT2ZUS7w3ONkgZESLgncRHiQ+KSMSHCmtbjKlorKFqG+aNYWUcuSzRQiLMCrkOOF0QNI0lzVIyGdcVFkHddCLTQbaduQWFkxrnQbqAFL4bgnzEAb3LmgQPGZ0+AIQuHnlMfLczF++6RfDnEUM9KrDYPXhYsQmxm/taukjwghCh8pGoIpUNJB60UAgtUakiCoePDcFZgnNILZAxEmILMkflSVfdaS0gkTqjPxySDvqczo5ZGQNBMih73Li6x3EDB9OKm2/d5NXXv4UkRSBYnAWGvT7zo2tsbI3Z3r3GUX3KtJ0jThb41uCSErCodkISCtL+DsGfElcrErpzpuvhgk9ykjRDJAJ0d0QGKfEkDPoDtjcC/X6FY8TOlcfYzS1PNXfJiz7FaA+nFVZJCq2YWofxmjboi/9HBFKdMMp7GKewTqJyh1aGLOsEco3vhLeb2qLWmmRTK1l4aKc13nqCkngfaRaBWK+I8xOUaFGiZTqz1E1Ab28iheTo8IgkFWzvBE5nS+7fP8A0Dd61NPWcqppeOKFz5+O9w3vdIQXWVXNjuo5Zt5HWpEFrmllEvJjHRHSQnU7T6sM5mb8MaMAPsp/zCyF03dyVi4TQ2U/j6ezIdT4poRvAl4lE6kgILcGbzn5U15WxsZMEkalGJpJoLPiIUClFr89wY8xJtWJpWmIQpCrl2qUddDHk/qzh9v0HvPzKNxFoBIo3l5FEK5bHZzz+xGP83Of+GspCcXaEmFf46RKnFS7pI90U7T1puYeVjjCfoaIglXT2EwNBJ0QUMlHQoek7Uh+hSfOcve0NxnNJbwKbO1fYuXqDJ5oHjMWK3uYeJCk2TZgfLVDWEbzEkBEurKfzQaXO8FJgRUoQ4IlI4UiCxzjfFUsbQ/SRxDXUQXBsJLYy2GVLUB0hRLPw+NYRp8cI35LIiqbxnE0NbtBHDgecHp9wMlmxublJmkoeHOxT14bgWpJUsru3SZalfPik6FE21fMq+aNC7H/x9W/Sfi6QEt0X73ujh7v+g37/R65ddObeW/A7T6be/3ohFVIlqLRApAVLJwgWsq6Eg0VQyASRFjTLSFu19DcGJEqgtEcIT/SOGANKS0J0xNAitEBmGrwnWo+QCTrLGY7HLOyM+bLBWI8Iit3NDa5d2uHeyvPgZMorr3+H2WSGJKFZRI7uR462dtjZ3OKHf/wFtveuMTh5gHcL5reO8bnGXx4jwgpdL0j1Nlm/RztbQGhIBKREtHPIRHekQokmdDrPRAFBaITO2Bxn5NZT9CoG4212r93gMVPzhJ1TjHdJigEmSZjNVyTeE12gCQk2vjuE76UZudQ0RoPwqNygE0WWCnyIWO9pjcPUliw4EIJTKzAm0E7rbuZcV9gqYipPc3pGe3rKKmpMAvXUdMUOoVhUlsNJgzcznJlRxwwTE0S0OFdTVTPqZsE5ydajc+Pe+7UPcvggaU2Gkp38TDf79JBZ77wT5f15d7ODip77tYtkai1TESNdlw8eee81oiDGLpG62NqPCvvG99dF/gLrQydTwyLnmUvbNIuW6axhOC4o8oJRPyeGwEY+ozGGycrQKTaUXUAeJV3hIhAy0dFdK4lOMqJKsTHg2xXeWwTgXKQ1oXP0UXLj+haOSEOEpESkBYVqKKg5nc6pF5HJKsWjiSvRHfR9uC1WLFii7zckS09d1hRFYNlPMIMMJXKU7GBvRa8k62WkqocymrgKhDpiYkniNOZkiu6VbF/5FNm8pW1qxlsjdCn5e7/+D3j11dceEWhd48aJWNfSWInMUmSScOc7X2VxsuCjG0+y0IFbccbcLFDNDD3cZifXHJ/1aYOgTXr0yw1euDpm0a64ffgyCSA3Po6fnBGrFTFaKqv44sHzQCRPj9g6O+aJL/5dfvJzL/DZn/3b/G//8Pf59p98g+lyQds6fBW4c+su/+V/9V/zK//Bz/HRZ/4WQWUEkbDYr5me1nz91oqJFUz6kvnxXe69+Hnq2lFVnnrRYFYtzr6DDyuMKIgRpGm66pMAERzCe7T3yBB4cNshBJjQOc+3hMQFhXEJxBZii4tdACLWStl9TadN0BuhRSQVniSVpKlkcXLGfrRcuZIQcslrK9UNQeqATDJkVhLWjG3NwhJcoBwWSBWxfoYPDucty7ZhuqyYryx145kE2ckRWEOSwNZ2ToiBJlpym+FCjvUSHwTGd+4mKzKSRDPs5eAjoTUsjcGFSNM+7EwJRNeV4qHxvguat/a48dzwH5o3j3wTLm5875N/gSLoeYUSujOn5wMjEzmaR2oXqVTEqchhbRhpyaXeFiY0LFcNRklCmSFVjhItQnUQ4P72gKTsoaxCNJHgPMYXNHKAWRp06tnafJy+KMivHLC7vUPWS/nS11/hD158g7cfzCCmHdsjHo+jkp6TScaqrZFpxtHde9x86SbPbV2jl5dYlrShZdIs8Ing+o5ianPOzkY0SQkadgcl457kndNDaleT7j2POa1wiynCN4hoePX0KfbNJkofcUkEbnznK1y9usHHfuGnuXNnn69+9WWWixWrVUU1sUij+L9+8/fZvbzNf/53/lOG4yEIja897cyyPzWcLGCZapoIB3/6Derlivki0lSO2UlDUx1QLd8hJD2iyslMjQwdqYmIgSS0pEJQSo2UDikthhJPyltaEZCs6gyA+w9exflI3Xqc7wQHR/0eZXaZ276hbgLnQB0QxBBom5Y07URG26bBmhaICCnI84IoBSJRYMXaWTlCDEgpsNZ8/87U/w9WZD1vQkSKSBojIxuYVZFFFWkUOBk5bi2t8lxLxwjhmNRLrI/4XorIc5Kk7DqUCjb6I1SWkIkUaRTCRbxJaPUQYwRuUZEXm8h0wOWd64wLTVHm3D6d8t//ztd556WbQEbwtoOoC0/wgrPpCePFEKE11WTKzRdfZK8cc2O0y4SaOrZM2wVpDOyO96iahP2DEVZalkWf6/0hjw9TDqZnnFULsvE1kvB/k/dmv5Zm6ZnXb03fsOczxpQZmVk5VLlc5apqW23sxtDQlhBSA0INEkIICbjgP+GaC7jiAjEItYTERdM0attA07SncmWVbcqVzszIKTKGM589ffsb1sTF+vY+J6KyqrLkbnUBS3kiTu69T0ScfdZa7/s+7/M+zwF+dUl0Ncp3PLma8jt/+SrWTrm/v+LVJ59yZ3HGN/+Nb2NKxe/8r7/PfL5ifr2g2ziykPNH/+f3+eM//DP+k//03+Hb3/kaUWqCj9TzjlUdeXrV0SjYZILzjx8xf/aExcrTtJH5WU1XV6yu38MLScjGaN+R2Y6tva7xHYrASGmUiCjV4dF0DPlYSqKS1G2GdYrLq48QwrNpUkIWJVxenPL408cc3zni6Pjop+yEn/z4bRWxf849KuAmBkVuaHnAzcxIn2SGeMNOfKFZJW7+nN0DXxSDblEGBaLvXKVYp5VEKUmeJWpes9kwv7zi6aMnlNOGcnCEyjVqlBG6jqqruXz/c5qLZ/z63/gm09mQJlO43PQzugZUZDgpKSc5eVairCJuAqGKNGKMDgXdYoMpC46P36JYbKhtYDKdELTgv/uHf8j7739M3YgEivo6AbF4lpVB9uqcUQge/eDPqJcN3zx+yNpEPo4Vy26FbhYMJ1NenSk+fT5i4yVV4SkmQ75xPKb2Hc8Xnyep/Xvfons6x3cVPnRsOsmfnH4dKWB/dM6dyvP6d3+Xd371Ie/86m/zh7//5zz+7D2ur+a0tYVGcvHkiv/qv/zv+a2/+Wv8B//RvwlCE4XErj3NxvLxWUflYJWXVItrzj74HnXtWW8C66uOzaplvXiEtUt8PkUCeVdDTAwaFSzKd+RIMiE5MxYEtIzwSLoY8cHQuZLgN3i/wQWZwBElIDruHhxS1Ya2Xfd2PmIXhZx1tALKIkMKqNbrHrSKaKPJshyUTFRqtvNTNt25W+9Qn1gS6Xd2c74hRHyPOGsl2apIiiiQt+h9L+ZcESm3G17sgOZ/JjS/GAXeSxAapVNS7GJAhV4RR6e/dOhlUjvTifvfepAxvYWd7JVclAKp8H3SqGQkMxIldJrjiAHhHUIq8sKgSAccbRBaUOSaYZnRaYlREIv0pgoPXoPVkIeACIHOazqbsViCbUNCzK3tO2mSGC0qG5OPZmn4rGnI0ChADUeQZTSba5QpydUAl+WoYobWGRHB1XXN5dWGEFLnLrWN0pL5FDU6JCtLsgxitya6mmx/gvYNfnlF8JooZpQZ6MGGxazAKUHcXBFIohlCSEzmkTLRbhAhfcQkV7nYdAgRwHfY2lJdVpyd3OOTp3d5enLJ87MrlqslznmEV/gQuFhd89FHH/OnP/i/8TIVo5ePr1heN7z3WWRhBYuRZH3xlGeP3qdtPHUT6eoW21ps+zk+bBCqSDTB6HrENiLxadBdarSQSBFAgBNF8u+IkYiGWBKiJcSOELcN1bTLfVCIIFMnSIKUgdwIBoWmzCKF8gyLgrxUJF8pAVKDMqAzIg4fQWrVFys2Ee2EBxlAeqQKaB2TmaBwoDVEge0C0YMNPrWRo8d6i/SCLmpcVGxRty0q4mMg+oC1FhfB3Vbv+3InbPfZthPXd6ZvIYhiF7BuO02JW6jgFwXtH/cIob8kEkqTKxhpqE1EA1HGxOEm4jzUnUiziC5C58GlYtR6S/AWJQzFcARKY5sWg0Qj0GWJcoHOtuimIp8OkEZhBzPyfABCULWey6WlcxJERqTtuyIBYTLM3l3MaIo2AlyLr9fIXKGHBX61SMbODDHKMC0auhEsZwOMrzHCE4UkRIlSiYKcKGoB0RtIhpDOT+drom3IscxPLUY0fPL4mCdPznl+csF6WVGtN2AV0QuW9QaP5+MPPmE4HtJFSVtbmlXL6dxztQ7UuaCLjuePPkz0rgraxlPNO5rNKZv1E0Q2ROicwneo3tBSxEAuOnKp8VmOlAGpPE62eJnjhSAiCWGUOotNQ4iCgMT1HHIpBZnJ0j6KybxQiOQEn4JR6KVyFRAJIaF9IkpcP8zrQwpM2yCXUMC4o058YcX/V8gaf1ELtJfPz/axLehhZDo/waQPKSKdiEh6HzcnEAFqG6ELCOvSjI9PQ9kRSVaO0UWeZigIZEi01ujJmCChrStEnpHpwKAYUhYZQkqsj1wuO9ZNEn4IJFGehNwq9OQIMzlEZwqJx9crGI4x45K4aXCNI4YcIQXjPKlvXcxKpFVkvkZoRQiyV1+LRHyKtTKADAQf2XQdJ5crFBWKDQvboFeazx7fQw8Mz55fsJivmF/NiU6CUzRriw2ezz76jNHA0EaJ84HqqmFdB06uA42CWkcuPv2Yxclz1lWk7SKrq5au2bBafA5CIvIRJniyYPuuaiQXHZpIyEu0BKUcQWZYZQmid4SKA2I0VG2TkjJ6bygRWa0WPH3yjLIsOTo+3HWcbqvdfdF6Ycbu5W7Nj/3PdjO9/If87D35RetLn59bXlDAjQjF7b9e3MAvP+l7vym04gsF4wuF1xYw7O8apXVS6S0KyuGI3CiMjChbo+yGIrYoIkpqjEz3VpQZXhQ0raSoIzgPPp0fJ5JZrzZDitGYGCOuaclJTCQzHiGKnKZeo3VOLgsGeYEabnM4WKwt15UjYECodHZiyhVUOSbbu4vOc1RvVhtti5mWqOBw1QrvFVGMKE1EFw3FNMMCrp7jggORADFj+lwjJhEGIQMxJDbVxbJNFjFdQ+U7rtyGZ08zzH7Bk2cXPHt+wfxyju0cWI11nlVd8+TxUz56/6NkGB4Fm0VDWzsenzs2LrIpBJvFnNMPP6RpApsGNktLU3Wsl4+xdo0sFkghKV0C1GIIaCwGy9AUFFqjZJo977QjILExEskgerxvsb7tiykQQSBEwBiDttluX0rEbi+InuWglERJ2d+nPX3cC6T3+NDH6x2l74ZRs3t96KHh/j7ua6Hd3N7trhjQj1rEm47xC+eiN54WP34kv8z60sXUqvZ8emK5Ox1x986Ay/WC5XJJrJbIGJiNM7Jc8mAyQIkRWkmuN5ZV41CuBu9YriM+gNAGj8I7xzTTzEYZaiRugkGoyR0IZQjDGQKN9znaZGnA/XiP2Z7kjdkQMkM3SMn2EMHSRp5WgcwKcpvz+WKfRat4/llN6TteWVyhzi64aq9pyXDRY0ZvMH74DS4++SHN/Jz7x3eRg4zJW+8Quo7T5z9gzxfcm04oCoE/+BpSDemcQJj7yGyNECXJcWjL7YTi/m8yffg3OHzlHseHjllmYawwv/o2PDun+98eIYevMpq+yXD6I8z+I+q9r3O1MdT/5COq2vPxRYYejxi9doC5OMMv3wefI7QCBz60LObfT0VWbFkgeIzkj/+bj1D/w98lOJ8O7AtDegIlNb/7e/+IP/r9P6D1gTZ4fBC9XHZqn4e+vRq8JSn03I4Uqc0qQg0IfJ/+i564IYAQLUoIVH9Ru/5A6pjmfLTc0EZwIbX2I4APxACbxiCsRHYbBrnBDEomgyn3745449WCw8OCh++8gikM1+sVyIysONypFjbdhtY2TA4kRkWq1XN8sBhV4IOjtR5V5AwmmqAXWNmR741Aas4/mxO8p/EBGSMiKtrWsekarBkSdM60zDFSEmxH6zoamzpgrk3zVUJJXLwpphKazQuUvd1wpKBPdsUu+GxD2cskiy865OIWm+LLKEnFXhIdkhT60VAwLeH+RND5yLM6Jc2llzQbxwdnNcpZpAvMug2qnjNfn3NZz2mlZDDKGN97SLWYc/74Mw73JkynE/bevEvmA/P5KXV7wut7ewy0pDx+k9HoCO8jUo3Iiruo7AChr4m+Yts7Gxy9ysO/9R9z55f3mQxhrFsmoqZ8fY9s/4jud58RW0lx55cpByuGs0/IJoe0rz9gdvqMwWrJvJOs1wo1GaC6Dc3VI9xGYIqC2CUp12enf4ltO4RdIoLnA5Fkj9Xv/e8YJci1pOscnb3hapdZTtWs+c//s/8CGwKnmxobBV0UhK4luhbv2yRpbl06NiLrh7RTMRMIyFojhaSRvRqYt4liqiBXCudytBRoKeh0g1OSQqRitZRLXJTMW4FDYoUgekv0lrzQSFXivMe6jtwkBbIs0ygtMRqKQjMYlLRth/MuqagGWK83vfhEAoaUTgnG9k7w/ovU/P5/tGI/QB9BShjl8JoSuAk4HzlvIysbKAPgBJ+dNYTOoW2gdC3TdkF9dcHp8jkbNcVnI473voopB5x89CFGwr3DfUaHIw723sa3LWdnH3GclQyHGj0+YjwY9WlBhs7voLJDUHsQUvwUIqLzgvu/+Xd45e3XmU5zqkvHmA3Dw4z8mw8I313TPG3Rx28wGuTcm35IpSWLw9cxq4rZ8ydg4LOFQpYFWe6w1TOa6znKlEQiIcB8dcbZ6WcIX4Nv+FFMe/p/+v6foJSgUCKJSjV2lwTlOiPThr/73/6PFEZyUtU0PtJGmQx8uw3BJyGg4Fyi76Ch965JCY8HIZGVRgmJEjKxIqLDSNBSEHyBloJMSbxStHqNEYIMQSZzFIZ5K+iCoOuhaYXls49b/sHfn/Ov/23BV956/cUf/k+sdvri6Zai6i9CR2q7tmj7Nr7sktQvjEFbafef/h1vX5SAmi94SohepMdQloNklyMld+7e5fD4LipPHaoH+ZJxJrg7y5HFEEYGaSWiK8hef5vq4FW6RrCoO2ZVhbhecLE5oxElNoIu7zK+9xpnjz+hXsx55c4Rxciw/803CK3l5PQj9nzBg+mYYpDjj97CmCE+CHR2iMk3SL2XfEz9iq0c3P4v/SYPv/PbjO/uk5uOg6xlM46Itw7x52s27z1hNjliuH+fcvQpevIZq197g4tKc/17P2K1HPBs/dcxwwGjuzPk6QX15QcQSkyuEhjmGh598l3wHXRLlJD8AIP803eRWlBoiRZQN66/dwJKKgqT88d/8Cd8+Od/xnXTsWg72ijS7Ga7SefIN0mkwTpIZSq9EGkqNATI+gIhJLXQycIoWJSIGEkyUFYa0ysR16ZGCEEeQEtNrgoqK2isoIsSByhhkRKKMkNIQ2c7BJFMa7RWaK3IjERrQVnmKKVo2qbvECXKYdNUPVDtEQK00cTod6JIu2Lq1h5O3aV+bwegv5/oC6oEIPsdM2e737cUVd/PZardG3Srffsl1pefmZKRqB0daWjfS4E0GlnmaBEYjEqMlmSZ6A15YSQkOjPkaERwZGKFdQEbFUrnlMM9jAZpIsInTxrdfx9Ky9TmI9H/otCI6BBRYIQCLckzi8jBypYo0sDqQMOdMjDMHSPvMfdKrkvB6jLDtxqtjzBdQy5TDwVTEF2gXlUID1oa2s0alMQjMLnh4J0HaOlZrTowU9ThhE7m1K0nbs6hOe/vFMmNM5AgH0wpJ8d88P4TFk+WRGsZlSV3DmaE9QZJoLVLrjdPmQ32ODjeZ/hcU3UtNYkq1VxfMc0LjmYPuBhfoIYTRJsTrSL6GgjErYBBTz0JRFznoUtDprLnocKWa5qSuc5ZlpWldY7O+1QepYombbfgb20AcYO0iVuP0SNT/e/bhF5uESkhMFogZdq8UgiGCEIUdKH/F90qOkS/2UMUyCDTnBsBHwJN27Bcr1ktJXkWcF2DMQItVOqYirwv58BIgzCRzES0DJTFgBAzvBKE6DHWYIOldR3TaUSaDFEWBCFxsxzfWUS0aShiO7CoQCgBSlI3ljZGQucQQqKLRKEwWqMzk1CZ3g/oZm2P8e2i9KX3Urz4+/aZdLbj7h3fPrMLftufywtn/0X08fbnIST0OhDZ0pO3aM5Ip+7wQAXyCHFs6BqBbSVCDVGyJdOCXEZiVqCVoa5aXOfJlMG3lmqxoAOCgL3jMbmWNG1ARIWYTghFmVTPmjVifY7wrg+0GmJAygyTj5jMZtS14y/f+5TNesMg14wHBWVZoCW03rKoLpBDyZ3JKwwrQ9l0dHWDq2rUsqIUhtn+iG5oyUcTkCBkQYiOYBuEtAi53f9JIUgEjwyRXCukzAkxURQirk8+NAFYt4HWOVarNX3jAVxH9A58AzvTQIGQAanE7hJXUiBlohfIHo6QKqKEQGuZzq4WZJmkzBXGGIJUjEl7XuZjojQUZFR1y+X1gkCHjy3WKqJICGtiRcRdIBICvGTn1bEb0g3Jp8M7v/Mg2xbq205MOg43PeQXP/n5aqxf1E7Ui+vHz1B6H1Ig9ySKiUjYEpFIoRLqOogRVMSNDF0naSpAD5BmjCnyVGRkGdbk2M4RRUemDSp6mvWaTqYMtRzljMsxSEvdRhiNiaMJLgq87ZDrC2RXIZUiek2UGqUyVDZkNJmis4JHj56wOLlgkGlGRc5kWJJrhYieqr5GyYKjwRHCSMorj29bllWNX22QgzWzMiMbTClHE/JxQIiC0Hb4dkUUAalVPzOW5h1kjNjWJbuGIr/1NgZidCn2Ckljk6/QqlrRWE8bRDLa7FUCo+96EBAQGiEU0oibGCMFSm1BvIT8C0TvUSSQOvkcDQaaoBVGZ5QISkBmQ9AFGRmdh7OLa5y3xNCS5xOOjg8YDF80Xr+9dtj2F7WexMuv/SnrpSf/WZ6hxHZ4sRN100X68Ri0LaR23aaXVCp2RVf/ottRS0iJFEntNMs0ZZGjtEZrw3g8ZDoZsX+0Tzkccrg3pRgMKfMMlUmU9mgRUtdqVrApNLb2eCeQjNGDNbkMoCSiKIkB6qpBeIGRmraq6BqJI6K1Yv+VfTID68qlMzgb4JXGuQDVFWJz3QtDKaIwCKlRQlAOx4ynU54/u6Q5WyFiYFjm7I2H2MqhCLRdxdXqjFceDJhMBwyvNZW3XMtkLt0uKzKTMz2aMRrNKCdTrCrwWuJtRXAeobp0fugV7KJLMt4ORJElkJgtSO13MagLkVXjWG1qVnVLG8AHiK6B4MA1OxAdelEXLRBq2yES/axS7GNQQEpQSqJVKoSFEhSlRCoBOnnHzpD4IGl8xEZP6zxRbE1uO2KIdF2Htc0tMYitOp9IfmcizfDuphZir6AXtnS9pOSn1G3weRt/bpf4ccfmeXlPb9lSN6MVN93WeOv07Ejwt4DpL+xe/ZT1pYspqQN6aNmECrtuyYcFWTmgmJikWz8dopUAPNE5fNdxMMiRUjAuNFrAVf6Euu642kjK0ZgHD99g1W64rpaEVYewgUGZzNxikZHclDfEaMgAGz3WBzIBmYSpiWhj0iWM5koMyDW8NQ4cq447quNkf8JVu88//ouW9XqDKdeUhWaq/jG5zKkHB7jacvX0KQMUo2zK8uJznG9oM8XojVf5+t/+Tc4ePeOjP/gRgwdHDO+9xkoNWVQWf/VDxPUHiJgoRWJLAUMynBwyPX7A//z3/mvC1fuuqXvOAAAgAElEQVTcMY67Dw755qv3yeuG31eeVfOYZfU+X937D3n4zm/wweP/herqhHkAZy3N5x9zPH6Tdx78Blf3Wj66c41bavwGQlcRfUryo0h0uR4C50ZdJ5W2UmyLKd9ffKkIc0LiRaKybalfN5vw9uW43Yy3L1tubeLY86zT4VQyebBIIRgNBFoJWhSZENyVirUTPGsFIbh0cbAdDPS9zLtHCp1azCLigudquaRqG6SoqNYD7j88SMPJlAgypC/TRUNHqQwi0xjVIqVLqlF9EpkGFR0bV7Nq1xSjCSE6Nl2HdY6pDrSblrOnlwndCYlyqnJNNIooFFfnS1xjobVorZntK8oiYzjKGZQDBkVJYbJbJyju3szbhc3NzFR/ub107sTuNf37Hm8cP5TaHt+essdP6kzdQm+AEDzBO2ywuGBTZzBKmqgIwMxAJgJT6bGlZG805GwZOFsGpIlolzMtDDaTbKZ7uGzA5ek1mYhMijHN6pqz0zlNJmGQ8eqv/wZ5WfDB9z5GGMP4lTu0kymtAz8/QTz/Icqu0VqBy4EkDTsYHnB8uMfZ6SP+3rvvMqFlb1JydzKinIwodKQOaz47fY4Yf4Xv3P3XWH7+hMniE56ez5lfXCPNGaoLHH/ta2RyxOzBKdUqUF+r5Am0afG5QOiMxm+IpGAkBSgtiFoThEFpiRYC5ztCdEjlEDrSKk3rHZ2vE1BkAzF4CAEZLHJHiRNI6RKCrlOSIYVAZRKpFMKl4Cl7Rb1Bvu1ISUZTzf6expsBUWYcR8ikppm9giwGDKYTTp6eUL17TutrfKyTGaxzgO9pFMk3L8SAD5IYFbptk6Fmz2vwPtEerXM7+uq2k7Z9bvvxk6jkgi827/1/+9pRS/rPg/f44Gl9oli6IGljuuNKGRnryFR6FJFJUbJqI59elAiRzEiHnz7hoNRkxZgm22O92CC1ZVaOCF3D9dlznBL4QrH/xld57Wtf4ZO/eMzycs3g/hF2NqEJElutESc/Qq3O0EoidUZggM5L8nLG4f4eRip+5x9+l9xtmI0KjiYD7k/GjAuFlo7T649YNoZf2f+3GSnF9NM/5/JywWfPrjjuBmg/5OHd1zmY7bF374SNnFJdavy6oluu8EYjtaGT0IWtt16avxNS4pVBRshMSoScSwbrKgtYLbACutD24kY+2VuEgAgu0cf7tVVAVVoliqpICZ7KkvcNziewQirKLMMohVGSIpcc3skQJsPpAdMI0xhpJ3fx5ZThdIJ1nu/+X99lUzV0vmJ//1W+82vf4N69nzQv9UXry6Ze237PP931M/9UAdsk9OXkcheDXkpKb8ef/oW7GCREMjcFiFvQ5hYoqLRGSkWRZxRFwWQ8Ii8K8rLk+HCf46MZ3/5r32T/YJ8gC6LUuGyAVoKB9gyMZygCd8YlbdS896ylaQuEuU/mHXsG2iyjnh7gLFycXDFEUmQjFmfPsa6lLiR79454+ze+zfXJnMfvPWVwPGJwcEyTFbSdJ54/Qp4/RomA1hrhC4TUSJ0zmexzuDfh3e/9Mf76cx6Ugf3pgNeP9lGNJzeRVX3KYvkxD37lb3F07+vsnf45zfKaU50RhKI5OWcvP+bV2VucHnfsvdKxuVZ0VaTbbPBWEEuJ05rGbfr9D0oJlBJEaQhSk2lBjA7rmkT91o6gFI1UtNHSuRrbpbnZpBIRUL0WAYCQcXef345BOk+Au3DJjkhIRW5S7pXJBEpMDyR5LqnIyITiVa2ZN/DRPFLHmnW7oTQGoyUxdoToWa0tTVejlSCEdG86l+h74AlB0bZtb7eR9qR3yT9qK4e+LaAgWf9sqebQMzz6Al/0DKgEEt8A/mnU4mav33iqbZlC/TyVEL0J981s8bao+rLrSxdTSimKsiC2DtfUZDa13Z0EEQV116IlSBzeRbwNlLkmMwYRUqI8Ozhi5ALlJmDyIcNhhjAgtGBR12xcRSkFykhU3vtPICE68EvaoBHOJDPQGJHBo2OO9I5MZhzmBhcj69ZRhIo8VuBKBt5wf2SYAyefb5iftqhCY0QkyA2qvIOe3CMTGhk81fVzQhDk03sEOeTZX3yMtJE333w1KRDNK4SvEUoyMQ1T0+K0wPmMEHOSIW2Ova6oP32EauZo1UAeiIUnjgzjgzG/9JWHrK5OWF3XzBcLPnh6is1GFPvHzIaPyEzG3YdjpKx5790fsFqumN29x3z9OXZzRXAdRIFWGkQkbJEHlXw+hDJE2yFCYG9UIojMlxfJn0qmdqvJDLGOuP4gxZ5PvXU+F7Dz0Ijb4qnvMgkpyYuMTEv2C8FEw90Mcq3ItcL0xrYLH2kDVI3Ae0F0migCwqX5rxD7QxwjELa1YJoDCb73FJHIAMJHqnWFEp7PPz1leVVRDKZIXSOygCkU2UDitUJoRZQxdYhKQ5LFTGdJSxhkZWr1uzopSfo5lshkuk838CjydBijIwpJFJJ55akaT9MXp8pkZLlhNC7JMkOWZxgjUSog5K2i6TZi+RK6t103Boovfs2uaL1FD0yPpwMffiyCfkFI7WcJQgh4Z7G2ARFRIuJjAO/IVZbEY3ygI9DGhhglWTQMlWBvIOiWls2qwxkJpSRTDbkZoCcztFBkCNympmosZnaEmo6YX6woi5Z7xzNiNPhNh+o6Ip6xbribbagGEeUNrb6b9rGeoOI+9efnSa2PDdJYYgYxB1VqXn/lkL1SsjyvyKTnZF7RRMlwtsf+5JysXXN0VDCaGc5PTqm85+hwhrQL5vNn+GqN7yKZVuTGUAwyYhSovEQqQ1YMED4QO8feMGdaGi4uT9jUa5RSaKUZj0fUTcP1YplmLn0gOawLtPComCTzpZQIkyOUQGWxFx6QlKMh+SDnoNQMjOAwh0xJhkXR+20YhFGITNN5jQ+K0gwRKsNk49RJdZbOtjRdjbUpKU2DuqkolLv9dHOuQ4h457Gd3UnKOrcdut16eIQ+dxI7740X9+0Xh5oX07H44o4ULzz80tf9Iq340uc9GBUSYupcmrNR/Yxv9A4t03xmiAHrIm1s0TGgY0YRBbNS4uvA1VVHUDnju4fYThBDw3AwQGVDBkrTiSXz7gliWGIm+1SV5/njEwaZYXi0R+cCZtMhcOTacr9sEcNAMzF03T7W7aHMmLyY0J2uaasaHdYo1RCNIxaBmEuOj6a8/dodVhcdELla15DllNMZk7bleGQ42s84vFOwqZZ0n9eMyoLD/THLzx7TLjbYNqCkYJBp8tzgRIbOS5Q26KxECEloOgolOZ6UVJsl1/MzxpMJo9GIED3OeebLJd57tI/pqvICJSMqBIxS6Q6XGqRE5yBk8g40ecZgOmaUSWaFYprBUMMgL9Aq/ZuEVojcEKKk8wajcnJdUJshVmUEIp1taW1D25vBn1+c8/13v8doNODNt958Eajadihf2MsvJ18/azf/5Odfigov7safcn6+1N+6pS/tXv1Sl2pLbXo5BvXfH7diUBKX2Np6iP6/G+DP6GTAq7Ui04oiVwwHGaPxkPEoZ1BobFtRV4rBOL12kCeaWussqp/b8d4homSWaWpgcWmpVo5YaqSJFGqDKveQkz1yBDJ41ucnBBcpZ0fIfMT5k3Okh4cPDvEiI1Yt0luEhANTs8obFkNJYwa0pkTIAtSQsJJsHp+huzXGNJBHYm4hlwynJe+8fkw1v2B9VbGpNzy+XOBNRjGecDTJyZTm+N4ApR0ff/gpbd1wdLjH04vnrOYLXN2CgzLTIA1lSHLlMiswJkebHDqLCJE70xKF5/T8CSEkql9e5AxHA1rbsalrvAoJVhUyKWejUAKMliAUUSpUJlBGpJlMpRjsjSmM5rAUDDTs54JMa3Jt0DoVdE7FZDHTSIKDtpN00hOVTRLxrkEJT4ySKGy/r+JN/NkVPQne38YX13sY3sSgPvb0Hbrbs6m7BtutrZp2nLzF3Lm9p8VO1Q+S0IrY0gBvFWlS9tYyfSf2trrfzwN5fPliSmvKQUnjlrShJjgPaKzSxKhSMSUCKlq8k1inyI1Eiyz57cjI9OAIKSTTTYtQOXJgMLkiLzLWF1fUDmZKoDJBkSXKi5AiIbzdOintWU1rLS54pFfoUCKdRemcaTZgaQMXVYvuVqhuThFLSnLuj/YpBPzJkw2L0wZZaHSMRFkxLEsG0wcoOSD6wCnfJQRBMbtHEIKnP/yI+/fu8vY7b3H+pGFxXiF9A0ozNQ0z07FSAiE0LgyBAYgx9nJN3X3AyCzIdAd5IJSOONKMD8Z8/SsPOdUtzzfPuV4suH5ySszGlHuC2aigzA33Hk5YrGree/dd2D9gdu8e648/wG+eEZ1CRFBGIQkgVPJvyEdIM0KaIa6aI1zH0f4RSkSaZonzSd47MxllUWCtpbnVYYK+kBKJsqn7aj6Q6HpCpio+0ScyRoXizQPN/Ry+M4aBMQwzTVFKtIY/uw5cNZH5daTq4PONJuKQtkn00eh2Tdu47bCEJDUcQxK2UJDml3xgXYF1ls8/OWU+WnFw5FA6A1MxnJRM4xCyHHQGKtFeRFEiSIaCEoGWikwHlPY4u8bbDXm7xuGQ430cElOO+gInbM8W6tkFwq2o+seStH/BaFxitCbTGcaQjH1fimwv9512ye1txPALmsuCG2oYt4Lhlpu/+3XblezXi4PzqVCNwRG8xbkmdVuUwvZ0xkxJolQsO48PjsbVKBRGBEbKIErN81PH9XWL1RIxUOS6wRjPZLKHlBkSw+rsBNc6hsMp2Wyf+cWKLld8/Suv4jvJxbMO1XZEYZnolnv5hsUwIqJmbfbxsQR1gIozqsdnDLMrymyDNIFYSGIeUzH16hFVKXhWPyVKz/P5GoRkONsnTAYMG8PRUUE+Njw/OaETkuODGd31ivb6Kb4WhE4w0YrCCITMEEKhZweorCQfHmA3Nc31nLt39nhwNAHRcHXlCD6mjuRksuOBhxjRWkKICBnJvUIjGOUGqXQyLVUgtE9fYxTT/QHD6Yiv3h1wONS8NQwMtGRQDFDGkA1yFlZx3SmaKmA7sMM7eFWgnKftLPPFgq5raLsGaxuc65BK7Wi1cre/oNcy6gsCT9da3JZSsWXbipsdE29V6j2Q93Ou23v0Z4WnX4Ry6sV/3wuyuTF1HYP3ONsQiWS5Tp1Ib9EiI1OSygU6H2hcg4meTERKFHtFzmITeH7Z4lXO+O4R9UVF2GyYDIboch8tcyov8NajZEY2OaTaNDSfnvD2aw+Y7Y85f9ZiNi3gyLXj/qAjjgLV1FC1I1pbIsw+JhvSnC4xK8es2KCzri+kAuSKO8dTStdy4s6pm5rL1QZRCorJHqKtEWPD4X7O4d2Si6slq4uW0d4UoSQfrM9olht8KylzwUDrVOxkGdlkiiqG5IMDYhRUZ+eMS8Nbr9/h8uoM7ysODvfY29+jqRvapuHk3GCtRSnfgxGgQpKWH+aGPEvofBQSYRxSCbLcUAxLZncm3JvlvLZf8GoZOMygLEqMNmTDkg7JaWPo2ki9Dvhihi9mGBdovWe+WO7OT2sbwHN+fs7mT77HW2+91VOqfnxviltb5ecYrfg511/h/PzMf9NNvNgmo+kbiWztUtJzNwWS2Cr/banLO06U3BViqfshMSYVSEZrjNGUuWQ0yNgbDxgPMwalomtXbNae0WhMpgyDTFI7z7rpkLFDxxacAC+ZZhMyIfj4umO9csSBQaqIlpskTDXZR4qM6D3PfUr6h7MjZKY4e3LOnf0pDx/cZX7hWM9bhLcIAYdZTV00XIwEm25Ale0RxQjUhLCSVI/PmGQVuel6QNwSM8FoUvDV1+9w9azhvDllU2+oLhZEnVOMJxxPcopMc+fegOWm5eMPnyOmY44OZpy4R7TXz/CNQkWYlhqtM1AZMi/Qkz1MPkbnY5qra2LX8trDOxgZaNo5XdcSfGRQ5symE1bVmvlS9kyDCEIhYyAXEiMlw0wThMIJhc5BZSl30cawfzxmPMj46lHGQQFvjpLNR6YzpBGg4MnCs24D1TxQNZHPrgOtsKASU8P5lg5PCBKET4WUMexmksRW/bQH53tAz9k0D2mdS0DerRi0paS+nMWkYihtt11etHum//KefrqlCArELm8NvfDU9mq/DVTvtjbhFj3yy60vXUxVmyWfP33E8XDIK0dDok1gtxdpcNramqgVKhuSGUmJxtuOq6s5B7MRyuTMFxVSCKajGSorMMWQ1jbE0GF8g2zWrK9qukpxeDxBEXHza0Jd4xZzoshAFclDIEQeffR9nPO4ThPzAl55QGcD1bJhYS1n1qIu18gmMPq130DlM+Z+xoU74Nk6eavo3OHbGtuumMiTZLhaKpwu8dUzir19Xvvad2guzvnDv/9/8Pa3f41v/UvfwE8HnHaOWAzJRhNGTmJDRhunaWDWLQjxfVr7CV95bch0/BYX60DIXiHPRlThGedXP2CzWaACvHLniNnbr/Puuz/g4vSEppE0UXN5UuHLkukvfZ3F+RmLD97DVgXoN4j2EwgVrouUGu4PcrpsTJUfY7sNvr7i3/+3/hV+6c1X+OMffI/TiwsuqhLvHCZGWutZLJe0XftCt8OIJKBqfSpyPOzQgiQk2KuxuEBY1jSVJG4kn8nID2XY0ZNUz3hc2iQlbntj2I0VdCFQ94fo9iFI/NYeJYiBzqZiSotUCBECg1JiRFKpUa7jwdE+mQpIY8FFVguLKAtEkVGLDClTcSeVxvvE48+NIdcwyATBJlUqqfcwOjAY3cUT8Zwl7q6PibYoBW64JrctxYM7PWAwQSlBVgQyrRkUOXvTEXvTIZPh8PZ3laSlo7wNluzWy4jmrqDaIYXpIykqiR2SAqnIvMEvv6grFXfUmeg6QlvhVmesqgWb9RVC5CA0fjAkSEm9rhAhYoUkVhvC+RXZ/YfkDx7SBsUqTnheDamWFWPpyFSDrytKtWYsW7KiozicEX2F3wQePHwNheRP/9FfMJ5O+OV/4dtM9goWncWaHD3dY68z6KFjGA6xXtJulhT5hs7NOdgveOX+G6y6QBckUk+QQrBef0JVXSKcZ2g0d45nPDu74vGzC+q1x4WC/XXAy4A+PKRrO84//ZzlZQ3FG8TmGa59RhMC6Mg7x5qyHLKY3MWGyGZxwVffeMC//Hd+i6urE67n58zWA8immBgIznN2ekpVN/g2UWyVFAxMRqEUm2qNc5YmRIiOxlZIKdBmq6qnaLo5+VWNv8wpjeB7rkYQMQm1ACUJURNQEBQRQVAZQUqamLxDmtZSb2ogyZc775G9aqFzNvHTe8Q4ylQUCCTRe/y2Bu8Dx+0Ath1Vucm5fnpH6v+7K+5mJ6OzRNfhqku6Zs3Z9QkxShA5Ic8JRU67aXBdhxUK5T3++RmqGDD46jeIDlaMubqOXD9eEnzyesmjAxpyf40WK8xkRNABuzphdnyHvf17XHx2ymn9jLe+9Q0m+xMaIWiEQo0mDKzk0EsGfkIbhti2RcQGH2qiNNx7+IAALJsA5gitDG17xnL5Ab5bY9A82J/QqowfPXpMs9iwiSVZIxkuLAxGZOMJF09PWMwrgrwHeonvPqR1jrUL3J9q7u+PaKZHdPmEajlnkBv+3X/vX0WpyMXlM0Q5ZNlOKHLAr7g6v2a53NBsaoJzKCkwWjHSGV3b0tSO1ke8dTTe4okYkzoisnKYtaPaeKqB4Xpo+DPfpsJW9vMbSvUKsia1koIiKE1Qmi4KLNC2DttZujbNIPsY2D884Fvf/hYPXnnwz3Xn/VNdcYvef/EJfjEG3YrIIYBSu4pxG4NeBvf6FycgRyZFNyEg+rY3K09ql2qoKf2AMQq5uKZbCk7OP0HmJfrobvJuay0b55hbh15WqNai3vw6LhuxCAVzN+bJcoDRiiEW29Q0zZqp7DCxI5/mhA7c5oJcj3nw6mtszub80T94lzd++W3e+KXXoDQsrUcMxxTTPY5aReMz1v4AZx1dc01gxbrRvP7KhNnkK8zrgDf7aJXT+jnzxXs09RoV4Hg2ZnjvgB99+Jjr6wXrRlEGzf5FQ8gNe288ZD5fcPnpY7puiCxexy0+xHVrNsEzKQVfPRpgiymr0T3auqJdnPPbv/Ut3njlmOfPP2WxmrM3H+NsjomBeuN49uQZy+WSYG0a6lCScZEjQqCqHDZAHSI2ONpg0UGgrUBtPFJ2NDZSZJruLEPh+Se+SRT0/ucbBVgvE7jtFc4n9lfrI2sfku+oUml2UQRcTPm5JOBsi3O+B6VTzRBESLTCGPDOEeUtek28UeDbPbT95YUYBC8WWjc0bPr55tRpijugQ/T5U5qNgygTxV0p/WMF2VYoZWcb8CXWly6mnG1ZL6+4O8yYjXKaymFtRJA8BHzwyCgRKktKI1KxaVvaTY2bTogyY9OsUUKyNzNonWG0JoSk8qZi0rXvNg5vBX4WIXqay6fYVUV7foXJCkxR9hVs4OLJSUoirCSUBa47J7pAWDV0DioHfHaGXDe8+cZdzN4D2rjPJg5ZdBotPQPlEa5D+JpxvEJSpTkGNKFdopiwd+9Vnp1d8/l7H/HOd77Dva/cweeapashK9HFgKKwSJ8RY4GTFS7UCLlGCBhPv8V074BL54h6H6VyQrCsqqe4LqAQHIxH3D3c43tNQ71Y0noNTlEtO3Q+pjy+w/LqgubqEm/LpNwUPyLGBu8iUiom2ZDG5LTZCN9t8K7mV776Gv/iX/8mHz/7S5bNFVlpCB1kMRUyTVMnKeQYdwOJujfvtL7vZ/Sb1MfYU/62qBTJj0sIXCPwMdL2dMHbGJrqaU/y1jM9oe/HCv+XD4fzHikE1gWUhCDplWYCvm1xWqHxZDJglKMLnrqxSBUQKkmbC+nR/WPWu4TexIgMaeTS+4APEWSJVIosmxJFYGAXeOdwXUQrgVGSSZEhygytR/iYk5kZgoDzSzItGWWG2XDA4WxGnmUvfGM7pOMlJGS7vgxFJHIbjel/Ere7Vduy6oVWdX/RBE+0HaGr8fWSen7C4vwJxoxQqsDaEV5KuuUCGUGqAf5qTvfJJ8wKzfDOPiFmtOSs2pxVa9Cdx3epy6ijQ+gNUgdMWeBDR2gDw/EE4QQnH58SHgT2DsfoUlL7QNAZejBmOA4I4yCWWBfBzzHaI8SSvHjAZP9VmmWgaQRCFgghaLpL2vYKESHXmoNRydkZrBYVnYVATttGTBvQB0MksFksaWuJMHtETgmuwgaPcjDN9pmUOW0+JHYdvqk4mBT8+l97hx++31F155QjQ+dyCjxd07Ferajrlug9QqZh69JohsrQbgQ2RmxIQMTGpUI+iwoRBUSPtQGtO0JVo6TgcrVKd2lIwgY+QqY0uVJoZdKANI5AxEpFjAIfUvdJKUhS/v3POt44w78wz9Dvk/S8uHXotgXVjd/Zrhu1Raz/ihD8DcL+453aX6T1smDL7sNbgm3xzZJuPWd+8glCKDIzxpcFriyx1Rrftgg1QDpP+9kjstGY8RuvIUJBR86ihpPLhjKHLFO46NBYRFwjRYPIDYiAa1Zk2QOm+wec//BT/h/u3uzX0uw87/ut6Zv2eOaauqp6ZJMUSVESqVggrRgSnNgO7MBxEt8HSJyL+D4I/Df4JshFLgxfOAk8BE4Axw4IRo6kWAIlioMoimSzm91dXeOZzx6+aU25WN8+51Q1qZQiinCygKoz7H328O01vO/zPu/zrA9P+OyvZEy3K3rACokqK/I+MOkcKpaYWNIu1gTfIOUKrUdMtu7Se8W5D6DGSKGwbk3THRI9aGGYj3LWUVMva5q6pyejc5KucTAeoauctm6oF2uinILyBLfGY+lCoJhN2StzzooRdTZi7Q7JCsHnP/MaIfZ8/Y+OWDYZ5SRHB09wDfVqyeJijeuTrLnSmkwpxlnGyjvqCDYEvIemt7gYyKNCCIkIAdV5+t7TLzTrXLGoG+q+Qwy05tT/KCm1QUmF1oZIMlR3UiWfKp/m4aYFNQKj8YhXX3+Vra359UmRvv6ENfB8rHedSvfTG9fXT/r5Jz/+i7dszoEXkfgX/+Y6vfyyMn39zYl0Ta//PtGw4uXfpX9JiIXgiR5C34LLUb7FxJYsNshmSQyWVR2IJkfEBolAOU/fB+gD2dEJpmkZ7e0Qx4GeOXXMuWhzchORhSP2PdF2TPQKITpUrlDS4PoaEUtm2zusHl/w8AePuPvmfbb2p6AjrbeIvMSMRkwmDhMMIpZ09QoRaqToCTFQTfaYbO9yfuwJagpSE2JP3T7D2YhCMC1ztqYVvnesVy2110SnqNcWkxVU21ucL5Y05wu8LxGmIAZLtCts8Aht2C13qIuSPh9j6zWhXfHG3X1+4bNv8lv9U1ovKMcZwQoKPF3bc3F+Qde1RJ+EYKRSjFKDIutV0q+zIdJ5T+18sl3wKZkRpDjeaIlfGXpnOVuvhxaPjX8TFCpDD+sHEZOfnRBYqS7BZikiiDAIGQWij/jghlaJCPLK4+kyTgmeMDCG0khKsS+eQenOCcTfzMMXmTfx2p03FdNNffUSBhAbMAAGJSqUUgMmkJ5bkBT91AAKvOx46WTqYDLmy2/cQ6iC1gry8ZxKZXifFlxwGUZpSjUiBkvft6jcUOVznM5ZBw2jXYSE1ve4rsW5Q4LtEX3HqOjZ2skRfYeIFrv2rNueH/3oGf2qoz1bU8glpYKagCWyV3XkM49YgDAOZZ5BCWEehkoCEBrkcc8r5n2sanhz9+cwjeNDabAeVk1k7NbMxRHq1g1cmdN89CHN8gLEXVq9x+LebeaLJV++/wnGXvPogydU5QGiMozvvYWjwH3/W6ybjmb9kOCTd8AXXr/PZ1+7yTv6Dd6PE/z0kDCZ8qSznFjo5Iwit8ynHiktrVtRFYKtSUGp7yG1pDWB0rdMz5e0W7fof2mP/ve/Rbd6AFiSVKzGRslHa0nPgjosmRaGWVnyz/7p/8ZX/tW/5rA7p+4a2sUKbx1r51IgJ9Ls8QiyyQxlDGa9IDhHGzfqgFcjxGsORyEV7+gAACAASURBVFEQCXghcD5e3X5t/qW9dkAaCEPtRFze9+pOaZFpkZJzKTcqhIqkMwNVLtkZSe7emrC1NeLGZItMG2xzgYxrxpMRRkhyIRC6RQpNjIboFd3ROVEa8tEEIRV9p7CxZxFaYpbogHlWYIxOCKmIjGKRhEiaC4JU9EIznx+wtXMLY2aApm0t3ges36LvLfW6Ybla47s1bbO+ug4iLdArg8QrCsX1selP21D/huOIELiUNN0gf3FQW4wbgUYGB/Frm0wIqSpluxbbNiwPH9DW5yzPHiP9OdvZEtGvoBXIcgq5xk96EKDVBTGuiRcdo+yYqn+fLXVAUxRoY/Ai53wVmCjHK7omm42Ju3u0q++xOH2KmN1EqxnNdMrIaL74ydfJxyXnZwtMKMnKEWb3gO37HcG/QxZOWZw+xHaB2sLN/S3+2i+/xUJv86HfI+ZrdNZTC1Au0IkxMfNs7wqqSUkferQMzCpFrrbQfo4sNJ30jLseITMOPvkZwoMjnj55F0RNEJJMZeRa8dHCoBrH8aPvk2eKV3bGnD98wj/67/8JjexpVM/i5JxmuWDZ9DjryIQDHQlKkm1tUd28Sb44xawWnEWLc91g8JzAiCAEIsi0diJ0NvG4F6vN55U+UyUS1UYNJ4FQEhd6hv2eCLhoAUEYiOkqCnIdMUqzbjt650mqaQpkko0tMolUSfRiQ5fY0B6u85ZS6nQlgR7DVfIe/JUowP/fx8bLxNke1/esjh7R1Recn3xEtEvmZoFwAbE6RYgKkVeEwhIKj9YLhA2E7RqTw8R9QBvn7Bb7HApH0w/JsofddoEqBHZ/n+7ijPX3vk/IRojxPk0+o96ecufGPkpqXGu5WNRk1YS+rJjdfQPx9AmxXuNX5zT1MZ2NKK35i5/5JJP5nI/EHZz06OkKl2VcOE9DjpUzJluCQpUEkWjAk0IxESPyLEeOcxrlqayl6CR791/H7DQ8fvpdenFGkAIpc6rMsOgL3jmVnB1+SBfg7t6YMZH/9X/6l0QTWemW1fkZzfkZq87iO0uwLaWOeCVBZ0zv30c7S378jD5avOuxblCojUmO3sbUKB5iSgqaXrIYAvhNn4UaEGmdOGcIk2i4nXOXwZl3LgF6QoIEFcTQG56zv7fN22+/zc7u7mU15/Jgu+xt/bcZDvj4kCKJQ12On3AGXRecEJKroDbGoeKU7BJgYDxsruiwWUmR9q9Nv4ySYJSkzDLmheZgLMjcErfsOJhHCh0JKiJ0RFbnCC2RQ2QqiEjTIi9appML/CjjrJ+TtZr3TUHnLWeLwK2tnh1dY/a3Cblm/cFD1osVglfI44x6e8b2nQO+/Ok3mJUlZycX5AdjMDnjO/eJZoSr/5jFuuX8/Ed0PdQOfvnVe3z+rQOeZHf4KFSE0QJGBRfWsXKSTs7Icks1cSgFPljGhWR3kvGKuolQks5ERLSM64b5fBv7c1PO2/dYnD8jCEeUisKUBDTvnEqaeMGZPWNvmnN3a8If/PbX+cHXv8NSN7S2pT4/x3Ud501P29hUEFBJgW905w7ZaER18hRb1zzzPS54WjeA4jHiowSZbDAiIlFbheB8mT5jHzxy+DilAAUJqYPhTBmEIAAXuktgXA60u7IwRCTLusUOPcQMcabWMnnKKpkoo3ET3/hr7Jqrz/7SJwou7ztkSUMCHy6pgRtgeYMtv5D/X+P8pLVrTAInN9TVuFFovRRbsn8qr9CXTqYKk7E/nVF7Re0VUhuUNiiZmpN99IPPQ1p5IaY+K6U1KE2QCqVypIz42IK3EGpwSf40M4LROEe0OUSJNAbnIihDNBFRBoTwCOFQERCR2bxibEBkCplnmPkEMknIBVKBkgLONDKzzGcVdpxzc6dktcyRQuJiUghJJpkBORoRJmNc9DhryWKOkAWxyMgnFfOdbaQ01KueKoBSGp1PUfkUbQTagc4FkgwTc7YmE3bHI96NEwITtque8WTM2XnHqpGYah/tFqh2CVoStECJgBGB0igwGleUSKkI6xp0jiwnyKpEljm+EeDT9PBRsLYBFxy97wl6jMwNHz18ljakqSKQGv68c3gbLxHrjcu0MRkqKxDrZcrSr5dOXyyxDtM3IdcvBmFXk1fAIJP+orP68yWpy/sLECIpzSS1IInSiixXVIViWilGI0M5yinKAi0l66ZG+YCU+eUhIKNHBo0QjoCisxZEhi4LwBOixPsO7+t0mAqNChHpI96mxlQZJSoKVAQRU1CaZRU6y6mKhO4uWSXBBp8hhaKzgRBamrZNsqubhaY1d27fxhhzhcqL61+H1y3Vc8noFV1fDAeZwBiNlHKoPsTnrn+WGZ4+fTqUqJOKohACERzeNbg+9YeF0JPpSJmZ1EjtQGcaMk1UafOTSiZe5jx5cxgFo1wyKRVGK6RQBBcgRDIJOjMwnhCkxPYdWVQoUYAxyMIw25kiM0PfBaRPojY6KzHlFJMbTCbIcvBSMjYl0/GI7aqiFwUuFpQmUEhNb2FZe4SeoLKA7LtEhxOACOjoyBRkUhK1RihFbHuiVMiiQJcFutJII68mHZJ1H8AF1vWKWGao3TH1uuHDxRo5loiRpGs7bNdjO493A2ijBFongZ7JbEZsFskjJ7ikTLRZJ8MmHnwkxiThn7jSDDADA8J31eskSapFxgjs4K+RTouE6qW1mQ4lomA8mTCeTFisW7reMp5ME81PglZQZkkMQ2pFDCmZ8j4Zsb7AoLisSG+m1+brdDrl5OSEjz76iP8nBF78hH3jCjC4+vn6c0Dk7Oz0xz7mT3fEP/m2uKngOULo8b4luBZCjxCesjSIYZ3LXCMzTZCSKEOSFR7WjzYFmRaUUTCtNLmSifLiUp1RBp/MJMsSX6+xfYuQJUYMQkJGUY0L8mZE8JG+D+QIlDTofILOzzCZwOSQBah0SZblbI9HlFVFiCUSz6gICKVZrC2OAp3PUK5PPX3DQaDxSBkpM5XUS02W1PJ6izIGVYKuNGqtrgUrks5FFq1n2azpvYXtkuACjx49AwPMBM2qxrYdrvPJviMyrKF05o+nU0Rb47zFe4vzbrAgvgL1QmBIptIzE/yVTbFM9KQorwQhlBBJZQxwYUCeNgdSjEgFQsrkiVXk7N44YG9vj+l0Sp5laY8V4hJNvwrLNj9eAQ0fXwU/7QrVJgH6+Lx9mfYOKcSPOXmHIPTaz9dvvwxOxfXfXUWpYtiPNk3/WiU5+jzP0FpRZZpJWbC3O2dnp2J7a0JRafJcMxopykwgjERogxxV6XsjUwwugbVH6ILxuMSXGdsuY7UwSBQ+OlyfbCwyFZFFQShzrLPYriOPBiEyolGUo4Lx7gxhDH3nyeJgJGxG6HyNygTagskihTbEPEmg74xHHFISKBkZR1lmrBpPYyU6n6P6GqlXoNK80yKQiUiVKdCKPjNpvjYtSIMqSlSZoSudMpZhj3RBcNEGOtez7mq2ijlKlJwcnXFKRG4rPG5YP5a+S55/arjeSkmq0Yh8OiGePMEPZ5AL4doZlI6cEIfpz7WvAwBxvT9bbEAJlT5XOxi6IwRi0zpwLXgbYPLL5DsyVDFFEpTTWmL0kEgJeanQ93yceUWJEMPvU1x59d1VYsXlLVfd5hvQY0idhuXOC3N8EyNtKH7hGrgQN60RL7GmNuOlk6k8n7Cz/TojAl0MrFY1fd8zykbJE0UbvO1ozp+R5SXVeEZelpg8JygNQlLkGSJ6bN3TBwWhQPiI8i2znRnb+9tIUyFkhswKQrC8+qnHED0SgQwNMqTeACE8WT5B6RKT30OoEaLYBqFBZFfFvS914D2y2sWrnL/ZG771B9/lq//kn9L5FhE7MlmQZfv4+QF+PkpIWO/ZKbeYZxXz7pxqLhl94R5rsUeznPIlPWG/zPj22YTVeUkz8cj9KXduvMVucYNb1V3co6/zzT/+LltfvMHd21v89c/+Mqta8/f/+UdMipLPffG/4MkP/g0Pzr7KbGeH6d07iH5FPH3IwtSMyxv83Ft/lbPTp/zw+7/DQkiWQhFvvk1554v43/zv8McX2OCRQRCDHNBkx7KRtC4wLstUbTlLAV7XWYgKJUcgLFG0SOmIITAuRmR5yePjJ3S9xV9Sx15uCJkmqBIiLaCBajEqNEoKepvKxgiBD4HuWrKxoR5IqdPBJs3lhry/XfDGnTE3ppL9sWSdlywwLE5rZJRUuWBaSoJJPUGxbZB9kmbP5yNklhHiiChhVvUJjekDUUPUhi7Psbqk92uc88ijNVrKpEQpDKbYxxQleVlRuw4bLH1dI0LAr5KKmzYjxlXBZGuPxfkJF+fH+GvdUQcHN/gH/+AfcuvWrZddch+/vteyrGsU3+cS09/8zd/g7/5X/yU7O1tMZ1Neu3/AzvaUX/j821Rlhpm25DPN1q0DlEp0W6mmCFkhTIWQmoRFDZuV88Q3e6QpEabiVS/Zry1fn0zozTmx7xgLSZFvIao5YTolqozYRQ7GE7Z2ttmRgVJ7Rp/YxXtN7Sp2KXkzy2lCxWE7xk0klJo3PveLFPmMW+VNxPqEd9/5BvrWfe6/usUbe3scTCr+9293PLvo+MzNL8D0jA+++ZuMracalTjb4w+fstItwgRevfslsmLGD9/9Lgvbc6gzOjNh5y/+KuFr/5r10x/SBIuNkrBqkAKcb1nHjPee5kyqgp35CL9aEs6XyU/KeozeQeeCIM8RwRGKlvl8yq35Nt//8Ed8+OSQuutw3qNlorlGYQCBT0qww7mQFC2VSNXGfJRjtKLaBLDOMpvkzGc59bqn7z0ogw9wtlolemoEgiAi+bVf//f4G//x36Lterz3VFWFVuqSyiBETBQpMUiiX5tHH1/oPz48XCyW/L2/99/w4MGHV4nW5aF1hdan5xRX8uukAzbEgFapKf36k8dhYseYGpOPDg9foHL8rEckRguxQ4hzpFoz3ROwM2L79p0EFEmNkDlSzlJXtyqGCHBAQCPE+xYhFMKM2I+SmVccf/AR7wRF7NcJQJMVJpsRxhP8akW3sswyxZ35FttGMfUt5c0RaqapKcm7jLs641zk/GhdYaWm3/PsvXmfW+MDbhQHVMKwePwNVs0F9z51wPZ0wif2b/Pdh57f/Z1TXtt5lftv3ufRd3+XVbdmPp0gOwdnJ1jfcGFaDvbe5tbtN3j8+ANOjp7yzEVWQjP9xS+gnj1h+eAPsdZy0fd0XlK0ksb3OAIfPDujLAoOdqbI3uIentB1Let1j1aTFMSKBSLryDOFzgoOpjPObc8fPX1G2/c0fX+ZICENiNS7cbkVigCEy3MnLzNMpimNSSwH68iN5GCvxAdo24SURympO0vvA+PJDG0MUgju37/Pf/Z3/g5lWWGyDKX1c/TsTV04SSL99FKkn824CiWvryoxCH5c9emGYT3La9f5+X7dzd9JrdLnMwBKSiqyPMcYw81bB8ymI9547Ra3bu7y85/9BEYFjHTJH1IL8rxCqQyptpMAkBnB4Bm6GeF+Dz6giilIw+ecYpx/xG8Fie0DMnbkaIyZEaoJvjLUS0d30XPnXsUsyxjbhmIiyT+5Syem9F3JayJnohTvnGsWF4pmZtF7I978xc8xMzP2sh3iyTv86L0fMPvkhIPdEZ+9dZ+mV/yLbyypsoq33/7LHH/4fZ4uvk1ZlBTjClGv4OwZS9NQmhmv3/wyy9WCDz54lwupOJMa/cor7N59k+bkfZr6mIXtMU7ivcZFh/UdR+eS2kb25mOqwuCeneBdy2rZAgZjdkG2RLlA65aQ9WxNxlTVlD84Oefi7IR11wERLQeGgtCp9+myVJPSKCHADMB1XiUVwkJrcA4RAvu7JVmmWC27VAlShra3XKzr9EBCpnMOOD5f0vtAlhVJZr3IUQoyIyiyJEy37gK9Sx6NIYRkWH9ZEd2kfWm6baKoDbB3VcG6msnXE6s0hT1RCJRIZ5C4VpFNNPh4aT4vGBg+w2SXShJ8vEwyX3a8dDIlhEBLg2/XrNs6Bds+ElQYUCCJHBaglBqlUqnvssonxcBHighpQCiCMOm+WpMZjdYaZSYIlSUltujIsnRBtVSI0EHokrmYiEgzRsgCXdwGWSLUjCgURDNkxgJnWqJ3eD0HoRnpwKw07Cs4I7AIDo/CqRIZBNolqcboI7iQjDulJkTBRecgTw2yRkgyISmUIdcZZAW6KJmOZ4yUIadlsjPDzO5jxopCNoTFMaIruLM9RgTH8mKBdQFTjsiLpPwSvMF2Gu87KuvYqkr6Ok+eI32H7y2YGmmSdHI0GQzUhU0P0sbC0CMIIoLwgxu2Q0kN8Yq7KqXA6CwZtBGJNpU2r3tObUqslyyHnzTF4tXRIkVkNlKUeTJrDT5VLyLQDyiWvKwKbB5381yAYJDclUxLxd5MM68Eo1LQa4ETUA+VLqNzeqXohUqUW2uTzHoEM84QWTKqQwg62yFQlxUgoSSogJJ9MmvFw+AVJmWyIQ4xBaoJSfFJdSoGRAwE7wkIgnUo6TEylY+zvESqq+WllOLmzZvcuXPnZZfcS47hMxqCzq2t7UuJ9jzPyPKcLM+RKkPqfPBhIRkpqwypcqSapD4kWaQNF3WFYA3yp0Fmg1pfIDOerUyw1HDc9Fjv8CpDC4WJERmSEbDwoAIYIVFCUtuUXKs8eVdoITFSkUmNMDnIgtF4TJVVjFRAlJqwu4sal2TKovsVYdUzNjltKWnrltD2SJOjTJrDMUi6VhNkMkLMpKTKDEEJvA24ek3MNcp4jFLk4xJlPcIH3DCfQkz9fUFIggSkJ0SL63uU1AijUkBGqjhKoVCjnDzPiE2H7SyNtdiQKj4b94or80LgCmcHNh5rw0WPAq0CVanYGucDDcJhFCgjaEIyse6txfkh8CFVs7Ki4ODGTfo+JVOjUYVWaW+9PKiEuEymPk7x+Unz7OqGsjzl7OyMR48eXf4u4f1X7xEh0EpdVpevGFIRH5KfixleUwK2NxGaHJIpy3K5esk18GcfP45/n+ohGx8ShVRZypNiQFAAAmSWkik1Jvl8ZMN7kVcAq3JDVTJHArmOTI1kVwtOO0sXHA5FkAYVU3U8uEh0MYGNJKP63kOwAZGn5EJztYaUyoimIC8rRuMxIykoCcjtLaQWGO0pQgtrKGLGzihD+J71qicKhcry1DdhJbbXWAvRdggfGWcGqRVWgO0aXJBI7dAxko8KYiugc3iSabUfziAv0r8oPTE4vO1TFdskwZuISB5rUlOVE7TJiF2Pa3oa67A+CaqIKDdX9DLgT318Aw1VJAT7soQSI1pGcg27u6NkGFuNiAFGFZiywhQjQipJMZpM0ToJUt26c4eDGzeRUtJ13SD9/eJ5d/0s/Lcjobr+En/yGoYrZP/a6R6Hd/HCe9pUlcXVD88h+xtvHq11usZlQZ5lbG1vU1UVN24eMJ2OuHvvJvv7O+we3EYKj4guSW5LULpCSIPSc5AGIXMSmCev6IXSpuBYlYDCaE9lJHsaFngu+hYbwMkcFUE5T/SB4CLYgPQRM1QyVzYgTKLEKSFQCDKpMcqAydFFxXQyYSwySuFQkwqZ75IVilz2iGaBtJp5VaBiYL2scT5iigpjDFpJnFX0rcb3PcZYxnlG3xm8EkkQqOsQqkdrQ1ZkhFGBaG2isIY4rB85xHCSICNROrzr8dZidJbaF4YPW2tFYSqMqFARQtvS9pbWeVwMae3ETdXphc9dwKZP6bL+EyNSBLSKzKc5VSFTTBw9hUk+jLX3iQVl7WVVaNMT33Y9LgTUsKYyo1CJaMUVrpZeRbLiiCDSXys2S/haJiM2/107QK+jyVevPH13Wc3anG8vLIghto0hJHqiuPyz59bBn5bG+/LJVIyo4Dh6+IgffvgBk509itEYEzKC1kiT0IS82ibLcrQpaK2nbxtGowJjAq1rkFJQ5ROi0DhhKLVmnJlLVFOKHCEkXqTIppC3kUKjZDFkqeIy4EtVKDm8jXRFIqk3wfpAHwLrpqfvIrlMfTAms0x8x5fyyPday281SxZoRmaHvWVL3l2gekdwkeb8HFcfMKl2ebo85QffesInPr3HqzcVQUmaoNifV/T1jMNwk6oouVNs4c+ecvr09/gP/pO/yRe//Cv80e/9NkePHvC7//P/wWh+wN/9z/9r/vA77/Df/v1/xMG85M7tV7kxHbOfRfpuj7PlBaE7ZKws9ysB2wXy9j7i0UM4PIRjCz4nkxI128Yvzokh4OPmEJdIXaDyCmU6pLT4kNTGptUUFyKLpkGJSKYU+daMbDKmeXpOuz7HOfeTE6Y/aUSIPgwiZILPvznijTsFX/naOYenlv1C4aPgyKbP2qhEs4oCBg2MwQMrBS+5kdyca17d1XzqpkFKj5SB3qSS8bkVuGjQ011kJTkNHm17VNOj6g7dOeKoQGc5VCUuKE4Oj8mzgt3dA7IMihxEWENc0Oocj0Zog9KaosywLrBY96lnolWsl0vadoWVHikgyIzgBe3FkrwKqKxMhr3Dv5/tiLz11pv8p3/7bzOejKlGJdtbs8EwcYZW+rJaIKRCDAmi2GA/Q4IQSRKlNnq8h753qXNNeELscF3Lp4vIVhX4X56c0hQFS1UxDYr5ao1uLK6PdIuWtliTywyF4YcfLqjygrc+IcgySR+hMIrtkeHI7tBazbaZUERYP/oOuwd7fP6v/w1W56ecHT3h/J0fcnix4Of/wq8jxzv883/2Vbq65vU7+8y3t5lpQXQjTi4O8M0aFZaMf0mwPdKYgznyQiDfe4A4WUO/ZmR79Gt36Y9O8Kua3qnEI1fJE6qcTclzh9ILLDXe98yn22hdcHSxxHuXvPTGFeM7N+mOV5y+9yGrswu6IeGJA1VBEjGba0uijnGdIgEQBX3dIYxE55Z7t7b4y3/pVb71nWd87euP2B/njMead44bzmrL8fkF1jr6Qdrc+cCyaSjLEiXlNe+4MFSkhv3hT462Xm6mDQfPZfIUN+aIVwigkMkUcsM7F/LqeUPwOBeGJl/FZQg3mBynBOzllZR+OmNjCukukykICXwxW0NSPIzLQ3oTHTx/aAeGHrkQ6PuNIumwN6rAnSzw70zgq+dLHq5rLkhn3EHd0tUtvo/Y2tKcrpAWyqzivcOWxeEFn/zkHqNS4hAgJdtjQ8cE7A3GZotdXeKOPqANPb/y679GXmQ8+eBduuNDfvCHT9h549P8rX/3l/k/f+P3+PZ3f8i9G1O2t/eZZopQR86Wu3TrCO0h9/c92xnoSY7zI8LRIXHRwMMe7Vp2X7mFW67oDk9wXtL4VPURAvLJhLLK0NmKaDuc78nzkp2tLc7XNcumpjACY0omr9xCILn4wRMuTo9pvcNvQL2BZpeTpP0TPTZCTDTXKECKkNR/u57oHNI4puOcv/Lrr5MVY374eIYRimmm2HvlVfbuv8GdO6+wtbWdqlLDXBVDcuCcG1S/Ep0aJYZqyU9n/fxsxo9/nRuPHwY2yIsm8j8eZBm4PmJj0yERUqGNoawqZpMxe/u7bG1t8Qu/8Hn2D/bZ2ppTlDk723PyvGA0niYVUyUvq+Oba3rJJBJXXj8uJg/E3jq8T/Q5QcSHltK3/IVx5Httx28cnTJ1ni09Zt5Yyq5H9oHYQ32yZjSbkuuC09WKB++ece/eiNvzFHu4CLuzAsKE04vblHnOzWxCWJywPP5jPvOFX+L+W7/K8eMPqS/O+OD3v4UpRvzVL/0VHjw84l/9i/+L3XnJrZu32Z6MGGtB3WxxfO7wq0Nka9nNJWFWoG5so54dI49PEYcO4TK25xNscZvm0SHeehqvBkBNJ3uB2QRdNEjd4/waYmR36wDrA0fnK7QMFFnGzv4u+fYW6x8dcnFyTNN1wxmUkigRI3qop4ZLGp4H4uAfuslxIn2IFJXEZB1f+Pl7fOKNHf7lV97l6bMVd2YlvY88Pm5YrVtOz5c473EhDBYbkY2Zs9aKLNPMxlk6f0hG5711l0p9IV5VgCQkrC8OFf3rwhVXZolXJSqxUe1j2K+HB7pGQd0ISHifqm9iEMGIEZy3qYBiTHrO5+u1V+yNlxwvnUzVq5qHHzxicbECoSjzglFVEoPH2YjUg5RgURKlpHce53q8t/R90p/XWqOionGR1G+qiULTo1EkR3OEJjXRO4jQY1IyhU7LLYL1CucFZwtH00fO6xYXIg6HdZaur+nrmq5eU58+wjYLyuImRVZwZ0dy9N67POiWHLt2OOwammaBNNvkoxIpA4IO/JroavCe3MD2lia6JWeHj1m3c0Yzw/5rW/i85p1DyUhl7O/v0Uuomx7iiHoJMd8n29a88rltqskcZQwojcjHODOhltu4WBA9mNxTVMm80GD5qDlmJT23Dm6RLTtivqSRgt5ZcBUqBnpxjicQLydEJAZH9D2jkWRc5oS+w9mkbhRCRA4HkY+C2wc3uHP/Lt+8+DoXZ6dJieW5Tz+F2/Ly0V+ceFdjAyiECE9PE2qxagM+wsoOKn4D3/W6ATAxITKboGTYUvHR03U9y/MarWL6t+UZmcgsk1iSR5ASkqYD4w25yvEqJkNpC7rxWJcQ1XrVEXJoqyWug64OGKOSP5Aa6CQECI7ORrwDEULyQrCJn2WkRg0VHqlyghLkVSTLk8+MVBqhkiHen/eIL3xvspzJdEqWGeRQ1geN8+KyeglpE+utp+sdjY0J9Zbp9521OOdoVzW2XtKcPSMrpuTFlK0qkmN5dH7Mk9U5je3IbEfTNVQhUXW0iWjVE12N69YE5zFCM5satIB6tWQ0ErhYUUwytm6MmdQZwRpmoxG5lLTrHUw2oW/BkyOLLcb7BjHvyKukOijzErygkxOsqBBIjIFiHFAxom1k6WrwDVuTCSoI2uyEFsEKBzFDxxlCXmDxdGHjc5H8hGzXoivJ9k7BRbSpaksSWxHeIrzFSsU4L3jr/qt82L7L+2fPWLerSyd2AETqU9JDZdYi0+YtNi22A1Y4oIQR8EFxetHx7e8f8e6DM56dyfZFiwAAIABJREFUrgguMC4Mq8bS9y41ybLhdl/1ziVq3SZpFpeiJs/jyjx3TlwFTy8HomzW5+Z0u1JIGh4rZXFXxeoXzqTrbvSbwy1V6Daotxxe95/veHH9bF7LVeOzIMQN4HAF3fuYAKC2D1gPrU3Bn4uBzlmc87TrBt93NKdPEEjK0S7jQrE7lTw9PuLh8pRFV9O7nqZr6foOZXJMJtHSImKL61Z4lyo6o0ohpwrb1TRrgQtjZCbZOhhRi4LqXDPJC2aTCX2zhXSOGAzeG0QxJxcFhakYbe8m5VZjEFmFlWNaMcIP9Ll8FFA+oF0k0HPsakxm2J1OaaoJmZWck0yhsVN67Qj4QchEAilpdH1HyCKzeUa0YNep4dsOF0/5Hi8Steje7dvECB9+/bucLc+uDDshAT4iUcW1AItIlJwNwnyFtbPRiY1IXFScrnO28jmf/uznIURCs2Zr/yaz2ZxqNCYvCszGD2fTiB4jSsrh99fm6jB+3PqBzRr6fwFC/tTHT143z+0TXHlJAdfW3vW/H1TVBgNvKdTV5zLcV0mJ0sl6RCpFNRozuaz2KRCGGBXWJRElGa8Sprp1WBdZ9ymo9jIpQ3cu9QbZtqM5O8Q2K6rRHpnJ2JtElk8PebQ+47hd0ruetmupu4YtWWJygxI9MtYI34DvEBEyDZORILiGxfkZOzsakxdMdgqcKslOoUAyG/rm27YDUdJ3EPUYNZLM7yhMVqCMRmqDLCqCqejkBD+0l2RlpBoFVB8plee4X9EJ2J/PUauOkK1ZCUGnPKUbYUIgyGf0wxmUBE8iwVlc1zLak8zHBW6V4bqAC6nXX4U+nSdBsrO9w+3X7vH77z3i+PwQa/sknsMQvUmNEhIjwQ2CXmLYcwPh8njYrJ8QBc7DgycrWhd48GzB2WmTKl8I2s5inb+sLIUQhupVWoUhBqy1CAJdlkCQpA4Y0uuKqc9Xbc6Ka0WnmBp2N8v7MqDczLsYBkVKxPAm0mNsztTNvNwkWdfXxYvAwQaw2zwu117OdUbFy4yXTqZOj8/41tf+EDWrMNOS+WzKbD7j9OgM6wKySNKJjCZY27NuW4KvIXTUdUAqwXi8jY8Za+/IjWK7SP4ptRdkypCRFNwEAjzEKOjRiWIhB1mZEFnWnrqN/OEPap6dOb77uGXdO+q4pmmWnJ8/pTt+Snf0hPbxN3GLJ4z3PsNsMufX356yujji95ZHrHqLj4G2uWBx/hhV7lPtTtHaIcOa6E/BXRC6nkkJr79acXZ2woc/POWtz99kcmPC61+8w/SR4Bu/I9jWJa+//ir1ZI8zcUDfzXn0QU1XvkY+/wS/+PYdMqM5WnRYmVPs3MWaCadii9qP8VZQTiyz7Y6ZiyjV8fWL95nP9vj0a5/kwxXwtOHEL4iuxYQtQiwIPITocVfRG8F1ODw7O3P2dnPadcd66ehtJHiPCg4vJD2KT735Jr/2q1/mve99n3d+tHpOve8yublW/YyXv+e532xCq42k83fer/n2+2BUmvhHXUCQNt9NwKWlwEiRRCDClVrLBlHvfM9i6Xj8sKPSgsJIdkczynFEjTRWaCiSF9ZirSnIkWaMzyQxSvoOZHQ4d4Z3gmUTsIWlMJ7gA8E5RltzyvGY8ShJW0d8kq6vHSJIVMgIVuGCSya2eY7SSdkIVQGSohQYbShNuj01nP/5J1PPfwKCLM+ZzOZ4a5Osu4Negeg9SkaUghAEvfOcXliOzx1PFo6LNtCriI2B89WCrm5YPX1Gc/SQxbvfYLJ7n+nufT5/N+fGGL718H2eHR2ybBvKtuZiec54bsjGu+RFpNA1oT+nrw3e9kgyXrlV0DeO06ND8jJiw5zxfkm1rXn2rECtDfvbW+RZwcpXGKM4P2kJWYGYTtm9O2I2yqk7z3Ldkc92sMaxlDMKMQEUeRWZ7/eMZCCvI4f2nNMu45XdA/byMe7BBRe2xbuWfF0RyRHqMU20rPxVc7vvoV1ekO2NuXNvBy0j3kbaVuA6h+wblHe0saCqJnz5F3+B5uiY9x6/R2MtPmwadWXqAZWSQrlBBnaz7QZC9PjohwptqsbHCJ0XvP9ozXfeO2OxXHO+WHG07BmV5aX0rL8eRsZ4uaaSSIm5OjgSpPxnmF0v/u0GUrmSWr7++CkwFZcJyYtUCzFYJYjNPgCX1Ss53KaG5uCf1bja01KCuokWU6N2Kp9HSIyYGOkstH3k2Ylj2QUOV57GO2rvOF8tWTc1yyeH9IsLFj/8GloZtm//HK/slPz8vYo/+tF7fOfZA56uWhovWK4vKJo5utwjqzS5qZFB09enuLYmOM/edkYsCk5OzrB9Q+d3MZXi1ls7OHHO8QPF3njCjYNdVrEgdJ6uljgvEOPbVHsZN7bHWBdprUcWE7L5HrWeQiyxQYHsme5YhHKMfcSLhvfaU7ZGU16bTBFPay7EApdf0Hea0u/TrHsiFhsgDIJIIQq61YpK59y8dUCwOc2ipe8UdefxfYe2DV3MwRT8/Cc/SfSef3z8Dzk+PcUFd43moxEqI1MBIyIxJtp9qqSnHuENwyH1UAk8yTPo3ccFr41u8h/9tf+Qtml4//33qaqK0WhEnueXidJ1PxkhREoONskV8bmeix83/r9Qq0pKZf5yvX4sSXxhn0ix9jXEn3Rt4pBQAZdiNmqjjCZSMjWezrBdEmGyLvXoxM6hZKJ89Rasjzw+7FmsPR+eW7oQ6SW0tmdRr2jPLmjOzli8922608fsvvJZZrM5v/J6yfrsiD84ecjpqqW1PatmycXijNt3R5TTEiMbVLxA+AuE34IYqQrBzT3Ful7w5NGKnRsl+Vizc29CNvWMvuOZlIob+7t0xYSVnBPDiPOTFl9so7cPuPXWJIledR50TrlzQNAlF2LEARVCKMZzz9aeZeoiMnO82xwzGc9488YtxjWoE8uRb1n6niJu4WOG5x2IPUsHmwqdbRsaEdia73HnVkW7rFktLG0bCL3FuAYrNU3MuHvrDl/6pV/id7/yVd5/8j5Nb1M/rWA4g3K0ihQq0EeFvQaNu2ATJCEY6OYeHyS9F3ztW89orePo5JzeOs5qj0oeHFjnBrAsckkZjANAGAJd1+K9RAiHJLEzNlRDZCqaKJlivU2Livdxg6xdfQ3P23WkeRgHgcFraN01MG8jLBFi+Ng8h8Gn7lJdeTiDYrzMzS4r1X+Kc/PlBSjGFduv3sGMCkxVkOVjYjRMyiqZ6FpL5zxtZ5OSle9QBpROMryJG10hpQEb8HTU9TlBSoJM8sRGpU0yRsAl6eGT0wUni8A7jyO27nHrjm69pu9anh4es2pajhctvQ/0OKztaZo1fr3ErZe41THRtjTLx8T+nG+8k9O1K1be08WUKbf1CcuT92jj27hyl0prrJLY0GGFQ41ysraiGE1Zny8I3Zqzs57q2HFzYtia7/Kpv/TvY9wS+9HvUsldZq/c5t4r2xzcnNEZjReK5aM1USn8Ts7WaMQX9++w7Ncs7ROOmvvU6wDjGbOdXYr2EWoyx8zuE0PD0fu/w8rWhBsZ/qwkrASufYCvF7gIQeYoPUoHS2zZ2p0x357QdY7Dp56d2T7TMvDRk2OC8zgE2WTMbG+Hi+WCP/7mN1ienz834dLETPKyGyTp47jb89jupvLk/JV6TIjPNxGGzeKLEZBJ5U9pjFI4nzi+RksyLSm0wsXI0cphpCRT4A57xl2DrDJUJjGxT/0GpsCoAmG2kLokFh1WgggSbXJ0JrkxSWiGdQ6tJHlVoPKSmFX0ZDivkcGm1yCTTGhjW5SOQ6NtMiWOYuDlDvLtAUHnA916RdasMQL6tnnphfhnHRuE8YP3P+ArX/3KEFzDZDojK0qy7fsImeNtUuDzbUddr1itF6zbjtY5rEiI1aq2eGvpFwvc6oKuXsP5ET7A96zhoxyerNYsnKN1FtoVp0cPmG4pnLmLUZKxkMRoaX0HWqAzjTYFsWuItqFvLYt1oDSCXGn27r1KOd9BtU8RVrE1u0FeFMy2K1CKoDXCBlanHaHUqEzz2mzOWjWs7YLgJA+6QGMyZltTMjdBG4cc76CyKcuTD+jaHrcl8U2GXUT69gh7fETT9fSyIJtMUo08rBmPc95484AqhycPLVpMuXN7m48eHtF2a3qRqvD79+8y2p7y6EfvcXp0iB8QtRSXpA17khuUEPTeEmIkCYsnRnwMLq0IDwSwMhKCZNX2A3YkKMuSLMtwzrNuG/IsIenJC2So4gyAhZRXgc7HFLc2Pzw3bz4+k15uDNz6HyO1DNfO1svKwZXjx1XvWLyU9d9g+qlHJhl2/2lkaf+s4xKhF3LoKx12rwHAOzqvuVj3LM4butZydpq8XS4W53S9ZdW2dCHShciqbmk7S3exxLcN3eoi9dodPYA2I7YlD45OOPWO2ll6D+enT9CVwcpXQSsmUhIItK4lyIDMFDrLiH2O8Et837Fce6pSMsoUs5097nz6s4yyBn/6QybFAXo0ZjrLExVLpmxjfdIRM0ksFPujCuZzatsQQs+z/gYuSMazCYKevB+hRlN0vkW3PsZ2S1zpCcLgXEHfrGhOHtGtLuhEjihLilGJCC1Kel5984DpJOf0yKOl5tbNe5ydr3j8+ARHxEnN/PYNxltzTg+f0a7XiWIerwHOUlEaQ5ll4Dv6ELDDvEr9rSmDi0OhSugMoTS9j9D2PHz0iKbr+cf/4//AzVu3+NTPfQbvHG3XkvdF6nmU8uNzGdj0TPy4YIyX/OlnNTb9TX/ynUgAxuauL76voVIRL7+9VgG4/iBDJcI5h+17mrpBSpmESC4u+K3f+m1m8xli8A2bzubocoqZv0L0kuAVvuvxveXi4oS2b1nULS5GrJRYF1LFqmlwdU1/8hRfrzg/fkRXn/NNl9GtLzjuLSvn6L1luTzl5PBDWrdLyComuSEaTec7utgjjUJmGbIo6eqOaHuaxrNuYFpoRqMx9z77OUxsccffR4sJW/NttrdHTKYjgtFEIekXll5KYqWZFAVv/9/UvVesZVl63/dbae998k1V1ZW6ejpN4kRyyOFIGgZRtCxT5IMlgX6QBFum7Sc9+dkwDAOEbRh+kG3CMB9o2YABwQq0GcAgiENxKE8gOd2cmZ6eDtWV68aTd1rJD2ufc291N8meoXpkLeDWvXVPvGd/a33p//3/u3vUrqF2MxbthKYdoPp9xrsj8nKEHPZRg0uI2DI7fJXSW/y+xi0zbAn1/C5usaCJCm8GFPkEokWEkqeu7XL16i7OeQ4fOfZ2rjLqed66e4iNlhZFMZmwf/0qLjruvf4669U6Qei2PkiSacW4SBwEjXdYkg/qpuq3cL+w0RWV6cGJ+jwSkeyMRwnF5RzCe/LMdFClCJ2fEwiiSuRi5zaZIHY+Rgh+a29SC4RIz73Jx85bUcnO4jbhu/Dbri73rtNM3XNv7ns+Rtl1zLawwE2xvkNpyU0boPNXMRFUpPu8907ze06mskGfnVtXKfKiEyM1hCgZ9nsI76jna1rnWVgHuHQYD/vILEdog5AaqQpAE/0aHyxVqPBSYJUg1zlGGhqXKLuDa2mqmju37/Da/ZZf+0pNNS2pTlaE9RGhmRPsPaJfEWNiLAnodLaGDuecuGcRRKrVY5pS89JSEoOl8b6j/o005RlxKmlijcsNhVa0UrDskinZz8iqPll/hBYLQlsyn7UUZ56bY8NksseLf+knaB/8MfZf/Qbjq5/m2rOf4Ob1Ha5cm4CStBa+8eU5jZAMLvcYD/p8+uAqd2e3uX12yGm95n4ZUf0Rw7091GKIGk4oJrewZ69ycudLrIsD/OVLhLrAl9DWU3x5hkeAzJBmB2ISLNzZ3+Hmrcs8fusx80XFR5+7hBBw7/ERHodHkg2HHNy6wXK14JWXj1kuFpybVVqS1IpNQWC6dWteW0PbBG8Aovtcz5OxGMUFuE/c6kulOCXgoyLXCq31dmNnSpBpSa4lPniO1x4lEs2tOG6p64b9q5ZcSvLYJuYWI5FZgcgLpOkRbUtblQTvEyFDptkdK1rrOJ2t0KZIyVTRA9OjJUN4iXEOJcCYBDOsnSMTsRuaVWglsUEkWKVQXTIF1lrqusT4liy0tM37n0yJt/1w9+49fus3fytBarViOBxgigHmeklUA6qlJLYWyhW+PcE3hxAriC0OQ0DSNCq1vJ1N+8e1BE5o25rVIlHWVusS6z2tt8S6ZHrygP3rOzidWH2GUrIMjia0CC1QmSY3OU5aomtoG8uqjGRDgck0BzeeZnipxr/xWxADO9efoRgM2NnrpwNYCs4OW1aLhixXaKO5NR5RAnfODqmd4X4bkMownIyQzQChLNlgF5GPWD34KrWz+MllnNTYtaCqKqrTB1jv8TJHDw+QyoA9ZrLf47kPXmc9XXH41hFPX9/l2lMHHB7P8KHBCkmWFVx59iYDrXj41m2mJycXXMG5rsvApEHcmU0Cik4ABERwiOhJmVTnyDw4GQhiUzlT9Ho9epnm8PSM1apJsFR1cTZJdYmbetfkZgvfedvvN6+Zbrv4zv/s9SR6QmzzDkgdgq1bixsl+3gBNpHuHzpxkgQ36VKvzaxSPNfcej/X2/cPUaCk3mLwZQhEPNNFzb2jJQ8fzFjOSx7dvU9TL2nKewRX490aFwQuSsrKY9tAdC7NxdkKqRSe+5RLw9ksZ346ZeEclXNYF5hPDzGDjFYEUJKBUFREVr7Bd8mUMVkiavFTfIisyzRfOikUo70Drg/2CQ++Qji9zeDqJfqjAaNRgTEKpKBae06PGuTEoPuKS/0eo/GI+7MZq2A5tp4YJIPxCBEbRNVH90foYofm9HXa2V1s/yoxz3HTnNavWE0fYduWRmTIYoei2EX4M4xsePrZpxj2M+596z6D3PDhF24Q4iPuPXiIJeCEZnL1CntXD5ieHLE4OcM5v/VBqTgg6RnFKDMs6oY2RFxXyJLRd+K84TxyEhKpDa0H11gePnrE8ckJR48e8NnP/QU+/6M/xmw2ZXW6wnZwZnUBjn0R6vZ22Nu77R+Ai6HY9y6Zevdu8Z8W+m0Dybf/PXQdpwtD/1FsfPp55f6iULz3SZajbVsiqei4Wi0RQnJ8coLWGt2Rio1GQ/ToCvpqha0lTSWhWhObGlffIboVhBWRiBMG7yVtq8C77kBsEMHD9BHrVcZ8rnBtzaK1tN5hg2O1mqGP71O7jxK0ZpRlRKOZ+YYmWKRRqCwRQy1FQ7QNTRMoa9jtKfqDATc/8n342T3s679Ff/wMo0vX2d3tM94ZgEgsrEf3KxyCfGgYFBnPTyacrk44aucsXcNJG1D9HoPxCLUcIPsDsv4ebn3I7Og1SjPG706wNsPWUC5OaWdnNFESdUE+vAKhRHi4cn2fFz94jYdvPuL4tOTDz19HiMjtuw9wISVT48mEqy88g29bHrz5JuVqtY2vBGlmKNOKcW6obGBlY4JSAjKGzv+47eEdSOdyiGmebIMKm4xHQOT+42NiDOS57uagOrvqdEERIjVX4kZvNLHmbfSbNkgFFTxKgVQXrfDchjd+YgP/Pt9a7yQue7v/Sbbc3WXzd8VEkbG5/SIEMI3pJqj6NpnqzpQY3wedqSRwS5plCgEjGpQQOKNARJwOuGDxbp30IWyDxWJCj96gh84MZ+vTREm4OqVrP1AHz9p7pHfgPQ9P5ixXNY/fOqZcVJw9PGWx9qxOA945sBbhSmRoIJZEHD5GpDIMBvt472jrEiUUSkTqOuKcQyvQRtHfOSDYmlhPcSHSEBEyZaevfe0uD+5BXo3pmWusXMSWitPjyET0yW7cpHpjzfRowVBnXB5nzETi97+5p7g/vc7vLH6cT964zoevD+hNDNqQAgYRObgZsUQy7Xh0+jr/+Hf+Fy4//33c+PSP44qr2GPHl7/9Omf3XkesZlzpTfj3P7jHm6+M+PU3BU6WeHlMEHtoOaD0YJ3tBM8CIsyS9pfZ47mD6/zws7f47WnLneqEaMukvRQFBIn1LR//4Av8vZ/7u/zaP/1Vfveff4FF1ZwfqhfsdSOWuDVsLn5/l7Vtt3bV+QuV583N20cnPnV0ZsjzjN2dhK+tWo9VcGZBRYmKChkTO5g/WZFNK/rzElNk7O4tyHsFo90xvXHOcK+HdB7hEz1m1BmD8R5aKUpb4n0kywpUPiAWE7xQBN+yXpZ46xlIi5GBvPCp7dx2zxUiZQ1RCIrhGGkM3jusa5gvlxcOgTSMH95FC+T9XnVTcTo93fYCnrp6lT6C5uE38FFQrmu0gL6WYBuwNRtk9c7+PlrnrBYrYvBkQqV5tUWL1pCbyHBvQlYUzJtjKmtZxKTwIlTk6GzNv/zyQ4Ynhn7vFlWQ2MawLiFrBGY0xNVQLWdM9g3jPA2WLqOglwuM6PHHzQvI6LkyyMl6aitUjIRiKLouV6Su13zpK7+CdZEPfObzjIsRu0vP3QenvP6N1xDVHB1a/mJPMhxn/IuHgtXKY9WcVvYo9IS1l6zrmtZ6fIgof4YyOZPJLjujCR+7dpO78pT7j1cJV94skD4go6ZuKnqDIX/lsz/EYjrjN/7Jr3H/MO0/03WItE4whtJVhAh18J20jUuHdPCdQ4qdFluCFyXiBoVSksxo2rZhtVxSVQ3BB8qyQamOJU+qrYM6hy1c7ES9P2sL7etISzbeLHaFlCAET74FwYZyOcSukrk5ay44tncLYr/Xa9NNizFycnLCg4cPmS0rfNXyzJUR8dIQypqqbImTCW3TY7nSBGEIIqe3XtM2DaN+BsFz794DhBBMRjm94ZDx3gHKrfBzRymSTQiZZhW//NIhvXXJTn4zDU23KfhcrkFmPfRQUNcziIKhUWRGsYoCoQR7fcEb8TqPS82nsgk7Q43SaU4FGTE5DPZA5Imt6+U3vsobL3+DW5/6HJcOnmbPGVbLFV9/4w52NcfO13z4A5EPXu7z1W8b7rwFTi3wMsOIMYqCdV1jm4bGeqSdIyvHcNSn6E148fJ1RgPD/bsznIzEdomwDTJqnG0pm5ZPf+iDvPihF/jVf/R/c+f2QwISrQ2xg+IYLXE4Fu2a0llcCIRYdXGXP987Mglcb8gV0vWT5IXg2rWn+Dt/9z/kxo2bXXA/JstyrLWUZbmFxRpjvmu7+16mUX/ae/izfvPuj9r0kN/50O0cidhKqG5RJYFIkILWJkbXTcW/qiuETAFtlueozKDjKcL+IW1jqeuWnpZkUiDaNdE7Qowok3Np/yrOecrVGoXGCM9i6WgaT2YgyyWTy5dw9Qrmd1hZx5qIVBFt4NXbUx7MCybhEr2eYd5IXKWYryJ9kdHf26W813D6eM1zH1WMe5pGpgLhTgFnepdXyo9za2eXq3t9sp5J+6cTne3vpPNLy8DJ6T2+8Lv/jINbL/DUBz/G2IywC8cfv36P2dEhcjVn97Lm83sZjyvNN94SONHg5Rz0hFyOOGk9ZVVRN44oHNIeURQ5w9Flru1c5aNXrrI4qlhUkehLZPCoqCBIqqbl2qUDfuZHPs+XvvD7/MHXXmVZtmidkXXXNDMKKQSLZk3rPXUIRJ+EdgmpM5W+Nse5RHWzb0IojFEoJVgsV1jnsNYCsFpXqVioVCJniWzPdBMVMQZsRzSxUcDZFNhjhOhDiq1kpxNyoaqVciOxfcR5krTR4LwYSW6+NkiCLnGSqYj/5FZOMIgYkqaUkKmIsikcbCDrWx8Uv7Nd/Z6TKR8idRsxypOpiEr9ELwqAHAy4kUgxpbgLc41CCsJrUDnkigjbVgSnIPyjCAiXmesnWPZWmJbEV3NnQcnnE3XvPbSPcp5xepo1Ylcdp+5iqmi2wWsUSTAjJSpUuxdS3A1RiaYlrUS70UnDKgo+kNcI1GCxBiYPkYEgenDMxbTnJs2R+khoi7xFtYrRzE0iJ0dvBpga4NGkitJ2/Hr7+WGw2zEY/sspZpQjHN0DkLa7qJFBjvQ+oCrS9bzI24/fpn+c88xuvYs1Aa39tTHJ5wdH5Ipz4GQPLWTcagN0zOJiC1KeNjZR+d516b0XQU3EmPdBVg5o6zPlf6ATGcEIXG2SZCi7k8OMbI/GfPJF5/nC/0eZ8sV1vnOaLtWrNh8Ot1R+0QW9La17Tw9yXj1hGN6e3B1YUmV5pXGA4mS4FeWADSdaK6mY/9B4qsWGWBmHSYztC4yGNQoFZCyT38AMiRaYSkMSIUxBVIpynVJjCJRRSuDl1mi1XWWqipxjcNknqgiQqYkUvgIUoOzWB+wRMxgkkRrfcB5S12tExOUMXiZgpX3N5V6sv29+cE5R1WXnRge7NoWY1uwh3jvqdZzcqPpj/qIkDr1IabuWm5ysryHrysIUOg0b7buBPuMFvT6PYrBgFrLbYU4tcUd5aqmeTDjegljM0HWDThJ06YZk1jkYCzeGQgKLSAIgUUw1EkgeRX2EdEjjUEagRAd5hmJyRKrl/cWV5ccHr9JEIYPTXbQqodvAmG+5uTwBCMcRSYpjGSQSRYLwWIWUaKGvsHsG4jQWtuxRUVUrNABpNwj0z3GpqDQGU5IrHfYpuoYhiTeeYSA6/v7qNZxMl2yKmtkNxOA8GRdMtV6hw+JoCCGmDpRGyiB3ED1RFdJVFtBQ9EVarz3rMsK61LFz3bsVkVRdHA/0Tm2J+eMvrtk5L12qAQbmhi4CIeIF+AVTxYQn4D+dbisd2MTE51vff+TqfiO/XPxgIsxslqtePjwIc6lgO/apTHGGO6NIkZCDAW1kTjvQBagCkTwGBnZ3xlAjDx6lKQWilzT7xUMJ2NWRUbWsZMFSIQn1vL40YKxdeyZMSq2YFuchaoNDHODkhCCQYTUpZckQoZcCXpSYRkzdRBUD5VJhDwPWJQK5D3wBHzTMps94tHR69zKP09vsouwEls7FqdTmroktOka7BYK10imM4GkBunR+3soobr9kwhRpK+RXsBwiFY9hqbHMNMEqZJ2TlPhnUVEmRoOzrM/HnH9YJ91WTNdrEAkunQVI7rfrHSwAAAgAElEQVRDJ7gQaLzFxQQXih0eKYbQzV8kiuuN4US6JECmIHE0HPIDn/khRqMRQgjyPCfLMubzOXYjBbJh3rzgv1Ih/Du1we+sw/tvYp13Dc4DzvOA9d3vv+kKEGNH/pEkHEJMEOXo3Hbf4lPA7X0gdw7rHCGuoalompqqXmOGPbI8S0E44KNGCEGv6OGsJbY1RgiMEtS1wlmZ7MEo+qMhTgWWMqK3khIRET3Ts5Jls2QoBmRZgKYiWEHdBEyhkL0eHkNbK0RMEh2+I+npaxCy4Mw9xRXRwxQGpUHgU8cTyAuRzvK2pVxNefj4VXrXrtLbOyBrBK72rE/nnB6dkUlP38M4l5wgOZ0KZBJBQOwloXrnPY21NK0FEZCxwmiNUj16Omesc6TSyQe1KYbbsN254OnnObcuX+KrSE7O5om/QKkk3SISLXnsSHGs70i+4ga11c28ymQPqutcKqm2HUkl0+fetC113RJ8yoza1m4p8WXXQdqI4MrOrpzbSEuQ9uvW6Lr9SSCGZDQXhYI3CdX2zly0TfFk5UI8iZS6OG71pA8SF37XFe66X7wdyiekuPj073m952SqsY7jxQqjhuz0C8rZGa6ukYMxQiuCMaACOpOYTDEc5kndWVoWsyMa51m3iRrRtekQq9YVTROoao+gRtBStYFYOer5nHJWU60rok/tNtENjZlCoXqSXpZEMMt5Swgt6+UjVIwUeHRQmCixyqByw6AYYfI+eX8PhCHQ8fTjseWa0DqeH73FXl4yzVc00eJbR23XPDq5T57vUuxf5ulnb9GfSR4+bpj5R/zET95gZ5gRrWAvM3xyf8LN4Rglh4h4B/wxQlxDyQH7u33u3p3yP/z3/zt9s+I/+Ts/QXnj+1hcGbF8uGTdLlitjsjcir/+136K0eVrfPHLd3njW6dUYUTODB2PGQ1y9HDMVNX46InBgjBImScWv+Yxv/eHU17+1tc4W5VUtuWluUYKaJwlEtBK8MV/+Xv8Zz93G2WX/OAHhnz1zZJD20LXvs266pINm+rxRePaZFbi/L9vW5tzznVYWK3kkx0qQQrHgkfHllzA5dGIQV9z68aQxsNJ6bE20DYeo1O1P7Yt0XnKNkDTEhcrVm2Di47eouRsVlF0EMHReJes0CymUxDQlEu0kQzGfdZ1y2p9jNTpQGFRoUKgGE1QWtK4GilzTL6D1JJoFO2ypGkaBjsHSJNTt4mxsujpBE+NLSKAJiC/gxbxv76VCgO6kyqI0WFdjbcOZx3L2Rzby8n7iuFowHg0ZDmvqUvLydFbSCR7hUrBSQtZlOyOJgx6Q4b9Eb3BLqrfBzUkyAqEw9YtJ6/d5umbgU9c3qPMVhyPHHVIOjHTcglVj6s7IwYTwY2b+0iT88a9FTeu97kyLBBB4GTgmVGBIGB0lhKf+BDogRySZ0nY9rd//SWOHp7y2c99P2Y8ot0dUlnBuq5ZrBa0jx7x6c9/muc++AHKVnF8b8msKWhCw0Qck+uG4bjgzJSsW4drSkLwFHofGTV+9Yj7bz7mf/0/XqeyLbO6YlkY3sw1tq5x3pIZSbWc80v/0/9IL5d89kNDvq6HPDjUad4PxSRPDH7zGqxP0L0YIyIopEgV9Y7bIMFXhUBI3RXdAwSBiArnIlVjzzHoMbEONq1FCEEIMdHQaoPcQi/ebytLcN3oz6F4m9c8H9zd7PQn4X2wYaxiO6sivhdv+j2sTeU9eE/Tttx/cJ8vf/VLFHlOkRc8ffMG4/GYZ597jvlizt0Hb6GFYFeNGAzGDIdjHtwumZ8uubq/i9YZ07Ml3kUm/TFZMUTqPqg+QQ7SIRkt03sPGM9LPnflOloqzoaWtnTE1rJqS06WC3Z7A4a9Pk9d28PVnnuPSyY7Oc8/O0ypbYArPYPcKRjlOUpKiI8TbkdOUErT7xu+/tJ9vvz7r3PjqQk/9TM/TnPzCuvCsD6rOSsXzO/d56mrB/zwX/48jHZ55fYZh3NY+T4jcUymAjvDHqJZUFlL29TYpsIUBcb0CfWMejrlH/8/D1ASTtYrpBKcPcwJ1mK9RcpIYQS/8cv/jD/43d/mxsgxfnHM3XsZnog2kp4WjIxkZR2VTSgDHyMidLpTsisoiQ2JRErEkILofUrYWoezSddsA+fbVJ4HgwFFcT43dR5AfWeD5/+2rPPpRTZFfDb/XoTwibc9CiD4VBwMMu13KZK9hehSYYTkz6WIKJnIKFSmMZnC+QYfWoL1lGXFerVGq4g0sHd5B6MNs9MS50oe3P0WhZLs5EkzkgYG2pCPC3ZHu+S9Pv3+DlUAH3tdSb9ldTrDVW/w6d4O13qWaa9kER2+srSh4WQ1R+kelycDrt08YOg1yzrwxt0FH35xQj+XBBsYSMHzQ8OBUR3KcAq6QsQJQmQUheHsdM2v//JL5KbmZ/7GT+L2n6ca5ZShoa5aytMT5HzGj/3U5xke7HH74Zq7Rw0rP6DHnEwsGPcMatjy7dhQtpa2WSNlQZ71CNbi5nf40pce8MrLmlld0XhHdZihBLRNiyfQyxTf/sbL/IP/9ufp6cBf/Nguy0XBfG0ojESLyE6R5tDntUWozqcEleQ6REqiNvIcUm4o73ViiA0egoagaFpP3Z77IBci0XkitmtURlRhEiJsI9zUxUQupNGd6AOIC+ybMY15EOiQDKnpEbs3JTZ36sSj42YYbGuz8knWXC70qt6liyXEk/4npvbVeTfqnSOT39H6jkR7jUmD1PiYFII7NjQBYDoqXi1RQmFU6n746HG2oW1bqrrBeUfjS2zTUi6XtHWgWXsQNWBpo8C2IVU3uqnsSKKmlmx0cOQ2CBGbzDpEvK1BgOluC12QEmXSNNISgrdJwDZuZl4EITiwEeUrdKzSp2IkCE8MLa6eE8MAnWeYIifrFaxXDY1YYIgURlL7JJ427huEj8xOS4bGEnqe05ND6kYRwpDjR3PK02OGlzKu3HiWR/0xh+sKGxvILJEGoqXXG5CZPrOloy4tzjsKZcl00vxJH0AaHoykCidSYDSMCqjaikW9ZkOz6ckIXRcPmeBDi8WCb35jyY2DHpcn+RZqlA7FpBUVYpfB0+lLXID5xSdEci78+LaWzBOZ/8XO1YWfUnAZt9oCo74hj7AOEiECzktUptCZIioI3iOFJYYNHbFjXTX4mKovNtPYTGGyNiUVqiQSaesaEzS5zWldpGrToa5UxLgW1VXthBD4zkaSirYkCNVVUc4Hc2MInbZCGqhMHYfE0hbD2z6I92O9/SW6xFV2h6P3FtsKbGNx1uGsxWpJ4xxF8ESROnBSBZq6BA9BF0ghiS5REufKkGtJpgUEn5gCo8B3sMsQIm25JjQVRWxpdYRcgQzgA8E1eNcmCJpW6ExjQ6Re1ITLOZkSSTNHCIpMQoCmdMjgKEyC9FXVGh8U3grKxRzb1OzsX0aNRjxoPc4DOoKwEGoyo+n1+yy9pG0T1a7zFlM4tOwO8K6r6INL+mhKYIxkVIAUjsNZRdgw7gWFjZ1NCNlRzwce3L/PZJiz8/QeWqbqnJICLSV5rjAS1j4SRMDIkCqxcQPtC3S8E+f2JCQipo57JA3Ibqr1bKluzy/+eUU5nleG/yQv8B15h/dSYT9//e1LvP0eFyqDbBKs7ndPBK2bb9sc7Huwd97tZdIW3iZVQgiM1uRZRlHkZMaQmYzRaIwL/ny2Kpk2uUmoB7khRyDSz3O8DmQ6eTDXNjifZkVjN2dg6xpr1mShQaks7Z/WAo7gW7ytEaKPUgplNM5GylVDkSc2VEi2mRlJP1f41lOtPYUJRG9Zzk8IXhKDZjU7o12vKfo77F0Z8ghF09gk0C08wddI4RkMBtRKU9aBurU0tmWSW0ziR05nr3c47/DeYQQoI+nngmEemK3X+JDYKg1p/2zESJVRFNJwdnJKvZjy4jP7GJnOLK0UWiXm1iKTtCShdyNSx0p2sKSkeycSzfOmmi2evLQhRGxrOT09IcbIZDLZ3r6VD3h7+3Sz3m7M/9r3z59n/Sn740+86c94L90+fTII7ZAH3RNvYH+h60yngciuMyEgiIja+CCZ4gVnk8albR1t2+CspXWW1qViWxShk6PxtE2dGHV1QfSCGARaKpRM/scoQfAO7zw2KHxUIAS+tTRxhbQVWWwQBmKWIp8YLd7WxGhQSmNyQ97LqRuHXdbIOEZLQSsESgkGeUo21suWXHtiHlgup1grCE4zO6toVkt6u4a9K9eZmxHLOjFDoyPQImJL0SvI84JFGzsfZCm0I9M2RbKBpNHkLSE4hPRILcmzwKiIWFdzOE8kaYiIizlRiC1ErSgymrrizu273HxqzGCvj5ICqRJRl5FQ5IrWB5Tr6MhDonVIyVQ6n3x3tTcSGnHTIRKim6FKBS+p5DtGQJ5AFfBk50fJZEshbhI2sT37tylQPE/wz0dJLtpyGpE5l/1Jdph85QYZ83YTPo8xk/+5cDBcSKiEvADp27ohcf5mvsP1npOpy3sTfvjjL1KeTammM4zJyfIMJyzIBqMkUQWszEFGvIzYaoVtSgI1SEtbn1E7xzqKrmLkaMqWZl5R25bWOda1xbnAoIhkQqK8pG0jZcUmwseSKr3l8RJ8oMi6Dy8IXBQsAwgcEslApa+MFbiS2f0zmtbR+NgdyemDjXgOA5RBcWm4yzhreDA9wbgpO8s3GDvFoHialbXcmdWo0xmDviL6FxHG0CqB28mQ13u8dv8RL/2rt/ipv/kDfP/nvo9/8Av/BV/76leoFy1XD/b4+3/7p6mKG3ybj3Pntfu88fXf4SOfv8mVF0d8fd+zOiv5wle+wZWrFX/pL3+Cdf4m9fIbXDroceNyn3vLm0xPnqIu/wUxtMkIZMTkgZuXB3zm+T1uLy13VpawrlE+8pEXnkEKwUsvvUaMlvEQbOuoSsdbJw1vHZfMSouUglylWRWTK1yI2Noju2RKyhSo+47Aw4fNJninE9qw9klxvqmkAGMUMYJ3YXubVkkR/dV7C7JM8dndAUWmORhmlCYdtLrI0VmG7EekjlxyDdF51gtLsJ7pao0uS/L5At3voYuClXX0M0Pe0wiR6FgzbbCrhgZDGQ1moNGFxMRU3WwjiChofJ/gFUvv6BU5fZMxGAwxg4JBr0BoQ1VFRAx45yEKFIamXrOu1rQdvvh7uUJM9LdKChSwnJ5ChHWZNClUlhFaQZguWK8qpkdTxgNDkStcF9xP12lYUwZFT0l285YseExsmT06pbSR6WpN7SUogyDgZcNCOG5HxV5vwPX+kIezJVVbMmjOGLWGTO6yjp7HSweuRgaLvZqBGOMVOCMJQ0W9aPnalx5wcHnApz77LF//5hf5wj//FZpZSagtf/Xf/av88Pd/gBN1k7My8vCPbjPaL/jAx/Y5vezJL7XcPjpk+lLOJz71SS7lOav5m+DWXL85Ye4nvHH3OkenL1PXpxASg9t4J3Jpz/CTn7qBlYKXpxWuagmrimeuX+HalQP++OW3OD6ecu2pCVIGFtOKk5Xl6OUHnM2X5EYx6hkGuaYYaYQSLM8ahIuMpESrSJ4FXGu7WRNoHVvBww2cVmYZgUjZNmRFztXeJWazOWVVYzLdwSlS9U1KiVKic15PJifv19oUEeITL9RVsWNAxk2ZT3A+ppyqiVKBNgZjsi28aivs22VTvhMi/jexNn+V1ppPfPzjvPD88yiZxIU3AcWlg8uApFk7mnqNtSVtXVKtV0yXCxZ1S/nGbbRU7PbylAyrmnW55OTwLU5OZsydwAuNVJEgLY1ouBslE51zba9gHs54fHJM0c4Y1ScUcYCShrPSsZ43KLegxxjEJYIUWAm+p/ADyWuvPkI6yw/+yHPUzYx/8n/+IqvZnHq64uMf/xh/42c+x1RcYhbHHL96SFOf8uynDiguR4oDy5olf/TKfa7fvMnNW1fw9TEnp6/y4gsTRoMR3zy8wslxoKpmeNsCkqIf2T8QfPYjV3n6Up+XpjWL2hLma8aDHh95/haPHk155Zt32R1FRoPIct5Q1pY/+vYJdVOnjlGRsTvIyApJPlC0C0tTegZd5TrPAuBpywrrI7VNlMqbQXfnLNokOQIvBA+PDvmFX/if+eQnP8XP/ux/sA34vHfdYxKUOMsylFD/FgD13tt6R6FDgOqYC98lamWbSG27yPFtt3ffIx28aqPLl/ZLV/fBew8iYpBEH5geHaY5qMoitUIaw3JdUXtPva7JtGJ3nCWmXhFwXnG8TGeIjIpJ5ugbRR4F2BUnbx6yKlvOmqQ5ilQE6XDC8yhEvFdcGYwZ64a78QjtFozqYwYe8myH0kYerTx6MSfPBNEfpFGMnkaOIuZSj7OzOQ9fv8/HfuAmvReu8pu/8Q+5/dq3qE4X7I53+Kmf/uvE3j5n6hrHD+c8vPMaT39kj6eu5IwuWdZ1xddevcvegeWTn77KsbCcnX2Lg6d63Lwy5Pb6gKOTPRaLiqaeQpBolTPa8bxwbcSPfPQWb60dd9eWsKyQPvDRF26hhOSrX3kNYsvBXqSpHKtFw+sPSl67O2OxbigyxV6/R5ZJ+jsZVRtYqYZCiMSIbAJapcKyc46qSXNNGybNSAQlkUZjQ9LXnOyOGYcBxydJAy7LEixTkqB9QgqMTsiR9bohxEivl1hntRJAwHs2vOgdY2tM2rJdkh4BHzbzW90klxDIEJ5IiDZw3PPmyvlODcSuwXLOQrmF93W/SaLRkGXpjAhdxysJWSdPFWMiVXlf2PyIHfuUEERlsKEiOAuiRciIVjqpFAvRBXSJ+CG41FWxPgn7xejxFoJNAXB0jugcwXmC9djKYq1HuoAIASVS1U8mPV+ESbCWYAPBe/AB79PgdZYrvIemCYgQCdFjO9gTtkFIiQmiEynT3flwzqTV2IhqImHUT1S2MiOiaFyDD4nEQoQVsT2itRIle+A9MgYKJRjkMNlRqJUmFDmNLJj6gsNpzcOjOb6sGQ1yxge7BGtY3rmPatZcmuQENNNK0vgMT06mcrTJaPoSmwViqFGhIAs5iBYnl0SxYWHpDr4Y8C5QVZ6mcXjreO7W0+yPRwwzAzHyqU9+CKVgNErVzbaJvPHG69y7d7c7GDcVZNKwb+BtQ+3nZMfbD+7C9wjv8EKbQvPbC3sbaIZOE8RJ98olzsDlsiHLAjZoXBtTk9KnJEeE2A08KtBg8ogX4BqBj1D7gGgcMjYYCU1myVrRUZtryCIus0SlMFoiYyC6gOsSPxcFCoU0qmPedcSgEcGnwFVovG2JPrXCBZBr012CiMpytBBI9d6313e+nmwDngsx0lVt05d3SdzVO0cUohOOTcG8j6l766zAikiWG2KmaKoULAsbUEFSi0BQIrGKRUnR0UcLBUJW2+pS62BeBgaDHHoGYQqEctjguwFlkDhwc1wLwUq8S11VJdKMY1EIYiuwmUIoRRU08ypwNC2J6zXCWnSR0Rv2aI8WuDIyyBVGK5ZWUDlNGwukysiMIWSCoCIu1CjfkoUMiaBVJY4G732H+U5JMcHT1A4rBG1tGfcHXL92nZ1hj1G/xzO3rnHpYJe9XYWUkdW8ZTab8dqr38QGUEqjtEFqnaAQMab5PAFagiDggk/VQCFT3z3GTs/onOlSio7ONYIiOYANJj1d7y7o7wJMuT0k33sI+O5QpvfgPDax2LYt9ic9UnSvc/56Ww0Q4CJT0sX3Ei889v1d59XOi04z6Xilzz/LsgQDE6mL0do22YxMg90xpEKKbSy58QgZ8SGk+dPgCDKwJs32CAXOBwrh0VIiVI6QLVJ21MQx6eBpDXGnQGQ5UuV4BG1I8GwpAL8ktBW2ldjGpyozCZGRZdDrSUKeiKFaNKWTnMwrykVJKNcEAYPJkOmZpVlNKVRE9zSVF6ytoo05GTlGatAKa8DFluAqdNhDR42VDa2oCMERgk/ncgyI6LCto6kcbW0REZ579hajImc8GBAvS4iK0VAy7AvWK0tVtrz6ytepbZnmPaRAGkMQkdpGhFDkJs23JGisJQZBlHKrubbZO5ugTMiOEVIImqbh4cOH3Lx5s7t2ctsZlVIQ/BO93vduPd/t/vlzrffj+Tdzju9w0Nvu7NuDyggJoUrc7qJz4pgUkCpB15lKItbeOeiKpsF7XNPiZToDbZPmQ4t+hneCtqGL7zwNChkUolojjcZEleYNZQYydokdxCgo28iijlwa5UghkToHoWl86hwpKRCxBjfDOg3REFxiVDVKkWno9QWUipBrgtRUXnO2bDmerQnrNUWvR3/UpxWK6uQM0VpGPY1HsmwldchwFBiVYYzGZQInPd5VCF+QhYwgHK0q8dFu9w8xIKMnOE9deZra0taWG1cusdPvszseIoAXX7yFlIGdicA2nnLtuHfnLR4/vI8PXVwkk0xuWVusB6P1NtaKIqF5Ap0PiqEbUeiKDCEkEiTiprmeEGldh/BisBe7FEV1CVUiJEqJifcXkqAtrJuLx+47bG1jW9s5vbiljdgmR+dNrc76xDtt88ITbwzyCTRE8qNdKibeaf/fzS57z9Fe21TMTh8TZB/Ge8wef5tqdcJAerQSRNdHZgbRH+JsoKprRFOBLVm3LaX3RJnauXFVExtHXLfQtBBahPcIH3CrlqZ26JgUlWUIaCJapfleOYT61OJXng2PVF0Fslyyd71PXXqa426WyAeWnYigbloyLXl6b0SjNbNSAy0+2PSBR0G5CNjg2X9qj0yCzE6wos+juuIp7zBGUfg79Mrf56T5EK2/RrCWzLfsGMFg5LHPa9rdA+rLA9zuDt9YRR5WimlrGPUCcjyEy89SvfmQh7/5j7j+fZ/h+3/yR/ndU8WXv+14vNjBxcs8f+M5hk9f4+4Vz9G4TclUo8mXuzB+gB+9Rby9Or/0MSCc5exszR+WjrVrqYLjb/3cf8Rf+uHP8Mv/16/QNjX/+d//MQY7E1R/glE5menx8z//3/GLv/hLqXUvJB6ROlJri+wgTXStWecj4ZyeZbsBn1gX/7tp+3aGGklJWup0Qd7NNgWlqdAEWlrreeONE0xmyPtDQpT4kNj8DIrgLEEFdC/plw3HEttIfOtoQ2TtA65q8MuKxUqjlUThybXi6v6IOOjRDnLyPGc8NlR1SVvXrIWh1JqeV+QmoxgOEyRnOUW5iLEgM01UhuXsOOGB8x7aGPZHY6x1lOuK3u4+eX9Afzj+Lrbkn2+loD1Bf4yCsnU461PSpyQqB4LHrSoYgukZqtJSrx03n90ly3Me31vTVpamLmkQlKXCrNcYI3jmqX0m4wGrdoyXgbpa40OqIq0rwYNHlvyZIYPhhNjfR9qCaYToHUiBjiV59S2aZsK0vkrTpGJEXwI64HYEbS/D5pcgzziykcNG8rjMGGeB0TBHTPaI+YjZt34fHxUf+tQPcRpz/vhYcXs+4qy6ysdHV3n++lWaHcPCN7hQolqHWY6RfY89eB1XnCZbFj4NxVc1tVR885VjbAw8Lld88C98hv/4b/9N7rx5h4d3H/DT/95HObi8myj4pUZLzcsvf53/5ue/RZSarBggc0PIFbPFAussk9EImUta39JYx3JRbaG0jfU42wlIx44+VgiUTxdz47tEiEilyIzZwssEEY2kpzRCJZX7LfB747Teh7Vxdhf39RO3dZ5LXAChC5GqkBvGwRjBWZuctpSojlnJOtfdXz7x+O/VSkGA775bpJRopbfvJVX2Q8cfHDrYawpohiPBYJIT73mqusYMNJHA7fuHRO/JjGBvPODW1X2clczrAmst3luCkFiveXTkaANcuT7BlhFdNJQy58i2PC9AyUDW3EZXa87KZxiWid44IxH3xCEUUmLNLtHDUiqOW8FxneNjwWQP5GQHBvuUr3yd+e373PjED6J3DvjyXPD4JONkdUC/v8fTVy4RdnscDT2VbAiuRJc9jOrhJ/dw9SOcs0QXkCIQmpawrrhz+4yzh0vur1eM93f42b/311DAN1/6Js898zQvfPBphMmQOkMJTVlW/Ff/5X/NyWKByfsoJYh5xrquWU1XDPp9dvoFXgZ8DCwWFd47BBIXPE3rOhKJjskvgvOxK7Bm+Ljm9u03uXnzJnVVkec5JjNonQqqTrrOnr8rdM//b9c7kqOYimSb9lPsIuVNICm2f/wF2FNXQN1U69kErxeLD5ves0wkOLqDOpvEu0Vj244WOySW0zwS2xbX0M3ZSJbzhqKXc/O5Xeq15/hRRetqXN1g6xTE59WKXq554eYVSmN40N8lVCtsWyXCgyA5nUVq7blyeUxfgezNcCbn0FnGwSeGVH9EUb/CWXOLUu/R1A2hVQx1ngqzexJXDHCTDDHucWQDj2vNUZOzOxogd8eI8SXs6YKzr/0+Ozc+wNMf/zDfqjWvHkceLfdprODmlauMr+xxNoJZbglujaz2yJYT4mSKHR7iRJkQOqQZJFHVTI/gpcZz2tRM25a/9Z/+KJ/51Ed46asv453l3/krnyPLc4I0aKUxJud/+6V/yOt33iQIhZQZrVDUzjO7f0ZmMvb29ogiwc3XpaVqGlSXT9Q2dWhDN9sUQugYrrdoPzreCYzRCC9wnWyFpCOnkgKUIkqVGJSBprFsWGY75CebSlzsGDeTjZ3b2gbllO4aNxn7uU3DdiYrmaB8wl63dxUpsbu4B1KBuSPYkILgfRoX6eC+Sqotsic9heI7caLvvXQuBFGpTjlY0OsVyDCAeo73jqYpUWTowuB8i7VrXF3hqopl66i8JzhLDB6TR5QEHVVq83mZZqtCRGcC4wW2TN2tkPKEREJhI6EOdJQkWwAJHTbXVp7oAlnXxpMqMQHFGOllgiJTDMc5ymrMMiOyxvvq/BKIBB9YlxWNgCZ6VAz4Ftal5XhRIkzB/qXLrI528YzACnABnQBe5P4xRloGuePbryoefH3J9ZufZNTb5Y1vv8Hc5Xzx9/4Q4QM3P/4C+7eu09sZ07x2m7PXH+PKEmMM1z58DTEc8cUv/iEnt6mtXCYAACAASURBVB8y2L+OGk2wY4ldz2jrJdG6zpgkie9O43xkUVU0weGi5//90h9wdnrGH339m3hnKX5d0h/0GPQGIBRRaF779utIIegVCTZUN+6JqvGmSrsRM9sYdQqYNpXdC7ZysWLdQQKImxpGwsUXuWY0LFBSorquVPCeXtZVRKTERmirBq0UudL0lGKQSZZ1jfUeSY7UkqbrbOzuDml8pPSRqmyo6xaUJMjNW4qsXcBVFnu6YlAFho3HZGB02g1CC3xwWNtAjGkm0Ce899JX5D5DG42SGUJLhDJEoWijwJEw4z52DIvfQwKKTfUw+EDbWqIPtEpiO9rv4GO3RywCgQwCGQOGkN43guVsjTYtmZCYXNGLGRt9iF5PMegpRpOC4ahPrxxRh8BMHBNiS2DDuJkGVWfrhtp7vIhYC9ZGVk0qXIx3d/GLIcumQERN9HHbcVGxxNCilWe+trzxUsDZCZ/89A8xPZtSrkvu3p3SrjyDSzuorE8x7BNmLSdvHVJOFyghGO4N2Lk25qt3jjhcLBlMDuiPAmGik9jqW2c087qDKeYIadAigyB5NF1ig2fZ1Lz22l1+9dd/l+nJKfPplMPpKZPJgJ1+st3GB+7dewA+0isU/X7C4ld1IiaJwWOdRQRB1dQ477rO4YZhNM0FdNUKQsdyF4NPeVEUiCiJUZLlBqUlVVXjg0+sT1IilEr9d7eBxr23TOoiq9f5/d+b84hdJ2BLeCEuKFVtm6bxQgM1MX8RU3d581JbKEZ3t42A6vd6bfaPEOLCLE3skrpziIlSCQamVNJfkQLyPGN/f4/Ll65w9cr1/4+793qyLLvO/H7bHHd92spyXd1dbQk0PDkkQT9kEIQGQw5FmQm9UBFUhCQ+KULSXyJNSA96GYU0pEJmJFGaGJAEyAEJNgjXaKC70aa6y1elvf4es50e9rmZWYXGsEECmAntiKrMvHnzXLf2Xu5b38fh/QnVomLQ7cYuSIhzS9KXDPopRTel6GQUuWA5nxIoWQsYC+Gx3jJdVrja0IiAdrGQs6otS+Mo+n18kzCuChRp7Nqr2FVXoUaHBUrFOcIbbynmK8tPfOgTLOYzDg8POZorvvudN3EENq/ukQ+6eK2YPnzIbP8YJSVFN2fz8ohbq5p3XnkP4zSbe5cQw5wmCczvH7M8nIBIYuuUFCkzNAnjecVksWJaV9Q28Cd/+jJSwMN79xjd7nHr3j16WUInSai9Z1XWLGdztBRsbmY4F+miG9MQgouaOlbSuDhjIwCtNEoJpHDYxOFcKxbqaBkzfYwZnMUjcUpxcLDPX3z5L3jm+nWeeebZaHsSZIjBnjwPk4W/cRs9Pj9yhgv4IOv9bPyHVP34112mnSf53kcPj9z66BYMZwFubEec+v2z+0eSMO9p9btkKyQHxvo4Y+8Dzjia0iC9RCFQwaPxGCFw1jI5mhGcpEgEOQlBRVZACPR7mm6R0B8ViCajyDOcFZRi0tJbr+MRz6ysaSSUwaNDoDBQNZ551SB0Sm8wZDHuYskjXDqISLjgGlSYoYQn1Y779wWHdcPu7nU6WY+D/QOWIuWtN95FC8HWtUt0t7bIOgWrh8ccPZxh6watFKO9IbKb8M1X3+PowYytvcsUoxF2IFlOp8yWc5wJCJUiyBGyIJEpdeO5ezJjaRpW1vLVr36Ho4Mx927fIXjHeDmnkyX00wRPjDvu3bqDFoqNYUYQnvmixFjTajLF2UbXIkScdUjWSQkoJWg5Fc8++xD3jpCCU+1cAXknx1rLqozU6FoplNagVIR9exvJlOSZP7CtvtQabxf3Szj9+XwR43R+KXz/LvH6Vt/aYdx1a0p1eBy1c96mPVEU/hSGfnq2n22aMzKW8ANtyQ+eTEkJaYKSUb9p0O9jUsHs4RTT1BFG41PyboIxJaaZM1vMWM6WTIyjdh5ha5T0dDdjRivyhCaxyCCxAYx3ZLkgoFhMLM4EkJGKMthI6SocBBMzedW+F7LtH5bzBomgk0gSJImAlTUY7xl1FZ1cs7nVYVHnpMdDvD/GMGGtCySEB2GZTKZIAt4bEucoVoLprOG9/TGdvM+VJ5/lZHGRZTWCRoIJaCFIw4rcvE0aIEslf/Rnx/zJKxm/+5//Opef6PDf/Pd/xOHD2/zh//RHvPDSM/zW7/67qPwiMttkee8L7H/lK9j5lO6w4JlPP8d0XvLVf/I/ImRg88rzJN1A1QlUr4yp7u7jm3UylSJEghIpxtXMq/mpdf7B//LPWTOVCAF//KW/pFCCC5mico65NXgiaUi/J1A6sH/YxOoEgGixo+uKhYgVqFPa9HPFrPDoecwptG+9adoblBL0+hlXr41wXmCtYD5eUZeGfiajKG4ShRfny5Jepuh2U3qpYLMTmE+WrJZtBVsrKuvpdzOevLZF7QPzxjGeLGC+pFXDwPqInx9bD02FP6kY5As2ezMuXh6yud1FZhKUwPkaXxuq+QyJJBUJZdMwdxV5k5OmKZtb2+g0wxLwApY+JpoOj/EGZasfi+jo+SWEwFjHalXHhEm0sDARZwpwDjerokRAqlHBkeAJMmovHO2fIFFc2dklbefMamOY1SWjgWJ7lLO126PTH9FfbtN4D9xuYTYWCEjlWFY1h2NBaBoEjqIJ1KVnvKopgmR77zJeZoynHVRIwAWEjjal/QTpKxIF908kf/7FKR/+8C6f/eyL/NnXbvHtt/b59nde525a8Yuf+zX6G1uIZIA9uM/dV1+nms7QUrBxccDO9W2+9cVXeef2IS8+eZVhIbEDWNwcc/DKbar5EqkLoIMQGYkoEE5y4/AwUl37wMsn3+ZrX30NrWPCnWpBqgXPDVMSEdhfzuNgvUzoDxM2tjNu3T7h+GRKS/dCZSKGfDlfIgQkaYQsKSUJWp0mHcL7lhgnRMHkAAIJImpJ5Z0cpVRMyAwURcR8I+Jsgmti8tZuvR8pUG4NqxLtvMmj+lC0zyGcITBEHGQ+DUBbLa11BXH9fIWMBBxr/PqPej2qq3eWMCmlCEGfBonAKWQzaojpGEgAvU7BYGOTq1ev8eS1pxg/PMGtSgbdLkoptrZGOFthFwd0Ojm9UU5v1aE3LxiPj3FhEfdPEEgVk4fDyRJWFQgXu+IVTEtDmjUMNnfJleXgZICmiPvHi1glDisSd4wWUDvBN/9qhdc5v/m5z3L/aMr/86W3uHN4j+Wdv+Rjn/5JnvrI84hkg2UZOHrnPcaHYxIJ/Y2Cved2+ea/eoM///y32NvJuHz9eUQPyqbi6Mv3mIzHEaooNIQCLbukIuPh5JB5uQAfEIcz/tv/7g9QSpAmkaQjTSSXO5oLheJotWRpDU6mpKnkwqWU2aLk4GgWuygEjG0iyVBZ472n6ORorcizBKPjiIBxDmMtUohYZTcmBvcmIILCKcXNmzf5gz/8Z3zuH/xDnnnm2Rb6I1qx+HOGepo2iB+HCf4bWmv4XvwezpLDNXwYzhVSObsfrPf4Y11pH3DBYkwsrFXEQoRU8XG8DzSVxZpAlkRRed2Sk3gpsLbh/u0DekXB3sYWSabQIWFeV9TOsLOZ0u8VbOwO0FWH/sMh1kqm8oA1WZmUAaksx7MVmoD1htwn9GvBqnQczkuSrGBr9yKz1Yiy7qCI+9hbB7ZE28Mox6IkN98s+caNhM985pPs7Cb873/yXSbjI17+0te5cm2Pn/61n0cmfYTqMjt4k3vffhe7XNHNNbvXt5hVli/+4V+QZ3D92RfpFdAUgck7Jxy+8xBbg9AFhD5K5WQyZ1GveHd6hPAeGQL/2//xp7EAncYEKP0iDFLFs8OEZdNwXK5wQpOqhO0LOUkW+PbrE5q6RmuJlFDZBtMYqrJCJxKtY5wlETitkDKSXIgWJhuca3UQ28QjxLO5O+jirKNpmgjLzNPYtRcC38S9qCUgYjHc+zjus05XTllr1wn6OTsTotWqarug/n0SqkCbREWDQ0qBatn+RMvI+QhcL5xNVK0RFad+qn2sdfttTQQllYqdsx+wqPeBkymtJL0sYbkqma4qvFniXY1JM5wSeFMhhCRRHpcIZKLpDXLyHPSyojKGahFbBMrEuRjjBaWDRRPV3FdLh1TQ60iuPdfFGc+dg4pFCcZEZXQfX3GL6fSkQvDUIAWtOEgKTONpFgadCZJc8BODlI2OYHBlg7Sb0x2MODpWvPkAAh1McxEflniWuOoYfEl/+2PoJEc2HaSCcPce9faASV0Rkgwx3MbnObaWfOddw9wbfv6TOZ3OBntXPsZrL3+Dl//FF7l0/Tf4Tz/xEq+/dcxffeUWB/fHNKua4zDEZttcuniVN96zfOONd1Gy4OMfeoZ3b/RxHv7qj19DdXJ+4bc/x9G9d7j5yhfYP4ETYFElyM4lQBNchfIlAkdtFy3zi4yHS3CsxSdFe2h6AZUTHHqJC74NiKMxyWXLZpNrfAZ1uxlcC+uTyNOkbJ1FxaqGOK1m+LbKcKoqff68DfHA9Q6siQG2sQHjAt1OwsYg5YnLXbIiYSI6lJXl6MEJafAkASrrOZ7HWZ8kkadiesFZ6lXgwd0jkl6HdNRn2G3IsVSunYVSKnYynSGIgFNR92dWBTiRzKxhc2dIlqecNNEJZNqjpKaRmsZBZQVdJ8mcxM9XJElD3kmjs3BtN09JFuWS8XTMqi5/oM34t1mngeu5ZiBAoiPcwrbte+fWnyEEKVFrZ6YkQ61IleTIKhoUjYiIscEwYTPVfKiT0tsc0d8c0R1soJIu9xcZQXqODq9RVkuWzSGuLlnce4N+9izF7gZykCNrkCdTfPCsnn8ChEDnHWyq8FJysvDcfmi5ejGlVyg63R1mzTF//eW/wCVbfPZXPs3+3PLP//SQ+wdzprOKxGd4nZDmPQIp335rzGxq+Ogzexwc9HmYDnhwf4n8+k0+/Pw1nnhilztvf4X9ccnRLZgsBenmZYIuQHbIXUkaDMt6wrIWIGWE/dkVNjhscCgTaGSgFgElAjdKHUXBXZzKRGkaq7CNIlOSq5dGrLzH+DgkjHXkRYYQoHTLihk8aRphtN7Fg742Bu88ponlQCla2Bw+kj6IiArwWYTKBgLWxrm9JI1Cv4+wF/Goc/m7rXD6dQ3/iOQR0enJ1hn6VkNEyvWdzqAbUkaBR9F2387Dic4q32u41o+jQxXOw/XPqpKnXbtH4YrxtUXyHe893ll6nZzrl/boDnr4dXFCKeqwJBNwdTtHJwmkl1BJEkWvg2ZSKeazC3ibs2wO8cKxfPgOcnOb4vInkMIjXUZaV3D/kPrqLqtBB51mmCzBa0lp4c6+Y2skuLgjybIBIPnOKy8zPpjwyQ//MrXo8/kvHzKZzZlNK4RMyNNtdHeDbnfIG7dKTqaGaxc32exm3CTDhw7vvP6AQdHhV3/lE9y7+SqTg1tM74ExgtDdJhNdnBUoV5O5khBWHM8bGm+RWuOaFcFHJk0hArbxLXV2ICwlk0RSORs7Skqjk8geKgRc3RtSh0DloyyGNS7OdIYQfY4INE0FIdApND5ovE9b3ydYzOdYY0/9lfeWqlpxeHjAgwf3uX37NltbW/R6vfYzPuvMnhUGxCM28cOyt2hfZ7ecXf58Qnf+5/O3feCH+N79c7pnz9JFHkuKArHQffbc4nux7io/8mzOPc3w2IsSAlIdg9y1D7I2zuKEAKQJMolFi0xJdgqNRXJYKLRKqUIg6SiKruZSoehmsHn5Anm3S3+0zclE0b/tsa7LavEUtZvR+AXV+CG+nrG99Uk6RQex2UEnEn/vkCZNmF+9QC9JyftDQpbijWR/DFbBExcUadqhN7zE3Tdv8PbXvsXmpZ/kN375ed65U/LXb0y4v7/C15YkdBmJHt1OnwcnnpsPjimSjI8+s8d7OsPawBvfvo/ME371lz7K9OQBD29+i7mF2xZmJiHdukLuwVcrcrNEC8Px/AjjPVJpQqhwrm5hZ5EnQAqopKdRAr9aa7BZkAohFUJoskxwYbOPHfVYtrNLTeXQiaIgi3qECtYDUUWh2zNXx/tah7MSZxRrltj157vWmer1Oqf2sZ6PklKgMg0hogu8DZH3IGbSsdvVxoCntrlO4Fv78mskkziv9XTWrVrb1vmvkR49IgCUlOeSpoh4CZz3QfHsCARk20CR/iyhOi0nBH/6nD7o+sDJlJKCIlFMTcVsfgI0gMOnKcGrOOguJFp5lIodg1ynqC4I5aiqwLSWuJamMc7lCGobWBkoa09VevIOFKnk+YsFrvHMlwZ8YKYiMQDrgqUEGaJY4fWBxicJy6RguTSsFgZSgeoprl9WPL2l6PzEFqrfwdJB3fN0Oiusyaj0NtYLgjf4ekIwU5T+BFlRkDQ5wRj8w32akz3mTUOmU7L+CJ8qrBDcuGOx0vJzH1Pk2YDt3ec5nn6Dz//51/j9n/ksv/Gbz/J7/+Wf8K9evoXWM7QyLPIBPt9kZ2ePl1+9w5e/epfrOwkvXL/CeJpyMql59eUbbFzd5ZP/0T/gna97vvvn/5SmDDSlhM41RDFCWIMwC5SrCN5inIlvjNCAI5zS8/pHKlAeqO05o1y3SFcRdrQxyhFKEFw8AL3z7XChWJcETjeDkvEKcUOItqr8WIPq3OEegjg9WOvK0VhPYwMbOzkbg4ynntmg6Bc8DH3m8wpva6gMetXQuEC1cnhErLgoYnvfeRprOSxrhki6O5uoPKWDYd54Gg9pnkHwVIuagEfogAuBZeOpZzBpDJ1ejlaSaVkhpGDQA6VjU7YMsHKC4CTWS+yqJFGC7ayPFpL1mCRSsqpLJpMT6qb+4Dvxh7lETHITLaJ4r49kLWtgbALIJDKTKSHYzDWDVNH4nGVQGBvtIB0l7AwlH95TpNvbZDu7CNnB+YSN+xJjAoPuRYSYU4UVvllS7r9LuLxHnqXoborUljCZ432kr1dJQp7mOA1ewmwVeHjsubAFsqPIig0Yr3jt1Te5eO0p/tFvbfF/f+mQL7x8RKrnJKohSVOSoEiyLoGEt2+dkCvLs1c20bJg2XQ5OowD9x/6pY+hcsHNV/+I44MTTo4lPtsi2XiKQAIuoWcfknnDZDnHOhBp0bINRaiecw2SONslgkMQWC0jVE+35A9SSUyjsJViZ7fPcKPHsfOUzmMOZwQCOWk0EQXOxSpe0lYJaVkxdRNhLZVQ7WHuI0yzhdgGEcjzDAg0tcG56Mi0itIMUp1hyL9fXf17oX1/CxMTtKncWjvLt0noWS3x3Gj6KfzChzah9xGTf9b5OfdcwtqZ/TiSqfdfZ4lU/No+LdYi0s65lu3JU6QpV3a3cWmOC54gJWiNYYkSngujhE4/R+9s4JHYINmYeUYngUFvi6bqUVNj7Jzq6A6ZsqRpQiId2qXQ1ISDiqasqLwnT1JcGvBSUFl4cOxIEsWlHUGS9RAy49Z7D3hw8zb/+O9/lmXo8U8/f5+yWtJJG9Kupu5sooshRafLg6N9Hh6WPLXVZ7ObczJN8UFw590jNq7t8tMvPsXn97/J7ZM7HB8Japsitp4n0QOy0pHaCT1TsqwrJiuL0BlCKQgW7xuMqRB4LK4lqXCUAo5kS54iBEqrmCRZTa+fcenyJssQmHgPkxVuUZEI3VaSYyHCmAa9ro4jIAhUkiKkwnsbZ2HW9PXBUdcV45MTDg8OuH//PkVR0Ol0HxO65iyR+j576Iexf/7162+2+/A93/yg1//eROvxTlyAUwSKWAe573Op06u1BVXauyZJDGKNaX2Q921RV4AUbTIlSZTkQifBSsXK53gvqR30ckm2kfLkBcmlkaa4uofq9BCqS8g8ve6Spsrp5pfBJDjraWZH2LlDi49RFBnpMANjcfsnNBt9Vs6S6oSsqyCVOCk5mgVCEpOpJMlJkh1m09d55Wuv8uv/4Ut8/Ce3+ML/8A5f/+6YPClJpSPJOpSiS150mC3nvPHelCvDhGevbDJfJkxmhvfePmC43efv/crHefftmne+cYf5DGYzAaOnSIabpJUFPadflThbM1ktETJBJnk75tLgbEMIFhci2YzAUgKzeYxNVAtNlkqC0+SZ4soTW8hUc2gdVWUwZoYWikQpWj1enK0JPpBnEdZMiL4nMQZjJI2K/ocQsK4V4G1lYDrdAufOiKyci9qWa8hgIGCjgBTK+yj14fy5ZGptP2fzUQFwwUVETQunlq0xnR7D4szov6fjxFp25MwUxbm9Hc7fH1rIsCCcMs+e7Yk1w+wPQkjzgZOpo+Nj/vobX6fTyeh2UmywOCzOR9Euki6Ns9y8NyE4F//RAAatBJ0igVHEW5YN2NKyOI6YarIUkRqUdlgXWDWCN48swgdUqugNJZc7CYuVY7by2NoRbGAvF+z2FL/ws5tk/R7PpFe5cX/Bl75xH7U1xO5scPT0ZZKtPvr4LcS9OWK6hLHlM+WcG07yZZFQCfCiT/CG4Bumd99ilfXIigLhLL4as6MaLm92qcqa/aZhtpxRzT0pl8EbvnP3LptdyZM9zU8+9yL/1X/8n3Hp6ovsH1eY2V+gVq+y/cQeu5d3+NXf/nWeubRDszIM0bww6HHw7te5NXmTMPoIm5c32EwFqbC8+eX/l3s33qSqE1xT422JlA6RBPBTsDOsq9pDrHU0wBr/emqF7xOYnEGB4u+0jPCj+dLgacV2RQzSYoVKxiAwREXwEAShHRwPzraBoiQvEvJOymrR0FSRVXBd6V3nY8YYJpM5nU7KsJ8glKTygsOJoec0e1e6bGUdihUEZxCuZjJeMp2WqCReqNOPugr9QuNqSzWu0E2DmM/xxuKsRAuHVB5cRUCQ5l0IDuEbSFJCVpAEjxaB+WJJ3TRkWSfCWa2iyHI2dgYYH2hsQMoUIRS2tDhjONp/GFvDSUqSJnS6HdIksDUSZMkH3oc/5CVorI+Mmq4lclESISU6Teh2c3Y3R3RVQAdL0e8w3Ozy8e0nMTLjlTcf4rIM88SzrIY9TvY2Cctjws1jCleRWMH1/ZK9SeBAaIL2LJMNbBBYP+P44T6G1+j3O2SphnJKL7X00yi6PHGOed1QL2qwCYnsMFmtcBI2U8mw0+XXP/PvoLtDFitHM7uJOvpTdq7usrkz4iMffZ693QFFnmIquNbNmBwf8a03vorvXWLr0hP0ZU6hAscPb1O6iqO5YFIqFssFWnXJchDMENVdqmZCY0t8UCAkzlWxsytbOLIQcTudmwGKOnah1csIKOFJlKSTauaLhmlpaULAEch0gkgyZBvkNc0qZlRSEnSOkwmuXkW8eV6QpwlXdkfUleH4aE5T1jRlhVQxcetkGkFg3DQEGShyDUSYwo8n/zgrE65V69cuK85RidNkSyAiOca5ir88xwjlnSP4iDQ4ZVkS4pTB9d+2FQgY0/D2W9+lrkp+9md/jmG/w9aFTWrvKZ3l6WeeZLS9w63FESZYppcu0KhAtpxilguqo0NG90o+eVJSW02jBCvdBRSmmVDOl7z3+usURU6vX0BVIsyK69IzzDSrWaA0DeWyRMsOqRxSm4aH05p+Iikk/PRP/QzL519CJz3K8Qx18mf0lOLypUs8/fQuP/HiZfa2RwTj2Uk0QcGt175JEwL9rWcpUk2SSBbTE2bvHLN/tOBklbJYznHBUqQBKQyyuY+tF8yqKS5EyKkPDcFFXyQkJLpFLrhWDzHmPazLOyBQBKSQFFlGcIHbD6ZYAiYEhFJ0OwVKxQO1rhZ4D0qkIBOsLqL/cQ2ZVKRZylMvPoWUgv2HY+qqZjVbREhforjxzpv80f9V8pu/9TsMh0OSJEEI+UhS9f/HdV6C4JG1Tpja1+/PWlesxzkfh/BCOA1iHwlSw9nsStXEQNy1pCBKyZg0a81o0GM07FEoRyIc3e2cvNfn0s6THE4q3njvELe1R3PtMvPdDY77BWF8F7G/oOtKmBp+sZ7ynld8RWcEL2j8BsYv8KHh/o33GA8nDAcdpLO41Zi+v8BON8PMK8Yrw2K5oJp7ND0knqPlkk4qGKWSp598mt/8R/8em1eeZr40hPHXSSe3uPrMFTa3B3z8459kb7OPN56+lDzVzTm69Qp3xreR2y+wdXHISOUkmeDujTe4d+ceJ2XGalWyWpXkmxadB6Q9xJUnLFYnbfCuTyGRAQsyFnTxouUK8KfvdQv+iR0YYpEvSxJyrXh4OMcLQeU9SEGnUyCEQklFY0qsbQgijQlU0gECrlohhER3Uob9gv6wx3i8YDGvqOYrvLVILVFS0s01dd0wbWq0jlDZMx8Uq+mnKAkViS8ckWjp/XRHT7u/j1QJWmbOc373EYNtz5I1ckBw1o0VLWPsaf51DrEh5fr7eN9I5S9OZybXWqtKiXP2/jevD5xMVVXFw4N99i5s0uuNcDhEsEgsHoFMc2zlWSxrpPeo4CLtI5Z+T6G0Is81xkLjNYiArX3crGvIUSJjlusDJ2VswyWJIktAFuCEZGUMwsU23WZfs7uRcPWJDsWwj0w2aUTC4NYCtncQOxdYbV5nPBwRbt5GnExRhyt6i5onzZyp02gyJBohUgSRarWenWCzGpFdjq1NGzs/uVLUUmKFwNoF1jQIarxPOV5WaKEJeZfdjW06H/kky96I+bwkFYcM8322BttcvJDxkU89x3ZetMKkgVGWcGs25uG92wyGz1EUMOjmBFGzf/ttxvsPcU7jXIP3LrKsJAIpGgLr2ZxAEKr9tNZD6LRBCmdt1vepSkl5KuGFAGrjTwkFhBLoVCNFDMZ9EAgnzg5YGWc+glhrVESHlXUSrI2wP2jbw6ebIv5c1w1FIUmSJOq3CMmq8kjtuBDicOOg0yVgQCgaG5mbaEV0syxpaXQDRgiMqFDBI00DLuC8OBUDjnT4EplkMZlyFrKE0ElJrUE7hzWGEAJFlqIB4WPnoVskuBCVvOOgc8DjsN5SNav4HiaRjS3NMxIZSDPZVml+1Ot8fYbTlrb3nJFCwGmgqrUiSaIIqQ4NeIdMJLpI2NzsY1WBTI+wSUbo7WD7Gyy7IfDgRAAAIABJREFUlzAzhzk+oNc0FMaxN1+QVp6cLplUKBXZhQKCarHEHR4h0z18ogm2QVsdKb5FHJi13mKbFcE1CGJnsWwCXkdK8yefeoZGaBZlDWZKXx6wWfTYHW7w5BObXLy4FQfHnaOXKGam4fDBQzqXe3R3PZ00oaskJ/NjJqsZq1pSGo0xFhE8MpEoadBhjrMrrKkJqgC5FnqMe0opiUrSKCDp1vDZEANFwrmAkdapSBbWUVY29m0EFMMMpVWEPlmIhHVrR5NGCQZZE4JHaE2SpYw2+6xKw6rxMflooXOIQKrV6WFPm5x4HxnMzhKd96uo/13t8VyV7zFY3PdcWZw5svMzVWtHdVbKbmeWzs2sCM6c4Y9+Pbp/vvf28ysGmc57Fos5ELh69Vk6RULRUdDUuMaxtblB3htxdJSwtJay2IsdmskKM/Es9+eMJgs2Vku6vkPWsnIpn2GQ2MYwOTzCbIxQvU5MFJoKgkcLEWUgCLimxFuJwOE8rBpHLjRFoti7eBm36ailJriGrjxCpznbg4tc3O1w7ckLdD1Y48mloJCB2ckxjYDOtkOnmjTVLOo503LKfNlQGk1jPB5LR0cq9IQl1i9pTEWQMbmJQvKCIHyrP5NAUHhDW+le67mc2bRuO+mJklhgsWpYCyJn3YIkjXIDCDiV79M64pFlGslbiHALISX9UZ8006waj15WLf113I+T6Zh33i45PNhnsZjT7/fROqFl0liP+H6vpfxQ4H7rpORHX/X4nqcb2kBXnGnwnPajvs9LC63NP7J3WW/f8Nh9z76KsD6PznxQ7ODHWDBNNFmaIH2Ud1GZIu+mbG6PMGFOUCf4vEfo71L19lh2etT3DgjzBbauKJYNe2bGzGty4UhkgpIZFoX3sJhMaBwkvQ4yBJypsN6SruM3wNgK21hEMICmsgYtJeiE4XBE8ewL1HmPclWS+hMG8ojt3h4XNjXPXL9AL01xNqCJM0x35zMOHz5ktPkUeR7oZTlBGE6ODphMZqxMQm0qTGPJREAkAsUKwpzGVHFEYh2EhTXbIiit4mdkQrt/3Ll3OqIVpAKtQ5yDkpES3foYk+g0IctzpFJIpXGhjuMyWkGIEg1xfqlqkzdF0S0YbQ1oQtTCC85jawO0jIiJxjsXY0YhEVJgXVg3stpQT7zv+U972yPe6hzWOvqN8z2hM/Ky97fz+Ldn6VHL8be+pnz08eXaMbU+aD2iEoiBsGzj2PVz+aDrg89MJYHewFGHJQ+mniBWCGEZdLskWiF0Qyobsq1A3XhWpaNeWeraoDJBLhVpEgPnJNMkmWFuBMp5tHN0g4dcslo4jPEsvEMpwXCvj/eeqrJkrqYoA72+ppdJfu0XrnJ1r4segRMJg6bkw9f67Dz5s9y1u9xyFxgfdDi8K5l9bYg9nqNWd+m4ittNzYmXJL5EiRxEFhMDnxEaS1AWNcjwjcCMEw4eVLzy5du8dHmbj714gflX3uP2g7tMyq/TabbYHL5A3u3yQG8iswTV07jDe4Tld/i93/kM5e/8Gs3skKKbcV3MWBwu+cpbjvcOljzIlpT9JwhDwf0b36Hbe43f+b3fYVkJ/sn//DazSYl1W4SgIDhUd4De2KQoFWjPZOZb6sp1Y1QREypPNhyRFDnaxgi7Wi1xzrWJYMSVDnNJLxMsDBjXytUEYsUYgfCiZagzKBFIBBFS1ALSAwIXEpwLmMZhFg3LxtLd6bJ5qUdZGkztWBzM8SZWqZwNmNpRlhad1Fy4MGJzs8di4TlYVNy/9120FAwyRV4Iej3J9SdGjF66gkw03sO3X7vLclVT9FOUFiynmrSr6A4ErvbUxmPLAB76oy461ehOB2MaZlOHShSJhDSPTG5JEis3QUq8kAihwHtcvQLioVkvVtR1g0CTSslgVESYfghIZRBujk49mc5O6Z5/nEu0zm+NyhDr8r6Ig/VFkeGc5c6du/SKlF4nI583NLrkuL6FR2EmU1QvUBiFWeTc8n3m74xYvL1NUr1HYo55mgaNIBGGQifotIP14FUf2yiY1cinJMkgZXqs8XPBO7dnXNjo8+LuDjeP73M/HFNZwaIpuaB36BQdKplH6ZAMlidHvPP2V7m22eO//i9+F+EbZLBsDzVpaDjah3npOFYNi24fufspDucnvPvVP+ezv/gJXnz2Kv/siwfcuH/MtBxQ2wTrKnLdo7c1pGsTOsFy94FhMjNYIrwJmYGI7FJbl3a4/hNPQ+PAWJaLBU1ds1rOsKahqmb0M8EzOzmVFcyaSCyRp4Fg40GtvCAYz2I5QeIpRKSYTZMMITUIQZN1sb5lYVoaxrcPKIZdXvjwlcgOWDac3DtkNZ6fOoyLu0Oc80yXFdZ5pAlnCfz751M/PDuTsqU1j55JnMVmZ927dcK1xsW3cI/HE6top2dO9Nyj/OhewN9yOe/QSvHpT/88gji/JnAIDHnSIckdg1GGF4p0Y5vxyvDaHcvyZMb8NYOdzamOH7BtKrZNTeVruiolSTsoAUF1cUHRzGo6Q086SllWCWWpuX1/hStmfGhnSJA198RNGrdkUSu69OkVmwSVsZAJMgWCIbFLLg00v/+f/Ad4ZxC+ZrDVoe9XTE8Cy3ng0FaM00DVe5bFYsbNV17muacv8Ut//6f48mv7fPWV93hwJKjcLsY1CAmd0ZACxcYyMDlx3C4brJA4FIgEhMLZJVmm+NCnXiLVCdSGpqpYLZdRdqGuqKs5BMPzuzmpVpxUAnwg13H2LthI/y8cVPUS5y259JGAIi0QUiOkwoUM6zVVZVhOl5wER9HNePa5qwitWS5qyvkqkoM0DXXT8C//xf/JN7/+Zf79f/y7PHHtKYqicy5h+hFvoH8T69zLOaWlfuyX50bF2uSrDdnf920Rj9y3lRmKc4Uh/k3sTKvTuyeJpujkzGczFrMZG4OCbidlMGnoNDOOlm8xWRhYzEgqQ2E0k3GH6WzA8Rub2GNLuvouXbviWrPgxChSk6HpI9IuocnxQLP0SNmQ9hO8Ecz2Uw7GjrduTnhy2OG53S3G6T7LcMKyyclMlzzdQaWahcxjNz0RHNy+ydHRPp/95Y+jP/MzCF+RZgkXUk/TNNw7bDhcNBwnDfXoKlQF7773Lum9G/y9f/gLlFbyp1+4xeG4obQ7GKdw3pF1B/S3BowuCkJheadqqI2gISJfEAne13jTsHP9Cv3NAYWN9OnTyYSmqVktZggcSnmujFIuDBImFVQWEhVQQRJs1J0SFkxT0diGVHo6AvIiQyndFsmhyQc0xrJcVpQnS8ZVw+bFTS49scViUVNXNYfvPcDVBus8WZZw9eImq9qwqhqUjQzcVRWh56ZpWltYd6MCWkvSdE3sE6UwIny9tTV31oU6l1/FhF6103ztHl0TpcjzcU5rn2f2Lc4yLB9xJL5Nls6QEvGekQr+vIGf3wx/8/rAyZRUkOYSkYCX4WyGpn0CUkXdJ1nEHWWdxFiFWw//K9kKH0IqILWgEhUzQSUQWRJfrHNoHQXFlJZ0Bznee1RqaJrAam7Z2cnYHqVceWKHvQs9EiymCSzGFSZRdPqBrvP0G8d0ZjAnUE4bmnmDbBqMN6TBsQoB33pxIduOS1spDd4RvG2x+wJTexYzg9iDbpow6OQMOxlluWCxTHEhOhIvFE4mGJUymc2ZHN7nwsc/TD7qM73XIHUgDyUrpymNYl4uGM8e0jiHSAoKndHtRcYv0UBZeepGgEiBWD0TOJSoSVLAPl5VCuf+rc1h3XqPUD2pAolYM5b4lp0vXie0nSMhoogeIv5O+HiNVEsSKchUFK30omXn66RY6ylXDZ7YkR4OO3R2+qxWhqY02FmFFZbg/OlG8c5jrY9kkZkkaaLoczldRa0KkRHaKvyGD2RZQtHrIJSi38+RAvKejvDEjkYlsbOgE0GhNHWUgkFqjVAaQeyOJFq11e8QhzdVJALQKnYQZCuyEAcpm1M2Q28qgjPoJM7JJKlEiIAzrSitUMQ5lx/vzMfjVch1l/D0WBDirNofIoZdpym94QBURmUFzWyJDwIlLAkWuVwRXImxDc3cUC4MpqrQrmSaS/JE0e13sE6jZxLtI8uZIIC1BG/xweI8WC+oKocxgayFw/U7CQJPVVXx/UJEEUEBCEVtHNPxmIvDPk88cQmzPMHWSwodceM2KGrrmMzHLOsSkRRon5IGEaERIlAaz6IOOFK8cAQ0UggyKorU0+0r1GHET7f92DYhXc/yRPgRMs4EKaXR2tPpFlgrsX6FTmI3VgLexPdetfA2QfxdCB5DIFGSfqZJdUKuU7wQBAFp3gEBYx0/m0RJunnK5vYGtbGUtcUtSmTT4E3smuWpxDpH0kTKed8KI3/fddZO+ltY2GO2fL56t/7+fEX/1KmdPfYpu99jwZg4hXqsq//nMPU/pvX4W/L9Hl8Qg5PBYNj+TfQPwQVky7wYRHT6/STFJRJRG9zKspyuMIsKs6pZCEciBLqXM9Ad0plCC9cyywlwLtJ6h7WGkqBuAlXtSWRL8NRJkAlUdUVjCjwCj0QSpSYCknIxJYjA5csX8Kainh+RZgIdGoKXGAfz5YLZYoUXGplkFEWcu1gjReaVp/Fr/ZgEiScRDbkydPuKVSnjTN/5/XMKRIqsokpGkd3YmUjI8owkgUCNtyHOW2hJqCFIEdl6lUAkEqU1UkmcAyWgn2ekStFJs3im6yyiZjUsFiV11ZAmikwrtrY30HnGamVYjOf4VUO1WlEFz3I55+gosFjMqaqSPM+JHeO1EfCob/2h7Z+/+/4Tj33zqK/5/tc/L2Hw6PXCufuwzoTetwN1+hji8d+tq/ktPGu9vzk7I9Z7fR1c591OPEuDoqwDdTOjMp5UebRtkIsV3tZ42VDPDc3CYMoK5yoOQ8PcKhov8IlDaYlOJHgFzuNtu3+CwweJdTGeoi/IVYSqdYuEuqlZlSqK2AdBQOKRBKlYlSWzyZhLzz7FaHuTenaAlJCI6H+sl6zqivF8ivEBmRSkqSJNHVJFEoZF7SmNwIuMQEoISdS9FDVFRxBMFNhuVb9ilyWsfVDsuKzpxoUEqRKSJNDp5dHH+iYy9CUSmoBv6f4FcRZRyLi3sAIvAp1EU2hFkaZoqfAi+qokz2kawzSJHAlaCob9Dr2dDbJuQ1XWVIcTGinx1qKlIE0FLoBxvj2rzpKhSJV+lkid2XDboRKhjSHPLCic69g+0jE9taNzEhyPW/q5eGf9m9C2SeW6oHdqmY9u7tOinngsifsB1gdOppJc09vpoLIuMu2ilEEIi6lW2NDQTQQyBZF3KExg0HVUXlAHUCEOnpoWHlMAjSuRTMm1JFcJFZImK+gPHUoI0tE2OlF0kqj83njL/fdOUO6QX/2163z0pT32tp8iS3ssas2D+0d84V9+ntrUBOnoVBuMyk2q5UV01aFZvk7pDhCixAnPewGsUjQqI6gCrXoEKoKpcb4hWCiPH0AQ7cCeBldQLmum42M+8uSLPNt5mi/dfpvxtOT5TymuBMXlrucQuGslL791m7e+/XV+/6c+yfUnr6DFLZxbIu0DknzE4JmnmL31FV75k/+Vbm+XbneDn/7Nz7F1cYs3743ZPyzxncsIt0Q0M3ArgslIV7fJ1R300OC7BeGkbsVHI1UxwbDWOGomM8x0zpqWXAhFlik2dntUVcN8XrJygaaKiWVoS1NKS3qDIpqbswjrEVayNcgZFCmFsUjvWUrD1jDltz99CWcch0cL7k487409Wz/1PN2nL7Osa1aLkrfcNygnS1bzCusDtfO4AGUVyTOCbLj69DYEyc03LHUD89BlOltx/8GExRJmM8v1Dz/H5vYGL33I4ZoK5w3zxQohakxtOTmZc/HiNlvbI44aWBlYLAy1sdiDCakObHclFYJVCFitIEvobvTppCmChOA9zpTgG5rlguWqYr5Y0e9l5LkmGySoRKOlwztLs1qQyIIi61NWcyazGXXT/OA78u+41ro4kdmnxQHTUo4KqMuabjdn58ImLzx/nZc+/Dx37h5wfDzjYP8BzhquPrFJrg3+9VdJ0wsU/YZwfANvbiCYIFTNbOMydrjJS5/6aSal4+BrN6imJ3TClNo4Gluzmp5gRQ3eRrIBn0RdkGrF5qDLz37kQ9xbznlwr2T7gkTmiku9CMU59nBUB+6d1AyvSHqDPrVaYesKKVYE35CNtrHlgm/85ReRQrM12uOFFy5z5ZmPY5cVb9was1JDxCBDlTOUDwhVkJgFw+NvkWUL9NUR9d0li6ZCaxcT4pjlI6RndnDEm+MZLiK+SZIOSZJx/dk+KklxlHhnuTMzBKFwSrfFC8HG9pC8SBG2AedgKenkKRd3NkidIzOWha9ohOFnPnmV7Y0e0/GEZWm4fWiRG1t0n3sB0zI2PUhTpvcKVtMFpjHMG4N0jqESrFY1jbE/Pjs7hUa0/fC1Fzq31k5UcG7AV4hH7rsOtKQMLXQxMkGttWX+bVhr5yoEJEnSfh8gOJxbgYhQGYhnwWR8QFkuSOgwMHCtnHBcHbCyb2PEHFcEbNrlMCt47sMfY7hzgclXb6COJuR+jGk8ZV1jVzMmB/uEyhGL+wrvNFVV0UXwqReeY1bW3Lg/RmkYXVBsF9DVnnGARW359tdfJ0kkv/KZn0cKjZQTlLbgZiSdIanKePuPv8Gd2w+5sHOZvZ0Rn/i5z6EQPJgYZr6AwUVks0C5WLCQvmI0e5Nux5FeHhIay9wcI6VHSYP0ra/BYWvDjb9+FQQ4LFKlaN3h4uWC3ctD7j9sWCxgv4zCv1amtOU/Ov2C4UYf4Qx4iygVOsDVy7sUWpM3BpllqNGIi9sp1/ZSVvMlVVlzb+ypybj00Y8hiw6VbZgeHHMvy1hOZywnM5Jun6zT42R8THo3o9fro9RaqPNH2ZX68dj14wGhaP/7XpqJ83+wLnDEm5RYTz6uL7LuJsdCo3u/SxCZdoVSbYFRnPoiQqAqK7a3hgyHPX7u059iYzTinXfvsZgv2N9/QK+bcvnSiKQ8xL36DYr+Ep3sUM1fpzZHCDHFCMt3GsfKwxhHUqQU/QFpmOOlpTIVNIHJwT5SSLQCJRSEFGMcVV3y3BOXuTbc5ZsPHnA0XnHxqmDUk/S1ZwXMkOwvHffGNS8mOb1BHyXGhGDAzZG6IN/e5Oid7/LXX/xLNkc79HtDXvrFT9IfFdyflBzNakJvD+lrVL3AVzlCFXSW9xiM75NtCprOgOVrx1TGobSNJAreQWiQIjC//YD63gGWONuTpD36g5RnX7zIbL5g/+CEuYNm2mBVStASETRpotna3YifhW0QTQJ1yvbGgFG/Q2Gi/5i6Jd1+ys/91HMEb5lPZpzMHftTS+f6s6QX9qhspFUfGks5m1NOF9TWsjSWQkp0rhiPV1gb6dgFYKXABYH1nEK5fXDxrG/nlqIMBafsrZazpEdK0bLztalPOxsV1qK6MhpcOOdLHvFBoU3Owrkb/j/u3uxHsvRM7/t9y1ljzbWy1u6uXsleSA6H1IgSNaQ1MmQBurANCIYuBQ8G8L9g6M6GIBj6B2RDgGFJvpA0kgzP6EajkTkSNCOS4jJcuruqu6tryz32s36bL05EZlaxOW7OmDThD4XKjIhzIjPjvN95t+d9notulrjY5leTKCk3sHnXycn8DHv1UydToUuP8TLghYNgEWuGEYLHBI0IAkH34URZhESSBkFbVzhr2eSFTgaiWLM/TiFIJIq27QYVRRyjtCJKNEmkGfdiEKELZa5ZfG3Y29thNN4lSVK0UsTGoTGEqsRUNYUxVJVnVbWsWoexGcKtULQYAi7PYP8mwscoExMqS6gtiIggYoJYi2DWLZ3Gi8aamnL5FBOu4bMENUyIW8nWuQYFi9Ml89CwSs7wDWQxiLyPGdzidK4ZPW1YHJ9g2hWPDweIfsLwWkakJG3TEkclJorYGw7ZH2/zrXff42w6wdRFN5xuqnWhLyWRjlx6mjpg2k4o7wL/eZF5b6go3eX1Q6x1uwTGuG6IV+muk0LHtIcQSK1Qsaa3lYHzmCJ0lXQv6WURca7o6xgVPKtZQe0kRwtLCLDwMZX0hNjjW0dYVYx6msEwwdwZU2/FrJYVq8pwMm8uqg1141guW3q9ljiK2NkbYpygFCmukdgsIKOIsrHMpktAkIjQzQBZi4s12+MBVdlS0BInKSpOyLRAOgheYVpL6xtiBVEuL5i1ZBKhYo1OEnQSY9uuvhpFCqkE1pmOGlYKVKSJkoQoEkhN1/bCXwxbOm9xwePEhaT0L2hdrbJcDl9edWSblngcx4zHI4bDPr1eThJHHRuc8IBFOIMPkrZago2JOCI0M1SosLiuwnztOnJnnzob05qaCE0QMVKlBC9xXuJri1k1eKeRXlDUM6rW49U2IlFEfUnmFH0HtjaUy5pGV2gBWgp0IpGjfVrZYz532HKFqyc0PsXLlHhHEWlF23pEMNT1kljtcW1rzMPiMeflhFXZBVemrHCNQaiUWDkGylM3nmnpqZuOLc87h7goSPi17lOLsRYnPE4EQtAEBGXVEjlBpLv7hfUdRboPoKMIFUX0xwPyXoxZrRDGkYqENI1I8pRUQi4C9UJQ17CoPCqyVC6mCoqWCmU8zbLABY8PnmC7mb4ki9CRZBU6hqymtbTGdcyb4VJH4yct4/9FU9vg39dfL2ClV/FAF8Xr8NwvsX5wdW7kGRwRzwy2/2LWc5/ZMw+v0qeLNRRk3YkJbv1xdGgG72wHA10VtMWctraUswJbTImUI2hwWiO2tpE7+7SjHapogBAxMZogU5RytFIRXMCsmq5yjaJqSsp6hhU7oCN0PyIRjn4tUM5RLhrqUJN1NUuUsrikT5CS5SqgaGhXc2zQWBJUb0gSRTgHbWtp6gLvMrb7fcq64tHxCdPljKoqacsSW9aARumEvoI4BBYzR1n4CziPCBbWjIeshctNXQEBKzxSB3zQ1LWiKCQCRRwneG/wIeBCV/jRSUra7zHaGWKrEt809OIeidD0+n2SSNITHoeksI7GQu0iWpFjo5hsFJOolDTK0FFKvzegR0LaCKrlkmK5REQpKk4ZjbbI8vyZfXP1+v987uJdB/anv7ZZf5pd8DOeI9YzKc93jC9wLZfvuQkvLxoGz3SaLosOV978IniVFzpAkOUZ4/GQQb9Hr5cSa4mWoHHIYMEaXFvja9DiDCKHsEtUqDEi4LIUcf0aymnSRqPI0UGB7Irjzms8krZokDJCBE1tLWU5wYyGBN1HZZrICgZpR8BSF4YaRyuXBCuIpETlOWK4T9lq5guDXcxxtqEOGTKRJFsRAkHbOuq6JtaaUZ6xNRhw7/SUaVlQViV11WDLsuM10imZcgykZ7X0FKXHurUIunME4bsY21tEcAQTcFZ0yZSUCJnQtoKyMjgHSZxCcJjQxXRBCuI4RWcxg+0BIjhsEYh0RBIJ+v2MpJeQyxTlHfOJxXjVwSsFNKTUGAzQ1i1hscIGh282M/uCrJ9AKykKjzWBurEY6zqNtzULnpCi65Ov0V1rjPdltzNwgQ7a7L2NaHu4cChXbXBjc5e296wdb8z5WV+ysd9nPMpPtJ/Xr4Vn7fxn2UmfPpkCrPC40GJ9QLUl0neaPQiBNR0ELYSIfqLI+xFDpUmE4vT0lMI4CJIgoJGedBDzhfEOq1YyqRSL1SllWRP1+qgsAglxJLi1u9XpT0RwfbvPSy9uc+fFV+gPr6FpkL4ld2f07THjek49azidWMpyQVEcksmHREITbIXCsRIC9q6R/pd/k1Bo3BOPvfdD7Ic/RtMHGVNgsAHcoiKoBOIBq9UZ8vHvU372LxGuXccsAi6SvG0zrDEc/+Ahdqtgu3zIKN/jhdEtdl9+mVy/yXfvZ3x0/5j8+FsUxYLvHL/Ia2+n/I2/NWaUjQj0KYsl3q64m/e5Pdzinz79Dg8fHVKe1rjKEsoaIXOE3mKU1mylLe8/mLFctXi7MQT/3BXbGFH3MEDHetN4puduTUSQ4pzFOtux+ABRmpIOUg5e3sHVLdOHnm2VcaAHmNxiU8/2zR5KCe7/h0PO55Z/8u05Mk5Q+RApHEI7xNMJdrri7V+9xWgr4zO//hLWtiyqFQ+PCv7oh+c0haVeGSbTlrr0aCcYj/t89u3XEHHEMhh863GV5ex4xvnZnOb9j0i15rVXr9PPI3JnOyz2nRusipbptEYP+rg4Yxh32lj9uNPjaVoFMiDijpUmlmpNThFIh32iKKE4nyMIDPsZ3juqtsUriPsJ2XDYMfbFLWCpqxqCIMpyAoKmLTHC45K4Gyb9Ra8LTEW3Nk5sk+wpLRgMB9y+c4fd3R2yNCJPBHni2Uo8VjjsssTS4tqGRJaEaoEzJdpXlCLQRjH7X/wy8cEdHpxDbWbEjSZyOeg9wHRMn0uLqSradJsmlhydvU+a7hF6uwTZwXa2pWIcS+r5irOyYmCn9FIYJHuUWwn9175EieC9ewV69RBZfcCD6T5Gjvn6X32VQZITRI+mKTg7O+Rtf4e7W7vce/BDHkzvc3jccD6xVIclwiuSbMwgs9zq1fzowZIff1SwnBi8CzjXdkHzGhYg1wUJHzqinCDACI0NjkePDUmi2d0eE/CUTYVbq8tHgx7xcMT+C/uMRwnnD4+QreeG3EJEYAeOfJiytZVz9qMjFo+nfOveAhUVxINdPBGrokZXK3rL99djkILZ6YSiLNnZ7SOU5NQZmrbl5GyJNQ7b2gtNuJ+3icn1zNTFE8AFzm/tCDeDvs+K4j4PsFif+YzX6mQLfPgZg8JfwNrApTv4SldU7G6uFm9bbFNTLBbMzie8+8Mfs5wtEA3gPXkiQcUUIiN/7Q3yt3+V83ngeOXwTUTaxmRqhyZY6rjFG0FzXGLjATbOOJk/IZxNMW98mdBLcTUkseZlJK1vOXs0IdpZIoclvWSHKM9Ib71GayQfPTJEZkq0vM+k7HNcbPHWF/a4fjtFqx4+pMym5wxyyW6c8vGyi6msAAAgAElEQVTinO88+E/cf9Rw8rSlPq0xK0OcbpGkA270G5q24Ps/LFjMarwLgAVxSbyi1lTOfiN6LMGFgBOSk7OW+WrF9njIIO9R1CXOW4wxRGlEPN5hfGPE7Zd3WJycU06X3B3eYhD3qJISGcN4N2c6KXj0/SOWLUxtHyd7BKW5cf0Gw16PxCdkPuH63i2i6zHRm7+GaUuatqRsHNbB9tYeSZyidfQJycDPxYp+3j/gU/6Yy8Bxs203ceWGVOAilboqVRA6ciMhOv3RDftcx0AXLoosG8IPJdVFxb9jJBXs7u5y+/ZNhsP+2geBTzw29UgMzbzo4H22wBtDIlNEu0AGSykEYXef3n/xX5O1EcNpwNx7jP3wMbEYI+IcJww1geakwkcB3xsQVQVPT3/E7f3XCYMRtgl4Ba+5FOccq+M5Pm3ImhOyZMAo3WFw/Tq99A6HM8FsuiCev0dT13w4OeDaLcFXvpaSxj08fZarAtOs2EtSDoZD/t3qER9PphwfNtRzQ3NaoaMecbrNbl5zPW34xnsNx+clbe0JzuN9w0YDqfNBHdx8TUxOkJJGRrhly4cf1fTylK3hNnVb05hmLTYP+c6IfNzj5svXcW3D9JFnJHP21QiXO3wWGO71UUrw4TcDs6Ll337/BJVkRP1tmrqkqlryj4+Jn56BFjjvWM6XIDy7e30oG7y1rGYrzk6X2NZ2bH3r2SStVVfckx39eAdXXkP//EZ3UK19xTpOlWptT36NaHieeGLT1eL/ueJxxQdt7kE/ocF4uQM68gzVPQ5XWCg/7frUyZRxhlW5RGUDpEqQsus8GXFZsZdIxJpeuLKgCCjlkToiSgNZ6FjVPIZYdljoVGjGMqI+2CaOM2TczaLkSdemNB6ED0QI8iwjjWPyRKFo8bbGtTWTB485eXzG+cpQtB4tYJhJRonEtwLvwMQpPo6I7t7FDvZYnbbYySntRw9x50f4doYkQ4oURAk4QujmPrAzXOlpphnnteCp0Lww1OQ+5rsf5iyWFeVsTmMD125do6gk1ekJN4Z3+foXttlVEarVfHCsMCrn9uc/hxyN+Pff/mOePDkil5KXXn+dg1t7TE5bVosjZvWY0rcEd7hWKm4QMkfpmMoukXWJ7UmIEsSkY/sSUkBw3eDGWgPlqrlsDAzWxh0uZ0VYt+47aluNMYLpaU0/glduDKER1IUhzRX9UcSNGyP6vZh+mlHUjqeNo3aKVZtA0yCqirJymKrk44czBouaXq+r4Foi+qMhX/hMztnxgtOjBZHSKCUpSkeg4ujwnKwX0x/rboA11yQHQ3ZHGaZtwXtkInESqkagIkXa6xFUhpc9VC9HZilFseo6fwpi6dFR1A07KknQomuJ0yUdsa+RTYN0FcF7qroTtc3TqOtc4LFtxcpZtDII4TGmYwmMY40LYJ1FpCl51kfpS2705XLJP/xH/xvbW1tclOwvSilXc6Dnuwo/WaXc/P/Ma+tzV6uC3/zN31pf6q5Nfkk53Q0JD4Z9bt64xnjUZ3tryM7OiywXCz5+/weUxYIkzZFCo0WCbRztvCbIMUjBcDjA5D3aNqZ6Mmf53n3ayYLF+SHaaRL6+NAQRENrXJdghCmQsJymzEaesyAYKslWKjmaKc5LRbOsQMJwEFE7aJcLEDmv39wnQZALmD+OKcqIresH+GSbx+dTZpMlQyVI97a4/dIu4+EWx4+XnJcJM3aw7oxgLSLUaBXRz2KkdkyrgjoLyJs9tAj4eZ846mY1ZFMSnCG0NV1gL+n6j+tZKAQ+KJxXWNfBkJ23XeEt0ngirNNMpw3eOEZZQpwKhNXoVJKPFeNxzu7uEPnZlJs3D1h5j0Fg1RCCYN9cx7ctbblivLPN9t4+VVli2pZeP0VIwWurhro2zM6WawHZbvD3f/5f/v5Fx/d5+F3YdLDDlZRmU20R4soxXARWzw+re+/5+tf/M/7CX/zqc7Z61V6vdMg2Ve71PebZDsCGRr17TqlOdNE6x/e/98f8s3/6z/llXOvfFqmy9SNJsVpwenxIuVoSvGNvb5tBnjE/Osf7gEx6RHGEyjJMb4fyvGH14CHN2ZTl+RN82ZKIHJRHqJKAx1qHoyD4mmahWeUpU9dVza9litp6HpsE48EUFXmuifMBrjHI4Li90wcRM9KKdq6ZngVU3mNn5wbz1rB6dASmZSuNufvaHXa2x5weFhzPLZOwTWnneNNJhghq8mSHLNHM6gmtr/DXUkQU0I1AK9BKINuqE0dv6s4PrYlHvOiCJyUFQmhAd5qDztKJCARUHCF0jPMxReE5PSnYTYfcfGEHVUtMsCR5TJIrtndG9Hp90qgPcUpIcxqnsEETZTlSRsymc5rGcHBTAR1ZhYpSEilRUTcjk8YpSusrtvnJFe8/WxL0idHeTzn2p0dwP/HKn6re8OxJF5TRaye0EUm9ehtg07m62jG+cgu5hJRf7vvN/5u7h1SSSHcskcF7qqrkgw8foSQcPz3Cm4Ysj9eJXCdurpCkQhAJQRPlSK3ZvX0LO9hhtRLY6YTyo0fY4xlutUCKHloOQZWI4DrpHtMS6nPa5ajzQXVgIiQ7iSByko9tRFkFmmVJv+/pDQedAHuxZCtNSG5m9IVAWcnZXOFkzO4LN9F5j/cfHrKYLRhpyY07N9ndH9KU8PTxiokZsvQBb047mDcVsc7oZTGVnXNeLbHbETLpE7X74DxRJBDWINuKYFuCMXRlvYAXoZvbFd3sewgaHwTWm44gDI/QCqEULkS0reLsrCRTgf1xH21VJ/2SxeRDzXh7QJLEvPm2oGoMc+cwQXdaXwRCVWNsIDjDsq5ojGFVtR16Y1ZR1S2mNDjjwIf1XHnA2XXivc7QN3IIm5GDIFRH0R8u/VH3b9MR5QIG+Eldo2fDHnH5ePNez/ZOn7HzZ2dy18etO1lyPeO8YSJU61GJT7s+dTLVmpbpakpfxfSTIUqmKOmpcesukkYLiUTjPCxNQAbXVafimFhpYizBO1rjiARIFZNHMVmeksR99g5gPl9ijCFNEyIpaKwD0REyDLKMft4jSxQqlHhT0RQrnvzwPo+fzng6NxgbiBSMe4pxFjOdC4pK0sQpjMb0f+MvU7YJyz+cYJ7cp3r33+C9BCQqehmxDhpFaDqKV9eAm2OXUB5vcVQJcqH5wlaPm7Hgd5sBT6YeOz1iaQaMX3+FwfyI0ekDfuUv3+XVL+yiVES5WvLuH0S0ccpnv/6XeHp0yv/xe/+GxUcPGCnJl778Rd768hf40e8/5vDwhLP6GiWa4M7AVwhRo1QgihNWTUPlFtitGBEiRJmBA6kFwrVgCrw1CG8vbeyKaXWwnK6i5LzrIER0eh6d4KGmqSUnjwqy/ZTP/coeh6cl96slw8GA3f2cu3d3ubbb52tfiZmbwL/6uORk5imfOOT5AmkDq+mctqyo5CnpIOHG3SFJokiTiK2tnLdfGXP/vUPet9C4Dlu7KBqWZYkPT9kZJ3wuHxMlGaqXkO9tk6UpJ5MZRV2jtMJ5qK0g1RGjwRCdS+KBRKYpMolZrErKwrCbd0y6WZTghMAikBGoBCI0CoUv5vi2QZmOanhlBL0sZXc87gY9nWG+Klg0FoVbf5gJOtLIYYR1gdo4+vmQQX+HSCcXn/t0OuHv/t2/cymqunE1V+B34rnAl3VtZhOMPi9kusGuX15Z+G9/87f4H/+Hv3PlPS6Pv6wsdkyP3W1OdDBPa/j2H/0+s8kpSdIjijSDPGN6es7H791H5QNkb4h74UXMcMx3vj9lcnjM8f/1e9iiwLmIPDlg3L+ODQUOQWMKbDDQTAltxPxkj3zkeRpENxzek3zoNB/MFXa5QAVHb3ePQQPV4oTxduCL7+Rr7L3gvUXO7DTl4JUXkf1dvveDd5mfTtjSkls39/mLv/EVZkcVD+5NOKozzrmBsSuEqZCiJNIpW/0UpSqOVjOqgSK6NiQOA1CBLBco4RCTE3xT0a45mJ0UHcRPgJYd8QpEHRTStgQc1huk1qg4wYuI1mhOjkrKFF56bUwea+aFROUR27s9drZHXD/Y4e6LCZHWfLA0zJrAbKlQQXGgexTzGY8ffMQrr3yWN9/5PFprtFbray+Io5hOCWtjJIK/9/f+J/723/7vLwoEF1ofgg5qAesKob8wjwvXcyWZumI1l52l9TPb2zv89m//Sz7zmc/wk+tPju7CTxzy04//x//4f+e3/9m/+IUSuXyaJdaBghAK6HXJpvfMZ1M+/ui9DmKjY+7cvkFwlntlgXEBPd4hbO8yfuEFnjypOXu84uy732X1+AOcVUiREvXfJiiB0ILgaowxBDtHiIZyMkTqESdWEEnFZ/oJEwOHTYqta0Jdko7G6GGfenpE4lpee+c2aS9DSMnZ05jH7wZ6uyN2X7nLvQ8fcPjgEaKuudZL+PN//gvEUcrjd+c8rA0n4TpLB65Zgm8RsmSQd0P7p6s5bdziX8yReUZSbhEngiQWiOUEURU0foozpuvq0u0fpEJJ2UGvZIz1nUyF867bX1mKVAnWxSzmDtfMeflXXudzr9zm/XsfsViu2B/0GQxT9vd3SZOYz72VclI7HheOZSmpW0msc6QLnJyckec9XntDEoLqRKNVjNIJuYo6prPuql4mEpvHv6zrU2ZUz/8FYd3lEBvVVi79xyWzprhyH7gMXrsZKS4Sqov49uLci6zq2XM334uum50kMb08wzvHcrHk4cdPaJsGmhV5qnnjlX2gE4FNI0keaVSQyCBBDQm9AeO/8OtUIaW4X9N++JT5N/8tzimC10SDzyDjrY6NLzR4awiuBntOk3hmx9ucVnCM4kaq2BKBb9YR53OLWcwZbSX0ru2SNyuqYsKt17bZu90DIWkbzfE9jdcRd958hemy4tvvfcDybMqulnz+zVd4+a27PPrBlLOHU47MDtMQE9ppR7olVyTxiFEvYWVKmtUEdyMj8hlxMUJYyHKBqEvkYoIpl1hXQOhkDr3o4gWlOtZhRNKx8NkW6w0eh4pTpI5xIaGqFU8fLTkYx7x5d8SyaDmfVvTzlNFWzt7eFoN+jxdvX6Oynh9OK6aFozg1nf7fbIUxBmMtT48nFHVNRz4rWFYtzjjassXXDuFDJ0/gAsZ0KCdJl0CpdZKC7AimNpqjm5natSzVRWyKABkuiSaeiXkuzH1jb+vk/ScdSxczXSk6XxaswzO/Q6eNJi501jaJoJT655NMpWnK3v4+SsYoV3UqxUIQ6U7tuClWBK0Z9wfUjaWuGiolCFKgdNThoIMEGdbzGZJISkSUI+MROg70PfSSCGtcV8kLjtivyNKInVGPWEkS7ZCAc4LFYko5X3CyMkwqD0oi6ZjojNYslaIa9nDDlBfefoNkNKAqnyLOSvzHD/DzKRCB1PigaZF0TPoSjyaEnBBqCHNcU8GqoDprWB46zGCF0IFrJAgxpu4PyZOMutnj5Ogp5z94wNabb3CnWRKrAaZVHKvPMXcN/fI+s+VjqrMfgFnQ69f4RUnxuGCmI+Y9Tf3B+7TzCcFWEDpI2YtpwSujc96tLEeNwk6atWioRKmUJL3O7dzyuXHFJN1hlmxhju7hixnDrTvYAD9+eB/vDbECh8es9ZcQEhn3u46jbxChhaAx1jEpK6Jhn1ffuc68qPjgScPATln0l8ibHjXI+XMvvkXlMuZ3M4rJjOXJhMnkmNVqzmQyx1mDXRboRiISzXJZ8/7xAl8bXtzrMzWe0nrC1GKdw1lH1TiOFoLBQLHdS5A67jQTtMDJgG27qk0yGqMiTWUcrfOULSjhkL4mjmAwiEn6MVJB7SsUkCiFDS2mbTBWE7xCK41MJZGvkdbjTVcvXbQO4RzCWlrjsRb8Gv/thMMA1J0uiguBpiwRzLDPEVBcdWLPdpY6PS4R1i3sZ09afw0XWODnp0k2g5mIn2yJ/+Ty619h00LvblpSRdx+8Q32D+4gZEcJb01D0DlW52SDEflwxMy3LNoVPPoe7eNTcAJUjhMplUwJIdAEgUFhQo71Ed6cY1yDnhUUs5piEWgSi4hgKCU3ZEaTxV312mfMipr3751y66bnzpstiggpIshvIHc0FRbfnFAvPsZVCwajljQ2tLOWwgTmuWb66ITZ4WPsaoHwLVq2bMfwtZ1zzlzFHxeaVd1QTlf4WqIjxbh3m1ES8+WXRggtOVND3GqGPX9E3Nshzsd8+OQhs9WcfiqQKlCGGicEQvdQcZ84HaNcg3JzlI/Ba5zwiERzsHOL1nkOJyWutSRVySifkaeO3a0XGfeGtKMewYFoDYN+yu7uLlmes1zNSZOEKIpIkwwpOupoIXwHlbh6zUPnQjwdK9S67nzFXsTFDNAlGPiKZV5lLbtSDNw4Ov4s6NVPmUj98qznf8dAN+u1+RAkInSJws7eTYSMLkQhrWkwbcv1NwRIxXB3jxrPzJfMFk8RTw8RTdnNGcoUITPadYcbp3EuoXWygzr5JWpeIOKS1cJR9jw+bYiwbLsIIzQu7qFFjrEJD58scdWCvdcqojRChZigB4idNzFZn1V7SrV6TDN/QpYWRKnCFS11FDFPFbN5yey996inJcI3KNESqZZfHc8Y5QnfWgrmNRTFjFB2jJWDbI9Rb4e3bm1xLTWc6xGtC5jjD5FSkY+uczab8vHhE7IEkkhQhQZLQKQZUkUk+R6SgHZLYjRaRJTVnLO5ZrAzJh1vMy1WFA0MQ0UvKVH9hqy3ywvb1zGjDOdjRNsSrKf3zudQqps3s96QJQlRFBNFa22ddXJxGTN9Egj1l2j9DK2pnyCgWEO+N1V5cVH1v6zWhxDWotqbk7h4XUjWEmHiOR/0bDLVuRdJ8N3snFKdZmSaxKRJRJpGVHVNXTcsl51ep2tqVqXEf3C67lwKRoMeo5FAxz2EVqgsI0ojxOQRovK09w6xZzOESEHFOBmzRFGFQIXABo0Jfbwv8KbTqBKzkmJmWC09LvJIFdiTMZGWNL2UOFE0JuX8fMLs42O+srvP1vUGKWOcFTyptqmdIzMTynpGPfsQ4Vf0BhW0DfV5QxFpVqlmdv8Bi9kCa0pY76GXe0u+uHvG91eOJ0XEol11wtQokjhnp3+bm7uGt4a7LGTOUmbYs4f4ckE+voHxgvcefkAIln7azVFVtIRII0RClO2gdIp2FdpVSB8TgsJKTzYecHPrBoUxPDyxyHLKOFlysOtRacyd0W22E+iHFtcbYK9d4+FHH3F6ckw2yNFZhPAtzjqKZUnbGuqqwVmLpLvOAdnpwPm1D/J0jN9cog+e0Sv7BB8UQiccfVngW9vfxrY2psamoBzWReHL9/2kHCisf6C4SPivFA+EuGLRf7p7wKdOpuI4ZjQe42qLrVuk0ghkR60YQkeZHEVEwx4G03WNjMAJQa8nUVqi6AbSIiW6D192w6wy6XciZnhSrbvZlqrBuxaMIEkUw16OwiG9xeFxPlAWSxbLOfPaUtgOItLpbkm8VtRKYZMMkiHX3nqZ/qjH4fe+Qzk5xZ/8mNCENdwgBhFhkBe5bIdWTTpcvHMd1KFqaGaG8tTSph3Jwo6KQScsZQ+pY+qmx+HE86OPz/jafIm1FZiYphbM5F1mcsmiPmRVPKSZP0Q5R5YHQt1SnzespGAZQ3v2BLuYrknxLUJ49uOKN3PJo8bRWE1oKggOETRCZcTRmOtDz1fuNDwav8KT4Qs0cYWfCvZvvELjBY8nh7SmIhWG2gVaG0BphNTIqIeUcTcPh0XRaSLM65bx3i7Xbtxh+t4hx0cTnqxKbBw4qEvGN3Z4/UvXEMkYJ3Y4m0w5Pj3naJIzXZxTf6+lmFl83eKtQFhHbRwnq5b9YY+DcQ/RWnTrKMsa0XQ05K0NTCuBTBXbsqM2l0oTKUEsL5Wro34fIQWtc9TWU1uPkhYZBFEEkY6IexnIQGjqjk5dCerW09iWpnEYq8gGGVpHqLhFyIBxXXJUGo90Dmks1gScu2xJW++7dKQ1bDQL2qYhuBXuGXa1y8rnZaVl02buvg90CdWm2nfx3NpZbZhprt5QNu/9TGXxUy156UpFJ1a3f3B73bVwGNMyn50jkhx6I4ajMcPRCPXkA0I5gZMPcccniBCDTPEyp5UxJvi1CrrotF+CxrUW4Tz1qqFatpQrRysCIQ30lGRXJZSJxoqOvrZsGu4fLSBNcM7Amq6WeAsxzGjFAtMuaMoTXFOQ9yDWHltaaudZaMFqPmX15Am+lQjv0NIyjAJvDRa8Wzq+MdE0tqAxS7SJ0DKmF/fZ7Q/4cy/3Uf0ej7dewZ4/oX3oGWy9SD682Y3lHnvGSUMIlqIMBCGRcYaOB0TpDro+QpkCHTqYisOBlmzv7zMvWh6cNsQWRk1L1Juhsprh3qtEgxFSb2FdYLqYEumEQT6mKFYslwvk+h5JnF7Y0UX6/BPXvau4bZhqn9ePvjj/Il+6HAx+Ft6zsb+uKrp2W7/U8ebPd11+OhfzJOsu1WC8Q28wxnuH95757JymbdiJM3QUs7t/jeXiHPf0Q5LiFHH+EdK0SJkQZA4qw+qOjjxISRAR1mucAWdq6rJGLRvKlaMqHS51KOkZBo2RikZGKCKsVTyZVJSLJXXb4p0hOEUgQQ5fxEUVpZnTVOe05QlpDKnOCLXDesdSCZZtxfLxY6zpJEMUhlgZXumt2M5bvjGVLJpO+0l5SaJisjhilO3w1q0Br+0Gnm6/Th0EzT1PpBK2rn2GDx4/ZNkW5KolVS3HtcDYgExSlM6I8x2Uq9HVjEgkRDKmaUrmS8HOtVfpRwMezwxFYVkEA0lDXk9I4xGj/gipBgiRMVvOsNYyvLGNd4Hp9BzvLVquZ3jiTQIRNgqf/18Z1C94be76wIV34Rk4b3gmkL1yGler/TzriIS4uE9sEqqwTso2HfIo0mt9PUVR1tSNoSoKrLVYYxBA2dgLUdg2KEhSpAqoSDBIIlSkEPMTwqLEPL2PLwVCJgRSPAmVUIgQcEHgUbigcc7gmgZRNchlQ7UylEuPHXuECoxVhNYRhdAELWgNnM0tHzyd88aywnsLXmKMZ9IOqJzhll3RtFPa1SHSe7JOARuzslRSUGhYHh9RzJZ4KyC0aGE5SCreGcx5r/TM2oiqmOGdISEhUimDZIsXdgJffWnEWf86570D2o8SwvyYrYO3qKzgvJxiTcEoblkaR1F70BqlM3S6RaRTonKBCgYVNCJ4LI48zxls3WDx6JyzxZzeosQqzxaGbNxn/2DIIJbEtiGMRgQB59Mzjs5PSPOU2GtoA23tWbQG2xhM23WxBF3nUV0xlnXfCXy4gPh9oh2Ky+cuzuEypdn0lT4JgXtplWu03tWE6wIdeNFSvYD0deHbs93ZsE60Nl3Yn7XY96mTKYUiCzlF22JWgsqUhGAZ7AyIIonXERBYzOZdVSFPEEFCEGgdg1TMF1NEsIxSiVAR6AFOJBjnSXBo4RioLnEgEhBigt0hiVLiaBtvK5wvWJVzqqpk/uiMZrHk5rUhO+OMnXFE4QLnDnSUoOOELB0RxSnj2fcwx4bHf/iA80mF9AatU5wewVpkrmscOHzbdEkKGcghQX6hE9pyEeff+jHN0xP+/d/6Gidv3uHX/rqkOaz4F//kB5ydzzm8f8Stl4b8jd/8a7z65kvgBP/nP/oHPPnwKe/c/A381pjJ8RbtkaFc3CbPBPmeYvfNl7n5+gv8y7//D3n3/Q9ogoK0jyimRMKQavhw1XBUWc5v3kXd3sLd+w5hOUc6Q2BO1f6AH67g7MxjDw7x177Dr33pNtd3vsC9319CBb/13/xVjs7O+O1//Q1s6BLaNN0hTsYkvYo4MmxZSS411/qBylvefW/OS+4u+wev8tlfe4fXfiNhMhUcrxp+571vsOcF/9Xjhrhf4HqKXHpu7fTpJQcUW0OuDYbUVcFi8gjahqgxYD27vZgsT0h6mhd6XfXp5kGPqnYsS4+KI8ZbA0b9lL4W2LJlumqRMqLXHzEcjwhS43Sn0WCFRKFIRYQILSIY5DBDCLAi4IInVVvgLcZXeCWRUQxtp29WLiuklGzlKSqCNPb4IHDOYK2lcYEaaCUoFXd5UFOhhSRL1rNdSlEVjulsTl0/15niSlVvA696buL5YkPDRfJ1Obh/yUjTnSGvvjE/9V7zzPrktoKgE/WVSuJ9R2mb9VISn9APASVANgtO7t/j4w8/xBczEuVox1uIEOGcACmR2uLrBtdUKJHhZYzofb4TBmxzFk8NP/jd/4h76zrDr77C3kuCdw4E3//WEcfHSx48PkJl8NWvvcn13SFKKg4/uMdH3/9jBtfeYH98i2mRUzWKcr6PbWp6W5pk/xrjO1t895vv8nt/8D3O2wo/3EbMJiS+4dYwJlfwOx8vmI+3Sd5+Ff/R+9gPp+i6RtmG+ep71Frzvx464u2Y9K33uL2zxdu//hbTh4YnT494/e4NXn15l+++9yPmRUGsR+i4z3B0hyR1ZL2GgRX0XMJWX6C14+njGfOpZO/6FsNxzq9+9VVaK1lYyfnJA8LkjM/PFTvaInKDFJJhlhMItGZBmib08xvd9RHd/bRjxtpA+C7tJYo0WRp3A+EXpT5B8BsHdRUmKjqIw9VnxXrOinVjKmyqgnCRQIg/S2vqZ1m/jJ2rn/63d4yZCuklPnjSPEXHkjRPu/3VLlkdP+WDb36H+dmcSFjy4QCRx1QWApokA78p3gVBYzVOvYwLdxFk2DLmo3/3Y4obQ1746++wvZ3y9pcFhw+X3PvxCU9XJY1uuHt3h/H4Bv1+RrVc8INv/CtkPGLv5juUJmIxG1LPdyjnLemWJhqkDG9vc75s+Mbv/AHnZYkfbkOxQq6WHOSSkUr51kkJqce+/DpxuaL57imqMUTGUi8/4vj4kN898nyjJ8je/ojh3oCvfuUzhFLw5IenXD/Y47/78t/kP37nm3zvR99HRQP6WjMY3yFOEgajliTAyGb0Es0wF0yqgnvv1yT5O2zvHfDmr9zCCUnVKlvJNG8AACAASURBVFarKQ+O7vNC3ufVHYNILUSGPI7xkca5EiEU+3vXumBPKpTSHbxvozEpnhUD/f/Pen7/XCWU2BBTBYTqXoNni3FX/cnGB615f7lyxsXndtG43nxzESuv71WodeGyoK67rq23BkJAr2nUNwmuDR4VKbJeQpxApFuy9hhlYHYGdWVJfENI+thktys6e4HQASEMtui0C5XIEdEWUn8FEcX4JuHpD45oJwV7f+UNyhd3uPOOxM4N/+kPnzA5X/Ho3gkHN/r853/ti9y5c43g4Xvf+NdMj894c//ziHQXu0oxc0e5uEGWQrYjGdw6YHRjzPf/+R/w3sMjCpkQ+qDOz+lJw34Gj6YF/2DRMHn5VdI725jv/Afc4pyodgQMZ7M/4luPAx9/6Ilf6BO/MODzL93moPcGRz8uMaXjq196k9lyxvfv/5jWpSRRSq9/QJ7vkvdr4qhl22gyCduDQO0a7r1/zo3b+4y3b/DCKze58RlJUcKyNXz7+B49I/j8fldIdW3TMfEpyWsvv8T1/V2+/a3vcHZ6xmpR0LYtdd1ircM7h3UO492a/hySROO96sgmAhtH8gk+6LJf9axfkptm0dpWr9rglb6ReDZ2YtPREqAu9vazryM2yAtxUUTZkKZcivhKnPM4534miPmnTqaEF0groRX4RnRQvNDpD8mN9HXw2NYQRRFJqgleEnznYAKCxnVzPCGkXaVZagKyo3PEI4QjEgGtNsNqkqAStE6RIsVjuzmF2lIXJbao8bWh18vIMk0iHUvvwQZ0lBBFKYM4IpECsTxhOSspj8+plhYZ1rTRUnfJm/cgHUJ0QXjXzw4IIhDbgCP4lvrkDLea8HjxJVLgr9xOEZElEStcec75+QNu3XmN6y8cEGUJRdNw//59Pv7xR3z95q+jI83TSaCeR5gmIxomjHZy9HiI7cfMp8dMjx4S8l4n/hhCR2ctFUsbOGkMUmWI3qi7fJ5uuDE4rG2YNDApINFLYq2x2Q30Xo9le4RsBLcOdgky4HRE8ALtIUsyer0+Wd8QxYYtG9OTnv1cclYGVktHWQSaSrG7e43B3X3MkaKdVDy59y5NUzM9a0gaQWg7letICQZJShxpkjhQNynSz7C1RhcNynuU6/QhdBaRDWJ00pFQ1I1HTluk1vSymDTWaKBxAWMCWR4TxYooHSGkog0lFghCoYQmUhG4gPABFXfivLVrEV4ShCb4Fm9aVNDoEIiUIShH61lj6jVaSZTu9G6a1neY5QBOdELFftNRcv4KU5EEpXHeUtYNdjOX8vz6xP35fOXm0xb//6SjNq+tnd/zwcKmAglr1tLub5JSEJQiiiIIa3Ye1xJMS7NYUEymYFoUHV29Ct0eEtIjZIugRYYWSdLtMb0NQhFsQ7NqOH1wyO5BzomHvZ5kq69IIouwNcvzKfFQs737MoNxj9Y75os5Tx894oX8Jv1hwDRQl4K2SghBkPVzol6fNlFMq5InTw6x/Qyf6HVXJjBKumLPx4XF9CViMEbqFGkEorGI1tHUZ7QC3isDSa3YvT5j0LtL6L9CFSqmyzm3x2PSXk5IUmzdEmlBGmVs9cYkWUHWrxm6iL7P2M4kUsCHJ4bWG9oa0kHC7vV95o3gvIJqtqTyhtooTOPwkUVIhRZdQG6CRWtFllxSN2+SKLGpBncXFwAlJVorrOuMOayLcRtH9xz6fP3tht64eyjlVTu5hDxcUKB/gq3+NJv7WV7+ZUydrkaFn7R/NkesD0DQyYd0XXHdsVQFB97j2wpbrigmU1zddnTQRGgVI7F4QCoLwaKEQQuNVgKhehBy8C2uccyenKFCw6lxpGnC1p5mOQHlGpp6ycIV3H1ti63dIUEIqrrh8MkT8n7L9oHHO0HVQlNGmCYlSjLSfo5NIspFxZOnxxTe4wdZl1zj6cWKYRRxUntq7/H5oItljEC2AdlabJjhAnxcBmQs2DtYsRePCfk7OAuz5YLx7oA7t2/yw4/uYXSMCooIzVZ/TJrF9AfnJCjGLqcfS0apYll76jrQ1OCsZGdvDx9FPF0KajRTf8aOTTC1x0vboSpEJxZsvEVKSZblXS/+ooMiLzr+m2vXXcvLgO1ZG/hFrj9hk/xc989zvYOrEe2VJOzZY/6EdxKX941N4GydJ1hH2xqsWWsqiXChg3gBttoUCIUgUZ5EOxLXEZpUM4dpQfmAkiCjCOkCwgWEsp3/oYPdd6QaEcgxQnh827I6XRDaFafFi4wCvL6lkMqhQ4uvS2anEw4OUvauj4nSiMZYjo+OOHtyyNs3v4hKMw4LaFYKU6f0ck0+TBC9jDZRnJxPODw8wYx7nYwInkTAKFKc1J7jZUMqU6L+uEMVtSBqQwgtVVVSrwKnCximM0b9lNdvXyPkCctqiq0cLx5s46TH6K5oFnvoJz1G/RH5wJJELTsuIROanVwyLQLLRUtZWEwDve0RyXaPw5Xk/2bvzZ4sTe87r8+zvdvZcq+srKquqq5utVpqqSWPLXllvIwD7CBsMB4TEDBzA0EQBJf8DdxMwBUR3BABGPANYJvBM8IejxfJi5ZRa2n1pq6uriX3PPvybs/CxXtOLtXVcsvyDAozT0RVnsx8z3lPnmf5Ld/v7/ub5Zazo1MWZcV0WuK8p8jzpR2RtJK40UNQuvGFSktVWdxSbOJZtFMlG7tn8ecy5+HS2rlsg1Z086vUuyagetaKvjiDL5LOQlxKB4arwZdc2qxnB0UX97ysOCukALeymf8Sgql6VjJ7MKDKa8hr4nWJyNKGhlAJXCmJlKLX1mgTYUzWwLfBUwcaeUfVdFGf1BGxV0hRobUmVQJTB4xzqEghJWjX1D5J1QJhsLWkrgJ10chmluMp7bZGZBmFaBMIrLciOiKwIQLaNPU10yd9iv6U2cMx81FNr3L4AIsA3hV4f4bzoul8HSbNB+o9oFFSEwAfZgQ3Jbgzahfh6ohHb7xDMJLZJ+6yKTQ/8fKn2T2aMg179I+m/Pb/9RW+8bE1dq5nvNa6y/juc8gDcNUhb733OuVsQDE54pWf+Ay//us/wW+9vuB//j+/wpOBJ8g2fnTY1DuIDtI4ZJogag+Vxx8PoZ8TFh6CIYT5eZEnAYSH8thSDSq+sP8XxFFMtQCJ5uH/2Kc2mnrnFtFiRmvS5+N7NXev55gNQ4gijqd3KHLJWyczkCW3b05ZjO/zz/+f9/gPbv06n/uxn+HVjXWmRcpv+89zcnTCP/rCVzG2oBcKrrcNz3Vibn/uFTafv8lstI8vZmy19zBdyVYWE3yOrYdEWZsobXF0csBsNmVzcxelDButMySQpQofBGXuiLMO3V4H1WojIkPlKiDQkj0cMAs0gZKbYoxCy6ihzAC9pL0822sECYI1rK2p65K6V2JtzbjQ1F6SGdf0OhIaCLSDZzGfMZtOECqi9JrBeEZVVVAWJImht7aGRqGFxkpFGSnc005pCFc39TMMkTzPysiLp12kVK488YqtOz+wPuqOfvZojiePUoos61HOh8yGj/G1x1WObpxyY3uX9999BOUcWx5ReUVldaN46B3SC6QHowVagvXzph/SYh9roK5T9vdbvPf4mGvdFntZwo2ddVqyw5yMmS/5y28/YW094oW7a5z5iJO7n6f2Gxzu57z7aJ/xZEI1PGZnM+Onf/TTPCwF//3XH/P4KKdO1qgGR9hiQitax5h1ZKfG4pn5Cjv11N9+jDstEKGDq47xxYxKgpABFQL2RFD+qWGYzHjjCw+RMkIIw9unG5gkZbp+HdHZYef0MRstz8t3JkQtgel0WFTXyeuUo8GCelGSZIcIUfPdN/6Im3fu8PGXfoFrSYTtRRzHzzG8uc2oXDDtW+LBKUYJ1tKYOMvobG0hhQQ8At2cifJSAfnT8ydkUzjrarhkzLxrBEeeLjAPNFk8IcS5FPmqZCIsm69epj9IQMlnLNx/Pc7HKsOexC2cqhifvIurSlxh0XXNrZ3rTErHpLQsHp0ymgwpKpoGl/MzggdfOfApiehhg0SFQDE9onIzbJ1R+TUePD5Gb/VwOxv02ikff/4m5nQNxjnvvj/lwdmQw9sdQggc3foMxqfkhxXH/SGPj06w0wGiWvDpj91lc2+D//X+GY8PxyxMh2o6pHzwLrFqEZt1VGoRmaMINTMvqN8+xJcF0rUJbkJdjAg0qn0qBKSFk9cWjL4z5n/46v+BkgYhIt44eMyfv3GfaQw893HWhid0bMGPvKjodg0i61K5dUaLFvPCMZ1btm+3ud1OOD56wHjwLn/v+V+m29pgL0uYdjfY73waWZfcHxaY0RgjRvSSiDiO6O7soEyTSAGBFGq5li/VEP5/s0z+1Y+Vc/iUKtpVcsRVNsTKR23qM7mUW7jArcSll2+uXdVKySWS3tQRVlW9bM7qcLXFO0cUNbLpzi8TNRK0UWRpTFnUHBwMePVFwY11STWYY0uLKBWiFogaQphh8wMqryidxPtTQvAoJxAYEhPhCVg/x9ZTquKESRWxWMQ8fHKE6ka8stmh6xQv3tmj291gEXoUi5I/+dp77F3P2FyP+W7vNlNxEznW+LMJ3320TzmbUAxPeen52/zM5+7xB8eOb7y2z6PKYE2L8sljhA+kZh2TZKhehi48KvfUx3Pq4RP8VBNchi0OG0VY1TQwVy4w+q5i+ljxj//Fn5DEKUokKB3x5skWLjHUN14iW0xYGx5z51rF3u6EuKeRUY9JcZuqkrx/NqNyC3qdYyb9B3z5i4/4yZ/7We7d/CzXs5jCGv6sv0m/P+A3/+g1ZF2SupyOkfQiRRUZaqmYTSZLZU4JXoOIQFiQnijWRLFgPl9QVRVyKW/eJPmXKn8hLNfQVcXMlc1Ry7rfFfVcrBgV4cIGrWr55KV1ulp8SyDqHA0TYtUK5uJ1L9dIIkRT0kBj56SUSOnP0Wsnl/f9PtDqjxxMeespZwXBgV4eRkJIRBAEJ/C2QVpDkIQgCG4J6wUPXjTZ0eWb88hG5GG5iY0ALZoqjhXwJ8IqA6uBRqO+6e2x3KhSYeIIETR1MI02mQgo4UmEa2q0jECGCqqCUFTIyrKdBiIJBYJx7ZkVZUNH9A2y1kB+DQVAmIgQDLgG3vZ+AV7grWF+PGX4qM/hjWugWmxcX2OGYeNozoSa8aDm4PGAWT5iXLSoVJuko7CLktl4nxjL83vb9Na3KMwGp8N3ePJon6Iomw/cls2iMCxV91aUGwFlBXVA6AwtFddCjfOWfuWWwR8EG8AFxuUcIXJMFCG1oR7MIInw222EEkgtiCJPltZkvXVEknJWbaCCoLORIt0C7WqGwxnT6Qg/PET291nbisjaGbd2u2gqpu+1sNOawXBB6jRdZ9ktKry1TQPJIFE6IlKKKI4JPqBUSpxmxK02WdbCO0eaRmipII2QQpCmbayTiFqSJBlJ1iLECUE1WV/wS1pSIAp2hfajhUCiaCQkwKiVJG+z0ZQw1KpCC0GsFN5ZnNZUFozPUQKMigg0XbtNFJHEMbZSywLxpi+EXO4DH1iqwkiMMWSpRyt1ZQ+FwLkgwLPGM1GDJc93RfA7Z25duuoHcQY+eM+LoLw5YJaOdl1i85zUCNbaKWuZplzAZJ5TewUuguAIzoJoavBUJBFKg5VN0z87hyChSpjPavonc4YoRlqjMkNn3dDrtAmVYjCfMBElR0dDpkVEIdsQRURaUOYj8tmQnW7CxlobazIms5zHx2eMZgt8EPi6xucFQgWEFhQ2YEOgdgIXGvl9KTRxe4OemJGUFcOqpg4BvwwWfO5ZlCXlbEySJSRpQtBtdIhw6wKtJNJITARpUqNN07RYqC4hdNFpjJSNgA2+wpdTQj5CLEaYpE0Sa4qWASUpJxZfAc429WauqXnS0lx4OpcM0WU05GL2Phi8XzAqrmbgw7lDdJX298yc/CUKxMV9/pqr7ocTfvqBxjP3EAIh1ZJO1vSlsvkM6Wt67RRkQcARCYv0ZSPXFQQuBKSQjYS60BiRUJSGspYUvsBVc0QVUxSe4emCgYoYrdWgJd2NjE7haZUwqmaUU8vpyZggJIuQ0dIJUSLwfsF8fMJarOh2OsikRSFiDvvHHA9GWN8E3z7PIYlQWlC7QF4HKgfWBcKibKScW+u0IsFmPGde18ysw4smqApFoK4sZ+UIbSJanQwbJFVI8BsJIUlQkcIoRZo4sjSQ9DZZWMPUZUhhEbKm3YnptjWn+wVVsYDFGJUZ4sxAIlnvZdQLQR0sYukjuKWymJQaJZsWFR9Ac5sfXpq5S87ZB+b0h2T8gPvnaWXOD0BL4dJXwZVvzsVg+eCn8oFP6ZKxWqEJzjVz0wRU5/BBg35KyQq3WMmsBx8aNbm6wllDJDxGBkQc0FJQBImoHdN8gXAa4TV4u/QRmwBOxgofFFiBDzWunkHdIVQxk2FB/3TOMEuQUpB1YzpOsNbpMJOByWzG4GxGWcyZVjGVyhAGcBXzyQnKO65tdMjabUqdcTrr8+R4TF7Zpu1MUSADKNP4BqWDOggCCsoarEDHLRSwK4d4VzKq6nMfJtiAW3jG5ZyZqmh1LSZKCKYGofBKwtLPjWJPFtconRBUBHodERRRy6C0RoUJRTFnMR/jZ32YnpF2doiimPVugq1TTuOYui4ZjaeEWKETw2IhKQnkeYGtbaO8t5zbla95mSJ3eZ009ber9XbZa7l0DVyyK89aSE9dc+naps/hClG6dN1yG18IrlzeNPJ8PX5wwa6Crme8r48wPro0elExOp3Q3Vijs7kGMidYi5UShyBYsMCiCui6xCyKhosrQRA1NRN+KUMoBUhJJQypUnRiaAQfFDJ4hA8NrXB5nfeB2uYE1xQptta6JK2YUOYEZ3HCUYXArE4IoQI/Q3qLrArqusTZGoMniQMvvajIa8E7fcFbQ8twP0cE1dANVxvbGKRJ0L3nCDaimngo57iwAL8OboOTL58yfdfyW+ka957b4T/+uVfIDhcclTkHg8D7J5bDv/wOb00eobc+z/r2Or/xDztU85zXvvQan3r+Ff6rf/if84eDmP/6zyLuf/Ud5m/9OWHqoLbgHEIEBDm2tozLBT40n5GICoQOmGufYCvV/Bed15jkM/6nBxPmNrCwoqExhqbbfECigkcR0HEbrwJ+eowTnipTzFXF2M/Z3P63yNZfRJ/U9DLLL/78HD8/5vStmoPI8/5iSvG1L/H20bf5+L//6/Tu3uPfe6VD/fJzDH58h++++5Df+8KfIJxg6hWjRUlyeooRHaK4jbFzCDXz+QIhJUq1kKpNErW5e+dFhHDMF8fYqiSqM6RpE29/DEFAeovWKdrETKsFpa/J0qTZRc4ifUXP5xAJhGqTl1DVYKRvAmyjG0lRFTcGVqdU1YJcCiLVQUtF5qCyjkX/CAIkrTa19yyKgrRtaGVd5NkQOZmTCBBK01prYbQmWAVaoXTE9Y0WdyLDl9rZ1e16SYbzwmiLD1xz+WtzOISlb7wyN43wwOqIuFzF8X0kUp45Vtpvq+90lNFev8V4+ibFyQO22212u13CaZujXs78O0NGFlxIqJHUWmBihY4U8fo6Mt5m0VeU8zmTakpQKcJtcfZE8s0/PiT6TCB/yfDqVsz6juG2bbM20XBSMj8c8Y3X30a2riHXbvMTP5bw6r2UJ++8hxud8Bu/9A+gs8XvHxnuPzrh4BtfoZp46tzjiwqqGuVzgq158HiMC4EKg4wiTBtaO9dpbe7y7yTf4SVxwO+8dcDjScFRofAeEh+wzlC5BB08sSuJowSZdnB5HycrilSQJ1DKGfNqkzzfJohrIDZ48V5BLyuZ7lvK+ZRJf0JrMWD0+l/SvvEcnbsvspNFbKWaqtdrqBOlahJXiwXoGCH0shZHXpmlD3NnfPBNby/n8R6EPO+Mtfz9JddfiiXqdXX2LzEmzl9ZnhvLp2mA/zLHD4sj+8Eg86Nd36hztnp7FOGE6f1vkyrNi7e79A/n9IsTDtWMuS6pS0fpwQtFnKRc291EJ9vo9i1Ojir6JyXzcYWtpyh/h3Le5c2/OGF6q2QtTXm+1+GVl9dZJKASUP0u45ni7XfepAoCtf0yW7cM/8bnWnzZj3jvW/+Cv/vjv8yrn/w7/OHE8OBBwXvf+hbj/phq7nBFCWWN0CWKOcenMw5dSYkhSEXUVcStNr3nf4LPJH1+rf1dvnYw4muHY44XjlnliaxrCvd9Q7EzriRWPZLWGoWbUE4G+Fjjo4yZH5OgeP7OLzNbaIbTKVtbllu7lmp0QjXts6UthajI330NPdxk45M/QscktNZibDejDgmhkngnqRaLZf2EQQp9VaHuQ+fsb9kQT9uWyyjU5XDx4nEjn766foUSiGWimUsBVbjy3Ct3WrIpvPMQJF6tIit3HkxB4wy7Ru+bODYEoKhqHOK8ryM4Do9H5NMpP3K9xfqGQW5CCArvWjw4LZjdHyBChAgRlRR4IYnSCBVFJFs7OBuzGChcPcSWI4jWwW7x4PUF/ZMjdk3CzS3Bj95usb2heT44+hNQo8Dxtx4wGB0T736C9lqHlz/lcMWEN7/6Grf3bvPrv/T3eT3X/O4jxTff/CYH771FPQi4oiZUNQgw5BRFxXuTCVXQ1GhMW6BSR++FT7KdKf7TTko+H/E7b+0zrOCslBgfMB4ql+CDJvKOKFiitIPXYCeHWGHJ25oyqinljMV0gzps4MVN0jji058pCOWI2aFlMhgwOCwJT97gMH/M9R/9WdLtPT5/Z436uR4//ck93nnnXX77d34PqTNiEXNydsJ4OmE0mlBVFcG5pcCOwzuPtYEQ7HJtNcrdztYXDXqDWNqghmn2NOWukXi/tHAuraUVc+JyYHS+ZqVEKcUVXh9NH81l6N/Yt2WQ7r1v/KQVS+5SUmGVMA6hQbbqpXCY0fr7snUfXc0vjtjYXCPpdomz1tK4W3LR/EHKKITwFEWFCp4qeEysMbHCL7NVWsUIBFJESGHQKkUKQ/Cq2ZxSIJoU3bKhbEMX8sHjvW245wSkUkB83vxLhKqpj8HhvcF7gXAFkpKoHSOcJakdqnTEPhBKQW8B7bnHyKbHlBSKKEuRkcGm63jZwhM3evl+hg/FcoYdwde42YBKNuhTohJGL9R47bixF5BGY13GbH6Ds3lKCF3yMvCN114nDhN+5LmbbO/c4O2yx4PBgMP3H7Do9wl52bQACsseRiHg3QKCw/sSGuH3JtjyFX5xSukN9yU4HbP70jajcUV9kJMpQSIFQkUgNGUS4YUi1Dmhck0NTCwJqWZcBA76FS+KMetZn1sbCi1gK5OIaI3k3qfxfp/RiWKSB+4fVqydznG9CUbVCGXYyDrc2F7nUx+/h64DphYkqcKWNb31dYySuNmC4AI++EaVL+kgENRlTtaKG7nabA0b1VS+QuiMKEmX3cBtQ2ESjTKbD/a8JkmFQPAWW1coNEobzFK+TItkaRB0s3WCP/+3gn7dMtsSfONMah0hgCiKUcHjhWy6kXtPp12jhMTrCOsCrU4brRRaRSglUdqQaEWsJPopY3aevTnPsnzQQQtwiYaxFAcITztz3wOTeqbP9/R1l7KCz+DAhyAuvq6aXHbWaW1dJ44iBIEsjckS3bQrUJAqRWoMIo2RWReRdAmmhUehXI6yc1Rw+OAIdU09m7M4CZyeZjzezHg+a9PJBJ1Ow3OfFQZosT+6jhAdlFM82T/ClAUbWUrrxh5j1WJeSh4dHHNyPKCaVtji4k+SCKpyiqsFdTVrAo0gkbVGhJhKgcJx0CmJ4ojuzWvcqCyzR3OE82xoScDgySBRhFg1e7Ec4t0CqT2+oyiC4LBf0us5trfEEkG3rGWSdhqhNvcokwUuPwUkR2clW52apG4yrFoqUBIvwaPxyuNchdSSpreYenaQfLmeYfmwQbGvlPM2hmI51+KcpH4ZX7ooRg9cZJIvMoE/ABL1PYf4Ht/9sI2nUD+4+Pyfpu4us7UrpFrpGJO2yTavo6QgMoYkG5JGiixNaLckxBIvFUmng4oTot4GXnSwKESom/3jaxSeYGtcUZCf9hnHnv3THXoypuh5oiSwtga5NSgZ89jsUDrQXjMcz/nO6ydUszkv376FbK1z6GMenw543B+TjwvqRd3IGYcGdfe2pFgMsXWOdxU2NAlOKXKEXVCmCYOs4F0UdafHjXaL6mCGmJSsSYEREi/boBShpREYXDnC2xyhKmQaIyLDcGqRsgQ/IlYx662KbhLIjMC0O0TK0GpNwcb0R55SVLSrgBGN7LZQAYXEC01wsrFvzR/yjHqJiwz5+aT9VanxH9rx0TG0C4bvKjHyIQmCcBEsXX7Vp04VuPLvg+8hBJb0Ln/xi0tzEULT5zAEgfMXrxsC1DaAaFgni8IiRWBQNI3RU6OIFLQTTRprjFIkssnct9IEIoPsbCFMGx9FkAtUPUe5AoVHOEuoa8rhmDkVBydbKKkpewFhYG2tUWi1LmIw2aCeKyBD1oH7998n9jPu7e6wtrnNYUjYny54cjhhMphSz2q8hRBc8xl7S5GP8L6mruaNoBUSmBNqQ5WkLErDAwFSZuy9eJNoXJEf5rSVoK0EnowgDLQMQSmCneG9I9gCHwtCphkXnsN+yfa1wFpL4J0jNo5uqgmmjdm5jQgZ1URS1nA6Cuj+lJQBs2mBEIr2+jpZHLGzuclGt8vOxiaLcsF0NiVJErTW1GWOtVBWzbxa24g0rHoX+hAa+7MMpFbI5Erz4UJwa3WGXkj0X7FBiHP/5Eofs6fX2VOJv9XvLqNlzZKX53vA+8aTXkoPNs15pThnETy9jj/q+MjB1Npal5dfeYGSiDJoIlkjsZzlE4S3iCSmLkvGgwHYAA56ayktlVJUFQ7BRmcdrQzCKyIVkZouikBdBaRQSNVkIgieylpwEu2bOgzrK/A1IjikMkgTg4ybhVnlSOdIZI31jtrWaDdB2zG9PQfXYqI9jSgqyic1ehrYLjzrC0FqHLEyoDXbt3fI1nv0no6uCgAAIABJREFUOy+Qu4TRg4JQj5H1Y6SbIoHgCwgT3HhIuTB89+t7LPqedz72Ma6lNZ/9dMWNY8213jpD7vGQNgWPKKbH/KP/9je5tyb5b/7Bf8S7+i7/3XstDt78Go+/8U9ww1NC7lllcBCSEGpsOWUZYbFqthrqxtn1+SkDpfnN9hrXbnf4+V97joPvjpj+/iN2M81OpkiyFjJKeLd3jVntmH3ta/iqIkhNWEthK+bxMOfxk4Jf+Nk3uNM7Y+vFa+iQciNZI2pdx3zql2i3v8P86M/57tkTvnbSR7495ZY9Zj3Jabda3HnhM3zixnXuXdtlXlmmZc3x/XeYnh6zfm+LVjtl8PgMV1bgAiZJSNevUeVnzMbHpPF1ojQjbd8BBIv2mIBBxe0lQmfxVY6rFiSiQIuacVnhQyDVMbWtmM/mJGlKZBJSI0ljhZRtEIbSFjhfgy8IQkKQTe8r36y1EFZNTANxnKGUopW1CEKQANJ5hHNkSUZta264CiEE7dYmAkVVWSprWeQFsbIYadHi6hZvaHPiikn6wAhXO3isnOAVd/iCpnJBV1nRZf86B8BVqfbLPxNLznFzyHRvvED72k3sYkK9mJB2WrQmMWmc4gTEUULabdHb3aBau0HduU7/2LMYO3RxSsjHJMFinaWeT6mrMfOJ4/2WYkrES901enHM9jXH5nogMQlm1OX16iUCOTDlj770Vf64/zr/ya/+29x+7nn+adnl0WjB1157jflgRNn3BNFQC5QQCCmZT47wrsS75RzbAqnARpLyNGVmUr6wtU17rcev/OqL3G0pJv/kLVRt+fhmTBQlRGmbw6zHcdJh9PWvUB4d4mRCSCL81gbj2vH1tyZ8/jM9fvGTUC8KbDmh00qJTExv7bOUuYf8fUaTCd96cMC91NO9I8kSTRxp4lUZlIlw3hNUhRIN/bQ535u6qWassnkfnHHvA9ae82uebYTkZVzzPA19ZR1cGKNl1o6LLOHfSq7e39i4lIgQTdbdJBkqiohaP4mv8mb/zGd0xqdsbsRUJnCr0yXOMp574S6lNDxYSEajmtPDEl+OUYtDIpcTB0+Vz/ClZVqeQrHFt69tE9Wae+s9Wq2aXurI0ojR1PCt2XXKhadkxNsP3+X1P/zH/OxnX+U3fvbv8ef1Ln9wqvjyG+9wdHjA9HiBrRxBNKIAWmmqYsJiOia4BlUItgQ8biqRSlMevcus0+W9a9f43Od2+Ts/tkP4s0ccPxzz4mZCJ9EkWZeFSXjQ2mT25BGjb7+GVzFCx+hrm8hWi/sHffrjMZ9bvE5iWjy/1SOOIlJi2ps3EKbHvJ8i/RnvHjwhnlo2PyloIdGpxkgaBF8bQIGs8d7RCEcJUKus9qU2nh+yh/62jA9g15fpdE3W5JnPu0LBa35yrsR2lWp8OR1zlWNxjkC4AMKeU/dW7+sC/Wrq1cu6Kd+QomEFLAqPsQFnG1RrYT1vDws6hWa3nbCWGLa7EVkayKKESEW0TMTa7gZxt0Ox8zEqmXGyHwjljGi+T10OSQi4qsD5CcX+ADtQfGdvnfEcfvT6NuuR5+YNx1pXstZKOOZlHpqEmiGzxYjf/d1/xl5b8F/+/V/jLN7h988i3n3wkDfeep3ZUR878ssWJq5pG2RLhv2HBG8J3oGrwVfYsUQqgT19yDxO+a29G9y41eNXf+VVDh4OmH3xATfbhhsdTZx2EFHKu91tpmXF4C++iK1qnEzwmxl+q8vjwYKH04L/8CXLJ170lNM5MtT00gz0Bu7ax0mSE1g8Yn9wTH84YtjqE7XHPH7/Pkkc8+M/+dO0tOEzL3+cnd1r7N26QVEsGI9GtNodfPCMhqcUecFiMcc7R1nW50jVCrlsEKlnsScu1mXTIPfDbdC5uISU5+yJyyqSIYRlsuQqmnoeSK1EweTFvl+9m3Pqn1glGNQHkK+Vv/39nA4fOZiCAN6jpQcVkL5uOKhFTvCOTi+lAioT40XTn0cGjbSC9XYPHSVkUdr0eAgaJRRGNLQ+Zx2uniNsgW610SZCZS0IYH2NEIHIGIRRSLLzSQtCoxB0dBfnA7Vu1EiscyjbQroMKTYRokbGR/g8x46nSF9DVLCzrvmpuzFrt6/Ru7lDe2sDk7V47G5xOnL8s7e/hi0mGCFAdnGqhwuegF9OvMfmAyZngj//4hfZyCKutyK2O11eeOEmLw5OGI2eMIgfUMsh19efYy3u8Huj2+wvLE+e/N+MD97EDffxixnUOQgHSGSyB77Eze9fLLRzSDPQkNJto/iVTxkfVbz+p57psKKyjjrtUG91mM1qqknJZH5C6RxCCyQG6Q3aRah5jK8s3lkePZ7RSRTPb0Z0Mk+2eRuddTBtye6dLp/6qZukD2O2T7fIRIt8aLl/dEQUa8ZFTLe7xtb2HnhBrDQ729ust1N6vQ5RbAg7N/E2J9gpQkZIE5CqjUkjpFFYV6FlglQxiWiU2vzS2W9UIQNa+3PudRq38Ei08Eit2FAaFRmiOMH7Ch8aVR+Cx/qcui6ZjQfoKKazHoGURFFKWVuc9ecH3mKWo5UiiltIrdHaLGFjhfKh6SsTGaSQRFECQSLQKNUoR2lqVKg+hFpyYaAub63LKjWr685N1cp4XcoqroKqi9e4aLr4V4+r97rscF/Y0RXdcHkvqRv1O1MhTM0wd4xyy42dFjJpsXXvLlGWkXTbHC80J3nNOJ/ipiWJcBgTM8/uUXrRqPyIgA1QVTn5fMTb7z5gfpyw1Y5JVFP8ut6yvLw+YCEmzOSAVtQhvfUJHqpdngwyXn/0FifDEbP9xxSzBXY+QQqLlI4466Lbm7iTBT6vljWXdklTaOSnVRWwqsJ5RzEd8dU/npJlmsG8op0k2PVN8tozn5QMJgNGjPHOolox0qYoEWHmMcFZaqtYzGoOD4f0Mk8rCyRZFx21CFGMieHa81u0523MRsb65ga2cOS+oqoCWRY3GXbZOBRJ1ELSFMPKFdVzmbW9XMD7gWDpklF4ms5zeb1ddqRWVJ6V+OTV17wUQi3PIO9XtJ1nje+9/r4XDfUHFU/5Vzf+qv1zMV+rnwkhkTqGEJBRTdTbIduteC4q6eWObLNNlMas73SoRUy7anHfnfDkrcfIumiQ3/QGTjq8kzjh8QRqW5MvRhweWr7JnG5qaEeG3V6H7W3Nx47H9JOckTrGdEvanZcJ28/xpcka3zw64sHgXfrvv8diOKCejgjOomSNVjHJ9l2K8RPsaNowQ1wjhUzwVMEhhGuEaeoSZ0ve/PqI+dk+o7GncoK6vUWRxAxmNQs/ZzSosNMpqhWjQ4IkxlQROo9IZIYWguOTCb22ZbMlieIeOltDxRqhYeNGj7itoBchjCJYKHNL8CVRpEniaHkWCyLTNBBXUp+L+jRzsaTMXkFoftjGh2+Ev4n9I1j2LHzqlh+wQedJusY5XZ09V+zQpTUO4eJ8arzaKxyKcxEbIS7qplZn2bIeXGl1Hog1iJXARBlZllDUFhCspRHzWnEyrXBCcHevS3d3l87uDmmvg4xiHkwNw3nF8WwMeUmmJSFao8zalEHhcOcoSlXMmIwU33w90EsMm1lEqiTtRLGTjLmbnDKNzrBixuanb9MyKV8utjgbOd48fI2Tg30WB/uU4yn1IkdJixKQrO3hq5zqeEAIjeBGcA6cX4p0QHAzbFkyEgHyPn/6hSFFGZjbmjLpYDfWGM1qinHO6eSIsq4R8VJt2KbELkHPYnxZ4a1kOJxzfDJiq61JohZRawuhW4QoorUe09lL6akuPhLEJgEX6A8LvJsjv/J1lNIgNPtPDjg5PaMoSja2NqnqRn2xSFp4L0COGw2EcBHiXKyN1Trg0uw/yze5aoM+PLkcrrzueTokXCRFru6LsLRlja/4NEoVCI3Ww/Kdr2h+4uKQOGctfT826aMHUz6Ac2jZBFTW13hX4Jbc5O52j1oq8jimFlA7kF6iasFWe5N2p4fwIGiK/4MPTVNTF/AO3GxGyEe0kgydRph0rQmMJicIAZExTYNfFWOdxfmljjWS2Kw3BX5RfrFJbQdsBx0rpAYXx9j5hGJwhvU5IvHsRZKbWzEv/MzHef4nP4GIWniZ8M7xJvcfTviT//2fUCxmxFIh6GHFNYI7xIUzEE0w5fIzxidT/vnvf5dWa4Nre6/wb35ujV/4yds8fvIu+dFrfHftPfI058e2XqWwe/xvD+4xOfgO42/8Fr6Y4BcTCJamt1WNUDGq+yrBl7jF+7CkN14iLC8DOg8enK0YLQRfPThFJRGm06LMUqqdHQ5Hh0yGc6r5AIIjyRpeqyxjjIvRswRfNajf/QdTXFXx8i8YNjYU2c4GKumhU8Heix02r91h/fVNDh8uqJRjdlbwxb/cJ8iaeTnn1q3naHV2kEoSScna9etEWmCMREjIsjvN31SfYeuaMq+JdQ+hM3x5inULhEhRupk3HyxVNcZZsEEiJUgRULbJkmZRF4QGN0NKSbebESR4EajKGltVyFCAUFg3Z1EWHByfErdaiN4aiTa04pQ6zPG2aN6brRlOxyhp6HQ2iIQkNgqxpA0q39BRjTJIqTAmRQSBEg4THHFswFXgFEo+a3uFFRPoMrjN5WDpYohzIydWTe/OYejVxr/0JfhnHFjfazztND99AApYCnhIqQlCIU2K0DWnc8cgr7l9fY3N67t85hc/jzIxyIjX3zrirfunPFwMsOMZHWEgypixB66gKB7jRcOIr6qcYj7gO2+c8FBKbt64x1avxY+/2GZTVHxma8Sp6nOoj7l1Z5cNc48vnu7x6FTz1je+wXxwwvzouEEZqwojK7SqSfZuEfdusRg9xOaTpSPo8bYJxAkBKUqUCOTTESD400f3MUnEtU/chSyl2tph0J/ycP+IfJZT5gXdjifpJOh5hiIimqU4XyGsYjapePi4z0t3Atc2IOrcRkddhGma7HY616gKz+boBi44bGGpKkA5tEmQUiOXzl4axcs58efzdLnI98OcwEZF64KucLnY+/L/57jmJQO4yhxfXkNN3cQKEWvoHO7DJP9/wPFD6dd+z/H0Gw7PcCCahwKJ0gkEgYoc8fp1RNTm+Y0Z3lZ0r7cwiQaTEEi5wzZVf8wXR0foOpBpTZZdx0cx1fx9gs9xQO1q8vmAJ8WQ6uAxm5u79HqbXP/cDrsbKZ88esggH/KeeUjbpDyf/ghvz3b4wmCd999+nZOHb7A4PsHmC+qyRGCJVEHUu0lr9yW8LynGj3Eh4Jxr9o932KppVm7FgkJOmA9OGT+RvPGXkp0Xn6O3u0XR7kKa8v7RPsW8ZD6ZY4wlbicYm6JtgqkS9CJG6RZGOA4OR7iNghsbCpO20VmT0BIysH17nQ3boTfYoa79svdfRV4G2u0MYxQSiZCCWK9aCbgr89XkGZ6uQfzbMT76/gkf8vhZNmgVdzZy15dvdNkGCcESvQpwSXZerGCoZRAlpVwKB4hl7VRD9VvZOaVMQ713folyCOK4Q6vdIZ+PqCrHohuBUByMS9I44cXnetz77AvcffWTIAy1F4gvv8/j+ZjXx8eEuadtDIg1Cr2Dq46p6j5uyWIoiwmjYclX+vt0sg571+9wdzvhkzdTrid9dHLKfu+IOq741Mc+Ruk3+IPTHU6PnvDgtb+gGo8oB0NsXeGcRckCaQzp7qu4umB68iYhNLRT7zzBrs5kjy9LpIBiMmT8RPDkTWhvr7Nx7waLJKXausaT0QGDwYzZ+AS8Za2nMUGhFhmxS4imKS5vEhpnpzNS49n9hCFrSeJOG6EyhImoNxN6LqOUDhVFSCMpbM1Zv2A8GfP+w0esr6/z4osvMRqN6ff7XNvZZHtnh8lkQlEUFGUL50FIDaKRn2eZLDpff/Kqjbpqg5b253JScLlOhFiVNDwdeF1m66xoo2Lpl8jznlLNzZboVmgaNwvhmmuU4iKgWl3TPKnp2Xh1R6wQtu+HhfHRBSjqkvF4iMk6mKSNEhGR0mxvgicgVYwMlixKGzWfEOhkEVmqkaHEVhPSaB0ldVPjgsPJmqCaODPqrKFaGUKl2FoijCQIhU62IFgCOYEIiLC1p649YBBIRF0SEDivkToijjMq26GqN5lVC+pFhapuN3Lc7U2QBa0wpLOesXNrg7Vbz2PWbiOExjvJhveMnCdRLRbaYX1N0C2M3COUM3x9RgiLJpCZSahiZlFCFVLqI/iDL77Jwze/yUu7KT/z2Y+xS4dxqKjKjzMcehZv/C+Uwyf4xQHB1ohgm6kQTX8nJT2lf4wXoHpbhGqOX4wQgQYqbpbjBw5PKUQTnC4sg/f7LAYli9GIqihoFG7AB0krybhzbZftjU1u3djj/UfHHBwNOBoq+lZiviF5bq/kVzYOackSkyi0GkI85ua9mLVrm/SPjxmNCm72BF6lbO/eIWn3GExGyCVNRK6vEekWiLCkrOqmGFHdQMgJ3h2hlEWpEkdMcGbZA2q27F3UKOopPAoLtAgiIdY9ohDwog0Igm8kzCWN8p4INbHWRLK1VI/0xE7ivaa71sFECdpLDDFGtzCqwsqCIl9gq4r1duPYlvkUVxd4V9AIARiCrcFZSrdo7h07QFBXFUJqtImJTAuTdlE6fmoXLdGFK99dUB9W4dVqXPlZoEHEzhPez9jk4gMpmr+BcUHzEgJU1EJaeO+s4Kxf8Us/9hI7u7uY7BpSNcqb17dA2ox375cM+gEXW4KRpK01qObMPTif4+oJ9azHfBDRjyLmRlEPJCeTgvH+Pjc2Uz73ynU6IqIXWrhqnUnepv/etxkc98lP3qaezwi2XFKHEzaMYCsK1HKEDZLO3gbxesR0/wGuLLC5hdBQ5qRQKNnsqUAg0gotFVW/ZFCMeC2/T5FPGY9OlmqkgdRpothw59omvVaXmzf2yPOKh+918UHyrUPDVMUcVJ5X7s7Z7Bm0FjR1mTkmkrTXY0KI8F5xfHLCZDIhie8iZRcTxYjgsK5CsJTJlcuG0Czr/r4H+SAsnd6ns21KqfPfrZCoywhX8/WDQdLT9VMrquq/Hh91CJp6zcYlkDpGC4lUCSbr4asB3uWYVtbsH6HwTkK+QDtPO+lQ2xLnKtrtLjFt6pMDyiqnqM6gdOQDg4gUIRbMR4pW6fmnf/QdNlPPK3e73O5sEwWJdTHTcovR4Rln332d2eO3qQYH+KIkOI+RCbHU3EocmJLKPyZbk4joeeYnB1STIbbwy9xeY3+0oDnfRcAohdGaelozDTPe+Or7KK0Y9xvZZ6QgMRJVaHY3NtnducaNvT2yVsb+ozMKW/HOseeoUCwiz43tgheSMUE6hEwRYoGSllY3xnuFCwmz2ZyDg/fx29skiWl64wmNrQsgoGRT+K61oaHKrvbQ/3/HU+HTxeMPsCMuP8k3eIAQl8Dqy0kXLmzPiiGxaqoqVvRjh5ABKZcO8XmmoVFqRohz+WxonFznBUfHQ/qDKUp4lBQUeZ9YK7pxxAsvrPHJV1+hd/MuOt0GFNIH7u1ZUtnla/GYeVVSxQ7imEyuU89GVPOA9WMoHcXwFqGKOE0ipiEhP4V+f8DDt8d87FaHl+7dYF22yHH4cIvpzDN4848Y90+o+u9hi5pgm76KSqXsGUdqYO73CVrQvvMc9WzE4ngfX9EIa4QmkNRSIQWIZX2Y0QpRQ3lS8Lg+ZrRfMRoeUeQzvGhqbK03tLIOL+xdZ63XY2dnm6ODPqcnI06nhsGBxrYV2+uOz6Zj4tgiESRxzfq6JI7W2Npd4+233mbYH3Lvxib17johamzEbD4jTgy3bu9x57lbbG5s8OjRI4bDEaenfcqywtpwzmRo6s79FfQXWApEcM6WaNgP4jwYauKop5Mazw5ezhPQl1AmeU4BXKYGBTjsBYVv+XphyeZqaL/ivKn0OU1w+X5WdlFKtbSXTXPvjzo+cjBlnWWRz0lUDMqjIoVShk6rcTJK2Ti/kTZNo9nIk8URWRIhsHiXo8QGWkqkrwnCgbAEKQlIoqiNljQy617gfdPUV5mY4MulxLZGonFWUFeeVVdtQU0QEi9TFDHG9LAiIdAiz4fkxYLICkSocUkLoQpS02b9Ro9br15HxdeR0TWwHlF7MtunVVuMNChlcMYhZIxWPayPEE4QXAXe4QsITlEIQx0M1dgxPtrnzcU7/Gf/7o/zU596GbeI6FeWNye7TKdnlE++RD0fQjVqHDshESJCoImkRMtAFQYgNTJr42VAlNOlr3PBL728YFguNDyEyjE7mzLt5xAWEGqEUSgpUTIik5qbG2vcvrHDyy8+hyoV9VTzXu6Y1R7xfuC0rvm5+RATCZLQRYo5xuSs77To7XSgPobasdVSOJ3QXdsiSiLmxRyBQwTLert1DsM2WVuFkBIhEggBrU/QKqClwxLjVZNJ9K5ESY8QCiWjphFf8HiREIRAmqWD7/U5FBu8BVcivAXvGpUYJfHC4oLDKIUzmlY7Raq4kWoXGqWSJsCXEGpLqCvavRZCKKqqIPgaIW3TZ0h6lPcI77BlQfAehQEEZVWhTYzSzetHcYpU5soeWiZxLh0Plx6eG7IPM/ThMpy1vPQCsVg9969PW/lwpGN1/5UzKI1jkAf6haBz4wbda7uouNccUgF6LY9eV3SSlFhFWBMIQWKiCKsq1AxCXeHdBJfXVFPJrK0o0dhpwLia/uAId3eDn//88+hgUDbhuGgxzSOmRw+Z7r9PPT5s0G00SiZoGdGJPNuRZSgXLBAka210O6EaHWNlQPh6iWg7pFhWInkIwWF001vOzi3zfMFsdIR3M5w94/9l782ebcuuM6/f7Faz29Of22Te7CSlJFsqV2Fjm8KuwFBuIgoCcPBQPPDAAwT/C2/wwgNFBS8EQeuIwhEVNsLGZdzKFkadpUyl8mbevPf0Z3ermx0Pc+3m3JuJMqWSkJspKbbu2Wvvs89eY87RfN/4hi4MujBEUaKF5t50zMnhIZ969T7LeUd7Bc9i4N1ZIJaRlYi8fFIzGRhUVvZUowatNSrLk+2GnGAbVrNruvY+bjBAx4wIOGeRImJIVFe5nq7xPe7vmuq5ng21fo3oqTXbn22Trc1wQnG3f25biBbb+IkPc4AfZkd/ZTh7/xLXi/cmfd2qp6YASqJUYlnoPPS9SBrkAFDJGF2ApkH7QJmVkAd88AyHQ1ATZktNJGK7FbgCt5TUhSIIRbsULFvP7N0nTFXDF1//e0yHBc5K5o3hST1ifv0dFo//gvb6GW41IwaNFBptDAMFR3lLpz3X8YpsoBGjE3yzQNgaGRzBC1I/QepNRAQEHq00WmtCE2hdy5PVBRCx3TOkhnxUoH2OZMA0L3l4uM+j032GgyGrs5Yr1/LdhWcWQAwDOu945WSFURoZFYIGIR15mafSWcipqyWr+TWDYYnzDqkUQkact+kzqrU88k5z+Y99LvXD2UPrc2FDrdv9jXf+uS2gPN8JlWiS8f/TB60ZNNveK9mLFMSkMLzuvyIme0cQ+p7lNU1QSpWEqqLkdpbmaJZlokKvVhZjNPsTwUNVcvDqKwz3TpFmmmLPEDiZTgmNoDQ5nQ74LCCkJjc52ipUGwltRfQddhWJSObSUEdNOwtcV0uezD/g5ZNPc3x4gOhyKhd5ttxjtZqxfP/r1LMr/PIiFT9QaFWghGHfKAY60IQbvMkojg+QBuzsAr8J6lP/u5ZrOr9DSkGmDTII7KLjqppx+bTB2wtCrMhGORgNSlIOJC8f7XF8dMhLL98ndwbVFLzVBRazSH4RWQXPZ1+uUApUVmC0Qw4lxWCAD4ZvfKOhqWac7E0QOsOVA1ZVxdnTp0wmI/b3JxwfH3F8dMzt7Q1t2+C9xzm/tY5NArVLiVtT0u+KR6x9zR3a3Y7hrU3zxd7dZGei/z3rOYu7IigbQZWebsoOwiV6FtnmM22QqC2db2vDYpMEbin1H299gp4pCdIQSEmD9mn4WmUboohkoyFSSAY6Q2uFGRpMJjBG9PQVha1vcT7SrVYIITFZTpaNKPIJWqZgX0iZ5nOYERGJDZ4oDBFD1VZ08zmhqQm2parnxCDZ2ztCa01e6HS4hw4VLUZY9gYjRvmQdlXhQ8QcvkKhNafDkmKQo8YjBAqExNffxS0umP/h77F855yJf584GcDp52jrlmr2x7jwDGeXILJ0sLTvItyAEF8iyhVBniGFROtj/ucvd/zeux9QuQM6C9cX/4ymOqOa3RKCAzFCHZ6ij+5TuCuMm9NcBxrr8SZL33q3RCmDOPoUWkeUifhmTugaulVNcB6iQ0iFMWNi9Cn5DB0xNAlSVxmZURzs5fwH//AN7h9PePON+xQyZyCvODg54qd//hG/+e0F37muuTp7i+XljP98+Q2+8JmX+I9+/TWMKJFiitRjlBpzeO9VyuKIn7uosQgmoxyVR0yxItQrfL2ATmGtx6OQUpPlB0iRVKZkdpB6RPqNoEI/n8w2xODxQSCEQuoCvCUQEbJAqBypMqSUBN8RfBLpEMGjhCeqDKMHOLvC25qs2E+v0RLvPZNinhirJFsLtkYDpcoZnrySkB+t8dHT1guUyiiKCa2ztLZNMrtaU4p+LlkMCKkYjiYoZdBZjlKCECwbUYuPuXa37d1N/CIKma5JR4rckRf93hLAP/jS2vDLv/aPqKolDx99kbIsCeT4rsK3N8zffYubt9/BzC7ZVw288jpdlLz79pfouo6ssEgDwhyh3Bxx+028v0/Mhng5RwlBq8Z8Y5bz3/zeHOtzGjvi6uJtZrcf8OzZY6pqSWBCPi15+OanKaVl4mb4Vc1ykVPnJY3W6LYmj5GXv/jTKWEWHW29ZDm/op5XVPMaa5eE4BiPTtEqw/klznXUzQcIJTHlhLJUlKXm3/z5T/OZV454+cEDyqKgUCumB5rp8et8d+7ILhsWiwvefueWsHzC8d41/8bPTtifDMh6qXMh0/C4GFsePHzI0cl9RnsH6CxnTUvSWXGHFpMSmG0zbW8BL9wbKUU/AiD1Wq0lYFP1an8tAAAgAElEQVQiJVFabl8p1qFSslO5pmXscMaTHW5pEFKS9u2Pf0T6Y73SRMMAcgz0IxSiJ9gbQlVhz84Z2Dmv34vE4j4UE146vUdmDP/9/2J5dtYh9THIDFW9BW6C9UcEWdGIiDUGqyb8D1+uMCZQdQNWyxvOn/4Jt7fPuLq+pfMGaY44+fwblJMhe+4a2bXUN4pGGlqTIV1H1la8/ug1yk99lihagrfMr89o65r55SL1p/qaQblHWe4DLTE6quqaEANZOWQwyHlw74A3XtrjZz53yvHhIQf7UwoVkaLh7/7cA+atQJ41rJqKZ0+fYZdzri8sX/iM4fWXJwiyzf4RKLzvmIyH/OQX/h75YEg5nLAOUpXJ71TEU4V5N4nYLQ/87Vp/G5tvROymUR/uf/rLSCq7W6rVHbEKQKpUTIhhOzh1HXn7njEjpUr9xlrfKfJ477ZBekwxwXA64f79+/zar/xbvPzyAw5O3kRrg48a31zjmwXX3/gz5s+uGbtnqGGBeOVVbm5uefb+P8N7R1Z4hC4JYYCs3gN7hQ0v4VWFlVcYkdpHfvutyJ9dzXF+hHVw9vSPWS2vuHh6jfUO1CGjB8cMHt5n4m4p3ZL5meW2c7RFGt2S1wtykzH+1E+R6UhmAq6e4buK2cUC13bEWKFVxmR0SogO7yu6bo5tOmSekekx49JwuFfy7//S5zk+mPLS/WMypcnknDe/OObRZ47Iz2ueLlouLp5wczmjm73Dy/cO+YV/5QApNFCiVYnSGV/44k/x0sMb/uj3/4jr2ZyzZUOeG/b3h9xcPOXx29/iW1//S7Is5+LqmqZpsZ1DKcODBw9ZrZZIqbCdpbPdRnjCuSQtrpRKfIed5FpK1Uul04MBKQmKIfaDd1Phbo1cJrvcGVL/Avlmy+8RIsnir5OrHoDalgY2fX39a0RqHVG9WIU2Jv1Mpbm2wX+y+O1jJ1NCSqTWIFPQG2JEhJBmo4iIDhERIlpItFIYlegtSolEU5ESvCM4S1dXSKVTs1sELVNFWEqFVL0Ch+xlwKMgfcsGHwRtZ8FZcA5nPSHKTaVDERHR411HjBaJJ88K8qiJLslvismYIs+Z7O2jtAGdE0NHDB3OemxdMzt7yvL8GUPdQFGSnY6olxbDLDUU1g6EIUaJCAugI/oD8OCpiGYPsmMeXzneu11AGBI91NePE0XQJ7lyTERmA2Q5RnVzlBJ4rbA+WYyIEbxFaIUyJSoX6EwgQoePHiG7nj6XhhNKbYghCeggAoSkCiiFRElJbjSnhwNOjgpGUyikY0jN8OAIp4551GbUZkV9k2Nbz7ffrRiNGuZVYGCg0BolElUvL0eIoDg5nNCFABqkjmTGE6zHq4ASDmKH95oQIYt9YCZUSnDkHmtRDSElxDTYD1xC2ERPbRIxfV/CJOEKlSOF6jdgmmWxqVEISZQZQiQpeSlypCzJZUZQAQ244Gl8goNjcCghkSojywZIoXAizeqJzqGVITMlIQqsc0ilkUKlwdUxYF0KUo3JkSoNyENE/IclU9/Ld+9QqnaD1TX8/KHtUP1zO17w427pT7x6tjFCSk5O79G2DXm5TxRwfT3Ddwtcdc7t2VNmz55gqyUyBFTmEkUkPkPgMXqQAiKRIWkTTddO8EISQo1XCjU65bZT/OWTBuegs5Lb81tWszPaNuBDhsxyTDmknE4ZiJphN2cZNG2bYaXCI9CuQwKj0RiTGYTx1FVOjG2ajdd6hCoI0ZGVQ5TShDp9bmKLFDlKGzKtKLXicG/A6dGIYgjaeIxsyaRisDehKjuOvcK2M5ZzyeVti7WR+bIlNwY9UkiheucQEQQGwyEDkaGyAtFXY4mpRw0ht1W4O8jlR1eshUj88A3N786AzLuV5jtYqNgGTJsrYnzh6g+Tqf0oa7m7/iYiVd97RWFIdPVttZcYibajMHB8UCIne8jREa/cn5CpyHgIt3lEiDwNC/czgpMEOyLSEbBYfQJkvHPWgYCmMdSrFVdPn2G7FdYaMDnaSIrxhMF0wLCdEVrJcpXR9cRq7T2qayj3DplM9sAEQujwvkIqSbPoCCEFQHk5JC+HRJ+UttrGgQ9oPSAzGaOiZH884N7xmOHYkJWRTDm0gGw0oOg0J85wM4flzNC0cH7dsawDLoh0TtOfd1EgCGSZJiumSG1QOuuFh5I6sBDrQsTa78D32j8/XusuKvQDv9vaj3yPi3YR6btPbX3QJhjeRRh2wand9+sZC2vVtV3l3PXDmk61GyxvFdvSD9fiLkobysGQhy+9zOHxCSaf0NQVzXyGra5w1S1Xzz7g9uIaujkqG6OKiNIrYniCkgXIHCEyfNRIP0fQEexhihNjTczHiHKfD2aRs1UDISe4yMWTC2x7g+00USpULtGDEdlkTNGuKC1cZYoqiDRCIAZE16B0gR6OKApFWUq6BbhaUs87Us9RQOvkz4Kvie0KIRzEFiVztDbkWjPIDKeHI/b3Skzp0SLN0pwORkzUhJOgsEozu1F0neXpZU2e1SyrjtxEMiX7JEKxv7+PEoq265jP5lxezRiOSkZDxWKx4Pz8AiFuiEiWqwrnA8PBCK01g8EA5xxZlkGfAHm/HcgcY9wU59aI0kaR+AXfIFhLpG98kOjVa3sG1vq6tQ3D7gyq3efvIqW7ypPrzqvd1z1PG0yMDcn32CUfuj52MmVyzehoTHCa4DqccwSZvtwoYLFsESIyMIqIwHlPng/I84I8NygliTY1iVdigQCMVBgR0DQIelU016WKnVuRRlok5+KjR8mWLIPWeZyw7B0doHWWKGFUeLuka6BqI0WZUw5yhpMJWTFmun9AiBKhVNKV16mh3iHxLuKsYzEbsrw64EvnBZfznM++vs/wJOeVnzmnbTWr+av8n7/v+fJXFps5Fp11BKEJ4nGiwbqOqHKimtAuKkJ7Q3RfJsYVwS+IYoIc/CqyWKD33iIsLum++QfYXvY9ZGNQOVhLDA7RVERRE9oFPhtizQBfLYntCqJDKoEZTNMB5mtidInWJxRKmz7rhgGCsHD883/+DlEJFnh+6eeO+I9//RF67xXU+Ih/96RkWbV869tDrm9qvvGtc6IY8r/9+Qe8diT4iXuC4bimlApVajIzYO/TD2m6hmt3QyYEZakpp48Y5EcIFRAiUDcV3ltCVqEESDEiYogUEB1ge1Q2IlQBMmJklg5QErKZ6RQ4BNLwNSkEHgFRI9WEGBqs61JVw4NSYzI9RkhDRKKQqdKvSpTwKJlQreAsIhsjiwypRyA0neuIwVOag7QRpSLLIqNRTP01MRBcQwge6S1SavJymqouytBWc5rVLc52d/bQ2lHsJkXbw2H97x2FGu4Grml46xYGlxvPs6YA/vArraL3lOfnFyxXS07uPeDp06f803/yT2iqCtvWFCGSxcjVck7jO4b2Ap0ZXj7IsEEzbwQEC76htpbOelqZ5jmFtiGqAXH6CnUjWZ5fYNs5bXOD9Q0+RIr9nyUvx4xP3kOEBcuv/hmzruX9uiYMhsTBmOhcavqdzeh8x1PfJIGMch+7mlNdXRCDRSrLaHqAynK8q3BuSfArRITh4ACtJLlSTKVijOKdrz7l8rvXXNiW0STjH/87n2UyPSWbDHllYNjbk1zff8BsfsDlVUXTWv70a99lb1rwr/+d1ygKiZEWhEzqpCpDqHLTlK1FufmmPzox/uj7rLWiyHN8PzRxfe0dag3boOpOcLUT8KyDli0N4g7R7/uwnL9dsE1mpVAEKYgxYVRaFinoGBagO3i0xwOpeGAypJIIrZBA0zQ8PBkT3ZLVfElnOxZVjZUtnXTQdQQX6AbHaU7O4xtc21KvzvC+o/MOM3iN8uBVyoNz8sEN9tm7XL+95KxeEaUiTA9BQKAmrBbY1YwL17K4zqHcI0bB8tkl3jUI2VAOBwz3HiDxSBpkF8BLxOSQEEAJKBGI+ZKLdxx/uKyppcQqya/+g9d449VDZJmTiZK/v1fStGNu3jhgsWy5ndUINeJyJRjpSKYCmXBIGRE6oVRSl5tgXqkctUmadh/v3oW/mUus49Y7oeILPZC7hZXngl/VCzHF2Ae/rEPp55C+HoHayi2tf7wt7myKOGxFCmJ3l+K1DcgF3ns6a6mrisV8xnvvPyEKyeHxCb/92/8HX/rfv4Rta4KzDH0E7zlf3iCMZNC8h1Ka108zKquoLeBrog8s2w4nDJ3MEuW7blD6EdG8xPy2o1uusM1f4l1N6ypQI/LDnyUbtgyPnlBfnXP5h/+CmXeo4HHTA8gyRNfhbYef3SKlwFTX+HJKW+7RXt1iV7fEUJPlMDx8gBAC72aEpiHYCq0MenhIbhRGSQ6FpmwCX/797xAUXNiWL372mF/5xVcxw310OeQLBt6oNZ85ep1V1XF2scS28KU/+TovnYx58+V9ilKTZTJR1wc5V6sVZ7M5t7Mbrm+uePfdxzjnsZ3HB08IMQ3sjZDnM/I85/DwCOdcir+VoSxLVqsVbduRZ9kmuUoU8lQoSm4k8rwP2tjGxkb653sl2/WQ5y3NdG09cRsvbWxPIkRkLYixprOD7A0/bq22Z7ejEmATQmJeJHtM/cWfRNDrEyBTGpUN8D7gnCX0B1o2GKRpxDpxqIVKfMUYxAZZSH1NSWVHKYExJUopjM5RvSpa+p49zlqIHmkcUca1YF3/JTqUjkgjkFGlRyVQKiJIfFwFSJU2fVLxEGgltkgXHikjRJXe10vatqWtVqzqjmXrWWYFzXjMw5cM02PN6WFBsxLMrWBvVDCejLB1g7cW16vORN8mFC0Eom8I9pZgF4SuIvqnxFATZZ5uaKjT/1xDtDWhWZKOC5mAmHXEHbYcUBEdeEuUFnwyKin1Vq8/JtqIEImGlem0AaVIQ1D3coXRgnltsTFyYy3vnS351ru3lPUlZXtGScdUe+4fFZSZ5uamQeSaxaJlkQkWJWSZpSh6LrpQ5OMCOijqCm1SzV1pQ1aMiD3dQ6rUCyA2GyKQxqbJ/lEB/WA/qRExJWHp6m1FUeARIUB0ae5uP39LCkXokasYZT/IWax9R7LfjRRs2mwS1W+6gJQmISXSEKVGBQg4olxL4ANCIMW2RT9VdyKEhFStD/0YLN412K7aEQvZ7CLWlefNwF4hX0yCXoAInn964+k+5JIfTtX1Lrc5cnZ+ztXVFZPpHs+ePePx4/dom6SGWKpURWtdSxSeAwODUjIZDOiCRlQZTVVRzVYQE+wfvcXTInr6sGsXxC7SrRbYdkbXXBNUQZR56lf0NdE14CpctcBbT9eFhPb6/nhd99PFpHgZBUibZk4RJJnJybIcJ1UvnZ7m0mSZQSEp8xwtIZMwLRTjXOOiZ1633DY1HY4nZ7csu4xxvEIETx5bxrlEjXNurxf4ruXyssbZAYEMhNlU25KangcskPXVuOdRqO+17t5v2SNToeeK796/F1X6tol9jOta39aZbeVhewf0A8Wgz7/4o+30kylS/tVYz1f516HoGqVkXUEVGVIL9GCM0oo8z1N/MYGursDVTMcD2qN9Tg8mzJcVb7/7JI26dy34pHLr2xXeK9rVLbataVdPCUiCGqSZMKEBl3yQr1f4aknXBaKWCN8Xedj6oOAdzpFQ5CiJAZTQDEcjpDEQAkqBVgIjM1TMGJX93xY6Ci3ZH2oyI6lsoMLTApe3FaOrnHJviTaBQvXsi0lJpg1KZBRFSaL35QjRB2asv7JI2j8aIRQ/6P758U20Pvn++fBttI0XtgiSuOODPg7yvOuDNp9t3Xe5/k8fOMeNIOnO79h9XCMNkZ3ZQT1lfff9iYie+ldVFU/ef4IPAZPlvPPOd3nvvffw1hFDYGSypJLnLLkxDHNBkRtGxZBZa5i3itXtDa1t+/hUEGybZpL5SLAtrp5j6yVdVWObc7xrCHqIkKQYz6W5l75Z4leLxFQSCukFQkuEc5tYjZhiuOg7om2Tql8QGG2QqmchxTS+Q0jI84zc5GQ6I1MRI+FwqCiMZNVZuhi4bWsubpe8f3bLYO+GcjwC25Dj2BsqNIZzb2nbjkXVIG1FEWruP7jP4WGeEjxjODk9pu06rm5vsdZSVXWfTJAUPENSzlz3RYUQWK1WrIf1aq1QWtF1XWIW9Qlz8IFN/vQRdvp8XBE3VLwPufY5H/Th/XzrXGGNYt25ZFN3Xpud+LCLYgTCJ27T+PjJlBog8we0izPm8/MUpEuJGe+TZwUH+1MiEee6lFA4jyfHeo3sIloFcjNE5XBwaFBSkuUDlDZondHVK2xb0cxqgnMM9zqE8nShIsiMYEZIGRmUAWlybCjwXUekYzwaJRnqKCgwjMQwVX5Fog0SHSo2pMysA6GIYYBHY2PO9dkZ1+cXrFZzVnUFn7rHiGM+/XcfMSnhuKiYPz7HX32XB3v7vPmTB1y9/5TVfElzZXFdIDSpEV6IEbG6JFRPiH5JDA3RJwUxkb0BcUms/id81eFv2s2NQ5YgsxRbBd9XkASoPE131xEhLIQ5SIkwQ4rCIERktbgCAkJrjMkYjEtemkTuj8HHNGTx3iQjCMVX5grrIwMn+fO/XPLnX/8GD14/5/TlP+Iffqrk1cMBp6/8IieHE44PHzCbOx6/X7OqO7572aC/MGA4naCMRAvB9GiE9zmjboB1HU27Sh0WUqBEjsCQ9CZConUC3tYgdELgknH128IjdQbR4bszQCDUeLNpROgQ0RJsB0ITfNoZUgmEzIgcEFxLcDXWNgTfkRV7SZJY2Z2NqFAokCFJEfeDA0MUEARKGiSC1i0JMeAJaTCdd8SY5qwY1TN5RSoWEFyq/HYLquUNq/kNztbP76J+u8Y+ftqpqTwHT0NvGoLnTiO5c0gINv+I9Af0Dz8Qdc7xu7/zO3z961/nt37rt+g6y9nTZwghUFoyCxEfA+PRgOGw5M3Pfo6TgwmnuWblFG/NDG9/69u89bWvUe69QjY+xa4C1ncYOSEiWD7+U2Ko8O4K33X4tkGO3kSah3S3f4i9WREua6QICAJR5qjRBCEMovF9oiwQZoDMMkxBasSNC5QCOTrg9GjK6dGEb3zzq5yfP0UXOcZkHJ88YH8gefMoIqUF2TAucoZ5zreXkqtOUBQlPgT+u9/8S0bjx7z66Q+4P1K8OtVk41eZDO/Rrp5xdX7B+dktR0cnqF/5R0ltjNt1tEoMC2KYocwJbFCp73+lwpbuA+Y+mOmd1q70eQjrRvDAWlAiVYfZvCYp/4k7/RA/2vXXL6lar4Q6q15u+u7fqbRhNJ1utrdzFmdrFufvUs1uee3Vh7z+qTf44uc/z9vvfMB/9U//V+yqxc5bJCVS5DTnbxFCS109w9kGW1cIc4icfJHQvEO9/BP8ZUujbQr0hECWewiZIdqwOVaEzKGcoIuIyUCJGhAwnFDmOa8/Oub6+oK33/4W+/v7jA8OmE7GDIucVw6gUI66vsAoydFkyiwYntqM3HmMC/zxVy/58teveP0zDfvTAZ87HZPnYybDl9ifTnj10TgVnJDpzBUR4jXJZwqgJbglUk0Q8uBHfh9/vNeH7Z9tsrPxQTvU3ReS/ud8UAi7gepOQiVE6okKa6pX2IpK9OMd1mjBFt3avnz38YVPLNPv0ioVx13XcfbsKb/xG79BUZZMJlNub264vblF6zSr7zokdbzJZMTedJ+/81M/xTTXHBrN+yvNs5Xkj37vX/Dsg6eMTn6CqAe0MwsYjJzS3c5or/+ArrvG2Tm+rYlBovZ+GsEKe/mb2NiwerxExETZDtkUYQYoB9L7hHJECdkIowNlGRA48DcYrVCDfaYjjRSey/P3CDGgi5xhUXLw4ISH08jDSQTZIKXnYFjiheJrc0nnJeNyyLvPVvzX/+P/w/2XnnJ8b59P72sOBhnF/k/gc5jfvMvt7ZKLyxnftC1fsjX/3q//Kr/wiwdIrRlPh/zj//Df5vHj9/kv/sv/lqurG6pVhXOerlsXg1PSFEKg6xx1VbNaVpgsoyxLJtMJk8kEIQTGaNq2xTmP8w7htzaYaHT0dhQ2yVi698kHpTaPu0U9uUaXPqKelwqmcYNEJQbPbp9fxAe/E0elBH2tTLsVY6L3ezZpGuz09n2c9bGTqRjBhwSXSam3eIKzeKsQMjUOGp0TfSDgQOr+qiTpHHyqLAQXEb3iYPAeF5I+f4iBQMDj6doaoTxWemL0eJkCWCU1SsU0dM7079sHBFoPELJAqnEKJqLve6GSGlzCOVL/RgiRtnEsljX1bIlvl8hMUGQDXn71JRwBigFWC1YMmTnL+eqMxkYUAVRO0B6UAeXB1ympDS3EhhhrCA0x2hSAIxFhlm5kXPbQp+txRdUbUIBoU/LQVypSKaDPtkmwt+hnZWQmUfisTrqGw0ymYahdR9PCysAgg1xL1LhEas2RTDTIm4XDxoh1gdkK5KXl27mkXil+6n6kyATlQNC4gDANzq1Y3SxoqxOsdamPSxmkHiNkkq4XUhJDmxTLlNlSWmQgRpeQBNERpO97ZvqNROztu/8OSOqJfSiY7mN0EOqUnDJIFf5+fwTRV9ATD5DUPZeQyOhtOspF1m/GdYCZEo8QYn9aS8Qaju4HvCaSYUwtW6kkk6oVMWwQJecCiEgg9UlZFwlRIVXOxsg/ck/1n7tPhrbw9XNLrEuI6wogm8rsporfHyg/ivAzxkhdNyyXy54n7bG2Q2mNlgqtFEoIAtB2lg+eXrNaNtwoSeslT2vFcrnCFENENgQzRNiG1IC/frxOND3apNQYPdhZKoT4K4gNLiYFJKnzdJAGn5BqkfopiOkQDTHifdo7JkvSuSgwKqKVpzSCUSaZDjRaS0JT0SGpG0GZR0ZGYYocMRoyloLYRmZLR2sDFkHtDDczB7UjLFqOTmsm+zXWdsRgKYcZg1HeI8kGGDx3mxMaJ6JNdv0DZC4xBLxz6b7EtRPcOiexOVrCDoN85+drp9QHXWvqH2wKyD805Oivb+r04tqoT6V/Abu+vu8hJZ1XUmiUyskHe4DhniEp3SqNVIa8nJDZFboOBOexrsLbGcHX/WiHLu0fX0P7jBiWEGYpwHABqbM0lDumYE/3/kjEQAiW4PtBwV6Qq9SDGxRkCrQMZCoyNJJJJtgzERUs3gqaJiK0J5cyob3jEYWXTDtJ1SraNibqvZDUrSCrYNVmoDLyvv/UGIV1HuctRhUJfRIlGyZD4pckKw5dv78+vpzxX6f1fe2fnf287ol6vl+3/38vvnQHWVgP9L4z7PQ5hCwVVO+KCbywdmh9kMQLUgQZ++Db92p4pIG7XUfXttR1g3UWqSRaSjJtQEis9yxXDY/fu2CgFedKcNUobjqB9RFdjMAMQZWItkkxgasIviL6Od6v8KFLBfEgoD0nCkX0NxAtUXQIpUGZPoTxfcHesRaoij4QRCQEiRICLUCoFF0MiySCUGepH3Ay1CACtlrRZoI6E4zK1K8uhyVIwz6CugvMlo4QJB2SRSNQM8f7nWWROx7oms6Bcy1CBkbjgvlNxc3NDd/+9jsMRgM+/Zk3me5NKcsx+/tHvPnmp3j8+AOur293GD2ij61TAuR914+cdWBTglRXFUpJurbrUSyPdy75nt4HbVDKuI1bYog7viVu/M/ztrGb+G8G9m5sMNnVthhw90yVPZVwl21x97Vbe71LJ2RbdPiY62MnUyFEbOcBQ2aG6GBRBELT0HpHGxRZlrE/HKUv1LokTy3UBn731hK9w606tFHoLCP6hGKFHlYLyuOjY7WYgQgwKggqEIQHmWNEjlYNWjiUTsPhbLT4qMnKPbQekWX7OLvEtgtCu8S7dkOq0KpvlgsrFufnfPDWW6ALMDnlg0eMJ3ucvvk6NgbeOnufNhgad8KTSvHNmwuW1RLaFU4NsLkhZqQEyAWia4nutk+o6u1tiACeaJ/0RtInD0iIEqTqg3ZL6iECok+HkE+zoZAqBYpIhErKJ8MyVdtpFIWQvDTS3NSOx7crrp2kbRSfOcwZZgZ/PEWVGZ+eOG4XnlndorQmlhnLTlI/k/zOVWB/5Hn9J2A4ipSjSBUsDG9pL2+YfXDB8vaUpjpFFRlSjJBmTOrdmqH9EqNadF6gVNmbl0wm6RtcfQYxIvUgKfLFMtEUhSBiICpi7ICIMFOIAeeb1FQcVgg3R/oFMAWKJKMPBHwPpStCUEAO0hGDw7saXI2Uk15FJglD+GBxDrxPlWClDdJ3COGx3hGDR+A3+mmEiI8x2euGCw5tmxqeI55eOgMhSnRpkCq7s4fWU91ZUy16nsV2g9+t+N3xNXcOF3r6b9zQt7ab/kcTkjZNw2q5ZLWY959PkkuQqqQoSrI8Z75cMF9W/NGffjNVf3okMQow5Yjh0X1icUzI9hHdLdI1uOaW6Bpce9YLiBqETxPLRfME2vdBBKIAazVCGdRwgAK0aNHKkSlPDJYYArbzxACtyRBIykFGwKN9l3qX4oq9gSDbK3htv0QS+cp3LriVkQ9Ewcmk4DgfQTnB7u9zOgwcW8/XHld0IaKGGVYIzq4k513Ht5qan/zMLa/5gqapiDhOH+5xcrKP1inJFrIgxo4QGhCmDxSS85HqEwisfshy3tG27aZnyvUDrtdL9FXmrU8RRMIdik0vq4S4e4ClazdE8x/F+v8FDvuxWLtBrFIFShXo0yEhRA5CwDrH5c0tjQ0M907o4i1141k2tzTLBb67JIQGh0zIUxBJLGnxF0AEGfFCEaREDjKkVhifZCfyPBWMQnBYF/BtpFMa0EwLQ6YkygQyHRCsKI3jZFpwfyg5LRznzZLVSvCs9QwyeG2/F/E5PKT0gZeajoul4FoITD5G6YymAxaGy9UUr0fsqSIV5KTAuoa6rcm1wegMofaBgA+r3hb7JvhYs1Z8+9v1ISgTbALHOz/fSXrW/ucFHySef80asFoXQtmo9T3/vjtzx5M8+g6zffezxAhC9gXjtZx6DKgYEVL0iRRYa/vnoK4q5rc3rGHcvMhQWjMYjkAIZrDTQqIAACAASURBVPMZT8+uubxKfbD4uHa7FNNjhof3CcNDQsyQ9TXetdjqEu8WBHuTRJGEAJ+KdWH+zfTZZT+bSCV6qTA5KgakbxObQdALm0VCp7BB0WnDwEhyKZAGpIH9sUQr0FVOISOv7pdczCq++f4FV50hdBmfPh1T5CVhvA9Fwesjz2zlmNdVQre1ZtkpmkvBWVWTi5p/zdygtcS5lqwQ7N87wnYzbq4u+d3f+b/4yl98g//0P/tPmOwdY7Kcw8OMX/nlX+IrX/kqX/vaN/tCd2ITJUTJEGPAWov3PlEAe/pf17Uslwu0NkiZ2ma8c0mcrr9m7UPWiHfYtLAk40rqfTtGuEmZ4ibgWSdScT3iY6cAuGtzyX63bIyIgD6xu2PvIRCiIKqwmX8lhEDIJFbnwyeLpj625/bW0s0X+KYmdg4fQxrW20VUjGjZoaUkFyCURKiM4BzBNSg9SAIUJNgzK0og0tVt2oA+bZoQA85bQrRYkXqaXGWTkBttjyYERGgR0TMajHoBiiSZLWQOSEKwCCJGa7yNBOERAYiC1FPjsd0SW93S1UvM1GAGOUVm0FrhgyMEj1aKRWP57tMPqBYz9L7BUVA5UPsDxgeR175o8K7l7bca6ltYPFkRrMRbfQdmFESkTMFKAIQxqMEQESUiytQw3w8PBVDCYJTmoBzT4riNFUp4tLDsaUEpBQ0pYJpkgVyCUYGjqWLvcExlJjR6THd6j9VoSBZvUa1DeYNTgunBHtZ5Ouugc9B0SOuJoqWefYdufMTe3quUmcaoyGIMM3kLWUvX3DLwpyAGCFGS+j0iyCxVbeQUF5LcfDJeTRQ5mP0kPBA7omtTdQNNUjZURKVStZSACkvWSF36xhRR5HgS1zhG2+8zQSSpBVrvko3EQPAd0Xe44OhxQYRM3N4QA9b7nmojca7D2pbol+l2qSxtYt+kwDPQHwwxyX1Kw7q/xZi1eo3DhoD1AaUU2mQfHRjvBKlRwHoA5q5n2djOhyBWu37tzmTxyCfb/T/ACj5Vnza/UESsdTR1g1QKbTRGp7+/qhJHXMQkjaqygnI44uiVRwxHE8pBxvUyp64jV+8q2pWkiiVCgs4MiojCo6RHyoBDgJSUBwconZGpkugDvmt6D+8wvQDLg70RSkguxBKlApqKUkeGw4AwCaEeZY5yGCiMRQrJqy+P8TpH7p8SJhNWx8egW+KyY3W9pFm13N56XJCM9sfICLFuWc5m3F4+4+GB5nQfHr10zCN5Hxs8k8lkO4W9xzzTf9eS59/vjbsb5WwSKLb8882VW2Bz53HHqe2cV3fefh0srXsi/qXY2C4y8/xTf0OTqDXdaT0jZbO3SOeATD2wkXQizpsOUyp+9l99xNllybtPPB+823H5tKZalrhObno5TeGRIqCUI5WJoJhMMIMBmSwRSHybhrsTPFIIcplxNCwYjUtuREUtOrRoKAScDALKSIgtmXYcjyXjEowJvH76ADmYMPcJ9ffTCb5M6FpZ5kwOh4w7yX0reXZ5xaqqkC5gpOJw/4DRIAPfEmVAaMhMREqzoXBt9g+kgFakoe3f3x76q2prOw7ihac+xt+0ITSkQtWa6bB+543LWZvgc+/5gg/6EMR6M49u9+INm+Ju4TDN9lkLEqzPxl7iYkO/8pvftxYI6CGwTZTetmuhhAKpFVlmsNazXK36GkJE6gxlMg6PjhgfHjHdH4CQXC0K6nng+j1JVxuaqiT257VSDkkg0x5ExAmBKnKKvT0kBokh2I7oPUGk7NGonMIYTid71MJxxQotOzLRcZBrhkrSkop+ewNPISJGW/Ymik+9OkWM9hGjPdqTE1ajAdHVhHnH4vyWVeNZzj2mKNkbl8TWQmO5ujhnZhvmb0zZ35vw+c++keLo6Ll8v8BGx7JaEYSgqpZJkTcrkTrj5PQBRyeXTKZ7RJY07YK1yl0qICfVxRhTQrtOptdy6Ean/nhr7R2UZ8162NrLHRPkw33Q1mC2drLtX4dd9b/+uRA3SJjWa1/LC4jpHbT1BX8We0JYX+z+BOfDx0em+mQqrmXJ+1Z8ZSPEQCYtWikyIkYrjFa0VUcXWpQokNKk+WxKYIoS7yxNtSD2YhUheHwIRJWkXVsh8SHSVGkmjVFNf41HOIuKkfFQY0yBNHsgMxBpmF/wXaIhKoWQJOOOazELRXAtbnWNrW/pmhVmbw8zzMkzjVGKpU/UBq0kbdvw9e+eU8aGvUOD7yJ1rdGjnHKg+Zm/PyBSU//uOTfve5priROKELYDW0Xf16GU2CBSqiwxh/tIF5E24uoVoXNJTQaBFpqBLnk0OuHWr5h3DYoOTcOR0expybsx0sbIJI9kAozyTKYFp/eHfJf7vMc9ugefYznao7z5A1QzQziBV4bp4ZiuqWmWc3zrCI1FyRohSMnU/or94WfRxvDweMDjQcO3whNE0dHVM2JoET0dTyATRBYGSDlM8x6CXs9NQ6DToWj2EaEltmcJOXCeSE4kQ1IAgi4GYrRkNP33FhEoIppISRCKEFpi6HrVJkkkw8dIF1xKTIJLc7Z8h++HN+KS6p4uB/gIrQsYpcg0uLal6zpsUxFDIBtME5829D1tIeKjIkSNNhnamFTRiGAy0QcgMv09vXy6yU2C/+/u0xer+us92+/yndi1f3rteLae7S7MvT0ofnQrpmTKu+2PZARrCSFijMHneR/8SK5vFnRdvyd1Rq4LzGjM4aOXuX8gOBzDszpnXkX8SrJUiq4dIIQgzzVGR3Id0cqhpKeNkqgM+68+JDM5pRXYumZ1a+lcoHMeowyFyvnU9JhcG5bVYwINhhUTLXiUSW505CZ6RrlDS09uHEopXj8c05gp58PPEMaHrI5eJs6/Q5g/5skHS+a3S1qv0XnOvfs50gW62yW3sxnn77/H7cOc1T3J577wc+ztn3B2cU6WDVD99wEJ9Ul+QCFQrOdLpXuaHr+fnCL0qMW6P+qjqKOR7ZDM7Vo7p+0HuNMbsUt/+CGY21/VsPb7Xx8eoG6SqE0yvJXv3fS7IZi1HXqg+fmffcTjM0N+VBHigq6dE0PZK2QmFkNpAkoGjLa4KOiiZPLwlPJgn9IKhA0sri6w1lJ3HiU0hc55MNjn0eCAr7fPeGpvMbKmkJ6Xc0VQkqcBcu0ZTRWFEWQm8vqr99g7fYlvzgRV0PjRMV46tLhiNDrg9OQlhEysherP/5TlYoHsHCYrONo/IM8g+msIHhEh14oiM5uZa7CzfxAgNGuOQkKo+u/zb5hBfc8/d+1/PsIFsUPbW7/floa1y6h40Qdtg+fNL9qgBy98jB27Xve3aK0BgXU7ok2CzbDy9e/YpWTdLeYJhJS9CJJnOBpilCDPklz+qqogJvK/KVI7yuj4iOOXX+K1ewKlAh9UOTcXDrsQrJTBumGP20OmLFoEytyBgBpJPpkwfeVhAhSaQLeY45qa1qfPOFQ5e9mALxw94Nwtua1rdLRkccm9ouAg07wTPU30HA4cuRAYZdkrDfv3ptzmD5kVD+mOH7EcjIkX/zfdsuHd92a0naf1mn1dMB2UuM5hW8vi/JxVdcvi5oDpKPKFL3wR7yMXVxe8Myyw0eOqFW1nqVYr2qbuke+M49MHHJ+cM53u03WB+XyViheyF5QLKZkKYafXKQRcn0hb43qJ+y0KtX28ay9bO/koHxQ2byDuqE1u1WbXdqlUUnpcjxUBNnZ19823CdLWNsWOPfaXb172yQ6Qj51MydiS+UvK0YS82Mf5QIgwGqUhvVrnxAg3V9eURc54NECKSJFrhPAQk/BD+iNM6l/IM5pqyXI+I/aDuTrRJkpfYTaCCkoKMq1RKqFQShtkDHRVUsszQ4nUA3Re9kIAqccmBkcMBUJluO42BfAypoRudMA0m2L2XiYU+8RiDxRY65lfv8+qWnFzfku0kp88GqLNkLx8yL1XCmzIeeuDpzRdzU/unzAdSD7/a/epKsvVL7dcLmo+uF5y7Rxza3n/D/6U9vKaTz06QOaGc5Hhgse5jtAEQh0QtsVbgxgeJLlXWwGBs/o9Yg4nh4bxaMJkNMA+PeNisWC6v4csMsRBRld3vP3OBa8V8DkVGByPeOPwPpfn79A8qXlQNpjCsNIDos4RgwkiThH+iLKbk9slo8mAwcBw72HBYDRKCoQxIJTh8OAhn/3MABNqdKyIoSb4GinmIA2CDClzNANE8Jt7AKGfpaJBdAQULuRJxbCt8LHBR0UuQVHi3JKIRciqr1MlCmAUBd42eNcgRQoQPJoYwTULkIo8G2K7hqadk2lDVo4J0W+rWkKCKlDAQKcKbPQOJSy5sUgkMQi0THCvNgNCsNiuQvZ7T8UuzVezEKJI4hakIEcLGGmB1hla5ajn6CaCXUWa9WEgNxWUtJl3ndedI+gjN3fYqAaKH1FSJdI8OKVZ92mt+xCFCDRNDSKiVeJzaGIaSaAVWVGydzhF2Jon3/wqe2/cJ8uO+ez+feK+QLxX0+4FDn/hFWReEIcDmqtrqqfP2B8bxgPN+PghKi+5qOZ0naWbd6zmCrdYUpRDRD7BeIuOjkW4pHaBR/dyTD7k/2XvzZ4kya4zv99dfI0tI7fKrKUX9N5AA2ADTcK4g8PNZkxDijPGhzG9UWaSzPQ2pv9kKGox09NoTDKT3ihiSOMMRyJEsoFGY2ssvVVVd21dlXtsvt1FD9c9IjKrGuwmCZAicIHsygz38PBwv37POd/5zne2B4/hpqd8cOcW6dYOlze3qXbG1L7mxrv3kEXNz+zFqCymn0fAFHH0BqmoSPIEdrYY9AbUXf+7psTUFZU55dpjm7z0mV/l5OSQr33zPQo7ZHPzAcZaRqOtcw6HkBHSt1mpDq31oT4Q+BtTlbx3bb3oeRn9gBKv1TOwbtT+GqNxzv/6UQfuPxkXh1SSNI74xP4uAkeeeOIdxVbW56cuv8hi1vDB8SnTouRBXVEuCiY3b5Iq2B5FZMMxvfEuJ8WceV1STWuaosZMJkQypjfeQnlP7GqsL3hQvsdopBhkI7aH+0TecfLedZQT7O/u4WOBTz1HD86YPDhjfHyfQWL4xM4nqUXC3dtvEUlPb5Shm5KqWqB0jNIRTz/5ONcu75EgiLUCP8P5mLx3KbBNVTd3BedqUIVCyrx9PYhM+ZbF4L1Zlhb8ZKzGMp+3bn/WAvXlWItGO2y/o1o9EpjxnULvWkZ1CQ5e2P+csxpqoAQC052DDw2tMSw/151Lk3U+gQ8qwV0mQQR7LFpbv5jP0LVGK4U1llgGZopUisGwTz4YMntwD1tMeTL7BIONHi/vPcmRPkPcWZA9PWa0s0cVKSopef+bb1CdnfL8E1sgBW8fnCHiiDxXeO1xUiFKjawj0sE2QsVEdYH0lrvTd7AJPLkbMepdZiPPsPfvcjidMBpvsZEl6I2Yqqy4+e49Lo80L40SRmnMLImQ1R1E6ehpg+3nmL1LVMbReBmYVOU8NPg1Uz7/0y+SJIo79+9y/7ikYSM0NHaOqnaMx1sUi4KmbvijL/0pr33tW2xv77Czu8uv/dqv8Nhjj/N7v/d7/Pmff5kvfemP2+a1wXdSShFFEUJAXcuVbWmtw3ptFKwk91eZSLHc/nAN04c/q0tK6blJ1E1RsaTznWN4rM3hrgyiy2R1wAFr59ruujzPZSD3MRCZjx5MYYlEQZ6O6I9y6iYgZF0wJWVCXTecTKdIPHkao6VHKRmoWd6C161DG2SpdaTxWKpqBkLjkRQ0OOGJ47ilC4WbIoVECo0QUZs1sJhmjrcekVQoodHehsJqU4MzeGsQMic0N5y2iywt3atPnsdkWxml71GSYasJtp5TzU4pZxOqw2OkSrkyHiGyHmKwSZKP0EmPqS04O4XdeMBunvLMzj4NgolT3Dmd8c7BhLtVzWFZMbt5i2ndsHd5F5Un1CKjKhcUJwdYYTHe4eYaLyw6GSF1glQWYQrm9SmJjBkNhmxsjRhv73Dn+IzZyYSrSUYyyKn2xzSTBcdvHbNnJakUDPoxejvHfvAuk9kB24Md4iwjSgf4OCEa9YikIlWSoY/pkzDa2ibLU4a9ijiNwTd4r5EiJc9HxPGQanKLpjgM21yN91VQsxFxyEDJFO+DJPZykRU6iCyIhrbEOXBU6wrjwSKQJgEVij+9b7C6aCd6kE13CKwpsU1BFAeesvVtLV+zQKqEJB1Se0ddF0RKo3TcVWzhTE2AujRSCJRwWBP4vFJYpLQQCZyXgQogPEpGbXo7OMFSEOraXBBRcV6EGpjWaRV4YilQMoi0rBsSIQR5nqGU7rDm8Lo8b8hkiwBKtSpAXz3pF4xeuyiZxiw/QwjBfD7/yAvA32QURUGcJPT6/ZYn32LCQgTgI9IoKcK6ICT9XoZzoOOYNMvZ3tzAeCjPThDVDikRe70xcRxxZ3OI8fDsZ59B5Dl1v8/pzTscesvuOGM8SNh78nmirMf3r3+f2WzBxC1wdY2WGp30iYdbqGaKMgX1/BjrGrYGe2T9HuOtS0zwHFQ3yIRm3Bsy6W+AdJy9e4ZoPIMsJeklkChsXWAWJ/SzjF6aUWxI4sxiROBYV4sSIzxKO3YujXnxxWd49Svf4MZ793nw4ARjIEkz4rimKkP7hCUu56H1GlDKIIRfInshKPJrgfLKAflBsYz3nizLOK9m9Khgap0GKNb2gQ7hXw/o1z8yTVPqunrkPHvI9qwzOB5B4XgIJl8bdV196LYf5xGEnhRbwz54h3QNaT9is9dDXkkRMuL2yRFnxYKbiwWTyZS7piLTcGU7Z7S9z9blx7l55z0eHB1wxpyiLdpXUpFv7CJ9g6zOoDxhURwzyrbpbWaMt3YQ1nPjxrtEAq70hrheTLmRUp15HpRnLIoFvtJspAqrIo6qI7QUpCJFExqiC6VQQrOztYWWITjEWxaLA0Cik0GbbTLQAlDn1lOCjHz3UqcYFzyvtvXGBWDq/9/j7wbAOEdx4tHBVEfnZZn9Y+mMrp/N+rZzdSvL7NXD30C0x182APYeRJfpCDbuXKbrYrasTZAJEUCFizLw3nkcLtTtWIOPNNZ5lAShJFprkjQmzxKq6RlNMaOZ7aOynP3eBkkFt4cpu49t8/gLzzCPYwqlKA/vM5GOa1cvgxQceIXDE8cChwy+iA7tWeJshIoz5OIQaRZMi0PSJGV7uMV4PGZzc4c7JydMm1P2k5y4N6DcGtBM5hxUB2w4zSDV6EQRJ4JmdoZvCkaDIUQpk40RlXVUJgQ6zhicrTC24LHHnmW8OeLtd29SFBNGG7dJ0pQ4TqkrQy/vYxpDU9d877tv8vbbN9jfv8QTTzzOL/z8zzEajvjCF36Gu3fvkudZEPZobBusdAp4iq6pbvDvaO+nW8rgh7qo8/dtZXfOB1Ld6ysxk+7vdhb5VqRrfS49NC9ES4F+eL9uXgSK8MOzdy12WgVbYvV8fNTxkYOpYT/lmScuobItZDrCmNCCIo41UimUTkmMQ+kMXE1dLrDCooXD6z5eCOp6hkCSZgOkFOg4J8lq+qOSo0nN2aJhXjdYb8grF/ps5AlSK3SWkMWCngRc6DOVJkMiJVEqRQiJqSdBVryp8Y3HNx6hBMgYne6H82zFsoTwIBReRggLkYVF2VCbinEckfdz0k8kKBnTzwbUMqNQiqo+pF7c4VO7BWYDvvKV13CNYzjaIMoj4q2ISFoe1w2PyRQbxaQvf45bV57jvYNj7AnIbIQwp0TyPnmuibKIsyahEI7h/hWSXkQ6LlEFyDdS0mHOcHeH0dNPMHz6SQ5uf4C5e8gzQ9i93CP61V/j4PCMxc0TVC/hXb3F4sYZxdv/D688v8dPf/JTXH76FeJ8RKMUhbMcFCXjVHJ5IFF2gXQleW/QUtjmCOEojEIjSGQUeoYpjcrHiMjjqTD1KVLEoDrJSw/CIIRDirZpmzU4Efi2xgV5eh33qEzB1MyIpEBLqBeGuoiQcQnS42SrhicUpppSTt+jrTwjk5dQUcrZyX1MXUIZmhTL6RlVUTCbTanyBVnWozfoEUWaWIIXAtehnF5g64Jqdo840qHDeLIJMsFVDc4aFosTmroKKJeKiHRELSoQom2/Ilp5fk/T1GFOKxV401VDY5rl83Npd5c/+IP/gd1Lu6ybmQsZ8OWrH27/zwdTcB7d+au/+kt+93f/5Rqysn68NVlbVtu77FhHF1wiTL57VlaBnFKKNE34V//qv+DKlSsXshbd8Vb0DQhBh6d7XaGj0AzWeUc/z8jShLIsaEzDb/zmJTyWKDEYY5nNT8AbDvIB75zUFPenbJ/eIkkiJpMb4BoykYZMYrKD0jGCmv6lhixviN8FXUlGWUoyHDC6ukdZLJiVnmuuZE9P+PQLv0C6e43oVDCfnLLx3KexzjC9eZ3dzQ2e/dQzJPkGSTbiOS9wCFSUIfCYatY6JBFxJMgSePrZn6YsLXkvR0cRUihOTk74H/+n/575bEpRzJkvSqaTeViTVMQv/uLPcu3aVV566SWapuHVV1/jzp27fPvb36ELfIoiKAQ2jWkDrRCIyTX61y/90i/z7/7d//6RKU7rgdlHfc9iUfD7v/9vODw4YGWMgkVaBWTt/PTgvCPUHXSUHdZkac87c12m03l47+Z7P9ZZsBW1av3FkCAQQhApAV6BktRFwXRaoqIGqSXKnDIUJS9kEbUesP+5z1NVDbNFwWEZcXjzlMVigbM1SQzSaYYb+6RJxqd+6gWcmDM3t2je99Q3S4YbG2RbY4ZPPIa1nutf/zZaOK71DKOrj7H1qZ/hdf0aUekYXX0ecWmb7779Ds5ZnnvqSbK8z2BjHxnFqDhDRwlax+CCemccZwgBSjah7x9tLZTQD18DIKw663NNEYQoHHjLqj+hfMR7f0xH96x1nI+H0PeHs1Nhv/WXHg5Qu3V9vS5l6dauOb0CVk5xF1C1W1aOtmuZJK1EdnsCAhAyCI6p5drRAk/SI9xK7c8YT1U4ailYtHZLCoVCgNYsphPqckHey1BW8x/+9M8Y9Pv8wi/+PCoKNeebI81OumDbN1irmFy5zP10yFunFodkOH4G/AJr75HEMdkw4cTmzLUj6mdEqWDj6Yi4jkne6ZEM+/S3d+hd2qe3v8/dd65TNpL9vqTX97x254SytjxxeY84lrxxokEWeHmTJy5vsTnaZLzzJEIlZKdn3Lv/gC//xas8dmWPz332Rb722te59d4dkCm9/pi8v8G8OOIrr32nVc2TRFFEmoU+c1orzs7mzOcLqqqmLBteffWrXLlyhRdeeJ5r167yy7/8i3z3u9/j9u07iA48LIsAhrTUvy7gFkKEeiWCPP76xJFyFXidn2sX8k1rxVTLYEmEAE48NA87e+Gw1i0DINkyPda4Pmvz8rz6ZPuWoFUggvCJWzJEAqR4nr76g8dHDqaiKGY4HOJ1htVRyKx7QqG9lEgdpK6TJKWpHXVlQViQDinDhHftA2JNA6rNUElNFKeggpy6cQ5jLWVRobTCC4mMPZHSaGmxkQsl2yKk9XznHDuHcxU4F5rbOoF3ss38iSCbrqO2KW6gI4XFRaO9AWfQQuCkJI1TlJSQBSGIXEdUQoYlyBk8FaOehsxzu65ZzErmRYNKNUkZ0c9gI4fYNmibkMQ9kn7C4kFD0xh6slWFs77NksVkuUYLz3CkifuaaCdCziJ0rMnTlPGwTzocIEd9klGfbJjTjyUDDUk+xI4U+/t7ZEmMH40pDu9xOjsDtU/ay+iPt8j6Y3SqKBqDm8zYzGB3CNgYbxvStIfSmtJEgR7nTKDYocOP1MgoR0gDQuBboQ5EaKYbFGBsaLoLhPx7K1GPx7sGCP3JvAzCIL59Sqwtcb5Cq6ZFMfQyLduYhqqchG7MQqOtwSlLVc1pqgJtQmAsgLoJjWMbU6EbRVMrIBQvQxBO6NAvYxqapkLJ0ABZoxBC40VwUkNvKYezAe0KQaHDtw2BQ1BVhQfP1CAFFoVDYZ089yDGScJnPvtZrl279pEfzr/JeP31r/HV1766/HvdYJ77YbU4BaRJLOWyu87f3rXKOLLrIh647YNBn3/9r/87Xn755Y98Xsv0PrD6zwqZOjo6oqpK+qMh3htm8/vYqsacTbFljUUxM4qzyuNOZsQammqOEg6VxiAFeR4jE4lMDEnfk/QFSaKInCBPEnSSQJogs4y4lxNrSewrxnmf4fgS+7uXmKQp6Xifuprj5bvEWcrm1iV0NkIn/UAxloqodf5cMwtzJx7iXYUzC8ZbWSuNL5fXvzGeGzeuc3JyxGI+ZTKZc3wyCcGljtjb28EYw6VLuxhjOTx8wN27d3jrre/TNAZrzbLDfFXVQa3PhmC9C6asc/ziL/0Sr7zyyt9iBv314/j4mBs3rvPmm28icGvzqm0xsLrrgG/pnyFT2dnL0FBdPjQvl/1HPJxNpj/U7/EPdTwqk/JwUOmDDWwDBu/BGBfEYXGYpsaYmsiBcJpeb4iTDdVC0FSGug4qt84GSqhUisEgI89ytjczGmEQJqY6idFxTD/LyPMecZ5TO0866JN6Q6ZgkMTsbGyzs7nD7s42+cY2qrfJvH4XbysGww3y3pA47yOVRuoAXikdBQVcF7IMQkh0lLCiuK5AnHVH/sLVav8NzdiXQjytY75678NZmX9U4xyi9ehdziPuF7ZdRP7hXMDz0CH9Sj92KRKx3NbVY56nY3XHpDsP79fuSUvfWzq+buVUd/J/fnWsbl50xxK4ti1KcNCd94hWSEAKgdRhrdEy9KvSWqLbZ+Xg+JhiUXB4eESSJRAJ6qqmKkukacBIIhUTZwMeFCXOwziJ8dSh3ZlS6Cgh7zmUd6geqMTTGyuiKiJNE9IsZdDrE+UZIkuJ8pyk1yOLBImwmEWNQLGzvY2UAgN4v8C7ktoY6sYi44woydlAsFgE9k2eJWyOhyRJgnVgrMcYgjCbiphMjzGNwRjHcDggSQM7JoqiltXTYN2Cs7Mz3n//NiC4dGkXKQX7+3vcuXOHlYA/LQAAIABJREFUo6Mjmrq5QNET5+7b8vcuGIGAiIkVtW+plrcEic7T7NYnpl/78wdmmNv50gXcyLWDrE231Tx8+LXAKlptDPYn2KCPA+Z95GAqTjcY7b5EVZfUdYnzEusFUZwE59iEiy2VxDiYlI40ViQyIsOjvcXGCd456tkxAoHRMQhBnI7ZGAgi7Ymmc8rSMT2bYp1gmlbEsWLQ1+hRn1jZVno7oioLajw5HoTEGRGcahkhVYZK+ogoR6gYdIqXCiMBbxG2QuKR1Ahnibxh1MvwecJ8MMJ6z9iHRq2umdHDsMMZ9cYGjdpH+hDAjb64ydHhAX/6J/+RB0cl795xyCxB9XPEdIpYlDTjZ7DJGBs9g/dTTm/9Mc5UWOeReYzqbfDSkwuublTY4QeYCO7JBCsVYmgY7G3z9ItP837W4/uTkmuvPMcnX9xDf/e7nDw4pvqzb9LfucR/+V//N3hVU8szvvfut3n7PcHXT6a8cVjzT/QtLu9VfPKFy2z0Yrb7GyhREasC4XvgI6I4QSiNFmM8baMzBEi5pJhG6eMoobDNA5wtqesKISEmRYoIpSLwrnWyGhAVvpkFhcQWSXLeIuSCdKBwFmrnaZo51jdElqAu5F24j9pRNQtm5RQlQApPIx3olNn8PlhLrzdAqIhGONIoIso0kVRoYTg+uY2xlo3RPlrFGDMNimfWYGxDY1Iao4mVIHMLtG4C9CshSjdQukGrGGsMxhisD1mpqF2cvQ3BeRrJEFzWBSgXpFPXKFo/qhH8q1XPBr8WPEG7fLWLh+jQmLY5q1sGUytxAinapq3r7/9bOCNBlt62tF25PGetFc5plEyYlxXfu1nywd0Dvvu1b2OzIa6/g8+v0B8OKD54jdnikMZ6hE6YbPTZyQ2f/+wCIytqWVPlOY3uITcEOoXty5dpehk3q4bk0hY//9tfJDq4y/TwLvPJhHRR8vlXfgbrDSp2zEvFtt1nY3yVfOsT1FXFoqgZ9D1a6dZwg5S2LYr3CBmhoq7J6MXv7akbQ2M8QqQgamivtXM1X/7yX/D1r3+Tb3zjW2xvb/KZT78E3nF0+IB7H9znzp17QKBNB+ZD21/He8wyZv/RZXFC/6owb2jnk5QeqYIh8t63krpiGTQFVaguuDof4Hf74F24tI+wsz8ZYRG27bqi5KqGSClJHCukihBC8f4HlsOTOXZyHy8UYnCJqVHcmmbY2W386TtBRAeB7I1JkoiXPlXTzyRpdpfG1cycD+DDcMxod5eNy7vclopKwsu/+rPExQx3cJeqrFmczXj82uNcunQJGXu8MGw9tYN3nnz7SSIVsSgWJImjnwSOAaZBYBDKdbkSlO5DxxN6RMb+vPN2cVugfyPasoJW8n9Zc/WPMYj6OOOcEwura/no63LeoQ125QdRJqUQeEEAG/2qvx2yledv/123QR0g4Fq1uFUz1xWdWbHKeIfMdQiQnTUBlGmFSXxXpwtBUXptfZFCkGUpo2Gfx558kstXr3D7/TtMzs7Y2vQoJbh39yZl7bj9wYLNK1e5/EyDnBfIqsaO9nHJgGTzWZwpOb33KtY0GAc6i9H9Ps/tL7jcqyjVAiMdxWAAi2CD0s0NLl25zEGUcLesuPzZ53nm+avo999kfnYGC83Wzha/8Zu/iZeGsp5y/+wO90/v8uf/7/c4/uCMf/5PM65evsxjj+2yMUgZD3vEkSDPNeONETs7O9y5e8DJ6RytUzY2tqjqQHmczeYIpajrBusVQmYgJi0IYzg6OuYP//BLjMcb/OVf/hXXrl3lqU88wcnxIUrCO+9cp5gUa+v4qrmu6+h9y2g3zJlVlkecs1fdDsEr6YzXWsbqXMKqC+DAuRWoC45lJ481G6TaVFnXMDrYIIlSbbmQlO289A8xI5SS+FYlssuqfpzxMfpMWeqqxDQV1tRAjEAFUQcvcN6EzxZB/6SL7KwXGNNSvaTCeYG1oWO0dU34slq3X46g2iMcpqpprKduU3zeWEzdUBUlmWxlt9ubZY1pHZogRy6kQqgoNFKTbR8AsU6dClkt1zZnDWXgCqmDo5LoIIUd1ODK4LQBCkmDxruWhoAjSyN6vYTBsMe8VqisgSTDx32KpqaZN/TGKWnSYzge4hqYTGOEiImSEWRDfDYmit7DNlPGmUL2Ikq9R+0rfHJKmmryPEFFCishHqX0eo6t2R5ibrjVhKZyo1EfGVu8jpiUj1ELx8m9Gc3CMiunTGYR3u4itSTRoa5HyQicauUgm6CgpHOE6KqNVoBPMHiKEP6H+jXfokbOu5Ch8hLvTfihAWGAEnyNteFBUXiEMCitQQiMEzhThobNXgRpYO9DcNIsqGyBdQahgrKMsUEm33oDWCwmBGCiwXqPcR4ldOjfJT3Sg7EN1npMHeapFwLvBUolobN30xDVJXiD1BEIFdQgvcdr3fY2IDSNlkH2W0iBNYC3IUCXIdOpdITWSZve/tGPlfKfaBGbNrUNy0WnW7D8hd8/DIlZpeD/dgIES7nbJeocjh1FrbyxCJmaLOujownzSuK8AaYM+pvkg5iTQ09FQ1U7FIp+r0caF9jmmDQXDPsRs3RAqXo4PUXIps0oepwEmWjyqE/kNohpiNPQuiHPUhwOVIMXOePxLv3BGKUThDFhKi8X/a5zO+tXl2Xhu1jfNxh/01isaVVLl+hecBxmszl13XD37l3KsmB3Z5vTszOqqqJpapwzyy703T3sKDJ0T6r/+4lAuu+/rJ04Nz/OO8VhHfbnjNi6Q9fRkLp9fjIujJb6svoz/C6lIopC812PIE0yssxwelqCUGzkKdJqZoCXOYgBSiVBnCnuI7UkUoco4UhUTSMlWTZC9EAOHXmvR5ZlAVgDsmFOmkhyU5L0+yglSZIYFUuQBodiNNoG74niFIlc3lug9c6Dg7UUOcCvslIX5gXra1p44cJlWW33PtCK1q/Pj30gxYXHcj1S+tAAdX3fVldWrK92awdcc4BFu/ade3w71H/N8eVCtmolYf1h5++X/y6PvZa1kC0NMEwd0eLA67XHAYio65rFoqCuG4yxrK/BVRN69ZVVxXS2QJUOVUu8LhFOsrmrwGlOhKF2NVXpSHuCwaCPkgtsUzHsCUSScNYbY3yDVycI2dbBCo8TgriXkGWQLrZRKqZ8/4C0LEnTBKkTkkzQiAqrPEJdp6gNxyfHZFnM3qURUgpGwz5KQRxLsiwjzzJOTyecnJ5RFnVoaFw3NMbSCUQ1prVBdhmJ4F1oazKZTLDWopRCymAPJ5MJVVVhrMG5tvUM7ny8s5oiPGR/RDdzHjGEX9t9bQ76dptYzbd1et66ab0o1LVeNdUBxqv9u2O1AX/LphBrn4Mg+HGuUwR89Kk/anzkYKqYnvLg+huIOEbomKg3RkcpzeIYj0PqqKXcaYRsUDLQoayFSVmCc8T5NkIoaq9xxmLKIjSijaAxJc4ZNoZDhBRsDFNq4zicqYDwu4ZyWlHNK7JtRzZwKKmRQtJUDVIr0n6KkClSDhAqA5ki0UgvQ3d3vyqidCLC2oq6KEiTHB3nqDgORYpC4J2lqU4wdUNZVjgR4USf2TzitPAMI0usDLaak2rPZ17+HJfnNdGzM7zqQzTm5ut3efDuCZcvP8d4d8yLnx6DG3J953mywZgrT32GSiYUMuXNL/1vvPmdN/mXTz7G5b1txnv/hNmDMw6/fp3NPvT7gn6k6emYSKfEWvHTn/tNkkbyf3zpDawo8H7GMB1yafNJLm8/zec+Lbl+9w2OTu5x9NZb1Pce8JnZFRR9kixB6RSlc2wzx/mCujoFZ4kHTyNUhhe6dbADy1ricGaO9SVSREiVoKJAZ7KtipJ3DusWGDdDCd+ijifg5pRFhRCCPEuRUqKTPvgY56MgV2+qFn1QaKGpXc3x4gN8VYIvkVFGlKYUVYWpS6wMxY/TqkSJGq1LFqVlOq8Z9fsM8ozBsIcUEZN5QV1biolBRzGD4YhER+goZj45oiineD8jUoqktxPq9dIIKwTOaaQ3KAdpb0icDFBxqNOrywLTlMxnJVrHpHlKlGwQJSPSNP/oT+Lf0RBrC0RYlbqAbq3wc4kKtQbKg192IF/aveVCsl5HJYRY0nX/BmcXEKDOwK26wpLnfbz3VE2DjmN+6sVnyKI+r339AfPpA2a33uLZa0OeubLFW6eKY6MoDg/I1AYvP3eV4uQ+737jW7z43A4vPrXHSfYUU7XJ/eQO9fyU2ewELyzZxohEChCGnZ3nuZy/Qn/0OHEyYDI/wjpHL+szzIYMh5eJpUZpReQivLdIqen6goXr0yKmzgS55w9REfPes1iULBYl1jYYE2TYm8a0Br2iaRpu3nyfW7du8/bbb4cgv66p64q6rtpaqSABLZbKWt0N6+73j2Z0zotshS1CE0ZPV4HcZTSXTq5YOUFCqAB4SbV0frq5JlWg62L5ewMj/uGO8NRqqdcczvBLkiTEcUxtDMZanv3EY5SV4atFjBCCz7/wBE54TooCYXtIe5XxaEye9bk9mXM2m3Hz9S/jFhWP7yr66RZp7ylQ9xHxXTb3dsnGI9IqAFsqjcg2Mp546gmieIMkG7IopyyqijzJ0FqTZ5t4JGkc46wlNnFoD+LV8oZ3IKdv2QzI0IB3+Y3F+e//g+f4KqASIlrb98c1kLr4vVvq40PbLoAfjxwPhU8P3YqVjHpYE9Qycbrm6l7kXK5lqi7e2c4Odfano4k5G9gAsg3srbXEUdwqzYXFpKPYax2yKNY01HXN2ZljOnubt966SRxrlAytdLz3FGWFTlI297ZIMgnFKVLvo/pjJic3kKf3ePHlJ4kjwfcOYs5OF8wfHLD32GVefPEJPvjOfa7feMAXf/5Jtvc2Oeh9kvnJlHvqLayZMJkc48Zb5MMBWhiUEDxx5Wcpz2bc/tM/YFKVLBanDAcDtvubbAx2eQLFe28cUMwq3r3xJkdHd9nop/T7ffJeTp5nDEdDtne22doe8ZWvvM69ew+IkwwIfbeEECRJQttCrgXmApU/2KAaWtGOpmmYTqe8//77fPWrX2kDTkNRLDDGLG2QED4AzRfu77n7J9deb32O9aDl3E1eTqLV78uYuLUj3T1tn/A247iq9w6OjOu2Lrevzm21HnRCGp3g1/K0hFi2VAqVQB/dBn30pr3GUswrVCNQsUQnFqEtzpR4b8MiiUR4j5atJPoSWQqT3jRNaByo2y/hQpf1umnAexQKa9p6Ji/BeXxVIBDoWCNEuIlKBuQ/jnsopXB0WYGgMtLVeAjhkZiQBbMW4QQ6ClLWeBGyFlEPoRKQEc4DNmQ8vGuwzQxnC7qsjMCAm+ObgoP7D7DFjKI8wjpD6RXeCS5lApQADX47YlinXNuoGKUzek2CsxVDFH0p2IoMTimsakie3GEWPcu1a08x3t2k6ecUxjJ+8QmG4xG7m9vU8QCZDBirkoG0DMbbqNoQ9SVKlYjjmwh1GbG5TdKew/6oz0BvMlhcQTmYVRavSlQcVPakClRLVIR3fZCh9gJf0tgGISRSJDgf1FmsK/FuETJ5QpHKLgXvlgIPtZlQ1cckcYZWEQ6Lx+LtAi8E1ketQyrRKkKSUescq2uMrcFbVBzuQVMusHV4yFWakXb1PTiaoIeK9CaAHJWjbBxlY+jZBOcTjLcBFZVhcZfaI5VDima5yErZoKOwaFvnaZowLz1BUVBI0SoDSrRKkDJ0BUeIwP8XKflgG4FDSA/OYesF3pkPf6B+WOPcenbe+egWndVzudyw5rSEAGwVUJ1HhjrhgI/roKwr9awCvVYBqDun5ULmyaQkEg31/B6+PCW2C2Q1xy1mzI9PmByd4JuKGMturqldjtjfod8f09gBkdP0lcftbrOI4M7t+6hRxbUnn6ecnnLr1l0Gjz+OHu+hVBTEQ0RQbJQokJK4XcskDq0UIknD2iU7KdYuIPR4X7dxje4u6blhrWM+X7QKeG7Z2LALUo0xCBGy+IGKYFrHILw3dJ0PP86tZwd/9IHU+e/XmlN5wT1bR7OX7wnzRsoLtVKINaWl1nkS7mOhgv/Yx3mlqxUQEZxNt0Rhl0CFlCghubo3BiCLFcaFxqA6jolVRJ6mJJEmlw6nHVf2ttHS0B8OMFEPGcf4fo7fHDEYjUh7G+zqmMIZdvSIXEmiNEGrdPn8xDgUoeA/kr4FbhxKQhynbX2qbO31+vNj8DgUXX/G86iweMRvH3Kl1kCai/v+Y5pQj3Zgz49HbFtHyc69/OGZ4PMB1Id9nv8B2x9hg8T5u9E9/ysK8EqsZknVW4Jwa2uFa9V6XWBDifb7GWPadbWtgekogdoRKAYVTa1QMtROIcDVgsh59HyOsEHUwsUSFxXIZkKkHBQzTAWTwyMWsznCNvS0Z6+nkVsjBm4XpUdY0yPzoGKNv7LPZFHw7jvvs/Vczv6VASe3DjidnPDkp3eQcY51hqKYcnj7OnZrBy2uotOMKFbs72yyuHaZs6NjZtMF3/ne28RxRKQVaZrSH/RxzvDss09x/fr7nE3mWOtbuxG+t7WhZVBVVYSsbbA5y/poH+qnuutrTE1jVorEzgWhB2M68SPX3urz8/BDeC3ntj2kkCfOr/0XQrJzWaj1rOTKj1jDEx/65LWihGXgtMaKWPtdrgV/3rVU5I8xPnIw1dSW6WlJnEiiWJHkDSJW2HqG95Y4Vgih8AgSBTJPMMbRGIeVQZ7SlSVSKvJ+HxFBFCkWizmLaU2qJbGMqMoS6wxoGQrnJqfoOCHubSFxSOFI4pQk7pMPL6GjGO8rnGswZoGgRTwFQfIagwDqBjwKpfMQdCGRKiLKcqQSeCEwLtBpTD3FuRJXPwAfKITCO6BG2jOoS2586ysc3bnL8bQBrdl5bIfeoM9TO7ugDKiGvccV5XbKvj4lk1MmE0/VGLYbycA6LvkJiYxJdMwrrzxJ8jOXSfdeQKYDts0Em0H9q68QRRl5/xJ7+SbP5WMkAilgM/c0xYRkW6MXZ8hbryHEp3BXXyDShkgZNjb7MI6ZjbcoK8MHDwrmpiHPJZCgda9V6stADvFeYNqAqSwOUTIiSzawVlM1msbOsG6GdCHq18qhVGjA6EUQ8CiqQ6aL2wzFPpkcYr3FeoOzE7xQNL4XsoWELuFa96nTERZYTB7gXEOSCbwtaOZnFI1hVlvi3DOQUahHkp7aNcG5tDXWGIp5ifFgvKBvUpzLqEyNkA7V1jjFGShpkTI0gW6MRSmHzqCpoDHgKosQNZQ1UaTI8xgdp4hYI2WGFBGdNVCRRscJ/dElTFNQLo6xTUVTTHHN37O087phO4cEL91bOipEh/ysaFfnR4cOyRYR/Ds7RdeipS1FI1Z6iXBqt6A4/DbSOXIpYHZKeXjIwc3bfHD/LnEWk2F4oq8Q/RH7yXM4kTItM3qRpK9qtp9+gsnpiC/9L/8ng/E2X/z13+Ldu8f8x//0LbZ+ZcSnnx0gdYyUgoRAYej6g8WiQYqQlU3iGCFy6OhKa5fI+xrTHIcaTJlyjrLQDmsNx8fHTCanbX1YK31uHd45GmuXgZWUAmNDkXCaZiHotzYUC7cCKisL036cD6DVj9JhDB/d1d89vN2t1eZ1AfyqhmE1nzo0MBwxBJjS2o9tzH4sh2/Vs9prrKVaBlSp9rz03B4draqqPbF15ElCv5+HLKDw9HxBLGuuPv8USkeobIzzlpEtcZsDbC4YjPeJ8zFPl1OMd4yTAUo4nJ0hRMgIRAIQHiUkAoUWVfgbj5CaOG/roVh3XAA8TXOEdx4pMzqVtn9cwc8/vLGyAx89g3dRVOJDdnr07+eAufU1TKzZlPM1NKvYb722RS23dfWZpl0zunOs6wrnHKat5Q9ZGLkUXgAQ3iGFoN/vIaUMrIiqBGepo4Q6OcNkRyRJQioFWZJgTo5pjOHeu+9hrCFKI8ba8YmBYvfJPYrdHKMGzKuYYWNQieLSZ17k22+8xV/++7/gi6N9fv4Lu/zR//0q73z/TT7/9EvkaY5xhvl0zo1vv8r8yicQqsfGpmUUw7NPXGWzF/Pnf/5VDg6PePvtL1PXNVUxR0eaJEn43d/9LX7jN77Iu9dvMy9qDh4cUpZlS80TWCOo6oaiqNA6PH+hXjesH8576rpeXisdSeJGkyQpURRhrW0zU50QxQU/4RGB1frG9UT6xXnziNB+bct5RKULu84fost8XTiKZ+nTyDUb1NVRrdsfIeSqb5kPAL3n49mgjxxMJVmPrf1rGGux1tDUJcxrXBMmsKl96BOk1PIBUCqg2KYJGSIfGvVQVmXgjzYVZVkFKl3tafAIZUP2SUiEkgyToNTlqwIVx6RJQqTithaqNeheIJAoEYpvZWCIIrzFEx5PY9tsw/QoBFw+Cj2P1u7bwYNT5vMiSHiLBi0nRNrTzzSxhiwSoehaerafeJx0Y4vq5gOK2nB/Jhl4R5ZVDDb6bIwz+qnH1jFbsSaWishYrJfs7jxPmqds7m5QO0lpJKoG30SIokA5hxMCKXr0t19A64g4zlBJRi+JlxMhVgaV5nzhU59FNTVXI4lKE3x5HRfFeB0TRwlaDejnjiS2YE9RoglNd53AOo1QA5TqBdU65yiqU7xv2rqfBCdSpIQo8kid44jx80N8s+DkqAqKhEmGVJIoUnjn0FEwnM41WDxOSFSc4pEYD9ILNArjPc41RFqRJwlNlGGsxFYN1nh0lJNrSPNQB2AchIaNYJ2isQ7fNNjGU5VNQGS1wjlLaWrqyuK8IFEpeKjKAuEd1eysfQaDqphUkiQaoJK4rZ3raqoUUiR0HSSdszhXooRu09ghneFcyHRJqSgbSzmfY8zfQ2ZKrNTd/FpiasUdXjNo3ba1/63jQj9QPedvenpieZjwt5ShRq499+58IHCWo0iSJynjwYDp7JjZW1OmixkqivjkJ19kNN7gO2/fYD455fbNdxAqQuiE4caQXi/nk88/TTbY49d//TcxzvPWt9/gzu071EWJaZoWZavxntD0m9BgGBHQddGtJaJTFeuK2tXa9dEoNUQIzcV+LBe/e8dPD32kXBtM+nZehYsSVJZsQBdNQAzDex6+7kIIhOpUsNxFK/PDG94H7rxnif3JlhUAa+ijp23QdgERbI8R9l0F+av2Mj+4n9aP63jo+RGi7U3WbVyff22/Ou/AObSWDIc5URShtca1DZ6jtIeKU5JYB+qLTnCEtcwJjZUpXiisqclUjBeg21pmt+w3UyK1JM4GQTVXSqRI2/NxbbahDb+9w3u1dKDDOtsPa8/HoNX8eI2Ljqp/9Oa/ZhfR9rEL//fL/ZaAyMWkATwE+y8Pf6EIaznrWlrD0r9ud5PnUwoP2aBH1dacD7rbT2rBAx+iqQCKQqtMGfYxxrTCCOcbyQrM8lM6Ozlvyw+8kHjhME2oq7bWkaYxcSTZHI/IkpRbt69TlhWNs4zGI1548TmiLOPr33mLe7ducHr4ABnnqChmvLXBaDTkpRee4cpjz/Fbv50R5zlvfO11ju7dpy5KnHHkec6/+O3/DNvU7G8OqYzle2+8HtSLpeTq5T02RpsMh0OaxpJnOZPJhLfePMYXJVMx58tf/goPHhxz6/ZdhBA0pm5rbYN9sbZqJcR9m7ViSfULAdVaSxTC9ro2OFe2CrIN1j7anxFtb82gBtyCO2vzwnlW6393J87NJ7+W2FxlngLxyCHcisGwfE9XN7ysu+oYDisF3XN2eJmVWgMcPXRCSVK0c823TaN5VJbsB4+PEUzljPeuMJudMp9PMKbEt+ihkJKmcQgvQar24ji0CuIPpawxbTbF4SnrqlXJK2gqg2sMpTHgLHku0FqghURLwSCJaZyjrEt0HJHFKbpVLGqxi86Ut8GUbKW5HQKLXcrGhqK7pp4HB5oU4wWVA+vBeM+71+9ydDjFKouQjiyvyTPF3mbKIBVEPfDOIiRsXbvGYA/ulzHV6YyDwwmVd+wMaoYbMBqmiL5EuIZBmobvMzkDFTHYfxodaeJIcrzwnM08qna4RiGLEm1rfDxERj16W5cCNQJLHgmUFqE2o11kIpXxuec/1WaJ+lTzO0yPv4lzI5wbIuM9It0n1hLnLKlosHZBU0/xTmBdjdYaqXoIX4GvKJoJ3hlG+Q5CZjhShDREskbLHC8kZn4f08w4ngeVvngwItKaPFH4CHTURwiBtU0QIxGBYukQ1G3HcuFlixw0QapUxNRxRl0L6roMzfainEQpkiQGL7BtMCWkwDqFMQ7bgK0ddWWIIk0SKZx3VNYwXVQYA3kqgxBFVeJNjSvmSKFRIiKKY5SOSDc3Q78THa6tcxKpgtAGog3RnWnFKFxwBlTUOsYN4BBKt1myxd9PMLWWsejWmaWNvEDZe6Tj3a10Yn3hWu3uOyT8b5k1WKcP+mWAtn7MgBpFWtAf5OzsbfP+rTscHByyKCqiJOG5F55FRwnfeesG9+/e481vfQsdKeIkYrQxZjgccu3aU2xs7fDLX3ycw8ND/ujf/3GQei1LTGOWanree3SSEgRWwucLqQP9yNdr59V991VtlBARWketM3Dxuqwc2wD8eIxtmx26APasatJW72raRsxV2aGF66IV54eUoqV7rQzJD3/4lcPUDbEWtPMoxs+6txa+SxdIyS6Yat/4sJDFT8b6WH+Gu3l13rkN2dMwNwIIoCNJnOStwyFDs09vidMeCEkcRUubqgCtEqxKsTq0tzCmIY2zZRbR44Nz4rtgKkJEPZbPhQzuhXMl5+dtaKq7en4ESvU+5PmBR835v+bqfMz9f0zGEhAiGIdHjeUSc8FGrD3Xq+feP/qtrAJn/PnXu3No/ziXUVgCep0t+AE2qHuhs0fGORq/2tct6ePr5+gwPgTsIlCXAKjLUFek4wQhA/3NWAeiYewHRJFkvLlBlia89fa7zOYFxlsGoyEvffpT3HtwxLe+/w7vfPe73L9zhzSLiZKY7e1tLl+5ygsvfJb9K7s88+wn+cY3v8lrX3ud4wcPaMoKayxTjS9EAAAgAElEQVRpmvHP/ulvUFcNR0cTblx/ize//1XOpiXTWcXv/Of/nL1Le/T7Q4wJomf372u+9a0q1DQ1hlf/6nW+8Y3vcuXKPlmeYZqmpZL7NkPXUYFb2rhzAWRpVRQ7G7S8UjaAfU1jQoDR1uqep/at7nUXjDrXAXrd/VndWYlcBswdDby7h6sZFP5ZZ79clEZf1n63wNHyUKJTH3543nTTbf18u8m5boN8mCar9fRj2KCPXjNlDWUxRwBZmiJkAnhMU2C9o5xWWGGwOqCv3jqk98jO+fIe5UwwmlGGlwqvBFpaYmmCmpur8dLTAHgdshgqxkuPFpCkGb1enzTvE6cDjBUYZ0NFlnM0RY1Sgihq2qheQVsUnicB8a2cxdmGqippjKVuaoqyoawMk8mCaVlT66DsJ10PW1qqD2Z4GrxvGG3t0d/YI20MCY5XXn6Rqqm5c3gMpiFzJU423Dm8xeWdS2xt7tJL8yCW0b8UgookAyEwzpPGkr2RoLdxiQSPVw4vPAUxjfMcHh4i8SgseT8nH/SIopDVkTJCCA1REiarlMT5NkP5GZzIcCJDKo1FovEo6UgzjfcDbD4MyncerAX8GQKLwDHI9vHOgmgwpqBqCiKtiLSmKQ4wzYJelpL0riCGAXkwKLy3VLbG2xpHTZT1QqCicpzQFItjPII47QMG3xwgfIrwKU4EBb0oSYOYCCnWNaRmhpQRke7hTYG3JbUN8vtbvZgmhqqMMLFEqYh+PmBzYzMUWXpD5BYIY0MdDAJTg7cKRI4xFlfXpGTEMqMwgkYaXBl6XAgriaMGmXu8jEDGeBtQ3q5XmavnICVR3Em2xsTZmOFWTJz86AUoHk6Rtw1z163Rh7xj3ZURywWrQ4HW8+h/907uivqxOrYxhrPpHKk0eW/B4594mhdf+gyvf/2bnJ2d8Z3vvIlSitPJjP1L2/zKf/tfBYltKXn1K69x48Z7/OEf/l9kaYrWkjiKGY1HXL16lceuXePe3Q/4/X/zP/Mvfud3eOmll1gpgGkEcml0gzpYRw1YnvGHfZMPeT0oSQXuulmiaR3X/7yzEFDD87Vt3bXxnLtOnja4D1kI+Yj7+8MYKzvTGTq1pFWEs12dh3Nd37muv5RaO05LM3FBTMbZcC2k1C2K/pPxUcfFQDpcR4X3gYLtncdYG7RYVaC5h2sc3mdNhSc005ZCE+kYpXSb+VqtDkunS4CWefv6CtXuaPRdlknKhBUq3NXmfFgG6uL8/Ulg9MMeF3Ne60/vo2qpujXqYjrs4Tu1OvKjYaDV54alJLRVWL57GTC1q16X2eyCtDZo6qh+3ZrU2SxgyR4JSTCPdW27ShHU7QSEelgpUFKAdxRluQz6prM5URRxOp2D1Hzup79AUVZ89atfoyhKvva1b1CUNfNFwc/93BfY39tFKklZVvzpf/hP3Hzvff7tv/1f0UqhlSTv5fT7fV54/jkA/uRP/gzvHXu7O2xtb/HyT/0UWT6gajRF6ZnPa77xze9x5+4B7793i6IskNIzOZuEenQdWqs676mbmoPDI7RWzGZBrdBas8xOdXVBoTSio4u3fSU5H7A6H3z487R/CXTtXtYDpgCOCBF6CVrbxgCAECEGgFUQs2zd0h7D+7V54rpmvXI1Odr76RVLO9KdqF9ml8J5OufxopuL7bn70Cf0/2Pv3Xpt27L6vl/rlzHGnHPttfc+N4oqylRQEYwjGYz9gHEiUgqxnLz4CwQrsZMob7mJp8gfIH5ASqI4SmShWEoc8gVQEsA2EYjYMXaBhKGKKqDgVJ1bnX1Za805x6Vf8tB6H2PMudY+Z5/i7HMI7F61z1xzjmsfvY/e2r9d/o2s26CCtQWcVRmUZlApxZD+AggoUtJCgGLQHBlT6p0EHbBhTARgnGJxGUZsDJiY8M5gBUiaf2QbfSrZgMmRkA3JaDLclBOJTMza2WydTngj+KajaVu8b7G2IcT68DM5ZsKkhXCtZHIBU+IyYjLeObKFYDW0IaSRGCfidCT0E+NhYpwmhpgYi0UviiMn6PuRMUwcxwFzz7F1l5hwoDWR177rPpFIe+EZD0eOjx8x5Yn98RrMZ+h2O5r2Ams80dtSJVpDdlJMNNbSecu2a2idY4yBmBJDMsRxoh+ukZRwJM3P6TS/Y67/I2YV8phwbovdfYaUG1JuCHkk54AQ1ZXpLIjFyY4xRKZxIuaJHHucZAyZxm7JJhHSY1IOTGFExGNtR5xuCP1TZPs9uHbHrjXEmDkOk9ZtmkadlHEkuY5sM9Y5pQZNagZwYkl5IqajrgSSwFyQpSlFUQ3WWFIO2CCINFizU7cvuggYgW3jCSZD1JCRmFu63SX37r3Ksb9mGA7YREkmLAFbEXIyGGlIeVTKz2zJNEyJOayKlPFRSVAmb8FkDVON1ZoRi+dtKDl6HsSRRcNk2q3WfPnUWr799Uwknm4/t8TUMIqyra6duf7+MeKp09j9pchmjInjsadpWm72Bz73+e/lM5/9LLuvfp3r6xveeefdOf753sXn+Yt/6UdK3DN8/fe+we/9/h/y5h++WcBL4v6DB/zFv/Qj7HZb7l9e8s//+Zf58pd/gy/9mz+BMQ0pjVRlcAGjFUDJmRJ47mX5sOdbazMlUhVSs6cvrw4pC3xJrD4FcHe1BTzXhNpPpp0WQ52hXlIBqqYFVZ5r8caqhGudknJ8sXKnnOb6cmo5/yT78v//tlZ4l3FZ3noRS0SLkEuuifxmBjjkTMiatxdzUhIlKknEGhjHRVFFEFPXuARoSQx1N6w9t1XNkPld+vD35+5f/vS2Oxb0ZzU5+zw5rmqnZ16h+gLLHYfl9fqkf5y8mmuPuTC/09VgNCvdwGpKnl0ir7/MN3US7lvnzlouzRENp8BraTW0uG6bszzLfebZAGfKejxNcV6fh2HgcBzY74+0bccrr73OOE50XUsIgTff/BYims7y+c9/jh/+4T8PIlxfX/Mrv/pPub7Z87Xf+Z05uuD7vu/7+P4H97m8vIdzjl/7tX/Bo0eP+eIXv48vDBM/+qMtzjeEKIDFWs+333/M8Tjw+PFT1a/yxGF/xBiLNRljal3IxOFwQAQt7F5ScmpEQwVGGlKeZqAw1wObJ4I+yJTSivTj9pgt46X/kbluU6HCK+OxODfX7/9S3mMdupyl/rD6kdVX5mmqZ5iNvtXrusy1epiIytMkBiOJXOodzmrNSgYpdqnPy3wkGfTcYCqHQDgemZJhTML2Xof3FgkGGy1dtyGKxeCZUmKcIn3omaYBeXqFCRP3dht849luoirMvmFkZAqBISWmKdJtlDGLqA9n+2CDazzt7oJNt2W7ucA3BisTzKWmNATLuQ3kI2G4IsREiBm/vY9ttlpx3Th80yCihAXeQdds2Wwt96Ll3cO3uOmviVZwLvPqKyOtBT9dYtsOt7nANRssEas0EDTuAuuFL7xh6Pd73s8JkYC1gQebDjBE6cB0tG1B4uk4v1zWKjNh670mSGZPRrgwDSkFhq1anlNI7IcD7zz5Jt5vsbbhsrM0zrHbPtBYd1vrbxmMbbSIblamxBS0GKYRTfAV6fAuImIYp5FpGkjxQEpTeQ8y1k44I3QXlhQH4nSgaTraZscQheHQ4/1GgfbxhixC41rGSWtHXT8d2D89cO/hPby3+N1nATC2xdAqfX0eyXHAyyXWtIRCZap1rsD5+8QYCONADA0pbHE548i4XUNIAbKlnxJD1grg+6fvMsUSTpU0d85MN8QkHAIYsWydZ3d5Qfuaw/otxrVah6qPXO+PCHDZtRAST69GckzkkBiCISTBk7AiNE2HcY52O2pegXF0XaNhiZ+KLnAa2DBbVopwuFVXgWW94kSenTHG1d9LXPXH75u63YZh5O233uXdd77NH3zjTX77K19nt9ux3W5oGs97775H27b8wJ/9AbabjnffeY+2a2m7lr/2V/9t/upP/ATjeCDEwPFw5NGjx/yTf/r/Mk2BGDOPHj1SFtLZ3HUOgCJ1+T4FWN9Jy4UGPZyAEDWGLN77qkAsAi7ewaC43MOpUsPHCnI/sAkrwbm+kTxbQs2Mh1ToaW5XKoyFGpIRi/fPJleME3FWrddhJy/bd9IqmNFPZw22hN4hYNaWWVBWS5uxuVBQ5wkNcy25KFlKNETxOp0YQdbXrOddvz+CqhsvAdIfy3YOpNYLy8pDNCvG83+gegjmEy2uq7J5ZYCSCtLPSXwqOFr/tgp9VteS4n7DHJa2bC7KNEnDtMrlzLw8yRzWt5aJgtA0WhNyHHs1JoSItepBf/rkisOh5+mTp3jf8JWv/i5N07Dbqd7z1rfe4jOf+Qyf++z3EEPgnbffZbvbYq3lP/mP/8NS1+pAmCb648DXvv51vvKV3yGW4rA3+xucN3SdOgoyQghqRPyhH/rz/OAP/iBvv/UtHj9+n69/7Ws8fvxE+5ih6zqsC4gRvNe6mH3flxC/cY4IMAJipITtpfk5V8xiZnCxkH9UnFrrUVlrV0Bo/Xl7GdBnXQo134nOlylSS2vkeXLNSbOrvYsnsubKre5AWSBPw9v13ovhTkyZt4KQQEzJrUuasiOCBM21csmhjM5p7t/yTD68PTeYqk9eM5FUoZSkeSU5ZzDqErNiSIi6Up3DxKTH5MwUIwRDCBMWW573yqoApX6Aw+QStta2uKal2+zwvsO4BqVOr/SaQsKCAWMF8gTJkCOkIgRyTsRxVM9CLsVXvS2h24JYh02O3abhYlsKtnpL46Gxho3zNJsdm8v7hKAvgaPEWCYgCY1tSD7Q+BbvGrpWaJsOI5Zccn00aTeVl75YRYzgrNK5iqiCjgimEHlYaUglEX1IA4yZSIIcmaKORggDznpKTdwiJJfEX2CpTI6GT9bJaIwoYUeOanVUHy2i/kGMtXjbQE6EEJWUwnakaVqslDljiKoY2oaUHNE2pBAIMRAnrQshdkNlUMlkFdIpQtJkfyMOYxZFLGPU45MGIiOCVS+VaCKlcYJJjsZvyCTaBI6oeVpRk9lL9RJ1d2clmrCiFh/nPb5tMa4B42aX+GxWy4mY1A2exkAaJ4ZoCckQyTgjkA02ZYybyDaRTGaatIbBicXnE2x1fpFXoElOF8EayHFixxGKxfLMvFfARl2U/igEFB9y5ye3mpLWvkhJhcvx2OObhj/zZ76H3XZL03iaxmNE6PuBb33rW3SbDZvNhi984Qu8+uprTNOBECf2++PMShRTKkxmrBZ6Ofu3PJcPD+378FbXoduP7vazvJ33tAZ6zwZ067C7F9+KYiQzv1K5hzVxhN73LChnEF6q18vi+TCrpPIZ27+wefYnuZ15De7YpoU3S7hU3VJCa+Qk7CaVORv1t+LNmNeD8t+VWgXcztt7lhL2sj1P+w7egfmQu561nJwzr35ZsNHZces1v3ohKriR9TG5/v9ETpzKoAVI3SmD6j2ey6D5Zs+IaWYvaT2yHHtnz2frznzMmhCnGrFmBjjLTAUepqDkUv3AZrvlC1/4PCJC2zY4p2RET548xRjDxcUFm+2WH/iBP0vTOMbpwDROHI8977z3LuM0qfwxJUIrK/vg/mbP22+/zaPHj4lRCWDatiVnrTc4DENh6EuIERrfzM/XiMEaNVbFwgybkrIV1jX6HLDOZEl3gaFbrQ72B7/HeX2O+ZDTOVfv5dyoS76Dnv8MmK/dlOu860WYL+GesCxZ1SOp8kVJLTCC5MIuSzUUn8qdjyKCnhtM2aale/gq6g6C/ubI/jhiNRuHftL6K5tGcE6Z/C63l1jrOFzumPqe4+N36I8H9nGPM5aNazFWMA46A13jSVkgCRf3X8H7BtdtEAGDosUpJAVLUsgBjMGV0B5pMsIGuI+LERcjRjTJ7uk3v0oKI82D17HNlouLN8gxEMejVoSeRn7ge1/jez/3Ku8MgTElUhgBx+bykt12y+W9S45XT+j7Gzq/xYpl//iJVvVud6TY4vwFlw8f8tobnyEW+uN+HIlxwKL1OJpWld0pjSBgjTDFkUDANxus9VjROHdxG7KF5AXXbbh8+HoBIomrq/fYDwfMdKPHdPdw1tF6Tw4q2JxziDQagpoTKZsSH3qEHCEHTBjwceSYW4J0iAzEFLi5vsY1jnvuPsKAWIv1W7xrcTKRUySZESTT7EBjQB2pccTNhv0+MwyZvh8wY6C5eIhzjsZZUh5JcY+xHaYUWkZ2WHNEM7AGtSLIDpMM2fRKg++ExilF/pQmYky4y46Y4JUoTGNP3+8J00SYJgY8IWeOo87J11+5wGKxqYSnRIhG5hpZxgqvbDeQEzlNjCFwNQ5Mh4Fx3+Ot5hH47QXZeoYYsAImadyudQ2Hm4FH715x3H961Oi1Gjzcqa6zXkFrEqcxpgjDvCy0J2dIpLRKEH7BTckalBKcDOM4Yq3l8cUOAX7sr/woYoSvfuVrfP13v87P/dzPKY3tpuNv/OS/x4/9lb9cvFC6djjf8uqrr/Ndn3mDv/AjP8wv/Pwv8ou/8A/nMAhjmpN+iSxkFB9Hq6EjlAU7x5X3T04Fuy15Kimlsv/ZefQJrZ6VnuOThB/nDJHz7ywK1fwDFIuf9t1aC7Ywr4oUGvXFiJRi+mQ786eq6USJSQ1iSuhktOQDqMJKJKWpWK09dRBrrkFII+qpaldKsluUajj1SLxsn3x7piZ4F6A6tfif7lv3um3oMNUwW+uezUcUJsnVldZMbac5c0udQTHlPFnrVspqn1MChPKvaublZ2fVYxpLBEUqaSCmrOVqB9BwLik1K7X2EnMkS0y5pOyYko8UZ0KgCmoe3bvgs5/9DP/6v/GXefedd3nzzW/y67/+61xfX7Pb7XjttVf5L/7L/5zXXnuVUJhZwbDdXvD662/ww3/hh3jju97gZ/7ez/D7v/8NfvM3f5Pf+pf/kn/8S79E13Vc3rvgn/2zf8av/ur/w/5mzzAO3NzcEGLkeNTIptN6fRmwDP1IP4wzCETUO2PdbSNoDSU/lUFldMSUyK90ZiDTHe+SQSnXvKxizi9zItUxW51kzdI4e45mo231VNXLqZfrRAbOXsa7wN2iu6ztODln4irixjmtF2qLZzWlDEY0xSSdEnI8T3v+MD9QhTMqM0goFt4k+oKN04gRwWW12oecMY1gkdkSVjvvvceIKUluWijVpIgkLe6asqAun4yRPCNvI+j3+hD1CcyPLku9HyGbQr2ago6mASQTQwQTiZOGIIi4Qn+d2TmLj3BwPf0U6HvBOY/zLSkL/fEICF3b0dpGvQ/jpPxeBkw2iNvgXKfJvZJIknAWtfiFwjwzjSCpeNgiOQXG6UiIA244ajHcbqMeulJkOCFITjhJJW8FGueIJHLqdTurRMIs1bmySjIWalx7DMdqqlBF2jYqDDPk2JcD1TU8TEdIAzkciSHQGIspBZRJPUJGJBZLw1A8TA1N0wAlRERMoZo2kNUiYLCot6lahQpBCbbMAQGrQlkVXQXGzjp9GZPDGM3Psga8czijDJJZjmR6UrNRGnNR+k5vrV7XOMiaRyXGIsaQJZJrInXSMMGYQMRhbML6rADfOcT74o21iNVcuJwiaRqZQs3F+uTDlGZr22plVHmzWPDmBSYXISplfq5oqXXnlc3yxFpzh9XwhbQa/rZcV614I33fc3V1BcD19TVXV1c8efIU77U+029/5bdpu2YuSpgyTNPId3/3G+wudlw9fcphrxbDlPLZonyXWvFRFMLn27f2ZxEcVSguoReV1KgqEXdE3+gV5ZMclxV+Oplrq+e2tlDKKSxfW4SNtYXJb1EMdF3mpQ7+AluBPytlrConZWuuhBEUNbta7+OsfNcxm8956x16se/Pn/z2AS/zrCB+xKPvGprnPd9Kv533PzG6cWpYqWvafDfnXgdOZVBevJ3zbaw8Xuv7OIVtMuOqeb1ZeZvgDEik22HqImXNZalNNEd4pPX8z3PExOF45OmTp1xdXXF9fc3Tq6dcPb3ieDwSwsRv/Pqv8+DhwxK6rGBgGHo+//nvxghcPX1K3w9a36l4k8YpsNvtMMIcjTGOY2GjDhqGWGRaLfBeqb0FCjvtaQRErka5sq7Wx5fLw1RvzdqIWECYMbOnZtYrnyGDFmyV53VlHqV6wVtRLXWtl/lcuu5LybOdBf/JvFp7pKoxr37OQRDkk21iZDWHVscXGSQiK7KSEin2EdehjwCmMiEF+v2Rm/0RJU81RFGyif3TG4TE5CBmYUqw2bS0bcMw6OQSEXzT8uprr5JS5nDTMx5HhsOEzyOWgDQR4x3jcU9OAW/BOF88NgZrwRpd4FMcC/uLho1FE2saLN43eN9quF/M+Hv3SKFlGGE6DozDYxrfsukusF2DbRo2WGKG6ckjjuPEjTNY52i2G477a9577x2++9U3eP2170aMhtFtRw2FGHMiRcdoXsG5lpgS3hhaa/F+Q0xwuNoTw8jh+ATnhHbrS52EwKOnj7ja3xAOjzFp5OF9T7e54P6r3w/GksQgEjESsKXO1sPdJSklDv3b+jIUMJCYMLkk+KVAwpFNSxYDuSfFA8Px2+RsITuadovrHuKTICkx7d+HPNB5x5QmHl//IWEaGYeebtzThJHdw++laXd4c8BKwnuHGDByhbEPENfh5ILUbZlSeTeMBcnkqJW2Ld28+E1hJKaRptmSxTEEtW40RASHd/cx6RqJe5y9RGxLY1yp1fMYLci8m1+Ym6v3OR6ecHQ7Qky4Ym0N45GMIZtGp3/2WtDXChK1+PPQq8drzFpssm22dB7MLtN0LdZbppDIWWjcRhexNBHGkeFwrYDRGjCfomldTq0yp4CoqEMyb1G7xNpKtT4Ri9VxWXxffKseCgFssSIZY+j7nkePIr/yy7+KiDBNU6mFMdD3R1KK/IP/9R/wv/9vP4tvOqx1XNy74Itf/Ff4T/+z/4g/+Mab/J8/93/w9a//HldX14RS+f20z99p+6BjC1XvSqClUm8KqpBQ0gnrHORMSlKAej45z6ffloRmpCozMhu5VIfRbWv2viqgjNWxdN4v21fzShWEl0r1C2siWOuwz1QBlKRnWUgAEuP0hJwj3t8v1v5njdHLsfvj2z5o/cgL++a8Hp0m9s+g5QPaytay+mUBRTJ7o5atCT7EG1DD19eKvyrBVTZV5dkWY5T+XDwkBYScpBqQcVajqhzMhjVbFOxcwEldp9QbBPv9DX/4Bz3vvftuIXqI3NzsGYaR4/HAkyeP+Tv/9d/RNAnf0TQN292Wf+ff/bf463/9r/GLv/B/85u/+VW++eY3ub66wYg+936Y6I8911dXc6heDQSpHnylPFdQVfsSgscHzzgFQjgliSFrmoNIqQVYZVAZjhCrY2EVglmK2OYSyRTTeYj6HXNoxpwLKDmDxic7njIFLqisHqVeqhr+vcyntfFntroVT5Wp31eyRIresMwi3dc6HU/lUVj0o5SzGvjsh8/zdXtuMHVzfeAbv/sWU4xMIbK9vI/vHORIyomQJqyAcw1pisQpMEqGGEBK2IpTkgXQzrVbh3MTTTMg4wEJQyma6pSSVQySM5Ky8neXQYYEom5akyGGXhn64lEL8RqrLHERLBFDxDVbsmsx1pGzkLJDrFOQglUPg2gtom3b4q2jKS5jRyI5S9jscE1LNg5r1IuSm1YHkYYYwYiyF0qWwiACmIiRjJGBlHty6EniSLlBcibmhHWGtnXE0ZFCpB8mUj5i2/fxzYZmcwFxIOaBOI2AwTrNQfJGvTtWglp5EpoftBJoKR4hB3K8IscJMaVuU7aMGaYYiKkwmtimvHgRmyI+JJy3tGannro4kYwwxgGmvXrHJsFawAm58Vhpi0UAyK6YCzI5BfJ4BdYhrlMvG1a9ezkRU6GgzoXVTyyJhJg00ybnGDEErDSqnhbmx5qIKIAzDm8aZNMqkCOSU2KQRg0BRslByIYpBcIUCFMkBx0/Zw3WupIjKDhjaY1FnC7e1qkiIcYUQFxyvcj4tsE3G5z7FNj81roPp3/nuljW39dmKtafd5zWyLwwV4Hyopu1hm7TAeC9L6ELiRgC48rTXePEaw9yhnGcEGAKS37UW2+9zc//X/+Ix4+f8tZbb7Hf75XJSZ71xJ63Pf8xVd6o8/OUQTGDeuIMRRjcHo+VE2t1eVk2fkJAaxG8p+E66+1ra+5aAJr5WLklrGookHV2DhN62T7eJuu/njF171Iicg3rozI1Vgvv3Wf/Tu7oZXtxLWfm0C5tS87iMw8oQKoCqtNlZ4ZMM1aS8/Unr8RMNeCJLP/KPjmXPHie5VFb5Vnl+TDmKIyT7+V2ZMnBzOUcrNYi5xzWKrnPOlwuZ41uaJoS2ZASvlF9pBZP14iGGgKXy1q+MNjlnBmGsRj7ItM0knPit3/rK7SN43e++ru88/Z7xBCKrmE0T2pSPXdmfk2JGBXIaM24layeHTdZ92Ei53WB+SpXqowR1vlkC8lUno2kiJCkhuGdAtf1mN4eqGWtP8k5OtvOau7BModqfnn5VQFyrvXoqqzXI2uo8Wk0w+nV1ueqInYNxKpB4GTurwCVlPC/j2LQe24w9fj9K37j175Kt21pNw3fvb1H61tyHDV0LU4YZ2hbTfIO40CeRoIRtvfu4X0DjQ5SygbnGnbbLZKDgoQbQzoKvt1oBXXvNcwNkJTIxXosYslEJZzwLWCYhqfEqWc6PCYZS7QtyW2ILrLx4K1g2ktELA7loh/HSMIRUKpwwaqvzcDldquW4GSIMbIfDtjGY91DfLclmxL2ZTL4LSIWazekGJnsHrFapyanRCBijOZuWdmT6GE6kKQlpJ0y06RI0zqM3TCGnnEQ9sen9MOemN9id3GfzaYjxiNhvGGKEBN0mwucdXSNL6JtKgqZkPFE8UpoQSaFp+TUk6dHJBzWPiRkVd6OORGmAZeT5qbZDqzH2j0SBZGEMxu82dVIO26GK4ZwIPZXmBSY0EUhNw6/BbGGbLXGF2YL2WmCXxhI+28jzTYGrOMAACAASURBVBZ70ZCyJUgJkwNi0rEw0mAxWOORPJIJBBIhgs0TJkJrduplKnWAyKrkG8AbT3Idm6ZDrC31fTJiou5rmrLwR65urhiHiThOEAMXjcc6D5t7DFPi6jDQtA0XXcMYJmKK+KYp11QGoVjyX6zAdrvl3sNXabr2uV/Ej6utXewnv1dBtHKJ11YX/xPgVf574lIv/6xzd17j427OOe7du4eIgqn9fk/f90zTSAhSLHNGQ6pTUmETCyiJqYRCxEJ7K/z+7/4+f/e3vqJjebEj50zj3Un89otsNUxCAV+xOqaV8MlZyXuAbBZweHaWM/kmJ/t9Uj4rFWR2nkZLiOEqbKPcn1p7wVqZLcnGyIm1cGkqqdUS/Pz8SC/bi2yLh8LZ3er3dQ7My/bHrZ2PjSrdlfZ78UCs9rjzBFVvltX31U6zN+PZSKj4KqoVqMqgZ93zCViqv6/lkJn7s77eWkYt+nVe1Q7SE9YIB+89ztlb5zViaLuO7XZbAFOibdV78fTpU2KMDEOPmSzTpGx6Rmp4IDMAjUHX8IXFNfMrv/xP+KV/9MtcXOxo2oYYNaqnbRpCiIzjWO49zyBpmtSIaK0pz/H2exdCIIcFdJyGOZ4OSpX0FayxAkB1/zUYPefR0tBHVhPhrDRyyqtxu2N8P8R4suxTHCfIyTxYG/LqWK/lT91v+cZM816Bsyky6JYxr0BvY6ymc9wpo+5uz09A4Ru6y/vs7nVsLloa77EZNr4lWse0u68Iu7vAZ0c3RqzRPBUxpiQYqzX2eBhxLtEmWzw2gukuce0FbVvCPuwGEYNFabIFq9TT2SiSiCCFQGE8HonDkXi9VwW+E7KzJG+ZsieVYpZidDEhgyRRoGEyJkckBiWSIDP2B1IMyDgipRCshi5mrLOIpBI2p0XKtBClI5lAjh51pGl9p5wjXSkK59sLxLZMOTOGicfvv41pN5h2y6ZpaJqW+w86YgiE/YYUR4YwkY97ePwmXhJeEs50WO8J/TUBMGGntOo+k7IQk3pOrBEtfJcj0/EJMfRM0SpQai2xsNVZq8/iMFwT48BF12BIDNMecsbIBYgnYQmpJ8YR7wyN2+Larjy/A4ZEFK0DlcYjpr1AnMP5jYK7EIhxYDoesdlid4JIg7Mb+vEpYRqwIWPE0bZbRDLT9FTdW9Kh+XSBGDIwEfINmcz+eF3yyZ7Q+C1td4kYVciM1XpjU9QwNmf0lTFMhBgYwwQx4ozBdfc0kCAFoli8NHgT2bmEL8WfyVNx/WvuQLXguMYq+LeWDFxfPdXcuE+6nXkLzhevOQ+iGGEWd/p6MZKT42T2cQofthB+nC3GyuYXi1VQwy9TEcbjFFTB8177UJKH0+wpLAI0JY7HI6ACbgn1WJJNP4lWQav+XYSW0RzB6qFKxcBBiLMkWtjV5jMVi2+lpy7soMW6+8m1BdhVMH4y96AoLwWEr8L96jE1B6HOt1ogdhgGJR552T7+9h29wmsv1Kl1+WV7Ue0D0Ml3cjZhMWDc4RW+y1M1W/A/4LwndcfW3qr5uqfWf1nNpSqDZo9GXubWAt6Ec5lULnynLyLPYdG5rEunZA3zxfUUMxGBiKgMmQ2LmRAmpkI1DmgIXdK89RAjeRyVIdhp9dzZS1TIx+od5mnSta7kRmleleY8IdAf+0JdPi1hicUrpex8mZwKCLDVK1xYOVe5zucgpsq2ajBMpQ5gOaKID6O58uVEKWfdkTADrztlEOrcqM8+F4KQhR/hVBydhuot97w+3/ynLHOvehdPwwIXM+Isg6hz9fbcq0BqbcDLuR6/AE4p0UY1L65GvDxPe34w5bTWU3e5YXd/g/cOkzPWNeTsGDcXCiqaHT5Bt+kLXaMhZB12Ux7MNIyEoFXWrVEXp9vs8G1D641ShZsOMsqol6UUGhQSZrbmSg7knJj6njQcifsjuAakQZKD7AjiSFlD0MQAISKAx5caBBnJqQAzjUkdh544DdjhhqbdsX34htJrp0RASJJBPNmosq4sbgUhe8cUImmaiGlCaWXVU2XbDbgWT2C4fsrVk/eRzQPMRYv3DRvXcK9tyWSONjMOBw6P3yP0R2K+5qJRmnjXbTDOcnNQ0OezIXuLs1ZD/KLBmoTxuhjnlAj9NdPU0+cHiHO0bQ2ti7jiQh6nA8N04F5zDyOZOB0Q8Th3H9BwtzFNhHhk12zwtsH5CyAj0xNyGkmxV3/PNOJ9xonBug6kIeeeJIbQ92Da4np1iOnI6QkxDJBHMB7TXgCREG4Qs8G4HTCS8UrukCIhHcg50g8HSCM+9rB5iPebQizoEGPJYkhZFU5jEiYnDIEQR8I4QM46D73mcIXjoQgbhzOGjU1FyVO2O8qCm0g4p1Yp5y3WOlzTMY4jx8OeEMJzv4gfZzsXkucCpEYlz8JsFmLnNMfls1jbPglv1LrlrAuaWvVqkcGqYOQi4IQG7aNBc6xi8UpVgarKefH0FOU951zIKhw1SfkF92Z1T0tbwEcqXuUaIx8Xa+kJsIVZ8JwJl0+yqU6dZyvsfD9rCSrVCmjmTz1syYtYQohUyGtJgVSSrj+d9+dPfvujzpnZ7P8xn/dle962KKl3ga1n+n2euY7fNrqtzGdnVv4T19ESw1BEhZwcf3K+M/lz2p8FSN26uxMA9uw5tt5SCRdqM6JEA9bauT5VLtc1ZsmFyqI6IMXbEUIobH/F2Div18oVEMKEdQ6XSp4NrIx5C7lD3ZeVQS2ESNN4RGC/78mr61Y2ubW80mNVnzJmvfbWMVj6exr6tpITOZ8BnrKtDEmVUTOb6mycXWSknJx39eTn+XDb2DIDovNjWAGqamis86h8rq98Ov7LlhnQ1/FZoThjZA7nr+N/MpvzyoBcDA7TFBjH8SMx+j03mDLe0V5cYL0jJfXSEAPNoNbhTdMVl5jBGcembWZh31idqCEEYoyM+540BY5Rmdka32BwSLKMMZGs4Bp1yznXFLRp5pcqDJEUAtN0RQoT03EkhUQu1dhlOhYWwIRrElYafPMKYhvEO3KM5OORGNG8Ktli3AaxLSKWptuQvMN4pcEO4x6xFmMdre0Q0yhFdEyMYUIkEUwqL4JamQ1CmJLSc+ee6EBcBHFsN/cwGNJrPcE4ggnc7K+43sP9y0u8s9i2pXOW16yQ80hOezCOAx43RUwaaNsdBiGmhpys5hmJwXqDccomePz2V5iOj8jNPYzvNJhRIvF4VYg9Wq4P73HoHxHjoB6pMWFJmGmvkzkeSGEiTj1BOqI0PLp6DDlzuWvw3rLdbMA4cmoLA1uN/x2x0iMmkfMecZHu9c/pMwwJZCTnI8M4MEyBy3aLt54UjqScOQSLMRaPQaSjayyTHElhgtSTc2DrLORGCUrEEMYDMUykGLB+g9iGTXdBTJnDNJLRcMamsVi3JWZHwoBoImZ2Ss8ckpBEyM6TEHIA8FhjMEaLK4cwknIiEjXsM6qy+GmVp7xla6zCcxZI1TNSF5F0dnRZDGuQ8dlZ78pzeVGtWvnUm5QwVskZqhCsQiBMk+ZtTosVabGgVyFULJUpEyQyjhPOKZiqtLcvviVq2MLioUqzNXgd5y6FXpaVFW9WePJpaM6nUc9sEV53zAc5jUm3Rj3zs1DOWhDTOTfnT82KQLEKN43HuZdhfi/by/adtruc1ItiXPc5C+XWP/Q7+dlC7Pzceb1OrQ6SJe9ESiHX9b09O1eqgpfzez8zDs5K+nk/C8VFUciX0GKZvSlS+j8M/ZmxR0u6hBDm0hq5sEtbY2cQs84lC2HSEjsxre6h9iPP56UcF2JCZKAZm5lFjtVzO8k7KqGGEaMMwaVUCCxEPjFqjdDZjmW079bWnKEFQKw9N9oHfYLGSPFcrXSG1dxY+lRl0AJkZlAnBajNMvdcNnD2mx63JmGS1W6C1k3Nq/Gfo2iqndfILc+ZrOacjrudgaOSTRRWcaP1uXS2LzLIGkPbNs8IRb+7PT+YMlYLnFqBrK7AmDMxKBGDd7vS2RKP6jx1+JwzJaY0EiOqCJewOfGZLJYcEskmkoGYDcap5dxYJSRYOlUfBqSxJ4ZBWVoSZGN1YqSgjHHWYrIruTdGAZExJEZCClTKSOO1vowYA8bOOSFK5Q1x6jE0c0ifsZ4pBnUJxwlyIpugx9t2HtgcEylE4jhCyjjTYKzg3JbcJnbbC8aUGFLiepgYYmKzaTHS4F1hmDE7cnTEKZEwxGwhg42JTdNiMMRJCjwo9UIKCpecmPpHDDdv4x7uQBxi9fgcJii5JCH2HIcrmhIOmdIIOSFxKgrtQJoGwrAn+VfAeYZhJIWJVg7QNrBpixXdgwS1bqSIhIDYETG5eK0idnNBToYU9bll0WTOlDPGKPlITkE5RKLVRTFEnAjWeJwJJAspqRfMWwvZlBfGkOJU/gXENhgTcVbZBnOZO6DeJmsdqYQwxtRDjkjTkBPEQUMWs1FwRcrkosiqpwr1UCWl98dEYhatVfApeHLmtg7TOAFTsFbkF/FVBWohFK3hE6uwgU8DGmq0QWU00sRaTJrvsQ6lriuJaRrLWrEiN6hWuLyyFKYlafgknv4T6FBGAeG5pnNLaOmXMyDF8iWzjJOe/FNB72uL9hJvf0owIasQm4rRjZjCmFUhfJUryt5UmbNetj/O7VNa3/4UttvAKD/767OK1s4v2zl0WXwGiwdpRQ1dP/LK+bC+qXmdumX5Ob326nMtg9ZhYSeGpqKUz/d9u0PanZRPFP+82jaDKVitSWswt6z/dhUCqaRGVf5kaiyd1k5SOZnLOXPO5FIPMcY4K+6rR3kig9RrVQ1/UpwG7pZBbXHW6fWrXrkAtlKbzxhSWiIv1oM2319OyyMUBSaLR4gyZ8yJYe8UQN0tg26z/9bz3fnlHDOejEO933k/lnGX1bbza87HrOVhGf9adqPKkgqkqgdKyyItT3MGyUa01NFH0OGeG0w1jePBgx1WtGCq9WpVPFwdMcDrr19irAMxZGnJkpmiUipK1hyTp+8+Yux74nHAWsFvGhp7wUXbIQzIGEBayBamAbLDtspYZzKI9RjXIGIx3jPevE8ao+bk+EyODnJAUg8Z4hTn65s4aVKZ3yHZEI0UMgWlxxZ88X4ZrStlA6F/SugPDI/fYXP5Gpevfy/ESGIiDAfipGQEkAkiiPFIC3EKxP5I7A/ksefYj4iBh991ibMO51qtefTKGxz7G46HKxyGEAWZIiFN+K5MbDzOtWzaV0hp0kKK2KKw7JE80TkwtqXxOzQ5MRLjwHEYGaRlaB5wDFrjqWsflIl5JKYj481jOpPpLl9HTIeIxZk9OfTsb6459BPv3fR4gc60bEXobGL3YAc58ujtN+lFaKzDt/fotm8Qw5HInjAeGftr0uGGhGEMI8Y27HavM4aR6+tHdNsdm21k123ZdReam5SFOI5kDBvfEcYDx6ffwtkOaxu67Su03X1G05FSwJkAZExWT+A49hjb4H0HWGVWRF+qy82GOArDzQHjPcbvFLjlwPH6hhgnfLcDMSSDeqZQL2ROcDhoXYiuVU+Y+rSyelSDEPPEZtex2XQ4Yz/wnXpRbVk0zwDdrKgvwjRnJXGYBVrdsrKmycoCuNr04lvOWrurWC/1XVZKZ41rVqvdVDxTzCEPiyDTyAkpRoS8Ch1TIVoTgz+R7gBav6cUl0RIOSq4KwK9gvRqFV4b8taCcq0OmWrZ5DRf7kU2NSqpAYMCSus9VS/UOrxPioU6l3G8E/BX5aGCzk+kJy/by/Yns92NP4rRLHMiG3IGsbNP4GyFWSm2OVXJ8YEXnI1B9ZpnGnmtYaRekRLVU80qIvN6ON8ckE9ZD2ZwctbBk34vOCxrOL5zS+3B8llD0FIx/Bhri+G0gpjVdWTJ/8wUY1yhRk8xzjJIWPLTNG9LwwxjDYcqfQ0hzPK1lopYZ/3k+rxnrwzEsIApBXuRUxC15BEt4YZlbV6BS2drYXj1aOkzL16ccv55ipzJoBp+V5vKoCUfe+53ATMV0NWbqF6i+puRRVc6BVTM8qNKBClu0IUV1pQ+V/lfKOBlqWNYCwmLSElvOQV5Kp+MGsaJc+8+igx6/pwpI7SNx4j6QCptrcaJ6gBYU5QuY8B6nfwSiWEkhki/7xmORxgD3gnJZoidFuM1NSFcChf++n/MD6laKio9Yn0Q+sI6csykiBaAS0lpxA24FAsZQxnMUqi3RsjklMgF3c9LSn0TZ0RM2Sdojas4zQXgshjUP8R8DmMMWEvMtljQS85Eyf/wviHGhuTVoxRsJqAvkKTimhan3hrXYJIlJ6tVxzOY3COiIYXGuvJMIlpcq8Tb4kjSEDGYXPn6s1b1DiPDcE3jHd45jPGIcZh8JGJBPFkyGa81pJzBWY93lrZVilznu6JMGbWcZHW5pqQU7bpojfP2nA0pW2LSBM4YJ1IYcH6HsV7HL0VCiCAJI5YcA5LVO6ELsEXEgTRKj2/dPGaSjsCEkRIfHbMWuSqF+LxrkZgYC4MjyOxhDNNECBPGp+I61hdOLT+66ItQQgbU22lFY6xNLFM0MecKfmqeKTgBUmvLzbnFsC6+51bBk/1zPjVm1vfoBbeamLwyXzGHboicWJskr6xouQKqtev+9NzLAvwM69oLaWuznMz3neX0ea7VmfmvM6tcXo3b4h36ZOZbvdxabVlAePm+9kzNluty3Oq7rHu7vv2VYHzZXrY/ne3jn/8CWiKjfpfTNf/E9nbHelL1h5Nj5nf4jhXo3KD3rLuSoiRXGVQtYSfed7m9RJx8X+TYgt1OQeH64FyOWXxky0nrtnPvS17JFl17Na2jsiTO8moNVGcvn8zHzv2ejZorlta6Rq76vaytBaytAMs6zFsf290yfvmbMi71+zOe0dn6rvdxKn/0VHf36e4zLeO2HLLqq5ztvfaSzer7aqY9a27dAeDPP9fXX7BEfSe4sx8f1J4bTDlruWg7nLc4p6FUOUba+zoojfcYMiYMYBzSXNCURP1H77zLzdWB9775mOFwxBihawQzWVrfkF+JtNt7tNsLtOaTwZhKSyiFUjuQQwIJJUQnKb21jUgesUbotp5hSFwfwJgJa0cO7z8mk9lsXsd5Q5iOiIC/d0kKATP25DwyHQPSlxpHTUcWg3Ed3b0NF5dvAFZzaEJPTnumqSfFiC/ZMTGBGHBGkKbBeAMo/fIwTcSUOPYD43TknnFY5/C+wxrDtms19yYFrg89IUZsHDHZ47tLxBowBmcbzdfJE+RADhdkMtZvS9ztBHGAcY+Ix0kD0pJkwtsGMYbh+JiUA1Pcc3PzhMdP3uHBtuWya9lcqudOq2gLtnvARQu7+4I1GSfQNpbGGZx/gIij2b5BSpExKdPafn+lscMBfNNhXFsYGS2Xu8+Q8PRTJhGUSS2MHI8D91yLsx03+yeEcWTsS55MDrhmy+be92DEo/HOnhgzSAOSsWKLRamBfAOTwfqMsTCFPSmM5P4ItsNvHmJkSwxqKUl5YjheczjuOfYjKYFtEmLQnCvn6TYbwjgw5cDDyxZjOnyzwxjHFNU65MZpXkgbp/XGbtXc+BTaLUE2hxqsYrtZL7UrAAIrAGuQQg4QUzzZ54W1XC1rZYFDl3NbEoltYd0BZmvj0qe1dS/PYRBQmX3MyfdPoq2FzmIXKzUzzBoolTFZyWS16RiyLMKoMjTV5/NJ5rPN7S7rcD79Y8lv0++V5XUZB1nOM2sJL6HUy/ay/ZGa3P46r4ksskFOFOu672rhoSj7hRShGqv0WMp7/ZzrTlkrZlKF+Xp3SxTVaYsMMkWJr+tfUYLNeu1MmRPFfgUYUta8/dshFou3ZQ1i8uo+pRJUZC2fM6d8iDAVVr5pmubIh5wr4ZqeSMPJw3ytuSjwjCyUaKgWTBYpdaUwq3pWpd+mrqfah1pouIa0Mddo0kgHPW7Vq9kwV8fYUkHa+rmvZVB9ptWDpPdtqKJTn4s+57Un7zQve5mBqZBDnZQlWYOkvOrjCcAH5oifU0PraihXbelXJfhQJ1qVP6tw8jNZtgbaz9Oe3zNlLV3XzUXOImrhMGurcU6EmDBETDKQIpIT3lu6rmWz7ZASiiUipVhZTQy0xbuizHeVQz7XlzcXxY4wx+Ab6zFOiy5lERKWnJW2L6aoYYaDKuXj4UYnQqsJf+J18orRkDmyaEHZBDla9XjMCdJWQ3HiiFoF6iQws3fDQKE5DuphE1fuN+NEkJiIcVBPVqqagkGMQwScaNxr22RsDFqsWAxI4dmnvGBSX3pDtg0AphTZJWu+UxxHkgRyARnOd1qzRQzECXLECTRO6Ly6QWOCKQSSDIQxQE441+FQYGAkYyXhnccWKlENiWyKq9uTTCTmkTQdmcaBnA3GCpaI2Iwv7o2YBlKa5pfEIOQ0EUPPMB4Li4rmlbisLnFrtUBvAlLQ5xhTsQa1F4ApIXnqscol2d/ajS4+Vr1YlQRAMkjJz/LNSBM1RjomrfsgoiF7RpJSvxegZJ0t81bnmSkLlZiIAawI1iQWV762vu/5lV/5ZV5//Y07LYG3LPPLHsufucSX3zIyyXx8Pwx86UtfmhcmU72reX2aFW041QK3CMQ0Fx/UhUgFr5ktNt47vva1r/H06dPlJvLKZiULlFmL2Xx+43e09bP55je/yY//+I8XQboc0zRNyanRwtjjNBJjUrak0nSRlJnZb3UFfS6r8z1+/Jhf+qV/PAusNfC6q6l8rgLpdLldBPmpgvH48WN+9Ed/bE52ru90pgrJlWVyJdzrOdcgbBGq9ZlVgafetl/8xV84u9/bc+t0Dp5JrPn3cnS17pYuDX3Pn/tz/xqf++znlvOVG1F2LLPKk6LkECzXEpiZter56xyshYxzSnz1q1/lG99489Z9vWwv25+2dv523gqCvWtJPdcEq1K8Mlostpe1f4nVtpX8KLrHOkqhipeqcK+NObfu+VxRPbu/9fXXYb4nmEdO910r+msFXuXVsk89fjYizrr36U2s2fNSCUdW3bvKv4UoYXlOGvan+VLm5Pfl77VHZjEY1b9r/iiUYu4pziF6tceVKGLtYKn5w3P/z5b6GQQZObn+kpt76qWczzNHBpwVvZ0f3eq5wsnfRV1nnSJQPUWn8rFsKuebz8W6yQxyT8H3+q9lHsxEFut9cr0XIEsJQz+LmFgDqSLvTrY/R/sIOVMN9+/fnydkMIYYA2K9UkWXYqbjOGHNRJMGSBFS5PJex+6iYxxu2F/f8O23vk3rYXfR0m0afGNw1mHxuGajMas5kXIkjkeglO+KkZwirlGWPdvtSMaTRrVrjMERUkZsw/HYczgGGBISE9dvf5Np94jutdewvkHQ/CDjvMZUIkzHQcMCUeXbu04BSgzkMJDDEWkaxDb4xpNzIVwog2kEJPUY12B9h9KiR3AOlxPjeKNKeYKchIQgxgMeYzcYMhe2KS9SIuZEPx4hOwwNGpiWyqJoEdupF8+q9SFFCGFgf3NDylrnym4fsNtdELEK7tIBMQlrLRvTcWEvGYIwJcM0HsnTyHAzYI3jjTdew0nCxwPGqLfG+xbr2vLChJLs79i0l1oXyA70x5791fsY2yLG42TEWovverIRpvGp1mgwCWsdjXHEaU8Ie57snzJOEe8usJRcOdQrN8WJEEfG/RVxHMjThLWe5tUNYi0pJ1KyJLMDApKieqKsK3lTmRh7chhgGnHbS5rLVxG/odscaK7fJ4aRzU7p3sd+IBO12HFMpAC28TTOE416SozYeZFw1tI1DbkQYKwF3nvvvcdP/dRPrag563t7tliXRWZmQFq9zTMZQ1ns5/o9zoEoYcpP/uTf4H/8n/7e868A30E7HPb8rb/5H/DlL38ZMRoPneKSAFvJA/LJMnlaOHFpp4vrmg3pS1/6Ev/93/0fXiirW86Zv/23/yt++qd/mhCUcn8c+lkQVPAyh3WU47R/+aQOhRRrVxVGFYBC5vu//1/l7//9/4WHDx++sL4A/Lf/3X/D3/xb//6sLGisuMaO1/6exK+T1aAkt8NSjdHjnXWLJVngwYMH/MzP/M988Yvf/yF3k29/vSWc5GyH5eNnf/Zn+flf+Ie3PV8v28v2sn0HTZa1d62kcxsILYa68jnnZS7GjnnXMy/zudHsJOeIs8vPzayuKZhUDU0ro18J1TfWzvc652OdXcOYalxaXzORwlphXnWUcr2SR1tbZR2tpGRhmhZDYVYSNhFlhlsTR+g92Nm4dPIMcvV65JmNz3tlog4hEkOc61pVA+as/Ne7LuAho2bbclpue/gq0ChyunqxVvlc6kE7zXdKqeSALT6q+VlV8Lz2ZS2YJJX8ZebzL8BlxcanAzoDLzFuBevKGef5UA1z6XbvSn7uOSA8rSeVyKmAuZKiUXOp6oBVQqp6jlrD8aNEejy/llKeXAiBMAVElD4w55JPUZLWrPcY0YmZQiROEUkTWYTtpsWSyVOgsbDdWTbbS9rNAwVRzpPiSI4omQWAuBlYpRiI4wRkrE+zEjnFsSiYgmCxtsXLQJMDOM318a3WaMphIhmD5twoPCkqkyZTO4/4pgxuScyLWqgtxYxEJXhA1EPl3AbEKKsfqXhEbNlecbUhZ0NutwhZlXsRRT/FilufsTGOjEGpcxLeJcRon/R+SgXzLCzuU48QIe0hH8lErbdlNoSUyWOPaS5IwP5wjRHo2g2SE60TfQ7JMmGIWeicx1tP5zdYk5EoCAmRSBhGpuOBPmpeVGN1cXNtJBdqjLbx3Lt/QcyOiCEMkRDh5uYK8Vap243FW4PNCVJiGCMxJ7wx2MbStBv15u2vOR6viBmydWTjmILmq3lrwRim/hpxDTQ7ICPWzouKFs6LELWAcgwDKYRiccqol07AO3a7HSkpY2XOmeQcYMC0kCZynIrrXfR3jM7xlArozozjRI6BHOItympV1s/DG5gXtyWUDdId73BOSzKs/tMFonqOkih/Zl2YX1RzzpNSJsSIpFQMLAuYUgFi77BE1kXvPAAAIABJREFUnoKpGgetX/SjgqlqiVL68hfXHyWhiPR9TywMnVo48RQKmErtXbzNdbE+sXSWxbqClDqmdb8X3RcocyfGegsqEAUkLtmcc6Ju1SvMIvDWFseUBCOVzaqG4WlIpbX2Q/pyB5B69tc7j615uS/by/ayfZRWlPo73rLz8D1YFNDF+12jC85Pu/yeqnHpTFFenNjrcLvVXd1pGCnSenGYzR6NqkPN55NCb85Cfa6WbINhUdSXSIplncuZU9lbPQ/PWIxqXyt4zLKEsI3jOPfdmCVkzPtzD9SqgHwuTLSS5/uq91SNcqkSLpX7Tav7PanTl0Hz06v3p/Zx1dkZSJVnnPWznuN0KBYv1LpfK/w3u5EEKXwYy3XX42aKDFyf/3a43wqcyXwFFo/iMldr+Hf1LC04a/GrLXO4zEOzGAmo85Rl/HJKJOq21XjlEokzb3gBYEpBBUxDYBh6utZinSFVBGczGME5M4eyTWFi6hMmKpvdbtux7Rp2XYsh0Upie+8hm4vXMd4j1jIdnpDjhO/uqffFuOKpCYQwEIc9ah3pcO0W6xviMJGyesFEHN51ZLlB8gTeIs7S7rb4riOEEcRSyQu0EGuErPkx1lpM04FYcg6qSKRUAFUmh4hgMDaBNfhGySOGfiTnSMqBjEWIGgYrRgEhgt3d0wUDEMnkGABXgJtOKDGeLEkhWCGq0OfgyXFYlCNTXioq1fKExCeQbsgmgN8hzSXD4X1C6On8jpTgyfVjjAiX2dK5yM4bxDps8sRgSFG4aA2ta9m2W9R12kCO5BQY9t9k3L/P48EwJeFBq/ly3b2A2BZrLthtOjbNQ44hM4RMP01MY2B6+j6+bXj4+itY0yBsSOOBMOzpp4EhRbrG46yn29wjDCNPnnybvt/z5Om7+N1D/OY+YRogRppNixHLcHiMcW0hnXBY5zU6MovmVsVACjfkGIijMj0qgM0QJ5wB6x1tex9ITP0NMWayb0AcxmwwDJiy2uvLZslZCJMWdhMRYkpMY4AYkRC18N1Jq0LgfEEv/8yZbWa1QOZy7XmBmI9fBMcn2TRGu1LJqgVvAVKLIFuHXizhGvkkbO/0vPppZKlP8qJbLLS26kmeb3Impym2Ln0XqhUrrWnjqyDSdW8RAuux+mT6sq7yroK6Cua1ICt/nVje8sk8WgS0hk6YtdD50L7coZ3I7a85r/dd7uNle9letrP34I73B+56hz7a+3Pu4angZd6+8qKs97d2YV8zs+dgtZbcfbfzTat+vyirt0K4KnCqmnPdV6RQmJ/yrYlANgvd95K/s4CG09DC22Cv9k9kKe9Qj6shf7EYNEMhnHDOFlpzg3MWWJ5LpVV3rhi1Csg8ASjle611mHOcDXRpVuwXQKT6mOYsyykpquKrGhVxMheWZ2SKQXABaWW064JcPWGIRp3Mzy2fAKpKEoecz0GKk2Ue6llPnXNnZwTGyXNehn0FlaSSb6TVc1jP23rtAuJkSXkQmEP6KvBbCDsU4Fbwp/qX9pca3nmXQeED2nODqRQm+ptrpqknjj3HoSgXU0AEmk0pgOU1/CWlRNM0OGMJ4UjOkbbbYETYbC4QNL/Eb++BKfk8YjQELpb6VSb/f+y92ZMkuXbm9ztY3CNyqd4u7+WQI80MtZhkI9PTSGYU/39KepCN6UlGPkhj0pC8a1d3VWZGuDuAo4cDwBGRWdVVfbuLixXMqjIzwhcADsc531m+gwsT+FrBuAhkj8QZXKghVo5pntGQySmhWUiSmL/4kun2BhcDznvm+28I08TsBRcmpsMrFMsVomyIboirlbG8mRfScqrgx67h/MGwl5jC6BBKeqqKZTIw6WfEWe6SwzwnaDIrAi2HAES8uatr7lHbGnLeUC04V5nqnK8LUKww3PZoxA4SLURQHCU9ofmJdPoDUpTD8R7CLcQD23KgZGHyEwThy6//NeSEL5nz6czb138g3nxNOM7k84pm5fYXf848H6t3sFFlWmUFvT0hwXHzlNm2xOn1b3kqBV4/mUcoRI43geNtxDmYIhxvj4SYOD9+D8vG+TES4g1hmsjFAGiu7IgaPEUy6/m1Pc8JSnJkAXQjbw9Wt0sLr9wB56BsiaKCy08gE81rZxafzaw9yyNaEiSjAvdhouSVdH5r9a6KEmYrEJ23YoQGW0K8IAHi5PAuUpisJhUOzYW0nVGFeDgS8DgvpG1hK/lyp6O99O8yg9E3gX5o+3Pcf9rmwvBdXR895OETNB8CIQTblEev096zgbLb2h7mB+NALy1ksv/4RPiwg77msXmHYt9CWu2cJqTLLkzqJaQxkn5iIDW2Pf67fcDzv5/NcbXiSpeQuwLSrHsyXuzFO39ML3/keZ/b5/YvuX3Cd0h3d5CMMmjYL5xI95bYcdcyqG0kMlj3B+VZdo/GZU93efcc2LR+uV3pds1j0kLrR2W/IC1UawAhl+FegxFskEHPw4jlYm9snqMLYFGNhqUoKeULGeb9ZdTCGFLX5rEZq3qmcY8WKHX6pW7D7XsGxT9WT94Qsl3BQtcTfJM/uwwywHAJaBSMKZndCyaYY8SJG+ZgmOeruRK5BKm9zuoog95hMxu7+Fx1UUYA7BrYl2tDZT22mOwd9aa+MqUZsZue1GrY1s5JrTNWAVQppT/zD20fDKZySqynxxomtbA16ut1wzmI4Q6JgSDeQpREzdsUJ85PKzklpjhbfSrvMVa2gIsRraAI6jVzRfIIXirwcAGNQsneForbSSpijBTnDcRkRdXj5nsLP4sR5z3xcIsLkekwGdFFuLXFk7IxZBXMIiGgeErOtbgw+Og7BbeSUHK31Go+G9WoCOI9PkZTtMoKaoq9aiMjaAnXrU7LVB94t1GYdbxkxM/VI+XrojLKcy1nRCNOIrgIAnl7oqQn8voG/IFp+hLCjLqIdzPJKd4FvPfc3/2CvJ1Jj99yXhOvv3vLnb/n5mDAmKwcjq84HG5BxIrcYkWXnUA43IOHg644WfjutLAtC0t5sn0vFl59/SXx8BXOC9EL82FCvOf0diOpsp2fUHXg7y18k4LWMDrFKNC39a1ZgTwoln+TNCHpVAslW7il845EQTSjZbHaeiV0BTfnzfL51rN5LosVBnYBSknommpqn4WmifeUVAxg5Yx5MdVqSvlgoYvqK/u8GpGG2gYfnCOK56yZlHeCjev20sej1WU/SJ4d/0PWkk+ltntXCQRa2GIB25T2DbTVgQAuhE2jnd/DLnYA86k9bNa3JpCqVa/OvVyEhNCtV2ARulBqGCkVwNOtrj10dxBmn6aNybqdQP1SaWnhGhfYWy5wZBe1zZonMhBetHn5IwDQB5366dfC5/a5fZr2RxoPfvT7o8g7Tr6QQVcGrwtv1Ttk0MvGo6rAvmAZvI7Q2E8ZvCZV8R1D4TsBWQ0lN8IGu54wuGsuZJDUCBLt12sED90J/0JfWvjhGG7X9r9WLmWXY635ev3S++2cQ71FbZUWvSCQyygDqzGLRpZwLfsHGaStPtQOtsZfzKtzKYN2Y+tI7tHuq/389sSQEYzW1Ie8H3dpyOXKoAoDZK565Di/u55wiYl2lKWtP22Mg3FW+r3frTNcr9JmDGzz2DxSFk2yr7EQAuu6mrfwGdB+d/tgMLWdn3j7m/9MPMyEaWK6OeC85/H1a0tGdIqKUjDLf4hHY9QShw8eLRkfHN47psnC1ly8IastyrykGs7nrehvcRRVki7mIZlnnA/EWXrC9Pr0lpIS3kdcCMz33xgjX7qrMwYuxMrYR6XPng2gqBqz3XaugE2qh8xCebyHw+29PTDXQI+1ljOjCo/nE1kzwoYPgcPxDiee4HxV7jdCPCLiyGlBqyXDh8lyAtReyAYmfbilW8i1XCR6+jgxyyuETCmP+HgD4ikoKSceH9/iJgjB4dWAaPQB9ZGcT6gKcwwQjuj0C+R4ZDvew/rI07e/4Zd/8l9ze/s1x6MB0Vwgl8yyLQhWrJniQe64uxO4LdzON5zPT/zDr/+et+cTv3v7gD99R/zN9/zZL+758v6IP/6CECajwc8JXTNFVpgfKFJIYSJHq2k1H27xLvD2zWu2LfN0WhHnCSHi/UTwETe/wjvPPN8RRCjxkaLKtp1ZlrdoPhF8JLhQwbXWXDRP2p4graTtjAsRP01sayJthfN5RcQR54kiwjllKILoakQcLkNj8SuJSOGLV3c4cczzjKsA4+7VLUUcNzd3Vy/3VfhDA+Hy7g2hnTm6tS9ZZ8b2UpT8z9TqvlZfM9Q11p9dkMkwPmiFDms/K81ubop/MevYpSXxUw2m3q9UL9MgwPeN17Vh2c9uNXX7+4p0T3MTSs2C+SlbExRaSVequNvX24Vi1LrfhONg3mQAXM+W52dP0uf2uf1zal3+NF22yo8e5vRiJEVTlkcl9rkMavko7xZjzUs1/Kntl9bBlpdaZfaVhXFnBZV+LaHa75qcUXdhFGrREeMe3mSQYOFuraxG6/9IXLHnYO0hkIqFhksfRKGXuKDtv1aL0wxbdr9STElf13UAMfv8dGKPZszrc375fGSYK7nYsxsDtPSNvcPS0cB2BWzEmadLszFf55baUm/mB8dFll12V7dWlQ8C6miEFgZe+8i6DOrhpCMo6mC0rY9dBl0Y/K4W1wiKdkzY1qW7+NsI1JzVsXUWEea9UdtLJRcJIVTCEXNSFGUwiv5w+/CcqZIp2wKT0WKHGPDRwprME2UPsbN34CvduSPI3EGDOLoHwMVISa2GVDZFGwHx3dJbknl1XE1gcN51BjVNibJteF9jVqcZNKK+KXRqbIPizNsjmLcHtxfpLZt5ncR1D0izbvg427mVBMN4UxxmjahgryRS3hAWlEjOk92TZn1veU3U8zOlZKQ0j1W7roU6ikRbJWWlJS22FWXMfRFKque2BWhu9VyVWcFbrDGW6+CdUY8XhBiigUYvRBwTge27hbx+z2E+cnv7RfXACc3LYBtHplAp23FMUzRvTZjw5yemN29wBVY9kc8rJS3cHwJz9BymRoUc7BUpipgLybYicag41LXiw8bKuKVC2jIhOrwLBGcg1RgFDVy1atiUQkorOT2R1u+ZwgH1U7WkCGG+75ugxQxXr6d6csmkXCAtiHjcNKE4cmkJrAlcQVylSXeN9l+ZY0ScY4qNrt8ZW2SYn7HQ7bKhrc9LILVveMM54/H97/GKDULprhR/kjZYnXrfhs5dgKk6PrdXKi+UXmjXrnapwH9qIDW2JgCvLVjXx9jPnZRifJb/WN3fQzuacjF+vtdmGT/rewztq926ObZBR/nwptd/vm9mdov05/a5/fNs1+v7JYDy4y/3Ye+P3fclYGN76/Ddy5aSi+Nf+v7i/Kq0vmvflme/N91CLsBK+74VFW6y4xrQjLfowEiaPaghrNa9vbA7F9er+a0XXvZqEHuHHG55wka61pheLaytA0nZ995WS8rC/XZA1zwzDT+89Eh3741cgN1nQKijDd3VwRdk0Etjak9EXNUWS0FxQCMw0u602vvgwJU9EmU31VV8filfVHev5uUYdiNrA1tDl3inLBhVDBnX8fORdawuzdtmumuX6dCfiZPdg+i965E3HxMp88Fg6nh/x6/+q3+DDwYWSl4pJXO4vwWEeLwzS4Julf0poZpwRfDevENmKYV1A90Sen6sBV43RE1h99OEBCOGKKWQ1gW3ZXLSOlDLYRHnCVPAB2G6ubHcKvF1Bmuukq/WAmGg03SUnMnnEyVvlG2hhAnnJ4ua8wJpBQF3uK8vYOl01w1gaEW+U3D4qnx5V0BXSi5spZBLMbjgPM5HChmlIJLIRdlWA1RFE85F82jFL7CY2Pqy1lpK4pxZBDKoGtgsxVgVnQjT/Iov/tV/YFNYVUma0e0E5QnHii8F1HE+B2MHnAIuBG6PR7ZlISVlPT/wIL/m5u4bnA8E1PLWpsi6LZzXN2wPj6TTAn/yp0zHG7x3HG5u+bd/8d/zy6c3fPPl/8ebh7d89+YND0vm7W/e8GW64XA48sXtnxi1+3YizLfE6U/I2wNlfcu6baxb4pQU7+C0FXKyNTGFG17dfg1pRdOKc0YCkiabh/MG2+nE4+tfGz26KjFC8PDw9omUM6/+xOOdkB/f4oPn5vYG9WKsRHEmeEdOFrb1eF52S0fayOkNKpAcqD6ACmGacC4wTQdEHWmrzI9FmeZb4lwsR2tolnfXiuhdkjU0WtlW/+iaCRB2wXb9gmsNNfuI9/6PbjllUkqVQcnCIMxF3goANmGyJwV7b7/nbGyKhX1DtEptasAf3rHx/zytb6hhBujhHy1MwzeyjIqwzMJVhXRlaCydTvdS2EEjhfhkw+n37kxP7EqFtREW7WEjjW2pebGasmPzQCcN+fmX2Y+CbZ/b5/a5je1qC21lVJre3UDFqCh3+8qQq3J5jefa657307GVfS/veItlJ63QSls7ijsn0vealhuzkxk1f5D2fH2hkjUovSxH20OaQbPthc6b/ldKroyEu1K/K9cGOEcZ3GREI97wwVcmWCunUYqFvlu/G6nEtoMYtT47J8zz1OVbqqy/pWS7f6VYb/uuqsnEFp6tql2XlVq0XpyrZYOGMLsmq4Yx7sazAajIHg0SfKSoGeD3Z2u1Ny21pTH8OfAdaw1z1C59bfxtcshdrJrd6Cc02aOUHZ5VGbQXTq7gUipBVQv7k/H4Or46/la/y0DdcO/qBSxaSTk6IDW9TWpqx8eQYH0wmHLeEQ8zjVK80X/HaIp/Q3qwWyq0aFWyrDCtKX11IEgt9mp89g6jG+9sJK4i5lrt2CpDqxEN1DA/5z14Z6F8lUq92xfE7QV568Oxl7fsXintfsh9felu+uhc8w07v+Da9t7jJNqza/1Vi8O0JHWtOT5AI5wotgAs5tVAp3loWoLfvtAacjfGwWY5CSDVqiK5DtgjYcKVgpQEZbM4X+cRrRuMiPVNsZoNOKLzuOmOeFNw3l7ytJ1wxRO8KbneBbwzd2+uimEpiZxWnMzmmZlvAOXL+68QHLkU3p4Wli2xbQnvExwm639NOFOsUPD5vFBysVetevMUUCeIDzhvDH8lGbtiSRnV5jkSzlthXTdOT0/23L3He1DnKeIoYutQFHJ9vlmlOgWrX0eEgt071bhgp5a/RSk1XtdVsopiL6AH9bmz7hj4hZxWpIL21obtZbeiyWBdYt/0RmvbHiawnzte8VOCjrE1q49eWJGs7SDCwgN6Ib3RVUKz9EklaaGfA9h78In06V3guNqHPU774pl0r/vVGO2Xfr0uqgbw+3KWwc/TxvV18TkMXzwHLM+iR3fp+PxiP7TsPmZZXh/7GUd9bv8s20+8F//Yd+hd70+TJ9D3MpohbwQVA6CCy22g/X15o3cArxFNNQHJuN+2vf+5Z+Jlj8CuLLfdS6+2sQtw1I2U7AahFy651wa0sTViib0L+++jt6zPTx+eeWFGkop23XFcDZDtOv8+Oe36pWidGu0svzps6uPYqLrNmLHU/EH1ET83wJob7+I751poXI0guZqqNlrjFtjB7qVMv3hS+8DHT+o4LsNCG5gZBZdcXLDJ3uet6U805b/q7fvYGkNjHUH/bofm+8++Fl6817vbR1bD1MqDr0zTjPdHcrIaTzltIA4XJkpKaNpIlRpSJICHdbVCvl5zBZ2ug65aM4xtA0mew43lQcXDEc0baT0ZkcC2gVqYYZzvEO/w8w0gFjJYrDBb8J4QDrTwQ0Ocmbw8geZKo+hrXG4wT1MN8yvZLDQNleYEJRdKMitAq2MkKLfHexuHzPYwJJPTSt5OFr1XlK08kJzn9tW/wjlP5mT5IqUgmkDX6jpWSjqDKwYQRTBChhVNJ5CA9xMu1Lyv/IZSjEAhF9hyAReI4aaCtIz4A45EBCPVSYmcE+n0gPOROB05fPNvmOI9a3pDSk+8ef1/I7rw6m7ChyN++prjIXA4/pJyvCenhaeHN5zfPpIP3+DCTDxOxHnmm1/9grsvvuXr0+/4+9/+lm/ffo/kTDqf2G4iKuA1o/lMXr/jD69/x69/91t+9dUd97cHojNCED97iB49zLh4wImQi5I2ZT2dyLqw+W/ICL/+7sTy8Mj5t2+4uTnw6stX+OmGePOKr1/dG0gXs0Rs5Y6scFodPhX8eka8gfFtOZNzIanl2EUpdbfwuDgTDzP69ERaV9J5xcmGUxMIBasRFqaJ8+Mjur42Nsjhfe+KuVYl3I1uf+wFbu5nRmH2fGvqvwvg3uXC//naSJVN35Tadw7nzCronLPaW93SVjq9LGC0sk4aKutMSNLDd39+zbpZHHcPWqjDMmrd0hiMGpiqINCEs0c762Y1IqlZCZv9wjU20k8JEgSb02FttXAKHTQQkWoVbpIdepgN0OPMuxJRngvZn6/94xgKPrfP7V9Ce9+bap4NuVDuG5hApIa/XTL4XZx/ebEKCPqfz87p3qt67u4JM+XV1ys2CvKLEDYdjYZ78ffL8hqjoc7o050TYvBmtC+NKKJQSq0NickqH2vUkrb5cFYuo3udSlfAm7wulRq9hw8OUSa5ltFxEvuYnKuG95pSYiQa5r0qpXA+7+BLxCjXGygstWSHDPqA6acg1XtSnKIa+jy1qBhTf6Uz1bX+WLmLy/BB8c0bVyOmSqZ5K6u9d38O9ZlLJdDINYpjLKCLtP/eI4P6V1X+jLa7+p0VnN9zj81JA24wbiLDeV22Nb2kMmnXmq7e+65nUPsizXuokKun0FimPlwGfUTRXjVyByu7S06gZUCw0liuSmVWaTkk7eFr87EY+KjXLKmQUmE6REL05OJ2AARGEqFlD9Nz3qpRO6PrlAKSWyFbS1qUYLlcpmja1FrCXEa3xSYoGJGAeLE6Ty4iIVgR3VKLUVblT9OK5mRFewERh0rzXghSkw8RsVpELiDhSJFKqlEfrG4rpVpBRJx57HAIAVUDcjlnSlnwlGoBSPWBVor0nmflTP8cFaGy0YoCm+NFyFgi4NY8e8VytLwUnFO8NGbBgFcDhNPhFVIW2yAlYox2tWJ0BXnTwQqsujgjLgyWLhtX9BNzmDn6A2sulCJYHh0WTuU9kAkhcDzcohpYV4iVEj/6YCFfGvCCAeqU2FIiJbOe5LRRxJMKIJH57kumw4F4uIMwGZ16fSHMg+CYpomcMsvT0vPJfFScL5yeThaCFg4WmiXViiEBVSFlwEfcJLhUcAC1NsGWMwHBF6XkUinfr15EaQq6Xn989QsXVr1nVqALC4208POLY3/+tocbar1vc5ePVrOWN6ilAtrBWtcEei8O2KxKHbR8opG88FzGe+/f7YKneeKbZ24Mp1MdAEn974+DBR9idr7s7+41fPeVrk6q+5iNoT3H8Zr2fnMB0D7o2j/47UsX+gykPrefqv1Tcn22d+f5+v7x78/V9+95f1p0QHVM7EaToWvtk+v3H95h4NMXQs/bDWpX9qgE6Te7DEW27zs4EemsfRatMhb23ZXlobuMoV5Si6xr7UsjdshZe63A1npdxDJcU3bA51zTA1rI3n5+I8VoeuHuYKmFeMWUf8Th6ueFgismI7zzXZ40sqwRZNSZ6o+1GfnbOao10KnL/6aT13D7Oi8Kg54ge19HTUIs6sh738kjpM/rfmyTl1RvUCntVvv3NvCXV+FLb6PWE1tOk/3eBlZlL/uzMWDHvmbatXtk2x7q2Y5phoMLAzZ7yGm9wHCt8lFS6COK9mZKXlAXUALLaUGzEo+Vlc5FC8FaUh24MWM4LxhG0aqcC+JmsxDklbQVlqeN+XBkOtySklbLvQCFfH7Eec8039ScEwfFFJa0nWgc+yIOX2s3uflQn3grNmlkFZpX8umNoee7L6p3wIgrfJx6vSsNVihYt8XyqpZHikJRh7nQvIE0MUptew5Gl+4D+DAj0x1oQkvCOA8K6emNrYXjDT7MTPN9t/DntFFy5nx+pORMjLawQ3SIBHA3oAuUpfZht8IASEm49Na8ROooImQR1qykVFi3E2ghevCSmaIa0HXgxKxQMRwq696/g7JSlu9APCrH+i4pzs/gb7idfwV4tlpDTPNWN1ADLV4it+EGJuV3jydyUbyLhODxckClkCVxd3tPDK94+/YN3z2c8WFhmgK30xFVqwPmciGtT6zLidN5MTyJI64nsgRydvjpli///BUxTsT5QC4La14pyxlK4Xi4JcTA4fbI0+Mjf/j+O0SlMvEdCXHi9XffsqWNuy9fWay1j3gXiWFiy7AumXmemQ43uFxqmKWFqi7nM6pK9DWWuvBMXnZvxmBRe0ms21zvAmoUZNpAyAWgam7qTwemxnCHZ9bNGu7avFEWo156XPt+kd0r1PKULIRj3/w+TZOrzVT7Rt1b/bXFjftqWRzrhjQQqeorgKzGGK0C9VOMREZw2Iakg/AZFKgLAF5zw/qa26+5kwrt4PcfVyH93D63z+1jW/cwXHhx3i2DdoV7kEFDJfMmg7oTq2+huu8jw7HXirt9NSjItNzSnQzAOddDr5p3yXfG2F0u+qrLtYs5t5M/9BypHnq3D7LJLpEa5s8OlJpHRweweB2636IvWp6WqtY8Kotk2mfb70ZDdqA2TxMezyJLN9DDO2RQnWvnzevmazhiYQekHRiqryAy9zG3MMRL2SoXMtmKD1teVM67TNSrnnSaemklYvYcr1GujDLoSmO9Auvm0XLvkEHtev267MB+HIA5TSoTJJZK1GSX954Y4zMjgau1qXpeHZCrt+0lo8e72od7psQhISISUBwqdenlaoH3lp/Uqh/3Ap3q0GKD92HGHngwGsaSCRHmo4AW1vPZak4B50crzCol4wM4Xznf1SFuqjkK5m0q22L5Ud6IK6SGipGhReNqMS+RC7VIrlodoZKaB0gRbxTlOa3m0djWSgBRPRvOW0qVFPNmiZDTqbqRXVWSPR7Bu+otqi+2Criw2VRWtj1pL7aoeb5SMrY4ydQbVd2uKe0bJZ0IfsK7naT9KwkMAAAgAElEQVRCSAaKwi2CkLcVdQ6cEB244NgqbWVREAn4ShmPBHJayPo9viJ0U/oDEg6oJvL2lrItpPVUNylPuPklzh8QXTCTTt0gXIQwI3rL4dbCDt+mxLptlPOZkgPheAACgt37vCxoKXgRHFacWbeMqkAR0pZZ143zpizFE33EO4+WFXGFL+5vkFLwmiiaWdZHqy+VN7zaBrJsiXPKpMcHtmUlF7VwNGkVy8sAAmzNFjKustuUXEipvqRFcS23Tc3SZbSawfK1aj6fG6rE15fIQJJee5fa18NnV0KsbQgq48v98qbzKVpbJ83r2sgl2qYKlSL1mfWwLudnIY51LoffP5VzogMQbL/Yu3SdC9CKQpbuSaYJKi27VVBL39TtOnWv/CTjkd0SKbv4umZV2hfYoNBYZ6/CZwZFqv7f2bD61X9k+zQT8rl9bp+oXYIUay+v8Y/zNb+nfdQ7JBcyZjTS7R6Zq7Cpumn3758R6Qw5NJdb/bMIjPGez8cx7ijDh5hXyXBFM7bZ9Z3sFTqdq+QS1SiXa7RSI3S6uHZ9TI3FTdr9675W2pzQvEF7Xlmb70ZORA2DM9mXB9A3gjKg7EQK5ilxOKeVpGL3zFQY2281hje2VVOqbBxF5J6jZb3u92ogxsLFOvDagY50OV2aDlf1wBBCv0buMtlCHq/LfejVit7nbjcAM4RLvCSDxpXxfJnIC+ujfq5NhsszoCX9+bW1Xur4hlInFRTaenA9HNBC9z/87fxgMCXO8qHAWPmKZESMxUqa8k2zMmcLl1LLLdJitOMhHmsdFgw4pA2Jjhg9KWeWpxO+cvOfHx5QVUKYiUUIbkN9oXiPn2PPW0ITJdniFA3G4Cdbnzgttgi8s8XoKlNgY+3IaUGkGA+9WpHWsp2tYOu62UZRAQnBU9ReN+ftRcqLeZTWzWI7lYmIw3lbvAKVHMNZHKYWBI+oa8kKVrh22yhpxZGwQFRnYKqI/U2unrwTEm8R330RQELE4eMdJW3k9QReIDiiE6K3Z5NLYdkEJx4fj3auwpYW0vbIFCaCs4LGSMSFgxUD3r5jeXjD0/evCd7hfeDoAmF+ZUAOQSSaa90HRA6Igxscfp45Pr5FyoY+PVGmiDscUAloiaRt5XQ+4UomiODU4YqQU2PHc6QlcT4tnLNn0UiIR3wIlLLiyHz96itKKayPD2xpYV2eyFui5MJhmvHOc1oTW8p89+Y1UpSgQgyV9l4E0WJrSsU8n4hZsxDQjZIyKWUjyShqYZg0cGqU86ESjITQKDZHMCUdTLyvdsF1OMX4meVTXYUJNk/V1bE/d2se3/Zzt5Llzm4UQqAFHaiAqNjPCrR8FWa7N0ivBMgnbi8B3F1c2f+qlGICrQHDvf+lGpJyjT1vxRev7Xp/TPsACCMguhuSeh+alnTl9evg6dp7Vs/ZBW9lXNJLsdaUmw/q/biuP/Ccz+1z+2nbx6zYn799zM7wzhDxj2g/5PW/kEEDkBrPu5RBTVltrLJ7ONwLA6BvUG0Aeq0mt710L6yr7eeVXBRAxfVoActXrYyxwBTjroTX/U/quHz3KNk9L2VQv4n9qMe2WcvNQyWN8TSTc66lV/TZHglCSqnfQ2qfd5a5vXDs/mh2uTGO24yVbg9XHGRQKyLc+zfIoFKjJVoIZcupbToMaB1ni76Qeo+yO03YgUt7nO35jM+kP9pmnNxdclXOXoHvCxlU10i738DsOL4tDRApxhPY5u/62Aa8G8gUcZ2xsNkAnBgd+siufB0O+EPto+tMOTfhJNRcmx3dUqxw7Pl07uh2y4XshDgfUHGEZgIoGUqqSXzUvCabjuAiLnjCK0scTJuRWJweTvhodOiK4vOKFDVg4hRkfxHAW9hZXrEaAIILTREtFE2UZcVcVxuprOj2iIsT4qsnrShsCRz4SSjrRj49GXV7DIgaQ2GcZoIqcXaUkliWR8gL5FhDgQR/OCI+EkKu4E6QAmU5k3Mi5402jd63omsT9uIlVFdEEy5MTPFPrYgxhbzVMKLS3McLCLhp6vVEixRMxU1kLTg3IX5GwitbfFqQsBG0MiqSWR//oXrynsglsawLed3oVhOU73///6ISOd59jQ8T8+EehwdJBhgFQjwgLvLNl1+xTJGnb7+1Z6/eXpqyEkU4xhvm4AleCN5RUM7nFRBimIjzDfH4NeG8EJeF25sbYogsy5mUCtvjG4x1b8V7uA0HFpfZ1kLaEkkzPkYmJ9xPR9Zl4+HhkcMM/ujJGnASmQ63BFXzilGIx0iMkXg84pISkrItZ06nM/PxsBd4q2+vFtCs1fhyHQp1KVz2MIf97wsFt242Lxd8bXaf3YLTLFKfqjUPVM8dqlY5sx9VC1rOljvUXOdlD5FogjHnyz7rRdjcpxmLgUKHukvv0eUzsS9c3XCNclcwlpld4Kk2j5z2h/uTYqkPaUN+QVcgmge29snq6r3QKWlrShgfgOufNZKQy4fzjwR/P7fP7XP7ke1aBl3LmuchYe+6jv20GpdajTWOLg2egarqoWj69LDXj4eaQapcbi6Dst4Z+qpBzhiam0fJTjJQYXtyAwZtdD166qqN121em2macM6xrZuBkq5r1s1dm3yoKRjKs5xp7eQals9UctnH34ytbp+L53NvG3rL+/E+VGBW8E3mDnTqPW9t8OYhO3lSqahRakhkG6+v5FjNWKrqe99LY7vuGG4APKMOMhpFzYLcbXl9bNfepvHwek5/7O2zwSh98cza/Ne1R/W29nDRSjrhva9Tov16LSS0Ne8cVPn+sv71cvs4AorqbcIZC572BQoUK7C7nE54H4hxqlZacFERv7tkRY0pQ0upQKrmkoi51oIPuHmqrCMLOW9s581cdM4oIx15R5zuyqrQivKmDa3EDVqiOaSwRb0tJ/NISW6YCq8G5NDJQFjeKgALtTbVhjgIwWHUDrWOgQiIZ1uV09NC1mTAxIcejyvOitGqqN2vWJ5R3la2bUVisLCwZgmuL5yWFTCLgg9f4KcvoCyoVprwPKB43ew+PmLerGqpwMKTilTLgwTEHWjbnROPktByRnNiO39HSWdUT+QMSxLIjdnFFt3p4VtSUcTPxFmJ0y2QcSQUU5q9jzg3cXdzR0R5/N23ZFW0VinXnPAIc5g4zjMxBFIF2du2IphXzccD8XgPvEFKZp4mQpxYlg0tNR9MCl6UGDxzbGunsG4JzdliZZ3jGGd0K6xLwjtPma2yQRZHnGZUlfPyaIDde1wI+Bpn6wXWpye25UyIU6X8b7T/m1nPcgHnOzvlS629t67X96Fv2tcJvs82HCysgisPlcmTT4Q+oAuUtq3tYb17n5qnpm3UuW+uOznFdbsc/6caj/R7vhReIM0IxF7H5DoEQMTm4DK85CUL5Y/t34depYKgsgu1JonGsZnwuzxzXD5tP+4JvYNgdy/O0w+0z2jrc/tHa5cGkX+W7afqujawMwClK5kz7sENUD3ziL3kobJvuseg0Z4bgLmiP+e6mKudq0L3tmiXMfadHdv+q+CEFhKntb6pXbu1Utp+7CzaqHvG2nRcG/MGz0jtWwMuzjlWthciKHYPyI6EjJyse920lgmq+mDztLUIhz3n9npjHcZ9BaZczUvePYf0fC27XtO462Pvenbbyy/B5LgmpMqRFrDXmBfbGK91D0czzlVq+CudBRhIIYY+XGCpCv4aQG5rr5SLc9rz3qd/iNJq1xW5mNc9fLGuyVJ6OROp7MNN42jPPISXnse720dQowtSPQqim02Pb8luQsqKqDDNMyHOTPMNRVP1nMC2JlBDvqZneKZpIqXMtqSq5As5GWiaCKAQMNY5jRai5/wB54J5QXZPpU2Wd2jJLKc3lOVMWU74OOFDYDre4XwgpzN5O/H43Ru8Fw6HQKmuTX+YjNUvg1JQWRAX8NM9EhSJ9qLlLZHTyUK6jveICGV7wgG391+bSzRvRmjhonWylIrOFa10lTjzbPhpJuWFXFZy2RApqJ6AGj6VM3ldUQ0ovnq8PN5FBG/06FrYihKcw8cDOT1Q0iNLWsklE+OBKMbS4kis59cEPxHDoVtYNG2UsqAOinNs64FtTTw9npnnwPHmhlAZAO/CHbkIuJmUPQ+nDcqZsv6G6XDLfLxHgs1nPHwFcuDmi8f6kkVyUdZki3oi42QCmTitb0mp4P2EF0fwE4JYXlzJBByuFFzOTOLxXgjOUdQU2YJjKQE/TdxOkSCRnFaiN9fucZrxPvD0mHAhkDWSCnZtFxGF0+MTgFHzJ0cmkbZMWhIe5XiYiEFwNdfNOWEKgVIy23KmpIT3gZLTxfuzJ6pKJzLolpq+i9B25f5it62iE1DUk/qW9VI4xc/cOktf08CrHBsTPktlUgwxAmIe1WYlq5udq4Kh0aarumcC7tO3XThZyMMeRz5S47ZnulsSQUQp9XUvZZynT9TzJoiqwNuLldc2WOyAvn7G7vW6My1I84IiVyp1/CcAuv/Yy+Bz+9z+ObdrAARD6Pnugdi/d/uBTQZJC6W7lkFcyKWLu3QvTbuQKdnjjrGHUMmwZ7GDlGp03QnGoHs3MGNerpERlnqye4OUWogV7fTeIcZeYL7Ds6pkB+9BKqV5lWnX3ri0bXVPLV3W9RFXZRzZ86JaKB/C7oHCAGCHMFIBzguPbjfiUctq7DLI8pOt1ucuk+zYECwNJ4vlT9mYmidmZNxtBtjda9U8TTkn8+RUwnpxDhcjqqHq52aUV2WgRFegMtlWEGyU8uysjNAnrhNltOEOoJOWyyaNJbuC8WG92PjLhezqJscKlgybtD4Z+3TTdQXFMXgS63WNpn6PrvsYXeTDc6YYHrwWwA+TeDlJzjnEOyQ744Qv5h0RtYfuxVxsrrk7i6X4IKDZWL+Kd/ugBSvO633NlXLdjLp7FutLr3sh4JIzzmdeYr+zomgGBKketJLB5fakqrsNe7htrFpZ9yCDOPyhQHEdLIV4oEhdcJVS3B7snpDeLRjiKr02pHJGK/sfUqp3R9BSmQVLouQNybVQrgxPRNm9T82yoi3W2Ig+LIzSgViujxYjqRjsC/05inPgfGU0EUpSdHJWj6lGIUZxOBU29bY5FEVTIq0nxHl8mHFEe2ZuwkeIx7veF6VUdsTafzX2lLRZblIUi+tVMKKOnLoiqDmTtVqmSrE6ODiK7foGGFttnFoDqFRq1BCMWn+aZ8xDUj2XWNKqZiVn2+5yAcnKtibSmtiWjUO0/LlmKdKcKCqoC0alXzIqzsIrr97D3SI0WkoYdoHdqjUKn8uN6NqdcHV9Pk27vk/biDvRwYXlb7e6abXWNQG6V1W/9GK9eJOfcSwiYjld7LTso7WwWbW6pco2m8GS15J7nXnPcZd5Ux/Vnlt7f/iYq6O7tXKYzyur9PU5Ws8T1yPQ7btqAOgW5A8akL70Y7/maLu8Usb2y/8YNKUv/vrO9vEP53P7Ue1D1vSnvNcfgdTfc+q7v3puqf+gG73n/emfv/P9uWoX730L4xoA1IVruh5Tf+8GPN3v/Txqor1O+55vn+2GwX4N2dnghhNf6PsoDwaZqM/H2YBSD2+jhboN3hDnTJ9gx4wth1nqOWNoV7v3HnlxNVg1PbIRMKnsDHbteu20Jjp0kBt1Ynaj6ZUMHOWPG/ZhqqdPhv7aIyx9DGXw3DUwMo61gRm56EObSDNstjnfazyV6kGqcrwr4Lu8aNMvDSy+JG8GuXkBhtrnFzLocs3uy2EoQL0rHMMz0NaJfpfd83j9ptoYjI0x471rjtUPbh8R5meeKRFnjGsugji0bEDBUVDN5GSJ/+tm1vycjHABhGV5awqwrsyHmS+++RonnmmeKTlZ4d86eem8GgqPHu89080rnI9IiJR1Y9sWXAkGwFYrjiohIt4R42wTGlyFEML6/e9tunxAxPPNf/FfVgSrbOcz63lh+/4tIkqcDlZ/yDuc1qTGbCQRmjfIiZQLipDLhg+R6XCHCxMuHil+xoWbCjqVdH4AhTAdaDVc6mpAyCgJ1YWST2g5gxRcCKDFPGDqECKUE6xi5A3V41LyBuXR7pWglJUtPxlF+vQlLqwUTWzLA1kL4idjIvSzAT0tHfSJV5ybCSKwnihvfo2UxO3B4YLVWRK81YjSjFO1cEZn9ZtKMHB8Pp958+1/Yrp5RZhvuHv1S8J0z9e/+rfG3vf4B1Qd0U2c18z5BJz+gLKxPZ0AxX31FUrm4XEjOMfkPUUdSuS7b98aI18+I8D9zRF8QOLB1uO28ubh9zydNubjEeccb1+/Rkvh5vYVMQS++uYLSkqkdQXvUfX87je/Y10WXt3cEafINN1Qcubh9evqZRCkeHL2HGqdru3pqVuhYozcHG8I8UCYD734a33UBB8IPuxMQG0NdCEzSs7Rg2PHGEDTAZRLBbfD5v8RMb5/TAvBQnmlhXI0i1wp1fPq69j2pM5uCSs7j65qIadSo9KEw2EGYN22i3H9nM17R4iekm1zjtE8Lxdgynrbo+emaUJEas5Xe26NWcjhQvO2UYXte5Scn7A1IbZT5O6irhmFmqGlrSMLGxG0IntX4+1z9b71NdXCW2rNup+kvU9afQY6n9u/yNbfyJ/gUh/+/jgxoqSdwno0ltCV+d7Fqow2+QNQNF/cV+r+MN6qK7L1mFC9453ddrei9Os24gbcTiaxRyvo1bVtT4014kGcu5Q/WtDqxdqNYGZQd076se0ZtAgSu71nPkzkWtOyR07k/AwE7SGAnuAdyAppM6Zh3UPhm4OugRLva43TAVC6qvDnsl9T+n5cowKqTtCMjjFGenhjm9c67S0ioRFRmPy5JFXYdZDm8fJ1f6+lTMpq4xfHdLzp9PNW1iijmOzIuVQHg/XDYXnjoeo/Hdu2tXYtg9qx0vpiazUXK7Bs3lO360V1uCH4viCaFC7Z0oe8sxypUOuiNuDZTBHNI+mcBSiaQ0V7qROTmx/3jn5UmJ9RAUv1Bhl6LTX3qWQDHJozRbTmUBVK1uparuQPNVcobY60bXgH3jcPSqMXbtYFQbMJec1K1mTuAivcZEWdqDGVqhQVvHoIRnFICJYHrrCdnlAt+HjERSFMEc1aqdHN22Ue5WZZd/3hajE2k1qpGNBBaa1hPFCrKNeESZU6Jwk02YtQgoEWaBoPRsRZKGUjlxUnmxFq4K0vUsG1Dl7BkipBRKWG78n/ptgWc6mAGGW6x7GUQtFck8d9zflQcl7wLlRa+WpJxzYhHyZjOFEsDwhnYZlbIrS+ubBbBagvaGVKXE+PpHXl5vZriDM+RKDgxGN08wJ4igolJ8sPy8Vos73lI2kWnFoukjhX64zVfLN1rVTlk/VNMg7FS/WI5sS2WQjpVgs/5QIeIcZAQXHFkZ0ji6sU9xYaFULA1yrk2e0eVOqGYkW6zIxg5Bdq67gC9FEutfdn34hftpT2j7vr+nJemzfLGHv0+aZ4db0f/GiwnL14PO/5frQsyW5BGmOU3Qsqd1/7VxtVs+KNYPCT6dJ181ZX/bdXAqd7zsq+kTevYrNeadkfeLccOivUaEJ8ZI16oQMvtUHpGBbHDxzbhHbdw8qlSHgG3K/6cWkH3P/Yn1u7xrsezoeBrOcW9R/b9L1/fvT5H3OoXP/yvmf7zpP/hbWPeQA/Zk5+aJ966dALV8HL1/gJHs9PZF74oCv9qHsNe3PHTMplqY5u4H9hQmQnHbvIq5JLGVT9+7QIhVEmXI7g+rMduDUjVmkVaXUnj5Cqi/Y9erxrkyNNgR4Lso7zMJw5fNz3+/IOJrf2mbOB0aIr+jz0CylS6n18V+E7sUPTA7p+167bwOTABNyibBrBxh7BYXlMpoOORB9t026yaz9nzNMe63LtMrl5cOozKto5Cdr1LAhLdw9fW1MKvZYs7Cx8Y2pWX3/XwL091/GJ7r/ta3OnQt/HYkbOcU2OdcpqLy7muXm/9pD2ulavaph9zD7w4Wx+CEogq8XDiSYosK5LzenZKEVJuVqdxRRO5x3xGHA+4EKmJCWdQFh5ePMdMQgx1IFg7G0tHEgV1mXFLUJ6Mm/Utp65u7/hcDzgj0fEBbYlmJfhaYEYCOKQ0NC5xdOuv39L2lYOt0pQcHcVpJWCJ6BusoXuinkzgkeqa7ecNgu/K5sp0X5immbEObNUi4GByptOzubFWR++J50fmW9mQvRojc01kgKHTJFCQSWzpgfO6/eEUPA01Bxw833FT0pL3M/pEUknWi5WXhOIEOKBrLBkxaUnnH7HfHPEhcBWNnKBQ7xBJBLCZIVwT98xHe6JcmOer7Ki6xmnyv03f1YXtJLWlXQ684dvf8vbh+/56tXMPEfC8WjJhymbV6gsBK+448R3v/k9p4cnXn35C+bDVIGj4MIBL1iR5ZDBLeRVyJsy+QM+RA43vyCEiemLifXxkdPrP+CPnnCYKE/gc0JP5zoHr8i58PD2gcPxyP3dFxwnIBe+P28sSfFyMHA03+BjMO+DU8RnVvWs6rm5uSHEyHw8ME2Rm+MEOMrNHduysJwX4mwgy0XL5XJqYZhsCQTyurE5T5GWVzO0ZpWhiZJmvbtQXy/eOqBbwoyNBvOgaOlekktxtJ/3s7YBFLYtWJzgK1A38LATGPQYapEK5Bu9eBMiu2Cya75PYf+Jh1LvFbzVjouVodFi0q0XuZJL2H5thcjNG2khIOtqtLcyXDOGCME2+RinTzIeVy2MVkNOkBouXdKwFmUP0GmKkW11uQJjs2p657vFT4bn4qoh4edpw/vwCZbx5/a5/ctq735/dkVf+p5svw5hUlzu6f1cQybmDcA8AKUaDmU4G7C9h8Fw0xT0RiRw+d++v9S91iG1hpTbScO07mGqNIO09o7tXW91I5tnx2mNAtG99pJrHhbo8reNrynfY9hYDUtB6nURDORdoYG9JzavFuFABzMjQHUDa9/+WCySyldjbqkeoiYJt9wK8O6hfQa8sPQISr8WWN7YNM29D+1nc4CEGpFQqq7dqdbbU9Pq5KB0qnm7rnTyBi1VBRNjQES1yhzpLIF46Q6XDmOrwbHdba/bZf/UWUyZd9JzzPY0BqnRHr6DbM21WG/tV6yEbpZDVsM068T4UNkQQzCdyvl99RdjD+8AmQ9vH8XmV9IQ3pFtYVo9n0zetmrlaJbqiizFmPdsagqIUh1ViGvJa1b3qdWkKuprAreS181qwhatVawzJZvwz1tCXCGvq3ljmpu3MpqoFFQXVK0ArBNPyZVA4mRgRLIgWtgNx0pJG5QEqbp/nZi3pfa/gVfnPdooQEtCxOPjRlZPVkdOCyktzBqBRkiglHUBLzgm1Bny17KCbpWNRYhpQl2m+GCrFQGKAQARBGflqMSS7KDWTEIRqUyHWA0rLVZ0LSsoGRXfrTjiPaobOT2CGkugOdaM5MIU/oLmRF6f0LRCtvDN5MGV6qlMm3mC1mzew6KVEcWzPL61xTvf2hpxwYBqyTjniNOEFqtBFispR3DRnldRti3x+HhmUpgUtlRIGbYiiBoTnzpPmCPOR8t18hNhuiXkjSKFqTIrBh8sh0odQrAFixXaPRyPxDjZJiNSPXxQSs3dclSbmOVKNREkuBpCxS6FBk9Fb0Ur/ba2P2n5j1KtWS+/ersVCNqeID0Gu71rl7+MF3jxsh/YXj5ZmiYuMliW2v9jGNne78twjQqymoWyftUKNHYrX1fnn/Xgg/r58rEvtz00buynXXvP/bRnngfBVmo4QiObEGo9rbYghmf3Ya31dzzrA68wgFxTEvbnowxKU/1cxjXXcvjquC8UCtiT1V+w2H7YUIZ7vWc4P2q5/tglcmXM/ek69JOc/AHXe2mtvPTZdfvp35+ft33MPL5r/D/uWfwkDtQf2977/rxDXrzjUg2U9OiJC6GhXcG9PEn7edffOhHU7x2Ui87KIOd2j5JtO9JlZRtGO7bVA7rwtDRZ0i07owFybxeftD23jbfu6zs5xA4o+/kXoMv28Sajev0hb50uNRqpAdLds3SRzVa7soOpZsZqfRjzu0B2tr/uZaEfX5p+i0CpMqiYtyuXFqFUo1Zcy4dqjIqYHjfMQTOi6cU+f/n8m5gvKQ/9H9ZFteg65yrwugTlfV4vjMjjE2vKwyhbqvdpPKadOFynP7vuIbRosua1ciJ9nXdvZ/VCCQ2cDWkWVWdrgKyF6X9o+2Aw1YCNEyMNSMnQquURJdZlQcAKxDqheMVK9Sq+rDjJJM04Ci7WEcdiRWCdQjLvTy6KEsjZwgS3hzN5y6zLSpwj02EmJyFnIZ/OgOWtiCreRwMOa1V2cyJtj5S84sMB549WDDafWbeMCxE/HYwEwlfvTy7k0xNZC7rUXCwfLE8oRAtH00yJC847ZJ5RYD2dscK5E+ojGma27YFtfUTlFpyjbGdKTixP3yG+sgcGh4sezSfIZ9ayoighgFGpe5x4gp/MW+am+sJF8wahgIW5ZYkgGUHxWKZaZiVnSKVYOB1r1fUncB4fZygn8vamAkalYPlUxmZSw+PWJ9aH36HLgs+FtNZN8WCKcCknizNeN5wWvCpxmhHxPHz7a05vv+Xuz/5bfJhw/oDkBfKZ6BxyvMWHiZwTR+8I3jN7Yxk8L2ceHk787vdvub1L3NxunM+ZLQmnZH08uoifJo53R8iFNRWIt0zTK27cI1NK3B4P1QqjOISUDEw5JsQbDcUXr74CLeTlydbVZoApF1fBsmLxq0pJq4FxN9uG5TxOlF4hPu+EI9TXv5Rs4HNwKZWyJ6bKS9tM2/iGK9lmsW9Qxmqzn/dpWt02x02/AyJFh/pLz84cGI92XdashTltO5j6RINpffC16HKuRpQmyEoppJLJPddLYNv65mzkKakDxB6jXweQSzFg/pMr1i+1KowuBAakwTLZwjD68XWyXbUoNgvyXufjZeXl49qPGPs/BR3+Z2n/Ygf2ge2fy/hfABc/2XU/tv0E749Wcq5eALfKkhqa1ZTO57fWXmeoX7od20DKEMrV5Dj1ZYcAAAuASURBVJb90B6h0Y53lQmuCpC6b1bwUrMN9hpQaqkjg4wzBbka4VpnrubHzn9hzhqIqqVTxiMCoCJkbQRibexKnGMPvWslMNocp1wqYCwdTLW6j3vuaRvNTvrR5V/FiuKs1E47pxu2ipGyNQMeAyBrBE45p16UF8DV6IIGWEsjxxoeVMotUmTITX5hylSxUjVJwIXB4LaDHBFBq1OkTUwDRM4JZbDSjbD7YpG6WnKkgdwLxH15rGplEqSRWFnqSANN7Vk1tsEe9ie7R1BoQNh1jx2A846cS6eZ/9D2EUV7Czll8IoTo9R0eCgBBbxbAbO25zWzpoU4mZvN4dAQ+sLMS0Z8dRnXF6PkTEmJXAkfcqpc/KXgguM4HfExEqbI8vDI+v0bDl/c4KdAiJbz5Fylv0yFsik5FdbFUp1iXM1TcpwRgZQKLCf4/oF4f0u4vYFiMbrb4wNorp4zkJzRLJTzUpGsseIhNeFNDWyKJFxOQEQkE7xD5hu2x0fy6YlwsDwooqCilLySUyKfEqmcUAoxHhHnyZuQpZDqdZwUSvYVMIXulobM+e0/gBOO0y9w3oBFSpllW3g8Law5Mx++YAoz83QAYFm+N48cCS91E1BvwAirs7VuK5pW0vkt+fwdqo8c7o5M93d0fWt7stpWWKJiPN5XC0hmOSfWbcWVgi+QT2+RONUaN4r3gXNaeVrWvhyXrbBtBTh178QcJ778+sua7+WIIeCkkEINQ0orRcD5mfN54fHNgxVTDpH0eCKnzJqzvaghGkgrVNCp4D3iBckZNJNX28gmEbLCeUsEJ5WmvVnJqkCoz9/VEKmMQzKdhnVsL8eOj8Kn0qmyW120nrdvLuyWvIGutu3K++8f8lLDu7xhl53rA9g/Vnalu34nIp2utJ98Yf1sRsZd0Gk9t1nd9hs+r23yszU1tsycHVKks/CBMUzmknu3GrVs80IVqlC82HQt9060VH3sucXvg9qLOtc7PAr70qhCrM5v9/TJMLPj2VoFYM1PGBQZ14oYq5qgqnUoxtyxH2of9wivxvbiuS+N4l03f8flP6RPH3PM+96hZ32Q9335A5//U20Xm8QLn42f/9BnP3T9j2jvvPwLz0Cuv/v4d3Y0KH1EZ97bfur3ZyQCGuXQCIBGljQdzru4XJdBTVYpzQOy020/H7Nth7rfy5l3oEUzlfG7ek4pNTKgeyIu2dtqB7ucHKMiLqfFHlAZjx3GV56dt3tL0raRU9rrYNH2TutDLqWn2ffxX8jLfUzNQCfD9bVFECUZPD72L+VcySzsCi1MXlXJavJpJ9WwbhfVWje+RmxVQ7lqA8WD0WzwztjaGH83ed1z2ch9XhoQRDF99iIaR3vIfguvvNz72kzo/hxLodDA+R611ujoGxt4NwZWnKV9/93f3ZyH+R2w4pgz3FMPMJCaqhG15Zl9bPsIMKXkbUPwSHAgzmIinQct1B+UDMuaeHo8cZgD82xxmb5ElICWWjA1OMJkk68YUEvbRkpKKY6SBWp4X4iB+e7G6kyFyMMfXrN89z3oN8x3R26+vEdcACLkQlkzaS1sm7I8KWmDEld8FOJxAlXSmsnnE/nNG26DM4BQV8/2+EjJG/Eu1tAWNXC2QnAT3k8WBypKlkRBSKXUQsILTiOOTPAzzh1ZXv+BnBaO39wg0Vf2OAsnXNcnlvURmYxye443OBdYnk5kzawsTNERJYMGVCdQh/iCczOqmafv/84A5yuP93dM8cC2Zc7bwuu3rzlvG//65isO04EYD+S08HD6Hi9Wl0qiMRfafmiMeTnDsj6Rl0fWN79DygOeBw63rwjHL3n4/om0JdgeMS/WDX46Eo/3FM1myecty1rwUvChkJ7eIFNE5ggacG4mpTOPT2emecZ7z7pkc9dsj3jviPPEHCNfff0Vy7KxrhvBe4ILrMGTtVDSYi9KtKLR3377mpvjkeM0sz2slJSRbcOFgDvckosBJGcrEjdFXAjItkDJlJwsLDEKWy6czxuHaSKGGdXVvC41zlhT9cBIpURXt4O0i/dR+ib27N3qVjxTYPtndbe6YMDZT7oS983aNgidcUOQ/t/+XTfovUvQ6/5j0BTaZmebp4UU7ImuTaiWq+tfbnh9X71y2xu7JH0TvWAreqlvzz67VpTeb11uG2op2dhEpRLtYJaqXArbtvXwUFdZkVKyGnpdUOgeCqJqYSCub9zlR4zlpe/eNZZ93BaOqPi2b3WrhzRDMNC8gnqx9qRaFZslta3BzmJVmaZabP37rXZDn/RlXiQd1pfI/klLAr4WaG2+3z8P7/jq+pSXlko/sN/w8vzxl/b+ABeU0i/1qb0/19d81pl3dfBD18f7PvvQ8z7u/fnwY38kIHrx/JdX04ef92OewTvOGw4ZH+0fbwe6vPdL79BL70+7t7xojBqIEl4EUu2eLcyp3dPC5C5mp177YgdoBqZiPWseGNN/q/zrIVXmzQkyeDrq59fjbUChhwsOBcet76WWYBllUFPgGd7Pd8igSmTQvFkmg9zeZ4QtpW6YQgaq8L4XGrmXOKnOGUHGijyMcn6fNaMAb2CxUGMiqjw0ubFVD0nw0XTpOs5U62LttO0tZ0jq/O3U5bsMauzNu+FTxAob9xxZvepDKbi6dhwybHc7DXyDzx3btvUwjFvGB00Z5kOh5tNrtr9zzlWeli6DXJNDFyV9bN3upCWmxxZK/0xUhjGJ3avJYlWMxM3A1CUg56OavA+ByRBQ/+d/+kv+x//uv6lsJEPHWpxmTvV9NEpD42oXvBNTVCu9oaqSa6d99P1Fa+x0lgwntPpDpqw5O1YExJGeTpR1Jd7MuBAIU6gWfWOvorpwS2lu7YJz5n3xk7HPGRFeRreNcDwQDodOq5jXM2hBwpBDUMyVLTX8zQUBZ4ly0FyOihOrNyW1hpHiyOuCloyf6zw0t7RaeFDJCRyVxW5CxNVwQiVT8A7zcklEJPQ+iBh96PnN70GE+eYG8RHvJ7a0kPLKsq3kUrg53teXcUI1k7Zz9fwI3l1uUIWAKhZyVRJlO4NuiK64eIPzM2mzF9xL3XzFgLXzU1fSltOJtK59854OB3O1+ppnpp5121i3tMcKZ3t5vD1qWpXv0p5pNksCFAvD08oW6Qxor2vifD4TfDB61VTzt0LdHL15UnOxPCQBq4kmYs9c95CGEANFjVTFO2ebJTVv8AKvaN16rNNezJX/f/5ff8vf/+Z3gMWC397d1rCwvqO89M4N161b2uDNMmWT/vve7K9/9xd/wb//9//DO9/pn6KllPjf/7f/ldffvm49MiGiu3J+oWy+zyrbLGL9A+2f/+qXv+I//E//8zNP3k/d/uN//D/4u7/7z90r2K1mTVDqkJAql0KUYS1Q36f+Z1eylFf3r/jL/+WvmKbpZx3L3/7N3/A3f/s3NHaiZ23XhnZlzHrblaWuyIzCr44NgWma+cu//Evu7+/f05NLMAXPu/M+NVeA/+c//Sf++q//uh/zV3/1/7d3N8kJwmAAQIO73oJ79Oicqu3g2FW6MD8fqIzNogv73sZxkAQDJHwJhPc0z/NBnvAqngmmunsh8Ho+p2VZ0rquKaVUXt3xdj3vj6/7Sp4h7dKGt/PzYRsUR613dXusx0tnzqkELDkmsZdjujm0GaHW2I9M3ST22zZo6n+8bm8os83kGvn62Uf9ao6lQyt2WIU8Yx07tVmk6y96G1RHzPpU6rGTrmxv3qbbv06trDcBc73bJfeXC9fnazfdCWWd7cQRobByncoolvMueIp2O/q2DQrPlNV90C8J2rbvtUVlnXaElAWbWRRre3Tqz0y1Uaq4D3NKH1+f6XL5juXx8EB6OpgCAAD4b46Cqb95KyYAAMCLEUwBAAAMOLzNDwAAgPuMTAEAAAwQTAEAAAwQTAEAAAwQTAEAAAwQTAEAAAwQTAEAAAz4AQqz6D1MAz8DAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "You can see that using two stage visualization can help reveal important areas of the visualization that the single stage misses, while producing better quality visualizations." + ], + "metadata": { + "id": "ZkupbmiqOFuw" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Optimization with alpha channel blur\n", + "\n", + "In more recent research like [Goh, et al., \"Multimodal Neurons in Artificial Neural Networks\", Distill, 2021.](https://distill.pub/2021/multimodal-neurons/), alpha transparency optimization has been performed by using blurring penalties.\n", + "\n", + "Below we define a blurring penalty objective called `BlurActivations`, and a second penalty objective called `MeanAlphaChannelPenalty`." + ], + "metadata": { + "id": "TNEviEvlLTXj" + } + }, + { + "cell_type": "code", + "source": [ + "@opt.loss.loss_wrapper\n", + "class MeanAlphaChannelPenalty(opt.loss.BaseLoss):\n", + " \"\"\"\n", + " Mean alpha channel loss penalty for optimizing with transparency.\n", + "\n", + " This objective essentially the same thing as taking the square root of the\n", + " DeepDream objective, but only for the alpha channel. The square root of the output\n", + " is then calculated.\n", + "\n", + " Basically the same as this, but for the alpha channel only:\n", + " loss_fn = DeepDream(target) ** (1/2)\n", + "\n", + " Used in the https://distill.pub/2021/multimodal-neurons/ paper for optimizing with\n", + " transparency, in the supplementary code here:\n", + " https://github.com/openai/CLIP-featurevis/blob/master/example_facets.py\n", + " \"\"\"\n", + "\n", + " def __init__(\n", + " self,\n", + " target: torch.nn.Module,\n", + " batch_index: Optional[int] = None,\n", + " ) -> None:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " target (nn.Module): A target layer instance.\n", + " batch_index (int, optional): The index of activations to optimize if\n", + " optimizing a batch of activations. If set to None, defaults to all\n", + " activations in the batch.\n", + " Default: None\n", + " \"\"\"\n", + " opt.loss.BaseLoss.__init__(self, target, batch_index)\n", + "\n", + " def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor:\n", + " activations = targets_to_values[self.target]\n", + " assert activations.dim() == 4 and activations.shape[1] == 4\n", + " activations = activations[self.batch_index[0] : self.batch_index[1]]\n", + " return torch.sqrt(torch.mean(activations[:, 3:] ** 2))\n", + "\n", + "\n", + "def _conv_blur(x: torch.Tensor, k: int = 3) -> torch.Tensor:\n", + " \"\"\"\n", + " Blur an input tensor, as per the Lucid supplementary code for\n", + " Olah, et al., \"Feature Visualization\", Distill, 2017:\n", + " https://distill.pub/2017/feature-visualization/\n", + "\n", + " See here for more details:\n", + " https://github.com/tensorflow/lucid/blob/master/lucid/optvis/objectives.py#L261\n", + "\n", + " Args:\n", + "\n", + " x (torch.Tensor): A NCHW tensor to blur.\n", + " k (int, optional): The desired filter height / width to use.\n", + "\n", + " Returns:\n", + " x (torch.Tensor): A blurred version of the input tensor.\n", + " \"\"\"\n", + " assert x.dim() == 4\n", + " channels = x.shape[1]\n", + " k = torch.zeros([channels, channels, k, k], device=x.device)\n", + " for ch in range(channels):\n", + " k_ch = k[ch, ch, :, :]\n", + " k_ch[:, :] = 0.5\n", + " k_ch[1:-1, 1:-1] = 1.0\n", + " return F.conv2d(x, k, padding=\"same\") / F.conv2d(\n", + " torch.ones_like(x), k, padding=\"same\"\n", + " )\n", + "\n", + "\n", + "@opt.loss.loss_wrapper\n", + "class BlurActivations(opt.loss.BaseLoss):\n", + " \"\"\"\n", + " This objective was used in early feature visualization research, and more recently\n", + " for alpha channel optimization.\n", + "\n", + " Used in the https://distill.pub/2021/multimodal-neurons/ paper for optimizing with\n", + " transparency, in the supplementary code here:\n", + " https://github.com/openai/CLIP-featurevis/blob/master/example_facets.py\n", + "\n", + " See Nguyen, et al., 2015 for the origins of the idea:\n", + " https://arxiv.org/abs/1412.1897\n", + " \"\"\"\n", + "\n", + " def __init__(\n", + " self,\n", + " target: torch.nn.Module,\n", + " channel_index: Optional[int] = None,\n", + " blur_fn: Optional[Callable] = None,\n", + " batch_index: Optional[int] = None,\n", + " ) -> None:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " target (nn.Module): A target layer instance.\n", + " channel_index (int, optional): Optionally only blur a specific channel.\n", + " If set to None, all channels will be blurred.\n", + " Default: None\n", + " blur_fn (Callable, optional): A function or class instance that blurs\n", + " input tensors. If set to None, the _conv_blur function is used.\n", + " Default: None\n", + " batch_index (int, optional): The index of activations to optimize if\n", + " optimizing a batch of activations. If set to None, defaults to all\n", + " activations in the batch.\n", + " Default: None\n", + " \"\"\"\n", + " opt.loss.BaseLoss.__init__(self, target, batch_index)\n", + " self.channel_index = channel_index\n", + " self.blur_fn = blur_fn or _conv_blur\n", + "\n", + " def __call__(self, targets_to_values: ModuleOutputMapping) -> torch.Tensor:\n", + " activations = targets_to_values[self.target]\n", + " activations = activations[self.batch_index[0] : self.batch_index[1]]\n", + " if self.channel_index is not None:\n", + " activations = activations[:, self.channel_index : self.channel_index + 1]\n", + " activations_blurred = self.blur_fn(activations.detach())\n", + " return 0.5 * torch.sum((activations - activations_blurred) ** 2)" + ], + "metadata": { + "id": "2kzA7TMvLTqb" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "We render the results using our custom loss objectives." + ], + "metadata": { + "id": "q7qEk9SLc1RC" + } + }, + { + "cell_type": "code", + "source": [ + "image_size = (112, 112)\n", + "\n", + "# Initialize NaturalImage with 4 channels\n", + "image = opt.images.NaturalImage(image_size, channels=4).to(device)\n", + "\n", + "# Set optimization target\n", + "target = model.mixed4b\n", + "channel_index = 373\n", + "\n", + "# Setup main loss objective\n", + "loss_fn = opt.loss.NeuronActivation(target, channel_index=channel_index)\n", + "\n", + "# Setup transforms, & blend the alpha channel into the image using random backgrounds\n", + "transforms = [opt.transforms.TransformationRobustness(), opt.transforms.BlendAlpha()]\n", + "\n", + "# Use transformed output as target for additional loss objectives\n", + "loss_fn = loss_fn - MeanAlphaChannelPenalty(transforms[0])\n", + "loss_fn = loss_fn - (9 * BlurActivations(transforms[0], channel_index=3))\n", + "\n", + "\n", + "# Render visualization\n", + "neuron_img, history_advanced = visualize(\n", + " model, loss_fn, image, transforms=transforms, n_iter=512\n", + ")\n", + "\n", + "\n", + "# Show results\n", + "opt.images.show(create_mosaic(neuron_img), images_per_row=4, figsize=(15, 10))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 275, + "referenced_widgets": [ + "3f4b2348efa0443ab3c29300b85f29e8", + "fe953f251ac24f8b912db5cf4f9864e3", + "5601082b45ce4996acd41e91921243c2", + "82e4a1dbe4944e28bbab6ea2e8ad5661", + "3137aeea1e504d1f842dd8e65667bc70", + "e306b531228a441491fbdfccb9522fdc", + "0317501458264f4e822b3486207f8019", + "aeff5916a0e140e3a254d2bf7e2fd60b", + "6b3d9810d08b4ce190d7c3a801a345e8", + "f06b61f3847b477487f4359bf855c4d1", + "55c305b5b8ed407f972fd2b775a5d18c" + ] + }, + "id": "sRvMrq0UTIRS", + "outputId": "147ad3b3-19d6-45f3-de65-83e917528716" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/512 [00:00" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAADiCAYAAACrxp3RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9za4ty5Ye9I0RkTnXWvucU7eoKlQ/V1BdyhJIxm7hnmW/AfILmDYCRIcnsCwh0QTxJkZICAlbqKAkOoZyC8slUXVdonzO2WvPmRkRY9D4xojMufba5+57BUKIGdL+WXPlzIyMGL/f+AlxdzzGYzzGYzzGYzzGYzzGYzzGYzzGrzb0/+0JPMZjPMZjPMZjPMZjPMZjPMZj/H9xPJypx3iMx3iMx3iMx3iMx3iMx3iMX2M8nKnHeIzHeIzHeIzHeIzHeIzHeIxfYzycqcd4jMd4jMd4jMd4jMd4jMd4jF9jPJypx3iMx3iMx3iMx3iMx3iMx3iMX2M8nKnHeIzHeIzHeIzHeIzHeIzHeIxfY9Sf+qWIPPqmP8ZjPMZjPMZjPMZjPMZjPMb/b4e7y5d+94hMPcZjPMZjPMZjPMZjPMZjPMZj/Brj4Uw9xmM8xmM8xmM8xmM8xmM8xmP8GuMn0/zO4w//zX8Df/Nv/HWIMMrl7gAcIho/2+lqh0eCoAjgZrw+v2sGwOP3ClXl793n/XkPByCnu94PEUAg8bkDMN6vlLjY5zzdOSeB5d3j3gL3EXMcn81BRCBajmeLQkT5uUi8ks/5z7Vxg8fnx5pJXGvzBdwG3AZEjzc9f0+0cpaCY77xzhbrahC4G8Z+hYigqMw5+uh8Hr8KrSXWfAFEASjc7bR/Dh8tphfv7YI+OlprGDYwzKAqEMixVj747LLMtRLNZ1WoKGpdYl4KN4PZgIPLZm4wc8AH1y/ezWM9zQBVgQrXUODcYxEUXQAoRBWIfTHjOqvWeKbHtYXrO3rOMmgk1jdueyJX7jnAd3WHJ13EO849n5crIIo//p/+BP/iX/wZAOCbDx/wd//u38HLhw94O0jD+f3TXO7GwQvy5so5aQCvrx/x/fffT54rtXI9RvCc5D1k0lnOn3QQ1zgwxuC8gnfcnXugit/7vd/H5enpNL33MoL9zUK+M+Tzt8n/3m5X/OVf/stYZ5myJrgJFtep8ufJMxJ0IoDZMW8EvR70Rpr7zd/8LTy/vADJw5I7cMi6yX93r5JzOvE0JHjf5ns4gN47vv/+/wyeteP+cV8N/vfcYwmGFY15yN0zRSTeietgNtBbx8vLC15ePpz24zTh9/7rHjLt9IxJ5zk9zWkCEJgN/MWf/zla2+/0gZvD/Hhpm7I394lrZcb9EFXolKMS68H7mTt+8Ytf4E//9J/NOf+tv/Xv4Q//8A/xdgje6oZ7vfHeZ5995136Pa/Re/ebi/Jmbd989tmt/Z2Pfk3+AeL35+/LT7xPPPt8X/cTjR8Tnrrrju+m5j5+EBz3/AL/cJrvrJUoEPrr2COnLs4liGvNRsipk6yd9GfU3aoHTwIQhE5A6GzV4z3e3Gu+W9Atf7i3Pz57hVjHlE1nHjq/95nXyV6fy7v83nldf8nOH99JOR5/iQheP73iH/2j/wavr68AgN/93d/FX/trfxS8anff9TlP/mtuoUN4w2Hxc6xb733aSrVWrOs630mVMst8QCAotQLOe8jppaiD+AyP9TYbx/qZTxuHci7uH/KiFKUsT3tEBGN0uB3rXmuhrCxlrn0pBapl2m+9U89p7Nl8pvOZ7nZn83Huh20y7cCwDah7Qj47MOx0DU72CZw61gAD98RGD9l+xDmStkfYzVoK7allQe8DrXXUWlFrmTRdC59Tl2XKdjPj+iR9J4dOW2YS1FwrBH++1UGqx3qkndZ7h41xEHTMZQzawlPun+SVTJsr9UD6EwdTGAkEI2hDVUM0Gg5+wmm/Un7xmjNPqMi8phSdzzzb8wLhfjjwp3/6z/CLX/zip7hvjq92pv7m3/jr+C/+839w2pgOwKBlAQCMngZ4KlZD0BR638m8YZxb2+dillqxLAt8kFklFtvDkKMDEgToDi4fTY4SBMOfDPAGLRXL5flgBht0NMYA3CDWAThcPb6nGH2D9R3WN7j1cAIEggHRgrI8h6sGaFmgugRDKlSD0a1N3efWAaPjYXYw4nAqDR87gqsx2oaxX1Gqo+hhgIwxIKpYlg8QFRRxAAWQggHea28NwwxdeJ/b93+BWhSXtaKUgqIF43aF9QYvBimK+nJBKSvW9VtAFkAXjN4wRgeEbzm2HwB3aHmCQ2FGwfzjxx9w2zfsrWGt+f6FTGM3lLrg6ekDklW1PkF1xWX9gFpWfPjwHVQriq4Yo6HvNwwHzIGt7Rijw/oNsIGxtWmcDXPs3bDUgqUqxAdpwBwiBevyLVQX6PJEA60WOn69Y1lfYs8MqorL5QluA227QlxC6PM54qSlMVJx0tCELijhpHoodBqDgmV5AiBULvEdrSukLPhP/tP/bDpTv/07v41/+A//AX7+85/jztiZzt/hzAJvDLKzYTyF+TR5DiMGwD//5/87/vR/+1/Re8MYAy8vLyilYNt27kkIaQrBcChCuLS2BQ8WmDm2bQuHY8S/hloK1nXF3/7bfwe//Tu/cxgNUwliztWNgnUaPG9kioSAyLmESI1lcPzFX/wf+OM//h+hKlMBUlFbKCKCBGvVeJcOVUUpBbUSpNl2Oky1lnAEK4YZWh/Y94bWGv7tf+ffxe/9/s9hgwaC5tInyGM258ktyH0QqK7Br/t8J7MGtz6Furnj06dX/NN/+r+gtR3DOiVPKg8RLJUOlXkJRRygjS40BFGmLKx1RVFFrQWAo5th33e8vr7iD37/D/AHf/BzGhSeYFdCSIh3C5dtGj/LnAffqUyjIsGpaUiIYN93/Pf/3X+LH3/4AbUU8uigjB1jTHLsobiHORSCdV1gZug9lP9SUUuFaplGTyl8dhuG/+Ef/5PpTIkI/oO///fx9/7ev38QWRqrsU+HkZAUeLJGJ78djsG8Mh3hs0Ga1+R9T4YDTlep6J3NTWNUJ83f+zXJp2+M+NB31PjH7GlE2Xz/d/nn9P4I7UgDJUHDYxxGRgIrnKf1RoNRBSIJPKY+rtBSMWkmHSSk0RO/kRMwyFc6+D5kmwRicKyNENSDwmyfhqn7gI39NF8aa63tQWM9jKFyrJ91uDWUsqKUBZZyVAjklbJAtKDWNd4iDW/DsaPhWExALwxO0ck/IQIwd8Opg1QrUj5PfT8GAJn8oyewLw3kt5sqorgnjRPAMSkj5+un71jMPa7Rgj/7sz/Dn/zPfzKdqT/6o38L//F/9B9i9IHe+zQeLdagqM55jgBPE2Dbtg1jUA8MM7x+/AjEdz58+IDvfuM7uJF21nWFiqC1HaqKl5cXmDn2fT8c2gRNQp+OAJnavscyUoe31iYAxfUEaikoRfH0tGIMyvKlKmpRXK9X9N6QIP2HlyeUUrFeLvPZl6cnrOsFNfbl0/UKd0MpChuUpdQng3bEGKi1hm6pQQM2bZOiglpoE7tbXCvh3ADbbqHDNOZV0PpAH4Ztu6EPQx90dPbrK4oq1rVOJ2d0rsG+b3A4lsuKZaE9db1u+Ffff8Q337zgw8tzAKCGp0VRl4Jvvvk27NmCfd9w267U527UP0ErIsCyBGX7CXjQCpECQaXz63yHZVn5jkUxwoZ4fX3Fvu+UPU7A2sxw28JOHQO1FNSiIZmoF0gH1O91udAeOznRY4QNuG+TvuCO3hr3RGMORieftko4/aOHw+18di3zmvWy0lYoCzT06aR/c/Qx8F/+V//1//3O1KHA+C+NsrdC+zDssneFux+Ky6kwEiXGFDAKUQcCPYIgECSHmUwEAFOQJYKidN4s50eDY7RwmJCGYipWBbTwC+FUwQcdLOtQcUB1RhsQAnW0jQRXajgOHa4IhgvlaE60O5w2BMES3Wnc/GA2H3uQkhyPMc6zaAEEM7o0DRk4LJSMSQUjSoEOmUHdsNYVpQhKqXDzacy4ANZ3YABaBVIFXrkURQVSC4oC3RrMHMOI3qvEOw4DMFArsKJAi0NhEHTeV0BCLIoBgzu/v2jFsqwoKlDhupk7HedQnBo0syQRh2DtkwE7HVkHXApMCoU+0rAFnUCxcIQrBBW1LChaQ4AdkSQbjfSQe+mAGw0Di/1OenPz+C4RT9UCj2gA3EjXRoWZhoIKaJR8kYfCJDmHIpFK03GYeX669nw3vzMI44LJdxM1DMQwwY80PLSkoTym42En2h0Y8XqO0TuGJRAR6PWy8L75jmnAnueYBmSidfnDvIY/TzTc863lMAYgGMPw+vqKUhTrUvH8/ISlLrBQ6jZ6KK0XmDF6qmH8jOHofQQNyAR2gIFSJEAgyoiUZSoKiB9GeNq2OW/3CbRM+RVGbkZdPAykdHz4LhZrZRBxLAuVVxFgDMoQkXBo0roSCSdj4b0codSI5g5zLBKOlwNVFU/rilpCvnnIxQB7Jjnd7dOMHdzRW9JcKWW+450zOek3ouTu6INyYoxAmp3r72aMnIlAh86p0DAbGGUwWuwLZV04BmOMQDlPQw6qn1Gs+9fB3LjPvnZPe3fvLhpfsTer8AbYOFm5Z55Mp+tArg+k/35e+bukh5OOPL3b+Z3ODsUJOj59j8yWq0LyOyIAR3SIDpSNdryXaOxfosnpsAetqYbhG5NyYGZcJKzpoVchhwGWL02lf6xVOPeMFmHSlECA6RCfIrxzPUjMKgoUvh+JO+jD6NxIKRA9R9xpwOqUl055Led7x/88/zpsGPJlPO+822dxfKarWKf8qGQ05ITi5zwOeXh23fOW7/x/fnbQrdx9R0l1kk7+wa/nkbRGA3TMCAkvO6LsEjqj98OJuYvAJJAhBBJfXz9hDd1gY8CFTuQZvMssCVWdDlI6J2qhf0o4sk5AfoweMvKwGcpKZyoByFoUNga2RtBe49mlFCzLEpEMgvkSdDntyWnjUB7BmQHT2sC+77jdbmh7w+Wy0jn58AJVmXae9Y66rliWC/bdInokABStGUQEy7LMLSTpDSzh7IzRAXS0Tsc+5Zo5mJ0T6zQzedyw3xw2HLXu6H3MKBEAaDlsI3Ng2ztEaauNQedYlRk6Jdhg9B50uwR1HkBLKRVF650OAoAxOjLLSFXgw7HWCgX4HBu47YbRO1oj0FgkYj6ejrtOGVjCzvWwq1QUBgu7mLTgQau9E4zMTCSHwAzTKfUEiMO5SnBPgg5TjLfW0Hs/6aB1RqvMAhi0M+//9PgVnKl0StKp4U4QxTnCoimQEuE6oyVumVoVmx+pHgel0fAXICx5TN1IAxcnZY75nzPSBgOGNd4LBgcVRgmh7RN5C8FtnWlt1ojaaioHIBEqbzukLtBSuaniEAPoWNqcoLmhj0ajKZnAnc6TdfR2DcagU2HDoMsFWi8IEIvoOajA0oBPQ8xtYIwrXFc4yiQwylDDUhcauVpgo8H2Puc32g7AUCpRboZc43WLwFVhDYESkTjzuWTCgaLAskQapXX4GBh9A0RRLt8Cqhg+AGc0SyW8/lAaYwxIRBBppCnEHeKGIjjC7GOg7yT0vQeaVQSmC0wMKitcUskDAFM03RrEaBjVUoNGgxYDAxnhaCAMV3ODh1Fh1oNhw5kaBlGgmNHzBA1cCH8Hd0YzRIESjstMy3oDOSZ7vMdZbxD1uy+9Me3e6MYpRDM6a2ZovWNZFpTKObt7pDkgnCcqKaIxlc6UGbqGsxtCvIciGyPT0sj3pMlTeu3di/nxKsn/SLlRTu9sh2K7W4tMP1H0PvD68ROWReFPK56fCqoWtDEADFjfIBNtCkBCOdPe6XA9P6/QUiJ9xAEYVAtKrSEwI4XTfQqVY/c+3xOhlRzXpXGEMBD4jGM3T3vnh0HLqDFQisNvBvMOSKW9enpkKrN07DOStbeQo7JMk7Oo4rIsKBpaNIFvm5sBuJBvcDLFJv14rMGZro4UvMOhjL9S9oKPSzoZfUz+YdrHEZUYI1JizdGdxkstNAZcgBrRBnc68vZWkb3djrfM8Nl4zzV6awvL6XeHefo2/eu9x/OzVG73qXsHDcnp7/vfvs8/OH72Nz/LoRDvUpNPpc9TlqSTkg6Yp1G2H7fLFLt0FrxMxylpQyZRplMWOhEpc8p8w/mvyBv+OcnDSWMaHJTOW94/dfMpEhcABcE3pk+RtiP6a5gp5S736cuCk4MbIFI6kdN5ersrbkiTwub+xP2ihOAz/pnOxeFkYD77fv/f1wOfOz7n391lKpxW+7hn7jnurnt7zdkJcvNInQpgs5wNLcQ6p0F62j9k1JpyofWB/voJ8s0H1FrDoQDWdQkjlV8t4ZyzrCMzBvizDMOAQKSFzWihp0bI8jC6VWaK3hgsLVAB9tHR9i2yZTI7oWBZIs09UuRk0schWzyeY9PRlIgE7bheb9huG9wHVqso31xQVLGPTsC875C1YlkK9oaYJ/c+I2TPL0+T9hD0VZcK0YJ9V9J6GO6pE81oB9kYQVMOM6bRDadervWZJRdBOozWSgAKgJnQmZIExukAalGUqihKeh29Ay4QWU/bT3oqEY0zI0BXAvTYW4dZzQdDENkfIugY6J6OVJv7sixLvP4Akl+dhm8pJ5sbGajhXMxsZgS5MyihGhHfsEOGGXofGKH3+f6G3nqKj+ALQYIB1hlQsTJoH6nCUaGF9D3OdP8V4+udqVDMrk6gCPG+05GySTAqAuiZeTkhO+Q8IEAJzzSNtzOBB9CLQ5/6aSohcHsHQpFPBSJhuEUqEGY6gp0+pwHjo8P7Nh2rFgxbl8PJcwgMCjE6VUiBbREij9obUUY6LNOVPELY1kk87nBdYL3h+ukTF0Ariu8ooyf/Qf3CCAjIWHZaE7MeSEbmLhe4AW3bQXdhQExgVphK6C1Sjgb66FSbzSBoGPUVbo15zUHYcNYXLbWTmcHoQNs/ofeOrXWY7TBr4XgYWot8Xr9CaoVeVhB5VGz7J5h1LHWBSkFvOxSKWjhvhmMls6gAALetobeObkAzYGt9OuXbrUXagGJdL1jKAlPFPpgitSgOxed2ODZh8c1KPXGC0e7w4TM/FlLI5E7kwyNCaX3ActUlafFQngIDIj1OMur6znij/t757WF83CHVflzvOBv+n48+Bm63W9QEVVgNIzzouXcKomUh69sJ+VuWglIV2/UGkcgpBpCosKpg329Bh1nTcOLL4PcDTKUxN1NpIhXQwxRJo/t452Pt6AAqPnx4wrou+PDyhGVZYEE/RQXlA5HPWuIdX1YaSW4RZQYQtUutbaEQqEyWpaNowbffvKAW8lai5KI15tA/2ycCMD4RukNmMZJOVdpxrpl0azDbUWqBDM4t10iLoqIiXfCScKGAcmrskaakkW7ZIU507/aJ6Ttnn4NRxlxSmWnDaVQmSMKlZpTAg0dmlGB+/bQnftCfO5gq1HqkXRlao+KfdAGfis0GU8hSEY9I/3A3jGoRjVeMkUi13KGt74+fUnL3BvqZf/i/e1T//ntvHYA3wMjhbd3fMxbGT9GpBBwRBty7VvRnftS9A0nDP3Ssnet943fu0yA53llOvBigT2RFMKUuMgpS7iMNzR77VOGn++SzCFzmmoZEtEEHXYlq82us6ThSXe9lBGUlF9MtHfWMyurU09SnDnfq0KzbGZZpWEwFZ+lEpKgVGqnpCI6xB7Cnk941DTnLep37/fAsd5SsB/kS/wgEIQemw3PPP3PtJpEc975zs+a1x6XvueGTJL84vvxLNw/jMpwJofxpO6OVHg+2MQIYPnj6ro7I7vnUnZHmfd/vuAYASkknJfgijGJGjaKWanSCMO54uqwEUbc+HRtXaosS2R+fXn9MtmIUSjBT0VNuaCzk9bYRaLpcwtEKABmO2/UTwcdIH5NCgPq6UT7VuuDpckEtim+/ecG6LhCtcABrLbCIfC3LgiKO50vFWgMEcJa50I7l3Foj3cIdtRtKKXi6LFhqwevHV2YeGWugrrcNS1UsVWdqNtfIUMsKFUVv2+TH1pjB8/x8QdWKD88Xgna1wn2g9w1mdLBUI8QQTlgtTFFNu2LqoHDgBJExpRKZPQ7xAesDt1dm+pwxO6bP95nKaO7oe8P1us2a65cXwbKsc/50oqhnJOwzG4wY9sb9yAyJ5KLRB7r3cLgPxzt7Msx6rfgXTjcty28Y6QNsMahRB5G2CQD8ch10P77amUos6g4QewdRc3OYOgp0eoCpeOblzvqUw3A6QpnTaDylNPj5b1plvJ/ZZH4aw6QO1YBlWeVEwy1qvBilYMqcj0alkt5tpKhIMfrGmmZzeMljgNEzIRomjtEaHZkSofLwNB2IOrAzkhfJcTujI1IL4H06mKICG0zTMfhEj1J6Z3oTkEU9VCSj7XAYU3pEaez5gIA57CloBIANhyhRfY91Vl357KgZUimADNjIaBjDyb2NUGDbKUeVotO2DjWgVgVzyIHeN8AGFA7XArdBo9wZDRnNJoNLIRqRDMhaKj/CtsMgwu8vy4Cqo2iBukZI3CdNHgrw8NzTuGBGKE1IFrgmPSAUbpBNXEflmk7fmLQoaThEpFrhOJBj+YKt99PI4efG3Pm/9wbt+19nYWvrPdJbOBdVRbZQGWNM1M7tQP/cDKVWhv5xTv0g/4qSHvu+M2rwxujDnNnB5/cOYc49+TtX40jJcT8V3jodpHVdcLksuFzWSAFLBcqojYSiVQWWpTC/ethUFAhDdMxc6hHpZo71ckEt63QYEcXqNLo8lvzemM605Uyn8dPLppxI4z2BJiKSFkivQJDGr5wcB36ieZ9IbTLrTF+SRHOPSPho42QMpmFzSqs8zW+mN0xHPCMIhyM1afcL4xDfEckM5JFy4KClkJjTABtjQF0OIy0QP4uUGC8O7QFcJDr7zkzuXL1fwj93SvAN/3xxfMZ+Eg5yOkfvrcb9bVlnpMdv455yujDpmCDpPW2df77T40lT52dP1srUorNDFXpo6t5x4jOfKU0Qg4D84mJQFPiMIOd3PZq8HHVSKRdmMxVPROyIOH1ptY8oaDqZp5edzlryT+pQ6iOmI9MxHBao8+B7AIICCd0dtYLW+YlmhgJnxbTz1BVymgOvmUYeCFConOYF3De0Qe5xbtjnDtXdNp6fdyZTOX8v7/QOofuxTOcvfHblvR87eS6BDI2UpkOu8P16p4G690gJ9YOXU7+mc3T+fu99pj2LCJbRAWRGh87UvMPpSYDIZsZIXerMUAGO9HxMkM6xhfOTDalOvRru5B3AVC6vFU+x1rmr7o6270fTBIl0QT/SyIoolqVCFbhc1gAgeYfUQaglnA9GhVSZGmnO2lvyOGm4RyrfzFiqBU/1hfI9ad0HWtvx+voJz08LVBZYzDtla61cj9EbsnRl2AA6YLZCILMhRakVNoDRfdqYImkbBw2rTjqhvxI0LRkh7FFake9C28rN0C110BGFHT0ccD/KbEZE+jJyuK6Ddnp8b5xpS7n2R5Mo2n8seUk5iVPksof+OaKoAp/07hHlGyIYqgQJbEyaF2WqfFHS71Gv9auNXyEy5cDorL8BWLwfjESEf0wG8PQQ07DNvNw0ViPF6pxQwxBmPz0uC6Kz019GYwDJHBYcRGVjoHfmZkIPB45NBuhgCRwaXreLUCj3Q/mz4FvQ2x6+CsPI0CWmaTOPfGDAMbAFuiGR81ky11QVEooqozgMVw+UutCZ6Eyram5YLgvKUunAuM/8VvMsVs/tYiofJAtyDW27kTgGhYwNx+XlBevTMzLfdHTAYXDZUcwip7lBWmOUKFKAuBcNNjqurz8SUXEW699uG2zc4EbkwdwBZQH50zORvnHbUeoC1BXb9YptOOzDdyh1xVpf4OJoZtyXwYifmGF01lZg75DRMfbr7P7Tm2G/3uDI+rorWjd4OAaCAlOB14alrlhd4FpgkZrH9M6UuHScmk98l84ngB6ekfVGVKxmV8jshAP0Hk5/KMMS4fpSHQWOqgAwJt2/YaLT/z+zlL5inI2l+zskJw3r2LcNrDc0AEyTzOJKURYGX6+fZiQim1WkgTSM/Pvp9RWtd2y3LR7i0Tmo0GFRRhj5Cj4N/kwpCsl8p/nfGhxuJ6MJgNvRObEW4GffsTOdjQ7bA30sTPV5emJK2MeP8S4ZTXamDVQBerth2MC+bRjDsG3haOlR5/Fbv/Vz/Ow3C1K5qETHx6iXOzyW0z5F4wF2hczUpOxaFPQRS1r0CSodNhpG28jTEmJQ6CjNn72FkbIA1tG3HUMqmu4QVEA0agJiDk4QqI+B23VD+w02AmLeOuPVQAAbECDSNpZFA2CxI+oQBnPYLLGHGtHWYwfdgdfXT/j48TXkjREZ9ei4NQ14D3kt6MPw/Y8/TjkbRIPew5B/kqCpK7I2Y2/tDf1/iX/OvxN8mZ9+Of+8d7/Djr7f//gwvnz8ztwCVzk1XEiHTo45OGRGyOFZW5Q6c8wo13HrUzQjJx/ynU6BYXatCyM0U0tnxMtBsKxe6IzYSEJkCnO4j7O7bT4v+BtRkA4pgSek467HtUJATVIP+2GoH+snpM2c+4zkplGJDH5BZIHoitG/D4Q9si36HuKZjWVKKTScIFAnr/TGVKu6PkWkIPQUYo+mk316h1h/FvNTJrRE5MMJWNcLAJ/d17JmSSYthG0kGRV762jd0+/7kdI34xy2uiPWpIef1iPuhtHbBEEghwFMXuxzj263Gz6+foxmD0fRfgI2t9sW6dOXOad929D2nUCellNK3sY9qGXyw952wD3q2TyaPqTcoAG93Tbctg3bbYs64HCCGqMhNMzZ/KFEUwouE/lKRbCHXNr3oJXpCCpa3wNUYOT8CU+AA1Uy1Rx4eVpQygoR1lvvG4V6UUGpBZdLQds7rv0Gmc4pZcayUD/t20d23dt3tGaUeTPq8QPMHD/++CN6a7htN3z8+Ip/+Zd/hZ/97Gf42c++Q6bntX0D4FjWsEuhuDxd8OHDB2YlOWvjGww//tAh4mg71+66bXh+ueDbb1+of5zRYWJoda4lxGHeoMKmFd43dGPQYDaikOxUSPnGlETDvjcC4cy5x9NS0aNeraiiQGbmxPV6w23b8eHDC4oqekvgMR0s6qnk1z+LeawAACAASURBVD4GNGRFH4M6fW9Beo7e0oHLAM5Ru5v8te0brrdr1HUeEr+1QdpxwbCIQ4fTdmRa/PLxK9ZMHRNUMN0NU3nmNT6F0REWJvMT8DpQs/yuw45Uv9PzmHIjp2d7BCCMyFYIQh8DNjr6vvEjoUqg4uBCulo4JDIFeSLz6cVK4T0t3lOsA1Kg0drzqI8yGDrcx+y0AuvTaBdhaFrVJxOaWyDJmUMAIKI7bgatBtGBoQXiElGyARstViyUtiokoIrRmPrAiFVHb22u4xgXmLMltvcjTD/UABmMqLmgoGAYZloftyXXc2fHGki04GywzhqzPiJ6VnI9aUSgDZpjovDh8M5wrIjB1BH5jxAo1OWYb2cL0R5d/Xrb0QfTCHvrjOapAtHlR1XRa6WxKhFVS2Texkwp1cyPD4MmDb4+bNKChMGXKOlEiIccxl84qQw9nww3cWgxdmJLwygMaj9R80HV85tznAu0PzcS37nufNX5ESfeO6IEMoVfOk8eSGB2Y0wkMnnW/OjMxqhvdv2zyFPHu++WH2V6W87pzobKvzzX2k5/6MA4IkIV6N5hZMURBpGH77HJjFpK8LfOuYgg3o3oo49U1ACm4MVnAvOcevj25eZv/Ph8GoPup3U5vsuGLDLTFuA8CkFTvoXTmbn9BKrseEdh7adIIPrlMMgFkX4a6JvHPmYU20HUMZs5KCo7mXqazQik8p7ujojBWb4fl/XoCJYI4fxzcqayzkECaW6B+GbNw3n0wcYAmYbKqPx99NNzbySN+xM/fAUPvZuy4e/8eNJnn93Lc80+v9dMrQNwRBe5vrOxw7szezOBaQQ4MNNgzu+R14XunPQXOWh+0FQe93Hw4zv07ae1hUzwk8r2kJsIvXvE6vIeZ1o/TXtGde9d1fPTDwM6I0JneXFyPDwjahaAY0RYYkHIL1GDYQGeuQMmgEaGh4bMiTWTCRyk88N5mqf87ECkwVpE77VUaDk7uAetnPko+edYBr9/peOxP+lIee73V423PPz2Zv45r+Lo4jfGYbP1TnsCQVtZt6R6RJsB3EW0AEwgBEDoDr6karbFRgDZlFGl0ATNqM1sf4+suYyUYDOM8754ZpsIBAc4k3wgmCxwwjpO8t8Hs5Mi7Y6JAGPqJKQs1wqViunsZ6q6HFkAFjaYcjFjOWTSd2stZHPauUf91Mh65d7pJASwmREsC9ntlnVj+V1KfhtZU0te6NGZ042OcWtbdDzsWHuFddYbw431hyKQElpLw563wX4GSHsqeFQifX6CUofdJEBkEFEHTXoArxGwb0HywugDkIg4hU1ydqbITzJ1B/V+pIkH+J76B6AOnw1VJhKDOx00pt1z6k47WSMyWvTodJmff+34amcqW0amMFZVQE+pUSlwPfJse6BhmQYAtgyGCLSsMB/onkRynPkzjTcwR3J9emGzhggd9t5RNCM1YLe92w29N1w/fZy5m0RF2EmllBKNBjCNu+EpwAGMBh/9cH68hnIh+l61QOBQMVjnnNvYY/MiHW2PtsrBlG4tCsYBsR0Cw/AKD4dLwehVa8yRtdHQikCWZ0gpWEvUIo0oTmwNUgxSB3oYtpmT7lIwxsB226K7mbJBRLvi04/fY99uZA5RrN6Ye9sN6wqUl0s4E4p2vU0EiFR6oZMEoLeG7VPD3hr6aKhPC7QoFe9wdCikd/jtCl87dO0o5Rvo8gS3Fb0ToXDQkatacKkLRusYrWG7NrQ2cLt+j94bftwG9mb48Ud2WVzVsawL6rJg//GK8aljkQW+CnQlkr8sz4wsjsH3d2BdL9BSY5+AvWdL04igwI5zJ0KoStR0fXq9QVXxtFTAOwY6bFSYH0jjcERTCkUF4KWGUXBvAAGHk5HC/R7xJ/2//cYvH2Hkn4wlkjTR21JqnEsRNmgY9G3f2Rq2GluYxmdjjEijIA9d1gUvz8+43a643m7RtnVFdsaabY+RSmjMzy2Ag3n+F91v8rnRYfe7t8DRgMaZhvHjjz9gqYKnC1P6XBTLyqYmPZCpJVq7psnGWj+mpX78gfV+l3VBEcWH5wV9DGx7Y5MY45yZUpdrmegYpjKZxmSAJZnmOBFGYXquB1AAOYqduzXsbcf10w29bYAMLJcFl2U9DMtaIFowbp8AOJisUVDKJdavTJoaxjTkWoiGK5hArG4YbcP26SOGUVG3xrkXAUqpuDxVgjh9ML1h0qBHNEHSo5gG+9kW9gDH8nyTc5OIMTq2fWf6rWoYEZkywckf7YQLtOhUbKo7FWukgWRjlHtK9+nspMPyuaH5uQP83njX7Dwzbc4ZCKfEpzGa+z6/ewcMOBLAmM5+RGlVSrzFwa95TT5zNniYYKQRQJvZHLHjHu34c5vme51SsIBA3tkFltce5wqKFqiUKLQ22JDQz0vsCaAoEKkEBI0GEALZnysp3Mcz/8xOu45TDYMdURwTiIwZIVal3Jzn1IhC1TBcqGe9gyJb0UbI1+xgl4CDGrQTcKjVoVJQyjMgZYIUyaNm7OAlIjOrxiwdtgZzRLtqprKXiHRcnihrLLuoZfU/EO+cnYBzP32+43RkZ3QyyCeRGf+Cw/9WL9wBB18/zDOqQ6B6325oveOyrhPIGTbYBj0M1TweI+tH9i3oMqLiEwy1jqXWeaYUDfmo96w1IkUxZTOM6KQmS3RMHAT02r5TPrc9UukUHz48Q0Xw48ePPFYh0r0ydbCUEs5ZDyeCx2cUVXzz8jQbDrEeENi3Ha3teL6w26/FvmT0rTeCufu+4+myYlkXvDxV1KIRfVKs6wJ3x37bIBAspWYgOkBpQYujN374/jVS1ivWWnFZFVs02BJnfa0KU2lLUXzz4RlPlxWXpydcLiuun3Z0G3h+uszmEgCmfblvbdLNp9crANYbl6J4Wp9Q6oLvvvsGgoHrp1vwsOHphbYmSUqglTX9fW8oxaDuUCyQWYeo5EEa0Ey1n7rXoW5QG+htY4ZMp6zfth4r4kA4W/S3BPvaYNWONFpkOrqhtxZ1ucz+IIibWUKs001QZaZ17luUMtC12fc2ZTeZzRg8cI9jOXR2nVTd5llW2cb+/xFnijyQuYgU0uICi1qKifpHi9x0ipBtWiEnocFGCamAzgrZo/2jh3c8ehS4hcFHRBkTbmALZ0ZMkondfaYielHmnDpJ3KKd6jxQEg7vDT5aRJPiUC9MSQfrDJmyjmgEsh8H2EYedx9ENYj8sx4rlWsBiSk7BUqcUSQefosZRot6JgzIcDja9Pl9GLxHHZQDwxMdSmeKxGXdGCkqFE7WG1ECM/CMKv5XgGhjPDD6DnOFuaC1jt46sjN8tmt3pDFxGFPmgixmhkR3H3fAFGYKc4W6gl0HEczA/NreLToiGvq2o992XG8N+z6w3W7oo2HbHXtztC2c58ozyYiAeLTNtBmWJUefc/oDWbBsRRJ0O50pKm2L4m13gSZSd0KdEI6XpDGVChKYCHlaNJmb6zinO73PS9OhOn/yk4bh/Sfzzn730xGRciK1iRRm56MzKkbeixxhi7O7jpWLvQajivE+lFkHLRzTeOdd/bjPXCchT93ljgPzmplyJjrbz7oRZBFdZidBNko50H6PvUyHldGoPgU+zCP3fExUNGt4LOoKD5oJgxFpDZ7N1Xi1MIpmhDwdaBbwzffOWtA7/nGDmmNkJiT8LhWaqCq7bkJLqCGZe5nkkvnro/f5p7eGttMYNAdGzzrQRO/5LBODQmEZmT0j5vGuPwWIp0LLSCUdzAQKEgH32R0SiDqV0BGSDgfoLCRanuj40YHrPN6Z0R39v+Wh99/gjocmDX9JaZ4dndM1wbwzE2OSSND3qT15GtJMUzrd8u6ZP6G0g47mNSFHj5qfQ+9lI4asL8vGExN1P7X5FrfgRfJB8pWHw2QOuIwACDNidI5K5bwD7c/VtajfvYsYHA6DAxGt47vl/VIOJHBxyIj8P+8vKamEAB3TKn3aA/wXEYENPR9yDBgz0pHPtp5nHaUNQ5BnOGtNxogab5W7+RgAaGGpcto2iUXgpCPe2U++9IEA+buXfum703v7/Pfn697QVEZAUgZk9kHqhjwGIxvLHGf2jHlkS3bnTJWbh+xmnY2NMWWAwOEBjpjJ6YgN3DnY0ynzo9Y1ATXHoPw/ARopA89ZExPA6wNWxoyqlXWZayGpggTzjKUp3z1rnCLDJdIG+ayI5AnY4CR5TARr2BwCREZT2p9RxjHGdDjIbked/3GURGZWRASnKNMIhXYvgfx0oJM0Dh4nD4Q9HZxUokW6KKIV+qnhijOibaGDNN5x1j9GxopGQy6gILoIHOBb8PPsTj0OHUSgNOT/OCJbeURNNi05mk8cKfps6AXalLmWEb3zjE6PNxFWG6coFo555buGDhKkyRYZYRqlJSaTP9IuhjtU38j8XzJ+pZqpA0VzGvjAoeDz8MY+MEabrbgF7AQmouyOJg5z1jZlvizfhEXa2SLSR8cI5p3h1VAq1qMcIRiw3a4wc5QCiLHeCGGcjO5wq3RuzDAG60m0ZFrXYXgtlWedWFg5pSyAOro54OzVn2u77xt6b2jtlfVaA0SPdZ3Ka79e0dsWB3IqlkuBlop1rZCSqUx8j95osJa2ASLYr39FxOPyDei2OFzouCTh3VqLMHEQTB9AFSzqMKdTIqOx+UB0TfJBJGbAgX2PlIYC84JPnzb0PnBZePbD8B5dljVqy9IBdJhXmBX0vkPNsfaOYgLBBY4LTC4YvvJ5I5mXjnFrPNfr2ndsH6/YPl7x8Taw7QOjsxNdtwIbjnYzmAqwCJZ1PdXFRL1FcSBy+CGZpkhUUlQxTID5fKBF3U23xmsFIfAQewwsK5mrVO5PG4HS+Ek9SYj8lNBOGh3NQ0jZTK06RiCU94z11Sz4NYMRSkaQNFNkrcBP3eqAdOaIvGbNIdugCoCKEV0B3VlPl4ohFSQNEZnw6n2K2xsjyo+W4clAqXiy7b5lG9LYRxFF7xsqWzVhuxmenlcs6zqf8d23zxCwdnBvDZ+uTKclKnjF6A3PlxeIKF4/fcJoPfLkLboMWaC1OztNap1RJ1UB4kDyAxB6s3+RhpHzybMpEKlVZn0W0fL8E34/UxygQCmGojyAsBRHrU8QUZRlhYhCsfD8jG5sPVt0Ohw2GGXerp+w7x2frjteX17w/PIaRrXyyAUI+d9xADDu8FKgkgXfh0OIcBB53t4pAjHf26ex1Voe1s4VKqUeKaKZujHBB3aOSyQxOxTCbbZNlz3OoRkDvd/XTCUod5rIT/LCT4+zS/Dl+9w5KudPpz7EZw6ZRwdJyW6i6Tj66fpMMwlnywMIyPcTKYBHm/npqRw8lI66RSq4mUWDJMUshvBoTuQ8kNTD2FJlHQxTfogA8/yZNWq4Mp39aJRSSgAZpzMiARzOsvPcGQ2jGw6e5SZ0QHj1uXYo3mg29aEhNOt2POlnTB7KddaoMzRUDG8YxrrQkk6fASOi2B41eZnKInJOBRoB6LUA5mjDZAaNSAkkXtCj2cFYx9zCbOmPUo5enp7rB0jIE/cjpWhSnZ9+eJNuxHl+wZH6mvGF63rv+PjxdT5uj0wECfCixbmCbMzQmIkUu9PQwjiPumpvKFYiE6aixvl/zfps4DAiakSnS8EzzpKPESAfs5IImh+Hq4vYPLSX0QWg73G4tJDmtog68FBdHtS+ZLaMOQ/P/fZb1CWOXEA4xgCWyojscJY9qAguSxwgvVaMUXG5LBAfEUnrsC748O0Luy07sNSKbz88RwOEhuttQ2sDI6LL++0VIoLvvvmGdUvXWxw30qMJAkFdB5j95I4mgjwMd9tZ61SUWQijhxyIroQoCSsYQWPPDnQaXQgLliXW07PJjHIONrDtjmKOpRqKs+OeQLDUF2a0VKY4Cgr2xiysZY0uwGZAZJe0bUO7bbhed+xtwD0Oax9hm3Y2+PCobVvWBWPEfEueZ1emE5XR631v6L1FSvkAO0kfgPGI8oQ+Doc+G1MlEDCdW4+Ov1neMwxeGMW2aJQy0/0l6vFEjs++Ynx9ZCrRhERS6QWE3k1FzDOJGG4dE6WhV2gwGXOiVCQH01uk2iEiSIgUoZH1KZ5e8EkYAkj0PMCsiU5kHZR7i+5+VBCsd+FiTucsPFVG44UWtgMWKALnn0TL+/atoY2OFge1teYkhCrxDlHAK5EX6w7sN2jhIaIYgO+GvXXc9nTSBKPzlOv9RodzWISnU3+ps8WyMuoDRL2W++zK0neDXirTHHSBuMIQhpFHKlug2jbyjBjeI0/5BoDW4t16J8JNToZggfeI0CwMPVsj4uybYQzBiLoUuKI+PwNa8OkjU3kOFP2Gdt3Rrhv2LuiGQGB0Ou61CooKW4SGU03UJM6oCsfbRGDRul7iHAuHh3OOeVgtMv+4N+Q5Z8ydDyKSiBCeyDPdBJ/GgMwUD5cjHYx0yXNMso3nGy46TEGJOyegORHKgyc+V6fypovT6eoTwgZEapFhnpWgsrxny4RdR+HFFK9kWsTBeXQiB47ccODU3SmMTfNTUxgEwpfvdLpuvofjMLjNAhUGuwY66Gw4C33zEGgJA0+i217bNwiYjsOoObPn3dl2wQOFSmQKgdjRB3aIBQ294+R6GkV+mvdEM8Ngjj044GU/fpaUmT7/QFLg8ww0G4MKv5I3s7ukCDAkD/82ot9xVlZG6AnAsLNi23a0aOBykACjtzTkU+bmeqRjeHrrkIW5FufC9GCL+/U5ocG5NuGCzahUWO9zlUbQTHlzmOcZBMmuox7o5ZunvuGfO5I67Y2fL3kzkofS8bnb8Ltn5T95v0nHOOrBThe9vSMyGi7KCNDdmYrn+6Vui5+Pdwp+nKDEib6AU3e7RIHDX52t9ymP0rDhvAe8MMIPo77NRkhF4yDOE4CZDReC+yKKma2nzw7CAdTw3Y5IwsE/mFee15LjzX6ns5ZAYf7rb/dFAK0RyTZYY22KQaB9AM6657KsXKPeZqTYMprRshswnT+2s84slpD3UqLoPvknHh0AY/Lc0dqeAoDm0VseOvb//c6V4YCf1uFLDtLdmh9E+M49Y5XDqZ9pyqm7wik5n8eU3UcP4vbp/EgAasMGZGS0wQ4aPUWW++wuu+BENudj0ya4wBrnrGkLe8Aju8TjPKg4D5KgDB2jGn8ybTijGTm/0Y/zlngUSBrgwX/CRgShHKbzLiIsZ8i98shA0gJ3w77dZt0T9zg6BefcAWTnuIy8legamA1+4BE0CB3mBnRnauXT5YJM7NMR+xRp6EfH3qxzdpSyUr5KHrjNpjKjj9mUg/ZJZcDBHFJWSIAt8JRtXAt22eusHSuK0Qh2nOv0+96YYRRt0CXqe1XoL9SajXhwRB4lNFBkclhqD2H2zIjoL9cvwRRAQHl17sh31kHp+mQXv7PMcHe+jxwH0k9axrkmk9FVlONczK8Zv1IDCjPjoZDRtpfpAYehwQ3dZgjdo9W2R/edXLBliYNcJZ0qRdt2jLbNcwA0wbUOcCeU9wg01sxnLcbI05nd4J2NHtIpk8YQYKlcvD7CsRo7DRUbMFG4FHb6E4E6I2aMvh1piERMeVjtdtvR+kDrTPW7bqxBqAsPoC1KIhHNgndg9FdoqVgq63o+XW/YB7CboEiBQjkfH7jtVxJi94gYxNk6he3V2ZWQnewkBJxWHiq8bx3LoihhQBt4IB53qkc6Xuxpd/RmbJ2pK5ZSUZeVxu420Jphu+7o3kNYVCgUrVEALD/7QA/+tmPsA/unHaV2LNeOfWPt3Lf/+m9Da8UPf/5XGHsDRsfWGl5vV6ZYdIOUC0QXvDzz4FE3oljrKqilYC0FRRzeG3RlC+9ijjIGbGf9WhdHqQukXjBPwG5kqjxXyTtzdq3tREWWJRrWTzKHdQrO7Jciwf0ueeI3D70TkWi1rhjm4ZAN1Lqg1uUdZXY2HuRAKXEYbHfa8HMT9vTZ/fXUdeRLpOJxRm2KFdRC+pJyfztPxRl1VY5UDKQ7MYero4Wy3baNzvVIJ+U4B+x+2ietOQVaGLkiR0pGpndFGlHiGRLXl6rhU4SAtwapVMq3T+xuBKlEuYTns8GNzXFEYb0z6S7WZakVaul4hNMMndHzuTSh4CSdpGmA5zudU9Du90LCYnCPxi6hKGkzlHAQQbp/WVAvT0CLA247U6M9xFTfDevzM9YPK/bXHWPbKSPM8Hr7xPrUfbABSxikFL+cH9M9NDpsSYBcfAcVmcYgBAGWOSMKp30jcHOORCKa/hzO1FwBPwzgdAwkPu+WRxssk06OQzwZzS3ZGORdRXbPP29/5XL+/TvXzHuceegN/3xxpONzoJ2fPefN97OjpQ+EAZP6DnNts6nKPf8k7xxG9/nYkExnmbVOloXsdHl0FqcczhT3hSBSqQvP5onC+JaRznJIpYx6aakodYFD5vEKAkENYy1bXzOF5x6UyOZOx7sZiOjkWn3OQ4LkNQUiLdXGuWkCHVNuBflc64XRgz7QdwJ1JVPXGmls+fCBtbkfPwGZ0dI7sjkWIKgrEfnLZZ37l+fiaOhej7RjqYf7KLH32QRAtd45QXkYa5iLb8jy8/YTb0XNpImfIs8363i60+kWfBee8zbCuZC5tr21+X0VoEa2UdKfO+IaYL1c4M6IujibWKTuCaqljB0DbXd4rSjR4S+7VuZ0uWZZuxNUELUcdAo8sDWPjIkNcLYiX5aKp6ilrlGzxS6zfqRs8Y4E0kqJrnqNhwrHkSw8quUUhRCmJWvluUseqWCIsgaeo9aiRkmZjm3UJSVOpTRh6vOIrsvuFp1Y68SZeLQLgTE6WyUi+x3Pz094enpCNkrrI23NG8QNS8la5MiK6QNyubBzr7Ibnyptwt4btApkUdInCoMPw1DWJ6YBNjqpOIEzo7Hh1vNvfAetiu2Ha5SODLTecN1u7GfQDeas3k2gTKVD1FFWnY5+yk6CnQJEWQ/7D0m0cne0PpApu1kPl/TILtbRbGnYnQ7y+QzcgVWC0MVus1Zq7nM2YEnnbQTocO65/xXj6xtQGIsGXZmH6XHWQ0A6wEQaKXLHaFOgzNqbCPd7Z+IMTqhItmeukUec0SwuVDhTUwEFe2QOaCBMI1qaaynsDtd4thQAaB+xoHQrNOCkrKkxDMAbhg4oWPDGcO2xKZJHt7rh+++vuN0Y3qXAUWhVuC/wSqMj6yTQO2Ae9R50xGwMtFvDMMUYCiwlKjTJuGOPFpxowFJY/MiFxWgIYiKa3TemrGEJw7R3lHpBrQo35gxrnqLtZJiWkSZhAMkMWJ7SaWMHo8vTBVIEW9/ZxrwBYoNdDpcCE8X3P7At9TelAO4YQgF7u+1ou2N0oP/V9yilspZj0AE1d0gtqAuLnZ+ePqAuCy5Kwdc3Ctca+bulLFhXHvR3ubwQgalsLrIU/qtlYVG1SjRAoVHgjjjtGkCc97NcnsKQqyiV7zyCgaMhD0PDiJO2M4Ul6ZZ/RSqS8GyyUFZZx/KZcZbGaSjGu9++UZ6fq9g3w+OvlCDwaZCySUsazxYNRHjGg4AdEEcofrhPBdYnekYTgQ0GuIZ5HgdrkM6H2cmbKfk0VvJIgJQTNvIQXDYw2PfOVDgbmN3Oop6wLizWr4WNbsQR6Qp58CRTX/kuYxY6u0l0bOXZEQaDOrAGGpi1XypsvDRr4YYd+j3WhG33T7vhkWo7l95P7x7d8k6py1qY8jQyShrpwktxoBagRgrf9YaLKBRH/nprO2wAvTlMFUMEHkXhPSPdQZelLFiU9H95vqBUUPl7NOKRrLcS1Ihy1VJORb/5hvmHxOgh2ymLWfMqeX5gfutEB+doQ/IeEPWpjhn9pFN5puXDqcmUwEwbfEvzZ/75qSF37/KFMR/rkzf55aMWIed3pPthvsv5Rkft0un7Z0Bh3uftlE5OU65FpLexKUSCFTZTIinHHfvWIrW0nfgnjJKF++sBzs0jQByAsXPV6EyViRjAqZaNUZs+dtRAy0ukDgrDnNSjZuA5VXyHEcV3uY6l3Ndvcdj8/eGQBs3gvK4exeGVIGzWlUDQx0YD1A3DHdsYqCJYVDFYTYsR2R69OSCK6gRHref5N5kyReNWteDyxINdS7Cwm4QzdXRDLZEimU1Wko51HruNAB7eiP+U75O9Dp4kH92TZsrkM51M/+ye8g4b7LNxT/vpjMw/vR+pqnxCcj76MNxuN8yGO5ERNKNN0VFXl8JUr92n09mjtj5T/LJ7bNcdHrInuwkmz5CnfTbXElVYHzwMPHRInhV4l/URMmFM41vgxXFZ2TQsGzHBCrwodC0oatCFR4K03Y+Oz6JxoPsCD1uvFKbciWakDIAZ9m0PrjnqQ0stqKXCrQewwTpsg6GIY41UQwv9oiIoQpt4hGxJhxeoKMo/3QYARS2KokfUeURH4mx8UUucBWWHDE3bXCuPKnCjLViLA+sClILbtkNE8RRyi3tG56x3NmaR6y2yI8i/PQBJyeZdC1DC/ipBkz1a2KfcywASAduo6Y3j7jSBNdbqhA/BqHuJGrYEbUsRwDVKaw4dFBWQYHbE6WimtOEl5IvI0ejqYA4ceiu021um/CXj69P8wkD0IhDDLA6fmXEuNHqUefEHmnbUR0zp4lHgmU0ExiDpusMi7ClgCoL36PglIfDzYE+JxgyzAG6gZRrdegEi7JmIdCLdCGKSCb4GaueMeggERXkI7s7DmUDrOVpKRieUjz9+wutrdGSBoC4LypI55XSs6Kz59FZUBDDBvjWMYdj3SBw1bq4vfJZDAiUxeAjsumaqGR0DhyAawaBvPP9ruIbT23FZHfue+eXAIpGmSF2N1h2IQvlhDOdfQOelKNver5eVBtSiEM9kOIN64yG74vj4wxUCxfrNSyDcbIG83xraDowhaD+8QmtB7UT2tgixa60oy4K6VHz49htc1hVlNMgwtHAeayAsUlY8rRWXtWJ9+oBS1iieFFRdWOQZJ9vHziLbkHqgtqlcRAsPa436glJLIHZcEw304KMLjgAAIABJREFUuA+Pc0JC4ZYlfBef97fOnGcJ41Y1WpWOgcNYONltQAjNg7fe4IeffXqX+nfW0CdHKnmLCtNmMasHsjN6h8feZkrHRImyHiAPvIuoQOtHi9ZMAREECvlm0LnMdJyodZiRi0C6Z1MWY1S3Zd5zDwVyKpgtPMdFVaBQHMeIRsMFA5E5B/o+UKtgWRROtqMhKYdi0aIwc2yRz08ujX3wSG3IGpUw3LIgX6bgPeTJ27owRnCS/xHrGvUjHchcIAVxEywFuCy47gP7rUPXFcsseKaxYgb0IfDWiOlHu90eTqFoYWOJSM29XJ6wPi2ndGXuVTpT2SmvxB9Eq+JzLV3OfdJX/pt5k7iPyvB8nTMhHF8656sDEnRzdKOSu68c9JspPp/T2HH9Z8ZnXvCZky93/AOceGjqpJNuevOsw8k6p9qd73939ZsZ3U/y/P0jQpWXy+Rn6s4japvRsEyfd9CwbTtrH0YCOhL7qYDoChShIzV4SDsgUz7ZIKDBVsELZgti0Fgzs4jqRupVKYAR2ZeUb7S6QuYeRsoBPtapqyEHcBHtoZALMB1RsMB/rmAAJMN6nPmWaUAEYIY62jDcto61VuiiAYwyyjKGgUsjPNsQAnXBcMNwm7xR1oVnrz2t5BUbyCmq6ASPJICk7CI3U/TkZLimHJybLkGw99Qx1yUBiXtm+IyW5Pjv547apMF7AOHtJVMXDNagjHacHZUTEFoJcchqmzIj06nyzUbvQFF4iUYlZqgLzyBLg7tm1CcK+rMphCBKCxJoQ3QmdZ+H90pEq/NsztRBHrW9Z55MwI+HK9Nmk5Wp4OQZgY8BWQpMaYzLItg2dhCu4ShrHALPLqkEwSgv2dY7Jb45AT0R2icEJoASqXAmzPIIS5iRO/DcynbSo5lVP/NEQ66lk85mF9EtT0KfgIf2jjFw2xhJ1HDCavAm/OCVdDa0sNssbKBonIe5Fngp+LjRhl3WFVGKFQ3NBnoX2k4bzxUrkb7bsuSnsC5QlGev1Vqh4RvsmwKhf81pn6a8zeN49p3AeoIVUMISldg86bMUFI9IPKjTXA8AIXWQBL/5SfecdZAg68gPdkkn3oVAbV77JXjip8ZXO1Pp6U5DJA7tOvJCDT5wMqAUTMuJ3Hpnpzp3x57I9egHmocBccPQBUME4h3i7IpHQyDaioOd4iAayMpAzxOxS4WbY399pSEhYAqfg/U0xhaUBp/9+M0bhvOcorJcUGpFXStUgMsowdACGJmS5x44LmUBVsHr1tAHDxBbLwvq0wLbOj5tA2t1VHUsGh3F8pyEcKCgBXVZUeuKrNzJ1Min8gS4obqgomCpFSgKKQX74JlM19sNo3X0nSmUmzANc1WFt4a+3bAUMnhZ2KRBxwrzDoxBVGFRHoY6BsQc6j4dExTMHOTRd9i+YR/fobkDTxWmgsu3O1sdO4DRIYvi8lwxvEa4WTOjELp3og8vFwCRXhRg61rZttQ3AGIo4EHJ6kBdF1yen3BZVlyWdWKAtrDtLQ+rA7rtYQADbe9RtE+0ZI983tYNUgx11RB+wJA0wsMSCSpnJCejXGM2G3Bg0rSHsV0AppmODhc5zmD7nIvuP/mlHJv8wa/S7jwZd6DxH78IDiEf9lBCgshbToHkTAtKHZ4RwzQOLAp7l8o00jT0RmMNoEDDQEv+pZLOV5NAgDybnsQhhoj8bTcL55wFyLbv6AG8rJcFVhRtc/R9B6K4+LLEWR/GFAtziQ5DivXCRuICPkOkQPqF6b8lEKnK5IvVDNfbjusPr+xa1Tp64xlUBpsGlAAz7U2CPtLp8LkRiIh8NFWwESmjiSInqg+steJf+83fRA/6KGtFfVrx3IwNTkJZS98BCJbnb8GUwBIKV6Ajzvmplc/NiP+ITkXwiU5m+jTrCwWlMupc6xJ0nfR4NElIlNet824OZFrrDNKEsVxLxVIX5FldjjDO46DzUqKVO/Jw1Ph+gGwa7zQiP72UCghmLev1en3n0N73x0/z0Il/kK95GC8++egEd6Rz9xa4eHtfpIPEG3+ewuXHbcSPoxDk6GZ5GIRHzSYA1jukU5lt0aUwbbsT1tUAdNq+T2O3roy093iehDOmeQDv4LEdo28TKU4HDH5E5GgAltlZFrXMrBQIoEoZTmMlaCeiQlm8jYg+FA1jZbbh12MJ4/PMHHCEMS2H203ATGAaPP/0DQyGRQ3dDHUdcz8KVnZDq8/EACRLAQioyjBIrZBSJt1L6N6qkTIV3rpImamZzHwoNBa1TMMaQs094RZLZ5HcTxChBA3I0dEYxqiYUO+cj8n4pVkJb2jwS2bfT90lXa6MVvFD7mcfTDnO7rlA1P+UMltHpwwhwB7Rpt7jiBmmtBJoJo3WWrHUEhEPRmLo/HAOt+stAKmgKeP3llogGmdRtRHNwEivs+zFxzxEt1ZGl1xAQDjbvjv3I2leHbjUBYtWOloI+QlmMbRBwI/7RR1TS5SaOMLZIz2utUKf69RBzJDgwdgzPVcFUhTDWbfzr3545bE4N2ZktY2OggdqKI7ZibkIUw01zhdsI/VUR3plGnXa67pgWRY8XdKWJT+slwqez2qRJStYXi6QorjEgblM+TbI6Kirgof5kgc86FM7n/1NrZMEE7AOzRjtzw3wMh34qiXKULjvbWMLfHlaCHLebrTHWx6CLRFJ5vtLtL+HsY+CA6i1hsPlk5ab8WzUUuqk5beyOxsgSWS6GNIZZVt/C5maDS6+dnx9zZTMv4CsMbkLsd17grnQU5t4psgl6jZm/i0NwGzXHAo+wy6DJ5hLEWRzc/cCEUceZjYihaFUGlyjsyWyngxjdgiMU58jZcK8z451w9ln34FI/4o26eO0WWZwZzeQKgVeHDeJLkQRSlZnUWYfDdW5wkwjAzzaFFPWFogsEVauwPA445GQxlIWwAYUjhL59loqpEbaAzxyXp05q+7oGPTi18IOdp0FxJrdhKbW1Ehfl8MzHz5z95mnzA5FVXgyuJWCUQrEAzl4YjqVlU7Bszeg80woyAWuT1gvFXUpPIXcDLrtfN/vvuEcBuDNYLtB0SEYsMJifFlLpKQA61pxeVpxqResywXIszK00kAf2do2a5947lfrg2l82QTEmL4gzrQ84P8i7d2aHEmS7MxP7eIOICKzqqa7OSL7tDIi3Lfl/+YDfwZl/wZ3hRwOOd11ycgA4G5mqvugag5EVs2waoiW7MyKCy7uZqaqR8856hzlSfU8YL8ZZOWRYE40aXLfR4i055y1A2BShZS+3b+/6zG3zbP4/+m7T//5cZ8dSP6Bes+fgWkE8yjA9EMnACSoQt3XFxxI4nQGSjk5rSXWepprZnKV7WFPeqDQHOoLDkerSNA9h4xusZoDLtNlrnpxOmJgI+oW3iX7EGgVCzRUaOqIWF0KaGicopNouQR4wlFMeVgMiqsFT37qmSY6buazRGbRJ5M2+G037gm7ioAiMXCYD52exzyO0/nsg6jNXZGWtZCLUSd9Rh+Uy1R8PkqtJeiJikzAY/UgaCqgFgL64YnMtOoN8bGQDl3S/PNBsxBrYK6j5/U1U67579nFey6y5rJ0+p0+rV9BxPfa8axznf56ZZOY59/sIo/fcMOMeuMpS3z+9/9y/zz/9bR3iHs/O1bH/9s3v3/87APRfPzMx9T1g6bq6Rpx/N4z198egONBHXvWlnwDwtisu+IfOme3DKfAZAf9RIUUIOX82VngOnAwXVDjuWZ3zF89qGsEIBoivnnGpMS0gI8P57E57uPsdAkf7/uHPWNPlOc4kxz8mcV97Me43o/uqtNvs3SSGSYxsHMoUgxUSKUAiVIczW+qiHqimMpCWiqH2c6wyHftuFd+juTDASx9s4f49vMc93mes48v2uRhgVusRwHx2BtRIDwt5mOdz7NaHtftm388KqNfvaePa/LI2T78Nx+ofo+hyDFLdK7xeP0Jnk+E/yPjKPY/6emsCKMPm9zJ6O5/s28mUyJLOVhQ0wQjBVMipWlQYdEVSkw6XkpQkhzzlaYRVSneOelj2os/aKcl4yAqcy0SendxDc+MUeZGSCXijuAA+SBh6syWWuqhjU2BrmoqeI6B51o1kQwyRkp30DnIfWpqZ0ckYmhcoqkzO7SrmqJwedzJB407hYtfJYeGrJTsM6oAQSPTgnVdSDkhZbJ3vHPlr1WRvLgOLadjHE+K+yLrKe65eF479DEOCCLP9C7lwK9RqYVpl65By0ypMMTYDmDG/LNnOc4VOdZb2MAFgJMkHfPJj+5TrM8PFD3xfTeZOoez6myQHw878vNh04X392dyf8CAQpwrHW8ip3krU+y1SPDnX6aOtkjxeRaKB/cp/ByDse8M9YG1pXqrXe8331TZq0bGHi+/YYS7zITUpxYjWh8WVIZCYnSjaWeYv79xb16cVKeajRG2xTylleKbEfH2al0qZpCLD5b1eejuoteyYiXx93/+HjB625EESx20oWQ1ZO+MbcDZrdBHy6j5bJecE6d18Rff7754JR+tVhVgKDbiUNNCySv1vHImYyasWmj3jS/7TwwbLCSWvPByevHEeCSW5ZV6WmKmzmCMhPboPmyD9j64b04JXFjJIyOvqzvv9IZIQeoLUgXMuecCVLkjMlh/WFCMvd0OagpSMBanU2Lk7pbVxdxqtWOBOiRqSa5naR0bxul8pkjhdPmMSEatBMdXyer2t2q+IUe7R/Hpw/Tq+eQJclfSurJUp7noLGIlUZYVcBlb1BfHwZpTBL2hvmmjLVyiSLfhhZIkCVODGNaHU0RNQlhZCpLLrwuqOCw+JEnzr39tz34TLI+DV6cY/jG/AzNK8qGCJWd6d0OYLERh7gnbkvPhqrjWgjzN4+hJGEPZtoaIks2LLEcWNQxCNAq1oJb2dtAJjoTi0HhICMQ3X4d9D2pEp2SopwWvmwY5dbBO3xXZ71QM0YH1HVXXE07Ed4mZHzlmRD20bcmTrGm6IdDMHYOSwLomfvg+s9/u7PfN6XXq6Jk8BWwbAwvdlH+MMOfgKQlsfdaDfv9lFjJy/KxJgXIirT+Q1ddIyVCTsVQXTLtV/wQDPJj56cpBS0rmek995OOICHXJzgpgUGthqQulnoIylQNZjxRC494geBdgeHc1iSP26QFAHUDU0/+7jW06AtpSHVlsfack14HN7pPfC/FRJRYIeKD8c0bVHKreu1OASilOpSqPMQiPhf/tP/6N+ycSpId1blDp4EMXTU2PqzC7v8+dLGHSkTi+Bl5o+h5PT68HahN1nUYGfj3MgjZl6ujt/Iz2tH/ALdB7R/vuAEhzM6HzaYk5L5Cy07D7rlGEOyBXCkw97kFUraEDjbEjJEfxc4mzIGXmUFaxBJpIuTqV/iiYhTmrLaXsRkoBJui0PY/76OE6NDHxuyNs2VWjsJh0vpQOEMHP+AXKchRmYoqYG1aVGmMJ5oxKU2waYzALl2lKFVReFBu+1kvkGt6hEJa6kHKh1FPcQx8ZkWSyKeI9YZh4101Fjo7XI0N7DC5mnhnx2Y5bHPf3SP6+Se6+LYj+dx4p+cD1zQz6CFvqRwFtcOipjuJvvmfxn8jZzX9mgp+juyYirOuJWouPPjE8vwF6u/u5Spg6SOh7kg+2NTMuZ/9ZMVBL9CS07jOv0kHn9zj/PFrBDIbCUhYu5xN5WUg5s64rdan88P33gNvA5ySsNYy84rV1qL+XiI8pQSrCmgunevLiAkVGw8xnaJq5pjxJYi0+WiKpO2EyNUQCSc9eiIUrbrdxNGVfL59YyolrqfS9ceedMQZ7c4OYdV1Z68paF+rpTM6F+/2O6uC8Zlra2a5Xt01Pmd4G+zBeVqip8Pnz99RlZYKDuSyRu2QqQhFYguBwOnkTYejDgMQZHoUZbbsODB8MD8aQ2M/dKfQpi4N6aqS8OgBRTmChiwoNNWEYkTXRU3cXWjHyy4vTJ3GGQ2+dUhM5L2z7/WDURCIXRbrrmnNxK3RGd3MJCftzXObiyAtMI48JLvbohi8xbmXbds/34jnnqJTf+/hDQ3vdrWQi3r7yHwifJ5diE322g5OPEIKvR8JnNlGQcWgm3Nc9RJHm1TejP14/nttv9gzwPGa9WPAiScfFPlCf+UEigI7ZbSJFAhWtUoQ5kymJT2VP4s4sToPwoYYzaVuKC8c7ToHCfMhhkUfS51bk4nbimPv3kynGUalT+ZDIJIu/U3a9Ua6UvFDK6gvEYM8Fk0aevwNUSeSJSBOUJxwhwYJGqE7Z0tHpfaft0Lsw9o5W9fcpxHVISPZCL0uJVquiuvvBmPxwrXMgqMstMUpQTIyMB7NEuK0NHz4cICpFhKExuyEvPtOkLL6ZrTh1SjqCBkoaBYVyYDl+SMlcGH41optxCAqRw/Zdgi4G6ePvCTz8x+0I+t7J0DAtkCPp8sAewnmzgyL/rwMaxqE/+fB6cxl/izrax69NhG8m64cu6SH8LUFJETqqD9MIwYGPMKDFNWIxi4LYX3kmSo/ZVDk7nWHooOR8vN6xv+zpvc73Nw+/SFhnYjYpHJPuFSC3YySTlx9J/+yIzS6laewTSS6Kj/01u67TUWz+L4c2IQfKbmJUS5xPgvXhszXicJPYSQ/aJB8S+IdN8ONAH2EKEWU0NvP/9DT4OTkVKKUFQ8Pa1q9JEp895yzM6EyJYPFeMEg2jrNXYtg1xNwMcU9PJXlnPOXg/vvef6atArFmYpHGa5HANIZWq8bvPM7MR0pnsUceSGjAfsc+mTOi/JZEaTip8uPxrLFUHq8zY8bTAf+bYSxQcn/79lQjydOPfLN/vv2afWRRTKR8dm2D7HWgrDJf12LPRHJshJTseP54/5MyNzu18Tt2vH94WKE/1tfx+fBkH/24x44htnMfmcY4C444G232qO49UB9njFnEbS/o5ogMDRW4D6aP9RKf15fIw+1y/j2v9mEUEudfSjydAfM9PT7hoxPoDx1TExMFlxBq9Afdi7nW0jwHgpthcy3mI4YfIzFm1vrcBQfmCAwHtfw9Tk2hanSh8kykphZsXmAee/oJ1LW5H6Yu+uiAgB3r/VEsfaCDfnP2/0v108e18ts/8/FJ5gr9+Evznflldk7Qh100O4ASVPWnmHGcq8Jhyz1BdRGnGNfq9HwNap93RHOcDfP5H0NoZd4teYpPalCCOXC8pkSi7Dmiv/8UhbYEhTloafHvmitLnc6Mdrghl+yGKla8q1lLDpq107p9BqCA5Dki8XH/wuRi6rNn99a7selw/MWCNicO0vpamF1nY1lcQrHf7lgax2B5wfVZtdT4vGF2coyTeHSvpkOsJ3QWHVbvDLvOOEV6410iETcpOhwamUyCHPtrrgH/HY9BEd/jDJl7RhzJI7alR6vsA+ZzNCPcFdbXuk7X39ges8Ockp9J0+xprooxHADWBNKmZjHWsLj1ujMh5PG9ONdS4mApTT2iCOg06fmwrx5H1EFZniv9DxRS8EeKqaGM3Ss3SRLD9TSoVnLMlAFP1rUrkvxwtTg8e1i5zug5B/5ZH6jsPoBv+MVtzQNBtjtEEaYjXIjCUKCWCNSR9Oe8PGV1TtVxRyBBZAHtjNsdVWXvdlDs1rWyLIVUHZnV5q9lS6jg+uaW6z3EjuoHeE5QJvIn0Lty2xpSCstygqyIaBRcxvV6xaTw+ufvHal/f3eRuQrlkjFZ2e5gOki/fKUm4eWHTywvJ87ff4csKywLk4L03n6ErVPMU0UpoZfZOyWt5HrBmjsckR6J/+jG9b1zu974+vZGtUSRxDitDEnsP7+RlhNaT1B8VlWpC3Ja2d/euF93+tgwBgs+3K0sL6TkQ0i7Kk0H6OotaTWSGkbHbJBEKVk4nY0imSyC5k+YFkq5AJn3m6PwNasXYjq8U9Y7GhxfKQsm2YPgAFoQohFMCmY+5JSsWLs7in9afaNPRFl9HUh6BExwrneJjWtkxjB6Cxe4IpRAWDUM6qxNQaYHAUQfYwPmQ6NISM9poPCrPXv83kzCPj7P3DfTsYaJxo5OycKnlzNzDtZSAp2SieZ4h80d8YLnbJ64lepuVkZypyB7otasbqfc9v0Ier33gzufw7kOOCi1MxGcOspJZ9AopjwpCpqGOqWv7e5MKaVSUuF0fnEkUwRrG7Z3lsur26Nri8CNC+PLyfnnTcltkEZDVhcWr+cXLKXQa/qZpPvg60+/ODd9mA+ANujb5odyXfwsmUW7RABJ4lSFMbi/3zAjxheEo2dybcs89yTQ+loWrPlwx57Mh/Ti3bNalzhb/XdcBCsky6CdZODVyPBz1aDUENXjrp2aTtR6oiwnejdat4f7U/KE8kGdEySX0Jn6x7TmDqwpOn4WCU56Cj+TLuH0j3zQc8CL3Cxy0NdcYD3nvnmvdxZOIsRAZndNnclIiiRlXrtf7QubAfBpB/1W0Jt76Hgee/rWg27+wW1Se/x8AIKHedE8V+zpaT1I5/RwxZwdiDmjJZfKsyHOLAKwsI1mUmmnpjbeqZmPcDiKqLl/nMo2QqNgI6jxGtoKc/OhrgNK9W5jaCkyrk8bt428XKjnM9ru2NgcOZZEkTVATvPW/f2duq4s55WyLKRaYxBvenxewwuWYQRPMzpnGoOn8wG8EnNnJMVMtaFst43R2qHtSzUf6MqxBoKyWsQpt71vDHVXWERIQQ1OqZBCI+l6UTwhVovZWRr3xt94zZFgB/io4gO+c15Rhfvu+yfJ7EA9KNAzqUslBhMnoDs11cGMSPQlhr/PWirSkwcQwfzCr9fwv+nxcbV/KNctxjRMOl4kpa0HxTSS0ZILOo1rQvIwi4CprT2tq3eLpo5IO+tSOa2VpeTjTESMpTolbBYA09xkupsmzJlLyZk5PqlJKKmR037skZfTAmbsd3dzHNMEIbpipTr9OaXEkgtLqSzL6ThrfK/77EviPKYYS/KSMhnhLK2UlKl1xarHpxIxT2+ej64vrwhGsn4400ktSF5orbvl+N78/a1eZJ5PZ7oZTY3TyZkYX3/6gvbBkgsDt+c+rQufzmd8flqJGfAWLIDE++2d1nw8CQOku8axAGko9M729R1dOqcXl1RYGGQsZeV2v7PvjVE9P6+pknKmxrWS8BXwc72EtCOAmCg4E0bKFsYcHoU0nTBNiFTMhDZnkU4QJ2QphHOuux8XTMI0KwnrUim9k1Kmx9Df3nukTZ2c4XQ6xWzXGOY8RxzgRb6pMAjH3wOI8XXKEy05R90yAkxyd8U5ePzp/Pmdjz80Z2q2zmTCQvF1YSIndiBaBKqkUQEfiM4T+ngcHxaUGod5jq89o5RJcKb3GLF4A50MNOlDJUyOtyLHe5rV9vF8z/oBwxGI+e2urgfqTsVoe4sLbsfzOp2H6GZ54unOLyX0RhOZjjiCOG1QCkSwlmGgXnwyIqGUfHTxBI4J0fNa+y+GHiI6gWnGseEHfzalJHcYZDgSXk4JZJKEg4bRle3aUBIqie26uzPeqZFbQqsXIrII6eRIS99bDNztbrOe7kjJZC1eZCyEe6PrO0zzYSbinUoXlCZLiDrSmcmk5YRZBSsx38Cvt2TzobxtJ41BiuIbc9ofWdHpKDM0aEh+fRVHaLyB72LF3pScHwJazyJ5FDnC0VaazzORTGKdH3PHAjWz2AV+EIXe5ttCihnCPz7kN37u2G9HcjYLqrn+Hp0N1DnpRIKYU2JdlwfKN3GXWUCM7hbG8ftTPH3Q45JTSEku8ITgquPJ8Tj2zNzjMzDPD+iF1GHpjB1GMR80lQZTBUm8T4tgPpHAFB3AAJ3IubizZPKOy3EOmUSh6kLiGfwfCJgnBHpcD3+rOWfWZYlutMbQZ3E3r5n/RAIiU184t6FOJ9JZFApWEmIZiW71Y+BoOGi1HtdiFtoKrZPjOkkWp2PNiiM0FWIRBCLxOjpyEvufKHxSDXqpBPVSpySG2S30NGXipFFYJU9gRf26uVOSHZ/VL4N/9olqTkezIzFL6VEszM6HPK15syNhnHvjWXvywQ1tIv2/2hH+OeRYNfHZorj61Q6yx+ewxwf5sA6PTs+hYbJoinogl6Na8BezMP3wgiI0Q3NdBHo7P4fZ0+/Os3tei3meqMe9w39gOpNFvLGIeR9Gkcy4wpPoe/7+vPZHLH2cG95hzt+I/OePeGIrhwnPPB/sad0/dXQiWLrpgGstrIc+RsfDPCPyBgeaHvd7nqMaFu2Gsz8SiuTi2hnzDoeJOBiQczh06mFzjkg4WwqSnVLqtZ4e58wM8IJ+6Lyk6C55qZlcZxUULk/4hxd2aVI+LUCN2YkFZLibgeR50h46m9mx9Vt9nMT+PZUjHZnov8nsGT2WCYE8/KrU+q2wYcbzD/5WBPqgcYpXTyLHKp3npzsMx3VK6dCezi5LiU6JO6r6H59pZyylPO3hJ21P3E9VNxEY6DHT03M4CVqWeAKfNQZ8+3Pl+IwphbtwjHeQHA7EapTixWDNhfrU7UgRX/ToGCeSuIVRDuMRMUiqDugEm2CCWvM8KrXiHaZEiGsOgEnUQIaDSOnRtXnONWcs87uTqKUwSshJEGRRllr8uuYCZYn1ouFyNQES/13CCCrNuDB8b2y3jTGEVBopqWuQpJFKAGDq5g4kGM1HLLhJjr+srxA98gZnbuixFiXl6IAJE9ATCpYyqtFlHu04Z8ZQ+t7DnMLnUk2NfkxUYHbyk7hZkoZuKaVCzkZKPvpIo3E4LfaHea6W7JkVkUhpnv2PvXDEDuMpR4rrypNDJ4/v/97H7+9MmR+U0x1IYjjanF/EcdBH9Q8xiXwO2lOwJ7togxIBSQ3oHR3mCQGOYMA0Q/AFOboHFaeRCZgv6lJPSCqU0xmIIZ+ju0OQulbC16+EE6CxLvXIo0czaM0Fu5lA/BJb2tDRuX99905/DsQS8bFQmQPVQoyaDFINC+Pg/I6gjpTEpx8+o5J5bwp9ID0OexNS38kyqOdXd33JhIXnApLdGUc8qc315Ie3ZUQTVUGH0mkUjPPGTcTdAAAgAElEQVRSWJbCcjnz9csvtLZRz3/yYKQbWHZ9WjduP9/ZzWlQa/7KuCr7uJLqwGTHcsJqJb+slE8X7m1j7412vzFG4/b2jmUYl0w9Jc7fVYooS1JsVEQLqW+IqU8oz4VTuTA00Vq4KAGpfoK08v620fbG9n6DYYxU2O47169fY85ComgnmbKcNjcWeHl1NKUlUnFu9TgCsSNdAw/C9693asm8vPiGQ5ILKIFUK5ISo0doqdmHBc4ZFkCfxWmKoBMifEJ34sOhZ/L6q10EUSQ9gMjf2q52/H0YI8T7P75mkyo3GM11hd6Jynx+vRy5WxJHYjWSQ+2NPpRtH0+v4clyyvXo2CGJdYkk/3EIHOLvCYCoTf569b0/OqPt4dTpn6RvV6f0lQfAgJfwjyQyeQDNZYnED+8ANz/gKcJ6OiG5sI/sZ8aYiYHgk1Hv5FwpS3V+gDmgkEp9XFfTMCKBtS788OlzuF/ujHvDMOpSOQgw6lqfvCxIKsyZJ/N8Gc31n7o3csnoUiinRF4qY1e3rrZG6533L18ZNtAYU0B396KeBF0yUoT1UrzjPWc6UT0RtBGmOIWS3Na/Dy82s+EMgbT6bKrhBizaukdGxDuKQA1BdhZIabhD1LIA5aDaYDNJt0iAojCNM330QS2FpVagM0cPdLOYRZZCe+o3d2/7UYDNJHoOQ5174KEziqJvIoq/sS8es9Bi/3zcUN/staf9c8Snx35yDV+L5/Tf9P9+gBlJZkHxGB9AnoBFeph9BKXk2NMH8GLznR7ve+7h4/s57Ml7zI7at6Mw7fuG9j2uKU+z0h5gBPhZlCWYABHc3H3N6SspJZbLiWGZPronfzM0iyHa47NmEDd7Oa6JDhiQRgYLjWVXxnZnigbd6baTq3ctkz8xvTck+0zBeW7NcQ3uptnRvfmeP1VyXSGdPKa1wTB3DU1rhdA6jNEZW3dNLIpmwYq4S2vx+T0+h86BVbFpaJDIUkhSGKEhExwUJZ+dFbN7sje2HUsZS5nedtfXlBLP4WerakdyAVmiGEiQ3BXX74px1NuCF6I6SMlCzxmozyxypvPf/P30L63vf8PDZpE5+dL+pnL22UAtDMGm2H8MjjEKD6ZDPsCpnJz67bodjiT9/HL2WU1eTyLiXVYN4E97Z+9Kn3EWC3Zxdr0efuaUcBN8Mjr0OBKFyTEXLCfa3mh743I6c15OXFa36ZbhweQ4adK0t8+UBFkswClAfXyINxL9f3340Fopfl3Or68YiU3FR16Mp/03GmKdGowemrMYyrI4AGiPPHl0l5p8urxwTpn72xtm5s7OOZOzkE8r+fTC7fpOa7t3qXC5hVSDlxf29yu3t+vh2symKJ0v7Sup7IwGpVTqaSB7Y2/du06xDg1zQCQLtmRyFdZTISWjiIEVsIxYcxpv9kKu5BUzXyOJiEHLClLYbs1lJDGI3vfUznbbHiDHCI1oODL6HnJWj5tKrQzbsa6UsiJS2fcwWTJ3hc6h7YZOMu88biNmhT5pF1WV1sPs7qDfT63cI44cMShu6aTR/97H77dGF/HBX6ToMsTBPp5QO+ODHkKjrToCVSvZA9bzNHfg0DxEjnW0Gp1+1Lw4Su6hX3IGdYtLB+aNLkrOw4XqppiGw0hXxn5He3ugG4G2dx9SdGzGmh7zhiZ1UZJ3jSwCUzIPpq138uiIKXvYTTK2+DROWyvim4u+M1IBCsuaSVI5rwuUQiqJ672xXxulrKznM6lUxIwhq8/zujaGGqU+UEYzR01k28j7TtGEiSMxtRZqXVnXE+vlDAJ9DOr5xVuam3N0bWR6S2ybiy3dSnLBbHEBXs4oXui2vfPeGref3+gMBsZo75h1hgw0GferUgqcfnGxcy0CdgIqOVBKWUJIyhtmmaELRRPFEiJ3sMz+vqNN2W4dIVEDJav1HCYRsKQSiJLPupCyYAjt3qhrglLouw+FzcmpUCPmVezbTg3apU9NXw5AnBGOTyn0ejp5wf7fNrdnFB8K0SWb35gJ2zfg32Olx176+NUDYHhAl8fXD13UE8r+scDh+J4NO4ZRemB/GMUMlaCqVFLSABY8wI3ooMzuk4ZteSKoETFs14ClFqd8TsBjJofqU9Hnz85Wlc9uiO5dnA2j7YRNpiOiBqbh3hm88iwSRUQHdXv6lBeSuDtRYMOOdG4NScUHMQetTKVgotDBwlFpFgTzMVRJo8PesG0HCc1DoFZpDgrkkQTP664hkt3vYZyQq3P4LTP1KZKETA7TgMHbz1/cOrpmRJSMYpOWtIMl2DcfGl2K4ALg9VieU8KRuQOCD+QWsjmwBHdEBXc2nFz0aZubD3MMR5uFaRo0u5MaAvyUXStqDMcKoi7SKHDc9Qlmh9vzeHcyneYdByrPw41tat09vzkwwXjN6Oh+wMi/jWSPn//2Mfn4j7Dim/CDLmp+/WkfESv70TF9oq9F0unGEQG8RCeWaR4xnyZQ+SMxZubHvubn9+y5mFJ/zxJggOONYZQwf+54j4+zRVvz9zGmS5+/12lp74lBXP3honJN9dBSJElutgJIzoz7jimkOa/PU1gSBQaMrTvwKRLvD6wld8ftkTC1mAWFPfSk2UdsZIxJDZx3zoYDCW1rtL1TUokkPjrjFrN4ko9hGGps142Bm524G/AtwNpBT54HlKKOYudIwm3xz2K+d7xOjG6uFcwS2Sa+HrlG83sxgibrNeyTm59IzJmCB1ovTlkNIwI1wfA1UrLfj3nvnXLt9zYHJTi+8SumwqTffdQB/kbXdp5TMxb9qgPlX5cwIUhpHFFkakSdiWDHa2JGKfkYvivH534Uf3NfT3BEsAMk8XMm6FTm54c3sRLCiGL0wVrylesf4NCeSfIOR8RBAU7nk58ZaWqQYF1XTqcTr5cL67qwLGu42WXccMzB0xKmFXPelp9yGgV3JNwBJnjnvyPW0eHGE5kwcUjFqeU50dtA26CUhVyro+zGsedohuUROa0XHnFsksYgq3JZzx73cpwlJSPLgtTC5fXVgZeUGKq86fDxQWOgqSNUTBPdQC0D5TBRsaGoeGHTW6ffbkjJpCwkGU5hTeb02Q1SNrabHcOKYUEojxiU4yznBuZ7yNlRAubz7vrW0a60PXIjnBFVimuGMYWSYq0PD5e5HrnMnC+3707LNfXBy0kSil9vsMNU6TCMCqbYpNgTWYLNay0SxjbTpe8pBklQrXmAb78dg/7lx+8vplKi1OqHh+UIQIS2wqJFTqBts4U/MO205odfOfv8phFdqgPIM9w+9IhxE3Ub0Byh02jF11qRXekOu6Eint4bnEbDNGHDiyltg/3tnbHdIHsh9enPf8EQxn73FmV2vcK6eIIuApZXLCWQzlBvDU9bzdE6+/XqGh11hMGttG7kJNRlZSk+dIyxQ9/o4tSRoj7n5fV8js/9Qv/xjfevjbq8cH75zql+vTPk7LOC3janHZ3kCO7WDFRI1yv5dsOGb5xlzaSlkurCer5wfn1hfX1FEYbE8LzbHU0dbZm2ZW73TF4ra14wO2N2YcmVUgrDHOVue+fL2xv/7cefSasXgcLm1yc1OsoX7iRprHKnrP6cJhdIJ2pocbSEzm4bCBWRF2QU6AW6Ok3vPjwZXV9JubLmxKUWPq8v1OwF+boURyX2K4iQ64neB/fbG0JlWQtta1yvOyXWWB+OnN2uV9ewqfqh/BIOZslnnQhQa/FDOgYIeoERi9P8UJ7I9Yi5CLm4favGVHJ4IBzHHpLnpPxD5nckSv4S8x9PVKQn5PxXj6ef0eAjS/LCsybv/o2jiij07nbjfYzgy2voqT1YZSHYSomhnbZvx3s6f/6O8+urC5RVSWE9rMPdMhmuF3G63vhwMLlOYtC3Lei+UWCZge5gw110JIWb5yBZcwdMyxQTL5qya1FkWRl9sG9v5Fw5nT/7HhmDkVZ3veuBwLklFDFtw9dPjGew+x29beTFKXpOURJy9VkVKTv1x6aoNe573xr36+YDcz+9PPJowzUskrAMfe+MvfPTX3/CMNaXEzkpSUYEMuVOR0VZ0t2LqdMCUkHcySnlAmJeII4R9OYzkGHkQ4Cczd1MqSuSnS6Sk/GyLkzXrZRjvcZ5kqJQcGRaSNlfx80rjZIfnRlJ4p1bjaRUkhfp4DPqsgZ//ZHcTbE5oSe0WXQctJegn4nQ2pN+49sYNPePPO+fB5Ixu8cf9s+RrI3jOX5z/wTwd+Sf80ZqR8fOYUQw97b62TCyMcdITHrpkcfGHxuuA2R222ZybMTw8znYVCF+VoJqhz2Ky8nW6PseM2jm3scTjrEf85COYrlH/AxnS1MHRUupSPG5KtvWfL3mJYTg5llTWtHue1vDsWsiypOaLr1BG+i9kUpy/dLcPzkHg2UWnROQEtdt7o3tttO2Rv38ORJfvHpXPZ5Dh9OpbrcbW2v00XwYsd7CkXew09iskdjcMr0mT2q5IJK9cy6+11BF1AKoqDCKH3gjvt7xTkJd3fgpCecacS/uca4l1od/HpF0uKNKDG/tQTuWOgvcxxrI2RyMKEFti5Wlk4o4V/9zXve0Xg8Q69via/7fM2bwtIEkedc4heGT52v+nHWpQORucX7lPOl7/pI5nOp6bxzU9igwa83REfDXztn3/pK8z+3b0+czJenklmh9MNSdPUU+dqEm4NJ6Z3RnX6SUeP38GUHYt53JADlfTry8XDgtC7UUcl0jZ03oEHrz/Zlzdlpb2+lz/yh+DuL6rOwjPX3La0esoSODxazOVF0PiSArcL3T241az9Tz5YiDXVY/U/YBRbAUYB1RkAtsvSGjcz59CptysCQMAV1dI7+uKzlm+vXeafc7XRJFYWQlsbnFOoZaxWTltJ5I2Ysv7Z1B4rbvvN3uLOeFulZyGogolpQhHoOSdGrayTWTlwpyQsRNwTxPmp2lgZiDfU5NShGDFJoXUZpXL4xEqCmzLgXxxJnZUR99zohdUFX6vpNKopSVLB10Dyqwj/0QvAvp7Arft0kSKr6fctbYFzMP8yaIG6rgwK4ah2tPxJkUzRSNDrtvl99fSMEf0kz5G5miRR/K5fxSR81i70ryYbDxgZzfGBVhuMSpCTa8Rdi7su/dD37hoPUtxVEuCy6ypORaqWcXo3VFxM0wtHfu766nag2m2N8tt2OTDmV7f/cko2ZyySyL++jP+QFiRg6Xl9F3UuskryroOsiWOK+vbFuj6+DL7d3tXdvmRdX4Qs1CLQloIJ0sN5Ik/vbXGyLRGs+Z5XSid0FG4pe/feXrL51LTRQxzvc7tM7ta2N8/0J9+Q59H1jfvCvUO/K2kTqcL2fnDWfI64X63XfU9ROJ6kOPtfumUiPlM8tifH69oH9ncE/s72+0+43rlyttM1QKuVYsJSwles68v125/fwL+XwirQu3280NRfINKYp8NoYM3mVAH9h1866V7JicMITGzdEuEqqZ0e+gC6ILa3TzVs0+pFiVtQ7O50YWZSnG6bx4ATS8s3FvHbXM+lKBylKUKgu5K1WFk2Rv05tRawnbZcIaNXR1vUF1d8WHM5VvxFSKa9F8YR9dTBHxAzNa9mbGGA9q0kw8f0s39bSbjsj3yN/sETS/oQFZ6FGOLrQR3V9PppzC14+EfymZWjM1qDoWz997dKWyd+ByXdi2DemdMgvHQN9LzViqLHL29yBO29bmFvcihu53Jn0Ks9AbhenAaGHuEEL/cPQpqTJwulhrw9dRb06zGFcX0+bEGBv7do/rIWzvG5DDSSpR1pMnuJoZ2+D9x/fj/pbWKeodTkWo62dMoe+NOHhYOuSyspbF9VgS7O+yuP5yxOcKXYvNC6lGFqg58fry4oY2168hgHdDh1QeyO9QY/Th5jfiQx23Puh9IKlBHuQLSDH2pFGtuVmNimJUTCrddpROwD6M3jDNmC6+d3C7+DUViiq5KGXtiGQSnZwT62nxe4cLmHUYuYT2Mzk6KPEZGRZ6EQlh9wMAmGu2Fh+2a1EQlRjsOXVhpq57EFVPpuThkOedxScDC5ldtCf60/9y/zz20Lf7Z+6p567Tc476KLT8W6OHTjO6qs6K6L6GxZN7Y9IXXaeWcmZ2hdzbI7RI8xqaHcE5xb6Q0C2JJKzvx/s49o/g2ZwO3xd9ONMi9k+W7OdyaPG2bfeO8GiY3kHHYfccE1wod987Sj3oK7m48HwMwSzx/tNXUsosNZO1k9ud0ZS+e3ElqWBh+mL9HVRJ3QeG+P6JAjtVUl6iQLEAWEAnYGo4yyQJl/OJnitju6ObkOuCds8bYlWERbqxX29s292BQVVut+a6XdmhKLIoncHOwNqOiRuhGxllRRl02w/3sTF2VDNiK2KZNcCWhex0clNOdVDq1L9klmUOvXZ6qwNTmWwJyIcWS9ScYoYwxDWXU3v0hIf7GT98HiRmHO3bY/nHWpxa8idA7l97/FbkmcBFSpmcH0DDLNym021KoW8Ng45J6ZuzNwXvYs35eaZGG36+lOLvX8TNBHISlz/ELh3D3YttWNQmOe7v3Z93drHUdd/LUlg4ocWNCsQrOT9viuuDX19eqLVSSw3wyI2ARNwCXBOMoL/Sosu6nP1MHsp2vzuYMVqwob4ezn+SehQAvufvX3cvEJLv/bKsWIwN2N439rsFgKmU0Adtt046LeTTq9OEW3dGiypnKVASy3p2SmfCB2SfVh8zUWqwC+De/Cz6/Ok7Rm8ecyxhTWi3K327M+6NTW8Rx7wzLDnTKmzbRr/evBFqwnXvLt3Ju5uXvYAmZVOPeew7KgOThsrqUcM2ILqNmhl9Ay2YFVZJFKBGpzcXoyTjZXFaa86P4fHzXO17aFRLQcI2P5FjqHLBTucwrBBS0mBQfXIznWCcZXmY4OXo3o05t1KVQWj14qxX839PyGKMceQ83sF6ikF/4PHH5kw9wyMzyYxix00HYNo/pgQjko85SPKY8o5zlc2Eoe4mMy+kpRDB5in+9QG9KYC6yReHhwubtR0b3lYcauxtHOJ1N5GIw0iNdt/IVVlfXymRcBKzqGYAFvGEVLsL5pJGW7jt5MWdjVoXtO/cdn9d3dwkYVzfYwJ7piye0CyRoFzv744AoZRl4fzpE3V5YTl94vrlRu87+rJyKsJ57LB19h9vIAu9VcZ1MK6NdvuK7hvn3nymUFm8LSxKrifq5TO5nMAKjB1T10+oCSkt1Dq4nE/wSZC/y/yt3dnffmF7v9M2o+PTqlMprhs6n7hf72xfv1JNSCp8+Xlnbw3JN/KifDoVNCl3carD0E4TGAx2VYYltv4GYiylMnpmv+9gK7DyUgunnHhJJ2pKXPAOlZw7WYyS4XRauLxU+n1n7N157ZYoWkgINZ8pJFJXigmV5Ie3QV4LKQu1RNE8l/FQUrZDqO/I8jT/iInYYzDpY5M7btMtaiZtw+f/pEA8pj3q82N2a48k8RuE8VfJoNkBHqCPAaYT5dWpmYrZDT3oPyklanUkaLoQIRZ7x2eAjGk2kdJhYFECYew4Ra0GRGdpUrdcF8OTdms07zIZBCIdf8QiwfPZEgRCRgRzb0xp6Lc61rzoGvergzQ5YdYZo3kKa8a+3+jd9UQ5CcvLJ1JZqafPqCn7/e5zy2qmmlLM2G7dkVCtWBJs9+SU1igKS158Ort4O867LQUJ7aVTE5+KqTjCxDygrOtK23aub19IuZKXs3du0tPg5hJF/b6jImhT9m1wu3Uk76TUuFSnBzdz4smwxmDMUdYMM/ZxZVhjyT6QdN86qk5jWVLipRTORegls5hSdXCp2ZsMYRlbarhvdXeh6t28y55C/wMPLVrsHbNJBPQ4MDVLPuMjCoOUPMCV4jP8VOkRpGZRNWy6qrlOIafkOit7FDFTk1KyJ7S/+Xiuo7791vOe+6aQOqh1zGLqUfjMpBZzzr7YiGLK92xK89SwWAvRqOLpNXS6WMb7CEdLi2LCsidggvkaS7gGuLfjA/neiefWgfV+dEw0usgplxg26uLrvfnPWR/ofkfbHokgSOkkgZqctdFHRmwg2imnC2VZyMsLIsL9dvdz7rxg1sm6o9dBuw7K6wtjBdtDQL5dEVUqkOpCOrmrnRgh4M8cLpiTGjmrBJs6JZ/xkpPy/vMtKJRuhtTHU9Ee3bu2bbT7HcuFPtyRVq0BG/UMNXu8aTaie2U0BCXTDIZ2dr2FDijT9s4YnlgkMq+1eOxJyRkQKDUpUod3HgUfTRIzddTMnRAT0SnOhznCLKYMQyWMFqbhxLddJrywJ86XQPSY3Sx3joz//tCiegoX/9Ie+OannRblCZriINxsJs2u0mHcBcd9KiUf5hOzQzw13DrCWc6m0YOv4aVm1zlHAYlA74OGD5c28xikuKYG8+lgAY2QxYu4qYG1+F7X4cVUXTitKz98/5nDwCLukwN6ThcXhCLh5jaUVBdyKZi55q4PozeNGNTR/XZ0sXJ1cD1Ft2C7XzEzqrjGul5eKfVMWS60u597LJmShJU4D742jEpm8TC+d2gd6Z2VfOgJSW7oI3UlnS/hClsAl8l4N9q4XF7R3sjaoQvjBe6js+13tDX2AUjxDvSyuImYQdt2xrYzSkVS4fbe3ZG33MnVuKwFy0YTP2vUOkNg4IPm1YRtvHsOlwtjpJgTVjFbeCmZNSUH8ySxmkFxfXASczlNjeG9bRyEblUCzIYkYSmv5lTKKux5d+w6OY0XzrTWuPbmLJYSpiVR6GdVRpIjBhlOp8SicBty7EOXKzjAN4gOVX4A63+knPoD1ugD3TbncyYJTrC33cyMKZ0Ci8Kj+cKRQC4NNDbM5DCWIvQUznj4QewdHqV3L6DKRGLCoSgn2Edj3zrv1w3TQPMMP4iCGK3i5hQjBh1m881xOZ8c2Tah3zv3tyu1FGoJ8WPKtC9efRPUiMtLwmzBxtkTMhFKzXzmwp/+/ntUB9v2Tr/d2X76meDA0MWHm9Xmjv0/nH+A5AMqXRQ3yOuF9fRKrk4Z7JK5amKR71C9cf3lb7C8kG4rdD+sqnRIRn97o+07+tMv5GXh9Ke/Q6+N+5eN5S9/of4pcb9v9L7HUKdMOa+YDNiM/vXK/cf/ib59Id3vyADLlV/2O5orerpAFizD7Xqn3d2OPotgW6fvO6MqooPtf+ywJOy1opIZaWXfY5jr6QRZWPPJUazNtW/ffV7Z9sK9wX1U9l55bztZN17Sle8vlf/j8w+UsnK+rCTUKWJNSLpw+Xxi4JPnJO6vqnK9bm5VKsL55MM/l9Pq6xZ3m9J9O0TaJWWfoTSmXTiOJObsgtlIkFBDGcgQpqNeyvJAvCeK4EfEh/1zv934f/7zf+bPf/rTY86DPlrRE4nPxTexHjSXxIOONQOZFz1LUE3aFqheEk7nE//wD/+AWA+Dh5mcuRGBD0tV9q05DUaKdzhGj4GMD7c81yu4oUTK5eEsKfDlb3/l53/+nxS8E+RmBHxEUCftKQKzd6thBFKfE1xeVy6fTozuRX//6q9pKJZWyJ9IiicneUXS4tQJm3aqmdPp1XVC3VFok4TJ6te5/zMyBoucSaWwXhbXMrYbdr9j253+3/87X//xH0mfPjtP/cdfkGUhffcdvXe27e4UAcGFsgj3X36k3e+8//gz2/XGl7/+za3Gy4KmgkpB1tXPkLBG/vTpB3Ip1NOZW95J3BgiDDL75oY0el6xBCM5iru14UdoSazZNYi9eWL16eWEWuK6OU/+biv3W+enfuXMlSUJp79/IZ0LY3FznutbuAn2wbDEMOF9/xm1RA4amQ/4dpBrQuRzzs/19s7Qwf/9H/4DtVYHtMQ1T37/5ywmO2gUE0R7FCOPztQUJB9OTiF+TyKkZeE//qf/dCSHh/7oN7pWR/7oSMPHjtRMNY2n98Kxr2z0GNjq70775vS+MM4RFLOwu7aBGvTmBbbctwhuU+fkVFSZxjQTcEAo4jNvnDasWE/stxu6724aJ4lSFw9lbVKYpjW1awJ8tEjCBFI5ccZ4/e4SQ3sb/Xb1OB1MjzmiNqufAef6wmFco26z7jTszIrrG3eV6GAV2v6F9uXK8v2gnDIyzA0ugko/rtcweDLy5UI6X+hbdwrh999DKYygRE69jlNpBQb096/0vZEmONU2BkI3p+OqJDeZMGW77YxdyYv4qI3QwTYGuw5kG+iS0FoZ4h2PbQ93rwUkJ9bsJi2tGWst5LVw24WhwnVUUoNr36kCJ7lTvj/zup5ijpFgo7lbmXqXqSw5zoS5Dn1ovGGQHklZOv48jFfcHTkFWJwecWCu2/RsykLkUcbUlX4L1s1HPMVvPGJfGo8dOKsc8CI3zZjj1PGcZhEV9zi6mpOlsdSKjkbffdipQzJu/pFNyXgH35imEvmYF9VT53bfYSivtT6Bh/N04GjWIclNBATO53N0hU4stTC25jlcLnP7h94ZrPrMo/X0SI5NHKY/BTX/8uniXbO+uRHR+zuGU50NMDHS8Hv38udX33/qZ6SOALCXM3l23Cg0hJ0Lpjv9/Qs1r+Sxep4SnTOk0d7vWNvhekdKIb9+QlwqhFwucF7Yd/WiR0NPnAqIupFk7+R2he2G3u5IMSTvbGNALqTzxeNw3byA2UG8bsO25meGOVjTfrwhS4aL53CWFloLHeDi63FJPji7Ndf7vV4W9p7ZOmzq5lDvrZHMuLBxWTPfn16cCr96wYT6EHCRwuniRjC7+nlZw6RmUk3BOJ9OrOvq51kwGZII6Pno1Jbi1Np3M3pr1GXFMPag3mIWHStFswMos/OUizeE3BKdoEsGEPabO+y3H7+/MzWRO0DCPvRhfvoQVPq1ssO73ef0xM+FMYXF0DYJAWF6qgJ9/kx3DqTi1RSugp756izWtrsjn4dvh4nz17PMOO70NlPonjiLWdiI+0yOdt2QZZBrRs3RjJnsOY0QSvHXt2y4iatToFISymnBxNj2Sr/fuWfBrGMM7uqjj0qDTOL83V8gF7bWaK0xrldSPVOWM1gjibJpQRF2y6g2WhuMXaoVh2cAACAASURBVLFdEM1MG1cxoW0dvW+YbbCucHlBm6G7kU4vyOlCu2/04RzylMGK+pymXdFtp13f0W1DWgdx7vxQoeeB5uozDsTF9t5NTH7/A7VXAxuwXzsyCrKm4AcnVN1S3tGiRE6VOJ6cMlEyQxNZM2aVYZXWW1igNy7FUWsRYrAeWB9hRVqc9yuFHkint4+DRhCUtVxcQ1CDhqJJPJgeVLzZwJ+sHDsK97ngJiJmxgdkGx5FlMekfxnH6KPzP/7pn9jud+8k2TwsZhLpBVKJxNvGCB56uOSZhoPUgy50Pq2IGH27e3G1VNZ14fOnT2jfMW2kab5QfGbStCkteYewMmUsYHrwolNZju6a25jurtspTok14L/9v/+F7XajZkcf5bTGOTADs5GDEuNd5hBhw+EA6DxlPwS1gqrTi2x0hnmxJ2V1tHs4hTXFLClVZd/ujjouJy90ZaCWGC55Dwqkd8FTuCDlGoWBut5PTWjXK2PfPGnYV9g6siyQC3107ptrxgxzd02E69tX2u3G21//me39ypd//tETxVoZqaK5kk4XqD4yoNaFH/787yilUupKH0YpDWLY94gZXKxeDPrqmhS40FmkgpCPGWA1Z4zEPjKmBbXKCN45NlCB3hd0COCAQG/NA/5QhhhKYm/KGD5XDTN3V9NB6/042wN34MvXLxjGv/+//j2fPn16INRRVB3UCHnu0s59IUfwm2uED/vmEbrMjL/85S/fxKCnn5j/eNpyhxHLh0KKSWTwf6s+/awee+thUIF3hMaTmQqGiF/zCaqMtvva8uE0oP3oyKSCO60GM2MaTZh5kBb1fSii6N4YzcExL5IioA+Ng8nPA2d/xWy8sJ1PIQaX4t3lMYrL52r2+w20KOikQ8qVcno9kkDbd491ubpRRHb2wixkOsIYPszdmrl7WTA+CM3U2JxynXSP95Rdr5wLct4RtRhSLaTixhCkFNbmPruy37dYCvOs9QG6KsKQFJ3OcTiDoRJ/ojYQGH12vhcHU3JCI/6bEGdnIkllDofOKVNzYsvJCzcthy5FUZIZvdej2E9pat18pITggBvRsfGlLIepgiTfOEdX91i8cqxTmZvrsYiffsSe9j8PgCJi0YeKaRZdv94WH/bPb1ZZMkuXueQmdXXOz8vYMQuOx56XRCnZV1oZDyqgCT6tMP6I31OehkKX5N1dhmtAS8yE6OZFynFFzSJGzw6zU8BzKa6NkoS24TE7eWfzuDYikCcwmo73PILm5TE3kRYH/FUr2hojO2gyGIRcjzw8Hi6X7yH5mhxj0LadVBafqcbAROlhFT809mVXSldkeBySZIhmwL+nbYDtSKmk88XvgiWkdlgUa97hmvmvtxQfe1C6d7lkDER6FIzupssYCIk07MHQMvEczmaMjDNtczZQWtLcMA5kqIafgFPq1OaZmKnFAbmkbr6kVmijI6pk7SzJmAZQOecPeyCRPY82nEqMU+BtDMZ46GZrLRGDhK491qMeo1vAnztn12dpMIgMnM5q5ucS/nmf+7sTGACCffDNNv0Dj99dTKm5rowxMBsuNE2CiKPjY1L4zF1wfBBfUA3U26cWLjw61HnPOaPd0Y9aMyUL/X1Hu5JUjg2UqncW+tbQfadfr2xvV67X3TnLqZBT4XI6gyiaWtCIxINUyuxbQ9pgeb+RZEP0zdGLPuglYVnYYnKzlEoqmXPYEZcibsagRloqpRYsrRiZ7bqTMnz6/k/kP2XK/1lQ3dGxcb8K2wbDXjEWyvoJk0TWhtngVRuyD2RT9OdfaLcb3323ksT45R//mbZt3PNK6sKXv71xugjrGfaf7vS3r+y3HXrncjZMGu+//IjUM2k17v/l/0P/63/FThesFKx3b6fnio5Ou33h7a+/8PbXX9iud/atsVDJS+Hvv18o60I9ZzQLrVZ+vCr/VA07f+a+XNxGOmVOa2Hozk/vd1APpudL4aVUyumFdhIaFTUXnuZa+eHzZ2y70b7+yFounF8+Q/0MaeX2yw3bN5brXyFnvuiJ13RhOX/nNtnd3BUoC8vpjJFIdw906+rDFkc3ersz2k6tXkw19bayxEzIUh9L/37f2bZOKVMXVTASLQbx5rr6MOmhj3ljMYAyRZGGBNLYGrmUAAqed+P8oeDJx58PQvtnlJA4vJLgmpfgGQclygWETq0p2R3uLmdH6hz5EdzW1O2+UwYkdFiBYI/hep6JVK7nl3C79IBnhg+2Pl/QPnxInobAfNuQ+x3FGNmDi1+IuMAp+dwXHsNIWwg/81rjRlTvgrTBcjmRayZ9/t7PG3V7O3eY9GJbslvMdnOApMSQVWnmQbDfKUvitCT2r1fu+0ablLjrThlGPQuqnXG9Md7v6PWOMUiLQruHFs4D9H59h1wodT0SuqZXd8PtjbR19OuG3DsvUh1Fp/D6cmK5nEhLdQrHeXEq1OWMpsomCy0bo3RKdrTv56+NfSikTK6Z15fCKJByJJRkRsxIeXm9kETQ6y+ICd+tL5AWpF7Yrjv3embZ3ii6s1GprOTl4lqBNtAMmiyEu4kkLkLPsV7H6tSd/X47eOY9uhjrUp0SKA9NoGHuTB+JVsoxeNe/+Rv74LcfjzzPAkT/mPgduWB8XZ7U6hNDnIXTNGs4dI1zuPC05g1Hp0OrRGgLAxX1r5VYD89zx4JSe785zXjY8Zp1XanLKUC9SAJFyKsPLe2tOaJa/JzQFjRYVcZoDDOaXBFJECBQqU6jJK63zc8tPkzczNBNPbk8r8jL57g33oFsG16Y2AKpuNDbvMAp5rFcnANH71cE4+VUGHvj/vZOx+jLib0p8n5nOQmI0m93dNsYX++koqSTMfYr4+eGLC9IXrxwz26GchQQOWO5eC7QG7eff6Hd7rTrHVLi/Hd/RyqZtYbeowg9+YDWcVrYKzRZfERF8eHa55y4blduN+8ASs+8vDiIIeczw4RO8ZpXfHD75XVF72+MfeelnJBlReorOoztupP7Rmnv9P+fsjdtkuQ61jMfP1tEZtbWKwDiUhLnajRjYzam+f9/RJLJpJm7kgB6qS0zI87m88FPZFWDoC6ZRrC6umvNPIv76+/iHCf13LhkbqKX89LOuBAC2o325weNs8toeke2lcVJjDWITRi3872PieaoFe0+GBTsbT3Lr+6Ff3v/jHf+rHHagGmbAm4MCZFNjD9+iAu0zdBFbdRnNXdI7S+Tn253WAyRaU6kGJGWTXukDm1m7uSDJ+0itRTKqOMMxF2RzX5cXu6LDWhUhFwztTU8WPOUTcfuBnBn7sKRliKXGeBoct02BR1NQ1FForn84SIqnpYr4oRpf0D2DvfmPcZ+KNQi5rnCDBLwYUbFmj5Qdr0xikP60abMu11ERDl/eaTWQnYBupCeF0ISwuQop0I/nemlW+TABOIbrEfwE3RH+XJP/foViZM1IrXQu7Lq0ej8tSHnQn86E4viiDQJqAvc3u7xMeAmq2XDHDkuysOpo/sratqhpQ//gEzXyvOaLzXcPAd2wROioyahEKyGwxhAt3d7es3U0yPJT8zz3qIFJLIeZ6iVuDwgwbNoYnYzcdpDteeq+aGZG7mWbgR+v8RnQMkLteTLWi1NAc9unijFTGouERPNQJAYEyEEjstijZNs7LmX7WDujpvF/qYFHgMYu3gsqyzES6P11zz+tpypti1wRkAZbAjYuFIHb3zk8mw837FJ3RBXDmxwXFo2vbps4A0RH9aFXV+C8jbeaK/Dw74U00Q5jI7W+7hg9XKhbkWtjt+hlmqj6mr8XA9IMyvUjmKha4aa9FrAO5r6V/4j9vP1YfdcS8V1sdDf4Izv2oclbHTE7kBuUJmQuLffb9hAOyriGiIFN3eCGs/VSSfs9yiO+X0n7Q6QAups4lXKwno+UZYztEyKHaeezRrZy2QNrdglSUj0apf1uRsr2YlyCYN3wQrf6Zowz8xXB1KyDaXR0eYIO089eBZmMhGeolFR1A7omCa6D5YBph7tGy710u3LWLQ07AIaFnPWnCvi5VIoSDddxW63Y7fbk3Z7tK/0NbMd9FqGW1xRC4sbJiWtY/qCIVTtzdnPJXLRObyggxty3PE6yOPjEN8uCvGvP5bLdNXQ+m3KMlDoy6b9S5efcglz1Zc9cnnIC71hbI7LlFV40WG9BABuE+KtWfv1vh1fZyDvOvan5esYOryJ6rVV1Mkl5d4uOEMMtxDL1i0KQLoht15sVmqcXnd5Zm0MuLkEbvuPMaFyoxi051g3xHmsxQsSrw7XJzqBTkJ8NGRTRxyBjyMgsyHqcVFxYXCnQ8IlJVwd7LILftCkqtFS1oW2nunLCQkr4trwJ1fE2bpRLZf8H6kWvdDrCHN1hnAZbccT4oyGSJ8m0m4yx6TkrRk9zEiacYc9lcC5ObsYZeCvqjgf8CK0MYVX3S4AuewhEQZHzADG3q05p3ajd9iY/8IdF4UYIiklQkx4hZb7eM4GEj0m9X92ZYwXbAsgvbzdcL1Xzc6Avb5Zx9vHfAO6v353NGmvFvv468uN9xtbZ9szsu1eK5Reff1tD7Ih2b/52Bqvcads63Xbt4o9P5cfZWvCbJ1ve0hbG+Hi9ho5HwihoVtoZbcJucemG61We9q7mL15qWymR5eQa/MoH+j/2LbDm36jJ23wy3bWaGs2EeuYuYUf9vwyaMjiRjE4KGmX6YrB22bv3XBxvO+cYR0p4XeAetyUbKIkzaa6eaWvC3U54aNZ8Nt0rY/pDyjNNJebDbEOe2cJl+/N0K1tsqqON3B0MD8Ml/E0hJ3z+ObQamBHH4W/TUw8ISSa2LRWB3in43XcXmNRedlD3SZgVEVcxyde9o9YAe6dOQj7EA01X6v9zIIhzHWsi1dKg+E0ziUXUMSmzWLTMvrLtPYCSrxshlf26H9+h7waTr18yq/2ywvI8VvrXi+AwWs9obz6fgYqvHxNudxBpgtDX6Ykl2//6g6S7Vzb/vXV7yrjtLCL2nJL5dKcuQH6mSOpjq9bxQJYPYMiJyO6QzfDArHnrG2Vpb4YenQLfd62t+r4eHkBDHsz8NGuYwEfkDFdct3qG5UdKgHxafxm24WlpsGVjouKqjMaK2r7RzGnymkyXruzGrPXTM0LfV2QXtBgEyStGVQQSVhROdxxezDnzK7GLIJhBmK/i/cRSR43zZAi026Hj544WU1pd5DQJ0cPM90lOIeRB2lnRIjJgI5hZY46c9LlxdZ/cC43hrRRXkd9If5l/6jIyLvDGpzxX+/FmGLbud0Z98urdTz+LGr3E13Hnw3kcmMdBB/MTGLYv6MbXXZbi/oCQIlD5BUVW+Sl9hs9w2V9bmYxfwaI/68ff30z1Rstn8EFVMIAoB1oHgvYMjj6amGurQ2LUCwgVrzDyx5tlZyLJSKXZuxaHym1kteK68G2W1+twLVvjlsXal6pZbzNDXJDqonNDEQsl6lDLzYt894sgpszy8PltBJEmMUEjPt5T6sLrWVKMw5zmBLQKesZ8HSZjM86JQKJQCTnSqmN5XQEjKdpl0+5uIG0NtFboqcb8DNNDR0r1XQFzXXmSZh2wrR/Z+5990/UVvnu//rRrGJdQuuKnh9pj39kffiZh4d/5fTpM8uXz1aUnWdiiqT9isQFN2h9Pnrq02lYSwu1w/NzI84Tb79/R93tubq+we8juScOv/uPTDd33N0WplA5hCfibmL+8Ba5egM3H/kf//iJf/7pKz89feW0nFhOmZiE3/3+92RVvi6ZjvB8Es5LptRKSMEchJJHdeXrpwfEBXzasz6dWY/3TB8a8eoaSsbVQj+uHA4H/vPf/wfevLniw/sbnv7pTzx/fqQxeLbn42h4rFE6Bk9tsFbFj6/j+yhY9jfgPX0y9DBO6XIRXAp8vB0km2FKHZtP3aUByqXSSrNCwY5txDniFMcY3LLAtwL4ZQNZ0d97GxbUQzuoinPdnNTEDcqqUntnC5Hb9nOaJqK30EpVHfassNaK1s75vHI4dCAMZG2kjNOpLYN22rrSckOLBc32XFAfTMuXV7Q3wsjdaKXRawJxlHWhLmebMnfLxphDYJ73WBCloWZN27g0xPSKDcRZ8LQkcw8LLmHBuZVaioWk0nGLh2RmH9se8j7aHnCG1uHMtMbIA3ZYp53gJyXN17RcyGthursiJNNPgpoWs55pTz+Tzw+cv/yJ9vRAe3okzd5chnYZCcmGjt4Tg1iIalms4VDQc6NWZX5zhYsT0+GAn6FeTYSrW6Y378GtiMtcz8oUhen2jrDbsX//O5bc+fT1mfq58enpib4UtCzcvLslTJGHZaWpclrN0GFZVzs7h3uUc47T82KmKnGmtc7x8TNht2P3xihZvRf8kgml8t3tDW/eXnN9vafnzPPj0ZzSRlp8Hy57qsbi6qrUAUbYRT+aSBn0w9oMuGrNHF2dFYoXp79xSX17d2y348t0Zbz7q4/dLtLfboJ0AwU2t5hffapts0El3wqd7Vs7hwx32Q0QvJhOOAEJF22khWPWl/2jxvURKm1dX8C82ujn1QoNH+kuUwW8NnPJG8HYhr52m3T2jvSKV8V1xUfTKVINYOvqh87OJmfmbGfNgUS7R93QlLRiAb81r7ji8SXgQkNCGDQpoTUrjtRNwCiOVGm6EVchJcElCOlAr518XgizcPP23TgLHdpWaIX+9DN9feZ4/xPt+Ez98snspw+T0XCnnRWnIeHU9Kx9PY3XwVG7sDbHfL0nHXbElOw59wfUR2T/ETd5phuP6yuunXHTHkmRu/ma7gI/f37i8fnMT4/3lLXRlxO7q5kP393yXApLbeTq6EU5L2YNv2VIeu8pp8y5daMzu8Tp/pGuwv79KKBag5LhVLmJMz++f8fhMBGDZ1nvabUaONeNASEDAK7DrKcNCrwfjZGjW7M7zZbx0/3Fwl4HZc7s6DFN9li6rzoVXsyJDOT6rf0j8mqvvaAKv9pf5gBZigUhIwMCcw4vpmkJYFPS/gI0bM3UvNvb/TSsqoMP1NaoakZCrXamYAYfl1/DbTTFhqMRnbKqOVQGBd+Fik1/QxpSjWHbrx2maTaq3QCBkxO8CMk5A4umGbRCt5/DvmkEgVrW8fMny4UKEe+NyVRbp/dKLfkCMOA9EhOboQVERCPEGSQyCG/WjGI9QQgQIoS4h9Yp55XeO9d/dzeozt6MZvIZXR5oyyP59Jn88JX6+RO0wv5mh48RPxcIM24yU6zoxczNVOz+adCO5kCcbq9I08x8OND2iaaR6f13hN3ejMF842ZW4pRItzdI2iO7Kz5/eeb+6cz9+chaMmVtxCh8+P53VJSnbA64x0VYswXOh6GPDcGjWnh8PI7XaWZ9zqznI/NdI+6txpdWCadMDJHff3jLbj9xOMyc2yPr89nuH4Ve84sjMSP43TAKNGd6yVZzoEaBVvtHh2WLtdao0pDmaNLYQnmDDxQtrKv1J1OyaZb2leDNUr21StvAOTHdlZnSWTTQZkTx1z7+es2UCOI3/dO4pLq+WBDq5payBbExEKeBWYyMGEOLtoR5E8KaS4k5il0Cf6sVwd4bzclvVDUnRO+I3nEeDVkVoXVYloKrim99NPXK5CI+ulFACG2I+Ix2bVkX5oqmaDVOez0vlv8Rh9APDHUwn2ArQJ0zF8tkqONauokXnxUkoCSm/YE47SDM4JNpeZRRaHe0vYhsQ0xWHJ/M2UydZV25EAYKnRDpUM6kXsxIQQDviHMiTDPu6oaGY21GH/K9oX2MUZ1Zj+/nSNwnpqs9TBG5OVCYqCTSu7/Dz3tCu0frifP9EW2dq49KCA6/Sxx2cDV3km8EsZ/BeU86XFthchkcKT4lo3U0ayJ0HLAWAASUatx5lFpW9OzRY8Plypw7dNiFwORN7Ku90UqlNaV1MQ98VTq2LtrIUKqrfT/fzYDBCZegSx3IbBMrsJwPL7QKcQNFtA1kmTj9sqZ7t7wD0zOYyYhik5Le+nA1szwN91uouGxc8xcdFvqSDC8YZWELR/QDZdnoft5H0/Zt4kw16fcWwroF9FreVKO3itAR0QsSN3AlHB3G87lRI0wrMxxvUHreJoZG+7G8lz7EZXYMsGk7VMeUaRTLvaMD4XXO3DoRb3Up+ZJj5ZyDEMZE0YxBbFJmdNrdwQKvcSODpm3fetAl5SUHzkVreqk2qdThwCgo+Io2gZZxvRBoY9Lj7BKbAjIfwMfhWFgHWmn/bU1tjLYnp91sqLt8ZwWqTLj5gL+6pZZnWnH09ZmSG7tbs4EOwRF7J4ZO2HKmRgMS0kSYklGueh/tuOAjF1rChvhqHwd8NXcnRWm9kXOmLZW2VELuaFOCc8QRusn2umz2xLpNGV8Ka4s6aqOJGNQbb6GnuiGIysWZcqP/DPjvstRfJkxcirZXTPVf7Qv+/PP+4kMuH2cTT70Um9uS3Bqlb4rJ8f6vmzdlrGEGDWuzde/NMoM2TsKl6H3ZP713WnkxcrEwSQtZFz+0HAoSVnvO6kDg28tPKsVQbW3btLoN/Z/pTnWEjm4OeNK9UXPH+SUiuEFZrtXuINVqe0Y8YZptouvDZf9sLIvtedLBxHAh4KQjOY4meRgoOMFK2QZakZYJVLbA2uADfpqQeYfMBxrmSua70dwG5AQ0nHgze4oeHwPT9RXh0Ek9oi7gD4cxnTA9STstJO/xydxY1TtSUJLvOJq9DtjPHuY9ThfoZZwQmNX6OA9R0HEGbe6+G1Woq1JyRnCwdjRXUjEXtDimIdYPNDO+2FDtZs5ySLcGC2uAdaDqY1hsd0S1CBgZejAw0OZlNVrDsu2HTSO07R+2qc5f2EMvQ92/tIfkZR1f9uqYDGqnu4aoo479sk2BNuqhFxkA3tDEi51NZkyxRY682ievzotLltwAE6L39OBpa7HswW7UWOcDOB0TK/s6zscLVVK2J4qXCfm2f1GFoQ3SnEFMP2NULsvmwwzyzWnTbV/f6LK1drQqbVFMbBWIk7P8LRdH/TrOklfnUB+rzY2psJRxT0qAoddSAdUAqxnceK1Eul296vAp4dIEuwOKJ/c6nnfYWApWB8A0ByQmpv2Mix4/T3RJKJFw8waJibwCbaWennAK4U7w0Sj20+SYV7XcTmc/g/OeOO/s3K/LZcW4EPBuDEpas4YGXmo4zOJdR4Pd14yeK640pmIdUvSesE3bN8fTjR7djSmxaVYV6M2iRDYH482Ov3W+CbWWMVG9GCA5edFzjZrOmvpXnzOAc+e2nqX/yips24N/fRO1Pf6G0F5DVnQIpWUs3LwsliTdbTc7tvwde1KEPtx+IIUZ0UprxyHCb0Y/y9kOGXRYvFZraEQtydpH0n5nCE9Z2U8RN3e+lMb5nMkD+cnFzsgqJqYOOG6bY54t6qKrt55NlOQ6uTZ0ORnQ6ZW6mqiwHY+m+9jf4sUxuRUJE25RFkw0fnh3R9xNhNsbalM+/XLPclx4/OVE0R2rXvG7v3/Pu9/dEaYbJATy/eC6ztbN9dypXshRiPtEjIG4OGrurC3gVUm9WCGckgXIne65IXMd4Jgincj1+7e4wxX97nesxyNfP/1CqmbfmbrH44ihk3zg6s0b/OGG6fv3xLsb5g/vkLhHwkSWSK7KH//rf+P0y8Iv//1fuXl3xfsf3xK1kELnds6shxM3aeE5ZHKzoOLd24+Gsj8L4hvOV6Z9JCE8//KZmjPBTeNQjrZRTpY7pcGxnk/oOdMeFJeVfW1I7uy9kFDT3K2Zel7Ii6M2IYQ+pjiF7hy1W1hvPq1GFfGB3ZyI3nNeV1rFJoQV6qqENBF3e3z0ZtDgrZHqA0kuQyNlDfdWYNrRaeLvMfhARlijJZf3rvQXRt62Q20647yJdrsVVpazYwGp6oyy6p1jt5tN3IzRXGIIpJSIMRpdSMsIOhSSt4sqRQvF7tWcFntZCdFZMKT3Rl0YlPIunbUW8nkxsXz01LraFeGHE1mthJigKq0Pa/XKoGjaGq7rJjzHGuM8TFHoEHfgI8mv1jQ1C9er0vBTJOx3uBhQP3E+LpS1sjycaU3IemB3HQmHnTkJxkhbK1o6WxKznb82IxTvcMnj1AIpO7ZGvLaLVS4CUk6EvhC8UqOnzjPh5ho5zPSrDzQ858+f0GqW/A7BqSME8AGud3dI3BHe3OHmmfc3V4iPuDjRVCgKT58ix3vh/POf4Hzk9sMdgR1eOtE39mFl9iuJbHqQ4M1idzfDArSK+Ga5X7sd6+nE8nxEMA2JG8e25GIXSnQ0bZyenynPnXrsxFqZvR3w0Vlz33tDS7Wpfdmkbfb3qNFhelfK+QwIYeQQRRegWBG5xeC0UqjFohk2sa/thHEhotBfbYAL42cUQcLlwtqoev9WI3XRdmyPS/H4khe1bbpvminVS3N4QZVHlAcYnbsPwwnVbqHpNVOXBeeFEO13dN6bm22HIJ2ulXJeUR9xJNNHrNsTK2Z/zEDuxFkT1NUAAeOtoD3ba+gGvNJAtdKXM4SEpB1OO14VYke8p2pDvJCuDya8nveU1QJwl6eFcq4UduATb398QwwTLibbn+dqZ4AfFFsdjn9OiFMAr7gyKOzN9HRejcKL80hdoJ7ZS6cHoUwz/mpHfPcGdrfofMPy+EBZF2LvOIQAVii7Rgg7ppTw+wm3n5mv3g1tYULF0523qIGvD5Rjpvx8z7VASg6PZdjNPlPCSpIVXIXgidNMurrBNQ9tGfR5ZZ5maq0cv95fXhZk5EGV0RwOjuv5dLL8yyfYt8bUO1ItN8irItpt/+QyGmdwYpTvjtUXqmHk/SkdMzyIkzmdtpJxBCSMIk7EimjveS2L19GC8mo9v94/9q4M9uegLf2bjRSXO8iCuJ01UH0z3LLGp4vQvRBDYJrSsEsfulzvSWkGdGhZ9KJlSt6Rgk3c/GiwZOieBKNfxWk20FMr85wIKqxPZ2ouLBUQN3Q5StVOcJ7oPPM+EJMfPZP9vtYYm3a2tpXBoqRnq+H6stjvm/b2vX23NVGtnSrSr6BF2gAAIABJREFUiYcdLkXcPBsb4GmxIPbHQiNRdebu+2uu5j0uTIjztMUAXAlW72q1SJTqzQreB4evNj1s6gzU13YBPbpWZH1ipkAU1jShwPTmLTLv6Yf3rMuZ08O9OSKKmosfQkoDuL66wU07wps3uHnGX+1x3mjwRaHUztc/dtZH5ekfPrO/2fPmuzcEMTO1w6T0ubFPlRwqRYUQI+lwQy8NXQRxHeca0zyTxHH8ej8kMowazlsjVFbrBYJjzSuaK+1RcUXZ1Q5FSV4Ijgu1U2tlRIVaxiEWDK6AiqOVQjmvNkH04eL+2FYb3Lhx9+tFJjSAZhFyyfRmhhNhrL7WKjnny310sfhHUSfUjWN82Wvbv/5tj79NM9VfkJK+WZliAlndcnCGZTq88FK3MV1rr8IcNxSOhpNNvKOUutJLpRULgXNusgOo2VcNwZG8bfgpeErw1G7hfM9rNSQgDuxQHM9VWYvlRYlC7GZFmml2SDpntDgKk3dIMjpFF08OxruuDaR1JBdqXWm10H0iZCWmgzkXXb2j1TOPS+a4Vp7Oj8w/VKbmWZ4sYXpfHcFZ1tFYVzixjn95zhSgFDPoKGeQ3oj5BL4hUyWyJ777D/Qngey4un2Dnyeu/9MfcPsDevWOw/HE4fMHnGs412F1SBOmKxMiInubSeMo50z5+QHmgqSZ4mfLMz0DOTKlN3g8p0+PaJjw13vOv/zC4z//zPOXI6fHlSyO7JWfPh9Z15XzwyMhCXF21pSIN83XtCPISMT23ppoOTKLTczC4S3EHY/1SJdMrWdyWclfP5HagSYFyStRFU0Or96mh85s6nGOngItZ8p8oo8cM9Gx7jb8oReMbmQ7UrSZsUMTcGbowJY3I1z0DH1QAmRAba0ZWh2TDLvwURwNbYWO6c6v99CGPl7+c85Q5wuvfLMfH25R4l5NAgw93JC5rTjwXkZYrYI2ajFxd2uNMKxhZVzMzgnqbJJjeWgbaqaUakWpG/bsNGu6NJvLo/Z+CaTcUHYdNqM0E9dPSYwK7IQq5kxpKC6mTdRueW1V6eqR/c50HGmPSGf58kReGs+nhczETRdatjyk2IWghn7itimvnSWtdnItY+Ki1Gy/r68jiDEOlHn/HlpEUyZMB8JbR3h3h7vao/O1WYTvZ+jNdFRd0DpQvWiW60hAgln5rscFfEWSIdNNHFohaGSKV2j3tHOhxBNzPtGWleXLPcv9M8vzavk3IjwcM67C6fmE9kacbVLanMP5xHwwJyXhJe+liYFaVwLECTddcSRzrCu9V0qvZpRw8vY6loLDpmQkd5k6RMG0Pd4aDT80JYypqw6xufNyQdvZGoML3WVo5sQPfdXLmh+XBpt27kJu6Jsl+je75Jv98uv9s739c4rg9jHbH7a27rf/fWNGmBbK7qHNtKENc4RWG84FRIwWcpk0bPvHydg/MpBZc2WUMGhRHQTHuRjKrM3WoOvb79mtYQYLIkfNoUoEfDANqAO6GSBJN21hq9m+notIivgwmd3vFKlPcMqd42ml09h/VFoU8sm0x2mb4vrtHu/jLeRzvZw1KLSM3Y2tQujgOyHd4jTQpzPOT0zXd4TrA+njezTtIe5w+x0tr5bfB1A9zoFPbqD1k3GjulKXDKUjEXOAddGoqqtC8zg303MnP59I04z0yHr/wPnpxPK0stZOAaPfPi08P584nxbSbAY43Tm0O6b9AYe5+dnr5+jF9slePOo8bndDLfCcM5JX6rJS80o7PdN0Nk10b7aHxutuzYlYAx2s2e7VCs1LSfR68jvYOGzAQLfpnv2doVKbPnGbuF4WrlgTIe5lImvvj5V+We76q530qz203TtjQvqNLfugLMqgd273kHbLy9ocna2+M9xtm0o5b3fQBrj3zfVQXu4gG8TY3tFhw+69xzWbEKzZaLcSrIZrOLIaS0SGdsYNc5vehnmHw85rGtEZa0l9MKMIsUa1dQPrXW2Dfl7p4vEV3PWEOo/M5qB8Ls+suXNezsS7TlRHWQYI3weV3wHa6W4U5b1Tc6NnuTiztmx71tUMbuhamXBXH+EEVMf0/TUSA9OP3yPTjM43pHUl3VxjGh+LUJAuhNmiBVQm03U5R6+N+nyG0JBQh1GRIs0TmdD5luA95biAj/h5ojw/s359ZHk4c34qVCcUga/PK7mY8UyIjpgc3ZscIU47Yup4SSOzcItNUZJYCLbMV4ifeKor/VxoZaXWSj0d8Zrw2FTDq6LBzM3cADnTlOhiLo+pFGNT2NzQdKqqiBt6t2Z0T8VMk6ymGbpStZzC2ipNoUv7tt7a9uCYhF3AvW1vXEC4v7WV+hubqTbsGdFhOaqmV3HWW47rwbHRQ7ZRrIxLqw901FQcg2aCIQYbP72UlZotZDYSrZkSD80MI8QLyZv16ZQcpXrWbIyXx7Xig2P2ni7mDFNqx1GYWyOgiKmwyOb7abSdkqGemW93pNkTDjvUex6Kp1Q4V+wF1ML5uLIuK1kDYVH2bz6ag97NjrY8cb/c8/Vh4fPXMzd/Xzk0z8/PSm6NvzsE5smede1GVfPNpnOn84rmgot2Mi4PGV0K7v4BiYJceW5urtl9vCV/OaNr4/b33zHd3XD7//zfuP0e0oF2Wmj3D+YoqJX1EVoW5rdXOG8NVCuF5XwkP6+cP5/QwwHd7dFgI+b2DOTEbvcBz8rTT/cQHdNd5PlPP3H///2Rp18eeX6ulN0OgOWXR9q6kL/eM+0T0ne0YNbbh6trvHe01dbKHAO1nlkkE705Is0fPuD3d5Snn1n7E/X4iZzPLJ9+ItVrqmvIshBRXAp0bxbU+EC6PhgXPQVzZDsn1nUEox5PpjEagJb0DDhUwzBRsHDO3tQSw0WgtkHlMder3pq5uTVL8hZRcrF5q/cep4J6xXVzJVK37clfFYPj7UUci6Ht7gLUb8JHzzZCknFTttpovm736UBj7CIbdzhuNFOlrKZDqhWRnVGxLuNvu8SCE4J3xBioAm3jvHcldjW6Cx5HJ48cGN+6mbcoZlHfu7nBaUfLQkiBNJuLHSGyVIsGKKs9F76aecx6WnFFqd0R4mzuflNAAixt4bQonz+fKW7mY7f9d6zKTRT2wdsd75XercDV3mi1UbI9P+KEljs9d+R4NoR07wlRSNcfoUd0OhKvD8SbA+HDe9zVFQxx8eH5rdG9tNILtFVwKSDJm1amdWpZ6a2zPp6sYJvq0J5FtIDvCTfdgpssaFtO9OVIPZ45/fKF09eF4/1CTYkWAuVpQc6F5eF5rD07g5rzxJSYdzNaHdqEFIzyslLxdHNdmq+IN++QfiQvz/TlRKmNejpSZ4hOLheZeKO3dhl5YkPLpt4Ahjl6o96UTsmFslaQcZkNMOEbPVHf9GuBLpvG78XS4rVF+evhknb7sBf637cf/xduovExv26WLqPKV7qRl6/7jfvgdmd209HaOGi83n0DI+owhbBmSsakzQmX/dOdhVBaLpIFUC+54ZuFSlvgvFCz2RX7VnE6XBPHj2g6OEFzxkk3cCaYC1cbYbMVN8ImFdVKPmcrEPG4nRAPHh0Uo0zltGa+fDlTe+ZtUWKF+9xJTrhLfiDUhtAr43nQTh2ou/OCVqUuHZaMWzPMDomOcPUGSVcwP+JEmd7dEW6uSd99tLXvPPPZwkPBjKjqeaDZ++liONOKZdy000onw9xRZ5Oxlht9sWYq+AN9Xcl6tGlWDyxfvnJ+OHO6X1gRSkqsp8rRH8lPR+r5jOiMj4HqLXphf32NdkGLEJwjeEcWC92dgskI0pu35Kzk50ecduq5U/NCPT7h6UiMdmcAEh0qji7e9NRDzyZOkFagN0rppg0t5YVOqcNy33mQFwpnb8ZscP2llto2ymtAYhvqXvbP2AYve+iV8cpvgBGXnbFR/cRkFPLq7zeL/81ixzkzEWnaqGM6DQxAgQuQF8Yd1OoLaG40wYjbQBZMax+cIN6ozyE6/GB1nXPFB88UA12s+dZu05ak9tyHbTquRq3veHyr0FbiYSZMEZlMJnEqho0am1aBRjlnai40PH6CeHCm8dtFtCycysLzc+HxPrP/vrHrjsdsGvw3k4Hhwdnzq340y61RioUCm2EVlHOF3OB4MoBlcqR5R7zZ054rWoX5/R3hsGf6ux9HHEdCS0XPC73bpLytGKC3t8iSNpgyrWRqqSzPC5oSGtO4wxyuBoQJv3uLC5X8eEK8I+wj5eGB5fNXzvdnTsdC2e0RID+YG2F+fCbNEdGZHgxomOcd3jt6Mern5D21ZVaphEHhTLe3+OlAOT+Q+0I5PlBqpj4/EfpsDLU6QsS9o7tgtEHn8FMyZNiZTrmlSG1G9c2LyXnE+i68GMugIxfbewO0BGLE9U4tNvGvdZNJeNNUiWCxNCNDkRfZBZchzwD//tIV9Bcef4M1ulJHkSnYAbG5+wGW1G7b8aIdQawsMPGvolK5uAXxqkjM69B7CLWaQYUFAyplLSYena7tLCmFmBbcHj68mTjsHO1LxVXII38jqLKsK8t6JuwKPkXCFAnerB6DQFRHEIcTj59m0hzQECk4JFsGyM575hjY73aDltFJEyxLsCLxvPLzP/9Cdokv68zx/sinXz7xZp75j79/w3/6P97z43/+wJfFsRQlfz3htHM9YeLy3owmgNI10+rC9XwgeM9+33GTMh12NPFUl7j9sOfu44ElH6k3N8S7W2SaePpFwS2orvjeiRXC7S3+ZiL0E22poxBTQhRabTx/fWStcKpw/6w8SWWtndYS8Sky6RXff/g9rd5z//A/kf2Z/d0zB3V8vL4iuQdo2VATD6GdcVrAW85Eywr5jONM7zN4z7Laod/jEGTWjqSZLnuODxV9fsK3yiF5fvjhRz5cB07LinxVOBeo4F3ExR3dD+GyOCDQsnK6P+LbSmzZGtNS8cNUoflE7fB0n3HimCM4CaQwMMPeUSkmPhartvJAp3vvhuYGb7zgkdewOd5t0yhDq8QyueiUUl820CvUYyNz9IuduIw98avCcrtMt42OFaO1VVqrpJjADZGtd0Q/vVCejCRgAIjrhHkaNNpseVZRmWcDHE4Z1tIIWz5b7/SaOZ2KBdHOM3NwzGG4VDqxMMRusQZOHDEcEO9oBLQJTjtBbIqSDmk4KSqteiSo6YxK4/x4oi6NU4nkAo+fHpHa+d8+XnHz/RU//HAgq2OpJsTV2kimazer9WGBrdLprRDjEJF207RdOP4uEJJnd7ujB0etBT8lZJ6oOaL3DViskWlqXPH9HvUdp8Wmd3Xwt0U4P62UXFlyJ+M4HoWmndqFkAVfItfzHXGfWZc/0cjUc0Zq52q/Y3qqoNXqeDquFzyd5KxRaEWhVoQCNaA1UkZh0IO1uvbaOrqbyatjfVjQXNh5uHtzw5VcIwJ5WXHdnO+cC4gLECZD7rBpKDjqqZgzXDUdla/1YufMCIrtzfSnda1UVy6mGOItENsyiPoLj/1VEyPbRGoL5RS7Ly6hvVzA9qFb+pbNrroB+dtHyTf/+Dpb6tvHS+G4ZZ44742a3nl1gdp/fVAAFT+iFho+JqPpdLvDfIQEHA6BXOG0tgFsWMYOrXE+LbSm+P2O4D2HaFNnPzRo8uo58WlGRC3sWcViINzYQ8Gbm+vIHXNuMrOX1ilLZvn8yNIcp+J5/tM956/PfLzasz/s+PGHA+Gw57aKmVkshRAgemgqtO1Z74r2ggAxTHbX9Y4LDrdPdGdFz+5mxjulfPzeGq/Dju4S62NH1bRhvlvguDsczAegZXvdqwFR4qEsRpEs6miY2L1oNfvjCn7xzGHH/iZQli/k00I8Z4IquzSRp4bomKRVCM0TNKLSrRlso9jmZHukJ3oXSoHqhODl4qC46U3K40qryuSU3X7ibveB3W4i54woNOctKFU86uOohDZk2+j5vTaC2jRcR1gordqB5SOldNa8DoF7MLAs2MBOOjC00OpGYzbcEJVN9/rn+we7jra+yuq1/mLx/+0eGg2NGL1JB1VcsSbn9R20TY1VDfx223BMLAzVO2FKER1sCC8J74LdmdUm1YKaUUsYJigKzlWIZll+czMxTZ5GxlcgWp5kAEourDnj5oaLVsNtgbdewOvQcYk3YJFgIdE4XLUaLok5EqcpWSMqio8TJXtaN8Oe5csT1Z055sR6XHn6/Mg+Jb7/4Yrvfjjw5ocDd1UoTWnngqBMQdEulN4HRRdrglplismohUmRAH5Kl8Z7uorM14laV/p+hz8YUyg/A1KBZi6FHfy8Q+aAI6Oum/MkatPwXFmPZ3LtrKVzXmChm3lQD6TFE5i5vn2H9hPn488QV8LuTES43s0EeYRWzMXWK76tOCp4c+htVZG6IqxoT3TnWLOtjh4HVbV2iBMiM8uxo8uZ0DsxOd59fM/dzsKW5aSQK3QLHdaQcC7QlGHC4s3e/FSgF6R13Mgg8/1Fn95FqMVMJraIaOesmerjHnAiMM+UUlhXky5sAdPOiUk3SqON0bEfgfOtG+Oo1na5j359B/2vHn/bZGqIxYROLVsgq9t2r70dfOTxzvjfyDLBDlNG42SupZ3aKoKJ1HrvtN5w3S7tUhqxg4QZyoqIx3vBRbg+eGKAL082It55Czh1vXKuleWcrWvunR4NvneeYefshuORhZT6YLSKhtDri2uMBI8cdlasSUG84KPn6blSc+f58cipLfzr48rydOT56ZkfdhP/+4dr/vDjNT/8u1vusnJeO/80skV2Uc00w0idgKDSQRsxOKbgCDvFq7DzE7UHljpxuL7h6u0t7v1HaxynHeoCy6NlB2leiWKCfn+Y8PEWjYqrZzPIQPF7QDv5tLI2WLrjvjh+qXA8R0qF6zJxlSLff5/o587p58buVChPCxPC7W4mCoganGTuVBlHGyN3aEXx3cJDFaU5T8ljWUTH6E3pzvRK63OhasO3yhSE99dvud0pa15xpeKeV2LaEeMOIeBcRKpp9bQLNTfOX89EMsI2mRkHBYq6ROtwPFWCOOIu0KNejEoQ0xpJ3y6QARgMepsMaoLVuIr3L/QHZdjj6oicaObY1+pGidj20Ku7Tbk0aYhYAfWKD8/Lh13+fwzXLJh1GD8YK7ENjr2yUUMM2bSL2OgQ0SgDWIHrvBKjIOrIValgaKGIZXl1c/UiBEMDJ9OUibgLGoSTQZ0BF4bebNjao4q3YBBk3myVqwXOCpTcyUujLIU1dx7PlWWF5enM7ISPP07cvpm5u5upKuQOzw/KclKCtwlJd694zQIMs43gnTmsixImQ11Ltwy1uN/Zc3VzN2ykA7VYNhnNkPnoPSRHuJ6NAuqaFSdNcdHWRyuVmgu1KLl7nlslVyGXwNQ9ST37a09KifxsiHTPFenKnBIx2ERPBr3Ha8XrkKt1LLRQO65ntMVxyJvTHnU0vSqI97QQ6A1yWSFXkijXhx23yQOFUjK+mPjfx3m8hqbt28xEVIW6mF41DHMSqQ3XuzViDszVzSjKvXRabCOg1SasZvNte9IwgmCT0Nf13NgnrwvB7c3rRX/JgOLX/7CZSPw5FePbQN7t648/X+iEOtB4eRmRjc/Z9tfGUtSRF2TUJjdowMP0wVmhNE9Gc10XiwkIwV1MWsq6UqpNc3uM7IPpTexbm63+NjKXEDHG7yiYB6XJe7V1mqIZRwzNZmtKO1vxvpxWjll4ODnOD2fy04l///aad3czb+4mwtXErsK6VB5rs2ZqsLi+fRqtCfJuWP7HEX3gArV7Op642+E96PWdNc0xmlPsydB5WkOdmef4wwgBdyY670URr0bpa42WiwGFOJ5LJTflvHikO6bqkSvHfpdo6yMtd1puOO+YYiAlA0lQNcdJbXgafYusaEa9ci1b3AP2spRqpqB9s5VG6MGDetZm1tOBzi4F7nZ7UuzmXFeH02+YLcKDYcbVTcCvCi032loAC0u/aPCGS5y6SGudNXemSZAoaN0MLDw4vcRSaO9m/CLbvaEvRfvr/fNq7W7GSQoDff8NYOHVX12my68oUL+Jxsu4515tmdra5S7Q+iLhQO3u2PS8bjR1vWPW4lKNzeTE9s8uEIJwPA1DICKgOG2U1g1MH2ZfxHDJiTS310t0Ms6N6bqz10W67bMQxBz6pmkA4m1EZ3jWU6PWznpeWXvh/tTIx5X1+czd28gPb3e8fTNzfTexa1Cacj8MFKLbaI+vn1MFupl9eXPINAOTSO+m6U7zxHSYkZsb2nAXRBx1sfNLm0X3BOeQ6PF+tnXhbHihgEv2vepaqM3yl86tcuyw5Eavwq4HpuC5eRMgd8pjIyyVei54EeYpWS6vtmG25PA6MsTGudCr4voABoAmjlrGkmjucnaoM1plXhptGM9EJ9xdXXGVoNaCaw23FstqCzapVPcSQK9qe7acC07NUVhaM5rxYMExmn6L1NGRf+bwLgxQECwmxSExbjeArRHnDLCQQRMd9ZeqmjHK9uoNWYgb9D/9rT30Fx5/fTPVOu28cgndHbz8FE1nstlI+4ChXK2bhToeP0Vb7M2ZeL5narFFrLWjEildKA3S7gofO8eHhVbh6fGES4EwqYneFyHnQn0+05eK7/CH72ZzPTocrAHLjdOpcTpVnrOw1kHzoNPrgvqATAdUHaV7WsucS2PaTcSQIJnldD2vRBWuph0uCczwNiaIkZLPtK6cDr/jKQem/7byx3/5hX/5fz/B/gMf/vB/cnX7jhgc+w5ehTdvD2jr3M0gvaLFQoaRTvvujpYzAY8DUtkjtdAfj7Qm9OpYcuPh08Lzvz6Sf/qCuIiEifj+D5yPhX/4L3/kaVn4spz4eHPNu6sDLj/ieubd4Yo0RcK7hJvhh3/3nuKE1XnuWuLHnvj0uOd0jnz5OZBFeEod7zp89+9Zd3B/BgmJ6Vb4/mpHXSrH3QGdImkKLL1xWheggKwmGO3w+PULqkpw0VDZecKFSJj2nB8eWX75xHmplNZ5uz+QdhM3HxOT6/zyL49EhJlAXr+SS+d6f0WKyeoycbQ0U2rj+Lgg7Yir98zBkbzj2DpZhfP+DT0kZJqYp8jNrbmnuRiMVuMDrXVa6Tyd89hoDQt9xorqXhmTfILaoSl+IP7S6M2oP2VdyXmh1frtJhoi99bMntYc74a75NjYxl9XNCsxBOYp2fdxJmAV54k+ItiEUYdLXlXhnBthcoQ0U3oeTV2nawPfLxQ47Z12XoY7n3I1ew47j06TPZ+106ry9s0VtSpLGZe1drQV0z85j+Bp3dsBtDZDDFOCYHq2nitald0+GPUvTdbgvfVoN7fBEg80v+OnXxpPj4X//s9HmhP27z8yv7mxi0lNIzDPxhOfB71xP43OQ6xwajf7cbmC79EugTWbhXezjJd8qrSnlfz5OApjB7sb8Imv//TMclx5OJ0J3vPu9oDrFWkL0xStgDt4ZLLg3P0N7LHS6aon1uw5LoHl5CmLUJLiU6Nfv6W7ylLG4T8nDvPExzmxpEQJkThF1AlLzdTagGpoeINTPZHLI9F7E/5OER88Yd5Ra+Xx60/k0jgtlf0UOaRI2t+wmyeWx4XSGysebZCXe0KMTNP0gmIHo9SsRwMhpBiFKwahqpJ7J/uZ4hPqHT4EQvSmG+FVAWYQttEzuhKKUV58GG6CYpRvp5a/dUHa4UIB2grHbT98cwd1vTRMbJ85GpPXRaJ88xEvzZTlJ4XL1GvbhzpGvp2AiiMkpRVD2+sQkCc6LhgQ2BH6uprRQOkk73h759EQ0RgvWWR3d3tq6SzZGkBhc41tZi4REtqdTQiLGbnE3WQTguDtDs1mWxx8QKK5g+3v4igqCk0CNd7w8NxJXyr/+DXzcF7x12/Zv39jlsYiRKcQPburRHSQHOzUjVHfYEccZkN2Mfqs7wlqRUuFZkVqWYcN9tcjWizfStIOd7jj+PmZ50/PPC0ruTbe3RxIXnD1hPeO/X7GzR538PjJcfXmQPNGkww9krvjeJ7Iq3B8FHKE1Snsb5AgZMQashSZ5saHXWLpcJ5m/C4SguOxV5ayQGmImstva537fLKJvPNoDGj0+GQmP4+fvpBL43g2Q5W313vc9cz+TaCXladPKxGPqFCWR0CY9zs2Q5StmKy5UXPFtSOihZTMwr90aCHSdtd218SAc0KMIwNTX/p8ulHLa7UJm1mo2+R30wo6GLWW/2adywVoeNkr34IUm2Nlv7hxam+mPUaGVHjcQdU+37vZTDKigeRbTlkKCSdKyaMAx9vgQTs+zoQIdamUJpyez+xEuIrbPYg1kUu2rLWufHg3o87DbmfT4NIoayevndLE3P5k7KFmYdASZsxi25NbRWq3WjME0woDbS24KExXyUwjAuyurenqrZiLY7plbZ70p8bXX575+R+e+BCvOXz8zqIvvGAqc2G/j2hX5gCiEZ1HCS1Kv94Nk55Xd1Dr9GU17W0XaleWYyPfL7SH42iiA/7mHWVp3P/jkXMuPC0LN/uZ692MtDPSK/v9jE8ed+Uhws37G8w/FK41sGrg+RRZi+f06GkCOdqEW28/UBOsFVyIRO95u58hd5b9Ho2BGAOrZk7rClIQwsWN8fHrPb0rUzCLdDclY2+kmeXpzJofOJ0rpXbeXu3xc2L35o7olOPnEwtCxFPykVo68zxb4DUGAvQwgIbjCm1F6jPBm4537Z2mcI57urNIAe+F3eSG3X0wCZEqazbaf6+CdM9+OlBrZS0rXftwoRT8yKi66KdkA5Pt9+2tU7X+G5Tzbx9/vTV6N2vP1tqgPlXj/wYbtnU67iIW6cPdr4/5s1H9DMI0rUnvZuUqHUQCrRuaJy7go5qVMd14/83sY42e4YyjX9rFevZwCPjJ4W+CoU85cJhgPcDXY+eclaXUIaA3y3XnDJUHwTJ0O5N4xJkzl6iObA3FNzUE3gfCbiLMkxkcoOxv75hz4t2nM0+PZ3JTchcKNnp0IngxhM/QUBNIOgF6MDWyV1QaPTmjxzVFxPixGixTpgmsa0XbwvMRQGQMAAAgAElEQVT9mfVh4f+n7V17JMmu9bxn7VtE5KWqurp7hhyShzxXyrAE2D6Av/iLAf8DA/6vBgwBNmALkGXLtiAfSTxH53A45EzfqqvyEhkR++oPK7K6Z0jL1Acn0OxhdWVWVVbs2Hut9b7P633DeoO5hZQa05g5jAtvjmfqKZPDRCsjhky7LQx9oKsbuhvLi9tOF4UXqvFY6ZiLp4qjOtXozygW1g0bmoukMuNtxRjonbB1Fuk7Wufx3iE546westV4qsi7JWpIrDcV28DkjBGHaYaWMuUykudMzlWnDaYgeaLSuBwnHIaM43KZld44LHTOa1CkGLLvyaVyuUQoI5KfyJ1n8I6xNC2mGJAAm25QIk6vhZRZ80e0otEmQIrXcNqi9zovz5uP/t7le76La0iqZq2tcqNSf9g414+vk6J29RzqSY7vIZ7X9dPaJwLZ5wFyz9r6VlSXvspNyoobFcW0gahuXVaTuR489QCr6PRKzQ0XROU8HWCFknUdeaeyFDsVzYUrq8eRT55I7RZd4TSCM1rwaXDoqiGvrBIRC85iOr/eGwyhG6huy2XO1BI1P6xAalDbtXfMFWmjfUiRFbaxiqjXgtfi1kME64hB9H1o6+C8NuIlUS6J5RIxxq6kQP1FpaUSp8LpGLECXQRqppWFzRAYhowtHtNbhs5hnagkYr1viDXkZolJKMmQqWQECUF/P1XfCGtVZtU7gwSP92HNlNMbOsashDv1t2XqSkZtWFuxpaxyTKA08jyTo075yvW+nDrIQpoWSq40HDVXpvOMc47cLVxx79V6qhjinKglIWlUyWrnyLWRaiN5S3JG5aJGD3hXWdBzh3K9hkvRrngBpK6NABGdbmnb/JO0TrR7+2n2ymfj2x8+fjCtWp97/bf/78en3vv162v3Xq8whdSsHhLTtPCnPvuDP59q6drRrC0xDd8ZJIB08iyFdNZRMthRJ7Ipl3We8amxwXUKVld5ykr8FGvXa09DYk1Vv68Y9bhpU0Ro1lPCQEE9j2ItMTdSgazj6eefWq5rSFghI88mBH1vw4qVLut9SaxOLmUlPTbUP5cLy6iaU2sVoiRF1QhprlxOkSkmugjBCK1MWngvDTs4fPGEG4v3+vWNgc4rhTMWzWkqRijSSIC1DhMClUSplXXYQLcadqTzmOAwTvdWd10/KwCLKnpdCziqdslFME4nrpq9l0iXpBOkYGi9QImUJdLmSF2Lqfk06z18yWuTy4CxVOtVOpQLUkaEjFSdOiylUV2jmIRDMF5/f8/7znrNN1DZ6SqfuqodWLvpVxHQ5yCW65LRNSTf+/ffWz1XGetaTP1w+nuF+VybGZ8/R64xFuui0//W19E+iZ4Zcml03uo+Y1Y4UFklu7LCa1bPsCKyC1TFfRtvkI3GZORkKEEogzAvjZQbKau33ny2B+kUT6/fWhv2CrzQTAlaTVBZ189qOQkecRpM22iEYYPPjv2YuJwiMfO8fq5bycqB0dW0rh8tNOy6uTUa6jutpa23Csv1Am+w/lxaDMYxkS9Rse9WWLOwSXNhnhKn84LMFQm6/9AKbd9wweKqxw2WftBJndpqHFY8qWmhODqF1mQaRgwSOprN1Jaffd+dMwzOYEKgBYd1Tte00Wnfc9ZWE1rN1LLuPxVdQ8bq2SNnyrRSRFOlOqNk4hypNOIlYppQxbFMkTgnShdxTil9GKG4QCmNOEelceaRGpR8nIoqZ1INNMdKmTW4oPdKrNYPGhKsYQnS1FrkjFM/e16v3VVSblbsf72G18PvqxX+QEPvP/T4o4upUivLvFBypuT8jIa+ZrnYVavRSlIillhqnGnSkBYo1ihBpSqtpRlLqQ4jDuuhzErJo6lZd7gZaK1S4kw0hfNppDeNbr9j+tiRsIyHEzUmJHX43iEsGO8JoWf75T3u5hVftUCulo8fziyXmfThPZSKMyoLUPJnBtvYbgPdZsOm91AKp8dMGTOnv/8Wu+3xL3aE/YW61cMTNrC5SfTbwF//9U/w/sI//e8f+Ztf/R98+O7f8N++/u+4/4sviUvjMhV+/TcfaKURfr6jLjPjuweaieAivZnxkjhPAykblpjxVni588y58HCeSW8fyW8mnj68YZ4O/Nkvf8Gm2zB9eI8R+PP/9I4vTj337zrO5zPvxyd+O3qOMdB9eENnKj/93S33feMvfzXhNhZ340g/+wXlyx/z8Zx5OMHjpB0r9+HMPiz8aJiw9kRwByQttJSQOuJs4atXd4TNwO4mMOfGj+6+wJkeb3stfK3wbsmknHmVPtDmhaf3Z1KDJSY6GvvgSPuXFBso739DGj/wd4fv2BjDCxvwxhPswDIfWeYT3xYhN8OtC3jrcJtbmoFMoQ/Cru/IYeDsA+NlJpWKbxaHY7Abhm5D9+IVzhqcsVqw50qeVUvrVqJSnCaME7yxqqsNG3zVg2IqhdIa3bV0XJuETSwmhBWs8alzqAd63Vhy1BTwUivIVW6qD81DMXjnoFXG8YRfJwlUS11x6WI1b0YErNPN6Sr/y1lDQ/1gKGmhXP1bTnAhaFCeWPISSaeR1just7g2r53TDus7hruXNCwvmmWZE8ucKONIi8taLFasUfJhk4oLhrDpVgqnoJEvhfhwRJzF3mww3uA2a3NFnOLtfeHLL7fsbwb+JReOjyf++f/8xE//8qf8V3/xSmVEBY6PM8dD4tULT+eEeLqoh8UkjBS8ZHKxpOKeiUqbXj1dl5jIc6G8WYiXkcth5ObVDfvXW+ocaS1y86Vn98oSPlrSnDifzpwXw4cxYB8v2DLzYjew7Rxf3Mx0XcPeeNpmQ/3yK2KqHOfMuOg0z5xnOp+56xaCzVizYCiaj1YnkMJ+2+H3N3SDGuVv+h21Cs4ErrS9sTTGXNnmkVBmxqeJnCoxqayi84ba9+TXW/LTR/LH93w8fmC2wo1f14gdqDkRzx9JBZYidNbRWYvdbBEfKCgmuu8tOEf0HTkVlhjBGbzofd2Jw/qgHeuVrNVKoV7zq4xKuHNK68EdqtMA5k8F0ypPanzawK5aC66b3SeIBXwqgK6P729+n6qydv0Cny2+68bY1kOkPhSycm1H1lZWyqrKc8PgqSVTciLXTEpJJ0Sh0Yyj1MRyOGlTp1dohM06cbLWs7u/R1zHTXWUXLmMi4b+jmeVKZE/yx/WBl/oPNY5fHCU1oglU44XlvOC3Q2YzmFLVNgBGmkQusLt3jPstnz9q0qcn/jX/9e/4rdfb/ivf/bfsA+3lNKYLon3307sNhazd6RRUdDYhEjBS6I1WJJXKWcpBG/pveWSMzEWytsz5RI5fzzhguXVn9wgGOLphN9UXv/phu7JslwS42lkjIU3Z6/ypTdv2faBF7sNL7aJm03GbB3SO8qPvqLYjuNlZl4aY6xUKTST2bqFwUWMOWMlqnQ7J0Qyne+5ub/FB0foLS/6LXOqGsOxhkmn1niKFV8ju3xmHiPzuJCrSgedFWrveXH3kpYS9eEtl+MDv/vudwzWMViHcz1GLMv5kZIT74tenxvnMSFgho0WI9IYBosLjmh6mghLjErNRHBiCTbgXKfPWxsS12zOmtdpklk9blkzwzS+wn/mrb0WOjw32T6tH56Ln+/J9tZGR8mFnBViUJv6Q5+l5U2lhtZZnDXkGLnkSNcP2jBdp2MajqqTFmsszq6Kh9rIpaLbZadLq2aKaSzTjLdC1w+UcaTKRDrPGkNRA+IdRrIWzy5gd3vscENtjlo1rDzHRDkedMItDSGrB8sUmm10vcd2ne69tdLGBsvC8u4R6QJm22P7iO1Eiy5jCX3FB/jZn9xR80JJB775+sTl4bf8F/av+cvXN5TSSKny8HaE2rD3HS1n4ulCMwVswZMxFGJ2lCLk0p4VFKlULkuiPF2oj5HL04G8XLj/k1cE3xGPZ0Tg5S827KbA9hBYLhOnaeT96LhEh/vwEWcar/Ybtl3j9X7B9gaztdT7V9TbF0xL5TzDGHXiIseZ3mXuQsKaGWdHKGlt0lwwpnB/u8H2Hd3gSHXL/e4OazzWBIzV4vGQKrlWbssJYtI9qEGKmQDsguXF7oZiPOX9d+TzR948vqU3hn3osMbhTE+aT6TpzGMWchO2bg3I3e5pRigUvIPQB4oPVOdYcqSUqjRQLBaHd55+v30mc8aUNIi6gBOPkMkmU+KiMJXguHptG1oMN3RS5ax5XiDqaV3XQ/vk5f1jHn+8zK/qIrtqtkWMVtTyaXOkXUN66xquqYCFnECKhvrWdq32BDU2oJugsWAK5jqmXnWUqVaVjaRE66wGbHq/BhWuE66oxlxsQ4KO96WbkThhDARxbAdLMB1L3CiJrAlm7VgUGjVWRUMvGW8EsxLC2tpJcK0g3oDpqARyahQKc32ghAuxMxyfzuQ8c8yFshx48+073n39nsl2TLHx7tsPkBtfbhotzlw+HintQmZk6xOdLZyWLalYSlZNqMyOmAvTvBBPkeW0cBgX5iVymiPNOUxJWGtoG0tuFaEQtp7tZof1nnaBOB6gVXJpSukayyorMRpy3BrONk3y7hUDXs1ElYVmI00itS5YEsYU9vuOJIbQb7ChwxtHc7AbOgwBQ0+noeMUa8nFcp96mhP8nCnNkiWQIqRFqJuB5jqmcwemcGcagzHsg8fK+scHAh2sk4vBObz1mE5R3N4aem8ZeqWgVbkSnFUjHIaeru8IfY8LnWI114tX9yWj12L9hB/XQ592Z54DCNfN6hpW2trKQZD1gLhKir7X5eAzAtrzjsez/Okavno9MOrBjzVMcfUSZnTqe33R5+mQXW8UaFd7pS9dv7dGU/2+UfmdrOQvWJG3WcM18wTikuLPmyB5RkRvqt4JdI5SPdWqZ0g75nWloskafFlorunmWiotV0qdkWSQYKE6ivWrFyWR5gvZZ5qHOTZSXFiWiYeHC5sXW04Po5qKjeX0NHH8MLExG1pnieOsUqc64UyluEKujlhUikEFVvpQTIkyV9KcWebENCXCkuliXjHvjdZpwJ9QMQ66m455VsCJFlzqvai1UaO+vM1tRWC3FVMP1ldsadoJlATXzb4l1JdS8cGy2Q24vse6oAW8CH3QkG1p4Zm2bGrD+cqQPaFUbFTSXsZpYW8qzQXa0LMsgTh5dqbRC/T+mtOx/mxdwJRGLRCsJViHBKc0TKPNfN+vUQOrRr00/VwX9ODogl+R4fb5AHc92F2lSnx/W3hG8/MHNqfnD1+78/DpcPe9T7x+8voZf+AQ+flraq++fW8S9hzue13fRpUO12//0/S2fqK/N50m11LUA3gN5zRmBVhovpqu34J0DXEVyYsyOVd/UugsVTylds8TvWfv6CrJyqXS0CaFZl/VlcwKOKG1AE7BMzU1imnESai2o9rKfJnJaeFwmCh55vhwQowjW894Wji8P8FNoJeedNHirtQJJNO7QsOwlKD3ngLVGooTYsrkUklzIk+Zacq42lii7vFCXmVpekhBKn7rqb1HmqNEAxcFXtTaKEnDUU1o4Bqmrehqqxl+1lfEFhqRJgkk00i0po0TY2DYdjTX4702cKwYOmeVOtk8IgZnoQOaLbja2ORAaNC1RkGJidl2+jvedNRkWE6OjspgGr2zdM5hV1kzwVPsypQQg3cW47WobaIkV985nDeqslivIYvgnHbaVbq3TiCvl/n1GvxsUvnZyFev1x80Ez5fN9rZvh6ersvs+2vour98mvzKZ8tR1qaY/n7MOrWqNChKYS5FWLliz2tF1QFrcwyV8WqY9Cf4TKkNt/qBsA6x7tmvCkavtVShZbAzOJWxtxxpedGiSZxmjRlHyd0aM6Dfs2mNmnWqmkulprIeK68Bsfq1TauKt1/tJ3X1tC3xrNP5sBZseeGSK20+8fRw5PRwJjtHKnB80GJqF4CcdQ9qkUqkswVnGksJlGq40u5bVFVCSpk8FfKcmaZEWhLbJatUremkk87pZEUqrre00GHE0WahXKx6UhvauFp0vcjKzDKtsQ5KsX6VSktS8JspuoZaQlCITjcENkAInRav6/RzCFpoGgmar2igOX29XQnalI2F0gwZT0mN7KD2Hc165nMAKWxNI1ilNxvRPUi8x64TJlMheLdOnq2i8kVwXvCdUSnm1SfVhM57bPCYZzWH52qFvU7SjNHXESn6EWNoTRsfV+T/s8LlGgnw2RIAeV5On2PT/5jHf0QxVdbsCO24+86rR8JaaI2UVItbrrNqKs40nGlMU9Rq0GrHr4ihNsH3e1rNlJIwAYxzBKMHy6ePJ2JMjJdFBRjTCfF7bL+j32+RvDA9TNQkXE7aWS4fFmzv8TcD7c1HMP/AbrOn6zfsf/JT3MsBvvgxtTTiWChLI42N8enIMh95/24k1gs/2Xk6GvE402KkzSfCZSAvIzJ+SdtuePObJ56eLvyzj/+KUxXs8GNO4yPjdKDmmQ9l4n/5H/4FD3830/+jP6f2Hf/yn/6vmFwx736JM5GWPzCePnA8vOVu79gMjrPZUSVwJ6q3/7/fn+hc424rLHnLwob3y8zlfMZ//R3boWO7USTtpQ2k5cJyeuDP/vO/4h//kz/D/Wbh7ceF8rXBLxM/8Y5Ng1b2+M5ws3fkbiAZ+PKlMNyB22sB5+oFx0SzJ2IaOU0jN71nswn8k3/8FUvZ8M3hlikbLlNErLDvDPOlcRkL+03hJjRemwVjC7brsfuOzes9nbPsQ8d4yJyfMqF3WGs4D7+gpcT9oCZmMZacDEt0iNEu1OJUMTpYRTuP0lGNrFKvimuVw+nEebyopKFZfvTlPdubG+TmNWHT0fU7LVCSbhI1qeenmUo5PakJ0XdghFStGqVieS6AXBcQI+ScPjvINRpZZSh/YA3VrBM/Y81zFo+YK6FJ/6c0hR1Yo7Qk5wy1FNISyWs1F7pOR/Krwd86pdRYaXT9QOgGlmkmp0iMuhZrnGk4TLfDhY6wGWhLIdtIiZE8ZdppBGnY/axVwcMHrAt03Q6327Pd3dC2O0CIU1IIwaSTtjgfiWNhejyoB6sz1HHRkMtlXGWtGcJAiy9ZzpHxYeY3x5G344RsXlKxfHj/wDyeeZzPxFp4/T/9Cv/yBv/lHb/919/x8JtHyl98wf6mQ8qJnGbOj+9wHnY7R5JAkkAnHtcM754UYb7bAlhi3TLFwuF0IYso4MYrpW9BISXpdGC46fnZX/+Cmxnsx0x97GiHjjtvGIzg84Bx0G8MrQ9kgW0PLQhha5lSU79VmxG5aFBkWsAKPnhevN6xe7XhPHdM0ZFKoRbogkrEpnMlmMYmVLYK38Z0BpGe11ttBPTO0TLMRzVV22CJm1ek+y29V4SviBZnKeqkE/OKahrVanfOipBED5VtDY41rZBTYjydSWug9LAduH31ghZ6xAdcCM/+CZ1MrUW+1cK9lrr6oj7ljLH6QK6m+msNJPCDfN//F2nF9SC4yhO/3zW8HjrXudQqkb3+XcraBDQ8NzXEWKwTclyoTcmaYiyhs+SUicukE+vUKDHSbEF2W6zx+KHX6bW90HJiOUcaE61l7HZAOg+PT4ix9MMe2w1sXrxEhkB70dOSZrWVCC03pqcTORXmjxPOCDed0KJKUluaaXkh5B2260n5NaXC4bsjj+PCrx4OND8g3Q3vfvct43jgsIx4a/g3/+zvuH39kvDzLzi+H/n1//YNr1/vyT+7h3qBMnM+vKekhf2NR6xlMQMWSy+epzExjYnNAMELS96Qa+PpPGEvYL1bM2mE3BwJRxpPUBI//c/+FLsdqO8LaZyp72EQ4dYZuhoU9hAsfrBrnhrc3cBSwG0t0iKmzYgsNEnkqO+v6zzDvuNPf/klS/Icpo7SGstSMN4weMN01kJ011WsVG5JmvMTOuymw73aaZEkhvmgU1XbWVquLMNPcQb6oHInxFCSpVaDmDuaNLJTWaa3liKWhFvTLGRFN1cuZ40nqGgI7u3tFuk6pBu0IWHdeq225+xNBbboROpKRW5N5UhyhdKsMojPr/7vrx9+r7kAa0M8JZWpWcM1n8qsJ9JW2vN0DdqaRSgYK9rMLpUc1wlq3+v6M06Jns5pwKyAWz1DaY6UUliWGVpFSodBiyg/9JiWyceZXDWyhZaoh4NGNew2IE8ghtDvcL6ne/ES03dwc6+o9kWhJmWpxHGixAunx4lcZ15sHV6gjAstJ9oy4rqekCK5v6F1O87vL0znyL/9+DWXAmb7ivF05Hw6UtJMjRN3/+ffU0aL/8krqnf87f/+a43J+eWXep7NZ+bLifn8xGZr6TrLbHoqjo0J1NT49nHGOdgOkGtHouO4JJbzhH37RNd7+kEx4ZFAiQt5PPPyT7/gq198gf2YOZwz9a1gY+LeGwINkzc4L/RbQ/GBInCzE7oN2MEo7bUuOCJNZkqZWNJE5x2+83z1i3ty6zjMW1LRhgkCwUJOQoyFvmsMDvYma6PDB8wQ8LcDzmijIY6V5VKwXr19cfiKljObYFb6raEWQ04W5B6kUOzaeFibzlGU+NtklUG3wnyZmKdFz3AId/d7wtDTug3Gq1Uj50yKiVqEVg3GKtFTYkQA78PaMFNpqCFD0yGMc54raOx55TT1/DqrQLz/iFrqjy+mBJ7zcLQHsUbzrhucuRoxr13+dQJVaqOuU6Znya0ubS3QVpb8lc5y3WI1dFXlTs6Y1fiuf+q6wZdaSaXo+LQUaokQ6/PkIlXwPuHcyH7y+H7AhqDdwFSgCC2q8XqJjUtUwMDFFmItPB6OagxeJjal8UI8c3xkOSZ+8+HAx+PM26cjl2qQaWBZTqrrrfrn8PiBN+HX3G87TL8hHt7QcuO7b++xJkH7SMszrTimRVGl2c6ILdTgMQi7jaNzmaFb2Lx8gWxfMc1vSNNRE8K95+4n9+QizO8WahUurePxnOnfHTk/nojnhVvX2BjP7b7Dx0R+fyRdDPHJ0G43EIcVlSuEXYcphjTqQcQK1CLE6KjDDvEDy+QY58rTMbFkobWEDRbvHLZlxcOuBTZ1AtaUdUEPXNaQw4K5NIZU8dZhq8FY1WoPzWCwGBdWg7JgnOrig1OCWFjDh6WJdgGDocUC84Kp2rnqvScYz+Z2T39zq4ch78nVULJ2SMFg3Up6AvXNPWen6SRPdPyAtXqIsysquJh10nTVmrfyfFP4ofdD5cEr9W7FB19lFVcvw7XVUmrW76vp5lpKWScH3z9AtqrdbFMFrKxrbd2A6ydKE7WoTamtmW7wnPuWokqZalnQd0A7QjGDiMXYmbCL+G1SSYhRr5uaKFSaErPq2nNWUl9qwnQeyUuEZdaum+1oS2OZLedz5OnjxIfzwsMlYuaOKo5pzoqWL5nlcuHxuzdscmQrkJ4eycePHN73pGmAdoaWkGIoAtPUaCZTLZqZZDxdp53PEBLiLN2wQWzi/KDFuxEh7Ht878iHTF0KqTkkG46nmXEuxMtM1xJdZ9kMjs5C+3imLpVy1imG3G7R7B8Ncg3WUKK+nYJO+nIyGHFgt5RoSUtjngqXRaAVxDScDWuwa9HOalwR0DVx7VRfrSDNqR/A5VWeYCwiRfO0RK8dWcMrTRGVZFtHtY1q23P4ojSj7S+7egHntBLS1LDfd0bhPJue5vv1Nc2nImmdxj5PfFbKl6x0SAWetTV/ra0FVNMJHKyHN54PgO3z//OHHu3Tv18b8J99aF1rn/kQP1uA3+/sfzapQgsp2hVyIevPpsWf5lC19e9V2riun1wKabnuTzqybEsmZd37rItY39OflSJmrHvuJFMMNCElhb7EmBWU0hppXpiOIySVtW2x+NSI6UAswruHE4+XyMPhArZCsJzHyBLLauwXDu/fQyncDIH0cSQfH7i4wsfgoV2ARQ/pWJZFzerFLuo5sRbnoB8soct4X/C3HTkbTu+8HnpEcL1n86JnulTypajqoDXOY8IUiJcZUmbjLYMXht4hp1ml/aNef9xuddq2IuN876hZ7y3XCWMphlYt9ANNHGlpGq56WUPZW1V4hqDZd7Wq+YXC82K87kGik+NmBJsqZvW4tdowTidJvioIhGuWYBXEudX3qF5ZZz2mqcKhXRNsY17zyxROFJwhBI8bOsR36tkxVu/VV+/sen2q3casCgPWzroa4sUIZm0YPEcJPA+Z2h9YP7+//1z3DxFWX2573oueB72ytgVLRsTQjH32UKnd6TP57fr8knVqq51G9dG3pnu+916lVO0ajK0KJZ366t6WYlqbMAvEcrXbkisYGzEm0J01QsB6BYRJrWomz+rly0n3oFIgLRpxcDmeaDnT4kyXGogjLoZkMx8fLpzHyIenC3M1yHJmniaWqFRTcmJ8euLjd2/Ye4MJHfn4kZbh47uNwrnaGWpCqiPFdepqE5iq8SHo+rGm4H3CdxuGsGM5B8rslHrpLMOLLbUJ6ZCpTVia47JU/GliHmfylNnYRugt/cZhU6Y+jpQZysnQuqCNmqbaB985TBXyor8mA7RsKNlp48V1ugdFbXznonuQcQY72GuwCpJX3/aqquAqzTEq565Wo4R8VrmnNKN5l04IKw5KnKcK6xnFIlbWYkqfo1W9SsOrEc3TWzQeSRCCdzgsYeiVxus7xMiaGa/7C2KwdvWjI/qaq0P1WVmEPE+n7CrD+D7saN2b2vU89/+TZ0o74BoWKVRsq9gma4q24J1Z8YSKNi9J9bjPHnqAZp9Ng7U1DcTLSq7x3mOcpWG0M1Mt0NjtNvR9hTxTk6NET0qJmCtzjIxx4bvzpMGsy0ISw/QYOS2F01KYYiNX4Wb3SHAdXd8TnHDbNzrrGFwPtkdsR4yaKXTImZoi/+7b35FzxhV4OUTyDO/SEw8FfnW48LBkPixCan6lw0yklDBN8cLv331NPj7ANLPpd+SHX7Fk4W/mDkxGzIHXdzt+dH/HOC/kKTK4Ce8WuN3QhcCrn93izIjjyN1f3fLir37JfHhDejyw7Qdubvb86X/5S5ZL5PI//orJBo7csV1EL2IAACAASURBVPxu5HdP/57j6QMlzfzZ/Y+53w189dM96XDg3a/f0KaGHIUwOPw+MJnGaA2b168pCA9Jje++GnLxXKaemxdfwHDPwz+848PHC19/bOQi3PvCsOuw/YAvhcaETGqI53JGciKsckyxlWgak210RuiswUWdtmxkhYzMupGFIQBacJjeIsGSbKaYiniFdAwpUq2Qt4blsDCNj8hiMcXxYhOwQ8/Nl1/S3d1Bt6eWxjJrGGmaKkMvhM5xOUMqgoQNRvnP5JSIywWx6k2yVhO3nXFgrd5eWtXMraq0vmqu3fdPC1HQbqD5TJ/bCkq3bA3vFO16NRmnHKnGPut5dWO6HpjXQ2jV0M1lKVhjqc6j0SZaSLWqxZsxgurSLK1ElXCu3pCUlRy0zJG2XGi1spwTscBxTKTUWJZGN+zphxt8r7CEwRWcgWA7levaXvG3pbGUgiyF9+8/cDlfMKXhjUWKJTPyED/y8RL57rjwuAinZGhWaM0xnxdaLvQtM5+OfPu3/477py9x50j+9hvqxwfeZoOELZgzXSd89eM9pTZOY8LZgncJeg1xvn3RYV3DyozbCLufv+Lj18L5d+/puo4QPLc/uWe435L/5i01zUyy4TI3pl8/kOLE5XJis9lxP+zY3nd4L5zffke8TNhksMsW+3JHMcJCw/QDQ+cYz/q222YwBVL0iAzgXhHPE4eHkY+XynnJbGzFW/Q+KODqgrnKx+KCxEhLiinPosGZxaqsIxi9riQFAirzIAHRYvda9HurXlU6nUAVKWAdiMVVLbBzMM9BxJIaplk6b+l6y/ZmT3d7QzNeDffN0LISJY2B4M3qs1GI0MrRAFiBK6JIaWEtVszquf3U/GufVT7Xhtv3NyGeP/OT5O8TpKSu+qbGKrVtRuER6/71LC9/fhkN7W2rRteYoIfDHFW2uhLErBWEsnoNAq3Z1f/YSDkxLwuncaKlBdJCdJFsLMcxEVNlmhrGBrb7I847fB/oPPRe6HyPsw78FjDEOeJo+Fg4HY+8f/cByZp99nqBvk98TCfGVPj79yOn2Hg/CU0i2MpyvpDmTKgZUyrvfv0PzA8PhALxPFIfv+FpunB6AuSCmMiPf7RnGDrGSwSpdH4GX2EIbLYO/8JizQljCruf31Jb4PjNd9SYCcGzfbHj5S+/4PDNE+W3TxwlcKmeb789gimM44GNdXy1v6PferZ3gWk6sIwPmAwlWPyLDZWeRaB5T7/1xBmmsa1FCdrZLpZm76nVcPz4xHnOfBgrQRq9rVgUCONWX0hLSWE7k96HTK4UURjCbLQxEayoCiIHrAidQaUPCxhRS4GzqsmUYMBCMWt32DpcWyl5QWheiNNMXaJKjDFsh0C37Qn7HeICWK9hvisAqLVGF9TflPQQpcHa5lr0rAWP0Vb2NY6DK4BBPlO6tvb9pfL58hF5ztTRJoIeGEvOiIjmFoqsqPdKygkjQQ+e6NnoSsnTP/r8nNUScc3OCs6vEqqEiLDbeTrfoCZaMdTiVt+WRuyktHAYJ/XMLxeyWKKLXObMZS4sS6MUYXNzxIeO0Hc4K2w7cNbibaAZDay9SrbnVmg58ubNW2rKmAK7TYQkHNOJU4ZvHicOc+btZEjV0ayhpJl5yriWCa3w9PYN5nLhqyXRD1vq+2+ICb5ZghJyzcjdXc/9/ZY5JuqS8XZRH+Wuw3vH7osBYcFwYfiiY/Oj1+TTI3Wc6fqOYdtz/xc/IsdC/Ju3xOS4yJb0mHhaPjCOB0qKvL65Z9cFbl73lNOF828faHPDXAzGG8w2kKgsIoTtjorR66kKrllqU6BUv71Dwp7LuwPjKfL+oMOLvYcwOM1fbAmzNsTrUmCZqDnjsq7HbBtF9G9rFOVusp5hwrVojwqIsd2qYLAVCVpsV1OppsHqo/UlUw0Ur3mHaRmRbDDNsR0cxnv62z1us/kUMbAobbUUUcKfE+KihXgT3eeuzeVrBIUWXU6l1GsdUq8FVS1cJRNXcMoPG+L/occfXUwZY/De65Z1pcGkioge7syKv7XGIMUiza2G5LrmKPBZEB2YJrgVDarVZ8C5AEm159br52LRChK3dvwLJhhs75GuR3wGmWhGoOupQGxCMpCsIL3DNs2xIGnKuzPCXS90xrKxC0NYGEKPswFvLEYczsGf7DaQIyEt3O6EL17AEG64cxt++6vf8j4uCBVDpvC03jzW/AU8ErbIcEvfDdx0PX919yMl5/305yxp5nAQbm73bO7uSEmJaV094UwlbG9BLB+eIkuJXOKRn909Ul6/p80fGMoDlzMUyfzm7w5cxolf/fprDJYvQs/+7pbdF3t+9e+PPJ0X5iUzm4X5UCmnEy0XqhVStpRTZHl/ZvOjW2TT8dRGco1sAnRJSJNlXjyXsbI5VAwz3x1G3h8mnk6RUgyLdWxxtMUynSvjceF1Z6jeY1uPaZYmF5ypuFCVMBeV3leNdpYKQhOnUoBcsD7inBbmcYrgoTlI0qgG/F6vjcvlhASLkx05CVW2ZBRSsdns6XcbleWJcDpensluacmkWEAMsVqq8ZqBEtWITtOgPbPK6IwB7y3eWz2wStWpHfJMjWvoNR9r+b2cDzGqLVfIxPrBpt2s5/74GvNtcc+0J50AtBVHrVhsa+1zowgUndx1wzq61hcWcyUe2bV7rxsvBu24egc+gJn16wcNVcxiyK2RrdLkrLekKsTLhXxZqGLY+Ya3wmAXvPUMm4IxTju168TjZjOwNQ0bF7wVbm6V2mPcjvj+RD1dEBqWRmmqbRbJiG3quwsDst1j+4HgHa9vb7kxFvPlK+gHxqPWA91ur+9ZrtiWsERc2GD6jmkulJK4pImwa/zk9Zm8nAjlkTZvGFvGftgxRcN3v3nPfJrYbDf4PrC933M8VM6PI8VBcoV8mRFXFW9doWahLY16XJBNYLvvWEwh1gkrBWehJUMpQoo6bZ8vkfO48PE8cxwTl8Uwi8qn206bapdTJhgwwSDNIw2cRIxkjFMpjuTVm2oKNQkyJW1GYVjHc+rdMUKeov6OHVRpFAHT9ZjQkZaZWjNmP6xxAx1VNNTVOo/fdAqbsIYlKvTC9KuEL1eaEZK057ycWtVnwfdy9HhW6T0/nr0e3y+knqWDP6ylViAH68u29om+17jK/taC6TP/1frk5+doTdWeJbufrFfyqZ8vKNFvfX1Ww3JDJ2niNAcGH9bpR9WL0RiqGHITstW3wW4trRlO00SdDOk4swmGIQiDW/DGstlmnHUaSm70fex94NVuwOaEyZnbGwiDIOGGsFTkcYSkjbtCpbaKyIKRqvcsK8hmi9lsCd7jNhvs6y+Qm3vMy5dMoyPFiX6/I/Qekyu0gm8zzgXssCHlynwqzHkhM/GT+xHnIi4/UVJmOjVasJg3M+9/+8SHr9/SDT23wbO93dOsZzycyAVSytilkcdMXRLkSjWWIkI7RVozDC+2ZCfMdQZJdB4kGUq1xORpCeZLppTG4zgzTnA+a3bOWQw3oWNwwmVcp3OdwTVB6JQJK1HvL6YqaTSpNwzRiWzF0MQq8KG6VR6UKHPW+/as57IiDXEOuzEKKEkLZtNh+kDDrdeL6ndCv8F1imEvpX4mK1obDa2R8nptr9q7utJgjb1ej/L76+d5OvuD0ex1/fyBjBwFR3zqxAvXddk+NSGeaYjr5yPXKEY6Z7Vocms2z5Vqh+B9wK+BtQDWrz8Ldd2q1kkBFXErlTJ0q3z+sjZ7NjRY148nW4MMSv6dUmJMhXSOOCvcDAZvDL1xhK4jhE6vW2PRPNLAy/0GUsSmhWEr7G/B2i2ddLxd3lIX9YEXEqUJrJ5wxUJ1SL9FtntC1zEEz09evqSKRX70klwy0wib/UDYbbClUkvFtVkJzv2GJsL5XEglc4kXXnYXXt2MkI509Yk46nT78e3EMkV+9+u3CiIaevrtQPdiIF4uOnmLlSSZNF5o07z6rIWSDXUqcJjxtwObYLmwUFsh2IZrUIohJUucvIYJkziMC8fzwnjOlCok5+irgRtLnCLzOXLTGTbOYlrAYIEZYxrGVQV8pLaGTAt1yeu16hCMri+raqOWC2XONNe0GUGjimA3WzBCnCfNgd332siSXt3FzeC7DteH1doAy5L0zFQqbfX/tgZl3X/EmdVSJIjR84R1bgWLyxrc64hFZajCqrqz9nlSdV1sf3wp9R9bTAWvBJiaVUNb6yo9MmrCNNpRuW5OtWXtkK8dFK4yPwPGiaINpWGawfuAcz0pX2gNnBfqdWxsoDavi1Eq4g1m8JiuQ0LSw2ET8B1tJa0la8gOrO2wxvL0NGpOU1SfwKGzdCJsjeHlsPBis3C7vcV1A2IcwRh+vt/gsqFfEtsb4fYe7u5uGHev+RffvoPHgl0JSApBVjmYEcFIh+m2mM0tQ9+z7we+vP8xth8w/+gXHM4nvv6HC7vbW4bbF4RoqQnc9B4nibC9I+bG++8+8jhFvh1PpJeP9D96R5vfM5QPHM/COWbq3z5xPJ/4t//wNV/dDPzip694efeCu5/e8c1v3vEQR5aYmQXmp5E2TlDUSxTF0I6RFs4MX72i32x4X9+T6sJNaLgmxOKYIhzHxnAoSJl4c7jw5njhcJrIxdLMlhvT0c2G07ny9HHBvxiw1mFbj20OkZlqCn3QQoqkIYsZIGakVErrlfBIwQWD9wtxSUznmWIa1SjqvIphVwLNGB4PT9jOs++9atvtnkIlNwjDLcPNDhe063Y6XACVXuRY1BSKV6xmCFrstGUtcCxNwPpwlcPjvScEq8ZOVuldE8CqkRy75rD9IDRxXQPP8iM98lKaGmfr+vrm+nlOJWjXKNHaVMrlvMfalS648jJ0MuzpujW7oekak+vafD7orodNA+LVDIrvVsNwoznNgSo5kxsaKm0s3vVcThOXceIwQ8zCbS90VtgZQx8cUitd19NtNZBPjOF202MD+DljLWxuoQ6e/uYlh1po31SMyTiKyg8RjFE5m7E9phswuz1uGOiCY3d3i91sMb94Td10vP1GC4Sw30EzuGyQOGPiBec32C5wPIxMU+Xt+UI/Z27HM3k+0pVH4pyYl0p9f8GOwrdffyBfRv6Tv3zNLgi39wM1Zr6LhuwbyWfSpSCm6AG6QCnaweaoJNFd1xPrhVhmOlNwttGiIRdYFksrhnmMnC6Rj+PM5Swss1AIWO8Ji2CkcThlhmDovVdYDpYmBWcy1TWVnS4FaqMKunHFok2spnAIMZbmMs008mlWaY1VeU3B4HYNuxHmcSTnRO+V4lelWzeyhrM9frvBdnqdpJTIuRGcw4h5xgBXaWsejtWJQGmwNiC4RgcoDf95qtTaGqdxLag+Pyn+wGyvS+gz6MTz5/AsE2zPmr/PpHysH1uv/bambF5f+1l6u64jWZ/U1mYEIhhj14PuSv5biym8Q0KHRL1mxTml/JVCro1stVCwvienyvnhpPfRRdgGw66zDEbX0atYGLrAbn+LMWqQ731gt9/i0gWbK/1ecDuhu7vFzw35u98hS8FJBBKtRYxEjK1K43IOs91j1ozBzjleffEl8uoF8tVLHt/B+WAY9jtcF7DRKBp5PuKsx/YDy3HhdMw8TAtTHtl+dWbbOXx+hFi4ZEsSRw4Tb7954rtfv+XPf/6Cu2HL7YuXZGP57d8r7jymgpVMlkZdFshF3y9jyKcIWIYvPIutHOsFT2ZwojLe1EjJU5bGfMmkUvg4LkxTZTxdM8I8bButE47nQk2ZwXVU0QO/FQET12ifhs1V85REu9MsGl7aWlB5s9EUH8GQLwslKTGuiR72jQ94AiktLNOIbw1vDK3p91Jb09yyYYPrB91bcmWZ4jPxVBHo2iAUq03pVlQRooX7VS6rioN2baB93m24Sv7q76+fz1fQFQmtERqfJljX512bCNc9yKxgibbKYwXN53HOfyLVrmAmwdCFQPC9HrJb1eYQ0Chr4LRdJVgNcYIJDkIAn1fpmFnPcAody7ZRvMO4Dmcch4czy1x4nDRY+n5rCcawMYabTWK/zbitwQaHMep5ebnfYLLFL4mwF7pb6Ldbtv0d/s1H2kHPcA49wxkqxtQ1DLbHDFvMdo/vOoYucPvqlco0/+wV8zzz4btEv9NiqmZDy2CWk55f+o0qJh5Gzkvmw+VC2Y30L89IPBDKE9NomFOFtxPjaeK3v37D/W3PFz9/wXazYfNyw8O3B85RFBwmmXzOMKk8tzVDzgYuBY4L3d0W3wVO5UyuicFoHmapVuNzpob3DSHyNM48jgvn0VCK4Wx6NuIJyXC5NM6HhL3tcNZiWqcBv7LgDDRfkVRhrirP++wM1+h0/6FivNB8osRMukSqVN2PmsrOQ9MG1HQ6I0E9Z7UYmhlYe964boPfdBjnaAhxjlwz1zQKpak8VgSMVRCUK3ptmoRpDevqsxTeOqvRTrNKg3XWo5luemZTm873Ig3/iMcfXUzVUkjT/P/Q9l69kmVnmt6z7DaxI+K4tFVZhmSRbLJ7ht0atQRhMNKVLvQ79RekiwEkQNIMWoakOGyKTRZZPv1xccJss6wu1o6TSbY0mL7oAAqozDz+7GW+73vf5y1+D1EujccxtxCCyXkyiZDL2E8pOZ9h77C0cT74RZwpZSEiUuFwZOcLocoFEoLlw0cIEYjjDTo5JjdQB4nEYCqBQJF0JMiArhQ5lNBfLeFUghECLQWn5yuapuHKaPoxcOUbkIpFrSFMMOzo00Q4TDTrmroxPN9uUTHxqZYssqLyGbV3ZPbY2qNOJH/7Vz/k2acf88dvLhl8IFUC7wK7zYGqqqnrBatH36dZP+aLL/6Bz19+wRmS5aLjs7sL2G1Rt98wuof4QVC3C4yx+P5AiCPyskKIyFq8YrmGD558Rh4zX/1fv8duM1X7gO+ffUrUHb+9dGx2Hi/OqFbnPPn0B9z0e7771R/Z3GwQ2fF0GXjYwcMLzXSbmb7c4J1iOFjsosV0EhkLsagLmhAcC+fQDky2DLst/XcvEc1HtGdL/vpf/TU7L/jlv/sth0MmNs9YPliy/uQR+bVhDJScGilplh5DIGMI2bHztywqwbIypMNI6AeUaBFKIUORRuiuQeqMDz3CGLrzhmQbsq3xYSTliFosCmlsrNCLhtWDh3gnGXrJNNxx3R9YyorWdsiS8EE1B41KK5E5okIiE8ih5FSlmEk+lFCI7GdCU6HxpFSKP+0k5AnIqNqWxTivPCVKwYOW95KK+8MtzoQu4N5XokBQMp98KpulVJKubUsXhVmelAvxK3iPFJmUiqlSCkFjGySC5B3RFMKbrhtM25DDAZInxRKCDfNmU5VE8CQCwkhUVXxkGUFrBFYVT4uta7rTU/q7mr7p6ZxlTIqmUiXvo98Sc+TucMdSJRbNgv0wstk5zrSkFZo6gY6RfNsjgimhz4/O+Ju/bbi57dluB5It+8rhdoAM7WJB3a1ZP/6I8eaGX//xDyyFpJGKxxcNVWoQm0tSEuyTQVmLbesi6+kHJiMIIWDTHdp42icXZCm4+fIN8jCgm1PW7QlmccrrQXO3dQxhgTIVy0cfoCrBi6/est1NpORprOJsqWi7Imm4e77Hu5Gxr5F+gTk7QYQiJzBZ0iRVyHsxorMh+oB7/Ra5aDAnT7i4OGfx6Amvvrzi9s2OVJ8gq4bFxQpI9IMrUj4kxiZMVZD5iRYX9qgcWC41IqQy4csGlClfQwLRlqDNxAiAWS3ISpNtXRDg0ZVCwBiUtyAFtusQxiKNJB48h5s9uYFGV0hZzPpKigKqkEflxDt/UYiJlMO7AF4PSXKP100zsUypkmMkkiDJ/Cc+wHuP358XTnDvceK9v38nEeS+CMrzJLdMrt5bf+ldvtu9nFCWvLbi7ZzPqZiRStOsT8jJkcMAKRYpeZIIJVFWooIgiUBWGVWZeboqqLTAUNZPRLE+PyHGzFIphiDpnKWyisoqGHYQHPtxj0+a9nyBI7LfjLQCTpRCR1A+IrYD+IRZJZZtzb/8mx+x3U+8eXtHkpC0YNxNTIOjaVtsVXPy9BNI8LuvvsakxEoo1jZyvtZwd4m43TJkiawa7KJBpEjoh0Je0xLcgYU6UJ+1JL1gutzhYsTojmalOVk/YR80r19P3PWaIE+oTx+xeLjk+s2ewTmCc1RGctZF6lrQdpL9ZmIId0xTRRYGe7JCNoLilBXUUaJixgSPjBKRNLvrN/i9Q3UfYJuWH/zkjO3NwPPP35D0gmxWdBcd7WnF6AJ+mEhSkWSm7lQJWcUQ0kiOI22rMFmQ9gMpJKRsywUsSITWiMaQdZGqq6ZGtXL2a0l0nEAqhDUoEsobTNtSLVdlAu0y/c2ORKZVlizLdFnMUIfZ0gEylwnDTIUMLh4f5GKDShR5rOR+rahYPFwyz403ld9bD++8t0eM+vvrJ4XA0bUoZr+KVKWYDCEUv7kQWGOwTf1OQpvLmo0hIgF/r1aPGGWwRkPKRO/mr0FguyVCJog9KkdicJg0Z2wqUZQmIpJEKETeULzwSgo6ybzfQHeypKobOqWYxkDrG4Qs/lWCQwx7xjQR9yNmabG15ma3R8bEhRFUWRZfae/JokdpT90KPvvhMx588IjXb7ZMPpAriXeB/m7EGkvVNHQXj6lXZ7z45ju+fbHnRCqatuHJoYN+RN6+wY8r4lgCt5XRxGEiRQ+VBpFoxIZqkTk5ewpBcPWHl+hRoJtTLtaPSKrhxXVkv084cYJcdKyfPOHgJ27++IZ+d4AcWLWBVavpVoqwTdzFDWlS+L0tzZDFAqJAZkmdJDEJqhSLHzBr/OGAe3mJMI+oVmd8/P1PeBTg69+8LFLK+oJmXbO4WJG1xEeQVhGFxLaBYmpQxOyZ4h5jBIu1Kjlsg0OKqpjKQ/FKyUWFUJkYS+SKXVdkY8naoKMjk5B1XZp21iArS7VckaJEToLd1LMfJyo0VtcFvHI8gyhgFHKZTB2fbzeWLLroyyRZIWAmTYfgy2Q4JHwIJfMrQV3V89lDIXinVFR08I/OoP/Y6z+9mJovclkpslT3HXMx54zEEMrbpIjWCqHsfaeD+aCK+YiqFczcZ8jzhTGV7nSMpZtjFx1SRZI4wBSJU5yzbXIJy8yCLIq8QWpZQsFi6eq2ill8JzlZVHTLlrSfqHUkphVZKqpKE8c9LpSubAyeqBNUiZupR7jI40WHnRHqTJGYHWIKmJT58NEFyweScVIcpgmxKD6cW2Vpmo7Fco19/Ay9fsI3//BzNjcv6euWM+n5ZH9FOuygvyFEyxSWpWKWkKYBwsCwP6BVoJU7TL2gObvg9eUNb15ecx4EbbPiZHVCEC2bVz2bfSDQIuyaev2Q/sWBF6+vGYYJIRJLGzhtBOuV4TBlRB5JXjKMETEFtBOIWEyCNoAKgjomVBKYpBGjx93egHuK0ZYPP3qGUxVf/YdvESkwtWc0qyWLizXT6KluB4RIBDK6KjQjlxUpanLYU0uFtjV+SqTokKIGURW0qhBIW3xlMSe01IU+V6/JVYcKO1L2RG1naphGW0vdLcmTgJiY8pbd5PEokrLF7J5AiTJeLgb5XND9qUgR3FAKejl3sUWK8zRVlPyMEMkuo5KAWIqaek6zL1LbMvWUs/H+KHd4fw29n0ovhCzd71QkOqRyGVR5DueUsqwTjgdrwTPHOHcKcyGSHQPoCvikTMSMNmiriVPxIGWfygQjJ4SY15DMZIqXRmhF9mVCUDwEgjoKqkqz7Bp0ApMyIrZMycwSjoALBwgR5xwBDzYz7R37/kDbtlgtObaYcu8Lej1llm3DB92KqtnTNAeoiyF1Z8vvanFygm7XVA8u2G83vLp6y1DVLCvL6bBHi0Dud6QoCOoE3RQkcfaOPI0wKGLOWEasjtjlKT4k3r6+xsZMVS+oFh1Nt8DfObZbj0uWSltUuyTj2Vy/ZZw8gozVidZGmrrIpyQTOY6EAaQy6AA5lu9TJcrPK4PKoLMs4brbcrmSSBZdx/L0lP56ZNqMhLpFNC1V15CJ6KZBzjkwQguUkUQkKUdKgBcIXRouOU2QdfFjlRFPAQhYeQ+I0E0F2pKrblYMDCDKXi6VIpNQVY20Fh8hycToIiZSPHGzSXi+p82yuuONr1wGY5wLkfn5n0f2wOwFzOUyGGc4jJRzkGbO7y6A8xSpDFL/f4qp919HhdPx3997u3uy31FCeN+pP/6bePcBjutrfj8hJKauSSGTsisTwBg5JkJLVTxgiTTL/hQiClIQ6DkyxOli3u+6ulyKR48NGhFbtJFoI/FMxMHjvStdXVOmEtv+QNaarqmxCWTMMAZyFsiQsZXiydMHdL0DUYIpsZl+OzEeHO1qhakbqocPGPuRt7c36BTxdYMeLKdDR+730O9waoXwEl0ZRC4evZQjuVdoRqwaMO0KWdVcvrnBjw6ra4yt6boF/S6xvXOMkySJBlktUU3H/vqWfd8Xv2sFjY3UtaJqJKOOkCfimMse7xMyFFCLzBmdQKWMSgmZi7E9HQbCtkfkgnN+8PAhWm65+eaGaGpi1VEtWqqlRTcDOb37/ahKAKkUvD6VMFddctLizs2/1nq+m1A669YAc1CsrZDGQN2RZWk8ZiAdEedSltiWpsbPSO7JzxMZFFnI+Yw4PuvHSWoG0jx1KllG4v4MKc+ynCFL5Dzfc4rn8Ej/k8ySvNlOcSxm/tE98NhQmD/r8e2OtLOjET9TYByFGjjvJ+L4/pEYi2ysfPmpUHTnbMbi4y1nUpEGgwgBERzJvYNtSFm2hSwSSRTyZ0YQnECIjFViDpGQdK2lXjTkfmKyEWK5w5laE8cDIfakEJiCI6lEtpn9NICPrOWiyDwT4BIJh3ARlTPn5ye0Z4IsLM57aIr0f18N2KahXnSY0wfIxQkvf/97dteXhLZlJQIPxz1pGKDflqlPbuczG5KbIDhyb1EqYmSPrirMes1us+fuZkuXCqWwWSyIWA6XnsM+EUUDukMvVkxXl9xe73BTgT/Us07qmwAAIABJREFUJtJWgroxuAlEmkhe4oeEmAIyAPMZpFOx0pg8W2qyQkyeuNnCk3OU1JxdnBGk4frrW5SITE1HtaioljXeR+whIEQRN0sLSuZCfY2SMAxopVDGEn0ueY+iAmER5SJDweQeffISVVdg2wIxioXMmWVRtQilijexbggz6yLkgdFFImUfPSoH5PH8keKdAmf+lDEEQkj3eYKFx1kmqoXoKu6z0NLcxDCVKcsjlalZoVvKsq//cxRTMWaGMcBsZA4hkzIYGxACUpiKJlFJJh+YQpi7fRk1B5M6Vy4mVV0Wk9AKgS5Tg1z02i44QvBcX96gFaxs0S+XCtQT3Vi6OTPGl1SIPj5kctRkZfHSoJSmQ/Hi1Z7xxZbVqsOetXzv4iEpZoabLUlD1Ipl1dLVFfXDC6hr3j6/oR8mbrcHLpTgZ42lyoLKSYZvtkxvv+GqXjOYhvX5x5xXlmYpyCHhP3BUlaZeWF4PNTf7LQs8SUdk3jMOI7//4pdEH+jHnkoEGr2hf5PoRSbEfUmNzqd0XcVf/eCEqe/55o+/oqo7nj1c8aA7oTYVP//Fb7i66dmPp/igmJLmdy/uePs//QJhQJgl6+WShclsb9+ix4y9+JCein31kBw8NnvYBFzcYx+9RvW3eHqklTx68jGidwy319j5YhXTmiE9pasf0CxafvQv/g1vrkZ+/seBpV3y6Q+fsl4Y2iqz/eJ3bC9f8dGPP2TRWL768jkyOp62EdlHrl9fo73CeIXPhoBBSodMgcP2BcbA6VIjcyb3sN1cs3dvqR9adKs47AqIZNs7Fk1NrhVfv7rh3//iO+7udvT9wOruQ+JiibzZo5Rgd7UtOu+2LuZXNzE5CCETY3lmNQUjndyAtppq2ZSbci45RY5MXYEwApkLSS+nhFYS2xpIJZxaincXv5wpHRFfoA+lkFJzUGia8ztESQWXcg7gLflqR1Ov90WW2Mkaaw3KaJRSc0aQwqoCyMg5Mg4jjAIry2FcLraJHPxcIB4bG6Ub410kR0NGEXXpvlZaM/WRLz5/RbWoqbuWs26NtDXjZkd0gYRCyZquPkUvFsiTFfvdxBsX2O9vaFLm+52h0RXaSdImMv3+LaOuOJgGtVhw8miNrkrw8YNVyT+rW4vLmo1zVDlwYqGSEzk6rl59zZ3WjIceISStT6QI+0Mg5ZJFE7YL8ljx4QdLtFXcXX5LzpLT9ZrKVnR1y5tv3/L551+yHxZEb3GTYpwk/+7/eF4aAF2FNRXrCyAd2F3dQHWKaSrG6gxfjaiDR4yC+GqCLFBtJuFJBJpVR10r/LAv6H0XyV7h8xopl1jbcv7kGaa64ItXkclJfnDaFRlG8LjNhv75c6qzJYv1ms3VLcP+wLou2PThco9woCdNRpGyRomAFolp2JC9p2nLM5JdJg4T/dsDspXoE118mkEwDY6UIq0UTDHx979/zWE3srvdca4F1YMzQu+pgXHu4gtRJjQxhCIbjHCsSrQqAcQhzDSvuoQ/Sq1KfEYo8QBy9m+QmUNo4U9yof5MZ5HvO/Xlzykl7k1PR607pXgqmYjzYXhPTaN4NjIckelQ5IlFcZFm6UzE+8i0DWgRC743AblkDuYY79ePyJBjiQZJUVGCtS3IkuEVInz71RVCKxbrjqZuWHcr/DAR+pG4kuRWs2yWGGsxZ2sO/cRbf83NYeTt5R1PGsXDukYnhZwU09e3BDOwbzqyrTh78gxlQFtBPA8kH7F1ofHdTAnnHSubKHSaPftN4HnY4vYjYQo01QsUhv5lKJKsPBG9IYSO87OaBxcth80N7makbdbormPVdoz7kb//9a8YJ0twHd5Jpqj49e+u+PzrW8wStF3QnUEjHPurW+JJg1ycMKkFU30Bg0f7TLp0hOmAPr8hGgg4qsay6h4S7nqiH5EuIlwixI7Aitq2LE8tH/zQ8naTeHEdedi0nD1oEMEz7iSHr78CmWkvHjANju3lFa3JNDbjNwOhj+hJI5IioOdsGk8IPWE3UFUKWytEyOSQ6W9vyALMhSZLiRsiwTmci5gMlRJ89fyGq8s9u5s92hi64RGNkojeEX3Ej7747ZQkxjlSJh2lpkVipo2BGMkplK69USgtyWJ+n1w8tMcC6ZhreC9Tvc80fPdKc7EWUySmOOdcSeJsOil1lSzyUCnL+RPCHN5cQBTDWCSK2pRYHG2KnBRVYElKFjJlyoHhMKCUoLVz7hSUczS6+XPNzZnEvBdlcjSgLFEUmEWD5urNgIt7Ficd5mTBoxmN7nc9SUHSitquqa3Fnp6Brbh5ccs4TOw2B1ZK8GlXobNATQL36kC4ecvOtnhtadZnLIzCNAJiJp5FjFWY2nDnDfthoJUBTETmA24cefm1J/vINEwYApU+4K4ik0ikNJDI+NsVVWN59mxJnCZunn+Bti3npy2LusUozRe//pLdZmCYTghRMwXFd697Nv/b1xQ2WsOia6h1Ztxv2LmMWl7ghGVqLsgxoFOAbSIyIbstIhoiRc66XJ+Di4TDARVKoy/nBs8aazpMZXnyvc+423o+fxGwoub84YqmUlQWhhcv6G9vOfv4AVWtuX51iYiBkyYhxonD1R3KK6RXxFzkyUImhIy4/SVSZ5pFCZ1mgnG3w7kN+lQjGokbC817HANWaxZacn295/PPr+m3PWM/YR+ekJoGDkWtMe76Ij01ihQCIRRQVglW9gWlHmawUAwIJbBWk6TAU/brFEqhJaSi0oZMZhxGlJS0i/aeyK3VnzbE/2Ov//ScqVxQlcdORYxlNCxj6YCklOYuRwnujcxJ8ymVMRuCEEpX3MzEGjWHu0mp52pWgC7G7hDmUXf1rvNDykTniyn7uHEwD74iQDF4xzT7BlCM48jeOeqOeZOSJFEKNyEyUsuSobJa4puGSRmcsozSs/EjKituhKYWkgbBfkgMk+O66pls5uGZQkpbphIyYyuNthIrFcJNxL1noQWqseQwIfD0446cJFlplIbaepw7EOKEtKIEy2lHkpKehMsB5wesrbFKoLVAK5imnmncUbMAabnFsJ8cu7c9i3XDYlWzVBZpBP0hoVPkZueYRvB2CVOPxJcA1mEi7Q+IxoOakFljpQYRcSFhUgk/TsngomXwGuWKXt5n2A97+tEQYsJUitOzhv5rx8FvETKgtCZGRw4OJSQiRfw4oVKDTIbI8UIYyXh8GItMQdWQBMFH/OiYpgmTSzd9Cp5pivOzWIrz3gde3u7w40DwnillXIJ+CkiRORx6sixSEu8dzk+FPBzLRn9vQU+Z6EvhYeeJEjP5KKVENgqyLE0AxHsSjjKp/ZPgj/fWUDqSmUR5Ht+XLpWuS7lkFmNyISUJZAEHHDuHR/OwEPdFmVRHjG85VPM8bcuy9GZm+C4phtLJ1PLPvi6Oui1S0mRk8d/4xNB7hLGYVsxTElE8OySEEmijaddLsq2JShOkxivDEMuztacio4ukJgiGvWdUgr0WtKZBtfp+OmC1KvkmQiEjpOGAzpHlwkL0iBzwfioYaiHm3LuC3A3ugNCAEaBLSLEnIXKhI0pUkSDLUril6HFjj0wGK0qYY0xwdduja8m6qhFGo6wmTj3jFFB9ifoMqiYZUcIWYyaNHjlK8ihhDklUeYESipiYpRYSmSUhKVSSuCBxUTBFwX6YGGPGhxO0kbQLAwPsQk+mKtCJXGAaZX6TSS4gvUDkGpgJe6Jo/1PypOBAmjKBCoUcFqYJZUuzKbmEd4kY3xHvUoa7/UB/mJhcwMdEzGXvdj7gJk8KEemquWDy94haMcu6S0CiIMZySdOzbCLnUvTGUNbZvV1KHJ893vk//rHbnvn0eSfty7Pn4723fUcpe3/69P60ai7K8nEcxdE4hciyFEezRyTGXKIQmL9QxDwdnj1T919ROaCPUoyUFFloci4Uq2kICJOpV3O2l5HEqfw+hQRpJHW3wFQVwViCSnhlCCSiGzlUioMwWBQyS8ahoKT3YUK1iuVa35+HRhdUv1KzX2UawY10jSG5jEiOlMoZkIrmEm0SWnv8tAdRiFtCCZCeKAxTTvjoCcFRifI9lKF7wo0DKSZq0TAJQRaKu/3Ets+sbUOtNEujyblk0TBE5CHgkibaBULuEDkgJg+jIo9TKVyFR1iNnnPSUiz0YIUq6PWoyvoJApcE/eTZHgZG1xJjTVVrRNTs0ljuKapg31P0oEWZ5IdAniIki8i6eHpEmdanFIjBkaoapCoZTCkSJ0eSoKUmUTJqijRofo6U5DA6NrsR5zxWSkIuiG/nU/GOjA6RNEJrYgxzFuI8EZMzMjqpIisPscC95ngZEjOGPM/xD/OyeX+9HKdIf+aZmt+dlAupTCGLOuG4FsTxPlYsGjEeo2siRmWQ85o+Lr7jGXSkic7YazEPcO97HcxhqfIoyyoI7ve7/jkdRRjlDpeTJieNQOOnkcF5qmXxc9VGkCN4jnc4QdVWLBYdoaoIc0i1E57DfIc7CI1BoLNgmjLOe/ZmIujMcilKMG6aGRhWo7RECwnOk/pArQSyMYg5osKNQ2nSKInUGa0D0fclnseWvRQZyFIy5WIRCGFCm2q2wYAUGT+N+HHAiI4kBAjDMEX664nFiaU1lkZppBX4PjPGyOEQCA6iWYAakbk0UBg9eXSIMRVvoFEoUbgEKWXUHHWRsyoAhlByoaYkGENm1w9UoyhRK1qwWGgm6YmhR8iIVJqUAiL5ssfnWM69JOf1c8SRJ8iBGF3ZV2UFuWR5RucJk0dSnrMQQiF/x9LsEkowhcRmO+AGR/SBkDIxl0xIITJu8uU+k3OZRPlAmFURKcXioQpzgyDleY3ke9leifdlft7zO2XR3NBWWpXnMf4zTaayVCTTIFJARI/R8+KYc3aEKBSx7NO8IYGbHMF7tCodEKIv55YqnHdjJKbWqGZBEmWkq7SHGcetRUZbh44GqwcIPdvXGxaP1phFxX06atKIlNEIRgebfZ4BAYFGWKqqYns7cbOZeHXTl3GgK6kwEkPz9AkXn3zM26s9m91EdfEZphsxb/5IzJlfq5aFUpwojWOFY8Hbu1uGsONmTAipOfiJSkouKkNMEhclYbgk+y1/89ETlh+d8+uvf8foE013gVVLFuYh69OKk/OK7c0XTP0lF88+LuPltuNqd+B/+OVveLBs+dn3fsB42/P61TX7z7+gmib+s4sPsU+f4eWSl/vM//jHA4cY2McD0zSy3SlU+wynO+hP0a7n715+S9t0fPT4Rziec7h9wzIJujhiDwFTVbRVjwqS8bVHjZLqkFnnlifdY6KXvLnZ8X//8pbbcMv//m//e+5u37Cfdnx39SF3/l/z1z8+57/8qwfsv8rcvhnowx7hM3a5RnuH8HtU0jRmgc0n2Hxa0NgiM/XfElNPqhpU1ZEWH+EOBw7bS7yWsJCYiw67brh7/S3TYWJla5q6wnQLqCscgF6gpaJdndCuV2wOnmkaePXdC4TUNN0Z0zgw9LuSAWJUSdiWEpfC3DxIGOFh6CFFcoxE15cJqWqRSZN0RmmFNrNMM4myBpw7dh/eHXCzRLYExpU4AecDOQWEsgXvKQslaRzH462PKMqmc8RRMHfoQyjdRFs3SK2Lf9FYqBoUs8RMhFnwOiCSw+33KGuKh0bKWX4lEVGXbK0s2N4VSW6mRLif1h3TlLl+vefmdgStCFPp/Egk3WrB+YOPGVzkejcS6wesPzhH37xEjntemRYtNSujAYPLKw7TyN3NhqYP2Os9w1Q6SueNQQmJi4ocJvJ0y9lpx49+9iPevnnJ5u4Wu1ihdENtTrHWsLyoiH7HcPeCerWmOT1DGkMWkp///msOw8hPP3qEQbC73jMMVwy7LavlCQ//8vuEbHFR8YsvHNf7wCZM5JQZ9hNr2aGXC8K0YDjA+PfFI/bw6Yfo08Tw9gqVJ7oowLXIoUMrRyMD+RAJk0WNGRskq/acZDv6wfM2TNzdDvzm//w1X3/+BfthjzSS3PwXPHm05m/+4hTlJJdmJDAyugGsxXQrRBoQMWJ0jUSj9dn9RS5OW9x4RWoqhKlJ9TlCaqar60J7ayVyadAnHf244bDfUWmNtXZG4ko8onSG6xWm6ai7hpAj7hBKmPo0sQzlAuXGEaUEVWNLcLSUHNtcPpTi3xTDH3HwIDJeZIw1mNqWdTNPhhCCY79OzHlof/oS90UNcB82Kt4rwMpEK8+Xt1kDn48SvTk7JBXv4jEH64hMS0IWXwoamcFmgRaxEBSFR+iEHw/EKWHXy1IgyvmYjiWbTiLY95kpJHLZiVjalgjcvj2AHhBvt+XgD6nkuSjL+pOnqKbhajvikmL1wWeI/QZ9+5qDqflGVyy1wkiNF2t8Elxf3iF0z2I3EVLGhchCC2pZCvWUMqm/ojLwL//iE8bhwIuX36Fsg2nWVGqJUQ3dRYU2mf72G6SC7tGTQgO0li9fvuXf/z/P+f6Tcx48PmO86Rlub5g2X2K05l/8+JMCWxAVf3wVGF97dmFkSg538NhksMuHuCRJ+yVhMzH94QXr8wtWFx8y3n1OHLYs4gbjK0Jfhhe1dqh+xIkRccjoKdPZFaaNOJc5bCc+nwZePX/NL/6Xv2NwA/3Us/d/yavLj/jZj044P9VcVYXYNfqhuHaXK1TyCDehhUVa0OkEiS1nUBpxwxVZS7KpyNUa2jXudkMcDiSroNaodUucAoc3VyghqYxGG420hkjpgKt6iW0b6raEjO6HwHQYONxtC91P25mkGalbWyY+qpBaoywd++ATyiZUVvjJQ06EuQmc2/r+7DnK55KYAWAplnHx+w0JIcsZNF9c5extD8cp7izt06JAlEb/3hk0F1HvJsfvziBbKWxTPM9IhbbHRoekxP0lFBpjAsSRabfHdgtUXc1FO+RkICU0Audgf4DCfItU0mLrin7j2G4d15uxnM8hIXJCYdCn5ywfPuZuO3I4eKrzjzCdQ19+S87wtWyolKJTCk9LyA232x2TL/ECQir6yWGV5LTWxCQJURGHG5Lb8+kH5zQfrnn+8lt8TNjFKVo11HpNvTS0a8O4fUkY72gvHmKaBmVrtsPIz3//DetFzWdPP8TvJu6utozb79DTxPcePkI+e0ySLbeHzP4LxyFEdmFkdI7tTiKaC6KuoV8i3cTw8g22rnnw+ANCest0fUmTBFXwqMmTh4pKj4goiLuI8AI9QiNqTrqHpGS42/V87Sq2fuDv/u3/yub2lu2w4+HTh0zyr/n0gwU//KhjeJ3o7yamOCKCQLcdMgYIPTKVwG6VO1ReluJeZEL/mpTHEvBuG1L7kDiM+LsNUUtoBWpVIxeW6fqSMHgqYzDWIqsKjJ7vcBVKNFTtgqqtGVyJqrm53CCkxDYL/OSYhgGpxfx4l/vTNHnIuVCPfWQMI4ISI4LRGCxplrEeYzOaupqbA4oYXJGj889QTBWjo5xJXbNWnnRvqD+u2UypghPHULaCjpaUrvz7nYr7IC1Z/j/nQk4qH7l4ogqhung6CKU7n2bJhlYSa1Qx/6dy6YRCanMp43NJ49ZCYHMZQSNLHlYWxUyXEBw83PSRzaTYugqPL1oSXUKD7ekFZMGYIIgVgQVCZ1R0pKoUkW4qspHRSWSKmJRKjpabGEIpDterU5ZkmuYMKVuUrEHDGCa0FShR0diaWtcoKamVZlV3LJoF1WKJSoZK1JjDHu16ztqGZtXhFxXDnUd9OyEjqNxRd5JqIchKMIXI3RSKLl03hTK4XuP7a7bkMqbOU+mgR00ay7h7OkwYb2ikxRhDXVm8iTh54GbzmteHwNXtKw67S0Lq2W01r777mo8fR/rUkqqMXhh8jkzB35tuvYuIOD9+ogT8JRFJIuLKTJOqapCmYvRlGkT2KNsgFw1jlgwuEWdZad1UVNaQgyd6x+RGrF6ibUc2FVEodv2Woe/ZjRNal+loTO91M2JBayYhC40sQySShEK70sVMwUPykOcCaA7ULdQYfd9V59197/6llOLiwQNOT07wbkJJiTYaHzwheLQ2SFlCjxHgveNolFeqhDMfQ9u6rsEYPXdRNFVd35uJxRywmGcvSAkVTrPOeJaEzN4qQS5m6DzDMUSZYJVOjcCnNE/LRAmxBJjpTknKEmmcDT4rdlNm8IJDMOXnJgUYhUoKu1qitCVmQcYQacEqtBaIqgKrys937uAiMjoFYvQ45/A+MAbQdUNHxDYdStdIWXDdPhaRta3LhmyULV5OAbWpiFFgqgYjBCwEMiaki1RKsegaki6bt3nZo3xAmQphoF0KdKXwIZfncCr4d6kNsm0gJ0Yh0DnSZIfMVeluh/JzTC4RU8CIkr+hrSZqQRIT4xi5chPXN5fc3L5l9AeUUbx9/QotJ8YfNkQRkY0mKfAhkEnFiO6LVE5ldb9+sigwkUgkkIpUx9Zz3tg8iZcU75TRjCETKBMIbQ2mKiCVHCPBexJgmkU53JQiTJ7JeSYf8KFIUGWG4EPxqspyOTsW/lJKvC/rKIsi3Yy+yLylTBirMZVBmeKvEErNno8ZuBI9u7vtnx1C7y2u94J+/9RLJTh2HN73Th3/9Yi9FbPx60+GX/Nk6ShJeh+cdjT051zgScyXVzVLm0jpHs4kpUBriZsnfqq0RDFZFmOzmr2QshDOEoKDy0wys/eKEARBlI+Nldi2QTfdvQ84ioaURMmBkZKkVenQkvFRoHNGpoCIkRA8QUhcEmRtWa5XKNtiqg4pGqS0JIrX2dQlyNpqi9DFC1prS1s32LpB1w31ArJQ6JtbTBZ0iwaMJllNtffIG4fUCkVNvZTYShMSTD6xH+dwcl0h6waxaHFa4chU2SOzJGU5+z6Kby9oj04aKRTa6AKqUQGXJ243t9zcXnN7d4nzIy4M3F6/oeks/SeGutbIWpED+FT2FyEFOWZCjCVg9HgXEaJEDORAyEUCp21NFqrI1mKEHFFVRa4MUwQfy3RVquI3k1LAvH6889RNi6yqkl+UYRwd4+gYnKfWFqNmKMuMeU4UlP7RCxVjWWcmJuQsuSMnlMwoyj4vEkXlIo5evzzf1/6/LnHcT4jEMaZm9lgdl8GRpPduxYh3UtqjWfL+7cVMLpazzFDO6+e4BuXsDcvv1lUSMxymfJ+lgJT3d7g0rxU9/8xiyvPnEOg8F4pyDs2e1UgJwRgFuzGzd4o+QCCWJomRaKkwyxUgcFkQRUukQYiICqEUyAiCy4hUAuhFiqhU1k/0JXdRZUWzXFLnjG2WCGlR0iI0+OiRWmIbg7V2RrRLjFQ0VUNd1ei6QUaFzhq136NCom0qTNeSKsNkA7JySJXRtqZaCKpFmZq7kDhMEeUTQlVIWyO6lri3DGRUDpjsyjOeJNmVhylMARUVWmiU1hhrCDqRhWO7v+O6D9xuLrm7u2XwB7Z3gjevXnHWXeByRTainEEkQgyl+ZrK1FKkMonmOLmXiTSfP5mMthVSmwJ6CBFyQOoK0VR4ii2mWGoFpioNbVIkBo+bJrRuMbYmK01EME7l7wdXrA+6nrELuXifhODeE3iMHMils1Du+7lAVHLOxVYhZxzyrI5Q97hx/klF1PH1TwrtNabkYCgJ03jAh8A4+GKInPnt2mpiLj+QmARJWoQ2CCEYhwkp4GQedR5lTULkku3jczlYgX3KCBEx0ZFFpNYadMn7IGZwJdVdLCpeB49ziV4LrDU8XlRcj4lhiCgCSmQeL5ZoazFnK1xM3NzumEKmD/DicuTrzQsG84SgVqTxO0TY05jIgwen/Oi/+lv2e8fl2wPZdGS94LQpHZV4tyWOE/n6FuEyrpc81gMfmz1/EIoXqeEXrw9UdeS//dlfct41LNWSrZv4ZnfHzeaSL798zQ+eNjx6sMQERd4mDptbKqX57372r8AqRKM4/7Djoluy/5//DvfFd3zw8AH1g47wF4npzYT6/BVVfoisfsLTD+Hx48ybL/ccrnbc3F2xUPBf//RvaE9P0E+ech1uef57AXhMTtR5AemMYZOLzCJHOqNZLhY0y8jJSU886fHr17z91a/44s2GYfiKEA7EnNjeDvzxNzeszv+Skx8FpgW0Hz+gdwnf9yACKTs2hwONtygalMhkOTLRM+WRXU4IWXFx/oScBG9fX1HlnpUcMafnmMdP+PvNjsurLSfG0tY1Fw8uqBYV8faa4eaS29tLLp5esHz4jKlu2WT45vlr+v2OfX+g6wRnjcUSIUxomZE546aJmDLeu0I3ygJjFD5UeDfixp6mklRWsj4WUzGSpHwHglCQsyRly31qKdA0Df/6v/k3fPD0g1KszHTAo+n9eJGUqujgvSt49lQ0UPNI2xNjxJoiVwvOlQ1Ca3LKBF+C7Mb9gSgkSQii9mgRaUTpgpNCoWk6hyKXcNkYyEPPqGvQhm7ZErLg+iAQOSJxtFXFumpQXQvWcNgPeB8ZPPik+PzbW4Jqmcwpyd+RQ0+tI5XRfPTT79E0HZvNSMwSKWsWStAZgfC+ZOVsD4QpIEaByYkn+sBhgK8Hw6tt4LvDLZ99fMqnHz0rQcFIrvsDwzjw6tUr2kby+EFTEOL7iM+F+PjjJ08K5a4pher6g5b48gp3O9IsOpr1Ah5AqBP21RatAqvmBzQLy0fPMsPWs3k1sb/bkza3/Ognn3Dx6BR1vmYaR26MxvhIw4gQKyxr4tgT/FiyoyqwtkaTsN2BVAWivWZ3c+AP32558+Z37PfPcSGAkPzuPzhurx/w6U8tOkfswzUpSvbDgIjFkj1OfWlIpBU5S5RwJCI+jXg8XmrWyxOqbsmwOZC9o5EO1Vbox+dsfeTN9YTNCrvuWCw76sqiUyAPE/1uS9YtJx8/wp53RGvY3e3Y3mzxoTTPQs7IFIm+QGLCNJQJUMo474p8Y56lKjX7kMYRKTJac/9fKfULFKYQX8u6cNPIP/z2t+8VSeXiVC6CsxyV0lHPfpYeHSVHQhJc8YHFY0WEIKWED7FccrQlhRLoekxHzSGWjj3lPh9SmqcXK6AkAAAgAElEQVSzYVZUqPvLRI4RkRNtY0n9hJimIs3TkrrVLGzF1a4UngqP1ZrVokNWFtk1DP3E0I+MHnwWfPNqR1CO0V4UQMh0hU4Tlc18/OyCD559zPZuYpoSURbp2Wn1uFxCJ4cfJuR+QDlB9ILH+oDNiW+ipQ/w25d7TtcNP/nxTzHKYKRlMwwc3MTN9WtSmPjgaUulLYyQ8ITsedwtefiTB2BLEbh+9BjjItPWo6RgebqElSCfJ2o3IG8vaauPae0pzz7KWJW4+mZgu+u5vrnl0aNTPvvRJ8hVh1g07L6y7BBUFM9hlRdkD1OfiXWZLLa6oq4r6tWIrhyp63Fhx3ffXvH29RvG6Ru8D/gQef515G7znGffT7jqDHXeIXxkcB6RSqRAiBP9MNCEBWBQMiJFwueRkB0jitq2NKcXuMPE7mpDTY/RAX22JNiK57cDOUWaRY2tKrpuUaTD/Z7D3Ybt3R3NxVPUyRqvNW6auHp9jQ8eHxznTUtd6RJCHMolPqfMlMuzNo3jHE8AyEyIhuAmck7UtS7ndTRkoUhKzWfHcZVQCptj6u+71YOc4zWkkkWUQEbNEIAYIyFnopuwRlNX1dyUEyhdwtpj8LPvsBRHta1K4Lw4Fkmzn1KUhgBk4izHy3NkxpxoDzFRWYNoKu7CDcFFJl3ukCcry35KuDEhKb+fs3aBMha17ggpsdv2pdEV4HobeN3fMJkTgmyI7goRBmqdOFl3fPrTzxjHyHYzgGnB1Cz1QxCZ1A8k58k7U+5wo+REOh6YkVdZchNrvryaUBX87Mffo2sqKlkxxcDtMLDfbdi9uOHhRc3qpEMljRjApQOVVPznP/xB4QNUivbMsqgqpqyI6YrlyRp90pAfJ8aNR357TcUaVX3MxYPMxQO4fTEybEa2t3dUMvNXP/sB1bJFna3ZjXdcCUkmoHNC5wqRl/h9JosIImKVwtY1epGo15rUOUJ7x+Xzr/jmcsd2/wXDuMf5wM3llt/+cosxn3H+iSQsJNXjU5zPxGlCEMnZMwwDJhgkXaEDC0dgImTHlBMIw+LkDLLgcLNF54lKOtRyhTo/58W+Z78daI3GVob2ZI2uNLk/MG23bG5uOH3a0T26wFeWQ0pcX22ZxpHDMNHUgqXR6JwgmrmJUHK+SqC6L3LWMEtBVbFtBOdQqsi3zTFzal4HSHl/ht3j3v8Jr3/SZKqMhQtyPBhNFhnp/QzAKVMfoXTRnROPNQ/Kl8548UyVDo1SGqk00WeiiwSfiT7PR2tZUMcA07IkBckH4mHEW41MCWkMsq3ZZ8GQKGNmpchK/7+0vUmzZdd5pvesdnfn3HO77BMgABIgBVJSSZbKjqhylWf2zJ557B/g/+dhRbgmtmxHyJZKFkUQRJtAZt7mNLtZvQdr3wRJ0Q5q4BNxEWgukIl79jrra973eddNB7VLFrmuSbVlcRkfAuM8k2pby7A7R189Zt8/Y9Yb5ptI8RvEDGJ7TmwG3Cw5laWGwZKRMSJFQgsHJiDPBDoK2g4aoTGy56wonPV8cVg4jSf+7qvXbBvLVt0QSuQUZ/ane+5OR3791vFmMdjoUKLBbs8pWuDjfv2ZRO62Z9xuRu7vE26xLN/t2bgFc225O3hSoyghoPwtF9bw3qXhzW/ecgoHQjiihEa1BSyMMuGsomw2FAPJgE8CHKjVjKpSBhHxbiT6EzkcIVh0avmTn7xk9+wRf7P/Dcd9YXKO4fEjnv75v2Lz46ccVI+LkCZPnyWyKFRuEUWiRAdZ4lzENiAaQ/QQYiGqFiSc3IwCGhUwKApnTF4S7idOS8JFaqCogjyeiHEB7SnjhBXQtC3ddouLBUbHkjIBgdItQjZVRlY0RVhiDlBSzUAgk0pcpxemGl1dqEAJuU6ilUQqhVxDOhFUFKesB1mSQZbfnQ6KGqyr9QP9L5OzfNdMvfs2Kdf1tGa1CdaCMmeyzFUD/HCZSV0P/8MGeJ3kxZhrjof63elKyWu+S47kNSdENi1eSKZUEFbWzbBSKwmrnjzICGlQuiUkQXaJeXbv/DKq6didb3F2g2h2+EkQFgWhhgMW2xGVYS6eUASOSiJUKaNKRMkILSgtsFZiC2hhaZTgzGXul8hhnPn6teI0eTot0RIiAR88h+PI5AWzcKg8otM9ZtigmpaQFopwlEPCaMWy9YT7hdNiOb+P7MQeYyx5KwhaUKxAx5G2BC43hptlYgp3xHAgh4miEtJCkAUvoWx6iJLSFpLUBF/fCAXIUhApk8WaqRMn0AYZOy7PBj75qEecXqPDgXFaKFLy/i9+zOXTK5xp8W7Gu8CQNU2RyFzD0CUNgkRyNddODFW6k0Imocm6I+SECHOVp6kMdKRicCfPnAs+VsmD1gZCfb6TTpTZoymgJU3XUqRmchEfc6VgKo0EYq4EycxawaU6jcxlzYhJESE1UrBm6Tz4kx42RQ+T7GoEzqt3JKS0DhnS7zVS/K5Zit+T9z38/dWosTo63j3BrEGlORcEufpsS5WWV8lSIWbWgrBepkpW/DQPU/oC2QdIjmzr2ZO2oaiFKWVQVVnBKneqpLKKt0dIkm6IKLLLzItnnqufByHYbK8o7QbR7ggpspwiIhpkUJR2S1IWR2QqhQUoPJyfhBaBYjJyEJhGYJJAC4PJkk0E4RLfHh1xn/nlFwKrJI2SpBJIJXI8nojJkd+GugWPI8q2NJstMQWiq++HoOA2W1SC4yQxwOPvDyivUK3Gl0JuNTI7ZDhy3lq0yXydbnFhIviRwIBqBFEXksjkzsJZT2kLpTHEAELUIG8JtclIvsaqxIkSAyL2tNrw4w+esGkK85sdy+yYZsfTH7/g8uVzxNmOWRicTyifaItcvR0KSYMUiRIFySfoa+ORQiFlyLolCYnzCyUHjEpVBigN85yq1zaWSgnTprpE5gkwkBQyJYwU2LZBN5bZJaJPRKqkVGtLEYqYHiLLIcSEECsZkgebR63oUkiE9fl+ADc8kGLrI18z0XLOtdeXK36c3z0/7zwha07hwxkT6/eXB9/dA0mWKhVNOWNS9cSXTK2rYkaIhIsZERM6rp738gOJU1pV54m/dRHmlCjOkZWsOyWtwTb1MymXOrBQFWhRVtlvXBmoWjWg7Aoci8zzXHOBCrSbgWF3xqnZ4VTLfIyU0CBtQgwDxVTg1CICSdQCWuSIEBklIkInZC+QtkLotFQoaemzIGjLd0ePG0c++8rQWU2v5UqTDozjidNpJCrPzaIwaUJiaLY7ihbEONVivSSGtmPoOsZjISyWx28nWhdQg2FygdxIiBnlD2y05nLQ3LLn5EeiP5K1QpoCBpzIRKso24FiC8XW/DM86zNUqguHSGIhh5kSJ0RSqGx5+fSSZjswvzrn0ArGcWa4uuT5n/6M7cvHzNISIqQlYIuoXvVialMuVi/7klANYBV5hUAk1YAEHxyVJRArBIsBHyXp5Ot7mFiH0FCWuQJ8ZIDFYQBrDbZviQUWn/C5DriVMgipCXn11wlNKZV0umriSKu/vMbTiHeeVrn6PYUApdVKzaz8hxxjbcBWIEsNT+ePfv0LmqlaSBpVC5nSWJRRhBQQMRHz+oPRtq7qYw3PXUJCpIii4FydQx72M8paVGdRZHTxFcucWElRcNbbKkFas1sygjB7/O0eXRK4NVANw02BJReulUXoSvOLUpKARL1ctd0gdMPt/ohzM6f7e4zIdKZwff0JT3/+M766eJ87e8brXw7E4xEzP0FsGmZzxlHAbTwyysyCR7o9qjjOtceaQvdI0AC7AkNqMWHgyTaxdYnP/u6f+Ha/5/O/uUGWzFYHNo3k6cYyJccYHb86ZBaRaYOnUZaXf/JvQcPN6XvKPCOPBzbDju1wzutXMB97/vI/fctVX7hsrnmbC75vKSeHOXzGi3bHnz4742/Vb7hZXlO8R6gNoguk1nObHWOjkdfXFBXIKjEHSTwmNrqgZcGmgsgLk5tx4z1heYOeB4y74L/+d/85fmg5ff2PfPuN4u3Nnqef/pS/+h//B9w0cnu4Z5y/INyceNQYjDQYNjXbSRRIjvk00RmBaFuCOzIH8GZLUfDmdMsgC88bCfTkcs7N0fFmf8tt2+CMxvSGhkh4/ZqkBPLUkO+OdEqy2WzYXl4zLp79tDBnyNLQthalOyanEckgRUuMmRwD0tQP15BrVkarDKVkljlidMEa9e5L2wZlTfUqCUFwDhAgNdYUGvNuJP7DGVq/Si7vvB5lJZHV+rDK7SqQQv7w7z8UeKmQU1llKPXjMlPW/JuatxBCJviE1QqjHmQsK0o3Z+J4omhVr3DZIIcNs1DchcRu0Chjyarq/tfEEyIZVAN2w2mZWbzDHY6U6Ohspu8kL95/ythuedufc7zbkPYj2l+gSsSbLUkI9nFiyYUjCRkDqiz0MtHKQjPUSVEvoCkK7Qe6kHnadYzf3nDz/Q2v3uyJHs6aSGcKTy8sQhYOy8giM8ebjAkBGwJXH3zK5uo5h+me4D1if0RLxfn5BdNRcnvoeH5aePHtPQNnyMctTmtSB/btW/rW8OLsnPlww537grQEcJGkFkSTmIgsqiCud4jYUlQgaYOfMkYVjCpVbpUgphGcJy+3IAZkuOSDp9d88vIpOzHyTybw9vUdxRj++r/9r2gvd0zTSFgi835GqZadMajSIItGigwE4lRT47k0FJ8JUyFpQ25b5hAIeeFMCbRSFHb4DLdvRhYt8Y2mNBpjBeV0qGZ7b0ku00qBbCz92YYiCvujw8VMUgpr6hQ65hUaIgxkUTc8AoQspBIJKdBrXT2IvhL7tJZroVUDPY01FfYApHkkrYbismrdpRR/+PysTVmV4z3oOx6kQ/nB5sEPkj/q2cn1/KwTijphRxEfIABp/b4YkVpiOrNWjutIoRTiPIObKr9FGVQ/EK3jLmR6IxiMoUhDFBVQkMl4kZHSoPSAT4nx4HCnCTfuaXTGWsWTJxfo80d8t71mcgn/ukMGh/Ijud+yiIZDchxD5Egi5YL2E1YkNjJjLNgOGinoENjQYRJc9z3mtPAPb77k1U3kP/3fb+h0YrCRy61m00pOYcHnyC/3mVISrVvYXDzh0Ud/xuRmRjchTiPSBc7OzhFYXt8qupT45P472icNvd5w8pk0NOj7I3Y58bg/RzeZ/zV8wbgsJOdZ8oBoIkFGphJJuwFZLijKk6XGLwUlM1bXgYTKhZIWQpmJyx3ZB7S/YNu1/Lv/4kO+/fqcsn/F/v7I3e2BT//tX/Dyr/+caRo5zBPjydP4wJUxaBSSFoFCCEV2C34K9FsFVhOnQiyS3GxxJMp4Ty8FnRUUNuRi2d87FjxLa7BGojuNcAvpsCfPGqzCxEivFf2mx3Ydx6l6x5OsBDwrBAWLD7LmwwlJ8lWqrG1ZG6GKiRdFEF0ghkjb1kGe1pXs9/DKOSPSu2OALNWl8FsH4d0JkrJ+HkghCKkqHRSqwgNE/f21TVu3VDEQUt3mahXfjerLCgFICbJIJJHqQHlNCZOrD6Xr7KpAesiMk2QfSKcTsmRIEWk6RKc55JqDvtMWtCVJQxLpXQ0XKEjTI7RlfxwJbmHa7zEi01rYbZ9x+aPnvBnOOeqW+F1DWhzGXSBbTdADi5w5FseUwaWIDBOqBDay3u9tCwZBlwq2aGSy7PpCFwpf/MNXfH934ouv75EUdk1g00oe7RqW6JjCwumQWWSmdQ6rDE9/+lcII9iP9xTnEMeRvh8Yhi03r2E5tHwy3nHWZoZ2x4GC7xsYA+bwHedy4OV5zz/yDbfLLcUFUu7ARopJnErEtRr5+AJUIquET5I0JRpd6vA3F0Sp0QtpOVLcHcI16LjlL3/+I6LV5NuvePv6LW++v+X6Zx/y5//9f0OInqNbmN1r4mHmzGiU1Cg6RMmVVJwC4eQwpkO0hhREpeqZniLhNJ0wsrCzAmgpZcM4B07jkdFqglaoRqHJpLs9RYFYDGIa6bVk6FuGsw0+JZYQcBmKkBjbIZXBRbXGaqwh17kOsYvI64AcWmsrxTJSwRNaImXtMSqJsg4zUk6EEN7RZoUAvcKw/tjXH99MrQfxQauuZDX49sOwctvr5aaNwQtPDBkjS9X9U1EtNZw0cTx6tE10ssMIhTSyBoCKOhEVUiBLRAsYNrYGXy6QtUXaDVl2BCwuK3wuKG0QsjAtjqwtphvwy8gYZvpNh20M2SqEyBjpUFbQXT8nxZngDmwvLnn5oxf44RwtW6bvB5aSyX7Pafb85pdf4hII29ANHbZtKUuEKOv/u0iYHsiZg4u4MXF3L+hFxpL5yfWOJ5uWqA0pRU73d3ViaxSXZ2e8t7N8fX/H7TRRppYiGt5MO4qyLCmTgySPR0IGlwoHehZr+aVo6FKg++yI7ht+8fKTikA+RcZ84n//5R3PfvQTds9+yvd/9xl5SfzTq1vKzZFj84pNZ/j4r39G+PILbr99xZU6oeq9gpaaxStETji/4BdwRaPHBfX2HvX1PZyd8Vc/+gnj05e4iyvMe88ZTM9BJYJo0dKQla65ZFozXF7CHDi9vkG4jCqSYgyib2DW5Kg4lI6cFWe2SgCXXIv+pDpCbyk2YUotg6RYCXtZgLJoe8XVpuPn1xarDWY5Ya42YHs67UgxYNY8XjcdsGmhSWOVGqqCFgVIq76+4JJcfUwGYyVNIzCNWomQglSoHkIBUuTVkxSoIJm8pmn/9mudl6/S8yr/rs97TjVA7iFQ8SEvKsZVYiQe5H6ZlErVIYnqr5JCV03wKkfKoqraJRljJVpoZKwfREL3FVSAJRdFKgLWnK4QAqVI9FlDEjDHBWUkbX8GbVNhGzLRyEizO4ecCW6Psh27ix2m6YjGUJwl+gB5IYbE29f3dYshJdootm0DSUJMtVgg0VV+BnNMuFhYDnUzanPkvDf87MUlWdSspTidKsxmJWe+eLFjDB5xOoBL4DKnuGEae3zK5KxJ04gGioYlaE5NwyssJzrsm4CeTlxcXHK11ZRNRpvIb747kWTHn/3ZnzK+umV6vefkE1+8umOx9wgtefSjRzBPjF99RVMcSs9InTFKkZIgZUEKnuILvqzbuv2pBlAPC0+2lzQf/Zj5E0NpWy62ZyANQRiKWLNeZPVg6aFF6xZ/HCnziuTXCpo1D0dJnLAsybJrGpTJq8xNklVDNICtk3RDDc+FvE63JVoOmEbw4gpKM9AEj2wNsm/wphCCQlEzW45HT4mRJk5UMl/1awgyUUCR1U8Vyav8VaF0nQIKmZGqTp3FmpEmlUKXQtZ6BU+kP0BS+uH81L8qq7xJ1mHC6sUQ/EDtS2Ftzt5lX9VNcE6sW2WJEGolmEWKBHSdloqSUBJ0a5DBI5JAqpZiIIsGUMQiaoirtaRSmKeZrt2gbcuSPS4l+u2AtIasQZAwwqP7jr5tVoJeYnu2pbk4Y2kMWkumziJEIkXF/jDhTxMeiTSGoWuqD8VHRIlEAkaBaWpw8iln3AjaQyfqYOzjp+eEBCELkltIbsIYSdaSR0/Oqn31sK9AHNHgxJbvTy0xi7qNnh2MnrSqx06mZ9GFz2SDngPq10fsZsOPn1yRtxli5u3hhDCZT376U9xxYd9/j+0bvni1x5sDQcPZecvF5VPil18yOocy8yrDrFmW0QtSisiUCFGSsyKfZiQGcbvQZsOnH3yIEwqvNNv336ddm9ki9NqU5/rZZw1tvyW8zYT5hIw1JLhYDY2mGEVKklNuaDV0pk63Y4EiW7LS5F6BLGhAy/q8V0CDQIkWqTse7QTGJFoyKgfktiFnxWLqtk2VCm4IbqHJDvUwYJSgRZX7hZhq04eqERjyQQ1R8ejrr1yn7euzXnK9v3Kpw7P0e2j0utV62Gjld7CLuHqEtbEopWhsU+8dVwvPnAvkum3Wq8R2mR3aFrTtiTFVcqFaVRey+h9FySghsFahSq6QU2nIuqeIhlRq0HWioIwhxSpvLNKgm46wzMzR0fQtpjEUI0FmjIyoRtBePSZHTwwn2n7g/HJHaDqU0Mx9g6eQo2L2iVffviUWgdCaprEYo2v3luvdm0RBWRAls5CJc2E6JRpRATovrwYuN5aIpuREGI8VONVoNucdV4PizXjisMysqxpulh6CxedMDoJ8GvEZfIEjDUuj+A2KJifMlxO6NXx4/Qx2kHeJIB2ff3vi+vFzNhcvOGy+h5B5dXOiHGYW84bGap58/Iz85g2n2zsGudSGWYKUihgE5EwMnuQhFoWYPeJ+hLsZ+o6fPH/Ji8tHTL8wNI+uONOGKReySCihyHLNSVMSOwzgI/7mAK4gi6QoBa2pNM4gmUpDKZJWW6SEkAsIQ9GWrDXohIZ3/lmRy7pVUkh9xra3vP9IY61G+4Vu04IxqNKRU0Sl+v3BLZgU0GmpAwhZkKvywcu6sXXOI4RcozhMJWOKtddYacpCVwWFUmo9Gz/ci3/YfPiHX390M/XOh8hDMyWQUqOsJQM+lHfFYckgl4heCy8etLQlUlLkNDl0U5BtBGXQuQIqpCh10qoqdlEL2Gws+Ej2AqlqM5WUpaDxWeHLaraWkck56Db0TYeXC1OKdLZFbzYUU5GNVgakMnTDE8Zpz22c2Z6f8+zlM06mgyJ5ezZQYsQfFNM48+XXb7HbM9rHT2j7ATX0BLGQfcEvHikFtqt6zWOI3PtCuC287AqPGvjwaouSO8pZyxw8n/86ssTMlAXnj8/58MNL4ueS9AZmIKSOt9MZRVmEKuSYiJMkFMFSYKTHNwOf5S3kBX7zPc8faf67P/sJmcLoHN/c/BOff/aKf/1v/5ynz57z9y5w9/qOX7++I+RAUkc+/vRjPvqLX/D58Yabzx2bbqItgmYly528rSGoUyY5QUAjR4cMe+Q3e+yk+POXH6I3Hfov/4qT1XyrIMvAUVi0NCRVqWpoTX99QT4u3C4J6QsCVY0TnaVYTXaSY6xyJGUUUhTcEilokmqIG0HZglkWVIxI6arJskiEsEhzycUw8NPrjklrluXEtr9E7waMqtNB6RPz6Dju79B5QqcjNC3CGMzanI0lkFJtpqyxdG23EosMxlRzeREQKTWk9505t0CJxAhJlH92mf3ecXpniBbih+wb8bChKnXiWHOmFMLo9ZdYdcGFiqFdQRY17DSu4/tqupRUYqBWam2+JFL3IASp6GpozyCURhtD9JGcoDOWJMHlhBUGNWxBS5IsdWWvEm1/RUFye7OgbMPu/AxjLEEq/KxZFkNwihjg5u0BCfRPrtDW0LQNJVZgQowQc0EaKlEsJVLKhFOhK5lrXb2Rl0MDXZ38vvlWMI+OKQtUZ3j+wSWHaWT+OuC1IEgY0wY3dUhVICnCJFFAMQIvFFPbM+XM61SQN99h7kb+/fOPuDzfslwEJnfiq9evuX78mJ///GNuNl9z13/L27vE2+/2ZDPRbRp+/NN/RdhbvvnscxCengUpNVpJQq6o9TJ7SvjtZmok2w1lWHi02fF06BEvnlH6nr2WLClxQlWinqxT9CIkum9pugH3eZVXmLxWtlZDrsAcnzVjbtkqgTKQ3QoCUpZoBWUHIiW0C0hZGcYlC3KWIHuMMjy/NASpcdGjpcZsGkIjCEFVv11M7O9OZOdRaapb0sYiyciVNpaFwIVYL9WuQWmJaaq2Xa5h0YWIFAKxFnWUgs5ptVOUP+oiE9SGrOLQ87pxejAlr/EGgF4BG1Bq8ZRylaRL8U7u8a6Zkqq6vXJEG7C2Tu5LrvAEsiALS0ESsyALhbKGEjPL4jBIpLW4knEpM7Q90mqyqjJEKwO62aDMwP6+EOLCsN0wnG+YpEGowL41xBwIi+R4HDlOM931BWaw9G1TpcW4GlodE0WCtqw4+0icCmKGZ12hkYKPnpyDlpRWcdifuH8rWBJEBFcvLmk6zfRlYpoCc8p4seF+bFfstSLMR/JJUDRIIxhNS0ExCsjznnz/ll98csknj57hYiTEwDdv7yky8+mffkpcHN+WzOmU+er7A1ktoANP/uLnXF6d89VXX5K8Z1McQmiM0oQiiVFVfHkopCQpWZJPDpkn5P1MIzWfvPc+8uIC+fgRBwEzhUloEhotNUpWOIi0huZ8Q7qfiFNGJ+odZPTDBJFUYEptlfDZGvAbQl4LQUnZWlAF7XxtEEpcoSQCRYNQG653mqHNLKtHtem3FapkWDv8wukw45yjLQuKBI1FSDAUQo4k7xGyepv0Ks2TDxExqxexjhaqzFuWH555IQSFsoaU/tZZWa0aD5JXrWsenEi1wWqarmYaGlPhMRmsqfPzaRoJMaBFlbd6H8hF0PZVVu59RFu50p0VRVTdhFybKZETJBBSI3RPkYaEIhZJLBllDMJn3OLA9jS2JUjPkhKNbdDDUGu4kjEqILWm6S5Z5pH93tH0PbvzLV5VGdq+NYiU8JNkWQLLmz2m62gudjTWohpDEoEcwedAEhltapG+5FJJisfCdVPYGXh+OVRJ2MbiY+T11wWfMksWDFcDT56fkV99T7kXOAQxW+6WnqwsUhVyyMRREEolPZ6ExbUtU+wge/j6lusLwb//yVMQ4GLg9viKL7675Sc//RnnF5d8i2Tcj3x3MxJzJKkTz957xuMP3+PtdOD+ladpHHbNAJNS4qOu8rW5ULwgV+IZIo2I+xmdNB88eY6wGvnyBV4rjrLGBzkUSupKvRMSpMKc9ZQ5MC15reEqIRKrKVpRlGROlpw116bKR6OLIDRFGnIHpQMVAjJVaSviQSVgEHrLMLS8vG5wxhCco7vsUUODLF2N8UmJ4BLL/YLKDpUmsBaUQq2LG1MFBSw+1gFBW6mX2orf+jWrgFRLuSrvVsk6hbwCyv4lrz+6mVJSYI2uG6SV1FdK1QxrJWnb2uWlmDFK0nWaw71gPGa8r4hPHyHE+gEu1gNZ1kKysRKrJcLUAuHkRhaXSJNHpQW7HHGnicV7rBZoIBoLSLZ9TwqCb0ZPiQ3XqmdoTzzegpKRFBwlLiBBXT+FJJhPC7omhcYAACAASURBVMsy4f3E/nTH93evWS4eg6mF89m248XP3kNNE3locXZgHK4pw4bS95igKWLixcUVSjgIN5i88NQG5NNr1PULwumOaT4yxxMKxzXfs9Xw8ukjptRwkzf4pvD5qfD0w5/z4z+x7GxHLob/5buB/Qxv7gfs5TXbD99HK4nWEoZHZLvhGDUxJwgf0beWX22e01pN1xgev/8jHpcRebZlLwy/+Df/JWlxfPbFhJtOuLsvWQL8h//wN1zMR55/cM2QFap4jr7KWJq+IeTEOM90Bi6uz/BCE4Ti7tf/gMuKV+NCbDbILwb6l1dc/Wfvk1475BdvORt7hHmP60c7No3hdHOPvx9xDnTWaKuRjcG2lZy3pIgXUIymudwiw8LN7WtcYxntGdFoQqs4zI4QAn3bMsuWzli0aBjnhqOHSMRIhdaFt19+zywkMh/JKTCPNS1duoWYPafsKEsNgWtbVSfmueLudbPDtB3t2ZamVXS9RhaHJFJKoMREjhU0IdfcJUqiSEVapzm/d5u9+9MHP0hF2tZhwgPBCQp6DZ8PohZ+MQZirIb6ZV5IMWG7/t2HJiu5Rqg6yYw5Mi2REjNaZEycKdHjg68NmKqp4kUZrG3p+oG3sydFxRkWowoXG0BVCaRIASkiotsgtzvCnMl+IYYZ7yeO8wlfeko7VFS2UTy53tKWjtJqcios3ZZiDMV2FGFJSXPWRhqVIE+IGLiWseZ5vP+IHCLhdCDkANkxMGKLZ3dWf78m92QteevBtA0/+/QRRmqsNHwztdw6w/1oiGnD9mKDFgVjNeiG3G5wqWZsiHyFInA4vyS0hnar0Fzy/qNLjDWMuePs6Usur684vwtMUyJOb0k58k+/+hqTAufPdmsOUCTmwOwyojEoJXAHBykz7HqKkEShCac90z+MHObIFArylUTtdlx+clXzl95M2Klg9CPOuoZhaMixMN0d8EsiR4kymmIt2kIIBR8jURSiFIi+QW0Uy6s3xBBZbCYJTTIaXxJzDiA1Qhq01qhSCLGpDfYavtiowjIt7L8KCGrGV/SxSvHGI8SIzxX/XeYFuWaQxVwvK9X0IDW6NSgtaToNJEry5DW/ppLI1kJPSUxRxAQuRv75LOL3PIDrXfcA9vttj6Fafe5B1ubJzXMNws6F4ANuXjBNgza2bndLnfYXUf8bD5lyMUb8HFFxQsQF730NyowVRlFUi9aWYRg4HiOHJdDmhlY2nPWSYECsOTAlOISxiItHJJeIzhHCTIwL4zJSloncbxGi5q2dbTt2Z5qybyinGddtSaah2A4QpABKJ4ZthOIQceGMjNEF8ewKUkOeT7gUcHHG4Nkwsek0+tElp9zgsuFYClMUfPDjn6GFxArN3hu+GltOruHkElcfd1gi1taMv8ftjiQUS5aUfE2JTym7Da/shmaQKAlPLjZ1IKYGdJ/46E9/wThFLu8j0R1I7sTbt3te3+y52DY0QzWUF+GZ3YzQCm0VYYlEF1d8uCVJRSJw+PXnLCFze/KI8xl5Xdi+d0Z71cHdghwXzsoO2xSGsx5ZBNPdAXdypABS1DBcaQXKVMJfyIIoBKUx6LOGcHdgng841VdliTYkBeMcMAga2aCUQesGXzqU1/hkyCVhZaWe3X57D2REceSUiKGGsYsYcdkTSq5Sfilo+ioPrUWXBtOi2wbbWHQj12VqHVyXlaQs5EowK2L1q1fcvpC/e//IFSJWco0HkGvOZ9tU2mjfdUilMEqTS2YY2nfnXWlRP0ech1zo+00N6y2F6CvIRQ5Vvt50FqkVSwiEmCEUZAnoOJGcq02ZXAnPusZltF1PipK3R08Olp1o6BvF5QakTOToEdFV/PXuEnING3duIriReTlxnEdCN4AyGK2QreG9Z+dI5ymNIugG327IjaUYQ04SCFz1Xb3b0ojKgXMVEedbxPaCvEx4v+DzgiSyLXe0Ei6vznDFcModqYXXC5w/eY9Hzz9Y7QGaX596Rg93k8VstwzPL9FKobUkNxuybpiSJJVMCZd0VvN9t8NqSaMlu8tzzvKHqL5jRvP844/JPrC9iTWfanqLK/B//t2v2AXH5Ytz2iJRJeB8fZ5kW9/vuDiMFvQXwypBVkzffEPIktsxkHSD+M7SXg2cf3RBOUbE7cjgWtCP2O4GWq3wp5l0ckQPMiukVTUPzkKmel4jULREbTpE8kz7O6IxONORlCJZyeQDMUaMMVhh6lZTaJRTuFDIGLSQSFk4vD4QhETkmZwjy+QoKSFTzYNzJVB8AAHaiJWSWkAKdD/U+IBGY4zCNIqSXB16h0Apq0e31PD26rSV+FLvit+37f5/vf5FAAql5BoO93CxPUwVJdboqk0sAaEFrVT1DfeKlCvGM68+jLpeg5QiwleTpaiRaihT6RsxBEL2lDhhsqNPDu8iPmVEqolwuSgQVBSlSSwp0RUFaKyWDI0girIG480IJRHdQImFcDdV7GUKzG5ifzrgNjuStjXvQMDVblOlENuRo+yJq9wsyx4hHEIozocWheN4U+lJF0Jh+i22ecabkplCIMYTIkcu4hEjFbvtIzQbfL5mZuR2OfH4ySWPr895fraloPgsnCjHzN2iaJotuzNdzeQEzPkFoh0gWXyG4s+QUvAGw6Aarvqerd0xmMI0jyyL5/3HzzFkDnnEHfdENfP17R3ffvUdm3PJsOtQY6Uq+uTIFHpVSDJXmUWjaNsabJiLwL294TQnvtpnFu0hvOUqW84+FeRjRN7OGG/Q8oyu39FYxeH2Df40EyOIIinKVkmNqb4cnxLZUOEJjaHgmdLMlAt7FWummIKRhC+JU6kfChGFygazSJYg8Vm+wwOf9nsOITGYGUpgOhwRZIyqjU/MPxwmpVoUap3GakTXY9oO2/XYVmEa+e7ZYw3yLWUliok6J2SVHiHVH5ys1+H4757Q6pF6KBXrjEY8GCVZN1QrpaaUQgwVv6tMrJfkQwhqKav0qW7FUg7IWGlrFA8p1C0QBbkSa0pRFeRhLaEkQqqhflJlOitIAmJJlBTIZUEPO0Tbk6YjMUZyjsQUmZ2rfp116ilKYWgNW6nJnSfFQpaaJDRZ6jWjNdNpw9AUlimSU6EXEqMNuj9jmT0300wuiVQyNi+YONM0A7rtiOWMgGCMIxtj2e529NYyWMt8H0hjYkoWEmy2m1WWE5HW1gsqy4rbzS2iFEYt8UUidINVLf2wqbJcF7jsejZnA0F5zBzJ+8iyzHz35i2dLDzZNqhYKK4CTMgZ8y4QMCFKqbQiIWq47snh90f2p8K9AyEn9GzZ/KiShuQUkA606GlMg2kb/GEkzPVnWbKgyDVbTFUfQ0yZrEuNkjAKYRShBHz2TKIlr0hkL3LdmhSBQ5NEnSCqWHPG4hrAq3ImhsS4ZIyqSgPvKqlPBIfIaX2/c82uQdYCEBBCoqytvqKmbuqU1ZAjqQREflA5VOnqOymrlKgHz+D/6/l594cfzs+7G4l6R4kH7HP93pTSOxlgSpngQ8WxS4WMsmrtHySPZT3XqYYfp+TRyaNyXM9hRuSMWLHAQmps01BOsMREKhKEorU1ZyeWXENf04LUGtX1xDBVn1qqZ8gFj/Ke3D7AOgqNkpw3DSXU6IaDNjihycKsuVwNVmU2bSb6uglsiPQyo4cB6LmLgVgKIWcynj6e0OqMftOR84AsDWMZEbHweLigbwzbpsEuiYPy5FEzF03XdwxWIIgIKdBDRxIKWRQlt5S8ISrBXZacSUtrFEPXIchM3tFqydXlFbJPJBsooyJNii9u7jgtC9dna0j8nFcQSUTrhJYaSvW0Ka0wtj6jKSbCfs80Z97uIywd+Al53mN2wByRU8TQYqXAtD3FB9xxrA1Cqt6hen4EqPo+pSwoBtASaRVJZnxyzNStu5CZLKlBrEgcGiVK/VlkjQxVFpmyQOVMKZFpdkCmUbWADD6sW5vfIrrmKn3VVtTzqyohVuiaXaWsWWWyIESsE4SHWI6Hz/7ycH+8K9r+2emR6xY3P8TSINCmDlSsfci60tSWrOCVJ/r66yat8T6SZamZQFJVRUWqJMBgqwfFrucxxkguiSVEdKnxJilUv5948C2WeskZY1E6s6SEyWoFTki6hrrpTgnKUkNgm5aSIB4PlRqaKohodgvRNhSpEaWgEJy1Fi0FpW+ZheUoNEmYSpkWCSEUm8YgRWA+eUwpbIRENS3KnHFkVUtkByXRpwklJN2wq7Iztjg8p7Cw2W45Gzp2XQtCcis9cikco6IxLdvhbF1GJFTfI6xFJkUskGOLEnBfFJ1QCGtpZUujqB5ln9htd2jAyUBcZtIh8uZw5ObNDcOZpt02yLluwVIOFMDITF5/fsJKdKOhSGIRpMMJN0Vu9wWvO1AjZ2i270NxGTkGVNIoOWBthzaSZTwSl+qXo0iKMlVJpnkHHyoGUAJhJSUIfHR4VZilrQMoWXAlEXJmqUl7ZCpgSXpRFy5ZIEslxi5TYI6F1njICXcaERSsYl3srLVYLnXzuaLahVQo26C1RFuFMnU4k9eQ4IfMtDUtet3cyhre/oD6//9F5rd6MGKqHZ1qmh/kEWsujaBgtFinjILtpsOoQoodMSaUrDIIN7maKeNG3JjqAaVeIt2mQRvFxgpEjoTxiFGFs05hlaHpLikyUxKUZGtR0W3IDqI4ssSF+/lASQWjB9S6sjwGSUmSxjlKyORlqXIp3fH6diT94xekWRC6Ld/8x38g3M0c2gabI/10XCV2kvbZ+9hHTymHEyJGZtFjpKU9vaBNC7psUaIB8Qb33a843X3JV6cbxrDwd2nhfNvzb/7qPZ5uLR9fXPP3n0f+t1++5n/6x/+DeZ5oVFNDjXtIeuDQfsJharjbN4R4Twh3SPEZkkJvK4L0GCQxBNz9Lbbp2WwukS4ifOS0LKSc+PCDS/qhQ24e82ij+dcf/YzrJyc+fvKc4+2X3O9fcT8qUhT84nyD1fVSQEb6XcH7iW9fHxHtGdL2PHvyFCk72kPDSMNt36Fy5u5Xt+h7x5U3RAfZBfz9gtSKci8pJ03KdQoRZceiW07G8qbMfBfvOX/8iLZPnI6/ISXPeK5w5x3pxTkxHInjHWBQuuGr0YMXxNtStdN+QhaHzgvlbYSScFQPkWkFSmaaONJYw/nmDKUsWhligYTAdAqpFWnYIm1Lt7vGGEPfWgiO4ufV3Ssf4gkwMlcaTcm1ATINquuQXYtuzO8doYeG67dPVfnhn/3Wl5ACJatMr6i69Y0xEkOhbTVRQcmRsASOd3d1WFEy3juWZaYxAqME8zJDTnStRCtBozcgqr6+CFW/TEvuAklOhBgY/YjREqm6SuMh43L1GvUhY7QnOE8OkSwtSxK8en0Hm0iO8ObzO26/2HOyhkZJOlex3o57ZNfRPXsCsSa2x6jxUaOWM3SKyNLUgnheyOOe5fVvuF9O3MxHZAqokvn003MuLzacb3vGpfC3v7rjmy/3/M//8bOK/pWaYSuwneTUviCqnnEx5BKZ/R6xytFaDZ0STFnhM0z3R0iZs7NzZAY5RSafOMyBZ086Hl93mH7AWMtPry45O89s+w1hOTHff8PiYHKSx53holUrXKSSeLP3HG7fIpRBdjuavmWzu6KbNaNXTO1AahT+ziFlYfCCHCD5RJkDQQryscAkyF6SkyJrWylvWjOSuPUHmo3l+hJEuWc6BVyXCb0hPRnIMpPcSIoCrQ1jLIyLJx1qnRL9oQ6SSi0cyrex0ugEFCsoRiCKx5DZtHb1QlnKOiQTqg5CsqleSd3V6XX1WdRNZkpVhiYQWF0v4iKgyOo9sk0tRFql2J7v/tkd9HB+yh88Pw+NVZU6iVXmqgRkJWsT5ANYBZ2tQ4dQUfApplWWW/XyUtTLOgVP8q6eJy3Qsq8I6lIoWVGKociW0g1km0hiqoZ0N4MwaC2QohBzYQoKE8B6Dz6QnScVRZKW17dHbDHkLJkOgVd/+5pbKXhrNDZ4bAy4ciBLSff8GdIYmALZCAIGoqBxBl0WRAl1W5FPLG++YlxOvDreUlJEpsDz54oPfnTB484i9cDf//rEm/uR/+tvvyWmjJYK2wj6rWAxF0zmkslVfMMcDqQcUPlbtIStrdKlMUncOOPHmc1mizUNYgykkLmdPH2n+OhHW3TToLuBl9uOp08G+mFLWGamu685To7jpOi05MWmBynI+f+h7c16NUvP87zrHdfwDXuqXdVkdbNJqtmiFVGCRWdwEB84AeLA8GnyK/y3DCQ5CGLAJ8lJHCOJIikeFIKDOKmnqq5hT9+0hnf0wbN2dVMSEhFINtBocqNRteur9a73Ge77uhWmUTQkpunIOCRUs8XYhqv3rllHQ3dpmFzH5C16SgxvR5oRmqjJUeAM6RSpc4HBQLBULEV5srEE61C68JCOZKW5fHJJa0eGwz2TisxnlnzdUlYdKR6ooQiJOGtenQJ1hLyHnAZKHrBlRtdEfZsWDq+QSnWjgIypka5v8Y1/t0FKi+TbtlYk3W2H9g3WNxIqbw0qR1QtksukKjXHhcAndFQK77arqgpZ8zfxEzLAEKVDwjiHdRa3NFPGitzWO5Hy5VLou1b8skvDpJTgpo2SoOucw7vZxulhx2kH4/qI95bOa1QtHCdRurStkWfLbSQXKyN+nKoobUeZK4kDc545zSehoppeZLyqMAR5pzqptilzkCGF7dgPEfX6nhwg+5kvf/yKeAgcGocrmS5MpCo5U/7qAnt+BuMMORPw8nNN57iSMLVFYakciHdfMh5ueHV6YIgTJgXWfcsPfv8p287wdLXm8zc73ryY+dVf/JrDccIayWvbniuqbzm076Mny/3JEdLAnE6YBeKwdmIT2CdNCJHT/Z7GN2w3W9SUYcrcD4FYCh99e8Nq5fGrLWed4XvX77HenvPs7IJwuuE43HMaNTlrvrXuaYwSf7UqNOtKjiO7mztUu0a7jrMnF5wpjztaAo5T59EKTm8nzJBYJyFc1phIg2Ta1YOCk6IkGUQV0xCNZzaWfZl5SAf6qzN8VwjjW0pJhK0hrhvKkxU5jaTpBBiMsdyOGWImP0BJiTTL2bE1UG8StS4eXAWpBa0rbRqxzkocgXbycyB8FO0UGEXjJJLJ9evFQ6YoOVJjYC6JkhLWGJSRLNbHTCrtLKb1NFqzVkK0/dt+/RYACmnUHicWSoss49HzIWbhx0R56fKs1TTekbUUcl1r0Fh0yaQs+JZUIinOy/YoY1SgekOpTszMKaIQ/4E2chhTSVAyxSJBoEtDp40CVSglCFHGPNrcoCwBvTUGasqkJFlC2rXEmDnujuQ3N6RmYL7ZMd9PvNUOXzPrdHxX56r2DFxPPQyonBg7RzaG1WRRxVKKFU21nWhNZN0k1GEmpZlqGibdcgScgksnhuwcC7d3J27vHwDBz18/7VFNZSonYGbMmjneEcIdOssDl5coo2N2xBAYbm+wrmPo7iljpE6J0xxkjVyOdJsV6ycVzlt2Fxu6lLhyjqIFV51KJhTFWMFWRbtMH5S1lCjBcS5LmF3rLc55zmaHLZZkJUtGHQNqyuio0Fk2FBJeqtBVYzDYhfCTFUSlCMYQVSERaXymdYlUZhKFvGrJnSd7RUkLaYsGpS1jjORQyRhyqUxzxKlEq2WTQolYJ59nYyxGV6y3tI3jbN1grMMYT1JGpvNOJoJ5vcH4hm7dYq2hcZZcZ3LIS56BUPiUkoZH6eXZ0KDNQoyxC9r/62dIPRaCj/qkr8v++Kt9lpjrHyV8lSUQVIJ2qZpcINeyZFLlRUIyk8NIwcjEJych1FQjUiZlKMi2tipkUqSQiZ9RqCUTSP48iyETGaXkhQhIipQcySWhrGSdjMMMy4Rp2g2E/cxOJ6xSrOKEqSJJsaFit5Ok806RoEAXhU8KW4wUqKqgfcaSaWzGqEROs5xh5ZmqZqLSafk8SqqMY+LVzZHHXcR1bthkx1BnstEMcSLnwHG+Q5WEzomVrURbGbGEojnc7iipMB8H8QYdEkPM7KZEimumecVqG+j6hvd8S/WKlVYEowjLpxSLeKNCVfjyKN80KCPPqKKgS5ZnsnW0ZQk9tIpkKiouuPMEOi/NwYI9F+L+Y/j4Y1AvZK3JGrISP1vjCtRErhJIWYyRsNMqWHuQd6lsOLMg+qtijhlKodWiO68poQzSRCgtsgsrz2Tbyq+hracqRUIvg4ZK8Q3VOlzrxM+qoOYkweY8wmMkY3D5HxIuXBfdutEY67H2N6+nx9Py9fOj3j2ff8MherftUosUUEljpYUsWKoMFXKKxBCWAHqhQxm9bBCXe6lUK5/foq/PNYlxuiy/v4StoKzcQbVmCUZFQApquYNqgZqi4L5zlDgR7QhzpJwmsj0wHRJhvxR/2tDmQJNFTok22O2I9hmGAE4zGYMr4Jatcq0Z5eRZ86YQdKbkID4A7ZkxjFXomdbyLqPu7f3AHISC1a8MT1RDaCZmP0Oeqblymu/JeUaniNeV6gsRzVAt4/7EeBwYDwfJ8TokUijcDpGud1gz0/Qd/SawKp6VcnSl0hhDRDyosWTsYtJ3FdxC8MIayiw/q6kyVfbeorShTwZtFcqWJXcroyKoLNlHCihRtiGaBXiyYI8laFmekUwGXWl8xpDJJVGMonQCsCpWUYNsYY025IIAO7Ig9mMu5FDwOmORuwoqzimMUpgFA220pm0MvrULPEvuH5RCOy25nE2Ddg77uNXVSnyvVDk36vEUPLqnlgf+8X766pT8xnl4tPc+ng2tH6M+NMYsoAutJfuwFvn/QFmGe21jSUYog7VUCV5dSBiyPaqUoMkYqnbvvp8Rn65GU5RFVQkgrovQY1lNo41C6UqtSZpEY3gMUJWkRLWcH5GfV0C7hlRgHCayOZJNYN6PhEPkTkmG5ipN7+4yfEu1DXWcZchnDdkoumRQpVKqwaiK0hGrM95mKEE2yUjjMVbB1/dGftWchHr65lbuIGsVxbToFkZmaomwNFJTOKBLRJdC8gWrYZ8tYU7sbh/wrmHaHylDogyZ+ykSSsXbifWmZXOeSWvHe02Dr4WttRy1IiMNsNxBDl3BFmR7aQ01KRmW5Ay2YJ3BGEcfjdy9BioFNScIdbmDllDpWCgGdBW0lX70eiPv06yVRB2Qca7gbJb7hyLnp7EUqxdiakYph9aGkGQAWzACjAgJqzJokaLWnDFOVDqC7AfdGJw39J2T58NY8rLzQ8tfjGk6lLX4VjJutYI8J9Ly7lBKog2UMrA0UznL82esSJklnuavWDX+H77+9s2UVdh2ydCwGd+LThjjRNKhZGVblKbWTM5RXgKNY84BSuRircmtZe6FNBNS4mGfSSXRloCrCWMzWmka6zDOsr04wypDoxwxJU45kseZEgNNbSlKk8KIqomzzYrVyrF2I0VVsjackiFkTfFG1tanW1II7OcHbLfi7OIbqGIYX93x8JNfMg0TJX8A0fLq5gbihA0PrK3lwjWMU6K+vqEMA+TCzSfPWTUN37+wJGYe8j3XzzxPvtHx4cffwK2uufw/fsTbuxNP/+g/YlCef/mTN2zeTnx09yX3uyNta7HdCibI6Z6sKnflfepome8+I8935OMn5DRS8vDu7+SOCUX5qugtlbnAYclLkdBXuTA++fkZRlu8sfzCKv5tb/jB9SX/+Yfv82Qd+eDK0eYjt0PiF/cTXht+b9VilCfpc3TT0pqOVkUaFWjKAR1n7O5AT8O6+678ntMF94fAzV1iayorA2VOxAwXVx100O81Y0rs44HR9hy9pukMFyvNWu3wBFKzITYN9XJLTDOH3R4fAy5ZrFuhrCdPX0BMXD19QkmVw92IMQ7vNxgn+tlnZ5q+UWRlsNZw9WSLMXKZaisXSHYrsmkZTxMpFaLrpKBrWD5XkfvUKCRI7RA4iIamc0sT/5gGVuRFUBP1a7FvMoxYGi+5Pd4NIOri0Xj8PuorJaC10hDlmDAkkXg4KFb07jHCcMroGjBMWAKGWRLPlcGfNRht8MYDEHOipEieJ4wH02hSnCHNrFYNbQu9j2hThJxXFCEbkjGgHSmOkI6cxgO5VrrLa5RvCbsj06tbDrsDuZzhypbbtwfGU8BPBzyZ9/oW040MsYrfbAo4v8G5nudbzdrDmE94X7n4sGN94Xn24Xd48+qG7aeK1fNv0Vw+4S++PPGrV5kPTztUqTivcZ1HrbekPJLSiXuecErnnL48EcMt082vyWFgnh6WD1eh64ipE13bYK0lJTkzt1MiZ4hzFZmjhv3dlk9+vaE3mkYr/mKtuFo3/Fe//ztses3zjWFnAiZNDPPMbjJ8o/WsrKWonmobzEqKNE/AlgmSRQ8z+pQ4u3yGUitqWhEL3O1l/LMyCpUrYYr0jcW1FjcYsksMcSKqymwBr1j3ms4FPAeqaUmmpa57qlHMYaDmjM9CNTKuYzruqcOBs9UGt3WM+0gtFdesxZvgoG0U604qsKo0/bqRZ7JKUK42hqoNSTdC7wuJoq00HQZprhYzb4oSOto0dpElCW1SG7nEJHOpLrj0vyFaQLGcn8ftk/na+amL7Jbf+J62BlUUKczoIplMyooxXqGpSjFPUvj6PC6SQ4VWGmstqjFou0ZXyZyKKRJLpkwTSmuc8sQ0U+OEt5qzsxWrttLaScAfxTInTTJAayiqEE/3jMPAMA80Z5c03Yo8RsJwy8NPfkXKDluuOR0jL+9GbBiwceK6a+i9ZS5LczHMaO3wzTkXnebZWhPKSKqB1fsd/dZw9f5z5nmk/WlBd2s23/oOX+5m/uz1yPNh5rKpZAq+NejVmmomQtiRWZPSe0ynxDS/IT28II33zOMDJUf5jMjYelxk/o5cKjnDw5zIuZJmyW2KGpRtePv6ikZrOqP5aadYtYp/+Lsf8uHVlifrQvYawok5Kz55mDh3luvGUVRH1T2ms+gacQSMjgKhiAVznFh1G1bunJodNRgehkKcCysNhkpJBas03ZmlyRNt+mXa9gAAIABJREFUROIDSMx2g/GavtPSpNUjGEcyG0rrofOEOBGGAR8VBou1LSlHyiDFb/90RTgV4pSxvhMvq5OA6vO1WrYrGt9Y2q4RBdEykEZpqu0oKDk/SlO0XQZzy/CgZlBSCFa1hFSbRznSoirXSxP1OFSof53mJ4WiwhYrmzHrcM5jnWO96lEL4Yy8SLmW5ktXybI637Q8xg+kLEqjlAXS0VDxqqLtjEZjVUZbQ9v37+6gUjKhZMqcqClgeieapzijyWzPetre09qZomRzlZIhFkVxUsOlcU+OgeO8x7Q966tnKOWY74/s//IF4xCgPkVFy4vXB2qYcdOBjTNctZ7plMg3R+o4U1PhYXVJ5x3fOjdolRjyiX6rWV1pzp+eY5stq58bDseR7Xc/ZlaOP395ottH3j/ccRoCTWMwfQczxLgnKnhbrqmj5XRzQxofmO8/J4UTIZzeDYZsPaJJOONAKUqBY668CYUUKylWgpLssP39FdZ6zqyldYp/t1H87rNL/v53n7PuE5dbhysDxzHx6jBjlOZ526CVJes1qnFY3eBUkjohD6ga0YcRj6VtvwFUalxxGjP7XaE30BhFiZmUK6utRzXgT4qYMmMaCdoxO4VrFeseGnXCksm2ozhHXXfi4R4GbM7YYjGmAWMpd7eQMturM2qqDE1Ga4N1HcaCtoqzlcJ7iUdSRtOvW2m6l6GI0ppsPEVZwhTIuVKMXR54uUNKreSaiWFC67rcQeKRco0Y1LVZhOcLWRN+8/z8v339Vp4pZWWzZBTLy6FSSwYKyogPqrAU8jI2p2bR8ucq8gFtxehJLeiaUVU0w9S6hFwmQJMDS1CgTMWpUXI7FISUSTGh5gmU4MlLBYwlo5hmIQHaRfYoYaYLBpGKUZXWVnQDrtPkMlGmxMYGVj08zIFaxftQigAsPJVkLHk6kAkSRFwUgT0mtZy6hogUU+xmypsj1xjOsma7PkO7NddXlxyypTNH4pT4/MUrTuPEcRiJKYix1K2pKOZ5oJZKON1RwgN1upNQ01ayvowBazqUKtQkEhelpCBJVQ6AMwpcT8Hw+s1ADDI/TxrirHmp4OeN4xsXiuszxZmXfIL5IISvKVW8BdcsFKGqJfsCkWgqJnQesAT0eEc1mjJPmBjQNWHI6FrwAhoTXHZawjxNwcJCF6oSRlo8MYjBtmlbkrKMp5mQZ/Q80mjoF3RyLYmLRrwhZ72sV1ZGJFi+7VHOoK3malVoXSUWwS+3XYOqhRKioMdVodRWvCZVCiyVMpS8NDWSfZPnkZxmlFl0tLWK1E9J4nupZQmvLssT+zXt+tdvs6+PBmHZOj36nR7LR/VuGyVUv6/IgEo/yjrk3NScZIKz+LhUKagiHousxIuCNuQkjVpRYoqOKVN1BC2maMkCNlQtWRG2FkG/sgQ1ogSjjoQBuiUHxjYaTCGHI65mto1iyoUpRwpZCs8YRU/dFEoKlMMDuoJJkIujRMXUWHkeYiCmws19xLeV1SpjtOPi8pJuu8GuVrQ2MdXAzds9JRWOc2QYk5wf5VBmy5wLcThxOuxI80A+3aGIrDqZ8loj8i+jLV7Lxrssn/kcMlSwaAkAd57dobA/jahaiSBTvjDzqy/fcrmxPH9iUBQuengIsm3OpRKzfEZKV6rRUqwDNUfydIQUMTWjwxGlKiWcoavQTDXlHRHLaMHlpyLPhzJGCnyzrEWrZNbUpElzxXQGYzwxZIIqkAKmyhZA7GqZ1oBrDX0rYBunPFSF64TipqyicbBq6iKjULjGYYwmTnn5eSpVQ17Oj0hgJayYx+YoZ2oSNYFSj2jzr8lZlyBsVYrIBdXynP81y4datPAiK19+FR4pfo9f9TFGgOWjWe6jWgtaKyFhLt4+mWMkMdCXInIpFFVVcgK9mPVrYQn5XXyLWbZ4OoYl7JHHapVUJO/NIMqBqqVIylWjleB7ral4W7GNyNhyHlGlsmmE2HxKEaUTsQgII4ZIdJZkNPm0B6NxCaoqhDIyKcPkDSoHdAnc7xNDVpxjqLWy3Z5h+jXrzYr9rPE6cdxPhDLwcBwY5kgly/vNr0nKcRpOzOPIPJ4opzvqvKP1EijurUzvjZa6wy5FeAVCdORcsMjAp/iWKcLb+2kJRYYcFOOo+OT1DSlMfPDM4B1s28qUIUyyW4kJjFcYK3cPZdkyVpGsllDQJcilNhloWiGoff38AFbJeyvFuHgrDNqyTKeXxwsnGOlQ0V5w93NRhClSU0CXhNcKg4aaURRWjcY7TdsqvLbkVuOaFmMNyso93XfyzGcU1gl4SabuC8hL1eWfRd1T4bGTqUotQwJpcEB+9q/OhuhualVfRWu8e/7/ym5q2f5QJTD30Ve4zO+W8N/HqATxFir0O+/ho6fk3VGrFWfk95WqTXZiapHLliTh9JIzlWVzIcpn0gKg8THIvfRo9jdWMkVDER+nll+4gmyvlz+z1hVvizSsjabUQAmJzmR8qzguAaypZsnMChFPJXtLnAYyERurDEjGEZUSU+9IJEyKZF2IOrMtlr5o+n6FcR3rzZqxGBodyXPi1f6eKWXGkAgpSZPseyowzDMljwz7HXnakYc7rK1sVgarZbvjdI+mYOq7h1AGEFFovAZFsp6sDG/vMmEeOc0QDKRkWGvNLzvH03PD5VbTmoxZQTjJyjyWitVg3NK0l0enHJQwArOcHyxmPlA11LBF5YQiv5PE22WrmlNCpSLEU12XTaL8papqoHpylA2R846iDPMUSSWicsApaIy8k2rJ4sO0mq6Vs+10I9Jw16Cs3EGrtuIsS5atxrUOVaGkSMlKzlERBQbLeVbl0cf+GNYutZJ6549i6QcErleRe6hUuevUsrX+LSxTv4Vnyhh026CqR5ciuO6cZKqNonjRumdEjpVnwTrnHElBCr7OOnRRqFGSzPNpII8TJSZSlsLbmAIKxlFy3nXNUnhl8OuedrthGANTCJDvUMAcCiFbgrakpIh3gScrzfVKc6JStGKapED1K4u1hRWGvFbEi8R8d8d8PPJ3Pv6I8/ML/uQXB94+ZNStZBDEmnBYJq2J42vS6ciT5pLW9DyMlRQdn/drbEnY8cRws+Pwkzs+vu54/7zj47/3B3z32TXtkyuOY+HNeeYvP/2c//1P/4ykK9mAdi3attTVR2TlGV7/CTnsyOMNukYMM9snz7h87xkXa0ffGtYXHVorjq9O1JKxJpONIRjH+xeeb5x59Nm3CfT8t//sX/DqyzeknJdtg+PPX73hx2++5A+uer5/2fJP/t41z6876ufwMMLdoNhazYcXhvkE45LZUoricPeKmgIegVLElwfYfhPtL/FpYuVGXJ0wNXDZrbBG8cWnt+Qp0dGjLGxaRWccJmYIHXk+5/7O4jvDd68vyDHw8qe/wrnIqk9cX5xxvdlydz8wz5n3n3U01pCdxfmGs7MtXd+w3vZMtMTqsXmPrjNzXJDbcyEOM9Ore06xsA+F2o/QbOhbh9GKHA8oVTGNJafIPA3kPJHLQCkNxsl/p6zEA6AESVyVdPCKjNPSUP3mZSakSrmQZJKes8jzlJIJY/1aI1WWALmcxKcoTbQjlIkcZ1KIhJCI0wQ5SzEaEiVG4iKBMBRUrcxVoY3Fn21JJTGGiMuRJgzEUIhZE7UhVsXDIdE6xfVWUw1QDSkrpqhYe4P3lWZjqKoSN4WcRvLtAxdnZ3zzo+d8cRv48n6P2StqhPGYSKUwGYVKE/PbL1m7jk27ZcyZSY3ctw1j0ehhJOfAT7+8Y9XAB+eO8/eu+eB7v4dyjmoM315tuZ1H/rc/+zn7YWT2IkXVTYvtLqF7wuH1rxj3nxD2r6lxpCtHNtue7/3+91m1lvPO0vSetvNM+5k8Z4zJoCEYR+cN7180mGaD7q75X/7V/80f/+lPCXNkzoUxOW5PgS/ufsTzree/+OicD59v+N2Pznmx19wcFWnWnJLmybnGqMIwlgU3p8njiTidUMrglabcz1TdglujrMebgFlM26019L1lfztwPAaaLARH32lMY0VOGw01bJmOhjnA5TdbGt9xfPmKKc70faZtLU/OzwghMwwHzjpNf7YSOY4xtN/YYJ2l7RuqMqTqUDWhmSlZUuJzKpRUiIeBFBLHKVGMo7YZazXeGaH9PQYoUkmLDNWUIGdEawG4LA27tYpajRRLRfKljBVp+Fdt0XLDaS0FHogsrxRyijxueisLyaku08gk5yukiFbgrSCTJZ8mkVMmjCNxDpAXsYiuECtlQoYqWSR9qoLbbFDOiCSSgi4PxLmQsiYiG6jDCGOIXG81zip4hPZEjfHgncH1ho0zxE2ltJHp5i0exccffYcxKX7+5ZExA3sIoQgoSbcYXZnvXmBUZd1fUrXnmDJaWTG0zzMqBH5980BVge99c81m0/P0d76Da1vcakUeDWpl+NGPf8mnn3/JqAtZK2zXo22H2nyX+XTP4ctfEMcdabynLRONznzn+x9zdrHlet3gvKFde9KUmHYTWhe0LkRjqcbwwUVD1zTo1Tf57Itb/rv/4V8Rp8ApJoZkUaPhf/rRr2ld5R9974IPnnT88A+fMhdDvYMSFYegOes13Vox7zMlJCmsU2Tc30EFh6GcBsrDPbVqdLV4AtpGyQpTinWjCWNkd3fCxIrVLXbxlRrpdKhxTUqZeA/9mWV9sWZ3/8Dd/T1dV2h85eLiDGMMx8OAVXD2bAVakNC+6XGNvFOMNcTq5R1cRxnOfi04Og0zZZwFT181tZMtr3MiK6o5U6zGOEOOUUAlNchwojSLDMks3ToC+KmLLE5rTM1/g+x16U7KY0siZ4QqIIxx2bZqI2c4RglDFe+ubAFqke7LKTBG7rOqCuFxaFGr6JMVhBhleF0f87UUpmtxq54QAiFGKHsUEFMlVkvUVvL5dpFtpzjrNZOpVKUJs5xt24nKpN0aSqdIm0TYH8mngQ/f/4D1ZsvPXg7c7TO0mpwrU454NJNWhPGedDzxpDunNR274Z5oLW/7DlsLehyZbo4c4wPPL1uebhueffwdrs+3qKahD5WP1oovXrzlT//s5wQD0WmMbzDOUzfPSVjuXvyYOO6Z968wZaYtI0++9Q2ef+d9zjpL7w39tkVrzXA7UEvBmETRhmgdT9aWJysH7TVz8fyz//5/5eWXt4wxMSXFKXrujm/4889f8B++v+EH7634we9dcXHZwRuxhA2Tom00VxtNmiCkR12yIuxvqQvunmoobwZYXVLtCpMTjYkYAqomVo0oXO5eH6hzwePBKdpW4YxBxUyNHXVODDuDaTTXZz0lJ+6+eI2xmbbLbDYrtm3H8TiTYuHppccZTTEGYy1tf4Z1jqbzpGoFLlZnIckuEK6SK2WOxIcTcywMMYFfUX1L44TjkNMsT7iulJJJIYj9p0be6eOL9BqPYBcwi0wyfyV9/f8DQPE4S3/8w+THSd0yPk8pUylkFDEmwiy61poLMYr2UdWIrhm3TIXoOvFhKI2rCVsL3imMFtLfo26/xEwcA703rFqDMz0htTQqQ6nkM8+UNM1ZyzwnDoeJOEeOOWBWHeum5zBLwxaVFIYhVHTI2BzFiNlveH174HY3E3OHtVZyB5IWtKJO1LJj7SuN7Xhvs6ZzHau5kHXEmoFYZh6mO6ouqKbnPq0pp57+RnEogfnhxOE088mnv+bNzWsyw9LYaFSx4kUpr2QKHHfUfAJVcasN26tvc7bp2PYdpiTSmLlNB0rNnN4cZLKqihi5raYePIe1x6xlO/WH337G9795yb1bsT9MfP6LLyklEUvkbWrxg+eXb8U39fTqglXU/OrXe6acUMpjGfDlhCoNuTgGtpLNYDtQltL26LOnmKsN9gTNYcJkmVhEOkr1FGYKgZkR3xhWFy2QGd/eoudIpzRRt2jlSdMJUxLvOYvxlqY1rFWLnzVN8BChVR5vFCOZnAKHw4l5GJgfdiTtyMpSw5GSIiGFRWqkqCFSjyeGpDglRU6KYgP2Yo13jmmSg9gmSCkyjSfQGaWzTAzNVx6MmiNaW7pVu/iONNZ6MQzrv3oQ67tNVCnLtKQ8bqBkYiID/WWSXqRwzUm2u5RCTaBKwSDhiM5C37eokjElUVpDjhYhky0eglopU0QbTes0pTqM1uKqUtLUeVvRrSdmxTgEuVyPgeoa2r4l1IJOhaKWojHK1MeWJMVv2zPFyudfvOFUGoxtcFamh8ZrbC5QDjgHm65h3bZcrDrGLGn01sv4cx/2QvlsPFEZ3k4N+eQwu8ysFKEWXry8YXe/Z85HEoFTcNRUUdlRwp4yBubhlhz2VJXR3vLk2XfZrFs2XY/XUELmmCYeDgPTbiCOYZk2V5TTeG9Ihx7TDNhV4mrt+Ad/+B1O1TJl+PSze8YxkPLMHsuvTg1qp7l8m9DtiqvLjrubiTgn0BKUa+soGUXFk2mJ2qCNQykLrqHaBrVuUdpgy4wq0lhnNLF6ZG+jSXVGq0qz9WgLcXekDDMeIfxV66UYCxNro2mqw3uPNwabxTzskhZUrNZCy6qFMEuDXsYRFqlRzYma5neAk5yh5ko+DUu+jASz5whN6zBqkfvlgtXyjMRpFGqZEk9SLrzbtqmFSGatwFB0tcu26VEG+xunR/69yPly/k2KWa31HRq9ZJER5lSWoUWhUKWRylmKOyXB813bCKiiiE9DCLnie6IUarbkIFEIrddoZ9Gqh1qxFIwqUC2+s3TFMg3SqIVhphiFX62FUhikWU8I/j0F8S+okjG+pZbKy1e3JCxa91gL3lWMU1Sv0UyoMnPeWxpnuN52FDRtSuhGpvVjOjJPE8ortG25GTtG3eB2BYZE3E/cvX3gzctbDsMDWY0MURGrRpVE0RNxfEWad6R5RykTKNg8e8bZpufs7IJV4ykxM6fIYRwJw8zp/rjIyooMmYymHnp80+C2inmK/Ke//y3mohmwvH5z4PbmRM6BWVU+n1rSwfHB24zrLFeXG46HxG4eKUq2I5aJUgO1NJTiCWojxb92ErnQOvRmjVp7zDFQk0IX2XJm/OJLyhQSSUWxKjSGMk6UnLFVfHzZNKiqKGHE18y5szinpfkq4j110WGNwmkrJE0kGLUUgVsZBfnRMxQneQZLFhBsBmKEmJmLJlVNqVpiZnQjm5uUMQXICxUvZ5StSIa3+L5qlsKbqpbvLQqSZWC32MK+quGWvCqWZba1kmPH48jiXe8lQ4lSH8cWWs6PqugsjZH1FnQVpYpO4i/CYqkLdEXutEpdMqYKZU44q/BOo1VL4z1WSbbidpVps8Z0nhgz8yhD+DFP6K6h8Q0mCAkwK03JmhgqymZsiRhjqe2Ku92Rh/1Eyr2QBR0or7De4HSilgMrV3B9y5NNS+safICiMtbMpBA4DnswBd10nErHm6nFHxQzhVElxinyxYsvubm9J+uRUDTDbFDZQDTkeEumEqcHchxAV9rVhmdP3ufyYsO67TE1k+bC3d2RlDOnt7tlOJRRRrxz86ph33tUl6im4T/49hN+571zBuU4nCKff/bwroZ7kzp+eWq4uoNas0BgOsWbFydUilQMqk7YOqKKo1RLUGuKLhgrAeTVt6j1FtYNZgZXI1qQv6RqKdVRaSkkYp2x3tBsnLzjH47okHBKkbVDKyvSzVI4dwL2cl7T4DBJY5ODWHGdAIoiRaimYyDNgXw6kZWhKA1ppi6h0WJfUdSUqeNMyNKI56QoU8RsOqzVhJDk/Wxksx/mGZA7qBRRuFn9SO8TdZH1FlPBLn7DR9fF3/brt6D5gUKJbC8UcpXDJgqLQg6BUmUxOE2R0xDRJaNrJcyZnCJlHnCqst0KMte7lraLbDeTWNeV4JSdARVGas6EOTONM7vbHduV43zjyXpNVpY0yUvwoisk5Ti2T3hze+Jnv3jFOMzE+chF/4zV6oy7+UhNkUllctHsTpneRi7jhPUrlL/gF7/4lN39gWe/84c41+B9wCQJJHMM1HLgqrvk2fac968vWLUdd7tbxjzzVs1M4cTLwxdstldcbt7jbTrny8Oa/Flh/fbI52PmcNrx4uf/FzGfwJ5I0TJHJ1IoNJSfQ51QdcejfLK7esp7f/CfsE0HNnHHsNsxDBOv9reM88R4v6OkTM5SHDe28oVzKOfR3Uv6vuef/qN/wPWzZ/zk4kN+/ckbXr36nxciW+Blsrw9Ga5+Xbi7i/yX/+SabOBHv/wMnS0KiytHTNkT8yUxr9jrc2blaNsztPOY1RZ3dY798Ar3utJOR5TSqAJTXaPqiqI1WQ+EOuF6z9m3zjm8eMX+k1fYUNgqzclJTkQ83mNU5Xf6FtU0sFrR1owfCt3UYqOhVx1WVab6ljAH7h9G9DRhhpMYko2S5yAmQl48DDisUnQWBiyH6pnKQMaw8s/QXcdhEASnMpEYA6fhhGssvnNQErrUd0VgSQ7rNauzFXqhw4ChVPMb5kUpEJcg0QXT/GiAf/x+rZW0NFMxPsr48rK9quJ1KgmjJSxYWYs1FusMi7MdVaU4UyVCSUKszIXh4YBSilVrUHrBK5dCSYney+994bbMWfPpJ7fEceSwG2jOLOurFaEGxhzIujDXymkSUMVljBjn8ZtL7m8fePnJrzl79j7b6zWtT4SmQmsxKaHyPW3j+daTZ6zXPefbDdM0Ms0TB50Yc+FmuKFUxXsX3yTWhs/HFcODJZvAbcgcguLlLz/luL9hZk+ycDgKMSupRM0Hajmiyw5VRwka7Ho++MM/Ytt5LsIDeZoY90duT3tuTnvG+x1hGImTbPHWTcQ4y6/WZ7iupz074+9//B3+8R/9Xd50F9wXyz//5/+a1693DKeJnVb824NjVnCWA9/6vSueP7/i4fAZ03QEJc2Ur0dK8aS8Yq4dk3EY12KsR7UtqvG4JxtMrfgwiSwhCWBlyq0MnnQikNEqsblqISVOn72GWGi1IhtH8T01BcowcWE1yrXQtmgFNhRq0JRg8I3FKUPmRC2BYR8lv2MYZAnkNDlm4hzJJS4RAlJ8WSVRF3NxxKKY80DddHi3YZ4SIWU6LTKr+XSi1IJpNIVCqInWOVwjciwquNZLHMFC3RvGIM3U11dTX9vm1lLfDR7gq3OUi/yTkuCma5ICJSUJ4S0pLvI0kf0Wbdhu9CIVjGjAGYWqGXIQ7HMqzCfZXq1bh208hZU0dFHADOuukkxLNB0vXzywuz8x7g4YXdledFhl2AVBO09UpqiYhsJ2k2gbg+03hFD46c/+EuM7rr/9u3hX6ZpMbQ2qWCx7VEl84+IZm77nydWGUgqn04FJJY4qcIz33B4PPH32Hq5b83Lc4KKDJhLI3ITIw5tX3L74FVGNFBc5DZYhGuLgKXWmpheoOqKKAJFwhuvvfo/nH3zAZd7j0szx7oHTNPFyd8t4PHK8vZe6IBZ6l/G28ulmi2lauos7Pri+5L/+h3/A2G54257xx//nL/g3/+YTpiEQU+Yno+N1UTz/NPLeew0ff3TFl6/veX13S0a8pracqDmQckeuntGcSY6Z69DeoxuPfnKG2naYNKFGGfRgDEH1JFXECqBPJDLdtqE9cxw/eUU6TTQFqrYE36NUIZ4O9BX6rkV1DcoafJbwWR8arNN47UgEUh0Io9BW9SSyMe1FzjSPCyCoRGrV1GpkI2YUI46IIU8R6x1de06pMMeCJePIgv8uBdc7CVi3EgmTxyBAoSLDCOPdOxiYWibrX68GtZbYCZHuiVJBKy1FZvn6FkuJ/11CNKhoYhbpe5OLeIWdAJa8b2hzoosBo2Xx1TYOqzXkWbZeqRDnwLg/0TSWtrHUrhUgy7LFXvlCUYZLt2W/n3nx4oEwBvI8sHp+ybpfcQgjc84E5M98GDKtTmxjwLge5Vo+/8sv2O8OPP3293G2pWsSLmvoLA0jNR04357z5GLL1cWWpvGcjkdCiTyoyBgGXu5esTk74+rymn1aczt0qBtFf5p5PRWOpyNf/MXPCXmguhNzcBwmT8TJOzp/CmXClFup4axh/fQp3/nhD1nngXU8MR2OTOPMFw+3nKaBw6u3pJAIkwwgV03GtB267dD9K9q+57/5z37Ik6tLXvZXfPJix9t/8e+Yp0CeI19ky+1Bc/6iko6Jv/Mfn1E0fPLZC0qylKoXj/CRXM7I2TOpNclanO8EetJ1mHWLfdJj9uBSEOhJgVg9lEZkpzoQakQ3huZpx3y7Y3q1w4RCpxSzbajGkqcTGnjWOpRz0LW4WjBzxQeHiRqPx6hKYk+KmfEUUSGgp0micDSkSRQEqcwyeMailcIZCFUzV8ecZ1JReHsGjWcaI9RKbwRiNw+DDHmcklBsCq5tlzzPjFLQtEKOVFoRYmKe418b6P1/0kypRUahrcGiiFOQbVQpy8C9LhpcgzIFbQXXnVNgGCdymLFGOlTfr94VmspUSYgOEzUJ9cdoRZk9tRZWWpDQ66dbKJCL4s3dyO4oQaKqFFxQFOWYvcMm+PDyjDgpwgRKzYTxFjU8YEpldfGM5Dwnf5CMjKOmGllNb3uHUy1luiWrkW7zlGwVeVL0VnHeKLqzjNnOfDq8gZPhycax9prr3hNqx0ffvWY3ZW5PSTwIao3qz5mM4c39Z+wPN+zHHblMRGaKPcesLijTTI1HyCOohFtv6FdrPvzu99EloF78mIfTntenPdMwEELgOI+knIiTGLtLRkISNSgdQI+o08TJHfgf/+WfsFqtOK6v8Lryj3+g+OzO86OXljrPxHHkZ7ee3VT54csHzreGv/u7V5zGzE9e7bl2nvevP4BwTokbzm0vDWy2TKUwznf0c8bHLWl+IAwPNCis6kkpUs2IbSNVJaYpk3XE5JGNj/Tbyv5YGWfoW4dtGi68JqfA/f4e1YqM5RQDpxTZ76LI9YKlmsLbfCMekCRggxoSuWQxVlPRSsm0USmcmTHe4lYNa21plCWplqIcxIkxR5RpKUpxM4mcLkwnem1pvAcK1TS0mx7nLaY1KAtKpUVfbBZfh0xKCJh2AAAgAElEQVQGf+OriuxJrq1FEsFjEbgAKOpjA1YlBC9F8gKgsEXyQWzjJLx5KSQbXaFkagry5lOFmqJ8T8k2zHSNXJhVMU2Z3f6w4HQzJgudKRnJgbroW7LXRBdQ3pLmPXUa0cOIvzzHtxtmP1JygFlTkwJTaK3h6qpD6Znp8Bbrz1mftcThgDGK7Uqz6hX2LHEqA7uHwKrRtGvF08aC0Zydf0jIcAyVVDSma/BtQzQt96c9r3dHbvb3jMcHRiaydrjtU4iV+Xii5JGSRlablm614tvPv8Wma+n3L5nfjPzs1SumceSw23EMM8d5Ik4TOSZiFDqb1QVtNL65R/sO267Zf37Ln//rX+LPz7Btyw+eKD6+MPzZpx3TlJmPI1/Mlj8+ePTVzOX5geuLlvXa8nAM6Fy53DzB5IYUt3jlsMYTi0gr5zxSp4nz1EKFNJ3k3YanZkXKAUzCNIkUC5WCKhGjEptVJU2VMRes1+jG0VmNM5nhNJBLEekOi+l+ykzHTBgVh0ZzygdiCbhcRGs+C5I2lywNmIJqHFVbjE5CJOtlu7lWMjiIVfJ6wjBQlUVbwxCE+hjDjFIFv4QYa/fvaXuzHsuy9DzvWeMezhRjRmRljd1VzW52U5xgU7JlWTIEXcgjDF/5J/g/GTBkwIBsGDAsCrBlmSJtEbI5mM2eit3VXUNW5RTjGfewRl+sHVnVbFEkL7QLiURVAQcnYu+11/q+732fV2OrUpQ8ND2KYmk60AmKp039eZJSfv3Xg1fqoRGRUppofKLIOKaV5lMgxVA8tjmhIwirsHU1fVzxdSFyCdUlT2srkoJ+Lckw86b4BSgUzfX9oQRsp4BIoKIoREUFc6WwqxneOFIOpHAoJMd+i65r2uURyXnc4BFBQydAl67/yXGZNo27a3Jsma1WRWLsC2BkZgV2mUjW8fnuFqMky7lkqRUnVnGyuqQLFxx88YmqpkIrSzItXT/y7Pqe3d09m+0dQQaiTIj6gqqp8NuhePlCh7GC+ckp5yenXJyeU+cOnv0Zn1y9Yug6NvdrBudY9we8cwxdRwwQQi7rR4Cp1pPq455nbcvdpzeYtsUsl8xrwT/4tuJPn1W82ibCvmczwB/5iq/FyDtf39EqeOftE4Y+8uLuwJldUNea5FaQDTNZEZGMSeEJxHBgFi1VFETXE8eRSpZmYIiOJDKqiqSUCCEBAZlg1hQ/U59LhlRdaYzJNFriupGx74u3yhgG70gh0W22CCkYe8mYB7p4QKeMTpnsSgc9xDLpNBIQJcpAioiSEVlZVKVopSILTdIVQkp835OlQiiDj7mEV/uRHANKB5LQeF8w5mZmS8EkKXCKXCbXxXf1VcpfuaSYii6pkVIV31KKhRSoFNrY6TCpC2AilaItkRldkRpaa0uGna6QUqCkpBIZoWZFDpsTttJFEhhU2fNExsSImTeQy9Rrtx3p++KZFzmjQjkkB60RCc6WM2KViSNIEQjDBjHs0DFTL86IytDZAwIJ/UQSlYnFzGJUUxQK3tEuTggKwkHQaMFRI6mPEmLheNnfkTvJ8dxQG8mbleb8eMnZ2ZwxZrqY0UIBFaJqcULy6v6W7W7D7X6NiwMDA9EcY1crwsGRxj3RdQjhmR2vmM8a3nvzHSoR0S9+wu16zdP7e3bbLUM/cN8fGL1n2O+JMeEcqMlTqbRBGYOo5mhb8z/dDyxmM6rjY4xV/P1vSZ5tDD96qUm9o9/2fOgr7taKy6/tWS4kb7+5YnSJ57cHlsZwurog+zkpNjSqIgnNmFSR4Y87rPEsY0X0HWE4oMlILDFEUB5pA5kyVUsiIpOn1hE7ywwi4x3YSiFt2YNyCHT7HaJKCKkZQ/HND9tC+gxOkWViF9aQEzYBIZH9RNNMEaMKEChpC0KglCt1SFMhUGihaLIioiCG0hRVmpRg68rAwPsRKyR6CulOSpfJtNEIIyaaZX5NXFbTHvRvpZh6TXVRskiMpsypsrmJ1wc7KSRSFONY9IkxOrpxJI6OWdtipUVXLXoyZ9pKUbeK0B2I44BtyqbsBwUkTFukhHOfOax7djcdd5uBl1d7tEyonJk5BYRSZdcVj1dz9jaxMwGHw4099LdoFE31Hl5VKNOU3LtOggGhI/PGUFnL3W6NzyP14i2iFIxaUleSxUJSLxJi7njxck83wNH5BUfzmq8dG1Q9Ix0/5qPnN+w+foaxFq1nYFaMUXK32bDd3nAYd6TsiCSUUahmifDX5LGDNCJkxrQr5mcXfP3bv8nw8mdc/eEfs11veXW/xQVPiOG1pIXp6ACvb8NkMRQIUSAdv3O9RknJoqr54K0V/9l//A2aRvNnG4nzA3Ec+HTU3A2Z+6stK2H51nvHPL3u+ZOfvkSft3z9+ALfr/Buxryek6Vmtw8437PZbUkeTsOWOO7w3ZbarNC6wcVIFAPSemQOBJ1IIiDTQK0DdgaDgz5maquorGGhFWNIXB16RMxoU+GGATeOHDY73DiyPggckVf+Fpsjj0QpNnyUDN7hguekMdRGQ3OKUopKhAIgaBSV0mhdNrIkK+7viwZXHNWkLFiPjuRHcD2VNciUQBSiZb202KaaTNslDFZkWbwV0wb3sDD/4itP0IP8utv+2vchip794TAYwxSOCghVSJcPiE9tRZF1jRSfikjkoCZpCCCnw6BPdJuOMXjWd4cJbpAxQaKSJCoFyrBYzciV4iBHIhHv9zAeUOMeI4+pqmLGBUkeJ2qbSVglOT5q2A+ew/4ePVuhqgpRSZQSzBeCZgZyFtkfPFf3gSfnM2Zty/FMUVvD5fyEPmQ+/PwVIUpqYVGyIsiGbXfL9d2W9X7L0O3oRQkibM/mxGEkb9ek0BP9gGmOmR0v+OCD9zlqKl794T/j/uaaj3/8lH13YL3Z4OMUFD2ZVH0ocIKUizHdKoVQFULP+Ey8QEvFm2dLzo9n/Nf/5Xewizk/2Rry/cjmeuTVAe6T5f13HX534Pi0Zakk37u5Kmvj0SNErhDDDKMNylp2YyGN9bsNMTrmYYnMEMYOnRVSt8W2k0KR05hI0mWCJnJAEzA1DLlo5JURGKuotMQIxWHcEkOAqirP0zASese46+i7grXdhR0ujRwRURliUoQQGIeByirmtSHbOZgSqi4FSFsV6YZSZDRJWsYx0Pcjoi7RAIcY8d5DdOiHaarS6NpgKo1pigwKAUo96NaLhE+pkr/y1dHU6+nu69Xz5T8PwdYljuDBzJ0JKRBjIIRyaAMwQqFMxUNosJ4iKtJYPlUZMXmxHpDbAjvRUYftgO8d221PcNOUOAlMlBN9DOrWMptb9nLEJ4ePA9E75HCPtidUVctoR5QZIEyompRQApbLCucj68OabCTN/BG+1/hO0M4k81ai55EoHK/WB9racHSyYlZLjhrNo2ZJti0/eXbN5jCilEHKmqgauhC4vtty2GzYH7YEBUlBPa8wZgbbLTkNpDCi2ob25Jgnb7/Ft977Orc//Fdsn3/C5z95yv12x916jQ+BMXhiStPBXBDia0sOVqni5TI7pNR8+P2nHM9r3jhd8Pf+9rv8u7/xJlfOsMuZzd2W3ZD44daSdWTcHagXFfM3Vvzs0zXX246jyyNUM0cOM0DTmAoXM/2QcNHjQk8VG2xSJD+QnEPYOULqEqdCRtoEIRNdBiIyga3KMzUMRRJorcIqqKUixIHYO9AGkcAPjjiF/6ac2O9hSAO7sGdGoiUTYym4h6FHkFnNqhIhUFu0SmidkMqgKonRCikVGEPMcNgPhZA8s8SQGUIsksDoqEPx1MRgEMpimnp61NO0GuJUSsmH1fJ67cCXMj+tNUppQl8C66UyxWelH1DQxcOijSZPoCMfItEHUt2W76cLxVarEohqKz3Fzni0LWe45KbvMS1zu8j43jHsR7res7nvUSIhc8aGcoaLSqGt4XjRMJrIYBJBFG++GNeoLLDmCVEVIqkUkAcJupzhZo2mshXrwx6fHPX8gigEw+Tvma8kdp6gddxcdQxDZnl8hpkpzuYaaSqeNEte3u/45NU9xhSQj9A1Lgputx3rzYZ1t8VHxyAi1kqq+QIx3JJiTwzFP1gtjzg6O+Hb3/4W7uYZN9//Ievn13z27Jr1dkPf9wwhlEl6CqT0sAeVfUhLiRYCYeYIVfH5T6+ojea9ixXvv3vC3/8vvsOPbjRPe8l+GOn2Ax/vNDdW8x/edyyM5vJiyd1m5PMXd6hVzaPTE6JrEL6irmqyVIxDkajuhwONT8xDiVeJQ4fWDVIaQkpk4RG6FMAlHL409IxKqAZCUa6W35lR1EoRQib2DpFAalskfK7sP2H0dL0gELl3d+icWMnS8I1R4txI8J75zGKNhua4xCOJMnGWlZziBlQJYkbTHUaCz4jWgITOFw85wWGMKo1BY4rarC0h08CU6zntKrlEdygl/+0AKKSUGGuZABm0GWwVGUdXuuqxSDBc6PExEAnYWlFVM3J0+EGQc8DFxO19ORg652lqxXxmqJJHZ89+Vw43Yugm82gs3E9b4YZilKxaWJ4a5quGnDMfffdzuoOj9wmrFYvaoEyhALUnNU2j2Y6aIQrWh5uJUjMlmGfFTCtmreJuA27M5IMgoYhNQ9YzqkcKKW/x+gteDRAHx/0+EbzipzdzXm4krz79hEWjePzoOce15O99XXGoZ/R6xQ/+4HtcvbyjW9/ip8NNVhqaGVFUpD6QQqG3yOaUqrL88uMTBIE/+O1/xHjY0N+9wDnP4P3kX8h/rpD61/kLMkKvQNYQNsVf5QMfv9zx3//vP0HVc765OuaLw4Gr1JFyz+g1f/DyiBs55+986xs8Monf+HfeRvY9n2x2LMae1kkO1zvG6NknQ561vPdr7zNGwcefv6K+uqPZ3HH65JLVyWPkkWdMPX/4hz8i5syjNx4zIxBe3qFQJM4ReY1IA7u7NTuxY6c8kcje6lKQXz0vCdlRshSemQ0cRMRKaOcntCrzpvUkKQnSQNUiTIPWpXtmTFvyPdSIB7ZJoqsa28xAlFyd9V6WvIoQiQLkvKJVklOraC20tcAuWlTb0MwK+jakiJAFu1ka3QJyIIcCkPi56zWNrGR3lFuUJ4JZIYiVIrkUUTknjNEECrr5gWI1DAPeQfAeRKauNIqESo6YAj45iP4rRB7I2k6y3IjSiWapUVahreb26Q272z3jGMk5s2gt2kh0q9GNpm1rfBQMWIbY47o7Ui5kqYDCSMWsLgbhvQN6Ab0kW0OqauzpBToNRJPY58T6dmR00AXB1b5iyC3rV1fUjJw+WqOt5v0TRZCKTjVcP1vz9Mcfcbcd6LuBYXC4kOHoiGxaui6RxohKGVMvUKtTfulizuNjyw9+939ju75j8+ILxqFjs93ivKcfB2IqpvCHaWGc8pZSLvcjaIWxS+rj90jDDW5c82pv2AbBP/mdH7Natbz7+E3WbeAHcU8Oe0K65cX6LX78as7Xjo6Zz1veeGeJGx2bzQYVRlp3IPqBwfcMWTMKzdGbF8h2xbYfoHfUmy1Vu2B5doSwGVFFnn9yzfpuw+q8vCPY9+U9IBYgHCIf8IcRN24ZRUSI4lIMCobNPSSBjAqTAjMbS7abSBzXDUK1HBuPlsXrkaUGXQLEtRIIVSGlRqvyuV0spnBdtxM4JRFSIo2i5O0QSUaijGWxnGNkpq4yQmuytWir0VbyQL9MD0S+LCZQTCAEz88dBinkKJkLdUlR1liYjMSFhBWLjyDHIi3UctLvF9kHqcg+DocCdkkxUFW6NFiyQ+TIICaaZ3AP7hHQtlAxfSHRVnOFyYp6VtNtOl58csXoAuMYaKzCaoFuFdIq6uMGqTL7hSHqyPZwx+jLQTsiCShmVoFIhALYgoMkN4ZUWdT8BG1moF8yqgPPt4GQiuR1zJqn6xlN3DP3L1gdzWgXNW9UisuZYawaDh189N0fcbsfGHYdYz/gfCLVM3Jd0zkJY4CY0dJQH7/B5UnN33i84tXTj/jt3/8/2d28ZNht2G53jN7Rj0OBGYUHyfKD9F9OUhyISqFMS7t6E3LEH16wHjPu3vB//X9f8OmzO2YXj/nWsuVPxYFD8IS4Zdst+fHLIy7ljLcenXN6sULPHXEcWA8dzTCgQ2IctgxJMGSFPT1i8eYZ/RDZ32xptjsqn5gfXaArg5hFtvcbvvjsC5rlnMXZAhVH4npA5gqyRaQ9OUS62y09mb2MBALeSsZ+TzhkZFSolGlMJBMZRURbxcwcM1eRmY5EoUlCgWkQspAypdQIXaFkQstYfKdCFimXUoUCFzOokjkVUiYpgaw1zayhkpZ6om7qWYUyGqmmd1eOZCHJFHQ4D1OpP9fLK9P2CikVQkjqpvj0pJRIqUpu6JSNqCjh50qUnDhyKvsNJSN06Kd1mxLWqBLvQkST8G6anPsHH2osTUhty0QwJ3QNzbI0VHLKvPzoJa53DGPEKMmsKcWmqhTVqsJWmsNMF9XCuC6+s+kM57Kk0ZK6lux2EB7OcEkSa0PWFdXlE5TcEDTcu4y/C6z3Ce8Fn69r2oPk/osvaCrJ0cmMudV851LjjMWrmk9++Bl3N3v2dweG/sAwBpLWsDzGq4ZwiCSf0Bnq1Rl1bfj1yxWEgX/+j/87uu2G3fUL+r7j0HX044gPvsiRc2kEZQQhTVlalPzAIBX16h1Ue0LcPaePHV9sarpP7+GffI9mdcS3zx/xs7sdn8cDMR4YUHx69wHBNnzwxiUrnXjngzOk99wcDtR+wAaBWx8I0TNkS64rLr72mJAF1/c7zHqH3e6YPVrSrI4RTSAkz6d/9pSUM6tHZ1Qike73ZKFArIA9IjuG9QFEzyBjgZNYjY+e/vYamSQyKhoRqarIKIq39qI9xqrMsQ1kIYlSga4QypZ3uJRIXU8ExEAEBgRSW5St0JNHvBtL7NIYIkkAtaZqBHMlMaZ4UDEWtMZU5Zl/aM/FNGUBZEEIEeeKTeKvev01JlMPON5C19TWItW0kU3d3UQBRmQSiIxWCiM1Y2MRIiJGRyTSu5EYAt1hwI2K5A0zGahEoE+OkANm6BApILwres62JURBiqB1omkE8yNLzJk+D+x9x77rqZRERI2tLZWwQDkM6FqjArhwIAXKAVoooiigACPzhCQVEIrpEmEKxrtZlAmPahh9ZPCRrC1SGtajoesj/fqOozpTpz2nlyseX5xy12rW2jIcrlnffIEfIzEME0ZbIUxNTorkQ1FnCYk2DdZWrCrL2HU8/9kP8N4VSclrgdiXE6kvry/1zl/+uyALg5C2YDFzJmDYDJkffnLP44vEN5Y1t9qhZPEWxBz4Yi+xh4qkjqgaOD/T7K+v2dzdMg+ZKmW6/orsBzAztDrl+I0j1vvA9uoaRkczjlRaM5/N0c2Wzie6/R1JSOr2HYzLpH0gKUvSDUIcUMITgyfmUnxlDSwMwQ10Q4fNNZaKSgtaOeWZSUk1mzPXmUe1I6lCwtGzI1S9KIofAVZXKAGVGDj4xO4Qp6lDhcgj5AhKkpTAxUyUGZTAVJrVCqzOVDphGoWu1GQELgGfRQoRp9sjp//2QFP6hWU0TXlLUVWIMuL1nzQdAlMu91upgjONSiCKv7vI/mLGDSWIUKSIEgmLw0fHGEZUcIgUSruIDLb5Cho1YirQtcI0higDQ+jo+p6cIiZbTKXBzpDJTrlEAlUbEp4YeK0zTqIAZLQovqWcBUSB8EBWRfZb18XIKmti8nQ+FUy0MYxJs+klbttRhS1WOWbzitPVKd6IkqcTBzY3V/Qu413xEISUy/rRFcFF8AkpJNZaqnbG0hpWEl59+lOeP3/G4dCV6V8ciSniYphgOmlaLaWBkvMkjhGFXCWFKiHd3pBFps8K7yU//XzN6abnb71xQtIZIyNRBHKO7MbIq4PiSapZqJbZXKLVwP3tDdYXY3nye3K3AVWDrmgWb6GWM+4OW7KLVC4ga6jqGmk8wkai7xn2W44fn5b7sytTnGwsUMI8Q8pEV9YQRPJMkqXAHRwkgaVBSKj1FCicM7ouh7NF5dEyE7UFbVHNcipSvjS4q+lnHA6+eFmUKRKjFEuou5REwMcEskQf1K3ByITWsdDH9ENQ6MO0qRRFeaIspYkuVmSpX108X9mL4LU/5OF/iimf6mH9pCl0NFPCtKdtiZQj3ke8c4QJ2a6VAMrhz+fiN5RhnGh+EWErhLakBDlmtMkgJfXCMg49Q+jph4GhG8BLkpZUukVLg8SWKIvKlGgP35OSR4hSkCbUhEynNGOSRAQQSYLQSPMw7a7JBHpXpkBCG6I0bHpJPzi63ZocBvAVx2+cYBvLrlZ4H9je37DvXCEPelf2banBNgRX8PVkgZKapmmZ15YjLfj09oqf/uC79P2A844cPflh/eRUpP6ZqblXQAqvJ4ei0NeybiF7ssw4BClqvrjuOOwP/OZqzslMUinPKD05esZQc3VQzJwF2VA1moX0dOOI945ZzIjoYbgtsmhZYcyC9qjlcH2gd47KB4TPWGPQlUGZyD4H+t2WalYVvPJ+JLtIViUSQEzp69GVZ9xnT64FuZL4fsSHgM0NErC2PHM5Z6RRJe/IBFoTiMqA1Mh2hVCT7FsU8qsUJWvu4HLx8UldMNMiFKmplCQhCKlMbJniC2qjMKZMbLUp2WxlcRRZdxHjTTCW18Pcn99/hJAopaZcSoF57ektP7v8SkBuFhk9TYiVENjalumx968lwCmlAqwJClKgkiVj0efy+1MP6yc4UAphmwLgyAIlE6aCaqZL5mga6F1Pd+iwWqKSweQKqyrI5TCtrEImCLHQRYVIgCyFqyjyOJEpxEE/rSVKqKtoQAgHssK5wOAjSRrQir3TOJdw9xtmVQEFLU4XHB0fcTCKTkr6/YbN7R3jkPCuLz5moxBVS4qaNJRmhBSSumqYNZaVUXRdzycffp/DoaPvB3Ly5BRwcbIihAd0d4mWSKgpZ4+pOBZkXYGZkZUkRsEha/Ih8eHPrnn37cybj5e8VL4ANmIgJcltL2kGy/tyjqkyi6Vi3G0ZDnuqCDpm/HBbrAG6RbJgfjKjGxO3ux24gBk9WiqqukLajAuOsduRkZjJB537SFYFeiTQCBHIIZZMpzSWCmOuib4oHUy2GCRaQyXL+klSYNoGq2FRhfJzKo2q5siqKbcRgVIaAWjh8SExDBGkLntQ9pBTCbOXZf0kAchChq0bg1IJJVPJ6VFFLSOmwN5MiQIozXBRBhYp/sIa+jddf+ViKiMKwnNKrJfKQAKbdUm+prxQjS/yvyo4jMoYmakqQwiBYXtPimWjD6Mg9I5t57hf7zHjFuU7+onccRQHovO8uNmWL2oV88awbA31vGHeWE5mHmEgf9szHBLjGpanC558421+9nzgo2cdN24k3w+sLh5zrC3r2zWOQLQBaSrk7Ih9f8vh5R2jnREXS/RhRAlNdWEY+p7nP/kRl49bHn/jG2As0lg++No3aesZ/+v/8NtcPX/Gx1ev0Dnw/WeZv/HBB/zt9j2emciVXPOqc9xHT98/JcSBLAZQGkxNPvTE3R26PkbVF5y3B6y84w//+LuMQ8/ohulm53/t4fwvvop7L4cthD3SHCHMiurRb0JY425/n23X8fz6Gls1vPfuktvbltHXfNQ/5rBd8OvX9+hhz/4nn1G5A0/cnstTw/FSc/nuimRO+cbJW8TFGemX3sP2iuuj9+m++xEfPw+cVDVns8zdbs/+sMfWRyANOSzI9oh0eYnbbwm7DXV7gp2dc3osSMJxePkR1kou3jrBhxl9v6DOFTUVqolInUk5QBZIv0BkgSKRpCBpQfIjae+QVhecct6Tc2K/jRxSpguJuB2I6bZ0BZXAt+fIypJ2B8I4MAy31EtNfdoCGRcSYb9H9D02r1DWoKuSDzLGLRkNNNRNS1XX5QD0lSvlSdYHU24PIIrhUWpR/CooUk6lEAK0SGhVjMPRj1MK+4SEFoIUIm7bIcKI6De4MDL6njoV9PnmboN3DmkkWisWyxZVWVZtIW1V8wr9tufiKBH2GYHm5J13cUnx9MWBMUW6zZpqfsT58Qn9/oAfOwZTvqtoWmKOrNfXBKlJszkqBKoQmK8UzATPP36BzIG3v3VRfDOmYj6bc7I64cPv/4xPfvo5nz77AndYc/xF5mS15D+YPSZYw5XsuT44rlJmfXjO/nCLTwPZSGRlyRHGq2doXdOsLng0G3k8O/DjH/wx//L6GTcvXzH0Pd6VQ2CaiEBxuhcpp+ITmGYQD3N9IS1SH5FGR//yh9Tzc+rT73D0zi9TL1aMn/0e927Hi+uXGFvznW+u2OwsN7c1Nzzm+7sjHu0DotriXt5C33HU3WMtrM4sSEtWjwj1EaFawKMLYjVjbo4Y7jpunzmibDmvwAWP2/YgK+rZMUK0ZBrSqkWEgNvtyULTHp8jWoVsJX5zRRx7Fo9OUEYzjjUiCWy2SJWRpnSPC/GxhqwfMuRJSpYcnNFPhEoFMoB0hKHQJUfnCSlz2PY8CO6iaZDzBWJwZOeL74sAjQYpcL5McVVOMGGjC26tAFdKnlrRpZq6KsSwrwAo0kTrSw/SPkr2lZAaKRKIIvsQcoJNkNEPnkEpindqHMoULUdiEMQM+0PxpMi+7E8+jqgcqeNIf+jYb/YoU7qY80WNqQztfIGuDa0J2OMD5huR0GdiD8vLS6rliqcvDnR94LbboYzl5Oyc4D39vmOUiWwTsraga3aHa3IKhLoFmbEHh5op9Jni9sUN65sbzt4/4uTkhEtTYW3Fo9NH3N9s+aP/5we8un3J+tXnLJ7BTAv+5t/8LR5dnnI3eO52jpuY2IxbtvdPidmT1Yg0pwhTMVzdEodEe3zOrBZ8fdGxu/2M//GPfsRmvWa72+C9L9laE2U3TBjs+Hr6/vPrByGQeokQFcP1R+hqxuzoW7Rnb7B68xvEq++xuf0Jr+5vifS8+9YRzi95/qIl1Et+sD8m7TXn+z3hbkvc7qn7e1RyLA/DkTwAACAASURBVE9qlJEsL4+JpuaiOYHlKfn4mL5aEo8Tm/vMdhw4shKpEv1+wPlM1a5QekYOFbmtyG3Gb/eIFKiXJ9RawFwQhz1+u6FZzamXc5yrSSFhc1VIlPYIRCLliMgGUsXDTCFJMQkUHPiI0Lo856on+UQcMy6DyzB0GzIZZVRRq9RLSJnkHCH0BNexPG+xbUUJwM647oBQD1OtUljlHInJkYRBZIXQmYfooodLCInSdgru1RhjUUrjRgc5U1XV5PVV07QkoNUElahtKZ6GfsoWjRAiOSQGF+i7Hh16VBxwyZFTpE0j2XnWt2sgI42gri1NW2PahqqqaJsACuS0fvwe6vmcoydvcbN2XN2NbIMj7wZmJxcstOGw2eGJJBMQWiOaOf2wpt+vCWZGaufow4jMivpE0Y+OF598xvlZzcnbb3I8NQAvzy6xpuIP/uX3uLu65sefP0dFx9HPIu+//3V+rXnCvcps6Ll2kZvo2W4/Kc0Q1YPRSFsR1j3D9S3N8phqccE7y46KW/6Pf/4nbLdrbu9vCT7gvZ/yxcLrd1lM5W1WpLHi9VQKQKgWoee47RXxcE97/BZ2dsz5+78GbsP26f/NTXfg+fULlssZv/rtY15e1fRDxcfjGbtdy7u7DuU6us9fYJPjJPbMl4ZmplleLslK8Wh2TqoXcHGK8pJde8Yorri+zrTaMrfQDQNuGDH1EoQip5psJPlkie8HYt+j6zmzZsF8IcgExrstUksW53NirHCuxmAxGJRNCJWn8HeBjE35m1SKSVVolQwRodUUojtAyrgu4lLGxUw6OFLaTuqITKyXyFZDN5CCJ7gduhbIVpf9JSZkGpEqECRlb1OF/Op8JCdBSqUAt001QVz+atdfo5hiCrOSU/ChojShy8gtTxxBqQshpgSyRhBxmmiVTj+ZcpARU8BfSAx9QA0e6R0uFqnFQsbiEYmhBD2mADGQQ0AmgSZhk0IDj1aJ0EBcWpbnc974+iM6vec+al5d3dN1IxdaYaxm7T05JKQuRZEyhtBlvBuhmSOMITGQyVgriWGaNAA5KSo7K5OQZsasqjk/W0BYYTjFjwP9oWc9Wp6vLa+k45Yt/TgSUiBnB/hiMBUGcg3JIdKIUhJTVZDuCGHPdrvGuZH0c5Sdv+z6hbcn5ClOTxmkqagqQ1aW0VZEKelDpm0kdaXZaUHw0LuBTSd5dgvLNDI3mpmyLOuK+VzStAIxb6Cqac7PCfNT9vWcVmqOTwVxuWJj50SriRb6daIfMlLNilZcajKKIUKFotaKFDOSgG0MQgvEXGKVoBGexihmukE5hQ6AUWBKeKJIghwkMQvcFOqXQyaMnuh6cijFVLaenBJDJ+gT9DnhfSiFhjYIrfHaE7QgjB0pDKgwoKKBXHC1kZJtI3JGlWyA4pESX3YFM4W8lF4Pj39+Db2uh4UoHV3EdCh5UDmVqagQxTOYH/RLDxv0w+eIqSDL4F0k+4BwHu89znuMiBgS5EieTPJkVUwdqYAyVM7onJnVvsjaG4OUhqOLI8aouBvgcOg53B+oZ4nGGFxKjM4jpSUrg9KmxB8ERzayZEHJWGRYE+JVyvJFc1ZIaWnaOW3d0hjLfFaxWta4w5xeR8I40CfN7V4TDNzFnt3B4VIgZkfGkVUxkMo8dZSjQ5mS7yLzAXe44/72iqtXrxj7vsi5pmDjNGG1p/FTIU6KEsQs8mTeFkzI5eIOzXFAaolu5sznDe2iZtsWkXgfBMIIVnNNcIqtFITg2Hcd611mYRUzQGuFbQzGlKBWaTTCVqR2QaxW+KrGa0vbWhhgb2uSsWQN0WX8mIDiE1CykLQK+VFi5WQ4T7HIWhuJcIIkBVaV7D7dGIgC5SidOVOCO4XI5FFCEMQsp2eqSLbTODKJx8mqdJ3DIIhhCk6PpTNdiiJZAs5lIPriNRRhRMowdfumsM+vkCvTw4LI6UuYRH6Y1P7i64yveEQp4ruvrIMiz8wUM7pAISdUNyJPZMAipS2wpAeBIfgQST4ixkBOxY9qiCAKFOZ1KPY0rcwxIrNB5ojKgkqNLOeJXEvSwrK8WGCXx9wPgqwHutsDOQtqoxlCIDkPQpW9cvoTYyAlD60qh+lcPFTWCJSmjNSyhKyp6xlVVdHYirG2rJY1IrSEcYkIjjFGNr1G7RS3cmB9GBmjxydPxpFEIkmNwCCSnTLqPNUEXnDdPbvNDS9fvcSPxbdQCKQTKv41jl68loWVaeEU7P4wzRSq/N7jiKBGNzOatmW1rOkODUNX47JiCLBalunLrRaQE/uuY7MP3G0zTYhUSlJZjSaVoGMjEFVFtjOq2ZLQzPDaUNcGLzK9rYg6kXV55ZWsLlHWj7IFgT49f3ZqEJfpqkA1GiVBeIE1GSsjulJka5CuwHow6st3R1DkUbx+Dss+kIiDK91yHckyg44kD3EQlJMAr0OEVW1BS4Iu9NboBphycQpYIr2WT+YUC2NvWg9lCJXLFEioSfL3i/uPmBQRUpaMKqVNmUb5OH1O+Xmk1lPw7qS+mBgXTJTAUkTyej+KKeNdIviAiiWglZzIsqxr0qRWeuggJkrzM+eSPSUEy1kiVZBbS7Wcsbw8wemOLh/Y3G8Ye8eRlGitOfhAjgUyILVBKk2ciNK5Kt7OhzOcMZIQRZn6ASSFrip0ZWnrmkpbVvOKODb0RwvSOODGnr0z3Ow090S2eaAfPS4FUi7xLkmpCdRRQRyRccRoQV0bktszuHuur1+x3+9wzr2edOSHOJSHA8FDUDO8/v0/9CMe5JckTyahbI1t5ywWNXkc2DYNSWl6n5k1kqbWbIwkOEE/DOwOcLuJtNljlaTSikZYqlpiKoGoaoSx6PmSVM3xusIKyWwGqWnoTE02iqwhHDLeZ6Sqy3l+mm76BJpCpnx4ZnSlQQlyL1ESjAgYrbC6QkZZYsj0A7hLTc9E2R9CVq/f88lHchhBq3L+UYGcwQ/gcsalTAwFzoWUIAVBBZJ6oKw6RBwRSfEA9soPayZP6ynzlXdaOW+lLJA5/8L285ddf63JVJISrQ3aGEYPI5lr7xiHSNgesFpxcrIqHielGHxPCIF+6AlhIPR7cvJICvs9pMDBR9ZdQgeJShajBJVOnFysaFTirbdqtM7YFobR0w+e0Q8MY0e821LX8M3TQLW0rL79CL18F332t7j8lQ2/ul7zj//b3+d7P73m5B1HrSQ/en7AyYr5u29jjKWylr2UhJSoZwYxq9h/fENKcGYsYmE5fvN98njgi+++5PH7c2Zvrfjwd76LdAP/1X/6dzk6qlHDKz59dss//b0PeXW34B/9yYIwvCK6O5x/SUw7ZGPJ2ZCiBY6RhyeICMbesTxS1AvD1Uef0++uivzky1PfX3D9G273g7lNKJAKVVuqOnIp/phYSdZP3kJmwS7BUsKJgm26KVkZN09Z7yr+aXiXX33/Tf6b//w/opF7am7JN1ew22LPThHtknj+KzhzhPcrLrTi4i3Nj18+xr21Jz9asl/B7ceC/Z3BVu9QV4qjWcV+s+dnn73gvbMZjy9OePnJD9lvXnFx+Zi6rjh755jY9ew++YT2+IyTtz/g9otrrl7eUjU12mjmtUKkzHhzw5Azd1pACOA9zh/wfuCAwAvAaqIwDGlJyOBywLuAGx2qXhbJ2d1nxOwIYUulE+8cSVpR4TpBUrbIn7KELNCTCbf3PYKEEdO4PksGZYhSl07uz62hh2Jp0kSLzJgyLmT8UMbjdW3Li0oUucIQ4mSgH0mhmMMfwBYpRXyMbLsAKaOzJctM1olqoZm3isVZA9mja0r3ZRyLYTzcY/pSPKyqiJ5l6stHqHaJmn9AzJrjJ1s+/bMveP6Dp5zaOcdnkZu7ns3dgfk7F9jZHKsMwQXGmIosbWnY3O252++pyTTWcvTogjiM3H2yZbYItB+csrnbcnP3lCdfv+TXf+XvgPt1vBv40w+fc7uJ/IvPFgz9QHf/ghA3BL9DVgpbLehCjcsV6XCByoFF+4rFCt54w/Dph5/zR3/6+7i+IzhXZBUPtMRcpBTFtybQUhf5ybSUsigbhBTTS16Gosk2NfWqYXZe81b9OadG8PLrl/j8mH0WaAlHCmLesXVb8u1TwlbxI/kOr85O+If//i9zsrCocAe+h909sqpR7YzUXJLtMZ2oEVnz9lLSCcn4xjm2kfgW+r1kv5bAEVULTVOjVeb28zusgrcuZ/jdPdtnn9LaFfXJEc2xRWSNu74nJWgfv03Mid3tbcEmW4MxJYwzrA/EMdJpQSSDd6WrN3YEwAlKA0MpfJoRs2YMjhgjrhuLXKyeEdkR8jUp9uTsOJ5DVZXNM0tTpnEPLj6higl+krsoSr5TBlJOjK7Iqv6i9fNAGQsx0/lI9JEwjlhjMOZhW5OMoTzv3o+FVOeG0pwTmZhK4+MwBPwY0EkjEGgr0VYwX0jmcc5FWKIsSJ2LRzgEQtzBCGkrqXRmdRTRyznmeIFs3kXYC5rTDdv1jn/xP39BZmT1RiD2jvWLPdXpI6qzc4zSSAS7nIk5FdkTgfuuY7nwHBnDYnWMkJb+bs/17T3VLx0hx8zHH/2YxbLhP/mH/x4ijeA7fvrZDV+82PDh9YrNh5ru/gui7/B+A8IzO1uyD4qd0+hwgdqdUJs7jHW8eakZDht+73d/l7E7MHZ9kT+nSMxpCmUtxYIQhbAltXl9dzISxJRvJCjZfEKiqhnVvGF23nC+3PFL8k+5v5RsHv0yKQt2At5QoFJg7p/iR4juJzwbTvGHJ/zNX3mX977zHjpvkGkgb+9KQ2uxBLMkz54wYknBclZJTmuI58d0VUOcKVJM7NaC4BuqtqFuNHWl2F5tGPY9bz6aUTWC+88+QlpYnJ+jZrBoj/HbPcOLFzTnj9Fty/bmljh61CR7s1aSh0jYekYJoxRFWp0Cvj8Qc8nHy1KWPShbQmqIJCKJMHhSypiFRehA2L4kZ0cMHfNWc7Qw2NyX/UFZsihN7ELS08TJJygJU8EDkIjalMbRz50JypRZW0tVVUShCAgGoYkpM/YBozWLpS4nviyJOZZ8Th9LPIIfyDkWz3kqkzkXEt1I8cOkkr+lVaI9XmBk4vhRjVAZXZXMLO88MY6E0JEPW6SB80VAN4b68g1kfYFsv8Hicc9bQ8f/+8/+hPuPr5hdOiol+ezVniAt9ZtvorWm0qa8M1PC1hLZaHZuJMbIsVY0sxknbzxBjSNXP7nn5MkjmkczXvzoGcI5fus3v0kzMwj3G9zeH/j+j1/wat3wv/ywJvRr4rjHu1tiOmCWDSnV7EINYoXePkKnxGJ+x+WZYnGs+O7vfZfbl58x7PfTJMp/qUrJ5Swtpow7oy0gJll/yY4UlGlgsSiMSNuiTE17WrNcwtflD0hzydW3fwmN4D4L5qrsQffxijiOxBefsL2v+FfpHd5944x/8Fu/glUOK3o4bGHsUPMl0jak2ROiaki5ZqEki2PBq/MV8YlHHNW4Bg4vJONOo6szjJG0tWE8DFy/WHN2VLE6XrB9/inj7p750SmmsrQXC9LgGF++wMxXtBdP6G62HG536NoitaKqJCJDvN/ic6ZTojQFvCf4gRhGnCiN7Gw0SWhcmpcmci5QlDD4YmMwFr++IuJJYY9WqexBuShYstAgdUH+58nHqBQulOJ/UoKT5SQFd+krk/e//PprFFMlODSL4lfwSeEThALHIQqBR3Bwgeg9bhhIuUyXQCGkKRpVBFpntLJoLMkEnAoIV0MYsDpiVSIZR5aRWs1QOmPrNOnLc+ngpISpwVRgVcSKjPUjKg1o3dHUkTRTLCrJXAryYYQsuTw5oUdzcA6fi944ksBIwnQTqQwiG6LvScJgZjNUduQusN+uyS804WaLCp7Pf/Yp/bHl3VnHiYr88jffg081T9ea8eBw3T0xbcm5J6pMkgpdHZP/f8rerMeyKz3Te9a0p3NOnIjIiMwkk0ORVWSVpKqiqoWWALvb7W7DF77xpa985T9lwJeGf0NfdBs23OhGo2RJqK5BVBWLZM4Z85n2uEZfrB1JUi3L5Q0kkIhMJMizz1rrW9/3vs8ba9LU5cwT0xBsz3iwONtn+tY/eJESf+934ls/+ofmIHPqWBIkPxBtYBwVum44OXmIG0fG/Z4pRLqQCHik8EgRMbpmef4ui/N3KR+cUSSDDi6HqQ2W6Brk1IAoSVFh70ZkZajPJA9OGj7+0SPWa4WSgmHwtO3AOHQYL6mnBi0sae04boYc7Jq2CLfFxBUlCSFLQpLsu0AoPFWf6XwBz2HoSaPATwoRYd96fIo4kw3RzgV8mAjRMgrwkDtTIpGwSKAUIfsYiiJLV4kz7MTjlaDQEl1KZKGJRUlS5q0JHSVJWpPkN932OG+SSSom5xlj958Xg/faaBIh5S5mSPcB2PltuZg7jN7O2vSUQw2Raj5I1Uw+S4hKIFSi8DqHBwdNiiXEElFk2o4ua+Q8Vk+EWUIYQIEqc+6CUgktAypaVJxQ0iIQlKWiLhSNlugQCN3AoqoIx4YABGuxRb7UoSCKhPOOpCSiKbJUxNucf0KCPuKsZXu7JQ2O2Dq2VxtkmniwjNQq8ej8GFkJvt4awjDRtnuC3+PCHqc9TglUsaQUNWmwyOSpqhpSZHv9gm53g5sGYvD5+z+/n/toB1S+qAo5Z6ikWRb2tpeb3sJBRLLzRE8SpwN+f0NfV1QUrB88IQpNv91hQ6ANMWdvCJ/tllJQLZfU6xPMYomuNcINeSKiChIl0ZVQGRCKOERC8hRLQ6UlDx4tc0NOykz16h1umhHJxxVlKVg1DqMEWo0EOnBbZFBoKoQoEEjsFIk+YaYMuYkEovME6yi0wCvB2AWCTQSdQ3Wd86Tos3+RlC2kaERKpOSAiMYhRQKjc9YNCSkyFjvK/CmaIvs70CavH6Wzb0/K/B5k9kjd+57uC42YwLocsv5tZXNuIuZ3FO/Xz7clmwh8SqSQu+QxhLfeQ0QGPCSR37eSAlFIlEwUQUERkF4hU0CrgFSBKDM2WmuJMlmWomPKYdxBIlUm/ykV8j6OQ4URKSaQlqIQVGU2xxMgDiMGwYOTE3xh8NaCyZ3/PBQVuBDwKSLqgqRFppgpgakrxNSSnGe/3aOVJhwsKUaun79iVcNJEzldlUT5kItBs5siw9Dhxj3W74ky4EtAVtSLFUwC/EBhCowMtHcXDO0GOw4EZxFvp4Xp7VkjpXzrAUKIt6tFcF+4Z6lohuW4LFxKmuR73OGGSRQcqgqzOuN8ccyw3+OtpQ8RlRzgMy1SCsqyoDk+pVyuUHWDig4RREYkh0RyJai8fpKFYD260SgjWZ/UOb9LK7xzOUh5cvhpBGMomoJGT5gmUJgRiUP6HUIJdFoh0SANwTMrZzxJeWLyhOSZ+pCLLyPxU2TqIlFFkop4l5Hj0btclM3VsZDkLMnkZo9c9lvlgOr8DS9FjrOIhaQwIk/1lcrRBEqThJynxZokszj5fjp17/UUQuQL0Ns64pv18w35MmRJPHL+N3OhH4XAztmEwTq+UW5KhFQZTBPJwAqRUE2eWnsVEc5kcqcKaBVJOk+ztYpIGVFFBGnzPhuzJ1AZgTKgZUCLhIojMo1IaTEmQVLUZl5DY87VOj46wpIx2yElJpEIIiK0zBOqEBCVQQRNCI4ksmRLpSwb69uOIARp2yN94ObVJaul4uEqsDLw5MlDJqV41Wrs3jEedji/J6Qsbw9KUdRrCDVpHNAiUdcN05DPqrHf4eyYGxHp2xdagZS5kSTmjkMk0+TeBqKkmCeIiSyRhjxZieC7DVZY2kVF0Sw4O3uAGyfGfcsYEm2cazg8QmQIzmJ9ms+g5RItpjzNdFNmG4TcgEBoUpKE1iO0xCw1i6bg7PGKepGbI3YKORNuGJAlGFsjCcRFoCotSiVkPCDcFhXr7PYSJQnBOASSDhRTJqtGPOOY5XzR5svU2GXmQtAhf/fcLFuNDj9fpnIpm+Z9BYwIeSBldJbWkhByrumlyGqvIqtA0uxjzL+yXSlJOftu+c47QuSQauvifw4R+0eeP/gyFUJktJYwToQQ8bohCI2LMd8ay5IpRtp9T39o2d5sqJqKsiw5Xzf5y+YDInmWS41RikJrWq9YWs10OOCGnlKCTp5x/xWkkWa5yHJBJkzVowyZX68ER+tErSK62yEGh//9Bbwr0OdnmFSx0CXvNIrtqsBebZGN55/9kz/jbrD877/4HKsVcdWgmVALTT+NOBvQpysQJf3hClEsqB88ROoRNXlevfg9u8//luPyIaUo+OJ/+d84q0b+pz8/4cEnf8T/8N//j/zbv+p4etjwuvtP7IcXWHuXk9uLBbJc0zz4PmnscO1TTFVTNu9yuPuc8fCKFOcDSNwXF996hHh7ifruFvkPPfP2mnIvOHQXTIPmwp/y4OEJn33vJ9xcvuDp9SW3OrIXuVASMlEWJevTMz77l/8dP3jvDPPOCXKqoQvEeiJWMG1OQKyQjzWTD2z+0zXVScmyPOaTj4758U8fcvX7LZtXe7ablsuLN/jNb5CLwNnREcuTFaufPMTZA872VOEF1t1w5CuqYGl5h3ZSvNgKlt7i1B0hdMTS8fqm49BZ1mSZ0+txQSkC7+kDhwg3XqJ1QKrZnCuyAV3KSMMBrUTWxldLMGs655mCZ91krKcrlhl+UUbEckU8OXt7iRKzNCKVBUHl6VFCEILIC1WX7LuBfbuhnwERkC9SIWTDtg+BiCRKlaVSMRJFnvx2Uy4iD7sWBBSFoSoki7J6K2MyRQ59lIscrKhOZQ61G4Z8UYoepg2TP6DLagZlTAgcRT1f5pSkLKAsQbsDMoywuyUNB8TiXaReYGTFshS8e1KjnaN7fcO773/Mh0cn/PqrF+y7A3FZI4RHVwpPpNt3hFJTvnOCxzJ2W0xzBJVEDYlxPPDmN3dUqmZp1lz8/Ne4/Rv++c9OeO+dNT/66X/NO3HJs8OB4PY8272iHze0ww2pWUG14OzDRxTViu7pM1SKrM8fcdi84Fe/+j8IY5ejE2UmXtrZ2CtmiEJhiryJS4m3Ce8iYr4IiJQvYPcCGSktIimgZ7rs8DcveNZ/zObBOf/i0/eoypJfXv8NrRt5WoUca6BynlJRN3zw6ae8873vUZ02CB2gHzPgorAkWxK7BaIwUMJ4PeDHRPnhgqZS/OizR9jB010P+HHH9qYlbJ/DtKFoVhydVjx67xykILgNgSuMe0kRImUscBzjY8n+AH6MUPUIGUnG0XeW7V1PBRQktlON9YoHRYsgsPOSJBJKhzm/Be5rOMMwG9lDhoMs1viQGFygMImqlHhVEWVClgKhZX5v2mQphpD5MNNy9t7mSw5h9hIKhU+RbhiYJvudHe2+CPQhv9sgND7mJl++80pGH4k20B46nHOYssBoybouiVJlSZUSlIVELmTO3jnOjUHX9xlGIUD5HjteU6gik/REBnqYEjSeYvaqlHXW4GMd9C3JbkCvEUagRUmpEo+OSmzv6C/vaI7P+Olnf8yzi2ueXVwTm4pU6Ay0QNB2PT4qysfHCK0ZDhsoG8rjBuUkdI6nX31NipJ1ccr15R2f/8d/xw/eq/mnf7zmnY//lA8++YRr12FVy5svbjnsrtgeXhONRiyPWT044uGjjxjeXGC71xydLhGU/P6X/5ax3aCDzc0aBSGAn2VIUkqMMXNRrTLKecpk3HyBmmXFzBKx6GYJ7UTwB9puQzo+Y+o/5KeffcwPP/yEzz//NXe7HS+rkItdFdBCUzUNj5484ZOf/YyTsxK5LMAGcIpohiyFPCwgVMiVwB4cw5WneVRijgs+/P4xAthf9Oz3gc11i2/vSPvnHNuKRdFwenKMqmuC2+PHHu1fo6SijEuSWOBESd8LthsIeqScBAGLl5abqw4RMgp98IbdVHGkBxZq4uAFUxQo4xHz+skQBYESCSMy8ERpgVgegyoZfT6r6ioilCKVS5KIRBlIVQ3NMksR70FgUuYL+KxVypLxWR4uNcM40Q/DnGX4rTMoJqzLOG40Wf4v9ewbzm9uPzrsZBm6kaIwGGNY1QVGF/iQaXxFkSm5hTFMQVAFhR9GgrUYCYqAHy7nM6dGiABYVDEiFRhZk6SgbMDIiLRbhPOk2wtYRcTiHIUBaThdGNxRRdge8GPgRz/6Ee3k+eXvn+K1Ii5qtPCohWHyDucT+nSJxjANe4SpqI6PkMoibeDq4g3bLyaOq1NKaXj++f/Jykz8N//0hOXjJ/zZZ/8V5bHjNox8venZ716x795gw0hcnmAWax4+/oDQj/R3L2lWFev1u7z86ufcXv4e1+0oCHiZP88pm6PnnC+NVpooJUkI7BCJMZNJBRFiBkYlAVK4OR5igqDpn/W4suEL+0PeebLin//sB1xdXvDFxTU3KtLKmJvFOlLWC1anp/zoz37Gw9Ml5qhGhS4zdownGUnol0CJWOVL6PBywDSa0tScn1U8frKkux0ZdxP9fmJ3tSXc/p5lHVisjyiXDe99fDrj4CdMfIV311SxQqeATQWTE2x3ksp7ku6IcSKVnt3dwNg7GvLauBtqtIg8KDrGAK0XSB0R+psaLh8dkYouryUNqaxIasHkAi546lqgtMKrBUklZJHljKk5ms8fkWs5kaW6SZDzZpMghZTrMhSTc3T9gPffVRf9Y88ffJkaneV2vyMECCEhK4nQ1TySFLiYMq4ySqQqqZZHFEWBLgzW+zxyFhlD3Y0eIyHolNOhm5qChCuyyT45S59KbAC6TH7R2lDXDYv1CWWlMva8aSkYodsT28D0oiPe3iD8b4liSRArqkPL0TyWTsmxaa85xETxwBCiYYolIozIYEiiIMmCtChAapyymbAUrpDFiDk/4sm7T/hA1Vz+9int7TWTbREp8pevE4twoDZ/x+V15APtsIXFFpJ9UNigc+EdBSmqWW7kCN7jhpZo80j4PqTju1ek3NFI92i6FO93x/tt8v99hiXyJnrfk6hbUgAAIABJREFUwQrOMfY9d9e3KF3y0Z98xrB5yXi4QiqBqBVqfUKqV1y+vEOOkf87RI7tBaf9c7pXrxhvbrnc3dDHGnfZEkVBvHScP2w4P31EenQGzWPs5SX9Vy8xd19TtW/YTFucSsg2UjyAxftrghvxduLhXWQpBEszoLzgcBBMW8+m7xijJ0lPij0xDkyHAWE9SefDY6UjBZFCDiykJGiNKUGZhBYZLtDPHYZGBrSWmMIQlMCrRK0kBoGqSoQpqI4LVGVozo9QdY05PpkNw7krLYSYR/aBGAREiYvZM6By4wmjmTfC+zcE1ntGZ/EukGQ2VeZsqXsd7/z6k0AXc0Cd1iQi1iViyl0VFyIhD1MRIlFokyeepOxvcAIvDCEWYHPoqlQKpQJVU6GUwGhJYRxGW8RhINlIuDyQEki+hGJJVKeow5Y6+rxViMTkWuwokA1oY+hTgYgCFTVJ5DVEkQlVQUactJBapEhU65pyvWD9Tk1/t2f35hV22OLtxLPrwCF4pLjGq46TFHHFyOki+0Q6WxKSJoaMvM3rJ5DCyLDrGA83hGEgevd2aeROrUIoKIscSBnJYeAEBynMBeA8NUyBe1C6mElkgoSKs+8GwTRO9Ieeu9s9R+sV73/vQ/zU0m9f5GiDhUQdLdDLE7o+cHPV8gJYSM+qvyN2B6arK7pes2sN/viUsFhRDAEjBfXqBLWqoDwhDRP24gpuXlPuX9C3N3h3gD4iFxazOkLM4dZET9wI6tqhU4sbE3HS9G2LHQPyJiFkIMUWN1pEP5K0JClJIT3aaIzsESLRKJMnl1X+DkuRJz6BQCFk7qjrPGFyCpCCSmWvRTQJWSpkISlXdZ5K1kuSlPd91rebU0yJkNw9MC9feucOvtZZh//tx4XA5FyGVQCoPMWS996NWQMfk8hePpEzdYTM3tx8cpa5m22zrFDJhFIZLiGrcs6XcoSomWKRJ3Mxrx8pImVt0DqhjM5etGJATAmGQDwM+L4j2RfIdUeUpzBC5fOUR5AIYaIbNwRtMccFQyrwUSGjQSQxn0GKtDBEIXDSAT0iOIqFQlcr3jtv8DZw9/VrbLdntCOXe83nryLS7RGXF4g28khNvKlAVIr9UBBRObIozGcQEbC4/gbihB96orXf6sNluA5KUejss4kiSzVTsBDmoNjZbxBTJGO675sREiHy+kkkUALvAn3bs90cuLndcfLgjNXxkmHznDgFZC2RpsScnOBkwd11S+kCtnUcTVuMPTC+ucAOnpvtDb5ocCcHtAftEo/1klLWoI/z9/PmjnC9ody9IPV7+m5H7CZkb9GPSsyJJniHGh2rByBkQtPhrSeOjqntabsOdKQcNDG0xGBJfZ/JkEahKGiMp5QTWlqqQqNRqDrlgGspc/7hrH4wc96T1CpPcWWiLOfmQlkijEItDLLQyFKj6wWyqHD3Uw6ZL7fx/pyfCWQgUYmcpya+CSC9f0KIdOOI1galNDppZMr/HQLxjYcEgVKGoppDflVu+mXfYAZhuBCIkQzdkIrSGDSJqNUM+RFYDCEKGPPnKpWmMCVFtUTNRMKiGFHkDKk0OcLVjrRM4H9HkiuSXFKMHfVb35inH7dMEYq1Iaa8TkWYkPdnkCygzpJIJz2SEUJCGIda15wdHfEgGXYvLmn3N9ixJfjIF5dQThbpL2gHwWOdaMvA1EhGW2BTzLj1t2cQCOnwk6XfbrHtjjCMpDCfKdxDphRKS0pjiEKT0DBTMUXy30yAuf+M0/xKc3adjHM8Q8r1wtANHPYdNzc7pC74+NNPsN0VrrtFGolYgj45RixX3N30RAuVjzR+z8LeYm9vcfs9m13J6Avsyw6hNGaIrNYFi8UaVgtEsSLs9tiLLXrzinJ/y6HbZLVMF1GLiDlZkaIlesviQcIgKfSADIKpj/h9pOu67KkWjpQGUhzwhxFhfS6UhKLWIcO25EApJFFrVAnSgJx9mTbmT7SUIefdGk2QkiDBCIlMIIwmaYWqFaJQVKsGURSIqiFyP+G6P1eyNzjkASIhzH+mJFJJjM5n0R/6/MGXqWGaeH13S/SCFAT1qqAoFUWpEEowhUSaL1OmaFiVDWoO8B37HdE7qmYNJPbdHo3Ha09zpFivG1yRiX/b3ZaJRJcacJpDNw8FysTjdcHR45rVUlPXktq8RLkd04vX+J3D/3WLX/Wkl7ewOiWuTmk2e46jZxARnxwXmxcMpaF+ssS1Bfa6Rs6wgSRrUBXpSJOUxE0TghHsHbqqMacP+P73/ognjz/gX1/8z7x59nu8swze8G++FsTne4a/+TmfPGz40/dW9OVIX2kGV2CTICU5G5hV3rSkI7iWMBzwtpspOd889xa4+656SiJvTqQ8Qv5HnlmYwSxwn3+Y8Haib/e8efGS9z75iD/+sz/n+V/9ey6urzJyVUvS+UNiccyzv3vFTb3n9vnE+/YZnw6fc/fyFbvrG/5yB1dWsTPPqIqSPz41/PC9NX+y/oAgPyU8OKd//ozDr35JefVrVocbrqcJJwRqZymUYPmDBxBGkh+o9gmnJbJocX4kXG4Zd4mbg0f3iba9RDAhkqXwPhe4iwKpNGfGY0SixlIoTaNLzFJhKkmDQibBy0MghMRae5QxyFIxCUEvI8YohBFYI0lGUD9aUx+vePzDj5EmyytaF9hbN4/uA3Y3ZE+Ol8SQsEmhhKQEpBZUVQ6lfvs+UmJwlmGasDYgpEbp7OyV8xQyhDTfkyVF3eRusMhUm2GacqiiUkzWkqKnkgGls/E0AcEoxnHEx4jDEGPJ5EQeLhSJopLUywpdSMpSoWWLkjvicEdynvBsSxwmRD9CvYSjD5Eby2LO7fEy0Q9bfOqQR0uKVLG/KyFICp/BJsiKVCqoFN5HUpwQYUArSXG2ZtWseO/xe3z9y1/x/G9/nkEh3vP5RUTfRfqnL2nqij//eEFRDFwfGXwsuR0bIhof8hQwBoGQnhg7DjcXDIcNcRhygTgXBSHlUb6UksWyIQlFa4tZ5jAigkOSCT4pgY/5MsVsoBdCoMmAkSytlEzDSEwHLt7cEFD87C/+iGl7x5f/4RUSiVkreHCEWD9ke7D0/QZ/CCyF4/3uDXG35fD0Ba93ia820JXn2GLN988lZ0eGd08mSr8iHa/xh57x6QvEm2c0t1/SDwM2ODg41LJBn5yhFooUJwoTKAeNKCwi7RFtS9gL2q1lGCN+usv45dgig0f5LGdOVUGjHUIVlIzZgG9qhFHopURnkSjdlBhsoJICJRQUmigVkSzJMkrjpcBLiVqWqNqwfHiOqet8sSbnt82OX4L1eOsIQRAc2JBlL4XJspLCKPTfIylZ7+jthJ2y/E8X32CnIUsAY8yXMl1WKEDNI/5xGrJPztT44LF2hrTIRLmUKJO9HiEE+j7ivSakEmFn4KBOSA1nJyVFk3N1lHQYeUsiAxrCTUd8eUvaDch1BcsPIVbUbkJGiZMJFwb6wwXOlJRnFf2uxA4K4w0SOaPyFawUMQqsn5CMObj8aElTrvjg8YfYrufFr/+SYX/AecvLbcWdF0zPb3HK8rMPG96v4WIJ0hsu2hofBc5lW2kMmQCXmBgP18SpJYxdvkzxTSGYhEBIRVVXlIWhdQU+JNI0kmKWFGVgSV4/MUXu4SEiiXzxVvfFvcQ7T7s7cHO9oWpu+PHPfsDJ6ZIv/t01ox0olhLRVPD4EZMoeP38jnGz4KaueH+6YjFt2H/1jP1h4ldvAp1oOJSPebTWfHCqWZoT1vKI1NQkZZhevcFfXFLffUEYR+wwEg4V8tCgqyXmrMTM1Dm9U9m3IPbESRLvNgwbz37vcdMOoyPEFpLD2AmhJGlRYVRFUTgK4dDCI3VF0ga9zJLsEoULsOsDRiQKAVIrMBIrszzaNBoUBGNQlaZYN5TLBdUqNyISAhFCRtoTIUTCNEeqpKwTTSLXFSKF+fP+tjEAXMgSeaMLtCooKTBoqtyjI6vSBRKJ0DnYWgqJAJwdsCFSlDUCsHZEEsEHTCWoK0M0ihgjwzDgLLhUQlCMk8hTBZM4qjTVuqQoJMZIjLxBxJawhdRb/Be3qGYH+w3U56T6IUW3p4kOKyIBz769whpDcd7gBoPblcgwIf1EkhXIktSoXMNZh8AiXIvSBvVgyeOzxzxYP+A/Xj/l6uVT7DTSOcMvXijiG0v/u2d8eFbyR+/WDI3HHRnuhoou5hwoQg6VZb5M2XGL294x7XNDL+dWirfSf6Fy83axrJmCZnCa5A8kl+sZOa+fnNU251UK3jZudYjk62429fSHjl2x4/Wra558+JiffPZDXv/qF1zd3KJLiVpI0qMzRHnMm1c7djcTw8bzwN/yeHpN//qC/uaOz6/gblTs6zuKquCTh4p3Hy54sh5J4py4WOCu75ievcRc/Z5qe8em6/BRIA4edQ7m/BSShTihhkQsJRQ9MVjiZofbJQ77gFKRqU8IRkQaUc6hYoBlhdSGVeFRAgwTWpscZdMoVKkwSEQSbNtIiLn5LbVAFgonBBNQFoKkFE4WRAnmqEbXJUePHiJU/oLbmJjCjDtPs18xuRw0HhI25CgAM5OPiyLbVP7Q5w/3TM261ChlzgqIjhgmfCgQQlJVJQRILiG1wBQSazMBRDc1iZJFMWdz69VsJoYhKca7xMlxw9GJpl41BO+Q5wv8MHJ3uacbBi4PWw63HZduxzuryGkVeVDeULiW8NsDcjNQhUToIv65JTV7Yh0Zbx3dEHk6jtgy8uS0ohIlJjaIJJlSxDlJO2iEyZ2QQZeIUnK0hjRYxtdblqbk+yenjC+f8flvf8sfnxf89F/8mObR9+lTw8+fl2w3nt3XHb97fcXtzS+53m/ZDQdQUKkStzgDUePaHXG6I3R3EEeIAyH4vPC4X0kpm0FXR/goGF0iuBHCMB9z333uPSFvMepv/+Db05EEyeNtT3v3gu72mOFWUR0tOfvROWrfgvXs+g1hcti6JrrIi/1fctvf8vv2DeO+Z+onnvWRQ5B4H5mc4bmQECtOxGvetzd81Gx59vSv+OLZb3mxu6UdB7bBEqTk6VYSdz2P2j3h5oC/2uO+3uOuB8SJICrFSmkemMST0lMWgpOVIrpEsLBqEoVMBDEfGqYnpYRzDi00CxMZ+kh3SDhjUDJvgCnCdStBGuRoCdoTjIDSgNc4sSSgePrlDlW2nB8CzdGCk8dnmUwkI37eJMepw495KmJdYDcJyspwdOQpRETf08rmJ4TA1c0VUeQOiNYlZdHMmFrFfWapnPXzpZ4LfB9z09EYtMogtlRkOk0iS3DaLqKNZLGo0MZQNTXiqAY/MhwmnPXshpbOBqa7HXWROKkipeqp1IF0sSPdHNCTR4ZIvO4RJpAOl4RDwo2BzaTYHRTHRUG1EOhoEKlgDBHvIkOvoCgQZsEoNJPSnJZZRjbetEjg5LhAjANPf/ELlD3wFz/7CFUdIYolzw4120Gz+dpzc9PT3vw1k+252ecu5PFRgV2c4KolYYp03Z7+6oIwbvHDJd6OeNRbY69UEiMS33v3fcq6YW/zRShdvCJ6+9acfU9LFEJQVRUgmPyQmxFCwdwQghzMHN1ERHL75gUyWIYffoqk4MEnZ8ixRw49fbSMuxvGWuFUy5v2b9G25+L2BXGYsJuBmzbwZh+IVQ/liksEU6c4+/yW4/MjnqwT7fUNL7/6Ddu7DZv9IefzJc/dTmFqWEx9th3d3hI3HfFuhCpBHVBOU0rJ2jiqlFgdaQSeMEa0yN29JESW8eXR5duphCmzz2q4Dmil8MbkIiIJ+iFP10W5JOmSWBakt56OklQYDoPF9pZJdpS1p1kvc/ivBOZcpfzhR1Io82cccsFYVCVSQFPVLJart3sa5GLDx5xpmBDZq3cfhC0EhdFZqhFTnrILgfd5HcqqyDJFNftNlGSuTRidQnpYLKv8d8oih14fVdjRMfWWdhqY3MS0OVB0kbMmUkpHozew3ZKeb5GHHhUDYjtA70jNFSEV2M7TOc1lX1AdJ06OSgwKQ0VC4oCtVTlXqlgQpKZXhroQrBS4w0hoJ45WFeuiZPPsa6Kd+Cd/8j5CanRzyu1oeN1VbN94NreBv/zN79Fxy/XujtF7FgtNYWqK5SkyVeyv9gxX10z718Txmuh6RhtmY3bOYZESzk7PODs7p7OC0SfSxSvC1GdPYsoSpXmxUBQVSmrsnOUmpHrbCBRSZtla8kQ/cthccask3YdPWFZr1u+dsDgT6HaPS5p2d4svA6IS3F4/Yx87bu9eIYcD9m6gHwJf3Vi8aoj1gHQSMQpKVkx3De8UFl2VvP76N+yu7ri82zI5S+8mTvae29uA7lsKawi3t6RuIF7nybxYSYSXVFKxMoHTMjd9iwLimP0+1XKmuEqPUBMoMmggeLSMCKmZth4rBLEoMsI/SZwTTE7AVCFMRSwlSVd5imQ0STb4LtDvN1TLkcV6oFzUFFX5Vu4U58zIEB3RB6Jz+CTxKVCVGq0V+h+wCeRGSd7TvpnB3wcNSJTOKg6RBFLlfJ4wF5qqKEhoSp0D55Oq3tYUDonvoW4KmkZiioIYA2JZEJ2jP4xM1rIbO4ZuYhd61lVgYSKN3qJDR3y5QR46TAikIZHeHEiVJFUBt/NMQ+JiGHBF4HxVYYTApAqSYIoR6wRi0ghTg6zpVYEwgmUNWM9021IsNY8XS+zNDc+fv+SDhw0fnn6Kah5gqXh6WLLbw81zT/fsipfPfsm2O3AYelQhOCkqyqNzkqwZ7jpcd0d/8Zpkd0S7ZRryGSSFApmnknVV8d6T9/FJcbASu7sjtrckP82TXPF22qiEpjIFIXomb2dfYs4GUzI3XqOIOD8ydDuuX37NstJMH36far3k7NNzVNeC8+yHA8F6bGWIzuP3G67bO77eXuL2I651PNsGDk4SG0tZGhZR4IeKJW84+fgJZ2XPzau/4+rLZ1zeXNF3Pe00MEbJZqNI+4LF1JG6A3G/J15sCNsecSSI0lApTSgSp7XHFILmSJFcIjkoFwklEknOHmPdZY+4s0gKChNxQ2A6REqTrRWZRCxohxyHwdgQdUMwWTaetMQXJQHB9dWA0CPbMVE2FcvjVZ74kWafesJNffZTdiPOB1ob0VpRVxaZIiLG79Rw/1/P/z80ushI8yAy7SJGhw8KdS+jCZBSoCgETaNoU6D3EVmUCAWVdCiRkEWNT5I+auwYsK3l5LhguWiodEMSkYWvmPqB0Qu6LWy3G3aHgcuuxR8mpsohqh2NG0gvB0xrKWIiDhHfRWLZE0uPazXWKy5GxzTBezFiEphUIVLE4/FB4K2hTDVKLLGqzrk8R5HEQOx3VCcFjxYrvvjqOS+++JJ/9dkjPnr3Q85+8s+4i0f8+t9P7J5t6X/3BYfdlzzv/3Y2igqKosmEqdUJIRb4y5Y47fHTgZQsJHe/3d2fS1lfazTL1RGTh6mdMz7uL1L3pqq3O2XuKc3Jw9/8EPgm2DLfyIOfGA7XDLsD4zZhmprj9QniZSLu8wjZ4/B6iXMHut3v8F2PP7TgJTEIdi5go0ADMSpu2oSwitV4iVxPPH7fc3H5W55efs3zYaILeURvhORNp1i2I6HtsBd77FcbpjcDfucyerXQ1ARWCs6LQF1LHqwErk94EicllBo6FwkkohlxIbG1eVRcKWh7R9cFqA1aK9CaFGE/JiIGHIhCIsryLdI2lAUuaZ5eXhBlZOMCx2drQlVRllAWCSc0PklGO+HsyL4fGafIdR+prSHKxMJIGi2+o1cPMbDZb5GFgaQxxtJUEW1KtDFoqXJHkIRCUCqIMccIZG+JRomIEjHnLiTBRD7s/OipAKMNhTSgBCqVyOhAHUj9xDT0OO/oDh1L7THWEtWA0B3ctXDdo3wmYaTdRJKBNN4RJ0MIBZ31XHvH8nHECFBJI6PGJccUEn6SKKkpqJmEZpQaygy2iDZfZBfKMA0tl199ybvnDT/8+BHVg/cx60ccngYON4H2y0sOu45nb74AYZGVpKhqls0Se7LCLU/pnjvcbqDf3eHGDVO/mXcoiRIi+xFk7l698+47NMs1X954HFtS+CoTlkSWzb6lwyEpTDUjx10uMGS+SIm3IYqZABfdxOHumkJIpkOgWmrWT9aw14jbhO08adjhRYXXA/32t6R+h7u8JtlEsoZd77npHEWKmDiylYkwCS5e7HHTEQ9/tKbfXHH95hl37chNNxHnSdq+MyxaSZyGnJl1tSHuR+J+AhdJIWffFEKx1J4COFqAiBEfEkZHqiLgA/iYSHogIRmSzRJTqXA2Mu1HgtakysxBpIpxjHgvkHFG28ocvZCSAFmAWdIPG9rBk8qRyidU02CEoNDzviV0xtEqhdIFidkDIiSqLNBSUilBVTffOYPiTLx7izq4J2ClTJbTWpFEJPlIYXJ+2xBzwK3UBikSRsQ5W0TjEPgkcFNAJFgrgzYSIwokAZ0KunYkyg7vLK1P9G2PVhZjLbWySLNHbHZw1WL8hIyBdIhELKnfEEVJsCWjhetp4tgozlJEIzN9k4gXkcnlhkopKoI0jLKgNGDqRDh43GhppGFlCp5dPQVv+fFHZ9RHxywe/4AvbhM3rzxus2E3brm4eE0YXkKVpcKL1ZqiqdDnD5juIt1lS7/dMO1umIZbYpgA5u+7RMiIUYKT0xM++OADXm48tnWk9JLkprdy5Jwtm6e2WpeUpiJZEMFmg/fsi5M5kThLaYNlOOzYJxh2I+4EFg9X4BPitWcYI/vDHqIAXTAdnhP6S+zFJbEfSKNhconL1iJUR0liH0A6WLFBtBXr7y2pVhW3F0+5u97zqu2z+T049h3sD4njvmcxloTbLXHfE7Y9Scgc8orCSEWjA6sisKwLilrhU0KERFPn/cCGkOXaMmKjw6V7Kayi6yZCTHnSNvttnU+MQwIfETYhUg0my21JEkpDbwM325Z6dCyd4yhCQ8a0SymIcs7MiRl04VzAxoiLWeZQzqCQb58/9zWD1GpeM/fN1cR9PrBW+TKlYv59YSRTSrgIUmuQYETMYd86SxdtkgQXCTbSNCrDTMocIm6WhuAcPu2ZekHXd/TjhJwG4mSJxiHMHuN7xFWLHIacQTcFRO9JpSCVgdAXeKe5GyzWwHmMOVA4ZbCRIxCCxFtNGUuUqJlkkeMsmpjpiIPA1JrjsubV60uuX77iJ5+c8fDBAxbv/pA21Vx9Gdm9Hth/cc319oC9/Tsosu9zsTyiqArkgxNcKGifDUy7Pe3dDcFl8ESuuLIvJzN2BPViwQcfvM/BSvpbj+h6kh+/lTd5X6NJpNJU5QIXLCGFt/5SqeYGh4BEJAbLNHbsri9pHzzEtrmGWx+dIC4hdiOHfU9KjqAXeNfS736H225x1zekSZOs5KL1DF5QJoV3mltAWM3r2CCawPpdzf76Odevn/JmO9BZR/QWISSH1lD2NXHqCbs94eqWcHsgHqY8CTIeIwoqDevSYyrFYikJY17WdZnQKmd3RlzGr4fIaB1KRIwU2MliO4eoi/z90waSYJwiCUNyAgoJsSAmQ0oCrw0exe1mRxKRISYWK4esygzaUuktOM/aKSvLrGVygf2QLSA+BkoF5luNvD/k+cMvU1IQjcbUNY2q0EIBidEO4CSiFMQoGF1EB2idR6CQRuNIBJ+4dRmuUFRV/h8PniQiooIXr2948cJhyoDRkUfViEwWw47TpuVHH/Rstgdu77Z89WrLV23PEzmwjJ71naUJgXdExCRBkSDofPie/cWn1GeP+frnt9zsRl6/2lOvPI8+egilZrsu2YsSKyDpJSlJisMOOs/lrUV5ia5PaeUpz7sT2ukY6Y/48he33H2+4bP4Mer4Af/y+wu+VCOb3+zpcBxGky+cLhLmi06pToDANPya6A6kNPH3p0xCKozRfPzklITkzd2IC4HgPUIaVPMQRC5AmK5IYcrdtPyWUEJipH7rh0hpzteZPQk5WFbho2C/ecHz3/1rHv30hzz46L/l5sW/od/tEDZR6cSy3OF0YO/O+eGnZ/zJJ08Ynj1nvLzi1cXIYCUn739GEAXX1zuK2LNjw+3rHZf/4a8Jr19Ru5YyBlxKJJHlaBfThPtiS/e/Wq63Izd3A8c2sgiRd9tErSWFlASp+N6JodCJpYw4HXFF1rk6l6gaSRCC3WHCJRAmo1z7zlKIxOkyfyaJhPeaJDXnpzWTMGxFRR8lfRwYh4AbHdaXBG0YdUmzKvnox59Q15JCObpDz1XfoatFlj8kiTYVy7NEnWCRCrwPTJPFtiO300Q/fNdA70IGTSwWixwuqsAnh5s8dVmjlcg+wZSyP4ucCRLJxL8+Rkg+Y9mleJuZJAyM1vLsWY825C6Q8pQygB8opePhyYS1A5vtnnbXsbu9YcnEERNV12KmiSORZSg6CtAZ1yofnvL4z37M8Gpg86qn6wfiq1vqd1aYQnHcaDqluQ01QhtAoq2lTj37g+eQEoUsUabgdqoJU0SlNf2biadvXnH+acXxBxUfLQwnBu7OBq7DxOtNibWRsbOoENknWJzUlPqI7f5v6G8usP010Q+omUSVPwuDKAt+/PEj3jk/4ulV4nK7oxsHYkwcffjT/D0UFbF9Qzy8wU6B4HP+kZKJ99bnyEITVgUxBUKwOAveJaACUTF4xb4fefn133Dy+AHv/elPGKZnbDdXBJ8wAWrVIsuSQ31CeXTGj/+L/xI5jUxvLthvLHc3E82jDynW57TbLtMR5YHeR9rf/hZ7cUc5XGOsx3hHkiVCajo7cbv1yP/rS0IM3FxuKXxg6T1NY2gaM4fXSpZNBUpRqTzFdUUWiAebEKWkKDRTP2WjrVIkJHYYIcFikdcPRFKUhGioVxUow6CWeKEZcXgfcV2eGocpEymDKVk9OOXoqKEqJSnFDFWREmWqGfohEUaiVKKRBQk5AyU8dgoMk/vO+hGzTl6oe48IpBTxPv9bSegMdAkJO8Xsd0VkSEdM+JSwMSCkRKndQBGoAAAgAElEQVRZYZEiyDzNurjYIYgoEylkZKEdITg0EyfLgaaa2O4O2H7g6dNLtJ84o/9/aHuTXsuy9DzvWf3e+zS3jTYjI7uqrFZVRZZIizIg04AlQAQMeeB/4JH/lQf2wLAHNgQbAg0Iom3JRYpmU1S1WcqsjMzIG7e/p9ndaj1YJ5NVhgcamAeIYdzunLXX17zv82L8TLOf6ESkExlVFIK6PciN4tEf/ADtDZ//YksWnuvXNzRnmuPTBfum4vmv/Akx1uezjIV2vyWKzMV9xgSNblfsygLhHX5qKPvIqz/7gtXZwPMfnHGkDL/73CAuPfFh4mIr2UfLMNbBSC/BGsPKHDHNrxiufs68uyDMD4gSUTV+DqRCtC1Pz1Z87+tPud4VfvVqwzDP+BjpnrxH81hQZEfxA+nuowq/8eXQMGUer45x1mBOlxQt6PsdMWb8lEnFkkqHT4bdXHjz+hdQ7nn7dz9Ey8TNL/41cfK4AK6bWbQD+9Qyyqd8+z/9Lsdtle5N+5HL1wOyPWbx/APmwTPsJqQc6NVM/9lrsg7o7SV2GjDBI1EU5Qg5cT8M8Fefc/PJFdeXD8TJcxQiTkuOTnwdxgiJMZazM4uzHiUg2lxp8bF6wOxCE0NkHsdK6jOSEDwySFxzyAkUmVwkKVYP+bpzTMLhhWWkEMuMHyHPiZAMiUzQluPVmvNnp1gr0UowDAMpJZRtEKLmLKIK0kkaoXFCU0phjomQAvtx/q2GKpfa/DWNo7EdWmmELPgwIZKicy0g8RlkSMwpHxprWYmZqfoWBQVtamGbysFPauDuoef2dou2GS0LKxORJBQjCzfy/GxmGAZ2+y1XV3dc7vecMdBkT7cbMDlwJGt2myqykm9LYvmt9zHrp1z8fMeu99xfb7Ct5+itE7JWbBeanVgyyxVFt1AkbhgoU+JyE1FJYJolk1pwPTnmsETlI65/vmPSO1788DFyFfl7jywnyXNzNvCQErc7xxRrbMIgaybWWq0wOTHd/AV+f0fyD1B8PT8HWZ90DW3n+L1vv42Qhk8uBiYfmOcZ1S5Zv/sDsmwoRZLvPiLPe/xcqb0pBTptedI9I3ea3GhiCuQc8VMhZ0WkI+PoveDu7prPfvUjHn39BafPv8f963/L+LBB+oJTic7siCqxi09458UHvPv0BH91Tbh/4OpiZPKC1dvfAunYbQZsmdizY3+3Y//Tv6FcvsJON5gQsDGTVf3s3Y8D8dPE/Mcju4eezf2eVYg0OXO0KVUipzRZKU5OGpROOBlJKpHMQaaaC7pTZART35MP+W25JPxQ7/XFksNGKZOToQjN6rQloulp8EUw5Qk/xTroTpqkNF47XKN49OIxWkH0I1MKhBRQ2iFVzdQ0VrE6VSwyLKI41HAzU/D0fsaHvwMARS6FkCLKlEpxypXcM8cMWWCEImdJ7wuKUrXB2qIV+FwRz37yIDL2AIIsqSApKJHpdzvG3YC1HqMTupvQMpLLCAwszMQoPToHNv3EdDfQJM9cKqK0CMEkJRU1IYlKEqVAn69Yvn2G+dkIQ2K79yShOE+eRgi61jHMkjIfsJ9ITIwUPJMf0MJiXUVxPoyCkjWdsuzu7gg5cP36hkWAs5eKTeNZtZ44JPZSUmI+XNg1YLRkWQPY4j0lHTI8+O3OVxmDcYZl19aiwI9VMlEiKIdQDmRXC8JYL/+Kga5fRwhQotKWij54tL4Mz/vKqFq3Jt4P7DdvOEvfRLknFNWQhKgFBQWrClIZ2tUZj5+9zTe+9Q3uU2AXRuJeM86aJ0/fIglHig7CDuE90e8ZL+8oQ48pkVbk2owrhdGCviTYeMovI2+GyJsx8ELBiYJWRLwSrIxEuUy3UFgJrlD19xKmBCnXyY8UFcqbhUBoRUkQY0GYijePSZOKIpVqTlXOIoUhFUuImSknhpSZyIQYyELgFh3L4wVnT86xKkHcMgyZcZpplatbIqUQStKY6klbyJZh8vhYL6FpnAnpbxvlUsohUyfXjeVhu5tyImeBVvUo+linhimWSp/TFZ8eC4dgz4jWVTpT3/K6Lo8pMOwGtC4Ykyk6EWX1RBQiVs6gPJJACDP9tkdkj8yeQqIgCAdUKKIWeElK6BzNkzN0/4C4S8zznjTPtNGjjaU1jlBURcXrKiFRuaBiZA5VTmeVA6UZAsgoaJSlDBO7hz3NyR613OFOlhxryVEbGduEUnVTEZIgJonIBpckLmbidE8cr8lxqPTLgzcgiQrucIsFJyfHPD495t9f3NL3MyXPSKVxy7ODL2VNEp6c95QyQYlQIgLobIN0htw1JBIxGYSKFJEOfkdFTOBDot8+0B51SH0EsiVRp1myZIwsdWvfrVl0LS/e/xpi2LGPM63yuDyzevoYd/6US7NlGiakLxQ5ErZ35H6LShOWTKNyDUXWhigiU4g8fLEhxMzl3UAnCkIDuSBDwppqetaNRuqCPjSbRVSMeMx1+y20PATZZtAVp55jrsWaqb9rKppSNBmDMhahK6gnIwkxEYpgjpkoElFGtFUYa2gXC7plW/2xMRAPgddS5a/8AFLJQxReffZOc83dSYdQ4N96HR6VQojDZjF/lWqfRZXDhlgIsW6wpaBmiR0AGjnXoZRU9TP6ZayBPEzox2Gs6HkdMDKBjtSvFJBiotEzmkDInnE/IOeJJk04IhKJFhIrVd20oYhSgtaYRyfYWaNezcQ5sNvN6MXMIkec1jRCIUyleyEkgoRNiZgjUwwI1WG0xifBGERtCpJgd70nR8XydodctRwfSY6ayNEicmMEyBrsnIogFgNJUyIk3xOGK5LfkuOM/IqWVbdIbtGxWq94cn7Gdtqx77ekPCNKxHZnYBrQJ2S/J82XxHmG4quHhoIzlqVrcasVxUiKLAQfyMVDNOSoSblCQYZ+T7+zIFqEkmQhyQikyGhR7yDXtBTV8uTtd3h01LFLgelhjxgbzOqU9dvP2Wwm7kyPifeQ9sThnsgeGUZMnmlUqgQ1YxEqMefE9rZn2g5c3/aEEJEGopE4OX21mRErgTMKLRKyALJu48KX/iItqr2h5Ir7V/VvnHNGVkIQKStKjRuugcHOAY6MqVEeJTPFXIE9IVQ8ddPgupZutUQRkYdcp5giMmfEIaRUitrASVlDZL0/5EKlRPjKo/gbNVyM2FIbwSq7LPVc5kzUpspOY7VjREoFVSgqgKbUkFRqy/+VJ1sAShTmeWIeZ4yuHhlpAkomMh7wNGomCI8qgWmc8NueJo2kEisgXEiCrMV1KdWTmaREHi1xj8/QrxMiFPrek4pknQNWClqnGYOiGF3BTghMTuQcmcOMokpcI4p+hlIUjbL4uy3bGNje7nBZsDpbcWQjR11kdiCUIod0uIM0KhtWUVBCJI43pPmBkqdaccovCcs1xqBdLnh0dkpM0P/6Gh885Antlmi3pqgVRRiSvyKrUjfDXw5LpaRzLbkx5IUhZn9AigdSFORYB+IhwTTN7Ld3nMQXSH1MEZZcBKJULp051HCuO+Hk8WNefv1temeYjECGhnkWnLz1lKQa3ugt+B7mRIp7/P0DTHtMmmlEpGhBtgZjBXOJyH6GzyIP25H77UgyVZZs9Uw2CmcDwhnMwqAl6EKlhEqqTymDllWW/6U5RWpFyYIUM1JLlJHkrClFkQ81nLAW0KRiiCkTcmLO1bITYyILiXYW1zlW6xUQCeOWnHM959IgVDkAcg4SZMBmxTT7enb8zOzD303O1PbhgV/+7Kd0qxOaxRFW1GyNaRbkCGrIpKKYc4uIMzL0CLEE2VJkNU0KZkqOBD8gpES2jiMnOGsk836L7/e8ub5gGvb838OGkhPKQOck52vFctXw4qTjna4gfcd8OyBC5MmJppUZneqEQCrJHBQbr9jd3rHfz9w8DDxMns/3mSZOTJ9/ij17zIuXp4Q0s9nuKcZSrOHk+DFKePqHXyJVpFuN5PGCi59f8/cXO771bcmf/zjwxfWW//aP/yWiWfPhBz9ESMH3Hys+iZL9LQgsZEVefJOiV4yvf0IJD6S4r8XbbzRAUJGnT955iWs7Pn9TA3Stjl+Jn1OZSdEjmhahG8rqGSXN5P6CkgMpVQHMVBIyFESUdO2iUtdaX8Na94cg01Qo5Qjk77D9LID/S85ftDx5530+/sk1fraM8vucPzrjH37vPd5bL/lwvebPdq+4+GRimi3CtJycG7qV4+vvn5LnJX63oh1ekfoNrRGcKsHLI4eymnj0hKnA5W7LnAObULXmxwvNWwvBYyO42EaIhd9xCpky26uE1gJvBUkokqiNcpaCcYKsBOLsGCM0rjREH2v2gjV4rYn5nFwaZgK+JD7ue7xIjEqipcbYBlEWgEOvNO2x45/80/+Yx+fHPDs9oWTPNG+5ebhheX/JulvQWMc41b+30fpQ3MEQEu1qyeXrC7abh4MMqb6+9EwlCZt+wGhFY1QNkhOa7cMDokCkqeb6NAMKIdq63pcFQSX/xOgppaCcwSjBaSPJ0ZOmPf2wZ9xt8NOuBpTWvojTI4dzmuPjJfKxRB5r8jCRholVJ+ksmDwhS0YqRSqSIRiCNEyvX3F3PzPMM9f7UD1SNze0q4Hj5++hveRqOyGkJRrHsulY2AXj8IYUJ9quQZHZXHlOZeR33xfcXWQ+2478+U9/yd2/+4QP3v8GR+sj3mkLx2eSmwZk0QQa0vo58fR9Hq5fsfn4I3ZXv8b395A8UDcQQiu0Nbz84CXvffND9hd3/PXP7lGp59EiIoUkl8yUrkGdIptzypOX8OgRw5uPCJtrprEage+CR+WMTbBcdjw9e8z2OLAn0F+N+H4m+ULUGiE/IExLrj76jIWLvPv773F1sePudsDbd3D2hL/3zUccLRoeL5bstl/w2asB7yXQ4TrD+kRxfLJAZEccLDLsEMMNymUWVnN8rPlwaUjLp+RmzXb/wBAm5riHkunWlrUTnC8V/X7mzX7k6dqwlIr5fkOWgtTUjKcsTDW0W0vMkjJkUneEWGkcC0oWxKEnS0mwjsyClI9rBkhJ3PkRP09EW7HFVmsElswC2UrMAt5/7zlPn5yx6hqMkuTkK81JZ6SQNNaRUg1EFKL6lBDVM6WtIYTIsI2/7Z4H+qHn/v4ebavPqmRPSoVhipSYKT4TiyJmRQljNSeKOm3P4kuEdyKnSIweaTRCS46txMpCGPaEeeLh5g3Rj/hxWxdbCtZLw6JVLNcLlusFT77xjBI8cbOn0YKjhUTnULPJDpf0HAxBGMbrSzajYD8NTONM3xfO3Y4zVbCPX3C2arnaTsRUSNpijeN40RLDlnncVdCTVezu3jAG+N6ZxywzH92NfHYz8K//+T3n5094+fJ9mjzz7XPJ9nOIvcDnFUEt8effYfA981/+iPH+C8b+8kC0jIflnUA3ltXJMd//B79HGjx/9dNbQhw576YDGU4xpwdyssjFGbTHlNXvEnc3zFf/Hj9XpPY+esaxsLiuXuq3n7xNkIULv2PeefrrCXLGj4HCUxDvcPfqnnaReet7bzH2I198+oB3j+jTS569PObR+ZK3Vx1NSby5+Bv6h5mSWpRuWB5L1ieOd95V5MmS/QnNsIc+0TmJE463Xlpo1qTVM8ZpoB/3+DwgQo1FaYTi7EghUuHqfmLpJE8bQxgScz9gnKpwJtVQhCRpQxFVep51gzg7wuAwONI0klPCW0sWllTOyUUQyexzoO9nghKVQqZ0Rc2rDrRGrySnZ2u+8eE7tM7QOVf96TlSVCFET+saBIIQU3V8yq4WhQgmm4kpM+z2/G16cn1N08CbqwuadkfTLmgOkJciLaJINrd3dTtMg8gRlTxCuKqEkQeISKleuRg8QgmUNXRGsLbiQIMcub67xk8DU39PKRFpJI1VnK4sTec4W7acv3OOeGtJ3PSIGFmvZB0+5ak+D6QiRMWcNNMwMr3+jM1+YDsHtvuMCzPh6gJ9dMLjRy/wObAZRopeko3ieHGEkpFh/zlSRtrWIebI3cWeD9qRtz+QfOI9d7c7/sWf/Dm4Bd/4+reRSvLdc8nHo2D7BgotaEU4+5Bkl1z98uek/pZhe0GOcx3AHeo3bTXKGr77O9/l6PiYTz69ws8zJ81EcRmQ+NgzT3vU+j1ksyK9+BbZ98wXPyPNI/NYZb83fkLnhB4T549Oq2T1ZGaOkd3FQImJOGZSfIpQ32J/K7n61SuOn604e+tdXn1ySwgar77Ger3kO++ecdY6zpqW/fY1D59NhNkgpGNxZLBLw5OnS0poSEOH9a9h3mCdYOkU33ncIBtHOn6HgGC7vyemiX7qwUgWJy0nS8naCjYPM4yeF84iUmS+8gQtiU4daIaHQb9QjHOV03N8jhIGTUcOgTRNBGOIxpLzKbk01ZKTE5fDQCAxqxpcbaxD5Br0oZaKplN899vvs1p1HC06UopM05LRjwxzj9MWrTQ+REopXw2yc8nMrcM0jtvryHa7+a0a7v+3ZiqGwH67JWaBDwmn6kTcB0mOIPaJXDRBJAgTwu+QMiGUJxEpZLQIlByZhx0ogfQNwoBykH1PCiNx3hPmnnEayTmjkkKg8UEjisJpQ2MWGBy7bCghIleCIhLDJNBS4KxiniUByW7MbMap+jqQTEVSEuymQDtPSN8jZcS1CeUK0kIJdSLZGoG2iuXKMY0Du7trhuIZRcCuWzo02zcQesHqeo/TBWf2pDBRckYqV+lRxpGlJvkdxe+gxDrJ+g3khNIGqS3adijdMvqa7iwP022jJClTQyplqkphIRHKoNo1JQXE4ft+2U2LUr60bWG0RpZEUgcaYEqkFPHeE0ZL7C3urKVtCugNOVa0sNKWo9WKnBIXb264ut1yvRuYs0NmuNvcMueGkyZCTOQYiSkz5xo5l2TdEDktCeIgx8qFmAohZo4MHGnB2UJybAX3U73jE+Vg8UrkJAlJklQhSYiilkU+15ylmtJQoQyRKiudsmbOipQPIaCiMOdMH2pYodQSITVCWVKAOUYIBRNrw3FyumbRNaSkQAS6rmPpO9qmwWlT34eUMdp82S6RiqCxspKKrDzIXuqrlMI0TYzDgJAGaxRkRcGA0IhQ/cVZFiiCEMcqk1V1apNFRpKQZIKfySkho0UrgfEFWSIlDeQwEsNECLWAFUWgsyQmsFlgpKpoeCcJ2uKVQ7YCDMRZVZqQMaQiSCgCmqGvBMKExBeJz4LRJ5gDMoyUrHA2gy41QzMXks9YARjBolGQBNvdPaOMTNqTVaE5XRHvBdsd3G49IY1oNeCnkRwiQkjaxRLfdhRriH4ibe+I80hOoU7fBNWgax1uuaTt1nTtmrt4x6afsDqjVaFrVJ0+hULShSD8YVva0KyOa0DubkeKER+qZENmUEVUZLmp0tnQBHJI5Knqx/txxoyONBWk1bTtEmk9WQWKUCB0/cwYw8P9js3thtv7PTFrUraohw2xkSxdwchCCYdiP1NhJ1IijaJxmmQgq8wuZ1IqJB8xMrNqBMtW0q4UMUnmGRDlYHAukAU51Ul20l8uqCXpq/OjQRjyIbIhYklF4rMhF0UudfubyHXzmhPSHqbi0pCzxMcIQYKvdMzlsp4TJWoRmSkYY2rRrlQtQFLdMn1JDCtUXHmWfxtJ9ZuvFCMheFKp/y/nmZgy3lefVJ4TsZjaTPm6ZRKHRi2WWP2IIpFiIPgZYVRtwj1YUSAOpDDXuIYwMwdfN2hZEGIlSSqhMVpjzZISI1NWNYu4FeQ444NCG42Uh8FPVgxDYJwECUFAMmXJGArDHCFMqGgwOmOLRNmKa08+IkuhNTU82zrN7nqL381MYqaUiDteIveF3WVBDZn2bkSrCSEmkg/knHHNCmkXZGtJ855pe08Yd+TkEfmQsSYVSitct6RbrGnbNf2842Ff1SFaFxor0Vowx0IqAi8DWRiydph2iTp5hBpH1DgQY1UOlFTzw8zhebvQDhEK3s1knyghM80z/TgTJkdjBY1bkCJkta/DMxTWWhZdy9BPDMPA3f2OftMTcsI7jbm9pTHQ2ULx6XC31c99ElUK55wBK8kq48nkVMgxIXJi3UBjJd1SkWNG7UEoDvEXlQyUc91AZVWx1XWDVs8Q5TAUK7rKYbFkMr4YcjHkLCqWWeQD3j/WxkRKhKgxEiHU0G5CHbAulg1OaaxStckWHDK+6l1OqT+fQNTP6KGSUOXw7Pr/OD8xJsZxoCBrjIBTGK0oIkKRSF8ATZIFmSMyzQiRETLVzS8FRW2m/Fzz5qQzFAXCFEqaKMmT4kQMEz54SklINEoKYhJQJEYZTNshsUxZQ4qITlAjQORXeUwxSFKQTAEG7+szEcmcJSUJeh9x3iPigBQF5zLK1DuoxEQRiUbV0O2uNczTTL95YMqBqURUZ3FpxXApCJPk+mHGatBqIMwTOSa0aWlcS3GOqDW+3xJ3D6Q4U3KoaHhRZcOm6bBtS9etcW7BbgyEacbogjGCxih8zMzhEE4rPEVphGtpj8/IfkTqPSkVQqybHJlBI7BK0jmLiorJTdUrPnlCmNkPM92oyJPBrhzOAnpHTupQwxkWXUuJidvrB25vt9ze7wnJgk60d3e03rFqSj24sZ6PmAXpkMlorEY7Rda5shFiJsUMIdI66FrJYqlonWQYPdlXf1cpovqws6qxJrKQFZRDWHTMtX4rwgAGiqreWByhaELWX2HoI4WYM/NXNVyFfQhlSAlCjGSfwQrazrFYNDhrDyh7VweCRKzSKFm/T84FdaDGilzQ8kuaX/0n/i5ofvM0cnd5ib67R2uDcxKlBDHUD7ZJBrAgjg7C+T1NN2Aby66fCCFi5QErvR/qelkILoMn+Zlnx4LTpcS1Ftudsn50UsM1haYxitXS0dlMQ2FxtMR1DfqsYpX73YaHceRuf42xiqXpajKyhatbuBpgYkVpQAyJQOFmsIjLe8Tmkub8CW+9/xhUJuXIFz9+hYieb3+rZXV6zJN3PuDXmx/z6Uc/4l/JzL/R8E//2T/jD15+jVf/qvDmZuRvrn5Gnm/J/cdM855hnFg8eYvF8TP6GAjhmjluyHFP+Q2seaUdKdrlI1x7TPYrJi+Y/EyOM8ZI2kbx5LQmvSMl1/cju7EnZw2qYfHy95ElwOZj/FiNxUpKtBCIMkMOrG1HRpHbTAyRNEz0/adM4YFu9Y95ev49VsMFbdiS/YaQAog3Fd05tvzpj3/Cj/7k/2K/uWHst5Rc5YJ/+sWvaJTiedvSGcOJazhfZp6uDBdBsTkUbTZUElRIhTIVMplYMu+eK37/XHH8WOIWgkdWMw2Zu75m/Cw7UVPZiyQoQdAwIQlF4bMlJ0naQiyRfYpQGkQ+YpwSc0mUdFXlqKZKfUIotM2aZ80Jo3LsZMP2/oLLhzvibcPyeE0YPCJmZKmB1ElYXLPg/PisHsACronkXCV4lAx+QmWPY+R4meHZkrY1X73POWe2mwekEszzhLMa3xlSrLkVulRpkDJHCCQiValJ23p8jAy+wlsUmTjNpBRJG0nOmdfTwMLBs5PaXC+P1yzEuhbN1Cn5orM4LdAiY4zBLTr0KmNTIs8DQ/D0+xtyDLR6gUQiNQwTXD/APjaV3DZV4MgmWPq+cPPqF+im4enjF6AyQhVuXz9wfbnj/Xcsp8crjh89IvQzn3/8f3A3DrxWhfc+/JDv/5M/ZPg17F/Dr6/fMN3fEe8+xo87Lq+2uOMTnn/zffoseUgP3Ptr+u0l0ffk5NEHWVLXLVgcnfPo5Yd03YphY7jfzlztN5wsDAuleetZi3MGaTrud5FfX3zOlA1zNhy98z3a9RHi7hNi/8AXH/0aERNrZ3A6QbjnuF1yvuyQp5mNUwwXd8zTxE8++jc879/lvXf+iDZ6umGHmAM+Rhox1NDO6Hi4nfkX//JH7G5vuXv9qkqDkkJ89FOk1rx9tGTVGI5XSzoneXyumEbDvVbMpU5py/UbSozEfYKQicWzWEi+9VaHWynac8VqaThfFKYhMcaM7Wp0RSqKohTRCBKSUDS5WFKxlEFSKEypJ2eFyEckYBoipB7iHVFDUoI51ILr9KhFuo5BN/h+5PLNF2Stydry3ovn8FZByCrpyFVDRuvar2ijQopKHKOCdMShaJV5QpGxFvT/63YKwTOPAz5sD+b7+SDzq5QnkQQpaWJSRF8loG0bQMBumKDkCkQJiTj7erZL4XKeEDnx4qxKu7r1kiKWrMV5lRyhWDT1HjImo4XArh5XKeQ6UmJgmAdmv2MetzjRoI1Fqpp9dXcL+yBJZklOI+jMkCxlUNxfvEbYzOr8bY5dDZoc9xNf/OqGs2PFy7eWLI9OaRdH/M1f/ZTrjz/lT0RifbzmH/3RH7GaG774SWG/3fAXb24Imy+I/TXX15f4GHn2/W9Du+Q67ul3t2y2b4jzlhSrB0hIQdO0NG3H0/e/Q9utmfeO7WbD1X5D5yRLoXl20nB+bJC2IyTJLz+7ZphhSo726Jyzb/19xO6Ssr/k+tef0z9saLTGiUwYbtGN4eXJinshyAKm2x1+s+fV6x9zvbng+fP/nHZ5TDcawmTq1lUnkDeILGCO/Mn//m+5+Ow1t68+IU41lkJIhfjzP+e0a3iybFl1LV1jeXSWMdJyLw55flHB3MP1LfOUYaoyMCEy73zYcnKs6J4oSpKsTUPwmX7IGCexTpCKrCHRh2Y/HGR7KVX5fo7g00RII6KsoTimMZBLQsTPyQKCOcibIqzsmq5ZMSrHXOD2zQVTSKTbBo0+INoLX4IvMxJnHSarr86Q1l/6Bqlb11KQxaNKrM25+a3FFMHPPNzf04wj1jb4zmCMIh5+KV00UhiUXtcNVPY0bsZYwzBV+ZMR1d4RxolcqLaK4GtW5JHkeCGxzmKaE5anx4c7SGO1om0NTlfXtm1P0c6ilpGcE/PUk+aJYXeDUgqnuppNZWC7gc0g8KworiBMIgm4nywi72C4xh094vnTM1A16+yLj64pMfCNDxyL5YLj88d8cZmuZ5MAACAASURBVPsRn/38z9jKwr9T8Pt/+J/wtWcv+fwngpsHz1+/eU0aH4gPn7LbPnB3v+f8a2/x6PkLbmOhn+7Z7S+Zd7fEONXsOFEH4U3T8ej5BxydP0WUU/abwvV2RwwjJ0vL2VLz3lsOpCYLzavLgbvdjpAcmJZH3//P0ETE/Sfsb++4+vQ1nVF0RqOpG9RnR8dEaQhzZOonxot7bu8+Zv+zmR+6P+DZo3do5waXBlLYEVIEcQ8E8Iaf/+ITfvynP2Z3dcHwcEeJEpCIn/+ExhjePV3ROct6teBoWTg5sjwETa8UKRusF+TPfkUKidJnSq5S5BdvWd5/7GjOFLpTLKwlDomxT1DALb7UBGiSlmQtCEWRiiLmpmbe7QSpROa0g9JAPsZPiUCCcE0pkWAECYi+4NyKk6M1XhoGYdjd33DzsCHcOtyyJf1uRpQ6ohOiZtfZg8SwHOAfxlT7SzoM7VOYoCQskfVCwaMVjTP8h77+g5spqSS6MdXoSyYdgsmkMAcMcYYcSXkgl1gDTeNM8pmS6iZGyIQUmcXqkJ4eSw3dEhphFEFJum6B1hopK28/pFoweaHZ5whzZNzPGB+rDj5l8liIs2AnKxhgnKERmlZpQqtJQjENQ9Xjl4hxlu7ZKX7es3/YoruZduERxw6hl3V0GxJiCAgzEe+3nB2t+f1/9A/47NPPuLq8Ih6fwpPHLN4vLLoNm9uJVKZK1TmAHqKfEMNDNY7ndPBl/EYjRaXuKKVYOMWiU0xhT4z5kHJuEcaQlWROCkmpwZG2XiKzr02JCHNFay6PKyWqH+uktxRCrvQ9GQAFutPgIc+yol3TzOwf2E9XeCNoFh3LxiBFxjhI2XN7ecNmPzEaxyQkc0qoQg0pjRKRIVU/KsJCSpIxSBAaZWoWQAUECHwuhwDdUh/+uWBTQfsq5+tERpvCtBCkUjMEKvxEkaQiKUXIdUMyFF09KjETS2GM9UFfSMwpMJeIO8hRNQddudUYpfFhZAiBbZmY/EhMkZAn/KjY396xbw1LU4utEAJh9oTJk2X1a6RY/UtzLJATIozEXG9KrQS2qefiN99sbfXBh5JJORGjgKJQUqFKbZRE8dTb/wAOiTM5VTiCUBkpE66p/y9EyFkQi0YbSEpjjMO5phbxopAOGUpJanyBfcxoIjNDvaRLocyZEgsTliwqvlcLQSMNUUtyq/H7wDCNhBxAZtzRAm0l282WlASLo4CQIJyrspVUCxYxBnI/IVPhvQ/fZ7/ZcXHxhth0lPUKdy5YlsJm95rST/iSmQtEDCIW+s09XlukdnVIk+fDRqr6xpTUOGtZtpbHR44QPf3mpv6Miw7VOYTTTNlCENgS0aJwemSZvGAOCV0iwifMYo3UimZxR/aBeJBvZC9ZeEk7F0xr6AzEe1NVhmkmhYF+3rBYKHLjaJxhbRXOgFSFYdcTZ08wDq8Nc4zIVFApoGWLyXVdVLKqF0Cpm5CEQTtD0YpQOOTUSeZU/UeypArNyBEVM3LO6BxBZ1InEYnD5klSbAWwZGVIpW5MIppYNKS6wQqxomBLSaQCPnkUlZAphQKhcEYBmpwjyU8MPjJNFYWdfCGGhB8G/DBgupai1cEXWLfWBeDgd6oXWYWoqENAsuAAQdWV8PebLyHqFL76EwQxVcai+jLYXkDJsebsUMmnOYX6Oc81xFTKgjLlq4l/zIVYVN3eKUVWCufa+lmWdXCSc5VgB6EYUsCXQhhGhDgMU1KizAWfFEE6QlJIoJWGoiSp0URRGPYjIcwUkdCdpT07YuhvCL2nWwekTojWoUyd5hIScgpgZ7KYePr8KStn+eLzLwi2paxW6K5l9TwT5AAPI4n680U0kUK/2yJjRJgWkap3UOT41d0jpcRZQ+ss52uHNoJxd0fwA27RYqxGNpYgDWNSWF+hAEdLQxPATRmlImIOFcxzfIZb7Ui+ekODEOyDxkiFnEFKRXfkYJopo0eUSIkj47ylD5rsDDJZVkZVsqKBMM/sHvZ4IYm2Yc6FGAMmglQGow2qCHKu6gRRBDGp2pzbirkPB0hTKRKfM3M8lHciI3OqfZuvagira5GcparT8yIOfhxD1pYsFPFQDAZh6vY31vNTfbKJUiI+eQoZKw4eRKFrfpNSCCCGiTFExsPvk1IijAU/jPhhQDYOLRwp10DkeufUOIBCBTGVUkilhufKw2Cv5ixX1PlvnR8lMU5XeBGJlARSFiSmhhWXjBCpDmBLvUtzCuSYD7CjGvwtZUG3tamLEZJQxMPvFqXEuaYSHFXdsqUkEFJWYE1JlJDwwqNirGD2XO+gFASTcEgEcwArNVYqktXkIhnHkXGO1WNlDO3pGh96+v0GZWfaJiCsIktXrWIxI8YI0pP2I8uu42vf+Qa3N7dst1tSt4SjNYsnMNqR2+uZxFxR60iSsIzThNzckUyLyImS63Ba/sbzyGhN4yzHC8PpUjOOG+YQ0c4grUB0DckoxmRQqSDJLJrqcXMzZJFQMSKVwBydYkOhXe5QVC7zkGTd2M0CjKBdO4QsxDuDUFDixOz39NOGcCpwjWNpNVqUCsDLkd39jmGOhKZllpIpJkxKyCLQQqNloWRZoxGKOGTcSVAG5QxJCvzhDoq5MMUvQ+8jIklUVChfkEpiRUKaQlyoQ1h11UoXY8iqeuFirufHC00utV7IOeNjPiwbEiEHQo4YIlIUlFDV52s1SitimJlKoC8S7ydSSsQ0IRVM/Z65rX77XEodPseq9iqHbVPK9XuFlMkpEcNUoUHUM6SN+rvZTGlnWT46IvlE8pESPSlmVssGqzQuQwqJftiQRJVixVADWXNxCKHQLuMMnK0XlFSY9oGSHSUWgtFMRvP40YpVo3FqhpwYBs8QBdez4iHUAlPd36DihLYaISR5quGN2BUxJqaHmfNFw+PlEv/4lJwdm8//gt3DA1pm2lXH89/7kJtPPufiV69wcmDJDvV4jTx+htYfU2IPFzvC/cTDNvGdH/6AP/yv/yv+u//mv+d//ef/G+PzF/Tvv8t5k+D1G+5+sSH7PdkYck4UmRi3N4y7S/Tx82raLp46y/nbN0hJhdWaR2vF2TH84tPX7IcZ1a4QaoEwDaHA7ZCxecDmiaOzNa5z9Js93gfuN5fQLNAvXoK5w/YzMUZiCPgkqzxBgLLQPGmIcyQNEbJElMR++JSL+8yL9Q9on57x1mcN85jpl5oQJn7+1x9xn8G+/DrDPJA3twf7rOBEW6xuaO2a1mqWToMo7HxBaceqC1WOUaAIyyQyt2XEUFiRKR7KUAt/2cNKCJKT6HPDzsOnVyCsxq4toRhC1oyxMGZ4wBKzQMaRlDJjqJjNxIiPMyEHms7gjKbRbaUhugVTTtzurrkLiUsfGbwkl0p8mXczlx99hBq3OPseKMmcC8Nuw7C5RywasJroR1L07KaJnCMqTihZ5QnaSNpVVzM9Di8pJd16QbNsSSFVYo3PNK6hsQpbQJZCjEPFtFNpY34OtdjDIFXB2MKqsxglCUOqQaXJkaVk1hrXOdartoZHioj3kZgKD14xpMwmZETyqLivxZRSlHAYt5qGogrzMGGU4NGqwy9q0dZ/8orru0uMqjKu03ceo53h4v98hRKJ425Ana6R3RHS7GvI4HYiz4VhEiyO1vzj//K/4M2ba/7n/+mPiaePmE5O6Bw8fZrZXc2E3ZbeSWJyRLvCz57+o5/gTs5pHj9HpAHyiBIFRJWLOGtZLzqeHLd846nl488v+ezz16jlMafPnqKaBikV12PBFs8qXtOtWj5894xpPzDvB66GB/Z7T/P+U7Q65ehuxPcj2+1YQROD5KTAsS+0LxrariVtPKGPqBTJYcfFw68wx094evqCo76hmQ1jp0lacPX5NTGDeesFWkrCr35BkxNNSZy4IxaLNV13hHOOtjUYXamoEGlXS3JJzDlTpKMox7Z4Qk6siJQkKKOo4+tyYHVqkKuWaAx3VxCSxCxbiqwByCGBT5kpWzwO/AQxEkKq1DFGUs6EMNJaRdtqjHKgHNK2FKkZ5p4p7XgzB3ysG9AYPN4H+rs7ttdL5KNjTOMOQ6/IPEzVNG8r6bTkiD9AWayoMBkpQMkqk1Xmt68naRTKmWoMT4l4wHlbrVEFVIY++5pVcojxiH6kFIE4SI2sBWc1nZPEuWak5WSrjEQrktGsjju0LGhR77gQIruo6KNgHwqUiNrcI8korSELSlDVnGhWeO/JKfJotUTbhvz4CL8ZuP34cygRIwuLR0uefOMdPv7LLfu7B466EVMc5vERJs5ocYGaI9z6SnprZ374D/8jlkdr/sf/4X9h9IH55AR0w5NFBnvD7ostvsmk6Ih2gc8zF68+RjnL4u33EWFA5BFJldBqZVBKsWxbjlYdHzy2xBz50x9/RFSW02dPkMYijWWXYNplVvEGpyLvvnhModDfbej9wM2bN+gnx9inL1ntI1q19PuZOWYeRoUNtajRJ5rzFw0PuVA8qCzQeeZm9woWAy+PvoaxmZcrS7Aa32n22z3j9Y60OsGajvTxR+SScSXSKcPZao1tOppuSdtqmuYgjcuRZrEgpxmfU5Wzasuenk2eWRCRMsEkKtzlvm5MnVLo1qLbhn4r6HegXINoDJmOlBU+JEJRDDQQAzLMhFD9SomZXCLeD0hZaFcNUhlQHVJbhGkYvWff33MzB/qYCUmRcmEee6aNY3t1Qz5aIuWqgh9KwY//D2vv9axZdp/nPSvu9KUTO0/PDGYQCAxBmBRDSVQwHVTlcOWSr1z+F1VWuewqW2WLIsUMggIJkMAkzEyn033CF3Za0RfrmwEg3dBVPBd9092nzzm9116/8L7PO5FiQFS2AIxiMci7GNCiDMCEAHX0HmprfyEWBbQxdJtlaY5CgVmQI4vWFuBGBlIgxP4o7ZVFzhYhZwtItMlYA6uugZhxUyQnS04NQWtmJVmtGlqrMcofJYGBOQp2XnLwCVJC7m+RqQTRCyHJroAjsAtijLh+ZlVb1k1HOFmSkuX22V+z3+6wKlI3Gy6/8YTr5y95/ulnGEYWckAuK2S3QitdoA7XPeHgOAyJB08e8bv/4nf597//p3z/+z/EnZzhzjac2Iy4Frz5eE9yA4fKElxDMInrN2+4vnlO++htpK0gDJAmFEWeLKWiqWrWi5ZHp5oHZ5m/+PGn3OxHFqdnCFMh6hqXBC/2mTruaOKB8/tnNMuW/nbLPHle3FyRmw7zzmNa3RL7yDjMDINjdpLsi8eubmHz9oK5N4StQ0SNTJ5hvOL59iMu3nmH5mTB/ZXFz5mh1aTgefbJC/YJqnfeQWxvCK9e0uZAheCsqanqlqbd0FSapi7N9eQysupoVoEQy/Iiqw4nA7dpxuQSRp99huFIdRzBCoW2Enm6wHnBzeuMMBa9bAjZEJPBx4IoH6iISSLcQIqp3EE4EiM+zMTosJ3BGI051nDCtviU2O+v2YbItQsMsyAmgZ9HCDO7V68waUbJc7IQhJQI81R+X5ecwZQcMUUm54jB44a+QIu0Lptfa/+zgd4/SDMlyegUMVogdJnK5hgRqSyhK6OJIuND6WqNleWCAypZ/DdaJZQA520JNFtpFBGTI3c+McSJuzvHIEEyQYq4OTIH2M2CnAM5e1R0yBwxTYuSAhU8Wku6ypKEYJgzL/rI68OBQQcmFD5MZBGROaDTSBVe02jH8uwC225ALmGMIEesgqQV+ykRdIPuLvjixQ3/9l//79g58S9+/bfRL7Zcbf+KfmsJd1uWWlF1S2q5Yr+/4XYcQZhCV5lH8OMROlGEI0KUPJe2XdGtz5ly5Gp3YAq+5GytJFZpWq8JomGSG9L0mnG6okoWiWG1tJAyaso4Jvqb5+R5xFaleA/SHMNgBT4lUpK0pkblxGwg+Uj2Aec2DOMTwtCSR4FaK6SR7A8DuIg5jGRbcVrXiFpiW8vDe2+xWW344IPv0NQNBIGOPY1/ie973OHAzWvFIQjGoEEoHjx8iPOe3bNPkDGgyXgl2SMQc8aFDHWhOR2CYUQhl4Y+w/N9ZkgwpQyyfD5HyVuyqsIqQWMVWVmibgoBJwUWdYNWhkM2+JQZvMMFx2GeOPjI7DwuFIJRuTUE+7stu65iOOxQtmQcaFHQwlIJUGCtJhmBVrIUdsGUaaHIxWMQ01daXCiFrogBmWKhEEpRSDYZUogoozFSHqf2RecthCh6aVGMm0qCEpIUNQGJqhWm7EBxKXOIDucCd3cjgmKOjaH4Bw6zOG4BPDJHVHJIbVGmRqay5WhqA1Kyd5YxwOF6IIgZp0eG8UCmTKJk8ui0w1KzWG8QWSFkh0gaJo/JidpKXJAcMqzOF8wYfvLDH+Fd4NvvvYetWrY/+YJhVjgnaWLipKkwm5reTNxd7wlJgVoQfWK6uyZMPaRy9qWAZW1pF0suHr6NaTWf3dxwPfQ4IidLQbc2dNGisMzthugn9jcjKVrqZLC1pbMRasHCR/a7V7iUqW1AIYoMLpXteBSJaw8PVE1baeo2IKLH7x3eKbb9BcOwIM0F0a9Wimn2TFNADyMgWK6WqEbiTztW3YrT9RkPHj3i5PQMKQ1SQCO2kBxh2OF6zX4qz6aLmfXJBVXd0qcPmfs9OmdEBQ6N8Alx8GQjQStcrAiyhtZClNwMEp9gjAmEQqqaiCGh0NIijaHVEoQima5M89KM0ZqqqnBZ47NmCh7vPcFPzDEyjzNzFEzuy1y1VH5vGHHzccOjFCLnY/BkyWCRWZRMHzRJlk3jcXdQLiYhy5//xctKFO9AlpKUBN6XrYCkNGFagdECa0voaPG9FbCFEbognQUlPDUopE5UpvgNyZmdL9vm7XZCUCb0KabjoAbmIMi5TGR1mpFSoqsWkQUqRozSWKsZo2GKki+2MxnPpD39MBEJqK/OX49Jd7RdTdico3QHuSKPHukDtS1enMMIbdsgqwWfffo5RgreurxHQjD87Io5a/yoMduR067CYuj0kv5uxM+OLFvIinl7i+u35Fi2QUpkWqOo65qze49YrlZc9QOzm5lTwDaG03NDlQxNqnBqQcQy3nrmONEli9WZ05Oaxmv0lBjTlumqR+WRthWAIcSM9WWTchcSq2xZ24a5gbkzhIMnxsx+2FANJ6RZFXXFWjH5xP4wYqaA9pGqrtnYzLhpoJE8OH/AenPC46dPkVIjhaYSBzQTYdwT55HdLIlJMQVJVXes71+S3rzE5YjJoPB4aZgTyN4jNVArQjT40BCNQSw0+wjuAGMqMbdC2qODSKKEQWhBpSR1FiTTkIQmhqYEsLctGcWUbRksuoB3xe8yTo4pJKa5eKILIGVmHkdMpamcLVlDQqBE2fCIY2aXVBIlxREOK46NU5EwqaM38Zc+coLgURT/m1bljOVUEO7G6GKwPm7kc5YoURQoRpbYBKNMIf0FU+bXTaHGKSJ9jMwp0PeeechI5mMQa8RHGNyXNdwvnIOqKwHBIZRcJl0CjieRmcfEm6HHKY9D4uMMIiCzR+cRk+6oTWR5co5t1yDbkh85BawSJC3pZ0VUBt2suN0O/OgvfoBNmQ/e/zpmN7P7yRfMoyH1I2ujqLqOigWv0w37ux5kRZYVvh9g7MlhRGSHImGUom0sp6dnXD56wiTgi+2Og58JInJxoqi0pouWSMUsl8TBsnORKtXobFguKxZdhiYz5Yn962ekaaRpQAiF1BVVhJgEh5iYg+SxadC1Zd9lwhiIvWeYWrb9BW6qyB5kp0BL+mEiu4juJzCGTV2TFhp70nD/8hHLxYqnT9+hqpuSeSk8ldiR3ESaB/okmbxk9oUgeHL/YcncczMySVROJK2Z0TAHjC/Znllr5lgT0IhFhcuC24NgjoXuLVWxrUSKKkOrGq3AmlLDJd2QoiPlQF3VKK2ZsiEkwegdIXimeWLwoWDnncCHougRJMa+Z2gMi2lRskulPN4RilweapD6+IwLolao/CVVMKNiROf4S8OIf7BmSuSESQFbWbTROCWJIcJcVst1V3IBQkxkJEiNTOJ4cEuH5+dywc2zwdaw3EAjPa2YcHeO4TBzfT2QnCOEIzo8FdS1m49Z3SKjRHlZmFChjaLB0QhNWzc4FINQbLcju+0BY26RIuHcCEdLvUk9tX9BZwzrywdY1SJVB4cI/kAlM8Eotn0m1A2r5QM++fyn/On/8W/4vd/9b/nv//E/5/f/3R/x2ed/wyFs8DGyMYYoa1y1gZDY3r0gixqEIc57cp7I0X+FKlUIjJR0ixNOLt/m9vZnHPa3zKHIpRYbRSs1FzvLIDdcVV9jjJJx6KmSRWXNvVVFpRJ2yuyHkbtnrwpO26qy5g8FFZ5ipvcQs6KyDRHQlSbkkeD2zPMZuf8a/mDIQ0KdaKgku1cH0ugx44HFasm5NahG0nQV3/zmt3n01tf4H//n/4HFsmP3+g5/+Jz59R9z98Urbj6dGQbJXS/pk0DpmntPvk7wE1c3L8h+QueEV6L4qqaMTbkUQUJxcJaoLWqz4HBw/PT1yDZkDimxaUpSeKVK0nutFZXSnJqWXNXEpiVnX4p/syRJy90IvZt5dviC4GbSPNH7UCa8QZQNlyoT/t3tHU2tOezOadqGtuswArI1SF28RMKUYMKltcSU6X3Ep8CUSjNhcvrPL7PgkSlijxMPpXSRYvmAqjTWHIP5cpEVSQQSWWSASh2NlJkYNDEJFiuwOtPIzOQD/X5mmjzDPBPjRIoOUpF7zlM6BgXmssKWAmVB1xWWiCaxUKVxnKXk4AJv3uwRR9nlOIxkERB5RqWMibdYWlanZ+RokGqBiAb6GZMTbSWZR0X0gtauSTnxsz/5U842J/z27/xT3ry64ZP/+DF9rJmjpQuRpqtZV2t2duRT9Vl5PamO4Abc9Iow7iDOKApSdd1WrNYrHjx9n37e89HV3zH2I55It5Lcu2c431bo0PBy8ZjDNPHmzTUxSrpoWLSJs1pQLyTjHPjxJ1e4KbDoLJWRKG1JxTrA6ylyMyceyppFXdMuNETHfPeS2RnuDvcZBkMcBcJK1Ili+Nyx2wXscMBqxcVpS9sq1OWSi0fv8Pj9X+Xdb77LvUf3cMNEdDN+/xPCsGX/xcTuWrG9ljgvGIPk8uwxpxeX7Pe3KBnRISBNZkaRQyCNGRoJncaHmiBa6NbkKHn9csfgM1sfqYyha2q0KjQvrRRKCDrToLQht4uj18EX46lqcB5cyNzeXjFNMyJMhBAYxxEXYHJHKbiRhLmAVrqpRSqwtkIe/8+OmZbHX2QZIOQiZ0kZwjF3rzRTv3x+lJRYpY4ZaxJvLSkW+IQUBdSjjcDkMsgrpIBSaGptSsCxL3/XeUXTUsK4ZcF+D7uCw73ZFU9eiiUUmQzOJUIoJnyK2gapLDo1BeFNwFBkkNFJepF4c1uUA9beEnxBGyuKsV/HHSZcs1jUCLFAyxaoyINHzL40Uy6zH0HSYpoNH/3dXxH3t/zu7/4elW340Q/+jn7OzLFFp57zRcPSVEyN4dWLV/T9gayXJBLj3TW+v4E4IXNpKheVZrVouPfoKfVqw8+e/zXDeGDOgbbOXN4zrMaKdV9x3dxjb9Y8u9sR/I51smiVOds0+ChZuMizVzvuXvVlu9oV43uMEMYiwX45CSosXdUxtZZ5ueAwvCbMkd1whj1ckEYFVqJONP7Gs70esPOMCZ5NI1lWEs5atFzx/vd+h4uH9/jmB98k+ECYZkL/OXG6Yv88MN0FdteS4BRjkNj6lNN3vkVSimnYoiNoJEEp5gz0rtwBWhGlwfmGbFpk3bB903PXO/YxkwSs2hql1BHtrBHa0miLVZbUtGStIXvKw7LAJYF3mX44cNffkt1E9hPjODOFyDRxpFlKUpgZ+xFTa9xsMcYilUIJifyl81OyPq1Sxb+Uj+AmMlrII+jl58WgSAnhPcYYtDFIqYptIySyzNjWAuKrzy+VQubjHXTcIMVjdIdzBm2hWYCVgUpkwuCZR8d+PxYiWxiOA8oS9eFc/mrgqI4ESZPKz7HCUyGxpsEhGYViN4xsdz1GJ6RI+FBqOJ1ndJKYcE1jNOuL+1jVIGUDjuL10hCs5NAroqlYtCe8vnrGTz78Ed/+9nf5lW9/m5/+6COu37xgCB0xJjZWE3XFSbsizoGX8jlZtWRp8YfbsrHzAyIVv2GlNCeN5eL8ggdvf4MXbz7m9uYVOz+DzJyealbGcHFn6dWKF9UTdkGy3Y20scYkw8W6pVKRZoK7w8ibT56hlKRtDdpoqloU+XTIfNFHpJe8bzsS0CwqxrjHba8ZxgXycJ95UKQ5IhcKYQS7NyNp9pihp120nBmDXhoW5x3v/doHnD98i+/8+neom/p4B90S9h8z3dwyvPa4QdH3kikqhKxZP3mfFGa2N8/JXqBTJBnJLDR5DPiUEUqSRTk/UdWo9Zqpd7x609MHGGJi0ZjiAVQKdZRKGqnpTA22ItUN5WmOoDuy0PRzydN8078kupk0lyDhaXbMXuCjROkS7TP0B6pKMY1LjDUYa8swQulybCRIWdqf2mhiTChpCCkwR4/ygZw5Dvn+fh9/72ZqsWh5++nDklwf0/ELkcS5rG0tsUzUG1V8HEmQY4B4nILnhLKqEOlcwg2e1+5AJRONSqQcWKvIUGWikqUwwxTkp1BIaYomMgSiLtr2EI6rYbVgzolPPr3FdjVfe3DKm5Oa18OK7Iv8cH/9IWGaGXLE7AVvXi6JzZruVy5g64l7T//6lhTuuH9qMZvM9PwVprYYRgSaqO7x5z/8kJ9+9JyXL97Q9xMDB9AVi9NHOH/H9fPvM00HKhkQVoDWTGMkRI/IX85dS0bSotYoa3G6JSLJMaN0ebjWk6JqVsxPvsc4HJhe/4gwvkK417z/K7/Fo3cf8dGf/BkvX29RsiWKhs3D+wR/wI9XaFkaDBchpIzwjuQj47ZkvFTLQtQKY4DwEUwJ73+TOZyidh2dyzy97ABFpWrStCcebnjn3W/Rfec3f9yoSwAAIABJREFU+ca3v8n5xTleSMaQaU9aku1o5wa5OkWsFT8VW3bTNUuhqVRin28Yo+POwUoaHnWWszNNc6b54kXP3dZztzN4rUmhxRjNaRBsnSFIqGqLEqZsDRJwpLm1RiJ95G7u8ePMfBiIVUc0NftDz5y2TNNQtmLDASkiTVOmffijjwJ48uic09MV7377bVbrlmm4YdonrmdPtWypVy0iHD0oquCZg4sFOR8iKSdUShgZMSJgfiGQWUrJyXrN2WaN0SWnShtbEPUxU2uFVgJdlQstc8yRSgXprPKMVIIsJS54YsgctgNSRGaVyjZTRoIuuT8cfTiCckZWSwOUnJAkBFEXSk7KAkT5Xt5c9wiZOTs7Y7WsUG1V/FoR/PgcN7whp4hXku1dRSuWVPdOyEGQDgk3eaa7NyyryOm9lnBzR3YeK+YCP1GnvLlL/D//9o+Zhpl+OzKLFk/N4qxD6o43n/w1/WHPUg4kU6GWhn7IbA8DIkYEpSCXWnGyblisW5yucW4kh4SSkrqxLKNmNWji6ds42XD38jPG/S2y/4Sze0/4tV//dV5/9ikf/+wTtGwQwrK59zZNyszDC0TMrKXFR5gr0L5HuIFx13HQhqorVU3/akakG/Lhr4jTA3x6BznVaNdy0SXWNVhxUQoZt6fuOu795j9jc3bG2f172K5hDgllNEollK+IqSU2F/Qq0vczKmvW2pDFQJ937KfIPGseb05YdhL7qGY+TLx6sWUYNONsoFtC1bKqNSILomyRRrI8YpVzLu8bUirbHFHknZkZN7niDakXzCkyxNtCUvSO7TAQQmDRlIydPAEyoVTm5LTj4vKE+0/O2VyeIGTEzz3ucFdkZW1VyH1RFJiOkMUvcZQx5eOTLwQYGVHil7G0dVXRtQ3BO5LIrBcdORXfbI6xoPIbhbH1UeaVSKHQx2Ry5aowHEPQI2M/MQ2OSkYkGUNAychoKGuuVHK3QCAWpZgMoeB0o9Y/p7kJiZAVh9GxP9xQb9Y8Om3QtWHy5XyP+wPXX7wq2v2U2O8Uu22HXGxo1zVp74kuM1zdYUTm0WVDGkbC3YFGz6jsQS6YU+KP/+iHEDN31wdC1sxyge0q2vU52zcfs331DD1v2diAXCh8FlzfjsToEFlSzM6ZxaLi/KSFqsZJS4oZcqZuLJ20bHqFbC4YTx6zu37F3fVz0uFDahX51rf/K2SO/OyHP0CisMZSdxdcdo9x4xXB9yxkDUkymEwcPey3+EFyuE1IKVmdGdxdIM4jYvxb8nCHT99BB4vua9bSIs/BSI1GkacdRM+7H/wGTdPy8O1HtIslcyibTdNYVLJkamJzBpNlmj7GTY6VrqiUp89b9n5mP0ruLResmwX1gxo0vPjshtll9rcNuWphsaAxmlbDnCxZGWpTk0XZ0uRY3s9KCiotiJOjTx4/OaLSxHpBFJL+sC0yqXlkdI5+nqh0xjSSsugs2WvWWh6/dY/zy3NO7p+gjSC4AT/sISV0UxWCWfp5HuCXdNxE8feVliyjVUbzyzmWlbWcnWxKAatUadKkIoXiVTSmNFe2NsfPIhEplfPzJQ1TlTsjBUeYA1s/YmTCygwislCRyWaiFGXgmDNCqGMdZ0gxElMo/kSpiF/eU6rB58SLFzfouubh6Ya2s9QnC1LIpJC4u7rDDT37HBGm4e62JVUt7eMVjIk4ZqabAykeOF1odFfhOaArhcwOgSGqc37y4RU/+/SG/W3PPAVGsURoy+L8HNdvufr4z5j7gbVxyLaFynBz54h+RBTTZ1EkVoqzTUPVNsyqJiRB8pG6Mmgp2cyaVnXMj7/FOAwcXv8Uv3+G7D/nrce/w5OvvcVnP/wB467H6iVJ1Fw+/QbeH3DjayopaY1hskW1I/d3pAkOtwGlJN2JIofM+GYC9zn5UBH81/FxhRpqqgAPT2vIEisekN1Amg/cf/Iu9p1v8Pidd1iebMhK4XNGNwYlLdpbRLNEdIqQXtP3E42wGJ2Y8g4XPbtR0OqGy03D4tSgzyy3L+8YdhP7XUPQlhyXGG1YBcHgDUm1GG1ZCIM62hggI1Km0gIRAsM8ENWMH0aSbUmmou8HXAr4aSAEz37okSJRtwopYtlGyrIdffjwgvVmyf0n92jaGj/v8VMmhYCta2xbI6M41uK21HA+Hv1TpUDXCJQEo0rT//f9+Hs3U01dcXl5Vkhi04ytGqQyzFMghUgYCnLTquoYNpuJYSbGjJwDIge0KhpekSIhTAz7O6wUTFrQNZnGQjQZLwUmmfJnlUYpTVU3RF/W47M1OKUYD77EZJia4Dy31wPnSnOxqUhB4L1g3mf8ECFlonOkLJhmQb/vUN2G6uElXuwI055pfyAcHKt7C1pr2d04pJnRIqC1QdYn/Oz5Mw63V5ANoIlKousl7cVb+LRnf/cJMZcQY6FBWImbjvCJcgwLwlQKKquRWhOEJmZRcOqyTJS6ZNFiweHkLVz+FDd+jox7Kjlx7+GGp19/wt/80V9ys4usaxC1pdncZx7e4ObXaCExSpFVeVlDLBrnIaKswjSK6MSRx/0KnCOED/DRoscKmwKXG4MwNaY+o7/6jN3Nc87evs+9x+/x6O1LVuuO0QcijrO1wUSLaBtiB74tAWuTj5wYTasSYzpwiIExClZKs6kN7dKgTy3X14HPgWezYXQGrSxdkAQyUxAEYVGqxhpbTISxeEqEKA99SonD5JmEYxSS0FlC03E17Rj9iJ62JeMsJqxV2NZgydgQwBegxuXFkvv3z7h865K61vTXX+CGkeFmxyqfYJeSHCWgSvaGgBgTIaVjiHVCZ6hEppKpeHuOH1IKlm3Hsuswskz6jK2IRwxpAe1SdNlCEo9BkDkGRIqI4BFSgxSIkCBFxukABKKWGA1tXTJxchbIrJEohChFoK0ayBDcTJCSWVu8j/g5IFR5lg+7O0SOXD7SZGMYq5pQ6M1IqQjTRM6CKBXjaFFdiz5flWZr6vHDzHAzcnK/YrMyjGMk4tAyElBIu6S/2/H5hz89+vU0QUWiilSn5ZLf3zxn2N9SqwphNLpRBJeQYUbmVEiHokhcFl1F01YEpYvHLJTwRFsZ2mzovKHvzph0Tf/x93HDa2y6YdU+4tFb97l9dcWbrWdZVVRG0F6cYaXEhdeIEGikLmG3CZRMEBxuCIw2YReFkihVhHyA6WckVxPSexivkbNh3UiyUWizJHnP4fkNdb3i3ttfZ7GoWW1qhJRMk6etS8iuMoZoa2y1Rsotswt0quSAZWam2DOFjI+SpqppOo1ct7hkuM6OO2fYJoOUNSqVAEcjIGBBaSrTkVIieV9oYZR3jhQwzwU/PDpPNIkoVxyCY+t65HxA+oE5ZBIgqwbBMVRRgBGB5ariwYNTNmdruk2Hnw7E4HB9XyRJTTE4k4/yPSGPYJqfE5aOY4Tj8PDn5wfAGk1TVUwpkETGmuJ1SrHk3oQ5gRKoLJA+EmPCHw3uMh1zq6Qu0REp4txAiCNegpbQNuXyDBrIEkWRogihMKZCKU1wjpgy03EjPQ2hFIuqZppmhl3P45M1684yVRU2ghsoQxfnyCESE0yTZp4a5HqJ6Vqc25OCY9oOiEqwuawIYmLsHVZ5FAmpGpIMfPTRp/hpQqTioYtGsJCG6qRjOGzZvvoYqSytskVWGjN3ySGiP8rBACmoa8ti0YA2JSw1ZUQCYzWV0nRe41ZLxs19hqtP6fdfIP01jTE8fHjONDn+chcwUnDSCcxiyWpxepToDtRKIbIi6IxORRYb58B4iJhG0a40ymaEcOCeFwhB+oAUNWYyNFZQrRXKdEhZcXi+J/nA+cOntIslq9MOqQ3j7KmMpLYSaTREi7ULvKX4mEJkU4GSgTn1zMEzeYHWFV1r0KsGNNzKiYPLXPkaYo1Slk2AjcnMscCOtGkQQpGCP2LTI+Iol5t9ZPaJ2XmCVASxwEu4ngZymFDzHh8TPhZUu641alRlAEeibiT37m84Pd/QbRZHgNeAn0aS8zR2jdC2GKCFKnL3XELC01Gi9GV0rKRE1/xiLWiMZrVYoKVES4G2Xz7TpZBUJIRQKFsfwSsFXpATyOARORbPShaIlIhxZvK7EkejBHUF1kBSxTOvkj5CGsxXeUAxHKMJtMEryTwEUgShK2Lw7HYjK6lYtxZqQY7gRoo3K0bCPBOTwEwwjjWqWmA3a4IokQbzMOCHwOOThsZoxp1HGIcmIZVG2BVXV684XL9BHGs4ryW6zrT3LvGhnB+PpFMWWWVEI9hvA3OckflIJ5XFW7NYVMjK4IQ+xgFEjNFUWrNIFktLv7nHlJ4zDc/BXVGlW85OGx48vsff/oXg5i5wsgBZW5bn9xmHNzj/BqMkdVJkDTmkI6wlMR4KhKpeKNwBhAyIeE0eNTG8RUin6NlgcuZseYzPMQum29f0+2tWjx6yPn/A5mJJ01QFwECgrSRSyzLktZAqQ06q3EHWUquMzwNTDExB0mhF11ZUS4vcVByuAzdZ8npqmIVBmYpaq+JHjZIoKpSuMboiev9lfgJC5K/kptPk8UIwy5nYWmJuuZkPTGFCjXfkGHAhYY3ENBadE2pWBVKRMmdnC84uNqzP12ijGHdviM7hhxFYYpoSCiwQIAupL8ZfAKxQVGOimA/5/8Gf+Ps3U5v1GR9863uEaSLMM0mUzKNPPr9iHGdUrQkhMvSeeZoY9j1zErhctLtSANMecaRzROfotzt6KRBKsOw1jZI0y5rGKrANWUjm4+Rmv8torTFVCcvTCJ4+3mC0Yj9lYsi0Z0vI8MlLTxABIwKH1yOH3YyfR1JOGGNpzk95/E/+Mbthx+cffUynl7SXp4xvRlIfeHZzi1KBvYvcP6v5zQ/eIn834v7rd/nr//f3+fDPn3N3OGUMG/rqd5BWMei/YeQLpuAQiMKxn/YkPyOjK1sKkYuESwgwK2L3DlEa8vQMPx9KNk9taOoVT3/jf8KnyE//6n9j3l/jd1f8N7/1Af/yt7/Lv/vkJf/3v/n3yOUj7n39MdV4i3eZm2dXSAsnp++Sp1vyfIdBIZJAicLo94c7xHpF9eBdgnhNfrUrnh83cL0/ILYHVtGzbiv+0a/9F9zeDPzZn3yEH3u8F/zHH3yf8Bd/TmWrsi00S9btkn/27jd4/NYJv/rbvwXjC9z2M6p2xdp2JGUZs2J8fkNM8GC1pM6eq2mgfzbz4g1sK4O8v2TcNexmGF5fI4j8TB0zHLShVQOtMlyoTCsgZInLgr/pVaHu5VB8GEIyutfMuxtykzEG7MayaDu++60z1mcn3H/nXfx4YDrc8uLlLXd3A9/97X/K6b0H0HbkFGiaWDIw3vKoqlBt0pG2ppRASOiqYhDupxEpytcpmZF5Qmv71flRUnN58YDLi3PkUZebMoyzZ3KFdplyJrhcKIHjUIhqaKQEJQ24GREcWpSIganfElKg1worJX4wmMpQ1RZ0KZ79MWl8Go8Tf9uQRZm3rxc1zZnFhVwACd1jcs7cDoIsXPETTJ7D7cR82JFSwFQ1tm45efqU7vSUZzcvIQtWq2WZkqmewzzy7K6Ql0DyvYsVi8WSR09W3F295Cd/8iH90LEbzhnsYwZzSVc9p+IV+3nHPPUlrDpFPAo17egIIDNSgTYVVdUQV9/AdQvc/JphuGXcOerG0LYVF29/l4eP3+MPfvzHXF2/ZHz2Ux6crPlX/+v/wp2P/OEf/AU5GR7/yj9Czz3COa6vDvgoOD15Ankk9y8gC+qsS14V4HZ3jGmkvf8+ciGI+iVEwdwf2PcDr3tHEwK1TDy995C2afm7H79gPPSkGfaHN3z68f9VNgRZE1UDuuJ7bz/h8mTFk2+dI9tE7F4h2yVdtUJLU4qPu5E8zKzaGrRm8Fv8zcA47AjGIB+e4gfLoTcMN9f46QXPTCn06rrFKs3K9jQS1iqTsiRlyVVfthcxhaOMTRGlZ+hHqEA3oDqBlgu+9mjNatVwcu8xSimm/o5pmrm923J68Yj7j99FWIvQGqUzpIq2Ld4RYY5KgiOuvzyPJUw4hEDKuZDORGlutPplLG1bd6xXJ7R1U3weQuB84G7fI7TAoIizxznPNIw47xl8JuXSfBMDuLvj4CLhxn0JcFUlE86PGq0VVVsVOYipimcugfOZPIMxFcIWH4k2ivMHa1Iu+Ut2YVmcn+Kk4OouEIVHpsDwZmTY7gnRoaTCNDWr+/e4eP/rvN5d01+/prMdSjT0ssfHwLO7CT9PjDHz3rLhyeMT7t3vmKeJH//hZ+xuMrf7DZM8YV9/DbodtXxOH2/ZuwGjAko54vYNKWXa5FAikbRASo1WGrl4i7B+C5dm/Ngz7EZyjCxXNZuzJzz+3n/J3z3/iL/9wb9mfvUZDDv+1b/8PS4uzvnB337C6DP3v/49VPJUfmS/j/TX17SLDd3Jkty/IMeRxlicjygyaRoZ3lxx+bW3OXnykNc/u2N/F3HjzNj3vD5MdDbREjlfnvDw4X2++PyWq+c7whBJPvD9P/oPpJgRuRD2gup4enHG1x9ccu/tDeuLt8jdFWkWNPUKGTTe1IQZ5i+u0CFyeXlGlge2hwPuowNCS/LJkpw0475jGnr6Tz7hmSrSodo2GGNY2pFKKk518eolFIdJ8jpKUo7EHJFHCuAwvyApgeqKt1G3Lfc2LffuLVhszmi6FfOww7uJm5s7lKl5+/0PUFWNrCoIilxJmq6BlJFGfanxg68kfxJxVO3EVP7t4scGo6tfkvk1dcfDe09KNhIct1mZfXZlu5sSCfBzoZ65eSIcfWFalW2YcD2kiBGRGBzjYQtCsFeSbtTUqpyfyhjQFUlIQigU374vyhtjNFkIFILL8wVKKWafiSlTLTsAXt1FkghoETjcTQyHGT8PxBypqpp6veT8vfcYwszV1RWNbmjWLdPdTJpm3hwOSBkZQmazMLz78IQHDze8+81zPvvRwIsPn7Pdbxj9im3zdYRVrPQX9PkVu7FHCYnWnryXpGmi8kViGFXJX9RSY5ozwsmvkm1Fml8y9AfmfWCxaujqJQ+/80/xOfGDv/k/Ge/eML/8Gb/z3e/wT37jv+NHb7b84R9+n+rsCQ9P3qKae7zLXH96jazh4uw98nRDnm6p0BDAyExyifHNa8TpiuXTrzEMmahucD4j+wO3/Ug9zCxzpLWKd588pT84PvzJFWGeiF7y4Y//Fj//EElpJoNdsGw7fuPdp5ycdzx4/ynC74nzLaZd0TVrsqpxUuNe3ZJS5vL8FMvMbtwxv+jZvskMdY14cMq4aznMcPj8GeTIp0YV762tabSlNYa1LEPnhMJnyWeHAmCJKRzRrJJ5eo2Tt+SuUAnNuqKuOn71yYZmsWB1do/gJtx0YLctcURP3v0VFutTsrXknNCqDM5ESkX1Zc2RWHvMtCbRVFW5e8KXwyZRQtvnhPhPw9r+IZopayzr1QnejrhxZI4B5wNJKCISKTQxZcbJMY8z4zAyZY3LGmUSQiYYZ1TydDYUZG0oeQEhClQUZCkwDUhTLI3piGEMIeGmgKkEUZYAvCwoaG0pyBTcoa4q5tmz348o6ZHKHzGjMzkVeZtdtFTrFe3lOcNLx3y3pV4XUg8CMpEplR/opCqCqVl0DabNqNby4szysgZvN0juMdVPSCIyh/+AC7tycUMZZ6fjNipHxLHr5UirkqoiVyegRnLqySmUFaNqMXaNWZ4T5z1u9zl56mlU4vT0nEfvfJPpR8/54pOXnD14j6ZuWFeRqXe8frFDZoNZtCVp+kibUern5tToPTnFgrE1JeMgI0kpME4z/TCxsAJRG+q2Rd457m72RD9ADGxv3zDsd8Qgi29BrzjrNryfFrSVJqklQVwz5kSWEqUMXhTzez5MCKA1BpMDpEw/Rw5DxJ8bvFV4pQkyE2LJAZlCptKaVkKjBEpKKgm1hDkfkalZEskloO6Impcil+TzzqBrhakr1suKd9654OTyggfvv0Oc98R+zWq94Pr6wNN3n7A6u8/NOBGDI8cGSSp5OEdgWohHQIQqvjRtq2P2VAm/tNrCMRha/IKBXghBZWuqqoF8XCsfgwUTokzrc8b7SIyReXZHNLxAqoLYxnlEmKl1Ce/NKRTZRM4kodBJgczYSpBykXLFXIYe3pfJfCpvEGLOWF3AAJnSyEmjySmz72dyjijl8FMZjoRQ/r5paupFR70qE3X/fC4voGp9/H4zIcOcYBYaIXMZYDSWrpKIYOnaTNaWUG+Y7SmzOSPwKXkucpiYysSKGMh+KqbplFCUCValNZWtEPWGbBtSuiXFmRQyUlgqu0S3a2S3wo23zLvn2DzTNYbLp++xf37F53/5MYvVOav1kroFWxtevzjg5oRetSVMU5Qi20h5PEMQnS+bOqWQUiPqroTFhoBznmHyBUBiVCFqac3hMHPYjajsmfue26uXJZjaCYLuyLrhraqjSYKY7iN1xudMBJS25GNYcp5mcAkrNbKSJRw5RfZbR+ogLhZ4pfHKlgm4m3FBlK2Q1mVSLXQBOUgIWZViKUvmJIoxVxSzuRBl4ql02WJrY9DacH655vRkweb+ZfHEzA3TONJ0FavTczZnp8wxEmICoyGBNPqr4g0gZXlE25eMPSHLs58oQwchOH6tv3yRKaUx2iJyCSSOKSHTl8KmEoAak8eHiPMe78oGImUQKpVmanJomaj0Efscy1lESMYosVFim3Lg05fnJ5c7KIZIEkdoTM7o41rtK5yuEihlGcYZ7wJSuWOGzoSfC3lQGk216KhWC+rVknT3GjeOdIvueH7KWZxTxmfBLA3CWOrK0izKxnq5EMRZMJsVyBMO9TmZkWm6xYWJePRsihTJfj5u5mKR2guBUSUIV1YLcnVCEltSHEkxIZLEmgW2XiGXJ8TsGLefo/2eSiXOHj5hc37Jqx/+AWPInF2sqbRh2SiGw4g7DFRVVTZElFxEY9RRQlYm934s94CtamTdIqquvKOcZ5gcShSYkLQaW1mci+zuBnJwpDBzc/UKPzn8LEnC4vWSeo480DUn99dkUROyIORidJfaFOlziOT9AZkkbaXQqWz/h4MnK4HvunL/KENAErzHR44yIlVgKhiUACtBIAko5iyYY5FgI3IBrkiJICKVoGoMyiiUtWzOFtx/cEK3uaBebEiuJfqZurVIVXFyfkYSijmG8vMTGonmS7REgXaWhurLeAipjhugWM5T2TRnxH/qOVSKumqAsm73IRzhE7JANSieXO9DIXPOMx5DoAxGhEwwlxwreTw/OUaiEMSUUMe0bV2B1PKrYU3IlCBaH9G55EaWcBTIKYEsjWhGoKzB+8gwzAgZkNLjx4l5mkn5WMN1LdWy3EHzLjIPA1Vrj80mQMalUpPPyhC1pbIGbQXSKrbPNLsm41UH6QRdn5FkYnZ7nDsQcyoKohTJwZORyBhRx/MjpcQaUwaT9RlZz6Q0lAigKDCqoaqWqG6D9z3T7jlx3FIJz+pkw713vsGff/FnfP75ay7vPaWtGhYVTAeP7w+orDGL+qvzo6QsHk0pEOSynfMBZSzSNlAvCq7f/3+0vVmspWt63/V7x29aa+21x9o1nTpTd7tnd9tOHBtskkiBICBCKBFcMEhRhISEhLgjUcJVEEgOQ0BECBQBiQiJQqRYFqiT4OChY7tt99yn+/Q5fc6pU6emPa/hG9+Ji3dVdRsuaCT4pCqppKraVXt9z/s+z//5D55h9PSjp9b5JTWFga1jteqIboDgWF9d065XhFESo8LZPfZmCz4+W1JYTRIlgQ4XI0iF1gWBLNFJ2w4hoCwsehfIOw6OofX4owJfqgz8uWz3H4Nn9JliKpWiVAKBREsoZM4PjUkyBUmQiSRfRJ4ohEgI4SgKnc22bEFdW05u71PPFsyPTklhIE4tq5s1bdtzdHJE2Sxp3UQIHlnk+0K90BlKASHthqkdQCD1D5kRQuQYkBjwfvr/x4AixEjvApttz2a14uzqhm07sN722c5w9LTblscPPySFiIjggiFEhZtWxDAiY0TJRFMFCiM42Z+xHSLXbWAVLDfS0K4SZpPD20Qi03hSYus90zRlh6Ld/++bQ4CUaOYFWkoMCZegS2Res9CMocDHjDLWTc2bf/wXWd65jSqBqcM/u6LbVsS6oVv3TN5z+sqnKZqa+rylqGoevjcy11cs9YeIR9c0m4qP/Vt/iurTX+QDV3D50Yd8/T96G7e6whibV+9k1x0pMqff+wi7l2heZIqU3D/CxjNsvCBpwFQsjn+RcnbE197532G64rae2L+z5NVX7vB+/Vn+/e98mufvfJnNezecPfwtjg7n/Kv/zp/hZtXx1rv/gOG6wz/vmDX3aJpPUSwjwjrU8w7nfDYv6ALy+TM0BfaNzxMunuNvrlg/PUeHgj/yz9+mriO/+vVf4+lH13zjg/cRbot0K2x06OiRKl8ahdxDSsFlGpi15zx8+HUeff/7vPetb/F8fU1XGW5WW5xzlDhqJXilUZzMFG8eVbx1PvDtM8/V046WkVBHtDF85rW7WAKqXyEVKCO5fXLA6eE+Y+sJLuHtkqg1twufV+FFoqwKZosaZRXKKI72Z5RFFtEbW3Jw6xhbzaiXtxAoRNIs74447zFVtpzdG1s8jkkLkFnXJqQBaUgxv3OFnaGkBiEQQrM83F1SIuKmjnFqUaZ8WT+JxDg5umHIl1QIjD7gfM45kEmQYuLy8gI3ZcelRM7oCWHAu23G9FOiriJWJxZVRUpwufWMKLpYUiFogmPsVrhppKoKpFJsvcOFQNd2L65k3BCYBsd8UVGW5qXGq40QhCSKAp8MfSqJsqSazbj/uc9yeO8+9cEcYiSstkQv2ExLhs1IP4w0pycs7x5RbSeSj2xbRXIdc3VGPLuivCk5+Nhr7P2RX+QqaVZe8M2/+SEX3/0OKimqerGjsSiMSvQha4eCF0hpubWcM1/sYQ+X6EIzd0/YGs9QN+wf/QTHdz/H8/acsx/8Oge2Jk/1AAAgAElEQVThmlvLgle/+PP0szv8V2d3eP72hnd/4xLFh2jR8+f+9T/BT33uU7z74Zd5fnlG95ULynLG/fufxzSC2V6grN/HmDXOGYbWoq43qFnN7HOfZbzpGN55xGY1cvHwklufrLj/6gmPL5+yWnd85Z1HtKst5XiBTY6aKee7mIhRBVJpRhHYxJGb9XOIA09/8C02qy1jU9BvO9rVNTY5tPCcLDSzUnHnTs0wad56f2B72XN97olVQygb7t+7xczeRY03yOSQhaaqKm6d3gGfCGPIjkmqYq4jSUUwIJWgamqEypSpwhqqymZKhNDUsxnGWopmP+tmq2OqRWJ+6BBSIZXGxoAmEMTuclS5TpTIzV1KCSU1UpqXSKApNFn8nnY5bG5HP/3hE8naqlw3js22w4WQz7UQM9V7vWG9WhF9IIZEN4L3gWm4yfklMWTTliJSas3hYsH11jH4xGUskUEyrDzR9/TtU6zRFIWlC4ExBvouZ9JBIobEsJ2wVjPfq9AkNJE+ZUZGlJaIposVIVjKpuHgzh1e/ckvsH98DCrgty3j+Q3bYQZJM4wTtrbs3b5PdJGpnUhiweWFo5EXSL/BXkv2xQFv/KlfYKoazqPh0W+/zdu//FXSNFLVc0iKiEArQUyBvpvwPiCEZa+puLU/pzjaRx4uWU6XpKmnK0uUXnD64I8Sy4nfe+fX4OYRnyrhzpufYnFwzJf865w9LHjrt9ZMqwsMX+fnfuYn+JP/xj/Lb37lbb736Anb713ih5FXHnye2XyPvWNBEtcoc0aMkr4t6C629NVHmNPbVPt36L/3Ae0QuHx0RXl3xoMvntL1HV9779t8590zPnj/Gt1doHzHjBElIkonpGxQekmSsGZi1V+hbnqeffhdNpeXdAYGI1ldXSGjw6aJvUoxaxTHxyVNPeO7791w3Tou37nC64K4gL29ko/f/TRMLcK1KCNRRnF6+zbWFPjOk9AEO2emEsc65m5KQVmXaGMQJgNus6baUbQNtiyp6gZd1EhTIspDSFAuch6a0jlaRYRAFIkoxMvhjB+pn2xtX7ysn5RtMxEin+0hOKTO+tuXPVyI9ONE8B7nHaP3+BAZnc8UzySYxpGry0tIoJCE5IlJ49wm93CJH/ZwWnCwmNONkXUX2ETLShr6bUJ3A93mHEGiritcSrTeMU0T4w5YgMTQZpOkvWWd8xmz7Q1dEiSRA26HWOJCDoyeVTVv/uzPsjg4RBcSgiNcrRl6C1VJtx2ZJsfR0QOKuqRcD5TGcnXpKVVLLa+Q5z3VuubuH/0C9pXXeRYN12dnfPW//RbjakVdzzMgKlSWmcjENE70/YQgn4n3DueY4yXyaEnBJVVsiYWEesbx3Z+jWRzx1pNvw3TFx6xjcXjC3Xs/zYfLz/JLT05551tw8Y0rVPqA44OSv/Dv/Wn6wfHV732Z7umG/u0rjo9f5/Do0xRLT2EctlwxjY6hL7Bbgbm6pqwr5j/9U7hHzxmeXXHzfEOpbvjkH96jqhLfevg2z55t+N13HyPHNXq4poojNjmkynmmpdrDSMkGh3Vbbm4ec/P0MRcffsB63DA0lvXFDW4cKdJIqeHW0rKYGU6O5jw+2/Lhs5HrR2u61BH3IsoW/MQn3sQQ8h2kQFrF/v4he8t94hCIPlGaOUlpliaQZAKTMNZQlCVCK4SWNHWJ0RpkNshq5nOUKTDVItP1kqCc5yxDqTUIKN1IIOJzMvkODNFZI7jLbVMya2Jf1FPVFLlTSwljC7SxaFP8uCPSjz9MTd6x2qxYb9Zstlu2XU8/jHnRLdlZb8eM3giFRIKXSJ+RvRwwJ4kpMYWA1hJjC2yKVMHnYLKYcC6L6UPIFuIxhOxClsLOselFKwjZvlMQXKYACWI+fITCRXBRMDqXw1F9RFuD2VuiZzOCm7L+a9shrMfWEmMNKRqShCiyJseNPefPz2nTOW18wvXFmn7wdKs16eoSoausxxk64jRmGYLIgbX5g4lZhMmLyTdrojJ/V8MkckAwInNblUCIyNBtKJi4f+cUoxXdGLi4uOLR5j2Gmxv8OOJSR2cS5xdX+KR48Mk3OH/yhEfvnGN1j9Ujc6ExWiJ3DJsYdz8SJGmQZU1UmkRE+A4xbXDuiNFJun6EFDg5sHRbzXaVDTUUkqQ8yiju3Tllf3HIrVdPWN6qkDogZbanzCo+nVESBPO6praSg5lhUUvKmaKaDLWvWHVZViaUzk1cM6NRkeVcoKxGVxV78wrbVPR+ZCSimgpTWObHNtNfbaSsKprFDG012mj25yWlNSRRI7TBljOUqQhJIUVGA3VhUTYSGUnR5aEfUMqAUihTklDEHJ8NO245Uu8+tyzmzSNT3FH2IlL8sLxSSozTQD8OTDvdhY8Zq1ciI91x5xQmZKaJppSpUMRMgchhjTIHQ+7cxPLGSyJiplL4kPAu7QSVkRji7utHIKLUS0NJghRIoYkx4oPL+TPwUtg8hMjkPd00ZN1jEKiioljMQQhicPiuh6gxc0FQCl2aTJkRiUQgxcBmvcXJwOjP6a9W9O0Emw51syYai5EKho7Qd9l9TQiEsjtnw7ylUinmbbSUWGMzzdRqhJaIIW9+lbEordFa7lCxgdPlkjLNaEfJlet5f/MeN48es1ltEHGLjC1Pn1zw+GjJ4mDBSYx898mH+An6tkdbQ6MN1kiEhugEPgh8ErmWq5owBkYRc5ij64je4v0ui8Y55jOFiprJ5wFZKYtQAbRnuZjTzI5YHu/R7DcoI4guB8wKCckYtJbUJqN7VhfM9ix1qbCzgjBFiqVgGIFegM4IoKlqyrqkaRJaBFRZYgqLrSvcFHFxQtoSaUuKRqGsQJhMhyubJruHaY01alc/GtAom4e/Fyo/KQxC5gybxI4D/yKAV8hcHzvQIe/sUw7VFWK3ecrbMCnl7teRlEQ+j/4vm6kQ8hA1OYfzHhfyECV2aHTYuVUi8zZOCNA+h8t7XuhKFCEFxpBdnIwxFFaSZMSFbO/ufST6XWh2zHdRSpFEzGY1L6RciYxiAiE4BDkINn+vJJOPuBhpx5HkHNIDylIsFihjsta4H/DtgGyykYEuNMrqXf1k85lx6FmHwOAuEdOKdtMTRKRbb4ghYUyBnDpC1+42ZWSHOaHy9yOFl5pMJQVaaQpToHYNvxhTNorSGrV73yAy9h3LomD/9BREyfUm8GH/Ec9byc31DX69RoYbzs4uefTojCgkdx7c5p3VBdvNmq7tMabkWFUUOtdPmsBlmSpTTAhboKXKc0LwCN+TnMHHBS4InAuUVrBcaAafUWypbNYwGkdRlhzsH3F0vM/scI6p8jb8Rf2gNcIoKg1aakprmNWaptGUc4spFcUeFNpDK0FppFbooqCY71FEjQ0GWdjdVnGGlIrBjSRhUFWJKiW2UYicZE9RV2hjUFojlaQpCxAq/35t8pAjVN4w7TStyuj82bEzTEk7BaF80QgqXsRaixdZlTvKX0JkIEMqXuyvZNrdUT+CrIcYGMYe7/Mm3cW8BRUkpMjB1gly/fACoZfIBGHaheuKbEAxhZCZGdpiY6QoAn3M/Z3zuYeL8Yc9XP6b404fw8sOTkr1MlRVkAjstr9C4YJgTJJunHBO5PgHqTGzObpuiDHrEH3bg/boKlNvY6nhZQ8X8G5kdbOmj2u6cM76ekPfTrSrLe5mjSxKjOuJXUfMtoo7C3q7k2aEHBRP1uQqqSiMzQOz1QiXt55SZr2R1gqlYBwGbIzcPj5BKMNNm3g6XPPexXtcPL9gs2rBr5Bx4KPH50hjuH3/Fs8fB84+ekhdbqmrnmaZz2GtBUKBn/IdFJIAbTC2IZh8ZogwIFyP97McqTE5ILC/p5k2inHK0UZKSNAOqSTHx/ssFvvMD+dUc5vrZ1dDuYczWCMwSVAXNaWVNPsFVa0xTYGdS4rBILuchyWUQRqNnc2pZKSJ2TBKlpa6mWHqij5NOJGQVZkDmOcqxxLohLEWW74IflbUpUGrrMFHKpQuEdLs6ifrwqWOiJzU/COfV36/EDLTtoXagQ5pB0Jkv+R8Z8jd7wVSQmtDMGWuoR/z+bGHqeubK7753a/RthNdO1FohVaK/VlFivC077GV4vb9WzuzIJENHybP9qZmGjRj1ISU6HybXdnqJctZZP8o8uxizfWqI02RKGC2X2XExYEiZRF2WTKrFD5FQgJrjkhJcX7xiBBGtHAgNQtdctlKtq1gc3XNuO5QRHyyhHqB1yXbi0u2z85pH59xurjPg4OGs+qErevZtk9I64l4ecF6SDxbCabNNf3VE8I4ESbPN/7af0eyC+5//IsQJ8zYE1OgCxGlDdo0RJ8tdrXIl7BLmaZmZIkwllhJ/BQJW0dMOh+o8fswlegoODm5zb/yL/0hvvbNt/lv/vu/j49vEeL/CCEbagBc3az4pb/6N/nkT32B/+C//qt8+Uv/gP/yz/9F2u0j3HDGa8f3ODIzPtCJTgvCEHFC0VX7BEp0LPJWR3lm8jlNDLz93dsUdcmeXnLn7px/4fO3+MY7T/m1r31AKbKgfZtWlLOCP/tv/2leuXefO6dHiNQS+8cwbYjbNev4jLW75jPScaATd7/4OkVTYaoZbhxoV9fcOp0xUzO+/XTkydqx2l6SRMLtn1IuDD/1iqY5OGJx+zUePnrEoydPeMKabXTcmZUsDxe8+XOfpCoVNg1I26CLJUJk8biSE1JEfKyzpavvSGMg+C1CWqT0O+55QvkbRBhh8siUrXTRFlE0jG5gcH3uAsIE0qOSzNoQQON3l5fBFBptapT+IaoRQuDs6jkTjhBzxkdhcuhsYQrafmLykf2DPfIZJiEmkvdMIwxt1oiFJBlCj0uRZOcURnFrFumGCX95g8rgO2VpkIuCtLOyLaVCSVicLEgi4VNEyQYl56y3ZwzDBiVGhIBGN/RBsV4rNuuWsw+eYohoERmTIdqaaRhx25bt0wsqW3HyqmWoFWYuiWrievWYsF6ThpH1RhL6ifbJe4QhN4/j4w3db77P7dde4/DOKerqhkY4riZHkoa6PiZFxzTcoJhYFJExClySFLbB2BkUiqgSbetwTmCqOUptwb2FTgolG774sz+JVvCXfulv8+TpOZv13yJ5iF7vzGAEf+N/+of88q98mf/wP/0LLA/3+Ivf+DqX12eo93+bN9MJr7z6Gk9KD7VkvE5MLrEpZpTVnCJa0JKxmKjMmn35jO215l0qKlmwtIJ/+RfmDOPAb3zDEJ2nFDDS06UtP/mHP8fnP/FZZvMaoyXJr5g6zXDnFFFsuOwSRyZxOEvMX7tLebSPshUgmNobTJK8eW/BdRdRl4522NANW9LeIb6pOT25zbwyVId3mSbHs+dPacPAVQjMTRZQH71yi9leg04+0xzsDHY2EFJEhAykpEkoUnA5mHR0IF6AZ5kCKdKEiGM2vEmgZEGSCqEMKYEL046/HnaD1Y6LIyT6pXh+NwQplcGMH3m6oeVmc03XjYSQncoEgspIhhQYCFRVgdaZfpJiohkGvHO0qsGHxBgELjraMDDTDaqqOKyz3uTp+TXOeeIYUVoyP1pAEMQAViq0iJweNGgl8CnkWlcHDGPLevsciUfiqHVNFJaPNpK+C5w9fEaYHFYEqlOIRc0UoN9uac+vaJ+d8/rtN6jmFao4xOO4WT+DaYS2pe0ETwZYP3mfcXOD33bEqBge/j3q5QF3P/4x3MOPmOFYO0/vI9VigTIlU3dJ9ANzE3Aq0QdJUZRYu4DSkkrJcOkJXUDZGdookv8+KiiKVPL6x1/l85+8y1/7H77Er375d9mu/lecm4jTDkhC8Dtf+S7f+da7/Gt/9s/w5/7df5P//C//Z7z/3vs8/ejrTNs5n33wSZAjqpJMAYZNYCMsRbVEhIIKGG3ABsdSnqHGwPsfHlIqw1wv+LnPNNRf8PzWt0qeX26odkDNJt1wev9V/sVf/ONUdUldlyS/JYWO4dYJxlou24TRik+YkWp/zuKN+0hdILXFDRv8NHLvcMFh1HA20Y0T236Fqmv83iHHi1ucLgTl3gnK1jx99jhrI2POBjyYWeqDPU7uHef8OwLS1LthdnfGyOx0HDEQ87vmXSD5aTcPyZ3QPSBjnwGkCEJolCpeNoIuuJdbKyEiCLPbWAlUtoXZnWgCpQq0zs6dL55+7Hh28TS78SVBYbJ2rilLhJBs+hFbKI6PD3YB2nLnkhnpNhV+MkxJE1KkDx0SgygWNFVivp+4uNmy2nSkKRCBZq/O/z6fe7haSspFRV0oApGYQOt9UlJc3zwmxBEtptzDyYqLXrJqRR48LrdYEWgWM7yuCMowtC3d9YrtkzMOywNuz0sKu6TzE727oZ0m4vUN2zFxsZVM6yv688fEfiQMju3f+RLRLHjts59BpInaD6Q0cTM4TLVHWc3xwxrveirlsDbSSoHVGmPmKNsQK4mbIn49krCYSiHSY9J0iQ6C5d4xP//P/Dy/+40f8F/89f+Nvvt1hm5F8poUFCLBs6HjL/8nf4NPf/4n+Et/5c/z27/x23zt934fzt5jbJ/zytGbnC73sBWkXtK3ERkk63oPLyxVNESbCEVmUM2RPHmyhykMtax447jk59885N1HF3z17YJSghWCdbxGl4o/8c/9U9w6PGY+bxA4Utgg/AFMI63XdEHysZORmWxYfvJ1dFWhi5rgJqZuzfKgov5ETXk5cdl61u01iYRfHKFqwysn9ynqOeXeCdc3V9zcXHPVwhA9B5WlntUcv34Ho2VW6CmLMNXOqEhmcF4kUsr3SAiZ8TLFKW9rxYtBKqHSAClkg7IkULrJdFdlc90lRwqRFF0GHiUkkW+eEP1L2qwWFUJalP6Dd9D/J8OU0ZJ5XbzMHagKg9GaRVVDgsmFHaI3z8h3isRxJLqR5V5F8IFugskHLrclWkIbwCiFsYqitiyjzxx7AXaWXZQIBUoJbAFKJaROqAghCaQqAMny8JAYAxGJsgpbF8xiwWkqeSd9nzMfYIqApbs2yCDRamTqJeX8iCgLtkNAFYamTnT9luBDdjaqCuanp2yeaC7X54QQCSmiyhnJ7mG9J/hxZ8Wbm4iUyJqVndTz5SYtAVJj5vtQlIQpBwv6wYFuULbGpxItCl5/NdtTf/fhYz54ds7kHClM5OwKufuRv1Y/TlxfXvH9r36Fsw8fYsoKnUDh6VNkExNRGIQIxDRlLZcPSO0wWhBVJEqZrSjtjMJoGqvYq0q0GHh+0yIEvHba0K49YxfYX95jcbCgrmZU1lIYjUgFIS5YHt7FvaYZylMO7204WV1TxYDeOyJoTe8Tq37N45s1PYGegQnLbF6gZhIfPJc3W8YWmiCpL2G2bri+XHFz3XO9HhlGR9e3FJ2k266JXuNkQqcCoxKEcSfajYid2D5F8jCcwMURrTXaZvt9hCC2N+AmRMoceaIAFRDOE3b0iSQUSLPbgOZ3NabIOPUvt1VAtqtNP7R2FkJQGENpc1Cq0YrCGgptMDofEiZEJHLH2xWQIik4oi/wsyojtRG2k8WHgBM5tNhojbSRWW2zMB6BKiXKCFL4YXK9zCBTvnYTCFEghKaeLShKm3nzQmCqkgaNPSg5K69or1qEDwgfmUZNuxGQPLGPFPUCrUt6l0haUNUWFzzOZ3RVIKiOl8TRw/VTfEp4P6FVibJ7lFqh/IR3gdElUshIa9jVDyLXUN6r7Rrv2QK7t09ME2F0DNsBj8XOliRd0jvL6eGM5bzkfLOhG3o2bcsw9IRhJMVcP4n8GQ5TQLYjzx59gOsXVLMKQqAQnohnExNOGKSqCYyk2CN8QIaIVSNJe7SWSGMJRY3UGiuhthqrEt3YM7nA6UHF2Dn6laOq9qhnh8yaJdZozC7zKSaLsTXzg9tg93BqRj22NEOL3d9HlE3OrPGBs82WMST6NOHRVE2NKiVFKOjawGazQg1Ql5a6nZFioNsMDP1It50wJjdPbup3+hN2GsuMIqeYLzHxYhWTEiHkjQ1hzIi6chn5E4IUJpIbXzbZmGzBLV4g3i9+3llLR3azFOzO7/ByWyV2dfWjj5ICo16I4bOhSganMgIfYiRoRQhF3iqliDeSGDxVaQghMfhE7ybasQCjGCJoo0AJ6soSjURGkFqgK0mKGmLWjOQcqx31PgEohDQUqmZPHfIi8NEURUZ/lyXb3rM93zK2A2IKxGhpt5IoInHn0Fc2S6YkUSFRVgafyBaaKSES2EWNOahhc0439XmYSRoz36OsanRwJO8ZfMwuoFEQdq6JaYfG7rgCICSqqLD7hyQtSK6l7Xp859DVPsqUjN6ymBXcOZoTJXz/8XPOV2v6oceNI9FN2Vp/h+5OLrJNjvPnz/noB2+Tkme+v6BQ+Q5qY6Qn218jJlLsIDikD1jlkDpl5Ftpoq3AlpRaUhpFZQwuOFZuYq8xyFTRXU9ENIf791kuTrA29yJaSSKGJEqa5RFSN9wJJWkYWLRH6KpEVIdZixoFV91E23m65PGALkoaa1GNwrvIk+c3DBtYXQvqpUWXjm6dadpd5zAmMs56pskwjd1uAAEtd/ro6ICsd32xVSLGHdtmpxFSLm9BhMzbzynbbwsApUHl+kH4l/TsjK7Ll3IHRL5rUnAvt7lCCGJ8sRF6UT8yb5l3e8py18NVpgDEjgGUtWAv7qAUc7xNXRpCiLtMxsh6MGgpGKLIzoBaYAvNPGSNiiRhK42QkhQKpARtcg0pRX4fEwhZkJDMF8vd9yQhtUZbi/GGhTeEzhOcR4wBqQr6dpePJz3BK6r5AeiCbopIo6isZXBDNtVIoKyhvL2k1wG5vsjuuylC0RDtApsiwTtGF5l8gihIUeCTzGwU8jYuJweI7Iq6f4Roavy4xXctfjuAOcA0M6ZYoKLl3umcutL84Pk5H11c0Q890zAQhpEXrCqBIIVE23tubjY8ef/7bFcXzA/2qBFYPFMMbBMkWSJUJMUeQoHwAa096JFJRbyWJFsSbYVW2a6/sRYtPKu2RynBveOacRtwfWC5d0o5K6nKbK6itcoMKlFQ1Evmh4JbNNTLlmW3wqaAmp2QtKGPgm7quFxvGVNkSBMOTd1YREnu4a5atitInaBoAtV+ydi1TP3AZjPipkAz79FW4KaelBQashOxBGIgpSwp2VG+cm/t8rAek0fsNkov+2s35P4208DyLCIiImRmS2YFSpLIJijpRze3we3OtZT7/B074cd9fvycqbrktTtHrLcT63aiaUpsoalNBREWTUmKEpHq7GoTHMF1RNdTz2ukUdysO9re8d7TNdtty/mzMwotaQrNbFlz1ChcyhiLrgJCGYQ4YVZqbi81q2Hguu/x0eKj2k2mifsnr5OkZRP3KGeSvRPB4f4xh/vH/C/pV+idY7qakHLG1QeWtpT0soepYv/+J5jMgsfXA6evW/b2CtTja/wk0EKzf+uET//JP8bZV7/ND86fM7TZbYzbH0M0dynY0G4nhhCzWPUF9TDvy8kpz/nXEXK4361XSTIybR7j19cMmwF7MkcvThlGg6HkF37x87T9mr/+t/8+q/Or3RCVX6gf5UHnd0hy9tEj/ue/8h8zOEG9PEAPHXocuAqJjU84sUOJ2EDsUcOEqB2maklmImmDr46Z5nc53CtYzgy3FnMurh3/5NvPubsU/NOfOuCb317zwWXPq5/+KU7u3sWKmjRF5BRQyqCLY04f3OXW3YKPM+Kj4+rDS7rVwNmTnm3b8fTyKQ8vBb/33nPaoaUfrvjCp17l/u0D9NEd2nHgS3/v1+g2Lb+NzyjR4oy9wrGwnjiMiBhpqkSMW559qLFliSlm2DlU+zNStyaNHWq2o4PRkqLA9eCdY+w7yjJR1xCEJaDonq0Jg6Nqqpz7s5gyAsiErWfY2R5J2mxHLFU2TJECHwPDdvvDdfJugPZ++pGLTLCcNRzuLUhSY6ymLC0SiUyCqjDEGLEvkBQRdyYmDm0UxhpG53E+cLEZaYeJq6trog80jcYqwS01e3lQSB0QKiHlPkoW7DcKiKyGHp+ybW1IGSVdzk8otKFPFUkq5nuKorAcLA549/1HrLdbxtXEtPZ025Lzp4oudeiY2Dt5gBCSi9bTzCX7BwX9dqSfIjplGsgrn/kYEvhodcm4vmE0nrg4IR1/CiMcKk30k2fVR0QUiKQYgkSikMoShGZMEJIkSUVxcpf65BbBbxnaDduzDWpxSHP3DtFpVqPiZ165wydem/N3//Fv8O6Hj9l0N8Q4IsgUtRdUx0ysUQwBfu/X/xH7+xX7tw7YmzdU5+ckkXjkIlsqtDnEpQ9IfosaBsxoMXsD2vYMhUFUM4bmmKO6Yr9O7DUlSmjeeu+cFCY+eW/O+mriracrlvu3ufXqGyybvZxXEzK1QqkaVTccP7jFEZFXPhWYuolxO9JvHOPgWa3WbLqOrz++YNMPrNotp0cLPvuxfUS1h6gk/+Qff4sPfvCEbyeH0prZrZ66UJxUE3hPHCckASUHNteSGFqULpGqwKYqD/JTB0rt6kcgkiT4TAeKwSNEoizZNXYGP0z4bsx0Ma2y+FdJYEeBKep8wQlDlDsK605a7/y045++EAVLQgx/4JwrjKEpi0y9iwptMnpupKEMgaow+TKM2ZkwpkBwPZB5+DEmunFk009cbQY22w3XXU9VZBrN4X6DiAmfZHaONB4hGoSYs6gUtRWshoEpBGTSxAQuOko14+joCJcsYypo5pKikuzPD5gmz+pmzfXlhv58JMWGiyeKSnoqMaKrI5Z3Fmy9ZhwCtw7zPapv2rzdkJqTB3c4uHeXj9yWtRYMNhFlgXrl4wilUKknRc/NkK3NZZKZBqRytk+SninlASsBanFA/cobRDEQunOuLlcM3cj8J44RpmE9GG7NFvzsz9zjd976Hl/6zd/n/aePCaHLTjzsKDZk+rIXuWbffes7/Kp4zuTgzuuvUF1eYHXiWUi0USHUPkJckuI1ctpiRoedOZIJTPWnBfgAACAASURBVKVCpRI3O0bM5hzONaUWlDrxwdNrnl/c8Pqx5cGB5ZsX1wQKXrn/OY4P5znxOUQICSWyk+nB7X1SEtx6w+Odp7/pmQZPt8kulW3b8r3nG55et6zaFUpJ/tBnHlDNCtTihA9+8JSv/9a3UCKgiDSHa4pmwUmTN4yxHyhKSVkGlJ6o6oRUFqksprY5g21s8+1c5pgXiSLumAPeT8QQKIpdnAU5gHra9BnQMhphDNIaIIMa2lYIlR0Mk8iN+M5PiBB81vPuBlykxAXHj8xSFMZwsJiDVCShqOoCoxUKRYqJqsjUUKubXZsR2a3xsWXOpOonx+Q8Z+uBrh+5vr7GKkmlNdW8Yq/KhmTZTCLuKL4HlEay3yh659hOIyFpYlK46BAicWvvFRCaLtWYQlDPBLNqRlPPd8CMYDgbkaJidWkZW8EkJ3AVh3ffIJqKs63j8FjT1BpxnV8JjaLZW3D/c59m/cGc592GaXuD69ak0wfQnFKIke3GsR4C45gQURKCJAaRzT+UZUIyRfBRYE1J8+AN0NBvnjFeXbI521A9uE9xdIftoInB8oXPvUbvtvytf/h/8PjD54TQ7ej2u3Mq8XLY9UJxeXXNr/3y36ULkrtvPMCuVhSbNeuU6H0iqAVKK1J8Dg5MPyFqT1H2hCIQC0uol4yzI2aVYl4J9mc1623LWw9vOGrgi28s+cH3tzy5Grn35idZnhxh1c4tMmZ6MKphfrBgtnzA8et58O9vOtzg2d5MjGOW/Dy/hu8+kmyHnm2/4rMfv83dkzkHewd0w8Q/+pWv0G07dHLYZo/6cMOy8OwVL3q4QFUmUuxZX+kcrKsKVJEwqSC5Pm9vrc66QSZIguAghoBzI1qDtbk3CEngtj3RBay1+c9Yv6Ofe7QtMWWdt1lKk6R4CUiklKOcIFPOvQ8473f62B/v+bGHqcJYDhZL6sKznHmU0ZmbrywCwayocyFjcX5inHqit8TQ4HcIwa2jA3yMNFXFuht4fFDTjh2bvsVrQ5DgxyzwbdcehMbYa9pt4vx8YvSRMcTMh5eSGEdIgmE1EZOkHZ+hTMB+6DneX3JyuE8pBl57cMR1bfChRPpLUq8YQpdpKQhkYVHzBruAeh64cgktKj7/cz/N8viAeyf3qF9dw0++ycV2w6rree3Tn6LZu813fvctNt0q276yQ6B2NIQYHTE4Qso2vloIlJZMVuR1f5+zuYRdoss5tqoZhgvSdIO7PCS4CaEahHYgu8zHDx5eeuHsBiwh8UmydpboHNoPRO8ZY6SOZO2NlQivUEMDqWBsHbqYoWf7qHLEmBY1drC+5r2HivmsxrxxzPV2xdXzZ3QXjqcPPc+eT1zfBIZv/x4PH77NzaPfp6kMy3mDktlgI0ZJiIqQRmJ0dKseNwbWq+x4tt6uWPUtz64zSuRD4t0fjJydVdiZxsXEFGuiUrjxMtvxy0sO92sO79TcObzLvCoJ3QprFPPqFrZuMHt7CF1AEuhihjAVSUaSA+/i7iCTmc+u5mjjEXpCCYVAY+clscy6AaFVvhBjzrCJY4sTkSgUSUpcsFl/IBIpOMbtNUIZTDnP+OFuA/PiEUIyqxsWswapDEqpHU8+f4RVWe3Stnebrd0uhrhbMyeoipK6EmhjGSdPVSgG72inLrsZmixejnFgHAMhRbTWCNGzWg87vWLePkktXiI/YzdDiJJ+uiSmwMX5RFlohsNDXDvy4HTJthZsZ5LCJMSYXcNc9MiUMre5LhCVoKgi4xbiJDi+fZ9FM+NgeYiInum12/TtnJvNgnp5l+Xt21w9v+LmYoUWYEUkKUlSiSAcLrpdUN+ET2B03kxEK5gM+HaLcyOiPkDX+5RlxeRbxnFD7Axh45DCos0CaQ+RRY2YemSIBO8RqQd6hJohtGXlC8Rk0cMNYRjZTh7pEosokUaiG0nRLEiyYOwTsk1UJ/uoSlOVZ1gCcttyESOrreONOwtqa7k6u6BrVzx/ONC3gedPPOX1iuajJ7w118xqxawssSrnkyAEDojBk1xP8BHnA0OX8/vaoWVyI+erG1yMeCTjpqBfPUXbvD25XilSsU+/vQDnCatrxLJk8dqCpihYlDWSCYGjLOYUZo4qq5eUIiEk0jZZMxB3eoodtVgIgbE2b5WU5wXAo4wilfndFlIiVO700gvdkRsyGigVMgqiVLtmMBHcQIoRteOpi6R2zeEPHyWzxW69G6jEzhlKSYVWOouUU95sOT8RYiBaudM+JaSGPWsoC09TlqyagnYc6NyQwT9tkDHgXU/0ETcFlASlE207EaPHhZ3roM76rxQnBlnQbuZMPjA6jy4c2kRODw+QQnO6XzGzlmuj0M0Mpht88gwp2/8LBBQGVVlMIYgTuCGyqBfcvvsq88MD6nrBePcWlYGr9QyU5fT1U4Yh8OThM4QQ2B2tIyEIMhDExDT1RDcw7QLOK61QNt9BYRiI4xbsDCXmFGUG3Lr1eaZCbUrwHm0WKLuPKiJh6kEG4uQhOQRrpMzOsH3SXEwlcdxgh4F+mHBGc5DycKwahXEV1EfEUNCtJorFElVpTHGOcgnZtnQJ3k6Sw0XBnaOK1XXLxdMnXD/uid7z9FGmxT/ZbKkrzdf28sa/tharNErKXD8pEaeOFALTFHAu0XeRYRoZp4Gr7ZpuHPBIlFZ81V9RFIqiUqy2glTuM41b0rglbDcUMfDK7TnLRcN+fQslEyL2VOWMQu8hiwJhLGLXE0n7wjkv42I+vJhsBEq/0FQFhMwgqURmzekL0wkld/WTcli6HxHREUW2P8/1kwNGg5+IfkLuaIEyqf/bZkprzbxpsl5bZrdRKWWmFAJNVe82Wy+0V5GsAfjh3zGva2LKDq395Khrw+gnej8QpCYZCG7I7sBtyFR7o+j6yMXVlCNMIiglcwh9GEnAsF0So6CfzhDKo+zE/nzGwXzBzDheu33AtZH4aFFxSxp7hjAh8HkjaDSyLlBVoigjay+QWO6/cY96NmO/WWCODuGNu2y7Pdqh5/DefWxzyNMPnpG2EiMSSSSizBrKKByTH/BjDo2NAspCURaK0QoEnui6rLObHWcqW1USuyuYIqGdE4PP9NliRJVHpDjunGdz0LhIa4SIOWdLKi5dSXITxbAhjAObMdAE0FGiSolpDEV9gDI17dphTUNRLzBVR1VuMdMI6y0fAnVlMff32HQbLp8+4TKMfD8OXJ4H1jeRZ11PWVe8/TVDaTWLqkIrhVUKn8AnSH4ghYlp9AQfadts6NP2W7px4Gqzwu9UfN/1lzx+WFDUWY4wURG0YtxeMoqBSV2yvFezd7tmrzqk1AbJgDGK0u6hbYEsX+ihyMwzaXI/HSH6H3FLUBIjCqSKIEPO1ESQCkvSO3rbLnYpxUTw2Rk4MwJk7sdjriOCJ8YcD5RNlAqmyTGO4x/o4f6fnv9Xw9ThYpnXXyHgd6tiscv1KXSRm0EB4zTQduKl2cHNxQY3Ok6OlhgtubM/Yz1ONOslj56ccf3+gFeGoAVuXOHDwGrliUiqKtANE2cXK6TIAb5lBdYkVJggSbqdW16/uSAyElLHrcOG68MZ1d5tXn9wxKNiSTcoJn9BGiP9GLJlcCHRhUUsZtj5SDWLxClhZM3nf/6PsVwuqAtJ/WCL+sk3UeuW1I385C98ipODU977/kPimULBS/edKCJRenxy+cPY2aJrlfOJJgtiCiTXkSiQ5T6mzJfZFFcwtriLPXyUKDPPVDXZkpID4fKWKnlg3K0/IaDYhALtA8b1DCEwhkSIIgekWomMGtE1CAzj1sGexTS3UOUVmHP00JKi5gebSLXY49btV7neKK6eP2Xbtqx3XP0UJU/OnwKR3yHrLIzQKKGwUhNIOAJiR0vMnFSBjy/QmB19CHYXiuad9VMgYSVIVaL3v0DUlqm9RMQBFx22KTj6Pyl7z17LsvPO7/essMMJN1euDuxmN5siRcmSRrKtMBZmoGAbfmHD7/yp7A/gNzZgzIwHGBiwIGAgjsMoUJY0FMUWKXazU3WlG0/YaUW/WPtWd2vGAr2Bqq66VX3rnnPXWs+z/s8/fG3JL37n6zw4PeYnf/4+cUoctPepVmvM2SkheNw4YqriqOT6nug9vh+BjFkI2miqqkZkmvtAg0JRH7RfjHXnC0f05VKUciCHgWwsWRtCtGgRTJqIfqK/eYGpFtSpaDlSzsQvbUQlwnKx4GC5wlo7o/nFijblzLJdYI3Fh1AC5IhzDRO8C/jJ07Q1TVuxbsvmb9Ytu3Hiw8+nYo9uLDEEQugZxojzmaoun+P55SUhJIxqsBbaJqNzROXAlDw+LRi6S0IYCPmGttHE+2dU9QFv3L/H9arhpmsIORLdNdMQIGdsrYt9eNsgi0TdFB1AdHD24HUe3r+PNYrkR9KbD9lPI64buHd2j7deu8/73/dcXu3ny1QuNrsavPL4OLEf+0IfI9FqTVtrUq2YbC4UCxdRyzPM8pCmaUjdFdP0grivCLuIlgpTHaHrU9Q0oqqeFBySOiR1KDqUbsEoNqkBV7MYO/I4sR8jlS9IpbIKvVRUywMgMfWATTTNMTpp2sZQ54je7bjoAjvlOTo4Iq8M1+cXnJ8/55On53gvRFeRQyB7TxRHlsDaNNTKclC3ZCX0EslhhGFDVoqsFZPTRVScRzKJ2grGGNqDNZc589GHkVolKpWx934ZtXzIcHNN9BNuc027WHFw/y73Tk9448Ejbl5csLu8oq0PaOwharEEJXjvERFM3RTr8OBJPpBiQs0iaFMV6k4Bc26tmg1W39L05JVVfgyxgAtEEEVSJcIgisJIIUD5cU/OCTtb1epcgIGvFCutqUzZd2m2si3/tnpFF7ylCTovhOjJuSD+/X4ozmqrmQIYAutpwd4HPn3xkn2fSboU7jCNOB/ph4A2AWs9V5st+75HqxqtFIu2BDmb7AipZYqZadrjxg0h70BN+HtnLBcL7h8/xh002GZFSInor4khEUNG2RKUKXWFbWpsE4o5wxBoTw958xvfKnVDID28x2Jt8d0pylZ8/d0H3Fz0PPnsotCIZ7AniRBVIAr0rie4CXKi1mq2HFe4ShG7kTjsyNUaVbXU7QKSp3fn5GEkbFvwEVMdoOsTVC0o15PFI3Ff0OzcoxQoc8BIxWVY0E5XVOOO7eiQ2/qjNHqhwC/QK02KFd3GY15foJslVW3R2ZXL1Bh5sk28/uCEw4NjNjcdF08/55NnF+y6kTDV5Aj5/b8lEwhMtNqy0BXLqqHWll5FQg7QXQORZAwhKsZJEbPHZ0dlFEYL7XqFMoYXTyJaMkud0evHmHu/hJ88zm1wuz0uTDRHh5w8WPLuG18jOc/FZ5/Ttitqe1QawboizJbj2lYIELwjx0R0odjnWykRAFohTDCbrWQFpq3m8jO7kAnFfSxF8Kmg6bOhi5nBiEQi+pHoR3S1RNNAtjPw+sVjjWG9XGGMQetiu52R2cRFsV6uAIpler6tQYUq5UZHipnVcoHWwuGiZoyR9nDJxc2G3flEVPPa8ztCHNl1gZwVdZsYRsf59Q1KDEZXNE3p4VR0kGFIEEKm31+Q8kBgx92jNePxAavFPQ4enNA0SwancWlfMg2nYoKhK4WxBtM2mNZR1ZkcQWN5/PZ7LNqGygjV6YR5+xFmdOA8b3ztMev2gMuX12SlqCiXqagh6ERSniGMjGMPMaKAttY0jcFVgsTSw6FbzPqIanlA29SMaYP4nrg7JIvG2ANMndB1XxwR40jOPZInJE2IBJQ5JGrDVWipnacZt+xGz36KhACSS+i5SZZmeYrWln4b4MDQLE6x7TXS6HKZ2u34ZJ+plwse3L3LrstcPn/G+eUNn59fEX1dNMMffAQpEGREK+HQtiWs27ZMRAYCatyCH4i6uIOOzs4X4rHIcQxUbYttGy6fFQB4ZcFULdWj3yDahs6do+LAGD3y1kOOHrZ87eEjDpdrzj95QgyJxh6WfLXlohhieV+0jUrN+6dkn0FG2TkSwFaIBMC/Ovdpqpm5UGi0xW+iZHfGEAubTRtQmpRKBEhyIyl4/LRFdFUCjseJYSiU6p/1+ZkvUyF5Br+n73uGfmDRHmCrEuApSkh5LJlQORHTBGrA2hataoxADLF45efMsi00qjdVZrxQfDJM3Gwvedltca4nxkCYSjN5I1dECrfRVNDUMPWOfhNeOUAlzkESTTPgfNH0XJ/3+BtHe2KolhNGDRy0NXK0wg2Oq5++YHKeafLo65eoz49xH+ypzcj2kx6rW/7VP/tXaC10uwv6q+dsn33EECI+ZZaXgbsnd3j+5G/Y7l4yRUet4MHS0tUNm3bJ/mrET7PaQ4S6PcA2x6h4SvbXpN5j62Pq5WOYdkznl7z94Ig7hw94+No7XHaB4H5I8A05n5DzBeRrZl4QzFbWQuLsbMXv/De/wfmHn/D+dy+Kg1WG4+UJx8f3uLrZM8Uw67hA8oBlYKUGdmRGLOfdnjYK/8Xv/Wc0iwU/+uhvccNT3n5zxfPzYybf4Kan+HhRktFn5zoBkpTAMydSwgBnOE7mqRzwBTWkEB4LPSEnJIZX5MWSM5AI138HZPB7bKVZassvfONtfv93fpuzkzOaqoIxM+47hm7HKFAfnBFdwvUjg+wQ8TT1IcY0tMuy1FWrSSSmFIgiBFVjdAnrbBuFBkIYiDEw9ltG79m6QJZEVmluEiEYQeWE292QoiPEjtXBIcftihgLzUapLxC9nDPD2LPvd2gtGG2pqhatDcYYYgwz8l0uY9aUAFOla6zVpNqglZBjxGgFWnEkoFOg8p6h3/PZ9oKYPTE7kk9FhElJ9g6qTJLbxhF94OZyRIlCKUNSN2S2GNOhlWfYe6ILPB3OqRYT7bEG1bIwDWrRkrXm8rNLxm7i+mIEXWGuN1xbx8tqz3gd8JuEpeWTk+dsby6Z+j2bJx+WCUCGxw8fwbs7Xjx9yXZ7yW7cMkTH1++26LbhxfGa7Va4uvSQitNTtT7i4PAEo4/Br0h7j0Q4OrkHkuie/5STpeXd997k0aMHrI4PCelTxsmR4ik5XpPdR+QwQBgQXNH95ECtPL/+K1/nzuma9//gM276kSFljGl4cHSXzfQcCdsySBSFpAmTNAcy4SSypeJ8CFwOV/xH3/km77z9Bi/OX/LZ9Zb79ypWyzts+tfY7zZc7/+u6JRcP9PREoMoFMK5KahwyCUPjuBnlK1o/kq0UblkTDOdbvBjySARoZZMBZj4Y1T9OYx7jEqcHKx4eLDm2+/+PMvFkuVijcqWdtESvTBMHaZpQWnCFCBHnHiUrjC6LtbQOoNRSAGzSSkTpGTcaK0xGowUK+4853TEFBljuUyRiuGEKCGS0ZJxoRRKay1KG7QOKDU7AcpX+eolDy0x+YGcEsbWBc/X6pUoteguIOFLk6IrtNYsV/WsY8kFzbeWtZRp53lK9OPEy+vneD8y+T0pJpIve5GcCEoXimntUSLsN33Jb9IGJJHEoXA0zciun5iGwMvPr6ltx/KsQUxDq0ekqVCLhv3lvjjeXU34mLCbDbaybD/ekadA93yiu57ou0jf7Rj7HdvnnzLtNwQyi3ZBc+MZRs9284Rdd87eTzw8WnG2bnh5uGKvLJur5/jZabCtWg7uPqJZ3IW4JvWQdiOr9WuIXTFdPaWx8J2vP+bBnUPWJw/RVxcM40jwB+SoSO452d0gYQ95ngrkjGHiG2/d4Tf/yS/wwf+15/zD68IiyYo761P6nPgwXRRtj2hEIiqPLGSiVZZeDGOMfHBxw4P7d/ndX32HYez5/MmnNLXn7bcP6f1dkMRV/z5u2jON24Iop0CPcCOqaOpE8BSaJ7fN0LxGcipavExi0sVtbwzTnBtX1m/UCu2eYlxCwoj4iWXVclgt+cabb/HotYccLA+J3qFyJkZhnLoSCqobgoukGPCuL0CjWZSzvNaIEkQrErNTpBS3MT1PmSpbAeXyFGOhGbnb3LZUtCMiHhFKTUqR7F1hOmiD1qnosEQQmdfvbQ8XAt2wn/PdhLpqMabCGDtr30ZyzvgYy3thMkaVWBBrdMnqpOgVjDG0WnOiYNwJZvJsumvOxx0u9IWR40qMCNeJKEJWFmOhqQQ3jHRbX7L6RJHkHIi0dc/kPX0fuL7Y429G2iOFXTqMHlnXFbJc4CbP9ZMLBucZJoe+PEIvDtl/vKNSE/3zgJGKSv+ATGa3uWLYXLB/+WTm9QjyrT0nxydcnX/GdnfBzg00OvH2nSX7xZLr9QHOb9ltPZIjRgmL43u0h6eodEieMmk3UjdHNKf3YezoX1zz9r0jjlf3OLnzkOshMrmeaWpJ8Q4pfEp2z8olLDqUBJSAzo6zQ8vv/vZ32Hz2GR/+30+IGfoE68Uh9w/v8MnVli56khRvaJUG6jxyoCaugX2u+HTTUVfw27/5HotFw7OnT4jjBW+/dUDVHNG5d9hcf0LXP8ePO2JwxFwu3b0o9LyHQg6E5CmBiLEI3bitP6UGiUhxfR07TGfLuhIhWo01Ayb9VaGHj3uaheWoannz3rf49jd+gVW7Llrxh4ngHM6PyJQx9aJECTmPdyNCxNgWpSy2KrVRTNE1hRyKhkp06WVEMJXBAjE5Ukp4PxJCMYbLMRfqqhRr/sooFJmpKzEyu/2GxXLNnXv1DCKWbK+f9fmZL1M5J3x0jFPPvt9ijEVrhdCgEHz2xJTKODSNZJlKITNCuzDlIJ582ZDGUCnh0ECbI2qc6G/2bDY3+OSLDXosxTcEh1iLWS1QOmKM0HvH2DvE1IhklN6jVaJuyqETIwzOF7oheyoHh0eJqqqxqwaFg3hDGCf63YAaR2Szo083SBphpzG65q//4vt4P3L+4lN8t2XaXmF1CbX8SK/Znbxkd/2UadzOyedwVClUo5kWFcNWzRcHAMFULaZaILktrkNTwNSWqj3A9RuSv+F0/TXun52wPL5Dp0ZELJIt0BS+ei5I1heHZNEcLJY13/zWG1Su40fzn6acaeuWg3aNng0NQMqBTMAQqPF0CpIYOufIeuKdN+7RNi3f+3d/gsQN908a+mGJNsfgLskplknN3NTl/MWr9K+k5l8ia/P3VV5ffERm5yIlqnwkK1RKpPSyCMwBnQy1JB7eOePb3/wWSENO4B5csN9c8+SDc3AGXCROATc6cu4gD1izwhiNscVkAi3kHPBhxAt40dTKzBboFqsgu4nkMjFN+BgYUyITSMGjJaEkY0JCUmB/c07KHmykTRXGOARNzvorzWAm47zD+QkJicrWmJnup5SQUiiXnhRBMlYAJeg5MViMFLvmGOdmpDTOTjLiPGEYuL65IRFJKqFiQuWE90MRxa+PUQq0FoL3DH1f3AyNIMojKmFqj9KRlDLRJza7jmpSeL2nXQQWrcNUCqnq4tzoO/rtniQW5YV9HrhON+ROI4PGNM9orjc8f/oZ/X7L7vNPUDmysAYzRM7qNdvtNdO4ZQoDIQUOW0W1MvSHNVModBFyQpGx9YJ2dYxWCyRa0hAQUbSLFTF09NsbFodnPDw7Yr0+xLZrUBUpGXKqycmQwxbigKTh1VRdkbAq8ebjU+7fPeJDU4w9fAalLQftqqyReVKSBYSIItBIQcuCGFzIjFPPalnx7uMTXjx/wm674cGhLRbj9RljDzFMeD8wutK0x5QYZzciNRudpDg3gQlEzfbhUt4HyfPvg0W0JqRQpuwzehgAk1+gzRW1CMYqGlGs68yDOw8xVQ1YWAe0yWyv9rhxglDiDIIPZQrOiLWCNc2s42O+2BXxbwbCTE8q5isy04YySSI5lAlqzMW2nBwRMioLRYIe8dNYqDDmEC3Mzk1QwKKvniG3GoM40zK0tqU5ZbZ+mOMFipA+kAnFul2Eqiq6kBxnXYkSjEAjGR0jOM9uu2NyA2MakJTRadb+hgmzWKObBUoHNDCNAzGC2LZcDPRAZWdBOJEYM7t+YBBHsDuq1nOwTmizwLaWUQ9kv2XsOoYpYIJCac0uXoJPpBuNcxmfFTdX52xuruhefI7vd7TWcLBa8fLoPp7EOFwxuQKWNRZOl5pxXZFUsauPOaIBMZZmfUxVr5BUkydIg2dx2qCbJd3mOUoU90/vcnp0iF0coEw369AqcmogDuS4gdgVSwWlZzukyJ3TJe+985Dzv2q4yCW8WyMsmwXEgEqzDnSeaCoCFYFaIllpPIrNMHKHxNcfHfPZM8dnTzasq8xBs2C5OGazhRT/hhAGRteV9RXK5Yg0WzoDObk5VkFefb9F8ux6J8XkYaa7hVxYKtaUQGulDTpssMFhBKxIiXBRmjsnZ9y98xAwhc4We8Z+Yj92JYQ9ZGJIhaKbC8hhzaJcmLSavaNkNkjJMyQ6Z0jNlv7kSKa46KXkS2j0KxCl2HOXmVKpSWEaqOpFoadLQkkAyiX/y0/KCefdbN5SQuZFBGNsyTKNfp46FOC70HhLXIuZozqS96Q8h5aTaQRsSohzDPs92/0NPk2kHNGxRCUEP6CqGrM6RLRgjKL3E0M/osyiWL/rHVolmtrhYyLFYqwV/IiTPXXUHBxkrKmxbYXKHtKOMI10mx4ZPaqb6NI1Ko3kjcGqGrt4gg+O58+fMN5c0b18RmM1tTHcXxyRdiP9/pJpusFFR6sVp0uNWVn8QY22RX+pKMYf1eKAuj1Eck0Ohjh46kbTLNaM+y3BbTh5/Yh7J4c0y0NsdpD1PClsipNc2Mw1qGTzSdZoIstG8+7b9/nc7fiIcnf2OdPYhnWzRCMzIMVXeriWyI0IQQy70VPHkcd3Dlgtaj744O9Q9Nw7adntFzTVITueEf3I5DpCmOYYlcyQ5kgBMjl5UvIwTyaVVrNGr5zhpQbNUQLBoV2JJNFKoUOFVR6bnqCVohLB1DULgZNVy4O7j8r6zEI87PDjwPXFlhwUxEwKieAjMAG+OFoa+UoNyjkSY3H+jggamS+CZVpLiiWc1wVijgSKxX3JCS21RSMkEm7cMU0T+FICWwAAIABJREFUXb/FWI1WsURgaBD5ag36h56f+TIFGZGIqYR6YZnCDrfbc9m9RLRmtVqScqJ3e1wYGV2HUASN2gsqAVkx9hMfv/8Zvh+J2z2fn295+uSKUTJBLEhAAdb4Vwdv1qVZ77ripmO0YrGqioYlJ8YhlikHBkzF+uESv+3wNz3boUP5kf32HK0Vi4vPqbTi4ZHCHVR091b0oaH3NcMlhD4Qxh3kzPTRJUChenlPxBSRHvDZxQ2bMaGcZuErWhI+Jv5uN9CK4nhpGQh0gKBRYmmqNbZukXrDNGzp+ol1taUOL7jz9fdojk958ZM/5fL8Jet330Tqht/6jZ/jpz/6CX/82V9C7oGvHpBCyT3o9yN/9b0f8OLjZ2yjwVOErVPc0HlLcoJ4i7ApTXR9hLJrDIfYVUd1L7DYRaqo+Zd/9K9ZnRzwzq+/R95c4f56Im5f0G/eJ8SOFCe+nPZ1uz6++t+/v3r+wx/Js+Nbml9XioXioFJB34woxIPqhSkYEiVQL6TE+Saw3ziU8aS4pXvyo8L0lkhdC1Vl2G2vuMlbTG0Koh49WSLJjJi6ptINWZ3g1JpPXjwju46Dekul4XS15IiK0+jZjQObccQYQWtFNTsidnVCoYsVcVOz7/akmbIQovvqy00RcsJUmkykn7aIL1Ompm7QWuPzRM6J4EoWj5pMcdCcD7WcM1cvLhm6ntz1DMPE8ycXjCnidWkcNQ5jApoAQnEyzBnnIxfDiBZYrhuiQMDhpkgYMzEXO+rl2SHRR8bzS3yMDJuXmG2xRl+sllRNzZHVHJ8qDo9OGJNh42umvWN/GfFdTxgmuo9fYishekPyCZ8sKmt8zNzsRj5+egEhsYg1BySSTPzkYkM9eu6dHBIYMVKOSkXNojlgtT5CtYGoO7Y3HToLJ/cuaY+PePOb/xh3/oQf/fBvSW3FvfWSn3/3HnePGj780z+mH14iqUfmi4CWOXbBVqxsw+efP2ff7Xg2KrbZYppA1o4+XBCcR40Nkq5Q2qHb19DtGs0CWxsWD05Y9Ylql/j06VP+tz/pufvwiHcfv034MNFfn/Pioz9ku9/Sd1fEGfXLSWbdXMkD4fZSEMMXeyYV4CGlSE5laoPIbOuv8NljjaGpa/ZRSFGoQlfyqbShsoabG8tu50hUZCygGF1m35fJmNYRvz8vk2spDZu1mhQ82+2mFFMts47p1iVTYasKqIhi6aaRzdRTqQmjPLVpaIylyYmQEoMv61EpQeXCUiBrYhSySkQ8zifUPLlIceLLz6smUJesEB9HcoTk8qvLZEyBmAOT7wjJI6gCRsS5AUDYb/fcXFyTx5E0OT57dslNNzKqTBSLlhGlIlY7okp4VZrgkBI3mwnJmaotWkYnnhhyodUGhQsWszrm4LBieHnF6D1uf4Xq4eYyUjUVi/WSBsOjY8PR4SFTNmzDEucT2xcQBsew37F1L7ne/QRSsVF2EUKu0SHRj5FPX1xitWHhG9ZJcaQd57sd195zZ7HgtK2pVSAIaBY0ds16dYRaGFSzZzN07C46VqfXrBaah9/5FSROfPiTH7B5cJfq4V1O7x3wT3/la/SffJcX3ftIuESlaQYU5gup1qybJf2256c//ZRnW8dlash1xNTCGG+YPMjQIH4P3CD2DGkPMXpJJUuWd0+xq5HTywhh4n//s/+Hw+Mlb/3CG/gngnsB10/+kuefPWffXRCCIwc3OwczN0gBmZvNFAPpS1qf0hSWzCNm8wZRBYypcigXnaYlKo2LCh0nbAxUIlRKUW0VylhCVEBxxPNR2A2R5ANaR9K0JbqBLGWCZE3Zt123g1kvnfOcPakiWSKmqjDKkKXBpUy/36Fw1HrEKMuyrmhyIpIYfSSmEqwtZHQquZpQQLFEKE51vkx1Qxi+onciFzBBV0UjFsJIiBND6FBK0TQLkETIrjj3uYS43Ty9F2SuQd55Lp6dE6eJ3A+c33S8eHnDqDJBVSAls9CaQi8tfP4C7nb9RLfrqJRmtW7xUtyRxyHMTBWLmJqDB2v8do/b7PBjh4SB7TZhtLC8WlNpzf21xa8qTs+WdLGmixXdBbh9YNptIEW68ARQpGBw01Tg41jutM8vdwxeo4Ji6SyHypN85PvPFQd3hbODlpcyR9vkGqtqlu0h7WKB1B3Dbsf1y54TveHo+JKzN9+gOfw2Fx/9gOsXz6nvn6Kqht/+pTf4G/0BH/zp95DpEpXGMjUUMJIxGtZ1i4rwwQcf8/zpJS99zajANhnPniFckUeNmixKzlGmRi9O0PUKzYL64IDFw8jRJmGj4t/+4IesDha88fOPke6I+HGkf/kRTz/8Lvv+mmHcEcJULvXM+ZmvgPrSV8eYXtWgGGZWUSpAfuYWpHCvzt6qshitCaG4wtYxYZRiYQxIxFaKccpARaZkknVDwk0BpRIpj7ib5wUYk4wxgtGacehJeSx0aCmgQiaRlZ/zEC2oBVHV3HRbUnAsbOlzFnVFWxmWbWRwI904zSwOhVXFDcZnBwZO796lqZvCqIh+dvf7KtX8H3p+5suUCCXITZck8DCVrI8+eNAKqQoNY/B7nB8ZfM8MpKCcoJJgbMvoHJc3l/hdT7zest85cvJkVdKuc5JirTnr7jWQFHN4YiT5iFIl2Z15XJ/mXBMnGqMEq3XhRCopvOHkyTmglSASyJXlYL3CWqFWFpEGy5KwrwiDZnG0QiQTo0Nrw+poxbQf2IcNihISKXWN1DUM+5I9NFPbhpiwKc+20MW+V3JxnRJVxHXIQGYqX7cCVQn1YsFidciVCzANBF0c1Y4OGlatQuhgbo5vtTS31sDr1Zq6qrm+3LDf94VWd0unyYkQw1x05qmUMNurGkQV1xOlizWtypqXu47eKh7WkLQwdBk3DoRwOQf7/f2L1KvT+ov18v/xN/6Dz6x/EIq7SkFC5t9TRvIJXRwcoyKGWLJjusA4JqxVEDJ57GB2J1dSxs4hTkWMrnThz0ZH1pGsPTonFAV5ijHi/EScehrVo1Fos8IIGKvwWRjmabfSGRPLV2aqgtDUTV0KVPSvdFBf2YgC1lZlOlqp8ndSIOayfm0udKksxSI65fCqyZYMKhZkRkQzuoF+2JP2O8bRkaOnyPhtmebmjCnDtrkIQshpnjgFjFZYMyOgM8ITY8Z5QSdN06o5uFqVg8u5gu7kMk2IvqZdrDCmoqksmoqcWvbJ0V8ZqiaXkFs1kSSxWLbkKITOF8G9JLDFKSH7iewCkop58xgiOUQkzaF7UiYfGlOE7qqZ6SuO6IsGR1mwtWG1XHN9odjve3xMZK1ZLyqmpcHIDpX3KL4I/y222sLhesXR8RFu8uz2QwlDVLrYnc9NdE6zdkpBVpmsFKg5MFAltBWsVTTWMPnE5X7kVCLaaroh0u9H+u454zAQgp9RsgRZIflLKz3P6P2tLXipHuUuPhspFIlS0Q2pnJByLMy8dkOSYvUtSmZKiBCzJmVTLH7TrRtSwrlUJkJ6Dj/Pt/tHoZQQUyzn7kxDLFrNwvWQW/vtrObg54APDqUdkkuOh0gxpUFyYRtQpnoiJZD29jxizp0paGNZCzH9+05KwjypA1Io+8fHgM4aI7bs5eRxcSImX97GnBFfLqFKV0x+pB92pH4gDSPejeQYil0uM6AzT3ERma3Fy/sfQoSUsLqEFZPKfo8xUa7miqpSaGXIqvx/wQ9l3aVAjhZFxDZLdKOprUapipwbJpfZnxuUMSwOWpBAZKJpWmqzIE2RKQsqx+IyYmxpatwEobxnPkWcL2tL5zyHrwoGjVEWrdui1ZEy9Y0+F3OrSrFcLgmT4rwbWE6OpDVNbTlZJxo7otigbmvQbJ1ttWLRNpydHKO1ZrvtcDGRlZqpZyWTq2h3S0MuKhe9KHquQQZtyplU2WIqctWN2FXFmcl4F+m3gX5/ydC/KNbwKX3JtljNRia3jI3bqnGr5+N2dvnqgiUic7j0/LVJMWxABFVGpAXIpTjxFrcwQ0yFwp1SxIeImxKSMsoomCdT6DxPwjRZhBj9/J6peW/PjZEuhkhCqdMpZXzwaPEY8RhVzptyFxF8KsLA2+nbbIKOTgXoEFUuavlL4aV/vwqLknlvq1fgTPQOUQpTF7OJmF35+mLk1u5MpQLoibL4FOiHPWEcSbs94zCRoyeLIWFe7blZ2lUE/6rQgmOIxBBK3VQKZkZGnP8todA0K23wswYrRTfzMwNBFa1itjWr5QFoaGpLTjUqN0w3lkkU9bKGHIlqRCvFsl1iRJPGiJZy7mAM2Rjy0JOcR4hlIOAjbYio/EUNMqIxYlCqQakKZCJnV4ytKP1qs2hYLtZcu0AaR6KUEOGTVcW6yai8QTMWQwUpr99oXVwWjw5ZLRfsdj3DOJXgYlViIDIzY2X+skuoLiWmRUqemdIKbaAyhgrFZnAEq3loIUum30WG/Y6hf4qbfOkJU3wFZt92WbeXKfJM6ZSyxnIu+yfOey5TjKxI8qofjPGWJRBRCPU8hS0n/WxKloo5RWFkxDnYPqG1oFIm+qn0rjqjxJQaFkJZivNmkFxkFyWKvTjN5ly+dyEGUnRE5RAtKDWbwUgJOtZzjrWSEhWTKXtVKaFpW6wxs3FLAvn3988/9Pz/uExptGmxkgk607kdvd/x8vIanzL1tCkbWiKSAypO+DHix4DfFgTx4dfew6xXvPbuHfrdlsunPffzkrO85MOP9zx9PtBt9yVs8VGLNZl68vgAwzAVd6hKMUyuBJf52dxBlWT0vgsYNdBcbrgtwzk6IFLbYpAwdJqxV+y7gKpAt4n3fvkd3vnOt/njPzA8+/Qlv//f/ecsjo/5i/evOViv+LVfeoeP//RP+Yt/9i/YTIk+Cr/+X/0+jx4/5H/9H/57nl99xi4mKq04a2qSqrl0DVOsEAp1zIgm5LvkaNHjE/AdldGoBw9Jv/iPmF48R374CeIji/UJ/+nPfZOQMv/8z9/n5vISbTQp5nlyU0LKjDKs12t+73d+H6k0H2+fkSfPWS10ohmiIqZDBn9G5ilKOTAnZFG40RMQWC2RJ3t4+SkhvQ7VMQ/e+yeYKvK9P/xfGC4vuPnoKb0bSqmSVz99aW28Iu3NWqny8Vu66Sxn+IeXZQm4KDQFrVkdrpAshDFT10vW61O62PLxxcjN888ZNjfsP79EsufhO2cgoPsJw0hFx2QcTmuMFOcwN+5ROnFwCmjwApkRlwbcviOmiqNFwi4z0xiYEmzDrjQExqBrw0otCW5P9CO20ujKcOfeAaI0Tbsi5Yj3Q8nJEFOK8vxYW/HW2+/y4OE9fJrwYWIc9wxuZPIT0WaSTmCKKw2piJiDK8LLOE4sD85o2xWn985YH7ZsrzNNiKxee8jNLvDBJ3t23RU3m4H7dyuaowWNTOQY2Y89IGSrcdEzXHeoOKHDRFKGLJquK25o8foGBKIoMo4ce2ptWGjLNEI/KsYxo03ErhyHxyt++Re+xbOnl/wQxTe++RZvvfMan5wP7KfIN167i0wDf/0Hf8huP3A5Zt565y1+9dd+ie9/94/48Z//NS/6ji5p3j5YUS9XXLoFG5/RaklFplWQ04r9eIrun4PaU1cK066J77yDD4H+gx8Rui2mOeT+yRlv373L9578kOuLC9qFZXXQMqaiTUspsKoqDuqK3/2nv8W7P/cez8Yr+n7PaytNL5aXuaWxa6Z4AqqjrgYMJ6SkcU4xjBHaBtVP2PMnEI5w6QFnd9/izpsP+PyTP+bHl0949v0P2N5s2EWHIxOiKlTZOIcEihTjFVG4WBy4rC7aHqM1ISZCvJ3dMtMsIOdESoLLieQDuInjszOOTk9YHS2p6orxJqHEcvrgDRYnb7AZM7nrmfY7XLcn9J716YKq1WhXLrtGBrIkvEporaitIsXSfNdt0e+GXFBLF0dS0Phhi1WwqDIhTIzelenfrEtJOZOiJ0SH9z321jUq+mKBHmtIwjC6UriToutv+OqpUS6GRbivmOKAD4790M0W7tXcbaTiEpYCwRXjDN8P2Krl4OghzXrJqZzQ764Ye8/jswe4oPnxR1t2+4HNJtG2ioP7a2wM4By9CyUrzSqSgu2+gxjQvicxN5mTZgyaZrPHilCGjpns94gSVrYmZsV+XzGMcKkddqGwDfz8L34LY2q+5xyLZcs/+o9/nps+8uRq5PGdQ+4fr/nbf/N/8PLjT7kYMu1qxa/+zm+xef6Mf/sv/wXPr6544eDRuuHsYM2QF2ymmixLrNEcKKExLVO6h/Jb1PgUqx2LVYP62puku3cZnj0hDz2mWnN0cMK7D+7z048/58n5OaISB4cNI4HoK1LyWK04bVve+9Y3+Z3f/z1u/J6bTcehylQrzYtUI9WCyR8xBY82Pbk2iHpMzIZu7/BKk2tLvnxG3A1M8U2q9R1ee+fn2F/9lO/9n3/E5YdPuHlyzvPtFU5nEoXOmnNhL1idMSJYVRFSIKaEqQrYaOYMGp9KI+iVRs1ASgG8MkqKniq6CdMId05X1IuG1eES1yV8lzm884ij0zOGWHG1nxi2N4RxZNoMNAtDe3xICJEUI5oyefCzwYOp9UxHnLAVVA2vQI5MJCSFHyaUKNaLDCkTY8YTIE8zHVkwZnbBjFOBF3W5+N0aWihlCr01R0R00ex+iV9vjKFdLFG61MAUelJ0dGNPyjDp29yejJKEVqnUnpBIU7FZPzx+hK4bTu4f48aOfTtydtZynB7wybOe55cjm82GGBOrxysqC7WbCAH6oS97t9L0bmLfdWjfl2miNqSk2e0NVvYsLi/xt+Bq6EE8janRYuk6QyeKXe9RNqPbxOtv3uPxG2/yfQ3nLxf8J7/+iywOVnz4cqCtK955dMb5Bx/w4Z/8GTdTYu/h27/5a9y7c8p3/+f/iefPPuPFFFnUFV87OiBWK56PLWNaYPSSlYLaaHw+RUKDmZ4hccdyUWPv3SW99w3c5TXqwx+js6Jen/DW/QeghD/78G/ohz3rowbXpaIrT8WJ+aSpOT0+4r/+b/9L7Krh5XSDDpE3lsKNMmyVAg4YwxGoz1Hao+t7ZDHs955lyNDW0G/h2Se49DrZHvH6G9/G1JHv//m/YffynBc/+IiL7TWThqj0fJYW7b1WGS1QK0vKqUhtVBkPFJMThQuRmDLT3MepVzr4OVMtA6FQ8o111I3i8VsP0GKZNon16ojjew/J9QnXfWDYbfHjwHTTITlycGdV+j/nUXgME0FFotLoqgDC0U+IJOolZfoMZDxJHMFNpGRobUZXGe+LkY+K01xjVckgoyH4gRgdSluU0RwdH8w9WkuePR9EQ1UXMOhnfX7my9QUPNf7DS47XHbsvaP3HhddKfZ9N0+tBC0ZPR8WarYnFMAajbWW9dESrQNT32CrI6rmHl3aMZqe8YOOsfO4KRcrRFc0UDHkOVCrWCTmkGdE97ZpL5OAFCGmXCyWjXpF7UizcC6EQJaMz4JKEZ0Cu+sN1y8vGLuO6Cam7aY4RvV7goL9tmcYXPm8ZQkVipSADx4fPIqMVoWbP5IZRkecbaiZb/jKlqmeyg0qu/mKrMmmQgwYk7h79x6L5YLz51uSEg5P77G+uMJYTZwR4eJqqHnj0UOODg+x1pCUsKgqpKqI1hBJxJCo6qpkRMwHstaaYn2sUTkiscfaBe3yIa5vyAj3jwzawLMxkEOiXlTlYHdS3Jlun3yL/n0xRZJXP90+cwa75FeMg9vPkL/0a/nymp3pGNZUHB0sOT27y+tvfp2DwzX73Zbh+oJpczVztw3jlItoPRcKkTYaozNJhVtgH3JAqYi2M2d/RvYTBRFJTMVJj4hPfaFPUZPFopRGGU2lBCKoVCzHlZI5MFQVtChROOG6JNerYnf25beCLMyOjxCVzE7OeUZFmW1yC4qeBdQ8BcnzKN1oU6ZgKuFdTUpgqjN0HbnoG1zy+KtLRgf9kBBf7JeDpyBEQkGFQipTiDnXRwu4HMuf5YLWYMt4WLKQshCS4KMv/H2lkZSxHWjTcXN9TbfbEtxEmHrC0JGdA5dxLoBPxFxQqsLFF7IpAc1uGlE5YUSoG4uxiqu+WCsrpbm1NBEj6FqhseRky8oSRTKGTEbrxGq1pF22OAfnL7cYW7Nar1kuLW6w5L4CqVBa8eDkkIenRxydHGKspk0VhIrQ1EjMLLzQNhW2KvpQhaCMgVyCl5UIkhxaQbs4xY8tboBFrThbG64zJJ+o24raN0hlkSzoMLtNSSrIs4CRUt5UCpRw4nJu5XlvKAW32blaqS/WNTPaXIZE8yTa471HacXh4SFts+L1t97g7oN7eO/IfiT022LNqzUxgfelShZRcUFDtSoXpsIqTOW81BmlQaXi9JWQGcWMBa2fMwZzDoSsyTljsi2fR6s59L0glyL6FXUv5ThTsdKXRM5f3T4+Bqbg8GkW5qeIT5E4m+FQ8oPLtOv2Eia3zoKlFmmtEGugrUmxBqkx9oiYa462FdnsuLw5x/nEMGYkRvAB7wuQ9cotL5SJhJ73j1FSwK5UwniTQLZmRlILrSzkEizs44RPJUxck7EhcnN9gzE1bhyoDIS+I42p6CGdZ3SBEHPxIJDyfcpaiJKYxuJGZQUqq6lby855uinPNVgV6pkCU5csPJVqJBfgJilN0gatM7rWnN25S10veflig3OZ1eqA1bJhtbQoVxONRvSC1aLlvdcf8vi1R5hKU2NosYS6QtUVywaoK6ra4guZCKMUxhaaTxaFygFJjro5QHzD2Cm0Fs7WhrRTvJwi2hjaVYPeVUhw6FDWH6qg52ruN7Qwa+b4Qusgpf5oVQ7gqKQEvmr9SisiSl79yOSyd7zCOUtTLzlcLHj82iPu3L2HKMFNI6HflSBZVS52Jey17CGlC81OS5rD3QVRZY+UclGAkkzJpCwof6G0lglNJBFKA4lCyxxXoNSsBymvW5SaZwq30+q53oqaDTX0lyosRZvpp1e0cZ9KfEbMkZQzk59Qcyi2ms3RboPNyxSWV0YXTVujVCD4CqVXGHPM1veMDGy7G7xzDBOFfeMjKeaSUZcVSXTRuYWMygqhfP9u62Ail17LmFJnRF7VoJwyPkwF7MmCxICKns1my/LqmqHvCW4kjB3RCkyOBIxTxPlETLw6U7Mqe8i5CT9NGDJWCU1r2ZPZ7QZCSOV9lMJo0JXCVBqdalQey7urNclYxAjGZI6OT7C1ZXM9gFEslgesVktWS8MYLcpHRDdoo3jz4T3unB6V99MammihsqSmwmdFIFHXFlvZV6HQlbUIZtYrJiRN1LZhsTzD9TUpw/FSYyp45hOShXbVUIUa6U0ZiOZMViV/Sc+TGq0ESTMDRW7fp7IQ1Bxopmeqp5kNXdKX9o9SquyhPAMXzqFrw+npCaend3jtzTdZHayYpgk/7AhDX05ppfGh1IEyHKG8NoGsCk2g5BxGkPQVkCDPwEoxZSkgaWa+EIkQMWQ0iC2TPmvJqQSiqxnANEbPZ8UXjCuZmRnI3+vh/oHnZ75MXWyu+N7f/bvi5280nS9FzRKAQH91hWhNtWzQVYVtGlZtZt1mYlMjWTg7bKmqisPFHaah5mA5cefOuzx69EvceTFy/7znX/+P/5zdjydePusQApIdSglVVS5S+Vb4hoK6ngtknDm+M91OIBkBU9KUJRu6QBlpj8VqOKQluUukIXLx7E/4s+/+JXmc/l/G3rRH0+s+8/ud7d6erbau7mY3u0k2qZYoWqJlybJG8gSj2ZzATgIjUCaDSYIJEAQYIJ8jryYIkA+QvHFejZPBJOOxM07siWwtHGujuIlLk+y19me/t7PlxbmrSVpZVATZYFV1o6vqOff5L9f1uxDe83/9D4/ItKKLGrIx73z3efr5OfXp6hKsxQcffsDZes5qu8V7zwgotaSaZNTbjvnpOvkChnW6F4HRnicrNNG9QBOO2YQnhN7htx3VtOBg74BXXvo6RlX8wR/8CdXOjO/8V/85k70Dfv7an9HVgq4RZOWU0WjKP/5P/xFXDnb5w3/5xwQ8L955hrWAx6dztO3RzrF/rWR8peSj9wxd1GS5BmEIssTEFrV6n9n+55nu/x0ev/l9aM/55q0zilzy4EeH+HzC3u1rfPjwMct3Wxj8ewL/tIiCy8InDhKD/2eR3+Wm6jPN1Ke6qDj8Od4HNqstezuGX/vCi3zlt77G7/2D3+fo9JTjB+8iP34Lub6guPMqwZQ8/PiITAYOp5I4kjCeUcg1ldjSG4OXEhMD4GlFixSRSgSiLAlKobOa3ltOnjymaxrGoxKTF+nBJatEPFIZRmXkYkVsPWYIOOxcT4iR1vVIKcmykqKYUORTjCmefm0hBC42C8w6w+Ppg6P1FhkcCI/tHT6CMik1XmqDklDkkWg8Mc8YlwVlrinMiOAzMtOhpGFv7wtsnKC83fP6T97ko0fnnF1sWVxskbFGCE81kKRCI4mprEGaElGMyYRDEOhdT8DjRQQliUYj0Kg4offQ9ODbBcFbQrhClAZ37HgkjvnF+4/BOmLTES4ecPp6hsUQpOHovVu4IFg9uiA6ixSBxcU5Hz1+xPl8SVv3TAXMMsl0J6eXkkf3HuBcRBtF9JHGR7JJYPdqILhr+K5n7h/ivcd3HpVLps9MOdg55HDvGX70s3f5/o9+xN/6nW9wePM5fvSD/5NKtpw7yMox471DvvX1V/jmb77CLz74kPuPH3Dr1iF6XPDoyR7booFRx87VMXuHGSenGSqYBM9Qml4WmEJj2iO0mTF6+Xc4e3LCo3sfcW3c8OXDDevJBOpnuPP1A1brJQ/+zZpm0+O1QIYOFToEHQKXCvUQsQOo4VJT3vs0INBGIVQaAOQmeeOC9wgJUuskRROSbdtSPzklv1hQlDm/+3d/jeeff45v/Z1vo4zmYjWH7QIxf4KaHqJ2Dthu14RVw6QUGC0QWYmUDs2GICVeDYMXAsnKG9Ay5UsFoVDRIVRP26xZbpYDellDFtCiACGRQpP/lWYaAAAgAElEQVRlJcGCDjzV2QupUCHQOZ+GI0Ilz5TMUSr/zPNj3aw5W53jB01/7ZJEXEiHDzFN95VKxaxO8rkiS5LrXKsUtpkbYiYIpaLMI7Y37O6+hMpm6OsdT44vuPfgiFWzobu/IVEaWjIj0VoS2kuBlUZKgygLlIxo6dM59j75vwREnfDTOo4TmbaH4DpCN8dnI1w2wl84go08eDRHIIl1Q6Ul4fF7RKFwaE4mh8Rqj/X9h/SrFVJERPQ8OHrM+uSUpu4xznPNCHYnhmqv4OLjM85WPTqm4VLrekaZZ3rFEsOY6HdY+yXeXeA6h7ee8eGIWb7H7Wt3eHI85w//lx/y8pc+x5e/+jU+/OBt1ucfs9IG7ySj3UOev32T/+If/S7Hp2f8+GdvcHBlxgtXDzi+mLPygVh1UOTsH+bodUSHDCVTvIEVGU4aMrfEdB3Xnv86XSN4/+dvUWQ9X7qy4V4tmZfXuPn5fQplWX0/0Dw+ITcS4QOaBoKD0AykWEFoRZKpiSS/skPdpQbaJQgyo8iMSfLV4JEm5aoFKXExcnR8htaSLDd89dWv8NUvf5nf+OZv8cytm1ysFtTLE8T5faTOkAfP4vqei9MtZSYojYDKILUhFxuiCHidpFMyxiThxqFEegpHVRGFRqgG5y2L1TlSSPKsIMgSGCFEiZYaJXW6JeM6SRS1GbbTCWMeYjLhS6nIzAiT1Z+5X7fdlodnD8mKDJNleJUkYEamu7yplwipyIoCpQ1BFeRGk5mYBr4IxoVBKYM3U5w1lLljNLrGzux5Jjct17Y9539Us9x4Hj9eIbGIuE0I+lwNYjJBRAMKU4yTxUAmqX3b90nWJpLFAKOQFMhYsLEkOEF7jBcaW+7i+4DdWh49ukCYd6Bpkc7z081jCqPoMcRszL3dW3QXczZPFik7TglOTk/ofMdm0+A7xxUZqQrJaK/g/KLh4/tnaAQm0/S2J4rIeN9TjTXR3YJwTPD38TbdQfkkZ2c249lrL6BEzp9/92fkVcG3/71vIZXk7Z9+l1UmWUvDeO8Kk9ku3/kP/h0O9qb8+I13EDXcvLlPExzn8wN015H3PQdXS0YHGZnMMKFnXGqQBq8rSuXQ9WP2rtxi9+A3+PCtd+m3Kz63t6UsBMejq+zlM37thRv8/P17HP+0I2whdKB8gYwWQQsxQT+8d7gYBw+7xw1ARq0kKqlhEQgyY9LQO6SBnNSpSQ4Iegu27nnw0UOeuXadv/X3vsULd1/kK9/4Opt6y2Z5CucPEc0GdeU2UWUsLlZoGRkXSX1GVqJFixEdXmuiEKgikjitiU5qiESRpaGM7PDRsV6eYW1LZjKUSlmISuQIFNKkM6RoCIJ0pw5ySh8CnXOpaZMaiQFpkOJXx0r8yp8ZvMe2DfiMaDLaIRMmy03yQ/keqQKFjiidVtLBeWrvcXUHPjBfLjFZRhA9wnumVUmV5xhtGBcte+NAbhxSJomTEBGVDVkKwxRG8MnE0vuYdLiDTviSfOaJBH+pqRZIBMGlzxUDQUL6fuABBIK1CSPdW4T3LFceLSURhRzrpN+Nka6th2ZK0M2P6ESNs13SO0eSgbTzWBeHCdLQXEQBKKLK8NJgrcX6gBA5uIzYGBqjWQbL+/fep1AZr3zhRVRZ8v7b73H65IjprKJVjkw6rt16kZ2D6xwvl2zshiuHJVJnVLPrbBc9jQ14KRGFIR+PqCbJsKmEJMoiAShECTJPBXFoceEcFzZE2/Du/TWTUc71a1dwmznx7IwxhsO9W2y3S9puk0gpUXDJaw7D1k4IMTRUl/K+S0/EpybNv7Q5/aS9evp7Y6Tve07OT1luN0St2C42nH/4mHB2QezX5KstZJGmcajY4+uOYpYxkgVGtmjZQxEQCoJoSB6E7bBVVEhjUGoAq0iLyRMZJhqFBc5WG8osICkQYtCVO48SZshAUGiRKJY6iKdTnODTmvkzBmjiEB4acMSkwydNYLQ0aRIZAkqmZh2ZJnbWB4Lz+L5DyWaYxCRiWKYNWib0swFGeaQwHqV6xKVPMEuT3qjSlFIMW8QQ0ga3t24gqIVEONNyIK+B77q0fRGXeVuRhJsOELqkufYp3NE2NdFaQt2yiAbXpWJT6ox8J31ft5sVsU+bnG49x61PsO2a3vUDEj6waT1OpiDKIALe+iGrRhOEwStD3wWs9SByJAWxU1gBG61w5wuW52tGpeHunZusl1vm847xpMQfzJB9xmTnCtefv0s+HvF4foYpBIdXxpTjGdEFOhvpfITSoKqcsiopjKEQAqEygs6RItEYpcxBSppQY0NDcA0Xq44HJx1FWXH1ICAv7mP7nttXn2NVbbkQZ8l65ACf/Fht1yWZUEwbXD9IkEK4/HVAOseIFf7pzyU9zAY4SWAgmFmsTJO347NjynGZGuQQ2JwuCO2KuK1RpkVlHbZ3BOuJ1qI1lKpASocSKRcH7YfoA5dknyRCHyikjiAiUnikSt4BoSRRJimPsIFRphMC2PVE3xNcxAiB0jrJwkVMPro4PLcBBh/jZ95i+hoS6yziACElmcjAJ5+hGr5uMcRmuCRVwPc93oPW23QWSd7bwuRolXKvqgyqLKCVJQhLCA6lSPAaIT/ZMgx/lSigdyFFOcg0UTcmZek5It5ZIE0/Y0jB4USP1CmJT7kW79OW0rZN+rnXDUHCcUxbWSk1Jt9FTzRN29CulqQsV4ddn2LrOb1L1FEXInUXkHXyoWhFkib6iAyaGA1eGrxP2XU+aJSswBpCp9hmKkkx731ARPH5l26RZ5r7Hz9BAPsHU0zoIRhu3Pkc+wc7PDo/petrDg9HjKdTsnIHHzVtHwiZQpUZeVlQ9pFCSqLQeJXuIC0MUmVIZWh9SxsCwTXUjeT+cUvrFNcO95DrI9isuD49hDhmfnqasrNcIHpJtJbeOvouofgRT5dEg9cjDZ0vn3nW+aeyiMszFGHwsaaCEpLHdrGc8/DoIS/3LShJM9/QblaE9RaRJZmztw7bJ0lcJxwFOTpPd4OQl/6TBNiJOKKwRNLw4zI+Q4qQzpBOr7EgJT54urahyjVo/dTHooUZttWpmULEtOmLA1WTy8HzX6vhQsD2bfKxSJU8XAOdWJCgT1JEjExbCi2THLkPkWAtIkS2TY3Wmig8IgZyk6XsN6koMsfYQaYdStrkERSeLE8qjjDQ2JKQKH3PnU/bIqWSf0frQXJJ2vL6rsUMPyPXp/cJGVDCEVybcNeD7yt6iG0LznG+cGRKIlCosaA4MNjg2a6X6WtTgnZ5QqEaettgvcWGiHKBde3obUArwHq8iwgvicoQlcFLRWc9vQMpS4TPiK2i04q1knz88BE6Sm7duILKMx4/PGa12rC3PyUTPYXouf78c+xcucbWWeJ6we5egVKGYrRLu2hpOo8TEqocUxYUZUkhJa2QRF2kQl/lCGkGP7nFhi3O17i+4cFJzWScsb87JTYgF2fsqJznr7/Icj5nu14T+5CABM7hnaVruiGfaXjURp7eP5c4JB9SPIxkoK4OiieE/ERREFKskbWSut7y6OghO9f2QUm6umVzssBv1kTboMctGHDWI6PHdz2m0OQiQwmLlOl1lzhCHSQUS/q7IAcSZLo/JB6pE6UPpfBCsGlqtPJEoxAuRQaE3oKLKK0GH7pO9Y9Ir8HoL8l/gvDUl/n///aro9Gdw2232DxivcLmafszrSpMdOB7tIxMCpGCCDPDuvdsGkd/sSa0Hb1X6NygS83MSF4cj6nyAgHM8o5row2laVCyg+gQKlJMNTEKbM8g6QvDFxnp+5RzhE4XaG5Uwkn6iO9d8hHIpLt1Ln1TsgIgIvsG5yUelQAY3uF7S3Sesz590w1QqDHldI84P6PZLp9OuZqj98ibHNttscHjYsTagFsnGZRWAueThlqQEaPByYogMjbtGcHahHjuK+KqZJnXbHXDG6/9KVMj+af/9L+l6QP/zX/3P9J1xxxe36Vd9rRLx69/9ZvceOFlvvfa/0zfXfC7v/158uqAjfwCZ6cdy8YSJoY4Noz29pgdXKHUhhpJrydp6ksBKsOrkq2ds23P6foTQtPwr18758rBDt/+yvO0TwQfvP6X7OTXuPPsF3h08han85Zg0wstOv80JA0+kevFp//55Yf6X2+qLvdYn/68EAKbestb77/L9bt3WPaWk/vH3P+rd9hygZM9O+MzTDGCtiO0DQ/mJ4yulOzGHUrZkKuO0ViQZYCuEcKi5AovJK0syckYZQnHrISlmihUmWPJaXs4OjpjUozQIkPEBDKZ6IxSFygzQhkDNmGihU/bhejBWofzDd59thgUQ4p1qqMjDoE2Bi0NsCX6gNHD4lUrvI/UzuLaDrtd09tIXtgU/CgFV3KTwrIBLQLTrGNkGjJVpwdPsJSTDJMpum5Yz8sko8InyWvbe4RKDWepNEYLGpcSw912g5ICtMTZgHVh8MwIcDXBK2zMnkIKbNPTrbc02yQFqZSiyHKuvpgRhWJ5cYJvEo1zZxpxF5pue0rd1/TWJtvcogcTKXKJCI510yAp0LLCU2BVwapf0rcdQo5RYgTbjM5HTnLF6uFHLD78gO985/f5ym+8yj//4x/w8OiIvb0p01HGjmm5dutFvvRb3+beg7d57Z03+doXbvHs1at08hqbtWW1DTTO42clelIxns6YFDkTKal1QW9G5CJHG4PKRjgB8/aIuk9N/kdP1mzFlC/e2uHmwYjH935M2HZ85cWvcro6501eo+80ttWELuD7QH2xpGs78syAIE0EQ4TgBznqJ4MG72zaguYZcvgnLbQGUliMQ+EeePvdt1g1a/5u9x+ig+T83hP6UNOLNYUcU1CmAGHnWWwWKBmZyilaBzLZYQxkmQTRJYS+aABPEwwIQ6lTKaqkT59bGSI5IWqW6y3ORUIl0VJCTBej8KnZMcIMZnqJFCmYuXepifLe0/d/LTAxXDZTl+cnSR61LpGuR+DQKnm6GOTM28bhrKNbb1BKY0OSnUsl2TGCUV6ghyJvrHvGpiPXDUG1RCymUFTjAmsFzoEezP+Xm8SmtSASTCBTijzTdF5ifcA3NQSP1JIYktxVGzCFRLgW2Vm8N4Sg8KHB+0CzXrONkdXakCtFpRS7+7eYjsbU2zXL0ydoqQhtiT3/ELtcUffbNKBzgbix1DIFZ5e5ZL3aEpzAyBkhFFhZ0vqWbVvjokGpGaItCFvDuVe4esH5W6/zyst3+Yf/8Dv81evv870fvI4Wnlu3r7HKGrQs+drf/CY2On7wxve5tj/m1bvPYMU+VuzSOM1i0+OvlpSTktFsRnSSiRQ0MqMxY7TMMMKkqBCjWXdz6r7F90vmi8Brv9hy48Dw+Zee4fwnD1g8fsjdwy9y4/qYn8m/ZLNd0m0lwXX4tqfuOpabDZlRKCXToDVeMscYJJYR5zzOeSwCk2doo5+q0r0bZJrOPiWvPnj0gG275svf+gY3rGP+8ITNYkHLElX2jIrN4B/wrOoNsauZhAnZyJDLLuG+i8FLLjsQPVJ2OJERREauQtpSCY+WgazUxKiIaJreUbctMWpErlJNBGiTcOJSacAjgyIO8kbQCOTTxvEzMD/vsG1DEAonDSiJ1IJCZygCJliUipRaIHXacHU+0FmPq2twFhdl8hBnilJJrmQlRic5eKU9Lu8odY3RNdH1SB0Z7RTEKOh7MUgyA8GnGq7tbWqQTGrgqkzjInQ+4LsO37Uw3He2T0V6MQIRA7JbIZzCYhKgwHu6ZovvLI9qjRSCEhiFjNFkgjt+zPLsCCVSo7g9zsldRdsuaXxL5wJ94/HnHW2MVIWi6Xr6pkeLCVGl8yNExqJZEGxA6xnSj2BrWGWaRnWcvPFXZMHxT/7Jf4lH8Yd/9D2cPefGs1dpJz3N1PLKb36Fq7fu8JM3/4L+dMW3vvw8eTGlFzdZnDTM1z1+lhGnOflkwmg8YawUvZDUZoyQGZnIQWocmrXbsuk3tN0Ftmn50btL9vcm/ObnruJOHUdvPuBacY3qC6/w/oPXeXhyj76WeOtwTY9vHKt6gwAyo/FhkFr6BLOxfAreAngRUFqjs0SGFYjECPEhwXxixPUwX8z50es/It+d8E3nWJ0tOfvgEU1c4GU6Pzr30Dui7fCbOfkkZyzGGNljpCXL0pAP2YKwCLYEkWwYWmtylWToCkdWKITPCORYF5mvlmQqI5QCgU9SQZ8sGSZPlG0hh0ZMJJCQtZdQLvvLA73/j7dfuZkyuWK6W9EgaegwWYYwmpEJaCKtSdIvb7cEIlIpYnRIEdjfzTAeot8QW4H3kloIHi8ls50cFyoyaTnMLXfuTIhhjycPV4QYKfaz1BhdJCKSJBKGlX0YsiUIYZhmpP9NXp5BVzzYD+Lwsa5XaVPukp43OPeJdvlSez+8ZCIC16zYvP9j2sUFQaR2PQaY7V7lypVdZHZOkA6ipRjlXHvuKotFQ3uySd1tBCM0RmgICde4syvppGI1z9D5mGp8wHjqyfNIOM5RzvK9n75PWVZ8+1sv8/hxyc9/fsT1Gzc4+LVD6uUT3vmrY37rK3eoqhdZPjqiHK2482XN5rGiFx4tJxi9Q3QS1zt8uUMYSaIwJL7OCqX30aN98npOXK9oHHhtGD+/gygzvveDH9OeHXM67+jVMe28ZtOc43qL8CmQ99KLdinu4+l3b2iQ/trrKMm6xWc+92lv9SlJwtMtZIhcnF3wxk9+BjLy4qsvYzNL0AFZjEAoYmshTBDXZjjl6J1FZFOCkri6Q7eOnR2JVD193xJNiRxfp1OS1lvcxRy/uUAYBwqikQgvyKQnupb5xVki4ClFkFCrAFUklwIZDQSJCOm11HZ9yrDqoevaT74eIciyjCwzOJ/SeSKKXKZJYJQRH5LsRMTkJ/AhrbVzIxlPitSpuU1axwvYdNDplrGYEqVgpBzX9gs+f/eQi4s1621DuVNiMkG4SB4ZlRAhgy/GE4RPB8OnjZkUl+cnPVzSv8mL4CLEXiWcu2MAZLT4CC4ovO3xdIAZzqPABsf647dTvREsHo/reoTMmO48g6lOCeaU6JMW+tpz14gqY/7+Kc6mSXGmNCNdYIgQWmbjiDeSsycZUedU1YiiCkxGFlUXyE3G2XrD2x+ecuOZHfZ2FO+9e4LKC25++RDv4Bd/9T12ro341te+hGwb5icrrty6jp5IrPbYIMn1LpKK4DwUI+TeFQhlMifFBoElmn1kCFTbBX0fcCj0tKC8XvKLex/i5hc8uregaRrWH/2A1rZstiuE98ihsHP+KUOJ5FKATKXnWT8UhX7YvAspUsCtSHJNH0XaciVEEVqkwkMKkUz2LtC1HU8eP2E2mnDl1nWC8ARlEVmBMHnq3EKAUcolcsLjIkiZJ3hD48hziZEmFZvRIcwOQRq2IRBtg9scg/SJUCYCkRwZHTJG2naNEsn0T0y+S+UjJkDXOJzt6G2f5NDBY61nsdiyXC4/Uwwao8nzDO+TnyRHoYZJupek13L0qRiGRLsatlU74yLtH/z2EgyWPB1CMApjdNZTSMduJXjxzgHLZcHp2ZJipKlmOe1qi6jbS/TBsPlKZucwFB2BiI1Jgnh5hhjor1GAjxCsTF4yB9FFrE0bMx8kLkR87Ei7Y4mLKcerPn1ItA3tdo4TiXhlg2E8vYazBcFUBJ8kbzvXdtm/8Qzvf3jOtqnxIfmGR7qgkJoYWorMUewI5nNDvcnIy4rRaMxk3BPyFr+vccLy5gfHSC35jV97lgf3tyzmLc+9dItMZTx67y2yyvC1Vz+PsJbzoyWzK2MO9iUyj3QykKsJRs6ILhKlRu5dQThFDBoR+yQvUhPQJUW3IDQWHxWiyKiuV5wvLzj+y4ecffSE5dGW7eM36KNgvjnDuw7pPNFbnIv4QBqcDheKHjxSUpkkl3UueVBVynvSg8Q0IFI8gUgb1cutRfKRJuKf6x3np2ccHT1hvL/DaGeM11cT9KQo0/PTeRgZ8FOcCbgQkWqSPFytQytPUaasJucCMZuCGdEiid4RNhfE0CN0AGlASiSQSYF3PU3cPIUBNCFRhgtlkMKgpCGS5KzOJx8UURD9ZyUg6dmhQQZiaDEiAZpyNfjNYmp2QugGctzQrInIuLj02tRgRQLfCMGyURRWMaJECc9YeZ57dgejGo5OFkQC5W6Jt5awSDRVGUOyPwiBJw0YCYEYwA5UTxFSYl7a2CWPaKIqCmKrk1+nF4n+2XeE6PBIgu/wT/FjSXrWN2sWv/gR27MznBykbC5QjffY3buCyD/GawfGU8xKbr54g5OLmuWjFd73hCDITUalM2SwKNGzvytoUVwcZaispKpGjKpAbiL2IEf0kQ8enZMXJV/6wjPMLxQffXTG/pUrTJ+b0SzP+eCn57z0wiFFeY16sSYUiqu3JfMRtNJjdEGmdyFqvAv40RTXaaLUCCKSDUpPMdWMYr4lbmtWXhKUYXRthCgUP3ztLbZnpxx9vKUTH9PJI1bNBU23Tt6tkDZvPiSWnxjuoEsohQ3Dlj3E5BnT6YwYkzzLkYEOO9xBQkmMGND9w33knWezWvPo4UOEhMPbz+DkQcrDLEdpm+o8hBymBUGmmCFESRQlvvdI66kqgUDjQ0+UGSLfx8nB+1cvCd0SVOLex1S0oPBE39M0y6fBviIkBVE/gDXbbZ9ItLZLSPgQqLcd201L0zb8qm+/ejOVKSY7BQyGWGUyVCapjEDFiNfpQnF9lzZIWqWYKAF7M8NICBbHi4RC7KFxcNQK+j6Z9Ue7BVWluH17RJB7rDaWzgXyvRK3bXHLDYSEDlaDOd+LNH2hi8QQcZeZBqk9SoWhiMPaP/3QvZfDZD41YdElrXFqCpLOetiBEYXAtRs2917H+vRiiiRZzmR2yN6VZ5DZmwRZQ7TkVcbVWwd4Fhw/aSGkS10LhREKYpJNTWaCrVcshEHlI6rJHtPdlqqy2L2cfmN57ef3uHHtkN//23d5883Az37yEw6v3+JLX/4S/8e/+N+4//77/Cf/2X/NtWcO+J/++39GaBW3DzWPdiS9DGhVYNQu0Sl87wn5lFhJYgsiWgQbpN5Dj3bJjleIbYv0gDKMbs8QOP7tP3+dZrWk7TpiWEF4MJhgU76IiPGTIlB8qinik8bql5xTQnwGNhE/8yHBJ6KL9GeEEJmfz3nrZ29w94U73HnlLnKcgRFs5mc42xHbkEIXq5yL1YJHp0eQjfGypNmsUL5jNlUI2WH7NagxqrpB7zds3Jz6fEF/dMzOFUVeagQZIioyCdF1LOeWPC+oyoo2JtJRuRMQGrJgEvI3WIJLcq267thuO7qu+8zXbTJDlhls7xP4gVQIahFwIuVjhZBCRaNMhluAzEimZUHX1NiuS5uKCBsb0CpD6zkmz6gqw+FuwUt3rnBPK/ypopxVKCPo1gtCtCk4c8A9BxHxMhD6AC4Zkb1I338ZQ8obEikFLJKmu7YfAokd6fzYfpiCJsR8wD49Px6Fi47N/V8QQhyaqYC3LUIZJtPr6PJjvC7BNCgdObx1hShy3v7FCu8sISTJcKULtIgQeibjiCgl58aAziiritE4MJt2yCZHNhnn6w3N/VO++vk9cj3mw/ffQSnNS198mUf3PuTN7/85v/07f4Pf/PWv8sYP3+D06ITn7kSKTOBUwCnFRO2iRIW3AfISuXsAa0/sPCI2CAyYAtlbqsay6T0OhZlmVIclP/7uI47e/ZhHp0vadku7eITWgmqUkwsoYGggxCfbJ9IlpkUKbOyGiWCIaQujjEQXqZmyfRg8hvGpr0orRaZVKkZEmhT2bc/x0TEcwvM3biZ5XaawfYu1SYJNBGWm+BA4XZ4TokDICpwl9h1KaTLj8L7Ho0DvEqWi8Uts39DNT8lyQVFpLoN9ZfSIGOnaNUIoMl2mIUJUaB/JAjSto6t7nEtBn1EG2rbj9PSU1Wr12ctKa7Isw/apWYmoFKAt0wWaZBpJSpsUCYnkJiVMxznRpWBRP0i/GpfknEKOKLwjH2dMC8ELz+1xcm7YdI5inFHOilSwdR4Vk0QsAQVShAM2EmzER0eQl0+15Ccd+INAKgSDF/heXlaGRJck5s4LfIyE2IOQ+KgSa0so6rPH9GcP6GuPlzGFPvuS0eQKXacJuiIaD7FhdjjjxgvX+fhRi7OW4CU6SiqdkytF9B1FDlUm2BaKjc7Iy5LRuGI2bQh5Q79ncMLx9kcn3Lk55tWXb7BZPGF+vuLW83fIjebP/sW/Ynd/wr/773+Vs8envP6Dx+zsHLI3kcgs0qlApSYYOU3AKKGQOweIxhHXHrCI2IJWYEry9hzfDJiK3FBdq3j45D5v/fAtThcLFpsGt/2I6BpG4xKjBKN0QaQ6LPKJKZcEEpBCQJbhY6S1g+RSS5TRaKNTRlkQwwA2hVvLASYi4hBvEpME6eL8gqOjY1648SxVWSJzQwiOrquTRcAHpE7kyvP1nLbvkGKUvHNNQ248ZanSYMRbhBgj9C5tWON8R7eaI0JPNVJIXSBMhkJhpCa4js5aMCVKaZy36AAmH4z6MiNJVwMuNmkgNyjwP/0mhUQbRRCBEHo0BZk0GJniC3wUaRjhkxRQxH74fZGq0OSQIF3B03vog2DlE/JaqYKsMIyM5NnrE/LCUfee3nvK2QjbbLHreXouxQBSIRE4kfDssU0Sq8vbY4BpwyABliKNx10Q2E6lBth5oks2jRDEcAcl369AAgo/NFPL935KYyNBkRRL1lJWe8x2b0A+wesakdUU04LrL1yjZY77qMU7RQiQK0OpMkRMzdR0JlhZyakyqDwN9KYTR5l73H6OrR0fPr5gb2eHr718nQcPAvfez9k9uMZLL73AD//1v+HRhx/zjd/+jzg43OeHf/p9Ygd7E0lVCTrp0Son07uIoBMYqprie0NoJSJaJDVKTdDVlPyiRdY9wgui0oyujhDR8dqP32FxseDJRU3oloTmnKLMyHNNJVLWX4p2SDCJSweuwnwAACAASURBVJibEkmB5dwn98/T86MVpsgSVMSmj0U/NFrqMjg3nR8pwLvAZr3h8cNHXD845PDmNUSWPMBdsyV4T/RJPqiMZts2LLZLICdgwLaIYCkLhVQK52owJcLs4WJH5zd09Rq3OqUap7ONNhCS1zcGT91btDQYnaf6BTnU9JHt1uJsuoNSflVgtVpxfr6gbVt+1bdfXeYXfEJCi8AkC7R2Td9H7p009F3P8vgCpSPTXU1ROiokvRVYKzjuthTCsbdbMlKaSlfEXhJWkpMtvPOzI2YzT1V5Hr77mMXxAjtf07We+mIF3hPtpwNQ0+pN5wKjIJbpXb71DGiKwWMQsV3anPgghylUaoai9Z/RosmhA4hDvy1FoNRh0H56hC4oqhG2afG95YP7x5yvWrq2JpOBcZ6TicjxkxNWy3548SXNbpQKoXP2Z59DZYbl8VtsV2tad8zV25K/8fdvM3/9HtsPP2Yn2yFe2WXn2QnFJOPB4wbBhL/5m99gUZ/xF3/xx3zzt1/lO7//9/nBn/6Epu148YtfR+aa777+JkfHR9y9NmMtKuqQofUBhTlExrfBNYTmHKlHmJ2XGR88w+HNmzx4uOR8c0rb1EjleLUqyTPB+mbO2ani/mM7FHpJzxxjxBSJ8NK3nhA+aX4+3UT90lbql7xSn3y+VGIo3NN7QkxzkhAjJ0eP+eG/+TPOP3ybJ89cZffZz1FM9mg2xzjb0zqDKUpmVw/pupTQ3tc1tmlwUoI02GVHnmdc3buNMApbz8nFmhFz1qNAe6WESYnVGuszrBOsu4AWinGWk5cV5WjMdttRdz2PnhyRac3UyESKMpIQA4GMKDzI/q95w9ITR0SPkRGCw/qOddPS2471ek5vG6pKYbQihzTF9JLoLL5vKZSmHFcYmSXvVAvOwvtHK5SKjEeei7MTVkcntOdL7HzL0cUZIQZkqIdhQdoZihjRmSTLBDEXxAxcY4kupqZl2Di6PtD6iA0aF9SArfaEtk++xmH4IGMyqBqtUy0tPCPdkysS2RLF6OAqtvdszhbMa8/b799nMb9A07K7O6UoNMvFBa1T9DYSosKoZOaOmWY8OuDK9BbL0wfU6w3z7QOm5QFf+PwE0W2oPz5mZAV691mqgx2KaU7depyIfP7Oi9TNhrfeeY2d0Yx/8I//Y85OjvmXf/BH3Lh9h9t3v8TRakPbbrl9OKXuBCsMgpJMzwhuQVs3dKtzbN8zOXiBYrbD3u4e3abhtD1lXTvazQV70XO3LKhvlkxczqLu8aEjVBpCpG8d1VgxnSmapWe76QlxyK+TiijAykDvA73ziRKqBWaQu4iYmq60eU+EQaMVVZmhZWqovB9yN2Jktd3wb7/3Zxzu79HdfZFqesBo/ybe1jhbY4MiohjNZimbbtiIxnqbcnKkwjnPuhFMyh2MFvS+B+8ZizVe9TSTErQmmAwfMrxXtD55InRMGS15McI5z2bTYv2SbVMj/WB+t/0ABEh5O7OdMdWo4DMnKAZiTHIoYsC6lt5ZFt2Wtq3ZbBYUuSTLJXkMSJnhvETEwMLWGCmoxiVBaLzMiD3EHh4vLL2/YDpyONuyPDqhXtT45ZLlPHB+P4JviKEjimHU4xOJMa80UUGsIr4fYCgy5SPaEAgBNhuLjwLrTSIgBp/UFr19OgkWUaJIxFsQKBEotWVqAl1v6a0nnx5gZMH6dEEvct776An1aomMDbNKM90/BG95cvSYbdPjvUQrgxaSmGmyYszh7Dbtds7iyQmL1Skre8HNW5obt8es33sP26zZm17HjHcZX8lBCeYLy9WDa1RZyZOje4Dn7/3et3G943//Z3/KZLbLnS/+OlY63nnwkHGhuPvMPktVEMgxaoagpm1aus2Kfjknn10nn7zAbOeQ2U7FPX/KqmloNguudAV3i4LRlYLwUkm8N2fbN8ggiS4juEAUgsm+pu4D5xc9jrTtEIMUxYl0Rlxdk6IG5FCYf7J9T/dPRCqNlJKqyhLAQaQ6IeWrQec9b7/xU85PH9DcfYmdnV2m1+4kOW67Sj/boChGI/KypHdpo26bBkSKmOhipK2hyCrG1SgRFO2WUqyBFl1pQpDEvMSRMOHeSayDUucYnaFNhpAS5wTOB9bbtK3KlUKpDKUzkBlKGJzt6Fz9VBp8eX6C71FSkykFrsa2HWdtGuI19QqlYDw2ZNFTSoXzaWkgXEuLZ1xl5FJhZA5eElvFshc8enDBqAzkmef8yRHrxRI7v6BpLcvjYwgOEZqhLkjPMICsFORKEMpE6nNNOhOahIePIdLZtHnsvcFHmbzHPuCa9un5Iaafm1JJcqYIaBGZ5mnr1bY9KpswnR3SLDZ0m4YHp0va+AjXrSmVY3d/Rl4Yjk+OWCw7rAchFEYlFZbIc/amN8jyjMXRfRbzFfP2I56fPccrr+zQPDimOzphls0I+YzJlYqi1CwWFi0rXn35ZdbtnJ/9/Pvc/dIdvv6NX+fdn77HW/Ztbr14F5Vr3n30mG2z4e7NPWo5ogkaKcdkapoojK4nbM5QWUlx8ALjnV32ZlMePFxxvJKs12tC6LmtFVWhWdzJeVwpLrYNXni80MQIfevZ21fkmWB+Zml8/9RDKKROfmURsDH5to2SSCXIVCLHDojkdH6kQihFVWQYk7z5RHAu+cw763j86AHf+/M/5oVnb/DcjeuMD26RVTNsu8QHR+81yhhG0xnWJxhR7LvkdZUpE9W1DqM00+oQoQTebtE05GJDm4OdVJDleKVx3uA8dF6lDVWQKFNQFCO2dUvX9fj5ecKmO0cInrrrh8YxIJVmZ3dClplfLlr/X95+dQBFCGmKqUBLQbQ91jkulhuaumd+vsFkQJETpCYrLD6kNfq26+ij5WBnTFYUiGyK7xS9lawXaz58Mmdn0zEqOpZnK9pFTWh6QuOoG4uQoLNPCnQRh2LQKOSAt4zDKhKS/TKmkI8kofBJmfOpa5kYQ8KpajkgJyV2CFvVMqIlzEpFiIK6T2QbZ6pBSi1YbWpcSNkpSkRGeQ5CsFlvaNtB98YAJZASlKIo9pBK0a4dbd3iwoZyLLh6a0r/hqVbLshLA0XJaKcgKzTrjUXKnNvP3mL7wZyTs8c8c/Nv8+orX+Jf/a9/wsnJBb/127+HU4G33vw+3XrN/qTA24zaayQlkirpwoMDt0KoDJ3vkZe7jKYT0BmtlThvyUTPvtRURjIdSbabFAaopUSQDxramMJrB4z3ZR42DAAK4lPpH0/f/9lfP/WRVBBemrsHTaZ4+piMbNZrHn5UY/olcXPCNZ8z2uux9Qk+OGoqTGUJ5ZQQ+uSP8xYRPLYaEYSiqSNFEOypCRKL7TaUckMht1gdiJXG5kUChLSaPkDnQSiNMjna5AOdz+J8YLVap8lnadBaIcocMchz/OWm87MvudSIDJst8MRg6WzLpqlZ1Vu6vgVtyNDoUJJCQAUuJLOtqUaozIAuiSQjee8d5+sLpOjp+pb1ckW33qYiom3Ybhqs85RVQo56kdLORUhZJLlRBCnTWjyGp9jdxHBPUtiuG1DPw+8lhmQyDQGTJSKOEhofI5aEOFcCJpWg0IIYk649jieIzqPXFuthvlzRdQ0Ky2Q0pqoK6qZh26UtMlEkYppSRJVIiWUx4byFet3R9kvGFMz2csJiS7vZYLREZBPKMqeoFM6n6fL+3j5mDfcen7O3M+NzX7zLxdkZH75zjxvP3WX3ylXee/wBm/WG2SjDaMW61yA0kBFC8pj5fkvoG5QuyfIpVVkSO0/rUxaHcy1FjOxIzc5YsZkpsjxgOpCjkugCvnFoI8kqQVwHbHBPg4Q/KQbDEBQbUTIhpZVM08LLF1QaAKUCwpj0s1QyxSYgQYS0U+z6nkf3P6LfXHB1JJnsdVg5Jrqa4Bp6kSIAYlaidPKbEH3K49IKbwzWJSloXhZIqfB2jYgdhWyQWFym8YMH08eEAXcx4oJAxRQuqZQZijOP846ua8lVClq3ziUzuk+vP5ObNGH8zBmKXMYxCFIIrvM9m6amabbpmRwVpVRInWGEJMRk3G/6jmg0k6pCyhyhirQ7ioJVO2dTt/S2SXK69Ra7bYhtS9datk2PzjxKh092Td6htaAoknwqaoG36VxcRnYQko+t63wqAgdQCJcDCe8xRg7Y/ZRwKqNCAEbCKJPMSsFGKhoBoRoRzYhmbUEpFusN/XaDjJYiK9idTelCYL1aYW1C10uZGgW0RJqMspjQbbbUa0vbbun9ktFYMJtlNF1N6FryfERWVJSj9Hdq28B4NKHMDI/O3seHnlsv3GI9X/PdP/kzbr6geeVr13lyccTpxTmZEuxPS+regFAk2a/GOZdkwd0SyTPofEZZVpRFgYtD8+06ZLDMhGKTa3ZmirKKaO0xZYYIGt8mb1xWKjoSHj8Sn2a2CUQqHCP0NmVRFZkZCsXLl1IaAonhTEklyXQCkUiR6F5DYis+BM5OntDVc66OFF19gM/2kozWrnAoLBluoC96nzakCcAg8FlGDND2gagMhcxTYx5bjGxRtDidwky9SpNz72U6Q0EMZyeBOpIUPiSU+VBoCqXQRhClGRQPYvDgWT59C8UYkt9yILLF/5u1N/mxNMvP854zfsMdY8yMqsrMquqaeh7YTTZpmKQpyBQpC4YMG7A3FmD/C1p7YdjQzgYEA4ZgbwTQMDUYtiVBFiHTLakpUmpO3Wyyq6trrhwjY7rz931n9OLczB7gRS18C4FCZkYGIuPec89veN/3SY4UBLvo8TGw2+4K7L2qQSpsCvutuWCIjkhg0rYoY8lqRA6yDE26novlhm4YqK1nu1oXdmPXETrHatUhVaKqKT8PIQqUPSesNSV9U8kysE37zS8ZkQpfyPuMD8XekRE/cQcVLpbWai/hUkUlRcaQMRLmI1lkaFmR6xomM6ITxCDZdY7FakWOA0ZFpuMZwhg26xV9t4/Yp4TAoDRoRV2N0drQrT3dtmMIC5T1HBzW5PsBv91gK0u2lnpkMEbSu4hUhlu3TugeLrhePOUrn/8ir955le99509YLlZ8/uu/BFby8OH7eDdwPG249JYuKgQGIfYokBzJfl2e82qGrSY0dUVCsfXgvEPknjGCqVYcTBXrjcDYEqrGHv6dQ8JUElNlApGQ4v58yH3YDkSR9wKuAmBWkiJ93YeMCYq/W6pSRxsjqYzah6BQ5KQUIPVqveSTj96jyj117jjMDc00E92qBK2ICm1rsm3IOZSFx37QlmxFUhLnElpDK2sEkRR6pOgxoiPKRLaaqKsSVBVLkFbIBaGkkCWlTxly7gkxEHah+Oq0KgqOZ8O8vdLDVuW1+Wkfn7qZWi63vPPOgyLmN4pkJUkJnEjkCsZzBSmxu+4Z6ZrpSCPqOZgJT97ZslpuqWdgkmEIB8Re4VeJm9UNafOYR+cb3NChfIGMViqSTcaFEiCByGWlG/Jzw+iwSfss+FJgKFF+KNs+Py/xy3QDTF2M840pjZNAcXbS8PnXZoymc5rxjB98sOT6puez8wWnB4pv/MqbqOYWW/Flfu+PP+a3/8l3ORh56hR585WWSQPbBwKXFbfO7tB7x8OLC/IAGkkUFYl2H8Ft2dhzBJGde4BzK1TKvPeJ43//1pZbyx3TWcf14wVR1rz29Yb5bMKBSrgsWEfJ1z/zG/za+D/hD//tH/A7v/d3ef2tE37xm6/x+udf4/xqydP7HWE9IFOmmY94aXTMevuYdX9BnwawBltNsAZa3qdJkqq/Q2U7zMEaEy05Wb79owVKRH740YK+66lHLXdvvcyb9z7H1eI+y/VTHl4+YdNtizQAEEqVN8D8/9FIPfv/T3qiBPtJYvmFeOZ1EyUt0ZiqrP19ADIhZh5errneDEwv/4CmaTmcjqjbhsndu7ht4OEfXqBNpmpA68ITqccbpIYn3YaQA+9/EmmrwOl8R5M7RmlH1opsFEfTFtuOkEaghhIFXhlDMx0V+GMGo6DWsFqsCCHi+haxj+DL+zceHxwu9OwG/xMXGbgh0/eRLjpccnRxYIieICOmKhe67wdEiNiJRJsKYabs1jes1zeg8/7SbUhURJdxQ0fsruj6LU+3C0TsIQ4Y6WltYNh/XVTZVMStez6VGEImDRQGjRAYqRE5s9kOJVQERYzgXQluaWpojSobEmGoreHzb5zRtCOa8TGL9cDD8w0n7ZajpuPFl+8xmR/S5ztcrwX/27ffxe0G7hy+wK2jipfvjOBK0Z8Hjk7PGE/nfPTgE+JmYCQkg9Zs9QnJ1CQ7orMDG33N0j9k3T1BeUe/jXz7Xcc8O87GA7uV4+rc89rRbWZNw1gUn2WXambzl/iNz/xnXFxd8fd+5//huIZf+yvf4KU37jA6mLN9O3J9OaBCAms5O56ibObJxUM2w45sNXUzAqUZyyvaHDHhBIWH0QbjYOzmnA/wJ/c3/Nl711w8vKYZTzg6PuXrb3yNGHqubh5wvrzg/tVDtrnDJ7DjEVJAlRIpRrbbSPDx+bmRiH26W4H4IsqWpTRS5XlL0RV5BoJmMkEZw7brimfEJ66WHX/0zseMR9cc3H/MpC2soNHpKaoZ8eD+Q1LK1E1GKYFREm0EppKs/MDWO85vCs9rVq+w0tGmdTngWmObhqYZl+huCaIPCAVKlUJgu+mJMaBJDK5nGHp20oCQJUktszf+Bvp+y2K9+ak7yIfM0Ce64PDZswlD4RyKiDDQjhTkSL9xTOsJtdUIMyOGyM3mukAca0GWlpjGJAfJJVy3IWyvuX9+TQoenQZE9jRmD85Ogj2MhdwVCDApk6Vgm8ReNlueIyUMfecIvjRQKQvckJEq0zZgtaQxRfsvgddeOeHkcEIzPiFmxQcPlhgG7kyXHBwdcnb3JXw+xaVD/ul3PuSDhwteH58ytoLPvjxjedFz9UPPfHrMrTuv8+TinPX5DZWXtErQmUOyNEQzxlvJxlyzSk9Y7j4h+w1VhD+7H3iI4yXrSaHj6eOOg6R46dWaRgpamemTJWXNL/3yXyEEz7/4oz9HxIF/59e+xMHJS8yPDnh4ccnV4w65CwgyR8cjsA1Xy6cstx3JKHRdM25njEzPmIfYOEYHDc0OOekZHU1wtuFPH2x59OGCd955yhAUt85O+OrrX+ZoMufi6hPWuyXvPfmATV9YgbquacYjhHfk4Nn1ZXshZeHFaKVLDbH35KSYqJsKY/S+GBeQQmlAtcHWFtseMAyO3jlCgl0f+IsPHtE8vuHk6YamrjmcTqimU5qjY66ur+geXVDXJUnR6DLNrxqFS5Fr13EuE9JkZrVjZD1NWqPwZG1QpmYyGpOEwkeF2rOiTNVgjC3vzwiy6kkx4pwnSkWfFSJ5hFvv79riASuctx+fn+1ux/0Hj6jHDXZUY8cNqjIIW7yYzUgjcmLY9dSqorUK9Bhkw+JpR9fvSh2VNU6NyF4Su8y2W5G6c55er3HDDp16cgw0OpBNpK+LrDyrRHSB6GJJVwR2uQyDsnw2RLDEEFntBtLeJe992VI1YzBGMrKiIBSy4fhwxGv3TrDNDNtMuf9kzXrT89L4mlkreeXNNxB6xpDv8P2PbvjdP73P2fiUJgZeu9sybjKLdxIOya2XPkPvPQ8eP4S1YIRiUC1BzEhmTDQ1O7NCqMSyv0/X32B94tFl4Fs/ctwaBqajgfOnSyKW26+8wbipGIlEzIY+S147/Bqf++o3ePf9D/jue9/m7ptnzEavcnJ2wmrbc/10IO5KUE89qXihnTH4FU8uNwyEIoFtptRWM+IRTU7YeEDVeKqjnjbUJG95+2JAXUb+7N0rdl3H8ekh927d4fP33uJm+YT19or3zz/ker1gSJCkoplPUWSqnOkGR9+F/V1T7iCFfM4uCz6ijWI0bUpsulKF1xkdVlukUowmB6Sc2ezKRrIfIh89vuJqPXDweMOoHXM0n1I3DaPbZ+z6yJMfLdAa6rrE10spqOoOoeDKdYQceXAZqE3gcDRgc0+dtmStQSraWY01Tan/RQYR9uw0TUiCzXpH9B5FotttCTGylQYoioyUSwiNcwPO9XT9wKd9fOpmyofIatMhao2odOmWTdEzKCMQjYYQSV3eF5XFj5QpMZMuZPooiEnSRYP30G0dnStzneAc3XZgZAoU0lSlO64poFE0RdsfEtE9WwEL4vMiXKD30ejPkI3PDHMCmE4tlVVMGo1WEquLtveN106eN1OD18zaLW/cqrl9ZPnc515FNWfsxJs8vJIcHj5C9h3K9RiT0cqjZQalaKZT8q6DcFHAruQyyRcGrexe67wFEUDFktcvFWHI7FZlpZy0wsWSODR0A872OJPIVlJPKg7mc27Nj1mtBt7/+Ck/95m3OHvhlPV2x3q9xabCfQnK7s1/kSwKMyDthXqIwmGxNqBkgbQWUF7A2AqRNbvek6Nj23nIgoPDKfPZmGnTsN1ZNloVCkGCZ23Ts43S8zbqZzR++56p/FHe/2L/m/LHPdY+1liUOO8syLlchlJJAoIuClivGfqOSpVJ1ygOeJ/ZrVbYukSG5qzK9tE5RMz03Q6XYgFND55K7hjiwBA79KhCN4Udo6TZx4Sz35aVSU3O5XlJqRjsoUiOhmcUQNJee5wI0eFDiUz/yUdMiRjLazemRIjlWRFy/zoViuSeRZMWIyQxlM9NmZD2vqUkSSgG5/AuIHIgJ48bBhQRK0AbSVVpmiSQMYHR5Jyx+KK/9glB0UQ/k4Jou5e45PKBEGW1X0nGI8to3DCpNZWRWG1oG8u9O7dpRyPq8QnTRYeg4tZkxMlo4OzuS4znx3jxCuNl5uDgml53NENP3WSMChiZsAKqtqUeTxFRQQCVS8SpVhVaV1hb5JMu7cjCI1RCSo1AMfQRJwuoO2RRUplcwA0erxJagK4VxlgOxzOub9Y8Ol9w+Moxpy8cE4Vkud6SQ0IhidKUyHoKW6kgg8t/SIVUBmsyRpctbUwJlzxCSUbjMVkout6z2jhWW8/seMJ8POFkOmFwivWuGMw7n/F7vIOxumyd3FDcD88A4c82trIEOChZJrjludmb6eV+m7vfGJcGSKOtJaR9TLbWICV9BDE41OqmAGOVpAoekRyu3xFjRpsacglYIGZEyDg3MAQPqUSBGzqCGEixKxdpLVFZIIR+fj7YQzZR7Acj8XnIT95vN0MSpBJmW3x5MRJCKCla3v/U+UkpF0B8yiWsIZWwh2fTUW3UHuie9nLURIqlIAgx7wtMuQdQq5K6OZQNnMglWjtHjzFl8FZVJV43SkVSqTB5hCeHhB+KyT3GZxtnMEogdImoTqlI0RACazXGKObTmtooxo0p8FolufviKafHc5rJCTFKfNBY4bh30DA/OebW3btEcRufjzn9cMf1VtD0PY1OGBUxKmIlVFVFM5ujrhfgQKaMRqBliR+31iKVwMWOiEPoWF4/0hB82Z4VmLhgCBnnI27waAVegrASYwyz8RQ/eK5uNliZ+PKrL2KaEYvVtnw+kig1SRm0KFv4/PwMxf3r1mC0wJqy50sp46Mn5kjTjrC2oh88m51jsXaMZhXT8YST2ZSD0YT1xrJzqnyfYb+tFBKtDSmWEGexf++We0CueMaZEs9s1AVgr7Qqqov9daSEKOfHKmxl9p+cMUajtGbIkEOZtMfgGFUW6R118ng3MOwcSlZgFUIUuWcIZfMzuB5kOVOG4gNJsUfngGoVRoEQunDWBOX7FxopnhF0i5Be/Lhlei6byykDz5LHROG8sf97z+6fmOiGgWwlyUhELOFJWpTtpbK6pBj6fQ2XU1Gi5IBPCR8LtyvtZY0hghsCLkQkgeAdQz+gTJHAmkpRkWmSKOFdJpN1JKtADGUDkBOEXJRCUpafOzmRsiz/LlE8s1rDbFxTV5ppawp4WUpunUy5d+c2VTvH1lOEqFmtdtybG6ZjxZ27d1H2AMfLXLsnHHywwTqH9Q5rE1oOmD1XsZ7OSLuO7PZlWk5ooUFVGFthrMHnAZHi8xpOSU1Kgr6LhARJSXwCv292nfF4mUBLdKUZ1y2TpuV73bucXyz57At3OTiYsu0GNtsenYrXs9RwsgQosAfe53IHSaWRSlHpiJbxuTQt5khV12AEzidS9Cw2DhAcHx9wcjjneDoh+CVDMPgk6H1+nvqoKoN85oPee6nIP4aei/19gxDPQ+bUT9xBRdGyX+Jpia1NGc5F/5w9GJHsIpjdhhg8bV2UJ03yxJAZdruCVFAVOZc6MISASBnnelyO+yj3QC07Qu4JsUdVFdIKGuT+DipbrZzF8/fhFBMplOTpnAsovniW5XNna/E0Rpz3dM9QC5/y8ambKRcTN4PDGoEVGiUSChjVBeKbZ5oUMmGT6SV8+PiaxfUjNivHtNbUlQGpyFLic2ax3vDBD99lph3H8ymChDWZyhSOQB5bQsochQxGw6SmVZmRyTz5ZM3ismd543BDJLpUjG4U6GPbKrIogRHTuWU80nzls6cczUfcPjlm1FTcPhwxO7jFrTuvEwdHdI63jj4m7tacvPZ16ukxo8O7JDTWJb74muI//c0pf/z9d3j73Q/4+OI9bLpCB0/TjJi98TLyeo395Arvixi/khKlNAfTCbapGa7OERoOb99mt97hveHeRPLzswWXfcMiv4Abbxl85N/8wR/TaMNZ3fL6Z8/41b/6BXaPzrn8k79g88kKvzrg7pf+ModHY/7b/+Z/QifHr//cPR5vWr77ZER/tSQ8/AGv/OpfZ3T2Mj/8wZ8TugUZQVO3zF+8i5gccNHD1Y1n8bjnzq2XmU/n3KsSfbflT13k9Pacv/wbP8/io8d89Gf/Nx8tlpxvtzgfSsGwn5ILUdgWMf6sU6qsgoUo7KByS6i9gfz5bbCfQoCpizERCUpIZqopoRdKY+fH2OkBYXMDfiBIgUuBzcVjRI5M5Q5rj2naWwgVEDKw7J8yxB2BiNaS6XxCivDkaUCGgIqJyTG0UjB3GuE1u926FBe9IHhFnwLdAWqKlwAAIABJREFUPvkliJ5IwIw0Oms20ZD26/eUU5Er+YB3hfr+7JFyZucH+uhAloIukspURxuCbUm5Ig4l2u1m1+H8msXyYyqlGBmDkIV6HhEMMfLg6SNS33PStBhdZBtSOKTQiLamjYl52P+cRy1aSSY6s1t3PHl8zWbds1r2JaAk7L0tWjIej/Z3d6ZuNPODlhdPD3nh9IjJaEZdNUzHIyrbcHD0UmkCY+BsvuG1w5Z6eotqcoypZ4XHFeFwEvj1r32Jxxcr/vjtj7jsnzB88hFuu+LAWKa3TmhvvUDz4QXDbgV+SQVMGsNs3nJ4Ooc4sH76lNl8zrht6YeK6fSQr48GUoTF5pjeOvLM8fGTGx5drjmpaqZtxZe+cRejErvHH7J7vKC/aqneusvJq2/yj//Zv+VHP3rAL3/pjLO7R7x9oei3PZuPPmL+0j1uv/Y5Hl0t6TfXkEqc/fj4iPHBjHUWXG4iDz7pOZ1OePPuy9yejplTdNkbD7/5za8wrRTnf/gdHl7e8G8+uE/nHF0/MOx2ZOcwdYWSiu1uQwyhXFyi1F6mUpha09QaayRJNWShiMGTY0amgDaKelxTTyrqsS2cMpk5nB9glEKZGt2MaU7vkn1H3C1IRhGkYtitSH5LnTqk0rTVQYHeqkAftyx3C8KeldPWLUprVquw3+JEjBWMJOAElZc45xi8w/e+ROr7MlFPIZFyLMW8gqqt2Q658FooTf0wDHjn2G17hiH81PvIEBw735OVACmJoUxNa6tJFkIrSS6RQ2IbEtvVipvF4xIYVFm0LEVIROKBi+U1Nxc3HFsYjyfE0JOSw+qITTVyOuIg7Y38dQVGM9YZGSMP71+w3QxcXK6JLhL6iDAClQV1VdM2kERGasHR0ZjZtOWte2c0zYjJaE5TWZq6Yjq7TVVPScGTguOsrVCmpj26i7YtupqSEugIv/Dm67x8/ALf+fMP2Gxv+PDR28TFgrnUTGdTRvdepF101JceFVcIHzmqNVVTcXZ7jmwNm4unGCl48d49HqsJ60XHZ8eCW63nZjdnpyxpOubaSf70e28z1Ya5sbzxxRe4dTqnvzhne7OjvzKY+ZiTl7/CO+894J/8/f+Tz9075Ev3Dnj/RnO17dg9vkCrJS//4q+AXeG23y/bVqWxsynzs1Ocqehd5tHjgWGd+fzdVzmYNtySA4/DwOXW88WvvclXv/QKl9/9IZ+8/z1+/70Pudl17PqB4D3Z+cKLQeBcwnUBU1XYSuCHAcgIXZrd2hqEqZGmwXtHigEZEloK2kmDriT1RIPUIDPTaUutZyhdIY2lvXUPqQ1xfQm6nB/nBrrFU5R3TKSnsS+h6zFClUCem+6akCOCiNWWpm2IbmCxjuAjksRMKxqlmSVTPL9+KKmXWUMIJUY8l/OQREmJ1FXxkuR9AAU5IXJJb1SieKd+UlYfBQyqSOhIBXqqRQFaayORY1OU3i7hheB8sWS9O2fXOcZGU2ldgmlyiVbZDj2PnjxirDyHownkiNVgTSxN9KgmxsxRSKA1om2oFLQyc3F+w/Jmy9XVlqEP+L5IrgwGKS2zqS01nITZrGY0rnjz5ReZjcfMpgdYvYfYtzMm87MiD0yJk3ZMch3t0V1MNcGOjgCJivCZF17gr31zxA8/fMQHD57y+OY9bLykSZFJ0zC59yJiuaP58Jq+6xFhx3Q/RLh1PKGZNrjlAqEzt198gfV4TudqXpqO+YW2Y+Vq1ukYP+pwPvEXP/yIWmtObc3p2ZQ3v/QCfrVm++AJ3VPHcDNhdvoW1bTmt377dzEi8StffpGbvua965bhZk18/AFnX/0GzfEt8jvvlbsRQVXXzG6foiZTlh6eXnsePRh44+w2J7MJLzWC7XbgZhe4fWvGX/31X2D74AkPv/8v+d6Dx7x/cc2m63HeE7Z9SRseNcToWa8HIgmhFQogSkxtsFYyajRCabJqSnO3l+JJEnVr0VbTzi3SFKm5loaz4xOkMihTUR/copqf4DdX4HuClLgU6ZYXiJyYyA6t51TVAUJGhEys3TU+9wQiSkom4xEpZi4XDpkCKkeacaYGKl+aPTc4nAuE3pEROKULOiRlYnYkAtpqlNGsnkk6RUHCuMHRdQO7bV8QI5/y8ek9UznjQwJXYnVlLJMtkRPKCNSoaAulLXGVfvB0u4FuMzAxLQpIbiBKQ5Y78B0ie4iO7ByzccXB1NA0BiEFV9uewXu69Y4A9KGYeV0snCkpFYeHbZkm7SVY0eV9uhOMWs2oNRzePmEyG/PWK7eYTWrm4xFNZTie1bSTI0ajQ3rZ0ecdw5AZ1p4zO6Zq50hVFxCm35JdT+o3KDymUgxrz9D3uJhLSk5VoUxPJJEoE9gk4x4kltA6M/SerECiyUkjlSZK2AnHEHqi63nx9m0SmocPP0GrjoMjRdsmoq5ZDx0XV485OKh5Xdzi/MFDFleak9Ma4SUXN2tWw57lomyJnTQJoQZ0JdGVIseIFgIjLdo2qPGoFPfesRcrc7O4oO+WZCVwMXJ1cc3i6oar9YJt1+FcSXCDMj2Dnwif2I/4shB77k2JyJTPEj7ET2ym9n+n9Fj76UHOyP3GSyhJVTXoymCbCjuZYcdzXBjKpGv/+ck7tIKmUlQ206gOqRNCJWgMXjbsRIk9t03ZyvhOoKRCJYOuLLqyuBDpesewLwJlLvnUYfB4n3AuEXUgq0RF2ewkymo4p0gMEe/D84+fBr6V9XHYbwJ9CDjnS5y0CCRVLg6xN0q7GJ43ZhaBtAJSiQKGAWIJsxAEcnAYCYcH0/0kNrHzniFGhq4jxsiAQKRM8CUGVQrDaKSoq6ZMIbIoenshMLpw0prW0o5a5kcHnB6WyVZtG6w2jNsWYytsNQXAuZ6Utgydo5oojB0jVQXCQCphBcIPyOwxlSDtIqv1FtcHQhagDdIYosiEHEhhAJFJJiBUwlbgYiR2kLIkRYM2BmmKbyJnT/Qdo7phNJ6zXC7pdltsKwv0UilCjqy2C4T03HnxkOw6PvrRe2g8x8ctu8HhY0lXk0Ii6wZhNAiPMpmqVuQuoXPGKlPkDNYilCQ6V6LnlWK72+LcCkckW8nl1Q1bkXhyfs7FYsVutykegFjeuyptis8MqLQiqSJTjT7i00BlNeO2mHulLPHKz+RIJWC/TAmRpjTpISNURpKpq5a6qqjGI3Q9pp7MSL3Ch67wishlmi8TVhfte6UCUiaEiggNggpPJIiEtaK8xpQopm9pUEajtCUJgQvltR98gGcoi73Psu8DWSSyiuX7FpQNKPsp+H7TVCQa5cz87B0UUyLup7DOhQKwliUFMClKCplWhFjkeMGHkgJbVUUKGTxZOGBApIAkkoNHiMBsOkKKEdZKfIrYwRWfj/d4BCFDDGUbJYTBWjg9Lqm1OT7bGYjCulLQNCW98/jWCZPxiLOzW1S2orYtdWWorKFq52jT4ukKO7EPmJzK+dF1OT857P2uDhEG9ooWNosdcdMz5AJEVdaSpcBTUhdT9KTsQdjiZ5aJYedKMpowSGkwNhAVOCIhDCgyZycndMPAYnHDdFIzqiVKC5KQbPoNu2HL6UkxZ99//0M2N2tOT0YIlblabHCDR2SBtBXSVCAjQkdsrVBkckxYqaiURRkLxhBDJPrCTwsh8PTygnW/Q9Sa9XbLk0fnPH16zurykvVmTT94UizbGqNN8TrlkuInjMI0Zr95EwUua4sPQqninShbKw0IVE5lK6wKyDaEjJB5f29bRu0Y27boqqKezpBS49ymgGjZT7h9UakopahUQkuHVIkkItFYAglHGXoYkyAVL6nIxecktUUojQ9lah5DKVDV83OxB3Pvd+WIXIo3mZ+HAZQeKZbXIwIfw88wHstdFWJChMjgfCl4jUQnhVFl6CFUYUj2ITIMA0M/0KpSa+XgC3w4DxDdnr8YyN7R1pa2nlFZiZBghv1GruuKf22/AfEiQ1YoZTg8mJah4zOPLKoMVXXGWk1VaeaHB4wmY148u8W4bWmqFqM1bWUx1RhbjYnBlw+f8b1nohq0GSGEKT+D5BHBI31feF6VpF8N9LsdfcxURqKsRWqHz5GQHCn0JF2TCCiTMRb6wZO9QGLI2WCMJSvBQMAFR/Q9R7MZCcXV1RU+ONppqUuy1PTBsdneMJkYXrw94/r8nPWNYD6zyJy4Xm7ZhIhIJRgl13UBOatQgnUqSQ4RA2hZtj2ysqU+7x3PSrCbxQ3r3QqsxOXAk8dP2Tw55/rpExbLG7rdlhgKMNwog5Sgc/Gu11YRpSJqQdg5kgu0jaGyqvhYhSLkEvMhtUTt7yAhyxAiBApCQheERNtOMZXFtA3VdE41npUN+bMajvK+rCVUVmFMxoqhMAhVKkM/UaFF4cYam4kh42XpA1Q2KF0CWGJKz++gGMo9Q4YUwr6GK/UbsiCd9pXmj5UM+cd30I+L2k/3+PTNVMy4PtK5gbR05QCLjGkUulZMzlpspZi2Ct85dn1P33tilzAzqMj45RVxs0aYRNVFDkcCuR7oLi/58s+/zGfePGN8eAa64r37j1guV3zy/nssrnYsPliwcpnBlYMnheYrXz3l+KTl6MU5bsh88qMVIgas8Hzu5SO++OoxZ2/9ItNbr6LVIWSJWz8lp2fFQgVyzMCKVZb88Q8WPP3oAaefg9GBJqctyXncasH1g/d4/3t/hENweARPHg9sLzqcz0xHCqNbpNqxyzv6NJT0rgRRZoQdUJUkrhMhKYbUkKOmMpormfhu6qk3j2mXH/Ob//5fYzq/xd/+O3+bmi2/+nMz5G3DkzTl3Zsl7378fX7lF/897pze47/7W/89q9WC/+p/+JtcXu34W//1P8Bqyelhi5nchrNTUrWi9xuaI800T4ifXDPKUMWKZjxn9Ood7NiShjXOb9l0kvc/epvBb0gjyeVqxT/+h79LDh6C37NwStBCkegViY7YGxKNlmQlSFoQ+7LxaKxCKYGLz+LpU9k26XK5ypzJskTRxz4gSMWg32im0xNGByPmL84xeo5RU5yI+K1hQcLnSHYZ2xhOTw6oVKaRj543j/aVU5jWnMuOIQwM15eEPqClxUpDrTKjwwn1uGEzDKx3A8PGI7OgsRUiJnZrz2rrWaw9NAqMYCQDRoKqitkyBI93nt22xweP8x7/k8C3TGm2nKfzPZ3vWHVbsggkEVGtRBlBYyXITO8GYkjopNGoQoH3PWHryCKgsmFqi2TQL26Yzce89tZrSF2jdMNyu2HT77i6eMB2s+Lh/Qv6PnDeF2mFSIYXX5hz784R7XSEqSyX51tc5zE4xo3lzXu3aaenjI9fR8qqpKMNu/LGp4v8EVUVA2nOXC08H7/9mM+oUybHxb9CSiS3w213PL3/PuvBM58KbpYDjz+4wQ+eGASviSKx3KQNq7Bg6K9IsmJQmok06HbMMETcRtHFipAVVmuklbyXPNWwolk94LXXvsRnP/t1/sXv/z7vXj7i3hdqzm7BYGo22w3vX37M8eyE/+g/+AL/+p9/i9/6e9/iP/wv/mP+0l/6Ov/rb/8eT58uuHt7gm1aqpc/gx5rev+EahQ5PpuTHi2RXWQsLa1usPMZ9XJN7teEwTCEno8+esDV8ik7OaAOLP/0//oXxO2GvL4qUlAEWViEqBnVI7QElUps/XTegoYw1nSbgcWjxOGs4YWTlo1TDEEyrBwxZaqDCUZClUoggVeGsAt064F6JKlqyfiFE6azOUd3jzCmwegD4naFJ7Ej0eVA4xMCxfhwQmU1rV4UU3ElkaMGOTtjg6fDE/s10Q8kr8lJUKsif6lHkxLMs9vsN1IBhUJrQeg9bgg8uVwjtMSMKjSxyCilQaLwe1hvFkUWqKxEavkzd1Ai+Ejne1z0rHZbQvYk4ZFWoBpJpQXGCIbgcSEgkkJmgRUSlSJhtyCJHiEcrRgQjYLlhpgG3vzC67TjMVVzwOA9V6sFm/UNq+UFT89v6BZbrroiGRRBMBpN+PqXz6jbinY6Yr0cWF33aBEwMvP6nVOmkynz258vkG/VkGIg+a5c4QKQFoTEkdg5x3vvPWU0mXJwpzQHZEfyA3EYuHlyn4sn17SVIIXIx58scd0OFwTjrNHSMuBYxRXdcM3QOYKpSAlUM5CIuOuIS5ohGlTSjBrDuUxssqPaPOGgrvnmN/5dPn74iH/+rz5kfnvOF15vcRPNMlk+unlC6Db86i9/navHF/zD//Hv8MZX3uJv/I2/zrd/721+91+/zdnJiMm4xp69iKprXL4myx1Ht6fEmx2pXzMRilbWmMmE0Fhk7EnDBuc71ruOj598wJB7Ri9M+O7b7/Cdb/8+creC4BgyJKEQarRnj1VlsOQDTaVRrULMG4TWpF1pliZVj4+wGRQpSZIXKFv8HlX2KDJBWnxI7C53GJOoRwo7HTM/uMP8bE47bTH6EGLGxaG8BonomMAnmklDO2podI9WPcpKhNXcPr6Fk5kVA9F3xGGL0YLoLVYolITRdI5Uik1fOGg5FM+i0oroM5lIymWEN+QS0lIpkCKhtC9NkBD0Q08IHikUm91qn4q7Pz8JQkgkFxgyDKn4Xta7DlNpJkdjrFG0RhJioPd94SZ2AVVnDBC7Bclty6bPJ6Y1qK6knN559Q6nZ6dUzRyk5mq9oOu2XD69z3q1YfXoGucy/bMajoovvHXGwXzE+GBCDHDxZINIAY3n7HjOS7cOGB+/RjU+RckWssD3G8gRITJCGhAVkYEhKx48WrF6+pT2+HOYRpKzI8dE7Du2N0958tEHZARHB4IHH21YnS8Y+sy4KoieLLYs05KtW+O6BaFkh4GdoStFXCVcUuxiRY6aUa3Z6MwPk6PuLqm3j/iFL3yRdnTA//HPfgehBj776hg1kWxoON9teXz5IW9+9gscjI/5B//z32W9XvKf/83/ktUu8tu//XvURnDrqEGPDuHkDrmJ+HTJ7KhCqgnx42vGKaGdpDI1o+M5WkPolji3Y9NLvv/+u+zcBn1Scb1e8b/81j+CYYvYrQiUzSKyRSlDOy5eKZU8UgkOjsakShEaxfLJin7Vc3Y0om0Mq0HjXKZbO2RlsdMRVY5UKZSgIikZbrYIMu1EU01GzA/uMJqPmN2eYdQELcd4EQldzZJEyJHsM7rSzOcztEgY8RSlFdJKTo8OEU3FUg745PHbBdEHZLYYabGqoWpaTFUzhEDnNgy7wkqzWpFjJvSB1aZnsdyhW4uqFJZQBvnSIijhHWmPVxL7+0/89BX0/08zFUNi2AXSHrb2rHMTWiJUJro998lCzhKkxlQZORIQI7FzKF28ITENJSrNDWWjMGupJoeYyQlJ2QLX3Q24bU/uixRrZBVy3zWmISFiImwG0qji7tlnkMoy1QtE8lS5494LL3Ly0ouMJmcYWRO6S7L3pHWHVAo7nYCqwTR4dqx9YpUUN17x+3/0DrcfLvjmL70Jfsvm/AewvuRQBoaQ2IaAFBG0QEVReCrbK/JuQQyhTGJzQqQEKZLEiCDHdP0NPmQCGaUMpn6FnGv85gLRdxASj/oNy13Drlf0IfOd7z/hYDnl1uiG1ZMF5w+X/Jn5EY/mN7z61stoq4hiRu8jSmWQEZ8DtVbUTUP0NXErSENF9hVZVZjRlNOXP8POeR79q2/Bds3xK3ewtSfLa7L05GcT2xQKQDQJwj7yEihGRCHRzzTOe77Ys1efSGUbVXS2pmht87MozVy4NXaElh4l/PMkxdoqtBJMRy3a1iAEQz+wPL9Gix1KXBG3K1JwMB0hlWRwPTE5hqcLrBJUOjMbGyYjjX56g+gs5kAhxJ4pliD5RLSKYDXSWIy1ZA+JRL/3ZrgcIGbSEOg6T7dxGFXvzcz7gWCKIH5CnZ6L50tb+VOBG5n8441VzGU75gKojFCi9B1y/+WEQAhVfCA2IUUm+1BifdFIWf4d+AFSxDYNthmj7Kwk8WRBCBE/uBK/HCK1UghTEulSSCQfYXDE3Y7RyRmzwxMsW7zz6DzQVBWTgxcx9aRcMjEQfUcewp6p0paLTBpCFriU6bJkmw0Pzpdswkfce/mU6bTBbx8TtxtaPJ7A0kcUAWEVcs9DEn4H3ZI4DATnSxJVUgjvyVkR1ITNsGa93uJFS5aGtrqFtGOC2yFcBz6x8p5L17EaYLfTvP/JgtVm4LbdMux2XJ6v6BYJv7ZIa/jSN7/K9OgEnyzGSKyBkCMyZ1prkEIzDJo4GHCGJCzCJNr5nKZpePr2j9gtl7xw7zajSpK4AdGBSOTgyGFg2khyNmx3Bi8yDomSFVbX1I3CWElcL8ghIpQGIVFRYkVmNGppm5aqmtADTmRMldBZMB8fYLSgFWtCTvSpsGwabZhOZ9RNi7UFtLu+uEHKJZobcgikoSe1NaqyhOTphoBfrFFK0lpNZSXTkUamhCRALamMxO3NqMVrmYnGoKRFKVOgqBRWTNpDOMl7SGYK++YacvyxC01SGDLshzHBx0Kd/9k0TCivae+JMZP2vrhEROj9+Ql57/uBjCy+NxORqUzUyzQcEBEpA0RPDgPWGiqp0dUUZVoyipgcYX9+8BErJK0piXSCVM6VF4Rdh2lajg/vMLIDk6ZH49EiMzu8TdtO0KZFCEF0y+Ln8hFpTElFk4aMxGfBkGCbNf3G8xc/+Jjj4xkv3TkmDle4zTVV3DISkWWI6DggjUAGiQ4KlT30C1K/ww+uMNpiQIcCWI9qjPOJ5WpJyAYvakb1GG0PiSGVAjUkdjFxEwZWPtL1hsfnHX+uzzl+5YTmoGFxsWa7XPB2eI/kA5/9uS9w++U7+FR8hpUVZJEIKdLqsrH0TuMHA84WxYayVOMJ06NDLh89YT10HB6MGbcaodfk0IEoaacp9LQ6Mx4Z+mAIOTMkSmS1rTBG0Y4MsdsRdgNCqRI7FspdJXJJ+bNmRFbFAiVjQsZM1YwxtqGWaySBXSpolVHTUDc1k+mMZtyShWC32uC6HZo1IkEadiSlUJO2eGcHj6dj2Q80VmGVZDY26EohjSBbiW1USRej3EE5ZrI1ZF1k7EoW/k3KGbfnpZVzVgJPnPPFR1IX9Y7c+zxyjmWwlSVKKtj7sZXWPzVYL2l+sRTSewhrIqODKml6AZKApMq0HqEKnLUWiBzLHS8tMgtidhQTryvJZ22LrsdIOyFLTc6C4AJh8GQXkDHTGl2+Tk6kISJiJnUduTEcTG8jpMHK0kypNHB0cMR4doSt5ihhi0IoRXC+2Aaq+vkdFPEMKbFLinXUvPvhYybXHa+9/gIiDQybh4hhzVgmhhjpQ0KqjLAS5SVKZkS/Ivdr/DAQ9qgG6T1CeyI1XoxYbha4kHFihFaKpn0JxIjQbxicI/vEjR/oXM+2V+xi5gfvPWV2ojipOjY3Gy4er1DuEybNkrNX7vCSuoPQI2LeolVCKEHIkUpJbFWRo8H1kJ0Fb0mqQjUtB6cn9C7w5E+/jw4Dd145oxkHkEuEKqqX5AdUDhy0Cp81w2CI+2rF6GrfTBlEjsT1dWnKpS2ewiBpbI0eSap6gq0sMhfsiXUJWzdMxsdUosOKjiElQk60VY1VkvnhAVU9LrK7fmB5folmicIQh648l9MRQkmcHwjRsUsLtAQrYdwaRo0m2BXCG9RIIUQqbNNM8T8ZSZCGWlm0ss/9Y/3e85VTJsVckmlTIFNkicRn3uOMEumZKIuc8l5V9Om9Us8en76Zcolu6chKlojKvT5LVSVjPvZFLeRtYTpJY6hHEqkCbB2hd2hVzJ0+dNAFUrfFtJrp4Zz66DZqehfn17h+x+p6zeZmTVw7lEvMW4tWAWQol2iI9BdrvLK8+fLXmM5nrO7coGKPjWsmh68zOXiDnHpS7Nhdfo/YLVHbMaaZUh2ekPWIbCb0LLnygetsOQ+Gv/+P/oCToxmf/+IpNlxx8+G3ENeaO3ZEN3Qsug4pI7KSiCjRBFjcJ682BPesmcqQIiIGopzj5QHr7X28G0AHquYF6vnXICXizcd03YbBJf58cYENkcX/S9ubPNmWXfd53+5Of7u8mS/z5WurQxWqABQIsBFBSTRDDIuwaJkMMxxhe+A/wlP/KQ6H5/bIYVmUghLNECGCBAGiK1QV6tWren22tz392Y0HJwsErXAEJr7zjOzuuXuvtX7r+ypFuw78b3/6iHffVfzhwbtcf3rOk49XfPbBd4hNzP/4P/0PvPbWQy6qKZt9SZqMxUDjB3KjmaQFZZfSVgJXZoSmw6mMaH6Lh1//dX7+N3/Bz//3/4Xi7be4//Wv0J7/lH5/idIDygVC02GCY55qWgml9aMsmRvkrlLEeQzB0bnuJlLwRTEVUGK8wBsdoZSiC44gPDp4IpOQpwu0rtG6pG7GaN1yYsgTzenhDIvhVROodxWbV3uEs0jvEEmBjBLmR4ej5O2yph96tufVTZEW8WARc3tmoClRmeTonUOiWGG9GPHMtQWtkSZBxClxlCCFx0vP1jcjbKLvRpR131OVPfWup4glUSR/Mf4V3sJNREsxHtb6pqMo1S8VUyHQtT19N0737DAewDoaF2m9HS+PTt0UU9KgtEclA8o6XGcRRCgh8HLM0Pu+IThPNp2RTBaoZDkKPfuKtmlp9hW26gjdQBEZoptY19B6+qrHVSXNtWfy1gGnt97hcFqPqH9fo3VCPn14A8MYcN0G11zBYBBBI7McqczYWfdQu0DlJXuZcv7ZBd0HZ3w7+yZFfkS3+4Rht2ehCoRwXHUlOvTo3Izkt14guw2h9Ax1xdDedFeRSNnhnaFXh2yqDZdXl4hoho4KisXb6DTF1XtCW9EPgYumRZQbrsrAdh/zNz9+yTSXfHv5Nm3b8OLxir675Cf2Cd/6p1/nv/iDP6JxCVUTSGJFkUuG4FAEUhNjMTS1ZqgTQh3jSCEOzE9OiJTkb//Nv8Unhrfff5uhuqDdfI7QPdrcXBSGmjuLBJFJnpUttfXUQRDphDROKQ5y4sKw9yVD3YGMAYnsAomQxAsyDvc1AAAgAElEQVRDMZkQx1O0sEhtib1DIzmenxLHEMeCtmvY7XYcTjNuzQqOlrfI8innTUQ7WHafvyLcxFxklKHyOXmakuZT+s2apu3YbDZ4AlmaMY0NDw5iZFVBFciWE5JpxhdkH99brA/0WY5WMUYno8QZR0s3wiEGN14Y3TCid7lx+7kxDP2Fzw85FmGjF3Bc+g1fLFP+0msYBtq2H+E3Ltw8S2NkzDsIg8B90dgQelyOjsfLs+96ghon5EiLl5bQt7iuIc5TsiRGp0tEFGNdQ98P1GVFX7f4diAREpXEI5JaBtpqQHSWdrVGTo44PfoSbjFCCHTokTjS4h5Sp4TQ421NX75EOImwESqfIRMDIsIjaT1ULrAXCdWu5aP/8CPeffc+p3em9PVLmtUjMp+x1JrruqIZanSqCcKgvUeHFvZnuGrL0IzCXucGRNchBo/VS+puz/nVY1Ax6AKTvkWS3cb1jqHaMPQOtONps+e87tiXMR9Xa548WfE73OJhSDl/suLi/JJHPznn9O4xf/Lf/wGohLIxCKGYTdQYJ/SWudZoFVO1EV0dCHWMtx4bOdKDJcs7p3zyr/4vXj75nNNvvItMJPXFB4S+Q5uAsAO2rThMBcss58xa9kFRW0ZyV5KS5DHTWxOa1SVlv7lJm0SEPsBNHE4oTRQvRqWHGMYCwA0sJkuKfEEUnQE11+sNsRLcW06YTKYcLY/Z9jGbPrA5u8S2NXIY90vU9IhoMmF2fDwqKKqWcl9Su440TkmM4bVlQhpLaHeYPGJyskB5D0gG5wg24JJoFPSq0RGnJNjg6YIbYUbB/aIwrvajnHZhjlDSIIUaG9o3kmohBEYZtIwQShCZ6O+pT9ykizpLsIEgHY6ADhoTRWNDfAijKFqNUWqpDHEiSZVCdB126G6ikgInW+g9oW/QsSKbzDHZASI6wPkO53qasqatK1w9ElKnSYxWA0IODP1Y8PfbHb2SHM0fkGZTbs0rhB+QviXJjojTW4Qw4INlqK/GQruLR11JNhnPHxlhaamdpyRi4yOe/t0j8izl7t05kdjTrH6CrDWHJqMdOsquRZmAyjTCaiIVEPUFodox1A1D2+GsxQw9UnY4UdDKBZfrp7Rdj4gdeXHE9PBdpAq4aoXrOroh8Lwq0V6xLTXtHv7v6ye89prndw9eY/tyw/PHK55+vEariD/57/45t++eUPYxXdeSpeMFvw2WVEvyOKGxhq4DV8eE1uJ0hprMOXntAU9+9jMe/dm/Z/LWfd795pfoVo/oqzUmdmgfGPYlebA8OEzZa7i60TT0CNI4J4oipscT8D37boX3giAThAfVefI4QyQpeXaAMTGKHq16Umcp8gnHi7sYs8GYNbv9nq7ruXcwYZKl3D4+xRLzqglU+z3rl5sx6u8GRLZAJjnz5RIdGerrhm7oWF+WaKWITcydWczxNIKhRsSC6ckCbdQoZ75ZvwgiGfdZb0BV4HDC3cjsHUMfbtyyFh8G5Oh7AXcTlyXceAvHcyPcSO494xn0nxIA/r9fv3IxpbQkzs0vaH5+GH/g6SJHxxppHa5yVA0IIxGRRDqB95K6hcHB4uSEosioVUbXO6bLKbZpsXXFdn+JfhXwvcX1A761yKBIZzPMYNFZxy3tKbRnX1q6PvDOl99ivlzw2YvP8c8lm4sN80jy2iwmMg3ZwtIOF7TNiu987+dsrzYcqzmHyyXfXC6QSQVpyUysuJs1vPt6wmGyYL2x5EVGyRodKsJkRsqCo+QuH398yfVqRdW8oq23hMFjXKAJhkGlROkM50tctyMEOy5s6nJcyHM1wjuSxGASi47PsGXH7rOGfJaQLN/kXrEk0wXfkyklml078OmTZ/zpv/lTVpcrjM7AtcQ4kmSB8yl/9q/+T7pyw+98/YjzVceHTxu6raWXHcmD6Zgf/8EW6hVaBnzoWG1f0ucTil/7A4bhgusnn9Lu1njrmT74daZZwT86VHTlBU8f/4A6n1POT9i9amnXA9940DGJer774+d4r3nr7fdoOs/LVUvftXRtwywzpJFiU/Z01iFlIEkyjo/u4oeOoVwTR4441cxjgQxw6/QWJopoK0ZSk3MoGYjyCIPBEFDZFJWknC4STKQpWTK4gYktRmZh8NTW8vSqIh0gagXFNibOI/LIIFWgRSEaj/QdCIO1gs2+pest5b5BCsF8miKDhiRCSovRPSrWKCBLIiI9TmCllMSRYRgG4kjgVcDLQBz/vfBNINBGoozE49BBkdrRGm8SQ29rnBvoKzuef0aCF4igGOy4VD2ZzJjOFwwiwgaJ1BpnLa6rsKFjt7/A2xubd9cjPERpjjIRMu7Ig+O2yrCDo656Dg4OOTw6xil4efGUeleDcxznMXEqcBNPCD3W7nh1fsarF8+ZyoxUp9yLM9LCgx5Q3jI1PWEm8fcnNI2n78HknsbX+ChF5pri9JhyY1mvVmyamt2W8YPB9fRovEpJJkfEjWLgmuB7rC2ZUaKjmuD2uGbPrJiTFJoo3hKo2LysiGPB7PQuk/mSE53wSI1d/1Xj2HUVf/W9v0USkCohVj107QjSMQU//+BnvHh5xq0ZHE0WfPKipm08w25ATjTZMsa86Aj71eh8Mpq6K3FJSv72V2n6iotXL2ibLfW+IZ3d5c7JEb+dWArZ05x9TDcMLN+fUzWBi8uB0xm8vgx89uKCi9WWd37tqyTGcL62dN1Atd8SG8liEtH0jrp1KOVJheH0S++PEdR6j1IDeWEgE9zKFIvDIxbLW9hBU9tx50+FQJzHCAxxSJBxhs7mzGYZk4mhE1OGLiVx6d/Lg4PnbF1jYk80BGQiMdGImBZKkwjF4B2q7McJjezoBkvd9fT9CAZITIyKJMEZtHYMLXwROtJKoZWm7yydtWRpSqRHmacLDocnTf6htFcpidGKQTikEqRJDBKSPMaFYczht+PMCy3HCyYK76FqHSIzTOaHeGmwRBgTMZn1+L7G4yjra0xvCNbSti24MF4osynSdBhrWSwSRPBUBzkmirl77yFxNuXV5Qv6tqdrWpZpNDYvUgvKMtgt5X7Lo4+eEqGYqpzlsePAKNAjkKZQHTL1PLiT07YR1aFnecvQ+AqrJKRT0qMjfJFQ7a9ZdxG7vcR2gdD1NA6cjNHZnGzWsboq6XwDvkb5CqkqpKig3xPnirSIyLOOONlQXdc0e8fB8pCkKDhSCa2METqi6mDbd/zow495cfaKuh6ITQpDQyoExhScXVzz/R9+QBF5vvLWAZ+ft2wrT7+3CGdJT3KshbBfI4IbCYG2pWz2mLv3ydMpm92KYVWx29SoKOf2m++yjAK3Y0u3eka/v+DwnTk1EWdnPZHwfPUUyqrk0dMzTu/d5tZX3mS1d5Stoyn3eOdYTg0B2JbjhD7WnuXhPZaLI+hqhK1Jc4VSCfNoThwnHJ/eIQRNPYxeNOU9JtHoKCEKY2NQF3OSIuNwYnCxoNOK1I0xpJvVYFZlh6o9ifVkISZrYoRSJFKPEIkgEK1FDoGgIqwI7LoB5x12sCQmxmiFNmps/JESgkBLibx5hpTSN5fIcXfKhZGUiRRoJf7BZErKkSypkhiZRCg9EkGzNMFEBmEdzjuaYdzdFUYh/Eh2bXrQXnB6vCRJUgaZYF0gzXO86wlDS9vv2JdjI9U7h7cOgSIuZmhnUX3HTHoi5WnqnqH33Ln7gKKYsdqvCPsN9a4i1ZLDNEKrHpN6rKuwtuLRZ89pyoq5KsiLgrtZjtAD6J6YhqkZOL0VU0QTyqUjiiIGUeNDT4gL9LygMIcMz3Zcrfds9hH7LYR2AGlonMSphHR6QtNe0Lotzjb0ShFUhdIJvtvDYJktDkkyj45X9HXP6lnHpIjIb9/lIJsQy3icyqI4r3rss1eI73yHaldhTAa2w3iL0QnWSb77V9/Bdg3vvXnAprQ8vezoKo9VA9Fhgsolot0Tyh1aB4R0lO0OPymYfPWb9H5H+eIp9X6LtQPz03c4jWP+WdQh2g3t5SNqlbHTU1ZrS1k63j0JFJHjw0+f4b3km//0W3RD4Grr6NqGtq6YFYY01uzrgW7wREqSJTPuvPke0llEsyeOLUkeMY8n4HNund4ljjO6TtNbENaiJMSTBBMiDB6ZLVBJxtE0RhtN6+cMzpK5nC+oZJ0beHFdkfSBKJUkswjjI2I17mYlQiEGjyx7AhrrBGXb0Q+Wtu0QAZIkQgRB8BHBa7yTXxDRiLRBEGibcdKZJSlGaZTkF/xro3/lEulXL6akFsSpRk0iZB7hmjHuU8wylFH0uz3BOtrOoTODmSU3y8WSrofBCqbLJYuDKbkwDN4zvdWxvlhz8bSibNaEqwY6hbfgOocIkqSY4PyA7hV3isDDKVzXnsZKvvYbb5NO5/zdx8/ZbWoun2+5M8m5dfeY9KDFYmmHNfvmFd//2VPOnq15e1Lx8G7P19+/jwgRyB2FqJFJR383ZlnMWFcBFRlqShQtFFPi9Jjl8i3Ey4TdoKjbiLYFgidygQ6Nk+NCZNcNN5f6mwVQWaOUIvgOQiCONDp2yOiKoa7ornekR1/G3L3L7XzOxMVoFeFQVK2lfXXO1eUrJtmMSTZD9h1R8BhTYF3E3/zlf6CIBv6zP/kmH31e8aNPGobKM8iBItHEywRpS2h36MmUwMBmf06fpGTvfIvrD/8tm6c/pOsaUIblybvcvX3KH3/tkPXlI/6se0p15yH7t97n8oM95dOa3/6NDUfpno8fn2Ot4OvvvsG2trjHa6pyT7nbcnKQME0NjV3RVjeRzjTj7r236HaXXNdnpBFkqSIVmkhKju4cIUzCo0+2tM4ifTfG3RJDIiWxEui8wCQpt2YRxhg0BucdPgwMtqezHZvrLatty4xAZiXdvkZLT54mCBVIhcJ3gVB3BBNhg2K1qqjageAsUaRvpkYaLWK0skQ6YrBjTCGNNFGkcUGjlWKSp1jXE8ceJ8ddOWPU3z9AApRWKC2xwqFRpC4mTmOiNCKUHf7mEooAo+Ib+acal3g7h9Qp2WSOHdc7ibOIvu9YXdQ4eqp6hbdupIv1PbiAjjNU7JGDJlaOuwVYHyg7z+LoHofHr3G+3nCxOmO/qhEuMDtaokQ0LlaHHut2XFxf8fPHLzlJ58yTnJPTQ5JIgOhReAptUYVE3c7pBugtmDTQ+RZvUiQpaXyCDgN7B/vukqrkRhJsGYLCqZgonxNlFhvGqFBnawZqlK7B1fiuIjWQpxIdVfjgKc83hKMZB6+/Tj6ZcagiEmUISrPtHENf4376AVkcc3xwglYBESq0UAiV8OTJEz788Gf8V//saxT5hI+eNdghYEtLlAfSiUaJHqodapKhlaHtG0JsSB++ybA6Y/XTj6jbhn3b8/rJkqN7X+Z37mTcjj0//WnL3g0sHn6VsoTJo5p3jjt+417Dv/uLjmq74b233+LgYMFHn2/YlzXXF2dMUsX9o4Jnl1s+f7XCaI0K8PDB20zynIuPv4OgZZYbjDAkpEyOTyiO73H+qqLajlRRJQIyj1ACMq1QUYbOpswnKbNMU4ucIQ0UIcN7S2tb2qbletMSD54CT9ZEZJkmygqU1MRijF2HZkA4gTM9TdezadoRlhA8eZoSmxG/bJWnT2667c6hlSIyiqYe6FrLNB+fJyXHqZUF4jj6T4opZcbnR3pBksSjHyfL6PsaO9S/iFnrNEJqiQhjbKrpPUmiSCeLcYEaSZzFWG9ZXw30bUvTbujEiOa3/RjxlfKmgWg0+IHbBSQqsD9w6LjgzsO3qDvL2eqCpmppypZoPiPKC5KDEbluXUlZbfjk81dk0nCSzojTmMUiBzRCCTLVo2PP7eOMwTrqDvKJofMNXipEPCE2R/i+oPk57PtAVd0UU87SObAyQiUT4mLAq8/pvSX4lijUCFUjxAh+MmLCJDOkaY+J9+w2K4IMLB98mXg2Y6Ei1tIglKF1sK167OPPea4FxwcnJDpBi5pICKRK2Wz2/PAH3+c3v/aAN964z9nacbHqGCqHkZ4sU3RVgHo77skWGdb3lF2JPjohmxxx+aN/R7W7Yl21zJYLHtx9m/cOUr51nPDZ4x/w8pXi4P67NOmc/OOKXAz83tslz5+95MXzl9y7fcT7X3mHJ6/2XKwa1lcXeNvz8DinHyw/eXyGRJAQODq6zRuvv8vm2U9pNluKVBFFkrSIibKCxd0H7EvL+asK5y0SSxRrkIJMK7QymGJCmiUcZJoh0jQ6wQeLD5bOjpP168uS4Aem0iGUx3YtJk4wJsaKMXLkW4cQHhKHE559NYJIBB4tFQiPVBEKTawNBIkPo7ZjbC5EJFFx871HulkIgSDGCdIvV1NSSkykifKYqEhvPnshiZMRLOC7UdLuHCoyGKVHHHuQDBacE8TZjLwocELjCeRTS13u2W1aOlshaotwkuAFwTokkiid4MOAjjWLOHCYQtV7ei84vf86UTrh2eU1TdOxv66YJwmzgwUmsyPOy9f0w44nL8/ZrvbczQ5YLix37t5CMBCEIhI9Qg3cWhgmaUHTB5AKKzpcsIQoR5s5eXEbdxmzHTT7KqLcMzZsI0sbJE4mJMUSuSlHB6TrGKwkyBqlU/xQIWygSDVRGpBmOxYe65LsnQfoW0fMk5zUjYJYKyTXdU/Z1uzXF8yKOYvJAtH2RM4ipWGw8NMf/4gsgm/+81/j2XnLo+cdQx2wypHelphCI7oKmj1mXiCkp+pKXJaSv/ku5eMfcP3sjH1bE4Ti9jsPOV0u+fadlGb3io8+bmgXJzSnb3L1tGV/2fGttyoOooqL83Ocg1//xvtUrefT5zv2uy27zYo7hxnzPOKDz87p9jWR1hTFlC996ev0u3OuH3+fLBZkeUSSRxgpmZ/eRZicp0+2dHZA+BatBKQxiZIkUqDyKTrOOMgNWmvKMMUFzzQMOG/pbcd2vWW9b5iKQOolfZOgRCDJY5CBWCiChdD3o0svSPZlQzsM4IfxjIlG1QBeEpwcieM30dnoplDate0IjplEBBRaj+JnF/5/Kqams5S3vnxMNE2JJsnI2g8QTXKs87x63IOzJAtPMZtwcLykbxxD52gnNb53vNpuWHcVURZjfaDqLEoETu8coswEqVLOVzuafYuvO0Jw+Egiw0i9arziotccP3yd+eEJd+69QxRlfK2NuSi2XGye8bwauPrbJ3xdz/nG8RIY0DrlK199nXunNUdhwiKPWV+tSKqBtKiRSU6a5JycPGR+oDgqdwhlWE7eGaEV+n1CSPFhznvbA2p5l+9uvs/LTY8PisFLeluPNCS3Q4YWGKNdznvqbo83njhOcErSWInqDK7McT3YzmHiQ/KDU05uxcy9pzhYkTRrqk2Ds5Z2sASR0QlJ5sFJy//x3e+zuH3CH/23f0xTdfzrDzZcvGzYb2vuP8y5+949Pru0rJ5cYU1Dfhpz+t5/iVCaRz97irYNi75ks31KE8CbcZLy6md/SfWJ4X/+25qm2fPp+QuGJzX9z69Z9p5DF/jwhx3PMsk/+Rffpungr374HBkG5pOIN18/5fj4DZ49veTycofJUhZxwVfffJ8oUtTyCuyGNIWTWzNObs+ZTZZEJuPHL0t2jUXoAw4mijfvxAx+oOkbvNQEpXF+NGyYeotRkuN8STSZsrx7TN/vaaortus55a7Duh2entUl1HVgNi9IJprJ20esLjacP7+k3A/0TiC9INaawXlkAPxIftLC4IRF3oAZtI7JTIRWavT/aEUWCaSKkGoxZtEF5HH8SweZoCgS5rMMr7lxUcVIPVIdvasRwo4dUCXJpzMAbO+x+UCfTwhKcL3bjIv5UozvCR+YTCZjrEnnlF3LriwJ/Uj5G/cXQYpRgFg6TZIU3D6+TZYfkCSHHE5iMlPyuF1R1R0/e7piMun5yuFYeAQ0h4dLvvQ25KQkMhrFqtUOY1tQCh2Nz5BU09GxZQfS9BATZbjZEcFDHHKOleX9d1J+bs94+XGFdRBIaYeefigR/RVyWOHcwGADzgnKtmRdX2MSxXJ5SCdj+l5R1OPft616ssWEvDhgWmTMC8F0XpMv1lxd73Ddnl3f00UZPrpNCky059H1FdWHn3D3rTd4+PoDnm969lcdl1ctRW5YPlywc5JPP6mo+pb41sDR/TfJpre53jawPiMfKtpyx84HeqVwScyr8+fs1jv0j7fMQ8vjqytqKWleduRSccdD99Lx07Xl5P6bHH/p13j8+Y5PPmlYZpLTkwlf/cot2qbh6vIamaVMFgu+cvshy/kBIW5w9pq88Bidcu/eXZI4I09nnJWeT15alMuJ8gkPDg2RgW5oxqmQMjdEMElMjyxr8miKiBPygyOEgq5d03cDu4MZIXQEarxTrFaOWzoiTVOWh4a+7bg8P6fvLVQdLoydS3ezl/gFq1MKg5IOowNGj/ti3jnc4CiSmDyOiSM1ktdMNMaVYsMkTf9epgOkacR0muJ1SsDTTfUYsTURVRMYbIWOR21HXkzQJhp3sKynizMirVjttjd0LMngPIPzo6MpipG6wDlYlyV+GPdAUYKg5ChNForGa4IyHJ7eI04m5PkpUdShiDgXe8p+x5PrhhcXFe9Nj5gKR0CSZjlvvfUQ7RWFSDGRoa1K9NAjtUNGOZHWzOd3cc5T9C0mKUjMAb44wieWOGTEVvPltwyTzPD8px297RlcSjNAP1SEfo3qLwi2wTqL6zp011D1W5xwzBcLfJyzHiR9ZYh9TFNmSA1RNCXNCmaFYDrtyRdr6m6L60uaweIkyPgWcSxZGsHKtvzlx58SKc2//KN/wbayfOczy+dnlv2m4e23C7LphCdPW+p9TXQ4kM9vcXj3fQbb8/mTS9KhZmJb6r5hh8AmMbu25qMf/jWlalnLklfbLVdVRfdyQOQF9/yI1/74gx6VpPznf/xHXF23/MePGyYRLKYRb772JkrD+dkFtmyZzGdM8zmv3XkNzADRFXHaQA+3T2+TFzlFuqCxgkfnAziNTpccTRSLqRoLJO9AmRuKrMLIgKxWJCohziYkkylxltF1G4ah5WhWYO2AZw8S1ivPZKpIk5zppCAUsL5e0XcdTd0TpEALSZBhFENzw/liVI94N0AArUbPUqQipBA41yAkaCkwenx+fHDERv2Dvd00jbl965C4SInzlChS44Q4TggEynKDCJ5IKdI0YzJb4AaPs4E+bgjWsW9LOt9hknhEuDuPlIHFfI5SGVLGbOuarhspzQRPuHF9SqHog2RvFcXimGU2ZzI7RauY23PFPmrYVYJVZ9k+PuOej3k4mYzobRlx//4dmmXHVGSkkaGpK3Rv0VEHeox55fmSOJVkfQtCksa3EICTtwlEEDIePohxasr+iWDdl/ROo/oI5zqC6zD2Cmn3o7h+6BkQbOsNstXMZhMGq9hZhWk1eZnS99C3HqWm5MWCWWHIvGey2LLvNoSzPb0b2DYDQ0hopGTiA5myfP/JMybLJb/3+79H3zu+98xyfdGxWTXcOtIcvr7g+d6zvSgJWUsRS07e+AZCGZ4+XaFdx8w2vCqv2HjBYCIQgU9//hMulUTKFV3b8PnqmmG2YThacxzgMMCrRwPrWPDr/+R3aQfB9z7boYVjUWhOb58wm93n+nrNfleSTCcs0wlfevA2cazx8Rphd+QTwfLogMOTQ/J0htYJn1z1lJ1H6TnTheT0yIxNBtfdKAcUPozrILrbowfJLJ2j45R8Mce5lr7fUR1OaKqOQEWgZ7+DtnWcpilpLImOp1S7PZvVirYdsGNinEhJrP9iKisBhRQarQaMDsTRGJG1wyhlX0zzsdGgBAE5agWMRmo5NgN/xdevXEwlieHoaEo0TYgmydgbFwFMStdb1olGOJhmMJsnHB9MqBtH2ziaoLDtQNm2tENLzviLl61jGicURUoQKT5kWFfTWYm4wX1KbRDBg/NYNLXTJNMjlif3KSbHaBlxNJ1jB4+OE/b7gbOLPSfXa3aba0zUI0Tg6GjBJMvJmoRUQrkv8UODZjcucyYZSZyjTIYKEIRCiYIgIkgOUEhiqZkvCo4PHXE0SmF9GGMkg+1xbkQ/C+wvoIvgGYYOOSiklARl6NHgJLYTuEHgBoWUKSYqSCJPEjpM3KJMezPd8jih6L3AD45JpokTwZOLK7bS8P4/+gqbVcuff/8n7NaSvrXo1DA9ntKfX7M9rwnCYjLF5Og+w2BZX70g7a7I21eEbo9F3WBWPdXVUwZn+WF7zuA81wP4vcVvaopMo2LJee1Zpwm/9RsnVD28WD0mVZb5sWAxz7n/YMnlas9wtSPOUrRIuHvrFKEtT7dP0GYgn2RMZzMOlofMZ7fQJqN91rJvHcs0o5jEHJ/kDENPWRmsjnEmout6nLXItkXiiIwkSyMOljOGDuqoJFKGPLXULfRDw6ocGHqNlglxHBMnMW3Vo4TEWehaT9ACKeQvUMfOMeKb+WJBfsRHx5HGSIm66Q5qJYjUGP+KEz2KksMoRP3iJcT4dUkcgRH4IBlcQEgFQhEZjbWa1AQirZimKQFBpyxWGyJlCDjqbhT7CSnoBo9EkMYJgohATMDSO3EjpvQ3uFKBYIRm9F4Tq5xscos4mqB1Thp3qOAxpiJIx6rcYBG0TYUxAq0DSZKwXB4QOY3yCucsQ9sjRYU0BhFlKDlCRZTscKpHyxiICDIGMV4U0lRwOE94kSqCtzivcagbnGkLrkX4blwc9R6Lox86mq5GCEESx1RC472i78bf0/aS4DTGJBijMNpioh4TdQh6gusZxA0GdnAoAyY3VK7nxfWG9++fcGuS8/jyBefbgaqyJIknnSfst479Zpx4qMSTz6YUi0Oql09xbUPWXhKahjaMgBavNXW1o1/v+Lx5STZUPG8ErdJ0feAw0dwrDFXlqULgwdfucHB6yg8/LrlYdRykkiQ2nNw+YL3Z8erqGhVHFFPFydExtw+POa8+pgkNSRaRxDHT+SFJUpBlS87aDftmwyyJiaOI+SIhiZdwByYAACAASURBVARNY8ZdPRPjnWewDu0qcMNIpTSKPEuRRhKphiHSGBkxuJZ+kLTWMQxh3NuTMWlqfiEU9eGGEibG7rf7gtQ87s3fTFhHLoAUEmM0Qxdw3o1Exi+kj4JxF1OOh5hR//B40lqNvkIjRoFuNAquhdRYazBaE6tApGCSppgopu1HQagOI12y7luUG3d3ezuS+YoowUhDIMK7gHXyphgMI7VUqpFWGgQ2aCwRaXFIkkzQJkeiIGnZxgNSN5RtjatbqroiTjRKO6SUHBzMkU5inEFIT9+2EBqUt0iTIIXBmAylAkoIpI7H9ISIR6WGkBgJi0lMVUQIRom49YbBBbqhxbsW4VuCd+MCtnPjZHtowQlMFNMpQx8Uehgr1aETIxZZRmhtMNphzICJO6TswQ04GRiEpHajW1AXhmAEr9ZbTg9mfOm11/ng0TWvXlyzKz1dY4kyQ1zEVK9K2toiY088SZgub7G6vqTZlMTdGjmU9M7ToXBKEdzA5vIFqt9Ce8FFB5tBYAeBzhPuTCOcEpztLPOTE9549w5X5TkvVhseHsA0kRwcToljxdnVNUFJ8knBcn7A/dv32PVnbLsNUSyQecxktqCYzsizI3w9UL44w0jNPM0ppoaDZUTbNiMm34xEvWEYUK4fcdsqQmlJmsRkRUakW6wFLQzWWto+MDhH3Tu81ygRoc24c7zf7BkYcM6PgnolbzQBN8/PDSgiyEAIDkJAilHwrYS6KbjsDVJc/qLB530YZcS/9PwYrUc/YJ4QpQlpajCRIgiD856uHV1duYEsjZmlGb0ZlTgGiRvsOK3pLKnyIyjMBhIdEccJQsQEYlzoGNzYBIcRhvEFsckj6b1GxzOyyS2iaIqUmjzO8Q6kiWgaS7WtmZUVTVOi1Ujum04npElKZCMMMLQtwfQI6jGarEcIgZBjtAsEknHaEHQ27uAKySSPOJo7jBrBBNZFDE4y2B7vOhTdeIcLAec8iFG43PUN2ozAiwqFdxLdge0FtpNIovEM0mGM8EU92nTgBry39CIgbYDeM4klOjZclxVdnPKbr92jrCw/ff6C7R6a2iK0JJ2n9OuK/XYgKIeJBcXBEudg+2pPMuxJ+2tc39CiCHL0Ae5WF/S251H5lHZwvGzA7Xps1VPkmmWiuC4dOo54+/X3MFby8gdXFMZzlAumk4zbp3PKpmG1K4mzlISIeyd3UNpzVn2EMpa0SCmmM6bzQ7LsAKlTuvNXVF3HIsnIMsPh4eivaroGrwxOGeww4J1D9i3Se5QSRJGhKHKcE9i+I1KaLMnoeslgW3ZNhx0UUoyfU3GiGTo7Nhp8wN5UU1LIUSPwxfkDY6T25gwyWo2y5cHiAySxQUqJFACj91NrjTYKJX91nN+vXExNipQ3H5yMPg/hcF1PcBYvJBFwejwhVnAyN0yyCYvpjKvIsokseZQxtJbzp88Z2o7ddUkIgsEqormHQ4OUDUoE3ni4wIcFm41CG8PD177Eelfz4adPsX1DP7Rs94541ZEmJWlsENqSJ563556VhedTxatHn/OvX55xcCApJpo3vvI1stMJ/bqiW2/5+IOPmUwiTk6nJO1APOx5frZlV4JxEHBsPvkBVeM4O3ccpAn35jkvPrpi/XiNLV+M/xBn6fuWJy+uwAlEUiC6ADTjB4iHfl0S6p6+Gpdh89ltvKsZVj8ZiT0hQNnBTvLo078hGVbU24BvUqQVML+PeO230NuPSbYf8d/81/+Y3/jmG/z5zwquypS/+GtHXwUWrsC6mLNmJMQlU8Xt3KHTnkfPNftty7Of/wVHt4749u//Gp/87O/4zr//Ljt5iI3vIdpzlC2ZunFR8Pm2wt50b0NVElbXPJKKp1KMFC4l+eDZ/4pQms4Jgoz4vC44v7T89MOK/XbF0HV843d+k8lkwou//TvapqSSJbdO7/Obv/PHqDhCxYaLs0/Zr664f0/xupxw9+QBQ5A82rbIDpI2ZX50yPRgSRdprIR6+5K+66l2EZcvej558tdI2aF0TTE7IivmHN8+QCeKt6RAaUU6y/B4Bt8zX8wovgTb2lH2jn3bUA8D5bW98Y60xLonNTUajxaM0kEdUFhkkCRmFB6mybjIm6Ypdmjou/qmIXBzoAhBnqYUaYILA9aF0X2BQCjFNE1IDExigVGKPM2wHvbS4kzAG0e531DWNeLmULUOtNJMFgYhLFK0zFJNfntJ18cMtmUxP0bpmBeXF9i+Yxhq2h729RgLUaoZUesaDpNA4gI6U2BbPvrBj0e8diGZHNzi8PAI3w2EYWD76gXYntnhBB1DJDravmNf7ZAuIEKglS/o6dlsHATJ8SSnLnv2j6/oV0/QevxbeNdwfnVF51qszpFpQCiDcO5GZ9BRPruiLQNDK5nPpuh0Sn392dg5dAF7oBG1pPSXvGyv2G9KXJUiW4USOer9f4yRPcnF93j7tTv84e//Hq/2Ca/2CWcXklfnDtUYZi7hs72gzQQmVsxTx8PU8XItOV8Zzl6+ZNL0vPvabdyQ8+d/8UOuOsHenCCGEtWvOAx7FqLm+eU1+23Jruux3tN/+hmvhOKZiTHCEUlH9qNPiKc5Mp2M/6enc66iiJcXHjvU1NuS0wf3+cavv8Hm8RM+/+AzGlUhY807v/XtkUiWJrRtybPNiHB/742MxfSAJM65bno2vSMaDJGJOJgc4pVkUBLX77F9Rd9F+EZw9clTAgNK12gTk08OSfOMWXKEEKODxCQxUkmavkbFcHpyQj84ytZS2YGq62krz9APuNARG0ckGkaNj0JLSaIFyktkkEgpEVLcONkEeV4Agb6vcUP/DxgUaRxRZNn4ngkWhgEQCKnJjcZPclIjSIwgizOUitgJizWBSMX0XcNufT12SoLD3eyDpLMx5iVFj1KKu7cPsLanbTVZPmMyOeByvWZblnjXYp2kbgNBOCLTE8KAUI5J5DnNYV0JKi949ugzzo1iOhUkWcby9oOxSdBZutUl+7MrikVOksUYMRCEZ7uv8S4gHQzikk5+QFl56jpwWGREUrL77Ir6Yo0SAq0UvW3Zl1s+e/6KrgeVL5HmDCkaLBLbOdZPLgheUm89+cEBx9Nj2v0Z7fpz+sHjkxTRBGzZ8So8ZrWq8XWG7GMip9Cvfx1165Tk8vscmDV/+C9/FxVPeXSVYWvD3/3c0qwly5BwUUuqfUBqSZZI7meOdRf4dG3wYY/XH3L/+ID3HjzkP373CU/PXnKtTui0RLfnJK7hrtiwLbd878U1dT/QWot/8RIhBGuTEAmIpSXKEoq/+iEySpBJxtX5hPo65XIFSgvKzZ4sS/jtb32Tfrfn8w+/yyA7etlx//WvsTg8RScJAc/Z6jnO97zzWkKa5Cwmh+x7y4vOYnqD9orZ7BAVRQxajtPzZs1gJb4zbF6ssU9foVSDVJ58eoRJCpbLGVKOjTplxnPC4bDBs5hNmWUpdQ+996xtjx0CfT1SLUOwRLq9ad7dFNmRQWLxrkVKhdYaJSVaj5JeIRiJoP8vrnNsIpbTGdIIhIRUOEwIDG6EJx0UOZEWzLOIxKRkSU41OGrlSWSMt47t5mpUjDQNIYw78er/Ye09fjXN8vu+z0lPeuPNlavDdE/QcIaiyCEtiSJHA3DhAAEGvPLKXvuf8L/ghdcGLIOwLS8ECyJoyYQt0JQZhvSMOkyzQ3VXvHXjm550ohfnreaMDVtjwA9QqMUNwL33OeH3jU2TGQcxIkicHExIBxP6XiGV5PDgLt048ur6Ogck+ZFuiMjOodSI2XcJliZxt060Hm4axfbqgo82KyZTSVUrju4+Zj5bEnuL7zsuXj6jrAzT5QRdB1ToWa1bxjFhhAYR6dUXjC6wXkcmheGwqVm/XNOeb8BuMKbChgHv4On5JTJJRHOIrHqE0gihSEi6qy3KQb9KCD3l8PiY4Af6848IIQfixN1jRCe45gkbv2PcCmJXoayEw4eob/86xeZzmvXH/Pbf/wHfef8tPr2asLMFH3+Z8EPiIFWMrmC3TXgvMIXgtAwUhePzraYPlpfPPuNgOec3f+U+T74c+IsfP+W1OqKr7qKGS7TbcS9cIYaWnzy9pB8dO2uJCIKQ3OiCnyhNKT1awb/+6aeoqkLVM3pV8VW34Px14NMnPf3mFmc7vv2r32c6nXL18UfYsaNTLcujM775w99BFQWqKFivz+l3K+7fUTyUE44WZwQkL3uLdFDYSDOf00zneC0JAmx3jXOevjeEW8+Ly58hpUWpkbpZUtZzFosJykjOyAnRRVWSRMJHz2Q6o7oLnQ30NtK6gSF4uo3PDC0DWgqKfdKs0ppCZxaKQuYBXslMewSPKQqapsF7ixuH/0+pfr98AIUU1KXcRw/m4rWQItblGLJSS+pCMKlz6IARad9qD1JrVClI+5Wu3xRPRoUQGsgIp5RQTwqEUkQmaK2Zz0p8ikxmDaWV1KPCx8h213J5eUVVaKTd4oaBmRH4UjKrNd5bbm8GnBXstpqH37TUIoAK2GS5uN0ypgnV0QFqbVFuzdPnPauVo4iKiOdGvqLtHefngVVT4hYNFy9XtDcbYggIXUPcEVOkbQeU0LlIU+Xyxjf3gOA8ArFnOgICg8hRCpl5CgMhBLwH77cEtwYbEd6gihMwS5RWaJUwynJ6dsyjt95i+fmO7SpwsV3lWFjXYoRnOsnIV0wCIR1SWoSsQeWfS8nIsqrRUrO1EVsAch+moEseLOYIN/DhbkuwMV86QgTn6RGMCKRISAGdvUAbw+xgQSSxG3Ok+3bMcd6SlKPCdSL4HTH0ObmomFDND3Ex0ntPN0b6MTDflyqXlSY66EOkQFCpAiEMKikgx1omqYkiEkLEjpab1RZlHGXpKCd5cNVlRVkbJoXclyzmRwqBLgvq+QQrLFY4xDBmv57N0S5uyMVzKnikkbn7Zp/cJ1Lc/8vFqVKQmap9dUDGxX5umOINMp/vhxL2hXK5lFEJQaEUhc7DlCLlrJmUBzGpNULmRa9Efr/ivucLVC6hFGRmQWqELFEhGzCVMhRVmVEZERFSMY7ZoBlDQKUekSxGRGolqEuFs56+73AOvAfTzJkSc+S3iLRDT7SWws1RItFvO9rOsVqNEECERC9vcWngZuUhSsK0wfWObr0ijD26mOLSFhEtfd+jjUDKMlPsUmYvQcrrZ2gH3JBZKKJAphwpHVMiuIHg7b7DzOF9ljliBcYsKEXIBcMiUCrLtNGc3rlDlzy3mzeMuSWNPSqM2cNX5Uq/HOXvMroqJyAkiRz77AlsHex8Iqr930IWLKqG+1pycaFxncBZgYuJse3xSRKlpZCRQnraEDC7HSd3BaaG3dgxaM+AgjiSXE4U0kYAORVOKIFSJUWzRFc1YwwMPjHYQF1q6lJTlgZtJL5LuJj274RGIsnYJUQyKp2DRyNtNxCjpSgdJZqJ2Ec2F1kLr6UAmctDpRAgFbqqETJLOOQ+Dj0GcjKYi3giUkaUYF86nNeQlHk9CLFfI+lv1mVeFv/3bHQhBEqyD2bh6zVCjHt5h6LQ+SzSUuT1tV9DUimEVCSRZVNKqJxKyJvOPLlnxgRVUeADIGvquqSuCsqqpPQe40ALgfMOMfTIBAKHjCMiBmol6QtFKBTODjib2YVJTBwS9srHyOgs67ZFTmpSIRh2Az4mLq8Goo8In3CiYxBrdrtI20XspKZSku3tinGXDfFKR6QbcM6y3bbIkEuUpcq/6xz3GxnbAZLC20QKCYUh72SSGAaCF/lCGCMpDiSfg0W0aKiaY1TZII2hVIHaBI6Oj5F6SnU10jlPO+wIfYdwA1UhmEwy2psAKT1SJpDN/n0LFEoyKww2CtYu4mUuBUYaKh15sJiS7MALI3BB4LwgDCMpRFbCoYWgVh49DLTBMVsuWB4rRqcJJEYyy4NNFBUoI1AyEn0HWiB1gammFJPlviDdMrqISNA0DVVRYYwk+Vz7oERmfCQZBEhJZMWCzPtEjJFhsAxjt2ckoNkDZcqUe1leNr4n/qYP1BQFSIlNAe9jrm+JEHwu7g0+EcjhTUrnxL6vI9Gj38PuKr+7++SL/L3fyJz+hpuSUmB0vmcJkS9/8s2CBYySGCWpjM7o/ZszLGUFhdT7LxT5UpsjnXOce/5fIETCFG/OqhIpM5scSZRViXY5GCOmxDiO7OQ2Sw1TT3COSkLQkrrM6oeutYQoGEbF4sRhyhJkxCfHZtdSpRo9nUHvwQWur3u6zqFRJBHpxTWjC6xWgYkxDE3J7dWOft0CAl1MkHYk4tntWowq0KbM/malclky4AeLNXk961Qikyahc7lDtPn8CT4nBfse6VqwKScFlodQzjHG5P1JWZbLGSenZ7xcj9g+ctu1+NEj3UAhPJOJwRRyf/57pPQIVUFSJAJSRGbGIIVkZSNDCVFJlDBIVXK2aBBl4mmR14+1mVkMdmArLINQef0o6ESkahpO7xtiEKyHDuMjO5fAeWTM10OtEykMxDAitUHrhmJ6QEiRMURGl7A20tQlhdYUhcJGcDGiEbDvFJQpg1hRkGP097JW5xzbXYfSnqLwmDJRSZnXT6EoZN6jE7nAXe7vRaZucFhccuBErp7xuYYnuAQyIUXAqNxdKMX+jZXsI9HfHDQpVycIifh/OIP+355f3l0VLdGuKLXBSE2HYExws80UvZYJozS1SOB7tlvPzW3gYhOpZnOU0lTzGj0reffeESFJ1p1AUeFlQ1lCZQRHi4rCaGazU2J0xP4r5kbx699a7otWS54+OefTTz/gj5/vCDbwrTsls6bg5GBJNZcUj+Bq03Gxafns1Y5u8JT3fsrp2ZSZmXC12vAnTy848ndYPa55+eFLzp++5OmXF6xudgzjSIwRpXOXyjCmr3tQ5krSKIWL9yindwnbj0mxZ3W5pq4LTo7mDF3KiSD7v4UdLd4FZAzEaLCtJxWHcPSYuP0Zfv0TtsFxEyJnCzgKibobKd2cxYPfQ/gvEE/+OXURaSYTiuZXofpd5v0/5WD1jJvXL7Fdx+56zWJR8/Y/eMD8eMZqlbiwN1yKC9TZ+8x0zZ1vPeJAF9hPVozn0HOPGCxwjqjmTJoT/rP/8H0MHf/57/8PXN0MrK5l7qXp26/ll28ekd9V6lFg48D1uELVM3ScU+qE0SUffPBXTCvJ28sCbU4YZw+Q9ZSvXlxyc/uK65tXTEVJrSrE4XfxRcmTZ5/h44AUPUXZMFkeEgbH6tkLXrqOXbAcl4mCSDmOWOtZDw7tBVUsWUaD0grvgTEwxSIIjH2LLgyLgwVMJ6TZBDfdIfqOq37H2AYKF/Oh2QtQCa8telYzK+u9HEgR/Y5IIBiJlIkUS1L0pDCS5ak670BfP4kYR0hj3lgEBCEZQ05vI3kyrJBQBKxrGX2i3bOZ2pSooqCeNBxMGkpt6GzudEuiys3gOh9URkrKckKIFSJtwSXuLQsQNUaeMnQ9N1cv2G1HdhvL6cIwrzWTesLEFKTlJJeWbresW8tnrzreSoJYDpSyRETJF9c3jKPnrdP7+K3n5UdfcHu14uWzVwzDwDgOmGwvoBsDIUbwgVpr7k4ntP6Q6cn3iOtP8O1X3Nzc0O22PLp/xmQaqWtNSgk/BuwwcnO9wTiPijBsR4JQiKPvIdwG+/R/o/MdNzFyRwTmxlP1FrPyHN/7bbxS6Fd/hJE7ls2EWXMG+j3K8JRZ95Rxc8vYd3TXG1JK/NYPDqnmBwwj3I4D5/EGN58zKw45eXTAfF4jtxG386zSCS090l+jdImqz/jBd4/50dtzzMm/5KNnz3jyXNFuLP6rZwjv8762Zy1FEoggqQdJFSMvds8JSjPhHoWRTIqGl9eXdD+95KwouXN/iatPSaZh3VnsZsfF1XM0gqkoScUJ1KesdtdEtyFIm5vlZwt0EvSrFa133PiBiU40CpT3iBAZnMMF8BjQZn8hEnif0MojUsLv98ayLEEb4mSGqDyhVLh1YNdncAOfUDYPPQGH0IKyrvceDyAllPBfs0Npf7F345gvhEJ+3Vn39QpKlhSHfH0TCSUkKUa6oSOlgAbMfg153xOToO0iPgp0WYPWVE1NUxTMmxrrwAZQoiIJhTagpWRSaVJS1M2+F8decTTRHEzmKHlEComr15f03cjNVUtTKM6WBVVZ0ZQ1zCOTynCzbekHy2cvNjSrnuqwoFAFhSx4ub7h6etrHswOmVUFL7/4is16zZefPWXos0RQyoTRgtEFRhch5IaYe7MJQjRUy28SqhXD9V/Rjy0vno7cOT5kuZhR15Kq0kSbSN6zXrUYASYEQt/RbSNp8hizfIf22b8mhB2rFJlJydGsZKct5nbkYPoNZnd/l7j9M3j6r1g0icPZEcq8i0Qx7T8g7rZs1zfYbUe/7XnvnQXN4g6mMGx7z+twS28i0/vfZn7QcHZ/QRMU/rxnO85Zi1Ni2GX2ZnrEw7Mp//Fv3uUvP/8Y/2PPywvJ9a1gOD8ndC0Evz949kBTlJReMesV18MtO++ouYOpahpTEJznow//gplW3L23IJQLQnmAp+byZs3rqxc4O7DQNUU5QyweMviO3cU1XniU9JTNlFKW2LYjhC0XrkOJxNyk3MXmA8E5WpsoksbEPGAgRC55TgGBJwaPDxZTVpSmgHpCSomy6EijxfSBFALe5R4kdB6Go0oYU1FojZIaEHjfAQVKm3zZeLOfiNx1yP9F5ifwSAYKYdBK51LokLDWElKiNAopNVoUiGixbkvXB7ZDpKgm+WNlQVlqzg4OSEkyOIEQhihKtAKtBJOqyGXI5Tz73u0VpZQ8Op6gxAItNbc3K66vn/HZdU9wgftHFVWhmVYTVC3QR4ldP7DpB15c7+hHj1p8xXI5oVIV27blZ6+vmB0ecf+o4PblJbdXVzx7+or17Zq2bYnRUxix962HDAiHwGFVsChKknrM5PghPX9K9FvOX7xiNml4eO+UpknUtYG9RHO7abE2YKxDlIFuG6BaoO7+AHfzKePFh2yC5TZGCh2YRkexHqndlDvv/yPwL1Bf/BGTMjKdLajKh6DfpRk/wLa3bG4ucP1Ie7thOa354e/cY3o8oxvgNrbcyg3m7DGlNJw+PGSuNOF8oF8bbuV9fHRof4Wup0yqQ/7R3/0NKjra2T/j/GbkyUuNvV0zXFxB9KTk9sHfAhElyksmvWTwHU/bC4r5kjIcMTFQmorPvvyEaSl4sKxQ+gTXnCGLhqvVlvX2mtXmiokoqGQB00dEU3B5c06IFiEGtK6oJjOiC7TXN1z7gSF6FiaiRcJ4i3OB7eDQSlCFgsncIJUiRMBFSp3rhp0dkEpTNxNSWZGKkqYYkG5kY3v8GLOFIgmkBSEiHpulrbrMAG3MNgglPD7EDIwgCcFjhz6n2kr1C9UC/7bnlx6mYgwEO+JCIqnIMI4Mo8M7R0rZ52FEJHqXS9lSZGw9wzYiVY0y5Mx3EtYHkAJlDCJGkh/odo4hBlLXYZTEqtxZEuMWoTSynFAWczA1loCLIz46vA9c3Y70vQGl8CHQhQHTKE7qOeiCrvdsth0+WqZTz2rT0jqL7FqeXVxzcX3L5XrDtusY7MC2yxcGozPG41OenIMPSKNJKhGwCPJhHkPCJY/RMstP9kWUad+dklIkxUyJIxLO3qIKSTE5Jg0SGwP97RXb8+fcvLdENyXz5hY3SnZlgxNLrLyLaRzVwvHVs1cUP/4JXgzUC014LfBJkbRBVBP04oRU1tgYGa3Hjg6REoWEexND4QPPb265brdEKUCXSF2iXEC0HS9ebCmVYzk9RpeRg3sNDCN0Pey2iL6nXlSgJE/Pt8SQUQZdKBbTBo/CJ5/PuwiMHiEVs/t3MNWcrjrFR8m47TFJcjidMlUVpSxJUjKGSNdbtIqcHs2IQbLZdVQ+UIaAlpJalEjfkaLHBUeSMD9oKMuCyaQCpVltWszYYYxANAJFxI4d2mhCiBR1QdkUGCVpypLjeU0FTDyQBPW0QatEoTWTylBIQSHByETSao9wp1wmHQLegZVZQqGVzij716NUvkCmmCM3Q/CEffEpKe3LSzMTk4LIn+NzAIXUIqNxPiMuIUSCirmgMonsafCR3npkyoxwlIkkIcY+v4+mQcqMWgUBPrmc1kek63vw+TxWWjFGS5CJybRB6oKw91vd3q4pigYhNJ0fsd5zs93ivGO127Addlg/0NmBbhgoQw4V8PvIXufzXrGzHpscUgykYPGjp/eRMHpCcCQiRslcsEokpUByHu8lMSqGoSWYNc3JBKF1jvPte24uLtncibRHx5TNaw4nlqIucbJk7I/QuqZaeoaQ+PSTz/FDS1EL0k7iYvYzCgFmOkfVEzzgQi6HTTH/LDOjOCgkq82O27bDAlFqlFGYkCjanu6643VlqPScs8M7qKpmHALdcgJDj96tKCtN3Riudo7dEIlSkpRgedgQpCSIgEwRFUH4AKOnmM9pZkvG4oAoS+wYSDEyrSqMUDSyRGmDj2B9IDpPMytQSjKOFhcTdcz9TqUu0MmBy+lJIUWq2lAISV0VaK3ohhFlR9QAwUiclkQ/klJEOpu9TmWBJFEoTV0UzOuSIiSc0rnkUeXuHC0zoyP4GtzOLJ/IKGPwPu+1OkuDlMrs5M8HUOT1k3IHSMzJgCFmZlfsC4DfeLXy3pv7EX2UCBUJPuI9BJWDgZLYsxcxlzQOncseybEniVxxkJIjJYtUZS4VLRRJSjyegCeJhAuOzXbE+ZxCab3FJ0/VFOjCMAaB0rBeb9GmwJiGnR0Yg2Xd7bBKcbNb07ZbrBsY3cBuGFBSUGqFT7n1xIccONPaPVLNiEgWbz3B5d4VO8+yQ61Aa4FwmYOM3uGFhqARo4X2JntWJjWJhLeO9dU1s2LO7v6CWCUOmktsrXFlTT8s8eGEchZQdc1XXz2n1IaiEiib108UGrRBN1PMdE6UEp8S1mbWRQqoteSo0rj1yPl2pAseL2X2jAFlNxLXitevOtygOV3eoagLeLoAMgAAIABJREFUju8Y7PGM2HXo3QpFYjovGVzieucRpiBJQTMrMdIQTR4eVIzIEGH0aDOlWR7gzQJfLLMSZHDUxlApwVTXSFPi2feYWU9ZK5q6wNtEZwfqkCXWhTLIFMCNxBQI0aMKSaM1VWkwRjG6gE89xvVoJUiFytaIYPE+oI2lqKq9Z1BRGsO8rnBSUyWZ2fSywmjQiqxY2KPqUmSvoBQyI+sij0vpDdj5i0F+efnEiPc2+62iwKdcnh1C9njrvZQwek8SuYPHjQE7xKx00HsgBAgxZjWEVvt1abHW42LMDL+UBJVIRGLsM7NlarSqEbIgEPHJ599dCux2W5zZs3wpYqNDFpKZbvBJUg6evh9IeMoq0A4dfRhh6Lhcr1hv16zbDf3YYf1AO2a1TxUUiZzO5qPHO0chBRJJSBYpFNF5nAu0YUQLRYwOQUArgZQx9+eFQPQe7xVJCvpuhTFQT+a4jcSHwG695ubyiu2ixtSSWdOREJiqwtsZdjjG1IFyEbm8XqM/fYKPI6YShCQJKJIukGVNMZtDUeT14wKjDZnJlIKDUmFi4ny34XYc8FKANihtKKzH+J7b1z219hzNTlFFpJxX+E2Lu3uE6naosWMyKxFK8mo9EoXOd7hScdRMiVoT8Tn8LYIYHUJKqpNTTDnFFgeEJHC9RSfBvK5pZEkhDElKbEyMo0PKyHzWEIOg7QeKGDExoqWkEBoZRiDgoyfJxGRaURSGusqM7a4b0LZHSUilRJLwbtgPWTErtgqDkiInDZYFKka0jaQEZVEgRFZGlDrX2iAyFpNEZsOlyMyy8/lrvModoVr9YoDLv+355Ut7nafftgxyBKFYbTqG0RH2m/a8qDEyMOxaUpTEqGmvHLsrT/AFqizZ3ARUCpwXW4q6pJoXMHakccfrl1s21x2MDgE0d6dgoBM9utDUs4bZ8j6Lw4ZdcnjjaQ5qXB/48tmXCCJPd2ukBorENx4+4LuPH2ajv0v84f/yZ1yuNpizQ1xvaWPP5vI1T7ctY7/DDi3gMGUk9RCiyJSkFhSVzKlQfaJNgt4D3CCSILi8MZIybWhtn4tPxRuwKOXFKAQhTrLXpf2EevKQg5OHxCHRxsjtX/8buqtz/up3/1Pu3j3m8b3POSvgPCbW5h6v+Pep7l8wf3DOH/yLP+Sf/v5/z3/0n/yI5fuHDE9GBm2RiyUcHuOP32asZ0QC3c7R3VpKdkxN4jeXcLHe8Y+f/CU3u5aoPLI+RlVLyqcfkra3/OPfXzGdVrz1vW8zuT/n8Nfvo8aEbiPxZx/Di2fc+dUH+FLzX/xXf8r1TcugYHlQ8/DdQ66vel6ft5QxUMTEZIzMq4Z73/4OZnrEKpyyeX3D9qPPuHt/zv33H+bsi5T4aDOy7kd225aTRc1vvPsNvnh+wf/60c84mxWczAqOlnfRRUP34gvs6FgxUkwq3nt8xnxxyNHJHT768FM++ewpJuzQeBbLOUZLTPJIFTEmcny25N6jY6pqQtNMOXpLEr1ju7F4DzYWGJWYmoB3I9YO1CpRqIisa4QUe4Qn4McR7wTjODCdTphOJrmN/uuTjK8HchdGnHcM1mXJhMjyTyUDyYOH3CA/JtwuQJFQUTF0HjsEtOgZvcVU0yyF8x3jMLK5yXJXP/SYWY2uC6wcSSJR1Q3GNMxmE1yMBBVQtaIRmt3qNbc3W6p+iyo0wiSaquGth28jyObOpy+e8/nnz5DzJaIs6GyLd47N0yf44NhtL0jWUVQJHLhRokRO7ikamUM5dgIfJRcWEjskFtfe0N72hBjRWvLw4RItoC4EzgmS9KToSM4y+gUhTBhuX1GELSe/ckJw8Nx5bi6ucH/xY6b/znc4/e6vMr/753yr23IToI0lX4W/i6oHpm+/5uLyhv/2v/5v+JVfe49f+TvvEXZz+l0N0ynSKML8Ab4qsSRGF+k2Ac2IIfCgiJxWiT+4esHz1Y5OjMSyoJqfUF1cMPnqCX/9esXrsubBd075/uO3mH/jBFVqZBtgfUt88tfUxzNm9474J//zh/zvP3lKX2pMLfnOdx4REzx5cosMgcoFGhuZ6MTy8ISDB2/TxxnWCfrPn1OoxFuP3s6XqwQ3Hm59xzgMYD3vPjxDK8WPP/wMkSJn84KinHJncoDb3uB2PQMOJyNHZ0vKumaxOGa36/j8iyeIMKJCR900lGWFSh5BJKYeU2hOzk6R2lDrinIqOCg0w9xhXcD7zGxVKiCIhGARJJQAnxRWmhyiQGA7ZJmbkCkXSdY1hTG/OEvFRPQRF0dC8PSjJaW0l/8FlMgATvAQY04UdG3ARkFIei8b8iQfAY8qapQuwO9I1rK63uCtR/iIKhRmVuFxWCxFWWJ0wWT+ECUrvAhgYLKYYLsdry4vKOoS01RZGqwkj+48YlJPePy2YrPd8tOPPyQZg57P6dotIwPPLl4Sr6/YbS7wdkAWHhUTbieIQqGERtUSU0j6dsC7wI2XCBzwgji0X6+fGCPLec1ioTEq0RSK1tocYGBHHJLOLZG0KP8xj+8ZZocTXiZPu+t48sEHDNu7PPm1H6EOXvP+wy/pomCXEq+n32Jbv8v00SVSbfmDf/bPOVhO+dG/91vszJzuAqgcuvCk+R38bIZVBuc83S4QrKdAcChL3m8Ef/7qhp+8eM3rcYfTkXp6ivGB+Zcf0b4Q/I+f33Bwd8p3vvG3mTxYUp1MUV1AjI705BMUnsU7d/js+S3/5H/6iCRh1HDv8THL4wlPn67pdyOld9QpMXWJeVVx8M77uFQzpob18wvsZsfj+2fUjUEmGELi+dBjbY/tLUfLIx6dHvLBZ0+5uF5zd15SlQUnsxOit9ibc8bkaYVlsphzOJ8xmx2ilOHTz76g71pM2GG0YjKdZdAshVzIruDo9Ji6bqiLhkYXLE/LbKZ3KdsAMBgZUSLh/UBKESMiSih02exRicib5LIYXWZp9RtD/c/d4YJn6Nos66sqRp8LsgMJrTOgqGXCDh1vUtD6bf77xahRRWToMmixLXu0KdC1QXgLvmOz2tHt+tyLQaJa5jucFSNSa8qqpqqOaETFSCCoQDEtUaPn4uo5gkQ9bBFKgEmcHpxy//CM+yEXsH7wycc8f9WiDg7xdqQPHbuN4/yzAWu32HEHYqSoImEHNmQ5r9SSqtFZIdQmtlHSjYC4RAaRGdV+ZBtzYuFwf0JKI7WG0QeGkLsQk1V07hhiSX/9KcvyLndP7jCsEsPoefnFl6zbjvff/Qf4wzmPH1xgt4nrIFjrM17wDynO1szu3vKXP/mA4fpP+OG/+wNmpwuG1wcM2iPmM1jMCPM7OFNmC0kXaDeOkp5aRt5rBLddzx+++oqXbY9VnrJeUlQzpp//NdVqxb96uWY6rXj7+3+L+rhh+s4RyoMcE+nFl6Sr1yzePsNpxX/53/0pt6uOTgsOjxq+/d4J19cdr17tqGOgtJHGRqZFycGDtzDNkj7O6VY7uqfnHB5PObx/hojZ1vO8D7TjSNf2zGrDO6d3eX214sOvnnEwKTiYGGbNAVKXuJtzvBvZJYsuCx7dP6aup0xnS549f8nTVxeY2KLwTCfTHPhFDiRRKjCdT1keHmBUgdEV9w4WhFlDP5viQ8J5hZKJSkVi9ISY7+aSxBg1AYlIDhciXTegtUaISF3X1GWd6wn+/x6miInoPD4GfIS+GxldQJcSIbNnQ0hJkjl6NyVJWSXmU4GSe9gbR0iBrku44HEIVAgo75GVpFmWJKdJMTH6PQpZkFHdccC6W4Iz2HYL0XNyOkdESXKHjNayRZAiECPrlNgSiLbFDiPXV2suLrfIIZFCxLlEwBNsi3Mj3gXqSYmZG+TxPUiGxg9IGVC1QwaH9CPbwdCNhuvXrxm6lhgCKaac/JIEThUEFfbI65ubwB4uJRumUzQQGyRHiDTJn+MFaYTrVzuMqXn0zjH9tOXLn/wfjG5OjHcZt572oufRNx+w+DVDow1pO6BMn3urvEDqxCg9chzQA5TFEc2yRN5eon0ENcEzsBs32GiRFai0RfUDZ6yYqC3Xo6NLBeFLR7WqmLVXzJTkQEnc5Wti39HdROTU8P2/8x5jN5DaLYmI73rmVWT2sMR24C044dl6w4vrnnnsOD6NFHOwB5rWj3z04pbDaU1TFiyrMmub/QlGwecvN6y7xNHJGWXTEOqK9XYN7prDCiZNhdIKM5lydJilJdFZDmcFPFigXYEMHmU0iUQ/5pSrMHq2257riw3Lk5pJUWIKCTogkyMEsF6RoiW6HVIp6qamNopCCeK+gkOqKueM7LW8Ie2bt924N9W/OcgcFxdfkdjgksOHgPU+S1uUoKnUPjb6jSJe4nwCPARPGD3O9Zn5GSQuSHTIDKgKud9ElRKhSkypiUoRktz7IiJd71FuRKsVyXsEiaYuMZOarXIMdckoBE4AIiGEwkmRZU5xYNfuuL7aIoYERUnsxhxvbdeE6BkGi5GK+mDG4ewukzChTgFDRFW5SyXZDu8l3Vhxe33L5ctX7LYb7DjiYyQExYDECEncp4Uqtdf4p5CReCmJYUF0FSpNQCgEChEl0klsl1ivLQezCfNHR1x/9gq7vUSke+AEdu1omgnf+cG3OD1eIsaAxCLNmD1nKr+vKUhMOyCjop4eI9oeOWTfSRSGle1Y2R2iSOjk0N0Vy3DFg+KGlWt5Nho2X7ZUVxWL2yvqSnFvahBjj7MtZV+zaxX3H9zjt+sJTbRoAjrl5vW37tZEnwg9KBno8awGkLuR2XxKqQXjTOFC4OltS2U0i7pEScWiUPjJhFgobrcjCEE1mSGFIFY1vbfsLp5Tq0Rda1CCoASTeoouKqL3aBE5WtaIoFFBf80UjS77at54QMfBUVSGpm5AFaAryiIQQtpL+EAml/c/EbJXUUpCSvj4N/HPiwNPiAldKLRW1HXJdDL7hSMoxUAMDu9dRpl9RtSVkhmMVxIhJElkBUASCWMiIgI4UvIgQu4vGz0yJqTxqJAHRF3lOFwRElEIrE/EvZysHxwdkSRWGF1kwEwKmkWDLQUijTigy9A6UgoGQKdI8h1tv+bq8pagNLK1hKHbe2I6IgN2tBBhcrCgTAXqcI5JUKeALCPSJLADMQTavqLvHU+ffMluu8VZS4iZpfNC4k32x2alZFZIpOhJWBItMWiSLUih3p8/mhQFWPB94nY1MouCg4fH2POO7uXHOE4IYsKwcdRV5J3vvsW8qbLqwI05tUyBjJKkEl5EitEiXKKZHOKVRW12qChAlvTBcztuiSpgioSxKxo38tjc4l3i5a7l9nXDZdwwubqknhecNZpaJny7QihFvxOkcsZv/Nq7KG/RfkSYRBx6zpaKMK3wXQkp0ifPxiquNz11Y5jWCT8RyCC4bHsYLIeTCiEVi9IQRMQzJ0bJ+W2H0CXzxRLRNHgBm9UVmsCkMWiRu6fq2ZyqmecLWIoczmtcJVBe5X1aG0L02RsVIaZA342kKJmaWZbRqUiSoETKEm4UInlIAaVM9iTpYh/cohFCZC+XyAaQtFcFxZT25vlfNH1kFD6n07mQOxPF3uPNvhc0ofYSW0lRQFMLtAyIZIHc/TTYAR09WTQRkTEgjKJsSlKhIYGLZM+nBu8CoxtwbksMGm87iJ7ZdAZNRfILnPd0qNyTFWGSEn0KpGgJfuTmZsXtZgdDzMy0j0QcwW1xbsB7T1NX6MmUs9k7pKhpokeqhK4jyVui7RlswWgNL589Z7NaMw4Dzu3P5FBhdUVQOW4+0+h570nRAl1mL+wh0dcoZshU5k5VL2AUbDaOaeM5PVswlgMvPvmE0U+I6QzbetqbgdP7p9SPz2iKAjF6lBrRJuZkaQUjHpxAukRppkymCrnZoV1EyALPyO24ZUieogaTWop+5K64YWZWXPY9175g/VlHdV4yv3zNolQc1wq/uiaOO/rdMVQV3/vuO9hhoPYDUiVC3zIrEvX9OpegO/DSsQuG651lIkbms4hswM0UXXCsL7cs6pKq0EwKQ6kVk+UCJQWvb3s6B4vlIWVVEsuCttuS/Iq5ThRFCUqiyorZZInSmhQC09pw53CKChqZPEqbrGxzOeoyeE/fj6jNjnqyoKgqjK7QsoBoCDFhXd77vO+zT1AZ5P7QEfKN1E8RCRQmoH7OaxqT30shf7nnlx6mUojE0THYQDt6ujHhfGKqFELvV6nUJF3tZRbQNBJwhGjxAYSwuBTYbkfUINF2xCiFUYpqapjPClIQBB85v+gILlBowTBGrtcd7dYzbreUSVCguH9/Rl01jGnkdttzfr7Fp0AKgoOYOIqO2F0zbtacv7zm5auWeNHmGNNakULI5vUYSCmxOGmYLBccHf59CjljsXmNFj2y2tDIkZkY+Oq25uW64Prymna3JYY8SCUgCIE1JUG5DOzkkojcSA7ACAhiqCDOkdxFpDkkifASRsXFlytImh989x7dy1e0f/Qv6MJbxOoOw/WIaLf8zu/9Pf7WDx7T/vETNq83aLOjqBPa1SQTGcSIbiNFO1LVd5kbg7/+E7SNBLVklC2b4RYnQDcFqrtFdx2PueLAdDwbYTVIXqwvkALMnyXuHRjePikYZcIJgXppaQ4W/OiH36dSjqvPv+D1+Q3/5oNn3DmpuX93yvml4nYjud32dE7y2as1d6Piu9/wtAnCHcOHr1o+/PKK9x+dcedQ8/h4Qm0UcSJZ7Tp+8vlrmknNvYeP8WaOV1Ounv9L3PWXPPze28wWU+aNwDRLlmePGMeWtr3l9LDk/uEJcrDgAruup7OO1mXWKTpPWnX4MVA1xywPaipV52JTkwcu5xN9v+O2XVHVhmZSU2uNkYoeRxRQVE1G3W2Lj4kQ0z4ON0s/3jzeW549+5hdP8VDNhkn0FpijORwuaSuK4QoMjCxj/sUwhEDJA9utAzOkWKWTSk7IKWkUDone9UaJSuUNLS9yzS7yKlj69YhRERzhd7HlM+mFQeLQ6qmYNv1vFxt6J0jikiShkEKRHAkv2a1ueX8/BbqAYyh0Fku5u2+jyN69HxKfXLAonkfU71F028wfkSVLUp6JnR0TvJ01bDZ/ZSXL54yDg47enyMSKNpk6YQMkcLiLQPowBSQIgeITwxPCC6KYolghaBQiaFdppxl03IZ4dzTo4Vn3z0J/TXLWJ2AgL6q5HTbxzzgx9+E3+xwb/eoBjQpkfLEqEUI47goeoCKpXMlvfwwytityVFhRcl10PL9bjJKUjeYtYXnLgrvlNd8Mcr+Gwr8Dc1JM2ijBxMFL/1/hxpBKMEqaZoI3nvG2/x935Q0t28pt9t+dnPvgQC7749ZxgVlzeadnDsestVG7G3LccHS6aVJB4ZrreRn75Ys5jUvH1aMKsUy7Ik6TneVzy5vMWGyPHhEqFLgprSXT9l/fwz7t855vDsiKIQJK1opkuENAz9Bi0i949niBgQIeCsw3nP4EZsDGghEVHQdxYpa6piihK5SkCQh6g3sqNx6ICENiLH5+uCJARJin0U+hsTO9hggewXmS8O+HmdXwye4C3WjvjgcTYXXOfgD4EQCqQBofaDU6QsAzpEYrJfD1MhBLo+Ir1FOo2WOQK3mJT5UhnB2sC2tey/Nd3g6O1IipfZN5wklak4OZ4yjBUYxU3bsW27zJZFaEmI5IjDDevtDa9eXuKEgmpLUUiMhmAHgg8kItpopqfHmOqIO833KL2jsS1SD0g90ogRlQJf3FRcXK35qz//c3abLXYc8yAVIxaNL6egFVLtvTMpX6D31m1CmJLGCcnPkGlOSiYPU2MOLLm42KEn8N57d7lefcLm/CPG5jcJZUN31aMXgV/9D75PLQX2yyuwA6bqkcEgowEdcSIQ2xHhFbPFXbxuCdcbVJBEWbMNnsthTSxKykJSrF8ztR3fKi+4iIEfr8CvC9JXFY2J1Drxt9+ZcrzQ9BIoJuirxPHBnN/73XvYdkO/vuGrr15xfX3Lw3szyrLg/NLQD5HVrscPCnm945EuuHs4gblEC8WnL3Z0Hr55TzOrFMezClEZUlNwsWl5cr5hMZ9wODvAqynOjqyefUJTSM7eukcykmAERXNAUS0ZbUsIljtHE0SqEW5KDIHROjor/k/a3iRW0+w+7/ud6Z2+6U41V/XIJptNmqREivIg2YQkCoadQJEQeGEkWSZZJBsHzjLIPgECxElW2QVZBAicAAkixrEka4RIc7Akstlkd1dXVddw5/uN73DGLM57q0k5SrjJ1yj0onFv173fd97zH57n9+DGQpAY2W07vE1M5ypvesZtUqHzGUpJ5MGvjxhTZJqZqfL9IDJ2XEqdPYYxZEtBioSYCNH/VCkoBWiZCNFhB0fICnNKqRBJ5vNKHhblO0hQlQopwxjgHkA4Qgz0fZb5yuDQMlM6TWkwpclglxhZrjuiSxglsC6y6jqaPuCHDp0EBsX+XoPRJQ7LrrdcblpCiqSYaGJiFj34DWHYcnp6xun5htDsUFoxrbNsMriWED0xRRa395jMFxzOv4KRUya7JUpYZNFSCEvNwMmu5GxrePjhR5yePKdr7UgtDvQ+0pkGp3fj+RkHEnG8h9lkCfFQk9wUnRYI6lzDOYXoFcvLgbLqefOVGxT1Obs/+kO6dJfY3KRfWtb9js//6ju8/ulb2IdndOsOZbrs9wwlSUcGHGqImMHTVAswB/irD7J8TVYMtJz1K6yUVE1BsVtTti2vq2MOqzU/3MD5WuFOG4wUzIvIazcLPnu/xsqEFwJ5cZdiPueX/8bnKGVgc/qMy4slDz98wuHBhFs351xcKdZbyXLT0XnBi6ue/WS4d2OfCkgHmg8vOj447nnj5j435g1Hs5JCS2Ih2Q0DH51cUZUlRzdvEVVNkBXr03+JXR1z9OZ9mkmd6aumoZ4d4r3F2pa9ScHhZA8xnpV+sFjvufBZmh69J8XsuZNyQlmaMWcNtHTEEBmUww4d29ZhCoMxhhSAmJspKSIIA9JTFR6hBFIqEGlspiI/6+tnbqaMViwmNWWZqOuI9YkQMiVDqpzz0gfYrXcokTXA/ZAvYCEybeZa8+5tIIUEaSBqidWK1BTEQjOd1Uip2CsaBuvY7S7xyUFwECMxebrW07nEuz96TFmULHSimSrKB4dcrloePztjyZLH28jl5Qnb9ZpV54iSTGeJgn4IJB+JvWN/b8ZiMaXdJa42HRx/G5kUZ7sVInkSDikcGkske0iMb3Nw3OCzuZ4shdydrTLFrtQIG2DUYUIciwtL4gznpmy3P8TaU0iCYHeITlC5nmqwPH92wXB+xWQOpWo52HuMUhalDzl/v+Pd7Qm2r+lRdOsd/eAZvOTN+4f80le+yPe+t+YvHm9Ynb9Lcmv+na99lllT8s//5Z/y/PICFyqS1MhQ8Zm55PVDyab1vLAzZF9R9IH+6THR503k1TqCiwQpCBJYP0bX56jVPoWK2OUpLjjktGDrFc+OA5dtQ+tq3njri8wmFdX0lGm5YnXxF6Brjj5zwBdvT3j1dUu36fDtMRcfn1FpyeGBYdEkvvBWCZQIFCfLF1ws11RTy3S2z6kwXA0KVZSUbSB9/D7tesXy9BRZlsiiYDqfUJQFptFMKs/tEWkbwgQtwEhwuzUXz56wP9FUhaaeHJC0JHqLkTCpSkojqQTI0QgmQ4SUCMGNhC6JklALCcITnCP9xGZKCEFpCuqiIoz8mMRI+JNAkjgHvW0BQV2VpJQyNUyofMDJ5yeka438QFSSpEOezhcFutCUZUM0EeUCg9sSvIXo8rQ+hbz+th7vE+vtQK0Fcw1pPqF3kRfnl7i+50JcMNgdq80ZZ6sdUQpiysVmsCNeejdQFQX3btzFJ8HVsQPxGMQZplsj3TBOSCMitdkfUNSY/oyj6ZTL1GH9gFARoQWXx2cURsO0QhqN3FpSFLjoXg5Zoz/GuYF1+5QUAwRBtJ5+fQHdDeoQ6bctF3GNaSJ7RzA/WCKMQasZwiue/3CVPTViyq632C1sgqSoDV++c5vOKr570rJdLbk6f48vv36Dz7/9ad69uOKbz55z3iY8DSbUHGnPl+8E0hB51kLYL9mzhqsPn2FXG/oAa6d5/6FCGonTglScEkrL+umcG/sVob8ihR4nQUnDxRX0TrEaJiwWcx68sqCsW4rCEodnDGjqgzk35gVfmRREH4jDkn5IhARNo9GF5N6RIiSDkore9VycHSPTjsXdPXxVc+YEUhoUirS+AO/ZXJyQEIiyxhQFZV2OeWoFMwF1KDEqE72uyZPt+pLSqExX1RVSmpd+QK00kDBjYZI3n+JlAxXTNV9QYJQhibyRvf7v1y+lFEZrKlESosZonf10yWWSGRrvxViMXfuq8vT95TM4jSKJmD0hKQSiHqeRZYGWiqqukRUEE/Chx/mWlIZcrMYsF+kHjx0GrBcUUjDVAtUUNEXJ+XLFbt2x1EtaJbhcHrNabfEiD9xiguTyOQydhRC5c+sWhSlYnTkSFyS+i3IDps+02ERCpB4hAqZoYHDcPTrgShs+Hs4QMiJJ2G5gc7YiGY3amyADRJ+zpjKZTZK4IiTY9TdZtQXBOwiSYbPEzQxVCDAMnLsVnoH5oWS22JHqK7QqKcqSs4fb7D1NDSsvcGuLjQIXBZ9/c5+jWwd8990dF1c9l8c/4MbU8Kt//U3O2oFvfO9dPrhY4ajRsaYUkl+4EZiLgn54E2vh4KZkd7Zi+/QUH6F38OSp4OJM44wkqUB4/iMW85rNiz2S2xHtOsNO6oLVVqB2sOwqlK5561M3KMpAWe8o0iXddoNuJswmUz5fGawNhH6Lbzes20uKQtJMDPvTSNOY3KgDp1fPcK5nejRBa8VFyJRIqTRV2+K7nt3yHDf0qGqCNIaqrpBSYypDYwy6NKRYkWImjCmpGHZrotVMqgKpNFLXXFPLlBQIrTHXd8V4e0iRQRQpG23H+yRLQ9P/0/mRiqqoiCILA68bLa3ydjcEifeB3lmMVpRFkX2AIeShhxB2xkXaAAAgAElEQVSf1HA+ImNCpYGkJEGrLGHVmlIVGCGZqCrL2Yc1PnmIHlL2wlvnsT7y7PgFWhc0CspKYfSCTdtzennFLmw57xPr7Rltu2FjLUFCSFmB1A6e5D2xG9hbLNibL+h6uNz1cPJ9RJKY7RIR8zMALCINKFMglWEqLIfTKcfDloBHKon3nrPHL8Ba5N4EKXtEa/ExEYNDoEixxfOEfhBc7l6j6zcQJLbdIpXAuJ7KNyyv1rjtlsk+FGpgMT9FmYDRe7QXnmfvrfGxwKGwu57eBoYgub2Y8MVX7vHhk4H3Twcuz54Q+i2//oUHTGrDH/zwQ453G/pUQdSYUPLpGby+J3C7mxwPc6q9munOc/njj/E20DvB6alH9hGvRKZnHj9BVRfYsz0qHfHtGTF5ZFPRBcXpeWDZVXSu5t6D12jqgmqypSp2DLtHoEqmt6a8MSs5OnJEa0nDFVu7xEjBZGqoC8Frt0uEMEipWG4uWe52mDpR1QvWwrBzEqULTEqkq2OGdku7ugBTInRJ1VRoo9FGUujAQuR8sBiql1TkaDt2qzMqI/M9YSZIKfAik8iN1tmzO9ZkcfQG+pg3syklyqoY/bsJiyMES/D/P6DRtVY0VYmJUEYIMeXpfdfngxkl1keWqx6jFU1hsM7jo0crkVv8sYKMWQuFJBKCzBrfJJFKoaeGwpRMjUS2A6t2nbdNMZv3UwzYYcB1nuU6UGjDL76+T1mX1NMZ0gYebzwbtyWtHc/OL1huNrTWk2RG4WbJYgQXSEOgMiVHi30ePV2yWXU4+2NS8Iiuyw8OJ4gEfPIczjSLWqKio1SaXgQYjdXRR7pVnppooyAkxLi5yq9RtpVWBH9G1z7GuTVIQwyWYDcY22GGnrPLFWG9ZTKTiNJRHJ0TqYgsWD9zdCcrwv1DnDAMbYXtHTsSs3rBL7z5Oj967xlPV47u+cdU9ilffudXmMwn/Nf/5+9zstzgU4ESJTo2PKgDX5wH/qiacekiMiwothb7/PlomBXsWhhauB4/+8vTjNi+WqI1qLilnir27zT0VjJsE9tU4MSUO3fe5sbhFN/9Hkpu2K0vqA5uMbt/j4OjBtMHfvCDx7zYLtluOqyEg8UhdVWwvzdhGDS7jeKkvWR3+pjZaw2TxYzloEle0fiCyjlU/4zt+SWXT49heoBoFnhT02jN4URiZGTfjDKImOVzeI/vWzZ9SxNKdFOiJvv5PU0xI3iL7J0qxm1JIuYQT1Ke1sEnOSJK4UOWIPGTOVPkdPpCF8SR8pcLymvwhMR72HXDKF3Kl3eIYWy4VO6fRm9ZJEuQRBREEYnSoGQCo3I6vQbhE8M6PxBSAjHCUGL0ODvQ9Z6Qeh7sN1RNhWom9C5xMkR8CKzSim2/5fjqiu2uJ6kRqR2zYTOFQBocpSo4mB+w2gycXi7x7pjgLKLbgB2wgyLGxBBbmkry4EaJHByLumLXe4TMckekYHOxoig101mV8c42I/ZdCKiUJZAp5LyStj/LE0GhSSFh2zVpaCm8p3cdye8wNUyFpDragapwIUvXLj5uibOKOK1obYFvPTsSFIYHe/tctIIXrWdz0bJ+9JDJ2we88/Ydfu+fPec7H71gIxJJlDSpYl87Pr9f8nRI/KAURGZMU8326TEu9PggaF3g2bFGakUqNS5dMaQ1dr3gfNGg2aCV5+jeHCEVmy0MQdGGituTG9y/9wrRf0iKp0S3xQlFdfOAShqOpiWr1ZZnz65w/YAdLIWeUZQlB7MKpKLrJH5wdMvn1FPF9OaUIRQsg6SMCh0kss+/v+3pc6IwpMkR5RRSUVNpQakFtcxAEGN0hkmMUiK7WyOrgkKUKGmQqiB/SrNUM3ul0kvZjBAiT9fH5+I1WUqrIk9+x9ypn3xJKVBKUQiIKSsa8mfZARKSyhNmH8fi8rqRuh5dpJdbsxgBH5EyEYkEJdFopNLoskQkQaUTXZfovSUlC3GECSWwricGwXoXWNQlBwcTTFnS1DWbyzXb1rNlAyLx9OKKtu0JMuO0wxjGKgjEUW44r2eURcXp43MG2+KHE7A9ot8RnCR4iU0diMCrt6coKTmcTUkBPj65AvLP4npHt9yStEJNauTWIgDv3QinUaS4JaSB3p6y7RbjBlzh+h2+qzHOkbCs3Y6IZ7KnKfYH9GSLCwaSYvVigDISDiZ0LuDbgp5EB+w3U17Z3+NfuMDzdcfq6RPm9/f4zKd+nuWHz/n2d56wSxGfKqpUUaP49NwyNZp3Q40Lkvm+IYUndE+fZcCTg9NzgRGaVGmi8HTpKdNphdvuUHRIWvZuNEzmFW0vSEHQ+oppOefu3TdRYkl076NTx9B7yoNXKJo5rzUFYXA8erTCDZa2G2BSMp1MmVaGRWnoe4m14Lbn2NCzuNuANKydRAWFiYpke1LoaS9OsG2HmGf4DGXOBysLgUwKE9SoVgm5uEsJ3+9IXlGrGkmFNA0xJUSKOTZGCZRMPwFvYTTHi5enB9LY9GhCTPlM/OT5EZJCZ0BAGr82I9VDznoLAhci27ajLDLa3odAiCHfP2MzRUq5hotjDZckQUSkyZYPWWi0MpRaIpxjO2wJ6ZOvTSngnCVYx7aLaGn41I05xhSUVYNwgZPW0/uW1eA5Xl6yatd03r8c6MVIruFsIPaO8qDicHHIk+fXNdwjoneI3ZLoEm5Q+ORwqefmXsHh3FALz6yqONP9KM3NP+/y9IKyNNSTEmEjYoQjxRjRyZPEQAwnWFeyaU8ZXIugwNuBYZdQ1qKdYzO0xL6jmUsoAnp/BaIkiSn9KnKx7QiHEzwa2xVYG9iSMKrmzcMDHj3f8GyXWL44Q7ZnPPi779DMGv6H777HWdthRUGhDEWsuFcFPj+NfLfY48J6SvaZbHqWP35I8hbrJUsXcRuIRpK0ZBCnoDSp3VIWoOOSemo4vDPDOoVrI9tosKLm4OgBh4uaYH+AEC22X6In+1T7R0ymJfcOIs+enbK62tJ3A05A0ywoS8N0XuG9YhgEcdjQXh1zeKuink7ZOU0KkiooTAgIu6JfL9mcnZCqPShnRFVQSokuNZrIRMbxOVySgs9/vGXwA7LMA7dC13mJQ0aoZyBYGmuga6VDyBFHWe+HLjTeZ0R7coHg/U9ZNf6/XiL9RMH3r/3HlyEg8Ktf/xT/6D/9ZWJUhCRofcDFQBh2+OBpB9h2jmenW7TWVGVBVcg84alrlFSsNjlFPIbsHUIpKAWiFggdESrRNDVKapY7TbuzPHn4Attaho1lNtfs7RcMNhBiYn9xQKkMajVkXbzOX3N+sWW3duxWlt73+BhIZU0Igovnq6y1vV6RC8NkVtFMCtbHlwybjmAzNUmEQIrgQ6byRSJGZaJK8jmvY2Vjpv2Rp61S5hAwqRTeZuLU9a/xOvkhoZCmQU9vMHnl55m9+TfZvffHDMcfsLh5i8mk4FO319w8LPnKV9+gEwuO7S0+/uCMjz84463Dz3JQH/LnH/8hy905bdvz4P49/r1/99/mbB35i8c7Pnq+4+nJji+/dsnt6ZaPfvCIXRTsfv4rrC62fPC73+OtvYa/fu+Qj5++x4uTj7hE4IqST/2NX6JuDOrqR6xPLnn43Y8YLHRO8urNKTcWFY8vN+wGT1mVKJMNnqWWLLRiNj9gsX/E7M4blPMbbE+fM+zWbFcfMJ2WfOkrX0JVBlFr7t845P6NIy6u1mx2O46fPKTb7lhvJSoGZrTsHR1x9/U3uNxcsdwtkdMZURd8cLJjs+tZP3+KEZHDpiB6iXeSoioxpWE37Agp8ODOHlUp0aql0DCtJaWUVFKyWy4Zdjv2ZlPKsqScHSKUATnmd4g4YmUdqShIWnNNzYwqZ0H4cRqeJyYW73v+yX/1x/zBv3gIwK1b+/wX/+V/yI2b+wilSWQCYm6ufQ7UizlqIESYTJosfy0VRmfscj9YrHPj1DGB0ggpEJUc5QiRoqioyobBSawXnF+c0/cdw25ASTjYq4kpYb2lKibUxQw5OIQLICUxwXK1ww6O9bLHBcvgO6IqSLLk8mxFu+3yxUZCqUzfOdif0a/XrF4cE3pHsBm3TUzYEY1uQ86bqQ3IANJHTraey84zkD0udaHQSmKamhASQ+fHB2fImWWATwXIksXtN5gc3Obel76GW11x9aMfMJ1OmC/mvHF74NZ+4LXXb1FPJqy5yWYb+OiDc2ZmyoP5HZ5fPuXZ5VN2fW5gf+Xv/CKLxR4Pzy1Xu8AHJz036o439zY8fXTCi2fnVF94Gw72+da3HiJ7y2+8to/bLnnvh99jC6yF5LW3P8PtVx+Qrh7jNlc8/M6P2W0GVn3Nwbzi828sON90PL3aMpnUlFVBPdEYI9lXiqqsOLx5D9PMqQ7u4todrt3Q7Y4JbsObn/4Uk9kMUWjKouDW/gHOeXZty25zxW6zpB9yPliVOgqtOLr3CiEllttLhDGoquaydSxblyfpfct+XaKEJFgQSlGUJTY4ejewmNZMmwqlBpRMLCY1RikKqTLJsu8x2lAUBbqconQ9omXl+PyLEC1CGWRRI8fcnjT+I6RBIIjx+v2O/C//9Bv8x//Rf/YSMvHf/nf/Of/Wb/56JvGlhIsjDcx3hFGmk+V4WeInSBiV/UtaZ/pTP2SDfgwuW0SEyDx1BUJFpJSURUWIks5JNtstq9US21uC8+zPawoj6Z1FSs2sOUD6mOXEMuPcN9uOvnNsVh3WOjq/y6xB3dBuey7PV4SUtQpK5U3E3t4UmSIXj5/g+gHfOkSMiHELEHzCBkckUhuBEoIySbZ94NHlDpcijsSsKWmqAqENCVit2uwtS/mZISHDOJJmenifZnGDu1/4JcrJHpff/x4ieA6PDjlaBN6623Pz5h63bu+z5YAu1Hz0wTmui7y+/wrW9vz4+bsMztE5zxfeeYvPv/MWT68cl+P5icHxucMlw3bDBz98grx9k+Kzb/Kj917w6KMzvn5/wSsTzaMPv8+237FWhsnhAa99/nOk7pKwfM7z959y/uSUi60iRMXPvbWPUvD+yRKpFdNpgykVZa2YjdElBzfuUDVz6qMHJKBfXeKGNd32Bbfu3ObOvbsIoxBacmv/AKM0m+2OYejYXJ3iPAxWUOIphGdxdIuymbLaLfEpEw17nzjdOIZuS7u6YlIoaq0JXkCSlE2dpcWupzCag0WTlTzC5TxBLSmERAKu7xFAVVUoXaLLeS4GR8lRHqTZXD0Uk0zyGwdu2V+qEEIRr6V+RJ49fcFv/ea/z9OPX+Qa7ld/nv/kH/+D7LWSKucYivTy+wYE1gUuNzuMMdRV/qwbLanLGqU0uz779hI5FBWpEEYijQA1AmR0iRCazil66zg5O8UPFtsNTGrDdGLwI8l2Wu+hVYHKOR8gJcPgWG1aup2l3ViG2BGiI5gJPgjOnl/mJk/kwG4pC2azmsmkYvX8Bf1qjWstyUdECLkZH3JIsoueUkOhyYM6n3i8snQ+0hNRSlAbiTYGXZVsNj1da1HqOksyV3I+VRTNgtmNV9l/5W1uvPlFlh/+kO7kBYeHB0wnBe+8uuNgYXj9jTs4MWEV9jg92XL6YsODxV0W5Yz3nn6fVbemt57Dwz1+5W9/la0VPL3yvLiyHK8sn95fs29a3vv+I9oIzVe+wOXO8p1vf8Rn5hVfuzvj8aP3ef78EUuh8EXBO1/9Mk1tiBcfsTm94NGffci6FVztFO+8vscrtyZ8cLJk0zkms5qiUDQzQ6Uk+0Yzme0z3zuk3LuNaRb0qwtc37JdP6auCz792c9kGnehWEym7E1n7NqWwVrWlyfYYaDtBSIGqtgxmc/Zu3GHbb9l1+/ykEFrXqwHut6yuThBi8ReVRCDIHiBKQxKa1rbE1PgaH9GYQRKDmgFpc7PQY2g266w3Y6qGqFCsiEhCS87mIiSCSUTvQu4kHA+e6KU0cSYMtWYNPoKHcE7/pt/8k/5g9//s5c9UUrpr8T7/cybKSEkioy6lUmhYobDSuWQSeDtgOsDQxcISkAIObW7kBihMEozqwwhSJzPq1qHQhqQBaQxDDRGSxrRtxlLO16MKiEUCJkQZZ5QN4uCQhrOTreEYaRMhUhhEp0IxOAzuUNLYlkgAiPmMuZGTiiSKeh8ZNh2uKEnuJ7osmY3V7tpHKjkqeQQYEiJSoj8vUUOy/uEOEWex466X0YE4/idXr6x0ff47SnSFFS3P419+mO8/JjN8TmDSQwTjTqqeeWtB1zZCecnE0zTUpZbpKxIsWRzsWS9OUU0hnoi+eyb9+l/fMX7j5+za1s0HbdvTbh3WPLb/8fvc94H3vm1r1OlApkUe0rx6ankkbV8cLYjaYOpJKUyzJqaqlhgome9aNj0idBDXRumlWbWKISOJCVy81jkQkxHRWEa6tmCw/0p0/2aHz+9ZLc6ZbW2BFGxHabIEIm7HUfTfYQyzA/m1POarj9HFHC6GUiDI7UtTdOjlWMx11TTGc7MsRiqtaW3A7ZvCQK60iBUgSwmiEIgDLSrgWHoWc9LrJdU5UBKgmk94jSNZMDjwkD0BUEKhnaH1AZTVFlDW8hxghjzOyhEnrbLHDKaV8NjrthI1UrxpxZT5Cl7DthVwvDTy+OUYQ4h4m3EJ7BDRBQSUeSgSIXMaE8xSlVTIshs6FBKgMhbM/DEOJCSyvk9KcMprpP3Xk42jUKXhrou2A0DwzCQMeQJKceJfcaiYaQkaUMsKqRY541UTCQhSbrECclV2+LbLc5uCEMgDiFLipLAxzzhyTTDyNAFaimYaYmWUGhFSJGQEsnHnCvRB1LKRM0o8qWfAbcxh1UmwbA8p6gmzO7cwxYl7UcPGXaWk+UJN0vNYaOZ7+8zO9hnu6wQ1iFVgZCGkDR9a1lfXOGNQFeGWwdT5osZ3354zHJr0bFjMRG89mCfH//4EX/+wSO+9MXPcnCwh5YGjefVWnK2Czw8WeOkIpqSZBNTpakO56QZ7B7NWClNty0oJyXzpsAmz55XSJMNx9KYLGsMApUKinrCZNqwv1dwYa9Ytxfsdh3eR1pbolxFdB0pCNK+xJQFs0KDdAQx0F46ht7DMJB0JhYVRrG3aIjSEFVN4TqMCdmHNHQMhcYohagmCCkRBrwb2LU7jM6BucY4tEokChAyS5BGMz1J5oGC94DLIaNSvIzqiKO4KIfkinGynrdFIru9f8o0/5fHfDmuVCGFHIvAa4VtNvZnT1XCu3GAJfLgSyDQQiNlzICCJAhqhMUkEBqEyp8vCIRkCUmOZ8h9op2X+f5B5vMjlaKqC3xv2a7HYpBcJGodx8FK9pclqUhlmd8T70csvARlQBes+xyUOwwbgnX43kHKUsgcoZCfDzFFVp1HicRBYSDkWJJrn0pwgT4OqCIPC8V4hoLMBXbEX/81cbslXUhUe3vMbjyg/fB97HrN+cdn6F7gDjKB7ejuHfymoGsVUhcIFUlJ41xifbkiiEisJPNZwSu39/no/JzTqxZ8T20i9+8uOHnR84OPnnCzqXj7YI+yukJGwe1S8kol+Pa642y9I+gKWTimSqOnDbo5ICzXyG1LJ2DwgukkKwX2ZoogBFIlpFH5DooCFSSmaKiaCQeLEu8d6+Mr+n7HtvXMBkXva5IfEMISFlAWmul8SmE1zm+Irc+DnBBIwZKCR8nAbFoSBQRZk1RA94GhizjbY0UGwIgxhkJoSUyBvu8JQdFVGiUDWjq00uNnV6IQhFHhkEIginyG8sDuk2f2S9m4+OnzI6/Pj9CAJ6WfuF3+8h2UFJK8vfpkozUi0p3Hu4Cz+a6TMseQ5KBThRKKWhuikhkuIzJxUqiM/k/Cj1WOH+8Slc2+hIxaFynXciIhdP5sF02BEYb1epd9zOSoA6MTPYHgs+9XSokqSkQQWW7rA1Flv2UyFa2P2N2Ood/i7Rbfu9FKklURIX1yB7UusouRhZY5e00JfJK4JBApq5Z8ijlH0mUYBkqS5PXPKCBmeFl3eczR659l8eAV3PkJ8eqK1dmG/iphjyRiUXJ05w5tKFgvNbJwSD2AMISo2Ky2rLdLRKMxBTy4tcfjs4Hji3PaYcAkx63DmhtTwz/7nTOues9Xf+VvMlEOGRULJXmjkXzYD3xwvCYWNboWlFEyLwqq23tMZKD7eAo6sU5Q1wWzpmAxUQjlETqNdU6u4WSQGFVRNjP25jX1xPDkYkO3W7LdWXwydLZBxgzFaYoGhKKeNDmKxG+gE6xam2vpoceUJUJ4mkpRlA1B1QShKUzAOou1HUEIBmMQskBUde5OFAy7AWsHmjr3D8ZYUhIUOg8QtJTI5CEMpGDyYDp1JCRRXMNfsrLnulKPKb2M3sg1XMxZsBJMqfl/6Zn+ytfP3Ey1u56Pn5xgmgpTlVy0ntYFipDVUmfnA23v6fqcEzLETKHSKWKSgiLQFAVBw6XXrG3g+WqgqiPTaaBpoCpAih4lE0dKEqdw+LkZnU9c9YG9puRwWmMpCMJwNJlASByfXbG8tJx+vKESkoOy4K1P3eKVr93kxckpV8s13/5X5yyXPYJA2SiqvQlRaCya4WrFsFxTmISZShgkKYD1CaUETaMgRJKLdF2kH2LWGQtBpcDHjFCO12vsmIEdQiq0FrlIHFf2+ZmWxj+C7vgjzr/9DdRqS1Xfpd88QeJ59d7bvHLviGlxwI8/eMr/+j/9b/ybX/tl/oN/9Fv89//j/8Vvf+d3CFVPtXfEz73zKoeTA/7oGz9gJ2q+8vbrfPyjP+HZ8Xd48uEdzi4apl+8Q3KSR9+8gN5y+2jBK/s9nyqf8K2ig6KCoPEd/Pk3fgetIkZu+cy9I/7xP/w6z93A++2Of/XNh3zr/WP+/q/d5s6dKQ+7e3RWYS97FtMpb9y/z1AIugLKi3epn5/wpVITXq05P/r7LIfE7333IUp6ZnXkYrXh5PIZ9165xWJ/xs1X77N3x8LslO265+xZwcOt5fHvfo8bN6YcHTbUc8+k1PzcvmeYFTzd/xwujA1NCAQfGPqewQ4o0aMZeP7oeb54lGNSK+7cKJkaxbxQaNejQiR5l/1griV6Tep6pAJfMMoboVACJSPIgpQkPkS892zbXZapVjnXR8kCKT85XjEGlsslRSWZzGaZiOnjqPmFYfQXtn0iIhAqEVOk1C7LRWPKfhFT0FqFDZGL1hFFYhoChYa6zMAIISI1gloJ6qMCnwxbm6fuB3VDEgqHodKG2hR0tqN1gcvzDd56DouKSV3z1V/4HNb2rDZXPHp6yUePn+KtQxs43J+C1vSyYug6zj9+jFGBZs9AbWBgJL/B/nyS08Y7T98HLi4GCgWmkCwKMB5WrWXwMW+FPVibcdQHB/t0g2XT96T8BiNk/oNOONvx7Ic/wHiYTW7Tbc/p2jP25q9x9/YNJtUe0Qr+6I+/SV1O+K2v/RIPPz7nG3/4J4giIO/MeevWHoezhuXpju1F5LXDGZviiken7xFkxftmn+LujM/9vbdZDoqzdzfcr0sOmsjt6hxXbWA6I1kBVvPB9z7g6bvvU6kN0wp+62//IrPZhCfW8vTZBb//h+/xuU8v+K2/9yku3T6bMMFvLTIJ7t+8mbOJSom2V6jHv8stabh5WNDe/zSd2efDF2e0z59namaj8LFnMqnZ29+jnDYc1iWq3tB1A6tLxWZw/OiDJ5RGc3Q0QxcOU3lumcDRHG6Ud+lDGmE64xkKHjv0pNRjhGO7umJ7BUI6tIZk96nLgqkpUCR08mOzLnMhFR3RjVIjk+VGSYiRyZNyMZJAqQopDHHMhmL8+txg/fSFZl02vjNK8zqXwUEyaayNdB04n4cILuQizsgISZBklntU2mCjxkfDerBsraMJAaMTVZGQMiF9hwJKKZnMEofTOa0L2JDYrxsKrbEUSKmYFTXr7Zbz7ZLNpmOzalmYgsYYPvfOG5Sm4HJ1xuVyx5+99xxnHUon6klJOWmwosAnwcWTZ4ShZTIVmKZAVCXeJwYbmTeKqlYwBKINnJ11xBAxlUYkwY0SWuvZ9I7kE8HlXCkhAvPpnARc7XZ5a+EdiIgUITeQKnL66CO2ly2lnqNrxWb3hFIvuHv7DfbmBxSy5t13f8SPnpzxm3/7l5jVU/7nb3ybddcibzYcLRrevHNIYyo+fPeEuSp4+86cRz96H9vueHp8izZFPvP1t+g44N0/X6E7+Gu3Z9yfbDk0A04ktlETdwL70Tm/c/INjBqoVMff+muf4eu/8Q5Pup6LtuMPfuf7KBn4N37tVaKecuYOCUPAd45bB/ssplOGQgIeffJNquh4e6/CFQdsm5/n+GrNn/zwGdMyUhlw0TKfVhweHaCMZO/mLareoiZb+l1Ju7N8fHqFPL7g8GhKUWqKyjMTgskMunrOan86SrDFqFCIWNsTgkcLR7CW0+MOMf7u5xPNpFZMTIGREh19bsTKJg9eox3fr+zlkXIETohc8IsUCaOXScmKhBgHeNfyvesG65PzM9iBy6tLqqahqmo6H3Exx2WnmLNDrY/0g8DHPEvWIqBIyNQTlaYoc2j9blB0LnBpPYVJNFWgLASFFsjQIwTMpGRawuzuDBsiWxdoTMGsLPHCENHMyhpi4mq7YrN1nJ+uKKVkryi4e+eIL3z2kNXmkm2348/eO2a56ZAyUE80zd6CIA2DKNidn3J1cc6kihR7hqIwJA+djZRaMp9p8DlvbLV2bDeOopQYJTgwMPjE1c7mgYULhCHh+4FCF5STmj5mfw1B5+eTDAgZQQvWV+c8+f5fULSB6eQ2m+5jiJabNz/DzRsLSj3h0YtzvvEH3+cX33mbf/B3v8Rv/8H3+dN3/wxRe6rFHp977RaLasqj904ZhOGz9/c5+fh9zs4fcnF8wHZWce+r95l7wYcPW5INfO7GhE/NLTeLE5o6wHROshq/k3zrn/8pRntqteb124f8w9/4Na6841nX8a1vfsD//q2P+I1ff4VXHsw5sbewXuO2lmlVc/fGIV5LrBGYzUcUV2e8WVbEO9XFjOIAACAASURBVCXrt/4WGyf41vvHaBWZVYnltmPTLtnfX1A3NbODQ5oQEOWKvresLjXng+Pi3Q9YzBtms4qijmiteLUOuNJw1LyZ5c+jLSbGgLMW5y0Si8JycXqaazjpqArJ4aKkVJJKKfA9mhxVFHwgqdEfGsCLhBNpzC+UuBHhXpQVCbi8XI98hh1VVVCWC5QqfsKr/rO9fvacqRAZBkcQEpdgu3O0Q6BEZr+Ci+S4pTxhhOyrcj4RQiB4gVeSgMB58CFbjHsbSRtLcOBKsCaiVWKiM/JTaU0hJROtqMuCsjB4rwgx74OESBSNRnc6G3ylAGMQhUYWCkafR3CO6D3TuaaoS2Y3F3Q2cbX1eXIaIqpRmFJSKBAh4X1CaUE9MxgBJRGXmRIgCmKSXF4MWXZIGH9ON6qYR82/kKN+P30yJRJjQZEiYdhgV8+oxAzRHEH7AiE8Wmmih2fPlqyvWmY6I0j73tJ1S3bdOZNmQl2V3Lp9i4mesVx6nHLo0mIIFDLS9QK7U6TqECET/dNzGjyvHUQmpee0bxmqhuLGHZIDQmBYn+HiAGrA7TmGkKWOKQZQAlFqyrKmLifUViG0opzW7O/PuXXvFp1KtCqw5xtmGMrpHqmcIw9uwmbIqMpg6VJgtdGcLBXTgx1FlQNDq1qzWFRIlT0J/Tqx3a6pe0uz0yiZKJ1k2hiaUjGYht7BZusIweOly2hyclCkFiKHCcaIdQFNpNuQt6alopE5RE7IEfM/TtNlHPM7IiAEScq8rfECqQskAjleWikmAjF/sMlrqfgTq6mUwHmPcw7nHDbkdbMav4f1IUsfUp74ZYvHGNArxq2OzDecD5kaGFI223e9xalEDHnTFozCSIGWmUyjpKQsNVIotNbEpHAxn1NBQmmJLnQO+RWQlMpB2UYhYpaDZHrakGWHpqDZm5G05qKN+CFPVKWRFI1Ba9BFfibECPO9CqMExTxPPZtJjVaKUhcUO49pPU5YRO/pQ0cIAfBj3ELWU+ZN8aiNyr/RHLbqB/rNJaiGejJH2h1CimzElprVuicI0ClhRMK5wDAM9MOa2hSUZcliPmV/b05oZTZWF3kIVMi8Ydx2kqAb9FxiTwf69pJ7jeNQR9ZuYCugPLqBspAGQeyWtJstUvf4ILEebMySBykSotCYqmRST+lFQbCKUI1Y8/0FujS0MlJ0HXWvUKZClVN0s6DQe6iTc1L0WBfohsi6s6AUjevRSmbZbWVAJNq+IkpJ3+9IIQd4k2LGsGtFqSWxriiTpOscPkRCruZebpK0lKMsJ38OU0jY3qES5H5JjL5Y8XJqfm3wE2JEhglgvBvSSFJinBVeE/uuFQDZPiXgL00H8yWbPRcx5feSlJUBIVx/vQAyiSwlQYhjiHWMoyxpJGnG3LJFBIMNeJ9DtJVMGB3RAgqVZXtSKgqjkUZgjEFLhQ0q/3+ISAW61IhWEsbzg8r+OGHUOCmNODvkInNmqOcN9WzOqo+0NhvzSSnLk4WgUGLU70fqqaFuNCZk039ZlcQIdVFhXUKsHbLLiViuH/D2GkXPKKUkb5KvtYXiumcNEBy2XSFVSVVOUQjEWHRoZej7wNn5luA8lcykXWs9/bDB+4GZaZg2NYcHewhb0A4hA3FSwoyuuW4QDKpAzfaJG8X27IK7Zc+tRSLguHIWZnOMaGCQ4AZ2mwsqZdHaYodAHyQp5YwmYfLfr6knRFnTREUo8hR6vpizWCzoZCTGgboz6AS6nuGKBWqyx7LLd5BzEZkS284ilGBqe4oig01MoWia3OS7KBj8QPCe6eAhgSLn4tWFQRaapDXOj8HqwRFFyDETo2cD8jQ8xZTlZoPHikiRtZ6jumAcILyUD1xXUj9RT/CJ9+iT/BUxNnJ88m/+sjIi+/SccyjrkCqHCtuQ0EJCSjgf8zka98fXd9h1hlkQgRAViXwH+ZgVRtZ7UmcJXuA0GB1REiolR+uDxuhc9JbKYLQhRk1MMjeGIkciqEIRZMryPaUROtdwSUkCmYgbvWUyNRRVyfxwThcEoY/5cRECypgMspAJEaC0EW0ks0WZ74AYmc4CbRsoiyIj5ZeObsgbXWs9Q+gQMUvLM1zEjGqMXOxndXAaZUgO12/p1udo0WAmc8RSI3FoqUlBcHaxZbftqFX2LQ820A87+mHNdFJRlYaD/Tm1bujaRJARpXOsSCEi1oHvJaJZIF2iPV5RE3mwSEwKz8XQ4+uK6sYNUi9ILmG3Z4Sux5jMFxiixEeQKW88ZaGoqppJNWESDUYofCOZTScsDvdxEgYRaXxBnTS6mpDMBDnbI3UB0nOC99gh0vaKVasomwFtZPbTSkndGISEtq+wXaLvWkrnKQefKdFGUhqVlSmqwoVMTY0xEAV4ST7zIi8ufMzyb+8Djojt87NKaokmol7eP/Ll+clyb0alGATBuOEffbniug5i9PPlfiVeK4z+ahfUv/b6mZupfBAD237HEDecXQ3s+kBVZqNiXqkJTKkwWlAXQIq0fcIYhxP/N2Vv9mtpdp73/db4TXs6Q9WpqburJzXZJDVY1EDJtqwkjuAYBozEN0GA5A8IchUgf4DvcxUgV7kIggQxICUOENtIYCRKNCQySYkSyRa7mz2xxjPvffbwTWvKxdqn2LwJqA0UCnVwDlBnf3ut9a73fZ7fE+iGHh+gbQVBKaaHFauLnmefX7/SyleNwhaSR3ckxiicKqiakjvHB5gk8VvB2cWO682Iu6upS8WDBwum85pt79CixNoDXnQDz374E85PV2xudrRdT1kmfvE3jlgcH/Dg7a/yxefX/Js//ZxUGlJTMb1TU08Mj4KjSpFCBJLWxKbh3qHi7QeS44cVi7sFn45vcNHW/Jvf/zGXL3b85LRn6Fu63QVpTwBEqNyNjS6Ppm83xyj2h2dH6F6SNgPm0T9EHXwdNV6gxlP6zYbPPr7hf/7D7/L+O6/xX/zH/5A//otz/vN/+j8i+2fcNR0LOeWwmPC1b/wqkYYPv9+xubri+qOPGWOgPv4FunifYTthKd+i61YMH/5z3j6J/Kd/7z7ffdbxX35/TXr8TY5/7WtIv4J+w/oP/xC1XvJQ19xcO/7pP/szwtgR+g0P3rnLL//mY1a7Y9qPDOPlF+hSc/dX3uTBwzlf+6U3MEWJLirK/nWM3xCqA7wwHKwix5fXjOc1q03ibNlz08HmSoM8Z3d1xltvLWgmJY/vT2nDBHun5mJZ8cUzWF47uqcb7sieqU4cff0NqlnJYjZn3Sd+fNPiSHiTGLRHqI7ClBRJU04sMUTW6yXSOTbnHamQiFqiDypsVSKbGaooKKoCKQQm5YMzxkSSGeU89CO+6zmwFcpqbGnRPtAOjmEYuLlcEVLEx5S76K9eGW879COjXzH6SDt4lFI5S0nlgFupVMbfalAy4UJCyIjG040O34PzOTHdlpbRJ16crTKhMHmqwlLXJYtaMikFQRYIqZlPFxhliE7SDp6LzZZpKQmVpCoM9+4c4UKk7z2FOcAl+PHLM3a7lsura3Y3a7QYePPNE+6czFkcP8YFzbf/8lPEODDM5jSTgqOTGYfRsYgOTR6bx3qOLQyvnyiqWjM9atilOct4zJMfnPPykyWfvuhZrgeuXj5lHFsCG4RSbMf8nrndNh9iiVykSkFsb/Ai0N18hDx6Cx7/EroQFG5FioFuvea7H3+BB/7B3/5leif5Z//yr4jjDSemY2osE13w8PiE45O7nL4MtFvP6tkZzo9U80eMsmTZzbhScC1g++mfIa9f8Lv/6AHNRPEHP9jQFgte/3d/G5E8KvZsfvAh7ac/4TU7oVaR/+mPf8wQArpbsjic8Nt/920a2fD8+Qx/c03qXjJ/5wHVYc29hwvKokYbg4x3Mf41krIkXdAMeVLxlXslm83I5c2OGAUvdopdHJDxlOm0YDopmNUFs2aCri3d6HhWJ8bOcbXsKfFMxcjs+IDqcE5ZlAShOe17hhTx0pJkT0wbpFSUuswyKiHpuw0xjLjtiBgCtklQWIqqAVOANsg9LUvvJUq3Jl6hNAhJCAElDVoX+5XhX12kgstSWiHzhefLr9sacnQBHwK7tgdA7b1XCJWpkASsyJcq7wJBJKTOAg8fEy7A6BJSK5qm5OJiRdtucWFAiERRaiorOJ5KotBEaZjUU5qiQgSFc3C52uSCaqpASk6Oj9DakLSg0jO0LHm6WuNGx9n5Od2uQ6Se4+MJ7753l+n8Hs30Hj/46AnPT5dMJlNiVXF0f8FEwb047guESCoqki15cKSZNZLZcUMyJZfhAdfnAz/+9jPOrkaenvXcXJ+zWy+JYkfC0/mU83PaNk91U75gKSWJtIQwMtx8BqolvfN7SB8pti+ROuc5/uD5KT9ZbvjtX3mPb733Nv/nd59zcb2jcmvmRnKoLfemCx4+eszyOrK89qwvr+h3O1SxwBYHbMZDtkJylU5ozz6n/+Ef8ZVfP+LvfnXBv/xwzaerQPnNb/Fm1aB9y3h+wfLb3+NAOu6bwA8/ueKPPl7C9hqN572/9SaTZsLF5SH0A3H5OdXJgvrRMSf3pxweHKK1zQXbo8MMCjI1LgjaIaFCySSWrLYt7RC47CVrBEZd0JSKo6OGUhvqeUPVBCrnOV8mxrZndeOw655AR1UXTB6eYI2hMSXrbWA7BoI0BBlxOuRCzVRIK7C6YBw6+m5L7Ef6fkA3kWQ1xXwKxpK0RWqDMvkMUvtGUvYVZg9i2Oe8WVvuK4rwCq8SQsw+banwQfyMzC/DtCK71NL2PbvB43zMxa+QKG2Ie0mU0ZJC50U3etAmT4F3bUaqj06SpKSuLJttx9n5dZbDpkhZaayRnMw1WkmCKLCmZDqdo5IkjoLVpmXbO8JUUxjJ0XxOVVZ0zqGwGLNg5R3XL065ul6y2e0Yhi2VjXzjF+8znS84vPMOL8/X/ODDp8SqhPmcg5MZ00nBvTBQpoARAaEMsZ6xmChOjiTNrKKcFFzFEzZDxYd/+oTriw71tGO72XJ19pyYeiItURqCUIRhJAx9locJgbQmY9nDJUNVIBpJ8fq3sIdvo7tLdH+Na1tePt/yv3/nA16/f4f/5O9/i+9/sua/+f1vY8ZT7tuWmSiZ6oKH919HyJLTF4Fus2N9+RyXJPXB67TMGPqSS3XCrt3S/uD/4t4x/ON/7z4fXvT8959sEfff5c1vPEaFjjS0XP/pd1CbNY/thK6X/Nf/4nuEdk1cX/P4/Yf83u+9j+CQ5080/uopykqO33+DxUHNg4c5dFppg354iAw9ydREoaj7xGS7Iz4q2bY915uW7ZBot4oobhjbFcdHE4rC5Jy1SYmeFKzbkvOJpN163FXLTIxUKnL06B62slRFTT8mzlpBIBEUDMLncHhlMEahCp0nqO0a4T3dsiMaQSokZVUgigJTNEitieQGQXQuX3SE2Ms9I250jN4RokQqw3wxf5VZGFNgu9lm2qRz9MOXa7j//9fPP5nygb4d2Y2Bdgy0W8c4RlRKSKVIKoMpYoAQ8kRK7oEMNBqZ8i/jIwwhZaKZEESp8ubjE9EnTJJoIdG2yON0U1EWJVaVxDHR9QE3RMIYcJuAdxK10NRG8vjeDJEsWha4DlwHKs04nBXcFCBF4O5hRV0r1HZDMXTMZMgjYFuha4VSEEbwQnA4LTIoYdGACLy4GBnSwGYTOPXXXA9d7oYokDgEWTN8C5xI4pa+czuh2lcH6bZzK0hhJHZbQntJsGfYOw8xLDhvtygii2JCGgWffnHF2cWaruuYGKjqgve/9i5Hd+7R7RKdb9mmNevhkqvrp+iqQlUlvipxusBfPsMMV3zzseDuRPDp2Y6nFz2rVYtd3mCrK47tijrt4O0a2YMNjnWfeHmdUFZQVILDO8fcu3eMO88dfhfz8+62LhtGu5GZMtRVwlQNKhmitZBAizWV6Xh4XDOtBIVNbIVmOzi21x3nrWc2kzjnuHOnQSnQxlHVicPjApcMY4zs+ohII33n0NphqkRBYmag956dG6lwWQtcCJCSQmVTcC1qCB7heppaM58VzKcFdWOxRY2yJgeUCoHZhy/mTonYyx40IsV9iGmW2QgEWhq8DEghM+nSZ1/RlwtB71xOYe9vi7pI0hqiyshxmX1IMQnCmPYJixotQBRq3ykEFxM+5RlwEjJv+CEXTT6JnOqtNFprtCoR0mBUgSQTA71PBB8IQyCQEEWJ0pqDpsIXESMsKYKTASUqFAs6K+kqydGiZtZYTBhI48BEeFQhmBxPMIWiUgIVcvp83RQUVsGkQWrJajPS9g7vd+ySYBkVrh/RWqKFRzGCCCDjfsiRkPjs1bF2719I+z5SXlMpRtzNklFf47ZLVGmZvf6YVgVON5FClVRKcHnd0Y0wDiNaJKqJ5fjOgpO79zGqpG0DXRhoY89yfUmMkWJSE7XFFRa3W+PaLa8fBGaNYd0NLHu4ut7iSsPkcMvMOI51x/GxxIs5M+kRMaKWCeUikyoyP5py5+iI1MG4yflACcE4RmTvcWPAqEC5/xwq1RClJAiFlD1KOOa1xlIiRGSIgl0I+M5z4wdIHoGnbhTGaJQKaBOZNDojcUfF6Ad656n2lCqpIkolyr0nqA8jKTlqnfcqmWTeyxEUFKSkqY3CGEVVVdjCUtj6FXL4NjvqFQFM7PPW5O1z28uVbruHrwyneU+E2wnUz7YFU0zEkLv/PiSi31+81G3v/pb4mnPPSDkv7pbihMiDmZiyOyoJkdePUARh8DFLZA0CpMrFhLQgLVYVKGkJ+8yfEAIyRULnkMagSsWksIjZBC1KpLA4GQlaEA/mjJWllo7FomLelFiZUOOOKjrmKlEeVJACjREYEuOY6VJNo6Csoazo3YhbBUJqScpzHZbs1jkWQcuUz6BX62c/DRQBKXLBnIIg+jyhS6/GUwK/WyOUxW2vMaZk+ug1ROF5uY64oDmoGrqd5+X5lrYd8N7T1JpZU/L66/epZ3N2W087Onoc63ZFu15TNA0Yw1jsyb43Vyx0x1uPCwoTeXbZcXm9Y3UTmK23VCFxx24R1cidt2eUBCYisNwkaKHSM0oVOTo6pCpK/NKRvMuZOT6hOs84BLwLWJ32nu0MgYhSZ4iQ6Klt4mhaolWiHT07II0ZGBIGSVkIiqKirguETCgVqCoJ0hBGzagC/TAioyCMHolGabAyUapEH3Lz1IqAlpGkb212EWsVhagQUSKipy4rbGEoiwqlDerL60fkEPcoMlQCeTv13cv4+OkEi9upLvu6IqWfieaA3NTwzhGycpwxZH+qICGlIu4bEElIoo94AmiZJ61WIfcI6RhhDPuL4t43FYXFh2zct0mShEIq++oMMrpAy4LkI6PL3tkYImEYiEEia02pJXdnUwQaIyzeCYJKpMWUprTUOCSBxbSiKjRqbLG+YyoD1cRwqCdUlcEqQXL5HJw3FmktTBogcL1yDGNPtfMs4w0715PjGwQK92oNCbE/g0REkaOBRDREH/aTjv0akpI4Doyra8bFNa44ojw6pIg1F51Hy8S8qFFR8uJ0w+qmxY0jpRGU2vLo0Qmz2QFuBI+jY2Dr1lyvzjFlgS4LgrU4ZXA3V6huzfuPFMd14vlVy+lVz9VyS11tKYsth3ZHLXuOXquRg2AuHKsBxCphTcQWkcPjI+4cHeNXCdeN+L13tO88Q+kYx5AVKDLlxphWhD3sRNJjlONgUlAYgVLQC0XvPP12YDV4ykIQQsFkUuapkgpYC5OJISSFT4ZhzFAv7wJKeZRJaBKlAhcjY3BYQl47MfvTlcg1XCkqiB7hBUWhqCqTYRVGobRFSJ0bEClPnrKCjaw4ijLHs6SfnlEpk1gwxhKCw/vx1Tr6m7x+7suUGxw3lxuWrWe5yzS9xD79Wkmc1vvOSJYzDeM+JMtq5MxQINmQeyjbEElSohF4U0AzI6VdNoRaja4006M5k6pgUs1zDoosuWl7lusdQ5eRmP6ix+ncSVzUBe9/4yHOC2468GOJHwITa7BScHaW8yEOZ4bQRa4+/hRz43mkPUeHloNpxfV1z3bneNZGWiV4662GZl7RPFjw2Sdr/uTPVlRhpIyOG17ihGJSH+WHFZaIOIJ0ry5NQuS/lcpdnOj9l8aGeRyZhoE0DIzy+7BbMf+df4KdHfL9P/kDDmXHP/jaa5yuNvy3f/BthCqxuqQ+KFgclfyT/+gfcff4Ef/DP/8el9s1l+qSq+1P+MnT73H3/i9w1LyDO5rQlSXjD/+c43jOf/aP55zeOP6rf33N8qZle72l6D7Gv1jy5oMNjxee1//te6TqDh8vHS8vI2c/9DQmclAFvvLWYx6d3OGvr/+KZbekN9kl2D/dQlhzcneJvOe5U6V9zsYcH1eMfgfhGVMz8otvHTE6x3qc8cnTHR8/2XJ5ueI0DATfcXTcMJ/fAZuQas18DrNFw9NZyctFQXz+lN12w71lB0Nk3swpEDyqA8vtDtdeUyqHrAJGCKRXaCJSKoqT49wY2O2YHjQc3JlS2EwscrokCkXaS3eqUkLyxNBnmQGghQUhKIoSpS3BB0QUFPuw6tE6Yj+QgvuZEXFKkaFr2WlYd34vYVVEo8Ga3L2XEoRCAl3vUFJhigJLiW4suSRNDCEyRDAxEYQiFVMQI3iBkDZDTaqGZlJiTY0UBiULQkhsh45+SOAj0Y/43qFmoOqSN48WaKnoXJZHhdHmMFOl6NoVXbeiKgxaCdZnZ8TWcTf16Ink6NEdhn5ks+m4HgMXu8jB0ZTpQYU9OKAfI3/5nafEfqDxO3oUGyxVsaCwE6RfodyGJLagRoQIKJnlVrIQaDVh6Abc4LLsTwiEsqSQaJ8/JbWJytzh7rvvcv/Xf4eLDz/g2YsX/M6795mVku/81VN6l9Cmpq410+MZ73z1LX7pK1/nhx+d8/L5mpXasvM7vnj5EVqWvDF5n1BZ+sOK/vITxs8/4nd/s+a9k7v8wb+55ulFx/Onl0jbEvqae4uBbxzvmL25oP7117joPDd95OyzyOgSjxrB4bTh8cMHXL085/T8KR5BLEvcxlO4jpvDjuQF00IitQY9ITIS4khKG2TquLsoYGa46yu2reOzZ1uGsedZv2G7NbSd5f79Yh9g2KO15+TQ0jnFc2Pxux1uGTEuUWx2FMqiCslUR0o8oVuj8VQFSC1QJn8mRQI1myKkQon8+Z0sZmijMbYgCZUNv0rv/aK5KRHjuCeM5cs/QiKF3B9Ve3xzyuAJKVWWFIUMb/jyK/iAGz3jmPABgstZUSFGkshnS5brhdxFDi4bj7Ugr+o8nQoIHLmTn4Qg2JoUJGnMAAphDLqwNJMJWhUYVSKlRaBYjz3DGDOWOTq867NPUkvuNiXNwYzeC1yA4AwkKB7eIfiR9Xq6J6Np+nVHf7ViPg5YEzh6c46SidVyR9t5Xm48dw4rHhzM0dMJqq754C+fc3m2YRJ2kBIrnqJUSVMfQ9wi3QUibUD1CJnplzDmZt+0yXkzbf9TtbnUCKXpLy9wqw3b6kNmJ4+4/1vfYlxe8RcffJ+v3pvza29N+eDpJd/70TnaVJRGMb0z4d7JMb/129/k8nrgr398QSt7WtHxYvkF67NrXn/8PqZqaGcF3c0O9+T7vPO64t//2w/4kw83/Ku/vObJi+sss0ufYiYF793fMF9YDv7+QzZ7r3T7MuIuI3eryKxQvPnaI4SPfH76Ec4HfFEwOugueiZ1h9VdbuqUBmFqkkiE1BJTh4grZnViYWbcDRWj93z2PFNhzy5XOcA6Dcznc6pqCowgWhZTyXRS8VIXDH0kXnqCSMw3LbYWWFtRyoixEbY7BjdgdS7KVbG/sOBQhUaZBcFlSXozn2ALiy1KhJREYbL3UGq00mi1h6DsA3jTvjErpfxpU2kv1yZFhJBImWXZMYSfOYOC9/S7HZ2LtGNA3earxSJnhe5lT0JK0phlbtpYtDHMSo3aex8jiW6/NnWCoAooZ9C3MA6ZFlpoqmZKZS2FmSKFRmJp48C273EuQQjE7UCQCWM1jbU8eHiCj4JuTMRQEHxNqe9gpORmMyeEkaY0RBfZnj7B7hwPlGN2UjFtpqxvWrpu5LQNtELy8OGMsimxBwtePF/zVx8sqUJHEQfWPGMUhkl9BwEod4kMLVG1eR8QEX2rK68toTD0u54Y96JLoRC6yPvpZsdOHiH7yGu/8U2q6YQP/uK7zKXj33r3Da42Hf/bH32U5bTGUs0s05nm137rl5lPj/jeB6dsxi03csfV7pQvnv2IuydvcFy/xjgr6a2h//hjpv6G//B3F9zsPP/Ld5dcXO+4OF0x3VkmVwO/fLLhjZnn6Ft3wR5z2jrObxKXP4k0KnJoAq/fO+HuwYIn60/YDGsGo0EohrOW6AsOFi1iGmkse2BTRaAlxBHikkJ5Xrs7x8fA4AdOL3teXHasV2uWcSDFgemsoqpme8JjR1NBXZVcVYbrRhOvBX3fMW0H8JHS1ihgUSS6fmA9bphJDyVolQPi1f49V+aAEANj11HUJfW03kvyIlEZIhLfD8Q9QA7i3qsISQqsKNEmoXQJKMbREWOkKiqcz2Q/LSGpn0p0f57Xz32Z8j7Rd4Hgcjhg2Ju4RAh5nC6zuVjGuM+E2i9zkfMeUsjhdCJEttstUQZMElmLXQiSbEhNg20isgRhLNIaqtJCknh3S+voiGHIBCoZ0Eimpsr5PYFMYRKabmjZrlpioSmVoNJQKksShwSVkHVJGQaOx467c8XxTFPFxNaArBvGKHh67TE3HZPLxGoTaCY1w1awGxJjVIQk6cdt1g+nRBRkCtpeu3zbXU8CiBmZnh/t7du+n2AlCMMGtz2nf/Ypab7h4N4JEwmX4xHr8ZQUngE9UXjeeest3nrrDs8//oiXnzxhpyfslObFkwu65YBqjtDHJ5iH9wnbF7iLNROZmNoJzk9x1sK77yBeXkH3FO+A5QXL1DG5CTw4UqTKcr1VtEPDdP4aE+2ZmGJCfgAAIABJREFUFiP9asPpZgmypTnUHMgapQvKxRFNYdj+5HOuNjXlasJYSrwWXMctLjmKsUWjsfqAaBRBDMwOKt4IhvUyMbQ7ttuEZ+T8+gbbGFQ5Re/lDrPG0kdDDAeIneVs17LtA2HTokQg9WsYe4rQ00ws9aSiVhYtFNLv3+6QD5rBKpqDCbPDBUZrlJZ4oTOpKbis4zYCQQBk9lcISZKGJBRaFQhkTjwUCWMzuNv5QIp5CnubFXX7jN0YcHvTfKZKSpAxm4z1vosfw0/1TKS99wOiSySZD9F+bGldoJA9SIFVkApDUgtsIVFWZTSy2h/IUu8Jg4EUelIcCWHAi8AoI7XUGFXk3zMJktCEGNj1O7QQJJ2ncZXVSNUQhUUYhbIj02aHUbBoLKPusdFhbEm9UGx9ZHfRUy+XpCiwRcmYJFddHrGPUdN1HUFkEIAToExeRy5zA5AmIaNAq4RKCq/AU5Bukdv7TqnvB7rrC9rzObvFIXVhmT64yyBnrMdECmeIOBJjR1NPeefxa+gQefbjj9gMBWNhOT/fsdluScUMXdaYozmdH+lPP6V0LXebBisqYrSIkwWicMh1lQ/280vW25HlpsPGQB16tr1m7TWVPaa0mkkVUSmwfPkkHwRTSSNLtLKYeoY2BWG9ouu3bHwFWuA1DHiGNKJTRKWIEhmNHJVHFZqjwwlDr2m3+bO1XHuaaZ8zrbRBCZMvNVoyqQxRRpKY0znHlffMBodFkNyW6EdU7JBKUjYVWiiMUHmkk9hPW3Pek9KKoqpRWqNNsb+c3PrcslxVQJaw3pLDhARhciF/uw+KnCFFSmgkUeaiTqmfPZ5u86EynAJIAiESSog8lRJk7+N+XCVE3HsPBSLpV7KpEBzbdkAYB1qhiJRWYaczEAltI1JrktQopbE6e2diCqQ47OEAAykGnIhIBKUqc25WgkT2lXRDlyfURiPxVFYjpCWKCegRaUfqusUox7zRaJlQzlEXBlFNAXh6NVCsEkZ1ECR107Bd5Y7uEDWRyE17zW474AGhQRsIUeyjC/J1VclcIMikyY45g1B5j0l7dUG/ukYrS/viHC08dx/exZQVN0OF8zfImIhxQErDG49eZ96UvPzsU9bO4MuS1c2Gi/UNfTSoZoFezJFVwXj9hLTbclhVNFoTfAWzCfJ1iRxewPWW3XKL3my4cR16YzioYPSK1agQYc5sUjMpApUKbC/PIDhMk7DJYFSNLip02aD9SH9xztZXjIXCa/AisksDMkV0CihRoGRBJBOE57OKwhq2KnudbrYR9Mi0awkKlKpyVg2CurQZQHQwJXjP9ThQjZ5J30MYII7I2GMIlIXNuWgTlT+z6dbfJIhaE2Ogqmq0tWhb5Oaq2McJSLX344o9Iv2WQyZAmlco9NvuuRAZliXET9eP1oYv14IxphxOvA+cv5UPEjwIhRI2//d8jpVPKYHeX9ViPpqEyAqJtu9JMmCFIqaINSJ73ooKU2RZrVAWKQ1Wa0gyN0eiI8WeFIccISIDCkmlcj5dTHuAv1SMQ0/f9SSjCVJgpMBIQxKzrPqxBhtGZk3PvNHMGoUOgV4nsA0uwsu1R29a6svIrg80k4Z+m9j2iTHmScm2W+N8ZIiJIPfrJyViAKlzj1PKSAygo96TqIv9e5sg5TN63G5p9Tm7F+ewGDm8s2AiBeswYedW4M+JDCA89+7c5f69KevzM3aXS3o1oUXw/HRFt/WoySF6scAczvDdFcOqY6EEc9NAbEhGIV+7izA3iN0Z4yDYnJ5zM7TcTCKLWkJpuOkNvS+ZNsc0KjLRDrfbseyWIHvKuaKhRCqDaeaUVtNfnLPrLLorCFoQJLSpxxOwwWfvtZySpCNqR9VY7kRFt42Mo6Lt85TtYLdDFznEHZEdppXVTJIihgmi0qyHgcFF5sOIJJDcDsKIij1FkdVCRmoUEvag15jSnpIqsHVJWU/yBTdlvH+IMO4bY1kdkaEvSchcS4Y8ifMur4Hc/MtqIrilEMtXHsSf9/U3AFAk2ta/khflGwCIEHOOh8oL7hZxHNKXNo8oSV7mMEQ865uBANjRYwpJXSvEpEaogihbpI5gcoe9Li3BRXw/kkJP9Dui7wne0WtQKApbUxiD9y5fpmTBrttycb3FF4qJFtydgzaWLccEJZFNQy07Km64P9fcmymmaaQtE019yHKA/+e7L4ltz7TdYucVs7tTXg6JKx9RPj/c1bAmxEgej4NUucka92CqV4nl+WZJQhIo9oa42+mFIPQbkg+0n/0IDpa89qtvU6iG07MZu8FnlDgjgcDX3nuXX/vm1/mT3/99Lq+3bH/1P2CrDU8/OUVFqKYnmJOH2DceEf7fP8c9+5iFmjGv5/TDhKE4Qn79l5DFE+SpItw8IWxPuVg7TJH4hdJBZTkfZwzVhPnJYybasdAdu+ffY3X1GfW9AybHFSd2TlE01Hcf4tYb1p/+GHFm8c9LboqenRq5iI4gBY8ODiirOfXxoww9UFvmRwXzieHaRjYrxYfXa67bgQcXS6a+Ydbcw0iBFYmDRhOMZFceMnY1Lz58hu4dar2jFAOVP88hzDFyVNccHs9ZLBZYW8CQO9nd9ZbgHWNjKQ9mTI6Ps5dDqldIezd2XzJwR6S0+4epQFUkYfBuJMWYF6JKWDRCqGyu3x9w+mcuU/kgc2N4NTzOpvAAMqEokFIQXWas3yqeBAKiIHhAK6TW9GNg0/b4RIYNVLlIU7JB6oSycZ+TpdHaYKXe5+s4UuyIIReDmXIDUmqsLkkpEhIkND5G1rsWs79M1TZQWc3IFE8D1qIYmQVDoRMHU4O3kpqORk840A0ffHrO1fWW2XaHkYr60TFRGC4vB4STKKdYDjs2Qwcp+wuVhShh7LNHTZgMj1ARrJAEqxiY4JMiuF2WdSVww8j24pSqbNgWUx4+PuDw6AHDsqTtXB7vp4gPO6bNMe+/8xXOPvuUTz/+Pt399xmbY55fbNncbJhVC/R8hrlzSDp/QvfsR8xExWw6Q4sSFyzi0RuoA5CnFn99yfrpxyz1yEXlmMaeuatY+xlLaurjQ4ytmFgH7SVXzz9BNSXVYsLUNNS6wU4PEVLRPn9OGz2rtsSrQKcHWgK7FFhUDbWtMM0UKS1a9ygpuHNcMXaGVkXOdy0Xq47JrEVqKOeLDPEhN7amjcIVkqHSdFc3bG8caRhpYkCHFQSHig5jShaTBmMLiqLKe5rfh7T7gDY6m73rSTaLK/MlQ/wthCgCESn0lxQTKmdhiIw5T+Tnt4/TQUr2eP6AVuZnzqD4qqATryZbGf3NK7iEiAK1x0R7kYj4/fargYxy92Fks+sy8llLtBVYqxHVlCTA0+bcHKmRKheDzu07/bEnhvyHGBkVGCRWl0iR9hAZSUSx60fc0IM1FCoxLRVBlIwcgHbI0tHEAoqBg4nCyEgRO0YkjVnw8nLDx19cUnUt1Zio7h3QzKacLgc65zHO0DvHRXtJinvJl87WtTDstzADSiRMhKQFhbQ4SkaqHAMSxty78dBeX0BIbJ485+DOlAdv3Ue2lsuNwYdTVEr40CElvPvGm6jo+OwvvsswuYN78DWWp44nz5Y0qqCaTFFHC6QWjF/8OQyeO3VDow3jaEkH99CLI9RNg3AXbJ98BG7H1dpjDjWxGuhiyZWfIOYnLGYnzNRIkXpunn8Kqac4WlDqgrmdY6oJpp7SX1zQXV9w0xZoK9iZnoHAGk+hLYtqgi41qijQyiNkYHHQkHyilp5tP/B0vSPKkdl8g60brKlR+714UiqMSQxmTuh6Ls96GuGh6zBph4otMoJFMq2mGFtQVXVuvEVJcIEwulcecVtPUNYi9P6Mgf36kfy0q07WsrI/FGSx/97bryVkum0yJGRKCBHQ2vLl21QMkWHwBG692/nClEIAAVpmj1UM/pXkNkOHxS2rBFkYEoFtO5IEFDFhrKIqMolQSkuUA1LHfJlSmkIbYkgM3kEcIfZ5HUWHIzeZtSqzpzeG7HeRhtG3bNqOqCWlEkwrUMowsCBKiSxqCjFgxZZ5rZjXijKNjDZRFQdsR8H3PnxBbD2z3QY7q5ncnbPuIxcuoZ0mBTjbLXEhQNJEKTBFIrkMHtEatElItdfCKU2ImpZZDn317b7olgybNXGUrH/yHLEbeeMbJ5S6YHldsnMBEXI0gSPw8N43+Mo7r/Ppd7/NZtcxvvOb7ITkJ8+XqCiYTI8xh0eYuwf4v/6E4eI5x2bKYVmSfEWwE9Rbr6P0JWpZM5w9obt+ydVyZFJF7jcOURdcuzljUbA4OqGWgakcGS5+xO7mCeXxIfWkYiYnGF1iZkfErqM7fQGVITaGzoyM0nOTHEHAcT3H2Bo7OcqxQLKnnpbUpWJnEn2reLLZsekdh9sdVSzzGZS3JmqriEowmCnOlaxeXqKcR/U9BocOS5IL6BiobclkOqEsG5TWRAfRR8a2IwaH1RJT1RTNjBAz8C7ELMHuuwGBwFi9t934fZNCZ99eEmzGDd57bFFk+4QfYB+/QfKkKP4md6mf/zKllaZpamqTUbfS51BBpTXKKJrDeSaqDP6VUTzldU5TlkhpuNgl2iFRoEmAjZKDSc3JgylgAcX1LktaRFQMo+TJciC6wLDtCS6iy5IDWzCPCRkjSim2UjNGReklJIVAMpnPoaippcYiccITkdgwR+AY/A1VM2V+8pDGBpLxNGVJMbbsBsu4DTyst2x8x9XNBr0dKUTHbuuyZn7viZF7LWYSHmUEtpgy9o6hzadZHgdnz0FZWkAwjokQBS5pELfeAE8KPf3NJyBvcI++hlKScP1XTA7XPDg8YUgKh0J1jpvPX3Lv5KuYauRffecLbnYdpZgxNYkTI6lWZ+hPdqjzF9jdhn/nV46YlCX/6w8D5+NLTrsvqA+Peff3fpWvpBMexzN+9MFTllcb/vV5jzGB+d2asrIsDgcCEhdr0r33YH6fxgpKLagnBXVRcG8x4bTv+cG6J+x64tWGPvSM0UFToa0h3IxUk46pWNFYz0EZ9nSZjmZuKYsFog646BluPG7ouRlWzKaakyODkuTLdcrGwdmbc6xzaLU/qHqJrQSTCLOGTIOKPSokotNILzCmQhcN1ip0U6HsZK9BB8JITAklDSnlYEKlCkx1SEw5NwZVgTRIYfJzEzL/jBgZZUaFKQmFzmnzty8hBEqZHKprFUqK7OMSmVpZ1zWmKFCT23DAPIXKZmCDVZbBw3YIyCCphMFGiUVzbz5HKQPC4tOIiwMaQYqSdZ/bOW7oSSGbcctKo8sKmVK+YJiCLkl0lMgECIFWltnhCQpBITSIiCciU42JhiFuQQjquw8xSoCNqGJCXVTEoPFBcVR06EJwtVoRoqO7auldxI+J6B34kZQCVgvAkUTEzg9zyPblKk/v9o2ZlCSTaUVpC9o2MvrIlnJPnwskmRj9jpvlcxIj88e/wuz4CDlcYUTHW29NSalmSJKj2YTucoVVNXfuv8u3zzxP1i+hU8x1zUOjqFJAnz1BXZ6iVjc8fs3yCw8KPr1M/Nmzng+232FUive+/jYLccibfU27vGF1esEPxpHvfzpwdGK4M6lomoiyASEsXh7i73+DQksqLSmtxRjNtCoAwbPO5dyvtsMHT+96ZGGQpaWvA5PCUYUeUwSmdo8tFh5tEpNZAxaaKqITtJuRPrZoozmY5hBqq3KXPKIo5iWqBCuzHCI5iYiSWluMUXsfm0IkRwoCEQRSZMqWqScobRA6y5PEvhBM+2kqyFfrQyi9FyLtIRHS3q6KfHBlwXgu+OItwUn+zGQXciFlTIGS2RelyF5MpWT2Y6lcCKbgiZUgxQIfRgQp06qSwAUBQWGFzlJFITmYVNhCAxofA5uhxQpBiorOJQbv8eNI8I5I9vMuFhZSQqUIRUWPREVQcS/VTZJmekiYRAqhUYAXAZJFpyo3LuJANT/EaoMyHvBUWqNiYvCWaSl4UDvW446la+luekQbGIaI9xHvB3wMFEoRVc6Ts5MazJTV9Q3DXm4cYkJEhbWGg0XNOCb6IdFKw+gUgwzEJHChp22vOX3yAdjXeHD8EL3aosYzTh4IHsYjhiQw1uI3LQjB0cnbPN0IfvC9F7hhZKan3NHk8NzrMzwOuVoxLxW/8c4hq07wL34UeNp9wsvhA+7ef8Rbr7/NW79SoPsN18/OeOFHnn7eU08rDg8qqlJSTDwpaWKs8SfvIVKgNjl7z5YFZVnSVAXLEDnfDgz9gCfSjx1Jgmoq6iIw1o5iMmBnHY12WBmR9CChnpSYUqOKgNSKbuvpxx7RwbzRFFaiZW6ahiTRGJq7Eyx71YkXxCgobJbBGh3R0iOSRyRJCvvcL2mRpgQlkbZEqNsp0+389jZ3LZJSlm4LuV9P5H/f+t3Y/9RtEyPJXE/IGDDKvGrsAQgp0dpitEJqhVUCLfPXpVI0TYOScr+niFf5PFJKSlsglWbTR3oXKYR5VcNNTcHhYoIQBoRmN/pMAo0SFwRXnctex2EghoQylonW1CkhY877GURW+uiYfw+BoCwnoAusUGgh93lvApVqBAEXt5iiopofUegIOmG1QbueIVgKETgpZ7Su43pcoXcDxWVLu3V4F3FuIIU8sc0A3R5TCsrjE9pdx/pmg0hhD9DRSCWZT2pAUnYwesGurwgx4uP+ouR33Fx+Rkwr3Pw+2kJafkY57fnKewd4JB5JmWBYblgcPEKWnj/+0RXbfqSmZqrhrpFU7Rp1OqKuL7GbDb/41QV1Yfk/Pg1c9Jd8tPuM6eKQX/yNN3kwTrgz3uP6+SnrzY4/Pu3RxnPnfva0NhNPTIKYLPHwDZgcURiJlTJPgIxmWpfcjCMvNj2u7XErGPyAjx7dlGhjCBNHUQ7UYkehI42OiBQQEopKoVXDIxMJKft4t36g8zvKQjFvNFKA1XuSo9DURw0qeJTME9s0CrRRmEJRWoEWPvvYYkIEiYg5V1BIiygalLEgCwRx38waXlH69jFs+QJlshQwxEAIGbospUVpRUpy7yfMze5x9KSUffDyVYPj57gj/bzfqLTK6dy1RpWKMgzoGPBopNYsFk1+Q5xDSYlWEj84vAsgLT4p3OhwQ8LuNw6LZF4UPDic7n8hQXCSfsymM+9g1Tri6PG7gUJDaUw2H2pJPwYiglFpAprkQSGwAoqqRk4VNhpUVMQ+kAJYb1AxIUKgLEoO7j9AMpAYKCxY16KvAqYfmZuCoDxPY0QOnjGNDEOWcYXo86a174gmYvZ7TSuSELhhzDfbCLf+KGP3m1scs+Y/amKK5NFiJDHi2lNkOeKnAm8iQj1hUUneOD6gCwWdL2DwbE6XNJMTRpE4/b8/YNv3zKY1E504MZHUrYnnl8jNCjP2vHdXYQvNf/cdx+VqRbv8a5pvfpN77/8d/lZl+DU74aIdOIuCz585Cin4O/csB0bxoBnYhIKlr/DmAWn+gGLYUiaPrSNlqZkXlksp+f9oe7Nfy+4rv++zfuPe+4x3qJmjKImauuPu9Gwn3Q4Q229BDNj/XIIgQZ4CBIEfbMRBBCS24bbb7rakJrvFlkhKJItVxaq645n23r8pD799bxXlwNFLDlBkkTXg1K2z9lrru77Di8PIVYxc5UQ6DOSYWJzUAd7HRDuMxPWO3BXmJqGJaEn4rkU7j7dbxqh4dsj0QyCMWyQ6Thctyhm8gcHWr+fqtMUmixoGCJBRWBGWWtE2gpWIyiMEIIBkjTYesRa1mKG8RYx7xTcnVHRPqVqEOdULgKtcbdIAxiPKVqSw1GZ3Y98JEG2o9spavnaZqtQoi7EO1zichtbUAN5UhM57XNPgbUXPjZqQdwqIqbSusQqsdVE4MVgEL5qjiWqFaPqQ2Y8DeroI73OuaE0fkJJpjMFqRWtrmGFMmawdQRQlC6qAFUErRTNboNCYrCEXUgYdJzvbUsMiu8W6Dr0yoqzDWI3uM2rIzExD1pGnuXAIkbgdax5YYnKdqoHcViuKjIjO2PWKmAvb7Y4UIiVEclFADRBdzDpU2TEMhTFU++/ASKGQ0sBhe06KBw75fUIjGLfBpj13Fi1KNIdkmVlHf70D3dAuF1z+zVd88fia04Wisw2nBmzJlOsz9PYSfThw0mTevWP4088iP/ky8NXzT2nmht/7g7/FWwvNH3rNz794wZ/lxNOnF5yfB/7oxLAwjmMXUS6xwyNmzuhn2JzwKWB8wVhw1lBSYRMSF4eR53EkhMi4G+jmHbOlQ8dM9pHcjjgKrco1jJk6/HnxaB2YWccmQj9kchkwNrFspyufrlohg+A6h2sEFQLkOqiorPBWYbRGS57CEAMkDVnVoU80xnUoa6dF6eZ1g+OpaaGa9BzKcqvrEPW1/LVXr9q0ROoyJcJ/1Mi00tUxb/ozWypYUcXugjJCjkJOBSV1SQvjdAGmBo2mBBSFkzrwGlEsvKfrXLXBTkIMlQ4oRRhjIaQ4RWsEmsk23LcGEGJMiKn1Uy3XBTMNor6dUUQwxSC52rerLKioqnFNyfh2TtPOEAakBKyu6KvaZbyOrFzHVnp2ORMPATUUYripoUApBWsmGjIRN5+hZx2HvieVRDjUgOtMFWcvFguGfkCXfuo/1PophZQHypC5fPmY2cOO0ApqP1DsBevOMXcLDsmh0MR9D9rSLu4QrrZ8/vkLVh2supYjk1ipTNlfU2KPPhzovOfdO5offwk/fpa4unzObvuU9775Ju9844Q/8CCHLT+MIxfnWz7//MA7WvHo1LG0hc5FttkzFIcxD5FS8GnE6oJ2BWct3iiGVLjsAy9S4JAS47avQ/BJw+gLNiYaCbRuwPqIsVP9KHCNxyWN144hwbbPpBjJY09nXaWDa0dRCp1r7ERrGlTKE1WuyhmMrtRYrSoPhRygaMgVPFDKINYhN/WjXlt4yNwYTJRyY5Vuag+QfFtPv5rBdrOAvW7covXX60dE1R7kLMYbOlMj4GKp9uUz72tcgq3gr9GV0icURFkymjgGQshYNAjYInTGctx10/WsAjJjqoY1OQu7UEOI8xgwAlZbnKk1G2Kd4aLSZKYeNEEsxnnapsOUCk7ksVJ+bDGUqQcZ6+hWx5UiJrE+39KA3iXMGFiahqwiu5TQfWBkpO8TKVW6b84JpQSFokhENQ57tKToqulJI+QIhQpGtV1XF810oBfFEAxFIqIihUjKPfvr54gZGF3G+kSWl3St4tHRgjFZxmzRBYbNHteucVJ4+uQJhzFwuvDMNdw1UMJAvtqhdxvs0PPGSjBe8799GHl+ueX5y4+Yff+7vPXuf8YPrOGbZsG/+FHmF08u+MUvnmMF3nhoWRrNkQv0xbBNlrQ4hXKKHXtsjhhfqpmQ1VwjXA6BqxS5TInQj+SQWJ9Y2tbQ5EQTIiwGiis0aoorIKOdxWqDNZaYhaswGV2lHrJh0VTQwSqIpmr/2oVHZ4OEsY7BRdeMPwRr5LX6KZRkICuUqrpCZR2i9UQdz1DSJDEqNa7m9lCh0KalxEBOYzUIy2XKkVK3tuk51SiaGDNayxSs/f/DMrVazfjOd9+ZqBFCqwtWqrNYEcH6rvIKxp6cIjGOiGqggX0fGcLIA5s4KonZ3FatR6e42xbusa8PBw2LThitI0TNfl948eSS0AfSruedBzPeemuBWy7RbUMfRyJCae+RCwx6Q4p1szyMew5jz4la4qRlUAv6MfPZxx9hcuD+0mDKFbvzj1HLE9T8mDDCGBueff4ply+vefz8iu2h5hWlAiEpkl0hzqH2LynxgFssMQYW7EkCh2m0CBTQ9VtK9cF4GGue0dw7Qi5kyVVvFTJQU51LyoyXiU/+h/+J+XLNW2++izu+y/oH34R95rBL/PiLJ4yfPOaq/xmHqBi7dzFtIZkLlvOG3zhZcubPOXcXrDcL1NnI//6T5xTf4N5/xOpiQfnREvf4OfJP/ynDN5dcvznnt3/wPu9+7zv89fnIuD/gH3/MeHjClz9/yuLoAe/e/Qb65CEsjvnlh3/F9fUVRo9shszHf/45V1cHEIjDyP5qh8zvoxYr8ixTHKSgyNuAevoY5ooUDbnRBG9IeUSVQGM1zhm+cXqX7Xbk4599wfZc83Tr8Y/u4+51GCJFAq13yCi8fHbBzGi+ce99GoFOoFyes//qms3unBILrrmHbRcs3rmHWEM2tQGVmAixJ8WRXKqwSltTi2xC0UsRlG5RpoOJEig5VnexWDNijFYYpTEIOVdKkLPutn60UqzWR6zXK4zROKuZNabyf0ttHEYb5o1Dq5qpIYBWUuOVcqCViOhE54RkDbbReK9ZyogmIigWOpOcrZbOUXF+dWA/BPLhQGMV9x+usc6hmxmpJFJOFDMH5Ymqp+REjImcE33ucVga1ZHwZBznF88Yd9cs/JSFc3hBsh41OyaX6uh5dX3G5uyCr15ccH21Z8iRSGETFUUcsjhBDRvYvcDNF5i2YSE7DJH9REnclkRWCekyKRpiNBxCIe0DS2fprCFKpA+JvIv1xJ96cjwQhj2f/os/5eWHP+P777/H6fEaf+ceSmsOfeFse+Dzzy7YjSPbMPIiHdOdnpLVjmwyD447jEtc+isWMuNku+LpxcD/9ZdPGJen3F925H6NGQPqL35CPu7ov7niZL7mj373iGe7wPkhcrz5CsYrrp9fYn3L0f33Uc0cmR+zvbri6uUVxUWSZM6fnDMeEmMI5JTYnG3IpkMWb5O7QmkKBU0eQa6vUINQiiYZRfYGVRK5jFXrZwzrdkEWy/OnLxlj4Do5TNfiThtUySgiRoEVw263J44jd+Z3cFpXSmAcCdtLhrChDCOoOegOuz7FNC2YSUxww0CQ239ws0RVeqwAumaG3WSA3IrnpyEQbjWCeRJ8V+re13tQ03jm81mlPVCQ1k+/5kY3okhxRwp1ISulYFxLyZlhDDjJHBlF42oOl7KC0rBSkQZuw4BbZ8iiyEnT7wMX2548DJQUObq/Yu49ppuBKGKKFOVmJ37jAAAgAElEQVQodl4vVzFMOSWRPm6BgldzpFgiHbvDNZsXz5g5zcxpSrgksIPZMYgjjdD3Oy6fPuXyYltraL8nlcgha0Q8Ml9jUkI2z+pwspjhZWQmB3rRjBT2FBSZ1NTsujAaUlGc7wKtEo4XDWIyekiwz4whVoF50oRh5MXPP+Iv/seeNx7e5+03H6KXx7TrOUNfGIbIT56eMQwjl8NnXIeO5vgEMSOjGVkvPY8azYW7QoKwPpsRyfzfHzzl0s05/c4x+pM5pl/hPv4cubhkeG9J2xp+6wff5jpkHv4g0B2uUdszDpsdQ/85y5N3WXZr7i5OiSnz8ssviQRERa6vMuMXmYvrDQjsr3bsQkYWD7HeUtoab5GDwP6AYqg9yNf6ESXkMqIoGKsx3tPZOVcXG66eX7IbLXFmcKcObR2ahJaCN5YxDlzvelbdjMXsBAtoCml7SQoD/XCJKIfxx+h2jp3PQCnKtESVm8PSbT3cgBDTMHdbO9MSJfoVBfy2gqp+dGLqTT/+2m8LOOc5Oj6p1yatmDWmZvzkKvC2tsUazaKtzIwYQ43tEKkmLzmxVIHWFGZeIVow3rDysGSYrmlC44SYLCUp+jFzcbGtYEQ/cGfdcno6RzcdynpCCrV+7apqjsdDvSykxJgGQgrMpMOIYxRPzJmzZ5+jSuKoM5iyZ9w9QzULpJlPQIPl8sUTdtdbnr28ZHvoSVKIReijIrk1yjnK9itUPOBXS6wRlrKtM5zUK/pQErgELjOOQs6Ky0PCac3psmMImawThyGwOwRyCTXbLozsL/b85H/5Z6zXa97/9ju4xZL5o/vsQiEMmV+cXTE+u+ByeMo+CmV+D18g6C2+tbyxati5HTuzZ71ZoHXix59ekN2O1TfuIpcz8uaY+dkO+dN/R3xjQX+v41tvv8mDN97k0XdG4jjgL58Sh+dcPPmKZn7KnfUb0FXW1ssvn3AY9xid6FPm6afP2e0GEBgPI9eXO9TiLmqxJLWFdDPDEeH8BTSKvDAUo8BqcokoBGMUHsed2Yp+iDx/9pK+VVwOFrM6wiwcqmQ0EVt53Wz2PU4pTuYPMSIVJuu3jNsdfX9VczLUGrEN7vguqPp3VHKihMR+v2MYDtW4qJRbfeFhCJisUS4Ts5CLrS7BUqZMtUTf12uWs1XjaE3NRdNa453j13392suU857j46PKbVdCa+qJOKR0K7olV0vWGBUjGTXZRodYN8GZKhhdGI0gWnBOs7DC7LWcR+0sQQzXGMaUCPtI6CNpn1BZMXcNzjeYpsVlQ0IxupaYCsHs6jBYIikP5HxAGYcRRZAFIjAMO5CEc0uUioTxGlUqTepQDEM0jIdIOIwcxsCQM2INRXmSmSO6QSuHHi8QBN9YrFXMjSKmRBoCo5pYzzdPs6xrayvVCceYmo7qC6gwoZY5VmpZEXIobD/5BWV9Srj7DmMyDLQMqjDazMuhcH3V8+LyOUMUSvcmxmgaq2mtwjuFGEi64BZzfMo8vrgimoAcB5qZsF6uaHMif/kFm8VDXnaO7tEd/KzjbKk5bDao55+SQ8+436MXS1Z2xLSgZpovvQInKC/kWNgNlXIyn3t2IdTUdtehmxXK7hEd65UuJdj3FZELHeI0onV1xyqlBq5qTdc1lAguZdRQCDtwfUDHiCmJTK7XFwrjGPFisG6O1QqrhLA5kPOWYR9IYwSVEAfiHWI0Qpo6TU3bTjlwq7K/4axLNZXIOdf8pwmVRMmE7ReKqtOkkiqyt8ZSsiKrhFKvUA0RhfctjW9RuobVee9qIGIpkxWuxugqPM4Sp2VK1wBByVgpoErNbio1VNQZwSvQiskOuRpIjBhC0ZRQYwTSWO3da2iiQxtXqYslk7QniyOnQJrCWhORnHuQjCqWgqn0ljwS4gHVtmgtpHSoRzqlSVRjlhgKaRgZx0AfAkUrRCuSbSnKY8wcGGEA7w121rBQ9ZJY+khRASuFrMAYIaKphtFCSLna9CtFl6rJQRxddRDNfUXhE2y+ekG46tk9fMR8XjhEjRLLoGCXB872kcv9jsv9luRmaNPgtOCNqnuCLiRVRc7dasmuP3D5ckN6tKBpNUfzGWY/IOfnhNJzeafDzDuOVnPSXGETyC+vIO1I465eX1XAmIz2NV2+JkoDpjCmyBAizhlcqkOT0hbdzNEuoswIuQqdS6gNj+jrlWfaOvI04FU6j0G0w5R66chjJJs4GQblaaGqAZQpZWLKVXdnXNUcoUhlskjuBzANYhIGAa0nat+NPfN/rNO9jYOQ10Y60a9sub82CMqELJbXZ8qvDYJQ2RHW2unHClKmePTblFKQYpEcbkMXRQtFZWKMNUtbcg2nNhrRVWDuVWUzCFWvp4whFsVQNJICcUwVFU8JI5rGWIz2FCUYpWs0gXaTGcoEsjCZVVAQ8ZW4JFTTinCguBpHQBmJKU4xB5qxaMYkpGEkDCP9OBIptQfZhqI7tOnQKWIOgrYK13k6bVhqixoDMkacqqGXVup1AF2R9ZAzrRa8U7QZsggpODRCP/bVlCFr+utrzj75gpVtGO7ep4+KQzIMAr0I531kt+t5fn1B0hntj7AGnKmIsjZCVoWsBb+YE/qBJ2db4krhV0vmnUXP5rjDgXIW2J56KJrVyQormnGparBbf0bOPWWMWEY6nVC+BmGLpsqGbCGVRB8CSkHTWLRWSATjZ2hvUaavz+sMxABDBu8QYxCp+WfVcbKgRKGMRnvPXu3QqdQL+QCSEqITqt5RUAiUGksBBq0btBJUKSQ2lByIY6j1YkCjqjkQr8Wm8KvajJvaULd26KVQnfdEVSfT2+q5qaXytRqS2xp8rX60oWm6+vsowTuHs3oKQwV1c63VpuoTJaFVdd4sJYEUnBS0KogWlJYpjFdwU/8RAa01WRQ99fMWx0QcU5WAZMFrhzEeZTxGT6HW2pNKIapJHlFSdTEsfTXjQBDxIBBijyFjjEWpREp7SukQqebmMWviGIlDqHECOVUAVTmS6UC3GO0x4xkCtK3DOcNCCykn8hDxAlYKU2Y8ZENMlpp7nfHT3NJlAEuOmRBHYg6UNBDHzMVnTyibgfjOO4Sk6bNlBIIpXAfY7gNfXV3RJ6A9qUvI1NNNlXhWp8OuwacFL7dbohoxqyNmrXC6WDCjkF+8YN/BVWvxRyvcwnFYaIbDHrX/ihIH4rBH2hmtjihbwAmXRuosbqGkwhBq/29ai+1N7UGuQTdzlB0QVd0hS8qUfgRlkFSDc+uzfgLDJk2rcTVixaSMhEIaBBMiKiVUSZSphgq1fvR0QdJS2Tl5HChZVY1hiGAjSmVcdQSh5FhjMEohhJFhGF7VsNLVkCJlRKUKcCUmS/tXM5nITQwHKK2nPcRijMZo9bUZ7v/r9WsvU7NuyaNH7yNEhJptIUIN2Awj2+sLoGB8h3Ol2oqmCDnhZ9RMnc+/wqQqvtSmIvMn8yV3j+5ykwAf2poh4vbg1MjDo8AwBIa2Z7m+h5+9RWcSrhSO/AKUZlcUfQqkGBninm06w5TEikgbIp5r2rZQ5pblb91BSsFZxxAPXPdXeD3gJXG9ueJwccXJzNClls9miiItcvSA5N4i+u9hh2fY8QVr/4ymL5Q1SDtDPfgWcX+N+eyvkKA5eIXLCluE2KzIYonqGqUTyidmynKsFoRhwdivuNp/zn44Y5z88XMxDPuRL/76p3z581/y5//qQ5oHj2gfPkJCpixmDI8PhN01dv9POFks+JNvfZdtf80PP33MZYKrItz7O3/M0d17fPQ//3ccnjzGnp/z4N4D/uQf/dc8+ewTPvzRv+WHfw3//Kc9f/Cbcx7cXzD7/jv4ZuD8/mPasOWB7Dg5WnNnljjf/pKL3efce/ch9/2bPDxONAKLHwhjf+Dq8pwfP7/mz55ewqGljIbSV/twpQeyBA67a1Z+xh09p1nMaU6PePnijP12Ry5VSBjkQLfW/O7f/g6UAKknpoH05S9ZzD3Zasz+mjRGfNKoALvLLXa5oj0+pX2jpdy7D1+9ZNgPyPwOpelI3qC0VEGxmrjp2lVdVa4anhx2lYWufaUnHALWz1Ha1IUjFVSp1CWloU5ntekoDahKL3ydiiFKMZ+fsFgcAQlnDW3XEMaRGMfbYOdxzJW3bjq0EpyZaIdKcdhuGPY7VKnvoRWL15ZFd4zSldYkVN3gEAtjKhy1Cact0Vq8c1h3ty6ck1W80ppQFJFCKZNeLV9TSqQrAVsiJo9YMweTcHdb0omhpjdk9uMVogRbEmPo2e+uMCpxvGx5eanps4bVG0Q3Z/TfQZVMM7yk3e5Z+AwzoFOoo2+CaVBPfoqTyPnMoqJhng25WRLNMVGuSGqHazPOKN5dn1BSy2Fzh83ugmcvP6LPhX3K5KQZo+GzT5/w4qtLPvjwKXY+4+S9N9CSULOGw9Ul+xfXGP8jnC381jvvsXCOT178NbsUeZkU8/sPuPO3/4Qv/uJPefKX/wF/cUbTdPz93/4DnNH89Ed/yscvt/yHf2l4+8EJP/jGjHLaMV+27Ff3ScZzzIHWahZeSOzZXn2GtR333n2DeVNobMaeCpIyh/2Wy37APL9HCArGptJLU8GZiEgihB26FGbiq2ZktmIMI7u4YVItkSWhdOTh23frgFVGimTi5mUdFJ1Fxx6JY6UPZk0cIrEoZos14lrwTdVu+Q1FNxTliVYj5Ap6GFMBBup9aArsuL0y3a5YJVFQr9nMvpYhdbOQ1SKZvlcdKW50WLfNylR3J7kFPSrdp0yi+RiHCnQ5PQ1jeXKvzIgxVfd0fYXL9f0ba9BOMWvmOG8n2i4kU3uQiYXgNWEG0TlKzjTNKcZ2uMnFT1t7a7Xel4zkxJB3xNzjSkBTqWVKOZwVmiUs2jt1SFWaIe6IZcSp6iS1228osedo2RLjyMtrQboTfDcj+m+S9YpmeIEbr1jqGuHAUqHmp+jVfcyLz2gvnrLtDCVbutGAcoT2PlkCQZ3Tuoz2mfvLFUZmHLanjL3i8fMPOIwHNjV8iDFZnn91RebnfPTRUzANJ+89ws8atLUMRrM/26DUBb79mLfv3udbR/c533zGX15seR6g+JYHv/377M9f8tkP/xnq/AXuyyf8xnvv8/Zv/B6ff/whl+cv+T8/cHi/4Pe+t8IuPav7a4ZY2B8GljLQSWTZeZyJXG+/JCrDnTcfYC0s2oy5I5gIQ79nGAfaF1ecHSIMTUWeYsKSEFOB1qE/cLJYs9AO185Bazab62rXXZg+nyPrkxnroxlSApCI/YY8Vu2ulEwJB2QEh6WMiUH1uNkS6xz2WFczh+2uXpX8guJ8BZcmQEBph4gm31iVTXPQTZ28qicAe/v/yyRIL8hrdVX72U3Abx0EX/UgaxsWi7t16SHTtQ3GVte8lCLkkZJgGCp4aN0MowWjhEbr6t58eU4YR0gjSjSNcsxty2J2evvesqvOgTpUPedJF4kuEqyl646x7h5WVc/LzjSAYkCq7ignYh4Y8jWKSEfCpoRmx9wWija0bx3XP482xDzQhw1GRnTJHPo9Yb9j3hhsbmg6BbMOWT0imjsE9w4uXOHCNUuv8X2GtUDToo/fJ/ZbzLOfUQbDduZoIvgkhNl9kvYEdYbWAd0Flspz5+SY8bBg2K95fv5zLjfP2OZCjJlkLbtD5tOffcYvPv2Kf/Pvv2D54ITVw1MkFkrr6b/sGfc7bPuE9azj999+j37c8uMvv+K6CNdFce8732W1WvPTf/5P2J+9pHn5ktOTO/y9f/C7nD17zC/+5if8m48z/ceB33nfce+Owz1coWcdu/UDbOo5omc2mzFzif34kn48Z3X3iLU+ZTWrQO37D4QYAv1hxy+v96wvdxA8RE0ec3WklkAhMg5bWtswVy3GN9j5nN12w5Bq9EIGkgq4TvPOt9+s4HUJFaS9fkHrbaXLhj05RkyubIXQD2jf4to5RVuYH5H9JWkMoGdkbYkCN8B3H0Z2h54YRmKZLlUlE/r91BtUBY23uYImWFJJ5FIw2mKVxTd+cjvOt0YPpUBM6RVQ92u8fn3NlHY07bKKkfNYF9HpzCbllvGOUtWu8zYUMEdEa1QutF0zOQEK2mm6madtXEXz0/SH0YIS8E5okmLuPV5rktW0viEVV12IcqxDgi5ILjAm8m6EEnFSHwAaVfOockLFPWIcs1lFR402lEEjQdXzXygcxkA/9DgS1sDxwrIzDVcn9xnKihBVtVkk0DbCzBja4wZpGvrGMKSW2N6hjR1tcMihhzHgrAdtCSiQRMyliqm7FSINJI3RFqU9WuoVi8kZrt9ckaUn5MBMPKPyODOiJSAFnNKczD1Hc4/1Iyn1XMieTVDsRs3YR1wsHN27R0fh8PIKGavNpzXC8dywCZp9EvrNlo1zuD6AU3RHd+nykrnsKRourg+chcB1zpx+6w1myxnrhabVikUU4tjjGuGhMryDYvd8ZLgaKSpACVjJWAFvq115Dpk8JtIQMcbi2xYbIyJCmhCOxhukKIgaUiSHgI4OpaqToyhhMXNYbSahrkdMWxcla7HzSDHDhK64ipxkEEkIqrr0TEShyl1XkOQ1ZE+mplVPwuX1IfG2gU1aD5mWM9GA+doweHtp0BaKmuqk8ue1LsQUpoKutNkKuVZkUZRBG4O1juKqODLnjPcO7xxamYoeVnnu5FhTMNPXOhfISmGtow6gUGK8sZqc0EyhjImSYvWIklo/upRqCJMGRAzGVBoMpSLeKiqyKMZUQyDHMOJKwkhh1hpi8cjqiNHMCcnUJkzA2cJsZuvJf9YQG0dSltisSVEzXwbyEJBDwNoW71tG9iTqwzFkYTFboEoHwROTx/nZFBouiPEoUfTbHWkMDIDdJ9TiGuegsZEcM05p5s7RtdDYjDIjWxnY5sSu15ghkmLBt3OO7twhb0f0mGvmkhLmbb3S9INQYuBwvUHPPKprMH6GkYKXFqNgP0RCCVzHgF8aZgtH64XGCs4KkgvaQPGOuyEzHBLDZQAipUQMuQ7nStccjFTIqVq6SgFrHNMXAKQiqNaoiurm+nVLk7ZDZ1ClqhOctXWBVxWlr5qMijQrB6rJFLEgdkLJKxWvTJ8TmZ7p3Ijmb3/wFjN/tSTdLk6/wke6ISuVyQyGm6vWa5WmdLVLnzKpyqTnKJQJrb+pv/p+KhfeUFRGkykmT9lXBdG56vusxuga4MiNe9NUFqaAM4nGWIrSk8ugoxRDiQNlcmq9vS2EegFUlGrBW5UYt+5oonqUAt/UQFYRRSgKSYqY6wAaYkBSvcx6q1jNHYf5gn52xD57cq5xDUoluq4Gc9tlQ24c2RqynyPtMd08UdQeud4jxWDblizCiEJJYUjQNB2NW0Nq0RS860hofBJQDaI0cRzZXlwxkshqRBZL2kWgdZE0BiwKbw3rzrBoFM5FRh3YMrIfFRCJsaCUZX16Sj6MpN2I5PpMbJxi3mr6g6Akc9hsyVqwaYXSDj9f42XES2JMwngY2MRAsZ7lvTt4Z2i9YIpgM1ircMFyGjPaj/QXgRKqKYmi5gYZVcXlFKGkQonVjdcYU+MnUgYlJNJE35ZqIFEKOU+Jt3mad0RjtOBddU4FA8pW+3JbXSm1n3R91iFaTZ9bbs5HtQTKK0Ch3CxQ8qp+Xn2vvKqZ21p5VYevKkxefZBv60ehtavaq5IQpSfdSB0DQ+ynGqxDKPUOXfWLul7LnXPThRWU0TTeYa2b5papHlR9XyaDzYrWWKIovFI1wqbUJVNNBkMi1FDtlCljDds2Um0oFAK50s6L7hGxOF+v4lppStBIUiSq4/QYIyGMdGSMLixmNbCe1QlDWRCyni5okdYrOmMxS494T3CGkBtSc0zbaWbLqhlkiDRNC8YzoEEiYyoobfGzFUpaVK7mUtZ1uKRQ6Po1K7C7viYz0OdE1I5sKyigicjkUrtuPKvWYm1gn0Y2MrC9meHGjEuwWB9hSyZfD6hYL/POKBadIQdFjhD6nsPGYMYlWIXrVrjS4mWgiLDdD2xTos+Z5b0jfOtofWXzeC/kGHBOcaw195RmvA7EfSBPmjBbMkYKVtv6dx4LJWVyrEwcax0q12DwXDJKgbUaiqpzXK4zhkqV6SIolBi81Rilb/sPyqIMtR79DC0jRXlETQ6wuZBiIE7fKrW6fp5en85u8thyqu9PdA1+TznVWel1t8tp/ppGov8XXeJ/+vXru/m5lvn6IWnckcYtOQ2UHLGmQYpgpoeNwoAyVRvBCBKwrcNrhX5bVdGfxGqnbqbkYqm+/iWVyanDsFi0aBd5uA0YDYuZZiwtm00ipAMuH3B2qMg6Cw7DyOWXl7RzxYOHa1CBogPbwzXbfU8YvsI4w9sPjmmcZdYaNtuWOBReDJ6zvrC93BM315h+SyOJP3x/xWV7n5+c/jFnnz/n4oMPKOmMnC/xJ8LxfMUPvv8IbTyffHbGzi5xj/4+ftzSDJc8f/w3XL34krvLJY3R9OOGIRSeXyS61ZrFnd9ELp+jw5foxqHlLoYjwJDKObmMHC6eUKSjSGRzCOy+eE6zyNimsHItq5M3+OPf/S9RvufL9O85syMXesnwLBI2ibN/95eMi1/yX/03/y1W4If//f/KYT/yw3/1Id9cD/y97z0kmjVBLfjk0095/PHPWBw5Znfu8K3v/xGdUyxt4uMPP+BH//pfs+13hDTyj9/5Du+uHadHDzHKkIaALgP6eM7fWl3y3vGMD/Yf8fjFl8zNgNKZs8FhnefBvbfQRJ6/PKAP5+jzLffefYvj+29QtueEMPIsREoYCWOPt5pZZ1AHkKgwBw3R0swfYqzl4f3F5JYk+HYO9ggpPVJGFqdzSkrkYqBk0rAllkjJAWMVzupKtcsZsTWw0LQLhHqq5oajriCkmrGiRd8i6pPMFiSh6oRdF+Hika8J7aUueqpBEWrzCqnycq1lPOwYhxHvGkQJKddlKiVQxmJcy0wb2vm8aruk4Ky/dVuqcFBtZEpV5y6FZhkKrQ20rr6vENUUGNmjlEYrRZaGjKa/PBDTwPq4RRlAAmEc2B02FJUo6sBqPqNxDqMVJStinNEnx/kexn2g32+ZxQGVBt6614Fe8sniu1wFz9lPP4Nxg8QXzNuR2cMj7ty5x/rohJfngf0hoo9+k2ap0adXXF+f8/iXP2PdttxZLBjDgRADj5+PDNmyfuvbGGWw42dYCj6+hcszlmVOKFekvOdw9pxdKkSTEX1g92KgmcHypLDyngdHR3zrrbc4PVryMn7MZdpyftzR7xP9dUSeXaG3f8V733qT/+L3focP/uWPeP75V3z08UtmjfDbb92tgltzxNXFlhdf/BQn7+J4yL3Te8zbN2l0Ztzv+OsPPuDQ79n1W77xnuKNBw9pfYe1voJJJeO9xaSR37Gaq7NLvnj5BCcRZxP7UKmbq8UR1hoOh55+7DHhHD+bsTi5RxkP5HBgmxJjDOQUUJQJlCioqKeAWkGbOaoxnMw8WpmaqyKKorqJnWcwjaeVri7khZoPE+viXzMF42tLj0xUPm4HxrqUVWv0XGId3sROP/fVpeqWuKS4FZH86mVKa4s2DSXVEOA6PE4GAqJfuXDmhJLarIueVFVSASytdKX6TSGOAmhbKS1pmlWVGDC1LucYKHoy5RBisYxjIaehLk06UMSQaRj2I/vdlsXS1ueQqiyMQ39NLiM51uyh1ayriL/WlOyRbDnvFUPMHA57TOjRYc9qJpwsj/mqe5cXzVvsfv6Y/cULSC9Quqe5u2A1n/Hw4UN2+8zl9QXN/CF99z3k6Ipdv+PTn39AiSNvrJdQDEO45vw68vQs4I7eYHbvbUz+giI73Po+Eg1dXpPKSCyXxMOWy8vnRHWXopcMVwnjDUd3M63X3F2vuX9ywnfffYcDL7mQF1wWy5WfEQ6Jcsi8+MnfcHKy4h/8w3/Ms0+f8NGffcjzs8jLzef8xh3Nt985Jag1Q4Ann/8M2a2YzR2Lecvpm9/G6YIl8/MPP+Ti7CWbw4b5ouOPHr3DrPG0zQxyIeeM9Q5TIt83hn5/4BcXHxNTT2sDMSv2wdC2LbP5CeSRzfWITpdo51jdu1ep+eOOIWd2KZJSJOaEs+qWOigo1KhQ2mDcgqYxWF21tRSp2lplECyiMn7eUtdtDaQ6OyldM3ByjcZ4VT/ytfoBpgvTKxqiVo6vgw2v1Y/k6d8TQPD1CkK0p9qVVFezUjLWeXIy7DeXJKXwvgIjKetaIwJWe7Q1LI4r5S+ViFIK5xzGTH2unvSmUO/ag0Ql1k2s9EunicWyOyRcGTCMGG2r1hHPGAL76w3WK5arBUxXkCHsGMaBFM9Q2nC8XGKNxVvNMDpyWrBJjm2Aw74nHXbosMOpxPfeOWJnj/jF4jc5e3HN2S8+J6cLcr7GrA3z7pg33nyA1p7nLzccbIe+84fYo4HZoy1PHn/K+YunPFqv6Zym7xv2A3z2XFis16ze+R5cnaPCM8x8hlNv06hjwDDmc3IauHr8BVlmJH2P8Tpw+dkVi+NE0xWOvWd5dMp//r3voGzgRfyES4lc6AWHs0S/TZx//JjQXfCHf+fvYgT+4v/4twxj4s8/+JxH88Dvf/sNkpqT1IxnX37F2RePaWaGZrXk4aNv4ozQ6MyzL77g07/5iMOwJ6TAHx7d4/hkzbxdokSTU0K7iG49bzUNdzvPk+ELLq7P8GpAJLMNDq0dx0f3UWQ2mwE1blC7A4uTU7rljDLsyClynRLESI4Bo6f4iQJSFBIVZI12RyivWS7qhbJk0MaBtKADohJuZjE+kbLcsg1CGNluNzWgPSVCqGHtoqWyDlzN/TO6znchpAoiGmEYMuMQGbiJAKjPjjBWzXHNd6vurr8KSPynXr/2MjVxKepJWTuYTmVMafbG2rrVyY1gUqq+hMnhBYW2HjGaTOUvi2RiTKQUGA6ROCZsIzUozYPXinXnUVLwGkoshDRilMJqhxRFDsLhkOmDoOwxaEPILc5kGiwATEAAACAASURBVJeQztOqHaOkmmeQFSoZSJ4yGvJBEZNhSAlwGD+na2fMdeF0kZnrJXs3MJ9lwqrBssSKYXWSmc+F0c4wojmdVeMDtbtA5YFBBbrjJbEpjJfXpP2BtvVobem6hFHQXz7Dpx2LmWIwHSlYwqFepBo0JRsOpSMxI7OoX7OwR403IbYdCw/btGXcbvn86VcM3mMW95B2i1/skBDpr3d88fNfMO8sv/ntBwxD4KzPGBN4EgakbBATWa63zOcJK8/psnDcvYE2EEn44xX3v/0+eeyRHHHKs7s8sN18Vc/9uuBcoZtFnBTmjWK1dOyOOubKoijo5BFtMDZjcsaWUm1hjSfnkTBuQQrF1msBpeBigyKSVQABVW40F9VRzLmGrlsiCVIfUQnGTY9SsSJQeULhqInuOR6mgata5SdRlGlpElW/IdXKmSKTbWwN6i1SEWU1BVRzw5mn2k0XlVGl1GXq5sr12kvJpKO7RTnrfxcpKK2npjSF9KZcFzWlJ+rehMyrG51KRlRtumGM1ZkvJKwF5w1Fl8miXVckSdWWm1Jd+vRkm1uKEEN19UNalHak4pEiWJNQtke8UASygEGhchVDlwwlFFI01VAlKZRpazaRFGauoI3mvoFWJTYzS3YtnjWLNtMuE/glozgaCzoXcn+gz0IviaZ1LB7dh/2ei8szukZo/YL5PGKjYticgdbM2kLWnrleEkbFOMC8aDSWTekICZAOxKLigB4FMwidd6waTSJwNe754ukZu7CHO3dwFhbzLTopxt3A2YsLRCVWC8/i3bvsEiiJXOaASRUcEt9zfHxA+w0qXzLTM1rb1IHfGZZ37tKOA6vQs5itiEPkathTGHAatIDz9TPkjdB4zXzuMVicSuhkiUVhrUKrjCnVhlz0tKykA5lImcItlQg6WRSZIpGSpmGnMF1HLdp4rPFoValxFEhDJE9UoJyrfiFPdLoUR6DScUrRVUtRpiFQTW5/3Bx0J0xdXg1+IjdOf7x24JWv/b+bC++vLlO3P0EqiFHKzRWqIqG3DoKT1rGC9+pWR4KoGsZLokyBz6UUUswUhDAkALSphaq0YLWis6aG3yqp+rNS6jWYiUaShDFkcrIovSCLIxWNUxmtIsVDyYmkwCmDZAViKGIpUSgxExPEVFDaY0TjncebQusKUTu0Dhw6hR0djSxodUu3XGJbx6gcymSWPmJywI4bBgLJwPzuKWE4cHV5idOJWbdg1iWWMUE4cLh4SqdH3EwzL2v6oBn2ClsUFkuvGg6iEJmR6FA5okJEjwqvYeUUjS0MBF5eXvP88jnjYolxa7p2S1HVSXR3tePx42dIHPjmu3fpszDkQq8yZ2FA2WuKwOqoRzUWmy7pgM7NKyegFNqjNcUY5uMK7y05ZPa7nu2u9lMjYF1B64LVUKww6zzRQKMsqSh0Mlhr0LpeK6UUlDIorclpuH1IK2XwCLpYVE6IVI0HIki+uYJWd1ijbL24pOokRqyhokUx6Qrr51ZItV5qWNrkBJumJOpaI2oK4q3lUKaP++RYNhXWjU7xa/Xz2rXq5sj1dfv06cJ08+tf60EVjS/VvWwKBy6lailNFcnXnlvqheqm69WauxlEY42MSRljq+ZUtEEroXUWkYJR9RKYcn1earH1a5BhDIWQBFFzEE0qbnLFrXqnJD2J+rxTpToGlmwpsQJDKWtCyYBFmxbnHI2CeVNwakZvIqYpDHOHK3Msitk607aQTEsRw9xPRMrDDlUiQWVm6yXBFvrrDf8PbW/Sa1mW3ff9dn+a270m+uybaknRIGVZEG0PbECAB7am/gIe+JP489gTC/ZEgG0BIiCLIossVmVVZWVkZrSvu93pdufBPvdFpEgbpYHvKF68uIF3I87aa6//+jd+GFk0Fa20rJYeoyXd7QuqOLFcSDq5IDaGaSj5VZusiSmxTy2BFi/awjfxA2oEo2DVViytoAsD09jz+5dviHWFPjundj22HRAhMR4GXr54Q20VHz47J4REl0DrwFUYUVoghKdeHHFVRMstNgsac4ZUJcDbtA1nj5+y9AM5Boy0+MFzPewRotSzUrnUkMgl+qY2TIsKhyq1Ei1IhVJ5NpEoGl1UAbJSHIqLniqxBeSMMqceVM7XcvSWM1wpN7NuakSGOJVtXRgLrVZQcqOKn0CRwAQ/EvwcVZFiiclQIKUi5JNTX+kFJWqj3MVK/0r3lD4x6xHTvI0qoEXZlBbGX3rHsP0DXn/4MJVi4QcLiVLVHJYpS4aCVFR1UybEOAv4y254LuxS0NrVZIrYP8+UrXEM9IPnsBvpu8DmIlA1jqWuqZXi2XlLjIFxKm5rIXiaRU1dNQyHiWnI3L72eGEwl1+AseymhstKsaw15/o5Kt4whjtS8ojJIoLF5yV+D/4mMkRJH0cqtaTa1Dx8dMGmVnxy3pGmyMdXr/n1JciPLlH2Am0SH5xZFpXk2u+xOfLjBzX+pmPz/G9xKA7ScPbRA9zqU779l/8745vX/OzLTzDWkm1k7I5sv/4Lnjw448mTS0iP0XHN7evviEPHA6lJ2XBl1vi0xKdHiHSNjFfYyVALw9Na0jSZr3dfc3N7wy/+j79h/fFP+PjP/0vs5jtM9YKb5yPd1Z5/9T//Sx5fNvxP/+O/IIvMv/3td3z9auD//PqOhb2lsZk//xieLBTd8BsMBz5c/JheKJ4fdpx98oRHP/0jznKmzYnXz3/Pq+c3/M33vwUynz2ouTyr+PyjDYqRpso8fLxCaahlRgl4bCp88Gyvr7AxsBaJ3FSk1RlxOrC/u0E1G7SteHx+jpSanBVTt6XbvrynMAiKvXJVn1E1LevFGuEjwe/wnaff34DTCKswZkCpCUVBrOO4m2lKueSvZJCuQZqqXIilRuq60NhimtHHqhRmBqlKo0txLsBZVC8ogsiUc1G1C/1DAwpAqUINi7GgjDGVCyu5GFdoVTZjxWI5ABoh3dx4872NrhYARY+YYqTvCpVm6D11k1gKjbYFHVw4A0kV16SUCWkq1s6uIYUygI1dZhwioj1HG82YHTlLWiNRumdpbkh5KIYUWUOQpOSIURGOjhBgTAEpDK4+o20b1nXFuvI4FVkeJ47DhHy0wOcFylywcIpNrRjjyE2YeNQYKhdprl5xHCIHaRGLGv3pz3j5i1/w27/+S378+Sc8OH+MsDB4z933f0vQkg+/+IRaLYjpCdu7LeHmjkulWImaV9WSY9Qc/CNyDOjpFVWUtL3hfJ150kqup1u+H6/5i7/4inGK/Nl/80csakX98AXHO8/ty4lf3f6Gv/rrI//9f/2P+emffsx3V9fcHvb81fOvyXliaRNPloIvnglCuCKmwJk5w7qam3EAK/n4j36OFZImZ4buSLfb83Y/sO89lwtN4xQPLhqMFmiVaRrD+cNzFKW5ZaXJQtIfdqTgaUTRAuVqQVaRcbgBaUFZKleX0E4kOUWG49uyfc0nHLs0MmMXOOPQUhFCR/KBsevKPU0JMhMwwKyJ8sOxNLXVGVlJUoxl6JESQcmZObl63Q9T6mSNfrpcnq6X88jzg6Fp/u77F8j5lfMJGJmHKJlnqlMiicR9vtWJbgslzPYetVdI7UhMRbycSyMOIRGjoO88AqiaQrc0MlFpRVU7YgolYiAHZAbnypkQxkiYMsddANdg6g1RWIaoqCuJVYmFasl5JKVD+XmCgmSJsSKNkLrMFMHnROXW1EaxWrQ0JrJ0nvWQGMct5sJwU2/Qdo3VcN4askhs08jCJB6uE32/o+9eM0hDUprHP/2U/W7HL/+Xf8+mbXjy0y+xtaBZZfZvv+fm1a+5/Pxj2rM14/kzDmPmzctXtGSeSsedb7iZFF08Z4oNenqFSRPtYFkZyZNWgPG8GW/45W+f83d/83f86J/+OQ8++gC7+Z409Fx9N/F2e83Xz3/Dn/7oQ/7Ff/GPeLvdc70/8usXb/j6cMfS3bC08PPPBYrE5L+lFZmVvWTvJ7rkefTZJyhpaHOGENjfXnM79Lza9iydZNNoNuuqmFuIhHOCzcWaFMNs3iNJUjONPVPf40TEZMhVTTYGP21ny+UGbQxr18zPscCPW4LvKZTwAqApYdB2gVUapy3Ze9LkiaMnxAxGIyRoHRHipH8qMSikUw3MiJpUCBT3jn2cnt9UGA5CzgPce8/23BHFD7a87+pHiPdjC2a/GwUpiZkqDohEDBkhMq6q5zoTxJjKhVsrpNLz74PUFilPdMOSou192QyMQ8D7SLOIGGuoGodRglXjilFACuSZYmWMxWhHmGnU3S6ShEItnoBS9MGy0IrKSJS6RaQjIe3JOUA0iGSIFGZROEamJBlzwMgG01iW6yWtVZzVEzkmLo57Xq+gerxG6hVKZc5bTWUEh9CjcuTxypL2A4vX33CFopeGi2cXNO0H/Pp//d/oX77iT//kZ7iqRlSR/rDl5qt/w9PHD3j8wVNIj7BpyZuXrwh9z1NVdIsvqw1jauniJTLcofwt9WhopeaRkzQNvDi85urmjr/4v37Fw48/5Wf/+X+CXd1gqxuuv/cc7zr+zb/+t6yXlv/hv/1ztJJ8d3XDy9uBv369pdG3NCbz48eCi1ox+VdIMbBxTwhCcjuNLB6csXnyjCpnbEocdnfs7zq+v72CnHm0sjSN4eKsRhKRJrNctygtMbO5yFpqYoz0xz06RWqRyNaQqwUpDoz9AWFbpDYs68X8rEqC75j6u3I/yrwDI0yNMY7KVRAT0feEKZSMPCnm2KGRkm+TyDEyDgeC9wQ/zsyEhLEVylgOx7GYTswb3pRmuqzQxAg+BIIPZYutCqtnigmymCUY5blOmWLalRJ/6OsPH6ZmfZRUhUaUZw5tyhNJ5RJ+GiPRR6QypWnNZhOnihZKlMMkjZAnciwXRqkMxmZSLNbgYZwIPsyuWuUDJmZKlNWQFGGQaOFQTvD0g4akHKzOGLNmPylCVuwHieMSjcPYCs0E08gU4OZmx+7NxNWLnubsjC82a6jPkEaSm5ZeBF58+3vMNOKOEw/ikp8/ukA4A0aT797gtz35fEGwlitliMfMMR1onOVHC3idr7g93DC0S/oLTc41KcFyNaFEoLtJTDGy7SOq2rGsJ9RyT3aejWpQxnG+XpGTIU2Zobf0/YrNqqatLIvLc4TSXL++pRtGHnz4Jcqt2H71LTa8woS3OOlozhSfSsOmyfzmb7/CtJblCj5UC0z7MVo6tLI8fOpYV4Lpl98x3bzgV//3v8acPWTz6c/AtKArnMjUOXGxWlCJxPnVFf3keXkXuOv23G2vWDWS9UJyGCaCAtkajAYXB7KK1BuHTg4bILiMT3fYSqOaBq8qEJr+8AYpRAm+jQElDdVqgV5ZBtkSpEPohpQ1/a5DDAP+zTVDP3Lc9wSdiRouHljqWpFyPwdGjDOFSRZrcB8xWqGUKDk6iLLNQt4j1+UACOQUSRTTBimLAe4JiS8PeEnYFkIVRPwHrax0o3yyfpaqIOA5knJEKFsGq5nepLVF62LNnhD4AFoUXQvzn8snzrk0SJUwJhf0PIZZTDnnLUgBsWQxKVX0VSmWz6eVpG01VaOgqslSM8QyIE6hpCxo1khZoeRY8ohS4jAMjEPicDuQhOHh2VnJ4NIOaw1BGQ7HO4ZwwIyeKimeLC6IUpdLxtQR77bkyiKspVcKHyJjfkEWE48WgkFnboep2Bc/+5y6WhO8oaoGtPXsdSAjOQyB7AYW9Q1mcaTNRzayppaOqm6JyjCNkhgU43FF7RSbpWO9ajCLluPdnttu4OGTZ8SYObzcM4rAEK9QKM5WlodCYaQl7m54/W1ANorlQvH5B4/JuXDIzxtNvdL0Nzvi9pbbl7+Fu7dUDz7Buqpo5oRA50xlLbJ29ONI9IFuigxeMPkOqwXLpthuR5FRWqKMROQi4lW1gijQqViPR7oCcllLkdlrYujJ8VCel8zsUObQyyURTRAOoStAzc3FE49H4jTRH0tG0UTAWkXVaFKYyLHY/xb75XJ2I+w8vMC7DZP4e8/+D796B4u8Q8/f04Pcv+Pv1w/5hDqe0E1BFmUjJmRpioX1UAA9le0Mnsy1Qip6HcJ9fZ+480rF0mvmATGn9zZ/J/epQuQnxXJWKClwTiLPNFgHxjElOQcEF9BEs0RSFb2XLJlEY0hMoeewHRmPkfV6U/Lv7AqlJElbBr8nHW/Q3qND5NKe0egKYQtlOe/vSEqQ2wovJAcpGcUWH4+s64baZOT0FhNHnj35GKcNIViU9iyXJRh9koF+CjB66uYOLTN60+FQrFRDbR0PbIX3jhgEY9dCrrjcVDS1wy6X7ELi5XdXZOl49vGn5B7uvrnGhRtUmlg3FbKRWGnZiJGXz78jWklTC549OuP8rMJIi9OS5tyQhwn/+pruBo7jhD17RL06B2WQQhdfTwFtXUHOLHQgJbjpAoPvcRqWTcl5Csw6bKcRJHSa0DZTSYNOBpkhiolMQNnieJiEgZTw4x1SygKY5YgSGts0pWaEQ+iSN5hSiQNJw0AeJ6bRFyvxOUammcNKhZiHKSKn9U8WBfAQP3jc3wcASn3cm7TkTBanTevp9yXvran+ft28V3cFkCh/RukCSuZULL2ldvd/UkqN0gZlimwjJkFClAtoBlEs4EhpJJ90unPcCKnkc8UQSq8UiizLYCjlKb9KkkLZAEojWG8cWWqoGgKCMUpSlgxBommRKJRSSALEQIyZ4/HIsA8cbkbsYsGjtkWYtlC9jGMisrt9jYweM3mWueGD9bpMlEohjnfEboK2ImnHUSqSLgYyzlqeNoItd+z7O56cndNTIWjISbJYjsgcOOiiyd/1EVXtWVUesdqTKs9GlaFiUS+IyRBCZuot07Bgs3S0laE9XyKU4vb2yDBmPv7sc0y14vbrK1y6waZbrHDUa8kTaWid4Pr7l9jaUNWSy/MGYYvUQkvN+sxQGQgvr4mHt7x+/ktUs6a+/HAG2jSGkqPYVg5DotUHphC46SL7sed43FI5SeMkY/BEmbFWoSTo5MkyYRuDyBodIRmI+YjWCmkdURYmjx+3CEHpQbFQsU1VIatSP0mYOXpG4oeJ7D3xcMCPnmEYCUQCkaY1aCOIfiCngCAgVfmZhjHQ9R0uZ0xOBB8IIRV+93uap4y8pwSeBqQYC6BdQG0wpmzSyrYrc8p1+0Nff/AwVYowzFxcidKmrFqjRSDQNiNiIOLL6rtaEMNYVnGz97tUmpwDwg+lL6b+flVubLEtzcnjp0j0oVwQKoc4NTKlccJAUHgvqY1GV5qzRxdIU0N1wbaH6TYRk2A3QKUvcGrBma0wciDnKwY/8Pb6ju2bjusXWz5ZWD5eXTAs14SqZhCK47Bn//wNi+nAJ2ngcv2MxeMnRNeSTMU3L37H7voKzldE2/C2WpB2Az51rGzig43GHO5Q+4FpeUanLiB4UppYLsuqX6rMFBPbLtA0W1b1nnZ1gJBZ6nNs27L+4iEqJtSx52bnuN5pLi9a2tahzQX9mLj56nuiEDz8+Ef0dyM3Xz3HcI0RN3zw4QPO1i1f1pZKJL76m1+zuFzw+T/7kNXZgo8+avBxTcxLHj1eU6vE7S++5nhzw+9f3XDx2c/5J3/85wRZMWDLMCUydr2g1YmLKnEdRn63jWQ/8M245enlgo8erwrVRGXUUmOswB73aJ1xlSNHRQqGMR4Y4x1t9QC7bNiHmilm+v0blIyoykF2GN3Stmc09Rl3k2NIGqErcoZhtyUfjoQ3Vxz7nrvjkZ6RSQSq9hnatiTfIfBIpkIhkoaYAj5MEBRCC0QyRTL+HhpRqBAJ0my8IiyIjFbVzKs9JdfHeZgyBTnnh8NUYQWenJrELNY0hDARQ0JrixSlwJES65oSuiiLIDnEQomUaMTJACCPJeRQFlt27ExFipEUE1llhJKFDujz/HOXxO8YxL0FqVvWCG1BNyQU6VgCesdQNm9JKqwc0WqCWGhpXX+kO44cbvc4V/PkyTnZOqKrCRR3M78/Io5XXDBileHJ5pKsDcnUHK+P3N1eky8vEe2CTlmEjAQGlBh43Dr6PELfoV2N/fBLCCUEvF4nsvQoHUhRsh8iTg0sXWTBQFIDlWqwqqF9eoapDHIYmSa43q5wTrNZVUhVI2TF4cUdN9c9T54+QwnF97/dgu8Y5BWbTcPDJxdcWM2ZcYzbG17sdjz+6WOWC8ty9ZiEIeUltbNUrSPs/pJp/I7rlx1eN3z24BMqU5OULmGUZJQ1WCqGbk8cPG+HzBAT27sjTgueXC6Kf48ErETVBjlNyDihao3Imhw1KUd8OqBkhXErpmTIURH9jpA6rDazTqlGakddbQhZMsRCbUJIwjjA3MjiONIdj/jk6WJPu2yx9Vl5TqceqWYknVDocryfGcUs3J2/uL/svdeQciZxCkw8mRXNtTG/5/+jC/Hu0jhrS8pIQxaFWpRSKtrF+RIqVRmm8mkQm6ldZDvXY+QU3qhUAQpSishYzgGhJEJpchxnvYokowqlFYFWAmMNra1BOVCO/ZDpJwgJQspYtULLUAxC8gQcCePIoRvY3x3wB8+zsxVVrfFVS5KSKAShv6O7vmaVRlo8l6sFsVqQbEOYPNev7kjGwGrJpIo9e5KZlI5snEa6TDxusUkQn35CCpnoA8YFmsXEzpXcum6KJO1ZrO9obWK1OaJFQyVrqvMF1cUSOXrwgetdS4iCi/OmmCbpJePVjm+/u2ZztuTZp5fcfN9z++qaStxQ2chHHzmWTvHEVqQ08f0337F5tmH1eMmH7RmZM2JaIaWhWdX47Ru68Xccuj3bt2946mpWlx8QKDRoBSghUHWFSJ6FDux85m7I7HyPShOPLxZUlSaSintrrZHJI6exZCc5S46KnAQ+HSBnrD0nS8OYLCl2+PG2UN+URuBQ0uCqFUIa+qjnZ0yTYsT7idz1pK5n9BMhJYLOKKOw1QotBXJG0YUI7z3P9u9tZn/w+gdAuZzTvKl6F459X0Pi/x2MKCab6f57WmmUVkxjsby2plwHY0xIbXBVU0BGIUoWVcpoo0vNzZTgQvIofU/rAqbkPFP+Qig1aEzRU3GKbShgUMyiAJla0SzbssHWLYPPxL7kLw5BYESLkpbGGBSenPeE4DkcD/S7kcPNkUunuahXBFcTjSVkmMLAeHuLCz3neWRZX1KvL0jKkZTh5uYF/WEH7Qdk7dhrR9Y9MR+pTOR8obFDh+kHwvk5ff0YEcqCYLkoRj/KRHyK7PpAXe9ZVR3teo8IiUafYaqW9tkFKifkMLE7Gu4OSzarirq2KL1g8HD7+yuSFHzyxRcc7zxvvn6LFbc4ccuzZ5ds1g3PKosVievvv8etah7++BFV0/DgoiamhkzNellhRKL//l8xHXe83e5pLz5g8+RLsjQEdKHDktHOYUViYRKH6Hl9TOQ4ce2PbJYVl5uWQCyUb1fAXz31yFSoeyRJTpqQekI+Ys0a5RxjssWufNqW81YbwKBkhbUtxrQMURFyAZ8zMA09eRxJ+z3DNNH1PUMcmLJHmQukqvBTGaaUjEWa7hT9GDn2XdHH5oz3qfgvzXTZeRFGFmLeZk1IpRFSzfTB8mzLOU4k5wxRkIn3W60/9PUHD1NCiEKDOm2ZKHk4UtcQDadIhMrMbmbCoLQuHu8pIObsgBRhCgo/SvpDJKaekKYSfhoT7XKBdY62XRTrXS0QGIx2jB589MTJk4uTJxLB/npPFo6o7ohmSV0/xCtFEJLUK6YINzcH8rhl983fkXNgszScXzZ88egLFsslzTJRVZ5Rwbe7gUM/MtkPML7jxfaGy/qMD5o1SiaSGFhahaxr7GbJYCv+7upApQwf/bM/w99uefnmmgdPH/HxRYsfS9Dhv/vVN+y6gV03gG54+rM/IfqSQ5HSQOx8EfJ7yTV7zDCwNB06ZuwQkZszmk/PeXG7pXt1Req3JC8QcY8hMb4+EoaMJlO5SOUaNnLgLE/YixWiMhyT5WAdty8Dz5YLfnJxRqrXJL0kjtcc85HmR19ifWQjLgj6nF//6jVd0uyT4ZkTXOhM/+aK8XDg5YsiZvxw0ZCMZVQVi0bjGs3F+gJXV0V4SITJI0REZldWw9bBMZOOEzHXhNTiswMlefDwR4gcCNORJFvQF6AL8q5lQ4UmDyOJSJSZVGnGBxt0XnCRztjurzgc7njz+hU3b+CsFjinWD9YznQ5g84GmWcXplwG+QRomhIKl+XM0Q7zNU4X97QYka7kPUkxu5fNm6CyfXq3gXq/fqyzuMpRDNXEDB4I0qxf0UrO3GeJ0u5emyWVRGs5J9pLwkyzj1MuDm3pOAs7M0bXuKpB2wqlZ+clMkrZgrbGQndMwc+tHaZhhKxIsidLizSr4uSFLMJuD1OOhDww3r4m9Du0zaylYvP5I5S21DVklQjacz0GbqdAEkuy0Wx3OyqlefSgQWqNwGNUprIOXVWIuublcaSfAo8++Qw9jexubtBVxWcfPi7reS94ffWW292WY+gJIfHws5+TkiT4SNKBNNxyGAX7XiDzgCSzMj3WKlyfkMZSPXxEN3m+u3lDGC1hdAzHLY3s8TcDIQtMBKkiy0XDqhIs8y3O1bCsmbJlEornPbgIn67WKOXIeoEUE+OwRyzPqD/6KY9pSaJif4jcdTsGYXFCcGEEaRgJ/cBuP9ANgdZaFra4XmkDxmqMMdi6mi/6cp43RMlSQpGtKZvCfiBhyNkVpywkVXWBEmdF7I4gqRVCaNJsqKDQEBMp+nIVU4LYVCRnaBcV3g/EfcD7gdcvvsMqMBJM7ZDalE2qtEVDe+/ol8jZz3S/E8jA/cb19HvkU5Mql7p7Wt8JOedk7vIfvmZq0b0WseSEFOdYyDnOQafcN1EpbdHcpDDTqyjDUFaEACEkcppmnaJHCIFzNUobjHH3jPVCAaFkJuZw79CXAjBK2Hdk6YqZi2kxsiIU4RhpFISc6PJA6LeMty+RVpbg3sdLhHA0C4M0lzSTGgAAIABJREFUGWU8Q4K3YyREidePues73DhwsV5QmwopEohAZQzZOVRds/ORt4eezdkli2XLeHdH6jxPH32AUIpPnwn2xyPfv7pmTCPHbmRx+Yzm4jNCKHlzadrhc+amF+QUkHlLkzuacIsZEzqCvXyE1pavtjdME0zdjjgN1KKHbmTwNzAU7UlTa2qnWOYdrTTosxUDkiEp3gjN1TbxwaJlZR3JLkHCNB1ISlJ99GMsljUtQS1582ZHl8qz/cAIdIr4/ZFh6NntPFJpHhhDkJKcqlI/TrGs10glUVpBGCAGZFaIrMHN7pTDNGsyLCkbEhplFjRVVayWUyDLliwczKi7Fqac+z7ca/CiM8WJMBfEvx/2pBw47LYoKai0RFuDqWyh4En9Xl7b/ISnqVD0pP0PnnveDVYn+ux9kOWphooOCt5Pcnv3UkoWIDMVip+Y9SLFuU/cO/YpXShPUjkQRSupjJpp8Apy0TelCNHnwk7KHjFrE62rULq420k5vw9JFLq4sM0mMTmWRZ0AhsNQ+qs8klWFcUuimNO8QiAlwfHYk8OR4e1zINIsHO2i4sFPnuHqGldlgo4EOXHdTwzeE/UDVBy5Pe5ZmDXntpkNOCacUQjn0HWNN5bv9gNWWR785GfEY8d2t2N5dsHF44oPnwgmH3n+4jv6ceDQd6BrPvjJPybGEgCbck8aPNddZvQSzRHTj6z0EZ3ADgm5WFI9XvPycOB4XQxeUgCZjpiUGN4cCUMZdhqXaaqWpR5Y5gnVLshWM2RLbyyHbeKscjxtW7KpybIihSNjHjGPPkZdRCqWRNXy9urAlDV9VmwULGTG7w+EceT2tjARLquKlDVBGSqn0FbTVAuMtcV8hVzijkRCZENWquTX+UweAwmLyI6YSyZk2zzh3nBFOJALstRkFBKDmv9vyanorIwktA2qqVisG0S3RQwH9tsb9ttMpcozLBtHyqIAzNJQVw1SKmIs7rVaz7lXM6CdZwZCyOBDQuWyyEhxzn5NZdMdgy9DlVL4EPA+kOL/HzQ/8a54Sy3PBSgtOSuQxdLaaFcueieRs8izNXYihRGIxKQIUTKGws0NoeRxSATWOaq6wVo7I6eJJItTkxCBlGMJx/WphASnTDh2pGTxIqOXgqp6VP6xsyRNwJQI3UToOq6+ucaZxHl7RruxrJ8+vD+QpA5ApvNHtj4y2gvE1LD1EZEXPDOuIPN+wEhBbQyruuZoLMdxizSa5pMP2CXJ/ttbni3XfPjsAVocGKeOr19PTAxsb0DXDYuLZ+x3t+xurmdK5EDvK3ovSHFAhZHh+oCO4EZYrlpWS8Ptm463d3f4ux4RBGvdI3Ng2k7EqJDZopXCOUMjB1oyuj2HRUUQDWNWXB0EK2upxJqsV2TbMg6viKHDPHxEpQyNfsrtQfDtd7cckmGbHafZ+fD6wHg4st1PKBl5sJIkZehkRVVltM2sVktWq3Wx/Q2BoGsgIJIDaxBtDaEnD4YsLClbEsXNcbE4K25LUYBektw5JX+rOEZqVAnizIGsMsko4qIul3SdGcWBMUoON1vSNGFWNbl1rMQZKHO/QVIzNamYMaT5dJ+twmfbWu4Ho2IOkvMsNJ5dmP4hktIPQHTmYcoWK/MgT3NXoQ0pBEqXoLjCdZdo7ea/uORBaaNn+hJF9J5koV4kiNHfU47K1tgWOp8s9XMSMZf3htki+52NaPKCFOf0HhUxq+U9aJIjJD9Tn6KnvzswHe5YXzbYWtKcrwoNClEQLBGIeaILnigrsnaMKVMhuZTzcBcGZE5YrbDGYpwl7keGmNBnF2g/sn+7xQjLxdkFUgSEGJlSYog93S6SUawvnxCz4PrqZQFqpp5pshy8K9ldOTBtO5wB10PVLLj4QNL7wPf7LePBMB40a9lRC084TsVRNDm0kbjKUJlATY82DmpLUhVBaI5RUk0CSY2RDrQjxuJ+KKsWU7fUcgXZ8v1tpI89R0pgamUloR/xh4muD4w+sjFgpGA01ZyvmsvGo1lwChpMqi80h1w2osI6iJI8luemwCglSlSbEkI8jntSBqEbTiJcKNa9JZOjPO8oUYazrHHKIieB9Ybh2NEdduBsoUFxQhNVGdLy6fkSpU5iICnKuX+iKqV54BKn5z7ODIfT+96zW59d+oSQ/0AjK0V1yqgSs4i/WB0Xre5JU5JmcCPLIpwWJ9CDOAv/JTFJYhT34uayNVBoYwtVXSlmt46yoZ2HmJxK/ZAzImdyFKWGiCSR0G2FdMyhwpDn0PoUAtN+4Hh9R7uuqU1Fta4w1bL8G5BBRsaUGIJnQjLpNSMaFTRL4ailJqcBUigB31rjrOEQMp0PrNsG6xb0+544RNbLM1ytkaLnZttze+gJXSRO0KzOsfU519ev8eORFAZCzBx8Q4iJGDoaKWgz2FFgkuTi0UOw8Oq4pztGutueWgTO9EAaAlMXycEis8YYVSJOxIBVIBsLQhNQ+KgJAzxtHFrUZOXIIuH9BEJgzh6hZI2WC672mcO+55A1CVms0FNi3Jdg8HFM5eLpJF4oAgKtE1pLmrop+YAF5yJJi8gKkRXZ2IIAT7oM2Vnf11DZQi2IfiD4kagahHT3Oj+JKv0olTtDlpCNIiuBloVSKOOR7CPTOJZNmilBr+Z+kCr6wnuKLHMNle5zXz/vb2NP3Sbn979+92tx36ve11GV1z36npid/OY+hgQxG3HMJjJSqTI4zdCgkBo552OVzw0xCWIqltIxRtRszqS1QRs39yA515CYGRtpfn8qyH8utNs4enJWBBKqAmtX5Xw5KUNCJo6eOI4cru/QGhaNwraKar25/3cQssQmjHGki4mgVgg50YcMqeZcmpI9FyeUKFlVtTWMSjP4iNAau3lEzzXD9Z5NteD8/AwhekIYuD2MxH1P3Ca0q2nPPuJ42LHd3pDTRJp6Ol/RzXc4HQTT9oiJ4IaST7aoJDe3A2/3e4a7EeHhgekROTIOEzFKVLYYrXCVoVYDlYhItyJXlqhqPIrdCJXSaGqQNWiL9ztS8qjlBUYqFnJNNwnu7gaGrDgmjTKAygz7kTBM9H0Jw103giwMo7BYU3SjdVXA2fJfFYnSARFS2dhmN2/b/YlzUeoHobC2hhwZ0x5kRdYNwJzdJJHIcg8hztooSXLFeERLh2cgpJ7D3Z4wTajakY1G54pE0bALqbDWkmbjCTVvR1N6F88kTtQ9TuYUpUZCzHM/Kj1lSqlsop29pwTe5yH+Aa//iM2UQsiqNKIUkcrOSdoSqRJCzUhNFkU7FaZyCPlxFjJnki8JxYtmRa5alssNw3Ck77ZFQKYttStTcIhljRqTJ3lPHiNOKmxjuNrd0u86JkwRvbs1WlY4syxoU+xI3UQcRmR/hfQHGidQ1RnLf/SfYmrN5YcXWKeo6pPQWZB2bwhjx2f1iqlZsPzkI6YpcvXZNXkc+fcvb7j96it2z7/hi4uGy3XL4805tAsCmr7bcnP1HLuo+OSf/BmrcwtG8+9e73mznfj+ZcDKFf/df/XPCSpy66/51S/f8O3bF1ipqJVis6mppOLV6xu6IXJ7KxAhIXxEvTqg/vI5w9DhvScNZZvXU2x+tSxOVMYo2rbGVhXtuWW5NIXihePnn/wJCIPvAhudmeLItPsWH0eOXSBlxcMvn6HrmklUEG9Y81d89OgTHnz0x9wdJ/a9ZxINYweVgdR3fPPtS84uH/Hln/wZVnZYsUdnB9GidaEG2c0lOUVC1gSpCMaiCSxNxC4apHO02c4ZA0vICVMZxmSYekkg0RPJ/SsIHqsTWknqdj03tfkCHSeWK8uyfchxvcSPnnG3owuCcQg4YbDLtnDFkyi5MxJOTYzkERKUqktPukfD51wCIYg5kYOfG8S7Vghqzkn4oYDeGMOnn/6Yp0+fzAU6X/pyaS7yNLjNtVsKvNRRcRmUpOTnC3BDcVQ7I6XANHaccqykKIeM977Yks4X5jgV9F0ryRQ8x92eQlRSaNUipZ21YIWbnLwoVqFhRPlDMc9QgmbzmGZ9wfJyg3EGY9Q9yBLCQB7vONcW1zrs2QYpLYeLc2IIvB0n/G7L3e9+w6rSXK5qFs7RLNZ8gaabRsbjW3yKXHz+Bc4okIbrMfL6OPH2zcD+zcSXP/ozFqsLunzkdnvLb375e6qQWShL3SguNjUvr265Ox55cS2IAfJxQAqN/sVrQiraitiNhG7kWkmsErROYYwsHG1tqZoV9cKwPLPIxqCk4fHmCapaEaaMysUxMcae2G0JITFNgma9wLbFPTDFRK2+oVKCjy8/J2ZJNwaClPRSkVShf9zcXiEyPPvip1hn0fJYLnxBlqFdgDRVEdFT3LWC0qWu6gahLUIqjFQooTHGoZTCoIkpM6WyoQllOiaHDikyWmS0dUilULI4XpITShkq+5gYEsFHcrk10S5XKKO5ur7Ge4+fetIsQs9zxIBUdnb9KlSLEwe9ON6VtPvT5sg5h9GKvh/uB3wpJMY6/u5Xv/xBM5sJXvNXp+GpNEQhJQr7Dr+YgYgU/f2gRs6zbkNibYXWmpTa+TOEe2Re6tkqPZaLcgECy1lrpEIhGf2eFDMRhRAGZRq0tAhpyCqT80TqitGSmHYIkbDGYBcXNHWDbStcW6FNodoiSnZcHO6okuCxq5HNAn25Yhh6xnHk4Cf2d3tuf/tr5DTy9LzFNRXrZokyntoY/HDH4XCgeXCJfmjQtWUk8vxuz/7Wc/fWc/nwY/74Jz+hz4VK8/q7t2yvr1mqispYLs9adv3Ai6u3XB8E3gsYfOlBX29BavrxSPAev+vQwGuRqYyksoqqMTinkJcrTGWp1xW2ghAidbNitX5CDJkUMrWGED0hvCalxDhEtLO0F2sQiohGq9c03PDo8jNM1dKNgcknPIY0TTiV8OOO6+uB88cfcnZ2jhYdWiTIJadQyQzGACtSLvofpC7Ol02DyBFpiyaLXPK7hHCFWp0dIRliPIEHEXyHIKPkbFJkLCKenMcK2t62NaSqnD+pPENFI2Xn4eTd9UvKk+PlOxfL0msk70aieWAS+n5QyvPzeW/6ct9zTprEd+9OKRPCu3oqNSio5u230XreMheDl5wip3DUMGWSFGRTQoKtqRG2RjRLQhjxU4fSFqnKRl3OP0c8ZUSlSA6pODFbzWE4MHXlTBYotG5R0mBUBbrkEeYYSSEgpgMyjlgtEXaJ+/AnaKNoz1eFRmn1/WfNw5YURh7ammAd7vy86Ksuz8kh8O12z+7bbzi+esGT8wWrRcPC1Syqmp8i8VPP8XiFrg2XX/6IurWgFN/uO7ad5+ptQNHwT//kPyMrQZ97fve71/z+ze+xylBLw/mmpW4Vz1+/Zegiz9/MGY7diPrqCum+YQwDIUz4XQc+cj3f32oLxirqRtO0C4xrqVaOpjFIWZYXH5x/VEAJn2hUMasKw02RLfhEyoLlgw3SGCIGkY7U+Tlni0sWZx/ST4HJRxKOMIHVgjSOvHlzRbvc8OjjLzByQsuxRB0lhZQJlETVC3LKpQcJSVIKScTJjLTFrdkqDUIhVQVkdCqUvhhK/QgiaeqKwYliljxUs66urCtjClROY9UaozTTODF2R8YxMGyPKKUxriELXXSOIc5023Fm86RZu67L8B7D7JCsCD6RcijUVQR15cgZ+qknhoiffNmoqjnr8w98/UcYUBQ75OLgcroMvhNASlVQz2IpODfWGAhhQs4WtimG+eJYHGKULh80hhFly2pYqHKoxDg7LcWSz1EsnUHLGcnJiSyK+FgaNyeJF+Q9+548HMiHAzLeodKAUctCnXLFTla2F0idUKZs1JCgZMDkno1ZEbVkvawYYmZiot8KDn3H6APjMKHMiqqpqbRBasPDpuXW99x2E6ZusZs10UGXM696xYu9ZN9pVtaxqVdMauAgQ6FBxkAIBi8sJpdk6JIDERgGSQ4RvIc+kRlQOiFkJk1doW4hUEpilEYpibXgbMLZjHUaU1mIChE1Z/UaqQyBASc8QZYA5MxExpKEJauGrCtCEmQFiypyvoCnG00WHi8yTbAol6iminAY2e4itoL1piYNntjlQgGIJVgZAdLWs06h0AWENshUIXMx25BaYyjoZUrFdSh6SZp9ubOYj/Ywgu/LBVDoQnuZbYhTCkRZ8nqMsJAlk57wfV8axDwUFbvzRMon5OyEks/PVk6cTNhL0zo1sndUizRfPAWnsGr53vd/SLSQQtK0SxbLFdwPU4oTUpdPze3kNBiK4UVQ4r4vxpiLqy4nxFDP4dWFKy+VJsUZLU0FoYuzYUQKhadfsnjSbKZRNFFZyOK8SRngcpzKe4YOmSaIfdnkCYPUliwM0i7L5UPNFvSi/BiKiWpG9W2lkcqSRI2fPP3OE3ImeE+uDMY5tNFooVgYiwbe7gpiqZsWqQQjmX0QvO0Fu14x9BorG1rbMsU9UvmyEfKScTRgDZUoVqwpTRzHYpWejmNBDnez/auJxP5I6A9MxpG1pnEVUqhCC3QJZ8E5iXblkiySotY1zrVEUajLiGlemMRyRmJKroMqVIQkM1ZnpIBVLZmSYIq50AlRqKRIQhGP5Vy1TmOtIo+ZJGf0lgwqzzb5c0YTxRghC0oYqCx5LWoO4TxtbUqHgneXq1k/lDxClYtRoasWt8lC+wGJwlhTrIwjxDnHw86UinF8Q993DH3J+gjBl8ErROx8lmehIZehJMbEOBbxb4jlc6Wcca5s0buuJ4RIYTtInKs4HPY/bEHz1umHaKFgtigsVrczyjgje7NJS5qHq3w/WJ1qVkhJinPsgjptCuaLao7zJjoVDWJK5XJ9WljneU8xxyfcBwanWRPjOwgemYZiBS0rUBZpFMpVCFshZUTINBsQZGT2aASNalCmINNKZoSWDPtIAIIPyBBQxmCMQQtJrTTROra9YPCBqnZoU+ElDCFzPUqOvaIbNCJXLN2SFCeCiOViESKT15hsqYRhEBNkzxQEh15CP5F9IB23IBTGBHL0xGE792GFlhYws44MnMk4C9oalNLkINBoFrYpz7aMKOnLfSHH+RzUZAxISzETF0iZcSaxrMBWEj+b4emky9+bNJ6JcYpYJ6lqSxr6e6vyJEDIYkpSjH7mI1+VOpGmRL1IWc5ChZqBrtKDUpKllpjZBznPdLyMmAf6coVIJMq5i6Cg3Mz24TGVY1qq+Rk7mRe9o/C9c/F7fyN14ju8f6kT73C3fNpS5fsh7IfbqnevfKI03b+7fF9KiZSnOIHTAHbaAJeN7YnFLou/OlLYmY6u5u+beZtbtGRZiPvaO/WgnN65rJ02XqcBUGrDKY+OnArQ6UcYB0TqkdmjZFVySNWibPnsoihK1LsQZCkiEk+japJU1M7gMyRRM/UDg58KhWuayqbOGvSc+bWyji56eh/QxmHaBcmUHnQ3SW4GybHX1MrS2iVJBXzaI2QgJs8UHBMWs7azu2mJ/Tn0ssRNdCO5y2Q8xiSkisRhR/aBQWiMllTGIEUuEScm4mzGWFVYAVkhkqK1NUJqoghoEUn/D23vtSVJdqXpfUeacBkyZSkABdFodHOGnCEv+AR8YfKaa83FkGySMy2mBVShRFZGihAuzOxIXmzzyAQaswa4oNeKysoID68Qdmzv/e9fqDTf19KH7aryc/6dpmpoXGbRwKab7cAB1xmwDpsdWVvSPmNspes85EwN9YPd/3xpaeNBy8+7qjm6pTpU9bN8wmA4MSWkJ8jpxO05afuQ32+OEo3zyCyoaC3XSaVirBXKnWSbMI0DJUnIdqVi5utZrk2pJzEmaoXG+A/n5/GMiFSpVPVYHz4+HKfal8kSdm/+9EEK/pzNlLYY20PNVJ2kEKGEsz8Xm1JEKJ/iyDQeCGEkxmkWKxZiGCWTICWMNbS9DEDdYsM0DhyHHanrMFqTx4GcE8cQZrQ0Y7PBVk3TW87dFqdajPaYfs00ZV799lus0az6FnX7Cvf+O7Yvz1lcLFFXZ0Tl+N0/v0ftI8cmsVk1uIsV3o04O7JaVDpbWTaQVeI4/pqaFGel8nTbsLj+FPfjK1z6H2l9h9aWaUrEdzu2YUPeZ3izZjzzvFsmfjM6dlj+7uaSd2+WTPvIMh35j//b/0rcRN69OHJXKv3T57y9WfPqoeUHJrN2kY1usJ0luQZSQo0jNSpKUqyedDQLw/i+UGISjmnf8vmzc1rn6X3D0lt6Z7hYb+h8y/SuxRyWPMkaYytDF8leEdoly/YJne8YoicVxZTvOB6O7I+Rtev5N//d/yIIKoHn3Z4re6R9do3WlxyGhhSOjA83WNuxXCi+/ZcjX//9G9KPRQBce8BpWreVgZgJ6xx9vySPnjR2GNeijMPqDbko3r1/xbgbuPvte5bn51x88TnWVIyB4yji1s53aGuI4Z5SA3CP9S2dX9GYFqcdqr4h6CP6QmpEt1zhmxbXdORYqWWap5hZ1Kv0nEGTIY7C8TXtiaYuLnzGkOMkiHwQ56/W94IuWj83j4FS8kcHSBBFpSz10V73Xz/qjJ6XLIheznNxrqetQSWdQAkjX5R1jTSpIVJqEeQ/J2pOYoley2P4otEJNCxWS7SyGOXQrqcqz/27O1KM9F0jG6n7b3GtY3G2gWYFref23cgwBOgTbXGsli1GVYydRB5ewItZEzE/kOOerkBrFFdXW/TFCv35NUZbrHGUXAmHAz636OQwhwWhRI5dJRTFQ9C82vd89d4RdpVyWLP5+1+z6f+J22dHhlzorz7heNfwt9+ueZYLn4TMRenQbSTahiErTGupsRKPhuXGcvVJy3RvGe8L7WpN03X88Ok1y7alb1u8kayzznsavyCNjrJzdGeWRQ/Rih13dg5jOhbuUnQ4WVMITEnQP0rl8upHOCNNl1ER1w3oZYM2G1Ly5HxJ/PSaWjJN40lT5vWrHb6TDQ8OqAqjPdq2GBJKgXUtUChmRrCNRakWdMM07YnxQHwIUBX9+bkI8bXkasUoDpnOiZtXLhO1DvPr9hhtxb0wBdQ0YppG6INeULxpShyHid3DAYW4Qo5j4DhMXF52LBYdRb59QjLoPFPk5oatzkXueBzYD8Oj/8SpcXw0jfi4Bs1a3JmQyser3Eeq7en8lPR4fk7btkp9DHeVrBvQes5c05YUA5Cpcz5KzVEGxRktpZ7sNhRN5+V3omSTrmzDeBgZdju8m/Pg7r9Fl4n+8hzTdKjFimEI3N8NtNXQ1oZF7/FGYU3A6ETbVkpVtBZyGYnhDX7WlZxte+zZEnP970Uf6RqoingcoDoWecFx6GE3MTnFZAvfBsMuOP7h9oxw3xCPGr6eMHf/gd3FxLCMqNWapm741e+2tKPmx1pCja+aHmstuXPYacTEyLSXAfzJFxsogcObgHEO3y94erbhyXZN51u8tSwbR2MtbbNCFUu6a3CmZXUF2RSyzmRnKNrS+63cR2dTlZAnUi6EmNkurlhsn2OsRqnEhR/AK8xmRakdKfXkOJDjgHdLjKm8/v5AGCa08dhGTBO0MhJUTUaR8Va2DkXL4KyNAHlGtaQU2B92pGMkD4l2s6FpW4T5VgkhiwGJtaAKOR4pNaBUQNsOrR3ONGJ2Ug5UrbGuwToBX7X1osP7qOEDYRcIDW6CKldbVWIiwwwKnLaxYpR0os+dJvx58JoBwY/7xVIqUyhCB1dKGA9KCV0eMZ4wxtB13dzTxcdGVxdphY+jbGvlPmHpFz1KK5zviSEQpgOuadBaC6OoZGKOj58jthmynTJmidVetlOuJ6XM3dtbjFF0jUcd32MO7+i2a/yig0VPxvD+ZgeTIbolbeuwzmNMQuuI92LW11gZbWN+Ry2KvlbWncUtLzCXS3T5mZg+aSOap+NEkxrSmKj3LWFhKE3hGA1DMvzT/Zrb+45pH+nzyNn/9X+Ql5H7JwMPCpZPf8DNqxW/u2v5icmsfOTKdDS9Z/QNNSTMwZGCJk+aq5cty43hcJPIMeCXK5Z9xw+fXtE4T+caOmdorWHVLcVGftegx4bVM4MyiugyxSiS83i7whlHKoZcINeRECIhZlrjefHir2WzVSMbO7HUAbNeglqSoiOnQPziGq0dvoHdm8DtqwfWV5q6qQImaIU1rQBwJKw2c+C8pTr3yMjRSL90HHaEYeT++zu65YrN9ZNHandMAlY4a1FGi/ssGcWAtharWgEq0LQJjDZMYyDZJG7EKIYxMI0jx+Meo2XDfzhOlFJZrbc452Y6aiUmK6CVznj14YyUUtjvDzNt+6P6wwnY/tMff0Zo70d/zgdZOIizBiOJ+4WglBKolefVGjNSnucNU05xpjDNa2ktnOZcIATRf5QxkHLiOIxAxeqM1g1ae6w3KKOxqhNbaOcwRdBmUxMqRErYE8KRxJZsLa7xaOWxjadiGEOmHAJDrXRuoPMDbVE43eCdJaMYQ0KVSg2JQCYPhet1w3bdCYpSEBvhKNzKkiFMBZ8rXkvJzwXiUInHivMLUPB6d0s2hYfQEJsl7fWK6ZCJQ8G4gveOM7em02Dshhoj6rgnHQP5EFiuFzRrT68N5MJ6u6VrPNt1R+ctm86z6joWTct2dYa3LbfjhNKG4e4drnfohaXaBtstoF1Sml54r6kQ794Rx4Fwu2e0jl2uWIeE8bmMs9DainWViiH7hsZeyLpeFdrOst4scDpRww7VeTQO7awgWzkLgqEA66i+JysvtuNJKEWmZiwF7yzOGqEwGiSItvEkMrlWEYJz0jWIy5PWgiqI4LbHaPOoGXJNh/VzISuWMgtq1czzPeUiPNIoZr6tqqfNlHpEFYXxl2cwrVDnLdMjQZ/6h6eI03F9bAYfz5X8xyOS/jGqcvqziOFEmZ/zwU5XrHEllLcIOpOFYhSSDFOndbp1Tmh57pRDYmeEVmNMpeaCyhM1j+Q4YrymaI22BmUt2lqMLbPbXyYdhOrSuAlLxulZq6XFJSfXDLlQi2KM4K1h0y8EnUUTxkkGv1pli5EEaTo9ShGRcxwLWnn7tPh9AAAgAElEQVRMu+QhHIk1sY+OZCzNdk0qGt6A9hXrCku7RGtF1EvGajBdS5kS093EYt1wvl0SrCK2ntX6jLbvOVuv6bxj1XmcsSybDu8a2nbBVAshF/I0Eo4F1TqUNmgn1IbqOmqRglNClE3OMEouRilkLQi70qCdBPQ6K0hvNgare6G4IZvopvNYp2UraISPrrVCGw3lhObJ1aTMCcWfbYtzgiLhv0bLdkqySJUY8WlFtUJpyyU/MoFOvZiaKadKz9sbJ69f0YLe1yKooZXNiDR1EjztnH906ZOlkSTKVy2ooLzzdHZAzfd3pZSENpYq+H7+1xkf/1X2+ow8yma1PEYGnNa9Jye/k1ajlkLN5RH3r48nUsTKJRVOwpKUMyFFEa2rirZeNlFWS7OrhLKF1mgDxhRULahcKGkUSqVWVGPQVjROxojeLObCw5jQATk/KuIRrYqZXTzVPJHWVAkRkjJsF60M5xihpUwBMRHg0RTAIg1zRYwC0lip2eDbBbFm3u4jw1IxtQ1muaTVDn2jUBmsL3SmcGE2GBqMarHjgAqBycjv62yzQqlET8E3Df1yzdmiZ913LBqHd5al73DW0fUrAQInYZuEwwPKGZSbGQJWzs/JxaqmQJoOpBDJ40RICWstxmkZgG2VBt7OFE+lsaahOCONeZUNr6oFVQO1ZBRyjzsFc86fKDb/WkxZsrKARmVx21UzCIXRM8VKtIDAHLAu7AR1WrCcBnt1qhMy6ljrH68zY8zjx+c15h+5sj9sjU4siMfA4D8Kwp0Q/w+xAXz0Ch+/6kkjUqrUS9AfWUULcFdmal6OcQZgIM8umGUGFZSCopWI9mc6VJlfN6WMUkVyt0pmSkEiNgwzu0GD1bP5hgywymhUqRgjJGZSoSapQZmV0MmsxI5oK3l7MWfKpAgVvIk4E/FKYZTFaCGxpzy7d6ZMqplUC6vO0vUN6kSXPgzSp1ZPLRBDwbX1sTyXAilU0lSxvkdFxbvDPcVUDqkh+Y7urOd4r1BHMK7gvGFr13hVSXpFjRF96IiHSDokzjcLFltPVxPkzGK9pW8btusNjTP03tM6R2sdXbfCGc8xyIYmHHeYxqKamSrqvLjxGi/2r6WShyM5BfJxImrNmJMM0VahDRJIfvKKQ2ONw5rVI9QlmuEGozM1j6g6/+yN1O0TtVTOj6EY6d8qGnWKbKlFeECn8yPlcc5eM2KadGIPnO7Ac/1RWs8yBI11YsbSdB02SeB1qZWYKtkmnHWPd3BrLEUza//mmAxODIw6m+iJQYVW5kONqY8LWalBOZORfutPffxZ1uhlHoJqyY/0opJlcxRDIOdCSImcIjEGchLXoxwmGbLivO7NkZphIgrX3zWkoknKsb87kmOEKFlT7+4OWFNZd+BtS9+dMTWGWA2oFRVHQWNV5dkTRz4cie8emKYj7xIolkzmnKvmHOcbnn1aGafE2/2RVzeB//L6wHkzcuYn/v1Ptry8vqJ3PVppbEowTRxu33HzZuK3Xx/4n/+Hn3D+F5+j6kStkTTtCRGC6dmlA3e7PednlmVjICp8qnT3O9q7keunl+S04h++2lOGBh2u2T75nKu//BFW/UeO/Ir2ak3fW15uzql9x8PzH1GmgXr3huG77xi//Y7m0yfYsxVNbeldx89f/IAcC19//Zr1IvHiKnP19CUXV89x66dU0/KP/+f/y/79G/7pP/0HFmcbPvm3/xOuu6C/+IzRNNwZRxonMgOH+z3x7g3jr75iPwz8dvfAar3k7OKc6x/+gO3zZ/h0pOojJT+glKU/+4waJ/LxHc8/2/LJJxfcv/4lw8N3LNZPcW6NW1gKhvEgV68ug9gJdyseguKYKv7ue2weOfMK1h3niy3KNyhf0RS0yqzPt8CG77/+mpQim80aYyxWt2KGoCvaJIypbC6vMcqTpgfhbSuhWljXCsKdxkdqT51vrsw0KaWsiM3jUaipWiymjXGPH9N1P9PoJH9BUWcaxB+UvVNBPA1Ns+C9znbpZUbiRRf1cXH9sKbOM4VPnMSEUCKNr6FUTVWGEEf2u710VSUzjLIhW7Qa7z1+dU5VhoShVksuIhLWKBZLQ42astsTwsQ+V3yRc9aaJa1bsNwo2i4SSuVhGPnNdyOqJs78yPnK8cnFBquEfqNrQddCHI8MY+S71wPr5YJf/PizufyL3XxOE0U7IprjOJHJrK3GKk0plbsx4N7vOFs0LM56fvftxOHQYOIFbbvixU8+o7+5RR/+kfXSY9Ytn/UbfFP48uwZyXjK7j3psOf4268wy47m+RV2/ufZ9opV2/P+/T0lR67PKm3bsL14KmHOzZK7m3c8vLvl/u477t8PnH3+E9xyg28vKMYyztdDSZkY70mHA/HdW/Iw8PVxh1KKxXpNs1yxfvoCVMXUgVonqAnXiNteDjuazvDJj54Tpz3j7juMXeD0Eu1AWUsK0vTrmubK1BOL4pDBphGTdngNnVGU9VIoF07PhSXjnKVpNgzHPcNwpGlarJ0d/mYOlIh0I847TLviFHJ7ar5W6w3ee/rGMIWJ3e7AwnVs1mK5nosEW1c+FNAyG68URKTuvWccAilGQM26qkBNlRgmwjT9YRFi9mL+6Pyctrazh2aWjdSH/vTD+SnlA332RHOtckOQQUoZcs3EYRRKUi1MQTJPRJ8JTbsQNNYIXRh9CnatNK3Ba00+HMnjxJgyCY1RPV4vWNge3yU2SjPGyhgD37ydeJgiZ35k4eGHTxc03uKMo6qKLoUcJ6bjyM3bkSlU/vqnX+B6B0SoiZxGEeorxxAnjuNIz0LQ+QQ1F5r7I1Ypzj895/2t4W/fZPS4Ri8XPH/5KWvlqLu/w6aAu1ywagqfdpdMiy3j4oxy3FGnI8NXX1FiwH/yVGiGX3jW7YKnmwv2+yP73ZHzTWHRKbbnT3FNj2nXTMPEjX7FNN3x/a9/w/LpSxaXzzB+g256grZyj0uZXBPhcCTvd6S7O27GgRInltstTdezefYC1zpKneat44g2LdavqWmgpsD1ywvImcPDN5AqjToTMMgb0T6l2Z2sJrRpKGjGrKg5YaZ7DJWlhtq31IUMfGih8ikNfrkSe+7dPcYYvG/QJ9qeApRYoGtt8MsNJ2rTCfmWmUfobNQqznmIi6JcuidgbzZnKXk2hBADmD86KgkHXOiu6tQ0fnjGjKPIfaoWxLxFhkSo0ncVTQxiIz2OA03rabxEeNRScFZAHVXFVGocDujZcCIVoc1PRzk/5EjJmeMYsBr6RtEtHd4tyWgymlK8UO21QbvCZm2pYSIf9sQ4sc9Qa0NWS5Z2gTWW7bm4sh2myPvdwDcPE2sXWbnE59dLzlZrvBbLeV0KpEgY9tzvIjfvRn706TM+fXaJYtbnpFGcPZVlTBP748CyNyyNOO6aUml3A+1D4OrJmpw6/svXR6r1mHTG2dkll589wdR/4WBf016saDvDz5ZbaDyHs2finru/J7x9w3hzQ/P0ErtZ4j/9CV47Pjl/Qs2V9+/v6ZrC2aqwWJ+xWG7l/qscN+5bpsMDN9/8I03fc/75TzGux/dnJG0Y1Uk7lAhToBx3hJs3jGHk3bin6XoWyxXLqyd0my3GRbSKws5RmqY/p+ZEjgc25wvOtivGw2vieINvzyRr0svAlIJcM6pGUBZtG8YMIVfM9IAuid4oSuPwTy7mTazUFUXB9h3Qsr+7JZdM03QzjX12uDScLI7oFitqVfimkyG/FHKuhJhJYSAsGg6HgXGa2G4XGCM0w5Q/ALPmhKHoGTxTGt9Irprb7edrATG3S5HZrHW29//THn/GMCXTWp3XxyehWJ2LV46yiZKhKpGSWH6nlEhhJM9Wg1XUwuiqREtTM5Qg9qy5yGoyJHLIpJgZp4h3itSeXEK0hB9iGUOWol01ZZqYbu+Jw5HjYYdZ9FyeX7K4eILrNwwhU6YDr97eEmMmVENKE67uGR/2vI1Hft0pDsfCF58vaFtHqQ3Wec62oE1EuzVaTbx69WuWpmBrZRgSQ9TcxHve7o88aPC1MoTIbpfZHwpPfOH83PDZ8zVFwWal2DnDzaKn0QobblguM82TjrFMxGFgShN2gvZaoWIhHQdcqaim5Xz7hP7yipvvd9wPmV+l32GUIluIqrAPmSZO2LTn0ka6tuXi+YrFqsLFj2iWPatNj+m9WEkaRVCKo9WEYuk2VzSuoccTDzt277/DlkIYD9y/fyeWv6HStJCtAduCLVIMtRXtlnK41SXlZLFaDCewOOlKLiPluAO9ALPA0tMag9YjpgwYt5x/34XKBDGhncEZoeGVklFGisww7UFXqgk4wFtHKhqjNW6uIMLnlYFDzVxfre2stZtXu+WEZs8zj/6AfGqt5w0XnFy/0BptWzkPWj5Xcm5mpO0PC96MnnNCyufhSjQsv98UCmBRZBs1gxf59xpF/UgNqY/NpWympiBFrOZCCIFaC62X8F8p5BqrDTGJQDjPw1saBsp0ZJJpl8X5NaZboF1HrooxBB72B8ZxxPqOjMbWkZwiu8MOQoNFs171rJaaUg0oaNqK1omLiwZvFbvdG5wCrysxVGKCQ5kYk2KYb3ZhplcddpGmJD5dac7XnmXf4sw1+5i4W/QY57D5gHKBs8sGXSu305FjjFhT6RcV0yqhWaRM6xuafsl6fcXhEDnuIzf5ngfzgDYGqxVTLqicGfJE4yy9hW7hKWUB/SWqRtq+w3qLMeL6qDRkFNEorG/RZYU7g9KPTI2l5EjOgTAeOTzc0TQKUqWoOVNCzzpIRMBktEXXFtOdYawg51RxUi0KKoWYBrnGdAdYnHJoJba/WrvZxnimt+UsrztXlVKLDE26kkugJAUqo7TC1jKL9OtMla8z8j7TCZGMmmTtTHsVG3E5I9LISZj0xy6ZGusspSj5BhANoLWWpulIKZE5bV2FQvRBA/J7R+hx6/tIY5rR9pMr34nqd8qIE/c9GaLyXCUrGi2TndB6H19WzXpNqEXsd3POZI1s+eafgTECYORycgdU5CmQjwfiMJBiwK03NNbjmgXKeKYYiSFwOAzkCrkqqBOmBo4PO5KufO80i67h4rydBz2Fc4q+M2y3nhgL03iPyopGSbOQUmWqgWPW7EthNIapFlRKHA+FNGZeLBTeOS7PejadZrV0PCxbxsbhasDWwGZrqaFwHwcOqbA/BjxLfK8hZcoUJLdMGzarC4oy3N1OlDCRDq8EDbaaWCtTqgw5UIphZSu+NSy3PTWCCppmtcY3DmPNo+N3mTeYWIfvpIGs1hOOO9J0ACUSguN+hw0DKiPmVlpLLVBCkayn8HRtsO1m3vSLfu90DWVdqXmSLa5qZ3pfMy/5RU+jjJ9r1pxFAbOjnZwNcV+sVDIxjQgXrmJKwShNqSctCB82vnMPg/ow8NSPNlOPTpWPF+Tpov9Xp4BHSt+p0jwyFf7rjzpvr/TsIqgUj32dmuvONB4pRf5eUiTUmV1EJdWT7mnWlGgzn7sgTJFSCSGK7GM2QAohUK0mezc3smoePPVHwalQUyId9+Qg90ntHMvLJ/jFGu1aQs7UlLnd7ci5UrWllIirI/E4cp9GboxiCpXLc49z4nCqjaHrKoVEUS1aRR4eXtNoUR/HkAlZ8ZAGdtPEQYGphWUujGNimCrnrrJaa55cdJTa4uxzjs7w0HY0WmPTjuUC/EXDSCQME8cQcF2l32hUqhACtkLrG9bLLc1qy93dRBgL30yvMVpoo0lVxlQwOaHrxFIvcBb6TYtvKrV/KhlRrbB9TrTNrBRxZiK4dkFVBnepSGFgPFgMlZQmxsOegqKminOKooUuocwMOiktbAhj0M0So/Rs1f+hhysKiYiIo2wXdYPG4bQGIpqI0kIJVGXOVisjyuh56z4DYVpmgJRHaq5UFdG1YpVo78xpU6W01MF8qksFWxTVWLS2WOdwBey8+T09TpvoWiraaJxS5KLme7Y8x/kGrbPQXWcTGWPM3O/9Nw7UR48/fZgqhZTSjOYUak3CtU9JVmLTSEyRaTw8WmVO40SYAmkaKCkyhSRrwHYtAW8aWQUTSKWSa2UYA8OYOA6JlBLTMFKKJS4bcjUoDN46MI7DYWKYCsfiCfsDd7/7jmMYuA8DP/35X/PjX/wbIg2pGt7fv2d32POf/uW3AFxdXpDTyLl74P3rd7x5dcvDfWK5HfH9NZfnLdot8Q188sklL5Xip0rx9T/9Df/w9//Ay65j4Tw7rrhPnv/8buJhmHjjDboWVseRm1cH7t9N/MXKcX3V8POfXaPaBV/Vn/GbfeJ///6ADa8wd3/L5ZnCrDb80z9+xf3dgbSbWG62/OXzBMeBdPMWnQt9u+TzZ19y/uJzvvr1/8P337/mH978Dat1w1/993/BAcj7zLC75aGLbJ9sWfaez356SS2XLNRfgq4UH1CuRblK0ZCBG69R1rN4+SWmZvqfZcLhHe+//TuO337H/le/5ebbr+H1G8p1ZLlQmKefods1yYygkXWv8SjT4K5+gM2Vsr+hpkhJkExlsoky7ikP32DdGu+3tP1zetcQzAFVD5h2S6maVEZUieghYOyWxm84hpGQI7opKCL3+3syleQ0fVfYWifonDb4WoQjr+VSV6bhZJynjce47jTbQAky4JS5vBVZKRslDaOxTopjTbO1uiS/n5DDkhJpCiiDuEJ9dBDrXMjqyVCgFubQm/mvedZYycdyirN9bJmRkumDVaeeqUZlzmc43ZiAGDPHYSLGTE6Fmie0KqS+YTZXR8+AREqJHCOxyiZhuLslDjv28Ujbr/ny878C5chFM6WJw2HPN2/ecr/f8+TqCu8svT4wxpF3r97y0Ha821U+e2Fxfilfp9KsVj1KwfmlYjje8eabv6PThrXzRLUg0nNzzDxEeJipbMsYmYbEu5sj51bzgyeGi8sFq/WaH35xzT4r/uZuYoojbnhFawpnny35/uaOb75/T9xHiJWfb16wro5y/0ANgabp2S4veHH1Ob88vuHm3Q1fP/yWkh746V/8iPWqZxcKo6qk6Y6tq2zMgtXW0603OC7RSlONbIUkG7DSAOM8ULnFGt0tsRfXqJo5PnxHPOzYf/1bxmNkCJFFW2BZUN0W1SzF0GLOxxC0WGgb3q0hj4K4Fy3u46qQa6JOdzONqKBNS2sbak6gjmi7RhlDntkAKkWMthi3ItfZmERltK3EdCTHMhcmQ2ccBiWDmRLyhhweOVMA1npcSkxaBsq+1zONLj+eJ2vNrMkAFFjn52ZLruOUMtaJi+twPFJDIOWMQuGcl+L5cQ2ah6QPaMdHmpBaqFm0UdQPG6oy56qlMM6gRBGaoXbS7M5n59Ga/dHyWZNSJUb5Oo0x5Nl2HuT8qALTFMlzDMe0PxBu33NMI5HMD17+NYvlloIXYGA4sj8eeXt7h3eiV3P1yEJNvH37jhQzu0FxtlnSLbbzBtzRdh2LvrI50+SSuPnd37ILB858C8oT1Ia7kHg9Bg4pMTaWPmfSGHj/bsCkys+vLMu+4ep6yxHDvhr+cRf4bog08TW2jFw/8wxH+OVvvycOkbQPvMg9n6wLdXek7B5wyuG7hhcXn3AIlV/95ivG/TuGu9/x4pOnvHz5jGMqhFrJ0wOdiWz0hq7T2BcbdD3D8hnVFKouQvnS4JEalK3C6IbGPcFQsaowHt8RhnuGV98Sjgemt6+xVqNXEd20qMUF2jmKyo8ufUqLo5xdvRBd97SToPgCRVWyKsS4h3TE2jVaNzS+BSCrI1o3KNdRZ6RalYzKFW1XKK0JOZJJGFvJOcoAMdecVomTq9YFisaa8ghEyJv90KQp8zj/1MdCBCeQ7NEqXZ1s/08DkXyuPFP+fTID+7jm/MEBgjlqQ2s9UxYL4yS1xjtNzpnD4Yi1Bu8dMSbCVLBaeBth1mlhO6ydTTNUgRjFsKMK8yflTAhzTUsjtXFkmkdAT2tpVscxkGIhYknTyPHdO0KaOKaRp8+/4Prlj8jVkItiCEeGaeTXr16jlOL87IxaAit7ZHd3z+27B47HQrdM/MKvWC0syjQYq9hsFqy3iifA/c2vufn+Gza+oTGOqa4YsuXrfeQQIu+N3AiWMXJ/P7HfRT5ZGDZbx9PnK5Rr+PJHL7iZMv/5IeDSHWb4hvMN6OWCf/7N9zw8HIn3gcVyyV9eZ9QUyLf36Fzo2iXX22csL5/w6rvf8vb9Hbs3/8xy4fn5L74UQGfMhObA1BS6RU/vLOfXS2pd4nkuy3CTUcahDPMOB/YzDcCuLtCrSvPkGSkcOT68Ity9Z3pzw+7uHex2lHWibRRqeYVyHcWkeSAXhzylLGZxhe6gxh2UTC1iV590oaaJOt2idYe1PdaucMaSdQCmOY5DoapE2JQ0YHWHMR0xSw1TRtwxh+lIAZJCqMHKUI1FWTtvqHg0N8lVhinnjLB0lME5MSc5LXtOOWrWGmqtEt6thFoaYyal+hja2/VLckocj0dUzPP93uK8n7fBf9rjz9xMJR5zAlIQge68kZqmiZQCYTjKAYyROEVSSKQwzZ8rpMmasnAejWgwtLPCs8yFnEdympEKFF3X0TWG1huMUnLwYhRjg5zFLLdK6r32DqsKTskNNaVCNXPuwLBjPOwwiHX0GAJxnAgPI41rubh+wuXzK5brFd9+d8vr1w9MwbDd9PzlT1+gdEGryKo11E1PeIiEfUa/XGF0j4uKy43ii8+uWfjAqhmJ6kAJdyye/xi3WvPLb19hvGXx2SVPXeGv7ZFSJwqWi+fPWSzXXDSZ3d0twy6im57VIjBNE2OMnC0WXC5XnC1bFq3iZ58lPjkvmHzBcr3hy1/8hCkr7o6Jy7MVF9sl2l+wyy2HUlAl49OAqoG0v2dIr9lNv6F2Z9RmjVls6Fwj6KOyZBUw7ZKr60+o7ZZ69ozDeGQKI40+okxF00I1xLDDWkPnhUseSxGOqirkfKDEiTC0KOdZ9j1ZVWIdsXaJcytxW6oDzhrQLTStsF1V5nC35/a7b7l4ktgaRVHiBOVsQJVEsIacIsfDDl0moh7JR8OoDSwOtK7FGREFWz1vopQ4ChrnZ7OHinHt7BDziDtKmToxN2bkTuybm1kQL0h9Qd6fS6GECRXDbK38x8/S40ZqLnKPNL98yoHKM8Uwzei6EmS1CPrJ3BSgEBRppm/UqkRQWyTrzVmHM8y6My3NxCwuTknQxxM2qo1FW4ehRVvJWlCz1VtOgTAeoBasNuRSiCkTxwgF1tszmq5juVmRY+HV97ekLI3ny2dnNI0FClbBqmupIXE4jKjlGtX36KLwVvFy1WNNYeEmjnHiEG9p2y1+e8FuCuxev6Y5X9FZx2d6IuhINZqm61ittmy7hqsFhCGTU2WzVlgbmHLEKrg827JYLfBWcb0t6JcJVRZo5Xnx2ROadsEQC9YaNsuetmkJ1ZFqIlfQNcPsGFpq5hjvqNpR/RJlPd76OczcIi5l0HVrWtvQV8lGCzFgdQIVQHkUhlICKpVZC6PmRh+UqZJBlwbR3tSMcR5j56BTwNoOMCiiLCyNlTBFI+NzToXD7R3GWNZOhvyiClpnrMnUIk6sU5pkk2hEn1GVptgG5RJ61gnqeY2Qs2gWpeCcGAfSJJ62QUr4Q5g6+3aJSANrJCMt5/oIvIUgphjOCt0rpTjXjD92fuBj+h4zIi7ggwxMjwYuabZlrqfzUz8sdWfQRJl5OzJvH8osmaqIQ6bzHucUzoozYs2VVPJ8FKuwLMpM7bUGo5rTiZKFsxLzmBQGSgxyfOcA7VONXCxWKDSbszXOW25u7slFkbLi6nzJ2WYBCG120TgSjnGYUM6iNr0E01bF5aLFGejthKqRIe9QVeHXL0kovnt9g1u0NOueJybSGtnUaTzr9TkpRXo9EadEHBLdtqXziUONpJLZrlb0XS+Bpzrx5YtMjo6aLri4uubi6iljkm3DZtVLrp7yEphZK7ZUdA3UFKhEjvGBVBXVr8B4TNM+gj1QKCi8X+C1pn9iqGFiSgFqRumAUl7sm2slpVGCz/Wcy1Zl80rNYuhApkbRfnrrKbWnaIO1PUo5FBLAq+2sRbES6ouGw/0DKYysjWg4KhWlMkaLhqhoI9bUacKrTKmWkITNoE8Oxqd8KXNyfp1FGvObbJc+2lT93jR0YjMAZKjCrvigo5rf6kxtUvCvDCiq5HiVIhEYzA6KedasSryBaMVyKow5id4ISDWjqDgn2pmaszj21XnQ0xpV58VezaLdK0BVeN8IcGDEtExcaROFk8NfRZW5YXZODI0UQrud/z8oRZwG4jRi5q1ezJEcIvEYcMazOTtnfb6h63vu7g88PAzEJNbXL59uBQsi0zoDfUs+Rg4lo7dXaNXiMmy6jquzFa3LLHwm1iMl7mm2zzHdgje3d2ijaS7WrE3lBzqASVQMy/WGpmlpSBwPB6ZDwjjPoknEGJhSZNV2bLqeRdfQWPj0OnO1rJRn53Rdz8vPJDtxjJll37LoG7TtCdUS5mHYlCjXdBhIuTJlqK4H26F8i51NshRQVEZbz2JxxsK0lG5NjImUE85Mwk7AoaoipxGjhakEkOehXZlCmWZtc7SgLd55qm3JdYUxDVq38/UcqXp2/rZCR1UUwnDgeP+exWpDp5UAwKqgdcLoLJu1kglhhGxxBAqaqNRj76ZnTaPWhlIVcdZP+aZBqfh7WsQ8m38pdQrt5VGLVYyct5TlY5J1KzUol4JzDqUgxTCDd3/a48/TTM3OfbVIbk3JkRwDefZ3j2GmqIXIME2kkMkxk4J8Ud47VJXU41wtMUpomrEtpJO//EytKACatmvpGkXrhaub0xxomBO6KkFQa8ZQMY3DaHDKgrLElFEqU1VhOj4wHfbYqsjAFANxDIT9RNMuWa+WPH96yXLV8Ztff89+P/FwH3j+/JKffPkSiatMrBpLu+745s3A/lA4X6wwzRo/FtZdyy9ensN4Qz58w14PTPGWxXaJ217wL3/zf+Ns5t9+rkrs73oAACAASURBVLmyFW9Ghho4KsenL59z/uwFT+xbDveWh31mqpY7F3h4CJScWHcdn1xfsVy0eA8/+TRBqmw2lyw2V7z88Ze8PWr+5V3iab/kul8QtGZfFIca0aWymA7odCANN9zvjnz77gE2z1GrJzx/9jndytD1PVXBrhR803PmX9KcF7rPCu/f/I7d/Q3x4UEyIJQMUyHuMcrT6RWhVsZa8CaDypQiTkthaLB1yXZ7QbaaSWes7XG2p0yTIBfWAA3Vt0KfMpHhbeDb715RG4dZNfjGYgw4G9E14awh5Mpw3OGqIZoDZebL2jxRmgV9d4m1HdYthDI1D1MKJwcNMThRaFKc5LDPBUyVDzbptWTZXpk6W4RK0ZczwtzQpUda3n/1PPH7Q1WdByqhI83umDmLxkM4h4ijGJzogtLAKqyzj4hmqUq+91zJpdJ5h3MKa2ZRe65kMiFneCzDp8bdSDFDoY0n5zJrBMojRU2Vip2Fm6lW0phQaFbrLX3fstkueXg4cHN3EOenqrg8X+GdRZGxCpZtwxAzu+NEsxRKgkkVnxTPz3q8ztTxDeaYuU93tHaN36x5/+oVh7tbXq6g8w0vdCSZzICm63sunz7jaqE4rCPjVIipcjSKECPkhNGWy+0Gv1xgDVyuK1ufabsF3hs2l9fglny/yxhl2DYdVSsCilRlc25zQJVIjQdiDtw/HCQIdHFJ1y1YLuxjWGWYm5+uXWHaJW6xlRyT3VtKDJQwovCAFR1pTRjToZDGU6kq+TgIrz1FTS2FzrdoY0l+ASiMaWUzkyKoKjbDxspQpQq1BHb7B4y1+NVSKAxGoXTB6ELRWrbAYZLXMVnQxwLVtXJv1Q3GeKp2UCUHsJQq+TpaEO0T5S/PbpNlptrVeahidhDDCsVENIDl0TQlRTEaqPNmVgTxf/z01I/ofcybJTFEkjOT562uUI1O3aU6HbwZwJAXMbMYXvQqM9WlSnurjMEqh7OzgL6KFizWPN83QFUtZgdaoZz87i3SaJZSwcg9Ic50d326T6RKCok8Jfp+hfeei7MVKWXevL1nCoVxymLasl6iq4i6+8YTa+Tu/YAi03W9hKUWuFg2nHWeEt6Sx8RD2QMWt1oxHQfefPsd59dLllu41pGtzoxWgXZcXV9BTZzbB2JMTKEwac+kEwMilN8sF6yWK7zVeFf5wdOMMY6muaBfX9GvnvD2mDnGyqbpccaId14txJku5nKg5oGaB/b7o4SlLq8xvmNrHMbK/SrPA1jjO7z32G6FKpnD7o2I68dBhhOs/DzViDYNVjmi3KUxqoDK1CruqyUZnOnxpiXTU6y4cYKGJDbtyogpj2QFViiFYToy7B/wiwVen64ZASOoiqINUxqJcSSbjKkySGdlJbBXO6zpZOA+XTh/yMmb33eixqrfe85p6AJKEe3vR3dwWVmdnlUez8bHFMJSZiA6Z7SWvNCTzgrqHJItbyVlcV2e9bQ5iSOf1Qu0kedKdMNsUqPsIxGj1lH0iUXMZ5z3eGewRksOYq6Ekkjl5O4nRgFaIYOsAqNm3UvKsr1UihhG0jRgleSExZQErB8i3ouD6PnZhrb1vHlzxzhG9ofEdrPk2fUZBqlnjTPYruH2YSQMmf66RbsFNhY6b3m5XVLTjhJumdRITvc03ReYxZKbr36D1pVPLzRrDV4nAomA4Xy7ZbE5Y2sPTKNnGAoJzVEnDjpRUqLznsuzrUQeOPjkqlAzdP05Tbtmc/GEQ9K8HQor51k6R1aaUCHULOYqOUAOlLhjGCfujyN0W1SzYr0+p/EdzgnAOtWKMZ6+32L7Dfa8MhxumYYdebKP5ixUTckjGos1DblWEhWrq9SQGiRKIRq0bejafjYVAqUcRnsZtopcMzADegq0zsRD5P7hPViNbvx8fuRjQnFX1FwJcUAVMVOKpQpTwC8wxtP4FUo7jLKyxTqxGHzzeK2bOaLiVINOVG9MfTwn1kh2WylFTOKybKNCTBJP4h2lSNzH/y/DFDVT4vjIO0+zNkpqlKJgRbybJa/GWdGVGFtxTguNKTO7+YhDVa2JoirJilhMqH6SLRFikvVfzjjT4Nt5rUwgF01ImjhMlJSZqiLniO47lni2qtB7xXA4shtvGcfAwy+/Jh4OXDmLahy2WbCLhbdesz1bsD0/RzUwlpGL6xWrVUsdbrEpcvv6huWiY71eEg8LjrdrrKosu8Jl36KXLatWbpS9jtiFwa1WnK3+HenfiX1kSZHx4ig3pAK2Ks4bxW12HIPm4fU70jThnOLscsvF1ZqKJinN7XbNV5sLfKzcxsrhze9o9t/yoy+/YLX+C1abc1zT0y+eEU3iug44FMeaqMqAmOeQY+ZXN98wDSN39wOv7gO/vIESvoL0Kz774R1n5xd8cdmw7Bybqy1VVe6ZWDQW3XncasO6MdTzJ9RShBdfIx0PkCZu90nog75FGYWxsHryhJozhzznEqQDpkw0ZZjdoiyHtCNMR7wCqy1904M2NMXinxa6v0oUpRh2e6zq8N7humfUppDTPUZVYmtxGnFtGwIxJC7W13jfkkukxjrrn8xjLtnJehZj0dqjUJiPtEvUEztDo82H7IRTc1bmoaaUD+i7VuLu9a80HycaRxXo+/dpHSexsDgjaaMeP18QRkEj80xjkk5uHqBmA8FS1eyKWQkxEmLCoCnZ8P/R9h5PkmVXeufvyidcRERGZlZWFUSDANhNI5tGs1lwMYv5+2czRhsb45DWZHdDlkoRwt2fuOLM4tznkQWA1ujFOCxhWRnCI9yvOOc7n7g5jEoLkUQVw5qMovcpI1ZzQfAWZ3uOXcb7QE6JvKxMa2J9+Mj6+InBOQbvGFwH1vEYLNZ5jrc7nLckScTBc+d32I8X8lJYp4nJVsZhQEpkvYxItsToGOJAHx1f33iKWDodhOF3kb57y83hHuuCBj/vV7oyE23FiWF0kKrmS+U58/ThBwwr/ThoVgaegiUXof+3v6LmyqUaluWC/+E3HG8GXr37NbHv8SESuhvEePZDUqS2UWyUZqMBvc/nE3meuEwr01r4x4/Cmi7U5R+4ubnlzesvuB0ch87SjwMuOFbJasIQLDhPtzvqGqhCrpVCxTOBVJYk+j75DteaD9/3hBBYi56PhoypBScr4HBGtTuprDgqHou3XkW/YgnW8faLd3p5pIQRwduAtQM2jsCCtZlaYjNneDE8CU4t2WkTJ8qqomxbqVYaMu2I3YB36vBXmqV4SkkbLhcQET3TAe8tuSi1aJ5n5kURQZoTJ60J+XO++sskl+2S/IwWBRZpGWxX16agJg4bWq7GSeiGQffQdl/q/tEwyi27iravjPP44FvxUJDqdRqWNPwxS1UUuO/Zb88vlbTMzKmQ54n1+x80b8y3YO/geQ6GpTr2x4EQI4UCTri92zOdV0yakHVlOp3o+w5nA2keKLMQguDjjl3wdN5x7D3eGrwpuN5j+h2//g//EcTgg2E2mXqcGWIP1RCtwTtDTp6cDZdPD1hfiUOnk166Vn4aDuannN8maoFTrSyf/kjXO16/+Rt8CMTY4eIOH0bGmrBeC5XUXOhApw1LXjidPrGsmWXN/Pah8jhVyvIbgvP85OuVXR94vdOcs27oyFKoVPqoLm1h2OOlwHCkUslScaw4VmW1lITxnZ7B7ezuDq+oGHJVdzrqipWEEW1uwbCUBDXhsarD8BEnnkDg/tVr0jgixlBSulp6u/gKYzOGFZGIp+La9LJmbaSdUVS9btojmcGp3fnLGjef/f9n46TWJOlfFQTc9LHXP9d75rOG6/OPt0cthXVZcFu+3OY42ND86z2Stzut5Uo51auYdtcphS/jkrqK2hCxsWMTv+WiWXLLsuj7jsPQcWzFNZIo2ZAKlFVDtcWo9srESBRPR6FzlpwS0/nCmhPzd99RloVj8Bjv8N4yB+HJW8Zdx26/xzgh1ZX9oafvAnU5EWphOj3TxUDXd+SlJ51GHJUYC2MI2M4TX6nDqSfjosV1A8Mvf0X92a/wodPp8n5BaNNoYPTA6liLYXo+U5tr3jju2I090oz4L33PrtsRxHASw/L8ETd/4s2bN/TDV+o67PUOKq6yl4QzhlWaGZDKaiml8P75Eyklpmnlw6Xw+0eo6Xsk/ZGvvvwJx8OBt3tPFxzD2CMGJgrRWwgOG3s6Z2A86D1XC0IhMCElc5HSJqgRaQYlcXeEKixFCyJTdTps64p1DmsMa82UvOIBaxzBqwmIE4c9VPyXSsNdpomuCy1H6ohYoRTNTB2MMhlqLqzzQkoJfzsSgiflhDFF6bOijZ5iYwbn1VU1BpUW5LxewQNnwQRDbgCBsXpOLg3cOl+mazyA1m/NGbXK59vnX3z8q2h+0pzEasmK/hXlPNcmwBUsIrrB1FHDUpxgGnd4XVTsXpMGXtZidVxcKrnqWHgb6erBU8lGD2XngxaYZKQ6alXHp5IyiUqlat6F8+x9xTnI68rp6ZnT+cLl/QMyXbh9s1eTgiBINDwFyzAEdoeOVVbWWhjHjs4Zem9wNXN5eCJahz0GpPSUNBJ8JgRhjJ4YPbuoSP68zMRe2I2R8fU7unDL+cN3zM8P3B904uZQvrK3QsBgsmM5XRBJ3N5bun7H2N8ptaYm+m5kiTfMn07MH59hfUZq5nD4Ffev37K//UpDI52nryv7vpLXVQWQ1reRfiXXzA/PT5xOMz98rPzhsfI/PxjKwyNyeiCZW+4fF3ZTIB86bjpLcbBIwtaOGCzGe4Lft/BXYXn6AKXiqtJ+prTinSOgQmXjDHF/0EN20nRqU/XSspJwIirWrZVcEkE5J3irfFkr4PZHwhdveHg+8XQ+Y4paboZwAIEuzlBXDlGnRCprqpRVpybOehW6GnW+EqsXg4qblIdrrGl6EKX2XHNuRJHCTQR55fxt9CI2W+Z2GRq93Ky4zy65v7SfuBaCL1fgy+VoNxDdOaUoVaFai2mULHm5Ya/Pr9bOSm8pTXSfs8NdHWx0vE6FWrQoyGlVq5vt53aezhis0+lTWhPn84V8OlOeTgyHnugjgxNwcHYG5x1dp+5jWTLeqa5x9haTCmVZNHy434F4pGgjG4LmTASnSLSI1QOTQoiOvh+4vT2S15k8nxl7gVXwTt8T34YNVEtNleV8oesrcYh4N2oTUJVytBBZ18zyeEFkReYL7m7HuH9F7Pa4VnxVgej19UspY6AhbfouzWllWiaeLpXTUvnmBMucyA+fOM8gZoCdxQ6WYAUvUSkyBrxV+oBrB77BUNNMzasWdFJZa0aM4AnXdWltwIYOt2akKN2G1mBv+j8Eai1YI4hpoEGzIHfGYHYHUk5c5hmkRVfbgLWa9WWA2EKAdfJTm3GeNkv62280V642t6XRfLy312ZKj3B1YjRUzZypAimzqd63KW5KmXVd237Ui0zYrG3/FIx42TMNev/RhxQaaboz0Cmdcy1AtFGpigawXuvR7WtFmzHaa7fl62x7yhjfgnnN9bmVIlKoogCjIBgXiE4I1gCah7csC3maSc9nfLT0e6WyGedYnKF6Rxc9PnoyGiLf9x5ZC4sBSmadZ7rQqUazNb3eF4LviM4QjGbSlEZvDJ3FucBhf4cRSJdnbBKWoRKCvlKOhiyLgWJYpxkfod8FvA0Ev9sOKqqJhJ0wP5wpaYX1TAwDw3hLiEOL/dAzJHioFI0HkIq3G3WtkkvmtMycp8plrnx7Ej5dhPzwSLCW2N1wHAJDsoy7gd4ZfX1RN0VwWB+AgI2qISvrhBFtXrMUitCmEFtxZHB+VMArN7vzbf9IuR7nau5Tr2vJtmbHYhiGHdE7LrNmZVq0YNSp8Iq4SqweK55Nt6daWtr3sW35VoTSJjoCfK6fUnqiET6bSpnrOm1Cqetqf3n8pX97Wd/bQ23LMyJqU+2daqeMqD5LQ4q3ENTPthxqb3299jZXTPT7WaPNp/ZSLxbpm9V6zjStYtvP0rQ3BS16S1W0F8E4jzOVaDRKoZTCPM9M80x+PkFaGI8j3kSCAxxM3mjQeh/IkshViCHgjQIGTippmnDG0Pcj1EDNEWt7rK1E53DOEp1rltsJ54Queva7I94OrNMzebmwGzZbedPuhgZ/FkteElAZdpYQOoLXCBBqIfhICSPpspDOMylPSM10/ReMuyOxP7CZWnnJdF5fv1Qyrhm2CerCeJon5jXzdCr8cBH+eIL8fKFenjF+z7xUhuypnad3gDUkKRjxSuGzDmebTAGhzBdqFaxUKkJqlGVHvd5BrukJ3ZLaeal0dyO5TRUbxVQ2iURrSqzDCxpQfrjhMk1My4xUB1WwftDv61rd2M5eDXvX7EwEDCot0EqmUZNto2Rjmg7Q4X1od4cyH0ppxjHWNdCssBmma5ST1jhXFoRRG3cR0e/zr+im/upmqlZhSbW9QJFiFBEySW2apaiDze5woORVw8lKQUrBjoPmQhQh5cL6cFK9Sj9gWi5JdJo+3kePKQ72AyD0QdjtIi6qs1vOK74Y+gJdLBQnfLpktX8ViDawj51635cz03Tm0/OZPz48U+eFv3uz59hFXt3dsxsXjsEgMVPnj3yaJqac+LoPhCq82z/ji+Hy357Y/+IXdF98xf27L7m7uyMvH5WH7RyX5xPf/fYfyfNKfp54+9M9t393ixfVBxz3wj56dv/5P5KLYeXA6eGZb354Yi1CL2BO9+Q10N3es3eRcb+nIDycn+mGzL8bV/qffUkf/y3LZSKnRB9H1mnlbN7jnCf2A8yJ/nzmf/z2O/7pDz/wi18cubnr+KGsnKaF33wqPD8WvvndiYke1+1gzFQ8p4dv4fIN//Rt5nHn2U9fgjWc10QYBrrdjuPbe3a3N+x3B7x3yh8PDtsf8cbSW4fYQLWRGCC6ljiN4XDsKSVzOj+oaHcp7FxhZwpd1wGV99/8gVozefeGGAe6NvbfDQMhBG6PB0LsmttKBAzu/itqunC7axMhF3h6eOB8PhH6PaU5+ljrCHFoF6SOr6Fg7NDcagAM1seGzK2fgeGlAQmoI5lZMDVRFYdRqqrx2NoQcjFX04s/e7RLWq5X1ctF6EN77qL5NEr5EDUH8B1VhHVeKLlgvG+b37eCgUblywRn8UNP3zmCtw2M10R2qeBF86FCQJ3zihBko2X0etDmmZwSl2ni+XTm9PjMF53j2EXuupHQdY3kaJByZimFU07snGF0lp2fGbqMfFhI5wF3vCV0PeGLd9S6IuUCoafmwunxB9KSqPOC95b+pwdsAGsswRt8D+HdF9y+eUVhoBR4PD+RatZDLEfquVfjkyEqquwdc1oopvDmANb2xC/vqaWQ1kSInpIrCUWonA8I4NeVeZ753XcfGUfP/V3PLJVZKp+mxPkM7z8szAnEDrhoMbtCqYXH97/FfiokV3Ff3lHGjiUrbe4pdviuYzze4L0n+ADN3MS4W7CGwarJgdhGD9IYNIoYfBwIGNZ1Uop1Llhn8FFwTi/wdX7iMj8x2J5oDL5pGbwLOOvwW0p9o0MYDKbfIXUgBqeXpLGUWlmXBe87LfBaQeiahXVoOUvk5q3UwAPBYGzEGaGzSr/KKQMF71Vw/vR0Zk25UftWkKp6PWtbuLQndgNd3/8v9k/LOjFbQ/Wyh6xzynooingbMc1p0ysNJPSklEnLopoyuzm/WawHV1VsqJrADMFg8MTO4bxFjE6VXWtIfVCGei3alFixdDYoXRGhSGJZV6Zl4f15Yk/PF84TOj1PvTmTU6KalZJWntcVZ4Sb4IgmcTsu+MvCOj3Azzt813N4/RopiZrPCgCUyjI9cXm+IGuCUrj7ak/c99pIG7CdEPyOYfw1lUg1kdM6M9cLRlBa2hSREoi7g67PLrKWxJoT+6FwHCDcvcUYS1pXbQJqmy7UU3NHddg1YVPi9999JJfMF29GxMFJCpd54eECj4+J5+fEZHpcCJjxBlszT5/+SHms+PeFu5uR8PbIWiq5Vs79gAuR8eYGHwJd6BDUlRXrMW5PMOrYJU2/56w2IwWDcYbOOQWZyqrgba30Xk0ZfOjIqfL0/EToCmMYVL+1mRD5DjsqsOB8xGC1kQgdzke6EpGytH2AZuhhmoZkAzfUeKFVVbrfUDe1a1O02RtuoElrqjaTFGNVdPDy+NNp1J/88/ZsV5qfFsilgjWqbTY0IFCkAW8tB1Kg5Ipvd25BEAOu1/sUFxGjhaoCIqjWsRT6TvWjXa/5hlWquscWvXq9aK5UtcKcEgBBRKePsVnF55l1mThPMx+fTkha+XrfM1rLcdgTQ6J3BrxAPnFeNZfsVefxArfDhK2wfHMm3L/FHe4Yj6qrqvmMSAbnyOvK86f3lJZttr8bGN7tsaLAThchek/4+d8o+0MG1nnm+TSRRTSwfnHUHPHDSDBe6WfAnGZCrLyLBX93g3dvNUOtKBiiA4GzOgx7D7ni08rHT0+8f3jm9f3AOHqeS2ZOmR8ulcul8P79wmICLvRIv8eIZTo/YJdPfP+psO8c3XoHVt1xzz7gYk9/2NMNgzqwNlDHOYvx6r6n+8chxmu+p93IAIau31FrZU06xSql0Fmtgpz3CJXT00cdvMQDzgW9gzAEH9iPlqHr2cxYXMso68dbYhwIjZFjnMfHJ6bpjI9qm07ThG+ZesErC6eUShW1bJdmV2FshzNC/9kdZJzFe8fz84VpWpiXlZwLpepUyrmgIKHV4U3XG3wIf/kO+guPv34yhY6AryIvo88qpTT75k3Ervk11nmMGCoW5zUZWZwgruK7pN1xiE0kbRotSnm1xVt8aS9YRC8x2UJLBSOaQWOCpXpNSK654taMqUY98EVFx0Yqzhiq81RfNYDPWYIPWBHs2HMRDTUjZ0wukApWhN7rIjFJqSLWWmwXlA7qe2o1zKjbz3R5Zn2emd4/M+yF+bQj+EQMqR24kf3NK3KF8wRLtLgIXVXO90qkmkBaYJ6EeERd9owhOMPOO3ZjYD8OzNGTU0GshqxeTictMM4zl2nl4fHM88dHpqcT5eJhqM2CEiT0ZGeYWMjGYb1FvFOxYD1RUwJTkdUhl4/gVGeTSFTJ+F0H0dP1HcbFZlBgwQe1lnYRtQXxaKDtNkNRpFQnmDRXH3ul9njvqFULPaUaNe1RBlOLImnWYL1rIXCuhQ4abBzVhIAbvcicJ2edPPnQqZbDhCt6YQwY2ZCyxto27jOku3HlW8H2os/Q51MbyobUU9vEqgWptiyQbaL1Z/voMxTycwrH9bFRL+r2+myfphe0QTBOhcEajtsQfIMWhg05t7Y591mlimmivWkaLEVbN2itNEqjKYqkltymyaa0SQiIsRTrtDCwpr3Xjj4EStPI0abJ7cXB24I4weSiblioANTFgK2ClEgxigiXtJKWhXRSJ6m0jBij6DsosmS7AU9PSor6W2+wRVHJKp6MoxZLWgXjhZarDW0PeecYeq/uoN5f65Wcs1bEa6YKnM8z07KQ5oXiKmS3uSrrJeMCKysrgnEWKxa8w6ABh7L9L12QlK9mBqmhdmvq4Tq9p53euo+sbQYRuG3WeD1/zRXhVucmaUj1Njl1zl4/ftURNQqbba+Dhoa+GEno5MppcKnp9D00FlsUPbbb5NbY6/Prt1KdkbVKLTU6B2gTp7ZnjIasVtkMIvRPzspRTym3UMRtGmTbtWIIIbSL9n+xf9puuNLxPt8/2/5q682IqP4SwAquvefaSL04KJoNhW3PW6y9Tv627J6tb7NtkqacMfCuiehrRfUH+jNuUzxjNCgZ1yIVmpuZIugwN03e1WAmF6wUohdcKS8CfaPsAHFo4C1qDlBLIqeFfJmpS2b3qsPFgPflOuVzPmB9oBRDLijTw0GIDlda9hyWnFB2SWyTOWMIVifBfadWxKtrmUpovEJeKpgMWKZ5YVkS6zRTakVy0Mlfm1yIC2RTWKj6WmDVhtkUpCzaNBhB8qz3UJuUlFXPsTX1qJQg6NppZxLNpc4YS90yA428zG1aQ7OJ018mP23/WKsh7m3XXR0epWHZpoFVGDVBaCe8sRqgjNEMKjHKHqhh27cv68uabeL6YxBt28cvP5cF6o/2+PXzzcuebz/gNsriOsn6E5Bhe2wRhlZomkGQK3q/3Uft92r3nK5kc10LgEZ/2JeQ+2tI9nVrypVKaK3eT2oMA7lNHiw63raAr7YZ3OqZlZNgpOjYR/Q9rNbp+9NeQ2cd1gkmBhKGVItGQLRsKYMQXJtQZr3zjVGTGL3DksYftKiVtM6kaWV9vuAjpHVoeZVFv8464rBHBNYVirMYL/hqIVoKTjMcs9aMrgOxTbtnDdFZYmguid7pRM6gFOh1aevVk1Jmmlbm80SaF2pySP7svbSBamAlk43Ws9a1Gk5m1S6ZihSLpIuavlWhSFFb8VUFoAo8+Qbsmubg12IfmnOpMfJZDbfpzDc2zMse2vaPNGvy2pp/1c7KdVpr2jqT7UJF6dzeRaoBU8YGiDtSysrkanEMnxtMbIG81oKI1QZLNlnE1UtIWRHtbNV7SSd+uagVeimFjaZw7WsA18D3zUTpr3n81c2U2Rx22psfQsQ7x3Sp5CqsSX967/XQCKFTjYCxLbxRMN7iANurZaK3jrVU5pRbh6z0Bms8S1Vuqg8BgzBPK04KTgpxPNDtOmITYt9/EZnnzO9/956H5wuPv/2W8Tiyv9lx1w/cDXt605HSym2/MPQRcia6SH/7Dnm+sJ4mvvR7cII/v8fUxNB1xEPH3fGe47vX2C6ynE6k6REjE8JKSk+knKkx85gm/vv//JbvppWH2fBvfglffjkT+1c4f48NBlMTnXvPq2PH/tf3VPeG6r/k958SH58T/+0f/jt5ufCLv/+KftfRHQLiLMWMLPOEWZ6J/YG465DiWZbMf/0f/8zD48Tv//DIw+OJb7/7xK++escv3r3l/gLHIHzxxTvSLnI7Cn98Wvi4e89yesI9vCc1sffNAHed5z/84gvuBssr+xHbBe5vcIRkBAAAIABJREFUX5Gqhho+n77l/ekbXPw5h+MB291q8ScTQXZE+4okVZPhyxnKAu2SnuVErQlrLnRR2HU3dN2RGPd4CxItw89/RRXBx33T1z0gdaWWC7VkpGSG3Q4XAtZ2WBsJ3S3G7KDfUWui1IXgd9zeFlr+tY61MZvMqK3pADa0cXe7BIFS0gu9RZSaqQ1XxEbfaIltFFxbiyMGwYHpGo2El8vu5Rl/9Fdj7Y/ofi926VtxqT/TFZlsphjdoPqV7XrN7VDeDsIQHGvJmoGDTtzWpDEGaS5YFwhxxIeA94He6nTt8fHMMq98+O4Txhp2Nwesc7zZ7xlcYL+/5WYQhtBK5wp9f6Mc+suFQSxjiJj1gllUF2n6yNjvid2AjVqApWUCMoaWUUdFXEZc5bsfHhGBHCO7/cr9a8G5Du+PG5iFsxeMT9zfjVRxVHfPlODhnHl+fOSb7z9y9/aG3Y1OjayziAkUgXV+xFpPjJ2+Z9Xw8emZ82Xh48OFaUr88MMDfRf4N1+/YxRHNwtDP+D6nt1rOGfhFE6YecWcHimLCqEHV7kJ8OXtDW8OI6M94c1CfzhSjWNedQr28eGP7Pd7XLjF2A5jApWkifFmB5t+AM3g2yholUZ5MAlnC8H1WOtxvsNJUdrw/obduGuaQEfNGmyaJbNR06x7yYACtWE3pk10pFKr0lyc3yZDDVW/ouEKNBjjCdErNSaV60emaWZdV/pB6ZyXaSalzDxNiEDX96Q8kdJ8LTa3S0xrOUfXdYQ/QwVf9o/2aq2BU8u89oFWdLSpm1KpXr7WNPDDOH/9brllW2370Xm9VK3QCkIFWkoWjGhRHaK+ZrYhq3ss07RwmRbOl5m8Jrqxx3nHbT+wiz1dHPBkgpmxRjClEMMAYUc6n5FSeR1GKAk7PWmR3gW60BNjTxh7cIa8LkhNun+kUshUCgR4OF14fP/M4h37m8wX77yaN/iDvufWYGTB15njoeMwWqp7RaHj0zkzTwu//d039EPg7t0RFxrgZrTASutZga3Q63oQx3maef/wxOm0cjotfPj0zDKv/PIn77jd9fSz4DvP7e7A5QjHEcxuYnlesOcn8rKQ14yvhZsIt0PPz17f0duF3kz046ggYLUUhNPpPdY7fHyNcwFCDxSEhGOnborbWVq34GelGmarYnpYCcFhGQi+w5hGL3MD0X2l01sTqDXpFFCak3HT8r0AV7oPNMrAYeivRl3OxiuQaGha2uujneuteftxI/WX7o2Xpp/rfvkLhd4VoPtTlI4GuLSG0yrQZo1hWdbrfeKso++VJaJaO4+zqldJOeO7iHMWH6OCoM5fwRJp+jjnLeBY8kppv0+thWVZSbSMoDjgfacZP84x2kDOlYeHE9M0c378RDcO9LuBwXmGQyR8/VNKKezHShcCplbVtvW3yLKS15UbN2CsYJcnrKj21/eRcTjQ7w9gUZ1jWjCo7ifnWemxNnNJM9/84QM3c2KpllevheMx48OItWOLwqh4d8b2nvj6QDV7qj3ydMmcl8J3339HyStvvr4jdB7XuVZbRHJOUBac7/DRU6sl58r3Hz8xTSvvP5w5nWc+fHzmq9d3vHt1y26F3gn73YESPeNXr/g0Z56HM+sys1xOuKJhtocOboLjJ29fswuG0Z4w3jEOe0o1pArL8shpeeT+/p6+HzBuUJCDhCVgzajnHRUjK0hujYpRcEQK1qpzbAi6f6yLBCN4B+72C0T0/pBaSeulMSmU6ZJTwseoazH0GBfwYcD4CKFHJOsddIzsdrdX2mn0G2D34gJrjcV6h8kvlL5SK6fTGRD6IZJS5nyeSCmxLisilq7ruVwWUvo8tuDlDrLO03fdZ1Pkf/nx1xtQAJhmJLHBnW3qJFh8lBebS7uhjLahPlVREKu8W0dtnazXBskqP9E67doNhb5xcmN0qpGwprkmqcbGGqv8SOfRUX/FOkVASlF7T2/AG8E4Yd85kvU4WVooWEMijcdicVWaMFO1VkjBHo6E8cDu9T1xN2iuVq3k0jIxBL67XFjWxGygdoHh/pbSDXw/Vfz3z5zXxN0ehm7k5u0BDWfusQFinyi2J1sYethV2B0MKRi6IIpKisHWhgQYDWablhXWSs2ONVdCDPRjZXfoKbWwTBO7MRI6z8PjxOl84Y3vMUNHMJYbW/n1m0jajeTdkeXgWE+B17ZwcAtdLBhbmWvGowWTxdPhyTVjpeKdUX2GbWGgqAixNpRUykrKn6j1jOnvwKlTni6AgBIv8jXzwjgVfsd+RHM0AtVkPaytYMyAs1kFvU38a9q49Kpncj3WtDFv0EnJFaGgFU+1vlxwRl2INoRlmwGoKQVs7l+bhbkoVqP7oCEuuuaNqkOlfa28IDF/9pCtBfoMWUT3iNJD2sfaM24f10tSEU17RQQb8q0j46tJhnNeN7bREEB1SOTlua7PvelLWpfSnrOUghWDRam7zkLnLaVzeNOmYvrtdQ8hV1tc2y5OSSs27HGxI4w7fOzbzyu8ZCMbppxZ8koWyNbidyOlCucM+ZIoHx7pw8AQK11b02KcXpi+v05EvBNiNKQOQmfwQZ3wLFoUb2yZahRxLnWl1o2CqiGxsQtUgXGMdCHgvbpJffq0MhyEXgRrLFHg9ejYh8DqespqSb4ymJmjWeljxdiiZiFNM2Scw+GASpF6ta7FqEWsIsGKARopSpOoC6WewHaI67lOXKwWK1CuqPe2RlzLilKAQD9Xqk5pkVaWbe85NAngpjVqf29TbNdCHK9rBnt9D7nqB80VONguudqc/NZVqTs5F7VSLxtNaUMZG6hOKx8NzXhCMw1r+QtOStf9sz0n7Y6hhe/W9ntuKOMLmn99LqtG8tsE1QqK2BqrFKYtS0tqQ7PrFQlVUEXXvbXK1VeE8YW3v13Km67MGsEb6ILD1oIpLy+dov+t2BbBtTVQc1IKfOjww0jsRj0jN4cqoRkqVE5poWahGDB9R9hXFhyyVvzDiS4Edh1Kjdt1bV0obVgNivT3DcFQiyH2RveQ1VPRwlZb045catKok1oLuValBcZK7CvjEPEWQtD3+elpwsfE3mpR6Y3hJkDde5LrKMmwuootK6/syi6CdSqKT1I0uNM7LBpc7UWLHV328rJ/2nsqVHVmlEIpZ/08v7s237qHdC+2BXlFpa1V6/PtTLRiNT9KNjvzbb1uIBeqOWMzDNrO1noNQd1+sh8zFbZm6KWIu/670b320hM1+uyPGq2Xe0T3RaPntef5fGpw3TrtLiub04RzGpKM/v6u/f4C1wmatQ7jLBSLVj06qSulOQbaFzfa60lidVLv0PfI+9DCwl9+x+vv0iZbLz/r5mpbtGhHjUus1f1TLVipegeZl9/RgDKN2t9rTlQp+H7ExY447nAxsrmM1vZ6VYGnZVH5CSDeEw87aog8rYI8TcypsOuraoUPQ+t/PcYpQ8m0JtkHQxRD6BrZwDXCwbYyRV87MSizyIiyRaqyFHzwdH2glMpujKqj9I7LZWGaZw44TFS33cEKX+w9OUZS6EkBcm955So7lwi+XLVSFgVZjbN4cQp0IzhrMEbAVLbprN5Bten9MqVeEFkQt1Mq7XbXWNfWff3R/jFYfJNJGGMRq5pBbEVswDldb846rdWEzxzzXvS5XM/YNgEXrme/VB33l2aGoa+wfHYHydVJdtmofC2MV+Ne3Gf35nV3XHdKrepWqfrC/x/c/HThWUpWOoFtfPM4HNTct0saWjrPurCt0UKBF4vcImocYcqsWgin3F/B4LuADY5gj5Qy0HXa1Xqnl6u1Gd8O0uA7vFELR2M985ypqapGJyg1cN9b7kfLWhOlrtzFVQ0InhechcE7irEsxWCqEGohGkUep9MJscJw+2uG+ze8+dXfQi6kyxPrmpir40kC51z5P3/zniUlvr65p3/zir/7+pd88/HC//v9I//P//07OD/z7+5e8cXxwP/2f/w9+9s9YXilxb69oSwT6fwDh+DZ3Vlu/n5HlcjNvgcJXC4eElALNXpKGHj/w0dOl4k5gfWBn/3yZ3ztLb/425X1PDN9eGJeDfMK/9d/+Wd++P4Df//v/sjx2LG7DXx12PO//+3PcO4V1r/j6fnC6TxjPv4X5PID3z2+53GCjzXT+cidjwzjyGG358bp6HMcO6x3XPwZYzy9O4BYlvJIWS6U5cT8+A/U6QcOP/3PhN0bbXaJCLdIXUj5mdg2jOCoxtO5Hr2ktej1bhPuagPsjaGmFSmZvE56wRfAmYbyd1izw1Ab0q+rt6SESEEzOgxCy/ywQcffUq5Nk3VBkZmyXcw01K1SRRvHnNSuXmlRTqleG9WpZmpZPwMdtsefoo4vKfTgqaZpPES0cRJBK6/2dW2K5VyjVfByiem9ZIkhqrNa1d9pPw4EbyllbQdowFkFEMBSa6PQSm4vpDbS1hp6j04xTAaX8aFCSkhWzzRvrWbEiGpNlDIGa1rI8xl/e68c9VdvCd5TW45DEUsSx0rl29PCh/Mjt/2BPkTuf/UzUoE/fDyzPFyY/uf33Hc978Ydb3/2lts3t9jQge8BDaktywVn4GbwjMFzvBl1qhw8a3KqcWtUr+o6Uk6cp+fGtxZu7u/Y343c3GsBv55eUUplzYYPHx75/W+/5c3rgftXPbH3+Oj4T3evCCFi7BtKqVymFZb3mOnCtM4saWaRCtYwWtUM9GOHsZaDVZt6Zy3ZFKopBNth8aiFs1DTRE1PLNMf8eNbwu4rXa9Gue0ilZouP2qMxdgfGTc0/IqXnA2UniSi9OyNmrl1xqgdsTHhOsHdmvprsO2VqhGw1TRWpwIruSp1YqP5PT+d1L7W2KvZhLVWjTis/qzbz6F0EqPUi6wT6Hme/4X9o8WANlKbeN+2n9O2CW9tQ6tWZFWlaJntF2yNYRVp55NgjV7G3nlqTdSyNndNLdj01VZql3PdFSU1RrOoSnAY8QxRdVYpJ5DKztWmW6zX/VNEKTG2CojgWzzCOp/xIRD2t3SHW3b7AzVlalrILVR4xvG8LPzm0wOD7zjGkfHLNxy/inzzcOGHeeW3339DRPjJuOd4u+fdL96pkYbfg+nBFrXpryu7aBmCsBv3OKuUpFKs5sVVgEr1ERCen09XYLEbeu7f3nNbVBOTLjNlzSzZMM+J//EP3xAD/OSrPSE6Qu/5m8OBf3+3w5g7wHCZFkqaMOczKRXOy6cWLVDpxRCdp+t6ovMMbZ0H76kGEovWA0ZDO0uZqXlG8kKafo+1nu72l229gJoOOURWLSw3+lBzkvQ2XJeGTijdVgQ1UbrS62kxMe2S0f2Dfn/7J/tHi8AG5EkFNkBBm/EN4ruuVLOZhrf9+6P130A+PqN+tTvg2uBtXd9nDxEoRch5JefUJpY6udTXU2mTtWRo/22dwViwbnNlVDOZ5TzhvDa32yVmWm0bQgdEvE9YazjsBl07Rf/bNe2lNRap6nZHK16Rqne3rQQr9B6MKxhT2YdCNVk5dm3/VCy5omYGVcOFjQiX+Ywg+Ndf4XYHhtfvMLVS00wuGsEzi2Wthn/4+EDKmdfDDeHmwNf37/h0Xvjd04Xyu/cwX/jp/sjtMPCTf/tTurHHhlFRGHpqXqnpRO8c3WjovuwQ8ewG1cSm5HT/SEWspTrP+TKxppWUdfhw+/qeozO8equxQ+t5JhfNmfunf/yOx8dnfv7TI+Poib3jpu/5m9f3WDti7ZFl1eBoM/0G0iPP0xPzKlyk4I1ldIEQIn3sGNod4b3mjSW7grEEs9VeaopUy0qav0XSE/H4b3Dx0Go1j2FQwKLM2uibhhxVi29h69LWqIJmfZPo6DlXc9Yw9bQ2I7vSmqdG2cMjNK2t08anZHXZNQ0dda7ViRW2WipnjWoSFMR7Pp3afrCNXp7VFbxNaF1zjNxAslqFnNToaV2UUfHXPv4V1uiiafKYlrr8wp8Hg/eRatzVclYRQAOW5ngkUPTF7K0uIO8jlEI1Bts0N+ICBhhiYcu20hBMgxcVySOaH7Jd7Go3mvFWiMEy9hEpheenEzYGrLMMnUOipdoB74OO+yxXnnUIEZK+wbu7IzY6bm4PjDtt6uq6sJ6fSWuhrIXqVHj96u4daxF8f2RNlT98eOLj04nL6ZExevr+Fc+mh2x5eDhTcsbbJz18rMGahHeJ0DnwBtffIAhjf4MUi61qaSolaXBkqIydAwnsjwMudPR9pCLMawVZcPKkjc/tyC9/ceTVTeXQj3QmcAh7djbgpmeMN+AtQ+gItyMu/gxJd4TXkIuok0w/Mtx9iY+RGCOVhKABpgiM7qjW1XanUxqSBmhXMLtbaufwXYdzBjGtIGOmlgvropbmzmZqnRDJBLvHGNfslRPr8oyzEe9HMAGDw9rQEE5tCOymU6rbzKldSM2FzTTkXLVMG5LSqH11KyppqLJt060tzFYb+Sv6JvIZ1UObQP37dnpIa2w+t71tW+izv3+OnGuhu7nIoBqPKqiz2GcoYzuMRKSh8G1ftibwiry2w81hKSk37QvXn6eKuoy5Zptfm5DUoE55XdyotZNmE3URZw2uD4gH09DxkksrTFR82nzZ8bHDuqOKXDvdz1IrpTk31ayonBhDF0cOOEIYEON5vCysa2ZezkjNDPsd1XoexLJbMv15xphZwTGjugJITUCuTnm+WoLvca0oqkWgKuFkM3SIQfntGG1AnbPkAlCwTOpC2e2otaOkHUMMOPFE2xGsx5WMNdtU1jL0EeOPmK7is6iOU7QACeNdM1hQlE1M0fxYwJmAdx5rFA0Xadl4DgwRwy0uDApOXVeRNr6lzqgDoqLsIglnI850V3Cg5gWBZtbygsyrzE73gCKrL2vVbM35jwq81rRLA9auGiiuaCDbOjZb/IDHtbVorW30oYbrmxfxsdgWRdCasSv//k8mu3++f9q+2GbNzukZtE2Tr1x4rii/tXrB28+AjooWYtu0V00CVE8kFqo1uhfRnKctyPQlzHvD2TWk3DX6ftkaVrYMHUs1Dm+iGgDkgrQ1YZ1q5Cga8NrtD4RxR9fr2pSq06qac2tAmxGAixzHO5yLGN9xmRVkOs8X1jUxDD3BGE7GYTMslwVj1lb/bmi0skOcVwG3ExV8e9dhs9ZIUlVb4HXASQyOKo7OBkIrxrewc8OKZWUcRmIIvPtixACeQDCe3nc6XUrztZHvYgQ/gPuCrlZ82qbYFT8c8d2oTpHWIqKOl1X0vYpOg3uN2Zz0qgb3egvdQc9iaz4bADVHvbKAJHJDyausGAzOdtfn3hyMrQ0KZuhKY6PbmdaYvVBgt2VpfrR/2CaobdK06X7+dGW/6KvMj770GqVBm1p9BhB8/tieWzYX2j/ZQdJ0Qxu7QdioW2BNy7Zq9+qmhVTWEDrBaN9xc02TdrfaTX/Iix5MJ+CwrqlJ2l7AkFIqIhljNXs0p5VaC95BDZau0ynSdDnr/eO9GuR4izjVtJSk0TrSHBGtbWHCtRDHHdZbhnGg6yJGtEksy9xC7Wv7WsNhuCWLYP1IKsL5NPE8TUzzmd5b4n7PbAOP1XA/LY2Ncmn3/obmbkW6xXhl14Q4gqgBkFTVE1und3HwCl6FqKYt3m+OqRrI65jxsQPb8ebNyDgIQ+jwODrfEY3D5vlaYwcb8UPEuFdIGbBDM2eoBRs6Yn+j57HziCltD+gRGZqznzUqCZBamn7OQNwhruktr3dQBTIiK6VMTfKr9HC9P/Wcrw3QzWnGNJDObfVVYz+UqrvEV6UIlFqbW6SyOkSA1iDXa/1VmxOfXKetGueh63NzsrVW1DCpTa1CCOo62AY4dtOuti5oC3vPOakG2vgf7c1/6fGvCu0tJWGsx4bNftBcU+pD6JDmiiNV7VldCBjvMZuNelHrSEOzmLUOUwpirdqdWtvSpC39oG/qPG+Nl6bG+FrIa1GdSG2j9BakGawwRIvsB5Zp4sMPzxzv9vRjx+64UyTlGKhZmE4zJghu8Koz6Qby/ISsmdsv39AdBl69uyOEgbqurJcz09MnUmo0vz5ivOfnX/2aZALPJfLh+/f819/8M+v0TJoeefWzn/P27Rf88EPiUxJ++d0T04eKmT7hu0h3c2R/9BzuPHEXcYNlb1+DCTh3RDIMZqKklZwueF8JvlD3gb53HO+/wMWeFachxClR0jOs3/Lq9U959cVrXt28ZTrv+f6fQHLg9fiGzq/Ux28RtyJhZXj1Nwy39/gv/j3OwdfoAl1SphLI5kgR5aLO+QNreboGqr2Nr7FuYCYiMoP5hBgV8pbxS8R+RQg7FapTFW2oz+T8xHn6nlqfKPKRKglBOIQvcSaQ0omULjw9v6fvjhx2X+mlZaMeWAbotktMi43SzBK2Q07didSeVWuuhr6jQv9aGyVxK/Cs0ka3C0Fpqgog1KJWrlLUMOGKrONeQEFq2/hGGz/zp1fdhiR+hhoK1wtMmw7aiFz4HI+UjaMkm/0A7dL8rDDcLmhpyLmBZVkBYdx118+XdshhHc5HclrJKSktIVgYe1JKPD8+EbuIMTv6oVd3NVH0Umolp4SNAWMNPnTUlJC1EIcdvt/TH/f4rsegVrp5mailTfqa6cJ+uGXYBU2JyZXvvvlnpulMmp/pu45Xb+6ZFuH7S2E3ZTpzgnQGCmHUPd2NKmCNvQEzUI3HmAgoLVFKpeYFTMU5aVPzgI89IQ7Q6EfbGSf5CR8CN7c3HHYj97f3LM/CcjIMfkeMHpMeFdCxCRsGxt07rO0w9p59e2O3UMDKoJSsnKmykuv5ejH0tie4seX5APWiYYjGIn5E+hG7obg0pE8SyEoupzYlWttHKtHtMViqJGrNpKTZdra7u5b8G9BgWyG4FWpb8/Lj7JtNgGyuaw60GCrafV5pFbqHPNZVbBGCj1i7JdELXVQKy7Kk60WmgASkdQt/V5c4De/9s1voz/fP9s9G9R9idFpg5GX/XD+tgW8KBmzgQ3vlrvRJzTnRglyjPmoNbA2sacV6zQp2bC+JaqsEQ1GXZ2dIjeYYO491RrVYBBDfAnsTJmh8hPeBaix1nZWvf/+aMIyqu7JWC8F1pqRVNfaABE/0PW/vbsg4VrE8Pn7Lxw8P5OWEofLmy69xNvDpOVOK4dXjGVMTpiy4rsPFSL/zeG9xnQbVCupMakxEXKWa/FmotP7etVOzoG48oCoYQ0aDyiWfMfXCcb/D+ch+vCPNlfMHiK5jDCNeLtTlma1b63dfYv2APe4xwA1ypaSJ6aj4VvxV1vx8BfSC8QzuoBMKLEYW1Rk6ow6o8c0V8QZ0fUiGupDLmVoWjFGTqEppdHbVLFZJ5DRTykoIx2bx7nSqb1vjY/U8RLY9wI9A5msxZrQxEQSd5DY9+Y8oTtufFwrhBmooEWErLs3nQ6jPPu+lWbnSsf5k/W8W5T680FFLrlSjTmnOWkLQ1zpXUa2kDVivbmpbvRejlo5VNHrBNWdZgab+1wmUNkQz3luGMW4/iIKlZFzornls0pp1Ez12pzXc8+OZ3WFH13fsWuA4onEO67IqmLdpHH2gLAnJmd39HX6I7I7qKCdVJ7BpvmgzJVC8R5zl9e2XVOOYiuXp+cTv3v+GtE6k9cTh/g23x1ueTpXnIrx5nsmXCdJJdXv9SIiG0Fti8Lgu0JmDnqt0UCGQVUdXktLTbUXE4b2hGw5Yv+UhluaAPUN5ZBjvGPZ7dv0NaR04fwQpjn3c41xG5scms8iE8TVx2GF2X2GM4dje+lwK6nDXUaExQyaqzA17NoxujzVeDTTIwKz5UsYg8RbMHc6G6/oVTYtCZCaXE7AgXBrzR3Ac9A6qK6WsTNMj3vXEcIP1XaudNMw7NQlLJ7qYRKpOkBqLwbqNUtoMlUSoSQPjS90AMxSkbeCKAnkZJxBCvN4DIfjW3OfGknA4VzUGRoS0ruScSWkF1GX8z++g//XjrzegsA4XdAzY9rUifNZfqUrGWO2mm4sHDRESrC4gTcu7IjZVBCu6sYtIc+VVQ4CSBUwh9prJ5HzVzCHZ6M5GN/e6YHLGVWGMHZ31dC4yny2Tr3TB4I0wjDtCH7GSkFJIcQvpmskmk3yG4DHiObzb44eO6NX5rUpmnc6c33+vo2Esa9kjXc9+rFgv3EXDzSFS7+74ZOH9slBnw/Nj5nCM9NGzf3NgFyyx7rHeYfue7rgj3uyxnTaewQ1gPOBZ1zOfvv0tdZ2R+cJwf4d9fUd32GmuSBexDhwLwQrcHyjDSo63hK4wXd6zlpVs4XAXsdUxhEQMlb7fYftXmHH3/9H2Jk2SJEmW3seyqKqZuceSlVlVXT3omQEGIBCIhnAD/v8ZoLnggAuAoZ6lG1W5Rri7marKwjgwi5pFZk4hi0AwosiIdLddhUWYHz9+j3R6T0wzvf2E1kJevkJiJsdA14D0CLVQ+0aOMzF9JAdDYFvbjNpBMlf7/QdMOse6FiFESv9kbfg4YzS1Toqdaaogla3sjh4GSrvSEUq50WohBfM8Se7x0rVbYEu8d3/UkqixUVvBMZC/BKIEKoR7euX7iFEYGPnYOPzuh2IIDzNZYkV/CBHppozTuiNzPpNisubdioZfBOLoRskXPzr+Uryoss6T960eEMnBCx6fYSDyyTsG5tW2F0Nmg9OIUCilG/c/GsUsxWSbYzPPt4C69oXJgYoIepqJKRJECTGRpsXQS9RQa7G5HdVOywWiJXhpsT8xDaUgS3DL9c0kt9XVNfNECpk5wElMuXI/n7ih/LhvSI9cb40YIx/eL5yfZ6Yl25AsiqSJkCL5crbDPiXrKogVxKrKdv2Btq5oWQkpMX/8YH8na/FHR1xVOqcl0zM0MSS9ljdq73SBOEdOBKasJOmkPBkddPpIiF6Eq9EeJMzWvRfr/ZgHjnlwCZB8/smoZibB38ZBVW9WsQfnsYeAaqHqxlDTM+NCtcRW1dXJbDE3rcS+HkPw4qi5HMx9W21DhcuSskFxuHdrxs8tDtIXXVHRToxuWtubq8IhCs/9AAAgAElEQVQZ/ae2Tk7JPEOy+bsVN1DsvfkSv6vooff1DTbDEL4Iisfw+ZX4cTRCHv93IOZ+9PNAc7SYCtytCfADOBx7g0Sji2kbRZ+BMEp3tT7rQAF3k+PWiBJMZCI0+tQp2w3tzWc+AtNsdh+m+mjnnb3xQsvF1G5DIiRhumRCmr0IsASmbjcz/1Whh0DVhZDglGd0fC2nieXpwqdezLh7U1JWnp8mnqZIvsxEZoKeDeiMkbScCHnEjxDEZLqVQCkv7K8/QS3QG9P7d4ScyYslRTFYfAeUZTKLiB5ONrOuG7UWm7RJgdOzqfWmYNSdkBYkT0jMNogugrab7bM+FB8DdMwLqTZb0ylOBjiKJfsjfjoC7WbFlDTfbgNIp/U331sj5n1maDpqwK9pvIxOzc2LI7tAQSYXYHmIILkXI4NlMPxp7vFjKPiY5cAhCQ166KWMGLiv6C/PoHtxZOvW/j3Ooy+rqccCqvdfHD5GsU0ZVVfyU6t7TD7+TtUKQ0XzoJAPcMPm8oAvlTZDMP/Q7h1TT6qTz8e0LtBg391zLJiYWTSpT1TrmMY04ggmcIGL8KQ4csBs+66Y2m+RatEcCho6PXYrrjRyej6baqyrQal26r6xvvxEJdAk0OcTaGaarCu9ZGGeI/3pwtsVPpcdLYHbrbMsiSlF5qeFKQoR9wpMmTxP5GVCcjJVykO63uj115fv0Vqg7uTzmfz0ZEIeiFPtIGAegU/nhZ4bPZ2JUSnlhaqVLjCdE6KBHBshQkqzCelMk/k1SUT7DdVGzCZkZJoCFsvaDA22rs3JwB+xsYQm3YopLVDfDCgSy6MQaH31S+1ngaifQR3EfPZwqnjEvKha3ait0qrNgiYX/RnnUoqJy9nOaaMPql/zEWP2fPu+WZHpowRTMgnzKK4krt3yFKBW644v80TPSkoGmpdqJvF6mMPHI4YGkOghwcMx+Msz6K/c/jY1vzxZkHaj/KGKxHQsWMG+MPwLGwOrkWD80ofhYe3dPKh8SK/t1Q/mbMhXayCROWZC6MTQDx8PSdYu720zdNhN9E7ThGY4nSCHRtDNEqYA8+nEdD6RZbfFkza0FagbJVRabqSnhRgzl989EeeZKm6Qqo263bj99CPXmFhDMh8YDZxoLFFZZng+J9r7Z5ays31+hSLc3iofvj7z4f3C5eMT5ylxTmbI2WNgev5Afv/V4RmZgnn81F5peuXzD/83ersS1hvxNDOF3zOdno3OpGZwmqTQUyCfLrRlp87vWG872/ojpSd6iFzeZ7JGZiop2vcRnz4S3//J4h6lbiutXUmnrwlxNqEHBUqnNqNFxGkipxMpVIKo8dMRika0XtH1J1NxzIHkQgFbfUEpzHJmSJpq6kzZgnAvhTQlApHab+4LsNO7mr+HJKL4yLg2kMXQsuHjFPBB8UGJdO8O0pFYGcpgipLaO9rL/bFHb2rEjstA+GxFcMqRqCmehZhNt753mmdEd3d60Fb9YPl5DP1adMrDayr3QU7vRtF/dl8f7HxIQg8ERe0wqs1+bnQs2yxK6fQIQYyuEuKE4F02tcHd5gdwTB7TbbJiU+zwjHkyOlBQpjjbRlxWVBtNqkW6ZOKSbdh3DJOi1u7fbqb8JwFNM0pgyp3ZVYAIQjstXFVNNVMD+9a5PGXePU8s54m0TOR4NrETzGA5n9/7l2tIiw22KvTGvr5R3l6Q/UacF6aPVvzkNHn6Zfx8M3jNqAZaONFbpew3mga6BOJkVIyEEqXZ5p0SYfl4dDS0FeOQB6ejRhNDCU5dsLUrbph4CJz/spiiM+TLhUDDFCpjyASGkSjEYElC67ZXikT3cln99awQCoznEhgdTj8kR5kOHOv8SKIeiq5wdEoVCc2ETnwWFjHJ6FIrvSg5RU/crJjSW/euRTvW66Az9ceDTK2YtzGMX55i8vDfX/50dADG+77Hj/7sseEoYp2WZty/A+XEO9pDXMZmqbzwExeWEaeht8Ig7scQSSHT4yg66yGRHoKQpgWRTqAZpD9omK0SkoN780SI0ZT7JHn035PBst7YvPOvJLJEZsHjEpgz8+lEv165NpOYRuDju8x5TuTTTAxCEpuxQ4QwP5m/jVX4BBflMWpuYbt+RsqOdCU9P2MqjgYIBEbn39ZElpkWFnpVStnpFZP5j4H5bLTPSCPEQEwTYXmPpBkPIKPehQTp6Q5gDdrzoPAlU4kMmGl168UiWQXaivbN2QtjoF5pekM0OPV3UE+7o93NO5WTJ1ObFxo222SdYe9IKQzbjEdwwvZsUwa7D62PIXe345AHqviwBIDDKPvL26DUjZxJ/HXliJ2HVX+8hyOoGSfKQ6SI0bVaa4jvSaiiYRSEXqh5PJgBq+dwh3qhHsnvmMvqymGQ2oc1hjhoos6+7wbokdwCx61KxncR3ILEhGkd0NNGoBHHvGLMxDyRowMzzfbvgCst0gnzZB3Ty2L7uQxA0mjm5fpKCZHqfnuCkLSTpDMlmKcI5xM/1koLEzRh2ztfPdkM1HSeyW7wi59BaT6RlstxuYwOOqTBd7a3z2jZkLIhKRJ5R3TLlhE/QZoVV3mip0ZPJ/fhu5pibQhMp0gkENWA7JQnQj4jy7vjevdeoJv4k32+6Oe8gndlg8+KB7FzT9XsUpqrx2q9mehIDAwIoelqYJJO9/gRJUX12cl2mJob+6jT2k6vjVYVTXexnkdAfFmMil88j9cDyLY1LQil2Lyt0Q8DUz55/IupmDabdxUxZWPtamqrGB211GJrWe3ZjzU+YsjPH/v3MCT5kmr7W25/Q2cquNFjp9OQ5IHs6mlBhtKNWIu831U+4kg2RltOoIuPwCuErkbBC/gwpPla6AgmMYOuGDIxJlpRR/ZM9jfNzeJXu9F1JDEvJ57fv7NuiVZOs1EFc56hRyqNXqFunTkaVSnmCYmR1nbq20bZXggxM5/fcTpVPv7pGX3bKbeNl88/0XjjrJ1+OfHx73/PNBfy3yf+qz/+gX/73/+B2gpNO5c/fM309MSHd8/M6V5MqURiNkRb/KxY1YqTpo0qlae//4rER+aU0XymtIqU3SS7bz8SaCwfnsnpxDJ/DfN7+uUbWnmj1jfWFihd2HdhX3f+6f/4R5IWvlqVUxWeLu+tS5bE6o8O+/oCYaOlmVI33q4/mmLhWjg9fWQ+PfGpvNB6IQUT7P5UNkK7MpXvmC7vmKcP1H6lduXbl/9ErW98c8osceZp+j2t7zQJrH1j3VcWOinNVN0sCd42AsIiM7Wt7PsLUU1dSXMhxkzMT8Zll3wga4ZwdCz5Gdx0Syot6zMTt14D+MaDI/4hzgx1OnBElOZAgFrSIz5D4EEZfeP07M0Tsl9TgPFqWeSX56b/XmSUcfeE9lBZOw5iv7dYr0Gd9z3ywJgsRiwWleTgRAgWh9N8QhD2asarSQLq6HIvNuCZ0kSMME3ZkdtiMyTavIUeCMlG8Jsm27DFukLBwZQhY6+ISXeLsjzPZpi67tS2s1c3bqw70+VMSpGPT/C8TLx/9/e03tjLRlrOTJcnTtNETokcTTkST7buUmOmctYcydfeSJeFMEGOH5DgppO9QTOREOk7eTbj0JhOCAGN2QrExagQVW3QtTdYP32mrivnBikl5umCkOzwkW57Wy90XSFYUrqXK60VrrcVCYk8XehUmpbDVHXrldYruX+2AyO9Rwn03ljrC7fyiXMMzCGQ4ztLeMV48WsxEZgUT9YdDJbc0CGFjEqiNTPpDTpUuhoGNkSM+jqKkJGCPSRmRxI3ktNAbcpejF8eoznPW9yYv592G3bv3YqVSDSwzAUjkvvFbdvO7gPljzRDM/C9z6EcMfRX4sce6wnk0SEYFgP3RPZ+X491PzQP8EOsqBu9KqsxklF4vY3d1Wjmo3uXbENgzDhawokNafdiVPUoXiSLAzodSGbO7Z2PkCaPH1Mz07Ydnc/5lIhxoa4bpVf2dUVrZUeZ54n5fOJ5gZNEni7fWLeAjsTI/PxEHvOPEoyC5TFksyzdC0qhaPVEXJEcmd5fSPJsVNOcaNoRV8zt9eYy5WZVIXFGQ0K1MreVro25W5LSGpTbytvnz8wVpghzNBqjJTcmhqJ0ar1ZbhEStd5obWcvja4wyxMI1LYCtp6qdkrvhP5K0I28PBPIlujpzuv2PUmUc4zkcCKFs61zCextR1XIEozwosUVve5gXug2lyg6choTHpJoasYy0NCRA40YOuJn7PHCYFjYenfPK72fX/fFOLJzHs6E8ed+DjzS+/7qbRRLYxE/FFuq+AyKzaDewQmjhuWUXPhofD4rtrsO+xBT7yy1cjqdSK5WKoJLz5vvVIwT07TQFUqzueMgoD4GUIt1g2OYmJZEOJmKMtqtEznUUQVSjqgPnwYXxhpnQtlN/r7XVyQkpvlMjI3l/QndK60U1rdXGjdiLczzxPnjB2JuxPeR988f+NMf3/t16szPT6R55jQvZpA+5j0PCqmrG3aobgLb1eaypvcXAmdSCJAmU3ltNofd6g2hkxcr/lK8QFzQ6cLcTBimqphQTYNWK5+//Z6gjfNuY4ZTXjhsDwRUhFpXtO4GBmqltNUU6loj5RMxzbS+ozTvLiu3VhDdSf2VlE+k+MTOTu/wuv1A6xvPyQCjKb5DtbqiaGGvG0kXgmQ61kHe2w6qTLMx00q5eUYTUPekC2HyPdQKnECygjukY8mfTiZIt64r2ju3dfd1bN3Q1ipTmMy6Ce+O9rGm+wGmDybHOOdMrTdwvd4OVsb4e/ij/XIq8b98+xuk0YVhgDjawTISxIGWWFgeaLR9G36RwT1zHAlR25hCt0QvBBN0ONq/KRmVT619HqOJXKQ0WT06Nt5DCUqR1h1ty+QU0DnR9kDvGymJoXemTW5GtSiimZiC+WlMZkK7X2+02qjraj4WU7JAfDcztWrDsZtx/PfXz1StxPpMjkp+n5C0IPnCvn6m7jfixwvh9MTpfDH6y8EvNmNb1WqFZleKVpraUHaXzvR8IqfE+XRm25Xb3hFvWcrbqxk7XmwmKUdTs2O6oPMLvS/kJhSF173R041NLaD2rZOKDdfeFeMswTCKEFSBUq9s2w/sRSlVye1E7Jnr+kKpK9OUaHRe9iuhXZnrJ05LIvDM1hs7nR+3F/bywikENJ04xXc2IC+B2itb3YhxAYnUXkAre9uIBOaU6FoNsexD6aWjPRHiTBchkjh4LjZZDzrEHHAELXrRkxDpSG9OR/CkypH9cEjmCkGFLhaIoQcLMD8gxIHCx4RvJFEeLr8WQsgvfic/v8sXAPlvictRiHGAGveCcBw8pnoW3Th5iMJY/KrYvE7XYcZnyU3Oybq4TX3QdqikPfD7ne4Rgh5du94a6mo9JmNqe0OaEipKLGYMTKv0IjQUTkbdmydhzpmntJgAydqRKSPLfFghRC+mdBA0xyyBWvLYGQQvJWSTgM7TAipsVT2JrVB2tKyHmWnEN/FwARox2RB2VJsfqF1pL1C0U+ugXBpVCB2IrCdSbhquGEWiNlMVFTqxT9ReKH0lOo1sqztNTYglxkjkGUUpCmvbeKtXw8JViMFl5i0SKN0HvKXTPHEbCqrBZbdVmxeb/RgcN0nun/to+F7tC1oFE1w4KHbhwA0eu0p3ygQHXWL8++jwitC9eDySym7mvYM29Pi7X6z/3xA/9xjSA1nUX9zr8SfjuHx8PUUJqHezB9Iejr0FA3Wkm0yz3D+/DKQTEIaAwUByxbYnicfriHp3KNh3HHO2JKtU6N5l920tZtu/YtktIesNrdC21Ux8NTFFJS+Bc5xBAnW/2Vm9TBY7efL5Lju3zYTVJvvo9r6bPnxvUUiznbsxRPZm323vzdCFfQPNqA+oB4kQfX26lPswiC1NKaVQuxKbTXL03gnDqNj3XVt73pNTLKFsbgCMuOcT7PUGWNdk18beK7HfCLoR9IQSKQqlV97qjUk6GbtGUfLRuWnemYravZPi4i0uIR08frSPpNkNgYOCpl9dpzx8hxxrccTQWHP2eeRYjg+/k/v6VJUj5r5EEh4KrvuLPeRfv3LzbpKIX/sDlfd5KoVGvb/VagVh8Pdjc4kwmBG9dxc66IcRqr1MOK5njMELKxsLick8pVqznM+yN5uo7l7QR8w/KMdMb0ZFs++1+74/xB+soJEYiTGaqqcIbS/WWd2LUdRjQKST58zeG6EZeNhapa6BpA1pZ6JAPNmcGHGiVVO2C+cJyTMpW0dtaAb46vD93r5LO39kQHrEebJZtGmiNhNXkEEP3lYEJU4TMeCiUAmY0LiD7kS1b3JvHd13ilrMtGpedQZSybHmELEZMYwC3nqh1Df6gf+YKuzeVrpWcox0lK1uiO50vaLJumbVwclbW6ntxiyC6kQKJ/t0IjTt1LYjZKfKWjFVeyFgfrJW+NSj8Ndus+oSFJF0gLBj7YQgfk7rMT9bSqGpGMNBxNX8fjarqHLkfnf8wSX/ezCxu8Gk8zOmVmv+/PoZ9P9DMWXD2bsdwDLUo4z/LXo3ERVf8PYgVzLCq/dkMzOt7UCkx0iQTmoVYiK683vHFJ2I0Qqu4FKGaSLmBZFKTEM1RMFnEfLgAzc1ekGp9Om9bRjJFvd+cz60JsK8cH6/kPJETBMxGsVujT9R1yvl83+ilis/bd+T54np6czvlhPvvpn55jVQVmX/7jNh/0T5z5+Y333g6e//G0QmJCzox/eoKGG5IHEi5Zm7bLHSdaWunynrT9S3N9q60SJoSswf/86S0NMHS1jzxF423tpO/+nPtOuV13/8z+he+finF84f3vPH/84M83K2Q1BCZkqRTCBHeJ4unP/n/4leC1puCJF1T6zf/RPb23d8/LvfW+dp+QMigaafqVlYREEuEN5z22+s5S/s//y/sd1emP7FvyFOM6dkMpz/oVQ+lCtflR8hntEwcZXMSubzeqMlZYnfg2Q6E9da+Omm7BqZ8kRiJ6jNuQV8AFntsG3tSi07+6c3eut8+MO/Ic9P9Hg2ZFDbcUypjkPo5F2p5IWWH1hREBeJOBSUonUM77CAgPNy7UAw8RUJkd43U3PrJlABXw4rHrHwZRT9hkgbAWyxc7CyvMM2YnH8QuBQ87Ps2mRHJdqGlCdT4mu9ezJl6pStbTSFtXRqqYcXg2B+GW5pRUyZaZ5BoHbYXq+odr763Tf23L6mg9MmQshoa/TWKLdXet2puxnoxZyYcuL9fKZVoZZAv+302wrxhs6J/O4bJE6IZFQX8ulkvPA4Mfwh7ntStWKvvNnBuLlUfhDifEHSYp5mmhiUqdJ32n6j3a6Ulxf211eev/qG5fLM01du0eDz36YKNBBjs2WI3/zRuz4FUJom+rZRrt+Tl4X5ciGGEyFMKLvRKhB6isz5nUmE9xu6fU/5/M/I09fI8o7ocq+fajP6RX/zw2mmELiRyHUH6UR5c0PQRNXAWuxgaBrIal38gIFMjJTR6WnaTIigkUhzJMSFezf0Pnc48jZTDkvHmh7PF4J1o1JKIEJTo5fW2hECkryoD+LJMlgHzFMMf0mjBjVSSoQQmN3MMQ6k+W++eWkU7vNYP4+fQS2yJpf5O1kB7L8eVKXxdDr+YRmmiLiin3ViRwo8/BUNRGg0quEPcbA45PierZQQB/DEqTeG1KpCTIW2b9R+pbedVq+ElEhL4Dmf6F15WgO9dNr1FfSK8pl4/kC4PCO+3+WTzR5JmowCG+L9c9qQJKW8oW2nb5udSwEkTcT5yRLudLYzKIjNQLVGf3uj7zvlp0/EPDGdnzk9P7M892ObFRdpSGIJcwyQ3mVO52dLjs3Tglphf/kO6JzfvSPGiRgvlpSZrAQ5CswXlMjeVup+o/70H5A0E5+/IQI5KNfW2VrjXbuRQ4NwoiHsYlLLa92Bm6fAmU5kqw1r5EYHzGxWZ4iXHfEhiro8c8fAvCldvvgu7xnc+EsMoPlVdA2co25L7egaCQ8b/wEOjILmLlDxV3DzgWY8/qgrtRYGdbX15pYFZlIvIXj3KB7F1DIvxCBWBNd6sB7GfFhtQ7zGzo4cE7ROl0bIZpg+ufl2127jCXlB1fbGUq2I3vfinRMlJ8g+IyLANJ2scBKh1M7tamrIKSVinplPy13Mptvs5nr7TC0b5boiNLb1R9I0MZ9OnNLEfEmctmD+bG8r0m6UH1fy6czy4e8wT6WEyglEkTT7+fZ4LY0iZwXXSttWy62CQAjE0zu7vmnxgEg0L/rb22f6vrH+8ANaG5ePXzOdTjx/jVNgfZ8J1kUOWCE7hYn0D//aaI51szytR7bbJ9r+wvL0TJpO5PRk+3I3Q+JIQ8JCjBeqFlq/0l7+kVZuxPd/B3EiR2VvnR9q49w2en+DMKMkNiKFyK1uNOmk8Io5xib2LtyqMThiiE67tLkq1K57wHxcW9kpdefHH340c/dqhr9ff/17Yyt4kRrjsA4QO78RV5BUoiuGQ7cuoc+vNZ/ZLbUfNFSbrRekj/PQ8skDCOym8thV3ZMzuQhLPt7Db739baa9j8tI75vGCPqBwujDIXYftLTQH3x4xzhtgxLj5B9cN4UhwzgSGvwRQ7EsBD2ohUMd5xiuDI0uE53pQEl7sEO8D360RELOxPlklLGYiHFGiObcnDtpWqjFZKRVJsLkxUlXEoGalLfPV0I3rqnQSNNkinOSTP4xgg8eId2HEtVa2l0L+/7Gdv2R/vZKXzd6VhvK5RtMTSm5iIdh7q0XStlp+8ZeK71WXl6uFCL52++ZcuA0BfJi8yV2CAab00iB8/OZ1iplxQ7ivR2DeSLZDIWjSUhqNWWqOc9IPBHiE1Urpd2IWoi6m6FiCExBWFuiEii9U9tqcsyaqCpsKrxsBW3Ku7n4Qk3myl2V3dWxhuRsEEtSDK2yzy3caVStFdvAYoTuh4p2hjSzkjiSNwfW7wwfP7wQjJ42Cp/7YXag1ShDapNg3R3x+ZMxaTXQ6Me1r8erPNx+pZYar/vF3Y43PB50R0gGzeKIOdUjR3vY4x+f/Phcj89hf+xdtj5khl3W+vBgwLvG4Yjjg1Io0Wevwr2YkkiQRA/BABQf5KdbnIsfxDkGn9uwQ7pVOHzBHDgZJCsFf9/NP1c/Oj7dzW3rfjVfjO02xBrRPBnY4hfX7t8dSTV6Wm2V2hplr0gsxNuNVAs5YgaH2QoFPEkOYsaKMUFrlnRrHdd7XCcXRxHXYJfuBoUBkZnWK60WS9jU6DTB5dURofs8XNdCUEF0MuqiCms3+fM52XwaMtFVXXXLEhEr+ux6H2SeI9mRY11ZITq6sweE5xf5YdN+WFD6uMbuK9gOzGMuDI5OrxdS3TtTNlfY7jHiCeIhqz0KnxEDvwV7ONbH/fZzSXWPgOO9+5X62d+/8lixrsG4Hw9/xkuO4l48xkaSqUGts4X6elVfhwrqr+qGqEbRcQ+xkN2LBTQaANJaAadLSow2xN+t69jE9vIgho5LcMoT0auZx9d1GUD/zPdZktVmt8pqhV7Aim8uDNVdu8zqiYjFUG/NwK7aYCtIXukxkIKJGsTJzi5cMtsK8IDEid6cAVHtOcc+Zvux7SWCqY7GIAjJZ5oite9GF9VKIB1FhnUlfBLS9wYRm/tpmNjB2s3SIIWGiAkFdLWZknZc63Ds+8d35XSvsV9b7FQGu+FeuOivxM993f38X8fqPM6Be3fhqOPHKh3F1Ijjx/s/PvPxXn4WrHJfx+MYNMEki8ng36G/PNY57m570O6PPfYQK9CMUq0OKIz39jNRDbHvlbGv+2s3f6/Nu6LD+Nr+CCFacWE5EJ4HWVx2gs1Sh4QSuM+7BJDhmWdqpbVWJEaTe4/BOlUEeoSy7R5zbreT4nHOH4SXkZt264qYE4QeTYZW3mj7ipZiWXWMRH06ABbCYEtYDmrCDHYGaets605DkNcXUoomkJSTCSuF0YmzWeY8T2YjEdTFb3z2rxvAI5IOcS5VtXouZps5SzNaO10rAVOsNN9mU18MGmgEmtr8lbiYU1MoCrda6UFZcmXM0/Yu1Oa9OO0muIO49+adwdC9eDd/x0qrO7UJQaHWDTTSR76hnk+E4FT0O1vBcrkv17h6nvdoExP8OoWOMyKsMdP6AADsGUyBvB8NoRFJ93P9t91+czFlJruTyQyr6bG31sgpc8yqOIVsmEGKcw47YyDXNx4fyExAE98Eg4WKqF2UGMcGYggjXY1N08C6YzDkr+d8dtWlgWR2tC/0/o5WVpt1mWYIQu+bPd2Az0JE+gp1tSAMyX1yEu/+/h+o+ytvnyDOZ+LpI7k3gnaeTmbEtp0y9GbymJf3pMUXcgimrNI2ri83Wu0EmVFJbCz2eVPj+t1/5PqXf89Ud1JvxKkTlhNz/B+QeaGWG6obW71Sykavpj5Yc+L8X/+BXhvf/t+F9Z/+wv/yv/9fvEuBP80TX/2L93z403vySUhz5Pz1vyJMC0EbQiXlKxuVtRUu37znqz/8jml+b3NDqvS+0fbvkDCxnP5bJJyQeOEiEynN8Mc/UvYnlo9/B/HErB0Jr3xaNyY22H4gaSBEZS3KTyv8+dvPPOdETh+5zCee5wulrKy3iupKqYE5B1KcWPIMdEovaN3ob9/xtHzF+fkPoJW6v1LrC62vCD9YAKl5l+W8ENI74+8rtgnSQDra4sGzHQXBXWo8oHjhBO6yrpYMRpfBDQMxNIRXghn8am/01im1oAptFB3/H27jIL0fnP5Tp8sega8OSjidJDgPHYVaKs1RPLrJybZmSKAzPjwBTlwuZ3JObuYYOS+TCYTsN1LORrPNJ1Q78+k9eZqdqDLIGuMgFhBTCYs9U3d732l+su+qbRb8s0ns9n0nJkNLQx7zRwEbalzdyLVhWV401SEJEJVeV9af/glphdiKHb4J0vkdOTsvXButXd0B3fxMqgjh+cLpeWEviXXf+fYf/zP0zvsoTEvi6etnQhJiFtL8RJguDNGIFHaUzhYaMglPyx+suyCz5zzVlZUKMXXLabMAACAASURBVD4BiaCJ0IvJzp7fE8NGWj4Spvc0Vap2llpQdrS+QTAkuLfGrQkv1xu9vIGcuUyJJWV6D5S9IVKoYTWltjgRJRMFo8gCpW6mnDi9N8GL/Y3e3qh7OdbWUP6zzxEhTL4CH5DykYB12/9ru3PMmysl5WlinmZqq8dAeu+egBQzfW/NDtV5OZHzzA8//EgpxX2VIh3YSvm1gPiVKPkr6OHoZMpD/GCAja19K+gsEevHfY+Uczzei005gI17p8sO6ehfTkeigEYiE6rJFaRgtDoeZ9IGHTV6siwOx4tE6/oGIdREb5k4XQghmXSydsiCLo06OQU5QpgmQhqzhAJaLPHy6ywkukQ60fZDGtvLd/T9StLqRV4lylfk+Acvnirdu8C975Z4CDBnlt9/ZN87L2+VH/7yPaX8macgLFF4+uaZNCfSZLNg6fTBk+pOlEoMjT0YHen87qOJPMTlAE+072h/Q8KJlJ68mApMqCnQvfuIxJk0P5tMOrA3W2uiJjCVJBNU2ZoNsv9wfeWrc+BrWZhjIoaZ1lZq60ippBCYgokkZZktSaVRm32P8/QBEaFtL6hu1P3TWGgOso34CRBmXN3J48crEHFj6YeCzf4tD7voLwsuW2sPa/Lnvz8QQz1ApMdbDJF5nt3WwGLTYtjyskG1aq6aFsTsHGSAHUA6gDYXwomB3syWJObkYxreYQA7c/bdBGlipNfGtu5Hp+uwLsJ+f7lcSCmSc2aeEtOU2LfV5mJmV5DMJ2dXKCqJrpltvbKtV6b5RIyJlCcTsTgttLpxe/uO2hOvN1imxJwTafHOw2zy9jEocTod4iU2Q26WAHUtXlSaOl6T7DGt1OsP7K/fElolaCO632GOf0Jipo3naBut2WhFo9FCIP/uA9o7r6+N/ccXXv/jnzmnwFfLxPnDmdP7MzELIQXyxVSWg5pQQw6FSmdvlXRamE8nUj67EARAhX4lSGQ5/dGAGpkYKn88f6S3E+n8EQkTVRWpK3NtpshXX4lq80WlwbXAT6+vLDEQ4xNTzCxpprWNsld6NJDjlKy5EcTovo1mDJWyI8wIM+fLE8uS6DL7Xnqj1u5nmY37SFgs/1xMSGKgwK2ajY6IemGmziAZ4RVYZvNmLNXsGkzUyfbFvTRqMSZOV7g8PVH2wvff/2Cd1Ck7LdmoqL/19rd1ptzterSjrXZxnrwrI3FUdw8VoxdJx4/l3p42Lrn9QsJA+Ay/sBzSg1JdQQbjxOpAX13KcwwsK/6YEBB1ieRYTQY2CAHjSg+Z3o7TFtWrX8SHGSMSnogx0OvvkJRN4S7awRfF5nS0mOpTTJEwLfRefCEZ951uQ7qtFJ/zmpBpwQQFCjkJ87KQWYgKEgphmoxTWjdaM7U0xYdstZvKyhQ4zSdU4bJd4bohvdAkcU0z066E7185PQl5iYTle9I8QxZbWFqBikixRDwonQo9se0V7RvrtRBS4pTNFDEghDAR00KcnujOgdYAWk2PbEkTSUzFqjWjbPaqtALbDllhq5CCckqNUjtb6TRdiVvn6TIRc6QEl9XWO2eka6W1q5nOBSh1R8S9pTClptY8kKMJl9h19iNKA8qYb8FQWBUQ48ZbO3msOT+0ghlj9qOT0/3xjvr2I8a9ieFmh12/OMxaq3z7l29J0Q6mriahPjoH4+w86qaR893hySNujAL1Sz6vqh1qX3/9jXcCxuGLGcO6NG4fdA/u568ILMvJFOu81T3PmdaqKbcl47rHPjlo0mnb5iZ7jVZ2UkpM82yt8+5tfpTWvUfivkSi986fiknldi9kpRZE1YedH1QWddApux8KAaQiQch5RlIi9IUQuvGwg5l7GpfdknwdCUYMpCkTQyBGYV+VWo0Cpw12iWgX4ttKSkKaoHdTfWLkPgx0yxTqutrQayA5QmjzIV0L02zrAu9uxZDRtBDzmZAmR8tsDeaYrEuo5ShcrMEl9B7oPdF6oPVwdN0VG8RWNxzcd6WHSBSb9RCULo0qHe2vaC/0ekP33QAkR9INGBA7nEKy9+eFQnCEdXQxp8kGfgciKQJTV5a5sywnppwPiu40TabQ2cw/ZJ5PXC4rz8/rgW4/Pb+j1so0mYdhTImvvvr3/+9n0oGW32Pg+PlACvyc8WPki/uKFzRHyHmh9GUyK0ci/DgbNeJ1PLf4D445CpcRRhxEDA/3O96ar3F5fL2hrIglP3iy4FRAca83OwsbOg0jVkfknRb92DGnmxiM+gYjw8wSmyMOeSIyYa0r85O0uYvRgTFqpk9XOeJu0s4Em8voAYpAk0AJgX0brAch5o6kN5vfCvbhrXht9tnFZ3FcTKY1dcC2E7NTz8Z8mSQ0TIS0gKvz4YbwNjucEHbwLpqLLdKbiR7UJtQupKCII+W1Kao7GiLzFAlqtiCjGBI3+NbRIT9mE4ea61gqY1pVnHnj12C0ch43XH1cDTCi+XHdHWv1uP/PHuNr6AFZe3z0L2CGwQoad70bnipV6pGPjZmq2pr7hHpH2em4x3o7zr0vzRfsIw/A4H5G1ub+XU4XHTOjORuIMvYZDohuAJ7ecVJTgey909SAy1Ia21ZY150YZzPN9u82pgkE8nQxAC5kP8vSkU/25OsxCCqR1ooxn8Jkn7k1yr66wrQVI6TkOYPHXsrEaHO/IXUkJj97KqrFQAmgqdq8o+BmvdmPxoLGSmgFDZGSJraqyNtGniGmgKQ3guexdp09lxFjF6gE1GlsrRmQVvZKCAYODqEhCYmg2Sne1iixOTinajpVT7vSpCHS3e4FiutxlWY5ehPrTpemNjcljewqyiP3wM9x7RDEZPARP6N7O7pqqng+AftWrCiNlrvYBQ1+n+Yd00rv1tU0K5g7k8j2qwE6WL1gHWh8P9A7CKbQY2RZrPgLg8nShkjMb7v99mLKZ1AgOjqQLGFs1VCCkbS4oakcFAc9ZKuPo2RIJqveW4x2WY2TKoJ2e2tGHxrKGrZ4LX0OzmGN7s58pzGZ/KEZUoZcPOEZ8yAzqpWyf6Z1qF0Y8yniymQpJ/+in9D+gfP5I7XvlLp6ohkJYUJU0DChvRPyCWiU7TN5eiKlBVqj10q7fTKZ5dQI+czl+Rug0NvO/Hzh3eVfQrxAmGnbK10bZX+j72/s/YYa1M5Nd95QznNmnhMfv/4jKWUuHz/ztu/w+pFeZ271QvvzP/Pyf/6ZD+8Dp5NQ6ifyJfL88URIGY1npBuXtnVh61Y8hFC5rZWy73z6aWM+TXxzTiSEJA2RmSkF4ukbWl6s26eF1Y0U3y+LLfJy40ajxY1yq/Rbp9wyW0283AL0xiJXXteNT1un/fQjtM7ljx/gNKN6sYTevVDilKn9jev1ezsEorCvb1htaap603yxIKqNnC6kubH3YnKrwRKkYZYq4G3nSqC6TKjNmYVRYEsEScR0Mr+h1l3+uiLYplB74fCBksiUhNotKXgsdrZt49/9u/+Vjx8/UMrOvpdDyayW8RxqLt1OlQhiHmzdDYnNFylyPp/JeTITOpED1BAR/uW//Nf823/7P3JQZ8KdhsQRg18mlYNAMTbAY/tQOOgtI3Q9OfjLX/6Jdb2x7ZV93/j04w88PV345puvzXSvNVN1Ssm6ySiUN0RMMlucrlu7WNLSkxVZ11dijCwn5++HZEWv4H8C82T8ddUrpMwp/8H2FMkGQrQCMdPbaspcAJLREOmpE6OwTIF5PjFNZ67XV/ayUc+R0pVbW9i2ne3P35EzLIuQLq+kkzAtkyuPTijiFhF2SMZwIiXjbffWebu+0Vrlw1cfyNlmmSQkslwQUQMjosk8q1RUK6dpRjX6gG6kehIbeiDogmqg9ZnasyWKqvQw0VuHVri2jbp1RHwvc8TOGqqdLH8+rv+6Fra1Hms0hInWlM+fXokhc376yDRNLMtCSuartW0bqsI//MO/Yp4X97Ox2dlBwTakcRT7I6Ecib2vBT8bxmIblIpjJk6Eb7/96Vhvv7iNouAX6SIPcTdIfL54ua/5e6PtXkiFIyD8HNERNw+v8/By8sXfj10tp7OH6DWYUynHe5MhaDAsHEbSrKZchriwSwJMXVO7UZ2Vbp5M4xztzQoK992D6oBeOkAZS5itmOoih4gLTlNLT+/sfmECtW4vIdDqla5eUImp1hX/pDkFUsycz8/03pgvO2+lEGqFPlF64O2H74ltZzkLKUPrb6Qcjb3hc6zBz97Wy7HnmvJfp9ZC2ZXlJOY36QVJkMnqqvzuQJtUK7XvpGDzYdp3e++tm8F86WgRWp0pNbPXQKShobDWzl4aWl+YYmQJF29vxwNMkJgJEmjtasbNgiVrhxeVUdyCjB79YMqYMq/+bKUOlVY94sHVFBliUGFU57aOGAXKeIYvCy/V8fixzh04+iI87HlNFsGfwb/r1hulFAOn3G9MJNCdIldrpXclZxcACpGUOPKulHxGhbsggEafL1KTPAel7Tu9rwetd3KF1qenZ2IMDsBC7R1pSuiCpMVYTNU61fPyhLENXqmtcVtX3l6vXN/emKYz0xSow1x4vhDTQkonjLraDViMTgEEut7snAsZFaWvpmY3h+zS3pXb22fKviL5QkgL53xxam0h5ExKXxGTWbbQdxQzJta2U3X3XGKiaGNTs49IKbAsT4QQmc8be2uEckF7Ym8T7fUT27cvLCchT0LtN+IkzIvNDxtzwCw2jDIJ0sMBdtZaeX3dyBO8n6z5EcUEH1IM7OkZhqecNmpfgc7iara9bVRtqOy00uilU3crptcdiJ3Mzloq19pp2yvaO+npTE+JIib3EgNmawREVpDKqLXX2+0w5cWbEOu68/Z6Yzk9My8G5OScydmKv5E/Xa/XY13nFMwEeT7bbJbPBoNpKLQOtZqIWq0mIBVDQjLsqkxT5ve//4ZSdt7ergcwrb/i1/Zfuv32YkpMqWcg4tI6jWHE6FxGDGU252IvpvyAfBz0x1WSem/cjVHHPJSjBf6ax2Nk8JhtB+qqJhoRwlFwPSKE4hSujoIKoo2j0yWRGKeDUq5S6NV4/Ryb0niOAPlE6tkSbUdSBhUsL09O47DDqbdKq5399oL2FdVKPp0IU6K0HQ1K2b63wNYdaz9Gmhp3tvWd3irry2ca0HOgxZmahde18bpHPl03Ql2ZnyvnkKhASJHfPZ1pNVC3RvpQyVK5fPjAvEzs5TvqayHmG2k+szydifHEHBcGej9eWyQgsRFyRKOylldC6eYPohuiBS0v4AeWipCiGS9XKk0jVSd6j3QNLKo8aycEJWnj5fMLuhQmVbbtDcqVKRqNbJkWpmSu1b1X9tIpW+ftU2OSRpbGPC+eDPixFSf7k06ggU7kuhW2+sloIyGhuoEr1/0SxHMutzp3noEc4Wpbtqai+AyXOFIZQILBHa0N9Nbi4VdFNY91JQctNYZAEzmKn9oq0uRYz2bIao/pbthRa0PEpFUN1RtDwY4YOoqrjy/6BWD/OPMxfuyKfT9/1yJDlOmO+jjwgXOQ5Xj/Y/bBkGTrgLVDOWwk172Pz29xGCS6G7vSmnXxSvlEzonLZUGCmThaR6/YtexGKzZEzhLurmYsqtpo224oV7Rr3oLNHW32D9bW0NCJ2ZDC2jtzjiSFVjqijfzUyDkzLSe63Ni3G8hGbJE0f0RCJrmAQ292QNR6PShtEm2faLp7NmE7m2il9826w2qURZO5N1n/rkJXS17V7QDO2IxZE6hlY1Ul4+pM2kgihJTIoiT3bFGU1o3Os19vCMoc1aXMJ5Op33frTzhyZ03bSOvw9vZKKbOhf+12yJzbbOpjx0fuRcfRWv1yLclRjY9YEMaAsn5xz7FqH9D+n93ur/Gz2Hoo9h+V/Bj3vv/n8SGWpA759/FmdRRXP4uf+70enpjjcQOMeHwVQ9RHp3Z8V8EY7Izv7zFaR6orB0pP6CYhrd5x9u9HETQ93Ff9OR+AEFDziNQOvSKyo91Ut6xDZJ+zd5dE104vlbpeTZ0rCC2Y6MJahdaFtTamGJgWX2tiSfg5BLSJifacG6Er0/kEoVHLK4NKH5LRkUKYLW9wsFP77tfe10cwLxlTCzNQNKgBD/RixVewb832me7dM+/WdmMCLAhJbA8PrXJbb4RJ0ZihV4KaEfWUEimYVUr3XEAVaEqTQNCKiBLHgDtDaMXEd0IwEEMRpwiNwsj//uWq9Osf/X9/jcL3sKK86P7iKR6KqMf4+eJ+D69kNL1ESvb+WrUzp7VqKL3TdcUBj9aGYqUcHSYD+KyzGONdMMDmH30+ptkMbJqyz0baHNKYnQGY59kBRFvnA+zsXUnp/n3Y+WY5l+WOWO4oeP740IUFt+Oxa2DYZLL1JKYG2LvY/J4IMc+eU1rM1KLUurGt1ZhIwQyDrYHfEDb27TMSzN9tvLfme7u6Yfp+u1o8RZP47wHW2rhV4XXd0Nr5fTox50B1GuVpMvXCLo24WM41nc+knGjthbY1RDZCmkmzCTXZfmzgTO/VQAS1JkHMNm9W24Z0pXr8oM3pwhUd6sUS6KJ0sTO6dp9FEyH2ztybgTmqrOsNTZWoStlv9HJzmq4pMCa3BbEumTESyrqRg5IC5GyiETYzPeagu68rRWI2n632hqp5arX6ZplHCA+eZraqt62ybUpt5nWbks90jdzgEK3wGeUYfK16F1SVbTNz4BBsL00k9xj8bbff7jOFeBfI27yueFNbuR98Igyj1KNT9ADfWdFjG0/vne4KVsGLFgsWOxCGI72OBx+H9Uh9zQE6RldUGojjuHdIrryiaJdxhPkhG11RRjGNH9Pjt53iPgwbRoEXZ6J2shplDLFZGqNyTN4N2emeqLV9Y++vZkgcYbq8Q6Szvf0Ttd24rg0brssQzQC41NX8Cap5IHz7z/+JphA+fEVNC7fcuZXEbc98+stnyu3GN3/4EzFN7GqmZX88P1FLYc8rIe/E94Xnj8/k6Zk///v/QH17QSWyXD4wP/8dMT2T0u9pfaO2jXr7C1pvhHQmJiGebEbouv1ozvL1lZkbSTdXvBJaf4aQmGKmqFKAXSO7LmjNdAmce2eicQmd0ho//fgT5TQTtbDebrBfWc4fWeaF83JhmTJ7vdF6pdSN7e3G7acXTjlymhIfPkROSyRoJ0gwH6O0ENOTI+CB19tK2V54fvd7pimCrrZhpOko7MEGWeWgFLqcabPWdvRCdySCrsTqhYcVLCFAp7l8u5lcmhdT+uVBNrpNKd/XNHY4lHJvX494A9DKwSE/Oq9+kJmcZ3joUA3xiPuhMwqcL5LCR0hdRlyE42d3FN4PY58HuY/sj4Ms+mET7s/tIhKBcAwvJ6eyDfS9dSvcrKAyw05DPit1My+N2+0zp/PM+WzqiSGdkPqG9N2KFe9lIwOb67Tuxn+9sV5fqfsKyxliZo9C08jeIq006logNua5s7dG6Y3TbLLROzsSKzFXcl6YT++4vdzY317oXYg5cs7viGEh5XeoQpXVBvnLqwErRGKy76G2jaYbvdnQb2K/X5eQUI1OmRF6K76zTlbgtEBS4UlMpbgF2LYbtezG2FUIvRJDdjVMiKo0LSa00Uyw5scfv0NUOU+ZeT5xPifKXtm23RPPwLYZyr4sC602Xj9/ZppPlArXtyvruvL87h3n89llje/rWo6E8X4bQioHxfsXN/myvvJk5v4/v3L3v9KROt7LY2fql5D+3RS4j8/wMO8HXuiM2HwwIh1r/DF+7EU5wILH+EHvz+yU1/EqRq2564biyc9IBrUPcMPfiyrxCxl7BW1IVO/SqncnxICGYYCpJq0ep4XQC72+mJRRc9qs3CO79s2KK21WsL9+hjzBtFCDUqWzt0hvgf26sWR4fjJKYfdiahYDQ7RV5F0j0JnPZ1rduP54pTdQDUynTEgXQjhjQio2V9LLm31DISOx+0C8Kb3RV0Qric1BT+smoJOVIw5GNG10zQZ8dVNZfRKhiXByevi12exzTxlaJSrMDuTlNB3P07pdk+qFRhJjQshsDIbgCm8SsgO02b57VZ9FEmLKXi4/royfrdlfjR9f838tfvyvscwfKYVDCOn+OvZaoxA0MC5YMSXCMLFuD2fQmKeyOdrg78vHJBy9n6Z8UPRCCJTitMBuZ8ElRjO0TkZP1R6PTvT5fLGz7QDY75+hD6q8pX7ElI5Cy2jkJlJhgqLh4XvVQ+a6tUqX6GwI2w9GkZzG9ZssT7TEvlIKlHJj31eenhaWJROnmaATWj/T+s7tthNCIueJlCcY3ZxugF6vlZdP35u1xuWZHjIldLYmbCXw+dON/bby/PyBkBJ7a0gQnqaJ3hpVCiFU4qkxnxZiOvHyw3emWNuFNF2I03sfPXmm9WJCGPuLdbe945Qmyxv2egUt0DeiFoIWBzCEricgEsV8GDtQNFB6QtWKqdwaoVUmL3iut1dqMiBi2270/caUn5hSIqeZHBOlW55Yys7teuXzjz8xp8icE5fLMylNzsxpdBKtCftuNhnTNLGtG/v+RmsQ087nT58BePf+/X2PdzEqe57KvjdiikexZgJakRid1izqaomRUEadYgX+2/Xqapam5pdSIsWfW4f8l29/g2mvuAysHK0vk250NbUwQBKnU/UhTxgN8VLf/IOaJ7PT/yxQhty6H0omK3MHXcbfPgs1BGOCJ7bjAD4SUP9/PeZbbFdST2Zx6gz+ijFkJJ2OTdCUrjqq7p0RJwuQLjYU35tJhPjzD6lpbTu0N9Bi80t1pfZCnDMSAy1kVAW5fW8eS2kmyBMhPTOn5f+h7V2bJDmOJEE1f0Rm1qMBkJyZvTuRk5X7/3/qTnZkySEBEt1VmRnh7mb3Qc08IqsbILAzmzNNdFdlRsbD3Z5qqliQcLvfOBtRz3xAyxm1Lng6Z2y6YLMTXvGG7drw73/+//DnvwhS3whdei44F8HzIjjVjMvTvyJfLkCuePm3/wbt32FZOsryjGGVgslG/ZuhDVv/gtHeAGXSVeoLzBra/Q16+xn9/Uesp4UkAbU6Y80GMUWRjMWAszY8Oa0uEul5V7ujXwq2TMaxmxYgJaSR8XJ6wuWHM871jCUXLGZIfWCsbVY0EgpeX7/HOWecS0bNTxAszDRE9oqgFJCGtuB0LiiFNNM27iTWCPpUI84WynVQILAsXI+2D6QTLuosNQB2TO/OgMQKcZrzJorBtdvGrN7Hi8ewqRbfWnMWRTk4VJtOimtenGTIpsPKmfuJ0AomVwzO+6EaGtV5dlz3yoyv++nV9fCPbweoQDDBpa/eoYMV3T/84Y8ugqdQpQ5aqYtrfAQEiUHcuq7AUqgFF07fO0oJGxQNpitsCDU+MrHyBiG0oa+swsX1lScGNuVEkgkMijNn4tglF1xqZiHBFozS0GRD7+/4j5+uuF+/oG8bbpeKnBPOWVCyoZ5eqWUGIJ+fcM5/REqsXJkU1tKNQUPvjbCI8e4BQELKF3am+he3OStSEozsUOYkDnMalICAixhD2GX1Yo4mYKTB7kBf0IyMZRkMEMqZ3b2aM5nVhqJvDa1zNsFU8fL8iYQqCgAFrRkAOh1DhppgayT5KPWElAZKI4RxW28TRdD7QGu+No8F8q/aSHt1KwKcPbX41jqLn32cVzq+4/BZOX6HPf77qw/Kh0M+lvWj4h5Fk8drCXYpe9zPMwn0C5xdrG+dQ/jLA+QWiiMEkbM4UaT5cHwEwdMxWI7fxb+9C6X7TKgAGLqBXpldJ6SF0PzxxiRKAMmUj6jlxMJOb9Q5zMW7R4VBUE44WeVMA1aYNvz173+lD4UhZUHKgiWB1eeFtNrIBQnA6dMPSGI+10gyCd6DMbv6XW9+PZyXSS4AbMOgHigOR6JYkBzAoXYQFA8GUzm5Pc20i9igWTAyKZy7caQgWcJlYeC55IKSEiSSZwNMZfqEJCRJyJKRpM5OYCwx3nEvGgUzLfZ1IQ92dt88LKp8tK1f7x8gqEt+gYAiTuQhaPp6JaonJL3Tv/Jjfn6+loP1NI7ZXJOpFML8Wus+gxtMnHDEBP1aMKMZgNVJjwAw0C0hJ0BCi3xg8wQIv1/XFYFsOp9PqLVgvZO6f1mW/XrcV14uFyyVCRvJBVYAHOtIZU/kAHMpkIYgylON/dNBmZ0NsBU6Vqz3Bu2E3QZToSEh6Ts7MfLk58ECapaE1jZoApAXrohMbaqSBSUl1JRQPp3Qz4af337ClzeBjQ05CW7nipIESxaUIqjllcLQIliev4PpBTkrUj653TYk6yzCjY4+7lC9YyKwyoX7artB2xVj+4JUXCurkOwpaQPEmZBhyKMjp4JLXgAvNDdsGL2gZ96vhsy1NoAlL0iXjJJcENwMGAPtvk3m3CQZn16/RzKDGDAGkUA5LZCqUFCLamuDHeLlzLkv3eUYYp231r+y0ROKGjNs6Y6cOBKRkjMdCnfO6APb1rC15oXzvVurqpT3EJ+F/t8B85vwoaDRnhswTXivuEMxc/V2OGGEVxtUKIqXvCNFQxodKcERLx9QBsCpFRFVisg2dwfO5ClcD48NjQFXf58dKpriVaLpBzNSOnFuQRXDsaOBg8+JDC4wJ2kwI5wIdABMqBohCnaF6AAwSJfZ7lBUpJJhyyssGVL/giGCIReIVoi8oBZC1e5NSatbTrw7paLWgvOSMFJBlwUXXbAuBf/v//gP3K4NTzqIF30t+O55wdP3F5SnF1xeP0HzCSYZlx/+AOiKpHdIOsGsuEBec7amhj5uaP2NhjBVnM4XjN7R189o7z9h/cefkV9+QHp6wVIrsgiSNYgS9lBMsVjHOV9wOb96giNY7RljAbakGF1xbwnrMHxpymr6JaNKRuH4PoXo2qBw8qZYSsHlcsY5J5xSdgr7WLrUaOGMQPJ2PueJSlFgbKzUlPMMTkNsMAZvuR4BCaiJk5vo7GjahDYoMOEAiGQKiUmcGkxo4ET1G87MkzI172KNw2Z9TGiiOjjb1GOgViZUw4URYw+wSudVuKGHfXEIFD/EqCLAx2Tv+cBqgAAAIABJREFU28GgV9Mj2ZuB4f4dSRJeX1/pgN2ocYjXKW69W8aq9EBvdGSmxR27V9BNAXAeDQGX0AZlqoSYYYO+E2IqAKQg4+LVpwpDJ8VxKkDqc65yyULIkhSMNNAAvF3veLtuaNc3lxooqDVjeT5BckVZXhD6VGk5IS8JUNKZQ4p3QYcPuXdnClxhwuA+u5Dptt64BsedgeDyzHsihEITgsz7GaxuSz4hmBmHDGhq0CSwWtGGQBXYiDfl9wj1fHpnNX20jrbRwQqAy/kJMGCsDbDEZMqS37PEeTUhJC07giDnCtWBbVu5F4SMfa33h6q3eWNFHtbFh3Vl+/r/xcRrLsxYix9f0df58Hk/3tfH/fieiF73/sBjIhXHeIQYkqTGCwqx/uO6Dsf59mvv6E7/s0fR+xd7tSZJ5vqZ33MMyhOCedQiuLYIst3vWYdhzICbek6U1YAP4FOm405bJkJ7KuDzNorrQjqLYYlw+ZpdMyhRQLMoq8g/fX5DNsMiglT8z7lwNqqc2aGXBJSCJb8CNghv9WSKC4W+ll3AjYmlACILJCfYaNBBBlcbG+T0CsnFExz4/uFEBkUxDMsssLEQ01FhWZhQqWAo0JT6aKVUwleRkL2TagBExX2Ez0MlQcmLyxxUf5KHJHua8AOUc1YdvpHwH2zwQ2j41R7yxO6QVv3yUj+s7a9WYiy73f8EscT87OFDAfeDGZneDl1fak7lmYxEsS6SGxbTBaIUW+X8ruAkCzXlAkmRgq56zLWsqti2zUdKgFozZ3w8SWPXYb8WUyZY5XLG6N3Zaje3wUxocvZumFNg99ago3BNRBFd3f/I7oP6NqBdSVOes8/GC8RWiNOQx2xjcpa85l05y04U4wQ+ORE6nCVheS7QU8XffvqCrXWUQbjk1grOS8HytCClM8pC8WkVQb08A3YmOZGwawQD1AbFeUfnqIauTOZTQUlndrr6G8b6Be36d6TTC9LyhJoLGxs6vGND5stkAyVVLJW6qyKCbmdoETR4Iq5AG4Z7H6i5MqEyj5ecUKJvbbJFlpzx9HSGtgHtw8mUeG+yZCSk+fzFeRBKGS7uTBKPsKG9x1xh7B3ZWSlHNG7IYLwsyyxEBQvlGMO7p3u8FAmVGXzUQiHyv4mAQlXRttVF7XyjH5yepND0UV88C424Mzox4RCYKNq60uDk5GQOpHKMSjoPu+MhReAPKjaQ+w3vwE1FeYv5kjT/xHFsGiTMh7L/IIJEg4iyneyLDGiAbRAEWUaYa1ZnkydmFEZN6JbpJFCwXBbIk8HQKN6bT0CquPzwb1BQSDCVZ0hdsJxekcsTtu0GDAOWiqGGrRlgDYt0pDJwLgMvTwtw/gHFBPf7Cr1tKMnwejG8vP6AP/3p/8Lp8oTT+YL39oY+VtTygiyvqIkiqyYV61hxffsLbGwwa1AB0nJx1iiyxmxjw398+RtuP/6I65//hj/99yd8+v57SGGS9tf/+B8QKD49vcBgeBodZyt4wtk7QRVleYaWBXL5P1nV3DbcthX1/fMMmE9pQU4Ltjtbw9YGkxPNMCP8M9cnnE4X7yjRyUEFbR3oskHubyj1jHpiMkT9gBMMinVbYbZi2BUiGaWcZmg2BiFmSTwREcJl1BKCphPOLOS5uHdnxwyVShKkkiFyonzA8OBlrlnCCFpjW5t/b04RS1Yig0NkbCeOsMkoQyeTXWMm54yhC0rRKXgqKeakYo3H/nysiDI28yQxihTfqos6q6HFdRyceykFtVb0Rnx468qAp28oJWM5PcEUhJ1ud+KYc0EtGc8vz0jizE7qjFudw/BjGMwSnp5fcDpdUJZP/OJ4NhDk5QKzBdmYvEpmBTvnC8zugDasuQBlIbnFAKw3SFKUQh2c8/kJS6p4OjV8kY4tG54vrJoulbTqy+kThnZsY6XumYSQHxM7NcP77bPPB2x0wmVxTbL9Pbf2jt5WyO2Gerrg+fziA3kV6/qO3jcs1RMi7+gvOHlhwFkqcYbkFwAZpzFIeLHdaW9ByEtJC7Zxx/X6zucyFL2FflNHThnny4tX5jYm82O47U6zM3u/3Wb1el0bru9XxEB7Wle0rZGZKeV9QPeYGPziK2FPDL7tpCJx/zrE3IPJD++Gf+Sr9x8/+fj+Yzthn1faj/Vx79hX7zrCAMWv7evrSB6LHjOzb/xX4lwSIgi2GXzHm/YO+fF64rqdWM3nomymXCVEZYNRUNjBRSJpigLUf0sZOZ9hphi5QUsCysIOrALqsLjsYszL6YxRfTbCKbKKDOSkeLp8Ql0uKJX00U03AIIsTwioc8xcttFYvLTBJMo1sghBZHiy9hXr9o7ty2fY6HhdXki9nSr6aNiun1FyJrGAKYWrUTm36gWYlM9AFkitCDbVta0OY+M9L4k+YeguKs2AeWcMDkbFA60ngAQ2syhRQL/3YY7QgD3xjRjlEIPYLxUajq/j7OlxHXxcd75W5bHsEJArHeoBJf0PiyU6GWvH8Mq/JD5bcwY6wH1QPvigOgPVyeDm1xG6PnOWV0ijToHe4d0rzvyaH7u1DQBQa4Wp4XZbHf3AgJjznmUmJyLikEKgmSdJOrCcTpRrcCKKvN2dvTXjdFpQa4YkQjGHy/mM7iLwA0h5wfMLSX5YlPR4D0569vQDr62eIPnkbH6UpWhtxYBiCDi71BVZOK8IZGRkLCVDygX9paO1DmsNOQHP54JSzyjlBXV5Qj09Yet3qHZkOXHeJxXfPxltNKzrP0DZgs5YuSwI3ToD0LXjfX3Ddv2M9ed/4OUPZ1yeMlKugCS8vf0IQHE5XXjvdbCDBu++Jo66WCqoT5+8l9Cx9Qa5X2dXLElFQsa28plpdwKYptAMQBtqoXDytm4s/DWf/c4VOgwJHJW4Xq/onZqw79c7yVGCe+F+gxo7octScTqdZp6xrneMoaiFTMQ//tixLAuen58Rcf/9vjpqo8+iOgAsy8nXCwvEql97nF97/eZkahJGJGK990RKDs4gfKqz+Y3AcR+Ym4wdI3EhSzJ4yCS2MEsPrpbfEIbJj3Os5h2c6O6A5OHn02DNA390rrJXk7yitH+BMUmb/jeo2Xkte0vfg2zHPnOwkVV51RsMw5NGQynUxRBLQD4B4QhSQU2CmoFcC2wYZitkKHIaKNZwLgU5Ffzwcsa6JGyF8IbXk+H58oTL0/coy5nUsf3mVLYLkhTk+gIAGN76vd7fXHtqML7LFEfcmW4UW2/Yesd9Y9U/5ejwALfbO2AdpwJkSWT9s4Fi6hSYgOYFljJy/h5QoKQ7RK7YGqGQow3UVJClYFMOAWKY6026gF7KU3ROW/OWvAs0KkC6940dqiVa1oLua4pdA1ZUUiquxZAc0udVMfFxcB+OGj5Au7OS+TIQro19FikqG4JiyTWmPsKF9ipaDIZPAVnH1gOYlcIsO1x2n4cAO5vZdUG8Rd37QM5wKuxDOhVV97lPPyRWsXU/VCT318wcD/uBezxJFEJC9JIBCB0Pf9eclEOHsitdeE5FCN0Zx2RqsJsdg8WlZIcJkq7ZfPZDAGcxGm5LhMZe0nyeKYHBjxbMcMKMVTf4AKqLQuck6KcK0YbzUnx49UTiknwGQG038Tko7qMMBWEh63aH6YBAkTIDDYROk1d1hyk7jUORNPQu4nl3tH5HZsueED/jSH6E70mSH/MM6gQNJB0YmV0xjA6B66NpdChZjNBhnqQTGIiYKxnm9NOK5Lp/bkV9DfK2qXeiYh8QyhNJ+7GDYziurm8upVnEik30wcq7zZ4EEr+am0XQ9vHfD+GjP/pvHch+Zd0fj2kzIXrczt/4vq+OFeUaf5K2X++Dmw6j8o36x2PgPCuYD9/BmDxslBc/HL4ryfVw7Hi/CiQb/RfgiX2aezkJbXnyIhIM1H80lpQSjAQGKcHOLPiM0ZFBxtdaTyj1MkmooK4X5nac1XzvYqjPOppConsmwBQdBqZI8FBlcUnivnCtNBf8TBQ6oQ3wvT67PE4MIUL5BJIgAILG7h3gM1c2Z2q4XiNG2ee9Q08q7v8k/ABROXkmW3G/Hb59QBvMZzeXyceY5LiG7Bv75+Pr2ME8fvbwDrfTkSBMAeahEwkRnSWRhFxkdmwmuRAEyCyEGQAZiZIH7oM4sB9rbWf1DPusZrC+z1S13masRogVE7nq0go6iAQiYcA+vyLinYbEeay4lthis+O1Nc40j8E4E3A6dkw4+tDhoxq7BABhedmlINixAigZkYLxMCWPlw4Csw5d5drzWFaN8jEarNaCIhk5Cc61oggwxJBFcF4KdQLLGSmfiZjCRsK1xORH0snXHZ/bfbuRMRuKUmR2k/c5MidZGgOtdygcTuzxQWuU36nZY3ED99IsFAn9hgiQLoCBsFlLqLmhO1IrOZvB8GTdYiRC6cuGGEoWiBQW79W1wmhgmFQJFyoTWz5LjkQMwoP9nFUNrbvYdMqeY6jDUV0uRxITd+9mMj4hG2A/rMF9zZAM6qEz/Duyqd9BQAHncg9laYWYoS6L50jqWiue0Wlzob/hN8ZbpSkxKM4ZSz3xbE1nMBAOVVKdCyEuKlqZxH7vVR1ie82Zilwte7BdS+riCCQ8MBSALHrETas6a5ZkCBSm7/4+Bj3MVgP6RepZWAecXQiq0EEtAckVpV5QTy/EkAsmbGNHRRuyDRRlN8jEAL1C9YaCFc9V8N//9V8JibveuOlOZG0pPlgnAvy311du/j86oUV+hpQLRrlA5ASgQnBxI3KCIWHTATVD14Z/vH3Bv//lL/ju+Rmvlwssnanx487dFDjVJ/wff/p/0C/foX93wuW7P6GWF2z3d7S+4X0kGBbkVrCkhEtKyJrQDSijI5mg4OQBnXgSMbDkin95/SO036F9xRgJOgTL6QWjd7y1n5FSwnL5hKUWXE4LluUJUi4QLU4lzaRCNU/RNg4PLuCNBY/trX8DIS0mwLrdUcpC5kA3euoU+n1bPW4piOFEQ4YJEflmvtbAigrvltNoeoDituph/5ScUQoNdMo2SSVyLuwUuINSA/p6n8HXJJIoQAZhfSpGNOtQ3G535EySCg4T73GbF0UdbnKsrv8zKxEGRSf9L2ZrfU/ynp9fWBHaqOtidkJvG+73mye53llOMh35tt45MNu3vfLnyUNd3EYUFgNyrp7E2jwrs7AbdHB7ceUOQUMR4PV8wdPpCb01wBTVoYZxPBiQquBUCvJ3n9CfTyjFu7LlApGMPoDegdESdaxyQVcAQju0bnf8+c9/Qc4JP3z3HTJYxcseeHM9CJ5OfwAWxellMMnLZ3DY/oZuQMeCzQqyJVThLJSCyvBihGwl378RlAsEl/oEmEJzg1PyoOYFS76gr2/obUNOCx0wElpT/PXLz4jWPplQKYQpEJxOEZAvLDzIgC4L9Ok8q/mtBaSEENUUsx4H2MUvr6dfzVz2d34oCuwvrr2PNNO/+xXxaawbiSLg/j37/onkDjPpsXkuxwN+63T9nTGD8xFrO49zTDAFLOqoB+xHKNz+mYDIQ47H4TEEglS5hpNDTsn9GHE7C5rZSBCBCMJj/jUpUi2o5TvOIPaOkpNX9gmJ49cllEQGPbMKdh4zkC9Qh90BQJIQf3adGLg9A2ckelcshQEb4HTPsj/lc31GTRegPAPakeszIMDoN0LBUQHLgBWyWkI8rRJC7kWQsCBQL/Fsl7JgyQt0bL4ASBqkDgkbOjxYrlMSpRZCn8xhaaZ7IcxMQcbGGj/xAK4dHnWwh/H9wWL3a92mHTnzn1r1Mwnog8WpXApXhbEbt24rA3+wqLe1bY9YZoeGMVHoCJoBvQ3c9IZS6uz8ZKcfTynjtATpE+dfWmtOdV3R+25HzMyLNQEdpJ2R8xkpFbK+6cDnz585+uAC36+vn2anYVkWQBXbdkXTgaFAKS6tI/SlrTW0vmH0ld8RjLlwnbJaWPguC84lT6ZC8SJDJHK0ReoJuKG3G4AbxBpKAr67PLOr6z6ZSR+ffTairV6WE6xW5Fcmi8W10ySfkVJGG8DoJCJSH2VoDj8b2vHz58/4y1//Jz69vOD58jS7g48w/IrXy7+gakHqA6flBSWd0Lcbxui4d8K7UyfbZQF5C1I2Z3AGBL43IJ54jumDLC+wesa2cS/XdEKyjrXdoQbUcpqJ/vv7ip/bHd7KnZBPcTKr85lFS0hl17APXM4LSmZxW81lDEBirjEGvnx5Y3LUO7onxLArk9ZScb3ecH2/MnmEYF1X9N5RCuf1zmd25K7Xd4wxsG4Np9MJywFO+ltev2NmatZRducZjiYqi+FsLOam9kRoGpxDlSIoUf0Xh2/bq/10HOFC93MJg8Qn7MmUf5nYnulGZyz4nU1l91lxWiLsEsW3RCcttB/CAEpAFv08mGLOYwmw60144imTxcxrVUZ6bYnhziC7SD5E6wJ1T+mEnhVoA0kMGew8ZL9/EJlDlVK8cp2eqXvltJSjD4qrdsWdHMpIyvmO1m9ofXMSDw9Ww2Aqq3smAjFqEuTTE+p4Ri4nwIrrgJCC00C9LgE4NxXUqGi7k3JH5qgBdh8y4RyWKlpTAieHAJl4VwjFO0v2ZAlB0hD3wG9odDgzE2mJ5EMxiQ1mc6XsFU0EtCLuwHzu/oCdvCRYhWJGjgmGV/LSJKGd1ZFfeoUjjy6mJOH6iGMhmIqc/hw75Wt0skS8oyVMTrgf+N9oTX98HWmi978d1/C3ztUidn38dwS0FvNmKW4FAyUn1ti2zenOBefmwUQxny/a/xxSpHmue+cDYXj28zT/mQXsaX+ODMJYPc5GkWnxTmCIeh8DaHFyjqUuTjRz4uxbqjBQQ2r0gd47zMT1yjhbtLU74TGmE4JsanyvMxXmqMqCtLyhXwfkGZyQQdLr/cYQmtpETtgw50HJ9ncsliVnlIyK9V4Qii4dpSqiwm+uV7bbKdfQiVudjtAlDoILzIlFAPOuaayx+c7o6h/yqT2h/5gs7Cvs4QM4rFOzr97Nfz/+5MHRTWOODz+0j19zSP72zxwTqY+vCdOaS2c/91/eP4//CvvwsKke3r0fZ3YzwquEH304+MEXAy7G62clsY/C0Owp4H4M745akDTxLNl1LpAsEMvs9BgD8eRr6ug8SR/PzgtAkhd2P9N8/lER5mmHb9bp+x+7e4fnEnPOUpAzIDYA4xyXwU/dMPePxv6JuxwoGAgmdDBugxGyxXy0zuSQ243soJxJdaiadzXm+EAAKfdNgEhKH5fS0T7FEz0+jbARh2t/eFTHTz488XjaD8cB9n33sVEVz2G/1WnC88L30wfBuwZjntsUbfYkSp04ScchHpIobu6IjuOfOIew/UEqIC4RwrXi9s52H0NffpgFdjIwUwUyGf3235nPeW4OI+c5975xZCDvM13hax/2nt+XqEIGzH9eTzxhicKwX4uNw/Pjeis5wcTQHEqqfbgt9gQacd0ULSYpxInxUiqILmHv/EN0k1LA3QZau2Nr274RhJ1e1u59ryYytQoqclpQ6smLAZhEWOp7sw+bbMUjB4upd+u8sBOJIynsXSIoCZAyetsg6L4yg6EW3u2Brw0mzNlt1C7S7Gv4KM/iXVHOKqbZRVKfdVfnYjAD2sZxie6QTXjiz6YZO1AedKH52oApaet9nUVXi4lWgRV93Ir/5PXbdabggroM01mxkYS+thkcQwwpZwxnkSJOViDZKzU+UFi8Is/Nivlw1RjwiwBiLg6cOZBrDjHM4JBfkuSdLwX6OqsFE8uu7IBw3ZsP4hrUO1SEMBhIlcar0u7wMVXfsJs/cJ+h8sqbxACqkA/fMFDqNjsvyTag/wOQV7ZFfaGYL0bO6AC9cThza1eU8zNSPaOe/hVJBKVR2G7JF/Ttinb7kcQUmTjdlKpDDoBy/t5hcAWc61lwu7/her/i7fp3rO2On8eCIQmXmqB6w3r9n3g+Lfi//+2PGKZO7X0DRsewM0Qq2cF841t6hp1+QMMF1jKuW0XrymDOgL6RIrzZBiCTGhMM2kp5JXtT4nPunRWBkgvqeUHJC7b7Ha1tuNs7JHV8/12h03XIirU7JC8QUDeCg9OeYJWCnCvOy4UdkH6DdnYld6ikBwGezKSAaRySnz6o1UDRQsNoG51yEuRyYtu/uyEmaZ938cy7sgob3Z32jCb5NQC2raH17hudHakgDODnaWi4oTc/190ZRRUvmP3G4LzU01OGGQP/1vpj4BWGKdhWQDMuB/p0X/3f2PP+u4iMjaQrAf0i/EvmwO96v+P9/QvFfO93hHBx29aJW2ZnunDdSHHK3YreroB1FIp7oW9XjHw4fxjCCZnDbg0FxLpvgCRIyRBZUOqzz+IN5GUBDFBnNaOxCj07Xl+pzz5rT8IUtYw+Om73N9zvN7y9f4bmCk2F7GRQvH3+D8A6fnh5RakFuQLbdsf9/R0iFUkKLucX5FLRh89WLhEIVgwTdM+uKUbKgLBrdwfQWbzRTlsT9PMATIOohzay1uKfMUCuUEtYlgtKWbi21DB6Y9c5URPm5JS5KQlaCyKUmNNraK3j+vaGlDOWWugEG506h7RDlPRDKPKQUD12eB5Wlh0+wzd8vWY/Jk9RTPldrz15juB2d96x/h+DUv/N4zG+2j/p8PlfS5IMsyOlLq3h4cbjLfl4/UeoOc/vAVb84XMCD4S88CDWvcgSvis+kbwEMWDGQEsHqfqlEEaU6wUwoi2QKqzI3E/x4CQFhFZ5LyasSABPXFrfoMrgZJjhrh53JeEQvTUshetrDLK3Zb92C/bOeS8ESJ0/twUKQzfqziWQhRKW0ZX6lyV1SDaYeGc35XkLTFl4MGGRrtQLBHIIrlv0sPaE1Lu5nm3NYvG0j+JkO3L0K56EHwsifg6zI3V4gh/XQXRS5k8PC+Zx/9jHrYKvIX9MYtZt7zZRfiZDjXNUtCHBxjdmDCfYfVAEnFFI49zKgssls+OzkT201IJXZ+2jdk9Czgyqc86439kdoNCxuFZVwuVMofdSCtD3pA5meHq6EJ1TyOjcJnsb46h13fD+9hnresf1/c2LYIq61OmDLhd2FpNDMVOqWM5nnmd7ZzyViEDqfUXJr0Ct81l2HykAgN4p7TK0QbWhni7OhHqGJEH1pLM1oG03XN/+juV0wfnyBJJWVcJnBVhO3zlqIQoRCff1hnW94cvbZ2zbHaOcYJJQsqC3O96//BXnZcGffviePqgA1+ubs+exO/h0+QSDoA/AsKCeP6FrQb8OdLWpLWgG9E3RYdisQ83lGzQ6kkzCUjkDEIzhIFjXlqK49RXABjPGTefzC0IigDHTIEQ4CU6nyiK5J9HbFt1BZ07VDevthnVdUSpJ2OinQM2q1nENRE4hsqe17mzYA6flxPnywSQ39nFALwFgXftMllUV7+/v3iTwGA1MxH7r63eI9uKwmT1wFPNqls3qXWzkFKJ2kgKcEvW5vVKz+4ZHnxrUUNMQhSPdX7PoExWY+LkpoG0Gt5PO0nyw37w6IHCnYtNw6yAZgjm9bNAsIvSGpp4ODaiB1RGDwoSEDdT9CK/mVeHpp6P6Aq8SK4CMnE4MmA5DrWJKZqJcgbKg5zPMBG3bAFmAIhRfS3tWb34/YB1tu+J+/TtGu8G0o3dFA9mJRr/i+vYFoy9UgReHobh+B+nnjaxLwpZrSgtSecWQBYrstKAZp7wzsikA2IKmhLKNMSBqWOUNkIJy5oNWHUhSENT5hChWFBOU0vZgx1vZnHlg8tC2xmUTMwAQQAUqzrLnrEKqPvwZQtOKWb3d1xmDVXjHIgHeVWAylPJOiayqENM5Z2J2CBDd4dgh4PqQ0cx9wV/Zw3HHIKY7tKPMA2DAaHRjvVlIDvB852d1zK6L+Pd83RU4QJUO++Xw2+PO2jfYYcdFd4pVnBXrfcVw2tLr9e5Y5Ibug83cAnS4KXX/ryFbBAC+8cU1RDRYnajgzmJSnt+O6ErGvo0OiUOCp92Y93+fvZEpYvx1kDGU2lcZAWc09Lbh+v4Z9/sN1/c3WD0BZfHtplg3Ch5e14LSE7ae/Z7cUMqJc1fbhjwMQAZKIimPd6bE2eGSJM7H+dIxY7dJfW5KHVaIIeyaHRKByaaK5Pc6qnHi3xFP1jtgs/Pq90HE593YbcqZ92YEqgBRSdznKnQohhwS7w9J0uxQYZrJX3jtCcz+nsPPvpGc2De+b//c1wHnw28/rPv4Ljl8Jw5/i1X2GNzax1M6+L3ATnxr/xyuJTqOQhsm8XuJc3q0LR+RHcfr9fgOIcw7g3rsvkek8H0zaYyuyn5OfM9erIg9zjvAyrFJOrwnrsqthh0SnrhvZjMBI0kTAOxFIxtkvxWwQKF+DTuRFe9JmlV88eAz0//YLkuRJe02zwRB9a8GJO9+a4wA5D1pmftHAmpnjhYI23tcg35tjlixh6UQ1x12Sg75jezHd+hhrNFfXK+HOOurLOnjGkAk12HXfsl+H4597Pq4nx5DJylEdFzmnLv4Ooy5Fi9yA0y+Jhwv/KB3r7etIeedIEk1H2aAvawQcQMAszRp1WMN7EyJMjtZrTnip7Oz0duG+7phXTd2pBxK2IcTMow0qdw5ewMkYtcefGYu1AzlLI5iqOG+bmgDDkfzWXEY4PNd20a9JgOweNI+O40+c1RKgWlFLgv6UHz58obnl4QT4MUy6nmxCxy+0bCtN1zfP+P6/gXbtsFO7MT1BPR2x33jrFNOQOkJaUu4398Jd6xAVkNOq8dwyfcyKdXNbYpAHH4Y+mLsqpHx0qCte5zRYUhYzgAJVwZnpotLNiCgemWSOBDm67OQkElwMveI24W94+kxl8dBPjUx5V6ik3YU7FUdaC3OfV/76hCo6EiFBmfOaULUmadgrkk2SQ5zlt+I4X7t9Ts6U+JzSjzZOKH4PuY8HPIWSZC6PFRfAKpKw/b2ccKByCIlcvlbGDkA0EPjYDcqasSUz6qNB0x8MAPm2gk0kKzMcdZpANboZJRsg8kGF1sq0H4nDavu2aixk0iDAAAgAElEQVQIgKwU3ksLYWM6EHTuvbECn8oZVKn3Cl0SIJ2ACXcQD/oMsBVDDa0rcl6wnF7INCTg/BUU0BVJEurCan5Xw7a+Y7tRH6RaJ55VEsZCnRo6tQHYhuuXv+Lnn/4d5XRCysQbt6F4txXbesXnn37EUgQ/nTLOi2BZ6A4EguWkKPkEO3lrOFXk/IxSn9GdhnNJd+SkKKcz2uj4vHYXSnzGeWRsA9Bbg20bvlx/woDgD/9CJXERQZYLRQ6lQJGcwSaMe4eOE1li+jvCgW+bYdtu1BDJu9HKTnSSMw3SMJDFDTvRRLSfdwfDKqNqR0rs6JVMQxKq10mqJ3AbN7d3frQrMcUpAtnkQUCHou8B0gdnllx1u02YAau2bWvYnEZUR5/QAa4/P2sLiKnNZGp0Vuxaaz6DuExDcKxMcp94dVyOAV4ULT4Gasdz/xjQsmv7/vaG9ytnC3tnMiXCAdJto1MrhdSrMVS8rt0d8SArU2V3WExR6hkQ4PPPP3PGEkBdBJI5b2FB3OCPLuiUgYScF3doTkqhAzCSQvAjCUNjeDn7HvQugTFB3/pAUPmnJLjd3vG3v/477vcV1+sd5ekJ5fLEbhEGbvd3mHbc13ckAUp2/bA+8PT0ivOZLEYpFZxPLxA5IeVnJBGfEyPh+5ILVAxNmdQZFmRlMmUKiHoSY426PSU0VmQWI2Iak+Y2IIOAqgATngMMhcNADOqzOJG4jqGo9QQBGTyHGiCcr+hbsE52bK2jQvZh+l95HUkCvhXY7WvtY4L7W53YHmz+Etzu4aviL/GxX/saOZbvbBZvMPfjRzp0Ofz3G/vn+J0OmxGRPSGZlxRWSh4+Dsi+/iN5QkCNDlpBiVX0OTsRqIrpSAViOiEywD73qWgAnGjK54FlJioJlg5Jk88rTqC0B1S8Rp/paHeYGWdd1SDj7jTOHdt2R+8rWi9EKRR2b1Uj2XBfmjwJEZmaPgLaziwZkpT+zUjfrVYAZAzLSD5TCtevSrmgLkfGuUDbeJySaB2iOh62xLwAK8Lheogdlk6KFIlJBIwBsRdbGcscwqxDMeSfvwT7/ODvCeyOyfvhaCKTGlq9CKdKqYqttTmsr2OHwREl5Kgh2yHTpfCauqMTWm6opSIX3kEdire3N6QkOJ1OzsJX53lEgNsbZ81N/fmP0Akio9+yLBCftV/XOwASR4gXgqLasK4b1rVxRhCGdSVDYa1kiQs2uJQGRKgVWF1sGGaQBNTzE1pr+PL584wt365v6MNwPp2RnWpbBBht8/malWQstSAln8EO3TT3e9FtMwA//fgjfvzb3/Av/zrw8vpCgGpKQCLEPOazUkr48vkn/PTTn/H+fsPWBpZP3zF5SURj3NYr7hvwfv0ZORlSgrPrAq+vRlHcpii54rQ8e+H6ea6P7CRJJRnUBt7vDUQ2nZE1oXZFWxvGtuHL9QpVxfPrH106Q0g0k0/0LzCkXLAIE2I2KYoXetQTbE/QVElkhuQxGLtXKWUsSwEZFRsLgJKxbvSBW+sOeWSMVHJC6w1ru3sxmdB6pMTiNPauaPX5wJwLNpcNqZXPPyCrpcY8qJEt9HfsOOB3JVN0yPMLzHw25Vi72R3MnHqQD4SuFphaZrXeQtgd7+H4h/8gcLpBSc2Oz/4d4UBg4nFjdIDUZ53241IDi+1udQ0RqkNHZu6OxpTMKBIaBQ6hmpUsYKrUS8hvJg6iT8gDq2JmgMljBaAsMTCY9muAUtiwPnHz5xMgFRcpKHlBKSdvl/O99JN3dt40cziwkyCj1goTGsJzYXv4jIxVCvrTmSrYY4OOjNGpfs27e0fJHCQcyTDKCVmJqW2joWtH6wYdGSWdUaG4lBWtGzc4Cn62ijI6sld61IRQI0RtNKFtV7KjpcWHqaIiJlBQ2Hc5JQafo7MrpBpj2SBUDHOeitWI3YnNzmBsNADRhZodCwDa6eAnxbjPoTAHVkgieUUE+XAMfUA6xGRPUlJmJ8m+bg8HjCQqguoU6g8zRHYoUBgwBagPDrWHzpRfS+h4FO8SHurdvj0YxdlXSZP/Vz7UP8337QzA9h0eFdB1YxemlkpbABqC6FTH+QpYpeQsFROsupw53ybOFtcM3YNzBvZ0fsuJxC+P3ZSokLvu3Tzn0As6MDJCIULBw1KYYLDf42QhXhMdY0PbSGkMA0bv2NodOSecTgtSzpBaIZlrQiG4+zPR3oEEaOxtAPd19aH6gZwqVDMTmaFQEQwjzNfc/KZEfbVkQOvs+LfOTmkGi0djGLIOJO0zuIyqmwT8ehrjKCgAnNdSpOSFI6Nuyt1WD6Z0sjISwhewjJg/A9IsmAVr6QE28dXiOa653UQfl9aHd3794d/42jtfh27D8ZgfDx3XIcf19HhS+zzU8SPsWhz3z7fmfA6/Bffbx/2DD98Xeya+1w5vC7/5eD4P54R4Fmmew35djz4oWHCnjIhkB2gckj8NwggWX8ThsAgmy6Ntsbi+qEJHsL13PsLu9LFBYSjiTLhIkFqpu2Ps+EMTTIDhmn9zNmvaouT03EQrqCnUtVGS+3sx+ih2SgRQoc03cwhs6ELyngUZUprMm8FIut9DJnMHO4OAvQXxyiGRn+trf9Tzf2X/oUw7il/cPxFfxBqfPuEX3vd4EH+m39h7AfsFsPsgffRD09UYbQ9w7Gjz2YfWXFoyA91t2+0CAHFCCbKrdu8m7PFh753sjN5RyFk43+nr3oy2rZQ6vwug/aGUiDnSgTCv+P3silrEcPwTszrbtmI5nWZCwHMZkMG1Q62mmFUiKsaACW9c1412vvt/1bAs4MxQVxetJ1pJfJ1xhr7gfH7B09OG+0ujvp+CnVIBel8h0tG7x3Cjo7cVJWcKEp8UUim5YaJztsh0QK1DMqMidbt/vd2QU8NSWLAfIwhk+H0mRggcDLVmwARZ3PeOG9aRYS0DowFzbTAmNmfWFAVWuUI1GJX3ew1wxpgWw4uU4nbOFH3rU+cMMKd7B1qjTmWwRVKr0pfjg13xtenLsrW+d6Fk1y0LhM9QhbXOuTCzSbGfc3bSE9oaAf3xkdL/t75+BzU6ZvdpkjocAz9f6EliM+z1kdkw9/8Zw9+bM0dLglEoyTRE36p8xiAiE6Z9c4lXZqNlL+CChA4mGSOq0PCLYNXAJAOoEBk+6A2/oQdn6BAGMzAZyNVpJeHf77MXwgWpMU8QA69h/FWR0gKDoQ+FpIJ6egIQVKyehApFZJcUHP8nZCHL3bY8oW43DO+gwSuJpjcAmbMeraFt1NpZlorNMeRPtcISAHTc84LWLxirot/eoT5PdTcyLbV+w5IbLvnkUh9PyFAko7ZAGx0UtM2ouaJkxVMV3MeK6/oZ917RtgXPFThlQ2teHe8bFGx9DwDrndomKSufkRL2aCZQIQXpsjzBRof2O5oxkSN9NBAQygl7617xBVn9Qo/BcEh8AvYXg47KwL23Deny5MEGHT6jDUXKmLNMhgxkViNJI+pr1qJNXQElVvu4DaNdPXzaMyB7AdWLP3vSzw+p7clJDNoSK24ULzQjBMAMpVQXuOZrT6oiIDsGZr8ysyE8P3lwoo+fX+833G435OdycPgH+Mjc/AxkOhQi23SQ4vtnDEV3KI6ByVQfA9f7itP5W/NfiYGg73Pe284AyUlQODge8F9//rP2YlANVq82HWPb7r6HFNe3N6gNzvTViktickLnQPhBgkPkRmMil3ZHdltXmN5xWQZqXrD1hD4wZ8y6epKIQoiS06prVPMV2JA4n5X2JFzHgKXkTinNilqOYGvaY/EqIDVJRAw5GUwFgkadqXVD8zX9+vKCksus+IW+B2cqgl6fxQoBq6YPnRv78IggD89N5Fgke/zL185KPr7xN74eiwO/dsx53r5vGbN/LDjYDHl/9/7xzwhsrrn9PdFhkodLtAkpfzyizb89nu/xXSntAuaKgBHmvZM1vySSLMyOD5/V8O/3owj3T5LqSdoxqeY16TAA3U/QwE5v2tehskutAPq4AxBUp3Y2kEyp5wJ1GHrEC+xMeLHAZybN7XF0iboz+hoo9knIuUPDxkZYe0sYKWHxRjSlCYaz/NIHQFkkQ/b9c0DahK2R7AQtpg+2MLuY6TFx3pOkw1r88ET3tfcL++fwsYdz+WpbfLXpDn//9t4hoQFjKIsOwSGRehTw9c/4PO88uj/TbdtgpaLWZeo0ZWfvMwDikDw9dKEmFFDE4Xj9ELBmIp2yF9h6Z6djUWDbMCbLnqBtTILXbUOtC+UoLAL1/VpnAdJjTpIpkIE6l+KQbXN7ZzA0p+o3bFvH/b4iO5tf8xnm661h6ID2jXFeofh0LoRDb9vwTrE5+3VCsuTJ1BnPL4pOOTWE3IJA0Nvqz5uzZ/fbFSaDrIenBRBBVx9lgOw1RVXv1DFhGaB+3HZ9R0LC00mRU8PaBEvlfCK3vWFwAAwln+gjMKDaMNYbhmSsklETkMV2FJqxEDm2BkvDC6VA7+YkNeJIHyZTgCCniuRU8EkUsE6CKlVsG7uM3333HQTiCAgn3PBk1B/vQzIVHVta5ITWVrRtw/ny5M+rz8IAz9HQe4PqitPphFoX1FoPRUTM/Ryacjn/vu7U76JGT17tF4egQFzADaD+g7sdpMxs1D+rDqkRhxOEPgCddXyBV4Y88Uqz0hDfvjuoHQZ4+GxU3WYLfzA50wTLTgxgCpMTYAOjrxCQHc1PCpPhSDeaPW9ZB0wp5byzuHkwOC2ek1aYV2BGUpi49ouzmYx+9/vjFW7r8xLYXWGglAQOY0swCZgGF2Utigwln4IxGTM5scrWV6pdq2HrXLDbIOPY5Yl17qstgGQ8nwCUE3Ba/B4oSiP7323rWAW4LR1od3T9CSVnLJVzGDln9Lh0Z3nKdsb5VPCHT8z0e1NCJiShnM6UytqusCZYh6DWAdgCirGubKsKWWcgGSUVJMkoecFAYgfAIWakb2VCKimhlBMTWbP9kdiAqczAExOv7smSgcdxQgfGKUxeRmdgMeOgqOJ6ZS0CyoTk7Gs2Cw0CARIHm/d5Nq8VuLFRYWB6v9/RR5/nE3SwqpFE8bNzZgtR5XJNmGhPl+LGRQ/V8F/Zy7/BQogHUbtz1vlhEcV633B9f4/tgNaaG9KM3pw6O2eMJKTY7YnVth6sla4H5UxO4vNpn3/+MgeZny4vvPfcYPPZfXzFPAilFcJGxMxQ0N4HlW+wXLFiZlmgSra6nH3A3B++KiGdwwY4VJ+gyWmXrZJhswrZNhO8gmeEDbYB0YyWDWmDMyDBB3XzxINDnClMeDw5RRcck8VoyICBNshU0Q0QUZLxiEAx5l1preF2u3EGMeVZUbzfCdVb75vb6X32YQyK80Ylr3Uqw8ezgsgUMpWwadit81wzDxHf73FD31yA/7QqKLNA8p/5HrgxP16L+f/+MlvfPz1sJCECT9CIiIhizTxpi/fzZB78IQBMKPz+849p24TwTVvniZKFDTLITIyOwT4e/s7napyXlSBzChuwz7EIzCU/MswWhIg1C53DAz6vBtvw2WXSqAd6IyVgEbBTpR3s6RrMAnfg/hghqRDlFpmzy+zuOtxaMgSC01JQ85gFgJJ9LxvtEyvnFBPNRZAsQagMeLgj+z1K+MB291We4rYnHUMpOTzjj/d6z5Q+yp/Jh+fxn3qJFwwPhxNgxlwGdoe2dfV7u8/kRlJ1FC0N1ERxGFr22SD6oD1xV1VHzuzkBaN3WDqQdh3OZZ990Ym4MRCORdmPFbVmh105+1tiB+n6fkUujXINXozMTsq1axgCXQ3wzhlnvRi0pyBEy0yuU6Yu0c+fv5Bm2xM6nifjjtt9hYjg9fUZZmCna6H/DYRIXAeMxcH7ekVdKp6enlHrguenF8B8zQv3SvfEJqV9/pHJb/cZVgXAJEVzwhgZycgAyCSWW12J5XY7LxCrSEkhm2GrFefTgroUlJIR5d7h80WtKXQISlomCZYKKciQmHyu9xsELAynVAEUrGvDurY5VxYaV7kQcqyq6G1gva9zBCCMWvWxj7Y1f6/N8YeY1Q12Xz/NOWJTfY9DgVoKgkljznP55wI2uXe1fK17wp/zDlmNnWJegPnn0dT++l0EFLOdLG5chYaNWajN98EDBvgw46zTeJUnSZribjSEPjD2obIQL25pdwrw3Omrkws419GAGaE5tm9acUV3WFTwFAEDi+7SZN3xAG+0gSOFKCwgNLvTjU4d/+oieLn6nFnySkCIF/L4pmM/3+Ruy4N18SoeDiLGIgklZYyckaQgNAsUdXbgqJtAR9ZHn1o+BQOCDDMKzJ1rQioZ6SQY4w7VFaKKrIL3rmTm8wr1ug7UpQI4o1YXa/QKVTzvnBlkFUlY7yvu252OSAS5LkhmTPYM6F1gllFKB2EiQC0LUq6zUkWNLlZ0omMVjv2xQkFBRQip4OOJSCQgKchyIxDngD6TJ52F3uTBS0DwbA7Z8/nEhpx/l93w2/wfX3kSlfvHynCKAFHENXsYtM7vjcrh7C6F2ztW2jApivf7sN+Xb3j7fZd8cKzHv8nHX5hhspB9DDQlYWsN93WDm1qMwcJKKXD4BpMHsdAOiepnDITyT62VAr1gEnG73YjdH5xPi/sdXciP4fvxJ/swsQeVB5iTYMxnHe8lU6R3cQYTlAhMDdFJ7Oh9g0hBkgJNBUMECVxzFCFUJKFmjyi7rL11tNR9BgTIpbp5cJYkeGAmcEYrFk2WmpwkZkCcec8giGa42A4TTsmgyUit7/comBXP54KUEwkjBiutvZMFCR5j55InNDS6UWbRKfWqYQq2Iy8VyKGz8uFJfCuJ+oWi+wwWjnb+W0f8pZ88zgYefBMiGP7GK/b48awCovvNiv/Hjx/X2/FaD3vow/7Z96ftfwJq99Vlfn3mUSR5fPtuVwxc1HPvyyGRct9Cf4LdVn14HWePd9hf+C33TwbAw68IUHg+Ia4bGo1hz7iWJrEE2I0C2OVNbgNMzLu6K++V0T4P49HNPMCKzp3bXvWnSHct3qEqSDJgSYlSMJvD9Snp3D8sVAlkePfQ6doxrz/uW9y9uA8fbWE8I8yAj8nmIWn9X8709/X1kEsfvxSPfuHr/fMxW9uLeSYkdIgEgMc6QtE/WH3/nvjZkQRpJkH+zOP0okZxTJiOsVsSwQg/7fYgCoMh80HUBX1EzpnsuQ7ZW9cNyRluo2hUC2MIdTiX+vs5M7WTWPQxXAhYsCwLck4o3hW6XW9zrkzycBIl+qT7fUUpBd999+rQwT6vK3gETidKbQy/H9vmBdMLxa5PpxPGABV94AXcEfuEXU6upZir3hyOStvR3WdlqUiSUEqCCOccxegPRmdRo6XmMa7PQjrJSqAOAPFkStE7H3oSQje1DZgYBgz1TIbC3lYmLBY+vGPbVtzvd9R68iaJQlKm3icEXVmgbq2jbR29jQiRsCxEYPW+j+IE2RETqjFZds1tQvJFFE0ZTdRMNBcJV4V33gP6L1/9icK5qCHXfe/G2uZxfj2e+vj6XTNTTAB2ljtJZa/IRJkl+cMSgYF9yew0qmH492GxGIrHvEAuL8ydHAFQVJ8ZUUWAlf14PDlj9OYVtd3AiADIQaM8YBDkfOH5YWcFYkZD+A1M91TYnOXGMboMqiskBU0zDTG1KXwzqKFvd6ARjmc26CAkIaWTV7qCgtE4aB8K3ynBrPj1cwh2jIaAKEaHxfoKdmDu0NHQrv9A8wpNMUUpFZtrTtX8CUgJp7ECIiiXZ5gtMF1wvf6IbbvBhiJB8XopgGRkGTARXM6FFRO7A3aCWUXNUQF1R+tYWh0blppx/uETSiGZw6ltPutEyt3UO1KuCA0QGBx+0KlvkpQVy5TRoFMnIGeBnKsPaaaZvK73O0KjJwmDv2EZsAxR6iDMGGc4Y1PQo0pCKgWC3fHP3DjtyRV9W8xDRZcEM/iOFaf0SD4n9/XcFLHeVN8OvYbj/33rlbMP/No+RRGdqx0XrC78e4ALzcMdg75ILv+Zkz8Gq9x74sFhSooxgG3ruF7/wQHPWpGz65sNPtkgLYDvwZQZvANGwchaYbahd8FFzsg54/n5gloz/vH3z66JtHfHqPOl89xMmzt5rygFhCmubVazAZ9W3v8tCTCydt6vb3j7+ScwsefxWVmP2TTS96dccXt/Q2sdn777hJwT1vUK1Q1d39G2jvW+oeSMTy/VyU84c1Jrglnb15EIcqJtDI0VFml8hqB4oSAlVFlQnBxDRJg8GebxjwWkkhPOpwrThm1t0OHJra9TDogDoUM1n/S8ZWSAEyHLZ/JzWHxYu21e0Z1rKKgS/leDxl96/dJuiPP0wW1ezH/y+2Vu4IeE6av9s5/bP6dof9w/MXN1nH38Vufrq0QPNvfdh5P69msy+7F4tJ8nv3cy/yG5nwo7ZXvydUwA4nw/RteSIeHDsBMVAJjzryVVABXDHLqHMrXXYjAdiTIJW6d/S1L8TEnBH12TJAdG3kR4X0nm8KGA4sV5qrtSL+oCOPt7RATJk7OcK4J0Jp5Z2BNCDSnSHrFNfP74XHdYc0C0IyDZ76EgQgSbwR0O+wf4Vhr9m572r7x+2Z+oB6rDOzf0Qzoh4l8VQARTYD5m79T2mfkIkyKxIDNomp2KlBLUDPf7HSkJckoPs1simMQL67pxhrRkbNtwAgGumdNSHZWBWXjUrePt7erzL4Scp7x3/rd1m9/Bgii79XWMSUBhxvnYnJ9Qcsbr6xOu1xve3la8f3nD/b5650fw/PyMUjOu1xtKKfj06RmnpUBHc7kgYL1TIHapJ0CSi8s2/P3Hv/n37OiNJEyY3j9/BonPwpeRqY6xdkaWglLPUAW+fPmMkgv++P33GKNh224Yeiexy9rQW8fTeUHI5USxo9aEWgCzgdbAuEcEt2t3lA47tEkUy1JwOZ9mfDFGh3aDapk2gbDGdxbi1NC3hpEGXl8W5JLRtzvY4YGzMtssEIo/031Eh39YF4xZTW+jeOJ+Pp2mjmXA0VWNBb9KptytbeyEB9tk8CB4wSPEmwGP7WCTcCxIVWKthK7Vb339vmTKNxpvSgyougEOm532GxNuNpInGkie7SOEQ46250AFHXC+Q2Z1DAzl8Hs7OKJDlygOfQw4AoolxmRoBgbxHq+8itm8ht1wcthOTAELJ/fY/o/Qb1bphMxIAfeY2eKBIcdkcH5MHcyoTi5hAUtwqukwdxHU6+C8Ud8weiMbXO+z/WsSSQYr38XYiauesKmQUW+HwSUsxalwocS4ZhpOQhkzVFjRIYwgqq67eyD3/0Jjmklua264TZVI9yi1m6dk8/7FtXUfkM1zSJUBKLtVZP4hHGF0wkMVCci+PS2w9sczOyYZHhCKcBA6gcJ+B9YrfwD7oP8MHsPlCAIieKxABtzuK/z5/P1jRX4vFMg8jhyPLzJZZ44LLbobMQw+hjzg24/r8dv/ChduH35vhwjb5vsY+imCXkZ1Z0mKbkUfw6uNAOYcBvdzEBn0HoPjFPwNrSpep2vLzXN6DOyOA6gWe2C/s3N7iZNURAI619W8KnFxXA40b+sdMUyf8359iEFUeDewK0bvqIUDrK1lUK9HoqaAUhPqUn0P8bky7qe2j0h06KPDmTHZBcNGJSC6QDRLe1cU0WWTkJ/Y13cM+rbQQ/PK/gRMS5zPgZxgrqPH5Cj2h3hF2+Z9/8Z6kn8SDv4Gp2Qf//ZbHFnsyziNb57FrxwoPsdFg+O+ftgK3/rQvFO/tH8OP3tI1OwhkYrdNZ/+h6W/r4r421fh7ofr/Pr3Nv1X7EnZE6WZaOHgio/2LGwy37dTSvl3mT2egjGZCn3GYC6MNZWRoKIzMGdXK/k9IoqD3xHIARa99kQwCgI+oyEZHBHYb5x4hDYT7rD5UfQ0wQ5P2/eQzffiQLz3+ECOydfRvsz9Mx/YPjsoH9fD4e/zaB9jouN3/xfun4DzfczP928X/3+/MtuH8qPLFB87zsnSPY15HWUiWhlLUS/KYddDHXrt990CmTG8yMmiY28dMdah6npVEYgLZic+IJgp50naY2awERBoFiVSNqTuxFUeREeRY/ioSil5wsLa1rDeV9QlszvmHbJgOlxqRc6BWHI/3BtgLJQlt+Ok8N48KfVESQcgCh0dbVudUjxGShhnqlG7VdwHiZCu3ESw1IImht4L1Pb5Vhhhb5Jj7MVtvgAxKqEwiDJ+6537lbP/fOYskC4zOZ4SQOpjOMLEh8QPh/g7EmQAfXTvKovPO/rvUvg1t3uzyHRchR4Lye6DmAzLfNaRjMf+DdH5j6MOEV9FkvTRS0RMEeikSPR+7+u3z0yFYXI4XPLFHBdQJuxoTIcQRjml7OwuDDR1dM6N4NAS9gqaRUkhpblheCTlgmEPD5gGGg8c8yLgIvGF4TPcnNua1UyH2YURGIB240YTIOXFfVaFqHKew6tZfmkOw9E5FjNtjLi7kOzaHAkIatS+AgbCgcQpnX0D8mYN9PbuzomOaIz7vJczex/rrCgaCJ0iE42gbwPb7R3L5QU5X5BFWA00bvAFnfHn1iE5I5eC8+kZEEHf7sQGF1aS1nuDyMApbeiDtMijnyCp4nR+Rq4Lal6QhMQVkhZIPkMSYZynZSHTTr1g6MD7+xssJ5yWJwaxg9XBkgpSOrnz5bOMlvSsnie2nyXgfgaoVyhGx55MqRKBmhxi6cZ7pwg2Dwo9UTEAOUNyQnZGNtV97aoMKAagbpD8YeihCorDRgbEO4xy9MY0NmoITR+RhGVZsK4rrHWUTFz4hF3I4YN+LgGB2PMcOsQxOtQ8CZmJ2a95X/nw14+G41jNjr0k/k+fpfDgJJcFporr9Y4a4q59oI/honyRSBBSG1CInBLyunLAthYYbsg5Tcx+nh3guM9OUWwsSjAZ4fmofgxeAzoSSWv8iZcC2hGV621teL/e8fxEHanRXLpgCCRl5GweHyqyKJYEaF8x4BIPqaDkC2SpyLIgLwW5BHSB35XRKaygibsAACAASURBVBthFENNuXDvJCZp6k4/OxU8hEWomnemqhgCztEVFnewEQxKRmsDX96uU1w6CBUi6Q7HQyjMmMO+asSOC8RV5IFaywwCt9axro3dz4Mt/MV19fg4/mtehyA2ILb/3OX9V335PImvj/mV4z12rXztzf1DXybAYa8Cxys5Fv4mFP2haGfYo34/ngCcN8JXx6OxHB7w9bl/xL/LggpcDt9q6gR939o/ALT5uUble4fKhFYeK/XJ47PHxE20w6xzjjq5L0yHYpEkQA2q/39717IkyXJUj0dEZlX3zNwH924QBlqIDWww2KFvF2ttwIwPQGbCBGZg6Hmnu6syMyKcxXGPiKzqGc0M2pEuze3uqnxEZkT4249n8gJ7F1BFLYwcTdOpRT5coSPfhz2LMBIuAq95qtX3D+jEYIKgKWymgwyOBnehdUNqSLHceRVu3rfVf/ta5SHxw+t1mPM7+lMt4WZEcR0lQ8Fjo3fFPFN53jafW8su4l8AjCe0N6IAPBUNrXDf0/aKOSGTdJ4DsX5DbUgc09PTEwC1SKJlW5hinxJ7ka3rxlo7iyjNE1PE0sT+Tet6pWxJaUC4dahxACgQkz9bzli3zRBbTy2dmmPiMSkmnE4zVIHvvvsG5/MZ8ylZ5GxiWnuMJqsSgcZyxeX5PWqt+DrQWN+2BcEcheuasW0XBNNznpcF27bh6fkCEcXjwwxoQV4X5EIQhxAJSia6cA6CIImDFZmRGGYkCB4eAuqpYDqxRjJb+xTohppXXFa2+QlhgpouNVtqZEqsOxQrdckVEOtXeDpF1Frwhz8QNj6dTiglY8srovD5xZ73cl0BrCjbvifoSMEMqpzZ5HnLjCBFk3fF+m7NUzJ9gz2/HJGR8mmydiS5sZYgwTKK0NZOu6eErlPAG3TDIqbB6r3sn+lZn2NTfWaaX7COzYMPZNjoNDS1yY7+IfYMQd3jobvROqJS83LeKpTumVbLczYlakydaCeJKco6JFDJyAxdAaO3vV2i3ZMLiuckIBAKcu/hRZNr7jVT9Unz892/01FxpAnGnofscRSPe+TtCqgi5yu84DMEg8asexjtWswgrEIvgI1fQmj3QmWxI7HDerSFkZWIKBMQK6oUIDFMnq2Oq82pcuyiVCoT+DPAIpPV7hliY6y0Z8wQsWa4KSaUWhFqZdg/puYl9OJlb1rc5LDPifAaFAwOL27GlCkqLHFO8LQKKg+ucHYvhpY9QpPbRvTCuL1CAS/wVBP4hENbCWdbtkYeSt4bLWJ1QsHW91ir4J6wbhC58lDbc4spCLhZgwSnMOE3eniGfbobyEdJhh9ie9UViftrhBDY4yX3/liuuPcifDFlD5Y9a4XJtaM7QTaU4p5Ctk7wWhMd94oSiGPo690GJuNkwOe+p2HyNQp2Re4QZEsdyDkipj5e5xUsti3wwIL4HrTIKNeEPytTMmKIKFhZM1W9pYMpV3BlVtu/YGtTjVH1iBP6fdvfoV3BlUZPQvcmu47YNTLSXXqRwhwRuadL2FxVa5Lo8Mbjvz6gga8PS2q/4vT2g/6NfuCLPluvLtXRp3hjP9uPft3XRM/rH/jV9OYnvmAP3Yx9VCTEFVBHSNyfJ7vzOQ6mQcv9kJvs6td7nVzWjtFyhWcU9C0tw/vqgDyjbG02AQztFECvSzR5Z2vrLko0jOU12sllu7oGBbSnKo4zc7t/uAVCfw8tortfMe6dvts/TbYMYxnlzn60u2fpu9l5zvhcN9e4lQs7tcU1Adx/f0Oftn9uxm1yZqwbcSOaSiiv6Q15eR8bhHv02/vsGQJNMbW/tfGN/ThbrUrtctfRAv0zb+pcSmm1PdHAvIgG2FMC+zMxbW6z/qIxbq4ami7WdhI8ohGELTlKsbpUBSAO787jQmBvrHkG5tOJRlfyaOgY6eBzlswenJ6Cv1yvgMCMKTNWxGvv6dxYDNXQm9yXOdmalt08Ee4/QNp7Z2aOR+DQ9BwCGsUwAQJk3/NVh3duuksICMECCEJdis/lJQzStoXAgK9EGkgXZcagv9jIvf6rQZfLsKZNJ/AoLmvTWE/lGS6+Hjwd3kHCOj/qQZb93pb+mdkW3jCc+oivwa6fNAeKatMp7vbRJ9JnNe0lUyuWK+sGCh+u5/0PRooz2ko0Kg9D+juGaksBhHvLQtzf1gAfFAwNl5yByAhTw9rwfeU80BlGsCZwtnAAWNRA22J25g1U9hcyRbnrAQEIM0QrRDO8maF7WYgSqGwyBha1M3/3DLHGsKWsKLVgXQnpOs2c+K14nyQgCj3pEt9AVfH8+//meUqUlIfTGWl6izi/RdFAmOZCL9CyeGfoiIoJSGdgOgFpguSFhlTmPBGBpaIio9SCsiq0AAETJkPrS9MDFMAsFyKAXdg4N8apRVAeIzCngpNezKKfUAFsZUNKE9LpEUGv0LIYU1OcJ0ZsopinURSnlHCez1gKoT+LpU4GtcJ7M6m0KJAM7rwwtLxtFSUzKgcI9Rbh+pvnCTMArQFVYgu3s2mwKY1aOlMohTm/tbCuTtXgdgEIGa53MC+F0PpQhSR6X8PQu0Y8NUx2Wx3zNGO20Pm6rbheF0DA5rW2wafJvIVunBQrtIyhFdo6M/F7bA7wUNTS5fYC/f9Go+Ig7acHkFOMqKXg+fnFOsKveHx8xMPDmcenxALSUcCbN/S6rHjzpuJ8rliWBSLANBMdLE4nxDTBgWlUC7uwa201O9Vq0lo6mke3AfQoltUKhWhjYJodwmzXVSxLxtPTBbUq5jnh3VdnJAkIGpHzinW5QqsgrwKEhBhS68KeHVY4W+SoCgJmTOGEa65sSlkVKVao0gsegrVT0AVSHYaV+fXZQGokTuQfDX4aTcDGwPqFUtm3jYiqFBpFgTWzIDfEnubkUdEQ0ZSVdVmxLCv7uFQFHrh2t0z+NoXE46yhtAg90/M0mbPIqNke9ktbfOMivBVMo2D8RKF1p2W+dt4r9/zkvXBrUP2pyc0A9/bvte4xIgWXr3fPORg2hr7nSKL9umhGjjsgqnojVmvdETwdps/BWAfGNHVPzbEMgSGdl55ttXH6+JL5uqxpKW5nqD+fwPcAxxjA2kIJ3YECCDRynddSqNNDG2Kb1NUchubAiKeGfsY08gBga+vRVa0oCSFMqDryEyKzUsfzREY/r6fxj0uVq6RHsfzNNUXezw/xfo3f/j3uIR0/HO92c0oDe5BXv78lT91yU/K9ASp4Cp9a2tQ8Tw0AQCtBJmgISANI8jUTYySYUi4IleskDuAUo4MviGDdNlxaJEAaciDXI7Csa+M50zRhniao1Xkuy2IOR2aZ1EmbbHzJGc/Pz9g21g1/9dU7TPNsSn7c9SQU2xfX69LGGGMGrkz9c+CENJ/xNk5QrXh8fMQ0JUSr11rXjU18RRrY17pckXPGNJ+BCPzmf/7LskYKvF5nPj1gPj3i5eUZ67oYQErF+/cvCEEMwCLhzdszggZUDViWC0sQqqUAWp0f694ISESjRFEL10KUMwAgr1YPpYWAQ6ZrSAXePs7MJrFm809PF8QYcX54gGACAmvJ2fuUu/J0mrBtGU/vX6grptAc/dn0D/a6BFLsdb7u/KYNQN5TS8X14sZkbqB0VenATIl9sVz++DphrbWDdvh2ckfBuGMMuVcteGBOftfvpon6rGr3eanvP3O43+3Tj9BnGVPqSku7gcA9QA2xKBjTCrDNOTD5VgNlf6pbyc60Oj6eP5o0wRy6VY9uXdpXALyUDc0qNe0aLlRo43WPWvMniaPMGAOvPUTPUaiBK2RAPH3IGKQJNJGyGzkAK2BjEaGnGKryWrx2MbFRoShkvhMXXEiREJOWEtWO83QF7xkSAkJiDizUOzmfzLOvvI4KqjWcVROIIRrMuQgKNtuEnjvKBRYloiC3eqcKmu7sh1pRM2FHmbIozKc1wxLbFakV9PO9MITf4eJniPWIqBCNTVkE3Ea39aacgwDzgBiohDdqHQWQex+ijbMvN65FeusrEAS9AzyNlpKtA3y2+hVbyCIBRQA1plNqbetSxsv3XdEMtvFDf+/zNCGfznjz5o05JXpDaqZWKFIzprwHQl/aMCbhdS8xWeQshO5l8wHdWVXjmHT/tXRP9+u6pA6H8jq5EE4ftmPo1dTWe0RVsS70+HlzwAKxXPDQ0gL9+XKhcD8/PNrwe41Hc86Mw1OAEUJTwu50lsGDbusJCnvPtuYttE8EQcX1SuCUECzyOdyslgLUgFQpeFk2KHTwCEFTalEsy0qlbxKsSx7mweuknN8wQkTD3fkNWNw/8MX+zm1dyfA+bmZ3F4Gysz31quW/V3fAlOb5y6VAPAfHFUJL/3DeVUrZea5hHj20yJtHk3UYmvOWvn7HdTdGaD9G2q/eZUkzOvZH7qO0/fxx3E2xv9Vrb43B/SYZftX915+xf9qNP3Sc23PKe/LdfcjAE/t/2F1OAeul5MovI6eeItkP8uwN6UPazYm0GumeuuzrS9t1XHGKcWp1Ed07bKmDrjMERVCm4HmtsPMQGO90sKvhFrv7BJcNtUId+KlpENp7R7Z35EhgLld8f9wYIzfzsn/te/3nNtVPdn+NGgQgDmbhr22IapCRDdLqA/unj0eHYwFf8/uR4uZvsf1MEKCHhwdzKhofKt24rmYgtJRNu9g07e8XWvmGmjJLYyTF2PiGz5ffa/aaiLa9+KyqRPNrTVPFM4O4luaZiKgx9uuqqjXKtfUjATGgyU6WcVQslXIlxYjS6tcpHxxJTgQGcFAwTTPm08mMyNh7aZnR56iA27pwflWxLOx1xPcSEacECcC61YaOqoiQQINk24r3yW7O/pwzJADxanvV0iYZXGK2Va0FEZE6IBh9c72bKM9ANiTceZpQCg0Sd6iZModlWVBypn5p74/viz2eSgVSVEQBe0Gq8+3enmWaEg3uwlpq1h0N/AQma5WyXJscchlUmoHuusC4NqhTeFpur21rmVkhIgbujVrR0jp9Qn19Crz2uUdnWyDH9UTZy9oewf40+kwAChfmncnuLX4Fi0kBoKIGBWpPhVLbMBI8Xao2kC1/KDhjwVDoaszP8eUVGMKbCljfiparrsru065wQyw6hsaoOW7W2IRQWxoc1Ppj8Ol4OShq2dibymwYSLKFM9NoidqQ3Jy/cqGsYFNiYDIvR96ucH9erRu0rmDhT0V8fICkhPnxDMHZmhBW8y4y17w1UIvE8Y/t3RLuc5reIiZGg9jULuD55Znw9YGFidM8IQQ2ZCt5QckrSrU0Oytaj4j0H5aMooKiEbP11ClbgeaCDHqj0qyABCgC8nYBtitOKWGKEcW8l3M6ISAiYmYe9RTMSPXC1IAoyWqabr0MHvIPrOkqvKYzGCqglgEvESkETJFFl7wOhW0phEgVZd+jUjZsK6MYHnXMFsWrkcxQQiQSY86oeSNTjYQlbQKw2vKTMXy834jBEI5SjEjTbBCprC/KFh3wSEIp3kA1Wx1RbkLEFnnL+XXDTUDEo76HXqOuRO4OaYppV5B2wvnmmq7QL9e15dhHA2WAsEHtqVRoqHh+eYYC+OrtI9gkj/n19DABy5LhPT9eLk/mHXskgyxb8zJ7vnPvp2VjtT4c1SDy4b1Mwmh83MBRNyU1IKbZ8u5X5Lxhy/Tinc8znMVYfMwaJgtO57OhE9J4TB4BUsHLyxXXpwu++eYdpjnit+sLxhSF4E2HRaB1Q9WMjEwnjQ2xmheypfA1ZdgXtBXej/Oqtk+8D5T6HDKl0j2QXlS8teaIvOu6EEwkTZO9JkWKFjUzco+xAA1gpyu7PT2MH0i7P2R0gH1obe7p44KsQyp3RbKv3Y+nQY3G0k2K3KtRtdtzX9k/9oF2i/Ej++dGcX91bCOJjfPGOLB6TToGPe14ny7nDUQh3iNw2EPtlqyrUDNs3JjrTlKxjJEdQ4Y3ATZTqcnpNJ3tII43GDx5qRs8FdbrcZqBgN64l0rZhIIVWtemgLnhHBCHjBYiyBJVUMzxwYJ3GreA13TB9lPvT9YBKHz/+MN1x+7wmdwDt8Dr2aSpYfxdPA0MzZGr7biwM1h9urqjYDRQg//y2fvnljySFI33BmvU7X3lnI9TAfX6Vld4mYHTU+w4BkasR+WUUOMeJeA7c+Wb8mFKqSnRtRrvtmfz6werH143b88QMU1vrCzAjKkQrIaGNd0iNB4AtLoorVx3z5cXnOYJbx4fUMB5SdMECdYXMxMtuJSCy/WKt+/e4XQ+Y54npBjw9EQUV4/QBQFKyA0YLAbg5ek9rpcrIBXzPOPxzRu+vx9+wLYteP/0glwARbCmxcUMIkGaZmgt2NYVeWPfpmlOmOepg4UooGBj4FQVp4cHPkcAEJj5ANBB+cP7Z0CAb7/9yrIrnplynuksRq1YF/bM+urdAzxaDSi2vEGV9U5zSkgh4rqulrkxQyQiGcDY+XxiK5zlSid+YoSq9fy0dUcdmvIn194oesuF2WYAtHBMIUQiDWoH+dDJtwYdlW7MBikGhsG5C6e5lWm07DmzW/xXokz2dTTyYDHLiqmSex30j9HnGVO2uYdM6y7EtKcfcTyREL6BTAuAoTQQ5cdrDkQqewt6o7dBYJitTObiEOTDN818MyvZ6020pf+AzEt77VKtBG1QFtrY5WpHJwRaeoOEnq9KPSiwV5YBcXRlRRBkImPXLiBijIgys+kalClrygiX1r4RQ5wIkFErNF8BJQqfAtBC5R21oBQ2wGvw99WZc0WMwOnhgfmsMGPLcBPIgBmpgoXXI9g/PoYElcJaKSs6JmRs5bmScJreIRYy3UnYfFGVJZQ1bwyQTa78RERjrEkSIhhFUrAvApv5ueLj7pSAgAjR0JhqC7cWmHFcWZS5rXBwDoRECOmmWFPo+1oI1oxNizVwVkANNECUxnpMBo5i8OK8V6+F0cK/mzc0kGG5/8XEM9eiumf3PnVJFdhWQoV79IjCjZCu0SBb3Viq1SBcp9RqkfZ7jutWfTuIWEFs6kK5a7mvbGT/XDB6ZO7pFcGtinVZsFyvFApbbh6lGNi/LMbIeGutDTgjGrxTrdWafHurAe91oa2fSLUGuASvMZhnG2IpQ60ahOuhGbCu2Lny5A4Wh6nfR6hUC1IinPi2mdImNBTWZW3GlCuXaZ4xRc5J3rpyCgDruuLywtYDMSY2q9SCIBNimJneKkLjz8ZiCRHkkVYL5c/mCkpT0IZ30J6dBzZFTlVRvfs7FNXq0La1w8lSseXx0ZpS9hotMcNVdjVTruyN9ZqvrpZRJ8Xw8uz4W/vdFcVXr3X7gfh/7u/dolvjd6+9q0FpHlO58LH1/9r+2V3a3778ET3Xx673d7vjF+PY9pG8EQTB94Xq7ecA1GsZgNE5VStlaU+9jbbEhnfkPMzr89T4o/Nsu16vw6Lc6/djknY/VkHUWHsuoePL71nFaxs948McHeJIZmqgMbyXtnVl+weDw2F42834cQPqjjdLnz8RCzbaymzz2t9HN+CHu0j7zcWQT1SfV+3r3Os3Przmmhu56VWv7Z9hpB/cQyPVSuS7vVNOMKUJmrSl7o5RaJc9dURjG9ZJq8NRGs1sTbKHoO6PSadHSomyQBmJ8b6cPXWL14wxYlJLMTW9gKlslMe1bIz4bGxIvuXMGikRpIl8zcHJ5nkyA9LS5dUyIoJazTZahGSyNGZX/tmzks/oRtfpPDcZEQIb6TLatOLy8oy80clYS8Xz0zNqrZinCNWCy+UZy8LUtYeHR0MJZIuAbfV9zxqspXbDRKxUYTbAjLJlqyuL7Z29PL9YL0HOwbYsjGSFE/l3qZgio2bZUvJeLqutXZNBmVkjvEdFAXsVcn44oR7dzoakHKxfYc2ZrVHUQcQEJXPflC23HlLFsiFCiJAkvdFx248dCKIFD8DWIZ5J4WtVJoHWiJQMwn2MsjXG2aNpoRspo7TtkkCkZat8jjX16cZUU3K9cLs2JjMyhVboBwE5k6cGCKDschwkoSCjFiv4Y7Ya6A3ah867MDdlyHtIKZoXygvXvKlutWZ8tTI1jEwN3BR5obFlyCgqzPkUq6mgRethVVNOCg0whACEBMSJRpNqW+AiiW9CVjjwQZQAiQGoDi1BI0RkRQV7R8WUiIhWFigq6rZBiqCaN60W6wNSM6puKLgiBvYQqGoRgZkQnPP5AVveiBZTBdCAQmg7g86EFU8CQS1tDgneY0trpvGQjCGpQiViTu8gegHwjGQWe7Yw8Lqyt9Z0stdj/5uDx7U6sqEII2nuMWgRg8iUC1EBvNmeKWJsIUQjfFszSi4I05nzYMw7QM04AoVwEDN6E7QwxUotRFVsabH2RBCmCCkGAuhrvG6MmOUNgCJUN3yCwY2G5im1rTF444NB7t9sQmWe9bpumE9dSaWnMFm+9N6Y6oY81xPTEmtTfAXO4IgOmRK9jR0y9MNGlba924Xn6HHEbh/uRXitimW54np5adGNdduYzhMj5hQJL65MHfN0D8+vL9kUylKRJiqBnpIxz4Sf9cJUB1twVdmHM/Yo2aVUcjKA4CqrKzCbfe1RIQq2WgtSFMxzhOpEj2nNlv45est5s6/PD/QWlsJ00DSZQ0RxvSz43W9/jzdv3+Lh8RHbupGjaUSQicqjzSN5Y4J7yhtIyhDZ53eEt20z4dZz5/w2d+YwqqzTYh+zimzvhYad57SjZQSEmDBPyeYLZmhpU2jZnsB76DgYhxtUg+NrUEJHJasZUz45Jsh8pY0pGe2cQenckfbPeNV+n9EMaNfQm5PHn24cWg8k+Fjas9yfo7pXf3fCV+5GMPCA2+foCpPLTwn7K4/OE7gMJFdsCKc9M8NfmcCjtl1JCOi7ut+j84jB4BiGJ6AxIZ7ZYfVF2NVOMfLlY3NFqIH2DCn5lP8RioKqmT0mB2NDW8oSVZJqz9CeVZR1qVro7GzriIqXIrCRqBtV8NT91PaPDM83viPFENlsL2swpNxuU21rXoboL3/WdnF3zKobQTtDinds6ewyvvfx9369O6NL+uxid77ujrltk1FqxbKsmObZ+t5xDaY0waPgzSBWbYYUm8eagt9qV9w4dYTaanKsK/bkIdpknRuRMcWm1G4bDZ5g1xWrt2MPpsAmvMYb1NAlS94gosib1Svlgm3dsG10VMbA1i8hBGTrUzVPvfFvrcX6XDETRU6M2tbCDIl5ZuQi50weUz3Vzow9jYhxQtYNy7IwQyElrOuGZV0BqVhjREwLSql4fnpBSgFvHk9YN56zLBtqVZxPEwSsp1blfaqyttGzVToCOKMpj2+JoJy3zdBmBWKNp9+/f8b1csXX334LgWBdiHwXZEatG2pdkaaEeZqBLSOXipfnJ6gSZIMLPWCeJkwhMRWxVEojEcSuQLXsBlU2pd+2zVLHrc9qMUAQS1WspWdFlOr8n87X05zaOqch1mUQAw2uA/U1CDDgEW0vCgRbJmx9R+/sfJTRTWsDJOyD6WnE6g4r3wfN6fLpxpR8LB1CBti+v/rLv8A//P3f3VxcmyeoBdT6LqcQQPeAjd427+4s6F4ob8R661kfxzgail32etTAc7MHxfrmmapDxI6Qn0059WM8h9Zqlcy7AVPcRm+T/+2pDrVmRkckNhVQh/dAb3G25x+KgWu21ASzuGOLa5rQpAdAm/HY01NcEHOxVZRarF7IDUnpKWEtXxTtnVcdkdgU3oi5lo0enAIaFzW3ruFqRbrF5jBN3vww0Ehrc4om+LoSwPe+T4MZhI32zHdP4YPNQ1VlpEKEgSR0n8JYZxVCsvQSTzUZ723TPoxh0EssTOzzPhzn82/j4RLzpOfu4fAmg//8L/+KX/3HfwIATqcT/vZv/wbn0wnBofZrhfc0cG9LG48Jcd8zOq6Fm3XdPYYB33zzDb77/nt8nMY9L/2/n+KFMQb1q1/9Oy4vL8b4GYGiM8E8QLGnHnrKS6unGnpR0AkiXSk0tMMYE84PD/juz767G1fbjyPZfLZItowxHqDX7pkS5sq7Kv7ww+9wvVyad1Sdwd7xRrFGj6aIKFrBvAgI1rJsLFSOFgkGlaQYI7766mvz2HYlur1/X183HOsu2nBH/XgRwfsffsD79z806P62nm5SHxrvgAOZjIqh8dQQ2przN8H6roA//9GPMM/z3RjaBT5xzK/96R/+8pe/xM9//vP2yU9/+o/48Y9//KlXxaAZ3/xuw2z/HfbA3VGv0f26eE25/eC5r93g9rzhHd6mf3UecTuK4di7se4FZzeE7fllNDZu94+gJ7r2/cNHubmOn697Q6GPpCvVMty0jye2o7vcc0OmG6Fd0ZE2xFbfNcz1pylE/TlfWwP7z8b3OXxzd8J9dsJ+lY2/3s797Qg+Nub70/3Dl5dn/Oxn/4Tn52cAwPfff4e//slPGkCSO+pcLnu7g1t9zQ1ABXpt260R5/M9fN79W0MU1L5wWdFRifm8Y1Shy7X9Q3aDFvBaG1fSxdZBbOl43VHi6YZjxIL8z3peGnJIS0uMyfQYQall9+xMUa/IeWv657ZtKDkT+EfcSQaLmAlS8qgY69MUVoYRQ+9taNExl2O3rFQCa8eoX9emO3tq+/W6oJRC8A0xI0ut3t0cLTEGa5ys5ty05vQN/I3vyrNlRp3Jj/HIcHdieuuOLi+awQPZzWfL+umXfV0GBX+H2nVC7WjA7hC+1YV8vfZx+rIzRGk7w9fa3fYVMT0k4N9+8Qv8+te/Ga//QWbyycbUQQcddNBBBx100EEHHXTQ/zf6mDH1x9yeBx100EEHHXTQQQcddNBBB71ChzF10EEHHXTQQQcddNBBBx30BfTRNL+DDjrooIMOOuiggw466KCDXqcjMnXQQQcddNBBBx100EEHHfQFdBhTBx100EEHHXTQQQcddNBBX0CHMXXQQQcddNBBBx100EEHHfQFdBhTBx100EEHHXTQQQcddNBBX0CHMXXQQQcddNBBBx100EEHHfQFdBhTBx100EEHBWK30gAAABFJREFUHXTQQQcddNBBX0D/C9UmOQ1SBcYqAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "We can also see that the alpha channel for this visualization is rather different from what is produced by other alpha channel optimization strategies." + ], + "metadata": { + "id": "ZFFsYCR2PfE2" + } + }, + { + "cell_type": "code", + "source": [ + "opt.images.show(composite_alpha_only(neuron_img), figsize=(4, 4))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "HLRL4zhETRMP", + "outputId": "5b16abae-c5e8-48d3-c176-14a9bbac2a16" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydSW8kSXK2LXJlZjJJVvUyi4ARIECALvqhuugn6iI1ZnqrKpK5b/Ed+D3ON63MPTyT7Jk5tAEEyVh8teU1c3OPpm1b+51+p9/pn496/+gG/E6/0+8U0+/C+Tv9Tv+k9Ltw/k6/0z8p/S6cv9Pv9E9Kvwvn7/Q7/ZPSoHTzv/7rv9rj8Wjr9drMzPr9vrVta/v93nq9ng0GA+v1etbv9+1wONh2u7Xj8Win08n2+73tdjs7Ho9GGdvt1nq9nvV6Pfvmm2/s9vY21XVzc2P9ft+22621bWsPDw82GAxsuVza6XSywWBgTdNY0zSpDW3bpvJ5j3vr9dpOp5O1bZt+9/t96/f7dnNzY6PRyPb7vR0Oh/T/crm03W6X6rm7u7PRaGTj8Ti9OxgM7O7uzgaDgY1GIzsej/b582dr29bG47Edj0dbLpepXsal3+/bcDi0wWBw1pfj8ZjacHNzk9o0Go1sMBjYzc2NDQYDe35+tt1udzbmTdPYZrNJ43s8Hm2/39vpdEr9GI/HZmZpDHR8mMPJZGK3t7f2+fNn+/nnn+3jx4/2zTff2OFwsMPhYLe3tzaZTOzh4cGm06n1+33r9Xp2OBzsdDpZr9ezpmnsdDql+ez3+2l+l8vlC7P9/37THsrfbDZpfMbjsc1mMzudTnY6nez5+dmenp7SeJmZtW1rm80m8Rtz2+u92hr+3m63djqd0jjsdrv0/Ol0stVqZfv93pbLpTVNY8PhMPEV48P/+/0+8Z2ZpfbT1uFwaP1+P83BeDy2wWCQ2gYfUeZ6vba2be2///u/m4uFk0YgEDrB0RIMA8hzep0J4W86S8O5p5Ogg6wDz//aFtpIu/lRAfUTqH07HA5n/UWJIATaj9xYoZh6vV5SGofD4SuhGgxehx3mUiWnY3c8Hs/6rG1pmiYxPGOo88aY628dG1VutF374+ukP9pf2t40TVLeOg9+rH37/Rjrs9TPfZSZzqu+x/96jTo8IVDK0zpOSjq3Oo7KW/woX6KAtAz6pGXkqCicqpWOx6NtNptwQKh0NBrZer1O2onBQWAPh0Nq2NPTky0WC/vw4YNNJhPbbrdJ08O8aCMzSxptvV5b0zQ2mUxSG9FoOnn7/T4xHYOFZjaz1BasNe+jLQeDgU2nU7u5uTlTAPSZcaENCGHTNDYajex0OtlisbDNZmNfvnyx0Whk8/ncPn78aPf393Y4HJKG3e/36b6iADOz1Wplx+PRJpOJTafTsznp9/s2m83Ss9vt1larVdLo2l5lAsrY7XYJ4WDBmKv9fm/D4TBZcDNLc4s1YH5ns5n1ej27ublJ1vx0Op0pFq9ItB8gEN5TRTsej1ObTqdTagPtxhohKChByme++Z+y6TO/uX88HpOigRgbz0+MsyoMLCk8aGapTYfDIfFV0zTJ8l8lnDlLyQB6TUvjtAP6rlpGBls7rEJIoxlQ6kJLqwbu9Xo2HA5TWd4C8wwDxnUsKe8p82CJgDf6Q9koAG8h0LJqHYDBTBR1KROiPJhED9OwrMr4jA+CgSJlnjabTTj23sIpRGUesfLadsZMy+O54XCYFCRIBeZkHPQd5lr7wfipQlGLTN95z1tSVexY9YiXaaMKrZIiA4Wv3hKqRVV4r1aZ+eNdr4ByVBRONDiTjQAsl8vE7Oo78LyaexUQZU6EGE2vDMQ9hM7MklafzWbpGYSt1+vZ/f190oKDwSAxOZM7HA5tt9vZ58+fk5DBeOqT4hf2+31brVa22Wzsw4cPZ9dp0+fPn1NbsQzH49Gen5+tbdvkR2Phvv/++1TfeDxOlvB4PCa/dzQa2f39/RkCOR6Pqf7VamW73S4hDdDFd999Z4fDwZ6enhJDbbdb+/nnn63f79vd3V0SItCGWjt8KRTA09NT8rlns5nd39/bZDKx4XCYLD5zRj8nk0nyrRAUrJQKG/M8mUzOEBnCio/qeWKz2SRfE2FYLpepLygwMztTNmrFFBkwRvA2QqdGBgUMj8NTCJkaGMijtuPxmBQMSkyV3FXC6c2zagM14XQCAVLtwYB4qEU5dJaG6jNoPbRx0zQJOmrgSSfAD5jCjO12a5vNJk3kcDgM28Qke83IYKOEgDq0FeaiPSgkhID+4GsDrUejUbrufRCE22tkVWgI7vF4PIN8wFyCYNonxg2GRDA9QjB7he3b7fYs8Hd7e5uUrf5gvWBI2qwwO+IRhBlSRe9hMMKDUCmfQaAAfZ9ytQ7mnt/0V3+rkCq/qExgMLw117ajCL1ljagonDSMiKkOIoIBrddr+/Lly1kUEwYAX+NbMXlN06SoIdpks9mcMd54PE6Tbma2WCzOJn6326VnGZDtdpuiw6vV6isfAQUCU6tVhLnG43Hy99DUqh0RTrMXrTscDlNkFT8Vq4Z/7H2dzWZj8/nc7u/vbblcpqi4TizWCouJf71YLL5SZFjt/X5vq9XKVquV/fTTT6l9ylRoc3UH5vO5PTw8pOd5h7pRVIvFwvb7vf3nf/6n3d7engWENHhDXxSSKhzEx0Rwb25u0vgiCJvN5izyPplM7O7uLrVpMpmkcYVXD4dDivav1+ukUFBq8JUqDvqm80P7+T9y7xQSwy/qk5tZss70y/u0OaqynFSOv4YgqIbQpY3dbnemVbyf4/0MP4GqCJQYKG2DWhqF2AwA8FYDPhEz6aDruwiYRnpRHkBCJkPLYUzoO3VRN8EWNKmZfRXF1bHbbrfJYmM9NLrr/UhdJkH5gDg0Aqp+rSIUymDMVejoB/d8gIg+KqIBUejc6pgpJNW5V9eDcVR3h/4y7+pT6nz4MfLj5ZVJjl+V/5RXmTP19z3/0ibaGUWRlaqEU9dlNDiDMLDGphrMQ0PfUPXzNFCg4XnvRygMxnJSFpaaNmLB0bKPj4+pHwgKTAvMoA1YU6KQtI/38Sk/fPiQIoUe5u92O1sul0kAp9Op3d3dpX6Mx2O7ubmx7XZrz8/PdnNzY/P5PI0PqAUf6/Pnz7Zarez+/t7G43GyGFhQfCgNNNGPXq935t8Bcz0a6PV6tt1uk9Vgbvh9d3dnNzc39vDwkNDAcrm06XRqZq+CyfOj0SghDBVa4PzNzc0Z5COyyhidTqfUB/X38Ofp0+l0OuNBM0t8SLvUOnJfYaUqF7NX5aiBSCyw8rb3OXG9GH9VhNom+K8koEXhBLYp9lYBUkfZM6e3hN6v8xaYv5lE1fTqo0RwicHTBV71jX1IX/0Dr22BsbQDaKc+mI8yqg+LdgfSI+QIqUZACZ6MRqMEIxEyD6Gm02l6j3YrUoCJcCm8QoSRNKJIHcyFug9cVyVGwEqRAmUrAvARUsZLFTvjbWbJH1f/UeEmdemSiUc6IBHeUSWlSgOlrvEEz6s53mGuc0hQx9ujQUV6GqfwMQalonA+Pj6mStUZpnFoHxhKsyd04BS60jkmmfdU8NWaEsBRBvJQ2ENLMj406qZtwW9jcljGQCgfHx/P1lOBtfQNq8EEIVy3t7dnY4WVwr85Ho82Ho/t4eEhBW3u7u5sPp+nif3y5Ys9Pz+fKbmmaewPf/iD9ft9++WXX5IfBmph8nu9nt3e3p4xHllHj4+PZ9YM6wiTaAYUdWvGDpaKjCn10fGFgdtYBGD9ZDI5E0yzF2SwWCzO1p49BNUAi2YlMacgtLZtk/IiS0uDNAiv9u/x8THxgQbYzF7hKWhMhY9glAYa9T7IQI2SN2q6BOcRZbVw6nKJt3bep0Treq2mmsPDC/U/vCVlYrAUfm1N/SL1byiP6CVCpAPJwKBdEU6sGc8oZPE+lJmdpfUp8yk01/U8hEMtBNpTfSldWGci1Xog8Cg3hXOeaRgDBATmpL26nqnZWmo5GWvNbtL73r9SXqBOVajMEcEk9R/VumjdKrheEBS9eB5V3x3FrEpCjYaOtyp/jzC81VT3Sv1y9ae9QfFyElFROLEWTLiGxtWS+pC8Qhe0jDK+BhgUk9NBsxefAE0chfdTB/7/xKtfiobTyVmv18laKYPzo1DTQ3YQAhp+tVqZ2QvURNgU1qlWVF8KS6ZCrRYGza8MydhvNhvb7/cJXhIR1uUTAkfKPFi0h4eHxFgwIe8Br5Vh1Tei7cwHfVSLq+9yXecC5qQs4gE6d5Sryxa73S7B/d1ul4QIpcQc4woRtfaWDx71Kw+0idiD+qKq1Gm3GisVML1OO7QeVXqaVFGiztxaZXCFh94kwyR6Xxus2gpty6Bqx1VQKZd3Ik2m76vvqv6vCosmX3vrolpPM3SYJBQEgRueQTj1fQQFX0j9Um2jWlKYjygxdSrEQ3jpF+9yDe2NtQZiAmeBb9pmtX78T5t17BAYrCzzinJjKUnnMLJoigJU4aoF1PlVBay+syIU+Iu+UIYqCcZFITFxAsZQfVKPACNB9H/7ZylXf3tLnKPOaK3XQgw4v5XB8Q819E0jlXFUOIFJ3PfLEjClMjDlwsgq/LynyznqgKsGU+ui/jQWDMbR99W3hAl4FoGdzWbJzyMqC1xVjbzf75PlZqlkOp3aeDxObYL4ezKZWL/fT1k0GqBRa4I10ogr84jywZ/c7/fJ3waGY0lpI+OAJYOpD4eD3d3d2WQysdlsdqbU1N3xyEfjB8qwCJTyis6/IjEVMPgBHtXILjyIkiLohxIifqJlaWQ3snLeoqp75+G7CqG6P2pcIioKpycVNL3mLYtqPe7r5Hj8DvnolTYcq8h97rHA67WarhmaWYI3TL5qZIIF+J2UARMzsBqAYCKBrWptgXHcp726fIESwEKxbgkzqv93Op1SYMrMzmC0JidoIEThuTI3FlTHyrsm9A2hJqLMD1vINIqrENfHByD+1ziB8pFnaAJAXqj1edqpS3jafq/kUPxcUyFXV0TdIo8glVeVX7WviiyjMUYhXG05PUWOrEJIGFshjcJVBk47oxZTrSX3faSPjmKdV6vVV/CW++oP4Yvh76jw6p5NysHCAINoq/opwLnJZJJgnTKlt6iTySRNsmYREcWFGUEUMNfxeEwRYq4RXf7rX/+aIrcIoyrG7XZ7BgvVens0w9yiuBDGyWSSEAC+4u3tbRJK5koVlPclKbcknPQPfiHghVXTZ3Uu6adGdbGQT09PZ3m1WEaQEoaD8aPdrMFq5FV50/uNPh6icoAxU5cGnixRUTgZaCCiLieoSafj/rf6FQiKJgDob8phwhlQLIpGVs0sDS4behloDbMrIwDDYHz+b9uXBW0S6glgDIfDtLmYQby/v0+WQwNI+FoazEFDoygQciiyKDq+/j516Qbjtm2T0Cpzqo9K3Zrby2I6FoKcWR8UQ5jv7+9tPp8nS4ki0Ui1zjVz5S2lPusthv+fttJGtZTqi6K8aBN+OHzw8ePHs0CPIgnQB/ysCgtlwtIJgTMNPKqx8ZZfr6l75CPvV1tOGIpGaMMghEQ1hTIcA6lCiUD2+32bTqfJCpxOp8T4rN8hrCrMx+PxzOeC8CV2u91XWS6k8cHowBkiqHoqA+t5Hz58sNlslk42+Oabb1ImDwxMHWhb1YzT6fRs0lAYfoxgRmVsHzTQdTr1p9gJQvn4ZGTl4O/qDhmFgMDd5XKZrDtMhCA+PDzYN998k+ZS508REWhFXQHanhNKHQv65Puu/rIm2qsLglVv25d1ZzYlYEE15xgBbpomJdpo7ESFiueA1xpPiaCqtlsVJEZOXT6PJD1Vw1ptmEY3ETwgrBdKGBNrxJoi7xMAwR+DiRA6H9FTBjF7te5YHd24rfBsOp0mDej9OU0Kx3JOJpP0o0EJtQIKF9GyEWlgQZlQlQ9loDCwCAqFdKEfK/3x48eU4E9fVFBIMVSB7/Ve0/lI9EaIGCfqBsWsVqsE32FCvxFaA1HMnVdG+tuTv67jpTzlFSPzQOSYuUU4zF5QD8oRBabCCuLQTRsaLFTe02CQFy6daw0OqWz44FiOOpdS1FR7Z1oFQLWd+hQqAOq3KKTEF1MB8JPll2RUMNRqmVlaF9OBAALphKk/rAwA83OuDxpZtTbWWP+PYJv6RzqW6oeo76bRcSxFv99P67QoJuom0vvDDz+cjR9CzFoi0FwjzCrUIAqUpwonlhhh1HlQflCrp+OhVCugHonp/Ji9+nxYVe57twiEgPLXLXXegoHM6JPnOZ3bnPuhllSf9bGYksWEqiynb4zCCQYKi6pQQC0C/spkMkk+mvo4t7e3CS55xqZjbfu6h1LXo/R5Ok8gSTUU5Wk2ENbqcDjYfD63m5ubBGf9jg7aQUBJLWlkIZQ0Gsi46HqcrmnqODIe1KXrfL1eLwWDvvvuu2Rtzczu7u7OxgGFiFUEYlEu0NfsNdBF33ETaAtxABIfvGJiTHz0VZmzxGc8q1bI7Hz5QmMKtFHvq5JXv286nSZYj1sF1Kd9urynO7EYO0Vu8GDEhxFfRC5LjqphrRaiuNvsPItE/SY0kS7CY43wNZlghEHrAVagIRl8BkhD2/pO0zRJy3towcAC0QaDgS0WC1uv1ynYM5/PU7I6CgWfgf5rupufFD9e+rciDcZMtaouS0UQEatLvWh4YJtmL6mFNrO0Fs0Yal8IGKEIgPO9Xi+dhTSbzZJlVWbVd+mvCqe/V+Ivb3n8mPrx8rEQfnyiBPdZ5uI0DwKMGsTyGzngI03I0M0PfjnFC2c0Dqqoc1QlnB5ncw1Ny2CgbdGsGgjSQVLYBeOjiTSAw0DpICjMYvA8hNIlERVMtm2p33I6nezh4cG+++67ZDFhQvWPzc53T1A+k6eDrz4RSEOzUlA0tF0tDnUqpGJ8NWCBwmvbNiXA42PSv9PpdHZ0JoeIwXjL5dI+ffp0Fs1FCT0/P6cDzgiQnU4vG60Za9ruUYR3FyIIqNTle/GMZ2zNu8bfVfShvjDzhcXnVAyWmm5vb22/39vz8/OZy0IgCMRF36jXzzukUFjjFGbn6Z1vtpy+EBqG+dfJ0EVp1Ua+Qeor+kRwXdjX7VMMtGo0tdIKh9BYGn0jI4aJQ/NjLdmviHLRpAQzO4uY+vHw0E0hml8T889pgIDr2kZVAKqA+Ju1wKZp0gkAusWPUxeGw2HaUwozs5eUrCdVfgS4ULhEwwmoaLRWUYQq8RJPRf/ru76cCCLC8Op6oAR1/FQ4MQyq2DVmoYLP3MFXGuVXpapWUe9Fc+wDqjkqCiedVx+T3zAvjUkFDl5PagNC6KBqgGW/39t8Pk8BIbMXX4nNxBpQ0mME0Waa1KxHgajioL2qSRmQP//5z/bhw4ezk++UyUhHUwjoLacykU6WZyCdPPwYDURBXsn4HRvAK4744B7LNnoKH31lSaHffzmES6Ov//qv/5rq49whLKWHZLoGutvtbD6fpzHLCZuOQ42F9GPqy9O6tH0qEPCL2etyoFqywWBgDw8PttlsUoAIC0rQCAvK0aMIOv6qpkpqQNS7UAijGicNQl1tOREOhWk+qMFz2nFgjg+YaJCDAdW1SzNLASNglvq2qrFhVLJHOBmAwdKEAAYHKAPd39/bn/70p680IPXRB6y3WglvOT0j5bQqQQbK8j6VF27q0nFQuIYSUgvPuyrMlKNLIcPhMJ2urrtfEGRdZuFdDcSpwHphjMYjupcbQ0/eCqmyUohp9npqgV7XIIxaSuAr9zTVT+MDKmxqHPhbo8ae1E/2KKNEncLJb9VMGv1SIWUCfaaMhvfZMqXCyiD1+/0UGEJzE4XDAZ/P5ympvG1b++677xKzoPVoM/CFJQMCUQwOB1oDXzVTRiGaRim55iG6Zx4mRX8jqMBFz7DKxB4mqZCrxWTsFX6Z2Vk6GuNClFaZU3+IorOZW9vMD2OKAla/Ut0bLVeRhRekEkUK0I+VKn9VMrqZHx8dOp1ez3e6u7tL47Jer229Xif47+eZY1zZssdmBRVUjdyqQtQ5VRftTbDW/6hg8owyJ5aTAdWgkF9AV8jHe3pkB0ymHWRgyYCZTqd2Op3O8ktVq7K+Sdt0mQCFoBPpBUEHVdd5fcQw0uxeM2o5fuJz4+8jgUwmGl3HWuvUtqFY2fmPUtR36DPjpW3zAqpZXl6AIgvpUVcXeSvqhTtnRbmmc6XBIv8+gR+N/jMGenqFIgflZwRRkYwuiUVISJV7F3UKJxPiC9R7PuTPD066n1ztIBAW62V2vocT4YNhYIoPHz5Y0zRneZQKS5rmZeH9xx9/TIONImB7U7//8ikGYBwQj34qpMTPYlJVa2twyuzr0Hqk5XNC6SOB6lOV5kRzjs3OD0nGRyICDbTWQFLTvPpGs9nM/vjHP9pisbDVavXVcaZEsylf0ZGOl8YcSlawRJHS0fHx19WCtm1rd3d3SWjUH2Ss6DcCdXd3l8ZELTEW8+HhwdbrdTpylTVW9Sk1LuMtoyoGH7vw1CmcUfQssqj6jgqfZ0zvDKsgq5CrBmzbrw+fxvoqdFBIhT8KjNN8ULXe2maFoyUBKa1vRv/nNGjEsNF73PeWVgVB/XgzO1MUinYIcLGkoJYTIWYuCKQpfG2aJu1WgSF1bkv90Xs1gun5z9/zfqbCRJSX7kJRNwN3SlP/UOJmr7uYtH74h+BkxPs6N76PXlFHwqvUKZxm58fLq2lGODT7hIFhELCMaBMisQiOfhxJhUQzc8wsrTHpbhWsgpnZ7e2tnU6ndJxlv99PEcnJZGLz+fyrYJUKK4ES+q0+lIbpmSQdaK/AvGXwljZiOh1TX5cXvshy+LJ9Wz2TIYAwpt/F0zRNOnyMA69vb2/TfOoyGe1SF8VDy0tJ+6X9icY3ehfkAOyMhKnX66VcYvqgm+yJ4urOFQSeBBqUP7uXODhdlRt1Moe6VFdSUlXrnOrH+QFiMHI/+JEquOqreIsQWVfeo7Nmr1lKmk6lDKI+q8JYmNL/qEKJ2ua1tNeYPO+phDD8GEfX/TVfRwTvgGr6vl9r1airrgVTJkLW6/VS0EOXyRQZaaKIRyER1Y5d1zOlsVKl4a9pOyFFcAig2euBaQgb5Smqgh9wrzRIFrVZZeBqy0lhTJISloVjKEejURKAfr+fEsexXKwnmVk6Rl/T5Jh0Ds2iw6pdsCB0mp0FQK22bdMhWOze54Q3deZVcagigEl1wqgT5aCTnGMW9c/UgtRAOV+WJxUqhfG0xytR9bV4T4VP64H56C+CS94zChEhpW4dp6ifEYztGosc9PWuRu66h/nMH3EDstsQKJ4hrQ/BYakEN4mjeEBeHD3KJgXqRjbU//XGp2sMqtP3+O0jZ+pgR36m/1ETr0dfqDbW5yjHa3zViNo2bxHRgNoGyvUWrUuAaoTLl3mJlc3V41FKTRs0OKHv+d/qS2q0UeGkZnBFyAZm7EIHEXX5prlyItcg6h/98MbFuwnKf8pHqsBUsfloMHUor6rc+CAhv98Ma+mIZ2yu+WgeDQSP60I5EUMyhfTEc+8LaV1ek3p/kHdInldooYykgwdRNu3kmh5RgcWAiXU8IliukCU3ASXGzBECE/VD6/QwVplDy9Lr/O8DIaAfFdYIEkZM+RbyCqaLdN55H2WvAsL4aQCJedW1bIXG3KPv8DdHxqCgzM6TZYDJasxU6bxJOD3D6bXong6M+jKa4eKFJWfiIyvjLapaarW83sp74cyVGfW9djD9e7lyc8zm3/Moxbc3Kjvqkw8gRUEVhcL89ghIM120L1E/L4Wxl1BOuWpbfLtUASvq8nENn5IK32pgaTwep+QYPYDMl63t0DmsCWqZVQon6XV6UBI+i26dUtJAQ7//sll4uVzaeDxOkVU9fVszfIiamZ0nIehgEyHmf9qgflCu49pWz6xKCHv0XjTQCnm0/Ij8+7WQOmJCX6bvm7Yb5qEMhE6Vp46fKjYvhHrYVRST8Jb0UgH1fS6RV8geYfCj67P416R2cjQNucectUQGkW6vu7u7s59//vksvREUSbKHZrf1+/0zgaYNJapaSvEaPNLwGnzIOe36nreoMIAOpPdjIs2sTniE5SP458vIabqud3JBi1xbo7H0Y6PP5Mhbhy7fzLfXt9tbyBJS8ha21MZLYXsJIVz6nLecyg9mrymR6rJpjMIfDwNva2oey0q61uzdKN9uLxulMaoSTl1s1sIQHt3ehPaA0MwkWXu/jsVeIr06IB62RoOLJqRtugPBa2x+q0+V0876f1SOTn5XkCka0+geY/IeFMHN3DioxdeAnD91gbZpmqMX5KieWoEr3e8irwC9FVW+0TbBX5qOSJSWNXE2KjTNy3IJfifr+M/Pz+m4F3xT7wK07WuqpTdEOarKEIocWR0IdayBq9HaIY0CTuj7lBsxeNSBnFZXa1sSkC4hiKxLVH/UlohqrWJXm2rvXWrR+T+KlHu0wz3fX2+ZI8QV3SuNrS+761quvuieXvP/q5tk9nUyg5ml9XtOfFSXih8fiFOE8ibhhGiUJgBwnd8sjRyPR3t8fExnwZISRqOxbn7JRMPzwAsNQvgDjH1EVK2ch2CQ/p+LJKI80HQqVN4C+Lp91swllFN80d+lMi7x8+iDKsgo6qqW1itarvu61IfVTKS3Wkhte84yR66Vnz81HCqs+IPs2un1esnfnEwm6cQEPXpV4yakO6pv6cfJ81WOOoXTM4hnHm9VPdFIf6ZL07zuD9SdFfzWidWBVuHLCUIXVM0JXAl+5QYzsprvCVdzwuqfiXysGkWRg7yRVaopN2oj8838R+PUVV5k8aJ25iyl74fnW4yCbpzW+lFiRGT1eZ9pxvjwTCkmUKKqz87TsNykaLRPG2xmSctwfH/btklYWetEk7A2ZPb6xa35fH42qV44PZWEymtbL5y6sz2yrLwfHbmi99+DamEqFK0tRoIdlRtZUH1fmau0duktLmWqBemCtDmKnvUQOWpzVI7OPf3FT9Sc2N1ul3xJ7Rc8joUke4ptiBxCrn6qunIoqzfn1urE0TE9qEoHSj8O431JZWYYnAASHYnWLHPwJWpnTV8oxzMK17RObw0juJezmBEj6b1a4fMMGDF2bly8laqpM3ctUjHCo4IAACAASURBVG6ltuas+KUKrAaF1DyTe0eVDW6V2fnRm2ZfQ3dd/zSzM8upSRnRCZG51QxPVSch6ECzFtnv91M2DsK2XC7T3kwVVI3Q0mG2K+nOfN0pwmfE/eAoRPIDTYdLTBdpW5/CpZrSM5OW74Mn11ANbI38phzkjN7tgnlKyjjekuqY+/b4NqJwzV6XJWrWf9+LvIX2Y+d9Tm0zfzdNc7Y1jmdx1dhZ1TRNynRj3ydxFV2C8XMXZW0pVQeEgLc+3cs72Rom1nC0z53lRw94VotJh7qYMAdja6+pBfVZRBHDe+aOrIXSW3zNWuvaxei5cmotaQ4+lvz5CFHkxqhEJeVVo9j8sxrN98LiUYlmRqnS0p1WrEwAb0lNbds2Hd/qy4DeLJxoCdWE2+02aRBlbIWimP3pdJoO7fI5tETAODrEzJKw+k8+6CC/12T7Iz78MzVM75n30vaU3omE6FJYWEsRg+pvtTDeP/XrnDnEoe//lhRB2kiQVRFrTEN5XQ2J2eueT90vyvv6LRk9dJqxAEHk8gY8XXRurR9clXySD3yaHYOh+Fw76H08no0WtiNt7euJKMdwvo+5vkdl+XIjQa2lLqF+iwLybfbPlaxqDkZ7Banr174MX7b+XEuX9k/76V21nPXU4A1IDiuoW8wIcqqgqduDy6b7PPVbsSWqDgjpQKjTjNBxhH8UTdXgD2uefJfECydahTN/IB0sMzvzY2so56tdS+pjKZS/xoK+R5uu7V9JkahFiWCqFzZdNjA7D6K8l1Beomi0rfytSt9bUF3zxG80O0cCCFXbvm6l00PkNMFAo7rUp0i0i6qWUjS4o8KqGRH4jX5J5XR6OQtVc2BV0/oBQ9vo/35SayY45490wdfovt7zQZAIEucSIUp9KE1WjW/orXjuuYhySCISKFU8PmrtlVKXe3ANWshZ+0vGr1SPRw7MJz+cwQS6Y4tZr9dLmULKw7zT6/XSkTwgxtw5t1DnJwBZ70EI6QDBHISQDB4y/LGKfKeDQ6LRJGgXrqn2ze2I6JrsEuVgTNfzSpqTixaM4J9XYj5Qcg2V2h0FqK6lCAJG9dRYwQjq/b2odkzUf4Yf1TqqIWKe9eNa8D98rrEXAkXwPqf0kw+u/BRRFaz1BShcQUjNzNbr9RkMUouo26803Q9LqokLURk5SOUnQp/x/2u5nqIgQq7/3tHnmmpabzmjoEOJfHJ+zrrn/r/UKmk7/XhFPruW4ZMyvPUsCcpvJbRRu7Xukr+HkWia5ixOYna+wYKgJseX9Psvx6vyiY/RaJQMG66ayoSeLh9R1a4UH6DRHEmE83A42Gq1OrOMMKLPGkI4idLqfT9ZPjBEu3JCpgyUE9ocXI1ImdZf823zC9faDu+/Re2KrDL3dWyiNmnb3ovhI1ieQxTMaa3yuwbS5igHc0toyWf9+Pc1jqBrlBpvMXv9ahnn+4IY+Y7MZrNJSyqcWkib/NKkp6pDpRV29nq9s6P8D4eDLRaLlI6npt6fy7Lb7dJn5hFgdaBJndO10KhNfqCVoqBMJHy12lsFJVo6UGgL6VekKCOqqxRAihSIp5yvVSugkUXxlGMgjwj89Ugwatpamtea/nilFpUZWVB4228pU+MC3dzcnG0d47gdfEuWUfTUeLPXZAx//E2Oqj7H4NPq9KNBZErMZrP0iXP8Lh+tYsGWD+f6NSS0iRdabYsf7BzszDFD1MeIPMPpUhDKCo2qJwLoZEQQLypb+5ljbg2e1VJX/7vuq+KIBLAGcfhycs++xdrn3Btfrt5HEEE7utdS+4Vw6vvj8fgsqUC/Cm72upKgJ0LqdfjFn/boqdPnxFJqZ2kUB3bd3t6e5dNqAjFlMEj6+TkS3emoX9zmXbN4TTOCsLlJ9v5f6Vl/z/uQCunb9vXDtpCHTL7NtfWqJeiC8TWCWGMpL6FoTiLfU5n9txJQ36YaxQMq9OjIv6urC5qOh/EBSXJEJkYL1+10OqWjS6i7aZqUOJ+jKp8T88w3D9WXJGWJBrOmqRUrc7M5laMf1LSrf6ad0LYoeQHtopI1zU0qaCEHPVVotT+Rv1aq1/fH3y9BfH0/+ttf6/IJS0IVjU+Xle+Cs28VzFzbu8pmbrGgnhf1OR9f0PV2PbFPE+Jxz1Dgq9XqqxPgfb6yUlXiOwUCZ9EKHDvCx2+BrRztwNeUPb4nrGxmCQqzMEvYmYEtQZMuhu8SxNy9nH+XI9pJW3Obrv1zXIvam4PwXW2oUQKlMhTFdD0bCbHe99+3eQ/LWEsIhR9n3UChz8F/qlhy/vRoNLL5fJ4gqx5kB8Rl3VM/Kcm2tOl0mozY1bAWi+E/G4dWILDDIUdA4NlsZo+Pj7ZcLs8iuwqLsZx8i1MXZH1Gktn7rG3qNX+vy49VygkUFGnDnJ/m0ULkCnhByQl97n4tqV9dssol0rGLoteXUiT0Wlfp2dycquukBih6P5o31vc3m83ZB4+wxPptWbPXxBvdA8rurqthrS68ok2b5iX1js8vjEaj9Mlz0viIXN3e3iaNeX9/n7QNAo917ff7dnd3lw4GY79oDUyLhMtbkBoYl7M6tdA5gnEqeAqPS9A9sq5dpJo+uhe15RpSRuW31p1bUnkvi9mlMEtKMyd4Gknlf51Ln0jil1UGg9ePLmtkF0uqFlkPmGbpsZQl1CmcusYJgw2Hw7PT2jVgpPdns1n6+u90OrUPHz7Yer1OaU6cjE3H/HElfmC7hKfmemQVebZ2Qv09Fe6SQinBwBx0zz1Tc88Lh7fS+lwJDvttgkr02zOuL7dLQfpr11ruaH6UcuWiOBXp1bgmunbvVxr4QUA18qs+ao6qllKAsQgen2pHQCeTSTp0Wi0pWpRGEq3imEyfiEBn0VYeLuTamLMYEQQqWZcuYjz8WlhUltfCufb4uqPgQ621i5RDF0RX8n5a1CctWxlb3/d15wTCl6uCfg1FfVVe4hl+/LNYtwgF+fZiiBBq8shPp5Ntt1tbr9dp2ZEkBJYP9Z2rLadnEISMBAP9MbNkAfWT5hq91AHi+xv8rxlFEZNFu/C9xcpZn+j+pQxQEu6ovMhCeSaM+lNizhqfqksYa6B5JJwlK+eFqmZO/P9dz0YUzbH+7/vg//dzGmV2lYgyCHrudjtr29ev35GuR3yF8jVZvlRH5zonSQMqlMPh0KbTqX377bdnmoAO6YHQ0+k0fdZvOBzaer0+W7Qnv1aP21SrUop86oC+l1+jVBISHdRIy+o4+Paj6EAlRPT8cS6lNvj6/LW3WJ8SxI3qjZSv9tG/p5CupJCu6UtJqHLCq+/kFJMaGjVA/D8YDGy9XqcYih7hAzpk/bNmbs0u+D6nDiLCpN+d8HAOK+sT29XR1jQ/P4Daga5o31sE81KLeEk71D/hvvdZonVeX16pjbWQtbbNUZ0RCii1IUIBfhz0vZISjIStxqJdS10ogWd6vd5ZZFvhsyY3mFlaSsGI5dwHT1XHlOBzEkLGLD8+PiYBY70H39EHhMgkYtllNpulDdWR8Pm0vmiQ9P8aRn4v8ks9kUCxA14FkeNXOKRYlZcPFHT5XtSpCdgRLIyELKfwupglB6tzloD/aaMfp2ijgx/PWn+7hrrcBcZcx8ofzKUW07eVWAzR291u99VHddmCGa1IeLroQ0ZqDc3sLAql76hV1L1vnA/Utq8bTiNYGvk+XcIW+ZQ5je6vXUoeBkVlwHyavxkttfBbGaMEKyNFVTM2EJq9lumjOiOLl7OGXilEz0TtjMrsohxsLcHcaAyid1Vh5spD2ei3ZOB9yvUxmKujteBmBGk6nZ5F5sDSWEOit2QOte1Lxg/XgMF0UI+B0GMwI83uJzgXhYuiuj4l662a2JfnM5p08lBStE+300XMV+trRluedHxyikrbV+P36ft8ol3RQc7l0PlV5a7XKTtnxb2QXGtFo3c830TKVhWs+oq6ikA2HLGDw+FgX758sdVqZQ8PD3Z7e5uSDegrGUIYrhwVhROBQQj1CEsaxnU6OxwOzz6fprtTlAl8grFOUsS4XoNB3i+p8U9ylu4Symlpvecto9n5F6auaUtkXSJtnhsjbVPJV9RrOWHOvesVQTRnUZ90zqM2+DouFdaSJY6UGTzpl858Wzx5tKRIJUJLOSoKJzmCZPoQZWWt8+PHj6kjrBFxbifhZNL52vYlcV6FVbOOvAVQ7RQNYrQwrh32GrB2Emue836I95207bmlCdqXWxvMtY2y/AFnpXZHli4S6lwZMBs/miyi0XUIa8PSgir0SDAjgfco5FJoqvejvnlXLFemCpWfY7PXbDZ12czMHh4eksX18ROQAysVOerMENJlDv0MQ3SqmG+kRm39YqsXJB0k7+PkNLWW5e9dC127tHyuDaW/c22taWNkhS9531NkUaM6SxDXty26F1nBWt/xUiq1I/fcJco6p9x1bnV+dN1TM+xK/mVEVT6nYuXBYGCz2SxZVQI9asLZRsNRmexWQVP4s4K8ddHBiDrEDhgdCPWFtZwcHPYUKYQc6YaASBC9pYi+LaPU1S4NKvwjSLO86Le6JSAHP1cob7NzC6nxAuYu5/8qxCzBW559L9J5xehgCXMbBHS7mI/Smr2csaXHyeqaf0SdlhOm0qUUXbOMhDNaatBlA69JI+sJeV8pBzOid3PXShT5Z9EzOYaIEEG0R7CmfbUW4Vq6xKJFsLPkLqgQRtYlmscSnC/FGmotfS15tKPXfdkoJZRLtKtI++f3MJeo03L2er30KYX7+3szs5RDy8eH2AmuViNqXI5hI+HMQV0GTiO/fkA900SaGMppYy3bP8fnKPxpal3w3JfZRYoI/pHkEQianxP+VQEr+Yh6V5S6BnJzL5rvmrGtHX9tG5FV3y8MEZs5dAM2a5pt+xrlJg4D3GXjSI46N1tjGflhcrCmHqZqkKdLs/rBKA1cJDS1kxH5SW/1f0p+SO2z0XNRGe9tMaFr6okEQueua75Lz3mFWtOWLp7x7Y7KzlnKEtFvDf5RLjKgiQrqwmlQrlRv51IKJx3oAUj+c30+AISv4a2aTqwe4aAmHv/FC1EX/IkszCWwNCdokdXn4CbK8KF2z2RYea27VmB/S6pti58LdU9qBDO3Zu0PzuqCtxESyblJni5FLArJFb7C403zEvAhnsJaP/1qmvMzb9u2tdFolHLMD4dD2q2So6otYx4W6rGXPnGgBF2iMq+1YDnYWnqu5NNE/5eEu1ReDl7nSP2nUr3vTRHE13u+jVyPln8utWCleYlQV66dNVSjeKJ3vFHRstQS+rnzz+s6ZwnKe+qEtT6SSqaQP9io1zv/bkRuAHzUMicIet37m75zURmXQJ5LYDIIQSdHl5o8E+cUkLfeXe39rahrU4GST9yGcnNXA/Fzglmi3Jzr/5dA9JyAEp1VK40vyU6i8XiccmnVwuo7GDKN9OpXx3LU+a2UyMdQ66gR2txEM5lM7LWw4xKBymn+WusUMZhPjMgtAXVZE9XKlyiU96YuGOmfvXSdrlSn0rWIIeKBS4RT56qkSFQOUM5kAEU/vnwzO4vS6spFiTq/MqbHL6ivof/nllC0g7nBKuVm1gpg7aTmLFhUZvScJvpHfar5LGENVPtHWNASdUE8KIeYupSOX3KpbRO/a92HXDk5yKkoTzOk9OQ8FJZmianSa9uXL1zv9/tkOYlZEMXNUZGbSBrwVlPhWteAliCIPqMUTeYlAuotQo1Qlu77fvoJyWndS+gfCW1ryKMCrkXPmdXP4SXw81oLWUuR4owsI1CV8fDui1/31OSEtm3TqXxdSKQonPP53JrmNbJKdJbG6F5COnSpRoueKf0fabhrqSZaySBrnXpyt1qLXFJ4jjSYpr//Wcm3t4tKz5UEtcS03jr/1mMWCSN54exC4Rk98lKtq+5a0d0oXW0vCifHbPjFdl1s9Zqy5EeVBCDSiqUBK/3fBRd9gKlWoBBUlJFfCqgJbpT8q/dmtMjalxK+u0iVVBc8v1Qwc/cvQRPvhTwUwvsAn99d1TRNSmdUlMmzuq+THHMMm1f6norCuVwubTgc2t3d3Znm2O12Z5lBXYNTgjg0MBcoit6ppRroWmOFuQ4sQVmpP6KTyeT8s1hCcpFzvnIX0S8sg/pXPlii132GkFn98pI+z++Se/LePnskoMw5Y8F4bjYbW61WZ6d78JzZqxEjqrtcLu1wONh6vb5+s7XZy8CSoItJjw7jiiKXtVSasEt8kujdnKav0bJ+wkm2KEVpu9p8TX+8xS+9k7PIPtlcl0NqlWIO1pYQkX8up7xrKOcT1pZRQlH6dw3agn84IpZE9whhqjXVpTdNoI+oUziPx6M9PT2dfXOQ3SrsVVPN0kXRxNb4ndClGrJL6LVur/l9G1nH9XTJWuF7UFeAKxpL3dF/rQXVnSlRXV0KIgeFuyiymtdax0vrpW790UwgfE2ETpcNfRt1xxbQVnN2PRWFUw/24ggS3Tpjdv6lJD8BbxGe3+q93LvX+CteM76FLmUadQeiskoWtJQkos/m/o/cgS60oMqwhi4dTxXgnJKotfBd7UEg6RfbIfU5D/vbtk1LKbwDBM5R5zonAaHxeGzT6TQxBj8Ibs4i5jp6rY/wFmEuQdxryvfR6re2Ud+v9ZdzAS0voBqUeGtbfKAkErxayJyr8xqqNQZdY+stpl7zrpzZ63E+mjkGqaUlaou8cJZQjjr3c+LItu3LVqloT6aHgl2M0jVxv6XFzZFClijtTv+OdhW8R0Aix/Qly/be4xC1KfqfOY18v5JPXyMYXc/l7uX4TMv1f5fKyrUPw0R9RF5L7yOcWE8ze1u0FseVvWqcAYTkc26QNqDkaL8HFL0GfkbkI3FmX6fn+T7khCRiircIqI+IRs/kXIj3GOtcnfyOBFTrK20u/60oOmHRz18tkisJDM/qKYSaSafCS1n8sIsFl7C0I8WsQzjX6/WZidejGfBFaZxZ/MFSnvedrrWatX5DDUWToIPqgx3+XZ0MbYu3FpdskI5gtbfcXoGYxTvttY81flRJkKO6edb32yu1yO/S90ttqW1z6X7O/yz1Nwd3ozHWpSkf9VZ/1Asrh07zP+ujOSoKJ1+fZp3GS/p4PD7D4X5gooHo0mDRO+9BufZFdXcphMjXhEkvFU7epd7IH1ZGiwJBtYJYIxhR/V4gPfNz7ZoocA42l/xY39YaaJrrf60PquWoofLPqTHTnPO2bW0ymaST4IG3VwsnjDafz9NhyDRMQ8Ywpc9CqbV6vxX8ibQm1/2PXu9iMKC8Z9hIwGramNPo0f85po2seq1i9OOk/dKMqK4++HnPCVOOasYtgtE51NNlLWvKVlJeHw6HaSkkmnf9G58UecLYYUVzVCWc7N/0GJsGeyGNBiRq/G9pKZWiAVdnPPI/ozbrtYgBL8kKihRCjvSet5gevnUxY85KKryP2lhqXw1sraVIoXQ9U6q3pIxyz0f3vevCtzX18GiN5Cp/+OdQdm/6PifrMODj3W6XjmQwe4G9HL1AxWbnBznVwMTfiqKBRon4SFku6yeyul2M+p796xKyEgyM/o8YD6jFshjkGS5qW0nJdsFOnqkds1porv9foyy7CCvtM8ZYUvFnB9EOhf9t26bE+RxVfY4BK7nf79Np7237En1SeKsNyflQf49sGg83tf6cldT3Sv5Ojda+hNm0jFrG0+tdwunbGAkbOymiuanZHB8hiRzEiwT20rG65N4lZdaUQ181FU8toirzHMzWHSxXW87tdpsK5EgGjmkws7M0JDNLC7GlTwW8t2W5hNSRr9muFUHPLitwTZv0d+3zkdXySsePtabv6RxxUHiUTBH55Ny7tI9vmXfa0rVMU0IKXfXnXLJcGZEy82hLx0wP3+71ejabza4XTv1CtTfbuulaA0IMYGlrkjJ6xPCX+A++XP0d/a3QQsussU4+WBK17Rqm9f/n6qjxiUt+oionJU3BzLVTf2p809J4RnTJuCl/lXjlvawtvO3LVogatSU3bvyMx+PrA0IIHQcU0QA9FlOPKtGJiQIMflAiAX0vq5pz6msJRKDt8v3xyxpvEczSc2oxSskJZq/+UDTppGJeSpTHeLAJgnslZPTe86njoXxTky8c3e+KH1BXLnOs5I744B2KEXl6k3BqJSqcun6T65RCopJmiTRczirVMPQlMNFDEG0Tf+v/fiJKA/sefdD/+SkJp293dF/3GdaS1u+j3Lnna4Wyxs/O/R3VWYvCushbPZ9oQ9kl2Mz/6mPq2HRF9zsDQsPh0GazWdpcbfa6lLLdbr/6HqdCW2WWCArloIe3pKUB8O/rEo8Xpi4/k7Z76Oe1swZXouu1BFzSVDCtU6GTooyacmsOG/OUY3yiiqRulsbRM19U9lsQRkm5REsZubJKyrKkAHTONUeWVFbNNtO6VKhBIJvN5m2J79HnGPjuomoVrVw7p/ciSKsDFQ1OBJty5OuPmLmUoue1Zc7Sl9pxqVXSenPlXOrPRoggalvJt/Vj7rOfuqx3zopE7bnUykZopzTntVRjoaN3FPrWIAFN37t6KeX29jZZTN1YavZiVe/u7lIYvm3btKiKpdSzObFIMI76UNdQThOrw10jyP5d+mF2ntmhyMAzYMnv6OpDr9cLt9z5POX3Iu2Pp5xgcQpjCSFcOwY5uhQp6ByVXCmlWqupyAU+Vl5Wi6goiN9qISljv9/bzz//bPv93v7jP/4jbF/VJwD9wGOmB4NBOlFMD7vqsgIlTVca1C6rldPWJSH1TKATHX2DsdTOiJm6mKvE1O9hAd7jObWYkbvgn722Dv9ejRWK3leBuWYscoqbeyhp7//neBrXRfd7Ho9H2+126ZjMiIrC+fj4mLJG1LfE71gsFsk880VrjdxqJoQmAPuOdmnIa5g+96wyl/pGWEysmZmlbBk/WZdAt1x/roG/b6VrhZ2xAobx6b9/VHtq3vVxAW8Uut6PEBNEfqwP8Ji9ugCn0ynJCfLwv//7v7bdbu0vf/lLkqtSUk7nOqfZ6+fmdc2T694qIpQ10PJS8gOb86FK73e1yVtQfadGGGsYrtY/uqZ//u9rFMh7+tNvhbo1vnfOxenyISNeiKyuF2qv3D2va/oe72PE9MxaUmNzVBTOw+FwJoy6i5tzU7inp8PTYB9ljKCxCpofrC4/5q0T7/Nraybf3780EOF9otx7fqIvTarnsOOudVHtj7ZN6+R/Tl78e6RgvhdFilz5Kie0egSmWfzJCMYG92+73Z4d2IV/ulgsbLvd2vfff2+9Xi8dkMd+6BxV+Zy+U5GFzDGB1y7+utJvBfUiDZoTkqZpvgqa1EKha9pTc13v11jPS/2tWoqsxrV0adu8+3MJ4lAq+cpdyCx637cnx2tmrxtJ1L27+oCvh4eHs08x8Bl6tCd7PPm7ZsK6GL5m8K+lnK+nQS2dJM2FNHvddP5ex3DkIJhe9xsLuqLbuhHco5LaOnNK9reYk1oioEJ2Tc5F8cLRpQR8v/2YUJeWpb6mvs+yIwiTZyaTyZl/yT3kJ0cXfTxXl0d8nqAfoEh75wTSWwTPSDmmuGTgL7mXoxptX2tlL7FAXqHlFEyk+SPl55nWC29uPqJ+1VrAkjWqee8SpHVJHZciuNIceDRJ2V7pR1sWI+oMCIG7tSCtLOd0815uMiMf6u+lmf2E80m2nBB47VZSFrXCVtt3LzSQWu/j8Wg///yztW1r3377rTVNk3bo6zlPOWVQEsyaNv49qCs5H6qxljyXQxORRVbShAPdv6kBU4KoZpaSd7bbbVo758NGVweEWFD1HdaG5YTTa++SFufvay1kjkqBHH/tEgvmyy9BxlKd/tpbfMRS5pO2qeRWqELNWbprLeBb6VqLre/mYHxEUb8jwWfMFMay5KSwVaExbtSbhHOz2dhwOLT9fp+0Fjm13s/UhvuO64TXQtbfikoTFTFq7j6ZUU3TdK5X+fprNXs0npG/2+v17OHh4exdH6Dj7xycats2hfrx65gvmIndSL7+fwQxjn5n0FuURg6y5nxRLCAfKIKen59tt9vZ/f29jcfj1E6EdrVavf1DRljOw+GQjvHTFC7/YV2u08FIy9T6Wfo8f/vy9f8ainyxUmDKW/boftSfnFXy7YjeiajmXgS9oznhd7SlDzQUlVPyYy+lkmJ8C0q6tl059JcjVQys9UdCxvX1em37/T7BWqzm8/Pz9bm16/XaBoNBKoTdKaxpss7JpKpPgKbw12soF6zIPXvppEQWpeZZfz23TlXy7y5pYw5KmX29JOQVScmSY/XZZaL9IUtK4wWqhN+D/Nrhe1Ctr+mfrYHLijbUx+TsJfqj+12J7O/3e/vhhx+SNTWzlJP+P//zP7Zer7PtLAqndkIhBJOfi9iqhYy0dqk+T5cIT0n71gpk7bsRKqihWs2sz0ZCGrUp59tHMC3Km6YOzXDxkO49LOd7QuKaOY/6XwpWRuWU7unxL71eL7kBEMuPJMCv12tr29fvvOaoWjjNXjOGyBTxX/k1O89owbKoYOoRgbWCFz1XM8HXvkdbS89G1umSvtXWpYIZafsSrM4xlJ6dqgRM8/sTtf6cAriE3ls4LzEASrX9YE69PCCMu93OVquVzedzG4/HtlqtbL1eJz6YzWZ2c3Njy+XSdrudLZdL6/V69sc//rGYo9wJa/kwqO7Q8KcgRP6NZyDfsZrIWW7wLoWiJQ2Z8w9rfMQInimDlDRuiUrv5NoSWYna+qO5040KlOvTLfWdaLy85b+0XVE//x7vKKkyUiXll0Pa9mXztEJdhbskuWjKKye/56gonF++fLHxeGzz+fzsCEAftfM/ESkzAwUutTDvTepLRMKpfh/P5FCAL7dk9ZVqlFTufskXra3XK9Foi6Der5kvb8G63Ii/Nw94YcuRdxcgBG+32yWBbNvWHh8f08pG0zRJKBFWzngGBn/69On6j+fi2OY2l3qG9p3yEaycEJe0rv5dgn4livxDD9VKz+fKfWG24wAAIABJREFUyx3DUWqX9+9y9eagq2f8EtTNBTe8QvH1Ru93KZtcfbl59pRDKyUFFD3X9Xw05hHK82v5ai35n88x4ApEbUBI2YjQtq+fAlyv19dbzul0av1+PxXGpGn2gx8Yz3z86El9yhw5zZkrkw7XavGoTIUcvqwaOAu9JdpYw4xav/f9chS5GLk6tT59J3ILIoQQ1Z1rv0dOpbZdMq+R4OXGR9uQawd9gMf1f340Wssapz8ATPsC1OXearWy3W5ni8XiesupZwhpAIFO+iUD4KrvqB8gL5A6aTUMoGX5OiI4qvd8JDIqP4cOSm3R/2sUhxdGP24173Zdj4QxciWYy9yJirl+XtI2bZOeRxTNJ393Ue6ZnBXnHa2HZyNEo789j4EkWXrCIm6325SUwnWitVjdm5sbGw6HXyUveCoKJ2uUNzc3Z2FfJtP7Vr1eL5lwIoJ+UJTpowgYnYkG3A+yv1eCqtpu34ZLNHVJMEpMUSpHLblq6+jZrjS9SPD0XjS2+EX+Wym/BWFx/Pp3DknUlBe9kxNyv2bpFanOhT6vPKOWlbxslkgWi0XKDMLKEvVmCeX29jYppzd9yIhFV7WSvgNKqhF1YJT5lEH89psIwup9KCqbv3MwVduoZdMuf7/0fq78nICW/DefeqbMoMrjEob1R2iUGFe3Afq+5Mov3cu9j3Lw+4RrqeQ71lpz3UsZzaP6lx5B+foVcYxGI7u/vz87Ppb1Tl/Pcrm0tm3flr6nH8fV6Kr3OSE6pKZeO4NV9BaY6zmhyMFPb427/LFSeZfcr6GIgXMCyt9MVA307qqbGEG0nukpWpPO+YX+70tRR856K5Ki/JICyNXfNf+afpor0/umuHce7hIgQrmRR/vp06fkVx6PxwRz4dmnp6eEMEvt7fwcA8cqjEajr75lr04zHdbKcrDVM4DCS6/RShawy6r567RJ/9e++nqjY0xUKXhloh9JqhEgLYvyo/pKZUTXImWnfb7G6kQuQ20fu57xbYrSH6PnrhHQHIIowWNVlvQJa6k8vl6vU/4sz5xOJ/v1119tv9/bZDJJa52se75ZOMfjcSpQB8R/sUsHBwvpGVwhg2pRj/8j7dplGUsQjr9LGjOqz2vQnEJo2/arPZSeOb0wmtlXqKRkuXJtjBj2Gl+6y+ro3EW7QFR5+fbo310KRy2TPu8RUqQgo3K0bbVIJKd4qVNPA2E1Y7vd2mKxOBPgpmnsl19+scViYX/5y19sMpmcLVGWqPMkBDNLR/F7y6EwLEp818HUExS07Aje5TR8blJ4R693wWJ9Rsv0/kFu8qN24mtHgQavlLSv+nzNvkytM9pCpv/nGLKmDk+5vkVlqnDU+pc5S+vntUbIc/eicpSXc8o7UjqMBz+j0cgmk0ni/eVyaev12ubzuU0mk+TucQj7zc3N9bm1TEIuCUE75Zk7YsbcXsDchOcsDfX5srywlCAxpAKv/YjGInpXhcBnTflndQlBy40UVQ7qRm3PUa31LZGW35V04dvlxzSaz0vGuuuZ3L0aRBAJXrT31RsI/RkOh+kdfMrNZmO3t7dJ6ZJZZGY2n8+vP+CLxvgNrSyVnE6nryyidg7N4o/y90Lj1zmjwWRAvF9Xy3w1zARs1w/S0K6IImWSe1b7Hy1U59rYZSU8Esk975WaH+cSnPbMyHO5MX0PhXCNVcyVpb+jciKIzvzD+97vNLOze7pkwlbJ6XR69g7RWSwmH6fOUZVweiipR8trR7SD3uR74YwgZWQtPAwpZfZEMLTUec+crEv583f1t39PKWf9Ia8lcxakJKQ1debK9GOkliwSPv+uv94lJH6eu8g/n7OqkTUrkW9DNEdq2ZRHQY4RSvHCqeccNU2T1jrxSUn1m81mNhgMbLVaXb+Ugibgt2ZFNE2Torbqj0YDo9aua6AiIdTfJDZ4S+3XpTyUyhHP6ZGLXZuLS9asBNkiS5Urb7PZ2H6/t5ubm7Oj/7sOic5Z+5JFjIQ2R5fAy5xgXjqupetdiKGrDE+5OvRYEp7TgKe2hXQ9Ejqenp7OkAuHT5cE06wiQ0hhqS6doFGixXvNHNKGR5A1snaqpTzTlNZDVah5vksT89wlpzWUBND3K6flc0qKvu/3+3SGE4yhrkWp7uh6l7tQokuENXf/EpQQtc+PpW93bTu67kVz5nk3N6+0EyHWLWL6PLC3yy0rCud2u7XBYGCz2SylGukn/sggojLF7hq5RMB9Y1RgfDJCF6z0TB11Ur/qFC2D1DCmf566SgKqysmTh5T6W4k1NB9E87AL7a2fNNfnu2BlDspeQn5clEe0jkgRR2NSIp/5pP2IyoRyvrlvS65/9Et3oZABFLkG/X4/JSIwFmy2vru7s9Fo9LZoLZbRf5tTIRbPRZZA/9Yfniv5RJ5pSlozBy8Z0NrzTqPycpOY8710HHyZEUN5ZKDKBOXm64nG2EfNI6GsEVBPNXDQl+tTMnPtz7WlyzUoKWYPMXPP5drv50/HFyWIUCKoUR0gS4SzaZqUGE+ZuFI5KgonjivWzGfx4HMqbI2gpx8AP1BolsiSlCa0beM0NeAt133AKmJG3lHr7SfaJ6fntF5uE3ZEOQug1kb/VyFUBRktU6GcaLPv77WWMtcH2qoISsc7Woq5BOKanSeCREJ8DQSPlBn8wHYwDJAeaofA6jm1/X7f1uu17Xa7sy+KNU1j0+nUBoNByrjryjEuCqfmBOqPhpnpiDJsDkLkhC4H7UoMxDskQPh6vMLQ97xwqpZUbRn9nyPtT9TfWtKx0DKjpSql3CRHbelq3yVQX9usbWFuSu9cUr62K8cvShG68PeidkRzrxs/dPVBhVTjMXqUrPID5zzrvuYSVSUhoEE4TpHP0GPWD4dD2lamkFePWVQB8sKiA0Gjo/XMyPrmErYvSV/TuilD2xY9z2Jy0zRpgwD3sJy1BzDXMBLMoWuxXeVGbfCwt9QevrzMx5MpJ6rXKxOzr615JBRd10p9ixSs7wO84BWF94t5J8oUUqRIiqZX8m37eig3vLvdbtNaZtM0Np/P7Xg82nK5TOudpTms+jwxjBHtTlEMroOiHVThiwTTX/Pl5CgntLlyuiBUxHg5gVHo7MvLoQDfBk856O/L9mWVLEmuP34sIqvK3LKUk4PgOarta44Hcs/nyqvhGZ07s3zwLpovtZC5TR0858fP7DW9k+s+ecdTZ0BIF+Xp1GazSWFirZTDjXJrcTkBpQy9R4f8YHoIG2lQX3ZUdw7qlhiKe7Qh6ieW1Pfb1xmVq233vhXP5PZpav9qYWk0FmavSSZN06TNxLvd7quzbv14KHNqHTmFW3IXugRbF/4xHB79ICDaRi3fQ28viDoeHP7c7/dtt9ultUr8SrOXLZaDwcC2223KBiLntmka+/TpUzqcHXkpzVVVtNYPCoEgH9b38FUhglrPSMuXBKM0eV3WkOs5S6Z1dwmP/9vv5Ie6Ah9R2SUfSq8D0boUSRfD10BtYHG0ZUrriK7l+uEF0v/uUo6qgHLWMldPzXjl3tUxJwjkz9ZSCK1BQdpJkEiXJq/OENput9bv9206nZ5pJ4W32nG9h7/ij/jHV+o6gLmLeaJnlEH8Vq+uda5a6prkqA5dkqp5v6vsKBfUW61IeWlgwx8ho+X7KKIXAm/FvbKI2uffLUHxXL/1Pf9xYO75a/r5+Jxbpf30fcE6j8dj22636SNEWh9uHc9yNhBy88MPP9hisbDFYmFmL59j4FD2N1nOnNVT6EMndBI9HPXXc4Ofo7cwdG0ZlwpsxLDeEkZl5ixNyfIrRWjhEn+rZqy17TrHUXm5tl0yp5eMvRfUrvpKFjuqP5ofFI7fCslvIDS/FWbr4dNqxLwR8VQUTo5R4INGRCXVTHM6H8/rwV40XjOIunJEownTOvU5HUSfEB99AS03kTVwuouRckxfGzWOmAa0UvMO2txnYl2LFKLnfQqgRwLKpGrhayiyYnovaos+5xUPbfX53Izpdrs1M0vWC3iqfKmJB0Rpb25ubLvdpuQCeH44HCbYym8SDu7u7mw+nyefE0FdLpfXH/BFh5l4PZktwvzeuvpJ80GdHCz1/5cYK5pUZcyS4L2HNa6hS+vp0vL+Wc/IEaSN5uSattWS8sE1Y+0Vcxev1DxzTf1m52ddqeB69Mh1/btt25QJpHm2/iDqiDqXUliXGQ6HKQNCTby3UMfj0TabjQ0Gg7O1MRqjH9xV6hpIOk0QRpktZ9W6mOItzOPpvZncR8qBTBo5jyymP/nQC68/fM0rM/9OCTF45aF8ob8jZRFRDuqX5kjv5RCNf5e8cH1fPw5tdp6SiqXl/91uZ+v12jabjW232yQbvMsYgyy2221a17y5uUmfZ5hMJsXx6DxDiA5q1EmtIH9rkEifKVkv3ud36bkuGJqbnFK9uYl9L417CUU+Xo7Zcve81fTP5O5FPtZb+uPnNOqbL7tWiZaeL42bVzweXXlfMhJqiBULP26URfAvF43titJCnT6nmZ35i1zHArIGpMsuw+EwZVMQler1Xj+ApKadzkUnKihF2Ts5GFPyW/VaZDX0vlKO0d+bcoITKT2zcyThz0jVMmvgrB+PnAXtIh/s8GgpmgtfR0mBRP93CabynNn57h1fD8KngjYcDhOM3e/3tlqtbDQa2e3tbTJM+snEfr9vi8XCNptNOiAPOeH3m47GjA7E1ewHLGV0EoJ21p8/5Ce9Fu54ipip9GyNFbhEm+tzOetTak+OVAOruxBp21LQ5Vor7suIhCZScP56BElr2pQTzJIga9k5FJVT5jXEs+p/6j3NJ9borCpU1kY5PrOLJ4vCycdXqBghQ+L3+72Nx2ObTqdfrYvxHjm55ON67UXHLs2FjQau5HdEELvLF4qyR0oWx1uD3LOaRJ0jnyFFRgqbESg/inp31VGCll4ocu9F/fS7MKJkDF9WlztyqfX25ebgozcOOeHXWIcKFvdIz+PbJ/v93haLRfIr2e98Op3s6enJttvtWW7t1el7qgk0MqXhZd2Spc8zSappdOK6Bro0ITkfxj/jyyrVVWpPCU6V2nAp5Zife7ojQq/n3ov8ppxQlCyTJ6/x/XvXjEfXHET1+Gu5Npb6xXMgE58N1bZtCgCRyK5GStMDI4uJEfMb/0nru3o/J1qDaBMnH7Rtm9Zrer3e2VpRKliu8YPP6bM7PATyg5ezWjWCWXM/N8Feq2kQrGRJu4S5po3+udFodOa/6ybfaFw8g0XIpMbvLCk59eNU8eom/Fx/ojFXdNPlDqjf7dsYWUwf7ddnWWFQg4KwHo9He3p6sp9++ikJr9kLb6xWK1utVnZ3d2ez2exs/ZNyDodD+qjueDxOXxhrmuZtR2P6gVJTr0K62WzSO/5oCt02pJNVOoDZ0yXWqgS9SlampuzSc6qpuxbfc/5STklE4xQtrncpt662aHpfDpJ6+O7HNyo7p8hK/Y2ez70XKQ3fzlzdigr1HqcYrFYrWywWaSlFFTQWEbhL8gHlYbj8rh5t39UZQpp/qfszybklj/CXX35Jp10r9OIdBJP3iNxGX7byA8ggXnIAl75vlodaEfxj0PQ3lPOPfI4pz+pvLeMa2Mdc+EQO/7/2K+pvaUw0rqBMo9ZX64nWMfXv0pyVIGfJDekSXP+c3xfs+8rHhjRyqhbzhx9+SMiPcWAlgv/X63VKgkcw8SlHo5Ht9/u0gqGQl/3AOaqCtUyIHgliZikF6ubmJjW43++nlCYGSZcBIlirk5rzZ3KQx/ueXf6lPqtU817uXa77Pvh0t6gM7xtFzOfHSq8pmtHydBnM96/Uhwj+RgKdc0O6+hqV63mgiy5Rbh5haN05xXA8Hm21Wtlms0kCp0fywMdKKht6REmv17Pdbnd2OgL1qTKPqCic5BOORiM7nU4p82c6ndput0ufMptOp6lCGug/TYDFZM8bW5Gi3SKRqfdn5EKqQLxweGbSevzfEZXejSbWR7W1/0pang/LX+LPap1e8+spDdqmkjUrRcx9tDtqexfVjmOOvDLIKdlImUQJ6zwDygPW7/d7+/XXX22z2STYyicUGEN4uNfrpTODptOpjUYje3p6ShFZVWKUB2LUQ6gj6vzsvEIc/QRg27ZnZ6pyzR+0pUKimtlDQX/Kes4iRr5ZZDW7/JVoorW9EUUW7C0+a64fer/LOnnBVo0dJW6U6q/xeT3l0EGXr6tll3xC3+4u1OMF0Ge28aPHW2oAiK2OuosEF4xN1loOyTm8izCDHgneqS9PH3guR50HfOmEs3aDIOlp5PiUug7nM4AU0noLqQxVmgwfMdUMGX2nhjFQEN7qdvmJXmA8c3oolbPi+l7O9y4pHF9O27a2Wq2saV4igVpmNE61lGtbNE4lyln9S1wST5GyLilvhA6IqTmzh8PBVqtV8iFBdpyb9fj4aIvFIh23irBR5mq1ShlArEnz2QU93oT28Bn6HFWdIcQADofDpAn0+AU6ofcJKbP8giBFA+chbQ30VGvsJyRncWp9O19OaVz0vUiQuqxV9EyurBIc5jqHRkUJ8Ln6c23I3SshDA9Zu9BITf2eSoqRshTi85sfrBuKGcMC73F85XK5tOfn57QbiyQDrCVtxjJqpLZpmrNvpJxOp68+ttuFiqo/ZMTEY0HB3E3TJE0yHo9TQEgFVLG1+i6qSbwl9ZkvEQwt3VcLy/2oT17Ia+Ctp1rN3wVjc89F/0driL1ez25vb8+u+QXxmvpLFrFLuepzvk4/zqU2dFHXWCtP8VtT6whm8rEhPSNoOBzafD63zWZjX758SadKrlartOKg369RSKzHliDwzNVsNksf283lQSsVhZMPgSJAutNbl0kQQKK4mHR8UjNLmgUczoD54JHX8F7I/AT5+xEE0+e8QOb8yBLcjZiuBD/fSjkUoG30zJ6z4rwX+UBdlJsDyAfyaJdXkJeOT1e9OeURKRKUPlu8CNLocSas3R+PxzOD0+v1bDabpef8Gj4GST8FSHlmZs/Pz8lQqZuYo6Jw8n1BjWRpep4Kp+7fZF0HzA0MU+dXhcmno+kzOc3rfTqER4MgXKNunZxIa6lCgPEjyjH+tdCsBlJ6xeX95ZxSispmDnO7gPx7ESTW+7mobVdeby2pUqEdKvC1kB3Iiru12+3s+fnZzCxZQqDrZrOx0+mUDBSGhfe22+1XATfgsdlrLq6eL7TZbKxpmvQxXSxrjjoT33UwMMWEjD2To4F0kykCoUykkECFqDRxftHdDzq/cxOl70faXKkE1aI2+EmKynsP0rGCydTyRZY96idh/BJcjdrtx6Rkrc1eEwAipBLV2zVOEQLQciKEpO/qmKhrhVAhrJpni3JnOcXX07btmQA2TZPkBsuIr7ler+1wONhisejMIjOrEE6vIVnn1OyhSDjRQmB4jW5FC+OQCpFqcK1Dn9N7yryQWlS/fJNjFj9wkZXWuiNYGVEt/K2xpKWzgaO//ft68lvOL8+1JSe0nvb7vZnZ2YkYXWXlKJpT/tYf5tifNp+D+8wJZ81+/vzZmuZ1bZ/7bPfi3Cw1MHouEP3mmtkLAh0Oh7ZcLlMZTdPYZDK5fp0TM+w7qgcYjUajdEiudp6O7/f79Omz4XBo0+n0bDkGrI519UslvlwEx8NXfGPvJ/oJgXLZGTXaOycUkTLR93x7rvFTS0Lj64veKz2Tq8vPqS9PmVzfVQWea0uNIorazseFx+Nx8h+9pfQICX7TZ3S5EKhPsvp2u7Wnp6dUxnq9tsViYR8+fLD5fJ6sK1AYRKOpfmYvSzQcMu37V+p/57m1dAAhpSOqpebz+VeTA6Fx8ENVgDjKwWtCbbxGcz088to052NpeZ78OzWwK8c03hfy+a6ltuXGINdufa5LyeR8sYiiMa193yck+KWzS9oRkb7PNi5iHYooonciS9s0Tcp5BZoCYxeLha3Xa/vy5Us6eXK73drz87Pd39/bbDY7WzahfJYY+dvM7Jdffkk+rFKXcuz8sjXaRjE6RGCBn+12m8LFmHQCQ2RZ4BgDkbUsZQSFvpFAenirg1+CuZAql6hvPBNRbsJ9Irj/P0cl4cv1wTN9bfCK8roUgLeSXW3IjXlOaXdRl+UfDAZnCS8RRYpBERqBwuFwaPf39+kgaA7t2u12Np/Pbbvd2mKxsNlsZpPJxG5vb79a09SPeAFxWeMnegtUJvlguVwWx6AzfU99NB9o4Ee31/T7/a/OVcEPxflm8jy8Vc3rLaMKJ3V6jaWTUGMN/Zpr1wTnKGdhSkzq2xe9q2V0taNkoXLoIDfWvn1d9XmqhejRO5dYaU0V7bL4qvTVJ6Wc2Wxmp9PLThL2diKsX758scViYTc3N2nnle5Agb81W87M0nYxDYi2bZtOjS+l7plVJCFo5o9GYUlib9vWPn36lFKcmqax1WqVLKbZq48KRI4ijbos0zRNOtaEOr1FZcB9dE4ZjoHiHtkatC2ygJFCKIW7lREiyFTyK0oCeq3F8da6FvqWrtGnErIo+bS5tpT616WU4BcfD/HGA/LuEwqZ99naxdE8k8nENpuNrdfrZFk1maZtX3LLsZhYStql31KBlzebTcq/PR6Pb/8EYNO8fh2axVgYfDAYpO01k8kkfRuCiJaeGaQTzAKtTrbfyaHCWiK1ftHkqLDo0So5gcxZt2hcIkagv7qeGr1bqqMEx3PUZclKwpqDrVG5Xa6CPhe1Iyqrq/0R+eSLqC1aprpNCDUCiiVVxYbF4x47ryiL3SXA37Z9PTyagBBCy2oFUVquY1FzVBTO9XqdoKi3TKQrYeV6vZ5tNpukTYhgTafT5DzrwEC+gSQL5Aaa8LzvVM7/U//C7FXjqjX0a59ab0Q5WOgn3isOfVfrjcq+1HLmIGrNepq2JWqrF+6ojZeOnT7jhTpCFBGy4FppnHyCBPOuKXeUp37harWy0+lkt7e3KTneby2jDWpI2rZNR5FQBsiRVQuOylQ+jahzP2eUHqa7TljHNHv9Vgp/t22bTtb2EFS1mN/WowPqoVNpndNbsIipSuuDNQwVKQ695+v0zBzVW4K9EXTssug1Fj8qt6b8CPrnxi2ypJEQd9XbZa1L9fvcYuUx9Q/hC35jJFimwSrqF/P8mir/66pE276enADMJRCKwcpR1TonJpzoE4KhC6/aYM0G0s2qCLtaYs1RbNs2RXJHo1F6Dsfa7PX4RTTZzc3N2STxDhYTX1eVTAlK5pgvUgBd0djcQjjlRO92Xedvf78rS8lTDZyMIL+OcU5pRQKoKMFbc90IrnNQElb9u23blMcavde27dmuE/hM+6eb1QeDgd3e3ibfkMOjR6NR4ktWJ7bbbbKcy+UyHUgwGAzs6enJ9vu9PT8/p1xdzc7KpT1CnSe+q6XULzYrk0bnq+CnEq7WH7XIGqHlfYRKBVkzhxSze8iCctDyImyv7+UyljzD1fpIylxeMLv8slx5uTpy7S2VoX0oWcLa8vyzfpw8mtFnojaUFFQO9nsF4E/ZA8YCS3GPUPr+I7ij0SjxInB3NBqlXSx6fInfXUX7sMxs4IaPu/xlqCp9zx+tQAWsZ+o2msPhYMvl0sbjcdoTR8AI4dbTzhgUf7qCKgYG0FsH9XsZGBVe9Q00X1IPF4sgUxfULPk6tMEvC0Xl6H3PaF0QOxL2awTf90vL6hJ+L1hRfyO04v9GkHwurq9LFa9eN3uNXagFVQPAexqoA5IiRDruoETu6RlCtJEDvIivDIdDm0wm9ssvv9hyuUyHSOvHpmhLr9ez+XxempK6TwDC3HQAIdVorAoMA62d0gVjNeeaj8hg6YBRth88SKEME6j3Il+j5GPVCmqOUSOLkfPLStD1krr9u1F9JUufK7OLcoohKq9UvuY9d7UjB5kh9QUVwURpnxFy4x3P46qAVOkTrVW+Ys1fz7HVOvnBN81RVYaQQlQgAVtihsNhWq9BuIAEnz9/TtlBal09DNDG60ZUhSE+Swmc7wdND7qGdPmHRWQvzD71jDKVWfTZSLD0c+Q62TrhXeSzljyczjGvh1O5vnjBzcGrkuLwyo3fuf51KRNtRwmx+Ow0kBPoTf3G6XR6xm8cFEDd8/n8zLBMJpPED8RJsI4IH0ZisVjY09OTzWYzm06n6cQEfE72gWI5MWj0j7JYF81R9TElanWAH56RdJDbtk1+IzBV14NyTKcBJn5rPQgRneV5jb75wdBy/SBFFs8LRReEzFniWkvorXsXPC1ZwZLFLFk6f90rvlqqsZi58eqympHSU4FSWKzBHxVs+ECXRPhf51wVjipjjBOBINYv2eOp+zl5PnJFasa06rPz+H9kOvCxUCwmu7/B6TrwWLPn52d7fn5OvqeekoCJZ8Ca5nXPKBkVuu2obV+ibboEozCacllzVdjNfT1jxw+WX3vKQWnueSWlddFmfCv1f7Rsb2HpT9fB2/oudenvqO06juoWeMsVQXylUoQ4Um65/lKGR0kl0nHUU9VRzip4Klzc80JEu7BkbMrAagJf2Q1zOp3s119/tb/97W+pTQgpqA6ZQI5oB0sqT09P18NaZXyNnOo9/TvSBjpQWE3PCMooCJwGdIDLQGuzV6vtHfWoThjea8XIWnkkoNe8xvfjkGMo7Zcfp4hZtZySVbnUotVa3EiYut7PldklZL6+GkvL39o2hNPsNVCoASRVmApn/byoslUeiuoFTmv+rK4MaPBHESEKxGfJeeoUTrPXzbIUTHSKPZrgdbA2gjAcDlMj0G68h1ZRP1aF6IcffkgRLdIEmQR+t+1LEvFgMLD7+/sEZ9g/x0SMRqOz9VCz1wwRv07L8wp/FQVE1kY3CPixg3JwnTKwlOTjMubKWLmyo+ciheFhXk6ZegWszBYpttyG4ch6d0FYxtPsHMEobDWzsy98wQ9Yu9PpZJ8/f7bdbmfffvttyvE+nV62gp1Op8RHGrDRyCxHjGKUqE83cVAu1+Cx5XKZdraA1Nq2Tf4xu1LelL6XgyUKjdRYAMOxAAAbyUlEQVRvY2CUAXL/++dhVAZNo7y6fum1nfqanqkizad+qjJYxCzesufQgaeStSlZT94pWZsuwfR1egGJLHPUxkv8zUstZFf/cj6+KgZdT1flQP+wYmbnKwgobN2b7ClSsjpuKpiqpFWJRWjAW+ausS0Kp1o+Gu3hqDrKaCRduCXxgOf4JiHpTL7BWEo0HBPAPtG7u7uzIzYQXo6XUMuqQQA9+Q+HnvVOyGf0eN9SF7L1edXgOqFKnjG99fKbhj3pUlLbxqcMRPMSQcLoHS9gfrkrsrQ5fzRaj/btylFuDIGH+GvL5dLW67U9PDyk3VEIXb/ftz//+c9n8FaX5ahnt9vZTz/9lOZvPB7bN998k+YBFEZ8hQOnJ5OJzefz1Ba+3anWXGMvaoB0eVEFOqIqyxkNlgoVDfIaLbc8wTvqVyq8U0tFR4AUCLR+dQuojWUGQiNQXM/5GMqE2u/IcupYaFvN4i+hdflTWldOUErv+LGNBKDWsvl3lKK1Q71Hu7RtXZYhsvC+Tn9PLZkP6ilFWTjqgvj/9axlylSB9hlAPtPHW1a9B6/7XNouZVW1lKKNVWiKZtEOoBlIdfIOsTrkbDc7HA5JA+LPqvBhedu2tcfHx7PtPETP8D2n02nK3GD5ZjweJ2vKBKtmZJD0HBnVaKpJaRN90Mnw28RKkDKycvqsjruSRhdLlizXBq0HpqQNkZBpfxkfnySum4u9xYj6GLXHk7cwvgxOJTCztEXRzM4yhKiHtiovkjP7pz/9yXa7nf3yyy92PB7txx9/TP4j/DGZTFJdukFaT+TTpRjGg9WGL1++pCN/dH40Zzyizk8AqqZUgVSc3bbn3znhGWVaHRj1B/1ao8KTpnndHaBlYynbtk2BHzbF6j5TbTfaS/OAfQSXsrHOyrR+N0vkD8EUHh7r3yVLWvJFI/KW3+z8o8S5erVvJeH1pOPJ+EVld7XZ/91lZdVi6zuRIlitVmef4GM7o/ZBkQT86XNseVZXCTAompCj7dE+6dzwrm4Q10hujjrXOekAnQK2ct0L32QySWtC7Cqn8xpNU/LRTjI62D3eNE2KoDLwv/76a7K8+/3e1ut1moi2bdOeOU774zNtu93Obm5uUvkeHnPyGuuovd7LJw6Gw6HNZrOvYJH+1mMTvRCWBEEpmnAtBwWg1kwtoJ5aodYtgk+9Xi9tifKQnnZ6xTsYDJJ/RSaWWtAoLgF5eF2y/Lnx8AE+2gbi+r//+z/78uWL/fWvf7XD4WD//u//nuaP7DXiITqeWEquU7aebMDxmYyJ52OPJjVYid+u0V5d64+o8wwhXzlWyFtTHUxdCEYg+d9re7WKWp7/0Chai+u0A+ZEGLGe+lElnUTayCcjKIMdCIoWGETK4IwkJlCjx36caLf+r2OYI/rftcAflaea2lvHSNBLbYgExzOtj0rqc5FwUrZaX70WXVdEoohLiflEOXJcKwoEJaa7TLjnc2d9GxXGqvHQI2iUxzxSa9v2LEECt8DsfJtaREXh1A8X0TjdJqMWjw6xMAvT6yZV/Y124cBdha1mlk7FBuuvVitr2zZFcXVSRqORfffdd8lSTqdTu7+/TwnIo9EolcPALZfLNCGfPn2yxWKRrD7HUqBl+crxp0+frGka+/7779NZSF4L066I2ZTBuOahjU8/1HHxitAzL9cYFxVw/TtSKFom86xannfNXrcOap2+zb5MHRcvgNp+yFsd6vNWHmW9WCxsv9/bfD63+Xxu33333VmaKZ/ugxCwjx8/pv81pxYe1a8W6AeJ7+7uzs5vVmOiuQCn08tpCofDwX788cf0kd3BYGDL5fL9orVqWZQBVGM0TXP2mW12fntmVN/M+7I6QUBjOsomWZgG4aYclIcGBjSkrpacDbhPT0/29PSUUhPRlkAaFBHCqhZDtWvky+i4qRaO/A0V4hwUVeb2FkfJRxdVMCJrpr89cV2XkiKrmUMFJT9a3/HQ2v9oGyCFkPSbsvyqAG5Q27bpkDc2QijvqJVjCQ7rh8VUpMV7ev4tvik80O/3bTabnSW4eIjuqVM4VVtp/ioDBtPqYPGjnwrkVHh1hBlINI36SQy2+lS0AR9hOp3a999/b03TpKgt7WIQ2GO6Wq1sPB7bzc1Nav/T01Na63p8fExnklJWv99POwcINHENxsSfhdFof7/fP/sIDmeforHJWvIM6I9SpA4vuBq0UujNNc2K0fe0TK53EfXja7LjQ8tl7tWC0p6c0HpLiALxy10aPCRiDDFXPlJMjEF5dbfb2V//+lc7Ho82m83SF8Q4A/dwOKQT9z5//mxmrxYWt4ksIE5wx2Bwsh7WVvmHcv7whz9Y27b25cuXZLhKVLWU4iNaaBFdFoEUeimMQ6i5phqEiVWfAKirDrpGQ0mgV4zP37RP/R5NGFDfl3J1DUrXvvgfhsEKE3xhfChPoRFBJQ5z8ozMieVeIKOgjCdtC0pS/R/a5gM0kFqfyDf1mp32awDNW+yShfR16v/emnv0o++pQkfgNptN4iddYmM/JeOkSzOKmhg3xloVAHPKp0f4mjtokOdVmahR0HJ065nf8hhRlXDC2FgdjUjROJ0UhA/tDaOzwwRGVNi4XC5T2U3T2IcPH9J6JZYLIRoMBvbx48c0QEykQmeEnMEik0j3/SkyUOecwBLbgIjsMrFAlru7uzPIg6/NKWvL5dJms5n96U9/SuNInUSOseaTyeSrE8xVaUTW6HQ62fPzs51OJ7u/v09RS++r6v+qZBA+je7yjPf3zOwsMhtBTsZHiXFWZUcbUHKqmGgXQgeBtLxQrFYre35+TlYQy/b8/JxiBUTg2/YlA63f76eYA3z5888/22g0sm+//Ta12+xFCWw2G1ssFmmu4EeNYGvwlDbqh8Datk1fMFMrfLVwqn+pApmbBNWEuj4J7FLNpYwHTFNYxEFfwEldI9LAkgajGEgmR5d1gM1oVjTi8Xi029vbVJ468sqsypQIAN9Z9IvlTBpWdLVapYlW4YPZfJKDD9PrWCsSYSHd+4yKJHjfz09Urh+XCE6rRfWWUNGJIgC1KNo/XYBXhaMohuu0Vb/gdTwe0xIXbdatYETjlahT51K//RMlC1AfYwM/jMfjs9MlqRf47eWFfmvg6OqAkIekapa1gzyrAwE0gPnUutJhFS49naxpXk8ywwrf398nvwIfwMwSPEEB4Ec2TWMPDw/Jh/z1119tNpvZ3d1dqhPh+fjxo43HY9vv97ZYLJK2nc/nyedUOIfW/fDhw5kgKfyn/5vNxh4fH8/WuBBGfB09W0nH1cM9VZQokMlkkhSBClMUUVdL6iEsfeNdoLlnVGVWhMgnPtAPn3us1kVdBRhfYxsIs8JNhIe1RrOXr6/PZjP7/Plz8jNxbRQ50Q9NWCdegDI5nV7Oq9WgX6/XSyjHI4X7+3u7v79PQTJQHi6LQmktUyPCV69zqrbQCdHfHt4oU6lv53081WCeGSMfSDWmRtmAygwEvhZbfhRCEgQgg0ijc6yTEV3GImF1T6dTStqfzWapH96xB2H0er2zr6+pH07/NVkhsrpq/ZTxFZIibAgr77BpYbPZfNVmFXodY7XIMJy2y+wVpqKU9H+eVSXj/VKFedzLoTDfV3hSUZzWOxqNUsaY91eHw+EZskIxszSnPKvu083NTTIsGCgEjUOjJ5NJeq5pXoOT8Ct9Yjx1abJEReFkcKgI5lVfgIFCE3hB9BAJxtQQMxqOyfPRXOAHVgvLybII0Vh8juPxmD7hpkskTdOkCKpHA9vtNlnMjx8/2s3Nzdm+PCAke0fpi5ahi9H9ft8+fvyYTvpWQWKS1FfxffZ+MIIcCaeZJX9XmaBt27TOe3d39xW09ZZRLbL679Fymf54n1V9We+TelI/mHapFaUsFUp8UpjczBLE1IwxhLdt2zT/CBTz9unTJzOzFHiEB5bLpd3c3KR9wmaW+AzlzRLchw8fztrM4V6gJ/qA4YiUTkSdGUIqLAiUPxKCiVVN4LUlzwNVEDYW/fG/+BsrxeCyXIEPigbTzprZmSVVyMjAfv78OWUQIeAoH4Sd9TCFzBr9pA4YGc2qsFWDUre3t1/5y0ywz92EEXQBXQVCFaYXMIXOlKt+sQYpNBgHY3GcI4xOu9TaqQAhCASjsBIacON52u4VgneL6B9t1ORyMztDOMr4T09PZwkwyrdN06RgpgrM6XSy2WyWFImOK8hjuVyeCTO7n0grpXxyvRkX/cwDEBt+4llckncRTr9TRDW7MpefTA8XMO2UwX5NhFPxu/oGZpb2c2rmhmpZv3isC8yLxcL6/b7d3d3ZfD5PkTcEkYju8/NziupShwrner1OgR5VOkSXGTdQAp8XZ5K8NUIYvV/OGCo6gRlRDD6DR7/OBtRT1wTmQphV4z8/P9tPP/1kDw8Pqa2KhlQwYdz1ep0yXuAHHyBTYjy9cKpVRFhUcar1Ij6hLtZPP/1ky+Uy8RBBPh0X9TFR5nyukvEHFYKWyDxCsNTaoWR3u509Pz+n/mB94QXcG3gKwX6TcKoTTCejBWKFHNGE8CzRtcPhkA754l2sFl8q0yCC+gOPj49pYFAYPtii/hBHqZDsDrMS1aOf6/U6wVg+Oa4aeDab2e3tbUrr0kADIXHaoUsFnjFVmHu9XrIETLwPy/OcHnGBb+0jfTC+LwNrj4/FWPPOdrtNW/dYP0YBPj8/pzHmAz3q77EtKoJnXtnwDM+DLEBi+qPCiC8HL7FUoUiNsSdCzyYIUI5m9ICiiCPofU2goT6Ek3vMiZanc4Hwg+5Aeyh1+sMKQo6qhFMHwAd5VDh1sHygAeHUYIhmAiGQ0+n0q2ADdRONpQw6PhwObT6fn1l3Os0BTDc3N0kh0DeFJJvNxj5//myLxcK+fPmSIsVMOuF61kBpM4ILIyGcaGIvQEw2E7xcLm2xWKR+IhyMC/CSdb/Pnz+nCDNreur/qWtAfcpgi8XiLJ0SOPvly5eUIQVqeXp6si9fviTX4+7uziaTyVf7OhF89aV13pk/BFSVEXECeEnbpRZfSRGHXtPkFOYIK6sZZhoYms/ndjweU8YP6OL5+TnxFwIFrNUkBB/U0blAAaIAiOCi2CgrR52HSqszzmABNZgkfM/cGijRQ80s0lC/BkFYPIYpcdQZCJ/po4GYfv91i5n6scfjMS0AKzTB2j4+PqbEASaB1EOz11PWlsul7ff7s21ZarUJRn3+/Dlp3+fnZ/vll19SUr5CRTNLikFT/vTgM8ZFA2Db7db+9re/2fF4tH/5l39Jz2ub1Kfcbrf2888/22KxsB9//NGm06l99913SUGAaE6nlwRx0MNisUiJFJPJJM2NKiD1ezUoxBxpYEgtCkEbTXFjDvH3NJDCOzqHIBEQm7oNGkhCqaKk1MeELzSjCMVzOr3mcqvgaV/MvkZxuBw6vuoeqa9aoirh9BE0XVZhEJSZ1GJqWWopEWqv5ZfLpZlZ8mPQMmgqOqYON+3o9Xq2Xq/TliEmgQARz2uI28zs8fExReEYXLUEKCLvSwDBgZKj0cg2m00KTmi4np0MQC4dS3bWoAz0S1Y8B0JgPH799VdbrVY2n8/DvGXdMUOu6NPTk/3tb38787exMPiMMCOBC5SUfiSWzQY63z6Sy/wr+qFPKD92ZRCkwkfWABlKFMHSuVZB8QEgVdyMn/rN8AVzSnQVQ6R84yPTCD3jBJrSiDqxFOpTFOYj3lcJp65jKiSgwwyewhE19doIhEGjrfocA8I1PTBJ/RLgB2Wrj8dEYX00lQ0fyszO0vKw0Fhkr2iYiKZp0mkL7C6AORSWImxASA2CrdfrFGxSpde2rd3d3dnt7W36CJRP8AZaonkfHh7ODmDDxyJwhiLEVyVy+2//9m9ni9+qeDzDMG4cbMV1coIRcMaCBXwQgm6jgoiIajALRMD6IOhFI6JqKVVg4BvmijQ9FAnr4WScYRnhHcYJvlZF4qE172gChiJGXXclqMnzCL2ZnfHk1T5n5F+qpfSCGP0oZFVnms79v/bOrTltZQmjLbAJARIgVDn8/39nx2UQJC7ZMeg8UGtY9JYvZ79sP2iqKJdBGvXM9PXrnpErOTJogJZx8I1wZncYWoglmWjetj0YnNMJ7CJgAmHErnEw6YbLsZQ8m4oVI8W4tHb32PGw3W7/AbJBC9dYqJiXq6vzqfrEudDAdTAl463rOqqqKm99Wy6XRRA8ZyCdTm3xwYIyDnsVec0i4oIpzTPmI2i0pTOCTz0r8R0fhzGsl8EigC3Gl9NlCJYtoVHwbPVZfzwIK2WPxwbIxfEGEOnbz86YxIeF0xaJAbsCP1tQg0cmnAl4zd0xwGNt5XglCzsTAaP4gN/D4RB1XZdcpjcHA8KAzO73+xLP4JbYxeG+4XBYGNRuIygmAvb09BR3d3dlo7cFPyIKMvrt27dYLpfl/8ViEcPhsDCXYfq2PeXxIiLW63VJjoMSwxgonogoML3TCaQGWEvGgZvpGJfviQ1JwSD0OXdnkAwPBfCOdXVe+OrqdBgbisLeCt/tdrsyD3bXeTEWtDHXeBtt2xYhIkyCFwGI2NfJ8+xCR5xDC5ott+c1Kxlfz5pYqVlGujwLtw8JJx24OP21j5sFkIXzdV3Aka/L7iW/WdPxG4LFbz7xPeJyR0jTNPH4+FjAFRbHGt9ujrXtYDCI7XZ7kZOFmXGl67ou7pkXi+9wqXG1sTBYPnbL+9lA/6vV6mJ3BMJrsAVL6TllPqEBzwHF67Eyh7hz3GMl27bnqi227jlGZw0Am1AcWCFKMI2cel2h0cJZVVVMp9MLYccLInakH2JXv9HaeIkL5M1L8DxC6vW1LBjUQ/man21R8dxcOAJPvNXe3TLG4plhu1yVLJjWLvST3WO7MoBDzltGRFk4+rL2YeBcZ+jbLrSP6bTw4SIjaDASWtSHfPFxugBg5/fv32WL3Gg0itVqFX/+/Inb29tomia2222hdzwex2w2i7ZtY7PZxNevX2O9Xl8AWKDOoJmMq6qquL+/j81mUwSCMbBZmIPPttttuQ/hRYAiorjQ9/f3MZvNYr1elziPdcK1HI1GJZEOY+IxYGGapik0bbfbwjPGBdh0QBiAZfXWMaw6ShOB4viRw+FQUHMLlYXDQgJKawAOa26rxlEiKBBbNYdijisRMAQuW097e1h8BPY9MCjigy8yek0Yu4TSE5WrS9yntRAEW2MZYLG2MXzveCHHs7nIgFjUFhS3zW89s/ZGE/McYp5c4uV4GQHkGmJPBAVFwfMpbsjH+2OtvCsG0KVt27JLx8xGcp00DpVX0DEYDC6UFG7uZDIpMSzKEIEGbHK6Azqdq0bJoTC8HswLguK4EkvKdaSsHCrBH6PRqJTGGbDJ8Zwb/ZpuC4bBGa+jXVr3m9eb73L/5nfHmJmGtwT0XUDIMSUMBOOjCXKS2ITbFco+ufOi2aenOQ7NtL28vJSick+e6QAMIOHr0/n8OzEXKYPD4XAR6yAw1rhUeEwmk4sqEdwm0FWs5c3NTYzH41KqaIAH+qFjv99H0zSxWCzKqwB47mAwKEAPyuzh4aFY6ao6HUJmZcKOf4Q9HwWZd//jrs7n87IRnN+4llQIQpl3eLg+l+qm4/H8+j1e2e6SQtbKaxgRxVrmfGdX7trgH7yJ8DFGXuHAM/f7fVk3+MBxY1YC8Kn5OwM8GB/iY8bzHhBE+9BJCJ6oLDj+6+s8mKwxIi598gz6+F7Hkdzn+3Ps4NgQSxhxaXGdaxoMziVe9GFGpR/TaOZw0px0Q3YjEdD5fF52wMPUMDbNMZFRUsd3KBSsSUSUXf9mdM+192cSo0N/VZ2P6chrg0fBnHkdXK5ZVeejP3KKgPuM3jpG5dkZTXUfRnItkH6GeYZn5Q0CXMd46Ctv8coWt4v/syuL0OVYMoNNH3FpIz5wNKbdB+IA+/ER0allMkPTPICcUGYgTLYFF0Qvux0wmXeKEGdCm0EYaIDhQEgp2zsej6U+064bkwptLy8vxV3lOqdn2vYM419fX8dsNovv378Xt5b4DuvZtqc0AMXkWLfNZhN3d3cXFqmqqpK/o8IFJifW/PLlS0wmk/j582cMh6fia6yXwSoUEminq8FcdA7K7TjchSIREYvFogAff//+LS+WXS6XF6COEWQqq5qmidvb2+L+M89ZCJnPDAg618g4CW9srYygetzwhGN086wVumm3W5955LXXyjMuG4+u9qFdKa7XJMC1cMIYfjADyi6p4xC3Lm2SrapdXrvNXTEwf7Ol7nouC+rN1jmtYxrNvEbhsL6mHcuDtbQGRzlFnN10yvlgfBDJHAezDlQjuTxtMDgVIxB/s5a2OqYRpWaL5A8Whfu75s9eSc4L83/2pOyKovxRXtlKe8y5D5r5xDRHnOuesxBBA/1xvz0w5g++9tw5ps7hGwBnHsdbPO/2pnDip8NcTDxxEa6S4wrHqAzGA7IFMIGkBqxdjTb6GRYYayAzG+7dcHiqV+U4R7QjMDupgojzwV4wOcwJqmgQJiIuEFPcVFzt8XhcYszJZBLPz8/lJTk+LRymhLb9fh91XcfhcNoEAO28IsLHKl5fXxfBtScBTey2GQ5P9augqk55PD09le1VVnjQGRGlPvjm5iZWq1XsdruLXTvEg3Vdx3A4jOVyWda0bdsSJ7KOILx+QS2YBhafXUKEASClEec3zqEYAZcMFHnzeUSU+Bj+gvbpdHqhhACzWBt7hSDiboQIFjh7XTm+tCLI6O7/JZwMDGvAhlUEwFqMWMOBOtfYfL8mnN4HacJ5tmFoQ+FG9RzHeJtRRmm53hbDWt3X2MJlC84kZwuIsDF/5CNRGAgWiw0A4YIA0FYsLtadjxVkFiorQSp/oI3rXYLGPFjB0Qf3OLa3N+L5pw9XEzk2NWOiGBw3W3jo31Yzh0jMvdN8GSDymrNuFogcJ7oqzfczf743e3M0V1i9JnzZyna1N4WTQ5BB9rCibEp2fqoLOctQtxcepswD8WSaeB/Oa8uGcLlyCWvpSbVrAROjdQFeoIOYk/4RENBHrBWKCjcMC8qrHABIoBc6m6aJ+Xwe0+m01NsCDu12uxJHMv9VVUVd1/H8/FzOq6GyiAoYv44iIopLCQNTMgjNj4+PMZ1O48ePH3E8Hsuz8Faurq7i169f5WA0dqV4G2E+hZA0zsPDw4UrizIlrUNsjwXkGqw3BSIYg91u9w90NltOhyD87nCCtXeI4pjWnh8CxnX8zUosK4z8YqKumgALJmP4V8L5mq9sP9wCx4PRRPy1pbFlygRaGK1R/L0rNRzvOA7OFjBbbY8vT54tKP+/ZnlzfGsU0vSg0W15mUdfw4JiDbxwuIa4595E7HXJTAVdmVGgGzc9KzfcUd7eZubMuIHBNStMaCHe45kWphzqWIDsHWXhZF264uA8H13CSctraJ4z70Gb5zdbcmJM+nM8nNtHLGeViepb3/r2Odr7mdC+9a1v/0nrhbNvffukrRfOvvXtk7ZeOPvWt0/aeuHsW98+aeuFs299+6TtfxmmBEYI4tfrAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + } + ] +} \ No newline at end of file diff --git a/tutorials/optimviz/clip/CLIP_Feeling_Wheel_Atlas_OptimViz.ipynb b/tutorials/optimviz/clip/CLIP_Feeling_Wheel_Atlas_OptimViz.ipynb new file mode 100644 index 0000000000..d5996e93bd --- /dev/null +++ b/tutorials/optimviz/clip/CLIP_Feeling_Wheel_Atlas_OptimViz.ipynb @@ -0,0 +1,3825 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "CLIP_Feeling_Wheel_Atlas_OptimViz.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "3939b01ef1e84b6e94b97336a17c796d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_88cb12c423ed46baa544909a6b11b972", + "IPY_MODEL_6fd4eb762777484f8c8087b907695bd7", + "IPY_MODEL_88afad4bbd0f416c8382b05cf4239ba9" + ], + "layout": "IPY_MODEL_bfc8b8a2f1bc4691acb0104174d7908e" + } + }, + "88cb12c423ed46baa544909a6b11b972": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_854f5482e8c74aecb6f53a52e525cf37", + "placeholder": "​", + "style": "IPY_MODEL_d367de665c6e4d9192430f81bb887ba8", + "value": "100%" + } + }, + "6fd4eb762777484f8c8087b907695bd7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c9200fde7833431fbdb4dafef07a392e", + "max": 264, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6973f0e38cf24aa3b3869047262eac76", + "value": 264 + } + }, + "88afad4bbd0f416c8382b05cf4239ba9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_419b8ee305f34cb99d24e4ee92d8089f", + "placeholder": "​", + "style": "IPY_MODEL_a9b2b4383bc84b2cb42f4c998c08e9b4", + "value": " 264/264 [03:53<00:00, 1.13it/s]" + } + }, + "bfc8b8a2f1bc4691acb0104174d7908e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "854f5482e8c74aecb6f53a52e525cf37": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d367de665c6e4d9192430f81bb887ba8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c9200fde7833431fbdb4dafef07a392e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6973f0e38cf24aa3b3869047262eac76": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "419b8ee305f34cb99d24e4ee92d8089f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a9b2b4383bc84b2cb42f4c998c08e9b4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "da89e2869dfc4d0598dc1d2d6710f6f1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_50f094cec7f84c7f835f83eb2b05f0cf", + "IPY_MODEL_03f66d236f354cd98480bf886788406a", + "IPY_MODEL_628b3fb6f9ef4c1f80ed9d0e0826fc09" + ], + "layout": "IPY_MODEL_b318e95993a545a6be6e9d009bb407fe" + } + }, + "50f094cec7f84c7f835f83eb2b05f0cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d80f8b15dd740639934f97ae4ff1b49", + "placeholder": "​", + "style": "IPY_MODEL_e78b6dd5af3b4bb39a302118e64dc866", + "value": "100%" + } + }, + "03f66d236f354cd98480bf886788406a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_352c55819a8a4762b436894cecbef9ea", + "max": 264, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_19a665933d7a4559a69334a4bdea39e2", + "value": 264 + } + }, + "628b3fb6f9ef4c1f80ed9d0e0826fc09": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c585a91accbb4be9b003f396d8d95a3c", + "placeholder": "​", + "style": "IPY_MODEL_c88cd02d596f49c18d0a55758a8c079b", + "value": " 264/264 [03:53<00:00, 1.13it/s]" + } + }, + "b318e95993a545a6be6e9d009bb407fe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d80f8b15dd740639934f97ae4ff1b49": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e78b6dd5af3b4bb39a302118e64dc866": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "352c55819a8a4762b436894cecbef9ea": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "19a665933d7a4559a69334a4bdea39e2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c585a91accbb4be9b003f396d8d95a3c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c88cd02d596f49c18d0a55758a8c079b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "172a235ad7a3434188011c33c5195e15": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d2a65705f49a4b0d95a9d694f1e01e56", + "IPY_MODEL_2ac6de181f774999a867586581372311", + "IPY_MODEL_6b449c3f16b04985b803f618188b19d9" + ], + "layout": "IPY_MODEL_c5e780f6c1e14891a449989d1305f165" + } + }, + "d2a65705f49a4b0d95a9d694f1e01e56": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5562f40d76e943c2ae1884a8ae5f03a1", + "placeholder": "​", + "style": "IPY_MODEL_623160a036d14525a61d0e3d18e61582", + "value": "100%" + } + }, + "2ac6de181f774999a867586581372311": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2be09a5ac7df45d99ffe6d424162acbc", + "max": 264, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3413ef5205fe43b2831d46e6929a36fc", + "value": 264 + } + }, + "6b449c3f16b04985b803f618188b19d9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_722a82130da24ba29a719ae1f9ed35f4", + "placeholder": "​", + "style": "IPY_MODEL_48d60f2c3bfd428a87b6951f94cd462b", + "value": " 264/264 [03:54<00:00, 1.13it/s]" + } + }, + "c5e780f6c1e14891a449989d1305f165": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5562f40d76e943c2ae1884a8ae5f03a1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "623160a036d14525a61d0e3d18e61582": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2be09a5ac7df45d99ffe6d424162acbc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3413ef5205fe43b2831d46e6929a36fc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "722a82130da24ba29a719ae1f9ed35f4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "48d60f2c3bfd428a87b6951f94cd462b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6ed5609d18c74edbb70fb50b0ab28cda": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6e46b4a8dbdb424db0dff8c3a7542798", + "IPY_MODEL_d5b743857aaa45fb830a1fdb426f4feb", + "IPY_MODEL_c16a5579f892425e8d097ced46221998" + ], + "layout": "IPY_MODEL_dc4b054f29a04c168edddb4cbce205de" + } + }, + "6e46b4a8dbdb424db0dff8c3a7542798": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e301b18e9b044b67953a5b7fe51adfd7", + "placeholder": "​", + "style": "IPY_MODEL_71cafae5029d49428b1a882306655783", + "value": "100%" + } + }, + "d5b743857aaa45fb830a1fdb426f4feb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e004f56cb09042e9a2080822cefce8fc", + "max": 16, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8df47b599da845dfb384ffc8ddeb1648", + "value": 16 + } + }, + "c16a5579f892425e8d097ced46221998": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_411918086d7c477d99536bb75aab3989", + "placeholder": "​", + "style": "IPY_MODEL_91c8335def32443ba9d6be17bac532b7", + "value": " 16/16 [00:03<00:00, 4.78it/s]" + } + }, + "dc4b054f29a04c168edddb4cbce205de": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e301b18e9b044b67953a5b7fe51adfd7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71cafae5029d49428b1a882306655783": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e004f56cb09042e9a2080822cefce8fc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8df47b599da845dfb384ffc8ddeb1648": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "411918086d7c477d99536bb75aab3989": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "91c8335def32443ba9d6be17bac532b7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "869f48d14c6c4ae79b1aef9bbe655cae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d830716e7d4c4bfca4405932bd35767f", + "IPY_MODEL_8bcc28c72bce4d148bc3d87822e4efa6", + "IPY_MODEL_5e2d1077918846ca9f54912ee3d2fa61" + ], + "layout": "IPY_MODEL_29738bae79b940e1ac4f50cb57f21996" + } + }, + "d830716e7d4c4bfca4405932bd35767f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c03bff656a804434be614309a4e2fab8", + "placeholder": "​", + "style": "IPY_MODEL_7215b1f2a3f146b89adacedb5d267128", + "value": "100%" + } + }, + "8bcc28c72bce4d148bc3d87822e4efa6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_23e9bc1f0d5443d2a98e1b17c8ccaa39", + "max": 16, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9ee092c8b18e4e2abd9ae2c070381537", + "value": 16 + } + }, + "5e2d1077918846ca9f54912ee3d2fa61": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d74fda03072d4376998617c439d1e9ec", + "placeholder": "​", + "style": "IPY_MODEL_f418c6b2169c4628aa5d1f4911dfa11e", + "value": " 16/16 [00:03<00:00, 4.66it/s]" + } + }, + "29738bae79b940e1ac4f50cb57f21996": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c03bff656a804434be614309a4e2fab8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7215b1f2a3f146b89adacedb5d267128": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "23e9bc1f0d5443d2a98e1b17c8ccaa39": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9ee092c8b18e4e2abd9ae2c070381537": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d74fda03072d4376998617c439d1e9ec": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f418c6b2169c4628aa5d1f4911dfa11e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "51d3b8fe6f4b422c8d44438b435580c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d0cbd401a332436a8f185ffe5f8a0889", + "IPY_MODEL_fa5a0cf4afca47018818567e491371ad", + "IPY_MODEL_79f175eee6f5495a964b42c7b4d43df7" + ], + "layout": "IPY_MODEL_9a5389cb14a24b6f8a9ae394f4f2e578" + } + }, + "d0cbd401a332436a8f185ffe5f8a0889": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_551181532bfc4ede96bf3b517b4855ea", + "placeholder": "​", + "style": "IPY_MODEL_32b41f762fb14b22908f3966d3a5a399", + "value": "100%" + } + }, + "fa5a0cf4afca47018818567e491371ad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_214ea1eaaa0243feb495b8e6d410f56f", + "max": 16, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f49ba61b40384cb3a33600785e6527d4", + "value": 16 + } + }, + "79f175eee6f5495a964b42c7b4d43df7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d9514becd4004ff68b767937181001e2", + "placeholder": "​", + "style": "IPY_MODEL_aeadaed6527e41ba8acc4c94d5563ce9", + "value": " 16/16 [00:03<00:00, 4.64it/s]" + } + }, + "9a5389cb14a24b6f8a9ae394f4f2e578": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "551181532bfc4ede96bf3b517b4855ea": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "32b41f762fb14b22908f3966d3a5a399": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "214ea1eaaa0243feb495b8e6d410f56f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f49ba61b40384cb3a33600785e6527d4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d9514becd4004ff68b767937181001e2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aeadaed6527e41ba8acc4c94d5563ce9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Feeling Wheel Atlas\n", + "\n", + "This notebook demonstrates the use of the captum.optim submodule for the creation of Feeling Wheel Atlases for the CLIP ResNet 50x4 model from OpenAI. This tutorial is based on information from the [Multimodal Neurons in Artificial Neural Networks](https://distill.pub/2021/multimodal-neurons/) research paper." + ], + "metadata": { + "id": "T0-6x6onh6ji" + } + }, + { + "cell_type": "code", + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import copy\n", + "import time\n", + "from typing import Callable, Dict, List, Optional, Tuple, Union\n", + "\n", + "import captum.optim as opt\n", + "import torch\n", + "import torch.nn.functional as F\n", + "from captum.optim.models import clip_resnet50x4_text, clip_resnet50x4_image\n", + "from tqdm.auto import tqdm\n", + "\n", + "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")" + ], + "metadata": { + "id": "xsopuYRAGchh" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "We start off by defining a variety of helper functions to aid in creating our atlas visualizations." + ], + "metadata": { + "id": "VcQB2OFgY0RE" + } + }, + { + "cell_type": "code", + "source": [ + "LossFunction = Callable[[Dict[torch.nn.Module, Optional[torch.Tensor]]], torch.Tensor]\n", + "\n", + "\n", + "def get_facet_weights(facet: str) -> List[torch.Tensor]:\n", + " \"\"\"\n", + " Select from a list of pretrained facets of different themes / concepts. This\n", + " function returns pretrained facets for the CLIP ResNet 50x4 model's\n", + " `layer3[0].relu3`, `layer3[2].relu3`, `layer3[4].relu3`, `layer3[6].relu3`, &\n", + " `layer3[8].relu3` layers.\n", + "\n", + " The pretrained facets were created by training linear probes to discriminate\n", + " between images from a certain concept / theme, and generic natural images.\n", + "\n", + " Choices are one of:\n", + " \"face\" for close ups of human faces.\n", + " \"text\" for text symbols like letters and numbers.\n", + " \"logo\" for organization / group symbols & designs.\n", + " \"pose\" for humans in various poses.\n", + " \"arch\" for architecture.\n", + " \"nature\" for outdoors and nature.\n", + " \"indoor\" for building interiors.\n", + "\n", + " Args:\n", + "\n", + " facet (str): The desired set of facets to use for the CLIP ResNet 50x4 model's\n", + " lower layers. See above for the valid choices.\n", + "\n", + " Returns:\n", + " facets (list of torch.Tensor): A list of facets for the lower layers.\n", + " \"\"\"\n", + " facet_list = [\"face\", \"text\", \"logo\", \"pose\", \"arch\", \"nature\", \"indoor\"]\n", + " assert facet in facet_list\n", + " idx = facet_list.index(facet)\n", + " url = \"https://pytorch.s3.amazonaws.com/models/captum/clip_resnet50x4_facets.pt\"\n", + " facets_weights = torch.hub.load_state_dict_from_url(\n", + " url, progress=True, check_hash=False\n", + " )[idx]\n", + " return facets_weights\n", + "\n", + "\n", + "def setup_channel_facet_objective(\n", + " channel_vecs: torch.Tensor,\n", + " model: torch.nn.Module,\n", + " facet: Union[str, List[torch.Tensor]] = \"face\",\n", + " device: torch.device = torch.device(\"cpu\"),\n", + " strength: Union[float, List[float]] = 3.3667,\n", + " ultimate_target: Optional[torch.nn.Module] = None,\n", + " lower_target_layers: Optional[List[torch.nn.Module]] = None,\n", + ") -> LossFunction:\n", + " \"\"\"\n", + " Render a set of channels or vectors with a chosen facet.\n", + "\n", + " Args:\n", + "\n", + " channel_vecs (torch.Tensor): A list set of channel direction vectors stacked\n", + " across the batch dimension. If only a single channel vector is given, then\n", + " no batch targeting will be used.\n", + " model (nn.Module): A PyTorch model instance.\n", + " facet (str or list of torch.Tensor, optional): The desired facet theme / concept\n", + " to use for facet loss. To use the available pretrained facets trained on\n", + " the ResNet 50x4 model, choose one of; \"face\", \"text\", \"logo\", \"pose\",\n", + " \"arch\", \"nature\", or \"indoor\". For custom facets, use a list of tensors\n", + " that correspond to the lower_target_layers.\n", + " Default: \"face\"\n", + " device (torch.device, optional): The device to use.\n", + " Default: torch.device(\"cpu\")\n", + " strength (float, list of float, optional): A single float or list of floats to\n", + " use for batch dimension weighting. If using a single value, then it will\n", + " be applied to all batch dimensions equally. Otherwise a list of floats\n", + " with a shape of: [start, end] should be used for torch.linspace to\n", + " calculate the step values in between. Set to None for no weighting.\n", + " Default: 3.3667\n", + " ultimate_target (nn.Module, optional): The main target layer that we are\n", + " visualizing targets from. This is normally the penultimate layer of the\n", + " model.\n", + " Default: model.layer4[5]\n", + " lower_target_layers (list of nn.Module, optional): A list of lower target\n", + " layers that we have facet weights for, to use in the FacetLoss objectives.\n", + " These target layers should be below the ultimate_target layer in the\n", + " model.\n", + " Default: [model.layer3[0].relu3, model.layer3[2].relu3,\n", + " model.layer3[4].relu3, model.layer3[6].relu3, model.layer3[8].relu3]\n", + "\n", + " Returns:\n", + " loss_fn (LossFunction): A loss objective ready for use.\n", + " \"\"\"\n", + " # Main target layer\n", + " ultimate_target = ultimate_target or model.layer4[-1]\n", + "\n", + " if channel_vecs.dim() == 1:\n", + " channel_vecs = channel_vecs.unsqueeze(0)\n", + " assert channel_vecs.dim() == 2\n", + "\n", + " # Determine whether or not batch targeting is required\n", + " use_batch = channel_vecs.dim() > 1\n", + "\n", + " # Setup main target losses\n", + " loss_fn_list, vec_list = [], []\n", + "\n", + " for b, v in enumerate(channel_vecs):\n", + " assert v.dim() == 1\n", + " channel_vec = v.to(device)\n", + " vec_loss_fn = opt.loss.VectorLoss(\n", + " target=ultimate_target,\n", + " vec=channel_vec,\n", + " batch_index=b if use_batch else None,\n", + " )\n", + " loss_fn_list.append(vec_loss_fn)\n", + " vec_list.append(channel_vec)\n", + "\n", + " # Load facet weights\n", + " if isinstance(facet, str):\n", + " facet_weights = get_facet_weights(facet)\n", + " facet_weights = [x.to(device) for x in facet_weights]\n", + " else:\n", + " assert all([isinstance(t, torch.Tensor) for t in facet])\n", + " facet_weights = [x.to(device) for x in facet]\n", + "\n", + " # Lower target layers\n", + " lower_target_layers = lower_target_layers or [\n", + " model.layer3[0].relu3,\n", + " model.layer3[2].relu3,\n", + " model.layer3[4].relu3,\n", + " model.layer3[6].relu3,\n", + " model.layer3[8].relu3,\n", + " ]\n", + "\n", + " assert len(lower_target_layers) == len(facet_weights)\n", + "\n", + " # Setup Facet Losses for all of the lower layers\n", + " batch_facet_loss_fn_list = []\n", + " for b, vec in enumerate(vec_list):\n", + " facet_loss_fn_list = [\n", + " opt.loss.FacetLoss(\n", + " vec=vec,\n", + " ultimate_target=ultimate_target,\n", + " layer_target=layer_target,\n", + " strength=strength,\n", + " facet_weights=f_weights,\n", + " batch_index=b if use_batch else None,\n", + " )\n", + " for layer_target, f_weights in zip(lower_target_layers, facet_weights)\n", + " ]\n", + " batch_facet_loss_fn_list += facet_loss_fn_list\n", + " return opt.loss.sum_loss_list(loss_fn_list + batch_facet_loss_fn_list)\n", + "\n", + "\n", + "def visualize(\n", + " model: torch.nn.Module,\n", + " image: opt.images.ImageParameterization,\n", + " loss_fn: opt.loss.Loss,\n", + " lr: float = 0.008,\n", + " n_iter: int = 256,\n", + " alpha: bool = False,\n", + ") -> None:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " model (nn.Module): A PyTorch model instance.\n", + " image (ImageParameterization): A Captum ImageParameterization instance.\n", + " loss_fn (LossFunction): A Captum loss function instance.\n", + " lr (float, optional): The learning rate to use with the Adam optimizer.\n", + " Default: 0.008\n", + " n_iter (int, optional): The number of iterations to perform optimization for.\n", + " Default: 256\n", + " alpha (bool, optional): Whether or not to optimize with transparency.\n", + " Default: False\n", + " \"\"\"\n", + " # Define our transforms\n", + " transforms = opt.transforms.TransformationRobustness(crop_or_pad_output=True)\n", + " if alpha:\n", + " transforms = torch.nn.Sequential(transforms, opt.transforms.BlendAlpha())\n", + " loss_fn = loss_fn + (\n", + " opt.loss.L2Mean(transforms[0], channel_index=3, constant=0.0) ** 0.5\n", + " )\n", + " obj = opt.InputOptimization(model, loss_fn, image, transform=transforms)\n", + " history = obj.optimize(opt.optimization.n_steps(n_iter), lr=lr)\n", + "\n", + "\n", + "def render_batch(\n", + " vecs: torch.Tensor,\n", + " model: torch.nn.Module,\n", + " device: torch.device = torch.device(\"cpu\"),\n", + " alpha: bool = False,\n", + " facet: Union[str, List[torch.Tensor]] = \"face\",\n", + " n_iter: int = 256,\n", + " lr: float = 0.008,\n", + " image_size: Tuple[int, int] = (288, 288),\n", + ") -> List[torch.Tensor]:\n", + " \"\"\"\n", + " Batch direction vector rendering function.\n", + "\n", + " Args:\n", + "\n", + " vecs (torch.tensor): A set of direction vectors to render, with a\n", + " shape of: [num_vecs, num_channels]\n", + " model (nn.Module): A PyTorch model instance.\n", + " device (torch.device, optional): The device to use.\n", + " Default: torch.device(\"cpu\")\n", + " alpha (bool, optional): Whether or not to optimize with transparency.\n", + " Default: False\n", + " facet (str or list of torch.Tensor, optional): The desired facet theme / concept\n", + " to use for facet loss. To use the available pretrained facets trained on\n", + " the ResNet 50x4 model, choose one of; \"face\", \"text\", \"logo\", \"pose\",\n", + " \"arch\", \"nature\", or \"indoor\". For custom facets, use a list of tensors\n", + " that correspond to the lower_target_layers.\n", + " Default: \"face\"\n", + " n_iter (int, optional): The number of iterations to perform optimization for.\n", + " Default: 256\n", + " lr (float, optional): The learning rate to use with the Adam optimizer.\n", + " Default: 0.008\n", + " image_size (tuple of int): The height and width to use for the rendering image\n", + " dimensions, with a shape of: (Height, Width).\n", + " Default: (288, 288)\n", + "\n", + " Returns:\n", + " images (list of torch.Tensor): A list of rendered images corresponding to the\n", + " input direction vectors.\n", + " \"\"\"\n", + " assert vecs.dim() == 2\n", + " # Use \"face\" facets\n", + " loss_fn = setup_channel_facet_objective(\n", + " channel_vecs=vecs, model=model, facet=facet, device=device, strength=3.3667\n", + " )\n", + "\n", + " # Setup image parameterization\n", + " channels = 3 if not alpha else 4\n", + " image = opt.images.NaturalImage(\n", + " image_size, batch=vecs.shape[0], channels=channels\n", + " ).to(device)\n", + "\n", + " # L2 Penalty to improve visualization\n", + " loss_fn = loss_fn - (10.0 * opt.loss.L2Mean(image))\n", + "\n", + " # Render the visualizations\n", + " visualize(model, image, loss_fn, lr=lr, n_iter=n_iter, alpha=alpha)\n", + "\n", + " images = image().detach()\n", + " return [images[t : t + 1, ...].clone() for t in range(vecs.shape[0])]\n", + "\n", + "\n", + "def compute_final_losses(\n", + " atlas_images: torch.Tensor,\n", + " vecs: torch.Tensor,\n", + " model: torch.nn.Module,\n", + " device: torch.device = torch.device(\"cpu\"),\n", + " facet: Union[str, List[torch.Tensor]] = \"face\",\n", + " strength: float = 3.3667,\n", + " l2_penalty: float = 10.0,\n", + ") -> torch.Tensor:\n", + " \"\"\"\n", + " Calculate final losses for each atlas cell individually, so that the losses can be\n", + " used to compare quality across multiple attempts.\n", + "\n", + " Args:\n", + "\n", + " atlas_images (torch.Tensor): A set of NCHW image tensors stacked across the\n", + " batch dimension.\n", + " vecs (torch.tensor): A set of direction vectors stacked across the batch\n", + " dimension in the shape of: [num_vecs, num_channels]. The order of the vecs\n", + " should correspond to atlas_images.\n", + " model (nn.Module): A PyTorch model instance.\n", + " device (torch.device, optional): The device to use.\n", + " Default: torch.device(\"cpu\")\n", + " facet (str or list of torch.Tensor, optional): The desired facet theme / concept\n", + " to use for facet loss. To use the available pretrained facets trained on\n", + " the ResNet 50x4 model, choose one of; \"face\", \"text\", \"logo\", \"pose\",\n", + " \"arch\", \"nature\", or \"indoor\". For custom facets, use a list of tensors\n", + " that correspond to the lower_target_layers.\n", + " Default: \"face\"\n", + " strength (float, list of float, optional): A single float or list of floats to\n", + " use for batch dimension weighting. If using a single value, then it will\n", + " be applied to all batch dimensions equally. Otherwise a list of floats\n", + " with a shape of: [start, end] should be used for torch.linspace to\n", + " calculate the step values in between. Set to None for no weighting.\n", + " Default: 3.3667\n", + " l2_penalty (float, optional): The same L2 penalty weighting used to render the\n", + " atlas_images.\n", + "\n", + " Returns:\n", + " loss_stack (torch.Tensor): A set of losses for each individual image in\n", + " atlas_images.\n", + " \"\"\"\n", + " assert vecs.dim() == 2 and vecs.shape[0] == atlas_images.shape[0]\n", + "\n", + " final_losses = []\n", + " for v, img in tqdm(zip(vecs, atlas_images), total=vecs.shape[0]):\n", + " img = img.unsqueeze(0) if img.dim() == 3 else img\n", + " assert img.dim() == 4 and v.dim() == 1\n", + "\n", + " loss_fn = setup_channel_facet_objective(\n", + " channel_vecs=v, model=model, facet=facet, device=device, strength=strength\n", + " )\n", + " img_loss = loss_fn(opt.models.collect_activations(model, loss_fn.target, img))\n", + "\n", + " if l2_penalty != 0.0:\n", + " penalty_model = torch.nn.Identity()\n", + " loss_fn = l2_penalty * opt.loss.L2Mean(penalty_model)\n", + " img_loss = img_loss.mean() - loss_fn({penalty_model: img}).mean()\n", + "\n", + " final_losses.append(img_loss.mean().detach().cpu())\n", + " return torch.stack(final_losses)\n", + "\n", + "\n", + "def create_alpha_mask(\n", + " h: int,\n", + " w: int,\n", + " coords: List[Union[Tuple[int, int, int], Tuple[int, int]]],\n", + " grid_size: Tuple[int, int],\n", + " device: torch.device = torch.device(\"cpu\"),\n", + ") -> torch.tensor:\n", + " \"\"\"\n", + " Create an alpha mask to make an atlas background transparent.\n", + "\n", + " Args:\n", + "\n", + " h (int): The height of each cell.\n", + " w (int): the width of each cell.\n", + " coords (List[Union[Tuple[int, int, int], Tuple[int, int]]]): A list of\n", + " atlas coordinates to use for creating the mask.\n", + " grid_size (Tuple[int, int]): The grid_size of grid cells to use. The grid_size\n", + " variable should be in the format of: [width, height].\n", + " device (torch.device, optional): The device that the cells are on.\n", + " Default: torch.device(\"cpu\")\n", + "\n", + " Returns:\n", + " alpha_mask (torch.Tensor): An alpha mask tensor used to make an atlas\n", + " background transparent.\n", + " \"\"\"\n", + "\n", + " return opt.atlas.create_atlas(\n", + " [torch.ones(1, 1, h, w, device=device) for _ in coords],\n", + " coords,\n", + " grid_size=grid_size,\n", + " base_tensor=torch.zeros,\n", + " )" + ], + "metadata": { + "id": "q-iE1p75tAwR" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Dataset: The Feeling Wheel Construct\n", + "\n", + "Psychologists have spent years researching how to organize human feelings, and have identified a number of larger structures that appear across cultures & regions. For this tutorial, we'll use the 'feeling wheel' structure for analyzing our model. The research paper's authors have already organized their feeling wheel words into a 2D structure, and thus we don't have to perform any calculations for determining the shape. Each word will get its own atlas grid cell. All we need to do is collect, sort, and render each of the items in the feeling wheel.\n", + "\n", + "The list of feelings below is based on [The Feeling Wheel: A Tool for Expanding Awareness of Emotions and Increasing Spontaneity and Intimacy](https://doi.org/10.1177/036215378201200411), and more modern Emotion Vocabulary Wheels like [this one](https://observablehq.com/@mbostock/emotion-wheel). We will use this list of feelings as our input data for analyzing the CLIP model." + ], + "metadata": { + "id": "2gnv4Rvt2qIg" + } + }, + { + "cell_type": "code", + "source": [ + "emotion_wheel = [\n", + " \"aroused\", \"inspired\", \"insecure\", \"sad\", \"victimized\", \"eager\", \"weak\",\n", + " \"insignificant\", \"repelled\", \"energetic\", \"worried\", \"hurt\", \"abandoned\", \"awful\",\n", + " \"empty\", \"exposed\", \"hesitant\", \"busy\", \"fearful\", \"helpless\", \"let down\",\n", + " \"remorseful\", \"sensitive\", \"nauseated\", \"guilty\", \"jealous\", \"proud\", \"rushed\",\n", + " \"frightened\", \"anxious\", \"despair\", \"grief\", \"fragile\", \"bad\", \"distant\",\n", + " \"intimate\", \"successful\", \"inquisitive\", \"courageous\", \"nervous\", \"surprised\",\n", + " \"overwhelmed\", \"amazed\", \"out of control\", \"embarrassed\", \"violated\", \"lonely\",\n", + " \"loving\", \"interesting\", \"curious\", \"thankful\", \"astonished\", \"startled\", \"scared\",\n", + " \"appalled\", \"confused\", \"worthless\", \"isolated\", \"numb\", \"rejected\", \"creative\",\n", + " \"inadequate\", \"peaceful\", \"respected\", \"excited\", \"shocked\", \"horrified\",\n", + " \"excluded\", \"disrespected\", \"humiliated\", \"judgmental\", \"skeptical\", \"detestable\",\n", + " \"valued\", \"confident\", \"tired\", \"happy\", \"hopeful\", \"accepted\", \"joyful\",\n", + " \"dismissive\", \"annoyed\", \"disappointed\", \"bored\", \"depressed\", \"stressed\",\n", + " \"dismayed\", \"unfocused\", \"optimistic\", \"trusting\", \"content\", \"resentful\",\n", + " \"disapproving\", \"disillusioned\", \"apathetic\", \"indifferent\", \"betrayed\", \"sleepy\",\n", + " \"withdrawn\", \"free\", \"awe\", \"cheeky\", \"frustrated\", \"ashamed\", \"indignant\",\n", + " \"critical\", \"perplexed\", \"aggressive\", \"revolted\", \"persecuted\", \"playful\",\n", + " \"pressured\", \"infuriated\", \"disgusted\", \"threatened\", \"provoked\", \"powerful\",\n", + " \"furious\", \"angry\", \"mad\", \"hostile\"]" + ], + "metadata": { + "id": "pxCCPC26Glqs" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### The Dataset Shape\n", + "\n", + "We can easily view the 2D spherical shape of the feeling wheel data that we wish to visualize as an atlas like so." + ], + "metadata": { + "id": "9NMGY1YqJivB" + } + }, + { + "cell_type": "code", + "source": [ + "# Num cells per row\n", + "n_cells = [3, 7, 9, 11, 11, 13]\n", + "n_cells = n_cells + [13] + n_cells[::-1]\n", + "\n", + "\n", + "c = 0\n", + "for n in n_cells:\n", + " c += n\n", + " n_cells = \", \".join(emotion_wheel[c-n:c])\n", + " print(n_cells.center(137, \" \"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "sXNYcfNcbOCW", + "outputId": "3855ad44-a9b8-4bc5-d630-e1688c18ff9d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " aroused, inspired, insecure \n", + " sad, victimized, eager, weak, insignificant, repelled, energetic \n", + " worried, hurt, abandoned, awful, empty, exposed, hesitant, busy, fearful \n", + " helpless, let down, remorseful, sensitive, nauseated, guilty, jealous, proud, rushed, frightened, anxious \n", + " despair, grief, fragile, bad, distant, intimate, successful, inquisitive, courageous, nervous, surprised \n", + " overwhelmed, amazed, out of control, embarrassed, violated, lonely, loving, interesting, curious, thankful, astonished, startled, scared\n", + " appalled, confused, worthless, isolated, numb, rejected, creative, inadequate, peaceful, respected, excited, shocked, horrified \n", + " excluded, disrespected, humiliated, judgmental, skeptical, detestable, valued, confident, tired, happy, hopeful, accepted, joyful \n", + " dismissive, annoyed, disappointed, bored, depressed, stressed, dismayed, unfocused, optimistic, trusting, content \n", + " resentful, disapproving, disillusioned, apathetic, indifferent, betrayed, sleepy, withdrawn, free, awe, cheeky \n", + " frustrated, ashamed, indignant, critical, perplexed, aggressive, revolted, persecuted, playful \n", + " pressured, infuriated, disgusted, threatened, provoked, powerful, furious \n", + " angry, mad, hostile \n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Atlas Setup" + ], + "metadata": { + "id": "2Rx5fd-msYjl" + } + }, + { + "cell_type": "markdown", + "source": [ + "### The CLIP Tokenizer\n", + "\n", + "We setup the tokenizer for the CLIP model." + ], + "metadata": { + "id": "fdnc_OIoAu_u" + } + }, + { + "cell_type": "code", + "source": [ + "clip_tokenizer = opt.transforms.CLIPTokenizer(pretrained_merges=True)" + ], + "metadata": { + "id": "Coq7XUpHAtrk" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Sample Collection\n", + "\n", + "To create the emotion wheel atlas, we first need to collect samples using our list of feelings. To do this, we will use 3 different prompts for each emotion / feeling word to ensure we have enough data.\n", + "\n", + "To collect the samples, we first set up a class to help combine the image and text portions of our model into a single model. We then collect attributions for the target layer for different text inputs, while setting the image inputs to be all zeros. " + ], + "metadata": { + "id": "mQlYxrN4hVmH" + } + }, + { + "cell_type": "code", + "source": [ + "class CLIP_ResNet50x4(torch.nn.Module):\n", + " def __init__(\n", + " self, image_model: torch.nn.Module, text_model: torch.nn.Module\n", + " ) -> None:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " image_model (nn.Module): A PyTorch model instance that takes image inputs.\n", + " text_model (nn.Module): A PyTorch model instance that takes text inputs.\n", + " \"\"\"\n", + " super().__init__()\n", + " self.image_model = image_model\n", + " self.text_model = text_model\n", + "\n", + " def forward(\n", + " self, x: Union[Tuple[torch.Tensor, torch.Tensor], List[torch.Tensor]]\n", + " ) -> torch.Tensor:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " x (tuple or list of torch.Tensor): A tuple or list of tensors, with the\n", + " format: [image_tensor, text_tensor].\n", + "\n", + " Returns:\n", + " logits_per_text (torch.Tensor): The model output.\n", + " \"\"\"\n", + " assert len(x) == 2\n", + " image, text = x\n", + " image_features = self.image_model(image)\n", + " text_features = self.text_model(text)\n", + "\n", + " image_features = image_features / image_features.norm(dim=-1, keepdim=True)\n", + " text_features = text_features / text_features.norm(dim=-1, keepdim=True)\n", + "\n", + " logit_scale = self.text_model.logit_scale.exp()\n", + " logits_per_image = logit_scale * image_features @ text_features.t()\n", + " logits_per_text = logit_scale * text_features @ image_features.t()\n", + " return logits_per_text\n", + "\n", + "\n", + "def get_text_layer_attr(\n", + " model: torch.nn.Module, layer_target: torch.nn.Module, text_inputs: torch.Tensor\n", + ") -> torch.Tensor:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " model (nn.Module): A PyTorch model instance.\n", + " layer_target (nn.Module): A target layer instance.\n", + " text_inputs (torch.Tensor): A text input to pass through the text portion of the\n", + " model.\n", + "\n", + " Returns\n", + " grad (torch.Tensor): Attributions for the target layer.\n", + " \"\"\"\n", + " grad = []\n", + " for i in range(text_inputs.shape[0]):\n", + " model_inputs = (\n", + " torch.nn.Parameter(torch.zeros(1, 3, 288, 288).to(text_inputs.device)),\n", + " text_inputs[i : i + 1].clone(),\n", + " )\n", + " attr_activations = opt.models.collect_activations(\n", + " model, [layer_target, model], model_inputs\n", + " )\n", + " target_activ = attr_activations[layer_target]\n", + " logit_activ = attr_activations[model]\n", + " grad_b = torch.autograd.grad(\n", + " outputs=logit_activ,\n", + " inputs=[target_activ],\n", + " grad_outputs=torch.ones_like(logit_activ),\n", + " )[0].detach()\n", + " grad.append(grad_b)\n", + " return torch.cat(grad, 0)\n", + "\n", + "\n", + "def collect_text_prompt_attr(\n", + " full_clip_model: torch.nn.Module,\n", + " target: torch.nn.Module,\n", + " text_list: List[str],\n", + " prompt_text: List[str] = [\"\", \"\"],\n", + " batch_size: int = 8,\n", + " device: torch.device = torch.device(\"cpu\"),\n", + ") -> List[torch.Tensor]:\n", + " \"\"\"\n", + " Collect attribution samples for a list of words with a specified prompt.\n", + "\n", + " Args:\n", + "\n", + " full_clip_model (nn.Module): A PyTorch model instance.\n", + " target (nn.Module): A target layer instance.\n", + " text_list (list of str): A list of words to use as inputs for the text portion\n", + " of the full_clip_model.\n", + " prompt_text (list of str, optional): Text strings to use for part 1 and part 2\n", + " of the prompt, with words from text_list being placed in the middle.\n", + " Default: [\"\", \"\"]\n", + " batch_size (int, optional): The batch size to use when collected samples.\n", + " device (torch.device, optional): The device to place model inputs on before\n", + " sending them through the model.\n", + " Default: torch.device(\"cpu\")\n", + "\n", + " Returns:\n", + " layer_attr (list of torch.Tensor): A set of layer attributions for the target\n", + " layer.\n", + " labels (list of int): A set of corresponding labels for the tensors in\n", + " layer_attr.\n", + " \"\"\"\n", + " label_idx = list(range(len(text_list)))\n", + " text_activ, labels = [], []\n", + " for i in tqdm(range(0, len(text_list), batch_size)):\n", + " batch_str = text_list[i : i + batch_size]\n", + " batch_prompted = [prompt_text[0] + s + prompt_text[1] for s in batch_str]\n", + " text_inputs = clip_tokenizer(batch_prompted).to(device)\n", + "\n", + " layer_activ = get_text_layer_attr(full_clip_model, target, text_inputs)\n", + " if layer_activ.shape[0] > 1:\n", + " text_activ = text_activ + [\n", + " layer_activ[t : t + 1].clone() for t in range(layer_activ.shape[0])\n", + " ]\n", + " labels = labels + label_idx[i : i + batch_size]\n", + " else:\n", + " text_activ.append(layer_activ)\n", + " labels.append(i)\n", + " return text_activ, labels" + ], + "metadata": { + "id": "RfItmKCkGokS" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "We load both the image and text models, and then place them inside our `CLIP_ResNet50x4` wrapper class to create the full CLIP model." + ], + "metadata": { + "id": "9fNk4UH61Sjt" + } + }, + { + "cell_type": "code", + "source": [ + "clip_model_text = clip_resnet50x4_text(pretrained=True).eval().to(device)\n", + "\n", + "# Load image model with Attention Pooling & without RedirectedReLU\n", + "clip_model_image = (\n", + " clip_resnet50x4_image(\n", + " pretrained=True, replace_relus_with_redirectedrelu=False, use_attnpool=True\n", + " )\n", + " .eval()\n", + " .to(device)\n", + ")\n", + "\n", + "# Create full CLIP model\n", + "clip_model_full = CLIP_ResNet50x4(clip_model_image, clip_model_text)" + ], + "metadata": { + "id": "nXqCG7f31SEb" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "We collect samples from 3 different prompts for every feeling / emotion in the feeling wheel, as described in the paper [here](https://distill.pub/2021/multimodal-neurons/#d-footnote-41). Collecting 3 samples for each of the 121 words will give us a total of 363 samples." + ], + "metadata": { + "id": "7pnw-rfl14Bv" + } + }, + { + "cell_type": "code", + "source": [ + "# Setup layer target\n", + "target = clip_model_full.image_model.layer4[5]\n", + "\n", + "# Desired sample collection batch size\n", + "batch_size = 8\n", + "\n", + "\n", + "# Prompt 1, \"i am feeling {emotion}\"\n", + "prompt_text = [\"i am feeling \", \"\"]\n", + "activation_samples_1, labels_1 = collect_text_prompt_attr(\n", + " clip_model_full,\n", + " target,\n", + " text_list=emotion_wheel,\n", + " prompt_text=prompt_text,\n", + " batch_size=batch_size,\n", + " device=device,\n", + ")\n", + "\n", + "# Prompt 2, \"Me feeling {emotion} on my face\"\n", + "prompt_text = [\"Me feeling \", \" on my face\"]\n", + "activation_samples_2, labels_2 = collect_text_prompt_attr(\n", + " clip_model_full,\n", + " target,\n", + " text_list=emotion_wheel,\n", + " prompt_text=prompt_text,\n", + " batch_size=batch_size,\n", + " device=device,\n", + ")\n", + "\n", + "# Prompt 3, \"a photo of me with a {emotion} expression on my face\"\n", + "prompt_text = [\"a photo of me with a \", \" expression on my face\"]\n", + "activation_samples_3, labels_3 = collect_text_prompt_attr(\n", + " clip_model_full,\n", + " target,\n", + " text_list=emotion_wheel,\n", + " prompt_text=prompt_text,\n", + " batch_size=batch_size,\n", + " device=device,\n", + ")\n", + "\n", + "\n", + "# Concatenate all 3 prompts & corresponding labels\n", + "activation_samples = activation_samples_1 + activation_samples_2 + activation_samples_3\n", + "activation_samples = torch.cat(activation_samples, 0)\n", + "activation_labels = torch.as_tensor(labels_1 + labels_2 + labels_3)" + ], + "metadata": { + "id": "0FWQsxR1GrcJ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 113, + "referenced_widgets": [ + "6ed5609d18c74edbb70fb50b0ab28cda", + "6e46b4a8dbdb424db0dff8c3a7542798", + "d5b743857aaa45fb830a1fdb426f4feb", + "c16a5579f892425e8d097ced46221998", + "dc4b054f29a04c168edddb4cbce205de", + "e301b18e9b044b67953a5b7fe51adfd7", + "71cafae5029d49428b1a882306655783", + "e004f56cb09042e9a2080822cefce8fc", + "8df47b599da845dfb384ffc8ddeb1648", + "411918086d7c477d99536bb75aab3989", + "91c8335def32443ba9d6be17bac532b7", + "869f48d14c6c4ae79b1aef9bbe655cae", + "d830716e7d4c4bfca4405932bd35767f", + "8bcc28c72bce4d148bc3d87822e4efa6", + "5e2d1077918846ca9f54912ee3d2fa61", + "29738bae79b940e1ac4f50cb57f21996", + "c03bff656a804434be614309a4e2fab8", + "7215b1f2a3f146b89adacedb5d267128", + "23e9bc1f0d5443d2a98e1b17c8ccaa39", + "9ee092c8b18e4e2abd9ae2c070381537", + "d74fda03072d4376998617c439d1e9ec", + "f418c6b2169c4628aa5d1f4911dfa11e", + "51d3b8fe6f4b422c8d44438b435580c6", + "d0cbd401a332436a8f185ffe5f8a0889", + "fa5a0cf4afca47018818567e491371ad", + "79f175eee6f5495a964b42c7b4d43df7", + "9a5389cb14a24b6f8a9ae394f4f2e578", + "551181532bfc4ede96bf3b517b4855ea", + "32b41f762fb14b22908f3966d3a5a399", + "214ea1eaaa0243feb495b8e6d410f56f", + "f49ba61b40384cb3a33600785e6527d4", + "d9514becd4004ff68b767937181001e2", + "aeadaed6527e41ba8acc4c94d5563ce9" + ] + }, + "outputId": "51cccc0e-9dba-4f84-826d-5e72120c0481" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/16 [00:00 torch.Tensor:\n", + " \"\"\"\n", + " Perform Sparse Logistic Regression for multiple classes faster than Scikit-learn.\n", + "\n", + " Args:\n", + "\n", + " model (nn.Module): An PyTorch model instance.\n", + " dataloader (torch.utils.data.DataLoader): A PyTorch Dataloader instance.\n", + " num_epochs (int, optional): The number of epochs to train for.\n", + " Default: 264\n", + " lr (float, optional): The desired learning rate to use with the SGD optimizer.\n", + " Default: 0.001\n", + " l1_weight (float, optional): The desired l1 penalty weight to use.\n", + " Default: 0.0001\n", + " l2_weight (float, optional): The desired l2 penalty weight to use.\n", + " Default: 0.0001\n", + " device (torch.device, optional): The device to place training inputs on before\n", + " sending them through the model.\n", + " Default: torch.device(\"cpu\")\n", + " verbose (bool, optional): Whether or not to print loss and accuracy after\n", + " every epoch.\n", + " Default: False\n", + "\n", + " Returns:\n", + " weights (torch.Tensor): The weights of the best scoring model from the\n", + " training session.\n", + " best_acc (float): The training accuracy for the returned weights.\n", + " \"\"\"\n", + " criterion = torch.nn.CrossEntropyLoss()\n", + " start_time = time.time()\n", + " optimizer = torch.optim.SGD(\n", + " model.parameters(), lr=lr, momentum=0.9, weight_decay=l2_weight\n", + " )\n", + "\n", + " best_model, best_acc = copy.deepcopy(model), 0.0\n", + "\n", + " for epoch in tqdm(range(num_epochs)):\n", + " if verbose:\n", + " print(\"Epoch {}/{}\".format(epoch + 1, num_epochs))\n", + " print(\"-\" * 12)\n", + "\n", + " epoch_loss, epoch_acc = 0.0, 0.0\n", + "\n", + " for inputs, labels in dataloader:\n", + " inputs, labels = inputs.to(device), labels.to(device)\n", + " optimizer.zero_grad()\n", + "\n", + " with torch.enable_grad():\n", + " output = model(inputs)\n", + "\n", + " loss = criterion(output, labels)\n", + " preds = torch.max(output, 1)[1]\n", + "\n", + " # L1 loss moves unimportant features towards zero\n", + " if l1_weight != 0.0:\n", + " l1_penalty = l1_weight * model.weight.abs().sum()\n", + " total_loss = loss + l1_penalty\n", + " else:\n", + " total_loss = loss\n", + "\n", + " total_loss.backward()\n", + " optimizer.step()\n", + "\n", + " with torch.no_grad():\n", + " epoch_loss += loss.item() * inputs.size(0)\n", + " epoch_acc += torch.sum(preds == labels).detach()\n", + "\n", + " epoch_loss = epoch_loss / len(dataloader.dataset)\n", + " epoch_acc = epoch_acc.double() / len(dataloader.dataset)\n", + "\n", + " if verbose:\n", + " print(\"Loss: {:.4f} Acc: {:.4f}\".format(epoch_loss, epoch_acc))\n", + " time_elapsed = time.time() - start_time\n", + " print(\n", + " \" Time Elapsed {:.0f}m {:.0f}s\\n\".format(\n", + " time_elapsed // 60, time_elapsed % 60\n", + " )\n", + " )\n", + "\n", + " # Make sure we return the best model weights\n", + " if epoch_acc > best_acc:\n", + " best_model, best_acc = copy.deepcopy(model), epoch_acc\n", + "\n", + " # if verbose:\n", + " print(\"Best Accuracy\", best_acc.item())\n", + " return best_model.weight.detach(), best_acc\n", + "\n", + "\n", + "class SampleDataset(torch.utils.data.Dataset):\n", + " \"\"\"Simple dataset for collected samples.\"\"\"\n", + "\n", + " def __init__(self, data: torch.Tensor, labels: torch.Tensor) -> None:\n", + " self.data = [data[i].clone() for i in range(data.shape[0])]\n", + " self.labels = [labels[i].clone() for i in range(labels.shape[0])]\n", + "\n", + " def __getitem__(self, idx: int) -> Tuple[torch.Tensor, int]:\n", + " return self.data[idx], self.labels[idx]\n", + "\n", + " def __len__(self) -> int:\n", + " return len(self.data)" + ], + "metadata": { + "id": "R2Y3qJrhZubz" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "We can now train our sparse logistic regression model!\n", + "\n", + "To improve the accuracy of our model, we'll use `torch.float64` instead of the default `torch.float32`. Using the 64-bit floating point is recommended and used by Scikit-learn to improve performance in its [Logistic Regression Implementation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html).\n" + ], + "metadata": { + "id": "Z8t_JbeGC7sC" + } + }, + { + "cell_type": "code", + "source": [ + "# Flatten samples & cast to torch.float64\n", + "t_shape = activation_samples.shape\n", + "sample_data = activation_samples.reshape(t_shape[0], -1).double()\n", + "\n", + "# Setup dataset\n", + "batch_size = 32\n", + "sample_dataset = SampleDataset(sample_data.cpu(), activation_labels.cpu())\n", + "dataloader = torch.utils.data.DataLoader(\n", + " sample_dataset, batch_size=batch_size, num_workers=0, shuffle=True\n", + ")\n", + "\n", + "\n", + "# Setup params for training\n", + "num_attempts = 3\n", + "lr = 0.001\n", + "l1_weight = 0.0001\n", + "l2_weight = 0.0001\n", + "num_iters = 3000\n", + "num_epochs = int(num_iters / (len(dataloader.dataset) / batch_size))\n", + "num_classes = len(emotion_wheel)\n", + "\n", + "sample_weights, sample_acc = [], []\n", + "for _ in range(num_attempts):\n", + " # Setup model\n", + " model = (\n", + " torch.nn.Linear(sample_data.shape[1], num_classes, bias=False)\n", + " .to(device)\n", + " .double()\n", + " )\n", + " model.weight = torch.nn.Parameter(model.weight)\n", + "\n", + " # Train Logistic Regression Model\n", + " weights, acc = train_logistic_regression_model(\n", + " model,\n", + " dataloader,\n", + " num_epochs=num_epochs,\n", + " lr=lr,\n", + " l1_weight=l1_weight,\n", + " l2_weight=l2_weight,\n", + " device=device,\n", + " verbose=False,\n", + " )\n", + " weights = weights.reshape(num_classes, *t_shape[1:])\n", + " sample_weights.append(weights.float())\n", + " sample_acc.append(acc)\n", + "\n", + "\n", + "# Use the best model weights\n", + "best_idx = sample_acc.index(max(sample_acc))\n", + "sample_weights = sample_weights[best_idx]\n", + "print(\"Best accuracy achieved\", round(max(sample_acc).item() * 100.0, 4))" + ], + "metadata": { + "id": "rHvEuEWIhIjr", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 186, + "referenced_widgets": [ + "3939b01ef1e84b6e94b97336a17c796d", + "88cb12c423ed46baa544909a6b11b972", + "6fd4eb762777484f8c8087b907695bd7", + "88afad4bbd0f416c8382b05cf4239ba9", + "bfc8b8a2f1bc4691acb0104174d7908e", + "854f5482e8c74aecb6f53a52e525cf37", + "d367de665c6e4d9192430f81bb887ba8", + "c9200fde7833431fbdb4dafef07a392e", + "6973f0e38cf24aa3b3869047262eac76", + "419b8ee305f34cb99d24e4ee92d8089f", + "a9b2b4383bc84b2cb42f4c998c08e9b4", + "da89e2869dfc4d0598dc1d2d6710f6f1", + "50f094cec7f84c7f835f83eb2b05f0cf", + "03f66d236f354cd98480bf886788406a", + "628b3fb6f9ef4c1f80ed9d0e0826fc09", + "b318e95993a545a6be6e9d009bb407fe", + "3d80f8b15dd740639934f97ae4ff1b49", + "e78b6dd5af3b4bb39a302118e64dc866", + "352c55819a8a4762b436894cecbef9ea", + "19a665933d7a4559a69334a4bdea39e2", + "c585a91accbb4be9b003f396d8d95a3c", + "c88cd02d596f49c18d0a55758a8c079b", + "172a235ad7a3434188011c33c5195e15", + "d2a65705f49a4b0d95a9d694f1e01e56", + "2ac6de181f774999a867586581372311", + "6b449c3f16b04985b803f618188b19d9", + "c5e780f6c1e14891a449989d1305f165", + "5562f40d76e943c2ae1884a8ae5f03a1", + "623160a036d14525a61d0e3d18e61582", + "2be09a5ac7df45d99ffe6d424162acbc", + "3413ef5205fe43b2831d46e6929a36fc", + "722a82130da24ba29a719ae1f9ed35f4", + "48d60f2c3bfd428a87b6951f94cd462b" + ] + }, + "outputId": "a911ce64-037a-4237-9667-66dc9a0af1b4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/264 [00:00 torch.Tensor:\n", + " \"\"\"\n", + " Give an NCHW image a border with a specified color.\n", + "\n", + " Args:\n", + "\n", + " x (torch.Tensor): An NCHW image tensor to add colored padding to.\n", + " colors (torch.Tensor): A set of colors corresponding to the number of channels\n", + " in the input image.\n", + " border (int, optional): The size of the border to use.\n", + "\n", + " Returns:\n", + " x (torch.Tensor): The NCHW image tensor with a colored border.\n", + " \"\"\"\n", + " assert x.dim() == 4 and x.shape[1] == colors.shape[0]\n", + " x_channels = [x[:, c : c + 1] for c in range(x.shape[1])]\n", + " new_channels, pad = [], [border] * 4\n", + " for x_channel, color_c in zip(x_channels, colors.tolist()):\n", + " new_channels.append(F.pad(x_channel, pad, mode=\"constant\", value=color_c))\n", + " return torch.cat(new_channels, dim=1)\n", + "\n", + "\n", + "def color_images(\n", + " images: torch.Tensor, group_colors: torch.Tensor, border: int = 1\n", + ") -> torch.Tensor:\n", + " \"\"\"\n", + " Give a set of NCHW images borders with a specified color.\n", + "\n", + " Args:\n", + "\n", + " images (torch.Tensor): A set of NCHW image tensors stacked across the batch\n", + " dimension to add colored padding to.\n", + " colors (torch.Tensor): A set of colors corresponding to the number of channels\n", + " in the input images, stacked across the batch dimension.\n", + " border (int, optional): The size of the border to use.\n", + " \n", + " Returns:\n", + " colored_images (torch.Tensor): The stack of NCHW image tensor with colored\n", + " borders.\n", + " \"\"\"\n", + " assert images.shape[0] == group_colors.shape[0]\n", + " images = [images[i : i + 1, ...].clone() for i in range(images.shape[0])]\n", + " A = []\n", + " for img, colors in zip(images, group_colors):\n", + " A.append(color_border(img, colors, border=border))\n", + " return torch.cat(A, 0)\n", + "\n", + "\n", + "def get_sample_colors(samples: torch.Tensor, n_groups: int = 7) -> torch.Tensor:\n", + " \"\"\"\n", + " Split samples into n_groups and then give each group a distinct color.\n", + "\n", + " Args:\n", + "\n", + " samples (torch.Tensor): A set of sample weights to reduce the channel\n", + " dimensionality of to n_groups. Each group is then given its own distinct\n", + " color.\n", + " n_groups (int, optional): The number of groups to reduce the input samples to\n", + " channel dimension to.\n", + "\n", + " Returns:\n", + " sample_colors (torch.Tensor): A set of RGB colors stacked across the batch\n", + " dimension which corresponds to the number of samples.\n", + "\n", + " \"\"\"\n", + " reducer = opt.reducer.ChannelReducer(n_groups, \"NMF\")\n", + "\n", + " # Make the input positive for one-sided NMF\n", + " samples_posneg = opt.reducer.posneg(samples.cpu(), dim=1)\n", + "\n", + " spatial_factors = reducer.fit_transform(samples_posneg).to(samples.device)\n", + "\n", + " if spatial_factors.dim() == 4:\n", + " spatial_factors = spatial_factors.mean(dim=(2, 3))\n", + "\n", + " # Get the top scoring group for each of the factors\n", + " group_indices = [\n", + " torch.argsort(spatial_factors[i], dim=0)[-1]\n", + " for i in range(spatial_factors.shape[0])\n", + " ]\n", + "\n", + " # Create distinct RGB colors for each group\n", + " group_colors = [\n", + " opt.hue_to_rgb(360 * i / n_groups, device=samples.device)\n", + " for i in range(n_groups)\n", + " ]\n", + "\n", + " # Give each sample an RGB color based its top scoring group\n", + " return torch.stack([group_colors[idx] for idx in group_indices])\n", + "\n", + "\n", + "def color_atlas_renders(\n", + " atlas_images: torch.Tensor,\n", + " sample_weights: torch.Tensor,\n", + " num_groups: int = 7,\n", + " border: int = 10,\n", + ") -> torch.Tensor:\n", + " \"\"\"\n", + " Add colored borders to rendered atlas images based on high level atlas structures.\n", + "\n", + " Args:\n", + "\n", + " atlas_images (torch.Tensor): A set of NCHW image tensors stacked across the\n", + " batch dimension.\n", + " sample_weights (torch.Tensor): A set of sample weights to reduce the channel\n", + " dimensionality of to n_groups. Each group is then given its own distinct\n", + " color.\n", + " n_groups (int, optional): The number of groups to reduce the input samples to\n", + " channel dimension to with NMF.\n", + " Default: 7\n", + " border (int, optional): The size of the colored borders to use.\n", + " Default: 10\n", + "\n", + " Returns:\n", + " colored_atlas_images (torch.Tensor): A set of atlas_images with colored\n", + " borders.\n", + " \"\"\"\n", + " assert atlas_images.dim() == 4\n", + " group_colors = get_sample_colors(sample_weights, num_groups=num_groups)\n", + " if atlas_images.shape[1] == 4:\n", + " group_colors = torch.cat(\n", + " [group_colors, torch.ones_like(group_colors)[:, 0:1]], 1\n", + " )\n", + " return color_images(atlas_images, group_colors, border=border)" + ], + "metadata": { + "id": "GAT3-mIihW2E" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "**7 Factor Feeling Wheel Categorization**\n", + "\n", + "A common way of organizing feeling wheel words is to split them into 7 different groups like a sort of pie chart." + ], + "metadata": { + "id": "ruJoT3-RrzeQ" + } + }, + { + "cell_type": "code", + "source": [ + "# Create atlas cells\n", + "atlas_tensors = torch.ones(len(vec_coords), 3, 5, 5).to(device)\n", + "\n", + "# Get atlas cell colors\n", + "c_factors = get_sample_colors(sample_weights, 7)\n", + "\n", + "# Color atlas cells\n", + "colored_atlas = color_images(atlas_tensors, c_factors, border=2)\n", + "\n", + "# Create atlas image\n", + "atlas_bw = opt.atlas.create_atlas(colored_atlas, vec_coords, grid_size=grid_size)\n", + "\n", + "# Match atlas orientation to training data\n", + "atlas_bw = atlas_bw.rot90(2, [2, 3]).flip([3])\n", + "\n", + "# Make background transparent\n", + "alpha_mask = create_alpha_mask(\n", + " *colored_atlas.shape[2:],\n", + " coords=vec_coords,\n", + " grid_size=grid_size,\n", + " device=atlas_bw.device\n", + ")\n", + "atlas_bw = torch.cat([atlas_bw, alpha_mask], 1)\n", + "\n", + "# Show results\n", + "opt.images.show(atlas_bw, figsize=(10, 10))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 575 + }, + "id": "Ew7fi5deUBjA", + "outputId": "b084e134-a719-4ea6-d64a-562d58f582d5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAIuCAYAAABzfTjcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAARSUlEQVR4nO3cMU5bywLG8TNP9GYD90rZAawgrdOYBne3o4Tl4JLudU4TN3HLCuIdRMrdAF7BvObpSZcH4SSew/iD368M0ujjGMhfp5hSax0AAI7dv3oPAAAYQ7QAABFECwAQQbQAABFECwAQQbQAABFOeg+At2xbNhF3Ctw9XPSeMMr6tPeCkWotvSfAW+RNCwAQQbQAABFECwAQQbQAABFECwAQQbQAABFECwAQQbQAABFcLgdHYF4Xk529LZsm56xn096Tt9w3uo+tTrizuDMOevKmBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIcNJ7ADAM27LpPeFFy33pPWGcErIT+GXetAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABDB5XL8n7Jb1d4bXvL1/I/eE0a5e7joPWGUz99ve08Y6ab3gFG2ZXP0v0PDkPHzuZ5VtwXyP960AAARRAsAEEG0AAARRAsAEEG0AAARRAsAEEG0AAARRAsAEMHlcvyWenY92dllt2p21rwump312LZsmp21nk13F9ly3+Zurik/82Fo+LnXCe91K+3uOfOz2e5nk/fDmxYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAinPQeQKayW/WeMMq2bHpPGGW5L70nvCjlMx/K8T/LYfCzCb/DmxYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIIIbcV/RdlNq7w2j/Hnbe8GL5sNF7wmjfPp+/M9yGIahnt/0njDKdvjSe8Iod8PH3hPejJS/m/NFdXXwK/CmBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAgulzsy88V09yhtN+3uPqpn183OeqzsVu0OqxPeS1Xe2fOc8lkOQ7PnOa+LJuc8ZVs2zc5a11mzsx5bln2zs9az6T735b7d71DK304O400LABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEU56D+CftpvSe8IoZbfqPWGc4nk2E/Ist2XTe8Ioy7LvPWGU5T7kcw/528lhvGkBACKIFgAggmgBACKIFgAggmgBACKIFgAggmgBACKIFgAggmgBACKUWmvvDQcru1X+NwEdXZ7/1XvCKFfDfe8Jo9w9XPSeMMpVxuOkofmiRl8d7E0LABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEU56D3gt9ex6srPLbtXsLDvtbK3VznWdNTnnOcuyb3LOvC6anPOUbdk0O2s9m+5OzOW+3f1h88V0O7cbO1tqufNYedMCAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBAhFJr7b3hYGW3yv8moKPL8796TxjlarjvPWGUu4eL3hNGucp4nDQ0X9TSe8MhvGkBACKIFgAggmgBACKIFgAggmgBACKIFgAggmgBACKIFgAgwknvAfCW1fOb3hNG2Q5/9J4wSsqlbcPpQ+8F43w57b0Afok3LQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBAhHdzI249u57s7LJbNTvLzve5c6i13VmPldLkmHldNDnnOduyaXLOejbds1zu2zzLYRiGdZ01O+uxZdk3O2u+mO55bjftnqedbXceK29aAIAIogUAiCBaAIAIogUAiCBaAIAIogUAiCBaAIAIogUAiCBaAIAIogUAiCBaAIAIogUAiCBaAIAIogUAiCBaAIAIogUAiCBaAIAIogUAiCBaAIAIogUAiCBaAIAIogUAiFBqrb03HKzsVvnfBG9SPb/pPWGU7fCl94RR7h4uek8Y5/Sh94JRrr6c9p7AK5svaum94RDetAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABDhp5fLpVza9vVHxgVedx97Lxjn6jTjorEE8yHjMrRlxl1oMZe2xXg4/svlru57L6CH5y7B86YFAIggWgCACKIFAIggWgCACKIFAIggWgCACKIFAIggWgCACKIFAIhwcugB9ey6xY5nld2qyTnzxXSX+243T17c91vWs+l2Lvftds7rotlZj23LptlZKTuHn9xMfbDS5nOf8mdzGNr9fK7rrMk5T1mWfbOzYnam/E0K+RufsHPKjcNw2E5vWgCACKIFAIggWgCACKIFAIggWgCACKIFAIggWgCACKIFAIggWgCACKIFAIggWgCACKIFAIggWgCACKIFAIggWgCACKIFAIggWgCACKIFAIggWgCACKIFAIggWgCACKIFAIhQaq3Pf3G3ev6LR+Trj5veE0a5+9h7wThXp196T3gz5sNF7wmjLB96LxjpNGVoiIfT3gtedHXfewE9zBe1PPXv3rQAABFECwAQQbQAABFECwAQQbQAABFECwAQQbQAABFECwAQ4aeXy203JeJyuRgXGZe2JVyIVr7d9p4wytfzP3pPGOXu4fg/82EYci6XC7i0jbZcgteWy+UAgGiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIcHLoAfPFtPfPbTdP3i/zy6bc2WrjMAzDvC6anfXYtmzaHfaTSwkPVto9z3p23eysx8pu1eyshM99PZv2d325b/O5r+usyTlPWZZ9s7OmfJ6tnuUw2DkMbXcm/F90zP+ve9MCAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQotdZnv7jdlOe/yK+7+NJ7wSjz4aL3hBeVb7e9J4zy9fyP3hNGuXs4/s98GIZhOH3ovWCch9PeC3hlV/e9F7wt80UtT/27Ny0AQATRAgBEEC0AQATRAgBEEC0AQATRAgBEEC0AQATRAgBE+OnlckPJuFxuO2Rc2pbibvjYe8KbcTVk3DgVc7lciM/fMy4/vPxw03sCPGk9c7kcABBMtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEU4OPuFnl9O1UJ68X+aXzeuiyTlP2ZZNs7NSdq7rrNlZjy3LvtlZKTsTPvf1bNrf9eW+ze/6lDtbbRyGYahn183OeqzsVs3OSnmedmb8Dg3DYTu9aQEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACBCqbX+5KvlJ188HtvhS+8Jb8rd8LH3hDfjarjvPWGUu4eL3hPelM/fb3tPGOXyw03vCfCk9ayWp/7dmxYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIMLPb8QNsSz7iG/i8+333hNGubz50HvCiz5/+3fvCfAsN81yrJ67aTaFNy0AQATRAgBEEC0AQATRAgBEEC0AQATRAgBEEC0AQATRAgBEOOk94LWs62yys5dl3+ysen3W7KzHymrX7KyY53l23eysx8pu1eyshJ1TbhyGjJ0tP/P1bLo7MZf7dveH2fk+dx4rb1oAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIIFoAgAiiBQCIUGqtvTccbFn2Ed/E59vvvSeMcnnzofeEF33+9u/eE+BZlx9uek+AJ61ntfTecAhvWgCACKIFAIggWgCACKIFAIggWgCACKIFAIggWgCACKIFAIggWgCACG/iRtyy2kV8Ewk3zfI+XQ33vSeM8unb370nvClu7n1/3IgLAPAKRAsAEEG0AAARRAsAEEG0AAARRAsAEEG0AAARRAsAEOGk94DXUq/PJju7rHbNzlrXWbOzHluWfbOz7Hx/O+d10eSc52zLpsk59ey6yTlPKbtVs7NSdq5n093dudy3u+fMzrY7j5U3LQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQotdbeGw5WVruIb+Ly5kPvCfCkq+G+94RRPn37u/eEN+Xyw03vCbyy9ayW3hsO4U0LABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEd7E5XIpUi7B+3rzo/eEF326/bP3hFFSLhS8+nLae8Ion/7+1nsCr+zyr/PeE0ZJv7QthTctAEAE0QIARBAtAEAE0QIARBAtAEAE0QIARBAtAEAE0QIARBAtAECEk94D+Kd6fTbZ2WW1a3bWvC6anfXYtmyanZXyPNd11uysx5Zl3+Sc+WLaC523mzYXiqZ85nY2/h2aTffzudy77PZYeNMCAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBAhJPeA/instr1njDKtmx6Txgl5Xkuy773hBdtN6X3hFFSPnM721ruM34+OYw3LQBABNECAEQQLQBABNECAEQQLQBABNECAEQQLQBABNECAERwudwrqtdnEbcfbW9+1N4b3oqr4b73hFE+/f2t9wR40npWI/5u8jq8aQEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIrgRl98yr4vJzt6WTbOz6vVZs7MeK6tds7MSnueUz3IY2j3PlM/czrY7eR+8aQEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACBCqbX23sCR2ZbN0f9QfLr9s/eEUb7e/Og9YZSU58n7U6/PSu8NHA9vWgCACKIFAIggWgCACKIFAIggWgCACKIFAIggWgCACKIFAIhw0nsAx2deF0d/mdPR3373XyVnKg25EA2m4U0LABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEUQLABBBtAAAEVwuB0egXp9NdnZZ7ZqcM+XGYcjY2Woj8Hu8aQEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIogWACCCaAEAIpRaa+8N8GaV1c4v2DtUr89K7w3wFnnTAgBEEC0AQATRAgBEEC0AQATRAgBEEC0AQATRAgBEEC0AQASXywEAEbxpAQAiiBYAIIJoAQAiiBYAIIJoAQAiiBYAIMJ/AMbJmiCLVAOpAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Emotion-Mood Axes (2 factors)**\n", + "\n", + "Feeling wheels can also be organized into 2 groups for viewing the mood-axis divide." + ], + "metadata": { + "id": "qaTyZ0Iar2wJ" + } + }, + { + "cell_type": "code", + "source": [ + "# Create atlas cells\n", + "atlas_bw_tensors = torch.ones(len(vec_coords), 3, 5, 5).to(device)\n", + "\n", + "# Get atlas cell colors\n", + "c_factors = get_sample_colors(sample_weights, 2)\n", + "\n", + "# Color atlas cells\n", + "colored_atlas_bw = color_images(atlas_bw_tensors, c_factors, border=2)\n", + "\n", + "# Create atlas image\n", + "atlas_bw = opt.atlas.create_atlas(colored_atlas_bw, vec_coords, grid_size=grid_size)\n", + "\n", + "atlas_bw = atlas_bw.rot90(2, [2, 3]).flip([3])\n", + "\n", + "# Make background transparent\n", + "alpha_mask = create_alpha_mask(\n", + " *colored_atlas_bw.shape[2:],\n", + " coords=vec_coords,\n", + " grid_size=grid_size,\n", + " device=atlas_bw.device\n", + ")\n", + "atlas_bw = torch.cat([atlas_bw, alpha_mask], 1)\n", + "\n", + "# Show results\n", + "opt.images.show(atlas_bw, figsize=(10, 10))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 575 + }, + "id": "xmLd0fAihkk2", + "outputId": "2a24a43b-c493-44ec-d012-3ce717fdc779" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAIuCAYAAABzfTjcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOQklEQVR4nO3cwW4juQFFUTLQ35U/V/V9zC5AnHa3MqK6fK1zlmOg8Kyyei644FxrDQCA7+5fVw8AAHiEaAEAEkQLAJAgWgCABNECACSIFgAg4Xb1APjJ5nm6U2Cj9fFx9YTHrDWvngA/kZMWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkuFwOvoF1HC979jzPLc955cYx9u0c64X3+U13xsGVnLQAAAmiBQBIEC0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJAgWgCABNECACTcrh4AjDHP8+oJf1TYOMYYY86rFwAv4qQFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkiBYAIEG0AAAJLpfjf825rp7wY9zvVy94yPr4uHrCjzLP03dok3UcbgvkP5y0AAAJogUASBAtAECCaAEAEkQLAJAgWgCABNECACSIFgAgweVy/DPrhXdnzY13SUV2ruPY9qzP5nnuedArP8sx9n2e3vm+dz46O3kPTloAgATRAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJAgWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACaIFAEgQLQBAwu3qAUTNefWCx0R2zvO8esKfRT7Lys7EOx+dnbwHJy0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACaIFAEgQLQBAghtx/6J5nuvqDY9IjIxYHx9XT4AvFf4+5/2e+CdpHUfjKuY4Jy0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACaIFAEhwudw3s47jZc+e57nvYeuF9z3NjXc02blv5ys3jtHYufGd+66P9/w8eYqTFgAgQbQAAAmiBQBIEC0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJBwu3oA/22e59UTHjPn1QseY+c+hY1jZHb6ru+V+Tx5ipMWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkiBYAIGGuta7e8Lw5f8AvAfwU836/egL80jqOxhXHX3DSAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJAgWgCAhNvVA/6aV16iNzfe1WOnnbvt2vnqiygLOze+83Uc25712TzPbc+y8z13fldOWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkiBYAIEG0AAAJogUASBAtAEDCXGtdveF5c/6AXwL4Keb9fvUE+KV1HPPqDc9w0gIAJIgWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgITb1QOA67kMDShw0gIAJIgWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkvM+NuGu97tlz7nuWnXbutmnnOo4tz/nKPM8tz3nlzl0bx7BzDDt327nzu3LSAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJAgWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACaIFAEgQLQBAgmgBABLmWuvqDc+b8wf8EnCdeb9fPQH4C9ZxzKs3PMNJCwCQIFoAgATRAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEn57udw8T5e2vaH18XH1hD+qXIZW+CxLKu+9ovD36Z2/p68uwXPSAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJAgWgCABNECACTcnn3AOo4dO740z3PLc165c9fGMTo7x29uUn7a/OVFiP+Iz3Ps+zxfuXGMbTsr77yyM/G3OTqfZ2Hnd/7/upMWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJAgWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQIJoAQASRAsAkDDXWl//8Dy//iE/1vr4uHrCH837/eoJDyl8liWV915R+Pv0zt/TOo75q//upAUASBAtAECCaAEAEkQLAJAgWgCABNECACSIFgAgQbQAAAm3qwe8k8JFThU+y70qF3h57/DenLQAAAmiBQBIEC0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACDh6cvl1nHs2PGleZ5bnvPKnbs2jjHGWGvfsz6bc9+z7Hy7nZXveuGzHGPYOcbWnZV/4ws7v/N33UkLAJAgWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkiBYAIEG0AAAJogUASBAtAEDCXGt9/cPz/PqH/N/Wx8fVE+CX5v1+9YSH+A69n8rfJnut45i/+u9OWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQIJoAQASRAsAkHD73Q9d5MR3VblwqvIdquz03vmuKu+88h36ipMWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAk/PZyuYestWHGb8y55zmv3Llr4xh2jrF15zqObc/6bJ7nvocVPs/Id907H77rm73be3/lZznGc5+nkxYAIEG0AAAJogUASBAtAECCaAEAEkQLAJAgWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACaIFAEgQLQBAgmgBABJECwCQcHv6CXNumPEX2LlXZOc8z6snPKbweRY2Du98u8hO732f7/xZOmkBABJECwCQIFoAgATRAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEuZa6+oNz5vzB/wSAHw27/erJzxkfXxcPeExa33/K3l/w0kLAJAgWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQIJoAQASblcP+GteeYne3HhXj5127rZr56svoizsfLd3PkZm5zqObc/6bJ7nvodFPs/vykkLAJAgWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkiBYAIEG0AAAJogUASLhdPeCvmfPqBY+xcy879ylsHMPO3SI753lePeExkc/zu3LSAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJAgWgCABNECACS8z424APAi836/esJD1tUDnuSkBQBIEC0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACe9zudx64ZU6c+57lp127rZr5ys3jtHY+W7vfIzMznUc25712TzPbc+q7PyunLQAAAmiBQBIEC0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJAgWgCAhLnWunrD8+b8Ab8EAJ/N+/3qCT/KOo559YZnOGkBABJECwCQIFoAgATRAgAkiBYAIEG0AAAJogUASBAtAEDC7eoBW6zVuCzHJXh8Uy7w2mt9fFw9gb+sfmlbhZMWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkiBYAIOFn3Ij7k6wXXpo7N17YaOfb7VzHseU5X5nnueU5r9y5a+MYI/HOxxiZnZn3zlOctAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJAgWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQIJoAQASRAsAkCBaAICE29UD+GTOqxc8xs69AjvneV494SGVnYV3PsbI7My8d57ipAUASBAtAECCaAEAEkQLAJAgWgCABNECACSIFgAgQbQAAAlzrXX1Br6ZeZ7f/o9ifXxcPeFHmff71RO4QOJ7tFbjdjv+CictAECCaAEAEkQLAJAgWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQMLt6gE0reN42bPnee572CtvfJ4bL+oM7HzlOx9j33uv/G1Wdhb+NnkfTloAgATRAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJAgWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQIJoAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACaIFAEgQLQBAwu3qATTN87x6wmPmvHrBYwI7K+/czs0Cf5u8DyctAECCaAEAEkQLAJAgWgCABNECACSIFgAgQbQAAAmiBQBImGutqzfAzzWnL9g7WsuNbPACTloAgATRAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJBwu3oAMMZ45SWPc9M9Z6++iLKwc9dG4B9x0gIAJIgWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgATRAgAkiBYAIEG0AAAJogUASBAtAECCaAEAEkQLAJAgWgCABNECACSIFgAgQbQAAAmiBQBIEC0AQIJoAQASRAsAkHC7egAwxpjz6gV/Vtg4Rmcn8H9z0gIAJIgWACBBtAAACaIFAEgQLQBAgmgBABJECwCQIFoAgIS51rp6AwDAHzlpAQASRAsAkCBaAIAE0QIAJIgWACBBtAAACf8Gm2Xifl624eYAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Rendering The Atlas Visualizations\n", + "\n", + "We can now begin rendering our atlas images now using the sample data that we collected, filtered, and prepared." + ], + "metadata": { + "id": "kS91uubumlXF" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Rendering\n", + "\n", + "The CLIP ResNet 50x4 model performs best when image inputs have a height and width of `[288, 288]`, and thus memory requirements may exceed those of your device. Therefore, we'll render them in batches with the handy `render_batch` helper function that we defined at the start of this tutorial." + ], + "metadata": { + "id": "BB830DR1WLr3" + } + }, + { + "cell_type": "markdown", + "source": [ + "We now load the image portion of the CLIP ResNet 50x4 model with `RedirectedReLU` for visualization rendering." + ], + "metadata": { + "id": "GnbKhf2Ytezh" + } + }, + { + "cell_type": "code", + "source": [ + "# Load the CLIP image model\n", + "clip_model = clip_resnet50x4_image(pretrained=True).eval().to(device)" + ], + "metadata": { + "id": "IrlK0b-iteT0" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "We can now render the visualizations using our batch rendering function!\n", + "\n", + "Note that rendering a single attempt may take an hour or more depending on your device and chosen parameters." + ], + "metadata": { + "id": "8sRWGIfBWUmk" + } + }, + { + "cell_type": "code", + "source": [ + "batch_size = 4 # Rendering batch size\n", + "num_attempts = 1 # Number of rendering attempts\n", + "use_alpha = False # Optionally optimize with transparency\n", + "image_size = (288, 288) # Desired height & width of each atlas cell image\n", + "num_iter = 256 # Number of iterations to use\n", + "\n", + "\n", + "# Render attempts\n", + "attempts = []\n", + "for a in range(num_attempts):\n", + " if num_attempts > 1:\n", + " print(\"Attempt: {} / {} \".format(a + 1, num_attempts))\n", + "\n", + " atlas_images_list = []\n", + " for i in range(0, vecs.shape[0], batch_size):\n", + " vecs_batch = vecs[i : i + batch_size].clone()\n", + " imgs = render_batch(\n", + " vecs_batch,\n", + " clip_model,\n", + " device=device,\n", + " alpha=use_alpha,\n", + " image_size=image_size,\n", + " n_iter=num_iter,\n", + " )\n", + " atlas_images_list += imgs\n", + " attempts.append(torch.cat(atlas_images_list, 0))" + ], + "metadata": { + "id": "OBogbS7R0z3V" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Sort rendering attempts if required\n", + "if num_attempts > 1:\n", + " final_losses_list = []\n", + " for atlas_set in attempts:\n", + " final_losses = compute_final_losses(\n", + " atlas_set, vecs.clone(), clip_model, device=device\n", + " )\n", + " final_losses_list.append(final_losses)\n", + " attempt_losses, A = torch.stack(final_losses_list), []\n", + " for i in range(attempts[0].shape[0]):\n", + " idx = torch.argmin(attempt_losses[:, i])\n", + " A.append(attempts[idx][i].unsqueeze(0))\n", + " atlas_images = torch.cat(A, 0)\n", + "else:\n", + " atlas_images = attempts[0]" + ], + "metadata": { + "id": "_0b313VQ_lUr" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Just like with the colored atlas groups we created above, we can do the same with our fully rendered atlas." + ], + "metadata": { + "id": "5mK2HX68wmRR" + } + }, + { + "cell_type": "code", + "source": [ + "# Uncomment to color atlas image borders\n", + "# atlas_images = color_atlas_renders(\n", + "# atlas_images, sample_weights=sample_weights, num_groups=7\n", + "# )" + ], + "metadata": { + "id": "DRyk9Lx_KVAV" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "We can now create the feeling wheel atlas!" + ], + "metadata": { + "id": "V2kFXin2oFvf" + } + }, + { + "cell_type": "code", + "source": [ + "# Build full atlas image\n", + "atlas_img = (\n", + " opt.atlas.create_atlas(\n", + " atlas_images.rot90(2, [2, 3]),\n", + " # If for some reason we don't render all the atlas images, we can still build\n", + " # the atlas by slicing off unused coordinates\n", + " vec_coords[: atlas_images.shape[0]],\n", + " grid_size=grid_size,\n", + " )\n", + " .rot90(2, [2, 3])\n", + " .flip([3])\n", + ")\n", + "\n", + "\n", + "# Make background transparent\n", + "alpha_mask = create_alpha_mask(\n", + " *atlas_images.shape[2:],\n", + " coords=vec_coords,\n", + " grid_size=grid_size,\n", + " device=atlas_img.device\n", + ")\n", + "\n", + "# Handle RGB & RGBA atlas images\n", + "if atlas_img.shape[1] == 3:\n", + " atlas_img = torch.cat([atlas_img, alpha_mask], 1)\n", + "else:\n", + " atlas_img = atlas_img * alpha_mask\n", + "\n", + "\n", + "# Save atlas as image and show it to user\n", + "opt.images.save_tensor_as_image(atlas_img, \"feeling_wheel_atlas.png\")\n", + "opt.images.show(atlas_img, figsize=(20, 20))" + ], + "metadata": { + "id": "o7C0bPKjujtg", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "08efbd84-82cc-4f29-c118-6eddd2b79b8c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABE0AAARNCAYAAACnn74hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdx64tV4Kn9y9WeLe9OWcfcw0veS9dZlZllumqkhoNCY0eCXoYTTSroQA9ieYCBJXULbWBqquzstKRl+T1x+6zvQlvViwNqIla1JgcxO8J1mDjD+wPsSI0pRStVqvVarVarVar1Wq1Wq3/N/FjH6DVarVarVar1Wq1Wq1W66eojSatVqvVarVarVar1Wq1Wj+gjSatVqvVarVarVar1Wq1Wj+gjSatVqvVarVarVar1Wq1Wj+gjSatVqvVarVarVar1Wq1Wj+gjSatVqvVarVarVar1Wq1Wj/A+LEP0Gq1Wq3W/59/83/83f/4d//73/13Nw9b+qGDa+mktcY48MjiLU8eXXLRUyze/p6syLn8/K958vzn6DJj/t3vef/mhtR/TFoavPv6Ld98/ZJ9siZ0JZcdi2mvw2D0iJ/92b/CkRr5akN2+4CT5di6jl4kVEgOxy0P2yX/cXHDggY7cMmFjuPamLZF0O2SJRFGUxGKCqEapsOQoN/Fn8xw/IDX337NOsqY7xLysuLk4pzRdEx3csbs4gy9kXiOi2FaeCY0QsexBA4NVl5SfNiiuz6Lcsu//sMH0lohZcOHD1c4bkB/cskvv/yMrlZhGkO64RjDqLCthONxRW1KTJaUaczDfME8yjn/5AWTOkGVFZrtYZomXc/CN6HICl5drxFVieXYoFuUykDzB1T2gP50RG92wtU25g+//x2bmzfYpoPKK26/+4bl/QNSCs5OZphZzKzbQRc6V6WgSmLOJhOi9QMn0xP8sEO0XNB3Q3ZJhO94DEIL0iMdt6F/1mf4ZMSrRcF32xwrCFiuHph0Tc4vL+j3BownJ3SmFziOi/B8bH9AVkh8CsrDimr7gN8ZsL9+Ra/TJU5S4v0B3dGp4h31PiJ7SNkvj7y7fknRsek/OscwFI+/+ALLNpkY8vvfVqVjnn3GTX6OVFDLCpnFJGnCdn5DvF3haTFfvjhncnLK8PQRg34XQzXkccQxN0iLEi3aU5U5mulRpRHysELWBftDTBZHrPYZN1tJVOmsV0vkYYmsG2rNQjaK0HPRGuiHLqJM6bg2h0qg2x5h4HPICkopsU3Bdn9EEwpLUzh+l7rRCBydzXGPVOAFHk/PTkGX6GaFr0um/QHT6ZheL2TY8+n4JoYboLkd0ASFcHjINO5v7/j6t//IbrXh9uqapqyZnZ6hKcFses5oOMBS8OnPfsXp2WNAYHU8Fscj383n4No8m43/h3/x88/++x97c1qtVqvV+s+10aTVarVaP1l5KSmUjum47A9HjNGQPE2ItIr9Yo6mG1zPBW7t8uLZp5w9+oTAtUnur4iXdzzc3pJYGt5wxma74OXNWwpZ8snjM3AGZJWOyBVWmpDEkvj6hj4ag8kJWgOGOSXezsnrjO22pnAdBr6LFfgoIbAsjTgv2M3vsGVJPzCYjYd4gYdpGgS+jS0qgsCGyxna1T2Opvin13fMr68p84i6gUo2PLs8QdPAtnRyM8DpDMnKLXYV0VgO9tmE6P49PcvkSc/m93dHgt6AZx89Ias1hGmQ5RWf/uIX+EYXdaxZv//AJr0jOB9g+QYqWmDbLqFpMjrrYpQpWV7Q64bf/3H2PYRp8sd/+gfyvGDQG1AbNqZhEimLyutTGz5et8fkfMQyWvLq299zah548dkpkXnK+29eI1A4rk/f7+LXOQaSD/MFo24PUWtMbJOukjx68gxD6PT6PaTtYgiTmRwSrRYElaLb7WKIBLfO6diKbi/kVHN5OCScfvwR3755i9jHCCHoBB6H7QZ9NCGwTUQZExo2NBa1HqKcksPugG57KE2jE/joRUolKw5aQGeoYwmToqqYZmN+t1pyYuq4oUe+29Kd9NGEwPT6zGyXZbxFtx+BUtSVRNUVx8Wc425HNwzomCaW5WLaDo5lUtWSIktJtweqxsQzLUolMVyXLM2QRUqlNLJCIcuaOM559xATlTppXpInB7I4Iitqagxcx8PUIDR1tAIuxn38zpDngzH9wZA0S6kaeD+fk1Y1wve4urlFVSXJYo9tO+hIPM8kb2rQBP/41UsGw5Bu32Ea6Oy2c5oiI0uH6Jxg2z2oNUwMdNtDlBm2MHB8n95owvz6hl7Hp6ogjo54boBtGjRFhd3vsNus0GuLk8kZlV6xT1LyvMC0TISm/dhz02q1Wq3WD2qjSavVarV+sjShgzCxHJ8yy4jijPX+SLqN2S6XxEXN7GTMR4+mBJ0BSXSgS8Lh/desrj+wni+4y2Ke/+kQL+wRjk7oWCY3i3ucWtI1dHxhUscJxb7A1nTG3R7B2RNUmVIXKVpicnXY86AJ+pMxwjJwAo8P8zmr2y3r/YG+JRg6OrodYCtJrzMgLiqoaqrDgdj2efLxx1w8e8pyteLsyQk3iwNRAfHuwP3dHE39CbPpkHi/Qu+M2WouYT/EjXMMTeIEOrmto4qCkV5SxXsyw6SqKpygT1U3HI5HVusdSmuQ1xHz777BPqmZds8pjQZhGERpgRuEOK5LtD/SvfiI0DXJ9xuEUlx9uOb25oGz8RBbaKTCI6otpNejkgo/8BgPXIroAb3c89/8s6e8/+PXpKXifDTg4JhsO11szcTTBMfVnvvdEccJCBqdX1zOMG2fXreLZ3s0ZU6dlQjNIjvkaHWD1ZhUx5hOd4AbBOhWgVXlzAYd7vYlk5MTjp0u/eGBZVTw+uoNv8wFs6cdnNOAdL1j4Bd4vo/pd+j0+6zzgu1+TlcriWvJeDDAPbtENw2aV68pMAimPZpSUucpJ0XFanXgxPXRTJc4q1ncrSmUxp//5c/pm5JvdzukLtjvtlBkGLaL0gx8z6UsCpRuYxgWpm2jlEFcaPhhFxMDGlClSxpHqEZSKp28khwPEftjxuubPYUIMW2dPE6JoogiLzF0g4EfoAMDW+fRyQlnoyHTkxmj03O8bp/Dek2TF8RZSRln3Nzfsolj0jKlKgsaqcgLm6JI0YXCsAy2+wO277BNNjxVQ6pIcBCCiwFUWYGeHHG0x/RHGrg9ZFlhGDpOWeGYAjcIkEqhFHi2gawkPd+HY0ZllFiDAbZtc1iucUub5qzLPssJegG3iyWXfe/HnptWq9VqtX6Q/rd/+7c/9hlarVar1fpBtzfv/+XNw+Kv4iRBMwzKNGKzWrLf7Vmtt+zWaz676DDsdZk/PDAd9rDzB27fvmS52tM0JllSofl9/O4QMxhx+uWfUzY676/eMV+vedwb8MXlR8ikZOQ4eGEfZzIm3czZLK74j9++5Lf7HScXJwhTp24a7lYrNvvt99cyZEUta3oGmBp0HJOBZzDpuKAUrq1jGSa11aUoJZPZjPHsjEGvi+v7yCLD0CSubTIc9KmdLlmt0GWJVyc0Kse2PerNClk02HZImRW8fPWeHI1ef0CuexzjlCrJ6XdC9KZg9f4bkuhbRmcalh6zjXOsZo9j6himjSorDklBnheQHrF1gSk0TCUZBzZBEJI6IxapQHc7KASO69GbnOLYksBVXH70Mbf3G1599ZZHlx8RBgNWt7fslitC3eB+uWObS3xd589ffM7p+ITOYEy/N6RIS5pcIoRJsj0QHzNM4aFhIpROkaW4qsIJQsJhH8No8PsB+8Jivt7TMzQ6tkWSl6SNoOO6WJaL1xng1lsGvR5C1ag8QndDXNvmuDuweVggox22YdDtBdTVAUNL6XV9kBW6ENSVxDIE+2jH1cMK4XgMB13SJMIbDNi+/hrL8XibdzkkCbJp8E2T9LjhsFoyCGzGXZeup9EbDtBtnzTL6Po+QmiYhsHmWFDlJUWWUZQ52+0BmcRkScxic6QyOuxTyT6K2R0PRMcdumpQSiE0ncvQ5nLQ5cnsjEEYIHSd2/slV/M96W7Hbrdnsz7gCUWgVeR5Qr/nUxcpjayolaSWNRoVTVVSFDl5lpCnCYftnjrL0YWJVpr0/D6GYxJvH/ADD9s2UXZIjaAoCrKsJK9Kov2e11+9xBbgmCZZnIGmaHRBp9vBNB28/pBUSMxJl8V+w263owaenU7/w+Ozk3/9Y29Oq9VqtVr/ufZJk1ar1Wr9ZClh0CiFrmmYhoYmFEWyJ8tKLMvkydSj45l8/dUfiXLJrz5/Qra/4uKTzxh/MuTVH16TVlc8XF0ze/Ypn55esEsU/ulz7M2a/eI1SVpQxgnV7oA1O0dqDR/+8d9zs55zGx3Y1Tnjy0v88ZDdh9es91veXd9wOQpY5CVnfZ+erVPFGUoq8mNKfYgwO12601PKIgYkehVhTC9Z3O/x9B1uk/KzT59yNu6yPUSUSseUKcubNXpngOU6VGXDAY1rQ+epHzAySkQsmPhTXvTO+V9ev0QTBqefTBFOl+puy259ZPRiwON//iXkQ7LbX7P95i08+yssP0Dul6DpSKkIXYv+sIOWHdEaidcfMTk75+6rkvuD5O5YYtoOeVHgBSHC7pBp4MiUx2fnOIMZ26c9/pk3ZqIrrm7WNEVJP+iwj2oO5Y5PP/s5J6Lg0XiK/8kvKBe3xNsNPdehTAu2d/fIIme321KUJU44oNcf0Z/O2FcxvUpBKTGNEFkYfPzkFCnu2R33nM7OmMwe83a9JtQbisOWQCuQZY3fm+KJivXda7piSCYaxoOA7NDj3a9fUu53eNYLDg93ZJtrnvzJ53iTHlFRkQ99NFMRhDX/0//5B5rukL/+L/+MTnNks75n0vUpdRcn9JF1xX4XUagGoRR1npAlFsbknEaYWJYBMqXr2ui6hiYMsiilyFI8HWxHkCRHPJVQIEmSFKm7ZLmG1tQURU562CE0g1rVBJbJo17I06GHY7sYmsb8Ycn05ISTXsjk8iNUekDWIJyQ7WHBcTfifNLnUMQcQ4O4rvlwyPA6PqRHBobk/UPEOi0xTUFg66z3CXFSY5479NOSx/0xCIM02WMdDUxDULsn1JiYVkM3cBlPp1QKNpst+13EZHqKsC3MwMfv9JCNQqqK2oCyqRj1+5RVRVFJrG7vx56bVqvVarV+UBtNWq1Wq/WTJcsCygxdU1CViKZCyZqmUVycjjgZ2jh+wIvpGWVRIfMIs3OJPnnB/OUtx6OBkibZfsXd27ecXD7H1lxuHm6o0i3DTsgqTdkv75FJSZSE7DdLMl3yVVlyvZxzNjthMp1gBQ63izllljAwBAND8OnzR0jN5NHTU5LFPWWUofKcPC9QtUSWFZ3+iIaGh8Udg06fXqdDubplOb9nYo9ZX12x2B05f/wYrUgJRM1uccfb1Y5Hj2b4YQ95E7EQGbae01E2VaHz7NEzxg+3HPdHeusNw8GUejxGAYf0yOlogOV2KeNLAnfA3X6PVUSIMqPTH5LkJR3fo4kOBJbO/P6ONIrpjE55syzZFxp5XVIUFYNRnwob0/aQ2ZHnn8xw64pQmHw+7HGQU4xG8fqrK/Ljkf7JBbl25PHHfb74xS85GQwxNEX6MGfW98DRKdKSpKwxQo9SbwjNHnEa85AeeDePOD0759HJlE25Qc8VZqlj6R49UXE+7HH7cMDcRXih4JP+gOnjj1i9+5bl1TX9y2fYToBMl6CZyLqi3+0jqgKVRuSXT9jPb9ndrbCEjhv0aKoKP3RJqoJerwOGwOu7PP94x+9uHvj9V2/51dRFdDt4vkOaF+BDESeoMqOsS9I4oSwzDNHBMHWU0tANB9eyMEybspRURUqeHbG0BlTFertjeagwsorlJma5PoI3ZjTokeYlaRzT1BU91yFHMgkCLvsh0/EYx7TRleLp+RmDwYD+eITX84l1SWd8wrFU7NIj0/EpntLoHRd8vVrR1S3+5skUb9RnvVnhGhAGG+72GWWZMRvblBi8n+/Zi4KtjHg/n/P0oo8X+NgCqs0duZtTEJClNVmaoFkGk4tT9jd37LYbVKHo1CEXs6cUZYNrK+qiIEtzkgeNYDhASsk2PnLYbYHHP/LitFqtVqv1/9Vez2m1Wq3WT9Z3L7/6l28+fPiruizwDEUa78nzgjiKmXZszqd9Pv3ZzzmdnXNcb+jaIXUs+Prvf8c3f3iFlA2qLNlFEdcPCzbbLZlqyOIldbEn8ANMoTCA8XBM5PlUHZ/vtktu7q8RWoMQOqezKV999Tt2uyVjy+Q06NDVDQLH43TQR68KphePGXZPGHg2rmEgmprRdIqwLIJen26/h2oUQcdGpglCCfbHktOLC4wqodgteXhY0x8O0WTD7mHB9Yc7iqqhNzilWufk64iB5YHd51isSJqKXQYKDcs08DoBigYlK9Lr35LN36CETmUPWW4jpl6N0dTkUuN4iNFljWkY6JrAUBVaWfIPX90QVzpSM9E0ndHpjAaFaTsMApdeYPDx00fUmznNfk2VpmhlyfztLYvbOw51TfDoU9ynf8r4yadcPD3nfGgwNFMeTVwCC2Resb2+JdssSPdrqjLG8zS6JyPcbp9FmrNKSqwgxLBsxqcTLNeiLnN0p0NvfIFlOcTrOZoGyBqZ5Zw/uiS0Xaahh07N7v4D4WjGtvHxLIGuQVNVWIbBdy9f48iaIPDpn57id0fUUU40PyIrE8M1Ubqg0+sgqpShXhMYOlVWY2pQljXXdZe6rhBNjapy5ldXyKak6xqMhx103aA7GKHbLo5pIwyH1e5AkeVkWcL76znzXcY+Lri6vme33rKNSkbjGZppk4mAmw8foC7wTZvzbshsesLFZMjZyQn9yRmiVEzHU0RjEHR6WG6AGwS4wwlpVeOEDu9efSA0DKo0xbEFX37+AqE0ZmfnZIbAM3T6fkBvMiXOay4nY4b9Hp6pk5cFjapwfIuzUY8mVYwGXYqi5mFzZFMqdsccqSmKqkGvG/bbDUVW0HFD6gocy/k+/lUNlm19/8Uhz8bvhPihj5IVPUP8h+dPH7fXc1qtVqv1k9M+adJqtVqtnyxhGghVY+sKrSnQNMVw2EdrJINewDGu+OZ3f8AWkjTOGfldvvvtS/7db75GGT5lKenUFUVR0JQl92nCzLdoyj2+bWHZOqHtkQU2L7UauV9RljmHaIeSKRcXZ4S9IY6peHw65NHAwBUSmeR4lge1RpPlhD2XQdglmJ6jdlfYpiLZLpF5STAcUecVmq7RcUyORcF+fUCrK8LAR9QNpqZzc78grRTCDphdXPLikcnbmzmLq7eY/RF6LYmiHbOBS7p+AHICzyYYmaxXa5zBgGYXMT05wdAbNrlGGq2wC0XmWQzPLmiSl9R1Q5EnUFd4nTEmCiklsha8/rCAxsTzBbXjY/pdGimxDB2tKahlTWMNiBuP0exnFHfv0OqKZJmQ3G447o/o/TM++uSccDglEAVOFRGaBhZjtDTleFeRNxlPH8+ozyc8fPcV65s3GM4Qy55ydn5ObPd5v4yQ3RNiUXO1OPLYGzEcnyDcEEsIHg+7dHnEf/r6G756/Y5PP3uBijbolo887PHFOaZhUkkdy4A6SygLyd2u5HR6wi/+8k9ZvX/LPsnhYUW2XuM4LofNHlO3MIYdXNclCAXPP3pMcdyy3Oy4GA/I8wIRdFC6icwyAtfmZj6nSBM6gYMd9qglqCr9/mqZJmiqhs1iQxalaKpit1qw2hzZRCnXV1cUx5hjXDA4fUZvOKapJO+v5oSdKY3QGDgWvu8yPX3EbBISWDq9fpd9nGFgYJg+mjSwvR5KSbRaMht2qRoX8cUzfL2ijvoIVxIVGl5nzOs3N6R5jGVKjLLANnQ+evwcS6XUsuSTjz+mu1kw3+xYL1f8rtb44mxGkUYYTc5Ib9iuIu53kNU1pufS6Y+w3YDuEBpMMmoKTTG/v+Hp5Ckyr9E6Llmast3vaITO9OycQdf/seem1Wq1Wq0f1EaTVqvVav1kaVVJlcd4fkC0O3KMErqdLoOnFxiyIImObI+SaDHndHrOh/mG//n/+g23myPPnz7jv/7Vn3Nhmbi2TkTDv/vmFbtScYgqDNvADwJG0zGVVGi2QbyYsz8ecXWNSc/HFZLd4pZsa9LVNTarLfgGdXLA6jaE4QmjwQWa07C+vePklx9j+R+hyQhd0zECF8dyieM9u8Uc27Ioyor+cIRsFMlhy/vfvGSdZGSNSVKkVHf3nMxmdDyXkWuy3yy5+c1/wvF79DyHVx+ucVHUUqEj6Qc2GGPMoYdVeRiYGEaNdHq8ffcdfrJifOYh6hDHtlAaKMPA63nERc3y7h5H1uhNQ5UX+P0+eThBuX22myW98P+JTwOPSHOw+0+JM0WVxoimQ3q/Ippv2R4j4mTH9NMXPHk8YWA1OGjIzMK1XciOlFlB16yxLqbUlc76zVsePZrRdRRlZ4i4/Byr1+dxkLOyDwyfPcOlZPH2a/qZAasjQVBinjqMBh16noHRFIgqZz2/4erNK158+hmPZyfIRuAHIZYJZbFHai5v1yXLxY5A+ASTCWlWkjcNB03QVynVZoMuGhA1TXLEMjpIZWJ5Q5JaJ1WS3XqPG/pUSiNvGmzLoC5LHMvAERAaBrZhcigqAstClilVaZPEB1zLJFYJFYKrhw23ix1ZVrK8v6dMSrpnl0xnJ0z6Ntn+wHnXQB1t0sbBdz0eXZxyOe7S0QssTSKTHYHvYgroDAKSOMOsFf5oiBKgUaL7XepegG5q2JdTiuOegQ6HfcbkZEBv7JPsHnj/7pbFtuT6fsd8u0ITCt/xCO0e/kWHsOsyf1jwkG14UXeRWYoua8a6zkHXaJQgrzJCp8Pp2TnxPiaLcxzTAkNHAFl6oLI1+rMhg07I7W7PoSgoNxusj5/+2HPTarVardYPaqNJq9VqtX6yojSjriSVhKyoqMoMTTm4pkV/MOR9emC9XnI26ZLXJXGaMQ19vjw/50/+1X/Lr/7qn9M/rhEG3N685UE2/Ntf/xaERqc/oDca02gNwhBoqmCX7FFlSmc8wJQltw+39PpD6v0WfzRj9uQ5XqAQjmL84gXHbcH50z8nrvaIl/8Wv6NjmD1k6qAlGc5oCpZOf+qh6pTieKDb7bOa37I/xixXG6IkpsTi9cOOTZxzMqz5oiiom4bL0wlxnLGOjry9vsGyTJb9kE96IVGUIjWLE29EU5f01PfvBsGpkVWK0HQm0xl6sSO+fcPduzf4X4yxbJveaEhaVBRlzeRkyuH2jixJ8foDjt6APJdkxxuassAfBJR1Q+A6jE5nGLpJoCo2dx9oDgWUkqwq2O839HyD588u6XgdfLmkSmpsa4AtBGhHZHwgL0scx8caBLhckN/fUuUDrPNn6JMTjE6PYSCYuQrlmAzHAa7lcLu8wfI79IY+ugBZSKgkZ8MR/8XnH/P1h2v+t1//gf1mzfvvXpKkKaOTE6RcMBhPkdJDximOpaMrCWgc9geWr76l7xpsPJvJsE+ySxCaZHI2QFUJY7dDnDX0XAuV7BBCUUkoCkXH0UiykjLPeFhviaOEnm0Sej6WbVA3ikZKjkkCQkOIkig5Eqc5tueSZAturpfsDzl5lGN5GQPPRVYhxfGBjmXx/MkT4q2LQ8FZaOPXMUJKqlzDtlz8/gCFgXBsOrpOevuAKDXCyzEIgS4Eo7NTkts7LOHiDoYUhzV6YGH4HWQWE07PcRyP6WLDz59OWK9HfLi9YbFbEjcaTx7NMCybnt/h6u7I7jzGUjlFUSI0E5HrrO4PRLrGaFzhOB7KlZx3xoT9AZWm4/gh94cjeXrgL148Q6sbyrpm9uQxr777hmy1+LHnptVqtVqtH9RGk1ar1Wr9ZCmlKCtFGeUcowRLFywfloiTMYHnMx5PsJweZAeOix2ePeTLT5/x9Mkjnp6HDKK3WOWWxfWK+cOWdRJDUzOeTtFdn1o2ODqkyZEMRbTf0LcMDCrquuCs5zH56DEzRyN0bBzhYToGmuvizH5Fmv8WowfHdws++cu/JuidUO0SnMAhzw9oto1h6ziBz8R4QR5t0AwbfzjmuLjldNpn8bDiqw8LfBr6wxAj8CmOEd1BF60xMOqCs0EXTVj88eUb9vM5xbjP6XhMlMR8cTZCBJBlOUIHmR0oqhzPsVHhiOXDNUma0Dl9hNIM0jgjUnt+/+qWF7/4Gc8/+4Svon9DHOfU7ois0TFUiQOMTmZsS8hrnUENdt3QLFas7hakuw3VsWDx4YE8PpIUGz79m8+Zhh2cKiaNJcP+ALXZUtUVMsuoMhNveolZFyTvP+BZFuZ4ihidMk8qQt/B7fcI7JCDXJNVikHocOpfsOi5SF1xt1oxDjRGHQtDKYRuYCmdjx99xC4pWW/XXL2viI9bsuJLPv78C7aR5Hj3FqqMsQt1WSM0jbAbsg37FFLiaw4f3m0pdysun05RpkOjCyytwW9yEi8gjQ8YUmGWOVG5J9GPVFVFXhRsN0uKwxY17iCVwjZNhGGwP6TkRsnZZEyRbKnLhOXDPW9vDySNQZzXZFmNUiZl5WCpBltWZFKn3t3S1CYDz6PjuQRGTWDZGI3A9AKcIECjwtJNnK6PrgRaJsmPe/rGCVVaUEuJQCc4nbK/fsfoyQWa38GocqLtnni7YDwd07d1grMRVV7T8wwmYc3Nw5J9LRiejKg1hVnB282crBLYjku+jUjrI57m0Q8dDpsdy9sHzoYjbMukTHMKmWKdTYnSjLQqKcqC61ev6A/7PNzckecFVp4x7nd/7LlptVqtVusHtdGk1Wq1Wj9ZRVGSpjkYkiJLsFRDU5cck5zJucP5sxN261esD3uuljtMf8oXjy+ZzQY45YLk/VfcPSxZ1zbm9Bnl2yWWY2GaAh2J0HSQFQ/zexxD8Pknj9nc3dEPPEazCX5TEpgNYW9Ib9BDHnZYno09uEBvNHxlEl+94fLsgsHpKegWeVKh1QXdy8fohkGxfgDLxHRcytRGOAFaVTA4mVFkOXbQZTAZ8WwTccgqDNejzFN0MeSwWWFqgio50tUNnj655PW7K94v1iihowub2pCM+j6Z9FnGCY3SMCwHoSRCNwlOntDEB7qDAUWVUByOzK/ueLjb8Sd/+iXldsGhasg6E6TTwWg0dhknAr4AACAASURBVJsdvX6ff7xekqcp4+kE3+/iyh377ZG79QYTwWEXURcGut7ntFfSHZ5gNqBygWd20Pdz6iSnSkt0IQjCAKFyTDfEOp9RpTF6b0BZSILygV5gY3QCNNNHaGs+uhgyGng0eYpn976/6mJ4GKpGCDAajUYpgrBHtFzyyWzC2cmIYxzRlDmL6zdcPvuY7Tbi4faWac8nsg2Oh4Tp6ZROGDA5mzF/e8Nv/ulbznzB7GIKgc/tckUtBP3pBN8ykWVM6XlUjQtKYgpBmhdYpkF0OEB2xDQ10iIhz1Nq6dEPfYo05xinBI3CbApUUWGrhvsP77m6j9nvE5pK4jgB08sZk6FL2KmxrDHdcR8tK0j2O0SZ0rV0bF1g2A6OY5NtH7CETqMHRLVO7/wMZSm0RhHfzeme9qllg3AcZK5hO13S+zVuz0FrdAb9EN92ON68oVEpuu1RAyY6od7hxE/Rtxvq5Q0ELkWeoauEQ7pH5Dqm7bFf70h0wW65ojim5MrEMwwuT2cIPAy/y3Ifke1j6jwi8ByOqzlVvGbmBTQovOEYhPljz02r1Wq1Wj+ojSatVqvV+slqpCRNIizLpEgSkjzidNynOx4QDmbkmaIsOzysDDabEtte88XT58THPZu3Nxw3awzL4uL552yUIsszPMdEaIq6KpFVQVHmDPodPK3GQPLFs0e4muLJ+YzQ9wltHSMIoZHsy4zg8jMsxyNeLOi7Ad7UJzx7TB4VYCmUF1AdE4Kgi9Y0mJMT6sMagYlhWEg9RG80ZBbjBh0018dybYLeCM1xORwjlvM5V6/fUimYjgfIMudqviQ0XbphwHyR8fp+xaPZKVKrqfIazWgYjAYo3aA5rMijPaJRlI0gyQrKNy85+/IcpKJjWYxsjd//3f/K/WSKNjxHH42ohM3D1S22ZfP+bs5yscBGYgQCQ1OUEqosRjhd9qsY0Rg0XsP2/oHy3OW5HcIhwrR0PLNERkcoFZ7bR9MMRLGHMkHVijqJqaRC6ZKySPHGQ+xej8r12d1tOJ32uDzvUGYZWBrpao2pMs4HHrIqMVVNmRRo1Bga9Doeu6slNRrD4QmrxT1alfPh698jvB6L6/d89Oy/YhMXuP0AqZm4jkHP18l7LuHHF1hNgWZVJLs7/uEPbzF8h0dPzpiOh9iOjQNklURTFcq0sHWdpqwQSBzLJhMa++OBqs4xLI+8UEwGPYpjzW6+p+PCYZfy69/d8vbdhjjLsbtjdHR6jsXYk1xMB8hjQXkscJRNER2o0iNnoYVjWmh1RVMkxLsNaBLhumiOgcpTiu0as98lnI2I7zdoTYXb79BoCkPX6PRdZCZI51uKLMKwHczQoRE2q5tbarHHtQ1ElpOnKdJUUEji/RzlOwxPpsjQJj8kxEoSBi6W0+Gb2wNFXlFnBbs4ppQNl48uUY1OKSt814GiICp08jxlcXfE911Oz84RquHDfMHlePBjz02r1Wq1Wj+ojSatVqvV+unSTSrZUCUJ0fGApmo2lcFJZ0KaVyw3Ry5OLnGDLXlxz4frOffbHR82c3arFYEl+Js/e8ToyWNe/fEGy9QIQp+mKvE8l3fvPnDaD3CRxEnCqWswe3zGaS/ECUJsyyHd7+gKjTTa0714gmUZNPEe21R0Pn5CJRWNMr//bG5goWmCY5qg2RairlBVieF1UbrAFoJsPccdzSjiLVV8JBidUmUZD2++Ji4b+l2fYeBgOAGN6RLt1iRpiqNrLHZ7PMvi/PSUOEnRDZMoOTC+PCXLC9Rui2YZCNkg8xyhG5huyP7wBpqKJCkQUjLudRBKomuCyuuSC5ftZkeWZhzWe8oGbm8/kMUR465DILtkVcP9pmL1cEQmC8ZByMPqls1yQWk42P0/Qbc0TJWhHZeURY5oNHRhI5ojGoJif6CpG0xHQ3M7CKHYPSzI8orBkydUlsdqvqWua06GNtUhQuY5TZnR0xtcx0VlGaaCMjpAU6Pp3z8FYmk6k9GYh1dvSLOUWtakeUol3+KEfcJ+j7pRHBZzdCT6aIDhdtDMHdOzEfW4TxYd0YpbXn/9Hf/+1YZfPh0QugZVo6Eqid8bsJmvsRUUCBxDp0CR5xWVbND9Dkm0pC4iiuKAF3bQDMHg9Ix/+vvf0TEy3r97y9t39xRlg+sGlGmOho2pO4ROjzyOkYeIbL3FUBpoOh3HRq9LZNqQxwmWpRM4Bk4YIjwf0/ZBNhi2Tl2UFNGR8KSHTAqUSqj3FcoQNEUGGrjDLtWqpGkq6rgkCB0iTyBliTA0DtmBtCw5rGMMobCAh7sFXaW4OB0RuiYUFdFuT89zQNbczHckRUbT6OwWO/bLA+O+RVUXuLaHOxzTFCVNFVNVJUma8eHdG6wkI9N0gl99+WOvTavVarVaP6iNJq1Wq9X6ydKEQZoVNEVKnuUo1VDtY755s+CXf/GY3okPQhCOz+mePpCsV7z+5iUnwyFBt8eLJ1NG0xGFFKRJjmcZqLoiqkoaBbqqoUhxbIO/+MVzZrMTur0hxW6NqAqOmxWj0zNknuH1Rvj+AJnEUDeEs1Pq+IAM+9QoxGRItr/DKFJ8SyNb3kDVYCCw/BARDkApDEOjPmwRtURFCSLI6XSnnMyO/O4PX3Pc7uhPxuieRV2VlEVBUdUM+wP2yZJdVmAApmmSZjnz+zv6J4/Yrbe4rke+P2B4Prqmk8VHOp0ek5MZDQ1JEhEYgrSqcC0Hx+tyXTkUWU2ZZhzXG6q6Zv6wYhQ6fPqLj9Fo6Ic+Zp2SZwkyjXAsizdXr0jSgkJTdIddhO1RFIoye0CUNZoykEmC3+sg8xKZxmB00AczyjKhihYcdxt2lcv4YkYlLI6bI+n2yOnFFNeoMJTC8A1kolPHOpqSlHlGo1vowqLIcgyzRtUKWeZ4ms4nTy759t1boiTh3f2K3mDAZDLh/JMvyOKEt2+vmExG1OUczTAYaJImz1m+f0CVJaOJ4CBMKl3n+pDzdBczCMcUmz0fD/sIw0CTDaqIqRqNIi0w0BC6Tl6m2LaJakpkHlPqOpFukJcawdjnzcvXrKMVmSyRsqbJJEVWMZw+pskKmkOOwsEOCygNet6QLCs53D6AVBQousMhfsdHp8ZwXaygi6lZVGlNfoiwbZNS5ZTHLUJTHG4OuJ0OWqNQeUTTFPjjEa6tkR8jirjA9kI6vSEf/vj35HlJUmrMdwmDXogSGnGcUMY56cOWs2GIokRDx/Fc4jznoufw8kNJXUuyokDTTW7v7nGERY2OsGpM02F6fsnq4YHF5po8XWObOpd+h/5oiC7rH3tuWq1Wq9X6QW00abVardZPVlPXmE1NlKdkRU3TSLppyuZhwe9/85IXn70gK2N2qw2m59PpZOSyoj/qcDHpEWgxhaaRJxVCUwgaDAG6BnV64KOzEb94PGMY2HR8B02ArAp0w4TsyCB0qOMEzfLwbAvSCF1zYTyhlhmIBpWsKbZ3KJmjJSmqadAdH3t0BnmGXqbI/RK5u4HhGDE4o0kjbCsk2ixwhIE3nhGuF/zpJ5e8vd+yXOxYxHO80KeSIBtJmh+oqoqe53Cz2hKXikF/RJ6X6KohNDSy6IBSCqIdaRzTVAVVmtJUFVJr0G2LRpbIBnqdgGOtUQsdqSSr5YIqy0nrmiDwOb2c8ejpJRQR0XZLlWVs1hGWYRBvtyz3EcFoyPT8lONyxfKba7SLLmW6x9ItGkugTINtJpDHCEsHXW4p399RawYyjcgKSfdiiub55FmFXq24PJ8SeKAbIOOEJvv+OkxTg2kamIaFqmukMEBBfogRhk6d10gabHRm0wne8YCuCb77cI9qoD9eE/SGfPmzzynLEqEpss2ceZZwMfTwJwOSxR2aZfH8l8/5UHioWpJlOd1el3cPG7L1A+P+iGjfUFYaVRTh2RaOUtRpjoaG67p4vRF1WbGvd6BAouN1bcLTEd/e3LJcbVHKQAgd03Lo9TxGps5k1ON4t6Mz7mIOXLRakSVbPE3H8y28jkvYG6EZJgYKhY5lWCglsDwDmcfsNxle6WMFLrKpsQNBvbumKhXeYEB9iNi836DrBnlecFyt6HQ6WIGLEC53qzVJVuFaBvP7JVFdYzSAIdCylM3dCrvjEAQuRd0gNDjpuFyOQm6+u6aoFP83e/fRK0mapfn9/wrTZq6uX78iZMpSXV3NGQIDDDAE+LW5IMBRxGDY1V3TpTMzMiNuXO3aTdsruIjesYbbzIX9PoG7Af4A/sDOOVb03O52XL35gmHwlNsdqdIk1Yl4MiPNM9p6D85imoqQM7qu/7HjZjQajUajv2ksTUaj0Wj0k9XWJdXpxOlUMRjPxcUVk/mSzbrmmz/8Ezd//j2rSYbAcDjsUL7j55+95uWXXzHRHltrRPGa7dMB03UEAnQS01cH5oucX76+ZJol+LZBiRQpFbKrCTUkUYoMEvzkkjjU+GpPMCvwQQqLGXZ3RDuPbGt8fUCpgMPzHSqOEd5jhUAiKLcbtAowTiFFAjqGoMX7AoIcoWJc0xAkCdn1Z3yZLbjerfn9tz/QB4psOccD6+dHUJqb+y1pGtPYlqatiVTB2/NLTDbld3/8FwYHh/qIsIahbcELhNA8P37kVZxiMGitqKTiICOEkpwODU3dYR0sr18igoTvP97SNg0vJgKsYttYgiikPh0pnWMyn6C84+nmic3zM//w+QV2+0RnOgZhCWNwg4ewI1AD1X5NW54QUc7u1DOf5WTLBcJbjne3qHTG4mxG6Ad0axlMy1ANCC8IQk8UCOr1Di0aBi+wMsJYizA9zmt0lEDX0dc1WmhCIbicJBRfv6bueuzzDZsgYJApk7MVeRywPh5Q3rC3BWkRkYQXBKrhi69+zr/LvubjDw+s0pKv31yRIwhcyyTWVDpAK4nSGuccyntirRmEJkgVvfGcLwqk8xzXGxoPTnuOneNxP4AMmMxXmKZDOUOaCkLp6c2aUL2h2fcsppp++0wepASLC1bLgva4Q5qW8nhCCU2iIo6DQwaC0HYI54jcwP7xwHDbkiQBGoltDcq2nNa3zJdT2vUzOktI5+dExWvq7ZG6GVhcf8bncUa123LYPNH3A2EeIIKYWErKsqIuT7RdTZhc4roO4z1pkvL3X73ku8ctPzydsNZSH44cNnvSyYx09qms8V5im5rz5YpYefquYX844mcNhPGPHTej0Wg0Gv1NY2kyGo1Go5+s3jg6C13bE0URYTrn1IUcj49stw9UTc233pInCVfLGVEcUPWeMFmw23xkdfGShypgcxpwpmda5ByOJefzBb98dUkqDMoOeB0hdETgB3CGIIwxyYzA9ejugOsblIwYThuwG8z2e5S3WBXhcQjrQFqmL14hZIC3lnbzgLOO7OwcLyW600hb4lvADkgVIMOCoatJZY8KNGL6iub4O6bLC96UFf/1d99g25rKKJLpjOhkmCchz2VD3/c0TcVqdgbtwMvlC/yXjv/++3+mPNYEwlGXR7TWSK2xzhOEGuMESilcmpHnM9KzN3z32z/ROM/11SXJYsnPfvE1dmi4+/YvtKnmYrliaBpC6TkdSjZPa1pjOR4P2Nbx+mzB6jygK5+RStEPPfQOdVxj2wGtPe3hSD6Z4YxjOimIsoTBapSXzBZTgiRAhRrZtbjOEUQxehqD6fBNje8tUeAhyOmNp9vtkcLi45i2NQjAtC2h85zMwGQ2Z313Q4BllkUI11F+/yfk7IJDvadfnDO0LQ/bDU3fcfniikB0HHYN013Jf3h7xnYaMctjJlpj5wXbx5pAaEId0LYVbdiDBFVkn55xXZOezxFKQhDA0KPzgEx47h/uuX1/z+7xGa0U5faJQAYkWlCvt/z8zRXTIOS0q0hSyLIIkxYUeUTgKlxbI5yjbxpCnRDGCSGSJJJsmpKhOWGrI1EQMbQdpm05HkFjwVi6qgZnUP6SoTrRHp5pTjWTV1+giwmTswvq+gRxzvnVa/bb90weHnh83nD7uCWOI6I4wPQGjOHm/T2r+QyDozmcmCYZv3zzgnJ4ZH86gRkwTYXREbbtCWSAcZLBCuZRwPFU4W2LsQPd/S1DXf3YcTMajUaj0d80liaj0Wg0+smSQmKHAYQkTScEQcZufaQ57dHGIIyhtQ5Pj96dyC4XJJNzDibmzee/JBSe9f2aRRaC8jghyLRgOZ0SMiDdgJQaEcR4r5CmQyqF8REDOb59j6sHvC6Iww4pOuxgkcLRG4HSA81hR1hk+DRFZyF4TxRFRNMZnk9naYM0QgeSodxB32FPB8KzBck0RMQT2vV3OBmQvJ7Qzs54+NPvCYOEWGm+e//IZ69fMOxPZE6wFJ61s7xYTOm8RDqLKyvCZOD1ZEX/1d/xn//xv/K8eaatT+STCb1zhGlOL0ICWnSgCYuE//U//Dv2csLNwxbZVCRp8WlkY7Ohq2suri6IpCCdLOiNo+lqnBAY4yjmcwZjmEw1s+kEb9b0R8lgBjyaoT7hnaSva8xgiOMUOTgkBh0Kep2QrF6SpSHKW6QAbwbwEhEmdNYg2hINCBHjIof3BtsPCOeRrse2LSKMP12RkWAHg7cSbwRtVSOF5HisiIsp4D6NtOxuuX/fo/Ip6XxFMZkgpOSw3RErj+0HqucNw27P9PortM64f/9MMZsykKCqlmI6J+ol3llwEh1GeO/J84KhG6hOFR/8HaEZwAl2hx2P909sHo/gHN6BHzqyBK6nM/qhpyw7xIdbpD/xb/79/0IwTcidx1e3dGUJg0XpgDRf4JXECcFx/YA8Dex3J3zfQ9czOI8ZLJNIIoOQ50NNKDyxhKrquHt3T15EHA8HwqonO7+gqyuGyQzpHNIJRFwQpkum5xLvHV3Ts6tazNCzdYLZJCWXgsP+QJonyDDDOc/PX0z504c1R8BbgzcDbdNQG4MQAcVE0fctMtGoIGZ33BEmEXVVQd/9yGkzGo1Go9HfNpYmo9FoNPrJ8tbirCMKI5bzC9reY9qGRZywmJ/x/vYDKi1QQQDeUJ1akjjgeqaJ5cDdzQ1usAzVkUmR0pYVURGRKo8fepxSOK8JnYFqB1GAkBGmORCJDhVowniOUgXYIx6JSgKkEsihxzlFmhfIOECGEabraMoSeo0KNDIIwcOpbJkWCYOThCpAZQtc74jiGCOhlTGqmKOkZfrqNTrQPL77gbyYs30+4j7ck0YpRRghrYO+o7M5RRKSZxntbkcrUnSY8PWrr9i3ln/8p//Cw/qJeH9AT6eUdUuuM7IkZX2qOO4b3hxO7LZ39Pc/kCQxdW94Wu943jQE0YoXLy8w5R7jDJGS7OqW8nQiO5vzePvALAnADWhfoeqGQyfwXlIdS2zf0naOOIqZ5jEqK7A6Zn51jQpDoiSDpsW0LSoPEfkEE2VooRFCoHxCEGuG3R6pDUPZYocWaQwaiMOE2ngcjr48EMYxTgisGHBDh4okKgjJJws2+xMq1CgMxnkmaUTdltx+f2CQmuVigp9MkZEk1SHGCh7ffaB6HgizKSGKwGlinUJ/RPcNwjtMeUJnOVII8rzAdC1SKNJkQiA8pqnZHWvKuiSKEjQNGknbN2Sh4lWW0DYdKp7ytDuRnCdcX18yv5oQuyN+d6Ata5QXJHmBsI7ahjwfSp5PG8TmCWUMkyBgNpnSmYbJNMO5jiQWDL0FGYEZsNYQhwlxIOm9I1m+BKF5vH0iCALMu/cIHdK1J8KzGfJfl/9k0xnnVQvugI8Ux9ZS1TVJMsdKyaltCDGkSYqSmr//6powUjSDxzmHcwoVhnRdz2n/jPeGw6AJwoDBWrCeIdSU3ViajEaj0einaSxNRqPRaPST5ZVCakWeJEwmc6r7Z/rywFkQkgyaX1285RTGbOuSRZGiA8Ob12+4XK34+M3vqcsTCoFwhsANeGHAA06jwwCsJThb4o5blPAIHeCcIy4KwgBwAtW1iEAiJxkiTPj0SoQEZ5AywPQdTniG6oSTgmg6oS8PeGMY/vUtBz90eJHhRYA1EtX19O2JaOlQbiBZLJChQtiSKFWEX74B6fgNMH+94r/89o98fzgSGEsRRBzKllocOF+cESvF7lhS9E/MVy+JtyW/ef05zWHDw/aZbuh53jzTIDhULeEk5H53JBYp//H/+L/48N17VLzAT1as5guGQdMR8+L1a+IiY/ACs3/gsNvwuH7GeoE9HakPa+giJkmE6gy7jcF0lq4biCQYD5PZGWboCaIMoQIm0wLvHFJo4mRGkBSf3iRJMmwoGeqBJPMIZ4hQuL7DDwZnwFQHvBmQQuL8QHfsUUGAUpqoWDB0FSKQOCuIdMD+cKS3FmcHlDPY3qGSGOcMu1ONlOCNw3hDnFwgwwihBXGUUdcd1gWsP97x5tKjopjDQ4+MNI6eJJFkoaQdOhIbgwq4ulry7Z//TBBkeBmh4xAGx1VecKpT7j48cXf7hDM9SaDJA8mxaQiCmPnijEkQEEQFeZIy05L+8UC72xImGVJobg890mv223u25Y6mO3EVxywWF9iqpbcS4yVCBcR5QpQEBKbn+u0XBEHI0DTk84x2f4AwR0pJXZX0rcF3Lf3Q05gem6Y4JxlagTEBKkqJooQsHXi3q1ieT2hOFVXdoOKUKJEMbY3RksXFip9/dsH6cOT90wErPdv9GhkEnC1XxDqk7SqcMbT9QD6Z0wpQ0zmd/3GzZjQajUaj/5mxNBmNRqPRT1bfdkihmS8vaeqGtqnRw8DldEWSznksD3RCsbpccDabcNzd0J723N98YL0+IKIpu92Gufz0j0xKCcNAmM8QQYrZP9Ct7widQU7miCAhSOfEgUBLh9QOIUO8+rRA1XcNwnaIMEE4g3EOmWb0hxNtXSGCGGVABSHppMAYgXSGokhxXYs1AzAwdAMMDlt2IGp06BA2w/UnbBigJ1OkdCwvzli+fsPl1YL/9Ptv+P0fbpjrlF8vNFttyeKIKIo57jfclXfQtCSzc3SueJHlfH15xbY/8uHuAWN6JpMLdCiJ4pTrsyl26LgoUg4yQwUpMZpfvbjm5AK00Dz8cEPXHVkmEbge038qRU7HLbPFgqY6EgpDdTzR4ukGyzQOqLuBLMvp24ZlllIkEfk0I9CKJM5I5iukDJA6RKYxEoX2ljANCLRgqC0ei6lqwiDksO7oT5622lIsZtS7He2pRYYKGWeILEVJRdV7fODAeaxoqNsKrQRhHGKtJQhCOgd1V6KVROMo8ikyjHFAVZWsziKkjjGTFO8sbV9SPj5ycX2F9zFhEeLsgBMSHybs9weulzFOnHDmCISEUtAay3x5wdBUuN7w53d3dNZinUFK+Wmx8WzK9fkCGVlOteHF68948eUVfblhd9ijCditTzztevq2pesqhrqnamrySLNrBo5lSxSEvIzmnL/5nNB7isszMD1hFiHDKdn52ad9JqFCoBHhFBmGWP+EsxUWqA8nqupIqwfa9YauHei6DhVBEhWEhSA69XSdI00/PRtnDEl2TpHFiCBEGMFMR3z9ekHV9aTa82G3QSiFbUrCOCNIYwLnmGYx3oeAY3a+ZL66+PGCZjQajUaj/x9jaTIajUajnyypNEmckAQJu12JNYapkmRpxkPTEkwXvJqdEUYhURgymwRcXSzZbdbsj0c2mx1dU3H25ctPuz8GS55Paaym7xtCqeiHgSQOMd7j6h5hS3ot6HB45VGJo+8qpFZI+Wnkou83KCkQCtxmz/RixexsiZEhwnqENwxSYwKNao4oFaKjiHg2x1vP0HZgDQQa5KcxBi86pOkQrYUoJMwiyrsdWTDl9csv+GxXsi8tX55fs/5wj6j2rKZTTNfy+Lyhr2oG0zE9LNGBZotjOZ+xbyTJdks/CPJY0bUtq9WCt68u2e0OVBXst477jx9p5wsWSUbben54OiKLOcXlHC8r1usdddvQVjVxFLI/7rHGcrQtSsNgemZFwfOhZhJKAq2ZT2fkWY7XMV4oVDIlzHJUGCGCFC8Ftm2QKkYAMvT4ukfplP7QIn1E1xjq5xIfSIZTQ6Nz7j480rU1OE96NqGVmuDsHJFOqBuF0Q4hIwKlsdYQioauraiOR7KiQJ+v2G43OGOR1rJ5fmC6WDLNYoI0QJqexWqGjQIiFdC1Hcb09D5ExyFDs2U6uSIqPaGUCHNAyYHV5YyqG2jamulsRoijbRtuv//A5mlN33dIHOfTjNUk5XJ6Rtf2OG1ZvFxy8WaFbLbc3T5y3DccdwcOTUlrHbZrqP91Se40DFFWMisKpos5s0xRhBNm2QwlJEFQIJVBC0kyXWBbg0wL9GRCZEPa3RYhQnQQ0dYPNFXLcV9yKE/sTEljDM56jDf0tWcYhk9nj2dzhqZBJp+WJidK4puGPg5ZZDlBFLDMM3ZdyfWiofOCrqoZvCXCcSz3qCzjPM/Zbk4EUcypqbGPCcK7HztuRqPRaDT6m8bSZDQajUY/Wd4aIp2gpULiaE4lf3f+Cp8ukLRcXL+mbRuKrCCKFKF2RGnCD9/d0zY9qYTpJCfWAcOpIgwiTNuiff9pl4LpCAKNVQGib2iOzzzVLXEyo3MdOpX4aILsPVGcki+mRFGKFhovPHawJBcv8UXKyUm8CPBDhfQD8fKMUAQYU+NFSC8DlJCoRBEVOfQtxgzIKMO6ARnHKBrEUGH0jDBy6PiJ3ccb0osrXswL/hoJ9qYiu8jJHttPJ4Wt5+b+hv0w8HTcM3m6RSQJ6rMviK5eE919GmnxzlKXFftTTTLVDF3Ffnekt4q2PrJ5eGQuBk5bx18/7pHZa64uFiRnK5rtN3RNw7GqaE4niiRicJ5T2ZDGklAaAgl1WbMocs7mBbPpAq9TiHNsMqHWEWZQmLJBmgNJasmKlFAretOhtEJ2Diycbp5JkoDd846mblBk7L5/x+QqY/f0SNWe6LuGfDqjbWtOTc1u/UAtA8IkoTQD9D2bU0PV9/RtzTISZIHCWIsZDB7oLGwf13z1y59hXIcKFHGa4gbPYAd8EmNRpGezT9dx2oamjlrnzAAAIABJREFU1ITSYqo91aYhTDXhLOX67TVRHPLPv/sW27eEyqOGnsPTnu/+/D1D1+Od4+XVBW/nCXEU0TuFlyGXl+eoEGJbU54qbu8fqQ4t692OWhm2XcukbXhZxCxWUy6zGXaA15dXKK2YLBfIXmIqS1SkqCFCOkeQTZFRgfA9MgoI4hjSnHa9xjY1x6cDh82Rh/Uj6+2O0vScbMWubj6N6NiBIIxw3iKEREnFIp+jZUeqFEpqYq+Q3iFDiQgkcRqwnBSc5Qf++Yc9aV6w3q552G2Z5imhM+z2O6zzFBNPdTpCljHU9Y8dN6PRaDQa/U1jaTIajUajn6zFfMakKGgGS2sdUZhiJ2cMUrK6OIe+JY1Srs8vCdKU2eTE0A1cnq846h33hx1xJBB2wDuPUprmdCJJMsJUI4mRWmAIeHp4pm1ajocGFQ9sD4+EeUaW5EijKNIpyeHI2YsVSaARwhPPlzTZCus6jDH0wwlbNvh2z/7YkRQzTo9bDg93uL5mcXXJ+ctr4jjAnLZY50nPNAgF1mJUBiLFNyDcQHG2YGhucKInjgLefPaGv/zhz7xeLbm8XHJsHaau+W63JbKGVGlmaYpzU2bPN4ihIZ1kzLMUHQZYL0nThFmRcPv+hsnF5zy3NXFq+GLRsfSem/sn8unnXF79kjwsyLTi8bhnvXmmbxuiJGJf1VghEDiGfoBEo5QiiQKyOCVM5hzFDNA4o+i2NVX7xCK2qCCmKKZE2mEGQ5bmZLMzikgThwHYAITncOjZPz8hNPjmkXTa46wjTBJWr94iEoXtew67LVXteTruedgd2fQer0OSJOHFrKAtO05Ny64yvJlnBG6giDVKSsDRtA0ejxASLT3V/pYkz8nPMk4nQ10bgjShOZakUYRvW1yikH1HEgV0fUsQLQi1RGkIpONwOLK6uKBsLff3T+w2B4TzFGnC2XxGP9QoVzGbRLz96jVxphFekrQ7vnv3gY9Pz9SVwSPZ10diZfhynnIxSVjOJrStJw8CtOgRVpKmOcXbF5iqQmoY2hPV/pnV5y9QiabZbKk/vGf5i98w7GuGumOz2XBz95F3Dzd89/zIqetp+w6jHL2xOOfRUmObHpDEUUQURbRGM081kzxFDC1hMsEKh9QJSoXEccjV9QXfPR/Yl3d0nSKKYvbtCe0d5nggjhLSdMIwGLRtKT9+S7N7/pHTZjQajUajv20sTUaj0Wj00yUC2s4wyWOq44GL+Rmt8QgcQW94+/YrnPdIC69WM2TsuLv5hnp/4OHhkbI88faXb3Ftj0LQdT1xnpPmn07Q9mVN1wtu7j7y4cNHLB5vBEFWsztViH3PJOsJhSSJOoa15bo8cHV+RpGlnKwgm65wrWH/w7c41+GHHtvXYByPVtCUB2xdMp0VHO4/0B2ekH5g/7xmtrpg0TQolRPGBa6q8dURJQReSXyc4H1O+3zEu55JMgHnqdsO7yRpnPLNfclm6JAeNJ5vD3umfcMXSUBV1cyGSwYREUYB09mMWBvyPOPdoeTmwyN9IwmGljzNeNo36GjGuW8R9RP5IiK0JXVTMTiL8dBUFWVTM/QDuVLEWYiSkrSYEkcBQbFgZyIi5VFKIpIZz7c3+H7Ladsymc55d/9If9iQhRqHZDKds5zPOV/MSXWEHyBSEKYBaPChRAUJyXxJEc2xxmG9ZHc6UlLw/f2RP3x85mm3pfOC3gnCKGFzmDGNJVIqegTvdhVJHFJUDWdJgJSKIgmpmxYdBeB7jDP01TOLIsclBYcqY/AFrd3QbXfEwcCymJD4nixLcZ1nvV6zvy8JleCLL17y7v0zu90VkQhAKoSQXJ0vmMaK12cpszhnFUs6GRGKHuqKpJjy4ft3fHv3yOP+BIMjsJ5pJHldJKwmBVoH9F1HUw/k5xd0fBr3EaJE0DC0a4hDROyZfvkWGYd4ATIOyS6WdNsH1j98w82HH+jDiLVvaSNJtMjZbfcYFbI7ngjjDOM8lfcEkSaUEhXHOC0ZvGDfCf7qe75czogjTaQ6XN8S6hw/CNJsysViwuUs5l++3+KEYpJmSB3StTX98cjQDYRRwMUsI4sEZ3HwY6fNaDQajUZ/01iajEaj0egnS4cRs/mU+nRCes/Ly0sO1YCpTqRFjjU9cZTw+vqK86sLnnbP1FVFawaedzuq8kQcfY3pGqwxBHFCmBfcPj5x2teUjae1kuNhy82uxFuIiwnV85FQCSIhuF2fCOME2e0J84Tj3TO7U831YkqaJhzLBoHCNEci7ZHOYb0jCTxaWWbLGGdCvA5xUnM4nqirE9ZZ3v/uT5jffcf5Yk4oQyayQQ4ty5cvSN9+jggV4cWS7Z/+gFMRdWNIiyll1YJUTKOEZuhYLqY0bc/Q90wCxSJLsAIed1tO/cDrr35BID99ptA0yEHTdJ77+1vmxYLVJOPdzRPfrjeEImCRBRT9DuenRBTUVcmhqvB2QEjohh5nDM5bkiglChQqUIjJGV1+jT+VpEFIns1Js5jXueNp01B6yx/ffU/VDXg7kGpNoDVpWXNze8uvf/U1L69fMD2bEccJcaCQUYgNInQQo9WEwYd0TcOp6fmuafmXDfzLfcWp7tg1Pd47eiT7quJ42HGWJ2RZyqG3xJGmWm8IpOBXL87ItCbQAZMixboOGebse08iPPl2Q/HS4ycZdlCoOkBUIbJv8Kajs4bbuwf6oWO/uWcxDfm3f/9Lsizn+/sN2+2aF+evOZ0qhJK8vVxQuI7PzwpC6VHYTztZQo1Wikg4dvsjZVWzSiVnArIgRHjPxdmcnYk4HFu2x0cQip/rnPbxkSQWvD/tWEz+gvA9s5evOb96SVIUDG2LaRqE8AgCdh/f8bx+IFgkrF69gecNYh2zufkeGWt8PfDy+pyDC8AMNNWR3tTYUHM8lAQ6+PQbCWMmeUxwPKDDhOtYgwCRKGQY0A4DeRLw+aslv/vugbozTMOQTEpKFPvjHpcahiFALi9Z/frfoCbzHztuRqPRaDT6m8bSZDQajUY/WUUak+DZHI8oD95ZtBmYBQlnUYKpaharSwYLwWJCNqQEWvPtzS3fv//Ibz67xjtP3w+oKCTMp9w+bfhw+8gwWIrFJXEviFzGavYlbpLT2o76dKI8nAjRdL1CTAuMHJBJTtX1fDi0SA5MO0NY1uggJAg11gkS4XHOotMMkCh6fCT5eL/lWNW0bYtxjlPVcPO8pRkE0f2OeeCZSMc00Zw1R86GA9nqFfHknHCaUB4rToeKxWJOXzeUpxNSSuaxQM5ShnCFGwbapibSGicEg7OU9YnHhxu+fP2GujrRnI441fC46ZifLZlPFjS9Y+0DZDJnczxxcB1XiWfqPGnfEkUhxnnqsgFnGKzDWUsSaZJYExcFOl/QBwV6GJifn5OcnbGYJITDM0ERkMdX7E41iyij6So2hyO7dkDgaXqDtwN//stfGPqGfDZjdrbii8++JMoLBgRROsHJCc4rBiTf3ZX85z+/4+P9DT/cfkseuE+nfMOQfVXSSsjjgNZ5aA2hliRxRhCnVMc967JlMk/x1lFkCVa5TxdlXML6NGBVzPKxZrZ4RMmGeWIwmWN3qtEupqkHgE/P2ViiKMOhabqa81WMdTXb/SODM5yvzpjEirj1dKcTNopJ05TlPPl0ARuB61p+sUqYkTJVns2hRgmPs/DuZPl/ntY0xpLrmGWR8R9v7ohDQ5rGFMZzZTtW8zNE1xCuH1AoisU5fnDYrkZYi1GOy9/8CisGjpsNgfYEacJycc7F5RViaBBIyiDmsN9zPB5Zr5/ZbTdoAR7D9tBhjWWSJxgzg8CRTibkDARxSJhm7NYb6Ad+9tkrLv7HB/5y80jbVEyzmFgHpGlC2bREQ0dlPKWOsNn0R82a0Wg0Go3+Z8bSZDQajUY/WUoKgiAgnxTUVUN5POCMIp3OsTLm5WdfsrxYoNOEIvZ8+/BE33dUZUURBfzqq5/hO4uxnsXZFfu24+bjPUmQ8vpqwizPobZIkRCmM5rQ0QyGrutoqprdds+hPNCIEp1PmMwX9FVL5A3busI0PekgyJShD2KyVBPqgckkxtsBLxR1D4dTyV+//4gOAh7We+q2ox4M26rjuWwo+4EQOEtDXsxTzjYw2xw4f7nnxdvPmQaadugQStF4QecgTFJMWxF6QxEFEEj6Yol7uscLyanvOV8sMNZirSMvFqSZxCvFx6ctTdtzdpHgQsmhNvg0x9uUIigI4oI+iWgkHMqaoe3BC4QK6M1AP1iyIGASa6xQtDoljKdMFi9IA898NWfXHvjwp39CtSVZGHPqNW4QrCZzLoqQWBiWVrCpevZ1jZACawynzZ5ESNbe8fbzz9BCIoIAkeY0TnP7/gO3+z3/5z/+lpuP79g93/N6JjmbzhiaDNN3RFrSWqiGnqpu6SMLdqDvWybLC+bnS+rygJOKy9UMqzTbY0nvPFfLjHwecmganj+c+DwWXKpnfCORkwtY1wihkYGjaY+0fUMYhUituH+4x5uaySTi8vqCb/56YrvdEKgADeTTOWXrOF9dsFhOMM2JMNAILQlERxp5ukBSlj3bXnOwcLc78tQeOBlYLM5BGVpXM88ks3xOMp8zOINUgt1hS9Od2ErPF12HtYZIhv968amFaYy0DW25Z/3wkdunDdt2wHSWX/zDP9B3LXXboMuGNIr4YrXiRgie8ojn7RaBJV6GvLs9sD0OtH1HWXV0nePNv78mzHJ6a6nWe/JQcdzuef3mgg/PR4SWbHY7tA5ASqy3CKFpu55vf/uP3H39M/jf/7cfO3JGo9FoNPr/GEuT0Wg0Gv1kDebTqIsQkiyJ6cojr179jKR3zCc5i0lC17TkRULfVtzd37N9Luk7y8vzC3IdEtiWKE6QQcGpEbx5+4pmfyLwgtP+QF+39HWHkydkcY6eWHKdkOchRZjwuFa8Xz+x+XBLuS2xMmEWK4pAYoWitgZjO+K+Z5LmpLEH1+G8YF8bbrc9392sqauewZZMi5xVmqBliNbQNIbbzZ73T2uskzweDZ3V+EnC/XfPHKuON+dTdJAShBrtBHdVw8VsQrO+J9QaG4Yc24HD9hknJGXfs2taVmfnXJxf4IRk6AdMNxDJiL42zKZzwjRnd6g4NgMtHhs68iKhuLjGyIRWtByqir4fmGYZbV3TG08SR1wXMUms2Q0ehSJYrIg/e0lZPrG++zPrmxtuH57oh559ORDm51zGmncPkp/PY4ogZD4rePUyozWGx1NNpCVnecK0KAiyBNU2VKpiMn9NpwTffPsNP3z3R/7Tf/u/+fjxI2Eg+fVZzlV+TWdgp2Keqg4nBG3TIKUl80c6M4BQHMqaqv/IYlYwy1OsklxeL6mDjLre8/GHW7q3SxZnBdvdgPEJ3VYhXk5ZziztweOWU6ySNPsjzkkmizPqvWO7PaDkjNA7MhmgH26JjWd1cU7Q9WRJih0s0/mESDlsuUcoyeAEprac9x2PDyV/vS2pemjigvenmsFKzhPFZSAhcTgBQegQ1hJZzUrB2WpFPFiM7XDK0/UVh/0aLQShCGmbimS1IksU65u/Uh4PPDw80faO7tTw4uqaVR7xWJ8QdY04HbBdy31nqLxHx1Nmc03TNghnyNOOYXAY62k7y/PB8nE9MJkeaPodYVxiB42WLQtZMptEnBqDswaEp+56orwgCwVBIHFtRX/c/dhxMxqNRqPR3zSWJqPRaDT6yQqVIM8SunYgmhh2Hx8ITM9lVpANDepwYPHyJakOSaIJRT7BTwzP0Y4XxUAUDQgbEOcpXblFHE7st8+8e3fD9dkFeIvte/rBcbf+SOm+YbHImcYhiS4YnGBvO1ofYr1lf2zRqqerBGqaEAcFUgUYPzD0LRqNtwLrJYfa8ttvt3x7X7E+nhCuR2I5nWq+XE5RUUAoEvJpyCyJOQ81T/uS1nsipbHkrKsd1fdrdruSX3/9mjj/dDnlfFYQdBUITxJq+qqmay1xGPBw6nk+HDAOmrZG4EjClMW0wDSPqECjcZy/uKZ3IIMYNdFMwpbCaXZ3jzz/5Zl89ZpkeQZdR9d3GNMDAhBcnZ8T0UGgSfICW0xRmeXx4U/84Xf/jG9qrBUIJ+mbHqyj3tzxvQpoiLg/Fnw1L3gdxXxZBCwmE95cXqKLKXGWkKcxRRqhpWJQ0LQdH959w5/+8b/zP/74B54fnrmeZrxZnuH3DcfnE/fHhl36kk0fcyxPGBcTRQnxdM65r5CuYns84LzheDhg2pplcclsdYEnIUoyri8vaMuWYQpGL/jtH59Ynjpsds7fpQNRahGDQsURQobMziZ0pqapa7I0ZLve8dWbV2TtgKqPpPuWf/vz37C/+YjtWwbr0AzIvqTzAXEQ0/Qdvof61HKsDA+nmkO04LQ/0g41v7heoZKc9PyCzknm0wVFMeezxMLz95SnkvXDD0yU5MXygjRW7I4l5eaOenNPGiesvv6abJlh2gNteWC2XGIFfHh/w7/51WckQcx3f/w9/3K7pkWTJBlpOuf8asarNENpTXd4QtuWqhvYvnzJ/bHn3XqN6xqGYeAPH9b49sgyrilmE5zRzELNVREzy1PW20eUFCgp6bsW8KjiHJ1mCClJp+N4zmg0Go1+msbSZDQajUY/Wb0xHA87ZpMJtWnYWENuB0xTky+W5FFKogKiOKKvO4piQrVZE4UDRhl0nKKsxOKpdluqpw03D2t+f/PIu/st15OcAMmkmGNkyKY+8fHdga5rUCokzyb4UAEOqSRhmNJ0BiV6DkNLMNRkaUqoBZF2KCWQKsSiKNuS9w8H1rs9szxjkRdkgSYPFYqMY9sjywNpFLCcpHz19pr48ZnGevKiwOUznuuW475EWsPrpqNyNa0LmEwz7POJAYmJUkIVsop6Phwa7p7XSKWwUmN1TNP1OOd4vD+ynGnyNCFMU1CSbDanuLjgi7kC2/Dx+488xB03t0eq+hFvc7xSePGv30sIkiRhNUvpyp4girj6+td8HCSNCPnwl38mwCHml4QyRu/WPJYNtm+QMiCMc+qu4a48sG87PpaG6mrJbz6PKDTEAhaXFyxefY4sd7h2j/SGnp7vv/k9f/qn/8YwWP7+69d8/epzTusD7x9uGIzgfHrG6volv386sDkdSYopq+U5gR+oqopCt/xmtUBIz+ZUsz3sScOQi1lK1Fl8DN4LVBzQPu+Yz1/x9tWXrA9bnr9v2HyV81nq0EFO+XHNqRw4tUdk4FFhQNcNpFFMni2I2g3rzjDJc6x1mHbAS5ionqHpOQw1aTFlMCFKRty8v6FYSCaLmF9GK4Z8RXX/kSSKCS7fMCQXXK7OOJucY5zg7vaWyhomSqOExZseqyTb4xNdq2CoWJ1d4oaB6fkZUaRptre0dYkSEusNQgviRHN/84GHQ0UlFNUgWLcQlD1JEVKKiJycIJ1ivOBFsONlYXixnPOyDZjm7ynLA6emY9f2fHiokNERaT+N7AituTw/48tuxvu7Dcb0tF2HDjTg0WFAEAV0XpBNx0Wwo9FoNPppGkuT0Wg0Gv1kTZKYQEkCLZnP59jFHns8IKYhYZSQ5gVYS6gCNvuKMEzw3rFcFLTlHosjm6Tc3Xzg9vaB2/sN27LFeXhzsWCZz1BoZpMpZxeOV8YznGqaw5rGCWrjqExPZw3COeRgsAh0pKisp981vBgaZByTvVj+v+zdSbMlR5re9797eMzDme885EVmIhNIANVVha7qiTS1RMpELcilzPTRtNGOS0mmhWRNbppks9ld3VVdKMyZyPHO9575nJgj3LWAlug1sIjfh3gs4rH39Rcr6mEl+9iywdx/S7PdkNiKyHGJLIUuG9aF5uGzZ3iLG0QxpW/DOIlIDo4ZfPgnvH33BtdU1I5kkCVEMmfsGfw44fcvb3h0ekJMgfAksYpYlA13q5Iiz3BoGcQBeVHSNA2YlvvZkp2oT9DfQdT3tEWGHQaI0CU+2WPv8SlDL8dMv2WwLDh8MuHR2QHXq5paW1RrD91qqqrAVjY938HWDVLC2fEBrxdzKm1o+pLTwYB7s2W92nI6ifjtzZRlUX2/gmIU60xh7ARpUoom5XZd8XlbUBR3fPzJI8wmJ6jHOJNdjGhAF1goBmcfsHs95fTta872dzienLGZQfq+QAUjLr57zru7FbMX3+Dv7IPR7B0dcdgf4DUrxKMzbmcLLL3g6X7EIHZ59e4tsWcBFscx3N285PldzXg0JHEFdr7lUGkGRxNitcHJCyzLJfJ85kVFsdoQ9I6pRU1/MMCyLERTo4IA5Wp65QYviNniULUVq7srtrJFSkHRaoZxyGR0RN1IqqZB+yN2Bha9pqLapBTawbEdUlOwXXxHPf2Wld9jZTzmteFtmUPdIFpN6LqsigKRz/CtlqOhi+OvcJKERhjkdo30PeIkIhz3yPOcYj1lPp0yvd1gBz7C2OxFAyxl84erKRdvZ7jeNcfjhJPIY2+nz500VKsl44HDcZIw7p1yfTfnZjojiBPqdMt3yzWWX1FuUuJBROjVTALBMAm5m1UUVYXyXbwgwAsC8qxk53CXMA5/7LjpdDqdTucHdaVJp9PpdH6yinyLa1koBG4Q0tudsHl7g1MDD57ghxHKc1HSplxuGI+GyJMjXq3WbJoVthtQVSXnVxekZcO2askbOBkM6fdGIBSeG+OEQ1zHwbddvKOazdu3TJdr1qWmZ7U0uqLKN5RlzbY2lFoSuRFYFmlZsD8IsJM+luthBRaWZRglNv/jH79Pg8PlLOPdxRWulASOw+b8BWGS4IQj6u2SNxczoiKg92jEcLJPevcSTwk+eTQhvy0JHIvKCKo8QwiDVja+q6i3C4wIaIREC41FS2RbtK0iGo9ZrVOkbkmCiJxL8mxDEPq4kUMtSiKV0c+uENdT1i+/YfrNC25yQ+HEhPEIPxlzKRRB3Kcscxxbs7c3YeBWOOL7c8f1fMqjszPkYs7tLKctaw56Pp4piF1FiYfdaGzLxnEVdRTjxjtEVkW73ZBlGW/WW/j6c549PcMuCybLG3zRYiwL7SS4ScTDp4+wVr+mnk1J7+c8+Vf/mhdv3/Lmt//AV7crLqYLlkVJ+fYt2giK+RFbo3Gdkgfj9wj3HrFc3PL8+kv+59N9dvo+q+US5QaEXsvJMCCb3/P24oY8jhjqBD+ZENseSm8ZrFZ47ggpKyqpqIxFbzygbAvSbQ1Gg2MhHQvH7SOlwZMSx+qzuzfi1cUbVqsNWsAkdNgsU9JlRi9J8H2fWifs7MVk97cstwXGCF7dbLneLDgZxUjPZ57l3FcVMzfB2zmmupsxnV2yWK/oWYb3Ep+ebPlqO+NpC8c7E4L9MXEQoQKf7PqKvY+fcf/qJbdfFSzu11xvKoqVxusNsQcnnHzyC37/H/9v8tl3lEXD9Syn3zvGn10y3o3xQsV8tWLHdfEGfQ7eP6QsfocUDZVpWc5XXJYzXNum1TUjU5HIPkHgUd40NNpA1ZDsRbi2QinBajHHseSPHTedTqfT6fygrjTpdDqdzk9WnWe4jkUc+Hiex6QXsQoS+qmhvbvFzLd4ex753QxZt4RewLzO8GyfXjDGc32W8zX3q5SbZcpsW1GVhmFvgNY2w70DpLConRCBh1W07Ex22TtS7LrXXM7nfLeuyaqGvuOz3/NYtIrzbcFtXnNydsR2dknYi4h9AU1GEHkEjovxz/H3FTdLwc3tO3Rdstbfn72VjqKX7HF4cEpgaV6/+Ede3c/h9hLpK5RtMTzYI3nyjOzL/0a9WvDtXYqyHNqqxLUltmPh9xNWaYvjK5YrKMoGhUBZFuGgT5o1SAGVbogiizJtsXwH13XJqy35/B3zlSS/WrC4Kvjsy5LPr2/p9zzeO92y8ywkcAc4rku/12e7uueg5xMoB1cYvn57zSYtmbo3VMkRxx/8S5LNO1Y3F1wvNoRhwqbJWDUtpm4RzQarSgnNhOOPP+LYF5S3b7m9fEu7yfi7L19z+Mmv8ZuUxW/+Go4+QCYJ2dUr1l/+HXdXb5je3rI7PuA//e3fkOmCl/dXrC0XE8SU6wUaG6VcqvWKm/WMzNa4jk8bbwkHA6zRLq9vl/z6/X0CRxF6DkpvaJUi6vd5FkkW8w3/+MUb6Gnee3DGR0dDPBr8ViOFzbrWVFIS9jw8qWhVSuzHBK5P/+CYWBhk4GNajVJDmuKAZ5spf/Pbb7hfptwuc/q2RVXB3u4uTx6eEgcObV0h2oZ02/LFZcYsL/hkP6E/ciDukaeCN9cl/+5//XeM9va4+tv/yle/zflttsTQ8G/++5+zeP0tb8ohX6w39IqGHdfF6gckZx8STPaRpkHqivVizbfXa0oU61Zzv7pnN1QM5ISTw/f57tvP0KrC3z1lcvQBx7sJ2+9+y3DgUWxWLOczYi+iDvYYHD3CKm94/fac1XxFuWxRnsPpXo/9kz6Hw0dM7iy+fPEGrTXRoEcvCQmsmih0EbaHbOsfO246nU6n0/lBXWnS6XQ6nZ+swHWo0w3Rzj6Wctgd9Dg9esD7411e/IffkL58jV20uIdjdFog/DG26zDZHSPcAVE/4eXzr8nLmm+vZqzymnGYoKWHisbMi5rbuysmu4/49Mljojojm89Yzu64v7+lKjNi4WAsl1VtoWzoD8ekTsnF7B7jxfiTXVLh8P5gSHF7B9M1ahzhxiG1a/OH337GZrOkxEIpl/NtxkquySKL2o3pFRui4QEPkiPWO6eI5hKx2uAEET3PQoUeyB7NZUqdbfFtgRSGpqlopMJ1BCqJqK+vEY2mzgU7O8c4ToDcHfL2zSXJ5DH3VwvKZsXugwFe3yM9n1Het+x/8IQkOWJ0mrBtEmrzOUFQszcIcC1D31cIJ6DWK/aGCaN+SD/wWC/WnK9qhnun9EKHw8MdhoHkn/7wkle3d0RuyIurGdOiomgagijBFzWR47E/7PFnf/LnbF9+yedfbLC1hW37pKnm8usveUDB8vKWeTnmwYcHrM8vWEwjiPugAAAgAElEQVTvuLy6ZbUp+OLta7w9RRKkWKZhs57TVtAPIupW0xvscHxwjFtsOHBqzqKGydMezmAHJQfcvP0GadvEvQTXDciXCxoEF9M56bLk5d2Sywra21t0NuO9s3+NFVXINqNVLplRLLYZsV0SxAJhJyTBAE8MyFOfcpQwDm1kWSFqj8zvc7K3z589Sfn2zRU3qxRHa1pTc7w/5NHTJwR+xOz8gnx7zbtpzrtNzh/tevi6ok4Ft/dbRmGPAZKjns/lxZR/+uYVF8uCZa3Zlhmfv7rhYHTC0fEZ4vVXNIDJC0wbIqUmOX3A9sXnDHZ3GD844N/uPyG/3TJdL/lq0TBbX5C/+B367gXvHw5ppMvAFXzy7EO2uaRQb1nPr2mKijotaMUlsqgJkgGbUvD1m2vKVc5OIPl5z+Zs6ODbAicOUFJgWxIn8NgZ9SBbUmvYPUywkwG+sn7suOl0Op1O5wd1pUmn0+l0frKWmy1oKLKc44MB40Gf/b1DhpbNkz96zMv/9zeUqaZqWvzdgEEYUPYTvnr7lvjggIuL12SbFU8fHFOguLyZY8sArXyGpw8xs2sOH77HZLhPs5nx/NW3xI4iiQbYVkzaNHhphlyteJNu2Vg+ArBNislnZKtrfvHrX+LMzjGloS5qBrsj3FjQmAHL65Sr+ZyXqw1SKvaGLkVrc3t7y9eL/8jk6m858PuIXHJ68ozdJ2NmtzNGZx9giw1qccnAt8mdPicPbbZVjdXWVEVLHIWUyicrS4Lpc2JTIpTP3EBWu+ydPGRQlkyvSxJ1iK7e4kUe2zzHFgFu32Vy+ojxh5/iNQ7l3YqDPY+Bu4/fg3joYAUuTebhWZLGsen7gsBWHO3tch8MSd5M+Wh/yHEA7ew1l6++4PfvzjFYfHXxGq1tLDeiH/v4gaJY39IYlyQcMxAhSRTwyrL4w7Rm4mo+/vhDZFXxu//y32jUDpVbMNmWaNlgOT5ZXnG7yrCxOK2vyQvF4+MDstJis95iuwG+lzA+ecje3h5+lpCkM0ZJn9h3UHqNNIK9nQPauiDp9Wh8n+mLBb4S1Lrhs9t7brOKvchnP9DE9SXl7BJr9xDkltUWWuEQ9yJCU1JvatrVivN3C0J1SG/gEluK40dHyGxLuzFEXooOx2TulG2So4zmv/ujfSa9kI/+5b8gCvpU83uU63G1tDhf1rSmJs8El6XmvslpLcU3TYkWkn//v/3v/OF2w+18yTYrqao1rmvx25Wg98ET3NAn9EMsGqqiodluae4u0DsGf++A9OINH3zyAcepYOrN6V3m7B+foJ2IweEBv0lfImuH0POIPcPb//z/sMwsyFfYSYW1XVJULdYiIx7mRAcNMo44jh32xwMejD12AogSl8DzcL2Wnz0c8Yffh0jbxqFB5Gt6YYJJU6JBg2mbHztuOp1Op9P5QV1p0ul0Op2frDDwCB1JsV4w/PBDgiDGDROqmwv04h1+mPLti/9EVD1mf/dXRIHNoD9kOOjz7vw5u2dH/OmvP2WzTJHBGF38E23jsDMe0tMZnteSzq55eX/J7TJHNRV7ozErFbN/+hF3acHtm8/ZtDVGNFznNe7jZ/RHAz724JOPHvPg4RELtWW9mNIPFVJnYA/w98+oX3/JJ0dDTns2TVOyt3dInBxzt015vTonXd/TiBJ3csz99Te4/7hFOhqxc0b/6Bh3+QY7dFEqwZq29JIIxw2QxRzTCky5RiqFkS6BbVPqGmFLtqqk6IdMnEf8T3/5Aen9C6qyJe7HLOZL5FCwc3KMN9pjVtuMhYRqzeOzhGpviBVKyqrhi+fn4Lf0fYPYGpLQp+d7KKkIj0746PGSM6ckCT2m2zWv5nMqLLL1CtqWqtV4liLxRxzu9HnXbFivU/767/+Bf/jscx6ObO5urnGdhKUQXN2+4zCI8MuaSCluF2ua9J4yb7DamH4ccDVd4VGx3c6odB+3hWc7fW6Ug9dI4miEqyzCzYbhMGT35GOSvoPZbqiaFL83oO/YCGOwLIm0bExdUK/XzO8X3OYlnm3x/vGEnu8ReAFuu8JqJ+RWyGyZ8/bla8aDiCbVIFuuX97y6tWMcXRPv78iMCHu06dYnks6f4ctJEK5jMc7ZHmBb7X07IRHP/8zBnvvY6avWd++Yf7yLTergjcZxEbwzX3OstQUxqIRDbV0qAD92Ze0YY8/+7f/Cxdv7/jyN/+BMLL57u0tn/5Jgnd1TQi0xlC2Jfmyogh8VDTG6Y/wjx9jlIW+vWJnWFLMDLJMsS2JtZjx8e4OytSY1mLS65P0LNRmgTGK+6zidmt4dTsnCj2OcAiinMB3+NmjfQ56PuPTUwKT0axn2MrGU3DYczjZHdAfDek7Fda2pt/3iGVNs1nRlN16TqfT6XR+mrrSpNPpdDo/WUVR0VQlQdjHURLhOph+j/t/+C98+5v/yrubO9pWk18tCPUZlnqE73nY2qbnx+zuHnH51Quq3EabIZ7toxzJwMpJTMp0cc9fff4FF+ucvIW9/gRn2xD4GSeLmuRwD+yUwxiy7Yzb+4zg9BHxMOa9g112BiNUUeBbivVqgdrtA2BJD+n3yeuSIl3z+GCAR41MPKKhYFS0HAxj6qVhdLyHNXofb5sT2Ar36CFWZBEEFk0WIqsUHJd0m6GkQjQVjrLZLDe0roPcllRLjev7eEmNrQuUr5mtbXZ++ZQPHjW8+7tXfPXZinY4ZJnVqOmW6IFiNBry7uot13c3fDB0GD3eR5cB2WbLH/7hC169usQOCsY7jzCpSxy6JFHAcDRENJq/eHKCyhYoZSO1gvMZ9XbNQeCRCsk0azkZDIkHCa6CkeOhqVmlC9KNpil8ZFvh6Q3HYY/Fes1qBZYVkPgtY2m4uLzl/f0eujXsHT3m7cUUy1gEoxGm0GznS+xKswvIMMIZ7TAe9tlxQ3YPR9i+wrE0Ta2JnRBpW2gMorWRpoXlOUePnnA+n/LoeMS0rHEclyAImM7WHO86eKbCGIETJEy/fs3N3YxJEjN7e8V0veK75xfcTdesnCWec8nTj36ONIo2z6CpsWgw9ffnhkPXIe7vcfKzXzCe7KJkRYNBSEkL5Jstq23BB6cjJrLG0or7bcNNKVgFO+TS4fLyO2RV8ouPnvH8s1eIuqZdZ3z6539Jv22w24bAAWEL2rqlRlLnGp3XlNkVKAuhLSwnQu3uMyo16dc31OmW9PKcyvZJGknU22WYJLjehkg4WMB+5LFwxxzsxjQoikYS+T47ScBH/+IXWKNjahMSLs8Ro12ELdFaczAZ8LNnDylWC/ZGY0q7Zn63pHEz+m4fU+U/ZtR0Op1Op/PP6kqTTqfT6fxkua6D63p4tk2RZcQjTXb9jpWo+WY54/989Ype6PPzPz6EgxHCBtu1CBKbUTTg7bdf46iYg4+fUK0KXjz/PZErGPoS8imhVfPR8Q6b8ymi0uRhjD9I+MXpI/7s5AHK8yhHFaub14zVmpPdHkauOHv6AYfuHs72DhpNulhQVQ3SWFTbFn/QQr0hckuefnDCMHARVU22yRHTcwaupO+COtmjMR6RbLCHLtoZI6SLn82wWoW0bZpCI4Qi8l1cepj1HW6gSG2Xuq6RWiC0wPEC0tmC0HIYhwfEdZ9xdY8JK2KnYnc0YJOlDIYjrLomn6a4T2r2vQ2NfY8zOMWNPZpNxfLdLZ99dcPrd3OSIONpMqafBHhKEAYRpioIZENvHNOUHncbQ+M5HEYx5c6I90dDbm/vkDsurZ8QhhaWqZCWRe1IbKNwlI1uG7QRHI4S9qOIvM65W7YEPUWRWdgObO9mbHc9ptM19HfZPzljdf4S1TQcJgGtN0bgoJwAJ4ixrB6R06fXCpjNsY53kb6HtBrcyAYpqesCyoZ6ucap7nAQ+HsHHBnF07ymxubBz3/N+uV3jB2JoxQISbpcEeZrEs9hvdny+etX3Cw33K9TbNvmqB+RliX3m0vW2xPsdAaypShThK3wbMmiqTg5fsBkPMBaXYLJsZVHPBpyJhVxsod03/LJsw8YDmJI12SLJYXqM/rkU7YN/M3/9e/JdEX18rd8+miMszxhP3Y4G/dxm3tsFijRYNMiHEnVwna+xXPvkYA96GHKGpOW2MYiGe3x3mOH8xe3pOsCz/bYjw2iuqO5viGKFCpwUbYgGY3Y2xvwNBmgo33evbsjjCOqYo4jGrz5HZYTYnsBrbFpKGiEJLElkS2RSuMphReGLNsZedZirTZsF6sfO246nU6n0/lBXWnS6XQ6nZ8sYQx1VTLoRZR1TpFnWKKlFIb3PvqQf+U53GqIJwOEVYFl4YQx+w9OefH1lyRRyMDzEZtL7PsVPccidC0sUzObLsjXawaWw6+OJvhBTDKYMDnZJ4wHeG6KXc8wxSWRKvng7Ij34pDb1ueoF+DnaxbphtaySZcVPdujzmuqNKfJUpRsmPRDhkmCpSyooV+3sF1jDPiDGO33qM0Au3FQZompKortDa2fIRybxtFIP8ZTAleXyCbF9m3yqoZwyPbqHduswBIWrQGlPCYqZKxdlm+ec+/coL057myOahq0gF5vgGVrNrdLsosbQrEi2fWJfYGSJdRr8vk9VVpyt8zZZBXxu3M+/vkvoa5xLYGqUoa9AbgBRApr6IGYcnRwwtn+AKepOR1GeIM9cqlo1gvu7wqsfkJfCtZ5RlGW3Oc12A4PE5c62yJrSSkk0Y6DpyRSQSMc7l9ccHx8yhSX8XtPscqSngfDQY+49wBlB7hBgmVJyCpk6+EGA5SSFJ5AOCCaAmnbFMZCCo1sSpp0Q9u0qCTG70H97pLDyZDrZUMz3TCOEnaSENt1aPOS7774PWFT8N7uLpfLDds0w7MEkzgEaXG8s8NqPae4f0OVfYLZLii2W7blhk2Rcr1aYoc2w8Snmd9QU+CKFoIJ4fiAcHSM8W84KyOe/cW/QdRzdHaHaC2qWrNdXtJONzwbRySTBDs0nIyGPB38CatFShw2BJTYtkVd1LTCUBcNrhdgaGmrCmc4QlgO3uiAcrkhv72hLWp6kzFeFHGQblhfp5RlgePZeF6EdEHZMcFgiJAVVtzDOnqMY7n0ejtkeU6Weaj8EguBEhJbeYgKtCUR7RblBvgKWmmzuzumXjW8RqKxWC0y0s32x46bTqfT6XR+UFeadDqdTucny+QpCmjqmibNyNM1barZrOdMsy1hr8fPJhP8YUi7vEXrFuVGuHbAg+Nj9HbOzVd/IM8K7psQXwk8x2GxXFEVJYtljiDnaH+CGzqc7EeMRy12v6YtczyzxH80wZR9srLhPt0S9fokYka1meK6AcVmi2811JWk0QZjW+g2RxctaIMTJeSVgXyBi0UTDHF7Y0pd49QVymsp64qm1AShTWRvcMa7tLaD4wiaYoMWmvGwz322pChKamlRIXD7Q7LsmqosMdiEvRGT0Q5D1yF9/YrZH9YsqiUPDw6ZXd7w3rMH2KLFtAYXw/kXX/Peroe/nxBaNq4uaDYzvGzLrx7vcTrpM52tcK2WXhQimhbVNihqHNenDoa00ibKFzzcCdgNPmJ7d041v8cLYxxvjLRsUt9l1B+zznLu371ldl+Q1Q39QBAMIlSZfz+loyVCCwI3wRIRyBBZG9pWUzSanf0+g8pnG/855f07elGAdEPSqiWRmt5ggDgaYlqJEiCkwWlz2jpD+AmtENRFhRCCom1waXBCjzzL0HVFXRQkOxMGD0YobSNrF8d1UG2J3myw24b5bMHR410WVYtvKx4/fMB8kXNxfc3bd2843hnjtg3b2ysGtmE5n9LUDev1klmx5dlejEk3zFODMSWyFQT7A9zQpW0bhrs7/Mnpr4jjA0QZUm8tqvU9sarpuYrE75E6+7x4c8Wrr/8abVn0+gP8nSGjJMRrBBYOUigsNMIIlOvStJq20ZgSkCCUINo9pFmnTK/fsOsmhP0dvPGY8UFDUxeslhnVRiOki6N8ylVLNBoSjE9p8RD1FrutSUIXz+5RpNc0RYElXAwOCIFUFq4bURjJ2ckB5mif0LcocsnR0YRFqvny1T2NET9y2nQ6nU6n88O60qTT6XQ6P1nS8WibmiLPCD2b1d0V48mENN0yT1O06xMc7TPs+yga6qbBC0IG+3sEsaSYu9TXz1m3BZllkfk+SlncLytuZinrHB7vj/G9kAcHE/qxT0+CazsoP0QENnkrKaMB+rYgPDxk7Av07QW+spFAU0BrJI5VUwuXpthQ5x44DgKBsmoOjofUExc9n0GQUGuN1gFNJlE6p584mK3GjSyMCGmkwJgKoRW249A0La4t6I+GVHXEtqq4vbygLgoAGm3w45h4+BC/N8Te3vPu+jVf39wxjFx2hzvsjEaMewMsYWEHoFvBxfO3qEWPvgrp9zRKNshsRSAMJ5Mxjw49VosNWa1xbIXTH0C1wVUS0+S02ZbQDjFCYkUJjucRWi3zdIlqW/RmiW4NoXIJxwN2dc7ZWNIubLaLOWWjuW1cFtMcLUAoyaTXx5EOvpRkRU7d+OS4eJuKs58fcDPb4AqHXuBT3Z/TFjnDKCJyHFxlIYMQq5GoKqVsKowCFY5p6wKjWxxL04qccjuj1TVNJTBC0BqD63vc3Fwz2LUIW5vh5Jh6vkCKltGTA44fn/H13/5n/NAjDnJCzyH2Y6qtzc/eHyP1kg+ePeWqBEdW5FmJbXusV1OWm5z5ckM5CPnuxTlnYx93GBHEMa6yMOt7vMGI4OApJhhTFC5FqXD6I8TtK4rXX1BP77CDPqNBD98y7CU+b87vMEpwfDzGlhonVFhVwdXllmg8wHJ8yqLFlhKtbITymL+8wO9FuEmE64RURcPd7T3HO/v4OxN0vsUxDe5uQ01EWxrabY5MM2zdIjZ3iNyirhskNugKSYOSDkIb2qICNwZH4biKRhhMVdG2Ate2GUQhb2XMZv6c21VDut2Sbjc/bth0Op1Op/PP6EqTTqfT6fxkNdpg2Q5FXXF//opev8/GsSiEhTcesyxystWcdN6S7vQ5bQSxJ5HSwgknRMmAYPmG1JXIok9Vzyi1Zr3J2OYVx5NjTvf32Osper5DmESEwwG2LVAWtCQUWqGnKyKnxFUuJp2jhcBxFE3ZIhuNbyuEDNluCup+g5EuTpTQPzhgdXeN2unhBDZWsENbtzRtBbaDmAQoYdGUJdqyMdWa1nKwPYlG0JYFlm0hhcA0JXWZU9U1tCVRFPDmdoYlLdpWY3su4ckBO7FH+90tR6HNKo4I4xArTAgjC2EEooLefkJe5NRFyee/e83AxITWANXfIGrw3IDQTpheXpOnGSqMaDYLRvsHyMyA3YCw8PMlrgThxwjPx9Y10pSMHpzhhX0kNnq7ROc5lt2AFBSZYZtb9Cc9Zpnk5esU1SqMMMS9hMkoIej3sGWIX7ksqhapoFrnuG7A0K9oZML8JiOwQ1xbEwYuTpBQ1IYgm6JqF+wAqz/ACl10uaGRimZ1i9INJk+xLAvPdqmbirqpkU3JZHfEapvRLOfUdo803aKkJmtr7KhPFHnsnpxQNoZWrinyjMuLd3z6x/8Dh/tHVItzhu8/Yfn6nPViziDy8H0Hz/eR9pa7dc58vuLJwYDds30C38GO+ijXoZlPMa6PXK8grbHqkCgeUW0yqENk/4j78zm3797Qi13ybE2RbonHEw4+fobjSRwEbVNzd3NLPOzTP3uIP+gjW0M9n9FKF60UyfER0ouRysLfg8e/VHz7j5+zWKyZjPZxggFCtpRCYfeOkC2IqkA0BeQ1zfQG0dQ4QYJpGqrtFkGNE8Tkqy35dobyXYTyMC1gaYSQ2LZH4rQEjs9w+B7T+d9Tphti30GaHzttOp1Op9P5YV1p0ul0Op2fLCmhbSr8tsTSDcV2y+35OWvg6vaG9WLO5cUbPvnFJ+x98Eu0O6SRLcq1Ua2LVS8JHnyE9+DnTH//JfG8wGzX7A5iPjjZZ9AbE1g2B5MxKnSw3B7SjWnTGU4QUJUSRxrKao07jAh9n2wmMH6INAKrzrF0i+34FGVFWRbUpkbrClNm+PGAYnaNbi1sSyKFxgk9hBI0RYmmxdIaW+fo8R7afYA2GpoSKaEWgratMUajmwoNLOYzsC2KtEIphyzL8cOI/cmYKLIZxTaVD/Uo4PTBE67TgrZusfoRTZ7TljVru0I6hsP9Cb95t+I3f/8NkS3gPQ9HBBD0yGctz7+7Jt9mfPzpJ1jW9x8NVtinMRUYharWWF6AEAqBRAmJMznC9yK0dJCNwAQ99HpGe/kFtm/TFjb9nfco7m9JNwvi1iE3GieICZLvT9KGg5DQibDXArNIseyANM94+9nn1Os5oikpygJv5wBl1kjTIqoKz0lwnRG4FsQjhNSYNkdaAllvscqWanGLLkuabUoTOoBLma1J2wqDYOR75CloJybNCoZJxPxuzt/91f9B6DqcHe5T+xMsKdjpBST9iNEoYjQakPsRg91TBvOUzc3XJPaQpqnZZDna8fCShApFlAwxvUNQDsruoUUPFUaIbI5QV8jgMYFUiLr8/h0Qz6VoQ5wnj3CDkPm7C8qsJDOGJ7/8ECvZwUgQlcHKluim5eTxI6KdPZTvkReGSq1ppYVxfJwkxvIjhBa0jk8QxDzMW+7vZijlIJRENAV22Mfp70FVQ7ZC1AojW2zXp7i/BCERyqZtNUYZjLBwkiFNuaYWNZa2EVojbIvWtBjx/UrOaLTP+tXv+ODwkFeX3xHbIYMo+HHDptPpdDqdf0ZXmnQ6nU7nJ6uqW4xUhLaFbuHi/DWN46D2j1G+j0o9XNkidIVlWur1FDOOkcoGDNIbYUtDkxVYUhK4iiqHh4cTeoHC7wU4VkBpXGK/j6sc9GKNGwTUaUO6XCPaOVEoMcLFZFvIStx+jyZtEHX7/ZSI7WKkREpNU1eYKkOLPQQS0QisJkc5PWgL0BIpFW4vRFsOsspolUUrwHJtMAKUQDctwoG6lrRNijaGzWpJVrfMphvmaYEwhrSsOTzeIbJd3NklgTWiPxwzNQ4P9g6YvfiOarPBPzpie/2Wosop7JJf/uWnbO4X3FzNWE83/O3nX/BhkXBydIAf7+M1BU9/9S8I4j5uaLNa3UBd4Cd9qqKhyUtEusF1fJRbYrkuMhjQArIfonSKtEN0q9FxQmu3NIs5jmkoSoOgRK7mjIXDyvaww5jIj1FVzezmHbqXEPgH+B4YYZOZiIsvX3MwdNC6wXWgrXJUb4jMa2RjcOMYJ+rTCsO2WGApi2J2QzAeQFFCsYXtlnKxRliSzXKDJQ1aSvydhNmLC2opKKqa2K6IkxAZRrTK5vzVG94/PcLvJXx1vybLc3727BlGhbz55lskEc8++fT7QqKtWRY18/kSW4JpGvBczo52WW1zCjnClSNcZRBWiHRCVDSkudygVxUyiLDiPtLzIa+xLRcV2pTjHeTu+wxO58wuX7PXs7AmO7SOS15qlA1SS0aTE4rFnIs//I7Wsnn0i18htcDgIJ0AYUcIK2H9/Dn3r1+iRUMchIz2fSzLRwqDkAJlJ0ijEJZAOiG6Ad0sEEIivQjT1LRFhh3E1NkCaUu0tPB3DzC6QTQaYRnqRmMazTgwsJrTpinbly8ZexbWwYClmnAw2f2x46bT6XQ6nR/UlSadTqfT+cmylUApQb6acnlxwdVyg/Z9wrKkkorx/i6HB3vsHe8xdG0Wb7+l5z/C81xMC1L5tNkaUTaEvo+tJGHg4TmS4SDBAE7ooiyDZI3OLJSpSVNBUy1QAdiOQFo+pR1QlDkm7OOHEel2hjY2xgjK7Zqizhj2EwaDHo5lIdoKXdeYIqW4a7B3DI4jEVpBoTEiwApGSH+E8IvvVyC0QTcGIz0gw7QG6oqqqGiKgkVakZYNuC7L2zVCazwvJNk9xfE9gmpOonOk4xIlO+gGvDiizgxGQiNKjk4T3F7I1bsleVnz+P0jvqte09Qtz68q8DTv912cOGLiudzfzRH1Gt+x0cWG2nLwHI+2XmPVLbqsES1IbSOsENdWWKKmnW/RWYqNA1VLpU6x+ruo5RS5vKS6XTFyAtRgxPOpJrYDfEfx5uXXCF1wtDvi9MTDkz6y16fdrJDaZe+9JxT5ijxfgqVohYfwfdwwxvEcRJNRphuKPMOOXJTdUi1WNNuM8n5GOl2QZ1uk7yJUhbEcis2c9WxLWgqm8y1NKej3bKzAx0oCTh8eMx4kjHoRt61L0aQYY9g/fkZZN1jHfT7+xV8gGxsazXZ2i/Aj7rdbEsdim5e4pkS5mtGghzNwaShpVI/W8r4/xZznuAdPMOsKaSl0kaOHA7BsnMjHyn0cpRBhQyV6+EZhj3wK0VDqmqAf4zg+zmiCkrA5/wOnJyf80++/5OVnv+X4yVOMkNS1wY5CVBwjHEX/5JTl7RVZ1ZLEI6QTIFEI3UJhYdY5ddvgSINpFdL20WmKqFvaOkP5Lu1mCUULKFpR44QeUikoarRRCGVDUWPyjPzb53z11SVfTAXvnQ549rOPebeMSPqTHzltOp1Op9P5YV1p0ul0Op2frKyuaaTg8uaeL67uebHcsttPeBLFrDZr/OMHXN1dcHa2z+WbKxK/T5vVGNdDCANVRbvaUC7mUJR4rkdbZoS+i7RcQt8GUyFNSZ0bQNPoGukIgsjCGIXCpS1bsvU5xXaOtiMS3/7+WKrtYCmLZpOTr5d4gz2kNphGo7c5diBJxmNUEKPrmjpd4Y9thN1HWx7KDjF1ihQu6BwhPUS7RmuFEQ5tk9NWNfl6Q9kKirLiZp7SSgtLWeRFy87kgMqOsUIPu7glUJpaw/Ef/Sm6d8bPpt+yrDZcvv2OIHTYeXBMFEdc3mywCFnnaxojGe2OUEoRDnfRRmD7Edl2g0lXDM4OyesFxXYJyqKpfSSCIiuI1RZtbjGo73+ULZsyXWP5fdyoj1hOMUWOdBOq63va69eoakXsezheQJ3sU1++ROmIL778gonf8vTpHr1JghsFLNYNOs2I3AisgHKD2z8AACAASURBVGpTcvPyOXtPHyKUgx8nZNNLmuUl3irBKEWb9LCVgHVKk28wLZTrlHy6IJ2uWVY1jgY7UVA1vL7OmOU1Zdkyu9uyGycIx6aNIvK65vjkGDvpcz9bEEQhm+9e4rk2x4fH3Nwu2Xv/fXp7E7K7Ofdvzynmc44eHfHyfINpK9K8ZKefkDYVRdlgqwYVK8z/P+UilcI4CuMEWOHJ99NGaJrFHWiDFQRoJHYrKS7uWF2eIxKFHQY0xYYoiGmqhnQ+J+hHKG2haws17LM33uPi+pYHTyUIm9ZAU1ZU1wsIR9gyJRpUzG9vaJRHmeYEvRHSkgjbx3j+92VUWdKmN7AtMHmJFDZN2aBsCRiEhnKzoY2gqCoCJTHKAiqKtCDXgqoy3N9n/NWLDXtHD5EnP+fg2SnyKieOoh83bDqdTqfT+Wd0pUmn0+l0frLcKEJGEVdpzufzLUno0YsDjGUR+CF3L15wdjIiXxek25KdP33Ai+ef8bOPPsHFps4zmrymWm2oVhtc1yPDYFuK0HeQRuP7PlIahJTYlsQAQtfofIX0Ipqqpi0K1PoePVsw/PCPvn/jQRiUI1DKAq1p8px8uaYOPVrPwzQVovWIDt+n0Ba6XCKbmnqxwk4EUtjo7YbvX8CUWAh0vkVULaZI0cKmzXNMWTGdzdEI8lawTCu0VGRZRRxExMEAp20JbI82GLMt/z/27qNZsiQ98/vf3Y8Woa++N1VlluyqajFoDAgOFhQ2XM6eC/KjcUejGWk042xIM3IADNqgGq1FiaxKnVeGjjjS/bhzkdixua5anN+HeCPOY6+/j0/oRRw+uMcqeMBFotl++XMCIag6WO0MtXbYfcuzFy84f3DGwckhpgbfj4n9lGa7x0nN7Oic4XhGdnqB/vJvaVZ3eEIRJR2qC9C6o1yvSYkRuwW2qwiid5W34ewYqgJnBKgYe3uDW7wmGCmkSWjtiq7RNM2Cq/KS2xeXeHrFJ4+f8N5f/BkiC2krxWi7gXAE4Yiy1mSDiGkUg25o6gplNbpt2K8XJNs7gskM6VmcaTC7HUJYdFlQbTbsK9gWluuNx8RWRBJUlrHuBFfLPft9jWcdIh1jByMaY4njCJGOODo9YdRotqXB4rCNJktGKFXSlRW6WXO7/oY3z75mmo/wpSJKUp6/fkNR1mjX4SmPiVJYY7EtxNMJSipkEFIXxbvnW36N9UJUmhJGEhX4GOvjxQFuUeL5imAQ4Z2OMcKwu3vL1eUl+82O2XBM4/nIpsLUmutvX3P+wYfYMMClMxiMMX5M5yxOKMKDI7rFK7Zv7nDtFuGNKG5WRF4AcQ7O4pzBbAtUXSCaPZgWEfrYusF1LboB3dZI/92x4s5YPNnS1N272mPh3m3OlA2lShh+8EPeu404fu9jTv7NX5Kdjrkf3oLtvutx0+v1er3en9SHJr1er9f73vLiFJFmmMGQ0XjA++dHnOYpRQfj4zOa7YI0zfGSCL2d8/T3f89RElCuj5DxhG69wWx3FIsVXSfoAomHJAx8bNOQ5jHKOZQXIpxFehFCN+AkOIUtK3RZ0G4WlItr0sMT8sGAalPQdQ7jJJ4fkCQJJs9pGw2dxWmH6DRCS7pqhxgesfjmOUdnp1CuwXRgDa7eIOMYawUYjd2XCGuxRtLpBlMUrPZbNmVDJyW6cyx3FdpYPKk4jMecDR4glU8U5lRG05n7CFsTR4J0tufFcsmr5y8Ynh5z+XzB5otX/OTzTwhjn8kooWsKdAfD8YQ0m0Bt2e/nrDZ70nTE6OACU7QEzqPZlzjucF1HgE9jDavd9l0A1JRE4wFukKEGU7rLb6AToAPcboe5eoYYRLhAIV2A2K958/KSJsr40fvHXN8sGIkE3xXMf/2U8b/5C/a314hyyfDwPv40YfntHV54xGg0Y3v1Gh346DJAFxuub29pO81gfkM+HiH8EFXssE1DK2Hf1IBA5CknQYiLdmjXUtQNq31Jud9jjUNFGa2UFEXJYDgkGE6orUR1IIMQVRlm5/eY//Frwi5GFZJX335N1S7Zb3ecnt9jeRWjXUWoPKQTRBpsK6htjc2HdKVDtj7VokTmOS6XBGGK0x16ucI2hvjefYxV+Cp4dyen01jXoXE0bUUQHrJ/84rV69dcf/sN5w8eEMU5g8Nz/KbBF4rLp7/k9p9+w8mHTzAqQ+YHiMGIqjB0u4bQahbf/IHVFz8nHqZsX++IhE8b53i5RgwHuLLC6YquaZH1BluVWAfaFlhatDU0XYmHT2cNNC1EAaatidIxViis8nmzb5hvA0ZBxsFHlh/84CPGJ2OCwYw8y3DS/67HTa/X6/V6f1IfmvR6vV7ve0uKjvHBGPn+e4yOJphdwTTP2V1e0tUFtoNOSJwPo+MxpweHmLLk+vqai7MQZ2raDloV0OqOertFKUFXVUTjMbJp8QZjrOnwnEXaGqtbnDU4LTG7HWa7YHn5hvW2ZKIGbO+WtChsPGA4OSBvGg6KGXp/htnO8YRDOIOwFroO4YU0r57y9ssvSD3LIBlha4tQGuFtMOUaVIRtLVgfW9a0+x2Nc2yLPcuqIspztmWBDEK8IKTWFan/rt2nqD1mZxlh2EEOq2rH1dUrHgUjuuIF/9c//J55a2jLLcI5qtWKl0+/5GAy5MGDU/ZFwb7oQCh8L6RrG7bzJS9eXzK/WvAf/sf/gVDvqbZbkjCm7TRtW6KtQAUe68LQzi8ZJBm5KYj1AcG+wSdECoktDLZrcJECv6G4ektbG7ZlSRX4aCVJ8oSTPEKu39L4PvvrmsXfP2ert3SbNau7v2EwPCBMDqi/uMM1C0RTcfPqhjiJaNo9o1TyctVwtVgw3RSMkoCu0QjbYXyJN5vSbpZ0nkElPkJKOjxWmz3SGISQxJGk6QyLzYbhaELrLH46wlrNN198yb33HvOH3/0WqRsOH9wnSlOOjw/Qq4ajgxNmB0cI0+Fcy/O3VzStgVazqwyVNgwGAfumRvsOlb1rHEJ1aF3jeSHOKZTno5yia2q8fES73mJ1S3O7QiJo13f4kaXdLzC7LWZX48mQeDhBhAmTJ49Jg5TtMMN0Jc9vlsjRMXXd0m63aAPly0u2zy65ffuGcvOcg0QzeTgliEOkNRTzZ8TdBaLdQxggfQ+73WOrLbYzOOnRrha4uqHRJcIDbTS2dTh8qsKQDRK6psUFkspINq3iarGmSGMeH53QVgXtfkl8dIjyh1jTb5r0er1e7/upD016vV6v97213e4py4pkkDNKUkZPBmxfvEQJH4zG9xWrxZKnX/yB08MTtiRoY+i2JZEfMRSK1vMR4wlxayiub+k66IxF6gZnDFZlKBqE6jDG4rruXSuINnRNQ7svkQgef/Yez98s6G6uSc8eMjk7x8+nmM0KXS2pdE1RVrSdxqOj80NQFru8Q5maN2+XnJwsCBuD8yM8bRFpjlMKZEtnJKYuMWWJbht2bcuzt28IJ2OQ77YchPRodYtF0ApHdhyyFNd8djbBQ2NjTcMtz8UtT3/9lAef/5DJxz/m5d/9NZs3txwLy3Qw5Gg6YDoZsi81d8uGwFPkw4Qwljj77rjtbltyce+C5Rf/QCwEUlQcHB5ytdshPQVOIhAYTzKvKrZlxWxfki92xH5EfvgQsZ4jRIuLY6yEzZe/B19hugAdJ4QqwDMt1bvOHRo8HlzcI7v4HB1Oie4usfMriutXFMuv8ZoFTZcRnxwRa4HZ7fnPX3zNvdMBeTbh3mFGsHHozqCtwk/Cf22CkZiiwEkPIQWiA+EprO1olEfXaUZZRON8rm8WaBR1WyP9AFk3lOUaKs3m6pJyV9CUe47TAa3ZkRznDMMxm9WeyXhCECnatGBbl2x3JQ0Qx4rFrqRxhibc8qgcYGVBpxSdkOjW4toSjKArLLZsiPKAdqkRKsD3fWQaoLdrhGdxQNcafD9DyIx4KJh88CnGxbx9veHsNCQcTYjOn3B+riitxjcF5fU3tCjcfINYXFHdvmVvNWcHKZfPXzObJkRRiBAVjZBQ+KjQRxHiCZ+uKtEYnAO93WL3BaZtaLwOGwjaxjIcj6nKEkyMwSECj03ZsV8uMdWOZVvTnp1hxyMO3v8EkeTvqpUH6Xc8bXq9Xq/X+9P60KTX6/V631ttW/PVl39kEiV8dHTBUA7xxBi/es3W7MlnE5a7DWmoCA7P0WWNFyW8fnON3S356P59VBAibITvGfwopCwKtO6gqhBBjBIWe3eNSGNclGHqPc52aN2i2z3b7Zp0MuDp8zueLwvefxAyTCOcqTCLK1yxRWyuWX/7jN988ZJXq4IsDXj04IQf/vQHjKczdFPx8OEpg4Mj2rLGlDsCqZCdwykPlMM0UJcNbdOwK0ru6gaZZXQIhBRYa2mNRXdQNA3D0Qi8hnsngsjtwCmS0ZBtt2d8dEQwekJ29JiL5IRvguesxbcktmUyGBIFOU6lDBKNrkuCIGU4Hr57JkTC8PCEHwcBH/z0M1R1Q32zIDk4wR/NuH76NdY5mrYm8kK0s2zaGt1C2WgG7Q2TIKa+uiGNfTwl8CYj1usrOkr8+IRg9oDYasabJY2FgpSqcdxUax4WhmD+lr/5h/+TL9Yl751fMLQC2RjyrEINjvEmM0x5y1Eq+fB0SC0MZVMzSIYcHU8pixKkwlPyXX2zE1jd0HaW0I8JggCnoNlpQjqOZiOsULy+27IqKrJsgOcHqK4jsIbl73/D6PAY/yh99zTK87m6vkZEDmM0+WDC/vUaKzU6tiglEGHMzfKSxXpN7icoB13n2NeW2+slm7slJjKEBwGycdS2od2uaG/nBCKji3zC2QFStrRFR9c0kMZIX9JevkQGIXI0IT25YHv5luu3BT/7/a84Or9gv2sI1ku++eorpk/OyWcpx8NDssCgcbR4FFvB4S7ibHaEkw4pfK5v5wx8GA7H4IcIFb67SWMCqMW7gETv6DxJ2+xpO43rWuqqoHA1XhwStik4S91qZOQhhaAoG4rVElrNvi1orOV6veVDP0QFAabY4CX9X9Jer9frfT/1v1C9Xq/X+94yWnP1+g1tHPOXH/2Aw5MDLu8WNHXNpm6IJ0MGgxFHx+fcLUtSz6K7FfPlkoCUfVGRJh7CUzRlSdt0qCBCKcd+XzEILbrVOAJMY3Bmg7UWrVvacku9uGNf1LjpIdH5IYeHHZMPP8azLa7e0zUGWW5RzmFKw9e3e7Z1jXAdXz27ROuOv/gvfkLb7An9EBnnqHiEM5pWa0SnsVpjtKZtWoqiYV/VtEGEC0JMXeJ5Eit82s6yLSr8IGCgPPbFlq6Lif2G0OuIvJg4OmC/G3BrCoazGYfnF7z4fUkgI4SNGZ+OCH3L4dkJgzRgt9pRhHvCKCSKUoqyxItCskcfw2LJsomZkLJ4/lu8JMfkY1Q0pGs2tG1DXbVordnWDa127I0gr9fU4Y5plFK1kjQf0M4bGr0mm4wgS9GBAxET6JDdasvg6JxubZgMTvh//v4rMvtzdkgqLfi/fz0ntIahZ1ntD/mr8YTq6R+oN3Ou1iuIJJM0pTUO3bQEWYo3yNhs9qyKHRqwzlI7QZokIBwyUBjbkUQeznoEIqNqWlojGQ7HeJ5HU1U4oTB1g+kkQVmTEvPo4Qf88Xe/IAoSWlNR7rYE0YSzkynbqxuy4ymda2mrlizOeb27RPiSQArKoqbsOm6CinbXkcc+nvKxuqOtK4y1LG5uODjN6Jym3W5RxiE9iVMetmup92tss8fqGd0go+qgKQr++A8/Y3Gz4/LNa6Iffo5Ylfz+9YLHqcen0zN+9csv+N0v/oX3j2P+/K9+SpgKZJpQOQ8/8Ol0C1Lx5nJB56AVikTmtGVDKDLkXmPqPVW3Q2tN3VTsNi2hl9DZjkLvCIxmONNY0+FwOKnYtJZvnr9gOJnBZsN8PceqiLLZ8Nf/8X/j5P5jDgaKsJkyfPTedz1yer1er9f7/+hDk16v1+t9bwkp8QNJa1rW1ZasXvDt8iVX5YoacM4yinOUiNg1e66u7ghDRRiGBKMDrm9vefhoSFfXWGtAOoIoRAU+u7rC360JkhTjB9BYXNdirEW3DdV6zep2w3pd8PgHx2gDadyyfHNHejrDS4YE8bsNBjW7z/1PM/77PGezWrAxkq1QlLrmN7/4NZ4wnDw6x9YFVkaoMAYVoBtN5yy1NpR1w1Z3dEmGQeCcQwY+TnqoIKTRO7TRJElC1bZUZUuYeeiwxh96qLoDPyZJZ+y3r9Av7vAHIa1/w6u732J9Q5C9R+q1VJs1gTelbWomgwQXJMgwxu5qjPCIRlNaGTI7OcFfQBPmvL3dMzpNUMkIRUdXNlRNwb5q2VSaWmvqXcvQvftoblrH0PfYAkEmSAY5ZGNElqPsFhVndFFMepQg2w1Hic9wqJinCdumY9+2OFoGsiKWDun5/OH2mvnfbngySWmtZWksH58/InGavTZYp1A4JIo8CmiqiuWmYF9WLIs9H/zgQwZKgO1wyseYCj9K8CLYLzYEXsD9i/ukShFgMHVJNBhzenZGFgSwvOMgneCM5OziiNZsCJKQNAmwtcJLAlabS5ZugfE8WhFiRIB0gqYxSN+HTnAzb7i5LBkGlm6i3t1+EYowH3Lw0XvgfHSzpl7MEU1HECWoLMMIg5WS7Ow+y01FefcV7u6GJMzJTh5w/IFkcfWS8vlv6CoLquG6Kvjj//p/8O3Tp5xmCR8ODvnqF1/gugyVz5BZSNuWOANVodlqx/z5DferiukuQkQBmbfDqwVow363pdQ1prG0pqNqGxrX0SjDdDrl8vKafDSgKAo67XFd7DAWTK0xKPwwQjvH4PCU9XJOrUvaWmN23/W06fV6vV7vT+tDk16v1+t9b4WeJAtD6rriP/7d3zAKPa5f3aGER9MaPOkTSI8oiNCtJgod9x+c0TQtnrBcrXfMNit86VHt9kSBJAwijHEwPmI7f0NQ1MjQYbWmrkrwfYrdju16x3JVEyQZ128XEGZU2yvM5Vvs85jZ+IDJBz/BC05QcYonctJiRxcl3O07/vmXfyT1YfzBfU5PMtLUx5QlTmrqcoeMUvAjtO4wYYTuBJ0tKZuazgmkF2ABHwudxjmLc4KqrKjaFj8KuNytmI0vuJ8nHMsCGzvagWZ4X7Cwhv/pf/5fePPF72mKisEwRzfHjA+GiGaFrztmhxOK/bvbHbUWFJUG/92WSzbw8ZSHURFP/v1/QOYp8+0OP7dU7QbhHGVj2FYtpWkwFlrXsdaOLACvs2S5jxqFBEkAUUwXRihTIeMA6QyjYUjkTTBVQyY1LukIbcLvXjfoSnCKwLeCF8uKRWdxnWSgPG5aTWFhcjAmGwxQuiLroNm1NItrWqNZtxoZBdw/H3K9FDxdrIkDSZhk7yp3rUFGMYHn05mOqtZs9wXHpzOCIMQ0e9qmBT/GHx/QFVu++uUvOPnwUz768CMCWsJ8hCsseldB4BEdRyzevARlaJo9u80143FGsShpm5ZZPkEGCl3s+c3TP3B8MmHcdIQSZCvQtsWIjmZ+yfKb1ygRoWTEwf0nCFcTnV7gJTEgybFIvcNEhnK3Y5jP8CKYtorXNzums1Oe/f4FZR2waws+f3jCSDr2XYN1NUl2SGE17XKPrBtMU9E1DYta88XVkl++WfDnF2MePj6DUJOFMbrRNNahO0FTaqpas6graufwYoXcFihpMcqDusWojrfrkl3dobKQYDDj49NHrF59y5F3wb0HDxnmOaFfEw/H3/W46fV6vV7vT+pDk16v1+t9byklicKQOIn59vU1v7ua8/50zDQ5olvvWC+XZCqi2VgGeQJdgug0SjpMU3O3XLOarjmYHSGCCLYbpHTIMEJLg3/2gM3VFWZT4EnLft+hnaYsSra7ltMPHjEaJBTzguWy4M12x1W54SQUPJ7sWFzD6JMf48w13e0zrq7eoOKQIhjy4x9/zKcPjzh7eB+pWkyxwFpL3TTsdhXtrsSLEjrl4aSAOMJ1FltvKGuDVB1CgPQ7VBihPI+yKLCdIYlCRkcj9rlh5Z3wbRGg4pzDMCQYhVRqzyCCCAtNg1KKQZoynAzJs4ggLBnOAuZNRqUSZOdxt7W8vfHJa8fZuWQwyvAin7IeE3iadBrz6uo521ITZ2Pk3VuyLKM2jp3nESjofAvGECiYDHIGSUCcB1ilcF6IpMUXPr58d/fC9wOSSFKFPuXtJYuX3yKEQJiSSHlsOslhNuSjwZCrWhAlUy4OMlxxxSxNSaIQozxCP0dJRW1XmC6hqvaEg4TR8YDRJOB13fHZn/2A6dkEoSWmdDT7Ld5giPQ8mqbhbrHBWsVwekTs+wQux/cUVij8KOf2+TOEFzDOc6I8Y7tdIGvwbUdZ7PDzCa0pELKl3beczO7xu19+Q922VHXBOI8Z+DAZHXP9+jnROKJqN1RVjTA+rhIEI5+27li9vuQff/5rkijl0ZMPGASSeDjASomSHk50mK6lsjXBdEguIm6ffc3BYcp+c0eQJcwXdzyYzbhczclxLLc7vNRjs4JJ2BI1C0KhUL7FswLlWbRMCKwiMfDbr5+RJDHxqGT40TnWGKKph5YV1c2WpjXMK8ftrsYLHGkY0rY1YRTy9m7B1kCSj3k139I6ycXkmM7zQXoM0pgojqhay0GSvqt6jvPvetz0er1er/cn9aFJr9fr9b63/CBmOB4zGAzRVuC6jsFwwsHkPrFf8Wb5iqO8JHeC0WBM05VcX90BljBOEX7A3WrDdDCGtkWoEOsEKImwAqs8zPiIfXOLZyq2pqEoa5raYL2QeDwgyiKiwOPNL7/lZ9+85nlRIR18kC748QPLtEvIvY5nX/yKQpec3Dvj/OMHjEfnRAl0tPjDCWo6o93eERQNobdnfb3kxTev2BjDbJJy9vA+SZ6i25rFZo/uapI8RzSGKPfYlg10higMGE6mxLMZt8LwapXz/sGESqSIcIAPFEbzT//pr2k2S0aDnJv5Cj+MiaKU1WJFnuXYTch219LqgJuVZrHdMV+sWF5d8/DMY3r6ATIIOP3B5xTPf83Lf/gbbm+W1PkR8ckFKkoIpWY6HaEkYEHMfLa3t0zTjsnhiCwJsd0e4Ry6WFKtPeYtmPqSLPSJB2OKpsaIPZf7CuUsXhgxPBywXnXo1nBjOqZpyCjPmOQTzs+PaW460kSiRYBxmi7KkU4j0xjXWZLRCD8wJHlMXZU8+fAThNQE1JhWU7U1MsoQ0kMKSVNVyCDi4jTDtIZwcoQo77BNhXICGaUEacqDw2OE8vGVzzAdIq1COkc6mdIFgs6Ci0ICEWB3Hl0cs1rM8TrN4WCMUg5PGt5/cMbZaUqNT2MaoiTAj0J2yzuK9RY8n4PjMaOjU84//zHW9zHO4ao9zmo622GsJc4HNI0GIdmsAnY3FbqL2LUOU2qE0ORWMRsfYfIh4Hh8ccp0MkRhacsVXWewO4uSPm8ry6+ebyiV5aOLQ1CC4yePMJUlmOV4ZoPfeCRHQwqrySjY2wDXVTij2e9LGqH4xfNrjBMkWcnrTc0PPnjCKAuwQcjJw4fUd68YZjm3qxXeg/voqiOMk+922PR6vV6v9/+jD016vV6v970VRhH5cIQ2HUmScDgdc3rxAC/I8GVH6qfce3DI8cURy+U1gRdycHjEs2fPSAYTxgMfz1PU2mCUh0DgBmPa3R2tbhgNRxDE2Dhjv9VUQtIIn8KW5MMcP01AQefBxXtHnF7eIoRlU3doY9ivLln+YY+nfITrGB5fMLz/GPIRbRxiIkFTbRClwsuH+Idn6FWBig9Jo3Pqm9+wvLtht59zcO+CPA4YHB1xtymYXy9BeeTHU4J8gJU3eFGM3uw5Or/gzb7g4OIhm+CIb+opo8RnpyVpGDKdTCn3O9qqoi1KrOtIkwQpQow35WoDdm7xlGGz3nNZhByeDGiaHX/86inJ7zrykyEX9x7RaUN6dMTd5gm6+JYkH1MbQTA5JSrmiF2NHCZkSUqSDFkPPEbdmjgXhFlEua1oLPzh6S1vbvcYK/BxxF5A7kvwfcI8woUBnZJI4xAyJJ0NEUVHY1Zcq4iTg/tksSL1fQZxigotVdvgbEBX71hXDbooaOqaRJUE+YjOdPgSoMGPA3RrEVbT1h1eHiM9H+EsGo/pvY9whNjtAl3uGCVDIgVCSRbbAi+KOH/yAfPbW7bbLdkwQwqJHIzQwlI3e4rNFt3UOBS77ZI4jsELaNuam23BJz/+L/nkg085DGsWV19xt91h6xf88IcfUhUFloKmqDClZTYcMzk/x/ngTEm9qiEI8aIE6UmsL6lNx6ubt7x5s2BdKlZVjCd9VCvJaPCqFRPPEHYZk1HIKE3xlQerEusaJkcplgEuVdxdLXnxds5PP/2Mjz8+5/qr33Bz+RLdlaSn55i6QiY5FBVd48iGAt1W5LVgbwXGWnbbPc9v93xztyGLI6pNxenFQ84fPGRxc0l8OiQZDJmF51ij8cKIfVEwiBL8IPyux02v1+v1en9SH5r0er1e73vLINnXlqura/a7PZPJAcPRhO2mRAaOeyfHGFISKzj+N3/B2/lr6nLH/G6OH0SUxZ5aCjrdIrEQRaAsQRqTqAxnHcL3kFGMMA1d3dJqiz8YMzo/wo9SunYDSpKOMv7iswfc3uwpti3z9ZYw8BCyAyzG83j06YcMzk4hyxiqjniUU93WCBlhgwFd29B5OVplSNFxMbnkpz/6HBsYmnpJMh6Shim1CFgs/hEpHEiBUgovDFG+YnZ8QjIYkXQe2sY8SQ+IK01YK6IsRHke01HKTz58zItnz3lTNzx+9AAVxXR+Ttc05MOYqnEE6QCR+VAZBrmgLveUXcNvfvkr3rv/gJOLD2hswHD2kKxWpDvQTQvOYsMcUS05OJpSbT38MCJUiuGDe8RNgmg1QTqicgMun37JF9dz3qwbGidJg5BxZBnhEcmOkfWQRhIIhTYGFSe4rmGoHDLJiPKMwCyIRYSnA5SRHOQZq+Ud5X5Ngt0HnAAAIABJREFULSxYhZSOwSRFpBEtIOhwwhHZGtG9a8xpqw2VHDLOMyyGzXLDphWo0QFbOWPgJXimQKDIpgcIIdneXeLpim++/Iqb22sOHtxjV9XMhhnoChdYOlMRBhEbA1VZ4FuDLiusddjOQNdSrW6I0z8nz2N0PeXl698yPvJYXr1gOpxR7gvaYstmfkvTdZyOZzRNg61byu0a6yx+muElKbVz3C4WLDcFGEGqAmziIXSH8iVxt0Du3zIe5Pitw19AtN6SX1ygtEaHIfvSx29q/HjM9Vbz8cdPOHpwRjacsh+esZwXmMqhlEB3NZ5W1K0lDhP28x1JFLFSCussZQvXneC6NCwbQ9lVHEyn/OhHP+DkICdsMmw+IjB7hqMhi/mSs4tjyt2GPJqhpPqOp02v1+v1en9aH5r0er1e73urKQpev3nL5fUdYZTw0eEJRakpq4osTkmiiKev3vLo4BTjJFVroW0ZHx7jpOL8/nusrt+gO4NwoDpN8693FxDgqRDZ1mSjnLYpSEY54XgIriOIFKt9S+5LlHNoYTg6O0SmE+5uKr7d1Gz2DaHfMcpCzs8nrG6fMb/5Gj+OMeMR7cGMOAnYL9Z02wLfC/BViqlaAjI+PnnI4PwCeTxkv79BhAIRRZxHKbvlHNfUeJ6i1R2rxZI4Dji8/xDrWuabHacH53wYB1A1DCpHW/moIETUDbGn+OHnn3A0yXn/L/8ryvWOpql5++03RPGAOJvx/oOPCYqKQHccnhyhm4pAGMpNxe9/9lvuHf6I8x89ZOUKFjdXzK9eMzw4IckSrFJYN0F2NUk6QEpL7EOe5Xh1h9muEL5HpxqMJ8jTgG5TstUdle1I/AgnFIES+MLiHES+h1dXCNtSNDUPxxOKriVRLYPREAnoMGb4wQO65UvOLo7ofEmLpTGCVndUWrPel1gBddfStA35eEBnHTiP1g/IpwojHWXZsq4Er7dw9OAY5eUEmU9croljHz8b4gcJtdP87D//NT6Sn37+GZtyT3Z0CL7Aiz2c19LtSpI4IPIDSioGecLh6QnXyz3VfktR7AnbBXbxJdHsAeeffo4NfKp9wT999ZTPjtekeKjQR4Qh49EAGaQ4YxCeRAQ+u2LH8mrNcn7HWPhYqZGpIvM8jHakqqP13jX/ONPQti3lcs/9RPGT/+a/I713ip0csv/j72kOpngWNr/6F6ywvPfBEwSW5fwWb+AznB3S/OFrdFGyW93i2gpaibSCfWWJkoyyXuJ3LdZarhrHF5uKu9rgpAPhuH/vCN/z2G03DI4Pmd07oqv2FM4wGk8IwojV7RXB6QHO2e963PR6vV6v9yf1oUmv1+v1vrcC9e7Q5o8/+5RKWwZxSBBEdE4wzlO2my1v53P+07/8M3+pW7r9huxw9q/3TQxBNuDo9B7t5pYg8PGS5N2mQzZAVwVKSpQSmKYhjkN8D4rm3cdmUYM/G+KUxHbyXcWqdaw0zB494qDL2O/mzIY+s3GI8CU36w3C9/FrTVO3RLdLwjRmOBzR0lF3iqPj94jallkWkwVDfJUgo5TQ5fiDBBF4CD/i4PyCZnlHEIXsdIfwJPce3Mc6za4qmQ1iZF0QFUs8P2Zxd43IAgbHR0xnM0yxo5jfcDqd8vDkiK+WC55/+5abecXp6QHKG7La1NSbJcV2Q9OWvHj5giz0UXHMYrPmV//8W8quRXbX/Pab31K3O/adxlOP8IxhtdxyOowJsgxdFXhxgO93eF6GE5YuCFheXjFvGj54fMwgCvnd1ZY/XC/xjGFg4NgPyKRHng+I85hSCqQSDJQkjXxSlZKmEIYB2ekjsukpifJJHx3idSusF+GbPbLYQFHhGo3SLbgOawVJPMK6COn7yE4jvJh4MKSxIWVTcnd1zXDyiG63IYoEWgoOxmN8T6DCCKsk+WDE6el9MmmJZlOeXV0xEvB4+hHWatqqIEoiOu1Y72qWmx3hcASh4vDhY17sd+x0QaU1vivpTMXdUjJ+71Oufv07fv/ijruX1/y3P/mE7OCQaDolGkyQcUzXOKTf4fya27bj7754SbxLuYhThgcRfmZBCkJPkgLaT7FSYtOG0WHN56ePmOJhnn3FbhCQPHrA6JOP2LYFxeKGe5+8jw0UewSXl28wq5JmtyIMclzi8ezqGplC5Bl2nUWakCAbYlRDtNeMc49va49Fp6m0xtmO0SBllPkMowBrDSJMQcFm/oowmnF+do4fpjRaMxiN3x1Irqvvetz0er1er/cn9aFJr9fr9b63joYD/vzJfQZnj7jc1bi7azoH03zA+u6Gu80e5flcrte8+vJ3PJ6OCduM6OCQyhjaoiALI6rO0tYlfpoShAFOekg/QDpLksX40qF0SWksk1HG3W0JMsDZECcl1bYhjY55M18ip+fYJONHf/6IX375Szb7FV5rUVaSjmdooXC64fV8zb3DI2yp8WhQ6YzJ6T2KbUkkFW25ZefD4clHtO2GtinwXITnh/iZh2lr6qYmHU/YlwXvPX6Psm64ub7j8mbOYDDmeBjz7fPnPH78Pt30AJcNURLSQPHZo/u8vrmh6SxPf/0vzK+uKe0APx8RZkdE8YiXz1/z6u1z2C0ZDlOcEwySIaGXMJiM+Gb5Nb/933/OarfAzzw++PA+8+u3DOIA1Ro836dsNH4QEw8ndN0eKw1eOMY4n6rc8sfLFX94seLffXjK54+OuT8Z8UHm8+quZLlvke2e7bJmktZkaYiKY/zEJ5tNmB2fk0wPqO9eMcpn+BryWCJVg0WjPYdzNSLJUAK8pqLc7EgHGcu7a+I0JctzwijENCW72iJ8D4eiqjV3N3O09Jklgl29ZpZFhEKQqIB0OMGqgKKsUEHGj/7ir1hdv6YKY1ZVTfHsOeazJ3iBQ0jwvBC0JZVjbrYLGr+j3m6Zv77h6P77eKbF5SP2DAgHRxymB5Adsm2fUsmIn7/4mk8/ueAnj59gwxzlKVpdgZRAhJ9KgsLj4XlAspXcrl/xLy9vEVeKk3zMUTKmqUuK7Qu6zsOXDX92EhBEkGY5yZNH1EGBKa/wcKRRTfb+AUZMKeuK/fNv2dxeMc4DZLlgWxYQC27ebrDPQLqaURpyPJoQWI8kjxHhFBOCrCUztrycawQQBfBf/9WfkfgD7r/3hOnhBFzL11++4sHRQ8IkQVlojOVgNkW3Bfv16rseN71er9fr/Ul9aNLr9Xq9763ZySmPHz9m1zqOIo9tFGJ8n33nWFmYjkeEvmK73ZNcXDCYZmTDEXdVSZQNUb7AU4IoCNhu1/idYxQEtE1NVxco3yfwAoQv0RLSNKE2HZPxiLbSZCqg23aIesSrlzWr9D7+wRHV3S2TkeLg+B6r9oTVekHgGvS+5eDkiNz3SMOINMmxRYNrY7LJCa2OWLz5miBRyDTi3r/9MSLUtKstWil01+GKLUb4bOdzQk9BlBLFjiRxvHz5O9a14/ZuQzKYMB3mrL0xt7sdh82O4GiC5ywiGTA7Oubs7JRmvSZ/9Jj5esff/e03lNGYOJmw21bcLVasV7fopmF2foYfBJiiYJwASYYUltW+4rateZgdUlYFq5tLDsZDxqMpSTqiWV5hrcXzLMKLaOqKKJY4GVHQMRqG/Pt/+wNc2TIbhhwOFYdpwtnza769KbncNhyFOVE3QtYRgZDQKSpreas3TK5WBL5PaSGKCuz2F8jUx8YSm2REXog3ilHRED/cUO63+JNjPN8jjj28SGHbCpwjsB3R6IB1abhbzFnudhydnCA9j3Z0wtp5HEQBpAlGgAwCVjdr7Lri8P5D0pNzXs+vSbNb7N0SKcELHK5TKBdjHeRVRLpVdH7H0Tjj5YvX1FXBwcPPuPeTHxEPHSLMCf2A3X7NNAsZj4YU44Q1mvj9J0gd0NUVwuxwqcKaGmUSwoHg4ixgEV9ztXjD3W5N2XS8YcHZ8JzzfMQsmBEZ8F3JfrVhP5izvH1LMBIkHx/gP7lAhjn69iuaageioLucs/nmKb5yFEZTLgtaNphqzXpXUOwKtDUcT3MOpycMxgcoT2BcDCZE3lyyupnjJGSxx4fvH3F6cY7TIXVVE6cpTQWj2ZhRGtBWBc2m5eDiAhk43t68oKV/ntPr9Xq976c+NOn1er3e95YvFQfnF9jLW3brLU6AaxveLPf4TYvpLLZpCQIf4ymykwOGkWL9ek0an7KvGiaDhNUmwhUewjmkUjS7Hevlmi5w5KMpTVWRTGZUZUsqHcvFHXmWoKzg+eWStzcVy1aSvD8lrzsmp0/YIBm5jrCtmTx6zGZ+xz/948+obIQ2LbGC5tUdnz16wmazRfMNb79a8fLqFf/uo4dM3/uEcJLQVhu01qyrGicgDBX7okCYGi+bocKcKPd4/vRL5us9z9/MqZ0E3ZGGEbM8wuiGWFlEtaXVI5LhFDM9ZJonVL6PK7ecHhyRZ3cEboBykkAEBEFKaXzunQwJR2NCL0DNKkxV0OZDKrNjazv2pkYGEt02bDdbXr6+QsmQNM7YaB+/KhHSMhqNUZ6k2a5otI/e7zhII6zu8EZjjOoYKp/kwcfYRjLxt/zq9ZabomQUzBjlj5mdJtyur/CcRqwX+MEhwgupS4PRkv+XvftYlhxNzzz/x4cPGnC4dj8ydKQWVZWsYjeH06SNTV8XL2mGmzEb0dM9omhsimJlpYo4IY4WruHQeha5G6teZyzwuwA3X8AeAI99L94WiVEaNCkoeUXqqOj1HtUQSNvj5Muv2G4C+tkAVEFbNQjLgyLFsBTiouVysePs7TVlWeGGId7QRcY7VNOl1RVoKkphEBWSm9c3qKsHXM3DPTmgNzqiZ1/jzAyEBqqm0UiXNldRjBrVUVHCNUFcUfc1XNtiuV0RbG8pxNcMj47Jm4iR2aBoGh99dkJTbaBZodsOtVpjDiaQRshUR1QFWaRQVwLVrlFkRFEueXo6x7Bcgk0OlQWKyV1WMNTHSNPAkC1hpnMX7tFlxP13/8Cw/zm2K1CAantLaXrsNw/s3twS7Fdklo5sFRTdpakzwigkigu2SUGlNAwHNj3fwxofg6jQlJxxC/ZPD5ycHLGrr/CHDpqUrMKQvmGjSo3ry3cgKu5vHjDqFnc04eTgKaZtkCQ7ov2e3uzgl46bTqfT6XT+rK406XQ6nc4HK9qHXG9iVNMDZY3v9vjT6zNMJD3XI4h2uJ6Dbbts9xHCVlBEythpKeMAHwlhSJNlCE2jFYIijUj2AevFgvPdhkdPX4A06YuGum2oWoHR6yMUhTis+b/PXnO+TfD6R0yDCOn6rJqEnmOTZxLFOOQ+1hg6Nb/71W/JUUjzgiTakiUF//j2DUUS05QJjw+GPP30OY//6t8xHrvkWYwhDBoFkijAMCSW1SNcrWjqFr03ANNm8fY9ALPRgKtljK/UTCYzhOmz2IY8GrlYhkJdVdStgik1jMEEKRqmn/+Gze0tt5fvCPMaXeoE6xjTMOn3JowPnqEZJdKy0HQTc3rAUlEpmz2L1ZLbcEMch2RpSl5D0wr+9NN7FOlgGSZNlXF1nyIenaIXFW2SoQOiiFHSiN0mpD85hFaStw1pFuG4PQ4/+obz7T/z5XjKvzU73sUB7f4WzBlCO6Kp9phyw3afkFV7hkZApQ1QPI82ilEsSS0r6GmE+yWGqfL045eMDiboaY7i5ui2B7IFWlAEeRlxfb/lu29/pFQkx0cHWDqYssWoE3rOGNMyyTWTRrq8umk5vwg4SHdsL65oDYeVZ2DMj1CjDZq0qBoNVfUROjR1ipyatL2Cq6sbGn0Aasv85BGKDuXunjCb0BtYbLYBvfGU8cjn6bNDNPkNx9MxjSLQTUGDBaJGNAZFlgIGZb5k8fAat+9iNi5CtxBNyLD/BFvrES7WbBcP6KpHYfls6LE4X/NX/ZJWqVn9r5d8epUxUXYopkmmeDRlQ5TmJLagP58ga5so3BHuYvariGVUsq0Ejx7N+ehXL5h/9hlub0YpFKp8i1W3+MMt2+2K8WTIR58+QhGS46MT6sLg8PSYpAhY3Lwni1PapOX4iwP8UR+o2W/XuD0P13F+waTpdDqdTue/rStNOp1Op/PBUv0x16lksd6i1gbEO6oGDMdkHcckrcZ4OMH3bKImYlXcMDqeIFKd8CFkMpjCfocsalRFUOc5rWkgpMbpyQl///1r/ukqxDctPn10xHw2+fkFrucghSDONmiuxX/3+Td88em/I4wlr7/7A99d/J7PHn/M6elH2KPHuE/mVLsbQs3mzXLBIozwdQd78oiyKUiXVxT7lOGoz+zkgPnLj7FlhW5ZKE1BFqzpORam45E1AooM3fNxh1NUqTIc9rk7f0tVVIg656uPPubZR5+wjXIW9wv0tuDp0ZhNEGNnFY4F1viQZneH0fOZD6YIf8xg+ZbVTc7EsUm2d3hPnjC1XlLmKwaHB7iWQSEEUZJy9z5juduS5RmKKgiDHbatoUuV+1XAv/7bH+mpDTPfoc0Lbq6XFL6J47nYhoPKjqQBpEYpdQZOn/juBp0CJd8hNJVK19i3MfN5n00Kb/e37GqF3mRImIDIEobjMQOpEqQZ+rBifXtPqTRkdcq2TNlXKY1I+Ju//Stsy0daQwzlCilKLFuS5Amt1EgLhfu44p9+OOOnd3eczoeUWUSh9gjiCHSdMMlQVA3DM1mVGpdRxjrPcVXBbVHx+vyKYjbkZOyAqaAZJtLqo6LTVgpN2WD3HNyTAbvXr6jXLVJzqIsI2hy1DoiX73AOP8GankJbI4TDcDxFkSaiyMmyCEUV6I5FS0uVxShSUiUP3F++YrW4Ra+O8Q+e48mIflQz8FwOD14gR4eUZsBJoDN+8Sm5FRHmn1M//JFPHrUocxfNGlBrT1lXewrZoCgJWd5wcHqKNAyqTFDLAX6TY/f7NLuE33z1Kb/9d7/lm69O8EdjVMNEZOHPxaIsKWXFwaMDrJFKW9T0Z3Mcp0+rtliahmX6OPpzBlrAyDnAcT0UatIwpMpzZgcnWI73S8dNp9PpdDp/VleadDqdTueDJe0eZQ2LxQNSKITrgKyEftmw3AVg99gUDYZQiU2LpWlxqtkUlktpFOyShIEmqNoWy/Wo2poiSxkfHqOpkr/89a9ZrPeUacnduwtsp4fr9zFNG1U3aXYRf/M//g+Mp88ocoGh24x/81uONBMlL8k2G3TTpikLRJXh6xO+fnnI9+HveXv2PdsixTg45Fd/8VecyB2ODqOjGbalYZkWTdMAKqqU9AYTdMcjzWLKRkXvjxHULBYP5FmO63ksVls8x8H2BiiqBXVKVZXsVmtWUiX1ZzxWFKTUEG6fMlijKBJh2Gi9MeY0REb3SM/k5RdfoM3n9OOKupnh9D0s3yEMFiQXK+6TB8omx3JttLaiiAKS1sG1HVxT5+JuwT9/+yf++pvPMVDZ3lywWDq8/PwTwiRAa0uE1OnPplRNTdMUCNsjCkLKegUEKFbBotqSKyn9+RDLranrmjh/x8CxmT/7kkeHB0wOJ6hUYAo2t+95ffaK27igUSp0WfH0iy/47C++wTYsWrUlLXK8wZAyS2lVh7SuWQY7/vXbM169ucK1LKRusllt0W0fV9dIiog8i1CGAzZFju3oPPfu+fXfHlGUj/nTqyvuL35kUh1yNPkMw9QBC1N3EYpG05RIw6NoXUb+Y0z5I69ul5y+6BPkJcEmJFxcEXkKq/0JvuljKA0GLVUNg75H0wxodRWaklbRQWlp6gyl2RBs73nz5oLbRQCpxql9gNWbIAeSrCoxRIxmpPRPe6gLMB2bk8+fYIg9KJ9RBT+SxReITYTpuFT+kHV2hW73OD46As8izWJoE6QiMHwbr28zfTTnk08/Ymr30BSbNAwxhYqCQAKqiBmeOrTeGLlWuHp3zYmt0TYFnjOiXKVoPYmm6SRVwrxX0zQlSZyTbEL6/SGG5aOb7i8bNp1Op9Pp/Dd0pUmn0+l0PljRZoWaJYim5u3ZGXWrkBcFVSvwDB3PtTBaBcWcskoTtnJKIqcgE3Q7J4pSpABF1dBtj7qIUdoSy3WpyxqrN+B3n/+W+n7Fu9//ns3NAsoK49lj3KnPs48+p9FMLi+uub+6JYtqRqNTjuZDZJLTNLD8/ns8f4JumWhlQqY3fC5dPvvkazYiwxzbfPbbr7CbHVEcYM0OcCyJqgpqRactWzTbQZgOdVWhtAplq2LZJkGYoFkOZllh2xaO11DeBAxOPwbNwJI5Xltx2JuQ1gZ5Ltiud4wHPRCS1h7RCp2mbmibGq3YcPzYZ3p6xD4O0UWGree8WUREuz2nTw7ZJVvuozfYxh3WDGzVYpftiKKMsedDK+gbGpnncLuOuV1teXYwx/I9gsWOsx9eM/Q9Hj15glpEtC1oTY7SVhiehqofEt+dkxY5immiWAZJGCEtF9E/pK9JfENDqaHnKaDVlLoOmkad71Bcg0e/+x0zFW5v33O/2fPp7/4aRZW0ak0dh5iej+r65MGOusjYR/Du4parqxuGA49HT04QZQ1Ni0ZN1TSgCMpowXoD08ePOZ37PPNMHi5y5Owp+8GEs//pf8YIY1RMPATS6v+8ZQmBNCRlIzAsH1vOcNUBm+COfloxOTzBSOBhnXF0UHJx/p5RUvL86SltmeFqIFSHRta0eUJV1lCl1EVGmcVEu5DdYsMmLMlrgdVCGqyoW4nRH1MHO4p6Q11GqN4jcsMi3r5n+FOG/hcz9BcTWvsxroRyvUCJNkhZYidjMG2yRqUSNXrdkjQxVSPIsopNJjg4fU6bVsR3C+qRTqaBUmmo5LRFTrApqFAxpUpSwHA+xR+OKJqWlBrdavB6LreLdyTJFl1/RLpfkcYFnjvG8kcIwwTN+KXjptPpdDqdP6srTTqdTqfzwRK0DIZ9Hkd9iEb86fUb9nFKT9SM5xMOpjPSXCe8DfGmx9xs+kSHBzjKJUqbYbouD5sVulDoawppLkDVURQF3TA5+eQrvP4Bbf8Yy+wTZDnrYM3D+yukpjM87YNhUcYR+/U9oihZRVtGzpSx4WB7HuNBH111sQYzDK2lEgkFOebJmLjakZQh3mSMpY9obs/pTQ9o0BC6jVLENG2LpkqEFCiqQZimaK5HEUVIf0Iax6yvL3i4u+XmdsXs5CWqULA0lUJoTMeHbLYRwfaSsb9nvdmi3O8x7T6u20PWNc5YkgY7pFCoHQPN9xBtxQ9vf2LQswnSjHcXN5yvLxF2ysjYcXikothwlZWs85SqURCAbVuUqWTi2jSqzpvzezRFcHj0iOFYYb1aM+gP2G4DXMfCsyTrmxVj38LQDVRnSBinzByTsmw5bB0W379iv19T5TrJ7BmRc4qb3CKCBXmZso02eJ6BqjvYL77Esxooc6xoz9PDE+z+AEgp0xS1abH8CVEakzfQlIJot+CnH99h2w69QQ9dgDf0KdIUVQqEApKCdLOiVXMmXz7HsSVpYxKVDUpZ8NVffMxDsMGuGwxDwzBspOkipYoiVNq8QNUVFE2g2AatNDGkzWIZYk0EZn+AoUts38eTgqGto4sKWvD8Psvlimi/IN5u6Vs9bKdPlRZE+4w0a1hsIloh0WyfwWCA26TsVnekQQpaj31eI7OcQskoDw5R3QLjzbc46RfoqoEcHqL7JvbBgLaIqYoI8eAShyl1nlAkGU1eUqYJUZKQlC2ObSPbgsX7nxgczLi9qNAMm6HaoikBSluzWOVg2himQ5rXjPs9en4P3XZIgpjGsomzgIe7BWQFbRiyClKMg2eY42OEZiJ0Sat2j6SdTqfT+TB1d6hOp9PpfLAs08SzLfJRn3zvI54c8cdXb1g+3OMogsWmZuAd409HVHdL+seH2EWOChiWAVInr/sE6Z6512Og6bRNTSMN7MEMJVfIGwPp9zCGBeL6ksfPP+f6+j137y7Z72OcXp+e7aApLavdhqpRWO92WKcfk+8LfEMnbxM06SAcl6Kt8F4+wT2YoGzuSK4jmiKhaFV0y0LTdfKiBCWlLX/emNMKDSFUqrohSxOyNKEoS/LFgkpa2Kef4Ncq/f6UP17saeuGfRDR6w8QKKxeX/Bk/oT+YIhBg55CzzMx24b7H97gPjskS0p2wiLYJThFweHpAf2BSZZl3MWvOJroXF6/ImpLek8cnh8MsZIbomxHkVZUjaSuSqgqlAZ8z0XXNK4XW759dYnmDhn2HXqKSVOmNKVD1aq00sIdH2JbKqJVaFWLwXhMso/IKxC2jX9wyvrhjixeEj0IwqJm4BhUQiXOchxNp1IGDCaPSaSN6eiILEQdzPBGNmqd0dQZQqo0mknVlBTplirNCeKMH87OcScjJpqG0E386ZgqiihVFaVuEHqLIRSyJMSzT1ApyZM9vcmML//jc86ulkjR8OJkzOZ+SWNYJIYOVYVqGTQtSNOirBsUIci0lkyvmc7m3EV7RKOwC/YcvXjOj1cP9Poui/v3DHoKtXQRVYHhuLg9h7tWJVj/PI5WpBHVfsV+uyGOQuaeRuV5OAYUVc1AllwnO0qlJvANfLVk9/A9i2TFoPeEXEYMd2/Q4x6iHlEHEcJ0qVWTRlSg26A11HGOJlqKtGGzStmSsMpK4rohurrBqzOKkSRNdORAZ785oym3aI5BIjOc/pRVkDAc9Bl4Jm22J8xyqkJgTqasbm9YvDrnpTlj/6pGe3qMOzqhRoOyQClTVKN7JO10Op3Oh6m7Q3U6nU7ngxXu96xvL1GkjpSSk9kEra54ffWAp9no+pTtVc31zRXCy3nxfIyRH1LVDVrbougmhllSKIL9PsJ1DHRvSFm26O6QmgwqcLwBxdUD+WLDdhPhejYPScPrf/k3FE3HsR2SfYhsa/Kypioqzm/fcjKcEMYpTd6Sxwnm6SOGXx6hmRXx3RvaIqWuEtJwRd7WmL0BWV5imgZtuqeqcoRhoOk6oFAUOVGcEuz2uL0BI9vH8jyKNMGeT3h/9cBqExDuAw6PTtEdn/TmjtlwRm98iF6k+NMDpPNihfNSAAAgAElEQVTzGE0WxCRByOIP34Fvk9UF0rK4vLrA0h/R8wa8W7ylVlrmYxeqKffrDW/+bYHYDvmaAU3wQF0L4qKlqQWigYE/oKobdE2nb6XcbAN22w1JmvH4+UvaeEldhqiNQxJn6KgopoupG4iqpjQtttsdSVLgiIrj+RjDG3F9dc4uDxD7a2JlCMMZtefR9mxEFWOVD/T0PlWrk7YawrTQbIs2WtBoUDcGeD+P5WRJRhZsef3+jlKRfPz1J9xfXtOUFXWSkhYFo75PWddoUpLEO3ZpxrSpuX5/Bm3B13/9N2xrl0Lv8/CwJt3smI1HBFREqw1/83wEKEhNoy1LhKZS1BUXqx25bvLy8YTFt68J1yWNIaiDkMHhnEIzUIoNm/WawVGfqspxjIYkSsnjiHe39ziGRpFUlFlJudtiiRbbMHHbgsroobQNeVVTZxlh3SJqD90SDFTBPjhjFz9gGi4X9wnm7RSlZ6K4DtL2fy7q2oomT9ndPVDHCciM7faay+UdTb/PTZxws1pSbDY4vsl6GaGVt6T5Hm+ks11swDHZViaHExXbFEz9GUkco3t9dte3zI+fEoc7ludvqR8eiC2BGuoMjmfkmwesXo+2LmiaitYUQLd2uNPpdDofnq406XQ6nc4Hq65rer0e+3DPYDBGL2NEnjBwPeJcp/SOeXZwyOrsJ66DG4r7c5pkSJPk2LpNqalIXSJVlfUuRJUKVfGA6o4RTh+xv6XcbllGCr0qY3J0iHl7zb9894b/6/1r9lXO3T5g5Ho8GvrItsFUGuoG4mjFTheoloY2P0Z79gxn7lM3ex7eniGqHM2wEdSE2wfc/gjVMgj3W8oEiixDGgZmXaNpkrZpSNKMzf0SGoVgs0WTOsEiJI9CTClI05QsT0jzCMsy6Vkm729uOT35lGwfMnJNfNPBnExIbi6p0j0Pb95yub5l9ptfU2iCaL2gLSPMKqdAsm9yHEsQBTmWqWOqktHkkLM3a5bWlIICU79hG24ok4zSyhj3h7TSoC4ydF1HaSqu3p4xPX2BadnUrUOw22FoS0bzI4Sqo9sOsm3RRA2GwfjoEdV2TZFVyKKmMh16/R53ywWLzYZ4vaOM72hcg3bQY/jkEWbfpqKiaSFMYnQD2mBBs7+nMlUUvw9Soy5q9stboqKm1kyefnRMU1UcnBxz+/4NjmXiuiZFntOUFXlRsVmtuLtf41zd86//+h1PT0cIe8BWuSbUH/PtP/zIqM04OPbQHzkUToKQEqEKhBC0UiXPW7Zpwev7NUcvXjLRbe4DjettwOzZCZev3vJ01KPJGnrzOT/+9AMfazbz2QGUoKgF49kx2/o1m+UDlmpQZRF1WWMLqGVNuC8w/AMGakma5EhRkqcBQTFh5tooVc7x41Ncb4pblSi6y+vzLXN5Q/9oipoKGlUlXi9Yvn3P9uEGUUUUYs/5co/iuOwalfNFyPJuy4Gh4FoOVaUi3CF13RBuSm52NVUSMn56hKrrNGmAPTuk1lyENOj3bMp4SyE9Xv/4FrEPeLOP+ORjk7m9w7dnyKpA1SSqZmCY5i8dN51Op9Pp/FldadLpdDqdD5bXn+GPT1DVBcV+QbjYcHh4gjRtQulzlljc/3TOyaHCif4YmdYU+wQFBeG4KFJHkTm6Krm/u2HQ9yjzGLU1KdME0RQ0aYhaNJR5gDrwaOs5z4Ami/mHN2fcxzlvdxGbIOSk5zCwTEa2jkVFnmxI3FMmz5+AXZCmS5L7JQ4S2xugtQ2VsKiUCrs/IElTknBHUGRUZcXB0RxF0WiFQlYUnL99Q5lERNsNrj/g7voGqbQM+n0My0QIlSZPuD9/x9DxcZ59TJ2lFMkeLcnRHJO+5xP88Ts2NxecXbxh01YMHh/RH0wJREGSF2w2Eevvv2UyH3P8+IgqE+SyJQ82TA9HvL9NsPoz4vUed/YZc+UppbokT85Q+gLTttkHG6q6YTY9oCwrltsNjgZKtqaMA1TTpRY64fIOZzSjqgqUOqFVNcToCH15jxyO0VtBu9kx02pSfcbk8TPqOqMqS8o8o++aDI4OmU5nFNIEq0dSqRRVjidzqodrhGeBoYHUaKuMbL+h8YZIc8jBIMSsY1rNQOnPaJMd8T7EcHrURUlZF6wfFtwt12yDPWdn73D6Q0ZHn2A4hyhvLnnzp29p8ilPPnvO6WhMUGa4fQspBU3TggKtItjtI757fU4pNL569pg2LPjsY4vVt9+zjnIUxeL19z/h6Tm5OeDFi+csLt/j2i4j3yGNQixTI7Z9Hm7eMuqPQKkRhsQQGntFp6HClhLHVLEsj9N2z3J/D02N0DS8wZzh4TGuM6RNUgbjA4z+iEaqbBTB6vUDUbYnjvekixv2dz8iq5JtGiN6I9Ren4fLN6zevOFAkzyfT7Esi54r2Oc7eobLwzpmFcTUPZ8n/Smvz94zHvbZrB54+umXJLdnVEWONATnr99wc/3A2IBPvnjM86/n9MYumjQwzD7SkFRlDoryS8dNp9PpdDp/VleadDqdTueD1eoWmjtEr1vy1Q2u6zF/+oxG0+jXCmNhEnkNdqGw35as71eEy4DxbIjQNHQBtiYYuA5nu4Dr2zXTgUO+27Nbr+gJBVWBJNhQRSHawER1HPZFhaYZzCyHwMjQJLS1wnZfYTcZWdsgbRXVNFhUOcn5D+yXN0zHQ14ePmekDxC5gtLXGWqSAI04zYijPUm0o2la5kdHtIqKInSyouLu/oHr9+eUcYJlmkRJyejJJxw9foTYr6jj/c8v+1Ih2q0RisJmtWaf56jXF3x1/BSnUth/95q33/2B//3HP6KPBnz0m18zPTmmUTTCh/cEDzcYusrB4QxvOISyIE0CUAosp0Lza8xyRFi2FBhYlBwejpg4U4KLCpIlSmUwO3rG3eIK3daZHz8mrirqLCDaLcnKlq8+eY5dbYhvb0ibik1d0h/0aBQT2ZQ0tociXeo4RjVC7CpH11usgwM0z0bwcylg9VxUWWGZOmHZkFYa+2BDkWyJtm8YO+3PH9XVdYo8polS9nVJpkr8+YR0meB7R0StTbq+wzEcSq3FVDXCNOHm+oYyKyirCtFCX5McDvoE91t2l7/n2WzOb6Y+95kkvv2Ju2aE9+iAPA9pnj2nLipyIQh2e3784Q3Ldcijg2M8f4x0W7480kkeTfg//7f/Batn8v7uNU8OK8bTJ+SOhdAEF+9+QH/xkqqpca0+g+kj8izj3dtvGVs9yiShaRvqPKdGpW8qKNaYIsqZDATD+yX7YE06sPAMBSWraA0QwsXyRrjjKbUuELpGUGj819+f08QPtJs7Vuc3NDUcnzyhrRtWb8/YbXb85ZPHjHou0XaDadl4hwNEs0fqCsubHbdxxWcvDtgGCfskZzLTOTicsL07J4tiyCKSKOa7f/wJnx6/+/Qp88dDFEVHGj6a2UPVDKq6pmpAkdovHTedTqfT6fxZXWnS6XQ6nQ9WU5Y0VYlsFHRhoNoG1miC1h+S5QVyt8QaWyQ7hZE+5+Hdjug+4uBgitBUVFXDKTJU2+S47/H27Iz06BApVA7WCxzPQUqBpilkeUIVh7SKhmYabJKUphUMzB663kM2JXkSMlI1/svlO0zz5xMXlfKa47HPfODx1ZfPmBzMMXQfVZdgtrRtiZ0WLDcbpCGZTmcYtoPj92naFkXVub+75vriiqtXZ5i6if/Rp7z8zV8yffIMRVWJ24oo2BCGEaYmCaOQm6tL6kPBYrclV1O+HA5Z7zZ8//0r3qyWBKbNX//mG5zpDMMbkFY5PUvS+/TJz6Myhk7d1KyWN7hzB1+reX9dsKtiat1m2mu5fGgpshp3mGBOHIb212zOzwgWKZrj4/QGSNPA1lt6rsXdIqDnPPDssy+YTk3aTYU5H7DebNhfrKmLj7D6ApUUwxmCqlFQU9kj1P4hbRAjFInr9tAsB4SO5rlomoJm6uhxxGq54/7iDV70Hn9oYE7HUBdU4YKsqgiB20RldnqEbTYovk2lWQR3C7LNDr/XI6+h3C2I9gFlHNHv9YjTnL7nIoWK2VSo0RZDc3ANCVrJ9d07Mt3FMWZovossCnb7CDSbKM+4u75hfXtPnWYcfvwCfzbFUCBR4OXcoxD/gd///d8TBQE/vHrD/MhhMBgyGXkUecVmucDUTXTfpEgibMdjYU65Xt7SN3WyukBVJUqVYVsu0vPRdYX6/p5n0yk/XV4QOhqDyQmiqdhfLhhaEyo7o7EKlJ5OnscoVUWWl9zerElvL/A1h8dPf77O8rrk0ctTPtYFVb4n2+8I9jukZaCrGrrns97tuFxGiMEQRMv9csH86JTJ8VM0Q9DkOb6rsbrd8+O7PTouv/3iG06eHNF7YlHVMXGRoWYVUrZI06LJWur6l06bTqfT6XT+vK406XQ6nc4HSwqBLtSfv23iHxOuL6jaFtN2GYx0VmVIsbvH1CXry0vS5Iog8Gjlc4Ru/rzO13bJTJujpy/YhhFJnGLaFpuLM3qnj1EbMGyHTVGgre+w7SGybbGljtm0zGwf0X+CkoXcpmf0pYktVTZ5wuOeysl0zMHE59nLjzmYzlB7CugVum2jZDlto6J4Q8Iyoj+ZoVsWjWGhSoEuBFG44/zsDT/+0x8xCpVf/cW/5/DjT/DcHmoUkDcNigLrh3t802Bt2tw8XPDm3Rsq6ZDWJex2XNsWN3d3/PH9JYPD5/zqq68Zzw5QbRuh6gjRMvQPSMlQpKRVavLgnoFb42k5IrxiZtW8bXo8d2wKAvC3RLGGtFxkUTE59HC8zynWlyThEn82ZV8rNGrGeDLlvq7YBRFkAUZlsAs3mJbLZGAQOB5FtGK726JPTjDbgKYJURVJY49IWx3dMam3CxrHQBg2UgeNHFSPRpGkecH925+Ibl9zcmQhXJcsy5CyIY7u2dQ65tEzjg9MbFPB9R00x+H26pJi/8Dp/JA6r8nElrvNkrv7JUOvj6WZ1HUAqornOjysNxzODbzJGNVzuHvYUXgjDqoSH/CHAyzNJm0gKxpubxeEDysaoXF4eER/2Ed3XFQFvFbltC4wP3+GJf6WP/zn/8TD1Ttef3+OZboYJ48YDsfkcQ2KThwHSE1i2yanT56wsW3MNmHxsMLSVTZlTpFmaL0a3dRx+0OemSabzYb37y8YqSa50ye4z1FVhUE7pix25COF0qy5u90wo8UZDVG8X+HoOUGaoeoGp8cvGI8GlOmG/VZDKC3l5Tn2xKemJg1L7u7W5IbN777+gjAtsFydwXhEfzAgSmM0FKLVksUmRg7nvDx5TGMfoIxOURUN81hnEy+wDYNaN2hahVpRKdtuPKfT6XQ6Hyb17/7u737p/9DpdDqdzp+1Xuz+436f/HtdVUHUNCIjriuiZM9ucU28vCJa37Nf3qDUIVWyoCkjDl9+hOn7KJpOWZSURU5eFAjDZLcPWN3dIquCnm1jajqa5RAvVyTLFbqQSEWiliVxsKevOQytA+xGY7m/wtIaFK3CtBQ+ORzy7MkjXnz8EQdHB1iuTVNk6KpCHUSoRUu9T0GXJHWGO55hOi5t0yJ1i6ZpuPzpNf/4n36Pl9T8+stv8O0eaZKx36xQsgQpGtK64dU//VekqhKnBdswRtNNWkVSlAWr22ts0+AyiNkW8N9/9g2u7TKYzBC6AVLFGg1YlDu24Yasylktr3FEwrhncNI3EdGOrIBxf0y9T1CSGJuc/XbLZHKAnmwxLBvLc5HTCXvTpFJL+j2TukiwnB6+36epW0S65HgkKTYLZFuiBAGON6WKQoLFHZv1liQIKGqIS0Ga19S1pBYutGBlO1RNR+gWipTUeUHbtly8PePh+9/z+LhPb9QHqdKIhjxfUFgu3slzTN/BZIdmSozelKJq2SzvOZwf4vtjiqbk9uotF+8ueXJ0zNFsTryPuN3uqFuFLEuZHR4hVIW4yHEOjqj6E/yjE1yjwZr4WMcTdE1DKgabfcJuscExNPKixvJc/MeHmJ6NYdq0rUDLKzTRYIsStYqxeh5VLRhNPDTRogkVXVUoyxAhW4q0xPX67B5WuP6Q1WbDwaNjqjwhWG8whIrl9jB0E9GqZGnByOtxdX1FsM9Ra8jilGC1Q4vBsCzCcMft3R11XuOZDkNHQ20TFpsFxnDOaD6nP5nQNiVZErFaLdE0yW6zRMoGzzO5XS7Y0fL5bz6nbqCoStzJnMePHiNVQXB7jtNmXFwsyIwJ40efopo20h/iOTNMTcUaDinRKBQN0+1Ro1A2DZph/D9uz/k/funM6XQ6nU7n/687adLpdDqdD5aiSpK8QC9zFFHjzOaEimRX1mwuXqNlOwaWpC4CsqxkfNyj2gXstwt6x6dIIWh1HbWqMGjwbJujkxNMy2IThixvrrAUBdMbYvs+D+/OSdo1mjXA1Ax6pouStUw0gWKfcn7/B7bxir6j0ff7PD8+YDTq4RqSIk/IU0EWBKzzCle6mI2BUDRUMaYRLUJREEJFCFCF4Pbijj/8v/9ELyn5dH6Ckzf4Ro/eyRG5KGnqEN3Q+f7tOYZhUDUpmvbzWFAUR5hVQSh01lXDRZwQovL14RGuVBgMp0hdR9oORVujSEkSRUgV6irEEhF9z2Xc80jvrti/u8Y6PgVFsMoz+rZCtAo4nOiQbbFNk3q7wT/wMfp9mI+4Di5Zbi9wRYnbqqiaxnA+JVpdcn29xC/2XL25YTh7jNRyUDVQoNyv2O8C9u9vcfoT6hq82Udoqo5v2OTUTNsldtZg+h6tKqmoCN59y2hio2gqaVlSRxFFG+NO+pj9KWm8h90tst4x8F+S5wFJXnH06BTX7rO5veHm5pJ4E3M6PWQyGlJkOWpTYWoSRUjCLCeNQoTTw7fg9u6Wk8++5ORoRrpViMKYy4t3GJrLs8kR221I0zTsohjX9ShNg1aXYAjKpkFxVBASd2/S6kPS+UvCrcD/6BB9qqFoNVWS0boSU1PZXZ/TYNDWEyynz/bhDsfxSYqKw0++wPIG3Lx6RxltMYwettenTFrSbcInR4/557MzFrs9M3+C0SjcBg88ym4YPD7AnM3RxYB0c0cSLrm9P2dbxjwZTXB0ga7URFFMWTXUVUmex5RlSl07rKM9oyenPJ74nL09x/DGzA9nDMZDNMMgCrfQVLw531K4z1kFGfU+xzFdXFOSkdDqHm0DmmKyjRPsXolQBY2Q3UmTTqfT6XywutKk0+l0Oh+stqnRNZUia2jzBIwetWGx28a4k6cktz9xeXmB1VYoRc1wNEGY0CTXVNVnaLaLIKNpSlBVsB2q/Q6qnP54zDpKGYURXp4jpUTzB5RBhCoKDKkz7A/YXD+gpCGi7TExPf5tfc5AN8iiivvVihpY7HZolobvD9BRKPOK8/VbXMPi0YtPsNoMdzjFNC1UIEtz7m/v+Jf//F9YvXrHx70JrjVg/tk39B4fok18xP6BIi7ZZTVVFKM7FpvtBikE/nDMm3eXJFfXqFYPYzLnIYxhHzN8OsEfzjHcHnUjUGyXsq2QTY2ptxRlDNkW19DQNMn65g7zbkmwqZm/HLNLchy1xa5CGhExlyq1M8VSPILtA0q4weh7jJ0+rXfKvVuRLO6wiwatFCSrBQ0m//KnJZ+PWlbLBL1f49cptTlAWnuybYxlu9SqJFjcsc9rmqtbXNPBFCaj4QHh/Q2DcR9/fkDj2Fxcf0eVL5kczkHXKPKM/XaNdzynsYZEUUiR7elZKY3uEWHRlBVNW6GbNtvVguh+wUSzMP0RURL+fJok2uN7FsZaoWpaNCHIkpi5M8CWDsHDA3xS8bDesn245/TYo5fGbNOKhhN0wyBqQ6KyxvQ1NM9CVQRCkaiaQl5kVI7AQNIrXQ77p+wPVd4FCQ+ew/FzH0fJSTcBbZRj6Srb5R13uw2G5lFVOZt1iKSlrV0Gpy9QrAnbi0sUscFwJIaqMHB80u2OoW3xavnA1XbBl4cH+FOD0goJK5sgcPGCjHhzz2J3xk14xdMXTxkPB1iaJI/3xNGGNIlIojWmJtAtHXtg8+jjj3GGfX56957D4xMMd4jX8xCaiTR7rK7uef3DGt0/QMlUwjJFj0Ms06I/HKDENSUFbaMghY4qIC5KVFWlVUDtNg53Op1O5wPVlSadTqfT+WCVTUOSJaRpiCY11kFM2gRkSYJ0DXRNpxlMUfOIPF9RNTnjSZ+Dl08oo1tMz0eoKqiSuqlQFRUpddAs0iikLBrOru/pDQ/QNA3btmhqiagaRNviWQ4LAQ/LMx4dlfgWtLTcRjFlWpCKlgyJ1ARCwO3tAtFCHCWUWcs3H31Mm8VU9Qi9hbrIifYZNxcXfPcvf+Dyx58YGxbGZI56ckRiCnQNNF1Q1TmqVNluk59/X9NoFAVVKJRFidMfU9SCcLvDMgxSVaWnAp5D7UgKSnq+Tau3qLUgjiIUUtQ6oK33WMaYMsnwREPUlBx8+hGN4aAUKZ6IKfMIVbeI1gF+XyA1DX+gUyb3OO0ERfWwpM18/pS1NLl79wZ190AbhTRxSrJKubkKmRog7zdYgwm6ZtCqEt2yiYoa35+S1QY9mZDGGXEasQzuOL84o29aTOYnDMM9u+gaU4sYzeaUdUu5WVIWGWrfB7NHEkeUyRbXN6jtAxR3TKH1uFhtOe3ZUCYY+QqUiigvcAdjdM8jDh8wBbiOx6zX4/1iA3WNphus4wjbnzDo9dlenXP4+BhZB+z/P/buo0eyJU3z+9/saOnaPXREqpuZV5WYniZ6uoEhCS4ILgj0jttZ1jcafgoCs+CGIHtUT091l7ha5L2pQrqH66OlnVlk7wiui0DF7zMcGMye8+J5N2viXcLg4CVpXVGhaEyNJnCJZMfQNkjyHE0TSE1gmIKuitG0hs41cD2D2dEY0QnabsObt68JH02ZHE+JNzt2d9cYhk6X52zu5yhcvEFIvstYLxbstlvGh4ccPH9Btl6T7m+hMambFt+zmAyHFDRcrla8XS1Y7ff0vHvcoIfn9XFrjSzLaMya46MpQRBS1QXFuqATivubS1pa7NDGMDQ+ff5XHJ2d4HQNm6RgOp0wHo+5X0a0nYb0Rvx0u+fNRtANz4iKmmh1S8806AwHx7JZRTUDYSA6CYCUOo5pkiQpaBpFXWN61p/2sHnw4MGDBw/+PzyEJg8ePHjw4P+3qiIhjjdEaYzQOjZpTlYVhGaHTFpEmzGcDEjWNeEwYLe+4fjiL7D6Y0xpk0YbbMunUS2tEtTpHikERVVR5iU920aaJovrK05OHqEZJsJz0YSO2O0oVESvZ/PTfkF58w2aKbB1jcs8xXc13m4yKpZIQ8e1LeI0Q6kWV0o+OT3GsGzKVtFWBXWyp2xbLi8vefP9t8yvrhmFfYLxKY3nEjURmt7S5CkqhnR9jxkE2I6NbZlsiwzLtGjjnKoskKZHW7Yku3u8owvswQFa1ZA3FZvdhtl4TN6WyFrSqJYiWhF4LYkmkKJDNQ1ZWTEa2ljnU9ZZTbnYkKzv8UVOUYLphriBQtUpWjhDBA6t1iDIqasMX7dxEHRen3ZySpQp0rgii+7Jk4wkKYk9A3Ob0o8a+jbUmoPpC+Llms40GQxd7u+W+H7AZr9D6RnbfM/lasVHTsvm/ZJB38IajhCOS5xsUVJiDgaYvk/ZKopoz2A2IRcmoTMEqbNPG1zpYTQ1mqGBMMmKLc5wiGa5NJfvaeIc3TJoDI1pz6fKGi6XW4okpX8YUNQ5gTNAVynZzbcMjAyVS3qOg+t6rKM9ZVZS0qIHFovdhsHBgO1mS5lnDPsemySj50vyqsDoQIYanh/gbGMG/TNk3ePu5hrt0MIf9jBEzX65oK0KyjSmajJW798xOPqIRulUmx2oFk1YeIMQKU228zvKvKHpBMIysGyX0/EYpRSqaelESVUk6F2DcHyssYmmaTR6R5xvSPc5XVtQVAVKQNALMV2XwXSE03PI92s6y2R6ekrT1ezjFPwhZjjgLmp59+NPDAYj3l3ekxcF8f0d00ePEV3DNk14fOZQrBOSuCUYDFC6pK46krKmKHfUQuJFLjD7Ux85Dx48ePDgwf/LQ2jy4MGfuVYp/d169z9GWempTqCbBkPbRGsboixHddB1DXlVUCQppmoAE6U68mRNf+gwmByhGT55FlPEKzxLwwyGtNLE1zui9RxddyiVpKlyyCKKGjrTo2k+lHQ2ZU7dtLSdRAFdW9MqQSc0dE3iGBJN01AI0AzSLEOjpefbdMJA6B8eup5rUxUFqqtJ0oK6bSjLEqVahAA6hWMaKKmjAF03aYqGMPBxfIemKcmbhunxIQPPJis6PNch3+1Zx2vswZhBf4jVtXRAa1ikdU1WlHimgdHVyHyPZpiopkHQfhg/R6KkgWmaaFKx2WzYZxWjfo/dOqJpBf1wgJm2bBZzVk2GEQYgBcl+i2pqOlWj2haEhu66qCJDdArTtnBNieeaeP0hZVnheSZtW2G5AYbWoNoG3Z1haApVZ9StiSYlXZkgjJC0qKiziF4YkKQ5SJMk2uI6DnVRUDeKvKho6hKh6dR1TasUqqlRSlEpQYuGGQxoqwJDB8t2MVyPwdClzW5xTJNgeIGGhmxrdNNBSo0iS6m6Dk03KLZL9LZA2D6GYZJGi2dpsmC7i2lkizQ1bJmhqYq6qNF1SVzkqC4nrQtqt8dNqagXNxj2gCzJSaM9qjWQUud2tabIMrbLBXpRsak6hm5AZEr2eYJp6rRtg+w0DFOx0xNUUOIcGsSGhaELJv4hRe5i+x5hWSCkjtIki7TC80b4pobKdlzuczZXC5yoQFwt0D0H0zbZ7XfUuxXhyGZ49hjcgG2yRwsEll4wv/+Z63cRnmxQO51CGSTrFbrtItUaU7WMHYtmk5Cv1xxKcOKIi0eH6PIYQxfkdcl+/pbQPCHtTEqhsGRD6Dh0+oAUSKuOsDcGvWZ5N2dfa0gPSmFyeX2NNZgwHR8zcA/pOh1hStyJzX5VoDkaTbnFkgZVlyPSEqNKqZqKppcRd9oAACAASURBVOvAC0lXa3I67pWBkUHybkm475DSosNkG3XsZIzpzdg1JlURk9cV26Ihr2tC20KWGRMCenLMQPbQa51a6CRFgRl60PnIqkGvFGVuYZgW2aahayq264SyLSltDUs1NEWLrQ9pK0UdZWxrg70WsN8u0dqCpiqphyMGgYvnGFhhn+HxMZPjI0rLwCgj6t01g9EE13RpvR5NHtGInNaSpElEV2+5nGf4nsv7uxQpKk5PfLJNx9FgSLSPQMXYTcHL2Rnz+QLbarA0weZuyU95i29I9jcZyb5lvVaso5RU00m/fYNr25htQvH+HtufoIs5tunQt00aSzC/v6Vqa2rTxgwHOJ6FWVdkuxTf7LGJNwijpZLQ77tUOqyblnK1pudbdLZLUytUUqJlBavlHM+BkSvoh32KZIcwPaQ3xBctanGFp9k8nQZU2RrKPVXZ0Q999vMrct0lMgbot9ekV3fsB2Ni12Kb7gkCi1ITxB1kZY12m330pdr+raHr+IH/octIQleW7LMSezDBdWz2mxVOENIWGXVd44ch8W5HVhUMBz6OVFi6QDM96s6kznN2cYrlhui6QRrtSdMc3XZJ4pi6yGjqGqTEMm3cIMRzPVzXpUPDti0M06AqK5Sq0EyDsla0HSwXc7LNGlNvCQKL/nhAh2C93CBVw2zap1YfJtjyeEdZ1ri9EUmUYrkBWZrQti2alHhhjzJJER10SDzXp6kqbM/BCVx2i2t2eUut2ZRpgm5YaG5IVWQMPBM/cEmjFWm0QQgIhwNsx0IzbJqmwjMg2e+psbA9j6pWeK5LS0WSrUl3e7SsZdBz0YIeLRa606NoO3bbPfFmg6JjenyMLxTFZkln2EgnwNYUKtuTlg26YZKnKbpQNHVFnlc0wkDoJoZpoYqYvKhQQke3HExTp04TwiAAzaCtS+qqou9ZuEHAbrNFGCa2aeMFLrJriaKEqsoZDgZsogyhgagypBQ0aLhhH9lWOJbE9PtIJ4QqRVUJyuqBbiFFThndUeAhrRH7zYZsucC3DPzxDOn5LDdLHEMSul56PDv7f6SUzZ/yvvbgwYM/nYfQ5MGDP3OtUu5/fn35v7++352nec1BP+RxP6BYb7ndx1TlnnK94P3iivnbt7RZjm0N0UvF5fwVf/0//yV/85f/GlVafPvl18TpKz7/7AXh+BgBlNGCZBfRNRaO5/Du2y/Z3l5ytc7An7LdrLi7uaPKYvZ5jTQDsiJDNSW6piN1EyEkpgaBYzEcHaCETlHEpOmWw6GH6ixaEfD0yad89OyMuoqJ84x9VHF3d8N2t+X2bk6WJ7RNjWNKJrMJuuNj2S7J/ZaPnn7Okxcv8X3Fu/mC88+e8te//hVFbOJYOm/f/IHfffs77KNz/vXf/A88OTyiKApar0dUN9xt1oSOS7FbMt2+wtRAIVFNjeu5NG2N1TugP5pQRtf84Xf/ROWckSYVP39/yezomLPRIem3N/zXL/4L17Kkf3JCst1x/epbdrsleZZR1yWaYWJ7AbJK6fsmZ48e0bc7To5GjE+eEA4nSC3Bckv8SYCpbTH1AdPDf4Umau5//ieM/mMCL8Rx+2xXa2SnqKIVZVJwd3tPktXcb2IC12C73mJ7IavVju1mibQctruEJEkQbc1+t6VqWu7iBm18zuGjZ2h1hGgKXnz6Cz772KNvvsOyBjz9/H+l5wyo11vGR48wvYD1ZsNqvULXJOn1K0hXhNMD3GDANk1xB4IhFfPlhsPJAZvFBkHLNkkZnzyh6kxa3aEJBUmU8A8/3mK/XqChiPd32NM+s0e/RrYtiW+yu31Pcn2NlA5+b8JP797SNWv83beMDkZEcYnTn+J5HtqkZNAb0TcmDAYjuk6jt17xsVA0SuP9m3fsap1KGDTLFYQjLu/uyKOSJI+oWBBnOQ0Ct99ncnLMdNTjIHSRgU1opri2Rn/gU9dbbt7vyPZbKjzKqiJeL/F9j7yWOOGYOM5osgQjq5A3Vxw1LWPLYaTX+Pt7NGEzMBwkDW9++APP3ZS89LhbLXj06S9wZ+eYTYqe7BnZDq4p6NIVItxzNr0gLjVevbvli+uYkXuB48+YTY4YDYbIJiFa3tK7OGG72nDz01uqMsGUNW/fXNEKA1sotCpH7znIkc37umQepyyymn5jk/28YfbsL9jevCbb7Tg5GyC5wVARbV4yDXzCpkHvOlR0z4nSuKj3fOQ9gk2LY1voj6ak0uD97SXS7TE+OCbJK26/+Ymi8/GGhzRFyvL9ay5f/8gcg9PzE8qixhrNyMucZDmn8wPebiJef/ktTbJjNAx59PKcz/7qMz578TEHs6f0h8d0oqOhRo9XlJtTRrMBremySeD1m/+KpjWMh33MZo4VCiotQu/ZvP7qa9L7Nc3qkFngMs+/pooWDK2aX3z+jCIVDE2JVjfEuz27Xc7tPCMtKtJ9jZI2t7uWZa2YrxfE+x2magiDgChKsaxbTCk4PjxAGR9CvKZUGB0MQ49wOuXoaEadpixXe3qeQ3zZcreJ0Y2KbbzD6oVsi4zT8xPuihrXDrhfz0lXt6Sbe+p0j64qxqHDpO8yHI9wgpDBcMBkMqKJlwSDIcPBIasu4sBrSeKUxhnybj5nfv8W+ybj6OAeoytJ8j9yvHmGpGEoSp589oyqilne7rmJ07/9p3L3t34wYjwas7m/YxCGqHjHdZRz+Ol/x+HJCT+/+oEqizG6mtdv3jEbH2CjGEx1TmcueldRlyVKunRyyPvLW/alwBvMSNKU3fyaJKsoZcgP33zF6uYdnaoZDCfMDk85unjEdDLFtBwC18fzRtiui+063NzNqWmZnYzZ7GJ++PE13//2P0Fyw5PHQ54+O6N/dMyb735g7ChMywUcVNexuLzk8PAAZ3xK3enUjWJ+s0A3JKrVGA77dE1DW1QIJRmMhmhS4+jxI8bTAW/+8O/5/mrLP371M/l+y4tf/ys2XchmveZXnz7jFy/PafMb5je/Y7u74vDxx0wOj3CdHlWRcda3ufv5R9aJzuHTl0QV9MMenVZxv/mBqx9+zyhN+fyv/pq29zGlMaPWXX54844v/vANr/74BZNhwOe//jVaXqDFW06ef4QejhBFQrF8y+tvvkZ3XPL9DtlW7Hd7lvsCc3iA5oQsV2uixQ3LKMMJR3hByKPzY3b3c2bTA5o8wdMFtutBmfHo/BDXD7mdRxwdnXJ4PKGh5YevvkZVKbao+e33V4wOppz0LVTXUKExOz7FrbdcXEzxTz7BcAJEuaIjwzn7y3/+6fCK6+//PW/XIa33gtffvaJczTkeDwgmh0yffsSbm9eYRsXZdPjmf/tf/s0vLdNK/tR3tgcPHvxpPKwcfvDgz1zTKut3r1//5n63HSznW6HrujA0xH65EnVbi+X9tdjc/CRuXr8Sm8W1uL9dCFM3hOu5ojeZiMPjZ0LUUiRRKX767kfhGI04PT4RvmWIvlaJMk1EpffF+OBEuNVO6GUm4jgVmygXb95disXdQqBbomg6oUshpJRCdYiubcXBeCCSPBeuZQhbKmEammjbTpiaEpv1QpRtK3758lSku73Q9VbcLXeiyjoxnY3FZDIUQc8TjueIKMqEUo2gQ1R1LcqqFjSlcG1d9MOBCHuhqKtaeNOJCMKe8DxfZFkjjh+dilEYivhuJX789hux2S3E44+eCNv2hWEYwjI0YchO3O5TYUgh1puVyLYr4UY3wvVsURW5EEITHULYni80xxNdk4nl3ZWYHV+I87NzsVntxeuf56LXC4SmWaJ1dNFNffHD+7fCGY7F+2++EFWViwYhkjQRdErYti1MTQrf0sVoMhH98VAMLYQbBGJyOBWalgl4K/yjodDdY5HXPZHkQ7Hc1CItpLCCU+FYuhiHnvA9U4xHgej7mpgczMRo1BNHI0tYTSScaiei1VzcXs1FkaUizQvhuKFo8lzso1jYjicaJUXTNEITiLyuRRztBVITw9mhCAJXJOs3oqreiedPhXDcQFTiUASOI7LVUiAsYXmhsBxHZHkmfv8Pfy90wxST6VjU0UaU8UbcbBKRpBGyq2nyjKrIkW1FXZfobh8vHGOYFlXVEkcFmuWguopkvWE5v2MXR9iHx1j2AJXnbK/esr++o6k6BgfnuJaD6GrCqYs36qFbDrrbZzQZM530OD4c0fNMumyP2TUYpk2x26Gphnifss8aHL9HkZeUeY7WwW69RAD7OEUYNlmW0ylFHCcozWJ9d4tQNaap4fUnGI6NFB2ho+EaHbKtCfo9NpsYwx1QlQVlmmLZNqYuqdMYDYPNNkblBa6u42gmruXT641x3D51VXK3XeLKHM21qKRAWBbhOMDQJUkcIZuMaQCWbBEoyrxms94wX9xRaxYvPnrJk6NjTsaHmEJnu1zTNhWrxR33twtM0ycpSkSVkcVrHFEQ9kxsA+Ltit0+5WpVkDUCzB5151Erh7YosIRA1ywC1+FkMmAY9hk7Ds8ODwiKipu336HyiF+KjgOhEZgaZy8ekW4jvPMZvdmHgthe6FHG92TRmlHoUlWS/WKNqhWG1NAxKKOIrKwwTIkuIEoLDNvj7m5OU5Zge+S7FaoqmI5CepMzLk5fcDI9w5AGrm3iGDqBa9HWJYYmEZ3gbrPlfjVnn8c0mmC3XFGVFZYXsG86Ot1lZmj0TJ00iVjNb+nJkpdPT3DCEZrZQ9aCrhQk+5iffn6P6gzyvCKpW5ZpTG1abOICNwiRloNrWWRpStsotK5j1OvRC/sYStFst7i6ji9NHMthOOhjmTZCNzDdACwXgY5tOgS6iSYkgetwd7vAkBqalFiGRVkUNG0LXYel6+zTnCQvaVqFZ+pUeYLh9RgMh0Sbe5q6pd8LEVKSFSXbOKftdKIk5+ZuTpSk5FlB4Pc5PjzGtBysXkhHRc8xsDRFnpZI2xNN2wjHD4XSTZEkkQg8R2S1EpOzc9EgxWq1En3fEo5sxCi0haUroZKd+ItfvBRPH5+KPI7E9btrUbW6MP0DEaW1uJ/fifHsWFQtIssLIZQS97d3oipKUZb1hzPVNIVh+2IwnIgw6Iur93MReKbQNUOsVvfCHXmirXLRlrmYDUciTUrRqkYYniGCWU9sNvciSfdi1LOFaVjCmE7E8UfPxKAXCtdxRZFEItmsxCg0xfv3d+Ls9FQIgUiSRGRxKlqF2C6Xoq1qEYS+QDeE45hCik44vb6o8kxEt98JTRViv7wXo9FMNJon9pt70fMcMRqMhG1q4uTsXHSWLro2Fk44FHUrRZaXYrNYip4XCE0YQkgppJRit8tEpzqx3yZiE7fCCcbis88/F5p7IezhU2GHY/H+6kr8x//yO/HTl9+K/e1csN2KiSrEoNcTh88+EaYXCNG1os1T0aQbEa3uRRynYjKbiSRJRNMi/F4oFEJso0KstpGIklQ0rRKmbYuDgyORp7lY3t6KQJfCkFKMR2NxfHImjo5PRK8/EOdPnohnz8/FYNATPc8SomyEoXViOO6JH3+8EqqIhSprMZoMxGjoC8cxxXYxFyO3FYZei6yshdB1YeqmEN5YJJ0jurYSTZ6K5TIRX7wqRF5qQjcMkWyWou+7wusPhRuEwvUdYduJsM1s++mzv/q3mqZXf+o724MHD/40HkKTBw/+zLWdsn7//v1v7lfL/uLulmyzockSdCHYbdZcvvmS1buveff6J64vFzQFmLKHJgJe/Ooz9vGKokrZpQvWq9dMgprzk0NOzy9wbQvXdrk4u8Bsc6KbdzSV4vt3c9Y52FLhSjAcH6EZ+KZOVtYMx7MPnQ2qIi8+jOr2XB3D0BmOx0z6HnVboyyHzz99RhlnPDoesY1j8t0KAwdd6BjSpixcqqZA0zX22w2i62jalqyq0B2Hw2GPSRigGRqd1An7Qyzd5X694XK9pu4iLt98we//8E8kRcZgOuTs4tmHR4uo0LWORrMxdJ35foNvSsJ8SVsWVFWD7Qc0bYvSXUzTwugq6iJlvUvIi5L/8B+/IEkb6qrF11wOj46pVMndzSVuo8gXtxiuz267wZCK0LXwHBvTdpAChoMew9BhGhrMzk7Ja0GpJLtcobRzLm90rm4a8rZH2J8QeD7jvovRZdimhmloGFJHkzaoBoo9uqixNcm4b3LQNxjJCFUkpNsNdVuzj1KSrMR0A1QHqhMUZUlR1QjNoMxTEBoHF0+YzsbQCfq9DtfRGPTOoOvoiorLr2+QnUNbK7a7FV9+8Xvi3Z7xbEa6vMF2LG7nc2ohMKWiLSrWd3fQlCghCEYzbMeiqmvyokWaFlIo2jIi2614+/Y9mzjFDg8YDB5h6z0C3cbR+xw8/gQ/GEK5p+titmlE3ipmx2ds9wmPzw84ng0xVU29npOutswODlC6x3oVMxr1iZMMqduYsmO5WCE6qNqOtlVURU6tJJ7j09YVdV1jWS62ZZFsllRZjNbkWNLE88YMAh/HNrBkh+eaUOcYuoHbG5EXDU0Hmm5hSg2za5FCgDB5s9qxihOoagzV0bUSfzCmzFLmqxt0o2N4dETWtmT7JYePLhBSkWxX9H2DJo+JNhv2u4SyVtzPb7id3xPMLnj+6AlnR0cYmkVTCkwUQhWUZYrvmjiOjmNLRFuiiZaiKInWK1aLFfso43bfcB/XGL1jWuHT1oLDw0N8U3B2ckK/5+HKmqmV8/ykz6+enRPGMaOswu5axlQcmUC0ZejYuEdHyMmUXLS0bcV8GXH0yac4rs3qzY/UjUa0g7tXVxj7FW9//AnVKkbDCVHecLNeUxk+1mDC3d0dRZ6y2e/xB0NklSFETd11zCYTVNpgWh7B8EMY0NQtWlVhWyZVUyENAzcc8PrtT6yiiLZV2LpEN3SuLufYloedpbhCsdvu2G+2HPgdz0/GnFxcEAyPyaKCaL2n3BYsbjfkiWK5rinamlW0Z9eCcXSO7/pkRcEuimmylLosMTSNyXDMweOPGI5GGI3i0XRCz/MZeh6+/SGsK9OK7T6F6RFx3jIb9KhzCC0bSzOxbR1X19jvt0wPDlFdh6YLDNvF8XuoIsOzTZIsR5OS+01MllegaQw9nf12hxP0CAMXTYKUGruspm4FQhisdzsaw2Rw/jFxtGc6neKaNkabc3I0oh+4tAqE7pBut3QoXN+nbBpUvCcIeyyTDEM3ODiYMPR1Zn2bjz9+yaNHj+h7FqGtY1sNd1evWNy8oe/bPHn6lN7wmOubBVXT4IQjon1MkaVsVhsoCqLdDs8P2e12pGmKLsAyDLquRdd0Asui1xsQDnpMxwNcw6CtWm7mW7BM3rx6jWhrDFOn0HRWZUkapWhtgy3lhy4iXcO3LERd8fHTU0zDpmsqujxhcnCEZTlkuy1FXmKbOlJKpG7QH43pVIvj9wgGE25vr4nWSwzdwvc8EBo3qz2X799i2hafffKCsBfSNQ2rbUSeNgwmIV4QYFk2VdnhmTamaWBaBsl+RxSnFGWL6ziUWUU/HDM6+ITAG2GaNpdXc3abPVZRUVxfYUuDQ9fg7GjG7OUvMXpjdKHRJhu2i1tcy6AtI0JD0qiOZLOmzAvmiw1xY7DPWwwvpIy2DMKQYTggHE5J1mt8LyBwPCzZ4dgebZFjodEPQ3zLpG00BuMxg8mIwNM4PT/CszSGts7It5gGITdvr5B1xjg0CV0dw5Jo4RRvdITWNmDp1GaAbts4dknXpGwjifQPiLOSP/7d/42vcp4/e8RwOqNsOoKepG1vqLt8+8uP/vt/qz+EJg8e/Nl6CE0ePPgzVze19e/+8e9/s17d99999zUqLwgHI1zbJCsidrt77hZz7hc7ykqiWsjTmKfPP+fFX3xKGJjM3/3M7nZJE0W8fHnOwfEhaZShkAx7PbS24fb9JVlScH234uDRC2ahy6Fn0NUluhBMD4/Z7fZYuoau65i2S1E1dG2DLmGflxR1Q9N2mLZD27ScPH7OwSSEsmI4HhNvIrbbNe9u5yAMPB9sq8X3XbbbDUWraOqGssppAT0c8/h4xtvX7zk6OqLRLdpSUhQl292af/ztb/nt3/1ffPf113RtS3/QQ7dMjk4uGI/67NI5RX5LJmxeXb1hlcyJ95ccSQPTdjAsm6puaRG442MsQ2e/X/Pjz2/Q+2d8/+1rbq5XdG2HlnYcMGBwfIC0O3wpefb4JV2ZYGgdjmixqGk7qJTA9ELGPZ9B6DAaBkyOT8AZUgmHr3645stvt6x2GoYRYFkeq5trvvrjH/jxi98SX3/N9bt3FJoDdc1+ect2ccv2+pq333zPzdt7zGCMZdk4tsnk6JDj4wkn0xCtymjLglZ1KN0ly1JUU1IUJVULumHQti3Rbo2UBuFgiOO4KNHn4nBCFqW4dojrhGxvtrz6D9/z8x9f8e3Xr1htd5hmx+T4kGnfochjlklFWuW0VUW8z9CVJMsL/P6QVnUgJEq36R+c/HOPTMH8+pKbmytevbohSWtwApwgwFY1fr/P9PQRtulRLubsL3/g9eXPNIbG2dMTZsenDPseR5MBdZbj2Ta2bpLHKaY3wOjP0JRCVQ16C8l2x93dPfNtjNRN6law2SfohoNtuaimxpCCTnXYdoBpSJoio+wEo9kQvdjRxhtUEtPkW9q6wXM9VJ5TxjtUWVLWCk0aSBRCChwvQCsrXNPDsPrQKm73EXESY9cldZWhaR1K5YggpKwqDNvk6u6KRx8/JU321EVKut/x7tUPbBdLDLeP4w/YbTe0lsfLF59wfnJGvz/CNGykBlWb07QFKo+Jdmvu7+/Zru65v7tkcXvHYr7kbhGx2RVkNcyjBi2Y4Xh9JuNDxgOHo8Mhs3GALjImboWR3jFuV4RFRL3eM5tOcExJ37Y41EtmRsPpzCWc9jFPzglefkIrTbzpiCRaooUTlDAZDHqIpqFMC775w1dEb79kv5yTKonQXXq+Rx5tibIEIRS+71CVFUULmgDPdRlYMAptks0avRX0+n3KOsbSTALHQTYfwjDT1MjzjFVR8/7dT9i+Sd93MDRJUbScHJ9wOBjQpimb9YrddsvR0GUYmIzHE0bjGdscbhcZ5W6Lamtub3d899OcZbzF8nTWncHJs0/wNYM23bHfrGjqiqaqcCTMhiP6/RG+aeB1LYEfosqcbBfRljU3d3dsFiuGwwP86QG+5fD07ITJaEAY+lAUnJ+fYhuKvm+hoyiKD2u3Ldeh1QwMP0BUBY4uORr4oBRtXWFrgvNZnyiK2SYlF48fk6YpoimRxoe+q0ZBVAqyWjG9eEyudHaL9wSGzvHpI67f/IzWZfSHPoZtkyuNIk7QVYepachOoXXqw5plAaPjY54+OWc66uM4Lrbr4noBtpA0acKPP3zPP/zn/8TI7fgXv3rJYHLKap3z7t0NtA1V1bDbbvCCEVVeo/IYVVeg6WRlQ12VZPEWQxNomo6uaeRJwezokMOjI8o0pm4KdukGM7BolGJ+ecX6/YpJr4fsGnRbx5z06I/6aEmE0dT4mk7fEhzPhswOjzF1DV1A13aYpk3ghpRpyeXb92z3EaIDzTDQpcRxPMLxlOU24fJmjmU7OEGPaLOizHPC/ozx0Qkff/SMkg7TkIxDiyzZ4YRDvJFHPxxgmAa+F5Dtdmw3axzboMwzrm7uybKCssixbJPhwKfVTMKwR5PmdJgcHp1QbueIouDw6WfMRiNOnr5g+vEvoWmpkh1NuiParoj3e9oiY7/bsVwsifcRi23B62UG0qTrINpsoFX4joNhmP+89SrF8wJ0zyeYnTCYHpDkJdFuTXt/j0hjfKmwDBOp69jhEM0I8ccHjGZDptMQvUzJlvfc390zDH3iuqFW4IU+Sip0IwZzTdLcYwc+orgk2+356arm7au3xDdvOAokJ6fHBIMJuoQqS8Dro/cnSCPYfn7xi4fQ5MGDP2MPocmDB3/mmra1/u6rP/ymyvJ+FmVYukNge+hSIJsM2eVkSfah6HQ4Q3aS/mTA8cunTKdjjg9mmIZBsWn4m3/xCbZZ8sff/Q7T0DF1C9W0aK3CdVxEntPXBQOtJTDkh8uSoZGXNYbUaOuaJInQREeWpjiOi2U76Lr+YdOD1GmB0dERodbx/NkjdssFyW7NeDxk4vWZ9C3idM3V/ZzN/QKtSfF1xeHZDC90qauYrgPTcajqloPJmHSfEvouJQJlmlgWZElMtN2wXa6RquL07IThaMaTFx8xPTzGdWw0Q3Bz9yU1imWS47sOZXzHqNEwdYmqSoRuYYYzNCeAfE+RxGySHGn26ErFehvz/s0VQhocPjojuDggSyL+5a8+RdY16faK7fKOxWrFNisQho1mWMzGIxyjIwg9guEEvAlvbiP+6Y/fcb3Ygm5hmQbb1RLbMhB1Qry6wRcJdQuz6QVK2qgy4/LtJe8vr/n7v/st374u+egXv+Ti/ADHkjh+H0PXEbVCKUkQ9CjWc3Rqtts9cVFR1RWq6xCagZIGSjOga9EEHJyc8eh4hu/6gI5oE6QQDMfHhOMpi3jFN2++4uDFE/76f/obXMfA8T36gc/m9ppUfSjYhA7LtiiKBs/3yYqEVmiEB2eMjk7QHY+6qbm7fMeP3//I65stu02GIQ1kXWHJlCdPjhgfnZLVCdu7V2zff0fZZRh9D9PvcXR6yMFkjKgLpoHFZhWjOSHj4RCpFMrqE/RG6HWGSCKuf3zD1btrdDsgqTXuo5y07PCmJ2iay3A4RrQNdZbSKsnJ6WPoWkRTUTUN47Nzzo99RtMhR2fP8YdjHNlhSajLHKRBul1C14Fms7q/x/NCTF3D1E1UBZP+AQPTZWjZpFnOLtnjqoq2ragljM/OqKoc52AGRsf4YMB2fcv8/SVvfnjF4ufX+F3H7OwZu31CXjdMTy84v3iCHwQYmgGqIc9TdlnC4v1rljdzduuMJE64vr7l5uqWq5sV66ggrzuUplMoSWsNMd0Rh7NDzo+GaKZOV0YMnIZkc8Oh23F3e8/yao5V1xxPQkSeE/Z8Hj07xm4Ten2L2SePaBGnvwAAIABJREFU6P3FX1JZAVVVM/jkE/QgIIt32JMJ9/MlQehiWhZdnhLd3TNpY97sM2gF3uwMzTBoqpyr67eUqkMzdKxwQGPY3F6+x+/18Cydi6M+58czVFsStRmPn3/EwPWRUsd2A9qqpC5yDNemayt+vLqiqir2+4jJsM/L5y8whM8PP16xWy/pmorQ82izCFvAi4sLurLkzZufMZucqkiJ05Qvvn3LT7e3+AMfbzzFGc1wzJC2rKk12GcZZZ4hO8U49AlsB4ngcDii77uIImd/N2cXpayjmCrPmHohz59/jtvzkaqi79uE4zG9wZDxJKSKN2htQeDZ9HoBrqGRpTlCdMxmY/K8QCtztE7h6ILTkc/INzmZhKimZr9Pef70guGgx9X7S5Qw8ML+P0/ZFczXEVktKaMt1e6eKl5jti2O9Bn2Alwzpx+AP/B5fbUk3a6xDJ3+aICm6+z3O4LAY3JyzC8++5i+b5FFa9b3C5pG4dkuzWJNU+Z89+oV3//wMyrboqmM3apgse94e3X34ezwQwwjoGgsJIIyz6jLnLIoGU8OSNIMVZVE0Q5NF1iOi2t7tAUcnx4jadgu11y/e8fN9Xt83yTLY9arW6LVGs/oUGnG6uefCdqMmW/y/HjI2cjh/GiIY7kIadJWFXmS0VYto9EE23BQZYMhJa9ev6ao6g/F567D+OCEqjN4czVnu1mSpQmqbek6yKIIW9d48vQx6zji6t070vkNF1rHq7evef3+Nf7IYzTq06mWvuvS1Q1XVytWm4R0v+Xm8pq75QYcl3E4JPR9dKHwLEmR5aDb5JhsfvoJz3N5+stfMQgDBs9fUhkWb779Et/SIZlze3VFnuegGSyXG1b39yy2OaukxjRtfM/j7Mkziv2euvgwtWRqBrYU6B0fNpo1LTLwMP0AyzDZ7jb0rQ4zyxjZoLKc9eoezR8T9sdIw8X0Q/zAp9cLOAxtAk3RVhXDyYS7qyuqbINt5xROwkakhH4PPcmIbxbc39e8/eGS+6tbRLJF1RVdJ9B1HZoKzXJJpY00gLbZ/uLJ5w+hyYMHf8YeQpMHD/7MtUpZX9/c/CbPqr5odGxMHp0+wjV1UA1JvCeOI1zLxdRdLE1y+vSCXm/IxeQMVVfcLq8Q1Y6+3/Dv/o//k8Uiwxpd4FswtTU8y8Z1A9pojacpimSPkBLNMGjLHKFb6PLDn90k2tMUBVGSUTUNXQe2G2CZFrZloxk6L86P6dsmp4czbi7fYpstQ9/nfHqAowmOD4YMA4v5fEmR1iyjmvRuAVnM/TqiqlrSOKbMUzwhODk6wrNslos7buYLNF2DTqGqjjqvKLOSqoFgcIZ7cMTZ2SGBa5GXBZpssIwAzz9Dlz5je4DfpJgSqipHs0NM70NgYld7Tk4vCHtTlNLoGsFXX3yNozsEYY/J2Yw/fv8lu2jDxx89593rn/j7f/w9ry4vSfOCToDjOIzHE8LBgCzeM5nNaMyAb7/6hqosSfMGz9RY3V1DW/GrJ1N+8fyMnudxOgn57KMzBp7NJ5//kpHvEvo+WWXw1feXfPXtHS9+/Vc8ObM4OZpg6hIdRbVe0CQ7NKFBXdEfDnC9gP16ye1qR9MJmk6QVooaQSc1dF2DpsSyLV7++tfYssW0JJZRkqY3+KMjBtMz7InP29UN0h/w63/5SyazAxaLBSKPULrBNo5Z3d9gyA+PBSkFaFC1ikLYPP3sVxiOTTAac3V9y/vvvv3wrbg9ulxxMhzy8fMnnJ8dcHJ8iO85yCLBSm94//M7phcXBNMDTEtnOOgzDDwCWyd0LCx/iGb6eL6PF/ax3T6BISnnt5TLe6okQ0oIwgFuMMRyAuzBlGB6iu4OUUUORYzRKMaTE1zXxdYVTdvSNiVUGY+Oezx9corf73F8MCZwbdpsjzQd1tGHlbOaEER5Q5JkuK6HgcBzHGQLhu5guiGj/oS+ZrJLU6I0oqlLGkPHcGyaKsUY9flv7N3ZkiVZdt73//Z5Hs4cY0ZkZmVVdaG6G4BAgIJ0QcqM4oVu9RB4IzyEzGgm0nQho5EmEmY0gGw0uruqMqtyiMwYzzlxRj8+u293XWS/Ay4qfg/gd+7me+31rSUMCF2QxZ462xM5FmmaEs2OUW2XpuvoTZfzyxfopkUvNGzX47DN2C4W7OdzuqJDYrF53PDwcM96s+X+fsV2X7LPW7a5JKvBDkcEQczANxm6grIsSB8/8cWRybu371GqnEE85GQQf+6kMR2iMOD4ZIqsKzzfZPjyOf7FBepwinP5CnM2g16S7hOMQYQZhOiOh2jWFKt7tHBAurzj6GjGrnYpi4Z53aJZNqZtoZsqomu4urujFwLZ1simBlX5PM/DtRl5Ohdnx3z5i6+IY5e72xuGuoYtBGWaQadQ5imuq7N4uOHjaoWmQuhafPPqFbLQ+Md/vGaRSvKqZOhCWUjKZMuvnp9iyJrVzSfSZE9eNVStxoebhLvbLWkpGY2n2J6HbphYmkG2S0iUgKLKSRc3DB2byHYQfc8k9NGqgmT5yPWHD6w3G47CIc8vv+LV+TkD02A8Pefk4pzyMCcKPaZHJ9Sah6fDKHZxXQPD1DE8B38yJXR0PF1B6Tq0pkYRAsu2SLdrIt/ldBzi2Rq+bXF6dsR4FJJuNyiqwiDyaXuV9SGlyAvmjztcJyI2LYoswzYsRF3SVQ2u7+KHFg9Xn1DMENM0OWQFbVviWiZlUVNUNYNRxLNnZ3iWwm5xy/X716wfF9iuj972WKoKdNzfLUiynA/3KestuNMLStWiylNMVWDYPmWt0HQCTVdpygKl79A0Dcu2iKIRND1929JUBU1VcPL8Ga5movYqhmOynj9ye3WF0mUkj/cUVYkmBEW257DbcTQZUex35KtHjuwWtWnwDBVLE+S7HelmS1vVSClp84podIqlagRBgCb+WDhoWkbjCSfPXqL5Q9Kioawb7u/v2G9WVFnKfL74vCWuqRB9xzY58Ob77znrS/70fEZvhLzfzBlMXEzboqkKhoFL4PvITmVwfIGqmhy2W4osJ4xMvn5+xvt3H/ECD0vpuPrhDToKI13FVQSiKXFdA3v2DHSXdz/9iKVAJ2vK5Tt2my15LXh/u2a1K1g9bjBVFd+2ORlEaKqOFQw4nY4YeR7TMELru88RKM9DUVQ0y6K2NOxBRJumXF99xFEEcdszUAWnF0fsVwXbFBw7xBA6pqbRNzVO6GO4DrZjoxkGhq7R9fD6uze4Rk7k1mBkFIcDh6tbkmXCb3/3ETpBstlwfftA3Qni0YT9co4dD/FPLulVwYe3rym299v/9S/+9d9qmv5UNHny5GfqaXvOkyc/c33Xs98s2CYbkn3CxfiS4+mEQ7WnbDYUdYVl+YwGJ1SJpAkrHF/n5GxGqzaYlkkcjqnkgbdXP/H+5pGLsym2UnDqT5iOhrRVRVOkCM1md5jT1B3bPOXu7o7eifGHNt0hpzvsOB9GzGWLdAySWpKkCXXz+fYtCmz0wZAoighVld0qYfXwyK9exYxjD88QWIMRRzqMnQ2RUPjpIWWXl1SeR7de49oGBANaRSAOB3brFS9nM1opSbIWzXF49/4tX/7iF5yenzIJzvnp9QfMY5Nf/Zv/Hdus2aUJs9DGMWzU/pjb1T1aGLNZ3qLs9wzdnqZp0DQDKxig9xXN/DW149PKC6LhKdIoyZIKSzWRpsAyNW6u3vHf/v7vOBt7/NbM+N0PP/D64xVdB0JVcDWVyFQIfRuDjsB3SdIaq0sYejbz5YJvXrzk1ZevuLu+Ig59fvn1S0aRxWJd8eqv/w31YUM5/0C3XxOfvWC7fGB+98DV1R2mM+DrF6d4VvY5FqUZtFWBrmlIxUBzHRTVQRglihXzVVaRGSver0oOh5qqPVA3OY0E3bRQLQ23Slj99HtefnHCfrVkVS3xrYRPd28IBxf4vsG/+OYbPv2hQql0LE/QNDUP2wXPzk6h+Uiy26IoEZaj00uJ7FX2h4I+cKnKjDbvyMoGVZhE4QRNURkdWZhigFIeMMJjOqDJcpp+gV63vP7xhrTRwPGIBzE0DnEUIOho0wTdsziZhAgrRLN9VAlyN6faHqg3KxzDZDIeodkhjdBxdR/dM1gWEt1QkYpCr8Rs2wotPEJRBVW+xLR0zNNzlLuGJjtwuLmnPgoxVEFaJaAa0LYolsXs2QVzBIckZXXzDqk4mLqOrCt6w0L3AtJ1g2p7eIOAPq24KHL+6cMPpFnC8WiIZuiURc7y+iMXX53iGuAOAxxLRzYtVd2iuS66ZVCUHUEQYxoOdD2rbcZ2raA3BbpQ8EybJGt5uLvGCEK8IuLHt2/Z7Atkr9Ai0AwV13HRFB3PMSizBGlr9G3NV8cugWtxFDpYAgIh+eLLV5w8u2R+t6CfzXC/uMDMCx7fv0e1dcLTGd4kQvUCdGeIeXGJtlhR79eYk2P0aIhSrjlkG0RbIkSFPTvmV//2DG1kM1od6MyQzeqedL+ib2t8QyctSlAVbh4WePEATddJi46md7B0BeqGs+dfcqEaZMsVqlxi2iGKO0SzPcrDGlFu2SyWuJGPpdqURcvrqz0fNwfOLofcvX5LI1S6NOHV2ZTId8jSlOV6x2afsNyllMLnbqeQC4MoPEZIE6XXsHSDOB5i6j7Fp2u8MsMZT5j5Dm1d0hQlu/kdSddR5hW2onMaT3g2OcUybAaTCBmYKH2CZ6n8+td/hu3adAJUtcEOHLqyxlQDkC7rQ0HT1vS6wOg0ssMOw7RQpEmlOOiqziEt8DWLo9jBDzx008ALA0LfAwGaZbFtdG7uV9RNQxy43G8TJqNLXlgjFqt7umKLojY0skMSoWoN6apBH+mUaUJg2Sio1L1Cp5lougY97FdL5nc33D88sF9viYcz8qpD0R1W7++4/nHOel3w7OIlv/yTbzGsiMVuRyX7z8XWWqGpGnRdI81LdNNGDQfI7Ya+qYkcj/G3X1OmJ2R5jhd4TFyP2DcoNzesZUZTFXRFieco/PjmDY91zzd/9Vfs9nuS9ZrA6Bn7AYUqeH+9py0FatPSJWvGQx8qMJwBTVqgChULhSbL8cIBr7589XnQ849XtJrLcrlhZgaoho8bRATxhLRrWScbkvWaskhxbZtWMbFMn//5fMqfT2OqvOLV9JzvFxGybUmzhL6taeOI4WDMF68uWGwqosuvKDY7VOCL52NWmyW77YLlxufFyEW0PYtNhpE9oG6XmKaL6g/YpDWWIQh7yTrZkXYN2UHlx4cUy7RppEBRNZxoSKhDbBvEwwnoHpIO3XLwRzaOZdEVB7I0pRUKBhrLqmCxnmNfnqAVGZqukJclP6V7Xiop/fKSo69ecbuVJLsN8Sik2ByoHufoeotpa9hOyPTMImsaFNPj6uqGqx9WuLqKnujc3N4ycEO++yj5eJ0QxjHTyYQoeEFnuITjY2zHYXB2Tq8bWIrgYnCKUq4R/T/339qTJ0/+OT11mjx58jNXN7X5f/3H//tvulZEyWaH2qu4jknoahRtw83NJ/qux/WG2FaMZZgIVaGTDbZlYmsKq/2S8rBGly2hIXj1bMa3L854eXxEW9c02Y5ytaTUA1Zpy6fbOVnbkys2RSW5evsOmhqlrT/fxrUNSv95XoVn20wDj0CDrswxZMn5JMJVDG6ulmii4tnxkIvTY1zLQ2kb1F5gqALPc5nEA2KtpUkPpGVB1VQcDju6qsRQYBwFKIrKXmpYjksvWzbJnuj4hG///C8ZTc+xohHeWchf/MXXnBxN0PsDtpC0mkcjJcvVO67XD3y8ec16dc3X01PUrkMxHSzHpykOLK7e8P79W7778SOrysDSHT79+BNtWgMaj+sFh/RAlSeoRcp//i9/x+sPtwAEro0mwDINhKISBiFttuXyZMzRKOLlxTGTwOYoMjmbDHh2ccEvvnzBVxfHDH2dOPIJAwdDUYnjENdQEeWeRvVZfLqmTra0jcHx4Jxf/8kps4mLqQY02zmG46DaHqppUq02HOaPbB83FEVDL1Qm0ymG7XIoKpIkoSpL+r7HD0M8x2IWGHiiYTgYEQyG1I2k1yzyWnJ0fEqyvsPudPpdxWaTUKklitKxerjDpGWb7MiylCwt0HSVuqrpOsnD/I6H+ZwwtEi3Sx4fN4T+CZExpJEVZSlpDjmhpjKJA4Z+D9kWVZZ0qsHt7SOz00vioYfnGgSOjmkYuKZBn2yI4iGG7eINJtiWg6hSmu0jMsuh7RBdT9t0uNEUxQyoqoJwMMMNB2TbOZFn02IymJ5i6TpK+oiqCgbjCV1TEtg6ZZahNi1jsyNwBcPJmCCMMC2Dri7opES0FfPra+h6wvEU1/XZPz5iqRp+OEDvVBzTRbMdlCzFrCpuDxuuDhsKIHZddocdauRx9vIlig69LCnLnE52dKqBF0VUTcs6a/DjEaZhckgSirTm1A84mgxoi5yHDwsWj3t608TyTX7zj7/ldrlG73vQTNoOdMPEdxzaukJRNUwkw8DgbOii1gUD12M2HlBXDZPQxVAFgyjg5PICbzikEzWKUjG6fIUwIh7f3SG6HapaIXQNYRhonocWBOiug5AF9XaO0klURaGsWno7pFM6ooGPM5yR1w2iTembgs0hoWlrVmnOYHZKtl9TFBmqbmK7AVma8c3LE0zTQLMiQjckjAdUZYWoVfJthT6MkcWeh0/vWdRQlDUvT0dk+4Kst5nPH/n//sO/w272nI19HNPmdBRSH9Ys767ZH3I+3sxZ7UtWaUfVq+yrmhdf/wK6HlSFcBBgWy51muMKSd2UhLZJl2+5u7tlvXmkb2q2ScrI8Yh1HU3ROZkcEZxe4E4iprMhos2xDQ1/fIRtaYzGHo6ho6sCxzZQ+hZZ5liix0Ci9pKuznn39h2e87k4a4oOTVHo6ppDlhGZKo6h4nsuth9hRyNUGrLdFkXVSBpBVsNiucT3XegF2yQlHk3xwima4XEocuyRz+hoRBBaCKXjcTFHljVu4FG1DaHv4DsWqtJ/jqkJhf0+ZTid4fsxZlGidQr3bxY8VhV5qHPy9SuOLl8hUTBcmyTZUWYNhu7RdgLNMKjynLrI0IUgjAa4ro+haTi2w2x2xIsXX/DVF1/w/PgYRyiUuy2bxZq+F9BV7JcLtqs1RVHgBEOGR6cslyts0SIlBH6E6CQyPzDxLcrNBlPpmC8TFosM0x9w8sW3eJaL3CWIrkd3XJx4iGsaFFWFZljUbUOv6gSDER0CKXssxyFLM9I0oWpbDG9ILnuGtsr13T3/5bvvOFR7xGhA2SaUTUHbgadrDKKY0WjIeBRh2xqurWD7Ft7pF2Sbz5HDUeRxfvmSSrNo+pry7h1SM+knxywOBbYdUO92FNk9d7s1tx/v8G2bZHHLx5sHUE0mkwmj6PNWp2j2DM10sHQdoVl44Yw4HhKYBqJtsHSdTjNoUNhmGUVdYp/FzN99pHqcExowNDXi4QDj6JzGj1F0k8WnW3S1xgssFjdz9h8/0exWKEh0y0APRjRljecHVGVB3wpCU2V/2PKf/u6BQ97j+gFp2WAaKn4QcPbqG8Ynz3CCEMsy2ex3hJFL2Td4qr795S///G9V7Sme8+TJz9VT0eTJk5+5pq3Nf/ef/sPfrHfbyLZ1bLVmNnHp8wOa6Li5u8XQHGh1qkai2waHfM9m+UjXCdq64+H6I6FScX50gu+4zE4umTo2rq7SVBV1XrFdPrB8uKcXGr1uEngOlqbiqD2X0xhdtuwXD4S6Rt12jGYnzGYzZpHDWewi8xS1qXk2DLkYxSyWC7qq4PKLF4yOIoy2JnA96DWaokY3TDRNJfQtAt9hOhkwDD08+/NNvqEpdLKlbCV5+3m4ahgFCMVACEFlWLz88iWDkYPqaczvFxRdiqJVjFydIt2jaA6lbCnyJfebLbv9AU3mfBGPUYWg7iDPC8pa8v7DFb///i1lA8enL8nTku/+/re4ux43M8jNDmFqJPsNSZKQlDWdUIhdC9oGxw+QVcHzs2PiwMVRW765nHL27JST2YTY0bg4GnH54gUn55cYsiQ2JI5n4/gx0fiUMB5hyhxD/RzraMqSYeyhtDmmrnJyfMbFixjPdqBVaOcrdENH7QvUvke3XESvsFuuOewzBCpdK7Go8C0dz9LQFIjiIVHg49Hw8njIJHJReonhhpiWyeN2T1k1DCY+28UV++WScGJSiQ2dbBhOplS1pM/WaLpJXZfUVU1RVNSVJEtTNqsV99f3zG8/ka4fmV58hdA9pARdh/u7G8rdPTNfxVIq7h7ueFjO+fqbL7i+31K3JUfHIyy1JY5cHMdGRSE0VZqqwR+f40VTLNNG1BnULWWS0uQNim4jOwMpoZHgT04QhkPfqyiqQacKLMdB6Xu0VhLZHuVhjzeZ4doaSlNAJzEVFdoO8gMnAxPP0jBUUFQDYQfookOWn6Nepu3iuj7ruzsURcO0HEzDptodMBUVVzOwpEQkO7K25vfbBePQI7I01lnC9GRKEE+AHGTJ4/yRVnMYHz8jzXIetwfKTuCFMa7v47ou42FEFLo0yZaH12/4H797hzM5wh0G3H56z+N6Tdf3aIbDISsRQiUMfGLXRFfAMzWGtkag9bhKT9u02J3Ed1yG42OE65PsNpRljW5pTF68YJdV3H68Jx4NCc5PsE6f44xP0bwRRSHouh7FjlDs4HOBodrTFwl1dqAoWxzPoOhULD/m4eYD8WSAG32OyPUodEKllB1S07Fsi2S/4ZCmaKbD+OJL0s0Do9hlPB7i+SFt2aKpJm3ZkT08cvjwCRWBHbskyYZ3izWBZ/P8ZEZbFPzuH/47H//wD8R6y5++OqMsSkDlfOxz2G64v19wfbvkbl+yTHs2aUngh2i6hWKbxNNjnCjCME3arKBI1lR1jqRDqQ8sF3eofcf9ZouvqUy9gJEfMIgHzPyAMHQ5+uZrBq++wnQclKbCtwRKlSGriipvsCwVtS7o6gLDdGirgmQ5x7EUdFVD1y1E16F2DW2WUO23WJaJquq0sqeXEs93UDtJk6WoVQ5NjarpaLqG0A3eXt2SFQWhZ5O1BqCQFxlDN6BTbOzQxzsKGZ6OacoDwlCoyoJB7PHs2QmWbWNrgr4pQVHZ7w9YXkg8HDGYnbNOCpaPcypatq7BdV3iHB1x8fUv0YRJVpTcb3Y8LDZ0tSR0fPpWgGbieB6W4aDrJrqmMTs65fj8nMFgzDCOCSyLYRiiyB5dqByNYlxDkBz2NE3DfrvD0nQiL6TIKp49f46h6eiy45AWHJ+eglC5nSesljtsL6aSJlWjo3lDxpdfMzm7xHQ8qErqxyWd7aKZOqZl0DYt2yRD1Q2EotB0PXXbURYZtA1+GKAZDp1qUrY9jWZyPJ1gqh3/+OEdchhw8vIVj4uPFFlCV5UEukIcDPH8iDAIiAOP2WzI+ckYV5GYps1kOiH0dKAnDCNkfsCOHZjELOqWZJ3RrPek8ytUJ+eHn96yW6yJPQ+yhM3ugKrqxIMR49EM0/Zpa8lkMGIQTbj4+s84PT3H6mpEr2BoGm0r6e2Ah/WaKj1gKSqG4qAWC6yqQZc9l+Mpk2dfcrVco7kulufw6Z++YzhQUGyP+PScMm0RXUFx2OAEIcboiKqq0DQVzbC4v12Q9jUfH1Le3+TommA4mnH9sGZ/yDk6+nzBo+oGrutQH1Ycij3bZkdnFMgu3f7FL//6aabJkyc/Y09FkydPfuZaKc3/+t1v/ma3S6K+KbEpOZvNqKqK9x9+4PbTNY4RI2UPfcNu88jYsknTkpaK7eHA/P4TsaWh9hrff/eGQFU4msboQlDuD9xvUxb3K366eWC92dCVGZvVI0q+JdA6IlNFbpecjQfMjqaMx0Om0wkvj8cYbYUhO9ok5SjwOD+dItWexXzBbOISag6WFLRlgmcqmJaDatgUWYYXBJRZguglxeFA3TQYiiA0NLS+JytKlkn+x7y7ZL5YEgQebhDiWjaD4QDZt2TFnrRJuP/Nf6RpK/KywdA0TN0C3SGvevJW4f7hCqMt+XI4gR7WNx/x/IAsa2iLjGnsYygaRS1I047dfImfSc6+/ZY3y4/cPVyzmM/Ji5JeEXiuwXns03afNzrYsuTZUczJ2RmRbzEKTCYDH9dxkEWOKTpoJaJr8Y0e27YwnBDD9tCRKOUe84+rip3xKb6poSPRugqNhqPLMyYjH8ey0RQdte8QsoSqoj+sEW2L5npousXNx1ve3SxRhIpjmXQoiKbkWWTy6mzCr18c8+XFCS8vjrFFh23bSN3l7u4OxzFJs5xK5Ljqhu9/+zsO1Yrp2QRN86hqgWEbrK7fougmTVOjKhpF07Ldp+x3B7Isoypbsl1G0/Vcfvstw3iArrQ0TYmhKgyigKZp+Lh45CGt+PO//CWT0QnImnKfEoYO+eGAF/i40xe4hkEUhli2S6c4hPEIJVvTZXvq/R5FC2h7g86I6b1jNC/847BfB9XwcbwAU4WyaoiOL9EBuZlDI9E0HcfS0AUUWcZw4OMNhxiKhiwqLEUy9BVcy0CzXXRNp8gO0HcgVNqyYfXwQC8liqrhhTGKUGiyAll8Xk9sKhpkKWvg3eKamaWyLxK8ScTl6QzPC2jajK6XdEKlMxxURSHNDtzdLynRGU5nxPGIYRyjaNDkazYff+D/+X//K6sKLl69RAG2N3ekh5ReKFR1Td9KAs9l7DuURUFXVwxtFcc0aYucwHXwPZ+u7WjSlLzrcIOYjQTd0hC2jj04pZE9nqNClaK0B2QPlhexm5dopoc9HCI0k/ViQ5vuEFJSFz3CsFCdmF4oZJ2B7ga8/s1v0agoixIrGGDFU/RwhD2aslk+UDcVVSNJi5J4dopaZ7iWhWsYHI0iTNtDNgrXP875+HbDw48/sFveYdPQiZK6q7hJ9oRByNA18TUVt044iSxm0ylpWTOfL/nF83NcVfD+6pr3N4/8/tMjN+sCN4xJ84a+0wj9EN/zsaKQXHbopg19h6qpdJpVj2npAAAgAElEQVRBlSUoVYIqBIc8Q5YVJ57PLIg4PjolHA6ZjQI838JzdNzpmKNnJxhAV5SIOsMULboGbbKjyzYU6w1CtdDUDq1rqZI9fa/QdR22rqD1HaoQFPstdV7Q95K8aihb0PsOnYq+qdFV6PoOVdNAETSy55BmDFyTTQ6Z1JG9IPA8pGwpypa+Vzh/fsnhsGYYmlR1idK1XD47ZzQaoImersrp2pq6yNisNwghsEwTxwu4v16xvlvy7u6KpC05fvmK42fPsVWbwyanLBqSNKenI3It2rLCMBxc10NXBKZh4vsBnh/iBT6GEBgKaG2FaxjYpoFsGnRNwfM9eqFgmjqWHRJFE6bjCZ5j4zgeumFxND1is9nRVgWj0YDZwMcydLq2ZZc1GKbP8y+/5vLrX3Hy8itsz0MRAs12UUybHkFTVci6wXYcNrsdSdGimX/cGGM71FVJXea0jQTVpZUaUrcoHclf/8tX/MnlJeOJw7f/6itms2N2hy3DyCEyNVx0ZsdfMBgeo5sugh6aArUtsLscLdvweHPP4vojXbKkFTZlb7NNCwrb5MM2Y3P3SJdnlGVGL3TqvGW3fKRrO6q65WQYcTaOUYTA8YeMJiecn5wQaybTi28IPB+rr7H8GMsNkGlCUTUwnLB+uEWpCkZBSLre0KUFI8dm5PqMx6coqkHb9uiuw/XtNQEVo1HIcr3BHYwwHJPV7YquKPBOzlEsC11R2S825LJH9Vy2ScZkoFOXLbUwqYRDhwBFJxgfM3v2At+2KJMND5+u0Cn5+OktRb0iOay3/9tf/R9/q+vGU9HkyZOfqaeZJk+e/Mz1QK9o9HXBfv2AGwVc37xjv93w+of3dCJgtdvRdT2DwYiiLHn98IBidXy63TI8PqE9rAmDE5Is4eJ4wMgWmKqgTg+YuoonehLbwVS2pEWOi2Tx4Yo/eXHE5u4RY+DjOz7Hz5+TrtecPH/BZrNl97gk2+6RRcWpbzM6GuNNBzwu5vyLF8dMLs9w3RitEQgK1K6gTne48Yxsr9CrFl3z+ZDZ1iXl7sAqrSirirqusTUNU9fZHDKGgxFCN0jSHC0pubwYUOU1mqoziUNiW+V2d8Xix++I2prCDWn9nLLTkOoIRXzebmENQlTToUz2+KrEVWrqriUeTnhcdjiRwmA64HrVUIge+fII/+spZzcD1p/ukHVLEMY0bU7sgWXpnAcxQjZkSQO9IPQsRsMR6XqFaBvk/hGtlTStShD5+GqH0UlUxUPRXTRFQyse0XQdRQkx/ClNuqMvD3BIMNqeo+kJfhxR3i6xjiI0zaaRNb3sERh0Uqc9bOlUDd8zOL88JZWCxa7kkLQogyEnz0dY1QpDtIQe6J5PXhSYhgZtQ9f1bBY72i4inJzz+ocPmL9Q2K+X/NPbJed/+b/wxdmfcHd1w+6QUQoLR1FQegVbN5lGGlIKDFVF1w1UUixLJRg46NmOcnVPmfSUWY2laiweV7z58Q2n55dMzwIuLy+RdYtlqDy7OKdXQfYdRVnx3FZ5nBdYVU0YO1iaQpcsqYs9Xfv5mU02RyouadWiT4ZUZYbuhRRNj2mbVMkCzw2YBi6bu49MjmdYcka+3jI4OmX+7g1uYDIajDFin0Z2zIYjlu81LFOSbTIsY4OvqyjeAFVoCKEh65Y8zenaHnSbQehR5QmaDUJT2Gz2KEID20UfBxTzKy4jB8cEMRhgBmOaWqK0NZoX8Dj/SKUZGErDbrMi2ay5f5hz9IsZcRzimAZS9sgsI1su+G//8DuuHjd886tXBJ7Djz/8hKoYWJpDZvYIvSaONeosRfYg25qxo2Gqgq5pSNKaaKyjmR6Rr2PInrqradOEdjMnt2F4PGL+6Q1NU/PVs2e4KtSHHfFAIkhxhxpNsSa7X2EOpoSujtA9ut5EGAFC1lTLG7J0h2KMWTyukCi0dkh32JLMr8jSiqIoUITFycUL7m+u6GTLcDxF6SXb1R3m0YRd1ZG0KhNdw9JMXF8lPai8e39Dv39goPdU8gHl5Re4hobZSw77jCw9MH/csU9zFNNltd5zNJ0SuwZ3d/f87vUn3twsqCUoikoYjSj7jE6xyDuTSLV4nN/haDp5tiV2bYpaMv/4EVMWKLqG7DoCXUMxdWxV0DU1puzwNNADl9n5GcV2i18nNIsa2+jwjweUa0hur+ibmrLusG2D3rDpWuj7DlUFy/XZrHbYrk3TdVSHFNd28F2fxfUdraYiDYP1dk+WGXAS8Wxq0fYKhhvR8HklsaObXJzO+B9/+AlZ9RQiJB4/x8hXQI8iSx5vHvj+vwueXYQUBox82NkKumGQ5wVtVWGqn9+rw3aNInraXuDHYwQKR9GM9rHkU7Ih3exYnaoMtxlBuyZd71FVi8lkhGxK2rKkzgsUkWPZLoqmIIRKV0sMy8TUdaosQ+1rAj9ApUc2LZbj0tUlTVWjCUFgGnRpwmDsUrUmw8Aka1o6K2CxWeNbBoZtoKs6th9xoXToRyNEW2FbJrphY1g2ffM5amaYBjJNsWwbmR5ohUBWFSgqA99lO9+TFzWOXlPXHX40oAeyNKXbb5lMQlZ1ij8DJzwwGAz4wlbIB2vGwQDDMxhGPjM/IDBjXDdCUw10VESv0kidYp1w9/0f+M3vf+K7T3uKpuL//Ld/wfr9BzaViRkGaEYBm3uMck9nBmyLhDxZIaqagR+idT3hcIypgmXajOMZXjjCbCqOXI/wxbeMTs+pkh11liD7nnX6gGNYGJ7H9bu31NsNtgquAvM8ZXk/x4gDfvnrX1Dmex7LjKOzUzxL8NMfbnBCBUtRGDsG1WFDmTc8+/WfIYoEf2TRih6hm9j2gO3Niu50guu0VHc3xN6AotQphcFgYKMoCn4Y4+gaXZnx8acfqLIDjn7M1PBoRIPqWSiK8s/8t/bkyZN/Tk+dJk+e/Mw1TWP++//87/9m9XATWTrIZItjqoi24lD2dLVgu3zEMgyGkxH7zSNFsaPICyzTQNYFY19HbwRG1zLxTUJHR5Y1sqqQecHDOuEff/+G+7s7bFlyMfFos4yz4xF90WBqDsfjY+r9lny9Z7te0xQpgzgkUFouLs8YehbTZ+eoRUZo6hydPSMwFdo2x/B9XN3CUFVE11MUDRj2546TXYJsS2zbpmxaDr3OoWw/x2aahk5otL1C33cEQURRSbq6REPD9W1kV+IoYNQ5ltEhREfd2bi2Q+Ba6JbPMu2xLZuiLumril9fPKc57PADH9e2WC2W/PjuGtlKaCWjs1f8/e/fcH9/h+JabLdbrn/4jvvlivFozNFZTF0dGDkmfdkyjANmoxBN9PhhRJIWtGWDRs9hvYa2xw1HTKZnuIZOn28xNAVFt7Hi48+zPMoNiqohNAvFdFFVnV42tOkeWVXE0xMs00URCt1hDVWOTHaITvJ5/p1KvVsh+p6ubTHckE6zEbqN47uIvqNva6RQ0VWgzmmbCtUwkLKjzjO6qkQaDrtdihQ6Wd1imTqe6fL2Y8/oqz9lFIzJ0wzXsaCVqHVOVRRomo6gp6kkUeCjKQpeEDIcBsyOJkzGE+6Xa17/4S2O4XJ3fc+7737LeGAxPX/F2YtnXJwOMEVHmZe4tsUgDHBND5MGUawY2D6H5R2G0lEvbskePtE2cNgWdOaQTrEp0h19J0lu31Mlj3RNSVendOWBfL+mbwp0HfS+QRYH3Mik61rqIsfSWuo8xbBjDNfFNGEwdJBlwXQ2xnNMXEunlx2aotJ0gttPc7Ikw7IcTD8k2W6oywLLNLEsg7brKfc5Qgj6ukTVVZo6o+4LclXFGB7z6ptfETkWskjpbI1dllNIFdsw6JqK5eOa5S5jdnbGdDrFMWx2yx2OolJstnz/ux8wuxZD95icn/Dm3XtMxyKry88xAgSOgN12i+w6TkOXrqkIDR3PsVBNE91yKe5vqKqGtmjwFEnXVUxHMSdnQ4bjMeX2wDh28KOYuhDoukVa5JTJnnA2I93vMS0DTbTIfItsoC1TmqaEtqHaL1ncP9CoBrKUJJs5vWHTAF1xoOl67tZ7HpZzFsslqqbRqxrRZIhKi+xa/MCj6xv8yYyT6RGW0uOYOulqgVMfePfmB9rswPh0BHHAJv08G8ZXer77w/e8u5vj+SGWbuK6NsfjIY7S8/HdO5a7FMf1KcqayPcxgxFONMXwIzTDwPQ9hKIQmTqB73EoSh4XD5DvsHQFS9fwHZsqTdE6iaGbXJye4dAT+y6WY+N6FuNnz7Acl3azpFjcI4uK1dUHbn58TZPs+fTuHX94/Y5iveLhw3uy7Z6m6bGDCEUIZCvpm4a6yCnKGsd3UKQkzQqytsUxdVbbPXfLNQhJWReUTUtWlNRlRdtU9LrJ3XKNoiiUZck+rzAdByf0gA7ZtZ/nsrQ5geewu71CdzwkOm1VcNitcU0N17Gp64rheMbs8mviQUydHiiLlMYVbOsa4+IXaMLCLfakuw1dW9H0HcvNjt0uxVA0quSAb7nIFnTLxTIM6Htc1/38bUv3+KrA0jRE36HpBkI1sF0b09BRVI1oEDEeuIiuIRoM8AcxhqZT1xW0ErMtPkfvNJOT4ymaIgiCgCAIuHx+ycn5Gf5ggGmayKaCTiKzjGIxp1dUpOzJqxaE4OP1Lb2qkpY1vaqBAklyoJMN6WGPIqBDgiE4G/ukuw3usKLjHX//mz8wHb/CNGJcFALDxXd81L5Hpju6fI9A0NQSKVsoSwSCu82Bl19+xWB8QiE7FKVhvpgjY8GnZcrVTzfcr/fsigrF6NGaksAwMERH37bopstwesJgOCJoK84HIeOT5wzGM/qmxbItDEOHRiKbFtmUvP3xDWm2R2lrHF0nqyoW8zkDUydQBfkhoakqHMvgx3fvOez3fHlxhE6PpesMJxP8wGW3WZOVgtHJCbqpIosE2UtAkBw67tY7bFMFaTDfllwvD6RFTRx4DCKfIs8xRUub7zANhe1+T1PmDOMBgRvguqPtv/yf/tXfqqr61Gny5MnP1FOnyZMnT6j2GVVZkBeSs/EA1/ZQfJtLdcDvf/MjbVnTVR1luccxTXrbxRk71GVDslmhxRFFkSLXe6bmMVKJaVQLy7bIy4yqWDHzDaZmxCx2GQ6HjD0T29R4dvFLZN5gmh40JsOhixaElJ1Eo+Ngt1jDYw5bh2EcsckylKNjwtkEmawx+hbHtUFKkDpNuUbtaiw3RNDguhbb2wdaTcd1HfwqowkC8iInz0q2VYfh2gjdpOt7dus5vueRl3u2m0dWt1v6ywt8pWcxf0DVtkzGCqu711RVwtd/OcMxbeJwwHr9nF1dkuz3ZIcD9skl31898P1vfofwBggJI0eQJDtMoaApgsX9J17vfs/y4RFVUfj2y2M2+wesviLQNCazGbbrEvo2vgFl23N8MsPSFCylI45Osb2YwPfo64quAaUq0TwbXdMgWaP3FYoRQNPRpTvkYQfCQFYlXSkxhUq3P9A7LYYQ1G1Ple2gbVAEyENGW5afD6lFQSsEvWiJPQP0AfskQXnc8f5+RR/PmHcdgy5jPFSxdclu/YgQAlUKMCKub+65NByiKKQuOkajKZdfhURRjNoa3N8sCIcqdAr0/eduqE5QZgXD0EM1bZqqJY59BC3RICbJMj7e3KJYGrtyyU/LtwxmNkdfveLk5XNMVdAXKbJqyQ8l0mpJNwn5JkEzG/qBgxPD/e1H5m9fE/oBeV5TJT+hqAaGN8QJJqTrW9p0h+uZNEWN7KHrBV3bI/seww5A09Bsn14oNNTYhkqvgOoPCUUIqk6e7DBccP0jTD/EiSJMS2IGKgoVmqGj5Q1CdihCocpL2rYltA06VFQFmrrGsj2kqZJUObQtVA6DoxOUMmOkt0wmMRy2GKOIts4oD1vQdEyhUKYH9vvPB+Y4HqA1NdV2x+26xnEjrMhhVUgmoxFfnL0g713Kkj9Ggxp0PebiyGb7cEVbpwj+f/bebEeyLD2zW3s482CTzx5DTpVZrGqSIptQN4UGWoBuuiFA93oEvhFfRBcC2BIgdlPdHMSuiVVZlRmZEeEe7uZu45mHvc/WheU71EXFegKD4Zjh7H9//7cccrIM1jJfnWPqAjEOXJ1fEiQxo1gQuQlPWcqq4dXtV+jZDDfVjLXl8uKG6vjIYbtl5i/ppOJ4LLhenbN595b88pa+qTH1E0pJ/HmMVhKJoO8GLIJ0eYZLIsqH78liTdccTxaupyfCNOH2YkaaR8wWOWVdE4Sa5+OBYbQUZcnyxStkd+T+mzva1z/GmgOya8nTEX2T8D/+yR/x7v09zx8eufjRJ0hrkXbg6aGiqA23t7fM8oxQC9wgMeUBpzLkaLhdzvnN3YaLWcrs7JJdcSBZnj5LlM3wwhRhR3rT8e7bN3Rtgz/U3OQByk14gSaOI+ptxFBWJLM5F9dXDM+PBMohp57t3dtTf04SEClNsTvQlTXHw47bm3PGviErFVUnWMxyyv0T6+8PPD090huHjgNWt7eMQhOPBso9o+kJIk0eB7huIM0S3t8/cOh6sk3E0LdEhz1BGJDMcnSc4WUey1nK4+ZIHPkUbcOHpxbrvcD3A/w4IPEnHp+fWDzGaOto5JF8kKRxRKIESgjyLGKW3hLkF2SLJV1dUx32vH/7LZV2XL96QXJ+g+oN7775wNN6TRz7CNFgWouyhiCcUdoto3NMk2EcWoTrCb2Api4JvR5bHfG9nERD01mCJMNZg7Q9nqchDhFSESQxyo+pmw5PaCw+OjsnzY+MyxlVd8Nuf6CrW7LAQ4cxURzTdCNZXWNHQ7pYIpRmGi2TE0jfY/I0bmiYTE8/wuNuixcEDJPPpH2CeCLwPba7gq7vWd+/QyvJ8mrJ/n7kMLUINxGpjr//mw2/+If/xJ/9+CUzNXAIAubLC5RzqMlwcbFicX7L4uKWKM44//JPqEfHvwvmzF98yuFwoGvusOWaN889F+eGWlucVxH7GTpLkf2B9f0TqQj49GJJslxh/JQAx2JoWKYx2WKJ72u6YocOY3TkI7SHEGD7nvfv3tHsnwjdRBRquqqiqxteJyGRJ5F2wGPCDCOBp/nkbEZT7nn//cTnP/ljZBAxGYMYDRfnZ3z99kDwvOXq5pKh1DjRIX1NMs/JDnumQ4UTkPqCT84TdLIk9iWyrwmilPu794zVAcFEnufUxz3mbEmaJ8yDBeL3/J72kY985PfLx6TJRz7yB85oTPA3//Bf/2rztJsnYYSVijTNmZ2/otzXPHy753/93/53VknGJBRn1yuKsoAs5fnhnjRPSOcZoW24PVuivJDKCKbR0Dc1/TiyXq/pnx+4WfhcXqzIopBFHrKYpYReSDLLSS7mKA3Z69cEeYYnFd12S7Q4JxASWzf0uxq9Oie7vaR9fsAJQXz+Gm8yYCyTFTjAjKDjGDEZ7HGL7Rs2zxuqpsM5w6FsGIOEwwhC+VR1hVCScDEHOyGlJM0ztNZ89903fHj3Fm0dz49P/Jd/+CXvN3vel4az119wNl8QJkvKY8Vut0N7I8u+wJqJD43P3/3sG8IgYFf3zGYLlpGm2paUJTzc3fPweE+cxIx2YJZnrNKAoT4yl4ZVpIkCRZ6FBIxkkcdquSCNQ1JPkHoK3wvJ0gWuq1HGoqaRMNT4cYQX53h9i55GVLJEZec4fKa6AOcQKiI8f4mWguHpHfa4YzxusSjE/BJrBsb9FtsPMDmm0TCZkyHCmomuqnHKQ3oKPwho246yHai7kc2h5mFTUh8rHA4v8BlR7I3i+3f3TEJydnVDO3Z8/tmnLM7P+NXPfse7X+84Hu95fLrny68+p3h8YOx7kJow8JEIAj9BSY0ZLQ5HvlxSVA2dUSzPl+R5wMVywReff07oa5RW9FXLPBxZrc7ZbAzD4YlgakhTRbLK6as9mzd3zNM5z5Xg/qHg8e4DQkDdtLTFnnL3QLPfMFQHhq6DyeLHEVFy6p8Ik4QozfFnGbZvwVmCSCN0T7qak8wz/NDiZR75zTX9dkM8j7HzS5QZmeUpQvv4UYJWAq01T3ePPH7YcH//dCoVlYrBTNRtR5hEaN9jRJ3KTO1IVZWEiyXBcoUWDuEEWZJgh5qqadF5yLEsiZOE9fqRqijAiwmTnOVqxXG/Y72v+eyTF7SbNc/rZ/blwNOhpxg0ge9xPs9ItI83jOz2O5p6T+YL+qFHydPK3yJPmK8WRFqQpzHOGrI0QSlJmkac3b4kefUl3WGHKQ8sVtds7x7JYsFqluOHp84JZVvEaHHCYzKaIIjxs4THhw1iAqkktiuxdkBHM4Qf0xdH6v2WstjjpTkWc1Iob7ccioK6aRBa0zYtx7Kk7QdQHjpf4XkBsQBpJUsvIoknlCdpNlsma1nc3nAcalo5EJwvKNqRXMPTwzNtP6K0QkrF8/oJTwn6uuFmPifxPeaznDgIWK1W7EdJ2UNZNxgUXT9w9/CBw8N7Ht6/o+s6El8RdEcSTxGuzvCUput7xrZjGkduLy+5vr7ED3y0GDl/ec3yxQsiX9EdtyTzOWHsM7u5YbnM0NEPfTPWkc5mXNxeMZZ7TN9TdgOz8wu+v39CRgmdnYiXS+qqwBpL3TZMw8g4QeT51Ns9zTASRTEfng8IpVCepm5bmrpmmCyT9CjqFqUCrMqRdsIiKK3B9gOeEKRZhgPi8KSnHoaRxXJGKC3NcU+ehtR1jXOgtUJaw9PThjffv6VAMliJ7CZ+84uvqQbD/OaWIE8JtGb7vMX2kOc5ZhgYmgYlBThL6HsYYxHWYKoDF7OUxXyOVB4TEq01oecwxRbPP1nLgjBkbGuGtsb3NEmaMTQVs0CQJjHCC/G0R5zleLZFTSN+mBCmKUorVtcvMHVNe9hj2wYnJcIPIAgRQrDfbejGnp//+muc9tBacDweaK0jiEK60eIFIeMEo5348OE9x/2G3WaNkho7Kj6837H+ULLdF7xYpIxFQ7k7UuyPDG2HRHF1dc3y+iWzs2vys0uEEIBgdn5Ncyz5+T//jGq/wzHwfKgQXU8+Hui2DZf5jFhItt8/MvckV6szWqfBT7jIMi4D6I57kighCFMcElM3+FJgx56urCi3T3zzm3+heLon1xP+1NN1LYGYyEOPVEs8JmJf4YuJYTQ4pbjIIxItkHbATY7F+QVenCARKCX49jdfk2YR1k9x+Di7pZ8Gei/l0I40D4/kVwt0GJLOZvjSMbZHnjdb3j2s+f677zlsn1Fjh6cFSRzgeZowzQmFv//jf/2Xf6219zFp8pGP/IHyMWnykY/8gaOU4ur6M7aPO/LIZzIDYXKGNQ43Kn706kv+/N/+BCm+4Otvf8vPf/EtaTrn+XAkkILEj5DDiCc1dTcxoRgenyi15fZmjux7ctmRXOacny0QQhJ6PtL2RIFPsFph/Rw79KQvvmDsWkTfkcQJ3svX1LsdbVkRhAHhi3MmTxFqiYxWBMs5iglGwI7oIEQSoqIFQzfSHrYE0hEoSex73H3YsDcOKzVNVxFqRd0NaCkpqwr79MTFfIFAEIYB0ziShhGbD4+86yKS+Yw0WbFazOh0QLmv2G52zKYMYQLOL17w5ndvsZGlnzzevHuLG2oKI5jlGXHok/serrA8H2HlLfl+94bDbocR8NO/fEl/fCRnIM0ThsFw4QtS0ZH6Pr4vUL6CpjzdegUxXiAYts8EoSZeLJia8lTIKHykDHDmCEoy9SNOGITy8ZIz0B4OhWtLlAgJ8jOax/cEqzP6puL4zS/QyQwVL7G7NWoyGCsxVY81PUQxGEtXPnPwM6xzpFnMYEsiz2NILjns99ztCl6IHKst02RZFxuk9tntC+abAqsavrv/Lf/m3/w5Zb/ln//uP7N92PKjn7ymr3ZkaURT1fhBiK8VXdPiK4mcQDmH8CVpMkPKOcrUrG4ShnrPczXy/O6RxVnM4jYmiDWYCo+RLy5jCn9JFofYXvD+22/YrN9T7gourkbC/JwhinBDStGMJIGHF3oIYLG6QEqDROIFAW1VIYKEJJvjHJihJ45zkmWGGUakD307EIqWUIy4QGGDiBGPixcrND032Zz9YcB0Fu2njP4ZdtyhRcftzYpf//oNWKgGnySZEycZZVEwWXuy16QJkQWalocPv0PNl6y++Io40nz49mtKO2KxZMsFbrIsFzlCCZyT7I4lGM3nt68pi5q379/y8id/ju32HHcP9E6QLOfMV5ooSrAjPDzuedw8s396IIwUSeLz9GHDxXKGsANmNFRFixwG/FhR7LYslnNy35CtZhjhk11e49oSuppZnsM0cvtigadBKk1VVWhnWM3mKKkR2kOGMX1RE8RznNDsdyVt2ZDkIQhHP+6YrEW6U/Hu+cvXtGPLw9t7lO+TX9yw/pdfIcUpdaTMxDKL0J6Hni1Jzl7T3L1nWxzRVwHH9gNLrmkHQ5Bq2mZkGC3J1ZJ6KKgPj1gbcxwm3j484ocReTCjrEqGSZLEMb6v8byAJJkTRhm7XvPLb9/R45FkMSpIcG5i6BqmvqXrW6SEJImgOeB5Gnl+RZJEiKZksciY6pph80Q8dQgmosWcQBnGyZCkMcJ6aAlNUzG7foWWIPOEviy4mGWshpGp6ynWaxbXV/RsmEZLVx+RWmLdxH6/pexjSFbMLi8YtaKsvyMJJXIwREKy8H2EmVgfGp6qltubM84XMUoZMt1iQ4nnaSyK9vmJvhtYacnoBRyrGtuWfPrqBQqBH2mWy0ustZi+5akq2G8+sN3viAOP1XnBJ69fooQm9iVKCbpek2Y+j++/ZXs8MAjBu+d7urJAtg3OSF69+pLD4YBUmmnoadqaOEtAKpriyGBGbhdzzi6u0FrjhzHKTLhhQHgBVqcY41C+omt6fO1jtU+xP5IIn3yWc7z7nmA2Z+lNXF7l1P1E2fiEruP5+ZkwCumHgaYoCOdLpOlx1mIRaAEocL5CxzH18ci7D/csr66QQjJ0NdtjyfxsAVaivIwgSghmK3Q84/H970hCDyaNROBcxNnlBa/lbbsAACAASURBVP/zH/+En764xLaOxSxDTBAnGYvVGednC/KLW/wowY0dtq2I0hnV4xPV+2/I4ohWa6p6zUUiMH2F7+XME0VX9Nw9PJIIx3wRkkSaTEdczjV6rBFhzmRHJmswQ4vQPoHvc3x+AClpjiXF/omF7kiXAeWh5LkyXMQaLAil6doRIxyhr5gwBE4iu4JxjImkIPZ9liHUz3cEWY41NX4UsEx8UjXSbR4YggicYhzW9PFrzq5yqv0Fx80REUrW797y9mHHsR3o+x7lTka90JdMQF0VzNMQz/eRDoSQiI9Zk4985A+aj0mTj3zkD5zRmOBv/vPf/VVV9fM4ithtNoRhhlIet9e3hKqn7rfMc49/+od/4sOvfwZoTFMR+x5hEOI7gWg7piTj67dveT5uOJ8lhM7hmZ5uf2CepcyWc4rnZ85vb/CVIr+4wA6nngqdzhACXNPQb7cc1lva7R48n/lXf4SfRjilCVTA+PxAvFiA6yjv3lE+b4njDCkmGEZsXaOZ8LRisuOp/LBteSoa7nYlD/WpbO9Qt0zOMTmQno/teyZrCX0fKSRN26K0I0kks9mML7/6EXHgMZ8luNHidEgeh8xevuRHP/4R+67m8ZtfciZGRj+j6Cy3uU8WakYz0dU1nlT4neO3v/iWl8GC41gzMHF1nvMXP7nBHLZ4Y89qNuP25opAC9IwQCPoWotwkkhKfKmI4hnCC5HOkp8tkUik4pSAyJY4FaD8ENc2WOtwUjBVe1xbMHUNU1tj92um+oAdJLYp6LYf0BJM19BbR99byJeMdY0MY7rDga5p0ctr6v0WOwx0wmPfjHhiIg8l+XxON5wu5DwvpB4MVddT9pYPu5K+74iilNpA2VcM1IRpz8XC8qv/759AKb74yY9RXY8pNvTDhJaaQAeYruNYFEzW4PsKoTXJ8oyunxDmiLFH/vmXv2GzOfDik5esXt6wiH0S7TB1jWKi3W8w3ch3v7vn7cOO3/z2G6SSjEZQHEqmvke6iWx+RrZYkK4uiLMlWnso7RFkM7QfMQ4D0WyBtRM6yRDCoQXYvsaLfTwtSaKAIEmodwec7VHSx1cWb6qIEHg6JJDgywClHWOxQ0c5Mk6RrsfTCmFamnEEpagnyX5/JPLVyXASxWyLHi/O6M2IHnv6tmfMLwhCjTMT5XbHLE/RUtBT4wUevqcoy5J+nIgvbsiTlN99/WuqsuJHX3yG6FuU9Ehm5/zy579m//SErDq+fbvmeewJIkcehSxin++/e0tVNzg3cT5LWCYhs0AwCzVZFrGaZ2SeI1SnlaLJKYIwQk0jl9dXzM/OmC8SQuEIwhAlNYssRSmN9CL6wx7hDNKBpyVSOsbmgIp8iqLBjB1hGtN3FdZZjJ3w4pCxbxnqCkxPedzjp3OI5/Rdxzj2NP2AF4YkswVhPkeOI09PazozMlvOsK5nJnp8KXBYtJS8+c0bsuWCoqkJZxk6Sql6R10cSbKU5cWK0YxMUrH0JFkQMOwOyG6gWz/yODh+8eY9RW+YHDRtgxkGxGTp6wI3dLRlwTyNmHuOi4szMjERach9jVKSOMnYPD7+oOb1yGPNbDHDV4K+LunKI+Vhx/z6BdlyjtKavutACnQUE+QZWIMZeqLr18ggIgw9Jq1ZvPyUzW6LGRqiOGJSiudDweLFNWY0hHaiPhx+0JZLpIS27XiqTr0l77dH6n6kHUaE8jk0A6MV3D2ueVh/4Gn/RD8O5IsVu4c7fB0Rxxk69cjyhDgM6euCx/v3vL975ts379lvH/mzn37O+Tzh6f1bvn8s+P7dB5jgw90jv/zlL/nw/h2uH/DswCL0sP2Adh4XVzfESYjWmuJwQAlYLhbUZUF/2HE7n3F9+4LZfIWUAuEAITFdix9GRNkMNw5gJ0zfY/qOJE3phpHJOQKt8HyPwTjCMKQ/bEnjmOVyQZJEHN6/4ezsnPJYEQX6lJywkiAOcT/0RQnnGPseg+Nn//2f8dOMuq5p24an3ZFuNERJjvYDJhz2B+OL8AKaqmHsT2Xboe8zKc3rL14QhTmrfI7vpySRxzKJmOU5WkroG7AD5fqOYfseOY3U5OyqEd8LCOIZm/2Ori2oix1zPXGoJw5Hw9P6mSwKuTxbEsUp0k+YaYkcBupuIkpyuqZhlqYo5YEQeErgS4u0lsAT+LbBtcUP60gjMkpR02kFJ1SCNAiJwwQ/CAi0xSFIfI3veSyz6GQPS2OCKGLqW1QQ0B4LUBLjNKar6JqKYZQMneXhbottG6QQ7IsGmYLsN9ytDzwcenZlR9H2HJueQztSdSOR57GYZVzfXGOGDinl/l//u//lr9VH5fBHPvIHy8ekyUc+8oeOc3RtQ9tUNGVD05zWK65vbrhY5AT9jt/+4pf87G//lt1+SxJlZGlAVTzjVETgeYTO4vqRh2/fUFQFn376AicVYnT0fYezkjQK8aaR6/McXwl0tqB43hHOLigOFbrsCEMPa0f8xQXpVU5nJxI9nQYp6w3KjxmHEaUUYizwvYhsNqcenk6xeATWjaRZQn0oUZ6HlD5eEBF4Gi0EFkfddFRVhwpOkWcnNM70KD9k6EesmZgmw+QE2guYhoIXLyO8uOJP/+JL4vmSpit5ty7wfY9vv/uWze7Ir37zK65nc8bmnmO9wTU1yxdXvHvzLc2h4Pr2JTJK+ObuG+6HO45Pa744v0S3gpe3OdOxQpsJJSRysigzkiUxWntM04SQljyKcU1NmKV4QY6TgiiJEV6AilKE6bF9hYgWeLNzhBlwwwjOYtsKYSxusrT7Z4TSaAfueMAJj35fUx23iM0WGUVUtiG8esVuX+BHS+T6OzztMQlJXRSgfYZDSR6kvO0tdhJMTQ+uQxlDOE300ue561jNUqYgRQeSEIcXBjxvNtRDxfVP/z2tfgW240/+hz/lcLTk/oLd+i2LwNDWHRrFICT73Z4sy/CSkMk52h86CvbbDc/r9yzncy7yOZwtWP6QvDEUJKtrHh8OvD/subp+CYf3lMcn3n54IgkDMIZXNy8Qk0FrjdQRnZVkaUTfdQgvRfrhabCnQpwQRFriUERxhsLgZxnCCdq2ZygKkizHdS1hsuDsfIkZOvaPG8JQ4ocBvi+QYw9dRRwt8aMcoVrM5h1yyHCuRyjJfLWk++079q3FTw1+fsbmaY22OaMTdEPwQ2eAh1hkPD/uGDbvuPnxl0zpHFNWmK5j7GuCPMOMA8fDnros0cJxlUV88y+/YrfZsjhfYZqah+cdP/3qx6zLibv3j7w6D3i3Hvlu/cTFy5cEImCZxWweHjEWzOSYjKWua1ZnOZEfsky904392CGEZHIa5wTnixmh5/B1QCwGhn3LVCg8JfDihDT1aIsCK3wm04Dp0VrTixYhAvqmQUygnEBqWD+v8SPJaAzSD3FipKuOTHWDKSt8IcmTlN50XJyfUTcd+CHMPOqyZGgm6mJNHIcEWUAc5UxKsT22VIuQti6IlWQoezAtj/fvuP3qFfvmQFu1HHYVYRTjByHd4UAoFbvtmkKdc5lEbA9bHnZHSuNY21O6jcCjPlSEcUIcCZrqSFmUtHXJ57fXLAPNma9IhEWbgVjFWOfwcOSRT75YABCKifW7t4gXLwlnc/TYk6UJF59+gfZDpASEw/M9dLRATBY79IR5jvA86mZEaMEwOdLb14goIirB8yOGukEEAXGSUPUTajkjjjys6TisW+ZewK4fibTGOUc/OZrW8lTvWVYDn+PhJSnOTQSewFMTTbllbEpcWxPGKXVd0HdLrL/g2FvmcmTzuObxac/ztmCz3bDThs23/8jXhzdszTlvixC8hOOx5O7xGas8Xr24Zbk8oywrHh83HPcFL198xXK5ou9KnrbP7PZbPrm6oj7uGY97fvTJ53z+xVcEWsM0oRH05ZFsdY7sfUzZoocBOVmEr5msQ9iR9ngki2PaoadvGqbJYc2EiDSeH1MeClJrSALHPPKIlSULNf3mjt57xSR7tHIICV1TM00TOEddVSyvbjC7I+ZQsN7u6O3EbDanayt0GCKFoKsNOjgNLM5vXzEcFNL17A8HZos5SsT4esbU9SRZQOL7eMKxe3igLXYEYmR3qEmSkJcvrnn1l/+Rct0yD3xq1/DYdPSDoShavrmrQcLZMuBquSDF4gtF3XUEfkgiHKrrEGEGTmDGkcXFLX0/gGqIBTSmAzvgxhHTlGDNaRgcRwhnmGdnVFvF0J4U654KTs9T12GET5JFSOnwgdFY2sGyuDhZiqaxp9uu8ZKMSEuK8si2aAk8Sbo6pzYpY/VMOwwIHNM4Ug0+Lk/wwgBPW6RSjNbinAUhyfOcy+tLlmdndGVBbwzOCdw0/V5f1T7ykY/8fvmYNPnIR/7AGccx+D//9r/8VVEUc+H5mLblk+tPOF+cMRxaPry5x5MCX0m08kiWZ9w/rdkcC2S+IFaSrjrSdjVCQbpc4bmJ2E0oLRiqPZF1LOOQWI/Egaa1AcW+Jru4pH2+I1vMSM5uEOcv8VZXiGFApwkgcdWRqaiYX1zipxnxbE6QLmCSePEMnaQkZ1e4bkRIiR8kOOsIZjlj2yGkYpKa427HsarZVi3VaGiMoR4sCA04LGARqDhkND2+H2GtwQskdXPgxesLZJbxj3/3MwIStBexWuXkywv2uwP/7//19ySehzMDC9nw4e6B4lhRHg7YwyNnycn+0suEh6cD796/5UOxp5waXt6e8enVgv3jIz6wms+Z5Rkai6c0+eqCw6FmnuX42kcpj2mSaKVxpmN+tgQvRIUJMkoxg8ULY6Z+RDjQQXiy5iRLZDxDRjO8+Tne7AydzHDjdOokyFPwfLzZGVL6OCc5HkvCMEJMhqlvMPst0lmGcWLqOyYnME4yjob7smecBEhJVZSUIxSjI8tzemNxUtNPkrIbKYoaawaOm2d6K/nqx3/JzflrutFhhoDHNxtmkY8nJeXxiB0m6rIijkPmswX1YHAO2rbhfv2At1gyMVGXNYeqJFyu+Ox2RrPf0R73zEKFr2a8/92Gzb6hmDrOM00sYBl6JFowdiNtP2EnhQx8hBmRk0H/EO2PkxQzCaJAo8RpjcSLfLQfMLanvgcZJKcBnZZMQ0NX1gz9gDOSqd6T5xFeGDJZR1+WKG/AtTWu20N7xA4NdujRboDJ0hQ10WLJer3hUNWEgY/2fdquQ0gJ+SXDpHB2QCiPMFS0oyE+v8KZib48YqqKqjrizeaMsY/Qkv3hiBlH0nzOoR55+/6ew7FksJZ0toT6SEzE87sNZVMRJSlN03B1s+RsnvJiOafYbKiLgtJAWZa4aeAs0mhruF1FpElEFHlEnkcYBQR+zDyNiJQ6mZCqEj0ZojAimS8J8iVhMsMUR6auJcxy/CQl9iUgETpGaB/Pk9TVKSWitGB99w7XN5ihBmEZxwFwTJNlaFu6psFKH5WkCO0xOs0UxHjxjHhxiZ+meFmC1oowSEiznLEz1Ls13ljA2BIEPmVVEEQ+pmsRgWIKEx52FZvNnuUsY7mcM/Y9D0/PPD9tmCUBvhR8/VTwu/WWWRzxZt+wKRuk8gjC8KShlYKxa5jGgZt5zFUacDbLMH1HLCxBFON7AXoy5HFI4Ht4SlHutkRJzOXlBbOzJbPlinyeE8/n+EGIkBKFQViDF4QE8zMQEk8KhDUMTYn0AhojWd6+IM4z2t0G07WnYTGCvrdESUqkJF3dIJQmnWW4YeBwLInzDGPNqTNkcgjf59AOdKNlmNxp6BtEFHVDUZfEnuWTVcihscyWF6xW14SRxos0EZbd/T33j1sen3aU+x2+nBgHy9e/e+Tu3TOtt2IQIbtDydFqmmSF0wEvbl5gXcj39w8cDkeCeMYnn/+IaWgp9ju2z0+U+z0zX5MIx1effcknn39FNl+ihUA29em/UgeYqkLhEEjqzRMCgfADjDUMXY2nFf0woISg3DwxjSNBlDDWFVoKonSGQNAdN/hxivY8msMB31MoMTF1HW5sEX6A+iFZ09QVyvfRQcjzdkvV9uzrFqk9lJIkWU4/WJwA5fmUVYPQHtNkqY4bNuv704WDkLx+/YKb2xfMzIZEWvrjlmq/5f7t9+we3/Mvv/ueX337Dk8r/ujP/gKVLwm8ieP3v+Tdb38NwpLPE9aPT+zb0/df1wNN74i0IopC/CAliRN026In0Eoymy8YR4vyY2I/QI0DQkpMfcSjh6bAY8T3NEPXoHEni5B1JHGAtQ6BI0lCcBPJLCXPQqJAk0QRWRKxrTourq7w4wRrTwOPrrcMZmK/3bM7VBzKiuNhRxr5PO5LOjMgkhnH/RE99Rx7gaanNQHIk0XJ2RFfQRh4XC0zXq5mjH3P03aHDhJWi/n+L/79f/hr7X3sNPnIR/5Q+Zg0+chH/sARUnJxdkXTVLx/94bV2TmBEDSHPe1+Q9tVbDZr3rx9wyf/6k94t94RC1isVqfDibA8bjYIBVernON6jQpjmjxBmo6gbxH4jGIEO1HvRsrB8Nm//QtUX7O8OEctzhhRKCnBTNjB4G3WaB2i/QDOI+TyNdPYg+kZqxr/6vxUJuh5uL5DZg47WhAK5SUIZwmTBIzBQ5KkCVo4Yk+RaElnJ8bR0g/dST0qFcYOqGHA93yasiQMIrxJMs9ntF3D64sLpk8l16vPiZaGh+0z169CXq1uyP6nGz777BXf/OK/UTx9S1mUvHv/wMuzGT/59JbJdgx9Sd+WGGdPRZdC0LY1vjTkaUKp1EntfH7B2BzxtSAOQrrWoJRPlqQ4odF+jDEwOkuW5TjpocIEwgQvivHCGFOXhEmI9COcABnmIDwQYJoKqR0qjJFKAwrb7E9dKGnKNFqElIR9T39/x/ZhDUOHEI5ABrihwWDwpWLSEusgkRPR2FEkKx42z3jOIxWG1nS8/1AAjkEqtkWLjk7pjTSOMF3Pd//0c/6T+n+4PV8x9m+5uZojTUFz7CnbFk8pinKD58ecrZbs9wdkECF9TbdvaTqBXR/Z3n1DHEe8ur6gkS3aA9uPHHYVQftrlsmMH39xyc9/8S88bR4wTccyiTG9OSWVJs35xQVmmlCcYuVhGAIeeBqEJk0UrinwpEAnOVKeVL868AnzGc5OCGvx0hmm8/F0jQhDtHYMQjP0FWGcoiMPopTD+gNJFtPXPQOGeJbRdT12bPHjACc8hsZwfnnJc9XyvD+y8kLGoWNbSbrdnsf1M19+9Uf0g8GTjiByjG5CaYXnBdg4YeiPWKXQjAy9o+16NruCpZ/zsHnmsNnSDQPnV+d4bmAWO7799d/z7vm0xjJUmkjHXEczpBvoih3QIVOf/rHD2vE0fxSC82WOdIKhrvA9HxGkBNmSOPTxphHjBFEQk+YxpmsxTUvVPuJ0DEISewbpBO1uRzBbYvoaxASDwY2GeJ6jhaU9HPCyhDA8aY3L/Zrd4wMqCKjMRDo/Qych07HEWugHx2Q7nB348O4OKzRKRfRC0LmBkAllBROC/X6DN7ZUjYfrDWPXEsYJUZ7hW4uWAhPElO0zy0XOcpUjfY/v3t9THQsWqyWT8ngmYMhXzAfL94eCr9/dI5XPREPbj8znim6YcNZwvZozl5ZInhIkAxY7KeLgZKUZnj6gRYzSktcvbzDzmDTyObtcoPyAKJBo4fCFRWIww4i/PDv9dv0QmJjMiKcVKo4J5QUEKWI5YquSvjhwcbEiXy5p2o7MC+iROGWpng/kYYqxPV4Uc/Mnf8qkPOrjgWByzH0fMxriOOK56UApqm7k7eOG6ytNbwx12+OrkYmeYbQcygOf/Ks/wx0L9m/v8M5DiqrhWHa0dc3teU4aatbbIw7JzoakncXXA26aOHYCl8/46qufEDVb/uG//SPP6zVtUfLZVzcEvmboKnbbDeuHNfMk5uL8gp98+WOWyxXJPMfzPaQSCCx+lIJQjOUBMQFKIbWiLguU6Rn7BtMckLMF/QRd06Cd4W595LPP/JNJq2nRfYuQCoGH6jboOGQwlpkOEcpj6Huqxx1zrWAMkH5IoCT77Z6ubojCgDSfIZ421HWJp+ekSczzoWZqBSpUKCUoVMLmeIeM5hjzPUJA1zWngd18iTITptzQ1hX75y2/e/vAh82BfWNYLmb8h6sLJuUxiYEoc9y9/xn/9WffcH5zzhef35JFirk0VLZFIRGNxQvmPOwq4lTjjxsCBL3y0EoylTuqbqJpeuTZOamtEMUD6XxBFJzRdj12HBBSo72A0Ri0n4CR4AxxHlEfB/wgxFMBWgl85WGFYxwHgiDkkxcZVkW4YMZgRoI4wRearq7ou55pGCmLmiDJePf+LeHynLprkIEhygSdCOmfNyg1MNmJqiwIPE20WuK6kiyNCKXg6fEJJySriwuctSwuXyKk+j2+qX3kIx/5ffNxaPKRj/yBIxDgTgVn83yBHizFbkcSRehZzIffrtkXe3ZNw1I4msMzYZJQHXdoAfJsxSLLqMoD/ebImR+eDhTdgEoUzeCIYkFpJnRVU+5brl7dEHgNvnP4UmL3W6LVDUo6nBtx8xzT9ag0xzQ1IsoROkRYhx07dDxD6BDbjrjeQNNQv78nub5Fzc4Y+gGtJmQQYasSfxL4WuJLyTKNOY6OHsmAxYwOMxmkkqfbxX5Eq4DBWkJpMXVNvow5v7jhcnWF99OYFzcXvPzshrv/4/+mrHrm84xWwW4sqZuWetuy3xUsA8GLVcokNU+b9tR7MNc0ZcFgLTIKeBGnLKIQ23anvW2l8MSEsZYoS5FeyP5wZBFH2EnQti1x7oP06IxgkS5w2RkijNDpkgmBUiFReo5SPoOZmPoW1xV0w0jqB0jb4yfJKYkSaEScI4YeGfkEUtLtNuAcOoy5fPGK+lgRLFY401FVFWEQUx6OGHs6ADs/hn5k5kvavmZEEcyu+PB4hzYD2vQ8VB06itntd+g+IZrNqZoWiUBMhnb/LdELjywLKYpHlvHAh+/uuLp6TT+01HXDWZzTdD3j5GDStE97+rbluO+5sIoX17dEYURZj3TjhuY65eryFd16YGwq/vZn/50vP71iNYvpth4701CXLbMkQeGRzDI85aF8hRsHfF+i3ISSFmcMYRoyDS1RmjAZcxo8mZ4gPPXtEJzsMG7QyCjCy86gbzDNE2a0p1v9Y4mkZnIWKSW+H/K83pKEir7rKZuOxfmKqqzw+44giiGYmM0yZrMFnueTJB6xivBmZ6wHQRpq4iTm8LglDCSz+Yr7h3tkHJLkC0zbU3cjeXlEzBPsNGEtxHGK8hLi0JIuzpg5w1g1VE9rhBS8+eaeurNYM/JiMePlKiewA1U94geSeRbS09K2LUwTvtZEvibwfbQnT0XR2ZxkeYkUDm16pAAviHHGUXUVYRCg5IQOQ/w0x4tCuuct2BFnDNXz+rT25KfYCaR21NWR9nhg6B3+2KKVRIcJ6eqGer+lbwoOzxvsJHA6YvJDnFWM1mFMj/YVURyx2R0piw1l04CvydMIZyb8oWOxXDKVht3xGRNIkkDTVwWBEiTzlEGEVEXJq5sl0w+pi8EcOFYti7Mz5mcrkIp93TONA9tu5LsPzzT9QBRp7GhQQYD0A8bqQB4FSD8izUJcucWakSQKkUISRDGia8jzHB+FMJYk9cle3hAGHn6cnBIJAkxdMBaG7P9n7012JcvSM7u129Nbd1u/3kVLZpKlIqUqCAVOBAGCXlZTaSJBA0KQqliJIjOZJDMjIzzCw7vbWnvs9LvRwLKegQWkr6nNDMdgZ3/7/9d3+YJydYmyBiEjYRqJk0RbizAJJg8YqRi9pL/9RJIabMhxbvpjE4ylqRumuiVbzLAWFlcXNIeadt/jPVx/+wue3n7Pw9MGqzUWQUxSUmNAK0ya4lygaVuk0rgQma1Kfn/bEaUk1Fuads2z1Rl+vcG6gWpW0fUTKzvw1YsVRiuubp7R95HD4QBKs64nAoJ/+3yFXZzjhprEGAoRaETk5tUrLi6uiG5i/bRhuzuQZjkvX77g9RdfsLq8okgSijxHIFBaoqsK3x3x7Z4Qe0yaMQ0DMtHEqWH79EC/f2Szq3HSMp8vsVrg3cT6fs1qNSczks5FXFMzP79k2q9x+ztMkiDcwHT0BBzZ4oKpbdn/8DuSF18hkxQfHFPfEGPk/vYjQxBkiUGElGc316RZyjJdsNvXDHWNTXPS0GMSjREp51dX9IdH2gH6oac77OmEY5om7j+t+e6HtzyuD+TWUGYp/+aLZ8zyhKzKKXJH337iY/PIw3Bk890j1j2Sk5MZSV6cnkNlUkSSslQC50aYRho0RZnQeoGMmjIVGKsIxy1JIgkh0LctqD1IMFbT9hOkM3QAZWHqBqYYCAYWz1+RRocVhrY+kqQauTpDxh7R1kiT06WXlK9+weHuA49PD7ipYxgdY9sR3YjrWt58uOViVfE6yciSDHcc6b1jP/TAqb1pNZ/xePfA5nBEa8XZcokdW9rDHpulLFdLxNiRhwQhBOKzB/Yzn/mT5nNo8pnP/IkTQuDj23f43qFJmMaaNgTefPd73rx/x9Y7vlhd8UJIqijJX7ygqxuKtGCRanw3UG+PbOod2SKncwI1Ksqiojn02HCSih52I52ZUChKM9F/eIc9uyE4ENGjENB3MPSItEAXOTKdI6IiCotMc6ahIyLRiyvi2JPMl8RpYmqPiChQSQkkEB0qKQl6xApN8B0iemZFhk9z9l4wtRODGHBxpPvjPrOQFhEjvR9RBqbY41TCMBz5+PjEv88tky7ZpwFzaFhe3ZCYitEHbj+956dffcBv71i0DYmKyCAYu4bf3W153B6prAZ9JLGaIKA9NryaX5DZBDkOzPIc4d1JjocgomnbCQKYJGX0EpOdVkSiVJRnZ7C4JuQrBmuRMqOv90QfgUCY9igihgnpPVGfvkfvJAh78hu0LcLkkM6IsT+teCwvadePJIklNjXWT/zh17+lKHN2Q0+al9xcP+P49EAMARc8XlkKo5i1A/djx+FpYBhHnHckK9TqhAAAIABJREFUWlFaxbbrcG7EHz1SSFzfkicJqTXgWtJccag71n/4LdnlBd6DlIaBgPOCvuuxycCEQKvA6Hv2TYuIPdLmDJPAM2HUjJtU8+4PP/DXf2H56vWKu4dAVlZ8uH9CDhPXZ3MSscBFmOc5h8MASNrBscgNk3NgFWEcEMqT2QQx9CTljDg2ZLMFNstotg+AQJkMHUamYLA257ityUqPwuOjQkeHTnPk8gw3dEzTSDVLwBqkNjSHHTbL2G72TD6Q6UDTBpzzSOcoiiVKK6bJ0XctI4L5bEa66cnOlwwItrsN8+WczBYIJIftgeyPIZzNSmSESaf07eEkgK0WOOfZr/ds7p8Yu5Z5mcH1Jbs+8LTvcNPIZWGZu4Fxs+c4CtbNkdfPZ+w2PdtDd5oAI5AaRaYkhMh8tiROLYkWTNsnEgleRlAGISxSCy4vzlHGoqTBKEnQGiEtq6++IfQjUml0UUBiCT7SDwPCO/ywh2TCqImxb+nbA129QRmLNRqkOUk2Q6DZbhAmJc0z1o8H0jJls9+gU0XUEltYllWKl4LMaIxSyORU5VxeXdPedzjX0k2ePEuJMuJxeN8TleHd7//Ax8cjF1fnLM4uePXFS4Ky1HVDu9tzbFq8C9gkoxkcRhu0UghtcG5k7BqKLGOWGWK7oyfHIvFCMrnA5dkMHSas5CTPNSnRjWSJQSlFlAo/jUgiQqS4tsOWJUk1I0wTIJFaIbKU4BxmtkSmGW63QQSHiYJyURGdQ2tFuz8QgyNPLIqEREM3TUivqD/8TJZkqLKgaUf6vmP+/DU3/Uj9w48k3cAUI/MkoY2QJSl936GNxgAxSh7uB84uXmGEpu237G6/Z24i/d0HUnVGOqv4i6+uiWPJcpYTIoh2RKoepSTK9TRTQt8JlKh5Wa2otzvSRcUvvvmas1nFOAmqLMf7SJrlVNXANAzMioIiz9FSk2YlQlmknwjDyNDWuO0n2s09QSe4KOi7iWM38fOHdzzcfaA+bFHyFB7MqopUgRKRphupCo3CU5UlnYukVcmoLWJ+w9O65rg/kKhTWFxvnhicZ78+cHF2JFWBdrcluoiUhqoq0Q5+ef2c/XZz+t13DYf2iFAJ3nuOhz3atMzpUYmArGD/dAtCUqSGzf0jq4uCp/UWLxU3z65ItaJIE4wUfH21ou/B7XaE3OOaLf/j3/w7Wkp+/vGeX3/3nmHw2PKCdQN9P7AqBEkYCVGg2hqXGazVTNNEVpSkeY6OkOcZpc2QWuH6AmEU4zBQFRlSGSalkNZiyhuaw4E8qeiHPVWRUiyWHN/8lmBLTJ4RrWLoezQTRiZMXqFn5+yGAVXNmfUN/jjREghmQdcceXVVIExCNzncNJHYkrpxkFgKmxDiwO2u4/xqQargm4Xh4BWZiJwvK1SIiHFC9z1FmaCzgrEfiTH+K76pfeYzn/nX5nNo8pnPfAapUg67R4R0rG/vyZTk4f6e7X5L7+EmmzN2Djf2DJPjcb1BCLiYL9jut2zqDYkRVNYTAkQCgxiZji1fV4a63nOdKN6vO35xlRMOR/qQIvIR1YyUlzc4J5mOB2yWwH6Nmj0jPOyIxzWszpELgU5SQj9itcI7ScDiRcSuLpgnc1RZ4vue/mmP0Skmy+m6FqUMKkaurs6w/USvE5r7GjkzqO2B7bGhnSaiEHgByk/IIOgGR5UpvHPIKNk93JLNUv72b/9PpDRwzHj94hte//lrnp2fcTzWdMIxbt8ytUcWZcrj45b3j0ekStm4SDFzjF4RQqDKLUmRs1gtGbdPzLOEaQShJFEb+iBJi5zlLMUrS9MFPj4+oEzG9etv2NeR+58eWe+/Jy9yiiyjyFOKxYosyxFuIjQ1RWKYlQXJbIVIC4QeETZDK8d07DDVEq8tzfvvEFogtMUNI6E5oJlYljnGGo5NzWI+425/YLd9oihzqqJECIXA07tAYRRL5XkYTo6PKC3j0BNRuPHUTuSGgRgCaZ7TDx1GK3ZP9/zqP/4tY73mr17nnJ0tuXvqeLi/J89LkrRgdJ79foc2ls2+5uKbGySK4rCjqY/UfcfVq5fcXFuGbUN7DPz0m1+zOr9Aqz0zO6DGSBsi79/dMw6CZ1c37A49qU5YXj2jPRyQCork1H6TJSnKWLS2iKBOazzpOTrRBGPJLl+hJAQHk1AUs4qhObI4L04rEd6hLQTvEcogkxV+rDH+gFaKGC1GD5RK4tuaYjGj7Rz9OBGDQ7qIHicQNVfn50QEQ9+zXW+wdYsMnqvXX/P7908sK0PTNyitcUPP4WmNTgwhOMqy4N3mCbOuSbQny3KcUIzNkbapEcGzmpU8O1vgHdRd4HFbU8oJKRK+33a8vLIc1y2vrub000Sfr/CHyNg1lIlmldtTQCMjQmnCaGi3e7Ikxc5mSCA/uyHLM7QIp9rmbIYIIKUlW56RLJaEcSS5LolB4bsGkQliOLVcBa/Q2Tl2cUYYJo71gWgi09DSbLd453GTJy8KwOPGjrbryM9SZouKKCVT0xC94Iff/w6jLTo1KKMYbEpWziikxGsoL685u1ji9g+4ZovKDFFr9l3HpBJa5xiw6DxnjJpoEy6Xc46Hmrdvf2IaRlKl0WXGw65F21OLi5QK5z3BOeLQcX75msz1KClg7BiVxpuCaTiSZBnODRR5jjIGIQTLizOMtXip0HlFdN3p+5SB6sVrbFYwTRNmPkcmBVFbTFkhxwFtLVPbkJTlaYrPCPK8oFs/IpKM8vmSyQWmpoboEUKifMAAT5860oXETafnpl5vkUaxevaKq26i/vCRcXKUiQUEqbW0bcfQ9SilSRNNPwaWz79kbjPefPf/oVxL29UoGdls97xYlOSJJtoZk5AM/SnMzNIENzrW6x0OhZIpq3KGFArcSP14T71+RAVHmlVICZOb6Iee3W5HphTLsiAxliRNkFoTxpYwBdzQ0z99Ynv7DicUTb3h/tMnmtHzeDhdCAzOUaQJqVBs6o5t0yP9QJEaTJqx3m9gqNkdKzya6vIKnRYIUuJkKLMSXWUIrU/eKNmSnp2z//COaTVncB67ukQB54sZTicEU9Lut+y2a2I2Z2wcSVFRFil9U+NDxPU1KMW8LHnUKYsqx0+eh+2aL4szVrOMn29bpinw4vkzdAisihSEYCAhTJ5P//gd2bLibPWcf/+XJZt3/5F/ePcvjM7RhZaz+YJlbkkTTQyesRtIxo5WggsDwglG2bJpT1XU18uckLQwjiwXc4rZEtwAcSQiyYsSrQ1SJQhpwQcSlyEkiGFktnrOYZiIMhC1RqenQDoJI6G6oHr1nB9+9Z/YPT5yUWTorMB1HdM44F3A24zZ2QX5OOLRqBjpfKDd7Mik49AHpE6I3oMPbAfH2SwlZjljmKjylCLzSBFJ8vwknh/af81XtM985jP/DfA5NPnMZ/7kEViVIqMmL2fsq4bf/cOv2G6ekFlGeXYJWvH1t9/QhYlP6w3vf/6RX/ziFxQ2xWUWsZrD0JD2HU0IpGXG4FqiH5iUQOiA7ydMPzEjQDtgyxG6huTFnwEGkZbY1StUXxPbLSItwI0ovYQkIdR7mCbC7sDgIt45SHKEkgiTIYucoBNUaamuI7pIcINDB8E4jiiTcraqsH2HyFoe+gDnX9CHHxHGIpqaxgWkNEjARoHVBhUDUglSZXi62/HLsy9YCMcf/vkPvPlpz/G/a1ks53zc3hEax2K25BGBVJpt61hvG6wQPNQtWVbw08OO89UZRWbJlMSKSJlYwrwkjiPLy2uU0ph0Qhfn7EeJmODpdkd92EOYaLpHHg8NUxD4KHF+YppGlrmmygzVYkmRZWQEns9LTDljry2zq9foF1/gpwhiZOprRqeQJYTOobMlU3QIBdWzFxzf/UC33jM1LVdnZ/ztP/6e4X5PlWj81HF/aJgVDdWsojo7x5scRWSRjXw8bGj7iSgk3kVi8FgRqdKEYw/OOQJAiAhliC7y+OYNz1cpMlY8PB6RKiEGmPoOGQPBCVCWqR9p6wP//J+3vPrmBVO14LCtkT7w4mrJ/v4W3+wY9zWhqHDHhvW7j/zL9x94tSgp5hcc1h0X5YIYJH6KJGVB3w0Io0jLAhHd6VZaJZiiQqYV0YNXiiA0CEGcQMSJQEBl6SmgGzp8ouiFx0qDzVKUT8iTjPGwpSgMYzuBV4RhIIbT1I9KV4Q8gabGZCNazmj2OwYXGfyA8oHEVlgdCTLw6uYKWxqEyan7I2+/+xdelBlffPEF2qTMqoL7n9/jrCExlnQ+wyQJ3dgzBcW8WrKva+aLBbPFAWUUwgeiMhybhv32AG5giI4DAu8tYfQkCtIiZfQ99f0Hnt7fs8wNVaqR3rOs5hRWMx12zBZLgtbksxnGZgSdIfIzZJow7O5x6yf0uiXJCs6ur7BCkciEwXtUUqHSnKYfkQFsnqO0BSkZ/cR03GLKFJuVlOdnNMc1+erAcDgQ2oZBRQIam1jGQ4cP7iQ3VQaERIRAYi2H3Q5xhKI0qCKnlw4ZB2RI2TwErp8/xxYlusxQ0tMMLYMbCdHjEAQpqPcHFmcrgoik2vD9+/coqbHzgnp/RLUdQz8ym80Yh54QBH1zRAnBszLl3NV4H3ACMntqp5JCYIwhsZqsMGTF/CQOHTvi1OLCQDpfIvstVguUzdF5gUhLsBkyzZHFHF1UTONEjKDTFBEjSmukNX9swlKEEEnONb7viBHi6Ig2wStDf3eHZcTGgfOLG/p+j04UTI6uaalWS+43e1aX11S7mt12SwiR1WqJsJYyMXjvKVPNxTLjfl3z/rv/zCcpKG1kOOwZszUv5gmbtuO432CItE2D1JZpGk8HdR8ZBsfjpmU1u+HSrHg5aQ7tnqvzM97++Iau7dBJBvIkah27lqenR/qu49WrF5RZcnJv+FO989Qc6ZuG/e7Ip/dvEVITouT9p08M7ZEIRASX8wXKGEYp2T7eo7XGWEMcA32I6CTl2LQ0dc1SWPJ5iTKK4HqU0YToENoyjgP9NCCkRAoYvGf7+Eg5Oa6+/TOyWUXb9oSh4+HTJ2RW0Q8tzTBRN2umaBDWEvuGsigYhOJCXTMcj8gw8OrlM1azlPfv3tEc9tynI19cn3O1KvnQT8xmS9r9htF7Dm3PL19c4cYjt3c1Z31Aru/IlODLM8XuZcHDuubNZmC326LjjCxJOIwe37WIP/qiQh+ox5asiYzOkSrBwyYhY+BZbpmOOWqqKYqSgESYFJNJhLEQFUJElJGMUaCsRipL5yYSm9HuN+RVxSQlWVkR2p6gSzbf/RM3FzPmckRKzUHMsKuc6fGWdmw51jWP7cTq4pLUWibniNNACIG3T5vTJYoccePAKDQqyXk4dGTdiKwKkslRVTmZFgzjiL+/JctnnydNPvOZP3E+hyaf+cyfPJGmPSKt5er5a+5v71iUK5TUGKt58foVz87P0Vrz6e2PHD98pEwSXq3mFCoyKMFAIM0ynAcrPYnSjE1PEgLd4UgqIvUhQDS4UOCkxVESO8nw80fM4oIQt8R0QgoP0aPPrpBziZTgHm/RswUhgKg7wjgitD1JTqXC9S2ud6jUncZ3qzlojfR7lE2YBsHq5b89BTm5YxAPfP1C86bp+eVf/yXf/eM/YJKSj09bnOhRNsMjEFFg/njLuXt64Eln/G+//j11v6aeRjyeNz/9M3/xV9/gMsv9D/ec9SlKSrog2B972t4zCkBIJu9RoyMxinmRnSYSypyyTFG54vHujrwq0Lbg2EZ+ePfA9tjQTY722KLjSAR27Uj72KJsgjYJZ5c3lIsFXbPG77fEfsCUOWWe0OER/UhiU1SUjI8P5GlOP69w7YhYXCMen5jaHdlqSTIraO8/gcoxi2u2b97SPa6JQTIOE7+5faRKDdezjP3YM5sEi6BYUSPzGV2953w152Z0rI+37LsJZS3OR4Q4eWVya+mm6eStkRKlNJdVihc1wxj58UPN+XlG3w6oJMOSMDpPmhfUdUv0gbrpqduW3x02zBYXqKTky2//krYZ2Xz8wOvVjFdffMXvvn+P74/oGCmkJLcpQ31ER4mSlhACVhuKPCMOE4vzJWliyYoEbSyMDi9KjrUjOo+PEaEgTB4dR8qyICks2kBTDzBBfThgr54TjSf08RQAoMjzDIk/PQdaEEKKCB4poHeCXciwF3N812OmjmWS0DYt09gjjSLRApznbDnnw66hymaUr17xv/8f/ze+a+mE5Gm948WrJVIJfPA0zYCp5oTg0AT6zmHLOZiEogRiJM9LNusdZZJwqFtm8xlN06CUZOwd91OgUp7NYc1XXz5n8B2f7m6xOuVqrkmEJnrPPE1ZFAbh/WkqIkI2O0cVS1qZY7Oc+82ebveBODS06zumcWK1OOPy0xUvv/glWX5ApJYoJDKxSBVIigoh1Cl8kxEZAC9PjgEfiWMkzc5x3URSKUKS45OEfhgJUpBEiNEhMEQCRWKpmz3Las7TwxPGCLoOdvWWvOhZzDvilJNmFkWgLC1SQFZVaG04rm+5v3vAxwktBKmx3D08kSeGf3j7lj/89B4lJcOxJ7X6tG6hM2KAEAUxBqwxFInlMrOnSmYfKdMUwekzS2CWZygg+MjkPXboSBN58sMYC37CJBaZpoR8gUtzjDaQlwSZIJMUYkQRUBKUVMTg/timpYlKEMYBKQU6ydA2YewGjJhwsUetnjGzGeP9LaHdEJVhNAv67RMaRV7MUVlJ3g8EN3F2dc3H7Q6rFFZqtNaE1GKtRhvFPFP4eUrdDRgRWaTpaSKpqQm2oKxynBt5vP/EsZvop8DzmyvaYcRoc1p58hmlypldXXCMNU3XcjavKPMUzZJOWHb7Gud2tG1LllhW8+csypNvaJomtk+3NPd33H74SNs7uqZjmRcgBX3bYUXk+uXL04SO0aipoe9H+q7h6quv8eEkEK93EzKMxGbPzhrmeU5Wzbi4OGPsGrx3pOUMYRKG446nu3ckizPy82d473Ahki7PmZ3NsRri5DBKcnW54mF3wAWP0YYkL/nx7UekSSmqElxPP0jy82twG2ym0KZiWWky5YhjSyKhHwY2ux3zeckvv7rEOYU11zx+escXL0oKPfHpzTvWG4GOFvyaj09bskTyV39+xdufPeelY91bUAYf4NB0KDeRSU09jeh0BlrilGG5usKmGfcff0APB3a1pDw0bJuO1+dzlssFQq7QQp1aioYOLUaECCjdMU4DjAEZR5Q0ZMKRJglaKpIsxSzPSeZzIpE4TSyvbmjWa6bHHYd+wuQFqh/pjkfWj3ccDlsurp6Rzyq8m/j46QORgE4SpAMGTyIiUkQGZeiiwh0aRg1uHKmyBCsDLkRk+Xiqhv7MZz7zJ8vn0OQzn/kTR0jJ7GJOCNBtG0TrUcKihUHKyNR17Hc1+AnfjWihWK2WZErSdQNBWBKtOa9SumOk7joSoei9J0ynCkqpJdFIml1NPSmaTuB/2nCme56vlrA5YM42RFuSZzlmMSNOnlgfoSgQDpg8cXLEpiUg6ccD490DUlmOdUOSJGTLOXJxzuAiVkmCSNGLhFwIQhCw2eDrLYuzhC9mLR9/9wZt4YsvX/Ljd39glSru9y19cJRVhTSnm9nMGJ42ax4SjdOaH354RzrL+fLrl0iRM/mOb19/y9ANLMXI+lbSKUVAchw8ViuqMuN4bNl2A0I9YZSgGz1FlhJiIM9SlpcXrHc1q4slP374wIfbW+43G1oXWK3OuHnxCpvPUfXIdP9A2x4xfmLXD8jzORcXz5CHO+YmUOWawgqUEOzqhnkB/bufqGxCmC0Y9xX5zTdoYzjefaLvamKUpJMntC3d/gkfPc3g6DtH3bRcJYJcCR4Pp9rNIkto+oHbfUP6eOD6/AwzNSyKM55fXvHjw4Z6GGmaI904Ya3B+YCIkdwmtOOISnIkkjEIkBnv1k/Yfcfh0DErc67nc6bREbzneOyZpomhHxjR+KjZrPc8Nj0vvnyFU0c2H2+ZuoH1U42WisPTR0wGeZpyeTYDqbhbHzmfLVEmRyqFsRaRL1gUFXlusWWCSDNCGOm7ibC9x48QQzy1aTiHloEAHIaafkzxTx2Jkux2jjTL4P4DtloghYCmIyQ52XmBG44kiwtCcNiZxnU9ahygH0nI2B2O9D6Q24wyMVRJymH7RNcN6NxS5Sn7fmJ1dUlyPufv/u7/IbQ76AOjkWwPLedjj9WSrj6c2maIpLlFSkW1WDDZnGYMLLPT/n6RtqwWc7brDUYb1k97hm5kGgbG0SG14bJKuVjm7Joa7XukCOQpJMKgnebQeJ4vM1KpqKoZRhhcPTIMPYe7dzy2gUlAU3d0/YRiYm4CuTFsbh/5zfcfKf/Ld6xmS9Ik5ezlGd/+998yO18xdXuSLGeoW/KLcxAGWRZMzQGpLUYpnB/IyxlDdyQIxeg9XidM0lDanL7vGcYevMdo/hgqRfIso+lbotZkRYHznq7tKPIMKRT1fosTE0JFdoc9Z5fXp/U17/FYEuc4Xy4IWhGGke/fvGfztEU6TyoFapaTp5fsR6iPR5q2o6xKQtdR5QnRTUzeIaUEBM0YqazCRkeS5qepE2uwaYJRApMahEkRWYETcAyO6GCoG9y+4dXlOcU0oIvTRMIUPEiJtgkhBsauJ8kLYhQE4qmWWGtiEPgQkOEkJyZ43H6HiRO+TEnTG+J/rTAPI7uf35EpyXDY0+92DF1HVVXMqhmuP/12HzcbqtwSpUAoRXQTiQZT5mgBywQmPxL8RD2Bjo6uO3mrHp4ORCRFagnB0yB5qntmyxvO5pBcSQ57ST943n+8w9gEj+Tubk3XdqRW8+z6GmMTtICpr+najh9+fsvHn98zdT2zck6iJFVVkWYFwk3MygoBlHnKOAWS1GIyjV6CTr9AKcFxs+b94y02Uah0gdcJqXCkieH58yvC0GKjodUJSkpG74huYPSOzCZEIUnyjHJRUKYJTB0iBkxyCmkuUsN1M/Lh4x3zecW7pw/st2tWVy9oDnusgvm8QvY1WkK0CYPzVCKyfnzAjSPRez7cNzAGghckqmG1uuDZs3OWuaDKLfuHWyYvwA18un1i8/iW3bFhEoqzVUU9ltzXO1ILeZnz07plmCCXkigNL199TTmb0TU9/8Pf/E8ooTg+3dLkAw+fPrCPhiehub+vaX2kurvDaE2xfMa/+Xf/AU1PvfuIkjC5lrE7IvIFSTHHpgmnkU+BTTOSssQWM0SSgVAnofUUQCyo7/6ep80jfVPThdM7SD91uBB4++5nLldzRjRuGti3PdoOnC3n1P2RRJz+j1ItUdYSJk8QkUM/UNcN4ziwKHNatSGEz5Mmn/nMnzKfQ5PPfOZPnRjJ0pShdGze3UOAoe/Zbbek84qs6fjyeYpvI0ejsUZwc3VJFBrPRFHkJEwIbVDFHDVNuADH0VMGw3EyaGnYjI57p3n7/SNVpnmWF2zUkQxPrAoWr75Elmf023ucGgnrW2xxjm8a3G5DXN/jhaRd3zFGeLh9oqkbTJoTpEHHSExSDg5CoplfFpSzEmk1KjMMTY9ZWLL8ErerqUzOZfZE2yvmWc7l+Yq+bTBCnl6W3IRSDlHMyBLJi+slQ+g5bANGGbpdg5+3rF6c47qODM3N2SUffvgN7lTzwRRAG8MUIg+bA4tE0Ywj6+2e19cX+P96GJIgIszmCybZ8Y/f/cDf//Y7hnGiKEr+8uvXnOUpXdeR2BUvSsOCBZMrOZtVnL38ClVe4fuB+37G3TDyuG+4nlmu55bFKsdNI9PUo5SnNAnMl3gJ08Mth4cP2DTD7++Zhj3DfkPUEjcOLG9u6KKnfveByzLlq3nGh7rjp82R61mgKDKUVAgC0fVkiaabHEVZ8eLZDQ/tT5gQ6SdHN5xG7WMMEAJ5kpAbiQoTLhhmRcGqP9BNjl3Tc3O+5NgNJ9mvi3jh6Q4HiIEJwxgis1lGViq+ff2MKkqSRHI0gTKLCN/y9UXBbt+ySGdEEfh0f8CFiLYZJi0xxrJ48TXF2XNkphnHhqY/0Dy8Y+gapAtooclNggzyFBKowOQ9CBiGkX5skZlhtAGtLdJ51PHIoAz5bI4/7nGMHD7sUXlCTFK8SIk6BQMhgEwluQkEAv4Q2R163DxhnlvSacSHHdGPCAJFueDyy2/4u3/4Le3mkfbxievVNZdfvAQ5ItyEluokeT0eWS4WHNuWkKaY1QumviEYQz1MFEaRp9mpRURprDEc2w6hNQGBFIIbq5grGBwUZUU/7Li5nlOmCV3TQ/B8fXPGal6SFxUuaN5+eKQfoAsb6mGiGSMxyUAIlvNz5vOcWWlZZIbCJgzdQK4EkxOsyhWPHz/w6//rV8xmkvNZxeUX35IuVrCCOPa4qaMfWqZhx+gmoo5M05FuiKeVLq8xJqVSGc20RsQR6Xp8f0T5iTRPCTisVYxenw5EUXB+cUlqBXlVkqQnn83T4xPR9SRFzjQOWCNx0TN/9oL3d7f0E6yqFd2xJhFwmVlS7ykShalysvmKj28/IaVAEunqmmnoSe0cJTVZmqMkNC6QLM5xwZEkFqUkWV5ijEIqwegm+nrAJZ7h6Y5MeA5PD4S0QqQVxuaY/khhNWHqSdMcmWSkSUY6OyO/uEaalOADKAkRtE0B8G1DCJHQD/hpQAgoiww3KgiRrj1SJpL2ac0kJVWueX+3wWYlxiZstxsS4NX5Obt37zHRU1qB1QqTGboIQSYM/QFEJC9zpPSsMoWyksp43n66o/eng6mUkllZEKaRIk/Z1h3jOCB9i2BGcA1FoREkDE3NervDRY0PkXI2x4iAVgqbJPhx5Nh2/MsPP/Hx0ycyYzhfLBBKkhhLZhOsNhilKcr81JwlFTH22Cioyhw/jpSpJSpLcp2yyBXDzRKSjMPgGMeBKlGUqcVmEpfklDIhuoF+v0UVFYsvf0lWVSitWM4L8jI7rZ0pjXcTwQVQApNlXF5e8PNPP/N01yGCI4bI5uETtdGcX15h9g3uhkPVAAAgAElEQVTS9BRpRgiOYeoYfM27T7dsNnuGYeDb5YyDlpR5wrFr2a4PbDYbvnz9knmV09Q14+AwIlA3Hc5FyiQg05SHpz3RFFxfWR6etojR03Q9y+Ulahr56osvefb6a7pjzf/yN3/D9euvmfqe4s9vaD7N2T8+g2rF908Nv/qn7/h/f/qeF5nnZS7ZHQ6kieL5xYLxsMYai3SOcbtm8aJAIbBpgbUlQqfYaok2FpOUYCzOVuwnze3jjod3T/z06cDvf/cHNpsHEqtohhEVA4lxeBcwwlOWJVYI2q7FtQ2Tm6gyi5KKLigmBEoZ2uORddvgnSfTinluKVcLgrH/ii9pn/nMZ/5b4HNo8pnP/IkTY6DrWspqhqsGjFIcdweENMxXc6pFyWx5ySFuidsdq6qi71qOWiLHjrMyozcGZTO6wz3zxJzqWIOi85GHzvGp6XnsO6boKTRUArCCgYFRwNFJZNuj7YEYanQD7U+/Ja2ukD7AMBH2O0hTjscdrh9pmo5mdBzrB3Jr2e5qgo28WW+ZlEYZx6Kw2NwyX8zJdY5JU6qrZ2RlQaJyXrzs+c3vvmMSiiytKLKS5DhRx4G+6djhycPEyqa8fHWBMJKpvuNeBNqu483PH0jSit8+Tbz4+j/w4vqGDz/9E80kedj3OHeSPTbdiJCK9eSYWU0/9my2ay5WC0TwiMjJY2ITlssZm1+/4WJZcXF+wbyasZgV1Jst7TDi1g9YrVhoSVLNef3NX3D18musMozO8e23X/Ghmdi9+5lmt+Eh5jy7vkZMLUwDw+6JdLVCacX241sO959YnC1JMk2/vmd9v8YUOarMKF+8Iq6WSG2ZdwNhL/lGWjpp+GG9J9GaafTMZhm75sheC45KYjvHvHcsZhVVteD4+ICPkQD04whEQFJUc1aJpsosXsD5as7huGHdjpzNS5ASgSRGyRQC/dDRDQOTc0y+wwtg8ChzzrAZeffuDcofce2O4qrAdSnDAOl8SUvC4E9tIkpqbFagbcbyi78gffEt6etr3vzm7/Hvv2fqHhj9iJQKqxQqQJGkLGYl3oBQmqlxmDQjjj1BBY67A1EFjsLz7GxJHEbc05ZcF39sITG4tiFbFLRBMnYDwmrMAmwCRhusMYgkxVrLw+0Tm70jm0n+7OaCNES8G6lKMEXO0+1HqkzwfJawFZ7tYU/VrTluDxjnKGfXFFXFtjmyPexZpRqrMuqmJkTJMPWMw8C2HzD6JO30RXaaQPCOfd2cpLdBYbSk946bRUGP4PXLK2alZGomXITVsuKrV88Ay27f8fufP/FUj7ggGaVGmpQ0nVFUBcVsRZkX4DsgoSiXVFXOdaIpZxXeOc6rc27Ozhnamrt3v+fJH8ivBqQ58vDP/0S0MISBd29+RBnLuj7w6e6W9CylLJf40ZJbOLZ70qpiXhWnSZVpQoQjKoyYAHlqaLOcUhtcPB3UpRRcPnuBSQzN6FH9xI/vb/F9TZZqrp9dU5QFUVhCMgOpWa5mRCRP94/oydEPjjYKzpc5z15ccuscRZ7y9HDHNI70w0hmLZk+1fA202kqpT0eyUMkm82IgJZQ11uMkex3I7ePTwzSkhrP2PdURqKngWPYclGkmDzn48eJaRoI44QAqrMryqKkPjT89f/8vyKSkjQvMfkMnZVEFfDDAGOPEKCJaKuJAoYQmJQlWc0Zwy2hq1ku5qip5zhbUHgNCCbvaNqeGAVRSlZZTr2vyaocayLWanwQKCWZlxlN2zFNAyOScnI4d8AXBYtZxbu7DS5GFvMZWiu2+yOb7YEgBEWeszhbsDy74Olhw2p1jpGCnz99pO57TDFHyJOIXEhJcCP7TY8MnuNuw267oe8HEqNojhuOuzuuFjNuzq9JsjlSJSghSPKc6CfmZYWPkX5XU6QGFTxhOlKlKYOIVGcX9NJwpjxN7xDGYnyNP25R2qCloB0aYpITbEaaJJTzioSBzDiMESR5gc0ygjSEacS7ATk4VssFRZ7y43c/0UbJYjmn7weenp6wSUZWLQnNwH67YbFYkGmB84qx7f5/9t5rx5EtzdL89t6mFTXpKjz0kSmrqqsKlQMMuhsD9Bv3oDGDKQxqsrJU5qQ4IuKE8ghXdGoaTdveNhee06+QF8e/S4IXBGg02l7/v9ZCNzWjKGQQeiSegxSCpm7Y7ra8vZzz7esPfHY+4mTcJ45Cqv2OdFPTtBrbalncXHO902xrReRKjoY95rXClpKmLjkf9Xn66AzluXz94inPXrwgHE6wHRepS8rAYjgZszmUvAj6aNPxyrPZXL7lfZoydFoWv/0P/v6rZ0wjFywHz/MxSZ847iGTCQpBc1jhDmNsFWPZDtILqYTDTlt88/aa9+8veP/hDR/ef0uRVewPJXVT0vd9lJSIMmfsWYiuw0LT9z3edoJDUZBXLXW/j64FdA2Jq7CU+p8htbQNbdMwilwm/ZBKusiHyuEHHvhR8yCaPPDAjxwhJKOjRzSbim0radP7YM6w18NWPjY+eV6Qplv2+xXNYcekH7Ff3DHpJxgkUX9IWRRIrTECikayyjW2MazbkrqtSYL7id7TnsvjwOXR4ISyLMiNpLA7fv/tv+J7Nn7nIHXLsviGl9Njjo9PcH0f43p0xmBFwX0ta1uyS1MKYyjqBiEk6/WattTc5Tu0KdkFLoWU2N4av+cTRSG9KmOQxIThgMYGx3eQWUaWFQRSEFmK0vXYlxl13eD2A1LTkhUFYaf48osxMmyYpwGdGlG3HavlLT+8/pbP/K9AetytNighOAoUWjpco1kXHXWr6bQh9F3quqGrivuAVNdBCklXa3TbkoQBk16AJQQm37MsU1a7A9mhwMszLCURlsvQ9tmVmnCf04tielGM2x8wlBaftObV4pbb+Z7scGAYBRwPY2y3z7bqGLmKILKRYkKz33G7WVDuduh8g3BDUiOxP7zFjRRCCuTxFOnZjHoZfzOdMr5ZcdjtcC2b4XRCKuBmvcMISOsG2i2+F/Do5ITVdk3YeWzSPfL+okNIeT8B7loEgGVRth7Hp8f48X3F4/5Q0TYZtpQUVUt6ONA0LU3bUtQNlWmxA49fvnjBzXbPcjvn2cjji8eP0MrFtl2kluTZgbJq/mw3aXD8BCsYEE7O8EfH4Lm8e/UN6eotvt2Spg1eP6FoKxarNXYFohX4gU2lWpRr4SAYuAlep7AlpHlK2tSUJmc1X6IajWg6bOEhLA9lNJvNEjcJyeqKOAxIkhCuajrZIns2fhzdb1O0gkKvaWrBn15foH/xkpktsIxGtg2maQhEw9kghK3HySji5qBZ7zLSxRZp4NSJkZYiikLKtqWo6/tJtmXRVpJ0l0OVU+7WOL5PbNkoaZFmOdp0FGXBIPAJ4wDVaVxbUaZ7GjSzr78AOjwkZVtz9vgpXSNYLlJ+/+4Tb+crFkWDEc59jo2y6Hkhj5oBsW3oxx6DwQQ38NF1Rb1ZEQYe2gIr8mkp8SYRsUoQQct2v2C++kReedwt5+QSPl1vmN+uyDW4juTQ1lx8s6VTgqMw4CiyCUKX2kA0OiHxXAQNHQohbRzRII3GwqBcB2m72LZN6LsI3aBbwd1yRRCck9cd6a5iatlo09LqhmB8im3ZjBOfri24KyRZWpClOcfTGdPzn6Oza84/O8OsNYt1ikDQti10htCxcMOYqiwQVY7lufQCH8v3UZ2m61rmd3N22y2u56DpWKY5Rjm4qmUQ3tdiPzuZcNIfYisX3baYRqG1xo19sjzn/Zu3PHpyThBEfHz3Ct9PUJZNpw2O5xH3JwRBjLRcnKSPFccUVU2+T2k6D3c0oSxyCnXAsVocV+K0hr6nUGHMJi0piprJ0RFCKoqqwskyciOwXRdX1kglKfKCpr1v44nD+/pjF0Oa13hBSFaUpJUhL+8bfqqyonYskiikqWvmuwPjs0c8e/aYo/4ZH7+74rAsmN9d8fb9R07PT8G0FGmGF/VxnJD0sKczHb4UoBuqMqepa3QDraXoTIXWGU2753Q0ou/2cOwjfK+PI1sEBqN88qxBp8W9iCstlKtxgx52GEK2o8lzAj/AOB6ikygEotNkbcumgdb1GHgevmfRpWvcXoCyFdK27xuyrPuDvfyzWGV1kiDwmM1mfPfmgmyzJ04GdF1Hvx8Dht1mRRBGuI7Lbrfl0dkJs6OEbP4BX0nyssbzXEzXIRFEgc9itacoG7aHkk93G8ZJwCxSnPRcgiimMpLVvuWQa3y7Q/z5cxmh6BqNK+BIthyFPhI46iWMhkOUG2CETdVCVQsyHYJt6KwNbr1jYHf89VmfeRezX7XkhwNtJ3n94SPjnz7Dsh2apsLxI1TvmLYyWK5NmxYMTkNUoBC9mMZxKDrFf7z+xHcX3/P96zesrt9Rr6/55RdfUJ0dkR12+ALwehSNxs03+I7Bti16ssOzLDatRirBNj0Q2AKvLcGN0XWJaBv6SUJT11h1zmdHQ3QnGY5GIORf7kHtgQce+IvzIJo88MCPHCklkeNxV6esNje8f/M9QnVMz0756vMvmc8/8v7dO8rDHfPrK8IgoKwaKFK60MH3R/eTorrCTSIulmu2hWZT1gRSYJqa2LHwA58o8BiHLuP+kOW65Ha34dVix7woWdc5nasIbUnk2ggp+Hiz5R/yktPTE6wgRnnen9tNFPNDyV6XVHXD2KnAtPRil1x3eKWNZQnyoqYQkn2ZYlsVN7s1fLhkGAeMRxO8OOHt7TuOkwDbhST0KZuapgOhOqoqY3s9x5vWpKFLLFyUrDifzjgehQyeP+fDxxW2O2e7WiIRfPn8C+a//u+A4KvHp/RDn7vlij+8/sjF3Z6q0WRlw3QSc2gBKe9tAFjYymGfV8i2xbEVu+2a9S7lZpexLloKI1FSMQh9hlGIxsYWb9GrPetwQNIfMZ0V9EYDjgKfcjLh09Ulb7//Ez8YTS9OiKKAke/x/PyMJ+MQoRtaobn48J6PHz+hRcehbdkVNbXtUuuKyBcoAaMkpJd4jMcjHn3+GXev3hIrCD2P4+GIs+NTFume5c01dXEAIfDDCFvK+wNB4P//rgDyqqGpS4ruvomm53sYx+HseIr6qLk65DRCEsQJm9WWNCsoi4qyrhBC0mHu7QvxkOUqxxzu+MWLE05HCa5tY1kOTZljiY7ctHTtfZtGY6A3O2Pw5CWjJ1/i2JLN9iNReeD8s8/w+iMORck2W3AotuTZH6iKLaYxbO8ajHWfAyE6wV27whYKWwmSQcy2yTkUOZY2NFVNHMRIqenM7v7QpitU09Eb9CmVzaFuWR1ymk6y+2FDo99juTbHZxNGScTIsbi9XfE//nHP331+zIujIV7og23hYFFL6PUH+PYdZ7MhxDH1bktTV5RlTlk3eGFIZwzK85CuQ94o9tuU7eKOKttT5xmW6+CcjKmblrIo0VpjWQrLkgRRSGgpPM+jMSX9aUTcizAaNtWeyXCKb7tcX83J0uze2iBgEng4lsvATxgNR0w9xemsj5P06AUOvmNT1Afio3NUvcI2mjxNUXVKZW5QjmKYxBjPRumQ5rDnd9++4fvbO243Oa0WdFicDwZoYzhKQkZ9i22WEkpB3B8SDwbcrFM+Xl4RJxGxBePRANM0KFPQjxy2W4PE4NgOlgXUBaJxmMxGKNsijHsEYcBht+KQZui2D8plcvoUt+1oXJ/1fsnqeoOsS342S/jb//a3nPzVf2W3/IjnS/LXS9TrTyjbxXcNWjWErofbdXi+B8bcN9nolpu7JVHoke1XbHc7LNtBC4EtOjoBcc8mcn16jmB2MiEJA2zHIhhMEW1JU7X44xk6y/CCkN5ogu0FlGVFubgDPadpDdlhh237PH72OcPJMTIcQKapZc6rH15jKQVSEiYLPnz8yO3NRz5/NMX17sUZvUsZ9RKsrMSPXBzniMMhoxMwigJub24ZDWP6kUeuDa5SlGWDY99vjcWui+U5KKOxpcBRAs/z6fkOlusS+i5tXbHNC7TRGA1PTs8ha1ju5nR1zXL+gSK7Y5R4jCYDVps9ndFYSlJmKWWRQSd4+eSczLNRls12s0brFjpNrWFbd6xudnxa7gktych/x2eTIU/GMa4bIr0p5eGA0RpLKIJBH0vc34etukR6Lo1t0xiDwpDnFRJB1QhuDgdq+/4/zzIVoshwHKj3d1j+KdIJ0Lqlyg+YtqHcrinzErc/RkpJHAVEvsfh4zW+cvBdD89RWLaLsATr+SVJFCGloBe41Ls52W7P3SbFGJiM+vQcSVa1OH6IsGz2Rcam0lS64+aw570t6buSwNmjLOc+p6WrCByLTmqCIEBaLtIcSBwLRymMVMiqwOo6ikKzylry/ZZ1WrLPc/a7Dcubj4yDjlloGMYe2kB/NiEfDykX1zhKMl9tMbXB8jV5U9NLZuTbLbJpCcZT+ufPkVEPa9Cn9Rxu5rf8+vUnfv3HbyjWn3g0GvDZ9AV9fUa7y3n8k69J0zVlnrFKNV3/KX4Y4Oa36P0lJt2RBAHv53O0qbCqmtazcb37PJPlektkK1y/pdMtj4YRWakRtqCn/hw8/cADD/xoeRBNHnjgR07XdWRZxmIx52Z1Sac6ptNTkrBPURy4vb7k+tMHAhfCIGSYRLi2IA5GhMkI349Q3X244lVeMi+gKBqypsW1BIktOO738KMhfcflUBT8P/M117s9NTW50XRGYqTANAbH1vQP+n5aJhp6XOAoh3hsCCV0oqOtS3zVMLRadq2hKg98OmSsm5bEi5mNEqSjcKKYQioulmuu91ustoK85HC35eY6Izo55Trds9xviWyXXhAyVH3KTiBKm1SBLVscNEJppGuIRcbNtubp188o7Yb/8p//ge/+7XveX1zx8fItHiD/XOt5dHbO0ajPeDgkUoJAXPB6kdGiqFtDlCSkykF5DpYGhGJ+N2c8SSjSA5/ulrxb7NhUhqzRaASu5RDHCbUdsrVi2gpqx5CInINw+H6+ojtsOBoMGEc+j8dTsvWK1W5Dcdhhqpw2TCjMFT33MX6bcnXxiaLVeHHM3d0th7pGCqiLA43oqCyb4VGf4dkRSRKSHJ8wi8cMhmPKyysCP8KJfGIlqcua4PiEcr9EINlsVozHE7b7PV3b0rMMo15MoxxuN1tq3XHISxJnwvjlF7S7G5TlQSexlUJXNU1rAIHt+oCiaRswhqJuCZuSDz98x/NhQLZ3ULOAqtMMA4tMQ1nneEoyT3NWaUGqPV48eoY/e4x/dITO18yEYnL+Szo3pPUsAqMJFwl1tmFkOxxWC6osI1+nLJYLMJAVBY1SlGWJMYZ9XWO7NrUxFEYzjEJsy8W1LKQFtqNwBz2c8QwVJDSWRxwFPFeQHVruLm6ZX13w8fIjv/n3S4azhONQcDIZcHGz5Dd/usATHcfjGf0wxGCoipYoDPH8HttVRZWn1G1D4NjUrUbI+8yVOI7u31/l0Ao2qzWb5ZJ0fYduW7woZDgaMAxD6ralag0ISeRbuLKl6iSrqqHXt/n8s3Ncx8a0YHshfc+n3uw4bNZ4yubpaMD5ZErnBPhexLg/YzKa0g8Urg2Wf28V6WrN8OyEotnj2WCrBNoa2wd9N+f23Q3d6RSCiKap2axT/vjDRy42e4xUOL7PyJdYbgfCEErNcDyh/8XXONMnOG6IbhtG+yWrT6/YpxmDJMF13fugTiFxpGI47FPVJUHkEyYjjIHRtEcSRbjDCW7S5+zxOcLk+JYkz2v8WY/M2LitRnQGx2i8uuDLxzPOJz1+9rOv+ep/+ZqLNzbrzZYkzkG3NHX951YhQ9uB57mIsgCpyIqKQ1lwu93hprv71o4OHC3oRS5JFGC7Af1hn6OjEb3II/EkniURQmJZEqF8mrZAig7pO4hO0pUth8OBtsrZpBVt3bJND3/eEJwwf/WB9I8XHGrNPsuR0mWxXjEbDWiFw6HMafIN1WHDxzcDRqMRz8+fEPsO2zTFj2Is16PO9niBT50faKotsW8zTTxsq0F4PvNcY9s2RV3TVhXUDbooiAIHJ4rxoxArLxG9iFZZePb9RtBmk5EXNVEUY/KM6/WOfF8yiiy+fjlkMHrMXZlxlxn2+wzHlpR5CkiausF3HEaDAS9ffsHJzRUX79+y2W3ZrFdUdcV8dZ/lIkWHLSWfVMmHRcajJOC03ycJC4ZhD9T9vcxyBF4YYMmOcrPGHU8QloOlG+qqpdrtaE1Jbgwf95pkOmW/WmJESTAIMJ2g1Qa3LFh+eIOUDtvF8v71tuD6+hrLjzl9ek5+2BF5LoMoZL7Zcvz4CW1bY3SLpQRR4FHkBaPxCE9q0rLm869+QhRcsFhuGAxGHA08WqMp8obnnaBsQKcVm6xAa4NteyzKhh4QWhaHQ4EtDZ30iHwHIT0S2yKzoMTGCwI6IdAGsqqh3Rd8mv/ADxeXXN7NWe22CFqaakG1veP5MOBnZyOeTfo4yiI+eoJo4DismR0N0KsVaVXRm0yJI5vOkYCNdDtU3Ef4IXger/70Pf/2h1f8+rvfYZHzfBzxs2dn+OPn1NsUsb7BVxrXVdzua6ahQ9ql+MkJiW8IRxGX779nPGhxPn3ikGcYo7EVNEHEbpchhSQZDCkPB/rKMOj3SbXEdgKOZseIB9XkgQd+1DyIJg888COnAyzXRkmYjGbEZ19i2TZv3/w733y3oNyXNNV9g86w3yMKfHqOJPI9ekmMV6U4dcb69pamFlBU6LIhsRShhL7rsK1tbm5TpF7T6pZdVWCJ+0rKyLKR0iHvShoBTVsTuOp+DdyVHNqc9X6JSnws40FTk+2XdEArNOs8Zb5JudweMLbFPChxRoZH/RNCK+RscsbTs5ZXVzcUbUq9XLNZbVjsN8y3KxbZFtNB4js4lsUgiRhNj6jmc6Sd4KuGxihiW+HaEhH5nMcWo1HN07/+T8TRU4q15vvX7/jw6htOnzymqltmUUgYRthKYTUtsRRMfQ89DVnnDbrV1EXFcpOC60HVUBU5xpRMZ2Ou6pa0aFnnJduyRtgerhfQakMY9gi9CFv5vL7N+OEmR2c7/Dgh6Y/wdcN2saBpKuLQYxBGBJYizVOyIqMyhlp1LFcBowDqpiWJXXSxJU4iVlnGTZaCLXCtDuV32IOQ/ldfEvdGOMmQYZjQP+7YzKY0aYGLRCsYasFyvcKpa7q6RO63OK0mcBwc3yGRmsQWxLEDrYdWLm+rO6pDyvy7P3F+OsYAdaNxVYPswPNjHPd+2lx5DRhN0za4dcGjYZ/VZsN8sSewA6rWwnM0ig676zjojlrXbNM980PFaDbFDWKiJEKJmiRWxMdP0J7FPL1iPd+yv1sTGkFsWfS9Ad7ApfMzMmuD3XEf8Lvf0tQtLYKu0RgkvrKxbUkwDDBlwyga46IIxwOcyYh9XTKcHWE7CdQWw0iSmz127PHV07+i7n7BzeWW//jje/7w7R+5bGuCachs3LDd7Xh/tURaEV4Sg6nxlMJOYo6OTlkWdyzv7tjv9lhGUMwXSKMRApqmorPvWyd0oynSjM1qRZmlKCFJgog2q9FJSKc76qqkUxI/8Ildm6KsCR3JT14856g/RmpDJ0HrHFtr0iyjaxpsN2SQRAg/wnFDPBkSeDGDIKDX8/FdhRskDCYzNos9Fx/viFSKpiBUDnkrCSOHpjDk24qdu6YLdlwtl/zHnz7x7naL7zqErkdNQ6sNRdbQjwNm/SHD0QB/fIr0+nSdwfZtjtxjRp5gM7+ks2yUGyF1TVOXdG2D6QS+H+NZFoktsDyfyPewgoib1Y5xEPPkq58gadjcXJEeKuLomNmTz3C6mtUP/8RAavQ45rOffM5pFPLhn/8dF0PR1JR2Qt3ciyvjYZ80K8jrmqxuWOYVA6A87CmqmlQbtNYUWtNgcBwL177fLLB6J9jDCc4woIwV0hbssy2WEWRZRRLmTHt9mqbFlS2q66DRlFVJ3jYsdik31yvKsqXroJAOtxdvuElzjLkPvRwORtRWxCbv+OZyRRDf54oc9zziJGGT7smbhk2ac3o0Y+BJzh+NCXoz8v032K6HbnMGQ59nskfPBzsIaWqDIxrCwMHQsdvusHAQQiErjR+ArzqGvYCm1dStRgrJZpuSFzUYw6jno/MV6+Wesefwv/3Df6E/PSaaDPm0XvN///oPJL0eu92WIsvw48H9NWBqXDRxGLD3HKbHJxghoTNUZYXnlRRFiYVBCIuqbkkbxZu9Zt1kTEqLcyM4n47onI7b9RahFHHgUWQlqq+xHDhke95fXHK3SynblpWwOQiLNNuTqoInA4+7ncQLE5QT8P2rfyUram5XO7QBNw6wfB/b98mW1yzXa4Rt4foup5Mey32KaRuGkyl125JuNxR5iW41rgK3zfjyFz9lv13Srm6I3BMGJ+dYssZqKjy7IQm9+9yat5/oOfehxJUWuJ6LQ01TZzRtzXQScjadEHp96rIk9Gxi30NpibItHNuhtX3mWcvVh28oO5vNfkfgWjinig/ffcNmtaEqa+aLBa8uPvGrp2N+cnJMmNXss4qh1dHrRbRHIYOBi+WGGNdHWQKckM6S1O2GumjZX73l//zH/871tsXqBF+fPqKX+FhGk7+/4NlXv8A+PmO7z7n78I70cIc2O1bVHpeQq+LAz794ynh4xywtOBkOuKgLmk5ikBR5ji0Mozik3W8gTclcj3Ayw5o+I25LJrPZnxuuHnjggR8rD6LJAw/82Ok6Flc36FYynT5Bdg5nL865zhZcXF8TeS5puiXLD5i2YuIqDC3v9nv+4dkpg9hHlQXlIadoLYo8B9PhScmh0aStIfRaItcHYRhHEdMqwFgeubkP0Yxp6AuJEZqys+iUQEiDLyW+I6i6GiHByJpqu0CrjsvtnoubJRfblPmhoetsmtJQ1gVd9ol0vSUWHqb+A5ssYzw7wQo82lKhpEfilLhdiy0idmXJOs2YJiGi0wgpOT094XZ+Q2c6XMdms9kzik/x/Rmh1PiNZhL00FZD45X4oWGEk28AACAASURBVIcShnevv6XMS3Tg0SyWLN9vWS8X3G33CNPx5aNTWuOx2e1ZlSlNWdNJhecpiv2eXuyBVPijAWdPHrFHYR1KjBfgRkPawlAYD7OrEJtrTDDBjsfc3t2QL6+omwyng+ejE2ZxwDa3uUIQUdGPQib9HnV1oNtfU64arNFXDB+ds736gQZoJsessjdo2dE1DWWp2Rc1V4cLPmwdnNExg8dnHAUOT6cTAt9FC4lluYi2wWs1Tl5gm5b6AFJZiLok8lzq1kICoecyjnyG/Zi38y2fJPfr9IeQMvMRRt/nOtQdRdOyP1RUeXkfCmtalLQwQtyH+xqH2WCGbws826JqIYp7KGXwfA+nzLnK9nzYZ6SlYWpb9PsedrvHLTUqtLm6u+Sbb16xr8EfzLAtH912XO9zinyFaxpiJfFLTSQUedviOQGtIwi8mqBrQAik69G0Jf0gpuhyfNci3eyRdYRVtgyVQ7eYkxcXRHHMvhB4swFqPIJogOOPefF5zPHfaY7++T/40+9+wzqfk/gGvzVcrTMse86o7xMHDlJZNGXJ0WRM405ZLf6RwPOw3YC0Kpn4Pm1pMAJqqfC8iNX+gEDgBAltcSC0FI5pKTYbcgmu55MkEVVV4HkOfhCAhPOzU756+py2yXEdm0a01HlO2hpQFo4f4PSHlJ2LhUWTd4ziDrctUHlFaxzo98FSWLZPaLcM1IGb1YI317ecuNAbRIjgBN8XdN2BurWYXy757YdrfrjbELoWlmrZZlsmPZ/jXp/Qtjkb9xj1hsT9KW40ohMWRVPTVB1ZrQmkj6MUdVWR7w/YjsKWDp7rUW33XN8uGScBobq3voWOg2s55HnOfr/DGw/ZrXcsFjtGx084Ojunn/T54fe/Re92ULf0T87o8obt6pbD4o4/LJf0nj6hOnmOaDVHg4jFJmXfddRNTW90gu15eF1LutuhpUVZFZRNjasErmfhBwGO75H0ffZNRvbhju3SB1tiO4LYUmAp6rKhfJtTFBrbs3CdjlA6eALOQ0mubYrK4Louu0PJoYG7vGSfl5i2xZaCqrH406c7hG9QysV1HMoyx/Ns1mmDjn10m3LYbznUml3bEUlNRowTlow7UBhspyXqe3ixg1KG1g4o0hUSg2cLOt9l59hUrUFJiYo8PM/n5vqOyaBP5FoY12JzqMmKmrIoOJ0OeHYyZhaGeNme//Xnv+Dzz39OcHaK0wtZ/+H3uI6iqkrapkEJyNMdp6en9ETHIIkx+Ranq1C6oB/Y7FctuqlRCHpBgBLgCtiZnKLOWeeGfeFS1BlVseGwv+Oz0ykSxTrL8ERHqzuMMbRFxu3lO27uFuTCY97A5W5J4isGPcVoHKE8j7vlhvIu4+Lyjk1escsLUDZ1B8JWBEnC8y9/StR32KZbBn6AFJpeGDDrRZR1gcCgm5bA97kvIWtxO023nuOfjomPplQvn7PLanRRUvn394Pdu+8II4+Xj88om47v334iL0vysqaVLa5ToYxmPHX4+ouISZiwWXu4cYAvNZ5KaYRFbfeYy4TffViSsUcfFjx/POLpWcDweEow+YLubz7j0x/+yJvXH1hZfT68fc2/XqyJTcck2tAb9uhwMG2K58d0lg22hRINUoUIz6Y6HNiv19xVO16nV/zrqzccGp9fPT3jr14+RmJxvch4/p9+hT0952AUDFKOh+c4sxe8/+3/xeLmHdX236jqiqrOeeHX9JOIn392TprtmG9SmlpSI7BVR5YV2MrCMYZQCTaNy/PHT7DSDXnzUDf8wAM/dh5Ekwce+JHTdR15lhKF9wfyuJegJDRFwzgeoGhZYjCmo+/aOBIwglB2hF1DpO7tEK02aNOR2BaHqiVUirw1eK7H1+fnPD17xGhywmo15+bTR7KuY2tSNkVKtcvRdYu8d2GwR5FKw0EK0qhGJAGj+kDsjrDDmKqq2O9Stm3JtusoLIu60GgNljT0pGDq29ztcz4utuRG8K5uKIzG1jV9KUkUBL7DOOnhhz7BQdEPXEZxQOQJaqAIfTa7AqFClGWTHfbs0nt70nx5gz36FzKz43e/vcQPhxw/+Qnzq/fcVjVleuD21bfs0gOvlylGtxwPBiRRhGfHPD855VDlhMd9/LCPKg5IIQmDgM5xaQ4ZOZInn32Fd7fASoYcffm3bFcVzeKW+eU78mxHen1J2WiMae/FiyimrQreHQ58XC8Y+h7T/hjCCLG4JBr0GJ0+RiqBFBleEtF/+RmoHDM9o3/0lDaKuXv/LXaToRxJ5yfsS8ndnWbqai7/8CfeH255E/oMkx5Rb8jLxy8Y94cEYUR/0Cfv7lfVPccjL1dgDLPJFL2+JbYtYsdmPBvy9Mkpg0HEm+sFT589IYj73N5uaHSH7DSHfYrdKBxpgYHWCLIyo2o1tWVx2Wh6/R6tpxhFLuPIJQwUrW2jixyqhny752pTELgB08kxli4R9YbyoHn7Yc3F9TuOz485Hb+gc/rgemTbhk1+wc3hwJt3H6jTNSNbMfUtApNRYjChS993abWgNBpfabSRKHMfsLyt9gR9m8kgxJbgOi5365RgHNE50X0Y4rxgvlzx7K9fUty2FMUVz49GPH16xM3ljDevFqRaohqL7TLDV5LVbYQ6mhAPY8J+SH5zwM32RFJTIJhvt3TKYuBYdHSUHfQnR0Smoe/5ZEmC6joOpsEctjRFQdqC9HyOJgFe7eA5LnZn07UNYejw5ecnqLCj3GmazqXVEAceVdVRaUUbDHl3u8c09wLT6SBmt79CIrjJCnzPI/IChBvi+i6mzqnaBlEXuNWOf/+05PPHUyo0x9MpTuzQOoYPyxUXiyWOgsJoKgT9wOPReIzVKU4GU46mR0hl06UZmluM9Niu7vjjm49ss5z+oMfJwKGrM3bLJZ7v4iQ9RnHM799cMRmP2e42rDY76tZwLG1OTp8we3SOsm0MiqtPd2zmG9zWo/jtN/zx21vK3YKZkGylw2ePTvE3exAVveePoTdkWTUEVY3UDZ7n448C1GrDrB8zDn08xyPdram7jrypKMoCANN15EZQ1LBuDuyKjJOjGV8czzCOxJWSsvK4SAuu5++QXYPTVLS1pm4MdAYPsG3YznqcT8YcTY8RTxPkxSXf//COqsyp64aiaVlrgxYWje6wEPfWpg5sC6SQmM6mVhWO6+N0cDP/SJxv8EYD3r/9I7bj47z8gvPjI0Rlk97mWG1N20mUY5PmGVJ09CMPnVYkocd6k+JZgqrVFHXLcpMx6iWM44BaWuzSBaZuGEY+P335jK/OT9B1SfDkhFEYYGvwXJ9OG7qqwndt4rhPGB1o6wJJR8+Gf/j7XxHJlo9v33B1+ZHVakdRVbRlTZ0fyDsby4vo2oa+55J4HgMX8qalqCrSbY0sS5ry/vuZ9BLGKGLHAiExTUHTFuzTPf3Yx5YeHy9uMFXObNxjHPvkraI4CP74+prV9oA2HbbjkmtBbTq0kFRFhtke+DTfcHI843Q6IEy6+wYrpeiFHr7t3G/Q2TarxZquEwS+h64Kyn3F/O17PvvpT/nZZy/45vVbfvjwEdf3OTo6ZlMrVlcrnj6xOD+Zskgr2ptrho5N2WhE1+LYgmnPpRdEuFbAZNwnL1scoXHDPkvt8nZTcPPmd+zLiiCOGXYH5s0V0eMRp6cxx8ljvMmUqS45kYo/zW9pZwPmN9f8v4s1nzceL+yaAwGmduh1AtcGIRXCCnAmTyjzLYftG1Y3t7zarfinb96Q7is+P3bpU3H56vcsMsXTX/5nNsZFZCX9QUi9OdCjZvrsmPPhfyP5p/+d65sbNrli/uEVyXTAyUgxe+yy30f82xvBISvoOsm+rGmF4vPPv6b4+JYnk5hxtsCs72gEvHl7hdYa+y/4rPbAAw/8ZXkQTR544EeOkILx7Bhpeqw/3bLf7Xn37jWy0gwmM8r9grquUQISx8LzXLpWY7segediW4rUaKaDHipv6TsuWa0xWnMoajw3ZBxGPH78HHX2FT/8y/9B7vtEnkfYDTlrCzr7I5/u1qyrBtkplFLorqUzhioreXMx5+RsSq/rGLz8KYvf/CN926IqW3SpMZWGriNWNkPX5Wwa8vLlczZVB79/zVVacrBCOs9iv15Q1hW5Y5MUFUeex9ALGPf7HA57YmmYOhqhbDqvY184GCdGRQGVMqxXe3rDMVHvEa/+5Rt+uH7D6LOvCI/PaGvNeHyCpRTzbcp2u+X2ULIuW2LH4nhyv+bs+zFSKs5PT1BhCJWNFApRGzrdUXaK91dLvMGM4WCCH4aYaMbp85/T5N9z11wihEPddjR1TVtXAEgvwVQ5veNjekd/zajLuf32N7zfbGjjEVMETn0gq3ccf/lzVL6mkwWWk9LpHdndmtAP0aVhva85DS1GvSH+7DFeNEJaPr3JhLfrBd/88xWry2u6QcF3373F7Ersr76+z1eQEi0UjQHtBmyynBgf3dn0opDEsxgMevfhwP2Er5+dULSao+mQxd2a6nBgGHhssoKvzk55MnlJGA3vW3OynO1mzc31BdfLG3b7Hcq2Gc/OOFR7FpsVdRfyaOijbIUdeOQaENAbDOglIbo5sN83NGnODx+u+Pzlc3rHT7BHM7As6vTAZvGGxc0F24MhnD5B9abcrm75cPORp7EikDVNticYJXhJjKoN1X5PL+mjVMRgMqRr1zhBjDYNBkl2yBGOxbZu0Z1BRo/5w+t3iMRBvt7z7OyU/WHB737zHc+GMVPP0J2d8OZ9wcXNlnRTYBvN0JXYtkLZDr1JQC9x+fThQFXW1NqwzApOjia0WiMwuP0+w8dPGNAg2phGS8bDMfOu4SZLycvsfkJ/sNF9G0cpbNsm596idPrklPFsjBKSOInRpUYZC8tIPt0sePXxlkPVkucFTwcxdhDwarvBEhIpbSwvYblJ8Z2KgVuTuBKnzUjzLUWxo7Ogqgou7+B4NMISHeEoIdMNm12GaDRdB0pIjmOffhwjG4XnJtBIfvi4525bsd9do+sDm6rEtiSNgg+rPZYb8bd/8ytGdYXCIq9aLCGJfRdbGJqq4PTkBAMQxOSHw327SzJmPJnw5sMnKhGSFS0Xl9fkm1/z8ug5P/nFC3afSoa+i9gdGIYxdeBRxg6NsOj5PrGjuO0k0rLx92tejhOmruLll5+zd/u8/+0CR8LOGBptaNuWRoBoDaGwGUUeJ4OEozjh8fQMY3uU5ZatrSFbkm83rPcVdVlCJ5AIBp6F9F1CT1HkmrowfPF3Lxl8/kuOf/iezXLN1e2atKqpTIclJYGj8IKIeDAmNxbGaDxbEilN4tuMYofYlzRaMAhOWG537A57bJVjjET7Pk/+/q8I2iHZdoHJVkihqP/8my2aeytU5LkUvgMmQHQdvq2QuuYotHmUBIwmQ5ZFjSU6Ho37PDuZ8OJowmwyoms1uZ/y6t23aKOZNSk6cNnPb3DQvHz+lNGgz+Lygukg4Ww6QLU5bhQQRSGT6Yy4P8K0LcVuw2qxonV6OM/+mtXlB5rVAqixlOFnJ31MljNfLVASXClwlEKaFlVlrLcN58djrK7koA1NMmW/27JazinylGPPwhMdH65XVLVmc6iwhOBsNEQjkMqhMIZFVrJJU7qqoe06TCfYrFZQZZiyZDjsUxQlnucS+h5aGFQU0ekRN1dXuKJjt1+wjC1ePH6EKGvSu1tEltLmB9oi47efLokHY05On9OKlvX6jmng4M+G3Kx2lFWD54X40tBWProa4PRnBH4fPyvuA5oR/PH771gVDaKDadzjyTDm8/4QScZPn73g8aOnhLFP04E1m1Kvt0zX11zUW3Rb8WatWR0K0rLEfdQHbd/n70iNqRuMtAjGU7pNyz6/42N6wTLPcZ2OJ0MHWRdcf/rEpbQZDmZcvX9FvUkRyuOoN+J0NsJRNW6zoReF9H/1SxbzM94vSr774S153RJbJefPLFQUcrur+WSgKlKUaUlMxWmbcvI3v2DUlfh03Hz7JxbSYbNaYrT5Cz6pPfDAA39pHkSTBx740SOwnJBy1zBf3vLx8j3Hsxnj01PS/eL/Y+/OdiVLz/S+/9c8DzHHnnPvnZk7syqzRharRUqtbsGyDAst2wKsA+vAF+Fr8E34AgwDFmDDEGwD7lFsNskmWWSRrJz3PETsmGPFmkcfZMO30AYqf3ewTha+71nveh9WiwmqqtI0KogyoiAhKlCIApZpoBsK3W6bspFRNyn3yxhJlFlHMTkCYZpx+/I7fnE7puf/AkeoefZgB7e3w2Q65d3FKetVTlwK5LVA3RRo1CiajCLKUGeUScZ6swGhxhzuYLke4xevmK5iZCS2bYkwLxDKnKYRWa9Tbt/c0j98iuP0yeZv6Ox9wuL8HWUa47W77D75gvTtb3g3nqCrCsPhgEGnB/UGS5VRdZ35WmCxCEgKEPUDxps1fc9CsiEtAnTFYX+4T+vwBL/1lPkkJYsDREllug5ZJSlBViBJEqYoYWkaAjVpntP3ulAKCGFMPgGjIyCKNYqpMStyVoXAD7/+lCatMC2NTOtSTu7I705pNnOUMqWtmuiyxWozo25KJBnyqqIJap798JjPT3b4VbImWt9giwHycJvN5p7jYYf+3g6uskdTjhHEijyckcxueXUz4td3IWVR0DFt7qMad7FhV3ZobW0x3N/n6T/9AUMh5sXPf8LtbM7d/ZLr2wl/+/Nf0G35PHr4GE0UsB2X8PYeSRLeVyojo1ktZENCN11s20A3VfZ2u1SqTpBF5ElMuN5gyCK9ls/Dj57x1Q//lCKq2SwjVM0gjBJm714zOn/Bt+dvGQcBpiixs3NAt2/imRJ1VZAmKXmWUUsysqbh+S1IV8TzmNywqVA4GA7p7D7F6rTIBJHryZyf/dWfQ9nQGexydNhnVtXolsno9bfMTgsW9+fs9W3iKGK2XiGbEp4gsswrhKZCMcC2JYrSoJEFciGlTtbM52sKSSU0HY7+2dcsohad50POrqeU7y7wyogHB0N+efaGcTjDV0Bsm7j6Q8xyw4s45GqVsjNP2BnEeF5KlaQUlYhmu6CqzFcBlqEhK++fOc9qvN19jj5+iiFJrP5wi2W2aPKAjSBy3OsRhCrXUUQWbZAq//2uIccgrnNETeNgZwexFqnrEqERqbKS8ekl785vmW1ywiRFU2Qc12IS55wuE5Sm4ZFt4WgChaKzLBvO4xRHjlGLNWW6oSpDRAoMTUQAFLGhTnMuT8fsPx4SL26p4xBJkAAJW1FwZJ0qyanqDXmZcB2JzFNoVJu4qXmzDJkuZ9CUtG2dRpSYb5b8zc//mkNT4uPDPbx2H83p0IQ32KaBZLyvM+9sbdNq+TiKiGT5dNwOZqdPeTbC3T5kPV9RBytM3UYybEZBhlTDlmlSaRKbJsUbtrkY3XJ3dsXDgwe0W130puZ530XtO6zWAW0KXLFACmecJyGIMps8IcoLyrJEEmDHtzno+bTafXRVpwyX3F7dEjca4/kNtVwhFCF9XUIuJRLFIMsqmqrCkgQoK4JYwJIkXHeLVueYYW8XYXnPl8fbhJuU9e2UOs9RqTFlkKWatGqonCPSYI0iQyyXiCLIjYRQFgzbLgd7Fut1QLhe0Wguk2XIfHrGy9d/xWfP/ghra5vN2QpN14mjhFrSKDKQhIYqz9FEEdGy2Gw25HmBIEts+R66rLDfcdlSDQwgi2I6rRYff/YpLd99P73HiLeL7/i/vvkPbP/sJ+zt7VEJAmkj8mjvAZ5tsO8qZOs5iiSSbNZsbQ05ODrCafuMbkdIWY6oqbQMizArORu9YbaYUccRRlUQCRJd2+PYbzFQZaJwhdd2cTpdsjQk3yzRGo0skRAMm3WYoyoSLcdAzA0WQUi71aJRNPRmjqPBl8dP2N/dJVqveHN6wXgVsIkifFnC7DgUpU5ZVoiygiKLGFLD1fU1r88ukUQB0zQ4OfaQDIn7KMQ0dba3h8hFwuU4R5FE8qR839xze8fjrsdkETIJUyaTKeejCYbn0Pd73C7OqDcLHM+l1WqRVUs0RcI1ZMQmwXMLFF1Ad2waWeFmGfLLs2vMKkPRNQbtLge7hzx++JiBHEC2wO4MmF/eEC5iBp98geIfkt4F9PtzflxneFLJJMyJ05yrZYQhNHy+61GWM1RDhCqi1jTSzQhRzSg1ic1ig1KU7Bgq7+YJiyIhz6DWPLxqw3r8K8Kk5EfPPuWLr37Ew90+ra0Oi7PviO/eYCoSPc9EddoIkszl2SmmCpLYYf9Bl6++HJP+7DWjNOKpb3DScXjeUTl82MfSVaJNyujbU0bjOZal/iOf0z744IN/bB9Ckw8++L5rGhRZZDQfU2sGz/74R/i6w2a5Ikk2CFTIkoSoWxRVTVE3eIaGpOtY1vsa4VQzCJOKrElZRAnrtCDKayZJTpSXqJJIq64R6gzV0HnxNuH3v3xDmKxR64w0W5OUDYjgCA2mXKGYOmUpoBc5LRk6qk6iWqwlmarV5XKZ4Dbw1dMHvFwsqRdrMkFkmpaM44ybIEEaB5yGOVGR02eDKddIVpvnfhurzklcm71+l7sgJE1TvPY+3fYeHimSKFLVJWmWk5RLNF3n5OOPsYsI2zRQFAVZgOkyg4VMq+2AXBJEM0xVRpYkJElGkRv2Bl2sukSXIFguoI6Q4wTB9UjimFwWOXp+gKor5KjMZwuGR0fYukIWrjBIESlQ8hUnLQgbg6ZtUWs+C+WAN2++IV2egyJie1toqoc8HbGxTT49ecb6ssDsd8h6LqO3IZbfYncwIBuNaXXa5OGcuobrVOY3NwFVEaNIIjerFe00owwXVLMxk4sbrt5c4m1vs7yf0/V6PDj5mN2LK25GY07vpzRlSZbG9B2XbdfFpmZg2VSiDGVBqghororlNegWiFKNZ7fYRkFcrnm7uSQIY2RVZtDpsPXoETsfP2J2NiGYrqkoMDWLfm+I2tRkskN4/obZOuKg76HqFoYhURchhucSrVfYhoqpKShihSomOKqEbzcolknT6qDqMk1dMolq/uIn36KIOs8/2qMuBG7ubvnDq+9YrGa0fRtHLhns9znc6hPf3/JmMqUKl1S+g6dDQ4lvSUiajuA55NE91XLGbBlysU7B9Tj49Ctkc0Czqrh+d8m7iwv+5b/5I4LFmK0sYjjocf3tO/Ysjfnohq6l8/WTQ5S64LvXbwjSirIsUSSBWpBYBxG352ekafL/je+bpkVWZJiex9HRHk6T0j38lNOrDX4hcPfqnMcPPsJVFN5dXXC8d8A8nCEsT5GoMDSD9WaF4wxpGQKqLFPnFaP7MflsyXS+Yh1ltP0efm8Lg4r1ckkra4iLioNOm5aU8/hwl8HJH/Py1S2/ePktTdVQZxlZHXCZVYyyAiUT2DFVHmrQ33chF3FtjdlliqKo/3BSkZB1ibTIaJqSTZki1DL7wx2eDVxuVjmi7vMDx2IzVZgEKwxdRdZUlknK7WrBZS6jjzW+ePIDUBui9YqOZ1MIEq5vE4crCkvDHByg6hZBlFHLMXkpsLq9w3c6xFnJJkuoFQWxKHFVkVKUKZuKp7tbBE1Okyz4bM/EVRZYjkXfTtiEIo7r4RoW5XyMJkNLlNAUmXVakmUpWfH+Xdk3ZY7aJrbSoFGQhzGbzYLV/ZJYNLmcTdjt22xbAh1DQmskVplCSk5VgiaCpYlUkkJbqnDkhkwQkGQNw/LpPnzMp84Dbn76C84uL4nzlDApkKoEpd6QBjc0lcA//bP/ntGrvyOeX1HVAt2HXxItbhHjhEG3jUuJ09/HbRXMF2dkd++I2jam7ZPqOqZlcbmIydIczbDYhBHSPzRfWaaNJIqIeUYThgh1QXtvGz0t2O/6iL7J2SZkf3cfioI8iCjWa7K8YCXIvF6GvFqGfC0peLaJJKt0LAUxL5nPApJwQa3LWK0BjSCiqQKzyzPW0yW7nTb38xWz+ZJRsCH1feoiYL6eI+clVQPZZs3GNOnoOgPTQM1yelKDsjXANgWqKEbU3i9W7Q66dC2b9flb4vuCeQHxbIVPwb5vsr+3jd9XULLX3FyO+PbtkvMgQZAVdna3abd0HK3GkGriAmRZwdQ1JsuQq9GMTZhS5AVJnLDlO9yvYypgq+tSrGv0rS57gzZPv/wCKwkxBn2yukQVRKZRht/uouYZtxcXDF0TqXw/mTgaT+j0uwy7DkKWYKgyuqZQ5gk1KnUtIgkyd/dLvjw+IFosOF/HHHfb7Hc9hpaAjIIg2yynEybTNY2yYq0e0B9EOJsJo8kN49GMA1vFkSWuVzUKErOkZJWXaKpKYzoolsZyeo85eQ1iRX9rh6OTiL/45oqbdcw8UwmCEFWUWYQBb2+n+KbFzuNP6H/+R1zeh+zJBrNNziKE6cUlilhimhaO53N0tE8wG2O1ZEzTwzR6fP7pHu9OI0gi/slH2zzd2aZYB7TlAnewjeYItM6nfFRknHzyGPFDe84HH3yvfQhNPvjge04QRKqsoGhqPv7iczTTIAsWpJuApsjfX6BUBQGFskopsxTJsSglCc00sXyXzWzOOo4I0pxaFFnmNfO4oGreTxhISDRlzvViwdLQ0dw2td3idnrDdr/PIlriuT0+fXjE2bs/EORrnvgifa9DcH5LW4eO1+Xvv71G/+aMvZZAS4LLpiItcoKiotRcroMl66xCFGWUIsOr1gw1DUGz2W9v8fzoOW9+8w0PbYXjbZNy/2OEpiFMMy6XC3zfp7O3j50uqeOAJIzZtiUSQcHSZCxJZNh5gFQEOKpGIqiMJgmONKXtLkEWMDUD39CQWzauIrESTDRVR4kXxGlOFo1Iw4y17nAuqYiyQq5K3KczvvrsMaUsEScFu3vbmFlKvl6ilQWdlkbL10i0IcmgQ7hMmExjLFvAfHDIWZ0Sp1OMKqOrSejpBHEiIqglnd0HSP0ev/z1z9myNSRVI7y+xVmfo7Z2mJy/ZRE2XCwFFElBKEqEOkcsBSgLwkJinWbotUge1NTrbStGLgAAIABJREFUgu+++ylCkdLvDegZKqIg0VHf16nWWYlklORphl5kdE0Lvb9FmCXkdUqhGYjSBkmSURWTmorBoM9qtSRabxjIEvvW+y+2pmm8b2wwRNLNgnSZ4HS3KQvw2n2ednpcZDFRNGI0mfFgvw+NzCassBoQGxG1kdhr6Xx6ssXJdgfWS9bXZyiDfRR9SL1ZUiQV128XaInAJz/8kmx5Q5FsSKI7ovtXrOYTfPMho7sFX/3Zn2H1TMQ6YKcOmdYSx1t9lNUKq93GUB2aRoOspMoKgnnA789n7Dzcx9s9YKd/QLIIqIOKdDTi9ld/zf/y8v/hy8+eotWfsY4FNmnFsliSrBasg5LPnp+gPX9MsJgjVznROiSYLUC2KEuYL5c0AiiajqWriE0FksDO7oD9joGtgSw0gEBWlHiWx/6jzxHyiq1a55P/6r/m5u6cP/zl/0oU3GIZ7yd6qlpCEjWKssbQLbq+zyxOMX0FJxNxWkM8RUEWSnqugyiI6KpBt9OmSTe4roYmBAzdhF05ZKPofBdkxGnBGoFEEChFBcNtYeoymm5ibW+zOH1NmaTYhoEaxrQciZYlkRcVr2YJumoyNBTCcM1tU5EoLepSYKjrHPTbzEwRw7Y5+eRzosU9Pzu7Yr6aU5Qp47e/Z8sz8HWNuCURZDmGJOB0Bsi6QV7VVI3Iu7NLXD+gXq8wVB1VguGOhVQI9Dsd6iykqWtKWWFbt+hbFrPLG364azG5HrOJG4zVjCpPQZDoDXdQog33SYAkvA9MDNuijheINHRsgyd7W3hijlhm1GXKejkhymuoa9JaRh8eUC/XHD04wG5CZpN7sjJmFaas4hKxEagNhXbbYvvoEWq0psmnrM9+S+J5aO1DavWc8bu/xRFAEkXqBkB4X/Mti8SbW1R/yKvf/hWumPPf/rt/y+uf/TkuAcLuLhe/+wVRsEERoV0mPO3ZbAbHCPUctYhROwegmyi6yXQVIjcQrNY0TcNqE6GrKk2ZY6sKRVWSxBG/DRJ2twIetmyy8wuMtMLUNCxFRspSVqslQRiT+W2yqsGyTAxVwfVcsjzH10U8VaQqShIRuq5JsJpDI1NvHUBRMr65QZEUlvdTSAo00WCr4xGqIn6vJJstQJRoGoFdw2ZblnBoEBSVRKhZ3o/Z0R/gbg1JZZnc7OLvtCmrlI2okNktEmlMkuToVUMqNFArRKsZ2fqUm3VApIh8twzwVY0t26JjeRitHlQpy9k1HVOk1+/SanucPDliscz47W9esIkzHNNAUzWqIqHOMlSt4eRwm7Jjs91p4bdb5C+uOX/xhlfTBdrDJ3x8MkB229zN5hhlRDyfYBs64zgjaWTyrGC/57K4z1BlAdfvUVQmmqJSZAVV2XCy3UWsMmZNw5Gise37NFnGYrrE0BUUBPKsIJyHXC7uGKUpu22F+zcvyKM1cZISrFIcW6GlS8iyRFM3qLpOVFXEwYqe2UERBar5HAyHskm5j+DNtMRr9VCjW1Rq4jRHqkt6qsiO63P+7pS/q/4jnw+fsska9noab8crrsYx6XrMw+Nd3K7Pdtdl0uvRH2jISkOlFBzs9fn82RF7eszx0S7LMOd2vGZ7P6JzpCIuZ3RbHoPtHQ6/+gJJ/nBl+uCD77MPb4APPviea5qa2WxCKYAkS3i6yniWE6zmlGWG5boEizmS2HBsyghFSl6ViKqOIDTImkq332OxjijyBFVqKKqSQXdAEIaswoCqrpFlCV8W6BsCR/sd+n/0n/E//k9jytU9fVnk6OCY//zz55xWM17NK97NQw4PDzDLDk6+wTYkHqYNd5OMSKgRbIN0HXEWLAiyiiRpeOiavFqFBGVFWtfkaUJLybEUnfTqlPj0FZ90bQ4/foK7d0R+9RKFjL2DLdzdHabBivn9GHvQxZYF6jTj+cBBGzzgZh6wuhvRkmQ6Dw6QKCkrAc0bkgUp48tLKgmEfImpqbTMAb4WMTh6huy4fPOf/k/WcUIQpaw377+0i5JBSUOjSuxmbY5PDnB6PqZhoZUpqiriOhbIGju7ewhpRCjUeNttskTGe3XG5btv0ZOEgSYyziXmixVVHCG0WgjRJbt7x3z0/IRcUfni8RF3b38PcUIy+y3D/TbLu3uy2Zg0K/nTT7vMgzXvTpcUpUSYFkRRwjSrmBci0V3Coy+fsfX0CcsXPyFZjIjLBm04INuEtCwT33FJipLlek2e5aiCgKXJbHser2YphtelMruIpoBmSogiKIZGnMSkqzV7usbh7gBRksmKktH5KbsPHhDMZiSrMaN3NzizJb3BLpUm4T3YofnD3xOvc84XOQ/XC3R/iOIaCGkKisT+wKTT03l0OMCRZZbzirtNiaFG2MI9clRSyy6T715gGT7zScjk4g1NsiII5phiBlnIu9/9hrbjUtzMuZxNIRE4OXnE5nqKofUZ7PvE0Qa3beOaFrlQslrETC6m6GaLjx89YVYJ3F5cMg4gjEWaaoUm5CTTEdcvEur1AtHewhJrJrOI9TrFaWu0HR3Paai+OGF6N6EqIjaLNbphs5imJFnBJitwLRNDU1Gk95eSj08eYDQRSqOTTq+hrJCEhtbhIa2DfZS8Il1NqCbveDgw6P/rf8X/8R/+Z/IsQ5IkyrKkqUEQBJBlNF3Ha7eplIbr2Ybl6JJaUWh5DqbbQigrPN/H8geI5kPOf/p/s/zpN4RRyjgtWbSG5L0DgqTA1GQcSUGvRPaVhmPfYzDYJpkuuL++Y52kdCydm4XAQBfxXYPfTkJoRIS8ZhQuuGgqBM/nj//0a15+c0oyuuFyec+OLfCR7WFXNYngs98N2e5YlHnJ/egUI2+xd3BAUSuEN7fYpoZhaQQliIrG7e0ds6sr5qen7GxvsbszJJpFtCyPxWqDdHBINL2mtdIQ8wKjUQinK1rZmuubG/7mt2O6XZ+dJyEGNYWq4kgiku3h2B55niI2NTQNlqbg6Squ5/B0u0W2WbLaFMRFie85GINtOrZC3Kjojz4nz2Y0ZUatSkzjklVUkmc5eV6T1e/bQOysZkvT8TQR1RLwWyazl79BNvuIpcnHB9vcz0NMp0NelJgKSLKMKAj0ey0qYvTknB//8b/gi08es373a3quzmIxxjV1xqMxmqLhC9A9PMDbecwingIbfEdnYTpsapFqvUSvSyJRJMtKikpAbkTEMKJRVDRR4r4ASdFZ5QXxcsPZm7fItoM+3KJeL1nMpgiyhNkbUNcVz7oOTdAiRWC1DpBlFdMwUWmQHJeq20fXFEyroKKhGZ0SayaSovFgZ5e202Y5mnCfCQz2n/OLX/2azfKGLU1jXaWEpUBQSSitXYa6QuvhEVW/y+bVz4kqAU9xaMSGZLqgHrTQ/AGNrKCUJuLrS+qq4dUiphQE3qzv2LYVnj/qMcsrfvlmjaPo7Ds2A9dk4Bq4Bwf4x4ec/qf/SDiZMDq9xDeP8YZD/M4AS9KYrgIsz6UWBaoiJ08ySlVEEwcM9nbxbJ16NcGocrwKdtpd5P42uaYjmibFPyyanY4n6KbOo4NtCkmGIiVZLen6PcI8oGpSOp1twk1Mp91DtxXkImG5mOPaDr5lI9UV13cTHnx5iDto07FEymBKHa/41etLfn/3hi+fDXj9es5nhz6dnsfVVUoV5vS6LnktIao2cSMwXq3xnBxxW8U0RSTBxhs+ZHn9gk2uguxwP1pSRgnDlo3t2DR5hZCX9F2dw2EXQ0h55Kasvvs57XyHo4HA/tcfsylOcHwd27aRDIVnnx5gCiGiKhEJBZKi8vmjAZPonmyVcnF6zcP9AyRnB6nKyMc3CEmJPtjD7e58qBz+4IPvuQ+hyQcffM/VdcXo9jWjRYXpe2wmDbdXFyzmY2xLpo4EdEPlyW6fQ0dCmN/y3WyGabtMw5SdXYWW4/PsRGTXN7m/X/DJk6dcrUTC0Q1nQoMkikRpQJgX6GHO7eUbwmDMUAlQPZO2s88/f76P09wTCBnOg0fotxcIacxwq4ezKpA1g2y9wqpTqkhGtDxUu+DdbM1J10H3JXzJwG1vc7GYEZUVURxgagp//KMfsMk7tOIb9rY7qI6LMF3iyDXtrTaqYaG3j8jOL3n3+18hJgE/eHbMjmvQclTwDRAVirImLRIKUcbSbDTFwMs1ZtfXXF+cIyqwmZ1xpKrs7x8STea0dvd5/eYVUlVRFiXLpOAmTsgqQMhoWS4Du8MPfvQniEJNFYVU6ftfSMhTJEli++EzTM1EUkSEqqAoa1xVwOgqBBOBcBNhFCU7nkWv7eOoJS1NY3c44PDxLr4uoOoVQkdBnPhUN5cohkwj7ROEMUVpIgkBpqdDviSyJBZxxd2yIm0EVmlGWArEjcDvfv8Np+NLsqSgLBuWy4BfBzGeJhFoCrmo0HYcFFUjSBKSJOH5/jZVHmKKJVklUpfvK4pFJOpKQBIUmqYinoU87A4QdJMX707Jajj77lvEOmUxWnFzeke6zNDvV1RpQefhMWlTEqymjKZTxJ0+1+MpJ0/2EBSTOAuRVQFNErAsE7UpQLHZ+fQr9r9uE60bqrBkk8H0/oZ4fk7pdnCyPslkxuT2HUKdolQlHUWhEBu2NJlmekamSGztbKEbJo7bUIsNra0e81cL8nCE3D5GbW1TOSrF2xF21uN6avCTF7/j7O6vaOoKTdHp+W1+9GwfUz+mp9cogkherIjDCLO1hepv8+M/+YK+GSJlIa5p8UqWmF+doYgiVVmyWCyYRzGKrFBWJY6lIcoSe9sd+nqBlEasLmY0nYwoljHcFjvbWxiWSaOWDA63ODr0Gey1Qdzh13/4PVevv6Plq6zjmFgQ0SWZosyQZAmr5ZPUIVsdg/toCYKAris0eYaIQJ5kTO9GrLN77u4TxrM1o3jDWZITj+5RFYOvhm12vBaVJhMsU7bkAkE2CO4mrMcLpusI1xIYDnymUcSWrzActFBklVFrl59/9451nJE3FVa+4M//9/+NRaFgiw1DVUOoSqbzgMnNOaUkk67WHD3YIatr6qpkkaY46xUtr4XQ8xElkUo3sAQNSVa4eH1OslqSr+YI6zlbO7u0hwe0Bvu405De4S6z9RjVtJEEEd802VzdYpoiv3qx4A+znH974tPttlls7nF1FT0MoFFQzRZ1MaaRFCxDw4pjbEXk8XaXo/0hZWwSlQ2a7RAX0N4/QRcL4mjF/eY7Dt2Mm6sxpePxdlaSBCl1WZFX0NveRcgTTFlELhKicIne2acRVLSWTjg9o0kkUt3B1ER2W+9/acuWN3i6RLtro1ouaVHRbXtIcc6LX7xidDGG9QJBVtAQ2PIcrmYRI6XkUSPj1ZBJLpO7a1r+CFHRyIINrqYQRwlyFLKJ3u8vEUSZvCzRmpqyrLENnb7r0PcMyk3IYh7TM1z0Gtb3E7x2h/7RCbM0QZqN2PF0pp7FL87u0LOSbreN5zoAKKpGb/eAqtohDdcU6xX31zeM5gG7u7vsPH6OkEMVZli2SjyZcOK2uU463McxUv6+wncRBbyxZQbdQ9ryEFHwSKUO96VMuzYwjRIlCqAMUeU2kt1COb/DVHSCJGUaZ2iahdRAUIqsNhoH/i6CL9E1VbZ3+rT3djA9H7FtUOTntI8Myt6Qt7djNusZW9oJguaw+8hCv5uwXoXEpNzfL9DqitK0yNYxKDqWWVEuV3Q+/ohD06Wb5Uwzkbd3Y2ZpRsdzeTEe82485emDXRxXJliumEzmDNo+jqrRMw0yJUWxKuI0QhRSdFWjsgw2a4nM6tFpErIg4eHzHyA8PsHzKpI356TTa7Qy5Ot9A32gM89WRPmGybKhpSjogkBSCjSobPda+DvHlMtb3tyt8Kcpg+4aT9MpRB1BtdBaO3zyICNuNK4ur1ncZmwNbOxeF1HViWYTXEWk27HpmDZ7Oya7DxzaO30EYUi2XrNexyjDLropUy5ndDspTSpRNyDnCUm8wnNNhIGDUid8+enXpMqQTqdDHkxYXd1xe7lkSzJIb/eoqxJJ+dCf88EH31cfQpMPPvieq+ua26tT3r47YzY+x5QU6qrBcg3kSsLUZSxT54efPefQlVn9/ZRX766YxCmrrkUchPjtHp7cYOURZlXh7O2wEzZ8F96iii6VpLHeKORJyKbIWUc1o8WYSbxh6OzwP/z7H3P70284vblFrwQeD1z+6eEnlOsVQlVhOh5RJSEWKSYVoNKy+yhiRMusQQTPd1AFl3/9z/4VL375d0STCYulgilVDPOET549okh2qCavUKZn2I6F3tHRHA/NdjFdFf3H/xzHlOiyxNFUPhr6VE2BoFYsKOn4Lm6/R0eXqWugFLA0l8jsMVlcsI7nlPGKT4cd9oYdwjqliBf4dYFWNTiywK6rUeQ5RS1gKRYnnQ6fffSYA7+PZuW8vXqLUDbosoCQ1ChFRcfyqRqRStRxOgZymFBnMbIrcvzoELc94LdvrvHIUJSGVRCQZhLjPKSly3ROPqYWKtajMT2pJL8bIe4fUMQ5SlkTqz6Wk9FtezTRila3zfJyxna7y2/Hc+ZxQd9vsT8c8oe3bwgXAo7fRlZMqjxDECAXNFZFRTCacJRl+LZFmGVYtkWlafS7DoUGd2FOVYTQ5FSZgSTq/1AbWrKnOWzv7sLjJ9yHKfen76jShL/7m7/hcjRHsfd49Ohzrv/+Z8jnBYlSs4knrGcjyrJkGWdczdaEYYZBQV1CGOYogoKt2RRxQS5lOH0T127RbbuEUY1TSwyTHbqOxdVyTVnMcXtD2kVDWCbIlkb9QKQJAtp6zcPdPsO9PoII716fEa6mNGYBQp/9w4eMLs+xOgWmDXmjsEgLTidLXmxCNrJHmY2RSZER6KoGxy2XL7/6AkNoIN6QrFZMRrdEjcKP/+V/ySefH5Bd/o5mMUaqCg52t1jfXVGWNXFScjtdUyIi6zrDjoeqSiA2tLWCfHFDEoZM1jGbywWFckKr7WAKCrohUZBy+MkxDx53KZIFitTw8XGf69cvSLICR9ep8hxdMrEMHaoKsZHRUNnc3fAqCIjFDMfy8PWGoigJ1yE5CqNM4Nf3S+4WK3xHwmjrfObadFAZGCKGo/JuU1MLMoYmkKUlk5sJaZSRFyWbMKPdCvmTHz5HrSt8S6JKa/7i5QhDESkkgZas0Dc1ZLEmjBYIkoSvG3R0DUVW+O5uiUhJ3hREm5C6afC9FhdnFyjLNR85FpKtE8k6d6sVYZKzraoUcYRlWRAFVElMslyQbDIkQWN+OqIjinSKEpKYRFRQkoR2T8fcMem9ueC/e3LIg5OnZIqNZW6ogxSprFlenpI0DUrbpiwzFEmm3faBBkcRGfZbWNY2kuWQNQJRWhKs15DEmFS42ZK+UPAuyAjTkDhYodG8DyMAVwKn6+GbCvF0woO+jaUrCEWO0urh2BXq7VuoFUzTpJeuODzeY5F2SSaX+JrI8eEQpb1LEiR4dcOOIeN8/RV6PMH0fS6mK5JgznDP4N3NkkZxcA0Nr2NwU7dRdJNSKIiCgH7HJc5KwjinmgekjYiAgCJCVlQYpsX+7iFiuKKtCgzabSxJwuwOuFgFCKKMYfsYugmTEZcvX3G/2JBUAnlRUiQp7bJCl0VE4X0YWwsCmmmhiA1Xt3cUtcxOd0gpKgiShWLJWF6HcpODEJNUGwaGhdbqEIkRSSGzUbuEqsq3ixsMq6acvuFqtWKnd0KjGUjFhk6vhYxMkxcIaUpfF1nZFn1TJ0xzbDJ6ooJX1VSLJWXh8Gyrh9qUeJaDb/r4lotsdykMkTSdkVVzPnvS4Taq0VQRSVJoDBlZM0jkiFo1oSxJ0oI4iimKks16QVzL9J88wf/oS+ytLcK/+lvefPeSvzu/wW21KOsGTZERNZNCd8gbAccyKDyHuFbRK42dlo5spJR5jWaIRGVGz7JJNxtEVaWjWRzvHCJmBY3TJi3n1FczkuWUm7s1k5sRr+6mtKaQ1GA2EvGqpBIKwkJg/8ERZVlgGxb3F68Q6pyuqaFrBt++XfPJrkhnUAAFanebYbrii7Kmre5wY4mUWYWrDVC723TdHoZcYXh7KH6HrBFYj2bIjYbh2jRljliGEOsImodk2OThFFEQaGrQZYmamjK7YzCUOHz6OZXUpl7c0mgay4uUdL6mWC54/Ytf8/ZmzNN/9+8/VA5/8MH32IfQ5IMPvu+ahiwKyTYLKttGa/dZBQuqQsbrtzF1FUNrmJ6/5PlRl5e3tyyTjPGm4PW1wXHP5+ipii5GTFdTOl6LZLWgmS14sDPEDVIEXSXPe6w2MRdBysv5kk0tc3ww4PGDbUa/+jXNZsluz+Hjfhetp5M2NbniQRgiFDJiEqKUBZscdK2ma4g4qk5eNSRNxVarhadYpNcvGHZMFNlD3e5i6DK24yHnM4KkJi1FLE1A1zUMq4XjtGhEEIsVB/6Q3tfP0aJb0smIftulpCJXBMLZgmId4FgWYt5Ft1XG0w2SYLJZzFgtF8RpgGdbmEIDwRxfFRidv2R+ekedZFSmwpO+wUBpaBoD29ujZ6kcdC0Oj3fJLInfvnmFImnIZYFY17imgxYtqUUdcXhIvMrQqnNWiynFek1bM9B6Msv8gOjqDVWyQS8rDEmhbejoZY1rO8zCBWQZWhTgeW1M20WSJFQymrLBbG+hGQK+77IuVdphTVs2mJYCJ1tDoqBGlDp41hTRdvn6v/g3vP3Jz7g6fYksSchCQ1U1xHnOxXJDu5bZbbs8//RjHnoillgRUaLVOYYiI1YmsqLQVAKUEizWHG1tIasGpqzwR8cHrO6uWK5W/O76jlVS0vZgYWqMipBmskDs2NxM3hDFEVlZkicpee1yNQl4djhgM5mg2y5SJqMbFreLhIHVRhZEpLqmaRqstoNSNsQlHPSP6LYTSrGgPhgSF89ZVQI3V6eYooSpirScAi2LSMIVizwhkQt++OwBw5aDkMaQVqRpw7uXb3DvVzS+jSAJTBdX5KJKlJZIeUNTC4CEXIvs9tp0NA3ynDwrEPOMdqfLw+NP2dmxEZa3uI5FnlnUmzm9lovX7SIXKZJu4XZ8tpwWsmUhizmy2CBJIOUhL1/ccjsPSLOSaXHH4KhDrbWQFRFZajBaNi0zZ/TTvwFNwB5Y7LVkjh6f8Ptvv6GsGuoqQ5EaqiJHFWRkZBSvy+FHj/nzX77k7SqjkRfsWRI0QAO/vlvychUyjWIcUaDrDHn85IRP/ALWa4Q8oDIcjoWEQioZdDsYnTabpCQtcppGoKoa6jSlJdXsff5DVFshyv4aXzrD3/VhqaAJYBoWq7zG03RWUUxW5iwS0GuJTNG4WC3oOhrtdURVN+i2ycnekJ2Oh+eZpKJKmsFyOsH2e1xcXPH2u28RBAlTEPH6Q1RFoUxSlCTkweNjWl2f8fQaTVfRBBEhD+l//gjns4f8N60hitvn7HrBfVBgtXukwRVBHPP27JyibujJR+imwP5Wh6IRUOsMW5Po9Do4LZ9a1UiWE9pqSaKrRKnK/G5CT3PZO5LZNX3eLmL29Yw8yRivMia5iFBXuJqCXBXseAZbroVUlYhVhlyBortIoow0n7Dv+TRJgm5p7OwMsY+G1GWGqut0uy7tT79AT1PkosTYeoipHiJLOWO9wb1/gSXXuE6f5SZBFcCxLdxHHzHORZIqQslCNE3lcH/rfQ393RyAOMlRKRE1FVmXiErou22mcYV82OXB0y/YTEPa1TUZIEoKiqzQ1W2aKON6siQSJAxRoKLB0nVsVUGsShrE90u4aVjcXxOXDbsHh4glFGlOuZgg2S6qO6CqEuTVNUqZIyclXucjEhZI4QalLiG6Y1YEfJuPGHoORdngCAotrUJRdQyjjUJFEW7IFyvUImerbfBPjrdJkxhDatjSZTq2hmvLDLoO/UEPWwHLaVHXBeVqgqLo6I1Lui6Qiwq7tYUyMEkLECWJ5XyC6lnYssRmNSdPMqqsYB3F3M1nRMuawXYX1+/QLN5RjC8p1re8Or/CFkXqJOS705i+obLXcUnyjFS0sZWGnb1dklJGqEpmKXzkWNRVRVXLJHmKKDRomkbb99Esj36vB3VDYbZRtg9pzl8gBSmhOCXXTR6026i2BUJFW89ISwm5KhhqKk8fbGOqEo4l86ZOOL8O2O+2MDWHZVQgKBZVtKKsYpBtjN2HbGNTrK/JWwJ1HSE2FfX4nqwosRwDMdtgiRKiq1JIFfPxW/SVjkBNo2goQkoc3KF0tymLCp0aZIl0laKpGwbuPcEiJrqxMJ0N+WZDVfjvq6o1g1He8Jd3lzyRpH/MU9oHH3zw/wMfQpMPPvieEwQBp+XjtTv0hkM6rs9msyBcjKg8jVwoSdKIv/zNJc2NzHyTIMkiQVrw+5t7fvT0mFJSkTQZyTQpZQPH2wazxaD3gOb1G/5f9u5sSZbsOvP7f08+h8ecc5751FwgQBAkRNGMfdHdZrqQmS71FHo3XbHZvCBbFGgiQRIAWagqFKrOlHlyjDl8HvbWReodKDOc3xO4Wbh5bF++1reWb14he5gGQ0LpcTYYI+OIyGt4NsoJpGDy+TOMZ4mnQ1aVJbEOaXzK1tI0GaJpkX1HLD08HWM8x9E44rbco3TITW84ejIj0YZhmwKG9WJLYzXv9wWBf80wHXL05DOsylGBQsQxd9fX2K7g0cefESvN6PQx5esFejDi6OOP2F1f0TuFFoL3txvCacbJIxBhwC5f42xLV1ZkuzV5tSeyApOO2d7f8/TpS0bRDHYF+92Gtu4YhZrZYIo3eYEvhwTlgjiS7F5/TeN3KOfQtn/4oq80cTJA9i1+MoN9RugHNCrAA1bLW6reUlvLAY7hizmiT9k3AhMNSANFX1X85u/+htrziGlo+obYn+EPZqh0hnWOavcO4c/Q6ZS4rfj1P/6a3XLFf/3ZCz79/I8xymP3+7fcdDCJHkE6490vf0W+2jMazHDVFs9aCiROeCzynOPzJwy9nuH2LbPxCUGUMB0Ifre45+x0jqSjRxF6AdVxSTh0AAAgAElEQVRiSWQhnR8SphOK3Yq0b5kPEq73W1Z5hRcPWV695vLb39C3DbkXweKKRVvRK4OQDX1b0fRQ95q+qVFGEHQaKTxaYQkMHKRjQizYhm5zTxR1hP6QZDakFZL97264Wd+iKVBC4RUV4faWfVlx3VTIIODZYYKrS+72ew5mY+ZRhOygWu1Y7XPKuufN9SXhaoM/nTKZzPizl08Jw4C2F9TCY3L0nNgljIOeaSzJXv9AvtmhhGD65JTx0RnRIKa/f0sja4QB3/co+w5ZFzw6O2GzXeOMou9aRFnih5AmPlnboQKNiDW+jthcr/nmYsum3jGY7whxiK7ET2YczIbI6x+4/9W3vLu55dHPnhNNR/zRR8/54fvX1G1GGEZI6RBSgzJYp5HKEiURz84P+bPkkDavKVYb9nXFarPlKI7RyYAub3nka5JoyEl8hMne0uQFrrUo45Pt7jlOFf4gYFcVLLd7yiwjMhBECThBu1xQvXuL9/GnFFnHFy8f8+STj1H7lv/nH/6Rt1lOoRJeLdZI2zLzfeY6punApCPu31/Tdy2HYcDH53MOZkO8gzkIi2tLjKf5drml3O8ZxxHrZUFfFey3W0qt0G1FJDWz+SMGcQi+4Bf/47/Tb5dMHnUcz6c0eYUNB8THz3g+PmG33PL+mwVh5EG+xypN1zS83+WsN3uaJOHTzx/xONJ4SUoaa0IDw9kcPwrpm5rWtrRO0sfHmEDzxAypbn/P5rbE9R1D0/E0DVhah54EHJsA43mMjOU88Ym7htvFhkHg4aSk6St052jKAtH1DETLWZpS1AWJnjMfRKxvLnlyfkqSjtAdBNJj+ugUNZ6Qb97jew1/+Tzl7vuOfnnLKJhx/+odqurRNsAbz5BX77FXrwltA1qThgHHRwd0X7+hB+qqphOWyA+5uF+xul9w+uwU7+g50dNPGD5/Cm9vqeqG+/WSrqjoiorYD/mTzz6mqVp+e7+hMYoNEEqBNj4yCHF9i9AC11vU9pa57zNMNLaFyja0+Zpuf4cUHn4D0msZjlIwHq2KGAiHCyW5sBQ2pco9tLCgWwbpgMNxh7A1xhP4gxjRWigKuiqnzUps0fHJ6YwfLq4o8hxrO/q6BmfpxIp9mSFmI2rhiOIQL4jwRIGxHhw9QagUogm+5/PVN2+JAphOjhBxyKa+JrAdkdHkbYftOm5vFzQavMMx7Zs3ZO0eczbg5C9f8vnXS95vdty1Pde39+y05MXRjIGWiPU9zvfolIeRgqqoWNWKuzjmo7mhFBorfaq6JUxT+q5lOp8SxgFtlhMPPFy+prc107hDHXnEjJiNJzTKo6gLRlJz/vIF+4t3dFXB2cEIEyqqbENV5Pzo46fslit2ncPXCiU00kFXbZFSIWRMPDgibt7xZHTE7eY9kS9IRylxMsZaHxOE0GxpNkvyYYoRmmy3Jp3NGI6HREkESpLvbml7R6gcfVWipUTHMc3GUm82SD1kmUt2G5i9kAQhzE5PaF8tmOuCn88O0R+253zwwR+0D0WTDz74AyekZHJwTNs7fKHY7++pqw3CWUTXIdA4B0Xr4PScv3ihiX/3nndvF+yLlrptqJxhNJhx8MlnED1GS59hlbFv4fy//C98cv8t7v1rrt4t2WwkyrYIsSKNDOfnJ3RWMf3iJU2XU24WRIFC6RBhG9Zv3hNJgetbeqDzEnx/iBco5tOW7fIOT7Ss84K1l3Ia+fg2QPSC84MJtQhRwfDhoCs1tqtohSQ5mCE8gSLAj2ZMjs/xlcYEISUCbMP8ky+xTU1Z10zODrixCkOP3/dcLjLKriaOAor9Fq08pBDMjk/QusE6iL0Iu9syDwwjz8eEIUHkMz85RkYjvN5H3AH7BSqyDCZHeL6haqAsS85OzwikxtmHdaGq72hX17jGEkZHHJ44umyLigzKgy7fs90WdG3O/n7BrirJuhaRpsxjiShK4jjGGIP0Y8z8BFtmlF3BRFZEk1Pq/Zb/9JOPuXzjE9Dw9HyIwlC4KaNNzifPn2K9iH+LNvzLbk+ZVcyGIb7vE8yO+X5bcvnuKxYX3xOMY4bNik/GA7x4wtEw5DC8IfE7tOyxAqxt8ZTExTFuPic4Pidsa/KrNxwdH/NPqzUWiQkSZL/BeI68dxT03Odriq5DIJFKYbTGIljscrLKp8pLtHSApCwq4iRB1Hu6nUGPEmgd+fu3+H6MjIYo43Hy7Jj8uz3Lyyu6pqIqM7qmZL/bsSkbotBno0rKviedjTifztC9pSp3+F5EHEYEQL3ZUm/uCV1HnIyYDOb4xtD3mqqq6G7e0QtFjkJiGUQDRocnTJ6cM5qPiaIAlKR2LctX3xJHGsIQUbfQ1AxMjxrGXG0K/ECDeri3pJIIJ/BPTnj5J0/47le/5vvFK96saoTUDA4O0KMEHWlckxHKhE7Ai7/8zxR/+zcE4ZA4ijjThvPTYy7efI/tW5qmx+EIhxHKGIxwGDPjp19+wfFkhlIBzc5ytdjT7+9JTId3cIZQc8Tujm63olcZpZNYp3C9x93tkjT0mI0TSgTbpkQqRxxCpAPwPKSyyLIie3+BCyMeffqC0UeSLl/iAo+//PPPuHz3lp0VnCcTLvMeY2KeT054OZ8zPn3KT6cp7+/eECc+bbZjJyzHp48RUYjKb+nDiL645GicUNclum/Isj19W9FbyXq7wAlB0basljeMj06IAh/fm4O6YzAesb244NsfXuN98RGd8PjFv3zHutMM24K3l++RFv70ySM+fXLKt//+PXnRIeMRkVuTpiF+eIpQisFghJSC3ln0wSkyTGj1iGq1gPXvGYwT0sEB4yLjaH1DlYUs9hWLbcWukYR+xNnAoKqM1jo816GtwuseOqu8UcL86IjlcoOlZh4FbNuevuwIxyHxwQGp7+PpjigqCPwYTIMgYzId0ZdbqHsiB2YyI0jHHIYeXtMimoauBddZ/GpDGARIL6L1I9LOoJQmKxscAnAIAZ/Gkh/NR/TacfrkMcPTR/RWMnhyTp1XlJ2gjlJuX10QtzlB1fFxHEFe0qYH/MtijbKW3jls36P8AAkIAeHshEGUor0BtneESUJ7/ZbOFtR9h/UUzaDB8yriQNLUFZXtafAfitNNQd0FZOUGgc/nT08ZD1pEtUHGB1jjIzSorsdoRWg0W6fRjeLT+YRr2xJJSaQlnuyRosRPPAZjmDxJiE+eUa9z6rs7ECAnE/CGSKWQqud8GrMXgl71CAeiLNGrHQdJzHXbY3tLXZYkk5S2rGnzkuTTP8I8f4FvHMdP73n7z//MdrcjlIJ90/Nvl3ccpTHnsxHCC6hLy912hS8s09GUrUipGkfoCxZFDe5hrbkfxAxHKUoAqkPbBtsUUC8wYcj06ROmjz+mziD3QhoFOE3oOUovIEpA+VDWJau7huFoxPEkQWZbvru549nRGeuiZqACdDDEBDE+ksprkUJg9wWfff4TqmqLq7YMUo8knSO9ATaPUP4pKg4xfoAxGi8aoKTCFhskEk9pWtmAULTNHicVtvW5/E4TdIq7XUGz3zP7o78kd6BtTxKH/G9/8lMuvrnipz/7T8gP23M++OAP2ocnwAcf/IETQjCZDvH8CNkWXL7+hsBX9M7HNxotFKJ1eMpHJFNmz894SsiPtGF1vyMNfHZFwfxghOmm+MmINm8JwmNGkxlz0SP1CO/RT5g+ukIcfk59s0Sv7wknGm8+wUUTsv0Vxe0SKRU6GGBMSH55SagEwj3MIbdWoERHIHu0UMxGU8rTM9a3lyRdxfW7e+aPP2M4O6VsA4S7YjieopoA2wiQFXmxBt9jMJ4gjWF0cIYKAsLBCB1GCOdQRiOlpS9Kxo+ewOKOaVpzOncczCcUTvKPv/4tKMVHz0bMDkbs8i3TySHTgwOCfk3kHNl3v2U0nPH4s8/5UW15bztkEBJMZ/jpiMgLEKkg8D2Co2NEmuK+ucBIgZCK6XyO2GfgBFJYnOvxogAZDPFQeHFIvVo9BFbeXrG6v6NHEAoYHT3lZrdH+jAadFSrO4rdnrZpGQQjtDH0WY7QEhFIrNtT3r8j9Kc8TjOOXhzhmgJpDc1iyzg9Yv7smCLbkd3e81JV+IcJdmRwfUkahyTDiEfzERdiSZ4/jDL5vsRrW1TfEw5SktgS+RoNSGfpXUePxQyn1KMp5uwR7d0t4fyQWW/xvlMEcUI6nlC3OYk3Yq9zehlS9uCco6wLdDRgdHzOdBSyvr2ieTyixDAIQly2JFCGwI9QGpxsqcoVgR5gfcXt1VskPToMEVZw4HdscFgawgBODg852wYsbm+xkWE6GiACDyfg+vUr8qYhjiLGUYdF0dY5tC2q63HbFUoJQi9mXxg+evYSV2TovoBWocIpk/mUVHeMxgOCxMNIi6gzmrajKjNwHdura1zoP6x0buuH+xQHUlE3DX4cE/oGFWg2bYU/r3nz+l/561/8jm8uNrSdxTOwrypaZfB9RdjliHxPfb9i30X4j79k/tkLsvvf4euaF6djrl+D8iOUJwlMjG0t9DW99FFdy9nhmDRNaauGOAqYPH9Cs10Tm5a26SjLml0L3aZgd3OHHqYMzh5Tr3OC1TVPjlP6MKLtJXGssKpEKwFNjRQKKcCEHuFogsg2mEHE2LWodEiedaQfveBobFhc3xI8SrHioWgmO8fk9JTTTz9hXL7h0/OUKp3xw1f/QlnXuN0KbSYEvk8mFa5t8D2NtFDmGQaHUBIhJVldo/ZrpDZ0yYx0OOb4aM7V+0tklBKOx2yLkl9+95ZXf/8Vz58/x+qA6aDn9e++psorTl9+xHA25Ysff87MBKz8iCAZwn6D6BqGQUQ8P8LXCq0lTiV0TQ19i25W1OtLmnyLH6fEocBXEJuUjc2psgJrFJ8+OuNwMGB7f0fRKzJrEThEoEErTN0ifUMSxsxGQ7b7nMAYBlHArlyg+5DT8zN0EFC1Na6vCAcHxOkY7Xt04qGLrrxdwG6PP06IBynNKsc1HUpI6GD37i2BbRhPT9BBhPAjfn95R+gpdqWl7Sx+4PFkkvJiPuHl8ZxFJ9FhiDcMqPbXiFijX45IuoyqN0g0Joio9xnGC/nsxz9mF0Tcf/01uyrH9R3WOXAPJRkpBGoww1YZmAbP9+kQkCR4o0Niaeirkma9pl1vKToJOJz26Foomj2lhSINGR8NGJ0dMp1ExNriBT66LlFtgR4Mkf4YtE/n5Uytol9tOTAhuVTMY8XhJMGPPfxBQJIEeLaE/RLyCTqMaZIQBjEmChHaPUy49TXxcEJ+X4Jn0VjMLkejGShFHYdESUIEjCczFpucm7eXxMdnqKKEwENozaoTLDvBqhN0KAZS8s3tmt/c7jg8sVSdo6gaXh7N+OLUZ/X+DV9tJH/+42d4QFc3GBMyGE/w/ADj+wwO5zjPgBRwMqKvKlzT06w3WBswxNF1GV1Zgd1gRh35eoEoPYbPPuP2csHjswTVVGhjMMojNCHT8QDjSZSXoJIx0vZIHfDkZ5/wy7/71cMq85dfoD0JdCjp8P0Qzz9FBTEyiBDWInHQtfRlTt87quUtLZYgjB8yYqSmtg3Kam7vKr7/6j3PhzekR6d891d/TdsLjmYHnFrLpz/9CccnH5N+8gzxYXvOBx/8QftQNPnggw9Q0kC7I9KCo4Mxoi/JbI6Tjm1Rst92PD58iVEjhBdxOD/i58bne/GOaRKyXW4pHp0QG0cYpWg6XFEhy4xIgZMSMxozGZ2w3fXMnz2jv1bQ3qKMoutL2vsFoY5wzkKQIIuacrNBoVBSYJzAOcHAC5EYtIlIDAynJ4yDGBRMDlJSrajffM3oi88ory1xZ1F9TtcVVPWGZH5IeHxMEA3QRgISfzin7xuU5wOW3gvRforWmlaATkbEx4LR4Ix4MucX37zmm2++4fOf/wXWPhxaz20Pic/hJOEwCAmLHLdYMf7iM+KPfkwZjLn/p7+n7wRCRySjMQaJP53hyhIdxTR1xWg04mqx5+TxY/w4wgmJ2xS4tkO0DX3bYvuCvu1wdY5WD6F2RdMzn52CNDhlCB6/oLl/h3JLiuUl1W4PVjBJZwwPzvAHY5SnUUZTtSVB00N5h/PmuN4wGh3SVWuG4QDv5ROKVc3V7+8ZzxNCb8JBFGKOFb1oiUWFaHKMJ0mqglHqIUYTJh//iEO/RNoKoVpkXzDzPULjIzqJch3OQQfkmwVBNKGta3YX1/iTOYM6RwURQSCIghiCiGdHc1bLJcvcUjYtrXuI0fAk9Psl09PHhH6C0grfM0jnEFagvJDYSxB1B6qkLbdoU+N5I2aHCflqQ7NdYnuHVYrjkc9muWV1t+Lq9gaHAj/g0bMnCNFRNT279T2+FzCaTKmrjqYqkU4zFgI1SViuoakz1tfvSSdHeHXJze/+jfn8GBVppKeRCfRBR7ddUWxvYBJRej5dXlE7i54E6Chgd1fS5HuSwNDanrZvEJ7BWUvdOzxliKIAqy22d+jsmt98fcubNxuOxyn32xwnFcZAli2o+imi7ykvL6izGn38lKPRMdV2RXn/np6e4/mAZDykyffI6RzXl0gVovwUz3hQbJGjMcFojNhvsY2ltTvayGf55hWBVhjlkYYpOp5hJx7lwKMp1xQu59F5itUahELbjmq/I/A9lDQ4aekc+A6CaEh0dI4Jfe4u3mLdntnZKe7wC6o3XxFHMe70FCU8+rpgOItodxXUP7D8zYJ2f4/wDGmX8/J0xuV+z3Kz4WzgI+OARvs8evGSi9c/0DpL6BsOZmOK3RblhXhBQpetmCaGm8UVgdEM0xHHx6eM9Rtoa9RgwPbqjvtf/jtBmGIX96zvlyzXO0Aw1BpRVcyePWX86BG31/fYMGKzNQTbHek0wEfgtluQLdLzMSaizTKMbRmPE8TkZ9T3S5Y//Ib75YJ4mEJdMVCK5z/6jNn4gDrLqFdLhPfQIQgOiocAXKEV1jmMHz10gygDjUV5IQcDhSxKPAWD0ZSo7ymye7qb96hoiIkThJTYuiDwDbODESaIUGbA+NijePUtIHBtheh6Dl98wXyaYPuOrLH0bYPC4UlBLwQfnR3zo89e8vmf/jmqa6hevyZf3ZLdvKZYf8/+PuP+puDJ/DO8uxXB9AR/fEyYhOyNh3nylGyXMRgM2W83rDZburbBOh+kwlmHChK6ck+3vsOkQ7QOMIePHx44bU3XNIhoSDR8TFrW1LdvyZdLaEpkkREFAcODIfHBEGF7dJmhrIeUoENQbY/oQUUpgT9CzyThwQnqfsmgLjBNy+ub90yDgtnAEmFJwwgzOESkEaItcR2gFTLwMVogtaHva5wxhJ6HbFd4nqFtOlReEUjF0+mM/v4OZx3jdEAyGtNtN/z3f/hnfp7f8NHqXzGjGXGsGacxQ6GpywbbVHjC4tcKLx5zv92T5QWR5zP1DLfvLri8usUeHZBvcybpFAQkwyFxYNBBjBfHqEGKDD2s7XCdRRQ5IluiE0GzWCO7BtUUiKpA6J74+Ig08tluVix/+HemkwSj4Xq7oWo7fM9HeSHGDzFKYasKicQ5EF6AFyeczsfkN2uOnntIP0R4HjoM0EZjtAKpQUqkqKHpkNpDmI6mrXFdh7M9ynfoyEMEAU1WIqseLRyHaUwYeyxvlqz3Hd7wkDc3a5bZhvHj5xz95/+JarkAZ/+DTmgffPDB/x98KJp88MEfPIEJQ9DQ6TWdl1NWe/reEfmGrNnz5PwlX370R5TckAkwScyoq5gPD5gkKe3+jm73BB0apNIEaUhXFUjXotMZ7S5HFCXRfErga7pNA6fP6VaCdrGAaMxoeoJ1zUNHSd1T3F1D3yE9Dy0AE+LZjLpX+NJDqxDtagbJENuDVjGqj0hCjQjmlBe/JR3M6bOMrspQUchg9pTk5CkmjhFtRbO5xw/HSPuQxyIkNG3J9apiDnhhgh+EeG3NfvkO1QZcdBsWdxlaB5T39+y8hNnBMXo0YrW9ow8Nh2dHeE2N9/ScfjbEPz1i/PSM0W8DirrFC308rTG+j1IeSkhsXdPke4wWTGYzRrM5aB+TeJTLPbgOZy22LWh2e2xd4TqLqy19uSCIavToEBlPkdqxyy4JWNKVK/brLQpFMBgymx0RzU6Inn1MLWv63TuauuL6Zovrak4f95gkJZqew/oVosiJjp8TjEOGc0WXZ7Szp4yfzTltAur3v6O8/Y5KREjPwzOGoBnT9DWTJCZMxojyEit7pCdIA0Pb9ES+j606pJBYV7N4e0l0tebi4h57tyU4GhAMIiaHJyTtisl8TuRqPD/k+HhA/fY90j2Ml3mBj8Cxvr/jB9/x+csnKKWIAg/V1TjjoYyPqBtEBxiPYrPF+C3BJEYGCWliIQjoncSiKIRE2o4wnSKiCJUMsJ3F2gLdlgxCwTAwDNIRsu/YrxdkWYVDIj2D9ATFPsOWAmU8pFBMRwP2i1vq0lFbiWkt7XXJTmt2XoCqS9LtkGg4xI9DwmGC9iy9EITzEbev39GLEHpo9cNmjSAWzOcTwkATBppKSsJG0y5L3r7K+XQ+YWF9KpmQVxUgKLMN66t3zM/nlJsF299f4e0M1XpBfBSglCDfLBiMjvECEErQNwW0FhVIlF3hpERrDzMc4o2P8cMY1Tu6ck9dVeRJTHF5gVMDpHDYbE/Rh2gn6OuCo+MhCA9PKortClVWzIMQZTRWdCx2OYGvCH2NUB6yrPBHM9LpnNX1htW7C5KXc1qriF2HDDzk/Bnddk1X3BMezGiyjLvrHyjzHFMrVLtnfHSImQ1ZLFd0TYkZT4nmJ3wyTLm/ekfTVZwfHxHHA24u3zEYzTl//gk//OrvmQ9j4tExZdbQ9g2eEMwCiQhCXt0XNGj89Yp3f/VXDOKQO+FTdpYmz9mvlthRyvDzP8HlOV3xL4jZkLaZ0dy+QxYVbrPDJgNsvcIZjZqeYsIRuB7TN9heo3SGSEcMhkOcbciEZXIwYfr8M9pdTq0FvgrJszu+fn1DHHr4WjNrarAN1rbowIB1rFYr0umMYTqkqyrarGD5+hWjKMIfHuH2Grtb0uz3rDcd4/kAUW3wlCB49Ixms8GV1UPXmNLUjcP4jk+fHdIrRVeXCCy+EmAth5Mh49BnXXX86JOXPJ8NOAs6wskJ1ZvfUyy2rL+/pswLvvr2V/z6+zv+4s9y/vjTj0mehBiVsfthQehJRJJgN3tQD7lI2S5nv9uRpgmub5DSoLQGP6Tbr+k2Of7sCSqMkNZC6ejIUF2FrTLK1Z5us4S+JkxDRodD1HiITQLaImf7+iGjxE8iJieGXhm0U0jtgzLowEOWNf5wgHp2xDjqmJ+khFJwu7rjJHVo1UBRoqIhnjPQNHQmwh+MCSIfpQROShyGpq4QFmRb0QuoN2uMs0S+4fF0RFaVOM8wSBLCOGJ+cMB9VvB//vae6Q/X/PTlEd70EQdpwL7I0R5UfkxWlJgw5iYrKKr6oYgGdHXFRdtxcDDn6dkJwiTMhjEy6Ak0aD9CewEySNDxACEtwmqcUohOIkyBtQo9mWFFje1CbJsi4xQhHLvdltU2x9c+3iDl3Q+vub6/oykb0vgILcBajQ5CXLWjWd9T5xZP+bDaMT2dcfHqhnZ1S3ryCCEkogfPk2jpI5Th4Q8BnOtxVYGsKjwd08kt0WRC3/c4IRCexmhNm21JIo8+HbDc7qmrhkIEvF2sCZIGv6rQ/9ff8ieBIjl7gvuPPKZ98MEH/+E+FE0++OAPnBAQRR6tW3B78R379Z772x2n40OmswnpbMosecLR0Yzvvr/g6/drPhk+vFwa44hChasy6qtX9OePUFI9vOTMTuh299C2eIMDaLZ0l99jjj5GHc7Bk+gYxLWHcz3CD3CupHx/gagCuuUG29Y4Acp4OKHoRYDnxMOXXQFJPKZXgt3ylqYV+JVHua85PDsnHA1w2T16mGIOThHhQ0iichZRbMH2xOMZenwGnofwAAltvmbo9xTXa4wQeOkQh2b99oIqmHCZ3/PNqyuGwxFhOMAYD88PmYyGNP2O06MTTFyQTIek0xll2XH/77+kWa2ZeR7f7vbUdY1SAqEE1rYEfsx+eU3bdkxnUzwREiQxfhjjOgtRSJ3vUb2jzUu6qqDdb5CdQ6ChrzG+wpVX0K4pu5pGaVS74+byks0mJx2MGU7mqChFpyOcUvTWUezXrG9uqcsMtx3gi56jj/+Yam+ZRAd07Qpbrgjmz6jXFlvsKe7eIMycdt/SZTuKxTV1bfHiGcblTIcjsrYhDTVt0yCDBKcNznYMRgO6zoLnkAr6pmW9XnNxcUObX/L++zekAobNMfM//TkmDNFaMBwNeXJ0hJ9vkQ0sLm4xyhIPRqzKnDpbIZylah37qqXJ9ng6oKhyYtESaosUDuMnCB0xfzJFGR/DEC01Ymiwrsd2mi7fIubHBM8+ozOGMi8eNko0FTa/x25L7i6vWBUtx4eORycpYRKTCMO+6HCyp+sfMgKSJOXqfsNgNGGUzGjzjNA2HA4PGRzM8OIQ1+yRQiMRSNERxQkgEH2Lsz21LfCMIIx99llFEIQ4qeitRUrLbGjwg4euobLpEVXL5dWOmQ6RKuFXV3ue/fw/8frrX+P7Bs/2LH/4HdUwIglTsnd/z6yHYrXB9kNGX56wzzdIYUlCjVQ9SkiUBuUsbV1graAPNDoICPIOlxWoIASnabMS33j0wyOy+z22uqIoaiZDiXA1+vCAqu1Ahoi2pS9aYiWZjBO88QFt3WMbS7ZZYWWALXr69RYbpcRBzM4k7G7eYdTXVLVGjH2Ku/dE/cP9UPUO2xRIYTl8+YK6dexv3qCEo+oqtNbMxxFow65s8Nc3BL4kHQweRpGiEcGgQjQlTVHz+3/6vzGuZZQEPPv8f+b7335LW26JxgdYLyQazxncZ3SjMcN0RHt/w6vF9iEUFdBSsqt7dk1Hc3VDfnWBQpAcH9Joy+3imrqq8KoGrTvK+xXB0TFS+Cg/wNV7hJ9iyxblDxEHH2O6PYN3WRMAACAASURBVG15TdsmpC++RDlFKw0hOVerNRevb7nYlPyX4zFf/ORLeimQ/cM2FpkkxKOE/uaGk2dPOH32nGKx4f79Be9/uOR4PGEWpMyOzpGewksS/GCIqjdoPwA/wDmL8mvc7Q19WdP3LUY5RLNBGUtTdfRtS1eVWCl5/vgR0/GEy7cXbIqWp6OYqMi4/5u/5uyLL5FCkleC11+9ZV+W/OMPBb+5KDiIr/nk0QRve4/0huijA7TyaRzUVYlnDOlgQNl07FdrmnGK8A0q1jhnMVqh0xRRbDF+gNQGpQwyiPFCj36zpK87/MSD4xRXN/R1i5kfYgNDkW+IhCE+nVBcQVvVqN4hrUVIhdQBJk6QRiEChVteMzj2aTtBkBmeHs8oy4ZOhXiiQZctum2RdYuVI6LZI2QU4boKZTy6vkP1DbIpkbZDAarvqZZLBqHBD0J0UxOFAcnxCV3fQxihxymf/tlPGGQ1/+PvfsHrf3jNRx8Jin1B3/dEfojC0deCq7ohLyssgq5rQQpsYzn56Ec8TwQff/kSbzaE7Jo4Vfhyg5IROA8VeCB6hFIIaxE6BFsi4kN0OMP1Ha7eYqsl/W5Jv11QbzfUd2tG4yNsNGB5vwAlODuZcXu9xY9ibA9F1tKXPVoKXFsSTA6I4imVF9Etr7G7r3H7O0Q7R0dDTBBi6wzXdUg/RPoKBPRtA7stTgh0OiH0e5yQGCGouwYhBArH7vaGQRyxDyP+8btbVsst1gqmw5SD6YTGaBaRz3/7q/+GOTzh//hf/3c+7ND54IM/XB+KJh988AFZvqDLV9i6ZXOfYVvLaDrm+OQcXwe4dkxXeWxXgh+++w2jn3/B+n7JKFJ4nkLakG55S5UmcNiiggEiiBA2w5UbRDxGekOcabGbDSqRdMsNQkNw9ohuu6DL13Sre1AxUnsEQ8PutsR2FuFrlDTERuEFmigdY6IxXphQtyWLvGC5uqXe+Pi9YDI4Jn7yDIeBYo/nJegwQfqO8u6CaBBh0jE6ThChRngG21XgBH22Jegz+jTBdRaJoXGW5GDIN7+7Ytlr7tbX7PZrooHHoydPMDpiNAi5fmvZ3K6QByn+wQw9GOD7LdebG0pXkB7OMdsVd3crDs/Okc4gpKSqCzrbIowmGqSMZqcoZUAIjB8QHZ/Q3K6xTYm1DV21xxYbmn2O5yWYwMMbHaM8S1vWBPNPKG+vodzTVRVVWTEeG/xkgEkSUIK+2iNlzfbqPYF1zMcj0tjHrnZ06/ekZ08hV4SBT3Nzh11toW3IVgWhNKzf/JpiX7LZtfQdBMYn8Jckowky0nhKYBRk+5zoKMT5AS7PCDyDsi0Ig9Sasqp5e7vmV5d3rLYVQdPws5MJz45SDnxDGIUEomeYhDx58SXNzT356x+IUQ9jOGGEr+C23NLYjt460vEUPx7g9gtk36OiiN5ZpFKgFUJrjJ+g/BQpDWRbcGCiA1xrwVr0yTMa1z8EryqN63tcpch316wv3jKOQvwoRSjIVhtm0ynBwCcuG4rNHc71HH/0jGJfooIIfzzh5Owxos6Q6zW6ymgXkCbPGJ2/pEcgZAVdCWWBJz36ztFhqduOLstQRmIin6qtEdJhREyUJHTLFYEDZTTZJmOxrsk2HZ8/ec6/vs3I2h2nHz1ns7pgOp8T5hnbtxdchzH++Sn+cIxVEYODAcSKutYI5SOlZqzFw3U0LcrzKXqHJzwUFqxD7NZ0JsNmG0ycIpRHMBijox4zOiQ4cnSbe9JsjXVgvRFN19C1Atd6dOu36Lbl+OyY0Sef0qVnePWWcZpy//33rFZrsrsFcd9hvIDg6XPS0TGRq3Gu52wyQXswSCe8+v0Fk+EW5VrKvMDMZsxenmGdI0wkVZHRd5amLNBaY32P7dUFo4GB8ZjxdMRYBRBP8JYb2uUNv317wd1izXQ4YLNc82Lgc3r+hDa75fzFM/LbLbvdhvzqgq7poXsI3B0OEoaHM65+vyJWkjj0+PrykkBqTuaPEFrjDVLG/Z79dEK53uDXJcoL8GaPEVEM1uHKArvf4Z1+hPY1nbxHRMB2D61jkAzwwxjbgFcuWbz+Pdev3+Apw8v5lKurNfuvvyU5e0KWtZSLa5quRfgto8kAHUZEh6cIAnarDcU257tf/oZweMD8+PFDzo8x+H4IoY+tS7oiR6dDTDKivHz7UGTUPk62tKKjA7JiT1sUiKrFSyd89PicfZETdA0FHrpr2PghnfWYrTdsio6sbfl+teRyu6eWAX/+0Us+evSEppAsvrri+Cefk/7453SvX7Ncben6jrpuUEGEcJbVds9RnqNEhPZqRN8jhMCMj5GTU4RUaFcjzUP2RY/GHDzGaztstsFtNli7Rz06xfoebZMTtzW2WLP5/hXKDZgcPiIYThFCIUUMrcLVFhX6CF9h2wFSz1CjmOb6nmSX88Kc0Mue6GyI3myQlcAFAWJ0iHD6oZDv+6AUyvV0dYasC4QVuLbB1iWiqyn6nijwEcYjCkIQMP3sc5KjY+x2wfHHn1BkOT+va9rLS+7LCm80pyPmPq+wXcW67umRGKWZHT2m2yx4FBoOpOXLyYjz2YBnn3xCJxr2xQLb1SjRoroFMlIg+ocxFSehrcBKlK9wXYcIPGTb4+Ix5ApnJa4BHSrSZ3NaE5Ll92y+vabOCuaHI/JI4dSAMlsjhj6us1S7nGRyQCsM5uAR3U7gdSsOhwlus4b9Gj2YoNUAORhhywzqDNcKBD1S9rjxw29E3+L5h9g6p6fDKPA7RWd7yvUaIxzz58/52dMv+eXf/oJX3/7Aj2OfPN+jkwGNH3GzLwl2xUNmzgcffPAH60PR5IMP/sA558i3GftlSVc4ZukElXpoz5COByTeAXdvar5/+x0X7y6p+pqvvn3FQCjO5yOk1RjR4/qaervBihZH87BSdDClz/ZI6aP8CKcibLZCGkUwfvr/jZs0qFmAtB01G0jnyLKkzAq275agFaqzDKdD/DDB0z46GhNEycOcunGUB/fo7DtOH52z3dywej8inB8RHn+MW1zgNgtEV6KnQ0ZPP0FKcFUOKnpo560zMNBWe6xs6bB0/f/L3nvtSpqdaXrPMr8PH9vnzp2+HMkq2m6iuyF1DxpyIwjQPQrQiXQ20GhAaQB2k01O0zRZLiurstJuv3f43//L6CAI3cIcVD7XsCJixbu+73k7FA7nWqq25NYLvjl9TTDYx2NBw2I1p2grHu1PsQ6UHjJb3aLSfVrvUdaRlyWqH9PsDhA0HHQbrq9uyMs1URpjcUg0SvfompYk6dMfTUiSFCUUSgf4nkLIkOrFG0zT0jYV3WaFz9fIuAKT4l1DMOgjhseo+ADJDAF0bUdZ1Ni2wlY5RAm2LOjWS4xs0XXDvcM90l7A5OFDdFsinCOUa0w0oTfa30oUqznBYI9kchezmRMEKYvTS3phtZ3YCBUiDPFO09UVPjAIEpDggwRrDd63OBUShAEqDBDO01nHYr7m7W2Bq1se9ULGgz4yUthmw8HhLkfrgraq0VFMvH+EPD0jVgFGh2TJBB/EtF1LXiyQUrKzu4syBtMZlIxwuo+iAwU+sISxQmmFVgIlBYQJ0d4dnNV0Z9+gkgTZH+C7ehugqBjb1FyfX7G8uOLkxz8jQVAsF8wWM6p8TXRyh3D/EU3ZEp1rmqs3XL5+wfpmyeGjB6xth202pGlMKKZkgx5BFBA1a1SRoEcDrr/6hr3juyA0GoFEI4QnDXtczF9hhccJT97maAK0j9DCsNOPCCNN7hzGS1brmkFvSP+9H3L78jdU+Yxf/p//G0dPjoh9S1itYbPm6tVzpuMB0f4uB9//mCJvaFzH1cVrXFeRDIdkgaYuasQoRbF9xd1UjoF0uLJCxRGt8VBuaJsKlY7QuydIKRB1i3NziCVhsos1nqZz1PkVbWEIQ4mwhoP9A0bH79N/+Fco4cCOaHo7eJkQvHpBdXVFk7cMpEb4gOHuMYsy5+Uf/hU9mPPoo0ekQchHHzxBRAm+LalbR/zwI3QUY7sKhhNkGGDKEroWwpi2g+XLN4idHnuTCbYqGN7dJ04z8vkN/X7KYDTg8mbNYlXx6CSgnb/B1Zbe6JAgjSm8YD5bkiQhqfY0qzUXiw2iP0DYN/SUYrHJcc4xKwq+/Opzui/+zOEnPyN6MEZ5xeTwkMvlirrKEabZehwihZMClY4IDt9DpWN8cYPOFMgUnSvqZhu8BGhMXqPKFtVZtBA82R2QDXpEu1NUHFHfzpiv3/Ds+pb/+OKaSgh+ev+IabWhf/cOQRSzuDwD66g2BS9+/0cmD39AOMiQWoGMQYE0BqHA2W17i40SGpHjowARKUoDrrN01tAUOSERUkq0t/SVZNzvo0tD5gUf/M3f0RQl7cUpdXnLyZNH+KLjoG6pvWMnjtG65fVywXv7hwTRAf5mjc4dg8GERAhkEG5bTaRiXZbkixlRFKA7Sygc6AgR/2UlZ3aBRSKmEWhN0BshlcKbNVJF+DBDHOzgkh5eQZxE+Dgkv7ygfbtg98Ee2cE9xGAHOd5BTfYJdqaowCN0g4oVvlhB2IfG4suWYNRjd39Mvl6jpkP6j07oTleIdIIPQ6Q1iNoih32sMQgvkGWBv3iD6e0hZYDM53hrMV1L2xpaYwnjhPVmw7gut0JVJTCrJY93Dzn50Sf49x7zy1/+Z6wDj0DJgCgJSIIItVrTmAWuyvnho0eM2pyiqagvX5Acfsz66WdQ32L7KV2b4D24eoNVIbY3ArmV5sooQCgFYYy3Ynt20wE4iXQCbxQwwJUFOhB40eDzN7i24f4H7yGjhPn1t1RNxXTQJ04CgjQBq1FeEkQhyjUEpqJ7+Zo73/sIgpju5po4jhFRipruIlB404Jr8G2Lsw2yv4vrOoSwYBVbZ7YCKYikJheS8cc/I8yvmdWO4uu3TALJw/fv8maRU1nJo/4A2dRoKUkHQ94VDr/jHd9t3oUm73jHdxzvPfXGsl57aCWP790HB3VXA54k1fis4M36JbP1JTv9IYsZlKz5+OSIJEuxs4YQTX47p17Pti9mOkXrPno4habFNxUi66NUR3f1nKDdQ+gewoJZXNGc36D0BB1NcM2CsFV88P0fUyDofE0oJL0swOgRyWhKMpmg0j5hb8B9Y1klfdK9Aw6PSy6ffkN1eUKSRsR79+i8wN1+C9QIqxCDEbJ/B7SGtsK6FofE2AofKdoY5m8vOdo7pPMNt8uS5y+vqRqLMo67jx5S5DVBknC9WTE+mLC+2XDn3l1uFgWtM6znM8RyRS/J8MJv97zHCUExxly3PD89Jd0ZESiNaQ1qoLGznDhKCMMIJTUS+f/b/oUKsDtTXJkjdUiQpnRNhRMCEccEozG6N2F1VVK/+D3l5oLnz79gvVgQIsiXa7qdDRWCIIqQSYChYdqPqO2QKNx6B6qiYf/kgEiUNB0gJ4S9CUESo3sjmtNXiMaShSHhaIjfP8bgcULjygqpBGUBVXtD17RY12LbiqCX4pFgHSqKQICQGl+XPD6YIr+/rdTcpWNytE9ycIRWjkRbMBUmv0XZhizr0476jIZ98rIjVhrCjLKKcF1AFof0Q4lWEhWneGOwRY6LI1yW4CMN2uN9A4RbYWSvh9cSIR3BwSG2XOPWV0gEbGbUqxnffPUN+c1b9iYTnn79hh/88Ifc//Hfsnv2nK9+/Z+5efGCvaRPlI6hn5AtBHrnDlmcEMUxbVUzP33F3s4EFSkGOzvEkSYWkjCKUFJwcPcIJRpstcG129F3qSRKdHgpWM5myH5MrRyjCLquRAeSXr+Hc9va2MWqpDMORMKs0ujRIUp9jSk37MaavjIYZwjTEBEJNsWa8XDAxae/IentYMd7sL4hv71gfO+YBw9OWF1fIqXCWEMQJ5yfvqTpYBgFqGGfYLwPzmxdAf0eQjgQEmNbZNuSDvfAOpr1Dc4bnPEoHzB79S1DZQinO6j+PrY0aF+zWZfM37yhu92QhAOGT3ZxxRpnNCRTeodTXLHm4OiIxWzFxfNXnDzYR4YSEQaoZEwW9WhVhO8cdrMm0Jp8U0BTIvCoNMGuPB/97b/n5uZrRJzR63eE0hMnMUEYESQpk8OH/PXkp/QTxSDZoKOEpA/9fka3PCeLQrRvaWqLEJLNckNSV0zHIzotWVcdN3nJsqw5mIwxxZJiM6cpLhB8D4Mk6Y/p7x5RLa6hK9HS0s6viMa7kI4QDnzVYG6uMUWO3j0AERNPD9HJHhQB8c4h2irS5Ype7xXDnqf3cAKPP2Jnukv+5afIK8FtU/NokPP7mxW/fPaKdDTmyTefE8qI1fyGq8UK+gM4u+Dm6Rfc3T9GZCOEc/imwHdgNhV0lrYqaaVGTMYoLalNS+MFUiiUkFgVbFtN8OAErqkZRQFXr8+wixnV/fv0plM2UYKe3kVNJ+w/HjM/e0mCJwTOry44Pb0mL6f8dfqWfrImePAEHyriJCUNNEXXEvf6OFOxWK0ZTSYIPA4JWiDw4AU0Fnd1iUjvoGIQdYXvLEI4fJ6jkiFeafRkhPYV7vaM5s0X+PWa4e4hYRDDJkeNjxEyxdcOZ0DHMXazwW9KfFHTvnlF9eIFdlOghyO8joiDHKkj9M4uMt2hOd8gmxYVhvhAYesWpMPbDhem2MEe65sF0gt809FZR9cZ5sWGLoqwdUPTORYXVxzsjOhnCabcYN9WBEgs2+/A1XzGfpIRZjsYNAjB2r4h3hRMhkOCQPP09IZEOP5eW3p41iuLby29aYbvSkydgwNvPCpItyuhcbQV2DoBYjsRI7TCE/5lRcfimwaikKAXQ2jIv/oz9aYiHR+hR3eRdMgoJsORBJLxdEg2Soj3j7Y+F2foTp9jTr/BbK4Ipx+BTHHBJc3b5wTpEOdBpDEIQAV41YKMts0+EoRSuNLgbYcQWweWlIp494Qsjom4Q/GnpzzsxXzwk4/5+u0l/WDJQFiOxiNe3c6YLZYQhrwbNHnHO77bvAtN3vGOd9A1lroVaBswGB0yHEx5dfYt2WjM4HCXnSDjB+UPuTP5iMXLb4nilsXyltx06H4fVde0ywbftayXtwSDDBkIrJEEcR/vBFjw1QoZavTuCebsLaK7weYt7WaB6O0QDA8hjKnztwwP9yAbQtsgsozIeIha8iIhmR4Qj0doa3BdR5j16e3dIT08JrmzT3GaU8+W+P0BVmuCo4dYamw+R3cdlCV4u30dGwS0bY3QIcZ0tG1D00lKJVjWBWkQ8+3zc1xrSKIBwktGaY9PPvkZrmnY2dtBZTHBuqScLQmE4Oz8jMFkSpREdN6xXs7xzmC6lnjUYy9UXMzmHN7eMOoNkU6hlcQnGqUlMoiwfivo1WFCpDVd3SCmE5rFEtUVgCFQmjCMCXpDRNxn9uYaczujbVa8fvUtxfKWg3GfMEtwQtPczgkmAW2+BiVQIQwGPSZ3xrSbNdZZbFVw+ulTHvzVj7YvfOeC8OQhevcY31pUWiAag+skchzSNQ1qvINpO4ypcHWD1A7hA6qqREiI4hjrHUEc09YFQoCxBi0ESiqO3/uA/pM+7dvXROsrnJL4IAId0jUFAQbbrLl4/gVHk0Os6egNhtu1snbbIhNJRSEE3jlUENHaFuklzjmEEqyNJQk8GIOtCowD70GphCRO6dZXBL0pYrSLTiOa67d06wXNas6fP3/GzXzBk/0hcSQ5HsY0N29pdob4uuXxj36OyW8pLl7j/Bk0FeOjewTHT1i8+YbbZc7tzQ3LZU61XvD45BjMBhUNSQ7uoLMBSpSEso8r17Rasjp7RTLexwd9hNz+IS+bFm86ZBLhWhBBjfYBEoXUAmM9ddWA16znK7IvP+XB5DHqb/8nZFjSDytsVTKeDEj0EUILdK+H7MUkpoLNNbenLyhvX1IUC2g7BuMRq9trjIVQa+hq+qlCmgDrOxCWpmtJJgfIMMCH2wka2xqUM4Rxgo6HNLdzqB02rxAmgq7i5vKS0f4E1ICqTtCrlpvz5/z+v/yGp6/esiwq3hv2+fmTx4yPjpCDPeLjJ9j8Cm0NQee49+g9Vlfn5BdXDO49RkcDgrQHQhCN92i7bit9Xt0SWUte1ZBmmKalsdAbjxgO3iMeBhxP9tiUNR7QUcTO4TF7Tx7QtX1UvmBz+Sei4R0OD3ZZv33G1eU1x72WfDOjqmr2e32iKMBkGao/4nq15uJmjpOaRsUMEs1m0xG//z30eB8hQ+L+Hp1d0p8WVJs5XdfRdTVlXYNUSBnhowo92iU4ukegApqLV7RFRzC6C11IcHBMcOc+3TpHpmPGB0fEJ30Wixu++A//ge9/7z129vYIo0P6QchB3dJbbjjb1Pz6y2+595/+b3pS8dnnz3izWv/ls5Fx/vxTpt//IWkQobTGVx1mNsesl9igo6g7HG4rPtaKtmooqpxMCpyAtDcgCEI8kiAMoYvQEaQn73Hw8yNS3SG05twqSuUQxZLxOKB2JV1rWFU1pzc3rKqWM6N4Ot/w4YM9RsG2LjiQCoVnnCZ4KcitZblc0zYNbV2SpjHeKWzbgZCI0Q4q6EHdbGVe1RLhPMQjxGgfgnj7WetmmNu3NF//kXA3IE4M0U8/Qo0OMV4THh/QLgtmn/2ZSgbsv/eEOJYIu8LMvuWrf/p/CauCw4cPift9XCTQZbCdatExeprgOoebF9gmhDDFtQ0oia1ybNPRtB7r2P6GRD1m315jnCOJHPFgjKstyiuc1Lx4fcH3PrjP9PguQZpgjMWjMb/9NeuyIjcNVQRhEBOlPcIw4sHJQ47ufYgsl1gdsj9I2UkjqoszDn/8c+pgDxl6bJ5TLRb4tt3WS7cK4WIYpfgowssGISQykLiyAtHiO4MtFngscjJGBGDm5/hqw3Lh6J38gP7eDrZck0xOeP70DeMIRo1GDPaID+/hhUOYHHt1yubsBb33niD7U9pZQ7Rzl+LmgvrVNyQnDsEIAokXAtcZhJBQ1kgMtilxbYkxJRKNkx6vJEk2xHQ1QkVkgeR7P3gfHw1RJ084WeWcf/Fn4sGQDMUYQZD2EO9GTd7xju8070KTd7zjO473bEMDIQiCFKFD+ruHHCd9XKvpRQOOejG9Jx+wCQuWuzEvbr6kFX2sMLhAIuMQ3c9Qq47Z+QXZdAzeorVBdCVSJ/jO4fMlZAPwESLexy5OaVc32DhCTyaINEFIEMWCi2cv6fcmZCf3CJMdZJIxGUi4bAgHQ4Jehj0/ZfbiGaffPqec36BEzeMf/5T+wUNaJOX8hsGgj/ch6vgB3dsG53KEqcElOCJcHW9t+6bFYGmbjiavqUXE5WpF3wY8e3vO7WpNEMWUVc0OElV3vPf4fXYPpuz2EtKdKb88u6SpXjH56Ef0hmOqssQKt7X2e6jzEmMMWT/jUDiKTYNwayKtUFIjlKLzFiEFOoyQSuMB57YvpXF/QDwa0HYFTVsTpdsmFa8ClqdnlFdLgjgmlD3KsmCnF3N8OCUZ7WDJkCJBRQnKKXTboYQlOzmGNCIaNchiRtNUvH32La/+6dc8/NmPkVJRX74lJED1hnjjEUGEGvcRnUV0FcZ02+mV/pDOLRCmQbqQsjGMTg4QcQTW/GUdR2KNRVhHOhyjOkvoCo52dimGGTrd4/zsjMw15Ks5QRgyHPSY3dzy9E+/Rz/5mMO7j0j3jpn/82/xTYkSnt5oh9LV6Fijo5BQKTrXYbwhn284OejhmzVV0eFUjPNLkvGEKMoIJMSDPVAOEXp8axC+w5YLzk7f8MWbC548uIvupRTOMhaeQRLQza4gSgjDhCjepT8MoDO4fIVMI8xmjig3bC7OqZc5g6zH66tbpIIP7x2SpiEegwwFbnaDjDLU+Ajd1SSTAd7VmM7jVIIzkqYDYzzelPSTHlVRYxPo9bZrUNXlLd57ytZQ5RXj+JZ8VfMP/92/h7Dg6sVTRsMhKQJnS1CSxlRscsOd/X3KtCapV6zamkXVUjcNsY620uCuQUZbt4v+S8VnW3d0CBItMG1OmxwiVAgedBAikgyKOazniK7G1Qb0iDDqqIuavGxoKktVWyKrqG+u+d0v/hMvV0v++fKC67rhq+UcZxr+Bkc/yIhfvkB3N+Snr/nFH17wj//L9zj8+B6br38NbUswPCCa7NNdv8bNLrBFja0LzCbH1iVtnKHSjDZfU61z1jfP2PnwQ+q2pW1b+oMhIh6ikpxNvmBvOCAd3KObeYr1DuN734cg4PyL3zCdjph2Fzxf5cRKIrwjHAwQVcWrt6eUYUY02CEeTZivc96KDXeygE0Qc//eY5QI8ELQpUPa5iVJ0qN1HVXX0LQdQbFByxB0gZQauhZvNrTXr/A2QGSHmHUJDrrNmjoJaWPN+OF9mtCRTDPGYci/vDjj8M0lg3RIYUFGIYN+xmXVcrlY8//85l/xrWVRtUihEaIgCqBs1ty8fcGe1oRZH2EMzWZFMbvABFA6T9jL0CrCe4eX/GXCA2QYIBRYC+mgh60bwiglO9zlo0dDjj7+EfbyDd9++icqY9mLE5yoefn6OZdv39KUNct1xe18xWQ0Jp3uc9a0nP72Xxh/8Rl5UVHU9fYsA1pAoEJWVcNqviCLI1ygsb5BRRkO+Rdxa4hfzHBVH0kNQiB3MpAh3rQ4m+NuTmm+/CMq3GCrhKZaoON9sid3sV5h2gJXzxG354i6Y1MWmMEAT86bL37N7dUFH37yADFJ6ESLRCPDEISm6zwogxzGdKsFplxv66GtREiDW8yp5muW8wKrBDoNaJwkGQzxcUIw3eFyVYHU1MYRBn1uVy3m6WseHhccnxzjUbSm4HS25NOrFavWc7gXcH9/SDjY4ZOTDxDO0csyLi8cH374Qz5KFben57xZnzH4+GeM7oww1rAqQsp8gyy3IZWzIe3bpyQmQ0QTdNBDevmXNaduW/fclLi2QO8doLIQbxt8saKrJGHvgMnxQ5JhjKhSDvYs5H060/LmoiU5akmPPMJZissl9XVB299n+uB9OgYEoEN0sAAAIABJREFUY+iKW/TxA5aff4kMFVodQBIjVID3AteBki3e1Xhf4m2Nawqc03TeEw3GeC9J+yNsM2eUCbxxxHfu0B9qzn7xf9Hv91k2LUkcY6uKdDL9r3xTe8c73vFfm3ehyTve8V3HO5zp2BlOkVKhwwF70wPSIKduWkzrmY4zIjrSsKP4piFbCqpeSjmaMCtXHO7u4oWCuqYqCzZ5gdIBZr1CExBGfVQ6BKmx89l21Hw5p5nf4kJFMLmHHA6QYYgtllRFRa+3x84P/gqVDZDDHiKNCVQI4YKu3bD85g0Xn/6R2ewcn03pv/89jFlzkZfsTj3Jzi5N8TVNuyHOYoI4hd1D2vkpWrC9xMa97fi2cxjXUlc11gbkuWeR14S6Y1Pc8KcXb6hax3i0TycqluWSRztTLmcL9g526WUp9dKQ9foslg1BklJWOW3nMFWDqVva1YogCDGdoVguGU52qIucsu0YD1MCOoRQZKbAtQ0WhUUgEXjv8Vi8MXhABJogzTD5AmEbqttLNmcrouEdoskEzAYR9bC24OJ8waD2HL13F9E/JuwNUa5BUxDsJMT7dwCLdDU+lATOcpTnvP38KdX5W6IPPkHFArt4g5tpRFPguwIx3ieIMsz8Gp+vcN7ioww5NIjKYl1LEiVk4wxjzfZS3TakSUJbNeheDM4SWoNZXoJM2H94n3xxSxaG4C0Ij1cK03Xk6zWrvOWyusO9h//Ag/sfEIyP+O3/8b8TtgUilCRxilaeSRyi2g2VN2zKikhaTLmh6hqUkkib048ylLe4rKLerDgII4JxjC9u6JY31PNzFtfnfPnylMuyJV3n5F3NNEsYjwfIrE9hDM4skVqSzy6Zzxcc743J6gLVdOTVNW9enzJrLNl4CDpmpCO+eHFKV6z5+PESX87oDafEwz70+rg2x+MJeyPassI7C1HDqt7QmQYRK1pnIE0p8zmyLlG9BOIhDUs6L7ktDG3d4EzO8Tjj4rNf0j/cQyNwwlFXFca0REGKr1acLVuGgz46VnTVhroqqa3EVRXJ7pC7h3u0dYkWgtp2pGkfEQ24evWGgVagtqsS2m4Qmw1+uIeI+gRZiN3k1FfXVPMNnR5hfEzd3VLNZ5jWc3szJ4lOkTXMltd8dnXLtXMUMmJnOiGwLb+6nSFffssP6DD5BTqSlLLPj/77/wHfFrga5GAXoTw0G8wqAOvprr9mcVOhe32apmRTt/hBbztRZjsOP3zC5KOfMlstWC7nBKaiNxrjgwgvY/rTI6TvWF885+Krb9jdvcMwS3n+6nMIPOP9PVYvT6lVzGyxxDvBOIx4e7ZATD9kvLOPjTyz5QX/9vmfaY8H9E92GR04yDJcsaY5e8VsvkLGCSrYiqEb43FNR1rm6DDCFjnIEMINvprTrjeo3Q+wjQFpMM2M7svPaTcz9EggVMRmPaeZzbCNYHc0Il+tKNcFnVJU1qLSkFGWsNfrI+OEjWvwert/4LVEj3eooiGXb76B3oDx8hxfljRVxbpucD4giGPw4KwhiBWqyZke7NOsl9BWtE2LVhrnJVpHeOnp7+wivMden7Jpap6/PqN/9yFREPD27IIvv/oz1/MV88WGunMEOuLew/ewKqCzjgrJ+fWCdVmD6fhgd4TCYZE0XtDrD7mZr+gPhyRZD1sU+NoRxgkIgSs3uMWCeC+GnT2cd9tzYxaY9ZJ2OaN685L2ekbv3oRkEJF0BcXbZwj3CToe4JuCZBIg3zuhuy3o8hpzesOymHN1M+PJ9+4iY4mpZoS6xdgMogR0iK02CCPwZY6NNPUiR7Z9hA8QbU3z7AInI2wrUZlEZAPSuMeJCBGDCefLks3Va2LbEcQZRecprWRDyi9+9Ud2on9lMhmRt47TqzlXm4LGeoLlkv29Y/bvPmQwPkCXG+Znr3jw8H2UkXwUhSye/ivvf3JMlQt2BrtoYbm5vaZsZiRNTVsWOB/hNjl1tyRKlmiZEfgEpcGHChFohBaIAEQoceUcX+VUtzNMpxntHZCOd/FW0NWWweiQ+N4Y02xolMXmlpvff4tIM0w6xe5NmT4OEWEG2RBbd3jXp61b2mHC8s0XZKwJD49Q/SmmNfimRSi9DcFMuQ25XIt3GqNDRNeBlOgoJQoywlGPfFFw9k+/4Oy6QHcW4z3Fes14Z5dwOMV7Ce+sJu94x3ead6HJO97xXUcIeoMhg+EO5bpmunvEzt4eOtBsbpbMrxcEBxOMrblZXLG4vSUUAXfu3MNO7vCmKdg9GqP1FNUGNPkV68UtWkOMwFbl9pW0CpBRH6zDbha0+S1NtyE++QFy9w7EMUhwWNogIto7gjglvHsHdbCLcAanQ9RkzPXv/sjVZ38kHPW5s/cI6yN64126ekDuJaY3xoTQ3G4Iqzky0YgsItg9pC3n6DTYyly7FiElxtW0zmJsg3WWTVuxWa1I0pizm0uublfEUUpZFpzcPcYISxG0fPj4IXceHOCN5+LVFb4XoXspQghM19F1Fu8lQkpsUyMslKs1tTUMd/bQScq8XJMvOvaiFGkEvXWJdQ20CiXA1DWwFS8K41Fa0JpmWxFc59jNivnZjHT8gOzkMSqC0Ap2Hz3GLJcc373PzdtvWV6+5mC6RzKO0UEf4TPiu7uEwxi3WdPe5BSvzlm+fAHthijtkRzs0KxuyHZOUIM+vm6hArsuEGYNOEQkEUWDMx1kGaiaQKbYxYxsb4eua5FaggqonKCsSpJeDxnEWzmsgHR3l9F7DyFJGd89gdtLVpevUOMdgvwW52EwHnL4eEB8OOTJJx9BoxiPB6S9Hqv5Gp2kBFHCeNxD4PAC2s6wKXMC1TJb1bRtS5VX9OIE1+twNiQNBF3ZsokiotVWuNguFiwvrzi7vOZiXXM6X7FRIR8dTTmYJogogd6IXhjj2hWuLfFaEoz6XFyttq+yWnOzqVipDDkMiYOA2vvtZT3J+Ldvb2i7lh+dlFAuwR4S1DnCOxAeZ2uMa+isoK4lq1WJJaDNa0QScHH1FmzHUMa4rkFLSdlYLhc567LCOXg6z3kyGLOzs0c4mLK4vaZtK8pyTVnlDENw64Krq1t0vuLO3iEyiZlMRzx7+i2rqytUJJnu77K67XDWYNoWKzRhHJBkPcp1TqJTlApQYYStW1xQIFWPepnjnMbLABf1cCKgLQrafIbSikcf/pSXzz5DnJ8Rzq75fDbnX+YLbi04KRiENR/tjrguIs499G7Osapj+vgh/eP3qK9vePbtUw5nF0wOdulPJ9jiCh0neOFwuk88jmnbHIPFBSFJIqnbhjAJ6HTAqrV8/vmX9JRhNEioixVJsoezgrKDaTbAFlcMQkezOuVP//EFXz3/lI9/8jN0ELLQfUq/gjjj6dk1H99/woOf/CPxj/5XPjvLKb75BQrLOt/w6rTg/WlG6z3ry1cku/v44T6ByTBtR+cXKKnpggicJzcOMb8mSAf4YgmrDtu2+GR3u3YyX+CbAidrTDPD7R6zWVyTlwXWNHiVMn30iM4VvH32Jc+v5rgoprKeIIo4GKTcGQ4YTHeIkx5l0+LqhjCM6Q9HrFpD1DRcvX2BHQ9R3YayaiGOtxOBOAC61qIjxfTOe/hsyPnVJb5rqIqc4WQP3zUgFMQZ3XLBcDqhNR2fP31OfPyQtj+l10t4/qc/cLvccD5bcbMsETLgew+P6E126NqOtu3okIgkw9SGZZmzNp69RKNDTWM1gVRUbcPt5TURgiQKMM0G1zkCFSC8x0cBfnmJpiHYmYBZYa7fUp/eUFzOWLx9RbozJNK7BPGU6PtP8P63NM9+BfGEzmWgElyaIvfH4OY0ecNivUQKhRYjqCvOXrxh8uQuwVgQZApnDd57bGcwVUMnMmo0qt42ZlHWdC6iaD1CWVovqAvLMBFbQe/tgrEX/OTeCbNNxa9e3VIXBfdP9sl293DX5/zh+Rfs3Czo/jIR1o8jbFkzXy24mZ/iLz9H9xJ+cPeY/WHKg0nA7mgXtfKc7Dfs/eA91mc1TWNJBgmxHrDOG2zbYVWDsgWtBpUv6dYbJAMSGRKlAp8E6OEEFWfo6RgRR/gyx3UVq2+e4ZM9euNdlAhRWUaYDtEPAuxixc2//Y7f/+afMYHm53/z3zLZn+CCGCMh7I/xQUBrLTKWCBthS5CjKWdff8GdYUaLITYVXkbb1p7aITq7DWPaik6YrXMlTjA6IB70aDZLuraiurzFekmYBEjT8PL0FukNyXCMUQlHd+9h65x3UpN3vOO7zbvQ5B3v+I4jhGT/zgkazTxYcnZxzeHdW2Idky8Uv/niKT/8+RGOmsX8hqcvvuF7D55w594RbRhwW7Y0yZBYDUnvRPDsgrruKJZLSGLqy0t2kgjRHyNsh7ctxhkaZ1B7h+idQ1TWR0bR9pU9Con2pviLOcKW+OIGVzhkFCJ8jLQlg77i8fc/RIymrK/PCIcTwiQjX6TgHTZ/zVevTgkHIW69xKUxokkIZYZLEkyzQSsJVmBbQacctTVIrajzFb1EEgCrxZoXr26BEGcDkiBDOMeTB8dMQ8P3j/oMI8HZs6dYZzi4s4d0hzTG0lQ1SI2zhiLP0UFEU66JhKLpavKyopelpEFEZy2rvGYcD9gsbiiLOb0E6qrYBjBNBZ6thLEqaJoCYxvy5YzieoaKRvTuPyCYjBFuTewD7v/kx/zb75/z5UYTREPs7JLR5TfEkUPfe0R49AgpGtxqwetf/pbPfvMZfjPnR//N3+FNxtEHj8kePqZbL7Gba8TeFBFkoENUoIAAIUOEaRFRi1RAIkFqqqKlN52STka4wGOsw3hHZy2NsUjjUXFK4CqigwPiqE9vbwc5OYDhlK5ZYLrJViL89pbdw112zJCDewdke/u8ff4nZi8W7Ac97n/4gE//vKSumm1bSDZA4TDVBtFsqIo1S7etSc3zkkAp8mVJu9sx8hHTUNEPYor1DFvldJuScp2zWG+4zVt0HNPXAZeXtxxlGW4fjExYN5bYNMjaIo2h60BaT5pG3BQVb842yCSl8RZbVzhZE/Yy6qJGek2gE3737Bpaz0cncKBuSYsNOkmwTmCbkqqp6XTC5e0c5wWmtXROolvJZlWRDhJqF5ESkAaCvLHMNgXWQxD3yFVEPblHsnuMoGU8HrDYrCkWtxRlQds1VLNbvj294uL1K/7xBxXBcIwbZDy6/5fgoMjZtX36/RTnHB6PK2rK8oZhkmLyBtd1OO9p6wZRFsi2w7sA7zVdUdHUBhf0wHsCZTFthUx7xC4hGe/xevaG1bzmaVlxNBozlpplUxCKltO6Ru0fEh7tk4w0/YkiGCdYs2RvFJKeHFAsZ0R370NPYNY3BM0Sr1J8nOCqCq81rZP0hkNUHFDbmtYK3rx5xe2nn+OCkMHdY1oHeetQHurOE4UJnfNM7t6lKVZ8/q+/4svn3zIcpsxvr9k/fsCsc9gg5OpmweW6ZuxT/uef/A0PP7iLi3LelHdYvXnFyd6IRLT4dIAQntvzb+gPBqjBCfbmnM3yLetNzTiJiF0HYZ8AsMLj2xarG/AS7xVCavLbG0xeUeVrnKsxsUZEKzabBW1niXaOCIM+jfd41Wf4wYeY+ikvzm4I4xDjBakK6emAYZIy3j9A4CnqhnydY8MAESiqtiWp12wKQTboI1RLZzoCIVFRjJcC5x2BF+jljOrynMg75kVFUZZkUwmAc44uzKhNiVnmFJkmHEwoipzYt1ysDOP9A9z6bCuJFpooGTGZ7IAXLDcFOtA0bUPVCTohaNqO17MVOw+OMNYy7g+RWlKYjk1RcXV5y6DXJzKGig1Zb4DE46IQ4gQ5mGCMwT1/S3N5wWLR8vWzV2SxJYgjukBj44zWCcSdD1h+9hVv/vwlTWNQoSQ+OiDaOcE1inW14ZvlgjvTCSrbp/E12UlMYT26tCSBI9hs8IFE91JcNqLeNDR4WC8pNyV4SScFpArwnC029PSa4bgPKqbcrDBC4sKMz89u+O3T19x//Ii4P2S6M6bY2+H1q4jPX75lZ9jnaP+I1oTs2pBqs6bvEl6/eoUYZYzvJ5ws5/SiHg9/+BMW375mHN0nyEKiNKaqSlqZIwO79exYQ9VaoETv79EqgVm1aFUhsUCIijRCWVQc4oTAFjWuhPzzp1w+f8EqzvnhB39PmGYkB1O6zgICnUna/1Ix7g1Yrgte/e5PxFLTO7pHNJniRIIKJYlrqDZzXFehQ+jqlnA8oeoa4ixic3aKDzPCOEEYkHWDaTsaX9MohwgjghiEtUjtcMWGdLyD/uFf4+uKxRef8vWL15zdbpgMe0RjTdU2DPb2KZf+3aDJO97xHeddaPKOd3zHkVKwu3dIpBNClfLm9DXPvnrD3vgexSrks1dr/nD1gnv3EkbtEh0obE+jhgMSrZj5mLp3TM8nJIf3kG8/x+EI0x5hLyV80kNEKdbWuCrH5DmmbamFoj89QA9HyCjAY7aBSrlE9YY0UUGzPEewQlTX1HnO/PwGczWjuSlQk4fE9/sMj9+HyFPXUCYZlVyTF5aFb+iu5pRdy4NAIjU4uY/KMmzdbY3/1iDSHlXnaKXHtCW3yyVNuaJpaqrcc3nZoAgIRELVWNKmJowTyuWGT3//W1TcJ1/WvP+jv0M7zcnJA1So0HFKnpdopWhth+panPNsypLVYk3u35J++AGT8ZSirOnqmmWzQSPYLE+hswROYssG2xic7fCtoa42tEVOcXVNObuhLTrufXhA1IuQiSYeHqPckH6y4if/8Am3L57z2e+u2FQ58ddfIqWh0wZdXSObNfn5OX/43TeM797jYPoRvSd3iQ8+IRhFCGWRgaKbzxHdHBXsIOMYKTq8keA8pi5w3iHTjNZ2eCXQvYyeUli5PV9aBTjnaa2ntpK67uBmzmEvZHj3Ad2mYLOc0x/vYvNblLCku0cU1fZCHmcxWZyRhCFHO1NeXpwzq2r+3f/49yQv93h59oLVxeX/x9579MqWnWl6z1prr+132HPiuGvz5s1MMpOmyFIVVS11q1FAAQ0IEDToX9djAYIGAhpyQKvRUqGKpWJ10yTJZLp787rjTbi9Y9tlNDj1Hzjgff5ADCIGX7zrNWghmcQJ9B30De1uR7vdcbNek7mBsm0YvCMfpYg2YDD1/ZTtuABzQ5EW9LuGpu7piClOHhK8u+bB3oC92VA28PtXd6zLjoOTBfP5jMR0uL6j7kASs65bunSf8Ymjq1usMRRJgkhjOtsRq4DQSpR1WCH5/M0KpGTnPHuTjDAZ0HFEVzX0zkMecbtd4r1kGCCNQ6quw0rF0YN9jO3orad2mnVVA5CkKaiQkw+ek2RjpJJsb1dM4gjCgNPLKxpnGcoNt2dnvFtueWHAGMff/PV/w7Mff0TwIsDnU5IkxHYdaZ7RNg0yCqg2JRJBPirwMsCYHjcYiHLQ0PYDw2aDFIJqvcb6CJ0XBNYghxadxJyeLemHLWXTEU8PaNuSk7ijVgH7Wca8h17lZJMJZjRlOwwkiwV2lFIOQNsRD4ZeJphswrrpCSc54XiPflfhqy3eeQwWWSREPfR42qZlsB4ZRoi6Js30/cpSFLL/4AFJmiK0JtQJwoc4IxBhgEkjfvXunKEzPJke0Lct1WbJq9NTAtsTFyNGZKxFzDfXF3xw+B2fhju+uvuOL9+e83xvjjJbrBcI4Tg9PSWenhBqR1c1nF6ccnXxgufPDhjpgMA5hA7Ae3rXobxD6RgZaVZVw9Wrt2zv7st6VRyRPj6E2y1d25PtP8HrkNr2JFmMUCFhuMdf/M0nzF9/x5f/+E88O5wS1S3GOnzdIvqeZDQhjGM6oUgUiCSjaSt2XULsHMb09EOHlhJnBkzXodOEKM5QkaJ5d4oIFGEY4r1gPJsj+x6nJDpL6fxAKUJMlLMbHH/46kvwcHZ1hR7PyYOOZx88Ji8KRLgmHh2ilGQ3WBye9WpNnI9p6x3eGMq2xg0N8uPHRF4iJBhnGfoesojeK67vtmgkarNlumeJEo3PE4gipHfYzjAYzc7EvLi44na3RcQ5O+sIyhXqLiAaxdhWYeNj4rFg++6UZrPB7kqaN+9wMmHTgYxTFs+eE+zPELKjvZE0bQ3VQH13TjxOiD3EXtE3NVbHdKZFGosRYAaDTCK8dFTbLU21I85SBm/plEJmGYaQt6UlFgF/+fwhT7/3jMNYkZRLDo8fUoy/IdIS4Q3j8QzhCiyHqFXL5GTK7ennnP0//y+/ffE7Dp8e0+3/EMEWaS+x4QFOLfC6Rscd5c2XqESi5xFu3UMkGAKLK29xCrxIGQZL6ztcb9GdROgGhMXVO8wO+puW7Z3j0U9/golyCB1ohx6FiMHhBsMwGPZ+9Cn58x8QCIn2PZt3b/HeIsIQI8A6D22P6Bt8V6JTDQcL2rbk9vwF8f6cddWhQolsexIVQT3Q1zW1q+gixWg/xhpLEETYwdEPhijOGU0XlG9f8w+/+IK/++aUKIpxUUJ/ecXiUOCL9P63LNUf91h7z3ve80flvWjynvf8iSOEZDKeoWTMrh0Y13uMJzPySY6pPbbIOH/9S9rbigejlAcPHhBmCWmRYFWAymfI6UOCekUgGvKHT+jWb7H+/iUwSnNEVmDaHt/vGLoNfV0S7i0Q4zkkOV4BpmeoVgy9hKDAxgl3b1+ir2HZOP79P/6K87sVJ3HCv/6v/mvmk4Jwf0HjPVhBH8c47RDeYPM5k4dwc3F6b7//6huemp4nkwmJ1gzrjiQIuLdHBPdZ+R6EFFjTsmtrNlWFT+boNMY6R6wjZsURfb/htlxipOT3v/8F3/vwYx7+4F+RjQvyoWdTBjhxX+Qap/cWdhVFXJ9fMdYhcL8i8+LNOVGR8/T5Rygh0XnCdtvSOUe5viNCYqyi2zaIXtKWDW1ZIgJLuV1S3W6oNzX7+wuKsSSKB4KRJhhl+EERInDlCx7OJduTKZ///g7nPBeff0X28h1pHt9/x17y5NNneJkw5FO2rcGtztEuRKQh0lQY0yOSnGG7ItIpQkfIJMG2HUpNIXQ4oQmwmMYTpJZdVaNCjcLfLxWpkMHBbuhRUcLlqqTdwSd7R8iDBS+//A371S3Tk2PGR0eoQSCqitl8SuMco6KgXN8hjeH7Hz3m+EmEKEKCo4jgKODyd+c8Tp8RpjlWxzghcENPVdW8vC6JvQPXk2aKwFmqxmKUpGlqbpc1Xe+R8grtFePZPosnD1j1HhuEzA+PWFUts0dPefjpT6i//R1DF/Dqekc0dEgpKBYnuLZBhQrVtvi6pRYGj6eRinGUMFY5MpBsgcUsoelDri9veLO8JkwaCCP00EDVoyJNOJ7QWkG6OEAkKXkx4u52hRYh43nM9XLNkwdzBuexu5qyup8bjpKCvcUhYRT+86s9ZNry+HjG3U0NOmR3d4s2LbebimXd4VWMK/bY9BKdJezNIvrRjGxxQHX9knQyQoaKYWdwCqJ8jMhydLdDeEffNKggJsxGDKpjaGuU9wzeEs/2ECJAGI8NNVE+xscdejwm0Qnl5gqVFeTZCCEhzVImMuR6XfPk4ASURMcpl6+/g9iS5FOaISMNctABLYq23DDeS+67K5wFMzB4Qzyf0nY7OuOo7YCKQlTocErSdgOdE4yiBGfuX72d1axud/jWMpmMCaxGW002znn0+DHby2sOjg8IopCvv/wDu80Kbw3p/CEPP3pKNtnn7377OT//T/+eXVPyu9enBFojmPGXzx+wOHlInI/RRwN9V1FWAZuLK371n/+B7W7JenvLv/zZT1GuxnqJkILruxUPj54iZYIZDDen3/DFi+/YbioCnTE+esDeDmIGRJAhdUKUpgTCEgQhZQN5mqIWx6TZjB/OT5DrNddv37I2huvLc+TlOVEYkM2myKqitB7VD+hsxM3NDQGGYvoRousIdYDWCWbowVmCSOPaCp0X+EBiBkuWFXjvEEHArmkQozHrtuG/vL5hiKecf/k5/fU7rq9u2fY98cEDHj864KMHJyxbSbE/I0lSXLvDIInDkJXZUO8atA5pqi2mqWm1wgJKa/rBIJRG6pDBeoQO8SjK7ZZAeEy1o/AhQt0vajnvCRAMpqeWgrZZcdUY+m1DcLcC2TFoReQKRKfpGs2mMayc4E3n+KebNZddx49nOYeTGX/50z8jf3CMTMF3Hcl0Sn9j7pd9OofUE5plw0SsKJ1CjzS9MQydY+gtSZJgRUCPpaxqmmYgalraesPb6yv+cFazOP4epSp4drjPp0oQjSLubi7p+ozx0SEH+/uUK8fB/pRZ8ZAsqwjkIdMfP8D4nv3tKZubr5lsKtQw8PP/+HOGm5ZutyE/nvLn/+LfEB55dtuS1csL5p88JppMaXtzP8uuAnokOslo1juEBeEEjoDBDzAY6AzWQrsGR4KZHmD6DYuPPgMtKF/8mjiRqMmE/u6a7dtXDJsN1oSYsKBDE548pQ8D6CqkMmABu6Mrl4SjnH6oQAzksxF3lzHXF7egc1zb4cOApm0JhKKqd5SmJs/mBDomUAopFG1VYmdPqOSI+qsv+L/+5/+F/+k//IJAau7aktI4nh/M6OsSIU+I8sn7dM573vMnznvR5D3v+RNHCJBxiO3BDoYkjkjClPEko/Q1TAaCYMdqtUQNMR99eMR8fozTmjAbESYHpOMxgYZg2DJ+8JTL5VtUEhGNpzD0ICVCCWSaYIcWaRxOR6jpAqcE0neY3Zq2s6jJA4ZqyzCecO3g9Ktv+I9fv2PdOx6NJzxd7DEEmiHSrNsNYTZDhCNMvyawFdLsSBNFO4QUh0fcnL5jdXNDHYZsfcgPv/8cbw2hGZBxiDMd7XZD2/fIeOBuV9J0huUwoKKOnelI8xAXDAQaFgcfsL+YM5pNcQ8fEmdjJnvHOK+IJ2N2ukMHDWVt8UIyDJau7wjGY64vrsiyjOXNGU3T87uvX/Po+XOSNMN7R5EJtNfsNobAlYRK4AdDva3paofdtXR2x7baUO8q0jxnf1EQp55gkqBjh1lbB7AIAAAgAElEQVS+o729wJZ32K6hGwzF4R7tizOue8PUa+raMtaSrhakWYRrDEYKRBARrgdkPxDHU4hCou0NXQ3Lq5LxeIxb35EUBcYqhL5fpDA7i0xSGAQijKjLNSrPsVIQhAFu2OG8pR4amrqk39VM5nMaqfju7JLHH89YPPuASQzpaERUTMAKjHWoMCJJElzfMPSG8zfveFbMmGcxX//hb3lz9S1DcEV+FLHptnhlQWuiSN+/VCq4aweWVcM8kjzLNG1jqRVc7CoCARjP0EMeRyz25uRpxu265fJ2RZpPaNoWGUq2qxvqocNHY/Sj77H1jgk7hrqmEsH9lHLb0tSGMC0IhbpfUHKO3sBenlPEKVFXsziY4XXG2eUhp29fsmxXTJWGOGPXe7qmZVJIiskema7o2xYRamYHe+iuYrldoqKQprcUccz1ssVLzfHJCVbGlLuGOCvYm44pV7ccphBGIUmqONg/YD7KsJslF9d3JCrgX/75T/nrf/NvqZfvkKMDJs8CltuB1gnCyQwjFHhBqDShCnCuw/kW29eoYoKTGiEkZuixUiGimGa9RhVjVJrgrcfjsDKgaQfG833af/4z3IeOXdsQpxmTPCYwOxbjIz54mnK6tvTnLzg8KDjd1FyUS+bxNfvTPZp0H1WMqDYXLPZjbu406fEh3lmCPEEbR288Xe2o6h3JwdF9h0FbE+YFrV8yGENZr/GxoB0M2XTKH375DaNiAdKTFxmBkmTZlAcPjlkKSZxkDH0NduDmZsV4tkdx8IjF4w/JsoKXL7/hd998xW67wsuARBRUdcuvv31NunfA/MGIndny9rs3jIuO3/3y77m+uaQfWpCeq7sNJ0WMlhIvFQ+/9yPi8Zyh6xh6y1255cuLM7at5/vPT3BxSiNjvE5IJmO6MCeOU+z6GhsJwvkjJklInsfUtwPZw6f0TyST6ZjN1RVeCrwZ6J1FdAORdWw2G0zXMfEFeMWurGi2Jd56nBzwSqF1gLQ9ot/iBfdCKh5tWqIoYbvb0VZrsiRm1RredJLffveW5dUvsOs7Tt+dMtQdH5wcQNeglGJnNetWkRYThGkpu56kqfES2qYlCFK86em6njAMCRQ0IqBQAb5p0WFIGCe4tsTYHoIQGUcEsSbJRxgvkHFI17cQxaAjgskEc3NFMS2Qyw3LwVEMgsDG9Msa3fZE8Yyq7rhtW36/3fF/XC5ZmZ4kEFwOlp88ecj88QNkqmn9QDDKaZ0hfhiyu7tgcCGNDxm6FldLrDAM6/V90a9wpAqGzoBWCC0oh4EOxyBg19a8ePGSi6uBNDtCqZ7Tt9/xcDIiCkKSrMB3DUoERFHC6MEJjx8/olopsmyP46PvM5qNuVlekRDyQRpzPCqom5ab0vHv/rf/zMNFyKNmzcnzt8wiw8VXX2PdlL5NSLIxauoQZrjXLpzAW0ddlgSBBq2pO8Ow2aJdCf4OEcSoZEy+mKCygnrZ0g4dWTEjz0KGs5fY9YTu9oLzr7/mq9++5INPPmb2yQ/pW0dgB/RuANGhhgShwPuaIInouppQOUy9pV7fEYQpPRFxoCHQ7LoeK6ArK/qhRSYhSajuS9TDECsUbbXC1l/SrlJWv/tHhtVb8jRkO0guNyVCSQhj2l1L2xryMEdI+Ue+1t7znvf8MXkvmrznPe/BDh2Xl3fkaUqRxSih0bHE6g1D9xJr17SuZWl2bAbBM1WQZDOcMBxpQyKhG0KS8R66M+g0uy9YNYYoTgCJCCLsboU1Pb3tUfEIn+Q41zC0K9quxxdzTBhge4EJgcMHhJsNx7cbol1PmKZcWsisQ9Yb8vU5IrC4wmLqW1SoEUmGDAM0EtqK8byhs4azyyuariXVcJQGhEmG6A1Ka6QO6KodYSjxMma5W+OThHwyJ8+37M17NuWOVXNB0BieRCfEXjHef0DrIA01RRQhjMA0HilBSUlve6SUBEJyVW5Y7WqOk5wwzxhuVlxer3l1vuTjhwusU0SpxHQdaggYBjBdj21rtlWJ6x1mgF3T0HQ9XkUsHj4kSgwuUEgt2J2fMZyf0bclQyBoPbTOY/OEp08P+PUX3zE0kv1iRCMT2u7+2E3ikDByZPYG4ROGZEKwbPGbBtMHVK2krE5h0ZJJiBhQOsYbi/UWmeSgY/A9pqlorCMNFcILrPWoIMJbR2cMt6s14/k+dbVhlN1Hk5a3N+xNR7S2JpEK7w35eJ9yuyGKNfPZmNuzU4T3lHe3XLz4iqOnH5N6RWo8i8UYHjlELVkuzyiPIuZxRFakZJEkTSSrBu6ageMuZH88AidQKKwxrHc9KkioWsfdcsfSXCPtHSpOIWi5W6/pBsfu9A1fbf5P5tNDBpkgIokRNVmaMdgO+pbRZI7dDPSbmv35nHU6o754Q7uqqMYH7CUp0yJn8eQxRib4MKWt7rhddogoZ9N7Xp5dE8cJ1/UZTz8uODreJwwcK2VZXa9wbUsaKAbv6buWMJ7z3Yt3bHcD696SjnP2DuZMp1MwHe3mhriY0hjFOE9x+3Oy4hFDtUb0PevbJccHR7ggJVGC8+/OePpX/4KsqjDlkqCPMH2PMxbTdSSJpt6tIVMkeYoKE6zI6KwgjQNCEWAGBVFyH+dKYlzfMex6yrsVjohkb4+u7jB+h44SZtM5LvWo7SUnE03+z4aR0TSkGnIur+9omxZjEi6XGw4u35CMN6jJmDAW+JsGF4U8HIeEgcR7kPp+7nRTt1ihEENNEimkTCi9wDrHfH/Mul0zP0gggrt2x2W1xqUjYjXCCgdhgBxCnjx5TrssOTk64frsksNPnvH19RIfJEwOHqCFIQksQZIgvCOJAtAZk/1DhmFDOyiulhteX16xPHtHtV5zMu25XF6yaWrGSUKSjliv1oxEQZzGhGmCVAq8Q4gARQdRwiiJSYucxYffow1yqlDhlcUIzdmrawrvGe8f8GT/gOlkgg4gixSTZx/eCweBJohDZo+eoM5O6ZWiXK8xQ0eURpiVo1qvqLuWRAgSOWZZ1ozyDBEmuK4jTRVWWCpCMiyh0vR1gxsGvArYbLYorfFRSonGKkmA5erijL43XNUDyhgEnsdPHqHjnOubFa3TTLOI3kjkZsnN9RWL/f37MuyuJk5jivGI1jqUN3ip8IEijkK6rkMriREBQkg6MyC0RHoY+oYoG1P1BlVeEk7nRPMZgeuJRcDkwQd8Eiq+fPGad9clg8gpEkMYBfTNhraTLOuGr3c1caD5OA2RoeT5owOOHh2hlKG1hrQo6NoVIrRI51FJjnIdjWkwwjNU9xGWuBCYQBGGGt839G2DjiRNb6mH+88V3PcUffluRTIouotT2k3Jwg5EiebBrGAVRTSVJR0VfPr9j7C2pax2WDEBkeLDmJ1puVlecaA65h99yLe7lheXLXL+gOOpIok8mz7jtukZhY69pw+RH+YsL28QXuBEgI8jcIa+qkiTmLiIkWFMM/TcXS5ZXe3uhfckZnKwxySaI7W4X6vqevr1iiQrMLWle/UO1DW/+/xbvji7YDKPiYoRnZfUdovqQZsKu71EC4dOQlwo8IHGDD3eN9TLO5bXG3ycEIUxQRwzOMt4UiAagzQCAo+KFUmaoPV9IbmVAV3XE4c9dntHKu/42Y/n1N7x+csNI+VQUlPXDdqEvLq4Y/6h/mOfae95z3v+yLwXTd7znj91PDTbLb4zTI/mRDpgvV6y2l2yvvmKbv2WYWgwWAwNrdwiYk8YBDipUM6xW60xjWD+eI+7717TGEM7NIRpgjWGvuuJhGfoKtq2orOC8WLBMJRYZdi1O3RxQF810G5pvGXd1FzVO+6k4OjJMbvzLbcmZBwG2GZDuYkJAk1YJJxvbkkiizYJovW0fUucJAhvieOE0XyOTGKquubty5dkD49IxyOkFRgj6a2nEZrBDPgwYFCKJB/hZEaRjJGFp6pKwjyiaxpef/WSj5494+jkASJQdFJgjCFPU7zJ8LYiUIJABSg8YRyjlaLue765vOXB4SGzqmZ9ccvLsxsePDoh8i06UhgEWnmqtkJKRyjAOEPbg+07+t7gJSTTMdFkhAwafJhyc7Nl/eW3hKalFx6XRJAkkI/oV7fMPvyAT2TIty9PCQaDqGrmmUIKTUhE3HekZkcwW7A736CnMAwtUt47Ptp+wJUVdjahmE8Q3iJ1eD8vGQYY62AQbMoSx4Dtdug4wSIRUtPUO969u2FVdci0ZzaK6QaHDiy2ben6hLJas9xumS6OmTpN29U05Yb1ckXXdphhYJQWnL/8GlPXjPYfcDJ+im402YMrLs/WtF3LpizZX2Q425EEluNpyIDDNIZBSbJpDlayNxtTlTXn62ve3iypnedwVrDedeT5CG0dXVXSVDVD3RIZRW22BDZAJDnKdHSu4dYEjLIRsyRku7pF9A5d7+jOlmz7gVfbNcLuSMcj+swwO17gZHgfL1jeUlUls8WCIdDUw0AczjHBiLK9JStvUWnK4d6c7vSCst0htEa4Ae8NvXN0veHdTYmxjqNJgQhAuZ55HrK+vebpwRgnE8rGMTmcscgzsjwn6rfsKcf6dkUyHpNxR1WeEk4esLy+JBUd/fUrdkoySpP7/gdv7yM0aYBwHpkWxPNDup0h1AEIiSTAVhvs0OJVxLBeUt/c0V/eYGVEeHBMebeh7Toq2xHGISp2mPIWc3PJ6flAnhRoNN1mTTw+4tHhc47LWy62Jf/727ds05igu+YQg05DtiKnOrvmySyCIkEnOV5C17dsu55Aa4yHIAgx1uGcY28Ug3BI5xiMZ0Dwzed/wLSGZlUy5DNM3ONIEDJkcXDE6WTE5e01H3/2KSLLyWffsus6mnrH8ycL2vU1IS1JHCFDGKynqTZkqifQY+q6o1wvOT075fLimvjjiN5Yoiii2F/ww5/+lEJ5bq7eMR6PiGNBsyuJsgkCw+AMxahgcXhAVQ8oV3M0niOzBCl6qr7n7XevKLqWJ+s7elNCMyac7OOHhGBWEE8nJNbjpiNMs+N4NqPznuDNa8rlLb21HB4e8OXrN9xcXjDNc9JRzqjbMotbbNfhvMOrHBkrttUSJxSZ0hgHCEnb9KgwJiomrAeo+obBSZ6eLFhdLpDpiM9+8lNe/ObX7O+PmSz22Q6C1W7HbP+Eoa75ZxMY623JKEt58PQ5WTGirCp2bs2jp1Nuzk9J8xwlHN4YcB2bckMRaVQUkQpJXd1Pu8s4AGcwxjAqpqT7I5R0yL4hnu8jwpg+MjzuG/y2JVscoWcxq+s7GgVXmzt2QpCOxnyUF2gsDxcFz09GjHSLM1s654kyTV8t0cWEYRBYkTIax5TlLYIY5wxVY9i0a4r5hND3BEhUPsYJSd3WZEmCsRYfBFzeVtwuG0KvyDZrPpzv8a9/9GN8FBEdHJJP51xevEWnGdVpgx0aLi4uYWhwpmB7FWADi5B3LH7yfbqhZjhb49BMZgmJLwmDkMFabi9vONAjtJSEacfs0ZiLL87phwHbAUOPCiRW3Iu2gRBcXC359tu39DvYO9pjP4hR0hMwYNsanSXgBeXFJXGiUWGCz2fcfXPN5jbk0eGP2H82R2YZ9a5h17XMDx5RrwPaXUO0LXGvzpCxx4cjgjCk7Utab8gW+wgdYVqDdWCExAtFkgWIpgEVEuYxQoeoKMGHEdfn76ivX5O4NcrdoUVDkPT87Kf7hIHmi68dr1cdWEvVG9598RWPnn+KtfaPfKy95z3v+WPyXjR5z3v+1BEQ6oA8iZBOEEaSOO+5OPuS86+/pN2sMdaAkCjh6IYNLrTISBFqjfDQt2vefPWGb/5g6ERNt1oTypYkTtBZiPSeYRjo7UBvDXq0R5gnDKa6t+1Hyf3UcLuj85Zm6Nj1LZW31M6xrFtOvv8DxE3P1fId29sVaWf4IEpY1DNW5SXDdExqG6RMme0dsul3iECjpGY0PmRTv8XiebvekKQR2cEBWRIxGE/nBSrfJ48HxPqSqjUsW8s0gYcfzNjmlqqNGJTj6fNn7E3mqDRksANRGFCWK0LnyLUiShJs5/DWoKOIar1B64DOWNL5AQfPP8NZw4M0YRBfYcyAdRICifcD2J7GGtIkxRvHZlPTG491gs5JjIDZfEwUpswXc9rbS7rrNdubV7iqohEeE8XE4QipA1Sg8MWEarVlvJjyaRpx/e6Cbb3BNyVP9h6Q1SVjPzBeHDI+WLB9s8HvoLs8ozc9IlIorbi7bgnKPdyHHyDDECEVQii88Zj1lrvbCy7u7sgmKbG6LwjVWcbgBX0HV5fr+0PXSToLIgiIopBhMDRVidYp19ennN8ssV98BdZQb5dU5Y4oyoiUJNQS0+x49fUXJOeXJNkUYxVDHZAnGV4KtnVDaSLi2ZRgu8avWx6ezNjelvdOiDQjQxHFBdLH/PhZxvDylC8ubnl9tSY6UDgvaO5WWOPpu4FCag6OHnHy6GNCGyICxQjLWHuSbIwIIIhCZFIQSYeplpytt/z9L/+Rd7dv+e+fLZgVhlC3DE3H+rtryrKnbBrGh3Okjhhsx9uLc7aNo7bXDImmO28g9uyNnhJkEckoY7ne4ISi6y1jFXJ+vUSgmE+nWJWAgJPjQ+qqYhFbPvngEbVT3Cw3xOMZcaTZ25uh6ysmieBxfEi+eIyp7hgnPXoyR02mrO7eUVqD2e7wbY/E0DmHVgHOWsIsYbCeYFKAaAiVvi937C1CBf/s4NqwWV8RCU1vBa7tuXzzJVXnuaCmnmS4zZLwfEPoOkZK0PucTenx9ZLDLOZ4bw8RaF6/ueVX377gsyji+aPnvOs33OxKDqdz3lyvGGeSuj1gNB4zWMdut+FmW6OzEZtyTTqKsc4yeI/OCran50RScXBwwiSecXNe8rt/+IJJfkQezgl3DpFqnIU4Sii7hoOnJ1y/ecP+k2NaNCKZcHv5EvXujI8fz1ltK6r1kiTNCERK2/dEac7QlIRRTG8sry/u8AToMLqPcEwnbLsbPvzsM57/2Z9R31zz6ssvicJLPoxSkijCdB3WWtqmwZuOJAruhcT1Bb7IcNMPQWU8WgRMbMnpyysO8ozqzRmjaocalYSHC/ptRdyviab7RHsPqKuMOMoJTI/TIfIVeOFIxgVqf4//7+c/px06hPRIU3J3XTM5fsq4SCEQuCDkcJLi+xapAsy2YugMZd2ig4jVtucPpzc8/eQDfHnBj58fcjz9KXpywGRvwd9PYybCcL4taWWOtgGFcugsYXlzzdn5OZN8THH8CU+//xnrumJ3fsGfffQDbu6u6eoGoSQqjim3W6QKqKsdWmZ4b9FRxHg6oy03CGHRymNlgCgKZJwQhDHd+oboeHE/+7t0UMSUdc8HMwnHxwR5Tts0VL2hCXYcpAnBumRRjMnTGN803FzccpwJdNrSVD0kGQQC32xJJhm7XUtUTPHeU+9qMmp2/t7NEwWSUTFFBiHWO/qhZ9f1hFpSNy3fvL1ByxDrYNu26PkeV1ZS35Y8OVIUkSZ/+IRgccjwzZeYtuHq9o6hWqNkTFYEPHn8jHlxRKAUq9UtH4xueXd2jZeKKCyIA00h4ezsjsPMsn9wQB+kvP36c1aXF8wPDtnerpDGkIYC4TxBoDHGYpueJFRY4ZEhFEVOEkZIFRBOpiTjPWRR0GxKbk5LdLDl5tsz/tf/++e0Q8B/+7O/pmsM3dUOMXZsbENYb+hcRTZOWa7W6EBT3664WV6z6Uo++9GHzA6PSYoJroXGdugowsmOvqsxxkMkUTZE6wgdxRiv6I3k91+84OXvP0c2W3I/kEYdT55p9h8d8PhkzG7nyEeOJBrx3fkdqfO8+fYr4H2pyXve86fMe9HkPe/5E0cgmI4nuH5Dkgp6V3K7uqbbVHgzYJzB4UmyBKk1nekwogd5X74nvKJut4z3PG8vrmjbktV6SeJDsjTBDh1ZXmDait2uQiqNnh3gpcViMF2PJ6DZXLEr1yybjurujjQvSHVIhWTv4IBsf8bjI82rN4rdbkfdtbz4+jfYYYeMAmo50AYRo5MFazmgYkVXD7goIS5GHEaCiwvJ5vaGm7rl4uaaJ+OEq6s71HifyfyAy7e/RYU5jY+YP3rCRHiEaMiiMZt2j9N1j84TFo8fkeUZDx89xfaeq7cbir0J3nvCOIXWIaSi73pUGNL3LXES8eDP/hyVTXj47CMu3r1BjSacnt5ghgYTCVwvkCJCAaZ1DL1EokljT01P3RnyacJsmrEte95erNCdobq5wBhPqAOiSCPShE3Xo4aBbr2lc5CanjgNKQ6mPNofkSjN7mYDm5rAgUgPaHcC+cvfMHQtxWefUS5Lrr77DQ09NtWUtiWWBus9RDFCBbhyydA1rNcrLi8vCbOUIEohuY9GOCFwHm5v11zfrghTKFdXLCaPGCxstzVhmBDIBK01WmvSfEpRTMjShD98/kuG3tPUu/vemCDAc/8buFu/QycbxrN9vFC0Xcf+bEoeCHY7w3y6QJ1fYC2Mipx4qpiMx9S9YX9vQpyMyLMDsnLH8cWW6FDzm+tr1s3Anz94wHg0IbWabujYSxIO54eMxguKZEZaTAg6izc9NoDggxPsuiYNFdtXb6mLOd9cVVSB5mR/j/nJHOEaqkYypAnReMY4F/jVDcZ4TBDz7bs176qel6eX1LsSkpi/+u/+Am+W3Fw6vKlpug2tHxBIsjzGOs9lObAbLO1gUdoxnkxJFJxMAr7/cMFiFiImD2l//w0emOwfEcUBQTAjTkck8w+IkylSPKJ7eEKzvsaPC0RbcDmAch5bbQkiUFGMTqYE1hHlBaEUeF8SRBrhJWGc3q89BQpjHRfvzrhZG47HEwQZb799yVW9Zac0GxrczRtSeuga4iQmTEfkOgNlUXZAOsfN61e8Xd7yu8sLnkr4wcMDRscTnhULfn1+xdp4Np3hcH9KO1jqricOY3olKeYx2lic3eFtT91aWhS+byiKnLTIiaOAu+stf/uffs/ZaYk8SukXHYPoaf2AlAIZpeih4ZPPfoh2UK5XkE3uY0q+580f/olfizuEt9yev0FLmI7HbDtL33doHaGUIh8VXFxc4bsG0VtO357z4OgA6SVD37C5ueTLX/2abV3z7dueYjJnb5wRtC06n9Bs7lhvS4QQCOlZLq8JJ3PyecWQTeiDmPHT79GoQ/YPxox9TzbaI1nsYUxHuBjR2Z5h15JkS4jHiM6DkMRxzOyDZ+hUE+qQp6GkWl5w+vIVaVGQz8Zk6RFnyx3e7ojyhwjn0XFA23roG5pdfe8OUAFGhPziN18iowhpDGEgSSPFX/3Vz6gGgQs03/vomL5XfP3lBbJvmE72yeKc27s7ZBiRpCNGi2M2XcNvX/wXmBf8D//j3+Bqj/nKs727QEiJjBPSyYzt1QVV2zMYw+HhAUJpbA9BnLI30ljnqVuPCAKMM+zWN/goIXAD7d1bqt6wbCRbNaVXnrQ5Z5Yv2Bo4mS/I3Q2bqqZKEorjx1zfvuXhJEVoaJxl19eEQUYcxyg5IEKBtRVBGDIYS191VJuSZlchw4BiPoOhQ3qLUmCEYrncUm22xGlMr2C57fFSEScxKMXs0x/x4MkzmjevwQnq3hI/eUw+mfCjv/gZFy9+j5gc8ov/8HfMF3s8evwAgcGHAZ2MMdGMKCoZ5xHjPGJfDOx6j5eeMB3xy88v2M/fcXQ8wbUdby/v2HvyhM4OuKFFEWLMBpVOCKRkvj+hdj1h0993OKkAWaSQF4jRBLKI8f4evVyzMQHL20u+u9vAdMTBbEGdOMqhJrL3K3FD6OhuSmxTs9Ya0ey4vtswCEUbZdR9CTrA9TWx3sMaIBAYb1FSESuBMR1eK7yVKB2DDBiCmGXZ0Q+O87uSerdlMYGPnkiCRcCLqx3lypEGmqMiw8opz+cJt8tbVlfXePdeNHnPe/6UeS+avOc9f+IIAeM8pq97pOpYbi45WMzII8v56TucEOydnDDKx7R9wJDts1URPpAMQBgopPIYfb8As6uXlMbz6vKWSZGRBIpOSIIwRHiLD0OEhrqtcG1N3w/0TUPfduy6hnrXEHpDfbki6wamaYw5fMR8/5jJ0BMj+Pr8mtg7oq1ALC/Inn4AWlEL2C4vWV0NlM0WKzzhaEbeQ5IXjGcHXF2e0wwxd5sd2aqicgpfNqxPf4WnZSc6qrLjsx/OsdtbrIwJlOEHn37I8JvX+M5QZGOiJMZbTxzGFIWnb1oiGdKs70jk/WRJFGp6JNXQEU/32D85xqqIulwyGcXoz75PurfC1kuUBZSiawyKgEiBtwLrwTHQmJYkUWRZgtYRYSgJ3A7XlXQeahSuc+imwi8rjFdEYUQaB2ShJtQBofH4QZKkU7qmIVwc8fAnD5mmIwKnOPvylrdfv0Tc3lIuf86FcWxMxt++fodPFI+OJ3wkK3Alzk/x3mBsz/X5Ba++eYHqG1I9IyBGAkGS47yl95Lr9YYwDZGRRYWCVbVCJRHjfI6pG2weoeOY6d4Rr88v0VFKnsdMZ1P6bmC1qZB4BAIdSLJiRF+1rDdrDIrReJ/9gz267QY7yrBS0XpFkk05Gt1hTEsWJRztH5KOIky3IyxGTPYfY2+3/LSTvDxfkz39lH/6/B+53Kw52T/gYLpHLAWm2RFHjmmwI3SOeBhQYYouUsR8H6QinET0t0vGswPSR4/5wcljgkfH3Hz990QTTTKesL8/RuoEERY09ZZslLGtBzbbgXU58OrditWmY9M0hF7y8OEc1b1kc93iexAaJqOYqvV0zpOFIXfLe0dMkmT8/+zdyZIk6Xnu979/Ps8xZmTknFlVPTca3WgAxKFASnYOzWSSaa+V9roLXoeuQtKCkiiZSaZDUiQIoNlzd3UNOcc8+Dy7a1G8ByxQP7PYxyIs7PPXv/d5XENn6JmcD0wsqeRoesLpk6c8LndMD0dYvRFeb4jUFexXG1zXRa9TdGuC5TjEUkkR7+kkFaHqSJbLfRAwbnImVo+uiCiaGmc0pVMlZKHQxBmGZSAJhTbtKBUAACAASURBVE5S6RBItDSazTqu+PZ6TWJnNGHJZp8SdhX75J6u3EPbsG0kBpqOWcNmlyB3grIDISsUbcdjseb5bsOB1DD1Xeo4fbNS0cJnT46ZZQVnp0M8SybJCrI0A7vPcrPDchSyKMIQErKs0KoqlmbQtiWeZWI5Dj+9uuWHF2u2Wcs2idHDHZO64MQ3ScoYvdDeDJd6A2xF4ZPPbB5vXrJevqaI9xRxQBkuefltRH80RtQlMmAle3CGtIaO0A1MUUFVYOkK17OAeLvi6miMUDR600OWQcjd//H3yGWBaFuyIuX59T3N+TFaV6OFCUmaIdcFhujoWqhNjxpBFyywLJ11omEaDl23pylL5jc3jCYlnSFoPRfT1ZGzilYfkhQ1Il0g0pJCkqmkjjBJqRUDyzaQyXhy1seRSqZ9G8vyURSJ06HA1jpaZGRFfZMp0raUZUm4j9GLDHt4xFpyMVSdw4MRuuNxffscoQkOrp5xenFFXMFHssY///MfKeqa08NTLN0iSXM0IXN3/4iiKCThjpvXPxAWIR/99hmG/GteL7ZE+zWKriNrOq2sYg0GFHFEgcxqveYsDJg6HkKT0LUBrSJh6DKqWSGyAGKNSrXppJq8TFjnJXEN/mBKK5WEiU5PThHlA23RUgN5ozE+OmWomtR1zuHVUzohSOScKqvQWgWrS7AckzLvaGtB3UJVFOwXCx7ul9yuC2hKzq9OGDg95LqgaQFFo2haOjos20LRdb57jKkagWnYyLJCVnZsv/kKWe44OT5mt9lSqge0kowsC1zXRr56h4vehO31HOfgEN13qfOE1y9+QHhj9mXHmalRVTmqMJA7E6OTkSyBoXdgqfzd//V/UucFnuUwGTgEYUxv7HP9Yk+VFBiaBmXI5OiIVk/ojYdYlWD+0yP7qGYyVZFoQRUgJIrsTThr2lRUCuA54FrcRjtyVeVUMxj4Bj1HYNYx7T6gK/I31ehpSqV26N4QKa9QPZUgrxhOTToNhGQgyxV5U9HEEboq0QiJsq2o2gahSOStRGf2qOucWihousPz60ceNxWVqvLFV1tWa5mB6fPR2Rnj0RWO5rJjTjyfvWmykqQ/4Untrbfe+lN7OzR5660/c13XITUtrmWQ1wlIHYapU9cOxmiIc3DI8cX7qMJjtc+QvClJapG3Gj3VQEYmLzI6oaBJAksz0DSbTbDhfrnGMm2O/AG0Daqu0MoyLRXVfkWX5RSbPWXTEgN112HIAnM4wH56AmnIYbokVz1kYdDezBH3rxihU2s2QdPw+5t7Vj/c4k+mjMc+dRVh2hqW770JJ21L4sah7U+wXQ/fmxDlMcs4w05rGByxzWusnkEQF2RoPPn8V7SKiuk4iAZy9c0b9tNJTFkqqK2Kbw5oJRlF15ic2yzvtyxudywen/PJzz00JOr2TfipZjv4lkrPd5FlwU8//ki83XB0ccnRYZ/wPqSRO5oiphMtWVNArYOiIXcNdSmhqYK26rBMA900MVUVSVJZpTLbEn6chUh1jU+NZvhY4wNEU1ElJaQF/qRPKwvqGhRZQjdtGmRUp0crWvbPf4RaYXx+zLaV+Gax466EdTvmYFDzF59cIp0N0ewtnahp64wqKdmudryebVnezTn0beRWQa5q6ixDCIlW6ths1mBojCZDZKXBdV3KpkIzNFoKVMtHAtqmwXFchmOJ5WYPNLTdv38kCVpompZ+b8Ds5R2j6SluuGcf5hiqDFWO1+uzCTZIRo8g2HFyekiym3P7EDCcThn5BrqhgavjHV/SdBbDkxFdWmJXDflsxcVgyHobkxcpnSgYTA7RG58s2FDILUJpwADLESi6giJlkNfUQYzZn+JdXBI0MKZDjD2+W32NezRAdX0KCUSV0DRQxQmdqrIINtzc7fnqq9c8LHekVUrd1RwfjVCyhCzvKOKI3SZm5Dm0dYNlGuRViWnp9A/G7Ks9ndRhGDqTvs+w59MpMg/bjF64R20SPEtHdxziLKetch5WO4rvf8dn/+FvmBgntE1DGS9YzV4ji3N0XYcGRANRmGIqHbbUIpkSUpPRYKIrBoqkIWQdSVLoZIW2gwaFpq4xfZ8Pn9pEjxtUb4SsuNy++oLNbkZWZiCb9PvHoLts9itoGgzgyPBRhcZjWVJJgr8au3h1jKS0BMiIOERvthz4VxjTIagCTSqRugJZ12kUBZweu/2MKk+wPYtWCIQ3oc0Cuk4wOjohzGt+9+Urvn1+z/H5O4zPz2kqwS7NaTWdcrtFyiyEa2O6HqIqsZwh73865OXLH1DImY5cKq3PwDF48vScR2fN7bffo9uHTEzBXlLxJodIXY1cJhimSVNXyEAQpYRhhG3aOKqOIsvImkaVZaiawjoKUFcmrlzjOw6bMKZSdWxFpokbhDUgLhq03Rrz+JLVfEGXX6Nu1xSDd3iMM2Kx4HQE3uRDkqqjSCN0w2Y1XyE0g3RxR9HUzBZL0mBPheDZ0xN8rWI49LA6Cdc0UGWwTY26BUl0NG0NWUpRlWRRzGq2pqtbvPEhstVDjzN+9WyK0G0e9xFBUsM6Qfvxno/9YyaTEdnOIBcacRAQuwP6jk+QJGzmM7Ikxnc8xv0hTZKwXm343d99RTv/nzg4PKeqwHVcLNtByG8ykCSvhzccsN5veP24ZDyaYOs2TVkinMGblaJWUJYVRZKheAb7IKCOYx6Cmqrp0HWTi6sTJo6HpUH+8kd6Tz9BP3YwnxWgaZRJTtHVKIbC9esbZFFQFQlVq1CXFULJMGUDpZJo44QkipFlhbOnZ9ijhJu7Hb3DQ3TXR25LNCG/2f4IEkSa00iwiCoeNhF0LYaqIWsGhq7x+nHO3+9WHPSHGIMJB4cnbF9es3qZk+6XnF9dsF/ccXZ+TGn0UG2DuM6Y9nsohoJRxbhVx+X4mEa0pAg0u4fULRmMbGZRzPGxR7AM6Q8PUJWOcLtj9PSSyWFEGifUtUqVpdSajOa6CLPDVH2aQCWWXKJCY+zUhLs1dzdz9ts3zUsoCuFuQZrs0NWWYrXlIQ/ZBXs0zeIXH/2Mvt6imx6ZMNis7rlZPBDsNzimxah/yLOTKwxLppZ12g5kXUZ0DUQZyC2VkKhERxQm6KoJqsoqTNDsHO/sit79nOH9DPN+xuN6w9//LoUWfEXh0PHwRudcvPMObZRz//oay7C5+PATFFn+Ux7V3nrrrT+xt0OTt976c9dBW1aoMqzTlL7ro8kammlheD4XP/sVJg55KOE5fXrmEKoebSQhW2/evuiSAiiosgaSQdm0ZJ3gZpsw6Mf0Jy0ijemETNO2dFVOOF8wv77j93/8jtVmz3/12c84+eAjsF2MyQXO4QViv0Jrh5S7Pa+/+Ffmz3+kzmteLGNeb0KSNCWrG0zdwJYFupIwHVuIngmGRtVBlaeURUKcxHjjE4bTMcGioVE1arOPYh9jmR1puCAqLSqpxPI9ZEoM3cDQBZ1aIySVi2eX3P/QoNY+luJjWRpZXSDkiuXigfn1Gl2vKRqJRlJQRYmmyUS1zuD4gsHBhDqNOBz1mBUZdV1jOT6RqiG1BUUBeVUgpI6iKelZPg1gKAqqbtKoLbJuUCOjyhJNDbmkI8kqqyhDVQ1KoWOZU9zTT1Aef8KUYlxLAUXHHA4REti6gmK7VHWLMxigtBKBvmE4maLJFvbpU6xNzOV+SyU12IGO6sNjvKBxTYq8ptkFxEFAKpkoZv9NcKosU6Ulim7QiRIqlVKSuV0HGI6L53soUouEiqlpFGlBI7fglTS1DrJAUg1GY5cKhcf5A5pUI2saw75PGMasNjt6/RH6YMJPr24YeybD8RBJV6CR2QRr4rLkQFLwe0MUTXB8dsLdYo83srA9g4HrUDU1mlTx8PpbFEVHsw0oI3rJjKGls2hrVts9uiJxPhqg6RaG72DooPsuku1SFDl1FKFKCubBGe7Vz5D6IzpZUH11jw2kTYYjNMaHJ3QyVLJEEi4o8hm6brMNUsJW48u7Gd8vZ0RJiKaAY8ocOhLFLmE8mvD8+/+PgechdAtNlwiDCMvQqRqJpixRDROl6zgb9jk4POVmnSCklvOTEV/98+/41W9/gyS55IpG03bc3d9zc7/lvbNzonBLvJtRxBvW11/xT394ybEx4GpiMez1md/c8hgkKHKH0beRhEqcl/hWjWSCUARClZBklSqLoRMUWYQwTEaTAza+hlxJfP/imkQ3yBU4GA1ZxBmbIKTZLBm6Er84fIdEshgKi/OmoO/q1D2HpKupow1xmbIuUxbbDa9eLlD1nP9yMuLw2bu0TYnUlUh1ijAMslqiSUNs26ZSBbrrkuU58WqN1e/huzpFXVDkKcvNnrKqub19zck7H3H5yc9RFZdUsSjrkDKuUXoCpRaoko7uGDSiwxxOODq/pMtClMMeWRzieD3e9zyi+YxAMRj1h1iyyvF777NbLiiWD9T7PbZlkwZ7gjgliQKGvsdsveVJ3yPabhESSHR0kkSS57SmgVRUlLpLJXvEaYThCWqppdZ0Uqnm4etv2IQ5qqqiSx3/95cvOewP6Xyfw8lTlPGU2SZiMYtQZgF5liN1HcFqRTi75+UPX1KpMs/eeYLdDWiQ6ajRpYZa1tFVhbbOabuCqtVp8xjD8SmCPQ+vb8nLhsH4kLqR0O0Ber0nCQPmhcp3DzMG43P8yZj25BeE2iHVvuR1IGFPr5hcznE0k6Jq2O0C7h/maIrOqHdM3xkiHZtsUwnhmLy62xEEL7i4eoZj2wigKAskzUJ1oGw7NNNlG6WstiHqUEPOM4RloQx8ZKkltXu07phsN2f36pZQsWmqFpHm+P1L+gdTTFXG7/dpS43RJ79muw4J14/ku0e0rGFeVlitTR1tcTyNMEoo6Wg0QbGPIa5I10s0rcHqebiDEYP+EFlRWKwi6qqmyXNUU0dqG4TQiIOUTlLI8pxtlKJ1LXFeYOk6Sn+MKknkQvAiq1hpDVeHJkacMH+4Yb+84/TkgPs7het1wtjxcd0e+zhCShMkCTzTREKgJyW7NENVZJoqxR0MqISDreUk+w1BkPD02Qme20OVZGg7yrJm0B+hSQqyLCF1Ol1Vobt96iRH7w85eF+hSRUy95BU5Ijgnuvv7nm4vqNpoef18XwHUzSkUo2Ux3S1QlJklIrKd9+qPDs75y7Z8+L6JT/e/8TjfkldZRyYKpeTDQfmkJOTD1EpUHQHWdZoO+gSgVR3b1YbdZU0TLBGDlEU8+phydX4mDbY4wyHjKYn/MVnMl989z2LzYq6bhhoFq7ncvj0CdrBBOPc42fekP3DPZNP3n1TQ/zWW2/92Xo7NHnrrT9zHVC1zZuHV0NGkiVc10coCv5wQlEY7O8S4qhmMh3T1RIUFZugxvFbPFumkiRMoVNj8t1sTafouJ5HmsbcrXccHyeYbQN1TUVLul5y+/onbm8esM0Oa2jQMwVjW8eZHCD1fYy+T1c3aOYh82//V+IffuR2ueF///Eeq5F4z+tx7HqcHU5ZtDr9iYMhp4S7iDzp6KwKYbuUSkcU7WnYsFov0ZweuqIjGxbCHdEbjdjtI1R7QBhFtAi0VsZWFTyhoio1Wm9AVdXgKYR+Q5WUmLqCZiqsoy0/fv0dumrw2V+/S7hfkjY5qqrTImjalFLvMzx/D/HvjUOHF+/i+EMeVjGKfYDgNVXT0dGSRhlBnKFSwaDBMlxaGgxdocjyNy01qkwny7QIdL3i6uIYe3DAfB5iXX6EHMZ0szvqfUguF2iWj2glpChBbgoax0SVNbQsJ7+5wxgf0Ts7xzyYUsoO3TJCbW/odgFRkdHJFcVqwbousQdPWG1SZKkGt49uqJxMBY/rPlpTYdg2kqrSyhJN17LchWRlg+25eP4AlZY6b5EMBc2wMA2TsmsQpkmre8j9Y9Ig5qvXK6L1hp8/GaLpJqbpEqU5D7cPHB4ccDodM3uc8/W3LxhPJpycXjBydLIgxrA9DEVDSB1V0WENjvCG9xiujmqb9EdvVoKiLCQvEw77A7azGWoV0FMFlmXgGzoPu4iVkHh4mPHu0yc4PZ8m3GIZEtgy9uQQ3VTR3TGyd4CkakBDvlqwv/6ScnxK8fgVdpdSJSGDyyfMb1+wm29xew7rqGSzTPnm5Su+fXFNKbUMez1EU6DKJVKakjYC3RxjWRaGbSNkyIuWMErQLQsZ0DWTqyObqqzpT06YbRLSsuTphx+j2hrT7oHe4QE974x/e7nncbZmMV/ROzxjcnlEOH/F8xfPGY+G3CYaq8E5bdYwriGXBPr0iOj+mpebiE2S8uxwzIXv07QtWZYjLA2pzlEkma7rqPICXVPRLIeeYhEvMuyLE8brR7ZxzsHpMR+fHuC2CtXNLdHDglPT5mri0T95F/P4HZq7LXFWItkmXZFRTiSWaUzyw+9ZFRtWdcrBv7dn2b5OUym0eUeHRqn5jM4usT2H7f01tWoQdSZxtMd1DKQ0JBMmmusQREs6QNFUhK6yWt4zevcDfvWbv8b1xuRJgqprpHGK6Xs0mgKaimFqiMCmf3SOqBNsXQMkbn76AavcMBz1aQanbPKKSjQE+z1dkaNrOgNDpxmPWa231EVMEGe0bUvbCXZVw3jUZzMraNqWtqlpZAXdNIiLkmVRMhoqmK2gKiXWFZSdIO005usV+6J9kw0kJOpdTCpsPj6/YlnD7McXQMvN3T2zF9c4WcOB86b2PU+WKLqCa5v4jkPddmRJy+PDntOeiWSApEvUrUQUlMR5BpLAzGpm1zes1lt6gzF5GDP0+jSKRSJVLEuVf/zqS4K8YvybX9E/eQfTHzAZ9thtN+yzhqKTOXz6Ae1mT5pUFEXJYHrGxx/8gi6G2bd33N7dg+3w+V/9R8Jkx/03/4rh+bS6RVXXaJpGUeZ03Zsg0t1+j6WYpFVFUDUoSYIkoFMlkAWVYrCPcjbXc9ariChYoMsqR+fP6B2eoho6dC2dpjH+9BMkXUF3dZR6jNLuSZUEOcoJd2sODm2qPGfq9xFFyWq/5nq/43G9I9gt+R/+5orRQU1TpUhSx+hkgnG9I13vKXQN1XWx+y5tA1K4pcgLik5Galsk06aoZSTVZOQ4FHVLbzymjXZ0EiCgrhtOLq/oOSr7MOIff/+aRhhkvRK/7Njtthy4PRTVoA4q8rJEDHuYoqFRZR6/u+bgwOW4p1MEG/arkDIvGBy4DL0hq4cVlj8kSnWmvSEiyUiTBFlXqIoY3euhNhaSpmEPfA6UBmU4plNa2tma4vGa/XxJ2gmicE9voWFbOo4QvHM6JqeiDkomvouQQppXL9iEOxopR25yXKljNOzziw+eYFsKnV6DaaCioQoDYVqUdUeahihSgUTLfrlDFA1VknOz2FG7A6Iow+z21FnMycUZ2WyDqxnkto1jWdidjKnbWFaf3vkZw/GENsxY3N5xt9jQvs00eeutP2tvhyZvvfXnTuoIq5BOUXh29YQoThCKimk7OP0j7uYp23qFMxlSKRmm4ZJXe/74/XNk50PO1QG2gLIrieSKUq0xHBNZdphHIUGSsdmFDEVNVRaEVUsQRMRpxge//A2mYlBGIUqeITUVZBGiaZHqGvYZdQP5Zs9iH/A/f/OCS0Xhvz055tPPf4M3niDO32cWFlT5mvXz3+ErJWmYc3e34XEfYPYHhKrOzWrGPk8YTUZ88N6H/PryCYahEm9XdFVNmSa0eYPQZBTeXNX1NA2hCTqgMyU0kXDvL5D8GFmvKfKU+5evkYqKn//yZ5iGw27/SJhLDFRB2crkrYZ+cIZhOmRlSiUZmKaPqA2cYMPjTUTT2rTFnrIWxEnJq+sZq23C6XDLs6szPNPA1FRkSYKmQegWgoqyLJEVDd0d8HTsMXLWrJuKw2fv0hMt0eOQ++WSOgkZthm0b8IZi6DDCpdYUk0p7dgv1lSdjHh9Q6N61LLB7vY5dfgItkXctOz3AXLPRXgTKmtCu16hyxKu79MKCXM4hHBFU+d0RYWkW2y3O366XaD1xog252Q6IA4iGl0jLVOqPMOQIc5hYrr0Lt+lQOWbf/2KP/7bN5RlyeXxgEnPI88KqgY0r89mvaURGq5uUFaC24ct3uiYw4Mhw8mE/qjH85sbPn56QZ43dI3GdHpFULQ8HfbRPBdZ1RANPNNt0vUSq9wx6Znk+4iepuAPe5imw4/zOc+71xiS4MnVKa43QG4bDFosx0C336xuSLYMtHR5RHj7DWm3oyugzQNcTWIfhBQPD2yjkvU+Y1PqPN498rDY8e39DcpgxNlghFfV3P70Na4iqHcxUtNh2yaT0YAyL4jDkBqNpunwTZOsKNG8EVGjcjF2CfYpt/dz8jjgw09+ycX5U8anDrJi0BYJdAKzP+BASAwGfYRloXs7Xs92/HGnsSondKOUHxYrJmOfuhOEioJ3dcXu+Y/cPgZsH7ZYqsX02KKjQDNaRNMiKy2ybdOS0qEhaS5qucc3JIo4A7lCsxSePvuAE13CkzWkwZS694J2fkcerpGWJnLeIYYnhM6QtjXRnngoiwUfVQ9wcMBfTS3KqcC+HNP1eyiGiSyXlEVKQ4c8OgXDItgHvL57oFY9gmhJ3zNQ5AJbEUgdqJZHnFX4wyG1YlM1HZIsEy5uuLt7jveextEH52SLJUKVaT0bzdTIo4S27qCSMEYHaHVGz3OxNYMEAxHM8Q5z4roFBPs4IV49MhUNXV1weDDE32xZDAfEgaCu3wzB/H4fWdMI2gLbc8jjmDAvaIOQ0WiAJssMpIq+oxBUMgiF2rDRpJL7u1s2SU5Rt6iKgum42H4fa6Kj9GR+//WXaE1EEYasZ3u0Ruf9wZDjs6d09Rb/4gPWecbz777BMmXSKEbuYNg/JJdrXAFt15CmKXeLNWg2oq54uVxxM1tjCYFhFkgmb4I5UdF6E8R6A0IGuaOtS4a+h9RVUFUEqw27+ZIqz3BGY+LWoM7mWL0hw9EhRxcXqJ3B1LukLHrI7pKTp+8SJyFNuMJ0bBAyjaLTdi1CltFMHcNxaaqKWjaoJBnX89ikGdF8gVNXaD2XrmnYLHPmszW7BDz7EHN6TDsc0QgFWdVok5h0NcN2e0iKDIZF20aUwmByMcLcrGiLgjpNkaQtPG6Iowp6fSbTY1Y//ICSBFzvBSe/eQdZkSgLB912mBz2uLlZ0687RrKELr+pui+rmkYz0IVME2XQ1IyGB0iDKaosYw99WiFDf4Re5Ui6hjQYUVk2lmHxv/zdP7BKWg4vpjzsZ4RdwOTgEFQDSdPRVJNLUZI5Fk2ZUzY5Q+8AQ7YwZJld0SFhcDx9Sq9/SLhbUjcZxnRCKY7ZKwqmssU0JfI8pogrVK+mkRSKpkAVgpFjkLQFyuCI4qYlSVP+8+2MeZAwtGyejsb88tkll5fvMr58Qrqdc/0P/y/ptuTyw6ccnp4yDwKifIea7JiLlr/4/GM++/Uv2BUB8SYmTwvMfp9KtdAkhSiJSKIdigxFW7HebtGFTraaEwoD4bQohonX6/Hw8EBZ5IieiT8dc/7pR+zu7hFBhugkpLii2OT8/st/YPXiBbFnoWoqddOg/SnPam+99daf1NuhyVtv/bnrIK1SxuNDPNtDCJk0jQEBqodIAhxVx9IaFF1FNgtmq1sebl9SVhuG//XfoFsGlQKpAEPTsVqFfZQxHp8wu7/m5u4BaWQT7/c87lPyouXjT3/F06vPye4C8uSeb2bfQjPnHcNFbjXq+T3lYkGxnhHNbyhVmV8NHZ7oMkO9plm+Jm8L0jQnkWRUclzXI+5MZFnB0hLeHcac/uw/kNs9vvrqC7747t/Ispb9NqHOQBESWZ0QhwFxGBKmAb43QO3CNzdJDAVZNZAlBSELFFVlcpSjqC1ZkXDz+gFbhoPTM8JtwCx55LsXr5icnFC2Mlln05h9TgcDiiSmqiry8k0wnap7NFKDVQmWkUyeZshtRZAWLIOIh3XE/TJiF+Y8GZo4vsOo1ycvJJzeAVGSUcQRi73KxXhCp0n0phOqTUS6WTI5mND79FNGPZ/1wwP5jz8S5DmaEKhFTtDAtmlRkg2WY5LnBVXbUdUlcd3iKhLOZIQkINp0YHr0J1Mkd0C53RHezrGcBn84pEFFNQw0tU/bdtSKoOlgtouJ8pZhB4Y/pIi3jA4ttqsAW3foVAmhgKRp+CcXyE6P+ctXPN7domkahtOnQifcxSRFieP2GJ9d8vLrbwiyjsHBFe9cqLy8u+EPX36NVCW8ezEl2iw5GvqYmvamtjhKmRyf8N2r11iejek7NJKMlCWoXUqTR+i6wnDYZ71JUIWM4bp8en5J//SEb75/zvObOaPJCLVrMGUZ4Xd0RUFrOTRJjNyUyKZBmQS8ugtI9SFqlbGdLXEnhywrqF89sl4tiJua8NWSTRhTWz5Xn/0ac3qAXWTU+w2LmcF0aFPUGeluwfZeYbYMqLOMolHoZJ3hYEJU1LRZiWZ6XB2eUrVwP3vOy59e8cH7H3DW8zn2feqsJlzcs9r8iDz+Jbbm0LUddm9IpWoE2hVzOeL2YYkzEuyzjCgMSfYBQ9sne/4cH+3Nb1bJeX6/pffFDyRFieUYPHtq08kNSZIj1QLNsjE8j65KUesQgiVYLs6wz7iReearSMmWvJDQhY1+METVYfP6nuz+msOpiaU79H0JzZHQlRZlWNFaBpU3pVMijI/OqEfHbNKISlToUoUsCZKiIVuvuH3+NT988QeisqNu1piGiiL5eP7kzQO2blJLKmGUkmUNhmHhKIK8aRBdQ75bcfvyOeVgyGQ0RnV7lLJME2f0JIEuZAyh4fseWeMiLBtR50z6PXIV+qbM7PaaCoUmDFjOFxjHZ0zHAx5uX7Hb7TiVGn7qOnZJzhmgKYJBz6JMGqJMRXNcLJFQFQlxVjD0XQ76Q2Q6HqOCdani2DV3P/3Aj/M1slBQNBO712cy8LFtkzbd8fLbP7JcLt/cXDAGnH74OQeOCY8PhI/fMHkyQLN6jG2Xh/4AiYY02tMzWQNgsQAAIABJREFUVWxJUDQyVV7TVTV38yWVrLJY79jNHrlf7ZCbloOeT5bl1G1N1r5Zk7A9E7WtefbBx7x+mDE+OMTzfGrT4V++eoG9fcCjobIdZpsteVIghIY/mDA9OsKwXSzdpm8IPt3AndvhDYeUTYbnuZR1S0UN4s26YhqEFLmE5fpIkiBNYoQkkG0HZ1hzs1mzen3P5fvPsE2Z+XZLKtmYIwfX9UjbAiWN0W0HjQ7b80nWc+QkQQiJIi4p8gx3PEGnwBQahZQgpIT7+5+ghnd//Vvmr18xv7vHrksmR6coxjlZfoY7cpH1AllXOT4+5PpmjWJZONNjRJEiAftOojMMiixHVjX8gUNr+Cj9HgE1x4aBomvE+y2dkMirjvvZmvtiy/3dnCAqqJKI3eM1n/72V/ieja4KuqJAs21QFBRNwigLTs/O2TxsUR2BWubIdLTkKK6MYznIik3RaqyDgH5rMBj1ScMQcfAOXXBLXdyRpHv2d3d4wymqBIbbxxiOqPMSXe0oDJukrtE0mc+PTkn3KQdJTTZP2Csbzpw++mqJM7rCef8T/E8+wh2aWN+94Ot/fEFPgcl77/OXf/PfofsOelexUe+p0y3KsI9qmLRU7OZ3JJsdiuhI65o4jinkhlySYeQSru/IywtKacrJxRP+7R//M6ZhMJ1MeJwvGA2GGAOZZL4mCkLS9Qrr8pin75+TuB5h1SIpbx+Z3nrrz9nbf4C33vozJwmJ4cAjiWNkTaGMW5I8pZUMqhyUTmLo+ei6Ql3WJPf3zF58y/3DLfOfXvCk3+fzX/4KVRMYLTiyhSaDbhV0roGThtzt9iiqxGId82q2ZdgbMjn/AKUtsXwVUg0Rl/zzt39EyRU++OgDFMugMxUSkeOfTfntwOdQFESrLfd5xsP9DLGrKIwNZq/H+OKSw8ufca4OOLEsNosf0G2QDi9pVY2z954y/sO7/NvXv6NuS7brLe8ZDlGyZ7ufsY8Cgqqlj06Xb1G1MbLaoSkyqmIjddAJwcnhEXksePH199zczPn1X/+cFsHt3Yyj0xNOzp9QAYXsY/X66KqMKUBVBJbpkdyuWCUrZE3H8jzyRYcse+y3BeOxi+t6XJ0dMR1BvAr5/m6BZxyx2T6w6kVcHh2zCwKkpma7CVlHCv1gh+dKdGWBoQqyNGL3MqJBoZYURr0+Yjrkh9dLHu5nGPGWod/DUwRR0nH3cE1DRdnUhHmKdzTh5Om76LqGnAaotkTVOGC7rG7vQB0ShQJ/vyQ522KOFGRTRypLqiKjllSE5SP6Mko6w3QcNN2kqRzqLGAwHpLXDUmeUjcVw/Ehitcjy3MUw+Lk/JzVPsEYHiNkiTpak+c1k9NLLNOk0zx+/PYHTrVjNG/EdJSR3dywW62w3j0jizumgx5FEmBaLkZnI5UFB6ZLldYYhwbZ4yvS+0e00wNMU6HqNGQNpkcHbGYbirpAFjKjozM+03s8vnrF7774kY+vjumshLLu6Lc1QpYRjgOkZFHDd//yNbswxRoYLF+9QNYViv4B+fKR+7tHon1EVJWUTcvZr/4SVSiMihjHdamPj/nmqz3nF8dcTGz++PVz5ssthiyIk4pXDwHH0yPKrEaVQ9RacDQa49k+kqkx//EFr394ybA35b3Lj2nvQnbJ98hDBXdoEjcGyAqm7YPusq0F87uCh4VgNi9ouxpfc0nihCzNWTQKQ1FyYFjcPtwwORiyiwKeng6ouoLbuxmtprMOSp4cHUNV4PdGqHEMrYRSVzRRgNrvEwQ1zXDKmWhQeRPuupjdoXcKnqTiWx4X/8V/omkcdKePNe6jWyrkGZJlIOsObW7DQ4h2OEIcDFDllGlfoqokuhbapmO9i/nDv/xvPNzfUVQVSafg2xZD38VxLOoWLFmjLXM2s0d00+bo4pL5eoeuKdRpSlG3aIqG3Fbs1wt8S+NoMiRMQgxJ+febLQLNMQjiiJ43AHhT7W0YWN4Z5CmDE5koSdGygt31K+x+xpEM2/WGKtjy+cgnDgMCTYMOFE3DEi2yVIFjkKQFpm3RpiUvXl3T+9lHaDJ0rYSgpG8ZxPslsyCk1xsw6Y2oWkGrmiy3CSLIUZUARTcwbJ/hdMLJ9BBPbfBcE+v4c+qf/om0a8hmd6i6hmcKot0aqyuJGgfVsBCiI9inpFXF3SrgbhWy32yIgoAKmaFtU5UFVV1Sdy3P5xvq1Rd89N4l06MRI7OH6Q8Yjqd0bUedlyz+5Z84dgSTkzMCobKLI9ZJRLzPuDw5xPc8HNdEV1XQO4afDthsMhQVuiJENWSiKEC1OoLKhTxHoUVSNHRV5mA6ZXfziqosyKMQwzA4PT1lNZ9Tlg2Hx4cot/e4R0+R2gZdlnFMDc/v0W5nlMoE7eAQ9ficThYUq0eyJEduFdooQ+0LmvKO6Mev2awWGCOZT/+b/x7T/Qzn+xt625R3PniffVXinTxBM/ok64DGd7EHQ/qDjPPpAN020WwLYRkUUYLs+nThI7IiYxsqVZ6i2WMEJfF6QZCH2OMxiiyhoFI2DT99+SWv7xfUyFieh6EqhItrivgDnHGfYc+mKCs0VWGbJKx2CW1ecTQdMzwcUe63qKYMjYQs2xiWiT8wafWOh11MJDQkw8L0PZIgJXF9XmwSjrUCRWuIVnsc1SRNZSpJYeAMMD2ber9EWC5q3+c/ffaUQa1xdxOg5jV/2T/A6xv4TkHv/fdQ3CuEo5IHP9HOezS7GcF+jjq0+eCTzzn88HPSJETUOe1UsJ/dUSAhSQ3hesXi9pY83JFXDWVTk7WQtA0HV2dsow2TyYCmirAHBySlhG33CbYBXVbiWw7HZ5eUUYpoVUJFoMkSl0+eogrYpjFtnry56fnWW2/92ZL/9m//9k/9Hd56660/obbr9OVu9z+ud+ve68d77lczFNVAUvpE25D9OsMxDHRFoSxh/eo1d69/YrtaEwcRWVRxfDjFNDQ6qaPqWvK6ppRbGl3j9OSIcD5nGyUsgoTrxZbjs3M+vjqjSbZsV69ZbpYcHl/y5PwDzM6k3SVIbU6V73h8vKNWFZS2o0hjllnD/7PK+F1YsG47cC2OjoccH0+wvCnW2RPMoYflCLRRH92QQaqpaNA9l6BIidMdmlIxnE54XD6yWM64u3tNz7fRixTfgHHfQdcNVNnAkHRkWUGSVRRZ4/5+zh/+9V9pmpRdGLELUs7feZ/ecECJIOx0JtNDdE3BVDuUrsRxPOJSRsoN7n66p5EbFFMFVXnTlHD3HMfRsGwbx3YxVY1kucIzHaIGNruAeZgw24cMbIO2qkmiiFy1OT7w0HRo4h1RliEDja5RdjWmKjOsdjRBRC4ssgIGaUKy27EOI6okJq4aFmlOkOekbYupSkyePUHUObquIgyDtJXQhgckNXzxxdesHtac9IZIQqIRKd7IR7UtUBQ6w0GfPuH0489ZLRbIbYqmgCLrtHVFVpSUzZtGIkXTOL16giwUWknG7Q1JophcmPSOLujLGWNPJa8aVLtPXsjkQURZQ5Dm6KbNdr3Gc1yKPGM0dPBdk/Goz/3DI5Vm4OkqZZTQt026quTg4px8ecPL23v6kzFK29C2NWlRYZku231EmFckjURZ1Xi6gSvbCFSyWibLcsK6pU4Tmigk3O14eNzw3RcvmT9s0F2fOgrYpg2B0Lh7+ZLb20dm2z2totObHHPx7i/wekMGTct4NKR/OqXqUtbXrzntW+i2xe16z3jgU1c5r+63rMISTdMwVRnb0vFlib7n0E3eY5u2vP72BVFl8B9//VueTU9pVivih3uE0uJfnZO1MqkxYlGoPAYt81XK7cOW+WxHuE85vuoBCff3j/ijEWFd885kRLRd0qUhP83m/P/s3ceybVl6nud3zDG9X377s48/WVm+4KoggAiyQSgUZEjsq6G70hVIIXUU7ElEQ6SEKoCFyszKzMo83my39l7eTO/ZOLgHNOo8l7BirogR3xj//7l9DzUv6Wsapmaw3Ce8u5jT6D6eZxFHOzp7RJ1nH3dIqCZlUTDbJhRliV5+3BHiBy7++BTz8Cnb6Q2O7RIeHBIcTbBCHbtvovVszNMR9mcn6McB2sjHODtG+BZNESF1na4qoakRikKZJbx4d8lvvviG6XLLPC5oFRXfMhj3PUzLwVQ6FF0Fx+dmGTFf7VH9A5b7AkUB03XZFhCOD3B0hSTaM+r3CMOAwHOwbAPVMpGmyS5L+e23Lwh6PShyfCoMRWLYDlq6RWtr4v2OMPAQbYMmoEtjvn71mh89uMevfvwZs9mCeSswHJdHhwMM0dAKhXWUUDQdlWaR7HZs04JKmgx9lziOCWwDUyrcbWM6BMejMY7bp2zAMwxCRdK24AwmDCZnHBzdZzQcM1BLxr7O8eGQMDAQjs16PUOIDrqO5S6iqwsM06DTDIq8IM0LVruI19dzvnw95c2HSzabDU3bfFzEanxcQuwZEjSTv//+Hau7S8xkjTsYoZk2eVWR1x3lPuLFP/yaKkvQaBkM+zSOwzoveP3iNdVuyyAMGPQHuJ6HomogICeh6lZY7ZwumWLrNVqXoYgOW5XIukTVVOhamqbGEB1d00BV4Yc9TMvGNC10y0G1fZzBGEVz8cfnqIpGmhZ4fRfH83DDHtJxMF0XRTfQdI1sfcOuyCmbjP3dDWEn+fBfvuDF5Z6XUcRP/81Pmd5q7F/cUl3d8Mtf/TmEOlvRce9nPyfbrohm15jeAMfro7QghUBoGr1BiGIY1F3Lbj5jsVjSNA2W43xsohIS1zJxVInjekhVxfN9irJEsz1+/+It222Eoum4jouqSaJoy6/+/E/wbAdDKkhVwbM+fjPjQZ9QdqxmMxRdQVVrQldHtjrVSmGbVBgDl07pCIcD/uQvfoaqqUhnQmM43CYxH777gn0c4Zo2yWaDIjrSpqFEZXxyhqnqyKalyTNqUvq2QMoWS1d5td2zTTJsrQA1oisu2V9dsfn216iioy4E3339it+8fo8/HvL5r/6GcDCkzXbQdSA/viIyVIGU8Oa7P3Dx8jvu7lZEaUYtBKukIFN0ekcBRZGiSA3bsWndA5ZRSRFtSaI9cZZSVSXG6IBgNMGyHFTLZB1nPDg6Rq87Atuh57ib8ST4XxVFKf+lz2yffPLJv4xPL00++eSPnRAI02aPybevX3J8cszTg3sUUUtSlKi+A12LonRonSCKC/K8QNV0Gk0jy3X+/v//jl/+SscdKDQChKVj6yGdKhGew6Nf/AVf/+a/kNctnRDUZcL67gpb09hnMb/++hv+1Z/9NZ/97JdocUK9WpFWMcvNgn2nYZQt+zjiKq34/xYRd1WFZjss2xyxuCJkT2B0WIcPKcs7iihCnZyBYRIvL1mtZrRCoFY154ch6UYnqRKev3vHYragSHeIqqPb5WRFhjAPEJ2OREdTdQQCoUpUNFA1FvuMtx8+sI8yrOCWf/c//y8MDo9xXYtAmsTzOaqqo8uOKkuoDImQElWqlAg0Vefq/WtGzR4vHNE5Jf7pKWUyp++FtLUgiRY8ODqjaeHd9IpG1/kwX9AmFcH1gqfjPgPfYTzoIZQGXdEQjoceL9inGaaaYwYeQbmkyDPizQ4/aRgbCsHjJ5RJzh9ePOdVlHOV19RNySrZohkKGQ2P4oSea3w8zNcVIqmJioYPq4gvX77hVFFZ2Tq9x/exDsfoVv3xVYhq4J88xRodsVytKeMtTbMHwLR9TL+H1QniJCEtCvzhmLZpWC6X9I5DFFSSUmF8dII0bLqdRVfHHBwcEnUey/fv2e9SAr9HG5cIaaDoDu/fvwFR8w/fXvBvf/mUrs6xTIN4OiMYDWh0i6LJ0KqGJNniPH7ITwYB6XZLK1tURWJKSVYUTEZDvnl7iWUG/OTpD/HRyboV31zcIscnFP0JwjL4drsju5ljeS7ZdkW/N8CZHFNZNuui5W1c8tUfviErCxzf5/DeA85GRxwEAxRp4do69r1TqragEzX5YkadlAzOz2l1gWVfkDcad7M1b2532LqGqEuyqKQ1FEw/wA5DNEo+rAquKp/Pf/lzoqph8d3XqAIUWaOtKqLonG2aUwQCFEGa5OyihN12Q9cWnDwM6Y00Frcz0s2KXhjgtSqrbQadRCkrys2OqigZ+z2UrsL3bFRD42p6wbvrGVEc46iCSRvQlC0/enhKuZlxc7slrjWmF5f84MEpbhBgWQa+ZrGNO9zJEWpXI40OywVFdqDUVJs76nVNvfXI8y1lsqPWLKRp4IYWmmOh/vNvX5cFnWrybr7j/WJH2baYjoMrOrquoRU6lh9StjWOsEhzhdUmp8DH9Uccj2PS/R3YFiJLKbOESDQ4no/jejRlQacbGLaGokGpdMRVhe3YkOxxdA3ZCSzHJY72GLZPs15yqEJqmJycnUNZsF8uMG2L2g2ZNRqW6/NDq+WmqtEMC0etSNKY69WOy+UeYdiMPY9WjXl+fYupaYztj5Xh2xpQJYoC292ag1CgdAr98IihZUMWUVs6eZnywFM4Hwrc4BDF1OnKPdluiexgeHyKXe+RhsHNLsUUNT3fpFYNpuma5WLNxTrht1+/YBsnSDpGjo6uaqiqjtm12LpC1Qn+n69f8d3rd5z3PIa9kM+f/oI33z/n7Ys3aFXBRBNkmzVyckQtNaRQ2G+3mJZF0XW0+xXb1ZzNoEfgu5iWTlbnCJFwFOaU2Yoq35PGOXVVkuzXJOs5p4cnDFQV09DYr5aMBn08w2T69g15EhGMD5FtjbZZI/tDkkpgjQ4wOvC2LZ7ik8wyKsvF8AwocxRNR5EaddeQFB2tUFlv16ynEZvfXbLeNbzKclrL5n/737/loH7Nnz96wumPHjBrYrbpHjsI2Czv2N7NUIqWo66k3dzRCcno/gOy2XvqPEWzbYTy8fvRbAfbtqkRuFJjnTUgQDN0OsOkUw3oBK7tkMcZ6e7jf9R1PRACx/UxNiu6TmDaFm7oooiOaLdlMAyRikSRPRxboWgLMlXBUiTlrqAoC0y7R6u2jA9MdFHTNgW7fQy9GmswYXd1BW3BfLukUyeMh2PmixmG79HUC06jDc7kGImC6kuOTo9JF4KL3QcUX+fRowO+v9ywuLjmaGfx+LPPOB9PEKZOnCm8e/EV75OMR7/4MQdHRygt5JsZcZpiBAG2a1MXz6mzlg8vbnn59Zdc3i4RUsFUDVarPYu85vOfHVJXKaZpoCDo9UK0cke+S4hrWHcq6uiI5vIdUlVBSAYnJ+iK5O0/fcX1P33Jyf0HBE/O8XsuQvnUnvPJJ3/MPoUmn3zyR67rOt7NVqzTltHkHmcn9wm9AVEeYeo26lBBpDsM3aDIMxS9Iwh9joIjdlmDcXDIH169Id7tePKTe/SOHXRVRRUaruNTA8bwhF/8zX/Pb//z3xGnOaJtyeqaMAg5eRjwP06OaOKExdVvcc0Rmm2iaccYUiOvFaara+6mKz5cr7Atg3NdJatbdkWN7tnog0O2io5+85ymGrArKtZxRc83KfZ30LZkdUeWF1DX9HsjVvuI6/cXRJstZZbguDbFbIpveXRJQ1spqNJCUXSklAgEraLTqCrCChC6zYerN9wPj4nK8uOtt6KxynIM00ZVNVSlZrPdYAx7lGWF0rUobo0zksi85fLVS8LxlmE4wPQ9NF3FVBpWt3M8b4AuHObXF4g4pe84nIQFr+ZLptdTRrbD6dEBYT/Acn26KqNDEA57VLdL4njLoOpDp9AIhf4gQA5tVGFSLmMUPJ4+CxlLlZkh+Y+//jtkV5ArgkbTKZdzau8MzbRZXlzxfpOxuJjxxc2WuNMZjHpYvkG6m5IULrZjgIDO6eEe3qNE8vLdNXHeYOkGg94YqRo4rk2024IicfyA4eEplWpw7/EzdNPldhVRli39wYDSsNDbHtXtJbZrUDUtTZJSFyVJVqIoBkgd2wkZhH2EYbDb7PmH3z3nf/r3f8PAczgNR1RoZJqgTRo6GubPv+fB5w9Ru4o83SKkjmroyLSgpaR/csiTVuHNpsDyfFRh4BgDnjQ2bz9Mye929LX7GO4A67THxpCI2VuM0GXTKnx3O+fbL77g5asX1FWOH7i0vZCfn59w4gU4FGwW15j2PYSwcMYDtptr5tMPPPvRGcfnfW5meyzLpOkEadmSFg2+abDa7Hl2PEDXDfJaoNt9oqbj9Ycp3uCQn/zyL6h+91smiknhhaiyxRkZzLYZZfOxIryjQwiFpm4w9IYnPzrDdBTiZEuSpjQdDAcjsjTluw9X/LDXY9bpmE2HWjVo+x3+ZETZtLiWyZ99dsbFfM6bZYUQgqdJSqX7KOkWw7JJm5Y8ixmPh4wmB6i2izQNDE3j2FE5sB8hkGiKgdYPoVOo05TpH75H5gqq3+d28QGhV9QaaD2PZ7/4HNPyoKtRbZe2a6lQWK032LqKjsAwDQLHxRUqNh22puB4fZqqIZ7NUaWD4nrsOpfw8D55mlLiYsgWkewoqRiMD8laQFGRikLXtSR5xjIq0HTJkavh+QFlntOWBYZhECUquVCY9HpotIiwx557uIHH+++/+zjmd3yA1w85O7zm9XLLWW/IZDSi28+Y7UreLRM+TOc0Vc3UMnk07KOZNm/mG4yxjW+45MmOtMhpERRFzvX8lqHfJ47XlE1JFe8JuhrV7iPSiP3FHZltE56eEgYWTZUzjRqODIGua1imxs+fnbNcLanqmrvZivcXl7yervnm9SXbXYwqJaFjoesGrusQeB5616JKuNxXfPXqHVGa0nUt/Xfv+L/+j/9IVNSom1v8Yoc4OmaxXDJxXNTJiFIa2GWLapqchx7Pb1QWaQkXlxiOTdWVaCLH1TOifUQUp+iGiZAqugHrxR3z+ZYyS7GefI5SF6htw2A0Rj/SKRYzqjShjvcYpoVUVWypUnWCKskwTZN6n2DcLngzXTDdHvPkp09x6pQkTrFti6ZrkOMz8tmKfZ3z/G7Lzdt3PBwN+P3NnKTcc6BLTk6OiETG6vKSbZ0xGIWcTzo2txdsdwmfPX2EJmqSzRLv3mMM2aFUAZ2h0qAgdRsEqJZJlCTs0xwhdXqT+5huQJkkXMcVrex4LASqItjME4pVx+HBMzpabMvGtC1Uw0DqGlI36IC6LAgCF0URCBWSIsJVCyytpCsL0rRmv1uTsGB0YBL0VepoRV4VqIZFtN6jDyNQXYrdjMBziZc3JPmGmWrQSZ3iboXf89gul/SCHrrlYDkuChMsQ+X16w/Ml3P6ts39kc7VPOXNrqN4v2QdQ11NqdqGXZ5z7+lntBiMHBdb+di4l8VrDOsRabEnX98y28D8+oJku8TVBYZtss0rPix3jE4nBIHEdV02qy1Oz0IqEl2DOllwffGWNC+xNJOyaNFbBdmBZpq4rsP9kwNe/P6/Eu82HMmWgx8+ATzg04jOJ5/8sfoUmnzyyR+5tutoVJPRYETZ1gz7Q6paQSr6xwBBFURlgSV1IqnRaIKTJw8ZjCZs9xU3r6estzsuP3zN+80Zf/3v/5Znx4fIFhzPpu06yk5jcv8ePy8bnD98iU5FJ1XMcICpa1Bcc72cs7694+jkIccnP8AeewRGzn11jN4krKeXfHY0pqwK4qphnTcMdY8Hn/2Eo7MHqLJjX+xJ72ZsippcLFCHPXTbogYUqdDSoRsGmu0hs4rdZs/06gZNKuhNSdal1OOOuvRoixIUiSJVBIJOKCiaSZK26F7I/R//lLt1RC1VyqajUySrfcRivuTR6TFNUbIvUpIo4WA8oKoqNFOjIsUMDMb1CVX9ntm7C9J+hKk7uMMBMtsiuMH2fbRSQpZxud7hSZW4aLEUwTba8/puyaMnDwkVha4tUVUVVdeoipLeeEBUbamLnK5zUbqPdc/y9DGu5ZGHOfvWRbt4h3b5Cn0R8e9+9IgocbiLI6RjEkcxi31MuY35h+/e0AiVm9WKh4Mx+tERVl0RiwYzmiOyCXWq0XYt03jDi0VJLXW++ce/x1QEtqISRymjkyFZGqNrKnWtc3L/Hr3JIe7kFDcISauOy+klVdFQlTWZBE2z8foHZLuYu5sLFNVAU1XqYsci2tJXDKLdBs80eP72Na3sQD/g1eWMp+OPL1cURSfQtY8BWVOzjNYEPQuzKdnP5rSagapbZE3KOs04G+ucHI3Jui2dEGiug2ao2A/OEZXg8mLFurhD6fUp2wFL22Lxds1o1HG3nPH1N//EzfvXCM3ANE3IS84cG6+rGY19HM9j+PAJ5S7D7g9JDcnd3QfsoOPsSYDrmCS7hKNJSNfBeqV+DAWaBs/1qKVKnGXcOztB8/pc/u4V0dtvsdwRH/6T5L4dMhc+6mpP/15IYflEteTo/AHXtYKmKpi2QZW1jI8nDIY2RZ6QJhlpVtCfHJJ1EDU1i5spdhkyPH1MU3QoaUS6W9JPS5zJgKauSLMC3zG4uJ0zXUZc3q55fDih8l16/QGqUFAUnfOzUxTLxHBcmqamkRLHH6L4AzSpohkWslMRTUunSMyzz4huI6bvL7iLtkT1htwweKhZPJEmbaciRIc0LUSeEO92bFdbAtPGsSxszyFvGyzbQlUUujSncxw6VWO5WtCi4TkqoTNAwSWbPGSadiRlwj6v0WyJHgzQ3eDjmIgiaRBczpYstjtORkMC30OnxhANZAnkGZauUtzdEB5NqAHVNBmdnlJtbpFnB3haR3RzxWbT4h2fYJZguzbkKVVesowz1mlG2XRURUGdZbzLM3746BFCwPvVjgmCKCtpuw5TFXSlxPQCFF2nS9bERQqKTpSkOK1CnPUhWiJsE11XGekTJqMJ4aFOu3iB1AMM28JSBLql8/2bC16/fsN0vuTyakESJeiaim3bnB9P8HSFYb+HZ1jILGGxT2jsQwx3QJxX6FIj7zTWixmu41K1NYoQJEWBFQzRANXzuN4lHAwC3hc1zmiEEyzRXZ9dXvH8+bc8e3TMs8fH7LYRZVniODa7fUzbgVQUVCmY3d2x36eEpsfx9Mk/AAAgAElEQVTYMTg/OcN1P4b39x895uLigipLaKSKMz5EM0xMS6dSWqTUaHR4vVuwJSG6ek8qWkzLpr+OmYwDon1CZ4+YrVt++/UV01lMZY4QWo9FVmFKnVbVeJ1mrN+9xw76PD4/5rCvs1tcs1eHHJydYdQJeSGRfg8EtFJiBAPyvMRwfaptxCrOoa5ohEKapqimymHgfwyFqHk6DqnqjjxNsKyAzbzBLU84Uu/DQKM2tmiaxNAlxWaKGHoY3pC6UzA0FVXTuFvOaLY3aHbFYrbmu+9espgu0agZ9E3aVhKvCwxDJ0kKqjKjQkOdXwEKoSVJUoXeuE+8XWP3NNxJj4v5guV6x9n4iDupcvaDz2jaCsswcIYneEHI9HKK2XMY+SGd7Pjq3S3v33xLeKVyErr84LNDDg/73N3NGB8+IOyN0HWLNNkidZNoNuP6zbfkmztUy8bUNI4OD1jv9+yynJv5BukYPHxyjGW7VEVBq6pYjoNuWRgq1NGCty++x+8N8SdHOIfHqK6H2e+j2BbStDh5eJ9NV5PmO178+j+z20x5cvYf4NNrk08++aP1KTT55JM/cgKBpdk0psTVDXTFYrncI6WkNwyRcUzddR83x4uGwLUYD0Lund1js2uQuUWX7ihzjYu3b/jNb75g+D/8LQeuiVB0hKIz6U2IlzPyWuHZj/+U7d07tlFCJSSWplN3MDw95uD+IyxvgKroZHffk2zXpPs969UdxwMf6pq6g028x9AqCrfHIkp488132JaLLwtMy6DQbMLxmOtS8NDXcE2DphUYhkq5yxDdx5v2q8sr1puIh+fnKE1EmSV0dUFbl5RlgSIUFEUDGhSp0aoWiBzRQTgc81d/+7dcz3ccTMZkWc5sHzMIfSQC0zBZ72OifUGeZwRhQFNX1EWFKjUs12FweIKuOWRpQZ5XmGqNFh7ijzcoWYmpSwa9Hs+OjnkV72kBXddR6pxyv+Dy8oLRsIetqkhdRwgdRAu1glQ70jQijXXW10uEO+QoT1G7EtU08X2dMtXZXGzRzJYk3TFfL8gE9KTJqmhYvrvk9d2G6WpL2bQMeh662hIqEUJT2QsB0ZaTTrBLa27vZvyf//dvSGqVYT/EsE0GfY+kadE0jTKNse2PTT2H5yd4jonvOqiKoK1rdklHKSz6fh/fdhn5HsV6TV42vH8/RwiHpqpwXBe/rIjqiOXsirpqOB0NGSzueLecY/oD1tsa62GfZLuhH4SQlxhBSDS/JYlavvndC548PaKqKq4+XH6slOwUwKJuakzbYOjpZFnGZHiIKksUqXP/2TN6bs63z9/y/bsbiqgCTeHdt9/xjpjZ6oau/riUUioqg8MzxPYWS5eMfA9XVVFFRafUqEchmm1T3H6gSjYcHQ2Qmophe4xOWh6VA6a3S8LAxrd1hq5O4BhIVaetCpq6JWtNXr+eYqIg8pSeF9KoHnpb0zs8QtNLdklKojmk2xW5PiBuINvnNHVN2AtAQFU2lFlBmmfce3SffZqxq3I2uzWvkw2K72FoNqc//zHldkWoN3T7O1zPRVE1bm7n2IaJEAmL1ZbtJuLx0ZjHZc14OGAw6qOqGh2CrChpkXRlh96pGJqCQGKaDnSCrihohEKnKjSeZF3veTW7InUc7p3fxx6PKTSLsm6QoqUrS/J9zN3lLY6i43gmfc/F9C0U26CuSmzPo6pqJApJUXJ3O+Pw5ARFFJRlQYqJf/yU6+sVtXIHqAxGY5SqoEkjOs8EobCMM3779dfcPzshb2oU3aKtK2SXo6gqZZ4gFZUy2dFpJwSGjjcaobUZH27esdimuK7N8HDAy3dXhL0hvcDB0RTUDjLVxmlr7LrAaBvKqiZrWnZdzma24Hg4IW7g/fQOvzfAMk2yqkRtCpRWoHkTPK2jLgq0cIyhWRiqSdMIwoN7jPSOweEpluegWg66rpM1x5CvaRAIzSSK73j1/Hs00TD0bV52HYYqcTyPST/EN3Vc0TDuBVhdxzTqeHe3Zl7lVDhY/iH9vofhBGxWc5pkT7Jb0xsPEJaDHbhoox72cMR8OmU86mHrOoXUGB5MUHSDNCq5u5vzo4d9yjJHKAq6rpOWJZalU2QlaZzjORa+Z/Ph8hZFaPzrn/+E8OgMabl0eYJh27i9PllWYDkdtuUgVJUyilAcj3i1Zh1tCU9GFGlAk5ds1kuCw1PWy4Lvr16zX94hjICbXc1+t0fTDToJi+2Kzx8+wdQVTFWg6TpCFRz1dAZ6wmaXUrshJyOPUO9wdItCCymyCD3d0dQZWjiiqBKUDvZxxGqzQlg2u+U1aVHxw2f38R2bUkqKLKfWdNq2oB+GxLuSq8WSh0/+Cu88pHZTFCtgvrj9eGGxn9OsXbIuR3ddhO6RRHv2myVOs+Puaso//uafiDYJ9w5HnNwbkzYVL1+/p8gq6n9e1D2ajCjrhFi+xHRDHEtH+DaN0iPLctbLJeqkz49+/JQv/v5Lvv7dl4g6oW1zwmGPVigEfp+ze/dZX9/y4OQhbuhzfF7xqz8TXO9XNK1AR0FYNpuoYXxyn5ODUwI3pBOCxWzDzdsXvL+9xuxyTk/HBL6P7fnsk5jFPmKx2lNbJr/46WMOAhtbQt6CVBWcYQ9pauii4sBXEXWGomkohs7oYED/0KbTY8LTh1SlitK29E8OEcA+TkiWU9qmAU37lzyuffLJJ/+CPoUmn3zyR04IgWm5dKqBZZq0HUxvZ4RhwLjfI0pSFKmQZSm6kIzsAM8L6IUjbKPG8gc4QUX95Z4ki0mmd7z48gusX/wEpMrJ/adIIcnzmnRbkfp9Hjz+Uz48/5Lp1QWJF1JsdxxMDjH8PqrhoesGrW3TKR2r9ZrANkhzBXsyIt8vkUVJXXTMFgtusztu4xrbcRmNRoyOTxlNbPK2JUpKPEOh3zYoCLKqYbfdkxYNd7MF09sZk6e/wLE78ukHOmrqovxY9ygETScRivoxOJEqrVDRNYPhoMdqtSLsjxnf03Acj1fXtyylwcPREClaqjyn7wbERp8syWnooGlRWx2Rgqt5VGaNGqr0fME+ihG6BqYFhk/g6xTbHbXr4jkGxjph2zTULWzzhn5bsV9MuZuOkKpGIFU0rUXVJJUqaaqMZbRHFgWdd8Dp/XM0mROtNkTzNbbdJ9luudguuNhHbIqIStSorkecxmy3Wz7M1yz3EZZl0w8CvDCkrDMut3s8qWFZLt7RmKhW2N1u+Lv/93e8nW45uv+IStEJXJ+8FlimYDgao0qVrhPYQY/++JAu32NqOqJtSBcrbq5ShmnO4GDCvshYrNYo0Z7iZo+iDbAdH7oVq/kU2/Vwo4S7mzsU3YQ24HQ8ga5i8/4db3YLng1dgn7Arsyo8hxHSlTXQckz9qsdz19dMw598uIDr25WhL5NP5DczG+5d3yOPRoTpzGqKuialqat0EaHDCqDv3T/kvubPS+vLlnsc0TwgKxecSQdDFvh9eqWWbzjwHMoO4+DgwPUrkB2DQPHB9ugtofcbmM6PaM30CnKiF5g4LgKVSS4f3KCQHJzOeXBxOVPnp3QVjX7uMTzbTzD5MPrK85OHjL8YZ/5LMI3A8TdDbZjUFYqZs9hE60YP3zKcnZDMbLBMCjbjFqJQOlRdSpNB1XXIf95mWSnqEwv3tLkOa/vbrn3+RPEcs58ecfw7DEymKBIgzKeIyX4roEiOizLJikiiqbhLi5R5xs2+5RdkpNVDVZcoLohB6cPyDrYvX+NLi2ODg+o6hZdkTR1w346JU1jlotbGr1mdP8hV0lOeHpOur8i2iyRcY1jmVTRlv2H91y9/sBpv48lBK5j0xqCXdtiOw5106JbFq2qc3F1TVFWFHWLZXk0lsc+EkjFxu93xFqLbZnohkeW5TRViaoIGuDD3ZL+5BDP87GArCkxu4ZKShohyNIM0bWkVct+s8Ed9VCyLVlX4z3+IeJyyquX3/PXP37GoGiZJw3O4SluvMNwA/Z5iaWpOF2DqEo0QJeCroN9mkGacDi5x4tpi7mP0HsTTKMi2+yQQkFTFDTLoe8JNnHNo6MRo94Qy7Dpoj3euIfVn6ANAqStU2drOmmhGC5dV7FfrXj3zRc4bYoburwrK6qywtBUdFXiyY6+rtAfjglNB6qKqFFYJylpuqV//Dnz2z3r/Y7DwCe0HHRdpdcPCEwNLfAZ9Uf0hgHHfQvPOqYzDPyq4izwmBUtDQq6VAjCDt2QTKc3DPoBimgRXU1V5XRtg+c5tHXO+emIONoz6NnYR2c0lo85GH+soK4FymaDtDSqLCFPE+ygRxon2KZNmpcsd/uPdfVNQS0EWZ6i5wmjk4ekRcDg5BxFwGlW0GYJcRRRphFJqtFVOoahfWy7sTycQZ9qd0NtGQzvPcTzHBwJm/cXqL0etq+z20SUXYrm+exX849jo5rBu7dvWC6W5FnB7WzFg6c/wPYCTFPHdl0WsyWOY+MHPvk+5v30Bm0UIo5LrEGLkD6b3Zosy5mc9rEsk2KzITBV8nRNk/cphEB2BbqE1XbPT3/8QwaqgVm1qAOVndJxu8t5+fqKxW2CaErm25K2bZE3Mb3JCUEQYnsBWVMT+AHbIuf6esrJQcivfvWYL3/7Hf/0u9/yYDHl5PF9bNtBHjX4ts6jJw8YHx1i2j7b6ZwmTkne7Uilihn4hPaAJ58/YGg4hI6DhuDL333L++9fsYwT1o3Bzd0Nf1WUqLqKZhk4joVl2kSKyl/+6WcM+w6Wo4PQ2WQ7+kGIazoEfkAe76nzBf/2X/+M9xvBYGgxCKArbrGkxXq/oGhdbJHTejZdUSIDlzYX8Kk955NP/qh9Ck0++eQTVN1A/PMtiqkZaLrB/HJKYFhoUqOuO+LdnkPbQR4e0eoK0jDoOx5qVVGK+/RnFxx2CmVScP3qht0+44d/+uec3RPsdxscK2C97YgXdxz55zy495hXr59jKrdYoiIIe+htTTK/pPX6NC3IIKDsQNF1XH+A5fWo8hhpWKx3BXdZwbtlRCU0RDiiDA7I3D6Do0MCcn5wNsJSFZIkJitysqIhbwWv31/y9s07LMtioJQYTcddnHPYsyiLgrapaOuKDoE0LboiQ9VMpDRo2oJev8+jR4/IWok0XWarNderDcH5A/K2xTQlVVZTZQ3j/oCiXtNUNaoukRLypkCgULdgGCYShSDsk6c58XbPOqsZBSFyoFEvlui+w8EgJIsTiqgmygqu5xt6psKb77+GrqSaDHH9EFXVqLoOqxfw/dcvaHrQ9xVsz8CSLRgDMBwWt0tiTcN4/IjzukRevWe9npNXDfPtnE2aE3caR/fu49CgKIK8E2yjDLVu6Fk2mgoIwddf/J7p7JavX15QSou4bDCMlt1uz+T0FKk27HYRI92glQa230PXVfJMfpwzVySa3vHIaXm3jDGkz+FBSF8q3L5OaO0JgSmgbbEME8cf0Kgq7n5Hz3cxwgFu4NHlKaPegNqUrKMl3zz/hr/8678kDIcs9lfM4iWGIqgtE0VKrt/N2Xkqnh1SphtebzcM3BzUDZZp44djmjylocHQFJJ9juNlqMce2Vqh3zvkoSa4ty+o2jO2yYqyWaCEBuriiuK7rxgaKtp4xOOnTxgZHQ050tUQfp9tlrHudkzGNpff3HJ83MdzA9pWwXZcer2Q2XLJ/aM+D3/xCEPCxZsPWEeHiKxEdiqvv/2O6fsZj0fHHJ5/Tn13R+h5oINQBdLUIBGIpkY1bHTLpGha2rbms/sBJwONadVSqgqtBM0PQSiEmmRguCzjhDhK+P7NBz7veZTLO0xDYzdfcPLkHGwLDJVadISuxTxqOJxM2Ky3BG7ILi8ospg0q7m9ntObjOkPD6g7SZE3tHmKSDOSaIfjeVimTbaYQSMgS3B7BgMRUmUdd/F7Xv79f2LoCtR8z1moM+775Jsd0+sZ49NzHjke+WbFbjmnVXSOPIusaZAIbM9nlyR8++1zLNumkxaR8LicJbia5NnJgPL5gmYyYHIwokbQVA2KlAihEKU5q+2Og+MTjiZDsvUSw3Igz1DUls60aHdrrt+/pahr3iZr7OwI7dFDKlWjUkqe/eAx3//+d8iu4fzsCPVuxW6zxewN0FSFOo3JdhFKWeEZNmMTmroiQ0U3HQzNppYDVLPldv2OvrLFUCRO0KM/OcFzPbx/bt8a+AJx+55tlDH52Z9i93p00QrRNOTzKYptkjUly8UUWxekuzmzq/e0Zcmg3yfJCoqsIMsKEODJjqFvE/R6uK4PUUzfDwiCkCSv2CYp+3d/YDQ4QLRQlBV2aGKER2htybZMUFodH7j57hvUesXRw2dspEqelXRS0gtt9usNhlZx72CCInXmt9fE+w0PH5yzWi+xHJuirdnMZ9DWDHoeD87HWCKG+ILtbsxgNEE3TVSvR9F0DAYDiiQn3W6gE8hWIVmuKYoKy/ZQLJfh2OEP333LJtphDQ9pqwKt2qMqJnZvQKYKVosr2rJgtdlg2xa93gF+/wDVC7AUKKsK1RvQG9V4jkcTp1RdgWfYqEKhSVOkrpMleypFIytKoiRmMZvz1Ve/526+ZrXZ8/jRU548espgfEBXNjRlg+e53G63HB4dslU0tKMz/rtnP2I0GJPdluSrlvnNErVXcfboCZYm0Nua+fUFXs8nqwrM0YDDsU+Xppw/foBjmthlQ30zJd6t8A77nN07Zb6vSDqdD6/fEd0uoG0ZjBpu50t6/QGWZRE2HlrdIeqK3bb7GHIPHP78z854+9Ul68sp+WqHNQpIV0sMaeAaOjQNettycHoGqslwckiWFBheDzUc4oxPkKhoLbz5r18RTQuenP2Up0IQ2Rq/f/4l8d1L+taA1uwQUpJ0HX/1r37O4chHihbV0FluYtK8whuZ+H6Aqkhm00uuLy65f/8etmMjdEGRJgSHE2ppspqtuH+kIXUTfTJhW0mK9YI22tN92mfyySd/1D6FJp988keuA+K84Ga1JbvdYdk6bduy2sSsfv0Fx/fPSNoG21RQHIPj8SNqRWEbxQwHFnWWUewLwnCCbKCzG7bRjtYMGBycstls6KqS6XVEo49Z3/yB5CJGsU1CL+Di5ha1iHC8kHHVYSuSTi+g65CdIK1rDMMimByjGA67zZplOeftfM08KQn9kOOjE3qDCVdpwcs3b3h0OuJo4KOrOjUdSIOiybnZJHz16prvn79A7SrOD8dYoqYz+jRNS5rkxIaJUFVaqdKJjze80nJBUVGkxNQ1ug5GkzEFGi+v13z9/gbLsXhg6FCWCMPANFSiJEZ3JSgWCCjziqIpycnJ8wLd1GmzFhpBW7aEfo+BF1Bs9sT7FNXQUVyfzDDJVBWNDtUwcDWN9WbNm+slSt2gtCXp7gDHC+gdnlE1GvtWoZQ6X18veDZ6yOcIpGWiBhbmoUvwVNJ1sLn5QBpvKcqY692eSmoEY5O+JvGCHpvVCi3PUQQ0qqA5PmIgalxVUhUVu2jPMsn56mLGMs7p9V3qtqWTEs22cB2bKouJs4Kx5YLXR3NDmrqGrkV0IFUVKTVGB+LjmNN2jqkMsMMAx+tRBQnpLqLtKkzTxK9ydlWLpIWmZRT28cIeoq6oaUhpOHxwxtX8kg+vvsOxXMa9kKTM2O4S8qZCtW3MvGC53TAvCwLXYTFd8S4u6USC6bzkB88UZKtR5DG+7xPVBUW0QHENOB9TY+Fne9I8QstLdE9iHX/OrI45UBUObi8Z6OB4Prro8EIXqYMcHLAucr7+6h85PPK5ufpAXmTYboBmujRFhRp4lJXg3sOH/ODRCUq25fb9ByanZ6CGJB/ek0cxby5u6FUdVgNe75Aqy8makrA3xh0NyIotm9ktan/MycN75OLj0lBFKRiFDlm0J7BMYtkiNYlqahiKoIgLuijFsVwyw+L6aspZM+QgCMEyOTroY3kK0Q7aShBt9vRsk4lboIQnyKrGsGyiomS1j1EBaVncffjAZnrLanqH4wfQQBYnrFZzJodHiPy/sfceu7ZkV7reN+cMb5fdfu9j0jCZLLK8qq4gQJB6t6WGoKYAAWrdt6jHUF8NQW1B0AWqIJUTL8skk0x3Mk8es71bNlZ4N0ONTegVSgLP1wxEIwIIBOb4xz/+kREFIVEYE/xu7bcxGiO2CWa3RQ+a5O4BffGeqptyv9uwzVoKLTh5foYAVF2j7R3Ss2E2RTUNbdMgDZPf/PZrsqwgHM3ZDS7JtiOOA/b2ZnhBgDcaI40XSNEzoKjajroTDEhWqzXTKEK3HY+bhFgpbEPROQ512xAcnpBmO9qu4ftX32HrDr1b8Sf7++y/fEmfbNHrR35+Okf1JbqrmAQWzuDj9BqpQdQdttbEwRh7ElGtHriuB/yTlziBTxmfkmwKmrylFRHJrmTsQj9IBi3QfY+jJKa08MIR0egAo64Z8gL2D2h3W9LlhrzekpuCx+UDRrWlLXIc3TGb2oz8CatdTVlVrNcJWmuOD+ecnh4ynU+YhBFW2TIUNd6+x+GeSzdAp8FE0Gs4O3mGb0hS4WAqA6UgjHy8X/wF3/3wip8czPEnMzbNQKYUXjRmVJRssoSJr1CDyXg2RRoSuQ748e1rirzg8HCO6FuaumYyGbHbrgFNHLqs1xvq9JIhCbk9F4wPPkYbFp1QoAyC+T7p1TXp9Ypp77PtOxqnRSoLgcKl42B/n7tkw+PqkWg+JzItIt8FpajqHFNqvNkcf3KIYzs0eUJeN0zmEdH+Hp4hkFVJtn3ELO5xbIHluxi2oEh3+NMZ9abC9QPsKOLh/JK66fnx1Q/c3Dyw3ux4fnjGJ4fPkXlDX7eYhkXflQghCOMxhhcSjk74xWcurucwm88xTw2++tvvqfUDoa3IshTnxXMcCeVuTbrbMX5xxsHhCIaSSptkRY8WGjUPMcND7r+8Zv3qkej4JfvzEUIaFNuEvq4wLYdWWiyqgQ6BZ5lE8RTXcJCyx7QF6W7g4WGJ9hyePT8mP98w6gX1fcKbmxVRHOD4JpbUBJ6FH48x/SnRbI/8YQvCou3BaXu06XH57Y8k1xk/P37ObpNhzcYMgc306IRicUVkTWidhsdsw9GzE56fTRBdi3QseiVJrhcgFH4wwXEn6B4Wdw8sVmsOD6c8OxnxuBO4wRzhBIzGp3StIhxZtEXFIHsG26QwFPPT0w/bcz7wgd9z1F/91V/9Wz/DBz7wgX9DtB7sL+/W/2GRNyOhDNZJzs1iw3K95fU3r7g8P2dV5MS+QxiPmU2nxIHP0A8sV1subu/48duv8TyPvmnwogDtOPzRX/w5e3tzXDdCas2eUXJ/fcWzsGYWaBZX79F1QVW3fHN+z3XSsisaTNdhAGzPY7XacHN1jekFPGYNl4s1D6slr67vuFxusEdz5vGEeTxi7Jp8/OJjfFMRRNFTboJ4sk1fX9/w+vKOL759zW9/8yXSshmNZ4QGeI5N20vyxytsy+DZi+dYpuD45UtM08LxPAxDIQybQdkUTY/tetTS4c2iZF1UNEhGh8d4jk1kG8xsgTF09F2DHfk0TUbT9niuQ103GIai63qSTYIpTZQwMAwb13QwNjmP//xr/q+//mvyvqcRmuXqASRst1taIWiKnEFrsrKlaxp8JRCDJk1zbu9X7Cq4XBVUhst2m1C3Lc+OD4njEOW4KDdEmha6b6EtqYuch7wiePkJzz7/DM/R7E99yiJjEoRMwwkugkBJpmGAGAakUjT9QKl7vjy/5vX1HYbr4/o+QejjORaeKRF6wFQD4+mYeP+EQZq4joPSGjV0eK6H5XhIy0JZJqZjYqmecrsgy3Mer++gVxhKYtEjdIMpNHW2o+t61ruU559+hhAS3XR4lsXQ1kjV8tPPjogcD1Fq3DBC9aDajiZNaYCubWn6HmGaFEWLGGCb12yqjttNih+ExKMpphCM9w4QdUG6WmP7LrLVqKbCZsByTdzAIRgFWL7N/WKNI3vKKuP0cILlOewd7REcTOmCgIfW4O/+z7+F3QO+3XPx4/ecPD/jxccvGXqQ0sQQktl8SuxbmKIF3ZOu1wTTY3aLFaqpuV2kvL96xFOKePYC6UYYPOWx2HGMOx3RdSV52xAdndKjWWt42G6YOj2WayEMkwFoDcWuLLDrCkcp7GFgc/9AmWb4fohqe6ztirPDGbOz58xenDJYEtNTbNYJbVkyDJrdegNIpLIZ6ppBmjRNxXa7IfZcbNdh0ANlvqOvG2xDMY4jfMdEyQHHcXCjCCEhGE0YBkHXt4xsiSoz3HSNUyR4rs0axbZocMcxp8+fE04iqraBXqMcl7RvGcIQQxl0neZ+m/Iff/nPeEHM6OynmEc/ZbR3SOzb+GHA5a7h/bYiHsU4lkJKgWFaHB8d4DsW221CWpR8/+4dRdfhWhZmX6O1ptEg6hzftkD3rLc7Xr0/R3cNVhwzmU/57A9+SlflWEo8jYOUNUkHsigJHB9lu1SbNW3d4O2/QAwGVZJQWiH/7X//PyCNkKpoKZOC7WZDpzvKVj+NVmnwPJ/Q93BFh65KwmiK9CcoN6STguTxhmpouV898v31Fb/+5itu3/7A8vISG8nxwQFe7LPWFn1Vs9xs+dfXlximSbQ3JZpMmI5GmP1Afn1DGIZEUUw4GfP6bkXWgBvtM4kneI7LNitw0Pi6RTo+w/SIyckxf/qHn/CXf/mntNLkV69vaDqIfIfNww356hGLmjgOme7t0feaJC2pWs2rb79j6Fv8KIJBs1mtUEpgKEnb1AxdwzZZcxgr/DBgt1qwuLuhrioczyOe7NFgILSg2RRky4xdn1N3mvl8H9qGUgv0ILi9v0MOA6KtiIOAOAzIs4K9vQNm+3v0GORtzyZJwPEZ7R9QbzZMlCR0XcbTKXqVcjRyiQ+PMccTrOmEuisp0yXKsvCme9zc3tENgn/6519zfvNA4AXsj+bMx/vM90/w4xAzCFBioDEcrNkR3tlPSBvNzfUVQRzihzHfvn7LL//ufyfwGub7EcvbG569eHeN4AcAACAASURBVIbjObRDzfRoxPxsH93ldE1BUxZcnb9hs1iQZTva5JG+b7i7uqVoe4rexPZ8xnFAYBtoAdNnP6HSBrPZjPk0RhkGprJQpsK2FQINyiLNKpbbAtsPcPsWRypcZRB5AV2jGZqag2enOKM5znQfMxqhmxIrHNGu1uiq4c03P7L+8lvOxhNs22a73RG9eE4mNHXfU27XfHZ8RDt0FKbgo08PkEOL5XsYnssyLfnu9XvC6TGffP5n+OEY2/b56quvWNxdMZmMmU4iJtOI3pkQTQ6wwynSNKHrcBDoqsG2nppI49DfPDuY/09Kyubf8Lj2gQ984N+QD6LJBz7we06nB/uL6+V/SPNy1Bc99a6gSlN2u4y801y9OWf15jWd1sz25+wd7uMYBrLWrB8T7q/eM3QtyWpJ29V4oxFHn/+M52fHeGFAgUtgmXwU1ryMS3xVoyyPdL3k/M0bmjzDMiTXj2ve3K5YbxI2WcXt1S1vzq84v3lgW3W8eveO2/t7bh4feXe/xPDGTEZ7jKMRLw4OmIQeJ4fHdMphs1yyXG1pmpaLywt+89U3fP39D/zw+gd03xI4DvMoInAsLAOWV2/QTcl8HGE5FtPTMybTMaYhUIaB5QRYrk+vbBppsesk37y95ebmniAK6bse6Xos8pqxozjxJFKA7ioG3eKFLoYynoqrsmQQgrpqnq71A47t4jgh6dtbbv72H/jNF//ED7fnDLZJqQStbimLlF5K6rJ6csC0T26cqu0o6gZDyN8JPAb5LmG73ZHUPY7jUOcpnuowlUSaBlIa0LVkD9cU6wc2mwW4EscsUewIx08rjGd7h8TjMZaWhLaH1mCGAViKuuu436V89f6cdxcXVG2LHYRYpoUeNKODQ7L1kuk4wnQdxvtHOEGEaUqC0Qhj6DG6FoWBEwQo26bTA13fM6DxA5s4DBh6aMoGup4u2yKloC4L2rYmL3L88ZTJ4SmG4WCbFkjo9EBWbrFdzc/+8A8x2oHdbouWEtMUNHlBm5dUTUuR5VRtg+NYOJaD71jUXc/FtmCQBtPpHDkM7B+f4NkGbbqjrwu8YITRDoihw/QcBvVUDKxu7ynrkk72WKrh4NkhpqXw51N0MOKH6yVf/P2vSM+/4+QgYrtZghp48fFHaN0RxyGu7SIFWIaB5ZjYCjbXF9j+CCOY06QVVl/y5mrFq6sHDqMRh89/hhwaTNkyOTrCmu4ThT51saEyLCbPP0ZaNqumoqky4tjDdmxM20KZBoumou01VZIx9n3KomC327FZLJns7bN39AxZtDzzPY4/fYk9CrFtH9E3LC7fU2cFTdNS1RVVmuKHE6pWU+wSzKGnKEosBvwgwjBtpGGR1SVlWaKUJAhDLNtAmiZtP9D0LdssQzcVD29+YHv9SHlzS7VecPD8iMwLSHs42N9jFIeMD+YMCJqmx4sCmqpEKYXrB9RlzXaz4pff/oDtx5x8/se4R58hLY802XF0dIgVjvibf/ySZdkRHR7h2ga2GPBcl735jL4paPIdt+fvkYYiiMd0uid2HYqqpmxrHheP2FWKJQaE7SIMg6rrCUOXq+9/y0EoQRlIy0MMMPQdNBWyrpDCwrIcmu2arhPI0RlNklGlGbUwaUeHlL1NvsspNiuaNKWqMqTsqeqGtu1oEVhKoIsEjYEWirTI2XYDy6Lg7cMNV3fv+OLr3/Kbr77k4sfv0XnKi4M9nh0dEwQ2vmsidEmSLPnu/IrvLx8xA4+zT14w823sMie/ukIOgsl4jB8EjA7meKbB1TLD82Nc26OuayYK9l2bKIwpJids65rj/YjToynKcvjVqwtWZc90GjOOQ+4vzmmyFX3fEc32UEpQp1uKvGC+N8G1FXe3dwyDwLYthq7CVJLNdoPnOQy6JU1LhDKoigbTMBC6I9vtGJTN3tEzUAZVmaFck3W146EuKcoKlEna9HgShP0USJylGbQ1gR8QRmNsQzEMGulNCCYzlOVgRhPmp88w+h65XuIKC9t0iCOfLtniVxlqkLRCYE4CBkOzu79ECOgNmzcXV3z5T1/w6s0FoetxfHLKR5/9AfPDQ6zIQzoOpmOjbJfOjZh89BnFoHjY7Hh5esDz5y943Ob89V//PdnyFkFLV3VYQ8fJi33cQDKdmEijpcwzhr5mu1xiGYKuLnm8vMZ4rCheXXD59i2LzY6iznDiMVlv4EcxpmVhxVNwp9ze3BFNRnx0coAUAsu2kUJhuQZKCoQwsCwLYUruV4+URcEsjnC9gH7oefGLPwNlIPoC07Twj04xvJA2KWjWa7Kq5Vf/8C/cfvcjAZKy7blcrbEmY8zIJ+talG1S3l/wYjYmE5qTPziBoURIiT+JaYFf/eu3fPH1j/S9QVcOyMEgHI0Jognvvv+G0cjj+GiPrkzZGzmEQYBhuQxdS5kW+IYBukdZJrmUCIbNR4cHH0STD3zg95gP4zkf+MDvOcMAw6AJLZu8afB8l77XpHlL2awY3Bmj+AjHDvnh3ZKzjxumo4CyrWnKFFu3BPMpiSnZ5QXrrMOfHLLr4MS3yZINL+YRfgrSNskMwI8JoghDCL5+854OibJceky++n7D5e0DhhB0vUb1GhYpeVHSNjW9MIhmZ0hlMw0DDvb3+PwPfo7oG/zRGHd+zP/yv/7PNOWGtevwsFzz7u6W7W6HNK0nh4nnIIcGpEvbdOTbNYElQfc4ozGG49OiWN/f4ceT/3fVaFq3pK3iPikQUiAMCUj0IMlbzdF8AqpjGDqUAtM2ybZLPH9CzkBT1/SDwJAC07ZZ3S/xvRGm7UEjYblDCeupy1juuLq/YWIJlNDkZUWeJpiGoO0GDEOB1hhC0Paaq8WG3jSZH7qEI59wz6NtBUXZsWsbvvr2azbrNZ9+9AnjaETsubTZhndvf2SL4OM/+2OCwGa7vkPZLrnrIIX99H5mgL7fkm4zDCSJElxUJa8v3nN7eUnTtEjlYEqBkmDaFqtdzl4QoSwTdzxjqw3GAizLfProeo1pWmSbLeFoAob5dKgXkrZtsF0HYTpYjgvDjqFrsR2HMlkhB01X5eRVxYuf/2dYlk+jMwbboOktTN8hckJ25ZIdDS9fnlHfP3JxdYloNUVe0DUdcoDxdMJ2vWCXl6heE3o+PzlxidwNN+sd768fMBCs1mvOjo8YH0xZXNxRPr7HCffoy5ahl1TbnM3jI6skxxyHdIbAsC0cyyWpCla7kleXX/Lq699CnvD5Tw+pmwoMxXgyZdAVfT1QZgYqmBDP97HdkC5bs7p6xLEc7PiIu63Cj+Zsbi9J8hrP9QjjKbvkntgNCc0IwzafRDulGPqerkrpqwJ3f05X5ESjAGVZAMihR5mSaGio+ppSd+imp2p6iqpCSYlrOfhBxPG//+94/PE9nzl7xLMZhuuyuys4fvmcy/NbVNWT7XY8Pmxo+0cMb4KSgqbu8UyTqyRlvHfwtAq47Ri7DrqpWT7ck24SJuMRWhm4QUBZlFA3OEJR3T8w1z1n04CDT/aRJ3MGHWAW+VNI5nSCcn0Mx0E7LiaaMtmg1FOoZ7Lb8sXrcx4rxd7HnzPMXpJVFSM35uzshDAOaRHUmwc25UD98Rm1rxi6Ad+V9H1H2bZkZUXdVPz02THhXsR91iAFCFOheoUVely+eY/TtViHH3Ngh2SPt+RFxs9OR6xXaybjZ2Rliky36KrCt23awCXPW0IJEvAnB2w2FbLrcPwxblXww3/6R2bPf0K/eKTPc6oqIyu3uJ2JG0ZUTcXN7RVltmXie4ziltusQAuLwfGo0h1dvmFzf0Ox26DkwLHv8NnRCSMvRIoeS2q0KdFtw2q35jevbzGU4mA+YiJbjF3O3d2CAJP5bIxvmhhKIbTmz//4D8irnjd3OVnVYwwWrpTIIEZEMwwxMI88kus3vKqW6MNPeBQxSVfS9jwJPq7Duu4wnSfxV/Y1i4d7hO3hm3C4N0EMUGrFxV2KIwd8o2E2nbLdrvCCACk0l7dLLGeMlRc0tcbwAsq6ou0H/HjM+vaGqtoS7AcYVwnLLAHDotUDoR8wCiOkG9EKwf3DPYu0wNvsGLqe8WyMFcZowyL2Y6yyom9burzEd0MUBt02IetKiqyg6Cvijxy8wzFZlaGGgX7oSdKEujH49uvvub99wJImZ/NDTg/PMDUUux22ZWN4AX4YstmVTI/PQEnSNCGOY8ZHe2SD4s2i5ODsBW8fzjHNgb7rCSYxUvQETo/qS3rdUuxSlnmGaRoE3ozx3gFG0+GnA20O23c/8vZxgZr6PAumoCYMlo0ZTfBHEQ/vbtBAkjZUwiR2bYZhwJcGbW/Rty0Iyaatef/d96iy4Mf7DQ/LlP/6z/+IyWSfuq3Y//inrC7fUnz/LdKU+Acf09Ypy/srvv7iO+5Twbv1I2/VDs/P+eTgFNf3yZXEj0c8XrzFFZJm0Bx+9pyhWbC5v2f07BTTj7i7fsMXv/6O5X3KYVhjFoJ8VZClBWcvX/IX/+V/Rba5QFkWUinWyzvcHoSVY1oBWnd02kDZNsKQmAKapv23O6R94AMf+P8EH0STD3zg956BompI8wJTmcRR8FQoBR5tB0t3h4lgdDpnuVvz5cUDY1uzSBYkmzuikU8zgOVYfLa/z6ro0Lc3WJ+d4lkG0dhnRIYUHUopDDSDaWO7Pq7rMA08fnO1IKlWGL/Ltih2G1oNhuUhhMK0XAQDpjvGNSWDYWNZJovNgukk4t1OEzsusyAk9ELmo4hfvv4NrZbkXc9ms0GaJq4f4roebVXQWwohXNI0p9dPHfBwfoAVTeilItkkjEKXNM2wRy2dbvn+9pFwuodlSKaTmG4AMwgRhuIqqxgGzaBb+rqiG0AZCtvW5LtH3PkZra6gbWjalrpp8ByP4/09TGFx/eY96XLJ5OyMydAwcwXLx3c8Pj4SxTG9tJ66pFnKMPDURR0G6DoCWxG7Bk2asFaCjj0mE5MwCjk92UNKi6EsKNOcm6sfSGyLoapItitWVcvxJ5/RafDGc4RpUTQl48ACDek6oetaaq2RlqIyeu7uH3n73Xek9/fIoUcaBobrYTk23TBQtxoThel7bKqGQXkcBT5FWRKPRvRtg+u5uAh2u5Zis8UxnkSyXre0VcGga6TV0dcFkg6tW/hdDkpR7Ci6nuOPXhDEBkVdYU9i2kUBTYPv+ViE5FXC5d0Fz89+QqBMjoeO5e0djW2SlQV5mdML8MIY13HI84rdLqcTiqNxTGC3pI83JIHD3eUl+0enuJMpk7phfbcm2+R0bU+WP2200ZZD/PIIbVo8Xr7G8iR5XfLm+gZ5e8315TWObXB8sIdCkJUl4TggywukPMBxHQzl4AQjpOnRVCnF8pp6u2S0d0LRuSTXb2kfbtmuU1a7nHkQ0SoPy7ARdYkhR9RFRXhoo0yJ6ZiITUXT9cg8Iw4sWgbKqmQSuNS9pqkzxrZBSocpYTBMLKWQjkN4cMwwQByNiOZz9l9+wnp5y1wLHEPjBFPcKMGk4H6xxTI8XNNkmyUY+kmIbPSAMk2apmGdbBiNRpiWjetaKM/DHEvasqHMCqqm4u7iApoesyzZc3yOfZ+j40P2Dn0MM8eZzihKg3g2pc5TBssH20MwoBjoyhrKmj7NWHUD//L2lovOZfrsFGfvlCzNefb8BVlZYToOnXR4vL0iXz/SVZr87p7TTw/xPYsoDFBoxKBpmpb92QTTNHCGnthS1G2NaQqkUNhYWIdz6qJhVdWEkylVkbHbVszOPmL8/BOSoma33jBqtvSNxvVDKmliT8YMpoc7npNcL+nSjKJu2DUFWVPQNgnX36xwHJehGejajFY3VEmKMiSj8QxH1nS64zbZsWoFymmxowlTIbBoKdMEWwpM18cRMJtMsJyATvcMXcGAR294ZHXLr1/fkxY1nmPhDh0iy3i4fsQbIB4FKATKdKiUwO57HN/j2c9+Sunc0XQGpTOi3WZ0fUcmFDLbsCzhbtXyJ7MZ+XaDG+2RNZrtLuNgHDytpDYswtDDsxV9vaOucspky8NVge/YOF5IW2s26wJrHLNtStI8YeSb9J3Gsl3GE5P35xeUjcEnn/8ZwyBJdjVpXjD3R9ijCe+++ZIOSduWPKzvuc5yAmmQRBOiKZimzfzkOfHxMwbdkVY1LS193pDdfct4tk+vB7bZkzNr+3iPDkKsriS/umBjKdJ0yeQnM8RejAhiotmch7df8bDaYMV7/Pa339GWFVrDy/kegTDpdyVOvEdoe/iGDXpADIIg8FCWoqxLFnc3RPMDilrz2/c3rLYV88NT1B/9JdXtD4S+hxwLcAT90GJISVu1CDS6qSjqnmYU4vs+TRTiHwUUU4XPMSc/tKyHAZOOtKmpkh3meJ8eC2G7HL34mKLtuVkkxGczhqZFK4WhPFw/osxzNosldVFyOo3ZPGz58mqBM3nkoy5kr07ouWGQDotVwt3/8XeE0b/QtIpXb2/AnXNbduA5hP6U03DMNIrJhhY9NPjapEjWRPMY9ycnaLNkeXFOWRVMbZPH+xv+4W/+nmiwOfn0Z/juGF21TKcTbMfFMF1+8kf/OdevzScHjQGbbYKscqqkxHAdwnCKcAbSpqFOcoRpEAcBH3JgP/CB328+iCYf+MAH6LuOsqzIRcveZIxjGwS+y8nxHoEXM3Qd8Z7PYvvAj7/5V+LsgHKz5X55y4tPP8WTEq174vEIK9IEY5ep7zDonpFsSO8uCAIfJeWTk6DKsf0pru1gKsnRKCB/WJOWFcro6IuSXoNh5ihlIqSJaSiUkWJIiWm5eI6FrnYsYhfrcE0mp8ivvmS8f0RblxiWz/HRSy5vLthtl0hlYkpBnqzxHBOtW3SvaZoaNwgJwwB7PGcwXdbrBNnXONYegzQoW833l1dcLbfMeslsNiFQkrINaVDUGrqqQfY90FHlG+qyIog95FCRlS3kGZ5jo4XFcrUm2zbMoylKKVa3t6T3lyRlSjyfM0zGTMcmY1FxdfmWxX2OUhIpbFpRYamBpu+wLZOGgbbtcE2X6XSE9AKGrqVvapAjWstkGnrYs5DIc+jLHenqnnKz4dn+lEMzQrpTDEMipEEwnpPdvsN2fdLlhjIrqLMdRZtThIqH+wse31/QJgkwIA0DoSW6b5+cQLpF2C5uvkVHEuf4hFYaJGXF3t4EpIBB03U9VhThT3ryZIt2DaTrUzcNVZFSL1NsP6ApW5q2oa4KTDq2yYrVekt8uE90MEHLHuVKdts1Rt9iWjZdV2IGDp4/Yr1esC0yDqJ9nHGBtdrSVSvUMGCYFrqq2DU5lpJI08R2HCzDRCnBzG4I8pohfSQvtqwWt5wenWBPp0yVxy5tyNMS2xmY7TtgOyjHZLndkjc7HMPl21ff8+bNG6RSTOdzlNnRU7EpNJO9kL4tmExHCGXT9CbaDOhqTWcU9NmG9O4a0w0wwgm7t/fYyqDoNMtNwjLNOZiMMR2HPFlgWA5ZmjOWJrptacocaVn0fc9m+cDpNMJWBnVVETgmTVdRdw1ZviZ0XA58RWoMpLs1RZGSV2scz8cWNqPxBMXA/mHE5IWP2y3pkkuq9SNNURDNjnCWJY2umYcBi2xNXRZIFEPXUCCxbZvHXcZslzIdP+WVGKZF6NgQmlCX5HlO5Pjo3Q6jbdlXgnkcMxqN6DsNloPpBASej21KhAJ/MqXrW+rlHflqhbRdtoNgUQt+9f1bFmXDaDTFD2NCQ0EYIBDMJhOSduDdu2u+/se/JVncYvkj6s0CxSGSAdM0qJse1Wscx8X1LNTQY1uKiSVJkoK0ymmzJaPAxZvO6CMLM6nJ0zXH85DpiymtYVO0PU2WEcqaKk/ZFh1z28UPbNKqZYdJFR3RmiVZeceuSsm6mqJrydsaaTp0VQFVAwP0DHSDZp1nBL6P5RocjQO8MKB1R1R2SNVpXCWQWATxiLpvEQJiyyK0zKfcpsDDMG06b0ylDc6vVry7XQMQ+S6hFCzeX5PvKsJJDEri2AocA+nYtEODKXtmnz7DbQTdfUZblTi2Qggbqt2T02M8IS9bbpdbpmchhi54Pg9wlca3DHRb/04k9WirHNF3TMcxTZVSJzsedzmeP6Ktc47nIzoE2vCpdw23iyX7E5th6BhNY2zbZaAhy1Li8QylGpI8YyYFtuthRgGvfv0FQkqKYsP55QVeNCHc7fDXK6b7x2hlEkxnTI/2qQYDVw9I3dAImx9uHxHSoC223D/cUuseP1my7lpEnjKOXJLdFSLcJyt2uL5PcXvP9998S2u4XN2uaaqWMi+JgoC66/EtgTv2qWmo+4ZOgesa6L7GsV2apqIoW97+8B17aUFVCb76T9/Qdx3xzz7m6Gifu+QOjI6b+0d+0ezRNlCWO7o8ZWhrtK5oqookTRkYaPoaEezRFRKO5xx0BeO+4fDlMe3a4GZVMDJ9yl2F57ko08G2HS7vVxxPHUa2i+40ff8UnFzWLY/LLfE4Rtk2mAaWhFVREQqD9UPGl6/O6ZqGrmsQusMaBrq2wY/nCCGo+xrbkCgadrpGiBIazbE15eHhlmlocfr5xwxOy2b9yOZhhR243F9d8L/9x1/y/vUDU2+KEwrOnk+Zv9jDCg0sy0QKiesGzF/8AtkuMVWF47pP7kfDoO0assU9Ldun7VpFiRUGSJ0/3fOBD3zg95YPoskHPvB7jhDgWwamrZDCoKwrxqGH6Dv2I5ehH3CEwBY1Mx9q3XN//oZsvaasGrqhQggLK/BphMCJfKKZT5ouqVWJ9AeSzfJplGQQNFmCVCGDADf4XeDiMBA5Fk3bUTbtkyNFKtq2pmkahDRoDAM/tJHKoB86Hh4XhJ7DKtliXbzCHh9SpXc8FwMHZx9xtqth0Og8wVIK/TsHg1IGfSvQ3UCZZzR6IBjPKKQi1wKKEqvPmcUO7mhCWfd0ecN6u2a9XGF6IfPpCNcymPiKSlqkpcks9vAdgyavKestg4CuaNG6QtctXbnDNCYow2AW2KSLNUVusbVttmmC8i3i0wMq1VGVCTerR8xoTDA9YPd4SVlU5GWFEgNlX2NISd13mEIg5FN4oUCwNx4RTCeoMMCZzgjDAE8OxKMYIaCVO3SnsL05bjxns+uZnD3HsUzKbIsbjqiyDHrB9n5FneTk24RtkbFON2xWC/qyxpQS17Vp6xZRdziWS13mmMEEJwyxHBMrHJFVNfM6I7QVXdHTBU+jHn3XoBHYgUuabqHIKYuatqkokiVtvkN3JXkGVVMjZcl6nbBMU6bHUwajJ09XxPtT0k0BuqZDg2PQ1j39AIYMyNYZD3eX+B/P0baL9jy06VBsMnZJDgqqtkUrSdk0jHyXbVnRasUkDHEch7Kqydb3JMs7XDHgWQ69pbBHEbWyMdKEamjI8y3ZTnNxfsky2bC6uuRhu0WIASsI2KZbpiODuusIDBPTcWCosKKIpyQXQbbdMTQlXeOzePcKWRWM90/ICSiKjqbYslo90vQay7SxhaTN15hDR6kbZsY+Vbpm4PipS59XOH5IWZUkyQ576hNYiqZJKWuDts1R5YaHm0uOjo6YOPDd1TW7bIc3mjLxA6yix7RM9mcRyWpFb7Q8PzAZlEFTZtxfvSPrHMq6Q/YtyjKZjEIuVynKcDAtk22WYfoxVd+xzEsstyRWAoGiaHokPW3VUbQDbVmTpQlmkbCvxug8p1qtcPdiZs8/pdeSoc1JdxX2ZM5um1DtVmweblCGjVI2uTfi7a+/J80yrDBAGZKy7vAY6KuKbtDoTnN9ecNX//xLHt98hedY+OMYo80YyozBfvpB2raiznpCW0JVEbkunilJs4bl8gFDVJhDQZokBGFM03cc7YfcVo849ZpqWXOfeyAMHNnjtlswFaZrs9msmUQedVnT6JBF2bHTAisI6ZcrekPRDQMdYApB27ZICfSaXoIlXZQ0SAaBIxXbIkdaBlEwEEY+m7JGNDVKQmSbNF5IW6QgBYZlIRwb6dh05pM75Hqx4V/frCjbAd+xMHVHstiwXu448G18x8ZyLaTr0loGQgxgmRRtR5KkdBq2XY+SkCdr2h4MaWDbHtvVmto0uF8sieYzqkEzC2z6LGW7WbC6u6ZJ12TWQOqY6K7Gc0yk9OjbkJkzAS9gucmI/RCamqHrqBC4XsTDcs3pYYxSA0cn+7R4YNlIw6Sua5q6oioK2q5jMF16ZXD/cE/fawQdy8Ut/YGHiAPsQTK1bZRhsE5LRgf75HnNfBYy+AG1shjoaR5zHs7PyRe3HFgaezbm+c8/YXX3QNunvHn/ipfBgK9btpstSVawKgYqbSCExHQsDNsjL0qG0KdqGwKl0AI6OdD3A3IQWKaiKresbxc0RcrVxQVFbeDFNmQ1ydV7Jh+fYJoDZfpAl29YPNygxBjZ1E/OnWH4natN8Lje0NQNvu+SVQ3LXcpdXqKlwA4iGsvFm4wwioRuADFAmqX4PsSjiLZpuby8Rx3NaJsK+o6mqOmqHttwiR0PMQyMo5AwKFmu10SbhCIrabYbkmJHUVWMXJ+RH6IGySbLGboloT/C6GEIfYSjyNsNfQryxxx7EnH8IkYMOzaLgny3YZGUuIbF23/+njQpOT45ZBqETKYxbuziTQJs32PQLW1bIiV0gBvOKJNbej1QpAW9ZXB7eUPfdMxPTzA9i2yXYHUdI+dDufSBD/y+I4YPyukH/n/I1xdX/+Pbq4v/wrEUD4t7iqbn+ekhpu5Y3l4RuAPTw0OU6WIbJl26ZZCC24cH0uWCOByx3ZYcxoI22eKN5+ztTXBEyyAAZWMoi2K9pNNQNT1ZktBVJWXVkhSartVs05yuqekxMW0byzSpW02jFbO9Pbq6Jd9tiEYhruNiGB2qr1lvMgwnwvVjLMdhtH9I/vCeaDqiawZwR3iuiakbsvtzbnc7rh5Tyl4TTyeUZUVfp8znMW4QcXA4Iys7+kER741ItxdMxzZeOMUNTlDS5Pb9a473nxHNj1iXmtu7JSPfpdfa/O56/d8kMdc2TwAAIABJREFUaR5stxmRNLCrkrEU1MphuX3g6sevud9u+JN/95ecujV5UWDPniP6hmenB5i+T50lVFWFDqY0XUfbJviiQCc3LN+/ouxMdquEzdUlaa0oRMButWG3vEeiydqebVIyDSOauuf53hETXxLKLanYp/Yn5LuEmorJ3pT1/S2+NTw5WLyIFx+fcXt5x+ToDHcy4/zdO4ZihRI1pufijY+xA58u31LVDbpquH73nvUyAa15cbTP4bMXiOUDBwdTnv/pv8M0DK7Pr/lho5FOQNUbOPMjDNnRtQWlGth1Ax/tv+DZdJ+0a6nbO5Lv/oZPf/oRnqUQKJzAo6s7jNCg6QrG7ohklVHmGtMNcRyf5PGOpm2RzoRvv3nFP335fxM92+fs5U9JHu5oigo3PmYoElY356yznqaVPFy+Yxx6UOwI4xGzo1Mme/uYlqItt8znM7abLcqwqLOEXbLDclxmsxHL+yW1lpTtgKc6RqHP+PRjjo/36R5veP3DO2prQpaldHXB0cuXmJZN3TSsFxeM9w9588M5TV8igzH70ykPyxVBELBdbSjalqHM2BuH7I9dTucun33+Oatmykd7Af3ugWWmOTx8hmdIDD96ml1fnnN3/pqvr68Jnv0h05NP8Q2DdJvgegGOo5BNSal7jElA+XjO4u6CyhhjK0lkDPSGycHxEe3qHjucMZrNabKc5vEt65sfqcWY5c2Szfkbvnp9zmNSokyLeRTQVh3u+JBZPCV0A7qi5Fk442RvjB2ETOcT8uUDwXSEDCys6T5Vk9Lk92SNwJ0dsbj8gd622CYpdhhQby4pu57o8JCiSJlGks3g4jkB/aApb8/ZpC3uaMYkUhiGRZ+smcxmtO4MrQWLV1/zcL/g+n7LalezelhwNp9hORHHJy842Z+zOX9DrjxGL/8QdXvL4TimOn1OMwmxJi6mrUg2DxiWQjQVkW7QtoXjuzim4P9h7z16pUfTNL2LfOldMHzEiWM+k5lfZlZVdlW3qoURNBhAgABBDr3TQhv9tPkN0kqQGYymW1LP1FRX+szPHR8nPCPoPbU4De171SggrxVXBBcEwft+n+e+Dx/+gUgysIZn7A8H+lpFVUIc5mimzWg8IN8/MbIVMC1O2z1teCTJBGleIzUVx/2G027P/SrCnH5FkVV0cYDSGyK9XCBHGXmWUpYpTXyiKjLSMKArMkxNINOidhULz8BWdUY9n2OcMlosMD33+RuXply8+pQySynzklYxsEyDMlhRW31u7gMeno6sgz2dLHHKUypJxuiPsS0DRRZorksiVJYfv0NOVnz2yQuM0RQhyfzmV284bffo5phP3/wapWso14/PIbVuH9/v0RURu9tv6cqEpojIwgPCHlLpPkrb0NU1pDG+Y+DpDvKHe6pNQDOeYr58iRiNYHtNfP+WddqimH2ub254Ckv2hxP76ERZVUhOj3D7hJDAH42wvRG6gElfZTw9Q7EGVF3LfNTHdV1Uw2Tke/i+i9SktGVOm54oo5hC8TmsnxBtSZFGVGqPKE5ZvLjk+v7A0/KGUxwzvBhBURLuA0SSY0sqyWFL6TrYuobXVBRtRVB3SKqCbDhkRcPE7RFmBV5/SN81GRkg6oTpb/4a2bTIojVxEFKqDrKkMD3uqHyH1NSJkFklJVlZ0Ts7I9tvMGQFf2TxMUw4Pj0ym085hCGGoRDmOV5XYSrQlSnlwzt++8mY6eIzeqNX2N4Mmpbk8T27VYB/9gmKolIdNsQP9yRpxep4oohi4oc7wrZD0W00VAJZR9ZU8qbh1Mp0po3jWpCFZKqN0x/Q0+Bhecdqt0fVJeoyo2co9HsucRAw8iyGwwnDUQ/d7BEfDvRkiZ6l4agKfdGSxDmt1UOyepg0NNGBRndIapm8hvXyngyTs8svcAYG19mG1vPokiMdNoo3w7cUzOLIfDFjfcp5OBxR2pzRwKPnWShxiFAlhGYTH9Ycnt4zGg4Jcgt/Mmf7tOT0dE0QR4wcA62WOVOuKLOa6rM53vkY2zLZ3WwIb+/RXAlFLTmtnujigIdVwCmryZqGIIiIk4S67hBCIk8z5K4hKTtMd/gcHCtrxEnAxbiP4U/RpApNyEyuXtDUFabu4Fg9NEvDpkO1TGhLPEvFn46xPA9kBSG1pIclx/V77ndH9P6Uw+N7LNNGqwqEOcDyepyOR9IoZ3b1Evn0xLRncPb7/xLDH5Od9sRZjmT6XN8uCYMEft4wGszQf3NGY8LtesV81o/m49n/bKBUTVGiqS1VW6LrCiBQlJCHm+8Jjiqfv/oVw6HHw+OWrCjJkwhTrrh8MeYpuuXrP7zn0poy78/pmz2005FqsyFLEmLNIh9MyP8xoDg57iiTiF1Zsa46sqajEyrjxRWWZXI67GiKjLIsMW2H4WSE2hYMXJOLF1dodg+5a7EslTqN0Q0FSbOIwoymCEnigDBM2Z8SdqeYuOrI8wKaEns2ZL6YUh2PuL7L5PwVmqZjmBJN2yGrOnHhUO5W+D2Hfaog1zXb4ABxSPj4Fq8pePX5l/j+lM02ZfHqE9yZi2E1//Zy/vJf/zNLiV/4hX8Sv1inv/BnyePT03/+44ef/6dTGPD0+IQQEB3OKaOQ0+aBTz+9oBUdhmHS0KJ1EEQnbm6uKY8HyqTm/v01r8cqSltz8eoV1WmOKiQ00aBZPnGYUBwD6qZjeXPP3eOWp32M7w9IyxapqcmOAUWWYjkucdEQphX7tMbxeqimidRJxFFGfzjFtlTqLGLkG0hFRq0+V9i6gxHmcIJcpRhtyvT8kv2p4uLVC1RJIttuWN//zHfv7/n+4xM1Eu6gh20K5LbGH/hcvXqJNx4hTAdtBY0UUMoTRsKgaA+Ex4hgtcRRNWpFZhlm/PD+gVHPp8wKZBSsBlo6tCTFTAvy4x6559LrUsr2hO8Jvno5483lmO3qicsv/hLbMpBoKNOIU1DTui+Jq5bdbkOan4jW37K5ecshUwgThd3dDYfNjqddwjasqMuKgaGiaSojx8Iau3i6yQujY1i36MGB+ww0v6LvNRzNlsnEpbRsXoxeEWcVI98mPu1QbJfxoqRsE5SqYTGu6bsLTEPG9sdoRg/d0JFUg+R4Yre8x2xTtqIiCyPsNmYkx/gXPrLUUJ5OdJZH3cLq4Z66anB6I7qq5Gm3RREtla0iHA/ddOgPXdL0SLx5z+P9NV5PZjaaIBQF17ehqiHZ09YBmZTgOT0cQ6CqHVK7p/MT9MEExztD9ULMwQJzcoEQGmXviv7ZlzQY3H/774kPO6wq5Wzikx7XKHafXNI4lTVyUkJc0VQxVlewvv2Gp92RSjZokueTTtcfYemPnI5H8kamzEJcQ0VRdV7+Wmb5dOJiPsLu+aw+fuSTVy94OlS0VYrw+nzxq7/k/mOPl5+8Zn72kvS4JWk6RuMZVfwfKMMdQ88n/vAjWXTicOrQYw83d3loG1LrkvIp52wsCHYHDNExfP0GuW0RcYqr+qw6i6zN6YqMgeUg6zqu5WA6HhItlq5jVRWizWGUEh0eKYXMaDjiajxAESpnl6+R2xZZ6qjrklAs+Xi9R3JnqNqA/OMtd6slT2HKU5jjiIKqaNHtGZY+xXavqIM98W1AoScc10fciUd7ClhX8Go85/z8DNvXodFx/JcUWYLW82m/nNDIGsfdEtXU2N53CFXi1HmgLYj2S1Stx3ZX0kk6WeGxevcnno7XDIYWztkI39TYxRvMgUJb1eSdTCJr5O6YPFsj9V1OcoXUpvR9m4NnUU7HLDcnqmBJubpGt95gqgLFUlCljipNaaqOLE3R1Y6ka/E8A9OyUYo9s77KZ/MFpj8n3Hfc/vwjjjtByVPOpya7ww2iaVheb0EoNJ3AG1ziDD2UKOTmww8cwpi7Vcgh0TnTbNImodA8LiYLHvd7lKphv3l6FlPbR6q6QtEN+n2fsiuo8hhLtBxtC+PyEx6KGNlSCPSOTO4ItxvoWtTTkeuffsIazvBGYx4eHtncf2Q0O2eT1MQCGtNmdzxQVCVpnlBERyzHgTTCtgx022Z+cUHb9IiyA9XyLZ+8+QJbE2RyTRk+4du/w1YtVkWfNKnI0hKFGEMqKfd7suhIU8RQ18TBCrQE19QQisDQNHq2ix0kyI8Bx7jlLk/5dAGj6sRp/Q6lbbA0i5uP73h7fcehUUnrjjxPkNqCcdOQyg2W06M/HiEJlaFnYPd7uLMxum7S8z0+/fwNjtdj2HOwNdCkFllqoYqhjEnSmFOY0J+/pjPHbFcrotOJdH8kV3RKuWV0fkl2/RGrP8cxBPakJrxf0uYtlrDYxjGNO2D5+Eh32LGLTgSdjCQEgo6/fnWJYtk4xpSxp6I3J/qeysxtuXzhUK7uWbsOoRiThyXVw0ckraQKEwpvQmafU7sKQS3jzq4gjzk0MusspLR91KygEYLb7Q5JtEiUtIpKEZf0ZQsZh8H4c85e/gpVFXTJljhU8LxX6JZHnSd0SctkPqQKj4yLE2mnc3QUUt2lq0oet2vqvGGfFeyqhl14Iq4aVMdDl+Hs5WuMNiQoQx6XWzrLo5EsDkXCJgkZ5AVjzyXTbJ7SiiiC9P4Wo21peiaOaFA1C1WReeHr6I6GMupTIihjg+B4IskzZEXnEAY87u44Ji2XV6+xXnpEaonhAlSMJrCwc3RJwZn1cK8uiR+2lGGAhIpW1aDZlGg49hBHcYm2O8ZXX1HvMnbrPfEuQEJhtzxxqI/ocYdxPuTTr36DmDpIakfP1hmeWVw/rKjjGtvrEQdLvv7jt9xtI/alYHeKScuGFlBVBSSBJDR0XUVRDaRWcIwKDFtDMvocsoa535BlEf58QBLuccYzZMOgVFrSbE/X89BtHU930W0Zq+/guBayPca0bLi8wFv6xH/6e9zZiOP+ju32EVW1MFuDIIyJDgfKNKIMD9S7O9TPXnLxyRO220M1PKrOw/YmVHONptexXus4tcnQmrCSYvzJHNfz3N3q6X/MyxOqLCjCPXVXI+kKkqbjaDFf/+lrtkuFcf8MQ1eQuoQmvkPvam7v13z7w5Hw+IELI2c8/FesryPM4RnbP/xHkuUjbZ6TLF6zLb5n8+EndqcjcRxxF8fcdoJN2VA2LfZwxq//6q9Zvv+RPDog0eGYGgNXZzIeMu7bDEYD9k8/0QmZoWei6xYDxyXOEuK0JMsKsrx4Xs+MM4LgyMP6wCFKieKM2jJx53Nm8wFOl5AmCfZkgWNPmU4dJEnQGR6Py4Y8OqLIgjw8kjUKZbhHjgOK8IBfHJC7nNe/+it2Qc7xh4pfG5+SpF11Oedf//MqiV/4hX8av1QO/8KfJT+8f/c3H+9vf5vECZ7vM/BMlCrl4eY9Q99mOJ0zGI6QVA1dFdRZStfWeKZJW3as7leoXYNGjaUrjCdDdF1HagoGgz5dC1QVcitx/f6On94/klcSw8GIFy8vULuOse9gaQq9nkfZyORRyvvlHgkZQ1GQGihqGcufYngD2g6auuVwTNGagou+xtNqz3K1p2vBG8w4HgLaIsPvuTQVCCRMU8NUdeoyJ5NkOmERZTlRHKEpMjQ1p9OBThGoss7kbEqtqQihYuguQtGRJZgPBhRpgtRK5GVGdIyIo5A8L2jrgqpqOO1CNGTq/ZEuyyjrkrZOMA0JbA+n1+dyMaFtajTNwDBNpK6hyHJQNGqhkiYx+WlFsf6WYHVDgUFvtCDdPrC8ueX9w4msFcynU0zRMu579AYjnP4Qy7aY9nv0wz2720cKVDalgSRr5HmArWXkVYdclWw2AZYis1wf0OjIawnbMTiVAiSFYL2kjffoVChyjSJ3GKaFrukgyShdx367w7EduqZBritMRTCazPGnV6i6RVFktE3JNqypERi6Ql0XyKZFS0dd1ahNw8V0gaoq2BOfw2mLQsjA9zg7X9AiU5UVYXrCMCXKOEHqBKpqYugmuqZQtzGVAVcvfo2haiDXfPL5b3j92e8Zjl5QdTr3Hz5y9/Xfcbx/S5Wc0BRwDZms0dCdPlpX8vrFBfPxkPHAI9ku2exPrJ+eCOKcrhMgFIqqpqwayvSE59oYlsWo52IbGouLV9R1w9sfv0UzLL784jMGasvQUrk6G+HqEvOZiz9a0LN72J6LXKZsrt9R5RG616dpGz78/BOO22N/DHDNZ7Guyx2OrqMbFv2BzUjNeLz9mlQ+4k8cHFNnfn5FdAjYPC0JoiXGxEB1p/T65yhCQlUEim6iyBJN01KXJdFmRVvV2LbLJopYnF3hWBae46IgUGSZuig4HjbslzdkSYqmOsSrJXc/fMPhmLBLGwzNwLdsXHeMZw+ZuA7jVsKPcm7W15wON0wsmL2+5Kj3uPyrv2Z0tcD2bDRdQ2g6hushUyPXJaJKSDYP///z1mVJVxzZPS0pSnAcnSIK6VQb1+0jOgnSI2mZ8/Hmnmq/QWQptWyQJwmOJtE0DWWrISsGdVUgNTWG/vw+V3XDdNTHtw0MRSMIYrqmxRsMEZaOpBtkSKTBhjg5UmYZjq7TSjK0JbYJAyNFro4I3eFhGSCVGZunRx43J5z+mC6JuX/7lrqTOB6OFHWLYo8YDBZkccjNzz8QbE+Qw6m0iNOGLK/p94bYjsVoNiHNSzxDgSLFNlS84ZSybEFo6LZHeNhSpjmqotI1NV0a4cgNk+GAyWTBZL7ANnUuFgt0TSB1Hb7fw3J6fP/3f0ecZhi2x8PHDzRtiyxUhCRRZhlVmdFWJU1d01Q5bVVC29JUFYZu0cQR8eMt4fZAXebEYYQznGHYDsPBELsDq+tIsudMkdNmSRPvaeuUtixouw5JqDQIbE0hj0N6vQG6JOg1OtPR57yPBYOrPq9f9SiOSwyl5SFs2BxCDusl67QG1aCqSgxdoa0raJ+FEkKjKGts22N8doXj+3j+gP5ozMuXLxiNRjiajCHXtFmApGjIQqUI7smCJflxy361JS0hrWWKRmb5sKSqwXKeQzIdVUFTTKq6Zj728RwbxzJR2prD6oHdMaJrO5qmJUxzppqOLSSiosAzDS48l+FggDUYkIYBWluiWzaqKqE3KcJ0cS8+wfAHPGw2HPKUyVkfoUqEss39MUWWBZ2q4dkmjq5R1zVlVVOmGY6hkeYFbVOjSIKeomLLguoQYrYNk/lL5i+/QDdNbFPB7FLKokF1J4iuQ0QnDFmiywuaYEt1PFJ14jnbxbap85wgLjikJcusYhVGpFWF0HRsXWM66HF2vsDROsIw5FiBN1vQICHZNq2iEAUHiroiryok06JSVKLDkX7PIS1qjLqiZwg000WXwbAMNO25VpgOqrKlEypxUVMUFWEcU8qgaILRdECnNYhOYJsmXZPQ5Hum52ekqs332z1pnqPUOUqnYpkWkqJhGBZd1yKkjjyL6Ts68WHF7u6aIglYL594uLln/f6RX4sp/8W//K85/+oLVE/n55+/R+pKHFKk/IityZxOIeHhwGF/4JBW7E4pZfPc5jZ3TeaeTVA06LaP5Q3RTA/Rm6L1pjQIQNCiYPQGRMc9RZIiSy2PH2/QNYP9bo+qqFiuz/GY4vdcBv0+XV1imTpCEajqs9Gv6zqWUpI1Lff7hJ+++wZRx6SnPVLXouo6i8UZTbRDqgpM3aA/8EGSUU0X25+BJCHJgq6VaGQYfTInawuEqRMXMXGe0URbVqt70iZhe9oThxF505BVObPJAk2Z8sNPGw6HCqtNeX3usTjr01YxChmetePzFza/+eL3yCcLUxvjIEOwp00TqjJ9rgh/uOF2+cgyTghUnac4pVYNoqrG6vXoDzyUIsSSCrqmem4w6g9ZPq4JjwFGlbN7fOL0tOTDj+8ojjH3H25wpI75ZEJyCnn/4zse7u5Z392RxRG6aZIUDabbwz87w+l7zF9eIcd7TNtgdHGG44/JWwFSw+3NPWnd8uHbd+w2B6qmoksiwt0aTdeQ8wRNltAUmUHf5+L1Z5i9MXVV0Z/2EXL7x9l0/r/88yqJX/iFfxq/mCa/8GfJh6fHvymq4rdlkXPYB7w8H7J+vCU+HZlOBgwnU4b9Maah4xgapqYjdwpxlBLutpRFiWgb2vTEqG/hug5t2+L3bCzbpioKUDxuPjySpCnj6ZjFfELf0elZJopQOWwO7PcRZdGS1x15kiC3HedDH02obKKUFo0aGde2yKuO0+GA2nbIqonelPzmRR9Z7kirDsu2uXj9GU1ZEKzXZPEJyoqmLFFlgakr7JMSTB/b77HfBzw9rlAEeJ6FqivoiuB02iNpEvPpDBrxjzkXZ8h183zPpqVqQDMHPK139McjwmDPYb/n+u0HylNMF5xINkvyOgelYTKfo7l9Hld7XlyMcRyPOEkxbAfqnCxLUC2PrKo4HtYU2Ym2zpGRcF2HePPEzz/8TF52GIrE2NXp2TqTswuc6Tnh6UR2DGjDE7vdjvQYcpMU/JQUBB00ikorNNaZoFAH7FZbVGTyvMJWNdK0xHYsVF1D0SyGwwFNUUJdkeYlpq6hG8+hh7pp4Toup+2Oj++uyQ9HiqLEMUyifYCQJCzXQbN9LM8nCE6cdhseVxuKsqLUTDZhTJ7HaJaJLct8dvWaum5RddjcvyeNd7huj8GgjyRgtbwjyQ70ewOaogVAVTrapiWPYzRdYXJ2xdC/QldUpKqgLQX7yCRtHIo4pFhdk61u2d7fsVzuEbJG2zVcXFzgmjrTyYDp2TnOeM7t9Q2r+wcKSSfKSmzneY0rTlMOhwN5lqJIoDY5i57Bm8sZv/vdXzAaTjmdQgQtTV0ynM15fTFDoWNxdsHrL37P0J1TrXaQwenxFn82wXR6DAZD0AxcRSberpFNCyHJJHHIyHeY9GxMFXqWwLMcTKnk+HDDv/uHFa1Uw+mRgd0RHo7IhofrD/jm7Q1ZA870JZ0ko2saaRI/VzYLiXi7xhEdtuehmh5lUyEEDHo+MmCZDl1dE50CknjHbvmWYLOlbGX2QcB+teXD44FtXPJmsQBJo3/2BrfrmGg23TGgOG2J0y3//esR/csRzie/ZvSr3zG5nJBXKblQcSdTkASarj4XLHQF2eoOpTyS3b1je39Df2hRhHuk/MDt9Q2aM8K0TKqyggrkDqQyIytyFMfl+uaGKImQ5Ra6EqnKaTsZRbPJG4k6i6GpMXSNJCtRhcT5yMVQJfTBnF2QUGY1A11Ft2xQBbUkyIsQRRPIQrDZ76jLhImvc/ViQbJ74O7b72hrQdGavPvpPWkUIqFQFzXBYYdsOKR5iWuptFnLyze/x7UsjsGJKkkYuwM0a8w2rGg6CWE4+LMLepaFrAr8gYtaJORZwcPThjAtebx9T9e1xMc9lBld23A8xfTU5zFwIVTc3oh+z2U4GDMczdAMG63rGE+m+P0Bx7sP6KpCfzjFVODrr7/Fc2ySvMR2e8RJSJEXlFlOEmxpyuI5k1hV6WRBFARUVY1cV9DWyHQIp8+b3/4ntE2Na9vo4ZH87p7bU0QstSiipUsOlHlGncSYhk7VqhiqQte1KKqKJDQmsyvs4RmnWqc9u8R6/QKdiOq4QbFsPt48EecVQdEQ5hV5XeP5PjQ1QgLLG3DKG45BgGVZoDvYlslnf/FbXM/B8ke4/oDjYUOwXqOqArWJoco41hZ1FlFt3nPzYcleHlGoPcqi4sOHO47HhMuLM1RVpcxLiqLEtm0cU9C3NFRaVKlDlQQvRj5SsOVwTBhYFgYQpjl6U2PK8PlkhGeaeLoKosXoSqBFs58DiPX6hDVbYAxmGKaOKiTuntaEy2smQ4sDFodWxe/3adsGQwgUSUGRoShKijJDCIlT8ry25BkqIw3K8MhpE+E7A371F1/heT0GPQtbF7TxDhqQ6oY2CjHahq6ooMrJnm6phYnujnC8HmUSc/20Yx1V7BsVxfSQFQXDMDEUBV8XnJ3NGY5GiK4kTjNqd8Rkcc79+3cIzUTv9Sjb55USdzwiVyy2qyekqmE6nnIITliKjFTEeEqHqsjololsuciqSZqkyMqz8RZXGmVbUhQZaVVimBKGoWPYJhItaV5QqzqaoxNsrqEMWC43yFWJoEPXPCzDoqpLQBDHEQYlXRkTPN2SRQGqqtF0HXcfb7m7XaJUMv/Dv/hvsCIPb+ExenPO4mLBqO+gtTkUEdFuzX57JIoy9mHKh2VAVjXYiuCqZzH1PQphkrcKvuehGhZa/4yqU9Edj2j3RJbGCFWjzlOkrsN1HAxVwzINPEtn6FqYmkYe7PB0mWHPoSoKXM9Bqkt0auievw2GYWKaNl1TIAvBH77+jp/fP/L+/ZqmqdkuV1yMHcIgwnctdE2DpnqeCB5eYXl9FLmjq0ukTkLrFJT7mK//z/+IfeURFRmmDD/+8O/5/t1bDvGBOI2RZUFVV6R5wWJ4zidXn9MBP/yHf8dFL+KzTw0eH7foosU2JPK0pUhdBs4ZTVBjSTrN04o2OpGGJ05txz4IeNqseRcEZEJQyYKirlEME9v1OBv6+AoYXc7N5kDaqci6S9O0WKLj0pMZGTK6qrN48xvyKKEJT3x2uWBxNsEwBLppkUsmuT1jc/0R2+1x++4DWRRTFCVaWzGazRg6Got5H1urOb8YI2yV8as533z9PWkSkO0f2N0/UuQ5abAlDUOqLMXQDUSZIZqKyXTCwLNxei73ux22rVA0B/bB/o9fvPn1L6bJL/xZ8Ytp8gt/lvzxh5/+5t3d3W9P4YnpwEFpUtbLR6Q6p+/bTKcLhGbjGhZNVpJHKcu7Rx7vH5G7DuqG/XrF0FUYjEY0ZY3j9hn0h3RVhzm4ItnHGHLLaNDH640xbQ9dgqruSPOOY5ihaQZuf4RBjlxV9KSO2+2Rn7dH0rzCM0yKtMBTBIvZDN+2sVyX6XiCrNjktczrTxacv7jAsw00ITFfXOD2fHqjMW5/iKnq2L0eTZ1TNwU4Az7c3D0LgTAiz0qSJCSJTtR5QttktGVElkTIrYqQVZIwQhbgmM/XeZoiGw6GbbHZrCnSlO3TIz9+/TWR3Uk4AAAgAElEQVSPD4/sV/cExx2zy3N8T6XVNL7+9hseP/zAq/mY80+/wLYt1C6ny/cgSxSKxeF4RKNAdC1VEUOZcNoHHILTc8Ws7aKrAsc2cEczbM8jCzboZUydpDweY8qiIisr9k2Hopn0R2Ocvo9qO3iDKYosUJDoexb90RjV7NPv+UhNhWWbSIrA6o+RmxTbNlB1A2HabO6uKfIcXVfRVY3BaEBXVRw2O6qiZbsPiY8hni4wTAvNsEjzjM1mRyupoNrUnUxX5axW9/jDMZUk6Osylqqgmx6abZEmR9Jo9Zy1InW0TUmZxygW6KqDIRsoRUVaRLRdQ57lDPsjHPscGqiSE49vv+f24yPecEHXSBTrn9m9+47vvvuJzS5iF5XopsNk8YKXZxNeXi6YT8doTUm+fUItYsqiJCk6aiSOUcxmvaaoGvLkhNQ2qNQYMkRFQ1NVWJrgyy8+5eLVKyS5Q6pyVEkwGU24Or/E9ec4vRn+ZMFwMMNXNOyqIVzeUeUVIJCrBEc02IZB1bTUkng+xTcULKnF0hUcy8S1TTQabENhennJ+dkX3H3/nibdYk1fcXb5GUIzyUVLrTvUxoDpZILUtNiOS9h0tOEWQwCqjeP18fpDNNNitVlTN+BbLukx5bQ/Eh43/PDN33J//ZFGWDiez/H+lpvrW/K6w1IEvu0wmb/AGUyIHx/oWxZFVfKrL37FzHHRLq/of/kXSIvPCJsW35NZvv0O3VLp+y6KaZJlKfHunixYkezWqKKj2T2y+uZP7B/3uP0epusgpJoyz8iLGlWAjIZSq2idQtGkWPMF4XHNw8OBJDyhdBm25yJklawsaOuKIs+eT/I0HdNyMQWYcs10PERxfITdpzB7aG2LRoOqm1QIDvEeSShkZc5uv8Xocs7Pxkiq4P27O77+7paqLsiyE4dDSF7kjEYD0jjG0lRm5wvatqNqBNPZa14tLimTkjavcSUNqVV5XB2pkEDIpGlGnqbYjo2iyTRNy4eHJTdvfyA4BuRZTlPlCEmiyhO6psSQZcqmIa9bqrJCEhr+ZIFSFvQHQwbTM/rDCd5gjGFaiLZCk8A2bVzHZnV3Q1XXmKZNECUYholOS5rlVB3kaUwRnmgkiZe//89whyM2738ij1M0UyeLAso8ZTjo0ZsuEJJEEp2Inx7ZxzWhqfCYBihmi5lENFmKJkPTgKTqaIpCVtRIkoKqWxjekKIxWG4LNlmJ8HqI4oBWBGiaxu2HjwjdJA8DHKnkYjGn7GRkRaFsGnZhQpKkKKpClSZML18hySqz8QhvMEa3bHRDoyxKdKdPK+moEmhOnyIrKMqWfH9DUVX8m//3I4ewYn9MsA2Tge+RxglpsCdYrZjNLzBVgSmV6G2JVNXcrWNsRWbq63z5Yo6SZSRxjkfHuabitR1v+j6LxRlFVWKaGo0syPMMSRHIwkQ1bSy5Qe/1GC7OqZKIh+v3HLYbTsGOoW+SGT77UqIuc1RVxzItVFWlrkos0wTV5JSl1EKg2TafDDT0/MTHH28popa/+qu/xHNNJgMPyowiTZElQZkV1EmGreoYukadpqSHPVUtYY8vkIRKEkU8biJC2UHqTdAsl06SqOuaOA5RpYrF0MEbjjBUmbpIkCwPqz+lPKUobY0iFAbjOe5wSquaHNYhRZQQbdZMFleM/T7BMUBpGhRVxZPqfxT7DWpXYXo+qj14njRR+ujukLJMaKqGfVjh9Z8NkMFsRqfIdELgjCb0ei53H+/43//2a8zRjJeXC4rgwMDq01YtiqrTNhVSmRKsPqJ3MaZpgSzI4pAojnhY7QjDmM8+fcNX//Jf0ftijrZQMfsKokuJD2tEVxKu7oj2e57WAa1q86e3dyz3Eb6pc2ZrXAxcVN0iFzaG20cTMs70Na3u47gepu0QBVvy6ICQJcospkwThr7P8RhyXK+oDlsuZhMmroF0XKMkR777wx/o8gRLNCiAZvnopo2iqMiyjGm5qIrAaBPkKiU+BthKQ3xKcOWa0/6AqmqkRUWn6ehdhWnbFK3AsNznSZy25bR+REWm/vkRpWjI+yqnIiFMU47ZjlJWGIx7mLKChEAoCppi4QiPy8UV85HDq5mEra5I9j/yf/3t96weIqpSJ6vHmOYUq86gNlFaCynck592LJOMpyRnfTrxPs5YJhmWInMsShxdY+a7uLpgFwTIVFzMBhS6j6UbnC/O8B2T8WiMWkR4hsLZyEdG8PpsxMBUkVUTzTsnOwUMzI6mkhBlgik1uKbF6v4B17HRhCApcrq6RJVV+p7H/OIM19M4v/qUUd9j5JScnQ/5w//6HbunPVl0QqPBUAVtBxT5c2NXXeM4Dn6/x/jsghdffEUSrvh4+ycQ6h9/99V/+otp8gt/VvximvzCnyXvP77/m90p+G2RZVzN+uRxwN3tDT1TZ9SzMVUVuW2o4wPB6ol3P73n7vGJRoKhZ5FHMWUe49s6Q9+lqlpm558gqhLLc0kOe7LDHqkuiA4xx82Rqqho6wZheiiKjmmbmLrA0gRynlHtd7RBSBAlHKuORa/Pq7NzLMNhMhzguC7j2RlCtVCFxOXVS0aDAduHR5K8wHMdRp6GSgdd+ZzzMJxCB6KtaMqMIs8oZBV1MKWIQ7LTCcM02e2OKHIDUklRlxR1S3hICYOY1f0TWStQDRXHtSjygt3TFkWYGI7D9cdbNusNu+UNy48/sbx/zz54wnRtzhdnKNTo/oQqDvnybMDZ4oLB2TmW26OqMrL0SC2rVGVJlQZ0TUMrVIpgSbi5J4lzLHdCVVbkpz2ubeE5Dj3b4LheI1U5cZSyOiYgK8RFTVQ+/4AamoJEQ922tHVNGMfEpyNN3aEpCrph4fVchKHjjGZ0dYVjG0iywKCCIsYf9NBVGdGVUMa0RcrxGDGZzPBsG8vQcFVBtt/TJM/rP4aQ+dN3P7JebShaQWEOkN0ZyWGLKToCWaXUbVRVYaI3pFmC5w9xxxPutjcM7I62KsjiI71BD1luMVQNqZXQqg4RJuSiBr3BH3n0R3Nse0CeHnn7p7/j+6+/Z/rq18gIgvf/N5vv/pb/49/8kQ93O2x/hOEOmM+mfPHmNQPHpM1jlj9+h5SnzMYjNKFxtw0J0oqn7Y4oPNFVBSNbp2trLEXC1QXbpGTQH6EZJrvlI/v1is++/Jyz2YSx56A0Lbqm0/N6GJaHpjuY/QFdBYZuIcuC4uGeqlShqVCaAiEkbMsB+bli9ng8kmXVcytPWZBUHULRGFkqfcflky//BX1/zqfnLrrdRzP71GlCkUeswz29s5cI1Qck6BpOWc5xfYuvtpQNnM3OsAwDw7JBlmi7htXN96zvrtkf1rR1zE8//APv3v4EnYRiePRUme3NR6IoYdbvo+oWcidj9PpcLOZUSYSUJ3imjj+fMP3qdxhXnzL58ks0T8NRMuYTh/OXC4YjH0VXeXj3I/c/f0NTpuiWiaEKdCERXq/okoQfv35LmZUIzSU4xBwPR0zRPhuNekPdQByE6JZAllVOxyNxkCKVFXGSoxkWRV7StjW6ZlC0AhSdxvSoyxq9rZkMemj+lF2Qomo6SltTZTGWpoCs0GkmmVJCW0DX0XNdFKnBcB00teW0f2AxtdD9AZtEMOxpdE2JZnvIQiatK05JgWoP6VqFF+MhSt1SpyWaOUQ5Jny4fSBdbVF0k33+3H5lOTZVEvK0WvG02aKkR5o8pW5BkWUMIZEmIVmWUdUNjmniuy5KW/P5xRTbH/PqzZckmxWmgGOY4fkDTMtE15/zWGzLRheC/LClzJ/bpWzv2UCwLZvt6hFNVRFCoaxq2uZ52rDKMnaPD6SbJ6R/XF8wTYNjWjDo2yA1HI8xouvQ/AH3cUYtSwRFitaVWGlImReIukBSVFpZQxIqim5SSDZ1p+L2L/hwnbF5OnB7945Jr8ZP7vBNGV0zoKwQZcTl2EJTBc5ght4fk4cBtw8P1JJKa9ikYYBQVBzb5tMvf4WQQZM7uu55XS3YH5CaClNVEKpOGidIbQcdxIXM7uGRH366IyxlDkHE3c0NNx+uSTYriPaMXA/SE9XhDrVIoIGHQ4FlubwY2thyyXA+ZbZY4Hg+t9fXALyYTDl/cYXi2ugC6BrytiNrGhRVQe5aNF2j0yzS1T0//P3f8s0f/sh6tUXVdPKixHD6RJpNjE5ZlxiWRdHKeIaKb8hEScThpPObL/+Cv/7tb/h0MWWod7z/5ifWyx0vZmdoeodZbRlMFuyXa/qjGV2RURcNquoilD51cCKLY2TVpDe64LgNebjZ0OgjCs2glmWqpsEwLMqm4Wl5g0bFwNXwBy6G08M0FJyeh2IO6ffGKFWFpnagqsRRxGA6QkOlp+vPTpptc/HZC4IkZvv4CGmCZdlkhwDPVDEcD+qSrkgx+wO8+QXOcIZQOlRV5vZmieKMqOsUmZrxfEShmlRlim0o9E0Lpzdh9uIlWVfweuQgmoYaB4RAkSS2mxW75TVGm6DIHeP5gixPefrwE0GcsAsiXL/Hf/vf/VcMz+b4L6eoVku0eU922pBEJxQqjvdvCYOA8BiRdyrf/nxNWTec92x6lsEnb74kSgtUd4zkzSkakB2f4WROkmacVvfEwZqmSNB1HV1qCI9berrG68WMJtxjNAV/+buvOJ9Pubw4Z2TKvBpbzIYewXbP4+0tmu5AGT9PVRkuQtGe18iEjCE3KOURucrwNZlZ32UX5Px0s2ExMFFNC8NxUVWFpJbYHUIMw8KyHT78+C3r+7fcBze05y4nIeGczRCqTJJuUWUNqZHRVIOibFAkiUX/AseZcPfhmjo6MPYkvvmH7/nf/u07Hg4288UbGhyeVie605qhXWH3XJL1z9x//x94f/PAnT7m/3n7gTyL+BCmHBsJ11DRVI3OcikVnbTt8GyVV5cTZrMRF1cvUFSNrqoYjqbYvRHIOo+PT8hNhSNa+o7GYDRiPhszHo8xKHAdnaFro1cJpmEQbVYMXItx3+fdcoNhuTj9PqKpEFWJbnrMFp/w/7H3Hk2aXQea3nOu9+bz6bOyLEAQAIkmxVH3aDWhNf/nLLRUSKFWSOzWdLNJgiBBolAuK33m5831XoucX6CNAhH1/IS7OHHue14z7E/o2S4HwyNUuU+VB3z/3TviOKHIU8o8Jc8yZEmCLCH0XUDg+j66JvP0yUukTuXq8h2HL0++fXX21SfR5BM/KT4VwX7iJ4lpGsiShGXqbLY7ijRFkUDUKWUSs7k9Z335nvuHOVEiAyFHZ08ZjkxkthRliq5rOJaE1GWEwx5duUFzXNJNxGa1o5UFXdWg6gJFqOxmN6RZyWZbYtsWddUSeB5VmZHOF/iSxN5kiCNtkDcldVVSbBb0Rgc4kxMCS0eXJQaHx6zWS7ZRxsl+n8OzLyijB6YXN2xvGyzHYnJ8ShltyGSBLBs0RUEep/S8gOUyYeSFNF4Ik302uxjDCtjsdphWhR0amM6E8fCINgdvf8zk6ed4A4usipFUjThNiW5uGCoKo9GA3WpOsVmhNAU9x6Dt4OkXX9J3Vbr2caVl7Pp8/cvPGRw9IZ7OaXdTVrMrtrslw5e/IC1TynT3OB8qQbxesVku0fwJsmKgSXAwcIjmK4RqsU0qVNGhSYJC7ujbGpmwSMsdjdxRCUHcNASmRlSWxFmKp2vMV+vHF/edR7SOOD5tMEIf3WnR7BAhS6hti+74yNWWNl3hD/pY/ZBkt0aWoGtKyiwliSNGfR9bFpBnLFWF2S4lK2t2WcHN8hpvUCEbKU5vn4FjcxdFNLKJ2TRoq3uM3illKbi/XaKHAdF6zXAs08kSm+WaIgtRVIU8XtPpNUgWTqAT7+ZkpEwOdCRdBZrHeEJR8c0vf4k9GlBkKbt4xl9/fMB0PAY96E0OmBydYUkVlmiZXpzjyBKnoyGD/WOEZrGMrtmkNdP7O9q6oef5pJs5vi5xtPecxfSeIo95tT/glz97xmKxYNjrEQQ2F3/6N4zxIaZoqIsc3QlodY+mKujSiGZr0+xKurKmXOwwRZ99R+fy9j2lUdLkFZrt4loOVdUQ2AZX0ZYoLxiZKqbcIe0WrJQ+OCYHhoGqGjTqiJ45xNo/ZH57wcWHD/zx7z8wLjROPt9D05RH10JV4BNzc7Pj5MlnqKqOruoISQEEmusx3W5hu+T6+pbtYkWSZXRVzpNxj1F/QLpZcH63ZDA5pEpiRNlw8PQFcgeqLvHN//xfaDZbNDp6+wdYYYipCXQ1QhcVkl2jkmBYIY2AdDPFU0rsvTFOz0cqtizvt1z+/S3Zx3O0IkHEDU0ic3W+5ODlMcVyQZ2WLN+ccyNfcPLyOabhkpaCQFf54ukRIopZTWcEPQOty3j94y3Pnp+iaSplUZMmGbqiYLQtYb+P5Az4/mqNAnieoOkk9CYlXsS4ikmpF3RKR5JGCN1AUwRlFCEkGZqSg6FOtCyxJwfYfk68WvDxPMXqqxRtjaM5BEGfMmkoqg65U9htNjSdRpZvWRcRy+2cXVsSJVtUAY4hs5leIbpHl1ATx9xuFsi0hLaLpqqslzlS16FK0HYQlx3eIGTkuwSOx5Onp/Q9jydf/wJDaVmuU+Ikp4p2OL0ebRbTFhmirjE1A9/x8IIJkbBwJyrT6/fIssz9dPY4+e055EpLUxXsrj9StR2GqWFbJpos8IZ9AteiEA11EdOWDYkhsf/kKX6rs7u/IyhaLFlB62rq9rEXKukMurbDMxSyWuZhvubZ2VOWicl9pnDoRbiiJjr/G86ZTZoryJJBYPdRspT1Lubo5BlSfx/pfsbv764oioKqguH4kHW6RaXD1FUWd7dooyGZApOjUxbzB9Z3N6zTNfHeAa1uMVRz1DpFcoZogxPkUco3Pxd8+3EJks7Hiw8YikyjCgrDoNptKZMISVJweiNWSYU9PuSoLVEsB9s10HWdYO+Qg599xf4wYP36ByzdQagam+2aWpERQpClFcsoRtUNLLMljRPQbe6XGedvXxP2AxKhIeIaW5Oo2446L9ANDVmzmc8X7B2f4YqaeH5Pspxj6j/ny5MzZBKatmJZSUS7CE0SjAcGvl7gOw6GqVEPJsi6ipamqLpGV9Q0+ZaqSCmLirubOemy4WGV8+zLX9DKDeV2TqfKSEJjtlwTz28Z2QatUDEcBTfsYdkWugK2rqOgMtrr8dBuCcMeORKtroFt0/kBs7sZigZ7roUU7Zje3bJeztEsi0KzeFitGT7MMGQJZTik6mSqdIdsOAjRokkNtAaHT75iW65YLzM6uaaN5qAcoJkayWbJh82avfERnx2fUPxtzvz8AyUaaSlj2z3cUQ/HNJFMlTJaIGoQPMa9Pl5PkVUDIWA46DM6nDAYW7Riy/Xrv6GrUHVg2h5NVSKQH6OdUvdYXi8LjkOLoa0RhH226xWiqvAPJzjuHsuHa9wqJZ7eEi+mRLslVbpBbuvHvprdjhPP4Kzv8uVXX5MfTshml+iiwVQl+oenVEqNpgxQbJdxVpAVBf39Ptl2RjtNSbI1be8AybLx/T32nrzi9OYNdltTZA2zZczFfMbNImavv+FX/YD1bI6jm8TrD2j2kuXNJabn89e//pXzt69JkpKzVz9HOzij1zxGmoZ7e2y3GWXRIHUVZgeOEeBaAddXlyynM379ao9Mquj1n7D/bICs9fnx3Tl1liK6FjHQaQ+e8eO//d/8+O0brh52KHbIcnfBLIrYNgUloBkGqaqjGAayZlAj8fT4ANeS8AMXbzjGNg3y7Y5E77ErarbXHxiPhpi9fR62UwKrZj5bo6g2tlmh1Ft0x0A2fLqyYDTqg7xBe3bKfJdycT+nagVp07G7vObZ0R5y21Jttqxv7wncEMvuI6kex5MeX/9KYRdr/P7f/5Vo8ZqurrD8EWWWI5kypq4hqzL9vQlZmvC//Nf/iiwr2KGHoTv/v/5DfOIT/1/45DT5xE+SD1eXv728+fD1zc0lSbTGllukuqBNU7SuZXU74+b8mtUsxzRP+eyr/8zTs2M8R6IudtzdTnFpcdTHy4DrD9FVDdfrocg+iu6w2cQs7q94/+Gcj+cXbGdzmjTFNA0MWUXqWvJoQxsnWF3L3uEJphVidaCUJT9ECaPAx/Q8DLePG/QhXtP3bfrDIZtdhGUYOJaJ74ecDEOkNuXu5pb51SW6XJFtF+yWD7QSdLIGioquNGzXO/IkQzdtdmmCZzlIkoJq6qw3O6xwiO2FjA6fsP/8OT3PQ+2gqnJ2qw2XN1MkoTIY9YiimLvLKzarFbauI0kSvf6AX3z9FaEheP70DF/VCSSVfn9ElRa0eUpyd8cP//J/oh+eoY/2SVcPZNGK2XSKbRl8+Nuf0KT2sTVfkohWG7azOV3dUuCw26T0PZM6jvEUgaooGOGIpm5Iyob90RDL0tk/PGK12ZFs12h1TlKUNEBe18RJRLrd0BQJgoqyLJAlCUdX0HUN27XpmoSuqTC8ECuYPC4q1Q2G5VCmKZQ52/mCwWiAomuIqsTyPIoGLu7mRHFC2z52TkhCYDseMjKzy/cYokJXZBzXRfdDOqlmtrhgf/AodGmKQHQdXQOKKuhETVTM8EYutCm+31DmEaF7jGUOqeMNmiQx2DtGlVWKOObu8pLNNkV3QoLBhHB8RG84QmlLyvkNVluwN5mwd3iM258gFIe//njO7fkHZCHYG+9xdHJGsZ7h6YLTg33+6R//Eb9N+dnhgC9fPeXLV2ecHu8zDlwerh/YphVPnz7h47u3oGhEwqQ/GTJ99w6xzpHKliaJ2F3dgqyQxinJfEqSxFSKRF1XVIZFmkToXUWUFaw2GzzPoUk2rJMSww4QQkKraoRiUjQWcSOhWh1RnnC9Lrle3RCEfXR7TC8M2Gx3aFSQLdnt1oyPXqEKmaLpSIqUpspJVgtEGXN9fk28zNjMV9w/LNBcn8neEN+1SbdbprsS23XRVJ1QFsTrNVUccfLqBVK+Jeg72KM+utYwvfgBXSpR2hRDg3A8RK4yRFNSJxGWreNYBl4QonYNeZRSJx1q2RC6Npv7BYZtM3r6Geum4eTZUwzbZD1fczK0qbYxtxcLol1KEA7paCjTmNHEot+3cUODxWxFXlaomkHdtCiywma9pkp22LJEIVSm8wVFUXLzsELVberdlvj6nCxJKcsaozdGVgvktqRVNNqmRW5TDJGyXS/RhMTt7Zo0VcgWDfFyRdhz6Y/CRxdfEJAsU24+3lJmGb1enzTNmc/nLG+vuLr4SJwXJE392KMgBHd31xR5hq6qeJqCo6uEloWlWzx58oyBKqFJAkeW0GnRNY2wP6IucnrHzzHLnLPxmJP9Q47OnuO5HsN+H2e4z/LDe3TTokVCF4I8K4h3MVWnorgDZNOlKxK0OqeVFa5ub8mylLpIMVUZz3ZQLPexxLNrEF2FpSnIB4d4rsxIz2hkE1AIghDPsRGtQLm7JxQSpuchL86pm5ZZUtO0IEkKDRJ1KyOrBqdHT9A1g/2+wDVialnHDnsMfJ1OtpD8Y4rbJVYhCPbPUAIXw5T57i9/4c3VHZKmY5ouvmPx2Ysznrx4yfNnz3h2dozeVfhBgOG4XJ9/YHn1AdPQ2dvbRykirHxFoHQEYY9yF9MkO2RF4mA8xFNaQtdkMV9wNV2yjFK+P7/m/XTLshDcbxIMWSaQSw7NBkNXKNLHl2nD9XE8Fzf0keqKZD6jzXNUv0de5hRNy6qRWcUFquOjiBZNk9F0m7iWQTWZLVa8vt0imQHHYx+pSsh0l3VeUCUpjmFx6Lu0UUJZy6zXFYv7Glu1WD1ckEULmnTNw+0DxwcTBp6BaZsIVWPoWWRpSp2UCMUhTxKS+ZT5hzdcffzIv/zHd8zTlsOTb3j6+Rd4Qx+hS6iWRp4veLh7oCpaatEiySArHY5nMdibIJuD/x4F0wl8B8sy6JqK0SBAd3rYUseBZzMMA/oDn8DWsNsSrcwQdY4hdwSDkJ4uY9AilRlqVyK6FtMNgZa2qZEUg0b2kIwRwSikbWKquiYpCkzHRNVVZLlCFiV115IVBaLJoSu4e/cWzIC+O6bMMm6vPrK8O2dsNqzn95y/+8D771/TtBWSomI7LoPBgKA/wHN9VKkjml0j1ymG7aEZLkgKVZ5TxBECSJOUzS6lyDKGjvY4V+85WLpC6PtY3oDG2yfaRcTRhrppiDZLymRNlW456XscBha2LPHF6QFf/+JLjo9PMUyLnmuxNwxRVQ0rHGNrIFUpiqwQjo8Ix3soAnRdwQjHyIpGlSaUUUWbd9iug66rSEVBGXfMH1KSpKbvGQx8E10BWQbdDrhbbIg3O7qm4ne/+x3/2//1r9zNl9iWxnIXYbkB63nE0dEe97t7ZrM1NQJdBsN0sY2QfDXj/OM70t2GVycTLNMiy1rSRuf2+prV9IE4ihgORnzx2QuKJOPH15dc7RTmhWA4GrDdbbnaRNznFb7roDo+kmlxv0mYxyl+2OOLL14xGvqEfojfH2I5DlLbIGsmSQnL64+8efuaIsuQZB1FNWmzDM+QcU0dXdewvBBZSLTRCll01IqFuf8EQzT0Bz0026EbHhAvl3TJFqWtcQwV13XB9JENl6apMDQFz7cwPZtos6WJpliaiqnIOKrEIPDoug7dtnHCgF998wXr5TnT6TUHL59w9uzzb/eGh5+cJp/4SfFJNPnET5L/+MPvf/vH7/78dVGk+I6JLhqUrqEtKxa3U8pdgS7ZHJ99wZe/+SdOv3iG6UsUxYYii7l4+5FAqxEIHG+Aatl4PZ+mbIlWOZc/XnD/9i3zqytubu+INwm2opLmJZrlsXi4pywquqbhYBhi2R72cI9otkQXOnv+kCqr2VY1qixh2j7D/T1c28YydfwwRJIk5vMHnpweUdYNlucSWhoTP0BTJKQW0t2Gh4sL6qpBt3SKLIWyRJJl7jYF4WSP717/yGw6pecHTPb3KLuWpk2QtI66yNis70kXO+psS9dWKLqJQJDHKYqQePh4wTZOsQBRYNoAACAASURBVEwNlZokTTk+eY5CS5tGfPbqc+SsQqlapHzL8uqcTjXJsxJ7EGDv71GUKVWekKcxq+USiZaubYlWM7ROIAmVunpckbE8n65tGPgmap0j6pay7kDR8SyLOC3oj8bohoVLxWA8QK9L1KZGFaAjGPT3+ern/4hHidFV2IZBkazR28csbhFvUGlwPQfHd+jooG2gadBUGVU1UA2Hqm7QZJlyMaPOUnqDIbIASZZo2o7vr2YsopQ8LxBdRy1pFHpAIVu0eYSmq+RljW7YhJMRd+sFLTmB09HkKbqm0lQVcgdFHZOzZrr4gGS3yIVG0Hqka0F6v0KUDVVeoKk6ChJ5YxJ1LovpFEvTUDWTShgsFmvqoqI3mNBlW4a+QxAM8MIBZjAkLVv+9u13KFmC2nWMwgFf/vIbsvkdQ73DM1U+OzvlV9/8gpHRsjfs0Tt9wYc35/RNGdEp0AnW6w37BxPiXcK//+k7jl/9jM12xbvv/4N4M2O1nXO/eGB1f02xjViu5myyHboXUjkDqiynSrdIoiNOEuIGVFmQZQVvb5fMlmtCpcRSO8KjE2xXYbt4y3Lxjh8/XDJ++YrBwYBOC3HCI2ohkScbXENhOl/iOT6mYePZNrImUbU5q8U9ctvRFh2qbZOgQ1HT6/U4PjmAssCxdNq2xbVMlnd3NELj+WevkIsMJd/h9kPml++RmgJFamiSBeNAJQgs5CYhGA4RZUpx+xFJNUlmU6rFlC5PqaMt2fye3f09TZ6gShm7+QPe/h7G6AnqZI/7+YKj56dkm8f4n4JEVxQEpsndzYzNukRpWjRNQlNleuMRdVkgtwWGbdPKOsv1DiEgLRqW6x1RK7EtOtI8Y+JqCM2iQcHpj5nd3nF5fUuyi/EHExpXJm4qZF2nKApsU2XggG8brDcxqmagqBDt5jRtQdALGPRCbENls95we3vPfL5EkhVkzeHNxR2vf3xDsVuxixNu50uSokTVLZabLV1dErouoyDgyDVxJNBlweFoQs/xiOOIPN7QFgmSJLF39JSj0MU0dV5982uS5QJXlnj+5AynN2J8cERvPEbtOhQ6TMeHeEdyfYXlBsimSx7FJHGCZnlks3ssRcK2PTZVx3x+h9R1SHRIQuC6IZrpPC6LKDKSZlA1Eg06Iiux9l9w/OLVY1F1XRJv1xSLJdN1hLAsjGLJNqseJzdbCd3x6eoSzQoY753hWg7jgYulJGzmNxwfH0JVElgqcpbSrVaYokUfhHSOStNGpPGGf/7D33lYpxR1h+mNeXIw5tXPvuCrf/g1Z89foIkWy3XxBhPm1x958/t/YWIKnp0ccDj0OR76DEMP19TxXAfXVFEVgSYJRBkjtxWOoaN1LeFoj6IRZFmO6YV0QhCYKo7c0idDrwvyGoLhmFYILNt+tAQVCbJhsZ4vmUYpy11MlsYkqLxbxiAraHKHqqrohoVsOCRJim3poOgI3cEPhzi2SZHGqP0Blayw2xYcHh6TrxYkUUGWVmzXSxbLC/7253/j4vZHPnvVo0kzPNfEkhsCEw5e/oJsMaXb3RAqGbUUUMY5F39/zfd/+ZGLjzuSTKPRVH75n/4nnn32BaalI5SKXK5Jipj59JxdnKNZA5z+iCRZ47oGnm/i+ybD0RA/CBBti2Pb+K6PInXomoLXHz3GU6MdjtThqTKOVNMzbSwaQlPF01U8CdLFkj1XB0mhKSuqNCXZblB0G8UbIUwfMxzg9QNk+fE8KBuVsi4xzZpWCDq5w2oSyu0C2zYospyqyLEUQS3p3F7MSbdr4u0MhwRZNLRNg1rJeG1A7/iQo6dHeKGDoslknYnp9qjjFVWyRTcMKgxWccNu8UC82TDohcTb1ePjQydhqApS2zDoubi+z/7xU6zeiHizo1F0rhcR87uPlMkW1zIx2pwnPYex5/DsYMLPv/yaw7PnHJ88wZAFOg2W0uEHPs7oAEkSOH6I1DSYhgFNhZB1VL9HUzcouk66nlJVGUJXSdKEuigfl/JUHaVQcIRD37fQzI6Lhy1l0TAZBKRFjawarLYJedUycDUGSoHpuCjugFKYRCmoK4meZqGNVDTLYuCHyJKMaRm02yU3H9/w7s1bNKFwdjShyEu+/fMPWE7Aft/h6ck+48kevdEBg36fPIvx9p+wroC6YOIo3N8/0LUtkm4hewPyFpZRgqpqnL34nF//+jeEpkLftx/vKICEoEbFnpxQxzFWlVAXGaZpYvVG7A2GPFzf0cUxyXxJlWRYpkY4GuJ4DnKT4/ohyfQeqhSpa/FGexw9fY7a1qwfbun3fMajAbap09QlqBpSV5NlKaoicZ+0ZJsZ2/sbDMPEtWxkOsqswAt6xFnNdDVjYDfUTUvQ6zM+e0bP6387Hu5/Ek0+8ZPik2jyiZ8k764uf7tYz77uOSoyNRQZpipTxBm7ZYbWhvziV7/m7B9+hnc8phUN8/WKKFqilDvKdEuRbjEdG7/Xw1AbqAqSIudhPuPh/gbTUHh3ecfF9RJdM9F0k2WUIyQVWTU5ngzwTQVf1/EHQ8qqIZ1tOXr1S4z+MUduj818Rr8/oNN0pK4k8FUCz8UNXSSpo0hTer0BySYm3uX03YDp2/d4TsDmekq5i7i+vYciR7FMVDegrlvqMsMYjGh0hzcfLugESAKOT07ZrZd0bYZUpWjqYwZWpiSvMlpZxrA8hCxz9f49u/Wa3mCfVGikSYquqLStYP/0Jaqm4TVrfEtjdvGWhz//henrv9N/ckBwesrg7ITa0FhnKdluStc0rJdLttFjsVtLh9oKHi5uKDYxCBMVBUM3yVdLDEmmq1oUSdAbDCnrBjfos54vODt7Qj90ULMNatsxHE+QqgJLAk01GB684LB3hCvBJAjwXIsnz47xfIfhaIRjmZhyg2HqaKaDaoWY/ghZlqmLAlXTqVqBoevIika6XpPPHshXCw6fnBL0epiGTpqXJGkFikGhBAjvBFWGyXDIw8Mdm9UcxzToDXpItsuu6xCixFLW1GUGDbRlRVt3rFdbFos5r3+8Z/0QcXDwHL01oKzpBT3SSmY5W6CJDtUIkFSXYj1le3/D9e09D7MlheSwuL54XLQwLPqjCXpT4DkWbtjHMD1mD3Omb95gCIm+obPvOWhdy5PTE9rdhtORz8RVcVSFJy9foLt9LNNkz9HQVQ07HOEaBjcfP/DD+2u+/uoF795fMDk5ZSsU5vMHLt7+lSqeofo6m9WSxfSW2W7DqmnIvZA8jsiSNQoNXZWTpilxWSGEoB/YCFp0Sg77FseHQ7zDl0hSgWQK7IlGYhTolkHbmWzWBZY/pJMkRFvTFjnb3Q7D9rEdD9qK3XbJX968YXq54P33N1x+nHJze0VSrcmzhLZqMDSLvCwYD0OGvkuZZZBl5EVJ2zQcnp6gioZ+z8e1NBQFPKVkf2Di2yqqqPE8iy6JiacL0vfvsEyDJitI5xuqNENGQhQVqqLiBiZNWaE7Jq1i4D85IykSaiFj9DwWl2/xHRtDU0mnM7JdwuHJHl2dPUYyShgdHeIFPpIiUBWJpJLYxiWS6LB1lU73WW1jsryiaRoC97Gjx/H7hJMj3P6E+WLNZjYjCIe4+0fUjkQlC+ryUTBpu5aRryN1FVL7uOZRFAWd6Dg8HvLyi8+RLIPpwxU/fPdX/vTH19w/LPHDAdtM8Pcf3/Lh4hpL09jsYuKspJU1bNtBbysmrsln+yNOQxe1bZj0ehyN99gb9AmDEEWW8UWLKskofp9f/vLXOG3OZG+CqFv6XkB0f8uXP/uKYDBENU1M18OQQBQ5muUgZzEiSaCqEEWGJSs0ioZhOSTz6WNMyfGxVIU8T1FkgWhrOgSu7WD5feIowrQdzCCkAbS2QpZUlK6hK0u2my1FnjHLSm6KjsTSQNdw0jV105CnCUI1adsOJxziDU/pOoMiShmFBmmy4k///gd0IZGvHzh59hRZNzECn0bU1HVKFC8pipSPN7d8f73m4PCE0bDHzz874VffvOTZy5cM+z6OZT86PRyHeL1ES1acHe/z6vlTjo+PCEwdU5EwbIMujwGwfR9Ll7HlBlUWiLbC1AxEXaArEnuff03dgCQ99l9Ml0uSNKVsBfO8wR+N2cUxUZxh6AZdVbK5vSIY7dM5A5JoRx4tSLKcrdB5WK1IsoTFckFVN+huiKRapFmCRIs1OEDqH6CoOrPlmsAUbPOcu8UGFIdJf0D6cMl8lnJ7vyJL13i2TNBT6fctPjsd4xoGu+Wc5c01SrEji3ZYhsEubShqFd09otztiDdbPKfP3vApJ0+f8PzLV/Qm+0gKNHVMUkesipxWrdnMZhj2gFpW8QcuZZ0wPj7As2x6noXnmPi9Porhowr5sYPGtqFt8R2LwPFYPdzTFBl12XJ3ew/xDlsSdPVjj46tafhSR7RaY5kmquHgWDpVWZAXkNknGIMDHEdFkVuEqqKYDrWwUJWYoi5Iqpa6KdFUibppEJ3Mdr3Fdzw6BKtNRJ2BqkiIKqFK1ti6QtgbkCc5baWw//kJQpGY3U9ZLFYMfB+1LlhNbynShCSr2EQFaZpRRitsy2Y4GtAWGYv5HMNxMRwHwaOQZvoD3NEhij/m7vaWu/O3lHkCTYkjwbGjEqjQD3wmB8cMej1cQ8O3XXaXb+mSHY5pMBiNELr1eIboGrIkU9cdcrxBtDWS4VGWFZKs0coy6ewC1TRQFIm8LojLjMXiHl3X6Yqc+cNH0nJLURSkrcb5/Zq0aB+doBJMo4q0UbBcH1XXyWWHxhzSO3xK2Bvy6vQF2l2O9lxFVUwUQycuM6p6y3ZxycPFW27v1vz8F/+ZJ5Med7dTVMNmMhnTxRvSTiMqH+eN61bgyjXzu1s20yldFpNlGbv4sQuvknUMw8BzPTQBg/6Qf/jNP/Hs5ABb7sizkvnDA20r0dRg9g5QVAujSsmndyRFzeHPvubp4RjWC7briLPhmP5oiFRmSPEOXbT44zGq6aBZNqbrU6wWaLpOmWUsrq6ZbmO219eomkKJwAsDwjCgkyVkTaEqCyTDxgk8hKjZZDV1p7DZbkmXCyzToEahkk2ErPCn3/+BLF0RHAZo+z0UoX17enD2STT5xE+KT6LJJ36SnF9e/fby49uvbVNmtZhjyBJS17JbJ2iSyee/+E+Ez46w9j3ul/fc3mxJlnf4rkGz29ImKbtdiu3ZDHyDrirYTtfcXy/wBhNUSaEuFf78/RvkrmX/6JBd0RLoEoejgOPJkDyKcFWJYP8Ame7Ritsfodom4ekLNncLRJoiyS37PYdkPcPRZFzbYXQQUucxyXaH13MxLYtdFHFyOmF3e8fqekq+TtB1lXBvgjsekhUF6DqdrLDZRXiDAW2n8vHyCi8MKNOUfq9HXWXoXYksKso0RdUk7N4EP+zTIWMYBnlWsF2uWNzdM+gNKFULVZbQRYuuGchdjS51jC3B+sOfMIop/893f0PPSw4/e4p/vI9sKNxGGdssI9vNWS3naE5IJ2kodKxnS1QrxDBt0qKGusBUW24/XCM1LbYuMFWBqQh0XaNpOrzBhKbIsFWFg6HPQKkZhAGj/QNM06RNIwaejzd6xoFhMbAsRicvUZoKe9gn3D9CokERFaKMMAwFQ9fRLQNNM9B1G8PxMLwBluMhqpI8Trj9eI1rP/7My0Im8F26usTTJL798MBsFaFJEqJrcEwVz7VQVUFgyYSDEMP3uVF0tlVJaMnIxfVjRKNpaLua+XTB7HbFzcWS3SbncNyjKxUmo0dXkebus5rNkboG1++B7rOePvDDn37PuzdvuZquWCw2GN4IV5EwDR1dklBMB703xJQlDE2hrlre/uFbdvM1lqZz1Ouh1CWDwOPs9JRnX/wco0oZhh7jfoCi6PhhgOtYGLKEMBx6hyeIdEORPgoKvdBBVnVQVf6Pf/4do/0Rs/mCH96f8+HiipvNlnmasuoEja5RrBcYXYOiaQhJIUu25FVJklfIsoxmWtDWnA4cxgOPXjigbiWyWkExdWrdZhNHnP/tlsvr92jukLLRUVWVvChpqpL1ZoWmGfR9jzyKePfXv3Dx/prXb99wefGeh/P33FxfcHNxhaqrhOMR4XiPYd9jYCu06RaFDknV0QRoTYltqPR6Ho4hsTey2Rt6DHoW+fyWwf4hbVXSxFskzeaP//p3tDRG62qsMCA4PcM+OEV1XGTRINGxeHeLbA5RHRd90KOWJTq5wer3kSybJl4RbzYYtks+nfPh7Q2ea9If95Asg7JraBpBmUUYGiAr6I5HXVWIrkEzNIQZkpQtQjVwTB1blQk8l6RoKcuOvu8T6CqBBLbbR7JMUqOmkpTHZQNTYzmfMhoN0NsMhEC1LPr7R4xGY548+xkpEt+9/gu/+1//d37/337k6n5NGISo7oQkq5hOH5jN55Rlha4q5FWDaZqMA4+RpRHoCqYi00oKRtvgGiaaquP1evT6Y/SqIN6skU2bf/jN/0hfqggsC0fXmQyHGIpCPp0SOh793gDb91E0FUmArmmIIqdOkkfXmK6Rb5a0RY7j+ES7HVUaYfg96jxHrXM6IdA0jX6vj2toDMIQ37HY7rakaYZvW4wO9qmrgraI8W2dom6oW5AlqDu4XG6Iysf40aGhINoKqWsoOwXFdPEHRxjeAculgkhbBoHg3YePbDaC8rxiMurh7fdBdMRZQrFZMzt/RxJtWBUl72/u8AKP0xdnfPn1l7z4/Ev6wwmmruPaNoosaKsSXWrwqOj5LgfHp/T3DjBpHvu9igRDU1E0G2STdHaLlCfQ1Khdh6mqiLagyVKs/oih38N1bVzRcXJ8RJomSKqOEgwoOsFoss96syEtKmgh3y4pNnN8zyGKM1azW9arBdgBkVAoyow4SUjzgl1WUjYSpdBQZYVOSKiKym63ZZtmyJKMJIFkGkQFNLUEWUyx22B7Jorc4vZCXE1gqg6BG2DLKfF6y9XlPVm0RcgGcluS7XZkWY0d7GMoNk1W4roupuXRPzpAKDWqpaGYkMdLsmhFKRSc8SHJdk5XNCiKhe0Y1HWK3Q/p93rIZcZwMMINfGRJJtw/RtQ1VBVe2ENqK0RXY2gatqmgCgXDcHEcnU5UtHlOYNs4hoYrtYiqYrnesYtShKTQlgl+4KA5DrYuITdbujKi6xqEplJ30EgFlquyzVLitEAAZZVTzC8o2oZWqLRCphSwXG7ZLDOKPMVTS5YP10wmYwzbJCpS/EOX+WZJu23ZzROyKiMMAu6ur4kWc/LdhjqLWC63KIqGq0uYmkx/2Gf/6Ig0SYmzgrYBkMjygqbtaJC5fPsjN+cfKOIEpevoq4IXfZueoVMUFaGh0zdNut2aUJMwZYnQsRkM+oT9PqrbQ9YM1DZHyncIw0PUFVKyRQvHSKb3eFYZJul2zv3rP7JaLMiWc+JVTJXk5HXDcvWArssUcczbdze8u9kSpQXLOGexS7FNEzrohEpSlLRVQd00GOEIbXjML//xH9kuZ+iWxmp+jfHcxjBdVrsVt6sbdLfkaFzRJlPiUuebb36D2tTkRYmiqKznC6brlC06ZRKTzu6RNZvlOiK+u+Ti6hpTV7l6WBHVcB0Xj49HjsPe0RMcXeWLz15xvHeA3pVMRqNHsagTDMI+thNg6Q5SskEtCxTN5PjlFwwdE5Zzms2WF0cvUDWXZ5+9wjQ1At/B1mQ0BRSZx+9sWOh+QFuU9MYH9Eb7ZJsNRr5FsRzMlz9nenFO2YDj+WzzmqTpSFpBV66hjND8MXfX93TbNaamkuYV5w9zqqbB8wKCsMegr7OWZpR+x8uj028PB88+iSaf+EnxSTT5xE+SP/3xj7/dxfOvo92c1WJD37Npy5q66nj6/Al7zw8xvY6P9+/58U+vMSuBa2hMRgHJ9I5ks0HIHUFooygN719/gE7i6OSMwOuxWzfc3825e7jBcQwM2+DoaJ8938VoSqqqpk4yDg4n6LpFWwoUoWC7AY43QK87bMvg5MuvqWqJ5f0Nez0fTVTodoehtJRZTlnVCBnGewPuz6/QVYm9J32aKmP+MOP88hoz8FFdD6FppEVJMB7SAMg6ZduymK/RZR1FErieRRxtqIrk0aKp66RZgqJoTMaH0La0TQN1SZkVzO9ukVoZNRggmybNZo7oWlSpY2R7nBwespuvuHizZLWu+eqrzzCO9rCGHkWTcjef0rUF2+WUKt6SZgWrbcZiOiPaRiwXMW0tYdgCVYfNcoXWZAxDB1XX0Gkw/nteNuz5WLaJ44d4bcbAknBtkyxribYZQ18n8IcMXYdivuDFy6/RFZn+yREoKqJO6e1PMFwHL+zRFQmqLJANB90bIosOqS0f1ySahjyOqYqCxe0dNxfXNCXMPt5QVg2BaRItV1h0dBWs4grPdvDcHsF4ghX00EQDUoeq26Smw3IXURY5e4HB7u4NyTbGsi2SpGC73UHZYlsueycTJid7dFWLVEmY/hFWMMTWZRxTR9VtdlHM9OIHvv/ue/75z++pG4VlUqOoJrJu4NBiWRaypiBbHqppgVBYzVZEyzWObrDX7+FYJpPRAKVtcX2fMPA4fPk5wWiCaWp4gyFGb4Tm+qiej7l/hG6qWKqCZ1uoXYVQFA5ffM50NuP7P/w36g4k0SLR8uPtnLRqqFWNXJZoFBPdcZHqEuqKqmrJipqiqWmFRNM26LZDW9XUioWlKLx59575ww2Tk2c8LDLevz2nHzyn6lTCA0gbG0XtkyQJRVUT1x3TvERUDbtWY7NeIImW5WZNLRqS1QO7JCbKE8zAYbQ/4tnzV+iVycDScPWG7WJKE8fomsaw7+IZgsCosbWaXmDTZFvaIkVuSqS2wbZMktUKQ1XYzlLyuGZ+eYNnatAJ2t2GNo6o8o6uyCl2j3Ok7pMTjGGPMs9JshzVNNkmj2KarsmsH+bYskIbpbSriPtNgRfaWJ6HrgkURVAVGV3bEEc7VFFTNR1RlKBqFnXbsVyuKNKENI5o2g7FDtjsEoTdwzV09K6mqiq2dYfes4kNGV1TKYscURdomoKsG8htjqCjP94j8EaMwgPiXcvv//ID337/N4qkRqpq6rqlPzxAMwPyNCXa7SiKgrwFIWRCxyY0NXqmhiVayjynN5xgqRqmkDA0A8swyaKI5WwGZUPbdvz8f/gNrtTiaBqmYZDlOb39fVypwxIC4oTD/5e9N2m2LTms877M3H13+tu9tgqAABRIAiRN2QxHKOypR/y7kmzRUoikjKBLEkk0hap6/e3v6XbfZOPBKf8BTxyIeGt6BufePdhxcuVa67t6BtYRxBG268AYXF1iJ31KjD09oruOsetQApw2BHGM1pqhOdLXJeliyeLyGVmakQQeSZYjhWMylrIsWc8zXhUCqxzYEaMUQzwj9j3GpiZLcoR/Qp0GWF5kCaIv6ZqaToNKlhSbl7j4jH0Z82frJaloMNaw3FyRLC6IixjSmPbxEw+//S31d++Yuo5GT3wqj4RZSpwnFPOMrJjjhwuCZE6apgRK4AmBh2bhwWI+IysKPCGR7ZFQKaRUyG5PKCwKjzhZEOiGOPbx/BgvjknTiNBZZosFq/WKRLeIrkU0RyIlCJyl63qsEMRRQNd36L7n1YsXfPzuW3bvv+d8NSPLYoI4pup6tOczef4pXdbUbMuKfdMivZDOKOpRILyIySqMFyKbe263RyY/I53NmDxJ5yWsVxfovuXmfsdsviEQIUkQYacR6SA7O2e1yNhev+Pp/pFQSqIgZBg17WAw48TPf/4zTG+wfYMdWrQb8AJBlAu0q6l3T4jB0O0nomKDNobD/QfSeInvh+A6ohiuvvgxQzOQhx7ZbE222dAdtqSZT5JFKLxTgqCt8bB4nsBH42NIA8U89FnGikUWkXiKSFgYenCOUVuqusNpTd80jG2FdBNjf8ToEatirB9iTA+ewEtzHA7lQVUdcZwqwl0/sDuWoDyapsYKze7piBEZkZyYqid8T9I1A34H3a7FywM+3tzx4sUr9nclKDACdvcP1Ic9Vg/0gyaIc/JQ0uyfWC4WnF88w/M9ojghSRIi38eMA1iDctDUDVPVcJYnPD/f8HI941kRc5aFrGcFrzdrfvpsw/OzFS83c9ZnlxSzM9JiSeALHAHtscQ/3hGODUGUoITE9yReECKSGSLNmQYNzuKmjratkatLbD4H38PqDidA5HPqw5YwTkidRiHph57bfcW+HfGUIgp8Dq3mWLYoLGbqCF3P29st//L11zzdXtPWJflVglxIDmXN92/e8vNf/IJ/81d/TRxGaOtYn19RSIGdJur9E30/cX13jxkncgzsHrDCZ0fMdrtl+7Ql8hz3h4a7Y8fTYPnFq+fgHJHvEyiP1y+fsygWhGHMeR6RJwmB8ljNZ0TFimJ5SapOv23n8xlFNsO0NeJwIBCCLI7ZnF+SFEvWmwLPTjz7yY/JX3yBpxS+nHB6xDmBH6aESYKUHnpoGB4fef78BdYYztYr2qd7+nJHKhWP9nTRlUxvmfEtbQetTSHKOL59w/FY8WF3ZOhagiBEBgGvX39Bvon5u3/+79zffuD54vnXf/azz8jhz/rj0mfT5LP+KPWPX//6b65vvv/VMLQYa5ilCeOkmW9e8vrHLwj9gePTez78/rcUoU9ezHA2ZF4sePj4hrFvcMKwXsx5uL7GBIp0UbA4e0a1b7GTpC53HLsjF2dLrhY5s6Kga1qkNQTWcr5ZEKdzTNWTpzNsd6phRGlEkCiCWUy6WfL8539C5PncPx0QSpHlMXGWIqKMfpwIFHhK0u53zM9yoiImnWWkywVVXVG1DROGCQO+jwa8QPJwd0+WF+SzJT6SWZbQDz1CWO7vH9nu9njKI12sQEqEDRi15vb6mqE9Dbi1dYlSgko7QjNyuL+lLo9k6Zwv15d4KsIL1tjSkniKZ//TX5O8fgXK8vh0TdkPNG2DLyba6sC3bz6AdeTpaWNEmob904GqPFLVNa7ak/gWT4+EysdMjjjy8aWgqPqViwAAIABJREFUyHNM3/Di6pxZErG8umT1/EvmyzXPrzbMkoDZ/DlYKNKUiz/5S6L5jCjQFJsCKScwmvnZgiDwCDx56twrgRAe0vNPWLxhZDACIU6f3314jx9mtO3AH/7wngSBFCCdI5/PKdYbtq1m3xl6lRMmOW7q4YeDlkoS7o8VD4+P5EXGLFH093+gPHQIYSjSJUkaU+QZXpSzObsgDHMKzycOQpJsxlg+oWyPmUbsNFJvH/j7v/s1//GfPjBqWJ4/R/oxXd8Tn06DKDOAA2MlLRG7ZuL6D99wtpixWixIs4w4icnylOXlJZtnz5gvcrLVmqSYk1y8IFxfEiw3ePkcGRd4aY6fZihPEAQ+URQSFXM2r77g7tvfMrUNaZrym99/x2q9wmnNoemwUhGlOWeXVwxjT1WW2K5BWIu0jmqyjF6AtY40Cdnv7pF9Q7jYkHkjiIkffXlJ+OyKUVRcvEgI55KsWGN0Rj8GjJMmCD3u+5ZuGKlbw/elZDCS6umJN99+z/X7d+xvbrh72hJlCbNnF3z1y6+grqkPj2zWc0y3o7q9JlWGLJF4U32qcnmOvJgxNTVyGpllGZ7RCKNR1uL5Ac3jlrbsePPtNSGK9tgzX79ibA74rsHWNeVTBcmS9a/+FBH59NURLwpRUYQLIsamRmFweiKQDr09MDxsGesRF8fMFymPn67Jl0v8wOf+6YhxPkNZ0bUNfhwzmy+ou4FRWxyCsqyYxgnpx/hRQlMdmIaOZRIRC8dsdUaLR7LKEIFCWktbV0xdw9myIEtDsjQhzzPOL1+QJzn73RP/9M//yPbhI2dZjt6PeJzSQ/nqJZN2dG2L8gIiP2BWzEiThLbrmPsSJRSroiD0FMV8SSR9fCHwg4QoTjm7uIJxYqorXrz8EVkY4WFxXYeYNNF8wYvXz3DjgBwH/L4ntIb84hLh+wjl4RyMj49MVYnQE6Zruf/0Eac8hNX0bYsXZwjr6NuWsiqRU49UCiQ4LMfDjq7rEM7y4mKD0g2+Gjjb+Dy1I4PR1E3L1LQEgcesWDKMCj+IiTyf3A+431Xs2wE/mbF69RWXr74kCj3mMVw4zc1314SFZL4OKc4l9XDg8e4Dsq14ev+Rfr9jmDQHKXloagYH+eaKxfqSLM4IlCTxPYQZmfoe3bckuiULfIT0GNsO0zWEUhMEEZ4Ad7zHHZ/wMMixwdUlZv+IUgq0Qe/vmKoDURwR2ZE0iVmtliyLhEUANCVGa7bbHSBodltSz+Pp7o4Pb7/ni3WOGQfGsSfNUhojOLQj2/2Op90O5ftI5SOEIJ+v6QwMRmClj0xy0BP1OEGYIYOQIE0IU0U5CSLhw9hip4GwWGFUTPXwnrZtyM9m/OoXr0nnOeXtR5rySBx4hGHMcQqoDyUv1gFJsUZPsL+9JYt90izFdjuqwye6qiH05oz7Dl9E+FlBnEu2nz7y6mc/x/SO9rgjywNmqzWr+TPmecZifcFstWYYOsxxh4chzRK8OGfqWnynMUPPfLlgrGvGqkIpiRIGYSy6LsHANE4o3ycKJEp5DFYQBIrDsQUsnfH45t09wzAxBidCl1Ia60aMdagwpEdQHg8YB8YaDseStulZLOYnMtxgwTg83bG9uyVNUnQzsigl6/kV8SqFJCHMEuLYMDYV5aHkw/dv2G2PbI8tXjJnHCdcV1Ef9vzpn/8FSTFDCEAq4myGcAJPyZOJbyFRAQmCPCvoR0N3OKCcJfMVWRiySiJCQOIhjENa6Ld32KZEdz3eNJDqhtCOqLRA+REoHz+KAYEDjBPIIMCZCastw2gouwHt+Tx8+D1mKBG6ZWr29F2JHwTcHRt8NIFz7NuJ26rHC6LTAH0+Y7KCfdXieR7DpFFYpqEj9AyhD7P1jMN45Lu37wmjiP/13/xvzKMVkcwI/ZS+0wyHmvZYUx/2HI4lUnl0bcunT9c8HEpknDENPWO1ZxgH5mnIx/sdo7FsVmteP3/F89WMIlCkSUqSZQRxQoDhPIto2xIzDBSzGZHnYYcJMbZMVU3XGManR3I7UWQZKslZLxdszlZIMzIdtjx/dU7x7DnebEMwW0JXIz2Fny9wzuCsoa9LuqpheXmFCiJSJUmZ+Pq//zNl1zGbF+i+oukbyrrn/rGnEhust6RqJ57KnhF12q8LfFarDWfnF+AMKo7Ydi3t/cAvf/oXX//5n/3VZ9Pks/6o9Nk0+aw/Sv3m9//tb24f3v6qbVrOzzY4O+IHAZuLSxa5R3t84u1374mDhDAo2O87Outzvkjoygd8KUjzGdJKvvnuI3cPR9YXV6TFGcO+Io8VD9st1hpmypEoiTMQ+SGBsCyWcyI/IMCnun3Ec454ljNfrbBDhalHouUarQ3RMiGIPc5+/AXe6oL7m3vKpz2okOrpwHye4PRA7AvSLCTfnNHvbrFiJJyv8WcpwWLO8vkV1gvwwpBjWVG3HRZHWmzYVg1hEPC7b74h9CVVU3MsjwSeRXctUVKQJKf6kLY+XTvgKcH9xw84q7FBjuhqhIDD/sCr9Zp8AqkdWlvyxZrRNGzNRLC5wsqR73//X+mspWtKuuZAU5Ucypa6abm7uyMMQw7NyGghneVUD4/IcSSSktTzSMOEbtBsXjxHehH+2JPHAaEEdE8SR/hhzuz8Cl+MtIctflgwPztndb5m9eVLolmG8ix+LAiLBVJokiwhUIIwjAjSDPRAGFikFATJHL9Y4/shrq9odlsOh4o4DNBty/X1E9/dPBFWDd40EhcJUzeQSouKc767fgIkypOnXRytedjv8eKYKVB4aUrCSNjfkyUJ0wShCJnN14ShhwwztBXE6YxgqImVIk8TpskwNg3ldosXFXz7zfd883FPkuZszi5JFmcYrfGVQgQhwoswQcoQzZniJX3fsrv+gG8GlkVCkiZkizlBoIg8xWKzIp0VKATJ+vyEPtQWpEd9/QEpFV4+R/khdhxAG6ZhJHv2muL8ivLTO4bDE882a/aPD+ihJcsLjocDOEs/TjRtS1UemOoj49AyDAMDMFjBNI2MzhEWc5xUnMUO4QauljNePrtkHkI8i1ER2Mwiop6n6i3dpLm9E/RTyL6tqauKcOqhrXF6wh4f8Zst3WHPw7Gl0qfvypOUy/NzXr/4ghTLh3dv8cOQ15c5tt6hhvY0Zgno6kioDGGUoSeLr3uKYoYxkqk8kiYpKl0wTvD+7SfMKDje3jJVFYvZGdu3N0R+gJkEXTOQvrwgPV+B7XBOExUZOAtGo0eNwuAxIfSE5xxTNyCMJcgyRhxeoDgcDpR1h0OyujgnihRWTxjlE6UpRmtwE9Mw0lmfbhhRvo/KFuyfHpA4ZlmCLwzSk8wun6OyGBV5CN/HuZF+GNgfD4TCEAWKL16/5Pz8OVmyYPdwzz/8w//BH779lmwW8/LZK149+zHKKZpe4YIchGQaB+bFDF9IIu90iAt8jzRJudyckc1XpwpTkpLFGYw9YZiQFzMOD4/EYcTZ5XOU5+M5faqYGUu+XFPMMqbyieVijjWacrsl831mlxd4UYg1jrEdUFGMqUt024I7bSQpP6StK6SQDE2LjBK66kA39Oz3OwSOahwY+tPt8sX5OV8+u+JskZEGkmEoebHQ3B9rtruawBMkWYHyPCLnc3hqWMzneH5OWx3Z1i0OSTJbsX75YxaLglBOyGlPt73h3YfvMGHNp+vv+Ob73/H9u7d8ev8e19QMFgYh6PTIbhwZPMXZxRmL2QzPTjhtCOOUsanoyyNCBojmyDz00f3A2A5I5RO4idgTeEGEaY6I9oAMItxgwAbI7AxrYdw9YKrj6X1SrFFhghsapqrCE5K8mBNNLas8JAkDAj9gniWYoWf7tOXd9TUrT9BVFU3XIe3pmXtxwmNZcfe0Y1+WNE1HbxxxmqGdxAlJEMUn+piwlOUBG6aExQzh+/hJCMJRHWoiAdJpsjiEaaDc3pOlJyz7+YtzElOx8Voerj8xjpJyuz1RWuqaaWy4vNyQF2fUnYKmZ7U8p6sGzNgTJRFBmDPVjr6qiNIQraCt7tFjh5AJYzuRZwlKglKK5WJBt3+CyRDFMVkSEkpHX/cYwFOWbLFGdw12GujbEWktU9OSz5fUjw/EQcTYtWBG0uK0yaGN425bUlc1TdfxVHY87iuyLOH81ZfEkU8YRxgpsMLg0Djp0WhHO034oUU7g3ETRaZIlmfc3NxhjcaPcvpdw1TvSQKJ7yviNOXh+MDi1WuiTUIlLL/9r/83pm8wg6btNN9+946qGVBRgh/GBBI+vHvPi2cXvHj5AikEbmwJlAQr0F2L6Xr6uqFtegIUTd1yvz3tPC0jHzuOpHFKsVihqxJfKqTyONzd0e0e8dsDsYAoCPCEJA49ZFLQG59xcijrYP+A8H2M9LHSwxMn4pUTAjsNbG+vidIEYXsYK3SYchwm2sMW4RwyzKgPFQ8PW0Ykh3YEThQklM/kJEKFVHVDFMc4PfLmzRuOTw8M9Y4wjqiF4ObmAxevnvPFl6/ZZClm3POHNx+YnM/u4w22rvjDd2/RTvL+oeT29pZ+Ghm1ISsKzDjipoF1EuH6FjOMvH52yV/+2Z9yNsuxXY0ZR4rzK6QfE/s+2XR634xDhxp7+v0Bc2zwEXT39yxXa84uLontiDseiWYrzl68YpZmjNuS3HOsZgnnX/0J6J4gSfBma/zZAttXeL6HbkqGtgE/RAmHdRbTt+AMD1WPy9ecrZfEYcjb+x1Ph5pj1dOOHpNWHMsKqSe6QdNcf2C1KJgv1sSLFcey5NPHj+RxjsoWLNbP+Ktf/uXXP/vxTz+bJp/1R6XPpsln/VHq1//lb//m06fvfqWEoMgiurYiVJKLZc5UH/j9777h7u6eNEppqpabhwMXX75ikwqOT/f01ZGqPLLtRz6+/8QizciyM/TB8OJ8Rrnbo4eeoe5YzXJ0PyAdzJdr8sWSNAyQWtNXHbPVknQ1J85yZK/xrSXIFjA5usMteA6/iMkvFizPZiwvZizXOaGpiX1FlsL583MYe+ykkTLieP0RGQgWZxvaeuDDh4/IIKBsRsZp4PrmmsV6ie9L9rs9cZpQ1gOPuz2ep2irI23dYK2hyCKEdUy9JZlfkM7OIIiojnuO+x2HcodaPCPyFbcfPpJlcy5lRHPzwNAMRLOEcqroI0nwo19i45zy7jf89pvfMVpo2g6M5mF7wPgZVVnSNjXv3t8wTRYV+fRVyXF/5HIeEacJnhBEUuD5jmy1pK5qLs4WSGuIZmekZ88JPUEUhzS7PZgRL8xINlfMn70kSadTTNlXBLMUPwoZypbN6ws8afCcRSlBlK8IFueMbY3uK8zQ4sYWNzTYviVOUtIsQ5mR6uGRVRTgTSMKcNoRxClT1+E5TZgVfDy29PWRKPLwPI/OGO52O/Q0kS2XHDDMFwWXQYOnFMs0I/Z9lBcgojm7wwmbKK1jOj6Rxz5BGLE4u8QKD+WFyDDj8X5LN56SD+fPXlJWHc3xwDCe0gXdpOndqb/eNw23794gf9hfWM4KNs9OEeoiigiUJPIDpFD4vo8S4Ps+fhydDqu+Ot06aYMzE85YrIXw7AVBNmOsDnhOkwaKqevRbUkYhSwXc0xXI53Fj2IeDocfNhRiOgudseD5OD/AYZhUQLI+Y2ob8izmWRawnBeslhuiOGG+2jAOLSUpd8eJX/+Hrzk8VkTpOTsd4aRH2ffEtue4feDDu+9BD8wiwdTV3F1/pC2PzOKQzWzJLFmxXBZ01Z7u2LCcn7EONWKqeTocmF9dsr1/YJkFpFmGNBZ/GkjTAhUkDJMlzzOQAb1VCC/g/uMNdnK4caLZPRF5FsRE33QgUqzImdqRrjzgrCUqUpzRWBx6HEAIlCdBT4xNxaQNKvBo+p7o7IqmOdGfFIanQ82nmyequiXwPEZt6bVDCMf26RE79kxWMlowKsEIj2EYafaPSOmI0gyjLXESI+OUvEhxpiPwPeqhY7ffIQVU1Y5//asfszm7ZJ7MObzZ8Xf/7u/5d3/7t7z8csVf/y//M+uLK9qq4bBr+LTvCZIcoTxiBUNV4iuJxBCEEX6Y4iUzFknMPFIksxmm6wnSBNM0+J532k9SAUmeMLtYk+QZAoNzltVXP0d0OxwTzXFHpyeIYmYXV8ipx3cGL/RRUiKmHn3YMnQNGoVRwSmt1TcY5zAWnDVUux1eGKKHlofjifB19eyC9WrBcl4QcNpDSUMP5fuY0RDGEX4aUHUjcV4Q+CFxnJFEM2Q1sXRwNS+ojGOwFqECzs4uWMwzlBsJPcPjzTvuPrwligTR3OM//p//gY/fv2e7PRL4Ci+MmS9mGAP9MHJ9PKICD6dHpHM4K1HJEglEtkdYgxA+uWlYLtcE2QlnHyiB6o8EkQ9CIYb+lCC4fEFw/gVq/Yzw8hXB5hK/SFHzFcHmBQ4fPy0QVqObAbyQ6bg9vR8HwzwvCHGUh5KxqdlXFctA4SvJQzNwva9pR4OnTpWC7QDlaNkejhybjs4K6kGzrzt8z+f/5X3oaeTd/Q6RrUhmC4QnEG5CKkt5OKIHy+gkh7oFo5nGDqkCZhfP2Kzn3P3hd2w/feD60yO7bUl5rBgnTdP0GKG4WM9QDnTniOPwhJMeR5JUUVc1zvk09UigNF6gEMLQbe8pZjkyUCzPl0RKEIc+ShgiX5IlIeiRwAdpJL5whFFA1008bffUT4+EQYRwinEccM7i3IRSPnrS2GkiSgqmtj4d5CXIeE7T1PR9i1SKbau52R4QdqQ5PuGHHqFnSIsM5ymsH9BaQT0CxoDSlE3N47Hmej+wu3s8XThEEf2kYBgo765JQnUyOd1E/vyM9OULdq1Gy4DdsWGYHJcXLyk8D89NJFFIlORYFFpbqurIn/3kFakHWRwh9ch43DG1Pd2h5unxkcZ4NL2DfuS4r6jbgTzwmEUBWZyyXK4xdUWAJQyDH55HSl4USOmxPVSUdY8XxEgz4jlLkOakixXe1KIwyNUzegPSjkjdooce6wRj1+GkpO1Hdvs9WvdU+ORXL9nfXeOZHhmm3Nw+4BDcPjwxWoenBEkcMeIxTAYA5Xs0vcYJSUJHpBxJqPDCkDFJ6XXPOB342StJV9/zT7/5J7a1ZDQJn959xNM9ZTNyc+i4uX+g7Tq6pmKaRpI4wYw9dhrYzHPCMOLFyy/5H/78l2x+2KUTY8dja8g3VySLNbZrSK0hiRKC5RWxJ5nPCrLFOUEQsFgtSNMUX3rERY7rapaX52RFRpHnLJcJm2cXyKEligKU1UjfQ4UhKggR3Q4xHpHOQZAhvAg/CumPew7bR7ph4uLVlyyXK+I0pTrsediVDE5yuLtlOF5THe9oqwE3DVQu5ebdW+rywLZp2Q6aRvgMP9S75mevuN9t+ckXX379q6+++myafNYflT6bJp/1R6l//s3/9TfvPr771Wa9JAw8qqokUlBkGY+3N3x8+455MQfr8fHTDU+d5sc//SnrxBHYkep4pBkHRm9ie/fE5dmKsar58sWGMFRc334ijiN8B3XTkiQZs3mOs5bROCwKKxXZ2Tn5xRWEIXGYUH53jacl+Bm6GYjP5gTLAhnEmLHl8OEji1VEnmdki4JiFlPMChSaoT5wc7elmC9haPCVoikbhBQ8bg/s64ZuGpgvNzxtd1RlhUKjxwnlB+AHaOMwZsJODeM0nJB6cUqWp0R+SpjEHA5HgjRFW0vbtZixI5idM2zvaKqS1I/IzMTH777lePued3cf2NX3eFnI7rijqp74w2//habrOX/xks5Knh5uub3fc7Nr2G63PyRFYoIoYr/dosxA5DSz0Ge2WIAURKFPmCYYrTlbFUSzBUFakMznoCJUccb9dc3m6hmLi3PKPuHiX31BHI1ID5z1cdpQrBdM7ZEgcwQBeEiUFJiuJYpD3DiSztZIKXAYfNMyHp/wcAxViW1KQl9iqort3SPLLKXIEw51TxR6vPtwx9PuwGq1ojKSp7oiDDzmyxkqn1HWLVVVslmsEdNIkUecxRZEQJFERKEPyqeyCcaA1CNvvntDc6zw7MRilhPlK8J0gRCS3cM9bTcRZzn5Yk1YrCmrmr4umSbNOBn8bIkf59Rty9tvf4/tWxZpxCKNODvbnBCNDvzFiiLwiLIUP8mIizlSayTuVJ0REumHmKFHSgXOgZIoP8L0HViNH4QIoxF6RE49Qo/Uhz2L1Zq+LokkGATbsmacBsIgICtmGGsQ/onOYgQEUURz2BLZjiBKqGwAXkCQL8jX56ShQoZz3rzfo9Scvmkg1KTL1wTBjKapcfWOPLC8+/5bXN/gD3vmocOIgP2uxLcDmIl+NCyXZ1TNjqY+sL3b8pOXX+INT8gAgjRG2pHYTSxWS9ww4GPIkhChDVEYMLUtobA4PNI8wY49t+/v6I81q1mC6QWLIkGPI0L6FJuC/HJG8fqK5HyDHweYH+ozxjkm606VkbpETxPaTyAIcQj6cYQgJipmHO9vCIVjXzUcmoHbxwNl1WE4jSWXZUMzTFTdxGQsfT8xCUVd15ipx/dOo5pC+hAVdMNEHHpkyxVl25M6icHQG43WI5dnBX/61UvWy4Lm8Miv/+E/8+//97/nf/zlL/jlX77G1nt+89/+hW9//4btoecwCIKkIPIUpikJPYnTBgcILEkUoqymEAY5tfi+R5jP8QA/jAijhCQv8JIM5XmMzYGhr/EDD6TGjA3N8QkRBHhJyur1KxbnZyezSQkwE+AY64qpPjDWB4xTeMWCqa4wesCZ0/aLDUIO+z3GGJryyDROWOf47u6Bse/IsxDpDEWRo4eJLE1JkgIvCPC9BGM9auchg4gkjkiLBaVKuFgtuTI9w/GBRz/DConveSxWC5rjkXkeM/UNb998y8f7T7x6dU5Tl2wfH3FWsnr2krMXz5ktV7hpYr/bMfYdt22L9D2ENSxXa8JiwSxNmDMy1RVWJXjtjovkZLb6foybNPb4QCAmvCjG8yOYekSzRZoBIcDLUrAj6AY3NuDHCOljmh1uHDGDpt5tSZIZU32gedriZzOGridTMA8VgwE7jey6ke+PLY02VKPGSsVmlqGtpTeOQ2+ZhMegDYeq5qmsmKxj0I5+1CjpGIeaXgZ0wZohTDCeIqGj60+VvsQPKMKIYRyoqhpfKTyV8Wd/+jPyyHH/4S37xy3bsuNx13CsOrzAZ3V+QZTHLEKFaTuyxCeIFaZ/ZGhL2qoiThOcUdTlniyxOHGqiU7VHmcMdVVxvLthqLbEfogdOkzbM1YVWM23v/sePY0sVhvEMFLkGUXsE0mD7XqSNCObr/CD4IS1VgKHZupbPOkhhMOMA0M/EUYhSZYwdC0O2HUTndY4a6m6iao6YmxHB7RBTrQ6J88TnLPUg6Ap9/RTjZs03jDgMWGFZN8bSJcMd5/wp/Z0gRAEhEXOyx//nKp3fHp85O7+lqvC43KZsV4VzIIZQ9lQNQ2dVehpxGl9Qt3GkjhJMRaOuy31dsf2/pGy7jDBjG05MrQ9Y1VSNgNnacJFniKEwvdD5Nji+QHBYkPoB4SBR7baIKKcMEnZbNYcOs3D4yOJ0ox1BcbhJo2aOqzWjP2Akx7KjkinmVSImU6VqKZqGSfLqDUfP74njUOa3T1qqBiqGq0FVatpek3Z9vSDpux6ijyjbEdAgB3p2wYrJONkELoniSQIh5GS+PWPcWrCtLcM+/cMWvObDwPSJUy7A9cfr2kmwDg+fPhIWTccmwacJU5SJm1YFDmxdORJwo+++JLXX/wI2p7dzS31fse+qnHJjOX5BduyZBEowrFnluZEcUY8XxFlM6IgJslzfD9iPOwJvFNFVkpBnCWEvkeYhARJhnMOnwnRHhFeQHjxArO7QymDcCOifcT1B1y6YSz3YDTWapxQdE1D/XiH0yNh4PHh4w1/eP8RrR3z1Tn3tzfM/SOj8Whbh3GC4/0d1f6Roalo93t8PbEuCpZFASri0/0tP//Rj77+17/65WfT5LP+qPTZNPmsP0r9l1//57959+Htr+bLBcqT3N7cEfs+kXLcXV9TljXaJdw9lDTtwPzskl989QsyMSHdxH574Hg8oqKI8mmPbTouzpc8Oz/D9CNlUzG2LYEf4Uc5VgZ4UoLWhFFCnC+YbS4RTuB6DeOAUh5hFJK+eI7KQvxIIos5DoGvRpqbB7LCx0PgKYHSp4g+RoPuEdYRxD5+pDi8/wY5NXjhDwN63UjZtkjPZ7fbsljNmPqaqioJw4hx1AwTeJ6HdQP17olj3dB1Gu0ky6vnLNfnGGup+47JWTSOQ1XirCWOCmxbUZc1aRAiqiPNqPm4P/BYPnH14pzrhyfevnlLMi/Y7W7ZrBcUsxnfvLvj4dM7POUQOPLQkkhHpSW9trTtCWV8HgUEDhazAiEkAsny6hXCi5ivFvjzc5yXcbh75O7uyNvbklc/+YrV65e0+yfGIGF1OccONUG+wCEQRuL7E0kREXqCYbcnSHKU7zP2A8rzcU2FsA6Bh+lqhBD4gaRrO5QzCDNhxxHpe7RVy8f3D/THnsQP+frdHfuqO3V7F3Os1Xz/sMdZg3GW2WZDO3QoT+EFPtl8SR5CSs2imBEnGV4Q0HY9IzGp7/N4/8CHD9d8vLmjrBu6vkdiEQLKw4EPb97y7mbLzaFnls9YXlzijk+YrkXLgOXzLzBW0bYddx/ekgYe58sZ55s1y+WC2PcI8oJ8ucAX4OvxVFkQoKSEvsGNI3bsceOIQCCMw40DQlj4YVdFCovpWlSU4KzFjSPOOaa+R1p9MqaspUgSPj5sUTiafsD3PDSWcejoJk2YF4RJzr7tkUPDPAuRVjNfFMxsReh7BGFMFCcIP0blM2QUkGQx+7Jh9wRxMifJIn50OSOY9vzo2YKfv1qTe5q+2nN9+8ShHjmWFdM0sZzP8GIPbSqe7m6J44TL8xm6fSRJFfM4xutblBlIwoih60nDCBWkSC/C80OEHyKDCOEmurama3u2j0dcW3F42COtB2LGq5/DIOz6AAAgAElEQVR+SZp7JPOU4nKBCixK6tNIozXstzuauqWfzAnFbRwWQd/WTF3N0HaEcUZ5ODJ2LZ7TKAnGWobJ8t39nm4YuXl45FiVNF0LYXhKHLUDKEU7WqSSSKlwQNt1xEmCNzvDkxBFPjaMkMs1SlqmqUX5kM9z/uLPf8qyCJEYvv/9v/Cf/v4fefH6NVevfsqbD5/4t//+P/Ht21v8Yk0zRVh8EIKmPBA4jRkG7OKCfjKU5YGmqXmehbw4mxOGIUqADH3yzRlhGOCmFi8KMGbECoOwA5Mz+GlM3+wZ+5L46jnRLMc6zTB0DPs79NhTtz3NYc9YHxBOI9yIFfL0PI/3mL5mGkYQjq7rCKKYaZwYupayqhiniXacqIeex+OR9TzDkxblLFIFdHVP6kfMZwVOCqy2lEFOnM2JwggbpFTdSH6+YdID22HCFRuMgzyNCJTA9xVR4LG9ueHt2w/syiO/+sVPcCJCWFhfXLK8OCfNEoa2wnYD+8OOdhrZDadBzcvLc2aLNXmcEA4NTB3jqIk8yVyOpMkJla7HATWUiMMNUZ4jlUK3JaarYJzwF+fI2TlWTzC2MLTo4+6UUmqOjMcdpq1wKNrdFtoW56DdH6jLEs8PaPc7AglZHDI6yZM+VYCqrqM1BoM8mfWTJskLts1Ary1113NsGiZzMg6DwAOnqcsdQZqQ5hmDcagkZL5K8GxHkCU4FZAoSd/3TENHWsywk2WZLLh8NkP3NdV+T9cN7I41vh+wLmICXyIF2KlHqBBfW9ygCT3J/uEOhSSIU5QS2H5AmAYlHZ6fYSeLshY/Ck4XJGkGugFjkNahux7XDfgezOcpdVPTljWBcAx1D9b+sGki6I4lx8cH6uMWN/WYaTgZmVZjxwk/jJhGwzgO+ElMediDFKggomw6xqHHAZ0VPNQdKgogTlFnr5B2JPQdSRYRz2bUekS7lkNZg+f4/uYDb+6OiGRGEM8Zb9+BORGf/DRlefmSeH5G1XZ8ePuJ7cdbqn3NPIuYFzmHpyeebrd8eNxj8Aj8gLY6kghNIB1P+wonFIHvE2X56X9RMZ2RvP94g3SCcOxZZym+dXjCoa3EC2PCIMAKRRhGqDjHD3xUEONlM2SUIIQjWS7x/JBPNw88Pe5otAQ9InSPdqCdh5SS/vo7wCGjBGNPeyzD0FLVFcliRWcF7969x7YNbugYmpZ+1NTNQN1NaOnx6WGLUh7KD9FOYJ1Fa8OkR7TWOCfYHg60fUfbdsR5hHz2mjTSrNMe6SdcbzUPdz2qrGHS3G5Ljloy9iN5EjEa8KVknifs6x7hx0QKQuHYnF1wtbnAtA2mb2mr+pQQHkb82ZIw9JHljsjzyEOfIEjwvRDpJKbR0HRIMxCnMVGS4oUJU3VE6IHp2PyQiOqx0whmwJRHdNMSv/w5Ko5xw4AKLOgJwhQ3NOjtPV6aIqzGGM1oBP0wsn96oG8qhq7Dhglvbx457rcgfNoedkdJO8WoKEPp/mS86JE4DFienZGlGYEnOZQlyWxBtFnz85999fVffvWvPpsmn/VHJe//7z/gsz7r/4viKGO1OsMJSV2XCOFoyo4diqru2e1a7nd/YJHPuLy44OXlc/xRIwNJV3dEUYjvx4T7jqma6CLHy2cvaI8lUhv6Q4nneWTLmLrpsMDoPJYXV0QSfAz0LbEf4PqKQCnoG/zYw5iBYZiQGsLIMJWWYZrIzjLi1QLXNZiqPB1ahWGaBGYY8SKPWRLRHXdMfYvQjqEZKC5+xGyW893Hd6zyS7pxwFMhm7NLvv3uDfXdlvl6hRAeYeQjWp8kiVnrjD7WNMPEw80TXzx7RRAGfLq9xY49q9Ua5Qdo4aFHS2d8ZBCxWv8/7L3HzjVZema3tgkfceznfpumsrJMUmILVAsCKDQgQNBEGugWNRJ0HQ1J6GY3i2QVi2kqzW8/e3zYbTU4pQtQT4gC8rmEiH1wYr9mrWv6tz8xe/WaJ+sJXrEZRtbPb4jlgRgNQ3skLiv+9PXX3L55yzKHtrc4VSFI2G+OpKnCuYlFprkuNEWRo5KUdvLkKlAtF8RygTt1fNxYnt6/4/bhyEUmePbZF7x+dsP16yXTsOFp+8DFr/8bsiRDLtd4oen2G5rLFQwHtKuIIaJDIE4WKQxVUzNafZ7EcQ6V5CS9oe8PqOUCmZQkhcZNj0zdjmA884sl8/3A7//lHb098HYy/NvVnLIoGfqJp6ct69WM3kb2+x3J0xNv375DKNB5RrZc8bA5smparpYLfAgEFwj5nOfrZ+zubmnbkSASBi85jY7eBPannmJmePPung/3B24Plk+/+ITF+op5kWEXDbgbLkTBN++e+Hj7xOzP+9ESy0o0DJsnqHKG2Zzt4UCVJcSpJwqBzs9qRdUdkEKgqwVCaezdRzAWkRcIFRCqAiERUuKNR6QZZugRMiFtlqTHAzevP8V6z2kYeV0t2B5OvN7sqSQkRLwKWDMQiex3R4w1SHU+k30IfNj0JFnKJ582zBBcZpLLMidERT8Yhjwjsf9MWq2ZJSs0OVN35KtXL5gVgvmLL5naHX//H/6Of/9//Y5uMLRjxMkC9+d1lERLdk8PhGBI85JyXmPjQPA9WjUkiWQSkSQrGNuWssgIKkUUNToKnLM4oTHjiLITeZaSasX6Zs3dsaOpYVHXzJ8/Q9Vz8qRm2D4y/v6J5avnJJlCzyosCXmek8wWRKEZeonxESkzhAM7jORVTXsaUEqQFQlTLxiOHWUMZDFylSe8PXZ0MaLHnrTQ2Kc9QmdniGemcD4AkGU5QefkQhJDwNmBh90T0bTUyyVZIjDl2dxSGEuzXnB5MadtH/j49pEffnpLsWjQC8GHsOFQVbz67/9bhI8YUxE3kUwJ7NAxTCOdcSQ6xT7cMfQnrDEIbzjqa7oQuV42SAJNoenvf2DezCjKhIhBCAvBkDXgYk0vJuqrGZOZaE9bxpNnfzqhlCbFkc8WjG6iGzs2T0dmxw3zKifNK5zISSScup6snNH1E04o+t2WGP88dRIjXdviERBhsI6HzYEkWaLkxGVdMzmHINB2PSpJCEExiwavc9KsYG8jkzWYVHPx2ee4zQHhU0BSNJrVogI81xdzfNdydXXB8fjEj999hyAjVymvP33FYbfl+2++Zuw7ZlWNi5HNYDDDwNXyilldsUgl6XjA+UCSZ+hgsccnZs/WRGsguPMKT/uIDhbweGvRVUN285pwuEMv1+j5CoQgDAf8KLHWMPUdQSZnPlI1R8iCat1jtg9EEkhzxsMJKUc00LYDWaL54mrJ0Ua+v72n0BIpUrRSGB/ZdT1XAhSBtm+JAtIswYbA6Dy7ww7nHLPZgiRNmS8qxtPA6c0fuCo+J8wKprEnKWe07Uh0jrKpaPsRazqCOPL4cEuKwfcdwXvKVJHhUH6ErMQGj/MeKTUDCXKAurPk1QJR5Mg8YTydyKRG2gmZpZjuiGsntAh4MTEeW7yNpJmkGzdYJLOqQThD3A/orOByVhBxmKkDUqwHPzqkVmgE61lDO7aM/ZG26xAKXHeiXizx3pKkirIqETohSoVSgvViyS8QlJnEOc+A4qntoGygKDk9viOLC0Q4sQwXiLRlPS8wcc3u8CdW6wIzXzF0B56OHbLo8MeexFsW6zUirxFpTpYreDKsV9e8unhBs65ZzlMCnre3f+Tbt2/YdpHLq5xTe6Rve1ZpTtsNrKsFViRMURHagWFyHCcYLNhpZJalWJnTO8BGpNSkRYUnISiFHTosisFEcilQ05F5PSeakSRLKRaXXP363zD/w38kzVKCzOnbE7v2hN3fM3uRM6uXGF2jXSBsHohKEUNASMVkDLbrmK8uiErz+9/9Z8xxS6Y0PrSUzRLnA3me01Qlo/WchgkvE7JcgzPYaQQpQUnyeka7u0eKwNKDHAZsHEiKBjOVfLw9Me16VhfXWJVy8ckXvH//kbvDiTJRzBYLTFURzUQ1L5FScDwcuH52xXKxxvYdZn9kf3fL4/5wnkTUCctE4U+785qc0mTL18SpBzchJo3KZ+ikYvjx98htRbZegxBI50gzhfWR2B8xzuOMRVc1IstQzYKYKJwJSDyx60AnBDUnzgtUesD5iNCW0N8ivaJZzLHO4qcB2azYHiyz2Zyx70i14vH+HilAdQ6lE1I8tj/h7Xj+bt494lFopTGT5eUv/yuK5XOcc/9Kt4ef83P+y/Nz0eTn/EUmRMk0GaooUJmAaNgfeqo04/HhyNuPezKVsigrXl+8YFYuUVHC6HEmUlxdYu7v+cPXP+BHy9/81RdIY+mOB/CBTCfsjyekECwWK5QsUDrDTz3GGbIsxU8WOUuJDoKx2EQR2yM6nHCJghiYjoqkVKRVgjCR4XbEtzuis5SLNTFGyHKUEkTnMYcTxHNny5sWygXHzT1JhJvVBU/bA1FLdpsnZk3Nq+trWhM5DobD6SPZck2MljTJeLFeMkye1hiS4Hl62LEUgma54g8/fM/JOS6UJC9KWmPpRkezeomcXcFyxEvY247Lmwt0U3P1+ac0KuNwPJI2K97dbzi2PVVes2tbhMq43XT4EMmiRCYQhDyD4JxDpTleSgYzcvPyGTafcff+jqddhxcZF598znrm+ezXv+Tq5hPkdKJ7esvD056bX37JajY7X8onQwwdVZ6RKYj5HD8czuaQombYPZBkCTrT6DHipSLEAGYg0RnD7T2ZEVCWxCRB64S+N9go2I+Oct5wtZoTBofbH9mNE9PdPW6/5+3kufz0C3KhSdKU+4/v6A8bkotrtl3PKliEDzw9PFEXFUTBafD84rd/w3y1Yre758u/+ZJ/O/t3/PPv/oHu6Za0qFgsFkidUdYzrq4dpB3dbkP6yUt0MORVwSJo/v77B27vHzk8PaKHllezkss8oYqOm1nD9HjHJAV2aLhKBMXlFWQ5p76lUZIpRhQSOznSsiL6gP/4kexqTdjdwq//iigkMXgikagk0Vm8tURvyZdrooDZ+pJU5PQB3r359yTB82y9QgBeJeyj4unUIfGMQ4eLkrY/szmqixtezC7Y94Eq1SihCSHgSDlsngi6w1ZHHg9H7h+fiMlnvFw2yP4jeVZy2rVs7z/yH/7un3j/2FLlGad+oKxLdJqTZzlCxLMNQGbU8yW10vDnEWyZlfjoCdaRlDlTayl1jkxSMCNm7Dm0EyrRVEVOphSHp0eyek5Kz2yZsVi+Qk4jgQ060+TzOcXiNVPb0j0+kdU5se1hPiNNEobtE+Nk0UXG0E8ElYJS53dgJ7ydSIsMdzwwdT399sgwOeZJwkWd8TgaRhfpJ8/JeoqiQApwNmDFmffTDSO5mMiSgnq1JoZIXRbU6TXSTZz2G9KLK7QWuMmhouXZuuJwPCKt4x//8B37/YCJkZv5jOXNBZ+phOF44OHhibudI1EZxo4Eb6nqmofHDZvDHmct0k8457heLchnDSFNafdPLBYzYpgockXwA5Zw7vBnBUIXTLFjGPboYcs+K6mKHDdN4A27px3XL17SrJZ4D+vnDct5xk9vAqe+JcsUbXtknHao9DwhpJKImM/otvd4ZxDR44SgXq44TBbbdUgghsi7hy3VYkGWa/bHE7lMCc7gkxQfIs4Hos6YXEQwcfx4x81vv+LZyxuSKIlekveB4+kBU2QIkTMNPc7OmDcNRZFj2pGH+y2ZVHz6+gX3P3zHx7fvuXvcMThH24z0zoNSZEnCoiyYqQj9ESsTVLnA47HtnrooIUZktIR2S5Yl6EQgZA5SkS6fIdMChEapAtkf8D4QhSRMLU5oxOol6XWJ8CNme0tSzvA+IusZ5u4N6awmW1/R5BXmeEQoeX5faYbdHPhqVcFQ048Dw2CIUjJ4qFWGUIqiyDidjhihGK1jsobJWKx1CCFJ11fENGU5y1B1w9u3PYfTCVVoiJZw+EhNpMxSnDO8/OwV14uSw4d7+uOAyh12aBmGkcOxQ0dH2w9UjSCtGhb1nOOxxQfJb54/4/7xrCTPyww9r8ijxEw9ioiZHDF0+GkCAcYPKKVJZIZwghgMeZ5zeLonFRIIpE2ku7tHCUuiEmJa0Lz6lKnrmNoebxzTYEkLCWlO+mfT0yA1bjLYaBDizM6JUlI2C4yzmKFDBMPVxYLTYBg6Qz2fsT/suexPiMWK7aln2zlm159iTwdOw4QsSprFgiRXPPvFr2jdO7rHA1ErRFoixxbvHEM3kSrY3t5hRYYzgb/9X/8XLm4avv7xT4SnR3xMiUiKTAGCUz+RZAWPh4FXs5zUthx3O8Z+wBx2XFxechoVnQFpPD/sDpR5SRIjcnLUeU50lvnFmqZIEE2OSBNcWlPXxVn1bT1lWeP7luFwYuwnyqZBZSVOF1ysVxQp9Lst+9OA6HqElxS6wrVbhAyMkyFESKVke9ihZ0vysuazX/2aw/173vz4jmgshg4vEgiBMtMcB4PBIGRAELFmwnuHVBphHCpNqJcX+OmICwkfv/2eqgq4RYWJhoEFSIcEEsAfN7Qff6IfJlySkHgHMXI8tYAgTxM+WZWs5g3J1NIdHcfNlhAi0jv21kFaoawBIRA+sFytIQTM6UDIE/AjU7vHC029WGFPG6bNE0mVkTY10y4gkxyvNFmdky5rVDMnmANCRsJwRMZAEBlm9x6ZJcSkIAQINhKcJcRAkhT0H37Apw3NfEaIDZ4Eve0p48TLm0tml1f8+P2PdF0LKkNIzbTfoJRi3w5M03hmX+UlxWJJtWiIMaJVeobI/5yf8xeWn4smP+cvMlFLRBq5vGjYHw9MPvBwv+FitiKgqLKMi8WSm+evUPkFo5ghswpvOqZp4OnxwLvv39H3A5+8uOb68pJxOHL74R2SBBU1TV2wnC+QUYLtiNPI1PXM6uoMcpwcoV6c9ZXekjUzRK+QYSRbzCBNUPMlaVGBt3gfEWYkv/wU1+/ojyd8dwIVEUlOjH++3IuM+fKK2x83JNpiDyeSvOLVzSX2wy3vnrYEGdEqEq0lSStWWcFgBhSeKivoTCAvciYciRIkWnPc7yFV+ESxLAva7Y48EaznDQgoFitUmuDdgI8GKeA3f/1rslnJdrfFBcv9+3vevH9LsIanhx3T5DFhgLElU5CmJXnd0B9Hxr7n1fq8v2t9xIeA9pY803x/u2czHNHZDCFSptFw/Jdv+eJSMd694f12y+WyIe0CN1eXLMs5yg6ItEbGSK40MVFEEwgyJcr6bAHKKkwyohNNcJZoB6b9nuLiGt8fMKcTw2kimUXEZDje3yOqCp3VnNqWfhiIieTy5SXv3z7QAv/S9nyVNDy2AxvjuPCG+c0V+92Orj/R1AVtv2coE45DT5NJ9vuOP5y+IYiEav2cv14sCWJilPf8D//j/4Rwz3h8/4FklnK5mlMvr87a0mPHt396x093G66unxM474PPlhd8uP0eF6CUgt9ezrBdSx0jhdDUaYqSmtWyIRNQKkW7PRKNZVKS2WyGxFHojEQnJGmK8xZZlQRvcQTk6hoz9KhmgR8HZJYS+g7XHRB5hY2CkJXo50tWq1fsP7xhurtjXpcMdU1Umvywp1nUlEHztD9QaIUJjnYw2BDJqgbzdM/Fi5f8+P4Bs25YrjQ1iiov2aQV+80jqbrB+JH58khaKObFiBhHvv3nPcvFmh+/f09TlXz5ec7TrsdtW3rrqKocY3qObQCVQpSctntOU4/oU776YkYeAiE6iuasxKwXFyRZBtYxDBPRGuq6ZBgMeIcXAtLzGHjEcXVdY4YT1cuXaJly2jyRJpEkL1i8vsa9uMaejkStiEJgTgci4mx58R6hE0Dhg2c0HuU9UsDUtUQ/YoNAVjWHx1tG21M1NfPCcLfvEEqSCAHBkxJxxlJEQ1k2HKIiqgThLakqSOqSLFPEpCAPnHW0tqW8eYG73aJkRArF/cOO1zcL6mbOw8HxxV/9ipurGwSW9mnL9vaOx4cNh70mTZdMo6HrBg6HA/0wsN88IARM3Qkt4POXN+RuICFBpxolAsSA0hohIG8q+sMBGyypjiRpBG8pV2uyPKUqM8pZiVAZN198gZYKLwQ6Bowd6YuUq09foIyhvXvAGsuxM1zfNORVxm73RFataMeB8XRACMFme2B59RyPICtKMmPIkoF2GHk6DcSi4LfLBRKBFZDevMa2O7KxJxMC37cctj3v377l+WevyVJNfzgSyoztu/fsd1vM4Hm5zFEqI/izSak/WWbVDKELNpsDenzP9998zbd3DxRVyWI+wyN4e//I88sVq7pgmWu8sYzWEGXCLC/xwWG6lnx1gVAJRA92RJUZKmnOTKv+hMieUPmMOBlCd8CbHbJe4VUBZU2crc/F/kwRRkO0Lf7YYb1EVyU+rXHTSPSe7f0deZKQZQVqNDjryBVMZuDzizkTgvlgOIwG4z2r5ZztZotSCUmqOXUjIQaMs0idoKXGO4M5PlK/uMAFy7wqubic42Tk7v1bXnz+GaXWxNOJ9nCiaBo+/+SXrMs57/aevNZMtuf+ODC0PTItGaxldtEgnMXawOnUM44DjYqYZYGWkTrVED3ae8zQ44wlK3KEsYxDfy7cSoHwAh88rn1ESUFwltaOeCRBVZipIx63rD/5hN37e+oS3Niz+cc75lcrhJMkaYMfByYrMRgmawhnwS4xSPpxoCg0pjNoF5g1C9Iyp91v6UZD17aMQ0siNH3QbJ82XN6cmOIPXL16QXL5gtv9DtG1tO2EmtW8uLok4DHW87GZI70CH0mrhjITLJqS42D5wz99TTGrqS4/wWKolykh9vz04xsus4yXz655evsObMpuhAmNn85q3u/uO9JT4MocmJcDL1cV09BhesG7D0e8KhDG8EIadJKwrM4Q8rquSPzE2FlsiDCN6FxjrCdfrjn1E3l7ZFUplNboqqF72BNGS1oLpItAYH6xJKYp7eMtIUnI6xqiIowWO1pUVRJ1yvHxER3AZRlJsyAOA59+mTOcjnSdxY0eP3X4CO1oUFojVWQYPCE4iGduXVpLJILLV68ZDxuSskHrhKgUXZjjshnjwwdSHzm2PakQPLy9xVh7LgLGgOk78iynyTOC87huhKs5UmlO2ydMP9JNgWm/4XA8EeZragJiOFJe3DC7vEJ2HZlM0FmK2T2hmgoRNM4aen1mG6UXF6hUI7QnLxJkMSPoDBEdduqJREQckblm+PATev0CKRNEL9C+J7oDIQRiiAQiPgiULAnThPHxbOny4Qy3zySff/ISdEoXFBeLmlTB4vqGBEs7DsyznOXzT3j//TeE4EjqhLuHe778xS84bO8Zs5RfPvvqX/kW8XN+zv///Fw0+Tl/kZlsT72oSPMM+2gQ54lr7DCh0FzPl1wur1hd3zBOAzknJiMpo8EYy7g5UiYZ8nrFi5c3+Gli83CPGSaurubkeYNxHjtZZDAIYOpHEp0QnKc99uRZDg4EgnA64YNH5fl5sqHryeoLhuMWoTVpNiPJU9LrGrt7RCQg0kAcRt784R9IpODii8/wSY2zI1ZI5i8/oW1b+r5Doilmc37x6hkmGr794Q0hGG5urvCu53gYqYqCKAObY0uaF0gRkFIxOOiOHVdlzWG7wRKJRcaiLOmeHnm+XmKSCoKkSTzT6fG88nH9glNwfPft10TTMpzWqDRhOB2Q3uGNocgL8ihIq+XZrtAPdMO5o79e1szKimk4UJYlx5jQHwfMcGIMmpAvaN2R2PdcF4L1MkGZBTiYrRrq1TWrixmZlKjRYG3kNGyRIlDmBUJLnNDY3QPucCSpCyadQj1nGo5o68+uBmcx1kAIiBCZDh12fS6s9I87Kg9pcYndtzwde8os4+F0oguWY/QoKfiuHTjFiFKKdw+PPM9rTqcdRX7uIpJkyCLn4B1pUVGohPcfn9geej7/Vcrt+x+w5pb1zHH3w7e8+faf+P4//T/89levyZP1uVjy3U988833fLzfcTi2rC5f4JKKdHbBqftAbwXL+YzVzZL90yNOVMxmc65WS/LoSZOUrKzIvCfujzgX2JUZ+XLGZrNDzEuMhGJxRVk6tICkzBHpAmMN+fUVMksIQEwSghBE74nOI0Mg2AkTQJUJaTDUzYwQBdf9gMoqntqWC+dIRCDLaxZlxqE9P78x0ZjpvNYlvOXu639gNZ8xXKz5aUjZffMDv/qq4N5mDPoZqS9JKsWxNSTGkGD58Yc3IBPGSfD1d+95vH+kni+5XDU44zGkTGOHFZ40WFonsE6ilOaiVBz7iay4oWsP5BKMdSzW10TvGD005RynR3SsUDKhqjTWBw6nA0Im5wtPb7m8WJAVAlmkRF1S5S+IYcQHh7M9umwQ1TOSxRLv3Fnn2LeYybJvR0IIqEQQRYbOyjOXx050xx1lXpDVGXmacjl6vvvpntBPvJjVPJnA42Q5jZYKIA4IpRllRjoO59/6OJJlGVZo3NCzWNSslw1jO6KloUjA7O+R3T2L588JIVKkOfa4Y1kX/NUvX5OXM+pizubdLYfHPafdkfc/fCDJn6FUYBwG+r5jaPc8PdwD8azwBsoiQwaDGTpMVTBpEHnNaZxI05S+b3F2ItqBLCgW8wuyWcWzl/W5O+osaaJwKifJijPvxDikSolRIEVJsEfqq5uzDaVZMp46rtOCY9vT9nsmM5KsNGq9IpUwHk+44NgfDxhnsc6h04xESmqdEqVkdzpxX2tWVYGSjrC/Ja0bmqYgsZbHkPHHP37DYl4jwkT34S2TF0zHjnff/ZHdZsOyEkyvLliub8BYmmqJHjKWxYw3b96w2e7YlgV507DoBl5dr3lqe7b9xObUs6hLfvH5S4pUQRBEJSmritgfz+YlqVBZgdQJYRxJZwuEypB5BUKB97j7d1AuCTGeV+7SK0JeE3UNuiBM4E8bzNOBaC0Y8O0d+fUr+mxF8Yvf0P7pa4KZqJs5QUi63YZpGGkuruiHiTw5r+v81aev4faJ7u6Bi8s18/Ulduwxw0SVp+z6gaouEUpxGibKes5w2opJgb8AACAASURBVCOxjEMLqwpvBy4vFpxGw651uM0DoFABlErRAmJ7YrfzLOolTnR83J/Y7o+cthuysqGZzSmTgBt2Z7ZITLDTRLpsmEZDFjydEzRNyTQZIoKsrvE+YiaPLufYYSKaEeEN1jgScV7nck5ikFSzGX5yeJUTZWTzeEdaZhzbEecN5Akf//QT8+USJU+kuiRYj65ymvUaO44I5wjkqPkKQUC5Eecs1g707YDxmotXv0QfN4w//YAQAuHA+xmj07z552/YPj2yev7E/uKa5XxGUtRocebKDMOAdh77uGH/4YHixQsaYVhUKYPXnAaLPx758voZ2I7bDz/yf/yf/zuV6Nh+fOTzf/e3aL9HRIsSGjv2KG8YjaEdBcVMc1kW5+bLAMo2UF3w7fe3tEaS1ikrJSBGCq3x3nMyge5gSApFkacsrq5opCUmBXpxTf7qC27CRNo9Uc4rYnDI2RLx1a9BJtz98ffIYUsiI1mZUhOp1hdMfcf+NFJpjRkMzgek1CgJ3emICharFEELpmnkuNlzOrT0UwCpCe7MJBP8f+/ZY+1Enp3/z8fRUoZAU5UgFc9fPmez3XL57BPQKUNIyHwgRMl8cYUwHXd3D3g7cdjvsAEs8nzGhpFuGKkUzLMUJaDvOzA9p2NLNwbGrsX4yG8+fcV4+45hFNTGMo4bZmmKdxZnAkwD3owkaU4qLSpbwuoKsb5Cleczp6TD7j4Q4xNBaITQTO35t6GyFDVbIZTGW0f0OfbuDUku8WbCI3BBQlpAmlM1cx7fvUUmOSHJ8UIgUZR5gVMZm48fWFYpRb5GpZqnuw/4aaIWgkZI5rMFXXeiSBKGJGWyjje379CpZv7sf/5Xuz/8nJ/zX5qfQbA/5y8yv//D//2/bbbv/800njtO3kXSNEf6gBvOQLkvf/spvlzytPuJ9aXl+esVZn9Aa83D5olT21KqlC+e3ZDGgGl76jRDJQlDsAgJIQamwQKSOE7gAy6e9XRNvUA4i/IWug6pwDlLcbmm7yd0WqKzjPHhFhU9IPD9hO8OCBERRY7QGWVVossM7yM+KEIAZ+1ZQVvWOBzTdMJNPcFOFHlKkmUcDifevb9lfxzojWPqR8ZxJCYJZpio50vKZ6+ZnOO02xJjROnIbvvA0B1xZqQpFOt5w7ZXlCpiHj/gho7F1RWjEESpOJ12VEVOP1kurq/YbJ7OwFBvyFXEjgO3Tx0PJ0NAobUGoXh2sUL7CWMsLsDd7sTjYeSpswyy4O3mwHA6sCxSXq9nfHFZ8atf/YLPfvNrbm7WLFYrEimJY0u0E7Y/EaQgiojrOo7HE7vbdwzHI2bqmcYR4Syub7GnPViLOZwwCJL1xfmZC/BEXBTYceT2p/fYyZFIiUsyvvnhLYM5X6pa6zDO00dBFyJSna08EEFIRmM4GccYI0mizsyQokR6wzo5a4sh0rY9fhxo3MSz5oIffvcDxw8fGY9bqkKTFzm3j3uMB61Txr5D6JRf/PorXnzyCcv5gv54IlGK2o0Mhx3jMLG+uOLV9TW1ElQ6QTtHPPZkIdJkGalWlCGQCkmRKqbRMFlBWuTnqYA8I0lTRJIgi/x85qIlKSs8IHRKiB4pJWFo8WPL1HeooiDB4/ojtjtS1jV6dkF3bNH6vKtf1w2b/Yl+GBAxoLVisA5rLcFbSnV+ju8fnqgWK3786SeGyRJ0wR/f3BNVjUxzjpsnEhlpck3bdVTNituHHd99+4bTqWd/7Ol6ey7USc3kHF3b0vcDkxconZGlZ43m5aLg+TzFWkOaZqRpirUeS4YNCi8STp3FBs2unfjh3T3d8chmd+Af3zyy6TxDSLFDT7VcktVL0romXywpmhpdVZAk5LM5UWrSukRXDSiFkBIh1BlMHCXD6XDuakow00iR56joGYYBpRSSgNTJ2SoqNZMPJFnKwXlsCEwuYKPARQkqQSkNeY0oKoLO0WlOkWkSLVnUiut5yuUyZ75cIjQkKiCTlCpPUdFz+8OfKIqax8cNLkju3tzSPR4QeD7c3nI89DSL5wihMc6xvXuH6Q4YZ85GDe8geuZ1SZMmZFpR1iUCgZKB03HHuH9Ex4G60qyWC1bX16TNAoQmr2akaU6qJVm9RKQ50o74aULXK9KyRquEvCwpllfkbqLIUjSBZrYkbebUeYoQ0KwuCUrRHfY8bfYU60tiiOexfaUJAqyAoiiwNtAsF6RFwpQWhGkCrVnMSpSGRClkknI3TGSpYnW5plwuePj4hvXL1zy+/cD3//Q7tncfSaOhzBOUCPzqs89YL67wo+Vxe8+H+zt2uyeqOuP6xXMSpUm15rEbOY0G5yx1kXG9XrCe1RTFGZwpnGXsO5yxCCFZry5IoqfKMpK8RFUrhC6QSqPLCiHlGSo6uyDmM0JS42JBEMm5uG/P8Fy/uyPLM9LFJdYHTH8kyQpkdl6niGNHUIrD7gAxoqXERoF1nuAdwXuCVOTpufNeFAWXV6tzQW0cEErx7nFDBKSC+fqCtCyo5g3zecnVi+fcPLuCaDl1AyDJmxl1ptE6JU8kIio++fRLfvubX5Now25/y48//cBuv6HfvMWPEz7Abn+ibztiFJgoCUESfECJBGUtdZGi8rP9SIRIcJHucMQMA90QOB07tEwQ3mCGiaGbcDESgiQKTe8ku/3AftuxGyc2+46nxy3jMGJHg/MG5z1CgBkGgoDoHM6MTKbj8emJGAzRO7y3xERwbI9n1Xh3wodIsVhQlAWFhsV6TjOvzx1/M1JUM9pJ8fj0xLEfub1/ZLSGx8MOksDdwz3bhz1De6JINUFmOOvJkFwUmkxKHJLD4YSWCt3MKRP40+//mW/+0x/40++/4/rigt5K/vN//B27Q48Xmt2hwzpP1w8s12syLVgpx3WTEXVBpxb83be37A8d13mGN4YMKGIg14ooNOXykpifC/vOWpoEmHoQAicSZjqi+z1NXZBlGmF66mfP0FVFcfOMfD6n/fEbRHQ4HwjBkxcZOstI6zmnY0tWV5hxACGwZmR/POuu7dBixyMKi3YT3o44F0ikIHrHMIxs2gnjAtb7P4O3HVk1Z3V1Qz1rIHqyLOGTTz/Fmp5TTBDZgnkzIxOReZZi+p6+7dl8/ECeZezbnsmfGw/2dELmBSIG3GTI04RXTY4KjsFM7I8d/TjQTYairqlcT6EiOnjsOLJqGvKsRGmF8x6kJGkWJMsLipvXJKsbghR4Z7HTgLOB/vGR8e4nwmnHdNxi2p6sysibGpEm4CZ832H2D2BbQjCcPrw7F5HSEtIcdEoQAhdh+3hPOxm8mbBTj/WBzkt++PY7dtsNh/2RbTugleJ+sz1D7yN4O9H2PVmSUGbp+TtBa3bOEHTK3/z2N3//t//1Vz+DYH/OX1R+njT5OX+R8cZw2D9xDIHL1QXLzz7j7Q/v6B52yCLnYn1Buih5f/eR6gK++Oo5q7Xi7dsnpt7T245ES56vFkQfOIZAFBHjAn6cmIInTXJSHUllinSR7ann5voZHsHi8galFCJ4fFQkl88RGnS9QF29oMxbsC2JrCEZsLst/X5DojVRnLvfnkjUKXJ+gy4XDI/vcMctJOeP3+PmgbzMyYSimxxjuyGpGvCe68WcsizY7I9sd3vayZBmGUmh6YGj8+isJpMJl82csag4Ho7oNDAd9zSrkmF75Lp+jp1OCJvQDw5zOvBiveD+sGN5eYlMEppmxsPHt3TjQLG+5NPf/DVv/uX3HNs72m5gHD2TC4ikJC1KRLBUeUKhoe8d3gk2bcd+ivQWkugRwwPXTc5/94vXfPblV7z85HNeznNqBWVZEk47CBGvJMPTHQgYugEfJUFrwjCQzGbstzuUUDTzChPO4FKlU4ZhROcFKslJx4H22J8viElGNquZbESSQFSM3YRIB/KLGXVVsu96ZJIgpMIBaSqJGhJ9XqmwzrLZbcnyFO+h7XtijCwvKpQxlEVOoiXL9YK6qTkNgYDg6uoZL158SVO95Oluw+OiJtGR4xgAQVHkBJnxS6UYJ8vzmwtAkMTAPEvRdcn9dkdeL/jl6prcWLTp8T6w6wYum4rlvCEtC+o8RxcFWV6Rr9ckmab/8AYHmH6gubhA5yUhSZGJxsWATjO8HbCnHQ6FrhqCUH82GwhSJWmP7+m2G5ZXl2cDlJLosqHo77i5uqBvSszYEWXCfD5ns9uglUYGwaKZ0amOUkKpJYVO+PTmGcFM7E8du9bwfnjLN3/4A2PX8dkXn7B9fKC8zKira/rFCuEdwYxIIUEkbLYnZjNFVdUcBoubJnyMKAG5EkQ/0h0OFIuGqq7oupZcR2ysGY4d7WZDmmSMTmAmh5nOcM1FXXB42lAXCS7Ci9U1F1fXrGcJdRKZX9zQj550vsZZS3pxhYqOdn8iZCVKSGx3QKUO586DAESHxpIlkVFFbLBIHynKEj+0yLQgLwz9MFHO5wSRcP080J4GxOFEphOcVPzx0WNjxCJJk5TjaCAr0DEy9d25aKkCo/FcXdSk+sx8qqsl4+mRY1BkRU4qIzI4rAu8fb/jE1EztSN9955xsqQqIQ2S4zAyBKiCR7kB3265SiJdkaK1Pq8vxUCiwNuRcRzYEqjqAhdHUpeR4kjzlDTLqeuKcrlApTlFPcMOAxKNjhrfdySzhFSADwlTjMhmRWgPMPZkzZxMCGLdILIa14AKljBOWCUoyjnOTOine1xTU/7m1/x46Jn0FqUk4zSSpAW6N8TouZrXxOgYnSIXCUeZ0CAwPjDTmpAViLrhJsvA9cyfv2bXHpi6jtDuCQgWZUoYcsbRYPsT0nbMmpJZveDm9RU/PVzx63nN/E//gpoMi9mKOql4fHzk8dBRzOZ88fkXxKmlO3VMdYmyJ4SWCJ0i0xI3DmglIThECFCsCOUaJ3NUufzzBceiFjMiHksKJITgCTESQsCejqhEo4sZ1bMvCN0WoTLqm1/hui3T43swjtmiYUo/JRtGYhBsfvoJpSVpmtIeD1RVxWQ9wzihheCX15c8tR3TqcVHsN6j9Fk1PvUdKtEw9bz4/HOq5QqpFDoYuvZAlScM3QEvc+bLNUlytuYob4lGkIsaBk04jnz/7R95vNug8oTNEOkHj5CW2XJB4g2TD6SzOe1xjxtGlAtcPVsTpGSwkXy0DH0HzqGERARIM01e1hwOe8zpRJkX6KLh5CxME1PXMYwOHz1JkhNjICszpFK0nWXEkCcCbwa0rjB9Rxkk5as102GHmxxpIulOB5jPmLoRd9zQh0haPAMEY99xGg15opmmiU6lhGKBFQXriwtOw8QPX/+EEilpUfGwuWf4uOXyKsWnRxCWMHqe/b/svcmuZGmWnff93emP9bfz6x7uHpGRlZmUVMkiihRFURCkt9BIb8cH4ICaaCABKggCxMqqyj4aj3D367ez3k5//kYDS/ABSoNEAr4ewGxwrx2zvfZe35qXuL4hiwzGC/CW+WKCGFqqzQHfVTRS8/H9B17/zc94ff0C9p7pLGWST/nx+48MVqBNRNARcVbQdT1lKZFC4mTMQztQM+CjlD9+9x6cY64EQ9+yKKcEL/BxijERuRKoAMJbqqrBjpbdsSPVgUx79GmHnmRMX7xA5zn9/hGBBKGRyuCbmnK5QP6rf42tD/SjZxwHxrY6G3ZXL5hmU7rnO6LJiLUdOniuyozt/sDhtKVc5uw6xdgJjDIsskDbDjgBQRq60eEQ51Y5AQGBtQP5bMb1zYqhPiCCJV8seTud0Kx7hElxXU8sNcfd8U88p0Bdd5zagYvVEn1s6PsBHRtc1+LtSJydfx/1w8Bh6PAqYlM3eOvQSN6UKRJPX7csL65RfcNp/Ui09OSzW9L5jDjJQYBJM5KswCQJ3lpC3zGedudn0ukRPzSMwRPsANLQ7u6JZ0uk0SgpcUGiXE2Up4jpjOT1V4xNRcgKbNchxUhftZgkpmtbgo7oAvhhwEkYvaUfLftjxX5wmCjG2p4gBFYZ6n5gGAeMOV+uVk2D9oFsMiEMAzQVsqv+bPPDZ33WP1efTZPP+otU3/dsntfcXCzI44IoysizlJOsCbZnWqaEQSMPT7x4u+L2+g15WvDB/4H95hntPZEIhBAQacnx4ROu7YkCJFIyNAPFanLOeDrH8+FInhUgFH4MSJOilEYagTYpJp+gk+hshvQ9KoqwR4uPR5LlLf1mQ1aUxJfX9McD2ArXtmA7ZGQQKiKbX7PZ/wHja2SaY3TMab/FBUWR5RgjePzwCSc8Nq4xkxXzsmQxL89Vmt1IFwLVqafrB/qmY//pnnyakyUZj+tHbH/eYqtguV6l5+uBKsKSYbxjuSh4bM4NAaX17A7PdN059/30tKb6u/+bf/vf/iuKRNL2I8KkCDsg/Xi+gBEBrSAzEhcUz6cBvONU97ReoZICoeDnc8N/93bFL958wfz2gtTtUXuNnM4hyDM0cLS4PiCn14SuwZ16oskc6wVNP9LWLdHF6/M5rRsZQ6AbYb68JMlXmMSgmiPKjfjdBu8k6IhkfkG/PRsD11+/pdofGHAoN2C9Q0uFtZ48T0jqmCJWdMNI1Y+MTjA6TzP0NHYkSZJzREcEvFIYIM8TtBfnzUocc5MtGU8Vz6ee1/0IyYTbX36J/1XF8/MTNsQU05zL+ZK+H6kP5Xkw0tCfDqirOcINBO9Q5YQrpZH7HV3fIrQCAkVZcPnyBfOrK5zzFJMZSmriPEXFMQw9/tTTbfZsD3vqL14xfB1YvrpBxTEiCFywBASOcx1s6GoQERKLiFOwlmy5YrfeUO0EcZYhuwERpegoZpI0tL1geX1D3Q7kSUqZpdRdj1SCyPszxd8OTNOEF5dL4jwmTmOOeYpQinfffkNVHbn78TuUGFlc3zJZgvPtuaY6DMjQM10ueN5VGC1RArwPeGvxQRAphXHnKJD1EEeKJJpipGd/ODKbFjy//0RoThipaE8jCQHpPblSdF7x7tOOWRSIjSROJ7x5+5okNpRlivQjIkpJdcCowNCfmUT4Dp0oMBqTlDT3W6SOwOS4vmEcLG4cIEi0FAgpGIVjaI9oH0Crc9NJ32HbjmI2Y+w9nfWsIsNxsEgpwQe+OzXs+5FqsAzOMSPg+xqhIqSAcejQMrB/emZWvGJxucKKmEmRsj50ZHGM8gPVfo1QGSadQwg8fXqiKJekizmCnnYURNMpK50ySSV9bcnCgE8ixnHE6JShbRjteOY8Sc/oxnPL1XgiyQzj2KO0QGlJPp+RTOekRQ5CE0cGbQOxNChhyJY36CTH2w6hY1Q2xbYHumqPnqxAKZTSCGmQQZGk6fl5qhOMU2Br7NgSRYZicYU1OVfcs+3maBVYPzwjtcQoSdc7RCSomp7d7kRqYm6WOUoIjt3IfBnho5gij/jZ5Vd88dVrnu7v+PD+D7jBUj/dM5+UVLMpwkPb9dzfP/L25pL9wz19pNneNeTplDjNmf/XBWkSUT080j7veN6eN7QvyimT+YrSrDBjRTs4okgyNgPpNGPoOsI4EuuESAV0muJ0hFy9QsYZQ1dh4oJgW+w44Kz807fkgPTuvF12I37sCKrEjY40mxGocYcjanqJyi4xyRHh9uc46RdvkaeKVTrB1ieEd4xeopOUfhiJs5SqGc9n982BVV7wtNlQliWjMdQI0iSm2e0xkcG5nrp6xGSWX/zr/4l6/Yh0HchAlgjq0TNUB0qRUiSG4VhxOrQ8f7hnra/oTvccthVClgjlCd7jnaeMNZF1MFqavmff3COlJIsNNniyLGPsOuIIhmbEdsP5etFEOKHY7o48fHtH3ffEcYok0PY7lAtM84hEAg4SJWnamtYG2B9AGkIYSI3hqDxJWTDJYrxzbPZH4tmM6tSgEYzHHiJBtIjBeBg80nt26x1N0+C842QDq4tLNps9Kslodg2busP2FfgOIxy7U4syCa9vXqOSnJeXb3nxi5/Q+C3vfvtbqsMeoyeMx45XF5c468kmMcOuRxDQSnM49dxMPe1hz7//d7/kX/7VfwWjQmcj6Y8f+dUPLS6Alo4gzTnqGAmM7/Ei5mQDfhDcb/Y8bQ9E3lFMS5I8RYVAiFLiND9zNWxHnmWkaYoWoLMroqwk0ZrIaLIsIS0KnIhQ8ZRoFWN3D7jRklwv6NdPeDueI0jFDNlbTHvCR+drsaE9IjFk1ze0W0U4PKBPIxdpTDsr+e3pxP3dkWQ2xQ+Ox32LHc7MkhGJVOfqdGs9HkmSJmRlSZRmjH3FaReYTAs0ESZJefn6r/h//tP/iR92TLMMbQwySGJpkHQsJhOetwfqQ8WiKBhxHHuDkxKdaKSASXSunm6cxztJ7wXWOmaJAQSbzZ5JrBFjy2I2YWxHJoWCfk8wEo8hMmdmkB06pHLIsUNhieMRNw6MTiOLJbZvGI6epu+w40Dan6HBOi3RStA1T9SNQlmLmS4xqWTz8B6jPF3nKBeXhLGnrmue90/IOCVLY0bf0YmYoDVEGYlydH2PGB1BCNqhwzuLHQdGF0Apun6glAI/DmijwSga2//Z5ofP+qx/rj6bJp/1F6lxGOh6i4kn2METbItS0dnJHwWL5SWfHo7EMiZxBbvtluQypsgucO0dx11NmWRMyzmjE/iuZxJneOcQMiYuM5pTdYbfmZRIKebTJQFDspwTL1fYuqb1AR8Ucv2ECJbVZMJiOUEWOVz8HOHCecB68YbxVCHQ5Fdf0J8q9CLQPnyPH2t81+HtwOTFW9rDhsF6knJO2zRUhx3xqLDGsLy65ePDRzZ39+hjRba8omsD1lusAxECuYZIK1CK9fMDSt2QFwVSSZy3pGmEGx2RNqyWUwiOKE7pjie+u38mzktuLidsT3t+ePcjUilSE7OcTXHB8fHd9+hgybKEza4GxLn+1gW8B4EnTVKabsA6S6lgvppjspL5csXbZcmrXPHmckkUFSQqxmiHiXOUSfCdJytvGYYRHwS+HcBK4vyKZHFF3w7EyxuadiBevKSrakyeIfBstlvWTwfs2FMsVsQqJUtL8nhK13coATY6kUUp9XaLnk1YLFd07ZExDMyXS3737Q+EEM4DqlakkSZRAUKgHs6xiN458I66scg4Jc8K2uZE5xxfqCV5XlIUc/LplOPhxMXNBUYqfvftR0yxZG4VD5sKU17S1h1JFGOtP9eFNgfGU81pfySOC9TQoeOMcpEgg2D/fI+zPbFRJJM5+cUVty+uCAHiyRwBxFGEBLQSGKGwdUteLgjNwGy0ZB4+/v3vOfzxB4oXK+avXmClx409SZKgDXgTkSwuGF1A+o5h6GgGh4tzTscDNQ5ZXEDboYxCRgYjPFoKZhcX5x+gJsZ5aK1D4RHaIAhYHxiGnterJdnlFUO9Y73ZUFcVfdtih572tEXfXtLVJ+rEocbuDPNrLCqfIpVkOkmJ4wSiBHfqzq/bj/RuJAiBUIb5bMY8CrTHPS4MDKMjjmO6IdCYCCUCj5sdi1hxGAPr08hyOqGcXyGynNubJblyROkEVcxQtkIbBXiSVDK2A91pT5IlCARSaIbjAVREkAaQiLhEjiNBKIIXmFnCWDckccCNAyrSjPs9WkniNAPn0NoQT6eY0eLrjjKP6eqWVazpKZFJ4NT3iLaBvsHqCcFESGHPQ6X3PNz9yES1FPHPKFa3eOkR0YCONfa0ox16Li8iLq4mlJkFf2Bz9Fy9/pq3X7+meXpP73vG8IzvDzQ2QiYJXd/h4gyHotk8Qzj/79xeL3l1NSXGcTju6GqN9I4vrha8Xa0oZzPS2RyZGLQxZ6Moi/HDgEIhZQnBoKRF5BnWjhgpiS+uGMbz3yB4h+x7lDp/RuXygmEIBB+gPiCVREQJQ+swm0di0ZOlKUJegDZsntZEeU4mBL0deXf3iXKSMwwV/RhT9wM+HGh4gbq4Im0f0HFGvLxg8/CBMI5U9REfvSYMFZM8ww6eyBherHLKJOWffv3/kqg/8tvfPBJNCr7+q78CDJvqyKn6yPppzf1uj9LnSwelFC44prMV5aQgChZlG5R3NMOAFpLFJCeONMrEqChhOD6dqzxtx+gdwTls7zDllGTxgtDWeDci2hEhHMpE+BDQSlLvdsig0Vox7o8MTU27rdBKMpyeaX/8hNUx+eqa5Gd/g1/fI9qORZTQbJ/p+oEQOkycY4cOHRzLSBP6jkhK+iRnOpmwrxrqpiUziqY6cfs2px6fuP3Z1wybTzT1niChevpIsrgkuZwzBI+TijgVPDx/wxfXS4I+8NUvf0JRLHj8dMexfsHQvaMbLaPvwA3n6EIc0fc9h6onmWTnunPvwbWIJMEKw7F3HI4tD7sWP1r82JPFKVUvcX5gWRY462jGjnwxIww9Qo7kcYrpAlLl1P3I4DzdEBBCcjpt+HD3TJlluGBxd1s0liSOiXRG3TXs1lu0FBjhSJSgHy1u9AxCstvvmV5c44Rk93R/vu4aA6OzbOsWj6dtGvZNw1flT3k5yTHCI081b15dkf2kY7/eIJWgrzZEKnD14guMqkAp2qYlMYYyl1wtpqzff2CuHD/9b/4anODhxwd+/P4Dz897siJjmp+vZ7rqiDICYkWuU2qR81R3PD5vSZTiZpLxejkjigu0kkQiMFZHdL4iKWYEDwhFVkxQUUySZui0IElzpAw4PFiP60eUiZDZnMP7R6rnPcJbsssLgooQKiKKJDpEOBfjwnB+LyzdCCyXCDrCcGKQgsV0YLXN6DrL+tMGLyWz6YrT8cDheKKxntZBZAzd2J5bDIUgThMuXtywmE/IJym27/Fdx3G/5eaLa/qhw54OlOYM7VcIutOR3Chu5ytyHVEHQT90DG2LIpyjPwHiSFMmEcehY98MHLsKGQKpgLKc0HYtTW/Jk5jlYkEaRUynCSjD2PXEeo+SDe2hoYtKUDFSaqrnB/rjDtlVzIscE2uETgnB09UNFsBBf3hivniLLhOirECJnLbaQ6wI447nu/fU1RE9zRFxwuN3fyTXoJOEXXsgp6dpGmSccBxb9q0gkwk+KwAAIABJREFUW16wfv8eoyTW+3OVuIl5fLin7TpcCOgoRccJEOj7jqHvCYyI6eTPND181mf98/XZNPmsv0glacpsOqXpKmIhSaKEsbd467h5cYXMF+yePiH7ls2HR7Kyh+MToR9xdkRHmvnFEici2t5idUKDxPqWcXckM4rD/khiYlwsuLw+N5nIYk6TTfj0tOPw4T3tfoMh0PeOSRLz9asXTJZ/g1YZSiqklmA0oT+iEsm4fya0YOISGZeEdIoVDjc0tH1LEBqRT4mUpD5UFOWC/fbEOI50XYfwgTJbUnWBT08b8qolmc8wWUY/WBweOwaCdyQicHt5gxWSOE6Yz6ekqUdIhf5TxbEbBIvrCx7rwMPTA0oEyizlWDeItuZ42hNrxXyek6ZL1vsTzeBI0pQ0Lyj7kUgqtvXIYD3TMkcFxTQ5A3PnqylKSPJiCkPPtNsyqzvKdE7wir7uGXxzJr3rBL/eU85nuL7HSIUSgua4RZcLHHC425DMCsTgUA4iHSESgR8FKk4oSkloK077htPhBzZYnIckjc8b0jwnzQtGFSAbsU1DHBkilTMee/7q7SsOTcu7uwcyoyh1xiyRdI2HxAOaynm0PjM2ghDE+YSmazAhYJKEWkvC5JLZYkqwjnEc2e8PTKeXiGmEtAMfv/8tLopJ8jnD8YH1p/eEtiKOE9q6AjvytD6xXNUIrUgiQd919Ot7hB/J8gJfRCxfvWJ6/ZK8LJAioPPJuVFFKaR3GK1RStF2PXK2QHqB9hGgYL/meDoSRkv7sENNI2QGhwGUUnSMDFFEvphzsZjStQ2n3vLb7z7w5vULRHViWp6NMpnmpASiU4X1oIYOoQ2Lm5dsHh8JzjMxnmEcsBKs1Ow6x/efHrhBcDocuH/aUO/35OWUJDIoHJM8ZzKLEOGIdyNV02GKnPGwYTkv8KNlcXHN4/qI7ZuzgYrEBYEUgsWkYF4mNKctatDEeYaPDA9PFd3hSAhHUIbLBA6NJY0T/ubrF8wurpmursjTmCyW5LMJfdsTpSWEnHRe0tUVXdMRVIyJDFLHEHb0+0dklCONxkxXDFYyDiOdKencyKHuOI2SWKT4+kQcFTjvSScLxmqPAJLJAh8gzmBxdcl2c6DZ7em7AeMsS60wacJdKyikRcUROjLYMKK1JEsStAzI2LPebHF/+CNRkhBfTfHWouWUuutJY01cpvzi9hbvHP99EtP2A9E0wdV31IcN7W5L3B+p+xInUoagCTphHBq66mxSRMBsUfD6aobwA/vTkW6wGB3x5tUXLG+/oLx6ST6fMLqGoeqJEoU2E7Q8X+hJFTOMNdoKZJwgpSD0AybOEUIwdNW5ZrkbIIohyxFRhE6nuGbEBYlJJ4jpBfJ0hA/f4pyl7y1CxwgH0eKK0sFhtwMtGSykWtJVNeu7BwYZ8/M3E4QEhhPF6Y448hTK8bz+yLvf/xqtBW/ffsE0VWyDBKlI0giBY1VO6Pue+8cn7h7u2bQZ/+7Lf8PF9QUiKvmn//1/o64bxiihGj1pmrNaLinSFM2IAA6nCm8EpdYMQwcBJlnMbJJDlCImV7h0io419f0HqvUaJQRxlqOTHPqO8Ol7BGCyc8WnVArb7AnBUn1sGfsOaWIQcFw/8fjjD6g4RSiB6xqen5+x5ZKj+wYTJ8SzOYnIyeMIl43oqCdHY7sGgSQIwbTIOQ2OZBhY1zVaKSaTCRaQsSGd5rx4tULHNeO4Jl8aDtUzw1hjxxHGHimB3jL2I846FtdTzHWE7mKGqqFtGnSkKKZTvEkRCqI4ZmjP3CQh1TlyMfbE0RQRAih9NiiC4f22YndoCCqlaR3SdryYZkyznDKfoIVhXk7QStG19Z8ApBmxCQztSOQ8u/0BnQROjUYERzs4pPQkgLMSJQ3VoSFPU2w/8PLVC3Qf4/oOGwniIodgUaNlUuT04wDTDBkc04sLojzBnCqe9jWH3RGV5EQaxLHFjQPvt1viqwWJOBGimr7PMOSUyUjdHdBScNquKfKcrIxBGBh7tDSsZjlpsJy6mm9+9z1lumCsa/7p79/x/bs7EIKu7ZgLgXeWMtEYAkOQ3B9ahI44rp//S2Q0VpIgJA5J0Odn5UWWs1hdonVKPr9GuoHgBro+IE3Aif7MLdIKZxt8N4A8oqIYlc9IsinjcYfKcmxn0Ys5Y92gGZAmQV68QtqO4Dpk3yIj6KxHzFdIKTH1nlYoprsj3316YhwdzTjyuLvDOUsa63OE0Y1Ipc88oChCaUVkJEIJ5lfXzOclY1ezf9zw+ON39Kc1XV3h+4GxbSiLCV3fMVRHkjSjryumUYSQkmq/wfYd7Xiu+06NIokitDY8Pj4zes/L1YqqqvFDD87SDY6//uXf0J6O3Lz+EhM8oxW4YSQtJwQN3/3uH6nriqbriIopSsUoZah2W+zpyFQLFtOCKEkxWhNJQVJkuHxCNEaMgyVUT2TzAl1eIa9ecqqP/PgP/xfaj/gk4d3jke+/+zVv8oivvrjg1e2Cv/9hzYf7A3msKVNHh2JoPbU4oqMIArRNjQPSvGC+WDA8PjB0PT60JFmOVgZCQAXPqBR11/x5hofP+qz/H/psmnzWX6SUiogiA87iXUfVWNa7I1erJbMsxYyO/tCzOR35cfcjX64z/vrrt1zmS+ZFQT6ZE0UJXpU0TU8oFoxdz3GzQfQ9HYL61JEuc8rZkmL1Emcl333/A98/3nPqW6ZGoYUgNxlXizk3lxdcf/kVVmcgDAEJVqK8xaPBCaQpcdsH7HiP71usE1gCRBEojUfj7EhQETot8FZyff2Gx2OFMh572hGsI9GaPE553h7xdcvLl1cEGWGHkeAlo/c8r59YZiWntqY6bBnHAaFjZosFcaRQypJN5kiVY5GYPMcYzbEfyb1nOGyJI81+t8N1Nb/8Fz/j5vVbxqHjh493tF1PEsfs9g1dd94UxVqRK4l1gqkSyODPwEIPfduxXJb0dUsoMuzpQOh7enGLiAvGxmB3J9zxDpUkmLSkGx2nqicNhiF4pBQ8/eodvR9wg2f+ckuczej7gdF6Bgnz5QIpFKfOYRlou5qPH08QJ4zNCYOjmE6JpkumxYruuGG0PXhFIh0//eKGqqnYHSsWeUKwA0YputBTKMEaTxBgIgNSEbyj2p1IZ3OS+AKvDV/94mfY9kR32CKk47ipiaaG25e/4Lf/xz8gh4rV1YJuGHl8WnM5L+mbBmstfhz49v0j1aiZr7eoOMKedjy8+yPN/kDf9GSrkvziBdl0TjaZkE4mCCWJi5K66kgSg28aTBRhohjqDnRBp3OCigg+UO5rmr7htKto2k+QKQZGyiLj0+ZAH4GephyOG+QwMCsjdp3EZXP2hy3GeC6rI4vlLVGSI4NH5iX0A0PX0rYNkTHE0zl+v+Nuv0MpSRxFaKUxScry+pZT13I8nqi6lsFa2vUDSl/zxZtbTJwznSj67YFucEglMG1NrAJhWlCkGXE+49PTHkI4M0+Q54YME3M9L5HVFuct900PxwHrd9jRMpGerxcpk0mKGwauliWL+ZI4K0lnS9I4Js8zjFagC6LiXDkpXI+UEcX8GoJEdQ0BjSdBJJNzO06Uw1gz1kfqUfGwPvL0cM9p88x6V9Pb8yCbRwYlLEV8bj7Kg8QTkUYJSktc01BMp1gHfd1QxIY/3u0xacIyMrRFyU5KtITKBwY7EkcxSgRO+z3L3Jyrx7uG5x9+T2YvKL/4Etd37DZH7uojN19+SWUtHx+2rEhotxu+/+Y7SCZ4IkK6IJ5ecfjjHSY1JJOU9elAP3QEZ5kkEdelwQ/tuY3C+bNRmSTc3Fxz/fYr5j/9msrV9O0R4/f03ZHd855lmTLYmEinXKwuyNIpaVeS5zPScokMAolAqBjkgBCGOAYRJQSpscrgho5egHWWcfC4YBjiKVx+jegD3XrND89bTJwTbCCeX2FGSzSO2FON8I5Ya/xwJoG0g8OkkrpvuZIxcVLghoGHTx+QwnHaPeNF4ObqgqvllM2v3zG2HatZQZJGxElBEh04tILj/sg3333H66+/pog986nh8OHEgCeKYorJlDTSjO2J28sl7elI6noiGdMMHiNgXmTkRUotUtTkFZXPWf/wyH5/ot+uWeSGiQFZO7TdMM0zIqVIF1fowjC2NbbZ0q3vcX/6fJxOJ7wP/PD9d+gwcmwsvRdn5geSdW+RUU1sIgatUPefaEdHGHuIImZZQhJlRGFg11YUQpEqRdvUiCilOtVI7xnbluXLF7z66ddMl0va5sDf/vVP0WZC3R8hNMRRT2wg+IHjboOMc7RRTPIZUeJRcaBvRzaPz3z5y/+B5od3HJ7X2LomSzKCc4zWc2zaMyB5HEg1pFFMP1iQkq6ztG3Fw/bEYnHDrhqQkWRTNxweKy5KwVXreTvLKVTOdDanTyOMbbi+vcY6g/WONAq0Vc3T85reXdH3PVV1oOlaQvC0/UjlB7y3RMIjhKP3AxYoyjmnviaez5HeUp1qjAbZCYK3NHWFSDJGFL0LpFnClTEcu5E+eJLYIAXsHx95yCUpLzhs1syWFxT5DOk7bBjp6hNJVtK1NfuxJhMQRQndECiShMN2jwiGi6sXdE3L3Q8feHj+hJSWumpxCK6sQwmBiRLGIFDGMDQVyrZINxJJiQI6oVjXDRNTMs0Kbm9umSwvUHlJXk5gDGw+3TFLMsr5BU3XYLcHToeKcjGnnM2wbY2oGtLlEuEVSkv8CMQGV3cM9QMiiXE4VJGi8hW22aKkQCiNGDoYa0wcI+crZBwxUYYXQfH93TPP1RPD6BgGh7UjdhwZAzgPRhtMfK6LjxJD1w3snte8kxH2zSva3TP1/kAsPYfNE3F6Qy8FQ32icY6uaSDAYbdlGUd0bUPtwY8jWaRII4NHovDMy4wkWJZligSMDKRJwrHvmMSa6/kKNdR88fIVcXlBrAW5Mnjb4fqB+4dH6h4aK9ifetJu+1+g+30/4kdLsJ4i1kjObKHJakoxm+GjjJEFXglULGjqisNuy7MVfPP9t5T9M20/sB48ZZHxb//ll9zmGeX8krGM+fLuyL77wK5q8MCIo+osx+MdUZwglWIYeryENC3oQ07ZlgghGD1IoeiHgVLPuVgs0ZeXXMT5n2+A+KzP+mfqs2nyWX+R0lFKXQ2IGA79QF8P1PuWjU746u0bxrphlDUfHz/gfEf1IGg+dfztL38GZORJxnazZTg98P55h4ljXHXCVRWLLKZrh/MQGCecTMlvvvvE/fv3iLZlXsRclCXLScFqueJiOmc6XTJdLUnTmJBkBCTeWTQRduyQDiSSgCa6/Yp+fc/p6bc0T3eMbmT2k58STRa4OCVst3RVTRARxqT0UrK4mLOvN8RGMHQt9nRgnscEl/DcWn54PLCczxECqr7jYb0muk1ZvnqN3j7Tbu/J0ojt854kSbi++JI4S8mLBJ0VqM0jxXTK/nBAS4tE0tYVTddTNTU25Pz6+w/8i68l66cn1p/W1L0nkRLrHFqeOQ0axyQriYQglRKFZFJO6Oqan7y85PLmBWjDTJzbZUbv+fTdH+maP2CSBdZ3HNodjbNs+h6DJPaSaZySmZjFbM7kYoVJcqLYsH34xLH+lrFzEASzqwv6/QaPoIkkeppy/+4dqiipmobhsKbb74mExHj44ou3xNJgkgjXtQxeEkcpX15M2MZnIGSvDG0PeVnQHo9cppK1UETzGdv9kf1ug0pShATjHarrWc5mLH/yhv3hmW/T3/Lx4T8TWYHebVndvKBvn7Em5sd3H+m6jmrIKYs5Pni+/f57frh7opcJRVnQVRXf/cOv+MM372mHANbSBcHPXr5hlBIrFTovMEaikxjddgQ7YtIEpSJkFEFcohNNkpfY4JBaMg8BcTjw3fe/wdqB3a5mkI7H/YbRBGo7sD1VRNowm+RYL5FxyqIc+Gg/0UlJN458dfUtNy9fUEznRGmBCOdmo8l8zof37ynyAlu3ZxiltWit2dYNY5Rxtz8hgOfDCde3TCYlKE1RThBJRpJE7B4+EjEilCLJcx6qETO/YhEr5NDS9wPL1Yq7D/dAAO+QyjCZlOjg6PuBph+pesfgOkbnmSeai0VMiqc7nbhYzknzAicTEIapMZgQmJiUbuiQdYWMYH+3J05S5OBJ8ul5o6disJ7QO0xygVMggyD8aQP421/9hqfdiaZrUCEg0LSD4tTUnAaLswPWdhQSjAjcZJo0K7i8vGISpQipUFFCsVgwtgPN+2fitsckMS8XOSqaMNjzdv7YdpDHaK3wznNsLM14vr7TacEwtMTOMrQNp1PD06bmuHni9us3/P7vf8fTU82Hp4EogsmVoEOTXv+C3eMDpAsSpdgfTxzrGus8iVF8cTFBDhVOJei8JI1iVq9yUjFgooT++MjTx55CnWGJQknG44H9vuYb6zBSMdgRCVzkUxazJa/evOFqdUFWrEijDJN7fNPiohpPgq1qBu/oI8/muONYNdhxREQTGquomxoVZexrx8fjwG++/Y6xbzBJQZqWZDoiijK8OTEMHWaUxNM52o5UpyOKnGVQDE1NJxX/+E9/5On5A1/+5C2dlKRRgu0GIirq+ojBw1CTJpc4GzidOvbHlkiXPH7Y8x//w3/i1ZsL8giWs4zjYLm6vuF0OiH+xIORSjOfzxGHZ/qmppgvSY1GuZ5f/bhm9ZMrzHef2NQ99XZDaE5Y53gqM9Ii53p1gW5aDocHXt6sGJ4+cnz+hNYKOw5nQ8tLtpsnNs+PbA8nmuMeoxX77mx0WReIyjlTZZnFGpHlvNsewfUUaYacXxBPpjSbNdXoCMHgTcbz4CkZ6GwgTSUFHp+mSCHY3D1wdXlNNr8izi/JXIGJItbrmm9/9Yxrep7vNriiYXF9wxgsUikEjuVqQnVcI50nygSPD9/SiwETSaLE0PQDysH2eMT7M9RTApGJSaLzRYG1jqHvafoG7+HpUFG3I4e6ZjKZ4/qGRkTYdMbBtiztkbrVLJdXyDED55lPc9zoSTPDyQXEbMpxCLjEMM8SHtYbgglMVcx933G3W/N4bLChZ+t6lJC8WC0xUcy7T0+8vrwknSwY+goZB/QYYZxjHDs0AeNH7h/WbDuIyxnDMOAGh9EG2fcc7x5xF0smsxlllJDFhq5qqI5H9utn5vOYQVg+jZKrScL1zRXPj2t832CrilPvGcdPKOt4Wu+p2pbn3YHOBdI0JclyRNUyOHBCUh9OXE4SVN8y4OlcoGsafN2yKkv+zb//H7m4vmWVJ9zd/8jv/+HvEI1lohOyNCWNU17cvKYfgbHFNkfiTylRnFGWOVms8Y+PzC4vMVmKrfZEeU4UZYShoWuOhDinvH1J+/BAV23IrhY8j562rqkf79CnE8oakiJGpYJifsXPf/Fz7vcVh/5E1fZ47/HhDGaP04TgeoxSaCXRWqO1IXjYPDzhR0uiBbvHZ+aznMlkRteMhLplMBoVxci+oWsbgrPsvCOTkrrpiGcrdvcf0AKWsylaqXPEO9HITrBvR9bVnqodWGUJZTHh5ZufUsSKy9u3xLMVUnpUrPHtkdA3pC7ny/RrDg93vL1esj/WeGfZHirsOKAErCYFqzImKXLs6Fm+fkOUZcjJgqrpcT7Q9g0//vADv373A/e7I3U/oGRAaMX11YqXr77i6uqSsjhfrok44vb6A5sm8P7Hc7ugiBTtYHEuUHc9SZzgkfRjRWxi5vMLIrXiox1hhAD0XYeZTPmf/5f/lQHDq5dv/2zzw2d91j9Xn02Tz/qLlA+aJJ3TdTvqruGwPrDdNaAmdN1512wKTx8GnjYVB61Iy5afBcXN5RUEy4c/rBEWqrqh21eEumaZamoHXhimZcmHxwM//O7vaL0jTRJ+fntLlsRc3b7iy6++IiuXuCRFOkstBYMURHVNJgWx0YA9w2RHizYGZwdOn+64//3v2D0/4t2J3raIw47ZixtI54jBkS9myMFj0ojRC4gjnCoZXIrIB4quo68PzGYzRo58qhr6OEFrSTx2lFnMMFqkhN4OvLy9Itx3nI5bqt2Rez4wXc4x0TUygSjSdF1LN3RMZjP2hy1bL2i7gSAkMklwxZR//OYd01iRZQnt4PAikMaGbgwYYzBCUhYZqzRFB8uiyImkZKFzsjTHyJSuh9/saj49PXFcP9PXFX0INE4iAK0h9SOJUcTKcJ1NODUj8WRKvT/QHE/oLCFfLknmU+aznH4YCNbTjCfapwPrfcUhDBy6muAcVV0RpCQOHikk++MJN458eNxyPV+SKMXs6pLJPMWEGJktiKrqzHPRAuUsg1BYoxFeIMaR6XROlBjUvsJyjktgLUYG3n/4cAbRas3lyxsOf7tCRhYbKqY3M7r3ltNhTz+OtIMjjnOaoHj37gPffPOezbHCWs9VnvD+t7/hP//mG76/34KMEF7QELP7x2/pHKQm4sX1FTr0DE3FvCy4urhidnGJihNmywuiLEMYQ6QU7HaoGDIjOH4asZ9AqRI/1nzcPlE5x+At+1NPHsVcFFOUjChXM3odwESEznN82rI7dhwenrn+8MT19QXL17fM5tf04shsNmVzmDP0I8oYFkXJ+8dHJhIsig/3dzzvdyRZjg8aFWekaUxUTLi4eUFWFMTaYsNI07VIHRG0ZFrmFEiqfcXpdGIxvyQ8n5BSIqQmBM90OsEIT6wC1eg4dpaqs/QukBjFPDYss5Q4UpRFgVUZDwdH2px4PbP4jUWXC47jQJJPMdEZOKptYPfwkfvqe/J0wtVPvmJ+u0IGCL5Gxgb1J46J9ZL6sCZLCpZ5INIJd32gEjmdBKstSVtBvcWPlofNHj32hMywSjSyqdjGGderFYPXhNFjsoLXlyv+P/bepNeWKz3Te1ZErOgjdr9Pf+65l/eSTGYyW6kklauEckE2CoatoWcG/NsMjzz0xBO5YMhWk6UuKSaZJC9vd/rd7x19u5YHR39A9kAQwOc3BBDre9f6nnedptiGxqFnPBiyL2sOoqXfbmlzA+UaTIc+hlDI3mVydAy2xhqMMNrm6burOy5ePOd2keOHKz559THv1O8wn3/Om+st5WGP42oGdoklbaLRiHq7QaCIhyPyZM/lfMiRp9ltC7K6p25KPvnp57x89QqrzZGqpc0TpIDNwx3pco8wTaRpoXuTIi2fhNd5RVU1LPqMwFjx9ps7Ts7nvDo5ZjoZE42mKC8kP2ypnYCy6nGHQ7K0YnV/Q35ISKoCK56Tlg2rm+/A8dGWxzYrSXt4fFzRdg+UZU0c+sRugO+5KGHQdh1pnuKtljihj3Q9yrLi/r7ky9d/Q9V1zGc2jl3y3/2nP2KvBqTLBev372mrEi1AuCYPtx/AHPKwzkiTFGHVRNaQWTRns97y/Jc/ZiMdghoadcAdRtiGYOS5dOke1xLYjoMtbcxgwiFLWN4+sm4ge/2aNDmgnICPXz5neDmi2q8xu4qyXHL91TVULaYpWacFU9/Ckxa+62JKG40AoK1z7hYrDvunmvMO8VRFa0DXK/w+x9QCoxOESvPzq2NanROOp8jxKaa0WDkdwnJJioavvviC7W7Hp8/OwLbRGkxg4jtMx0NuHhc8rm747A+v8KTkw/cfmI0m3L2+xuosfvvlG+aDAFd3qHRHeHyOkJpR6DEaxzw+LmmyHc8v59hWRZ6k5Ecxm80WhaJV6smnhUAYBoYB08EIjWSTNySHjKZpWCc5hwbc2KVve45OTjg7OcVSJUPfx7dtPJWBFBiuT6daBoMB5W5LPOjxfQfpe/hFhdl3uEOPxe2CIAhQhkGmW5RpM60LMt3x/fdv2OY5X6uGyLVxbh8IQx/f1Gw2O7zIZz4OUK3CCwK8roeyQmjFMHDpRwEy7bB8yZvlPXXTYxuSpu7B1NzcLmg6G8PQuIFJ3ZXss5wsy9DtPaeXz1Ftw26zYXw8YDYaoJI9bw8p27wlz0pOxwPyqiWrOxxb4iKwHJeiqFEI6rrElA4X8xGvYosPNwdu6oa07RHiyWny3/7sih+fSDb77/j1b96SJAdMDXlhoHH5sMhxmoIv//G/YNkxo2hIaFtY0iYIB6SpTxSGBL5Nf3+NdD2E0Bh5Qd/1GEbPYrFGSZfFr3+N52o6NIey4rEpcaYzBsMB3eMH8sUa37QxdYstbYajgPPJkKwTpI1iszsgLQPHdcmrBsuyePniJeeXF+iueboQ2mVst2vS5YLZbEKapgwDh0bYWNIgKyqOT47x/QBdFOS7LXmWsa1rTuMQV8N6tUQIg8CVDOKIptNEtsY1NantUuQ9ddfT9S2noznT8QQvmjA5P8f2XYQl0JTcP97y+HjHIc0okpx54DNwTIbRhPEgZvl4T10aJHmP6/vM5xOi0MWSNqYXoryYLE2QHSjDpC0zfvf6Lb95c82b5Q6FIHBsotGQ89MJF+cnjE0bG0FX/5Ms17GZj0ec7GusOmOx3rFtoew0Sjw1K5VVg2FoAtuiKjV+mCHsDt/3qXY5TVsQOyavTof4juTt9/d82Rf8j3/8h/+CU8QP/MA/nx9Ckx/4V0mvNG0vaVuX1XrN6mFHkTVMhg1dmkOVMXZMrsYhXtvQmBbB5RWTi5cEtsuH798gPQ/LtLn5/pYqy3geOySdpmhNVtuE7G5L2/c4psEsdDkdxpxEA0bDMRNvQLupuUkWfLd8oKOnrxtQDbFnMjDgl59+ynw2RysDQ0HXdByWa65/84+kVc6ubbhJK95uNiz2Kwzzt/hRyNFgwOlkRCBsRnaE0gLTdwkiG6UatGEgbZ+6bRm5DlpKUg68uVtzMRuirKfgQto27z68oSpzTk5eoI+n5FmK6kFKCa1meX1LOG1oao2hNcenp2SHA/vdHiFtnCB4aoNxPXZJSrnecV/XDAYDDOlQ5Tm27eHZAtOykZ6LECauY6Prp5aAIi0wLIu8aPnim3d8t9qTlxWuaTKyXTzLAd1jCkWtNS8uLznWNUNHczQeMQpnWLYH4yn29IJq80gS9KdyAAAgAElEQVS9WXPIF+TlBm8wpNA9+7rm4bDn8X7B65sH9lVF1fdgmk/mes/GEgJTOkS2ZOBYPGzXpEXBKPA59BWjMsYywLR86k7gmApDPB3GPVNQmiaBFKz7HlsanFxcYd09UrawPhR0no/RdWxWS+5vPzAaS/b1AjlNefXJr7CqM26//ns27/+avBjQiRHj8Yhk88Djd2tWhSarew5ZAQpQPUWvGE2m/MiNKHqLVdGwNn22yy3p4o59mtA2NSCIPZf5IGY2GKCVxpaSH330Cb//b/6I+fNnaCVw5yOK62s6GoRZ4cUOhzSjcRoIDAIpCGrNJJxgWwMWqwcalbAqt7TSoLcsql4yswd8+vIj8myJF5hQNPTJjqbpcCxJJQTFIUU3PbLRjMOYzXoNbUfvSIo0p+s7lIDp/JiuznB9hyh0sGwH12gosmvmk5g3323oqg2qKyjrGmX6PDysnsKRIKatb3Asg64F6fhYhkHTaRpl0ilN1ysaBcIwuZgMuRp6aKFJesndqiVttoSm4MezgM5oyTHR0mQ4O2K/XlKmKZPzK9pix/zIo49KyrpC65qmKpGmQFf1U3Ww72MFY/rehE7QlxalCknjiMCw6JIE3SdYVocIJLY3wm5szkOTm8WGN4eCm23LdJMzsm0e3l8zmUxohcXm/Q2O+eR0CByF6ComnkXVNJi6xzVBtTVSutiGSeQZ+MqgTRbMxnNOJhGJUpRZyXA8IYxGWF7A/V361M7kHZPfXiOWB3rDZnIyxMZinaZY0mVXd7hSsikKDKH49GyMaDKoXfKywtGKiBavL5lOp4giIy0rpG9jzE9QVfPUoCUEgeuhJ1OKpoK1pu87+rKhFpJ0XYLKiewEzzdQZo9ucwrHx5rPECOJsmzy727I7tc4QYxrNPRNjahLjK5BGgLbcxCRg3h2RmD1PDw+0LcNq82GzNrjez6667CFRnQdddfSlSVVXVA0Bn/253/JYrng6mjA0fQjbEMyCm2uZlNWA4ev8+xpPUR1dK3Nts6wXJu607R1TbLZ0cQl2uq4jJ5TNQ1l3RJ7LnWackgzhtOIySjGNcFsSnSnqb0RWS24fntHn6VcHk2wA8lJOObkaMxHH59guB7vv1yT7BuEbgkdg1VWU2QpWXLgnYJB4DMfRUzHIwa+AwhsP+b02SVx5NMoTalMqixl4EmiwMe0PDzpoMqW2SiG6YCb5R22aeDWa4ZuyPnH5+zzjoeHFf/2Jy9IdntWSUHTQdWWmF3LLPRZtaBdg2hms87u+Pnnv6ItBKv1AtMoWD9ssLRCty3BZERWVOj0QBxKokFM0yuSrODDmxvS3YoXp2OS/YHDaonueqq6IkkzlFZoFH2niOMYR5q8vb2j76HtFIc0o3oyZTMIYk6HQ169esH8eELgCJrNDmk6tE1FtT+Q3K+YHA3Yd5ri/g4ntBkfH2M78uk/506Rvkk3f/puZdPgSxd0D9rHlxmRH1B3PYesZblPn4SoRUkoBWlywJEWkzhgPIwIh0Nix8ZA0ZQN0nWYHB3j+glZUTG0FSr0qIXEkg6g6LqWfZawT3es1w+MRjFd1WAZgqapyJOEpiwIfZs0LZgFLpaMcXRH3kLZaug7JrMJlTKxDwdU32G7AdKWVFWFxmA2inkZm5hNxtkk4v1ijWVKfnRxyk9Ph5xENvvrG6hb/DTnahqTdx3mkcN2p3BNG9UKmlqjTIMs20MYY/UKpIPQLaBoaoM4kjj0VG1H3ysswyTZ7/n6+p77zSPr/IAMfNwgYBwF+K5D+fBAVSRQlxzyFUbbIlrNNBrQlTn9vsRXimEYgobFdketnprn2l5xfnbGn/zpn1JnCb/+P/53Zr7DP+QFdVVi6p7jYUjk+6z3KUoZzI6PCeOIIB6QPNxTlCVZkdN0LW/WFfMowJc2ypRcnR8zGsXUWYHT5k/NPa0isi1oBW1jMBvEDOMA29J4noUpNUWX8+UXv+bb12+5fljSotCYhJbDy5MjnrUmgaXRwuAhyVHC5GwcY9uSzo3Qrk9vWLRpRZdkqLym7yru7h/4i2+vWZcdrmniSQs3HHIymuBbIdkqp1uu2d1uGQzOCCYwOrKokoLTyRTPEtStossbArvj0PSsN3vGoUs4CNhlOZFhocuKNu3w7BDHtqCtOHJNdr/7LX/2+h0PpeJn//P/9C86Q/zAD/x/4YfQ5Af+VSINC6lNVruc5TJlv62oq+5pVadqaJdLjKzk+XjAkevgDEdc/fhzzscz8t2WoixRjUHRVByKkiPXJK8asrqhM2q6umbkOfhezNDzcC2DXgkWixX3d494ls8gDgnHA84HIYe8piwL6iJh05TsRc/QEMSugyEkpnh6kv7nf/af2dQtN0XFV4slhzQD/XSb7poCq6h4eFzznWUyCzxQFlezKbVSNPTMwojReIDQBgIX6YaMbMmq0gRphWFaKN3TtS2dWfP+m3f8/NOPGYUunjPn7m6B7fn0vYEbTYknMU1bUmzu6VXDPDhCdBXWPx3kHD/gcNizfHig2h7oi4Ku7dmZPn2TY9QFoe+CMOirltaSXN8ukB10yYHM9ylkwN1iQZln7LIMyzBxDAPRK26rFmE6mN4RLTWLbIn0p5i6Y/PwmrFt0TmS+bNTRj/7JcuHHUYoCSefUq888qriZvnIF6+vud0duDvsSasCoRXCEGhDYJs20jJp+x7PczgZhsxGY+gVetxgC4NdU1OhSO7uOYpDlNAEQUSVbDClRTgakqQpplbYlsF0FhOPYqbzMaOTc7799i1Zreg0FFWN3Ra0Zc3izZYvfvN3RJcK2Qmor3n31ZrFB8XpyOBQpahySbp4JPJdTBkhLRPX9fCCAWcXz/Adlz/8j3/Cw+OGr778CnO9YBRrGtNjKzRV11BVJYGUqE6wS/e4AsaBT7ZPefjwjv3z5zjDCG88ovcses+jejxgCAcxDLm6OCJYDQh3HlpX7HdrFCYPWcqBlrerLZ3WSNvg09OYP/7xZxxNznGcEb2+omxLdNeQFSmrMmV8dIpRg2+7VHmKlDbLuzt8YSBMC+kHiMOWtimpC4Pt6oE4eGqvMk0T15EMBy2PD2+hidlvS4oiR9oGygrZ70pcN2IYPL06kG6A53toLZCO+zRojMYEvkfne+zzBmkaDIKAzy9PIEt4v0nZVR1ONGbqO5yGBpPAYXo0YxQMiKYhhiUYPn9GW1doVVNrjQwcXNdANxadremaEst+qvptkj1dssU6BmWEWKMxETZZXmMkOw4P39NkB5pec8gK0rym0yaXJ6dcjRw+Mh08a8liu6PvOhKtIU3ZNz2lMvju5oErX3I6HTwFBZ6kFR2hY9FvarTqsZQgWz0yHoUcHc/Y7jckSU620WxsgX90THZI8MIBti25eP4RX/3Fn/N3f/HXjGZjRsdznMBFmA6DeMj2YUV22BOOZ1hBhEo2OI7Nx0dDhp5J1RtcnJ7gBT5np8f89Gc/5fLqJdKA9fvvWTeafVWQJSnbusOtC2Sj6IXCsCymbszkpCeJLZIupM8NRNoTWv5TyERPHthUdLy+u2aCieN6uEKyvX6gP2TY7oiL6SVOHNEbiuUg5JAkOIMp5vSE+9t3WE1Os19TWoKcJwdKXRc0rcKVEmnBIS+I64KmbtkuVzyud3Sd5tvrNUcTn/bFEaLTpJsVzSHhsNqAhirP2GEzij1sEwwhsE35JH80Necvzri4vKRJUjzdowwQ+wUUBZ59iSNttLTJk/RJXhqYrG6vmQQ24fQZgWcTOhae53L27AXTsytM1yH2JIfFHfvHFU0vMCyTQ1ZBC3laUjYtb27v2e72HE1GzAILbdtEnoV3NCErG9w8xZAS1/Ho8DB7TRiZOMcjHN/ADwXh7Dn7JKPPU/LHLXJ+zCQaMbCPKRKPnWMQ2BbvDjWtMDFVx9A2+MlHp/zd11ukKrDNDbvNt1yMzxEy44vvr2mrHs+2sYwnWXmnFI4UT0OkY9G1DWXTcCg7kvcb7j7cMPRN8lLTGxZFWdF2PUp1CCHwfZ/RIGS725GkOZ0WoAXonqpqsLEYiYqPRgaXYU5Ul9SrA8Um4W6dcn9oyPOC+TAmWiwIXBvLgPKb75k8PnL57GPUIWcSxhh1iSValCNpbZd2u+c+TbguEhZ5ie/5jLVGGgabbUuHIM0butjDsBwuPAejd2hKwVaUyJGB1AJTKIqiIjqaIwxF15YcH48YWi4PuwYnHrNPtoS2xnINqkZzv979k3A8o6o7QtemrFIsGWMITZkW2LJj4tkE8xnrrKVcrtkdUoLhFEdmxIFLW9doeqSUGKbk/HjGpxOHdvOA6hVHg5D/5vOXVJ3iZ599zMzuOL54zsknn0PTUW43bG7ecfP2O3bLB/SuYpeZOJbHKm/RpsY2BZ3WuI5H6EsMw8Z2AsLIx5GwSjKKpqahJa0qmt2OZZZQdDWt1uRZSp2n1N5Lfnr1MVdOi+3ZnM58fPET6s0jq5s79tsKU7u0po1f53RljWWYTKOAvOuplaBua5Yf3pIsH3GCGGm7jHyPn//Y43Z1wKZhHNg0PXj+AKk62rqhTnMOVUmRpRRFTtu1VG1L3SnytuN8NiUIfDxXMh8EdI5JfeiYu0/taX1n8du8YBhGROM5lnQwbbi7f8P76/esDxnpdsvUd/nVi1fYk5jH/Y6313d8e3vN4/0NZd+TVS0mgmezCcK2UZZN2yuKrMKRBlpBVXUkSpHt1vz9N+8oeoEnFMfSIHYdTl48ZzyMEWVCXdes9zuW9YpFe802TXg+cWk6eHb5EdEkYnJ8wcO33zG0BWXTMfYlQ99EGJrx3EdZHX1ZY1oOoqwx+oZACpKq4d33NxiW5PzTnzGfzf6lx4gf+IF/Nj+EJj/wrxJpe1RFTbbPaLIO+ifBpFYVfbNlvd/SFil0PYPABwVTx8KTkrv9jizL8WxJWsNcWoimZJVVCEPiuSah7xP7AcPwqcklzWp61VKLCkfaVE7HPlUcOw6RBqODAJPZfMSH93uaXlMlCdluh+M6mIZBtl1xOCy5O+RkbcdzTzAaDKnbiockY98qVK+oNDyUDduiRiB4fzgwC1wCz2a92XKxGzOZzFFGhSViagwCafLJ+Yy7zQE3jDDMhm9ev+Z0PmM+CijTFKVrQtfFjiYMJ3Mc28e2ArzBFPN+B3lNmqYkTYv1tITKPs9p8gS7Kxm4glpZ5Jon0VhVIlRPnuX4QYQbBLRNz36b4GoDz3VYJS2322uU6pFoDGGgDJNSaSrV0XQdF0cz/uQ//il3+z1/9c2v+Zu/+n/4R6X4PJCkacpn8YpsnXBW1GCYyCiiUxXb5YFdU/AP37/j9d09NRbKNLEsAwV4toVtWbiOxJUWlnoKPCzdUyYpgediOj7bNGG3WdE1HWPHhaZCGQbz+RhpmYi+o2+ap31nw0AgeHY6AcdG6I7ZdEzdaaLRmIddQQ1Iy+ZoNuTt9285mx6RLdf8/f/2NU4wYXTyilef/pKybLHKR5I0pe0UeVlxOj3CsW2eP3/BZy9fcnk0gTyhWNyx/XDDzFKcvXzG5avPOH3xiuLxni//7m95f/2BumlwbQtteUyiCb4tiY59ZkdTbtMN6Z3BXJ1iWgZuYDD6+Bl117BDYauEseuSdibf3qd8WO3I64Z92bGvFVnV0iiNW5scthXLD0uKvUYECdqWGJak6hqKPkV3Hau0oE5KhDbAs6mrBmFA5LmIKMQ04aZpMAxBZ3fYjkfTVESRj/SGyHZFlaTYhkWyVQwDD9E3BIGNO5zw6pmF0XUYAq43DaHv47kOfd3QY+J7LsPQx5Q2s0FMWdRESnB5NOUocHnIEgDmocdkEjMLHE7jAScvXnB0cYlrmARRgCef1g16O6XIE2hy1tmGtkyxBEw5RilFXoPvBQgBKsvZX7/Fml7Smw5lf+Dx7jVv7h/ZpQVmWTNwIxwjQLuSqso4PHzgO8/D7nvswTHPRqd0i/fYhqJtDRQVVdmQdi13RY9XuVzqntDxqYQmdCRd39P1mrJqmAU2oSlQwuSTixmLlUAoRd10BFoRBy7KkrRlxe7+gXSxQrcdy5sd+21F1jXMnp3R27+gbztenJ5zefmMXdnyxV/930SuyYv5ELoaYQh6DWfHRwxGM4QV4IUTyvU9RdqzWuUsbj/w/nHFPs8pm5aInpkvGYUxfRzh6IzIMTmdWLhXc1zp4yoDV2q2Rk9fdTR1TlU1vP/wmkEYYkuJtkp0oFGeiTOaMjw5g17RFwrXDum0hZQuZejx0GdczgdEocubuzVpUYJStHXz5MfSPbEnaTpFUVYYfYnnSFrdEY1jdrkiX+24e39NOBwSjabEgwG2NKm0JjlknA09AkfgSInveFjC4uqjS37/pz/j9PSc+y9/SyBN1H7JpaUodY9l22R1jWf7qHiGrXtsx+YodolNh6QX2FJilXvy9T2/XSfc3WyZTsaEAxelHfJDBsLieD7ieCJIH1Ie05q8rhmNhvR9x6GoMfqSychDuh4GAlUXpLsVpmGQZhVtvWMSSR71Bq9ykCEElUt//Cnd/BmRJai//5K8avBEwWB+hmpqBqGH43l05o6HbYodBbimYP7siDCA28VbvLJl9/Adj19cs150HNY5umsJwwCzrajrmpNnF7iejaEaiiRBGTWB5+L5LstVxYe7Nadjl/lsijYE2jDRCCxLYlomz84vCS3Nh/WKvGmoO4UpDIaewzwKGA8iJk7P0GkJTYUoUtosI7QEJwMXgG/LjK/v7jG7lsthxNB3yZKU1TakyFpGbojODwxnIYbnsC0Uq3rH5rDkbn8g0z1VntK2Ha2CUegh2iGNaXO/WbNZJ2zXioXjcBwGeK6NdAWrjclRGDAdDkH1T1Jg32U28plGJssk476o6FoTR/c4pk/Z9ozmcw7LFWnRk1cdySYnoeCjz4b4cUS+XWOLAl32LDYrplcf82oaQplxs9xRmRmu67BcLp9emtgeXVVydXHO2Gw5lg17o2ZycsLJ8RFlo0jSgllgIIqcLr1n/8HE8yM279/y8P6Gulao2kTiolXHPi9oOoNOQ286RLbDxcUpoe8wHsXE0zGtEjTdgSRZsdrvuE3XqK4nTws6ZeDZFkPtIsdTVtt7ONxz/ZtH5DTi5PSY1bLn5dULXGeAfxFw+cwj3+xRVYkwTbaLNTe7PVJKHAyatnta3V0t+D//1/+FXdlweXzE6dUZbjRkenpBtrwmr3uE6TGdzlkuHqnzHYe6RPkuSZ5Rtw1131P3mlZrRK9Ii5Kj42NM6WAAu7REWSNO4hC7XZEdElzHIh4dUXWK7x8fqW9vefv+Dkt1nB8dMxld4PsBwvM4tC3v92vebnN0kXEiTeZS4AElgu8eFrRNzS9P5kRBg9t3SNehaTWt6bJbr/jyzVsORUWpNBMDTNPieDzmk+cXDGdTBAZpVjDbfaCjZVO3XK+3/O7tDXfrlC/udhwNI6bHEwajMftyQWhZCMcmsA2k66EcQZkdEH5Elrl0okcaJa4QaGESuk9esjgOWS/X/zLDww/8wP8PfghNfuBfJbpXCKWwMJ9ko17McBAxcj3KbUIsbRatZrtNycsNn372I4ZhQFZUBOMj/EnOhw+3GE2HiWaZ19RtT2BbNM1TA0RRp2z3DabQdF3H0Avo0YjOwHZDwtPP8aYXLN/+A8ehZjYaIn2JmCRYruBoGnIo1gzkGENrTN/h4niOpT6AtvE9B+X4/P2bew4VHNr+SVBmGox9F8s0mLoOSd0QGpqjMMBxHGLHo9U5ge/RCkUvNKfjIcKARpkcqpoiywgcG2loDA2H1YqmyZlFHkRDUBZS+oThkN7osZoSW7T0TYkuMrQhaETPaBBTGiFtlgIaGbpPT9G7Ckto0Iqu12RphrRsfMcl9gKqXmD2BknTYxo28+mYcnNLLy1e/eIPWb97g9UUjD2P42hE/vqvsZueQb7jriqpUdyJjlBbfNfWDEKT4e4tF7/6t1jjIz789h95vP0eHQxwbI+j82OqqiZPMzrpEwTh0wWja9PUBY5jE1qCripZpwmu09P2ioHbczYaMHEFi8WSuqlZ7kqkZRLGPp7QuI5JXxRPoQkgTMF06BEfzejsEYbtMRpPyNIc3dQ4vSYaH1EeEkxD0PYWQgXcfkjQxpKrJuT04hJd16zvH1muNiRFycuTCc9O58jBjE8//pTIEqRJTrVKSe5uaYoc17Spy5b1zR1xNOR37x74x7d3qLqmblvOnYCJN0LKmInnc3U0At/kzd1r/uYf/pzJeMKnP/kJx9M5Qz/ANARhGLJ92CKahDe3C+43ewLpsdxXmBpGjvm07qIEcRDixgNq7UFSUW1LatWjpYNhCYoiYb3dYhrgeR6GdDFtHwzF4GgCdYnj2yyrGltaNG1H37U0dcn8+JRgENPlW/Jyj2M4fPp7/x5Xad5/8Q+MooCrT15xcnJKk+958/VvSfZ7XAKE1piGifQiTAxCR0JdsFctH0/GWEohLIdX52cYZYJvS64mMcKwOB0PGMZTjocD6hpu77ZEysA2Nnhe9FS76WkkCrtpUdsl94slAykJeoU1mVCaHaXnEkiXukvZHWqCeEZV1bz79lu++fYr9spBqo7TwRBvMCc8+5iiUhSL79DVgcN+y+N+j2FazIYjpmfPuHvzHY4FJ9OYKOyou4brTcouL/HXa4ajkCCOEUlFXeRIx6VtW3oEpxeXDGOXo4mLrnKc4RQZROhOc3JyzKHUXL14zm65IpIGx9MZygy5fXigqGuG0wtcEfFf/fTnPItj8qzk28WeIJ6gC0HkOWyWO7KyYpHWTKYzfv88ol6v+eo//1/s14/s1xv2hwNdXeMZsG068iynMgyEadPTUuZrmjLFsQ3ODi2ffhRy8uoU1wtJWpOHD9fIYoNSDWPHZ7tf8f7172j7HoFASpuphCKess4Mis2B8mHHYDzGMRu6xTsuIhj+m5/TtIqm7fjbb97zxe++Idnv6XtJ2zVUXU8roFOKvCgZyI6fPpuxTzPi4QAvsFku9oyfKf7L3/wln//Rv6ftFFpptNIMwgAtbNqmId3vMLTF+eyUP/zFH/OTH/2EvsqZvXiFLHcsD7c8VA57beCYgq4uuV3vsP2Ik1efEvcZy2/vWOQJrTaoHYe6LIg8D3Y3lGnO7TeKge8ymkbIvqNtatZZx9Bx8XyTy4sJJQLdt2g7wrIdPNdAWy2WCZZv0DYp6yRFG5JOCUJpkW40ve6ZDkJef1PSeyFRVOOFAdPzc+qDJio7zo9sfMMjnJ9hGCb9esnFNGI8nbBZr3FtiSMVP/3VJ8zuYhaP36JLTdcJsnSPXbd4rouUNn3R06unVRqRp+D6VJWmNRRtUxOGDttEIEche2EilA2WRtruU+23ark8u+Tq9AhV7NkHHkXTIT2X09NT5oMBsRcwiCImoc8g8sC0aUUPoYtjOcRa4F44BC/hbrHn/uY995tHLKmRElTd8v76gZ1n0p2fYBKjMEiyDUlZUUsD04QjP0DqHgF4UQyBR/vCJVeCyf7AzWLB49070rKibls818Z1LHYH6MY9eaMJXRtLd8TemNaw0aYmtH1OQs1j1uCOhjSWA51AND2nZ2fkWU5W1HiBj2279E2HoxrqrsH3TB5uH/j441f8wR//12wWC958/RVNWbJJa9zxMdFgyH67eVplLAoG0qI9rBlenPPJ2RXj0wvyrCevekRb4qiSQ1Gxubvj4c0N0+MrdpXgvnJp2wYrPCUYhXx6YlHkO7LDnqSoKU391AgVhUzOzhkOB/i+y6GyUElOle9wVEWXd3jSZDieUHcdtuUwj4akfYNbmlRFRlUo/na5J3r3wMXxhMU24XQ6wxqdMDIbwtmQS/GSSVmzkw6bumOXpzi+T210GGVJ5EjOQpvjwKHvK2xpcnI6IxzP+PbLnN989R2G36NKl7LIMKVEaEWW5WR5jjBMgtCHusZsGgLPwTAFq+2ek6Mpw9jHbgryTrDsbIQw8aRg5D29sEr2axrTIMtrPjt5xsurl/TxhGXRsFwvaRePZEXGIauJREilG5aNoleaHw8dQluyqDseVmv+Nk85HQ35ZDYgDG0sy6YoW1aHA5QZZzaU2mAcBMwCh5evnhPGIVYQ0bkRXdyjwggZD/G6huP9AqZvcL76mnRzoKFnk+yZzKZopUEpLMNg4HpEgUfrOtRew26fUReCZF/gG2AbJlenF6yyAtNz2Sd77Cj+F54ifuAH/vn8EJr8wL9KmqqlylvyvEQKm5P5MZWqsaXDOm9o1mvu1zse9ymDeMCrT17SFhVFL7h5c43EoKtbfNOmNUzSrkcDbdfjqQajgQ6NFjUn0Qljz+NsOOPqZEYYhiQyIP78F+RJzu77jndvr/mD44j5NGaxWWGYBYYqmYo5ajTFtC2EEFxdziFf8vZmye0mw7mck8Yn3K9eo5TGEE+hyUhKjodDZkEAjktjCFpLYZmC2gBD91h+iBFOGFoWok4xDTg1Q7bv3yO0wTAI0FXBh7u3ZIeCs1HAxXTKVoNqOnZ314RdRXB0hGuaZHlHvjmwfFyjEQxGA+wgpKgV63XCZOAivZC0KCiTPRKNKSWmJbG9kFEU4wlB6AYYtkdegWErjkPn6YZzOqPJ9zQffsdEGlxnBZdHYyJPk++vOWQtgZAM/JCur+hUC8IgV7CsGiZdS7Z+wFYNtmFgRwH2fIrdF8SHnnK3wxPgT2fstUle1/R5i++42PGIKA5wu5w+T1nvSq6XBSPHJUxyBrFD5DuUlsn1YodlmUyzLWPfwJImvu9Qlg3CMLGDAN+FgSxIjQClNWEY0vUKS2tcaZDtU/oipc5KFsuEq9MZ/ksPjcH5ixd4QczDakVgGRjSIQgthqMRbhDyyauPeHZ5SrPfIMqUpSXZ77e8fthSFi11XnE6O+Gv3y745voDzwOB6luuDwl/97jFlvf40mTiB3w0m/LsZESnC6K+pVo+8P1XPfKnv4LsQOA5DKliypQAACAASURBVAY+ZeLx9rYmyUvGlkFoC2rf4d2hotbQ9xoLAa3izWPKN/cpg8Dl2XDE8Sjm7PiUUTyg6nIeF3dskwNFU7JMdrRqh+vHTF0bx4bINTm0DYEjiUKPuu3QXU2dJwSRTZHt6CMHwzlhuykI6gzV9tStpikauiLDyA7YPaT7GuG61HWPaTq47tOefpWnlHnO5dEc1zSog4hWm8SORZr3hK4E1yYKI85nY0QnaJoc2WbYfYYfD4nGF1R5zd//5a95rA7MPIcXl1NGvk8VuiTrPa93CfOLM+yJT72t6X2ffJey6w3M44TDpuX+dkmdNYRWx8VkRJZVLNNbXMNgYNtQ53Q9TIIxvmlzt3ngfrvj/KNnvHp+gZVv6E2BPwz5PdfkcuySFw2DQBL6Fr3vYqY1Bk/+oOl8huG4NGVDLTpmL+YMP/8FH+7XSExMJ8BwYl5dzHn58jlflzWn58/xhqe8f39LGIZERye8Or/g33/2gmNMrl+/4d2bazIFvbAZDAZUVcsuyfmbb6952OX8939ygdk23H7/NaY2CV0fabmYVo8QLVlrsMobNmXPJIyoO4NFW9P3UBQdQnRs85bQsbn8/BMmv/w97LwkWL1lsT08NUH1JY/vb6jznGg0xXUCCt2zONSsr99Rv7sGVWIZmgszYGiDa1s4jsCcPQPToDg88uOziNi64vZ+wc0655vrJaZpYhoGVZnhepK6SJCi5WIaMb04R9cFo9AhdHx++Uf/Ad1WnJ1MMYXAdWwUJnlrkLcZ292aTntEwyF137BeLzkKAp598gn9/Vv69w53hgUS2qpgOBrQtookS6k/fEPd7XG7nO+2ByazYzo3pm5gsU7ZtgbpY8XpfI7uhxzZEXJ1i6NbbNtlk2WMHIFpS6Tt0GjohcLUJVpG2KMJvmNBlTEaRny/zlluU3oN111FYBsMbEHX1wxckyzPcFCENJhLm99+WPG43TL0XY5HI15cXfLi7Ijd4wbL0Jy//ATLMFCqx6hrAq/k5KOI87M/IHn3wPbmHu0ZLDYtvhdjS0lamwwmU5TqEaqnKio6oehMwWq9pdImjeHQGC5GFLOvBVZRIMSTgHw6mvCTj1/iGYJGeZyfHCG9ADM84eLFjwldB9FrLNFTG4p90XPYrEn3GU2vaQUUwqQWkq6pnwIH02bTWrxfZjDxCRxB4Lv0umHVNNhFim5T3E4wVhLZatzplHWZMppOabseezyiMxVNVzGbTDl5PuOqesav/0qxf1xSZAX7rMQXIYZnc70reLt8EizPBx7H44DIs9knFSaK0Og4Cg3k6QmPhxTHfKrdrRGkTYMTeqA7vCAiHsaYQrPebFC+xKo6/t1kwv7+hsPjI4Hr05geXV2zXy0Rlk3ohzhSIlRP8rikqxKmg8+IJhFBEJOmC9o8wzNqfvf9EtU0BBY0ecPffkh5c2j5H/7oF3x8fkbTCHaFwXqfU1YpptC4omdT5GTdMZVhIR2HcHZEMJphPNywOWhOzo54XG6ZFxrR9Whl4LmCRresD49YhsHE87EHA6Ttkpo+SZbzV9drHh6/pReCZydz/tMvPuPVxTnBeIinBeOHJR+//IjbxYJCwX6/Zxh4OIbA83yOL6+wBxOOPnnFIAxQTY2qa4qmI/ABAWVZ4boe5WGLiUIakp+8vKK0LG6XDxyyjPF0Rr5f03UNw9BlEAakyyWxbRNPA25TE2VZmCgQcDSbczobEwcR52fPMecv+eqba9I3v+Wz2RGDj1/SWZp77VFrkF2KKB7Y3l6zeP8W2WfMbUFsOCgtaMuMog3QwsBxbOy+YWj2ZM5TNflZFBOMxkwjF8OBqk7JliWZNSBvLGReYMljyt5CeB9x/osfcf7Zv+P6N3/O4vW3HLL/l737WLIksdL8/net/frVIuJGROrMUllVAAoooHvQatqGtDbSaFzwHfhM3JCcDc24GLMhp8WQjZnGFFBAaZGVOkPfiKuFa81FzgsQGxjM8vcId3HNz3H/zheTCBotz2MdXCEI4GgSg4aK11RJEon/eF0TJTlJkrw+hmtqhP6GgeOgdbrkmUSZRH/sMeKNN/5/e7M0eeNPUpmkhNstWVKy394jDAOu/CWD/k00ReHlcsflKqAUVX758CGtdpf15BTPNHj/7i0yp8nL0wuKoiSvBGpBZJOliEJFJVXUgoRm2jhGG0Hrsuc1eetoH+9wwDbw+dXjM95/613+30++YnE842FL56uTCe+nIZO1T1cvSI0tebNJ49ZdbMcjOHnMuowpZZnasoirjNOzl1yEKQIVpgiGLKErGkUO821AlAnUQkItSSClzKocVZSwVAM/nsL1HFeSsG2D4eE+raaKciFSCDK73ZYgDtn6IUdtl5Zn0XR0rqYBYlqQXx6zuTIR7zwgifPXDwEU5HlJLUh0D27wt//tX/L0u8+R0xWjQZNFoHB+8ZIiTRElAUQRSZLp2AZGVbBerolzgVrSUEyXvqlx2DJpaDZykXJ16XO+WZIBmzjn1WzGqyymzGtyJCRJZuQaGJZLcn3NwJDoNB3mosJdXUdre9iDLhguh1nBPMooooQyDFEEkBybWRyx3G4wdQVT1zE1CZmcKkkpswgpT+noEo+vdry4XuI5DmNhiCfIlHlKw1DIq4I0ClCabVzbIM0ygjCmrAVU0yLLK/Iso9nMwBbIFA+QSKKY2A9ZT86xLZP5fIXXcFEtj1s3bhEFO2QRxCxBrSoarTZ76uuDgWFWsN6GGJqGEPskUUQpaWiuy/lqx2TlM1mHkBfsRJdFtGa1muPvytefGecFSSWSpRGKrOCXMUkRcLG8ZL9poOkyd0cjnG4PoSiJ6hpnb4wuFnQGAyaTCxrkBFnGs3WOr5gss5ikqqgqUMSKMo1xGj2W2wR/ExFLbZ6sZwyv13x8/4i9fpPx/j6dqEFZFTy7nPD96TlZuUa1HUaGjKbK1NS4lkqv5bBLC2rZYOgY9MjAdVlIIs1WB00JCZZbqjRlt91xVlQ0ozWHe03u/zd/yxdfP+H84ppVsMG0DCRqNrM569WavKpxdJ3r6YpX10tu3b6LqFuoRowxPKTtekiRjyrIJHmCkJUYhoImCqiyihSFmGHIwKmQBJ+nVxd89+w7bo8b7LcNdkXERRizm9fcMEfUBRTzBblQkekK8+WSOtbwrBY0U+QqZLvcIaPy45u36A73ibOc7XROvttQJRmKCEemzq7ImW0ibtg6clyz17MJ0NhtM5yDHpVmoZQJhmOAIVMUGZIkkeUZeRwwfHAPt2GgbE4R4i6jBz9CdoaE83OU7oCT8yn37t6lTmKUsqLhNDl5+S2rq2uiNGXU6/Ph229x1LRZPVswO804fnLMTizQ7RaamBMnEbNdAnXNuGmx51kkO5/VbMdiE9Ee3uXHP/9r5t895ptXv+HFZMtmGyIJ0DZshCxml6XM0xI/SdDlCqqC8WKGP39CK76PoJh0b9wkNTcY7RGxvyH+4SmmqjGdRpz5AZs0o5av0PUfKMsaRSmRxYqzrkfTsVElmX7bpd9q4Zg2omIiFwk3ew6Hoy7/5ckVi6hCEgSsVgtVKCjzDFet0SWJ2rApA59Os0G35aFkKaP7h8yvLtn5PrpYkQsgKgYIAr4fE8UxumUgmRXPTh5TlRvufvznUObUZU5pOFzkNYm/o1zLWB0PwbFpqjGNbMXq+gI/rZnsIh5tzvhwr0sZbCmThCorwG5wuSpYRhO+O1bwhIIDz6ahpkh1SZQUeE6JK6sYXpPZbIYiV8i9Nqptoik1GC7m7XuEs4owMyjWF+y1LBqG9rq+upTQXYdtuECqSshy5Kqm47WQqKnKnMVqTpqlTJdrdlczhHTHrW3I+OAQ07aQ4i3l8xWGLlAENco6I9v5KLqB61RgNtjsAtqWzsP9DpO8oJBqdrsQr21QUaNaNhezLWpvj+5gH38+w7+c0DBNDKuBq5s8fOcOvVaLOkuIqxyraNCWDLTeEaZlU6cRWeQzDyPOzidsV3OsusRWZPYPDxjfv8FguM90V3P67BXR9Bn7ro3mCawWIRezAFUoObQNNEmlDgKmE4FGr4koVSTVDqVvEmJQVgWL7Y5gF8DVDNm0WOQp+5WKkE6QxZqHdw+5cmzOz67YbDbkacY6z1GFkrwoWPkBt7ou3YZN77BPlSf4VYEkQavVJsxTdBFSagxDQewPSXSD65cvqRCQBZG0qpmvfYqy4vnZFeOGzcnZNZKoMD87JlptieOMtR8CNYIoY6oaVRZhqgamoqHZfexOB9OQWF5eMrm4wtZl0sAn9APmUU0aR8hVyYdvtfgffvmQ0cEN8kLGrwzEzCSur7HWM1JZRtV1dmGEWWn4GezWCw5v38DyLBS5Q7CTCFMVSZMAn+luhyDICNLrG0SqKtOwbExVI8oFXi1mTKKYdVbQMRR+PGqTFCmPLy/49/6Wu+MhP3v4Djdv3EAWSrrtFo7rMg1CtGaTiyffYigCdsPl8N4DLqYLOo5Ju+2yns25Xvss4pqg3BGigqSwmk6xtddfnR6Njzg8OGKRBiyigNsPHjBsOwTrGUEQs99r0vZsYkdDNZtUaUDLs7m69rF1A9HQsGwX07AREfjmyfd886tPIUx5//YD7Lvv0L/RY7284PzxD3z29WOKcMk7hxY/HRm0OeTs1TNaxBx4GoqmsIsrsjiCMsNpjTA8IAuRhfJ1G6KqUgkVVzl88eKMyfoHkiDGFBTEWsXsHzBWXLqdFi3PQzVMgtjk6O1fYokWJ4+/QTUsfEl93c6liniOjmdpmGJFJVm4esLlNgNBJK2gqetMV2vyJOWtvX1aeUq43fwxR4g33viDvFmavPEnqc4Sou0WXdbRTJvtZstHd96it39IS6/YXC8o8opur0vbdVgvlhy/POH9oz30sYhg29iWxnq1QaZElyVuNB38JGeblgybHRSnR1oJ7L/zMYLq4ispLcNlu53x/dMvqPabLNOETe5zHojs5TG/u/DZ5im6qiOrJqFgMTme8O7HfWazc+bLa1JAO7jL8dePySiQFJlbwy5aEqMUFbZmc5XlXGcpnpiiKyoNWaKt2ljK6yOIzfEN0HWy9TmyUNHueIhSiUqFqBlImkaU5UiiQMdUGXsGQ1fDEsEpQ65fveRivuQceEeQ0FsNsiwj/K9VpqIi0HdlxGxHXVX8zV99RBZlXH/6gmi7gapCEEVkQUCTJCxRgiRBKAuKvEAQJFxSvDInmWcEgohYlORRzDxOSYuCtKpJwh2iLFJKAlmeUhYxWhkh5xod10T2VGpTx88F1n6AoCgY/QPoivhPXrFZzpDyBEESkFyH0+WKLIowFAULEUtS0c02frhgs9mwmS0Is5LW6BZ62yQJXhAGIceTBbZYohchHVtjb9BFzBM2cY5raKiCiCrLVIqAYtlgtIkFEQuB0p+iODK9wRBN1ojCNaYis7qe4W8Dwjhl3O9juy6mIlMrOqLmkMs2ur8lOzlhdXqKJktsNjuyJCEQK/I0ZbYIWG58ZEmkyBMEWaDMKyzDQuyMuVhN2IYJVZ5SVDUI4usYUVkwDXyKssRuuiz9BE8wOb6ccCSLTM4vaHfa2O0WarOJWGQ0wyvyOOTJImFXiQhaQlJWZGUFkk6WpyRFwSq6pKqh1bmF1xiy3l4hKhWfff8Nx+cu404D2zZotjwGjs2ZprKLE2RKNFlFUFS8Xp+DKqXfsTGbbcJKxqsKLh4/xbY9Qk0nmD3GVU0MQ6eSVWRJw5EU1ienNOScgwfvMu7anJwUOKaKgMD1xTnz5Yp1mKIZBk3HZnW1xbNMTMtBlXSsvTu0+0Oyq1ecXJ6hSgoKEEYxk6qkrVlU3YS5pLC4mrDdzAmSHUkaIcsV/+nljoO5jq7KREnBLgHr4JDWsAOqDGJMcbnk/OwVlt5FKdZo8RZdVVnmEKcRf//pN9x8v8G99z/C9FUeXfw/rBYXtFWRfc/lVsNhlvpksoyrqyznK6yGi9ewUVQFzbEplA75eoksVxRVTYmEKEoYqoxZxbiqTf/oCMt00NOAjimzTQrIK6o4Yfr4Wy7ijEJwWF3NyMMEQ1aQVY13P/gx/UGfNN6xWc+4Pv6G//S7X/H2j39GU5ewVJeriymH4zGmLLweEPOMTPCQLQmLlOPzM1a/+RUXx884m1+y2i1Jkoh2c0RSCmjIKIrGnlKyFHPWUUAgwdP1lv2nZyjtL4j1ES+Pd7z18B6abTGbqfTvfcj3n3/LDycTkirHVARMS0GhgWm5UERk4RLJ1sjqijgvEPOQIli/PhTa3SPNcpQqo73v8tF7t5ktA/K8oOO5ROEOIY/JigTT1rDrHLmQaDgeKRLFcoWXJHRHY/IXTzGEAh8BV5NQhBpTU17HD1otsjTGtFQ6hojVaGC2+vhlzuzpEygyulKBtJliZX2GbQ//ekYWr9BVBakoaJkaty2DsVmyKSUiUUVUJEpVINJFKCKiyCfIBKzOAcvtkqYmvI4/aRKmpKHaDfzJks3kmtHhHrqYYbc7tN7+Kdtn57y93nE/z4lnBpurK2Z+gmp3mIo6jtNkcbqgzgMEYF81+dnD98jX5/jTY44XC9L69W0Is91nchHz6x9e8mNEPnr4FiQV6jZFpUEUbrFlEVmWoaowNI1cqJCKlEMb7moZYZqyVWRE3UA1dSTNQWiraIM9/LJmPp1RqzWKZ5BGOW67w9iW2B/30VSHOJBJg5DldsfJdMeDzj2kuiQOd8ynVzx68ZK4LIlWU7q2hza8SefO2/Qf7DE4PEA7X/H82+/Z7bY02ibNtoGLxdyPeLVYoFoah4MOqmGgOC5rf8eooaO7OpebmFoq2QU7JvNrpCjGUBWO11vu/8V/x7/+6485+/0/c/LsW3RdZ6iKCIM+FCV+FOIaGg25piozNnHCYhtyNllw7+YI29CI45TRwT5+XrFdhfTbbWZhiCnVqCq4776NdbjH6skziihGMTS21+e4lolTZxz1O3zy/Qv+46df01FFHE3FVixmZU2cZRRVypqIjmkhkWPoCg/u3UUzbbLgCqFMGPZGzC4mXJ4ueHbl82yToIsVPUtClwu0YsXuogDZw8ejkkuELCYVIRZqlmmMpIosVpf85GYDo6zR5BKzaVNWIcbRu0jlD5STCdP1lmUCglBAVaALFYqgk2Q1qgKuUQEaQl3gCRmWWLBnObS8HgNDZVXA87MJq82OD6+npHlBo6HhSSZex8OaLsnaTZotB7szIAgCzDoiW04JhIJdLmDe/QlH8gnL8+fsri8xO0NySSJLMrxmi0ZvSHe8T9fSefDufd6+cZNs+pJvv1ny5bpmV4ioYoWqqrQNjTAX0IiZxQnbMKPtyJRpzmI+x19vCZIdzSxnuymo7z5E6ngUkkwUxhx/9Vt++PxrvI7OWhNYJg7zjUoiCsziHFuFWDbQpQxiH0E8pDE6QG220GyXMok4vl6wCAOqJOTLecgiyti3FIa2SSIpnGx9evGa9PsvSfoDhu0e/vU5yv4BVmef5tGPKDOR0+PvyfwNNSKbOMPQJRxLxjMVsqJGlwMEsSJKU+RaIRYkTNdFEwWyKKTVHnJ4+/4fdYZ4440/xJulyRt/krIwoCorLFUFzeLw3gN69++yXc846gwxW216iDQsA8cwWCw3TGdrkqZNfPoMYbWkqStsigxFUjhod1EFmcvNBkiwFYNuZ8AijxEGPYY3H6KUJSeLa0pjzDtHb1HOtlTXJ4jhOTEWoQGDBx8QXZ8xLULeaY1x2nvMPv0VSzsj9TdcT1ZchTVTCbxRj2mYkycphVxza9jl+Mlz1usFuWJyGWX4goUax+wbOXUsURkaoqSRbZZ4bY/hXp88TykFEcoSRRTRJJFws2LcbhBkOa6j07RMLEWm22xwejrjbLnkJIhpawqXmw16r4EgiRR5wXjUwnNM7HLJ6de/4ac/+jmNVoevPv2cOgyQBIESkCUJRVExTJuGqSEIJXmiIcoyuq6hFxHLRYAgyni2R1GVGKLIgW0zSyIyKmpFBAHqqkaQBRqSjKfLWJqEpqmc+wmWrXGnbdE0BCRFQDIUFs/nGHGAnEZIsohqGywm12RRgISAWteIokBVQR0X1GFNRsXaT0gqEJdLykJCQWBoOziuy8lswjbPMDUZx9IwJJ00DlAUGRCQFIValVAE2G0LJPeQvIwxDJ31fMLk2TlpkrI36iDLEsv5AlWRcWwXscjZXl3ijQ4oaoXlcsmrHx4j6Qa73Y4ky/FMjWi95MnTF3z0/nt0Wl2SpKIscoZvjxk1NXbbkOtZxN6oyxqH6N5DXv3wO7K6Jk8jFEXF6h0QLc+RFJnG/i12/oK+ZeDHMZJkcH55iu000NQ+chYRzivkZEm0WWC6NlIkoAYhfpCgCCJet0/nwV+xPH3E5YsvX/8WkkjT2+fW3Ycc7P8ls0f/zMmzFS8m1xRZyuGwjes4RKHPrZaLX9q0NJm+Z7MVDeo0oGEbNHSJpmtQVTXbV5dEUcw6l3j4i/dod0UEXYE4wzTBCiL6hsLx4wWPH51yfbHE6jQpcxgO9nj19AnhdkdRVQgCWLqGaLqM+gVxGHOj02B/tIekGeT+kjLeUBQZUZzScSxUUSCJIp4u1nx6fMVOFNhTFcQk5WS1Ia9yCqFm3NU43iSMTYVKltiWJZpa4uy7oMrIlY6CyNUXz1gul/hxgiGpJDk8uZ5zstqQVPBZ/CviX/3fkBUYSoVR+qiWQRQmFLbFQBdJ1zM2YoUslDgNm36vTZElCHIFLY+CglSQyUQFu9nCDwKGjkbpL8kiHaU7wuofEC2mVFXJqNdmKyu0GzbfffJ7xkf3qGWJaLOhPRiS1wJat8+NmzcwFZUySdAbIkf9lHf3G4xHfdz9EaenJxSVQMvUKC0dMc+wvR7jOx8Qb5dcvXzGtt7y9NNvOFntmO8SsqKi1ehwb3yT9XzGOo04aOvcbtlM5jlPq5CkKLnY5bw89xk+O0YdOyRXc4SBQrKSWFwsGLRb/FNUkQsa5AEy0KgUOoZOe3wbhAKCYw5u3KAWJIo4oAi2LKcrVtIGyXBQVRFXNzGVmpv9Dq7rEgY+jmtTJD5FBaUkI5Q5Wp7SbTRxhjcQiog6CRErkTJNSMPXrVENU0WRBARELF1n0G6So9Nt9Ln3YJ+ObRJu1pBlfP7lZ/z2y6+4vpwwUiHTRMoix9Uq9KZO5Y5wS4no1QWjtKBpKQRR/PpryFLmLKoRxRpzr0vjp7c5/f6U7GqJNXwIfZGjGxIvv/ySMvY5arQZHRzgOTbPf7vG1XM0XcbbH6LZIm5LpelJxOsdSr9LKOg0tgHijQ84e3rB6UVIHmfsipKtIODVFm29Qa9f06y2HLVtNmmO2D3E2r/B/Pvf8LvHz9kFEUgSUl1QluXrNiFdI9v4mLLERQTDUZ+1n6IYInIe8fm3P0C3TSV5mN0hqSgi2w51ViBkKcV6Tr1b4a+XbK+XUEr0x/do9jS8VhNKhe12yen5KU9eXOBnMg8VgzxJiIKY49MTFssrsrzAkF9HsTZRysWmolW1GZoDegODqq5wezcpdR0jiJHKkrIS0CyHHyYLWo6JZhhoDReptri4umax3uJYKu7RDdaSijibI4k1izTnMshxr17w7X/ZIawXDFsdyDLqYI1ZSOwd3eb4+DlJuGXUdGioOi1NJq9KojBisdgyaFt4XZ1stUMpcwxVomEohJlMHcX0y4Qq8ek2HFZHQ9aTK4rNhpZl0FA03K7H2/s9zLriX2ZLThYpY9eiv9dE0TTWUUxZ11S1wOl6RUvVGA8MNLeBphsUocJs5hPqHn5Yoeoqf/7umPfXAbP5krMkJ6pgdr0i2V0Rixqp3sRw9nk12/Hl+RWCWLPLCwTVeh0l3u+y31VxGiJVtqR2LBTtNvnJhOkq5TIUqWUVsgS5LlFVAUsqaasiqiaQFDWuJKLZMgEylq7imjr7B7foNh2yquYfvnrM+XxFq+HSMnUcoUauc2xBRGpapHv77N24AZKEYxsY3ZuYTRet1eP0s2+4t9/h3sGQT/5py/V0iliXmKpGWpYopkX31gNuvX0fIdoy+f4TVotrRnttqkKmOxix3MWkgk3T9ag1D8Hp8/LX/8TZJqZQTC5ma64WO94+OmR0cJNbmszF8+8JNksm5+eo51eohUewuqb2l6gC7FY+328y7uxHZJlCYTtMKgGvEpDLkoNhgyKuaBzeQx+9jaDkmJ0ZplEQ1hlPVlvqqiSNC97r2txum+wPhjzxNXSnptvqoDRarKl4/vQ71lfPue1avH/7PVo37+N0emSba3RdodqsuVy8bhCzdBVRlmkZNW1TxJAEZEHATzOOVzt+ejjE9TwGvS6fnZziX53+UWeIN974Q7xZmrzxJylPU5S6xlAUdMtFl0S8wZggSZBkjdHoAD+rMW2ddLfl6fNXlHFMGMVUtcDFy5cIZY0qvY6EWLqFWsmMBw6brY9DjZcn7O8docoFogmq3cfIS45//QVGrDML1hzqBmnTwjQE2qZDlka0B0OE1SW1opFHAcv1ludfPqJ9MOAkqjjfxdy60+DJ9ZRGx2J7nuOoUJQxiqaRFTkts8FAcTk8fICaxrTqHUftAVmSsglWoESE6Y5oWdFpN2i1u0jdPU5nM7L89dtXioxffniffqdHt97geg283oAgecQszrFkiYZhUlYVUpSgSyJ37tzCbbfY6zq0PZWjG2MawztcvHjF2aPHWMrr2sskLAAB1zDZ2z+gVYZ4LQdH10jijCzLWEQpfpYjSFBmJS1ZoCwhrBW8Xp+wjJCqAhVoGSqSKCILCnfuPiC/PqFhyvipxeP5mnfbI5aZCKZJkYsET7/F0iIsR8QVXZbnV0TbAEuWKcsKioI8rjEQsTWdw8GAzNVQE5+irBn3XIpCZgXcf/A+nl7wXkvheLkkrkvitKAiZ7/VwLQd6jwnKEEUoMoz2oaItXxJmWmE9ZDrsxnR7JpW06Npm5QVrFZbXK/NeDzmWUR9BAAAIABJREFU+uKC9XTCHafL/p0j8jhEkUSyKKDT7qAIYFQZUZLy5RdfMuh0+Ztf/ivS7ZookTloj3HlijR2eOeOh+0esdgVrNYnKIM+59MJSVqx3xtw9/0f8+j7nP2+xS/+9r9n/vl3DLMJhVgw2W4ZeBb9hsv4zjsYTp98M0Utl9y81ePuw9s0PnnOr797gaLqFBkcNFw2Z8/wZxOoQRRrGqbFgSux76o4RcK9d+7xwZ7L5199w3Sz5XJaUNclYejTNjXGjouAhKSpSLWIJgpEioFp27Qdg+j8BNsSeftndzneFgz6OpmYI6tDGq2Y47PHNJwGqqhwuQg5n254NP2Kv/vrD7B7R1zP5gR+SFaUKKJAzzVwLJ12q4nhGKxn1/SaHlWeEl1fEMURr16c8uJySijJDByDKM7QyZFKiEuRV35J6Ax5Pp/QECuEukKiQt5VeLrCnQMP2VW5mMdkVUCuK+iOh1qDUWocHfj89nfPCPMKQVW4WIU8ni1pGipNSeVsfkaQxliaTlUqxEVKLCkkSs5649NrmERxxiIM2HNVyryikEyiYEFDcTDkmsS1ybY+jpBiUzCwFfIsRVU7qKaDa9lQCqjtff7+f/+35Ejc/7u/o91qUh+MGR7e4vz5CdHWxxw4DG7dotHp0HBMsqzA0k164zG3D/9HRod7/OcXEY5pIFOz9kPK/Q4fvX2L3XZH/+AQOVrjqSL27bv0Ox5Oy0G9mmFNV4hpys/efcit7hHBqsdqcYUmhkTxFsrXscOwel3NHSevm9Hq7AS3khGjkIUfcPLkmNV6g5ZGtAyNaSgQ5DEa4KoG3iBEdy3SSMRAoxQEGqpAZSo0FIeyLuhIEY39AboiISgqqi5z97DH6USiZWmsqxJJFMmjmKQUwaxRNR0xjNAUicbeLfIsZz25QlV0qMFQJXTbQcpTJFkiL+BqukaWRvQ6bbqNHqffv2KyfMWvv/gd15MpZlWyqUQGbgOhyFE0DdFUUDSd8eCAdtvj8eOnXF4tmK53BIXAJIFNKZHlBf/qr36G1RmTmBFST6Rjmdz96Ke8d6ekZ0n8w7//JyJBodHvY8gCxVETtdmh+fZHSK5MFk5h+YI83JClKdZozPjun7F4/Bmz02/pxzvIa2RX5vMXS5RtQl7+hg+iLban4M8v0RWB7nCErGRom+c0mgK3//JHvFzGSIKAXGUUeU2eZIiihG7qOFnF7OU5jUpg0PKIgppXxxumUc64krE1Cy3LWMYCdblBa7Q5W844fnpOML1CUVSKNEeqK2pERN3BbjgkuxxJlBjt7bEORdJ5So5AWUTE0Q6hyBi0B+zfuIc/PUOKdvjhgi9+/Y88ffGKhx//Bb1Og+V8w9GN++idBtK5T5pdkWU51uCIy5MTnk192g2bug4Z3X6b01JH2C4pqoqiyAEBuSqwTY1Xsy1JEvH5f/57qskhv7x9E6VW2awDijSlTkvuvv0jkvWKdbhhu92xP2jSUmSyPCctC7YbnxvjPkUYYUglsSRgahKdlsP5fMH1Yo1s2txptPGo2G832dQZp3GM3nGQopBbhzdotNrcjHO26x27OEV1m1iuR7+oWO58oiSlQkAAFkmEHQcEcYSiaNRFQatl8eDdW2yHKllyiFzliP6M6YuE24LMweERUlBSr45ZzFckLZm7h/vExz+wzSoWwQyLgjpOGfWPXscpdZ1SVFCKGEUQUHMD0oqXl0tEQUC2XIJCIE0SCqHGzRNuuybvPDyid+sOy5MTvv/se67KnLQoyZOIcntNv9umuT/m6L33+F/+7f/Jer1iFRi4ezfoNGzi7YqmKnFw9y1Gd+6hFSGiUFCWOZLlcjKZcK8F/WGDWu0wf3STYFMiOzrJZo1s6NiDEW+9+y5WIfDoi89g9ZJAEXm+mvDyfMtG1anEip8/vENvqFClEna+Qh7ohCuFs1LgerWgNThgePcBw4ZNOjtHrf/rYdVoye7b3xO+MJhmG4I4pypzirIgECWOdzV7hkyaQJbUpIZEIQnIg7doN9uoLRe16ZIXJTQH7MqUuR9giAJfLVMOPYVcKHmalRRCwatNiSObqKaFbmpMl2viNCfC4rNvv+TgJ3/OqNdHLFJa/THZzkZJaxpGgCqCYSjoukwSyXQMEbNO0GQJUVLpt1v89uUFP7srMxr08Hp75IL6xxwh3njjD/JmafLGn6SyKDBUFU3VkcMNmqpx9ttP6Nw+gshn0G2hVAXb3ZYn59eESYYpq+wKmX/44jm/fXGG2+2z77nomoGu6rSaXdT2iHw2o5hfQ5XSqlK8OkSP57hCwumjf2R+/hVBWlIUOR3Tot1pc/uoxV6ny7YQ+OTZK1rK64q1i4tLwqTgm0cvuWc1iSSDXMiZbXKiROQnN5uUqzM6skm4Eel37rB2C4K6ptkaItke/f4tjOunZEnI7ff/jMSxOH/0G/LVCcvtlqrKcFwXRxSJa4W6zmm7Fg4VexpI/iV5XWPv74MosduFjCyThq4jSjLbKOZh02K+3qGINc1Wk/sfvI+rVHjNBrOzCU9+9xVNVQNLwjM1ZlGIVFeQxbjrCe2miy5LKK7NKl+zClKCOCavasz2iIYkUQYzFNtg7OhkcoUpWNTRhm2SchlmVJpC34BwuqSrWORZynVUMS9EksYQUUlYnp+yPb/GVhYoXZPU0nn5wwVnFwssVUUUIE1T0qzAqAWKvMIvREocjMY+Nx6kmPEOxzTRdI8nlYurmvTlkFDXeXj3Ps+DhGB7zl5Lp+e5WJZJmqTs4hxVV2k6BlWyI6si+obHyXTD159/S0OVOWjtMej1WG/nNFttWl6Lr774hiTwCZMc0/wBf7VGs1xG+3tslks2my0NRURDZhnVvDyf8Mmnn3KvYVBGwesbL6YOTQ+5o2BaTZzhLfb9hGE/59UjnX/+JOCrosDFQNtG/Gh8kzuHA97bO2CnjYm//Efu/+Jt/t2//IbV7oK7lolj2aQzn+D8hMYdidFPPubbb89Zr1Me9jzUpsPvTtZsryfE1QK5rFCl17n3gaWjhhPCZ/9Cq9tC7HnoosK426TMY2a7gGWUUJY51rBJTyhRVJVSUfCqgrM0pUKmtAeIaYKaZ/RbJgdvvcVQMdhFC77+9gfM/hWzWCYvBW4dHqCXOZ1ul3feuo8uxni9Dltdxw980iTGVFVGbQ+pLtF0i1oxURWVvJ4jFBVVUSNIBnEYYJtNbvWhljXmQcbVJuAy2GFIAppQc9u2acoykWpwEq3RxBJXBLEqGRomXdtlMDLQwhy7u4couWiSgiKV5J6C02vQbTXYXqxZ5BHrsORne0dI6QYRgQ42S1miEGUEocRWDGxJ5aqUuVjFuGufZh3haQLLIKGx9ZnPtjiqTrpdY3Q66IbB8dWGJC0YuhbRZkldVsRpTM82qLcbtmXJ6IOP6fTHfP34KXcRUb0u/TsKWvE6dtYc7hMlCd7RTVqei1JmVGmC4ngoiLiDGwymAurj30JZoekqBTJvvXWHI7Mm8gOSOmBxPkGWJUKtjT56h35uI2RP2as1hk2btx4+wBJVErtgp+1YzXa8TAvSrGKv26SVRuRhiqMprPyaKgq4OWwh5AWLZcTFIkQXKn5y2OJqkSCkFufrBABLqRh0XZBqslhHrXJESeTF6SW71QpblzgctCm2MaUkIVsOutdGsR0OOldoQsVuG5KlKbauEeS8/k8zrdeRt8jH2T+izgvKJEeRNQSlQpJVdFXBMzX0smJXyli2TnU9Jytj0jJDMVQiWeM/fPoVj4/PoCowBKgqhZ83GrTaHWRZRlQNNN1A12WUbItBQU1FVMImzpARueta7HKYffWCf/3XexzeP2BxGkHwDP1E5noS0fSvOXJ1dKFGkWWyaI3daFC1bhBFJWZvSBFdQVpwPssodwHS+jHd29A56qOLAbFbcljkZLGIvw1QC4GxUhJdPufLS7DEElWAWPUYtg6IZi9QhIS98SHNsU2+nUFlE4U70iBANgwkVUNSM+4OPBJF42jU4dGr51zsEpquTSKoiFFGMZ2S200WKWiiidbdpxEkmArkQUAVqAhxwfWTH3gw/CmqIlNrOaNhB0lzWNVDlkpAXGhY9RrPc7l/+zaCqGC39kiUmt3FSxq1xjypmV+84Dd/vyb2N2iZjzC7YqE2GBgCUi5CIXD6/JS4LDidr3n/zm0aiUiSiTjDA55//4iulCLWJYZQY6sGFAlJklEmEYIo8+h4weJ6w4f9FkotsIkTUllDXG74SUNhtnG4DHaUZcXAtfCpkZHwHAeDmtrQqFwT0RLwFANBqFGpOT+9ZLkOWPgxbx3tYQgV08WcYLdj0D+g2bCwNJ1dWnPpp3i9IR3NwOiMyIMdUp7iezbP5jlRXlDXNZIgYjsOSV6g200qCkZ37+GND3A7bYpgQ7K8oJxt8VcWT45DtHVJmkjMQpHPlynr7Zyb9RecnzzBthRujFsMNIUrv6I/PkCVKtz9I/IwRnXaxLsEsYjRGjq1IpEk4C/niGXBwHWxlQpFjKmqBDQDyVQpwwlDIyM1FXS7QyVKLFZbNMtGT1Iaps7/9Bc/4tXFlP/j948Jy695784Rt7setqFQoCBFO5J4Q6Xr7A/28KenJJcnmJpApmqM7t3iFx//G7JNl+fxlyCLtMZj3I6HZ6r41xfkXs6Xzy549N01Tc1G9MZs8wWd8T724dt0xRXZfIE/n2JaGk3P5WzqE2cpQ8/FHe5hlSma1+T2ux/SXaeoWY3SP2RaVCTnEaXRw3USqiyhpYLmmpiNJqvFgrKCsyDn3fEQsXsLe39A4Z9Sxws2F1vOXr1iESjUacU6KYlKmMQ1sSqyiAqW6o40VjF1iWC35np2zvn1HK1zyDKquHz1nP/r3/1v3Pyf92g5JuvBkNB2aeQZcrygaRqoukmdx6iS8PplmFDSMRVs28ZWZVqWgVQWnJ9fssRiNBr+cYeIN974A7xZmrzxJ0lXZGzTwO4McRWDniRxcfwMSVeo+zazzYKiFnh1PWO2WGPKEmmS8/xyRlKKeMMj2u//GXa6IfG/RBFF+u02DUclThSmO4mqzgnnZ0h5SL2cIMsy7XTLWi5p2Ba2odNrOhiGQJyvUSUZtcqxigjXVqDIsPOYv/j5j/j97z/j8svf0TRkLq5TZtcrHuzfpi2MeMcJyVcZDaNJXMn4osSs3LDeznl0OuH9rOauWiJkW8TSR9x7iwe2xnf/4X/FazcZHo1RTQtBM6iFkrLI2Wu5HPW75EmCv9mxd6uLq1XstltsAW72PJqmzYvpEk2WyLc7LE2l0bSQM5888NkIEpuTc65enTMejtmaLupszlFSsV5vgBpRAFeu8VwL3XTYrNYYwHSzpShypBrcPKNlH2C4XQopZmCVzJZzDLkiNFU0TWaV5aR5wQd9h4GSkKUZmazwzriDIIv4mym5I7I5m7E3NJCkBHN4RLQI8K++okhzdnlJ2zFI05IoK8mEmrDM0Yo1XiVzVGXsOSrO/iGKbqOKCtIiRInP2OwSZBVcTeRDx0Tuj7B1iXbLRlFkKkGkEAR022EeFrQcFUWzSCqZydkF7Sqmp+iI22vEcJ9KUNjr9/A3AS2xZCNJjPbbWBI8+fpr/LRAUFTqPMPSNQaWimbYaJlPDZwdn/Dd57+npUmMf/ozdMNA6/bRFJV0PsUUExRTZrrcki1WNA2Nnmtxf9DkgJCdpDJyeniyQFBe0erZcPGCw8qnUkUQXZKLBeL2mni9YTuV6Iw7tN2Io7aHJ7u0HtxG72754rPvWKUFbdNkJtaUZYkmqkhCjZhHCLFEkbl0bzxAARxFBk0mkzU+/fYbbE3BNVRkqabWVUKzRyuVma/XCEnCYjalozo47T6GqtE4OOLFdxOGXhu/NGhbDTKpZDA6oKGK6K7Hj/7mb7g+fszLx4+YXa0I4wxREPnFxx9y1LR48uQxpexwsU1wuw6CrDKZz5HTiPnFnGazQaaY+HKJOLxJEiQIqzXNhoOfJwiSyEd7DaLtlFLNGSoamzzjOs0JihJdBrWo8DQbq1Fgd5pYdYxeCgi6gWBayLbEjaMOZ1db/DDjvUGHcrNBVWxks4nVH7N1upw/fkoZTnDFGkfScW8+YBeuKLbnbMOarqdgqhJxXjBIL+k2TBaxSF3nSJLFZViBqKJ7Nq31Bl3KOWw3sFURSygpdj7b8wmd4R7vqwbD0T5BlNJqtAleTohOz0hkFWm0R6EoOK6JlO5IVjmxJCCk/x9779F0S3Zm5z2ZO3d6c/L483lzXd0yqALQ6AbZQKPJZiuCslRopAgO9HM00Uw/QxNFSCIVFENUt7qBhi2UQVVdV/fez3/Hn/Rua3D1B8hJByLqGe7xzoh8137XWhXz3ycklxuODk9YdRVxFPHehx9y9vARQVcR9HcsLy4pHLB7MbbWEkUlD94bkIbHrBc9bM9iMPbJ769Yb9+itwnxxOeBq/CXglZCkZs0po6rC+arksMxFLstiy6nLiumwyGLmxuSUue+Nhj2JtxkBfdFRnk7Z/fFl+jZioGl012u0NyA1Tbh7uKST/b6BHLMLI5IqpL17S1906e0pkTSIDE0Pn17TaPe+fTLTrBnSpq2Q/kBdtjD6FpWmy2WsNB0C9qMYeST5TnpdgOuS39yyGI5pxe6IAWGISmqlLoqQekoXSfJG3INLKGRazo3izXxOCZwTYQUNMmOMs8ZjYYUSnK/q1mnJT+eRpxMx9zvOnZeztlJzPPLDW48oK/ptNdv+ebqFZ6R8TByMJuC61cv0DZLtrrLqNjRbjSWzzYYnkI0NU/3BlzrLZNQYDUXFOt3d6vMcrq8RbdczsYDbi7nZGXJfSNwHI9PYou+L0nrmrc3Sx66BvsnZ8hehNINVvMCVZWEYUCSF9SaTlM2AIS+zcAP2PclxTggNA4Ip4d81drcb+eouma5TBk8esr+kwdskwQtH7Pcbbmfp4gOlFKoYsfu9p4sq3FMA62zGHgGw9mAftmQZAmeAUO94fRsShD2QFjMzYrrzS26bmE0NquLW5ZXr9Dbkr7r0tMUkWNimAFCd5mIDWZTc1PkVE2FaUgC1yPQC76+vCTaPyS9esagLPFNk55lsVEdZd0iNA1NSIJoj+3qNTe3SyaOTV5rPPrBn/O+V5JtLIT5Lu/J000C36OWHvFwgufYGGVB4JnUoxl3VzdUyY6gP2S9TemalqYs+Oznv2S32nA0CNiLQ/zJhIdnJxh5hlbVrLMd/TBCd12MaMwOiVrf4bUl59MRynF5dXHJJi9plMILPH74kz/HDDxyb0A0OsYyY8LhmHJzjRq45JMIa3ZM70HGm7cpLxdbPrve8iZtUNYGlb8iji1C1+RRJClXCZNgwEn/XfOXXmxorZDODlCVAcktgWUyOz7h+tPf4guF7UiiKCS0JXl6y6KseHkxpzVddjdziqrAkTbScnGiCGX7yCig2i1ptw09C87OT/C+uuVuU/Dbr1+j1TX/9HuPkMGAy/kW0/UYnp5i5Fd0mzlff/oF6WLNabzhX/0Pf8XJecDx04hvvxDYcY9oMuXhkwf4exPSWBCEf+C/+8ufcvc//j/cP6vxMEmzBX/9wRNOzs/pNQMWqwxph1ijGb11hb5pGbo5Jz0fc7XEHg4xRwdoaPQHOfNnrzH0jvOTI0TbMf/q1yih47oSXeu4XufcJ4qkrtGBXugyHk1wTIkTDajrNfX9PdvrOentPRerjv5wzHU1Z2ArBKAqxVEcYm870utL0jDmsq3Y5CmLoqLY7VjToHTQFm95+evfEr//IZ7r4V89p98kHM36OJaBpQOW4ObNnPvlDkdoDFzJ9x4ekuUNM6kY2IKLoiFtU5bf2XO+44+Q70ST7/ijxLIsBq6NE0VE0QS5vOdgfMQnH/4AJSuuX37DxglpNYEyJI3rkiYJdt3xZrHmIrnGubrjx4/PsX2frqwJw4h+4JK0DY5l8ObFC7TdBpOCwILpdIZ3cMrJgzMWIsS2PNovf8t2dUM48BFNxeJ+gd0pgv6MtqiY2TqGEExCn1+9ucZ0LB5NYy4WCau3r7lSNedeRDOxSNOM7fIeW5fUdU5b1xhZwesvfsn7H51yNnUJzYRBfUlWJfz4Rx/ixAGG75AXBYnqsE2NRug4hsTyXVov4mAc06QLhGmRbGoGwyHecoGtFPt7h+yanHSxJjyfYEvJ25cvwR5zMhhw6NnI8RAjHmJIh7psGG4LoiAkT3Zomobve0jVYgqd/nBCUbRIJXhkgda2TExwgpDZg/ep9Apz8SvsNqVoK8Z+zANHIiSMXBNX12izBjs+JBoP2M6vqDKX4dCmXqwJzny0JGW1XLO3b9NzFEPHZn84orm5Y9gpzvs+Saezq97lEmyLknI7Z6t3uI0Nskdk9ql7R+jOiquvfoNuSj786CFe6FC3FdbwMb5KqfMtruuj2hLd8bldrBiMR0jbxvcEliUZsSPue+y2Ofdvbii1L6hme3hdw/m0z+koJi9r2rrlxeUVl1e3dIaJHwQ4hsDpWqosZzIe0zaKWS9CdR23qy2TkU8Y+Vi2xHAMtLqlaUvqm5ekacv+gxllu2TTFXyTpHgqIVQdtbKxDZ/i6685kzvaSGO3WiDLNZrtU64yXt/8lkEo6MqW27c5xuiKyeGIj57sc/Pqhq8+u2DvyUfcvLjCXm+odYGnB/iOwzSQnE4j4rhHPJoS7D/AnBzDbkFgaTg9l0S6BFqB3pV4jo1uSIQtoS1ZLpfQKbIkR2QVWQ2GplEv59RVQV8z0M/eZ4XJZlMTB4IgCJlNx3TrFRe//AWN1LCDPuZaA244mI34L3/6EaFjUG1vmW9rej2Hnmvz1WbNi1evafZmOKrj5bc7nt0ueZYV3H3+NRotHxz2+Fc/PKErUkTr0W9jQl5xGEX4oc6nVxf8r683JG0HNgxjg7Jp8XoWdrJAmgLh2GidQurgBjZR3+ZgGpC8XWLKmt6gzzjsM+nH6G3D1obj8Yxk0+EbHYYwsLoUFVj0JydYcUDZVWhGS9sUzM5GRHtD7KSkKTJSYXN9t6JtagzVMTp5gFhf0bWKLs8IZxP2nn5ChYHp+ejPX5KlGel2y+HR8buWjxpK20RrW+Rmiww0imJDOTyhSmpGhsCuUjpHo76c09kCqet88PCMYRChNSWdZTM+sQmnBySrFfp2Q7VbIPMdyd0r7m/vqdqCspqgFTXpds5sElE7Nr3KYNgzuFmnXO8yho5JWSqkpSGaGkt3qSsdldXEssMdBZimhW3ofPZmjWMGXC/XbFrF5e//QGzbPJ7OCAYhlmby4L2PiFRBXzaIqqZOK8K9fXbzV+j5Gse2cQzF1y8uWO9yLMsgTXLSNMFRFYPQo90lXF5/SdcbED5+SqlLLKHRljV7ccCrNCPbJJi6jWk5hI5H5Ac4tgWaQdu1aFbOwWmfjT7i4tU1ulLUSpG3NaFnoQwbtxdBtaHtWpQQLJY5RWtw3HOYaA0nnmQSBByfPGTJAK3uOJ3GaEaNur+iLG+pyOk6DdeyuV7mxP0lqkiRro1eZXTmHkW6wKeha0o8RzCMbOo8pc0yLAnDDpxBTNFJlGEy8SK2GsReSBgOCSMTUxW0bYW2XTAOBpw+OMYaTujMgGK3xQsDkvU1TaXQ0RCqJWlbDNvGcVp6/QBH6/jg/YekneTrNwuOXIvNTmO9WhFPpnx8OGJs1Pz+6hXi5prAlDiHMxayo14miE5jt9iSLhMG+x56WeP7Fle1zXQA96+2FFInUxkPxhE9R4LdxyakvrrAlJJk1dLmBbZSeKbFOIgYT/c43t9n5DnYVUe+XbAucnbC4jpb049CzLpmHEZ89MTk6u2cm/ktu12BqDMcy+K+alFdi2eZNLpgNAi5WgrSoqLTJR8PJjzxOswOqrrEEzonoz6j/T0yDUxfcnB+Qpfc0wB1moNj4LgebZahazpSNxAKItsmMARsN1xevGUTeuxPh1gPdTzTxHI9zKKhHUzJ10tKJYiahtaR9M8e8OThYwaff85AdDy7viFp4PzxOeO9Ka0qceM9LCPEkjHSCTGkTVevsXoT3H5BMNgymK05v7nhT/YsXu/mVLZGoXsExh4qX6NVKb1hSK5ZTMZ9gr19hN4gXI+6aJCqhWaH06W89+iUr775AlN0uJbB/XbLdRpyu0i5rVy6eMXzz3+D2G2wbIsojLGajLr28cYDzHjI4tk1anlBHEdMTqZ878kD/q9f/J7MsfE9l+EoRvT6XN8tCCyXqLigWF7w9eev+d2nz/AtgVF+w9uXnzEe7uPFOcIy6M1mDCYT9sZ76I5GqRp+9Kc/oUnvmB5dYrdQtSGP3v+If/LDj7HrLTIc4Q73KLMCYbWMDvYx36yYBg6y2uKWC7pNhzWYYHsRRtDHK1vuL96Q3l3yIIooxkNeqxQTi6vdnDdFS9NCZOhkmsnZ3iGeG5KWLbvLG/wwpjMUVptQJBuaGmrT5XA8QIkNeV1x3LdoVM71KqdnGhRNw3aVsMq2JGXJdrkmKSss0WE1Hc3yji5Noa7ZGw8YDQM2qwscUWDoGmgWN+sKlEZoCo5Dn0jquI1Gqml8e3GHNTng4fkjWuH+Y48R3/Ed/9F8J5p8xx8lgevQ81xMy6TXH6JW14SjIePpHhcX31AkG+aXV1iDKT0Eperwg4BBb8Ct7lHvXuJlO6rFPafTPldFgWEK/CAkjEJU3TGaznj5878j9DwC16VNtxRUWPGA070IlE59fsiUGVm24cWz19wul5hOxO39juHAotcLwPdxA5+2KFCaoh/3WbcSPckx65RK94kmQ4aGIN4VhNst4n7Jt4sV0jF50It54koenA5wPEF++Smu6OHtndBZJsgOzfIp53N828F3PMr1HKlyzg8jipVC6gHKCkBvmEU+t8t7NpuE7/35D3h+8ZZic03ftdENjTzJ+PbX/y8n/+Qn6O4I3x9wc30NlolqK8p0x14/4ropqZsG39CYxD5OGLLKFItoX8ACAAAgAElEQVTVmj3PZip1qGuMqM+s36e7eIlDRX80YuQEbDc3uJFDNAihLmm3C8qyI/JCeo6kXV/TpDlRGFBncLA/wbMrVK3o+RpGXeB4MU8/+RPEcQu//iUq3RBGHge2T7rLaFSL5Y2pWx2l2fimg17pROWOqLqF4zHJhc3etI+uN2S7OU4UEw9jvBJKlaN1FaZtUmsaq11JEFfUTfeudaXKOBi4/MPVmt+9XtHXNWZIyqLg0d6Ew7OHSNPhzZtL1jeXtLsMS4PrzY7ZaILQOpq2xnFs5HbL2XiIDmzTnLLVcDwfzbQxTTANB2G3WGcPscM+kVLU2zssNcUzW84mMT3TI53v6Nk99rUKF4FyA7rFgjpJ8B2HWndI726o2ppQDjFMm05VbF++gHGEtDUareHR/pDNy0/Z8yQeLqFn4/g+AjBEzfRgwHh/Hy8KMH2FNDf4+zZdOcZwTJabBPfxI/LNHL2uUIZEN2308p3t4vXFNVXg8KPjKY5tYDseghKxW2O4Ls8ulry8X3P+5IhxPMbzfCzbZnb6gGe//AXbtqKLh5iWzd7eHn/5wZRAVHRZxvnRPtE6JRi6JKVGkiYs12ueo9CKmqtNgml5dHXNzBB8MOzz03/+L/jo2KXcXFFlHWWq04pTVnf3fHX5Bj2v+M9nDhtL8NV9xV9932dznzGJWow8Qxc2mmajCQejSHGFYCchDgQnPUFLRTTu0xYF97fPoSwp1TM8HPzIomlaDN/BPZjgVzuinoNuu3R6R6dXOOM+Mvaxhj7mq68hiJjf1+yWGzpdpxdFRAKqoIfleVSdTlvUuIcPcQyL+tnXNHlJk6V4pka9uSbJE8LjU3Z1RbJZk+clP09TThwdV+zYj3SWuWLiBIxmPaxvv6Utc0KpOBwESMtFtyxQ0DoRRpagawamZdFZDt2qQnUJjq2I4wGzaR/DNpnuRbRVh6YE2bKh1XSaXcnQtbENwWWq4+sSXROYAnpxD2GFfHV5Td9pWC8XmLuUWGvQ+w57wYiLxZogsPnoYJ9PTt9jcP4B2IK4b5Ccj8i++AeCqI/dmyE0H9t0sXWBTc1ip7iY75BSR0Njvs3Qu5ZaGaxKwWev7hm3LWEDzmmDHli8ff4VZ08f07cd5k7Ie+fHRJHLbbrDEJKjg2OWu4SqyWmbBmXcUNd3dHnOo8MxBhJXqxFS4MkOgxYjHqJtaxzbZZSk9Lwdu9WG6KNPIM9RFbRmH+XFxEKnvfkNnYKuLsmLHU1Xsj9wSXWXMjrAr7bIekdeVxitiRKSWul0nY4uDZzQw7hdQidx/f47W5CoMXTFWJrU+Kx3HZo958w6phf0cXozjCiiTJZ06xvO34/x9mbY/T66qqhtF820MXb3VJZFp4HWNTToCMuiKgp818azTcqi4OjsHMfvUez+jmebgiLLsE2bYS/mo7N9tCqjlQWRrbiqFXd1TS0kW2EgtJa2VmSbHV2s4QoNh5ZHTgY9g9KDctMyz3bo5zMcQ4DeUa4vOOkNKGXIi9sLzhwHw7UZRjGTQYRv6wxUgptm2MpFKY3z04fY4ylfvvg9p7MR2fKeNIXZ5Jirb+7YSZ9qtya2THzHotnsGJg6E8fAsB1itSUejUmXdzi6YCBNuFvQmQqjLogHIf2jU3IUptAR61uS3/+S/Q8eU2kNVVkizQbTNOm7LpoO457HKHQ5H3g8mMSs8pZvtxuS6zvuOkWe5e/CT6WB25/x6n7N3mjKdn6H0hX0Zyw1l9eff4uzTvjeJGZgllwV8PTpIyz7XZORYdnojYb0eghpomqFtAKUO8Syc2whMNoUV0QM3SEH93BbSdpwRLaucHpjmjYjzWpC6RKGNq6UbDc5bt8BFK4r6AY++eaOfUfx9HifF7fXBLHN4Z7D5bxgs1bUTUtumHS+TdBsGIQGh0+P0I0eV2udX33+kuFgwXkc8/LZ1/zZaEwcBvzo++/z737xew56No+OR3iuiTOMORh6TI5GjGLBL1494w+3BUvNZbda8OiwIule4s5rvvztz6llQDyZIjUdT+jcv3lLUt/iDc54eb1j/OgnPNjXuH+24JOPf4CVpWwuLhh9MqI+eMT67ZwwcjEcn08errm+0MnWa5psiz3dh67DoMN0evTO38NA5+7bT3n56W/59vqO2zShq0s6OvY9B0O3KLoaP4g5O32AMF32p0fEvo2wTUzfQ33xDWadExvwNms4nE1xHZuLxYr9YQTCYhJkzBc7NqXOJtnha9DzHSpdUBk+vaMjDmSHd3/B5m/+Db3Ywtrfp1E1WrVAqA7LlFzNdywKnarTGXoGtjSZr98Fyn/56gqn7Tg9lkw//oinP/rRP+4Q8R3f8Z/Ad6LJd/xR4pomju3iGxrkCY4XsL665PXn/8Dv//ApRV2xXC2o04K9R09RbU2hWvqjPo/7E1Rr8fjoCY8/OGXazOGzz9llGUEUYZompgJGI5iv0LINrqmj01HPL5AqBbtF9vdxDkekd5cUqy1vl7c4fogyPHqOSeAonNEIw7bBNDB1nU3Z0NQdw9DmvmpYrzfseQaOWhMPZtjBO2FkL3b5uDskFyEnSnIy7NFtbygWW5zpCOvkAbXrIqsdhdbSrBZI20XmGaYyaA2X1WZH39YQ1Az2Z9RKR9YVmmoJBhEvbldUv/hbBvsT2sDD8j3yrKBtFJPYpy0rvvjd50ggyzK2VUWKQqkOqSsORzHrXUFlWISeg653iLZk5JkMD54ispRiu8P0XQ7HMTCkXF7iiQ5rcEg8O2B9+5Z6keI5BsvWxd8/YXxyQH37Dfdv5+yEzWgU0XYdI18ju3qL1+uDlLRFijudYHmS6eKa7SQmLT2qzYreYEroK+rlJVIY9Cd93N6I4fCAoNcjv7sAQ9E5EY/ff4JmKnxT0fMD/F6IYRR0rUEnJJ2mvatXdnwsr8QQgkEvoKsTmjJhNOrzz3+2R1L8nOurJXEcU9kOZVpSNx22rTDqkvnNHBvwDIPY1SjLnMO9PdLVHKlaYsfA1hUfTYd4kwll0yGdDleVWGaIMCSm46JsB6EU9XZJl6cYhsfpow85OW6pdmsueMHBwQk9N6BrNe5WC8yyoWfZrAqNJqsxmxyUjqY0fNenNgRak5Je35CXDZ4uaHdbHj084qiT/PY3nxF6gv7Exx+MaVRLOOkTxn1MoSEdiRFFmK5FlaY0uzl6V+IHLkL1qHYbNEOAaaE3DWn2zu/fSJ3Vesvh00cYukDTDfSu4zbR6A9DLrN72jplMJ4SRiF1kmD7AZMHj1HzO+Z1Abt7Ho0DjqZ93nz2G/y4R2X4+L6gHzjc3d9itBXno4BZL2R9u+FBGDJwQ37iuoQCvKjP97/3U4ZRw+6rLXc3b9jd3rNbl/SMjocDg6J0WbUdQ89hD5eqkOirNf54gmH7GNLAsC2UYaDVDVZTE7oOk6FLuckQfkjX6WiyJMtzEB1prdBMiW07DGwfx7UwmxVxYNNma3QTirTAmQ4pWhupvztX0qEyIm7vvma52iIdj77p4WkNtmsR7x3hOhLTNFj99pf4eyfIomB9fY01DnEjk/lig+zZ6OYI9fY191e3DPYOWV8v+Q+LG957VFHWLrY0KIOAj2d7eELQ0ysmboPV1hiWjVANXdNg6BJTWljSovLebfl1UuKcHmM6NkLTELqiqltqGdBpDVVWvsvcKN+Fzkql03UNgTRxTQutaaFTSE0xnp3ydtlB9RzfEPj9PobZsAWmPZvF2uObRUa2u6etIgJzxGTvEOmYNP4JX33znLr1IKuJZxamGOC4Fpphstyl7yxXpkVedXiOg23F5KbFL693fDy1iFyLWpistxlvv/obZmcTVssldZrxcHrIwfFDRvt9yt/8HMPqkecNE9NBbxPcYMRsf8T3nh5wEE3xRExdNuy29/RiCykUttGRrub4QYj0A0aHFe1KMJyO6EwPdJtqmyIQCK1Cp0AZJl0wI1EB9uUL7MUNWV5guyPm65yBV9M1NU3X4gqdVjPwtYbStKlMD//BA9bzCndzSZYVGK2GFUZ0qsOTOoHv0B96lBsP/fKSKPAxe6DbJdrsFGk9QTYbcGxkf4xoStT8Cj0co7oWvWkg8MjXBeu8xI97WP0BWZqiNTXbu1uq4Yg2yRkGLp/e5xgadGj0wj7L63tOxz5//Zd/wXqd8PL1Jc8vrvn3f7+glbBbV1ROweJ+wbqnE0Q+WlPRa3Meyg7/UOe15jDfvrMGOYaOUBloGbmhUy9XfKDXvH84ptIlytBpmxxRC3TNAtPBEB4ffvgxzt6UTbLjI+sxB4cHXKxWXH/5JeMqISDH9SXZ2iIQOm3YR79dInWdg0HMk5MzBobNqzc3PE93BEJHlQltaiCdEdNPfoDfHyJtiVA1RZHwtl6zWKVobUdtGJQ12LstmnAQpoESksPDCdvFivcCi+NBHxH3ObQ9PvvD17RCoHUKYdlUrUHjRPTdAqfa0VQ7rGjIXePxq7/9Be3qjpiCHz6eEA32iHLFycNzhGm+s5jFI7S8QWsrtDzBsECTPh0ueiegrQisiqanKP0Zoj+l2xrg92lG7/LAVLFDaveYhs3+0SFdmeF6LnQdWpWgm6CbJk7gIi5yPjid0Rv3uLh8jjRLzg99LH3MdrtkuUxYXGewzvnZeII7mWHKMU3gMsmf4Ro1w+mMx3/1U0LRYpoWZ3sx//WP3+fx0YSTWYzjmLiew/7hlL2PP0ZUG6aPt3zknPNf/Otj/pf/+X+iF9qYrsXdxQvGPZsvb2r6usk0jt9Z9ZIlnStQ65Jo1fGv/9v/nm/fLHmR/N9oSYN9MmV4MEZS43gWzvgYo9zi4fHJ9z4m8CKunn+D7bjYpollmxTbe2zLwpYm8mxAJR/itQYzaeGka/Q8Ic9KaunS6pLFZsWfHh9j0xA7kngyo5pf4QoNw+showFm0+I1NV5dU9SKo4MjxlGPkd1yVwmyTc3ZeMoqrfDMiixJ0eiwvRC/f8BsdEasdkxdwXA/Ipj0UY5N1WQklo7ULISQLJKWu3lO08HYt1huK/Ii58l0wti2CDSNmePS7TY4Tf2POkN8x3f8p/CdaPIdf5RowHS6hx/1WW1X6F1NuZvzb//NF5ihRSkNOgWbxT3Gm9c8fvQQXW8JXJcjr88TI2Y5OOH7//I/Y7h8jtuWXG1STNvEd120VsMSOu/9k7/g8rd/h290eLNjdumabn2HqhWFYeO3KcnigtcXbzGiAa1m0x/vI7uEnp0RhD3asqYpSjzHZJk2UOT0Qh+z57NYNmznK4aOoNIF/b0YbaVTGy7D4ZiVE9AXAZa00S42DE7O0EYDinCGFbl0i5pqcYkV+FS7Cr2r6BrBYr5lL5zg+w6W5iA9j0bXUaJDhjae0Pjg/JDFeochDExXIE2Tqu7QpcHg4ARvOKPbZFw/f8HdfMFlniOloABs22LYDziYTNB6I6woRho6QVVzcjRhcPgYV5Msn31Fts0xpYHrj9D3p5j1G6RjkFYdZjdE2ykMx8SdHmGYEm17TZZsqaXN5PAAadtYuqK8fInWdniewotDRNtAnXJ+2Mfc3uDiYs0+4Mtff4rM7nB6hxTyCDNdIeoGma8wkgjb8fEGU3TXYJ0ueXg2xjAB1WE4Nrpq6dKErqwpdznWtEdW6cxmQ7bZGkOARsdmm2K0BeFIMIk9/vLjPf5dVjKYzNAdxes3l/zv/9v/gWwVxXZHPwzQhUQzTEwNpFJobU3f94gk2KZF2OtRrVYMpkNa06LarWhbhS4sDMtBWA6qA62p0HQd++gpQTSm2SVU1xc02zvGhwe4++fIStBkOw4jmxKLq9p5Z6nKE7K6JdANBDpCgNIEQol3q95hgKtbZFVJ/NEPEW1HsrimqWpi38D1BWWtWL18jnV6jO66qKaE8BBdl0hqVndX6FWJ6XloYUidbNCFgRImjVIUVY1nmaRVy3KT4nUtprQwLZuuTtk/mlIojaYbEh88oTcY4PgBWqYoFvfIMEaTPly/It9tGZ4f0Gow++iH9PZP2f7mU7abJVWekOQ5036Ph/2Qqx18//sfU715jikEdtQjdi0mowHaF7/gOr1ls3hN1ZZ4RstwLOmaiqaxyFY1nrCwehGhG5Bfv2V/6GK7NqbhIzQXhYXhRmj336KqFsM0cPoR0fWWHI1Ul/R6NmWZ4ugwcG1Mp4fp2DS7HXqbYbSCzXyOYwm0VNE7OMMZxojpjEKa7K5+jeb6ZGlLcnePNAyauiYtGkZ7Y6qrV4jNHf7pP8UJHdzhCGEYFIs5kwePaT2LLM+4uVtxOD6mW6RoWcE46pM3oLUNbdXw5bNvefn2nn7goEsb6wcfcnn1Df29PWSt0KoS6oKu6zBMB1UUtFmK0Vbo0Qg0HTwfp1ihtTVNllFnK3RNYrkBye2CYpuyXS5I1gmx+24QySsNy5AYmo7eaXR1jaoq3CZh4tksc41RGNMWDXFPsGxyjmMd43DEx61B17Vs04o//PxvuXQle2ePGJ09ZvbRTxipCi92MWcTuosaQ6vJq5bVck3s2SR5yTYpWZctyfKeyWRCVpa83WQ8cF20KGaz2fDLv/t7fhb9BSIec7cu2ItyRFZgrHPUfIeKe5ydPeV+fo2qC2zLRgQzHhxJnk5sTE2QpVsubz30fIM0LVSZIByTTvQRwQCyNdbBEZoT0mo2lBVt1JC8eEuXpGhSQ4mSOtNRaotKE4ptgrAjoqZEMzuEKyiaEnRBJ3Q0S5Jv7qCrWKIhConsHaJ1V4wDj6qsacoWz/cQTYGeF5iBhzeIwZ/itDrSNFGWT2sGiNEY0yhpqx1dUaPbJlpdoW7f0O4SVNlQmi3rXU7TVCh0HN+naVraLOPq9RVvvnnD+eGY/qMPUDJHGibDwRBNk3z9q99x+rMfUtaKJtxj8r1jlvXf8Gd/8gG/++wZtpFitC1UimzXoQcVtjQRZYlWrGgqnW2xYpNvyZMcWxg4WkN/4lF6MPUFmWOy2KYsq4q8Kci7jrC/hx316Y36nO09ZTCd0potXZsT6xHdagdFTbpLeNsUCGEQ1BVlp6MMA6/NcU2D2WyPn/3gKX1d0Gxyur1HBNEZ43rJXuAwmk5wHjzAPj5CawuqbEuZ7dC0d+07m827MHOkhuV6lHXGcrGlH/RwTIgCh8PAJeg6bLeHd/YUT+k4quXr5fZdY5EfUpclzfyCo9AluVxxcHZKrrn8/vevSBY3LJcLrDjCPTji/FGIfZ9h2SZSGgghMAYTitev8LoUHYFu9NBMH1V3aNJHBgN0dGgUSrPRlIEULllWkG0TqiShuc8xHZeD08f40YCurik1G02TqKZBsyWCEqmV6LpCajVPDgf0nQxDbbEil/39iMWtz/19zrNtTt92uS409C/fchR3zMan/Ms//xFG38OyFPbiDYbS6JTOwDL48XuHTPf///8i10a1FeODGa5oaek42B/z+bdfskga/uKf/YTTSNE/PGG3fMuj7035RfIlTVMiNA3TdZGq4OzhCaHvomqHthMcDWIGf/o+wnDZezylF5bUt68xvCHxtE9616LVil5/xvmTgGK9wRAK05I4YYjouWTXL7GlgfAsjj754J0N/XPFzbctlaHIvYBdI1mVNe+PYp7sD9GoUZpGsbhFpWuarqK8u0IYAiEknm0T5BWL+xUPz4+YhDGhDX5RobKOxWJH3/MZ9dx3uVtSguMQ9CL2j84YjkNMF6RjIYwOhSLdFEhd4BgGLZI0yZCWZGA5nB4c8avPXjK2TE6mexzvn7J8+5q9vX1+9e0r/uHv/45/9pc/+UeeJL7jO/7j+E40+Y4/Uhom0x6D0Qzx6gUX375G00osV2LGfbI0QzMkTdexXt6zvvM5GPawpaA/GDGNAg41MK+/pRdqPH76gOFyCU2DZbt0qkXrFP3zRwjL4u6X/x7V1MTTU8T0AGmZdHrF/ds3rLKGRI+QXYdjmlTLK/b3YjzHwbICLn/3a+aX14i2pSd1srZD7zr8sIdtW2Tze5JNie9p6MpkMnvI9Tdf0JVvmQwCPCdARgfETz9CaRW6AFdtUa1J0QmsaITu2NBsUNsNtWlxs06ZzndsY4uT0wmG5VJ0Ctu2kJMp189fsXcwo0an0iEIbWzbpiobBqMBhufjBD7uwSFhGDO8vUW+esHzN29Z1w0fnk3Ri4SeJeiHNtZggmwSojJHI2A6jAjHx/QPT7n78ktcvyP0UpQOOjZGvcU2DFQoqb0BrR1QbFdcff0HHFvDHvQ4e28P0wvp6pJiu2S3zejFMZbtIP0QezSjyVLcVsN3XL795jVOVnF0NGX97AWx2xEMp6RvFRoN5BXuUGJ0AtN26QyJSK9Q2Qrd93AHIzoh6JqKtigps4qyrjExKADV5uyNQra7lNU2J7lZ4esdq3bOry4+ZxwZHM+GNEpjGo948+aeb56/ZpdmfG9vjFI6rQam42LlBUVZI9uayNLxLYPIdzG6mrpISXY5/eMhaasoqga/7dB0iSZsjMBBpTvE2EfTBGq3QksTNK2ld/aETnio0kbTFJQFZn9EnW14/fo1Wpqiqw4N0BB0ZY0jLJTjobAReoIS4E8i7G1KdbOkN5nw6AefUGzXZNsFjg39gwMOPnwfXQqa+S2arijefIrlu2yv3iJVg/RcOl1gWCap7bwTZqTJOlkhpc06XzK0JZPAJXRNTFOgazWWqeOIityMafCZ7xTnQYTleu++/LykqzrMsiUpFJUyGPZcLNNicnhIvk2RumC5LfCDBs2SfPyjH3Co1czSGun2aJoRvmHghn2M0TGekaFWr3HdGsfooRuCWrU0myVF1lIZJsFwQKMkjqERNFu8WMOxNQzTRHOGtKWJ2mQI10QVBU1RUrfvXr/rUY+L6xWeVpOLgMG4z/z2mmS+RhhLXNfBbGuqqqXTFANXMhge484OsfZPMUSGym8wGp3KiaiFw+3VK/IsR+o6mmYg84RkIYgcD11pyDpF2H3M0YQmTRGzI04fhNyuXjC/K7CGB6wqyPKcqq7JdwlBENFpJtpgwHq7Y3HzlvVNS6cU/yG7ZxT1sC0dHQOjUdTJ7p2YVVSIRkMYDo0f0+oORrkDTadKElS2IV+tQJrI0KNNcsLIwzQUVbXGXVn4pk/XZO82PXSJIySm6UCrEAi0rmI2lGxuYFV0HExniBrUZofVpcSux77fQxMOygwwqNmurvHHEcFowOjRY/SbC7wIWu1dM46qG8qqRlcdriHYdYq8qFCtIvBDhmEPx7Y48Bx0L+L3tztGhwHD8YC2KtgmWxIM5st7rPWclTBY7Eq62kCenGLoNXVWk6c1tuEwHZ/Q69m0+S2vv0lZrZbsDWKkI0A1dMUWVQaotqNrNTBNNDPCsEKkXKLZBdZH71Fc3JG/vSBdb1kkC9JWEDkWnuXjBiF5usPzBfe7e1RXoYSBdAPoGrQqo1YNxWpOs1yRbnbopkE07CM6hRAS1XVYro+M+2jCQFJgHz3CiQ4xhI4uNTp0uraC1kSTNl22pLl6iY6CIqOpa2oFZV5R5gVOv49p2xiGieu63N/cMV9n2J5LOByybiTzbY7jeuxPJqgmoytT7j//gvvLa47/7Kd8/fw1y7slXdkS9GKW85yiqhj1B6zWKcnIx/M0LMsE1+N2l2Opd1tRi9s5pnwfx5QIS8cMLeJHj1j/7gv09jVKbWnblv7elOMnT7HjmHB2wHB8iC0VVZ5jFTXcLzECC73TMVuN6fCATbphGjesVm+ZNz0OXIcPZiOudMHQ9ekbOqUyMIMH/PRPf4x/e0fQZDTFjsq1cWKfunVpLIOka9DKDEuauK5DWtR4eosT2DjehFG3RLUNpukhnQ5US1NqbK4XmM41YSc4PTriTXuJZUmatsQIQuzVkuLqlosXL4i2KaOPf8bpE5OzT37Kr/7Pf0uopxw8fY/BcZ/MX6EA6XhIKeiamjYIUVqLhoKmQdUJWqeBtND7j9Bihda06FWLXmToRYlyTGg06rIlRycaTBnOjqCt6TpFpZvEoynFdoltQ7VLoUjxDbjJCypdcTCboFUSO3axHYfu/RO0MuW/KZ7Q1RmWtPHkCN8aY0f7iKiHZrTIZodyLIQwaYWLKjNGwx792QzHsdHaiq4ukbZHtbqmbQri6Yi//tmPuN4Z+E/+K/TFCzrHxe4fsNsWiLbFsxyWixXaU5vjyTmT0YQo8Fh1FnVj0mRbDt47wZEG0cBCW15Tz+8whIeQAdJx6FSHLWEyHLE4fUTbrLAtkA4I06MXPkQtLmiXlxT3z9HWGbPxgAcPzyk3CXc3d7x6+RqtrTk/3END0XaKIt2wvXyO0dU4cgz5DlNXqP+PvTdptuQ6z/We1WSfuXO3p62+AQiAIAleXomifOWrkB2Ww+GBB/bAP8xjzz3xwOGwfW1HXMlXV5bEBiIoECgUClV16nR7n7O77DPXWh4chn8AJwxG1PMHMofr+7638T085RFHAWXXsC0rju8/QVvJ6TTB70O+61+y6zqSUDM/mOHFEdFkRqQh0BXDZodvPKL8AcrzMaajHDoC6fC0h3WgteZokvJwMaWrG1xTE/iSg2HDvT/5C3b350THD/jbf/icui7/gPPDe97z+/F+afKeP0qUdWAdxe0lq8srpgfH5IsD2vWSoqtpu4YkSfCrBt8LcEJyu9nwYD5Gi4Yg8EiqPVN5yLCtKV99A7sdIj1ECUkYRnSX1yiv5ODhB6jdltuXX5HPjxFSYaqKrrylLxWbUmOqDls3JPkCqSFWlmg0RgnNzPe49SLe7ZbEeUotBVZIPDcQxD73nz1lu1lTFSWjekMYHvP0o89oui1+OJCOp8QHpyTjCcJZBrtn6BqcrYAW6gLHQK8NhhaEoaHnq6srHpwGTNuIzOXsO0mWJRghiZTm8MEz9MEDiu01O90RZQm73Q5Pe3T7HWrouH73hijMOX76Y2KZEHU9pTL0xlL3DaGv6cotYRqjB5CmRwtBOpkyOj5iqgNmp/fYfiNI7gIAACAASURBVP1b/PaWYDRG6xHbsxs2N5coZyAd48pbMC2LaUr24B75dIwUCqKM3fKC3XJHkkyIVIiqa5yZor0U7fmU11fIMCTMR1yeXSI2BWYw7C9eEcVriqIjBuaHE2Si0OGA3V8jQk02CTF+Bp7GJguM0zTvfokpa1QQEo5yeu2jhSUOHFoEKOmo/ZTzqw0HmcfDx4/5Nx99D1m8pr+AZWWIdMxhNqE5bLnabBiMY7fdEo6npNmIpjdopVDaJ4oki6MDktmCsG/Ijg8gDO7sOFnGrmpJiz3RaIbyAqQzDEODl84QXoCrJTQ1XhCip/cZNiX9rkD5KSqbYpXl1cszXFcyS0Octeyrmq7taMsK0zT4yQgpPJyIwXN4oX+X41KskG3G5N7HyCzk5re/oDn7GrSHF8QwNMgwQwYB3tDSVyWhH9Ja8LIcozQ9AiEVUnkMTtB3A/fmMyaeh9e3RFJj6gZlLdoDqRS3n/8DO2/KvY/+UwoX4oUhQmucVLggwlYrlGmZjXPC50+Jo4B6dc5XL3+FrwI6O6VoDVVZcTTOOJktSPY3RKHEhFOkDejPviZWPcrcoqVEZjnpZEb15mvaqsSZBs9Z6s6xr3r6dMQsCUlkg9u32LZDJxkMgAyRQYRtbmnPbzBlRdf0dEKhAsX8wZiub7h6u8H0DcMo5+RkQdV21JuCri4wUjEexUwXU5IkI0xTdBIjzJahWjIw4I4e48Zzupt3VKsV3aZgliUMMsCWJVESEh0dI/wAVxU012/ZewqiEeNPPyPse7bdBb2TpHlOvd3jeRo/TEnRBH0PdcXNZkfX90RhwHp9S9PUvNvmHMyntF3LLIpwqxvMfgFDi+xBeDEyHCPCKXpoUMLgcPRKMTQ10SglOnp810bTt9ihxxU7Ais5WJyiehiEYtkanIoQfoTvB3fKLuOhvIhU75iEknU3cLPcsJgcMs89bDkQ4BM5Dy86QCcTpC/I7z9BJprOSmJdY3IF1RLPD4i1ZBA+N9crmqbh5mbDzb7CWEGoJWEcEkURcT7G+R7/x1ffoYCfLQ755LMfkE1CwlFGfXQEmxWXF2/48mrNo+c/IA9C7O6WyFcUg6EsK3TqmM0myKTk/N2X3G6uOTxMGPkxiBqUhxkGmpsrwijG7TYIOUcFY6QXwX6LSA7wYw+dzAnvP2a03zBrevrG0O9q+n2JC2NUEHKzOqPb3TKajrFBSjCZEaYBiT+icbC/2lCtzjDGUnYdKk1J4xTlBSjnUEqDBhGkSB2iwgwdR2gtEUoilX+Xp1IX2HKHcBKswGxuEUIh4oAGQVOVxNkIL4zphwGlJFEYMh1F/Nuf/Yh0lHO5bvjuYsMsCVg3PZMkRGmfPJLsXr3gxX/4R/aXV4QHp9x+/ZqXZ+d0eU5dDzxdHNGWBQLLvnYcjzTa62mjmPksotkWmNkIYR2m7QgDhVICmY0JDk5prtdExYaxNUSzOU9/9CcEkxyR5viP7jE7mWCXG2QtsJcrRFXS9T2mGvCUz2x6yOH9e2yKNTqI+OXLbwkO7/Np4DNpJcvLisWzE56dTnByhLh8yfSDj1HrNf1yQEYSrSTCDXihT+d5NM7iIQiSFKsUnTFkSrEpS3qh8dsGT0/RosaXhi+v17z5zSs++fkv+PGnH3Hwg08JxhWEAYEH8el96Ht2Z99SE/L8e39GEI25F0958KPvMwkq3vz6/2Z2mhPlMw50TisivDAhCBRtscZGIUJKnJU4IxBK46xAdoAZkFqCFyFpkL1Aao0bJL0OoGugazm6/xj6/i781VmSyRxrIYl8PG1RWUzw7CGTozGzkzFffPEC2xuy0YI0DYjGC/w0RShFojqEEGhr0f4U5U9RIkBrhRsaYIJ1A6baIyRoQqIoxg4O0w0o4bB2AKEwKMLZKWr6kDiueYLC1ms2+zOqwaHzI66/+Ses1FRFRessq9trHjz9IRiJMZp8lPPqYkXmdYTjnMA4+n2Nux7ol4bi9i368ceIIEDaAT10VGXLdH4EhUbhCEyF8EOkn6FGn2DHU7qL1+gIZHTEUNXI2jIbjWgXcw4OZugswcYJTbNj8+Yl1eUZs6MTRklIKxSut8yigEoarDVkScLq3Z7gR8ckpiUOJ4QqIA0jdmVJGIZoP0SJAd3eEiufOJ4QzBZ4YiBUPc7T4ASubfGEACfwEBzmKRP/hN5Kvnnxgr94fMAoTZg8eMDh0QmT+SGNF3L6wcfE88UfcoR4z3t+L94vTd7zR4lSmuvzK5Is56Mf/CsMiuV+zzjWrL55gQHawXB0cg+dTRmGhsvbG/jkOaPUYvbv6JQgfPAQf7dmNFkwP31A6xlwDk8ovINT2qsVZn1LGuX4H37K1cuvCOlwwjK4gM3Fjt3ZW9quYj4+IZaSot6RnuaEcYYfRXRCsIgT3ngBrVBIKzBtR+D7pGFIlGfkaYDEo7xZMp4HyGhGPjkinKWoNELEEb3oUQx31x7tgbYQKBKjaLsGb7AEAnxTo7VgP7T8/M05XjLw/ZNj0iggEJpBSKaTA67Othz+5Pus/+kN8TQl9DWLo0OWl7eYvgZgtHhC9+6W6s1v8PqKh0fPSJ4+ouxKVss3qHREm5/ijRfIak0/GMy+wY9HhEFAEMVEoUc++QnN8gZRrQi9ntH8E8xuCTic59NtbtmvN9TBnPHikMj3sU5R1Q31ao3tFNl4Tpom6MCiuh6tPGQyJtxticSe04MJzinevr7iarklOhwRJYYk9dEoOmfYLV9T3r4j9QTjx4+Jju7T1BlKWqSD/XbH4Hza+pYgCRHxiNtmQIfgBR7GGpLA4+W3LxiGASZHzL//Ax7+9D9h/+IfSP7m54TzCWZwhF7ETz/7Cddnb/nVi68JbMdISnScEWqPGk3vxwzNGmEHsvmE2BlcVVFbg1KK0NcU2x23l5eki/t4TqEEDFfn+MnsbrEUj1DRCK+usQP0VYuXLJDKw9iB61//v9wslyzyjCQKwRg8qahMS+L5KCORvUVFGmEtsu/QnkKlEZ4cqK7PcTIkio9I8hFiOyaaHOJFOc50DHQM3YD2Y5QnCUYxTqyRno9DYLo7CwRa4YYObRr+1ZN77DYb+tWS2WSCH41xfY9OFd5ozpmY0MWHPHvyDPIDXBDjlKTte3oBQ1MjTYszPWmWI6RmlEScv60x0wnOCcJAMZiGRTIm8j2q/Z7J7JAwz+mGkPomo11viNoK0pToYIGzPX6U0Td3TSvlTYURPlkSMkk1kZKU65J6XbFYpKgwARXTb9eodoMVDYPo6dodQ9MgpMK5iGg8Yv6gJQl9zr5Z0hc7hAwZRwGj+BhnO6TtCYLoTk00mqKmEwg8XL+n3V7j4gicg/KGdr2lKQYurvekoU86zkjynG6/oysbIqHZly2hc8QPfcYffkKQ5biqokexb1r84ZZ2V+BJRZ5nKOGI6FiVBevVipumxSrN0DVU5Z53N1s+e2TYVxVdHOMJqDc7vNJigxGB9HDVHml6hKmwQ4sTPvHJR7RdjfR9VJAiB4N1lm6/wdYVSTTDCIFUHV1g6G4tKggI44AgTQl8CUJBb8inOcenB3hnl6ANsl4Sah8viWnXNcn4EUpE0Ld4eUL06D5KAjpChDHdsMe1AlvucE0LfsSyFiy3NZuy5euLNc1giYIQJSXL2zWRU/DoCev6K07CkNAa0qMHXL/5FyLnE/o+fRhzjWY1OJKyID96SJwdUW1W1LsV52/fEH7wGJ0aquo1DGuePz/GcUi73DNsS4gkxvRID/rbK3TfQt/jbq5wYY5OJqADkB7Sk2iVIlWKqHo8VVEXK4QvsEGEiRPcxVdkUUAyWZA+fE50ekqSBmhfk0oHFr588QVvz68I4oQ3Z+d8+L2P8JIc7YdoYVG/C3EVYYY/Orr7Xl8htEalOUM3YLsWicB1Pd1mg2trnAAhJZ2U6MBHOsFufcvh6SlKSHxP4y8WdJs1/TDwelPjkpQ8H+OkQWGQpif1fW6rlmdH96CNaa+v8DzDpt7RmoHT+6cELZS3Gx49vE8YZDT4RG7AG1rUMGD6jkWeEAcB1baA0QzsQJblKNUwPUpJh0MOP3xCMF2gvQTjHDJNSMIQ2ddI5WiWG+TtDVFYU9YtZV0h8pggUHhacTAbMYru0ZiWXW05SCd8fGqptj3X36yYK5+jR/fQjz5ELhY4M8BeEx0tUOMxpm3pNxuUdXjCI0oiosBnZyx5FOBFId4gGXZL+kGh1gX7skMEPksh+Xyzxwr4oG2YZDkyKRHRiCABr7wmNDWllvzpz/6Sfl8RTR2eJ9h/8zl5u2QyVIh2Q5w9pbQdZpB4SqCUIAhDjFYMQ4dWMXawCARCeri6RoY+eMFdqLjtwfOwBrRskXVBUG9ZpBHF1Rnx/ccYE+C8lHiSoZQgjCZ3WTP6EGsGbHuXCTWPNOfrNaP5E5wVxNkBnucThj6Bd6dcVAroS6QvoWlxt7eodA5+hMsO79QwXQ0K4ukMP44xTYFwA84PUekCLXuEDrAqJBmFNOWWutrjZRPMkNA7nzROCKOI/WZN4iv++Z9/yUc/+B5CBqz7liRQnHiKYJQSRZJuvcSWe5wfYXRCXzdoB36U0NQNWIdEMR9NMXGCdY5uuSTK5ndV2GGCHWtkMCfoFf3N7Z2ab6oI4hHh4jHb7SVtv8OFGtF0xJHPJAkobi7Z5ymL+RFhGDO7f5+Li0sYexwezdhvLOdvLnjydEa0iJncOyJMfLL1/s6mnMSk4xFO+fijCZ7XEx0fIJXDFhssEiUlrq4JPR/haYz0ybOMQnt88cW3fH5+gykK/quffJ/5kw9Inn+C+frnGDyCIODR02d/wAniPe/5/Xi/NHnPHyVZEnK5bTj56M+ITk+4WV2QBhpx+y2t6RFK0pQ7ojDh8fPnvH75gsE6agPpJEPGHkPTsP/uN8zmJ8yeP8MMA8qAsz1IhfIU+sERVDua1Yq+70knGeX1BV6SUJYdVxevaIoVi8UhKkro2oHIGWZxSqADpOeTffpD4o+eY2PFd+stfdWz3lVUwpGNQiINXhCSpCNurtbU0pBnPsEswxMdURCjAhj6Cld3BJMcg2RwkAUhVdkg2hJFjzWOYd9wlI25LgtalfLiuid6c87zx89xxuIFivEi5fb2FS/+9i2L4wPsbISXJGzKnnGe0JUFXpZy9OxPUN98yVf/6//Mxfkt9z75Gak/JdIeydMUOztEZwcM0Zig2yP9iOj4ATLwUcYgrMUPU/ANUToB9xg3DMihxuaHOOfoVmdIscX3A4LFKWmcIAZBh6a9vWD1Zsl1FTHgkcYxMlCowLu7bAsPz08xm1d4dcVR4uFOF4i25XxdEY0PWMzGKAQH8xztWqIsI4oz1HiCHJ+S+A7Rlti2IqKjoic8vY+MfMq+ZXAd0mmU1vTC57YsKDYbpBCU4YTo8Q/YvnzJsG0ZBgOU1I1DeSmH+RTWN8yikMVsSjaZ4Hc93WgCuy1tXVFqkFqDNThPcj1oNpeX/PD7n1A2Fcvesik3zJYXSBWixlPij/4cKTyklpjdChnEyGiM2+3x/RihY1xn2b38muHmDOUcm/UW31riKCJQmji9q2qM0hwZhLhhTbW8pK4r8uM54zTEm0yRYkuYBLiqJkzn9Pri7lroBch0imoKZL3D9QNSasQwoKMYBygh2e529G6g6zQNPb7tSKOEe8ffozjP8buBoerwZgE6Cqh7w1XhqNfvODh7SZLN8fI5pikYwojeDjhfI4eGKE1p27tFh7IN0wdPWZcdSliUkuyrlnHfo0yLFTCUG9qqJAxn2DzGqwewQNvQXJwTRBphA9y+wdSW7OABietp+wKVpWxXNXWrsRaiUOPiMcZqfCNwLsANBcZUDJ0FqVFdg7SAjsjmR4TemtCLuX27pC8LpLB3uQNaUfcdpanJEkW3PkfpHqU1zvVY5RFMT+i6jr7aMxhHWbb03YDVHna7YzyfE5ycIDwfjaPxRwSf/AB9coKOQoTnIyJBZRwISVntyRkojCH0Iloh6IYQsS1Q1qGxODfQGoNDsNtuuNwXPM1zujgjOjihch1h1+C4y/nxkjkUG1xb4aRAjTJEfoJ6DMP1KyiucU3BUNZ0uz0qPSJW0Js9xg9Qg8TzBmSUYjAsb1bMxwmjg0OEUuBnPPjxZ4ju77m83HB0/wDdl0jlAE1fXhFNRjgvIH7wBBnnSCFgGKC1eP6YZveSdnODU5KdvQuhPZ2MOTu/RAJS3eU4IDV6NOUg0ORS8Kc//Ix0d8PhdEw0GjF5/IwoHXH7+oqmNxgdsMhHHKQR1lr6wbK8vGawDWVRsb93BLLEM4aH93+INgHGSja9Y7O5BuEIkoy26xiaCkzHUBVIXSCCEc5L0dMj3GAxdYXoG6QWaF1jtMGLEhySstixLc64vHnH/N4J+ekjssUBUb4gmB9hvZDEc2gTsD9+ya8/f4H2K4J9RXe14cGPf8TJJz/BH02Q5RpR7XB9g2x79DjGVWC3O6wIaZsWV2zv2s+GAWsHjLV0XUNjJV4Ysi9LyroFpRHKx9c+sYa66+lCw3Lb44IU5xxlWTKaH1Ds9iRS4rKUowcPSHTCm52guF4THY340V//mIvrDQd6wfVXZ0hniXSILwKsg944rFT42hJIh1KQanD7LUMzBSdQ7YASBfNnTzEHhwx1j+3AWjBSo9OYNAXRbBiul+y/+A0MgrJUrJuaq82G+WJEUxRcLXc8fTQnHE34y5/9a77+6mtk0zLOEo6ymO264M3nL5C3WxZthy4f4aoCfTAjevIIZw06DBDO4a+XeJ5jkIJgNCY3DZYeK33yScAw1BSdo3cBf/+rL3iY+vzpjz7ED0IeTzJOvv+cPh2hoivCOIU8pb54RV8XhOMHjKIDLlYr4ukJdGs8WXL98ivEtmB5dknyqAdrCP2QOI5Q3B1pnBcyWIe19s762bVIAdLzcH0LQwtDA84hnEQKHzWU+MU1QbPh9dff8vwnP8XTIUKH5IsM3yvw0gk6TXGdxPUKaQRCXRGOxuThirOzK/pywPk5rm4JohTfWZQVKOuQQ4nw7yxiwk8ReoqrWxj03X9GGXQ1pu9wgwXTQ99glKKTIf2+YDIO6estTf1bgmxG4vmEB0ecVTXSaSaLOcP+Ht4vfo5VkropuPr1d3z5myf89Kf/ObNRRlcZ0jhH+wPrdkVVfYN/8Zbdm5rv/uOvsU7z03sPSBYLgiSi6Q2irzFOI8MpnWkID+7h9BjR9wjdI61CehlOaYh6iHM8qQiGnjiQFH9/TpCGdF2NjkPiUUgWRyyMpLcDKg6RYUz05Dnj8wtOh4rD+6esbwrM9orba3XXhnh6jDMrQl8hhU988phwMoOmQnkeKjJoemSQYkwObY80/Z0iVyiM0wg04zznfFPz9XLPvjP8y65n+s9fMx/FFK7AP3rE6vqGF7/4Oz789KM/4ATxnvf8frxfmrznj5IwuMsYML2BvmMQA9LvMNJSdzVCCoRWRMryzc//H4Iw5nQ2we9aFJo4HSHCCLe7QoYRwknSo/u4pmN3cUUYeSgZIYTGIogfPiWwlnY3xZ+OWS+vef3Vl6z315wcTGnSHBnlDPstx7OANMtIHzxBmT2/+t//ljyMmORTjPSIcss/V+9QzrK+XDHyBOk0I/Tg/rMHrF6+gVGEKnosPbvdJShNPDsmOzzG+SH0BmkGOu4sHlIZpBV0ncD2ljzJCLMJfd/y8u2W7MDy7HtjtOvZr28ZhYpnHx6z3RbMHj7iNnaIJGO2UGyvrljdrBkkTGeS9mLL6bOU6cNHRPP7LNfXtMOe5HiGkB3d/oz1suQ0i/H7jmFocEONMx0qXCC9GNoSYQ0ynSD8BHt7id1toakRg4XWIvCJvASpx+Ac7dkrmss1to84nJ5yPB/dtb7UIE9OkH5CsDgk2q8Q1tHta0bjKWIWU+9qutWe/a4gi0ImsSY6PEFrSUR/d8FeLPC9mqEvGOo9AvASn+nJAduiYhCSddFQmJpQh6RRgI3HtIOhsxdMNJjdFWcvXnLc7Xn5+c8JYhjdf875L76jWFecdQ3NzQ2ffvAJejzCcwObmxvOrt/hvIDF6X0OEoVTAt+TaD9kNI1JkozI8/E0FFlC/e6Cm8sL/GiMtoLAT8CTCANS+AgRILwI228R1QZUy3C7geGWOI3QUvLm/BZX1pwezpAWsnhEMjsle/iMrt7Q36woLq54ebak/uqMn/2l5P4PH5Hcm2L2Pap32HaFLSrUwRwhJMJZlBfgas0wGIQQeGHI0PQMZkAEmn1ZsdrsGPRA6AckaUqcpHjjY7zLDddvvuTwk0eYocHLH7B9e8X/9H/+I2kUMTl9SOQv+N6DD6gahYlThr5miAK63TXTk0dstg29lDTFwNtXrxHxCOIJWit2u4KhH5BuwA89rO0Zuo5W+niLE9ylQ2xWNO0eGCi6Ck9B29QkR/eQYUbfrgmyKes+oPJCBlERexo1mqGSGSoYY1uDCyzSD6HtUYFG13uqbcFmuyKfNiw+eII3O0BTEqqEvlrTbm4Z2g29P0Jpn76rub16hzgc424cXpZj+4LowSNEmmOKEmME5b6mtQqtPaqiQsQBbmiJsjl+PkXFKSqMMfmC2kmCqiQJYpyU2LbAGUtZt8TTCVloaIcUZRRmMPRxymE+oXn7LR0OrCVNR1g3cH72mvvzDOtpah0QmIFB3TUeDaZFtluk8xDKx7Y90gokCp0doYMUc/sOhgtcGJJkD8D6lO/eYkKPMEvRbUxyWfJ2ec3VZseuHPhgPuFoNsePUxSa4fIC1Q4cTHNsOzA6OcLsb1BhgNIO174jPvwQ+gJqDUrj6gqGDtcPOBHQ1xXD+JDlpsN3kpHweJBknAcN1gnSKGQxHiG6En+ScxwGTKYTpgdjGifQMiI9fYpud5xtC7q643gy59n9R8wnY5rmLlC3H3qKXQFSUFx3d3Xn/px4dIgYwJgea+D2O0AIhOejrKDabwiw+EGG6A30Ft2D2eyAAeFAeiFWKeQgcO2Al+W4KEX5hps3Z2wHy73xlOuzd+x2OxZliV/1NEJTvPsGdfOW4XaPj8e313t++PABo7bn7D/+I8265tP/7K8R0gcUom0RQ8NwvUSGEdYIzPUSa3qG3Q1uqOl3W5wKMaqibmuIcpyUGCFpmoYwnxKFEZ4EZXvC/Jjs6QMmu4Lml5+z9yIqrVGBR1HssMLhJyPGXkix3vH48YLVpeHr9ZoPP/qEp/egOavxjno6o/CU5tUX/8LHP/4A00vifMG+OMfi0BLSUUYc+PTlXVilWV6jMg/0GPYDVB0iyHEoBjMgpaS7WWGvv2X9+bfcrAp2VcO+2XHTFBTK8jjxsW3HQZZD6/DiHM83fPrxcy6+ewvOMpkfMZ3VbOOA5dtvUOrnzCMInjwiePYUEYT0l++wTY1wA1qDFD1Fb1GJZJLnNENHuVkTJT6TcYbqDC+WW756dc4+9/gvfnqP//6//ZD58RHR7Jh/frUiCAMQYJWPjabgVsxO76PSEff/7AnjZ0c0VwXVdyVpfsh2Z6m2PsMAVgimvwuQVs4xWIvnB7RtQeBZhBgQ1uKGu2WOjiPuNk7geoAArR3O1CRRxKYa+Oyv/kt0fkKxv6X68p9IXnWMThdw7xlCPUdpD+l7WOehohkiqYhGG/Jsy/mrNzj3gNgPSMIcfzZBJzFe6IM4wKoQrEJ2HSLNsBTYqkEgcGicH2H7lqHeIWxHEN7l3TXlnqGpSeNTgigm9TU69kCHFLWgajp0ENKWBeFoTOQZtpuSYrfFk4Zf//Jv6NKYn/zoL4gbyF2HZx2r7874l1/9A+rtGZ//8jXvrktC5TH95iUfBSGmulPiWWfvbKfO0VmLlT5OaEyxQTuH9GOEFOAUIg5xQoLycMOe/dk3JCOfsh/o93vq1ZJdUZP/8E/IH5zgL04QkwOqzRYVpcymY8plzfmbM8qmJ89yZCcxXs7m3R4/mOFPJsTJBD/IkLVDWYlUoIRG7HdIGWCtRjqLLQs8P6B3EV4cIcOY3WbPb767YFtU3PYDxll+tez58NvXhPfu45qStzeX9PWWt99+BfzXf7AZ4j3v+X14vzR5zx8lQRLizxKMqnl3/gKXeHSmAaUJ4gCN4lAesl6t2FUNRdWzSGM+PBzjeQoVBsjBx4s9ZBSjPI+maWmWN3T7La1zyFGK9iOGtgNhaYqCvrhhf/aCt19/Q3N1ycPDI8LxmFty9ttbPC9hlPjER/fuamNfX3Jwb8bQNYAgSw5Q1vFcauI4ZndzwfX5ksiXjKYHxMpw7/kz2rLDFHvS6QRvMgM/IMgmKH/EICVStAghcNrH4GFVT13t6YsB35+wrjbkR8cUVYOpA0Q6oVcpoWsp6x2TfMz04IRRWtMiwY/uvOyy4d7pMdIMvL0440effopNJfPnT9GLP0ElM8Lrb2hsSytgs70lyUeEeUI4TqmqLcp11Ps1Lp/fDSoiQAwSjEFJhRAWhMOVJcOb32D6AdMMxMcPEf4EayPM+i1stkziOW3YMwiPyWTB6DDB2D1elCClwg0GEEQYEDFxNiE0BvPgHm31Lbv9nq1nicUY3Zdk2RFhNgHbIfdXuHWFxN5ddv0AIcHLUpQOWd+sefXukmQUEeQJSlm63RapBMZZFuOITNac/er/YiV99psVp7Mjqr7hu/M33C63BCcnnN57RHL6EImhL7f0bcdoteK722uC+wecPP0EcXvOvtiRHsU8GEVUYopSjqHp8ExLOTg2tzfMThv8qsDzIij3mPUV3vwAmae/C2MscV525y2fhpgvPueLL17x2+/e8Ww+4mSeE/geXpwTuohodkR47yH27YBzHpnWTKOYvzvfUf+7X/LfHX5E/sEj9P0TTLWnfdeQnN4nOn6Ca0EKh5MKFcTYtsN5GqslKIlAYozhZrdhud3SDGsO5wtO8wzVN4jzVxwenkKxJZ5NkEGFH+dMghv++sNj9jJGKE3f9tRdy66pQmsnvAAAIABJREFUaLY3eNLhsoC2joiCnnFUgVWE4xmjxSH+wSmvX7/ldr1BZRO86C4U1wt9hrolHCV0TQfaES6eoKxhuGkwRYEYOmwYkt//ALTH0A3IOKEPYxwO6ZYMRrB4/JhgcYokxBYGf5Rjdyv01MOLJzhzp/qS3ZKXL64xwzkfVzUPf/IZ8TSnrR3Z9CH9LKfZNNT7BoMlCSWrRnN7syNzCk/5TE6mqDii61oGBJ1x3C63eE5wOBlTbHdsdgVtO9wN/HlOYwz1/oZNWeNlCd35a/K2REYZTWPoqx3jbAIWVJxhdwNxEjDqDXiay4sL9GCoJWh9l7nQlhV1HXBx9pI40kxOn9HbgTSVOCdwRt5ZOYoSHaaoJAfjoN6BGwCH0DEqOYAsQfop3c0V/jijWu7Z366oywqpPL5+/Q2270i9iKryaXvHSPgE+ZRm946qaNkVW2ZHBySz59gwwDU7ZJCiogRze0XbVASLRzgnoW3+fzWEEAqSMbUI2S7fQdMQeRFD3fEwjTjvHWmaMViJ17ekQ8lY9kykYSgLzouKg5Nj6mrN5t0birrHUz7jo0Py0CedzXn+9DmXqx1RNqVv9jigXe0p3u0ZHUREo3uYukJ2e9KRwUif3oJvoTeGerdjFHiEfYfCMbQtbnOL80ukkohkghjPYF/fWZeEwgKDstT1JX7gsHXHb//xc16vSr6sHD/9wSP+6s8/Q8QxG6fIFkdEruOjj58i3pwxPpjz5OiE7dszVm9f8uZv/jce/eTPERaEtdjNLTIRmK773bJkjS1XdDdnWKXpugq0xuqIujMkYx8nFW3XgxJkeUaoJRQ7dBSgs5R0OqUzPRMN1zfXCKEYWkltNb2OEKM5wdAiH/8YIxPy/Iq/SCWtr3j18it8FEVR0QwOLQyurmhrw8HBIbKrkVozWPBw+FrhaY3tDU5pmmKJaBWuGjC1xGVjLGC1oG8HxHZL+90lZ795wTdffcuq7DH0CNEiA8fJgxN8P8YfhQRRQq8VJoqQ3Z5AKUJPYKRERjHhYo7KJ7Se42Z1RtzekBx/hgjv1BA6i+nXNzhjUb5HLzyWu5qjUYRTEVGgEXIgCDSDUFy9u2a19QDYtI6Xy4J0PiOxmt3VEoPGiABnBoR0eKMRtQwQkUcbGuanMcXyNZ4SxAcndDYn80+Q4ZamqrB+QhAnCCkZ2g7peRjnaMuaQICnNEoFOCmRnk9vBqSMEMYhBDhr744iVYvwRvh+igpzVu9e89u/+3c8mMdE94/wDx/T9wOqWCLCELu7ZhgUTQPr6x3Ly4JN2WOlJfY9ut0GNztCkKDiY4SyYBoUIc45hK2RocIEEaJt6TbXuDTF4Bi6geZmicxT0CNsfsz52qLNhiwfURpNnkki56g6x9ubHeFoQVE0bJeXRCGUmws21wU9isefPMc0Pf/L//g/YP+bd/zVZ/8W5afsti3DxYZ3v3jLu/NrzvYClMd1VfLv/8Pf8ODxI5QxtE35O3WWxTqBcMOdYs4a9PgQ6SlcWSHTHOGHd0e+oUYqi9kZfFmSqJabb19j19cshGNXN5SrPeoHj/CP7hGcnuCtN+y/+oogSkknBwxDRzaH2+tbdB4iWoMTCcobEc/u4QmFsD3S9SgsOj9A+OBqg7MewtNIN9BdvUT7+u5oICUySPjliy94+d0bAt8jDkOEGYjTjBsCPv/mDV/+/NdMDkYcLUaYtvpDjQ/vec/vzfulyXv+KPGjMX1n2JY39FqRxUeUm5I4Dnn8wVPOr5acv35DUzZUbc+2aWiHjsv9FrTESYmXpfjKoxwGrIypyhqpDENfUe8bbLUlTMcgParLd7TFmtu3r1hdXDAYyBf3yQ/uY/oKe3XDYZzSlAWimFN/d4M9W3H99ituyxJ/keHNJsRejKbnaBAUVxecnJ7w9rs33FxvWEyWKP+IOJmQzx+gwox+uyaIZxCN0dL97oqtsH2LsRYroWxqRKgZNi1WSEZpzrLYkAWayfyYniPuPXqCF2TUu5r9eo2e5qTTCfnRA7bbin3QMUhFFGi6wOPJx9+jcZq+b/FHD8lOfowIpxjXMssP8UYZqBBz90KiLXeYriZI7/zCnhqwQ83Q1Ph+hkxHsN1g10uEkNjdBpoOGgNGEx4/Ro7n4EW0b17Sfv1bwtGcdr9H7/bI6Qx/fEz0+JR+e0VXrWnevsUVe4bLS0zdECqfZrWjLyviIObJySlvzs/pypo2jbD7LYPQODR+lmGW3+FUh8yneKMxgzEIOzB0HVEccfvtjqbqCUYj6ran6RvcYKiLksP5iMOjHFntKaoGcTjj/o8P2V+eEQUpoyglmFiSaY6/GDOaZUinKAV45R7ta55++CE/+ulP8bWjb2PO37zk5HBOkGXsr/eUfkzkgzUDwXjK9uodt9eXqKlDKR/V1AxvXpCFITIucKrDuRQ5ChEozOotN2+W/PsvvuZfHx7y8ekp82dPsXGObXr0oAgDD3txSYBCpzPE4SmjdYtql+yXLZe//nuSowQ1OkDP5qg0xe7W2LrC1jcQ+YhkgmsMbXGFiVLUaIKOQlw/UNUNt0XF7W6D9mO6wSC8ALtdEmQKP5U8+ulP8O2S7HBG/ORDwqNT/k2xx2RTXu0UIp+yK/bc7rbs17cI1yKqGzLfodyeyckYNTj00DF9+IxNY9muVhRlzXxxSi+gcxYh7pQZMvSYjGcUN1ugxoYaL41RgY+fRIT5DAGYuqQXBjdKcENF19xy/uYdi8MTxo8f4uUpUqaI7BHh4Qnm6hvU2EPLAl2s8QMNDo4vO74+u+ZytUN985p7xwfoEITnk8Qz0olg2O3orMNozUQHGNsjXUeUp0TjGJFm9IMDwA09m9Ua2znibIQeDE5I2t7hup622LGta5SvuX79gsFTyOId6+Ubkiyj2G1wzjJ0DdMHj/GcZbt6hyczdrcrSqANfIZO4/mKSRxTlzui2L9reHEDu/UlpqsI45QsuA/0ICXaGVy7RUiLCBIkHma/RjCgstFdgOD4EC+eYPcbHA23V2f0nkdyeh+5G7j6/9h7r11NsvRM71kmfMRvt9+501RmeVZVG5Y45Iw0FClB0OnoQBCgG9C96Bp0JECATmQGAxliBDad2E2yq1nVVVkmfeb2v//DR6y1dPCXboBzQDSQzy0EYiG+L971vN//LW255sEk492TKU54RFmIToeED98jmAw4M45f/tm/R69KlB8SxiPq6xeIvkMaD288wWw3mNs3SB2AZXdmOkvvaUy2z+JqgatqdGMIG4OWATjDySBmOB7zw82MNAyYb7b89skzfvb+h+RCEpzeoTU9g0CR7R1wml0z25ToMCXQisN77zG+e583L/+KVmqKXrI3iLGN5M3jDXttQy+ukckQV/bI1hFlQ8r6BuVrPD9GxyltXexa4PwNgYwQfU+3sehsD0SLlMWPyRmJFQIXKjy/x7y45c6je8xaxc3raw61wMQeL354xfep4uHDe1hraSd7TE7uct/XmK5iL00JszHhxyPCxS2L508wH32McgLbNohuQ9cKrBciA49ue0u3vqXLlxjt09oe2ElW08Nj2qam6w293TmUAilxXY9dXqPv3qM/f0G7zqlvLxmaEntzzvj9T8m1R2Bg3SpW3oAgMGxqxbMnzzl5930mg5B33t0nSfd58qu/5zhOIElJ9g64F4SoqsZuLNa0BIFPEvnYvAbhsAKkBqcU+WqLaCRebyC7Q9c2CLWlKwxd37K+mvObv/stzy5uCNKQKAvIPI0fjcgOpgynIQyGbG1PWeQ0nWHYVmShpNsuCSzo0NslpNIBgQ4Y1IcsZMvy9oZpW+G6GpzdtRp5Ac7WWAGzbclgb0q6NwHl4YWazrTkRcGry1u+fn5LQczDu6dMxkPe/eznmEDz3ZffkE2GeKNDgjQhTDLoezwtCE+OaE2PbRqiQYyQBc3sGi+bMJicUg8CVhdr2mJO5wRSggFAIaVDSE1RlmS+Blo60aL8GGlydJDsFqe9/bGVzWGbHutCnK0Js5jZ41/z5vqcizev+X+/Kvnsk4/4lycXHDy8h6u2OC9g++xL1s9ecLsOeHq+5v/4u39kVaz4/LP3+eT4DqMkou+6nTOnbUGCkBrpRzgMTgWYpt19JHoWqWo6YjoDTZ4ThhGe5yOSIfNth8ShpSTPS/Lc8G9/8Yw+SFBS8uG9M+7duY+nY0xtWd28QEtB6CumkyPGB3tEocOPcu4PNeNBRhBkzG9ekq8rrhYVi8aiB2Pq+TVe4PPi5oovv/mKd44O0Uj8QULTKzwdYPKd4N+LEpwXgCd2C6FoAqGH0BGmkAha3KyizzsW317QbjoefvZ7DA72uP7mKWXeosIBKhkgoxBlhrjBEHnnPkc0DMsNP3z5FYvZlsH1LYfDKUkyRIsW2SzRgz2kipBth/QDRBwgAx8GEVY4BI529QLpgRQ7uXsQJVzmDX/9j9+yqVs8ZTmejAicI4wDLjr4v379LVr1/DR7yCTyeXDyVgT7lt893i5N3vI7iYpCvEDy7Idv0cf7qGlKV5eU24LlfEGzWtO1HSqIKLYl+D5WC5ZdixUC4Sm8JMJTAeViTTcYYwlxnaa3DetFThxlFEVJkoxwpqNarxE6Io4neB0Mjx5gvYDyYs64W/JXXz4m9WPuDn/K5ulzZODRJgcMhhJFhags8WTCcLpP6iW82W55+u1T7r9zh6tVwep8RiYjpJ6gEoVO9wj3z3BdjStXONFg/RhTezvpWS9otiW9tLR9S+UcItLsHyQ8Pq/p+5zj6T20jRh5e0TZmBdXz/n+5TX3D485TSKi6Ql20CBmTxkmPkWniJOE/eNTluuCYnnLnXsPwDi8vSPqak0cHuws+n0HQpDnOV3XYqxFCUeQpLTrDfniljCdQJPvPCZBSL9e41ZXuK5F+Bn67k9xwscGASrwyd+8oHlzzv4f/ueodEj5zRdsb29YdB3xaACmQ01P6NYFi2dPiIIXNLMrli+X6PEJ6WBE5zzaak3tBPdPjmnbmnGicG2NsjXKlMi6Rh8+wIkK5wz0OVorut6itIfVAiOgE5LZcosNQMsWFQ+Q25rDgz3CLOTqdkbeWX760R7JNKa3LfFoyt2zB3TVBhkplnZL1K1ReNRdSd/3+IMhH/7Hf0xrOuarNfdPHnH95jW2q/D273L23h3qm9eUV9+TZAOM6dlIxWp+RRJG+IGPahqK22v8bAjW4UQI8RhkAG2LK67o3YZUgN/01NcF4oMDRn/wr+mvLhBljX90hkhibL7BhB5KdOxfrvn9g5y9vZjm8pri+RP8dAjBGc6BiEJoC0xxi6t9pB+B9lCjMcY6hJZIq5HWMNtsWG+3NG1P3W2ZDDKMhXQwwI8iVKSRqcbrBPFojOtr2qZl/O5Drq9n2DBlXeRsX7+hqgtuL85x1YY4ALu64KOHpxwfHxFFKfWL78j2Drn67WOatiH2FQNh2K43jJIR09TRzMofrzYoxndP6bdbSEaIgwRPegi7c2O4ugOpd+0gXk+73bC+vqIoDR9NT1HpMX4a766bZfdoVi3B/d9HJwbRzUCeY88f43WW/ZO7XG1qpmenLLZburbjKM5IpmPkcIAst6jDKbpaoY/vYYOMvphj+4ZgNEZ6mqoDKxxOCjoUTdVgW0EkFDqMidOUTVXtWrhsT7w3JUgSvn/+hBfLDck4JqIh9te0vWE4GeBl+3iHdwmaLensmqs31wSjCTovSLGMPEfdGwZZSCNKFkXHIq8w1tI0JaGv6SrLejVDpim+0hjnwPfpTIe0DVaFeNN9XLnCOCA7QIcZrq8xpmR19QoTRWSn9+kaS+c1+A4OI58HxxNO3ztjsSwxssALauxmiZemZJN9PrhzRqM9pFLowYRIavr1Nc45zHp35hhRYlSD7Xus8nC+jwtDVquKq/MLfvShIoTmdDzhsuuJpWTgB0RBiMQy8TXYDi+LuXt0wCyZEmCQWPYmY6wfoGyN6BzlasH3/+f/xv47p1x++zUuvYvn+Uwm+0ipiNI9FudLyid/RZD5BKMIdXzG+HCf+fNb8m1BNgqpO4NqWpTfIvICKTdYt4WyxjUGhcIZENLDdA194KOyAd36HOksfVVwfHbMZekThSver1eEe8fEgSa/vOCH13OeL3LuZx53T0/54L0PODi5i6prmsWMZn7J4YO7iL7Btj0uz6lMh44DrKph0+BMjRGOVga0fU/dVgyHI2xb05VbGivZVC1105OFAWmcUJYNwjjaqqeZr3j5f/8/7N89QR+ecXBySpeMqLyEwCnO0gkr59G1EAcamx7wdJtx92SEbAW+0LjecTgaER4c76plF0suLl9zm3l89Ac/harFSzOafI3B4IUe6ACZhBR+iCsbgqhH1mtMbyGXtL1hMV/x5Tffsyh60tGUaDokDANCURCkCSpJ2PaO9XqL7FqUkngiwO8bwiQg8FLSgwNkmuONpjgcmJ3sWYYhYjyirxt0XWDbGmMlxvdw1tC0W9abBZ4MCPyQqi3ZbBuK0vCb3z7n5fklNkjBd5TbLYfTMZ4EUVX0qwV9HGPrFqlCpK/xAo0tc7R29NUGuXS8+ctfkR3B/Mk/MO8E9//Vf8XNzWtUU9Llc/Leo7cOJUBpDc7hBwE4S75dMYiTnbtEW6wxCAdOO2jcj5sWD+Mspq0xTY5VHvlqzvb8FW1Z0dct/+6XX9N2HX/6p5/jBYaLecmrRUM1X1KvlvzF49fMNgUj7fCSiK6r0OmEIExpNzO07fGiBHSE0w5XNxjr0SsNrqbvW1wyxtQlpu92ScimR4wCiAbcPT6gbWoWsxmL+Yo+GHB7PePvv/gzPvnsMx7sT9FKE2YR4TDl+uYJnjYcHk2Z3DllmPjML54xDAPqZc18tWGSGLbnT3jx5d9Qljm22GKahkg6Simw0uPxi5dMxC7xNjq6Qy98bNVR5DmxdugoRtkEIwL0aIxtK6TaXdGhr+nmt+SXBWWf0vQ9Zz+9w/W8wj8dEgkPq3zKy3OUJ6g3S3ohMKIjHPj0Rc12tSXzNSoJ+Prx12yPThhmEZO9E7xQ4g891GCMSu4iA43oK2hz8DxAYU2P6ytEHBP6GU1dU9S7hcm86nDKZ9V2ZJHPwFO8WC6Z7I/4vY8e0oQByIrV6pYs8f4ZJ4i3vOWfxtulyVt+J6nrkrLdIIc+je92H+kdqF4QtC2H0zHLZUFeNgRRQBpHKNtTVg3goXUI0scJyXA6pGwXROkEIad0bcGb2y8pi5owzig2BaqFrjBsZ0uqquHo3U8JkzGmauiF5cVmg44k704TitkL7j66hzw4QOPjcASewnYbtjevkPmW7vqa89eX5K0hyfZ5ML3H+vIF+WxFlBYI10CzggCk7yHCCc5UWOGjtMS1OcYZqq5Gi462a6nzLaNhys02Z7y/T2ctm/WKe/fuk01HdAr+4dvXXFw2fPd0zvGjAv9IQyLxVhJnDFJIhpMp09P7+MMtm+WCzjQEgwNU6BFFB7sYqRSIviPf5sRBiK80zVrQ+xHKClzVsalL9toKtI8IdpWuajzB1ftgDSbf0FxeImQE0qOuci6++HuOD44gGeHCBJGOCOIp08kRQeYhMOjBiHxT8M1X3/Hqdkbcl+Rlw7/4V+8RjQ9Jhw1dEaGWK17ezDl45x1iX4BocdbgygUAIg53voO+p1st0NmQ3nSoIKRqGjqpaZxjM5vjAslk7NEXa5R07O1PUfSo40e8c3iPDz77lPLZb/HiBFO3hEqRHR+DdlRtw/PLp3R9Q7+R1HlJbyxSCHSQsjeYEk5GxO98RmEszXZJePwOm7Ik3253cdi+QgrHcnbNMB0g2oY0HWKzIdv5LW6whxpPEF6AEB6u2eKqC04fHfGHNzOOxmcYF9KqAdffPWFv5IHuccoQnO1hlgqaGf2Nw7meyf6IOx+esHk9Y/HVY9LDMS7wEeloV9OoNQzGOGcwpgdlQftIASiNVArTdsyur5hmEUWd4ITCz6bY7BAld4mpcDpmcfWcbATR/hRTF/hJih0fsJ5Deb3iunvDpuzYrG65fvYdoe0YJh757IJ6s+DO6RmTw3vIex+yen2+E2Gu1yTDhCJfUlo4PDyBIKCrW6znECkoLGo0RMoR2jbIsqCzAdYohG8w2y3CGqDFYrm8WeF5EUbGuD6juVjiTyCaRCAtOvIR3RI5PcLeXlK8uuGb7+dc1YLADzk8O6XtO54+fYNt1tzPBnidQiYZOozRwxh8h04lKkixqwJpC/AOcLaj2uZYKyjLCh1GaONYv7nGND37BwcI0dGt1sRpTBCGSM9js1zy+MUFw3c/It0/RBBwp5kz0Y7xIOR4PyYQKbbc8sOzf6DvN/jjEdp0iPUNUmlubm9ZrldsygYpLD9TmigKURLarmF2e0MahtR1heeHqCRB+jEEEXgOI0CMDhFeiBM+KAG2wvQNvXCMHn5IJ6F1OZVsOb0/Rdicv3t+yXfrlm8Xa4a//Y4//ewJf/SH/xHj8ZR+vUR6MSeffQqA9BxiOsFpMHWLRSKSFKscxvY4z0MlKWhN2xq6tkGHIdvliqIo6HyByGLSIiPLUgI/4M5wgNCaIsiYeBLRtQxHA3pnGY1CqqLhqy+/5dCLSDKoNiUvn/xAWC5Yn39LkQ7p/IrY8xjvTRhMDhhGMeEq4PrLbxFdwf3PzwgfJviJpVcRXbGrJ7emxxmH17WopqTaLvEFmOV657DKUvB9nHSQhASjlKbcYroapOb29SWv5z2Pv35DEgrujBXVdoNJA4rZmkVh+cnDE46nIXdPjxmfnaG8EOUHeLZiFB/gD/cw5QbhBP12TdM2iKrFUwaUwSBpjUNmGbJcoU1PW+c02wV1b6l7R9F0oDziLAM/5tsfvuPR0SFJekb26F9yrGN0ElFlE6Zpw3kNOoiZTMZ0TuH5IdAyO3/F+yf3GJxmHGVgtxuUcfTrJVFbIsqc1bMVdnbFi+8fM7x7l5P5hsHhIftWMcuXKCmw9KhIInWLyEKuZjfEdU8QbcAJTO9YbixPL68pertLpnghtnd0TYEOFEp6ONMglUe3LdFdi5+NGIYRo3hA6ivigyleEuDqBJnEdItb6tk5XV0Q7k1Jzs6oa4dumt17YsFVHYiW1XKFloIoUXi+pnIxr5894/mbc758+pr5OudgbHn0wX0OJxPiZMBmvkFfPUeEIbmB2AmEc/ROIqxFe4LeGVy3wXRLVi8tN/8w4+n3j7kttvzVv/sFh3cO+OwPPqerGvLlc+aLTzg4OMCgkM7ihzF921B1DhwE2qNtaqLBmK4scV2FDgbQtWAMru8wXUNT5Yh0wmD/mM1XX1JXNaNBimscXzx+yn6saTyP+MEnZJnPxZsVL643BDR8emeIFwR8+uAOkano6w3WE7g42aXxkEjt4/ofa8y1xlhD39U45+hNT72eY63EGofyAhCSPt+y/8FPqKuK198+Zr5yBNMMZT3GkwMWixVN3+H7HqGO0Yni7oePGP9GYjSc3r9PFgjq9YyDVHDz/Dm/+ev/njsPP2G1LFguFvRtSRj6dI2haluQkk75XFeOi23OHi2XZY4cHaP8hLbt2Ww3DEZDVBgjldi11DiHzHNA0hUlbSWx4z2qm6cc/uQE4Xn40RGrXDOMpgwGMX7mo3SLAKxxRNpQi56//8u/owfiYcKjhxnzvGL+Zs4v//E3/MkfJQRxiO0alDEgBcLTIAR2u0WICLwYU2/oy5xeeHTGUtQtT5+/4vFXX5KkKUL7VPM5ew8fEdc5WRIQjzLuvf8O58sl3/z9FwwCxbfPXvDH/wyzw1ve8h/C26XJW34nmV285ub2hibQrK9n3D++j/ZCEhUyVgmL1ZL9NKXOC06nA1Carq4pi46y7Njfz1BaobwQZw1ZvKtXE8qjL1KGxwdcP3vOzXKJ30lc01OvNnRNw70PP2FwdoZykq5/Qxf3PLo35liOkDIjqW4hc4hpgn94gulyRLEgVh60FZeXF8yub1F3T7k/jjHDIUmSMdyfcPvVP9JXN/j1CLQPgUKECSiNFY5etAhnwJP0OIp8hosE89WGTVszOjiiN9fcPb2PTQXjw2MmBzHSg6fPrphdNhQi46+/nSHT7zm7XJGkKXUiiD2DRZINp8RJymg05cI6qrwgnWps1xImKU3d05UlnpIoBJ4f0roKKxSVgShMiIbQbHLqfInyQoT0cV0J0iKzAbYusHmPSEIgwNQNxeVrvv76ay5eXfG5HNN0Pl2bo5IhB3eP6Jc3uHZF8/I55998wb//5gm/mS8IJLyfRnxuLeEgJcj26bYJ4f4xIr7gyetL3v/kPXxfYV1L39SoZB9XOZAtzlmkCHDOoX0FWqJliA40RV2zzkvkugQUVjqqztGkKffefZ/fe/QzVpXl8tu/JHQN6WifV7eG0WhCtJcBlrZt8UufLx5/ydXFgnzTEgUhHwMffPgJKoxYXr5EYbhuPeTr55w/+YqmKujDjGx0hl8V6E1O3wuqskY5iQpiknc+Qjro4wyUQiqB1AKzuUBPBowO9/iJF+FEyuzFmstf/TnX1ZZ33z0jGqXw+jnh828II01/c0lxccFN2XL68U8I9zOK3NH3Jfl8Q5xcIG2FiAa7+uAgQEYZKA9Tr1G+hxXghMNJzXq7Bdvh+wGm6+j6ijpfU+dL6iwl8SJEktGsrli0PkfhmHB0wHo+Z1W3xHffI7j4FRWSr56//jHdUuOFmvOLW65enfPmueHds1P2j85w2mdV98yurwnCiNlsQ9f1aGCYPuPgvYdE4yHKz+gbi8cWJSwiHiGjAc4fICyosqYp5vRdBZ5P3fZcXK+5KAw/+/g+eAHzZ+eY6xcILRn9sCS7c0qzUaALrK9Yv3rJL3/9gv/hb7/n0dEhv//hIZ3zMdJjMBlxe5szXK/x0wAvzXBa74S+Hgitkf5u4O+bhr7vqPMNdVWADKibeidNjX36bUc/X1IsFgxP9pHjAdu2I2oaZBTxarnl6cUyNWDzAAAgAElEQVQt2gZkpSXd3+NAC4J0RJyNON6fUpclOgzI24rXswXT6R6tdLh0jFEBdVmyrvtdZN+BVIokDjFth0DS9j15XROGIaZvUJ4PgQ+BB16AQ+B0hFAeUkgcFoPAJiOy939K3beUxYpiu6bsasxwwOHDO3w8GuAlA6a94/J2zi+//JZ6u+RP/vSP6UXE4PM/IjmeonVFN7/APz7FaXBptruDEQaYrsa5bjdASQXA5e2MTdkSTyY0Zc11fokQmiiKeHB4QNO2HEQJH997h+vBAbM3L5h4jjSMUAhkV5GEKWVuMc6SlyX7wwm3r9/wxevXSNfzx8f3iQ5OqXqHEI7OWAaDIX5TYYqC7Ow9kuMD0k/GuDRDLApkPCRf3O4cIEC93qKlwgtidF8BlqbOkfmMYB3gSYtMhggd096uMG3O+tk3/PCbJ2y3Faum572DmFfLNUUdEIqa5988QzjL4Z099pOWVCuEq2jzBc5LUNbunEQiprh8hUtSRNeTz3JMcEAyGNCZDiUcxgtQUtIVS8p8iVWCfL1FBzF1ueRqVWOlh686kmzAD+czXrw+5/0PPsAc3MWFKaP/5L/ANDXnX31FV7e8vFlzfHyPZDCk6j0chkRBPwqZnf+WtFvQHT4gu3uX/ek+WfoXOOXIHUwnE65fPWV8cIBLUv78L/6CP/j8pwyGY3QUIHy9q0btW+raEO9FXN8GPHl+iUagnaTtoW52C6EoTAgQCNPQbzYQR6h4iLYd3WKLH3sM/IDx/gFSKpLBAOlrVKiwTYFL3U4yPttiqw1yFOOPp4TJCB352LqgrX2U0iAk2IpyccNivWV0uI+jRUjHq4trnr254C9/8x3niy0IhfAzjouOO/cesdxWlM8uOMpi1HqOme4TWIEfeFilsFLgGouSYOnJqyVRNMWqhCQ8ZFW0BLZCyxa0R11U6DLnzRe/IP75H5IOJgh2/qowHbJ69YQ+8JDDCc5JpAzRKETXY4XCNjU0FaZY01cVev8UoXwS0fH5n/wpz58849XrC9jkGO3z5cWG9z/7OVqOePPbXzOK4OGju1gzJVA1R/eOyTLBdDLG2h5ne7p2i05j6DtEXaJEham2OO3TWYdzDW21pV1d0q1XtE7TY/GyEX2+Jv/mN6xuF6w2OX/zq68Izz5hYEck8ZRBuqFqN8xXS1bzGQd7xyihSNOIO8cS6QlklLN38IC+PEVvrvjy66+Z36y5eT1j8t7P6VTAcDjgerElb1p8IVBBjKd9RmnEbDYnnaS7NrflHJ1M6E2AUZJhFIBUCHYNcFYrVBAhvJ0o109rumUFeoMeRTRiykBNGY2O0If3yOcXBMcTwgcPEdrHFBvMZs7mt5cMJyHeaMxweoySAu/5E44/GvDrL5/y4vlL3pXgZxGwa0OyrUX6Gjma0G8WCM+nvDmnd4LKCOoyx0UZv/7mB8qmRdgehGBvMoTRGNloDg/GaNkzOjzA9y3mZMgPr96Qht0/w+Twlrf8h/F2afKW30le3yy4uJ0hYx+djjBdj9YC23VooZCdY3s7Yxw4BlnEqu7pnAZjuDhfcPfund2HilZofLzQJ1+VxH5CIFIme0e8/uEJVbVlXnSYosOVNcPRiOzoiCAOEXWOkBuiYYBL9xBbg4pTgv0UeZIRTCyLH/6c2fkrrtc9tjM8uLtH3mv6/VOMNhSxRzSYMIh8vCBh8uhDiptvdpV6XYtrWwhD6BuMsDhjkcqn6xvmtzfIyFFRczV/xSCOcKEjDiMSz2d0lJLt7yPSIb/56mtoJVEwYp2MWLcFj29W/O9//udkvuLf/Hf/LePDlK53DAYDojDG9zSnZ/eZff81nXGkgwQpJL72sL6DvkULhZAezpRYY9Daw5ndnWPp+1TlljCIkX6IMBVKhbs4clNgnUGkCaIDypay6ZGTe5zPS+RvHrOMj/j9zz9FLV6BlBSX5zSzNyzmS548f8WmqfjX7z/gYJgSlBsqamTmIdIEP03QXcNJGrNaLZmvtqhJhBfHGM/H6gyHh2jW9PUWPdmjcy29aQg8RbtaMRwN8TxF2RnEJicUEpIB4d4ZjpJ33vuQ/QcPSdIh86zC5VfovXdpXmywl7d4Pmil8IY+aRUxv7qhXNYs5ltOT465vnzNh59+iq9Snjz+LaJcUpWaRW2YJDBRLVbU9EDnRfhJzCbvUGmG0BobpVjtQ7XGiRSLRUhAGGy3RZ+cgD8mO/qYzdffM6yvUNIwCPcRe0P68QA92qcLAsx2iRGSbnLCw0/+JUkSYLZz9HjF+OMP0ZFPtXiO7tfIbIKKJxClmK7ZPdsoQ/oa6gLh+bRVxWoxQyqN75ldfN2P8USHMlsQMdYLyRc3aF9ysay5/Yt/ZLI3JL/4lum9D2EYos/OqLeCbX5Lvpgh12sGBxM2yw1l2bFtW/7X/+UXvPvwfSZHZywXC9reEIQRy2bDzXyLqEo8GfDRvVMC12HzJSJMMeUG+iX69H16T6PTMV7X0BQtMomhbWlNx3K14Hbb8NHPf87w8D62y/nh+yd88+aCy6Ll08kVn+1ljPYjVOoxawxNEDFXKZ8/POTRo3cYHma74SgeME0iwuGW28sLBk2F35UgetRohHM99PWPbk+FiIdUizVF3dJbCOOEpr6hrEoO98e4kz0KZ+nbjqbriYRHGId0xrBaF9wuN5SLBdYpbBTh6MkepWhf0htH2TlWec3LFxf01rApb3G+Rxpn+EmLlB6FUviexvfBWosXxPhhTGtyNts12o8omgY/3xCEAcr3MX2L0B1ojZQeUgrAYq3BOUdddxRVRSckRZlTNy1F01Bby0oItq1lq3ZXAAfpmPdUwGh/yt3P7rNGEk0HiDjDaLV7boMhjg78ANcLnLC4rtz9cZYa5C5JVxYNz589x49SlB+hBhnp/j5lXhEJSS80fd1xJwi5f3zMz45OeDJIkX3O/TsnvFnO2dy84nDicefBPfIOLs//lv3RhDhJSKfHVMZw1fl8MtijrWuu57csZ5ccjwd0yxmREUw/+pCub+njKV4a4exLgmzM68sNh9OYumroaou33oJTlF5B6GnCdEBtWuztG5w1yKpEaA+cxTYbnvzibzi/nKHDiG3V45TjfhqxN0oYTjJMLFnlFVpLmqamUg5jDaYv8DyNUxKEQvkx3VazfP0C21mqziPc30PmC8IswQloqhztKZpqQ9X3lHVHa3p8G7PZVtTG4VAEgyFzm/B3X39B6iSubYl9x/DeHbwoolrOsb/6Fc9eXuCSIbI3OKHwggBPCXxTM5mOaGN/l8ahpy4Leq1JRiP6QYwXxKTZgPa997l++oxvnj6jLNZ4ouf+nWOcMVSeYyg1NtCIwMOoEH9vgrkp2CwW2H5X/x2PhkzTDOsPKeuWWABG4WtNt92iO0Waxeh0RHq0j6Qh88CXLdE4wkqLjTQq9vEGxyhl6cuAtgJbGFQUo6XBWomzBtt1YDva9S1FvkXHCUrUWBmDH3O92vLyYkbrFE6FeFGGi4/55sqx7FcMRY2Wkiae7gTU17cYFaLGAUIIlHD0psMKCQKEM1TtGn+SEiwThk0EgSEIQ1xrEbWl2zaY9WP+8rvv+OCnP+Po9A6hF6Ck2C3AbUclFMqL8NyWvmlR1tF7OQixqx7uSvRkDzHYx3YVKkoJx1NOPgiIj85YL2Zs1hsGacZelDAdB5z8i4/R45C62ZK3NbVrELonPdyn9Sy6axEu3v3calYQ+tBVOAHO9pi6xTQ1XVfS9yXVdkvXtLS2BT9GjQ+oLguePHvDqy+e8revNtR43FdnHPsn1J3j4OCMbTXj5cs33L1zBqFHYiNePHnM4Z7ES0Jc6kjimCRQPHtzS55XxKN9rmY53nJJ2HU/uqYUoyyjKHKSJGY0zIirObeLW05H76GVRpmc6vYlVgT0QjGPJFpKBJYwiXbtgwqk2nl6+q6gmT9Hyx5nY5xKGZ6doZJ9PB0wvH8Pt3qKKy5xMoSyonj2mlYO2X9wH4Tl8Pd+hnaC4XSP8+8esxdpVuWGothgX71g4nn4SiKJEVLvfCudwcxvWb55Tbma48KY+OCIEo8Xqxwdp8RdR2daUD7Nb79ATybMRU+4n5BmKT/5/f+Me3uGP6l/zfv/6d4/4wTxlrf803i7NHnL7ySrsubF1YxslOF1gqqpSf0Ao1qkqliVSyYjzeE4pe57yr4jCULKxvDt1XPe277DYRKBkAipEGgGyRjXuV0zSxcyOdpjuV5RdhWNMfieZDIdk8QeWjuEMqgYGu8QX4bY/nu+v/iBq0rxs23AoFvx9Pvn/HKR84tZyWEa8t80Z6jDR0RpgOdqtBLkfc0kDEhCiwodXZLR06GTIfQdtioRnmBLh/R9QltR3Fwhqhzt76KhUVczGCV4fYUfCIJBwCBL8aOA3PRsNyWpN0L1GmskfrpHn+6xdor5usAGCVXnCEIf7Qd4WqO1TxpL5MMPMWicE2Dszu4uBH3T0TuJMpZ8vSHQCuF72KJF+yGmg1Zquq5D/jhMi77BOYHtmt3g3xscHU5quniP4aM/oPMveDq7RjRvqLeHBMOYqik5f/2S169e0FQNr/KKj997Dz+LGCQBYesxOMho1m/IN2uM8MimI5SvmJzsU4cR83KD8gVBFtDZEmENWjjatiT091DWA2kROExbsz9KGe1NMRc3LOcLIm9MVeZM/Jy77xxzeucOnq9wXc3k7iOW32+wQBwp6tAj8CRxFCGcom9r7h3skc9uCe7e4fDBPS6f/cC//Z/+R9JBQnP7ksnxCYHn6PMFNj7AyADfD1CmIIkDKu0haalbh68lTdugvQTVbPH1IfgewpPYagO+wfoCgggZ7RF9fkLjf03TdJT5DXGr8Wuw6oA3lws++clH6GKDUh4qndDO5nTFnD6GoqlIxxni6IRq+Ya+eIaOVkTTQ8T/f0Xgx8i60xEOwXK9AgzK0wjjyIZjLILb2ZJhNiWberxZrQmKG44m+0yHkqa75vrv/ww53KMWH1EtXzMdpTQv39DVHcJCNt5HKYUwjijO8IcBpu/44oun/OT3BPnNFQ7B+dWMTdGyXBaYuub5zRbjJ4i2wnUlTnq0fUAYHGFbhx74uzh024EHtu4BaPKCxbpGDA8Z339EmE0on73i6eycb+YLXveKv7695d8sRzy6krhBTPzZH/Grp2+4f3aXn5yNoc/ZP9JgtwQyRiQZvmoR7YCreYnnSeLBgL4skYGPcBLb1rR1icFns15Td4Z0vL9734IYz9OU2wXZJIVmSBDGrJZbJIrxZI9cCF7OVoyTiOFwyCzfIKoSupY00oh+xW+/eM757YLLecX25QucsyzzgifrV3z68ScEWuPKEms6lFRozyMO9S4y7gWEiQHp2OYlTVvR+BpjOxwOa/vdQk17WBTadWAFwkm6vmN5/QorLcW2pG466rrHeAFVud4NdVqztT/6EYzl+PgYaTdsup6g6+nLJarf4ieneEwgHSFDjcsf09e7NJQzPVWxJcjGWGMwfc+by0uKqsBKhagrtpuSq4s3uM6ivQDTQlK3JFqTakFKy6NxjCDCH++xev2Ucj2nLlcM3YhhEnIjHKbviaXm8w9/Rjwas1lfQDDAF5q8esHl1QtORiGZsQyPH9EXOdtnXyOnP2U6fZ8oy2hev0EEEYXxWK7nVNsCU/v0RjKIPEwU0TYG7SAJInor8YcG0VUEQYefRNy5d8TL17fcznP2xkOSOGRvOqZtW7p1QeqPODg9IUxiZKS4vb2hyAuiyRFOgikrTFnSdhZTNyxuZmyLhmB6h3JxRZLGCN3jaQ8QrBYztpsVnYPr1QbpaVzV0ZQtSmu8MGTTwXZjUX7C0WSProfbp48JT++TphnzxZIijAlO7iDWG1b5hiBJidIEZWs8rfBVhHSG/dP7jPePqS+vWT87RyqLF4Z0ZcPWLHk1X3Bxec58Pkco6KQmF5pplmDoMfZH10egaNHkVU6jLNHxhP3JhChNiSIPP0pZBGeUVc4ED7nd4JZzjAqJUonntZgwJowjhB8w3QsxqwW2uMFqj66aY8bvEkwnOw+X5yG7a3zPogOFCEJMvavspbM0s2uuXr5CJUMmp0c0myWtqZHJgN4q1mVH01msFZi2Y7spGIz2qWrBe/ePqTczahGiJye0tsV4CX4QYIWgsYZACNq2w1mHdZaiWHF8MGLvbIQTt2xbQ+zvzj+zqXB5SV7lbKuav37xkuFwwHgwJBjvE0U+fdfQupwwtJTbDVp4eJ6HtP2uIrdvUZ7A3z+k9xOU8bGuRZVrhKjx/IDhaIgq19BvEZtXmKRjeHpAma+IdcDe2QM6DTLQoARdV6CTENt3GNNjqzWoCGkUbdNi6xrrHH3f0Dcrqs2CYpujg5i26YnPHlKh2biQ//mrG364WlBbwd5wRLqtSbYNzjqiMOPs3hRDTW9hXdQUvSBKh4zkCX0wJQgTFrevMPmW25s1z14uSAaCPK84Xs6QfYufZGQ6Qdh+dyZqxX5kqJa3XN0umJ/dIxCg0VjNzp+FYb14jrI1Uynp6oBUTRBa0dc97WbJ6vm31JfPCMKIzqZEJ/t4kaTXgvPrBdP9EbL1qJ8+QfgJ5fWW27lh3fsMwxjb3CJczeZ6zv7Dd/CTgKbtsUYgsyHGWNavXzFwIKMQFoZmfgVByOL6ivPvnzC5d594MkYoyXa53l2/szH5ZoMUkk2eczxMWG1WDKZjkvEetBWjg0Om/+V/zerqPnr43j/jBPGWt/zTeLs0ecvvJE1vWeQVl3nN3bshRZkzDDR+qFnZFpd4PDy+s5OB9QZVzYl9H6laiu2c17MbpqeHiL5H+hpjWjASlKMVBcgWFWuUqfG0QcaKQARM0wDPNQhXYYprrOkR6T5hBJtqxNWrOd8tCl4tHB+HDb11LDrDg1HIXhbwpqkZYRD9inT/kHA0JLQd2+USbzqBOCM7+pR6nSO7Lb7UCOdw0kNVG6RKya9n9MWWIBCUrWW72CK1pO9ASIFKDWHkMxzsEY/G9I3m7Ow+15fXfP/sCb1tOZn8f+y92a5tyXWm98WM2Xer3f0+fZ7MJJOZbESpJJVdKhgwDLhuDPiF9Bh+BcMXBuSmXBIKsgwUQRUpJrtk5mHmafbZ/erX7JuIGb7YfAHphhCQH7BuF9bFmoExxozx/VOEG5CmIwqjQesH4WhXI7RGCIFtWSAc0tGITsuHqE40Q9MgpI0bxaA69vsdru/R5nssBP2g8BwXNwyxpUfbtsi2wk5HDE39sGrUdfTVHi1d+taw3lcMs1OctctBNnAWBsjxlF2mGbqGfX7L7+/XLPOSURRy8vwJnQWDZRjPU46OnmBbhqxpGXRH3YeUyxUy9hCzOdPJmM3Kpmo2RI1NOJph2WC5EWF4BEP3IAcOApq6xPEC6l7x2aef8P7mnuVqhcDQdD1pOiJwHWw3YJSOsV0PVdqo6Qk32x03VyuOHAejFEI6uLaDlQtsYXF2fMIsmlC2il1xxcXVFR+cThhPR4TjCUO5I0qnHL/4hObqN7RNS5BotJEEYUjfaooyY5wcY9sgZIc1nTLYIG2BsAZ0taJTa4TwH1KLcFncb8n7njYIuLveIDeXHD1+RBREHHg2+fqWaRIgqi1qv6ItCpYXv8OaSFy3oC1snNjGxCmqLGiqPXVTkjx6huunCMtisG0saZNlW7TqEdIlCCBTFfOTx9xcXwOSm3VGP2vI33zFd45TOvsMWwp0vgfPxj88xgosvOoWyz3D931C10fYNWdpQCwtzr7/Z4RDT7vb4hR72nXN5Tdvye4X7LOKxTrH9ArPtdmXhnqwyPYVcTyh3t1jS4MfpBBFKKGwB4Wo1uiqgsHGDH+QnG4b6tZm9vK7pCdzjOWy90e8/OQZB2ePQTn87t07lrsFbuiSphN+9suvCKyO55/+O0xxi8jeMww9ZVvg7DVWa2MJgZAS5ThcXW54/OhhoGC1DjJ0sSQYNZDv7tCtwYsmWNJGt7Db16TjBE86NEVPcnwIrWLkBch4RBPO+fLiDfe3F5zMDzFhgrxfIYUh9DyybM/lxVd89eotN/d/x2x+zPc+/YztSlNXDcXqjvdG8/LJM1zXwQt8rD1Ekc90MqZoWzCA5eK4hiSWtPme1rXZbtYP63hOgLBtNAZLgOp7LEui8h3F6oY629AqRdV0yNEMoTXDMBBIiyRN2Wt4agn82XPe7zJaOySQDzeL2nKPYUDgIrYLZOBBCU5wgHFdVL3CuD5OFOI5EmwXVVVsdlvqtgdpI2ybvusZVEtW5NhYHCYpZVlyMJ0SuS5JmsDBIeLuDv/wiD2Kg/MzpsczpK3Z3l7TZj1R6LHNtnz3/AVNbujLDCtM8P2Ifdtgp2OutxuO7m94dnxO/PIFceATTR3yqqRcbZBexND39L1G+w62n7C93dLXDVpp1CimbhU+BlVXTJM5I+Nj9BLPKh+ecwue/MWfQHLAzetb/Kpidn5M9NF3yK9v2N69o7cC6n2D0/UMtc98fIBCUW5X+OlT2jKn3VXoAfpeUfcDZdsTeJL1fkutGrq2JJ1OqOqKqiyolWZX1iz2OZODQ8qqxBaCyPXZFA3N4BCPbY6OjumaksvrFc1my+uv/xeST39A6DvUUcg4GbEzkuu8RMsFx9oQT2O0HjB9h+47QBOkMVQV2e/WrLKM+WTKbnFDOp2SzObcZwWd1ox9D6SF57u0toNjHoZ5gxEMwqVrO6r9gmJ3j5fECFzCIMIOPRxfEvuCSegznR5jD0cI84IOh2DsYahwRffw3csV/XrHUHcI3WE5PVp37N/8Hns8ww0CLKMQ9kN9oao9UgQMg0I0LfUuZ7/aobDQSiHp8UIP1QwU2yXWoDhJXBw5YpRYHB+doE3IR9/7t3hacTQWlLLlXVnSqYJ5LLEZ8KRFJz0sodHGIG2bxggMhrJpWBc556dHWKJC7pZo2wdHUpU55S6jVx3lds8+z8jLmt2uovj9O370Z3/KoGscBuq+QxoLbQSDH2HJ9iHGPprihD6D7yEdB+oBaQneX1xRFgVxmpBt1yhjaITHbrPlqT3Q6pzw+BQRj+haRRCmSD9ASEPvheiuAdk+pDkJTbd6hRs9QmhQ1Y6+rR9k2V3ObnFD1SiSwwBl++jwiO36HildMjVQ6QFpe7TCoao0WVYgjM3jpx8STUJkaCFCmziekCQJcWCTv39FRYgnQuq737G6LZikCUZI3lzeEngB606QJhOU61PscvR+S28GvL5lmri09cCvNmvWmzWT8RRPCFzPRcgQy5H0usA4ijzfErtT3LZBDxt2V3dsvvqSut4Tn8xwzx4jRgmD06NEhy17pofhwwspEVJc3tOv7tjtKlrVkpzP2RU5ySjB6Bo/9JCOi5uMOPvu97h49Q1lUZCMx1R5Btd32GGIVg3b5T3r3YZsv2V6doIXxwwIhLC4XyyJwoiqafCimEE6zOfHtLdvCR3J4WxCqwd8qai3Sw5ffMj67oDXFzWH53/UNuJbvuWfzbdDk2/5V0kvJHUPu6ZGXd3w/MMPOJuPkJ7D3b5icnCMdAMcYWPZIMUOz/VJPB85tFzeXfPJ9z7Gsgb6XoPtY2lNW9W0+RbTdcS2z3QyIUoNdT/Q7UoECpUtsXTO0OwYpMQJS1b3NywWDaPJGZ8dC5qqxFdLvN7iB5OYz+87gliSGQnra4yuEJHHoxcf4csBp94+rIHYh1hBhOU37Jf3jF0bXB8jfIZ+oCtLtGMhZYsWgsEYpJa4QULWCkZhgHAsbDcgTCeE8Rxfd7RNy8VXX3Bx+5b5bIprS+Iw4vT4nDt6Og26H/D8mMGAhUBYDlKA6VscYRDCeihgbQ/b96DvUGWHJSVDV2EJgQxChq4FS2K7LsIJEXaL7ju6bIXl9wjLRVUlXfYQAZxvKnrt44w8xl1PpRT24TnWyQlu5FIVS9Knj/hvf1xz/83n3O9z1nn1sL4gBL102FTtg5zPkuhOIV1JVw+kjsIPfJQ2OOmITuUPe9FoLOshGcBYPtIy9AwgQDoOhhovHWFv3vEnH5zwRZrQ7leMkxCRLwjqgTwvGc8lYhho9xlOeso4/YBZ+xoW7+m6DoSmrlpM1zCfHDIazcjChNVqzf1yhBoMWkgs20XoDsdxGCybIB1h5udcvPo1wUgjpIUX+Ay7nMU25/jkGGMJNBaOn6LNgG0UxvTk63vwj8A/x25rmu2G9f2a7WaF2t/z9v4GTz80INO+ZJS4dOtXZPEERwf0ecv95hYxs3Ecl83ymtGBTb0osUchygupmxZVrMm/qTn+zp8RpmN0rWjbhm7QtH2LcNyHRAojccKEw+cfk12/ox+gWq+4v71jnIYkbsTNN1+QNzlhOmMyewqixXcK9u016fwMb10yndk8Pj7iPIkI+45hs6BuFUXdETsxt7c5faNY7yt2dU/oCBLXYnY+5/BoQtsWmFAQHJ/iCAv2GcY2WGHMUO5RjsDYIX3V0zc9+7KlxsOZTZm+eEZl1VT7LUUQ0Pop2UhRXF/jBgMdIe8HRbi85fnpCX/2w39DNBsjnx7RrFKackPfZDSbLcIB6bp0hBgzkFWKZJMjZUDgR6h9jXQHVNfR1JpgNMXYPloZ6qrj6uKKF08eEU2PcOMBlKTYVtwstiyvbmgfHdOpgKrIsCQcTw+pDw+psEjjhGx3RdNqkBHImtnhDIGhV5peDThCsLy5xxMeH37wAVGaMKpyojhkPJ/T6IpWK0LHQUoLS9qgFEVZ4toWnWoJLAFSPjhudItpW4Zek717Q1dUtMrQKYMTeHR5g5EBkSOQozHpwRntMiMoc9b9iJEzRjkubujh5TdQVzSOg+XYDHUJ2wVROkV7NkpY6CRBWIK+KTGWZFA9uyzj7n6BF4+wg+hhoNNrlqsVVduyLmqKduDxyQtixycYHTMen1I7I8aPPEp64sjh6OUPyeuOn/7N/8bx2YxvvnzLWBjswMWMp3z04jH7N79n8CyYHfB6cQPCwpm3H2EAACAASURBVHI8vr7b0eBztN+Rnn+C7E7IXv0Wq6jBaKQb4ns++/0ex3GIk5T94o4kcAiaBksIyrqirzpGk1OarsG2OuLjgMEWPKgxDGc/+BHTZ9D9/rdQZliX94z1wOzJI+T5Kat1Tnf7mp4Oe5Qy5B2ruwV6sHHLDD1YKFw6pXGThPl4QtO19Lrj3fWe0Hc5bBoGremNYVtW1F2Hkg532x3WoDmejZBeQl00BKNDGhnw9ptf0m/usV48Jzyc0x8dsN7v8SZPMFVNe31FsSu57vbslwvEoxJnmGDrhtB12W1XfP3FL/n+J3/K7uqe//f/+wem4zGzyYTJwZz5+SNSLfj44+/w9uo9rlAw9KwWS8YHRwS+pNUDiQ2D7aK3a+7vV2gnRqYzdoNDoiGOIvx0RhwIgiDB8RyEN2IIPHwMVqcYWgffE5j9Dt9x8YIeLQxtYSh3JQ0SXe5of/6PnP/wM4Rl0FhYrosxoModemjRtk2x29MOCj8O0cOAEAZtQKueomjR2YbpaMTb1YJp4HIaRSTzj3lxcsyQbyl21zS9oR4EtRLkiy3GeHwnjPAwYAaMlChjMQiHerC53Hd8/uaX/PiDD3g8CfDChGIQ7LOMwYFW9by/vUcbQ6shlB7LzZ5WG95f3fFo6hH5NgYb3VR0ShFImyga408SLFtibAuBxlI7hCNZL67JlEuWKa6Wt7jG4HpjmkFz8vwZXbvGTae02tBvlrhRiG5rZJgyOj3C9xyUkKiixagaozu6psT0BilH9PsF1fqeIXpwRFXtQJim9EphRVOKokI4PspLidIpzqZEuAk4EUYo6rzgYP4cKQKSYAyWps5qMicjiWJc38eNjuhuF1yuet59c4tHwIuTI7rvvOT//umv2eQF6e0lPzr+lCCOqbSmHBo2dYHuayJqNlVJ4gveXl8yjgL8KMIAriuJgxDPcuksgScNneppu47d7Xte/dfPoc1IDmIcWvL1Jf7g4Q8JwtJ42kEKB2lFeKcHaA9a8ZAGeP/6DbIPUarCixIsG5LnL9BGIEcT/LYnvo1p6hZ18Q5ba6r1nrIfKFXLZr+jQzE+nGJLg+FhHcpoyX6zIfQdPKHxJil3u4Jx6oNzSt4oSm1x8cWXfPZ8ys2vf0K3vWB5/ZZH/+Z//uM2Ed/yLf8Cvh2afMu/SgY/IbNCnMBlWza8en/D984PUWWFFDYnowmeeNid7+uarukIZjPmro0aNN1yQb7d4k6nqK5DDBrRKSxbkCQjul3/YHRPx8Sex2KxxXFrtGoodxltr/CSEOkPlNkFy01FpsaYUYzKLhjqjIya1fs9yWiCQ8D0ICWIBH4Y4yMwSrF8/4rgo09wg2O6/R4nPODu5oKD8wkiTsiXtwRWSqcMQegQxyFV09MONsPQUpcVzz/9mLvMwmq22NomcDysIPjDx+f2ywvevH7Lu9t7BjFQNzXSssl2GZPjR2BaDs8/ZDANXnoAf1hPscIYy7IxxiAxCCFw/AcniGoehiRWEKKVwrYs6rbBsyVBFFOXFdFohFHg+j4qy7Edn2HQ6K5B5RXNck/T9Gzu9tThEd3NBbsvvyJyJV70BCuJ8B2LeHTOZK5h+5qz56dM6pKbVc6yl3TZmu1qSz6ZUhUZWghCabD0BhmccX9bYK1XnJ0e4XkS23ZpB4tQKxCGwbGxMQ83HdqKwRj6rseRAjwHa2jxh4aPHh+xqqZs7u8wVYFqYj7/u79jdfaaw9kBjZ8iD85ww4TZUU1XrViXGXm9wxps0tkcx5bkXYtjSfLdhqcfvCRcLuiye1zPoS12pHFAt7zg8/+i0EguLvccTAviyQxlLJpWYSdjtts9YRQCYHkBBs2gWtqqoCw7ECPcTcHdvofVFc1eUWx3VMsVZhDsm5727Q3Huz22Y9hXNQdhwEEyoRQu4nhCl5e4tsJzQa8vsGWH6x5Sa4mQgkbYNNst7W//kSef/AhjCVphMWDhuT5dUSEGgxvGlE2HVppyv2Wx3XN8/hQ3mfDk4+/hHxyw/tlPkJEPyZhgfoqlNF1TYfUhcRASRSOeTyKe+C797RU3r1+h9hl6MGjV8dFn36MuFOt9A1iczsaopmYcBCSTGbZlYeoKM59hez66rmk394SOg2ti+nxHY8A9HKOEoFEVnWrpbcn4xXMKFEW2Zp9v8Swwk2Nak9GFay6XW64LQYPP3PVxteJme8f41sK/LR6cOnWL4/qEjQK7xQ57sDS2DOiM4Opmje+4GN3juBZ9Y2iMIJ4fY4UpWg/0ekAIhW1LNnc3JEmMG8zIlnt+9+tf8O5uy8p/TOxsOT+aMkpiLi7e88JxeTJ/xF3Z4AjYlT2+n3B67lJ1HbP5HD0MWFKSJCMSP2a7GcjWPau5Io5HVEnG0eGMJA6wcZB+gGsL2mZ4eONoSZresG0U3N7ihCnGGISBerPAdgLqvKbcrqE3hONDKGt0J/BjH2k6tjfvabI9btYRaUGva85nPmHRMz2d0WwLHOlitMLRNYGTIByPIssYhCCwwHEfUnOMHjBqACmpqoabxYKsrJmGMelozL4o8P2AWmmu85J9XnI0mTGZTjmIUmYnp7T+CJmOMGXO5s0XjD58iZIeb4qam2YgrcqHgbbUyHjCbdvxOLTwZjNKo+mVJh3NWOZ7LDMgfY9VUfB3/+n/4Md3F/T5FiMF4aChyunalngyZZO9Qw0aPwopXZ99XjFKYgSC6cEYLxqxbySB3TOIgbYXyFJja9DeCV090Gx7BmsCQmDbI4TpGfYbLHHH1HfZGJ/lbY7qNhjd0A4WF1+8ZTYN8HwXJwqwZQD2iKasQEDd9yz2Bd3GUOuB2WRE0zRoY1DGME4CWv3wPwrjmJtdw9uL90SjhrNP/oT71ZajZETrRnRBhHdwRDMo/Okhutds3l1SGsPq7g2X6wX9XcT94QHH80POjs/odMk3d7/hf/2P/w/FvqNtOv7s4+/y/e99l9F8RrNfs76+42w+Y59nXN9eMU18DuOYwJUYR7LP9kyPp7gCVmWBG42YTI6J0gQRTqmqhvB2SRym+PEBXjpCSIfO9iltm7HXE/s+erV/iGN2QZUt7Zs7yne37JY7bnZrVrphiGxGE4+hzjj46AW663GjBN1ptFE0eYYeNPvNiqodmJ7MwSiKrMWOEzrhU9Y1WgkOjs74y8lj7i837HOfoqmo1p9zMobL5ZaDk4TDacjdumPd2ORljdrkHLy/o00iAhkhhIURLW+3mt9+c8nF7ZKf/uorfnx+wHw6RcQJ3w0OyPd7jHiIXu4HENJhl9Uk4xFSuNSDZJdVzMbxg6vIkSjVEwU+wvfpshXeaMLgJgxNTvn+11RdzD4fGM0O6a2YZrNlyJb0bY8XjdjuO06OT+mUhRAGu2+xsFBdhu1u6HYb/NGEYBwgigXV3VtwYrAkxilwbRs9DGwWK9IXKZ1W+HFEqzS9UYwPn7CuIbIdlLAZT2b46wbphgjbwwwWRVvjS82QguvbIGz6XvLbX7xndbHHD1pCfcl+VfD12x3ffP4N/91f/ClpGPH0YMJnjw759ft7ru5v2SznfBQ/45OjMfdJiFEae6ho6pq20ziuj64z7m4uiV58B9f1iOP0od7xo4fzQlqYYeD6fskXP/t7TLElDjx0L1H5hnJbY+kYoY+wvSna5DjxAbquIYiwp2PUvYvYb3BiSX9/zTovcHxolebQjXDC8YNnyvfwjo/Jrq/pCPBti14bClXTCYvekayUZuI/pOtYQuHFUzZ1x+uL90jLIvB9dFtjtSUuMdOjI/TNPXfXV2xXa/7m//x76ibnxdmIH/83P+LJYP6oPcS3fMu/hG+HJt/yr5LReEI4P6bY77D8iMo43JUa0RvmUYK0PO63W4qs4+rymrtsz9HBEaODmL6ucRyHfJ0xS1IG3WEYGNoex/JRdYNue/RgkR4eUu13qC7Hsix6oxjGM+R0gnIqlL1le9eTB1OCdEK7u2VsO2RuwqA9Hn90RHGnOJ0FnH78MWE60LY9qQCtLYay5e2XXxFNxnhBgrF6LNew3a3wuooq3xANLbOXHxJNUlSxwxoUDIa+GYi9gMGFeRwwVRLpCbAdvCSCwOPrN+959eqGaH7G2Qcl692Ww+kRgeeR5Tnx+BGzs+eks1PSxGMwCq1b+k4/GPOlgzGg+wZp2+jBMBiD7h/ElMZxMUZTNQ1REtPVDdL1iaWDYMBIG+GGuKkE1WOMxgzQtx394JOtVlxcXNMHNZtSYivF5OlzOjUQbFuMo5l8/5RQ3GO5FqE1xmp7wqZiogzBaMx2s6ZYLwgPT+gswfVyid816MXXlM6MYBKhF1sOQ0MsBeV4ysQLQApUnWPHEcK1sLTFYAyO69D3HeV2SZxE9PMxieOQNS2zNGDsWWAJfv624Odf/Jq/+NMfEn78lEnnMYvsh/UEzwVHkNc5j8+fE9oeRkgipbFVz9HBAc5gEfiS1a3GcQMs2yLPClAar9xQ2ilFo/jtq7d89zsORjxY9Lt6x2JnkY4DjBPgGZCWRA8D+e0NXQ9m35IXC7K7LYFUeKVGru8JJQyd4u2uAtVyWVV8ucso+pYfpB4fHM44/PBTsjvN9DRlf3lNMHbYx5rRbILYbWk2C+x4Sm+PaIVie/0WOwwYP/sMxID4Q8qKcHxKBF2+oF8v0G5KPD8lOHpEND9m5Ari+ZQgSTj9wfexbYvR4RRL7TGNg+eeYmrw+oFHUchzT7L44gt+8dOfcH9zRWAMoyDhydkR0g8JVIkyFpYxhBLc0RilIBkf02xuyPMC4wUMjoNrFPbpMVY8phc2zvQERwqU7ukYKLqSzhmIjg7QwYAoN7BakvQ9u6xnsS3YlyUKh+T4MSdHIb10CZ2Cwd5zs9/S5ff4QlEam8v1nqIXHEYJ48TF7zRuYBBWC6an1IJWDTi9YDAKZ/qwB67UgBlaBiFx/QBh9XhSMDk8eLh9ojVf/PJz/vbzX9Mqg456jsJDTseHxLZgt9tzf7/kxeyAw1FEkEZMnJg2Kwi8kNPTY8I4RuoeP4n56Ic/pL6+5HQaUmaai3dfc/TBMZP5IdP5iDSMyPIdQzxjqNfEoU+RdxStZl20uJ1mv8sIpgekxY52t6PtemwnoMhK6m1OGM/R2z2+DWEQMFiKi1/+gs1mQV1pVKZ4s81ZZRv+7YcfMTl6zGEQkheC6OSEvmkY9hu4uyV68hgT+BT5DoKHGHknSsg3azzbZgDKsmCdVbi2TdfU9IMgCAKUhsnxKeObJb50kEGAHM8fznnL4CQC47S8/s3PaOodKvT42//yOcff+xGPPvsRXrMiCntMVVE7Hr00/M1/+r848zzO//yvKNqCumtpu57BCIRlIz2P23zPf/77v+V0PuXxs6fUt++QqkLnW+IkZuBB0psGIdZ8ytX1DZOyYj4dE0Qx7mjG/eY9YZVT6YGu+oNr4vQJxXWPWt9gGvD9BKIRxo2xRy50W8rF7ym3l7xfVxRiYLnekIw8ROhTtB1VWWAFDvG45vj8EV4wwrIGLG3jly113/P13Z7BdgiiEEsIlB6I4gTf9zFtQ+B7DHbE5dUFdA3vXv0OYwTpeIIOIqq6Y90pZr1CHp6Q7/esdhmbvOD+5pqu3NMXC26tEBmkzGcuWB6215HMQ5Rdsa0bhLF5v1mzzHNGsc/y9p7f//KXbPMaGY+IkhG9EQijQGgYJI1SlNmOIJkAhidPDkmmp2y//JrwNMSfHeGsb5CXNw8OnniMnYQIS9IXGVbXIgiRVstwe0H7u/dUq4r6rqAdoBEBeCnF9R1S21w2kuwf/pE/Nx3jx48wYoLWHX3fobSmKgo2WYUf+9R1C0KjTI+lO6w/OMAORgGrLMf3fDbrOxqz5nb9BWfJiMMf/jlecoYlKs7nY3rVYlybZDyibHr+609+xkcvnjGbTvAsQ7Wu+eLNFa9vltyt97S94jZrOJ7kfPbxh7zQAt301GVJXbV4yZi264lHc0Q4QivN66/f4J6PaNsJlvQYBoMdBtRdg6dr2kYggphudU1x8QbdFgxuiRwcXHuEb0lG80do24F6DcEE3ZVk65q53+PN5oyiCByfps5Rmy1Vf8/ODMihpd6veXNxw7o3/Ls//5jw6BjiECMswpMz6sHC8S0cAuqsRDkhg5cwHkXkt5eotiedHhEmLUa6DMJG2w7GljiTANLwId2o06iuB+Xzm59+zd3Vr/irv1T806/e8JuvrnExGKVRbUffNYTSkLqSutjz+ZdfcTYe8cEnP2BmRbS9RC1/R77d4dsD0gxs6gFvn3NSVXhhwiBs/DDCdTS2ZWNLm1a1vH79NdV+w8gdcKVAGkNXVliqQWwFRD2uVli0iGaFzkuEiHG9lMEyrK/fsL34mk74FJbDujzHpBbq8i2zk8dYtosaBoTvYoUuWuVIb4TuOlzfRfU9N29u8JOQpswx0RTp+uB4XL+7o1A2ZujxwoAkDCmFg1KKbJfR1jW39/c0bU+ibCQ23/n4JUk65e2rt5x99O//mG3Et3zLP5tvhybf8q+SaDTh8PQJRng0bcnd7YqrySUT0aOFzVdvLvjtN+9YbHKqpmMQBl5d8NmzU1wBfpTQGheDhGFAdS1C2AxSMAgQjsI4A44b4BQrRh7UBsR4jDycULc5SjXsBklpjghPz+lbh1CD6TdEvsapd/jJGcfPPuYzo1l6NjJNsKotrg/tNsdzIxoLtncLwpFmt32Ll46IyhK/yTBKY9k293dXeMFjtOqxe4UnbNpK48UhlWoI3IHaGKQOiK0R5b7kt198xX/83/8z6egZRx99l3iyYTqdMjo8pO0VuAGj0yeYfk6cJKSjiMFo2qahbneoXuMG7kOkrBpgMHiui+4MluNRFRlt19G1DYMBISRCWA/FHi1m4CHO13ERWmH0g8xz0BoR+PRFy+XqhtfrNV0oKK0x33v5AfJgzmScovKc+Vzgbd7RF3f0yzva9RLtBhzMz5HbDe++fo03ntGUHe2bt1SOgzUa07oB++U7dtkFYmlTHCSELx8R+T4iz+DxKZYlEBaotsaWPoOxUH0DGDqgj8bYqscLPHRVMnMHql4QxSGFtvn1TcvTpx9TxMf4BoR06XqDFwSowCUYJdiBpA8AL8KTLv6gyfI95x9+ALd3FKue80enuEFMvt8ztB296kiTCWUjkLbky6s1YXpPFEUMnSKrOqxBk+72aDXguDZhMgXXY3u/YrfMeHORYcqG49iltAQ3yz0Fin7XsOkkrYbWGN5kBZkZOEx9+shla7uoq1uOxjPK3GB5Ebuy53iasm8F3eaepmnoFq8xQYobpAjp8u7qG15ODrD9MXoApR+Eg9Q1g364NVM0LXf3S9L5IWMXqmbDb18VfCf5hJPvfpd+X+I40Bctge1RtxDHLn7WcuZZ9IsFr7/6gsVqwbqqeBp4PD48wnFj6qbDk+A4Hptmi+95jEcj6qLFbBboXqGMgL5lkC4mHmE5D4WfMRKtW6QQDGLApkabCi/xGCJJXi7QZcl+uUXogSKr6Dc5XdPSenOWpWIeNIxljtV2HIQ+dzcZQSzosVhme5b7gn3TsJQ7DqcpB7OA+amP67sM5mHNbFeBbTeMDlJsP8CyLNxRQlvt0U2PUgN1WXL26BRLejhuQL/OaJY7YsvmfV3gmi0fuRq5fU9c73k2H1G1Ddc39yRPPiQ2HbPY5W6vCD2X80cnOJ4PnUXElnEy4rUa0E5LMpdcbLb8/nXB//Af/kfmEThG03cOIkiRpsZSDX4QINqKsumpO43E8P76juPQpioqmkahmhWBKwkCl4PjFN92KLdr7m7vKeqKqt5jbAdtKXTg42iPWBiutw1Nt2AyG3MQpXiBjTx+hulbyi9/xeYXv8B/fIIzP6DY3uMcn2G0wfG8h2jZoqCxHBQWluppmw6tFfUgCJMx6XjM0eGcLCuxHB9Z3RLOD5i+fIIzTvjlL/6R12/fUXQdfh/z1X1G8rLn8bMXtJea8aymFjCECZXl8E3fIkYxj6YpsrRwXJemrRmNZ8SuizIG23bBMowmI1SzJ7teEEYhUSDZlgonjACBKrf4rs1snHK/LZikGeNxSuA7jF149fUaZUleuiFHScDiVzfofU/kRkhlU1Y+umsRUUCklsjA0Kcv2bQOm3rHpqpRZcXldk0ce4TjlE3Z83a3ZBTBf0gD0oNTnD5AKRsvCAhdiWMZlFbYtkNRFni+jzeaIKWFrxV+ELFtBcoKsTzF4dxmaEqePH9OkReEtmHbDqwu7zgeHbAuK8zNFU3/EM06SSdYnmIyOyGNjum1x+0yQ8iGzU4BNo7nYmPTG8E3N0sO4/BBwj2d0w4batMz8j2EpaiqgjgK2VUtoyRiV9SM24o4sAlDl/QkYTK8YPvbK6zGQkQhVi8xq5xGvMY/m+HEPnPfhrqgu3lLv9nRvVqw240wYYQ4OqK6eU/vGsre4tn3PyN+ckjVlyxXa8q2J+k7VL1jGKDre8q643qxRlgQOi5ZtmUyn+NbNkoPD2kwxYOcu9KGIz/l8XxEqX2mXkpoewx6jBgCXE9iexHx4TmLqwuavKbL1rTCZb3LWC7vGfk21X7N3WrHIByePH3KPispy5oOyV1WUSAZnJC2WTGNIwgiJidz7nYFut4gLEHXNKzWGj08eRDp25Jh0GxvLhDlCCdMWF4uGHqwqhLbtjH1FmMF+HFMJEMCy4EoIZ6llDKi0BCHgrj4GlO21G2DbXa4roN0Ivr1lnKzpdEP0fW70uKL+5w4fsMP4xQvsR5SXvCQtqTrenqlqbqO8ekRxWZJb7bQVrRNQxhGBElKh0MzGHrbx3djzoIZqXGwEfTCxvrDGmCrBpq64c2XF1x8fYnsNcayWK3W0FSstmsuVxu2eYHRim9uV/zDL99ydv5DprOEp+GUGy9is7nm7PgELz5hW9S02xV3V29IxzM8z8NxbBxH4noBrh/TZhsiq4Uohralua9paAlHMUepT0jAsC9pghuKhWKoSzwjKcKY2dkHqL5nf7dkWzoshWRtN3TbJaXqcJYuu9WKg8eP8JMZMrCRgcNQWhgtQDgIG5qsolADTd3zNE6x3IBB2AyWy29+/x4ZH2CpCteVLDY74sDHlQOOFFze3dF1NQejgMNRwHrfcbvICWYVSVL9MVuIb/mWfxHyr//6r//Yv+FbvuWfze9e3/5PN5vyB0034EcxQZBgGUPkCK7vliwXW1ZZy9VyRd62tH3PgMWPP/2YJI6Q8wNWXcfZo3Ok6QBFpxTSs7HoaFWNtm3WWUnYt/TKMKie2ctP6QV0uqexU1R0ziAsTG3QSjOKEubpGMtOoYGzH/wVT7/3fcZnR0zPTvG9EC9r2K1rqt4lv9owmp4gnBHlrsROplxeXFDvtziWTTyecPDiBUW+xrUNaAV9hyUUw2BjZIgSAmEGHGkzKEnX+vzqyzd8eXnNz3/2T1g8NDv0HUkaEycxYHH87CWn549xA48Xz84ZjVJsWwICI22sQeP7AQIw5qHQk7aH6RVGDwjbx3bcBzFjX+O5HkppcD3kH/wn0vExw4BrP8Q9W9LC6IFB9+S7K169ueKrxY7O9ZhOU8auwh0KfCrGTo++ekX2i5/T7woGY2M7NsoNmTx9jskyxHZHoSTKOFjRlPv1hnc3twxpQpqmLC5vWSyXmGLHaDri8PCEuK/x0xTH92F4ENIa1dK2HQaJ6nuKPEdh0H2D7lq6vkdJHynAkha5nLEpHc4O55wcHzCdzxiQxKHHoHtUsSCKQg6PDkFILCsmDEMs2wJH4qcJUmqsoaesW/x4TCdsbKWI4wTv+AlqgCrP2FWKtsjwfJ+8KKg7zWK9owcso/AciRNPGITHN7/+kn/4+W/44t0Fm80S39aM51M++OQDPnzxgg/OH/HyaM555DIObIqh4apu8R2HRguKpqc3munYYzQeM3/0AjcIUHWNahvKuuf9quBiXXJ5e0dZN6RxQuAYbDT+6BitDNvlPfluT49F3SkabSiNjW1L0sjn6NinZ8Hk5AAv3hMnHsZ4ONJBtQbVCmw/woiO20VBnbf4Xcs4SnjOwFwP/OVHn/Ly+3+B8EL8kUccWuyzPbui5uj0HIsBz5YMGPz5Mc5oyjx2iSdTcH1sW2INCtM3aCdAej62NbBbr+h0hwgT9r3h/npBebtClApdGaxWITtN5Aako0Oen0w5tju6zS2J7RDicppOqHc5q2XOV9drFnmF6jV3ecM+q2jqDrQgmcwIQxd0h+1GpJFLFIEdeGgklm2juxqDhZEuZZax2+d4forsDdXFDYkT8+jFpxw8+gHjMOZHT2aou9+Trxbg2Cz2BTvtoSyfpwcjLFNhoXBcyeTsGTJIKeuOriyZhyN2l3t++/V73m8WQMvzZ+dE5485G8fQt/i+j+s5jAObrqqwB4URUPaCru+p6ofnJQl9xuMpyWTO7OQE23GxbQvpepTZjtVySedJik5RDHC13rLuFDvj867syUyHG42Ikgl2vWb5m39i/ZsvMPsdbhIRPnnCclfxk5/+Akf04EtsP8SyHbqupW1Lik6z6y26psZohW3bD3Lu9ebhrFItZVUTJROCdMJ8POLg4AA/HaEGxc3rL1nlNZ9fLJgdHXD6wXPikxPSNGJ78562zMFNyY3HaldRZHsORiM816bfLBnFAVVd0ZQlqe8jfJd9noMZeHw4othvKNdLbMcmOXnMzc09XVUh2gprGB5k0sJCa0PX1oSuxBYCjOHqekk3SIQVcn21Z3+/w/cihkrhrHvS6cf0wSOOPvsO04lNPNMkT6acfHjK9DgmOnrMx5+9JIkF9+uMN+uad1nPq8WKQGp+9CefEo6mSM+naTR1XpIVBR88P+fli6cP8mdjCJMRfhTR1SWu79NZIb++UySzUwbbo2tbpoeHfPwX/z3LoqbNVpS2y5vFhizL+Pqbd6x7w+z8HPwI1SseP3rC9OAZnbLI84p91XJ9t+Dy6p5hkAyDjTSC/5+9PIvbAQAAIABJREFU9+qxLEvP9J691vbmeBMnIjIyMiJNZZku06xqkqIZaDSARhczuh/oL+hfCRCgixFGgGZG5AyoISGAzTZV1eXSRoaP4832duki+AfIm0YD+dyf27Pxvet7n6/f7tJpdzENk2y5wECj0nWULnn26UdM53PqIsVvtwnjlPF4hFJgygbHktRSxzQF0taxpCC+nSOqBi1LsVwHrdjRhEtUuKGYTSnXIcsfrlleFCwWAvPolEiaRPM1SqxRgw7BgyNa+/v4J6d4PR9LZAxOT7EdgyqLSaKc1XLL29evSJKQoNNCty3qPEU3dMoyR9MNdllBtd2gUDz6/EuEPaDeRazXEVojMIRP3HQ5ODhEmjX4bWbKQ/c8uoHPbnbHaPKIKCsxNJ31esXs7ob1Ysbx8TFf/elfcnT6nOVygaGBY9m0XI/AMqiKiiitMMcP2Kw3LBZzdlHEsNvmp1c/MXR1jh7s43kOhmlgmwYvfvlLigqyQrBd70jXS6hqdNNG1xo0zUBhU95e09yeY0cr5GpKYJh0hgcMPIETdPA7Y2Sp0SyWVNMF0fUtq7sVv/zuLX/7+ppHkyGHz045PnnIfHrL/mEf2zSpygIr8ImSDQqNNCsIC4HlD9ksl1iyYTmdYWhQKY3pNqNoNNBMXN3h8PCU/nDIYNBGCIlpGmRFheHqJFrFrs4pFi8oi5pxv0scxaimQNUVZ9d3nK0LKiVJ0pS8arheRyRbh2f7x2h2RlLsuLy55cPjI5qyoqPbXM0WDFyTxrTo9fq4roVtClzfxwna94FUHvL9tz/wV799zdl8w8t5SLmt8LcZlu4ipUERR8TbkGITodeSZhWiopjlmysWV0tSZ0hoOWyzkMV6Sg7Ylk0ShkxvLmmEwrBsiiREKEWFTiNKNFVxPZ2xSRL2Dg6wDYmhahzXZrZJeXm1wuqMKaoKUaWUVYEqEjTb48ezS75/c44jNZ4cDvmXf/45m9WSMg3RDYPho49/8+j5F//X72+KeM97/um83zR5zx8khuPh+V2cVkSepjgqY7pd0nUCsD2++h/+BfvTiPT/+Q9MV7dkZU5W15yHOYO9MbNoyzc//chnv/gZfc+GCgxdoVSBakpU1aBrOh0ByjRB1Rijh9RejyxPWUUhuZaTb6b4UrC7uubmZk3gtqgxePviLUeDAY/8Ae2gQ7heMXh0gB/tSBW4vT7nsyW7Vcj5i3MqxyDJS+pFStLovDu/pj7Yx2z3iDYrDNshT1LsdgtNQpHl1FZFLjTSOCPwbPIqJ6sqchRhHlObFlbgs9rMcOYmTQPLzYKj42P29045efic0WRAloaYpolhGJR5jW2aKF2nrFKyPMex78+xqqygriqauoG6oUljlNCoigLTsKjSBK1pEEVGVRT350YNC6UESoDivtaiuK8kqKqiFZh8dDLAsGzK8AJZC0TRZnYRs8oK9DBkOBwjdBtVVMxn19SBz/zdO/L5DWkFy2TOcnBIGrTZFFOkCGgnFV6U8MXwgJdKZ5bGjLtdOkJimhaqLFBKodAgXJNIG9nqUFUNjRLouo5WVaiqBk0nkz61JkBLcYMW71YaCJ1uJ0DoOmVZ4XqSpq7RhcB2bFqej2GaWCJHEy5FVVCWCW6nhek6QIYuHuJYDlUtMS2XbLfCsx3W8xm666OUwmu12EZb0go828WwQUmLUreJ4ozdLsTcrpF6xdtdztvVllo3+PzTT/j0w1PGvQ6G6RIMDmhWG+KWT+WYhO8Ej7SUzNIxmgZDCALPxjd0atdgNPDomAInrPnN96843+1IDYeolry8uGMdrTnd3zLuBxzvP0TVJVW6oqoMlKYR16BshyqKKQ2HJs+QUmcy6vNocsQ67vDok49Yx1+T7ZakGw/ZDtD9+5e9Kr/Dcm0Mo2ZoGOxPPsBAEVsW4+EpnZOPsAKPwr6hFdhU0QVtz8exLOwmAwHSs2h0QdxUJNNbTnsunapCRyBMA60uKVWDEhqmVFR1jTAFNA55LdnOVlz8+Jqr6zllViKQjOz7VXDNgEHdkN+GbGtwrICO1SLQNNLlmuW25DfXIUWWctrvYMiaqsq42sTssoKiBGm7PDndw297eJ6JPXpASYjUBEo3qcsCTRdoukFTaVSNwvc7GLrD6sUlo+6E0djCOHpKb9EQ3ZwxNCKm6R5fz26YJTG3saIoI8x2zPTtOeMDi26/j9nbw2pN2K4XVLoglg5pLmnvf4G7dFnlCz7+WZs/erTP2cV33MlH+CgeHByQxyG1hMLpIoMO6uI1vUAhpMSQBoZpEqU5QsTYnsEuy2i5AcpyqQ2bVBbI7pA4SpjGBXUDG9VQ5wU5U7K8JvAtbleXtGTK97874256x5Nem69GbbpGgX0w5NmDf43z/ITF1TvCuKCeThlIgzyJKKqGxhtQ5gm665LGO9I8x/Lb2G2FahRvzt7R8jwaDB4+2GM07FE1NYKS2TRE93uErAk6faa3t3y2P+b67WuGxgmGlKwrjVRz2OYNm+2GYG+fdR6jj/Y49B9yefYGr9sjiROcpuY6LNDkfW0I08L0fVZFRcsOcDRBJSVxVWNXFYZloxpFmqX4ro9WJoTrkI7TpjPo8enTPQql88N1xv/961d81J/wadPmwOzw5PAJ1qDP5OgQfeSgwha4DkrmhJsFtbHHk89GNM0OZ7+D/eQrTgpFvrxi9/bXSE9itls4XZ9oeodEkOxiJg8ecnB6TJ4khFGMowtM26apK7xWjyKNebeFpHGx/ANKfcB6U3H1dsrr8tcs4pRDp8/i7prp7JZdFnN9dUWv38d3PBy3jfAF7d4A3wtI0xnrVcbV3TvyPEcXAUG7j9ATkt0K33MQpsGyrPG9Nhevfk2F4vmnH+P6Hq7nsl6GHGmC4WiIqDPm6wipCtyjIQZQVRkqDlFdE8vosX0zJVtFFOsN7oMhypHcfL/E1vt42wW63SY4fYzsZ2yLlBdv3/B4aCH7jymcNlIUSBFjy5K8SNn/4BRvOCBPdqRRzGy24bvffk0cRYz3R0CJbpoYgxGyKVFCv98avF6SJQ13d1uizY9Y2YaeKbgtt1xvamrXpiU3RNtbekEfZIeerLgtMqhTXMcj3O3o9/oc7h8Sr67Yzm9otVqU6CjTo063mIbJarumKJeEeUXbcqE9RimfPM0pswypFKqpWW/X9DwTNEFW1DSNwjRM/JZH2ej4wwPyRmc5vSRdLslKgacJfMtC0wzMssZRFZbdwrAtTBO8eIPYLbGcLukup7h+i54tceqKJi5pFhnrrKJve9jdPk8+/5L2pEOmGsxiThaXJPYat7NHGidkaYZuNSwWS2Qw5Pz8HbYhKdKIZLtD+l3ats8Xpx/w/fWC29mC4WAPv9NDsy2UaZOhkWgaW61E02qkYxGWBXVU8WDYxw8CpGpYLpbIpkbTTf7FX3zBxfUV3/zmt6RFxl7X5Xz3hn//VysePe6QVwlZlrNaLonCjFG7zenBPrMwZXp2zcHhQzqBBfZ9dVi6Np4sUNsNf/vNS3Z1yQcPxwhvwvjxl8yXt8zWKX7YcDru4w1s3KMDDCyIGqqsItMs1OFDCgWerKg1i/P5mt1mh11LRt0+0zhktfwVhw8P8J0AQ3kY+r3LJm1y5rsFt8sZN/MZz0+OCJ6dkNaCs+kO6fdRgOsFaEonUAVvzhdcn68xtBpT3suX57uEb775nnHLocHB3X/K1e3q9zlCvOc9/yzehybv+YNE1yW2ZdB2XZRtEi8LdlHF+TzmyfEz6mCIyDr863/3v/JX//nfM799gdIKLuMNp/YJSEV/3+b84nvax8/QNQMpKkTT0NAgNNCEwDN0ytpCWDqmZzG9esPd3RwDjaJS5Erww3zL+dsrTCOgq9ZMLIcP2x4jR6f57ltE18fTGvKzC6RoMLMKVYP0WliHE9I0ZbpckS3ntKw2cRkT1jrfXZ3TOA1G4dJrm9SeQyNACImmmVCXzO/OGQ37lGWOtEyKLCetQrJsw2Jes9rEtHSdqigpq3thY+AF+J0h1DVxGGPY91cwNNQ/boVI0AwqqRNlKdQJhlQI7uWcuuFS5TvqbEPBveVftgaoeg1lQpGFVEWB4XVoREmRpgjbwtAUZZ5T1RVFXdMIySCw6Tomy7jk69trrvIcUSqqpObIc+gbOs0uIbi7I25yaPmUjcCIQ1RcsAkTzrc7CnrUrqQzPuGRY7BnNgxOBnTcLl9en/P313f0dR+7KDGtNkrcW/+1LKbKNIoyQzYJmqNTlAlYDihBXRQkdYmwXdguaAUOQhOIpmY8HqMbOtLQMSyHJK0YDjxUVYFlYjkuQkh06UJVYjoW621Co2pq0ZCzob8XYOo604s7hOuhjw/J1lv0dgfNMsmSBKHpDNoBm/UO2Wvj2Qb9vkfLMhA0FA2k2yWaWRPlBZ//6Z8zark8PxrgOfd97k0uCC/vsMJLirpilqXcLGdIy+e/e+gxXWzotlyUZTEZDLHLkqufXvM353/L9XpHYRjopqDXavjow8/Z7/ZY7a45ejQkVjq1ZmLZBvnqhqjxSauGXBpk2w3bOGMXZRiOTy0EJ0eP6foDRqMn7JY7Bp1PqFVKGN+RqAKrJTFMhW4Lmtqn2t7hFx5JnNHuDXCffkq/t8MIuuhSwxYT7EcTXv/mDtPUGXcDNClZhjH9jkFdFyRRwmYbsjo+YpwXaIZ1H0hoAqfdodZMpCkoypS8gTKriEqJbTjM1zHTqGATZew7bR70J/RbPlkRk4URmB5Gu400DNbTC262M16ut+y5Pv9mMqYuPEZ7A1ZKo1NAP8o4n085WyQMVjlPn3t4ToTt5DQiQ7b66B2XutbQJEh0qkKRlyVVVaEVKdffv6HrTBg9eEyVbmj1dIxWi025IL6+48mTj/h+tkHNbkiKkLoKmZ69w8u27B3/HOF2mBw9JooLNN0Gp4t70GazWNE+7PDE/4J2MeMvPunTqyvyxYq337zE6nQIAh+jSClsl07HYza9o0RDIbEMjbqs0YUkKkEUMItWlGXNsO0hVYMftKl1izCvuVksyaOULCtJowypYFdXhHlFKTTCMOLN5SXHrsmnJwf8yWcfMn52gtkNqMsYzdToDXpYtmI2m7FLMprZFIWG1+mRVtCoGt207reJqMmzBKEpzm5uKOqGZZKDgE8Ch17HIw0z8jIh2i558+oFjqEz6nRwDg7wXJ8nuk7fsjCCNnVe8S6y0GWDkpv71X+vxTwvOZn0abVbnF1CKgUbKTANQSMVVaVI8pT9wwMOP/sStxUQXp6B1LGaGq1uaIr8Xv4rNZQw6PdG2LJENBqt/RPagy7Z/JLKMVgtYr44PKBrNIydBuQKEZ5TX2aolQsdHaRB2eTkeYfOgyMaW0MIj87hh1j7a3Iqrn+5pFMMKTp71KJFmYaILKdKLCx7jLfXRmg1RVWRFiWOY6NbDnWRUyNZlgazbYZje5iWyzZriM0+qQN3L76l69usdjHfvXqFhiIpC2phMdg/wnBbBIMxebWk1iyurpdoxpCDR4ecX7/Fa7XRmgo3CDCcGsfrUCQrqiInLyuOnj4lTWOS9Qzdtbi+usDRNSrH5OLqkqePTzEtm17goYRJtI3o7Y3RakVcFMTrBboWYA5cwjonTdYkLzZockhbdgmCAlO6ZN0Jv1lBMX1Lke04PvAI+i0ioVGYDdViSn8kqVOF9FwwFOluxm655Pz1Db/7/ic28zm9lkVd39fu4nCN69hgGBiezTZKKVKJooVRhZTLlEVcsIhumLg+mQyQwQRd17i8fYNx/IyubNPSYggCri6u7zcoWj06/T0cz8GQB3z5Z/+S85ffMjx4yMXlBecvf6CINlRKQ2qSm7spJ5NPKV0DWcwop9fkqyWL9YbSNJgMA4LJiMVqwzxMGfVKhNeiKRUfffox/Q8+Yb2LOfv+G/7P78+42aV80fJ54jl0LYeeLjBth6ZxqCoNw4RShLhckb77DmfoYnU7iOPPgQptHdErTDqrGzrhhsp38PtDgr0J9fk1LfeAuk7QdIO8rlitl2zWIUKX3C13RNMEzXCZ9Du4fgvd1Gk0kNLFtS2+fL7HD+457mjMqkiYb+csNx5lFBKqhuXrdxx4DsvrS7rSwnEteu02g8GQUbfFu7caRZHxwc+e8/znX/LNtzrhzSt+rCrMtst4GBB0PZbrKavdjsUuYZ3k7I/3uLu8QUmX1WqLKRTL60vG/Q5V05BmMUaVYRoGqqx5YLv87WxBqUN/f4w82ENaEYYeUJcBV4WGeROjhxtM22Fvb0Iw8nD8jOE+6NGSbLuBaoyVweX1movtDZQ1Ww1qAwbBj/zp8484efoxwaAHekNSZry9vWK6WNPtdlHSwGz1eX29oJYeXtAmbxSNF5Dvlvw0u+CnZY2jVXz80Sm76SWiyinTjGHbIfBMtoWgjmJGY/f3PUa85z3/ZN6HJu/5g0QpRTvwaHYt0iRCeG0u03Neb9d8+sUv8II2fU1xsHfCq7Mb+iODF7/7NatdyPevX/L4eMTeZJ/F5SVTo8OD/QlVWaKaglrVFE1OI0Br+aAKTNFw/epHNrcLdpnGBp3UclkWDRcXNwQK2laD2x5xvNen5bfw7RZe0GZ5e0eioDY0pCHQbRtN2rRtE2loFNsYI46oAx/Pa9N29nAjn9ntT7x9+wZZ9PiZuUd31Ccrc2zHQWGjPEXd0iiFgDqnKhqSumKV1azWIaLQGLe7DMcHeN0uVZZh1AF7px9xMtlnNr3m4mLJs6++RGrQVCVCUwghEEKiENRKsY53GE2KVDWaDo0SKMOgEve/kVLS5Cmq1qjijHx1iXADsrohXL1FKKA3otUdkSwWKF2Sxwl1rbAtEzyLvOezua04+923xOGWjm4S14pOnnJkWVQ7Hdn2WauSI23H8uYWt5YklcWzJ1/SHU5oj/soU4Ap6AwDWsEIq5LsLq/Z0wR2WiPIkd4QO2hTrc8RcUwxn0NnRKNJVFWgSUFZV4RJwyYs2BYNqknxTQOp60gnQKqEQFcIaeL7HabzNf1eG00ANEjdpEFDCoFuGBRVTlEkSNkQhwvW8zuUPqfb+5iiVVIc2ESxovIt5rMCU+jYboDe3UOk9/37pii5WWw42h/jS4kmNBzrvlbSoLFdL+h3XZxWjypZk24XSHr3L0HtNoEByY0iKms++upTjvc13p69RXdamPYMw7WplUIIg7erDf/xt9/TNPBBv8vH+0MePxzz9Bdf4h0ds7x9xXq7pjQcrqdz4qpB7nYgdDTb4WYbEe8ikiK/X2MWNnerLYOWz+TgAVpd0mt12bOGxEXIzd0d4/0HVFWJ7mborkWFwfTtijjKuPrxHQ8OM7y6xh8OMfwO0rTYzWZY/R7mYMy1amNna5o8Ia5MMmmxjBOyOKUWBmG4Y351zsO9IW5ZYpoGaDW1UqDf18nyJCdLClbblOHHn+FKnd7glIvzDbOvvwMl8B0XW1ZM+j6V6oEB8/kNs8WMli44GB/w0clH9D2LkSvJ4i2FYSDR6Q6GfO74zOKcd6+/w2t7KN3HbHcw6iVS5dRlQlUa6MEQpUpUXVEXKatNRFrrrHc5by7nfPnJEYVIcXuKuk7RtS5isyS5uOSg3+XDo0M2Wc0zp8fbuxnb1ZK5aOhOHtLqW0iVIbUCTQPp+hhlyuBgjygp0ZItnwwkB7agiTVG/TF3lwv0LGN+fUddN2h5hNXqYRuCCoXtemhlg++5rDc7gqBDr+US1LAJI7abBWVeEIY7sjRndXvLahtTlTW7rGSxDekEHZZZTWH38LoddG2J3+7TMWtaHuSiQrkd0jQjn54jvBZVUZFGEWlWkBQNelkwHPeIG4M4y6kaRbhZkUZbdmlOXlVgWOiGju64XNxtKFSG9+qcoNWm7TtkeYbQTSzPpVEa+49P7utRRU1ns6DodCnNFubQhmyF1CwM10NkMdguL1+8ZPPtP1DPb8j7exiux3y3YNBr41oeYSq52cacPO/c+zmaAtd3sQOPvEjxdY28KMnTlEaDg2EXXer0PTB1jXK3onP6iKbMODYU1SdPKcMCXa/ZpVuSTYhjrTC2U8zJI+Kkxfy7Ww4eHOE8OsTstIi3V1giIt3WzKdTFDm6VmF2x2S1wjA9NM+HoCa/uUNpKdQOeV4S7lYozcT2WzR1ieG1WGxCrlYJTWOga4qmrihqRdAbsV7egWoIow0vrt+wi2Ic18U3HFrdPo7roNsW6+2W9nCEWaZUVU1SpXiqQGgNSbTFth2CzoCiqu+vSG2WzJZLJgeHVIbB6OkzZmeKNImZ3t3i2ALXsdlGCdFqzk7WBH4X3e2w3Fww3N9D1yWN67K9W3J5dcY/vF3yYr7loD/i6OlXbFcznLtrxpaJH/T46dsX6MdPOHl+yF7/FIuUdDun2e4w4gzRqWm0Pg01WhFTxiFJUXJ7u+TsesFym2BZJgqFZZugS6qioJCSf/x8sJqvkUWFUA2m7rGbZ2SlpC4sNM9g4hj8bnbN2XzK5PBnHGPjGQZZrZNsU9brHcP9PbqjA1RTU+UZRw8f0pQT/FYPYUmOP/wUzzb59d/8NWVRMNqbkOguq6zGtiwGoz3maUI8uyPVDNK8QgoNx28z+Uehb56VOLs1ZbtL9+gEt9NG99u0Rge03TM8BGGasm5qRF6yb5kc2g6BN8Tcf4Lo9bDzEF1UyIcHaIM2ajCi1k1EniCsHeXtFiV9Rj97TGUpGiMi3N0RZ3NqKZF6i1K6LKZz7q5vaArYRSk/Xi4ZDIf4gUFeVJTbkDQvOdgfMJvmCN2mzgp+/uQZ8wr+43/5T6yLlMd/9q+wCkVSl3z11TPGXZ90s0Sva3zLYdht0x8O0aqMwBRsN2vGh4c8+eA5jx4/ouPCf/jPf0eNyfGkTdvvEK5y1le3zMKU2+UOX1qcfv7H7D96hvfX/4k8WjO7mXJw/BhH10jiHXVTMhoOcdD5owfPuM7h3eWaZfo7pCrYk8V9GD1+xOHjD1HJDmvoUsk9bt++4+XVLd3hiOuzMyxPsAxhlnuYD55TlW9YlDWbdURWKopdzNWyoCgq+ocHTLx9GmquX9yRZDmO69LxPfr9Di9fv0EGY0IJZ+uMIt4QuBLHtuiefkZntebZowmHD/Z47Vo0heLRwYimKmn39hgOHvHm4o5eUfw+R4j3vOefxfvQ5D1/kDhS4RsmjetjC4O6LBHCZLebc3U95fP9A7TZhsXXr6nnS8L1HF1ojEdDLs9vefbBE3xDZ3W15B9+9Q3D/7GHaEryLEOgEIZJFKZYtkNDQ5pV7G6u+HaWcZUqpG6zy5dE2x2OUiAEtrqXK4YLoFCowOI2vsBYzBG2iWY76K6F5ThoukToGk1eEFiCD0+P2KyXxHmN3w3oHXU5ffSIm3ffM40vWWQ1A82+74tSoQlFslpQ7xJKo09dVKRZBMLmzc2c6/mW04NjssYjxsLWu2TxBZMnp5RFyl7XoOO22P3qd9y+/Q711XOUUqAUQkjQJFIokJJMs9jGMcnFT7itAQ9OnyINiR50UdkatZ2CcX96GK2mqkqq2R1FVrLeRNijA5wwpo4uyMuGJt8h5P1fj0Lid7v0env8u4MP+LE3YjmN2N1OGZqSJFmzzLd0gxZbK8D0ekTzO04Hp0xOP6a9d4hl2+R5SGTqZO0O9l4Xt4oxNB+x2qHXNdV2Q3Wdo52eIqSNyivAIl9es7ya0wra6GQoaaCZFvFiwWKdkkRbLF2iGwaZkqAEujSYpxbH+yPavREXN1NsrcF/MKaqFVJopFmEqjMsy8V2WsRZSJrsKKsGralJ77ZMFz9haSlzMcDZO+Ldt+eoRURvMOLt1R3aNiXo9FFSQ8tjHCnZbnbcapKDkyPsugLhUqNRNA26DqOBxy6N2G1W7OT9q9xutyFZ3ZLriiQuaPwRZbNlV5WkukWqHLoffs5yvSWvG6arFf/19S3SH/Ll0SP+8sOPOTnoM3h6iHvyiDxbksZtCsO4DxcGY5TK2O1SiipBy9ZsdhFXd3dEcQZIMpUjdQvbupdTtoMWSoOy0ahyRV5mVE4OdkMt1+SVx+oOTLePZnokjcC1TNR6gbE3xOp0qfOcJl6xCKH74QneYMzff/dbHpgC3wHPFKRJyTrJSJsSzbAJdxE31zc8ePYhWhJjWSZSE8RhimubJKstq80O+/AJ7dEQiaQdPKS7/hX9D08prT40JvHrb/DzGE2lXL+75Ha7otXt0+r2MCyX0ce/YN9IKa5e4PT6NMJg3zOwbA2smpPDIR8//TM2ZU1jaFS6he4a1FqDZQiEaQMVGg1FWRCnJefvLtjtSqaRTjM8IEtnIPexD5/hTp6iTXO+P7vi7s0ZhtRo7T1gPHlEu9iy98EXvH31Gk9UlFWF53VRRUlZlARBQJUuCVqS+SYmjWM6juKo38bSIFMFTR7iBhqFVuDYEqUZWN02qt2DRqMJY1ZhwrjXIQ5DOkFAfzRi6OmU4YbZmwt++fKK1Tai7Vh0bZs4SpitIxphIA0b3enj+X2oMqzRIaOOw0ZIOm0XXyqaakbs+MyyEqNKEGqHr6BUgrIqSZWgPxnSH/VAKdJQIHRx7wYxbMoGkqJksVggLA/L81nutqySHN+RnN3MqcQLPjo+YNJ2WSzX5ErSPXzI1eU7HM+mOxzRf3BMbThEmzXYJgiNzWJJrUCaNo0QlGj8FBZIZdLKM9zDE4oXWzQpsG2TWVzy//7uFR//0Zd0pMtPv/0HJuMey9WSOC8oyhypNJqmokagSYXrGpS6wHQNss2C8F2NbrvUqwVur4cYt1i+e4eXZ+il4nK5xjx8jhHF2D2f9ic/wz3soJqS+PaCcnfGLI95t0xx+z08S2EagrpskW9jRJRR6IIs2bEO55RGQAWoQqFbPp1OD1XnCCEI85LXl1M2TQtMH8dxKcsKods0sqbIEwLfZTbbYrhdtKykRqL8EabrI7R7j0O8jbEMi8X0ljSJibIFN+sFeVkxmewhGkWYNbRdE9mFWgmcAAAgAElEQVTuE63nXG+3fGFZ5JslSVEivID53SWL1ZrJoE1Z17TabeIk4exdysGRjbHL2UYZp3mB03YQQUBrb8jLu5i/uzxnGqWsTINX37/mCRXDlosM2ohWlw8eH6PtT7D2hxh6Qbxc0EQLou2KsNYY+31ySlRRoxUVGJK8EaTKYHo3pShz2r0WpqxoqpKmyLEDD9OUaLpJlGQslxG68NAUNA1Mel0up3cs4pymrrFbPutCgTOhc/AxWhXjSZNaGFzcTJFCx7Rs6qqiitbo3hghBVK3efrhR0xvr4h2a9r9EfuPTslvpgT9IVgOkdLottoUWYW5f4Sd5GTbH9AMiWE7HD06Znt7DXlOlFa4TY3r+NjtLiQRVVYzPjrmF8+ucZuaMsyRqzUHlsez/WMcr4dwJuiDCfLJUwxAL0rqOqeKZuhOiUmJ0O5FqWmTwfGIzChJkzVpuUDTMoRuEdZrHEbkm4w3l3eEq5giLvjm5TWDToe6UuR5SZrm5FWG32qTVQI36KDpFrdXl7iW4EFnzP/0x3/Oq4sLJnsPMNOCq82OotR49+qC8fGE3Vyjm1p0e20CPyBwB4S2yeToEWnVkBUVbtDh9Pnn/Px6QxSm7I0HmJZNuFlSNYqW7XC5CvlwsoepCorZDT3XZh1pnM1W3G5T9idD6gyur27p+DYSg0//8l8hj074r7/+b3iuhVkldCdj2u0B62kEdYLXa2HvPQBjhK4UI1PhjYZUgcH4oMXdbYm6WdDIki8GLqsrl6uLWzKrx4tXP5HuFiSmJC5ClGzQTMkmjVDS4HBvRMvSqbKYKC3xvAH/5W//hrSCvWGHKjToPP8UPVvw/PEhB+M+Pc/ls8MBt9MpPVfng6enOL7Py6trZtM1H31m/r7Gh/e855/N+9DkPX+QeKaBafsYXoPntFnebZCageN2mG9ilssVVZlzd/6G/Y8PWH77PV3Zoyw1DGFx/uqOJ08+oJYFv/v6/+P44R7PTx5SJRFaU1HFIU2SkVU5RVaSxBE7yyFueRieyeufXiLykkBq9EwTV7cYuD4yz9nmS9Jtzp12SynBMAUNgrhuMFotBnsTpGmA7SBcG901sTstOq0AkYSo3SVGZbDfG3P8J7/gZrHHNy+/4/ApGEJCWZFv50RhiIYki3LKoiQtKrZVyXQaUuge07SkP9pD03z2+g+xDh6xKK9Q2Rm9w19QNwY/L4+5uNiAUjSNRt0olLqXnaIaNE0gxb2nYLpq2N3c0tvbw7AMyroi212QJnOUvYeUkJUleaOTZlvWd3Mao029WPHD9y/oGTbO6ICcGtuz0aoaQ0gM08eyXE47bSZ/+Quma5MslajvfqBvK6Jyh8i3eL6DtFz6f/4XWOMRjVDIIKCY35HVCvPoELfrUFORxxKv66PnO/y2R1ZmzNcF+55HSQNxjKaB6nTwjhqEY1E2FbpmkZcNd+uEMEpRmiTPMpQSGAKCdkCpexTdfZa5QXZ+y3g04NHjIwLfxtQlRVpyc3lGlWXouoHt+URpRpEmtNsDep0Bjz/979FeBKy3DW53gIh0OrmiNB1soZgcH3O52CIV6FXONsnpOzaubTGfzjB0A7k/Ii139Fo+UvdJw5DlrgBNRwkJUrKJM6pKo9pEFHZD0ZgEjsliuySUFnLykMPRQzabCGqN67NzzmdbMDx+8eFHHLTaWJ0eWmtA8OwjqiYmCxcsdxuWqzm2YdI0kmWmWNxMQRq4bYfL2YIfX59TNwrLsHD9Nl/88R/R13LyNMWdHKJMD701oN6tcRyBpluY7S7bqOLHr7+jCF2ef9TBH0w4+LhHZWhYRoFsBRiOTVYXJErRZCmb7RYlBMof8HZ1xaRM8ZyauqqJSsUsTpm0fRZRTnu2wnEvGbQdDF1iehZOnd+f0TZctLbO+ME+erWhWO8oMwO9nGG3BFZbkCuL+Mbi6voSUW357XxKLgQnccieq3O818MO37GN11RNTek9oHPwEK9cors69ulTGken1eT4Ycjd/IY0T6E7wPIEZVMhyxJdt1EoqhqiHM7OLqiwyUWPJ1/8nIGb0X18itkbY1k6u8uX7D94ykDalJS8nuX4rQGqinj0+DEPn33K4vaG3WpNMXYphEQ4A5LFkoFtsZzGGLrNg0mL9WZGSyg0TccQClcUOJ5NGu44f/eOwd6Imw3YtcJy2+RiitaEpNEO17Kwu2PcVhdNy0ADzbRI0/vwp++2mN6tWW0j6lox7njo0meaS+YRaHpAYPbIdmvqLKawJLmj8y6sWby74SSLefrkiGDwCMN2IAmpjYb9RwNa7Q6aECRpSpYkxHmJLjWiJCGtKtKyonG7pFnOer7hbhXS1A2tTpcqz7C9FsvCIJ4mBLbDZndJtG5RGQKl5VBlVJQ43Tbaeko4m6ObXQoR43g2dRpiei5NnFBkEVrT4BY5RlkSuh10SyetJS+uF5ydX/O//e//B3/8J7/g17/6B56NW2zWazZpxsQxKfKCBlA0rLdrVF3gjMbkpkugN+xWO2xLUioQZUSVJzSOYFWCmaU0gYfmu5hmjmnm6HrD5u6WqtqSlSFZvuV6OccdjGm1PMrFGarOqaQOtqLJtqjSJUob5ikMB13qusTQBcGgj2HoZHFB1Shu52viUnG7i3n48IAGMHWBqCS7xZSeKzCdgKJuaFDEWYVhmtQN7D16gmsbZGXNeLJPsm1AekinYL/tgypZR2vCMMHzW7hSw7YMEBrBYIjRbvG6qPl5x6FKYqJGsEpypFRYBhhCQ2sKglaLi+spy1//hjqvaY/63K0f0O61kK7E3Ruy96Th4/Mp+bc/Ihd3nPQ0HvcnjAId3TNo9Wy0roWjrVBXN2Txglo0xLuQuKzug0RVUuSgGw6G46IZLlJF3Fx/z93tDQfjHt22RyvwMQzFar3C8V1qBaouWW5jpGEhMMm3V9h1TVLr+LaH1uphiYZG07AEnBweYmsZWrkEWkRxTpFmBMG9hLmMttRNRaNJposFz08e47kOw06P65tr3P4eWtBF+/F31OGG2XROpzPgWNNoDIddE2P2R4yOM3zboBI1qkipt2taowPCpGHgB6SLOyQVijFZItBNl8NRD123GU9OCM8uCK7PMSwT9+g5mjGi8sdUqYUeCES/g971MPUPaObXqOUd+XZGmMwouy6pnpLlEavFFevVDV7XwW13SMuSSu5YzjZcXM/Ikpz5PELWGioraZKCmzijrhTddpem0VhnklYQUBU1cZxT5LeMSvjg6ICnjw6xem1M02ItNYYPOnz3bYmWrhgMXTpNG91ycT0bw3HZaz9htwkJekfcvrtA2hCFMZZp0R10eXD8AYYuCNMS7afXRPkOIQ3ONxHzX/0SC8HJw0fUfg8x3/Ht3/8dn3zwv9Af77N9vSbPCnoPT6i8Hk+7iiRf8nK64O27LYUM+OzBHkW04fz6iifPj+/9e3qOO3BpVI6/P0QtNiijS2fY8HF/SKlKqu2C1zfXzDWN/oMOr95U1EWBEC6D/RM0FHWtqNKYZ08e4wY9OnpFslnhd0Z88+IFZ2cv0S0bk4xnH31MU+VMuhZRYeF4Hh1Z8G+/OiKJ2qwzcEyD1y/fsipMAs/Bb/V/z1PEe97zT+f99Zz3/EFyvQj/5zCqPivSDEe3CO+2LOYLzG6Ho+fPyNZ3+L4gUQlXdy/R7QLblximSx1F2LZHWUG03TBfXCPMhJahYwidItxS7HYU4YZdlDALc8rNlgfPP+fp04+ZtMecGIIiDNGUIqk1ZqUAq81sVzAvBJV3yDav2OQ5b3YJX89mvN2u+eH2lh8u3rHZRTgmOFpOYAskBb/+5lv++q//mvO3b+g6Gp2Og2EIusMBUbqjiabkZUq0nhHFIZsoZLrNsI0WaZRQaTrTBH759SsM3SHoH9LZ/wDf6fDsqMXhkcnFD/+No17B8z/5C3TDxkHhtCb0HxxhmfdrrIaug3Z/BvW+GlAQxxUvX9+xuLxB5rd0j8bYrT55WVCWDQIDVaSURQJUxGFCKUxyp8u3v/ya1z+9ZbNM+PD5z9ntNlRNTVPWWLqB7bYQwoC6QVgOZWOQ1wJle+iGibH3kCY4xh+OCPYPqU+eYu71odiSza7YzOdorQ5eLyDb3JIWKaI7wHcaDC3C73YZTw4pqgor0BGWQjoGVZNhBA6i/f+z9169tiR3lt8vIr3dfu/jr6t7y7Nomt1kN8e09CBAGAz0Pvp+epIeNBIwjRZGPc0ekt00ZVhVt643x+xzzva502dGhh4u9QXmZUCgfh8hIxKZsWL914poZYdpm2DZLLOKb29TOlWz225JhI2hNZ5jEsR9Uv+EojYIhOKz9065e3aIF4UoaVB2gtvthv35E5arFS+ePeWLr7/hyZsLvPiAXu+YvAC0iRIOht3HNDykksjWpqsF+6LGP36EG/WpVtfsri94s9hhOR6DwKfWkiqv2HcSzzSoW0VbK7brNd7sDMN2MLuWtmlpW40Z9WkNDzOI8A/O6M/GWL0+7nhGfHBG3na8vLjk7fkVXz5+TJbu+fjRe0SuTbq4YBpZPPjkPkYgKLeXbHbXbLMlSbJElSn7Goo0ZbNPuLi8Yl9rvnz8gufn1ygtSHYJp0fH3L/7gNi1GQ0GxHEP2/OpqgrdbJhfX+GHI4azu7x4fcPnv/6CQX/MdDYm2Rp02scWHf5gQDybUTaKKt3z9noO00N2neLly6cUVcO66bBMEy8Mef76gnWyp2lboigmS3MO/ACjyInHI3TXINqaouqQXg+tKlwTZBhRbbdcPn/JxbOneJbE9UK2N9eky2s6VfBmfklW7HBMzZ2ex8wzcV2Tm+2K69UNnWhxRxOC4zt4cYjuKvz3P8EY9smyW+pqjbAkLQ7Jbo1pCGypMEyNGfQxgwAwqFvN189v+d3vviQOAnaN5JOf/JT7Dx+RKhsDAetrNk/fYigPyzDZ5SlvNzk4LqpTDO88wh0fM5zO6I8MwtCmbVpMBNl6SxDGbBtNluzpeT71dsfRdICqarKiJOlaWjr2aca3z97QtjUy6iMtl6qFoqxR+x1N0+LYNmbbEB8eYbcVZZaC4WKGB9w/u8/DwwPyrOJ6k6M7E6UtbrYJZpETKY1vxbx394fEQmKaDp3lsFwt2OQVm31Gq2riwYDB8T3s3pTWdKm7lsAzsT0XhGa92bNYJbRKsVmtub2+4Xa54eXFFav1mrysWO8LVtsE05R0TYPvB4iuwxTQKGiFgUYB7zw/arek05JxL6A/7uE5JpU0uS5NNvsC7Qa4usY0Lbq2Jc0zyrLEkBLXD6i0RdJa/PHlJa9ePqfMduy3C149/RaqlJ4NaZ6BNOmH/rt8qqomr1vyquZ6uaJSGteycGwHpEGuLeosJ8tS8rLCCWOcwZg6iCmFREQDWtmRlRnJ5orl+oL5bklr26zSHaVqiAOLrtjSlHsqrdG2R6MUXZ0iBawzgWGbxP0+jutiWGA5Nq3qSJI9SdXxfL7j8maFZTnMDk4J4j5aSqqy5Ob8OXHsgWnRqg4pBa0ZIs2A6fgYD0EUhJQIgnhAnlcsl7cM4h5amORVTaVagjBgOjugVR2DXsD19TWuazAe91F1BWWKYRjcJHs61WBUORIwPBdbCpqypC5rtkkKqgKt8AOPO/eOENJACwPddNyPXcaqw1OaQAqsrqWrc2RRUKcbynZNla9Zri+pqj0Nglo1GL6H4Vk4nsAbDvDiHp7vICyXt1e3/P6fP6fOE0LfYjjs4wQhQezjByFuGICUrHcpF9c7pB0xbPas5iuUMgEDW3TItqZoGhJtUAkXbbj0Qh/f81CdxgtsKimpWsWgH9E3K5pOc3jnDofTYw6nM3zPA1OSti2bqmC5XXByOMYyNIura0ajAzrDe1fZXtZ0wqSsKqoqp8t3zIYRk8n0neBiWPhhRL25xTIMWhGQbluSzRYtG5wgwguGBMMxRSvotgvMpsZWJo7fxx8EGAcRxshHGiZSdQjLompbdvWGJpTUpiQvC5q24fXLlyhV4PRCDMthvthxu97x6nLJfLGlbCVp3uBLSVvVuFIQeg6m42DbLqKC0ekDwEYqjVaKl29fUKY7XNnhuyayznEdzZ3jHrYBgQ2mrlmfv2Dg1Oi2ZXzw7ptvuAFu75A616Rpwu9//3tevHrJ/Oqcv/ybnzMcHjF/cc2rizlvr67omhbfCyixqYqCsWdT5gVP3s7p+jOuL15ydDTm3v2HmIbEMCX9gwPKOiHPVmjXRWuLnj/iyfO3/PqLZ3z+9BXXmxVm6LHZ7FivV+yzjLJtSPYpw9EI34mIR2O8fogXWCy++w4jgctUc5PknL94zYeDCXcnZ9z/4CNGfZtG1Wz2Nb3hAdafygcublakwuX//odfUbUdURzR74Usri/JyhYpOnRbcTYb4Sy3jF9dcscyuXs8QpsG20rSOiH7fcJwevCHRz/8q+/bc77nz4rvnSbf82eJJWxcw8ERoFRBphKCyCY6OyQcB5h5wXp9jVI5B0Of692Gzb4kPIqpWw1CkBUZyeYWd+aAlfHN17/hk7OHYFrITpHlGeebkqtEYRsuPxtPaGtFNLB48N4hh47g+fmGtjXYpRl5mTEMInw7RpGw77YkRcqmkyTSIHJjfjI+JVYddBkHjsdoOqG1HX799Uu+/PIl9w4f8sOP7+DG0EiL/WKOJw+RTsCXzx9j6AK/2uGZFo2UKC9m2G/IqwzsgJsasCRFskJFY6b3JswORkwdjawT7h5G3JsOSJ99Tjw+YLcrOX3vx1i2g5ASIQRNU2NogTQNatXRNC23NxvW+xosl99+/gwxG3Jyp4RW0xh9qjzH6zQam044uGFMZXbMv3rMfL1hdnSP2Ip58ewtXg/qrmQ0GmJ7HpbnYnaK7MVr7MO79PpTsjcvyK/n3NgezXhMZsfcSb7j0E3oNYJuKUmuLkh2K7zZIU7sUK6uqLqS3nv3MT0DUe0wIw/tRRhFxtg44+r518R5wLj/IeFghKbF7Gp0rlCdQgjJxdu3pMstVVXihz5pUTOOh3iBT2O41NGU3jjDMx0s3+UmVwhaxq5PZNsIz+Pg7j364z677Yar717RP/2In/zsfyKMe+xWS5oqo641Qgs6DLzIwbAbsnLBNs154Jh8+5t/5OrZ1xRlyfU6xbB9RBjSmSGhrClvFzxfGYxPT3BXKeFwiKUlVaPZFJqDwEeHQ9zxATLZ0js9oj/ogTSp0pyepXn89R9ZLTYsbze8eXtB5Af0en0cS5Bs50Q05Js33Dw2iMt7dLZFV+dsthlF0TLf75kOTZq6ZLfPWCUVZTLndpsihGC9XnM2HDB2bQxVQ9SjbNW7Z2sYRJakNTxmszMcv8/VZYrRRtx//xPunB0RTsY0b1Ic18HpwLA9VKsoipZ9XmD1Yq6tgNXtlropmV+9QkuTZddRrfZ0jgdVSZmk5FXFJAhZLjdYjAnTmrE0Qe3BHVCVOeluixWFtH9yJSyzgtDRGJ7EmgyIe328ckO1E5TdKV99uUKUBUrlaN8lNQ2i8ZhgeERv3MMxW0Tyiv32NdH775GXb+nelixXK5xRiPQ9vNDDzGLSLGcQh7QtVFWNMAs6IblZ7Xj27Bk5DkZvzF+/d597EwvfF8zuvUdXlDRvlsiojwinlG3L5//y/1LOPmJ8+j7tqy+x91uCwzsU3oCm3qCsAFWsqLMcAMN28ByXnuHz9OWeZlvz8LjFEhDGPq0JF9dLyrIi2+V8lZyzayVppbEsl8h28IWNSNaUTceo12O4W4Ih2eYVfm/Mx8MIXdawXeH84Af0wyl5UuN6EdvVDW1VIVWH2+zovvkHlFa4nsPhw/e4bWrebBNu0gwlbOzzPSvzgsk4w3MFQZvTOS6GZWMbBmW3I6kVRZlTVIpEutymJVfzG0zTwAsirhcJrRZkRUleVnSGQ9kZ1C24XoSdVoxmh0jHwXcMgqbP2SSm1/eRnaILJiwvU5KqYziZUuwTpNIIpdDSwDRNSmmgEDSdJsPl5vw1t1dXNHVFXde0lvGu6jywEVLg2iZlUeAFY9psT5J35E3LIi1YJhl/uNjw8GzLLx6ccHo0w7ENtOvhakl+u8K0bYRlYGLS1Yrr7JoyD8iyhLoqydua0eERh45HnubY3Q6ddzRoamHimQpHNFQm1EVJ2bko0dIbDXACC8NoaStJa3msVzcsd3sa4fP07S1l3XIy8Gi6Fs8LcIRgtVpR7K4ZD08hPMAVDuvFDQcf/JBcWfiYDEcjEB15XrPOO3aFomgEZdP9qT2o4rOPP+MXf/0zbhZrHn/3BKFr8iynKd8J9V5vyMu0oF6e03aK0LUI/IDFdsUIhTMcsFyukAhM28I1TJoy5/mzV/z1v/4LLDrqZEM6v6Ifj/nbn/8Vv/zd1+yzAscLqZVgqTuKcgPLLfFwiOe5tJ0iRjE6GDGeDJBBgO8a2K6D4zqYhqLclzz97ikAca+H67kYro1haDop0KaBtGzyZMvFfIlph0SioipytDRYFjANXagbcF1aIfl2sQfPIRZgmAambZNmOfG4h+X1cN2Am6RicDJgEDUYjkPc75FmOWHksFjMeX19RWO7aKG5ur7EDEI++ulPGA9mPH99S783ZDyZsHzxCuG4pLcZy+0tP/vpDzE8D1VVlFVLmkkCJyLdl9iOxpASVTZoIel0w249R2V7JC2tI9HZnDaY4XcNcrdGV+c4kcTuDZHeCB1YqDtjzNOAbvWWZv4aHBfHtvACG8PU2J7PfL7kfL5muSvY1QoniGnKhryowZQMHJu8afC0xhaw3mwYDh+iawMndCmanKAXc3RwRLZbs91tabuaKPDomgbL0gyORpyMQqLQIdnc0lxfonVFU6YYg5hwOEApD8sSLFcrTAJurl/Rj2PMnsMmm3ObXWNITVk3aClwXRffsTENj5fbDWa3582+wmhv0KbLqydP+PGPfkzoBUhbYIQe+2cXZHlONBxxJxU0m47jn93hd6/f8vTVKy7ebPm78imjs4bToxnHkwFDs8dJeAc/HuD7Lqv1hq/+5Vdsv3uCPL8hnRzz3fU5pm/yv/y7f8/ffPAhentOdvOMff8eeZVzeHL8znGSaV6tb4gHQ57e3iCEYtiPKfYr5lWC5TgEUY94+pBRo3FkC+FDvM9+gsUOz7zloJeQKJPPf/uckztH9PqD/27nh+/5nv9WvhdNvufPErPpsDuBJWBT7OiMDCuUDKc+o0gxuXOHy+/2vLl+yXa34uLmhrqB7LAjNC22mw2R72MOHU5HMU65J6kyrs6fMJ2dUSqDfaO52mx5MU84ufsRrmvQtQWd21CENp/9/K/48GOF781IlmtuLx7jSpfA6yPdiNV2SZpvWbkzitE9DjvBYRhRXF+gRI01jhB+jy9fvyHZl/zbzz7k0cNHTO5OuVU5nS5Zbje4pUYOj7j93a9R+YpivWPiRpiRxdGDHtvdNRiCXd2wLhqmR3125pa431Fff4Hfe4jlT7HjiAcPP+IwVPgCLr/4PdXGJHbuIadjsP70o1+VWKqjLQVaKYosZ311jW3bmP6My/2WX/3yS360vuHe+z9Amj5lnSFUhTTAcn2qFjqV8+rikrfrPdbAIb++pN1c8WAW0IQR5myGZdq4vo9jOXS1CeMJQmtmp32+ff0183VDl67RGr7Nlmx6EuvZl3hhQC1Mzt6/hzY6smyOkhbx6Qm62mGZNbZnYbo+bVpg922+/ZfvaPY7RvcPCCYTpGxRTf4u80BLpGFydbvlq6evqYVB3bQkRU0QhxRlSW80pj76COGPGPghdB3mwZCe8OkMh9C1GDgSKxdc5ALRSAzDZXT8iLtnD4jiHo7rsKMlGkTMb9cMR3c4mPW5mr9gvUnwh1OSrOQP//RP/N1/+n+4PH9BGIZYXshwomj8CNm0OMIg2xekiw27yuLsww+ggzSpiOIB0dRiMX/Lo/tjdmlObAk8SyN1TadajGKD1i5kW5LVGtNy+eCzn4EU7JdXbC6+oes6bqqG2/UCb+BxMh0imVCLKa5TsfFqit2KrKzZ5xW1EjSd5HaXUVQKrTpC28KzLaqqwBQw7PVQTUOrOkzDQEqB64b4nc18U7He7BlNH3Dy3ns09ZrOdunKBVJLpOMgTQtd1yTYMDvAtAVvX8xZZwX9oEerFdvthr6paWjQrWI4meLbNoFjcv/RQ7ZPn9F4Hqk2iKRL3RQMAom2LbzDUwzTRLkhsrMxzedk2z1Bf0yVL3FMmzy5ZLVJGPVMPv3B+5zfbFBVifZMepM+w0FIdDCmN55BmdC2NeZ4RKpSukVFWWZUTg9thFjYdEgs2yNL1mxXNbbr43YCaTukZcFXn3/FPktwXIe6aaj2t2TzFqOc4fQPkIZDpT3S9SWbxTX//F/+nvN9gjdWeEaIFQxpL26JRnu0W9FNbCpt4IRDRJHje5o8K/FQjE6OuM1vUFaMYyrwXJabDcvViq6pyPMay7bYrLZ8+9UTyqpjNplQRzG5lFg1WLpFmxXHTcdmuyXLa3qByWw8oLi9ZqcVN/uM1rGJpgGhHxPHEa5lQ9MwGvXxTUHkSCQKLQQ/PH6f+f0Tvn71kouy5NWyYNW+YbqYc3oQcfd4imdaCN0hpI1wfE7v+eyTLUneIOI+u82KTmjaDhbrhKKqsRyXTgtW2z1JKfD9krfihjDs4QUR47zlhx8/Yhr1YN+g92tyo0XHM66LhGAworq9ZhB6OL5HqVuaOseQ79ZPA6bjUHWCPC9YLlc4QZ8AQbJb03UK27KoGoVhGRwPY4rsnLzI0IaBAm72JVnVsCsa8lpx++1LlruC/1nB8dGU8WCEH2owXapGEXsepmlS5Dlvnz9nVzbcpAXh4IDeaIwSkrQo2S0uOY6hKgwMzyceDPHNd+40S2lsK6YzPSzXwDIttO5QpoVSGZv1DcvtjqaDL15fkpb/f6hjS1sXGKaFaVpslpe47HHkmjA8wzdj6nTDg7sjSm9IvdcI6eD1PDbJhne+MqYAACAASURBVKt1QbDP6Ac+URQxn88pioqPHz3g/v0H1LXNg3sSqRLOz694c3HO4dkZz14+IxjPsJUicB3SLEVqaBAIAXlRY1guhtQk17eMTw7eVcnaBmmWEhsd9WZNOBrTG82oNys+/OQev/nttzSqIuoPiAZjguGI1oJB6BLMjpEoQNGfTujHDr7VoaWBVg2dkNRtx+s3T0lWN0S+w3AwxbY1WrU4roXpBhiGZLdPuLpaUHQWd6cDzM2WTQNIC89x3+Vs1SuqTtDaIYbd0WKQVS37LOfy7Tmz02MM2SFlR9FIsqLls8EBQ0/w4vINceQRmBZvXm149ewLcmGy6yRFnlLWNb/4V/8D+WqN2yq2u4w//MtvOH7wEYEfkecZRSfxBwe8mK94eHpM5HqobENrWJSio9ysCd0NVZYROrDOO1RnkO7WbBfXiEYR2TZ7x2deJwyKt4ThBDdfEHoRreEh7QwtLECD7WCdfkz/6CFNtiNbXBKNJ7QqZbva83q+42Zb4vf6nAU+t+st6SZlkxUQeLRtASql0h1DrblYVnymj9Czhs6tMfsuWpUEgY9tm3Rdi9aSTkuUqtlvNjTVhsnJIePpjIeffcLjJ3/HybTH7e0FVmwTHR3iGRaqqej3fOIoJh5NODqdcfnigq9+/yVnd+7RmSBMA7s18EwLWxqEjkNjzkgXV/QciTRbhpMpq13K9avHTGfHFJuKcBiSJguGh/cpiw5j6JCpFY2h+Iu/+IjD6SHLV88Zui5uMMOkjymG0PisL/aUG4PIzknevmC63xNOT9gM7/ObP/wTh1HHT3/6Icf3PySrFc4wJjl/xYvvvuXg9C7jXoDhBDx9krDa7KiFwRd//COL9Yqy7WiaBtmLMR2YTAdMzD09T6A6SdGboYYx0h1gf/i3WOqa+4//Ew+/M1hmBUWR//c6PnzP9/w3871o8j1/lqiqpEsydNqyXcxxXcGw53JvYBGHJp5vER/MGO42JGlCHPj4fkRoGui05uL5S7i54qc/OWRiO+R7SdyLWTUdbp4iMcGS2K7LeGrx4ccPocxIV7es1inB4ICjwynGsUddu8xOjvB6YGoLe/oA5+iIyWoOxYbaP0YZB+jbFYYlSEz49nLO199c07gXfHAn5tOffYbvuTh2B2ZLa46hXZDXcHG+QClBVVs8eb6gqRuSvslh4HGioKkrjDjiPG3I8oLpdIwlBLbTYXQNhiFRWhAOx3jWpxSXX3E4nOJHY159/oYv//Ef+fn7h7jeANuyyXZbirpGmhZNVbNa7Mjqhhronx7i7ubkiwX/8H/9Pes1BKNT8nzPpLrh8GBK1zXQlKim5vjhx3xz8Ru+/sN/RdaKXRgyGn7KyJQ0VYUznuJ4Ppbl4h1FVNKErsEeOJz9+CNuHr+irnJC+51dPrcNokGA1Q8YD8fsix3CANs1MeIB21oRuQov9HAcDwFI18SJHWZ3j2nyHvF0jCo3YBi8qysArTt2u4J//pcvWK0TkqajA47ODumQVMJlP3pAZQ/fNVvkJartWBYZ7x8PoehwiwKtamTa0siQ+XLB2Ud/jYqXfPv1l4j/+H8wGvQYRy7Tjx9x9vCUydFdBr2QV29fY7oBGoG0XRb7DGd2D3F7w76oiO0ApSFLdggFvmvRSRcZe2wWc9aTKann4to1ZZYhqoLQdXj79I/Mej7mwZhmv6bJU0zxbl55nxcY7pTR2GMYNjRty+3yhqevv2OzX6O1RGHQOxzR2Q6qTDHCHpFjIzxJVmiUa0Cxp6klUjoo6bHYbJHSYjw9okm3FAqu1ls+RaOFwX63wbZs6FqkE1LWgstNy/nrOZOjY7SWTOND6m7Mrkjw3RBdCrQfYI16tJM+VtOSpHvmaQ5CYzsGlR3i9QZsNitWZcXQ0uyThCRJuHc042TW5+j0gKFoSDcbaDJqQpxogvJDwihEtQphOewbyXyTkO4zVF4w7Fpi18JUisq02e3WgMlwOP6TYyrG6/WJwwDqDLNNqfcrOmlA8G6MRYgSMx4yGn2AkjZFnlLVGdJ0qNqGOt+xkQGjoEcrBGWj+ObVkl99/pjBYMjdB3c4e/gxOl3Tu/cZhu3QGRZlUvDtb3/L6yeXfPl0znKf4HoB9eYCV+8YffIjisffYW9Tyt0ae3yI0hrl9xGGw8Aqubia05Z7rKhBhhXd8AwzyijzDFVkjMdjiizjtJNst1ucncEmyXjz7BVTP8QdzlBKkTUCqylJ9jmD0QhXNzhhTFnkCN1QrK/59vU5V7dbPNMijIfkyS1au4TRCNXW+PYBA9tlOPIZPDpEOyBDj7uy5cNkycvnT3hxdcnbmxvenGf40fucDu/SFVfUVYFpekjLxqKmqRtM02QwGxMfLDBth+0uJ81rNAbS1ESBTy5swEB0CuF6JEVJKyCue3RlQ4jB4PRDkpsn+IHLtiigNamKhqoDJJhSY9oOZbHHBSwp3zX0WC5ZnjG/vAXVMT44YXJ8xupmTtVucC2LQS9kfHoXs0o5GceotgPXwzBSBO+ypoqmo+4E49Cj3qd89eYGpQW232MYR/gDg+Timn3+LsAcN2A0OyBbJsjWZJ1m2PGQxWbLfrdkLBPswQjHMunHIYZtQqPwbIdWGMjOomkUZVLRBRrfdijLnM1yyS6HRlg8eXvF7WKPYdjY/oCmk3RVgVINdtgn2WxwbZfYDokji8KWlD2fnqc4Hmn0nSn7pMJzYzzf5eXTl4xWSx49OqXTMB5NUKokzUvm8xvStODeg7ssF1ccnp5xs3pNWRQUecrm6YJZFDHrHTNfpbRoDgdDtlnC2GpQTUvb1BxN+9ieDbrDCkKSfYFt1WghsKKAbHHJbrlAtYowcqjSkjTZIHXHxBNMBid4QcQo8PEHMcI1MHwHLcGwJZKGVge0quP24oIn3z3Fs0xKrTF9H8+zEF2B6XqUVQWWy25xw816z9nJEXab05Xv3mEdBBTZjl6REloGm33OvEw5nkzZK5dlrljtUsLTE/x4gG3UfHRoo9c1sesRRz5+KBDzkv/8m3/kBw8ecHcYMHn/jH/642M+//wrzFbxl7/4H7la7siubzgJHCZGQ9akrC7fEIwPaduOKB4gu4LXV2v6YUTrGfg0rK/eEI9n+I5LnS4pkw1hHGKolkZL8rqmaFp26w36+B7W8Q9wvJDCVCjZksqA3X6Pqs6Z3hHYjSSYTPEGM5Q06ZTCCPrk2wVFkZNXGYtdhbY9fvTjIwLX5NXtjs3LFCUNDMMgL2vswKWqahxp8vx8TZV1iDOHumgwDQPDtPDCgNR1CVwHVVfcbHe8OL+k14t4/+MHJNsdnWo4jQIGvsNoPEHpltvFktxoMAcBcf+YxjDQRoPpdBwcHzOeTvClYBK+xvR7nPWmjB4/IWsVoevgGJKe7dKLIuaBT3JzSb8fvhNxleabr7+h57qkRYZqT3nvhz+l2FdcLS/YZSu2uqCq9jgiYnbvgKjvYBY1bG5gc4meD5H9Mf7RjGBSEUQO44Me2cEnzPcJ+8WKf/PzT4hjgXR91smOolQc90Mmp3e4ev2M9wcRftxnnZQ8fvGG3X7HthXsyxrP9cB0GcZ9pG65c/ced45GWIai1x+w22m8m6/w9ibuj36AFA30j/AmH/LR6ZpfLiuk9X0Q7Pf8+fG9aPI9f5Ykmx3b2zl1kdOkKZahmB6NODoY0pqaMIy4FhBPxszKOxiX4Hgxg2HA290C4VtYsqVNEuzJARoD141QgYPdm7K9eI1tuzy4d8gHgyOGcYisM8oqox2MuPNXf4PZVNTrJcoR0Bsi9hFmUSH1hm5dY4oWEbmknkdXtRhmxWqT8HK15Pn6CsNKmc2GHL73iPHZCV6XU28vaKTCtuA2ERjD+yTnT1m+fUHgeHReRNlmrNqae+MR2pRoQ3DbSaqqQ1UVMoLZ0QGuY2NKG0u6uH6AZTt48Zi6uEu27VBVwC+/uGbX7viLrkN175pfHMdmdfUWgSDLKrIuoDUsRJfz4puv6Tk2WSvYJRb/+//2d/z8X/1bwqBDqRXjfkC13bJ++4Zsu8M1DpiFMa2W+MLF6iQ3u5YwVHR5ihAgLQfDCxB5hWlK2kbg+C6D0wk/shoW15ckRY70BgjLJS1zsrwgqS8p6pzhbMZ4OMUfjhkeH2LJFtM0kAhoGrQycPoupx/c4ebFc4RoqJfnaNPGjnroTrEvWr759gUvX15QdoJ9W9MbxNRlRScMtjKgliFDNKVqcXyfLMtIm4q9UDychshaITQIEXNQD9HbhE5JhgfHHGxWPP7q9zi0/K//4T9Q5zVGlvMme87v51fsdhuUkDSqw4hmtHbF6fEJdvURtzdXaMME00ag2e22FKmPN33I5vqCbbqj+erX3Hv/Y27qGlnnxIFHcHLIOPaYzHqEkUdb5ayXc7IkxXcDPMPi0Inp2T7zy9eU+1tiBR9PDnisShZ1y1E/5OMHhyAbsrKiXl8R+DZKd1BAtlPU2FykEs+O2afXWKaJbdlEYY91kbOvau6YBpHvcX19w72jybvAYQwWix1/+OXnGMMDpocnACxvV/iGQEpNEEVEloVuagYjm/CoR2labG6uqOoK0STockOmDBatyapqyesaVeZ4vgW6I00TaCIORj7Dno0bPWC3eDemIUwLvz/Ei0I0GtP1kJZHt07wKHBHB5Smg7ANpONiC4njWijLYblKaVqNqxosId7dbGtBm+WoPMWJItyDM6yDUzpdEszeww0dpKERqsX3HNZrKOqGKLRRYYD0QlarNbHuc3G741e/e8a26LCCht3btwhnyGjQ51d//w+cHU4ZfWSzfvGax//8a67kIXtpMbj7iGq/wrQF2+UVo6ND4vv3mV/MkYBr2uhO4Eqb4aBHt90iymtECtquuX9/wlYp9k2LbUmcwYjN1SV5nrFeL9Fd96c1NtFNi2waxp5DaXgoLdFFSmcKzi/mHA1D0mTPIO6zvHjN5fU1t7sMgaZra3bJmrLq6B9+hPQHDCk4fu8jemGIY+Z4d06QRk1bZ6SLC3xLMhqGvJorLm5vCSKfvFasNlv8OMKWiqJq3o286BaFBssi8N4FR7Yd3K43gIFl2dRNRVVJ4qBPWipA4ghB7QU0bY1h2BT7PRwcoTrB3Y//EiUztpsMITSe6yHZYAiB67lUbUvVdniWgWkIDCFou46sUPzwx3/DxVdfsttsUSZ4QR9ddSgaPEuSJhm90MPzPNqqwcQicB1msUKpjrWsmMYxw8CHIscLYp4vUvLmBacHE1zXY1U0rN5+R284YpOV5Nqg1oJWQZXn7K5eY5mag1HA6GRGPDnCD31E0IPeBJltsIwWt60pS8VyuSOvU3xh0BoBy/WWNNV0jsv17RWvLm4Q/pimrOhFAV4U0omOPE/ZEmCWDR/c+5TKaHCMls7qCIYhwmkIDyRWz8OMIqqkockShjonngxJi4qTkxOyomI4rPE8F1PXHA1MHj9/jTAVqt5xcnqCF7o0SvH61QvqquRmcUunGpwwwgksZJFAp9jsdhyMB7gG+L5FpxWToylVqykFmLaNzlZcLVZkaUlZd0RxiGEHWLqjTrfkc42SLuIgorlcUhYt9nCAWdQYPRdhuWAHCKWosi2vnnxL5JmM4mNqZZDlCW4QoDtBVjU0psP2fM4+3XEwiPBcG2kabLXLapuDMWA86LGfX4HWXCYJje1hVQnH4wg/8HCiEZFvoaqU3uAMbHjf2FN2msDssKXkdNRnFIYMRzHD0EUXDZ8cjWn3J4wHQyYff4wd9nlaFYR1hm5b+mFEpWpWr15Q64a6UTRlzTbf8tbqqIYxR72AdLPC9QLcwEeqEtsyWFxdY/kRyraIR0P64yFlUaBkj0KD7Xg4gxnOcIQhFPHQwhsO6A36eKGHlgYdgrZtwDCptWC7XlJjER+9hzWquGcLqnSN6QVUFwsq3VGWBa5rIVpFU7fsy5rfPX+LMD3G0ZRFkTGUCk+DyhQeLqPekO12y80m5dvvvsPwHO4EAWvLZ+xKbudz4tmIcDImOniAkIr0+Tc8+eYZuybn7qMPce0BaZ5TiRrT9xjOjtnOl5x8+q8p8y3r1Q2DKKJMc5RpYLouoSXxTZOzyQEbP6RKFgxDD+EGJHnK9fkFpqHJNztiz6HLtuS7nMX1Dabjs92XpMVbpmceWZfjWSXDOzFh75BhNGXoDwkDiWGXWE5LqQw6EdO3LIJYsNt1zG8W7JZzLNkyOzjEsEy08Cilg1YdTn/I6vI588UNdd3y+ZNXaCSmGzIcDenKlLOTI2ZHB1zPLziZPkJLm2b1hsl2ixmd8fK//GdW/2dF1Z+RuQG19SHhaIMW3x8/v+fPj+937ff8WVKUBWmxYbGa0+o9soP7994n7AUs8z2251G1DW2dcXLvFDuKKYqC169f0tQlWZ6SXG3xZcn7ByGB62HbDsINceIB0lux3a4ZD8cMHInrWFjaxnEcju49Ii9rVNdg0rG7ek395jlWU2F4PhgWpVA0hkFdVFSLBJ0ouhYaLyY8m3AvNlDVhl7fIbQq2v0K6XTIwMNxJU6VsSoq/JP7qJsX3Lk/YL9Y84u//WusIODrX/2SqtxSakndmlS5IPJj8rTGsC1koxgNhiBcTO3gyABHWhimQWed8fLrG77943e8uU1576cP0KZD27ZoobFNE6EarudX5KVExMeYjks/1iSX52RtwW6xYXD3fTZRxn/8+7/j44dnBLJkYAtEvidZLVkutmw9G13s+cVnP2Avemy//Y71fEEYOvQnNXWawGRGUxcgTSzLxDINurrAqgWua0MY8jatMYVNhIHthhxOx0hDMhiMGU3HDEYBgSuxHBNh+Wj9rndCAypZozvB8OyEdHnNfruhS27xT86gKcmSPa9fXvK7r57StpquaRBAXjYUq4x5csvDOz/ixLTIm4bY997dTLUNdV2RNw0bAVPfRZQt2miJghCmExaXc6QWGMAwjjkY9RG2i+W63F5dInRC33FIwyHZ8ppd2bEsa7ZJzmjQo40DdDMibTW242F6Dr24Yr7IWK1XbJYXFOmePO+ov/6K+2cn5GXObbKhHxgEdz4mHI2wHY/r11f8+revCP2IWArcVvPwbMgkntF7GPL68hWvXnyNqTs+ODjkVGtkFFAqRWkG3OiA1fNzHp2N8eI+lRVSNwa36l2Tg1YKUVdMQw8MF7c3xtht6Js2vTjm9uYWYTqkgUVeNpzf7PnlP38Hm5L1s99x9unH6E7z8sk37E6mfPTZD/AnFmHgsq8aJkc9/OEAlVdINE3boNoala1JVluM8Yx6t6RtG1TbsCkU989OKZfXRC7cuXPMdNTHEDaWbXL78jnSsBCWi2lIvN4ADAMpJUZbILXCicdkec16V2C7GSKICOIRI3+CP23JLy+4fvod+SrB9zxMzyeYnjL60V8RHh7gBB6OoUm2CyocXMtF6xYosIWgH/ep1ksQJp3bx+5FqMJmty/5r1885snTt9jRGO2PePbFV7x4dcsHR1P+5oM7BF3B6tm3vHz8mhvhYno+/jjgcDxgcd7ijYYEvYg6X5HIgMNPP6V8+YJsk/Lo8AFhEKDKmm2mMGSPbWUyNQRHB4f0yz1ff/6YwDQ5vHMPsoSu7KMaheoEWpg07RItDE4ODhgYBpmEcHZAWpRsFrcUecXWlISeh7Qczq+XzAtBhoOtKxqtydM9ZVHR6CdY+YamSBkFFe5wgnE0QO1NlGWSzl9S1HuUZTCfX7HJSn7wyYfotmDgSYx0iQxHVJ3BLs1phMni9pbFao0ddohkj9gvMR2ftlUYpgQh0FqjtUAaBpIOKQSu1niWwPRjaBr2NzeU0xlSKvqjPv70AUF3wXaXIAyDnmdjSolhSECSt4JQWAjDxHEctIZPP/qEDx/9hD+uLG4uL1myIAtXmL0Y3V3TiwKqqiB1A1Rn0vcMFAZGEOEmBaEp6fs+J8dHFFmOblsGgQ+2y2q/p7lcIN7NRiLjMd+8uWJflCS1wsAg6Ax+du8BRwcznOEAb9wnOpjgOwa+Tqm7FqVqrChGqhxZFuySFUVbUZQZnZAUSUpZOXhewPn1OU+fvORmVeM3Jv3BCEtobDfEtW2y7Qa52dMTkqBS9PozwsERDpouCrhefAOzNTI0iCef0nM63Itrzu6eIoRLvrimyQsGcZ84ChlPBkymUwyhsDyD3333Eifuc/9syvOrG0QUM51NcKSk+v/Ye7NdufLsTu/bw3/PQ8SO8UzkIZnMiZmlUpVUUlVDRrcF+8oGDF/4efREvnDbLaDt7pagrm7VnJmVmWQmyXN4xpinPc/bF6deQLopFMDvCQII7Ii11v4NWUJT15hen6NA5WpzR5ZnqLqGaZsodGRlTpplPPMMVAUwHLLNgqqo8cYTJHHARkEya/S8Ic9qzN4R2T5he7NBShXo99hpA0ZdhSpKqkOIPPaQPONBXXdzSdvkSKpK21UE4wFabtBWEVnVofk+15cXtGlCT5fQhKD+Q25JF4UM3AE6KjezG4o6Y4UgURR6nospdJQm5XwyZJOVhOEW11Wo8gipVVnOl6jTM7q6QqrA1xVOjybEScEuz9EaicDz+ZvPP8Huj0j8Htu04cx30edbwrJE0y18d0B9+ZbFboXhBrRFStXB1xfXZGlAHLs4ikR+e8PzR2fouopiuHRSgipBWTcMj88eVJ2SwnITEe93bG8fVI9S1+ANh8iShqpZqKZB2bQo4iGoOopSkiwhDlNqvcf5D3+CpJs0dc7h5lssz0UxDYR4yJEpqxaFluRQkuc5NLArazS5RakyluWBQMowDBk9aukqFb2zqfd7vvrd16Dp/OAv/pI/+/EnHJ0dIVU5F7/ekEURqqGRygN0z6ZyY25e3fL7N7/i+fU9J2ePH14apDme66EInVKS6Q09tEQAEoPRmtVqRZnnOK6H3nW0ZYHS1Bx7NsVgQLa+xWhy+qenpE2JkqUcLl5ijoc4/gin18O8EyidwbTvkkoFdbLEpKZrcirNoz8y8Ho62miCIkG9vSBPDjSGQ2tayHJDez8nvr1BblTsKqNK9rRCwZgaVHXKaHqM7PTBsHn16lvCzYLFds9yF2K4AYqsoLYlvVGAsH22ux0TT6JRBWWWI60WOJ7LL7/6itu4Y/zDvyYxx3xxecNht8P1LD78yfSPt0C85z3/St4fTd7zJ0nTFuz2C7JsS5SuefH5CwbTB9ltpclARzAakjUpebTDsTuizRK5i1CrCF2pybKC+BCRhnuC0zN016MpS5Rqy2Q64LBZc4hjpN0edB+jP8EfR2QdvHrzhjpL+XgaYJkKapURRgdmix3z6Io8eVhyx4FPb3xE7fhYhoptmdiayeRRn/nmwPL6FWJxBW2GffL4oTGljFgs7pE9n//n//736NkMdyz44GjIzXKFqaqcT0f0fAVFd1jd77AsA3t4xGCg4wQ2SplSdiUnxydIQsayDHRDo0obVqua7w450ZEOjYM36KEq0LUNVZnTZDG6KrO8vob+B/RkQVUm6IqKJgTzyzf0+j414I36pNkpv//6G4o0ptqv+emTEVEYcztf47/4kNNPP+XDZ1NMbcRMd3n37bd8d7dmeuyhzW4xPR+EjtaboAqVpmlAUqibBsW00HWDv/nRj4jTCkXT8BybrmlxXR/NsRn6D0OTMAWyItFJHZKq0rUNdZcjWQ71ZkZ2KGmbltnNDM1zURWbcLUjjvZ8/c1L5K5BkjqqriUpGrb7hF2S0Dt7TClJFHFIbZtoroduCKaaQpIWDzXDXcdW6hi5GqIpKesWWzPYVgVu13E68KktCRSVQxTjeD2wAtazWxK5Y53VNLVEa9i8ffWa8fExgatTza8Rksw2SejKFFm16Q2neF7HfLliX2yhLQmzggybZtvx8ThAER1mb4hsuhRVi+E5jE+f8n88/hSBRhbmdNs9vuvhHR3RqQrDzz/l5O1z3n71G9L8gH5ywnUUc7e4wjhEPLINEsfiNu5YLxaEy2u2mUReZAjDY7fd4pgWeV7Q8xxQIO8NsVWQVINWVgjXS+JhwCqR+P7lW8ymIakKfvfFb/nFF7/mJz/7GReXr7m5fs3waMrgaIgxHKJNpzjjKZKioAmVfi8gDENMTWG/ntNVLVYVY7sm5UElikr806coj5/ygx//OZMqBCFwfAfXG+O4PvFyRZlnQEcYJ+j9MU1TU6d74vkVVaPSSTKNpjObrdCEgWn36RSB0jRoVYIcTDj5dAC7A11a4J88w390jn88wJj2Htp5yhija0FWUCSVrq5ok5Q6j1D8gBoV2XTRe7CP1qSHPWFRMT9k2K6NOQh4/fqKspFI4z2XZcaL4yG5NuDyfs+3b67RhU2OhTN0UaWaKopoJcHkqQ1VRv/klNAeosZ7fM+h7hTerVOKZUi22JK6fV5lO9T1glHiUNcln334nPD6DfXsCpqaZ88/Al4ThQly20DX4vYGnBwf41oW8WaHpekcnT9BOn/CfLXErA7IikJcNqRlg4SMLLWUZUVdFDRNQ1nVpOsbumRDLrfYswZhfICmu+TRiiqPuL26oNFUKglkReJ/+us/o+1a3q02hFnGIQoZDnvEeccuimlljcv5ntntNa65xNBUmqrh+PFjFuv9g2zf7tNmMZ0kIasatq2jSgpZ02E2MH10SpUl1IpKXFa4hkeNShmXjN2A9XqPbev0TJ2u61AUDQmFRtKJG4FvPjQ+TadTfvzjzxEonH50RJrEbDdrNFnF7/lYwqHfr1Hljtu7FUkY8dnEwTB1bKukMXWKKKUZ9ujbGp6QyISEXOVMj45ZKYKmTFFUleDoCMWfcP7x5xzurrm/umdk9RjrNv70FP3pB7iWgm50KIOApm1pYglLrZCdB5VImRS8envB66t7Ts5POeQr4n2FavmMey7b2R2LmzXbQ0tVQV23dE2NZRgcVks030dVSuqiw9Q0PMshOyQI2aezNJ4fTbBcwevrS7oy4XSwp10eeDLt01UKO8DQlgAAIABJREFUm3WIqluYuoHoGvqjAXGpoAkd3VHx6hzDkvFPAr69vuK7zZ4qPDDu9ajyHJWONok48jUsHU5OpiwWG3xXpSwzbNtF0WDouPR8C9e3kFAQXoBWFeQNOJ6JUE0UkbPMdPLFikaB3pOnVK3FPt08tOstViSey1CtMcY95EKm2JcIS0PVNYSuMZwMiKKQME9RdI1dmJPkLXF4RZfskbMcu//QRGNqCm3Z4Hse9T6hTBNKSWFZVdSaoKJjF+3BNAisAYFR0ekuq11M0+YkScTLr6+5q21ORxZ1fkBSga7Dsx08L+DufsZmuSXcrPhwZDMyDUY9A3l/T1ml7NIMSZLpB0MabYDjbElX9+yWd+imSd51pGXNt1f3nGcBjqFx1veY3d3TDgJ828ZyPeqme/i99gOQFNquw69bSPasthvqJKTdr6n7U8TxFCnJaPYeqmOi2DZF3RDnxYOlsD5g+TqK5jxUG9tThAr5/XfIhsng5ARnlbDb7mmLGklT6YqGVRaRSwqKJP9hltA5JDsmTYoXBLRJx9U31/z697+nUwQ//cnP+OjJEwaGhdp2GI7N4OSUPNqgaDKl6BEmFZ3iI+tj5rMb5rs3fPYXcHR0hilb2JqJLjRMy+b27p4PP/mQRhe49+/oD4aUaUFgCnzLQu1kyrZGdDWa7aIHf46TrpHrjFoRaLbP9esrmujAo786ZdBzyUdjmk6wjiPyIsOzfHTbQmoejv/5/B4lSdGams61aGmoNAulqWD5hi5LCaOCdaXQSh2WZdM2NXeLHaI/QTQNZq9Piko1n3H95hWz9Y7Xiy2a5SPcEaamIFNQlDXryws+eHrC8PMfIjk+IlpzPBmyPJT8chHi9o+YdhJ//uMfs9L7FBdXJFnK7ab6Y64Q73nPv4r3R5P3/EkiaRJJHjFfzTj9+ITHnzxFdxxM10bqWvZpzsloypcXr9BVFafLeTx2iLSSPFVJ0wzP1VFVhc3qwONHj3AtndYLqNdzdGHy5Mkjvru8YXv9lhNVJatb+v0p+d0d6S7n9n7BSO04cnRUTaAYJnVVsysLhsOA8SDA8IeU3gg0i/vrC46lHNGloKrYZocYTKj1EsUP6LwhRVfw9fe3fPH2BikYEmg5Hz99St+ROcznbNZrbmcLpp6OagTc71uSMMUxfRylJZUVaDo6ucUfWPTGFpoCnVqCAps0Y6t2hE5NtC/As3H6NlXbUpU1VXigPGwJ11uwxnjDI4q8QGo68miLoSqMj4/YZik920GqEsyBhluOmN/WfPHmCqPOsKWau31E9PprfvLTnxGcDCmSlg//7Y+RTIny5oL/+vaGn3UVwr3C7I9wdIOyLFFtF0mGrChokHAHE0zNYGi55ElBlFZkuxCv5MGCVKtIeUfVdehDF0nqkBSZuspRbZu8qagkhde//5J9mLKJGyZHIzbLDW0ec3VzR5RmWLZF0XakYcJsExH9Ie0eoZIlKXWZ4zoOqlDJOhj4AbqeY2kqSZxwn1asbQevSEjn98hNQ1OWFOGBJ+fPyNqCQ7QnSwtuN3vCOGNXttTlHlO3qQyDWW0zOnvM0BFoQiEYjjEUmSjPSIuUuGnpWpWhP2aYt+xMl66uKSQTc/yUvGy52HX87b/9awY9hUOcsdnHPDdHGMi0UkujguKqVKXCId6i7ASK51PFKbawGA/HrHKNdnrKWT+iqQ5cb25YZ/dcrUOSBoT0cGDTVA1h93l3t6QtSnpuD1mKULoGta2xFUiygkJ1SCqJVlLozDFfvduRbrY8sjSEovO3f/5XHMItmqJjShL38zv+/u//A4v9hvGTF0yCgO0upS0zZEXGMAS6UKiEgq6rOJaOauoMR2OkIsEeeLgnjxH+kJNPPkFPDqx39zzJSlRX0GQ1p88/5/Ll1xSHJY1mslEVTNenTmO2WUVYVoSHkPKQ4J09oahzNtstTdXgCIFp2lArWJpBkTVUiYQm+4hGQ95vUByFRgi6siU9JGiDEbIskHWZummpWomybkiL7A9ZPjXb3Y4szzi0BlL/lPX8K8J3v2JzyJFUnSbLOLItrmY73vyXX9GhMd8njIIpdjBEVA3pag+FxND0kOsKuzdCVmqCE5Pg478k3NyDJjB1laaoCUSfIgqZBgVVESEVIU9OThFCsKqTh/rdxY71fEVyCHEMjcA10eUxVn+CqhlYbg8/jDikKVZZgqqhaxZ3qzUDTwW5QnN8zBrGTce8qEijiDLPH6xc/oDp2TnHPY+x76IHPRpVpmxbDvstqyRBwSYIejz99FM0SydJYypA2kU4jkaJytV8QZKkZIrJV99fkK7uGfo2x5MRqm4hDJvnn3zCerMnlxw0RcWWWzRkuvohnESVJCRZUDcdwnIxJhP2XoA7HNKmGUocoRs6o2BI1mSoUgeKQFYUOkWjrhrKRsMLfHS74/njKYrccjhseLN4y0X2jnfz76mKGMNR+fDTz3H9imLxPavdjiyrSccaltBQFAXZcRB5zdTtoRsasqGhdg1ZltMke5599BF3FxdUWURbpniGhj+e0PdMTsZjRGdg2CNs20W3TYQhI42HqLaG0pbUWktTR0imw2qz4+LVFX//y28Jhj2U1Zo3lzOmxxOmE4/t7IrZ8p6iKh/CVRUdVTcw/T6O67OsQro6p64bmgL6/hDd6rG9uUC9XWB/9mf0jRIrGHMyCLgvLW7fXHPWpAyPxtzva9qmYhvtMGyT88mAti1okfnmZoHbN9jcX1O0Das4o6lKPvjwCS9/fk3TSewOB3zDpGdo6DyoJfrjMZs4p4x2WKaH1zNpSxlTyFimhWUaKIpG0VTEYYhhGqiWQ7heE+8LdM2jSA/kVUVZ5FhODz/oI5sSQ7/GHuiIwRm13HFIdth9A11q0Nw+siYoqxZzNCbJc8LwwHwfUTQCIecUScrAEJi6hqYqtMJEsgas3u3QW5msrUjo2NcVQmtAbnE9i+Nhj0fjPuOxy1QyuXYFhmejmi7W6Jy+5LLbh5R+SadL6EKlqmuC/ogTWcVxPJJ+AEBYmeRvLumWc1RZo646ujShLA6YU4/h0Rn5Zk6yuCfa79BFR9K25HXDarPlxSePITlwMbtnu9nx4qPnWJrAMH2kpkMIE9k0kdsa0bWQJXSKznJ5oM1CmqZFqTPKskDs+mhHI1S3JJMkisOSbvEW1VKRDA3L7CPbAUXTYpomYjAmKQrsXsDzzz7n9esL6rJCUhScnouc53RlTVkXaKZBVBYYuwhFUhGeyS478OruktvwnhfPP8U0Hqynu31MZwl0y6c3OiK82Tz837knZLs1dd1h6i6DwSnLzR1h3PL58SOOR48xMxkJ6Oqa07MTmjpCdDd89LymOHS8fVfTSjqabKGoD1W+iqrhNAWJ5iP7T9GLPbpQkJMDam/M9SZEvPwa2o5e30dSDdIq5mKd0u8LhGSi0iDXKodthKYOaZOcWkiowzOEbpHdvUZtOzLNpzIlPvrAQaoyhNTRWB/ybrZC1Bmy1EC6o8tsZtcLbuZLLlc7kAWaptC3FYKgj+16JGlGKe0fLKt1gq1IBF4P0/RZ/e4V/vnHlJ3BstXxllssQJI6nn3+Q84//eyPuEG85z3/Ot4fTd7zJ4lsClIJjJMTRk+eYng+huuiagLf1Cgl2O8T2rRmGy7xHIXR6SOGowmzm0umcYLU1ghZZncoKfOWnu1SZjmt26NMUjQJPnp0xs+/fMn3//kfefLhCz7++EeE2z1N0XL8/FOiYk9gaRhCwRsGbIsN456GbXT0HBnbblGMGsVqkT46xlA6SknhUIDSFPjBgEru2EsWL3//HdF+zXy1pulk6sU1xe1b1soJTPpIpoEWBLx7+Yrjow+Yxy3Xb284siVUFWS5Zjiw6RSZIiwowg1p7GEOHbLygBRrbOOUu2jDbDPDtz2mvSma7zxUnKYlxXZHutkw35Z4Jx+iqwK5qjFNgze//hU9asIo4vGTM0qlRRIWUqJSyHBQJS4PEf/4bcyzvsU8TgmlFX9rGViOyeziNck+RnQRUZWy3W74h2jNT6qS4VFMkBeoloOwfOokIYtDrJNn6E2H1FZst1viXNA5fby+htB1LKeHaqjIQqKmRlIFkiJTVQVZtKcocy7efA/IrPKWbZyxqxpG8YZDtAMJtruQnuexD1PSoiQvKyamSidBVDXURUF62EPX0XUdWVEyHgwwdA2h6TR5xpdfvoRW8PTD58h1wv3336F0Hdv1lpHvo1cdvckxrqrT6YJG2Gx2c7aHlCLLGQ8UMnNIPy+ou4TNfcxwMMDyh8hlxXAi8XZxzWK/5MnjT8lkiX20R1UEvdE5HSZSp2BIFV0Nt4eGo+mInmvimAYGAkmVKJuK5fwtaRSjqzrles9ut8F1AoSss1jeswnvyURHffc9Sbwnizdsdju+3CXsyxZHl1ElEKpCrRoclgld3dG0UDQSA8+jbRqEKmEKFSSZzXqFqemcPPqATQq20dIIhSyKkKqWoR8w8QZofZ9svMRUVI4GU5LllmocEmcOuyRCVBnFfoc+njAY9FHlnE8/+oCXiw2FIqjaltNnH9DQsd7vqPdLhu1zdH+MrLrUjcXh9Q2vf/0SORgiqT1ms3t60yPa/Zb51TtUf8i+UQjzjHK3pi1bqjyjVFTWqw11lCGPJjjjIV2n0e1jpLbBmpwhaQ40HfnFhjYv0CdDmmxPuc/REeRpgSpkqqJCMm2yOmebJLRtQ5vH7LKCvBO8W4cs9ynzfcbmfoVmuHRlhqPI6ELnYrVHtxrqrGSbaozPxqiyRNvU2J6P/ewj7MmIVsjIQuNk4HJYXiK8D1FVFV2SCEyVvS+oNcGgqRE9gSuNOT0+Q1YUpK5D1ww8u4frDbl785ZtlqDVFc/PTplvIxTNQpEFlu0yHB/RbvZUrYzQbKJoxux+xvXblNFgiGGZaJLMchujKBrCG1KXM0bTU84fP2NydMrjx084OjpGbgsgQxIS5uQItyzwBgHT4zGK7aLrGrJhkOQFA0UgqSpZVnL57pZaVvh+ec93v/uCo2mAY9u4fo8Uk6Q44PkektVjtk4f2maGU8w6R7QShqqg5BVt1dDr9wmGQ6IsYR9HiPWGXp4R79ccHU84/uAJN4eKuqwQ5kOQbNtKCFXBJkPKC54/P0G0O95+t6RuLKQm43/93/8X/tuvj/nlP/w9WVkyODpj0DNYpxlJfk9eNswrA1d16aQIRZFxPIesqVAbGTcYopQlSDJqV9LXwfjBZ1x/+zVVGqGoCj3fA7VB8VzaHBR9jHH0BNFWyHWIEQQIS5DtljRdQ1bVRNuQf/r5f+e//uK3xK2C02osNweKokTuGq6/e01bFWi2TrJLCfOCVmpQcwtNFRwOIcFgBHlMXZRkcU5PWHiuQ6UryIsL3LMpnemhtgKlljkSGs8f9WFXktUZbRaBGmCZFl2ZsdlvGQx6JNGOd7cXuDZU5LxaHlAMneOei+vo3JuCzWZN3bVUaUIwMHBNFWSBbml89MEjfvOrDQMZdEOnUwRCrlCpUVUVRZKQewOS7Zq2yJBkFUnRkIRMXtaougAhSKuUYpdQklObpwjHRxiCrgjJ4j26pyN0n7yuKIuEpJFRDcGshnS35epmToWKa+lUcUSVJVjDYxShPTTpGAFS3eGoKrQKs3SLYRkcHY9RdRNrOGA4HPBo4GG0OZqUMxkH2BOHZVKDUHn66ccs32w4LGeo5zaGbqD7faKioWjAcnvUrUxPN6niFOqWbD+n6WTKRqUsGw7bNYqiYwiFYDCgZ/wV6quvWczvyLI1hm/zw0+ecaxDuV2wTmPiNGMXhiiKxPPzc0xiECayLtB1A6lIUBwHa/QX9PIGP6lYz1YIs0+k6FSawJRVRFERl3ukeMnIarADC0mWEUJCBVpFIGyPMl4jTANNUfGcjkdewMlHn/D6t79FaVviukLSBJQVsvxgx8vbmrKpUWWJomn55T//mourN5xOTuk5NqquUUgSTtDD6vcppQ7R60M4Ik927KqIBgnN8hgfnVOmHbJwcUwLLzhmcvQMF4FUFhjGgWAQcHN9zWRscpBq+n7HZOzSdgWS5lLlGb3hENvtk8UHpkpNXDWUbYNu+BjjM+rZFXIl8eZyhU3B+ad/Tqc7OGlMfTUnTxP6loWhKAwDj975MyzDQ7N0JK1G6mrizfrBUuMG9OucoelSlAVV0XHY76A5IGUxs80CVdfpP3pGkaX8f//pH3h5vSBMcxzXp20aurYkjmNy1WH4yU958mhKUC6pDvfYMpjDYxzNpy9P+e7LV6TrNWI5IwwC+oZHvLzj6/Wcv/zBOfDoj7lGvOc9/2LeH03e8ydJKat4j55gdxm90RTNsLDdHrQNshAMfI+6Kjk5P+aLn79G6gSaY9JUDcOTx0RZw3Z9wDIsVvst67DiE1nDFC1FmaH1AqJDglLG/OT5Mf/8MuXXX3zFdp/jtA20sHjzBkOSMX/0AwZ+DxWZ5LBh4A9xhlM0VcHsShwThGsiaQGd1GEgo7QS7T5mvdqxKRqu3l3w9t0lyXZG3xZ8cj6hk+DJj/+MOM+4uJmzTxLC5EG6vM0Ei6t3dEVMpbtUnYQkFOq6IBhMsM6OkMmxNAulKZHagiiOubxbYZoGn7z4CFO3ELqCasqkcUydxuSrNbP7A5U7wtZMaGo81yfabPB8j9VXvyOuO04+/AjZE7R5RKQIWklBNw1s12W22XBIUtqmxu9U7pZLPvnwOY+fnPHmt1+xCFNcs+a2jFlvQ5aHLX/x8QecbLeomo4fDNEtj1YxaPMMXbdAerB2vL1aEvgjnv7kJ/hB8CBvTRrMkz6S8iD1b4qaLEtJNnvuLl5xsw1x+iN+/rtvMLoaW2lINi2KUNlnNaFiUO+XKBJMezaia9jFKYusoGlruqrEskzo2oelVBPIbUPdtCgdXH5/w5uvr/j08xdYUkcZp+wXC+5v7+j3J4w+/AzHcrANC3usEoURcRRRHQ4kUYLruuSyyWa1Ru5K4s2KTrMxbRs1lZB6gwcbADH73Z5NvCLvTLL6D/Yl/4hmvsIydUzloeK3yTJWt0u00xMMGaI8xfFtZElgOB6G1aNrG/bbLV9+8xtsw2fQn7LcLblef4+sg6EZ7MM9s/Ua2Q4Ynk0wwg1KV5OVNbVsslhFpEnGpN9D1UDRLFrbwc4PtJJMJ0kURYbnm1QtxHlDvQu5je8ZRRFeL6B3eoIcpQ/hl2nGpD+mzDIsRWfkDRFNSxgl6KpOcljRLJbkUcTks4/wnzzBciwO9VfcxzllEpJ1Bk6/z/MXf4YcjEh0j2enJ8hVhSenvP5v/xeXr1ZYvS1a36CwZVa7iCRN2W839MuaKAzZ7mPqOMFQZex0i7BdSlpaoZHtd8SGj9AFnWIhGw56V9HNvyW/rdEnp5iSTnF1SZntET0PTWuoVEElycSySp6ElHLLen6HrqnkZc3NbE0uKeRpzOZ+TZblqJaLqqgEtoqvCVzbwu6P2R5y5uuc82fPAdBk0AwduZYQtot1OkXrWWi6QlPkLF7+lp5vI6mCpmk47EO6rsUydVKlwxz2UCUH27Zoqpz9dkNeFEiEdFVLsd/ywScvMFc7hGGR56+IipqqblBkhcFgjCkbfL8+sJpvSFQdOoU0zvhm9RrDdHAtgzJNML0JqnNCzz/GUGp2YYyqb+gHAUHQRzc0mrIlT3bkbYt/do5QJWpZxVRk6qpEkRVkoSMRsl2vuN+EXF7dEScpdA1Pn5zhGQLDtCglk+9vQ/K8xupZIGxauUYzJcq6Q/VH2IcNaZwR9APyRiLCwDcdPEXGcWymPZ/m0HF4vWHg9aCp0YWGoggUVSDJCkpXY9QhdpVzNnyEIVd4ns3XX/yCUhlw5D9m/eUOrfF58skPaIqYwXCA0zXk2gjdP6Vc37JLcu6rMbowKMoVNRClGcPjY6SmwnMtpCzHcW1sS+DbBu6PfsDVxTvy7RyePsPuD9Fo0TqFfF9RlOnD22ippdhtaHOFZL/kbj5jG4Z8++6On//iN+waidOeRp1s2O9XNFXF3c09w8BnEPQ5xClRkpGXJb5vo3YS2WyBMZrSKAfyrsU2DOZ3C8ZWw+b1K6YDl5CO/PJbTPGMUpUQms6TwEOtMnaFgz884mZ9QXwI6esawrbJy5zldoOhN5w/7SPJDb/7bok7HrA/HOi8gGS/oq1rZFXDalKcrmQcDNE1FUNTkCQFSYcfvPiA2f2CPI2xnB5NVYEkodCimzZlnqF6AcnsFkM3sAZDMrXmMJshC/EQWC4LurbEHI0QvkNZJhw2EVJbk7c1I/8xRZlT1A2HOCdMY6KwZZlm3Mx2dJVE4AikrqFs2wf7immjmC6aIqHu7lA7gVJENJ2O77uUpoMuyUR1y2RwRJulXL39Hl2VGQRDqrbl6NkzrPGYRrPIKGizPY9HFp2sYAfH6JaFjkQcZihai9AsRNtRUnFYz8nDCtPqkR9CmqqlrSsU3eb8g2MmvqA6xBz3H3P/rqVILQxN4Fs6VVZwEYaURYEmVK63e+6+/Jo8y5gEfQbjKWW0R1NVhCSjD8d0ho+umaiHkBqJ1aHGMA0atWEXbeiyDabvMxn2qZMF6ugYUzfJl2+puxahWxTRHLWKsDyf/XaPPxnTNzx+9G9+wv7+HfdXdzRVR9VA0z3MjFVdUBQFSRxTpTmzwy1JknE0fYTf66EOfYYvnuL3XRpZ4uJuBU2JbUiMpqccbjJm312h9iwcx+PxszGmNmA0nLHv1vSMAb47YOT6RNs1k5OGq4t3jKaPKBKd+JDjjycoIiK93yKEgSqrqLqJrKlUeYScKZw/ekRnjNjpR3xze+Bwk3PmDaDacD9bkRm39IMJiuRzPjgmKyuK/RpJ09Ampzj9EdbwCLPfA0raKkXVCuqsRZNqdG9CJevk8YFsu6CsGlpamiIlrhocW2d7f83P/8t3/Mf//htWcYFuOii6hd/rEQwGzJYb/L7M+u6Ck3OL6WePOK762O4Qxs9pZIsuVHHOMpbvLnEdizTa03c8nowD/vPP/4mrV1/D//yDP9oO8Z73/GtQ/u7v/u6P/Rne855/Me+W+/8tLKoftrJCr+cS9Dw8v4duWNT1HwbqOqNpC6oq4d3lO7yex2A0ogxb2lam3/cQQqGuSuS64sWLF+iqglQVFFmJpns0eUMZLiE9UOY5r1+/43axRVINKFKq3YYEQY1CmmbEYYRquvQnx+iWg7AcdNNBH07R3B6SotLAHxpbCu6XSy7v7rm7v4Us5HRg8Xxqo8slim7x9l1CYfpgqnz5q9+xmc9RNJsszAh3WwxdxTcNhoGHN+hTK+JhSGhKDEVCasHUbdzeiKhSqGSBbplYtk2rKfh9nzg6oKYx9eHAarZG8o4QQZ9alrE0FV2ogIRhmLiuz+0qohMqg+MeZd2wXy5o8pw4SSm7jrKDKMspigJD1wh6Psfnz3ANjbLuWLUd39zPieMDeVWwCkPe3N4TRgfSaE98CEkPe5I0I00T9llKW9VIuo3SCUaOT7dLiC/fodUNou9jngWUTcs+Tnh38Y7N1S33b6/4/Re/Y1urvJltuHr1kjIKeTTqoSk6q+2ed6stVV0wcG00SYK6osoS0qJknlU4gyHj8yfYwymaaTE6mtK1HZZhokoy4T7mP/6f/4ki7RgHfQxdsL+/Qg4jmjLjaHrE0flz/NEQ4VjIQqYsatJdyOX9Pfsk5uTsjG0Fu8Utl1//lvurSyaPzvno/DF1kmGoKoskAbOi7gpsw6IpZbaLOSgSWauw323w+yP6fg/LMLBcm4GpEq0WCElCFwpNXoJcoUgKfhAghKAocuabJV++fsnr2ze8vHnN19c33K02rMOIRhGcnhzzP/70pyiK8vAdtYKsNVknLXkS0eQptu2gtzW2Lh6eQ9Oh6xrCMKITgvV2R99xQHHo6pb89p6JolKnJQbag7+8KdB8j0pAUmScP36E1wvoLEFUd9SdjCFUfF1FCQYIz6ZtSwxdIylK0qJguVpySBJ0v09Rt0zPHvH09ASlyDgbBpg0qEXBL3/xG/7pd7+ljmNaRcEYTVksF8RpQlmW1EWGrArisoS64vTkGN2w6E+OUHSL3XyJkpe0eUm8i8mjiPawYng6RRv6WE+OkKsdhy//kUZ02B89opFyiixkm8bkTUUYbZlfveHq+h5FqFxd3ZIXJU1VEdYSem/M9HhEstviCJmjUUBXFgxGE8zgjHe3BxynT78/4rDbo0sSxXZFFa2xT6f4p2e0korj2MSLO+L7d5jDPv5wjOe5yLLEIUqoyhSpOHBydISkCgJXR2pqZu/eorSQbtY0df1gX1FU4igmL2rauiSNY3Snz8lkii7LdHlFF+5ZXLzlZjYjikLSosLQTco4YnOI0XQX7/Qj2rph+OQTWlkj3i3ZRXuEItGWGQ0tYZZxsVyzzHKy+mHJLKIdNDlZEpE1EvO7Kw6HA/PFksu7LcIw8eqUDx6d0HYdy9mCulO5mIUs7uZYho7u+OxLlbyoUOkQskKBjK7pyE1NJclkeYljGCiej2OYdBL0gwEmYCsKndRi+T10QyWMQuQ8Zj+7YvXdb9GyGc/OxtDmD60UJ48Rpk/ZSHz+4gU2Nvd3W44eTzk7HjHxe0yalpvffAm6QdJ1SE2JInVIlk+43ZKVJVlZYcjgOjZNliGklmePT5Db8qFpajLhaPLQRqJKCobTw3FcFBqc0QDSiHQzJ1/fEi3uSbYLZnc3/O7lG37+xRteXt1hj6dIcsPm5ntmiyVxmqMoMsenRxydTDB0iyIveH29JIoLTNNERqbMa4b9AZZpULYd/SCgKQrMtsF1HCzfwfB9VFWFPEOyJ5yfn6HVBUWWYQYj3ONHFIpJWlTEmy2ObZDXFZKAFz98hmrplE1JJasEfY/NIeTl23e8u3yNLks8O52Qzu85cTXGfZ++54Aso8oPDW1C0+l7LlWZItOhKTKjyZRev4/UNrQoyM6IzWIPHVnVAAAgAElEQVRBmReUVUOa5cxXW4Rlo7s+RRaxP2yp4h1lFlOkEVmeEZYtdjDEMGRaOg6bGZv9li/fvOOmlbjexTRZTN9QkCUZWdUokhhTgaNxgCUEbZrhuD6636MqKhpvQJ2lrDYbWl3DGk9J84xodssqiqllHYYn9D2bjhKn55I3NZouU6kmyApPHk/xej10XUeRZUTXUScpdVrQZAVlXlGXLfvliuXtLXXVkscRTdPw47/5N3zwdEybLIjnVySLG+L1DMd1ORoP2NwvOGx31FnGch8TlRVRWbFIMu72IVpbc4hjDKFiuw6KEIj+BGNygqLpCF0DapLNNcu77wjLBGHKWH2fsmuwVQnbVGk6sMZHyIaL6vTID3OUdIlpmSi6wSLJ0HSTMA6JFreo+YFAA6VtiLOKvKzRdB3bsPC9HlVRE/Q8NMsj7xQky+EgVIIXn/DoZMJyNufl1y+xbIsPTgd4jkE/6JGVNf/vf/gHGrnh7PwpQTDC8zy6tkHogl7fZzw5wbdNNBnC3Y66bqnKgvHkhLzuaNINRbQkiVKGvk/Pd5FoMUxBtJljWxreaErmHPPycs7911+wXa0IVZ8EDaGqpFFIUeTkeY3oJJSyIU8jdssZZ/0zbK2PfXQCmoaiCZoqp0n3mI6Oe3yKYvcejoWqRpWk7NZzojhimxZc3txiqDL//Itf8NvXV9ys9zSyQFgezvQpmulQlxll02F5PY5PjkjWG7rDLZ99es6TD1+QioDdOqPMci7fvKXbrgg8D9v3GQzH6JrGxeUbjo6Gv/0f/t1P//0fdZF4z3v+hbxXmrznTxLNttF6PuO+Q7jf0BxPkRUFoWlASxpHyBWIruP0dEy4nxBtD5hGj2DqU4scXfOYv7sh2W1Y7fbEaYo/CpDqmrrYkx0OaLqJ4U6R2jmH+Z79IiWqJEwroMpSzLZh89XvuZltELqNnMd87o045C1RVTOwFfJNiClvGD52KcqK/XxOmqZc3c34/TevUFSVE63Fsk36low/HXK3WZHWFartkBRw9f03ROsNiqYR7xIaOXlIqldUZFlCUzqMNsMZ+hyymiqtubm/5fTROdYjF9V2aVqFVolo6xbbd7m7v6eSefBzVzlKC8bkMfpwArKMrKikmy26LqMJFTEKUFSFcVhy+ukTCiXFHegE8TFNuMUwTcy6xXZaFNVgvZxR1TXz+T3fvPoe6eyYShOocos1HLDZrojLkqJpiauSV+8ueXOt4JoWP/vgI2xzTaPbdKpg5g4Znjxjl9aoTcJ6/ppysWC//JAffvaIPM85pDl3q5j5riF9eU222XJ1l3F3f0OTHlgtl7w4PWK3S1ivDjimytF4QGeoOElEVhY0MmhCATpGgc2jTx6jnDwmljUaZPIko24khLInalVefjvjbp3xeGIiSRLffHv5/7P3Xj2yJFuW3mdmrmXojMg8us6pqltXd7PZ5ABDcDDgYP4zOSBnyKFA91xVV9TRJ3VEhg7X0viQlwBf2Q9sNFDfe5ghHOHmvnfstRZhlzNTNs+fv6HtGg6HJZgNw/AMy3VRyYFeNtStfkxi8kZYuiAcTRnN9nz+dEkYBo+mlPsjtrQ5N8bcORZplXGUJxzXInMUuuzosy0Sie0NiOPwMahASIIgwAoDbq4vWW/vCMdD7MTCtw2EFGh6et0SxAG/+tVPuVutyK5LhoGL45iMhxPOx3O+ff6MgRuA1+M9c7l6+56syGjrhrat0X1LVeYo0T822fqGYDjjqAW9nXDcbbFMi1a5dH3N3btPTDFwzs+p9iectqfuNSryqRyBEwz4evRzYs8nCCPus5Ro7DEMXMq0o/dmPHl+gWEJkmTH8vYLvimIbMkoDlluNlBVzCybcVNw9dvfcbff8OTf/GvMtqHrfP79v/43mMV/YNeZqMZg+eEH5m++5sO7HzgmKWfjIbv9nrqq2Wc5z4uCyXRAfjrRd3CsWsr9LfMJGI2GqmK5umP8fEb48jnGbIDRW8TWtxiLEcQunbIQbUtze83VasPu/obb2xUNHV/uH8iLjPivxrev4iGnqmG1XDIKDFQvQPQYjo03nHGdwPjsCdVuzeruDrOu2W73WMpgNImxDNht18zOFxiGgWgEjZhwdbdj9EIAmqquQWj2D7c8GblYhoEXRGQPO4azAc+fvyA9nUiThC8//IA0LVph0PUCUylE19M3Ncf1Et18h7QiHL/HdW3sQUz35YrNZk1RNcwWzzh/OiHdb2iUBU2FF8UM5gvc6ZDTaIDZZjSmxUkLAuevEcGHI5//9I9EkyGe52K1BavIw/E8HOse13dBRcjFS4Y/6cg2D2zetkzOZozOX1D1Fn/43R/JaxiMp2gUmwIOuy3KMNGdgROE1GVD6ceMJ2fYVUm53REDM9PkyYuntHWJbqE85pwvzulUjzAUfVOS3bxl+3DP8m6J1AXnT+bMphNcT+FaoKyQcKiYlgJtdjz7ry74twuXPs14uLvFqWF7OHB/3HNdpAhZ4Q4CjoeUtOgI5i/JvvxAnhdsdnui0CdPU55fTGnqHNPqUZNvsbwQo8l4+uIpKphSJEfq9oToQJke3tCnr1PWqxPbU8KmbfCmEdOhgbGCl999w64oWb39PcfNASklby6mvH4+ZjyOcYMQ0zTRhxNd02IpA1tZWLZFX7Q0+4Sm03jzM1zXZ3Z+wf5Pv+fNxRnSkHRNgdY9XSVwyo9khuakS3TbsJjMub6+4/OnK5qyJxzHdKKloeXrN8/ANtgt17Rdhxs9yiFcZfL06zf8YXuNqGuK7IDZVbi2Ty8sHD/CNRVlmTEcBGT7llY4TMcvyNOM9HikTBME53R9hzV4wvrdNYdjR5Fs8Yc9RSNopcR2PHqtccIQJx5Q9wLpOnRugBu4DMcDXM+jUZqiKLh92PGHT594WyqU0VFvHpj7FtI0MQwLyzDIugbTNjAti6ZrmM/PsJWFYZkYkY9heJRrRet5WK5Lm6Ukd49yjMViwnx+jpieo0MXqRpq20E0HWW6YzE+59NGYHk+0jBQhklXVfRtTZfsaYoOqWG3PaDsmFpLdusH4tGEUsPsyRkvXi3oqiPFYUOdHmmzHKqOYr/HnE1ZXDzhL7/7nt0uoW9bkqrjUNbUXc/tMaUHvskysjxDKJi/+AndMMOVEkNpqqLFUCBky/D5OYYf4HgB+82KUeyQ3l9hDCLO3/wcadkgDYTQeLZF/VCibEVj2Ghp0AqJb1tMoxDzxVMuq5zAVMznY95ebtmdKuriiG6nRMGQIklZPPcIJ2P2ScnXv/oZIwWnhxW6LDGlgeP5VFpC29L2GjcekiUPcNOyfPKcyWSObzv0dYWde7x48Ya6qMBRGKInCHw8z+fL+3dcfvoz82cjhjRU1+/4dGrp5DMMz8WRoHSD5zx64/V2xPrzLeLLF/z0gZv9ETVesC8qmqwhtE1eBi4OFrLvsPyYoPcwGoO7j5cI4aFHAcq1kaKmzh4Yzsf48zMMN6Ipa/qyJF2uOK4fHiXGdcvV7S0Puz2r7ZrvP99ym5RIL8awPQzbQvQlqusYLc55Mn1CWfSMpxPul/e4i9cUSUOf58TSJStz1nc3HN/9EVu3aCkZjaf4QcBCKX729WsM0f+z1hA/8iP/FH5smvzIv0ikbdJbBq4ysIYxq2PKcDjEdV0MU2EqSVsDjaavNS+fPSNLKk7bE/vNHa1qOBsGhJFNNRnRnHakuyX9ZICybaLpCN2f2K0TWntMOHnKty8q8uKeZJnx/sMXfMfDlprQVhyub5CmQy8E/tUlq6Sh0oJZ4PPVd3/DbnfkcPoDfduTH3ds9kd+//4DpmEyGfj4UiPM/jEKsbe4ePMdf/rhdzSu5OYPf+RweYkrLKpGUPcNYRhgWwbSVFiuiWMb0JQ4dYYdhpSdiWlI4vEYbdncpi2nUuB7Pg+bHSrLmM9m2LaBpTTy/o5a+bRmQOQ6GEIjtMZxLNpjgjBtTMuisg3OXp9jD3yEcjCMHtXlnHb3xIZBgaCUBqiK2RMH6oK0E2w3Sz4pOG22VHmOsX+gqwsk0HcttiHp+55j3XCZ5kjD5u+fvyCSCtsySY4HPm3+C64ToZ4949Uvv2J97bH42Su01ZMcd9zdL7m8WZIeMrbXd5we7vEsm3f/53+CrmARu+i2RimT5+dzjNin1BWibel7jS00aV1iGBLp2Lx+MmK+8PG+/Zp3Rwt3NCc9HBlObQ77jI8fEiw75tf/9X/D2Gqp8hzdtUynQyaRjegbmqrANGF1d0lRH7h4/TU4Jketmb7+CsNx2SQpedOjHJ9ges7/8O//Ha8uRvixgekX/PH3f+H8/DV+MCCcv2K9+Z708JbeNKnTmirNsawIx3No+w4/Hj2myiQpL87nzPo564cbbtYbtAVJkRPFQ3zHIkuPbI4JedVwPOyg14SmhS8snnoT3kyeMHSHKMMFp6ZZ7+nqEtM2sTA43B8ZRCFVmWEohakMTNeld3060yX58oWiqAiGPllR01crHr68Z/76Zximwo6HNJGDjCyaXuO6kjJLCMczOiAcD9kJQdr1FE0Lto3j22BIWmkgTBcpFclhTXk6cD4dkyVHNsmGwes3GMrk6nhAXH1Gdv+KpqowBhFRJ/nFtz+nNAO8syH/0//xv7A75cjIR5s22yQjTRLC0CfPet5++kQQDnHDmOKUIqXm3frA/tDgK4XTFCymAf6LM6yRjwps2izFePENyjfIy5y+aTjttiTrFcl2y6f3H9hvDpR1g3JMLp7PmFzMsIcDOmWjLZObdzsi12S/PmKEIU9/9h2l+xRLQXK4xJaSu7tbrLLEHs55/c3PCJ6ecfHVVzRCoUyb+/efObddfvrf/msuqyNVqyHN2Gx3VOkBVzwmUbmOjacs6s2STJ+Q03PqUpK0X8jyki93V0zOZhS9QhoWPYLRcEh62HFKUuLBmO6vv+OhZT2a96YZ+3RFXjUY/hCvqgiCAUrXdHlHsVnhDnxsx8SPnzHwHCLPwrJtQHBz9YX7T+8pdwFn4wHB2ZTAUJzNJkSDGGlKds4Qp+mxTwlWk8NkimM5rLctq/ucPGux/QBTSGqtOGy2FFmOYZkEi2e0gGEqEJq77ZrxeMzTF89ZDEdYqiVJMxyhWP/pD1wELu4sxp2OaT2L9W7JYbflsFsju5Sf/+w1g9GEojhSJSmDb3/BIe3Jio7ZbEa12dOKMWGheP+fV1iixHAttmWBGo8prlO2hUlmWZhNhq1bWisgxaLuetanjEVRkpQFrqNw44DBYvFoDttXCKEZPPkKy3HoRjXFKeW0fOB09ZGuERxvb/n4w1ve7g78/b/7tziByfnFY5rMP/z2e/qsJd2usZVgPvIZ+QrTlDhxjBsGoAVpklNXgtj1UL3GtiwwHZKmZBRdYBoGlmXijYb0kUe2uyUODVRdUmhBJ2y6/EB0t+P8+XNSNyJLjvz+v3zPcpcyfPqGMisZn50xjiwsq+f+5jM315/JeoEaTAl9nzNfsHz3Fk9Jku0W99DhGo8my9EwptUaaXlYhkXb9NiWotcmdjggGkY0w5C6LmjbCqlcsl3C5nrJdnXgYb3BetjTuwFZUT8+/0xFK0yi6RnDwRTX92h7/ZjEV9d0ymC/X1OkO/704T3fXy0xo5B6kxOaHUhFq2z8MOBxHgX8IEQpie/52K6HH4+o00dZsKMkUvbYiwuqLKXc3rMQNQxdOsfEciUXYU3eNxSGg9lVGFKyzgviqMF1HxPo6rpBCqiriq6uSZOU7dUtbdVQ1zWYMQjIm4pItEwvZnz9bIxrS5JTQleVKGXheAOGVs9+dcPOuyEYxbx48QS6FnU4slsfaPqeHugF3J4yZN/zGvjP//E/8nq54U1Z0/caPxpS5Ue2tx9IEJiOz+Xn9wwCi/vbK6yvXhIGEZ3lkxYV5d1H/HiC7hqCOAJ/SN+nFFrT2x7e5IzdwwpXCVrfwrRNvnr9K/b7I6Lrefd5TdPWpKcDgTdANw1tmvD6YkogPcauyfHqis4yGUQR60PKanfCHASMVIfX9UjDYHE2phUGx4c7bq4CoiCiKBMmTxYMhhNoSkzLxjIcijRhvbxnOna4ffcDyc0lTxY9P/nWwVENu2TFxfwMJU2qw56uKtHCYn23R+xKhpZDojVFdsI+rDidTvTKYb1PuT2VnM+f8ouf/x3F/gaqE8JyKUXDp9NnHn6/wVE9fuTw/LufYAUBSAVCUBx27D+8o0pL2rJiezjycbXiT+8/EQ+GfLm54SFvkc4AJx5RJnscx6Y8PhBMhqxWa2xzztM33yE9yez1z9BnC0bPAq4vb5hfRBR1yZ9+84+srj5zfrZgPJpgGgpDmUwnHj//6U8R1o9Nkx/5l8ePTZMf+RdJUdfUbU1xTHhyNqGtS37z++/55XdviCOXjh6lSvJsTxwNqEKHzjjiDzzWq4rl3ZrbwxpXCtCa6XxGnR/omgI3HNGmKYOZhZQOXz5eUe0OGE3LN0+GjEcxlwdNXnZUWUZbGQwHMaYhyJuGm9t7ZnUHTshN03P7j98zn8xQ5Qa0gWEITFvyzas5lu9hGAZVp1muHwhGC7abNVW9RRZHmocE57Rl4hjse0nbS7wgQBoS3/MIIgfHt8nSnMl0Bhpsy8J0YgbnZ2RNx+WXW35YP/C3P/0FkWdRNw1S+DhScsxLwsgmTUs0LudjF8MAQ5rQNND3dIctZQvBxZy6KTADF2lITCWQosNxfBaLC8qyQrkRI29EUd8ReS5KDFietvzw9s/0ZYZwY1bbA01dMo0DVN/StTW20CRFS6k1Ta+5ShIm+wOvhcJyXJ6dz3CiAZgu48kMLx7w05+8QZhwXF+TFAkfP3zk44cblrucoedyu1lyv75jZEsWozmLxYhh6DMKXEZDn0L0KMsl3e0x2o6HpKADfM/Gkxavvv2al6+fYD+dsn6bYAhNftiSbvZ8eb+hcF/y4oXLYj7m+cigS4/UTYPvdAShR50nOFFAPIiwC4e8SLha3nH1sCMXBqZj8HB9yez8nE9HgZAGphtRty2T+YzQE8wvQszhr/nTn+8Z9jEz74I6qLj89J9o046usinLFEPakO6QkY9nm4SBR5XtaNsG1/OQQoGU+KakKxq+/PA7VocjhzSjRyClwjEUj26uFReDGVEv6YsGrRS3hzVnkyn77QrTdnBMh9V2SRCEhPGQ4pTghRHGbEI7mLLLEhwvRhgmcTxCdz3Z/oGqbokNi8AwSIuW4bMnHJsS6/ITMvKoko7tYYc7iAkmY9KmQFs2loJKS5SUuBbIviTPe+6OCQ9JRY2kaVtsL+TFxTPk/QPbtx9Qz55z9vNfUvgORX6iOiVEw5imbpm+eMHvfvsHPl6/J9kdOe42VI7BcL5gEBr0QrPf7zGUwXK95uP7P/P04hlREDIbx9h1we2nW8osZWybDL/6CflxRW+BkVhIs8V7+RUYEjpNne7J0z2H9Yp3v/8zl5c3tL1msZjy5NUF4/kYI/TRlknR9aSbG3ZXl3RVz2Ix49mr1/TD1/jBBcYxpbq5Iq8aqr7FGw558uYVReRiOhZJnmEOztgdG8LWxIoDxtMxSeXTdpoqScnShGp7jz9wkaaN7fiPEptoQLnfkCFZ5x1FdIGMdoyXO053W3Q0IAgNwjBAkCF7zV/+/EcmgxGGNLBtFyceEac554OYqqrphSKMx/R1wSnLmQYxg/EIz1P0dYFhmTx7/Zrjwx3Xlx+p6jnr5S1//N//R0JXEQUTFudnzOYXxMMBvhc8jopbPkmpaKoM2QqarOe01ySVxWGfYvYwHc3AUEgvpjNdqs0tUpm4foCUEtM08CyTrqlIjzu0EEQvXnAeGsTnQ+zAYv3hPcX9R7oXb0izgtv8Dms2QumeKj1AlXE+9XFtk9niKcdTTpVp6sbg4XpFmmYsJiNGlsXu40fuPyeEwkAoSVLUgKDarymSE8P5Uw5JQpHVKFHgVwIpY3KxhTLjkOXQdwhTEJzNMMIY+gZp+UhrhD2YIOoUYQicwEWeL6h6k2J5SxOaTAcOmfB5/mQMssYMTObFmvOowWhPyG/P+cunO3Rb0wtwRyOi0Qg7CEmPBau7E6HtontwbBPbsTkcUwaRj7AtDNPEcRyk7hguznk5lEzOx0il2NzfUUqLouzJ6xxz9YH5s1fkZcnYhXYWo1wLw5ZoBX5gURQnVqtb9mnKqu5JVhvut2tGuuZJ6DN051ymD7DdYJgmprJwPBvXsVEKbD/G6CpORYbtuhiWix/atFLiuhZ122EpxXG5JtkfyU8Jx0PG+uqEDD1sL0DaDoYy8OIBui8psh2GrDgcU5omx/EsKm2yebjn+u6Od7cbjEGMKEsoT1iWg7ANjMDHcG3IUjzHxDENdAd+5COUwPYDXM9Hnw58ubyjk5LQteiyBs9SKD/GnMyRkxnJ+pq7m88EUUwqHCyzJRqNcDybvCqxlUnTNTStQZElGKIn2+2Anuy04e76BtN0sIIChCQcjdmvrpgET4gGL9B9h25blGHihENE72KnBsG+59P7W04XKcPpBC/2cJsKYy/RuqfqH4vhXgjuiopF2zIxFV8+vef6fsnzDx84f/4aaVpcbe7ZA8nlJXW2ZmVYvHj1AsOyiC9e0vcdje4o0yPZcYUUisPGJoxDTM9nm1SE0wtyIenbAi8wWd01oCSnNMFyPWazCRqLz/dHhvMLouk5Ra85pgk/ffmMs3jIh+s1+2OGNQjQQvLqxROW+wPp/shsHiG6HkspXrz6hqLricOQ4rjjsF6SpTu+CQXpYchsMsb2PGgKsv0DrgUNiuHZE7arL3zYXDP0IgZzj/3l459k49gjq2vQGmpBq2vOnz7j/uaasixpsj3pbkmdJySNwBvM6IyQ8Nm3HNwxl18+YxZbvruI6ISmz3Y0yZbZ/IzJ+VOE6DhuVkzCmNN6xcOXT+TJkUYL7vdHbvc5p/2W//7vvuPT3ZrrfYbhhfS9BNNBSxOtJJahsWwTf/EVcvYcQ2cYnc00NvB3/0D4+ie0nsOh7nh7fcP1uz9iUuMbmnx1hT2fYds2dhjx/PkLhKz+GSuIH/mRfxo/Nk1+5F8ktmXg2gZZ1nE4nnAdA63g+/dv8WzBbOJDc6TpBXHgQ28S0rFfr9BSMZ4vMKoDm7s7puMF48DE6kvK0w5/eIbleeT7E6YN5xchbao47QRFWiCkx2LscSo6tnWJ6jtOp5zJYMDTyQzTcTGlJLI0tgeO32M0K9xQ4fk2wnSxXYteSJabLWlaYMVDBpMzlO6IjI50+QC7kmElsEOXpW7IkATCpG1ynGiMUCZuEGIYoHVH23VEUQRBhBkG3K/vef/xC9e5TXj2hqTYoXRANIiwbAOtBG3ektbQGw7nkxGGqWirCkSDaHv6qiZZb/n07pKv/uYX6NDEcRWGIWgQWJaJsC1GkzFaKWp7x/qQ8OxNzOmwwdINtilBFnz8/J4WA88NaPuOIs+x7Ef9eVuXdLpHNx09HWlVUSjFQ5Ji9JpeCka2yTCOkbZAuxaVYdLle7ZXb1k/3PDu7ReWZY+WJm/fvqUtC8ajAMsQBL5L6DiYUjAZRZiOTdIWiK6jLXKquqHue5TUOP6jAd9kPueY5bxxDf67X3/Fn374wv7+mttPN+R1CL7i+3fv0X/3d6g3Z3z7dIxvaigPFIdbimyPZQr0LsMbzamVyf3ygTw9UNQ90op5WN4x9AzOo3M+Xj8wns0YP5niGBWru0+k+Zbpi7/lK8fm4csWWy0YOwvq+S9Zf3hHVue0VUml9zSnB7IuRL18jR+ECNciLRIiy8RQJl+uPuD7LnHoPMYZdhW6Ken7Hi0ESdvRNzWR65P0Fbs2Jwjg3eYTWBolWkbTCePzljQtaFqNF4xwh2d40YjBbMJJQGwLbG3j2IpoMGCXpTzs9gy8gIFloxyPuutpIo+d2eC3Fav1krH9lOEwYnHmsdtviaY+RuDhmwbLpMSWPYPYo+1ziqzkWLU4pokXhaSnkCgq2Bc1g+EQ23C4qQSVNjC6hq//5tekpz3Ht3/h5c9/hXIUOpCcv/kKbm6RqyVdp8mOCQ+7E4uvvmUe+ygOdO2jYeTN/YrYMumPGxzLxXMEr7+aI7MCWZ4ojvccr3taXTN49RJjckGrBU1RkZYth82G+8svfHn3jof7FVEUMJ2NWTyZ4QYBYRjROhapkCxvPnP//h3nkwjLcnGCId70CXl4RtUqusOapihJtSC6eIXvmGyl4uVogCoe6BNJE57Ra4FSBlndMrYthr5NVRzYH1K22x3noYcWIEybpKxwXINW9nSxR9UkNIcld1dLkrrDOHvFrEypDcGu07jREE+DZ0r2xyWfPn/k6flzdF1i9h2eZTEKAsqiYF1UZHVLPH2KL9Yk6y3ScrCHLUWecSxbMv0XquOKar/i97/9v9jffcKSDY4ZIrsO3WpMw8ZzQgzh0abwkCyhymnLhvUyQ2Pjhk/BsFGyYDSZ0QoohIkaTCiLBGU8npuCHrsv8cwY07QQQjB++ZrRdEIYGsjIIJ6NsNqK+80tUvVsD3vuDwXjb3/6GKute0SbMYstFvMxXS9YPexJi47zi6+QzhCOWwahT5EWXD1c8eXdLaPpa/xFTJqWNHWHicKxHFzHpel7tus7HNdH657l9We6vsM2PQzZsT+lTB2FCmK0HdBJhWHZKPux+aXbCtNyaJuSJjuhnBiZFxiOgT+fcOFb1J/e01U77OmUwfOnnHYfGI1C1rstr55OKTR0bcPkfE48nuF4EdqOWH35TJO1zIczkiyhVQrbtImcHmGZJHnO2eKM+9Was9EQ0w8ZXMRMFhNOecnYfc1md0B6Jl2dslnvkKaJF8f4+QM0Ac78GXWjiEY+XVdQ5ieqpsebTpHrNbYdsLq/Zl+kTKOIvm0JQp++SFFti7QkhgbRg2152EFA25oEuic7nXD8ANd3KbsaJxpgDebUx4xkvSbfr6mynKbu6NqO+9UO6VVkwsC1BLj6/1oAACAASURBVF5dcaxy/DDiYSuRWnO/XGK4HmXXsjpmHMseazihqTLS44ax83jWG7aFsiXSUtidiTkeIXSPlBrTcTBtA0M09HVDeDZj0mpOn+9JshNdUdAJRe96rLKCoZthOB7L3QOh8hk/nZE3OaoqCUOfRBu4hklXl+RZh9INZZ49erBs1gjZM4h99qec/LglGo5p2pbZOCQwOwxD0dbNo/+K7SFVj1IeWQ59WuFbNXl1ZLVe0rQdvTIQUmEISdu39IAQUPfw5ZgzHg4Y+i6n7MR/+F//Z/y/fGYanVE3Nct8R05DNJ3x/LvX+ItXWJGPE0ZoDDAl9WnD/uYzVdvx5utvMQyDTPpYUQR9g1MktH3Hvu2o2w4DTejYeItXOE6I1B94vpiyzysGAwvX8nAcl2OSMw5CXFM9RoZLE6TCUJInizk4JrZlkSUZfmAxm5+RNx3xcMAhPdKKDrsWxK6gOG1IDM0kWFAXJ9qqxDANkuzE6bilbTR1M+f737zl4tkcf9RxSA6MRmMMz8esGtoKxvM5juejG43RKrq6It0tUUpQJhn7NGX+wqHtOpbXVxxPGfv7NVa7Y+IJRFrw8fqO4uVTDNen6nowTVp5xd3qSAfY4zNQmlcvz3neZpxuhvzhD3/kH/5yCZZP6LgkSUJb5li+R1McGUxGSCsgGM7J0g3xbIEyNG3fMvZsZNvjTBYsdw03t9e0VUZoGWw3a6ZhzDEr8JIEJwoZDqcIS/xzlxE/8iP/n/mxafIj/yJp64Y8yzAtm6LMWN7cM19cMIo9NpsVSXWAqqTJK0bCoO0ezQgd02KZ1vRNTZ4dUBoCq2MSjzGqNdlqyfjFLzCCCLs2aPIKJSTD2RllUZFrSXeoaJsSu4fINpBaIi2LIs/Ya83ZuYcX+MjqiNANsq9QlqISEb0SWKLneCxAKJpGc9gfsBqgK+iLA4bqGA8XjF2H9fU7yASdMDBNSZHmRHFI11bEwQjRt2R5zbPFBa0XsEchq5Z0+4Ht5prjZsOT57/m+fMRjj7hWQamMHEtm8PuRN+U9JXFaBhimAZt04CAvmswmpqsSGAyZdJrbq8+s/jbXxKOQ07JAcu2EELiD0KU7OlMl9fuCHdzoEEQ7UK604ZIOJjFjuX1jsN+x0O/QQqJa9sINGVV0dc1pmkQSYkQgmPd0dYl0eKc9JjS3i5BKNKmZZQn7NcriiynTvecsoRtXZELk2Dksr2/I/YkOA6+Y6EMRRR6zKcD5vMFppLUqkefaprTBlFVj/F7XYM0FYbrELsuketS2QOy0uTu/pbPf/wBWwlsBVZkYg8NlnVJmZ142PmEruLZxMXUmsPuFt2WHA8p5y++ojA0SZYwHNpYTckk9qnMCPlsiudaDM4imq6lazJmgcPu5i1//uE32FGAZ/+M2fmI5H6FNjSDQURbv6I81jTFJa7TUOcp2XGD6jWHouLMNnFMmy7RbDYP5EVOrzXf//ADSoFrmxRNT48gKyqaqnh80fRd3MBhOB8yez6nouD7v/yRN99+Q7vdYk5fMpxOEWJLHMdEkzmj0QBdZ1iBi7Ik4WCAlWXopiPPEparJY6UeFoTuC66FfS+Qngp9x8/MY8mTF8/e3x5lMajPKrcYnuK7PRA3gf4XoRpKBxL0Tfq0VNAaUqtUabJJHI5ripMKQn8mEY4jMI5g8EIVxdYZYETeRTnF7x7+z0//8m36FBQHTuwBfFgwPXdJUmV0yuD9eUnisGY0SDCVw3S0GyTlKptmY1jXMfFEja6kViGjedJgkFAMB5jT8+Qrk9JS7+5oelqNg8rHpZXXF5dUfYN33z7Ai/w8TwbOwrxRmMqLyBvWsr7G+x9wvkwpqoqvDDEHS8Q0yfkm4Tq02+5v9nQhmOEkSOkoqhq7DBkvT8wd3oerj4zcYYgIholGD49Y991bMoaW7d08BgrbEhMR9ELTa1bble3qHyNEQ5pWknR9AyHLlZ9oHUkhnFGVrTEpsKQBkJptncFo4uXrA8nQmeDqGvKuqJD0vUC33aou4bTZs349beMLlwOhwM3p5zD7QN1kZFne7j5yG55Tba5IVIN01HM2eyM2XSEQlDnDaf1gebUI/seezzl7rDGsh2aFqqiwg4jRJdT6wYv8InGY7Je09QtRac5bDYYlkVRVvjxAM8PEYaBPTnDoKPMj7RdTr5L2ckxo+OW2SB+TBQyPN5dPjCbXUCeocuAvEkZ+jaDeIhlKRrd4Vo9Za1JigYnKxD5HmlHOJ1ie7uhurtlV3XYX31HZ2kiq+O0uidtW5xoRNN26LamKCAMH6dhiuxIsi+I4yFFD0IJrMGQzjRpNXRFhrAc3GBMftoifP8x0Wlg0isLs29oWx9D9FimYFzMub/9wrnbcdx0KM/GmwwRV3cICb/6V3/Px883hPMx3mCEGw1ItznrL0umg/HjNTMtDsmRw/oBCxPlxSA0aVlA29LpnrYX9G2FsAwG8QV5VYHncUpOrC5PBE5IkqRUeUZAg2P6NH2H7ZtUdYHoE6qypkPT1B2nwxHb9XE8j/KUcDgciHz7scFk23iWQvSaqukxTQehBLpvsCwTw3XpOo1WCmHZSDugbToM06HQNXl2osxONE2JFAKp5OMEZLLnS5HiBCFhmOHtdxjWY9EqpSLXAtkIKiw6d4xQNdVpw2mzQVVHCIZU0sIOJhgIbKFwDYU5jPGEwLV6HKmxlaZNNxjSwhqMCKWP3hTo1R11mmJOF2R5RvD0Ne5wTHXcgOMjbJeik/iDEWbooUyDfalxXRtoSLMTjoS2q+n6FiwLHAd3YlBIhbRiurbD8W1cmSNNC8Oy4HiibxtMNwQt6Kya4Lni6MC4cOhWV1xfXSI0NFqQVDVKCpSAqtMY9Agp2VQNXw4JWip2aUHtjoknC7Z5RZUkkFcoofEvIqoGVoeU0WTE+pDhGIrOdUiznMtPH3j17Xcox6FQNlI5uH0DXf0Ytx6HHJocI3QZzGcEnocQLcF8webTRyxd89V8TK9XWNYTXLsnr0qmAmaRTXs2Zrc9EroOg9BDuS6FaBGGpG01SV4yPYtZbneUbU409XG0QbUrGAxCXNchPTyw4oTV17iOoMLkkNaMhhE3pz2m42I7IVd3D7ycTfGjEVoK4jjC1YJkVxDZPsoOiAZjHFPg6IbVfoPnORRFQaELvnz4A1WZP8a809HVFR8uG4a/fkNdrxi9fs3N4cjhH37L+ZufE5y/QPc1SjkYzYGubSnKlqa1ePliwvHqe/7xT+/ZVz2j0Yg6T5G6RVoG0GO5DkKAO1ogHZdnY0WdHwjjMU+fxLS7z3T6CbUKWO/WpNsHXNeFPMFzJadkT18nmKIG3eCOAzT6n7eI+JEf+SfwY9Pk/yf6Xht933lagxYC3evHcTz9eHQoKaBvEEohhIHuO+g6Ot2DEHT9Y4EjxaOcRGj9aAJqKrq2QaMRykAIAV1H33ePa2tNr6HXPGbVaw1otAYhBEIqRN+DAMO06NoWtEYZj2u1bUPfaxAS/dfPAiB4/A7/77UEIB+9KYSQCAFSCLQQKCkBjdAglUAjQUjEX1f8fy6HoR73EY9bgBDorkP0PVpKNI97dWVpml1LVRWcdlv2D2ssw0DIGacsY+yGeMGQNi/J8hLLtlHSoC5TRrHD1ccH6iTjxZPho0leNKTbZZS1piwbpOXSapOyERwOBUJaeEHMsJJIu6HqTcqy5UFo9lmNdBwW0aNSualOpIlAaYGVnyjbHmkFtGWGPuZIWg6nFMO0Kbsez/PQXYmhCzzXxh4/oZMjsuyOKHBJK59FFKL2JZbt4HgWUjm0dNR5TryI6IIBD5nGNko4Fdx9+Quzs4CffPM1VjThPHQpsxKnORFHZxzTgiw7Eng2su1QQpJlGW1d4xsGdZbh6IY6zWjKhPz0wP3hhF5veB0bGH3CwJugDYUpPGa+wcA9Mh4ETOZD7m9viZ+/5rC0EftLtg8mo/GArm3ZHk7UvYEhbNqmxzAM8qrGFOLRE8YxMUwNdY3VdljxiOR4ol4tseh4OB5RXU92OJKd1pSmwJ6cEc0GbHY7BosJZtfh0lOVKePQZjAZc/biJaaUuObjfWFUJZ3oyKqC5eGIpSSdbWI4Gse1CIYj0kPHx9+85X6XYSqHrqsYjsdo6XE8PTD3TFSzxZNDXCtkt0+QxQPHu094nk08iuhNyX5/j2kofFtgBRLLt6llS/R8iq16pDzydKTQ0qNPrzltrllvdozsmia9wTbOCOII4QjqusZqUyaTGF1NkW1B0WSU2R7Pdrj5828IjY4o9KirnOKw5LS555ClICErS9Kyous7kjSj6zWmMrAMSRwGjEdD5tMFjh9wdX9NVZTc3m3B87kYg6NLzjwwn04RXowpG4zYJj+tcRZPoUihTMgOJYftElP1+LaF6xko38YSEnfqEVg1uSiwVM/8bEzVNJg2DKIJYnvg/u2f+Xz9juDJLxm//BWuq0jLgq5tKLIEx1a00sQUmmNyZByHnDYpum94fT4gN00uPEhOFaHsiaOIerHAlBUffvu/Yc2ekXYlnSzZlXs6XWNLTdW3GF0PWUmpFZ2hiC2XiR+xWbUEZoM6CzE9Fy8KcP0IJ3CwI5ve0DR9SX1MEaImP644JgmnoqGoa0aLKYPzOWle4UcByvXAski0RXesyR5WdEVGOPSxGkXVadxogoif00uP5PbPlMcl4WDA7XLFYXnN06cv6KRJWRwxR2OO2zu06OiuP9OZYxpLMDbP+eOXe6TsOB8bj8aXjkPV19h9R16kKNOi1YpsvWGga8xoBpZC9jbScakelpiRyXixIMkKbCUoe81gNiftTLJTzSY50BUVZVWSV81fizSX2PJpuoKqzFDTBVpZdLstt8sVxXFFkuwokz1lcYK2wohsmrYhSVOUYaIwOGYrLu/2eK7DZD7D6wtQPWVVYpgeltWCTHBmPtXxhKMEXZMT+RZpnqKaEtXX6LYnmMT4oxHKMghGPn2XctysGEUuQ9umPRVYouLu6iN1NkXEI1wNdlJRuBaOLvGMliyrmJyN6YREWIJil1Dc3RMMzsgOKyydIpucTgjaxibdPOBR44c2ebFnPPaxui1uc4PoMwI7IkseMLsKrSRVdqKvUlTfIPuGIj1QRSO05ZA0LVZe4EVTANqiojnucB2fNN/iOA5mOH58hpsOnawotMTwAnTgUB1Tvny5Qe4eqHVP0ZuEZwvSvMW3Yf70CU3bApL0WLF6f4eqIYyHrNMTvYSiKsirEsMJUE3J/mFF5AjKusZzbFxqDscKd7cnnvtgGNRA3Qsa5eBHPtnujsKxaKXBdByxVB3/N3tv0iPLnqZ5/Wyezc3HCPeYz7lnunNmVmY12YiWugUfgZTY8z3qa7Bn0UisQRRUUS1EQUFn3cw7nXPPiTgxuofPbuY2zyzidrfEmq6SqHw2JtnC7W+SLfx532fww5BG0BDKgCLPaJBIkwqxkRHqkjzc4w09mjBGkDUORgPKKkPMM5o0hUagVQ1kRceyO7Q01KJMKwqUSBRVQ1Nl+FGKqhiU/h6hLRCFClGokGUB3TDRBIEqh6isSJKERpDYZyW6LWB6HpKioeoOWdvStBJZlhCuV8TbBWJTYXk9VMtBcboomoGW7lF1AUUU0SUVQ9cwlJJ6vyArLDLJQBRFxKwEbUQrCk8ZTXFOp9cy8lxEXQDHpaPV6GoBnR6CIqDoCqrUkFclQiuT5BmmIiIKImESoYk1SVVSKyqiZSAWKb3JmH0hI0UBepUQBQHWcEIa7UmWDxQlqF0X3bIQsgDZkDE1aJYtVupyMBywXq3xgz2i2NKKAroiU1M//e8EakHkPkhpWoG8EXBticjfkKfZk7qq10euMtospfEDakPl44eGQcdGlcAxVaqqwugOkN0eu0LCrEX0pkGsKpIoIg0DgqwgizJMq4eGQltWqGKLJgmIhsN+vUAW98hmg+qGnAxlNENAkyo0R6XfP2J2J9OEBZIfIJYFk0kHXYJIVdhGEaomYpgSVZNSVxm9rk3Z2KTxDllqWC9veHx7z/FhH7PTJ84TDE0gzUIETcSwO0hSTeHvuKsr6kbmeDii9rc0rUC6XbK8+Qn9+Jww2YBaoysSRbinbirysiKpWgQkVss7yiomzTPaPIKywB0OUOuWgdFy8fIzJN0kVh1U1USId2wW9/T6FonRxxsesJldY0xj/vjumrt9S//wAN3QmYZbVFPFOhwiCyJaHeJ5NqfHfboDkYOhi5/J2P0hEjJN5ZBlBus0wF9tqSvoej2yvCCrarp9B12VWT5Mn3LJjBbVtdS8KNy2bZ+y7ZqnIVvTNkiS9DNXeeItbVMDAk3bQv0ztxFEBEH8mWDVT3xEFJElEYEWQXziGDQ1bdvSCjxxC0H4D89qGqClaVr+AyX7+bkCSJL47+/zM/egbZ+4jSQjiuJT+6bwpJpp/921aRF/Plrbgvhznkzb1E88THz6XYEWmoambZ/epa6pfj5jy9NiQ5SkJ0Wa0IIgIYgSbdtAy79/hyfqJSaiKFb/H1PXP+H/BeHffSB/wn9cLDf+f/Hxfvrf7KICUdFYLDa0+y3pco5suByfdGnu/w8uPv0azTln9oc/cPXNv+UhDalNnavrKaFscXI8QawL+pLI+PAUXINYDOmO+0iqyn69pFrfkixmpP6OxWLHY1ATFTL90QFR4NOUOXWr0On0ORgMELZrJmdnfPqLXxPcPBDOpxy8PGF09oz3777hm29/BO8EweiQRj7r5SOi0NBmGWXok5cluShj2waSqSMKLWq3j2uo9D2N4elLdE3leGiiqiodr0fdiiiD50iSjCyr3K1yCsHl1bGLIz3ZQp6acATS6yuCt9+hPnvJKkqxhz3+5v/+/WAX5rama8SrBboisK4KRheveHlxjqWp+P4ag4LzQ5vp4yOLxyt66pYfv70irmy2UcXHd2+x5YLXFxNk54iTZ68xLZvt5bfoukng77gYmBiGjjU8Ik8LLKlGrgsa3aMVVYSmpohDKCsSf40gSMS1QBknLB/XxK3I3TqgMbuESY4YR4SrNbVq4ecJ1BmT8zM6wy7lfkXHsegeDFE1Dd2wacsQWYVSH1DkBUqx4jFoiSuZwN9QZz615hHWMu7hEQOpxZNF+sfn+OsVwWLBScfhtOehaxr2J1+wj0KyeE/TVlxOZzx/+Sl7P2S5eKRru9iOham02EqLqtmIooxuOGyvF5hCh9PPRlTCjuD+HbaskMx2LK9vCYSKVRzw/uERx5C4WWxQVRU/rfE8D6GpSLME1XJ59uITnn/+a66u7rn97hu0VuPskxf0uw7b2ZTV7I4oq1F1i9njPevdGt3QicuasmnpOBay2HIw8BBVHdoGg4KTcR9NN+j3PJxuB1uTqSSJyekJruuSJlviWiJKU26vfuLd2ysOj0dEYcn13XuOzwdkVQfTcXj/7iMP0xh/t8fp9hiejjBsnZF3gKl0eXH+nOnslpPXQ3rHn/Pubz/w9SuPMvgWrA55skUu1sijT6j0CR05Q95PSRoXuXdOE4WwD7GcPvumQtRr5OgSoeuxyErsfIkUBlSZgh9LWLJJtg0Q8wQ/lyhCn3y3IU0zNlGKj8Y2SlmXEifPXlAWGZbSMDp5hr/z8QyBfSrRHYzJgwQIOP3sBd5kQrZ4xBQqmjQliCtE3Wa321JlMVkWUeQZgiATtQoIEkgSg56FSI3dH2I3KYKk4A2P0E0Ncf9IUTZUZh9HLBGrAkUERe9g9I7oWjJaZ0z16FPN79jv5+Ruj6AW0fJ3BHFI1Nhk/TEL44hiu4RujzzY4iTBU5ZDuGSYL9Fcj8mXvyXcbTHagGb5lsurOfva5ZPXb+i0PnWWs54uubqc8qpvsvIznr34ik9/+VuEzYL88Zq2rtitIzbLLbudz+1mzX2Ssm8bMlGi0Q2MjsXFyELTFGzLQqpTPv3iDVUWc303Y3R8xvpxStuU6JbN/cOMDA0/SVltd5ydnzE8Oef8xUvGkxHh/A7H83B7EwRzyN4PUOWGcPaAN35G3ijYskSx3iCVLWWSsd/tWC5nfPPTOzq2wmy+YrlcM1EFvjjuYX7+BbHm8vBwg0mA7B6wdc6Ia5H/8s9/xXBg0zehjQKqVsIbdBGiFZp7TJ3kIJXkRUz6eEmeCWSZjKC4YJpEusq720e2jyvq+KkB5mo5Zx3syKKALIqo6xrZsOh1+5ycnLLf+1xcXFC3MlmesvfXrIId/W6f/XrDyeQUWRKI4j0P97coZcjxsMvx8+ccP3+Oqg65v7nm9vGaX/72n1P4e3TLoKhj4njBfrHmeDJ8GrbWPpPT5xwcnqKqFqIoIWpdSsnjp+++4W//zV+hWQ6Hn3yBIuksHxZ0BwO+++bviIsYz+vRc/vkUcnx2TnDySF5UXP34xXV8o6v//yE17/8LXLbI8lTHvSKPEoxpYbl/ZLFdvUUNioYXL99yybZsU1iDsaHnLs6Ly6eczQZU2/uCJcPLK8/cnt5ydtpiDT+hKNRl2S3IWxlijxnM70iKyp026XX7eAZAiNb5vnFAeb4GWL/nDBNmb77A6lo440v2DxOCcOIMC0I4ozQ39C0T8sK2/UQ2opwOaUzGOJHIbapMXRNDns2pb+g37HpuC75PqRJU+J9ymLhk5Ytqjug0ixkSaAOl/T7LorT5+LTPyOOthjRA/LBBZWkk+3XbOOSxXZLXSY8TKcEecPx88/588+/5jdffoXo6jzEaxb+lo7rIdQldRZglxt0y6bQJ4SbPZurDyiSw/phxsPVT+idPpahkUc+dZYQ+FuKrKA7PKAFzsdHHD87ofvFaxpNZPlwg9TklFlMkwbYakWWl1jlEk2IGfRsFPeU9S7j2x9bLj77DMOB+OEbFqsUefCK0cDDUAQU3WC78fnw7gNlnhIkNbsgxut5zO7nVHWG7rj0Ds7o2B3ySsB2bLLQpyZHFmSWyzVVtESrQ7I4YhXEZCgYnQ7Zbo1i2Xz56ox48UAU77n46hUH558TBgEHR30mvYZVqTP5/D/HEAt29z/gnXxJWqgEs0eUXp+j4zM82yQvClarFbcPD/RsFbOcEW1n+PqAb//4gWND44e7OTfv7/jskwP+099+yfWy4G5X8vzlZ7zwOozKCMvpUZYFZZqS7uaE0ytu3/+RqsrZb31WO5+OqbHYBMyDBL+oSWtohadQ2oEiYSoKtmlRSBqGItPkGZ5lYTpd7F4f83CC5bpIgoLZ9YiDmFQWsI+HZJJCuFqgUfL2doXWPyNIa6bvP+CMn9EdjjEViaGt03N0BmoC/iNFLeLFe4q//zv+17fvUT/7kt/9V7/jpGuhCSXd11+gWB2QFMo8p0gjNNtF0AyiLGORZLRFxuyv/zt2mw2qriPoHl3P5ebye6bzW379+YCXv/oV7eA3fJzeUGzfcvqLf8Us2/M//pv/lr/97/8tyQKOfvEFdrfF8FUmvRGr2wUfry5ZLhdUeYakqqiWg2W7aHLDYnZPnhWYhoapSBxOjihQeHx8fGrPURQuTs+QFB2haZmcTBiNRohSSyKqHL96g2NrTO/ukGWZsqzJs4TFck6/36PK93y8uuXg6IT59BbPFJjPH+n1HCJ/QcdRePn110ye/TMss0d6t2RxdcVPbz9w7LjodUG+XXB6dkHv7BPy+QxB62CcfUbgx5iGDukGpVwgKDIVO/qff0kme+FaZLPZhIjBjtlihjA6ZLle84tPX2JT4PYOKeuWh7e/RzC6zO6WGJs5dRSiDE6QFBOSiHY+p+t06Z4c8+xEx2lz3PNnCJJItZkTBltSzSTNIiqpIRZ1wjRm/rjA324IgpCHTcomrsjyCuqKw47ByfGYuFHZrHxKQeHs4jltuqdnKtjDY07OjljdvGM+nRHmJUklUNXQ1jmHPQu5rWklhdHwgErQoK05vzin1loeK5Dqkl4aM1tEGN6I9vYjH1YrxK7Lqkgwux4vP33JZ5MOh4MeWv+CTu+QYr94Gpo4E2aPC8Q8bV9fnP/X/dHBX/2jEt1/AviT0uQfCHVdW/4uPItLUUjSmCRL0LKC+dJnNLGI1xsmowtkxSMNI+aPj/zw8ZJN0yDYGnPfZ/JsSBis2UynvI8KfvW1Rvf1EZPXFzRtwmJ6SROuSFf35IFPEvjE/pZwUzD3K+azOYIk07Qi4+NTHu6mFI8bXh4c0JVd6tUWM47oT3S8TsX8u/+Nx5+uuH1/zaa55+T1Z+i6wTZICHdrdKmlSWKWmw2mLLHXNTRDw+x1CO6mTE4mtIVFlezpjYZY7QRVEvCXc1RHw81jWn3I4fiM06GBnxTITYVrqiR5QluBhEgcxtxd3XE8OqYoC5IkpS5KmiInLQriMGKx3/GYhCSyRc91ECwdQ4CLgw5tvmI+vaGuK6IkwrA6zB5rqgo8U0dFIBcc+pM3JEWD7z9SBnsCP2Q47GPaFk1dI8gGPbNGM20Ue4igdSAPKf0FpeSyW8yps5zlPsXfBlR5QSIaiKpKbzhG7Y1YP0xJq5ZYS9lsdxiiRNK2NGVL8XM1ZLwPMFQJ/XBCFGxxXAe7P0BUNKK9j2YNSdIlaZHiWBbLKKTI9oiGS7nbUnY8wiikCt+iqwpaC4EfsKhyPjm/QFjdQSNi2x2W2zVFWlDGCZpY4+oqklBRlTmNJCGrBpUs4hgWTZkT+AtaUyKOXUQxp0hyMqFkuVqyDgPWScD9dsvdbEmv61BkOaqm0+8YFFlClkS4vT7HJwf8+utPwbSZNRmvz045ODqnKVvIQqymYNuCrCpomkqU5aiyjChAlOVIssx8vWHkOfj7GFEpORgdkPhL4n1IW1aUqoRfFXjnZwhtxd27nxieHDM6P6ZJVizmN0TRhvHpMxzb5Ycf/i/8fYqxWfPx44zx0YAkztis19RNQ5HFbGcrTl+ccXRyBHFDmIWYrkq/32XodrixdaIwQBUFmqokjXNMyUTNK0ytQJYtCmmEpFlkixn7xwWVeoRRFsg9mBAFZAAAIABJREFUESHZMRwc0xgGnWaLELQUqxB/l6HpfSS1ot3PaVUXIQtR8hRJEqhlkQLYFTVRVWOYJoYCqiBxODkmqkQOn73GIkVYB8zubzk9PmNy2KHbscgKgcbsI5HRCgpNMCX3c8q8QraHUIOhmKRxhJT6xOiUTUPuz+n2PGRJQXNtBkoL8Q6x0fE6Hg0CuaDjiQJIFlJTsttt6R8cYCggZEu0gUWeNrS5xt0cFHNFK4s0ooNraOyyjLD2aaiJ5zOkIkFoa7L7e4xkS03E6dEL8jTn+ZFHsVoQKDLPXr4haW0kSrL5NVd3PrUyoMorskqllTSOT19iiypiK1Av1xRRTBo1rNYR26KmEFUUKacuahqvTyzJyE3OfLnk+KBHb9JHaSWycI8/n2LKClm4I5pPyermyUohSoT7DZLbp0Hk+vYe1XF4uP5Aunvk/OIEQ26hzvBsBV3uIMo6kuzQ7w5I9yHCbocoq7RFhqgbuD2RYP3IydGE2eM9tmWQWgZB5PNhu8e4nfLyVyN++dsvufnx/0Tud2iKBqlK6JkCPbnBVQQaW0dQPcS2QnU8JFlA75jUZYlYpjSyRS11cLo9vNMxcZORRzF5+hGRlsV2zdXtFXfLOfskIU1imqZGNx0Gdoe6raibglZoKdKYw+Nzrj9Mub3+QJqmHOgWB8MDjk7GzO5vCIId+92aQ89icHhMt3tIEVbs0imC2CIpMt2eS65oCC083i5RdJuSFWGScnZ+gL+KSXcBmbVkdP4JveEYQXCoBBdN/IrtasFf/uXf8OPbG15++jmnp+f0Bh2eHw14+9OWPNyzK1rSpMDr9pFkAc/t4to6P7xd0b+XGZ+t6XkOitBSVC2IEOUVpSzx6//sX3B/fc/j5S1x0eBPd9iuy/nJCS8vxhz3uqiSRBxq+IHPdPrAKkhQFIloM2eviSimg1FUZFFMLWqYro0IyMWew1GP4zef0Tk+oTF7TFd7iqqi0Xs83K+YBx9I44TFekcrKZRVA4KBZJikScbj+/d0Ol3KDJLFFsuxSIMQaTRG0m1iMeRhtkKva3qeQ1jmVKbDwdhgvdnSmhayYrLdrkiCmBqBFycvyNuKh3ff0tVbunaPrAlROwOyaEkrtMxXC/wwoHF6TF6+4eD8jNY00F2XQ1OkoKUKfSZdk1Y10QUB3e7ixyKNIrJMMmzXptdxSGwLQWhR2p+tV8GWne9zcnKB7Q2wPBNnaBIqOZqsYWgmtu3yePWO2d1H+p6B7CosH66x2HA08TAOPqWwfsngQIWr95iaRhsvkJQBn/3yAtXuUxch/mrJ9N1P3N98ZLVY8bDcIyoq/UGfdJUiiToDz2MdbGnyCEwJWZBoMpNgLZE1KpqnIrtD9nHG42qNQY0gtIgCNE1LVddoRYZQVuiGze1sTvnDFZLa4+jZc8LdmkiSGZyes3iYk4UtcjOifzpAF3OE8QhFz5FJyBudfZownT9SlgnD4SFW3RD7c/QsRG8b1vuMqqzQLI3J4YAf5jW63uf5kYYjq9RJgeIdkgoaGTV5nhNsV+w3DzzGBbWs4+oaA0ejrBvqtkWWJeSqxZRkNAHMBlxFQtY1OpZGXpToUovWNxmenDwNIjQd06qx1ARvNKI1BfSzQzJ0SkVjk6Roz14yn63RrJw2j3G7Z9wLU9IoozfSGR0eoSktMRKqMsDRRVT/AdkxiQ8O6N3d4i8fWNx+oOd8hlTvEDIfxXUQFJCbBkPVUV2XGpGcliZJadsasYgQii2G0cfRRS4/fOD7737g2UTm+aefMn79L4nbDuXDjm1uMaLl2w//C4u//ztu/zBDdWwG8p5D7YLJ6Yjd/Zz39zNSQaLSdCRToy5z0ipFqhS26zVlluIaKqIIqmGgGyZN1WJpMpZuYlsmDTDoesxnM5okp81Fwjzh9vES1/W4iWOW6zVtkyNQsVuvScqWh5WPUiUoioYkyfS6Q8oiQpVVTFVD7o5QKx8hXFFVCaZ9ijJsaPKKj1f3rDZLzgZ9VFEkWq9wVBnXVFF6NpJrUFYZi8cpbbzF0yM6A5flwxWFriK5Yyc0dKfY+AQP98yzEqlqybOUbHGPrFT4SU2NzMMmJRYFuP3I9P4e3XKpVj9RRREslnx9cMa4N0byfTqvLzBUg2a7IJ7dsF9tqVQdaTKkpkK0O+weHvl4ecnHmwcWu4hdmBGVIpKqUhYFfhBxfy8wX244GE9YrgJoJRREzo4nbBdzqrrFtjWQTRRVJ56t2QYpD+uAKE8QZIHDromrC9yq7xgcHDEYn/NwP6VqS1JDJSEmVTX2eUq131IUOULdsNyF/P1339DruTTBAunVc9Rf/zPOxgpCuSeLd+Sii9z6rGb3GJnfVicT8x+Z5v6TgPQXf/EX/9hn+CcB3/ffvL+a/m633gtFXT/lQdQ5/s7n5t07zGzHqNfF38zYLndstwGbKKByexgyKJLAdLrg9uaeYLngvDvh+PVneBcWupoTrK4Z2DKWrNIkMXs/pEgTkqJlHTboVodScTHtLk0rcf7yKzrIWGnO2bNXPP/8F3iGjtXuGZ4eslus+Pu//YbFdMu7+Y75LsA0DUzHpdVMqqImLSpMRcKPYixJoi5LBoaOpmkMh33CMCDNMjSlJAt3+P4WybBBERDqGMtUkFWVppUxDA3b0EnyFlMWEauK6HFKPn3g9vt3oCjIroPRcYiKktuHe6K0xFA1qAo2ywV3d5cEuyWOITHyTLyOS1VmbLYrwjihLCuaWuD2McTu9NDlmoePt6w3AYZho0oC42EPq8nx10uGXoeTozGmKmJpElaTougGkuGBoEARUwdrynDPw801+8cZu+UKuWkZ9brYnS7Pz07xLBtZUBDjmIFlIGc1F6MjOnoHoxUYDUYoMkzGQwRVo0xChLZ58uk2FUanh265FHWF0ua0gkAU7ojDkBoJ2XBIqpaialBUDcs0UaqSvb8mS1LiOKFjmwx7XUxdRRZBEiBpwev32acxbVVT1Q1V/TQcsG0LzXjy08dhhOt0qMqS7d7ncbNCMiV0JSXbzcmDFH/pE80XBHnKvqrZVw2CpjPo2GgyTA76OJbGcDjg7GTM6+enuMMJq3VIFidcPH+BpamIeYbcNCiSTKc/otfrku8jxKbGNZ+aZWRRoswLHEUkyXPyssY2TRzXQdNNdKlFFaDnOohZgmUYdL0+oJKlGVcfPtAZXTA5f06/P2I09iiLKWXtYxolD9OIaJ9QliVp2hBlFbpp4LkObrdLHCWIgsL4+ILJ+RnLaIepqlBYfPf7H/DMFt2saRsoiwrd7aI5AzSrQ1pUCAjE6w2hH7CahxRxQ5zPEfAZ9m26gxGNpNLEO9KHW5azDYpqYtFQbObUecZmuUMWRXbrNTs/ZJnUlEaHZVzSIHI0PmA8GRPXEq3pMjk5Q6Dl8ofvMFWZydDl+LCDahh4/QGaJKKpMkUUEqxW5FFEHkaEwZ7lagOCRNGotPJTTowgy3R6A7JGRKgLhDrHkBpMRcH1PFRdR5Yk2qbB0WV2qzWyblJXFXEY01QFtqHSthWyUiKLGbQimqQRBimCkJKWNZJh4xctaVrRtA2aCEKZIwuQxxFWk9AfHXBwcs64ZzBwFYQmpxBMErmPanSY390zf/RRrAGyIFLuN/TGzzm/+ILj7gC1rIgvL4kur9htSz76DfrpK4Zf/HMsu0Oe7Eg0i1R32CweGGgNx4Ofw4TjjOcvX6CqKt1uh55jQrRHLguStCDKG4q6JgxjdE3BcWyiJEFsCs5PJ/QGfco0QZcFNE0njRJMp0sWRghVgVjWqAjYivS0tWoASUcRReoyJ6shTAqi/Q7HMinKAsm2kXSVKN5gaQm2Z8LhGy5vZqimy+uBi6PLGLpKmhZIgoCmKQitgKrrTzXtaUa6nBFuUhRrxPDZGaIqkBUCu3DPYv7IdhHw7t07ojxD1FTiJKGtCizTpHdwRL/bpcxiqqbl6OgQ3dYYDQccnxwjiS39jsmzi1ecnj8jClesVms2j4+oVNi6QdtCWdTQgGnr6JbFy5fPGPS62KbD6mHBfPrIfL7gk0+fI+twMOlBVSBKFf3hAE01kEQVw/FQjc5Ta44KYhWxWIX4fky4D/E3M+o6R+m4OKbJ9GGOKCp0vB6djsNuE6ArBq3c4JgVh+NDdL1Lkqd8e3NJmRa0TcUm8umPRxR5ztu333F5e0me5jx79imvv/ycydkFptSi0rC6u2L/eAstFCis9hmzdUDZwHhyhCAIaIpEU5cIdcF46PDi+SnHr9+gDQ6RrQ5BkHB7f4c3POTH9x95uLvj2fPnIClIqo5iuuiqgr94pCoL6jyjOxiyvLtCFgUmh0NEAcoiQ6FicjTm9nZKUcHD7S0HtoptKNR5gWB00CyXPE2RDId9VjJfLvHTgihreP/2HYW/wrItkiRFVnVa3UNVNbKyJAl2ZGWOOezz+Z/9iudHY2zbxLI0kirjw8171o+PDG2Dqqqp65Y8jiiTlKKo2M5XNHlOVZakuy1NA6G/o8gikiIF2+b1178AU6eoY1aLBdbRCUefvEalIJzf8ThfsdsGRPsdXROW1+/pOy1JKfOw8zD6r5DKLSTXNPEj45HB6HBEHiWs726Yvr/i5sd7ykxlMU/RdA8hjzkaDgmjkjrLgIrp3EcRO7iOzs3HK+I0QdUkBFEnCGKSPGWx2mB5IzRVZr+eIrQ1va6H0+ljWQanfQvPtcmylCBJCIuWjqWhihJ9r4ek6tjdPuk+5e77KZL3ijxukMOA4PESR5pRKh3ion1qhsozbNvgdGBhKSXXl+8Igx37zYZWsZk9zDgYDhlPnhNlLUJZo3U9djmcOD16bg9REGjKnO3DO+Y37/nhZsUqExlbIj0pZ77aYjgewT4mzQoMTefEtem1FSemgqOqJEXDNkrRmpbPnh1jDEYcv3lDmQYMNIGToyFXb39genNFW6bcXr4j3a9J1zO0MsQkp0j3GJZJp+MgihKSKNExNXqWjiZD35AZjoa4doe8VJDTPWIW0ht0sQ2FtiloqpL9asZ28YBeBMhtSVuXCIDq9J5q1duWMC/YpRlFmZJef8P89hZLl7i9neKHEX1P42RicvGrf4ninNIIKo+rgO+//Y7ewOL7//1vODZWdDsio8+OsIbHvDr/EqNuqeuGwfExktSQ7TeEmw1lUdDr9pDaCqFI0GWJphVQDJsWAV3XGQwOaOsKf7ejSCKWmy3Hp6dUFeiqhNvv43aHCKLI8ckJlmaS+CFXP/7Eh3c/cX19wz4Kn7L4yoaLT95QFyVZlvPx+ppuR+fsdIhCTVtXNHUOmsZgcoxrWNSlgL9KiHyfPA7pdb0ne3yRoCoK05sb/vjjO358/57Vds356RBVkxmenVFLAkWroJo2hQjBak0epaQt7MKIjm3wyaFFHW4odkvizZLHhymrmzvqzZb5xmfr71Hrhq+6Ll/qDoPDc5qmYXQwoHtgIDUZ/h//yOrtJbViII6GiAMXoWMSFzXf/v4b3l09cLsM0S0X2/PwRoeEBax2MUVZUVU1Ql1z2LWx7A5V0VBVDZ7jYRkmtqGSJgK245Lu9zhdD0lW6Lomvr8lz0v8MGK+3eOHEYpQIAgtqmZQNNCUCZphMItzDnsDpLLFKErCNCcRNZJw+1RaMT5hfPqMIgkYehYkc9LVNYL61EyX7BYYFBw9e/2vDdN+/4/LdP//jz8NTf6BsNoGbz5eT38X+b5AUSDXJcFyycP1Nesfv+HrZxfIioy/+Ja8ShG7x2yKluvrj+RlwfRuShRF2JrIUb/HyctTlLGGpT/J3kf9LpbRI975NNGGu5sHNF3j3hcQOkcESct0OmdoO3QHhzx/+Sknz75A3e+4GB4wHhxRvr8iufwOwwTHkjgc2uhCS57EDF2Dx41PUZZ4/SFxWlBWDXVZ0jQNkijSViWWIDL2uvQHPUTdoKxqgvWGuqqQNBNRUtBlAdPqQAtJsEaQNVTdxtB1mqKgCn3y1YyPf/U/c/XXf8nRZ29QhwOCfYBj6SR1w+3DPXHRUJQ1ctOQhT5FU3F8fsrJwQhFltmFMYJq4OgiD9cf6bg22e6RNNzz8WZKEkSsZgHHgwlvPnvBs+fn9F2PLE6R6pKDroNtqEhthSI0YHo0SgdBUJBliSbZE87vmD1MscynNPaTZ8/xuh5FmqIIIsvpgsUqYrfYEkYVuZ+wX2wQKhlFNaglEbvjItYVB5ZEr2NTiTJlXRDFMY2s4Y0ntCI0WYSqKzRNTbwPKPOc1XqHZtrIugGyiqQa6IpC1TQ8XF9TlhWqJOHqGseTI4qiRBdaalFG6R8QRiEfLi/pdrq0rUiaxtRNjeu4uI4NtFR5jiYrRGHGdLbi2w/fs1nd0SQr8vUGIQBZ1giSPUFbs8oL8hY0w6Dr6EhFQtfrMDw+Q1cUhs6TMkO0Dgh2EacnRwyPjnAMhcFkjN09wOmP0DQTtRUwRQ1DN7EdG02sMXQNz9BwVIWqepJYR1lKU5W0PGXz9EwVTVMxDB2vd0iRlnS6HYZdhzzJWc7XWJZO13OQhBhZ2KNrFY7n0TYylgGSILEJCubzFW1TIcgthufiDVy6rs1+VdHtD+i7Jq7dJWka3l//wGnPxZAz2rpCkDRM26FuWvJGwjQUotkHduuQumrYRiFXtz/g7+/QHYPu6BxN1ZDKlN39FfPrO8q0pu+47GaP5ElBnlXEfsBiscEPc2ZRAb0x8zDFtCwGoxGjyQR3fEGSlfRtg74p8v137xBUB6fTIy8SoqRgcPYCy+3Q/kxEVmufbZQRpSX75QxDbBCKiM3jlLxqkRWNRpAwLYu6KsnLkqosaJuGNNyjiTWSJNNIOpJuYWkyZVFSyBZtkdNkT1utYLeBPENWZQRbpxUiZLGirhTSMEWsUixXRjVtrvcVWB5ildPUUFcN4XaDVkak+x1Hr7+g1/PomsLTZnwf4+9C0t2a7XJJnuTIqsVmvaGtKjZRzRdf/IaxaWDIIm1RI1YgYvLXf/iO+3jPLtjRlilik7FNQqZJxmI1p2fIXIw9hqMB/Y7DJxdnHJ+d0u046AK0aY6/j7m5uuf7uxXrsKCsm6cMExlOTw4RVRVRlBn0LAb9LoqmIZldNM3AMgyyfUQRxuiIxKstcppRr1aU2xVNklAWUER7TMNgnUoEpYhQRfi7DSIty8CnkSWKouDjbMPoq3+B5Y0Igx2N7vC653LYN8j3AaqqoRsGFBmyLENd0yYtxS4gXt/TGD36z06QdJGqKQjSnPlmy2a14v3379DtDpKpEJUFwWaNpjx5t+uyIIsCqqpAliU8r0PHddmvfO5/uuOw3+HF6084/uQZRRqyXS2p84Qy2ZMmGXlVsQpS8lIkTWJOjk44OByiyKBIKkWckO5TNo8zoELUDY7OL9ANA4WGu5trHLdlcnSBrEjIioCqexiGhSy1jMcDeq5JVTSE+w1UCdOHKYookMYpd7NHOv3Bk53RthAEgXC/Zhls8cYTTgZHCG1LJbbMwoi+28HzHASl4Psfv+Hq8gfubj4wnT5Q0PDVf/IbPvnkFYqi0tUk4vmU9eOMzTpgvi/5uCm4nK3IihJZMxh4XSRZpioapLbC69uMDkd0RscEac5ys+Xg/Jz1wufq+pbx+RF52uAZJlUrkGUl93f35EnE+v6GeL+jTgKaNEIXBSyxxRRKNAoMseFg4JHHEePDQ9q6YL/dMlvu0GWDwt+hiCIIEqpuITs9qqrGtDqESUywD/D3e6I0Z583LLYhaQV2f4ymqbR1Q9M8BWG3Ysv48ABH1Tk8OMRQZKLIZ76442E6pYgSOoqKJIMpF6xXW1a7hAKdNEpJ1ivauqFKM/KiJIkC/P2W5W6L3ungel3mj48MJn3M/pjTT/+MTqdDHS5ZPNzz/ocf2YcR221AXy8Q65LbtUiiTBgOPCw2qM0eRy458HQMSWQ92xEstihNy9F4zNHFC7qDPi+fXWAaIv2+h2wMsDtjhFqiSVPavMLfzQnDNdskYd/IDKyGzT7A6ngkWc3Kz9muVtheH12GIgsRRQnbNHA1eHHoobUVuqaxjnPCJON83MO1LfwwZzyekMU5hgJF0vLNH9bk91vEcMHy3feUYYA0vEAwTYSfMyDqMqIvZ1hyzubxnnc/XZKnCQgSq0WM3TnEdUYIjkGoQ2804OL4mNPhCF1ViAOf+eUfuH73DX/39o5U1PGEBIsUXVWp85SqKDgc9BlZOm9OxvSoicOIdZQRFzVX+5ShpjPqD+g4FrYqIGQxeQNhGnF8fsLZ2THBfodpaMzmS64/XnM3m3H/cA/lnnc/vKVOfAxdpEn21I2EJKl0HAddEin8HZbYMh56uJpOvUlR9gvyaEtVVQh1yeXDI87ZCx4v33Pz/R9xm4jOi6/Qe4eImkkriDRty+UqIKprmjzm7/+n/4EkS7m/m6EYBgeTCXkeoWoKkzd/juH0kWSNOKv49o/f4SklX74+5PR4zGe/ecUql8jXMoPOCG9wwOFBhzTekQQ+VVFiGTIHowGj0QFNEdNUNXFWPOU6SQqHgx79TgfDsEmikKYFU9dxDRVageevPiWKMlRZ5nBygu15mJpMt9fFHY5QFQ+5MTHtDnbHwx2M6U8OyKKY7WLK4/QOsSk46OnQVJycHmKbOqapIlU5um3gdUY0lYhpjbi9vGW9nGOIInWe4dkWkqbxeHPF1XSGoRvYHYfxaIhlOIRRyd30kcufPiJrGqLjMNuEqBTsogREifOBjZRG7MOSqobN7QfC2RSnc8BmsSHwfc69Dr9584avjo4QigxnMOLw2Qm9kx6anFDtNky/v8R882vsV59gnB2Qii1ZLVA3LW8/3BKUDZPjMYPTUwynw7vrOVFaUxYFbd1gKQKWKLD2Eya2ged0kAQJ17IZ9nsMPQtNFuk4LmnRoql9vG6HMvFRVZ19nJLXNZo7ZB3n3C92+FH4ZFFvBLoHHTw1AMtBQcRQDKqipJVlrm5vMWOf4/EI1bCwj85x6gijWqPWe/qHYyRZZju9JV1PaYqY8cnLf211un8amvxHxp+GJv9AyLL8zXdvL38X7CNBVXV0USTa7bj64x/o1S394SGHr75APzjjaramEg2++eE77h6e/IxFUSPlOc86A3qyQVRVKLpK35WxTQvb6RDudlCk3F59YBfEFGqPVapR1grrxRqpKrEkkS9+8Wu6psrp8zf4q5Dbb36PeHPDcNBncOZgdCoUXUaoJZxuh76jkcUxUZxgWipex6UVRKqqIc1LXMchzxJUUaSnG3jdHrZpczjokjU1smHSHR3Q8WwcU0Y1TGRNRyKjjLfstms8b4SkmQiSxO7umve//xbn+AWTV68wzs4pmpr51UdcxyHKavysomjBFAUcVcGPIsbPXnB0dkFdNyRZjKqrHBx0SDeX7DdzEA2+/+Z7Vos9aVVzenpCHWY8f/41J6/e4FoWpqRy9/YDB46KpsJ2vUQWBRSry6rpIACaLCJrOvv5HWUa4w7HyE4fQRAJSwj8iNndgvuHJQ/zLX6YcfMwY7sPMREJ/IAizel4Dtv9DrnKmYz6eKqA1JR0e102cUkrKRyePikEotWU7mCApCjEuzVNmdM2LQ+zFaZlIwFh2SLIKq1mYhoayW7LdDrDkmHUsfE6HWTDRlVkdE3FsEz8ICAqCoaDEfX/w9577diWZld63/Le7LW2Dx/HpavMqqwmi2w1oGY3CehWgADe6+l4LwigIIDqbrDJ6hLLpD15TJwwJ8yO7fde3usiSo9AXtV4iX/+Y475japF1nQEScKzeviuh9zVxPuIdBuzuE756fUtP775iXh7zzC0OTqaoPXGJELNw3LGIi+I2g5RVkjiBEvX8DSRfL9FrXOmoYvb6+EcPKPrBPq+Q7/fx3UHiILO/OOSx9stLQJVnBCtErxRn17fZ9iz8QyT8WCIKgiof4QYy9L/D/8SkEUBUVXRNYODYQgduJ5NCyS7mMnxMU2ePXE6shihLWg7lWTfkhcys48lbV3iOip+GHJ198Ty6DoBRJG86hBVDcfzOD4On7gwLdiuw5vHa+J1zPEwpGu2FDUoXp90u6VBwrQd8njF8vaarDR4uH/g3dVraqvgz//qlwxf/Rzv4At6pkKyX7Bbb8hWEX0voE4ytssNq1XMJip4WMesooLHvKVULYLDY/Zxzun5c0aHJ0iKQS5buI6HKVY0+wWu7aOpDrfXHxkcTOmfv6LRHBzLptmtKPd7rKBPUdb0DInT6RBbk1CpUCk4nfSRTZ8KBUlR0DWVsqyI9hGr1YpGknGkFluTUKjQLRcAUbcREZCaDN9WSYuGeLen3i0wfI+9oFG5Hqar0mYi+6glWid0QkortjwkNfdJiWGoZHnGdhfhqhJyucfr9VFkhe3sks9OQvKsYF3ZVHXL6votdlfw8eaRvBaxdRXJcJkcnvFsMmJ/dUk4GOP0D6lz2Fy+4/958x0PRYyjdtiOzt3ykY+7Dfu6xrZNJgOPo0kfqao5HIRMj45oqxqTjvj6I9E2Y77YMJvN2eUVRd1i2ya62NJ3dWxDpxcEaKZJ07aMh3380Rh3eMT9tqJpOtLtnrpoaDoBMU1Jr6/QRZE22ZHPPiJUFU0rUmYJsqaQtSJxmhFtHtFFSKMd7x7m+D0Pa3SAHkx5vLlGFkTmiwV/+XyKJct0XYtu9Gm2KbKmIEkiVZLTNjVxMudxdkXv+AjFdkAQ2cdLorLi+n7G+4trDN/BDSx28Yb54+zJJBQEdMPG7fU5OT8jCAPoIIkyTFEh3T0iNgmeY3H2yRekq5jLDzcIVLiKxI8/XRAnBas4YeSbjMcH/OqrL+jSjGL7gK6I7FcRVVoiIdELA6pkQ1WWjKbn9PyAIBiQZRlpFOH3bLquQVZFFEUCVGhKoHg6ETNNTNehKUssw8DxAn747h2b7Q7b8fAtB6ETGB2MWT4+cvHmHcPpIc8/eUWXlshqR+24HE6H9EOXniVRZ0uufvwDXdN3mlbvAAAgAElEQVRimCrTsxM++/QLVFXHURW0ImHx7kcu3n1gvorZixYPs8UT0L3r0A0TwzBpiow03oHUMOzb+H5IVjYkmw3nL48RrT7r+yXDkYttaAh1zQ9/+APff/sNQlGwWy/ZzO4JXYeBa3PQc5mEHi+enXN2doyrSwwdBa0r6PcD+j2HZLdhMhpSpSm+LGGqOj+9v3lqbTMUkkag6/4IkJcVDN0giveULUiagWo6T8YPDYgCXVsjSRKiIJOWJWXXcHT6nJ7bf5ovjKdEFEKHIOgM+0NMVcQ3Kh4u3vDmNkYOThF0h6ysSW8/0JU1VdWRJylpsme5WbGMIryehyQ2ZFGBP3zG5PwX6LqFSItYbHj344/c3d6yXj7SIOC7NrZjMTk8Y9jzkdIlQrIhsC1sw2Z398jswyO7hyXDnsVnv/yS3sBHFmo0scRxJEy9xXE8gsDHtxWCns2g5yIKFT1Hom0r6jwntFWqZMfNwwrTUylq2Mc5UbSlzbb0ew5FlhHvNihVxkCH7XKFocj0+z0aRaRnSU+zh20RhCG1AI7fg6Imms+5/eFHHt9/w/buJ2SxY/CzP0c/nFJ0HZ5toqkiyXbO5vESR9xgC0ve3e75uEhQOone9FPGg1M++ewlk7Mpx6MDvM7AEGR8Q6Per5jdXPD6u2/57U+X7JKESc8kfrzGEFp8y0CTRQZBgGvoPBv2cGn48eqB7/947jiWFCaqyaHj8PmL5wShhyWD2tUcTEb0x2M0XaV/ckrfNzB1GVVX2SznxFWN4XjcPixJGwHfVtHzLQYFmqax2ewwvT5Z0SJ1DR0ifd9CLfZYuzuUb/4rSAKarlGUGf/92295uLkkTxMEw+Lo819gBEOscACiREvHPi94+7imE1p0GtLLn2jajrZtMEwLe3DE2/c3lGXG0asvsZweiCqICmlacvv733I6PcMZPOfDrOa//MNPuOaQyegUG414NiNa7RGqFs9QcSybw/NPyNKUNN6TxTFZUTEeDhkNRoQ9nyyJqYucXjhk0B/Q6wVIokxg6fQHA2zHR1MkDLHj8OQ5tm0iiDJeGDA4O8UNAgJNR25qFncXFKslCiLxZovcVZxOAwaegak8Lepcx0QSWpo8pc62OGGA0xuiSBJN3TK/e6QRFLL9CktX0WyLvO2odZvB5BBFN6jynCxJmD3cU+z3VPkeJ7AQRIGkFMmijO1qxajv4Co15XZB28LD259Y3d1T1y2Hk2f0DZsvjg/pB0Oenz5H3G/pD0I000Ys9ijFGoo5qu+B10M+HBN8eYpmt7RdxWq5pshz8k5GN23Cg1PiHOb7nMe7WzShpRMkfMd9qktOSsqyoteUOKKI0IIudAz1joEtMRpYyJrM8PiA4WEfzdJQNBXTCOnajt1+h9CK6JpKXuSUTcvA1xmNfKp2x7mVYtcdea6gSAqdLNAJIu9f/0CXZ4S6xmQ4QK5TlDZFzx8p0hhJUjCcHtF6y/vvvkFpSs4///rvLL//J9PkX1l/Mk3+jbRLik/f3q7+VjVMIY9S2EXMPj4wsUdM3DFlDlg29+++Qwa6pmOxfqpoLRuYTCaIZUWx3tLmGaUtcXbew3ZdBFGnkwTyZEe6nfNw98jDtmKdwZsfLrBklWS/59nA5/T4lGm/TxC67C/eImYR8483sJvjWT4n/+E/ImgmpBvyx4Rk+zS8y6pE4Oj0PJs4SQhGI3Q3oJNUZEWhKQvqLCN0XRzDQVM0TN1mPLRYrhYs53PochSlRhRa4s2M/fIDTbZmMZtjOgMUAeSuRVRUrOGE3vEpnWmxj/bUScz8+gOIElEj0rQdddVQZjm6qlDQcXBySle35FlEFK1xbIPA0tk93j3V25YFTV4gtjDqT1Ftnc1myfCsT38SYimwuPxAsY0ZDEIUsSHoeZjBiG2tUysmUplh6RpUBdFmQ1l3FMhcX1zxcHcHdcNweoRCh2/ZaI1EmeQ4ss7nZ+dc3VzxfvHAcz9ku1/R5TEvD8aEvoHSNeiqiKZIjCYTXD8g2+/Y3F8Q+jrIErobkq5miG1DtN+DrNMiUtU1VV6gyRJylWGqClJTYzYlh4OQYc9DVlR64RBJNzEM9WlIK0pEWSZOEuIkYRfFGKaJ6/QwZUi2S9Is4fUPb7i6eKDIJI4OnvPsyxOm5wccHB2w2664/3jDZh8xy3IUx2O7XrHZrFFFGIU9VEnAkgFZJjw6wzAdmqLB0S2aAuq84/K7H9jsCqbPnuOFBr3A4fhsimsZ1Lst7b6gTQuWiw1ZEhFttuR5wTpNUIQOQ1WIo5hkF9HSoYoCk36Ipsn0Qg+xrbANmziqSLaPfPhwR5SmSJKIahpcv/uO+d0NZVrSiSpto7LdLKnpaDuRqm7Js5I6b5EqCU0TSfcFo/4RaZ3w+1//huPpMWpdoAo5muvQ5AlCm+N6PZqyoikbNruKy3cf+f7bH9jka/76b77g659/xWg8xVAUmt010eqRm9fvELKSMOhTpAXXFzcslltW24h5WrNtZQYHB8jW0yfVDUYEBycYuo4kdMhtx/HxCdsoY7Pac395ycTVmJx+iukPQBDo2wq+LqHJKmKdEG22SE3DYc+kSXfoqohQZwQ9F298jOuH1Mhojv9UF10VNAKk24jFao2EQJ2mTKYDLF3HdcwnI6ttUCWJOMmpqg6Z+imR1XQUtUpSqSi0WLYDssd2kZPtHnACg3klgukhyTJVkdNJMm4boQkdnm2xuLvk0ILQM1nNF5iaSpPlLG4e+HD5SCp6DKZnKKaNZgUodUcgAoj0e0PyuOT+7Q2SIZHvHtnlGSgqt1HMPEsR/B7+oM904PFiaNPTZKY9F6EqERUdW1UJTItmtiBZbRA0ndV6jVjXVHXD2NMxDYXxoI+piow8A8O06Y8nWJ6LpKqEk0PCySEVGl0Rs3j/A/EP35BevaXdLWmiDdU2Ynl1RZ6U1LX81PTVQabYRFmGoshAjSI27KoSw9RxTJ2Lt+/QRYGkbikMn8/HHn3XQJUl2iRGFCVU2wThqZ2trjPm99dcvH9PJ3VUHWyXD5SNQCk7PNzd0bXQItOqLY8PN+w3O7oGfK/HYDzh+ac/Q5I19qsFdALzhzsuP7xn3Hc4fXHG6PCIalezfNzhBxaOBsl6y8P9ElsROem7HE96vDjyUbKK5P4BsxPIdhm2P6Q38nD7LrYGbZnheiajoxPqSsCyTPrjEYamoOsqy+UDklCB2EDX0tYNq+Ua6HA8n6ppnxrZ6pYP7y74OFvhuSGuY9PUDaZmMZies7l9ZDQJSbIt1mBA3zQoq5TGMOj3HDxToitz6ixhNZ8RTE4Y+AM0TSEMxli2R2hZVPsdm03EplFZizaPsznb1fIJniuraIZFg0jfcwgsE9+TkHSZum0x0BiOj7D7fYRKxVZtDLPg6s1raATmDw80RYms6Dw/PkKXRAa2zuEwZDgZc/bFVwyHI5SuxJJzTsY+k+mYsN+nyVN8y8JQZNQO+obG9u6OdZQTpSV32xjHDxENj6btnt5+WaapazZxwnqzRhQVev0RmiwhCqD9sQ46TTPKtn5ifwzHFFXLartG11viZENTt4T9KV0aI7dbto/XPNzPyeQe95uEm5uPuEKJlm4po5y2bOmimN1uzTqJ2VcVfhjy6rMv8f1jutwl3u+RpJqyLSFf8frHn9jFKUIHg0EfWfPRVY313R3rm4+MAwvbcukPDkl3KW/++RuuXt9xdPyK/rjP+MVzBNUiebzi9nKGHzhs7x7ZzGdohk1TdLR5iWVatLJOGA4JHZfQczG7irv7FUJXI7cpmqMzf7inrirSOMKzTfqmSpfu0NqS1WpLnGRMhgHecMCulQmDPqL8VJdcNSWiLKBqJprdY3l7w9CzIXnk9uY1X371KQd/9jNy64lJUxUJlizStSU//vADt2/+hWf9BNvQeV1YiNNzvnjxnFevnuEHLk3ZEa/X6LqBJitIVcnVd7/nm2+/4839mvv7j9jkeGLJdrNBFoQnAKvvYIhwenqKLXT8+P07blcJimWzTAuGssbp9DmmZuBLKa5p4AchPd9GqRI8Q0MRBBTTRbVsLLmhZ8t4roUb9gkHA46PjziajohXS3744S3bfYpjaoSmgBMMETUPjYq2bOj7NlpTkqYF1d0V84c1XZLycb/jtzd3fJgvSbOU6asv+eX/+r8j2gFVmSPL0AkdcVmjGQpJkbGNIuIfvkGVBdqqRJM7RqMRRpciCiKK1cfthSiqgarbhIMJKSZv39yxSSX+73/4ZxpD5vTgU3zVI9uuadMcqW2JdxuyLCUcDtG9PnlRsd+uydKUsOdj2zZi15ImMZqioFsWpqpiOQ6aZnE0HiOLImWWMbR0ms0KoSg4PD4mnIzwHBvXkHEcm7IuCDyVyWTIixefcHQwwtYNAs/h6GjC4PAALxzQs3VkSaQuU2QaFLGhiHY0eoflhBiyiilJmJpDK+hkuwWyJOI7FvPVhocoZ1vULLYR0fKB6Sjk/MUpjqOxWK5BV7EcA7GV2a1WCEKLGvbohQbxxXdcvb3g4uOS1/dbPMvnZ6++YOL1MDUVdfw542CKvlvBrqC4vmH99nsWl9/T5gsGX71EOT7HOj1EtSCaX5OXNVHWUJUFpuOyz1ref7gnzmpML0ApYlQBpqMRnmMRpwVq23JmPS16hLpltVxz1GYETUw/6GG5AYrU0ZYShq6Q7zcYpoHkuBi2Ty/s4ZgqyX5LWdWIisJmn0HeoVh9dHNCsW0oZYNaknAtk916Q5vG6F2NqigEpoEnCuhCydXrt6xvbpCqDFNTGD3/goYOnYyDV1//nen+yTT519afTJN/I+2i+NPL69nfqrIsCB006znpPkGoRL7+D3+F0/Px+yqbiz9gBEPm83v26zWqLFCXObP5I8v1iqIpkD0TxdPoH46Qmw5FaCjqnGS7Zr3ac7fI+ObHW6o4xVMkhoHPz88OGTkGgamR75cYisjAUxHKPWIRMZsv6FkOinnO4b//c+osQtY6FNMgr3S2hQymw3IfE++2FPGW02cnGJ6HbtqUefZUcVjXdEWGq9sMDo7wbQtN7biZzZ/gclpNvJtz+/Geh6s7miwijVNEzcU0bQQEBEVnFdUsbx+QBIl4t2P57W9Z3X1E8UPc6TEf53Py+qm62bNtgkEf27MYjQdcfbxmvbzl1bMXSG2FZ9sUhUBX5ez3W0zZ4PbNPe7QQdZUjLpAbRukJCJ6eCD0fXRNQtVVWtUilx3m8yXUGX1HR+kqlnc3vH37lmA05frdO4Qs4TgIWMzXBL5Lul7SnxzijSboiknfdElXK8hyXto90v0SVex4cXRIOAwxTQNkCUGTMU0LRZBRdB2xzXEdHSQRw/bJNntsS6eoGpK0wLQc2rZhl+Rs9zGO7SB1LUKV41omoWUgNjV5lmOYDobr0bM1mjRGliTiDkpRZj6fM1ss6CQBx3bouSZ1uSeKtswe77i7u+R2FTOaThidTDg4GRD2LPI44eHiPW1TcLVLeNjs8VyHxXyBJgk0ZQF1hWk7mMMD+pMD+mGf5cMjbSODIOAPp+RNw/R8xOnnz5hMXFwTfE9HzGOyxzXlcktblCRlycfVgmS3oywrNmnKIs0omwbPMDgMXaCjKwtMAXSJJ96JbeM4BrptoJsmiqIjdip5VrPaznGGHrqeIBBjWgJOcMJuvaAsYoqyQdQMNE2jqmqSKEJTJaIq4/CTzxGFlrurS6qowjUDHE3CNEqyumS/meHbMigOSVrS1CWbxYyLD2+4W8745GcjTgOFySik7/o00Z58tyVaLKi2EYNenzQtKbOKd+9v+bDYcZPU1JpNfzDi5NlzLMtiMBphOj0MTcUzZAxFpEgSolpidHRCtFqw2aZECfT8IS8+ecZkaEGeYGsGVdVSdQpVWXEQ9lC7it18gcgTfHN0dIbqTdA1DcvQaPMUQxWouoakFEjXW6L9nixOsBUFUdEQFAOla1FVnVaQaJsGWZJQVAXTcthuN+R5gSg09Jo1SpvRyRKNGRLXGvFqjiwVPHQyq06j61rS/R65ybGrPQejEBEYBS4Hgx79/ogiSunimHUsUVUiru0RBgHpZkm835PuNnhyx/HRKYZm0OYF//T3/xdLWeF3796RSCKlqlPoBqrn45+cEfR9DgceE1PAFyssTYWqgLbDcD3G00OMBvYPj5htx/3DAsM0idIMW+k4HHkcjAcoInRtw/Pnr0i3S0bDEebwlOV6hdfzEFUZw7bJyxzN1FjfX7G6viF6fCTZRGi6TyOa1FnJdj6nqUDqDdipAevdI5aQI0odjW2hOQ6aJnP8/BleOMSwLUpBZp1m/PtX5yhlhCbLtE2NpKtIsoisKdBCnm64ffMH/v7v/xtXb+6QKx8vDFFti6ys2C5L9psO2VCpxZzL929pStA1l14vhK4lrwvKMma7Xj41de1XOKaALlVUUUa7rTFVDX/i0TQp1e4RHQmtadAFOJ+MOT+cEBoivqNz/vyU8OiIo09fMj4b4/V0OloMx0IxZHbRHsnUsL2QqqgJewFef4iiymznNxRViuNqqKqBgEbTCGTxmlq1aSSNaLvlzY+vuZ+vkFUD7Y+JyU7ROJieEk5H2JaMbkpMJoekqxUH4x6q6dHKLY7R0SQrADTlqakuLUAxQ0aDKaosczCdYkgKRVoQly1V3TJfrpjNHsjjiCRNmY5HGJZDMBojyTLR5pFNEiHKOmXW8PzFL+j1h2A0JLs1R8M+XbZndXfHYrZ+gpu7Lmcnx/iWyaQfcjAIUCRwgiGf/7u/JJ7f0jMahpZAGPZwbAvT0Ah9F1eVsIUOra6IFyukqkHpBJKqAVlnlTXIho1i2rSdgKyqFFlOIypEyVP978vPvuT4+SdcvP6OXZxStxBFe1RVQ9VV8jolLmLevvuR7eqWePNAz7XQNY9kc49YLImSCkF+SuO9+d1vmJgiv3w+YqjVzOc7qrwhSiJ26Z5tnuMFAz77+ldMDj5hcZeSFBGiFfE4u6JuSnSp5OPtPSUy49DHkgWq7ZJqtUAucwahx4uXr0gWW0LXwXcc8tmMcRgyeP5nhIGJrKlk0pRoPidabujQMGyd3WyBqcnsVnv2yw1C1xLFT2c1ZZQiCx2K7uC7Fm1ZkUZ7dMum01TSvCTdLpEEiZOhR12k3K021E3L+GDK8+dHRGlMt9tSlSUHx1Mkv4ciCkhdiSQ05LKHpKnoho4jtk+8qi9fsF9f0Nh9VNMgTTZIXU0e77m6vubX/++PXN9sOP7izzj98ldMJ894dXiCIgls9wmaLCJJEmVS4pgm2+WK+9uPfH95y/X1FVM1pUz2VHnK0LdRJAlXV/Eci+ef/gzH6nH3+gKhqumrCq+jGrNu+Nr1+Nmrr+iHIU32iN+zcBwHoUgxVRXTtVE0DSQVLZySbh4wZIH+cMioH2LoGvv1iserS9bLJWlaovRGbNYL1rNbPjsdMjo6Iys6urbGt22K7Q7dMmjrlg93H/nh4oqh4/NYd0RZjKZpyP0pweE5siLQJAu6MqLTLXJkVEVFFuC7mxuW3/6Wg2HAwNaeEjWOw8DWcD2XddyQRiW242HY7lP6wQkRBoe8vr7j29/8VyxbZhj22S3W3F++5/7jHRdvX3P/cIsd9Dg6f4lm98jymHS3pykKbEOjyhK2+witN+Tw9Bk6LYYsM/B9DicjbF1F12S0rkVtKk5PDvji608I+i6262FaDnJdocsSNLCYP1AIOmo4QlZ02jzH0Ays6QmK4SJ3HW0eA2B5Y0ClKQqaNCFebhiOT7AUE0MQacqKwDahazHlDktXSZKU+WrNtmzZxTtEOk7PDnjx6QvqEubLEsmQ0DyDIk4RJZEoS3jxasShNWf+5nt+fxnzbpnTIvO//MVfcHJ0Rts8La4OP/mK0Lepbq+Zz+/5h3/+b8TZGskQmX46xTyb4Hz6JU1XUERLdqsFZQ1ICo2k0VY1Hy6u2UQV/mCK7T+lo2wJ2jhCKnI0QeIocKEFWTEoioagznludPQtBVlWCQ9PQNHxez50GnWcki6XzGd3HL08RbNMTKUhihMEWQdVxzJk6izHN1Q8Q8ALDSRdYGfqyGWGVFVIokCbZfSDHiYg7PcEvZCkquk7BmeffUFRVJiug6rbfLxbcPzyF3/n+OGfTJN/Zf3JNPk30mK5/vT6+vZvm7IQTFVmdv+AbZlIzpjPvvwMTa6wPQNZavnp2z/wu9cXXNzes9lteViumS3XJEXJuOfQiuD1ewwmFnU2Iy+3lNWO73/3mqubHTeziHyzYWhp9Bznj+c7NkHo4nsGp2fHDA8OsMSSoW9hqQInByMmh4eYgzGbixnDL85QPAcjtJGFHEsX8V2VnqPSk1ukpqAVRCZHp6i6hig/cT5kOmhFfNNCE3U0FLxhj7yo+PHijsUqxrQdPNsiK2uKqqNoDXRvQJHneI5JXVekeUsQeNSCwOP3v+fX/+f/wfToECUcIesGD7M5gqJRFgVHQchhMODhwzvevH1DFa85GI8JBwM2yyWuo9F0IvvdmiIvSKsESc6wXZtXX/2Ks5NnHAR98m1EmxfYhoKsyAiSRioZyIqMSEuoS9TJlmhxT5PtkQQRJxySb1b0NAnXdfBNA0NSSJYRN+8+UJcdh4eH6HVH37EZmTZ69wS7DWwdUQRTkbE9l1pRML0AuWsh2aApAl7QQ7FcDNMli3KafYogSwiqjiSp1FlKmsXEncp8taXRHTxdoa0KNEnG9Tw6RBzHQRJAF6FravQ/mi1xUbHJyydoadWgqQq9wMfWRTbLOR0tSR6xTWP6kzFuaDE5ctCVhuXNGrOTkbSORBL57esP7PcRabQjdC1UVUdTFERZZtjvMRgEDIYhpiqzmq8whwf4kylu4BOENo6jIzYJtuWgyzLVdkuZVshAfzBGlSTCaY+ebmAiovLHs4SiIGtb9E4gUESOAofQtxGEjq4uESSZ4WCEadrImk7XlghdhTsak9Uyj4stgqDhjafIloLlm1T7FZpSUdUJad2w3lcIiopp67RtS17mSJqJJCisHu5oy4asKBgcneGoMoK4Q5BBqGIkw2GeCiCJKHXMdvFInsYMxwN+9dVLkptr1h/e0RUFadYiywptnrGbrzEMiyJOebyfU9QtuyTHsl3Onz3n4PgURVZw+hNEUUGlwXcsou0aU5Xo2o7lNiOr4PTsjMBVmE4CxtMJvq8gNSKqIuE7NulujxeESADJjmKzpIj2DKcT3Mk5ijNA1xyausYyNBRFosgyxLZAbgvKIiHNMvZxhNxU+IaDYoTIVYJuaFSa/7RFFyFLc5IoIVkt2GxjFElATx8QmpJWU+gUkaRViJOKcndH1R+xVVzS9YI2Txno4OsdRwdThuMptuViKyrBYIwXTNjP9zy8uSBerbm4vGIxu2e32SKYDkmScDQcMJ4e0JY1dxeXfPf+gt+8f8fVZk4mgOIHhJMJhz/7OaLQ4SodByZYZNRNTdOJfLx5wDZNTH+A5fRwdA2xyKnXa1Z3j2yLGt22EMqUvmfSDz0Cx8KwHMLJlPXsHsuysT0PURFo6hxVBlmSEYEyjYiSPbvNitndnMUqIaJHF5yz3+6IdxuaLEPSbLZZAtmcZD3D1DUKXWdyfk7etngnz/jqP/4NtSjz9uoSzzL5d8+nuJqEIgpYvR5tXaBZNlWe0wmweHwgerjAFlUGzgkHp18SHoVUqsAszojjmIe7Gd50zN3sktVuS7yKcL0BlqYyPhxgmRLb9YK3P71FbmscWURsW4SsQZI0RgMXy9ZRDIH7dz9iGyLD8ZCeY2HIKqpkEi239A2D0HJQFQXFMGmbgnRXkqUNiq6SVbBPa3ZJQxLHhAOfLC5oWoUgGCDLIqbpIsoibdPQNSAINpJosV2tiCq4W6SImsns8oKr63s022N6dMLx6Slf/OwLhtM+NQVt26KqCvP5HF+V6Qc9NEsnKXZI1Zp0uwDJwBuccHj8ktH0nPm+Jm8kDicDbMuGsoKqYr5Y0goiH2+umS83VHWNLMnYbo/Dg0PktiWL1rRijdBKjAbnDIch5z//nHAY4loihtTQVBEf317xux+ueH/5EUdTef78OZ7j0pQlUpWjS93T29QLEeucwFIw6gjH0rD9EEdXMVUFrU4hSajjiCpJkVsRRdLwLQdFNUhakWVWUOYZdQuiJAMiiu3RliVlXfPFX/4Vf/3X/xldN3j/5i2L5YK0yDGNp0+VphlsNvdcvPme9fwjzX5F4LmILbimRVNukeo5lWjw+c9/idylWE3G15+/ZBy6CEJD2uksFxv2SURc14iqwcsv/4zpwTO2jxnXl9ck+QOXlxcousVo6OMaCmWWMnQMZjdXpNstY8+iSWI+LlO++vJTjqYHlB8fCC2TYDpmfDzFVJ/M54En0jYgqQ7bxRXV+oFt3FCbI27fv2cy8NjOZqT7CIGORlRpihpTEtmvN+R5ja7b6IaBY+k0Rc52vcG2VAzTQusaeqrISWAjCi0HJ4d88fNPKLOciw83yIKIZeskusZstabnepiGToeM6zrIqkzbSXimgTsekTUl68tvsV58zl6QyIoYqW2ZPdyxj5bQVXi9EerkUxw95MX4BOqWj7cPKKpN17Q8Pi7ZRhmeafDm2x+YffzA2zc/0OzvOHNl1tuIqiyxNI2DyYTpcMCz0xMc3WY/XxPPHnh1NEJBZSqb9JuasaUxMETGJ0egqbRFjCg06JaFHvaRbY+2yJ5mStMjW94jKxqi4VPEW7oyoatyqjRFlCSmRwccn5/SbR9pygzXVBhODjB1A7mtcPItlfCUxlWajN3snqFj8uM2RQsGxHXBvq6JBJ3a0unyFcnjBwxDoUSgUUwMXQdBJNpu2fz+15iShFBVINscPHuFYXgIgoF38Dm3dyu++/Y1N7cPfLhf8eHDNT988yOv/+V/UEQ7Rt6AvFL4w3//HxRRxG67Zp/GSG6PX/2n/0Q4OEQVWjbrBfFqDk1N2wlkRWR3GY8AACAASURBVMl4OOT87BkT3+Uw9FFFCbsXUFcVm7srxkHAwajPy6+/Znx6gmVZyIqOrFkAdEWCWOV4PZ/RcEjoqihdiWJY5HGMJoPv+zTxjrJsMBRoy4QiL5E1A03I0DVo0gxVsbF0D1kS8RyLfL/G0hRURSbaxeRFwT5JuFyuqCWZcDJlV6aEpkyVdfRPXpEUa3TXpkNhudjgeTYvDySi6zf8+l1BIQYM+iN6hsmvPvkERTGpEQiCPqFn0aV7Ht++5rufvmNdpPQCnRdfnnL4P/9P2C9e0ekm0eqRttiT7mIk3WIVN9w+rtlvY+7v5izWMbbjUi9mCIJET5cxmxK57RgNBuiShKJZeJqOUaQ80wWGrkkQOpiGitiJeIfn9EYDtrOUxf0c25ap4oSebcJ+S7rZMT0YYHkWwTCkyVKoKoZDB01vcQ0dXVaRVR2harBMnbZsIM+YjCY0cUyxWRP6PuHP/5zheMzo7Jzg8Iy2qtFsm8dNxujg+d/54Z+SJv/a+pNp8m+k9Wb36euf3v2t3LVCEac4lkWxSXBlldPQYXN/S7Jesby74Zs3NyTuMW7PZTa7I8pyZFXDdRx6tknTNJx9/imWHJEnS7K85h//6Sdu3s3pRIvDMEAqMg5shbFrctCzORg59KYjJgcTAlch30VYpo5jaUwPBrhhj+nLZxh9h93iEdfWiecpSjBBDl10scYxJfQmxuxKfMfl5NkL0ttLNrMHDqZDLF0j28b4msbxySm71RpFajk87qM6Nrs4YbGJSOMSw/KYDj10Q8cNh1i2S9fUKKrMPk7p1ICm7fjxH/8LF//0j9SCgG45GNMDZlGMFQRs9gnpfoMnShzZDl2yIVo/sosj3KBH3XZ898236F3K6PRTZqsIVYP4cUnfDQkGhzj+GMcKkOuSuzfvUAUR23cRZJGHxyXW0TPKLEFvC17//jfIdU5bZDimgaJpqIaDFQ4QmwZJUbEcj7qoGR0cYQoycpKgivKTEdIKZPsdPUvHtk1cx2Y8HiPLAoos0PM9lCZHpkE1deo2g3KHKZfkZYZkSMieTSkaFFlHOl+RxxGCrFCWFUlRUwoKom5h07DfR+htzXb+CFmC2rX0wgFNXuAfHlFEe+K6QbZddrsE0zBIswRZUxHbnP16iyxryKpMOAjxPIuyLcn2SxbX7yi3JZbhEqVbtkXO7e0DWZqRJQmiJDI9PGI4GjAdBvR7NsNBiGfpxHFMLRkMphN6oYskPDWiSAh4ro8sqHRlSbFKUewAxfGhlBBakaaoyedzxLJmsVxQ5CWiIAICI8tCbCp8WeJ0GDDp6dimRlK2yKpJLwie2p+qnLoo2M5v6R2OaesC2zXo2hZJqRDyRzRJoC5LsjKnFWG+KNluEgRBpDee4No2vmNhmh6O5rB8vMcJ+7SqRuCoiO2CuiwQFJ0SlXS3ZeAZrB7n5ElBVYr8/M/+gvNRgKuquLpDsm8RZZ08r8h3O8o4RVNV4uUckhi6FsW06E9PGE+PkSWZHBVJFAgcE9eQ8YIBj1GN1RuhqCq+KhIacBi4fPLJMwajIdOpj2NphEGIZXlISBTRHrEt0OqWeruh53kMD08xRifIuv30mRc1yiJDEmraTsTyPOpsT7xeIsgSrSpRlAVtmdNlOw4CHcfzUVQZXWppy4I8y6nykq4qaToJqamotwui9ZZOEvDHPQpZ4WMGSZRgyQ07WWefl6hNjia2WKrAUc/Acwym558yf9yRLuaItcAffv0dHx+2fPcvv2E2m7FOc3TH4+PtPWavz2R6yHHYQ8pSaGuoG2qeSPauCmeHQyZnR2hSw+PlO7RsSd8AS6yxZRHH9zFtm6Fj0woKumIRL1bYbg9NFKmiiHQ2I88qXj47QDNULF3CkEX8no9j2/iejaoqFGlO2zVMjk9RdIXtcsXi6gNFtEOoMxRFpzMdos2W2TpB7j/jxd/8bzgHL1ld/cj9zU80QktOg2raLJYzTLGl9hzMsIfhuMTIDI+OGU/GrHcxSVbx2dBiOgiRBRFZ9yjLCroKWZOJdmvqNKXtOp7//HNGL57RmjskoyTJt2yTjMfVLXGVIg9GXHy4pKkqijjls5efMzwYgFhzcfmBKE6J1xtc1aQtSsqsYOD2OJpO0RRQTJ1kt8cRSvxggG4o6KrA5HiKobScH48Ig5BileNZIY7Rww36OP0RquEjWjaqqiK1LU3VkmYZDSWu71KWApQl4cAnT2LyrCBLIsqmQtQEoigmSWOSouSb1x8wPA9TtXn7+i1lA7pmIrYt8aZmvctQuoK6LdgsZ+yWES9Pn2MYKigRu/kt+9klZbwmSWKs/ilBb4pleCDKiCIoYkvTNiiqShVlpFXF3cOMq/fv2Bc5u90WTZbp9wfYpokhiWx3W7Z5ihoGHBx/wicvn+F5Krai0Gz2zG7e8e33r/n1b99wdffIwLYYBD5dWTAd9BmPRtRljiFCfzjAd3QMoaPePuJZKo79xPvQNJ1staCJIyRRwQyG6N4A1XTRbY+khlzSGE6PEKqSrsqZr5Y4rkdZlohNi6bKaIKA2Qv56quvkAS4ufzAdr+lbmqqqkRAeLr3d0zKeI3aVpydPeP5s8+wxQ65SNlv1qxWMyRN5/DkmDZZozQC/XDAYhvR6D6DZ1+yTzKizYKmbemfvOTo+UvWuw2z5SPz5RVVG/Pyq685OX9FfzhAlQr2izkf3r3n3cVHmiLnF+cTmrYl6Pf57Pk5tiThGQZS12IfTlBdi/DFC4KRiRk4aLZCtpkjJjH7xQpJtjA1hdXjguPQZnV9yduHFbZlY2gKZZJQVw3Qkew3pK1IVja0dYcidJhtRZcnWFKDUGSMlIYTX6c3HhP4FrvlI65jMl/HrOOYYBJyud6T7DZI8DQT2i55skf//9h7ryXJ1uvcbvxmeZPeVFVXtd0OGyBBHpJSSCekUOhCN7rnK/I5TkiigiCITQC7N7p3m+rylX7l8v5cFKQ3IK8wXyAjMiJzrRjfnN+wLJTt48/OyGrJhz/+yO3tGv/bv0Z5HlVTYXQtZZFTyycb49//9d+inAm7Y8nLyQn7Q050TPAcl11ekhcJtmtTFgXRz7/l6g//zM+Xnzgb2FxMAmwJrlYsLMlp6HI6DmkPCfUxodztWM7GjCdztDHk1d/+b9jZkW8uhlQ9TC7eMDo7xxsEeIFFcHqGM12ghMDsO8zRHG2bdFWOlALtePRliaElhhYMA5dn56ecXVzgtCW6rxk4BtIJ2D7eMg0MhqHP8Vg8Pb+qA/3qM2adQpbw748bpuevOJoe1zeXbFd3fP7xd6TXb/F9hTcY4ocDpOXRSkULlEWG9fCZvq45RAnj2RnpYUfgOoyXZ4xmp5yePMfpNdvLRz7/4R2f/vgj68ufifZbDEvT9AYfP37g5sMH6qphMAhxXIt/+K//wNdvvsPoQQBFmnL38R1uMOH05TcYbcnzkzmniyWBoTju9hjjBa5tw/GR54sJr9+8xrONp+LjqsYNR1RZhmE5mLZLedhjyB7DcqFusfqawDRwDYvZ0GY6DDG7BlUWCKkphQtCovqMKlmR7VfE+wNd2yCEgT84pe96DEPiGgLR1LRt++cuj4TA0lxHCa7vI4Yh//7H33GmEt784hXTi1dIKagVHI8FhtRczB0mk5DemUNrc3L6gn1SMZCSr55dMDt/TlNVDGRLnaaUSc79+3fYnsmLr845/8Vrnv/X/4nZ3/0dVZc+dS7GEWW8J88yomNCVJrc7wruHvecuAaGdlg97pjoDtcxUbZL4Lk4nk/XQl1UPJuMcMuSSV1xHjoEjsNoGDKYTzE9G386w7E9ZJGRxxX74wHTUJxePOcYHZFNjd3XFOtHHm5uEQg8z6YRkpPpmDLNUUh87eIHY7qmRkhNm6Uc9zscW2OKHqtrOH31huFigT+ZY/shSivaMkeMnnNy/vqfXNf5CzT5D56/QJP/pFntDt+9/Xz/j2VVCV3XTGdzZCnx9lvufv8DaJPj+p7buy/o6QkiGJLlEXVxpO9abNtk4LkYdARhyMXrr59eBrOCdx/3tHHKJPR4vpgwDT2Wyzm+a+MtnnHy6iWnYw/P9RBlgqxKRuMJg9kcqQyUFgxPzwiWS6okZng6xhkptM6hOlCvb55a8LMc0piuUcxe/YI+iaiOR7osY3vzAFXBdDjG7jRD6yndGZ8G+F5LaAo+r47UXYthSJoGbh4PaK0ZD0aYjk9dt6THPZIOx/TZH3PWlx/50x9/ZPbyNe54Ri871r2k0hbZPkaJnvywod7fcXX1M795/45tnPLs4gVZkuE7JrI6YHgORZmwv/7ELFig/nyr7hISaIv94xdu371lOhzhjEPypiXDoK5K2uOWL29/INTdUy+B5yK6miAMoa5Q2ka4PrePK9RwynC5RPQwnE7RrocXDtCGjR0GtKLn+vYLrq0wXYfg5BnaMjANE8dWaEuhxyEYHVLVNH1H2bY4Vs9hs+YQH3AcjdH3UNVUZUndVbTwpEmra8qyxnFdAlo6wBGg+hbftgj9AKEE/mBA07bs04zK9oiTBNoSITVB6LO7v6fMS0aTJeHg6Xwo2d2xu78m2uzwvACtS8KxQ1IkfFntqKqavutwLIsgcDENiSl7zkYe03FIYJsYhsJwXLwgRNPQlA1dXeGZEt9z0dqma3pUL3n4eIs7e4Z2Q453K9J9xigcINKEtqmZhAGyaonLnEkYMLEtZNOQlTUnoctiNmcyChg5CqnAMHw8x8awTbRW5GlKnmY8Xq+J1o/MJiFSdphdQ59DXxh0jeaYtMTHhod1TJ4UJLuIpswpk4Rku+Xm6g7HMjl9fk7T1PS6wxYZtm3StB1lllMWJZZpkBcFWVJiqAmv3vyCervj87vPRKmJYV/QWg6Wa5Fst6iqwBAS0UMeR7hBgPDnCHdILyR90zA7OeNkHBKY4PkBjRWyiSviQ8Tmy0fGjuZs5HBxtsCdLJkuzih3MVL0aOXTlCV1khK4Gt1WjHyXwXiEHQTY4RiEwjJNmjxF0EOTEfo2bZ0itIElW3QvSOKcXmo8x0DSkxQ5A6PFcWxcz8KQoAyHNO8oewPftRCGYDQe0vcSQzosfBfbilG2orc92jiirHp2wqQQmjo+og2JV2xYhJqqbmnrjvXtF+rjjujxnv12zyoqSOqWVgic6YxGCJqyYO55iK7ldBAS3V6T3N1y/fN7TEMxGgdM5jNmZ6cYoicwe87GDuPAZjx6KtqUdY1qG3TbQNMQ+CPq3Z7DzT22YTFeLNFKka1X9EmMloKX33+Nsk18xyQYDDB1T98L/OEA3zZYP25wBzNMxwdt4wUjku2O6PaaaH1H6LsMFydkx4xKWE9mnfRAne6I4y1l16AmZ7ThFFMUoA2Ua2O5Jo5jQZVi2QZhGNLXFdtG89LsOZ1PEU2N1AKEoq5rDEOTbGPYtcjKIzx7Th84rNZ3mMGQVEju85yPdw/44Rwah/WXe4p4zWg8ZP7sjKyt+HL5ifc/vccPh9hNg5I9A9dkOfCYDmcMTYsag+lsTLXfMfAHWI5DW5cYbcny2TmT5RDP6Th5+YyTN+dYlsPj3T0lEncxxAw8lNLUec799Yqmk9zcPxCXR85fPiOrW/IoZhjOnpLQNOVPf/iJ66uPHHZXRMcNXV8gLM0xakk7QRD4bHcR0rRwPQfLNghCB29o8bi7Z/XlPXXeMByPeHZ+gqMVRZzw5dPv2d18oUgTZAcZPuF4SdMJ0iylqzICx8KzbBxtosqCy8sr1rf3PD6uiIQm3qywJdDUPD6sqMuWlxcvef7qGWevzhlPPU7nI2zdU25vuXl/zW//7Sc+f75ESQPqjsUgQPUtz5dzLPFktDt/8Ry6FrNrMLqWPk/p0wOe72MYCtGUmEpgOQ627dFXDV1ZY1ouvmdhmxajyZTFbIpralTTEu13VFWOVhpMl6Zt6doG07ZYrdbkZc36/pbt5pE0TWmaGhBoCaZlYboO8W6FKeC7b77n+fPXHDZryt0DXdeQ1II4PrL58hOffvrAOJhQNrDZRgSLC6TjU/ct0NJbFmff/JI4TlivN5RVzvlX57z51S/59d/8NZbsqMoMkcc8fv7Eu58v8SyTs5HHyXzM+Ys3TIYjZo7CURprNAcpcB2TZLVDKI0yTGgEQhhIGopjhjQcXEPQJgeEMEmKii83azZ5z3A0Jd2vgZ6oKDnExydlchShlUHW9lRtjylhSM2wbzg3O0JZ4/VPBf/xcUtf19hKEg5chGFSuw63NzfUaUxVlYTLC0RT0jclUBB1LvtjR3VY83B9T1LVnP7N34Dn4itFX+Yc04SPd3eMg4DXJydIJ+SoDOI84WHzwOa4JS5jfr78zD6N2e737D79gZ9/+8+8v71nOBzwbDZiasLMs5h6FnPXZOJZNGXN490jpugZhj7T+ZI8b8AMUF2DJ45PBbm/+GuMxRJ7OsZdTPFmc5L7G7o0RrYN2vFwZlOKJEKJp+2uvih4+qsy0W5I39TUZU0ZHdivHyiLinA6x/RCPr17i92XhLZFZ444REeK64+4fY3rWNRlwYmt2WcJ9WhOkh3o2hLZt3Rdg9nXfPurX3JyfoFjW+yygkYpVtstxdt/Zb9PaJueUehTHHbMTy8IZyeYhkV92KMaAyVc2rJle3/F/fqeKE9RhkmcRGzurmnKHKl75sshb756zbff/gIpLRzTJK96yiJh9fFnTs5fYNkuOtuzGIcYdcH6ccX09IxROGDmama+TWgqHNfDpKPvWwzLxrRdTDdENDVKKo77LZbjIrqOvq3ppaJOY1Sb01YNVVlSpjFpdEC5A+Ks5O4xomgE2nRwwiF9J2gbQbTPmJ28oKoaDMvBtW0MrXBsm9FkTF/V0PXEWUFbV9xfX9EkEQNVMR9rdqsjeZlhuJr4EDP0TIrNHRevT+jVEHvwkvtjh+HNmGhYTkbUWUayfiQ/xlR5QXzYkxYZI08SzgLmFycM3rzCGTsk+0eyPCPLUpK85LDfkxclvVS8/fRAYYy5unnk9XLAdBCyz3uOlaDt9FOZr3qCwM+nI8Zdg95HLE0LD8FgMsIIQoYvXhG++R7LDuiSmD7do5Tm7nHL6cU5jilo2p4+izGFoms7qqLgy+OWomyQUjO5eI5vmtjaQCiN64/p2g5TtGRpwqfPn2nyDF8KtFQMnz3DfP4adzhBixZtmJSbB46X75m/+sU/uX74F2jyHzx/gSb/SbM7Jt/99ocf/7FJU0FVMZ4ssaqe+vYDu/t3FE2JCqd0gU1WpfSW5rB/5HDY0fc9GDa9lNgCTk6foTqBlA7bx3usKuckMDmZjRl4DkZd4QYDlrMBi4lLlRzJjhlWU2EKGJy+xDUETSvxAw/ftdEaDMdGVimWa6BME9PokU2JUReQHOjrDsOQWMEQS4JZV6iuRWuD/fbA7n5DH+eYFeT7lMHIw3YaDqsrbN0gtcmfLm9ouw7DssnLhjKvSJKCwyEiPx6IoyOmbfEYVTSdxnJdyvSIsm204/F4OGDNp7Sdoq0F2rZAGfzp0zv+7x9+xyYtOTk74eRsyXi6ZDgccnN1xaef3zH0NP3uHjV7jumMcEyb0WxBWx/Zb26JjzsGiwXmaEJe5tTJnsuf/sjA1ZT7LefLMYFrEg4HtHWD6AXBaITvWFiOw+Dsgny3grrG8QMsz8VwXHrTpGxLxqcnTM6XTCYB2oSmrXBGQ3ot8Ice2hS0RYSyJK33lBI/JXQdoHEkHDc7jlmF7dsIQ1EjqNqOKG/I8qcCwMMxRkmJEj0D2yYYTaAq8Z0/P9xsB9t1aLqeHDi0kOYpVVnTCSiylGi/RzQK1xxhWS6H6B5D1DzePPDwsGM8mnLYPDAZueR1RVSU5OmRgWcynYxw/3zf/Px0xtCzGIxHCHq06DBsG9M0n3SnlsUw8AgcB9V1dE2JlAbp+ki8rfGenXF9eY1UPaP5iMPNJdJo0SOPuM1oup6syXlxPsVpO1xlsIqPTByLSehjOR7BwKOvao6rHVguAknfSYrkgGkYJKXJl8v3zJZjVN0hBdA+vZTVtU3VQdN23G1yqqahB5qmpWlbED1OGDJbLpBC4AcjTE8TmCWmbVGWNfEhxnQDesOkPBwwDIPheM4onPF4eWR44hNOpjiLlyizoS8PxDdf6IqKtmkp8pJGGDwWmk1SY/gjyqpiOggY2gZt3VI3DWVZ8RillIcdqkr55fMJ/+Vv/wptuZj+GCEUlB2+o3G8AMfxMGXHwLNwVYfv2ZiOj1YGNO0TUJWKpsihbXEsmzIvUUrTtxVVGqN7iaVdlLSJ1hHxISHPCuKsYDn2UV2HZ2r6KsHwBxT2BEwHm4aqSNEK2jxjf3lDt17jGAnSapHhmLxSHOKeqKrI/r+11Szmm7lBW2bs05a71YGrH39HFe8ZTybY4YxD/aSKVHVKtN8xGo1YLBeUeUbgOAxskzKO2d1c42hJpwSqa3Acm7atiXdrKBOUFEwuXtAVFarIMCwLf7bAdy08pbE7Qbk5MDENDMNBtx11FjM5OUEcDzhKog3N6NlzOtNBagMvDBhMZyjXR/bQ1xV9L0FbJNEexzUx3RBLKZKra7LtCk2J1jZ3X654eP8D5uGK1eoG7brkXQ++R9nVeMOQXkFDy/tPn+ilItuvMIOn7Zg4irj9+Jm//8Ub5r4JbUu8uQXRY9guSgqaJOL9v/7Ax6tblBlxzHd05hP43e62PHz5zO39jpPTF+RJw+b2Dj90GM9n9C1cX99xf3lJkcQ4WLx5/oI6XjEcmIxDC0t1eLbDYDhAdS2DIKRre2zXIfBMHKVxUAwmc7zQwR94eKMBg5MRi29O8GYuyrVpANcNkFJjasF+nxGt73jYXLNYDJgtpmRpQV/VDEIX21ZPAFDZ/PD/vOVf/t8fSJMt7lAzPH2G5fr0dc9hHdH0LUJpsqJis9vz5dNndg/3WMLAczxc32E0sjBFS1+3/PzjP7PbHfECn96ZcHmzZ/+wZR9FbFbXNPmekevg2T6iEVy+/8D9/T3rzY7Ostlt15TxAYUkywuEUFRdRdK22I5iHtqcjkNCo6GM1ny5fM9v3/7MzZdbdNvy+mTOi+UUxzRYDAOEEMiuQbUVphaMfB/H0hha41gmjmkgqxjLtTFtC0NKLFNjez5OMMK2LXTX0iUpbR5DWdHXNcl+T3KMqKsC29B4lubL6hFtmIBAa0WWHPnxx9+zebhjOBzRK8nD/S1NlaFEj6Uk2jJpmpr9fkfdtmSHPdX2HruMKeoW/JDD/sj7P/yMU8BouuAhbtltj8RJhrIMHN8DrZC2T98r3v77W2Rm8qtf/w3f/PJbvvur7/FUz2H7yMP1F5LogGgrdNcwMCW/enXG+auvMLw5o9kCW0qUNjFcH280wmwKTH9Auo1RWYbhuKBc0rtHRGtw8/kG03YpalCuz+PNA1kFjj9CmjZJtGN3jNnud6RVRdq0HLKUfZqgLZukaNnFGY3QuF1NncYEVDiqZzgZQZXiKhiGBmfLEZu84+b+HvoO01T4A58q2bO9vyaJdoiuIfSffl+GrDnEMdKxcF6+ondsDGr6LOby/oEsK/lqMKA4Rnz96mu2UcIxP3B42EBvoKXi+vqavCrIdg/c/ftvSLIMpQ1Gg5CTwEIkRywpCAdDDMd/AgJli9k3LKYhfjAgixOqLKFPI5K7T4xO53SWg3t2BqbB4NUb6rKEusSfTZFaon2f3nafAhzRI5VCGwqaGuqKtiwR0kQ5Q4Tooa6xLZvBfEk4mrC/u0IUGRY9vueSxCkff/sbplWEZWryTuG5Gtt/Oq9I4y3SUuR9y+RkxmQ+5FdvnjFfLLl48/2T0UpqVmnOw2bD+v/6b8RlhxaSzfUXRF2gRU/gh4i2Jvryibt3b/n80w/cfPkT+ySicDziKkeKhviwpa9LRN8xnQyZniz59tf/hdlwQl91VEVMkkZ0dcn6+prl2TnpbkVTVNhKo6Xk5as3TAYDjLZmPp8i2o76eMBzbJzRgt706JqWItrh2holQSmN0iZ1EmHIHtk1tGiUVCSrW5Q2aNuOpqxIkgx/usAQPV++XHJ9t6HsDLKkxDIsPG9Mj0HbK2zbZzw/oSorLCXIoz20LaahQWqa7um0qGsqBrbBdnvELCICx+AYRVRS0wlNaNs0RUp6SMntcxrhs98+bYiYdYbqG/IkolMmcZpzt1pxe/uFq8uPVPGesquZfv2KxddnCFmSpUd6wyETDtuHR1a3D6xWe8q0QPSSpqiYzpe0SczQ6Dk7v2AS+Ix1y1jXTB2T09Bj3FeYecbCtrDpGQchen7K/Nd/izE9xQ7nlNsjXXKgTQ70TUPg+tR1jTQ1VCltFpGWLeFkznQcYnQlD5sdUdEwmYTMRt7TiVdvUHcWTZUwDDwO0YGPl1ccjgmiabBky+R0ijcOMZsMU/RU0ZF6c8vj+98zPP/unwbLZ3+BJv/B8xdo8p80j+v1dx+/3P9jmcTCq0rGpk/26Zrd7Xuk2eFdnON/9ZKr20/89PEd99s9sQjoeoFhGkhDUxU5oe/zbDplc3fPaDhG8VT62RQVRZLhthUScLoSzzIQWYJp+5wvJ7iuzfDkgmS7h15hTeYMAweDCkNIDMfBtCz0n3sv6rSkjo7oHpoowvIcikaihwvq/fapGHP3gGOa2G5AEsUkqw0fb++QTYPR1WzXKxyjAaAVgp8ftlw9bGmlQZTkrDd7krQijo9PxWaGQ6NHDIenLE/PUYYmOR6I1w/c391hD0JmF8/p6oo4b7A9jzzPWD/ecsxylJKcPH/OYj7l5PSMJIr4t9/8huoYE28emC8GVKbFsRO4foD9Z0NMtHkkryqWL5+z2q3Joi1GU+CIiovzE5aLOZZlIYTCMEz88YKyU/RNB2WJ7Fq0YTEejxn4LiKL6YoCYxBgj4c83t6guhTT1njDAbZnY7oelmdTNCXD+Rz6BmFKhOrQWqBlj+k5dCjyY4xtmUhhcdgn7A8Rr/WRzgAAIABJREFUwrYQpkveCNZxRdZqpOWzPRwxLBtDCpLDFt91WJ6/wPF9XMfGCwcYrk9elXRKEZUF8fFA3z1ZJJSEIonpW4vBcEFWHNmsb+izjt///ieauie0Fihls3x5yv0+4hin3N3cUpcFomuZTkacnc7wdE+Xp+i+RUoJTYmkQ4ge17YIPR/dVchWIE2bvkjR2qLrelrtcbcvaB1BXJc4oqLKDijHQnmC69UjSZngeybn4wCraPC9kK5tORm50HWIXjF/tkTSQxdR1TGYkl4HROs9dV3R5AmHaE9puDxfzIg2j9gBFCJlFTUo02Szi1gfK4qyoe06nsiKwvUGKK3QUmFIiWMNUVWFZZXQtzR1QVM3NNpBKklbpLiuhWkJFAVF0xDObESX0YmeODlw3KwodluqLCc9HCjLhvtjxWPcUKOohMFkNMYRFU1dEeUNf7pakRUV2/tbXixn/P33r/jq5RnhaEarffIsYzS0GQY2pupwHQ/HNDBFjWpbaBpoOwwrQGuDuiwwDAcpJF2d0pQlCJemKJFt+2SBoMexTWwloapwXBNZZbR1SackweKUcrvCN3uG4xG2Y1MXBV0aoyRkeUlb5uRRhGE5RFlBMAtp7I5yaBErn6I0EdqkaCqaNMJpU84nAdGxoDKGpHefsZqcNK/4dP1AtN/QFBm39/fkRYHUmsXFOau05PFxxXw6pi9ysvWa42pFkaTcbbdUTY2yDcqmwdAKU/aEgwFlEjMbONTJkdD3oa44PG4ZTpf0+z3j4AnInZ6doY8HrDxHCMHgzddYhsYwLeKiZnLxnOH5M9LNnroskNrEcy1C26LJEiw/5MvlDZ6lyY8bRN9hGNDHR7JdxDAM8FyPZLVms36k7npUMEb6AcLQ0BeYjontB1R9xT4rKJqe1e0t0cMth+vPGF1F2XS8HBksx2PKLEaaBm3TobRGUBI/XPHhw4/c7m6YnI2ZLeaMZ6fsd0eu7w+8/+kjSRxx8fUbbh72oBq6rsWzfK4/X1GlOaLMGPhPNgZ/6ONbNZ4Cu2sYeBrHN4EGy9I42qY85qgOFq++hjxnaDtoYeOPloiqwHVC7CDEMB280RzXd3EHTxpNqS205+D7PSYJttT0TYXyQ0a+g9SgtUFTJYzGAXVZYLkugefw88cDXadouxZTaoQ0+PntB25vboiiA8dDxHF/4LhdI/oGy7YwlGI0Dum7PeNwTFmXfPz4DlNrpGGTdC73D4+8/eMP/OkP/8LHD2+ZjQcMRmO0GfJwd0eclFxe3ZDuVgyDAccoIs9zpFJUdYVtaJ69uODsu+ecnY4YmoqJO6A5RFx/+MLV1T03NzeYbc8iHGJ2NUPX5Pn5CdPJgMVswny5xDYkRlejm4y+E4TDkLrI8QcjaEos2WLYDlYweCp8lj2mY2O4HpZto9oS2dS0SfJk+mg6DG1gqx5DwC6OudrvntJUqSnzAmUY7KM9tmUznc84OT3j4fGBNI6oqwrHcfAcm77tiQ976sMjOt4wsgSySGjdAfu6xQsDfN/Dd13UcEoRnND2EI4Czl8+w3Vd4kNO2/W8/9NnKAf8+q/+jl/93VeM5gGiTHm8veTtH//IfrfB7GtOAhdR5nzz/ISTswu0P0NIEyeYYnpjrGCIN1og7QDljQlOLhjMZ7iLU5QVUNzfkz08UBU5wXiKHs4oW0iuLgm6DN8PsQwN6Ra762jiHWadsk8SjkVB3Xccy4JjliGEoqtL8rYla3tmuqNuWizRE4wHvH4zZTkdsJwPCIcWjVa8/XDDfhfR01OWBfeXd6RxQpqkpFmG47oMp0tMxyc+HimKDO/FKzIp6Jsa2dRc3dwzChd4dU603XK6OOf58pz3Hy75+d0nBoMQ37HpqoLt6oGHH3+PQUc4HBKYiuNhz9w10V2LNZyRtYIs2jMaj8nanjzL0FKx3R3Y7g6UeQV1wex0Af6Qs//9/6ApjzRpRLa6xwx9+rZG2xrp+wh/gPZcmjyjQ6GDAW3ToqWibyuaLKGrKvqmpTns8FwPfzjFtFz6PKZOIrK84nod8biP8CyBKI7oMqOrOyzboaoyME2cYcA6itCiJelbxHjE82++4avzGWfjIcsXb9BKso8Tjg3kRU354++oqxpNz5erax5XO05nE2RVofoe0/cRhqbMSwzZge+zKVv2+0foa477A462OJkuWMwW/OpXv+R8eUqdlxy2B8oiR8kO03SIdxtEXZElCb4SqCrj26+/YjpfYimB0VQEwyHK8lFSIqsMrSSW4+LPTsg2j4giRvSSwz7GdixElf352WLQlgVNXZFnJV4YQFsjJbSGjeV60FRcXt9wd/+A7U84JiUSwXZ3IM8rtOHghSP8IGT7cI/oOiwBxWHHcfVIUxWMwpA8SVA9uFo/bWbnNW0PtXYwh0MmgwFNUuB7Q5Aey/GS6u6GdLfDtm3Sw4qmF/T+nE8p3BcNq+Oe6+2WqmnYZwnT58/49n/5n7F8QVsnxNGO3eM16eYGXR+p8gglelaHFpcWSwpcZ8BgPMWhw28zRgY4tIxCj8lgiEWL3dc4SqDlk+p78Ppr/G+/J3j2AooWWdR08ZF2v6c+5HS9pMkzbNuialvKtmZ/SMAbMhnYUGV4hiZ0HaRU7FYrBr6FUgp7YGKFNpYw0Yam63s+X16RlRX0HYKexWyIPKyQZQZZQnJ7TZ+n3F5+YfLd//BP02cv/gJN/oPnL9DkP2k2x/i7P3y6/ke7a0Ty8wein9/z42//G0bYsPzVd3ThnCje8PbDB2rDpm46TA00CfFhS5aXVHnBV6enTPyAcreliCNcy2Q4GTKejJhPJ3iuy2A0YjINUdkRz/dYLOfIssCxTPqywrIUo9kZdbTGdx1kW2JohRYS2dRQF4iyfSrkCgcIGqTsUUGIsDy67PCkvatb6mOEdn1k1+H0LU0L+yxjlaekyZ6B0yGURJsGN9sDbVNzvTmyjVKGwzH7KCaKE6oOeqkw3CGt0JimSZ7XtAKi44Hf/+u/4QY+wevXOK5HUVQ00qKuaroiI09SoEdZFhfPzpkvFxRpxo9//HduPn7kzflzehR1UvJ8NseonxTJoa25+vieIo9xPBc9HvPpp98zDV0c0eKbEs8y8cMBwelLnPEJfdujuhZvMsd2PQytsCwLswfRlBimjzRDDMtESoGybSzV4fo+fS+QfY3hOliBC/qpcNVybExbIxV0SmCET5reuioQokPQURYF2jTphOKwP3KMU7K64ZjXeK6JLVr2eU9rurRNzch3KJII2bfYtKimwlT66Xv2fI5xhHI97uOM3XpPXZVo08TxPQ7re549X/D81TO6OiParbm5WVNVDT01qqs5v5gRLsY8brZEuw1Sdszmc168fInpWOi+J3RdijhG06JNk6buQCjGkym6bZ/0gqKnqSq84YT6uKdKcvJeE2Hwu3/5geXFEqVBy5pjuqLxXN5dfmT98Ig7sPmb778jqGvatGAy8hgbAs+xaZqWyejpJMqbTunblmgdUeRHsFpM16OtW467e5Sv2OQly+mE43ENqgNpsItblLT4+PmRvFMUjaDrOrq2x1AGwfQC1/dpJPgDH9f38Achvt/RlRl1kZM0kmAwYjDyGZiS/WpFWRY4psd6vaKMd1xd3xDnNW3fozXsv1zSNi1tC6t9SlQINqXCdmxGwyFNUVBmGbXpsyk70jxjKEteLUf8j//wt0x8E1NKtBQEYYAlBIZQ0GvoepokwbJM2jyBVj5tRDU9ynDo+x7DNGjLCsuynyBKFtN0EilqqvQITfEEsICmytG6wXY0jq2wZU3oWoThEE+2lEWB61pYpqKoW8q8J4kzWmOAMBSH1T3hcIIOAszQJ+tbUrdnjUGR9ORlS9P2mHTMXUXgmNiOD3mKyg/crbZcro4c8hpbVDRNQyVd3CDg5PSUzgk5Ho9MByHhaES2fmSzWlO2PY9ZzmgcMjk7ozdtaCsc3TELHQLbwNGKvijxDEWbxNiixx3NMAwbUylMbTC4+Io+PjBezOjXj7iDEG86YfDmNc5sgTRtyugphQqHPr5toPuOfL/DlJqqKIkPeyo0ph8wOT1hfXONahuOD2uihx27h0cmz87QowXKcHDDKcNnr5B+QO8YGLbJ9uEWZSqE7WCGI47Rgfu7e7LdBsvUYHqE8wu+PZ1hdi3H3RpvMEAZBqKveby95vPbHzj9+jXDF28wBnMWZ69oEsVPP2746e0fOcZ7JrMZ7vycm7sHjmnE+PQ5d18uoSwIXZdg5OC6JnV2JDkcmJ+dYbQtLgauaaGUiSGfUusiSbE1BK6NdgTBdIY/HCL7Htfz8GyHruiwAg/DtZEoqARSgKDGtA3s0EMHHpOzM/zRU4fC490tsskxpUvoBRySHZZZ4diaMJgyHJ1S1prd4YCgftJnA3GUc3f7QFVXGKbGDTyMoYfsC0xDEgYBw3CAK23G4QhDuzw+fkZqA+VP2R4rrq6v+HJ9w+XtLZ5rcXG2wDRsLNOl3Gbs1zt2mxWObf//GkvHMjCVwWw25dtvv+LX33/D919fcDrxMfsaXZRcvXvkuN9yf3tL6DkEtoVjWLiWifHnDiZL9mgBlpY4hsIzFVobeIMBbjiiznMs06CqW0zDRHUFhqGxPB+aCq0VomswPRcpBZYpcX0fUxmQx9DmpMcjxySlFFB2PYcsZxgGlF2HkIo0TcmLHNvx8cOQPD3SVAVCK6q2w7ZMAsemqhuCLscW4inECSdk2sWcTJlevKTvBcpxGJy+xLY1vguz0wnSDakyTX4oWd2vWd8kfP39Lzn/xRgr6NjvtqxW93z++IHLT59JjjEXQ5ftesOr5YyRY6FNj7pVeK6Pb2u0YVIrj8Y/pTcDdNfQFhnF7kBT9cgGtOXijGc44wm2H6DqCjeLWEx8Fs9fcnZxziI0OA0tXj8/Y6FblrZgYWtcJajLjLSqaLqWomlou56m78jrhrhT9IDT9UxmI168XDCez3CDIW7oM5pMuD8c2ay35GXDenukqTvKThBnJYdjjuc5GLaNHsz5/OkT68dHZm++phA9gWnQpkfifcQz1+GwWZHFKe/+8A7HtPjp00cejhHBaIRBS1XkXP78ns3VFZ6hGPgu+/WKvix4NvTw6ZgPQuy65HQWYro+URQxmkxQUvCw3mFKyWgUcvrmJeHZOd7ZKUUeI5RA1DnZcc9xs8L1XfrmKcARpkVz2GLZNnWV0CCQfQdtTVvmdHX7BFMQ9IcNZXQk3+9p0pimbVCmRVFVZEXBPi7om5KB59D0Bk2r6POCvq0wPJemrTmkCVf3Dww9j8eqwRwOWMxmEO+wRUWaJEQlNNrh0/0j9s1nlGEzDTwe7x744fMt067n2euXeOOA4Nk5g/MLbN9BmJKHuuVht2W9use1DFzbpSwzRqOQr1694dW3X5MlHcV+g60kludjKImsS4SU3F1eIouU715fcDKbMV0usUwbJxhRZQlaCITSmLZHnSaU+y1KGRi2S19mWJ6H8kKk49OWNW1V0jUtUinq9Ejd9nSGgSkFVZoQJxn2cExT1VRpTHKMiIuO4fyMYDwlSksG4ZDDIUYpEy166FvqIqPpe4LxGFHklHlOmiRYhsKzLJbTkMCxGTo2ddPz8WFHuDhhdvYMw3QxaSk2e85ffMfJ8pSR42DaJlILttsH4qJkk+Skdcfnz+/ZxgfG8wmzszNeffuSb/7+1yy//ZquK6jbmqrtqXqTY5pSNQ0314/85kOK0CHD8ZSz5QmeoRjZEs82MNoKJwjwp0tMy0ZFW2zHwGhbDDfAni8Zfvcr7OXZU8AURWS3t8hGUt9dcvzTO47rDGMYUJcVZRyjDE2U54SzKbYEQwhsQyGEJGs6prMFaZpSFi2Ti1M25T2BB3nSMpqM8R2bIosps5Ttbs90PCDZ7ajjA10Wk+32WMszZFtzd3XDV//r//lPg/nyL9DkP3j+Ak3+k+Zxu//u3YcP/wid2Nxf8+73v+Ht7WeEjAmmBoVQXF5/wBidINwhu80DWZ7x+PBInqdow6IpKr49O0XWLdluR52l2JaBaXb0PPVWWEKQVj26bQg9m9C10VLRlSmiA23ahNMz+iTBcwRCSLTtYmgD2TbItkdoG2WaKNWiREtfljQ1NGWLzPeIuqERPrIpKOMDhQ4wbJtk/UDgOwSeQzidkmQJj4c99DUlknVWYZuavKy43UaUVcUg9NAKXNfGcByKpqXMS/I4B6FBa9b7LVmWcPL117TaBMfDCYZsVnu2D4+IfcHL+QsGswnSfrpHn40HrB4e+PjjW54FHnY4Ji8LdseU/W7Lycmc5ckCk57P7/9E4NuEyyVVGtGlR8w6x7M1k/EE07Sf7ufLkqaqMARP/QptQx1H2K6HcjxkC8ryKYsed+BQJymmZUNToNrmSXXruQhtPm10iAYBT/fkro1lWzS0SC9EmRaya2n//Jk0DVWSURUlbdfRoMmPx6dtkjihKCuqFkzjyYSg6QlUT5HHmBICz6Utc2wFtiGpekEvFZ2h2DY9fQNlGmMog6IqSY8bvMDADCyKLOP68oYoS7B8i3EgGXg9lmuSCcn1w4a2bRiNh5yenWEaiqYqOD2ZIvuOtsj+vGLb4IUjpssloq4QZcpgckadHrAtjURRbDZYozFJq7i/3VGLHiO0sdqELtuQHA4ckohkf48sO5zO4MX5BEeIJzjU9ogyZzQICWchUkq6tsEeBEhjwO5xRdUZ3N9cMV4OKOOErKnokcS7LWfP5qzu18i2wfLGNHWDKST7uGSTVqjRgrqs0YbGdhzoJBfPvsI7O+OQpZiGRlYZod+RphmCjp6O4cDiZKJZXV/x84cbThZn9JVDWf539t5jV7Ysze/7Lbf9jh3m+HOuq/Tlukk1GiIJSoDECQkNBAhCv2IPNNMzCGITVHV1VWZWmpv35jXHho/t3VoaREF6gm4NVN84EAggYq0d399KDoMljhVpllE1LfvHO5rDga5z7Mue5baiGgXnJ3PU2JF5Gk8K2roCYxiqkq+u5vz65Tm//M0XhMZAV+GEQKpj/k0cBYSTBWE6I5qk0Ha0myfcAMokCKnwwgntaovnCYzv/zmkdYO0Dl+M9MWOPF/TjR1KCfJhZL+6py5LfO3j+h7hRjwsth+ga3h+c8l6XxO4kUWmST1BWY94UhCZAdfsCY3kpx9umZ99SqtCyv2BMPI4iIBIRfRlx+AEoRaEQ87l2QXKn/Dh3S2vf3jLm2XB03pP4EecnJzy7mnPdncgm0wQyZTk7BxXl4imoa5KNo9P3K82LBYzLi9OSSYRfduwWS+5msacnc4QzuJZi28UfX4giCf4xmCA9PTs2KQhFcnJGeN2jS8s6fNXaGlJvvoV2lMEiynJsxsmpzPCKMBH0Gz3R8Y+SmnLhqHvMXGIk4rVKmcYerSnj3XgD0+0RUvgBMVqQ1NXxNfPEJMF1hiKtsTzFYMnqO2Ak4K2bZBBQC0UUTahLQv2dx+JA4/zT39JZ1JezmdoJ5CipxpAqWMw3c/fvmZ51/DV3/4Nys8Y2hKGju/vbnk8PGGMQ2uJn56gs1P6tiKJptTbmlAf7/IwNCyfVrT5irGrmBiF7OH6s0/R0Qm2HvC9gCiM8XXI7mFJqCXnFxd4nsIOJSaJSK4uiRIfP1kQpAuwAvoO2yt0PKfZHBhlSBh4CNezW+5IJ1Mm2ZTJNGV+cnrM1xkFYhwZKLH9kigQ0PV4/oQ4iNFmpEsS7j6uafuBtz+vGHrYbDe4sT8GKnoeV5fnzLIM348IggDjB0S+w48z1utbnNIMwYT7hyV3tx8pixzfN/zq1RVns4zAeCinGAbBdrNm2+S0fY8nBLd3dxgneXlxxRdffMpXX73g5vKEeRxh2x3l6g6ahu9+ekfflLiuwdiOSRpycrrg9OKcOAxII49ACwzgG4V2AwJ7VPgJyViXSCmOv+0kI0gmuGqPUQIhJa6rCcKIsa2QUqI8g3QDQoyE2QTlBvoyx4sSomlG3R8Za+UFxHHE4VCQ/zlvyvMDPvvq1yAkj/e32KEh8H3CKCaOIgQOXyk0kJ1eM52fksYJYxBT2uP7HvY5STzBCY21Pfvdls45rEjoR8368Ym3378lmZxwemPohw3vfnrNu9t7Vrs9d+/esVo+MZuk3JzMmPuGxNMINDaakl2+Yh4F0NaMXcfoJ0g7YPJ7VH1AeRHBxXOC6QItNVIZtDH40hH5mti2xKJBBynpF38D0icMI6QxhFGEMhpNTzqdMk8TMukI3IAcB/Kupeg7nDQM1tL0PecaEu3QfsD51RlxpAnjgOB0gW9Gotjw3buPfHjMKauB1b5hU3QI5ROkKafnF+z3OclkhhKS3cMS/+Uv6MVAGseItkY5x275SKAVq4cleVHyw0/fI93I/rCmDgLCyOfuw3vefv01ZuiYxz5pHKJxZJMUrTSmbQiUOCpjogDl+4ixw/Q1WRxxfX7K+fkJ1794SZAEaF/h6Mk3G1xd4fqGydkpYRJhbUfXNRjfx/bd8dzhGEeHayvAQXe02o3WYU2E7Ftc0+L6Edf3GBzFdkM3OOYnJ4S+j5YC5QaU0dQyIj7/jDE5YywPSONo2hqlLD88rKnbngDLJDDYzSOuq7F1TqA1jY7pggnbQ0n5T78jDHzE/SPl7QO+8fg3n3zCr/7j/4pCwVjRdzXlYcvXf/qW26Ll4emR/LClb48WnetfXPP82Snn12fIIGV/v0IzEIQKX/n4SlAcdhzWW9r1Iy+vzrh6+ZLLmxcEQYgTEl8rurxGO0vgG9pdQejHtGWBHyUMZUW1ejqWFUymaM9DaYEQgrrIMUGAkArtB9T7LYHvISxUXYf0Q4Rt0M4ym09ZLZfcPz4wyabUVYN1giAIEFjU0CIQYHvafqB3gnQ6Q44Dy4cnNoeSMM0YLRRlTd+0CKHQSnN6ecHs/Azt+aRSMBQjF9fPmUwijIS+qVjmOx6f7tkXFdt2QCYT5FBjh4YyPzCOHaeXp7z49W85f/mSptwxeiG5f8qytLRlQ28NzkxI0xOyJGU6meHpgGK9JvI0keehlcALYnwvQLU1gVH4cYyeXRA9/wVidkowmRIFHi4/4AYH0sfi0xYV28cNMp5CGICzFHlFMp2BGKjynEALXNdihwE/nVKOisnJCUIJTODTxR3PLnP8ViGtIfIjIgl1caAqS3wp8D2Pt+9u2W/3VNstkZEsUo+xq9mT8Nm/+R//Pp7O/wKa/DPPX0CTf6G5X2+/+i9//ObvpidzkTcNm4dbnJJMrq8JUsH64SfunzZsW83HuwfGoWG3WrLebgnCEKE8GEZenJ7goRiqimG02LYliQ3DfsnlPMU1FbJtOE0kiW/QYcyI4lC0LM7P8IMEzySMhyeCbIoFzMkNSiiE7dFBjFAGpzUCoNgjxhGHoslLwukM29YY4Y5hT03JdrcnPjnDDwxiaDCeZHZ+RdMUiLFFeYbKj9nlJWW5Z574PJYdo5Noowg8hacskyzh5HTK5OKC2XRBnE4Yxg6UYLUvUFFMMs146hqs9Fnf3vLhpx/5ZHbFxbNPab2Bx+UdaWiIJxOWyxWpgq6oKIaBuq24urpgcziwH9RRIdOWdFXB1cUJ9fIDqi1J42NF2yxOiKOQZHaCUh5xGBIwopXACo84SQiCGHSASk7Y5TVj32Nsh68dTkgkAt8LkX2NFg6LQvoRtm/R44Dra8JshmTEjj14AaMOkFZg2wY7jlilKQ4FodHYrqOqahyK1S6nynPCOKbGsNyV7KsWgcW4DmyPJywah8QRTSa0bYuSAj/0MXFEKTWPeUG+3lGXFUpp8mLPenVP5Ek8IegODcvlgfvHBywQJQm9CxDGYJVAap+LqysmSUQaGnabJdINnCwykiQhCCOCbMbs8gVGaWRT4A09aRhjgpQmz4miCcNuhzLQdoqi6Hjz7iPVuGOeBAxVzo/ff8/y7RsuJwGuWfH8s2d8cnGNLzRRFBH7AjU4nu63XF+cMJknhImPDhRCtDgvgsHQliXrQ4ETDn0yJwoTnm6X6GhCNkvpDjs6IRFiQCpJU/RYZ/iw3BOEE7rOEk9TwigijDLSNONiekIYhnT5BhFrzjKPoWnI93uUHvnNv/qSyFdsDxWr5Q4pJGE6IUoCysM99eYePwwY+pHNek9d97TNwN3jmryzeH7A2PUIOzIIzb4d2BYVJ0nIb5+fcHNxwvXVNVpKlOuOSpReYrTBSIsUAgG4rkWMPUZb+jLHRBmep7FtiQlCpGvp91tM6CFGB20PyjvWDNoabE+529D3FVJ7aD+DtkE5yVD3KKBpe9puxLYl02mGZzwCXzPuVljAKUmYnbC+u2V9/56mrHh398C2jJi++hW2eMJICSpCtAOHRlCPGq/PeRH1xEnGD+/3fHjzM2kQsWktgRyZZRNaM+Xu9p7FJMHzQuIkQmHxnKPpe9bLFfcPTxilaIeBdV7RlQXWjTy7POXmyy9JsyndYYPf1QgH8ekVeDG23BNIUHGG6y3aQSTBjAOTz78gmKYEN1d4L57jX90glUWnCd40Izo5J755TpRmaKOJpnO8eIKXnZKcXhMHGtG3vHv9hmq7oj3sqfZ7dusNQRRT5AXLfY4KFfNnN0SzGcPYIcaB71//wG6/RWZzdOCBg93DLXQd15HmdJKQnF1y+et/TXZ+yTN/5GwS0SnAT/CkxdYVP//hZ+L4nJvPPmHzuMELQ36+f+Tt+498+uKCwHi8ffeBD9ue7HTO+u17gsHR5CsO+6P6oNosId+xCCH2BZPQQw8drqpQASQnCVoLAikRRUO+2jKfzomikCiNoDuQTCK09KnWLdgREFT3j5hJSjCf4TqHjmfEixM8AV1R0HSgBoVrDnhywBY7jJakcUjblRiX0zYFWtTYUaGV4Ox8RpRO+en1E+WhYrna8vHtHc55HNYbRtvhBwEMFukE1g4kWcJ8cYqUI9lEMpqB7fLxqP4rO3abLXVVMIyW84szPn95Q2yyVI8qAAAgAElEQVSgKnIGqXAm4fHhgfvNmsD4LOKEtmmpiwPCWkINQSjIophZGvP07jtUtWSXF6yWjzg7wtgxCT0mYYi0/RGQUUDX4exInKXYpsAOPX4QYLwAMY5IYYnTjLYsiLMJWgDVDu15+GmGGy1e6GPbDi8MsE2DZEQKGPePGONB1zB0NUGasTg/w/gBJ6cnFEUBTtAOA3XXEkUpf/vv/jskjj/84XcwdMynGXEUY/wQ4Y6NO8nsnF/9t/8DL778K0Sxpu8bdnXFfn1PeSiRfkDX9hS7DYqBLJ2Cy8jzho8fXnMoDkzmIZvdPd/96Ts2/Yg0PsvVhuqwxReOq/mMq9AjRCD6EbwQP4hRbUO126I9Td8PtLsNSb/Hq/ekswXxxQ1+FOIbiW1bTJSgGej/+H+gPA+aEbtb0z3d46RmHMHECcJ2dC2YeMowWg6rLckkIfIMieu4zBIyBUXb0wwjCEHfd7R9yyJQpFmEns+4PJ0gnCV9+QWuORAqSy4H3tyXSB3SNi3KePTCw5w+4/pizuPdPddXpxTb9RG0uXxB3VbIcSAOPPo8Z7les0hj8vWGN2/e8fC45Onunn/95ZdoN/D67Tt+/OPXDPst8yhA2hHjLFpJegujPTbchEaC1HhRTGkdVDmz0JCGPr7voT0DQ0/flLRVidIS4YeEiznRJMV1HU4p2n6kaxpUEND1Pc040giJni4Y+g7Vt/TF4eiItRYx9oi+RwJuaOm6ERXGuLah3q1puoFoMiWezslmM7xoivUi1FAz1juSSURe7KnqCqcERdVwt92TeB7T8xPS62dIL2Jxfs30k18TnN7QDfC4XHH43T9w++4t3/74E4s45H/6T/+JV7/9a5ptSagE9z9+zePjPfebFW8/fuT9akNV5kglCX3DPIuYxz4Xs4z59ITV3RNGdMynEZMkITAR68dHyrxADw3Xpwuub54xmUxJswljU0LvELhjQHzZUmxy6tUT77/5A01Rsn98oq8qxipn//E9bZEj3cBY7hn6gabp6erqaAFpW8ZhwPYD0jMM1rHfbBBjT9t2uHEk0oKPDw/U3cDy4f4IyDIcG8GGDmFHtJT0TnCoO7z5OZM4RA4dP76/pxcaITTR4oJ0cU7gBxhrmZ/NyeZToukM1TRM5xfIMqdbPnL/3Q9sH1cc2vKYCdR2TBYLhBKEYUi+XbLPc25Op/yb//7f8uLLz9CBpquXLB/f0jUF7fID5f6J5eOGfeHIooQAxWKxoCoqdFeSpClDD1E6xdMaLQRxlGCyU6Jnn6P8Y1bZ5Owc23bU7z8ybgrGssK2FbYtscLipTOsUVjl0Y/HrMAgjnBDx/6wwxh9bGRzgnEEoTV1XrJdrXlcLin2O86inuLjliSeMc1m5Ps9cRySZClF0/Lz7RM/Pe5o+5Grkzlf/fIz0iigPOREV59y8eVv/z7KZn8BTf6Z5y+gyb/QPK3XX/3j65/+bhRajA4mE3DBlOzmMx5XBX/4/Z/4sB045CVGOqrtitX+GCCZTGc4IFISzzp8oKtKmrLARAEeHZEe8TyP6eUNs0jiK0HoGYzU5LuCi+tLkiQDYRB+jLANYnqGTk+wxRblBUf5ohuRRiGUxrY1tm1BGuzQg/YwQQxteQy0TCdYa1HOoXyJ0B5SSaTWKAWBL+iHHmsCZDbjTx/uUH1LGAVoo3jYFsdgSeGOSLjnY1WEiuZoDGK0SAZ22zWP24LBjlxeXqO9gN12x+rxlqbKqaVFZIrb2/d8eP8zz19c4StBXx7wJdyuVjR+QD/UZIHGSMvzXzzHWEe73zJWFeeTCf3ykcRI8H0WLz/DlQcMjr6zOCtwOPq2IczmhKc3NFXP0PVUo2IMEv74uz9yfTIhCj2cFehwiu2G/xeMEsdWGGMM43aFdD3CC5BKY/uWXigGHSCURkvHUBdIBKMbqaoCaUckkr5s6doOZQIenp7YbXeAIMpmNP1IVdUcDlukEHha4ktH6BmGtmFxcUnkGfA8ZBBRoFnVHc12ixKKrm3ZbVeslo8YN+KbgMPqQBimbHd7lFR4yYLF5Q2hZ3m4/0gyienHkXmWsn56YL1aEQeGxLhjAB8OYXuoKk4mCdNJhhHqaBlwDk8ZVNcylluaqqS1hh9+XLPdl9y8uCCTlvzhnr468OrmnAzJZBpy+fyaMDN4nsZ4Ai9UuHFAeZrpYkKQhMQnU7TtEG6AyAPZECUaZRs2y3vyYqTuIm5evSRONb6B28f3CHOUUAeeYhh7Kif5eduSJTN2RY/UhuT8isl8ytAMXF0+p2875ouEiJ44FEcwUfd8+stXnH36WxpvdmxReFyxvLvH08dAxKZtuJmFCC/i9imnbkeq9Zrd7kBvBR0GG2SgPIQ2bIuaQRhOFzP+my9e8vLmjCgMcM5C36LsgEMxOT1lKA7Q1gjrGMrDn1m+AduPuG5ESx+GiqE8HNnorjmyfVbiupG6HJG+j3Aj9ea4iDrr2K/uEGODahqkhCAI0KI/1mGq4/faVhVGSxazKYOFrj0G2wZxyq5xBBI839CPI3l+4MPDLc+mkkAfWan52Tl921BVHcJJwn5PqCVN1VHtNqRhjJSCxNOERnF2ekJetWituDw5IYgT0iwhDH0eHp54XO3Y5yW77YazkwW+7+OakijweH59ydXZjGkaU61X1KsloZHoIKWoGuIowutKtOcTLy4Qw8DMF8Sn50xePCe+ucGbpOjAQ6UZrq4QUiKCGDE4RN9hqwYpBFpoRNUiihI9HAMaXV1h3MCHjw/kuz1pEvH07gPdfk9ZlDR9R5AGdGPLqASHuibMEqwQrNcbNkVOmiYoZaBruX/zmshZMqP4/PMvcUKiwpBgNuPaVNihYjP0XJ+d8e711/zw9Z/Yrw589usvGOySQ/5E2TT81//8e85OpsxmM77/3T/x/ud3bKue6fyc8rCl7+H+/o6xy1mEHUOxItGOLNJkicHTikBIPHlUCqWhxhOgnOXh9pFuV/Hs2adINxJmEU4JFhfniH4gSSOieYb2BdFZijedIpVChhEq8hFDA2WBSWd4KqDOW4xrGZsWX4MYeortmny7J9aKbd4xtEvm2YyxBW0k2kncAI32+f0/fkuZlxx2e+qmRMjjXd22HZNZhjYh+a4kMFPOsilG+fi+T1kX7FtLeShYPj4elw2huDmbcT0LGZqK1eMj0kvBi9mvNzRFSSwEQ1kQKM00Trm4OOHVL59zeTHjbJ5i8wPN3RtEXXE4HCh3LR4ecrBMkwTvz+yj5weUqzWBp4niCMaRQAm08dBaYvsWAD+ZEU5PEGN7bE5SCglHEsQzaM9DOov2fBQO4QbcOOJFEVTF8dmVTCl2B4ZxIJhMWJyfkdc9m/UGTyvidEI3DDRdz3az4f27n/nw7ieMPOZlzWYz4jjBKEXk+8SzE37113/Dq8++RIUJ692KfbGh2u9pO4izM7JsihGOvu84HGrOXn2JygLe//QtXduxO6x4/f4Njw93tHWH7UaMhM3DI7Zt+OXzCzxrEU5gnSBMEvq2RXkBY5yiXU8w1nhtjq1KZje/QIYTjPEJPA1djRIwPnxADA2uKtCLa+x2S/e4otuv2N5/ILl4Sd80CCTN5gCjZOwHyrJGeT7KKLqhP1qq0wA19Md72TpaZxmcxUnBy4sZURpyeTFDewpvMmEsC2xVIVOPh97Qdi0SR4/Bu/gF588umZKTJQFxkvD1H75hALzFFZaO/WbDyWyC6Dr8ZMI0DAiUYlX3+ElCNw5M0ymLMOT96594+HBL17RkaUIYBmgpEV5I5wRV3RBhmcce2XzBtm4xUYhuSyZRSBodVbKebxCeR3J9TXx9g5dExGcXqDDAOkBrrAMvm+G0R9kP6MmE+/UajDrWsh921PkBoQ1j1xzvNwvC9ijj4YaRrq2RyQSco9gfEA5+vltSNR3bvKSXHpULkEowrh8YrMBJgbUj+aGgHEeEMvRdjwgjxuevqLse01UsJgkMLUXZ8vrHN3Q//cB6veZxt+fsdMHf/If/wM3f/ntc1/L7//1/4/XtA4XUvH5Y8/ZhyXK9PlqFx+5oQwwMFydTJsmMYTDYtud0khDqgDCcsiuWFHlOFvpkSmCkJAkDssmEdvNEsz6G12ul0bZHa02UTZBK4AUB28cHlk8r1ssVm+Wa+4/3xElKV9U8vX9HmR8oDjvoG6w72ukcHIPkm466G9nudkymU+xokcPAdvVEUddMzy5YbjZUhz0IaIs9SRTgeT5WGUbrmD/7hCCZ0LclnmfwfJ/dfke9fqJL55zevKC0AjuOyDjg4vkF5e5AhI/Y5tz/53/g7qefaVqDSDMqJJv9E9FsRjkMLNcrmmrPydmcL3/5Ff/xf/mf+eXf/BVJFlPnd2xu/0C1uaN8eEOV59z9fMfHDxsiL+U0zYiUJtAGXymMtcR+gHYjiR8gyhrdg6cjTHZyBHebiv5Qoqyj225RTqLbnvrNa8aypixzxjqnHwbGsSbfrlFJRC806SzDiqMFrxqP+YRFvqXrO8LQxyhHnHhcvrxglkn8cYseetq6YXpyzqEZ6fIth/Wavml4WO+4igN+9Ysr/uo3nzNLIw53D0gdEZ1cc/7VX/+9n6Z/AU3+mecvoMm/0Dxt91/90w8//t3TaiOqOsdWW168+oLs9JK33/zAw2pJNwqSNMVoRe8gSjOidIIQEvpjfzpNy1WSkd/e0w0d8TQiCcALDOfXV9jDI6ERJNkc148oYUkmGXEcQjegTYgbLDrw6a1ABDFtnjM0DSqZ0LU1bV7RViMjElQIvqSve9zosEMHY09RdejsDEzCUG3pBoeXZfRIqn4gjEOwHUHkE5yc8rTPefvxltAzdNrQDBbrHMIOCOdoMIz4NFVN/vRAlefkh5K262ispRuPtWdeGJAoD18qpNJ0fUucZOT7krzMERJunj1HDx39oaA8lDR9TZFvCbWkK/dcX10QMXA5OSoYIjuQOoscuiOr5oWcLC5I/ADPBGilsV5CGGfHalCnqbsRqzw2h5q3H+6PDQWu5SSLkVJiohQ5WjzVMzQF3sklY92ixICUAuk6hraBIGQQit455PSEQWmafI8JAoayYOxaBA6nJG1dgxUYYdhtcrQxbPKCsak4lAXVYXeUG4YBYRihlEKLEde3BJ5BKUkUxwRJggREnFA6wbZqKddr8u2Woig45Hv2uw3b9Ya+G8mrniiMOTu7wHkZxWFHrGq6sSWvG9JsQjaJ8MTIu3fvUM4yn8/AWur9AYaB59c33Fy/IPR9PC/FGA9hBa7Osbsd5cdbcOCUR4fHYbfh+uWM89mEJA5ZXN4wn0S0+RPzsxPOnr8i9EKEtIRxgvYNQg74kSGdh5iTU8wkRnkaMWqsU/iTENcd6KzFxQlhdkpsJJHXMIqR2cmcw+ojJnNs2pKfNw2zQFK3lj4IuKs01gsJogTlFMWh5PTmmvlshvRj2uq4sIVqIIkGurbhbKbxF2d886FitW9pH+758ZvX7Nc952efMD87I5udgPDZbvOjJLmpuL9/ZF/2dEisPJ6XzW5DoAXT+ZxwdsZvvviUU1WjhgalFF1ZYoSjqQeC0ytcfIKwIPqasW0Q2gc0tinwlGYsG1wzYssdzdMj2g8YuxrbWnQ4QeDTHY5/CqztGceGerMkigM2qy2b9RqhBO3Y81gUiLal73uqoqLpBppu4Px0wmDBDxPCIODbb79j5jtSH6pdgZJH6b0YGt4/rBDO0XUDyijmiwwpBEXjqKqKeexxMp9THQ6MdUM7CA55xW6/Q2RX6DCh6zqi7JSzi1fAyCovOeQ77t7fUtQN5W7LIonwPEPqaU5mKc+fXTHVlnmoaYscoz3Kw54ojvHilEmSotoK2bUkcUp6ckYWGNLTC6LrG5QSR+a5raFrkMajf/iA8DxEmODKnPGwR3AM1NZBhHCWMc+RY41ryj8HfQNS8eb9h+Pi7eDxYUl5KFG+oR0HeudIT2aIKKLqBu43W6JsBsZwf3fPLEsZuoaHjx/RbuTyF18wTVMW0XHBf9ocOPEVURaw3e5JjOWn777l4c0tXpTyxW9e8PPrb/g//+ufiMMJi9SwSKa8/+YtTZGz2hzwZ3MGHMuHRwY5oGk4yySnYUcSGGaxIfN9fCPQPqSJ4XQ6Iw1iXCcIUIgBvvvTW069lMvJAi/STC5STBQc21icYDKb43seWht0lCG9ACE8pPBwbY0bSxAWZY4Aiok1OohRvSbyHJ7xMQjSeAKkNPs1m+UjkfFxIsAOLUpZdOLzOHq8//EDT08r2rZjdJZhHBCeQRmBr8GOA89fPkNriIIQjcZ4hnocSeen1G3Hx7dvWa63BJ7k1dUc62C/3dA0HXGcMgwaMViasiQKfJYfP7BbrThJY87OUuYzw+lighsbhtUHRLunqw9sthVVA1oFWCdJAw/fN3h+hG07pBuIo6PN1gwtxtNo44MKkF6I5x2XTWkHbFdjpENrjY5SxnyDkRalFSDwwhjskcmXCtQ4It0A3YiaLJB+QH7YIIxPN8B+s2V5KDnJUjwsAzBYx2gtt3cfKIo94zgS+AYhFUk6JYgTJmlK33V4Ek4vznF9zdvv/4n7pzvW+5p0MiXK5oihIN+syLc13uSaZJHx4eM7yvWS+8d7Ptx+oNgsiXzFxdkpZ2dnrB8eWT8+kvg+n9xckXgKMQ6UdU9nxVGtOQ6YsUOXS2S1p8gL5i+/QOmQMIwxRuDGHrt6YNgdUFGG6/vjeXUjw9N7bFPTNSX3P39AZxnFekWzeSDfbrFdwzgOdE1DP3Q0dUXbDQx9S2gkoedxFnpMtaQaBupxxNOCz24yJqHH9fUZwvgEsUYpRXPY40TBupcUeUEUG25enPLiJOIqgUg7tJIces3333yPpz2uPv8lVgu2qyV6GPj0fMFfffoZxdMjq6cH7tcrGhydZ1g+3bJfPVGVBUVR4WuJEIJmtCRxzNh1VIcDXV2RKUjiiCRL2OUlaaDRbvx/QDy0Ic1iRiFoOosyBt9TSBzWCdRkgY5idBjiwhSTTohmU5y1pHFIoD1UV+MFIcaP8dI5wouOQJ8EO444BM5a2qYFqXCjpW8b2mGgH+GHdx+ZhIYgMDRdj2BEthVtVeKcQ9QN290OGcXUXY9Sit1mS/jp5wwmIM3XPFtMKZcP3N09onWAn2/xbEsk4WQ2QwUJUZZx+PgTX3/7Lc3ijFU38uHdez4+PmHtQOD7NG2Psx1pHDCfzomzM6p84GI6QwlBnGa4wbDfLpn6GtlWaB2STefYfHs8422P0iHGDzFuoPr4M32V07UDXV2ijCGcnzC7fsEgDZvlI/tDjlAG7YXH52oQoj1D2zVYO9K1LQ0SJxRCwuBgs14TBT5DldOVJdr3ORwObMqaKAx5eHwi9jR1VdAOI62VjEKRzM9Iz65Yr9dQLllVNWp+ShZq+sOOp+2eth8YuwYd+JzfXHB6kjIiMUjKn9/xT19/wyI7xbt+SekpajcwKMntvuL944rlwx2b9ZpFlvFv//2/47OvPieMI5qu4cPbP1LvHzgsl6xunzjsHHltMMGCzz77jCRKCKWkynOU8bB1g68NsR/jm4TJ6Ut8LyKQCjWMCBy0LVF0tINtv/+RbrfDOcn+7TvaHoJsQrl6ZOhqqryiLba0dUlZ5Agt6YcOoQXCDwgjj7puGZzE8xQISWcFRIb4NMYGLacxXP7imq4vaAdFd2jx3DHzr61bxmHk1fmCRGua1RpXVJw9e0n28nOS6xd/76d/qRz+5x79//UH+P/L5HnB6uGBvqmphpK4bxnGFa+/fU3VVfjplPOrF0ekXAuUOj6wdtsjUt21HXaETo4c+g7he6z2B5KuRfqT43JYlQSMGGtxfYdU6hhYpryjvHjkKLGVPn21xZ8axrqg6ga0EeTrNXEUQFOzfrql92OMFMSSI+PkR3iyY7QGzl+wzSuoW/AmDONAV/doX5Mu5nR1jhSW7Pycpuyp8y2LyGffDVz6AZtVjrMOX4FnBPu+4+n2lijwSdOEAYXTimHT0QrN5OSCwY/Ym4AhigjaHqUVnh8hLZg4ZFSWJDLst3tQI8bTdHbEU5Jiu8GMMUka4fsxgxA0bctuveXVNEa6ETmMCCk5SybIvEIIMH5AYyVROkWlE/YPT7S7Jbt8YNv2fHy45zdfvCA2iunZnD7P0dkE0VSMeQ5KEGQT7H5DMJkw1H9uIlE+g++wJgHXI7A0RUGdH9Aa+qZkaAq0krR1R+J7EEasDzmeMRgnGdqRUClyQGHZ5Hv68ig5lCYkSVK09hFYRjuC9OidY1SK3o7IpqFTIVkScV+3dP1A3dTUVcXQDTRtw93dI5cXNxzKHefhnF9czbmlYLlZo6MQ6U8ZCZimUz6+eY1RPicnC6qiBqNJJ6e8evWC62fPGQ7lUcbsJeih5rB5YuIp8AKUP+AFM1ARxmh+89dfMvSW0fVU+UizuidZTHj1xb8iWCwwcoCmxOUjOgyQGEbs0cLiCQhBigCpBSJwRMFIj0MoH+0PqO2Oet3Supog9hBS4DWCSWjZHQbmSYZcfmT74FHgQSg5m5+QlyPT05jGb1hvKmgFceqQFMizlOWbe0IvJK86cD3T6TV3P7zn0MCLV8/58buvGZ3k81//NZNJgpGKojzgOkAljMOGcXTsy452ACUkrm9QvkJ7PnnvOBw6ruMR9rd03oAKYtrh+LpATxlHR1F2KFkR2x4dBpjshMF6SDvg8pp2fU+XN/gXv2Aojq08omzoig2275FSMdaWvioQSjB2JWNV4PqGLh84vThns1vRFTlh6DMbLJ48fkanQ0RTYqRFa48oy9DaIGWI0x5//OmW6O6JOJrRDiCNZLXdYjyFmp3jhZpJ4lNttohJxuFQIKUhnaQopWn3W7brHaV3ydnlDTjHsLhgLNYEcYIOEw7VgfVuT9n3FIctVV4S+AFVXXFzeUaoBLEnOJlEnEQGuzvgugDbtmzXu6OnOEyRdYMoS3zjkVy8wJMCU6zRXojsO+zmCYzBKYWUivbH7/Ff9OjpHDf0uMOa8fGWrqrQZze4rqLNt6ANxBFdrRibHnso8JThJI54eXHOm9tbmn6kGODj6oDc1hhfMZmEuIclwRzKumWazhhNRDEKsm74s1Ko52yeMeYHynevyftrZqdn+HGG3eW4sUSOmueLmLYqOH3xisBbMHY5OvZZ7xt+9ckz5rHPm49vWH//SEPC7775kWrsOT3/lLGtEK7DGw54fs/CRByWJaezkCyN8UZBHHo4UzIOFobxWDEceiACPry5Y2IMSeIRTT105BjrA9JOaHTD4vycsSohmCClYSwOuH5E+wnO1mjPYe2AY8Q1BxQD437NoCJEIGl3AmlhGiX0o6MRHUM6w8lriqIlSY+KhNaVhF7AmXX88vmn/PDda7r+aHuwdqCvW2Rv8M4Cqn3D+mHNV78+Y9eWeHrA6yUowTSwbIwjmaQEhz2RESANu6Jjt9oT+x4Ptx+5fHFC2/Q4azHS0PcNj7sV0JFNLVkyJ/Ys3X6JHHY4Wx/pBGEJpILBcrI4oWtyYj8i8EOKYk02m+IHIb4CKTQKEEOH8qOjSqCrMYGAriAwII3CdSWjA51MGZsCZWq0N0X4CePoELZACsPYF0ihMX7P0O4Ik5AgjmkcNFVB01RcLDLauuWwWRPpAJvEbMuarq0xRtOPlsFJAt/HYTFhjDCa2GgOb77mMXIMuzvaKme9zfHj9Ng2Vm3ZO8tuuaHcCs4/XdDke2Td4VromoHpxSXyZMLFfEq2uGS7Lri/u2PoO64vzwiUos1LQhzzJCWeTWn7EY+RrF9TbpZsnQETcQMYLRirnJ4OEcUwAP3A2Lb0b99gb38k/vQTeuPR1Dnrj0/cr/bMpSNazHBDzXr1lqEbsLanrffkVY3RUJY5vla0dUvghQRxgmADWN5WCmVg/bhlmsRU+5rT2QKtPOr9nq5w2EHzyXnEzz9bykOH6Ss6MXB3u0RZuLm64P7pI/3gyA876rLA+nDY7/n9u59Q1SfY/ZL/8g//F1EcMuQFXVEhpaJvKlZCst6VOOsIAkVZ5gR+wGpjmXkaJyCdzaiaglFr6rYm9gWBdBjfw7mRvG4IJ3NElJJoBcqj2h0QY4AfC7qxo1wfSJMQJSyd9PCiGJqOyNM4DE1XYDwPrTWj7EEKxiBktANChkgUfdvhdI8XhNRdA8onyGaMZYnflzgn+ebnB34VT5ksFvT9iPE8PCX4cL9BNyX7oiZOzmjbDd0woqyj+P0fuV9vqGSJWa/YDRJ38yVnNzPKMmcyyTBS8vKzzzlY+ON3P7L89h8ZTi8Zp6d8/4d/xO73KKDsR2oL8SQjUCPnFyd4fwZRkkDgXIMJU5RQPK7eY+sDvXW4YSSexwz7FUYromyKqAp0tkAJi6j2SDECEm0sfduyff8zLs6YXL1ierYgTX7L6vGJwVnevf2Jehy48T/n5vwLVFtTVwf04Cj2e+qmIUtThDZ4RtNZi+dpykMP0tD3A1QF1eg4Pz8nbxtoB3qbE01maD9kX5bs//QHfKWIU3j3dMfKi3kWhMRnJyxWa27ff4duak7mC/5v9t5rx5YtPa8c04SPWC5X2m3OPq4MWSU2BQHsC931Q/Qr9is00BDQEASJopq+ikUet03udMuHN9P0xTroN2jqgjUfIG8SsSL+f37fGPr1nFR6NqcGGYTIPOWLP/0V2eqGx77CI9idttRa0bYNvqvQ3jKf51wtZtxcXhEnMdad3/E//Mv3REry3/7vH1jGluuvvuTXX75GjCN5EhEkC+x+S5IkxEmGXtyQCIXuWkKr8GWN9h4zDEzOkCUpwkl8XTOVJVGUILVEeEn06haZLhnGjqY8UjUDxfqatmtpTyfCJGUoEnrhmZxFz3K0cITZDGMt/dDgrUVMniy5xuVzNo+Wqqp5IyW9nZgtQw5ZgmlLRF7w6u6Kpw+fKfcnGmsYuo7f/PZPyaKE0DuU/J823oOlrpoAACAASURBVP6bOn9Mmvwrnc/b/a//03//H/+7qU/i+PLEcfPMdW6RwvD+p0+0Q4dUgqruaNuGvu3wMkBHCUppxqEnkLCeZbiuY1+V9M5wsypYLxIUjnnoiYOAKIowVuDzHJlkKC/QUXom/McJSmssjr6pEQiSUBIoGOsTkzEoFRDGIaarKeuaumk4nWqQgs3zFp/m7I4npPTY5ogPFD5bMJgBN7acTiU6TrFRhveevi2RwuG8w0jJ9dUlT8cGO02c2pFAa+Ispeqms5mEsyYyDgNGO3LqOqYspR4sbVMTFTOmrmGsOqzxhFGCmzxCeMw0cP/DDxRJzNXVmo8vG2yz41DVxPmMq69/RVefWC8zklhz2O14vZ4h8DRVSbZeIYIUrWJUmKFlQZTd8bwpedrveLx/z/2Hn/jxwz3vP7/wH371lq/f3BFrjWsq2uOJMAqxdYkbLMn6CqxHOYezIyo/LwZIUmy+wkhN8/FfkFiCYnFWYmroyhLhJ7phQIQBYzucqepBSG89h3qEvmM0E31TMVhHby1V3zNOE+BBCNJQnw1JOiDJC5w7g8NcENM7T28cIkr5+MMHjseSvu+ZhoZxHFBSgRfEScb19TWnsqJvjhiAKKJrW+qmY3l1RZGGGGu5e3WHVCFBlHD39gtef/kLri7WJMKdQaFBRpzNMWOLx5FefkE8vyFMlpiyIb25IVlcks6vUU4ytC1FkbF+c0daZKSLNX50aBUgVYgLJH1VoQQILZFCoHSK0h4hQ3SSomjxfkJkBbYfEV4QrleEyUQy01xdz1kUkkgNtDKgGSSnXU8UX/Bh2xHFEYtFjimuedl1rC9vieMF3oa4RCG6E29fv2aaDPf3PzFbJtwsFHGkmWcZdTXx1dffcHV1iesrXr1+jcxW7J+fYThhp4Gx9WwODaemoS0rXrYHJqHo+oF+MgzOE0QJwzAQmIGob7jNJIF31O2A08n5tk9pkmxJsr7h0NQE6nzja1REoDVIhTOG6vEBmaQMU4/1FqE942hxdmSsj0xjx+A9m6cXtHT4rqGtD3RjA94QJjHT2FHWZwixmQaen3ZnAPHsnDIIlacfDBfX67PRph9QQcD9y5bvP29YL3Ksl2eTUKp5KBuGQBOMR2ItidIIkYQ0PkJIyXUiMPWBh13LaQoR2RrvAWup9w88P3xkV/ecyiO7l0/0XU1bnRDeoXUA44jA8e5mTe5H1rHibr1CmwEx9GANSImUissiI5h6AudItCRUECUZ0jqUnRBRRv/971Fa48MY13VIIaj+n79ERQFyNsfuX0CA7Rqan34kfPs1VoW45oSrz7eHXodYYxj6jqE8ooQnXc5prWdfVgzDgFSSYz/RWY9SCqk1+3YgChXT2BDEGX1TIeXPMGctkQ7i4PwbOssTkutXuIsbiBJmYqDebZmHhqdNiYtThlaQh5JIhOxeDhy2Jc/fnVisczbHgb/73T/zYfPEm1dzvv3t1/zw/oHycKTa7lkIQeAFRToj145iFnExz0m1BBNipGIeJeRphJQOXay5/+ET8ywln+Wsr1f4sSFKMnCeeZFQLBZIY8BYZKCRpj9XP9XZPuC7HqYeANd3+LEnpKfdPNF7g4wSNh8+8fC7vyfyFQE9yXJJIBVaRWdwqxmZ+gk7jQgF+IEPmx3HwwnvPTpQKKkICLhY3yI0zOYZ3gmuX9/QlHuyLEe5ku2H3/Pxh+/ZbvdoHRLFCWEc04+WsakZupFAKtIsx8mA0U7M8pj99oV5HHC5XPInv/2Kt2+uMVWFqJ6xx5Kp7em7nn05gk4Zx5EkO5slkqwgCgLyLCXNs59Tm44wzXDTeK7nqADlBgIpzrVZKZi6BiUDVJiggvDnW3qPNxNBViCUQmkJ7vy8CgTCT3gcYzuiihkGyeFQQRjhVYAbR6rDnqftjmmaUEFA2XVM44BSCqQiny24u32FEpBkOVKo88313/0l3fNHkvmCnY94OmwI05wgjDDDQLnbst/uES5k/eoNXvXnRME48VS1zN9+wxdffcvV1RumwXL/4Sf22x2BFPzmqzdE1iK7DuEVHonCY9sW2Z8o9xt+uN8QKM3du6+YFzliGsB7qu2R+nnDtNkwbV4wmy02iHDJnNbAZl9z//6ejw9bhiihuH2LVprmVJ+TvEIyjC1l03KsT3hnGCfPsRsYRoM1llEoIiWJnGGeZ1ih8GYiCUOu7665+vWXmKGj3R5pTg37zRF9lzP2W/76H3Y8nkaOOiYwI1kQ0lctdprwXnLcl1x8/S2Ts5THPc8/feDlxw+kUYAdDYvZjCKfUZc1Q9cxdT1PL0eadkCHAVIrxuHM9RFaEeYFVig6MyG942J9gTEGbUeWRcE0DKyyCKlDRqEoFnPiJEQGmuLujnB1TZjlqLQgvrgGGYIQ6DA6G3LGnqnr0GFEGCcIcX7eXVufkyXG4b05VzuiDHSEQTH1HZN1Z6OjNQilGIylGg2bquNle+B2VRBpRd+MNE2LtoZ92SDinCQMKfuep8OJOAy5mBeE1Zb6eGK0HpetWL/9JWboMZ8/ENiBq+UCXyx4Xw5cLGdsTkec8Hz88BMfn154OdU4HVIsFuelpRSM48DFfEacX6CtJf75edRxzOa4pa22aGfQ3jGbLUiWa6LZisXVFTKMkfmCIArQwiN1QPHVN8SrFfFqThh4Au1JL28YnTynaZzh5ssvEFFA2zQMU48MA54fPvG42dCMPVlWMDQVTii6ydBUJ8q6JwlDpmECqRj6nl1ZYcaRHz7do7RisViCkKRpzOXFmlM30FcHDrsNdXXiejnj0LX8fnvkp08PHJuOMIoRYcRD3bE57rnIM+4ur9l8fqRte+JiyeLmisYp6nZkdyw5tjVOCz5/vmfoW4JAs1wWfPWLL3j3y29JZykvL8/84a/+mv/yf/1XLtc5i0Kwur3jzZuvWC3XVJsdM2nJdIRpB5IoJApSQheT6xDhJFJo/GmDMIbg5o74y28wWY6QArffENoB7yy2LKk3OzAjU98zWY/wE8PQ472jGwzWGbaHI0JxvnAyPVU7EMYBQ99jhCKNU7w7pxfTixtOzwdO759596tv2Dzs+Md/fODYwfyi4OH9RzSgPJzKFtn2hJPjNs9Z5jmL21d0hyPFL3/7f4R/ZJr8/37+mDT5VzpJHBOGAadxOCukPj/y14cn2tHyuGlRwOlUoZM5SVGwWq+oji11UxNrhRl6Jm9Ri4xDeaLsW/I4IIpDZmmCNj12mNBFjtMh8fwCEUXYYIaIU/xsRZDO8HhG7xDFmtBZXFsxTh1mGDBVRdk9sRs8qdDM05D1esVQV9hIMJYvJHFK1zaMwhNiEd4gw4TqtKExgtQZxqZGL6+JE8VP3/8zdXWi7UeSJOQXyzmNM7y7WfFUxkzG4pwjFQ6cpTOOIM1RScLLbg9KkS6XdIcjN1//ikBFXDhBPF/y0naEvcSbCakC8JLTtqR+dqzf3ZIVC5arGb3uWPQTy+WCTx9+5DdvV8wCqA57ikgxqQikYZoVkM2J1m9wzTnhUI4t1emF41jThobd/oV2u8EYwZ/95s+4XS8RTXlmF4QJJrSE8xvE2KGCCBVn+KnHtA1eaGzbMhDStzUqlAy7R+I8w8iIbvRYndC1JaY7m1hUlCLCmP7UM0syYtsyesdqmfN9fcRIiQ5jVFMR4lDiXHmq69M5KaM8XT0yz1JwhvlywWAsiQ54OZTYMCFNZtT9SNd3CMBaD0gCrQiCAINknHqcN+xPJbtTeR5kvGV1dUOsQ+JQ8ae/+oJISxwxZhqJMOSRJ3I9SkZMzhNHkr7ZI8zAYn1HFMzPirdizRSkjMcjZlKYbcs01Myur4nmS0QYMFU1YZxjmgYhM4Rz9IeaeDk/R8ejGTK/ZKp3+OOGIA9hOtPaRTRDIImygHCoaMYKOUuJdYwFmlPFpD2JVDSTwoU5L31PfhlhhpZ2iAgWAevXX9IPlsvbNfEy5/HpE1Zo6nogEhZtJqqmpe9jQiaOj3uWV78mijOSIORufcX7nx4ROma5WlA+/MjYNDwcPMXFikhJfnja0BqHYDpDTJXAa81uvydXjqATTEworqiqGhUmLLTH9C0uzvBBwtRVrJYXtEQkeYSfLDJW56EnWRJ9leC6ke60AdujsAzdGdjXliVWxdSjYTab0w0dvq5ompJ9eeBinuLtiAoiDBrlPUIHxDMBUUh7OuCsZRhHbBCjdYidPDI8q6a/VZ77//a3/Ke/+Y5XqyXLPCHINa9f3zKZEecE3TgQDQOJmQiRaGeoDifKlweaWjB0ltB+JMhTOm9pu4rGWno/4ifF2Ax0TUUYxefqlnXgDG9vL4n8xHUSoJxlHCdWi4JJQBTHeC9ZSEkwTfTHA9nFGhlEmK4FY1BKY0cJnWXyIWNvCNBgDPJ0YP4f/zfUao3Zfsb3DS6IGMua6O4Nw36LlQEkc3zfYcodXh5QgIxjkiTBmR5b13z76paha9F+IpsXrG8lbdugFLTWcH//yPaY8e6LO2Qg6YcGxo6+LVFyRRBotrstLoxp7x+5dpJfXN+cB1hriWYR1TTS1RW2qckIiHxA/Xzki9df877+e17/xZ+ydS2ffvcjj4dnvlxf8L98+44Ri/OeqR9IJ8syiYmygrmamN/ekMURwWQItcIHKUWqUF2DtA7ygtOuYpYkaCmZX65o25JEQ+gFq8s5cRKhpxHhQVR7yAKssyjd4vHIfI2benxf4os5TD3SNti+I3Itj7//Z6K3vyKIWog6Hh9Kql1DEHguXt3yfJgYfUU6j1FC008TOgrwacC73/4JTw8nuq4m0AFhEBOHIc4PJJcF65sY8/Oyph57TtWR0B/4eP/M9x8eWa8vMTrjuD9yqjrCMKI1kgTY7yoS/cTs7guSWFFXezznKtrXv3zL63e3aBymPaImSxAXuMkylQ2TEVgp8AJUGDO/uUUPFSCIkoQoTpg8BKEmyAucVATS4foamcZ4BFNbo8IIITXGOrCAFHg00WzNVB8R3kJXItIYr8MznFxYUPoMfg5aquOW+WrOqW74/LTHDxY/dkR+IpDwWFXE1hNGKfPZjLKqyBcL8mLJ0DdUQ0+Yzbn69h1yKInmM4xwHETMJC1xnKB/HtrGydDWLYfDCS8MX3U7pjDg4fEz8WxF8uqOV1+8YSkUQ1OzP+yZpumsZk8jlvMl6dBhJodQEEnBWB4QGj4/fOZpX3J3fcH11SWJ8AynHaMMmK0lQQBRJFCzJcPeMXWG6aU8f1cxMfmIfnGH/nqOGTq++8d/4BdfXXE6dkSrNdVxT5xELG+vkMqxeX6hGR1eKvrJsTk0rKwgVtCOE0jHXbHg8TDx/Hxkc9ryanqPjiKGFPpJ0Jcj065htlhytTrww/sj2+eSNtR0s5Q4ksxXK5T+WRWtBW3fQduTAM5LHp52vL25RiJ4/HjP8VDxsNnTdx1eCIIoREYxvbMEQYhVkjGKKcceMUzE3vx/f3eMAorwDL8cjaAbHZfXOb2Ban9EibNZUXqHH1sINHGxQqQLpBS4vkGmC7w1jNWJOJ9juupsM3Ie2zXo1Wt0tmBoaqZqixt7un6iazum0eCiHCkkTd1StwPWeyavkVKSJDE/PGwovvuRX3z5jq4dMJOh6Qey1YKoKNjuN+DO9bliPoOu4z+8u4ToNe+3NW3xlspF1M8/4Mojd1mEihPGMOO4+Y5P5RYjPE5HvP/pRyZj0dJzPOwpj3uWywWzNGGRxWRRRiAVdhwRKqXtex73G5pyT2BGxGJJsVwQxCHaD4jJMLYxSZYSJOnPKmaH8+AUZ/h8P5LcfYVe3SJkSGYs3SFhaCpkpLj79Z+ilku60wnXduw3L0xY+lrz+OkeEUhGoUmThO1uh9YxdmqJ4pxAhXSjIVABIikYjeO035EoTzVMtLVFxjmx6+nbCoBiuebQdORpzuW+5qk68F3dM7x5y9S1pFeXTE1K7wX9qaXc70nv3uKLGcVqzqn+iHCCvjwRXeQ8lRuOpwP704lpMrRVy5dffIkV0I2G7374Pf/8j3/FPNCsggX69QVxMccZjxsnsrQAZ3HtQL5a0x8PpPMLIu8JpMQsl8QXF9jyEtd1TEWBERKTZCRKYo9L7DAx7e5pTzUyiDkdDgRxQmc8noBpHBjajsFCN/QM48jz9sBKONASowzb7YFiucTXNW0niJMIhETLiNiMaDvRbbbQH7iONc8/fs+XBWAgDCGb5XSrOdPxyC9/9SWrJMb0PYfvv4c4wU/jv/pc+2/x/HFp8q90jJnoTxUKwVTXzNKEU3PicddgvcZOE5ODwFa0dUm70TjnkWFA1VjGdkCmCaM1tOOIVRIRh7x9dY0fS7IkQEuP08E5Nvr8glYhw/CB6uIWvTR0HAmVJgkVFvDSIrxnGhrK/Y7Me0ZvsVHMfrel3HiCsgRrkW7CtwPLlWAaao5VTyNAGkfSNpyaAYoFRsfUTmDajrbvSRcLTm1HsYjIvMUiqDZ7usOJy8WKqQqx1uImSyAF7meVarndkM1yqrajPQW8eb1CDIa+H7CzG/afn5mG7tw7l56uqhGDI3QFi3SGGCIePj5TH1uUSMjjnM/vP5MXEbPwGm88ASEqyOiNp6x6rhZrZDLHGEHZj2w/PWEmRVDMOISKh90zTz+852KW8fW33/DL3/yapO+QeISMqI4tq6sblM6QUX7W7TY9xClkEQD16BHSEoSK7rQFJfAiwQcR1ekEZoT6iLD2XJeZesKsIIlyhAsIlCL0FYnXpDrAhhYnJU5IVBCgrGN0FiklVXVCKcFqPsNZwzT2KCUZETgV4OP4HF3ve4a2om9rwjBECEmgNGGgydKEQBjqwwYdxewPR8ax5fRSUVys+WJ2NjVE5KSBxg410nbIyRGmyfkW3wlQwXlwtx4xGrLFNUIECEJMNSKzFH3xGp2vcQ5CoRDRDSjNWA+M/QvZfIEbLSrOaQ5bGA7EcYD2mnB1xVD1SAzh7BqXLcEZmGqU8rjBILHoLKYfQwKvGeoOHwcEONIwZjAnlDW8m0f8w35P200UeUayXrPd9yS54s3VFc6nWJ8wuwwYoxx7/EzZjtzM1xgTMpU1s3yJawzlqUWHB2aZ4/T5hWrbU+5G4JmuF3x+bnC242K9xkvP8diwPdVM1uPGnlhLBucx/YQSktFYsjgizyMm19N3A4sw4vTymVEqlIzoyoH4Yk6A5KSWpMWM6fiAnBVE8xUCx7jdYl1NWR3RQmLqPfvPPyCc5ViWBElKY2H32eGGiVmW0XQdWaIYyxGfJCRRTJpldH3P4D1pkTMMPf3xSN+2CCG5utG0pwqpFEp6ijTjab/n7vaSvys/8uFwoh5a4lZx9+uMfPYKUY0k8znjMGCPJcnslmE60QwDT4eOxiXs9juWecTJtHzqFIOVKKXIg4i6rgmlIV7kEBZY79A4Mm+ZZQkLcQZcqigizue0gyHSEW1nWEQhcmgJ8wJm87OOfbbAKI2vTrSbZ4JkhngVkn/5DX6ocV2LMOa88Ol6wjDGti3bv/zPLP/8L/BCAiPj0z0qShBJClmB7RrsaNDKo9oTRCnSewIzMXPw1as7hqHn9LjlOHpGa8kCMHai63vq9pwIe2MlURRyqk80bQvJEpwkzFJeTkdevfuG0/HA84efuPvyy/MwIiVaCrI8pTodmV9fEY4p9//wkaKoSbMZT9Oe//K3v+d+v4Ms5e23v+L1t3/KffNEwMAqU9zlCy5XEcvM8O3rHGsEcRgjlEA4zpW5qcUz4dAEgQTbMitCiiJjsYrI04z13VuKIiWMFNp5pHUEUQCjwdcVYjbHTyPCOpyTeOfwfmA6vYBW2NMB1w1ntodp2X36Z7RwCOk51juiImG3q3j++7/h+u0VRod0w4DNcmw1IFxPHBV8+/Zrdl/s+Ifv/um8zC8CZrOCJA2YFTGz2ZxIpojRIUZoygqZOiYP3jmO+x1C1vSTRMfQ9g2DAeEFdhzYHves3n2F5Pwuv71cs16k3NymKDVh2hrMmU9g2hZpLYEO6cx0rpymBZNRCB+iw5RYa3SsUXGIjkLc1DM0DXEc4aYeoc7gZqEE0zCCCgjSGTqIqfdHFjdvCOIUbw1huqTd7klmIQiJiDQijHBmQAQSKUL0FGGrE2jNfJbTdSPl4R41NLhxYBkHbIeJY1MT/wz7vFgukXFBlhdEWYJ3DoFnU/VcRpov//wveLj/iPPnD9K4mDEYQdN0zMKY3b6kmQbyixnFMmVwlqfPn1kNA6EJePnuO6a8oOpaPj2+YLsOZya6AYQd6fueOI0xQF0fINB8ethA23C3LHh7u6atasbBkeY5r796hzcjzWbLyRnCMGccetzxQHvq0WmOCgWTmzgdT5yjsQlVs+fv/v5fGCbDquro2o4kOg/vcahYrJbkTlDXDbtOMUNTdgYfaqxU7NsWM7rzjbQz7A87nt4r4rmnMwFylTA+esba0BvPbJGRhSVj5+i6iSMti1mCO1Ssrt+gRIvvB6QzLIIQl51ZZh8+PTH1PYGSPL28YBHMZjlSOMAj44TJO7QQIKBrWpyZCEKNGSd0oEnS81AeuQidh5ixI4xCJm+xzpFmOdYrCCKqySGdpJjNkN7h+hYlFNZbfJii0oLx+EJ88xqtFEJ7AuMQOgYRgvNYY/HEbH/6wNPjZ6qup2nPIE6tNVJ4nDUUeULTdtzvToRKkQYhzsOPDzt6I/iLP/k1u6cdt9dXvBxKDm1NayfaoSNUKXaynKaJ9V/8e2yUMhQl/qtvefXVN+yygO9+91/pRsEfHjdcJwuu1gvG3TNVb9j3A/umYZwmojg8mwu1RtmJprFcr+aIIKYfLFjJT+8/MzQVfd/jXM/Nen42+qU5XoKWgiDMiNKUIAqZ+hoxNOi4OC8WMQRKEsxmSB1joprueKRIQrL8BuduaE4lp0PJxeUFz70hTXIOm5a+3hGkiv2uxOiE29uCw7FHqrPM4a9/9wfSvOCL12+R3hFrCI1ABCH7pmFyL7xapqSzgtiNjNaS5zkOCVLytNlx8eY1WRTSNRX59R1bIXn4dE+CR3q4UZ69hNPhxOzrBOMmuvIASvKwe+I4NGQ+pWlbunGgN5YgTHnzxZ/w5df/jjzLqE9PVI8/8vo2J3m1JEtBCEsg4IfvHni3XlHML5iGkejikpEAvZqjhERJgYxi5u/eMglHtP4Ca6BreqI4QtUVzW5HHIeYKMJFGfHVnJeHR6wOMP3AqWmRSmG9ZDQDQofgHNbDZrvHKojSiN4LLiLN80NPUaREcUQnwAnF/vMPzOYZv/jN1zwd7mmmA/FMcVFkBLOUfd8zViWvljOUhMX1gmCRU1xeQ9Xz8o//RFCkvOnq/znD7b+x88elyb/SsXiCKKB8PtENIzfzBdt+IpuFnE4VCEEcB0RxhHUevMeakbE3jIMh0CGjP+v8kiQGPDc3FxSZhiYgiWP8OHF63NMJzePDltk8I7u64vT+hYd/+MRieUkwtiwTTZ7nVHVFGmom5zi1LXmYUMxyyvt7lJKoYkbzdMCXFXGaEkkJumXoSupmxEnJ5SzhcKxJ8uxMIz/t6dueTEtcV6LzjNl6yTQONMPA8VhixvEcW+/bMwPBWY7NxDhOxGGAF2d7ho4ioiyj9p7j2FMEjiQtGGxNeLHk+OGI71peNk80dcvtxVvCKOF5+JEXkfAqn/Ft+Iqf/vCJ5jhgJss8zIhVjPASRcyhKZktJMv5/AzVczHHo+HpwzNFWhAkEd+/PPD+4QNDWzMLNVfxgi/uviIwDuM8i6tbrLUIFEGUU292KBQ6CHHjhC4ijBF0fcdkB8apZ2hPRKuMUCrapqYv75FSAhZjJsTPQeIknoFWTKNHBhHW9ucNejcRoRmEJE0Tjk1FIBVZkjI2DZEWjNbR9y19mlAslwxmQmcFKgwY24rOgIoStl1LXR2wZjr/PwTIIMR5Q9c14C2NmDhtnkFq+smCCllcXNG0DSEDcImQIWayuHEkSFZoKXBVRTBf4Y0gznLGqiTN54jRQxic490uYBhARgFBqtAqQSqNn1q8cXSnZ4Zyi2h6BjcQL9eYruf+h3tEYLhYXRJFL3jMedmjFf2kcYFGBJJ8viZodjA6jNNE81f4w4lTbRljcwahtiPJMscJR2pOXIUV99ueMFHITpLrnLi4pVcxSsU4tSC+XKKLGe1xxvH9Z0YLy9kaYT6f4XSjYOgnZsdPlM0fmGzMyykljhfc339g33ii2RJl9NkOIBTb/Y5hnJicRwtFPxkQEuMsSjnSUJFmCeubNTLUSGvomhpERN+NtEPPfHXFPL8mymP8qWH7uWFuanbVBn3YIL1jOBww/UDXTYihpdl+pj0c8EPHiOTpWNNbi3AQa8nu5ZFASoZA08QBLgiZrS+J4ox6dGy3W+6urnEonJd83tbnmkXXMTMjxXyFMSMyECRxRJTNKeY5n572WG9YSY2QFcfpQDQ6di8lWZ4QBprmsCFwlmmyiHQBVYsU8IePj6yvriGdoZQijlOCOCHQClMZnDeUQ4PSIcsswdYlahpR2oPwhGGCHSdwI8fywCqfobwlmq+wHqJFeo6jtz1pGDJsNmhjcX5CKsuwvad5+Mjsq1+dIaVSYKaB8fs/oKKI+b/7X3HeY4cz0FlmM6r7n2ibltU33yJnF2eV8f4J13a46ghhglMaOQ5czue0775CRAkvhwOHskQJj0UiBIyTpS1LPnz/L6ikII4jVJQwyoj9yz2JFlx9/UvyL75iPjWgA6pDiVYdy1lE20+0TcX9pweub14TR45iNvLh/Y9c/flv+aefPvF3/+MfiULNL379lvTrO9zFmm7/jG1ryvLAMplzUQSkyhJLhRMGNTaM1hMFCSGOpq0RSU4SLzDdRJbGzBcz8ssr8ttbVss1SZxhxg4PRKFCSYvUMa4fUELhuh5+HoCwHWCZqgPWdxDGOCEZdcD4+IT2YB8+4+cXPB4qlDc0L5+wKmLf1Jy+a7m7uyK6w2ywpgAAIABJREFUuaQ6HhiOB/JigZwcXT1x9+2f8f54ZBi2CO1ZrHLubq65vFiQZgmRzgnVAqYXIGJQAfOLS5z/yG5foWNPvLoDB3VT432A73pCCS+HHetmT6pjzDCRBAnKWqa2IVK3SNERJAtUkDB1L/TuSD06fBDRjZAkCinP2lUVp8RFdK5joPAC9GyF9AJMj5ASJRz8nAwKZzNUGCO0hjBCZzN0kiH02VwnfYIEmv2eTAYoHRDk56Qk3oBzqCjFmi1TWWImTxppLuY5XVUSCo/ylkwJTsPI2DeoMOZytTwvQpxDCsl8uSIIA9RQI7MF84s5Sim2j5/ONsAgZOobikTj3URSpIgQ5suEumvRKiVRK6pdw+XrO7SM6MsjzfMDufAcrcV7SOLoPOwnEe1g8ENHdzowqohjO/DLRUqRhEzjhFQhi1XBhOb984mEF/r9ibTIOdRb+uOJSBhMN3IdvkbKlL7rGeuSHkWUzYlmS4Y+IlvFzO5uSUYDdsD2I11b4vMLiFIwH4iMxRIyD8T5vR9o9GRoxhEfSHSkea496f3AtZd07RPjyXPizJmYIoFKQy6vZwy9YZgcUmua3tCZketfXPL2m7N9Z//5GTG05wsyYzmVDWYcmMeKeRGTC8VkYsrAMfUDu7bDS4UMFM47gkChhaTtR/Bg8oRBaQpvCaVnNGfoeZRFyDDnVNUUOiNdZXROEOcz6qZCynNlVQYhpq3RcYyOM1xXobVASXBDDV6i0gylY/AK01b4vjkzosKE5+2BU1nxstvRDBO7qqQbzjaoKAoYppEiSxDOMY0j1xcL7rcn3HbP2+ORrqz48V++4+7iXI+O4oQwGqmHkf1pIC/m9PM7vv6L/8jf/J9/xfFffqCsjmTKn2smOK5vVtx/+gj9wCwKSOYLNs8/0I8/ywSMPVeM8GcIchCSFisGI7Fjy/bpgdOpxFlLFsVEQUCa5ERxAs6Q5Wt0FCGsQUhBXx8J+pIonxEFOUESgJWEbsB5A0h0FJJeX2M9DOWe5rjB9o6bV28pdxuubi4Y6pJvv71m8yhYvfuCza5FRAFRovDOsT/sKeuG9XXM9njiP//13/Jn375DK0l32rPMUw5Vyak19F3F2xtHMV9ShAmCs9JcK4Xw55SYSDPqYUIPA04FpEXB2DSUmw3PoWIjz5Xi/cuW6Ebgjad6uOf4/Imjd/R5RJjECKWYr5e8efMNd69ueDm80B5WHDY/MdcWIyDyEj8NDJNE5jPW6R5lJf2gGI8t82JAR7B6dUUcxWh/XibLYCAKQ1AROi4Ywg4RhrimQQmD7TucHXFxQBSlzMY1YxUwGcvt9S3Vfk8YKE51RZ7nqOOJwEwMZcPjsWblHUZp8snSWAc1BLMFarlEVgc+PzwSF19zkSdE0RXxbcXj40fSrqZya25XOb7uqEfP6VBRXC8ZghibLQh8i8zn/PTTe74pa5b/swbcf0Pnj0uTf6UzDT3WjPRNzTSOeJdivcMag50MSp1vquqq5owH95hpxEuYX9wwnkqGvodgibQTqzzn69s7YuFojcWhKceR56cDL2XHsXekpxH93KJnc/IsZjhtKSeP8zGb7YHXN1esliu81tzokKTI0CJkOdsTpCG9twxNSRfHjN1EpBVYQbq8Il2GbOsTn0871pE+2znGkQBQ+gwVO+73ZFojtWQ6nonsDsGhG5knAW3XYYaR2fqCTbUFxPnjLoqpjzX1qSU1EC4XGO/pxhFjaroiIGk6DvsXDg8f2T8/k2ZLglcRdX0gLSxJ3BDqjMvrOT98LHk+/RNBIphfzOmmiUyl7OqS+fyGVZpTH45Ya9id9oyjxAya+8OBfXXk426Dko6rYsYsC7hcXZKgmZqOWZFTPj9THUouLq9oDw190yJdSHfcnzkr/oBOY6Iip65GVm9v6SaBcILj4QllO6IoRXiPkA59cQteIc2AUOBDyZ4eZSNOpwNKaqa+I0PwsD+xuFxStmcWRqQ1WaAwzmGMRSpL37WY1Yr5ao0MQ6w3CCTeWKrJkBQLgkCjoogw0FgraYcGaybCKCArIuq2OZPmpSDLC9a3r5nP52A7zGSROmESIYQrpOwRUjCUJ2hKRD7HiwmpI3R+gY9yprYnDCV2ckRZhhD6DG31Fjt2TLXHtw3D9p7RtrR1yelUERQZx8Mj7dgydiHDrmO1nBFmKWO9ww0jk4N4XiBlwNDWDG1DnMwJcoHrO1Qg0LOUaZ7QVT8SzBUtmpeXjmgmiLRiNk6E+4anXvPNlxk2UixvFgRpwYeNIQk8uYJIax4N5FmGGUZ0KLCtRUyGpqzpqgbbNnx8fiBa3CCTK95//5G6b4gjBb1kmgZ6mdJ5d65MeU8gBdN0/vh31hEoxTevbnh1syYpcvIsYrQGjWQ0niS9YPkqJxCKxeIGLQNE3/FqNqM97ejLHYPxHJ93uGnCjj1pkhMgcQisBVB0E0x2xAlJO1hGPG3ZM/UTM62IhWceRchQoYKI/DrDrq8wMsCGIUmW4Izl7hZ0oJhfXuGcRQpPWTVcXK5J0oRAR3z9xRu8FHx42J0NDd8duXqTcfvmHcNhgx0qJDPoG5CO2eUddWxI/D/z+ccNVp1rB+M40lUn8jhimCxVNxKHKd4MZIk810SGlmHoWd2scW1JEihmSYCcOrQSXK8WaKEJsxnTNOK1QkcxfW9QYYQPJeHdLWHwDoRkCgLSq0vSJGXwEj10+DCiLUu8VARdi/MaYy223COFI7kJUfmM7nHDWHdIraheDjSHExfzGWO5AWvPFR45obuGxAy8ffMKF2iCUFGPhqYdz+k/IWj6Ca07uskxTgleSvrywG63I9QSJ78jKlJu376lPpUEbc36JqGsJhbFgmGsMdax++kz9TChnOXoLJ8/bfjpdz9xmSx49803JF9cI4slvQZjA65mFyg38OpuQSR61tmM+ljjkfh+ZDQxF2sNdiQN59jkltksp7MVF//+t+Q3rwjChCTJwfVEUYAMrkFoNB7lDTotkG9/c9ZiOo/rBmxdY44Vw+6I8R3ObvCdxRGwPx3RDNjBEliLtg5TD3g5cNidCIuUz4eOQAQIMRH3LTaaMBgaRo5YZnNFLzTvvvqShxeDkIa6rfHCcnV7TZAkJEHM0Bsm6RjaE/00MQ0j68slQgbI4pYwjBm6msmcn+F6HIlx5JnGjwei+Jp2rGn2J+L1nDBYk+YxziikTDC9x+FxMuGhaTm29jx8ZY440SSJIl8UyEATxA7hLEr9v+y9R68sS5Zmt0y4FqFOHHHl01kpqrPYzUGTQHPUI84I8G9y1JwTIBrVRVQTJZhZmfnkffe+e3QI93BtbmYcxEP/g64aVO75wUEghJvtvb+1IpASYx1RcYG0I7bdIa1FBRIVRIzjRCgCghiK7RaURGp15p1Jhc5zgvWG8fkBMZ6QQiCDBADPcFYSByFd0zEZjzeOJIDtdg0ywOmO01zz2PWY2YAOadqWxWrFzdUrJi8Y+hNmHEg3KYvNBbM5UlU1Dw+P5J+9ZVGWzOPA1HUURcmLVy+Y7UhV13z/zXd89um/IYwWtI3k3dffEmqN0tF5M/PUYGdLEqdcLJbY2eCsReuQ294jB8OM4WWRMFuL1BFmFly/eAVaE4eKcrkg1gq/vgAd4uoWWa5YhJLxWHGoT7jDkaGv6YeeZLHBmjOPw48zQRHQVRPxoiAIlujcEo5LJq/pDKBi0tAiMYyjxc0zcRpxGW44fnxgGkfCNOOrX33Ojw9Hbu8HFil0pwMiyTgeW+yyoFOK3nviJKIdew7NQKgk5SLCDjWvv/orvv3hnkAKhmlims6Nr6bpsHOM6S11fcKrkDRPUUJyGi3dYNChACHJQn3eetQSbxx5FOCUZkJSTzMrofBCnLXJzoNXEMc8TgPyaaBIEy7DgDiJmdoD3qYkFwXZ9hXCO1SU4PsTXoAwEwKBWmxRKsAcK/zsccMEswMzkAZn00vvBFaFhGlIZGZGNzDZmYfniiSQGAdaeJZlDoHlqWrohoE//PiBRRAyCc8fvv2a9fYl+uoVHo2xPW03kJYlH6oThYWX//4/8PE//R/88b/+NVmWUPUDS+VZxTGzlzRtQ9vNjG3P0+FAO4wEWrGIUyYLWRQgcCip8CrkeXfkebfj8PMQYl0uiMKMzWpJubokTmEYZz7e3pEnZ/V3/3OkfxNpAnlgsTqyvXnJZrHEHJ4JIw25YuwbonIN2QLpR5r9MyIqaPYN3WHH9adv+PD4SJlLpqmFIKRYCKw3DNUOKRxTP7J98ZbSjBTLNV37//Hh7pZXL26QShIrgcTRtC2jsNzuaiZxS55nrNKAsijBzeRphO1PLDYrFlcX2EhjpgHxcyMzTBNOs6GWnvTqksmM9G2Dmh3vPrzj4XRgzkqEg5dv36LikG6YePvyc56e77i6zOl39/T3z2QupDU9U9cxecmcXCF6y82LG7QMaEdLnMdEgaC4XJOWCUGcI6PovM0f57goRWuN84I4LnDWI7eGcb9jbnYE1mKcZ6hPRMsMEWq6w5FksWS9WDLWe3h+RghBeZkgT0cuVMDz4yO3dU+UxYjqRJzn7CYLw8iy3mHniUM/8GVSEkeK/thTuyvafuQffvcdX/76nvungbcXW+ww81QPLPOz8agRAWGwxOUbKv+eaph4+S92w/3XU39umvwz1WwM7TjhEYz9SNt2BEph57OCTqOYnMV4SRjHODvivQUnOe2e8WakXC24fnODvL/nIiq5Wa5AtCTLS4JY46YZleb0p4kgVIw64DAY1qqlkBAmKW9/8RnbqxcsypJEQqgVQZJijCfPCqa6J/QRyarAmI7TZEhXIflNwXhq6fsJjSQuFhSLjG6zwo0T7nQ8r6nLgPVqQd+3JFmOtxYrNf3sGMaJKSnIsgjGM1ipiDXCWRaxglmj45hDO+KBeba42SJO7ZlP4mAAVDPidMw4W9p5gjAgK3KSNACf8NmrL+ibHb/7xw8sNyn/9N2P9K5iu33NMFTY2RHpNSqA7dXiTGKfLMfdE3NQ8Ng5qn3FaOCuqiijiEUUYscOWWb8/sM79seOPNIopXFmoExC7h72rJcbZJiyKENcmoKHcr1hdkCgEZPEhjnNpNm+fU159Qned4ipZTw+nqGVIkEIjZeKeeqwsweveTrs0MozGUuUZfQ/r6trYyjyFINn1/XEWjI4CBAkScg4DUxmJt5cMrQ70vUCgyKPJO1poO07dHCe6gghmJw955WnkdjF3ESS/fGEx1M3Hc0wU/UWpUOOTw989dWn/00NKkOL6Y4M/YCr9twsM6wTiBmEs8jA45QgCGMUAtfVjG3F1Hd4Y1ChRMYlbTXgHj6i7IhTktGMHJqatBtJ8gXV7TNXr99S9wObqxcooYnWOXP1fAYVDhVuatHa8nTXUU97rjZryixBpjFoyyJZoOjx4x6xlng1U08HAh2SrpYEscecJsauY/HZCyIeeXuzRW4vaFvJ/uFIGUZcvfqESX+kf3pAZ4q6lXR1x9y1HJ6eeHeoSZKMYruhetxhpWd7c81kZsosYZ70OSNvoOknJusJJDhnsc4TBCGfvXrFX/7mc9KyQHnQ88DYGjwR66sbis01KnJk8Rmw2O0PyP0Tx+rErum4fa4ZZECYlvhxIA0165Vgk8UodZ622SRlncSM04SrakZreG576skBkto4tokmEJJlGGJnw3iqSJeXbF+8Yup66mqHiiKuby7xShNkS9zY0dc1i8WSGUWRF8zzLdIrrlYrvPUYa7AiYGxHqt0zRRLhJjh1lt7MdGFEkuSsXEuTpLx6fY0+9iwuL9g9PsDYMJqWkyrJyhWR62idI9QRsbMc2hN5GLEol6SxPmtZlURYSxqlCIAgBa1JI40KQrw8K7qTPEfKGaU8evuSyUAQaKyfcKsLhD9n85Uz5wvn5JiGkbEfUVGIyDdMhz39Dx9IlikXb15Tf7wjHEuiYoFaL0BCkC/oR4NKM6ZhADMReo/0MzerBV4p5romNo5NHrJvJ+rB0g0zXgm80KgoZJwaJuuYrKMUmuqH7/hxaIiEYrc/4pNfsxIeNzr6aeLf/PYvCZ4b9h+fWV1ueBxn/vS3f8c6Kfm3v/2K6y9/TZ9HVPsnqmqPjAWTU2griMaO09ES2wStZ5I8pJlaZh8QnAbWaUy+KLBeErmR8uUVapEThxodCAJ/QgQRZpjwY3DenJAS7wV2DgjDBInHG4u1nmF/xB6PdI8fmcWJrt0hsfSnin4eqKoaJRRhkjPVFYUQHKuBUEdM1chlFvPQzXxXHbnwhrgIWa5zdt1Mpwc8AVlScHN5TbO/I40mNoslzkJzGvnlm08Yppm+e0KpE61VLNKQUQVcvXxF645nXbcQ7HdP9MMEzjE7R2cMLYZfSEkcBQxjj5kaFotXFJsL3NBgzXSexM8Ds4r4x4eO7x4bzOxIgpgki4mzjKQ8syKiKMGZGSU83hmcGZFSMg49whqipAA74+wExhBFZzCnNQYpRyyg44TZgY5jVKSRuiRYlbi+ZqqPhGl4NpIJkFISLXNMVWONo296bN/BOHJ5fYkPa47jTNobnrseP43MdiYKFJtFyhQU2HlJ13f03Yl690CyKvjL//AfObiQKJiodx8xXU0URiSrFcwzT3c11fOB5v0OMQSExRIVCYwNz0B77TBdR3PcYUbDq5evub5+iZhPVO0JqQKKwOFDcEIzDw0+itHlDa++/CuiMCAQHSrwhHGG9o6gLBn6kQR55snME+00sT/s8NPE/nlHnMSoqMe6GSUc6TJDOYXyI7aTqCRDphlZGJNHKdk0kqhPqXcP6OORMITJTOgoQsmE1Wqgak5oJREy4WIVcf/wzNc/tDzfT6xXDlFGjBgO1YBTGoKAbJEwjDPejmitCLVjnnqqxweOj/dI4QmUYp5nBNB0PWQxWRxTTZbTZIjCmMHUeC/QUqLtjDDnM6nUjjgMUFIQ4bDOMytNL0JiIfE65GQ8p26PPBgCP/N6lRKLS/omw3iDUiHrz9+CiBBBAkMN84RKl4gw5rx+PCNQmPsH5sMOO7aMuyeq5z2Ptx85Hg60x45T09JMBuvPcOzL6xuUEnylYOxOuNkgvUUHmjBUvNou2J16+nEkjUI673ieLVfC8nj3EasFWZrhvCROYubhyHd//X+yG1JuljG1f81wuEMriQ8iNuslUTfw7WGH8I4PH++w1qN1gBBwGibwnjzISOOQJC9oR8vD0yM/3X6kDDVFUaDCCJWcjZB/vL9l93xH6h1lljGbmTxLiJME5hG3XrIpF/TDRHM4UJYL4rIgvX6J1Sn68EygBc52DEjC1QVJtkDna6KfEsqbC26UwPc1v1hsiYIMJQSH6sjR9HzY1cjFlsFY5tOJsa64Wi8o84Sq6SmLgmGaKJKUfuhphwFf15RFjsxium6ier4nKVfnaKSWaDOwurgiLkt298/UpwbnHZsXN0R2JMgz8kUBec7c1rRRTPT2NYFV5MsVarEgyRbkOSxLwQ8/vGdfPfKrv/ic+uGZh4/PbNcp1eOReTREiw3r1Za5OmIDhy4viCPP+tUb0rJERREySvFaIYIQKwJMusKMM3IwjIcjURCgAkkiPMGbt4iLLe70TLeraHc7+qZlGB1xvmAYBmQUo7IFcZByOp6IFehIo7sRH4X84emBevb0VUs2u/MG152Byw1V2xIXBWGaESQK1QxM9USefUG6dLz7MHK374jME2kQgbVs8pR5sjw8PhOEJb4skZuzxv3P9d+//tw0+WcqLRVj0xEnBWmacqoq5mmibRpma5mEAB0iLOAcZhgQgvNzxI9o4VgWCcIHfPL6FaX06EQRJyuKKML3Pbie8M1bPi23XGjFLBUmTQm1ItYKHcSsP/2S9c1bkighFhP94RGSBctVgh4MQs9M2ZKsKDjeViy2r5idIZYCqzPMQlJNJ5RyzE1HoASzhHh1SRtPhH7Gn55p+o5ytaQfzvAvlcSspOTUD+hQ0lpFH0bkUtFMhlhJhjDCBilT94AQEuccrZlJY4meHeM48dPhnrdXLwhkRxFHtGFGEHmSIATr8U5wkaU8H+8ZT4bvb39iPD5TpCnhPNEd9mzfrMgDiUsivJs49SP3T494oWk6ww93x/NhEEVaxDhjef9wT6Tg+/0T8wg/iHu0lighiEOJEJpVmBMqyXK5ZZlkbNYXvHrzGtE3oDVNNZBu1jzdP1LGMXGQEoYCO0YYJM4NpOsU+/hMuzuQrVbE5TVNX9H3Bw6HPRflgnZ3QCcxUVFSZhnV6USWhjRaURY5h35Ejj15pDDWEiU5Qgt8c4+IFQBRIDj1HXYYcNajlUTHGcJMGDMxTSO4mUiL8xRTeoa+pxsm4liRpRlmMMTZgqurK/zU0O87nJlxbcPu/onNoiDIN8xofN8jowzbVziz5zi0NMc9SRTSVjWBkigpCeKMaVBIH3BxsfpZj3xWtfmHD8RFiDCO0EtCkSJ9Qne/Y3V9ydg1HD68RwYBdfWRNBbEcUwcJUSR5PZ3/5WH8DwZOwUJL/OI5Saj6waC0LMoZqJBIJ1jDOBmo7idBHXrWHY9KwmpCPkscPwgY5ZvXlLt9xzu7hFacX/YYSZLuVrTn47snyqOjWHXnS+9u6rHo3Byph4mnA8wzUizu2d7ueXhaU87jhjnCbUkCs90/Revbvh3v/mMVREwzx3LfEvz7EjLhCQMidMFtmsYDhXbL3+NMI6hHbh79zWHtufb+x0nrzAyIkkLFkmAWmZEUUAQhmRxwLFWrBcLpPD0Q49Unt6M7NoB5zyz90iteOhmRjRjILmSMaafWBUzi0WKKzYkyzVdcySZOg6HZ+q7J968uMD5gCgvQSnqtsaacxQsnjM2a8X90yO708jVTYISnrE+IJQiwtF3A1pHTH3DMgaTJHg8282SpCh4eP+eyQqGYUTomrpvaLQmSgswhl1Vo6VCOksw9URKUhQbGHvSIAChsSIg1pqIGaRi6mtUICk3V2Tr6KwdBczQIMMUhGE2A8n1JTJdIJoDwlvSbHWedj09cHo64IUilQ6bBIxG0FQV9tQwtAO+6lm+NiDARQFSa/rqiB4H3DwTaIUW/jztfj6wLUuGccAXCTOX+P0J6gbjHM04YZUmDwPCKCJdrUlu3pDfXFMk0FcHiiLn5A7sn09cXl6inUWOB2ST8f73H7n97kdm+S1/eHzmq19/weXrl6wWCen1grbpWaxWtKc7etNh/IlT23H/7MmWEX4TkkWa3aGmamaiUFOWIUYonPIEtkG7jHhxNr8wtCjfI4XHx9cc3j8i9IEhXeCEYB4GtAwIFWAs2lmmrsNUDzjT4seOaveB1uw5dhNidggxc2haFkXGMDusHojyBXLKiYQkFj3i1PHUjQzDwM7NrPzqHH0rM067inABweIatWtZZxdU1Te4dcJyFZMszhG4dVFS2wORjOhPA0cNy+0rnh8eiUtFmqbc3d6Bm0mjBOtn/DBhnEMkEemqRMYhy8sVUypJrnKW2xwhmvPvs4qp7cg/vn/im7sdx9FgjaUoSuJ8QVCucHGJ0fE5S28mAizSWewwgR2RSoOz2FGA1EgUwgzEaLSfCL3AKYMUgnkc0UmOxyO0RkQBSoXIckF8ccl43GNNj4w0MhhIlznyg0BrgRSWaRwQduL0+JG2syg/c1UkOCmZheTqYs12VdC3R8ptxtEKyvWGcTIURc71209488XnfHx+5Pu//7+JlCUPHV46XHNkMo7qWDGN5w25j7d/YvPyc6y1ZBKscjw/3+O8IAwj0jjh6uUnaKVxhAyEyH7AWIeROaEU6Gnk0zdfcfOr/xkVBDD1jDqlWGwIZo/rWtpji9UD1aGh7XvmrsF7j1isEG3Liy8WWGfJ0hypJKHWMEfoIEJ5j9KKMM1RfsYDVqXEF5cYZ9kmGVG2Z/98YNofCMOAKE248J5DXdO2Ax/e35GvVhRlRtOn5Js1Td/RPht02SHbnmxqIFCMfU8UKBarJatljp8Gjk+PLBJ4HHsmYxm6/sxxkIokic6/sw6SOIQoYB5HrLOAwMwOKT2TkwRSEGOR9swZEUISMlMEgvp0Ymccp3bAOkORCNZlzmZRUp3OTLaP+zuiTPPl559xqk8EqSCwE955VBBDEOIRMA2IeWauTtT/z9/gveXun77h62++Y9cNuCikLAvyJEQVKy6yjHS1Ji1KRBgircEOPfPYMnY1tm8Y2xNFoGjMTDNZLB4Vh4gspjlq/vOHDxRhTFmukEFIlhc0bcPh7iOYnPe/+xP3u5Hl5RWXFwuiImffdHy4vSWLEtq2xcwzz8eKSQQ0w4gUkCaKPI0RznG5WdF4ze75ifuHW8pIEeqQbhp43D8hkxS1e2AcOqbmRKAkVhwQWsLQsS1L/uLtDVJpsixlvd1SlmcTohUKnaX4fmDx9hNQIUPXctr/RPb5bwmDAFvtWW+XaBWzvfySaWgQbmDaPyKTgkEo9ibmVTYw1AeasUMKzzqPyfMc4zw3uWaaBuo6oExClNzww8eOfrJ8eNpxPDxxc7FmHAZeyoBFfkEYh/TjwItNwfOxo4xjfBrRtjVpHrMJzorj4zSx1ILLr95QXl5S/cN3fBmveWxnLj654be//Q0/fn3L999+i9WSl5+8QgaCP/zxW4a6QVlHud7gdIa+/iVaA0owO4VSERc3LwnDCBFGiCjBakXb9th9xdPtHX3vWK02SAdZmoIWOHP+LkTJ2Tw56YTyMiQryrORT4WMk8U7j1UhnREEAoLJcbq7wxzvCJKBq7JALVI+1gecUOhAE2jBoa4o8piH/ZFf/fazMyBbBAitOdY1kxP0RvPx4RE1DWyvFjzvT2xizd3jgeTVZ3SnCt/eoqaB4mpNnMX/Elfbf3X156bJP1M5axmqisjP5PmC2QyYoSJ1E7PgTKcXkjCQTEOH8w7hBd4blIBVHqMFJFnK1eWS4emB7XZDGkimfiTK1rwtNhyrinibYqwgLheIOCJQiqHtr/1OAAAgAElEQVSfyL78DSpb0DuBNyND3xCplMXqAukk3tfEssCrgDiI8UNI9uKKqT+R5IrGPFIscmKn6Y8HVJ7jogRT71EqINMB4zQQhzcsswzHjLMKpyRRltIMPbEQqDBABTHaCU7dwOAMWSppZsHp1BAEAQhxnqzamSAIkFHI97fvsUXO3k+Uo+G0O5DqCJtLmrbl/Yd3rIorYhdzub3GTTVdJYiDGu/ADjNXZcYyzgiMIRIOjOFuf+CnU8ciS3l6fjrr62JNbTzfPDzSPj0QABqHEJIsjLEe0jDAA4GVBEpQTxNRULAb79jkC6qpo52OZFF0jjKUSwbTYgn56u1bpFWYekDYme7hQHz9Ai0NLhnwqsNaBy6kPk48vHvPYA0mB6kUZprRoSQIFZHXnIA4jTkearI8gyii6zqcM+AMbjiRREsC5fHeg1D0bcM8Go7NiApDAq+w3oNUaAlpklKWOXkeEoszxlufAqyXlEVCnMd89vYTprFnGhrc5Bmblub5gExW5FdvCSLFafeEcprjVPHdn77GI7F2RGLBebIkJcnS80NN57REmMFQHQf2D3eIcURax+XFmg/f357fCesQ8j3z6cTzhw/Ydo+WM85MxGXESm0Zdmf9ZfPwhDUj5Srg7u4jNpSoxYLdnUTP16gwZmpaovUa87TDCYd2hjfbgO/aifU6YxEJAmEZjSMtJQsz8Ic/fE8QBARBSNqO3Fxc8jydG3O9numGmUPdooOIYQJjGw5VxTQNpGlCbyVZoH8+hJwnuUiJ944kDMkjTZ4l/NUvf8F1GlHvnvDeUneCMt3ydPzIztZEKsRXPSqIeff1BxQB7dDQDQ13p47RKyYZkhUSLWqitERjuVguKEOFmifm1YqyeEU0V3S7HY2WBP4cdXG247kz9LPDekd9GPlYnVh2Ey/WKz4pZpaTYXV1Q67XTOOa8bjnJovpjwfi4gK0Zuga4iwhzHKy5ZK7j3fEkSZNUl5cbemGE8Z6ZiTDOBGFIaY6YWxA247cCIMzjnS55uq6Jcw3/OmnPcJ7RuNo2wkzd0ilKYsFYq4Zxu78GStzYgRiPpsXEqUIEQRRjHWWaZyZm4rd1FK3HVGaUdVHtPwdZZ4QSY91Ah/EyCBG2J5VHnN5sWb71W9IL1+iogKUIstyxM0V2Wjo7+7w9x9of3oi/fzf4tdX2GFENz3jqaK5v0PMFptFpNcbwiQ+gw+1xochYpoQcYzG4dsTysM8DsTSE2nNer2gNxZtPDqK8TiKRUFxseXu4y1WDbz9j/8LU3VN9bAjSDOCKKJuWgrbkkQ53/7wE//ld3/PNx8euS4yfv3FF3zy679iDjkDx5WlbfZcXl8yuozdTz8ym3NzSacJNhI0wlBVHbuPR0zvefvFhqhcEWUpWoUk8Qq9ekNw9SlaOpRyuHaEMEbokOXLBcOxI1QOx4RWFul7bDvgh5Gprmh3z3gxMQ/dGZhtBVGxYrMQqFHS1EdeX14inaRpWpSQODFDlqAxKAyyGXl9ofju6Jj6gW/GltzELN2E9jlTOyGKjuuXC0I+Y/c3f+TwtCdQEYmPyYhx7YS0ll3tsNaRhgGBkhyOI1popPeUwcj/8D9+ySBSfv+Hb6FqSRcRYR6y2lzgBkMcJky+ZrnNSXKFnGOkjtg9N/zDDx/408d7nk4tDsVytSa7ekkTLfh6NzA/fuBUdwzjiLYDeSAoI81mkZJHklCHxKEm+jl+k2Y5VmWockF/POCEJsAQCIXCMpseFWsmM5OkCSJUiEAhVUaS5djuwFRXCK+R+QodKNxsCbUmiiImYxBuIg8lx+Ac0VrlCYvViiBS3D/ccvPyBf3QcHXxgmGWjLbh4bCn/dNA1be0Dx84VRV1fWCeRlQAh+oOJ0JmL8mLHCkgSTSPD3c0Tc88jQgzYJ0nznIWRUkaSDaJJkTx3MxMnWMVJ9i5JUki3DxTbq558Yu/AieYmhljBMXFDVrGBOFAlGTMm4BGjqyXFQvTI+uafr9jXnva6kR9eCbMchZXVwRaoFRybnZKiWlGnA8YjOF4PFI1PS54YHGxxXUVWoLOUlYOpAcVCOI0I8wLTk3Frjqy351oJ0PXtCitmEbDMAvCMKAeJcc5QhyPhGJmVaZ4NDqQZ3W6szz++JHDbkekNePkkEpRVzW73ZG8LGi9Q7oZEUX/LVZnLUglwQMItA4RUmBnj1CSKE6ImcFMvDs29LNAew/eEmuPVyE/3ffklaavH0iTI1kSkMWefVOz/O4HPv3lb7ioDqxWZyh5GIYg1Bl+//TI9OGOP/5f/5nbh2e+v3+gc5BkGddxRqgkm+tLXr36FL+9xsqA3swMQtFWB8zjHaP1JGmCjgOmOKCfDEXSoLVmd6xJi4JZStarkvt9xbMxzNPA1eYvcOOAciecnXFeUi4LTk1H+/yBw7TD1B1+nrl9PvDLtxlJqLl/fubUD6BmvHekccwiz7haLUi0wHsw00jVGZw1+CDk0J5wQN81+LYhDCOkcGRRTNP1BKFgng3zNHG32+FMT3+qWaQxr968otiuiZKcAH822UmPDjQOhRSK9fYKFYYI4agf3pFdvsDpBOcdabZChqDiFDuDqQ8swhmpNSYKSZqKU32k7i2oGGnPWAElHHjHqihR/kgS6HOzfg45zYYvspDVesOp6UmSDUKMmPqIimLyNOHH798RJDE3Ly45PB3QL6/YdSeMAIqUi+IVUZYyOAvFmqvLJavtkrxcc7Ed+HifcfXqDetVwNAcuH3ac3t7zzRP/NW/+/dE+Zrj7U+sXt6gihVyfUOchogoxDjL008/cRpm5tnRffyJ7nS2hjopeM7O+t6LzRYbp7ihY7VeowSIYMadjuhQE8YJQwMiTpGRxIwTVoZYb3BDh586dKzwLz+hdZ5pGAiGPS/7R6QOGazFdhWTlDxUJ8rlktPYs5gGbg9P7KsTLy5WPDw8040jw+wxTc/jvuFmcyaWXGYJfmgY04KPj49EXcflaoGb53+Jq+2/uvpz0+SfqYSSZGmCPZ1oq4pQRjgRkKUpZpjpvWCaZ+IoQgnwUuHs+QG8iAPyNMIjuFwWTG3Dy7efsVgs8UPPIGdGPIGdWeY5QZITRBEiiOmHgerhRH79Ctl5xtMjTjqIUparjOVyjZrAzQ1mNGTpEjkLzKk6U/WHiWJzifcWEc1IrYhkBDmoUOPRzElJP3bnTn81YrxDqhRnRtRsiHB4HRCVJW3T0Krz3wnnqY1Ai5T723uGrjsf4tIE4zwqiQjTnDTNaA8Vw9QTeo+PIo4WpvaEiBJaMzN1DWme4jiybwX5MqLpfuKn3QN117JeLwkkXBYZYRBhvUdieXi644ddh08XfPvxI11VMVi4P41YoeimgQBIhCML9XkyIkOSJDyv9AuFijXz5IlViEQye8dkR9pRsDuBEwuyMGKwniCIKIVgbJuzCnf2TMcds5kpkhiPRm2vCJAIGfD0uOdv/8tfAzM6DKiSCq8gDCPsYHEeIq04jhPFxYqq6xjsCMaQx4pAgJWCIFB4D1EUopUmDEP6fuCwrzAqIQhS6DuEFARKk6cZZZljPT/nwg15nhGkAVZEyCBiUeRU+0eU63EvM1ozc3iu6KuOX3zySzZlij8+0Owe6VrHvhqYpeKTr/6CKFTooUcgcDpgV524P9Q8333g4+0D09gzmhmMYak06yzkarcgzlZcb29Iig3JqkSVCV0/8WJzSZjFqHZLsFoxV09E6Yb+eEco4FDvmEZHi2asW9qnnk2+pKnuEIFi9WaNfvwRNc04qZmmCCEV26RHuZ4gUAhpyDeWkYliAXM683d//fe4yZMlkpmR9tQQSsk4WfrRkMYxRmiqwfB8fMTMhvVqScTIOouYVExalvTuDNRz3iEkZEXKi0XA1WbNi2XG6fGJdhyYtaeen/jmh3f0bc2EIRYwjQHVNDEOI8YqOM/ukEqBDshThZhHVsuUZZHx6c0VmzxFYxjallevX0F/QusE09bo4zPsapK+Y43DB1BZwzg7PDA52D/c8dg2/FgdeX39yKd9z82La0QYEy3WFKsQFgE6L+msY2wr3DQQFdfIICT8+TsUeIHIEtJMY6aJ2XrSYkFdnxhOe/TmDVEYIvojgxWsXn/Josh5rmewj4xtzdjW2Bk8CoSiPp1Iwpg80BR5jJaSdaKQnA1d/TSdD5XA2Hc8Hhqe9nse6oY/7Rsu8pRlGmGspYxORN6xTgKSOCQLz59HkQisM5jTAf/yFXK1QgUhznh0WTJVR9JPXuO2G8I3b+nqHtlaRBCeoZ3CYOQG05wY6579/ETx4hJtR/rnZ6IsQWiFHzq0Eng7kwaaIckYqgPCDNw9NcxCIaMQYWbiKMCagV/8m1/x5svX7Kua7dvPkf1Ita9JN1vqU8vrFyVtOzM0hg8f9wyz5X/65DWTUITXF6hFQZ5kCDdS7yvGrmNsT1StQURr+vEdQz9hB8X6RfazdtTSxJosylA+YnvzglgJIh0Qr16TvvwlQRSh9Pn5plcaISTeGfLliuJGwDxhThW+M7je0By+ZTpUuKYhUOfXNocKFcdkxfKcRY8lbmhZcoGUEcyGuq459TXGWHTTsywzSBTDPOLwFGNPP02M0zPfv2/ZXFyz3bylGmNEUHF1teLzX1zy7tsVU1fjJ0itIhsHbn96x2QC/GRRcYpOljzujqhkwVjtif3A5csVs5PI8oogf2YVL0AKZHCOTV1tr6ifP5AlBa8/+RRnZ5TIeXj4yB+//cB37285tIZ8fUmQ5CTpgkEnPPz0xNgPjL3BCoGQ4M2AnEeySCN+MJRJwrZc8Nmbt2wXGXFUYIG0zPEqQiYCnaTUhz3j05F4MRMmCnU6IaKUsGpI0hQnDWEREKcRQZwitYK+Qbnz6xbDjJISrSRpkjBLzTx7rpIMkU/cVSfe/fSBME5Yb1aU3YksSuiGkeub1yyvtvzTP/6/7H78lvbxkTdffEa4WDMfH2maAe96RuvRYYqdLWPfM02WcHYIM9JVB4ahx1kLUhIWS4wxWBSJElSPjwihcSrA4omimKbtCVRAefUFExFpKBFSsVhtyJYRxWVEQIEW4ZkLVj8Q5gn0gvHUoeOCru/wLkCnK8JtRp7HDLMjLXMknqa55937r9m1jn3dcxgMo3V4LM6OSCGItODVuuB6tSZb5ERn7QfKw6uXb/FRzjff3fLLX76kbRq8gCCMCPOc6rg/x1mqI/0AvZ15lQt6qzjsaqZYsyoSTNtwakdUnODshLcGM5512ZOZEW7GAUGskDKib47gHFJyZtkACs84GqxSpHGCtoax7+k89POZe4KzmMkghKdrHJ2dCUVP6B3u0HKxyFkkgsPf1nz2csuPxx2XRcnbzYZXmxU3N5coFYKTjD985MPf/B3fv3vPh6rDSE2Yxbx6eU2epxSbJcvtmnQVMzIxO0PqLYd2Is9i3Nu32FPK+PSB3e2OaRrwQUSaJgRhjw4UwzQw+zMLcFFmtP3IY3tCPd1jBVyXitYptumSF28kw2h4vrtjGs/NuUgFHPuB6ngE7zm0PafJECjHJ+sFxWLBKk15Ohwg1FxtLxiU535/i7WGQ91TtQPOQxhokiBCKU0Zadblku1K/mwrUpyaiiQOOfYDezPyx/tbgiJm8oaLy2s2rz5FpumZ/xSE0LYEyrG6SBFRxDxbzOqaaH3BbASznwiTBGsn3Kw53O0IrUXGIYf9jqZpQAY/A8qfeKh2iHxJmRd0x+fzllKgqJxDC3U2R3qLcZbn/RM3N2uSUPHuh2/59a8+JV9cspt6annJhx9vOdU18zwxe8/ueCSJI57uT6Atdx9/T1zE/DSv+V//9/+Nf/r7P3D/4zuitmV3eETYlvUq5Ztvfs8vL3OyMEApybta8NYXRA/3KAxWOFS+pm33mGrgcRwZh4HTfo8beoZmIAwClJMkeUk/Gd7/+B0/ehgGwy9fvyKTAt6+plxdgVBIpZFaMfftuaGoNQpBlC0YzPkM4af+DH52ljEI6ecBIyyVzHh/tEi3Z7FcUV59SlpUNHVN11V8/P3v+PoPfyAII15fX/D0NDFOhjhJGK2lmSzf7U4slwuui4w3X3zO0/HIceyZ04LaeOq7x3Pk7s/1373+3DT5ZypvJpSUDGYiTjLkfPbQT8YDAjfPeM9ZV2Ut3lnyKOAii0jk2WqXJQn2NBBu1my3F4zDSPgzvLDIM+bRESclXiiGceRw6LGjo7x8QRznDIc9aIG3ntGduH3UPIv3FGlIEkaUlxfYccROA33bojJJkCr8eKSvBkIh0CqgPT5DlOJlwNAaRgP4iEFpzOqacTzQTwNKWewkcaMjdBpJiMhyetujZcR4OrJeLTneV8zGkCYJTkUMFvw0IYRE2JnD3XviJOfNm08QYUCUFQzG8ew8cV4SGktcrgFJvX/m/dwy/2T46f4eqybSMiS/KFiksFrHGOFp5onT8chgAnZDQF8daI8NQz9zX7fM1nFRlmRhSBLMrPIC8ATpilGXiNATS4Ef+rO+WXim7qyIjbSGQJGmEXGREqQZxeUFablhHmcGPPePH+m//ZqubWGeWKyX7P84UlwXdH1DsbmhPj5z9/AdPpg57Kvz/5hHLq+ukGGE9hZ0gJoh0w6UZLVesW8aZqnpx5EZxTyNdKOjIeMqTZnthBkGtFLYceQwDGzLa+I0xw01myLEJCvCpORYHxm7jr7pKRZLxg4222sWi5Kpq3h8fuTmIuewe8YYz0DAzZtPeLNdE5iesWvpTxXOBWyXCReXC+LUYWZw3tGeWoZjR9+2THVNaEZWbiRKA8YJ4kXMalHy8vqK5XpBtlpz+fIrxsmx3F4y/v/svdeubFuWXdemWX6t8Nuefdw916R3VKlKLKEggvpJvekTBIIQBFCUKstILFW6e/P6Y7ePHTv88mauyYdIfoKKD8zxCwFExOizj9bykvxhx35d4+8bnChAq5jea6nyGj05QWyWdLuSYlPjRU+xJmO1WvG3b+4JHMtoFpBs3nAxkXjCZTCdImsHr7O43oDe1XR09H1DV+7YFBk9irOJ4LuJ5Oq7D7hbhbQGUxRI5/C6qJQi6yp0EJOnKbareHV6xLOLZySBg+Nqvno7Z7tcEMcBQRCitIMVlvPTKadDzdHxER/WdyznC7KyplWWKuvQvaIqK6SyB7ZIBU3X4ihF4Ab0wkEoRei5DJOI4XjKxDEMdcdZ4nE+iujSFb2pGQUxfg/5akFfZ4gip04L5us9bW8JXc1eSFTHAbJnwbY91ljypqJatyx2ax7vrjg5OeH58+c8e/4JzmBM4FZU6T3J6BThjsn2Gzx6XFfj+h5NUZHuNniRh+8L3Cg4gAWFoigauraHrkcKhzw7tO5svmV2dkFtlwTq8F1pjMUYEI4DCAJhOAkO9XiEQPWGgSNxHIXvR9C0pPs9Hy4v2ZcNq7xmV9V4CoaOJCsrHvOC1vbEWvDDSUIyOWM6GjKLPXzHIrXAahchO2zXUK8f0DpEx0OwPdr3DqFy2WHCMRiFYws6JXHCASQJdukhvJA+27Pd71i8uWN2PsMNB1R1gTscHLhOroevNGJfU1Y7lPRQosARlqyscAHtOkjfocoKtkXHX/71v8aLY45ffEQ+vyPQX0A4Iu4LqrInXzesHpc0HcxOTzg5GrFrPdT0CGV6fBTbXQnKkK9XFFHEZrHi5OSUpefRGGjqGi0S1ssNJ7Mxz8+nSBXz4pNPmb38GCUDnHiCPztHSX1QT2uN7UFYEPRgXeg6bNPQZYa+NFg8uqaETuEHQ6STAAo9CTB9Q2MKwtkpSIXZryhbiwomKATK0bhHT/HyFRQ102nF3XKJOwiYKY0oW7x6z275SCg7RFbxetexygXHp+cM/YB0s+bZT1/x858/ZX1/y6sXY/7qF885mZ1S/ofX/N+/fc/05PzweWuN9mNk0XFxNuZX/91P+fDNH/l//7/f0w0a6sIwHY/o6LG6YzibEsQhZx8fM/HOCcII2XdU24zbm3vmmw3JyRnhkcMuLcEJefHyFY52+NFkTOLHmKzg/uaW69t7dvst+3RHWtX0XUNZVbhOSDy7YHR6gu+7SKFQfYPjufQGTA/7omW7LdlcLVimG/amRQQjpAGN5OhswHgUMBpEnJ2dcHx+TDQaIUKBHk1QdUOoINtnFGWOFYIkiTG15TgOcQYByTDEIBmNEi7OZqgkZp5umfUnDOKEQEtUMkKKwynNbDrl6puKdJ9husP5iONZ6sbQ1RUaQ5UVoEKSOKE3PR0VYRgReR7C9gRRgqddZBSjpENrOtYPtzh0VHXDeDhmNDsC02GsgxeGiEGCfz5CheA6HlQGz5GENsJ2B1NGHyY4ygUB0+EE93iKsTWmqTkZR6AOVpjvPv/A128vuU0b8qZDawffC9BBQGU0dV3TloZ1WdJ5HmdHIZPpDNF3dG1DWAxIJg5D6bL5kwXs4X5JnCQEcYQQAlPUUFRgQWlNXTZMxzG693CkItQOwSCkl4qr+Zq6amjqmtb0aMdBKk3btfhhSBCGlNvtIfjgEJQorZBK0rUtfWeIw5CB5xB1JU3XYZC0raARYKxh4LoMYp9IaGrTE2lBaAVRFNM1NYFjsW3LmzeX+Le3PMQB+/GE9PiIgfwxou4ob5bUqx2dMJxenLLp53jDMdbVjM/OmJ7McHyHcDwmHE2QHbRIZJ1htWG7moOQlGVOayWe79J0DW3XolyfMArx8py2bWmMpeotnhQEgY9B8Hj/njD06MIZSRQzmk0pFyme7Dg6PWI4GPPm63fkncGvWt4v1vh/EjiMAo+Xk4jPXjynED6u1Ox32wPnTWnKrqSua+q2oypLrLUMwoiT2SnR9AI3Csnv3yOkSxyGh4CGhuFohHA1rhNzvdtx/5uvePPhll99+pK//PmPiUcjdBChlQNejFIu3X6DROEkI3RT058d03sjlNfjeB1CQn77wPz7r+k6g1Uey+2G77/7nnV6CNpEmBAPEiK3py127EyDtPD04oSqbg/srfkDnlQoAW3XUpQlq8Wc05MZ0Shmejpitd6RL+eoc58nH73k/dtvWSweqIqCC/8C4fk4dck3r9+xXK14SHPGzz/iyY/+wN3N98y//4Yb1yccDkgGI66ubvn+m285Fx9TpinTyZj4yXN+97vf8KNXz4gHY+bpDl3mZMsF6WKJ74eHkERatKcYT85xcUh3GbdFyevbOel6Q5HndHXFdrfnPBmQeD66k7jhIdS0rUPV1MggwNoGz3eoii3ZckvfNAeYthPhjBKcaEi/XdMDdVZSvPuK3fqOm/kNjelpe4GjJLKr6HtDVdecHZ/wsNrReA69Ndi+Ybvbs04LyqzgTMAPf/YJ6cM9Td8SaJ9916I8j07PaJXzX2e5/W9s/hya/AuNkg627ejaFs91kdYQ+z6tUux3GW3b4ClJJAxGSuLI4wcnE+rOYOua2sI49EnzitMfzEjTAnRINJrRlzmr+xXDaITB5X5f0fsefhwzGoGrDU2VY6Xl7u6GXZnSVjW73R6pFI5yeHU65fx+Quj52N7gRT7+2ZSmSem7msf7OU6gSR8yWscF5XJ9m9LkDaGrMELhhiG9A3UvKVtQ0iMhQtBQty1aebRFSZDEZJ1EFxJXCQLVczyMKOuOrDuoJvPVCq0leddiephMBf1+DeGIi+dj3l3e4LohIstxpEQqeVA079bUwQmKjmfTEVlakLc9Z8OYoMtxhCRNd6RZQUzPdpOyuN7iBiFrw8G8oV2evXjK0A8w6ZpIW/AiiqJExUOS6QVVvseVYFpxqPB5Dq1T4jgOgygk1JJkGBANE8LRCO05tKYhL2t2m0fu53PKPKVpaoq6pDM1fghB4hIEHuFggm0aQqXQQx/dltzePXK33fDu4Z7Z0THnp8e4YUDXSRIdsqpSlIDhIEGUNVVrqI2h73pcrfBsR5KMWKzWZFmJ40WHWqzo8USPB0RJgA3tgcTvR6xXa9pW4kQTit7hyYundL1lsZhT7jas1mtm0zHb9Y4sL7HRjJ98ekLQZQhT4YQRo9GQpsgQ7YbN5R1dU1N2gsnRMcY4hL6P7BJ04tA7mkldsioP7aAD/HDE0cnkAPEcjQknJ/TbPV1R0dUtThJw/+4dEkuRVzjxDccXp7DqqLYrWlFB6+F4IV4YE/knRKPnJOdr8mLJejPnw2VOvvFw3YpnBXi+S+j5XEzOebdfoxyXwA2gD+iLgsvbSz5cP2DznMfHW/a3CyZxzHQcUvbgCoFpG5J4SF53CNNwlMQ8PT5nHAzZblfESYSPoe0qugry6qCNHCQh5xdPmIaSTVlxfTdnvyvokeyyAtdYqhqU0qRpgekN0so/ARclyhEMBgnDKGA2CJkOA45HY0aBy8iDJ5MRosrwnBpHO8gipc0KsttHNCXLbcb7VYZ2XTzTs6sM+7Jj0/bkpqXoLS4CXztEQuA5iqo3bPcFWXHF4+KRh/mCzz77mI9OQnQY0WuJa31Gk2Oy/ZpB7HB3XRMFDp5KsKZln5ZUXc9gNCLfbcnSAoOD7wYI7bJPt4SBi+N5OK5D7EuenIzJ0udIf4NULq6UlFmKaEtcJamaFiEEiatwNVRtR+CBZ1veP8zZltVhCbE956MYXyoC5ZDXNesype56JIZ9kbF+fGASOQyOjzl6+pLF4wp/HGGUpdvOwR+wWbxl8tEP/vTiLanqniotUX2L0hIdxQivoxOaVltEkdFjuby75c3dDUVZ4T0+IqXgdBpzMRyjwoB+u8O6AUIZyrxBORLP8ZBCorAUVUvsenS9JXR75l/8jne24PjlRyipGIc+s5Mjuqan3abUtaHpKprW0HhDTs5OccKImQgIBhGKlt4q8s0eqwXGuKRFSxL51IsPNHVH2TaUtqPSksGTF0Rhh9OGBOGQ6Sef4UxeIIyk6wXL6ytEGCKVQrYG3wkASWfM4SytbJBZjsh3CCy9NTRpitIBQZIgqHEHCbYHNYyxWgIgmoZ6W3/OrdYAACAASURBVJCc/ADjhwjncHtfFzl1OCLN5qi+4Og8YrvdEXg+Y91x+7gnDAMeH9YkHrydP4KvkIFF3BtefPyC2WDIxV/99zx8/x1PT2ImnkLscyY65nE+pxeKaeBRVwN2u5w23/Dy5ROiZEpqB9zuFWGfEQU+i/UG7XgEowAlIc9TdtmKJDhFuw7FPuXD/Qd2pkJFAYPhOTc3N9RNjbCKMPJxpeXi6RlHx0+IPA19S7pY8u6b13z77Vfc392y3+8RbUMUhbh+gJYSlIebDNEWaGuKasfN/I7Xb96wzSvypqGUlsf9BiN3KA6Nn9GDw2kS8OLslHK1J1tuOH/1jOHREH92QbXfIoUgHodUXUlWVDjC0JuW/X7H7Mk5n/34M6zUREnIZDJgV7XsyhppOiQtRZFx9+09r178iNGsIolcpOip647dvsQKhetbXMdlGgU44tASa+mwVjBIDkFB4AcMRhOkaXgyPUIKDyc+4v31DUVVEnY9ZdcxHE35+LPPcGVPvlnjySNkAnoE1umxKAw9lo56XRyaPL3FG41ww4jq8RGnKnCSkOj4iOJhTugHCAzSVexXPa6XILXHs1lMVtbUbctoEGGQFEogo4Db9Z5FmrL/5pLhhwd+/mzPDz/9GMeReJFHtiuojcC2DokKkEJSlDW96+AFAem+REnJMI6JA4fAgVESoByXJPYZjiJe/OIZv/4/P6fMSqR2saY8aNu1pjcdQRgSBj6UObY/nMlI2+Pog77a9BY4tCGGjiKoCkLHYqXA1Q6DUcxonIDJeZJEHB/NkE5Ch8CUe/yuxCCxSvH48EhbShrPoe4NdD3X8yVdUfHps1OOT0+QkY+vJKEbIt7dcrpPkcmBKZFuVwynCY4OUIMZtfQwrqauaoo0Y7de0jWWMksxtkd6Gmc4xLc9ad1SWUUyiLGLBY7nkufVoTlgLZgWoSRt29Eh2BQNR7Zm7Fu0rzg7P+PxYcl6MaduanzHo6wb3mw2nMYeE9/l04sjfvbZp6xXKWezE66ubjifnGAVmF5RNzVt19A2NQIYRRHjZMw0HtMKj09+/Jf8YfnIYjmnNwtaY1BRghf6RMJjMjliNDKk6zsu1yuaLy+pG2isZDp5x6tf/gXB0QWSg8JaRAFKAfRIKxFSYvuenp5qt+X29Tfc31/z7btr5tuStKkoq0PAhNDs14/EscfAl4zCEN3VJIOIMt9jjeHJ6TFfvb3kaOiRmgZHSc6ORnz86iWz0YS662jbnqbtqMuGxZe/J3r5C5LBAM/V5LuOzX5PFXpEUcB8V1C3PdZKrt9c8r/9r/8LNt/jmQ7/0x8xCU7ouobLd2+pdjuaKicKIqbHz5BKslzfM59NuDi64PrDN1RZhm0NR5HPfpMjgoTHNkdIQbO5QvSG9aagrmoSV1E2hlVZY7uWr+4Xh99SY2h6i3A1q7KiSvdo2RNKh3yzwgh1CEA6w/DpR/ijGVkLrfa4fFiSVoaH9ZLtbsfr5Zr9wwJsjyNBKUnkBwwCHyEEgdszPj7heBSzephDW6OlxnEOj59H/sG89B//6Y+EScSnP3yGPhuSrm7YbzZMJ2OaP5/n/IvMn0OTf6HRSoEV9D14WtJ1PUK5lH+CczlK4SlL11SEWvHJk2OOxiNKq1jM50wcxSQMcaSlylKkMXR9xxf/9Dk2X3J6fsZvM8nNOuf8aMLTsye8OD1Gioa6K8mLPat9SlUUZPmeVduy3+4xdUNZV7y/Cfj4ZMpnT044Oz9DxQntfke1T1nvN1xdvidtK75e7WlsT16UxEHEJAgZhEO8KIFuzyAJmJ4eUTcenpXIOqcPW8Kko+k7mo2gQ+KWOSaIwAt4enrMZbZl4AUk0uF6U6KswdQNrudhrABj8JWiTLc4RcrQcymCEOk6yK6h2KzIdmtMsactYoLhgItnL8gXK/Z5htf1nLoS1YPTGgLbsy1aXl/f4UuXD6sNu+2a50mIbwyiq5kdndORU+327IuG4WBIrTxiN0CbjoGr6LQg3++BDuVKnMSlkT3H4xipNY7joBxBJyzr5ZzddsvVfM56vSIrcqo6o2haTN9hTEcUusRhQBRviFyJbVrCQcI0CDh5ecLyfsU+z1m8/Z77/SPnZ1N65RH4DqLas1wseXZxQjAeEMUxy/UKes3Q1/iix0gfrR2y9Za2sgTRANVkuK6D23WETo8XerSdRXgeQ0/ia0V8co70AsqiYrXesNttaYqMHkmH5eHhkaY29DnIqsBqkFohtKZyNLVpKPd7aGuCyD80iNIUU/YH6FXWURvJepeTNi21gof3H3A8l0BJfvL8KX/9F/8DwfCIsm5xXE12/0jXFLx/95rXl++5elziaBfQzCKXX3z2nLPjmNAZMDg7xnQgAp+iKXCsxR0pyjpiGg9Jo3ta1bHY5sx3Di98j7IrmU5q5l1PXa/AfUZj2wM412i++/wrbu/mHM9m6NMhxXKN2lWcHs/oWkMUhmyKnh5Nb2EUDfjk01/iCMF2ccfdzYpd2TFfbvECH3c4JPAUo2HM6OiIsKt5//6B9TKlqQxV1dLbnsJYHOnQtobQS8i7GtNZiqajNA250WR2j9Uu464mQTDs1iQmJJIRtjV0aYax4MUBVnjUeUZepRhabquO3CqcMGHdNKS6AnpGgKcUgTyYQFZ5ycJ0xI5zOD0MIwKgKlv6+zmr3ZbL4ye8Oj9CqZSj2Rn+IEFONKdtx2UcUuw2RFFIWxuiyYTG9FTWpcgb0vxQvx5XFV2SINRBCWi1R7p6oMs2nJ5MWW0KmrphNBhQLBas9lvqqmQ2O2Gx3zEbDgi8AO1JpJZ0TUW2Tw9/koCiankyCBmEAz6sCm7qEtl3+ErzMnEIHcXxKObp+RHH50fEnsBxG56+OgEl8T2P1lhk3/Nwn9JwRa8cGiTLZUZRVhwNPVzZIelZPy7Yb3dc3T+imor9vmCRFyAFmzTn4eYe7bnEV5qfNx0OHePphNj3UE7NZn0wFuQN9Cg8rTBdj9Q+2vUYhJa6Svnyt7/lohMEwzFFvScOFN++/cDI7ekDzXa1ZrPNcCcR1kqcYEC6z4iNi3ImuHFMMJoddM6eIFCK/eOOzfyOYr//E4jT4irNxDkowm08QJ5/zE4NePP7z5GtQ5kW3C1uWPQdUlr8ztLve6IgIA8krjQ815qTcIgvHbquQiYx8TQ+mBCyAkf70Gt0GKPCAVb+FzZThUomtGlBfnvNPq+Ybzes8pSHYsnDzS0fT1xEHFMKH9lknJyHnCWGWEk2qUe5KQi1Ybtd4oSKKAqpsz0Blhcf/ZJgB+u3v+X+99+TrnK0FWjTsVw+Epyc8PLigv12y/RkQL594G//j3/Hd7clzz/6BCw83M9xQhcn8EiGA7qqpSxTLt994NXFx3R1zXa5pKpyomTI6MkRVsX4HnRNTzIYMhoG+J7H6SxB1GusctECkoHm57/8jLMTzfvvfOb3c/arnJPpEYHvoZUi9JxDq69q2W42vH7zlrvFnG2RU7WGwkAnXNpOYqzBIOl7y3q9xukCtDKUdYbwJMFDghdExLMnpLdX9GaD67v4kYfVCtNb4sDl8uGR9u6aKPI4PjtjECqGoSaKAlZVQdPXuN6EQRzz5XbDdLvj3FzQdTVlUZIXDWXd0luDkA4DV3IxHrLd7ynahtZolPCQpmEceaxbmCQjpn1LFI+42uZ8+HBFUZYU2ZazyOEs8vns5UviQGM5nOdVpsAXe+4ubxHXhqox7Bcp2kDsu8yeHTOaTImCEMfV6CQiMhXK9RCyx1E+qi5o8hXWTzBZw7MXL5kdXVA3Hevtnvlqzdu7ezZZSlY3lGWFMZamrdjlOYutIK8q7pYP/Nt/8zcoP8Z0K/KsZJcZxEgxGSU87jPi4QCBJct3bLc5WlW4JFyMJ0xnJ4zCIct3r2l2a4qlZLNek6Y52j3oVYWUdK1BSosbePRNRZ3ndN3B/NKbnqZpUEojlcZxXWJHMqbjLJB4vkZ7IZWxhL4kcQqOjsfErk+SBDjRgN6LkHaK3T9SVwVtZ5g9nWIqe7Ap9j2GnqPpiCQK6U1DU5cMX71AOCHNck30uOeTH/+Q++UjX7x+Ty4Fnz8sCY6m8MU3oH2C0QStFIPARUiHQFuM0ghrKPOSeBxjhIPMUnaX14gw4vzJOcvtjqysEEpD29C2PUXT0nQG10Jjevq2pNjco0VPuVszv72jLEp8JwIBt49L8qLAVAGvxgl/9dOf8+oXf8ni6obQdWjLjtu7B15f33BkoWsb2q5DK4cwDAijBEcqsrxAOQN+/4//yHL+iG8qPO0wiIaoMGEYSZLI48WzI0bPn5LlNZd393zzu7/n3//Tb3h//Z6fffqSbLfkh3/5PxINjyjXS3TV0O5TeiNo9lu0FbRtx3b9yJuvv+TXf//3fHc9525bEI9GVFmG4x4eirI8papSiqLnFktvLZOhx6s2wXd8PKWROuD5kyN2mzWdgrwpeHF8zMXRGaPplNXDDfdX95RVQ7ErMFXK1W/+memTZ5ydneE6LsNAIwWU7aGxGHge27JlEA8hK6l2KcEgxPEjlBPQ9Q3haIjMBixWO56eXzAcDGjzPZ99+jHuaMTifs5Xv/+Ktu2YjCfUeYU2HeVyRVaX5HmOrwQWRdu06L5nGMQ8HflsXEVuQ0aOix843G9XTE7OWD/Mma8WFEXO9dUVu6ajbRqmozGjOKGfzHC8IZurJauy4vrmHXd31xghqNI1vu+TblY0ZYaSgth3GYY+s+kRR09fUmwWOKbCw/Du3TuqssI0DdPxhE+Pp5SrJT6Q9hbR9fzkZMKibPlB6PPk6QXbvGJ+e4ttm/+KG+5/O/Pn0ORfaPquQ5gWISVIRdU2aMfBk5JGCnop6W1PYy0/OBnxy5enFGWDbi3BbIIUgirNCIXD919/zeWHK9K8orU9yXjMP9yuuV0tiTyPr99YfjCb8jsBWvk0yiFKXIpix9iPcJXGkxIpJCgXITqW+z1ocCYDpo7EdBatNNfXt7z58D3zqmCxy9mlGVndIKWgDjNupMSNB5yen1EvU0STc7E8JkzGJLNTVNMguo6yqNGeonVHSNeF1tCrQ8V/Mjti9eEtnqg5Hnh0raYJDi9OUij8MGEwGDAbJvhhzGwQsK174oEgy3O6siRNdxTpDkxDEvpMT84Ikxl+bgi1Ik8f8DwPaaFrKzIj+d33l3xY56zyirxuCBzNNBoRtIaT6QivyNCmwnqKjz75lLIyJKNXCNvg2IausdR1Rt9XNE1D3TREpmAwjGlsyMCPEEpghKBsa3Z1ymO6wfc0bqCRRiLwSAKXXmji4Zi+yg+KTaEJw5hgKKjrjtWuwnFc4umYeJhw97AgLTK+va746NVL7qsK5MGQcHM3ZzCdMBpPsG3CPsuga4kdAcpDa58yTWkqixaK6WSMbguSIGQQagJPEY4veP32kqNhiNaSKt1yd31LVrUEYUhd1/SA52q2+xyEZb/LkHnL/fUVwUhijGGfFfQo3MEJwj/CZClV35P2e9JdQdYYROvyuNuSt4baaLq6I5Q9iVZ0bUVadNzPb3m8eUc4PEL0IFVPLwvmj++5ufuOycQlbxWPhWEnLO83K377D+/4wauX/OpnvySsXMaDkF2+xA0t+/WagR+ipWA2HiOUYlvteFjkvF0ucHTEdKyJbM3A9w96Os+l2C6QhYNuwReax/sFDzcPvHjxiuMX51gErqOQSiGUi+lyyrJiGod8dnGErnc8zjcsHx5Y7FN2MiDtFFr5uNYSuJrTkymJ77F+N6fJKnzHw7eKk9Cl7Ar6vqbvNXUL68bQCUnZ1vRCgrX0vWFb5JjHDtv6NJVH/HRI5PV0eDRVQZfvaPKCsAlpdECW11S253a55fv5Hl9rVo873qclZdNRVhW2NYRaMAp8TuMY6brc5xm7omCVF8gWgsDDdiXzdUboKZbrjKpsOElCTLlneh4QH8c8e3LGN+/nOLKnq0uCOCRHs75/QAUxt/MNWrhsNiu85YaBP0JoQWhbOmOwTcHi5oqTixc8f3FO6B2U63dvC5zeMBkmtI5DHPoEgUsgeySK2FFUWU5WVQRhgKslJz100uX1cscyKynajkQrlo3hQ2E5CzyWpmRr1lxkhwDkdL9h8uQIghB7coobRmTritp03N7c0aFZbLfcL9YMfM03+Z7vr6+oywqrJKY15G17UHj6IYnnEUrB8cQjairWWYEAlo+PmL6n7gzHtmX7uCXWPo+bkqw1dAYc7ZCIFsodVseE44izyZD7xz31zVfcsuLZi6dYNSMaTxH5I6a1NEZSlA3NdglS4YYDVpsNceAzG7U8vv2WwWhAumo4mSa48Ygvrz9nvUopq+ZgC3JaPG1p0g1VC45QfPVtxtff/e/EsmVAA7WH0YJlviXdbmjKgl44lL1AaA/ZZcisxVcBJ5MBQaSZPjnhbDjlB7MdobWoruP0k5f0oqcSHVJplDFUTU1Rd9SPaz787gvutlvmZcldtedv37xBKUNgG0aRx/HxEafHQxZf33ARHUIXHQ1plzWxKyk6Q1WkrFeXvHw5I4lDlO/Rh5Kvv/yaX//hA17f84uXTxgdzdhVHaGEtigIQ5+PP3pBtrlne3+DtRK6jryokSoAawijiJ/+6l/hijXffvEH5qsdTbFk8dDR1C2uN+CHv/o58fSCxXzOTVOyvL2hLFPaxwfGz16xfNgh2pZh4tJ1NdFwjCx2kGXEsudiGtMNxpyef0QcRvhBhFaKu3dfc3V7x+Nmw3q/I88KpFDo3jDwQqLBDNVZhqOE0PVxpeD27i2u2yFcj1IoVmWHn7Y4+5zR0EOPZpi+RFcunufQ9AdLYGLB9Ry0dvA8l2y7JFYt7iQiHk6YpD1Ff1CzDuMZZ+dPCIcaHEG22mHKgkALKq2xKDSCqGt5vJmzKEoq0xMkHq4vUDrgbpNydPGM0FVEjeHtu0u+u7kh3e9o2/rQvnSOefLZc+LEpyl3KNHhTU/4UG75/tef0+0fWa23ZK0h0Iqh4xA6HqNvEyaTIT94fs4kjBF1ySg5LM5dmaNDQZft2D9eU0sHiJDjGONavnp9yx/f3XJ3t2C1XNN1Bk9KIkcxjHyeeAM60zBPC1oMbx8fUX/3d3z08hMizwchybOMjQ4OjAWhaTsYDQLyP50t+sCEDqeqCOqCEn0AeG8zfvPrOdtVS9v0KKXpe1BCYmxL5Do0eY6rQFiDsNC1LUkY0veGrrc42mEahcxcwczkjByHyPdwXI3ruWjR4XuSyPdo84LUtHhlg5eM8eIEHY2xbYsxPek+xzQ9RVFjhcRzJSJpOToK8F2N9FzUdIrQIV6QMHQiusWKL774ks/3GTdFS2FXuHeP+KFLHA84ms6YnD7HffoZVrlkTYnnDqjWt1g086s54XTKbdocWDb+AB3HOEWJF/j0SFabg7morFusAJTCT4bU+y2bZYDvudzer7i+3+IpwWQ8pMwzTNeCtSzzmp8+OWUwPqZ42DCUPjffX7O4XrNcbyhbS153eK7LaDCizmsuTl8RPHnG/Puv2K3XiNWal88/5rO/+NeIrqI3DX1VUW7vORvNOHtxhhIV9eXvefLRC/7VX/wF//BE8u43X3J1ecfpNuXX//if6IFxnOAqh2B0ctDrCokVgnp5zfX9gv/wH/+W//THryhay8nZM/7nv/4ZbVPTrO5oyxQlFdvMw3YRaV5Q9LCtGq4Wa7JszywK8b0Qz3WItCWVPX3TME08npwMGMYe6WrB/cMG060Zz44ZRiG7ouL+dk6W5gjXJd0XJCKk9TlwhYQkUJokHjE9eUqVbpGVz9nklKJoCHyPXgW8nCZcPnq0/SGI8tuKMPSROqERkkHo4756BaZlErl0dYNAYk2LH52y3u74/sMNiyxl3xjAUucFU1cRKMnYcRgHDo4WvL+54+nJOZ7nkGjJ9e0Nf7y64zorEFJytNkzGYxpHzfcffEV+yxHC5D0NF1D0VSM45jz4ZSPE4+7W0ugJYMoIgh8BB2by7cE0iKkYJ/NKauG1T7DYHF8H8dx+DfPTrG7HZ+dzBidzig9n8hRmLpkcjwlup2z2O8OEoc/z//v8+fQ5F9oemswpkMg8HyfdWcIXZfW9FgLvbVYIRj4Hr/49AVPhz5V5JM3cPewYVN1lHXL3eI1WZofdG1asWt7ys0eB+g6w1hBa+H79QZsT29BmA7XcZhEETfdlpEf0VlDq+DseErsDUlTSFwX2RmoDW1kqA2UdYrwHOyuxrcd8Sghyys6YFHUvF3vMOKRP3zzBj/08KTh8+/eIx0PLwwZaU0gXbRQjEdD/HiCdX2iMEYnAbEvUOkjT0/GZPstnux4Pg3Itw7CdPh+gBEC3XcoaxkGmsXdNdY/xvY1wnakuzV59l/OCSSx4zEYDTm5OKMIDPtv76n6jjge03eGVZrz23dzvr5bAeA7Go+DFWd4ekrzsGHoOSjZ4c5GtIPnBEcvub/Z8OlJzNWbb1F1wVf3c9K6YhiGNGWB7yiaXQ1SkIQRTRQSuTHW0xirwXNJZhPm8ztq22EdiRIKYQWOFxGEU1qhoEnxlcZahSN8To4C/DBCaYeyaaiaHB1r6rZA6pBWCu6WK574kswIirQh6zY8lwqFwCLxw5goTLBVQ95I6BXZboNKxigLfuAzcCWx7zEcxLieQ7lNKDYVt4tHdmVJKyTZNiXbStzAZTIZ0tQNZVMzilysNTR1Q5qWbHpD3VaUTY9/fMHd9T3NdkXfClA+VTjhy8sVi7zib375PzFff8dXd+/Iy4KhtpyFHiPfZegrJnHA2HdZrpbo119yNDkinIxwhiOm7ieoOKFLczb7a/791//Mpm3QAiJHsa0uuZ9nDH0H1wrOz2K0C9NpgtMZfKUpmhzp9vTblEik1H7GfJ8dFvUmZmJDdiTo3qPpHEybM7/6jv12zXQ0YLdLuf1wyWw25eL5cyaDIWWd0XX9YTFzPD774U+Y+D2Xf/hb3szXvN1WpK1FhQKUQ2kE4yCi7ysujif09Y5dvSXtc47OBpyNj+h2GVUBu31P3ys2RUthDn/egkFA0XYYK2i7w3lDWubc9jVlE7KvKn50XvIL30cFLuie1NSs9h1On1EVDa8fVjxkNY95Rd0YKtuzLBrqzhxq+BJGrsNREiO8kLIzPDt5wqYo6Ko9CMhtjzM9oqtzHpYrHnYZd5sNH5+d8KPZGtOs6YoEP1aESpK1LYGn0VpSWs3s9IzL91dU2x3j4ZAwDNFxgvQ82q4giEJsW/NwfUW623I83fLLn/+c7OmM7//wBR+fDSgSRa88LtMDTM1xJF6f07QhOwu7vKXXI86PHJTo+eZ+w9vllm1ZsK0qAi1ZNSAFjHyfUZxQm4arbU3dulzPM07vNvy0NZz/5DN6a+h2a+rM4rhQpA1pteer93M2RUFe7LlbbljkJa1pAYEWklAKhhpuNzVt33Mc+rhYPp0l/OriBLTCeprZ+QzhuezTHGUaPM+lyg2bbE9tesLQw7YNAwmBsIR+wNHJGB1PKOsG19FIIQi0IY49HBHR2Zq8arFas0/3SD9A2prY8xiORpRNh+sKZFsyHHiMkzF/94+fc3d1R1NvqdoCqRTxICTP9phKUeQBsoU3q2/4/W++5DQe0uRbzsenKMcn8i0vJiOKLOIPby9phGRV1LRNjhYWjeCrR4XvSvxvvmPoRfzk6JSfnp7y0bOnxMstfZaytx3Zw5p8seL19o7CNkw7TbbcsK86CilZ7VP+5tVT5jVcLe+42qbc5necrFb88DiG2kN4HoF1GEQJRgjGncM+t4wTcJUEGjbbD1zf/oH/5/0913nD08hlXtV0yYRoENHUHevHJclkij865up+y3LT8LhYEMcRXpBw9uwTqmzF8WjK6dExJk15eFhTVQZrKha37ynTmvOLFwQSbr75nG++vMTWW9b39zysd7RuwM8mL8n7PatlyuB4iiNantPSLR6Yv7+k2G7wfI0TjxmdXxC4IdF4jK0LmionS1M8ZRmFLonvkLgJ0WDM0fOXTGYz2qZkV6YoU9NVFe9jwe0+pdaSh03Du/V73NdzLk5m/PDjE56OHKT2UV5ANIipmy2mF3iOwyiOaJxDs8SlJQpdXNeltxYJ1OWepvRZz3ccD875+NUzhKe4/P6aNK3p+x5HaZT2GGsBdcn7Xca6MygpeTqSjIZDdpslrpJ4rsNxHBJsOx7vbmjzHRpDGPi4UuJIw9EkoGtTtqsV6eU1t9133G9WNHWFamtcpViXDa6WNK5LLwTV+/f4QvB3WF5MAy4mA6LA48c//yUvPvHQysV0FZttzn63oRodsVx94P/65z9yuUhJgpAIxSzykX2PtBAoTaBdhoGLxsFB8M1yTd42lE2DIxTj6RNM25IXBV7gY5TibDrBdyRaOfS9ZeA7TPxD4zDNW047y8RtWdUdry9X1HXDvhegHdqmwiJQUhC5EtqKrjV4nmYYOOxrQ90regTHsxlSCBwhGClLZDuqsqV2BUHXU/cNZdMyjUNMrxDmEF51TU2RPlDfzumkZjAaMUlC3GiMV1t0aEjzOet9gXY0q01G7GienB9jsVipcEYzjFfQrx7ZPNxRo1HhgEg1KNPT9j11bcibjG9vV+i3D+jff4MXuAwdQ+hrtrs1Q0cimpJJ5DE6f4ozO6M2HVndMBkPSA2s5w94rkMvBFIJtOsynIywXc3Nh1uiQDKMI2zXYNqGtALPzQldTegeFPXCGNKi5v2bNzx7+gxqy83VW+brLd8u/jN7b7Ys2Zme5z1rntfKOfdUe9euAVUAGkCjiUa3qCabksMOWQoppHD4Gh1h+8i2yKAti5TEJsgmiLGAmoc955y55nn9PtgMX0LzgP1eQkYerPf7v+95ZmS06KmJ0Rk0ZYlrWvQcm8W7M8LljJ6u8umnn/Phv/y3ZFlGefOOOk/pspBgEvD+r37F3kcfYHgWs4vXfPub/0Jb/5Y//oMHPLRd/vov3kf99wAAIABJREFU/4ZdkmMOfJ69eIVtO4y9gGFUYvo9NNWgBm5mC/73P/1zXl/PuXPygIOjU6IkZ9wfUyzndH5A4ntEVYXrBVgojJuOpk653sY0DYTxkq4rGeguyj90FlNXiYsO31Ip8pzZzRWmbvDT909JNnPO52t6psE7ISPajvn1DFmRkTWDaBfT9PpkeQOthJY33D9+RNa22IHPv/93/5aTT3/F85dv0JUKK7B5/u0XRHFCbph83PNpypQiypEUk8HxYzxbx3vvAQrg+x5IGkW0pdhtyKOQvqowdSxoWjy5JKlrkrwgihs8TcG1bfB6BAK6umY5XzBwLS7O3/HuZo4ig60qdJJElGa3W8++x7qscVSFQFM52d/DsmwiZLZVSyoU1qs5Wd2SlxVR1VGvdmh02IpCzzYxDAszCBgOppjWlrPLC5brDdPhiL1hn9EowOhKpif7rAyfcrehUnQGhsR06LOb31B33T9Su/2nld8PTX5HKauaPEnRVRld1zB0DSFJqIZJVxRYjkPP9zmx4MG4R9vWNIrOYj1nndVEVcvFbEGaZqgSuJZF0XRkRc7I0DnyXIa2yf5khCxkXDdgs4toOwizCsN26dqGqCioENR1R1OUXN4sOBqO6Bs2QxQOLAPaBqmTqMIbujzGUwRHvoWzN2QdhrwrE4Jxj5vzHMe+vesr6pY2z+hkjaLrsHSFqkpZtzWuYRHYJqu6xGtlvP6A64sZNjlK38Gp01tVoO1SZ2s0ScZQJNKiwVBrhoGLFQRUZcqXX71D0TQm7w+wLJskXBOGG1Ak7j36CJKQMMk4bMWtSjUNSdqau0MPs62JFyG7KCOPEx71XZKqQVd0VGR64/v89Bd/hHjzmuPDPk2ZoOg9rP4xi/Mlgz68+/oLlrsty6xgXbYs85J5UmFpEkHXogH1ZoOmyATDwe1dcFXSaoIG2K4XpLsNdVHRtPUtlKxqEXHBZrmGpkWXbqGVuC6626NSZBQhIxsCS1EYDSeMDveZzd5B0/L01RvyKOK1qvFileAYGkiQRDG6dwsJHvUGSEmKaScsFltkycBSFNK2w3Bs+oaM2eY4polh9VDziNOew00W8d02JilyNF3FNA2EfGvUWa8WyF1H4O0x3d/HURqWq5SyrekkwTqOCSuV64tn2FWEKQukRibXe9z9yc/ZK2TUIuVoukc4D9HlczZ1QYlGUpa3oL5a/YcV5A7bMpEVCU0H83BKJsvkrUAYDtvZAtmAR/sTzlbr26GJrqPTUexW2J6NbpuUkcAfWdhti1xVbLOQuMzRRENX5Bz0XB7YOkpXIusCRc1QLBVFNHSSSri44ubyhuVuw/n1AgXBuB8gKyayrLCdz7AQWKZJHGc0Tc1gtM/B3hHJ6x/59mzN083udr1Z1zAkaDUL2fIxTBPf7DHs+dwsrzm/XiCZJj/92ceMFItks2CxAllpCbclgakS5yWyJqibiqGlktQSnanRNiWykEDqKNuaRaHRzGJ0fcbPH3qohorq6lxuIrKkoc4rzjYRlSSzqxqqVpBVFRIdniqjdB2WLNPKt+cejz/+56R5whdffYGuQqvrWNSc9HssSoE+6DNxVN4udoRFwdPLC7bLG+7dvOS9gwH+dAytjESDZVpIukk4i2hamXgXYUgySl0z8l0sRVDu5ihBgCYrdGXB9dklelPhOgbjgYGU1hwfjVFlgyQueTOPqHdLTMtE6iokFaI858VqhmM5WLaJKmQ2iwWbMKLrGqK6QigKqmoQKBKuKrPvWhwP+4x9C73r2Hv0R4jtjCdPvuSvv7ngj10HN4mpG4Xltka1A3xfJm5q3i5XvFmsCNPk/79l7msKpvIPjABVgbbmNNAoG8EuLzmwDJwWLAGW7yOZEkPPJqpvDRX9scemU9DSmqi43TRUTRNVkqBtMCTQDZ8oqfF9m8PjYyYnD+j3+rz89kvWZzsOJ2NsZHzboChqNknFRIZwtcT0BjRCZ+B7yHVMlWWM7YDnf/+UN99/SZSHFHWBbapMA4WJ2ZCHIctKx/EcZtcRWbrh449Oee/gY7SmxNZ2eKqPjIbhupCr/PzRP6eUMma7S87OXpOEIaLriISGqtiMVJOBYTEwTUBQkPPld3/Hy6s5z+czrrcbTLmlZyjsD3tItoulSIwdHcW0CNQOJzBx4pCp3icrHaIa0rplFpW3Svu8vWV+VDl9XUExLKq8oqhqxsMpbV6Qb+dcXs/oGvjwZMJ02KNrBIurS46PTtBMExST0XSf9WrF61cv2GzXCOnWNiJUFdM18AyDR/fG9A1B09wyr7ZZzvffP8fuGtJdxqTvsDvPefduyf17Uyz5iK0n89UPBc8WGZu4JV5e0BsfUNkDfvjma/7b//uXeHpDud0wtgzGA43x4R729Iieb6O1DS0l+4cHyB3E0ZYwDGkkib7fx/THBI6J55msLq4QiyWd3JHGEXke89WLMzZZhKYpBL5DI+u8eveGr57o/OTehF9/eIhnWMh1ha5lNB1ohs4gsCgVHUMWBK57C0k0bFZhhiSpuLbCD99+w9W7S46OjqmkgjaumE732VxYxHmFrBmYqsJUbrlYJeSdwFFkBBKaJNjfm6JLLYpuMDi6z1DV0BWF42DAcDCmrCqKLKPrWnwdLs7eEKYZV5uQtOqI6wrP0Tne66O1KpP+gC7reH51SZ2ktELCUBUsVSLQNXa7knsjFVdXOPvha0S85dFn/4wahV2UcbWKeXG+YN1kaHLHx3cG1LUGlaCWVeKiJs1yNmlC0zUMdwb3RgEfHN/hYHrEly9fsk4jvn75lke7DE/WSXSDsigJJj6eLlANG9HByFSJCoW8KLEUAa7DtpJ5PDY4HgXMFmtsy0XkOVknaJqWpr0FcBsSGJqM5RtoqgySjG4pdIqF3xvS91ykMiVcb7BNkyqriPIWIWo6uUZVO6Ks5M2mQtE0+j54uoKjKmiqTZZnVFXB26tL4qrFtA38vsf9gYOlmiiiYLGJGNgGl+9uUPISvdfHbGuEKiNEQxEumc+3KJNHHE4VnDQh2y1Y7pakZck62VI2LUWZIkUKhq5SqmCZKpIskdBQFTVVYdAIQW9ygNHv06UpSp0zdTQ6SyPldrtbMwJM08BRGrSmoJRlmqLmxcVLpv0e68AmK1tkSbCLErKiou4EnmGyq0FoKtYgwFJtJtstz9ZrFlWBpsrkZU7Z1uySDP/0hHWacnX1ChvBByd3+Mkv/hB/fMj1l19QXM9wNZ14m1GLHJ0Wtc5po5wPP/kcqzfh7Ve/Yfbkgr7Z8dHJmOttxJ1+jyBw8IKAwA5IopzF5ZxK0giLgi++e8rFzQ0f3btHMLmDJqmYso5zOce/c0hrHhAvZsznK169eEZdlez1fEaqjCIJeo6HqDKatmW+DKkdE0eTkLkdguqGxd5wj7t3DmmqCt00uVxtKSuNqhU4moqhKmzzgiwvQdMxRn00WaLIK3QJfN9nGe2wR2NO9g75/N/8K+7cfcB7Hz3m2Y/PuJ69pWpa+sMJWVVh2RZllrJc7ygx6D80WV1fsl5tqIqcSijc//BnbCuHsgHmlzTplqYV5JLKssqIs1ttOW1HIVRSpUYuWo5Mj4FXIRRurYVFRZnn7NsGR14PzXEAmbIVnNUNvujwVZmpb5PGKWGt8cMmZZOVxNslTREjSwJd1fBMBd/QKEV7+72f5nSdhGJYXIUzWkWmbDo8TaZIMy6anMePjhn2HVTPwesEu92GWtRsVIO6qfBdE137fZ3/XeT3v/LvKKJrabuWpipJRctgNKKII3zXRZMl0FTqZMfdw6NbpadqUgqFQsh0kszZ7JqiyGlFd/tKaRh4tsNnlk5PlenKAiFkyrRAkmRGls7UVLj7/kfkwsZ78AE3X33B+eU5N7sdbuAhuoq2aZDaFqGoLOIdft5jaDmolkW1TukfBgRqn+1yx24X82q14iZOeB6ntKLFMST0RsLRVExFxXNHSJ1E0dbsTwLiTUzPMhj0Bzj9Kc5wRLJb8e7iDbkCbhNgeyamIhDIKJaPq4CkGSyziEVao29zHHXG0DFZpwUYFgPpFniZ5wlI8Nmv/wfeO31MNLthffkKr80ZVTFoOvuBS6/NqPKUXZywCVMeDx1MWaasBYblklcV3qjHpG7QAhkRFwSjY3p6wGa1Qy03IDoCz8O1LaxtiFGCEiYkbYmsSuRNjaLL1E3DLt4Sbtf0jw5QdBNUA0Veg6jQHQfhOEh5gVGVdFWBVLeItqWpWuKsYJZ1zLYhjr5mMDM5Hg4JbAOv7yMKi0yRiZMSR+l4/84E1bjD2XzDKo6Q2paqLLkOc94bjNE1DVtVIY7JlDVG17GIC8pWxg8GiMEULY+wVR3HdnB7I4Qicfb0R6SqZOqZIFpWSYruKLcGpTxHdA2OIXM4Drhz75i2ZzHwl2iuQZqF3Cw2vJglhFnN44nD+/f3GQR9slKmqHaM24Y6XvDnf/6/EKc51BW2IqNLLXkt3RZ1BYTomKcZQZUztic0IidZvUHYffIoZTXf8Or8Fd+9Pmed5MhdR1ZVFIrCB+Mhx4HNTz7+hOmj92izmGJ+yc31jPn6nLQtMbTbNc04rdBsg08nUzwjRXUUFEvFkqBydMLZnCqtSXcJURwxmy1RJTjs+Ty8t4fTH1K1tyA9qajgH7ZMDg6OiMMtX78+J6w1evYI17Lw9I5OMzlLG8okInUUjg7HGIZNhYRiG/zy0w84NHyKTc7uqiKOwOw0DBscK0DVarb5lm0UgSThGAqFBI4bINUZcltgKw0yFYpkcBMlJG3DyHPRRIu+XHKVJJS1RCoEWVliaQqtdMsv0brb/6XooBQStdCYtxpHmk0gwwf7A/72zTssz2ceVZhljaMo+FqH4/cZjIYUdYWjC+SiJdqFXM53HAU+SaNjaRqKdPsCGjg23/zwisV6x9QxMU2DkR9Qdx1xltPzfXTTpohj0ijnarHhvQ8ilDYimc8owoIgGHJz8ZxwuaRpBcvNFqNvoqkqtqFjaSqdZOBqKsl2jixKJBrSskRBwnSHTPp7dPGKpiuw3R5qMKUUGbtwRf7db7i/N+VkMuWLt+/48u/f8PjBhFxySGoYWzaqpoHU0HYdhiSY2Cq+ApIk0QmJRkgkrUCi5q5rcDIcodsjQMKmpa1SGtHw7OyGyeEIJamoqwzPMbE9j2mjc32xwrZdLjZLfFnCNk1cTbr98DdNwu2CYnXD5KcabdPSn+6zPx3w9jyizVLMoYci3dot1LgkUGXycIVq+2iaQJahkyxs12P7/Blvv/+S7W5GXFc0CDynx72xQ12r3KxzciHhyTl3+jr7roPl+5zcMRm7E1TvQ7IYKFLasiKTO8piQzq7QCsKxp1KWctssGmESZxXJE1IZaYM7D67usXZyXz34jnfnt2QtR1Cl5FVjeOgz5FjMR4EbMIdq3BNGCmEpUBNczZFhWc1GE3OVNEQtk9ounx/9YappzO1wTEaZA2EVLKu4P79U3quwuL1U2zPY9zz2Q8smlrBtgOarCZwOkTb4Mjg9AaYqsLrq3fMZkvSJGfQ7wGCpq7oOpXZImPsXuKoMrqcM3QMQhW+++Gc+WLDvmfyx58cUIqUj+5OEbpFh44X2Nw77CPsW3vem3dvuLxJ0L0Ncbjh5mbD4uYdhtTwyckRWwlsxaXpJEpFoSlD1C5H0zU0taNuSuqmpqkqChmEENi2SknJ7OIFUVIglTLXV2/ZlTV5NEdXYd/1uXtnxN7JKeeza5aX13zz3VNW19f86188oidraIaB1AlqwLOMW3OIqqLZLt54cqtElRowfSxxW3hvVmegNeRyjdsfEPgunu/RSRlyIRjZOnZbYcjw6cGAsiyIUfEtg1HgUqYe623IXlViyy3DYQ+zP+bdYsHZm3e0QAloSNzMFizilFJWb+GsMnx+54hP/9nnSFQUu4gyifEtheUmJM9zBAJX6lAlwb2DgANPY9y3UWSVUc+kaWo2UU6rKHx9k/Bys+OjI5+f/uQD3py95e1qw7tdwyZrkHSLriq57ygc93u8SVou9CMennzAsaZwOBzzZ3/9X9nlGZsswekPGfd7RHlGVzVksouCyZ4JattQlw1RXiMMBU9RuHd6j3J3ycAxOJ6O8UYjLlYr3lytSLqSLM9R6FBNmbsjm+mkh+n6VJLJJmnohELP0ugrHdskpqbF0nWkpiYTMru4JRQ1d/YCtOEQ1/E56vUxNJUu3tHKMi83MXlSQ5qgSTJV03ATRqzfXfI3psm+ecunaSWZuKxJs4I6SUhmS4JgieQNkZDIk5yrpEIMHIbjfarzV8SLjNPJFE3TiIqCVRKzSyIWcYIuwJBVxrbDnckAU5Wp8xxJ6ig7aPMYrcg5cm1iZCTbxLdNbMckLFrCOKVpG6RWYeDq2JbL0FaINRWpq/mTT0+4jip+fDknygryqsHz+pw+/ICH9+5w/JOHBK6FkhbMb65YJjETz2dXZGRFQSsrZJ3AOTjk3d/+Bt9U6WkG4/EUyzCpqwqt6Tg+foTj9pB7Y5brc568XfPA9JicHCAbJv2hz+VgQLa4YXF5xdSWKdKWs5sb/mjyHuO+h2k4bGavuZjNWWxj3m0Tmrrm45MjdFVjfnlBW3b8d5//CQ8+/yWtZ3L17hl79x7w06P7/Kf//Jf83f/5v/L0+QsCXWav5yMrCoOeTysaRFOjU6MrOpZpg6Iw8U0cqUauCzzLJt5tSUoFVTMxNAVxfYOuKDi2SysksqLEbBssWjA1cl0nkXTCNEXpBtjHp1TS7QDW7hQGe1N+fPHdLVQ7Srh//z3O1wVWkXC5jKm6FPPJj0wtjd3VJbvNjl98/kseHd8jHd9Bjnf83y9/4Mt3S+ZlQVqVaJqC3MnQSUw1OAhkOssgzXOiqsI0TMaf/ZrNOuSH335PWNRUyIwkiZ6qMtnb44vrDecXr9Fp6QydWZ7RCdCMHYe9KR/9i/+Rm9kFz/7mL6gqsP0J0fKSTnQcjCf0ez2COsesSyR0NLdP7Tlc/PCUUNnxaDokkQS1EOhBH29/D7ttEWnIJil5e3aDORghSRKqrPyj9dt/Svn90OR3lK5pKIscSXSsk5C7J3fpGhvL1KlykzSJcQcBnmVQIZG0EmUWs4li5ruYriqQheAw8BkMhkx9j6lnczodIxrB9dk5UdFxUalsi4S/O3tK3rS41y26d5d/pweIMsNTJdZtw/k6YxqYDBwDXVepuoawEkTLLZrUoPRdgsJDnYcsog1xsuXN1YJFVhAWDQoSed1QtRJl06LLMpkkEFWI3AlO+g6fHR8x91N0zQW9hyK3pO9eoomCT05PKJqKuswJ0xpZqxGSQVW2SIZg0nN4PdvQ1A0qDU3TYZsKJ32XH1cRpq7TNlDEK+5/9B5/+Otf4Jo+b/Mt9c7AnUyxgwFKmWPQUpQVm11EkVeMHRNflZE7QRcEdF2Habgcn05o4hlG63B07xRLlWijmLuHIw4mGk0SceBIFGXOUeDwZhkysAzWTUMqGjbbJX03oCpidKDarpGrGnM8oaHGtTQcz6PTGkSRICqJrq2o84y2qsgaQV53FI2EhCCrG4omAVEzsAx8XaJrW7Ik5N31FRmCWFc5HLkYoqHfFXw6DJAVOAsTcllBNTRkWSOfz+n7HnWnsLiZEYwm1H6PQpLxXQe3zVCrEseboiOz3UUs1iHX8zmSoqALkFGwNZ04STAUBdky2Nsb8d6j+wwcCWfwkLaCF2dvsccWugQ9U4JOQVMUnF4f/8F97hx8xDZV2bz6EUeWcbqCqEzompqqrSiFii4rtzrXGg57LlmZUNYthm3jjce0eUy5mJGUHeFmx98+f8VsG2GpEp6mM+15mIaFbpqMbAulKAkUi11bECc5eZliSDl5FfPsJiOuWyxZYhDYVIlP0PeRbAXLsVCFQdb5ZGlOFifIQmZ2Fd+umjc1Xbxj++YZ7sl9MknD9TwC1yYtChS5wNA1nl2tOXr4U45WK+K0RpvcoSx31GRcXZ6DyKlbG98LcAyVuioZBn16ksb2akkddRzvH/H4dEobXdyqmrU+sisRpQbn2yGy7/Hq1QuUtqJFxXM9dGHgyh26BGpX0ZYNRZNjDg/p2oK4qVF1hahqkbsGqSpIO5lG1tB0HVW1MWSZNEu52cUkdcpFVnGzi/CUClMROI7DJi9pNZ3rMGaoS/iSjew6BN6ANknwbInT097tTXM8YzgOCCub9ewaQ9OQNJ35dofUCVxdRRcdKgJFQKlbGKZMkSRI8gBR17fgV9ehCDM0uUaEMbvnN3h3+4hWwtJ0yu2GuqlQdY9OaQgCB8c0abKK5c2cOE2Iqo60bujbJlVekdYVHR2yIlPVHYXl4jz6BC/fkiXf8vXZW+arBSNbo2tr/ur1gv60RzDxCFchutHhuxZD1+DzR4c8fyvI05D5LuMmLRAoOIaJo+lYpkolazyJVYJW4+5wghMMMC2JTbJA4x3zVUiWJnSygmUaRPOItKrQTZ1gMGSZRGiShEDCtm1M18HqchpRsFiEvPn2JZ+YfYzTKaenJ3z1MqQL1xhKwJ2jIy4ubphYKmpdUhUFeVTSHwwQHQgroClDrmaXvFovKZuKqm3oFA1/OOLu4YiujKnrjLgr8bsUqczp6za27CCyFZUOXViiiSE0KlW6Il4vWV3OkRSDvmQiqQav85Jd3uIogr4moaoSlqWiqA6a7lCmJXeGATSC620IusRENRkbGlFasA7PUWRBqQh2SCyLiuU6YdcIqnaHI9d4psp+T3C9nnG5TklyHfompirwTRNHt8gaBV8yuHj2imFgYmsWgb/HeG+CUks4rssyWnGwv49qGJiahuc7tGVEnhY0rczedI8sT1hvIqqmxd+7T96qPH3+gjiObi0nqBRZyYvLDV3Xcb9vUiY79L6L1JS0usNmG1EJm6RoKBsduai5Nx6xDktenr3ixesn5FlCVUQoyHz16h3vPT5llFUclBJD06PMNtRVTltXVEVOkWQUZYmj6yi6g1Bltqs128uQ1fWcSCisdwlUBbqq8XDvDovwhp7UEnQle5aNfXrMsaeTxyFv353xH3/zNf/+F+9hmAZSfcsh85yWuhEomonWmyKEQNdVfEfn9dsZmqIhVSWB51MmUO1qzKmO7w0Y9nsUeYVqwND3yDdrxoHNhw/3wBvy4vUlSDLkEcPxlKyRcS2T4cDDsz3KJOfq/A0X6wW7skJ0gv7egJ6pIGyDYW9IoMkEmuD9xydYmkQcliyjimfrhHfrkt2uoq5aVNFwaIFTJcgiQ1Vb9o4OOZwMaZuCfHeOZhQ8X2x4MltjUTPB4Zun57yer7jaxqSVAPOQz37+L3j9/X/mYGxyOvH5YDDlT5/c8PWu5tM7PYKjY372+D3OXr4kcC16fYtIdymua0TXMBj45GWB15ugqCqNrLBrBKuyYPbikqb4C07HPrIouHewjzU5pNcPSNISTYI4jknyEkt3QJKZDGwsW2W1SyDNiNOS4d6Yka+jaDWqozIeuMyqnJ5p8nYT4tcahmHy4d0j7uwdsn53jmsFvJld8OpmxrsoJS1rorImbgSGpmFoGrKskhQVP0QxhgK6Ag8GLpmmog082jikePkcWVLQ7z6maxQuNhs0ScVQGo4tFXM8YpcVdG2Lo+sI08ID7k2mCEmwC9fIecnf//CagWMzCTwG/R6GaWL4AcX8EmVXMFAEje2gHh8w20QgCihKFENHBtqqZtizqZKU42Gfvb7JeORyYvn88HJOJzp0TePhyUMePv4J/XGf1Bpi7E1pZhd44xHvZSnfL7c0aUzTdLTcnk2uXz3FUyUOxlMUIdHVJU2eQJHTxQlhnkFQc/f0IY9/+SHzrOJiMWNzU7Io3tK2ISLKoK15+vodf/DpKR/+5JSvvjrjx1ev+YSOYDimaSQkRUXXVaaWjNMP6FqZb95eEpcl//q//1e4JxMipaPcrInXMT3h81ff/1eScM5Bb0Kz3RBt58zFGt/z0DWBVMcoXUcnQ9VK9G0Ld+Ci6SqaapCHEZaq0hUZuuVgKSpxGJNnOXEYIckaqqKiUOE7FpKqYnY1vfGY85s1cbyjXclIUs6r598xGQ8oM8H121ek8xldWVLGIb/9my/47PNfYlg+TXlFXeSkZy+Y/OxTeqcnVNMJe0FAenPBs99+w3dPvuO356/R9g7I1gvatuFg2kPkGeGuxnTA31M5+uCQ5ZmMKEtkT6dpgG3FqOp4VTQUyBRtfcv0cX2WmxVFFpO1gjjJ6Tk2Qb/P4d07nPzqT5A/+DnrP/2/MA2o85zh3jEKgnr5jiRJGQdj+ncfEFQpVge55vIs3dE3TebhBulmxsNxn3Vdc6obqMGEVpXpnr1EsRwaNUXoFkG/hyxL/7gl959Ifj80+V1FkmjbljpPQbQk8Y7A97k+P6MuC7Ik5u7pAbZlkoVbDMsmKzIsTcHWbpWRhiIz8n36rsWxrzPuu7h+D9v1GB8ek64i/revf2BexkRZgqbYhLtr2t2a//Rnz+lTAhJZW1E0cK4Iis7gQT/A0UBXOrI4QhYFsqMyeP8zyELYLlmczVherelrCkIFVVUYmRpR1bBMOkwFDEXG1YEWRJHz5Ic3NJKD7lqYZsrN6pKgXhEEDtPJhD13iKYKJEXFcyxkzef5s6+RRQ2yjGPoFAjirGDP1ggMFbPncVMJRFWgKCaHpydoRkdTrajUnO3ukioLUVRBoZsotk1bN3x/teZisWWgq/z6eMxIl+lQMKdTurqhNxrTG92CW0eTCY5tQNshBxNEJVF2MomosRWVpm6gTJDrjAPPx0Khtmx0Cib9HttFiSxaylai2KwZP/yQqk3IVAldkzFkizpc0zUlpqnStAqlrFOWEqoMjiEjuoaDALZJxCwvUdOUxjawlzNWyzW2qaBaDrPVDl+pqEXDNPA5CMbcrDZ0wx6KN0DTTMLZimy1wrtzQN8fEy3XbDYh06MjvMNj+n6AF89x/QCh3YInBzr2AAAgAElEQVTZ8qpFN23ipiNJcoqmwXM8pgMfTdRs0xxH1fngg8e8f+8UqUro2gYnGJJnLylVkw8f7/O4KrnJdAyjx2C6R5urhPMFktlncrhHla5xhn1GnstZUZEut9Rti6F77PdGmF1NWcUEloloOlzDoDfZQ5L3ia/eomQFl2HK+S6l7TpoJRSpQZQ5cVWyShTiJCX54QX6F3/PoDehqGOicInWVCiyYF11XIQpPVNGNuA6D5mUNaOgj+3Z2LLLbAFFUTG7CUFW0XWZoaGitQIJCVE3tOECy3ZgE6M4BwRBcPuim2U4px/w009+RvbiR96+PIe7nyJ2l6j1FunqirrNGU1tgpGJJQtGtoWu+mSzlLRo+dkf/IzxyKaOr1gXGoPTx2TYNDc31LnKcHLE4P5dqk4wu3yJpStkTYOQJCzN5nTsYXcxQ8/g6OQeumlSKxKqJAjGA/p2SUjNVhacZR2WqeF5Lq7bY5UUOMEY4ZY8PXuOsEZE1jHP3vwVuizwHBdd05E1ibwo0VUDW0gMLButP+JyGxF0MnGW0Rv7TA8tNN/jqNYpNiq6opIIlbpqGe/tM7Etuu2aupOQO4GhqaRCxZQquhZ8P+DhoxPKxqR/cg9Zsnj0y8fovkGJjnutQ1Xg93q0dY6lqzRdg9BMlK7len7NJs7I245dUVNLGmHV0SLh2Ap3DgOa64pENFxcXHH5F1/wP/2H/5mTRmWzS/hufoOvQ0fHTQV/+eSCP3yvRXc82qrAGe4hGQ6fGgqHPYknzzueXG/pug7X0BhZNr1gjC4J5uGKXT3D0jZsdteMLRfTDTAcG907oJAMzhYXJFHI0DWwfQfd1NGlBk9UHA1H6IogT0q8acB05HM0HfJmt2C2yejqlpn8XxjKMdL4AWmc4jYllDmPP3ifwNQZmzLzqxuKSuHOYISu2WiqjOXYPP/yGW9uNvzJow94O7vm2/kVsq7eqqtHAVlU01Y6TtWgFyGvlwWlrHN82PHQ0LHkGtl0KNMbVqFgV9Qs1ymeaaOJlLSMyJqUiWNRNlBUCY6q42k2HwyHnEyOaSWJOLoi2mWUeUMn61zudnRWS9ZlVK2g7RQsGvZHAePBgGfrGYsOZMckXhQYhkSYVQR6jNnU2FJDUwmSQmH/0MM1fWRdxpjKfPfsB5JhwPjnPyXaJXRVQqN0PH+1YC9O8ScHhGHJ/nSEJBoCW6dIU6pGsH94RJln5FVBGCZomsbq/BWqM6ZoLWZXNySBT09REHVDz7G5e3LELw464k1IPhhRqjZlGfLqas1ffXtJGJac+BbG9Tt2jcwibCjjBVpXU7QVphkwCIbI+ZLLixkfaTqTQ58225ElBZa3T3z1I0mesQoTsqLlIk+x9YL9k/sc3t2nzFWOfZXGs9gtCrKsZDO/RqdiOxd0xY60qMk1F9V1KKMNfQ0+PNknLktq1STQVOo8o6kFmnK71dW2HVJd3IK06wpZqolv3lDWBk++eUlc1pwcjtBsG8f1UfWMnm2x1nQMy2A86DFPUyRZ4PZ8lP6Q06rGUSX8vsKs1Vj3huwFHr3BkCJJmb96wb7tcvjz9/n6JiTfLjH0hkkgc9TrsCyfIt2h1C0vnj6nN19wvSl4sgxZ1w3XcUzWCdqyQG5K+ntDAk3nIiyQ3YKPjx4x+OR9wm9+y3Z5xWIb82J2RV2m7DkqTxchZ+kGRTVQDh6gb5dstwtevfgB1T9l2x8QHx1h2TYfPRzx9Yvn9IqY9x/d4+5nv0LEIYomMRk4jBUVmh6bJKGta7JaIpMtRq6J1ArSBpI0pW1aLm/m7A2HDEwFV+kYHxyhzi54/+SQ56/ekFgGDRLH0wlOYKCoGrapoyoVsqHjSCrDnsdBT8GX+tyTTUpUMlHRWDqTO3uMTLg/8umJhvXLH1ktNrx88YawqfAVmbEqozUSqqYiywJJMdiUJV3XYqoKvqphSC09BZSqYV3c6pzVskY7GqPd36dRNIQVYBgmE99DKQtWqx1VLWibjuV6Q5LnCCHoqTL7h/f46OEeabjk8uKc4yzjIkyo44i4qbkoW37y889x+gO67RxL17FEg9Q2qLaOJCvomopk6FhNQRqFZOtbTuAiXGLtBxiKjCUMdFW9tVEhk2ZLvv/mr8iljvHxCfkf/jGfHd9heHCHWpbZyAppkdO0HbKsEmgqVplyMArwxyPiUmK1i7i7vMZ19jBlg/uPDhge7HP0yQnXjc5/e/aSy9mPnBz63Ntd0IQJR32dH0uTl7LGNF9weDyiERpZGZJs5+TJlrgNUEwHs5WpsgrKmqfrGnPvfczkiiKMeff9j5Qvz6ktn8HoiHWqsXz6hm14zbjfQ717n/MmJ47XNF3HyZ7HYDCAumIXF4RpRicEI9/nsD/CsCzS7Yq2g21pUOyW2K6D6ARRXrOJcxSto6oaXMdCkWVMU0d4PlFYYWUxcRzh7fWR0xu++o9/x4tvfotpjIhnC5QmJdpsiOMYWcDrJ9/y/sefsTfdZz27RlNULFWm1+9R6jY3by/YJC9ZbbbcrGZUNLRFSbZdYfcshmOLdllSpwryQOX+L/q8Cn20vg+SjBv4PPnL/4dos+NtGtPKKhEyqqZyEadEToJr6ihCUDQNjmGyFDqFpPFIyZiUZ7z94opXv/kL6qLEkBuu3z7BsT0GvT6n9x+Rr7ZU25DB/Uf4moKjqKTfzAh7Y8p/6Iq7qmVRtJy/fcMD0SKmU/zxmHSXMur3KMqcYDxF07V/5JL7TyO/H5r8jiJJt3acIs+QaFFlwWAY4Jv3iKOQKg4Z9nxMXSKMMtabHRfLLf0g4M44IDFU6qJEbQqadYzpHmHIPcpoQxvvGPo2Vb7hjppS6tBoGoqsso4zWpHxY93hkDOyPMqmohQNhq4R93xerZb8/IN7KEpDqknonoOmG9jDCd3DB5gi5exvnhBVNa7UYcu35SiuWuK6wzZM2rpDFg1JWlG3glyBQbsBvWYZ5Qjb52YXUcVr9rYJd9OchwcTJtMxtuXi2RqqLnHnziFlU5BfvSbMc0aew9g28em4ySreO7Q4OnQxHJvDk1M++vkj/v63/wff/PbP6PeHvH72kkA2sV0Pw5KhSnmzCvnifEVRVvxqr8fp8SG6JOhaUId9TE3H748wLB1ZVujKiHBdIynQlTKi7FC7hjZNWYYxbdui9AaYjYLqDimLgs7ReG9/gq7I6I5FS4OudpDG+KaKsPt0mzmF6MiTCE2RcUYeVRRT1xZZ26Jze+MoKRrjwSFCtyjePcNodvwwW/H0ZsHYMbgz8DEtl7BuWUcZa01wd7+HZtt0QrC3N8GqG0oj4GKe8OrFOce2xc31CtN00GSFcLsl1RS86T6OZWEbGnYwQpUESApKd/v6rsoqNRVdJ5DrimobElgOnSTR79kcDXRM26Fta8okJ7pZEGgKApnH7z+mqzKOg/sI2UWZvcLQBfOrH2k0jd7AYebprNsMe3KPnxoB2rsnpGWFJlT+4PCEZntDVdR0Gni2Qm9gMzrYwxkfsnVt8jzjZWUyHj0liSPCLCcua2SpwlMVXM3keVmyiiKaXcxHdz/DUzrC1Qa7rDndn3AwHKFeXrFe3dA0OTeX19zxfAaHLrqjIGkKTVgSr0JkqSYJUwxVxdVUFMvkbLmhaDoe7A14/70HRHFMKcnUTY2uyDhKx8FkzEHg0338McLt8e2zl6w2VzRthaFZIDrCtOPNYsPhR8f0LJNGbknKip98+oBeIN3yT4RM1lkYwUNmlxdkWY7W1ljZa+bfnNNFOwLbwlItTg/uEJdL2rwkMXpoScJ40Kc3vYOoNrSyQHcD5LzGFzmuZzKZHpGeLdDbirHSsQ5D6rrjwb0TCrWiO3vFbntOuLsGUSEZJtu8wmg7HNnAdz00Q2I0HMHoHqVuMx2PuTs02PdhMh2h1DmyoSPXCjeug2noXG8zsjTD9wPGx3eZhRFZVtBlGa6mEmcFlqWzXqy5P9znvQd3CY4eM+jb0MR4jsP/x96b9UqWptd5z57n2LFjjjjzOTlnzVVd1UWJEinSBglDgC9sCQYMG7AB/zELhi9swLJB06IJSu0m2eyuru4ac848eeYTc+zY8+yL5G9oXajXT9jYF9+71vs+68HH97iZxVS/zBHrkq6mog/HmLWPLLxjITRFSRyEmKqOnxVkTYlfgW3YdGUBpJKjeoXYbdGaTLBUB7M3pn5xiiEpPJ4ckVYKr5fnLLMC25DompDLbUTZJm5CrJ09zMMPkV59Q7m9IkeibBpUsUFqStZRRGHt4Xg75EmN1CywxJKWmNKWBaLYZ12qDCZDvNGEwajF9MWPrLYRTV6QNg1hFNN3bHRbI4giDHJMQ0VzPKJCZGfQZXG7oK1J3Bl4WBL84le/wqDHqGUx7nZ4/PEXHO3t8MPP/4Z4PmeWQq/TQ65zDNUh8iPCvOKTL7/gwXCI9//9B/IipKRmIlW4bQ9bSamKiDrKCf2A20XE823IbapjVimJppCXEorZRfGGFHmIf/sWxdAIq4IoDNnEOedBjZ/EjHSFjtmikGQuFjF7j4YMT4YobxuSvKBY1bz2E2rV5TwNGYkSyyBDrOGPD3f40z/7E2Z6l6D7kleLKcvba8LZu7pNXRUZOQqGovLe0OYmqJiMdhj2NOSqRFZEMj+jYyrI1NxcXdNxTAJ/hUyFroKgNKhtBykqKKItvZZJFAQ4poGi2Ax6sJjlyFWN3fLI0ozpxRneoEJVwG61oBYRRIFdz6avx9wfCLi6gr/x+fr5jEgrWGcSRQlyozCxc6w8YHbxknWtkOUiShIx7nh4/T1AoEnniFqH3eNHGI1Jtbzl+vaCXr9HcTtnO11zerXh2dUcMc+4s7vPcDDg4OED2js7fP+i4mIWMZtO6TsOb/wYP1X48fKCNMlp2zJJmfL2doZktWnCBY0pMDRFHh3s0R2NaSkiwe0lopDiyCpJ2dCUJXkS0ukMyfKYMEq4uTjj9astgV+SUbCOfQZ7uyiSTLUJkCsRVRKwDB3TcLAtlzBTqTWPidtiqMOoY5NsA6y05nYrIYkSqqKxzTakosT47mPa73/J7T/8lljTkIotByOTm4s3zLYzoixDo8ayTObBlM7xCff6O/zbv/8V4viQB48e8PKv/hKqgllUUMgVqigzCwuuzr7lzsd3kLweyc0Zt8sYP81Im4Z5KRBtMopGwtbbFKJEa2dA29jS8hRqqYVo9fj0v/3viF4vuLj9SybdIVeLNXceO+wdT8ivnmFJBSgaYRiilBlZmnNzdcvOyR3ahoLbMulr0DElXl5U3GwTXLFBTyIkt0cUFfTiEJKYBwe7lL5PnZcMdveJopDFOuLunV1US8VLMjZ+xKLIkQ2Nydij7ntUhcjz528ZORquAbmk4wg1ZCFYMpYhEaoFI8vgobtLnBZ0/C3rxYLLbUJHcyhljWa9IClSiqpilZX0FRFLkzm2dY47CtswQtRtshpswyQtcujIdF2JaLGgit9tNAuqBaqMoZfkacY88tmKKi3RYj6NkeMN4XqDoatMLIOsegcNdpqM9PQJhSTScW0My6AoS8w8oMoS4ts1lSBjtG1cTeUmylnHOZ+NW3S6NrEgka02bBcbDF2hrjSiJOd2cUNr0uVf/U//A97gmNOX11xkIv177/Pjt99DI5IWJXVVoRsKFQI9W2dv2GGVBZQZ+GGEf3WBq3UZjffo391leLxLWJR89esXhItzrq9f4Tl7TBsDT22RVin4G+xI4PTbJfr53yJUGnuHh8zWK/xSQ9EVKhSqqibLU94sA76+XXOQx1iyzKs3z6kbk1H/kPH9IbuPHqN0W/zzcY94fkO6XfHm1RNmp8+pmxIhL7lZagwnx9wf6YhNwunFFc9PF5g9mYOdMY7bQS1TVEUnqWXGHQ/JsgmTW1ZxSt1AnsQIokSWJFiOg9ZuU0oa8s0rllFAWZWIZYYl5Cz9DX/zi/8TuVH4Fx8+prZabOOMJM3YdW3Glkz48jt63S537t7FkBWkRmJzdcv5izcIep+lauFnJaQJQlnhX75EKFN0tUV7b4+0MejUDi15zeXzivFYxd4dowUJugxVHXG9WfI8LdiWBV1VwbDbbIMVdpXhDHY48UO2/hJkFZ+aZrFmWS45lzJepTLh7Q1ZEtF3bbSWzN17Y1rlgOF7nyOWAvH3P0CV0pocUwchwmbLp1/8AcXfRUxMSASRtBZodfs0rTZKy6OazrhcbcjzGiQB3bBRlN+bJr8L/d40+R1JlBUERPKyoswisjxGEkpGuyMu3kRkpYpt6RRVzjbNeXp2TVnU6DVosogiSOiOg7/xIS94enYN5zf0dJ2Hu11CX8UwXT7cGeC6CkVTMZtucQQRSbFpmoJc1ND2P8NM12SLl+RIqN4+V+ff8WFaItcl4weHmOMJsq4AMXE6BUMnkRS2CGzLhqSoWAc5Kg1tVSZvGtKyegcrrAvSGhBE+kVD1/NoJBVvcJcPHo85/+X/Qp2lqKJEHGf4QUyWxiiCy8AacLQ34HKxpOEdCTorSu6eHBDMlxAGmC0HT3Ex3Ra7h/u0OjVZ0WG1uubs2Tds/A3D4QGGY2Ka7xIEy+vSbi3wNz6yICALEm6/R4qA6vXR5QYhzylyEYEKtbBIkoo0uiGPIraJSBRkRFsf1TCo3QHbTGJeCbiygqKXCFGIKknIpoXSK2l0g/VyQxQEiDn0751QLS4IrmXcRYqmyZiWyKxwaNICXSlZRyGrpADZIDNNZPOQ1/lroriga1vYikCa5Vwufaq6RNYtckEklVSuNgm3swUHu0OM/ghTsZhNtyTrFX4Y8a0f8KjTotuLGff7bPMaUTPRNZ08Tml3B5iaQw1kwQZbqrmN3yXAkmaw3vqkWUqcFpBXxEXGZNzHEkWK6TlNLVIUAjsHu+hKTrfToTPYwzBAG4xY3S6ISx1Vb5GqBufPv0dQM44fHLGXpjSlSrKNqT2DTSjgGR6H/X0ugxVe1yFt4M64jWPaGM4AuzshevsStb+D2FxwvLPLbLFh+uYNVVWCIJJVOduyZG84YJOnbPwpYurz6WSH9MEDNus5hx98hOG28TrP+cUvN8zjipHVACaKO0LrTKgVYDHl+uqalmZjtwzMIKZrm4w7bZSq5I5e0dVyDo8OKZ0u33z9FVWRcDCZ4BoyQrImn69IljdY6TWevGKdL6myHEcTSbYF7clddh7epTeoaYKQ2XpFb3/IsNdBigu2txvKPCLxfaTUJ9KGvL58ipyt2cQJq6JGlSXKuqQ0apRii0uF2dEZ7NgkVxYJFa1ul9W5T5NV9L0+b69fUxUppmExvveAZSET+GviuuYmSomKkt+cX5JqHoKkQl1SVQnQkKQZoqQgShJxkqOrKk67S6MY2MN9LCFG7R1z594R+uwpRRaitgaIoogtZliGgSCpLFYzlustm+WS0ccfong9kptrSkRySUFTG2TFpEwDilJk0OvT2d+na8twGzH9+bd0H56gqzKWLSGrIkkcYbgmhiHjyqArIq7Toet1mFVtVvO3zMIEy+vRabXJ4xjf3xKvNngWUFQMu30O93aQKLk8/ZFNETLYG3OjpWRhRBFuGLkakiiQlBJd10IsIiw1QxwN2bzWee/Dhzydhqz8gLSocHSJMl+iyW1yErZJTNtS6do69w+PKISSjRCidTSQRFyjRVu6w+nLU17M1iziDEVoGCnyOziyY6HoNS1dRQMc06Bjegw/v0NwPeViFmHvljx5eY33+IjBCB5++DG9boco33J85w7b6Yr4JsRyHPyVj90ZoWhtRvsNejxnfLcP8R7n8wvanotlKtTAYr7ixfmcdSmRFxWyJvJBXyKLliwvfWLNojvYofIbZsGKVbImyQO2RMyXIYuoJK4UNlmFo6ogSfh5Sa7qvFj7mDcZ1WLGx5MRIgum2ZRQaRFVCe93d4iCGR3LYJXmvI4V+lOJr2+uuf/Hf0wvuObHf/g7ZtMZl/MrHvZsgrgmbCqORw4/3evRH46oKwGaijgusFwRI5pDDWdvL0k8B6muETKRVtvGaDtUSYIqQ5HEuLsjalNn629wWw6CIJKXKklasV6fkmcFVVVye/GaUa/D9eIK13UQHJkdz6JWczwxY7mFH95uEbst/vzP36PtqOi1Quz7bM6f8s33b1nGNUZnh47nsJRtAhT81RRFLNgZ9ei4NlotcOy6XH/3DZ5ckpcR8bbg7WLBi6s1pq5xNGxx9PAua79muwnIWjl/+5sfOTt7Ttuoqfb3+PHlBU+fP0HVWry/f8C+mWPaCrt3jhkfn+BoUAUrrp98iz+9RBQb7McfIEgipqmgiwppnHO1XmG7GnlZorbaXL+8IAu3vLl6i6S06PZH2LZDlTbE84yRKRKrYGo6HbeNgIAiSBw9+IK7Hz0mvfqOsWsiFTnfv3iLKGg8HNylTmIMQyfNMwpRxqwLXv/s39FEOZvbC3Z2uvSHfaQi5Gc/njKNU6qiJF9GfLo/Zrra8Cq1scYfYt2/w969XV7/9V8hygofnhzhL6dUQvOumebtDT/xt6hAtE14+3aBUNaUgsi6kokrkZZtM7nzE26ur3CCGW2vQ8vR8Lwuy8pl83aBl0f82R9+hGh+yndPniOpMt5oB+mLP2H2/NcUosx6EbBdb/CDgkXYsH+YI5Y5tmXT1mp2XQM/FbgNrtg1VHbkkkrWUFo9hCJn6HVI8oKj3QmiJCF0elyfv6VnadysEuz9Y6ptQq/bUIsxbqdNd/+QKo5Y387xNIHC1nh7NifKAxpFoCO5tNo7hNsQ0zJoypp4PuNqETBLamZhyPdhSq2JFHVAmsdoYo2rKyiyQlJUbCqBZZKykyUY3R7tw4dkSYyi9yhXl9SWi+d1+PrsFKEW6XfHHD/4mN/6DeHrZ9wmtyCp5GXBN7/+98xtnTttk+nKR9F1ckGkqAok+V140hHAsnUM10WybaRoRY1KWarkjYhp6jiqQrb1kahZpxVxnPNopwumRiNJSP0B38xeYSoCdblGbmr+9X/9L/gf/9V/j5+p/Jvz/5W/+Kt/xx998hHu0TGzF88Yem0Wm3eQ66oq6bZMWobGcOixTTOmNw1nF+d4chtlz6IUVPKi5O3rl/z8L/+SZ5dn3H/vkFahUmYZi5vX5ELEgaPTvnvE6ekrlCbjs5MJAQavlyWa7VCkGdP1kqyqKNOI09WKJNxwmvh0DIut3ubxnU+5OznGsGzKpOL/+n++5/tf/4LH+32Oxjb5ZoNZlwzaHRpFwxdEFM2hdfIRXT3HkX9F4r8zQussJQoybKODYZr0FYFZUVA2FXGcsEkrBEFElkUUUUQS322pt8YTwvWGJM+JaGjbOpYm4mgNn7x3hGebNOuUQadD0fLQdQ1DVbA1nbHXecdQShJkw0F1B4RZRZVlKFlGkc4xrAJEqFWZQqw5ayTCEio/RAlavDf2eB4+49it6MkJsVRRVyFBnLHRZMqqpuO6dAsVRYRkfo5h2kRlSc+zqOQa4/guyVlOVoMoa2RhSLFNmV3N6LTb3O8qXC8ExAas/hjbMemIOs7khO7wiE0aM3batNsttssFOy0HkoBHHYdOz8Fsu5y+PSWp96izDKgRZIWLiytWFXzyxafomoSsqv8RJtv/9PR70+R3JIEGQXoH6lEVmSgICKIQipi7D+6yvr1GKAuStOZs4SMg8HjSI0symhoCRLZxhSWpxGXMhe8z8jroUk22jdg56dM5vMfQcDGjGvXwLb/8D39LEMTUqkJWK/QkhXEVcHRwj2bUIiHEbtW87HUwVBlBM3nw0YfYRgtNVYln37F99YpgGdN2TPyWQZkV3G5SVBo8VabVMplJOp4lkK985AZusgpN0+kaOveGXeLKpCeUDLQape1SxhJJkDCtIRYkTFNBEUqG/R622wE/Js5KDNNAFiFKE/b3d4ivLqGs8aM1HbHAbtnAlN39HY6P9+i2n6HJrzELmYoKsZGREXhvb4RR5Zxf3jCgQAMs28FxO1wtlnz35jWerTPpeBiySJSJbBcRl0HOdLkizjJqQUSuCrStT+ynbCSbG3/JnthwaGkIWYogiViygjvq07T6JNsnmFJFtfVxRIG2ruC7Jr4CZpWjyiavtktu4pTLVUgebKmQMA0NKfORtqeQbxm5Fvc7NqrQ4JgGtQhRFFJIIo0gEksWCiUjW2B33KUZHLAVPcqzX/LeaMBeJfPy+pJ920KQDeJGY7J/iCA26C0Xs+UQnF9hdSVcb8jV9B1nQhIFhKogWW9J84JK0ZENi9lyQSkJ74blsmZzdYMiyDSKS5BDXtbIkoBUbFB1CSWRMYUAuTdANvq4bZnO+hJRkdgaLsWsQJ5eU2zWSEmB5wzo9R/xdhlyLeuctBTadc3A9pDWPlyfkjcK2Tqgc/KQjqeyMxhwnfdRtCVaGbPJciqxIS0Lnty8Ac1GtzpcXJyx88VPMD0ZtPeQ7n5KcP4Dk+6Q9/fG1ELF/Q8eMDjs4U4OMO0OdZOw1zH50V4zn03pdtoYgsS9/RFtU+WoLVBeXqIUFZvZLUnUQJmjyAqD4Yjt7Q11eYXo7bOYLri6eM409PF9H0GUSOIEXZaJltdoxvu02iaNsUJJQMwalpcz4s0GuWq4vbzh2fUN1asVt5FI6Yy5vPJpqhRRUalrMDQo64zb8whHk7CGAzSvg93ukV2/QJMa+r0RyuKSKg+wLYMmrDj+5BN2f/olbwud109/YBokXGUJst5iPr1FkKfISkPdqIiiQlPXiKKCaTtIlAhiRZjkvFlu2R11GTXXtF2PMK1xOyNaakTmz/E3IYZhYhjvqsFX24TV9Q1pEDCwNdp1jHV8yFkcUasGeV4hCTJ2Z8DyzZKbV+fs9z6kpesUmzX5dIuqeiSzLcrYxW2pqEpDW1QQhQbX0tHrFEWWqHQXSdEptiuUpmJgO3R3jsglgya/om97bNMCrfHxixWzYMPL86c4ho6tCwzbKn2pIFsJJGrFwpLp2BqamCz8w/QAACAASURBVDEe6Yy6ElQVYiWhKQay3mFwNKC/f83Y7eJvYpZvX7OKAi6ffEsar+gZCjdpznYZ86pZ0XddclnBSgJGVkbXsdGaCtO0qVsSC/+SnlgiiwJu22YdJHRklSYv0fKYdq2h0TCaDDnLSvY/+gziJd54j9p0aA/ajPeOqRdn5FcvsCWRkwcnLBWfOlgx3WzZe/QRbatN+vqU4XBMy7Ux7z/g0+s1b69uUY0OYeNSyTqboOD1MiApa+50JB7vqkSFxGwrMJEbpjcztskK2e7xLM5pygzLjzifRzQolJrHP/v0c65e/Mg2CshrqDSZy7Lhf/vV3/BP3n+P3Z/+BHl6xvsHd3HtHqVT86HncP7tr8ijJX4y5Xzt8zf/878hFuG/cXU+//J9bqWSh2OXKo0wHZtpVlKl8btq1W4LXc5RbIcGkVrO8K8jFpstmyCiygv0vIdjmtz4AY6lYGoO0WaLLmv0RkPcyQRfEEk2a1qmgh8UyKKMZdnolCRNQ5wk1FVJsm7wVAjmEd3uQ2w7R5UTdEUkiDLCOOPwyODT98ZodUAZZQR1SWV3ubdXcFfrEokOt6WDaEcMm5QdO0BRwNY1mjBAyhdsvvs53mhEis/tbEHl7nK+mLM7dpmdv0bt9cnrihKRVxfXqFGImK35YGzz4MEhWn8MVpvNeoWr27iaDo5Hf7fPwck9xuMBdrOl1EUmP/mM6eVbrm9v8G/PsBUBVXWoqoq2qvPm9oamEagagfUqQtEtdu6M0J+cU9Q52yJjZOioioqswmq7RhJBV2RU3UJGQFFlOh2N8UAm8iGdXXF563P66grVMOk2Ct7oDoKkYGoyE13isNemQ4WS+dSuwbhjM9rdw/MMtF4Pwd9wM13hqy5bscPV7Bq9mvOT/X3klsL6Ysbw8DFKseXLz+7zN//3GePdEaoCD3oeZimQ5JBtI4QoZGLILBydq6BGkSSkqkS8ecKoafDDLX4hkaY1tt7nDz+5w3GZ03ehyRqKouTR/c+oPRPLa9P/6CdE00su3zwn3PgIZYUpQVg1XJ9dsTMeMBgM0ZYxO4f7xGaMFm05UhocVSatcxTTRKSk23a5OLugSBLUpmIy8pDv7pFmKS1TYz1d8u33l/QskUG3xXgyxhsOCW+uibcbRuMOQgHbWcC3cx+lyukbKul8hlAUSELDbLli66f4ScXbuOK6BL8SUBqJMH3HZJMUFaVj0tUdqE3alc8637LKKipFoZA1NLVEFDT0CjRUrMGIxlqxCDPqsmYczejcRghSwTqvyBqoyxxNqKjqlKm/JswzRDHGUGVMTUMRa066LlJeYhQ5dhZgaQWGLZHIGn6aoes6tmnQ0WXeXgdkeYWpaqxKkW1ccNTx6N47IWkNUL++RrUMsjhkf2Dw3t4OZVbz8vk164sbnn71M6w6ZWiYOIMJThAgSxK364AsTamqGlNW6JoaI6/N3UGfm5s119tbjCsZe3eM02uTBQHb1SVVuqHarsnDFcHbJ9wb9Tme7KM7La7Wa968eU1lecwSjdvpDZbpossKaz/m6mpOIzToSoXUNHimRlXk+ElKlgesXn7P69rCrCs28zmvlitml98hbjza3MWItnyyd0QpCXSOj3h9dcn12Qs+/MMP6e9PYNHGVSVKZGzToOWYRMs5gmpQ5ClZltBIAvMwJk5S0jRDFCV022IyHHG8P2EwHiAINaLXwfFWFJstaRijKhJ3ju8z7h9x9fVTVrcr/CCjznIcXcfVdXRBIK8qZEFFsvusllvCJGZAzejwDqPxCUWc8fr0GY1qcNA/ZjDcZfn2G0ZGzX6TouRwz9ZY+QFlZTPUR6zDgr6uoNUNvaM7JBe3HNkif3d+RSwoPJmt2XcUnFYbRTMIiwVmp0sWhli2gz7uUqcRRVVz4ddoWUlL0Uhlk86oS11kdEyH3vw1gljiaiKyomCoOoXY8NGf/0uur58zn75g4DlgGDw6OeJmNmU46iFst2RFySKIMAydpijoHhygatp/1Bn3PxX93jT5XampEeoKUQBJFP7xBxeoygy5jhHLELPlUZUJhiRgj4fI7S5qnPDizTm3oc/kg88ZqCX1dc7Q0bn33vvsmCYjpcG0W0gINFKbSX9A9HrGf3Z8n1dpwUqxkEWH48rHUyQOjkbcXKxxxZRO38RxdnDUgsG9D+l4PUxDpwlvKZYBySIgX23ZG7oEYUgd1Fw172B999oaTr/FsW5TrrfEjUmRVAw0AWSZUbvNQBVpD/eQWvsc3z3kWL7g+uKcRVISihpFVdA2dPIG6qpCFCGoalqOSa/ukacZUlNhqCJ612W+WJALCqPxHrIsYpkubut9hKbGn1fs70ikm4og2TLq9lE1DUlU2e32EeOUbp3T3tnBcj2yICC/XTFbZdzOA4givHYbU5Np7ziwiXBaA27PrzhPZa4bhSxYI4ZLYmFDIMr8cHrGpVBx1O/wsOOiNzVOe0j35BHh9QonnyMFPuH1NZpk4rlj1s6CJo9ZNAY3c5+Xm5TZfImiSAiywTLbwupbxKbGlGFs6QhpSs81aFsKgiITKw0J705j7uwP2WtJ6FWMbOjUjsMqFGmSLYJu89nHX3Cyf0IQr5A6PWavrnFHO0yO76BIOiUqt6+fk14I7BzfxXW7bBc5VneIOVsiADUCnU6HvK5Blun3WvTGHqlcUSWgRBl1fUshy1Q1mJqCkKfky4A6LynMA0TDxTQsJnWNcvKQrb9loNdsRYtc7yDrEo7Y4kYfcD6N+OmJyG7eIgmX2FmFnFZoeY3e0kAJUV2Irp/SkhXkomFkVLj9FqvS5nUkQxMS+1fvHm25z8Dt8NmOjXbxA6PdHVr332fwcJegvSQKLBQpwr94wr2hwdFHd3BaBlIjUQbQVyVUqUEUayxTR5AjlGjNw7sPiCOdv/3hjMc9ix+ePsXuhpRlTq/dxdB0Ylnn5vaCoDtErkrCAtbbhDDNKRuQqPEsnXJ9y9BVcAyD0nbxtynffP8dwXKLiYxQCJwHKWdRwzpd4Kcx7kBlFefQ1Hi6R55OyYsKUReJqxIpFxnv6TiCQpWU7PZHSFlA7q9Rq/pdjd29MedPT6lvTvF/MBnvHXH+9pz1PGB35y6x3kUw3hD6Z8i2SpZUCEj0dh/SNBJ1uqQqtuR5gqbr2LaNoOoE2w0bP6DXUhh3BEx3h9hQKJgT+ytUyULWVDbLK7w6408f7WP2e5xM+qS1xFxTiYsKI9oi93aosgStKPjxl9/QLxuM5YrCNGn3PUZ/9hF1lXAzv0QWG2xTJYxKTF3B1DXErKLMMhIpIc1zLBn+6b1dxKomVDXcvfusTIVssyLwlzhKRSOXhHlAQMp4OORoPKJjt1mdT9lSsxZrDnY6WHaXMk/oDlpYbkleJQhCRRDUNIKCINcMJy7bUkeZ7LB+9Ybr9YqqLLEVkSCDWJTRZJezmyn72xX7B7uM7/8Rsx/+nuT6HE0SEcsKJ4nZcx12Bh0GbQvT66BWc4T1hpblUvlbinCDvttD7Q356JP3cHb2uXl7y3BzRmC4DHbuIFUqy++fcPbVr5B7Q3Y/uY/QV/jF3/6GMktZTWeM+gI7h4fYjouSr9ANk0/fP6Gj5mR1jtD4JIZJWsI2KZFUlQfv3eP+vkrVqKR1l3LrMz09Q5IyKl3lbJ4w7NioSoURprxaJUyMLkEWY1kWmiQx9Cb8Yh6SCzWqIfIv/6v/Ei1eYw4m/LP37zMnYy7lnBg1Iy3l9Mn3uE1NmFZM8wpd1BBOfySzEsTbc7wipKWAUNZMBjuUQclux6ZuVLzekKqAoqqpFI3XF2e8vlmxjWIedVuIWUFYhZwtY+64uyCpVLnPZDTizv27GN0+Z7fX5OsZRm+XTz/7kt/85muaUOBw5CFfzxALGQSFKM/J85L7wxbdOqDEYdztoTQRgi3xeNSi1zGwpRpDUqiUAqm/Q1E6tLxD8rQiikK6RY0gG0T+Cr8umQYp0XyKa1iMuyMsEqRoziYJ0VSHXE75p598QJ1t+TaYsl1tWWy/I8gbzmZL9iZ9fvpwF0mw6YxHNIbD3ZFL/tFdxFyizDO2ZcnzmY832NBsbpDyAE8H17PY3T/A6/UI1guUnouoaoiiiFmWuK0WRVHQVBXnr04RNZ0yleg5JmmpEecpm/WGrtemllPclkG4ljEVFamskUwdo23hmTn55RNuvnvK1cUtr29W3BawKiP245o/nxwhCqAZBkfHR9g0NGrJFw+OGeYanmcyGHaoUpXxzi7x/IrdxRLBmTCvXd7O97l49lv2OgM+++M/4PXTlzinIssAXr65xVV1BqaJ1bLodvtkUYoo2RjWmHYrRFYFPu9J/OLFBVGa4xkaWbJgGSQgqnQsl4N2h4cdm0F6S3U+5zr20QyF0f4OTn+Ib7ewNBlDNLn/wScYwYoqCLndRMRZQFrXhFHOZrGh37FQ2200w+DzD4YMkhXziymDYZ+36xBdhjwOWaw25MsVs9ka1bXZNWHw6IRtkjFLC+I4IU5SfpjF3FMsPhZFlFaLFjUnQkNRFGTTNbuPWvyRu+Trb3/N1XyFqoGkKDSCQqlYXOYJy7zG0lQmhkopFRw8+oDvfvgVaZpjqiqPPvsDius517crFmXOoWMgGBqFINHUFfHVlO1XX5EW0Cge7eGQ4XjK1WVC0p7wxg+xax+pSjFVjbxuqEUoi4COLDExDOJCY1sWaLpGu+UgVhV7HRdNFgmTDFHNkDSFOApptSxUw8A2ddqWhkVMz5S4XYVsYtj1PP761Zwvi4qfHh3QNBUCoOkOvZbLFyc7uGnJr//yf+f15Yp/+Ou/IFrPuX7xWyZffEnXUZirItswwzR0gjAgTAsERcO223jtNoppMzoQubxd8eT5a25++2suG4tRy+He/QNYKAiuQBJO6VkWDx8+xJYUZldv8a9uECSRIG9YXk3RVQPPtjE1E1FpI7y+JMgKEkXAFGUaWQNBIKsFoOQiXpC++QV6+JbC6xFtM5R4Tb/bpd0k3L13j2Q+o+iO6Dw8JkckDa6JwyX+OifY3BKXGZos4xgajm2jxnN0w0TXOmThhmVecrbwSfP8XeGCJOHKMrYosDPoMxj3EGSR3vWSV6dv/hFobiAJMpamcvHmOT1vxGRgMJPh7eIWMh1PUQjCkPkmZrJ7zHa5JotT0rxkr99lODli59HnqGXF7s4BR7MbVpqFZKv4ekZaxniTLkZTUKsVnVXJ61ji9DKGImNn3EYRSgaDLhkCPz59SRlM8TSZA1cnyiNKUaRrmxQLAaU1wFRd7Dqh7bYQBhOyzOBx2+Xb/ZTrMELo9ejfO2ZiVuxLMVoRQ/4axhZ+adIUOflmjey0kQwb25BxWzabomJnPOLq8pK3l9d0uwmrIMIyDVquTZNFWI6D/PvK4d+Jfv+Vf0eSaBAaMHWdLE6xTJ1+x2an5yBUCd2ugyY2FKbKvYNdZrGM33gsz78ljXOGmoq+vsE+GeLt9nBViYOewP7BLq2DT8liifLsB+r5NaYccH9ks9ZG7KgutdlCTGOim4qmakhu3jB0dDqTIXLLQl9PaUToTfaxbQMhmSOZBnljUtUVeV6w2/WY9VpIloBmSUhVgy1IjNs2ZV6wEQomky5JkJHkDfb4gPbJZ5jzCyy5wO4IaHpB9/gQz5Jo9Bayd4/CP0WyJdaLK8q6ppZVgigGASYHuwR5Rte2ENIAw7H4zcsLCtkgCWPKsqHn7WFah1xfP0USLUy9g95ukGWdrMwpRQXHdt4l9YYFkok7Hr7bYqkqHr7/Hgeffc5mteL0m1/y698+w7UMyrRiWzQ82yS8CRLCSqKWHZoqQqakkizCsuL+J39KsHrLz08vMQ2TT1ywNAOpVnGbDAOZJk5o/DWiv8CWLEzdpVJK/PkKIYq4Y7tIeUWQReSqSlOrVOGMpqloapGzuiJvKtZxQne9ZeBa2I6BIxR8dP+Afr9NyzEQmpIs25IINfl6juuYlNuUXm9If7zH8+ffEJltgvyM6vqc4fFdVNvFtBwkS+f6+Y8sr6dM7ryHbWn0BxNmfkq/EjCyFEms8YUa09b+keSf8+zVlJPhhIEtkGclUpWiiQLj0R6WWxPfbpAcC8k5hKikyQp0u8Xk5FOCX/49/vmPCKpBJqgk4/uEjFk9f86jfQXPUEivUsJgS6vdowhTFKlNldooqoOkaMxfvkRIKorUx5xf0LEUDttjhqGCJFR89WxJItQYqs5nY5d/dqxx755J21MQ1BUsYDDuIt07ZlPnnK1PMTsjHG8fRYImjSmFCkne8Pi9HZ6pAkVaoKcRvb7L4eEOcVqznkc4usKTXz/jXiEheR5jt40qgOFYNKsV33z/90zcDhI5aVUhiuI75omhYYkpA1NFLCNUeYjd7+DUDaPlmLZkIM6XtF2Dzz/7lK3e4d/+7OdczS/Y+m8RmgpZNnDNFqtoRlmUBAgookLHUhCLDEupQJe5s39CGW9JgyUCMmoa0vFa1Hs7BDdz8qdPqcw5bUPkoO+RLDfkYkWr5bCpPfI8IxdLFFnFaja4bgt30EaWPWrNJqxVuq5JWW55enbDyd4BSlNRnD+l0ExURcI2TZZXFzSqyjarWS42GE1DHad8eOcErc7Iy4qe16LxxhSGgWaZCFFIuQ0xRJ1/+NkvEG8uuf9f/OdYh/cwJrskWcLrJ5fcrHM6LZOXN9cMxkMcw0BVBWRBBEnC1A32hy1MVUZpGrK0oYxWaJbJVoSebeBfvGLHU9hvt+kO+7TbNnW64vbmBeuwRFFKHu0PWRQai0TCrkV6OzuUyTVkEfHiEgkJTW6giRnbFm0/4/TsB8YiqC2HME3ZNSSGnkOr12d88jmGe4J2/Q2O1zDoy0gfPyZZrNis54iLW8Yq9PaOGD96D9m/QddUtA08WwSYkkpn3MUoUlqGgWRaCIpOu6XyChnT67Fc+qjo5CufdBmw9+VPUP7xxKctwN2xS56YpBdvWU0v6R4+QG97iNsNYibQ7o/Yz1K2qxvqlsF8KqECsijxwcef8fmf/hMOnAVJEjItDwhuUv7gwEXRR6zsewivLhCjc4zFKW/SmqAuEGSV3z5/w8eHJ5z0VA5GhzSuj//sazRM/v3/8Q/86z//5ww/38d1dIapT2HK+BdPae11qP19pkWDlG+5m2VossG9gc1kMuFh8j6Ll19zd+xyfO8RdnfA9Y8N41GPJEoQqwrV1slCCb98d2422wZoosQ2K5nHGZUoYKgKTd1QZDm2odDXa/YGLrU3IPrxGeHtLQeHH9GkFWLVsNtxKJYqqdtCMVoE4RahrgiTgkWl8ngwou8p2JZEsTxHImfk2UwcDSm4RZQlUF1k2cMa9yGSEd6+IQunJEufWqjYbGcskoxGUtjvTLA7XbqGgtQ0iHlGFMS0BiMGjo3RMqiSmsPBgNO3V0x6NrLbY2RbaKpISxJwDx6xyRvS1Zx8esmffPQAtSy4Wcy5Wges/AU3L0KMyQA1XyN1bYqwRrVsLFXFHg2pBQnBcGmSDVKV0XYs7FaHLC9ZLVckWcLtxRVxFNMAvd6QOk7QJYUsSWhUEaGscXTjXbWp7iIIBh1bo5yuefVqwfdXS1QJWrqMbasMbY3lasUkC2k7FnIaY9KQKxKyZTAwTYYdG9m0kXsjShTkIGG43yWPMlzPoWtXnOj3MYw+9ZtLhKsrJqqMKMrM5hXtwSG9tk6n59G785goTVAVF9Ft0bI1RE3Dtmx+4g746le/QSozVNXg/eGYEhVHqjBTn/DqBWfLW4bDXUbDDm2jofZvEYst3uSEShxQmwad/T2qN32Gtsi9ozEvb1eczRfEZU6yWmDudpDrFnXVsF3HTD77kvv3FyhVwVaco7W7TKdX1FdXXF3PyBSdzx7e5d77j9neXPLNk2fs7h0xW21oOxaz5QbV6zJPMmpBAkmkvXNAHsQE25y9PZvy9g1fDm0aVWXSH7JYrTndZrzONKYJvD/oo2kmaV5DveTix68QqwJXgrHWIL45Z183sdQGv6ro6Dp37t0jalTyOEZucsL5NdrBHobc4AodHrx3F6k4o+s4jPrHlOkG+XrKjh+jUdIUa7RK5ajtceJKbIOQZzcLhLpBr0ru9z0mPY+4kbm9uObVzRl7I4dez0VXVWxNpGObiE1NFoYctHXCIOF0GZMVGe/fP8ZqKciDEb/5xdckYYSuKqh6i1rqsTN4QPHmjNOf/b+Y2xtkrcERIhS15tM/+imOkPOzr76jSAo0USSOYxRZQtcNNKeN3vJQVZvJ+B71YI8n333LD1/9Ba91CZESQ6hYXZ3RLRz6Xpu8TskynyIPSYSKME04u4roWyp2q0PHsmmk/5+991qWJDuvND/fvrdrER46jsyTojKzUFUACmSTIJtk03qMY2NjczE2l/OEPS/QNGtpaBIU0EAVUJWiKuURoSNc67lIPgN4QXwP4f7/a6+1fpuRHzKSkm2ccXcsUMrA0ASm6WB3DUiDwAupavDqDLvM+PPLe4Sf/ZAHZxPGdkt8e8smizh9/D32bU1/2PN4NsPZbKBcYTYtH59HJCk4to2QBsoZYjoushWYpuKLl3ds44yy7ei6Hs9QkGdsb28o0gfQ99RVTZIm0DfcuzylF4LdsSHdLgkHkuj8PlXT4+wPGH2Ho8Mxzbhe79GFIjgc8EenTJ58gtm2UBwY3n/M8PQUMztgpYLJZ98jqRLyJqO9+piyE5TxhuzmLevkDjd0OJ+ELBsbU3ToXcMsChhMF6wbiXO6IVi5aI3J+STkepmRHGPORiHKNNCDkGj2mOaXP8LtdYLJDHQDBnMejc542BdcmC1u5CJkTR3v6MsGy/PoVEDyuuT47NfQJYQDxfbVjkePHqA8EwPBMY6xDclPf/uMzz/7mKQB21YMxhF1FhPfvaOpqn/lLfffBn8QTX5PdF2HRovjGBiag9A6fEdxenlKub4mrlO22z2jaEaR3PLi+TMcy+M8HNIoE9u3CadjxuMRVgyLic94PMaMIpxA4k/GVOKUbHMgSzoG4QLP9UiOW4r0lmS/wWxLjOgMfzrHn0/QTZ2uTenRmDx+hOVbSF2HqoTiiJcnmHZAHt+gGRYPTsfsth2zyCGOS7TGgPEU+f4bTiMXezDAP4/YLtdgwMQ1CL1HNPGONt7hlDauLbAvTskbHTOAY22g6zXBdE6ZJRyzgu12j+G52LMJyX5LKTV0LPbZDu/Bfe7ikjiOMYSOpzxsKXHwadOaw3bLwJ0i+o4sPuBaBuW6pG97PN8nSw4YgwDLD/BOzuhaCy2aMlm/x2kPpNstL9+taFuBOZxz79F3EO/f8GKzZFNkIARd21JTYQdjKDv+3x/+Fa+f/4SB52CZNlKrWH7xD5j5AUvaqF5QLJdUd2/J4oQqqXBmAyaHI49HHrppcswVedHSUSKlpFU6KJPx/D52sqapCpZ5TVy20GtUTcN44OE2KZ45QgkoswPOaELem9jaBt+zibcHLE+AGbBvNNKmZzqds1qtWC/vOLm4wFU2veNxMpuQpBVvfvtLHMchzkqqokKWKb7USfqawzEFpWHaFvvNkbP5hEoHdzHCqTry9zeMfEkUOdiLAYbn0xUFTvoGzblEt0fojkPX1zz99AmHkUatuzTBEDLF+idf88czj/kooFhfU+12mLrEsAyy7EjvKjBtNM1BBgsylkhZMxyENIcKLc/R4gOfD0eocIbWPmIZJzwduDxZhJwoD6kPufn6HZNFzTAysaMpBCNMO8Q7eYgY30OZFrLY0zYpeVOwilN0BSPfpJYW79KCR9//iMVH3+FQNPzHy0f87X/6/7CUzuzkhFrpBLakiTdYuk0wGPObX/+CIsvZ5yWWgEbXSJuCyPWY2Tqe6nGqAq1tmUxmOLrJsAMmOzzLoqlLrPEZLJ7QlRV//+Mj6+OezFF0ukGZr/B0jaTVEZqgQtJpksuRj1OuCSZXRKcLms01bVnSxQd0rUPpJuPJjNW2JCt0iuqIrxSPzkeUwwFplqM5Ltq9MV1vkacJfd8gXQ+dhnK/IYhC5qen3FWSTdyxSUruTc84mc0YWiUiXaLpEW0Notco65qm6rnbFxwqjZPpjOvrJdd/979YXJ0jfR9/MqG/94TDZkV2jNGLAtvxEXlJ6/h8vcl4GJ3SaQZlVvLrn3/BtzcptTthrDXMI4/+X67vyF7D0AW6bTKIIkJTx7Q8LMskO8RQJwTDMWN9wXG5JIhW7LYrOldi6Tab1zfUVfwvZZ4e5ydjhGFTCXh+fc2///wJmtBpe0HZNMTPvqAuWuoqR8gAL/SwbI2xZXCut9SN5JiWZIc1F75J4LsY+QHVfs0ggGgY4fcN5uQe+Bfc+Cu09p8pkiO2K3DbA1bkogPrvGQaDggCl+FsDMmBqigwhCL+8mt+/NNf8I/va7TojGIfQ5EQpwdmf/bviZ4+oDzckG3fMhA9V08u6NOat798TlrkiLxkaBsYgaBrWpTU8QcD8sOWcrcncm3uT30e3LtAn4Zcnp9xNj/l8OZnBAYkaszm2R0qHBOO5/zZKODZcwhGPtmhxR+HvEsNDGXz6OEFTplz2L7jr558zOR8yvv3e87dEH8+ZHzqoeUp1mKK5kra6y/QdMnlZ99jeHrB/ua3PJ7PkcLBmUcIveFsNmQqHzK5fMDio6ccspbi7gUD32MUDVCWT9lYJFlOt9vwl/cnvHz7jqysEX1P0Wss0xJlSpQyMA2FlRRUb76GsxH2+AGH9YahbXPz5Zf8evdj3NDC8zscw2C2OMOvOvLU5/rujh64Ol+gHBuUifA9zKqgOLymTlNCL6Rer7GGIXr4AD2W2HVOk+gY3phm855HDz6irTesDyYLzUAXHbY0sBwHlcUcNltidHTdQ0gBfcH6zVscqTOeXbDfxCy3CU+mFzR+RNo1bJOO1bdr+rLgcLjlYuHAIaPJltxzbC78GW0dILSOvsuxAhu97+irirrP0A0dy9BoaWl21yglUUphWw5tvhyWyQAAIABJREFUD33bY2gt2+0ddA2DoYMuFLVqiQYT4n2KI4e8ffUtp75NUxUIywc7YhEJBo7GzduM57uYu7Lme2OPP/mz75B0HftDyT6rqYuMwPMRVUqT5wzmc+pWw93eEM7vI/whvRfRbmOCxX3qIkP4GqLTse2WQbQlLlesl1sso+F0FHEyOqcLFjj2Ea+/Znp1ghOGHF4+A0dyPG4phYZtmQQnEwzd4/3tHfm7t/haw9CoSKsCVVX0rUan14znU64eLjCqiuTtG5TrE91/iFH1kJUow0aZFsF4QlYVLHQTR8HIbnh5t6Ora5b7kgeBjxfYbL78kpk6YXI+p81zorTm9WrN3TpjdbPHN1weX54wCnwO17cc1huyzY7J4++g7w4Yus78dI5mmZS9RlnWyKbHHg7QO6i0BnfoUC8GeFpLN37EeDbEc79EbRLEKsEqei5HLt74HklhUOS/om4yxqontGy80MKttwxsGE1sjqXP+eUJxvyCpOhp2grp+/SuRdNUuIGG7s6o+wBt33L37RukL7hYXBKd3Of60KJWz7kfhowmUxr9hPsTi9e//QVuu6RtamaOYuq4tGmO6YdIL6A7rDClxizy8AOXpqgxjZa79QqtqDgbm/zNkzlJ2TIeBHzn8+8jR0Piuufnv3lOndVUlk7gBrxfJbSVzuef/Slm2RL85//E8bjhZO4wMSuGruSzJw+5W+744vUNbVmR5yVl02KbCmcwQCmJqXT84ZjQliysjrd3S15d33A4rNH3e7Ss5C6r0JKCNs04m/ncvN/y21fvkTSEhoYuwPcGaH1PdTgw/+Qx3//0CYef/ZqkLKnrGmVIDOXgGxppViKA0eNPmRgKsy5pfI+n33vMuMioViv6Y818MsYVOXa+Y3LvDHf6lI6E5PYrpO0xCDySuEMZNrQdyvTR+o6urni7yXn5fg1dT9+DLj+UcN/udrRdzJsXL3jxxZQX315z3Nzh2hZCKuKk4Je/ecGnixFnH39Ctdkh7ICurdG7mrvdgXerPVXTc+/kgmhxQT+Y8+Cv/g/qL39Ncv2M8HSB52ho61vM79yjO5mh4i3Wbkly6CgPa/R8g0nJ4iRk01t0aoG5PuB0BZOTRziWIi1aguk5n8uK3esNTt0xDwMSQ6d0DPZlg06H31do737HeHZJu32HitfY8wgj0ogGLcoy8UIflCI7bkH0uPMFbV1TlR3W7VuS65dcffwJvdbi2QZieEFdxzSHHYfNFmVajMdDXtyu0JRidHZOIxWWaFneXFOX5b/mivtvhj+IJr8nel1huy5t0WJoFpPJANdTmHqD5rusNltK3eB165Mmr/AcyXDgMZicUt3csXj4GMPzGS8GcFsRDiO8oU9BSx0v6eNb0MCZRHTsOSxfgVD0XYNmWYT3P8YYzFGWC32DlDWIgsNuw+DshCDwUFKh9x20DVpTYdQpI8dClzZNr7A6xXgwxCwTKFo8pRE5LfrTB5T7HJX1TEKf2XjCerVCLn+DPTnDnoQEk3P00YLk5h9J9ssPdu7dLQPfxhsMqaqOQ5rRFjVZ0zL0bEahjTO64uYXPycuM9rFBat9QX8+QbcdbN1CCUmdV6THHKk5zGbnOKZJW9c0Wo+UilpKosClfH+LahuarsH0LHQrRJkRXV6hNwkP750wC/+G+HpH3Tls04yj5TNIr7nvDvnZJmWZ5HRC0AjQmhTn8DViqfO54+BMRlRtR7aPSd5/g93pGNL+MCwdM8pjSpIkOH1LX5rMTIW7GNLYQ75n+Qy+qUlayNqS3HM5u7wiomU2mLJa3vIm7inrmkNRMQ1dxp6BLTX0pkGZY/rsiG645GmPYwk2ZUWaF/z8p/9Eis3zpMBxIk4v7lH1YEqTsm6wHBv37D6HpsWuW4bCIDkcaNst+fFA5BokUvHukKEbCsM08B0bNwxo2gb0mm++fcNH984Zz8YMHRfLcjGG99CnGjQp7fI9vTdA10Oa1Q45EHjTU8zBlBZFXuR8rB+YPPTIViWW1pDlGXrXMg8H/+L4aJCeDrKjE4o2POM2chl0L7i6bOhyh6nWkJd3VH1Ga2/5i++d8e3XK4x8Q3tosE+GWOMrJuMRjldijX2k7VCmhw/Ohs/+HGlpdMWStiypix2iOiKFSZUVWMrBMg2U1AhUTbg4J9BMire/42ps4k3+iNNPv88Xv/kCW8D2sCc+3DA9v2Q2GfKrl68ADd91qbKc8TBk5JpMrRb6FrdrEIcdXZ5jSovpyTmZZhNY4EwmmIMFxzfv+HTuY336KS+ff8m2bih0SVvXlLnOKmswogjlW6zfvSEpeqJjzuSjAU1SoGXVh/6kJMHSOkzTRhoGo/mc67scKwpJjytspSGmAw7FgLbusD2PWjmU/oQ2PdDWOXVZcv7oEVHk4RkabA4Mx2P+5Pv/kalf08YrbMMi3b6hPmYYQUhR6xR1T1vD4RhTdC2Pv/+Eq4+usNDokhhdAycasi8LmizB0CSmZmBaDlndoOuS+aOneIOQ3Yuv+dXfPufnNzEnTz/li9WOrC4RWo/R5hRlRZfmBIbCVwWuP0AUMYMgxHQHGOaQ+OXv0GqwXY1gaJGXY+6NIpL1NRzXdDWcz0c4vgs4OJ5FUsDp3GUamvjDAWV2pMozyqoly2uSNEdrSlzbZWQZ7NMU1xOYF1OO7Smn5ph+fU0Rv2Vkd3hRxyDUMKwZ5vAKbfQpRlui3XzFtDugT8a0VYZwbQLHpBMafduCpnO2iIhCD72pGVyeYuk1tu2w86b81x/9Nxp/xPzCx6oVx5tXGEpiTy22v/s7qGOyOEW3L5lMp9TrI5Vv8/r2Pe5JSbda0vYuSkBbdxjSYhBN2Gw3DD2D+2dDLq7u4YVDzOVLtOmnRPf+irq2mJgJJ15D0QhW2VsGuz2TXcHKeYg3r/Gagm+3b5n6GnO3JJwGFFbF6u4FD+5/zA//5I94cHIPx7fp6gZhWUjPRFgtwWxM3U3wpucsqoLn/zUm6d9QZAW6yBkNTLzglG5sEo6m9McNgRty+eQp9e4a0wsQ3ojymHFyMuZiKNncCf7P5SM2hxhBSyYk0nBp8iODwGN9u+JKdDx69BhZFByf/xJdSuazS0bzj/nn//63jAwNOxjjDCWirAm0ji50cG3F7cbm/tUpSmvx/QCtaTBHF7T7PUVSo+cpbVqhjSfo1hgj3aB3e+xRQJz4jE4fY9kl1WGP60zI0hTHMsiLhr4qPjgwq5pWGEwXJwjToGoq6iwhrxvKsuEkihDrHVlW8OTxA3adxutXL4n3r7G1lvNJhFPmqDphPJqAJUmXK0SR0esa0qgxpY9m6LS9RBg+UlWURY5lS3RD0bU1vfhwBSdOEvbrDWZ+JOgKWldnu4WkKvEjRbI/MrDm1AVMJhFGW+E4GqvjgeDBA6QWo1VHNoeYTur89dUFp77L7N5T5HFJ0x5JKklR1gSqQNd0lO1Qmi5WMObclJAdsFwHYWnYgUL4C4rdmvT2HbJp0JqcolYcU5N9lZLtVuTbLWndEYxXXP3gMb59SjCeIkyb6OEndMcdI08iTsesW7BNk3uOyZ98/l1e9Hz4ZoUDFo6FkW0Yhz5nZwuC4Zhy8x4nOGX8yQ9Rszma56IJ80Ox5d0NvS0wDEXrBzR3K3zdYuAGBFZFXFYcljvM+09wZMnlvUvS7ZZjFGE3FdHlJV/96hnF4RZ3NOSzyzOU1nNyespP/vt/4ctn39I6Lo8NRd00jOczbNNitz+wuzPJ0wRD6AxME02HwdUlumYh0emrX3D+/ae00iO3GvyzEu2rr4nICEVB9e5L+k5xsXCZRSOKLKaiY1/V1HnFfBbiDx2uDyWTe1dskgpH9LStje75dK5DUzeoqiAcjShHGsbnnyLqjOIQs7UOeNM5f/70IY+8nqszi2C+gD7g5he/5vNhxMX9C0pq3i7XaEXN5aePUZ6FECWPZh/hRz6eJdF10DrJNl6yTQpOAo+8qXgwC7jneYwWC0bzEWo8Zvvte8LphPdvbrBEh6U0tpsNX/3PH7Hxh7x+/jvq5Q7fFMRJhbP78FBY7lbMfA/56BE//+JL0ARtlmBbBoapsD0P0GjzLQMqhCWIHlxxPhkTJ3uW+zXL7ZrV3YpjsudZfse3716jZT2e0WNLQZbWjHwT13bwLBvf1tGLmrOHn/B0k7LKnpFUBVr3wRHoKgPfMWjrlvTV1zSexdgz0HLJq5/u2R5Tmrzj3/3v/xfWwEQzGqRwaKopvWGxfP4zQsfHjE7oREd9k2A7DqIuMP2Irq5Yb2756TfvicuGrGwQQmc4HONKjV7EnEQ+VZbzDz/6MUoa2EphWDZlVVFVOW9vc3aFzkkwxDVN1re3tE2J6ns2uwOB0BgFLuH5E4Znj2iqCrm+JXBtylZg2TaaLVFPHqPZOngWoqtor39JZIJplIhTl9yruEsb3u0ciqzCSA8MQxfqiropiCwT15RUccEnpqQnxfRDas1BFrfk5hTXNZC0DCMbLWsZnl/SbV8j7Bo1HmI3JiLJ6dIe8/QBhmWhrCu0PKfdx7SrhLElGH70GCMKOWZbhCUpiwRL6azerxgOAiaXZ7Rv3vPVs5dEswnjqyv2h5gqPVIcjtRV/a+44f7b4Q+iye8J3TbRbQtbtFRlRzhdYAzmGAKyuqVTFoOzOcvCYNNrzBdTTKFokiVhIBlGIeEgxKRHD8dIJQkuntKZI4x4TbW8pqsFvXToBBizMyrTR4UjdCSqiBHZHl0c6QApGso8xnBMwskYYzhD2hYi3yA0jTpOKVdbTKHhujYxAqvV8AZTWiGwnQZPCsa+iWnYtNGc9NUNFh3ScXAfPaSoa7Ltjjy9o9dSBr7G8GyBEzmYRYPteDimoDUsms0OlOJus6VuGqajgBPfYtr2rOKYrIOvfvob1oeM0f1LBn/6N2hNRbrZopsSR+q4tkvt5JzOZjz/5T9T6SaXV0/wbZv0cMSkx/R88kOKONcRwkCNprRpgqFOqI8K//Ihxf0KY3TK9st/4nCzwV5EbHYrPju/YF20lB304ZBtHqB6myJJGCzuoRyD7LBEu7lBlBm6FYDrI5SgK0r0zkD0Cg2dPimwaQlmHpk/4W9OFqwc2Hc6rRDIcI5nBbS7G7Qm58yBT2XAMu+wqzUPzsfMfHANhSFN+lbDsizyeIeSU6RhU5UF3+4S3u6/Znr5iGOrUx0PnM8XDEZTwvmcNMupkpgzN8A6vcCO5tRZxuqb3/Fq+Z7JJKC0TJ6/vqMWGrZpY9sWXd3SSYVrSd6+uabb7RmaNq4eEBc96V2N/O4E6bkgWozxQ9pCh0pAFtMddsjFKbrn0WYxUjcQZUkpBM54zvHmG9LtEc+wMNDpywqpOwhpIHwHXQkCw+LzJxPi13sMlVNXPe3yDfcu76M5LrGwEI7D6aIm/uonjJyO8dBnPnGQ/oTu+BYVLqBrUbrg/OFHsDyg7d6hNw19eaTOarKtotN0HKNFjSyO+4QnZyM8acDNa6TtcPjip1yenuAZI/zAxTfkh9efMGRyfs5he8tJKHhtany9StjkFaZp4ngeo/EAWR5wlIVVZMj9DaKucS4/QZ9/RNs+o109Q2kjJAXhZICcX1I3FpYm2CQHyqJiu74jrjuE3SAtk8ePztDvDwltg9CzCUwHkcTUZUPdS3bHBKfrmA4GmHaAigKCQ8G+6hhYNk3XYkuBCiy2+5p2mxP4Oo7rUAuFaSnc6SMM20LvS/qmYOK5RA+e4o0juv03GKOIRvSku1c0VJRNTCwMEuGw2+dkxx2hLJnNLIzZU5Thc/OPP0JXFn1pYCZrmizF8QaEnsf2+g3Hw57pfMH8yUdU2w3FzWt2z3/H5tlrfvZ3/4t9lvO9j86w9R7XVDRljVbXOGH4oa8JIItRaDimiakrnPvfYXN3S5ts0XTBZDgksCTMA1oypOmh1w35Zo89PqGtj3izMZrVgt6hJnPKKqGue2g6agRtB0KDKtvjuicfTmBKSTSPqG5qNH/KoK0xhgGHco04bBBthTU2MbOcvntDm+yp1l9RxdeEnot2eco2ySk6gRQCqWs4Grhlwcvf3fKDH3yM0iWWY3FMKhjNmH/8KS/e3JHvd/jjE27fP8ddBDz/+1/x0//5U0xDcP/xQx789SmG7eKcXhG/umV0ccXw8j72MCJJbwmchqYuqfMMJU0m0wVZVyDEI+49OsdzJX22Rdv9DnXvh1T9nL54ga4avOlHiKymNCXTaMrPX5R804YML0751It4Oou48l0M20Pcu8/q5hpck8hWNK/f0E7GWA9mtD3otoWmeoaPv0teVPSdQAUD7v/xH1Ms52jCRrc85CCgXr4nX+15dXNNNBhw+vkpyIeskj2OF6LPL1D2DtUcEYZBthH8xaP7PLvb8Hqz4rbWPsTnQpu8bPjtq/dcfvKU07/8v0l+8T/4+Y//B/OHf0QUhDx5egHHT0jqmE3V4fsBrtvgKsjWd2Bo6OOA0PdwbEk08Kg3S9qyYDC7QG90SGNE4SOEREOHTsf0JlC0aFaCvpjR7V7T9Tq+5aFnGVJYaKZOcczxbZ+i6LHnl7hhgE6HqBv6piaJc7qmpmoqPEsnvnnGGzJmI4dL36BxQqJAx7JtvOgCvdzRVOANfIZ6ha5HtMIkr1JaekTfQK9RUtCWLbZp0osPQ2XdSbq+xTANXCw212viuyPz8Qy9qjEfmJSajvBn/Oyf3lAfC6IHDhdhxPLL90hDYvo9tAdss6VK9mR1zZ9/7wmfni9IOg/pDBmLimNuMcHBsk20rgEBQrfoBwvysoaspusa+qZFVTlC9nSaTj8IoTiyf/E16XaD5kVcPX7EPM8p04j19Te8efcKf9BjuxbOaIKh5AeHmq/YJGvSvkEYEk/TgZaTkwX++AzZmERSxxhNsUyPB1aN3N1ihCNMb4BzCV2s4Z58TG+7YENbNPR1gW0p6nSDUi51l2F5Ac0xxmgUqjegL9F1aFGUbYM+nDJyJV51pHNnRKMrvqsZnA1d4kYyCkK0vmF4fk6nK75e7nlw6UDTILsO2w8JFjN2v/2S1T7mmFYMfAv6Dmc8pgsCuqTAePCY/HqJ3L7HvvgOcnaBkR65mO8g3+MGHvpIY7k5IrMVXVmwzAoK3WVqWXxyNsAf2mzymOHJgl7ZNElFQUOeVViOTydNpACBhlQC31X0QuH92R/T3a5oTQfndMjipKEaJ1RFQ7UrEHXNcOzTo5iczdnevGQx9ukGc8bn59R1zmzoYs9nlF2HKhMaHfZxTlkWZEVGrEESmijTwJCSUhiUlku2ukWKjseff5/b3Z5FZFC2JWlX8V/+4UecWA779ZL3ecny0GLnPe5lR1U2XC83GF3JRJl853TOcn+gbDo0AYZjoVwHhMIQiuzuGsfzaTAojyn79Ra3KjiRBuHQY6VVZGVLV3doTo+m91AV0PdE0RTbc7C8ANueYIRT5HZJaBrYpklD+yHu3XaIpsESCkMqAl2gVTmy6HB212heijeaM3VCTE8RfPwdTL2mz4/UaUa2WzEemvTTx2AaHLdrooGBpQRlUmAMHbZxzn/+x9+ySlqUtFFS4pk25+Mp57ogEoo//8FnvN6+RQU6TS+43ZXYwYBitaTMc5QluVlt+AyNXjoEkzmjSiOwFCPH4f50TrFPsfe3uOkY9+IK/+oU9e4WR//w39XDEKE0hFajWxJjeoJM79MWW4zilvWrb0jVkNf9jLgVyOOGWeBSFzlDPyB0Hfq2QfNHhAvB2dtbkoOGLUzOu4Kz2cmH2NH4nP2bF0zDkM6o8CZn6JMhTVGj1RH6PsOaD9EjE933sZVDsdlTH/ZI3cSY+jQjg7rKaNsUYZtoosMSDYfX32AkB6QtefPsOe83e6SpkOMpummhiYS313cMtJq2/kM85/fBH0ST3xOGBqHnUtc19nCMdAdodoBh5Oiiwa63dIc79ms4xgkXp3MCIXjz8jWOYcD2NTAhlx5q9pC+eI1jWjihDdYE2/Uptntwp1jCJK8aGick72pI9gg6hOnRIWmqnDJNqZqa8N593MkU27ao8xIJaLqkbnrKTYwxdnBcl/XdHl3vsAxFMD6hK3KaIkMWKYZStG1J0nfonotuaEhLJ5iO0M9PaLqGru8xrAo3GuBPJ8yUoon3FGlMIgSGMjFsi/X1mt32yNA3kX3L2BR8Ogt4db3HLAr+4uEJK6ERGg4XkxmqOpLnJU3dMB5EDAObvoxxrQ5DJKTHG7pO0CuF7npkZU5tObR5gxIFfZHSNzlyfg918pDy/SuCy3O6zmb06DF6/iv8v/7fWH71S5JjwsXMpLNcVnKMtSo5t3yuRk+RUnCT3VCXO5J0i9JNNMtHBSG9rtE0Gq2maFoNtB4lFV0jMKsKL70h2TaceBZWWlIXOcnblziLxzjBEENCV7m06JyZLtW2Z+ib+KGNiUBUBZbMP5yNtQaMPY9XX79As1wSJFQNbnrACGeUvU7TdIwmExzHpmlbzCYn8hRWa6JEzXH3Lf3uhsHihMLQeXt3y912SytgsZjT1DVxkjI9PUFTHcf1hmZ75O3Ldzz66LugKZqiotmlSCdEMzyEkmhtQlfsMU8nNKlDV3T0dQFFTbNfUa5XWHJA1eXk+wMjf0hPS5mmdMLAlQ7K8hHKQdMNlNCYuC3WfIhoE7qyIu4LpAaTwRS1r+jMAY6f44sfMNULVF+RfvuW6OlHWA8/QZgG9AJhWOhdx3xoUWo2bbmjXB9Jqoy7tCYrBCr0EXWD1BWjYEwQnVDtEsJowejqKWJ5R4ciXl/T1BVZEnN6eYJjCbavvuT69Tv0tiNQgrQpkZZkfjYntMWHBUiTdGlKbfTotoNuCMrrl7j9lrL8EKso6wo0C8eRnJ+4uN2I4A6W13doYcD0/iWPPRNbawgnIV1lUcZ7RtMFsqqhzNB0Qdv22H2LrwuIE4TlIm2HMLDINi2d4aDVGaLt8G2FN4uwdQe9ytC6lsqQ+BdnGOGANtlRZjlNXeL7PgO3ZxBIdrcHzNEIx1DcYCG0kqxuSNDZZA3broG2YmBq5EnCxefjD/neoU8jBxi5xfHdr2ibDmwLXeuxgYvBCDmeE4Yhm5dfQ52xu12S3q2g00mrhrt9xpVnYCuduGyIhMJWEtEUGL1AkwrVNagyQQkDYzLDW1yQFjr1dov55heYloZ58RBd7+krKN68wfbnqDBE0wM6rSNLV5iTCdK36doajY6mh/dvb8nzhsnQReoV0s5QykAoB89xKbUbmpufYegKw3GYDc8xqwH5ccMxXhIGBXr3BYIGz9ORjqQ3JVbdYSmdY1lBq+GrDrdu8CXcm0ZQlkgB7iDi/fbAz55d4yuNrsi5Xh2YDy9Z37xlaIzRdbCV4tfP7qisEx71Emd8gdAV8+99ylxZpMeUF7/6Mb6scS7HdFlBn6c0vcQZhDjSxQlGePMxri/RqhFq0NNpewbWiG4ypS52dNYIy1OknWL98hvuOx33/uw+jdUwWmt8NDvHLnqqXcxo8ZBg8YRamPiuxJ8qDM9BMwy6pkIohW5oCNOhr2r6pkZ0GuHpPdi8o61KekPHMWycR+dstR2H968ZnM7QafAdSX+6oNYtXJWj2FHnKcVhT5Ml7JXLXZrzrtQ4lgVDx2E4GbPdbcjqhq+2R3a7Dc/e7/j12x1/+edjAkuw//V/Q+ZHgpMrjusjvmywTJ12v6TUdLq6wTcljmWiLAu3q6gNnapsiPcx3nCI3hY0ZYkmFKJuUb2FlJJO5pj5mr5eUhoulTOjykvaqiVvcrq6p81SqrJAuD7mYIJQEqghzTB7iecPyMuMet/QdKB6jXx7zV07xOoFlqbTND3a1KNNS6LxGF1ZaJRocopmD+jaDlnFFMcbdKHTauaHyE4LCIlh6HRNh67XVHVDr1vsbldsXr0nWx4Rx5RHH1+h/AmNZfB8m3F1f0CVpbjuh86HpkyxDJ8otJhGgtDy0DcJp5MIdzzm5OEDDqUNloWrTdm014TCpEpi0roisE2k65FubrAtn2b6CG92Qi9M9D5Da4G+xzIc7LMrvIFPvN2wfnfN4d2X9E1NVZSoNCcSDuePPsKazPBcA8cAJXpEn5OWBUdh0rYpTuShay2uYWCbiu9//IhXX93i1R2B3WB6UxzdxTQkQvSYSqENLURdQSuh7dCUQgssmrahzlM0Q6HZBqZhULY6dm7i2AHXyR63yzD7CtMyOayWRI8e4DYFBRZd1xHML9G6jrATeMqkLQtyYXD13c/4D8cDdhRRahLT9XEsh8bzieMU1fXcbPaMZx9RlSXSkB9mGDugy3JO/t33aVZr9MBGi1tE23ByeUWrNfjDiOywR2gdL18dSPISXdeZGD1/eh5gzzxqXTA0A7zxOcccys0B5UmyTmJgEUibvivRdAV1gWmZiLzGmC1wBj7J8pamjsGbYIw0dPnBcazlOb4Z07c58bs3lIlFePkQgoAyWyOlRRCFSEPD61taZbDMG44VHOKYNElIdYtKhtT2AOePfkhyd0NWtPhOgMo3LE5mTHyDaah4u8qxXJN3+5hfXt9SFSUFYCqdE8PkYnbC4ZBwTEtEmfH0/oLQtggsG1f06DpIy0QzLaQyoetRUqI0Ra95CLui0hTvNluCKMBybJQco9kTttstdAVadkdRFYTRhKmpqFa3aK6Ld3kfFYzpuorpxTnO21e0ukB2LU3fovc6nmWhpAVKEngaynUZzwaMZzNGizOC0QxvOMTwTCg7LNely1PMPsa+OKehoy5L8nhPFDjYfgCawfX1NX//k5/zcrnDdAccsxz6D/UEI9fjo8GA3rUw37/nmGzoa4tVUhFMzwgdg4SWWRSQFzmv37yjrDscQ9BXGoapiKIBF3HO04dPsRoT1dYMZiFqIBC3X9Cj8G0DsbvFeDBBFwJBDklMGx/RhaLZb6h2NWb0XVSX0rxcEqYdlydz6u0SbzomHM1QZYp0PWppYzswNAzsaMztNiOSFfPBkLQd/pAJAAAgAElEQVQr0K2K94ZBVSUMAg8CB3c4RjlD3EdPabMVpq+D1OnRQQjkUCff3SHsAVUjqVqNbn2AvqHrYLPb43Ul//zPX1IXOfOkxD8/pewE+04QmjbHJCfNcpZ3SyrRUpZ/EE1+H/xBNPk9oQsd1x1Qpjle5OMHJrbRUbQ9k1FIsrL55a9ecIh70rjGfnifgW3zXt3QFCnx6h2+rTN8cEk/nGDnNU2coY8Uwh4gpg72Q4c6rWizI9puQ5ascLuWtm4QUiFMh6ouqI5r2qbCm59ghiMMZSN7DQyFKBqkGyFOHcShIo9vmAwcvn23JzkmoJv4gwFnl/e5ffGMNK2wXe1DC/l0SlkkmFJD01q0rMPwArzhCCEVBi2WbdErk66I6asCzQ7IjzGOrnHUDXa7hDguOJRgGhZGuedPnp7yx48X7DWDm07nH3cwnA4xdJ1BEDLROrT9Hce2Qdo22+17PKvH6HuWv/0F9vRjhGF9ePmVCs3wyZIcw/Qo7l4jBxE9GsIOMSf3KJ//AuFFaHWJkDpd0zM8/wivLGnbhqYrMfqGiznYvUKqntzz2L1+T7u+wWoarCDE8ocYUUSrOuq+JdMqatnRtD19p+G6IVq8wpEOIhDstjs8Z4IVaAglsAZTVNuT7N6hTAscl1D1rDODwDQwlYMSAsO26boGXQqswYeyzjw+Urct03HEYbOlPGwZzS8pvQHSkERK0XYdJ2dnnF9dUvzTFySvXqC8EK3tmdx7TNVr3N6+491qQ9e1pFVLqyQj36UqKgamQUOF6FratmGzvuHjTz9GdAfWq5T0eoJu9shwAo6P1gu662/QnCHCGYO06Mqa9lBRbQu6CqSS3H75JUHTonUdVdegCUHatMxOzlCmhVImWg1dV6K1PaZyCcIxXVFji570m9cIM+T8yqJud2imwBleIe5eE3g+1miMee8hajIHoEsyujIFPcXUM3q7It/uyI5LNnHCLq1opEf+9kA4GjIdR8T7JdKWuLM5QvcY/+n/g/7bn2BT8uLtkiR5jtHtWUSCzZsVskn5wXcu+FgPuF5v+MXXrxiMx1wNA9wmwVIm0nTohaIsKoSQyPWSPkvpDhv0JqFavsWZXpIfb8i++YJ4tWa12lMKxeSjS86HIzrLpW5rRJXSpXvi/RHXdggdmzYv0coWaRt4lsHwdELS2AjHRvYCXRpYoY+5W9O6M46HCiPL8Rwf21CoIEI5C2ytIYt3KG+CFzocki3Hww6Uwf3Pn+CPhwilaKKIKt6iJjNK4VBmH+z927b8/9l7kyXdkis773P303d/H3+0N26bLZCJRKKAKkpGVrGkocxk4khjjvhAeggNNKBMlFlJlFUZJRbRFoBEJrK7fdzo4+9Pf467axB8BnBArEdwP+Zn77XX2outUax2W3wlKYqeFy8vaLu/J45T4iRlSwh3K9p8g7P3kNnBId5uyWj/gDYbM/3kU7Is5uVXN/zf//7vuVquSJTkaH+GMVA1PXngElQNnmvIEg+0xQkcklHMrq5xhEFJhRMmdOUaN/KJohBnOsI9/SnN5QV210Pb0nbgTk+JBjFNW6JtjW63xNMRejxBS4HNK4TV9H1HW1fUtUGTIbQlMC195lF14HgBR89OufnDH2nutrjDOb57TBQkjPcPcYZzRDjAzc+RzQ3S7+naiqZuUIsSW/cEmcT1FZ5ueXtxgwwVP/vv/hlrLLbr0NpyV2luXr1BzCcIx0Fw/w5tep/rRcnJw0c8evwE0Upmj9/DCUOyg30QGtsPeP4f/p6vfvN7zs5veTAbc7D3F3R1Q52XKDekzSuCYcYwCAncFCfbQ8kI4cU4YYZwPKxncJyMrqhxkiG+FyB1R/3lb/G8ezVOOAjYPzigva1Ruwa5LRg+HdApjWc7VGiwXoh0FUK6CCkRxmDKkvU3X9HkW0bHj/EmMyYffEx98wqtO7qrF8hkwvjwlMF4iOtHyHiI7SuC4RhZ5Cjd0xUNzW1JlRfsNhvOri+5qzrudluMlGhjcf2I0UgyGS7oTMvty3+iqhYc7w3vz9bVuG6OiiT+cEBY9ozCCF2uWbWQ5wVVb0izkDhwST2DktBi6XuLDgb0XYmDB8EUWfWI9RWeN8PaELc34GWEpkYXBa5x8GJF009oLIi2YJNvWDYV4d4JjuvgBhG2WoPWBMkAB4/AiZCtYbFe03Qar284mqa4wxlKCrbrCl8KJntzvCjCkR1Ce6BizLbETQJUGKPMEGM1BofAUeiqoO87sAIpNJ2xOEGMyRtMD4vLG3ytGYwSYtOzPx9y02kmbc/BXx5wsQpZLK8p1m8YuA6Oq2h9n1oqwlRhbitme1M6UxEfDImCMd//6rfcbXOkGzFIAuq7NV1b4yQhuu0Y9i1ObRDjAWo4pLaKBA31ChlOcP0QoRXe+BAZDYkOHqN7TVtsaNdrqosrsl1OeHxKNJoSBBKlu3vLb7vh1YsLvv7uktORg2lyRsfHGN0zGE/xW83wg2O0BldvUcUSP56g2u6eeBYKJwtRoUKkMbqtkL5CS42Qll53KKGpRUWUhjRX53S2RZHTmp753j59L7BhTGgauLrCPf2U3fNvePHlF+ThFDcFdxCTHU7Ib++4urxg/IO/4KkW2Kag8CP80YTD8YiNcJjv7aPXK15//4rHTx6RCoEVFoFCpRkENW4coCdzhJwg9Tn66gpHW2Ynz7D9GidzkL3He+6MSd7jKkPaNniBIRoNsBiMP6R2MorbG/p8i5+OcbGYsoLBAIxDX3V4mUHJBilKGjz8dMZkPCa/ekmQDQmyE4ztMbrBbi5xO0v17gJ3IDiYPkYO5yAk6u6KZrth8uAUISt0V1CUNTe7mqaoCcOIsrtlUXQMi4bbssL/+rfMDvcZjgeA4Wb5krN33zP0ffJ1xfpuyd7RCY8fH5G8gfVqh/IVg9DjyXzMIIm4K7coz8C25ubyHC1DPnr/GaJvqesWKe+jZpUXIK2ldxxM16BCQZdNGT/8GBUPKJstxhPEaNbBiPFoRv7yC5SQ9MrlydE+IXBwdEDZGuLJBCeZ0VzekMQTxp6HahVB6NErD6sjfNcn9TyEI3Gl5eHDJ4QeHD56gjuZ4FuD2V3j9FMcV4DpCQ6G+LMP6OoC1bfIcktw52EDH6N88nzJb774mm/fXGMMICxCSozuUViwmtHpKe89+Ze01xf8x//jf+X5mxv2Dg6Yz0Y4XYNE0BjL0dERy8Udl5eXPHvykK7vkFiOT/ZhtSbUmskHn+HWFcnAEE8zvMRHdh3uT+dE5hwWATIbY1a3CAfs8gZzd4nufaLZZ+ibBfndNboqeXh8SuY59H1Ir1zcwR5uvkL2HabTuH1FnI158/1zahpmQ4eu6jDWYzaMcE/2qXZLPKeBqKPvd3j+BESPEuD4GSLKMG2FMC3aVlD32EAhkgH2+gxTbRCRT6fB80NU1RErmO5PGR1O0Pt73N4s2PUG9eolD957n1VZsikrFtst1Z9Jkz8J/kya/IkghSR0fNx4ROi6jMZD2rbiy9dv+Jc/eZ+8KHl9vSEMY1wlEFLgJRHv/eB9ZN3gKSjLnPH2jKMHewxOP6B79xLbdjixjxpMQXjQ56i+QaYZbhDRCRfQ6LbGGkHflCjpIKIMOZ4SjqZE2QClG/qbMyQ9TpjiqAB5coo5M7i9x0BdUkify6stkXfD088/JH5fcPX6LW0vGCmPaD7CVQLZN8g4RToug70DgvEB7mSO3lwjPB/rRdSbG4zjU7QaxxqCJKS5WVOWNWEUs9qWlGXD0LYczgcY3+Pw6EOOEHBjwLZYqUiGGbbeMU4yTLUBFRBKh3GUsj17x9XZJeai4ejhM7I4psYgpEvbW9pih1IO+B6d56OUg/IdvPkRzflz+mIH1Yr+7jVOdkDkJWjT0DQloiqxToqa7uHM97j64tdUZ98j25ZoNCBIBsTjOd5kj6a7pt0teHP2miavcH2XjJ7R0ZCuBCeA2fFDjsL3AZf6bsPq7fdU519SG0Uy2kNmY6LUweodwSSlKUuUY/GiACfw0IGHanOk5+JaybZqMI7H3skhZV7gez53t1fo1jDOhsyfPiLZn2Fch8b1CMOYeDojGE5YrSs2WrI1HdYxlHmB6ziYtmeVV7x/fMj1m2tuzq55/GTGyFGEo4CjgcNqcU4gErRpWb7+Brff4Q33cPY/QroJuvIxb79BTY+x/hDdaNr1Et3cF4Svf/mP9IsFXaOx3X3jEg5HROGYJJ3gJWMc7idz7cVbOqkhGuL7IVGUoGyHezigKc9Iph8x2P8Ma0usKOhcj+GzTxHGIGWDUAFIicwcaBSmLJFtiywqyq3mvIAmt9hVzS0aGWaM5f3+ilW1YnMrmD1+iH96hDOYM+x/gL14iRfXKKVIwwjbSZaXK+4u7nj/Z59zPDlknDq43ZrKTdifDulzS+h6NNbFjzPQW9qqxl8tsMUa+g4/jNBti64bXNel6jo64PF/87eowZi+qSg3S6zroOuaqlyy3uxwwxHJ3pTQdelvFzQNpLOHZH1PIwyXz1/w+P3H+PEQ22ukccnCiK7d4UcTdrsbPG9HOB4ROJZIWXQL848+RxcrzHaF6lqMthx98IwwGuIlE3SbEzuGKItpTU/vuHTWQbeWVdPhhiOWL19wEjl8t8i5WuRcvL7lJ59/hH9yilUuQZvTb1eEx09IkgC7MzgeWD9FpRHjB6fcfJHw8OHHbOQ7rq9ecajgs6eP+OP5DWXbEQZDfCnpeoM2PdL16YwiiCJE26KkIMyGZHszpCshHeK4CtWVhAcnSHdEv96CFDR5julzmtsdTb7Fm40oHRcrLV6xxdU90kuIfZiOxzTv7ri8WhDsZ0R1QxqFWOvieTHDLGMcemyff83t9ZJ60RCM9u59541AmRyhd9BvcbIYZEBfFujNBil8lBQknotZFTwaZTxMfd68esfRk33S+T5vF2t+8Z9+iXQ9fNcjCiNuNluSIqcLh9w2OZn0iA6OGRclg8kIJ00QNsc0DfXqjJff/oE/fvU1u7yFXlPvcoqqocwLAtXitz1d2xDGEcHYJZwfoKIhOBHSSvqba2Q2RoYznGaNXW6wXU3gxzz76/+ezXbFzctvGaUzgmyMub3G2XsAWcby9g7ZVxTLN+wdP8I7jpFYPKlQ8v7/aHVDfnWGI3tc+ZAwSVAHnxCOJ3SLc+q7a8q8IkozvNOPwWqcZEBfbGgWS7q2pV7mPH/zmrHw2G52aKu525ZcFpbeWjzHgb4DIdl78JBJ7CPLnO+ev+K9B3PG2QHCV9iupDGG+PQpzmDIqO6pioqrd1dcvbthsdixKnOSWYYjIA08BBbl+aheEPoO+Ztraizio0/QaojaXuJkYPxjjHBQborULqHIEaKn2mzQVUdf19guxx1l7M0Oqf2EyItAd0hcOnmvFvWFxEnA83xcx+fl2xfctTvUpeXUdxkmQ2ZJgFPliB6UNlCWyDBF+gIVuxhHIZVARj66ranrDrNd4nou0rYI06OFQLkeHZJ6V1HcrXCUYjwbMXv2gP2nc4JBgHu7wGlqppnLs59+zq9+8wrhTHCXHf5oAGlGnEQ0/QaCkKDZIoWHUilOlHH89DG/+vnvqEzPbB5TXBuKusQGB+i2x/cDRC9Q2zXi+Rc0cUD36AA/m+Kle4i+Q0gH6/kEwxBXKPRuh+dvaf2Cvg+ZPlJ0w4goiXDRePfeI+rlFkf7/PjDDxj5DX2zQwUOsi/wh1PC7Bj75a9woiFheohqW2RV42UHKDdEZhkyjjFtjxpl9Osa2+/odYeVHcFwj7bM0X1D1wWoKETvChqpibIM7XoIKTDCx03HhMMJot6SmJypvuCPv/glwelj9j75Ee5wwuMHp2zWK8q25tEnn3Fzdc5iccdtXbAnx6i6ZD+NyNsKZ7OkefeW5sEhvu5woxTh9igvRXghorm5r7OODhFtBc9foLfX1OS0ukFKjzgZ44keZUt22iGZ7ZPN5+jW0vgzbt/ecXlxwST28azC1RZ0z+52QecoXHcERqIcQeQ7LG5X9EmIczQkG2Wo0MNtFTQtuqkg9CHJCEef4CuHbnuHznfouoC2J8hSgsEIa12avEeHAau7KwIB8WiCd3mN8V02wuVGC46SkHA0QIQBV2fv2PXQ6Z75aMSrb14gq55dVfHRB+8zjSL65RoVuPiOIHEdFlXOMnR4/KNHPP+HNY5pOZlPmD0+oXNi2u0ljgLlekjPRQpFkCYYYzFookTg+xOU1+FuFL1psLslQb2iun7HUFlMGGN7ff+eJEMmh0/xyg7Xi3BdgQod0lnGeDxFdzWDLMLxfArtEHsZAz+idR2UWxP6lkE6IE5HRFl2/50rB2+YohyFwKCNwbQlMgjQxQZ2d3j0tMLHCWPeXi84u7kjL0vwI5AKY+5TApNsgHQddkKSfvBD2sGAwWREamtmw4g4jqECPwjwhWJ/fsjNZc/r775mPpsAEisFfpoyOtzHohGOIf3gfWT5CqTFTxL8JkdUGlO3dG9eY8Q5tiwRfgRYrByjqxW765esFguqquZgckQ6mmB2S/LNhsHeEL/eQV3h+BG1kfTJnCAbcDobYF3odE3ZWw5mIWqzZRgFOP4Y6VSEakW4P0foBrZLpO7Qyy2ysWBybLPDagdneoQB7OoOJSx+EtF7Id3mmvLunHg84JMfPsWb79O4Dm82OxZ1QycE+dUtF9c3NJ3hbr2jK2qqTv+Xa3D/K8KfSZM/EXohUIFLaFPixCNNE7SuONNwdnNHErmsy46NbkhGE6q2o0EyPtxnkqV0eY5Pz/z0lOHhHlE2wbqC+vw1rnSQ1sf0AtlqTN2h0hlBMsArC9rtClNWtHVFs15RlDXeyTHBYIIvNd3yCpWMkds17jxDjeZgLcL1CPqQ0eYrfvhgiokTFrc5V9uSel1x8uEn+EKyuFwyTiSh76M8Hzed4iZDnMDFlQ40LWwKJEBf0m1uMVZSy5Td6g1ZEqD8AYvlGy4ub8nmE8I0YpWXjFSD70Wkh3ssqlsmyQB9s+Jq4CKiTxC+S18bur4AH+p2jTIlgZR8e7PielWhWTKeV4zGI6ryPgGHMKBsW3xHYKsaYa5RdYUU/7lI9mPoLG4wwFa3bJYviMd7WN1C1yOMwBtOYAwvf/93rP/4BXpb4CcRoRsThUNcJyAIIzpc7LokdiTTccjd9R13dc008+6ncXUO/Y7t5S0UO4rVFtFXjKMMPxvDYEpuoN29I1ACXyicIMD0HSqMcIOYvLxlsH+CqxR13YAXsC0bpkeHFHc73p6fUZUlRb5FTmecjAacPnnE5XLF1y9e8DfHTzAObKseffSASRhQry+4uhaUfU/RtIzjAL/NwVU8/fQDzi4vmKo9PvnxD1mfv6ZdrPn+25f88P1PKNYFV9+9JWo00Z6Daza4sUUODxGtQa9XWLWjVy4ykkSR5fo//ZpUBsTHH+EJw+rsNVEcc7NeEk9OiPwIN0oQGsqv/ki9ecHy7pzwwXs42QwfgVAB0XQfUd2hL/9AWy5R4RDhtKSzY9zRCUIIBP/53qMAbIelxgJWQ7vQbC4M+aaj2pZU65ad75OMAsbDlNQLEDqgKmq2F9+Droj3n9JucurFFcloThS6eKGPVC6jo8doZ0Kx1Ojqjm6zZO5J5OkpgyylNi2274gccJXEWkVb1zRNgy1rwjiCICV+9AjhpYTTPbzpPkMDvRNSlyXVbkFX5Phhitlt6DZbovEhRduTRAlOb+hWOdMPf0j46CH1mwJ9FfHgBx8SZ0P8JMM0PR4luuuYzKa4zoCbrqYtShp/TSAEveOSPnxKqAR1v2F395ZiU3L66V8xOj4ink3xRiO2Zyt0neOF937qcrtFG8m2LHCyKW+/v6SpKpowoVchS6v4+HBONBoiowHDdMb266/Z9XAyGuFnA0zd4HcWJx2S7e3hxiknD0+xlcJLJ7wzBY/nc/zDQy43OW21ZbWrGKUxqQPKCTAagthHySHt1SWO6RHlDhXOMW6IIz2U6ZHRBOHeL7pkFtHvlshQ0t3cYGWJfzinUZAXBVEYIJsazwkpFwUUJUfTCQrFty8vaMqaznNJY0MkOkTdYd2eZHZEEHpMnjY0dUO12tHtrlHFBSJMCed7qOEM0zeYrgYkvufjthYFqKZkuduRzEf4+1MSQLeGZdHy7/+/X/PVt6/Zn42YzGcc7k25zq8xfX+fXmV6GilI9g9wVgUCjQoC+rKm39wQiJbPPn9Guav45ut3qDjDnc7h7IxdUbKuCwZJh9cEaFMTLgzZ2GC1QKR7CF/iBDmWCUJLEA71Zo0720NlM3TgIUZbkizBUwNMr6hcQ1nVKBPTbRr88gazvEAePYbWIC0oP8DxPWzf4kYJRz/8hJtf/hzqDiEUAg83PcQWG+KHA8KmRroe7nhOc3uO2a0x9YbqakldN2yrG9JA0rUdSgbUVcW3y4KLXcvg4BDPEcRxQBh5RFnCePYR6+++IdiW1M6Q4PHHLDdLRonHooyYT48RToxgx+L8DeWmpWxTlvmKXVlR95ZR4uMoibAahEBgscUaJwhpm4peCozy0MEYYS2yOEMaDxslWFdhbIxtWrTTIELDxHeR4R42iFjvLFc3PV5f0m4WYCRhkOAJF0danOy+ERwFDk+U5vvzd7xcLjHyDR+fWqJ4QOgHiHyDMQ1OmiGjDOWD1Q0qnWGaAs9t0SxQvaFRPugOYy267TFCUmuDUQ6+E+E6OQ8/fJ/pMGDveHpP1puW3WrL+vKGB48PONif8pf/bMTzn3fk5R2dC+ORSxa73L3aIisYJWMy69Fd1IwPx+zsBe9eXBMNJyyDLV2r6U1P3je4BATRCF84CBz8xKNZ3VC8Kon/6r/FWgchFVa3iM7g6AIVJnRdg+3v9zPFTx9Q+w7SWoI4xNUdosm5efmc9eUlibYYqfBlQLm+4dlnnyOdCFNscUKP+vaacvUV05OHZKMJKgyQbo8MPWQco0Yp/WqBFQ3Kl3RNj4Ol2m1obE7XNojWp61qZCex1uFiUdNpi24EYZyicIgmewTjIaK4xLZXHJ3Av/AyrqMh4cEMN02JD46wScbeZI5wXVrlcL5YsF1tSGf7qL5DW9jlFc1gj69fXXDw3vu0y3OCeICQNcJ1ceIB7v6E9vlLzHaNTAMGf/k56s0f6L/8FbQGPwhw2h6312T7B0zSFi+b4HoDODhm890brt5d4OkeB4d8uwEjSNqKJpmg/ABrQDoOGkMYB8TLErcpkaV3f5/DDBVNEdaAKUHXWNOhqxJT7nBcSX59hag6pIpwHInc3aLGKWU4oWhrPCXBKoIkZP7oETdX5+RKcacFv1+UXItr5kWLkpLJ/pzRcMCL//gbVOixn4UsJLTGMD8+woQpgbU05Y62qSibhh/+9C8Yrpf0+0uaq3fIfIdoamQn2L19g+jv1SZSKpRy8eeHVNtv7hcpFzl9lRNmCb3RVLs7Is+lvHrFSFi8YUpeKGwwpBWCpq1JDg4Q25au6dDdBj/w8MKA8XTI7fIKFXuESYhnY1JC4nhKErg4okQWDclIIeoSV47whmOsEARpCljoO6Q1GNOiewnKhbbBizOwAm00VzeX1MUWqSS67wmiiO5mQTqcMjw8Rg1HXCzv+M3P/wP29hwnCBklIZ4jGQwz1nWFYy1BFOEoycOjI8q65uzta0ajEVXdEwYR/niEqXtMfQtLi5cphBfdqw/bnODwCCU9lHDuh6IiwGiB6GpMW+A1BWLVEI0HsPWJHz5BVzvqzY7F9R1BOMPt9L1t24noa4ljagKrGIYxNT2u7xMrTSYNxlHouiVywDs+xouAbomcTJGhROzArkuEjEFbdAXW9FAU0BfIpsOUFSrw6KRgu14hbY9wFcMffEwpFS9fvGVRFMwfnfLti5eI3nC9XNNWFV3TgVQI9ed2/k+BP5/ynwhSCCIvIHIEyTQjGWRs15qqM/zm6ws+mI357JNTvny7YbR/wLbVOAr8wCXNYuQgYpRGCBSu5yBNgzuZ0Ab3284jN0daB1PVKD+BMAY0bVOhywLba6rbW4ptgU1T/OEI31X0RUUUj3BbDX1H2zo8//nvmM5nzB4/xDvwma4vmH72z2njOXtvN6TffocMfbLpDFd9DP0fKZd3JEGKNJJuWxJ4AbIvsALQLeXNBU7sY6WFOEG7AaqXZGlAnKVUykdbg5SWu8UNJ+P3cAZ7vLipGF3s+OkHY04f7fPF95dcLko+OPIo+jU364L67pyiWlLpK3bVFUqUVH3Pxc6w1gJMi6Msu+WKdDpBugFSOrRdj+ktRgtsXuIpF6oW05RgLSoZ4s1dRsbBPb+kKQqUEjhegB8mtHrBzS9+Ces78nVxH/EoY4JkjzCek2VDgtDH8WPkfEIycfCCMdO3L/jqD6+5e3XOk2eHFKsto2lHMt/H7FyGwxFCxNi2h9BFORWyWuFGHt12g9NbnCBEuwqLpJf38am79Zro8JDSWNwkoqsaSmFo4xDHVVgHzl4/Z//jHzGZ72Gtgyckfd9CEtNP96i3GwaHR0gMVbvAc0OGkwFFV+GHDsMspSq3nDzc58EHPyEUAXFhubw9o9gpugJMY6FpuH17RtaUjOqU2Fwh9zRyMkAePbwnKpRFKhBdQfHbP5J4A6JgwM33r3n7+gXzowPmj09QscdwfoDjx6ggwZQN3n6ITHy+/flXtM+/Z3j8Aclsj3A6JTp4gucfoUSFDCNkOED60b2sPBxD32PbClvnWKGxXY5u1/T1lr6v2KwXrMqSvMkptMbGLnu+Zp4JAheiKOVgsE+aBXRFyVd/97/TbnvqwnL6N39LM8wIPMny+pLU2efox/+CYd6yuTrj5GhIdyPZbAekn/2U7XpNozuCwGOz29L2GQMvRDcN9a5A1y1CKZQTEyUTrJ/S4+CO9+9tI7uSbrdFasl0uke7XlPnW4J0Sl1Dv22ZvJ8hdrdMP/ycwHdxbU+re1zdM5AQHhwSjud0lcQzC12zT0kAACAASURBVORSgrZM9zKCQcb5y5eUyw2ZE+LNYhy9Rd/m5FfnVEZw9OmPGD76iGCc0Vy9pi7XmGqLN8xot0twO3rds8tLvDTm92+uqesG6UWIeIj0d2yvbijMIcWmIht03Lz7mq7pOXr4iMFwjCpzDAYxnqBcj4GrkEWO74QcBD7alPzsf/xXtLYj3z8ie3PGxWZF3hgQNX5kiasCNx6QhQlB5lItt5jNDukNAR8nHEKxRrj6XqERR5i+xRQrqC5pV5dIp0JNxrSN5mbXoKzF6hZ3MoY6x88k16+vKG8F4WRM4CmqooEkpN1tSfwhothCMEA6Cc7A4o0MxgmxwsExFcq2WBkg3IC+2qLXV2hH0ksXVwV4lEhb4wLGc9n/0UfotkXoFjFIeXO3ZNv0FB2sioaiaPAizfHRMWE2orp9R5J4+H6EsQHh3ildVYGV6KKivlsibM/Jj3/K//D4Iz7+7Ve0MkANBwzqmu2m5na1Qjc5drsj2LmEsiP1xgTHNZISoQaI4TOk9RAIpDcisB22t4hsgAp83M5Btz2WhD7PCQJDvckR50sGpib0O4InPyCYnCJchei6e8tPZ7Bdh9AtgRLMP/wB/XJFv1hDa+mXVxitkYHEDVKc2T7WdCg3oXr7hu3lDWW+4/WbS3xPMR5GtKbDOpLbQrCuOsqqpD57w9HBHHcyQGNoyi3nlzn9rsXVHtum4dXP/4Hxx5+z0ZJgckI0GFEtK8y65WQw4b29EcIZ8XIBv/7Vv2WYjfA8he1qqrrGdg2BbamkpEHQILECjBQYx8O4HqJtoKsQ0qVDI4YDXKPxzRbqBi89xJ0cgpVcnz1n4Pi0t5eEbQdCIKWPn0yJhgluMqDd3uF2JSLzmdz6rLYe355tSLwLHh1rlC1wVYMbjLG9xrY9VrqIeIR15H0iXN0ihMDWBarvaeocAtBtDb4PCPqygRJkaXF2a2ZRShoe4foBZaMZfPyX/OSvxqRmi2Ma6DVaCoLYo/EUg3FKl6/I84JnT08Z7+8jdz3562+w5R2/+NUfuT2/5MjzaVYbVGVp8hqaHuWAIyTKT1FhhPUcQj8mGnrI0IdeYqVEuB60OcIV2L5EeALHTwkmCdu6YL0p2Dt5gBIWWRU0u4K+thw+ecp0l7NeXvHyi19xeDglCabYVuJsG0S7JEwCVncNV9/+E87jJ8w+/THeIEGvc6T20Kscx3XpN0tMvgJt0Npi6pq+27LdroiihPJqjdWSbaW4vssZDAPK9RolXaQJCUZ7OMOQ7e1bvvmn77hdLzk5HnP00ZzLrqNaLKg8j2z/mOzoAW1dMR1PCaVCW0XsKvaOH7ERHl7Tsrxe0lYd128v2Rclum1xnAI02GiM8CLcR0+wTYHMF7Sra4KTYwbC4K237C4uaJZ36KanEoqu1aTOENG7rN5tWd+tKZZLAiW5vrsmChwY1nTDEeIgwh06GCHRbY/wJViN53b0V2e0NAgXIkej3B6kCyKFRmHrHHqLkC7WeqjasHt7i39ygnLBjX3yuqZsNU4Sk84P+eb7t7x7c8ZkNiN7+oQGg/ACpk/fo0Zz1UN9e0WiJLa33NUl0+MxWhvyFs4uzxl/+jNUBfp2RXG7orU9c3weOCn+IGQVfwcn7yH6ns35FUES4iUZze01wd7JPXGiBMKN8d//DF3WiGKHvrtBawituV8MLGGQDah6gfVCZpMDKuNSb9dUbc3i5SXhs/ewVEh3gOPHDNIhP/7R5+yPUs4vvqZqtgSRIEoyssDixhGOCImERSofJ5vgBCm2blFxdG+rMQZrLdJYtNHYtkG3Ne54jvVC+uUt292Ot5dXbJsG1/OQvcEJQiZ7+9xdXNDlO5o45K7Z8uX/9nOe7c+RYUg2yHBdheO4CGtJg4BOSGh7Hj/YJxItd+fnbMsajMB3PBw/RDmaKBWY5VtU+gRlNfX1KwJPYOQUlQ7uh2N+hAwGiDynO7/Cmh41ivHbhOvFFkYjEim4vlvguRHvffYz3FYiy5bdxTnxo4jEcxBdQxP5dL7Pbrmhth3TeYgUEi9M0LsNrtaoRiPnD5BKoPsa64B3OKW/WoArsbio8ZzuxTd01++wgYsIItq6pjcGnYUo5XC73DCa7xFnA9a7greX18xO5owjj3C75vybVziOg1CKHvCzEcLz/wt2uP/14M+kyZ8InlDsDRJM7zHcn2KlxShBECasrq95Xu8Yz/d4rCUPP3yfm++fU7U1YxJc1yHwXYIgwPQa2Teo6L4RVpM5IsiQRiHKGtFz752rW/pyhS5LlO6odyvq7QLrBgSzA8IoxZGKJBvg1g0Ua5QbcP6PX/Ddz3/Jaw/++t/8a7zxHJPtkXcF68sbwnjGwcNjkv0MP00xGPafvMer/EvKcstkOkdZDfWOYrdDa83o1MUK0EJiA5+2qSkajedrksAjSANWm4q23nBycsi6WDFJPHqruengf/k/f8tvXy95+tF7/PquRab7OGlCUeeAId/ecnf7hlXxnK56zcePPqUzM/7ybx/S/7//yO71c0S+o9ruiNMILQTCdXElFOsNOkoRWqA2OZ7jki82hElGkHi4gwisi5PO0M39RLjrWvp2g12/w+/WbKuGoukZZSFOOEHFU+L5CeF8/97f7kd46zva2wYVRIx+8FMuXy0xuwXbs5DBeMDm7A3RdkXb1Iz393B8H9FqDD2mrkhUQFcU2KLAiwcYKejbDqstUgiEF2KbHtyI68UFju/jhz7lbsN4f8IuX5OYjtGD+90OfbUjCY/RfUzw7D3qzXdsm5x12TD27lVDcRgxHrj84NMjNCWbVYMvPHRjuby6ototeDQbka8KBuMM21dEUUytDINQ0uQbtqsaZ3iKun6H51hU6CFGIwhDhHPvf2/Pr6jzns4mvP39V/zu22/5mx89YfLhM7yjA8KTfVQZ4kRjVDRC+grTaIqvv+frXz5ncvgQU6+4+/Ytex+cMvjrffzZKTLyEEqiwhjh+AjhYZsGmgqrW6zUmOJe3qurDW23osyveVdes2pX7JqStu7wAodsGOOogHgwJIwSDh5/Shgq+uaG/+vv/y1ny4J/9c9/TOP6VE3FYDKGJCDem5BNZ0yenVBdPyCRO2q/ZuD7uAcntHVDqTxcx0cojaVHGw+rDaZu6DtBWZX4YYDRPV4QYgyoZIKjfCZPUrLFHe3FOfn1OU3R4ssYU7foTc58PCMdjKHXuMGYtjCYr8/ob86xVlEtlqxvfsHRz35G/ORj9KbBizIIBUE4QvUF/g/f5+UfvmOxfIdtbtktXNzBgODggOODI5TvIfo1etuj10uEgq4tKG/fYYSmFw5WSIyxFH3Py1evMdJnuDdDDec8eyI59MCWFVcvd+wlMU4n2X/6Ps1iRdOWBNEUz/ak2ZTi+pb+4g1ykpEev086eoyTHuKfHrN6+Ue+/+3v2U9C3vY9F4sVoe8xnEdUbctIefRtR6s7ZJpRLK4Iw4z+6h2q7XAjh65osF2NDCzCbrFX3+PEEzo/QHgZXWvI2w0YS10W7M9HpMM56fxHmHLF6t0Vl9+/wzcG2p6iNTiTHoqStukJTIcuUnSZ4SUxwnNw/BAnSRD1GtHfE2Wm6xHxAIoV7fVbmsbBaoGrJEpapOvSGlivtySuQoYenmeYj0MePXnM92eXxFFM3VvefPua049/wGQ8pDoz+FGMMRYvDPDmLnl+S1lf4vsjqGrqu5L44IDBCbwfRpS7DV3d4Q4HDGcVVVWwXu3oO0O51Ww2IVMd4GqDrUqEe58UJiMX4blI6SGdMabYYOob+p1AVxUqGGM6gbIaz3UZhYa3X39BdXPHBz/7hPSTnwESaLCmx7YdZt1gyy365gXCEQTzI3bLl9TXF7jtluWv/x+igwHuYJ/o4AG2rjBti813VMsVdXXD1fKM8+srHh/t09UOyI5CbFi0C6wCi6VvWxY3d6RRwuMnz4jTlEbDw70Jy8szvnv+B0bzKXK0x6bcMRqPIPRI9od8kj3CXF5z8+pXdO2WHz57D9M+pZYhQvogGnBCluscr9whUXSACGK06enqHBXGdF0NGFQyxYgYocA2LZiW3e0Vg4MTwr1HqCBFNz2+EEQHUyrRIdoW46RIP8IfTggPj/CExpyfIZqWXV7w9esXvFxvwfMZXTs8ejCn7yq0dihXDV69wClSgsOHeK4C0eFEMb2uAQfbGpx4SFvsMF2HlQprLX2nacue1W3Nm9uCF69eczz7ANf1yPOGCofZ4ycox8NXE8rdjnfXmmg8pFk4rIoc3TaEZsfBxDJ/eoRJ3sObVQT6C26+/5Kb1TVx4iCVRfiSvuyJghhdNYTjITJIEOkQlSQo3wUMcuBijIauQbox1osRgxThChzTYxZX7C7O+O6L31H5Ecef/YzRZIbZbRB1DWXP7PQxwWRMdfEN7747Z+80I8pC2u0FyeghXpzSVRXB/iEDR6KqLbUUlKsLgoM9bKPRuytElGGtg8k36HxF3/YYYbG2oV/u6La3NHFDQ07VtZyt10hPEaY+23x5nwLmhkTTOcq3KHfI87cdhYXjj3yUWCO3gtViQ//l73jvf/qf0XVFtduwuL3DDTIG0wO26x3uaoV4d8m8qVjvdrxYbrg8v2HwaErSVbjGQ3Q5stugywWsN9ggwAqDSlJUHKOUh+I7wvCENPXYXK3QRpDsHeLMjtkWUG6XlDcXjHzBbaHRreVgPmM4nuHEQ+gMfdtheovWBt8JQEI00VRFT71YMv7wGJoGvBqhBMIPsY4PtsBultjeQq1xBzOypyGEAW1bY9Jj2irHDwT1zY7VuiVfrpEGVkXF5HjO3sGcxFS40uHjz3+CMPD7L77iH/7dv+NkkNAIyehghkXw9rsz7vId6+0tJ4czXGXZ5iu2qwXHnSEKEpLTU8zf/YLhyROiSJHfnuNGEf7hiLruGfQNwmpsDwQ+KknoNQijCY4e0a+3iDrH9X2kGmIQNL1Dsn/IIE148fWXJJ7hwXsfIo+OqbueTEqUkjhRgMlG7Ls+6WBItXjD2f/P3pv0WpKkZ3qPmfnsx898zp3iRsSNjIyMzMrMKpLFobq7SBDNbrIbjYa6F9JGC2206P8krbQQIECAJlAUwEEUh5qyMisjK4fIGO88ntlndzPT4tRvKC5Y39Z3DrjDvtfe93nTJYvNCmtaBuPv4PQTQkfiC4vXCSCfoXMPEQYImSAE4LgIx8XkOUK4CCeAZo4fJ+gqx1EO33z1krtNThS4tEbhD0Z0h7ts1hUuBoUmHo5YHn/Lqij426+e8+TxQx4+3MPqBldYulFMGQTMsi0bbJKEqFaiXIfLxZKslQw7CZHnY3VLS4UMW6p6TqICTFPRpHMqx8EJIwwWqRzacoPJVsjBEAQ0piFrNYvWEsWC/OaC4WQPv3+PwHWxx9+ghKE7GGOMwVMZxewG6yii6ZSyypidvaVOtkKa4yg8z6NaLxE3M9rkHs5wgu91MVmKMS3SMeAZTGuwaBrTkNclAo21glz6rDYpzSYl6g/wHYm0LSZdYqxHfzLBSEnU77H33hGbVcrs1QlNVRN2e4wO76Mc9U+03f7zmt+IJr+uUZLY9wjGfcJJRCMkeVVircH3Qr58dc7DnZjd3T7vPn2XbLaglpLSamrdEqBom5IgiNFNtW3BcB2cKAJRIrwY4Q3BTTGlxrQaqx2sgSZdkt9d40UJqZH0RhPC7hAPTXt2hucHOH6HerVkb3/Mzr//AVk2o7x8hfUVd1XK62c/p+tb/P6Ezs4e7qhPpTXCCyDpEx/e5/rVG/o7OV5vF2taOt0R1loIAhzXoxGGfLOmNdvaZU+6BIMROB7ru0vK1R1H7z0mr1s2dUmaZgx3+vzYCP6nn3zD4GLN+P2PuHe0S+30cWWX5eyYr7/8lNn8HGEzymrF977T5d3f+iGrDaTnF7xe3uIKw6auafIShAIhEdKnEYJsMafXH5NlKarjEI93kdLHaoMuWyQSaR3wPPygjyhniPklWbbGoGiR20XWWkJH4CuL5wv8bsjwaBfZZqxfhqyKhnJ1yvC9dwhdD1Na3Can3bj0dnbwOwnDR2NsWyPzHITd2rf9DqJp0UYT96c0ViCVQsqSsq4Jwi756ppO0mVZ1GRlhpWafq+D0YrZJqPb6RH6Lm1cc/TkPU5OTojchN3JiO4gpi6+pbEVWmi0LYmSDn7oMhkNKaslB5M9Rn6BNA5NI+m7Lpdvr7k7v8IaTbPIadOcp08fI5wGN4pIq5hFEBKohk57Q7MxqCpGmg5KOQhHYMqM6uIFRZZxd/KK51fHtEpzOb/hf/lfv2Xv3g7/7od/SBRMcOIdVNJHJhJbCIKDHkcPdugM99n/7m+RzW84/uTHTPZH+Mm/QMQDpHKgMdiixlYb2JwCFhyPVjoYZ+vO0kVDVaTMTs7Ib1fUeYrUEMiAyEa4eUy0MyGORnidHuKxhlIT+iP+83/6TxTzGcHBiJUKaZXDsB+irEvcH+PSYpYzkqSHWC+3turJfXLh0e2PyW8WCKUR0uV2njGa+pRtTlWX6MoQqBBlLfX6BuX5BMNddLNNmZnNBooNtswxeYHrephsTT6/QuCw+/A+btgDr8Ab9BGTkOKTl9zOal5f5WzSij0POr/4BKfKCAf3OHyQ0HgD6HQp1zmeNTz+zhOOX72mdjWOY/BC8JWGKqXZ5IgspDISnae4SchqscTg0KRrUiu5XcxIeiPOVisMBiUty9WC4f37ON0RuFe8ObtkeDikLEr2P/wBOpngXXzD5TKlRBIoiR+5JIOAqCwJPI823XD3ySeMvv/HVFGIPX6Jv77GvbdHaSXrdcb9ictNWpHELVIYpGNxlYBYkS4swfySjvIQUtK2CTKKsLrGVA1CNBjVoV0X6EpR41CVJa7b4fKrZxwOwdnMqF4uUDdvEMLFbwXpIuMuzUlrkK0mevqI3sOHVMsb6lkBmzvMOqI1A9RkF6d/CG2FcgzS09jNCiHE1jEhFb7vMD+7pC4rVD9G0ZBXcHM1A93w0cdPiUNBu7zmwfsfUTgd0stTZsuU4xdvCPtDXGMJXZdGGDxHgN0yXYxv8GXIcnFJMrZU1RWry9c0vxBMP3wXm60QVY6XDKh0hj/s0Fm6nN4tCZMYZQyrPKdoNnjNBjdrMVt/CRaD0FvBz6xXtMfPaed3iOlD1PgAFUSgC0zdIhYbTv7+J/z1P/6EP/7938Hv3Cf725e06R0mvEPuhYQPniCCKbbKUcM+qttHF4bwcJ/s2y9oFg5vv3zGnjng/ntPkB0HU8wxRY5t5ngDhSlrVvMFbqDJxQpQuE7FoplxrTOEY9HGIKRAozmbLbi3WtEbdBk+fLiNm95cIDyX1Evw6pZuGOIN+2jPYX88Qt/knH9+zbeffsFs0fA7//5dJoPH5MLBBg2iWlOWJVIqtONTVzUGEH6HRji0bU1rfIr5nMF0F4EAxwGjQW7bn6z0kNLD7U2QXhcZalA+X3/+KYf7u8TjCc5wl8ZIwskO8cEu9eklrrOtQ7+6ueX53ZKgO6TX7RIIzXKxZtSPwQsQQUhj2q3odH2GM5wgqpq2ztB5ia1B4NPO76jzlLpqsbGPloKqsRSVZueDjyg/SPj0f3jNVd7QW6R8/vUVD9894KnvM9qZMDt7y4+/OGdWBQzMgqTXxV2VaCHoHuwQHvRRgc/w8Ih28ZosgtSD7oN9ysslnq8oqxXWd3GzNbrSCAxOHGJ8F+P7yDAGaUAUmCJDIDG6RDkhVlrauqGZX7F680ue//gfefH2gge/9y9QGOr1HY4xKNESDfqoIKKZ3ZC9fkt6M+f9H76HEClesMQdWvyDfViluG+WtNUCZE3y4ENWd2eIX/wdYTymnRdYv7t9x3UGbU2jNXVbUK6X2MbgNYLi9pq0KLmtFJt8QxQENA0k/ZCsLgn2ElQnxPEckoOP2H/0L4l3Q/b+1ZS2uWF/8pTZtxf8w49/zqeXtzz+3T+gDhKUkrStJWwawGHZtqyXG0RdszSCvemYu+Nj1uOYfq9Dnac4ykOkC2yWYhZL5HCKlXIr8FuLjPsEhx9Qnh8T7PTQYUGxLmhrTXFbkDc5i9mKYb/LIAlIVhXLW0Hs9+jvPcXtdnFEjawzmvkaeTBBBl38wYB6cY3z0KN9cYy5PUMk3wURYosGWgNNAekKm6+wtabZrDGeAuuCZyHs0vzK0VHP7kivb/Fkixt4KGFZViUI6CYxj/aP6LoSXVviTsjO/QM+/MEP6DuKNz//MV6/T1NWDPoxynGpiox2MCR6cMBO0sWdL7BSwWLB7PSSKPSJEofl1SVhp4fT7VF3pyxtyyBNccIOMuxuz6VG47oWYxx0a/FCBx0G6G6PMgNT1nSGOwz27nN3cUyerTl4cG+73AcOQdLHcwPcKEQYHy+6T8dTBLcnPLg8wqm3O8fZ578k3Vwyvj/G92OUEch+D7DoNsfxe8huH6M1mBohJZgGW1e0RY6ta5p6Q72acznf8Oz5azxHoByXpL+H0S7l3ZxxnCD29tBBxCwvmM1umexM8fISFYbsHb2LLdfUVYGvBPsPH6FPz0iUAm1oDEhtCIOQr5+/pehueLAzpTEW40WoIMCiaZsCmfQosxmqLLB1jpAupkrRZYYTx5h8jS5LymzFCoXqdMnXC6LuhNF0j3i4y/rNK/p7h4R7R0jXp7q5pb58gdsWyOSQVlqcOKSuKjr9EUHcRWlQTYv0IpZXS4Lu5ZZBZjzwXESdQdPiuCFNWSFEtI0BKklrJa1RzNI5F7M5j997l6xpmD68j3BdSi9mNZvR6/nUusJvCvrSMu0EzKVEuh69yRgnz3D1b5gmv475jWjyaxrrOehxj2icQNdhU+Tc5iV1WeB4Ho1V/PL1NT/4+BEvPvn/UC3EnR2sF1PUNVHo01oo8xQ/SqilgyssIl8DEuM0OHGAFRLLrxR4ZTFVQbNeI5wYb7xDVBb04pikE5Efv4Y8x5keIsMYN+6g6w1VmaHqNU2z4vyXn/G//82nRN2YnRjK5obCdfEFuHGIF4QgJF6/T9WJWa9v8IZDvG4X+SuInpVA4HP+8lssms54St5aVFoQDbtI36Up1gx7EVHkcu/RET/72ad40ifwEuKox21aE+CQr1LWs1vq0R6reU5balZFipFQZJqLC8OLVwU/nMQ8fjhh0Ynh3n06QYDUltJKNmnFfq9DnW3wHI+2bWmlR1VU+I5DEEbU2Rw2FZ3xIW3T4k/7tCjsZo5N8+1zVzK/zribr8FKjBVI4eKFAY7JUTZFb1b4kxjH96kLw+blK8zVJXa2oFIOXscl9A3lfEagfGrR4IURVgikcpHCwRYbTJNTb1KCQYDrS8qmpNEtnudQtS1NU+N1hlyWLSe3V9StZji5R1u7ZK3g5OKSfrzL/YNdJr2Yqi6Yzy44ONyhtZq72RVKGbJyQ9NUGKtJuiH9QY+bc5ffefqE1y+PObm8453dXXRdEDsxp+fXNI2mLTOU1cxur5kcunjJiCxr0EEXEfpYUVLPXyL3xvh2gsWBpqQ6eUZ2fcXtyStW1Zr3PnrE25ML5vWaVVvz2S+eczur+NPf/VOeJke019coo0A2BEf3+fhfP+H2yxmjJ2MG3kO4/pblj/6G/t4Byu9jky7wK25AtcRcHSPCDlZbdNhBC4FuWtq8oLyr2Zx6rOcuhdfHigLfrdGtRsmQjnQJ4y5OGCFHBr3OcZKEx//5P3L11c9Z5IZWuWRFSja7QlrD/tFT4n6Her2hePuK3r0p9SzHD3x0K1m1GpVsAanaOrQSWl9Tm5KqLWgKgSNC6rykWdxAVeMIgdsfIZREWIloS6jWuNKg0VBl2ConHB2S7O2jogCTJLQX36IXGedfPOd//vQrni9XtG3Bhx2P/+6//mOa9Bz/wR7de+9T3tZor0Mjc8zNDaP9e+RtS3p9TJwk1G2LnV+hywJparTn4w7GoCSboqKqS4oiI1ukrNqW1SYjiKYsVg1SQNIJqIylXM55eO8QuZwQ6Bq3N6Y2gsCVdCcd5mvFvPQIOiGDWDM5HDH46Anl6QnusI8rXbr3pkT7faS2HJ+84dXZBV3XIekOuF5lHN+taOoQ3/O5l2f4Eqw0yKah9nwW+Jh0TSxdXFPh5C3WT5CdDtganbfossGGCUYF+KM+m5sr9O0Ndevw6vgVD3fHBB/81tb9ZxyWWUNuGsqqZdqL0cbgdPs4jsWzlxTn14hBH9ntIqxANO32f1k0UG8QKqG9O926j+p2e5gOHIhDGlkjHY/VsmA87uFFEXiK/PKMZpPhNV+zM9nh3iDh6uKWIq3xwpow6VEvZrhKEMUhpS5oSZEGFJKTr27oftzB9RSVLbn+yd9w+uUnBLSMnjxhuHNEk2rcwKV/MOHdjmI+W0NhqNqQokxJZIYxAtUYbL09GJoy3TI4ZkvKN1e4+wfIeIgKOwhhoCior664+fwZn/78GY7nM9zdpVmuEDIkvbnm9vYbnl2eoLoR//rP/i07Tx+BG2BSgfD6uKMu0mzIzm4oypx0taa4OCd5b4qMu+BIjC1prq+oVmv6ky6ru5LWXWG8gKax3K0F81QReB2UU2CtxkpDbQtOb64Y9bp0kz6Te/tgUgrfULdQ1yXOYICTJKyyOdNIUGQb7pYvubw943Jheb/QDPePSByLlJegJE2VInVNiwXXoS1yhoHDalMwDCKk59N7+ARpt+/SNBt0bWitwO/0efAv/wRdZAgBshOQLVfUkzE//9FP+OT5C/7DH/2AUdLFdVzccoEoEtyuj3N4gLk1iAbe6fWZ7o45OJgSmJS6brm4nCO9iEEQoVuNaQoCpWhml6gwgareLnVG0NSGMktpdM1Ga1QU4CiPPN9Q4JMVGetsxg+//xRn0OH/eHbBWitEN2P+53/O4Qff4XhW89PPj+lPJoSdmmHg4okOpTOke2+KT4qt5jj6mKpd8+WbMzInQt0b44uQdpHSUR7L1lBrSwW0bkAtanxZ4Hkd3jOsAgAAIABJREFUtBQIrVGioJ7PUEGMCgxsLLopaTZzsusT3jz7gnlu+K2PHtN2HJZ3p3QCQTwcI/EQ3ggn6SP0hiB2GEUxcTDGiWF5e8bd7RLn9TFtY2jmMxxP0otirG7o3P+Y7PQF6ck32+amMMQGEfgKYzVlXlKaijKvcIVPkZdkeUpmJZe54m65ZOdgn7zOaYxFGoEjWnAEMghw9h7z9N/9t7z+/EekN2tGv/N9VN3HnxWIpMfLmw2LV9c8fBQxHfgsbm+Zn5yQZTkffOd93n/nEcuTN0yNZdzvEeiW4vqSfDJAKoVwBbrJEZ4HvSG6LrBYrAZTVb+KzIE1HqaxCOPSlEuKVc6muIY258HBEUFnzHq+5NurV3ScgP7BY4L7TxjujylOXuBFLsqTIAN0LXG1ixcPIV/BaED61UucZA9HBMhOgm1K7PKG9uQl1vdo6pRqs0H0Bkg3ojUtWkqqzYLWFDS/gvl7/hbGLJVDmWb0ygbTGuKkx27scdDpkEyn7I1GHCRdZpe3nH/5GWWtCaIY33MZdH2auuIXz77g+7/7+4zffw8x36A3KxrPI45bBkf7uFSsr9+SrWL2p39AW+aoOCQrW7wiR7oBwvG237LroNsKp6loaH91lhdoqXCGU/AiGtNSZUs6ic9ivUb4NdPW0NndRzT11tHreqAsxeoCZW+YPjliZCyd0S7feB0uT4+p8pSkOyLyI5TvIl0X7fg0dYNbVxgpEbbGtjUm22DqgratEa6kuJ3x4vVrPnl9g21ypLCEUUQnGWBbF1M2XK9ShtNdNk3F8cuvKbIcIWAyGXH44B7Td95DVBnV3S1a5viOB45Lc/aWtm4QwiIcj1VWsqg0V6dXSOWw3+9yO5/Ru3+4remtUnBc4ocfbNsc6xLazRasPrmHqSvauiKb3bDJChpjUY5FOwo52sUb7yClpF3eEdw7opoXxHtdkvv3SJdvOP/sG+R0jhMlbGZzHj6Ysv/4AY5xUMZC4FLoFtsuWbx8jueGKATuaIpA0JYptulCGLC+OmV+eU7g++CHrMuKrCjpBj4EIXfKJ57sgdUY16WsCxyTEyURrZJEdUUvDhGOIoy79Lod/mR/j73B4J90x/3nMr8RTX5NE/k+MglxRgNqW3CTpqTrFbs7U24vbvHCkBcvj7m5+4L79w54+uA+VVayt7NDa1taISjFVrXsK4uQFi0VRmuEEGAatNVIKTC6QaclbVHQFiW61cT336GwAt9A6Hs0ec56dkskFZWEuq4or6+RUYAIx+hKcvnTH/PZp58iheJ6s8R75x4izZlfXDAoS8LYw08SonhALQXusM/FMiUplojYJXRDrJQgFNq2bDZLfN9B+B67Bx180eL4kqqpSCKfd5++S+W4lOWG/f0dGmGQjku/O6CXlygr6fo+e47DyA+4m13hkuMHHaxpqV2BkCn/2//5I6pZwE6/S1kawukDQlvilZa8t8NtWvEYg1CKugGrzZY/IRqyokYFEU7UAxpao7G+i3ElKuggmxVNvqBs4Oy65vXLK3TbYmWEbmpkU1NenlE4BUFPY6KKYtEiqOl2+7i9CdZ12H+c8LdffEFfS3buTShul2S357hC0JgubjRGeD5S59iwg0wiYsfFVDWmqVFC46rtzeNqeQeOg/QDzi7OuFsuSOKIspjT23tCJBXmzMdYQT/pc3Swy2C6Q5ZWWNFwd32NbQ2ZLmhci3AlQhq00Ax6IY+ODphfXvH++0MG+w5B0LK42xCbkMTxmVU5Wm9BdcpuDxNGKDyvi+sNkaqPTnzoSGpZocwG0bQ0szNWb95y++qYFsmD73yPuN/l8W//Ntn6juCTV0RfveYvX55wPf+/+S++x4F+izuUFJslv/zHv2d9ccpOJ8QsX+LEB3Q6imqxJn/5C9zxfYQfYaWDsC3gI3afohdzzPqCZnGL9SMqAxZDXi1ZVhu0qJAClO8RSLGNbsUGghWq5yGDcOucalqU45DPlpx+9hnxB79PpQWlUfRGI/L1nHA4IOz2oAZ57ylOL8KUd1R3J7TxHm7k4/oeVhcIz9J4ilWlqMoWWoPQHro0lMs1mecTN4asfk4w3ccf7SOES5tu0K1FCEm1mKGrirquOXz8Ln6ngwh96BVsXn9C8fqCn37+HF/A7z0+xHE0e6oB1+Lu7WBNgdU5eD6myUmvLknuv4P2Y0b3BFm6ppaWznCMbEt0VVM1Jb6K0Jsc6yi0C8v1mqqpOV8suc4KaitwowjrOEjPp+MHhBKabIOoM1To47sC67mUJiC7uSPp+jR5hi0bli9+yeCdQ/o7+8SdCL9eUS8uiUb38Q/20VXK6x/9PV88+xler0ucdBk6MfbsnLxquN1s68YfzVc4Fnqxj60btG0p3IAo9sk2d7jzjKjjIzpTXCXBFjR5SuV2sXGA8DQmu4F6wagTozYliTciDPbpffyHWGNZ/PxbJoMEbTIkPkfvPSQYBOjNgtXLlySjGNn32Nxe43UmWLXESgebDMD6GJ2jvBChJaZYYasSi6FoanAUQkDdNDiOIHY8llnGXiLp7w/Jvi3J316RWEVHeZSlZjIYs//giGkUMH/9gqbJCHyF8jyWmzu6vS5X1ymfPntLaVp+8NtHJI8+wPZWfPPFczCW+OMprhfQCbu4maaNFKGN6IqMKi1RlcZWlgafIBlgW4UtWpAVpi6wTYVez/EePkIkfWQcoDoRJitpZ1csnn/N29cntNbBt5ra5Hh7Pv7BHnX1lou3OX/98pRNWfHZV8f8l//qT3jwb/8NwXt7WOOCWRIc7KM6HSbZijIvKFdrgvkdwnEwRU6bpqxvZtiqptsZ0VmUhNLBx1IXBXczB6M7xI4gCQqyNsfxHEIXyuUds5OE8XBKZmpaobG6ZX13ixAKb7j9X69vZ/zk7ZcEgL/X44M/+n2GZxsqmXP48BGbbEZVKBrPpbagq5K2aSmKiiItCMOYxg7JipLIGKywWKtBbmMLTWtRnQHeYIgbeKAUWlt0m/HNL3/GF2+uuQr2+eLFzxg9e8YfakM3iDD9HB0HRI+OEDsx+sTj8Xfex/UM4XhAd2dCU/UoqwypW/JNQdSttk7A5QwhwV9d0M4tBh9DjE5T2iqjcTVVVbE2As+4NMuU2bpAeoJBpHkaShZM+fz4mstVjR9FXNyl3J6f8VDuMhpNiKIQ09Y4vtoyDkpN5Eka7SFFxOr4c25eveUXrxourzY8+vB7xGGCF/S5+/xbHAOJdEhbga0b8qYhQOMHgiabI/wtl0EXM4rbqy0DIOigPB+dbyizOcv5NXsPdhhPu5RpRtxLODl9zWAQMr2/hzEFGBBuizvpkTzaZ3J5yvnf/ZzLbM7JxRXWU/T2X/LoO08Y9ifbhjsHqjJHjHz8yT61tixvl6Snrwh6HYwrcGOPqmjJqgoVucwWG5pas0lTNsIjMz55C+usYHxvj1Hk0VYQIqmAMAwQQcDeD5/gJcdok9MCJ29esLi4RiV97h0dcfDehwhTYMwWuFkby3yx5Kc//TnvJCF9UyNXay7TnNEHj9gs1lRZiqKlrSuSHthaI5HoqkQYu/3Wq5Lm9goZDbBNSZPn24hWlbG6OydtNA+fPKa/t4PRLos3Nyxna4bjKY7XQeJiVyviQYwb91HdBDojhArQqwonVLhxFyFc0pd9ijdviaQEM0I4chvd8wOM0BAFyFF/CytFoouGoixx+z2aQtAYS20MVgg8T+J5Ls2swUkzEmORno/f7dHv95DSoRNFNPuWu9mCTiDJ1wuqjaQqS/ygy93NLfPFhuanP+HP/psnHD14zPzVc1aLGSLu4I9G6HTDzsND8rykrXMGox3u5guWTkun20HVFUI6SOlsL3gA2hJb5ZT5muV6iREOSIPVJevZFevlLeOOS15ZqjAgO39JaAXR7gSZ7CM7HrYuCGIX67u8+vJbmkaz7l8z6Q9oi5KmaihWc5LdkND3qcsarSxB4NOuF8imwOoWqSTWGozRtMWGplrz6bPPeH29JE8rAk8SRz5BGDDZPeTy5IpKC4bTMdrTnH7xDS9fPifyfSJfkW1WDCdjJvceYMoS0Z8QlAXrs1Mco5krialbUBLrO6w2a4yEu9WGn718y+++c8ghGq2OCF0PXaZbX6PZ8v5wA5qigbxC+Cm2NeS35+R1xeJqjt/3uV6scZMeretQ63IL7w98Fm8v6Bwk5H/xV0SJoLh7y93pKa++/op/9Ue/x7vv7dEZJQSdeMslC2La9R0s76iyNUq5VE2GXt9htcUNfEQUYXSDLVuy89dslrdsgg6yNoS9LrsPHmzB4FaTZCuu374gSWI2rsftcskwVoRKIgIXDLiO4vDpY1Ir+fhP/4ynh4cku3v/dAvuP6P5jWjyaxrpKDqjLo0L60VOdXvNbjciEOCG/tad4CrSoiQtDYQDrLSUlcYJPaqqQTgB+aZiVFa4kaZtGvw4QSmHtmowbQHSB9cDz0BdYS2IzgCRDJFlSVBVmPWGZZHzk7/9Gcr3+P3G0gKd/TGyl9C2ika4rGVA3dvBlil+scZaw6ww6PWSbFkwmg4obubsHrQoa/DCDkXp0ODgZhl5K3G9ABVK6rokSTrUTYPRhrCXIHWKiv1tQ4nxOLu8YjAdkCRdBgjwHO4WKXVjGQ3G3LYlmbG0UpHbhpvzYxKvIBnsUOQN4/4ObR7yy/Ov+Yu/+0c+fvQO9x//Dvv797j74u8pgoqv3rwhGk65vlOMkw7aNFgpcZWl1XKr9APamG1Ex/Fw4gilJE1dUaxnrJcrTi5zvvrymMAKfD/AokirjE2aoZTFvaxx2zncnSHbAtYlMnNI7n2AcSVOL6a/KXh59pL7j3cYPtonf/mCup7j2g6O5yKiBL2pEI4DLjidBOsVmKICuXVP+LFHXtR0BttbleubO1zXxVHQFhnZ8ho/7uIl3q/ajDw84TMeDLBmxqvX3+D5Et1aep0eN6czbi+vmfSHaFtgRU6vE6AGHdaVZv/d91ncLajzmpvFCsetsDpHuopJMsGhgyc8PGuxUYLyQ7QKECQ0tUC23S33YHHJ9WdfsLyaIcIu06Ndkp0pUb+PsDGhVjyu9ukbhz95/30+/eqEb589w213WcuK//Ev/56/ffmGCMu/6ftY3+ej732XprgjebyPrmfUt6f4QWfLhXAEuNEWHBfktKeX6KZEhyNaXIxnyM2GXK0J/JJAlCg/QrfVtnIx8BCjAyrTEilw/AQ9X2LykvOffIa1LijJyckFfrdLIH2i4YQi3+CEDm4npnf0kHq+wrt3RFWnVNqjbVfE/SHp+pao1wERkdptxnooJLglmaowMqSoligDJqsoLk+Jpvt43RFWurjjfdryFY7vsJlXOHFIsjNB+R61gXK1oGwsb+8yVCdiV1Z0owbhKpT1OPnmJX6zoXtYQF+iGVOsMvA63JwvEFFF2IsZHdwnv32LBrzeBNHWOA4oHGpdo61Gty1lU7DIUt4uNqzKmv3pDrUfUtmWpBPRtJYo8LGuwNY5ZjMn6vi4oYseDjj+/KeE5gl+r4/1FCxP0c0eSX+Ia2vqdMny1THVfE15ecaXf/UXfPn8Bb1+wqMP3mMxu6WPIAxD0jxjVWvUKmW2XjOIQxxHIOsGpVxWmzW+bYl0TZMtEd0j/KSLzWfYNqV1Y9ROh2JxQ336Fu0JIsfhwe99jJu5fPLsK2wZkHz5CiNajGO4/3jM568aAu0Qi4QkGRB0EjIbE03ewRvVzF8tqOdn+K5CNB1oym0Fqmmpr09pZwt0MaMVNUVl2GxSfCxOqGiNxAlClssNg46HW5WcfH3J+ptj3CBgcLiH47gMegOcMGFgLe3zbzjY2+Vss6RtVvhBh1m24Gp+yafPrnn+6oLrdMG9gx16tcJPpjz5Xg/hBxg/pKlzjO/jDvuIbIErDZ3Ep6ozynLJuhnQ1w5aSJxAgXS3gFphtou/HyIHY5AgAxfbVNhsRvnlT8mOj6nrhslkiisaXn/1Ncevfsno6B1Cr8+Xy4Jz02HS6/Ficcef/z//L//R7bDvjnFGU2y1QYQxwXif+6FHNrvAYmkWc0Rbo6uGpmrwlKLpdmjTkv1gjO96lGbBqsq4TDdo4eC6EcPOmGYzwxEGXzhIY9g0G85vX+EnSzxRULUN8d4Dom6C8ToUlUKv4MUvb8ko+eM//AMmR99l+eNvUF6C7wdsNoa6acD1MZ7HqrWs7paUVYtpDKVc0R9nZGGPpNE4uqWpC2zdUNcSI7u4ysUJY4TjInwFbUFzc8PhJEKbKfMUvoojfnxyxeM4wptMoWyoy4L16Qu0a3HbiuG9Hir6HsHDh1RlQZWuCDfrrRhqa5TVuFKQVxWnX37JR7tdKs0WTrw5pa5bKsAEHnPjkBUZq+aG0g1Z5zXjqIPfjaEuOV9mvJ7lCOmgLFxc3DBPDeHlgtH0kOl0j01TIyMJ9YqO00KV4foRyolp+u/z1VfHfHN5TSfZJ54c0rQtnUCymc5psgLlKgplWLYtXSXQdYGxvW2rSn6LYy3r61csjt8y3N0Bx0dIQVuk1ELjdSOy+RVFuiG5/w5xGND3FF//6B+ozl8z6ndZzlO0bhgNQG4uKfJzfv7lMRujyFvF08MRH333fZwooDOekN5ckOc50e4Bjq2xnsJ2fIZHBxjpcHs1Z7mZo/wtC6ayYHxJU1ja1lBULesmZ47i3uEOQrlURYUMI3w3wjZQlDV9P0Ag8UOHwW9/l/RCcnP8DZ89X9ELxySPH2A6u4RJH9kI6mpDuklxPR8tHF68PubgvUcsyozluiAax0zf+QCxPqNIM6KkS902FFWDbAqkFdTrDFqBEi62LjDKwQAtFhH5VJs78mzNvMiYPnqHzv0jhN9HGklralpr+enZNad/9dfcf/GKfs/lnY8es/O99xGDCaI3QQQh1AVG1ghnhFIZYjJlPVvizc+30O4o2V4mWajLHOv/ymUhBLqqqZuKdd4SuB4YQ4OiMZpG+Qg/pDZzekHAh6MRR0rhtA1+GOL4EZ7rIIVD4Ecsljl1kVOvS7S2XNys6fQdZuscJSwPxiF6fsbeh99h6j9i+e2XbEqPwc4ezmSMtpoYQSNcmrrg7PUr8vWAZDJFeCEIheP50DaYukSXBXdnb5hdnDI4uIf1A7TWVOmaF9++YCBrskKjOmNqbZAq5frlJ8jliPvR9/EYgy2w6Yz25JKBq/AeHPKjv/wRj77/W/T39hgcPWF5dUW6mOEi8LpDLC317JogTmjLCuk6tFJidIVpCxazK26uLzg5PcGJBvS6ESkNMldESYKK+owPIjrdhNPNkmef/5jjy0u01mRVzZvLG8ZZyLpu6EymtKslk4MDRoHHmVK8+ulPCaWLMgYjJUY6YFrQhrxuWGxSdFPTPrrP0TsZvckIz+1g6oom3eB5AUIqvN6EqrqmvZ1RrzLyvGRZzkjLDLc2GATagF8uMfMVi+uWm9UMZ9kiAofl8jXHv3jD+vaWZZ1yWhV8b3nH9OP3iPenqLiHN7yPiro0Vy8QsUGOXcp8TWsrpO9SFktM5eA09Rao6wr8bo/SnJDlNSK/Yse32GRIPNpjc32JIwy9wGHWGK6zAmU1SltiV+JISdLtYd0A+TDiNq3Y+84HJA/fRXW7/5Qr7j+b+Y1o8muaVm7p3VVbcZMuWaUrJns7RJ5PmJXQCdjfn3J8coF1HBqhwLbcXt/iHt7HSI+mqRAOlFVJ2DQYWyCFwAiFkAqaHIvG6BprSkxbUNfb+I0TJ/iuT11VrL99Saotnf4hq9kN8+tb+js98jqlvNxQ5DlKuJhej5u8Yi8KOb28JL3aUFYljuuyWS5RQY9CtlSv37A33cVFkHRjCuvQCzqARTguWVpS65Kq1WhttwyRyRQ/CNFSMbtb8urkmus0xx13caTgcrlm7+ERcSPo9mKoKkIvxt+Z4nc7nF2fUWfbSIKxcHD/CaYQ3F5tONg7RAnL6OAQE8W88/FHpKtb1hfndByFBt6cnTP48CkaxXqTMdrbQ1cpVZ5RKIGUClf4oGKsUVhHopuKbDXn/OKOr5+/phcqkuEY33WQWrNclqw2V2hnyqwu8E+XOIHDphCMwg574YDwyQd0Hu0Rxy1H5y/5h5NvKKRLN+gT3HtEs95gqGmyO4SqkUkEqC3h37QY0SIiH9sUtBqs0SgPol5va6ssSrRRvDm+Zm9/SOLUDHuWL5RGWIvjwvnJS6RneHn8LXm25P2nH7JJS0RtMI1mdnULT57iKw+NwVMhlgR3PMW0GbOzO0b9PtIIqrJiOO2y2Fg2C8Pb63M+eNeH0Ef6LrLjYL2STZ4TtF18PaQtK+YvvubivKCqFXuHY7zdKc5ogAwTqH0Wz85QgUH2DEf3j1DJkPliw5cvL/jJ2+f8w+s3uEqxFziUCF4/e81UFzRewPTJH2KVpS0XuKZBKUBacH7FiAla3If3sRtDnQa01QbrtwixzfqL7oA03xArF9+LCd0+gh1Ge0+pS00VVvhBD0xNOpuRhyHJ0485u75jtVyToOhHPo6Ekxe/YDwekEQT2qtTPCFgmCC1T7ZqCQd75PMTmkoQBjEi6LBezZllDa6rCABHCoRUOGFAmWYIZdDFBl2kRKMDgskB1eacZnFNla5ojaHT6yGpadIZ6eKW/PaMxtQk9xMOuooiSym15LIw7A6mbPSarz6/YXil8Xc0eX3OzbykshLPC4g6If39XaJxj1T5tEZjdIPje2ghqdMlVoIWgqqpOL+94exyzqpoEY4k6I3YtDVhJMnWLca6tHXLsJ8gMaRFxXqzYjoc0t68wuiMl199SffdD5nNK6Ki4vmPfsRoMCRocy6/+JTp9B7z5RuSpIe0De+995gagdIttDVj12ccR+RFjkCQWcXxPMN3F4zibe2qbgqaxpLXCqsbbCvQd3P8rMHrWETs4w87lJsV19+csvvuHuE4Il9f44YJUu7y4v/6K/7x65f896IFUXC+mrP3cIfKpgSOA61GKRcjBd7uPaKDI7LZFf5Is7m+xfNipBejhGWriglMmGCCFe0ipWwK8rLBSyK82EO4LpUx6LYlciXjyGFzcoYzfYf395+SXR0Tjrp8+/UNr09v6AZLVJYSHB5y015wtXqFUkP+f/bebEmyK73S+/Y+8+DHZ48xIwckpkKhgBrYzS5S3ZTM+kImk5mkC3Vf6Vn4CnoA3fNCkploLVOrhyLZYhFVRVYBBSSABBKZERmRMfnsZ572Prrwsn6DJi9Y/xO4u7m5n3/9a31rNAiIs5QvXm558WrDdpeC1ry6esUP3/0e6f2S7WZJf9TDUg3KnO0/I0tg90JUtqFjz4hRlkmS5jRVjqLBsORefZYuXQtdXSFCDywL4Xp7Mb/JKD//C4o3X1HXGZNRQKkCOqH49ctnvLq9Z/vLr3j/4IBXqWSVbbhNFD8ch7iDHi++eUbv8Vu4TYlp55hRDxlG2GmEFVrUdYNqS1SRIzqBEhotWwzXxbc8jK6kqUvqWvLdOiEpt3RGH9M38KXB2OrRlBmWtLANg1xlNM09TaExTIu6W5CvF0yt/wGvM8nihrLsMF2ffjDAOXnM6raif/Iul5/fEH23pjY31HWObBSGgJ02eD5PSOKUqlAE3o7T42M82WE4HkgD3xH7333bxnZdVB2jqhDpjWiTGGG0tOt7/MDn9OGI6Lt7AkdwvUr4y1eXfK+quYxfcnVxgSc11nTKT956nx+9c7r/D+w8RNhD9kLcgylGuUWVJYYASyioasK+hzJspKGQwiLbbKiEA46NlppGmMyTklxqOkcijb2IbJmC7Sblyp6hg5Ym2SKblsV8wWB6SCcFq/Wa4SBit5gjpUlvPETmJbt4RVnVlGWHDE85+vhtrrJfcDodYrseJrDexPRnU8rbBfFmheNLsjKhyBOa2qcuEkxhQdvQNiXxmzfcvrpgdX6O6XjYrgVmx9FPPqQTDapKcF0b15AYWcHZ9BA/MNne3nL/9W95+etzouMT3HyNYcesFzGXacKilniezbKtuF3OOTwaYVk10cOz/wz6FE2M4bjIfohSGYOjAdJzsDceuyxFN5rV9Zra0EwGIU3bkmFwu0kopE3axTz50U+JqoLIFrieQ9fWlNsljT7D/p1Q4I9naOMdvHLLweMZYe8BljJIO5+2M+haQZmm3Ly54eLlOS8uLnEEtHWDJUxuFiv+xcNTIs+mzCR5EhOEPq1hgFVidwrZtrSiwzRtlOrAMhB2b9+GZZu0eUKWxyRVQXQ0Y3I2w/Lt/SEoVwzHx7j+EsdU/Ga75PnuNYKa4Zdj/mf1r3n3nx8gtIEwLSzfhrYCXNAa24f5TUnfGSPLBGS3F8jqfN8CJuReDCsrMAzSrCbNKhpDEIQD6iqhsbx9CQACVMfjKOBHsylG29JrFGmS7Y97tk9WlqzmO8qk4OJqgd01LLY520IxyPdxmv/xv/kD3n58hgwCRJXg2CaWIdht5/R6Pdquw3EcyizG9n0+ffY556/P+e67hmg2w3QdpGGAahG6pckz0u2Sm/OXPP34RyilaC2btm3YLefUyZKXd9c0bcN0csijh49I4oJ0U3H72XeobcrDj97axwALwaoeo70HXPz6cw6//wGVYTE9ecjpx/+UcZayvHhB1bSIPEFYBh0dZV1juz4dgs4Q1G3OdnnN/c0t690OYdr0ooi8qEC5FKWLNh0u725oWrDtji+e/5rF/QWe5+IWLsIwUHVFWtSskoI0K6HRRP0hhuMxePcjDnKFbH+JRCC0Rpomp4eHJK1gmeTEScwmr7hcbnh59YbpbILSgqpqiKYDTFvs4zrSQboO9fyW+etz7u835L6FF5oU24q+tKnnMdntPXdlQyU1q22BVWmWywt+8d05//biGlO3fD/0OYo8Fqs54pO/4uzHTxn/+Kd0ZkGzXdBWS8zxCN8BY31LkZc0ssHu9yjXS6ysQwpohUaYJrVh8dWzz+l5Lp0Auc1QCLa7DYubCzKhG8hPAAAgAElEQVTL49Vija52HAQaU0YkccKJ7/L2YZ9rbeGaNmYFVV2zrCt25b5g4PfzX3aMP/3TP/2Hfg3/KObq9vb9Z6+e/6uq2olX129os4SHRwdEjkMnTLqiYL1Y09Q1Pdel5zv4rsduuSVXBm4UEXkGSrW4toVp2diODV1HW9bYrotuWnRVUSRbVJNTp2sapfEfvI3pB6Aa8qqi1ZAnMRfn32Gsr/aNIqHLOsm4Or/ACgOE7bONU9TqmrwRUOTs7ucku5xS2AjTYLvZYUqLrGipqoJg2Ee2Jb5rEY6GQIftmBi+x2azZnG/oKw140kfKTRu2COJE1598Tmf/eYrLu+XHB3PmGcFNYLp5ACJ5Pb+lqzZ501n4YChH1FuV7iOReCEuJ5HFPTZJQ0vvv4Gz3V56/Qh77/zLlYaU0uTzeuXbLZbnOGMTZrR63t7vkpvym6bYI36rG6v8U2BGwSIDlSZ7UFPloPWDenyhotvnvPNq2sCXXB0OOHw7Amj6QFO4GG6IXEr2ZoOb+KM10nLZW5RelPul2vKMqOsCrQpEVVKff+a+9Ua/+iEo7MzbMcBy6WtCkwqVL7D9B2EHYKuUPmSps6QrkXdVCjHwZzOqNKY/ulDWkPy+vKaZ99e4h88YTob8+Bkgh8N2CYtWaWpymr/Z76+5/NPf86r756x2twwkC1VmiEtg+Um4cHhmMgLUGmFL0OaRDOezchXd1SrLVJ5LC7uWW1Sltua1U6z22xA1zw4nhKEIbZw6EURumtx3BJsgeVZtFXGq69es9IRveMTelMXp2cjQwfDjTDDEPtwTBFfo+uMYDrB6UfIwCFtSy7vbvF1w+Oey/t9l4ejHgcDm6puOf2jP8F/+hOswQQ6RSdssN29WGKIPadANWgRoBiiMMBpadqYvGyxOh9TBfi9ALoW1/URRh/p9xkczJgcP6CtG0zDoLq94tO/+itWlWL04Alfff0CZeyvvz3HQGUr6t0tdy+/ot8P6Jka99EDpOciTMlqG9OqjmRxi2varO9ilAFa1KS7DVQNQzfANvdVs73+BEN4FHGCakvyeIsAqHPa7Zoiy6jbfYwjHOzhgJvXL7j8+nO2q3uKKqdSDWlRcbMuiIXN8aNT/MAj7E8pRZ9vLjM+fX7N11+/5H61ptc/xHEHmHWDLHPC8RgMA1SCbYFh+wjHBvG7q5AB2yLlN8+/4y6OKVSH5/Z4+8MfUkgD1ZVYpiDJcqQQuI7A8RxWix33izXrRpAst5gIhBdReRHL+ZZsk+LbLj//+a/5Dz/7OUGnGU3GtNERzmhKYGlMv0dnOXTJmqKqkbZDkuyolaZWe3s+KHquA9JA1yVllmFY9p7R0NTUTUtreshhhDX0sQYR2CYvvr4Gb4TrWEg0QrR4ozHhwTEfvP8BTycDNnmHHQ65vV/QCzzeffqQs8dHhGMfbXYUZUPv8BhtOzRtTVVWZJuYDgen30PaJqIpUGlCmyfoKqWpYvKyYR3HWL6L55l0tg2GyTbJSbMUo2148O7bfO9f/gv6Tx/g2jmV2+ff/MVn5GlCz/OYHMywXJdvLi7oRzW6q/AdwXy+I6klICnyEseEwWzAhz/+EN/dLyvxzXf0Bj28ySkCG0O1GNKgShvyBuKiRhs9KCXj/hQvcjECB9gvL+h6zzQpu73r0fWRjkeXLCi/+S271Yb/+Je/4r2HE9xhhOO7uNJA5h1pAUnbMvZczno9Tvp9fvzOA378wbsA+IMB0gW1u0dIg65raTYb7MEIYVvQ1UjXQksTVSt0rnE8gZA1eZVRtzmLNOWzlwtWuwzL8ym1gR/16Y1GuKZL5Li4vQCn5xOEFj3HBQ1xkWACJ+//V/iOT5PXWKaN47pIaTB98JDBoE+RzfnZJ59w/upb0vKWKOowdM12vWG+3pFkBXmpyGpNUrYE/SEnAw9d5/i+h0Kwmi8JpgdYYYisY+yeiTnoYUR9EJL1l19ThyOutopUBiSVQ160VFXFX758xeevLyibkoPJlB998D0enT5h+PAM7YUo28BA41sWftjD8Ty8XoDtWhjovegU9LH7AW1d0ClF3kLVGdTSoG5b7tdb5lmFsjxM26Jra6bjEZ7n86vPv+Pbi2vqdEujOsp4R2s53C1WmKaNbkom0zHa8QkczcnEQaC4ubnlfp0ThH2GBw8phUuel4yGA4bDEUXbcX67Js1TQltSb9e0dU7dVliWxbDfx7YM6jyjTLZk6xXJ/Q3nF69ZxylxHBPHO2YPxvSOxuTpjng+R+QJZlljG2AYEj8yGUx8+gc2j09chm6N329Ju4p53TDueziuxXQYMDno0Z869EJ3z02SYNgGlutgyD0Yeb/gZyjR0XYlrdi7ShwvxB+G1G2DMC1WWcnrdcYia1C6w7McXNNlNhjRNy0K1eH39zHA0rTpR0N0WyONDt1VtNjkYohWNoNen0r6pFnB5v6arkrYrlfc3d9B2zD2XKaWZNwL8TrF8SAisvcx2OmDI0zfR3eCXZzRlnuOjlINdZ6j64aOlq5raasa3Siy7Y54u+cFjc8e4Pd6WJ6HZF8rncmQjQpYtWBQ4OuE89Waril59eaWo9EhPb+PqTpMadDVNbrIUNma8s0r0k1M+OQRUrQINLooKOdzZDBAhAE0zR7kLAwur5dUHZiORVkr1tuYOIlZJRmtMNlsE/7k6SNsw6K2PYajGddf/5o8T3GDkKvXV6y3Ca2w+H//zb/lzf2GrFTorsPzXM5OZvzxT3/C8YMznGiCtHvsFvf4gxH5NqbVHabU7K7PSZOYZRzz6bNvWG53dALKRjGeTLBMA0Oyd0zkGfF6Tac1s4dPyMsSKwxQ0iDervn6y2c8HvsMxz2arMFRktCUHB5YeHXJxPORVYYyHYpGIkyTbL3g/PxbMFoG0ylnH/8hwWRGZ1rY/SEShdvvoRpF3dRU6Y46Tkl3W3a7OevlLXdX10gpibc7PKejExLLtVF1RdNUFJ3gl58/Z7ldoVwDTUyynOM6DrrTtG2zf49aM3pwxvFbb5OsV0xHI4aDEYaUpMs58c0bXNeisyy0YZLVFWVZkhQlqqkYDyLQCtnWnBwdEoYBTdPgBj2kENiOQxVvQTWUqzmNblllCS+uFohG0RQtWCOy0uXuzQU76fAq64iDU3aNx2p1xeVqRWTZPAlDjidDHj48QQ5HCM9FprcEYUubJ9RXd6QvXkO/R+ePQbQoDXXbYroOuq1pfscrrpsM3WSkRUODDZaNFw2wowh0x9cvX/Hi+o4EiWVZVKrGFgrLEETDPkEQ0o8C7LCH0orxwyd8+tuvaIuK7x+f/Nkk6n/7D7Xj/mOZ34smf09zvly+/7//p5//K7KFSOYLuqLi0fExgWXhth10Ajooy5ZOKyajCYET0pYV5y+f4wwDAs/EtixQCmk6IOS+ikzKPSxOCzokwugQKLRWGOEIdzRDNDlFElMj0b5FN45Y5zuaakddN8znOXf3W5xRD8MNWc3nlKsVkS2JrP2lpqcVZVLw5nbO9WaHKgratsUwoOkUWDaG1Awjj2A8xrRMWqURjkWlYbPN2CUJXuBhmyaWH7FexZy/uiAuNcFggBv0uI9Lhv0BruvSGSaf/fYLQt9H2BaDyYRv12ssS/CDd7/HwdEpg2jGJlN89pvf8uzLrzGEyXtPn1AXBYeuxavf/JL1co4zOWS5zUnyjNmDQygLpN/Hmj7ACVy6PMGVEsu2cD1nnx30IqRtUm4WLC5fcX17R5KXnA1DTk5OOf7oD3H6Q0xDUEuP1PRJtKRzHCzPJYx80nyH73XYgcSzWsT2nna1JN7tKLsO/+CI4+MR0vGRTh+kQGdrVFNhSANLmkgN0jaRno2io1aK0rSpXJ9wOCQ8PGWbxCzWO0pvxH/7r/8XhtMBN9/8hunBAbmyMYVNmafYjo1pWSAaLi++Q+uah+MDPN8jbxqinovf73M4GwBynwU3JZanSBeXNFmGXRm0dctyu8OOInbbmLKu6Aw46nscjMa49gG+6eH2Q2Tg0kkwLIubRcL9IsGfHNBzK3S1pa0KjHCMFY6ptU0tLMr1JaZRg+1QFDHffPklVze31Eoz8iRPhh4PD0YcHB5w8uiUhz/9KdEHP8U+OMMIewjbRCmN9Ht0QuzZJkKgGsAw0G2L6kpUt6apU5I4QfreHrrpW6iupRY2dSdQRsfrVy+YHZ2gpSQvcv79//Xn/OwXv6WzXIJoiOH12WQFXuAxcDqsrqAuEwxDgy2JBn16b/0Q6Xi0dcHNy2/oOoMyS9FSI1yTXbqhKDPWux1VnDP0IwLXwzL2AqFluwgD6irbx7aE2NuStcQMelSNoqhyXKNlu1rwN3/9KZf399yslmx3CfNVzEo5GONTZqHJOAoIx2ekG83N1YZF0bLRmqypSYuUuml5590fMRxMsHWFGw0x+gNMq0RVJVbg0xkSYVkgJa2A+WbHl8/PSRpFqzo+/uifYvsz+ienxNkSSY3vSFzTYZPEdCi2i5jdrqDtLD799jWLbbrPeDseA88nCsecHJ2QVwptekx8j9nhEbW0CcdTyDakSUonDardhsoPWGUZ8/ktyywn9H0AHMcGVWOYErSibls2VYfnhwg68qLEP3pAdDrDHYVY/TGdZbO6vaYWkt39HXdv7pkvUuyeRy+0CNwaUa3wjg5p7ZDRdISpN4R9G9d3cHshptMjHB/iSEFV15RKUFaKBrh/c89sEqLFPm+v65rszSuoK4o4oQGydIsbeXs+h5DUCr69vKUuC/qhw9HZGW4YoFVNGye8vq64fnOPY0umsxlh1CcRFpWQ9AfQczuGfY8WEzfqIzA4PjrC8zz601Peeu9jwsAjsjtCL0DZQxpl4PoDRJ1TbtcIEVIryWK9Is1i0BD1+oTTMZbj0dW/W2iyLbrKEG4PvBBhuwjTQN9fgDbw+kNO3Q4nDLAmM/Jth1n7TMIZgemhaPEDwYNxxFsnUw4OJzw4O+PgdMJufcezf//v+Lu//gS7zvEtg66tcWbHSMNAFcUeothWNGWJNGy0JWlVSZHvaDrF65sd31ytqCuFHw65W+8YTyc4wyNOTh8xjMZ7tohjYRqCnuPgWD7L2xVueMThOz8BBVVR4/shXjjANfvsrjTby5hPPvkbFvkt23xOUlccjV1MXbPdxNzfz6nrFtPYt+EEQY9WCyajIYFUYJh0psO23Fcye72AfH1L79EjhO2hq5Iy3qJsh2XR8tsvX+P6A6xW0ymDoesQ73YcBgPePzjheDzD6QV4UUitGrRuMKTC9z0810bXOciO+OoSo8lR2w1pXhA8eILdjzD8AC0F2nIpmpa8hV2Wcb2KEY6DFYbUeYIBDIZ9Xt8s+PkX5zRNQ5IVZHVL0TQEYQ+BZDgZEvVCBgczZqcnDPsufbclT3a8evWGX3x2QeXuYyl3N28Qbc1sNsVzfBb3CX/3y99SxTFD34Espmxa8rIkywsCc+9wUlVJHe8okn0r2us3d8y3MUlZ4dkGb//gEbv7K+ZXb0gXO7L5BpUWiDJDdzVCdGwX9xT5EuXWRGPQRk1Zt6hOEDcdjmMwOhrTm40xAokQLZ2U++huWlEvlrS7hE43dGiqvKLMtmTbOR2aRkus0XD/GZoWVVuTtA0v5jvWecVsdshsNsE0TR4+fgtpG8x++BFKa6xowMtvFoz8ATYaQYnuKiotWDU9WuHRlDXKCLhbx5x//RvW8zd8/fVzdkmKbhqqsuSgFzA6POC9n/yY/iAAIK8FkwcnqKZAWDZaaToETd2Qbjd0TY0bhrS6BQGtbqmLgiLJyIuG3myCO5ogLA9pabadR9F27JqGRFnsCojLGk9nPDIhyTIGYYRr9zDzHLnb0ZUNXV2j0jWb518y//IZne8yfOsxZujT5VvaotgzPwIXYRk0ZUlTt+S14vNnLyhVDaZJ3rTcLVYkaUFWNRQKJtGA7z96TDgc894/+2NcQ2C/ec5n/+kvyauKm5tbxrMZyu7x7/78z1nt9seJwLX44YfvcjyNIF6wWS04/f4fU+EghMDv9RGGjVYNOk9ZzpfERcnzyxvutwmdYZLXNffLJb3RmJ7rYgCqqWmqgjpP6dT+e2T0BgjHRRogBeyWK46Ozuj3JH5vxnKxw+xrfC/DC1pcx8E9OKLWLRjgjQ+INwnffvkMS20xLYmWHl4YgaH2DTRtsweSGxLDc8H2UFJQtzV1lpEnBbskIS0SosBhEEWkWYnrmFhSsd0lfLfSrFKF6TqMjwbUeoVqc+g0i7sldVljGAaO62L3+ri9AfP7Odlywcw3qe7ecP2rv2b97XMsL8QPfdK6ItcdXddhyI7ZeMLJwQGGbhFS0vddBlEPwzAQholtG4BAd/uInumYNFbA1bbgb3/zFZHwmDx4n9HH/5x1IVDtnIXT46ukpfejf4IV9Ql1zMAWDDwb2/NRYR8xGONGAa6pcEyBjFvKywKVm+AEZGVMtt3uUQmdQMsOpRq6rkUJ6HSNaUhqpbieL9mmBXlbke42SNWySDJez+eUHWw2673jzXfoLAuzLRkPI/pHx1TplsnRjOEwQtYlq2XM6uaGP3j3gz87mk5/L5r8F57fx3P+nqZtFBfPXxEPXby6wmwr2rrGCAPMoYmT7Dg4HFIVOS/Or/D6IdpxWJU52jD4+ssvCcOPOJtNsCyfXDoEQUjbtbimRV2WSKPD9GxU26GVQksTdzJGGB11p9GeR60ztps19/c3aNflPGvJFylpW2B4Ng8Mjf3mitNQMPGOMZ0Bm/kbmlXMLm5IC5hIh6tG8WKxw1vteHo648HTI4rtmswY0Vk2SlUIaSMsgyLb7cFkVoszdknrhL4cUrYm+CHueMrTYMQ2afjy+Rvsnsvbb71FvzdgVdUMh0NQgtALkMMptZkyOj7g7OwpUjrc3yx59ukLPvvNF2RFQ6wspDvgp3/yx7hoSq05//QZfqNwXZMGG0vAwDNZXX5D4x9gexZeXjIcRrS6QymF6XuotqJLatLtkqrrqDvJeHLMybDPKAxxSgvXcnHHPkZQIqKEYV3TtTnz+1t8W+B3LYZuiFVDUWie9Ae4RokfGDwePUB2KVVTYQ6OELLC6iKUPMJsNIblQRGj2hbtu6hG0KoW4YVE/QmlaTE4eptSCa7efMfRSYQcRUwHHbeJ2KvzccxgdIBtVqgOonDEcDKh7Rp+8OFPOHv8Nh41mzhhMBiyXd3Q5GvqZkQvGJCWOe7IwHByOr8jHDmktzmuB6NZRGk5RJ7EkB62Z7PMU8o6xw8tpGNiGSbKsAg8m6KBq7slvtVQz5/zWnWYnsd4NkHe77h+HqPsHtHpQ5ADkuVn+Paau3XGbZJgRiN8q2DsTXg4sBj3e0TjQ4ZHZ/hHM6RjIGyJcB2kMQJyWq0wbRchO3SrkK5B1wgMR6ITRd1AVjfEqqLdZXhuQJG1NNpGtBrHM0jzljcvvuHPvviGt/7ov+bknXf41fmG66Qm/+4cK4h4/+M/YCNNNosbojphEgqcMMCOprTRKXfrlCjbYroO99cXLBdLnJ6g6xqg3j+UWjYXV68xmoasKWhkjbA9rL7N/fqa8XCKMAApUG3NblfiCYfB4RltkeL0fETpsN7O+c3La3721SWdFEyGHqfjiOOzYwYPHtLVgnpb0akax7SZHZzRxKD7CtqCfLdF1BVmB3ZbcPD+hxjhh+TFBsOtMRjRGAY1ch8fEh1N1dC2mvUqY7dT5J3C69ucPjqgc2xul9eMeiGbZIUdBEhDIGqF1ppWVfiOi9XWuLZDhsm21nhxRtCTjKaH2JbDo9Mzohn0jJbO9JieHNNVCXVdk+Xp3s5v2eRJQl6WbMoKCSANXM9Cdx0VgrxV2MLANy1c20F3LUVb0R+69IcW0jfpvAAd9LGkZvbWCd9+fU7n+6RWj9l0zN2bW8Kegaca6q5DdYq6zlB5jFEW1IscIwjohscMHz/ClDYq2yKrBlVWlFWNtkI6L2W9WhA5IfZwRCMb5GBIvV3vr7LJhmDgYdsS1SlMaZDVDZf3K2a+QdONaIVNcreg3a7ZLVKSjeLp2Rnb3RpnOEb2h6xXS6bHxxjGa/yeBZbNZBYyCQ753kczOiPg/LvXGHaIsnvYkz4qTomePmKXlbS6pGkylK7IdUOtFZ1sOJj2ubstqKucXbbhsKnRGroODMMENwBtoooaaWd73oBO6TqBcfwEopwhJtmqxAiO6LcNwwOHuIlxTlfI9TWr5ddEQ5/h4SFeYGP2AizXRi5u0bpmu91x9eIFo8mAwbsfIkwH0QnIdlRNhXYt2rbCDgOqSoMwMbTD9q7m88uSPK/xTJO8lpiGSbpJ+OCt7+MHFr4346H/hLxJMagYBQZX5xe0mMS7lE4bpLsC3TT0wyF+GNLZgqxp+NWv/pbb5TWGAC33zW1JkuEFULYa27EJVQei43sPH6KzHVWWc73NGbs+RZpimjZDu6MuEuqyj3R9VF6yePYr0lWMFTokRbuHA7cJr5+tEEnM1Pd4vSl4dPIYXaS0DqQGRHVLvVujJUhDE4YmtqEwKMiXNzz/xa+o8i2PT/p0+BiTY5Rh7F10pk0nTCQJzWpLnmas4gLDtHEGfZCSKhd4YcDtJuWvv3hNWjWsdjEaibAdzt77kGx5S2/Yx3JcTMdidHJK2OvhdzBfXHJ3k3KxbFmUFn/ziy/47bMXOJT8+KMPcWwXWpPrlyteP38FsuRg9CFZvKRMSjzXZRXHrLcxRRoz7Q9I44SqrvFti94g4DrJ6VrNA1Owu7lhl8S8udmw2VaYSuIbCaP7hGieUwpJIVuck4jjdyN0PKdIBPnOZnI4weiVSGmTJ5DZh3hGCa6BFi7JJqF8s6beZHRtg2FKtA25govLO+5Wa/7gB4+5mBc8Hh3h+i625ZLlGUEUkmZX6M5ACUk0HtNUGgyJCAKk2UBoYvpj5i++5dfXmo9/8gj/RIOrURiYlklS1jitwXy5Iq8UptsjjefsioL1LqFTDVVVcZlmRPGO7uqSNk346X/33/PwybuIasXu8gssYZEkMYbOMQ2HptEIA4qywLCdvdOkqci2W7K8YXjyEC0rcKA0HNalQWlaUKbERUYpYYvGdF3iKiJXGa7t8XhwwvzbC8bLa7LBkIc/+QnhQZ/7l1/z2S//jla0/LN/+ZBOKDrDRrsB9fwO7ABpSbSuwbXQdKxu77l+dUVjwMO3O1LV4o+G3C83qLqmZ7k8Oj7hYDqlmd+Rfflryqqg3a44GQSUi3tab4BWgoPhAN93aSuXpq6ZDCPCMKA/HLO5e8ns+CHBYISrJMPTI9ANnmVzfym4v7tjm2Vc3S6Y5x1ZqynqGtm15EXFz375t0xHAyQtnufTZClxmtMZJl7Qw3Q9LKOj05rSdfn4D/+IcrlAtB3b9RuCA5eXVxfYw4847PUwHz2gCYZ0KOzeiKbpcGdHqOiQl+tLVuYt9+Un7HZzHn38MabvIzpF21RIQ6CUpmlLWqXQQqOkoO0Uqmmodc3kwQFttmM2HbBN91HxVjrsSo0ThAhTYlh98qIkmg1ZXi+xPAfLC7ENEyk62rZmk+Y4wN/86td8+//8n7zfsxgnc9q7HXkYMjiaYYiOpihwbZvjyQhhOLSqJVsoekGf7y5vCCyDw8kYw7Ko8w5svRcuTIMyyVknGaNJwE/ffsBh+ADXjxiMfd6dfY/zv52TW33iN5/w6tNP2J5/w3uHY6b9Ia3poYVFY9hkHaySDM8WdPcK8+EA63cNe74NWdWQ3bzCsvtQlYSnI0zfRZUNqimwTBul1f5Z8uKW6/tbTN/BtU2i4YDLdUJaFNze3jI5mGLagqoomI572EGfwnTIhCSpakgTDk4fMplGVMrjy+fnGFL+A264/3jm96LJ39OouqZqFcIbMzp4zPybr8hTRe9BSNM0BJ5k1ZV4oclkNiDOM4b9EU7YQylBg+ZmvuLwYEjaVHimRumWFkUrDBCaOtvhSItOdAjLRGqB4fkoOpRtUO7mXJ+/YrPdslwuKfKUaDJGOD5h2yFUzfzFN3z49gHGtmF5sSPsTMrFDWY4YzjocagUxvaeME+5sl1e3b7m1fUcL/TpRSF5nNFoB9sLEC10nUArwLCIRhHpZotnu2RFgdGWVFVLbVqsihUXFwsur9c8efqAKs7on4UYsuV4dsLNfEE4mHA5X9MLfB4dPcL3+qzXCZttRlE09MIJnhfRC8Z88uwVuyTjoB/wH372/2FbDidBf58TblrGvgvlhsg12KRv6JRDoyVKe3h+gGmb0HWYjkGdZmhT0ro+UkjGp08ZjqYEpo05PqbzPW6ef0WnBCdHB5Rlyu5yTa/nEE2GJP2AqsoZ9Bwab8p2lZOaFWVT8+SHH9Itvma3WREcPkEaDlLmNLstVm+M4c2QZUzX1GjLQtotorIwoyHC6xM4AU1dc/nmOZvVJe99+CFquebX//H/IJw+4q3vfYzt9UEHZHFOvxfg2B49b4yawGRwwnR2xPbuayyvoaozHj86Iggki+U1T84+wOscVNbi2IKoN2azqvFcg2oeYyhJk+4wUbRVjWUYbOOK5S6lN02pDaBKMd2QUpjEjcaotiwX99wsU0o5JAgHPIhrrv72M9pCIcM+08dP0QbMbxr6dkKqLMaP3ydvPPp1iWMVWGGFsE3yJiUKXRpT4pjQzi8QgYPZGyMsC6UUWjfoztjXuNUlKs/RZUKV3rPNC+arik1aY8kaYXbEaU3Ui0izDNedcnG/xDt6ikoKbrYFbtzy/T/8KYtNzMX5S5zwHMOfcPT2U9o6JTQ6Kl1g2wGid0hnD7mcv+Hb/+1/xfAClqs13vSUR2cHVFkKOiGrCtL/XONZs8sUcV1yaEbYnonfm+HhUaUpUgjKumabF/SffkBrm5hWSFemGJbBzWbLb6+WROGYILAII4HseRSOhVPu8OsW04Q2SXHfH5JsBebxjCOvz9l4iFov0I2i26U4poFltoRPn9DdCIryGsP095yf3bwmF74AACAASURBVD2WPUJ3AuF4LBbnfHt5waYu0Zbg3ScnGJ7GcDtEAZ1STCcjVjf3CNNDCIMiLlmsdhjKpO97PJyOUbaD8AKU7TFfx0RySTidMhgfQtEgyxhndMT0yTvkNxekkxMmbsj25pJe57Bd3yO6Fs91qSlpu4YoHNA1FVXTUGlBgWTke0SBi+/5WCIkCiT4NtoxwKxp6oRGa3ZJQqEaimKHOzrBNiuGR1OKSmLYIcZwzO78BqNR6G2MbiXkWyhSdN2SZhaDx+9hBwNstcNQBWZdsMkE0rXJAa9KaVfXGG2LbmvKtqVqSqoqZTCb0ho2ZluhMEiyHMeEbVZwN99gP/uSURgyv92wSuH09JSn77xDZvvklkd8/Rq/abh9ec70kcIKIopaY3sO737/h4wPTlkudxSFosNAWibCDdBHT1jfvN67pWhYxnNswyQ8OKW8nVOvE7oOOqeHNjrSPCFe3eP0+0gtaUoQdUJxc4NpjbFdG21K0BnakAjXp6tiOsvBOHyI0kM8W4ENrjjG1xW7lyG1uWU0C4mmEwK/R+d61LaJOZ5h9IdMJzWP3znDmo4wJzMwDIQw6UIXXTQIv6KtNWbX7pvC8pydrvjNYs5VvMY0FY5lUsmSpm0QsqUqEt5560Ncx6J1wNU9NssVdaP3DgKhCPoOeVlQ7DJUrjgYHmBZJsKSVL2cw3cGLHVIltR02qVTNW/uNxy8NaDVGtu02JQZx8cPeDgdsr2ryDuFIzSp9HGLjDDIKYqa0BpTxBs6pVl89y23L14Q5zW1dCmrljZLEUXDqy/fYLl9DocR3zsMSIuatNP4lsHE1Fhlil2aWI2NJ3x0CtX8mvX1OXFR8/D7H2CKGK00cetj+C5el0KtUcJHGBKlFbv1Cm33MG2TwHOxfYeiqnFNE911fPrtFee3K1abHVJKBIKIjrvnz4jGE9wwoshKBm9PUNLk5WKDld1irja8+PaW601DGM3oMLi9vGIUCEzLxHQs0qLh6v4leblgvlnwi2eadw96fPfNKyIvYBCG3K9XHA2H3C9XdFqzyUvOTg7IlebbbUJctbx1MmC5jLlZ7sgqzd2mYFc0eIZJP9GMKgMZmhiBRVgYBFkfS5tYkUtUpVRtwYOPfki9jFmXW3pH76G2r9nuSkwjoys25HdzqlVBvK1p6g4EGNIl15IfffhDBscDhs0d+VZzMHHQpkCZHm1Zog2T0WCCZ9sYSIbHMzAgWd2gv7ji8P2P94Lx+jv+5pO/QG9+wMOPDrGPhzS+R48DDKXI64462zG/fE1dtBh2ROD1SKyYTbl3XXx9t+D7bz1gt15y/eo1tfsz3rl5zeGkz2AypCwa/NBlfb9BqJLdNuFgENA2DbbtYRmSOk7Iy4bowSMszyffnrNrM+qqQVt97hZbdNmQbXa09oCJXRH5Fa415ItkSYFD2vlMRY2MPILTKfH6ivX9Of/3zz7BDAOePJxh+S40CcroUL9zOHZthWwt0IpGC4pacf3qipvrOZ1pUksPfxSxyO5ZrXf4js1kOmByMMEPPZJvr5m//C3BySkGglE/4k61zG9uCI7vGDshD46nbJx9c5Bh2fQPH3L27tuYZ2e8/d77+KZJ0xSYnYswLbpkgzc6wBgl9NKc/M2SuoNOStqmptMaaUrm8znf3i4RTU4Y9rBcD9Uf4nsehmmA7LCERtOSJQvyrKJuC4p0QyM86iYmLzfkd+eYZw+pmgnDBz9C1jnpck5d1uiu4fhgyhe3F7y63mCsM8qmwPMMoukRbjSiqVuklmTpjrzMibOcMttCk1MmGXmZc3Q0wrMkjb2vSNadS55mxEWLBVjCoNUaR9p4DLEsk8lJSFPblLt6L5pIhRsGeJ63j80lKV+/vKObOvxPE8HQtnhTFFihj5kJopFNU9eYZUFVVoi24WA2YTAcU5c1Ly6u8BwLrz9AmCYt0NYtprRo2471/RvKzmZ8fITrTanbnOT2BYZRs7m9Ym2kbJcrvvrsM3w6TA13noejFSYNI3/vmrW0Jq49PHfIfWNi71a4Pck2T7B8ySre0TRrKBqC+JbhLMIdHUInUXWJYSjqpkM1im1WINqS2eEU2e8x8EKUZeFHIbVu8fwA3ZaoumadbPGit7A8C/oDhBOR5RWO0VHh0j88w/T8f8AN9x/P/F40+Xsavz/grX/yh3ha8OG7H/BZ63FxfcNHH5iEgcnWD3CckDa/w0bvwUtVxag3oK0Uh08fosodd9cL3nv0BFnVdE2DdE1a3WK5LrYXIS0fXWbopttf9CyLbLtlcXvO3ctXvLmPWe8KVJVRpTGgsaTA1SV92+DscICfpqTLlEf/P3vv1WvNll7nPXNWDiuHvXb88ndiR/ZhNC1ahgwYAiT/UEEwYBi+EE1BImmRRDe7T/c558s7x5VX5TBrli82f0Pzghx/YKHqZtV43/GO5/CYMm7x97/AfvI5B4GFuX3g/pNJG2d4rSDeLDldbglv79k/HuK5JlWtEYaHJCdbJ9SNJE0qjNai2xk/Glar5uyH3/Lp/I77zZpd1XB+tyBJSlzTJ04VqtH0/YDxeJ9CWFyqBtXtsjebIU2X86t7ri6uebhb0uv2OTp5wWa5YDAcs16v+X///nuuL89wpeDZyQHuNsK1JW0R4RgejshRukY0Cp1UtK5DbWgaU2M6JjSaRrS0toHb75EvVvi+w3i2hzt7imuYmGGf9btvefjL/0wSb3n5R3/K3s++xqsnrK8u0bsIp1K0tcbq25SGQ3do0Nn/nD23RdcRsjOkymJyBV3fQ7ozxMMpVVXjDWxE5wjiBYIC6pa6keDaCNHQVBmVLNjtbtgtb9D5CftPXtB7OiYMZ6xvrnE8l9vFFlUX5GnCeHSM63tYhU1tSMKgz7IGVbR4fYejvR6Lh1uu0ozDgxf44x66bdF5Q7/znELXaL1CNg4Dv0NRrQj9gAKftGwotiWntzGjQUxoGzykMX6bYocWbV6CquiPRry5idmka6Z5wy/fXEEU0Qn69GZQWhes6hIDg7va4cnxc4pdheVZCMehVJrUKEh390wnY6LtJVWbYDolVrdPc3qGED5y9pLWEahKgGgxjBZNA2iS9T3baMl8k3F3+0CSR4RDwa6QKCWp64pxv0tmKn7z5ncMJ1N++tNvWOWaolI8ffmKH/95wrc6xfA0RZux3d7SKEWmNH3HAHeI8CfU2kEZHRZtzOllTtcOGO5SKlXQejb5TrJcrrm9W9JUmji3SFK4jzSvnwdIBK50oLKgeTxbE4FNtxMweP6ScrvDQpMnBW1bErcG/eGYtHEoSKnyjNrQlKuWXpuz2OSYymJbKWLx17y7jGgbm9HJS37+9JjOwYxkvuBXv/k/0X7I3rBD5UmErpGGQDoBNIK0KJCVohGSOM14e3rHw24DgWQ4GTCZjcmLDEuGHDz5nPm7vycIHCLPwGwtTFPgueYj6UQ3tI6NLTWlZTJ89Rmeb7NXKsyipq1q7O6ImZtTJC3C8sEwcTyHo89e8/H7H6g0pNs1SgpKBElRMt8ljIZ9LKnxQps4TtmmOb7TRWuFa2gs36MVJo1rIjs9hBAkt2c0zpD1KuX09Iqd9vBERc8yKOMdwg4JnA5m28HGREY1fdvCtiDLBEXtYmw3qJuUxitpPq7o/+xr7P0BllUi6iXlLkZj4NoWXt3gGwpV7GjyjLrOSLMEIRuE62AiMS2XsvXAivF9n09XEa3ckOQVH293dNyQg+mMZ25If9Blf/+YuBb85u1vwHD58tUMFd6SZ4o0ijh6dYDlhPT7I1aLDULU7B2eYNqPhdmd2T51vKbOE1zfY355ge/3adOSKtdo22K5yXD9PqpqSJqau/s1/YMcw3BppYHMErTsULUmeveAbSuEisEMaNUOld+j+jPKeowWAW6bI70UvbNQKQwHFq3eRxRLst0S6fp0bYM0WRNlO2S3S2gFBCeHj8lKIUAKWvkI77Q7HnlZ0OoapQqaSpGWLR/uHvj+bk5Dg+m4SNem5/i8ObtmsNfjdnHD8WbKZ199TWYI6iRmbzJldXPBMkpJ0ohwFLK8vSHfxuSRYjad0OmHeK6LYSscFw4ODzg/Sx4TT3XLpmyJogRdFzSqwRCSk55PvdvSakG/E1LSkteK1JT06hrDMMnjBMN20VqzS2s2ScbN+QVpIWibhjwvkQi6ouTjQ0Qd+8wcyWzU56jjMO2P0HVC16yYBiaGArnRZKdnZMtbUs+j//UL3KmPqG1UW9NmgqYpaM0QLaCtUlopWd0/kNYtYdfDrios67GPQZkGpmmwSSt+9/6c6/kGkJi2TRCGVI3GMwS6bZHSpM4SFg9Lft4N6U2GXP3u5vHZckFSGRwf9DAME1M2OIbC8Vw0guvdhpyEsskosoSL00ue9j9HmA7vru54uTfGQ9MNQwaBiypLhqMhnf4Qz7MZBC4/enWE7cLtImGd1Ti2xA0tSsPAtBwqz+ZBJbjKY8/v43kBSoX0Zy8J/AGxt2OcPbBJXXqdATtboo0xqrhns96h8y1pvuZxa9SSoCmblqZq6Hd6fPXzb3j242cgY/bSnLhQ2IFBU5v0Oj6LzRrP7+I7Lq5locqa0O+gpYHwQy4ezuh9bvP9d2/4/uM7RLzmv/9yzZPtId2TPbrDAe3hN9hGj7JOsQywBMR5ymq+pBEWGBYKAwyTqG75h7NrXp/MCJ/ss1MpXbtmNPQxByPi6AytStwgJE1y3F6XOF6RYmI7E3zHoEgeByamHdLolkKarHYb1omBbBOiXUqnO0I34AmNShe0ux1atfSFzUW+4z9/+3f8dNrHHr/ErXIUBu9PbzD6A3rTCd4woNYNZZpithLTdVGWQx4nBIMREo3KMuLtluViRaYUURIzrwrkrfPYDaJq2m4HLczHkm5DYI87vPj6c2Z//r+zfPtrNtc/4NQ+q4cLnmLT1jWT6ZTZ/h7p4pbBYMTJyy8JJ3vIooc7PMD2AmQa01YFjW5RGpI4Ijd7VL1jTp4UZOdXzJc5hhRYhokwJLlu+e7de/ryKcgWV9dow0ZZEkOGj8mMOie9fUuZRERbhZFnzFc7slpCtWWram7PP2LES0ZVjDkZY7om5fqcLE0pahvLVtzFJWWrmAwtbOGyu48QyiadZ1Si4e72ltvLJe8/XXF+f45qCgLP44uXzzga9+j3hliui2k5GFrRkFDrmnUO6JYyjbHDHnVSEJgD6jIndPr49gbpmewdHLKL7wl7HmnVUBU5UoAd9rjRkvjkFW2YsywU06LEdW2yFqQh0XUJlkGWlxwdnpClKUIIvn9/gagrwk6IbY5BKYQyyPOSSgnu0pL3tw/82Td/wPDggPXlOdsPbxmOXDbXZ/z25lvauCIwBC5Qxgl24zA2Swb9DqGqONkbMuh38H2PMByhVUQRFVT3EVorhNPgK3jY5mRVw3pbsVivOTjK6R2dYAjzcbktarxRQBiHtJYgDLuMJvtIpSjLjI9nN7SOi10pOq7FoOsjcLENi8X5Bcvlmny3Y7Y3YlM5NLViPl9QFcU/l739F6V/HZr8nhQGIa9ffUa02hD4Xfygz66oeXeb8eqwh+/1sOQ9EkkWJQzGDa0BuBKz4+LIFrvbJ4pK5sucbndApTS2sDCkRAOWY6PrEt3UCAnCskl3ax7Oz3n35g1JVLDaZeRJjspiPEPgmiaGNOhaJuO+R7mI6BgwePGScp3y5KsfQa+HnPUozy+p2hzh2HS9Dk/zDD0eUamMCINtktDpCJRZoR2BTiuW6wWqtPHGIW1Z0EhJKyRN/VikNV/tmG9y3pzfUGnN3v4B/c6YyXiCaTu0jSSNgM4Ez3dJq5yN7fLu/Iz67I73bz9yePiEL16+JtqkdPotWoPjhURxjG2Z9EIfQzpcXM+xrJaTWRdXNBjCoqkUntdnubkDJNsoYjoZIU0TO/Spa4XrdMjj9SOxRkiECUY3wPRDTNuh/+SYn//7/0hy/Ym8TCiXc8y2YTDdI10sIV7j07C9yYnlEne6T71e4AYejgNuI8mbkCjd0ekcI6oKZ3qIqDWNZWM4DkbrInRDlUqaf/pdrRTalNxtd2irRqmKtrghDD5jb/wlnj1BxhNaESFlwnK9ZrfcMBhO6fhdup2Q+/kNt/Mbailweh28oKGRBu8/XhBvUn7+s4ROb0RvdEh6e0djtpimpio3hIOQZZIh0fR7ITfxDtuxadqaJI25WUd0ex2UMHhISo68AhVvySrFYPaM/+V/+xF1UuHWNd/9TYsX+jwkGYF7gmP3CPs+U99gMX8g2nQY2ZCsbvADF29wwujApLz5Ad8LSW7XmKXmoYzon+yh4wfi7y8Y/psuujfGVAm271JGBSovKVYxlx/uWJc5uzRiV9Y8rFNC6aLrnPFgiO/6tEbIOkq5vV+R5iY//dM+X7w6whAmk+6YgRhQ1z7LSPFEGJhOSKN2dKZTpNqAP8by+xR5ie16eJ0JM8diGLos7y9pigzLEDRI1puESkm2tcQUXdbxhu0qJy9axiMfbVqUqkR2BVUjqSsY7u+zPv1IksQMeh51kVCXJc7gkEG7z+mb3+F6GqFbrKJAZIJVowjMEGtwyC6PqEnpf/6K56MTssakzWIq0WDVGTfRmv/vu18zcBXPzYLKBON4gnSGbE8/sN3GtG5ABayThLObBxJtMTmZ0e+6aEyKUgElgV+x1zvCt3LyXsVyvqFuKqSlkcIiyRKKXs3TJyfIwYTO02d0LclICeRiTS1avDLDMCV7h/u0jk2cpFhtSxD4dAc9/v5hDts5yvVZbh4odUulBVFeM9tzMERNr+vT6JYkSylsh1YG+K6kkTaGY2DqglL7rLcVlZlw9u6SWFnkdUPQ61BsVkgyNrsFcpjS7w8IemOe7g8RuYlwu7Rii5lFbO4VanWPaE4xwpj51TnBl6+R0y4UGWQ7lgV4XkhRKeo6wRQClabU0YaqLRl/8ZpGC1QW4fS6bJclhtT4YYgf+NRNy641+RTXHFLxRAos28afHdAZjah3Gd74mD/6iz9ElQkfL/4vot0d83mC26/43benaCVZXF+iipzecIxpmCjdIu2AYPKMu3ffY5oGntkj21VUVkNNiQyHeNrBbW2yJkIVFduoJE1zun2Hts6oFI8UMEPSGJI0uUanBiqLMdySIpZIW2B3HGQd0dy8RcmAsXuA2Wkp7D0slXC7WbFa3VHmFVIIZJ09nsUID9lz2LUBA9+mrXe0wqepM9qioakVyIoyW0M4JK4r7u8Kfv19SpVbmBgYUtPzemDa7B9MMHyHPM6YL5ZM5vdMnj2nE4RE6x3LQrK4TUm2mtFYMb/8xHa5o8hqTNtA24LJeMB6fk+aJ0jbZP/kJQ+XpxiOZLTfp5ALhKqplcJ3HIrFkixvyRXMjkasqhxTtmQN5HnOeDAgvruhM93Dc2xkKzCO9tk/OeHNxzv+7rtzRscvORl06W0iLv7qfxDFBVnckMUltuVglC332xUj1+TuLsGTJqWSxHnOdbblp3/2DUZREeY8dqm0FagMpERKk6J0MUNJka5Yb2LC0Rjaik28ZXR8DKpBiAbb95nfXnMzXyER2L6PMEyk5SAsGzfsY1k2smlIsgzTtNjdLxgdz6jSjPkmZVsKTK8HlkcndDGlJnAEtm1jtppqtaXJSjqdkLvbOdE6RiUN4+GM+0XE2XxHz3dpaClVw3gyQWuBITSDMODHxwccPPuCJr5lEWdcLDK+Phnz5DjkblewSBXbSvOq38OxbDxpMuoP6Y/26Xh7JPcJjjFC1BHHz1+zvL2jM+oTX70n2UYkqy3Lh3viaMsmTcmrAsM0mHZ9jkYBx/s9Zq/2sAIHMwwI0w23H2847DxDrWqsxkK1HuPRBNsOsG0XW7gYhss22eF2HY4//wV3y4pvL275frnBzTMOgOt//AHr+paXz444Cr+gN55gOyZB2aKKHdHigbS2qEVAYwZYIbRZgutanC4jCiGYDLv8yVdfEf70DzCHPeq6RHr2Y4queTSwdZGSlYo0yRj0u5S1JOiESFegUZSVYr6piIuUogTLsjBaSc8wCdyAXFUMLEGe7kjynKIoeBo64LjsTYbMdzH2YsH9rqCybPaenjCajhmNPNZpipsXhGGXKk6p6opaa1SZ0pQlRa25vptTo2l9m22ePqZDGkW0XtMLO8zGewQHL3D7fbA0s5/87HFolS6xBx0G3td8uEgIjl3u1jE4DqP9I9ygy8Jw+PqnP8PyOzh+h6DXR9s9rGCI43dR6zlN20Iw5e7sPcrwqb0+4+dfsF/W5HVLEkdkSYJWGkMaRIs5D/sDOp5BqxXC9rFtmzLPcERLE9/zcP2JeSFoG4t4s6SuS+abCKMuiDKDJIbtVnB0f44R/Vee/bv/GaIcFe+oBWgzJvQsPOWh2g6//vaUv/v2E14Q0FSKTBU0JjhBh9ubG+4fFhwMuww7XXrDEXm9RpgNtuugCo3nBsRZzjYqkFZAlj5Qpileb4xl2BjSxvRNusMeNg5aWNg9i4PumGRXo7XGkAJpGPSHA3Bd0mdfsNLnJFHM7d2CF199jl1VbLOMpizI0wyAuq6pypL3H86Yb3b8Konoug5/8Ie/wBaCOlMYwqasCja7mKrRhK6F0ZYMuz3MYsenf/yEa/QZeDVRobFVTc+26Fot+1ZK37N5dnIM6x0vpn1Cp0MTLbALTZHNMYEkL9jkBbuqwZQax7bRQrJKKtZRRpFUfOZ16B2dIFqo04woj3ADF9OxmR3uYXZ8bn/3O95+/EBrWhRZTrcqSWkYIBiHDt3QIMsVq3VCbzRklbasNudkwqMTOmD+q53/fehf3/LvSaFt86Q3JMJ6RDNWNd3xjA+3MYu7MzoioqkqlFbUtWKdZewHAYaSeFVDXTX0wh6202N+HzEZDfG9f8K9OTbSNKBtMWwb0Wi00aLqlnh1z9XHj2zmaxbbAqEaZFUydB1EXTHyfDzHJrQtup6B/3RE/bBgOtpHvNojLhLS6+9p57CJc25vNkSVROkIWWaMRz1+Eppc51uSRpBqEz9wEELRmBa9/T66kdQ0GEJQxSmWbyCFwXK55vRuQVHCapfihi51q7H8luG0j+k45GnLb98+MD4+4sVwn//p9ZBg1OOv/9N/4v1vvqVuJHmcIKSFYdlMJ1OyNAXDRmvoBl0O92aoKmO9XoNs+NHLAcK0EU2FIS28YIRj2mznt9hJRlXUCK9FVyWGZSFaEErjuS4bKamzLbrYQMdDGwJtWhgHB2idYacrit2cJt2SxQlVVpKs16RKoVwX4Vuszra4gyFZf4LX79LzDfK6oTE7NE2MYwrc7oAmidCyQHRGmHaXKqtRpYNpOxRpTFnkOLMnZKWC1iXsTtnsFFPRUhcxUpmErkY6Dv3UxzINonjLLt5iyjv2DmZsdkv+/h/+mj/+wz8mCE2eHPW4uDjl1789ox8E1JXCFDZ5PMcbDMmznKYD2rfp2i5FVZChUXnG4cAjKjSFtkjynNVmwXzUxbI0lmuhdzsWD3PWUUI7NHn+4jOcsuX6uzNefvN/kCwS1hcfONspdLHgoO9yWjl8eXKCpUqORiGtL2jahF10R6o8wskLtnHBcDSjxaDcLFjLNV1LcB6t2F59YM+ReGVKPVcUWYPj9titd7z5cEZlPqKIVfOY1op2CdOew7jXQbaaMsv5dL6i5+1x1H+GY/dwhMNof4olXTp+ny9ffc3l2XdkSUqWlgz3Zlh6SSNdupOnFMKgbaFRMOj3qLIWNwxorQDHaKizlLqRJKnLZpOx3G2QrUlrGdxsU3ZlxYE0QSls30GrBoXGcD3qsqYu7lltUurax6prKi1oukdIXRL0ztEqQlou+B7a9VhVBZVUxHXCcBhQtBb98RFVf4KNybwqcasSK4v44z/6Gc9HPotkiX35Dt0dcPx0jK42nJ9/wnJt2qxgs10xjzOSFmbPXtBaLf3AwzAkZV1zNLUpNrcc7A+pq4rZXp9tvMPyG9ZRxDbN6LoudttCA13XJRSKJ0FAnUns7hi72GJXCWnWMJw8IdzbQzsuq7uEvCiZn37g7uGBerehsSJqrckrhe3YpGUFosW2TQSPKZWmyomrhlI4VErhmQltWlO6e6wu7nj79pIiKVi2JnbYJZQ1Mno8kysNSOuC0IlZrtb48gxRKJpCYDYB2WJFWqYs8oxcuURFgtpcYQoQy3vc6ZCgbyNsySZtcXYFoV9iuS6VaqjSjDzaIfo+BRqVpPQ6Ho3pUtcxpmlRNw2BZbDLS9bLHUo3pGWJJ1tMz0d0Z2zjhN7hMb3PGsLxFK/7jN9++L+5uNqRZ5LOXcTt2X/j+7/9r7i+zclnX+F5XWzbRkqTBvAHU8r2lNvffsfk8ACnI4ijiPV6TW8wREiTOE4Zj4fs7huiVUy8jQh6PaTlYE8P0WXK7u6WqqrZrDdYzQBqi0ZoHMsl9CTl/Q3r374n8Bxa3dDkN5hGQx0MMTojTD2hqS2uztYU7TmTaQchDVzHp8gKNquU/vVH7NGEfmCj8g1KZChsttuSTNnEmx2Xd3N+/facXVRhEKAo8Hwb3+8SBl3+qN9nXVcoJVFpyXKdsK5O2Zs+GoGybtmuM3RtUEYt690Nd9e3qEZzeX/NSmueTMdYQrGcP+B1Q4zxjIPRF7g6palimsJnm+Y0GholiLdb0riitjwKMcMQGa5r0mCxyhP2DwKG0ykOj8sRx2jw/SHu8ID+9BDfcTk/veTdxQW+OeDzg89ZFQ37pmbmOcwOD/j47luOwlcMgwHr1YqlM+HN6hxDbRgOOywXtxwcD1ivBINph9oQ5FrRNwyaJkdbFbLtMb/fUakGUZZsdytKQ1JrcEyJUWu0afHpZo5vSnzPQ9NSixahG6QQGLaD53q0qsL1PNbbNR/efUSVGVcfz7i+u2OXNnTG+0TbLdPpSzodF1soht0utpTouKAtWyxh0u+FeLbH7OgF86s7psMJP5ye8hBlfKY1TZlhyCFS6z84EAAAIABJREFUK3TT0loBg6HD/vMXbC9Kvj+95JeLmCcHYz6bTBnsSUzbQ3oBaSUp05JuJ4AM2vuIzacVttXBNFdoVbH58JHoYc7t9T2rtEFXGVWRUCaKLAVVSnRjUrbwIHx+/voVtq5xQhur16NtaqzwGJwFqsmJ4h2W75MKi6BnM9s/xJUmtnRRNbheD8fpkBePXRNC+txvM5oiIxYm4XRMB4tVUjNOM/yhoNVQlurRTPpTomKDzFOkFJi0GL6P41gkcclqt2W0N+LT7R3G/QPhcsnLwEYiUU1DmeXkZYOqCtKiZJVUmF6FtD0qodht7wnGJ2hZkemWTjjAagp03eALSG+uWN0v6Q76iGhJ3zVAWFylO2zXYjrps6gKHpqau/NbxrMZbhgirJZeKPA6IfE6IStqOq1G1xlt02B5PrpWlEoTZxUP5+c0bc10OuQqTomzlKJpMCwbL+hityZivWRjafzjfcY/+yklAtGUeIMBt9dXXCxu8IbHdCZjMCq642OG0yl+Z0SFYP/wkMFgSLbbEHR7oNvHvqTeFF03ZHcrymhDbVb0vIA4F+ydvEYJm/ViTtHrEUUJSZbRlCW3D2v2ux6CBscwKJItmVBQWawvP7HIWoq8wmoVuzhiXRaUyQbSDGV4LFqPyfA1Ym9E9O4D6fEdbq/HwypCOSam3+FoNOZX11v+9lf/QFlWPOn1GbsOhycHNJ7B5OUzzr97T7HZ8KdffoU37HJ8MqO/3+f8bEW2vafthxhBSGsYxElKjsPT50+ZLzfsbm4JjyyyqqDRAkFOZ7BPt2ORaYtw3Me1DK7Or8jyDJC0SLqjCc+/+IJ6coSuIHr7hvOHFeOX1WNqUBrYYZdcNTjSRJoWSVGQpQmTQUgSp/zmzQcODmdMhkPypMTzXJJ4i2+bHHsV68t3uOoIQ3tox2B4OOP07Sc8UzJxLbqDAS9nM8aDHlJV9Lo99vePMQ5zko/vqGVKm25J6nuWu4S7JEW7j31pIB6pXE3LrmlJgaIuqfKK4Oae/uEU2+6S7TKWizWVFAwHXbRlMr+75t27tyw2Mb3JhN5gQNtUfLi44fDwgLxRdDQcPnlB4R7wsHigzbc03pB5smG1jaCu/1k97r8U/evQ5Pck0cLQCTF9yafzW/zRjGQTcXexoz0YcXm/QeYJRWmSVKCXWzQ2Lg1920ObJp1hH7KUh5s1d8mIMDFwbB9ttbRCAAJpWuAKdJbStpr1esPNYsfVw5o62mHWFW7bYjkWxwf7bBdLbpIC6fWYuiazfo+4CEnf3SN6CXO/Q/f5ay4//pJV2hIePsF0RxhVhru+Yrq/h7tbo8/fYrkSYZh0gglEIBF4lkHjCFTRUGmJ5brIqqRqNL/+cEbSVCySijgr6HR6TCdTpGkRej4mBt99PGe9zhjtGfiVSVC77OHjtZLAD9GYLOb3nJ+dIaWgKCuGwzHX93f0+32UbBn0RxRFiNZX+L0QazChMRxc1yPJlig7pDFNzH7BIl6zjWP64y6hYyMtizIu/inuDcLzSOMd65tzmmSHbCFPMs7ullxfX9GmK6wyIYsjyjhCFSWO0NSmSaVMSHIMlSE3G6zeGmswppoNSZVBP0vJXQPPFhhuQKsURZ7hWgZCOOi0oeGxDKxWNZUwqIqKTrfPZpWxd3hAN7QxaRFtwjZRdLpdbDug+FQRRzF7ezNeP39KkQm2yy3Pnjwj2axohYVvWziGpKoFSSHQdYE2fSzTpjYCil3yiDzrTUj9lLxoUE2DwqI3nmAqzcWbc7Q0WWUFvUHKLs3I64r+oAfZipv7JXeVy5PjFySbNRdn91S7gmHfwnJLXH3Lnm3zsFnQaRzySnEavWEcOhz1v0IVEeMXzwm3mlLXtB4kumGbX9P1+hj2Ebvre5QH/a9+RCUVqlqTzs/QtUljzkg3d5xf3/LD2Qe6PY/Z0R6jyQAn3lHWgqfHYywhUKqmFCVX83uCoc/kyYjbTz+wXvf5i9f/gTytcDoWn//oK+o2J45r9nRLXStM16YzOqZuQTctadUw7ffRjUYPu1CkTGZTTPRjhHcT41oBq+U5qzgiDGzSKiaxPd7f3PLq2R5tWWB5fZRW7JKU/qBH3tRc3dxxuyv5xS++oXm4oPUGlKNneM050mhQFdiWgzC7FI2J4Q3AMR4LZqlwez0aCbtogSENxv0RTZGTakXSGVB2eyTphl0p+dGwh24L7m7uWW53WIMhzc0NRZ4Rtwaz56/A0KTxBlF7gP1P8d6E2eEejm1R5g7SGuC8vyWwQlb1DqEVmWqQ1piiVHhIelnG7fUFo71nWO4QrUpUXeFZkngX0T08otML2Pkhb/7mr7j9/jueui5XW9jGCbtaEeU5pRb0uh2Kuia0DFzPo9QCTIddnrCOErqdgHy7YjQ75HYe8+bXH1ksEvzOgDTPGXQtbFXgGhZu60KlcJw9VqdbDBo2eUk37JJtIsT6jGW0465quG80y6pEOwaGELRlSbaLKeYreoHJn/ziBSdP9ji9izmaTdFF/mi6mprKNPAHXZQhKLME3bGJkgK7LUmLGN+xiTwPVzXsEoWBIHRskt0WIQWma1Hm4A0GJOoScXmONZuxWaVs4obADXA8n9ubG84vr3j1csZnf/a/EnZ7tEKgjUdMt5At9kGX9393T9ZkTPf2KKqKXRTT64/odCxao0aoik63hyEktxe3DGZjpBQIJdHqkeY2X6ZUdZe9vX3aTBPPV0QPK97c/I6z337kWXiE0xp0nAHj4wPasuL+9Ip/uDkjtR5oVEYiJPJuwWefHfLVyz0cr0eTBITap390RCMUdRlRpGvqOqNUOZvljtqwWS5v+Xh1w812hem4lK2JaFusTkBuexyOBzyfDLi6WXFxu2R+fsPA6zB83aGtNVlZ8bDKaESA5ZrUlcPD8p7F4oG8LB+7FGRA/dWPsHVG2Tb4TcF+z+LwsI8ZZ6yXEXmtMUyXZBNh1JqLOCVPUjBTyh8KArfBCSxevX5Jss7J84zQsdF5jOz4yFYgTAfbDQkOfH6UPsMrS4zdDTOluTNMXv78G5aX5wxnL3n2/IRJNeH1L76hWtcki5hq5HL05m+x7UPCqcWqWGLRsCtq/DaEBsy6pdaKutQ0qibaVXx4+45NVrPKbvBDi+OTY3zPwbRMalVRpzVFUbA36OD4AblqSYuaplGosqDME/phwP16jeO5+L0BGsG7Nz/w/Q/vaYQgVS3dtqHb6+I4JnUSc/z0CMd2EIBqBGUNWprsHx3z8vUrXnz2imwXYwjJ/mjELslZbbe4/ZBovcQNA+oyI6oyeuM9+p2WPAz4+vVzqqzl4SHm8+fQn4ywvA5KWtxfbfnl2ztsaXMQbJk4Fxz2fXzTQ6UZ2jTJ2kfCWtcb49uQ5xs2VYnpD5juP8FwJLerG359dk2WKLzJPkfjEC1dzN6IYnGB4/aZ7n0JKFrTgOGQYJIRLTYIStzQQygb23Nx+y51C1GS0x2FhKZN29pUTU7SSK4+XrF/MKPTG1K1sN7G+KbLpgBveMA4u0ZWW0oRsqpidNuSVzVep4vlFghRo1uNNCRlWZBdPjA8njHyTXIsbN/EJSYra5I0g2CA1/VRukK1Nrk2UOkGtd4y6Xrcvrtju07JGo0pJZ5lEDgCq4h4PuqgNmB1u2ReQG5AbZmMT/YZDgf0wg62axH2ekTRGkvWFGlM3UrW6y2dQQ+zVRiuQ5mk1EJSVorl3S1pFGHaLnbgM96bUNw1tEozGo7wPA9T5bC45bbK6cxm5O6QqDEIRYQuE/7x05r3p1e8/PqArvRJtMnkyTMcy0YKgZMtSbZrer0uNgqKhDYIELaDSjakmx2O0DyZdHiYr2ncgNV6R9AJ+OLz17wzJBLBw+0NzUJTagkY5E1LRwgMGlpdkacpWVQT5zWO4SLDDvEqZRfDw3xFnma0eYbT0ViWww/Xpywv3vHVyMJ6uGYyfEZ4dEhdK4TtsP80Y/vpCiEbTMtlPDzgtW3gWx4PJczfXTJMUn7y7Dnjb/6EnJzpi33CdseFgmpZYX0+QNg2SbQmjjP6YciHsx8oNnPMJmN7f8r+/pTJ4YhNnWIPoMxrfMdmb3+GJ102i4RUl7S1gXRdRofH9Pb3WWy2+KMxk8++4O3f/DdeZDmjgz3MsqIsMlokcZJRZgX3V1e4toGQ8pHeZ1i8+/gJ8azGD0LWmwV5XTEdDlhpzTKrkJuISc+iUAlZW3J4OMSPTKr8lmy3Ya40zjqlVprDr2fcv73DzbY08Y5ku6bMc843G86rmsKwyRG4gcO+Z+K2DWlVUxiSJ0+PuYt3WG2OqXPKKsfvDClzhWolrWhxXYs8q3jz5oIfPj2AJcHLscKQnm0xHQasN2sGT48x3A6GFzCZ2Czm1zhBSGa6FNtLKiWplfpn9bj/UvSvQ5PfkxotKBqDpDYRXp9e30Pjs74x+eN/92f85X/5e373l9eEUmNgsZuvSeZL8B2U1jwbHCAShWW6dPo9Lj+95XD8EzbREsd7iinsxw9dDRgGmAaqqFhtI+5urrg7PyeNYqqsZCChCgPOz694qAS9/S958ef/kYeyZn79kcHTpzSBTalybiv41d/d0PUmPMQR+f0DafYJqRuehhp/f8hgNmE/fmDX5kxmE4TRgicxKkFT2UjbxrFzQtGCZaNx+XS64OPHW2ppMF8u8T2fvf6QvW6fsigwDAdai4uLDaIVNGVD3bRgWGgFljfCdG7RTU0Sb3jzw6/4/Iuf4bkeZa0ZjSbE2wVlnjAZnGBqn/hQ03vepRKCwtCIbkCuTB7SNdpx6Y0nZE3B9fyB6f4QU0g806bUmrrOsXwb0esxOvmMKsm5W8eYlkEhA1Rf4LYWaTxifXNDFie4jY/G5i7akKsd2DnYJko3CFFirRI6wx11nnJ0NEPUOULb6NbANGzqqsYfTx7/EEybUkuEKdhF0eMG+eCQ1jLZ3t6hW5Ogd4gtY6QAvzeijBTStdglmqvznK7bJy0iBC2dXp9onRJaA7rBlLIRVGXF8iHGMC1OXrykSHMC5/F8KxjuE53/D+p0SeC5dLo9knpDXCmePH1GnKXUScQg9EkbgUYyLxXH2ZZtmpOpijrwSKTJ0x//gtA1cY2Sj8tz0l3NZnHLnpXzo58cMB3skawLRgcjYrVDliv80R6DZ1+yOH1D5QfUwY9hfYEjK/z9CUWW0voW+8+fsXyvsY0W07PIm5zkPkPWPrqRFJsYPI9fvvmA5djUQiIwMA0T3+9w0t/DFg1attiuy2/fXfCw2TDd9+hMQ9bzOeumJtltWazXDEYB9vGUm+U90eIWsLBNE3c0IQhD4jR9JPHUNX44o94smXVDYkOgVYlltWzTCN3mPORzdnWE5TokaUIjWoTvcHm/5PzqlqN+iGlmaGFgmoKisbi5uOHydo4/OcAaTInvrx8RuvWWulhS1w1oiWcF9N0RRZIhSwPdhEhtg5ToyqLYZkhR4EnYxRukMDCGYzzLYHspaHseJydDzDYjTSw+np3yULQY2xxV7BiNRoxmx5RVzna3wXcsXMvBMgx8q8K3HSzZYhsCJxiiii1269KkgmxVMfADNuuIpHH4xdOvGCnF0ewY76uvuX5/QV1kWI5HXMQQZaR394SjIULlGEnEcDRBvHjF6u6WSa+HqH3enF+SVwolJLsko6z7KC0eN40IRCtZpQ2XuwItl7h1zq7Zsn1Ycb3K2JQSX5ZMA4cOEAymDExo1jv6T18RTmfYUY4jDbLLFb2TZ+gk4f1//yt+vb6haBVfDkJ+2gl4E6d8rFoM02arFPdZyS+Opzz58Zf0pmNqN8XqTqBY02QxuWqoTIuDaR+n18UoctJWwOSYYhNTljVpllHr9rHfJ88ZhB2GYZ8HEXJ/N6f7Wcrk2QvaJOHIUfzt//NfEKKlahXHxycsb+d8OD3jbr4iqRqc7ojJwRNM28K0HFopaQHV5ORVTO/JHm+/f0uLQLSCfjhEpTmW29ANu9RpzcM2oqgT7m8SDhaH6CDHMmxs10OYHfa/fI2UBrKCthLUSvDD93d8+HSJ7bhcNTHtpuDrzhBDPqH7zYyvnILjs3c0YcH9wyW/+vYf+Yez95zennJ/d8y//Yt/izcZk6026PrxrKTIK9JVRtbAfHnDZpcQp4pos8OxPAwpyVrQKifwLITZ0um7jCd9pvv72KMpy/Q7To5fMJqMGR+/4nIZsVhF2H6HRgtaLVGNRZblqKalrBSmF+LJhvuL91i2wSaNODzu8JMfT5i6DXFcE9ot5TqlNW0Mw2C7zYnTilVcUFY7nN2an73aZ75c8fn/z957LVmSpVd633at/ehzQkekLq26CwUYgJkBhsMxXvCCF+Tr4B34ErwgzXhFo9EAzExj0I3uRldVV2VWZVakCH20dK15EXgFNsw4vZ7AzW2b+/7Xv8T7j/BslagGs8rQkWjSFNFUNGGAOgLFcGl1ehyePuLJZ/+e+uqW5799QbUdoxo6D997gKp5uI++RJdVmnpDb5ASlQukfEpY5tTLErMlIyc7lDylSHRkUWGQkYQhum+xXqS8e3vO65spjdUmK0t6lo9pGAjRgJCRNINkuUQWYPst2sM98rJifHNLktd4vkdRVwRJjKJIGHYLYZjUdcXvn7/mbrZFszTcbh/T0On1eiRJjmd7lJWgqBqqWkJWoJRqJMunc3TIF199hlQXFIpAkiQ826IpU+arNT1DYpGn9KSKONkRJBH9A5DJUcsAX9P46OSU3XRJskxwz2xU10NB4JgFcq3z03jLD9mMoSzxp8M9OraHYnTx9s/oHx+jVzvi1Q3bKqHbOeLs7IycBrnjsppfYw1byP1TwjhENh2E30XWoKgSwiSk3KbYUkNdyOjtEVHT0IiSVreDaZlIRYppO0g6VFXNOtzg9g+RVY0gCBntH3H9LgEh7hViks635zf0H4XIk1sOj/fojo4Y39wgK2PC7YbZfEJDSZYXGE4byXDQmxLX0YCazXxG/k8xHddk2/UxapA0hbysKKuSuqrJ6wbXNVnttoiyIklLFFlBrhsMwyKcx7wez3m7DGmZGkNbwXM7dF0X17SwB3v0hyekWcWpVvH995e4B11yqWKzCnH7I7abNUbZoKkGlmYgaTWSkMhziXS3QzE1FtMxitOiSlPyrODi3dX990uAqEtsVWbQbt2rMKsSW9NQiozd5RsusopJFPPwq7/Ad212m5Sr6ym/+v4tu23CfLli7+Q9dLeFXGaoAkzHICsNyixhevmGs2EfTWqoog2iMqmXY7LFGkl3CLOcJMuQtJimyjEUhyCFvYNTqjxGCJB1B8M08FwHIcloukFV3FvdoiRDaUrqHDbrml9/+w1vbq4YegZZWVOrLk63g9bEVJQ4HYnxVcj2dczL1Yz3Vx/zyftPMXY5+sMHKJ97fHh5Q5AtSXMVq2ej7w0Qho1YbfFJ6Lh9vONnxLstTtdF5DFRFdF3XMIEyrxAN22SpCBLQdXbLKfPqfIITQIpXjO+e8XB4z/lUH/C3uiIH3/8nkHbwW45DFsjFkHI5PvXhElObzCkvTekpmSXJiRFzgeff4btuwThmqGmUTc1uyijzDKC7RpZUtjlFXmc0CDotlx03WAV57x+e8H+cACSTFIU5GXJMk6Z7Uo8N2dy85YkSckrQZjWlE3D4bDH26sZr+6uCdUpp77P6+ffYOom2XpLURYouksmVPo9l7949ojNZsK7MEBq22iqgtmA2RS0ew6DZ8ckNGzu7silDJqcippFHKAaKu2Wh+d2ePn2ll///hV5XVNkOd6BQVJDreq0uvfnajW5wRAjDFdHQuJgr8cWm6pQUTQN17bu574/4v9z/JE0+QOirMEwLQynoUZm7+CAcm1y/mKFZp6xCU/wOj1OngS8+vFb4iig121jqBqSphAFGXsjD981eHu9YjZZkXgFmjxlMDqgRqDpEhI1taxSSRVpElKmIbfbgPFyQ1FUWJLM7zYZcSOwLZ9BVfDm67/nVG84sjy07QXhVmYWpMxWG6Llgp82c7ZZSEXDIlrhWwqj906Yrxd4Uhd/sE+njjgYdsjSDXQchN6AEFRyQ5E2yAogSWzjnN98f45uOLiqwsoJMQ2D7n6P6WyN3x+gmA6TeYFQesjMMCsJVzcxZAlN1nBsC9v1GV++IUsCTNNCEYLeYEQYRiAqRF0zn86Yv7rFavocHT2j88gkT+dEqkRpwmyXkReCNE6w/DbHpye8e/WKq9sxD45PIS2QyopKSGRAezBC6/TxjtvEQcZmtSVPQ6q8xO33abf7zG5ueexbyLJHEMUssoRpljHdxSyahlRVMTUVPSm4C6b0djFdW8ZTK0ynTZWsKcuSaLPG0E0kr02R7IjCDZUsM1ttEYaBpMqURYxja1RCQbdaNFmGUCzevfmRShtRbnacX69ZZxm6NmQ8W3JxfUuv05BlICSBahr3AZ9CZRfmvPj+NU+fPkaVwJJqhKSgGjKd4yOuf3PD+PIK03XZJCWtXo92u8VPP71mEyf3P7KwRHdcwrwiayqaKmM2S6ldj0aY+I7J9Pp73Cbiy6+O+dWvb0lzmcqGbbxBqgvy2kItW0w2C0gj8kSnuPiB3WxCXtxiOAe0OwbDdsWjoY8z6HNx8ZYwHKMftJEyKIsSyzRQFYXVZU4eJZSlxA/fPidOEwbDPoquIoSMrZskWYkqGdi2Tp6XLKOU3724I8pk3l0veP+DnO5gD8PtQlZgCoWDs1M2iyV7h/vU2ZZCCHTVwHQ9ZCHuL5CiuN94aTqSLDApsDoeVbpjsQ753Yt3hGFEnTfomkEYRwRBipCgqSEpGl69vaH99OBeTm17CBXubm75/atL0irj0wcq0eqGQOgs45zm+W+J0hyEjG+YaI3F7fWaOg14r+szch0UXUcRLt1GQTQRhVSToaPqBmGe05Q5UVrQGBZZkiFLGVkjM52v+eFiTIaOb0rsjYaMhl3GpUItK0COJGtsswxR1LREhsjBlEzIQTYsBAGmYlAUGZoGlqJQGjp6uSG/+4mHf/1XHP/pnyCJmsnNnGC+oSkKlrNbXE2mKEq+/8Xf8WB/QHB9DapOWxLEgNMbsFivSNKEWggaJBpJIi9rVMOiqGpcU6WuGyzPY7LLSQvQqgJtPaGJQmpFxu85OLaFEu0QmzV1WSIdtNG7Cr/8+h9wbBtT8un3DrDIWL/6BVmwY6spfHz6lFNpx+jsAP3sAX/R6xOtZ8xXC15MZmjDPl/9xWc4p8fEjc1B/g4qkyaFuimpLIs8rYg3E5aLJU3d4B8ckgoVsfeQ4OqaNC9J8ooGQd3UNI1EYe/xH//H/5no5Tf83f/+f/Ln/91f0Wl7yKs7HhwOiU2HODJxHIm21eb5jz/Q67RwbAf/7H28VhdVNZAUhbK8b1KowpQ6XDDY6/L6tcFvnl/z6YMDbMtBlWRkxQTNxlQbuqLmahyynme8eX3Jh4+PqFDIkgxafTTHIFqtkHLQNZv+gy5fNR/wxRePkApwDRetscjXGeHdltUM/M9OkEsHo+Vz2FOptRp36LAKp+iGYLO5oTdymC2m5OVDkmBOuIuIw5RFELEIA8aTOwxVZzBos1qGNI1OnJZIQsIQMj1DZ+RZuK0W7dGIUb93nx9zNUHWLYLVjucvrml0C8caoDsd6nxHo+hoZou2YtEsZxiej6ZpaKbOfDalyNfs+Q6O3tDb3+dg4PP299+Q6AaRplEWBVVTsU0itmlKmOV8cHJGZ2/E6c/+jEaV0fSMpq7YFQ2mayDqkmK5IZ9tCRSNzid/hn3yIWdHnyKyjNKz+CQvWdwu0K0W2fl3JEkCuczduEOyCJFtndfTCefbElOfMpRlDnsd0tUcSZYpwwhZLe4r2jWbXVTy5qfXXC82PPn0E/KmYbvZoikNkiRoyhzNdgi2FXVVYbkOH3/1F8SNYDmdcXd7h+O7GO0WdV6wWa9wWy1aLY+ibPjhp3eEaYliOPdtPe69RawuK+qmoLN/QLvdRjFcsqLEsFQ8x6A7avHsk8856PbYTqfkNYxGXW5v7qhqhTCtKITMerEmKQIc20RSKoRoiBYTmrogTyIePn6PnXRJEWyJlhXtBwNkRefYGPI4tPnZpybZYo4eSTi1YNgd0j58gnayjzDAwEb/8ASz61OVCXmyZbVZs4l3HDx+wr5h8ZHt8N0//5Ii2rHdaNhHHmGQUjQqKBWur5IJg2CzQVIaZEXgeG1cy6Apaiq5oZEbsirjLk4Yag56mnAx3ZAmJe12D12ucb02cqvH7fUVq7CGPOX29gVffPU5kpDYhilxbSPsEVIVoxSgeV1kuSJrJIzeMePpG5RtzMlBgy7BZDzG2OvShFssTaOWJJJGolJUtmHEahmzW285HPbotTtUjYRlaEzXAa4pcebAejHj3bxhKGm4g32k/ojSGXBXt9HbNqpW8PjPumTJhqYq8a17Ms7UG/J0SxxsqIcHZKspuSSIa41aHxAs5twtAuTofhm0Xe3YLRb4poWQZYyqRpHAMEzi3Q5blrFVgVQ0JGnMeL7mYjrlfw0inj17Rr83JBAq+90Bm/may3fvMNwepw9OONnvUC1usDVBKUuUUcBiGvLBg1M0y6FYz0ivFiArzBZLMHIm8yWz8R1SCIPOAIUGw1CIo4iy2OE6Op5/DFVF1UiopnIftCqrVFVDhcrt3YyrixveXdxyt1qhNw1uITgwuySGwt5hGzndkaYFrf0h5AbhJuF1EvDuH35EIueBr6HtdHqnj/nok/d48+aSbV2RLBZcNYJGW9JYKkeHLQ4PelS1gXETYNY58+WSw70evb1TyvWUSq6oq4JgsULRfJIAHNuiHbu0OiOmizmTly8I/+RzHh+coRRtjGbE3dUSvRXgW21kWaUsaxTLxmm3kID1csVRr40kQ3tvhObYbBczijKmLAtkXSPPdaSmYrsJWG52tGwDz/cxNQVTEpQIrpcbNFND1w1KZLK8oGlAayrn1lluAAAgAElEQVREGrDeBoxXAbrlIzQNXdGokPBaDnFesY4iyiBECzOkOMdFxukcsXf8GWdqyYO9Nu2HeyTrC/qrCbFpUlltTNVAW4wxHQnd8rE8HXe0x2Ryh2hStpsN63CLqoJrm0zWCd+/vCQvKkzbJg837MZ3DOxjpEKjPxyiSTktKUMVORISiqJQCB3Z30fZRpRCsJjcUeXZv+J0+98O5L/5m7/5136G/yawjPL3fppF/4ssyyIvKkQjGHUdPKehKnOmqcT1jz9gqilCrojiGLvXoj3s0bJsFvM5sqGgippouaLMa0zLpkwL1tMVju2j6jp1niJkFUm1yNKc9e0NZVrw+PiY071DPNVFahQ0w0aoJlmRs16vyMKEOMxxmxxDlDRVhlZGWEWAL1JMtaHf9jElgVLnnBz0afs6taaiWiqe51I1Egf7e5iSiqhkFF0la2qSNCGKSzRNJa4yfvXqgnfjLXkFvuuS5SWrTUxVS5iGydHpQ/qjM75+uUV1XZabEFlV6XU7DPd6lLrC5eUVVXzfCpIXBXv7p5ydvE/LdVE1g0puOP/xnzE1g+liTi6nPPj5M0xfIY+3dPoeFRVhGJHlCdvNiu6oy35XJ85CdrsY27BRJJWmLkjShKBocDojer0BWp1RpSmbKEG2LBzDpqMVRK9e4a0ndBWJdLXg/OqK13HFspZQmgadGo17MimVNNoHp5ydPaB/fMTRw1PcYQ8hQV2kpIUgkSREnRBuNmy2KyarHes4ZTAaUJcpiqagGDayolBnO3Rdx/QH3M5Cfv96wU+vb4lKgSpcojlcvZ3gty1GBwfUSIz2R+RlTZ7GOFpNHK7JhY7dHvJ04DD0PZzOCFk1EUAVblnfjrl4dc50vubg6IQ8yXj39pJKyIw3IaZjUkoquu/Q7rXwTYU8KymLBq/dx7JUNuNzNFHijvY5fO994tWUYDvn7uaWrFZI0Fks58wWK8LcZZP1ybcZg0bnWOicKg29PCNfFxSlguV6yIpCvF0QpRGmb9MoEqpjspmMUQyNrEy5nK/5+sX35FWBZZnkRQNlgecaoMh0O22kpiGvFP7+H7/m+eUMu9vD97tolcaDhx/w4PQMx3bY39+nzBtW4yVRXhCu5uwfHbNbLTkwKpSmud+8hjuiNGb/4ABHV9FsBxSNII65fP2Wm/GSnmOQy4IkL5iOp2TJfTXf0bADCJbbCFcBXZEpq5qyrPnx4pZE0VlEOZ7WoKkKmj9gkRvcTe5Avs/KUQyPy3nIy5tryiIjLaGJArQip05S1tMp28kEOa9o8ob1as0qCcnJkcqYqIRVsOb0+Igojvju8opFWnMwGPLooM3ZfgvRlCSqTV5VJGlEneY4nk8RrnEl2BsO0WUV3XJoJMHdzTvKqgApZ7dZUqYSx6M9nh24PBz5HL33FMt1SSc3fPvNS5abJZvtmvFijm2bPHr/GXLTsLq65urtBdfn51yfv6alGyiDITebJduyxOodoDsedVWhyxUdW6fV8nEtFU0RaJpC2ujM1ym7pGAZJJhSzcnARxU1L8/fIPKMeLUlj1NWq4T5riBOMh71wSwWTLYLppXCi/mSl7uSb1YVTeeEzx+PcB8eo4z20Ns6ugW6o9A9OeDksy9xBx6q20b2TllNNojtHdl6TkZGY5lsdysuLm7JG5n+qPsvmVQ5lemRJBm3dxMW23upepbl5IqJpDh8+sWX2FLNP/yn/8x2l+ObGp5rsrq5ZasY1LbEydkx7338BfujPorTJjO66J0hDx88pNVqo2kGCFAVhXy95PrqFUmTs5xPOf/xJ6pCwXY76LqE6Riohk2epeRZTKPIlLJFXdW0bANZllH8Lo3rsZmNyaavEdQk4ZZosyDNQoLNHElqqKnRDIF94KKaOdntKyavfkI56FJpW+bLC1ZBQvfxEyRNYj7bIEslvYGL3m6hOxphsOJucsX1Zsub6zHTaUTHsDk66qPIgl2S8e3bGXleIYTGntdB12T8tsfe8AS/e4BkOChNTbJe8Pzb31MWFUEJYSqQZBXXcXAsFUurKa0+ttcmCUNMXcM2LaqyICfj+NClP+pSVTUdo6HZXpOmNRk2wXxOU+asNjvCOCUvCkoEzz54jw8/fMrPvvgQv9WiirakmzlJVoEQkOVsl0u2mx39n/0J/skRsmkiRTvkukDTFaQoovPBR/jDHjIlgpIk2XA+3/GTfMLvJgXrQtDunbJqMmppQ5BskKUaxVBQdROn0wJZJSrg7cUtqzjkw5+9z+NHh0iyjK7JGLqGpQlkWcZs9Qh3AfPVlu7ZU774878kEgpVEqJI0B2OKMqGNI2hbrAtC83t8O7iijhO0TUTSTMwLRPdMPA9l3ani6pbWLbLQb+H77cpC0jDkI7v8+hkn2fHByS7kKurG+IwxFU0qBrmyzWGItM1DbIoJQzT++1yXtL1HZo0pm5gMlnQH3RxNBXb7LFcZ9j9Hmqrhej3Mft7OJZCf9ij7bnsnzxFCIkijyjSOa5VYY06aFoFVUhZ5SR5ToKM1e5g90Y43R5e12e7nrFbbzi/GGMaGnZ/RLjaoisyteaQlilhGFALnXXS0B4dQFOxi2M006SRFKabECEbyI1KkEosGpPJ21eIMsPUdUajQ0pVp6qh0z1GMXosNwXb/F/uj9sV6/WS9WJB1YDTHqDpFpoqqGmQDYckiSiKDFVTqZuaNCsYDvvEmyVRnFKWDWlecjXZYugWluuy2u6IgpSqgEYIojgj3GzY93T2fIMjUyFYbXl5PSW6W6AvdoSTFbLt0f/gjMHpIZ1+h7ZlUE5uEcEONYtQ6hTKCIkcIVVkZUXe1BR1iSJJhHFC2UjUCCRJ5sWLV5Al2IZGjcwmLUA3aBQVSdXpOwb7ps5it+PVeMLrzb26Nl4tKYMQ3x9g9U5peW1U1aHQW1zfzSiTmKePBqhlSl2WKKrK1Tdf09Y0Hn/yKZpl0jQ1jSSzm4xZRwlGq0eeJERZyWKTcHjwkMXdHf1un2UYML48x7R02t0RQnUIG40sSxi0TGzboa4lbm6u+e6757y5vGab56SFRFVCXWus/X2efvFXtA2TVndIx+vS73bxTYuW7+K3fOZBwrvxFM3TmLw7R7dMVNPlzatbpKjmYavP6cNjDvZbHPU8zgYuEvfq2FLRma0vaNQKXwNPk6kpGQ76bLYBN28v6PQPCZcr4mBLy+9QSBqTuzvSJAG7zdOP/wRDs3Ekj/m7OXc3d1AHFGgswoKqyNgf9UnjmNl4giQEJ48fYVgad9MpDaBbNtvJLcFySV5UZHlBFtwrrnvtNrqqYOsKhgDLcWlMG1UIkijE9lrIikyr5dLxbdqOiSIJcmGQyDqWJlNlMXVRoskyeV1zsw3YRjHLICBIE4y64pOzRzx4csLRaQ//sIfiajRKgz7YoxkesPZspGiJZSroPQ+l7dGIGtU0UN02q8WS5SpksVwgGy5ZqXDz9pbJZEaSZ0iKTCMksrLCMDQUaoo0odUfYVgWVqtNa/+I15MV5+MlpaRxN5vz+t0Ni+mS//hXf/W/HY1GP/0rj7r/v8cflSZ/IMiyBLJCUjaAwPdMoqJEVQWSSOhoGfsHNW1VZTu7YzlbMJmOOf/uBx4PuwwHAx49fUi0jmlKkFBwLYPFdAxFxeW5znuff05SpliyglxDU8Qops3hh59h6S5FqvLh5YLl2xes4jWppHA5XbGMcgrPo/3sPV4t1ozfXtBtSvoadE2FuKwoqpKeYSBVGZppcnpwTGvfp9FUZtsNigy2q5OS0PNtyiqhkjSqskYIFUkuSPOK337zmp+uFtA/xTUz2o7Cu6s5NQp1I9Hq9pAVl+dvdyS1gabKtPoWZZpTVxllVaMbEoZtY5sWvueiyAK35dEfDOnYAwqRs0huMF2Xo7MH1Fsos5Dl+poyaVDzCaLpUxXg+j6rxYztek3fkYGCdtdnerPi/HJOdazhGtxL/FPYb3UQ6Ra5qVBFhetJ6KZMORlz8YtfoE3HWHnBdLnkh9sxl/oBw4df8nD6LWo2xx710R0DoUukiszgT/57nnz8Ee2ujto2EVJBGgeUVc1iE9F6csRqfs5uFzGezkhKiUYzqKsSVbo/S3a7x3q1RtFt7I7PbhMQVxrzyYxdXHFgDTEUA9P2yYXFb799RSXJ9Ds9FosFcZlSxgG1KtPrDCiUiqfPnqAtb9FMj7ooqRWBpNlIms1wf4/LF+esx2vePyuYbjakZcV4t2ObZhw6KkmVU9UquWVhWy3q7JY40xmODtGanP2DAaqkc7mEppgQBStmixWV7DIJVWZXF9TpDk8IemLBqXrFkevSMxX2jw9pffw+smWwefmc73/1T/z6/3jLwftn6CctclVmt5wzOjlldjVGahQWwY7byZR//vo109kMx9JQDQnDcbB8j02eUEuCihyhGDx//Ypfnv9EWINZ5ex3W9SawmqR4vUkLDcjWu+4vg7wVR29Mfj5F18xOj5kfF7jKBlaq802StEVGU+CZHaHO+gimy7rSuEyBtVy6XRHfPf6HM0U2IbA0gR5IrD9DkUl0FSDMG/47mpOaZgYKRiKwnQbMYkr1lHGKk7JX79hcKIwDk3mQUSWF0Rpges5dEkYjXw+OXvE07NH6JqLlkvo1pBtVfHm97/m6/Mp2+aWdbxiOGxh9Hx6gwGt1oDZWjBdzxlP59yFOU9/9pc8HLSxkxs0MiTHQS8NtLpBEQrCqKmqkt/+8nsWfouT1h7WIwVVE8Rlhi5KTk/2SLYzyqTkwPc5PX2A37bxLZUqjkjGt2TBDsvWuL5bMZvOCZKUx8+esf/ZJ3gdj6tf/5qXl7dkacF4vcM/OcFvO3jFASN7QJQX7DZLJEkQZwFNWSA1NZLqYVkNchzyyHZYLnaswoS6KHjU6XB8vM8sFpSXS36YL8mSAlPJ+eDAp610iI0Rv3wzo62rZJVgLSnUzhmVlPPEKzjtGAR6CS//GenaQOp3sI+GiE6b7uGXZHpJXExwRUWRZ8hUJKtboiQAxyIuCgQl/nCfdrfFLi75r7/6jgejFifPPkRvd0mrmrSoiMqGRlLwRYGoEl48f0G1meMdP2X4+b8lNqDzYJ9BofL8+RtGRwMOn3zEoDdAaXW4c6aI/B1m64g0VakbBVmWqakoRUkgp+iuxMWbN+hqhdtSeXNzTpjGfPrZpzTKBqFIZNm/2FN0i4c9h6qsiZoMpaqRqgIRLMjiDXmuEIZL6iQiCmVEI1PFIXGzQZZUYreFvjXI1yF380uWyx3cjnn0cZtdfosiYLeMaEgx3T3SZcXsDlp7Erv1luVszbevpky3G1Rd5/HDZ+yZOqrZkFQJk3jJbLOg0+4hGSZhmSFXgjAImExuaT/4iHo+Z3d1QRbGyLJCXhRcn7/F2HuG6jr0Tx5ShT5FOEFfhyTbNZ7XRjd0RCMwPAPdKVGlGEszKPKGt29eoydLjM4ZtqbgaDKbqkQRFZalEFcqvmJgGA4HI5/11XPKtKalqyiaSbSYcbVc0Gp3UGmwj4ZYbYts+oY6rRDCRY4TmmCL88kj8vGWKojwTgYIR6MSGQ/2e/Rrg2GvoalVJL1LmX3K9UqwX/7EQAh0TUH3PNBs1vM7XpxfYLdbfPnVR+i6DE2F55qUVUmRpSDVGJaJaEqKMqcxLd7/8Cki33E46BLeqHS7PmkNjuRwfXWNQkWr5fHi+QsU3aSME/aPjxmMDpE1GdO2MG0dRdXxfR9FVQiDkAfHxzSuiylXhGsb1TSI04K3P13x7u0NrqphiBLnX87hYrMl8lI0zSING2ZBTCUaDg9ykizBVLX7QSUL6RwO2MYaznzO3S//gf6f/hz78AjVdKhFTF0X6EOLXSXweg9QozWqugYjoSjXxMGaipJMspC8FqqjYao6TSOw2y2iZI3s9xj1+mSv7/jdy1vax2fohkJVVWR5ymK5Ja8aohJavk+dRIRJTElNI8ssNhuudgWjPZ8mjTC0Dp8++oD85h3f/tP/Q5ZmKOqc448+p+13EKqH7nYppzFlDt9eTsg2MY4/ZBvsGB0fYw8PWS5nWOwQqkoWBtBAEKXMNwGNJFhFCd3JmlNNZxsGGLJEmmRs4pyTYwdJkhnt99GEhFRKZFlCkBbIWUSjWxiOzWKZ8dXhAdtthZxWPBs9pPX0GYGqcPWfvoWffYLjmbT8Hifvf8jqzTlCFlRSSZ4n7OKQrChw/R6ZKBFpiur4XE/X1FVNUlUEszveXVzypOcjuLfiyLJEGeekUUrPtnFEg0HF6/WWH1chAGpZE+1iOmnNqnRoe4cYoqAXVpRti9Lcsk3WbJZr+rqCokAwX+PJLoPOIU0tqBuoFQO57aBlFV0jRLE9JFUhTVNW2x3L9RQJiV//+A6kgrfzmExeo/pDkkwlESZ1tkLRTGTNQCpzdpsd4/mGHydztmlBGCXQwEedfT5QTIoi5zevrzh69DFtNefb337HHg11uCK3LebblKHfZXKZcnja5sW3X3NwcsTJgz1ezdcgVdR1gRqX6HFJJDs0mgqSQhiOWW03/Nn7X9KzJeoowHIM0lowW2xBtlHynGHbI032KRSX3fU1nmPT63dxsoImyXn8/gcEnYDJeMKgLmgLh5soIU8ihKKQ5iWmrtMImbBsuFpuqIsMW1eZbzagaKwrGUlWCHYrqBuEquLb9wS1XAl0xcTUVOoix3dckjRGVQySLMdruWhSTV7WyKaFq+u0qyW72wWzMMQUEp5pI1CRmopKkZkGIVYNh5qJ5zioIkJL5xTXF1T6CUXlopy+h6lFRJsJzeQO3TGxNFANQRXPCbdbVL8HlstmGzPbRGS1gtpoBJMl+S6gb1v4iotwHBZRRFBk5LpJEOXMpnPqquDo5IBaErz97df87bfn9Ppd9jUD2bQQtoNeyQjpj+P8HwJ/fMt/IOiqTMvWWYQ5lVCQFQVHl1BsndvJhvHbMT//9ANe/vM/kiUpsiSzmk9Id1viyYJPnqo44h1puaPSNHqeA2WMp0tstkuu3r2kM/AwOiOqrEBJU/J4R6Mq2JbHsDekyGXkg0P2+x63b38k923OnslMX77i9c0FN7/+z2imzqFcMVQbVssNF1XBpKzYItgpGl5Z8ORwn5auo5suhqvT6lkEYYRh6ahI7JYrdMdCK6r7euOqIAhDVjuJ//u/nmMPRghT8Om/+0ui2xvq737Ca5sM9s7w9t7n9USlU0sYlk2WZnjGCM2s2WQJqcjQGoeO6xArgtGgT5F71JqBP3DYa7lEYYbmdHny7CmmpNE6bvH1b77h5S/+FlmN+fzLD1BNB72pKA2FtJIZtkwGvkkdh5iqTH/U4u5yze3c5GSvi2M52K6Obnvo0eJeCUJFtFtx88uXbF6eo67XSFnOL+6mzIMYTTb4/MFT/GhKt6VRDf4N3c//LVl4AWyJ4zEdK8ZxGoxOC9nWqeqUJNixvbqgzgX5ZsV0GTKb3XC7CtjfO8RzTfIkRJF05DpHlgRxHNE/OMVsebx8/h2TecN8FTEYHqNrNlVcs252RFrC5Q/nGFXJv/8P/wOGaTNQBJP5DRIKiqLx5GGflqrgd7qIsmHx5g21MCh2CbOv33L38gdW64x0l7K7nDLfbjFqmXUQs61KDkSFVJfMJxOGJ0ecjIZ093LyuyVxvuX07AhfzamkFr95MSFfr/EdF7MzYBWkbBd3ZLsZDiUHlssnnRFH3SP23/sY1dLJbl5RrS7JpveVlYeffIDd0QmiCL2QuZ3ekBURaRxye7tElf17Rn485uXVLYYi0dIdZtsMLS2QREW720NRDEpN48UPz/m7X/2WZRxRSyp3k2s6A58nH5xRuSXOvsk22XF5/poyFXQfP8DxLEwXoiAgCCPe+/R9srpBSjNMXUaXLdIkImOfIpe4myy5fPGK2eUlu3XE9d2a4z2TssoZjoZoRoTvGDh6Q9NALsu8WYWkbyeMDg4w6ppJXBDEOUnZsEgkxtsVs/QdtM+4XW6gbsjrBkuJeG/o0fd9fL+FyEOO9kd0HrxH0zkhu5qwp5Q8bgTnacavnv8XbnZTXBlq06B78JCizHl1c8s2zPns518y2uvSa7VRVxM0wyCUHcKtRplvMC2HzXpFmFTMdgUXb3/g0b6OqZ4gX8mUTU33+APKsqZYh7R0C01Y1EXF/vEj2rZBkW5QNYX2h5/R2UL+wzm3sznC9KkGx1wnCq2wpunsc/zRJ3h7e+zSFPaHFJ5NGAjahoIaLMnWd8RFSCMasqJAIChqiTTN0DULw7I5HLSoyxy5UejuH9N++AE9ySIvLd69viDbBZSrEA+Jvc4eo+MHNHfvWM8mhJaJnhX4dUKnb9Bud3A8l2Ve8PbyJfstj4MHj9GOOlRGj9x2KLI1WVZhZhFhuUKWCtBkRKnQmBbLm2t6tgKKjG5bvHh1yYs3t2zXGzTTplFNalkhq2vKqoFGoms5OFLJy9/8F3p7Jxw/+4jZ+Arv7IQtJs7TD/EmOZ3DfezRCYViEJuCSspx2yVlapKnbbJYxVQrKqmGumYbx3Q6LYpvA6LZHbPJnE57wNX4kkwXPBy0eV83SLcRluHQGe4h6zaKJtPkIZKukSQxbLYUwkcdDsh3K7KsIDT7aFJNncVs1muStKAej3ENndvbJe/GK9bBjFpYPMgf8eUHKpP1hHGYoepQyRrX24xyLKO39knSHdObLelOZm/Yo3vgs2fLyGWDIquURcXLt2sEgjTPsYyCTZjSSCWPPnjC4OPPEK0uRbii13EpsoTP/vTPeTWNubv6e9gVOO2/xnbaWLbJOE8IZ+foisyoP6JRBGEe0zsaMr1aEIUh0+mM/aMzuvuPePP973DVDEduEAIMTdDqODh9n16tkpYynq2xXlwR5Vtm8witEoyOHoFQaVQIogBDVSiDivE3v0ZVFeo0wx49wVJtVNtElDuEmpEv7siKkmq3AVEzfO8B7jJA1CG3hUyiF7h9i0/OvqCYCOpywTgpePfqDau0Zjyb0rI1Dp8+pMwyst0Ov99FyBaGptAU941UjWgoi5wwL3n80Ye4rkawuKISBoNBhyzeUCYFRZYQbeYMej3WYcD09g7d8PA9j81yTmd0yOnThyBk6jJDViVUVWW53BCtCx4cHeB7PpplUO8Eb354wdsf3/D9D2+Ii4KPnz2jEdJ9k95gxKtgxyor6SsSWd0QJBXbLOfydsPZ0EN1XJplQFbsaNw9SlkiXyesk4ibv/0Fp++dYff3UU2XvAoI50sMHxZCQTdlml1IOH5HrQi8tk374ITS7WC4Ppp839yj+y2KPGETJ3RHQ8wqxn18xDspI09CtDKjlgyE7bH46RJF10nriLqWWKy35HmMpBmsdjsuljE7a8Sj/RPUzQpPlznuOPS++Bm9cMz3F28wDYP9fh/ZbbORDqhwQCiUtSCKUqJYI0Xm6c//mpP3HvHDi+fUSKjugLou2SxmKMmGA8dgtrtX+eZlwZvxHO9kSLbZEDUCTdM5GvpIUn5vtbZN4mBHq9Uli2PGN3OoakwJWq7Hfq+FlRs8OdljvSmRTj7AON7H6zsMk4LNT2+Jy5LYBMMRaJpJLXIkVUbVHcoqx3JtHL/FbL0kzAqC6zEXkyVhFOPYNt+8eI1d1KRFjafdW8eStKAuC7rtNqKqaXk2yyjm9SokqBqoa4JdTK97QqGM0IePyEpBx7Np+W0a2Say+ijUtPwSW84JZnOywObjj/8nil3E6iag5/rUVh+VEtl2Ca4ukKIdq+WSWrfodyWy9TWxsccvfvFLWq7CLg25Wa+YhxG26YCkodY5kvoISVJpqGhKBdkdYbUKgukdhmZR1bAsEtTljPKFTq0UWGZNkWR8fPgJ72s1v/n2n/i/fnhOnseoacZXn/0HbsWaMFnx+9+/IggLNKMhEDn6bk2ZFex3XTTNRNIkkjQgzALOHp/h2RpC1ERpimL5vL245e2bWz7Z7yMbBsV8xcPDA4LWCdsoQDo5oNvtonsdXnz9Lf5gn+N+l0G/w2q6ZjR8Sh4seDPbUuYJ8yjm0bCP2/LoDAZUsso/fvMdQ0Pm0ckB6fyOLM2oowhb15gFARUSmq5R1g1Vc68+MzsdZFmgCKhUnSINqGoNmgpNlVF1A003qcucIsm4uJ1xNVszNA2OWymmZnLqe3jdA168foecFLT8fTqHjymbBeH8Gme/zzbcopo6zeonjDqkqUtaukXPEuhSBUVAtl1QFw1CCJLthihKWG9CKtWja/sU2xRFN7EdH1vX2O22GIqCrOuoksZw1KbcaRh+m9xs8Yvfn3O+CKhESakoLJOUw5Njhnt93mVTxB8zTf4g+CNp8geCKgS+IogUhZncgCRTNhK7OKVQbN4/HtI1JMLjU9bTayShYFoWddOwrioKUfLu+grFqJCAoXOGiAJsCUJZRRENF5cX9IWJV1UoTYlUN6iKuGdBLYEtKzSSin7m4LgPeXt5Tdnp0n/2hEEZMl8vmIc7tnHILE9ZFzmrosCwDPZ6HkPf5vPjU9y2y7aIsB0Vzb4PaDJ0GVMzMXUTVRastzFCc1hsAmRF4vXthL//3RWLXUxp5thaynq+oD884POv/g3/L3vvtWxZdmbnfWsub7c3Zx+TJ0/6zKrKAgoNtSHbkFI0FaELRvABFNLT6VYXHQwG1S2hG2iggCqgXFZ6c+z2bnm/dJH9CmxeEOMp5j/mGOPbbVMqNOYb0B0P07FRNYPdtqbvDFFESqBvCeKIkTzCENDteIR7GcVro9kmrY6K1QHNUmlJPY4Pj/nud7/lUrzh1eIVs5tzbEvgB7dokGhkhZbt4LVczg7voDY1BSWObRFHK/oDi/V2y3Ayoee43GsLXC1B5IK8lkh2e97/4h95890LqiSnJwuyXYBXwV+MDvG6J+hDD9XqkMcSTcdDDn0kzSHLE9onD5AUmWr/gWZoI8k2VZyweP+WfZSSFA1ZlHC+WPH+cka3N6IRAklqKMuSpvr460dTMzg4xMZrHM4AACAASURBVG15TG9uuJ77vLjMkZU2lmHSlAVFkeIXMZqpIWSdq+sV3/z6BV17RPukzU5TkS0HvTXCsT3GlonrmvizKV/+l79nEyjolYAgINsuCPcBSVUxn854P18yzzMGqoJsqAQ1JGmOZlp889VzNMXhpNdGd3N2gU9nfIQRX1LpXSbjmm1V4KkymWXTcrt8fnZMkwRYQmJoHtLRe2TBGkk0KIbGZj9lP/uBxOjRf/o53dMJrXvH7C98qvaQdvUL3r1+SSFD0hgURcz7yyt+vLmhETWq7hLnEqokKCqJdmeAhAGlxMsf3/HLL7/jehVQ1wKEwn6z5/LHl3R0g+HBmvdaSZE2FFHD40f3aA3aFJHg+avf88Nvf42tmXzx9AlNkX3s+guB2Wkx3ca8X6coZkS6XfBo7KFvVZrBCW0jR1ULxqMhl5dTXMekjEOyOENSZNKypirh1fs520TC9tqElcwuLYmzmstViFw0LN5eoplb0qqmLmt0CToiw9VNjkddVFVhcfGWYP6WR+spbv82fpywiX3SqmKgS/zJ2ZBM6vJsvWYVpMyTkvPFFsvUeHr3NsdazoFbYlgl1AMkKWcdVeiaSlqWJFnFu40Eso5zcIosS/zw5g0DLaDb6XHyxc8Q/QPq2ZRwF1BkJUW158mTh7j9AZrdxuAQWZWpEbR6Y2TNQrfbtA/OGD18yuhoyOXrtyy+e8ntk1t0njwiCrYs84x5EmG3ehjSx+5zZGnMpyG65TH3U06aBsdQKbOafr9HUzfcGXsoZUpVwSd//m9p97o0lUx3vEPSWuhoLL/+imq7I7+5wl/vOWwNOf7if0YZdJHyHXWyJNxcY52cIRk6Vupz+OA/0T49wG67aKZC0QiSyCcvcvJaIkpKwmxHGK4pmhLF85imJWWZ0QiVVsthFyT84vevuNnFrP0Yx3nHqNsiTBPyuibMCgxVx1Q1+p0hk0bl9OgQ9aBLUdcM7Y91hct1yL3Hj9iVJZfTjKyIWW19ZMnG9mqC7YZ1WrKrGzy5RqGmrhvUpMZVWxwOjzl/8YGmEeTVx/HZ89evSfddVmHJYWeAo5a0umN026DddakKA1kxiXyfIIjwzS7V9A3+asFuU1ArFaaqYagOwszxow1xnBIVEZGcUlg1cQa7eIE/l3DaPWSlpECgAqJKyfSCHRGzxQ2GoRILgTHq0evJDB0NVS7QFQUh68zON6SFSVUr1FlFlWRoikG/NaKoLEDHkAWHDx8yffkt7shAmjxAWf2Gs0ef8+5mz3br42cqpmPQ6U1wLA3L8GgkBWydzcWcm/MAXZP59JOnuK7Lb756xvXVFH95zXiS88ntY2RdYNgWRZRyeDRE1zS2foqtl1xd7qlTnw+Xa8qi4lascPv0jAMjI/a3hGVDE4Q0aUp3OMRu9SiqhEwoSFWDVGfUkkJ10GH/8jWVvyYzW2yiKe9nF1ysEmpvjOtYOI6CSUXdP+X5V694Mbvh7S4iK0oeTPoMDz+lrmu2fkoeBWieh7BlFN3EkiWoSxqhEGUpaqtLa3yM6+jUeYyjqBi24PXzZ1RCYzW/odu2PxpOqz113UCVUWYRqahwTIWjgxFlnhMlCWkcsd+HhHuf1xfvcQQ8uX+Xi+spv//6S149f8HiakpVNwhFQxUChEZeBnR6HQ6DAdebNbbepeWYFFVNUdX4SYZlWwQ7nyyrkIVCVkaoRht0DcXSIUz47jffYNsvOf3sc/qjPov1mrB4j5zFSJ73MaZ/doCka7QdF7fbR9Js8jSkDtfIhkwULmn+JXGiVBn77QZQMdwOfhQjVTWmIbG8uGY936C6BpWmkjYyURziRyG6A5vFjo2f0r03IE1TmjRBUWT0fImRzrndcpFPTwnyBFPA8OQUtegzm4bIqoKiSGhem/HdB/j+jtPPb6MqJZWk4HYGxOGaOJdpshTRVAyEhOmaXK63CFXl6u0lnm4wtrrYuU8R+miqoG4qyiKmKlL8MIFmS7iLeDYNcRQNQ1S4SszQMIiKkpZZcOuTOxSRjyzdwu6P0Tomo6cPqJKYcr0h/PFHpl9/wy8+vGdOzN/+uy8YTCZIqkqcpEwXK97cLPCzkt1uT8uxuZhvmG1CBhoUeU5tqiziklUU0+/2yGQdWzcwLJPX1zOqLEEVCpXqYI5/Rrs9ZnB8m3gXIR3IrGYLBl2XvuWSBoKiAvwV+yzDlB0eP7qPnukkYUy8XRCGXZSOSxJF7P2QYL8lCALqpmAy6BFYCV9+/S3oAUm6JYlzjM6Ad+9fst1f8/D2EY7pYJkfx5J1u8XuesXiesWTz55y+vCMZ1/9mt02IC5kbMvkXZUxPLrN43GXfs9G3UeMB112RYj56Cl/M1I50H3kOGdZXnHnaMjNtubH9zuirU9WVRz1TYYjl267iyrVOObHu+R8HmDaLc6ObtGxNZoqI7ZbrNYhF7MN6nbN4NMHlFmOc+8uWd4gZRmurhOqKpZucnl5wY8XX3L17hX/x//+f/L43hk3ypzFxZZIShCqglTJREXBLi/o9AcosowzHJJfXfLy1fdk2zX7vY+/8zm2deoiwzANgiyjKGu6HRckCb+W0FExJIkmS0mKijwtgT2eZ4DioaoaQtXAtDBsk3tDlwPbItnnWIXGyG5hqBomBUrHovIaPEfFUjY0qkxpG2zzmOJ6gbN4QeegT97tYQ8mDCfHSHlIPjsn8TeUafYxpZbsWO8yVjufUnG40/tIAtrVEBYVSpWgqwr7MCRtKjqdLm3TptJd9uWOOm2Q8wqERilrlI3g9fsbGkrQVO4//IRtdfCxuvlH/TfXH02TfyWlcUa+CegIBcsSNJrMIm0o04Y/Pe4TqBVX1xf0+z1My2RxtaXOM+KixOm0uVytcaoSxzP44tEhbu7jLyJ6kxNG/Taz1Z7FdIlkdqjzNpZlIys6SV4RR3vS0ECzdMrdHqWW6LRb/MQ5Ynm9IBEx7t2HjN49p3RkknXG9S5hLhS8YZvjSZ/O/bvoB7cwHZdw/p5WnmHqJes4xG25WIZDnefIugaShJwXLNcBm82OzcbnP//zd5zP17R7YxxPxet8NA6iIOBgcsAnnx+w3abM1zmN5JBmFUVVkFkydltFzws0YSMKiWwbopQgyoZW26NuJEbjEY6m4LVNoighjQV6ZvLD9x/wo3PKMkFW+JgcmM4Jo4CjoxOyJKZl6pwdDdCrgKqRkISE69rkxQ7LKNn5G0aTET0LZFUguS6iztlfX/DNs9esC407kzM81aA3yBk3Db3uEebBfeR+j3LznHw6I16/pIgWNKendD69B7qgEQVZlVHmMXIWsLn5wDYt0CdnvHz2jPrtC3588x4JiVu2AnVOJTkYpo1QK3TLRW4KbN3g6vwtv/3lr8nMEdNlzOT2EbbjItU1gZCQLJOB66Hdvs+rly95c3VB79u3fCbfR7Mc1FYPqz2iZam4to5paARXU4aju4zujjElQb2eE80t6revseuag26LqFHIV1MyTSKSBFFaE4QpZiPRiIZX7y7Z7roYkkTLqHlz6WOnAa1RgdoaYGx3jPset07voqKwOn/LTRRRSDZSd0hQNfiXCzL/BsO0mV5fkFLReXgLUe6Jb2LiIGa7XLN7fUGmFFxP1+yp2aY126Bk6e9oyHFNlVZbo+25hEGCrbiURU3gBzRZwfvzD2RZiR8VFGgEux11XZEn4K8SVrsPrLOEv/iLv+TOg2PG3T5VI1Bcj+P7d/jm29/RbfdJI59ovybc7ugcnCI0A8+S+P71W86XGzQp56CloRcJlWpyMjjh5ctnDB0dSzTYPZdVEaELjWVSk+Ul0r+QUi6up3SyhiT7GDetqoqqBs92UKqCI0dleDpEOEM6joMn14iqpN1y6bXbnB6N2W1XvPcDPvzzP/D6+opdXuE6GoeTNo0iSDSDjR/hTm7z7NVbGqHxxZPPODo6ZhfecJjsoX9EGceQ+1zMVqyTKUmc8uJ8yTTSaLkGjTHi6GEPoWWEYs+9k2M0t4dSxaxv3hP4IZaomRyOsXttyqZG6DqSrCHbJvF8R7jd4nh9Hj+wUTSN/fQG6WiEtNrw6tlzWvIjDm+f4scBwlbRJRk7D5DIqdUSU1WgKtn7AYVhEKY5B0JBklKkGuosQU5jVEXm06dPGU4mxNNzRKNi6hqxHGLIMkfHR2zzAqss6SgVtmnimgZaXdIIGdrjjzQfQ0Prj8lCHXdkY0/OUEwDSVVQyhJLhCT5jLRRSHMJKdkhigDJssiFyuLDK0auhWaqZFnOty+mJGnGoONCXfP1mxvODnL8rGEdpejKRwSmJAnMVhddUqjrmiSvGBweU1Mh2xYHtkWZFVy/n7OMlliuTYOCY+pE+xRUmfc3VxyeWew9g5Zaosk6rm2zmk9xnDH97oSjg4zL6RbLNNjt98wWEnltsZr7eLqDkGzuf2pjegJLaVC9Fo3hEjUy5WyOSDas5isy0UeuY6LNHN2w6Pf6nI6OSMKAIgkYSBKjrGYfbVjulky3IS+2KZ+ddRk2GdvFgnUQEZY1+1TgJQ1me8zWX2JZApsuemXTlCmKKSjrglVUo2jax8qEaWA4BsPJLSYPP8P2XHbvXjAxNXzD4vLDFc9ffyCXv8E0dI4O+oSVgUj3pP6KWG6DMHC8HobxkTYUlTGup7GeXjC+ewJ5hVMntJqA579/g0CiLOHR0RDXMNkh0T44ZHQ4hHSPTEOWJvhZQZbK1GqLy9k1eiuiE2ecnh2gGyrxdk2JQlw1HHYHmN0RkqqRJAFCd5CjmDrLoVawuh5BnmPdeYLiOozrDF9saQyNdsegZQqaXGK3yvn6/YqvpwuKumTU9ig0i20Yg/TxOA4rmTgp6XY1JFUiSUCWKrKqZr7d4hzdQ7VsyrrEdNsUeY5MjqZKNA20bB2tttB0md1+R+QHNJaNqck4dgtLaXDkilTUpE1FXdcURcFmfsP523fsrj8Q/vRzeq02J57L9b+kLLdhRK83xtB1yixDNzR0w+Tw8IjvNmuiEjRD4nDQouPqyLIEtaDjOqRpBUCVBNRKg9sxqUuPLE+RtAavyYnevqLl2XSODmiamijaUAQ+hTVA7hzhDia0PA9ZKMgSlElJXmSADEIGWaVKfbbLa9K0wG4P0EwVP81Qq4xonzF/e0VRpNRpTYIOmsvzy3Nc0yIJCmazDb1hH1tuSIItapORZhJ2bXK9uETu2qTT9xz1WnQthVHHIdtW7DTB0NIoshzJdNG9Np/dGzA6srm5WoA3ZDjsMP3m1yTrJaKI0WTIyob7fRNXVfiQVFTbHYt357QenlKVNToVNAq6oaOUOWYVMVv6BAnczDaMPIejrotV6RS1yT4V1IGP7l9it11MBfj2l6TBnOLWBH3gUYQ+Ii8QVU7SyDx4cMxBFRKHIUUNVVGy9ve8uJjzw7tLTF1mMuxSNTDdxGhmiyBcESQpnmnyer6hRlBKMm3TYNDrUyQJQ9vi5w8/wXCGvA8cJg//DbK/ZuBYOGVC8OJ7LM9ifO8Q4ThcZBGLIEe1oT/q49ganq4jNTLW0ZAqXX08lEuIk5SbRUAU5szOrzg5uQ16l2c/vma1j9hsP9By2oT7GCnZodAwna3o9z1OTk8xrTb7/Z5Rf4wiFPp3HmH1LNpJTPsnj3n2egbCItluKaOIy8Vzntz/G2TXonPUp9dtYRk6xnUL403D2zffgpaTzq6xbBXL8+g6JuGiousYHB0dgNSgWzI6MnGS83YVYnb7PDkb02nptFoe6+sL9qsNry42bC+u+PzsFFkzsVsm/mxG7/6f0exiPm9y/vLpQ/7ud99zuYlYLWZIVcXvf3zFX/31EU9+9piyLPmnH75H0lSEsFBtE811UYuEIolxgh33DoaE2Sl6FvPd23ckUULnzi20vCQPI2ynRd4IGgQVDe1BD73XZzuf0pVqLEMDIRGXKZv1BssyyZIU0xWoholjaJwdjnGMDlalwDpBc1oYwy61WvLhwxuupjOq2icK9yRCJhMduqqLn8QMtArX0PBuP8Q+OEZQkkdryvDj/pksqwjDZBck+PsQy2wxdHvkfsTV5YJgu+fAMhCGxvP1lqvtDkmWsB0LTdMobZfjhw9p6hzTsrBHQ3RJJ48jyjAG02Wd5hSKYNR3P36g/lH/zfVH0+RfSVkQcPnsFULR6fa6dIYdbN2i1Xc/uqKiQVdlpuslNBW1IpOFBU1ZEq3WfNis+PzWiAc9j7GjYkkSeV4gyhTNdBgOBUlRMDt/j8QZNSoI0EwDSYa0rGlpDkLPiacbyPSPo6ZtQeaAZE7ItA52ck1x/j13lIam00E/GFAoNd7dE5icst3vUEc9bL1LY1soeUMmCXJJZuX76EGCQcY6SFnfXJKlOV++C/jDq2sszyKvMqoiQ67AsbtoioEuC0xN5s4XD1jtS757vkPVLNKspG/K2I6OKXmoqczy3TUXv/kdlqngGDJoFooq0213cSwXScByu+D7P3zHr3/9G7J0QZ7FWJ4JeYnl2CSFxMXllAdPPiPz5zw6G2AbMlKmo2oFZSNQiRFVQ5MlrM+fsRp08Ly7KIqCEDUoKpZu8Nd/++8ZOz1arQmK7EEQU1++we5PIIopr39HuLkkCFakUkJtGujtgiRbkeYKlpSRNwnGYEiSZFxcTplnEtJ8zvObJYG/ZhOV/PTRLeo0RlUFokpoaom8gigrmM4veXm+pBIa375dUjQBpT2h025jaYIiyRFNzdiyGQyGxIqGKmy2/o4P83d0r0xu37U5PT7ClGVasoTp9ZBp0PsT7v/lXeJNSDJbsgxCwiRmk5akikzfMji5f5/QVAikiCRJSfYJRSWxX/r0ug1ytmMb20S+j2PoxL/6FX1To3uT47X6pJs1R4Muk8mAcL5kG/v88tULwn1AX/oFZg0jITNud7FaQ65KmURI6O/f0lu+YzxoUVsesyYBVyFJCioJVvuEfd6wizM0XaVjqnT6LpJhobc0qqbCdm0QCsFuj6hyjidH/LDYE6cZtagoihRZKIRxwo+vr+jd6vJF5zZjr0e+ztglCVkW0rnb59H9JzT/4T+Sr1ZIdUWdxmhCQtENyqoh2GzJNwte/uEb0nDLv//iPpNujx9ebnCsIWpicfN2yfi0Ra0YRKZJVlSIWkLkDaso/jhUlqWUgU9SljSygixqbo37tA0NUde0pQLPlBDVliZtkMcn9Ho9LMtGsQx0AfJogDRfICk11/4NL8+X7GsNq6Nguw5BnpPVFSKLkdKURydjbEmQ6R3S+Xsubz5gVwI1j0GTmUYFu/WOfVQzvVkR4GGZI9AtZD2nf+s+F8WOnx2f4Awn5EFIEWXcffgILduieGNKJPzdBlWGpnWA3DjIhoFhu5w++Sk3b14ztnSmz17yf/34Dn0zJ1/vWL15ze5oxNX0hv7jJyh5iqWq5P4W/AWjYY/ZTYs3V3PitOBml3JXkjBUjSYJEYqOpOoMuwaTyYhsccnNq2foionROaNKAkxpTeMYFIMR3d4h5fU5weodqhRA4mOenGKd3aZ39xG1KCiaDFmWQXHR7SGSKiFJJZQFQmrQZYVS02iamiKJsFybrCiZLrfUNOiWRUPO/GZKvl9yNuliKYLr2ZYfr0Pq6QahGfhpwchWoKqQVQupgRIJVVMQVNi2yoc3c9xWD0PX0UyTSjEpiwxdyAjZREYikHP2ImB6NeP6/BaDTgtHrimlksZSyfItmloz6bm8fBGRxzFogroomM5WlI1JW9dJxJ7/uliwznZ8+uSUycEQR0uohY5lW7iOznatIPduYQibJo2o4gih6ci6gdMfMjy5jeda2JZOUVa8Ol9yuHiH+vxbztdbCtXk0FJRKJn6CePBAZNxi46pkBcVQZrgOQpCL2jqCk0XyLbOxSohV1OsFqgrhbqpEabGIogYrHfoikKt5GymVwSNzR9eX/KP//nvODs95bOf/Zxhp8OP75aUQhBu5/T7HahUNN1Gd3QqqYL9FuqUXreFJsvoisrr1+/Jk5imrLCdFkat4O9jPKmk17XQhYpjaSAppP6OIM0p84qrZUSvP+Dnn6gYmoq/uuHClvnk3i2UpsE0DMqiBMUAVaUId8RJhWT0sQcniLLE0GyMU4EXJzTtMVleYPW6uAcx802IZtlYmsz2csdvv/oDk04fq93m2+tzDMugqEGkAZZloHW7VNoO1VCgLlEVE9mRiZOYxXJN0MgYkiAPtzQyBNslIGgUi0d/8m94f35JHsWsypyyqYEa13Vo94eMhmPO7p9iGQrvXz6jqT8awmlWkgQB8w8fCHdrei2HdLZElg0G7oBPTk6JZ1NEkTNwPSRJo2xKdN3ANnQoLSbD0Uds/O0xbVNm3HPIshzdtJAlmYEHadUg9DbVZk4jmVRFjC5KjJbF2O2QhgnF9TXtn/8JsmNy4HUAaBpAN1ETnzgMEUIBUZKUOa1WC5qGqmkoRU2wW4Fi4XQNCgS5EMThR5ysv1qzTCJqXacsoSxq3l++Z7bZsFMTlusYz7JwLAuoqauCRBLM/C23PvuMgz/9K3qug1/LaMWOXsclXb6nSAb0VR2Zmp3p8Dd/8YTeyGTvb0nyjIoKqUzZxzmKqpIGS+ymhLJEVIKWDJPDDsPGYObH9OWaeB+id3tU+Uf86365ptfvoZsukhpxtdwTRgkj12A8dDFlG8f0yLchYVVShQHVN7/i9M6E3tljrAOLYvuaKtWRvA5NkdMoGcNHBxi5jxII5n6AulxSSvB2tuR6PufuyQG3j/pkScTVJieS2iiyg+fK7JIVcpwTxBm1EARRhKpqeJ0O0+WSu4cn9O+O6PaO+WJX8OHyPdvlDVfTgtCxuH3/Dk9+/teYtopmK4xbKtfLBcapjd42P1a1VQVZElQYFJlGtF8yv3rHs8sVdRbRtlqoTouo1ngxFYj2Q7LsK4IwpDs4QlCy38zouQ6yVLHb7UnSEFM1uLq85P6Dx5ijE+6oNvPLHyijHcenp0j6gHj3L7Wv1ZY8zFn8/p8phiqtJ/dItdvUpU1V7jBNhUpyaaIttiKzCGROOi5ue0ivs0EVCm57RBwHeK7H9uaaF/MtWtujY8B+ekF4ndAcjric+/zTH14xna456XXJhUZRgmPYWAe3qcucu3dPEAcem+mU0WjC0c4n9VdMjo+ZXc746nff8j89vcvJvTMGp0foyY489OnZLp4Eke8TxSlxFDJu2xwPely93yOEwA8irm/mTFybuqoJgpBOt0MuW5CHWL0OJRk3+zVhEXNrPKaWBI0k2MUZ9c2KnuegGDlqlSGJhu7pbfRaYDUSjanSZApao2AMRnx2eMRkOWW5WZLutjRCYnwywbFVbitDdFHiDXvIuky+vqDeryAKUITAtlwKzSDLMrKsoEhzHMvD38b4VzdsV1vWaUpvOGCVF7y4uiKpKmzHoRQ6FBV20+C0HOS6RFYUEt3EPbCQ4gjp6ATJcei7JkV3jGt7qLb93/HC/R9HfzRN/pWU5zm77YoozKiSCFMR9Ec6iixI6/ojr73O6bQ8Hn36UxpFcP3yW4oiZR8EpEVOXZV0XYO6qCiEwsWHGarRomd5dLsttqslRpOxWW8oGolWa0CVJCiyxma9xjZtPMuhsTOy2R6zclGqkjSIUB0Fa2BjFD3KYoxxcID39CkVEbWUox0O0G8N6DUHJGFM7s+oJIl0vUZ3WuyzjINbR0TXr5kXNReXc8o05nwZ8tWLKXqrRVEX+EHIcFyjeebH/mpWYkkwGAiKNOH2YY9bBz2+/jFgvkoY9lt0TMH+csXXv/lHXj7/A6Ym8ed//ee4nQG6pmJYBqqmITSJ89mUX/36l2zXGwy3QdVLmlRCt1xqOcNwPNrdAW8vFox/9yvORjbDdgfdMKmRqIsKKS3IGoOqbKAqoCp4+eU/ISNz9uAhhiwQioJxdJvHnx4jb2fkN3PqzMeQNeg6ZKsL8uU1+9U5GSn0HfTxXWRPJStWrK83NO6AbQOuDvpqzcLP+O4ypNjnrFbveXd+RRSHHB2fEAYRYV6hSzK6bpOLlI2f8Mt/+Jpv3i6QVYuDyZjFrqBSVE6P+nS8No0kKBA4tkWaBXimy4HVonNwxMrfEqy3hEFCtzXAknW0LPvIhtdtJMAwdMLlju31gue/e8ar598wsUPeXl+hmBaNlHPv/j3aUod0lZEsI3b7mKyCupHQZIFZh3h9j+erDbvVks18Tsft0h9VeM079CKjPz6k74eEwZ7r2YLL2Yzp4gYDibHp0fR6tByV1ljleHzElz+8QEQrskQFWcKRdFRV4EcJfrJHNW0KPyOtStrtLofdDh3LpD0eI7smRR4jNztMQ6NKEo67OvdunfDDGvbRV5R1A9QoioquG6BIqFqBKTdcvF4SzH7B7TvHNHnN6Z2HDMUIXRjcPXvAZRCxv7nCanXoHPYIo5TZ9TVXHy748OIN8WzOT+6fcDocc3ByiFBv+H/+yy/YJwH5PkL2BIOJg9BNZrMpmmERxRFFI1CEgq6qaFXKWafNPKl5+ukT7o9sQj/EGR6j7meUcch0u+fgZIBiGKiag6y5NKpBvF/z6scfubx8jVEXPDpsg21Rtdq0PBsLiSirsM2SdDvFUxXKQpAF15hTCUuVmG4i7vdC8jjg2le5nk25vlqC1kMyLJRCEEUhTreH41WYbofVtuFdaOPtY3aXK5wHf8UDwyW8fIGocza1RaMZrNZrenqLqioxFRmhm3gdj627RK5yHrfbSLKKbijsXZt3iyv+4R/+Ef34kE5VQVHiHD7BclcUuxta9+9SxUtoSs5nPtP5iihJMG0d3bbQvD66qiA1NUri8/b6hs18yaeffQ5NhKtX5JsZTucIRS24PP8ec79G8hwMAkrZwuu0UKSMOotRO12ErFDWNSChyiArElVRU2UJ5W5LnYQ0yMiKAppOlcacT2dsS4lOx0M1bWZXay4/zLh70GGXSVxeLSizGF3XyFGosgJNltBkmbJW0GhQioLO6PD/fQAAIABJREFUwSGqY9Lutdis97QUletv39G5c4QYyeyDgKSsabUa2o5OWlfYXQPFl6gjjcvvNtw56mNpBo5UoDQFtmEyu/oATcXDO2esdy/YBxFlUdEUGbPZFbHbpWdoNDX8w9//V95NH/OnP/mcw1PBcNhDVWQkzSSRXaxelzAqsNwevaM7yFVOE+4pkhRvckS/38OyTNIs5rSqeNVEtFcjLtdbilpCpub0cEBQgax2GfR6ZGnIh/kK1+oiA6rSkJQ+kuNSGxaFIlCkElNXaJk6AhVRgiIK9qsZ904mHJzcYbOY0To74dM/+QuW0xsMuWF8codsm7HbLFHVEE1R6HTa6KqMZki4A4e6jmgNDtmuJI7HQ6hS5m9esVnukYXGsNXn0dlTju6cEVcxutjSSA2iqjBVCdIKz5CZb0uaqqApIgy5y71bE+L1FbPFHN8WBEdDRrfv0QRr7FabGoHhtZA1GT0pSdIYs3eHWrGoUJEaCdWrkRVBVTTIRkHXaoOyJq8FwWrF5csfOX/3mrYm87Onj9A7JrG/Ydy1eXz7AM+xUFpdqjrH1iUc1yYvJWpZYeOHvL7ZUOkW4ZsfKQ4PyeKAMkuZHJ3Q7nYJViHj0Yj99QWe7bILYj7/9AnDyRF+VlIi4Q5GFE3B/uKCvKwI4gIkFUmCsi7wTJvbx7fZb3Z8db5ANTwcV3DkthFFQ6s7pK5l4qSi55iIukCRFXqdzsfjPi05aOtMhh2SJME0HVLVoN3vEM+noKjERU0eb9nOVuz8mKefP8Y2PNpjHWQNuW5QTBPbayGrBoWQaOoSthuSfUKrO8LsdRg4NlVdUaQxedXgb0NQbYRqUQoogpgsEeiSyXabsc0gshyaLCcMAqaJxPXNDbvVnirfomkOvXEXWVFpZIWiyDAtlUZYpKaBOLzHdBNw7/Fj6nzPcrsgnofIo3+LYbcojg84OB3h9QyiKud8tsBrtVA0gaGUsDln+vI3BJsb2j0LuWpQm5qOruGYJuNWh3NJQigNhpzhtA+5CgKkaMa+yOgM+pjtNi1rQxCmGIpEWZasVltsOSAXVyiay75OmMd7siQnLn1OC+gEIZIUofc95HxClhUsZueEeYpiqqRFyWLrI1yffZxwvQn5ySePaXsWiqhYlxlRGtM5fMxmEdN0hlxf/o5sl7JPc5qmRlN2HN+6TV5W6KpO5+iUW8Njqhz0yS1udVu8e1Fxc33DybDHF198hucY2JaKrEpM+hbPLxqSfA9lThE0RE1BXTeUaOimSV0XLBY3XH44Z7+a8fSTxzSjU17dhCThmmSR0tQSkmrjTO5SzF6w2zTomsbhYIKh1cTbiIHjMr2aUxcVVr+LEc0IN2uqLAHV4uyLz1h/9w3oAbLp4RUGqcgIyxA7XCJvwRoOUEVIFK04bpusNzJ1LRFM3/BqsyBTJUynTdszcSwJ3XR58/ol76cbnF6fqm5YX16yyXzu3DnDT1XeTX1uViGuUDiwXbarLapl0TRQRSGdwQHK6oLlu5dskhJPrbl30MbIjzAPbmGN+7z++pfEVz/ws//1fyNVZYRmoMopB6ZJud+hagaLdx+wWy2i9Zx7wx5VUdHtDtiufaKsoO7oGFZD7MesU4n+gzsIEqyJQ5ZssHsKg7KhjG7IRZ8oSSnTlCSrKYqKNEkZ9Xs0sobUVMRliqyoOMMuzaYEf4k0EBj9A/r9z1isdkQ3b1muFwTLBf11zNHJmM7RCNlpUSd76ixBhDvkIqNZblAHQ/bX5wQFvNpJLEuXO65GlfjMNz67MKHTbWO1O1xezfCTlFpIOLaH0HSKpibd+wRVhO3Y5I3AbfcpDBvZbXGmC1RZIctyIiSE4dLoxn/XG/d/FP3RNPlXkqKoGKrOOtqxnM1pe208r4Usq0hISE3F9PKSKvkYTzTzgp6us0giBB9Ro1mcgZBptQyKtOKo18EyW6iahGNIyF2Hrmvw/esPTOOYupYQRYYKpOslSxoax0LNM8oyZf3jN+iKjOkayCJDMgzKQqKxe7Tv3aF2PLT2XbSBg9wyELaFXMcopkSo9cizErHd08Q+ZZxS7GuuFz6LUkWqZbZhxuvzK3brNVkFlmNjdVrE+4DXP75gciaheUc4tkZVFRRlgZBlbMdkNKrJSug7Mi0y/vDse7787f8HdcOf/S9/+/Eh0DSYskCSZDRDZx0lfP/qParsYDZbVvMZsq6iKhKKadFt9fDaLqbTwrFMfvvrX9P/84ecHozQhEylKNQ05A3EaUEWRaiaQeaHKE3F6y9/RYPGyb0zDMOic/aQqhSIeouptin3KVlQY4w9ZE9Aq8S9P6BjaxRNREFNUjfIhYKcxiTbOeswwXccNpXCD5dbYmvM/P0H3r55TRjHtC2FdLegNAbUqoqiyEiSRFbJvJkG/L+/ecYurugfTFC3IXEpGI4mDLw2qixTNRJup/sxYk1N92CIZpo4lo6z22PkBeF2R8tpIeII1zAx3Y8PQokG8pJiOUMKQyTFw3BGHB8PEabMH662tHpH7IM9uiGx2wbsgxiJhryskWQZU/+Xqk+6ZjLq82azYhuGKJqNFe6IgzlFVqK9+cBytYHI58V8SQVouk3TQKjovI531LMYTQ84PLrFZNzHD7a0Oi0q00UyPWxVQRgRQbJnlVSYTps/e3ybR0cjjCpklwoOjh7iVxJ5FbJVp0ihz08np3zy5JDMsfnw5f8NRYyjq+R1TY0gL0rKIkKSalq+QSRbyIXCyk0xvD6JCNht5thagy6ppHnJydljTM+jLgvKosSQGuS0wmwMPn/ylC8+P8U6vssui5hMXFwz4/dvzxGGiZgHdAdDpObjCOxytaPIGxRZJitrBoaOToEtKr64c8TJZIhabtF1A10zsAyd6XbDaDxh6FgMNEFHFhhCoJUgjDZngwPIdsRpjNfvEHUEsyRDaipKoRPFIfvlNYau0BgDSt3ih8sP3GsaeoM+V+sdrf6OcDHnVSp48/aCtNJp0oSdH2J5A6osoSlyTG9AUytQCH7zd3/PtMm5+/P/wLA7wpsMCbdLXDknKCzk4W2SD89I/RVCVzC8NjUyTQPd4QFuEmPVBWa7jxQGrJZzrpZLGPU4ECpZtMftDlEcC71pszUcOobMz376kJ/cP+Ll6/d893rFLohwvRaq6+CaElUGVSGxjguubub0HIdW28NQTcLljDDQqOINrb5Jsr5hlUVs5jGDvOH20wdk2yvksqQxeijdIYphIYqSMtiRL29QTIOySIlWNxRNTlMVJLsdjeWSJymX1zf4jYZl6zhGxXo558tvXnPqCiTN4vGdE7w6QS5jQnRqRWPvB3iGhiRJ1LIJNQzqClk1KcqKpgZ0i0qVOelqmIM2qywnXq8IG5Wd42GbFoajElegezrlMuTN9ZbDNwG9XgtDA5majjcg1ue8XexIsgZVVsmSgLKSkIWgzBLW5ZradXE0lbqGb79+xvU04JOHNzy8f4KmWdRCZxEKnJ6F11MpigbVVOlqAiwHKS9Jzi8JdluqdptalgiXV8SXb2gklVZ3xOD4Hq5TYNgWD/sp+42P2+1Q72vahYwiqRiNTJznIDcYhodkHyKqD1RZgympWJZFuM8oc4nbt28jaKjLEsPrcP/BE1Tb4bAqOf/hD7idHgd3P2Vzs+WTLwKml1eYpkYe7BCiQTFlLFtmt4roHxzh2DLDjkMcbNFvDWi1PbabHe6RjWV63Hl8lx+e/8BiG+IoBb2Oi2UZpJnG+dWCH85D6iSjzjOG3opu64DHtx/x9u2c4dF9uraB2e1RSg2y+v+z9x5JtiTmlebnWsur44Z4kU9mvkwgEwUWAbLMuqu6zGpSc26gB70MrqaMZrWAtqYVu43WJEAADZFI8fLp0DeuFq51D6K2QHJAnBX4wM39F+f/johmBSiSgOwFyEaD3GooigoISHREh5xEUpHFkqIT2M6XiJJCktUk6y27128IBIv/+NXPuX/7R0JR5n99+ZLr21eMJiNOHj9CFkQs06K0bEy9QxBEVEOnrmv2ScLV9TVZkRGGProqsV4t+ezFc5ygR1EURMs5dZkzHU24jlKCZ8c8f/KC+XzBb1+9J1Msvn99yRePT/Bcj9cfLylbhbPzc/I0Jlou+Pz5Z5yeHvP+D7/n490NZVmgSTAwJUaejzM4Ii470rIhUByUTmKz3WE6Pp/1Brx++5qkaDBclzxLcT2TddwQpQJSkTEAOklnleT87nLBT56f4Q4HiI2AItvouk2RloiIiJKCpJoIUocsCOiOh3SuPKRvqDpt1yHS0SEQbTeUbYduuFS0NF1DKlUYbkC5k+jaiM22ZrOcY2g6h7RmNptzv7ynLAp0WWcc9NE0A9mw8W3n4XS5gsBzub68wAlHPH084D7TmF/MMFnjnv2Yi1Kns0zGx302UcJst0dTZJKqwZMEGkHE8T3WNzsO+zV0NWWWMg4MZKEjSRKCMMBoG6aegWhqOK6M1SwRDHi7FKjTmM1yjW26dFWOLkEtS+R1g6IpFFnO4hDTdClN2ZAUCbXtsm11rt6+xb54i26ZPP/iKVrdsVzv2W43+L6LoKiUac7qkKDGOaOzc85+1EPqEoQyoSxLFk2HYnoYxiPq3ZJC6IjlCW1+Q5wV0DVMBn3qooCyQrJ8cs17GHBFMfHdjM31AoSO//Dzn3J0fo4/7aN5Npqh0SHgWiqD0OXqh79DPRvy+OwUXVepyoJ4fc3Nm3tk06QVRTare24+fMfxyObJlz/nNx92CNEdmhCT1QdM26ZrakRR4sWLL/jw4R2WqiACaVSxT2vSeM/+kGA0IvnmHtM2CR8/w/UcpHJJNxkSlQVa4FG0Eq0kYJR74qJEjaMHfo6u04oGniminD1B6XKuLi/ZJQmHsmY4GLLcVry9/5rtfkdV1/RHI7SuYvXxgtBW8IMAQXF4fXnHcr5kZJmMdZXZ9oAmdBR5iaLqBE+foesmgufiCaALMlZe8Mt//Efe1y3T8SmW73KvQL5d8Lf//b8R/ujHSOGQ0WCALgrcxxGeptAWOZvbAzoNpWexmt+TbLf0fB+aFiWvcK2QwfARqR9gHPVwXQnTqKmjlJeCjTaLWN/tEMqWuxV0VcEhzojzip0m0SHjyR37zQJNt9k1IKkVzsRFHjm0UkkZzamNjHGX0g18RKXGEkqc1sAcTlEGEzTbp2sr2mhDG23J3l1Qz1ZUFxcUts9yW9FJPc4tld3tnOhuQdqAMxoymky4Kmp2ux2yIJDVNXUa0/ZC8qIhW8e0pYRuuujOECOYcGw7PNFEdKlhluRYjkXTtoSGhauq/2r97b8lSX/913/9r/0M/yaUF+2n633zVyKisLpfokoyju1gOiad0JHlKW9+eMX97Q1dHtPmB8pOoD+aoAkSpizgSHA06jMYh9i2jO8PibYtnglWaKJ0FfFug1AV3Fx8ZLlLEBFpsoSyKIiXC+5ma2Z3C24XSw6HPevFPevdhkLsqPwQBlMaVUVMVwhC9wC3swO0cQ/ElqaIqOqcBqjrlrSq2EUF8+Wa1WrNumgJDJVqv+bV/ZZdUrDZH2h5oK33+gFZ1aCqBnlSUCYRjq4gygaNEVKbPvPNFleteXRqczoxOCzn/PrXv2e+XPH8/AVffPkZ1tCjazsMy0H0QvadwqsPa5pFyup6zs3tO0QZmrajrCt6wwmSIjM5eUQY9og2K5arLbPbK56eDAj6Y0RJI0tS8vhAmaZkSUqbRnS1iJxnSNGBzeV7kuSAEYTURo+mlVDLNbLSoYcDtNAmL7bEyZq8jNjHe9yTEagSbdOQxTmKYaIaOoqmETVwtdxzs9jy8eqayx9+z3dv3rLcxnRNjSK0WIZOL7AZ91x6QYBqOFxnCmsMLj9eEWUlvf4YUVZQTBfXDTEsm1E/xDItZNPm/v4e37Ho93qotoFpmvRNg9A3UVSNvtKiFSnheIrhBcj/c2rdJBGqruNNzrHMgE9/9JzpkwHH533MLsUZ9qnaisuPlyxWe8q6ZZdXFHVDh0TPCwhdm1qQUEUFZIPokJActnRVhlBVbKKYomxZH1Lmuw1plkFdoogCY8vgOAjwFIGhoXF2NGV8csTo+BEIAoZl04gCq7jk/WzNer/hkET44YCffPUlZ8cDnvo7FDXBefSI8OQUSVVwHZM4uucnT/p8+fP/BWMwYj674Ztf/hN3mwNZ09B1kFctZVkiCiKO4+L2PC7u7rAsjUHviM//t//C2ekp67sF+9WKMPAp0xjXfICQZrst+9kKvTOwxQGaOcGeHiOKMs2Tl7y7vqCYfWB3e0OWpBzKlgYZXaoZ9AKSvGO+2gEieZbRViVTV0cSQNNUDFVFEgXII6YnZyiGRZ0kUJdMfAetLaCIELKErswRsxihTlEtnd7xOeFogukHIGu8ffua7LBmsVny6uMHuqai7ESiImd32OObCoOwT9FKoHRso4L7rOLb95fsDhGdYrOYb9ANG7N/hKxYaIrE2LcwTRdREPj2V7+giWE6OKHJYzY3bzCLLW7YR+8dkxcFarpFrEtUUUAoMnaxyCFtsHsBhqpjODb7rmKVxaSHOWsRTn/8Y9p0zdF0TNnJbBdLojgmGA+Qu5iTvkG1W2KKJVJXs0s7DNPGt1VspUHUTDZpR5TmfHz3Fs+2EOoSoS5RDPchNcQPkE0P++gUoWnI0Ah6ITY5pi5gBn3sZ1+ihgM6UaGoCpLFJWobUecx6fyK/fwKdI04z9lsdlRZzHa55G6xQRQahj2DIl7wD7/4hvntkiPX5HTQx7Y0XEPmKLDYxjllA1EUc+YZbOISUdJ54RpYwQRhcIYu1Zhhn8b2KVyPrG0YTALqzYHffv2WrOiwDAvfstFNiUatqZuCaLdhvt6QNDpHlsap10Gb0RYZ0f0dJjWb5YZXH+9JshpBEOhaaNuOoizJqg5BlJFEgbqDfRQxu5uxO+TsDik1Cp1io5kmsqLTiTKsV0iyitM/wu0PERUdQbJAthEsC2PYxz0+QveHWG5I7+gITZXxfBdBFtANhbqFQ5Ww3q0o4oT9fsWuSJh88oTh9BESHa/fvKVpa7KywrBMiroliUu83gmPP/8JA89Ftj2CoyP80EejwTZNtNE5zmBM0wmYfogkaxyWcyxJYLW+R3Ah2i0xHIPzFy/RNI2+Y9CVOR1wfPY5eVHhKBLr9ZzF/I7ZbMb3by548WRKMOjTtA1S11CVGYdG5fsfLnF1gypPsF2dz37ykk8+/5zpo3OqtMQLAmTNoEkjFKFD1YyHRskNqdMMyfBQTBux6aDI+PDmLfPFiuXtHRe3S25mC+4+XnC4vufs2QtMw0XJU0xL5/jxOf3RgEasePr5p9imhqaqaI4Lkojp2kiyjCgKVE3LL377La++/562LqBrMU2LStQ4OT0jyRsqUUcWBRzDoCxysk7hR//pv0In8+7Vay6vZ+zjAnM4ZnIy5Ww4pO1kwv6Qfr9Hup7j6yZPP/0R4/NPmM/nXF1dMNttuT+sUEToDSfY0xckWUYcRwxHIyxNpi1iWsVANEyOBj0O+zWeqaAJLZbj8mg0wkwSgrGPSE2SpHy8maMqMj/5sx+hOS5N1XDYPJwydGWB7HtIpomuO6gCyF2Lalgopo0kiiAZyIZJ20Fy2LLZJHSS9RAhK8tUgkDTNWyXM/I8Z3Z/z3q9RpI18qLi9eUV1/czkiRGkkVc08KxQjx/RP/oDEVWyeuKtmvwfAdNhqvrS+a7JZOpzzjIoZxjHb3Emp7z+JMeug6XVwv2hwzDs9nGKbau0tYVbVNT1i0XX/8SpcvoGTJ910BVJCa+Q280oi0zeraGNDpCVgXsPKbdbdhnDYt9Rp7mxI3AfrVGkyUESSGtwNU1HENDUHSWcU6UZBRlzqFuEEwb3zMoBIHhyQneeII1OWP8+Clnn35KcHqGolvsi4ajF19y9OlXYLjIukXeqagStHlEXTek7mM695S7eY6hy8iyzGEzp8pjxA4GgU9omIiCRjCaIqgm/V7AcDwgGARoA48nX73g7MUTVAlUzcDwHWRNRtYUGllml+Vsfvh/UYUMWYTeeIosC7RFSpIceP3d15RFht4bc33xgb4nM5wEDJ4+5m415/t/+nu6tqJqYNj30SlxLBvD0Fmt5nSdiGNbZElO02ZMRiPUtqG8f4+KQu/oFCVeI+YRiqJSlB1Sk9Abupj9ADmcICo2ttzSH4WER8fYlo5nP8TX5lnG1XJHI6s47oDFJuIPl7d8e3FNoHT4rktUNJhtwYe7OePQR7c97pZbZndzhs+/IuiPWC03JOsNat1yPhlx+u9/hjWaoI9PkB0PQdNRHZvDesVvf/81jmVhjc44PZnS5RHbzZLDek0tS/jPXuCUKQodh31M07aIVcbi/p71aoulyggdzG5u2a7WZPuItmj4xHWp4hjTVHECg6BvQJvQceCpk5DN16hdR9tUSFbIJmmJk5QsewCs12WFomrkWYZrmUiKyuLuDl2XMQc9jH6A5lkoXYHY5ph1zkiTOA0djs+mhNMTjP4xoqzQVRnFzVvSDx9ILlfMPizYlBqbTOF6FtMPAmRRQIhzGkXl9NkZg+mY75d7fvfqNXWW4mkqBSDLMq5t4oRjStGk1z9CNRz03jH+YILVdUhZgmMYeLrNKBwxsX1GTsAnvvs3vqa++dfrcv9t6E9Ok38htXVNV7eMByHVPuLm4yWO6WNbDrKroGg6rh8iFDmLN1/TZnuOzp+Q7LY0TUVoWxhijaebbGc7rE/6KK7KtKcTBiqqoZJXEkJdIZQZR3rH64tv+eHmGsPySPYR0S7B03Qcy0XVDKSuxrV1HEMnTiKEt6/RlY/0bY1TX8egQbUVRDmjWt/StAVlFbNZb0nKjihJ2B0SDq1IKSgc4gxPE9jdL7nfxbS6jmKb9KcjdvuUuoOsFtisNuSFTjDxqC2ZWA65riy+vTrwuZUh7uYo5YHecEw1HHL0ZMRwOuS/nPxXxsMBnm+j9C1kU6XoJK6WEcv3t7itRnuzY3e5QHZNJF0klMQHW61m0A99XM8ltEySNaT7Lb/8/hpFUPnf/4+n+IpAcUihhapIyYuY4pDgGx5lk4AgkKYxb/6/X7FPEz79Cw2/dwSpgCw/nLM06Rbd1bAnP37gC6Q7ymRPV4DU1Bhti2i5dIrKfnvgfjPjfh+T5TlXt3fcLFZsoxRBAFkTARXbNFAVBdVwqA2fm8rlMu8oO4mXP/6C6ps3uF5IhUwra8zjAjA4zRucQKNpGzRVxTdN6qZErMHSdQzHRNVUOsXEkRM81UE1LERJRhBFqEHoGqzpMW2ncWqbiGTMPu6YL3VOzx9zcXVNvt+jlhmOIrLvWpq6oWtbdLnFVwQMWeI+KlGVlKPxGEELmb35I2mcEg5CHGQWmw1t11IWGYGq8HgyxtNkBprD47NPCAOTYBCgGgayJlOLKsZ4yvvX3xMtF2wPe+I4wXU0njx/Tjg+oxRFjkMNR+sRLdcEgYnlt2h6n2x+y89f/jmPf/QUXVZpi5zb16+ZWDJp1VA3Hbpu0Bkqu/UWR3eZuMfIAjx6fM4XL79k3BvRLGcs0pQsT4jSiLI4ZTqZ0uzuOCwfkmEGoxOSRcSh3HPyxedcVx1v3t3h/v0fmN9/x6sPf6A5HHgxCrHTilwTabIYRRoReCaB67BaLomTmJFlYMgipmFTIRBFB7qmQgkcLKmhaQsOsoznuJDvuVtvEboWRZQxdJPQ6+P5PtbkBPvonMAKSHZLjo0tT4dz/vbXf8+38xWSLKIbKrYkctgleK5FPbLQhgNESeD9dxcIdsD37y5YL9acH4fEdUGRVUhahSuqyLKKp0vImobhemiyiNU7QShaLq9u2Hx9S6Cm/OWff0LXjPA1GamuKMMByeqWMo5xBn3SjzO2tY0WOghHPdJDhFQ0WGrINh5y3A/QFAHbMzFtmzAYcj3/hnZ9RxO4PHt6glnfsbu+Yp3W9A2RD29vURWNnqvTs2zqpsY2FQ7LBUVZsVqtOCznjI+OeXL+FEFTUG0H1R9hyfD02THbeQxRytHJCf6jczTfp8tSmrpCkGSKNKOUDbbLJfL2ntXsls4PcWtYzObM11skWWa5XGAaEkcnA3adxPu3Ka8v55htxy5tEVrYvL1GM1U0xSDQNaKioG+o5HnFJsuQG4X/60bG37/lvJL4tOfTnWrc71IQCk4Dh7ZoePUPv+f+6j3h6XMUQGjALAQkWaIzTWLfZHu/obn/AfH1ntgYoo86ZKGjKkp6nsdEaXgeGvwxLdnmLVlVowgProYkTxEkmc40kGURURBI8oyP795yezfjOK4Yn5yRZQnD4zOa/Q5F00mSGM2MkLCxvYBgGNIJLbanI6siflkQDDdkZUtvPMbEJY9WLNcL8rJmdcj51W9+Q51t6dKSqevw8qef4zg+Cg1t2zHo+6w2C/a7LbrpcHJyyt1sTSs3dF2J0ZtwfzPjaBDSqQJVmjE6miKmIqv5io/ffU8n6TyZjgkMjffff8duv+Xs/Ih8E1FpEkW0xDZNdN2k11eItxW7TY0k9Ym399iGwte//g1FJ5M1DW9vDnzy7DnRbonq+ciWw8CpORnanJw95/nEIexJtPEMczDEDX10QaItCqzhEbkokFy9J9tsEU0XeyohahpVGiFLKk2SQlnidBWr2T03qw3vb1dUh5xTe8CXj5+jJTKb2ZbVekn44gTRVZDagqNHn2OHPqpQIzYZstCgqCqKZdF2NVWWs0tytP4xT774KZevfkdVVqxWW1Qv4H65RtQ9uqTGNQyEriNOMqY//jmloHCz3NLJKk9PTyitkMIPOH98hpkVOF5CHu1o91s+e/wMsZGRNIvA7/Hi2aeksz2hv+fbj9+wrUWU8AjVMKkOMdtDRHTY4wwcOlHCdD1020JLZgyfnnJ18Y6+KuGGAboxoXd+QhIM2X34I6K8Y+TYaMMjjF6Prm2wej5JlPPx+oK2gr7YMBAb1K5GVxU6Htg4YmeZcuh3AAAgAElEQVQ+pAGJHXWeUyQph3WBJNnQtXRFgSA9DLF2yw1RklOVNdskQ9J0kqzguzdvuL6/I69rREVGVFUEXcTwZFq1Q+getvuV2NDJEkVZMR4GaHKGHwiEQ5NcO6HapYi0TBxopZYmy3FUuL9bER6N0A0TWRRJqxpFVXG1juHpI9Y/LOg6GUXVCH2HrMrImhazg7DvIw8sDssdXVmhAm5XIXYCN7M90vyARIdnChiyhiaKdHmMaYdYmoGrihxWcFVnXMUZ+/kcqfU56vuIXo/+5z8jmJ6ieTa0JWUagblj6h+TVwW1KHB0ckytmMi6Qba5Z/btnsLUOX3yFclKo8l+i+z20TyP1Aoxu5Iy2SLXArvrBZ8+/oq8kfBMBVUVaWQRa+gyHfnomorStpRNiSyBpMpIuoogCWidQN+RKUZ9jo96kO2J51fYjk20ntN1HVVVcfvt7/AmZ/zs5/8OVcyoyzW63vLypcPih5DF5YZGUuhEBcfyUAQY9Y7Y7iOurz4yHvZpK9ikHR/fv2L05Z/R1jIcNlhtQd5JSEKHSoF8NmU1m1HHWyY9l+BoTKs55MtbyvgWsbkjXq6J1xvmszt2ccr9oUZ0LJbLGXebJQg1/+54hGUqfFhHmI7NPKlBVFhGFaUUY2sym7zhhWuzub7E9n3azZZTL2T5i19T/8Vf0gUDBFWnKwskRaGpK6JO5+zTL+myA8YwwLNNuqpAV3SenYWYZ2fUsshmt6dTVVRFJt6skS2PpgFJVfl4dcsw9DA9nzovHkCpfh/5+BNOHAOkAlURsIqYu6s3BFMVT5OITR1VU7HiDKes2Bw0bvfRwyndZvcQ+CAIaJKAmeY4hoA3GqH2BzRSh2AaaK6HpUh4dUldlSAbCIqKoioIkkRTCVTLW+rtnO27a6p9ieB4JHrELKppiwxdNREl6WF5Y+i0eYnZ7zHbPQxno7SkKmtCVeRsOGadJhRZTlVmmP6AVnGQOgV9eY/ctUSaju9o+JrBuhS4uF7SihKWW/J54HDm/olr8s+tPzlN/oUUp+WnFx+Wf5VEpRC6DuU+Y3kX0VQtuqlQdhVlmlBkKappsV7MUXWdrsypyhLT0Ph0HPDoZMp+scN2VLxJD00X8AYhFDkILQgiXVkSLddE2x03N3N+/+GWu9WBx4MRJ0cnBF5A4AQ4YUBTFUCL7RpMHYFhaOD1fATTJCszqjJFIKfMEjZ3M6K44ubimkZSiBu4ub3n+mZGIijs1wt28xlNW3JAopMlmq4jqyqOnz/h6PwcxRki9h4RjB/TO/sM5/gzxrYPZcPFuw+MH50i0rFfzOiFPook0vcMJNOmdFyOzk/wfQfZNEgRuF/uuLm9oSoTRKFiubpgky3xJg4CAq7v0skapmPhuD5tWzMZDWnjPXcXH1lvdtxc3ZIvb/HFFl3SKPcZ+9WSIsuREJAaibqoaGjZpDH+2RlQIlUbiv0dkiyiyMpDkSPwYM23A7omo8oSEAXquiQvGtB04sOeTQmvL274x28+0skqF/dbru7XREVNWeaoIliqxMh3GQ2H+MMxpebzZq+y7xz2Wc2+KDmZTKiKBssNyEqIsozdYY9qWNSyRed4mKqGZZrIgkBTluiKhB84KIqKadtUkszI0jBtC9UwUEwTURDp6pI2PqD6fdqyoKtjosUV2+WMP3z3ivSwRRdhbNWcWCJFnrPcRFR1Q90J/PmRx6naUsgqkhsiayZNDZPT56iSglznyIrG8ck5lm1RlC2iYmCpMifDEUOvh6PJeLpB2D+hNz1DcSxa1STNS7K85pAXSLpK0wn0J0d89sWPuN9X9FyVx2MPu86QpR62YeK5M2zHpUpFgsbm8acv0d2Hn1q2XfP6F/+EKkv88fYhytB1PTabDQDj/oCwHzIaOjx98pTHZ19xOj7hxfPHjPo9hEbAkm2Gkz6aKlBu57R1jeF46GFAut9Rqyrh4yNkT6Ht9gzaNVkj87s3HzBlkaFvYI6OGD95gdTlqJKAY5sYps5mtUDuOjxZxFVlfNehk1XSJONwiKADrc1ot0tK8YFbku/X1FlJWdTkQGPquJMp7mRMWTWUTUOV1wgINElJNF9SdTWbSiCpcjzXIQhDwuEAWRaxLIsoF4jSgj+8esPdes96nzMajPA0yLOc+TpB0S08x0Gsc4IgwB5PkWWZJi8YBGO6SCTFpz94iV3e0uvJWP0T8rwhFXWyTnloSBQBRVX5uDywKh6KvVISEVX5gQXR1ThhSJoluJ6Jo9bIqsT45JR+z0eqYwRJ4PGzRyh1hCw5lKXO2FeQd0uu1g/2VsH0oa6oi5LZzYxdXOKKAjeLDXfzNXGcoDUVnudjeR6aJmGcPGX46ZcMXrzE8PrImgOqSRcfKGbXFFnMzcVbasOkUmT2qxmHVqSzXA5xytXVNYc4ZbFaMx35HB/5tG7ITSHw3dff8f7dDabdJzRdwjKhd/KE3vMvyG/esUtLyk6mzHNmu4y6rJlKAhMV+lKFkB94u9pxuTwQnjymb6qcjkJuF2u+fv+adRwhGTbDyRGu66CrCrahIIgddVORxhue6Cnrb/6B6nBPOHGRqSk2O3RqDvM58S6lLB/Ox6q6RRCg6R7SnfK6QNFUBElGVjVESQQeUoqi7ZIiy+jKB0hrsl4iSDLDk1PSOMLyXFRdo61TqFMkQ0VUDERJpms6RM2iE2WqpmU+n3F9e8HbVxe8fXWF2NV8/8MFJgJfffqM3jTA8TR6gU9RpETRDL+vEaUltxcrpsMJaVbi+wGT8YTpyRmu66OKDU0roGomUp0hJFuSvODv/sffcX97BVXF0fEplSgxn99junB2fsrp2QmBpnN+9ghZ0zjsdqzvF+zXMarU4+b9JdvNiiSJkTUZ3bZpJJWj6ZjJdMxutSBNExRZpdxv+Q//+T/TP3vBWF7TVzJ2rz8gSzK6JiNKCsbgmK7METpYX1/z4d1Hkn3MPiqI9xEkMfsP75nfXPPLP37L//j1r3l9cU1XlhxZAa7q0KU1Qt7y4e33NEqCFQgohowsliCB4jjoco2qarRtC4qCZlmUeUqWZry+WnH86BFf/vTfo2gGt9fXdKqJNxihKip3szs6QSIMQq4vLpmtYiR3TFY2GKMjgv4YS1MZD3vkhwNqnSJ3DfF2/7D8GYz55MkzBr0xWZRi6SqKKFMdaqann5NvD7jjY86efoYmS6RFwno1x1Y6PAXaukSzPVpENFIsTaRtG95/vCYpco6eDFFMnUpTied3yELDarNidD7F6nnouomqe9imRSu03G6W/NNvvibQZZQmQiojuiKhbVoERaWIY5LVgv31Bw6rOa2o0Mo6kqrSdQVVVbCPE/a7Dfd3M+JdQrSNSDc73r19y4fZLXldI0gioqZhBAGOpeM5Jqom04kKudSQtyW2qdPzXHq9AKSatssoigOxZrMXTKw2R9U8ZNOjqhvyNGO32KFoGoYMmiaTFxUiNaHRUNUZdbSjr7Q4qoxvm5iiwEBumB4P8EZ9ZEFALFOi7YaubUl2MaamsYwLDmlBWTWYus7AULB0nbpqCV0H2zJxFAW1runrKloHcZqxzisM08bQVILBCEt5SB8SECiznH2akq3v8KyOsO9QqA7hYICoPDSulxfX1P1PkKefkhQitx8v0MUWiZYsPuD7fYa+TbaYM+p0Pnv6Ba3c0agKru+hmxqtpqHbFqquIWUJXZXSmQZK4D7UdLL0sDDLMrLbb+j3PDQB9jeXRKt7Pr55zau3H7lbbsjSnP0hQVB0Ro9foFgWpg2eX9L4Fm+uYyR7wGA4ZGLpdFWDgIhhGqTRnrv1Etf12EYZ8WbB45MTNEWmqUocz0d3fAzPxT16hGFaBKMJne4iZDFSVUDWsk5l4vWSaH7NfL7m1YdbLuY70lbFGRyx3u1JsoSJb/Gk76HKIp0gcLc7MJ0ecbuNkNuak/NzXLHhZrFmvduxms0IRmMGjkW7OyC3Cm5viGYYGL0B5c0NxXyGoFskpQjhCU1VErgWvu9jOh6epXM6GWBKNfssp/NDNrsYsa6xdY3DdgsCKKpCvF6Rpim73R5Vkh9c04rO2eMXPPric8aTENdRkLsG1mt2lx8IexojT6aLCyxdhbpBAspG5epuj4SIoWsUWUZetRR1B3TYloGuaViejyBAJwg0io1iBciaiWr7UNbowQCaDor8ISUrijm8+Y5d1LG8WXF3tWIeF2wlBWcYMnhyTi6IrOZL4lYgqmvsXoBo9vn47gKcHuHkjHK3wtF1VF3DtE3qVsVwA2TdxvICxr2QR6MxR7aN3oKjqkSNwHdvPtDWDaQJP50O/mbgu39ymvwz609Dk38hpXn96Tat/0rRTUFWVCa9IYflnt/9/resNwtMqaGtc4rogCCqOH7A6sMbVss5692WLov4yy9fMpoc02Q1h21FeDzFtlUsW4Ouo6tKyFK6NCHaHbi43/PtOsc2bFzdZOj6uJqJnNeM/QDbNhmOJ+imhqOJLDYbtlnDIirYRDFKl9I/P0P2ehz2EVeX16z3B3JkLu/W3F7f8v7yhsXuwPX1FcntJYrYkJQNuWGjWBb73Z5GEFBsg9PHnyBpHtEmpx8c8/ST51T7A/HdnLPH54RnZ+RFwfEwYOIZjDyHR0eDh7MCUeAuzUE3sHWdJM+ZrTfsNmtWmy2G3NGWa7b7W0QFjk9PCcMQqRORdYNalDg9PcOURO7nCzZ3t9xeXdA1NbtDRLLZkM9myHlJFSekecx6t8bQHbqqpakqoniHYlkYZ485mVhI1YHo/iPlYU3TgKrqCLR0QBnviO6uSPY7yiylaVoqZO63KdtC4Jsf3vCrV7eUisvmkLPfbbA1iX2cAB2aqmCaNkF/CFaPeQL3iYKo+2i6zu1swWZzIJg+xjMEJEVDdwIsy0VG4NFgiC4IREXDVd6geS49z8EwDCRRQtNVBFHGsk06UaJn6eiKiKwqyJqOKEET7+nqhrpsyRYH7r55xfs//poyXmMb8OjJCSMpY2xL2JKI01YEWYxSdTzxTH40somLmlTSkEwLy3WRNQ1FN3DDATI1UlOjdHA6fcRocoZu+KR5TpYU1EXDYb2k7/dpJZGiTknymCiO2exjbu+uuVtt6GQZyQ7wgwmLzYFjT+BR6NAtZhRpjufaOKEOZkjejVC3KuPzz9A8BVEWECRYvn3D9ZtvaAWZH5Zb1lGCSAOiRAu4gcsh3tOUIqY4YdqfMByEWH2b/SHH90Msw2Zw1CM7HKj3K9yT8wcmyeVbVoslzskJdhhgKDLdbo2u9REVg1BVOfWG0BVIwwnG6ROyTsSWHjbkrm082NuFFrEqH+C6homgasiqSfQ/m+88z9ls95SKyd3NLV2e0SLgBAHjyRB3NMEMx9iDKVYQkMQRu+tbyk1Eutnw/cfvcEONo9GYomsYDHsEgz6WbbNYr1F1m23R8Kvf/o7dYYcqd7x8+QJLEVGpaGSTfSbQC/s0VU6d5Jz1Bwz6fUxdpy0rjk8ecXG7Q1J6nHQZL55aOMMA0e0j0rE9pKRJiiWJmK5HVxXcZC0fF1vc0QhdkcirmqyqcBQBXX0AuCbbFZrakG5XeL2Q3tEU23ORZIkjJ6dY3SIKOm7nUN3eIRz2pFlNIQogqxR5TZmXHA4ptmZSpQmerjM/xGx2B1RJIPQH9Id9ZCdAtTx0x8PwQ8S2RtitaLOC+PaG/etveH91wfV6SdVWpHlKZ1hUssrl3Zy72ZLlLsLSNV58ckQ/0JEHYw6Kw+Lujo/vr1jcr/jyz37MX/70OVp2w8mff4ly/Az5MCNdzmkUmzguELKSv3RNnvkuA0Onbhq8IMB0Xe7vrqnznC8/+YSkbXgT7TCfnhP6ISIyombS73u4roKsizRCS9GWBHbDGbf86pf/NxdXb3DVhv5gAEVOsduS7Q50WcrtLiUqQQDKVqTtBBA6yrqhRkDVVHRdpxRldFlClmUkSSTbroh2G/brJYok09YtVV0idjVtB5KiksQH6jIjawREUUKoO6q0QBRVirIi2e1Z3F7TNgJi2dA0LdezBbre8tkTh3Ao05/oTI966IbHD999w2634/vvvqXnWw8FaaciySaS+MBBccOAyXSK7flYjosowG//n79ls5hhWDa7+OHdNOyAST/k6Y9fUgsSghhz/OiUs9NjNAE0RcRyHeoyYbNdsd2syOKIut6wXMyI4pgamJwcIcsCpqnieR6iKKBQoSgSdX7AVkqmkz5GdkVgWHS7kuTNLdVsi9KbogcBbb4n2WxAt4ijnO9/eMfrH95yf3vN5Yf3/PDxkr/97Tf8cHOLZlnYnothPHzrizLncNhxeX3D/eoVeiCSayKJIOLIEtQJwcBHUUVoa1A0NMNCVCR2+z3v3rynyktcJ0C3DY6nE9a7CFEz0VSZumlpRZUOEc91WS7WrPc5i/UO9/gR+1ZCF1XO+j3qoiSKEyxqNFmg7wccj0f0ej3aFjTNQBNEVtfXaKJCsi24f/8OUVM5e/oU3zVpqoczieVyTlckDDSRIosJxmPaIsXUVdLDBlOXudvsuag6Hv3sMwxHRdhtqPOMrmpY7rd4fR/LdNBNB03VUC2FzpYYHk/QBRFHVChWOw53d5TxlmR/IFkuyDZzkvu3qKaGqGvknYrm+NRNSVnEbJZziqLkw+u3bDYJ6WZPslyxuV+wTTMORYEgiCiKimoYiLKEKoBpmrQ0qI7ONtqiez7jMGA6HiMqKp0m8+7VL3Hya3a7Ode3Gxxvij86peCBb9O1kB4ykn2C75rohsFqs6fvKcjlCkGSOT4Z89PnY0xZZKDptPM1ZlVx9vIcO+zRVjmmphNt1sRJQl02yF2Lo6qs0pJdXpFVDYqisC9aVEkhtExMWUTMcuqyoTeaMLVsHosdZ5ZJ20rEyyVyXeIh0dzPSRYrlve3lNEMUy3xJ0co4Yjw6JRONsiKnLIoebdIcT77OaVsUFU1N+/eo7YFTd2AqDKcfoKeRsi5gNvA3WxJbzzGnwzJ8wTXC5ENA0lRkEQBQRQo4gNqb4CgqMiagiCJCJLI/rDn8h//TygzhLpj8fEjF2/fE2UltjcknD5BUW3c/oSsFskKgdH5M/bJR4T9N8SHA9Ov/gLb9lBbgb6uozYN2+Wariio65quKFhutsgC3C9WeGQYCKiyQjiZomsqhmaiuT3Co1Ns18W1HawgRJBlsnhLtrknzUviQiDpdBS3jxeMsXSTrmuxTB1ZbKizA33fp+f7rHYbOifE9gPSzYKeozP1TTZpweuLa1zL5M9+9jOePDmHqmH2/VuOhmc8/Yv/SHj+jOTVtxhhSKfqtHaPtFOJ4xRNkdGo8Xo9+uMjyt2Wu9mMu9tbcknBPn9GXlZEqxW2piG0FW1dUzc1kijQtR3LxZIszRiPhjx5+owXP/qKXuBQzK9ZfvjI5n6F3kC+vMcITE6nNl30MHxuK4E4bjlENdttxvKQMPIdXFWmEwTWUUqU5JiaiiyKqKqOquukhxhnOEYoS4z+CFHSyd+/ofrwlmq/J37ziuz2kibLuXt3y/s3N6wWe242B2JZo3c6RXMsFM1ApGV2N+dmvWE0GeP0x7TeOfXVBdl6xfnZOUpd0uQZhqbj9IfcrvaomsawP8RybMpOYjo9YjgZ0xtNEFFR8oo8zsjbjtDz+fLR9G96jvmnock/s/40NPkX0iHOP72ZRX9lWoagahq2pdAbBkSWwbvvfkN0f43YdeR5ga0rUNUQpziCRFfXHBstP37xCCsMAZU6B0EUcUId3dJRDAOxbaizlPgQEUUx73YF09Nzeo6FXNdUaY6j6AhlS2ia2K6P4fmYvs/Ro1MenU+YnE44enTCoycn9M/PkGyfsoP1esV+v2dfVGzLivV2z4ePl8zv7lnd3SLHewQBWgQWrYBiOw+Fs2GS5jlaGDAY9mk7CzuY0htN2CUl222MP5kgODbfXdwz7HscD1xcS0NuK1xTIz4ckOnomhZV1vEsk6ZKuLmbk0R7ijxG7TLKLKGu8/+fvTfZ0uS60iu3Xet7s7/3393DIzwiAAQIMpNkNsql0qCeIl8xBzWpudbSKknFpaykqCQJEEAgGu//vrO+txo4XyGzBsUzsie4du8559sbz/c4m00JByPkpkd2fSJJYhz6zCZTHEWmylMWDw+kSUxV1ZgC1L7juD1QpildV5IUObZhkWc5RVWgaTKG5zK5mjFwWuo0xtJUtvf3fPrhB/qypKwq6jwjWj+RxhG94bLfrFmt93xaHLjbxnz/4RPffV4h2wEGDY5cEGgdu2NM3KogJFp6KgRZA53QUN0BhuPi+g5lWSI0nbOXr7Acl5+9DFjtMmx3RFHVdHVNGAzQVR3L0Bk6JsZwwD5+fggGvkea16RZiue6aIqMSYehC5BAlqXnyfvpQLbes/7ukW//yx+wnYDrv5rz4q++5vLNNXoZIx+ecCyTcrki+ekOrygZ2SbhwCVwNfZZzR4VOwiQ+p7R+TVpnKLSM7j8EsPwKNIEVXToioajadi6Q5QXRKcYU9aet0rqksfNju3pwN39hofFgs+3d2wPEbIQzAZTyt0dg3ZHUBXIWUORZswup/ijEEyDSgl4epIZXr3FDk00rUaoMjQNh5++pT+ucVSJxSFmVxQYuoamGyjG849U1TXOZ1cM3QHb6A7JaPmw2BCMfGzXxR+42J5FW9WUyYlOdaiFxm69x53McYIQWVXoqwyt7UmfCvRWYhjIlFmB6kpYA5so2nJKU0hzdE2nbioCQ8dRFPqmom17VFXFsmzQdCx3SFI2fFpvud0f+fHhibZvOaUladGhOwF+4NDLEqe0YLXfU7Ytsq6zX21I4yPbJieXKqbTMYPRhDhJGJ/NyYqaQ5xyv1iz3B7YniKyw563L6b8/Pocz/ExzICuTMhkh6wUNEmEKcv0jeDq8pqZ71E4DrZlYBkC21MpPv4Lv/xmxODFkMZ0MSYXKLLE6vYzSl3iuB6yYSE7PsdWYSuZ7IsC17YwdJWmqbCaFNN4fvRWVU2XZzSnFcF0SjiZPseS6j3d4n+RPX5icnZB+mFJk9SUtUyZFOhGz6HIOZxyuqZD0S2cvidPMwxFoawbloeYGoEpOoaOge2HWMEYBdAME0XXqVZLDr/7Z56++z3vP3/kx+MJxbVAU+hUhV0S8fn+nruHJQBv5mMuJwMC36H3XErToq5LGqHx080Co9zzNzPBuVsynrt4A4e+aWiOJzphklkTytWad3LPWThi9PYbNFVhe9jxlBTY4YCqKVisHpHCEZu+583X10zPQsaOw6uLCaarIXQZz9GRZEHf9dRVyq/OVaqfvueHP73nh8cV0XbL2/Mhvu9TFyWn9Zq+aTiVDbengk4IVnmHKssICdpeoqwrVMNC0XRUTQPFQJNlhKyg0kHTUqcRq/WCusqp8whZVWlaiaarQMiUdUNPT5WWZHcb+jinr0sOtzdk6w27x3t2qydO6wWb/RbDFAydGtcoeftVyCDUcF0XRfOegZqGw2Ybs94mvJhPsIOQ7alG6hRGsxHziwtkWUUREqauUEQntps1T/sYVTd5+eolo8DncjwmtC0C10WyXdLkAScImM/GBIFNne2Ij49IdYIqlYi+o2tqFMWkKBoOx4gsTxmMAlw/wDFUDE2w30dYlk1fl0h1QRxFrJ/umAcqQy+kL1VU8wWiVtm//wktcKmiI3kSo3kBx/WOyduv6YWgaqDUPb69X/DdzQ2SkCnalrxuEAKSomC5P/BxcUeZrcBoSKSaXrQYVYqjiOetAtdFqBK64yNkGcU0SYqa7//4HXcfP1NnDVLdUGUxhtqj6hrrzZauLhiEAbVsomoGQpJJ4pK+7ImOGbunDVKS8/Mv3uDYFpuyxNZkDFnizRdvCQdDLNNGkUBTINlsqeMDxXpJvHwi2W8pygzvfE4QOphqR12klEVKmqbsdxt8TaErchRFxnZsmrYmSSNGvsXmmDD5h7/j8q9GJGVEulxjSB1t3ZJEMaZtoZkqTjhAMRR6XUNzXPzJHM/yyE8x8/M3KFpInvT0dU4db2mSFYqtU3YtnaJRNS15GhMd18TbR7bLBVFa8P7HG6qkYn//SBHFjAZDCtMjrSu6vqHrOzT92e6hKQqapuEHPlGSIRSZ6dkFF6Mppm5gOg41cPvwGV0pOL+YM794h2EO8OyAUyU9g9mbFmq4/7SgQ0HRFNAFoZZTpCfCMESSFf7D3/2Mv/8Pv2KsmwyetlxMhvgvZ2iuiyJB33fIXcvt5zt6ZLpeRm17RNPQSTLrpCArK4qyJitqZpaKpRnURcnw7IL52TkDw8TOc8aWx5fjMV+NR1h9S12kROmRze6OtlgxHHuY51cIb4qwbCTNoagb0qIgyisS/5JU9elROB0SfvrdvyJXGUgyumniDaZIdcoX128IwwGziznDr76gqTMMVSNue4bjEE1TQJIQivociZIlDNcFIUAIJFkiOR35/Jv/TF81bBcHnm6fCGdzhpNzJHtEL1QMGnzPxvVDhOmStj25pJNGe+4+PiALg/n8grposIWGq+hE+w37w44qjknTjK5pqNqGqq5ZL1cEdY7UtlxeX2O5A6SmRmQxmuljjSbIfY+oczRVxXB8NGeE6k5BD6nQ6TWPTqhIXUVaxNw+3nH/eMe7Vy/56t3XFEXK+nDEmM5J0pwkOjHxbWTd4aflDiG1/Ke//4arVy8YTaac7h8Qp4J33/waq5EZDUccf/N/0csC62d/Ta0YpFlOWWQEgY9SppiKTF9VSEKgaxqH7Y6TbGDOXxLvtrRNg23qFEmCKssUdUtHj66omLaF77qcz2Z88eoV8WGPmidU2y2PDxuyLCPULdQmQxgm88sBclMjIxPvCh4fc2zLQ/Q9j7sTqqISmBqGBJahUxQVUt+BopInEcgKiuNTHk/kxz0iiWn3G4qbTxz/+V+QWkEdx2z++C1S13K72GNqKorj0poG6iCkkyXKqmYXx9zd3RIjuHj8zUsAACAASURBVH57zXx+Rj95jdAD5MPumU9yNsMdTamOW7I8w3FtNkmOZrmYhonlehR5ydnsjDB4hoY3ksJmH6N2MLAt7NGILy4m/xSaf2Ga/FvXX5om/06VFc279T7/R7pW8lwdRfRoloblGmhSS306sbq/Iy9KFFWn7UGTdeq4gCrmr+Yuw/MZlu+h9y2mBk2dUHQp4WyKpms0eULft9R5xqe7FQRTBoFHE0Voksxyd6TMaq5fvMQfjTC9AHc0QFYVnMDBHQ3wpjOc6RzN86Brny8acUxZd5QIqqbicDhx8/GG5eKJrsgwpZ6iaWnpyIQClk3V9ViDkFZIyLZPXuTM5udcvX6LMrgkyivKRqJue3ovJPAc8kNMr+h4nk3bSUwGHo4i0dQVfdsg1QVF2hAEPtvtltVqRZHGFPGOukyxbI2+7TibnDGaTjAtj852iZoWXZIo6Jn4Lo7tUO335NGepq5Is4yZbTB1HL6+fIlatTzsVmRxRNO0zx5610dWe9yhzYu3L1C6nL4poWnoq5I2S/j2D39i8/kT++Wa435DrTts9hE3d/f8cLvh/e0Ti8WKQ9Xx5qu3XJ0N8DSo04TVZs+2dVHcCXVxQFUUnCAkCCe44RDHDXAcm1N0Qmgmg9EE2fK5+/iRbH9PWbd0ioUsqwih4HkBN4/3bLZrfNfDAmaBh6WoaKqGKgSf7xbU9bO21JEapL5GCKCtadOIzXffs/r+FiMYo6g+lhsy+5sv0D0Xqa2Jf/pXjLahXK/h5hYryzkh0099NF1BlWUejxmP2XNuWlJ0LG+EZdkkRUs4fIU3/wZhjmnjIwPXokxSdst7mmRFk5+Iy4K7/ZLH3YL73Z67xwW3T0/cLZcISTAbTRlYBtLuhqcfv2egyLi6hxHFXF2/RRmHyIMRx7Lh958rhrMzBmMXUy+RFRBCgr4jfv89xWHF8XRCUlQe0/LZVlPUONYAL/SZnI14/c071sufcGyTzeMDulwzGU7Io5Qq6TF1gzzNqLuO1eOatJEpJYPp2RRFFmiWzvbzTySrJ8rkiD/zqOqUulwxvgxoqfEsjYlcsLv9jGkMkISGacjUVY0hK88EeXp826GXDTA0+r5BNCVPp5hDlrFLMg5VR9z25K0gLUr2pxPbU8R69cR68UQtDHrNw5rOCKdDbN9HNX0s12W3P9DKErcPD9zeP7Lfn2iqirGn87//7Vf84u2csijI9ZBTZ2GRkpUNx12M6AV5BK/Pf85oNsSfhkSoGIbMUG2ZjgNMz0FXO6Ahkp7tOM3pyOnhhrzucMIxuuNg+j77uuXUS6yXj2j5ieFwiGVoSFmCrhv0nUSdFTimxWjs4ozHaLrC8vMfMYjJtlve/4//ye77BwwtYPbyiv6YIukGeZHSNznfPR7RTYuZ72G3LVIvszueaDrBuqh42OzIy5I6zfAdB13XkasMWX2O7sWbHffvv+f94x3bvqN3bGIJ9lXL4zHi0/0dp9OJ0FSYeAbjYcBoNEB4Dq3jEq0esYcTolrh7rs/8tW454tzm/n1C6yrL+h7QZvECM1jGys0hYK62fJqPGY0v8K2XXTLgq4hKysq2cDzA3bxgcIPePfrv2I4CtBEjSVUZtMBVxchZyMTx36OPDRJgVakXDgSx/c/sb2/py5KdlGKtN1x+fICTREkxxN5mlFWFXEDnzJB0moIRUehR0JQtS29BKqmIVsumq4jANVwUJoGTUjISHimyX6/YblZ0pQ5SXIkPW1RVZ227kiWO3RVwdAc+sWKxW9+w/bmgcN2hWopeFKJLTWEo4D7xYKhCe++HuM7NuHogmD6hsP+yMcPN1Sl4PPHFXHWouomL15+SZy3z+wpWeb162tO6wP50w22raN5AUY4QTNMJmfn6DQYxYnTcsnHHz8jCZ1gPGB9XCJ0mUHgEnguuqGTxgduvv+Ow2qFaGo81wUjRDM9ZMOmqCoMU+Xi+g2BrT+D34uSh9snhr6HoTQcDwei3YHQVLl8eQWdQLbP0M2QMk5ZfrqnVFT0MKSpKg7HE+FkzmGzITy7QLFcPn98T1LWtKrB9nj48xlw4mm75nZxh9FnaIZA6Aq6ayEL8RzVNLVntpWm4k/PaOsGybCI04J//e3v+c1/+2fkVsHWfORORmpl2ipDVwW3T0+0bYM/mnLKSgzHJ4tTtjcPXL+85ufvfsXrl28JLBM3sNGnIzJFxpJAMzVmF1NUWUFIPW2ZI3ctSluR7JYcHu9ZPjzRKQL7bI7tuXiuQVPENGVOlcU0ZcZqu0OTejxdoOgqFxdn1EVCnCecnY3QX77l6hdfYaffIqJH1ve3tEWL2hqUkUARMlXf4o98FMdF1ix0w0W3AuzB9Fk3XBTo7hxzeEVrTWgUlTJbkScn0jwnOu7YPn5m/fkHVg+fOGwWPC23rLcnFp9viZZL+qZlfnWNPTlnr/iUXU1y3KLqBrbnousqhmky8ALkziRNas5fXHBxdoGu6Ni2DbKg66FuVSrD5sXLN8h2gKYaiF5HEhpS12MqMrJQKArBxw9PhAMVXenQVQmlb2ibBrqeWWjiaT0Xf/0rtFdfUCUnLEdBNWT6rkdqW/qioEpyfrhd4dsWddXQ1y0qoGkah7wky3PiLKeTBEpVoxYFrm5iagb18Rn+Pf/FL7HOZjjnZ5iezuDNOf5Ip8m2KIZCp+q4r3+OGk6RNQs0kzQvSfKSu6jmcMj4/tsfkMyAMs347r//V0RXMxpNaZCZzmZcvbpGtC0/+9tfI9saaZtjCAnPMkjjGGM0xjQ0NM1AVlWkpsaw7edvWaaVBb0ERRKz+/EPZEnNcZ8yHI2ZvXpNK1QkVaNNtviujWFouMOQajAh7zqqukAXHRIy8THC0lU0N6DtdVxVJzkeaNuWqqzIipJDEtH1LaqikdcdcVogtz2z+Tn+5AzDcig3S7o0Ryjuc7NfkqhbicP2wHF3JDqe6LuKtsqJT8/34912yefFAsfSeTv2ePPqFV3fsdtviVUXywuJ4yOepWO7Hne7iMXyga/PfWZXV7z++a8Z+A7Fpwd0eYATnnH804/ID7eoF3NK00TMLokOB5q2x3ZsbNvCMnSktkWoOsunBR/++C2u46GbBpnhQN9SFQUSEOclru9yynLoJZI4wRE9P397zYv5nNXdDavFgoswZL9ccXP/gKm72E3PZOJj+B7+0MVQoUkrVo97gmCI4zps1lvSqgPNxuwb6Dqgx1RVLEWmbjpOp4QqS0njhL5rkfKEfL2kPB0ps5K2rOjqkryXaOuC2nTpdRP0Z7uocBweVluedkcOx+eBbGfZjM7nvLg4A9VEjF9TlAWe46LVEofF5tmaddiR5xloOvs0xQgmTKYThqMRedsxOJsxGQa0wN2poJQUJFnmtNrQxwXv5sE/hYH7l6bJv3H9BQT771Y9RV7g2wZN1yGArm1xFRh7PqN3X/Pxu9/z+eGWVmp59fIluhsyLSoiccDxFWhrVNGjTlyyRKVJBUXe8OnTHT/7xTtk20EucrIkIW165vOAh9WJqmnwHZvL0ZBAG+HKOh0SDQ1FnmD6Ds5gitA6qqbGUHTaKqVqW/LowGm7J6kaNqeE7WbPx0+fqdIE31DJuppTnFH1HS0qimoiNS2OJVN3HY4f0sYppjdGlQXT8QSOGh9uvqXOOoyzl+TISK7Hr//OY7c7cXe3xXQMXk1tFFPFbC3qvsNVZVaPC3LNIYqfIzR5eiBLjgyHAZaqIRyHcDwi8EM000DrYI2M0tWUhy1Z4DLWZZJox3AQUhU5h/2eiec9bzlYOv5wRLrtcDwX3xljaBZJnxN4Af7UxzB1QEdxbTbHR4osQRbg6xLL3YHVIaNEIL9/oO4kkqImKVtQdMbDAV9MR+imRpIm7JYLFos1eS3z8vyap8OGStXwPBfTH3B2NkPIKooiEZ9OVEJh4AZ0kmA+m5HunpgFCmnW8hD32K6NZZnkccpyteLi+hVlXfPw4UeCpkZ98QIhSRx2JyxF5rf/8nvO5lMGP79EdIKmLLANmdPH9yw+LjCHb3BevMS7bGmLGEmRkYSgS9do5YG6yLDDIYquEsky3chlPLQ5pg112aFLkGQFVl6gGhnbh49cvv2GF1dvwJ5QlhbJvsc0XiG1R+aTS3wlYPH4LU/Re9bHPUVdUCEjCRVLNxg7HqPRiNBU2T594HDYoWU1b66uGM4vyQ8HRmdDKlPDdAKyY8z3/7qD0WtCz0VRBbKsI4kWSQjaJqVXOyohM7i64vZhTege2KUVklRx3G+emStpQZsmrJ42mJ3PF199yVd/+0uckU9oumiSzuLzkjo5IksR+SmhrWQszyQ6Hmj7Ci1VKLIjxe4e/+wlwgLinmBooegarj2iaSOq8oEvr4c8lDJJVqDJCqrh0FcdgdfRVA1tUzIYzIg7iVwC1bGpXItF1LHJK5Iq5VhVbPOah6NJYKmoQkGzbK6uhrS9wA5sDMfCsl3MwZT9do2qSjRlwWK557DaobUwD1xGvsrFzGfuClQh415+RZOkFPff07cFhuYi9T3xsWCgv8Jvxoy0CaZm0qUptmMjUaNrLqOrl/TxkR9/919oaZi4Bl1Z0jQtynREpVvIiqCKD6RJRBQdCG0N5J79Yct0EKDaFlVTkyc5ct3SNTXe9RcYnsXm4SdOy48kXYOalaximIyG1NEBTTvRnj6yjzsm8zFZ3TJjQ7LbwWSEoqjYSsXccfjuaY0tJFZ1zR9vnzjEBYt9zD98ecPl1UvC9RrRC9LdgcpQUMcjutOO5WnPaZ2TVhV1XSD6knHo4U8uuHhxzjj06aSe3nFJ9084YUDvDFD2j1wNW2bWiPHlkNVqyXw4RgvPUHSF0yKhitYo2x3/8ctrTNdH8kNq1aLuoZZkOn3JbdExGg2JsoTd4onjLiJKWhoNfjEZ0uYFTQXpKSJwDeahj6Z1iJEL7QbdcZlORlRtg+l4GOEZv/9vf+DtF1PkpsFQdGxFMNBUPKUko4ReICsqbQe6alLmOS0CTX1WuQtNR5EFejhAThMoa0TT8c3VW5q+YXfcsysyumzAcb1BNwNGXkC6WWOUHWaUYksKo9mESaChNFt2ixb59SW/+/SZUG+4PhuTnxoSq8QOHGRNwRs6/Oo//pJo1yBLNt+/v6eqZeJCwvVCdtmOvm5ZPj2yf/jEl2+uKZBQLYemkplfXrG9u+HmX/4z44HLyzdfoZnPRjbd1fGGI+Jiz9Nyha6CJFoqCRoh88N37xFCZnT5FUXb0klwfnWJO3Aom4LRwOfM7dgvj0g9RMctn+uM68uQ0NGpjkcePi3461/WaP6Qthb0/guUSqN4vOPpxz2BPEXpChph0skaXd+j6QZlmVJXDdcXl3S6y/1qxXKzZrHbQJUxtywMTdBIHY0iMFWdC98lmI6xbAOknrpr2SyWSIpBdL/mj7/7Hd/96ScmkxlfvftrAt2j3jcMp5foM50o2fPFm5aP959QghBNbdBdl2+/+wGjkTg/m+OFE9aPEWeTCYppcYqOtLs94+kYRdS0QiKLjyhFCWlGnsZUccZhc6BpZPzpa4zxEMnQqJuSnga6lroqoGvQ+hpNhrv1isA4x2g6JElCVRWc+TnyV79kqJnI5QrPnfDtb/8ndi/49OmJ6fAVmuJRRhWGJnHYrRiqOqZj0qEi6za9JjN+9w35Zkv8tCdJ11R6QCHpxFHBcfmJ3akgySrKTkF1QlqhkGQ5eS14Wp5Qa4359DWD8ws6cmpnQKiUfPz+iO366Jb9DJStctA7slOOJAyur68ZjqZ0TQOyQilJNG2PqUhMvDHH0mBdWKzzmPlwyheei9OpHNOaQ5Sj6zLTi4C7PzefLr+YEw5sdkmFaeqkpz296oKp0PQC5eo1ZW+Tbb/D6DKEJMGfo3Zj3+HCt7l93ODqBpqiIBU1qqJz4VtsTimbJOfbuyeqyYhz26Zfr9FMC1vV2O12CCFQHQtrNqLsc/rTDmHK7LIS3w+R/SHb3QZbNpF0G1kyiIqaVWuzqzs+337i9ocP3K0yRN1SnPZ4wxFlUeAFQxTNYHwxxzsfU8Qn8rKhXt9Q+R7KaMhYlol3G8ajkF5A07QYpoGqCnohgRC0SAAIRcUdnJOWW0azIYoqUUkqZVsjdRm2rjG9uqKqCw55imJ4OJMph2OHqwzYPt3g+i7xcU9vyDjjVyRZT9Y+x4A1Xcc2LIqmYnPa0XQJQ99l3cjUix2z3/wGpWkZzi4whUHysKDOZWTNQqgq9stL3AFEi0dCy6QoSuo+Z6TDpm4YfP0ruP4GR66YVVsO+yWGG6AM55iShSSgbh8IByHLsuLh6Z5zTyacjHj55g2h55D/+J6JN8LzXBQM2umMsopIViuORUH243uy7QZrdo759i2yqqHIwfNWyG//F52uMnA0gvEA0UicsoLoaYViKs+RdOPZqOb7HvumZuy7BJLF2dkc0bX0dNjGczPLG4w42+6Z2iE9Anc4RvYV6lrC0is0o4Jexh/4bHYpuqagOy4DP6A77WjqmrxscC2LU1biSSCrOlnVkq42tHnGDjANC98NmAx8lFcasmlhIzhVNXIvIZkOlmnwcHvD42bHbz/dEVoGZ8MQdzRG8Yc4nk2Vx9ijM06djBWG9LrFmeax+T//D+5//y+4to0ajlnWLYYT0HUdRZZzOsXIfkBUdyRtR1rUuIFFR892ldP3giaKkfr+/7vn7f+P6i+bJv9OddjH7z5+evpHx9Yl21Tpu5a2LKjSjPX+iGqbdFlGKwl2ScR8NiToU4if8F0FuS3xfBfDtWl1BdXQ0TSDvhbsk4aigyDw6eqc/WJF0sm0EizXO/ZxjjccYdkudBK+pNLWDWVXIukqjuNiGBpN06Paz6T3LDoQH47kdctqtWa5PvDwuGCx3NBkKWWekqYZcZLStS1F15MKBc3S0TUVWddwh0Nsy6JuK3TXZjKZY2g2n94/sl/umZ+9Ik1zLNPicjbA1gRS3zIcubycudiaoKtrHNNAE9BWFR+/vyHepxzajN1hTXbaohomk9EQzdDRdZPZbIY/HKAbJpqpUmoqcRoz/TM1XG5Kos0K0cNqtUbpWqaOw9VkiirLOJMJFTCYXWPj0Vcq7iRAs1u8wMIbT1CEQLQlXZaRJymrxYa2KlmeCi5eXDKejEDVaXqJFoEqQBLQVjVZnLBarVkvV+RJTlF2BO4Zo8lLTtESRI9p+/jhEMt2sVyHLMufgbaDKbYb0rc9llxRbW9xLAvFGrBLO2RZZjAYsNluQUiMR2Oy/QY1jchPJxTLJY0KTFlgaxq76MTn+3u+ejGjrxskWqrjmt3tAn36GmH6HLcRozcT9KFJ39e06YH4hz/QxhnG4IymLCn2B/aKhuzq6JZBXXWURcM+ynlISxJJxvcDiqZCtXy84WtUZ8hxtaZNt9x+/MDMG9IUHVIRg9wjC9D6Hq0XKGgYmolpmAi5pshPLFa3SGWMKZvMBmfYmkHexQxmNsrQw5yOOSQR/+Off8umu+Tt128ZDl0sVUVVQdFVenrq4sTj3ScUy6BrGxZPTzSdxOYUIwnBNo6pJMFoEjAcDpFbgzIVXFy8Rmoh2q4IJzZ5VbHZ7Rk4GqenD7i+hmrI2J7JerviaflEU2dcvDjDDVxk06BTdTRdgj5BaA6bzuIgZcTbLZY5QtUtDHT26zVl1+G6HnJbQdtimRYSMort0fft85S1yOmbGkNREYqGRE/T1HRdh6YI/MkUdfwaVdLo6hTTkLFtH6FZWH7w3IQ47Xn//fdcjKf8p7//33h3/Qa56zjtV2hyy9XFGcIeUNvnZLs1zXFDXRQ0KGwOHe7gmpHzhsuzc4ahgRjrWFqNJ0pEkYLmUZQNluuAYfPDH/6Vw4fvsVSZ0cUL7NEMSVHQ24Ji88Quq+gtmzLPMG0HSRaU+bNqVdENdF2n2m/IkwPzn72maRO22ydy1aEtM+QqReQRwcAnlQ3iDsKpSZ7FbI4Zs/GMQEiURY0XjtGEjCkr9GVDkWckRYGQJKKiJMoL8rpjv9uxXzywXz6w3e3YnU5s44RFFPF4OLDarTme9rT5EU00hIHPdDZiMhliqCpdV6EMB3S2S1vEmGFIo9jkxzX55oY6TXFMjYebFYYdImZ/z74csv14jxM98m7q4l28wpi/QtItqroljmLyLCP/s+rW8kK6pma3SzF7l8lwSBgauPR0WcTu9o7PP3zmLNQ5PdxQrm8JRh5929BWJf2fGQRn80tevf0ZtaSz3hRUaY4hS2RFRZxnyKZFL5ukVYlr28+ae0mi6XuQFNzBGMN0kGVB37SYtoWpm5iKgmgl+rxi7k/44voNg8EARVEwbRdbV9F7GVWSsAwN93yK+9VLjLGNEm2ob+4IJjM62+a3f/oWTy0ZThy8iYY/6glHA7a7DUV0wHFCwuGEIJzi2kMcI2Cft3SSStd26KpJftgQr26Zns2ZXF0THxNE29BUJZvHBy7Ph+iGhj8/Y/r6NYpioJoqsVyBKijiCFlAlqfc/fQTi7sHlg8LHh/3ZIXguDviBs9nehiE+KHD19djumRNkUXs1lviU0x0SMjzBlPX0fqO4y4iNGSC6ZxO0ilKKOueupOohOBxuSYWLqU95vHhkd0xoukFVV6xXi9pkfDH5xRVy2a/Yb9bYSkCR1PxbBvfsRkOQyaTKdPpiE7V2J+ObI4H1knPKeu5+XTPhz/8nk8fPkAv+PLrb5gOLyi2GYvlnqtv3jK8mGKGEzpJwXADSkmjUTSiNOfhpx+RmpaX1y9ZP+yxRuecv3uJE1poAvoyp2kbFMckzzP6IsdQJOS+pUwTJAn8cESvBCj+FGfogfy8JUhTEu83FGVBXdUc91vKMmeTZCiaxuT8HG8UIuYzJj/7mlORUyVHLDlD5Cs2j080SczQ6vnwaY2sa7Sip6pKJEnCMHQU3aXvZQwvQKg6smIgNBOh6CTHDaftB54+fcunnz7z44cnbh+3LHYJp7IhrVrSouVwSDgsdwxUjevZBdPzF6ArZFWK9eILlps10eaBpimRNQ1FVWmKFLku0GWNy+svmcznYKhotk4wGRCXObKhI7qWNj7i6BbHCk6dQNZMZv6AtoW8bNFlQatA1FQUXcN2u2J+HmDLCdFhi5AEp92OL794zcXVK46LLXUls80FmRYgsgjXlpClHkFPk+Xk+yNNVRLnJVXTo8iCJIopuh5DEch/FgGs4pRjURI3HWVeoNCSRBnFZo8mwf644xTvqOuMQ1qgjkZ03oBcKNSthGrZyKZLjsbHQ8tyl5D0Cnmas1isuPnxI4fP71HbEkXRcIMxwfQMyfM4H/q4msLD50/k6wd8x0IIkIXAGwwpmx5/NkZW1OcImgB6EJpKJ2TKtqOXJJq65njzkabq6NoOOwxQLfsZoFtEDM7P0UcTuiqh62o6P+RQdQxmY7omIzsuWT8t0D2XVVQwuXxFo2gkywXVKUKSJEpJkLUdnaKS1zV1VWObJpbrc7dLSDdrtL6jkw1aWSeNIqrlgjSKKNsWTRbsNwssTWM8m6FqGvtWIQnnFIrBu1//DQ8fP3I5cijyhAwZMbxgc0pITgcsQ6bIEz78+CdcueKryyGu53Hx4opRENAuFwx/8Q+UWUvXC7LoQPT+D3y++UBcVYi+x/UCZEVDGCa67dA3NYcPP6BbLt5kRJEnpHlBoVskkkqR5VS7I9Qduq7SyhJRkmFqMiI9Mhh4zF+/oUpSyjh63pTuewbjM2aui7zfc9wXjM+ucNwAzfEwjJ4ujenKGkkxadqO7f6I4Y9RhESdxMiShAzss5Ky6UAolHVN3nTohsEpSpBVjSTOyPKU4nRCsT10z6MuYlTberbwaBrbx0d+urnnd5/ucUwTLxyieQGNZjEaDHEsA0OXaBUZf3ZOK5kYoYvlmFSrNeQ568MOBGyaFm1ywWg0QbdtRkHAsWoYTsfYhobr2pRtzzFKmfgmvm+xjyu+eTP/pyBw/rJp8m9cf2ma/DvVbhe9u73f/KMqC6kXzwT3Ooqp9weOpyN53zLUG4yhw8uLIdXyI06zZzAf0JQZ2W7HKBwgGSaGoSFcm06SKdIWCY3FckWWVqimx+ppgehbirJmvzuwPhV0kooZhCwPRxabNUWWooYh4/mMaPlEe4qg62m7ljI/sX284/H2ieV6z4cPH1gvnjgeDjRVgURH07TkVY2QoGobVlmJYmg0bYOmqpjhEMXUGXoBRVVi2Taj2QV1Kfju2880hUQvXIaXZ0zPhpzylLOJy/nAIYtT6DtcU0WWeuqmxVIkyrIiSSo2T2uiOuWQxlRtxWA0wLIdFF1HN00mkwleOCBvOtAUVKmmSiMGtk4cxUQPn9CEzH63IzudCBwHtet4dXmFLimIYIA3foZnWcoEV/VwJjqdFON4FpYXYJoGUlvQ5xlSW9NXFXnVckwqyg7OJgPmsxGDIMA2zT8bdHqarqWXJBShoUgKRd6QVDIvJ68x/ZBdtKSlJxyOCKZTDNMkL0oaoTKdnmENxnR9T54mbO7eU6QnBqMJij3g4WmD6/momkZ0OjIMhwxsk2j5SH48EpgqrumgaQZdXaFrOq0sc0oS3s6ntEVKftyxvb+l01yE6ZEmFYoE/nmI7up0Zcbpxz9RRSmaN6DNYtroxCFJ6WyNpuvRDZXokLE/5GyTkkPVsq5aLMvA8QYoZoBuuFiWRy90injD9u73yAheXszJog3rhxv2hwNZHJNWDWldkHcVRXkiL0t6qUUXMobpYloWmi6IigjXamm7iuH8jKKu+L//+TsW1ZDz6xfM5hMcU8fSdDRNArmnEz1ZdGC3XuOKiv3DDY2qI+sq98sdddtRtpCWBb1QyIoS23OfyexdTREdEcVnZBr80Tme7yHRkm3vyYqEsjxguyaFJBEMBrS9BLKKqkjP0yXHpkxPZPGJqm6Qmoxzt6Y7RWSqQ6UYuJqJQAZFI80zdFo0VabMMxxDwdJtuh6i0wlTtPRNS1I1qIrCx+lrLQAAIABJREFUyDGYuxZvJwMGgUvlTcg7jbbvCB2N+HjE8Wxs10PRHfLDhg9/+H8YDwIurt/ijC8o9jE//PBHWmrevp7z4uVL1mVHjoTWZOTxCct0uE8Ewdklb768QOklfNdi9MJBG6pUTY3W5Di6yrF5VlqbisD1AlzVQoszBtNz5OEY3XVRuoJs/UAe7Vk1CrFqkZwOVE2FGw6IowN9XaBoBk0vqPMI1wN7JLFbfiSqWiRrQL68QUNitd7x/mbJy5cv8X2XJj6SHWLuNzG25zIfT/BaiLYH9N5CU23aviaKE/ZJRpQX6KpAFoK66dBVjdC3cEIHcxCihgG9N6YJxuiGgiEaXE3CNhU0XUXTFDQh0VfPBg3DceiCALqUvopQ/TGdJJMdPrG6/QitihVc4b35O5rhL1nvepQsYUTCWKrQ/Anq6AJUAzSLXNK5+eE7OC5YbBYUHaiOj24YJEmONbpADi06QybsO9o0YfvwxCDwGI89+q5GqFDlBVWSYAYeqqWB6BmNzqjpMQ2HXtbZNi6nSibrZUogL0oqVOK8eLbcIOiEoO0lejp008F2HGRJ0LUNquiRDRvV0LE1FUPWaaqSMm/wbY/JICAcuoRhQOANGZ2dYU7H9JZCS8Lp83ekjw+44yHq/IxtEfHx/R+YTSyQe7bLJa4lYQdjHt4/4Q+vEPKAwzJmvz1hug7D2SW5ZBEdTjRNi245bBe3yF2FLj+DZ58eVlRFwePHz9imhjWcohoq6fGEZbucjjllUxMrPYoqoyuCvu7J8oI4Ttmut9w97ShLiSKtaDsF23VQdZXQD7i6HOKJhM3dDcu7O+qiJS578jRF6sWzacZ0UYRCvj8xuxijOQHpbku631D1NVIQUAmFrKqI8oZccYgahadtwuZwYp+3rA5HqrbmmNXso4g8i6nbGlWRsTQZ2VCRXQfLVDmlBfebLds4JxcWQrVJ4wP5fsVms+RhfWQ0HmMqJsUiYne34O27a8avxhhBiOJ47NZLTFWmxuJ2V2BocFovOWy3aIoGKFz+4mfgGOyOzxYWw/dJyoo0T9BU+blJZhtI/y9777GryZpe6T3hfcTvt82902ceX4YqulaLkiBSgCbSiLfIYQMCNJAgNEGnIst0VZ06NjNP5vb79+F9fJ8Gm7dA9qBr3UEAEYjXrWcZOp2i47guaT2wb3Q6RUU1DZq6BNHSVyWb1ZK2LqnrmqFvifOUXtOJHp3y9LPXhI/PsY6PuN4nZMNAn9wzVDG23pNuViwv7pgvPFohuN88NEtDJzE1B1VRMGwHRdVQdR3TC+iHHiEf/jVSE1TllnRzy2azZZsUZO2AOxozOTl6AMF2ykPSj2kyH08Ip4f0mkEWbzD9CGHYvHnzLWW6RTV0TMOgznaIJsMxdU5OjhjPQ5zQoOpjwsWYvCg5PT1CA2xVQdYNTVXj2x7pLmG73nIwmuK4LgIo2w7d0ankQNw2KOWGlycO+e6OpuvpBsnQ1Lx+8ZRqFzO8vaLGJusEru+zbXRsWlxLYSgrZNfSlxVpnGKoGu0gMQwT+o6kbukkNL1AkwIdSdF2bPKCIi9Y7lNsZSBJU3b7PWnbUGkGsWYxBBGq61GUFaqhs9ulDGZA1iq8XRfkRUmWrFGkZJ22rNOG61//I22ywjRcnOCQk8fPcWcz5tMAtR9o84xA6yHf0+yXDF1P6HuMplO6siU4WqCbOqqm03UDtmuhGgZoGv0gH+q3rmX/9lvSeI0qBd44BE0gRUdfZ3iRC+qA6Vj0XkBmBuzTlLLrSfsOcyi5eP8eMwrpTZ9e8cAKubm4Qlc0aqGQCknlenRSw3RcVAXqtsNUYHF4yr4R3KzW7NYryjyhFgNZ21B2FavtijzeURUpSZrQGxb//PV75NOPcA4fgQDH1NjdXHI0D4nzlNZfcFcO7JeX+K5Cl6/48P4dQ1tzMvGZhA4vn59zcnqG54zQNQv/5BjFCkjjnD7PePf9twyey/TRGV4U4B0eY7rBw3WhZdGXJffffU8wHaM5DkVVMYgWPYi4KTrKPGcchbRliWFbNKJDMSWzQGWsNTx/8RjZNWzevWFzdwe9JJQ9XZISeS6kKZaqoHYNvmMjywqlkygSFKGQJSlt15I1A3Ywpm1a9Lam6no0VUVXFeq2Y5uXKIpC1/c0dYuu6yRJhqqqtL3AMQ3SrISuIlltyIqabZJzdXvP7f09/+VyiWra+KMJhvMQix14PqZpMp2GlEWF7EtMTUXxxhS9QhB5tFmJrAVW4PNhs6QJZhTDgBsEmLaH59mIvmcyjpjOp6iGwSYpOJm4GMqAbWlI0fLk0eJvRqH3h6HJv7H+MDT5d1KalR+tdulfC4Qi1IcPeXt9S1wUKK6GZ5YMMidaRMzNjq4uMA1wHYs0SyjzHMNz0F2HwdTRXBtd11BNjbwuESrESc7d1S1x3eL6Ll2asktyNlnDKiloBYiu5z5JuM9iegakqVKWDUJIOiHo+oJ4s+b+4gfi/Z71akM3dAxDD6qGHHrqtqNHYRCCtqmJy5p0AMuxqZuOcDpCGBr2eIRnWaioTMYTbEVHFQ552WP7Dh+9Pmd6OGFf5IS+w2HkMPJtUMDSVCaehmdoJLsYtW/I0pQ0a/BCj0xWbOMN4WiM47lIRUMgCIIR0WRMGIXIYWCTFbiGAlUOQlDv1/TxirKqSIsaS1dRFRBSYeSPODo+IStS1NDHtV2K1Q7T1VBCgarUeIGN5QbYjouiaIiuRnuAY9A2LYqqkZQ9mqLhj6ZMDo5x3QAhFRTNQLdDVMOkqzvyuCDNKyIn5PTwMa2usEk36K6LP5sgxYDlRUSzCWEYITWDWeRT7jdo9QZ/PMEaHdElSwQ6q3X8ECNs25R1yzQK0bqaLMuhrphEEbrlEM0X1HlBV5cI06DsW0YG1EXJ5vqOm5s7vOkBnaITjgNsV6HuGtzAo0u2lDdXGNEIRdcYqpIuT2iHgaKqQVFRNZ1e9Cz3JXkniDvBppeYlommGISTOQgVqbrYtk2ZpeSbG5qq4Onjl4wDCw2g6x4sJnVCJ9oHorqm0gtJN/T0QiOvKpq6RhUVga/SS8H4aEHZC373dkMxjJkcPeHk8YJR6ONaJrano5gKiibpuob15RVNntPFS+qmQXEC2qYh2ydc7QtUzaDre9BUZsenlKVCukk4mh8TjKdcXX7g7HyOFiy4/bChH2r65Apr5NE1CXlyRzWodAKixZy8zNDqjG6AQbO5+/AWy9LBDthut2giRTR7Wn/MdtDQ+xZblYhhYBw40JYgBaZlU+cpiuiwVZWm6xBtTd91CFWllhqVVIlsm4Oph9BNtPEBtdBQNBPf1B683Ib+ED2d77j66leItmJ8/Jjx6UuGUnDx5dfc3n/g5dMDnjx9guKO+OVXP1CVJV1V4WgK7aAhnWNsJ+DwZISmG8wik6OnU3p1wJQ9zpAz9m3iWiGIAo4mDooQiEFnhIlmuNTBiLQsqNYfGOqStm2oZ0dc5D2uqxMXOUlZIMoU31DJ9xsUZUANA6IDkza75P7iDa4fcL9JGHb39G1FnBUskxZddLC7QlEFs0cLeiugkSpPnjxmNAoYqYJqX9BXA+qg07YNqzQhbxuqrsUxDTzLxFS1B0ilBpaugByQqkCqgk4xkIqCFD2aAu0w0LYNZZHT9y2e5+KfnpG3Fa6lYNk6uqHjRnOWt9d0rcb0xc8wDz8mZcrtd1ccjX3mBwvUeI8UYIyP6Q2XLt/R1RnLvOC3b79H3d+TS4m0TdKuxA580h4qy6aLbLyjGSeGimcquIbGZBbiBRYMPdPTY/zxlD5vKNdbgumcMIqwfZ88FQShycV6yeL8hEzViBWXePBRFIOyLKiGnkHCoCgIRWNAouommqYRzmaYrsPQVli6jq5qDEJiGhZSNpiGhWpoZMmGvIyp6pSu75BI6q4hqzNW2x33H94itnccHU5xj49QRyN+WF7TJUssQ6HuKkYzjYMnj/CDIwL/CMc/IZgcUeQVq9WKXjfYCoty0NClSlVU9BJuLt7RlXtE3yNMH9Wf0AC///k/oCBZ3yfUdc32/gbXsemFilChtKFs24d/nQI3N0vg4R1Iko4wGNM0HePxBN10MCyLSeRyfuzR5UvWt/ds11u2uxRpBXQ9qIpK3QysdzlFI0iyFoMWN3BBs9jdXJM1OY0qGCybXZaw2u7RVI266Wnajvs4x51OKXGJ845tsqepKizLoRMSVTOo2pa272mrirwT9JqFEYzwJwukokJbMuRb0vUt72/WWL5PNF2wut9TZinBOGD6aEpn6qjBjLqp2d1csI9L/MmCuJZsV3cYomZ9u2S52iIwMcMpN3FC2rQovovp2SiqxNIkiujRRIei6iRJjFRN2l5weZdjWDZ91xMnGcl6hWdCmu3ZbGOoK5qyoBoGrNDjyZNT5o+OsOeHREcH5EXJ3X6Ppneo1ZLNxQ8UeQJtRdcUGJ6D7Qf0qsEmbVANG9Oy6PsOVRMIqaMqKophItSBpthTZTvyZEteFjRVTfmvl2jSC7FHMzrVpxMO84Pn9EWGb1lEB6dowRGbTYKiAo7FrijZbu7pmgIYyJM1Q1MSeTbTwMY2Bg4OR0ilwxYxlmPghh6NYmJYDpaqonQDXT+g2Ra+59K2Hc/PHmGbBqqm0CtwF2eIOqPcXvNormPIgpvrG4RmUVQtY1NDVhW7u3uEE1BqFoZr0RYlk9Al3+0w9QHdtmjKGo2epqiomx5dV0AIhJBoUpBULUU3kLcDUggcTcVVoRsG0rphmZfkQ09rmZSaSa2b2FHE7c0Vuq6xSwu86RQsn7iFvFdRLZd92ZPs1myuL1knNattRfzhaxQpCQ6ecfzsU0YHC2aRy8TW0UWPTYuhdGzefk26vCEwbYLRFG8yRUPHmYWYlv5wWWRpqKqKomsIKemlpB8ETdNw8c//SFPkuJGDaipopkHX1dRlAqIkOpih+RFDOGVfNtiOQZVtGZolu9sP3N+syRWHxeET6tuC4mrJ0Ejev33D/fKOsqrYLO/phwFNU2m7DlMR1FVFXeZMXBvTMNgWJXebDR/ub1knO+53G5a7mLvlLcttTKz4LFsDfToj8H3mRwuEHHj7m1/SdxWK55FJnbhqSHe3jMYeuqy5vPhAnuWEgYdvqxwfTnB8i9lsghEdYY0X1LsNVVbw619+xcVvf0HT1UwePULVNObPX6FZHkOaQN9TDQJNM8jul/RljGrqGJZJlu6oUal0Ezl0gIJmm2z2G1TXRHMNnLYgUiTTyZTV9Q1DlVM1gonnoe7XrLcpjh2C6hOGLsXmHkMXhAcBCEGXNwx1B0NHU1dIqaCZLkM3oAwtfdvSKxqdkOgq5HXHMskYmpq+78jKCo2BupcoukUxQCcE8WbHzS5lUzUkVUOR51yvEyoUgihEt+x/vRTqQUomkYuuGwgpUIYSN/CRZkSr2pimRlcVNGVBWpUkaYp39IhGVRmagsl8juM/pF6OHJvpfEpSNSgMzEKLru9RFYmuSg6mo78ZBX8Ymvxb6w9Mk38nafpA06wQisp631Is19RVhueY1EWJpda4omQ+WjD2HwEtu8v3qOOQwHnOHoWN6pDXCuY6Iyhr/KMzpDTpEWhCIJuKUgxcXG650wVGtafIO2w7YHBMFNumpeTg6SGiV8htk99cL2mTiqNJRBhG0JY4rophKHTCQLNVirilEjaGo5PkA5bnoTUNZt7QC5WRE6D7BkIMqIrCUDS0osA2N2zzHi+KUCqQ6oCmpRxNDCYHRxxFNnG1pyXBrbaYHRTbGKNrmU/GNFnNeBpgDyn71YpBdRBahj/TMTuNMAowgily6DBsk6YsqIUkrSqMzY66G7i/vcU+DTFET5anHM491oXO6v2OR4dT8qRnv0rRbYW827MfAnq15/rmgpdPDPrhFkU9xOxc6Hqa+y1x3lJWDVIKqqKm7QRdptCYUwZPx1I6bvKe7N0V6vtbdNunVTT2VUtZVRR5RbLboEuFVsDcM8jqNdUgWSwcdA0UV0PVFIYuJtSgLzOWSUug1Rhdw8R1EIpG0+W4rkOXbzgaO5hGhdomHM4nhJZC00sePT5DaxZYQ4vpQS1LhA1399cQRKA0/LBPQLQkyyW+q+LUS5o2Z2zAwjHRa4my2UGWIsdTmgGauqLRPfrZc0olIOWeQTcfImFHIdp5hIxbuN8S5AV5mmG5HsvLH5hNCvp0Rzg9Q6sqFp5PHu/Im5b5fIbWFHiWJIwsTssZjdKyr0vKokDVdBzHRXQSS3cIPRPP1UlETofGbeugxhqNGmGq0Nc77m8HdvENruvgOB66paCrDUPbUK42dFlK39r041cMfUHoHfDMPqS43tAKqJuGqmkInQAxP0QeSJSxi3W84Gjyx6ylIM4TlnnMtDc5ODil0RS23QPZPnRM4k4w7DKcpuUiq+i0gXKVk9yssVSJGkYEgYXiusxHc9RswFE1dKvCkgGOsUZRTPzoBZWUyDLHoieNK9Re4M4jPsRrSu2haI6kRtN0GM4IYc0eaPSKjlJnhAcn1LLBUiHrWlbra7osY5ntOT17xDZL6LMV65s7bqsNxshjXTWIu4T7724o2gZzAM0yiJSWxWLBk8kh5WbP6TSkUioioyJbv8U0JHUhqJoMv58Qhaf0dUZdK7imQeG78OSUanWDVFT0IGLfFlg6lFLQ6TqmVZGlG0xKkqRFGANxFqMOgjR5hzqa06oupPc0UlAvr7nf1uzvVxxNPOYvXqAcqywvb7hPSpzWwc5bzHCGHc246xpk3SJHB0i1JFttSbcpd9s1pZAojseQp7RSEHkWk2nEfBxi2QZC0+iQDNmO+22MpiocRB5EZzRVwTZOSJIUoRvooY91+pRK87FNuHh/TTQbEflnbC925PKAwnGQjc7Fm/fQGUxdl1qF37/5Dq+o8FQDrUh4//YD9f6SWRSwHyA2euZPn+EaJqbvgWWgmi6eUWJEYLX35BsDeXiIrvWMFg/wQjGoKLJlSO8wwznTswPs0KCra8LBZXt9w+NXJ/SmxTPTRlEsmrIDdELb51oMdHVOEPgUfU+HRBUSIQHdJJyeYuoGrm9TOsdYpo5SJ+RZwTIpGYU+vdrRtRmi6sg3KYah4k7nWMo9mmbTqiqBPyKkQXMC3uUV+maPaCTfXt/S1z2GY6O7Fqqhk2ZjZotDVF2DSlDtGjxjxPFk4Hbfs9tfcXR8TGbrDCMXSxPwaE7VjBCeT5Hfk/YFZx//EScffUGRbPDMjF2qMPE8dFvStzmdaNntegZ6Wltjc3fFPs0ZzxY4dsir589psgbHi5jPp1RZznzsYPkeqtRpYoHW6Mx9i0Zq6HrLdGqSFh1lUeC4Nrt9jvQ0PiQV1bt7hm6HqRnE5YBa9ASWRtmpGEZAHu+ZjF36TjIKAugq1LbAVlp8TWB4FnmjMwt9HBMsU8e2TUZRQGDbjMIIQ1eIrBbFkgSGQpuraPqCV7Mppq6iOR6m3tPWPVf5HbvfVYR3F0xvLnGmc4ZyiyFb0pVk7B9zdTmgVAOTYEHdSDarPW+++w5nHHL0+gXb5ZJsD75lUsZbhqbB1QRCKDRpRRhF7Fd7kv2GWk/Je4GiCpLsFt3yWe5WxF2OomtorsV0OiVXJGIomY01lKGgKWLSNGaoa8aBhVA1ZDRB6RMmBwtM2aDoCpodQCZRA2g0k11ZIg2d6uoeLxf8cHWPP70imkyoNvfcXVywzSqqWlKlMZu4IRYWpYQkK1mczWiKnqSt8A8WDEiKyQHbdIM6UslRUZotjZAEEw2UEFX2+HoH6pSRrUO7p8xLqrLClRLDFIzrAlM2FOkWaUCptpSyo5MqetNimSpDUZBVKYYF66wkawV6vUXtYuZWhhk5FHHOeOpi+wH5ZslUH9huf6DtetI8JvAnBOED+03LQDYNv/vwHmkHVLHAKiG1I25Eg6GpWLrA1h5s1ePIx1UN4iJHdQPqsuF0MUNDRdcMtKYgcD0aJ0B3DEQYsK4HgsNzKmvE5NDnblNycfsBafuEx4/YV9+T5wVdnTL0A03r4OYdZwcjVGPM+YunuE5PqKaEimR/e4HeFChWR5GsmboFF/WSb28rgo9eYlVb3LZgf9lwFxwwPz1C5B2GIRm0Dl236IRFXJUUVU2lGzCKaIyBfRrj6QqYUJoantHQiQrFDEl2Nc12i+dZLDz/YZhxu6dqxkzVJ1S3FatvLjE1nfVuQ1Pm6LIl3u9Qhx7TCDCkjmNLbN3AsxxMBLovcTwFQ1qomkXfVqTNjpE9wg4i8rxg4ltU5R4ninh0/BhvojMUP5Bd/B7fqlm8ekJXJJhVShBpTCYntH3HdtWwOJ5x/GhOlmfMI4tYAXeQ/OqbN5yrI/zRCauv3nDx/RXrvOf42VOspiV3fQZdJ+0Ew2aHzHMMN8Oq93TuhF53qPsBsd1Rio7OG7FKYipHQaqSvHpIDcrKHDWAJ48ew6bD1E06wAw9VL0hNE0sVadsXFTb4mq3o9zvOToYM5k6bJNbjK2GNfLR6eiHlqRs6QyPYD5mSFtU06Vxjwijc4qmoSsKNMPi4FDDzku6tqVXJPvdnriuCTyN2hJEmmCdFqR5weHYx0QSHczY3UgyPcZzAzrNwvAcOnosxyOazkiFhoJKLyVaP2D3ApGtSZSKbCmxi5Rg7rFQF6ieScPAXLepBZwvAhxHYmst7pDS7paougqaRr4syFXtXxeWGYL+v2qP+9+K/jA0+XeSECnru/8MGHy4WOEYKkJRKMTDRcOH99/yR589Z/ZkztAPHD0J+PH/8L9jh8cM+Z7t9/+FoREsY5P0asn6zQ3lTlJkOfl+Tdt2LNcbkqblPsnp+h6hqCyevGb24iWvnz0GXTI0W84ePWa9qzg9WbAvCn7x83/hoi5Il7fE2x2TKGC73RN4PkcHc9ReZRFOmAY2P/38R9iKxLFNdu/es/n6LZs4w3n8lG2c8svvvmb3dslsMuN+1ZGGJf6so5gpNPkF7sExad7QFQ39LOH7N+959/Wv0bsdm5/9KbpuEwUm8qPPUHWbg+CcXXnPzeXPOXj2GuFtqGSHvzglsp6w3ayo4pRDfUGd9myrG7YXH+jzGt22UHUNr/TwQ5ujxQRFWggeUzYDx77JvSrYL/eIpmG729CK1QNAzF/QaoLcaFH0im5XcP3tl/zw5i2Xq5j7rHnYKCkaUtORUqJqGkPXomsapmVj6iq2aXIyCYg8HT+wmR09oddBKYGhpcr3HJ5OeXv1W4LA4eXrZ+SNZD7x2ax23CzXrNI12/WKu7sVvxUqrz/+MQfPfsTrs9dExxHePEATFagqxf4Kx3PBmmHokm1agb9A1XVW79/ww82euzjDtEx+8f49jz95zfn5Cd8ma4TSIj86ZuJaDPEb3n/3L4z7P+Gv/uJ/IQps0njN+Mk5iI5ie89u2bAvEorwDMsbsbdctPOfUqY5an5Hc3dB6VZ4vYlffOBunxHKGHWTU11f0isa2njGKJxytpgQffQFpz9+xsn5Ecez/0CxvOPd//2fmBx+huglcbLl/v6G2eMnZEXJ8u4OazxlkzcIb8Rms+Xy/h6hePjRiF2Scffm9wxDz3Wcc3t9iWmaKIZFuDh+AHOGEb7ac/r4nPD4BeePnzIZj9Dp+dy2+ItexRot2OYFd998iWkZvM1LboocZeLTuBaG/zE73SCuG67shMlsxCfnrxibKkNd07QVoy5n99171vc7rKIgNSXreMXVzR3p99/TiYGj0zEfv3rB//qXf4mdr5hoMVUHhhsyG/nYosYOx2jhDFXR6NN7ut0l5Q+X9N8u2b27xasVnh2coE4mJEnCfr1lKQfK5RrFccjKS6hzNE9DGxnY0SFv7y85FQF9vqVzdMTRIfHuV+Rvr7i4i8mUgXW+ptn1/ObdLWXTMfQ9vqkyWxzSuxp2rzDXNI6nIax/oIlLYnvExZe3+CKlcw64XO345PULokOFL/7kT2n7HqnpLF6+RGowGDpN05FnCWPrp7wR0GgK3YefcyLv6PUKiooyaNhsVrS2z83tFZPIwCuX/OrLFS8+esnjp6/Z3lyxWW04+vEXnJw9JQzn6GnDxnuLKhWudiW96Ljfrti+/4CHpK0b/GjO+HDB3e5Llje3pGXP5OgUZej/FebqMh37+BMfYzLGGk+ZPH1JVlR8+fN/Yn13zY8+fc708QlnLz5ndnxCsk/J0hwxSFzXp0Jnu7yjRWGTVvz2+zu6X2xRFIU4jhFSJU12rG4+gKoxOn6MaZlstxtUFSaeQt/W3G92HL18zvR+zdPTQ17+2SdMnv4ITbd4fjrnaD6mFAar3R5dqVnfvScMFfz2PZpQ0THo2i2y61GVnuVXb3j0kz/BO3mFfzCBviX73S/J8o7R0wN0x+PQP6COdyyGnuT2lqLfM7cK8rMFzmyO6QVouobad8i6xjx4yaDaXF99Q+sqLD7/CXmy4rsvf09ddNhTnWg+4Wq5Z7dfIlAZ5EBXS+ztBkVV2d3fsN/v8fwRnm0ztqEsS3QnZHFygmsZ3N23hLEksi1Cx2V007D8+i2WqhF6IY6V47sumhg4sC0WsuSTj89xJhNQe8rlJbX7U3Kh8uWXvyZ7/yv+9Gd/wcHLU6rPz/jw3ZfMQovQH5PepziuZKjfkGYdgzxkUBR2+562yjk4Dnj17BG+PEHtNZqm4Xp1z2w8ZXV3jWs7OMYYvdDQkil9tuKjj77gvz8ykHe/41/+6Xt+97stSSP5j3/+KSNV8ld/9ZLzL/6Ef/r9nrhwcPwJu1XywDUzDD6sE44WBxweHPL86SlJ1nLx/QWr2/cYxQ59KKnSFU1ZEVkOh+Ex/+Of/wxRr7naFnz6ky9o6pzdbo/Rpxi2ZDz2OTqZ4/vnBLMD/HCCqg20dUW5u+D7X/wdb76+4stvf8sPv+jAsBkfnvH0yYJnpxaKN8daHLA4OSXelXx2/pJgdkTjKGiejaLAsE/I+4S76x84P5hRxSm7XqPXTEJW2YFyAAAgAElEQVQp6esKK84hXtGuP7AcYPGTP2NfV/R4vMn31ErFvZoze/0JJ8cHOKKlWG4YGxGbdIvMMto2QQ4Dj45PEfuCw8UxxmyCZ2l06Ra1Mfn6q7fE8ZLLu5i0aDAMHcd2OH/6gpvra84PxsRlj6LpHJ6csb65IssydnmLsH3i7Rrf0timOa1U8MOI4e6Osi4IDmpmR8ck6RYvbCjKHc50zuTwhFkQMPQqP14c82Q8pr695rc//3vuCo/V7Qfy3ZrzR0+wlQMmboBj9eQXt/jqjHA24e0v/pkybHn07AsMaZNe3DHWBPvvv+VXRsrR+TGbuxXPzs7QKDEiSd/GTMaSQXPp3IiRH3D+xStcV+XX3/wD//z3f8ujg2foVUq/f8833/yGru64fX/9r3WmYNA0XE0Sly2aaXF+dszxdELe7FDCgM8/fU4uXbzAY3r8lCwvMU0Dy7ZZ3sVMjo8fAPrTOVVdo6oKfV1j2D5lHLNexWyW9yzXl1xfvmeXVXRCoqkKtqEwnYwJxxMOUDh7dUhWbzkJvke2Ai3WOJs84cvv/pEvf/s7fNdEGyo+ezbjxY9P+LvvW3719rfM9w6WMlC8tbhuQr74sz9GKAOjiU/TxhyPQzRV529/8w8PIODeZnRwRLG7Zb+6oN4siT79hM8//xHdzXt2e4X46nu+/upbTFViKT3j43Pm4xMmvoV6biFXN9x880u2y1u26Q7Fsfjxj75AZj16I0BVOTqfU+YxJpLXn7zEQHJ2skDVDMa2wuzRGRoKBpIyTVC9Obrh0mUJ/fUl/9f/+be0F094JKAPLJwjk5+eawSjGYNWotQp3UGHZhmU0iItJeuZw+7sJa3m0IuBtOoZVIt3ccbN1+8IrreEXkAtLC7uUh6//pzjV68JJzM0oSPahossoS8yCEL6OuVFfM3y7/8TefgZz//DX1LVBb/53W8og5APVUl7GNC2PWYQUiYbBq/n4MAhmvvoUUiZrBHzCZPzMXXmMa4FmnRpUoU3X73n3btv6bUtpVXjvnpNuetp64TsmzeU+1v2u4TfX2ccPfsE1RmRVgI1fIz+7DEHz16R3dwghooia1hMIv6nzx5zdjxnd/2BX//d/8O7L39Dk+6ZeHD4/Cl91/Puh7e0rskvv/ySYLvg4x99jjQ0bm+viFwFd+5xspjgRxPCyRzVsFFsH1E+XBFdX29xA0G5T5AdvHz1EZPFjL/8336GqBv6eEWVJeRlT1E2bK6+olVM0nxGtVlx2YJ3cESa7CgGycn5I267js/rjif/ddvc/yb0B3vOv5P2+/VHF5e//+v9LlPEMBAELn1ds1luH2webYsqB87PTpmOJ0wPHmHYE6oso9zcoeoGmCFtK0lu7uianrZqUBWd9XLNPo6p+4GsbBkGia5bzA/OmDx5jXd4SriYcL+6fsg8n80Yj0Jmszn5vubywyX3d/dkWQayZXl1ie8HBOMZ4+kcLwiZjka0g6DeblCani6rcIIIVJ10v6fJS6LpHNswyLIcKSXjyZRBN1CkYBA9g6ISLg4QUpBlOdP5lHi3ZeS7WLrOZr3DdCI++uy/QwoYjQJmY5c03dM0e7ompyozDNXg/V3OatNg6xoaGqLt6PsWhZ5kc4vOnmcvj/n0i6ecPT5htphiezZdnRJv7xnKDM80ef/dW9I0x/NdNENH0XVUK+DFx59hajqhHxDYBrvL9+yuPrDKOzqhMgwCgUI1SOpuQFF1hJQYuo7p+Ni2h66CzYA2tOhNzulByKtnxzw9O2ZsKbh0fHw+YxSEjAKbF4/mvPvqe0wGqqpCdhUDOlleoBsPaQaalFRtTbSYsLnPmcyPOXt8zOxwjufbWLrEdQwmkYliebjRlH0cI4aOTipcrDMO5kfsNyvysqQTPZ3oqEwFXRHoiorsezrVxHd9HMvheHGErasP2xBNoW9K+l5gmBZVWYKist2lpLuYfdGzub7m7vuvWN2uub+64+bmlqZumBkWJ67P1B/h2h6HiyNGho8uDYLRnCd//j/zxX/8EfOTBUPTc/vzf+a7f/hbRLFBlQ2i7Zk/OiIcRWyuLvE8EyklutKz2yfYbkAnFW4ur5geHIDlsFtvyPY7bAXarqetSwwV2qqg7Xq8MEQdes6ePEG2NbbrEYYhlqlj2g6GadMKlSzLcTRQDZ3KdMnTGL0vcTwXz7IeoGh9x2pzR2jbPJ0fMjdVIg3yJGW93aM2DdVmi2k/NMB5ljIUe2wGRgeHjEcTPv3sR8wsFU0IsmSP5UaEkwWL2RRvPMeIDqhqhSHboyuSbrsie/eB5sMW6TrIaUApBFdXN9xsttxVFXdZxnWSsC0Krvd77PEEaUkQBVGg8uzFGdFkRl1lHM4CovGYKBph09NnW6ahw3q9YbXPyYqaySiiLAsCx2aQKpZpY/QFrqGhAYZuIg2TrG4Rbctq/fCs2yTn0bPXLGYzsu09BgLFshhPJlimhiqhblpUQCoQeg4IiUg+sLv5iiIv0HTIipyn5ydUZcajQxtNgueZ1CLmp5+c8+z0FaZicnz8nE8+/hnnx+cErs/9PsewAzSpsLotKbc5777/jq5rqYsGww14+cnnGLJhyNd0XY/nBwSOQbZZUZUlWVbQdAOVsMibAWEGeOMDtuuEtumJJjNk37OYR3QCLDeikw5tL7n94Zo0TmmKBsvS6JE4nk2blVTxjjdff8kmLRlUnboTtMNAGsckWY4fhowmIwzbxfN8kiTBti00JL5poCsKI9+mqQtOn79msjjGdj1GoYdlCCQNy9UPxPslvlCwNA36hkEKbNcHRaUuKlw/wJmeYvlTZFYwbDYkb27QnAjNNujKiibLkG1Hut+RJjFJ36ONZwjbxbJt2ramLRL0cIo1nvP+3XvieuDpn/4HJos5q7tbZsdPmcwO2G432NGIIiuYTMYMAkbzIxTTIstSNpstaVHRtTWqHEAB2fcogBASOUgMO2C5WlMXJWlaYkjosgLqDr0dUHuB3rSYokfmKe3mnpE1MH1xjmLoqLqGREGxLPKmpW1y5FDjjA45evwpQRCh6Qb5LsbzPbqyRxYpKgOtarAeLEzDwjUewM9l22CqLZNwSj9IwiBgt93QdwOR5fLy9CnOLuX3//n/Y3l9TRApfPrjM8ZOQ/7mW95e59zvBv70Rye8/OSQs9cf8ZO//D/o7BMKEZIVJb/8l59zPB+jGiazwxk3798xpLcsJiZlPhAGY/7u//0HTEyKMqftcqajCWUNX3z0GS+fnTFdTHjx+hlxHDM+POYubfnh3SXvLu8w3CmGNSLPGrI4g75FNy1MywZFwYoWOE6HPWwxqQkt9QEOKiSmqTGZjfHdgB6bo9kBaZxxebNi3zxEHFu6Rjge06MwmQSIpgBZoxYF6T5FNh0uA5FtQlXiFDu6rmH06hMU1+Py6j2GoRBvVghDY3J0xNmjEyJDxWLAZSBdLxn5DgMaYRThBiMMy2E2CRg7koOxj9FVLD9c8uHtJYoeEU4OKcsSRdFxvYBy0FnMZoSBT9V0RKOIpu1J4wTbD1ClROXh6rLtOuI0e7BOmiZ93zEIwWI+w7dthGjxA5/5bPZgj7Id2roi0MDSdEbRiCAc8+R0RuQY2P4Yi5KzkcHTj3+MGy5QLBd/tMAbn9JWgn6Apmiok54nT37EbDQn22yp7i7YpDHqYYBtq7RlgqFDWWQYlsU0mpGvKq6/3SAbBU836IoEzxyYRSEn0ymBO6cpe5L1NbvlCkearO/XKEOLb2kYhkbT9oxCn8ePDrGsB+Dm0TTg7PSQYH4Gho3pjSnTgsjzsSwf3w8IxyGjsY9Bx2q5oolj1tdraBRmwRRFDiwWYzAtxvOIKt7QCoWiFWRFySAkRZ4jmofLAF1TsXULy7JQNA0kHEzHzEcuZ1OLiQddW3J1s+LJsc6zV8+5vsvp9YCuHzBMi/PXn3D+4jmbdE26z/no+aeYlscvv/s1X779ksgbEaoR/dATb264ufyBTlfwVcGQpRS7EkXzeff2PVVd09QtqqZydPqUcgj47qvvqG6vCLqBo+MXzDQbsyx49vo5oW+wvL2hqkvC6YzF8TGTkc/poyMWI4fIAs80oErwRI5tqFR3l4i+R1HAQKFabzEGjatffQ33a5ISAjckODjCmBzjHT/GHXkYSonluTA0aO2efoC2TLF09YGvtt9RluXDItCwqFuBFQQ4rodrGgSRjzub00kDU0LgWNi6jqZZCAmirRmEgugFZdFQ7zMqYaN2OfX2gkLaHBwcM9g6iT4gpIKkoxEF549HRK6J79hYloFQYDydoKk6pu4BLlVWkycpSbpmu7xhs1riGAZR4GKpOq5lUOR70jRhuS3ojZBVoXGXShZPP+flH/05o8fP2dYN769+z/dvv2HQK16cHfPs7Cm+69HpGh+/ekmblbTJlm63wlUUHr14jWda5ElKW5Vo9AjDxDA9KjFgGCa+a+K4HqLJMCyD0XiE7Ti4YQhoVPmWpkiRiqRvWqSQBEHIOLLRZE9TVRRxQhmv2dzdsF0uiTcbiqanGRSSOObr77/lmzffYNkmSVWyTGL+4otP/+Z4FP3BnvNvrD8MTf6dtNnef/Tdm9/+9S6ulb5/KKSyNGU0HuFHY66ubvns1TnnT14Qjo5o24Hl9S2G7NFVUFQd3fZIC8H+5p4yK9kut6hAmsTc7/YstzvQLYRmcXD8mPnpS4zRAjMKafqGzWZDMIpwXZd0VzCdjLm7vub65gNtm7PbbLj+4R1dU0Fb4RkqZVXjuj4YJqPZAd5sjuhaLr97y/27C/qmwwsDqrLCMA0UXaeuKuKmYRSGGJ4H2gMAUPUC8qLCsW00w8BzXXTDIF5e8tHzx0yiB1Dox598xmw249HxBNE3bPcb6ialrSsMx6XOE0rhs00G2qqiynN0Bdo2Z3n/nokR88c/Oefo9BQ3mGIaNoqi05Q5RbIkWd8zDTyUTnJ1eQuqQlHW3K5Sqk7h9PnHfPTRxzhqzywKiJdLvvv2LctCsHj+mmSXsNonxPWA64UIFCzHYRQEWIZJ1w9UrSAvStq+59C3WTg6liKYhwYTz2Q0cphOAs6ev2Jy8oSTaciQpNh0+MGI2XxGcXfJ5eUtWS1wbAvH9R+i1QLv/2fvvZZtya4zvS+9XytXLrvX9sfUMVWoKoBkoxnd6JYLtVqhO0WIb6jgpS5aEZLYpAA0wAbhyp46/pztlzfpfaYuNkJvQF5hPELmyJxz/vMf309n2KEsc/xlyOnJMcOJi6YpaJZNU8VYhohIgyDL9/1xd4MgCkwOz6CWuHx9TVamVE1NVdZUaouqSNCUiIqGKMicdh1yP6KsRXqOSZ0nyLSAhCQryKJAU9dE/g5/s+X68gPR6oowzMjRWM+X7LZ7TEFkqhtMzQ6motOxHWxZJV+vUPwdUpbx/Mc/YfDgFG/cIYor5t98z/v/8g9E8xtGgx7eaMLg9BzN0CljH6WpcHseTqfD1Q+vuLudUbUtTz79jCyO7jf4jkMYxhRxhC6CJEmkaYIfJYgCyG1FGvoYnS69fp/U3+B2LNoiQRAlJEWjLEp22x1C2yKqKqIkcLNckdNiCgW2bSOqBoUgsA52bMMNrmVy0B1RFyVtVbEPY15/vKZZz8miiLqC/c7nLg7ws4IijDDtLg+ffIrXselKJXleIQgiKBonpyeIQkNdVpQllJWAWuSkt2vm334PdUlrKmyCNTd3N3y8mXEXp1ymKe/CkHWeUSsazmiC3OlzeH7MZrtAFXPqNEIsEzQVDg9GGKaBIgsMJ4fURYIttVR1hW45ZEmCYejIYoutSkRJTlM3VFWFrJmYiojddWlVA8EZsMtaZssVm82G9xcfkVSdugVFEqmLDF1X0ByLVlSRJYk0y/H3IdBQtg3zLKOkod1/YL/4QJGXOI5JFEYUmUBX0hhNpqiChGIq7DZrWj9DbDq4zjFnZ0+ZeENMsWVxc8N8HdGKDi/eXHOzDahJ2G/WyGYPUXU4fv4ZT56dIQRbxCIly0tM22F5e8d2u4O2RRREXMdGtAYo6j1fotIdZMOEqiJJS/bLBcfDIXfrLb3xmCIrcIZDkrZmO7tmfbNC1x2WdyvSJKTJG9IoIFjP2W3XbHd7ttsdedWQZSlpHCE1JVUac3DykO74BFkQCfc+0XqNLraoYotjqGhyDYqC3e1j2/afNmEhvr8jrgNqKcYTNaSqgrq573NJQVVNqiRGqhps26ONE5rdjvLmI6uvvqMWNSRFQpAl2iLDX8xYzm658QOE8SGabVIkIVmWUhcJcZLTO5giehMkw8IZT3nwk8+Ii5xe30DtqGRFzPBojCa32LpKnKTIqsZsdsv1xQfiJKMRRMLdmrIooK2xdI0GEEUJmRqJFklWsLoe89WGJEmoqoqqrFHqGjFOaH2fOgrYrVZEuw1yEXPyyRl630XUDdqWe9eDKOMHPrvVku5oitHxMB0XWVEI/B15GKHKCpoG+9tLrI7BahORqB6GZN1HYsoNm+2M1ewjRweHyLJOfzgARUGuW3709BlSUfO7n3+NqMpous6THz1Eb+Y4QkB1eUnHsfjRX/+Iz/7iGYdPHnH65DF51ZC2HZJS5Kt/+iWz61t0WUHuDOkNPPL9Na++f0VQQlrnDLoeq1nE69dveHL0CMWAf/vv/z1ao2NKXQbOiNOjA6ZnI2zHxelPEFWVoq6p0pjlYsOgP+X00TMqdF798J5gu6TTtej0XARqmipn/vENF7cZX/+w5XyocPTk7P7Cpm+RthptI+O6DstgzQ8/fEsU+eQFNHWLKsn0+12goUgS4u0atRSRyup+BAqQaanWd8xnMyq7T+/0EfPVirYtEZqSII7B6vLws885G7m0aUIWJVy++AapKRgeHSEIIh3XpWlbOpaELWZM+zZKk7O7eMlmuac3fkBr9ul4Q0wZ0qyk442QJRVRFJlMJoiyCqpNq1hUksF6tWE2m3E1XzPb7AjihKpuCZOUME0RJBFFlajKBtN0OJ6OKLMYWQR3MMTs9hCQSPIcQ2yhbUlq0AwHU9M4GXb59LjHg9MDzMEpJw+ecHjygEaxQVJpBYnJZMrz5885P3tClZZ8fPuOKtxBsufjaon7eErfdcjzHNvSUFSVIq8x0Zm9/cjsZsmH9x948/I1XV3i0y8+ped62IZLsa1INltm1zd0TRO7EinSGMeCuq6o6gYUjUYxMZ0Oalug0HJ8PCGtFUrRYjx0WS13CG2J7+/oeS675Rx/ecsPv/0tbRQhtSKj/hEHh8c8fvqEg+kB3Y5NVZVIImRRhqpLrIIEQTFo2oadH5AWJWWZ45gqoghxmKLLBqqk3oPWERgfTHGMls+eDPj8sc7nTy0EQ2QXJCjuhO9eXmDZFqZjsC9TKgOiNEbTHMT6np+m2BaVqtCxHYq5T5HF7Nc3zNdz5MMpn37+JVUOhuERRzlRGHE7X9E2DcPhhMPpA+5WAZODA37y/Dm+37DJFI7OHmFKBd2pR56EpPEO13N59sUXTM/O8Tybs8MeXSlje3uHY+jIeYAsiFiaRpbldL0heZAQzH363iFCZWLvY6yy4eXdHHdwgNpzUCaH9B8+QBAaZFWEOqWtS/I4Q7JchCKjzHPEpmX28YK6EdgFGbouU1UVob9DNyy6HRtBEBgfjEkaBbICU5IwVJ26LpFlmSLLKfMURVMIk5Kr+R5veszpQOf240vWlYXuOGzqnHmREGyXbNdz8mzLo8dnHI9PGHT7OIaDUN2P6UVBRBqVCKlA3/FosoI//u4PvPn4gbouePp4Sr/XxTJ09DJjebeklkxQHW62BYug4Mf/5n/kf/5f/zcqyWKx8WnEgsWbX3P79msufv8tH95+5C9//COOBw5//4tfMXBNOrpEsVthUdIf9ugNPFqgqXKUusJxTLI0J9ht+Pr7N9Rte/9dFwkd20KVwXC6NIKAbTmopkWZplBlRLslvr/DNDSqsmY4GmBaJpEfsF+vWM9nXL7/wHo+Y7mPKCSTMM9ZLVfIioHlKIzPugiGyDaFnz1+8LfHw8GfRZN/5vqzaPIvVP5++ezjxVd/Uxa1ACL75QJRk3jy2WckuUjP7fOjZ884PH5E08psbq5xVBHTtFDNDkIrkEYhYSKzj1uqOOVmvifZReSNyOVug9Pp0Js+4PkXX3L26Jx9npPRww9L0izk1Ys/Ynsunf6YwXBAUWb8/B9/xfXle67evKGIUwaDEWJbY2oKUpnTt3UWmy1FWbDd+xRZgdDxkBSZj+/ecXV9S7LesdpvkSWRsoU0TwnzAt006PU8ClFBNk1mszvKsqCoGsJgjyJLDMcTithHkxqeffopTx+f4joa47GHoUr4+zVhmqFpMkkYIEoq/cGId+9XFIJFU1dkSUxZpkS7Nburd3ziKfRcD9nqIMo2YqtSRAnxbkEarfEsFUORKZKU64+3rNd7FuuAoqo5Pzvmiy+/5PzgALmt2OxiPny8Q0SglBR0zWBxc41jdzB0k0G/T1WUVEWJbnaISwjCCKMzoMgysiwlymtMWcYWYWjrDMYD+gcHjE/PMXt9BqaMQYlcpuiGxeD0HLVtyPZ7sjjidr7ler7GsGzc0QjXcdBlFUUXyeIFhqLSnwwwTJUiC0ijDbomU+chaeRT1Q1VFmDqElUr8vZyheu5FG2Fn0T3DhNLvU9zERqoWw66HdSqJtz73F3fcTj00BUZURTRDBNZkiiyhCKJKdKUdQKrXCKOM5TeIblsI+YJStPwbDTEbASaosC2XKooYnV3ff9ugz3HD59z+rP/HufsAHfU4/r9DfvvfuDD17/HqhMeffIIY3hCK4q0SYhISZ4UOJMDymiLmIYUcYg7OiRL9ihqi+N2KCsQJA0li6irAltskfX7NIT1PqAoStqmRpYVcn8DeXyf1pQliG3Lfh8QhQFVUWJ5AyRFJY5jNrstdZkhaTqqbqEZBmFZcruakRc5lmbQ70/RaYl3GwJ/R7ld0i1j9n5I6Eesby+5mN1i6Rqu5fLk2eeYtoMtgVH4lEVNIxuMj8+wNJm6yBBFFUlRENYbwhcX7L+/It3sSLdLFheXzK7umC23LOuWXFdY1zWSZdDt9Zk8eMLo6AirO6Q76HP57gVmx6EzPCIqGuosQihCOh0bs9NDUjRsXUaVGoo0wRkeMuj3Mago44jFak+c5hjKPTxPtRwyf0/PtjE0hRYBSbNQNJ04SymaFj9vSLICoUnwtwvapqSVFDTdoq1bdvM9ZVGRZAmFLPJ2v2VDS50v0fINiioiygLRNkOWFcI0QJJrZAmqokHKS3raAcPBObrhoikistCwW97xzbsFsdTldhlwd/kamoIsuoeSKnXL9Pic5z95zlRtId6BIOD0Bkh1jpDsMSURWbNAlPFsA2dyQpBDEOyZnpwwu1vRqStMp4tjD/Bsm07HRXUcJuMjLN2m3+sgCy21IDC/jdjO58yu3lFl9yBKQVaI9nuW6xWyboCsESwXNGVOmWdEcYZoDfnsy7/AtDyC/Z488cnSBKnJoSloZBnL0nHHY3ZhQp0kyKKIrhuIGgTxik4mItXcp9k0CrpuQdtSxxH7ywvUqkGME9KLd7z/+7/nv3zzCts06IzHNGlKMluwvLzmcr0mNhz00ZA6jyjyjFYUyPKcqimxxmfo00/on0wwXZG88jH1FksVoEgIt0vWN9eU+z3vLm4okXj58hXru1vyJCHLUvI4RhBEJFlGEMA1DWRZw7QdgiTDVmWyKMDTFdz+gKaq2ccJ2/2ONI6x2oq+08Hu9RmePmL6+AnWdELn6BhRVZB1CVG579dSlJkt79isV4iGgzcYQ5Vzc/WSF998Rc/p0DYtQpVR5T7Rdoeg2mwlD1PREJSampTV7Jr3H99TJCEC98K6qek4iooe7bn849eEG59nXzzk9uKCk+kQZfGG/sRBpcE5HDN6dMzBkzMMW+Hu+iNXy4zh8ae8fvMeI8/43R/fInRNHpyfIzYd5FLiH375awR9iK1BXSccDj3ev/nAQf8BP/3pXzE8GNI9mBIVAVeXb5hMz+lZOk7PZr3Z0bQ1jttB1028jo0sNEwOj0FV+f67l4S5QhZFZLslbdOgiDVNEfLTf/cT5u/f43UNgkrk4HiC5QwJBI+sANtSsZUKI/ZJdwmbzT1DQBAFDFWmPzSRxAZV0jFlhSoJyStAMXCkht3tNa/v1hx//q9IypTFeoWomeRRSJxnnDx+wlHPRkv3FGHAernEElIePjiiUAc0VcGg18G1NfL9gtPpAF1uIdnTphFplHN8/hjb7ZNEEf3xmDQrma0jrG6f8eERouagOQOiUmC+K/hwccNq67NLSipBRdYd6voeYhvnJbUgEqYZrdBgu12EtsXUNDrdDrqqEoYBpqbSG/ZRLYdGlInDEE0SKJuGjttHqGrSvKHbP0C0J/iZdC8UVHB9eYEm1HTdPmVZMxn2kVu4vnhPu5+R72YUbY01dVEMmbqM2YZL9lufs8Nz5KLkxVcv+Or3v+Xt61cM3S7/4X/67zg46tPmCdl6z/JmSZD4SDSMXYcyT6jbnLyIuNulfAwbolLCdjpkWYatwIOzI3qDIbbdYbVc0XEshLZBUzQ6lkblL0gXV8hJwrh3xGRyzODgFLPj3bsbFQ2hgjQOSYOIumjI04jADwjCPevVmrppaFooqpo0L2iqEtvUyNKcMisYjUfIioQiqwwGAyRJYuCK7FdrRM3j/OkZw7HCzWpDI3VRFZumqfF3IV+9es333//A0ekZuqzTNhXD0Rg/S/j2D79CTSCOY4o8JW4qQkGhlQ2KWsaVFPI4Zr7aICo6rjfm6aNHWIJMIxr8t//xP/Dxm/f85h/+M3kWMDQ0uj2Rsi3ZLG7QNImzL75EMCyaKsXrGRxPbJokwtJVbNvGtBysbo9aMNjcrLh7e0PlF5yeP0fvnpJcLuiqNtNHX1DMZ9zt94imiqCIlJIIQoFmqNRNTt22qJ0+Ig2KUJPEGYEVdjsAACAASURBVKKoUOU54T7gbhlyc3kLTYNtm6iygGHaaLqBahi4/RE0ElWcIogS1BUiLS2Q5zl1mSMIKpWoMT08ZZVAYR7y4OmXdHtdrpbX3IQL6iIljvaEmznjUQ9Hs6nKhmi/4fLiI+9fviKNSoZuj0fHJwh1ytXlBxRDwfUczs8m/PjLp0zHR1i0hOtbCgxkweKH93OuZlvGh2f82//4v3D04JRGELl8f8s3P/85j50OWhZTpjFCXeH1ehSrOb/7zS/40fNPcGnYXbzjYDplfHRIHuxJkxCzP6EVwDY0/Nnt/88u2wcJk5NDrl+/pclDvL6Lbnfun5mmY1ldiqJFKGLCcM/m9t7VZDsWmqHQ6/WJMom1n3M9W3O7WPD9x1u2OVgdl/liTi0q2I6Dpdn3EHdTY7/Z8+8++/RvT8ajP4sm/8z1Z9HkX6hm8+tnv/7V//03+10kFHlOmqZ0vS7D0Yhhv8/j81MeP36OIt2LA6au4XR7KKZLEQXUecx8sSDMasIgJYwaTMlhG1fIlsn0cMjps6c8/Pwp/bFN2e5YRilhI6BYGggt/vYO1bZwx4fku5g8u4+tFZIQpanpd3qYuo3ruUwGLkJV0rYtmiyxns1Yz2cgiOiyQFy1KIbB3t/zcj5nl6YURYEmgqAq+GmKrBnYjoNuWGSI9z9pu0NdNyThnipLMQ0LURKZL5eIokQQRYhiS1NE7FYLyjJDNEwQYX13wfxujapKfLhN2WxzZElgvbijyhJ2s4+UqytGpobjuEi6haYOSPcFq9slcbxFVe4Ph3WTU5Ylb168JssKojhnPOjy07/6MZ//+AtU4OOHjwidCZ7rUfgbRLuH4ThkQYDrDRi4LtNRH0fXEGUVs+PR9wbUdY0ptEiKgkJD19BxHZewBD0J6Gktrtel23EwFIk6iaiziFaS8M4/oS1bxLJAEluSOELXdaIowQ9iqqakoebhwye4jkMrVCTxClUHw1BJUx9/9Z54/Y7MX5EVJbKiMl/tCIIYUe8i6iayqaFaBlc3lyTBFrHfQ9ZU2qahY+g4qkqy2ZBEAfF2QRGFDPoejaAgSDplsCULA+L9liyv8YUudSMgSxLJdkOymiGmIVPHwZPuD4NCDXWas9vMscQSUxZ5eHTK0c/+BxiMkHQB21T44Z9+h//iO3Sh5eL9KyyloY22CHWCpGgUVYt7eoKiK1TrBWUSUwoyp09O2ayWrO/mjMdDFN2kjiIs1aBNY/Qmx3FdZLuDoynURYqqKtRVyc4P71OUypwiSSlqEVkzsfpjatXEdGxkVWG181mECVGW07QNnW4PUbd4twu4u36LLLSoosppf4JZF7iWiSYKSHnGbjFDaBqSOCKsa3rDCcOOw8RxUVWd9WLOdOShVz6yCKZt03Ms6jxGkjWquGD5zQuC9zdsbhO+/nDN1Te/x3INzIFD3uSEtDiHA0JZppQU/LxkdHhMd3xAd3jAgyePCKOAblenN52w8hNefvc965s7rj/eINUlmmrQdXuYlo2qyDR5SrG+o0pjOqpEK6ooTYWn3DuNjk/OmK+2yKYFxZ8cZ4oKsk6NQCuKCCI4jo2qGeyCBEtqoUoYPPwEy/ZINxm7Zcr15R1hGWN0LaZ9lzgJKNbvMAnxY59vv/seuQVdVVltb9G0ll7HQ290FMFG0nts1j5ZuMHWNFpRZL1PuE0Udn5CngSEyxuEPKZr6wxHI44mE05OBpy6BpYCpmbR90YoZYx/85H1OiCvGqaTI9yehy0L6LqBMz2jLQoOOg69TpexYzPpjzg9f4hQSwwdi3UYMDqcYCoq6T5HkATsrkG302W5WJKkNZcXM95eXVHUJZoEiiwhivdg7bYqUTWDKI6pEGisHg8ff0KR5Gi6wWo5J0lCBE1jcnjA4dk5uiJRCS3T8ZCiSDAtG88boCkyV5dXuCjIgkRdtSiyiqIo96MVScr85oarjxdYWKzfvgRN5eFf/CW6oaM7LlUL67tbvnv9mgUCznSErqvsV3cUaULZtKRJTCoViL0+imRiSiKaJeMOPFpB5O76kpfffsPs+hYZnb0fcrdccjePKeMdUtOgyBKu00Uzu+iWQ5Gn1FWFKkv0uh3MjosESLS0WYLStvRsm2HXZdrr4QhgShJ+GICsMJ4c4x6e4k6nuCdHKK4LuoZQZ9C2NJKE38B6dceHiysk20MQZcZeD10SMBQVXbMQZZE22CBVAkjgxyl3hYFhyuhaRRzvuL2ZcXFxzbvXr1HqkDxKqFOYtA3ht98RvH7F13/4Ld9/9zXVesMnx8f0JxLmoYdyfIzz5EuscZ90fs3dt1/zd796y8mznyJJOt/+09f4gU6ap8gIfPb0KcFig9raLG53iFGCIaVcfvhAGMZ89uCcMkxQkTmcjjg46XH86ISHT445OBnQ7fWIN2vef/stCC2arnJwMGDQ7aOKKk7PRVY1kqzk0+fPUIwuv/3Vb1nd3mI6PVR3SDJ/x0Ff4dN/9WOCysTpWERJQrqeIfdGNFXJaDThaHzGSf+UDva9bV406TounZ6FLrf4+4DN7JI69jF0nTaP8a/f4YcBnaMHjM7OWC5nJEVx30tVxmg0wFYktCpCyiNW6z26bqGoKqJqUVclPVtkNBpBlTIeenQ0mXT+EbXOUFWNcB9yc7NALhLqukS3XTT3iP74hG5viChrLNc+d3e3rFYrFFlG1yQ0u0uLhCgrZFVLI4ns/ICmbdFllbLKaZsKx3PJKglTkxHbGssyUWQZoW0pkgzbdlEkEUvTacqCJIqQdQNFkthvtiw2EVFc4scJYlVgGDqXb79HbFLqsuL28oL1xTs0RaKsKpazK0h9jDyGscu+iBgOHQSh4Wx4iK14/OqXf+CXv/gln5xNefzohC+/fMInn/SR6xXl/paqgO12j66qmKpJk5VUSUiSx7yY7QhqEbM7QDY9pkcT1KbkQc+gP+jjxxW6IrDdh3i9LlmSo1Qps5c/kN3cYSLhuAd0hmcoioblutQN6JJJETQkaQYKhFlKsAtY3lxBU2MqEgI1QeBTlvV9ClRZkmQ5tAVFUdK0DZalE21DHpw9wLQdZFWl23VQNYXFPGK5ylBlGbXN+OHWp+MeI4ky/j5AVbrUGKiyiiTAg7MzNFUjLxPqMqZcJ+zjkLrKSKOM4+MHHHkjhqqGUlWEUYSs6AzHBxwfHTPqdmmjBFXp0lVcfv6//x3vX/0jzWaJI1YMjvs0lAhVzuTZc6zJMQItWezz9MljpDpDkQRko882aanlLm9eXtG2MkHY0PEOePDJUyzFInj3EUcSsI8e0iBjJHvevP8Bv8zQxBKlTjFsBc1UEBUVyXShrqiTHXWeI8oqqixTpAmN5iJIGrvlgvVmRyaINEaXwXiErqkoisZoMISqpUoLVEWhLgukJiUvWgRBpMoTBFGmjHzk3SX1/AObxqLjeigiXMwuiVSBpikoq4w02BDHW2gLqjRjt96wWy+QaPjsySPOj4aITYm/XzI9mvD0yWO6vQ6KYuCYAxyjA0lI7u8RBZlXLz7w8eaOZVowOHnIZ59+iaja/PJXv+c3f/d3xMGG648feNTt8PnZhL96csqp57K9eM3EsXj2/CmL6ws0XWc8HlPEAcl2Rh7siYKA8XBIkye0ecJ+FxBnBZqucXJ4yPLqAqqCZLcDWWF4dIauGQiyiICG0LQk+zVqVfP69Uc6hoVlqSimQ1HJVEgYnQE3izV+FNPtOOxCn8VqdR/EIemcnBxjqDaNYBI38LMfffq3R392mvyz159Fk3+hmi+unv3jr//+byTVEvbrLSfnRzx9OObq/RViXfHFp59jmB3aqkJuyvtYRs2ibaEItyTBlrsgZZFmRMGc/WpFLZYYHRVMBWcypHc6RtZLNGlHmmy4DUpSNGpqZE3G1CUaVeXBw1McRef6zXvuPlwz7nR5+uCE0WjKg0cn9Cyd8+MpliohSAqWbdNWBVkSEYYRN/M1SZZSAbplkEUB6yRhGcfkaYIiK+S0WG4HBIGObVG1DYLdJc0K8jQh9jfYhk5VV4wnBxRJzMQUafw55WbG/O6WUlIwbQPLtgmylP1mzi//6x/ZRT6oPUTTI4tjdssV/vKaZHdHFd8D32zTRJS7NE2XwA+J9yt0K0YoA9I4oE73KJXIYn4fl3twOOH07Ji/+skXdDWd+XzJIiwxRJgMByS+T2dwBP4GTYC+1yfe7hBFAdN2MC0LXRTRdJ2qLJDbe+p5XZV4Ssv50YTxYMA+Lsn2EXKW0jMkVFVBdVwU9wDz4AFCKyNXBWJTU+Q5ncEQsamRBKiRMO0u/u5+HKnrOkwnY0xV4c2rV2x3K8Q65/2bP7D7+F8R2oi0Upn5EEcRVStRSg6SamKoCnVZkvp7oihEnoyRZQm5LplYFvsgQhYbou2asigxZAFVlqnjkHQzJw/vZzprJCr7gKwU/rSoLKnigH4dUwYBw04XIUtYL9fISAhNQbcJOJv00Dsu3ekJh59/RqPJBMs7TE1k+e41qzc/MHJNxp6BoQt0xy7u0QHacIRzdILV7xLPrqAoSLKSg6ef0NAgVCm2JtFSQ54zGNhkaYmYhoh5iqbp2P0e4d6n79p0XJder8/x8THD6QmDw1MG58+R3Qmq46BpGvsoo9NzCYKIdyufB08/RbZdmqbCdTsEZcnF7SVynVE1IrbV4cR26do2hq6x3e0o04x4uyOKYnqOjK5LWIZKFW5592FOrzPAcGwOT08pIx9Lk/E8D13X7kd6soo3X31kd3PH+MEnaNMTsssPjEYWzrHLOt6yy2MiRaSwLV5ezREMna7nMToYMz57xPT0EMvRKOsIq9fn5asL/PmS7c0dSt3QoiCIGlLdIiOg6TqqrGBbOkrbkvk+VVGSpQVtK1AXBYejIabXR1Nk0rwgyUuyOMZzO1R/uhGsK5FO/4TVakddZPS6HQaHJ+h/urVCVPjw7prvvn9JVC45enyI1euSI+BoCmJ4S5Wu0RUZx1WRJRHLNlFllb7bR0wqREkjiHJ+95s/cPn6B56fDpmeP6YUdN5/uGEVt1iazma1Jd0FtKlAvMrpSsdMhgccTzoMO10M00ZpKpLZBZvLKzrdMYLQ8uxsysDWmQ6HmKqEbRiMx8fIrYgQ+Dw6O8e1LEZej57b5eBwgm3qtGHBcuVj21CnCW3e4m9CJFlE0goM1QDBAEVA0UwKSUWqKmzLRBTvD2Rl3SI7A+pWpCxa1qHKoaMSBSGKpDK/vQLT5uGTcyZ9F9Xx2EQZHbfLuD9E03QkSUAUCzbbFVpYoMkKdZqhaCqyotzHj5cpjdRA12Ly/C8xTQnn9CHe0x+haDZVVpAFPrfzG/54e4P34Iw4zTBtk/nNJYKmEccZi82Cy9kdoq3S1hskvaE1NCJUrq5uCde3uKZNGqT424yryxv22w1iU2IoMjQtvU4XXdMYDQ7xd1saUUAxLBRJxHNMHNNkOhoT7nYMTR2v66KLItl+g2c5DPojZFnBrHN+WNyR5cn9eKk3xLRNRMNAczuU0R7J1Mgb8JOUxXrHzd0tguHw1e9+x/HRAQfTU7zBiLwsiLYL8s0CUZLJsgwsj3nbIMoFRZMTBglRnJMXJdt1wOxyg7LPeHz0CW6W0EoNN99/hyyL/P7DHZ89Puf0k0MGj7qIOiiORH7xe+KLt4S3G159+w5fn+JOH5MHAapYMR5POTsfU/gL8qrh4sMFL776J/6bv/4LxKbk+nbBbLbg8uI9YtPw5MEBHaOhLUN2tx856LsMBiP67oAmzPjl//mfCeYzPM9j50f3DjpVoT/oUxQlgqqShxGVKFPmJb//9R+pipY6qSjjBNN1OHr6Bf3T59R5iWp3EeI9gaByuyvRLR1vcsDBwUN640Mmg0N6Soe75Zq6jhAdDcM2WfoRfhgi1hWFv0UtQvJoQyAZdI9Okcx7l+DB4QSlCBCq9H48dD2jr4vc3S6QOiNm11d4tortTfAsicnYIy1aZFHAtV1q/47Zyx9o6xarO8QaHNGkCa9evuHyZkGV3gvndVmSpgm31zcU/gqxTDFV4d7hYUh4nkdd12h2H8W07rk1dYWpW+iyQlmmmKqI25HIk+xPqW8arq3T79iYikxTVeiGTRYGpEmK69jITfWnA7yCpQi8f/uR1++vif0dmtTyx69+T7xbEm5XvHjxHfvtkjxY0TUUrm5uCAMf1TJpRIHe0xMKoWCzu0VoBD5/+DnULZvNjqTI+NlPv+SvvniG3EZY0h2O8IHN9RVZqZGENY7aJV6mZFlEHm/ZBxu2Yc3D4wM6/THkKUIcMtYEerqIOzliu/MZeR6iJCHFW/BX3Lx+z4Ohy+HhEVnWoqkudtfDtG0kVSKvGnTdvOc0WTXb5YI42rPbXKJpKvmf1haxqdHFmqr+k8ukaWhoqVqY9CyqusTuWrh2DwkRU1WoqhJvOMT1ehiWRWd0Ql6aLBYRrz/M+P7DmqqoKYoKb3zO4+fPaYWKYH2N07EoypSmLhlYKqvLWy4+fCDwY47OznGcLnleEgcBliojiSqObqDXFVWccDg+QI5ilHXC4u2Gf/rNz1EpccqE4aiPezBEUVpGRxN6nzzH6fVAKJkeTpkcTJCyPYGf8P/+4g9sV3vEsqBsJaqiZTgacnRyznA4Jl2sKecLlKZBVVTE3EcsQ0a6gL9dsdmu2Kzv0G1QDQtJ00EQSdMYgRaxLsmjiCIOKPIcWVJoEWmKlP0+JMlLtn6MoomgqJijKR1VYNw1Wc42lFWF3OTobUKY1EiiQFsWpHmFIjQUy0suViH26JT+YMiHdz+wiObEUktV56h6g6rE2GKMrtTocoMuCpiqxFF/QM806XQ6pL7PeDTA88bIksJut6MuVWzDRRVUdCmmSfZ8++o9b27mpE3L3T5ienjIqNtDlDT+n//0f/Dim1+TlgFJGhOlEWUc4QgCXlviORqPnj2DMkMpCkyloQp8su2cKksQVI2mzNgvF5DHFElMWTYoksLRwYS+qiJUOR1NYTFbURYZem9Ar9/HMiw0TaWIC+o6oy32LO5mdLs2bQ2DYZ+iagmjlDhOGY4OcJwObd1wcX1NIwgIko7tDjk/PSaOYwRNwQ+2/JvPnv/t0Z+dJv/s9WfR5F+oZndXz/7xN7/4m7auhTTLmd9cE84ueXez49nTzzk+OkUUJNIogKpEFESqLKEpMpqyZO8HrIqGLA948fVvWd/cEKcRqq0gdwyGT86wD1zEfEEWrlisI9Z+jaB6pGlGWdboXZPReIgiyQyHHrkfcjgc8uzJU0beIUeTPv2+Q7fbxet2qauKXs9FEkUSf0ddNaiyyGa3I88LWk3H3+6ompp9mhKUOXFVYcgSFSKjoyMU00Qz9HvxJ09RDJ3t4gZFljA0Bdd18TwPSRBYzW5ZvHvNdGiyLCUG0wNMw8BwOqRViWKUbPwbjI7KNpRJU5Uqz8nLnO3mmni1IC9y9nFEKSrIvTPKUiAMfFo5w1Z2xOsZdeojVxmGoiCLMpphoxo2z589ZOhY1HFEp3/Axbt37OczLHeA7Q4Qihwxy9BMm8FkilSXiEAtK6R5eW/d8wMURaGpqnuAbVnTVRUOOyYnnsPh4RTd6ZLECUq0x3ZsVMeDVqBJAqpggyhK1EWJVGQImkkR+AR+iNHpoFsOoqKTVxXeyRm2KKPbFpKg8PKbr4mCgNjf8bs/vubtuyXbuEaRNczxQxA1gqSkaUWqvECTVYo0Z+fvsaYjhDRmqEq0kkIYxww0CIKQw/EYQ5VZz+5I92skoUW3HEpBwRw/YldpxP6ONk+Q8gR5v+D6ekZStJyNx4SrJbaiMe2PUFWZ8bDDyeNTjh8+JAdsS8BWC/zbS4QiRalzJEp6I5fB2YTBwyn2pI8xGqP3h7RVDjT3DIaOg3YwRtZkyjhAk2rqBhy7S7Jb0/f6OGqD0IAqgC4KVKKE2tZEux2b3Z4kSSmrhqyqkFWd7WZLVWYEqzlmt4fpDSnqlv/0f/0dftlwfnZKUta4bo8WuFzckuwXtAi01BimhWe52LqBwj30ONrs6Fout9dzZh8vWK+XiGLLZh+haDrj/gA0E6fnkkUR/U4HbzymSgOKOGB1dUuyTzj65IS0rLi7vEGxWnIh5uLyLW8ubrhe7ah0DTSFqGo5ePyUsoxxBw6DwzM6fY9ot0MTWpJG4+rFCwxNwRIaDFmlLEUOpg949fISNY2wNIU8TrG7PUzLwus5GIaB5/WYjPscjgf0+z2oSm5v5ny8uaMVRHRNQVEkRKvHdh+xjwtKweTg7AmOrpP4W9Isw3T7yIhkaUotiTz8/CEnj0/QDQNvOKCRRcI8Z7e/pKtXfPn8Jzw8/5T+YECR1khVS8+wsC2bNC548eIF89mcf/3siFa20ZwJ1zdLXr18S9OIpLXIh5cvuLm8Jlhv0MSCZ58+5Ozcw5IbDNUgC9eIyQq5qpkcPmAwPubIU/FsnUrUiUUDIU+Q65pHDx+iag5VHDLtu/T6I+SioGOZOJ0uoihj6CZlGDB795F4u8Vf7YmikrZOKIucKk8RxIJKELF7A9T+iDwvyeMI3TCx3SGq6ZEmOU2RobQ1UpOzXO3Iwh19897qv9ltSDoDpg+f4w0GiJqFKAl4jk7RhmRNiOsYXK9u0YIMqWhp6/I+kpcaUYTl3YxGaOmPpzhuH9PUMbwRZVmSblZEsxs2ixv+4ZtvUPou3mgIskINrO9u8PchSVEz221ZbfekgY+flcimhiSB0GYs33/F6uqS5XzOfLGkqSsurq7p2iZdp4MiiTx68IDR+ABFM8jjALGF0eQQyzQ5++QJtgRynjDtu1iqgiaJeOND6mBHz7aQ6gbHNBGbhiKLsE2LpK3JsgBdE9AtC82QkERouOfGrNcrtmGIqhvkssEujPjjr37B2cEExXTp97uE+x3VbotQplRFhSxKRP6WhSTRCBXbzZYiKLE0G03XUVQZVTNwxw/57PlzPE9HcS3uNindwxP++mdfcvR4hGaHDA4dKFeUV9+x++YF4RLSVOLrWYSPQ7c/BrHL++/+gCVrvP3mDd+9eknR1HS0DvObd8TbJWfTPj95+iVHXp9//ZNzPv/JQ0TTZTw6xihyzs9PqRMFIU3xbxZcfnfDdr7g8SePCPw9IPLk86e0koCiG1imgR9EXF1ecnB0RHh7yfu3bzk5OSZPAm5ulpi2TsfrIYgtigQSJUmUEoU5hqIjyAaq3eH0YELPVhkOO3hjj7xOuZ69RlUlTK9D2tSQBCSrFU6TkYV7Wloax6MzOcTxPMyOydXtNbP1msuPHxDKlLNhB+qSSjaRZQ0l2/PgsM9wMkSVG2TTwY8KOt0hRRrT7G7YrCM2QcV6l5BlLZXsICgOBTo3i4DFPiaIIoo0Rq0TmnhHG22p04T9ZsXQErEdjcNxH8u+59mIsgSqhu2Y1ImPLAp4jkm4j6EVMQyTTt+DMsFUFcbjIZooUBUlsihjOh1if4f0/7H3JtuSXNeZ5md933rvfruIQAQiAgAlkVKplKtyaVVWvoPersaa16gmqVWVElWiRFIECIAAorud3+u9u/W91eDqFaQcJPcT2LJlduycbfv/PlGkKivaqsLUNDRF4WG1Q2xLPn34gQ/vf4C2wlYFvv72d9wub5l6NrPQpaxbql5AURSKqkQMZQQVNE3n2fSS+egSSVRwLJOqA0V20BSBtlgR8pF/+n9/R9fZSPICoYUmLsjXBxohpSyeYlOONUDq5Kc43ylmudvT1iXnsxGD4QQBkGnw5ZLD/R1dXnE1GzK/OGdwdkVV9titimIOUP0BgiSTpSWGbVO2BUV6xJRFZBokQWC32xHFEZ0kkuc5ZV7gmRqSIKHICoam4qgKTV4w8J6e2eFwiIREndeoqonjuFi2yf7+hn/8+1/zcRkxHU2Qm5r7uz2NaiIAateTNilltWE+GyH0Pav1LYYuYEg9P/zuR+q2QzcM+mBELBt8un9AyhIuz87oO5Fyv2X98EAnapwvzjFbSH98h1a17JZ3RNGa6WLG/O1rvOeXGNMxqq0we36BG44Y+ha+bRCYGml04tPdidVyiypJKIrGy8/fMhqNMTUVVVFQ6Tl+/x3p/RK1a8lW1zTxka7JKaqSUWiwmPq8+PIZXmBx3DwgyRJVLyNZU5pWoMtP5McdbdWy350QZRVNFpHamp6OU1yw3ewJLKiiI4baMxiOcBU47o+k+z0KBXXTUoo2bZ4SxQmW7dICFRpXX/w544sXTC4vqOM1m3xHZWkoiogqwdhTcRUFMcto8oImLmjzGl02GIQTol1EFh9pm4qmbfn4cclpV+AbPpNgiGsaVHXGw80tv/qX3+NbNp7rslodEKoSW9ExFZ133/6W9eoTfZFiSxJvpxO+uLzg7fmc2XzE/OozdF1H6Z7YI2JeUkYHssOeppcYPHuFJrSoVJTJEUHWcDyPwPOZjoZQFShdTRanWKbB5HxBWWak+xXD+Rma7iDWGXLfUhYpitDj2R7b7Z4wdEnzmvubW/IkJUlTFEWh7zskUcSyHKq64e1Xf4JlaKxXDwiqStP3/NUXb/52MZn8sWny71x/bJr8B9Vu//jmh5/+5W8EQRQUVWN7yPjp047xYMzP/+xPCMMRPQJt0z5lNpMjQgeKqlJmKcv1A2mWsF8/cvv+A01bMr8acvnVFc/+/Od0rkeUHci2dzxuUm4eM/K6p+4V1qs9dhCy2+5R5Z5BYCG3oJLx+tmYVy8vmSxmuIMQUTdoq57ZKEDqKgzDQGor0rIhL2vCMKAucqI0QzNMwtGILIlpu45eFEiqCrFt0RSV+YuX0LcgKbSyQllkHNIMNwgxNR1RlDk/P8czVbYPS7Z3d7yeD5hfnbOMG8Khhy4baI6NbRvYmkHfdwSOzylVaSWTIHSo+5YkTVnf35HmJbVm4375lzjekLrMaJoY1SihOBCtN8THLUJb0dcFqiJximImocezi3OKJMO1XSZnl+hdQx1HrB83nL39BDpURgAAIABJREFUM6LbjxS7NZbmktU9VDldniEWJVkUI7YteVFS1w3H44miKOj7Ht10OFOhLxLOJ0Mc22BXifSWj6mqCFWB0paIcYIUjEFSoErpmoZqu6JrWvKy5nZzQrFsxosFyBKGbeHYGlkSI5U1Xd+zfFjRdR2LkUYY2DheQCdoSKbP9d2Kru1oexERmSavyNKCKIkQbA25rzFsh7LM6ZuWkfH0QT493rK7/0ARHRAA29RRDBtndEWleJyOEUIZIx/vOaweWGdQiAbnZ2fYUocuyXjhBD8c4AUu6tBDGYaUmo5QH5CrPbYhEAQemiphWfoTcDC08aYz7NkzjMEU2fCBmp6Cru/BNFHDMYgiyWpNudvRNj2ypqEqOoP5FEPqqB/uMRQFw3FQZJCaGttQ6cuC3TFiEyXURY6jKziWzu3NLb0gMZrOOLt6Qafo/PNvv+Ff//GXeJMpqqYxcJ5sSz99fM/1T9/gUNEoKmVZoggKb+cLqqJArCuq04l0f6LMC5qyYhfFVHWFSknbtUxnQ3TPwhsOqdKEKj5ycXmJZWpP0aHtnh9+8zXBaAhCS7rd0vcthyLlt7/5NT9cf2S5P2EFNqWsINsWsj+i7HuE6shwMiSYnmMaLl2REAxHrK/vSVY7TBHmocl05DCazplNX2A3Ja5QI5YNwWCEKqvURY7l+VimimPpaFKPaej0TUVzOtBWJaaq0tNjug5JlhKELrVgohsWpmOjahKCKuKaFt5kSppliIKAaeiE5+c8e/2G4WhKX3XopkRRplxvD9jsMc0SdzCipYe+4dP7W+Q8x1A1PNsnOcUcdhGvny/Y7WOasmY4HHO3yVhuEtqywnZH7I4pyXHNbKDz9ovXnJ0NEesGKU/o65Jo+YGLiwUXl+cM5lf4hojaHNmudljjC569+Axf7AjEBqnMOTt/Rlk12HVF6PuEgUcTJ7RphAhUeYnU94h03N/cUtY5y92BJM4Ru54q3tOUKeFgSCNIvHz56imSIwmIAmiGiaKZiLKKLKvQNiiSQZUmhJpIlUSIokCcp6iaSjgb4xgGum0jdC1D3+FYbtH1lqaP+bj+AecIuijTI4IIeZ6SZUfuVyvCyYy2F1CdASZAVdFUHcXmgcP1Oz7e33NTVUyuLjAcj7LpOO0P5Ic9edxRlDXLeI8/GuCECy7mr3DDgNXymndf/yvfffee5eOJx8ctnueTJVCkJy4WY6aTIeeLCZOzC8qyw3NdLN1kPhxgCD1FfECzAl68/YqRJuOJHYvxEM9xcRwPjZ7A9ghsjz49cTwdsD0XO/RpBIEojRkHNp+Wn+jzLbLSUdY1x9ORqMhIs5img+l8gaSbWKaKPbpkMJ3RlkfWn27wdINovaEvS8okobNGfEw6DvGBaBfjWQGeZ6PZKqIMrmXxi7/4BZ8/HyOe1hiDOWe/+DnOLOSwes9pvaSIt5x/PqJevqM7HNDcIVJwSWwO+fvf3/N4LOjKCiSNH3/4yO2HjxzSHrFuWd2saU8bRnrLX/7ln9B7Z6j+jMHlC6avf8bVmz/j81cvefHFCy6+eoU1HONNQoKzMapcEvoyZ+djnMBkEHp89uWXaLYDTYuiSOiaRppnjGYzQlsn324xVIXzZ1f893/8LWnekyUFjlbQdz1FmWEoIkUBu9zk8VBTFB2ua+OFA9osRZMFdFtD9SyO+wNd2TAZDqmKhHa/odrvUCSBTpLIFB3FC/GHAYfjju8+fWKfJXz84fe08YFn0wGm2FHXLbYTYCkiM19H6Eq88RRVt9nvC3x/TFNmVFWB2GS4tsFgdkGrujxuTxyigk/rmEMh0AkKlqZQpTHFdkmyWXLablHaCt9SOZ8PGAx9skrAtU0sWcBxDC6uLhkPA/o6RZZ7hsMAwzBRgLrpEEQNfzon3q4whAbXUHFNDU1+so5JqoGmqtRFhdA2qKKIUOZYmooiSdzd3vBw+xOr1T03d+9JHj+h9xWmaTH0fUzTwPZCTkWDJIJSpYRXIYbvgiAyH19iKxamblFVLdPxGFOTaU73jO2e3/7yO+6vT7z92c+QlBF1LVBEJVVR0jQFluUgtAIFOpUT8n535Jjk0Dc8m4YMxyM822I4CEES2T5s2Ky2XC6mfPbFzwifvcEKhgwvnqEFIXUlY/s+nh/SVTUCIHUtCjnp4UQeFzRlTdc1HFc3OLZJV+YokoKpKhR5iSLJSH2Dq6oITU9TNwSuhtBDOBgi9ALnz6+gb5BpscQSQ+jYL5fEmw229MQuuztkJGnC1FdR1BrT93nz6i2DIOB4XPP4+C2GXHG8P1K04M7PqUWRw2pNV+bMbBPP9tndL/nh2++IswrHHzGdLhiMx8TLJcnhwPDqM8KzKyTfw71aEM5GFOkOw1FZnM8xdRmpqXGljCY5sN4klEXFfDYhGM+QiwpNEqnbpwO0DJBEZMtHTjfXNEmEomqY0wW946CNz9AWZ/ifv2D4/Bli39IlJ7LVit0qQRVa2viIqlsIgkBdpGy3ByzLJkkyyjxFlCQEIE5zuq5Ht13a/RK9L6mqEsN02G+PHHZHsrJFAqierIqioqGqGrsoQzICijRl2O/Qkx/4abOjsEzaumLgmowci2iz58fvP/Dxu4+k6xOu62PpLqZm8etf/wv3P31HdtqzXz0gtDrz8TmuoT+JMdZ7VE3ip99/zc37G4aWiyrKiE1LFWd0RUF62CK2FXWRsxgE/KdXX/BiOGLo2cxfvGb+xZ9SJnuq4z2SBNq/MXYEQUISBVTHQzdMDMvECYe4gxHeIMTxhwzm5zR5Sn6KqMsKx/UYTwZ4rkGXRghFTF52BKMRQlUjtg1dL6JaQ6o0w5QFJKlHs30+vv/A8u6a435PncdUaYTveViGxXyxQBFlyizmYbkEeuThmL/48s3fzod/jOf8e5f8P/oC/mepsmqpGwEv9DC0J3WWLPtcXJxhGgZN09K0JUJdIyQHRKFH1V26oiFOYpI4QtU1DEPn5YtLRKkmnI0YnU+IBZksqdk+7umjlmOpgNRTZjFxLdHKIuvdA69ev0KrEppjhKbaLIIxV4sRTjiga0WaFk6nI1dXE4rNGtcK2K0fqdIUTVXQXQdbUxi5Fm3dUO42bMqc8XhEW9fUXUMLHKqKiWE8MU4MA0EAQdfpE5kmO1KXTyyT6XSMLMnIisbzwODL8C3TZxeIts25ukGkYbtLcCdgmAKiqGEaQ/7w++/ITgqy4bLbbiiLkg4Z0fSo2x7z7DN0w+eYJjRCj9gl1HUKSkWSVew3J05Sg6VKeF7IfDrEH59zrAWMDjRRoD7sCIMB7fBIf7fk5l/+Ac31UQ3zSX9XN4iCiNxDmWaIgsgxLdjGGXnbo9HjKRKdqOOoBtsowUGjTTLGgynbuCBOWn71KSEMK14/N7CFHnG9RJQENFFACFxERUaLT/SyxP0x5255h6qo+F6A1jbstnt0EQ77LXXbkWYl6/WB//yXb5nPPd5vUvbLJcNeYfcYI5susnTAGT+jKjuKOKXNG/qixtEF0qKibRtU1aCVVO7vv2P96QNlfKQpa14+63j1/DmKNaI3ApqyfvrYChrHWqYdvcDUExrhnvkswGoqjnmJOJhT1znXn96xmBqcDi0jW8aQKqzBJYIgoUktmilRHHZ4tomiSghSR1ecKE8ZumXRiAqtbCEHPtl+A1VD1/RYrgtdCbqFoOnQCdR5RrG6Jd/s6EUFzfWwTA1fF8mrBmPsoXQ13+5TNMdB158aAm+/+JxwfMb86hn7vCaKdiCLTF+8IN48kOxCBr7JehuxvX1HE584liq6qNIhPgGRm4a2qKirAinPESSFsiiIDhH7wwlLrVk9xuzKlrO3X1DINpqqsnm8w6gSFBKavKbFYrXPCc/OMH2T7ftP3H37He93e+7XG6IyIypyRkOPTtPoBBjOxjSHhEAVqAUDqhRZkVjf3vD8xTOSOKE9JIzHI6Q6xpdz5rMh4WKGpXq0ky8Q0oTBYMTp8YhSdsSHR5QXz57WsSxDrAXq/ZHmGCE3FSPXQNFlBFUjp6cXJcSmoa1Stoc9qlVi+w6e52CFV8R5ySwcUiURSZqxWy85//mXyFJPJ0vc316j2Qbyv8EHo2jHN3/4DfPRGctPHzk9fOLlxTNs02Y4HCJrBoIdYKsyj7c3jHwfZ3hJWG54cyGSlCK2JvHVSOdc/ZyuSJHKmu2nBwbTGce798yuLvnss8+Yz8/R3ZCqhDR6QJNkvvyL/4RiWOgSHFKbQ7zi+3c/EAQzPhuHJA9LiA+IlkY48Ml3GwRZJo8Suq6lSmts0+N6tWafFgiGQrlMmAcGeV6S7N4xOb9id3eN0hS8PBuxPibcbk5ocsfEtdh0HY6q4eoBbVaxXT2SlnuG4wGj0RSz7Yj3e9LJBKF6ajqUrcYwuMBSM368+xXf/+EbAuMrlCpB0k0k2+LwuOPd779Ht1wkWWX9sMH0ZtiyAVVDc0qoipxW1ykkkWAcoqgiyWmLpLlk8YFcEKlslevlHVFdEKoyyB29lBEdVpRVQVbU2M6AzWrL689fs1/vkdqW188vmMwmKCLotoV39ozd6kToGZwtnkbPD3R4wWuytICsZnb1BcrhnoHzZPUpopTU1klPKS0yRVWymM9A14jyDLNIMRWLpG5Iupr/9sv/zpvDild/9r8gmw7p+sDxdKSs7rCbArE68l/++n9FsccsQof1/S2nzR57vMAbhNy8+x6prhCcCYf9lmO6R+0MlKmCZIoYpYGp2pR1wVcvHcYzk8Ka8/j+WzRLZ3N3z2G/oakEgrMxedrSJi1NVGGFA8om4Tf//C33jxGftik/ftzw4rOYNj0iCAptsSNZb/kiMHh2MeTZ67c8/z/+K5KiofkBdd3hOiZq09CWDbKhPxmHhBLd0umbmvD5K9qmelI39wJ929K2PavHGwLP5ZSXVFXNKAhQFYXydGQ6nTIeOBwORyajMZ+Wa4Sjzi///g/8/OcxpuuQ6yaCrDALVSIM+q5Glls2dyvW7z4yCCzC+YzaXTA6f8Hqw3uaU4os9CS7HTItcVIgGDqmH4JtkaQxn5Yr8r7n44/fUW8fObuYYCkSSAam2DGQCnTVIFqt8CdDVM0kigrSXENQwKqPpKc9CTJyLaLWJVUF60NJ2cpEhYDu+BRJRJw+KZKVfE9fFkwtFVORGAQefjjix4cjZ88/Q0QgSVOc8RmOLnMRWnx15rOLIwpU9ssDp92aKMtAUamTGNMwoG0oogO+a6HrCmbTcoweORUtbS8jyhptVXA4puiTKcPA5mIxZXX9A02RorcFX1oK60ZFHw4ZTRa0qoeke8jdnuS0h+TAuL1A1GxUscGULeqmxTJlhuMRQt+S7jo6a8AiDDH7C+4+KWSVSFdnNHVDJ6vIroFU1tR5AorOpin5/fUdSZSy8ExC08MdDDHdAbqmIYkio3CI3la8Oh8zP3+OtXiLoXtIkkQrwuCZzerhSPIQ4cs6nhUgqwL7zSOH+JHD4chwck5b5OiaxmgwYXs60RQ1TSvgmwZvL+d8Wu0QDAFDlkgUDWiJdhlyf6CYnZiOr8jLEl0zKRtoyppkv8HRJeq6IYlifLnG6Uoe9xnB51Nevv0FwvQK3xmSpjHx5oGqWfHdN7ccIg3RHiBbFvJxh5IlWEJPaFuk+y3bxxVpI/Hm4hnz0QRRURFtl9Ff/Wfy795xvHukU1uuXl5hDz3y3ZLT7oGzN3+NYZoIbYmhQ3q/oYhOhE5AvtmgixLuIEA+W5AdYkxDxdBUxDRDQMSdzeiimIGp0eoure2jmiqSbaKEBkWRQyvQFx1a02GFI4ZuwMNPP5AXBaPZFNPWqHuD7S5FVA3kpqZHoSlyDFHgzWLANi9Jk5y0yRiGO8q8IRwKCF1BnWzoBOnp/QsCHG8AbUUvSli+weq4gxrUmx8Q17/jJI1gNMCxdIa+RxHvWa8idpscFZVgOEJWXVw34Pvv/8CHm4+IyQlD0rk4e4k/PKPOS77+8UeqOOX1q88oD0eO2yPzQQBVzuPDPbZiYOgKbhEjPdxw6Q+4ev2cTlGYzkzOLqfMpzMaQeTTb/8f1DrCdxwM2UHVHYqme9rP6CZ5dkKsMhA63LMXlE3H/vYdap+THyPUPmMyCpi/fEHftWSbB4hjRo4BErQP77j+Vcr0+RcYuoImVAyHA7o4wjI8iromP+wYTiYIqkFdt4htTp1FxIc9pmmyuXkka8ANAvKixmsahDSmr5v/sYfc/0nqj5Mm/0F1inZv7h4//Y1j+0JZVDS9hmU5vH424fzsDFXRyOMTVXSANEKWFJqmAUnicXXDMY+oxJbd9h5VF3BCm2A6QjRs9rsj93f3CMWW4+HA9+9X3NwdqNsOAQFJ1dFNBakvuDybEdoBrmow8Uwc38P1B/SdyHG1YzJ20YWWsihoyoK+zonjjG1WImo6zycjdJEnwKOk0BYpTZpC25BXJZZloekmtusSDEdopoviBnSI5GVJ13W08YEsjREQkMUnxd5wMqFP93Q96E6AYqs8rjbsNwc0z0RTBJqqYLPf03UlWatR9AqKZiAiksQxaRQjyiZ2sEAQJUypoa/2nHYPlFlKn8VEh4g8bzjtY07HFEHWGSwuMZyA7WrL2FSRmhpBgCKKqIucvq6gabj/eI01mCEIPUWWEu933K93vN9E7NKSPI6RRYGpbaF3DbQtgePwPAiQshMLW4O2Zjqf4gwdHKXn8WbJw/5I64+QFY0+z+mLkqbI6RHoioq+qmjKihKFn5Zb0rwgb3o+3N7SRMenv8VlRdcJ7PZ7ltsDdjBh8dnPsLwn1aIkKfz++5+IDjt64SlDnGQFeRKRZgnSJEBXZTqgKEocL0Aqck7bLbfv3rHbHegQ+PnPvkD3JijDK4S+I8pKakljdzjS1jWipBDHEZ5UMrRlVE2nqFrM+QVdc+KwvyMYWCwWQ8iODEMPe7xAokdoKjTLRuk7dE1BlDUEw6evKlShQxQF8lqgblrqogTVRDYtFN1EMQ1k20M2PCRBoNhvMERI12tUUaBLU1YPa+qixPNtqqrG0GSariXKSo5RTN3ULEYh0/MLakRqZH66uaOMTuiWhaCqWJ5LMBhgm0/QULkteNysKaoaTZJpVQO57zkLhrR1y8OnGwxJIi9b8jjm4fodN/fX9H1L0ctcfv6K+HTE9wYEvkN8OhAOLGauRlvVPNwtMQ0VWZFY3d/wh999w93jA++3G+72B05tSzjwmc+HtG1JOAgwgzH7u1smowDPtVFNG8MdUaw2hOMJummwu7lGMwTGZy9Qow2XFzMsuccNJmiagdBLtKceoRNZ//QBlY7BfE4bxyBJaK6NqEhYnoMZ+gRDD981MVSJtswxLZtOlEGQiOuGY5qSJjmGbCJJT+Bk1x+gqgan5Mg2PqDqOlWZIcg9XVPS9B1F1RBv3tHEn1jdP7DaZ3z6+kd8SeKrt29xXZv586+oe4m+l2msCYY7YDaek2sT4qjk/voDughNVfDtd7/n5qcfWG0jirRk5ISIkoyYbbi4uGD+7DmmG6LZQ7JdhkrG/LNLBpMZStMgpxFSVeLZBqFlUmw2iH3LwLUpioLsuKfYr5H6lr7t6MqaU5LTNwWa0tNUFffrNQfVZPlwTxSfOJ+ElGVOftjgWDqq0JAlJwauhWXZSIZJOBygmQ66qnFa3xEd7tnmJxoRbC/EUExERaEudihCS4/I1ewMoRPJ04I0uufXv/tXZNkjSHs0TUXSVJLjjv12R3RIGLoeiiSxXW0xJIHQD+i6nrrI6cqSJC/47fU1VhiQN5B3MkJb0go9Hx4eyNqGbXrC8TVm51PGixFFnnE47VhvtuS5iCgbdEXCdDTg07v3fHYRMp3NWMzPEBtYXFxSVC3Jes9nX/6MUWBgKxAYFoE3Rigj5OyEJOksLi6wpZZx6GO5LqauM1jMMB0bfxDQSwKPq0dubm+I0gxRVUnqGtNQOCQxZVMj0CGrGrbvo6saoiggdjXHu4+IeY6nach1jqkrFPGOKspR1Y4Wmc39PaIq893mwG6zwZAMRqMJrqWA0FGVR37xds7Ie4qNhJMJZuDzuHpgt1pTdhLe2YLp3KeKjrRlQ5HE1GXFu48b/u9/vmGdQdtLnJKcPK1IThGbhyUDueGv//Rz3nz+FZ9fvsGaXuAGAZosorYlpgpiWyM2ApptIQoCiiyi6AYiIPQ9PMmbESXlKVopywhdh9BCvrmnr0pUWaQtKsokoohi0sOO+GFJX5cMRmNc18HxXE6HI12VYxgKtqEgIYCq0/0bV0JRdK7vdvzd3/2S//YP/8THzQrRCzGdBdn9DkOSODYJ6XZFaOuUZYVsuZijMVXbsNkdEEWJZL+lyyKmvslXF1NMzeRstkArc24+fiRwLWRBRLNMzOmC+3WGOxhx/f4TQpchVTG313eceod9LvP199ckeUstOxzTijyNyfKKj6sdVbxHbBsmnk3oOoSujW1ZyKKIohpM5wv2ccXlbMLZdIxpu8h1Tlc0BN4MTx8wHJ3jBj7nL57hBTZtldGnEYfHFYGtIfcNwXBA14sUeYFCT1s2dE2NLEo0efaklO977MGUomhRRIG5Y/CQNTyWIqHjPEUJr74kLlqaqkBoC3ZxRKwUSJ6NKkh0ect+vca3PDzXJo33JLsH9vGey6vPiLd7frpvSRsXqg7VUNB0E1XRKPKMYyPwIev4dH9HHG0R2pqZoyIIPePxFM9x2e33KJKA0Hb4nsvz528YTM/psxInGGCYJmIP7uIKfzKma0vqrKCpKqLNikYtiZsGXRMRa8jTAgQJ999YL+Ohjx8MKKuG0HMYBAG6ZdG3HZ7n4RgakiBimgaypaAYFrLQMvADDMumjPZ8+ukP/N2vvuX72y1ZWdHWFRdncy7mZ4wGIeezKQUGWZxyWj5gqDVpcWL9uKHtfCzXI3BMqiSib3sGfoBvmewf1mT7iD99/WdQ1yB0+KGD0AkohoHs+Wiuga02VMc7TrtPQI0e+Dz/4g2O3kP8SHPakmwPFIc9mmrjuA7FKaHJCordkeFoiO2O0FSV3XKFpOgIsoJjG5QI+M8+p6OnzY5IEix/+JG+E5BMkzLa4U+n2NNzujzldDhg6iqaLFOfdmiSRFHWPNzc0iGiqBamG0CT05QVqqxQZCXHzYHDZkfXdzR1R1PmPKyOPKwjekEmTxLatqWTnqyM0POwO/DNb/6J6+UDqeygnV8h+i6GKmPqGlWWkiYJQgdvXr1GVnRmkwWaohElBxzX5vLsivPFJbY/wlJDvv7d1zwub7m6mmPrBvXpgeWnd3i+w+3tA8coJ2n7J7B0D5ZlYrgGg4s5b754zvnlGaHjUyUnysMGXWgIF5c4gyG6E0L7tFbWZYtz8RxREBHqp6nUvO7wL16iGhaqJKHrMpapYtk6StPQlzmqKmF7LmLfISJi6jJyVxPvMzTLoW9q0sMRSTIRlKf1QRJa7h/XrNcb0qLiYXlLEe+oy5Q8PXE6HkmylCwvUHSd+cU5LT1/+uWXf7uY/jGe8+9df2ya/AfV7rh7c/vw7m9UuReGnsx44DMchIS2hWU7tHVDUxUU0ZG6SBElBUExyKOI9eqBXOipNI31w0+oGjiOhmaYpLXE6v4TRZYRRzHfffuO/TGl6SWatse0PfKiQ+kE9L5jMpkw8gKEOGU2GuJ6IZqhU5wyxDpGFVvi7ROwcv9wR5FmXN8/sLh6ju+Y6OWRiWdydnlJnhWITUWe59RVSVVWKKrMdDoh8HwU+WmKRNU00rKgbhqquqPMEsamhNh15ElEV2bUSQySguk4+LbELjvwzTd/QNENdFdFV/on046u0Cstt7uSUySgGxZplrNarmhrsN0hmmaiyGD1KXmZEscpySlF7lq2qw3bfUzRgm0anC3OycuGMPAY6hp5mvO4OeJZDulmQ3440KsWWVawur+jSRKS/Z4ui9kdIkxNR5Fl+qbiwrNR+x5ZkrAUGdcwmI3GPA8M0sOepql4OQlQFJXR5RVl0dLut4iOyzLP0Tyf4ynmcXmH2HbQ9VRpSt/2tLJEK2vEp4Rvr+8RVJ1UErhZLqmOR5KiZLdZUeYJVVVT1T16MMEOJ1R5znofcbdcsn584r7UvUBWd+zXjxS0WEMfSRY4HfYYmsXIdZ5GhkXIs4yqqpjM5nz+4jOMYIogSIiCQFE1FFlBX8T0Xc9mvaLKIsZ6h9JWiLKOatm4loDcnnBMCV2G2XSI3ddPTTbTQVdklK5EVnScxXOE+olZIQkqUiuiGApd16C7JqLQ0BY58cMjbd3TRiu6qkIUFIS+o00jyE9QVtRRRh2nbO+2JEnO/fqE3Hc4to4gSSiaDG3L/Sl9UiOqCtPFHKGrcGybj/eP3N58gnhHMJ4wHo8Q++aJq9JVqH1N29QkSfxEpJdkXFlmOhpTZBnr7R4xSynSiOS44fr6A/eP92i2xXQ2g0ogP6X87//1r9Fth07q6NqcgaFQJwmH/Y62rijjA8f9jvV6jWgY3K1WdH3HZDJAN1RMVWTkPT2LXhBy2K4xVJVeUBEEETccMZrOsQWwXIdoecskUDh//pwuyfHVFsexng6PpoPjWdjDAaZm0p9y+qYjGAUsf/0NXdtiBh6SKCLKErKiUtcFfZnS1wVVXtFIOttjTNvXGIMBkuNhOw5FUVK3DUUPleogWxqSq9NJMB6NGHg2Tf00oVM1NVnTkR2vsYQToyAkOfW0UUF8PCCqIo3u0bYiRdHRWzMuX35FJtr84bv3FHnH7TYlOe7p25pf/n+/5ne/+z1FmhHYHqHl8Ob5c2xDxXMMxotz7CDEcj3ktqQ7rhh/+RLV9hG6BjF70qprXkAnyEi6SyMqlNERegHZ9hE0G7FtiLdrsjilTE7kdcPpeKI6bUnynKSskYB9lnM4bAlcl/PQpGobktMRw7bwVYnTcc8sdIjSjAYJywvZ7rcoQkNVV3QySMMLWlHA0jQkRefx3ff4Omi2S3xMqKuKzXrazC4xAAAgAElEQVTL+rCmLXsWs0u8rqPqRLIkxTJNRFTaqEZX1SezU5xhGDKBY4OggCyxWz+y29zx4+MWzfFQNRWZmt3yE+vNmlNZU4gSuqkhSCpVLdK3BqvVFkGSSPOWL//ir7j/+B6xzqnTHM/SefFswWAy47R52rwPggAvdDjtUj5//jlCnzAYTQhGIY7cMh4M6JuOrKgRup7RaIitiOiqiu6GqJqBIdZoQkNVZNRliaLrtIhMFwsO6RO4L44jJEWmBdqioC1yqiwhTWLSLMdUTSTd5MPXv0YWG4bTBdHDA8kuQbcMyqxivVrT0PH1csNqc0BSNAaBh+GZ9GKLUWdYmsjd7Ue+/s0/83B3Q0NPAyRZjqzImN4EqYgp9iui3Q7RnrA/Nfyf/9c3/O72RJw3GKpOoOvMHI8XgcVfXY34889fcvXsFZaoIbfgTp5gpIqq0xcldVGjmiFdK6NpMhQZiOqTyrptn0bnZY0uixH6DlEQadsW6KBpkFWNLt5RHQ+U0YmHn35kv95T7Des3n2gLgtk2+Fxs6drO2zTYvnwwP6QkNUNSZJTZyn7XOH6fo8fhMiaT5X2lFnHzd0GOxjwbLGgOWWc0jUP8RZD6RB2j+Sihjae0dYpx/hELeqsTxHLm48khz0aLV8+O8O1HdLDkdXynonvEvgOkizjhkNKoefuCNlxR7LfUggaaQNJXnOKG+K8xrNdOtXicbWhS/YotDwmBfvHW9S+IbR0VMNFNV384YjQczntdjw/m+GPptiOjyNDqAnMBg6G6+EPQiYDh2Fo4eo5l5cB84shlqkyHTqotPR5hq2KeLaGoilopkWR1xyOMX1VIAsSgihQpAldVaIqT8YTZ3COqFhIuk+n+JiWxdh3CEcLJM2kEyU2myXl8QFDEZBHKvenLYZmsdusibb3zEYeUXogjw58/P5bHh63uOEC25uhuBOuPyypsgxR7hG7hqpKyUWBX99u+debJZvVksNhjyX1OKpEU9WElo5r6LjBgCo+orYFr169wfcGqLKMWFfoqolQ9ZiTGZrnIwki3ijEHlrYAxnaDUKVMRm4jIc+ZbQhTY9UUk/dtVTxnrOhxeXzl4SWgqpItJKCZ5lMZlNAYeCMORsvQABVM3h5eY6qSlRlhed7dH3FfrNhu97xD+9WvF8dMWQRx3H57LNXhIGDqcnEWcPdh3fQZziBSRJHiKKKoi+e7EmKAmVJkdUsrl4hiDLlwxJfdhkaAeubD/iLCarWs7n+QJ+ciB6vOdy+I358z2lzi6AqjF//Cd44ZDK0IV5xvHtPW4k0WYosiKTbDYqkYdg+tj9AEoC2Q1cUkn1E2QjIgoipa/S0KE6IOxxSRAfEOkHXNNzZEHN2ThblBOeXKK6H2LdIbY1vq4htw+3336HICkpfI1QlcQNZVj3JA5IjSZywOyQkaYlp6tQtHA8x6SmizBI0WaARDZbrp/XTcFw0O6BsBIS+o6OjEwQOhz2S0OHPr3DGE/bJifl8SlOk1EVOW1ZMwhGXsxmu43N1doksSWiKSGioaL2Gqnuoms/9zQlRyBh5GjQNiiySbx6o4wRBkunyAkcxef78JZdvvuDq6ornL19z+eqKwLYxZAMhLxD6Dl1WsT0PfzpHccbogzld0yL2UNcZgm4gGCGSIiDLIrplI/Q9quGQpyn+aISiqhiWgWqamLaGaevopoWqiMiihKJrSJIKCIh9QVuWCKKGIkl0bYGiKKTJAV3XSPKS6/c/kOwfSI8bkujI4XikqioeTjHHosbQNXTDQLMd8rLif/vLP//b6R+ZJv/u9cemyX9Q7U7rN9+//+XfmBLCmzdfMhoO6YocBAXbG1MVOboi0/c99zfXtIik+zXx+o5tGmPPxgikWLqE0ndoikErG1wvM+J9wsPyRFOL3C337HcxVd3SIeEGYyzDIjseeXZ+yXAwpYsPBKbI7GyGrIhk2zVim5ClO5bvPj4d9u7vWd7dc9od8S+umPg2fRZxOR3g6RqBJqAoEllW4A0GyKIEXUNVVQRBiBeElE2HrCgIosD+cKSqO2RZIU5jDE3Bs01Gvosp9xheyPTqC0aegOfZdKbM7erE/OKSyXSK1NQMhj5JnvLdN99yKg2qxiSKUvbbNWVW4TgBlmEhImDooPQx+92BJMlJ44yibCiShChOqcuK0WiC3Lf0osxoMMOURJS2Jc4bPj0e0AR4uL2jrSE5nVCa/klxWRZ0bYvUNlRtx/4UMzF1+rpC9wfMZjNERUHuOn7x+SUDsaWJEn52NWN0PkJ1TFpRwvFd2qZifHFGnWd4lomhSOyjlJtPn2i6DtqWvutJswyhqUHRSbPi6X6WFY8Pj+zzCkEziE5H+q6jrmuOSY4ka0zGcw6HPZvVnncfb6nqlqquSZOMWpDZrteIgoA7Hz79aaTHsyzmoU+aPWmQ+zzD0FRePnvGMHzSI1Z1i6EbZFlOVTc0Xc/93Q3f/+H3DEOPodKSn06opkUQOgjpBl0TmM5GSIChiqh9gyHJqIqMYtooukVX5ZDFqHKHJGmomoQkCwimDZpNXzZIYovmenRtg2ZqlI93VPEOw5Soo/XTpIphku6PyLKO0Msc9xH7XczNMWEbp0iKgi6DbJpP0OW+J2/BDwMWkxH/P3tvtmzLcp3nfZlZfTf7teZqdn9aAARhwlJYIcl2hB9Cr6gn8IXDEZZtEkGRIAEBBHHO2d3Za69urtlXX5VVlb6Y8COIuhDGM1RW5hjj/7+/NZC1A3Ec02QpvbRY7VI63aJ0iuoLlBgYhg4HqMsC6fm0WmOKgpEYUMKi1x2f3v5AW6ZMJhM2mz0ImM/n0A6EMuHn/+O/R4xCdvsN2/UTenPHRSKhrwkCDzMMZNs1D3efCUYhbZmfLDKWwrYFoq2YTwMW0wibnmA0wrMdiqIgmZzT6x67b6CpiKIJUWxjGxuHivNFyOT8HJGXLK4uiKOY0Fco22YYGtqmYn69ILI8SFNu/vgdFy/eUGQ79ncPKMvGihJ63VLlR5qyoukH7CBkezjSdS1ROCItGiwh8X2XrCrJyookmTE9W2CHHrYnyZuSfV1TFkf6MkfaLverLc5wYJ4I/GBCXSnqtGK9O9I5I1x3jCXUySv/4muktFgfKv7xV3/Nw+0N6X4DDIim5P7uHl8K5lHI2I/49tkXRN7pUZOMY5LpnDBOcC2g3uFPHLzJEpB0eUGfZ6hwQq886qqhEQ5aa7SwyXBJ9UCRHsnLmkJ57LOCOtuTpilPecOmqGirlKIfqHVHrTVl02DrklHoMA8c4mRMXxdICfNJgs3AxXxMWZ8GipEtEbIHJRiUy/z1z0D50JbMRxHb3RqtODELLpYEQQQIXMdG1wXb45Zhs8d3HfpOY1kWu9WObFPx6mffkmc1o4tnJJOEoU6RWlMUmt6yKYojD7sDQRKzPxzItytuN3u+f9hQoZhfX+GGPouzBcn0nOvXb/A8ydC3ICW6r/j4h98xdm0u5nNGjoWtBH1nmEYOszgmmYwQSpLmGrfOOL9+xmxxju8GWGJgcX7B4uyMme/QlQXtfovreUSBg9AdluixzIA1dCh6fM8m8h2eP7tmeXXJyFPs14/cbw98etpyvligDVhNiu9Y7Hd76q4jev6STVpSpU94yYQ4iVj90+/x/DFKaLq6JkoijlXDD3nG9nAECybnI0aTEX6Tkm8e+MP7d7z/eENqDD9+fs8P735gtS/4zT+9pSo0LxcBQ37PkN6j65Kq6fh//3nL//7rD+xqzTJ0sVE8m8743/7qW35+ETL1HEbja+rNEbdrSc6m4MQI2yW0G7zIxw6nmF7ieQIle1Q4xahTpK3QNQIYOo3RFaYo6OqGoZf0jUZXJUI5KNdHClDi1CiUxwPF7kC939G2LdHVC97/8J77Tx9RwNM+J9sdmLsSoQS9EAyWjxGK5YvXdN2Ichvz1bNf8s1PXuD6HS8upzxtP/CH998zSENfFxSbHWK0YLaYUJZHdlmLVh773ZanT+8ZRR4/e3XNIonJ9lt0VXE5SUgCH3d8RbR4hZAdH28eOLaK/dMOp31it91xf+xpjEOaFZRFwerxgc3Thv12jWc026pkk2V0dUEUxvROzKHUWH6INhZJMsLRFXEUMx0nTPxTZHezW5222PEUJQ2hC1HsMp6fIfuGSeyznPpMvI7JKOTqbETkiFMzP52jPJ+u78G46LZl+3DP4+OKpq4IbIu8LLEcD9uNWW2POJbH1euviOIJ/SCYnV9A36M8G2xFdv+OceizeHNNi2C9fqI+3LFM4LC74ePdDVE0oswK5ssrFmfX/PMffuRYao6bzxS7A9NRgtEDVa25edryx5s7mrZmv36krWuuYxffcXC8AE/BMrK5PptzvVzybPH/89o6aBukN8KxPLzYx/pTw2kr69SoS4OtBFEyYjKdEjoWnhLM5hFns4ir5RmxO7CYxCznYzzRE7uSeDxiNpsThc4pbcuzCKPTfTmbT6EzBOGI5bNL4sDHVpJeStKqJZIGq4dVWhE6NrPQIZmekXg2ti1ZH1Ie1w+MQhfDgHIsnCBCm4S6qKEfyNKc0fyCrO7Rhz1it2dmhzx+fMuH+8+8+OantEXBu3/4e9K7Tzz+8Ece7u+RfkilfGbf/CXji0smsUNIRbm5Iz/kbJ92jJOEtu7wHAepG7q6weiaru2JRlOsQTDkGa4l8aIY23aIQxvXt5ASvNjHc8CbxvizCa6vmC5DTFej84xO9yhlIaWkPazpOoE1tFTHDY4l0Z2gHSTF9pHjbo/lerS9oB968rQA6XDIT4vSqmn/NACekVWGLMsoy5LjIT0xSUYjEBLESU18FtoUemC0vEKrAUt0JJFHW7c4UrIYjairGt1KkiCm6wfyvGW3T1lvG77+5kss05KlT8znEdvNls70eFIw7LZ0euDp5h5Z9cT+GDceo6KI0XJOfdhSp0ccq8eiJwh8vHiKH8+wgjGOHWAHI4QRKGkwpqP3Q5zZNZb60x3j+VhegBASy3FRaCxh0EWF7dp0ZYEuCmxL4YgO1wsZhh5dNdRNRRhHYCR9XdP1A7brIkRHmqZYSkHXoAfDp0+f2O227POcsmmRSpJ2cKx7vCAkDgIs28JIi2Bxxi9/8Yv/ePnn9Jz/6vXnocm/UD2sPn37m9/8H/9hFiViPrugbzuK3QHfTwiiMY7pGHSL40cYM9B0HU0vyI452yxlvFxSHw+kmzW97rD9Gc0Am/2W+8cDh0YhdckwSI5ZQ9eDG46JRxNmScTYVVydXWD1HUO5ZhL77LaPbB9+pNk+cvP+A3e3K+oi5eH2icj3aPKcYDLnp1+/wR0ars5iRmGErSS2MgSio7Vc0jRF9hqhG7phYDqbE8UxfhDSDSCkTZGXZFVNmp4I/UIIlJLMk4Dr58+5OJsxuTgnDm0c2TOZRyRXrxCWxWR+zuZzSp4+MKiOSmtuPu1pex/PCzhuDydgrZSYoUO3LY4taLId+92eqihoG80hzZHG0NQ1vWXzi1/8hLPQ4uxsQZAssIeBdPUIXYdRNiiHZLrg3bt3PK03aN1hOk2WpbR1w8PuyNB3JLaFPXRcXC754uUVoyigyo58/eqai2mIGFouzy9ZfvkKN3aJRi5KgrQVybPXFGmKX+dEQUA5wNx0PK2eGMoC4UqEpbCkoikrYt9ncAOMZaEMdF2HG4Rkhz15nlO1mkNRIZXF5PI5ajBIqdhnOav1gfVqRd+D68Wk+xSjbAIvJL5angYkwNevXmELOB4ObDYb7GiEH8Ys5nPsNscVA4O00caiszyKpuMf/svvOexWrB5ueT5yoM6YTidMEh/bNHiqJwhchq5jvDjHFBnSDASej7IkdhCiJhdYfozOc7rhlErU5AfoS9qqpR8kYBBDz6A7lK2wvBDHtUlvPiB0S18UWFLQVac4Sml7dHXHYb2jzGt+yGowBjn0NIMkjDy07Z+sIVLhOQ7L5YJtq3h6vKPKDiTzc8bXr/GiiMH0VLt7RFviuS691rRVfoJ+2h5VnhEEAS8ur2i7jvV6zcPqif3nT3R5gbEUfhJSlUemScjrL77m7Pkldf7I5uGW/e0dL0LFYuRRHfagW/aHDZt0xz5NyfOS1e0jn/cpWBaz2CX2JcEoIXBdHAY8MeC6ivl4yng+5fmLawKpCf2IKE6wTUUSR8zHEVZXMZ4mxOevaZ4e8SyJMh1OGKBcF0mLLmtkmmMVLUWZY81jDo8rZNfTaINxE+x4irQdGt0iLEk3DKRpziAMwgt4Otbc3d3SmQ47ChF2SLk7Mp1MyfMM3Wy5+/wD2f6J9nDPxIVjZ7N6WBF0OaLdc6gMktO2+Pnz51xfvsSVHuPplNtDSjBfEliS2+9+T5dtmIZ/etD0Hflhj6VrNustdVlxFo84SyZYjo3jWQSqx4/HhJGL6va4kxFWHIO06ZueOqsptnvqduDp5hN12ZDvDifbQp7SVAVDmVGVGUOTcdht0dmGtqnJ65qiyCibilVWUraaRnfotjnFG7ctZ5MRh92W+SRhPJ7ghRGe5+EqwTgOTuwGaeGGEaHvkYwnSCfGcyZ8+/oVdZnjCsNhv6PvNZ7nYQaNaetT82MkOi0Im9MDX1cVumloqpw/fvcWxwwoB4Lnrzl//Zy+a7j7/rcoM6CiGCM1ZVXyYXWgHwaUaanLks+Hgk5ahKGP5Vks5yNMV5GMIj7/+JayOHDcbaHv+fD9e5a+zcUkIHE84sAndi2uzuZMxglD3WBb4EdjPN+mfLxh9uwljrKRuiMKY4zWRHFCMhqxmI+Zn59DmaG6CteSYAygMLpEDd3JOjWbomybmw/vTlY712Hf9iTJiNmz13z/3Xfk6ZFnVxeMkxFOGBMnY+rdI4OwmDx/Q/bxn8g2Oa4XYns+vbDZbnYcdI+ezmm6EiN6Xr1Zcj1NKO5v+U+//j1n10u++fpLPn9+5HFXE07OOOw3HNZrvv1iwZgtus6pWov3P+74cd/xu+/v2R1yRrZiGXr8r9+84Ntnl1zGDqbYI4WFo8aoKsNzbNzJDDf28NWAKFYIywHpYes9tg3CcjDKRbU5tqMYdMegaxgMGMmQrU9ntu0YupauadBNg7QkxfoRYYbTVjUMsONTlHjvuCxev+F4OPDwtCMZj9gVmg+rPY9PBR8eM4RSDG5MjsX1Fz/n7353w3/+xx/Jrr7izU/POE9cIt9ls9uy22/odUfkOPSDRM7O8XxBkaf04gTY1mWO7DXPZyO+ur7AtV2UGZj5DvPJDDcaM/QGx5Xs8j13m4rNvsJyHJriSHHcczzsef/hE1WWotqMfLchK2vmoU2nWxo/4OPNHd0gUcmC7HgkmixwbIfBOg0JzgObcejjSoHnOjhRTLreYCmFH0QEyYT93R2hC6FrE8QTBBJraBHFhkkSMZ6OmV5cMJpNqXWH5bpIaZMXOePJ4sSQ8zyqPMWYgbrWuGGM5Y8Yzc5QAtoiwx8vsBbPMHXBNt0yWAo1iih0TbtbEb+64Nn1a0TXoZotOi/427/7HVY85fWLb1mcv8RxXX78/ntuPt/TNA3b2xvcAQI/4JAafrxZ88OnT/R9R3bcUaQZllBchD4vziZ88+IZy3HM84tzIjUQezbCgNCaocxRjo81vgA7RimJpAczIKV9Whz+SWEwVBW0GmVOlgjXC3CUhQsE9CS+h8DFdBrTt3iug0JRlS3GaPK0II4Tul7jRQ6Ty3OEmwA+QeCglM0gDHe7lLTsuVjMOI9cxnFAPJ5RpwdGjgQp6W0bpEG3LZYtkbbN9nBgu4duMNTHA0E8YrfPuPv4jjPXok8L9o9bsnRHZuD6zSu6XtC0PZU2KD/CnZ0zf/0Ga7YgvnjGZOwzFE+ooWJ7+5nNwwZRl4RhhG17WG5MtT/QHPbYZqCuapLJGV2eYTcVYZhgxyPqpiEex3i2S/b4QDgKUYGPpU7Nv6RHDT3Vbg9uzPp+gydbqu0a14vwPIt0dU+ve5wwYjRdUKVH1k87HjcZ+2NLVdWkx5wsr6kqTTcImn4gLxvCJGL5/JrGSvj84SN92yDFQFlVaNxTmp6S9LphOK65f7gnl5LZ9QJd5gS+ixKgepgmCUk0RuJiho715p6H1SPGllwul0xjRVscaQ+PdNpDOSGWJQlNzlC2rB/vMVozms2ZLpeMl2MCq+d4/5HIUyRJQBgkRJMFGFAqYGg6TDMwlJqhU0gpsH0XlUxwRktsZ4wlbWzXxQ9D6AVDD2CIEu/0Jq1Ssl3K7Hx6ersPHcVhz369w/dOTBPDn9TZVYvnKpqqwpge21IoAQLQTYOxHPbHlLLIsZRC2S62F6Glg207J7ulbWP7AbvWMJxf8b/8T//qP17NJn8emvxXrj+DYP+FqtcGoz2O2yMf//l39LVBBmeYoiaxVrS6xXIchHJIJuc83N/x4YfvOOQpNZqzOqWpS4qsIorH2PGI/dMd6WrF4VgThiH7+zW0A9NJwqHoCOMYOXRYdc7Z4oy+KdhuH8g29xw+vGUynWFZcDGegG1TlhVlcfKbd0XO2XzK8sUVsi8ZxQG6LXBsD6F7+rokcm1+dpmwTHz2uz3HNKIsG3IpEb2mM2A5AT2C3hh0lSOkpMwzBi2JkxH3+cA0PXA+TfCqJ4RwqbqKMHaYLc6QToGlBK7n87B65DIc0emerhdUdUPbdCf5quPQ9B15XmI7Et/0lHWLbjo6bTCdpiwqil5zFVu8vJqz8G3SfYaj9oQXLe3+gLA89rcf+fFpx2Q8RtoubV3jSKh0SdsKttsDbTeAMczikPEkYTqb4UUR4XjK+uGRme/y/GKBJQTRmUuceDiewpUuQ1WQzGKapsayDGdnM54OK2RbYgy4rsU8cHl4fOJqOacvClppYwFlceDFZIQQinf5J356ucRYNt/dPtCjqNoBoWzGiwsePt3i6o7L6ytcFTBeXLE7HDFSURUVbjg9NYVCUlcNU8/mfHnJJAjZbZ7YHXbsV7eIVvPF9TXeoNlvd7QtOOcXDMYhzxp+9bd/hyo23N58pGvrE8/BcvAdQZ9vCOdz6kODUlAVBUXXk4QxohTgnOxbqm8w1RGNjXN+khrr+hS5PKiBtmygOmCaFiUsnCSi71ukFlh2wNkX31BtHqgOO0xZIIOITncnyafWWK7Dy1evOfTvebc7cvN05EoIltcz+q5CWornV2c4toVlK2aejelOW9LeEtTHLYfDgXT7iK86tGujtcb1HEzf4Tk+fVGiqwoxnVMPNkV1UqP4rmLVVNz/4SOzecK3P/sa6+U3+F5E1bb84fd/h2hyTKeZ+x6T2KOsS9omZ/2Ykh5S3t+tyIoWKS0Ojeb6+oLrqyX57pFAdkxHwUk9kJY4vcZ2HEJfIYcjfgXh9JzxxWscMaDLHbancdwx2WNJZEmwbIIv/5LApPS6xTQ1rm1jJz6t49HKgfJB41zMGRjQncaYHisaoYsMQYcdjxjbr2C/Jr97YBQ5bEtNU+4I3RGZUjw8PnLoBM+eJ/iO4sOP32F7grOkI19v0Lohfv2cFpvv/vmPdI0miEuOmx3xeYwYNIuXXzF2Xey2whc+XV7yj7/6f/g/f/U7fGz0fosUA+nqnqqsmU4XtPs1H979SK8HLs4uSJRCFzl52yAzWPwPP0FIg9AtxvPoGkOTZ7RDz/5uTbN9wDRbdFvRdgO79YH9/oipSpTpybMUpRRaOKS6pW41xgw4fQPKJisaDo2mHKDowfYjFpHDqs4YhCAb1J+gnTWyb4mmC/poSugpVFsilE2V9iRhQhrG+LpHuA3h+JzegFJj8vQ95+cJbuDQDQNVB80gyI57vCghHk9w8prHpqPIDtjC5phl3N6uyH2LcO4QRC7TkWH1+Qf+4Tfv+OKq4dWXA11VkWctjT7ZXhwlaJVF0fXYrs94foYRHav7FWXV8HhQVOWRka8os5pdfsQBzs+m2J3BVXC5PEf0Fc7QousOJ4oZ6pZAgjuOUItzjjc/Mnr9+rRxtQMkAnSDshVtJ7E8F4cF6c1baGv8+SXN/ojFgPB9jOk5HnfsDkeq7Mj7uyc61+HnX7+C0ZzWCbm8uoZBY0/PMXVNlaacC8Pzy3PyuqWsNL//+x+4TsYsz13asqIsC5oipWoFnuuzvFrQ1RljZ+DZ3OX3K4u/+Nc/5fos4fL8GWmWcd07OJaibqa4lscosLj5439BVh1v9wZrvGToWnwLXk8iIgu+OhuxjG3CPqfdFaBrwiRBtjWe7RBFI1wDbrnHGjIYnSHsBNfusdoSUzQIMaCaIxRHBi9mcGcMVc+gS5TvnoYl6RorGaGzOyx7TnHMsAIHaaDZfsYJEtzySByOqF9+yUj0uEoym895/apBhSH5zT1hEBDHNq4juFtXnCeaxfNLXFtjTQy77O85j87J5Zecx3Msy+LpfkOe51y9fAnFkf1xz5dvXqGrEtsJiHwfvT8S2BYqDhnbCscYAjeiNwLpRtjTZwzFlunIZpNvuV3tsZ2YzcMtluuzeXhAlxnb/RHLUliOoCw6Xj27Yp31zH34sN9ydygYhgHd91RVReTYXISSTkhev37NuTMQihpRrgmm4Qmm7PpcffUXWJagzw6EvsvyYolpDgxVCd2AZVmE0zFB+AWD7YGyyHePeFFCsrR52hxp0wxbGHRbo4WF63mcny3IswwlBw6bNT0+k/OXiNCj05racglnMw6PGYenI84oYuJGtFKwfnwg2ryilzZDWzIejykORyaLOReLl4TBHNn2PG33/Ke/+WvuNwf+3b/7t3jemLbYc7NesXoqydIG4boUaU7XGqajEX3VMpnOWI5jgqFiOTrDlQZlOoa6wAwSf3qNosF2AxxHImSDsAKGfmAoO5p8y1DuUarDOBGOFyFdmzrN6Iscow3SKLpGI5E0ZYaQNhLF0A4MfU7TDAQyQSub84uItMw5VhmVrnDqFiduubheckyPmNBHK4k1vWD79p6L8YLz5xam7xmUIN9t2R5TfCVhatG0Oa6vzSwAACAASURBVH0vEWmPg08QxqS3JRaGsa1QTkKabpiORsS2i3X5BYV55HhMmV9eMXQt4+UF0WxGV2TotmLwE4hCZp6kPdxjTRb88P13fPHiGmEFZOs/cj6JOd5/xg7GNL3F/OIlaf+RNj+QpzXWC4PsB0xVYvkxUloY36MzCtdReEmEdF0QEssWuJMp1d2PCCUIZhfsN3sSz6Y/7jFNgbQsZNuQRAlVP2C7MVWecRa7WN98RXC34uPtI32laeqevO44NA2LxRTpOBRNTZrXNFXO7Pw10o857p5OZ6jWgCAKv0H1Di2Sp2NF1g8EDJiuQw+GVveoocOzJa1u2O23NLrlbDxllMQEvoU19FxMAvbbjP3DlquzM4qyOfEUywOtW4LoUa7F+OKKOPao65zmkGEZw+U4xE0SpHIQneD4sCNJEnp63MjDjXzC8TnCtvEjF2Nb9MLGGIEwGqSg1YZeDOh2wItH2L4EXSEtjeo6LDkglUvfNgjbIY4mbFZvsZSg7mF7zImSkK7rKbqGQSqKsmI8Pz8BuXWF6TVSSMJkgvL32I5BSYfdMaVsKpqmwXdt/NCnGwb2hwP23S2yqf/bNrn/ndSfhyb/QjWZjPmLn/8V60/v+du/+TUvrp5z/ZM3+I6HGgRVpXH9kM32ifyYUu9Sojjgc7pnW5QcywykZrAb3GigyVekx47Vk6HPO2RfUGSafVqwOF9iBIzCiDbdo6wRxWHP4LjoLOPVYs40jAiTCS4GJ3S5vVsxO5twPZ9gKwvPP/nTTQ+6LVFeTN/ZDFV+kqL1HY7j0OUFc9mSzEekrqKsa56KgVwpDkWBI2wsB+pOU1Y5yo9AWZR1QW9A2h4ftxVC3HBlLlkEVwih6LoGHIs/vH/PFwuf7XGPFbh0tosjIJnOSFcDbVkghETrFl1VSNERDT1Br9AGjO6IXId1ntP3A0M/ULSKN1dLhjxl7NpYukFXLevKIIzEm58zzms8x+H27oFsf8CVEoWgaBoCz2cWCqaxx4tvvyJKxthK8XT/RLkXmG7gl//6l7iOhT3kxGdjVDdQbR8JZgvwPQwSx/bpiwNO2fDszUvW+z1D3nDcPHIWeNwOhiHPMMNAbVrqQZCnGb0nmMcj9PmU+12KEYKfv7wGZfG4P5I2Lfe3n+kGUAx0PYwnE2bJmMdgguV4uE6I43gox6dzLURXggmwlMKYgaquKI9HpoFPLwR9D33fYScTMhya1Qo77ri5faTJD6i2wQgIkxFZOzC5mJG1FU7TMsIGqWh1hwomOHGI7mocL6RzY6q+wxkUJsvoxAl6GIwa8rym6gc8YZiEIX4YgF1h+o4BCzAM6YZBCrq6xQkmSLU+qT08HyUH6qZGKQhDh2R6zovDho/HFMc6fR+H3YHJ5fIEWssaRDJiMIK+03RNSZ4VVOstVjRmdffAw/0908kI33eRToSRDsr09F1Bn5WIfjjFhusGM0CTl/iAEYLSCESasqsqpqMLFs9eQ12Q64C+HtFlJaHS9KpltVpTHFNM0bLfHGmyCmV7HPIG23PxfYdjduRyluCiSSyDb0s6z8G1JJajkL3GtXw81yGajpFNhrID6mOKL2McLyQaL1BmwJ8k9HWN6GMcmdGWBdguum5xvBAmEYPrMl9OqLKCaOioioJwOma7vicKL6gqAcNwintcTNFqz6Y6IIcBW/Xk+x11o2m1heMm+AqScUKX1STxOS++fEMcR7hBzLsPtySuhT8ZE7g1lVOyuLimOBYEZmAR+nxYPbHZPhBZkqCrWH36R3JcXG/GdrMh3e9IopjaWNzdr1lnBYHtMPYc2jKjti28JMHxZgy4iLakqxSm9agLgy52tMWRvitxlGazu2GXatpeUGUZrqU46Jq0qFBdC8awr/ZUrUYLi67vaaoCy3RIyyZrewyGru04lgVV6ROFAY7rgm5Rjk/bNES2j6gKZqMxptVIqXAmM1bZijhwmIzOuHk6YiyNURbKErCY8fmH/xuhU55fnnH56gVKKiwl8RwbObTUQlL1Hm7gkx933GzXBG7IZDbh8+0t+3/4gX+DzW8+fuDtuw+U+cCH2zVeIHj5xZc0viT+vCJ9SmmNzaYaOFY1Y8/ndr1lMh0j6oZ5ElO0JdCzethTZDmxbfNsMcezfaQ6WTC7Kid0LIamIVmMKfKSOPEwdYnjOrz44jXpZk/+cIdxI6QVoHyfer8jiAL6vEDYFkpaTJ5/QfZwQ/V0S+g5tH5I34E99JjjAYQiLxvqTmNsi/0xw61rcE5Q6GevXuKEMbuiYFA2j4eU5rBi9bRj9uz1SR5e7Xhx3eImUxQnpZryHOquJ/A9pNPy8mzOcZdxvlxiHY+UdcPn1RN5WfJ5e8u3b77FiuYsVMvvv/tIfpsjdM/izU9JM83Nh0+k6xylOxxlEbk+kecjyhKtwQ9GyNElTlkg2wpVZEjbZigb1LNLvMSDaoNyIqQtGXoQSEy2RmDot3fIcQfGRloWXVOBOwHLo8t3mGKPrlP6Q0PlJeD49CJBVg2q19j5Dgcf3WsODw9UmzXTiwsaJOtjTlWV5LXL60XA8iLk/nbNKDrnuNvx1YVL+e9/Sr55RLw4w1q+oD/C5rEjGwx5VeIYQ3h+gesa0n1FWvVYjkV52JFtn+iLFDdeMPQDdXbgbBQjpEA1R6riiSpYcCg17z7ccXV1jW4abt5/T1EUuH5EW5UsJx6hlHz18hnajhmVW8pDyrFsKcoWt29xMNjZEy9ev+av3pxjUDybGq6fXZ/imJszpG2ftuNKISwPpWu6uqDdbbBGc6x4QZc9EQc+nS7otx3uYsHghRjlEgqLti7Jjilh4NHVFU8PR8q2oMPCkoq8KImjkPVuB6JGFTmzriJyJf4i4XNecnO3w7u4xu9T6vQR+8LDtgY2PSgxIJsDafZE51lEkxHfLr/kev6S1ef31FXBb/74B+zFnL/48hVnFwvSzY67x4rtas0+rSl7B6txSY8ZtuOyWW25jkMu5lPm8zHjwMW2BW2ZnuCfQYxlJ3SdwLY9hjqjW3/ADn06HSODCSqZofoGaU5Lrb44Yg4dRp+27L3u0MUOIyVSD9RFeoKRdjnHBtpW49oDXdtyKPd0xmY8G5FYA87FJcoVOI7PoSgRRlOmNbYNgxOwaSw2RYtj24zCMZYcyNIjxo1oHE252xH8aYnYNhXHFJJuig48pOXRVRXCCSjLCtd1CaXBC6dY8RXxeEmlJOHlks1mRSckludz2O2om5pgbtCui+8MiC4nXQ90TUejB3zL5vx8SXPYEicOOkuxhSRdDaA8BlxiR2LSlCCMGYzAQmF1OW4UIYCmrXFGI5RrY9kKU2QYrbGjCUOnkVVJHPgMNvR2hGMpUIqsqnEcm7JoSLdbfE/Sd4bQUrx88wV2EHFz/4QT1rRPB3rR4MsB5Uimi+cUbY2ybfxYMr1couucvChwHJeszPh88yNnl5cnq+BoxHixJJ5MqfICPzrFbJu+osxzSqkYesP5dExsdRwPKz68/chyck5onyHFwOGY4rsJRV3SpBmh24LVo2iJQ5/A8Ths1yjZYgsLpSyaskF0e1zbw9gly+UF/ijA9hwGU+I5AfZQY1sSUZWIzmUwPbptoW0Rto30PDojSZZnJzVNX56sN0V5imr3PEzbYAmLOi/wxye2Y1PVuFFIVxZsygph2WDZp1CCsqJwXITloJuGTrf0EuIwQDkeu90R4yiORUHT1Li+D5aD5bgYpXj26iVXF0sC1/5v2eL+d1N/tuf8C9XhuPv2r3/1t//h7fcfxH6b8u0XXxO6EcEAblNj+oGs6/j0+RO6zHBtl3XZ8Tf/+R8RQvLNT16zTx+xZEEy9jnuC1Y7i08/bgltEDqnqjvKzsYID9d2CByHZRwRj8YI5Z62Lcc93qDx/RBBT6drht7w6idfsphNITvgyAEbGyF8TFVjuSGDsAkChy7fY+oC27LoEcheQ2dw4hFSSozWFI3mqA0gaAeBF8Z8vr2hbhs6I6iqiqFrGCcx0rKRlsfF1XMST6DjCDEe4diKzvL57a9/C+WROIlBKUaz0yX9/sOep9WROs8YOo2uS8p0j93VLAOHQdcEnkNbl2AMwoDue5RUfPnsnKvFmG3WsN5l5D0E4zm61lTHLV3fMhqNuLt75OH2gbZuaOqGvmkYBR5fv3rGeBwxv1hyfvXiT0yYjt02ZTQNefb8mskiJHJhsjjDtSzUoBiaGmX7DP2AJUC5PvVxR3vY0Lct/mSKr07SQ2U7rNdbxpHH+v6Rrj/ZW5pu4Gmf47gObjKiFZLHY8bdZsd6s+fjas0uPVI1DW3XE0znhI6Lbjs8L0JYIZ4TEoRjHD/E9Xw63RFNAmwBZ/MzRp5Dedgz8WwS95R88LTeE/s26X5NUxfEScJmd+Tu9gZQHLKKptUEUcI0dBiHLkJZ+JbENRpP9Li+jxsl2K6HkhI7jFH+CCMkdSfobY+2hdPqHKrigEWL1deYXnPY7GgagwqCPw1xNF2ZI7qOvq5Pkl8l0brHUpAfU9Jjji0lg1J4nsRzDKrVXJ/PaNoGz1EsFmOEEhzSnMlsymhxztP+yO3dPduyQTg+T4/3bDcblFRI26HMU9qmoWk7bNtF5yl911PqAdeyGMUBZd2Qlg3UNVWZ0wuYL6/I8o5OONRlg2XDh3dvGYqKarsh8gdkW3B4ukdaA+8edhyzivt1QZ63JMGYs/MFttUzCx0uF+MT40hJQs8hDEKk46L8hHh+gec4DJxSEJQRCByqdE0QhSjLwp+cU9YGU2tM0yDLDLoOISVSOeR1i2V65NAhLItd1dBbNtF4hJOMaI06nS8noBsGrLanPB7ADGhL0TYdYhCgXNJCI81AkeUoP2GzfmCU+ESJy2g+IYx93r79kVwLFmeXGAPKj1GiZjr2CEdnOAz0dcv9zQ3/9M/v6LqB3fqJpqr4t3/1FyAclArQRUEcRUgnID3kFFlKXZacz894MZugswwJLJYLnDAkiBPEcIKLZllFV2yh3iDsjqe7Rz7+8Ja0MVSNoW1aXCXpdI9MJlRZSlZWFG1HWZ8iFo2AXV6c0qhaza6s2TcdXadRpqfWmqYbEMqiLTJi38UPYwJpCB0bz3UR0sL1fZJRgpIKLIftfs9iMsYdLxhwaDvNw2bDZnXD6v0f6doKIUENPYv5DIXA8X0c0zN0FUNvePrxA6uHe5RSjJKEuq7o6PFHU758vsS2LNw4YHExZb15Yr3fMptFyHDK+w+faMocLSw+HQu6rmO6mFO1mijwodO0VUFRVif20m7PJPQ4D1ymgU/gB/z8F7+kr2si1RMFHk2jGdqGyLcIkxFG2lhGYQsbz/HwA4++bXEDF1NlKHn6nxthU6wf8DwHy5Z4nk/fllTpAd0N9LYLpqfKM3ojaHoYvIiL+ZjVwy1//HBLPRhevX6JbwmGJufd99/z3duP7NIjIhjh+DGen9A/rSGvcXqFPbjYXkJrBm63O8T5FMcyLOcTHDPw21//Fg+BNx3z5mc/4f/64S2OM2KZjHnz8jVW25Hf3vHp40dub1NevPkKZbmkWUZ73CPKBgfD1Tjm2fKSyHOQQ4OnJMa4+MkZvu7oixY79lHTawZsglhiugrLU6eBkhNS395guQGm7zFNA8rH5AdMdUAI0FlJ3/W0eUXTCqrBYegq+uKJITqjqxuEdGjKDGUBTUtlIJifs777zMPNRxQDT/sDedOR5jnHoqJBMZ3MmMzGJIsxnXIpi4Fvr75A5iXjUOG6PvvHlE8PG2ZXLrPlGYOlcKIY0aYIDNIOWK23J7DyYc849DhLIkTfo8sc31Z4nofnKIQ1UBiXT5uKdzePFIcNngVPj080+RHVdbxaJHx7FvDLn36J449oi4pLT/DwuGZbamIv4Mx3+FfPZvzs+py/vJ7yxeUZX3/zJRdjj8hz8YMYLxrTF5p2v0Vrye0Pb4mkwE2mlOkefzQ+yfiLHZbr4MwvGKRCWAIhOgQGLx5jWwLPsxFSoYsU3TRkeYnuDLaU6DLn8fERaXn0KCzbQzkutuiRdOi+JgoktiXQfcXjx9/yePuetx8/QRgxX4b0bcEhz/j84z1KWrz84q8wxmKzeaSiYzw75+vXb4gdG1EXKGPz+dMd+7JkU2mmswXbzSPKDEghEAz84mrGy6tT5LPRGilhaGuUsnGjEV4UoQZNXx7QZYZpcoauASkQ0tAXe4Y6O8Ew7QDTNSg0us5p0iPGDHRtQZOuSVefKbZPIAxtU6DoEMoirxuyNKUuU55225NqsDNU+wJrCIjjOYvzOePxjCZv6WRH1mluSsnf/OofGLqWZBxjdMVus6EZFE4Q0JQVta74dH9PVZWURUbdlDQ97KuTJTx0bISUCAT1cc+LL7/mZ//zv6GqMnbHlN1+ixkanOmc9+/fka7uuX+84+HhMy8uprSHFUpAGPrEvo0pM7qqPjGElEIKiyIrsYRAN5rAC7G7ntiNCaMYxGn43WdbbFuibAV2iHIDlG3z/7H3HkuXpVd63vO57fexv8vMyspCGRTQaKK7KTUlhhQMRWjKOSe6QF6ARgpNpBDJaEIkYSSgCgWg0v/2uO3NZzQ41boDdg8a6xrOPnuvtd71PEiJNhEiOp+4yKxECg3TgOtqpBDYqjqbGa1Cb68J8swfPD3eYaKIyQp0nMA8kBQFcRxTrjasLi7IU0VqBMvNGpmUXFysWeaSOQjevH+kqxuGfqBp27MaWSvS7GyDG7zn7nBEpREm0uBnMhXoDk/0bcWz62dozgOhar/n9evX2GHixcsfoVTMpow57R9opyOTsGRxxCJXmLlhqGqk8tTHE3NXM7sZFwJSGRZZiVaGzcUaN44UsUH0jkyCDGfoK/XIWHdMrUUKgUQgo4h0XaDTFKkViEAUC1y9h7knACpLCN7RN0ekgvZ0QmJx00TfDTihAAhuph3OcPLTqeZQtxgtCcHjAmfNt/eM88yEZvRghUBGKU4q5nlEKcNiURInMSIpePb1z0AZ/sVf//zfPrvc/vk8579y/Tlp8g9UbdOxf9xxdX3DyhjKzQ1aG2bhue86Hp/uKbcXvLh6RnPYsW9G/u5Xv2UeHetkgR8F46HFecEqT2iGhL7tMb5CCMHUHZFe4SdHeXFJXfcsL68xOIamYWgbEjfwP/zVV1xdbhHKgHBkWc5quaKvK6SPubi6Ouux4pxofclw93tMVjCPoOaWOM05PdzTtT3LT58RlEYYgQsSowxGSVZZymM10VpPVEYcj2f4JUIwDQ3D0BGco+l6ih90xCedk6cxy3TLY++JiwSJ42/+8p8x7g/4MJGXGbGOGLVmnhxh6hnbI33b4e1Ie9qzvlxhhwqtFUoaXmzWNF1LHkWUWYEME1+9uODp8cDj/kSqQEQpwQvWRczdbuLwuGMWko8PTxy7ARUgM5ovrleUeUpZZFz/9d8y3b6jun1PLAJ90/D5Tz7l+sc/I0tzXPXEsHvAThMmSrHjRLbcMA4nvruv+HqTELmecr0kvbiBqWGuT0zHE59crDkcTqRFSl03JElCvT/gZ4uJIxaRoO4Gkjhjs17RC80sHnn3/pYsL5gDjEN/3mBPE4eqYpF74mzJcnFJmi0Z5/kccXcT3moW5YLMSKLgGPqB7umJl5dr0u2W1+8/UOQDVmaYbEsWwev3t3z3+pYoiqjritvbR5I0Zbt6TuQrmof33Lx4SZSs0MJiuwE1jUzDPRLP7EBGOXPYkUQCZyX5YkOWGObZEVUtkdCMp4m2r5BKcrdvGUXgxWXJMk0QWrPcXiPdhOsr5nogGIMpS/rjEULg+vkzmqphVZQMzZFiWXBzc0mURQTtuLhakkqHWK1wUjONLdPpkUWkUdmKhIjbh3u+//03SAFRmpMvV1T7DsJ5k/bhuD+bCvIFwgbKvKSb4Hg6kWhBNY1M3mGShCiKebp7YF0s0JlhdzrDz77/47cUacwn18+x3UB/Gugaz9OhYncYuS4LiiRFFynb65J53xKnMVGSIU3EskjQEqTShGTJ5ARDVWNSg7l6TpAZTX0ijQOryysirdEqZjzVhGnElAVFVjLXgYBk9BItZtZFztQ0DMOMTFK2i4zHh0eaccIJUElBnLzCE0jcRHXaE0nDLEfiOXBTZByaGSEl7dBx2B/P0N23vyPLSnb39wy9oRlb/vpf/iviaA+Dw/c9N9fXVE3DNDmGbibPWnRXU9cjp7YlzyI2RcLb/QN+HPjNf/4tRbnEToakXFCPjsPjEzIE1ttLjNKs4wgtBP08ky2XzM6BUuAmmtoy9w0mDvTjjtOp4nismXyEEQYVpcR5zHA8EqzjqWrpxz316YgNgq4fmeYJGQL17FCRwU8jLniscwgUTsVUY4e3M4u8YOpasiTicbdHe8tqu2QaJ8rlCh3mswVg6FjffIotIx6O3zA3R55d5chNwUVhmA5PDCLwXmmslVRVgxSCq2cV64sr8rxkHDuknbmIAo9DR6TPCQ03T6ADX//sS5JogUXTT47nr/4CG1ru39whdcTTsSOaPjBLg4tTWi+ZrENqg3eBMstItYBYcaoDY5BU3UgeGa4XJXoayYygUAHfHDF+IstXNO3MarUky2KMt9SPdwQi0uKS7U2Jb454IYjSJS4k+PGEH87PnlpsiJMc+hNzD0orkrIgiiPqYWZqTvixYXYBHcUkScTXP/qSP/7uVxgpeLkpaceO//Qff4H1lr/5yY9INSxTTba6pPzkC+gaQtfz7NWP+MN/+AUfX78nDAGTpRy7I9YNhCDOAO524vbU8ubdAx++e8+//l/+Nd+9/47d4ZGPD/DPP/+K5mmP8YFqf2CaJJuXryiXC/zYkBlBA6hIUqSGzXKD8ZZh98RoPetVxiIzuHpPN0zo1CDzmDAf0W5k6g26fEXLhvrNW27yEp1fML/+FqksTuWIZIHvjgx379DbTxlncCrFiUBvwdkZRIxYXqJM4On+hBEBqyJmpQm2IswzwV8ye8/kwO6faGdNniQkaUYzjNwfar59c8/XcQbe8YtffcMXf/tXVFdbfr4t6XHUxz3eBL78+RVPpwk7jQQT0RzfkRnL7jSTLhOm5sQ0TOdY+rpERTF4S75YYVWJSFc87W8RsaJzlruHR3Sa880ffs9VYbhZpTSu5edfPOPHX/wINTWs1xe40RENA6f7Hcs44S+ebyiSlBcJlEVKtlizjBRZmjM9PuLsSHH1CV4GhsOJCImyglQ5Xn3yAj96THmJaGqYOkI342ygO7Xk+d+neyK8HxFRjBt6wnQ2zy2iQPTihqmu+PDxibbu8NqQGMFytWZfD0ij6OeZQEAzMQ09mVK0bc1+f8+7x3c83L3Fdh2tS3j546+p2hP7pkYXKd1kCSY6pxB9gDjhyy+/ot7tGE8NsYkJ2mGWK6recap6srJgOD1ihMfbmdUy4zrf8Mmrz1jkJXGeIr0lBIefJ0yeMtsJu/uA8A4jJFGcM4UY2Y8ks0Q1M0keM08DDkPw90gpCAqEDSAFYbakyxVSzAQ/oGNFWzdMAsapp7E1t/uKRAu6rmMeZo5tjfj0FUFH7Pf3NFLxo+Urqt09i7WhcdA8PdKc9JlPcveOrq35+uUWO/WkiceGBFlkdLal6VqSOKWuK2gqcgvp+hVpnHAaZ242GcfjkWVpGcMj9w9/4v2H15gkpnlzz7zIsPcPzFNH1+6pqgMvPvuE0D3Rdi1FeoXEY4yiPxwweU7fjSRJgSSweX6BVBH2WNM/7IgDJBdLgnUIMUFckj37jLlt8fWMPXxEF2vE6rw4mURApwvC1OBnC0JBFKO8RwiHTyP8FBiPe2xfo+IULTSby0u6rsN5iJVixhP7iZt1waAStjphvc0ZuxNEJTIvaKoDeE/dtqSbNdP7D+g8w3Utp7pCGkPVtcgsRxYZ0k2ILCfSEomlb08/oAGuEF6TxIrjfo8UgouLa9aLJd7FdIcj9/1Atlrw4fvvSJSAeIlMFLEcGaeByVsOT2fLXJRohImII4MdelarLaDws2c4dlx/sgUR8FZggiHZbkBFuNhgMoPQBh803o0oaQjziJha3DgTRQJh4vOSSCnsOJ1ZPnFOlKR0hxr7wxl/lhd0fYtWkuAdRioio+kdvP14oCgG1huLEILZCyYHQgiMEqyKjH03UWQZgkuU1oTgafuR7ecX2DQjSIji6B+5y/2nUX8emvwDlfeOLI6Y+gGlYqz1WAZsgLu7e3wIrJWh6WdEWvD2u7d8+NNbiqxgkSwIo0eREbwhTTbIuaFvJ3S0RMwn7OgRIWaTJbh+5GK5QjnLfvdAHKcUUvDfffWKn331BavnLxHakC1X2HHCBEurE9LLS7w0hOqAG2okE6a4hPbA9PiE1BJlIqIkYfYSBo8WgiTS2LwgAGmS0vYVaRThBDR9y+5YEcUxwzwzNTVunonygkN1ZLXZEv3w0SniiPrpAaENOzlyfbMhXVyjO8HvXv+CTz9/ySVrHu4fGYeGEDxddcBbS9ccsWNLqCy1gHWZkekCH8UAyG5AB8uPn1+yziKcnNmgiSJDLWB3OJAsC6S3JLHij6/vuN/XFJHmk1XGZ88uuVjkrJOIfL1k//pbxNDx6tkWGWeoYsXi+iW0NYnRkJQEdWD3x+9Yv/qKyAhi4emrik8yibcWOovvG0RSYMcJ39YUkWCsK6Lg+OJyze+++SOFFJz6mTiy2H5ESUV7bOnHAVUsKGLDxbJkHkbqfuDU9URKcble0dXns6S8WOCEZllsCF6zWG8Z/YR2E9PgKMoS7R1913F42nN4/44fP7tmu77gw/sPSO/pppnu1LDzI7/+1W/xMuIUBH1TkacZl5cXxHNLmQTWkcFWRw6VIr+5IC42jNNAmM4NoRp75qmljFOcN0hhuT+8xQhBoZd0HrLYcNofcUiKRUwWeV5//x4brvi0MKAUU4DNaoVaXqDKgFQRwXZgUobHBzo7k15sENPA1DnS9SWrSdIfHsnTmGfbnHpoMdmSwdHqiAAAIABJREFU4uKaaWjOnBIZI2XL+z/9gQ+3d5xOJ+I0J87OTakQEgmM03weKgTLVsRsLq7RAoKfmfqeJEoQwGQD0WJLmpesyxHlIiBjkaa4tqa4vmStHNPYEQsYXOBwGjgeBy6WKdvFiqmzCOFwc0vrHTfbs4nIE4ijhL4+ka1yHncn4iTlYpmg0xwhA8eHOzIdWG5XKBGwfY3nfDe7XG8ZqwrbTJi8ZJ404/0DokwJwxEpIEQxTXUi0rBdxHTVzBQ0VbVjnEYmJzBlTJKnIOezflxrrHIYbemCR0iJC555HumfbvFlx7BIUPGC/bsH/va/nWhPPZ+8WFNmC+pjBQqWWUSYI2Jv2e2POJUg84KvNleEvqfJc+6PLV205Xe//ROVFZQ3nxEpTVIsyOMYMXTYpmaRpiRZQXoBSkCQinkaaU53GBOohyPHuqdtZ6I4Ir96jpxm1ssSlZbsHx4RUUw3dGR5QXU8m0QsChNFaCVgns6ngcrQSUcQls2yYLIBLzUn7zBSELmBIivRkWGxWDIHz6luWV6tUdEZDJkJSd00pE3NZn3Ds5tLIi3IYsnSTYyx4EfXGx7eH8gXzxjGHYlxZHlB37TMwxn4qQk03tArQTU40tUK7UFHMSZYVotLYpNRrFZU7T3N7Kl2d2wWJelizd1uR9TMSBPRTpa6bVF4sqLA64ihH3n97vac+BsmbBBIAos0QkvNKOHq5gWlCtjqbGioTxXPP/sSxhHhPUhNEicoAnI4cXrTkUQGO3uMaAg+YLIY29Y4OxG5ETm19M2JeLnCxxF2qvEOEiWRSYRVBUk3ILxjlWqCONtAjk3PZrkgFfDY9Fjg490TP/7qM766vKGLSvQ08PH9e1Zao6Ocxlnef/ctX+4O/OjFDVJZJjei5VmBvL5YsfvTO/IsoVKW3e0Df/3Xf4X+yvF3x2+4++Y7Lv7mx0zVnmnokErx+afP6Q63CK0pFmt+f/otzbHnpxdr1olGjB1KCi5WJVU/siwCvjvQzTF5nDH0Herh6Xwnv3yBmGaoDpSFpPn1fzxvl9sjc2tJPvsaHwlClOKXL/HJEi9GxqphtgNOSlyQdHWNMZ6x/QNlljPOHtceEK7FW4eYHN3DBwZ7vtN3s+dweMBpQx4bnqRidoGqHTg1HfeHjnEO/OJ//d/4m7/5Gduffkm+uEKNnjeHtzz77AWnXz/y8cMb1tsVq4Wg31d0vcLEHW7okUJSFiVpGuOCpFcF9WnAHG+5vf/I11/cYKOUw6GiG0aOD7fI4Gg7x41x/OTVhpcXBS/WC9brl+hppG8HRATLixXbxQJTrMikINUKlWSsLi5YJAbrZ6IfBtJ5nuNRJLYhWVwxewXWk+YrjvsDzll0UuCmEVtmmMuX7D+8I+4qhAQSiBZr+mFCxhkmBjE0tLd/Igwtl6ViEWt6F9McHtFSEkxB0IF5ctTNI3lRsLpe47EMQ8cU4KFt+ePr72mejnz+5QUxJUmeECeaoRqJTMRyveLZ5op6v2OVPuMi3zAOHfPpiVhlqDTh0PYcdxWDinDBs/Azh26i7S0Lo1DO8fVPv+bF9TWZkUgCQUicCGgBk4hx40jf9TAN5MsblvEavb3BO8ekINQ1bd0x9SNSKUx6NjEGY85mwrFHSklXgdCAjnFhplEp+7uP2Hmgdw7vJbWV1E13XpwpeP36D/zFz/4Zy82CYpvR7T7glCRfrlBJAt7SP+0wiy2HuuaX3/4BHQauc4OYPWG/p9gWdLOlbjv2pxYlJfM0U+oYmeQEAWnkiWKDHVtE3HL4w7/jv/z7vyNVG4amoz6e8Mpzqk5IPL/77g/MAl58/ikf3r1htShZbbf4sacfauw0Uw0HVptLtIpx08Q8cLa9HJ7YLlZ4IQjubL2SSGwzI6OYONEIKYnTgrGvcdWAzEt8UgCK4CK0gbkdiZMChMB2DUEKvNDoJGOqj4R5xPYtwTp0uaYEhuZIkqTYfkAlC/zxnmyx4Wqd4642eJPQ9T3O56TFktvaU92/Ji1S+nY4W9+UoqorlsOAdRZhNMWLl2SLBaJ7xNuJw/6BSEgWiwUiSJpTgwkCxNnU6Lykr2toZ/TlFYttzOai4OnNHR0Vyc0lA4559OwPB4zwpGlEohXSBdzc4xzYKcLW4OYOs0xBW0Syons8kV9dEUIHwaGNhnnEDdM52dx1YBT0wxkKrRR4yVBVTM2AdxNeBGSc/P/DX50tcG0DyqC0Jok106iItCZPIg7HI0VWMHnP3b5hlBGrLMJ5z4TB6wBCEqcZuutJYkPXC4ZhJMlSorJESMN02PH82TUK/4/S2/5Tqz8PTf6hKgQ0M2mRYZVk7FsmbWjaijSNSLMlzex4W7ekduLN2/d8/cWXPLt4DtPM090Ri0Xpkb5vEMDhuCPPUprHHZOPUTplvVhS9Y5FntE2DdNscf2eLy9Lfvx8S57lRDLCpCVGRsgkRrgBlS0w5Zow9ciLLeNUMvUTZvOKse1ZfPIS5pb29i1FnhAtyh+UhTPCC3x3oig2uLYl0S1r5dm3lru7O7wyNMORuFgCCuc9QQp6FxiGkcjE3D8+klykXJWKNPEMY8OuiVFZji9nFllGEJKm73j/+i227whjd06utDUqOGIsD/sdhRQoO2OUIU1T1uUCvdygugNJLHn/7gPdqSFXM0Qx+zCRbp/xbBGYx4nb+wOHU8PaSC4Tw00W82yREUlIleRifcFzLc6A0c01Zv0cZXsS53F+pvrjn0gXBbLv0VGGyg2u2eN9coZd2R4lC8ZThUli3H4PRjAdGxwgk5hoHtF9w3ZZsj+ceOwmROiI1d//liQP94/IKZAvV6RK8OL5Dfe7I1GaIaXEOkfTnxuYU10jTM1l+ZIsSfBzoFysCMOBxCv604Eizwhu5u79W9ZK0p5ORCbiYr0CPzN5QUgT3r17wFpLP/ZM08xqtSFOMvJIg51YaMikx2PBTox1jTCaJCuohhp/aIiNoG8mpkFip47j6UQXHIssxaeBZ5fPGXtLsS7543evUdlzEqX5yc0FXRC0k6KuK8q2B/sJaazABZSwmOiswV3nJTJ4xrZF5TEySwkhEKWC3f2A9xCUJIpjuubA8pMrTnHCZB1Egup4oK1PGCXIihKEIoRAvbsjTVIcAqTmdKxQbsY5yTrOWF5uGYcBLSVKGYSKuL55yTSPTLNlcIFNapBS0Dzt6E81yzhGnh4YrGSWguMYuH1s+XSRUq4ShuBpheWr5ZJ4nCBJWUeCoRlZLwvmriNSEj9PPL++IksTYmZMHGGHmovrK5gnjO/xY8BkS5wHbTKMC8gsZ7YRdrBMVY/JL3G2Y+gsOk+QkWE+HjFCMo4ON1s8jnKZk6klo7VMdgKV4QhgLSZYfBoohKAbHJk+D1gFHuFmhr5hv3/g+tkVudRMQ8/Hd2+pdwfqm+fcfPocayJOVvBqkeOHEalivHNskwVxiLjfPyKEpG5aDtV79s0M6+fMJCRGskoyCJJx9uSLFYtY4MeePDFIpUA4hOg4PNxyrCr2x4Z8sWSz2nL54hUmz1kucqSDzs5EWUmSZKQm4f37W7bLFblRWHHWgiokfe8QUjBFEVGeMZ72JEbjw4wVkiJJGcaAcw7b1RizRs495WqFdBOz8wxNzXK9RimJ0prZOWT9xOWywEcpSZSQOUu1r7naZDxbBD5uFzwderIUbm6uyIuUTHvq3QNxrPFC0OklfT8xjZ4kiai7AaEC3p2tNB/f3CHTwO9/+wv0NPDp5XO2z7Z045HfvX5DP2l2ux1BSkxUMDp4/+EOGcdEIRCkwfmJxCiUtxRGMQw91+vt+XmwA5OzxOs1y3KBnhrcOGKtorYjq4uM4EakPUf9p0ljspKxOWLbCt0mxEVJfWopkwwTxYgwMJ8O6NWaThTo0EC9JyAQQhObiOrpFiEMRkpWRca3b2dq3xArwcf9ift2ZL0ceOwsLy8XDKOj/PwvMN6SJylmHLlabfj2zVvuP3xP1R1Ii5RxXeDGntWiRHs4ND1Puz0//fkr+vaJf/d//u+QGIzbUQ09nX/J29s7rIPnFytst2N3OLBabXh6/R23u46LOCIrVrhuJBiBTjVBR4hIM3YD3gvSmx9B29A3M8X1F/gixY4VvPmO9v0dzvZkmcITYTY36GefMQaFlBKZ5uj1Nc56hBxhmrGdxVoHbkBHkmmaUcLh2icGn0C2ZmocPnRMfYuYLce7R5w0PFQVc5D0XY+3jiQ6f/hbFzg0A/P+yJd//TPS8JKVKUjTFcF2/Idf/B+41SXPeM6zH73kt7/7NXFh8LR0zYAUKVPX0jYNSkf4EAh2Yupbrj65hGkkMYJEOQY70QXD6zdv8aOjOjxRyAB9RxHH/PyzSz599SlRUbKIFU3dEpqOMivQi/M7JV9u6XcPGAnlekluNMNph4oySDKG447b03+mLGM2P/3njGKBrSuktAhpCWJGxQqTGWS5IqgIISXpcgnBo9McawNynEhjgxeOECTGGCIdaJ4+Yp3ixz96zuv/69dUVYcHTKHRccb94yMiynk6HHm2SvBDi3ITJggS2/J8nVMl1yxfXBLkkuYws9tPBDR3TzU3lxu6QbIWmjSBRJa8efMthY457h8YHkfQijengX3XnZPQTjJOnkW2INUQJQmb5RYRBN45ur4nykoCCtKCyXlCusKKAZ8GBhnTnwZk/RYVRRQKttsV6fqSTGu8t0g3nk8Zmo7q/pFpHvCRoWsbkBKjNbN1+HFGJTlN2/BU14QooeomwjxRtx1BS7QTvPn2NT/7y7+iu38kUYF0c31m+mlJni9QZqDMYqaypN03/OHdLerFJbkZzmcaRUovwArJ/nDEScHmcon1oIUEAU11REmJdzMfPx7Z3d2zXLwg2XqCdyxWBaemolgsuPv4QJJkXGxWXKwXFL4l2Ak3dLi2Yu4blsstSsWM48Q0j7SnI2KYMAKmtmFKUqK0YBpHhHfo2DP3HlMGpn6CeUZGGSaJoW6x/YhezHiX4XWEsCBMRN91SKnBpCBAJgGhE4xJmOcJHc4DhnmesdGC0e5IlUXps6UmX2zoxxarFFpbRF+RaI1aZRy8RktHpCTHocdaj+ds2LH9wOAdTdtwsdnQTjNRmhCJnPnQ0rYt6+urM3/FKNx8Bm1PdqYoS643Ba+f3nF3e8uq1NgnSSYS1tstdX1kt38iKzLmccCNA1EEw2SRsyNNNdN41t57N8PUooyjmXsya4nnEULP3N6DXBGkhLZHSQEBwDN1R/rRIoPEi8A49YQwo7RD5gnzYBHao0NCe9jhQyBeruiGkYvnz3j48BEbLMpExEmCI/zw/u0o0pxudHz4cId89enZDiUceAhCEqUZuhsYZ8/F80/opgkIrC4u8dqglWHXtDTW/eP1t/+E6s9Mk3+g6vv2px++/92/sZMVWkZo4ai6iSlOybTCJAnfHSra2aO7gaEdGZuBQif86c33HJsTVwuHci1FVjCHnIe3f6RUULUzxgXy7TW3h4Y4ThjqiuZ0wLYtLyLBF4uYi/USpSPy7RXGCNzQk+UJ4zCQFEuMMkRJjG8a4sUVgowkjQjNiURLXN/huh7vA1IahNTgwHt/VmX17RlG1Xf0w8ihHzl0I0EITqcDAUGUJAQpmecZ7EyWGBaLBQjBcRq4f/0920XJJy+/oFyuWBUpxhi0lkRFxnH/SCosT7uep8NAdXhE+pnSaPqmoRlG5gCL9RWry5esb24IBGKlKGPJ2NbUpxOO88T27jTghObTF8/JFeyPR76/faSuGxZK8tllyecvn5EXKdJ50ijluN+RpgnJ5hJTXpGgMDrGHe7pPrymP9a4rqN92CHsjAwz424P1iPjlLE58s0vv2FsGuIiYWwqxlN1ZmVEKXNTM1YVzWDx2YLBe0YXiOKISIAXkt55TuNMM7sfbjYVdugxxgDnYZT3Huc8aVYyjCND35Nkl6Q6RQtFFClC6HG2YbIji+UClESLwKtNwfHDO4bDE23fY61ltV5BcOx2e/q+I88ybm6eURY5qQlEwmOGE89SCdbhg2a9XKKEYG5q+tMJOzn6fsSOA03dEITBa8PFsys2yw1pWnBxeUNwAqU01dCiJAztQJZmJElK3R5YrJesFjmnY0OSRYTkHMtv6wbpHSbSBGtx4wx2xAmgWDO3NXLugAAmIilzkAqhz1pBtbphMhm9j6i6nrapaNqe4/GEDx6pDHPf4EMgyUrKPCPBM5yOTLMl32zRixWzC0zDxDJPmYaJWEcIpVnEmigx1KcjwTnKMiUvDUPbMfcNizzmeKzo+5FuDGSZoQ+WQ9vx6lnOQnn87NmUJZtlQd9PlIkhDB1pmlIUObFRqNkipwE1jqR5fgZwyoTQV+g4RacFwmTY4xG7eyLMHhEt8E6ze/OWtFwzNAem/omhPTG2HUN1YJgdIcrpxkB1PDD3Lf1pR1NVjINF/TBY0klEsBbb90yTpR8dD6ee3eGcXFFGYUyEd44kSfjqp18zzTOHp0eKomCxWBGlGaehI9UzV3lEmEbW62uENATruf9wws+W+vjIbvfAU7WnEzHp+oa0yFHKYIWhnxxuaMnDRDQPRNhziuTykjjy2HFHVZ942B9ZrddcfPKSFy8/5WK1pMhzgnOoEBhOp/NHbNPSdyNt0yBUjB8nrPV0bYvGMXQdWgQQgrrtMUpgtEEIyaIoieOYZZ7hnCOLNONw3qyq4LjYrsmyFK0kkTr/Xyql8UpiovQcZZ6gWKyQccZHm4OzpGrk7v6W9Trn+dWSm+dbYu2oTiemeSaNNOBZXV7w/a9/Rd83HJqGxaakXBSUScLUj+zrA/XpkXd/+sjLiwVlkTNZC8KDEDTW8OGpohpmpFJIo6nrmlSfjSbTPOOsI5EBFTyJkhgh+Oxqg7ETBsXF5Q15tkSrgBsnpmagyFOMEri2+8G+4WCeqI97pq4hKZcQHMpEaHNmD7hoiRQCNQ/n2/Fqj1eCMLQQoDsdCd7i3IQDBidACAyBqqmZTYJOS6LgsMgz18o5jsc969WC/fHAxfaSebK8SFIKk3DYPXE/DrzrGu7qE3upuPzLr9FTj+hbDmPFojBs05gkzXn6eMc3/+mXfPPNB8pFzhdXV3z8/i1uGomNRiG5fdiTKsGHjwceDy2rLOUnmwLpPBqP1hHB5NhxYHWxQSlFqQWRtyzTCLqacNrhnx7on3agDTMa7yXD6cToAyEyzF2LFxKZlQgTI7UmSIUpVkRlQZKnKOEhWJLV6twA9yd0HHHsHUFolPCMfYvyFi0Cb24faIPES0HdtjgPUkm0EgSl2Z9qltuchdRk6QWx8HTtR/5w+8Af/njPv/jb/57N4pqr55fsdw3H4z1hqqh3FVpGnI41bp4Y24YsiRHBM00zY9ehpCfTnsNhR1SueWhnnh7uuf34gY223OSC//nrK/6n/+YrXtxcsFxvyLMSV5+Ye4uKSor1C+LFBiMVwzAh4pJ4vSUREIKjXF4w52vq3QGkJDKa1aefMw0zOlIc3vyeeehRUUJdt0hxhj7WbU2+2RCnEVp43DQgixXRYomUATH3zF2D0DEEwbz7SBhbqt2BuW2QJuZxX5EtFhzqs62p7mfSJGWeRtJIYZTDKcPsPG7qibMEXazonWKxuaK3khebhEVRIpGEceD2zS1ZsToz3lrLcGzgvmGwHbPzzDLw7YcdXd/BFBgtVPWROJJYEdis13x1c01fHQkBuqalC5rJK5pu4HFf8f79LR/u7jmdTqR+pEhj8B439mxWa6Q0BAkyjs4Q2Cnge0t9e6JvHX0I7NqGpmkQbuD2/oGha5jtDM4yOosk0NYNTd3QNg3WOg71gPUBISPm3vPZ55+fv4fsjLcWE4El4uNTRZxGiP7EPI0cqxYZHMLOTCFgVcI4efqp43Bs6WdLWiZ88eOvUPkNth8YHYxdhbYDfvY87CqeX14ihKLvO8Z55FAf6YaJi+2WNDGURcoyl4ynIy+eXRNLjZwdURwxjTP9oWX34ZHd/QP1fkekNEbA0+6Jq4srhABpZ6TtsOOAiROC8wg7IlSE0BI1tczHI3Ea49sTvm1xfc183OPaE35q8d5hp4GxG+j7v7dFWYLJUNmCcRrx04CzPUGlWOuQcUxTNUzjgFeSYDKECPRNfeamEJAq0PQjbXseuiBASoHSiqA05ctXSOeIBKRxzDxNtLsHfF9jguXqYoUSMA4jkfTc331ktV6x3W6Yh5lp6BiaHdNUEYJlrEeOuydOhz3z5FkmhmZ/xM89wivwYK1FqpQwOgSBzMQYBEla0NqJoixQShAiT5gHjElRSmOHEbw7G03DiB17omWJkA6TS6SWBCXwvmGu9+A6hvpEc3jEBYGdWmzfE8WG/dMTBA9CMjsLUjLZcLbq9RMqSvB25tS0tN1AlKWM00TQhsF54iQ5D/Cqin6cSFcbtjc3lGUJUlF7T8gy/tU///m//WS7+TPT5L9y/Xlo8g9Uh+Pup//33/37f/P08CQuyxyFhBm63T2RiWj7ifbY8MnlBbd/eM3t3ROiHXn7+jXWCbarDbGWtM1EklyiZMmHu0eGyTHLHG9SZusYrScl0OyfGNuGAsvPX2x5tiyg68iimHK5pK87DBpXnchXZzinDALftlg7Un94R15mRFFAS8nw/g3SC2S+wZuc9uEOEUXocs1QVWhjcN7incM6i51n7quOzguqfkDhzltBqbDOEcL5Zm+53RDpiPVmw273wOHpibYa+fhhwA2aKNdIbejHAes93/3mV/zlV19QTYbbjw9MTcV6scSOI01TEwg8e/VjPv/6r3jx+U9IjUJYiw8Tfuq4vb1l3068O/ZU/cx+nJFJxs+++pzIT/zx+7fc707kUvCz5xd8er2lXK4wccq6KDhVDZtPPuXy+pp8eYGYJj7+6r/AaGnuH3n/7Wt++fv3jKPn3bt7BAYZPLatyNOcJCmIyyXLzYr8Yk2yuUZnKdIYRFogkhyXFdimptYJ9WSp5h9MRW3NOM50c2BEMPrAfnQ4pc+RvskSvEMqiTCGOIlJkpSmbmnaDjfPpOLMnUkjgzEeqXqGaeT6xYYkT7hYr1goyZef3DDtd3z8f35DniXc3t2jooi6GairI1IKsixFAG6aKKRjbmsWkeK6yIjSgihbsNsdGI41T3ePHA8V1e5IQBGnOeXqEucN69UK4SKSKGV78QIlDXFR0PqBbuzQJsLNM1UzEMcZk5fc3d2xSBJkkvLh4476cMRIgcnys/7OCWRk8M5iYsmERK2ucafHc/IkNqTrNTJOCVLg/IwTEp/mHLuew/HIPFsQkrY/Qy2jKEFJzhsIIciLHNe3XNw84yLL2GYpeVkSb7dYHwgEwFPmBW4MXC7XHPePPD7cnWG1aFaXW5Io0DYn8DPa92el9+Roux6Bx9iJT5Y5ZRKhpWdQsFiXFFFE5D1KCiKliRdbRhUz1xV5EmEAozSmXOGbDokjdDNiGgnBI4NFJzGgcdajTMz+3R3t0xHczO7wAfT5ZCsIxWjPkNfd055hdrQOqtMRO4x0TUtdNZx2R+a+Y54dKs5o6oZpnpllxH3Vs6/bM2RWR6R5xnK1REnIyjVxseLdt99y//6OOC7ODfvYk0UDm1xC0FSDZ1+37B4eaYcjfSr55a9+yZ/ePXAaJMlqS5GdN2cSwTRZxqknnRvWWpCFs02ruLwmyyPCeKJqWiYh8CYjevE5r159wipL8c5ig0TLBIaeebKU5QKvMw6HltzNDHWNQME4EpwljRSTCxgToZXG6AidL0jSjMRIghAopTBZySwNaZxgJKRxxPSDeSmKNPlyTZIvQJ/ZPeMwUK43ODvStB1earbbJWKCtrOUkePD7UceD08gPMfjid/85htG59heXHBxcUM39/jqgT/95v/l9mGPShP+9n/8l/zkJz9h6i06hmefv6IaJvQ4kGqN9dBhOFYN9WC5PzTU7YD3gSRLztF5H1gUBbiZqm5x1pJqBQHyyPBiuyEKM4vEUGQFRmrmviPSEj9aiuUGrRRTUwMCKRRIhUn/P/beZNmS7LzS+3bnvZ/2dnGjyYhAIkEQAskSSKhkJpOZrKSBTKaxXrFM0jtIpkGJpFgqkgkgkUB20d3+tN6770aDk3qEYg0K/yuc4+57r3+tb6VoY9DJSeRTRjFWe6SEvjri6h2xMQztiM7nTF4g+i1urIhmBSTzUwuUhHS2pGkbqsOBoT+J+l03sq0qCI6fvLimvLzkrIzZ7I+U6zOcd+zvbxnqiqs8w44jbXUgzXOy1QXtNGDKnMu3L4j0yO7pnqppef/9R8ThiBstX/32Hb/5wz3tJHn5/IpcOBQnx0T1dCAMDUJolEr4x9/fMEwTb4uYFxoyozAI0sSQFClJkWOdPjn7Io1sR6g7XFfhxpbRg16tYHmBLmeE+Rmt1zgM1bHi2E3E5RoRJyChryqmtsPj8EOHHTq0CKf2sMkR6VOssOp/fA82FUN/qpSXUoFz1P3Ix92Ruu/xzqKlQMcRUikOTYuLJEF67j7cUd8+cb+55euv/onk4iWfXX1OdT8yK84w6sjt/ZZQPTHalmkQ4AKH/RETJRgCWaTIipysmJHNFsSJYbN9YrSOV69ecntzy4f3H2h2G96sIv7HXz7jF58/Y7lcEqcJSZIg0yUqCJQwkF8jZMTx4ZGuroninICkO26x00DX9rx72HC7PfL+/QfqpqOdBCHK2W2e+N3f/y1DUyOTlGFypOsLRFogtT5tt3ePZGl0coslBfu7R4pljnQ9UpycOF3fo6UgSjLG7S1PH95RHyriNOWxnnja7nHe8/C04fn1c3rriaKYKBIUbk8bJI2Z4/Bsjlsa+/9b+nN29/fMTABOAu7du0/88M1HusEyX8zZN0cIhnDcU4WWY1NRWcHt3T3NbkeaZByOe5QRWKlYnF/z5tklhYa27VBC0gwjTTey2e3Yb7bcb3ZUbUOm4dUsZpGlZOWctChZnp0TF3NEWtCokroZKFUTAAAgAElEQVSPqLuYsR7wMmYMBUkhyAqNkRLjT4yoQ9Xy1I0MXXfiQWjDZD0g8CHQdwP9MAGn6J1OFXGeI/sOP/W4sSfNM4Q2DJNjsIHb9+8oTCASkmmyDP2EloFeSZKsoG16Oj+ijSOexawu15yt1jhKvIPNdkcsAvMiR4ofIf/BI4Ngt98yTjWzZ5f81V/8NbaraJsD+3rPqjAkwPlqCaMlkpp+9Gwfn/jw3Q90zYBRMJ9lCARje3LilWmED8A4EMUxOi3BTQjboZTBTS22HTB4zDSd3CK9R2mNPW6w9Z7u8Qnb7tl8+we63QN9tedw/4lmd4e1nu7wdIoACYn1lrHvkEoyjiM6UuhEMxBw1lIfD4Qfix58VBLwdONE6+XJ0ThajscaO574PXq2wCyWaDsAgcRonJvQKmBCjwwjSiim3qGEYKwq7m7vuHj2AmkFbhgwRiKNZH+omAbLYV+xr46I4FnOC4wbafYHxnFETaBCQChFJOTJCWmAUQABoQSzeUl9bEhjg7AjSmh8AKMFjEeElgTnGOuGSQSCH5i6I8EOuKGn7/ZMw8DYHBirBjeNOGfBB4JzSAldXeOCJMsSRh/oJw8qAgSDE4zWE6c5zg4Mk+XQjUwuYOKIcXLExQwfPFFREJKEqCyJy4IQIFKQJOlJQBbw3//ql//2+cXFn0ST/8jzp3jOv9BMY8/+sCcyMZGWoCL6pqGrW/ps5PbpluX5FW7wfPf193y8ueNqsWI+X3O2XDFfzLm7e0eaeIrIIOOYLC3YtluwE2/P5vz+4x3SOjabA33XUeIoteH1xYoX16/wbYvuGvoP79HnLxErg9QzpmbAtA3SKHSUospzTF6QFDPCMCLSBJ2nTLtHBAWyPjIe94ztDnV2BXbCNSeiOc4BkuA860jxbteceselQmtD3fWMbY3JMqLFmiIvsNOADwHpRm7ubinSQN1usckRu/wzfv7mBXGZUt3tWOYxddMAlmK2RFxPRJHhzlpMVZFHMT/74q/4m1//lzjn+fD7R5SGTC/47ffv2NaOh31DM0x4N6GEIPOw6y0JA20/YpTmF69f8OzijPmiRMkTUDJar3n+xc9YnZ8Rhp5hd2T76YGm88SjpdYJ/rPPYfzIp85xdvUK9eKSeDVDy47dx3ecaYVXkK3OkDpDao1cXjNVO+rbH7C7R3Qxxy0vCbsD1vXY0TG0Df3o+Oqp4WpekGaGxAfEMHGo6hNbwAe899T9QJCSwQUCiunk9KPtex5vvyOXkpQe7yRRpjEmJtIK6S1Z8JxlmrcvXhC3LfZY8bhvKJKMOC24297TdgPBOfpxQsYFdpxo+46u69E+xQZJ9fTIzf13MPREQqKUpJzNEd4jhWb3dMQ6jXCe7eQpF3N0J+l1z9T3WCwP+3tMJDFxzMXzKx4e7wlYLl9cUVwuqDafWK4uuCxe0D89st9ucFKg0oLGeZrGM8tnWNvgmi1j80eSJCFdzUmlpGoGvDxZpJWO8cFDs8OonKlvsNOAC4LZfMV6OsF17diTxBFpXmK7FlNt6NzI29ef40aLD5YUS4tGG8PmacOyKLl8ccF+f+Rxv2Fyllk5Y3ADFsvQVdh2R6w8kw8IPzErNNLMsHYkDRGzNIPREyKBVoo8zVBCEpRC5SUyQDU4ch1TLJaYNCNCgB0IVjAKQ5bnkJYICTIEbNvjR41rHAyO+uYHvv7yNxSrJd/dv+O7h++YrRfoNIf4RN0/Pt6jcTRWEaUnq6ltOrpxII4y6qYi6SVnRYKQGpPkdLsKpyTWOpxzBBRGGaYgUFqjjeb25j3z5ZJXL1/z1Ze/5/H+IxfnBcvPXiHUkWka0CLC6YgwDdT7Db/75lt++HBHe2yZRs/55QI7dGyenki66dR0YRT1wwPWD7y+KJEE4iKlzDXK1hybhikETJryZ69fcXV1zVSf4k8mjtAmJzWGaqhJY8PQDrhmQncVyllcPyDjnExH9P2JJZOmJUIpsiTi0I2oIv+xyjtmHCeEOUW7oiRj7DuCG0kSw+QDg1S8f9hggaANizgCGYOJcVISZTm6fqK1luOxoowlfToxBMPrl9c8dYdTnGMaePb8ipevn/PzP/8cE6/58KnGDjX14FBKsSgK5ukcIQ1OzXj1Z28oFynfv/tEGRvSsqQeO56+/45psiRpzCyP+agM+IAUgqausOPAoQpUhyN2HEiMoZ88WZywmC2JowQh/AlQICUqTYiUJARHFJcgcwbrECYlWZwhlUGaGOFGdOJPwsw0nUrGhYB4RhKXTNUTU7shGEVI05OTevIMmwOhPpJ//lewOKff3IFrWS6XTM4zDDVt3zFah/CWD/uKWmh+uV6jEfz0J58xWyz549dfc3O34fr8ku/jW7LRIbMU13YAPDtbMUSKsR6ZwhZ73PIf/uE71DSgioS//81HnPV4L3jx4iVv3/4U4caTmGNnpGHLqoDDXcU/vdtx6EeeJYY3pSFKY+LIEGlJnKckRpPMZ2hTYpICHUUkF9dMuz1xbE4MCSnZdQPhaUPfT+SLBenFMwSK2bzAygiZZVRNSyIU+XKFCIEoiei7ljAo+t0DaSIRBOzuSKc0eZHTtBWzPMP1jm5SJMYQi46rRKHGDilPz7N0jsCIimNUYjAXOUFMJGnOTbXh+P0GtGLxds+f/+s/Z5atWa9jpu7As7mm3WSMoSYrU6bNFqaep8OBZ5eXxGmGMZI4Tbl53DA0R5Qb+Oz5JVIExh8vh//q5Zz/+vMznp+XuK7FKk2uJT0Zq+s/p/r2t7hsiRw8u9sbVusVVq2xKEDyeD9we3uLk4rQVdRdx3Z/4F5qLIHFuw9EUcTD0wNvX14z6CdMXHNJwMsHbHdkNYvBO44MyNklkerR48jhq2+ZXaSEMkcmSzI3IKYOHyTJ8pqsuOGHm++JRI4Sgno6gU/fvrimHXqmMdCPI2VhqJWgag/0amRUhvLsNerHBVGRrji78DDViFiTFwYdNF0z8en7T1wu1sSpZ/HmC6IFVE8T3diDinH96Rkex9OZMC5KtMnR0uDbmjE6OYvf3eyYuiNxnrOve2zforXk7Ytr1sqRxhE6yWGC2SJH5wUHW9KHgh7DuRGUooKsYBh79DoQesHkIlRREkuJPG6wo0W0E4Oz2L7HandqbowS5nCKbXrPUzMwusDt/ZZ8tqQLBSmn9r+h7TBBEEbLSgVWccLtfk8eG16/uOb25pZNOyKDZHIb0kyDNLz8xWe4CS4urpBCM/Y97aEiTC3NBOfFCggUqaHa7dnLFikDwU/My4h4btj+5obNdgNGkec5SxEI1jJ4z9NTxW7zSN8eWGQlmVIECdvDgVhH+M6yMCeGoBwnZHCMfYeQEbGwCKHw4x7X9cTrC6ZhOsXunUV7S3f/ibHtIE4Yu/okIqQJXdOCsegso29qhuOWKJ/j6gpMTJpkuCBwwSGjmKnvGYLAqeQU95E9zp6aBZUbaLoWpzRWRDRNzWxWIOOIzeMWHyVE5RyFY7QTzpsTZDdLOVYHSjkQhonkvGCsG0YsD3c3J96NksxmBY93D3THA9aORJFkGFp0pPlssT6dDfAEP2EnR/CCkQE7Qi4MQ7CkBpxOGITDeElsO0Qfo7Wg2d1TFjlhFEgZcXx/Q3G5PsFfA0xNjYgUjJaxaZiCRseGqd4yCYvzFqEhjB6vNd6c4sxDdSRbrvDtgFAaI2OKKKXrB0Yc0k9EcYJAYD3kScKE5sNmh4pPNd5ZbEhMzGASmscn+iDI04Rqt8HGMWdSEEeaqauZrP1PcLP9z2/+JJr8C42zIxLPsaq5MwJ0QT1Y2m7g/t0HVDajMAnvvv2O7bHi8uKSz168IbQ9ru/4zT//QDe2vHlxjps0bqi4KhKa24aZNnx6/x6C4XG7w/U9kZsoUsPffPaMl5eXFLOc7PKc4emA6ztWs/hEy04KxtuPDLtPmEVJdPka7zxxviB4cC6go5L8zS8Y8vfUn74nTCNDO7I77tBPe2bLElCoPMdNluA9WinmieZMWZ7GgXS2PNW3dT2R1iznCxZX14SuoywSpq7m8voFEzBJz7NXL1HC0Tx+4j5SZPOSXdWgteKPf/yG20dJkibkL1+f6lTjgqJY8eb5T7l6/pLLl5+RzxL29++5f/fApGK+3zVU+yN93zM5hwigIo1XpypV4wcQ8OryjKvViskKvDSkiyVnl1fEJiOZrRgnQVSusDImEUuuPo9wSNx+TzRzXEUz6HrOLi5xwZE9f41JFMX6FX5/gyljIn26VNpqi6slU73He8Xt9x8ZxS3XP3lNRCA2movzc3Y7SZFG9F7g04yyzJgODVE38dS09JNFJSlBKKzzeOdxIZx65idPPzik1OysIxcO+hmLVcri+hXRLMNWR85Wn3Ge5JxbyJWmnC949Wc/46UUfNxuqdzE/f0tkQy004hAMjY1tj1iIkljYZ0VtFbwuGnZHxu8nSh0RN0OxLsW6TzP2wFlNH4M5HEEUcBGCe8e75kVG3Si2T/tEALO3rwinxVEZclycuSzBZMduXr+hqGcY/uas9kcv5hzOOz4eHOLEYLV+ozenSy8WVmSmpIi1UxdxeQlzk5IrZmGlmm0qDTF2xFhJ4zvqNtTnCmWgskHijzjsH1CBsuER/hA4QZSI6GvGZsjxWLNgCM4S5zN6OuG4+FA9fDExXpN6xqOhy3N4cBqvmS2KmjqHUUaEBi6zv24vRco5VnFCV1fw2R5OIw8WxaEYCmSBGU9k/fotMBNAcTJ5muMQfsOHceIeI4eWqSUxJfXjNIw7SqMMEzHPa46Ut99j1ERfnTcbJ/Y1TXVOPHN5hM/bLdEt1sm52m9ACUxMmCnAalj6q5nlhiiSFF1PUWakQjHF6+eYaKUdnB4GdEMFqsVfdedxDkpMdpg0gIdpSwXS4p5iZ96Xr59Q991qEgzBU+Qmj6c8tZNU9P3B27ef+D29pHq2BBsYF6WBCKaceBYb4jProlVRKoCT9tTdemySEkUFIucLE/x4wAq0E6B5OKSV8/PuVzOsUMgy3LKIkMEw1QNiEIgUERaIVBsDxvGpiUxirgs8VLjsURZQRxFzHwAFCbOiNIZIkwIJRDxEq8NowOHp25asnTBPkx44cjyGCc0RmsO7Yj/9BEhPONkUUly+k2dRcrAOLZ4uSbRmjJPEMJxfX7By6dH0qs5amqo2oovfvaWl6/eMOgVV8AsuuTrf/eP6DImjww3N7dUW8MoNe9uPvGqT1hrx3T9jMk5ZsIhF3PibMb9dkddH5BC4JEEQLuBXHqqtmayDiFO7QBJGjMv50TG4J3DlCXJ+oribI0tVohug6s2iCRDaIuRimz+Ct9b7GARAaI4Qypx2qS6U8sTOiEkC3ywRHjGdocwMX3fE89KhslgjGP78QfCze8JIiaKBdvbA96DsgMKKPKCr+4+otOUKDIc9ge++eEDSRLz+tVz9NhSGsXPri84TJ6HyTEbWsrLM+puoH7/A4+7PdFyxdi1GG851p5IwqzMaFwgS2OmyTPPI64KySyG+nFPfbD4YeLu8ZHvxpHKGb5/f4d3jnkUkycJOxs4W8aoccREEcbEqHhJ2wdEmuF6z7G2jCHHjg5nVgzOEeKUNPLoUuH8wPbDO8qLFygLepaikpy80CgTI5OMSBlMojHFHD9NZKsz+qcbXLNBmwjT9YgsxtkON06QpIxNA96jtEEheV6k/OO+I0pTxnHAOU8kBXGR4VuL1ZLH+olh8Cg8eZJw+/t/5oeLiL/69X8DyQW/+bs/EIeB2dU1m68f6B63jLstdrKMw8DxsEfriGlyPD3dk2QFTduCHVgXMabbMWfgb17N+Mu3l1yUEUqnrD//gqnaoJOC2es/Zxo6RpmRlQm9r3j29nN0lhOEZnd3z9BWLJZnRPrkzhlUxLa5Yb2Y8XD7Eec832z2WAQyOCYCj/sNV8ucUD+Q5xlWKB7fHVnNCup+pOihKHNE29J3NWnxHJHNCEOLHA8IeYoyeZNQnl+h392y2x8w2QUqdgTb0vcNWscIYaibhn4s2UwVclYyThWuOtK4CDm/JjMxMigmEbE+X5MUmq5uUNLw8sVzvBN8+eVXXL+cUbcHMg+z2eoUH5hOwrYSgnH0BAG7XY8RAScPvDBrpjKm3m1QQSAjwf39A5OznMWa5+s18wiKbMZsuWR9/vxUYZ4WuCynEClLqZnankgJlJS03fTjsm0kCMPgJuooQyvNNPQklwnL7Q6mkWMlGKSgNBHdMJyA7fMShMTJiPHYUvcjN59uuFwviINH+YDWhmy2oJscbuj5+S//Cw6jwHYVkW3IEs2xd3R1y9ROXMg1ySyjSFesXq158ewzvv7ya7b7A8F5mrpifnFFEBItYLKB/fFIWpQ8u7risNvw4etv+OOXv6HveozQvL1+SzRNLM7POOxqtrc72nqHjyWxBOsG9kPHzEVM1mJSRR5FwIgXQAhIKTBSELzDqYgoMvT3TyTlAmtHtDKIOKV/uEHPSmzbExcz6v2O4GEcR6ZeYrKYpj4QKUNIZtjmgGtbnI5ZLM6YgieKEpphJIgON0l8V6OEwKvT0tZzct2O08AwNJBmGJ0DDmen0/ntek0rEmScEY2WQMABo7W4cUApCc6ipKQ+VqjQcax7nLUkyclB0/Ux7f7I2WpJ32/JGKjGFomnHx0mUjT7FiEs0zQRCY/DQ2LohUNIjcae4tfaEJTBaonIDbLv0NJg+wHvBkZbo+OEZuuQqxVG9kgpsP2AMx0qNmgl6Q5H/NgTpp6qbVA/1gGPk+epqmEcieMIjwBlaIYJaQyjF6dmPDWhUsFIhfeQJjlNO6JMhHeepu0wSUKmNFpAnERk8zlDN+CzhP6ux0iYhpbWeUgyfBD/aS63/5nNn+I5/0LzzR++/vn//r/9r//L5fmZSPM5t3e3fHq859ubB9afvebf/M//E3Ex55vf/o5IG7TQ0A083Nzw/u6Wqu9o+5rVYs6rFy/xbY3wjk07MuqEp8HxfvNEXx2JvOOL9QW/fPWc/+rnn7OIY1avXrN4fs38ckn55g3YEdk3uO0jw91H9u/eI7xAm+Rkh1YGZU5cgqicEwaPjnO89QwhZ99qPtxs+erdDYf6QD2NP8JHA9ZZxr4hiSKUhE/7FiskVdNRlHOySHOVR1y/fE03OCLhGLzg8sVzsjxDa+inkYs3b1j9GEuaLRbExnPcPvJPf/cf8NEFy+dvSaKIspyhpeQsO+Mqv+KXv/4rfvXf/jUyUvzzb/9fbBTz7mGLTGL2mwe8c/gQ0DrCaI2QiteXa5JpIPLuVO8aJVxeXDOfnTFbLtHlGfte0dYj1mvq40i1q3BSctgdsNZyOGwRXnDx7Bm9BVUusE2L0hFZviRdXBFdvkJMAanAHZ54+Oq3VPf36LzA5DkmT6j6geAE8WJG5SwmSUnyguNkWSxKIqPAWjyS2jo+HWuEgH4YUVJgp5HJWUbnsB58gGka8O4U3xn7Glc/sZxnJGfPMbMFs8iTK8lFnPBsdYHd73D1ka7ruX71htnynLrtuX18xHvHNPQETtEcHxx3h5agUxZ5RmgOfLp75NAODF7gLLjRUsQJs7ygnK9Zrc4R2qCk4Xis2Dw+sq92VM2BzeGJfhxOjT/WMznHMDbM5iuW51dMfcvUNixXV+i0xJgEE6Us1hes12uSLEUIiCODwNFUJwZDW9egExABAO88wzCQlDPGIE9Ck7U4D0enuXt8ou06TJTQdi0heOrDETdNKNtTakFelpyfXbNav2X1/A3nz5fYeAYm5ng4UO+2CDexmKXc336iPhxYmIg8KpFaYaeKZZ4Rhul0ScxK0JquG6kOJ0ZGkJIiiVEKpIYsKZAyZRInl1AeR0jvSdMMKTVxnCLTEjW/QKYlAo/tJw7vbpB9gx96XFuTlEuGY833v/+a7aHmj7f3fNzs2LQ7Gi9opxNIuB4mBAEpIvbNQJCKbnQIYxDCIIDz9YoXl2e8ulqT5ClJUbJvO7rR8bTZMQrFph6pu4EkToiihLyYYTzMixIVpQQBszJnsVig45hj37NazikM+HbL7nHDcXvgq6+/JYoTumFiNi/xk6QfPLv9HpNlSKVQ1hIpgetqZnnOMos5Nx4jTgA2acyPrAfJs7MZ8zQiywoimVBkGaGv6B5u2d1/T9s9sas23Owe2DZH6q4jSQzHpkP6ES8ECIi1QStFhGSq61NcTmgirU9siWOFay1VPVLM1ghj0GmCiQ1t4PQuVBIlNcIoJjvS9BNFEoEISJXQHCqsd0x9g85XSKEQISCweOtJohxjJtazgufP1pxfrFj/5JeocsahObB5fOD+j38glYE00Wwe7mialnEc+N0//zM3335NKhVnqyVKq1NNqMmpHrc8brZUVuBkfAJLh0AcxRyakarrcSEgpCLRmsRoSqPIY8NyMef6+gXl+pyARMpT+0C5WBEv5gjsCf4qYrw3LM4uQUcoo4jTEu9B5EtUOkdnOZgIqTTgkFGKNCnjdKp299rgyiUhibh995FxfyA40DrCeofWinGa0Fqya3oeqh7rIY0Vy3mJTEpeffYKV+0YhhNk8ubhiVFoVqkhWS8YilN9pLMTKk9Zr2a0hyf2my2rImGepyyXC/I0JjjL2Tzl8tkl9w8bhr6iOu5ojkeCkOx2Oz7e7mnaHkXgr9clZ3nGalYS+QkvNeXsjK3L+ebdE7/76lt+/9V3/N2//5JPP3zkt199zYeHLb9/94HBOiahEemC+fPPyFfnOKFJkoxiXjA1DU4qoiwHFSGlJMoLhFCIOENnJb6fiE1ACBAmRbjAsL1FBpDNka4d0JHGyIDzMAwD4498pk+HE1sCAkqAUwbn4bCpqPYVbhi5ODvj7WdvsG3L3/4ff8eX/8+X3N87Yp1wvo65edjQ1zW+qni8f8JOE3kWU2Qxh92ObhjwwdNUFWmsWS9KfvnmitxV5L4nsj2FnCgSw3y5xNZH+qYhOv8pyfIaNw5gPViLTuZEszWb+x2HqqcfLW1bc9gdiZKSoevou4k4y+jGkcUsYfKCOM0RQoEdqPsW50b2Tw8E17KvKp72FfX+ka7ecnd7y2G/Z/PtV0zHLUwjUVEyBoFMYwgjQkd4ofFBMTUH/DSxPbRMImbSJaM/OQ/apkEnGTpKCcEibcXY7TExIAMiS5l+FGhtlNC7hoXsaPdPPD3uKc2SJEnZbPf88OET0zBg9wfu3z8Rjorz8wuOAY7HI93Q0lQH+rY9RRC6HmE73pyvMEiMlLRdx6E+4KeBdaT46ctnzMuSF69ec3b1gizJKM9PkaVidUaeFWhviaUg0xrhPUqDEh7X9TBMuGHAjSMmjvDNEd+3TAS885g4I1h/ildFkkhrgtIoFaG1PAE2TYQyhmmcUEFwuVie3HxSkp9fMHYDx0NDslpTEfHl139AqYlZKlGZwlr/I5tG8vanX/Dqp5+jXU9fCSIS9s7QVgfKNGO9XCHdxNS1GK2omhrrBUEIjoc9dd0yjBZBYJYVrBc5Z+uUp82Wd+/fc3f3SPCQpQnSWdqqJY8TlA94F9BK4W1PWWakEoyRKB2h44xofkGIMpyX6LQkpCXoCNs1DHXHVHf09YAnUFc9KokIWjGFk0Dnpgk79KcF4jTSDT11XdEOHZPzHNuWXVVRCUXfDUxdizIR1rqTqDB5pnFgmiYG67FB4JXEa3U6F/oTkH9WppRnK1zXM1ZHpDSneLNS9MNAEQXmmQI/MLQNGk+935GkEWmSMI6WWEumrsfb0/lciIAfJ1SIkHHGoe7RzmMmjxsGRHAEBXGaYvKENM8o4gwhFEU5R3ICw98+Hrjf7jlsjmwenthsDxyGHmKF0AGTGezUYsceO/a03tHXHVM/ErCnJlStcZOjqWqE1DTHhgh5+qb2PVU/8Lg7UDcdu6YnCM2mbhA6RpiTqDINE+M4gVQcD0c8cOwGlJSs10uUUmSrFcnZGpfnUJZsP/6ACZY80TTdgNAJ/+Zf//rfvn5+/ad4zn/k+ZPT5F9oAnB5eXHKqjnHzd0dH26fGFH8xb/6NefPrqmOf+Dh7p7jZs/zZy/58MN7Hh4fCFKwbSoyHYiTiCQ29P0JJvb2bMZv3t1w9/RItdtwHht+fnbOLz77gl/95c94+2xBpDWz59eISCOLa0Dj847p4SNTv8enhuLztwgdUz/dovuKZLFEJhlxOWeqKmzT0z89gpmD9JgoZbk+54/3N/zm0x75cGR2f+Sz9YxiNmccLFGaMp8veL3u+fp+S2xinp+vuEo1eupI+wM//ewl97c3mCRDOU+al2TzGXcfv+ew23B5ccah2bN0K0xSMrjTtjcvMnrrefHsmqFpMV7y5rM3dPuK9WWBDJ7jdkO+mhMla/j2E839E0ZIdJIQVEw/jLhw2mQ1m0eKxKC1OQE7l2cUszXpYkFQin/48gcO2z2GwGG35/nlEm8n0jznsHnk/HyFbQfiNCM1iucvrtDlnG6eE3pL37anaMjsnK611B+/x+4DevGSIk0QRYYqZ8zTkjfzNc1ui1ea1Yu3DMcDcRAsvKfZH1jNIra7I0mkuSoDN8eWx34kIAiAUophsjgEQQaCFzg3EQLgHb0pCPmM1kcsvPqRGXKkvftIB8jLS4yN+PSbL7n9dMd4d8+UafquQfmOpm9Qccrj454sz7i5e6Q61nzxs0vub++Q+enymMbw4uyMySrKSDMvFuRxyc27P2L7gaptiMUpL92OHc4NmCRCG02ZZ4TmiVIuuJobIhGjpabfdqxXL2mGA1Pbo6KM7rhFaQUyJpotKdIc5yaGwx7BSQgJ48hmt2e7PzJMI4tZjhQBERXsdi0ueJS3CGOYekdKikpmHG8+kJWKLE1w00QlBdJZDAI5BNK2YtG3xO4U8Snmiq43DE6wKAum5ZLCnPgnq+UcN15QakVzbPj47Q1vfvIGHQSbx0eMcpSlYTrUWB8w0hNJTZTEFPHpwNIgSLxi3Nfk8wWrRcLhcCBPcvs3lPIAACAASURBVA6PLWjHarUkmmpc/R6vNeLYEE0O37fEUcTh/okoyYh3NWPb4pKI37+/pXKBUWuyrCRSksvlmiA1++rA0DeMo+X8+hVRsAhn6YeWZaRZFubEGxADom2ZBoUdJzwRn+43J3gslskHAvJElC+XJJEh0QZnBdqcxDPb9yyKOZ999hqdni7XUdjyePsDbtLstx1aQO8m3v75FxwOPdvNV3gRSKOIWAuyWLGYL4iCZ/78mmU5xw0NQnZII0EIvBDUbc3VWUaqA9M0sL97otnvKBNF3XTUdc227vlQj3jnmWl4rHrmRUKUxuQ6Yv/wyNVqjtExRlmW63P6fmC+VBy2HYPtYUqJjGG3P6KGkfv9kT/cvOdxcsRlwYAnjQ2JFqjtI89Xc4JULOYznBC8v99wdXnGXEA6Lxjalv1uQ6W+5Re/+BV+GOmHFqUEGg/Os9lvKc2aq2fPMUXCN+/u+Yd/97e8vMjJiwwxNBzagWNdcfjhA/UgMFHMX37xE3SxZHZ9wQ//199T2oDXCbdVh4lzVPCEtkELyTT0aGXorCPAqZlFRzglCTqmKEuW5xcUiyXEKZOP0FoTpxliikiXKwY7kjz7nKR9hEGRZhmjn/D6dDRxCJyUhDRDelAhZawOSEAnC7SYGIaJ+atrqk2NVhEieMzcsP7FjNuvfsNYt2TZAjOb0e6eKGdLHquaZZ7yqR4YrCdKc5Z5zDgc+P3f/98kStCGHy+H48j+5hOZfo7fb1BXLyjWK5QWJ/hiGNgfGoS3RHFCkRccmx5rLfM8QinF/a5DRAlm6NE4NmPM3f2G9tDQDRaCJ9GaPEmRw4AaY8bYEKuEf7it+d3H76g7y66uCdNIGuBiKEHCOos5u7jgbDnn+s1r5mVJvjwnKXKS9Tl6rFACjImRxhBFGqXjk+j5YzuT7TqsFUy7Pb5+RCYGGReobEDuC4aHdzg7YZsOn82QeYqTE86kOB84yxPiZsBrg3UTbprwTlA3HX3bEZwjSyMWs4KsTFlcvOG426P7nlzC1aufcPz4D0z3nwheQAhEkaHtJ3Id4aaRru8YphoTJ1ydLRC2J9iBVIzY45Zu98RFkTCfL5ifXaGDZxx7pM6ZXVyDD7hxIlucwQS7xwN9v+fm8ES1eWQ4HBibnqaumBUZ0+To2h6hFT447o8NAUWUaNJcMSnLvmloOkc1Wqzdo02NDYJVrvj6XUU9eQa+5XqRE5xnnhv+YveJy9fPOX/1AlPOScoVShmmcYQkp1wuSe52SBQIMFFE8J7HY8XMFKzPL9lvb4mKQJIrurrF5AnCNWTlCp3nfLj7xNQ1+DPDKo/Y3tVERc7t7T2PT08s5gVZuWTsj9xsj9wfvsWvS/x8jjARbuwIwuL8xGg9eM98USAzCHFgrCusrzFR4CLPePvycy6evSKfLUAYoouXSAE2ifBO4YNGEShmJV3bMLUdQ1sxTi22b0mihDA58qJgGhUyimB9RuV7WimgLDHSsFg/ozpuqZo9IYpOTXC6I41iZkpgypZd1WK9wDrHsWlZzkqmEGgODWmSINxI7DwXy5JBaX4YespsYJEJxOHEnxDSc/7qjJdXl3z4wy3Xrwqy2YLf/J/f4aQhSWKacTx9S6xlGh1xkrHZHzjeHigjg4lO/1vvPWnsKbNAva/pmgqD58X1HJyhbRwx4K0Cr6n7iXkaoRgxiSGKI1CGJMmRJiNeX4NJkUIS7IjHYaeRSAV8tsSPE0LHSBxu6onnEXXTI8SEiA2u67DegjnFRfuhYRgH6romaMmxaoiLgvpHmGtkDNoYrFAoKfDjSBznDJPlabsjns2YrEVHmjRSnC0LkjyhGy0qNgiTYFVDNiuZppNzMjYxaZagxUBmDA2KbuzY1x3SWuKyYFam7HcNTVMRlAUFdddhx5HOQ55mHKuKoR2IZaDrO4IAoQRJGhNJzSyZsViU5DJCiQSpYqRWHNuGZugIXtP/CLBNhGT/uMV8uGcWR5SzGWUUUxYlq7MlMtNEccLYdyTzHKEUbrTgQAmNCoYIjfWWqRuxUtArxfX1FSIr8SbDRIbj4cjT0wYrFIvZnChJ+PSwQUnJ6EEKQazgUNd451HKMs8Tzi+vKA8HHvc7+jJB2Ym+rUmyGd008iefyb/M/Ek0+Reaoiy5vjpnuz3QjRW3D1vu7jeszlbc3nwgLzT/+Hd/z/3NDbNyyeP9Lbebe45DSz32RMaQJhFaary1eGsJeLzt+PC0YbN9JDUJf/Pzt/z1i2cYueDzX/2KxeWcKE4BjYwLwME0QZDIxTlKRoz7DVPXnGrxjKJp9hx2T0wOtElAS8Qwcrh5YLa+YMLRNTuyxYzlcoXdBx7rlrv6iarpyZP96dCftZSzkpfLkttDjTcJP78oyWOD9XO063lWSOZvPqMOgXM90nYDR2X46Rc/JSsyIhzF2SVu8nz95TfU+4aXn73CxgKXxoz9QLko+PVf/He8vLpiMSvY1xseP77j4zfviKYZT4cH8mLO2dmS0B/oh47aTieKuJ1IFbimwkXzUw43TijWS7L1iqNXvPv+K/7x97/jcVuhdMTmeGD9kJJoSawUGhjdxOVshrcjIXjm85K4XOPSGdNoyfMMV3cc399xeLqjWFyQzFbE04DKE3b3N5jeAzljsyFbPKPqKsbHJ9LliupYUSQpaikI3rISgmPTITT8q1fn/PtPW26rjqnrSOIEHwLWOVRksN4R/EQIAotHmAXr1/8D689fg9yRZyXVu6/xY81t23I5K5ibmDBJ3KHmD/8fe++1LFmOnlkuYANbu/YjQ2akzhJsFske9hithzczrzxjtDHrnuZQl8yqzKyUEXHOiaNcb60AzIXnvEL1BYkn8IttDuDH9631b/+GXSzoz0+w1lGVR1tAZwyrqyuy/Q7h4PrN94R2IFKX/PzFK/q6ZDmfcNgdEG6gd47GGsBwyA74YcQ6P9ANhsXpHBnMGIaOdJQwHY8Jk5j5+Rnz6YRIx0R+TFeWDKYiSBRSSqw1pNEU4QKKzYZmP9D5grqp2N7fU20fURK6psH2PU3X0PWGt3ePdIPh4mxBpCUeAw4BSIwbYDCkWlBOptTtUdsYhwFxkpJtNuxrA1IQtRaTHDhJS4K0ol7fkXcTmD2nqVv26zXxcszFsydMzpY8eZiyvb7i7votm82a+WxBOw9RWhKE3hFcOQw0dQfKQyUTxklKW+UI3yerDeZQEocJvor45vu39PmBOJocLz3xhIdv3x1fY01PM7TMQp9EK3zTogzIwTCyHpezMUmccPnBM4LlnFVZUNU1s+fvES5P2R/2aD9hleUUecG7q9eYpiAdz4n9gNk4wJqeanWD1kBrEb5GOjBmwB9N2Wc17SCouw5nLUIpyqKgtw6pA6IkIstz5CRif9iSGcPbw7ccNgWf/eXPkLOE9X3B6nGH7wUIIRC+ZrSYM11ccHv/FSqICaU5qtu1QvsB2nR4dsB1HtvVPdq0eCcxUgqk0nR9TeA78mzHfrNmt1oz9jWz2Qg5GRMkE7z4jDBRlO2W8TKhzFYkwqKGnhGSi4tTnl1MmU3GNG3PyemCJqvp9yUayfl0ID9kmM7y+rEllxE363vu8wNZ19E7R78GqSTa9zmZj/GFYHXYk1U1Z90JpydLRvMlr6/vaHuYniwo8wPSClZvfiB79SHjOMCKEQ0SP4Ih6+mFQ07HtMby+Vdf8T/++Ze8/fXfM/9f/5xmMNhBsD5UPD5m5FXFaDxlPJ6Q9Y67qmeUVRSDPGqqA4/AE0dlsOlQ0rEYhTRVSVXV9N3xPw8BFotVEcun7zE/nbNczkDPaLXFeoJwcYL0YZz4GKdpSoPY1UiRkERHjXs3VKjZnKEV2KFF6QAtjgMJZzXBxCKcozc90k8IU0fvBQRPTsE4xsqwubnBDy9R8y1XX3+FeCi4fPkx1kuQoSIIUzyZMfQ9RdVxerJkn1f4WJq6ZjKfss1q3lU9WdOThILr1SORMoyDAGNa9oc9SaShlQTCYQUoAdLzEHagb1s8Z6irDlut6Y0hz3O2RU9jNMPQH1/bpWAwkGjNPI4QfU2WV3h2zLp2/Ldvv8J5HtI6ksCjR5Ioj+U0ZbI449UH75POZjz7yc+J0gQtBFEcYa1CBxYvdGAHtI1omhKsQ2kfpzXW9XR9wcNvf0c4nrP94Q/sb95glYdIUwzHWqjQEqUgjnzq/I6qm6HHAUtvxLs3AVleECvJfXnkWvSDw3rgCUmgFWGoibVHnRdUvUe2X/H8/JTN7sDXn/8jdb2jWl2TjHzatqepW9I0RQWWk9MTdg+3bHc5BsHCD1B+iOkblO3p8x35wwZjxPHRZXqCE4q6KpicLGn1CC+eYpzP4I0QKkWEAcW24O3115jmQBy0+LHA88ewXOBrzdC3NE1NlEzJ9jmLyZSyrCjaBq0McRwjsdyXPb0RlC3UVUc5WH5Y9/g4qsFgPU1pGtI04M0q5+pXv2d6/cB70z/wfB7w/KPPiObP8ISmLhv6wTKfjigyQ9c5trs9KJ8gitlmGeNxykjDanfgwp/QRzGeikgjiY18mqbkfBTQhQFd9shtUVFnhia/YXfYMxmPOTu9wA8DTBnSdx37sqPpC0Zigu96tBKU/XBU/VrDJNU8OR8hbUG+30JZEgYJZ4sXzM6e4E/Oyfw5cTolDnw0HkkUEiQxWMmQl7SlBbOnqQuccljbMjQFfdtQb3OUFTQ7TbSIcX0DXk9yfkmsQur1FlPX+KMJk+WSqm+o+56+66n3JW1dILVgdO7h3dzTlQ1JEiGBIAwZTyeYvkNoj+Vyzt3NFQ/bmnq/J31xyZvXD5zHElv2KE9jHLx7c4vpW149XaK7R7754muaOiQYJwgdU2RbkvkM5fu4MicvCvbZlsSX+OOAfdZQ1DWjRPGzD58wTycctgeQPvgDfQ/7PCf0AjrTI72Yziimgc848kELFicj0ihGeiFRPCOZn0M0A2fxhMENGjc0Pw6tHUJC17b4sWKwCqcdxgxI7XDOo+1bpO9hywYjJWbojmne1mAcDJ2h72qE0kzmc3QQ0uNhhuaokzctw9BhtUfvJL3QBFIhRIPyBFESkSyfEtQNXV9jvZDVpmKoW2zfgPAJPUV52OOGkHARYU1H2zSUeYlpSkJP0JQ1gR8Rap/9Njva68RAV1c0bc98viDPCvquIw4CnOuou55IAkoTxhGhVYiqpW4GWuNRlRW+jhDKpzAggoDGGaquph56UunjXMB+31Mqx93qnrPpFM/sOJvteO/TFxijML2laQdMNxDoEAKB9kKMG0ieXJJtt5wFGptMUElC3xsCHPVgub6+wXOW5WJClmfsdyuGZoChp+p6FEfjZTMYemspioz5fI6SEllljGyPCiTq+SXrx0f2+4IoHmP7Bu39x9jkT7H+Y2jyJ1q+1tRZw+puTe0kh6w8utCblv/n//w7vvndBTdvXtM0Pb7XslmtUfhI2TFJxwRJyDQESUPXFpRdQ4fjy4cdbzc7tNL877/4T/zVe5f0uy3vf/YB6fkFeqSQTiJkhC17pHPHw23ZInqDbVpc2eGcw7QFwtf0Vct+lfHHN2953GRUfUdgDFoAgUL5Hn6UIsMAz5OcnJ4zyAdE7qjbAU96aAYe6hZrHdrXfDhP+WFfUh4ylk8v8Dwf19acB5KPPnvFVw8bhrqg2q2RYUhuOvrKh2GGnC3Z3K/YvH5Dlm1578UlhTzFJEuq/AHV5TRNQxTNkbpFeBW+nlA99qxeb5GpwQs7HncP5E2JswLhwJke5wyTIEKYgapuCDwfMV1ip0te1y3/9sffcP39d2z3JUXeYIzD0z7b3Z7Y8xglMVhDrUJGacpZpLBdhW0qVDyAk/RlhZMexlrsULC5e0O+T6nripuba4ahp64OpGOfu9U9w+BIpkvWTc3jdsXzp5c8PV9gVYRQEXl5wPNa/DhF+gbPr/lzrcm/uycrK5q2wVM+zg4EXkRdlz+CGx0gGIaeIDwnmnzI8tJn9+7XiHJHVZb88c013e0Nf/bqJfn1I3dXj6Qnc8YXr3jQPVVdo3yf7T5j/XhPU1UI58AaxqLD9wQX8xkORVnU7A87bNeyyzJOJhtG03OIYrb7W2TfEiqPUCvyqmURRCzGU6azKcl4wpMn5wipUS2IAcp2QzTyacsNvgvpjMViqIaBthvYr/fUhwPrtuEx2/HwuKIpKvrhOOAIPIkCBA5fKvKqZr3PeXE+ZTqKcQhiP6IoCozp6VpJkoxp+uyoOux64iSh2R8rNtNkzM8//ZizqCcZD+TFDbePa0pVU/Wa+6vvCFzJcnpJKGAxGbN+hN9++5rbm1v8QHGo7jkMY9JJgscApscqRxJ5x9ez+Ql9WWGNpMsbQs+nMo591bLfbRGrFVop6qrm0Dnu3z3SDo59UdJ0DZ4wfGsswh31pZGnSJXirz/9GLVYotIxerng8lRj3t2gDntU16OqipkE35cEk4iVc4RPL+myR3zfO9auWkeYTkjfG2GbA56pkJ5AegIlBW1ZYPqWbrBYHdC7Ek8cN3anFcVuw3LyHul8hFKQJiHb6+9Jw4jr+2+pftcw/+SntKsd7TZjOpnghSkvP3if0eISIRTL0YTgwidrKzbrNW3f0XcDzg+RnqNpBFr5aE9hcHha0QrLLtvyxQ83ZFWHtAOpL5nEPmqbcXHZcvH+CZdPXvJETzj70CPyfdYPdzjb02ZrItUxO13ip0crh3UKHac0yYHRvMMOlqYpuM/27NuCX97dsapadkVGbw0IifbkcXMwhqHreXu3wlMeN54g9CRZWZIXGXqf41uDu7fs64xQBfRdi1Me+/UjkyfPiQKF6T08PNqmZfl8RtYIsn3NPs9Z/fAdioGvfvMFXusoy4ZNVtEMA4tJyunZgmQ0oSg2HO4HNhpezcc8Xt0jwgHfU+T9gFERQ1+gBQwqoChrDAIhPZQSBLHPdDHn2YsnnF2e07Uth6rlxXzKu3fXlL6jzTacTxKk00Qu4Op1xmw65tXTcxQtzjbQBjBYtPaJFDAYTJ3h6QhrJTZOsIGPDCVh6FNUHToZHfk+zuJfPGHocqJgQbRccndzw+Nv/oHl/ISTecpgLAaB9gTWGn64uuGD55dEaYirGz5/c0+HZPLkGUndoCTssoIvHLwSksXpCYuTE/qupqsKAtFjfY3vKZQ81oGMq6jKll3RkU4DnJNkZY/EIdzxGwi1xpmBYZCcTY969lU5oDG4esevsnt2XYsOQobeIJTPX/30F/yXn/85ge9x+uIVk+UZQZISpgmm6wl9jeg7hCdwWkHdYYceL4zw/AgvDHBiYKBkt75l9e1X7L67oW4lV29+4DGveCganLB8cJrw8vkTXrx8xmg8ZbV/QEcBTV3SGo8g8pmfLfhht8cXllh7VINBCI7g4HFMKh2pgsfdjuxwwLv6Hts2fHIx473PPua2DykOe9JkTF1swI/wPI+hb4m1R7nb4LmBOArYlR3bQ4HHO+TQYmNNntdYFJfPLhGux6wf6SKf0XLOYCVFORDXPffrHXmWsd0+UDUNcahIQkcax2g7Yd1smZxeQhSyfXeHsJbpbMrk9IT5SYNpK8qm4+b+mjSUlLsNaWRJhxrpQPQ14yBkkga4oWUWa253Ob0KEXEApiKU8N27jKSUvNaS81Tw/H5gMd7z/gfvM10kWKloq5zn5094cJZ324yiKn48R3pst49MIp+md1RFRW8FxlMsJzM8IVBJiBA+d7cbXn93y3yUMJsv+fqbH47p2CglihK2u5yiaTg9WRDGOc62GCExg6WpLcZKcA6tPZ5eXhBoR7Zf41lLGKX4KuHtQ8s3q3t00vDR2cC4B+PVjJMxbT1iOOQEswltl+PqhiYrKPI1RgvSaUpelAxNjat7hBLHwfv4BFXvEWmClYLQD5HSw48XCOthTPijWWTJ2B/BpaWTFbuHOyaeIl5c8t23b9G2YRJHeIFPGB5B0dITJMmI7vYBFXTMLybcfPc9LisRYsxyOmed5YyiiM3jgT/85gv+9i+fcvvuiuttj/7kb9FCsC32mL5gZGImQUiRldR1SSAlqe+zXu1peoPyJc9mCYn2aeqOvunZ5wV1VdN1higMaPsWG3icjHymieJsukBITRgrRospvicJkgVCjyltgO4aIjVgygw/jBBhiCc9bNchnMEPPXAOM/RH/omnsX2FET/W5joH0keYFqzEmg7Pk/haU1YNCCirmsZtSJ68YjRfYLuCruqOlW/X0xd7lOczmU/JDmsCfaz8pOOA6OSMy0DzcHdP3ju++vIdXd2CHWiqHIvCSs1iOacvM7xEIYUAB23Tsckr2t6yy1tGSUSRV5xMEkItkFYyHc1omp6mbsA4BgXtAHZwKE8wTsfIzjJOY1oDxlh2RY6HpCj3dHWLkZLuWAxFKYUbHF1wtEwp645JEWHJ+hbfOvZtR11mOF+AVDg74GKNSxKCOsQdauI0QUQxOp0z9jy6OMHqo+q7uL9HlRXvn5zy/ZvXfPn6CuMpDoecKIlRnmZflEitj/uDNfR9T12WuPkU0zf4IkCblsNmRSoskycXbJOSsneYtkcJ+ae/2P47XP8xNPkTLTMY2r7lUOTMLp5zdnlJj+SnP/8Zi+UFYZJQ1T2b4jVd0zAdLcgPO7SnkEqiTE/q+2zakm1WoKzlZr/nV6+vabqWz14+47MXC2ajmOnZS04/+wwdKKTQ4Emssxgqioc7ZNfgjAXb0+V7+q6iNw7btlgLQ2XI1gfWD4+sd3v2zfG3a6kw0uKHAaG+I5ml+GFCoD2CNGAk4VBU6DBikkbkRYlSmsD3OdGa5WLKD49rniwnTE5SkuWMeDJhGml+/uoZX37/Bm169vuOVgSU1tG29wzNwOtv3/LFP/+Ss8WIejRi8tFP6HSEtild+YZ//tdfs1jMKfI9h80tWTPhv//9r5AoVCS4X13T1iVhMjkemJsa15TEgc8iiWh6QzBYci/gYnrKv3x+xZdffsnt/pa8bvCsI1SaNPLx0hjtSZQ+AtaCKOUmK/hvP9zzV89O+UQFuK5jyPc4FM1uRV9mFNmeX/7+V5Rlxd1ux/frR/KmprcD1lkaM1ANllBrPO8NsX/cTK4OBdHbmEmoOZ1MmM9nFCLiPt9zqCtGwjIfxXz4ZMkXb+/p+x6JJQkDhOchhDxG5xF4UjG0O+6Lt/z08m+YP0lAv2B3/w9k2x2P9xu++/p7vvvN71CdJYhS2k1HqD6h7TuidETvSqrqEWcGPHGEgZ3M5zwfh0gnSZSgrSvazhLpmPDyfd5kv+Xtakt+/cAiTphKj7GSFGWDJyVCSgQ9rk8RvUHmLXKyQKbHSL9QPWKsyasK7RyH+y2+EFTVgaIrKYCiafjmzTXbzZ6qbimqmr7v6a1jcI5qcHgIIiWZBYo40JR5yaFuODtbMotCEiuOg6AwwRfQScl4MmP9eI9pj9WQ1Pc4GSX82X/5az75y18wPvzArtwi+p7toWT5bI51Dc/OFpgu5bBZUTxcg5J8//vfUxxyQi1RSrBdPXL1g+LTpycEQtP2LU3d4nrDYpaQNDmdJ+nDiL637DqPsm1Yr+8I9YqZp8D3ud1uyMvyeMiVisiXRFGIHTom4xBPSJBgWsM4OA4R5hcXnFw8Bc+jKgqi+YKyLOnqgmiS0pU73r19zeAEpmvIypokjcD2hEGEsw5hHDJKjiYdz1DvHxBS0pvjS1gQ+myyLdZJfB1Q1S2T6RRhepp2oCsORGdzhq5hPkmYxh8ydB1WJwRxTNA0HFaPFHlDOko55A3jwPJyueTh3SMSjfUHbKdo2o5YewxliXCWaDIlHs3Qvk+5uUWoFBul/PD4yJs3V6w3Gbu6xziHMwPT0GMW+Xy7KpjfNZw93/HZJ++zXJ7yannKk/QM7afcXF8RBwqTH0hGZ0TjGNF74Emk84m7jru399ys1vzx+o7f3Gx4ty9p2gawR+aK54H2SaLgR3q+OQJTgxApLFZYNmWJWO+Qh5y6HzBPTvEeV7x6/yXDYDmsVyR3b1nOnxN7EmEGgiTm9HTKkI4IxAwpJLdv39AVBUJFPNxvWMYj6qZHOMcsDjhbTHj/5TnKU4yTBctJzMWTc/q8Jm+64/dkN+y8kLIuqduOUHs//uYWiUNrTRRpppOIJBIMzSN/+O01aRRTd9BsRxjT8/rmnqZvmQrD2WRMJCeoKKVRPertFWcJmKEmEpJJOEINhq4vscaRTOYIp5HxCDmdIeMYURc/JusKVKjoaJBBTO5Z+qzCBqCmM8IBbh9+zfrNjtVjzGQ6IomO1jDlCYxzdP2AtYok9Bm1PZ3z6LYbHLDOiuN3nddcrQuq/ti1n09H6MCw3RZY06GEoK8FbVnSD5a8NdRtz+H2gbq3NN1wjLgjCYIjhLZvKrRSzKIYoQIaI2gdGGMou5a5L5FxQG3gZx9+zH/+y//Kp68+xNc+0WR65D9IQRKGdE4Sj4/WGCsEMgQRCIb1PVLqo0bTl1TVmsO7a959/jmrxxWPZcWmHri737CvatZ1x6Ht+OJxy/iHR56dv+bl0yWXc83ifEqnGnwtEEby9HzOV2+u6cr+aDfiqPWcRj4/e3GG5xz7Q8b9ekPZDpw5d6yL9g4tAz59+R436x1Rs2KIptwXJQ+7nDiK8J2hyDLyukEpnyenI7quR0tJ2fZ0vo/UIcsplOs108WUUTLCeqDn5wxCcH+95+Zf/onr61vapqGp9viB5lCWSKFRzkfYBGkjJhmkoWSiJMEoJV68RKQx81MP0zakg+Pk2XNuX3/FkO/54OUzTooalKLNj7aZ8XhEk20YzSY8ryp27cBimhBrKB+v+GZTc1M4nFW821Rshw0vXk64/9VvOT8JePV0DKFP0+Y8OTnhHz8/0NYZvoR0NGUQin3VEipJ0RjSacp4smQeR0RxxL6XlPiMzyLG9RqagX7o8aTi5ccfUWUHrt7dsd/vKOuCyQdPieIRbdczkfbHOpDDFf8hjwAAIABJREFUuCOfYzmbMgkC9rs1tm5oB4eOUwJToqj4+ac/44MPPuXZs1eMlks2qxXGg93uEdP2tNevOXvvOeFojC8s3hAQRYq6yGjLnCbvEGYAebS1jIoNbbsnv39L+t4rbh8f6IeQptzz+O01g9LUfkDihTy9PCFajqhRnJy+ILI1U+mRjJZcf/8tWgtm50/BGHxXgxQ4K5jNplxdf8t7LwPevM5pq4JMgUWC1CjTsbp+TVVWvH7tUeUFQTiirXKqtqfIdySRYD5S+IB1ltlkSt+UdE2NJz2c6UiDkP/06ceczKdsdzt6WgSGsQ4YxBGoOngD5/OUZRiQBgleoAmCEX4452AC9qs11eGPDHVJ6CtGgWM+DkhCzWgyJ15eUO/3KAd9VSOlBWHROsAMDV7gI0Mf25YIT+K0Q+qQoerwNITOY5BgUIzjkIdDietK+rJh0v1AvcuYnUxBefhpgmtb2rLC9jU9FW4w4CvcMDBUBbrfIGSA8hpWf/yS5XLMvtdsVgWb1QYdJviTCa0wCDOw2+ZHyxgewg/A67m+36P8gtPlhEBK7h7WLCcxYhjorcfhkCMsGKlQnaE51IycxJOaWCTE0xgdhwRpQi8VMs/Qnka3BeFQ46wjGUW01qMpBtq2Z3PI2TctvqcIQp9SGZTuiZQiHgmGoaKvPcIoZahr4lGCxuGlIdpzqCjGCxJcMMEFIXmVURYHlPUYTxbUSlG2Hc+fPsc5wRdvrqmanl21JQwiirLE05q6abBSMAyGvmnxcOS7Na2wCDsgTUOe7+m6niiZoD2PaZQQ+Pp/5hX33836j6HJn2o56JqeUZry8Wef8P5nP+dXn3/BL/7r3zKZjNlu99w9PrAWoNTR0GCxVH2L6AY+Pj8lAu4fcz58ZumKgn0NZd3hac2HH7zPhx++YKRTfJcwnsfYtqJpLH2Xk+3vqW6vsVlNqDX4wbH7KKCrjmR8IwTStWAVxuuQnqFxlsYco/WVadGeoGnBc5ImL+mLFh0nvJxMYZnwcP+I8RwDEekiYZQERMIiPEU6SkjDiNX9I1EQMpvP8BMfhyPxIA58pOehdMDtass+z5ilPo/eDV99/jWjUCOtI9/t6e7uqL0DF+dLEv+Cq7s/8Mtf/5qP3nuP7374gv/r777EEymL5RN8G9H3hul0QV93HIoaY8FTPuM4Jo4TbN/x0MBJPOF3v/wlN1e3ZG1D4AkmgUYIhfB8lmenRNo70lWdIT09xwyWYren6wy/vDpe8M7OLhGTluzhwCAd37694/fv3pCVOUVTcX3I2DQl9WBozbG60htz/Fba4+E70h6pr2gOBWqfkQaKb29XPJ1PuDw9YT6ds0eSFweipubFScqmHNO0LUJ6+H7IzepAEI+Om6kZ0Eojlce7b/5v/uXvLD/5+C94+slTdsJj3zYc6opNlnO73fPz5YSzwKBHAm/YUB2OkDYrFFJCEvqMl1MuT044mS+PfXRjqLMdu82B3grutjtU0XO1PdD9uFnlVUmkfGLts0zHTJRD2oGrQ8G+76lNR17nVF/UfPyzF9g0QRpwBRgHzdAhlaOyPp2FqnGsdhu+22zJq5KsacmrmqbuMO3/b3OSnIWaJI4QCCojaQcHzqNsDde3K4rpiEUdMB4nmMHQVA27piRdXhAnI4bqgFbw9NUJn7w659VzyYlaU/mS++9XpPM5ygNpe87P5uwOGddXW0a2xhYrvn17hTh9yieX7/GHf/ofbNdrtruMcTIi/fQVrsoZtEYqzWQUMB+PCKSDxuDFKd++veW7fU2x28HQI6XiMZzS2xLPCuJoyjjUhBIUhvEoxpdH0FwUBEcoZ5IQq4gqq2m7jrrv8HrLIcvwx3OCaUaRFTzeXdPWFa8ftlQGDnnJoBRuX7Ecj5mdKrQd0FITSUUYKzwPRp6gaWuaw5ahbxgHHldCHKGRdXOMtHuCaaKpG4MdNgxVTxCNsbWhHxxpMiJenCNHc6IkwU4nmHVIO1iCJEIFEev1Bu0HTCczLj/5Cb//5/+X5+fnlHl+rGI56IGmbSjLDGU6/Chgtb5j9e6GMs9xpif2OEbQcSw9x8fzAOHHhKng2y9/y7l3YCw+Zi8LJs4xf/kTFqczVvdXLGdjMBbXdoTzJYMRpKEmu38g2zxy8/0Vddfi+wJPGnzP4hBo7R211VGMEIK8zHh+OsVPJ6hkSt/VSNdTHjKkcTRNy9APrPOMWPv88pe/4eV777PPCtTNNR9+XKKcYjSbcSgqTKFxVrF4cQn1hjdv3/Du5oqzkwVSSequp+sNkRIknmYShai+JaYjcTDyEpRzlCIgqwY0LWpxgt0VuKFFOIcSDg+LkpLeA98P8ZXHOIiItUY0HSdJSuxratVRDzmdC2hdSpY3bLuS17c1SdIznnUkVYU89dHNAHVNXRnCZ6/ojYd0jmQ6RhsPNZtRSdC+QpQ1YSihPw60bdMge0Pb7BkOD2wfvqWoHzFyYFMc0NMTrr+7YpdvuXBgg4hkNMYvG6rOYIce5cVEkxGRr9jlFfuypqkr8H3qoiLWAc6PKHvY7beUTcN7TxY4a5BCYIxlu95hkVjryKueQ9UjpcQhQXg4ZwkDzXI+ITYtxeCxjGJ+dn5CZFtaC0kY8VgUfDpJ0EnK8vwJjy7ho49/yidPnhJ0PRqJqFq09kEYaJpjvdT3sYM5DpuHhqEWyNkS2xjWX/6GyYeX7N++oVofqNcl21WDiEN2xYambxkHHsPgONQ9nfG4yRydaunIqfsl3ixlPJ0ReSE6H1Bxx2cvn/H545eYweJ7kn6wxIHGWod0hrqqfxwaGbbbHR/OEw55SZxnTNMHXj59xZvvDui+oNju8LVid8gZQo2zDsSR0yXVjxU9Iak6S1aUFK1kGWm0K3BmoFEByZMXyNmY8t0122zP12/fEKoYBihbwZvvH9k3Nb4nsYAxPclozGkRcpkE9ItTFqef0WjBxA+ZzcaMnWH7bsXo4gmn5ye8/eOCPlsxf/oBwgL1gWK3YbpYYKcJanbKqR/jhopue01fZIznJ4wux5weOvabLdvc0tNz9fZ7Lp89YbPveOg2tOsHpuOEaK5JJymeq2iaGjt0lG1FEh0TbqZvjsmDYotWMePAZ5wkbBpB2ZS0JmDzmDFKQiaTCQhNU9dEWtAoj2Q2Zb8rOD9dMAiB1oKhKxm6Fmctge9zNh2z32zY7UvyosX3NT9J4PJ0wflywfx8RlY/sG5i/ni15YfPv8AXkna7RlnLLAq4frjnk598yiSMiMZjhLD06y1SCvqmoKl74sBHeIK62PGYbVCRz29//wVfZz0ub9jcPNJ0hkD5zIKAV2cL2u6a8rXP82cfMpeC6HRKPIpJp4ooDSjXDyjRI+MEW1ZgDQKFUpp629J3LSdhyo08WhW13xAmR+5TURzQwvLRJ59yPhm4KgT/9G5glz9QF1suTy+JhgwhDednJ5TVhPXtFYYWOxgiP+RsMuNidoIvJLGfMEpbEhXgWslgEwpXs5zGTHSAtS3bfUbv9XTDnt32SzZlQUeH73pGccx0NOXsfElTW+Kupn34AfXdW0IPAukRRSn0HUl4rHxK36c65DSHA34c0naA54MD4Ul8FSP0AN1ArAf0MKCVz7t9RtUPrFcb1DbjZDfj5cuXhLMRDo0Vh6Mxzjl6IRDWoJVHVZSo1nHY1nzz+Tc83r4jTvacLi4xbc/t1TvqsiEyPeUoZFANTVXR9gODgaLs0UGK5w2UdcG72zVxEDANNXUlCbWPsY5t1ZL4Pr7WrB/2iKEn1pbAjwhGKbknyBHcff0NRWGYJSOE1Dybj3kxG7MIPIQT6MSn7wYG4DQvKbsGLTXOGhrRE3mSSIUIAa5z2KrHqoEwSVBO4XsBKh0hl09wQmGDEBeGtEWByQvE/sAmLynb7igZkB7omJMnL/jYSr67fsf1ak1VNygEQgj6fkBqhQTM0ENbk29a8tsrhPYJ1TGJKpVHX+WU9cBieYnru/9Jl9t/X+s/hiZ/omX6ATcYAj9kMp3z9KOf4I3mdDiefPCKaVHy+9//nqLrkH1FURyo2hbn4PlkzMcncwZb8eT0HOsG9vmRIzEaxdi+55NlQiwEpi8RwcC77/6Bw37H4yHn+v4Rta+ZIMB53BcFuemItSb2fCKl0aGH7wdMo4DZ9IRQS16cXeJ7PveHHVXegAE0KF/ia59QeUihib2Qw+OWOB54ulhgJGwOGYORdEqzXE6OA4YwJk2nePKed29eUxRbpPsZWnmoOOGwXRMEIVr6zBcJh6rh4fqe/d09rms5PVlyks6ZphNcqHGBYpOteLj+Gs+b84s//9+4+fYNv/rXNftNwcXTUxxw2O4IpGJXVpjheIEOQ59maIi1h5Uem2bgsX6kkTVD0VB0A17gM56OMG3PyctP+OiDnyIPjzxcX1NXFV07sDs8YCW4oaPpDA9lxvrB4/nJgp9/9JJst+ebxx33bc8kHhMECeV2R5XVFMMR5G+FhxMOIY8RRV/7CKDHsekNzjp0PyCVJO9qho2h7Gqeny55ujynMB1a9mhf8+rZJbvdnn2WUXcNAodpG+JkDG2LJwVJnNJh0TInmGvq7MC+rBBRwCAFg5S0GDocQeB4/sl76NMLdld/QEuBsi2TNGQcCE7G8Y9R7DEqyWizjKId2NUtD1kBQ8/54Z4QSzkYnINZEJJ6iqI37Aioywwfc2ScNB3bOuckiSi7HZW359WzJZMowSkfZMAwDDhpaXuLNR7NYHh7uyIbOtaHnENW0Hb9EYAcJ4wRWGGO0U3PYzlKECrB0yG9tfSupGhKkshHa0UzCLQPpq5Y3WeUdcd4Mv7RVNIxSgICMZC9e8dIeajZKb6W3Lx7wBBiZcCAwA0trt5z+eoZepRw9tHH5I3jqy++xGsLmqpB4iFVSkhAEDm2fU+nB0IvIBpPafKC3fqRonsk2xW0+xK6nrwZqIzA2RwhBKdpSpjETPSC0/mY2BeMo5jpdE4cRqzXK9quAukRJAHLp6eEQUjTVJiqwEnohoomStlsD6z2BdVux/ePOw5ti3OCsj8Oat5uDsjv33ExnjCNfKbTCB37nCyXpInG92MQOw6bDUNZkIaa/SDo+h7taabTER49p3NFnJQkqcCPfYZ2jFaa/JDTi5zTeE4ShPSTCePFEqkEKgo4Ob9AEHI+nuG3ksP9I0sdUoVwc3WDHHq8+KjmlKYnCDR+GGJNj2kqRqHGG4V0oaK3MBhLZA0Xqcez+Yinz16wOLvkF3nO/HTJeHFKFE5ZnJ4gspwnk5TT6AVBPMcYi2n2tLsNUmp6et7cfsOXd99w+XKBn/nIaAe2pyyhageU7xOHmijURGHI80VENJ0wiifoMCKIlti2pV2MyPOKd7cbEBxtL9WetuwZrObliwuGqsajIgwmNE2N1guGoWFxMmPV9VwEHh4KP/CJZzMCD4bNgUgJIs8j1YK+zHh72OBJQRT4zMcxP/nZZ6TpkjYrMJ5DTeZ4foAfaGaJj3SWTh6rVsrzCLTG9zwm6ZTIjwlVRN23XO8eKawiq3uqssG0x852oCRD27JabxC3hlmiKEYp5vKEkzhgBOwfH4hVwmg8xg99RBzgRIN2Cm1apLIgJEPTk61z9rs78l3Jfr+l6h745vtvsbbmYbcjTGI8mbKYXfDm7ob2YcfpiUeSTlDeBikMCEjjCN/1GHtMksRJRGoFXV5hjQEhjqDttsSYH7lRYUJvPSSWh02GALq2BxVgraPtLX7gU3c9nufhBwmLJOBlqtnuKrSUPD1ZMI4CVrdbvMBn/vScZVvS43F68YJgPOUv4hHTkc/YVAzVgAvGYBRlnZPv9ugkJlyekjpJVxSMllNgAGlpnMKfBcxePSW7e8RmNcVqxWg0YVL17D1HLA2zacQ4CjFdyGd2gQsiDjKhRWLbiq/f3NL38N4H7/HyfMTyZETnST55anjx3Q1frA4MxqA9yTA4cicRhz0KUNJDuIF36y3KDPznT16hTcvt7Tvee/8v+Mlf/Q33X/4Ty7wgUZquuiPPS9q2Iw19wihAJwl2GCiriqY34EuG4kBhBZ6T+JEPnmR0tmD/7vf88ftH3m4FVd2wMRIvnLElYRh7XMwUXdVQ94adbXksC75ZHXlBJ6MD0y+vmc1O+MX/8tekyXso/1gxdEPM5MkzPnSK3eMt6/t7klGEsIqsablbVXTGHBNyZUlqD5S7u6MtI57h6Zym6+jajjSZcr3PyKqct3dfUAufrskJpWE5jVmed3hqRBh4RFKT1zl9BzbQVHVHpCReXTDxW0JX4ftHG8c0GPNEG/ZhgBhFFGXF82fv84uf/xn/+o8V//abPxAGPpeXl9w9rtlsWz7767/Gypwyr45AeaVIwhBpBW/vduR1xzIK+fB0wSQOybKcdhBUesJS13zzcM3vvrvCyYhZqPnjmytaIXm2nHOyn3PXt/wff/MXRMqnOWSUhwJjO4ZA4Dlo24Gha3l7vyfvW7ad4ev9lqJpaJqW2PN4cjLj5ekFYx1yyDfYrGX59DleuyVfW8TQcvHBRyTzMe8/fcZhdU+5vseTAje+xFrDYb1C+TGtOfJiZlFElqQUTcM0jJHAYbfl6TzGCwOevf8hDA2fPFvy99//d4rdPUNd0G01D21FpHyePH1GWQxU+y3D0LCvaiZRygeXzxgnMXlVEEf6/2PvvbZlS64zvS9ieZPebL+PP2VQBUeQaHQTGt1qkReS3lO3upDUHKCoJimy0WwSIApVKHPquL3P2SZ95srlV6wIXWRp6AkEXhDzDXKMHCtizvjn9yFNl73JMK7LfF/iSM1ut2WdN+SFIsv3bKuDtjuwBd0goDPugR2SZjnL+ZwvZ0ssy6HvWPRcC991D48knkUc9ohth70N55OAtC65mm1pmoL6XlMZG4HG1xW9jk/U7xMMxlhGEroWqspQRY4zOUIvF6xmG4okY18rNvuai7NjTp8+wbhbJBWmyrBtC9uykEiyzZ7bzSuypEYKQRx10Frj+zbTozHL+YrlfEmZFlCVVKqizitmizWWbRN6AU1tSHYpTVOj0aSlohePMAiyxrDebpG2h+1H3C/XSKWRgEHS2IarJOFuscbRClnD8WCILyzauuXl1T353Oa443B+1APREEx7GGkT9n3kgXmMUgrVNuRpjlEGXWuUr8gqQ7OuGRoLsdzRn4ywHZ9GpywX98xev8VogWNJjqcnyO4IY3exnR5KC3abNev1km73jIc//ZTBxVvML/+atzfvKI0+MGV0i2UMxkCVZUjdUFUtqmkokh2L4pDOVrqlrjVe2KUO9tRV+S/S2/5rqz8MTX5PZds2YRQynETk+5TBaMoPPvX55d/8DZ//02dc39zy9ZdfUtc1ljY0pkVpRWBbfHw+JHRqqkrjGDBakGY5mVIMYh+VKyZuTTLf0GjDV1XBZ29fkGy25FWD0Zq41BglaVtNg6awBb4QeFgIIfBdG2k5HIcBf/Rc0HVjIr8g8mxCY9i3LVkLgesSIhn7AV7gg+0zHPSRqyWBFyKkRRiFOLbDOtlQ7fZUnnuAVEXxgTwtBJbl8LuvXnF1c8v/+B9/zsnDJ2AMtusQ2S65slBlSeR4VK06ONnXS26yhE70A4aDAfe3c5LVjKtvXxKHAf/wX1/xq7/+B16/WpDlirev3xBHK0IvpG1KjBDYQYTQoNItljDEvkdeViyynDzPSCyD69g8nIYcnZwTOyFkCXmRk1/f8O5+xu3yjqTYU9UVVdNgWTa+ZdFzLCJ54Ef89e8+ZzyIidwOvWnAZr5El3ve3q35evGedbXHGE0gLVpjsF0X4YBpFYEXHVZWaHCDgEYLiqYmUCWqLcDAcpfi0NJvayylySTEWhPagr0w0DQYI7EsG2MEnuPi2A6uVriupBeEeG3N8cMTJkdDrn7toI0h6sWUTYtVVux8j/jihPCoz01e0iJxrcPQJPIdgumUNttTlw2DsyfofMf1Ys79OuHD83MeJxkeBiMt/F7D2zRDOTYTbTFU7eG/aNv4wZC6LUkNNLaFritUkpA3Nos2x0SSB52S0IkQ0kcIj9ZqQRoKVfG7uxs2KmeZFmzTFFtKjvoRaINnBAMnohf61FpRFAV364ReUHHW7zDu9jHehNI+ZldklEJSVSU6r6GpkNUenSgKFFEc4RuJKzTDTsy022VyfIx2XAaDPl/eXJMUKfHxJb3+Eel6yenxhOGwz+j4nJMHT7h/d4Uplsh6gw4H7JYLBoMIC9B1RUdKqrIknowpy5blbEVRtmR5gadbpr5LisEyMPRiLsbHOMIwdAWibamrgt1tyus85WIy5tWrV4RRhBd4tErhORbjjouuFbWsaTc7GlVhgoB39xt+9+Y1s+UWU2RkWUZZ1QSuTxgEnPkhRnqH9EmR8qbMUEbR73TohAGjt9c4nk00GDAYxNSNpElzek7AzmjQB8sK0gWliYzEcRyS2YbhsCE+HhFaY9abFEe1tI3Gj3sIN8TxPKQlydIdpqi4fPAA14uJBxVNVdGJO1zvUrJaEViS9S7hbDIm7vRAgGoKijKnqTV1oZBIpv0utfDIS42lWoyoKUpNkhRMph6ffPQBnckI3VRk64qsTHBsiUw32G5L2ySobI0Iu2BqagrevfyC1199w5PLI/w2pmoagkITt4KiaYltie26eLZNz7GIfZvO8BQ6IwI/wHVdVF2yL1t2exvTBoxHE7K64Ga1Jm9LGtMyS9YM9iEfnPZpWk1n2IWkJagr3CDC0hXr12+RscO032F7dMJ4OqZ3ccpX//Wf8anwUKgiY5eXJKViXxmGcZeffv8Iz/cIbA/PDqiaBF0UvHx9jbBspAGMOcSHtSYKArq2IYhc6kqRbZYUqqUVBrApmppKCwI/JAgknmVjtQrKigVbVnnGomhwKsMyGBC2Do7Zs9NXiN4JYeRgJNiiOnwr7RDTFtR1TXaXcPvqmsVsSaISqvoQjXctl8jpobTPpGMjHZuoN8GyC6x0g7AV98slpZB0uz32xZxWaxxpyJMUP/CJByHdskI6Nm2r8EWLZUG+W5PvEy7Ojmmagtcv3lCUNVLXGCHYbBKMBi0O2sjQs0EeeAIYgyUMp6MuZ10f3ygWWctxHNLUDU2ruXj8gEEvwBYBeWG4S3MmZcp0EOFZY8okQCkFtqS43THfbfniN59zvVnx7X7F0ekxj8d9/uOf/xmPnj3AEgZpNOt3cxxh0Lom361o65LwuE9XRARlTqx6lNuW0LFRYY9+0CHxhvSCIYGlYHfH3//zFyzfvkIXG+qkT+ff/hBrp7Gtku+d9bnapRStwEJgG4Uo0sNaqOPQfreGZrsBO2Pz2Zv3PDub0IkCVi8/o39yTrZPiDyX25t7fFsQeiGJ7WC0RivFbrlE2g77LEO1mrysWa429L0hFyfHdEY+XiBR6xfUWrAtK25u17zZGGpZUqgVkQ/PnlzSGz0gwsKSkly3ZFVOkWTsFnvWqwq3tdjfzfj1L/6Cl3/ncT6dMB6O+P6nPnqf0GZ7Bv0xYr/i/dUVSZpR2D1qemyTFVU6Z54VrMocXSmqJqM0G/ZVhbRhEIW4rotlW7jCYexa1KphdTAiM5tnJNUCp1Nz0nGwRYMtLaQNWZFhBx41LXlecpttiWyLbJNwdHaGf+xi1SW2KlBFiu11uDg6IpnfEzk+33v6hNvVocHHGKKOR5LtadQeYVpsAcYSDHtdXl/fsk0rHp2d8XzUpRfYCA2JKvFReLqiJ8EFHnQikD4d10f1Y17u97y4f8ddMkfeveTu/hv+9JOPCfKWqmiRosV3bRrZou2atMhYVhXzbcb7TU5uKpq2JnQtnoyHjKOAYrvCdkKGYUR/MqbT7dK2Lbv9kt024c3VHe70gpOLU8bDCFNLnMhFSwvbgsrZgslwpaTNUvZVw2gwRK3XLGZ3dKKQVDe4JuDRxSOizphJ32M+u6faJ9Rpiq5y3r66Zhv4OJbLT1yPR5fPQD3kxTcpi03CqDfg6eNzFIo4CjCNpsoUQXfA/TKlqEvqLGWX7GgagzECIV26YR/LcdFtiuXZGFvieDZDL8KrFWleUjY1edlS4uNYFq4jqJqa0LS00kFLi7KoeX0/5818Q9rUlE2LUhpHtHRCjzFDOn6PwTCmVoaqUpTaRXoWtREMpxaqNVw3S1a7hKZU3ymKAd9C+B6ybbBRh4GokORZziZLqGqBa7ucTHs4jocTuLR1Rhz5LI1GY4MU7HY5ZZ6TFzV5vmU67BH1Boy8I3brNaZVZGVJWRkyC5RuScuWYS/kZrlBaMMuz+jFPns09i5jtp0jtea82+Ppo0uCwRTHt7GSFUdNRCYkr1dzsjrjwUUPS/u4zuH3R/0uoeWCkAdVueNSZjl3qxV391tmhUK1Flb2DRdHY9wbn/e7hEY3pLucy+MRH/zoY+LzS5QcsK5DWs/GCjo4bsTkyQ8I9zu+/vV/ww+GnP7kIT/v9TG/+F958eaKUjW0AiLHxZUQuDZJlrFqGvJKIdqaLC/YbFOMMXiezdSLWMxntFr/yzW4/4rqD0OT31O1jaLX6XHx5AM6R2ekq4Mm9eT0hC9+/Wt+99vfsZ/PKPKCwHUwCKSAJ9MhR72Q/XYDbYNbV+zSktk2ZZXlFHXNWa/LfGvzm6++5W6dsmtKVL1FaE3ZtDRCM9Ma0WgEktYIhARfSgIpcSwL0xpCD8raYrvbMn7QwzhjrH3CrlYsq4qkVYxUg+Pa5NLGD1zC2Kf/4AGiE2KymqKoWe23vF+tCW1AGla7BaNeH2m7UORIbRh2h+TYvLq94u7mhpPzc1zLgrBDUbWsFyvkPiEKfHS/z8s3r8mriqfTMe+v3tM8XhN3OlhlyU0b8v7be5bX/wvZdst+t6KsMiwpCF2XQhkc10VYFkEQYIRkn6yR0sILPIrvnOofHPf4d997iI+Now2hN2C+yVluK1oaon6fsScxoyHTNiLbrlln6QES1RyizJehxci3UfWWjJ8BAAAgAElEQVSeL66v+PEnP8VzJB255Le317xZzEHAMPD5f7lNeXWIRHdDB8cxDLo9bK9PqWqatmU8PUZisPIV5fKeEo2lNbumRWpFYzTZvqSUEsKQti4xpkW6AVZT4wcBoWfjS4lvLEJH4MU2w9jm3Ze/pdf9KYHnskEQ9LoMmxoT2YShSzWawOgYsc6xw5gyS1CtQnQnbMuW7fsZjq6p779m0IlxJXxyMuDZSR95fMLqO5Dws+4ZHx49Jrn6LVZRwj7BMmD7B1UrUQcrdKk4wITf39xT5CmVbnl1s+b00x7K0wSBxBIWtt+jNDWvvviK2eKO27SGsmIUuYgaTKnwbYtA2jha05SHtbThYASWS1OmbLY7Is9m0j+mZ8NJZ0zheNysVmT7NUWWcbva4zgF3bzkaDKkc9RnHFu8f3XLQtzy89MzqqpAaehFPrbr4bouQeDguRZ+FKDrDKo9HU+wVin5ZsawH+P6hnockxc1titxLJ+iqZG2TaMVVaPJGjBejFECG5vAMthuQIRDZ3zOs8GQer9GlQVJntIqm7JuaFvJu8UCZTRmu8ZxHIQQ9CKPXdnB9XL2qxVlmtN6PvOq5PNvXjCfz4houUsyIj/k8dkj/O6QYRjQj3sMhmNcr8tus+P12294dfUt+6JgNrtlbVsM4wg/zVglMZNBjOv6hxckLdGGQ5LMdogCC8cTWG2NpaCtGkKVoWSf47NTyqzCFppCWIzPjinnLzBKY2loGs0ubTjp+ri6wa5ybm7uKVtB4Hk0WcIoCul1+7TSIc/25PsdIRWBUBgDlrCYjE+4aX3eX79jOd8g64KhZ/Mk8/h6d8PFtcvHH3p8+CjEMzlKt+x3GaKtCDs+Wt2zev0NvScf43VCyt2C2dUVbqvQmw1X82ve3m34cr4hRxNGHpbjY9kB9nccH8tyyYua2K0phEdj2/SmDzk/a7l98Y9oI2gIWS5aeqdjtonN3TIhLypu5wtOxh3mN+/48MkTPM9DNRs8e8fV6yWqyHhzvWU+WxFKi3y2RMQR9nerDZZo2e0KZrucTdnidwf8+Z/99/z8j58wCgXJPMEfdlje7OgJ6AYupQZpuTR1TaMNnuPSdR0CSyKahlU2QxiBjCI8b8AmLVHC4eEH32cY++jtPXV+jy4bWgRIH8/lcDHMcj6/X4LqonLolzVCdegMxqA1tWnBGIQx7G9W7FYL5rdvSJItrS1xHBs3GqNUxWByRHdySpbvQdTcLq+oTcPJZY+t6rG6XWLZDmWRYzkuSAtbHNY0+t2IWgtcqanbBqtIGDua+wKSrGAaxwg0+zThaDIgmc3YZDWBa1PUirJUqNZQtxrXOUTIa6VxHRvXtuj4DiejPhNZ4Y4G6MDQkYY029M/nnL59BKqhHS+YztbE3sBo26M2pfUngXxAunGFNslaZJSNS1n04hNsWKoHKrNkrs65Ze/+AV2+8ecnl8ibEEc2pR1xbv5LXmTkcqSzz//LX0b8qw4qEizFGybwomoxBCvM2AQB5xF4I0Ep12bVZqxXM25fvEtoZ1w1h/iWQWPz7sc3QSssgqkjeU41HlJZEnsIKIyEktadPp98n3KOhjwz++3qOyKs6tbjgYdlLSwHYemqbGExJYWneAAni/yDCkyStVSq5ZKteTiwE8xUuJ2u7g9nyByydKcbVJwfbvl3XLPLm/J1I6Pn57xwx9+wMnpOZ4fk9eGZK+RhYcVQmLt2VdvmM3mpKLDh4MJ54MOOk9xVYur4M1vf4u6u8FxXYJuTLnbsqsa3OEpUjd4lkdAxLLeM681k+kZU73j3c0V++9Wb9dK8/ViRzcMOAod+pHHaBAT+B5Z03I/n7FNc4w43M08x8JWCt+zcHyXfJmDkLTasN1lrPcJrmVxpmwqljwN+7giIOqN8TYpurVY3N1gtfDpxz8miF2SYsff/N3/SZlr1qslo9MTepHPShkAjJEUZUOel1yOB/z8kw8IbI9ktWCbbFjlBbM05/OXL/k3l2MWqeJmW9BiIQz4roUtJeMowJOGLM/56sVbNvcLvnd+wtHREeNuH7cGqxOQFxlv1ivebzfcb3asS0WrDQJNV1g0Wc6ubgCB60t6cY+ybvDKhtHRBNO6tKrk5m7GV//wNf/0mw7H02MenB7x9HzM5PQUHUVwf4WpMyKrZdoLsfcp2yql4zmkgBEWWiiSymDCMdPTC86jhs3iDmnMgb+iWlbLgiU5QRzjXb3ncjrhwemYZDNmu9zz6PyEs+MJTbWnLguEdLGlz+x2y81ii6GmaRqMtLBsQ1E20CpaHMaTM5TdMrt9fUiNOQXKNhyHDue9EfFoTJZlNPkeLSxiz0a1Eo8WG00cRaQqY77dUZUZZd2QKYNEUAlYb3Lebve031yTq19i2xZe6GDZB/aYkS6gGfkW0zDCNZJV2UBdkOwWuE2IriVuIImCACMNRmiMkGyWa6Tj4XS6uK7P2ckYR4JjFC8w2J6PjCKKqsEUBZskRQhB4No0ZcHk8SMunn7Ki3/+J+bzGWEYEMQDaiCrS7wg5Ga1RxlFXhRIIZjtc2oBG6NRleLDyZDL84coJOvlmloVNPmW45MRw+MTzGjIi5t3vH15j/vmlvHAIx71eajHTDsRotvDdB3C2EPNW+7f7Hl9s2ZbGazWwseirG4xAvbfcVAePLvAfnzC+0hgljvG/TOmRw/o9Ua4wiFLM65u7kiymvH0jBe/+xLv04/onz/iRz/9OVma8/Lu7vDw7Dl4liRyHfK8pG41dVWx3SaHhyzfxbEknuuhqxrbdQ4RmT/U/+/1h6HJ76uEoNcfk9WaaWdAfzDg5Zdf8MXf/T2fffYFldZs1mtaVeO5Q/wgwnckHz08xx0OsfwelBne6JhEGdJKUTYtopUM+id8cT/jfv6OuqhphYVvQBqbQeQhHEPd1qi8pmkMRa2plACh8RxBaGsiWxJaFl3fwrWhtW3i8Qh1944KTWNbxFIjdEOuNNs8x0oMRmpu37Uw6HB1dU2VCb5erMjqGt8RWJbhYtLDCl3s/YLAlpyeDugcnTLe7DgbO1yeHyHh8MpaFvTjkCJ5Q1uWNJ0uvdGU6OYdwzji+PFTpsM+69Uae3TCPq2Iox5ZkKAp2aYbyroAIXBsG6ENtcpRdcVwNMb3v1t9qQ4wXN22WLrmqOvxJ99/zieXU9JVym6b8eL9PWXZcr+vmJUNf/X671FtzZ/96c/Yvp5TFgVW29D1LGphIWyXRdNgK81pL+J9suKyzBh1YzqRYtL1mBUhuRE4ns9yvwFhEJZhXezJWwsn9CmtkmfDHsNuh7cvvmJ2ewOOje25qOljnCZlUCacyBY/cLCEofVh1gqqPEeVJYIDaT/qhIRBTOSF+AhCVxDKw8EfTyZEnYBX335OUVV0BgPq3YLOKCR2BI4U9Ed9pFbU2zuKfUKjJZvMoIqE5PYdJx2Hj6djHoctpfLo+D5PL0+oZMjZo5/w3HawN++x/Ain2+Gzcsh6k2AiHwuDqlKc7pD+5THJ/FuiQYfB4w/Z3C/5zd/9LVlT0i0OaYfxpE8YxEjLQ1tw8+aOd9fvSJICp9XErk2SVdiNwHE9sD2k42FUewBp2g6udDnvhozPx2jb4uV8w5vPPmfaDwl9j04UctztcVfY2ELi25Ig9Bh0Qlxx4BYE/QlVlvHs4RG1qrhfrEmyit0uoVCGcVWiy4SOb4H00NWO3ew1v17dcfXV5yRJzvGjx5x3pszuF1x/9RW6qfB8n8rssb2At/dLLL1icTdDSJd91VBjsS1buv0JJ5cf8NHFJUFZss0dTKQZuCX1fkvP82G3YlPuMZahbBvasmTSC8myhNuFy6Afo9uSvM5xJmP2+4KmyYk8zS4rSFTDLkkwAk6yLU8uHjG0BgykoNPtMzp+ysQTPIlgU1as1ivebVKkkFhoyHOcYUzQCakR9L4DBlvC0JQlwnIQAtomo9eP6MZdPNMANYPRCTtWCG0QRcF+u6RuNOlyzWxb4kQr2kow9h3y2R3pPsf2Y3plhfICKtOSVyX3qzVFXVPkKY5o6VkxR9MIO/aRboDwB7SpQjserWXI2oZ1UrGzdvzs3Cdxa/7y73/BP/6m4enxiIvHz3EaizYtSfdruqFPOB5TrudU7YDt/T03r9/z7f2GfaMoG40MXJ48GBOGfYqiZlu2NArKquE+K7hel9j9M+yipNeVnAtJOGkYjPqMf/Ahi7sbXC9mOurz8ssveD7t8enFmFezhOUmI8lKJl0f2zaUeYlwPcq64IsvXjPsezSq4O72Ha7jcXx0TLfjs7BtNJKkhkSJQ3MqDMO+x8nEoTvooPZLku0KpxeTvaywrRLpx/Rti7bK2TcVVd0Quz4OmrpRmNZCaYHwIkrtUCQF6W7F6NkTOh884PWvvkTslwQ6QTaH5kojCFwLVQtUU/JqeY1vxjSdkFa32DJBtVCpmn3qkuQl5fKW+3fv2SVzijqjsSW209Lpd5DSARve7xJGvS4yGFK2LY8uzpgvF6R5xqPHDwgqSNOCDIt9q5BSsi9rmqoiPh7gex7bzR5lNMMoYF+nYEmGUfSdHUdCq9FVxdmwgysztDhwS+paYdoabSApKrpRiON6SCRa1cSBy+PjEe38lma9YuhGyGCMJwWDkxPsYs3tzQ2r5ZYaibIsZrstuiy5ul1QNt9w3B8TxD1aNFles9kmfHGz5KaqsC3BnwZHjJ2Gzfs3REDndIIMXarNnk2eMLu/o05TIik4jWN2tsdctWS1ppUSy/MJbItuvWFaZ/Q8h2g0ZHR6RisF85dfsNreUmFYb3d0Y4fhIOL50wd8cz2nKEssAb3zSwbplvvqgAHrBT7Nbk1VK86e/BQ2K9ZpwjwpiEXN4yePwfbRRlBqSbHfoZqaoiyIwpBVWZE3hybCGHMw9QmNayocx2B3u2DbmEpTNNsDLy0KMI7mshfzk0+e8MGzD7HdLsku4f5mzkoF3Fy95+rtaxZpQtaUOF5IEXr84uVLTro9fnh8wmk0pcgaXt99TbE74fLyOXezL1nc3zJ9/n32Zc3tV1+R1wXzouA6KzCDEcflHVJlBFQkbcVJv4cnfHaLDWnbYLKGBokXQG88ZXp5yXR1w/XXX1AJi8YLKIuSh72AqlaYFkbdAGXEAQ6e5Gy3JZ4U7Ip7rKLiwtH0J2doyyeMh6xu5uwEBJaL0ZpPP/kBx+dTfvL8gr/4i//El/f1oVEWGtu2QEjqqiGeuDwY9Xj+8IzjwZDN/Zw0SXm33lJIj7QsKYqcf75ZsU4rWn1QTIe2xXKvWFclwrF4PurzaDLi9f2K+SalVu/4RErOT86IO97Bqra1aG8a2rbEkS2edTBMBZZL17WwWoMUGun42G7MMlUMB11E61LtFNPLM7a7JdHxEVMjuJ7P+eKre9696/L67TE/++m/YRjUmCbHtQWr7Y6sVijVYtf5AYJlbGzbJrAdXEsjsh2Lr39F4+S4VoTUGs9xaVVFKw2NsHn2w5/x5LRPJSXTyMdGMhkOePLoBN+VWE5Eq1uyLKdQBe8Wd5R5TYMgqSr2ZYOFwRGGyzjAtT2y7Q1h2OHnn/yI/vQMFY6oVguazYp9XaNFn+nxKV42p6n22LaNtD3iKCJ0JNKLWOcgjKFWLUYLJGAJqJoGaWnaRiONpicdplGXcBIdgNtRzKg3wov7JKrGloLtPkXc3nG7WXO9WjBSXcI4xg1DvCBAoGlNSdTtsM/eIskJPQiVRKeK3tEZ4WmPr4c9ZusMfzikXM/xhcHxHKzWYElDVpTkWUpUvOfD8y66ylnvUvwgpNbycMYJTVbV7MsCaRvqtEQYQ4UglILTMCAYnfLFek/c6dEdHVG7Fl+9+JLm1ZJwlhH3Q8aDkKg3Qm+3vLnZIW/WlEcLnMfnHMcRXneEbKHeNRQpZKUGpVFaU1iaomzwpcNR1MNxHWZpzd03L8m+bfn08QdMxWOmQ5uRZRMOe1hHQ549OOYff/M5f/N//4pyfc/d1wr/2SMm5w/4+IOPuF6vEbbFpBeD0XiOw+0uRXregcNouTiuwLVtpr2IKPZZbjIWy4S6/gPT5PdRfxia/J7Kc2ziuMPd3T1/9eYtP/3v/gekMpyOhmxPjri+uWUU+pjGRqmW8WSKZ2pOj6dMp1Py+QLl2YTDmNdff8O+rtmXNWHQYTqJKaoVzx4M0FVN3hg6lovXSPrdHq1nsVvesTJrct2QO4JF3ZLUiqQWNK3NAwdizyHyHWzLxXEcvDDGVhB7Lk87QyZxTLFfcLdLmTeGd5uaMl2TzxaUtcaqGzxL4tguSkiWWU2ta+7SkleLHUfdO56Mezw9P2V8fsrDo4gnR5/g2hJleWTpBse2UAjS1QpbSiLfZRraiIcPEK7L9374A3q+zdepYrNbYImWlgq3F7K6X1I3NV54UC8GQYDKU3rdPpmCulFMfI+rd+8RUtI2LUopfAlRHHIyPaLO9tzP76lxmfQsStGA8rjKS0rVIr0O//kfv0KVa4Q5mFgC28GyLaJ+l0Y4vLp7w9GkR9cyZOkdD46fspMN2zzF8kPKvGKfV0wHY6SpSfeGqjQYAZFtsdjsKHjNyfMfsQuGVMkSu6ogy5C2g3Bdvrzf8/HQx002THs+vW5AaXcpipK7qgZhkecVLZKoL3GtirOTE0Re4KkKUQvq1YrOJ0OEK1j5AaKt6fQCQjsksjS+JQjtFiMslNK0qmW5WJAkCfk+5SJ2edCNKLOKxWxGGE0Z9Yc8vbzElRrLWtJxPHb5HcX9mq9v59wXB0K9sSwMBtu0eE6X/G6OVi1oRZW+Z/rxGd2XIcPUMDItw6bg5Phj/O90lHfbHVcvXrLLckIDgS1Y7SvqVlO1Fru0ok5rQpnzLIy5PHvM8fE5UblGFCtax9DpD/jB5QXfNBn397eIYQyqIpSGcScktCWPxh1EGHM0HWKZkkEgGQ5jTo+f43sO9zfv2OUtq/We0XDAKslQqkUVBd0wYJOuGPTHBM4hVSGBTm+E3zni8kd/yu5v/4q+C7SKwOuS2A7LAn7z8paea9Hz3MNlq27xekd87/yMB5ePGbke9XrObDXn0aNnhL6EZMk2amkqgSNLuqXhzWZLx7bQRhNYguV2R6tb1EfPGU7HKAHJZg77jK5R3Gz3lEWN07T4QhDXJYEw7Fdzzk9OEaIkLe5xrZpifUuVlYjWMOmOCJwOThBgWwIv9AjGQ6pkRp0sqB1F4LrYgGdD4NlUixkq3zK4PKZ/PKVpagJfss1SxufnaC2hKOiGPs2gz/pugyorXvzuS/7sz/9nqn2CEA6lCZiGXVy1JdcC23LY6QLdKpJkB61C2tBzDitQujWsty3f3Lzg/b4hfPCQ0fOQ5auvsbRN5/s/5/MFjB484vmDp/z6n/6WX//DC7q/eckn5ydcjrr4QB4E2NKiVRovz9mpguu85LPlnlwLhuGAPzp9yPMnJ1RZxWq7RekdSZaw32Vsa4XldxldPIU2ZWTldFSDWlTs2jHdXkwU90FITjsx5f6MbH5H35H87KMHzLYFWA7VZkGVp0jboWgL7jdbdrM111+sePZkysmgz+1sxT5NOH9witKaqlYEXsDR2IFsj1zvsRvB//V//C37b77g8mTC6OSMqGtzfDxis0uxpY3nOlSVoShrfEvgCI3WkkJDpRssS5Kle4p6R6sUQRzhOyFf/Jf/xub2NUfTLo5jk6cV+6Kh1uBKhaNKXKERUrAqMvqOTWBZCEvxGItkXTBbLVntFixXKe9Wa9ZZRqEFwtNYZIyTiEH/gml/Qttm3G1WdAc9SkIGgyMuLia0luHdy19xcVrw5vU9/UBS5ylhGFLXFdu05FwpwtCjP4kYDQJSJXDvlwTLPaX02GYlruuitQKtOb+8JAwPDDK92JJZB85A6GhaA8KxScuGqNuhN+xzPoqZdEOauoNoNbqFihbhRRx3BdvZksVqzbZosD2f201BW1SErWJgGX72+IThUYjbG6BFQNlIhpWF3b3n3WbD3fqG28V7Bl5B0IFer49betjagSLnLA7BAukdALKvr+/Zao8yGPNClSxuU+qrt4ziJSedmJPYpd+JOHvm8eCjc4yEWQIybSnrhjerDcNQ8vh8xIfnUzLj8e7NawLbotptqTtddtsZJ3EEbc3ttsS0Dde//GvGgcfIt5lOJrSmpRvF7PYJGIFjOfi9PnVRME8ysqbGSJtW2lTN/2d/iuMIIwS1Oaiv9/sdSV7wbr7nJjGcXlwinJCTfsCDyRQ7T9jcr/j81Zqi+4Qvv33F/fKGfTKnSDeoVnP+9GMe/+h/4vWvf8XtZ/87RbLnbr7lSS9iOIpYuQFS1XTPLvEti7pYk+4yllnCzXzOt1nBvFHU9wuaujy8/tsWQ89hIG3ayKGRh2Rt7kaocs/mZss80xxvS6ZHfc7OLpnP77AsTer6BJ7+btXqsK62zRWVNizTQ+PtSuh5Nk+HHT549hy/P+Q3qy3bKgI07+5mqKrik+99j/Goj1s39HF4NjihEnBlOoj28NJdlA39QZ9nZ0e0vYDHFw/JNumByeTH9Ec2l08/5u2bV6SLO3LdsG8UrhNiSQfhesQeRF5Armr2aUGMoe84+K5FxwJR5vSigH48BQzKVnQHMWeJy0UgWBaasjI44jDEyVuDEC62E3OV1+ybitVsBrZFVeYopbGloR/FxJ6LJaEoK7ZZipI2m7/8T3z06IRPn5wxHECe58x3GapV1HVL2SikZWjqhmkY0EdRz67x6jOEtHl39fJwfocRTZPh+jbWaMqnH3zMH33vGbfX1xTs6HY61KXi4uwUKSS+EGg/ICtS5skGbUputhtyLSDo8L0f/4Rqm2AXayJdc7td8Pz5Q/7kJ39M9/gj9vuU33zzjvep5PzBnxBo+Pr9W768fs3Hkw5Bu8Ur9wziLr7XpzM9R7qC7bc3hIFFWDhIJYiFRqLpaA4qYsdllhfkrcW1amnu1nQcmzAruXq/w3QmxJeXTEYDOt6QDzsjsq9+S5GuqIISu7HpERBFAU1dYePhGQtwaPIUthVlnHN8fEK3P2Rze8uIiouzExQWG9dB5Qlx4OFbFsnqkKAYtDnZ628RwmIa+/jdAUF3QrZcHsxFaQatwuiWKquxjcYFPNs+wOI7Q17vW3780XOeffgBS2V4Oa949pMnIAS7bMN2N+P9m1ccOyU/Ox5w7AWslls2q4JVZ8vJQw1uAJaLe24TTiI6G0EpwXEO/dw48EG01FXGMmspyoC2BVvA7ewFvScRF50xg8jHBC4qCKiwef7jH/PV6xuS5Q3L+7c8Ou/jSIvpZEw/iuh3Ii6mI5oqp9At821Kpy+pq4pkn+O5FiediInvoeqGYrtluy/Ruv2Xam//VdUfhia/pwqjDrYliaMQaTu8/OV/5na2ZDye8OnHHzPsdrl++5r1ZouWFkWyw+0EGFXTpcJ2DHldH4BjxpAVBZVS/ODBkOOhhaUH6KIh1Sk3yZrZfouooKotxKjLOim525RssgpHSlIEhVI0RtAY6PotEwOv1nuCOOJh7OP5IZEnORmP+OiH/w4rcPnLv/5LfnU1Y1mWKGNhLIllHywKXSloLIntNPSCiNPugLypWBYVq7whtCuM7eDGIZbnEEVdRFPSNiXalsRRgBAC4/jEwwnZakGbZVS64oNHD3G7Q0LVEBhB7LtsdzW6aejEEdv9ijTPaI1GVzVBEOBJgRZQliXj0RTpOGwXM3RVoOqGtjXs0oxOP0Qh0UYipc3dco/vR1ihjz8aYWX3PPAMdgHKCdini8MHSkgcP8SPPLquy+nJFOIRv17fHy7NGLqexPE8HN9jo8CKOzitxlcVfVsjlaLWml0rDpfkNsef9IhHEX/8R3/MyIr53X/537h99w3rLCWwfIwxzDYJWpWcuSCEodMJOR8GrPdgpCApNLVoiQKbyHYIA0noNMjIIxAedZJxu1oxmN/y7IefMIsD0mxJFHgEomE6mWBZksiz2exT2u4JVbMCVVOmKb7j8Pz0hGy9Jrdcnrkek35EV4LIt2yWtwgj2SFoki3Xtwu+WVfYfkiGJLMdZlnGf3h8TlivuTg+ovWPyesN+ew9uU5IiprvD10edGzsJsN3NMFohBX6xJZharfYo4BvVxX3ac1eCWolqYuGpK6QUjDpxlwOuzx4+CmXP/oZ1s2XtIsv2S5n3Fy9JqCho6HudlgsN4w7PmEc0p2MaOuasWf45AeX2KdPqVZ3hE7LqGPRNIb3b99jez7z2QIhHVqjOZ2MkK5LUbf0Iou422Fw9hRHl5DdcTQdUwVHfHuzovG+JKg3PDsZ0mQJ1uSUeWbxmxfvmW22jB9ecjoZst/t0EYS9o95dPGAi8fP8dyQ6SCk3u/wHIf9as5KV7iqxtQpoW3YNhWRdTjEY9/FdWz6UYD3nVKvMx6gLcH65SvK7YrxoE+WZqTFiqlvY7WGSAoWac42e8evbtbM64bjR9+naxy87VtCzyFvNKppcH2PjhIMuj10Y9C7En/8ANdSdNstvu/iOpLYk/i6oKpzPMtCZAWruy0nlycI0zK/u0XbNmePPsD3A0yZI5TG93w26y1xELC/eY3VO2Jw+QFOe83nn/0Tom0RTUPsSILxFCMFZZ6x2ReMfJuB71DVNa+XGQ02SoQkVcYff/qUwFX8NpmRGQ85POXf/tm/J/nsd2jPYuT1WFlbvl0l3C2+4ZOjHk9Op5z3S3xpUVWK+UZzs5rx5XLP3mh63R4/+f6H/IcffQJiz+3Ne3abPd+u5rxbJOzyihaBp232v/17OnZL2YtZRwHdbYQ/Twg6Y7K0hHLD2fT/Ye/NeizJzzu9J/Y94uxbnlwqs/auKnazm+zuISlxRhQ10owheDSAAQMGDPg7zY3vNDZgSxcDDUbWeERRothceyt2175l5XpO5tnPiX31RfIrmL4wf5/hj4j4/+J9n8emYWiUiogkidRUCa3l4TabtFpNBEpUSyUYBYzPT8jjkLj5UC8AACAASURBVPl8xqN4TqdbY2/Qxqx5mIZKlkRIkkiz2cHVDMrFFEFesHXvPnVHZv7sSw46LWotl8PfHDIcNFms1r/dmRaIk4QkitEESMsKP8vYpCm6rpEWBXlZ4Wo6nWsDtGaHztYel2cravY+D2734PKUS7HizWXEajVhlUYoFBiieFWUCCJ+AeephKzYRFHGxp+xWoVMViMOJzNmUcBoGV2V4WVEGM2RRQ1DO2OrMeDeTp+GJTMLJ6iGSWjaOM0OVt2h1R7gRxve8br83T9+gkGJZdlkicTlOkGRRFQhR9NVDFVFWoVEqsBULCmEkobn4G/WZElKGCU4TpNaYwvDcXjy8Asmj57hRymOKtGydRTLYZVClCRIsoJhu8TzSxxNIq97rGcriNbkcolu9ykuRRAEVFlivolB0lhHGUmWoBkqj89XWGsoNR/R7CMYHmm+ISVDMDRiVeV44hOdF0itBoN7KrlQUEYR0XrC8u0ReRzjLze8GM0BibmY8AaBx6dTxDygp0p8b7fB3u5dbu7tYDkmi4szvv7FKxh0WF9OmE3m9PpNTN1muprjmSG5tSHbLAmjlDiraKoWgqLgKAqFIuGZFkWWQlVdcRakir5To25b1PduIuNjCCtsXcM0TDZxgiLJeHnBbLVmEyaUoowkCIiiiGMYaIZBTolpKESrGRs/ZOQXvDgLGQ46KIbL6dmMQekTliHjqOTlRYhfv83laIa1fZvd+x/x7Md/SV0vqIqSmhIx/vV/ZfrmDEVRSIuQ0WpEXDW5V+vQ0WSsTg175xqyV+P1Jz/i6fMXHC+WFLLCqhKRZYWhY5AEAmESU1bV1URxHBGkBVGYEq6XDL79x3zvT/4No5/9A4unnxIvJkyyDXVPZxNnCFnO1rUhplEgB0uMSrgCzVYFWZ5fsdlUkZqu8+1bNynqLb5+fk67tkFwXExRQi5LLqczTFmG1Zz10694fXrC08dPIC/ZGd7m9SjDUGRU+QpQfXt3h91un7LdpVZrMrl8RqK67L77HsbJK1bBHF3I8BoaVVJhiSpJJbCpJEZJji5KKCVIXE33Sqhcb5oM6zWSLGM43MX12jjDDvnyDGeT0nEM3IbNcuNTCCWCKpDGJY8XIZOsoqgC0nJCVl6ZyGRVJUkiVEHA0FVUVaGKIM4Vvv3ObRrNJkdnI6LIJxcMji+WaCIcHOzwznaLMg242BSMw4SkKJDEgoaisF9vU60i2qaCJGvYpkmjVtB0pghphIh7pRWXNNQs4cXzY84O39C2cwxDY9hooss6qiJQ5jmGooGgkJQCqmOjzBcsFiG1ehOrs43NOePpBWkVUN9qce/D97GH+yyjiM+eP6E9vMO3d24yvHUfaxHwcbHm6O0zvvibv6KnFahZhKkqyFKBYdcQDA0lidntuPSadRaBz3g2JUlyyhJWpcwqVxAbV4ZLQdYpK5nNcs1suaQpG6iIHL8+4vDNG3Y9h5plM+ztcHiasAxCFF1GVjQMVUaRCvJSQM9UmrbN5XLCapbxthSx+ylyccT4+UuUTYhVmaxEk9wPsWQBiRJVvipCu406JgJP3oyZhymiqlPb3kPSY+LYJ81SSgHCJEWsCrqmilGVdOsuF1HG5TIkrAQOanVuNvvkS5/W1jX+7M+/j+Z4vDpd8Pz1a46ePmTnWx/w+OFDnk+O+cG1Ifu9PqdvXuHPI6JNirfvIsg6smZx9/Y++WLFerPBtmX2Bn0cz2G6CEirgupixqrQkXORPC7oyAblxQk//dH/xZ/+D/8erWMSLGPUdgfJNPC6W0SyTrSeUIUrBOnKHGU7Jtu9DjXLIKpyVn4IskqY5MxnK8o8o64aFIsZp6OYumOy320Q5jNESfr/9pL7/5P8vjT5HUUQRSzTot7aYnR8zOs3hzz77EsETWNvdw/ymJoogKGziiLKNGIzi4ilu4hlSafpULgyuDYNz2C75aAqMh/0LMLzI5abBFFQaDS6aGbCKi6ZpSKPX5+gXMgkoU8QpiRZxns1lyAvyfKSpCxRRQkfmZyKKCt5fDrl/v0Qy3HoNjpUkkzdKXh1/IIvTk8ZBT5FdTVOp1bgyiqSLOCUFUPHxHMdbMtClJWrB6KmkUkalm0gFhFvz8dsbw8oqhKn0yILV5SqhOM4VHnGch0hFTlNzyWZjBnPLlElib5psjo6pfWN+0R+xOn5OYP+NulkilSCmJWokoyimziaipVFoKlImoFSpDhKRZhskMscQ1OIqViEKXGcslWzYH5MqAiYusaXp3Mqvc7d29eR1CUrOWZdZZTBJYJQYSgqmmEz2BpSBSssucIqYjQ5I0lLfvbyjP/u5hZFXlKVCnatg6rIuAbkQUaMwOV8gZynvFlHyG6LTTRBjBL80Gfx1qD621/RUEtcNWer30NeL1n6IZosM2w3kKqEVreOTYptW9RdA11V0AyT9XIJQoWhyRiywKDdwlSuRustw0S0ClYnI371yX+jkEKqeIGmVBiqhGu6mKaFnKekgY9a88iLFCELiZYTFEpqtRZvJ0vOxlPa7V3m0xKrGtOo1amKDJGS1WJBJHlMT6ZM/ZhSEDB1CVEQyWWFdy0HWcxZredEeQiSiFhFV2Oflsh3b/Qp51McQ7+C4PmXqPUmsurhNbfYHu5jugs+n7xhEmQkBexcu4V/cgpVgakIDEwRucqhSBGDJXK0xDFNCsvg0atXqFlCp+EybHj0XAOJAsM0GU+WrIMY15IwSp+OMCdoGEhFjJKHPH72Ft0wyeKQ9WyJ4bpXGj/LwVAkZEUHOcVxbCylRCoE1mmG3d2lyCTU7Ax99ZammnKe5xRpxtHhKQ+fvWE2n2JoKrtbPZpCge1alLmI6Vi0Gw3ajk6j3ca2HRLDIJgvkCoJIS2I/JTJMsEPKyZJRVxUtBSJWFJJFZOeLHBnt0+n3aTW6SATIZQFclnSk0uEmsV6sWYVxGRpRhKXZMiEeUYmV4zjkDSYQwDJZI5KgYiIpYgYqoiblciGRbac4jg2O80GuemgaBG6IqOpIpoE8SZg6Uc0TY2j8zndQkLe3UYRZZbjEbqkMFd06rsHkKRsVivGoxFFljLzA1bTCVp9j1vXb/PZoycs0xh/s6FIAhzDYKdZR6akig0MsaRjyxi6Shjm2KaBZnmczkKGO3t84/492k5BRyv59LM31EyPP//hN3m+0+bVj39EIQioqsEmS/HzEn0Z0K+tmYg5TVVCFAQWm5jXoxVRnGFrEnt9k/19B9kRmJxMeHs+4vT0gjApCESVTR4CkKUx6eKCzLaR67vY1hbXPnwXkhVZFiN1BJ7+8pA0uCTvt2g4DoO6TaPTB81AUhQsx7kyGJRgmhquYzO5vMQPN5SVSD5OWaw2tDohCle2HFXQ0BURV9NwegOG9QZ6Z8iwYbGJluxe38GPYi5HF/QaLsOtPoJfEacZWZpfXQAL8NOUOC8wDQPLrqPbTUo/wBRFLLGJJjpIOdiaza27B+wPXFaKhJ+7OERcRDF5HJAXgCRg6jKVqOAXAlQGI1z+/vlr7rU0RrMJ41WILqv44QzX0OgaJmHlsl7mpFHMKlpyfJmS+2O2bJN2t41kmlfmHVlBcZps33ifUZEgJgI3d67x6MUjwjSluTUgvDxlGaR4jnG1T1IUNDSJ2JBJS3DqNpKikYZr/CRFQGE9TZDxKYKAvWadcq/Pl6/PCLMcRdXotBoksw1ZniNUFV3PRimWTDcxcqPHRbok8Td81DPRbZv67W9SeVu8ffMWJbtkuVgzC1KSLOc4rNjMcm6/8wBRbnP5doRdnlGFUyQJZK9F89Z7FJbM6WrKwGjy+PScHzy4hdcwWFy8JEkC5nHK2Tzk5TwmLHMi2UToXQEodd2h1xuQ6k26veuYrkXpz+nVDGrChK8fPeP10Tlv5jN2CoWtYQviiItlQjgbc3y2JspKbFmg3ahhCCUdBWJFptntM5Ed1sUZongFCjfKnPPLKe72PrJp4tk2q01Bs9lgfXaBLcsEZUkQpUiqxmq5QBJFVCralozmuLTqKrqQohouQiXy9uVbGnWbjmtxfnzGQMjQKodHb6Y8Pl9ykQiEwgzFavFuf5u4BNfx6PfaBKMxa3/D5eiEzWbC3fsfsRmN2BZDXCVnXUKl/3aizjJotW9i6TJPTk45UCRyw+ZyGhN3d3j16Bc0yBmaOi3bQLcsVlnB48kK09ARJY34csze9jbv/8//C//wlyXl8WNcVcLfhKz8hFbTYn+3h6PB+LWPrCiEWcJFFRP4AZoi4yoSe57NKvA5/+IMPUvZbtWw37nPJhNxdZW2ZdL3PJTZBT/5q/+dF6dj9rd69AfbBBJ4ckwQ5zS9OnKSs133EFUD1W6QRD5REnEZxSiXYxwpI1qfUMtDeg2X1C+5KBLWq5BVvMFPBXLkK4OKotHQFPIoQ9FTdhsC1wc7dAc3sfv76I0YoYgo8gluTWe5VLjwJUpJwFRECnIMS0INMzZpgaKIWLKGLqk0a3UkqUJIAvqdFvvDPv26S5VG1Fsd9P4Nrt//gNHLr9j4Pq3BLkmWUcYR3/ngG9zf0omCNf/bJ2/4/HyFTsW7dsnHuy1eH0fUZYHzw7coO0M0s0bT0ql12xQrk+nlnGWUMHrzDMNqsRyPCMSA68Mmbc/DUBUEuUAQBIpcJCs1pvMNqipwcHCd9dEZebzh7NEnZGGC7y8QBIH32y0kSSKOAvyo4Pv/7r9nPI25mEyoPv+MrVhgNHrFB9//CPv97/Hqp39LLoukqgGyhqIJ2L0mzX6PRMgRFI3s1XPCs5BlVFCic6Za1Ib7vH+nx05NJMwkXp2vOLNbiM6Sa3qN7uAudmeLZ4++5OXDn5O7BkLdoxJNpos5nW4TzzWRZAVZUUjyGEtSaDgtTuI3LIIEZw129mvMjoxpuERJzrCpI1Y2leegFAWqpkEhoOk6qixzPl3xdh4SFvDhVoObOx1+c74gSWKKIqcoCioBrvW79CUBk5L21hZnr88oLQ2xcwfLs5EVCXv3Du/90fcx6zbzoGA0X/Jf/uFnvHe7T90z+J/+x3/P3/zH/5XlZsXOrSFJOGAznxHHAq3KRDNbCAJcv59TBjnHb99S5CF1z6JsbpG0m3z+1SMWgsrw1i36usyLl6/5zckp37INdq2Mhz/+r3xL/wGq1yJPbX7x2RMWF0fIukKWalRpglSFkPi0bBPHNDAVmRhIBRnL9ZhMJkRRSNPUsMqc1TpDSFLyMGbX0mi4FspvbXa/z/+7+X1p8juKLEGz3WF0sUQURTTd5ub+deqex/TkmFeHh8zjkEiQsB2brZpLVVUkaU4quOhFhG7X8Nptbg67iPEavSqIl2uOxwumQUamGNzfbqIWa7JVSb3T5qDWYjR7y/MoZpMWZFXFL5YBiqJTFSVQYWoqLdckESXi2McRK9L1HE0TqQ+v4/OcT371C37x/C1CntBSRaj4rX5R5KDlUtW6FOdjupaNZeiIgkSRxGRZgUrF7Xs3kEybi8NDZqtLknCD16xjdQbE45S0KlBVmawqKCrI4ghF00izgmUYY56foacxjmujmxb55RpEgXUUUAkCRZzS8Or4mk4ShTiqjC1piIJAo9vCLmMSf0OaRHiyjCybRE6d5WxCEIa0DIl0tebZYsPTaYJawh/tNtjfskmH36IZJXz66a+4mC/JSgHdsPnuH/9bOnHI4y9/yWQ+ZiULOJqBLKmsooqnK5lbmcXeD/6U+Ve/4N5vfs68iHgS+RyuKlxFQUhSNkVBPJ+QFQm6IhFeBiCkPFxNadsmH3/jAVVtC03UuN0RUawardaCIlkzGHRIJqdYNQe5zGjYGm6zSX62RNclHMPA0jRqpomEiO5qkIbEVUWQxLx++DnjyZgf3GsiVRW6KmMaFulmQ5lGFEWB7nXxTI26XJLLJYWuc7DbJjl+w9bAoll3OagP6LQEoiDCq7lYeYSQltTMGl2t5HI2w08KkDUuVyuMyGdelRzPZshVwbCe4NoGLUtDVzSksCSYRjSEHElU0BUN/IRys0R0aphlil0/wLYvebd1jlXETOMcPThBMkqUQsGSwBQFgiQkXj4lfL5Ay1NWqwWbzYYbzRbjyxFmVeJpOrXhLnnuY5kSX336lLIo0VQDBQGDmFanS1Y55FFIv99hPNlwejalzAqMOEYyHYokRZUEolSgNFU8x0UVMrJ0jeU2kEWL9fEJdw626bsS8zdzSnREr0MJ9EyJuWki6yaWLFKmCUfjKZtS5cBssScUEK/JFhVJnpFmsJiMCS+OSVYLpvMlJ4uIVVYxiUQ0owbxko6SERsOoeeiWxbBfE1/9zYYY2yxJF3MiFKNahXjuTWOF2dUWUmUpURliiDIyIKCpqiMXn7F7f07vP+v/4KHP/8JWRzQMqDSFEJJ5Ms3L9myZGqehawAWg15saBmGSAJFHnO8WhGleaUWQFJzLajEk0XeINtWrZJEmwQophqs2I1G1FmIcvlguVyjWtYGJqF7rV4+vALnj36DTS7rBdT8tgnLlLkuU1NrlhvNqR5TmurTqduk+gilZpTag6bzMa+/oBvfu9P0aIpvi+zc55TBkvmoxHrbEm11cLV73DXqqPwlqkfYCtzFsEGQxaYxiKKULKOcvIso6aIFFWBmYdU0QR/rZMHKXIsQSGi1m10JUVYLSkRkTSTIo0oFB2tv09YegitG9zYbjB99RhZL3n59UPWy3PiOCPWZJbLNa1ajf7uDvbwGv4moIwjZKvBMpOQvRa5rpMUBWIOUlGiiSK+H3J0eEQUJjQ9izwM0B2P2zsHZOuI+vYtjGRK519+h9KD0yevMWSJ0WhKe3sbyU/R5SuTTFaJLOKEKCuxdA1d1dG9JvLGp+1o2PUWWnuXx08fIp9ecP3ehzy4fRepSFmrU9bRMWHmo2gCIFNRUFYiflYS5gnnfoQVpVSLJf3hActkSRFucGptqrSiaV3xjQxTI68SDpMNmmFh5yKT1YZNGrPaxJRCjluvszAUMtPBMTVEzcH16ghZxb/87rfxlxdMDw85PT6h5+pEWU6V55S/VSnHWYGkGQx3twiSFEVXkSWBoqooiwI5Cphcnl+9W2ybfr0Gw5S3sxXdXhe73eb1eI4fhLiWiSVWGGaNOFvw/HzKm+maP36nx8E7B7g332e+Fri4+JznmzOSTYolidxt2Ow4JmEmMyoV/vgvfsDjOXz2H1+R+SNqUoYiVtj1fd774I+4dXPIJz/7EQ9++KdMn35Nkqcoeotmq8kr5YhXkwWHc5/TKKASRLLMp3x7xrut29z5w3/DD//sO6w+P+SdGxZnX37KyevXiMUKIVzgVQnbSs6joiQXBCaxQM1uMhsfo1smIiWuruI5JrYMUpkTF1f2sUbN4cPdG2yNBsxeP6ImF7RadWZWBzkPSRYRZbBm0NlBUE0aqsrqckwYRHSaLQ7nC9Isw5QF2oZKw5QxdYlWr4nmyEiay3I8QqxErm812UznyEVGruj886s5ry5XBEmCKknUDYv33r3D7rU2szBFeXCPew/qPP67v+OLz14S+RkiIrOLC/a375GdPeSDfo2xdsUgEbQarqFTr3kofo2+a+PaPV6P59yqu4RGxVPlatVFrQp6jkFvq88ySnmzDNBMmyCpaHZ63L3WI5iu2N3ZJk4miNGC7V6H6WKGpquEacbW1oDNxSlFll7xoIqS1dpHBDquhSLA0fkFi6QgjxPGUcq/flfBUy2WkwtubG9xveExvTzj1y+PWMUZn4+nmI9ece2dd6nqXU6OTrl7rUtHkhk0mkimw/noDJOcR68P0RWdzp1btOo7OFJAutkgVhXjIKJCotVpY8YFj08vSPOM5t53kKIVBguuNZpIpsrrwKczEECTMXf66KZPZclI8xXF7CV5pSKUMmGSsCankktEG0RBwhArXM2k4zVoNRo8uHWbxvaAt7/5lMvxiMOTM6pwzX7XI1leosgyrutS1C1OTk4I4qsfUKbpUavtI3o54cUr/mivSbVKqClwzwAn29D3bFRD53i6Js7P2DnQcC2DrW6DZRZT1TSieMTrp79BMGtkeYnnXjG1au0Gmi0Qpzmj2ZjJ2QV5ItJwWnSbNmebGFm5oKZJdMSCcbiENEJXNfzZitVqjdvqc//9D+jdfMCn/8ff8p//+q9Yz3zu9np8eHCNcrFgZ9DnULcoJBlncIDVaSAaFVrdw9neRQrHiKpD+rRCqGTWYcxaUgjEkm/2TASWbKKMOJGxm23y9QhFhPH5mO0bf0D//Y/o3n+X6XLB9PRrtCrDMTXkepN+r4ltGwhZjqzrSLpBkYJjNtlsMqIkZxNmBKsAKXL53nd3OfZ9kiDAqTcoFJG4rFAlEUlRUFQdp9lhvvaRRImhZ9McXKez9w0OtLdcfvEFVBVUBYau0u4NuNetU8wX6M0tyjdzsjLgG3/4fQaiyHz6ko/euYtds1kFKavFir//27/h6cOfIYbbvP8Xf8b2VpcPv/kOz3/+j6xKC2X7OlUaUAo5gmoh6R7W7h5JtqA2tFkEFlPfZqrYPHr0lNitc/DtB3jNHe7ffYdmzeFyuuKnP3/I63/+BOl0wr/4cIvH//QT+u/cxhmm5MtjTp58wRe//Edu7Pcp4iar+YzNJuSg36XTayOUFZPljErTEKOIJAqo6Qp1sWCxjKCoGGgSUgVFktPxPMTflya/k/y+NPkdRRRl4ihhOh5hSAq2bmH1hxwdHhLEBZaskog5sShze3efRqeBGPpYikxYCdQVCU0WMWSBG9t98ihgen7KfBNyOAuYRzl7PQPTgtE4hDxhFS64ee0uZbagiHNelCHLvECQFKBCFAU0AcSqoPgtIMomZ69eJ69y0miBsnML4XLE0XjCySaha2o0lYy0yPF0hZqhs+fqCLbEY0Hk0k/Q0orxasa2ozDoNelt7yJd/wbB5THbu31qNjiWiVxWVHGCatr4szlZIlIJKpWs4jWa5FGIWavz6M0bwnKF5zp4goAiCFCWqIqCWpaYpkVoOpQljKdTNFlEqgoauoyjadRNiWqTsREq9gZtfFQWgsPbs3PKIqOsKsabmEpV2N4bcG1fotoEODWB1q6B1dzCPj7DCPd5fj7lfLZGKAXsbEVvq4vob/H4WczJLCKNztF0k7KQWas9LkqXi8OX6JbMjZt9fn04ZuQnNHQHo8xoeTaeEnMaJpSiRN02ECyDxSbAVCqankat6bGYLNkzBG5e38MbHDAzXD796Y9xPIMqi3E8G11IQZbYGzp8+lzGsmT6wxqWpZFnOc1mEyHP2Fz4JFFItl5hCyVSliHLKlKZIFRXpqflxSU1XaFIIpKT1/SH+7jXWky0lCAt6LgS7k6dlVbj8jJDIkHJTaJgw6Ovz3G1ijopRr4gVSsqFcQkIc6vSjSlKmk2XCZxQttS6GoChi7S7TVA0kmjmCQM0VsalayC/Fui+2pOLmQUmsdg6LKYpTy4MWS+9imTAlsUEE2VizgjSjNezwMmmU9+OuVmrY6dpUhpxu26y7tbLa7dvcl0vSLOMoLLM3Z32mhuje99cI/x5lNcS2f75h1sNYd4jSBoZJXI6fmcz75+g0LFwDNRAFWoqKorUJ9m2mRSjmaLRP6UcDan0R2gOTU0AYLJOfOztziuw4G3hd7aZ3N6zLmostXo0mjUISsQyoqwqNga9Oh7OmI4J14WJKsp/vIFktLm6PQVz159ydv5lHmSIosKjiwhlQVdBGRFYZ0UNOScQBCIJZV9Cy5/9SlmW8f16myikjxYkwgGz/2UUtdI05yOIrKtqixzAV3T2HF1bKNkq6ZxzRRRb15D8md0XAVB1wiNAXLoU6/LiJpCsgmxt9vI4hHDlsM8SrmcLZmuQzSxpC8LDG0JKc8o1wuEdpea5XAZZsiaRndnh836iCIJcUwFWh6aqBMkOdcMmS8/+SeE1QV2s4kp5SyKjKzM0KsESdIxDR3SgmazRa1mUpgalZqQiiaivc3db39IPS44+uwVr3/5kni05N51na5ZkHVUwnMfs9/Dq/cQgwuk5ARDrQjSgo2fUIkCy7QEscLRFaRMJskrhDBlPrrg9cma9UZkUPeo2yHn0yX5aoOhSCSIVEDNcPGsOpenz2j2rrNIl4yWJSklNaFi0Gsxy3zebnK2O01kf0IahlTLBVJ3SP/mOyRBQK4biLLIZhWzfesdgigkiyOCXEQSVLqNDsN+h2gTI0siVRFRFDGm41FJKhYJTsuh/95tZosXrJdTru10icIYwdBppSJJlkNRsYpiojRHVjRcu46riLREkd71Ayw5AUlAdzKc2wNcRSFLzjj655xCqLD1nBYi83xBFaxRRJkCmSSPSLIYSZQRBREljfFsjcn5a+bnUJYRqjZBKcGUdSRpjaCDIVcYqNiai2GrUF1gyRJ57DOPEiQzpZ5mpBufNMkpopSa00Q1YKkV3L9zjdPlgjeTGXkiQl5SpAmiblEVBaIsYbWadIyM0dk5olhh2wbW2sc0FMLMZ50kBGHCahOyL8hsdYckwPWDIRcRV2W0ptBstVlHKaJrkRUFrmvxw7tdPr7RQWl2EJ0aZ4++5Cc//zlFmvHnHzxgqBbIThvV7nHx5hhevOA//Yf/wLgUqZKAME2IgYbpICVzXGZkixGOJBC8PqKBgBCnFMGcIitYbObodYfbqspivaCSZLY7A7p6F1Wvo0+fM/7RnOuNLSZPUr76asWj0RJD8kkzHyGc8U7b4If7Leo3dxhcP+Do7IwyD9AEgSRZklNQcwRyJAShwHBc0qRiPZvSRiI5PaYpidzd6SLuHqBHKW+eP6GyNHREBvUGF3Of9eUUCoGd/javl2vUqry6ZAkCliqhmBaSrqHqGnqjSVkUKGLO7f0OwSYkWKyIspLT6ZRlImHoJrYocLvpUq95XNvrce2d68SyxmePDEJ/wcG9m0THE86UlHkC3/7WPXa6u3y5foG6u8sH2y7PfvMM9Z0HV6YcwyBSdWq6TtvSENs2xacsIwAAIABJREFUyiIm1iqO8gRdEzFUiSzPmIcpfi5Q5QJbmsGdB/eo79zg5T99QhiG9GyF2vvvcvSbX+OoAgfDNppa8f6Nq/OkySqlJKFIGRs/oCpLskqg4Tq4VYLXdti9ts+bJ88YL3xW8xm1usSNQY+Dg33saMGnR684W4dEeckqDzGVEPnkmK1aC8d1yOOUvX4fw3W5GI3YNhU0p8X3371DFOYkYYDkKTS8BmGeQQbD+gBBXjO3B+ThlNpyQbpJENJzmjWbg9Y9DvY/QFTWFNPnCKaFubeL6moIVUkplxh736D69RvkUiXOKk6CFNPW6bZrNFyZzSiCkxlNU6Vdc2huHzD88F9hqiKL2YLT8ZRFGJIkUxpSgihfFff93i52s8HzwxPOJhO2uh6iJKKaFuVlRXg85uM7PZqCwXx0SVsXqMkCNOu8vphdsetcm4u3h3iGjiaAKUnEVNiKw3R2QRwEdHeG7N99B6Hc4HSaqIrOajFldDai2+zRb/ZoHJ5xdD4miwrWqwTVANEQ2fNscFyCrECSPeaCh5cVtBOf1cWYh//8CcEyIoljnp+/5U++8wc4qcBis2bs1Gi6Oo32HvUbu7A8gTxEa/dZfv2SSgyZZBJSp4lXFZxPYlTbJ5EnNHcOGG59A0WSefzVE/LZOZPRHNHepSVoVKMJd7ab3Lpxi4dnj5CECl3T6G916HQbKLKMYmpIokxeJKiqgCyWOJqKKhbkWUrXUhBUA812qdUlVpsIVQbJvFpZ1yUBQVYxDR3TqoNtksYxjUaL9v673P3eHyG/+IppCs+ePUHy17/9/hfp7+wgDvZISwnVfEV6fsp/+z//kh9+53sMxBBTzBDzFEtIGW8mPLg55PS5iVtuEMuEIE5oeDbl4BonzR3uNnRms1NEQ0eUBSoEyjRGUQQMqcI14SRWeb1KePCDj+ns3+HrJ4ecjY6wHJPh9r9gt5KR3n0XT6zx6//8n7i1EvBaNY4ff0kvDli8GZFM3lIkPnW5Yjy+xJPg1t4OVbNFmURs5gtWUUZaCpRJStvSaauQ+wGbrCBMS3JJoG5pZHGKqEZQ/d6e87vI70uT31GyosLfbFAQ0FQNTRB4dfgW4pR2q8fF7BLHrbG3NeTu+x+hSSpSlSMqEVka4KciNU/DkEGTRbI0Q5SvwK19W2Pb0hjULfbrBsPrAz6XRbxGjfH5JbHWJDYr1FxADiPK6kpL1jVlhLJEoYAiR5cE2p6BqylkYYx/esTF/IzL6QZkEyQfUXPQ04wkyfCjlHGYc7yJuLGtMi40lFLkmiYjywLvXt/FGWzRfPBdOnsDCrdE0wQuX0joho6uS5TBEtW2ifMSxfC4nExJcvBqDqs4IClybvZ7zOcL1psA88Z16lsD9KMR8XSO7l19uK+WCwRRRBZFarZHEa8xLJtu3UHXFZJcQzBMovo28SqhtXeL9WpBESiEXKksvd6Q99/ZIVtvGB9fUN+5jmvaHH75GUcnVzYDMS5wJJGyKvjlT/6eXyGSCBKq1WVRzsliCUeXMZOMnmWwu3PA+W+esd2T6d39gN3yK26fLVjPfQaeSddW8Wmylxf4mxWVBIKhs9tpYQoyvd4WvVqbdwyFa3f3qQwFTZfpNOsE3/yQ9eEThErAMjRIShTVpOG2aNUsXNfBtU10XUfKCoSyQFNVJmHEcjIj9ANauobtaOiaQhlGSIJAEgSsFyumUYKhgLwIuNlsI+gqgSxDntP1bK7duc6jt+csExAkidn4lDCJ8KOIV6cr7Cqjpwk0ayZZkpDGKW/XGxZpiWNoXG+43BBL6rqAIhT4qoUY+aThjE1SEAURYselQLmynZQC5CLp6JKkGiFlJbrq4u7u4Lw8JQ8gDXNcS6fVqHEyW+JnOZlcscwyRnGCUai8a9dpGzItTaM1vI5Y1Di7eEGnGCOXFYpQcDDcYqvxAsVQcE0HMZogKAqSYXN+OuVyEUIlIADrdYROhSYraHYNEDENkTAICXUdIyuIopi1n6FkKxbnx6zmC8pNitNzcXQFLV8Qh1PUIudmd4ut69d5/foJrivz0d0DLFUhmh0z2swInBpVKpALGk8vXvFsHbNaTpkHaxJBoW23+bff+QPy8Qs241M0TcFs1XgyXdMTBMj7aLaHGhyxudSxXA+v4TE+PKFXN9kzJDTD4ago6UoSw5rLOhMo84o08rFKEc/IaBkOux9/RLY8p1pckkYBom7g7W2h1FTyIiVaBJS6gSKJbNUtZNPg8PSCKk/pOgbXmjpyUaDpGnJREGxCmv09XKeJKFc4jSaO6/BmsabfbVDmK9abGMtW6VgVe20Xc2+LKE3RPZuVDGKeU4QbECt0oWLQ9mi0u7TbMv5aphQ1NqnKzW884Mb1Jvr6FM+q2GtL1GKJg75Jo+YyHW2oVzFNYYmoKwTxBksX2e55LKZz0qwkAQRBgqqipSnEaKSCQZaLrC5jRlHG8NYD7tzdx3t5wePpL6kZOTIVKCJxGdBtdDFcldP5gvj0BRefy/iqgKqK5L0mg45DvvE4PDnntd/iPdW8MrGIMtl6RbFcoNWaIOnUHJssDslmG7Y6OwSbGYIk4ba7KI6O5dXQTYtkuSELI4ThNu0b15GzHH98Tmv7AM310CKNrZ0+07M5sqxQ6/XIxAXzyQJZKGkZCl1DRtNtujWTnm1heXVqjQZltkazFCzLxM8SCqFg7W9IwpikyJkTc/LmiDQO0auKStZZ+HPKIsHUHHqWS5UlyGJFmfi0rQYaFstcoSoT8iIjKlaosoxEie64WLqEa6qYdh2RhKYqISgNzpYhrxcpgh1xq5WTXh5SmdvUtxqIqU8ZSuxut3h3fo2pH1CmKYEfUvVcKMurKUZETF1FiTIEUSAMAhzLoub6IOm8ms0YLRakSYYrSRiTGc3hNttbPeoNjyIo2Bm0qbsucRhQdVxMUnY7Dtv1DuLygrPLFa09DzfPsBWJ7378MdJsxDU75tq1G0h2H2XwAY51jiZ0EM8P+fZHH7PuuPzkv/zfbA5fMtB1NknM3//1XzNUIxzPoZqfIWUbjHKPIhIwD+7Quz3hVrri6aeP8WsWs1RAKVJOL98QlQLXQw/HOMCuF1iNHt+/Y/LRzgOE4RaFvKI4+5z5bEJUZJiWQtdVGdgDLvWcYL7gH5+PSXMB1bCQJZF4E9Bsd1iO5rw9PqNju3zn/h0UIUepuZSawjpdkqQ5IQLdwRbhMqBa+2x3eqiaTpilvBmf48mApmI7DkoVkSUxmqai6DqK4SCQ02y3ODke8+bJIZuwuFrJ0xTK5oD94T2s6REPtj3K0qfRNXFtkUGnS7PucHE2ZnouIf9pm73zOfFkiVpGGGJMs+Xw1fk5fSlF1ks8L6JcPCUOdKpVSKvRZj6aYDWatMMxL548ZqhrLESZ16XMw8scPYzpbN3l7rbM/UGL4XBIZ7vFItlwtB5z+/4tTENC9qf48xH9uo2kiOiqTM2ymZg2/mpBGKdsguhKay1J6GWKpUqcL0NqyzWDdp2abWJYJmUVcef9D+n1usjHz7m/O6Sv2XjNLX799UMeLxbUyoimqeBbNrJ0dc5VVcZp1tne3kaTSxyl4NWLI44uTnGkEEcssTQDXVO4CC4pIp9SW0A6oVmT0R0VwxHxtAq779J67zpleonsZji7d2jcvo2AiFCUCFGGIprUOm3WcUp2Ll4Z6TYhZSGyujQYTXy0QiIyNNayQVhItHKDxatjHj08Jg4VLqY+d6yCk4uMZt0lRiRczvA8h/s3BnSbNntbLVRdo8wSJHuIbbXx9rt0dg746ke/QiHDVBRWosJoFVFVJY6zQTR0ZE1D+a0JTi4LWk6dycQgjpZ4ooBexVfPjyJH1RSaTp1vPbiHoVsIhUC7YXF46OOvI1xFQSsh3MRs9bt4tSarTOFoHVH6FWLlcvLqLWefPyZanhItTihLkSyBz3/1KR/rEuXsiGQ9xbD6tPo7qKJEXiUEizPiJOVyukFVC6Sazt3r25w8ecFT/4je7W2atkFHNIk3Ob86vKDVvI3cvGR+MiOZTdj89O/wZw9olt9EzlIc26axt0OSJQwaNbbqXURLQhFLirwiEUAVCiQpYqfnkRs94otz2ppIzTWxLJXuwMUIM46OR2hSha1JUKQIqollm1iGjFhr4kQZrVYHMVty/uYlmTmk6hW0BQ9efUHqz4mCEEkW0E2Vumpxa2eH6eErelWAOh+xqkKK9YQiaiFJFev1kuO3J/zh+9/iva7L+sljTooKO8khTjm/nDGMRJqeh2HaCGUFeUhyeY6QiVj1HsZ4TpWtufPubR78qz/j9OScdk3lgoQfv/gph9Mj/uJP/h3/D3vvtWvbdmbnfaOPnOeYeeWw8zln85xDsljFYpGskmBLsmxIgH3hR/Dj+MbwE/jKsA1LkGDBMCypEl0sppPTjmuvOPOcI4fefbH0Cqq6KLZ36Oh/aO3/muGQ4FzhP3rO6wZ+9N5HrL/ouPjlr9HaGlOW9ByT6aDH4ckE3bSwLB+lWvKqokozNmVN1ykS38Uwao5txU5r6DkGr2c5StdxgoAuDOjKDF2pv9ce9x+Kfj80+TuSbRj0bBttmCCUQek7hOMRhh8ycXwCTbBB8PSP/pDJ3hHzXcnJ+SHpzZdcX7zk3d2ck4MRhulguy53tzc0yiAIYz58EqFttji9McfjMZ0L0/1HrK5uyL/9gt9cLFiUDW0nEShCAxzLxHMsrK4mx6TWBJEtiDyPSNcpdiVdJxn6kmV2je+4RK5DVlYsKoh0i9BQNMLhMk/x53OGgwNEq9ELTH54PObo/AFev0cUOwxdi51zb9efnj8kv3xDfzBGlinK1lFCoIROXVWI5QrbsjE8n3q55OnpMVnoMYhjjKiPbbm4miSdXbCb2xydnBH1EordjqPxAWm2ZpbnvHc0Ju7FKCHQOovVbI0/bAjVlun2JaePJ9zEcD2bU5QlZ6d7DKKAd9cLRiePmezvs3jxzb313bTx3IC03iCoSasSGkmjCTZVTrHaUDQlyeSYJi8ZeTaxaGnznNoUrF/c4hwc8uzx91gvN3z67QWySPEMwWgUYiiJYR+RFdAKn9CJMfyQvm+zP/CJj57SOz2Bdkt++4rq9mv2AovPvv0dHz0cE4YetZKoruYkcdnv9xBKx84k0GK4PpvFmigKMIqSd3crVkWNkop93cA0bZRp3JMtNgu2u5zXNxsMDQ4PxjxoWjarDUpKpuMRT7//Bwxch9nlLVq3odx13Ly9Yr5Zs2paasOkbWuGNJxlNXXXkVYtug6Jrjjs2QxcQZFmgCBD411es353SZEWHPc8XMdEahZoBqYbACboNjoKNre0aYFh14ThkMlkysQsqeoamXekRcX7wz6NobGoW1zXwus94MHRU5JWp7n5hjSdYV1ec/r+AcJ7jHyzwnJiDDvCGQw5mw7ZlClmucRyPWph0HVwcTnH0jTGocdsnaKUoixqnECitluciUQXGqUS7LKKxDIZRn0aO+K3n32BPXuN8EM03aM1fFSnE1oW/dGQf/TPTljd7KjVPWrR8h32k4Au21EtJG+uZ1x9+Rpbtxj6McFgyh/82Y8o3rR8+qtPmDU6oSHppZdYSpL5LrgmZ4f7BLbJvG7pdBfH86gEkK8IxgOenu+xvluw3i151AuQ/pDTXp/rmzma7vCk3yNwTLomw5ue0MgEZteE4ZiChlJ2+GFC+MEzjMCgW1+g6Q3GOGCngW0K+mFIhMbf/KYlNgWJY+D3J9hK4hgCVTXUZUn48ICDJ+/xm1//DU3XsZivWGwKppMY08jZ27t3FKhyS2xa5MmUZr3icDDGaious4LRMCGwTHSt5bzvcN53GIzGONYaKZboYsDDg4js8ls26FTSwLMNcsvg5Pt/yO7mEt694IFnIdM1Fy/eoDUFR72I2LDYojBRtMrCETqarBFK0Y9cpBfTiJBiO0NTDUGWYuoBxnCE774gcE0sw0azNKajhN5kSmoE5E3Lg9EZHzx5TrN+javV+MKAZMIb+YKhZzKMQwLbxTYlBgqrLtDLDKGNEZpOk8F0b59vv33JbrPCMg3qsuTuuxekkYORrgl8n9BwuFvcMn7vAQcfPKTb5XT1BjqJUAJTh6OjA8ym4+sv39AaNugujufjCu1++2yAbevYhmIvCfBjl0ZAViv8qI8sdPzwAKUX6KbDbp0ithnz+ZxAQCYliR1T5CmoFqEJXCfipL+Pyrc4WseqLLBUS9fdU19KZSDaHIUkdF08Q8f3TBzfIIgscPsc2SG9aoPpO2hux+zNGy7mK54/PsUwOpxBj2QSINc6Mtsy3RvxdLHixauQq9WWPK+pWkUjNWx5fxeqMWykqDFNk0ZBh4bre0wP9tGXBZUSXMxWXKUpmpbyuGuZHJ/hORZPJiG20fHlFy+Qjkfs2mRVimcKfE0yGEZ8O8twPJ+JVRB//xGb82Osq1fI5TVd0WCzge++Ydw4HL//kB//5DGZ2+dyu2F0vsdFu2K2XDHuDbjpTL5ervinT56yuL5kOLTYXH+HHX3AzesbYqtH9uY1203NwXAfq5RoouIwuncMJQ5k63f81d/cUuUZD2OTg9EAfblA6TXu4YDjZ4cUwuS20Pj8ZsMP91wmocVdJvh4L+ZX1ymu45BtVrgoItviaDQmWM+p1kv6fsBw0iOYjrn49hMC0+fsgw/oZnNG+2eM96agBDdv35Gv5qzmc/Zcm67YkQvBycEeanWN7Do0pVCyRZgGhtNn9+aOrz/9Ds0wODo/Jr2dIYyQZvoeJ9//KTd/2XL64CnRw6dIz0bikr18w/bVp5iaZPflK06OTnBWHWFQIXWN3dUbEkPnYd8lCi1utQG+bWJVOVbco91uOTs4ZFuGJNMpd9fXHIURO6nTNopMGHRGhiV0DiZnDFSPvpGxPx5jyhzPteh9+AdEhyOKq68QVUYcBPiahbJMAs9Hs2wMJJpusPlP9Km8ami0ltvlBrsfMYh8vnnxisd7A87OTtiVNZPJEb5nEHom/tEJvSBmuarpHX/AoNfj+NNfMHwwRUxcbudz2kaxS3PCvGQ6iPEcE6F1IDQMVbOc3eFpNW5iYaCx3GakqzXZak1dpDhuRwtsS8HRez/ETgtYrshe/JLB0R7xgwdE54/QHRdZ1rRVCcpAt0Kmp4+5mG14eDxlEDkYTU2uR4j+Id+4W7745rd8c7dGLVIOO4Px+hYHDa1IubmZIXQDb3xAbbZsleDt1R2bxYyzwz6J4RGeHNMbJFiGRpPn+Id7nP3kf6BazKhvt2QHN9xeX6MLh7QoeXs9x7LN+2iZKei0CsM00S2TeBSje0M262uctaRe77j66ks816bY7ujqKZ4fYgsX1UnqMsdwwY8cmvkSz7J4dniEmS2o2xbNtRkePUHPduiLGxa/q+gdHKOVHUM3Zj+MaNqOke0SiYq//vJvaastez2bk/0ES+1objYooZPf3rK7u6WqKxqhSHQJTPGcOcfJAjeTGDtBXcKf//IvuNtp1OKKN1cbetNDyts7lm8+552SrIc9mtkFJ3sjhk++R55vsbJLAtPAG03J0xWqzWjrGgwDR6vY64esG9h/8j3yd98xCG16PZ+uP+XVyyvSxQKhN9g2FHWNF0iS2MczDfR4SFm1dGXKbr6itMZ8dZ0THj7gj//pz3j35Yf81b/716SrO7q6wjQEgSX46fPHXH/5BftdhZetSYXG1asv8fse207wP/5P/zOvLq4ZhTFP/6s/YyggMS2WqyWL3ZLbTxacPznm0cjHi3tQZjTphhYNZ/8Yf2LiXKcc5DO+94M/RtNstssawZS765IvXr0iH7xh4HpERz/iZrFgcHrOr3/1K9q/fkVx+xpPbRnaPs+P93n24IiHTx/T6vdHoUUYUS/mqK4llZK0qIh6Ebal029bRq7gBsnh8WPS33yJXeV4UUQZhniU99ju3+s/u34/NPk7kuoagiBkk1WUmw1tllJXOZqS2JrJarbl7E/+iIcHR+SbCi2XaDoMRz1W25hXL79FePb9wcnZHcvZmotNy3//L/87xu0t6c0FpZXgn35M9eUv2L5+yeLVG4w655GnE2mKTd0Smjqxc/8Jpw3cbmo8W2A2DQEmQ0/HNnRqISAc4HYa/WGf3u2cieegZIMuesgq48iHY0dn1TkkUcj0vefo64rD0OHoeI9oOEBRY5RL5hcppmWhOonpeAjLous6hG6iJCghQDfotPt7KWq3RtcgCAM6w+T85JQw6dPudmhtx3Y2J53fUrQKKTuePn1O5UfMbt7xanVPeXFQJEmE3krmmzWxDum7N5w++ZDQ1Um8Ec+ePODy8op3b1+hNw1NumNwdEw4OaW8u2T+6huWsy2vdi0aGiPfwTc7cs/BtxwsTSffdSzLHYt8x6LZEFs+PUtDrzPKosMxLTTNxFIaYvSA6fENdVWzWHu0uw1emhEGLmkHYeDTGg7+aMoPfvgxoW9gWQ7oOqLeokTB6uoFXVGxxSHPtxQri7YfEUcxxW6LawoOJglFWtB2DUhFWt/Hqar5ks1ux4ttwbpuqRUkt3c8qybYlglAW1dUdYvS4DJr6QsXhUZdtmi6ydnRlFh0mJokCjxuxZLfvPiazy7n5HWNpikQJqFj0+omT12HvqEYxB6+ZVJmKVHso9smHg51nhL0R8TKImt7zOcarzcFz4YBQpgoYSKEge4G98hlAcL26OYrirRCdBoPjk9YN3c0bYHh30eM6rxAq0omcQ/bNBmFDodPTyleXRKcTonHH9zjj2VHokkuG53lxWv2rAN0rU/sB9RI3CCm0RRt2VC2DTc3c+qqQTYNp7GDkmALQGoEvk/VgC4Fu90OuUoZH0+wDYdys0Bt52jCoMkL1psNATWTs2dgh4SPDtExof0Ghc02HaGrHf1egAhMkqTHfmNz+eqG26s1+66B77bU83dstIhzv8e4lUSW5OK7L2jzFj8MGGiS4uaS9aYiSRKGpgkd1HmNLFc4esggivn4e095+eoVlq1zvD9gND7k3dcvWM43eELh6hpuMkSaDla9xTBabq4rtG5DHDh4/SG2LSGdUZYZwnXRXIFVlwS2QeQYBI7L6cGATZNhaWB6EVEyxGwq1ss5tuujWR6aMHAxuHt5ge24BFGM6QYcH1kMkiGDMKBcLdC0lr5r0DYhi/klZdHgWC6e5/HB8R6e3jKKHSKtxXFsbHtC3iqG/UPU5orNzRVZpSODCR02ruYhl2u0coWfX7G+vGV3cUXT6iRxhF1t6fKaulLE5j3txdZB6TrC9PBji6AfUhohaewQLLfcrRf8P//236L0AVW+wjI7fMvH6fUY94ccHZ7SDc8Ixef0rQHT0QPKao2jZQxGI9Z2SF7/NafDHifjBNd1sLZXiKZD1w1oKlTXIdFZvXiLyjccP3vI55+21OmSXhJhmRaOoxP4LoEXsl4sGUsXLV9Qr1+hK5u8XNBIB6U6gmifZptRDRJs7Tuy5Qyv10OW94MDm47I1Yj6Ibrlo7qc0Ikh9hg8fHrfyDQNHZI6V2htg5UoSlmhthalWVPbHp074O1uxXD0EKu8xRUtdZnS1C3TwOWx59LpBpkwSQErLzAMg7Kt8ZVESIEuOyylYWiS3eaGsFNss4owGDM6GPGHpx9xd/E1luYSBEP2j06x5YoGheeFlKaLISUjz2Gz2dJ2sEobxqGNrGuEEEhqpJSsdyXFfypm+4MhSdynLlf85J/9lC8//47Vl1/RszQa22V0tE+T3aKplsD3OBglfPfmlovLlgf7HpphMXJ0dM3m+fNj9oYOumqxHBdnaNJudQxjgGEOSRcdxewFojOQ9Qp9rWH5MXtouIHO0WGfu8DgzXrBZpMSxYfIbcpqdkUZjLl7fYVlheRvb+m5IZrrcXa4z1o66LuWPJ0j8jW1Ulx3Hcpw6McuA6fFM6Fodvi6RnAwRfMDzNDDUBqFoTjYzNm8neF4Hp5lcjbweZd2+IaGkAK6Fl1JhkFA9PA9PKHTsy2YLfF7HoFt4kQRja/hBT7xYEzcH6PpFuu7BVezBZ7lMBzaXKxXJK5GVxZMJ2N8875O0jQQmsbd9TVvvn2JbQvO3v8IYQ8p/DdoysNNejibK8KjAwLbp2fb2P0ewnTZzK4JBza5iOj2Swae4vAswNgPseMxwpBs0iX1bMV3t2/Yf/gQs0vvo8LCxoz6xOGKqHkFG4leFez3Qm6bFtV09JMTXt285vRoysPzY4ZizDC7gmJNvd4yfPQB4+mQu+sXFG++4vT8hErB1etvmO6NsEyDpq3REDRSsNqVZFVL0yl6rk5oGVykDf1egGaaeJqkriuKumC1WdF8/ikDQ3Hw/g8QuoX39h26ZnL27AzHWRGfDZDTPi+2LS/eXKNMmzRLGY/6KE2gC0U/SWhOT/n23ZztckWpu1ymLYkTELoJz48PWDg2y+ISo1yTdyXLzz/hB08+5NEHjxg9OkC5Nq6f4PohXdPSKoUhAkSb0mUpgeEQhjGdbBj3HZRtU2wEn71cU63XdEVOi8WuSql+9Uu8WqdvBjzrxxxrx9xpJntnJ3x01sN2dNoi5ZP/7y+YuB29vQPC8QS7zbGUROrQdS16PMIxbIx6xmR/n3KzwTJ0ru5uebXaEdsWjr1ECIWaBFR1TZQMqLaCeH8PrfqIm9cXWIFLZdcsZldc3t3y+PwYyzZBaUito5UNSgh6eyP0yzusvOZgnJAon+16SZ2m6MECOVsyDEw820dZe7iWxfvnBifBiLTKSVTJvm+h+Rbh8SP6qiL0NNrZW/ReTNfUrG/X7K6uaLuWzrAI+zbN9gI/sDiKPQxaLt8u8JMH3Lxb8MnFjNv5krJsOT3s8TA0mHo+SWIh332BV85Qg/v4WxRH9L0SXWjYdUctTGrV0VYN67Rks14yTAIeTA5w/T3qSOfReYzrhQRSY7eYU5UlfmhR1CVd06KKnPHhBEMYGGFAm7pUmy1tIzGsgCy9omtM26TuAAAgAElEQVSvOZw+5vvv/QvG+wP+w//6v5B3Aqeo8GPF8STiv/knf8oX/+9/xC636OMzCmUwe/k1hW5hyRLSGbajU+82FHXO599dIPwBz77/Q/5IVxz1Y2wtRxiCJl2j0g2aUhjhADsZs//oCfrwnKD3gMXdnBdfvaTQQ66+fsvybcfz4YBpqPP1X/wb3rzZcPbk+1wvr5lqGYnMeHB8QBL4ZLLDDBwaN6AtUyLPxzANzCjANuHby1u6psG1TQJKjvses1XKNm+5/vxrNrsdD/o9dNchXS0ZhS5SE3+vPe4/FP1+aPJ3JGFYeHFE9/oCC4lrWgSA6O5t/c++95ynP/yYT/7d/8XV7Yb3f/qndFWFJUyiMGHdNEjHxnBdIktnzzcRbsD7HxzhLSRbtyPtNO5evOLJaIhfb7HqirTRiL2SJ00Hto1vC5SCu0xytUzxhcDTJO+HFqMoIBkPsesaX9dxLA/qliAI2Ld1bjNJ1+sz6jTa3MG3oB9pvB87eFFE/ygg+eA9tNbECV0c0dHWJarO0C2BafvIMsN2TNAtVNuhOTadUszXGaoX4oQxs3fXiHRH1YDletiWRbFZIsqcJ997jm3b7NZLyqJASmizHWq35WHkUNzW+KaBsHX8XkKvN0ArClLbxTcLIsei3VwyffYzjOSQuhEMBgtEf8h1WvHo2Tnh0XOUFFhdzsOzCf2eh5/pfHWX8mTcp9gtaYWJ10vY3tzyerEgkBXSs1AiYRzEFKsZWr5Dz3JENMXtDRAKstcvGVkm1iAhsXXK8YB6m2J4ASe9CE03aGWJ5W2J6ncITLTSpM43FFXJdrnEFILB6ACyjFEUkO92bOYLBr0eWi/gblMSuhaqFWzna3bbEtkJxr2A0JRsTRvLtjHKkkZK5pstWaMwBTRdS6kUhm1hmyVJoHNyOEXIln7cI/QdYsNg/uln1F2D5zgMHzwl2go+rBWr3Q5bKI5GE44fP6Etd3TbO07HLoNeiKEpmjxAExoYOsKN6ZKAzB0wkgWdHdMPDJil9CKX1nIIwphOMzF0A+H40Bpg+LTSJJ/doMqaOJ5Q+w7r9QalJJHvIoIQX2gU2zmaXuNpKc1n/57E9QjiCC+x0F0XYdkMgz7BwZjbX/7fpEVKUGfsmpZeHGIYFu1ugWXZrNcpWDZ10TJfZSyUYmTrBL6DIxVl0UDbYgkDU9O5fv2GoK149vAUyiVBGENpsrq5YdDrke1SDNkg7DGhP6S6+IrJeEyrW2x2W9a3O3zbRfdDdNURC4/R+Q9Yfv4NdjFDyRZ7PCHqHfOzs4RXL99SpSsMXScK9ggMneXVG/Jthi0ED0Y+jSwo0gLVKfS2Q1veMfAjCCXWU5Pt3SWBXOObEU9++jMufvUl+fwthtGRZhn6/cOkMHzMs3OM6g5V5jhJSLO6Re8K2qrA740o5b193HNcHBMsR+fnz8/5vGuY3czpwgSzN6ZnC5ZpSjweYvgOt6/fcHs95/p6gWXOaKVE13RQBqqqGPQTirsVlm2RZQ1DQ1HqJu8dHSMMge857PsGV7Ml7zZLAlXjPj7H6O/hpRWDvk96e4FR7xhbIVFiovU8GjtF31yxXmTc3d5Qlw1t4OC5HtquJL9eURc1U88hsmzyRqI0hW04SD3ASvoMYomybFLfobEEXV3x+t2cVZNSdDW6rvBtC6OB7e2CWy1m1Azwtst7S/t2RhL62PGQeDLBqgV/+MMfk739BEe19Po9dJljBj7S8eikQmsa0rJEdzpur96QbXeU21tUUzK/XeDYHnuTAeVWMok8/KFLKQJe/ea3/IeyxAv6xH6faBiC6LD9ENVIVCcJY49qkUEOsX+/ebZkSeTeuw2TQYBpusSRgxIFQmSoBrqmxjBNLEPQSQNdOGybBtcVNJsGzw+RcstB3+P5n/wR4ew19dUl68ZCdzwu12uS0Of5YIK3d8p1V1J3Bb9+c0mZpdiaRs8NUI6L3QvoT8cknYnIN0xOx8RHjyjzJZVh4HdT1usrfjDs4ds6RtGhhLiP9zgO/Shi2O9xNVtQZvfLDHQdwzDRDYNO12nKEt8PWecdZacxGYdMx31ev7ll9+od8a7kn//sz9A8C//JEXECn//1Z3jCoqpqtllOWtZMPQMpoT8cIR2fQeIT7e9huh56OALDwe9act+jXNygWdAbjMishPW7F6zXd2xnC653JYtKIiyPomkoqgrXEhyHMUGyx+tvv+J0JHBti11asXn7msA0cXwT43CC2ZYc6zbqqM9q0+duNqNvtri2jmMYeK5DZVgE+1PcUOB6Plo8xhlN0IsVsqkI8gVe4rLb1LS7LY6ucxToHPcDPN+ja2psTWGYJsKJcXqPWVcjtl/+e0bdnOFRn73TIza6y92f/yVuJzkbHWAJjSrd0LNM3n/2PrPtBrWe4XkuZdfi2SZVVbE3GoPuIpWkKgtsS+fJwylXomDv6IgOG+kH5O9uiQOf6OQQJ+ljyA5bFOitgW5IgidHKP0QZTqcPTwkffcd6dLCDPdosyX56gZfl+xkjus5PD4e4ng+WlkjqwqtszCkhmdp1G2F6xocTCNGB0NqK2anfJYPhuw9ekRvqCFmK0S6Ijp4jBPsYzkeRp4SdjXCtDE8F0PTMS2HOPRBdujaPVlqV7RUUoBUeIZG4pgYrs/pcMj5eMiLrzMO9yb88tU1UkFR5pwcn6IVLaLVMGyH3uPHGIGN2PwG9/QnWKMByk+YvvuMz765YJM3VHXLs+cDDFlgWiZGENEbKr735BHfff4Jo8jl4fkBweAIvVM0lcY61yjyMdXBjHUjcXsPGZw9xB4m+IMeSheYXoJh+3R1iT0aIFQHlUOblQjLZTo+JMtSoshHRQnesOZYwdtfvMTTNLK6JXBCho7iWF5zEB+wHx2h+mf8/A8+ptzdcDCQBHuHtIaH41jE2Rs8S2DpHabpobUNmi6p0xVdsYGuQWkVZmLiDGKUa2NZ8HQYkpUNlq5zcTkjCYc0bc10fMDdbonR5aBL9iZTHn30I3735hPWqxnRKMFJYnTVIcsWTerQguxq9qZTJpNrttstlqGYjCYcTQcUTYvuWHR6xepuzrby+PWv/xUyHqHna35wlDAMAmwnxDYVjg6qWiB0g9DyaXTQDRNZQ3Z3S1vmmKYgEzrhdIpcrRGtIHSM+2Ouu5bPfvE3dJs1WrbBoCW0DbqiQPku7+33GSUCtJzhw33KpkI1dxzsHdIz93CEwEAR2DYF0CmBUvfLsZNBRDyM8A2dRowJQwPL7yE2HZN+TBDGKL2l3tVUlSQIBZ4paAR4rk+TRlxd3uA5Drt0R7l8wfnHh7RNzXyz4vGDJ2x//DPyywuCdA1Nja7B9x4esWf+jNtPPkMXO66/+hXm0ZTKtDgchvjaOSPfY7V6x0ZTPHr6lAdPztCERNM6ZFmw+fa36H6IKgu0pkLJjrbM0WoXM44Y2GCYJps3r5i9u+HTF7/jq5czGl3gBMf0fJ8//ugBP3ykeHtxxdBaohsmQ1pORwOQENgO1XCK9C10x8TTwNYhV7CpW7ZZjmto+JbGyDLRLI1KKiw/5OLdjMi2OT45Ji0Ler5Fqt0fJv+9/vPr90OTvyOptqbNd7i6xSzfkAwSFr/6LT0/4vrqio//yZ9RLC95eXXNbL7g0eYdx+MPuPvqLXWaE7kWNRpSCKKDMT//kw+RpsM07MBIcGxFsF6Sb78gmDzDHA/xoz6DyR43F68RQYjmhHRlzjqvYVOyLSUb2fIosjgc+xxMR9i2yzAK6KSJoQk008aP+riOz6HTcCUc9qcezdqgPzzAscEOBaNRjBU5GD0bx+hhtDlaXSFlixONkbKCfI1re2i6TlPVyLpABCGF1LhZ7YCAuoPG8VDGjrvbG84fPKDrGrzplHq5QOkmGgpDU/RCH4nBs5Njvn88YnvxkqktcE6P2DYtzmiM14tRusZwMsD3bLa7HYal8/AoodFaamnRtiFhe4jlePS/98+xupauSNGDA8LhOfG+jrms+PPXvyRa7niYeGxu7qCraIsddVewLlsqN+bB6ICiqjGdGF1JmqJCt0P8vo1Giyc7ut0WTeiYYULRKNr+lHqz5Pr1JabWsW7h/KFF9fYVTSfZbZZk2ZbxyTmD3ggjiFGdZKDpfP+j93n12edonaTIc4LhEKsQ2HWHa5m8WGestwW+aRJaBoajMzo+4cPdlqneMq8ltufQdgqJziYr6ZRG1XVoQsO2DAZJSFuVGIVkNHC4e/2Ou8s5h0cT9o72KK8UPz0YUIgC1zrE6Q1xJnu4/QBWNyxnFnpX4lgWqq1xk5i6rRFILEPSYOM7Lc1ixfpuwabsmAx9cmXiuSHSDvCDEN204T4FjWk6WEFMdT2jyUscsUJ3LdzKophvEa7JIDRw4wGW25FtN2x3c1S1xOh6CJGi7mY4vQhp9mnXG5LhHsHP/jGGJ8nzDY5rodkGldIQloeSDWYc8eF7Z/zu05e8qxV324wroXHo18SVINBjxlj4rsMWSK9v+eLVK47HI3TTwjQtNruUqm7Q3QjL6BP3p4RKon3zNcb2jlJoJM8/4Kg7Yrd8h6GB0A3ceEKgm2SzO4LzM+prDdcUlFmGcTfDSca8/9iiXLymkQo3SdjcXOP4GsvaYpwMkLqAYo3crtGUiWEF90ON0MVSLmp5h3MkaKstq12Ob1wRHQzxzIJst6IoK3qxS286ppaS7NWvaA2Nyck5qArPgabpSAYJwhIstyWuqRHZNrbN/dvbG+Fj8Itf/g4VBJiWTtvWmJ7P+OCYwo7ZG4fIpuGrr75jt8vQ2pZvv/qWvdGYSb9Hi0FX15h6w+H+gGabM7A0suWSq9kdtxeX9PUJB6MBbVMTxj1sOnTHZji5x3/ndGxXK0S7RKtTbAGryzdopoV3/gTLMHA9AwyDQna0XUmdlZi6xPFsamXgyJpQN3EcD8sKiPoDPK+ms330umW1yhlYDvueQ10o1o1O0dVYsuUgsvA8i9Bu8dWK03HM9GSfvT0P2ZiYvo2hOtr5DcfTAW7vKY4ucC0DMxkiNWjzEvwErVMsV1eYoSKKYt6+ekt6fUPZtLRdx8DPSZBcpjU/+uiUyApZqpIvLmf86i8/5U9/+nPe++ghXhzR1hvqrGS3XLJbb0kmh9zcfAoNeHFMEIeoOsMS2n3xrUPYCzEN8EKTqklR1oh0s6OpajSlo0tF0xS4jsZ2WbFLKwZRjNblPHEV2utP+ZP3n/Ai3eHJkEf9I16/vSFd3lAsd/TtkkYKFnnKI9fmRVuz2Cy5SHMMPyJuBc8Dxb4nyK0hg/1HqPlb9kIwen0eJyFZd85kmuBQoguF8DzabEu72+F4IXHUo+e5vJ6llFlO1SR4noHQDTTDRgdWizuiMCEYTJmOPPb2enxXpKSzr/n4yYccfPwRuZxz+CTEcFyWd2fMRQ+ZSbbblEHs44chpm1jBSHRsI8TOhiquc/QW31M00ang1GCuutYffMJdphg+VMir48d5ZgKWpGjso5lWSJbEJ0GmklveEadbenZENsCAw1D00jXW+LIp97l2P4Af5jx9tNvSXox0/Ep/d4Iubljff2OrM6YGynG/jlx/wG2vMQ2HTTLRux2dMUOzesR7fcprxsCxyHfrqnalrqpOa5KMqG4Wq7o6hqtgTDQcG2bPWeMNTnAbBqkHeMME4rbOf1Ao9uVXH73BWq3IXKHPP3hT8CxefXpr9j97YKDw0PmizlxL4YmJ80LluuUUd/F3W5RVQHZCt/zifoDug6MYUDlBui7Fifw8eIAx3MRQiHosDwbaKjKmrZp0LsdQexiRjFVXkFWonctV2+v2ey2PHy0x3CY4IxGaGWHzBo0x6GRHa4lwTbQbYd1lrJ3uE+anBC7U57FGu4wRncDPL9GnZwgBke4oqW4fklbb3EMk9rSsXWddLmm3+9hGSZIhbj/CMjLCscy8W2TVoBj6nzw+BQvCPj0N5/Sd0w2mx1ZWhJb8DQZ8vTxA8wSuus7rAcBsq1p3v4WJ8rxjp+jD85oOo3JwQ6sz9nUAmlY5Is7AldSZAoMHSXh8HCfWAhkU5H4Af5wguO4dOsVw7qhLXpkyqMcnFG7e0jdIg5dbNXSaCZh3Ed0HbJp6RqJpgtUI5G6oBUavWkfZ5bguB22F9FJBXsN3dNTEtPiq9sNeVtxGrgMjRpPVVS1y8GPf8Lh+R7VjcKJJNboCLfOCJ4+g+0AVIve1SDvqWWmgCydk86/wxQ6bbmlVQ2WG5FpGuM44b/8MCRrJFerLd9tNvSVRpZmlL0Sz3dAtzl4cIAnbKTI2a7vSAKTo+MDDNui261RbYfeaJTrAt/skeZbpoHLOgrQNYUdhPi2SdhJlO5gdhpf/PYzirsLtrMblhefM/YcCv+AXhBRlRonjx7gWRrl6gZTaBhufE/1IqOWijqvUFpLYgbkjcQ2TEx/RFPvcPr3IIlJFFFna/R4wPfDES+vLpFKcTKOeXo6Zj+M8L2I/t4Uy7Zp85QsT+l5FslgiOhqtK4DTaOVEsMx0KuC0BZ4nsXewZBqmeH1bMIkord/wturT2nyEpRkk1UIYWC6BrP5kqQfc/JoTFEZYBoMhgOiUZ8sf4ss3tK3z/nf/7f/k5/9+MckXsIPnj3jTSPh5Qy5WSIHQ0TYY//0MUnvkM3rlzTNlmo2R/oeUweU0TH2BYHRcfLoAUePTzE8B7h3uG/fvMTUBJoUaJqGJgzQdZSsaXa3NKrDMB3a3Yx+GHCkGr6cX9Bz4Cpd8eVnv+RPHsccOH0ioXPW9/kX/+2/5LO/+gX7gxGjk1OwAhbrJbbd4gcBpd5D6zJErdCEwNQlsm3wbIPQUhycHCKrgpEVEUeHSPkf6fcSotCjlBWJ3+fz2RJD1/8eO9x/OPr90OTvSE2akV/f4Pse764a9CDm4OAEF4tBs+P0qEe1XfDzf/QTLuY5gSfpyox5WnG32GHUiqaWdG2FFfV5+tP/Ar3NsbwA5ceYhokfeKy/+RZZbPH6Y+yyRitzHPOEt/Mcw7IxywynE+i1oq07jl2T5+OIiRfR6w1pmwbDMrB1G+Fa1JuStoGibAhtC7et0IMJ4+EIxwxRskOlMwq3Q5DRNW8Q5g2WH1FlBYbv4yVDhK4hiwzVtSB1/Cimahts1bFerri9m7N/+IjZ1Q0bBKZl09U1SpjQdTRScv7sPXoHx5SrFT3HZhL6DKb7/OGPfsieqfir39xxc7tgfHROFGgcjic4bohCx+og103atsXsj7BdHzvPsFwdVTeM+hbBwSP8IEBuZiAbnP4+cn8HuzWPHg/5r1P4P/7Nv+bb1wpV14x0kEJDGAaD0GFjTai2Oa+v3mIaDgdJgpLQ9xN0s8DQKmwbNthYSsM0bUpNZzAYganRmB11U3F2fMrp2T6mEIBkOB3RygZ3/wEdNpomKdMVSgrOD0+4u3xHJbt7h4MTIlTO9WJJ1B8hXZdqsWUQBMSBx9nTRwxjh71uyepwyL/62685nw6QeUpl+GhtS1G36JZFpZVEcYTrWCyv3mEVLS9frPn067d8fDjF1jquv/6ELjnDoySIXOLhEfb0DMOWmNWMqi7JlcAOPDQFbdUgUdhBgGVIuizFcSOW796yvJuxWhUEQ5dN0WCN7jdSfhDihAnYHhgCqQC9QpgOsgFZlbSdiR9ZlEHA1PXYzGdc55fE6Qa3F5PsTwhtE9nV2MEQ1RQU6zl6P6FtWuxxH9MzwfBRZoflOtjRJduiBM1AQ9F0DcnkgLOjA/pdzetv3yIV+EIQmSa6ad3Hc+qSrm1o1yv8qmbStuxevCR68ghbExRpyvVig+4sOPr+z7EPn1Mu7+jvxQyfH6MFDlVdEZQm4TACAZ5j0lnefUxJu0WoFs3XMVTHeL9HuWvBUPihh74xqDBoZ5eIdodm3dMr/GHCer1m6Hu0VQPCRgkTJWwsz2YcDyjyHGF5VNJjZGtobYahWci9E6LhiEm5psgbmmyN69hMT47wfQ9ZN6yXczzPIuiP0T0bZWjsWx5ZXlKZFkKrER0Els3p6T67uuLV7RyvN2I1nxEFLg4SwzG5fnWHKnyePHvOi1cbbt8o6rLAVAopNVRa4rcdvh/hxgm1E7G8vSSvC6q6RaCRrzcM+xGnz94jMWqE6jBVy3g8oesausAlDj1Ax4hjLFriUR/hmMQ9B8/boy1TmkbSbjZkuxwA17y30gol0VpFXoPXcwldDVfLEN4AZdi4dOSaoK0rYsPk2dDFDSSvbm9pmoqqzOj3QqJeyGiaoKuQ0BawniOEi2G1lOslUgr6vYD+4BhVF6i6xvbut6WdMNCA3d07ynyD1CWoFscwiRyPtFjTtR2yaklXGWlV02ZrysZiejDFNRz02uPxk4/Q3CnLdc7d7dfUuw0q2zIaDVisdpiOj06LqFICs2OlaViWji4gsCS2LrEtH9uysHSougJtvMfd/8/emy1Llp3ZWt/sVr98ebv72LEjIjMiMpXKVFuqlqpzMKMuMAMMLrjAeD7gHgzMMKwAO6Bqj45UJaWUmdE3u/V+9c2cXOx6BcQFGs/gbj7/4WN84+V3hIGP6xuUkyjbs97sMHgEFgI/Jj0Z8+mjR2TSEUiHB6SjET94klKefkqyu+aLL7/ky8fPef/mG2S/4ne/+SXvkoB/vL0hF/DNi9/x4sVv+Isf/BWfffljkj7naBESxgZLi/YN2eyUbDxCVjvoKoR1mCBFqQDfClReotqGSAryQeHFCYIOhMNKhx8oAk8TjELm04DJJGVoS6QdOEpiPnn8gIPHh6yrAtdfMz/4McfPvo9b5pSrO8YHM7QOiZQlzmLCyBB6iiDwkMZDmBGe9lDKoHWIOv0UUdao6BHbb6+oryqEkxiXEPtwOtYodgx5SyoEtSc4/cmPWTeCdtUSZ2PwKrzQYzLO0ENPX1b0/Y44nDF78hN0es7y5Wuquz1hNEXNnxAff0IQgpQN4PDzF2gGbN8jipaqHxidP0VOjvH8ED8a0d99gzUaqpqoaRlvetpegFD4DkS1Jwh3iG7H4fgK1xbI48/wjx4QJA36dgNodnlNcfct5WrJn/7Vf8r45IjBOQwN3ihm4i9ohw4/CDk8niP6HIRgsyvJxgkGkCqAIEZJiR8GBFEEWUb98gNel6PFFBMolPbBNgy7JcI5/DjGDB0Djk4o9ssl+e0NahA0ZUOLZToOOX14TDJKUVpDFIFzDHkBNAgFYTBw8uw5xeUL6tUt0eyCSGuoB6STSKUxszl6e4sbbvHTCcH5CV2Z4zxDXo9AWmhKjs8PaesSFxgQHoPQNFZjhSZLYmIFUwOLUFLsV8S+zyw0/P2LDywmM/744YRHp1OODw7Ijr6HEQN0Ld7xIWTfYxgfYxljNz2ECU8ePWISeby/29G4Ce/2A0G5YzyOUWZCLT2kvOP0IsOPp9h8jeglXhDB1EO3NdsPNSZYoM9+igx8VFNTrz6yb3eMP/sevnEMu5K2rumSGh2HIMBiKfcbmt2SoO9wOkF5KX7VUTeKw9Eh6fOA5+c97WaH6HOMVYyEx8nRiLnrqV69RvuKcHyEqfe4tiJNU5yGQXvYfE1X19y9foc/yah7y9Xrt6S+hU1NXzT48YyrzRJX5jx/8Jh4NGZ185qHCbzzPKR19HXBwdlTankP15ZFzcvf/DPvvvkdXzw9oCsrhrZHC4dUijIvQUDga3bbmnkS8vAgwwhLHASEYYTyA5q8ZH70kB9+Zfjw7Sv2Scq/lDnTvqZfbhBexOff/5KT0yPaYoluMvwwY3pyjm53SGXpDVilkY0gMIqFkJjBYRan6EjT2u9o715jwjHHjClv9szHCWdZRGIc2WhCMD7i6PyIRZYShgG2rxnikLgIiJIQZ0ukHyKsRg8dUhl8XyD6NcKFbNclVFvSEIRWTM6f4IUjRgrev3nHyeECU+yRwuPDzZ627oh8QepLurIgG6fEccLJxQmvbt7g6i3LD6/4+m9/xdtf/Ir/5C//I/76jz7D++w53777hnK/hdGEKZK2qhgfPyAOp5BviBOP0nOMkozV0QOy2Zwnnz0nmYwhTXG2px166su3DMUtfpSilISyBATCBKAE9W5JvS/RoQfSIAX88V/+EU3k+He//A3j6ZgnixhVgeot1faOttxTbDr+7Cd/wfOLOcp4SO0Tz8cU+xWagTQKaHNg2CEHS9taTN+SZSmB8VBak99u8PwxAR2fP3+GqEt2+zVns4TrricZJdg/rOf8XvQH0+T3JG0MQ9nStSVPnjwkDMacf9Iy7HY8mxwyXszxHp/Rtv+eJl/R9gGv31z/K6S0QZiYrqgYags6wA+niDZCKQ/hS7woZdjdMSlKNm+vGX/2CFlf4UkIj47JjhX5zQc+3uTsViW3l3uCvuWnhzHTKGY2WZCGCXu7R3oe0XSCijxEPVB7AuNJhsFnMViGTU78dMx0NiM+nKP6Et0XmDjFTKbs3l3RlxXRZEz68AlC+rTFDiU11jlQEn88ZfvhDabpeHd5S2Md7y8vsULR1g3tYDk9PaHvG/yqIAhDlPFJjWT15luyxOfs+ICHjz7h889/SPf13/JwMePd9R3r/YbPPv+M09MzdOihvYC26zFNgw5CehPgeokWhqEq8MOI7GyK8gyirdBaobIJajRHBzHtN/83rrvlj/7qpxwvDLvlHZvlkubmko/LHM9PeLcTDGGG2S756SzhbTEwNSHxAO76PUOYEh7NGGlNHoRU65oo9HkQeOzblr7pML3jwcNHxIsTwmBGdHiEiWOGao/zA5xn2F69xXgKKSRKgi8k8/kB25v3DEIjPQ2BZeg78vWSLx9f8Lu642g+Iww0s2nKxSwkLQ75wbMf8Gr135NFHtpIirJimvg0WqP9kHEGB0eH0DYs77YMZcPlXcGT0QE0Mb/9l0t8M3DxVYYfaZQ3xgsMsStQ6w3V1XcM3ohkkpIlmm63hLZGiPtJVpWMEf4ImzdMJ6P7z5ATLFuBnW5EkLMAACAASURBVIyZzg7IphMiz0c6Sd+DFRqjAnQsof1APwi6skXahiDomfo+SRxwejajvrwhiBKCccbgBGmY4FyL78cozzB0C1QyRftTtG8QokYad296+CEqDGk3G4YB1vuGcSR5cDAj6BrEQcYPjqf0eY2nJM54JEmCtJbADewvP7D7+I6To0M+e3iOSUOqvMDTEjd0FGWJEz3F6jXXHzz8ckl4eMr09BlSQXNzjQkM0+NDiu2aLE0IXInxUpKjQ+qyofJimrffYqVkvEgR4wX73OKiDbv370iyAF8OFNKwWMxRbU2SeMRxQlO0uGKPto6hGhhaCM3AKBvT5FvCZI6q7pgdHlNsHO0g0WHG4BZMUJhkxBAv8I1C7C7xffDnx2jjYTyFUw7bdfcHj5HgCXAO4ymEUmgDT58/oKy+o95tafaW40eHMORUy/fcvFyxXBc8/TfPsUOPtMM9N8XX3F1f8ejsgqOzh2SBRoxSNusd+zjB3q3w6RnHHrvbOy5dTyJ65hdHyCFFK4VJY6SS+OIJYTyikh7jx89I0xG22tIXG4b9jtRK+r5hc3PHsigYioJJ6CGEJXCCwTqk5xGGhsBo/OmCdJ6hkhSLoS3v6DZbhJV4UhH7AaNJgCcdlzc37KucRVNi64b97SXt6iNNOiJLPCaHIfvdNW3XMp2fMh2HGDlgS4FzFvoBdw9yoMlzblZrbnZL4tmcyTjl5OiAy9WepK5wrWARBHhac5im3Nxs7udHD884PXvCsIPZw2OiWUhnBZGB+eGEdgNtWTL0jt5p9mXFNIOLgwR2O4x0RJ5BOoFnAkBA1+NrQzy6X/cJ5UPef/sag6SuSnTbUjcNWTBiHjhOz0+ZPXlAFE/YvfoG13cM9RYparJxyii94PplTD90LGYJ8z/9z6nev6DdXZNsUrogw3tyzMvf/ZLbjx8w/Zq4uCayDQqN6wR+FKLHU7IHT/CdRaAQaGy7RzmHH2fQvkU391PMse/R9/193FlpTJTQlQ3Yjs+/fMo675iPQjSCb3/9Gy5Op+guIEtC9i9+y2QiiedTwjDEDz36/I7INsimZDJdMKElTSN8z+AHAU1ZI/wRWvtIIdBeiFQSaY6Jvn+If1GTfbpjuL6hubql3O1RFrz9BpVuyPRHqr6hmc44fbSgrmuatOJ3L67J5lM8KdFKYMyIvoX8esV88RQzesBk/owwPsNur/DjiNGDU5ThPq4extC3iKZmKEq67S1UFcHoEBHO0NECGccIJbDtAvINXqQRZocSAweZZnMrGAZFW5fU+Q2njw8JMoXqB5RdMWxAjsdIm9NUDdn0GFc3vLlbo/72f6d1Db5nuPn4FjEaYaqWPi8pBYjFmFAagkARxCO6HujdvangPMQw4GuB53tIHNHzBzR5TV9tcKEBb0BpjZqeYAcY6pL9y9/RDx1y6Bk+vmY6PyJfVRT5Fo+Wx5+eEcQBNsiwg8SgUNrDyR4hBc41OBVhfMPi/CnFx9fI9Qo1e3T/fWlKlOwxqsNkKUO1xRYOJRX+OKV3A73y6Xa3hL7Bv1/AZmgGlGwwxme92SO9e7MGa5nHIYGSbDH86X/2X7H77msWq5x4MuH5s3Nmk4B0MiYdJfRf/4qu2uI/eoSteoRSyM7RrXOESTk+OeKLxwveXt7S9i0fP1wxmXsIsSf2xoRxRl/C5OCYcHqK7wWIpqQvc1y7ReGTjk9RowcMncRVe1xf4ScpQwGybxg2N8jWEGQztOcjtcYan7rcMbiSJA15cBLyctUxmQbgIM5O0NcvieqeOB3RLo7wbEtES+D76OI1xXcbkovPiUYz+ne/RcqKMEkgGWOCEWKANjygvP4Vvra4rmK1XtOqgV21YRJo+iBETMf0xYribos56nn4xQ/46vw/5uEvfs7/8E8vMZ6m2W8JLmBw0O/XzLJDZK+5WDzk8aOHeF6K0BlmaLCuZ5/nmMRQ9RWCDtVXHEQesm8IRylqgCDKMDKmW26ZnX+GF52RJd/yNJ7SDC3z04fMzo8ZBQm6bWn2NaP4jOziMSbokKIC7WjWW4Zqi6RHCsMk9inqFhPVREmK/eQTLu0W0/UIP+R7Tx9h5odo2ZOImmQ0JV08IBQ+iRoQqqcTAhdEyDDA0wIRBIBFakVX93iehx00TdXTFveLZtI5xpMROjjHjyaovuRgEvFgHjFMDjFFQN0Y6sHAdMTRNMWuPpKZEVe3HznJZsQGXLukK0qK5QdmuuNsqvliZjg9P2MuJK//YUax+oBfl1hbIVVFdfMGHU8xaYQ3HpOdHfMwlKhoRDge09c5wvYgoG0F9fqGenkFKsYECa7bozQwSPANVgpsD30/sN9uqfw7pIrJq4KHj5+iognXt3ck2qN5dUmfrRFtg5Y9n3/+hNNPHxIGIWawiL6nd6BGGt9aXGsBRyMlcujRbU09WPw0wcQJHgNp5JOcntJ3sN11rIo1h4sRzvfJb/aMkpQ/YGB/P/qDafJ7kgkD/Min3awpW0v22RlPfvgVvnTE2xu62yWROeDIl+T0vOoH7u623F3fkLcNcTpjX3bYfmBoLUprtB8jhhZpAqQIETLGdR6j/jX5b/+J5HBOuHhE5Tzs+ppuWfDx7ZJff1hTO8cPjxLSUcjheEwYzwiChHzXsH/xhnCwhGcaKwzxeMKn33vG2zfvCNqO3A5U2w3h8REBguTsCb4WKGPo8g3e408QMsQECcoLEO19L3BoWowfMYgBHSasiormZsXlzRI7WIrVLUUvabqaMAjxBss8S1kt78DzybSDm7dgHQfzKb21TCcjzP6GD69fcjjL+KMnZ7zfVjx++ID50TF5viNJQ/rtlmGUcZcXTHyDUDAIgWskI89HGoXWA67YYGIPITWuqdEmQZ0+pbv7gHUBZ9/7M4a7l+zfveBag5MtV9cVgT/FGZ+VWmKTEy78lsz4xK7Fd5ZGHTAKIlRfMIpT3t1uYVtzcDzn+CCm03M+7gu2d1uycETy6BP8+RE4gZQGEWistIzGEflmR71dYXwfbSTjwwO6YkcSpzgT0w6S88dH1LVjvJjT9dCubvDaPYeJZn6wYP/yG8bjhP/2v/kv+buf/x0r7sGmgzBgPKquwEpNEoUIZ9lXDR+uN1wcnvDDn/05RkyYlh9wBvzjQ4oXvyYIFFHoaC6/pbi5ousGFj9+RuYLut0SWeWYoceLp4QnJ1A7hu2Obn1LneeU2wY/vX+Mnj64IPMVQVuiag8RTTBRjPE9cD2ubwjSjLbs6GoLQ0ngeURhjO+F+ElCcGSw2zVut0F4hh4LbUNjGvzJAXp0jPA8TBohpIO+w5Zb0BpsRxhFjKYThr7FDeDJiGBb0b19hdoXfD5N+TbwQSqSMCIJI1xdsd3u0Jdv2d7ccvHsGfPHjxn6Bt+T7LoOLwjJxiPWecHcVbTVDYnnaIYdve3wkQxdj+cHRKMZ++UG21vkYFFthfYCtD9CeQ0e57Tvfke7W7G/3nN8+gA1HnGiJhTXt2x3JcH8FC006Shg6AfQAZ2V4DRRmiAD0FaglMf4YERZb7FVi+p8htsWpeeYRGHLW0ZJgBeNUOEEmc3Btjg5QfsaG45QQYhr9ti2oxcaWZcoqRFOoIzGIfC1BiOZRyGPHh7x5ndX+H5M7GsiT7B+94/sP3wkmR2h7AnKWZq65dNHjzDO5+7mitXNR57/9M8YxzFSCPL3H0jSjCjwCeKA5c0VN0VDpXJ+NhrBbk1/eHif1LEOYTTJ8QXRbIKLM7xsirIDvWho+4Qq79BuwLkO2o7rlx+IlML3PYRWKBRDA9pBEHngLL4XYIIZzsUEsYdYfsRogUBipAd1w3yU8YPzMzJPstrvsV2D50pC5REuJhzPx0SxxpgB44cwPWJxMCfUA5Q5Vhuc72O7HUJ5DH2PFR3L2xVd19B3d0QayrZkmvm0ZYJqKrIoIk0TbgdAayaHC5L5CceLQ/pdjlA94SjAlwb2CQKBqCu2N3fstjXGeBid0HSONEsJQh9jazzXE/g+TZ6TJBPkYAm9ACEdwrPISULy4x9x9+oS6oZt1fEgDhg8w8XRhIOTKUNTY7cv0a0ljTOWdU15t2T+6RHRLKFT3+Pt+g3+q9+ReS3G1Tz58XPsuw0PXyx58ZtfkTUFrRvI+hULWTMNIzzPJ0wTopMTgsMTgnSE0hJpCzABtiho1yuoK+q8oOk7lB8QSUg0OGvR/j2Eu21qsixB+yFBnKKVYHV9w8e3H/mjzx5D0dPuV5yff0F6PqaXDe2+xdcentKMF3MO5hmm2zOdjkjGIzytGOoaZTtcmaOyHqF9hBeCvYduSz9E+B3OgWgbSGZ44ZR2uaZbLZl2A/XZDbfrDdfNHWpwBPmKdb5FBYZ5EhMLqPY7vJEhOzphlE7+9bctIDg8JUjH9O/+Petf/xqtJZMvf4ReLBCej9uvcasbKBrMk+/hmjXdfoVtrrF5gIx8hNJI7SOlxLkBISXS8zC+5mCWsroZEJ2lKXfYdk0fwOzoAFGt8TIoyPFZ8fSTkFo/oK0ljf6O9bDml9/9n5w++4pmPKJelbTFntl8xnq3p8pzJgcj8rsPGAZ0HxMHmq4F2h41DMgB2K/Q6RgZhsjJGbY2uHyHGqVIqRFW4aoCozTjozP6YaC6ekuWppS1o89LfATHF4eMpyleEOEHKbLpEdLH+goR+2htUbZn6Ac83aJ6yySe0uxyittrRosAZXtCEWH8GK0N3iTFVQ0MPVI3DG3NwAB9S2wENA1SiXuoOTAACku7z4nDgGBoGEUh2XTG4ZdPGfZbTj57wrBfk6sYkyVk5xd4oWF4/x/Yfv1zZCCx3BB/8ce4TY1raqg6sAuCMOIv/vwn/O0//Iq3l+84Cx9QVxG39UBvr5jOOirXosIYP47xlUFFCfLwIa4sQIAIAjIrGPqBlgm9EjT5jomR6HpHs+mIFp/Q1D0uA7TACYc2gtnFBe1yyzgyHJXfsXv7kvmD5wxMOXgI+aXg+uYOm5d4sY8VPX3TgNSYVOI3a/S6QQ636FGKH2XoIAZCxM0rGDqqbU4QBKzyntU+pw8U3bJFLEK8KMJmHrXXU7c93X7P6HAMtzf4+xWK+6qLwlGubgmmU6YnRxxOL6ifVhydPeD06YQwS/EDhW0lt7fX4CnqtqbrK8q+QhpBEEZ4ykdKRTga46wgHmW4oqVtK7zjM8bzB5w9uaW6fkcjBlRTIBvN/nIJIiZdXOAnM7xgRy9TBhru3ryAYY/yPIyyREGKJuDs6XPKfUGEZHuZIJBEk5ji7o7uumEUHWOmCYloCdsVkU5Q1tJZi4kzbOjjNQKlBgSWQflY22PtgPEktjc03cByU3A4ypBySjQ7QStNkMbQ7ogMPHhwzJULMfkSjOD5p+fMRiETV1Bvt3Rtz+JwzqrUJGWN62pcXbJ/84FnF3POHz3k4k/+ki6eElDx4MEBb9fXDHVF124RtiJKx5TdmqbrEXWNV4OI52jP0ZdblPJQRiP6jq7Nae5u8XSMFyh0X2PrHClDhBBo5SGVRqOxTc9md4OSHvH0AdvNGtcNJPSoNGURjfDbLevqjiQbM33wGJ1OoNsjjKCvK+zQE0YRsfARwtHYBkSBlQO2ae7rXIGPJwWzUYzoG/w4I+5ymjzHjwSLJ6egJTs8ZiLk/dv3hIH3/+GF+/8f/cE0+T2pb3qS2QG987Bdj5KC2dkpm5s10ekpwfIdH/+7/4XV8pbFVz9lVXl8ffmW29WSaDpFHR6z6++om5wwDpA6QAwD/fKGKPsUpALn8E8+RZsIYyT5x48M/R4T+tTrJevllrd3e2J6Pj8ecTiJ8aMQNUCWzdGeR6z2+InP+PE5IgrpNi3JZEyQfEFycsbd5Tt2RcFt2XF1VXAxu6C/vsJPEwalMXGKm16gvBBV7pCup6tbRA/aeAjPMKCwQ0uJ5uP7K5Z5SekM222B1fdJE2k8PN9HGZ/T0wdMlaD6zW9Y+ZL5H/2MpWtpBffzbqtbfvPdG5bLNReLGd97dM7TZ5/hhz673OHcQOdpfrPqeFM0iKS972E2HUk6wQmF8BMwIa6tcX2BjBPUOEYKn/ZGQqNQnoeIF9SvXtOXoOSUfHVJ4HweHx7zriyITh5zcfwp2xcveTSdcnj2CSd/8jP6KCWIBlQgoFhCXvL18pLt3R3Pn5ZMHz5hfHpOv3pPe/uO7l2K63vS519isQx9hcAhSDGU9HlOmCR0wGgUw9ERpAmlVPhxSuD5NI1FewHzxZTX778jnU6YzSaMTx/w1V//Nas3rzg7OmH91Y/5p1/+HXnTs8trhs6x2pVMxiPiJKFpepTSnJ0e8NOf/IiHn39CGM1RVxFDuaWPE0qgWC5xt9fU+5rbuz0P//iHTD59RL26wxYrzDglev4cZMTQWWy+hB76smR/t2F0OOfWGkbTBF3tWV9eMTtYEMYHSC/BhBkmmzJUO1xfEc0PycKE+fGUtrUUdYurG2zoE/kKb/SYNlhiZEfXN9imI5wtEMkMPx2jkylOK2gL2uUtdigpywo9GeNkAO5f10mEw1UlVgmu/6f/le3NHSKNOcli0skBxmgSaaGq2DvwvZLlm5dsbi/pH55gh47i3Svi0MdYR9UPGK3Zlw1FN2CHFm8ywws9iu0t3uIMaRReD4Hr6bMZdVXcgzObAeE6lLCMkgQRHWAzgxtaDpylLzaYULK/znn73VtklHD80EelKbGnqXvNNh/oig2mrVBtQXQ4QQcjvOmcIAlR44Cbq5z2wzWogNEspih23F1v8euS3t3hz09QZYmMJniHjzCRQUjHsF8hlaYbWiQglY+rCmSvUGpAWYuyAqUMVhuOT4757a9ecbCYEIWGodkwGt7x0y8S3qxL7Oo93X5D5PsE2mMUj7m7fE+3u0XREs4fItoa2ezZbm9QnkfuJLvOofwQPwxJxmOKq5d4u5zRMCCGAdcNyCDETEYQJ8h+z3DzAiFCZFMh2wZbFtRFzptvXhFZi44CtFG0rcU6gRugHWDoHTL0sLT0yt0f2p1GNJKm6miqgc7dVw61MjyYjpFacpivGRwo1zNSA0k6JhtN0EIQpRnB8SdYLUl0j7YtXSPpB4sta3ACcDhnGexAU1XkeY7QA9vLJYEbCJVmGocEYchiNGJd5AxVxSQLiX2HLwdG2YJBjwizEXQOFUmQYHRA0UNb1exvrgmlZjSeItsc5QbG4xS/vl8sUX2FCmOCOEBIje0HAs9H1AUmHDNIGH31GQenc7brOadFDn1HLAZ8Lelax9DBbdMCmr4oEEmFLHaoeMlhlHJ9uePtv1zypN/jjSS6XfFk6hE3KWo/5et318im4fWL1/zVlz8kPviMyemM+PgEPZoj6bFthVYOEAxlDoNAOAFNhXAtjRIk4zGiWBOFPp29j2Y3dYPRmnh2zOTwlJuPl9y8fc3y5pbHj4558mwMvUQ0jujxISpw5B/f0LU5VdnSVDlBNGZxeMzVt9+hxwmdEwxtS1WUGNejlY90/b0J2VdIqcGBdPeg4R6HOn1A34e4dkB3DUo5uuUVV5ffUvclozTAlxYxmpBUDe7mlqEo6LXGxAHKBHjjCXp6AOst1btvSeMUz3hYnTL93o9RTUf5q18SPv8hOg7pdkuC02Nk5OMUWOsh9EB/94GuXGLqa2Q2xgEiiOmXt4AgTkN2ZY1vJNoqAj9maAusBLF/h8kCwliQTxLu3v+K/P1HTp4lDLMZl6uMYXnHIPZchj3JNGbkeQT1e8r3Oflmx8mDU0bjMUmoSY8O0a6lb2taew9eDv2UPu9QQQ9djQwzpBegpYLQITBQ14AHtkXWO/o6x3Vb+rrHNRXahLCuUM7xyQ8+JXQVUvr4h4+wQoAX4qy8X+4xYOIZXnjKvmsIjUM29/W9wEma17+j4wwTHaOFjw4zJALth6Bb+iYHz6PqHW1ekkgB1iEcaONjEXRtSxRF939EuT35vgAjyTtHnKZkqqU1lm57w3iawfwJ4dmU4OwRWnvYesWmWvIv//AtP1uMib/4GXQN/d0VfdtgHpxjbc/i0SP+6//i3/A3/9v/RZh43FQtXt/gVIAfJlTFnqGuEE2F9AQiiPH8ECccKksRoYdtSvq6QnkZfT+gdY8ZlqzfvsbMH9JsdmhjaWSOklNc16CQhOM58eFj7v7+b0iUot5cUQ4+o6NPETImOn1GGo3p8pqhr9AakiAmm06JsgO8KESlY6y8n6cXVYPNa4SOcdWWbnNDPEqQfsT2/RW7XUuSTbDpiE77+PM5VRQhDkIOLg6p3Jryu/+ZX/yP/0DfOfT5F/RNzcHhOV3VUFx95NGnz/ADj/PH5xQ7SxT7eKFC6Jaiq2n6DiHvDQWkR281tVWYQNN2HcIohO/jSYknDTx6TPPuI/XmHWEQ0+s9eBW+7RAoivU1nTBEpxcMB3OkJ1BKI0xAvV5T3HygqTqiUXafqDSgg4T6dsurf/7F/YR1nDFog4cmnU4IB0VMTCdBeDlu2FHRQJKgsyk6HN2bJ0KjpKIdBqTrsHWJp8HzFbXoqWWBNgN1U1IVLUO1wxiH2Oxpix3SNmSjkA+XW/LdjsYWzLKYZyfHbD60yDBjeX3Fk0+PqNJHFE4gBsfh0Yyrt9ds79Ykmx3fpBM++f6XpHrgbDFmlaYMbUGT70klDPkt4/kh0ewUOXS43TUtLco6wtkRUt3XrJr9mmZ5iWtrNB51WeFUjZL3iVghgcEimgrPSGybk79+QfXmFdnjZ5TrAs8keL2gLu64ya84enDO6Pw5URiBZ9BxhNQefdeiNITZCNHfL4d29YCsezylafsGYzwKNMpZQtcg2go3ihhlGfPEIDIfhCEvcsp+4N2yZppGbAL1B6bJ70l/ME1+T7JY2qLETxPyt2+pVmvc8TEjXxAfHeKNfPTf/5zp0TnD9Iz2zRWyLRkpx+HFGQeHMfndiuUuJ0kzPF9ghSY4fQq9xTVLTHaIEz5iNEX+6K/RB98y3L5n9ct/ZH21JL/d82mokElCNE6JkghPSYwC2xZYD6JQIIp78KR3cERXqXu6eR+QpmP0OEN988/E85BeWPKbSxrXkRiN8hOUye67t9sd7eoGKS06TFGTOX1XYnFIJal2S7qu4dXlHU4pNkXOrhtwUqCNT9/VCD/G8wMOg4DJ9Ufym2vS81PS2ZRxVzIEKTpIMVJSWsl324Inz5/z/KsfMDs5Y1/v2dUtrRt4v9lRScm+6ri9XmGMwE8SIv8+Vt73liDLcF5Id/MG1/TowQAOnSoQAfb2Dawu8cyAjQ8ov/2aBDi6OKc9OGT5219wfnbGLPFZTTPOnz1l9Phz8m3H8OoV4++fED25QFPyxRc/Y7zc8/LVL/H7hub2koOLz++Prts3DDcfiCZThg8vsPSI2cH9A4oCz484ePgJZVshAx8zWKZnDxDTAxoMuU64ulmSxdk9yHcaMHv0hPThMeH8CONHxMdnRAcnlPg8Tab889f/gbrZUvcgBSRJjFSKJBuhioKT42MCoTmaZIxnCfbqHU25xkiHqtb4ScTt1S3Xd1ts13P66QVnf/7H+KMRJjDYkcdQ9nijU4a7O2j3DF3DUPWATzKf4SYLmvWWbrvlw8stWRDTmZg+XtG4gKH3icwU7Wf3h2WcMp5NCLKMKJsSbXZsri9RYYNrOmSgCI8fYrc3JJ6H8lLwNE3d4PoOm69wwsMKi/Bjul2FTrP7f059nzDNaAdHWTT0RY3rHR8/bHjz6pazh4LZFxd870Tgqpx1VbGpavowxu33uL6nzfd896tfsEhDhg9v+e7jexY/+Iqnnzyi3G3whOR6VfGDxxrPKIzn0ZUrqv4YqxTV7g7ZbtAC+g7oHELA4AaC2SFKaqT0YbTA9h2izal331LcfOT67YpsPmd6eoAcjTBxjHaaalNjO59IKsIkxIkabQeENCgV4M1PycKQzv6W0pyx/u4lHTvi8ZQHjy9oNxv2tx/w0xneOMAbHyHMPQSUJkcIRV8V2EEhjETaiu12izQahhoVKgZ3n5gzBgI/QAc+Sezh+479m29w5YrsQcZkMNhqxdgW3EjFZrMnTSZ8/9kjzo/mvH35a7IkwtUNl+tb9l3DNx/fEgpFPBrRlBUHszF+EjOEMX3TYlFY69Da3D/6wxBlEmQQotEMrUWwo1sVNKsdb1+8pF9tUEJiB4lKYmLZYgfJ29s9rs5J3JhkPkULga88XN/jBRGdFoS24yhJSfuON9uKJq44OVxwNj/hEqDPCQIP6hp/NCIIUyaLE8JsTpCNwSjc7oq+LpFdi3b36xyurhnCAGE8nIAw8rj8mDM0LUMt6buewDPIJCUFurojijOibMzi4IBJlhB6kj4vSbITgnGCcx2D3INT7K+v2d9tGKzG9Q7fF8iuxlmL0opxbChriXQC5yDQIBgIvRDXdqAdWmukc1jboLwKGVoCtWA+CqiWG9r9impXovwEOfQsspjV3ZK279DOopoOWW5J5j3uMOTlv7xEdVsODic415BXDbttg65LQqkxMoDOYug4fnhINJug4gwRBAjhsEOHq/L7I8Uphn6g7zqqYse2LiCOiYeW0B/RAL0TSM9HKsn8+c8IshmTxKfc73i5Lzh5cMyTpyf40RYvOcG6CXu5QhV36Cn07ZLrD3fURU44mtKGKUeHC6LJBC9OEUbx5h/+ifPTE9Iow/YDdndzzw4JMoRRuGKF67r7N4QX0coYPxjo9wWi+0j54h/Zf/gNj3/2J4jJAYo97eaOVEHa17z+zWuMcJjQ58ufeBw9e35/4WtDs1lR/vbnYD36tmX65Y/QXoLbrejvbvAf/hB1eoxgwGmNa7fgJHqywImG6uYDm9dv0OkBKhhjHQjt4zqHNim93WGc4Xg0o96XbF3N6vaK2Thke7uG8zHedIe5XvLt12+Q7wce/ttjen9OdjSh7wSEAiEVejzG2Q9IJ4i0wNU1I9/cA7KNj8bQdy29dTRNS9/usXVOt1WEvsZt7ms53jBgsgnEyxHjxgAAIABJREFUI4arS+x+j4pS6AtsuaerckycYh2sP+7YfvzAwQ+/T6IrlBMQJCgvw7kBi0b7AbapUaJHRBl7c4QNLdE0gm2BUwWe7dHbW4rXr+iOjlHLj2jXINM5WAVao+IJVVdz8+IbknaHEAPSWfqyplMdjW1Ro5S8HVicnPDxZkXoG/ZlRdkMbJzP04ePkMbw8de/IvAykgfP8A40ajRCaoltxpz+269InyWkP/oZ1s8QY4MSA/32NZYKbILVisd//hc4P+L/+Jt/x7psCT2P/fUt611OKOBgvmSSThHSx9gBNneYaYbKYlCKoc1p1x/QC4PoBobtNf3la7rlHsGOy6sXBN2WJ99/ivE/RxmBLJv71ZJ2h9ivuXr7jrubPQ+lR/FtQRhOEH5EMp2iDwKSgwM8ZdBehJMa+hakQ4QhBCGiukbsN/Rdj4oauqqgcRbjC2opwdPE44Smbgl8j0YFjI7O0Vogg5inP/uKzTdfc/Pbd8TxiPGDY365Ba0Vvpa0ZUvTbDCqJzmeInUHH2KiKL5PtipLbVucr6jymqLoSeKQquyIxgtocgYH1jVo0yNMDCikNsRPzjF3VxSXV9TlGudquqbE+j6tEAQH5zBZ0Psa4QFoUIbNhxsCGaNDCJRCRxGDhNAboMk5Ppiy7wTaRLgoI1ACz/MwyRjVtSTSgGcxesALU9A+rq8QLkdrDVZgJFghKbd7Ik/TNDXG93B2oK1a0C1Cl1TlFfsPd7RuoBh6hPGQo0OMktxdfkQZwzTJ8GyNbisOTi8YzRZ8/Xc/RznL8eGEu11BW+w5Sg0Xn50yNC3VvmD37a/Z9wU6Mow++YzD8zNuvv0tQ9OgfIV2DtW3aOdID08xWiKUhw6y+8oNHcNuS796h1tdEjYl66s7yrJjvAjp9mvafUVyvECfJDh6tG+Qtkf1HaHS9FcfGcqW1msx4ZhIaqwnaZXAhSHJ0SG+a2nqnB5BHEd4OkQ4h8TgeotxLdJ1lB1oaxHmnp+Xakmq7tezZDxGS0eUBFgq9GiG04J6X3D54tdMspj5OLtn/f1B/6/rD6bJ70l+mhHMD2jKiunhIUIJpOsZH88I0gidjUi/+Ambt9eUg0Z6Pm3bYCKfo9hyomve25rr5R2HRwsiJRHa4IwHrkW0Ftr2/2HvTZply87zvGettfsm+5Onu+ee29atQqEpoEACpAwSlOkgwwMpNPNUA4Um/jUee+yBPXCIkkOyFWIjCCAgAASqvXXr9vf0TfaZu1t7reVB4jeQA/L7AznIzB37e7/3fR8EBuUapJ4j84jm0qczuIenBvj119xUS8Soi4pDPAu4Fqks0mo866OEY3Ixh199ySC4S3zwGFstoamgKkiyPv3duyyml2SHhwjPQwmHrTR6foW4vSHcfUQw2kfuH2F1hfA8nNU4UyFDn6pec355yUJbrpcrkjQBITBSkWcdplfn5HlKOsqRXsBuXNMPe+wffZ9svI/fH5Jbx8Zf4iUD0iTjRz/8Y548vuGP/sc/pFlOCLwWq1tuipqNMVTa8vrdCTezKV7bZbVZM84G+F6MDGM25RVOr2mc3bLivYB2cQN6ja0qvP1vEAUbxOU71GzB5uKUdjHh4MnHWOHTLheopmQ/8PCLKU5CGGnC1OLNpiS7IVFXEuzksOjQv/8evn9Gff6c/uETquWC5uUXDA6O6Xz8YwQVbbOCtcQ7eISTErOY4JREBAqZRCgfWivJshGNBdM75OrsDZuqYLY2VM6iWkEcJTz+3u9x/PAhcu8YKxqE8vA6Y/K4R1M0SOOgNRRljfBDkrRHJ926gvL+ANdo7M2aftbHOkN05w6okOX5JU3bEA56yOSa7hC6gx57/+yHeJ1s+zsjp1ncItMeENBWNbZeITww1QrdGly+g4x7eNMFX78+53RWcFlcsP/5W37/+Iz3PvomuQpYy4C43yH0PUTY4+CDJ8zOb6gqSZTv0bU+6/UMPVuTDdhSf3CIqsGPPayu6e3u0mxWtMUGlYfQthhp8ftDdFtjcNiqIkoSlqsltBazqZDZiG//+b/g6Ne/pQgc+b0H3C0dn35xy+l0jpd1trGGVlMuaypd88vX73h+OyWzlsxZvjM65869h4zvHPP6zTuq6Q2rzT6tHeIFW7rO9elLvCjH1htMsQQTYfBojSHpd9GbgvrmktD3sL6P7IyRCFytcWXJ5NU7kjCie/cuRZAS5F2SNKSZVEReD2RAFjiSxBFkHtKUKBvgSGmuC5xSBEmfdvGW4aM9Ji+f0pqKvP+AaO8uwXCMo8bpBmVWiLJkc7MkiiR4/taJIQOcLDGuRoSOum3wREutNXG6/X8JCS7y6fZDhrspVq+4ePGCfidken6B9nb4+s1LbBDjKR9pNTsJRH7O+PH7fPHr33D7n/8fRlmOxZAlPl4U8tW7C/I44fc++i7jXoLyQzwpqGYTRNtuXSJNjRA1os22Di4ZIdIxrp7htMSWlmap0fM1vhJIT+IrjzAIwA85Obnl5HrCgzymG0RIoTAESOkhowjhWZJexM79x+zGe0jVkr865fTmCqsN/V4Hv7/L7dzRliV+lG6LAtMO8XCfpDvAj3yEcDQW9GqGWa5QYYofJDgUGouUirKuqPQcFVmMc3jWR1rJsD+CjuDsxTNkUXB8dId1ELF7dBc/jNBViXEtQT9DxhHC86BuCbsDzj/7jNnlgtYIOnmH68srNgtLZ9inbh15r0u7LnCmxbUOX3m0ZUVjBaGXYdc1JgjAtkilkc7h6RJJS1XW2FWNqiVp0EWECW1b4pwmkI7AWTJfkvo+iTAoaoJQs7Ob8tXZlHezJXnkaFpD0TiMH3Pn3kccP8zQsxOG3YQkVQRZjkwjnGlwwkNUDUJorC6xxZK2KKnKDdPNglnbkncTnPWoGoFy4Ic+Tgiy/SMGR0dEec7s8hTZVPzen/wYaQoO93KErQlGd2hKDyfXZHfG7B58k5uTT1n/5mvKomH25Ze0dUMvCkh9D11WaJWSDYdkxw/wogS7mFHPr2nTIcH4EdI3SASidVvBtGnwW0W7WCBWE8qLdyR3jjhyjsGjx+g6pF1V2NZQThfs92Ief3iMlAFnX7/kb//Lz7Gt5vEPfojF/c55koMVqOQQ/Ag53sMmGeLsDe1iRnD8AATQVLTTDW21xOvkOOlT1SWz6wvWb0/o7hyQ94c4Z9lUNdpJwjjGtiAygfQ96sWcdVOyaUHGEeN7RyQ9wTS2mKAhiRz9cYaREe5WgAjp9VI8KcmSgDtHR7SrJZt5QCos03fn7H78AZEfYKo1QZqj10ucijB1jdM19XJNkHQQeo3X89BvzmB0gMyPEP07YAyunKD8DL/bRYhr7OQSfbXh+kaxM96nE8WofBdnNkQP7uICuXXKuQiMQ7SCNgjwhl3inQXPnj9jePxtRgd3MVdTWN4i7YZqvabelHSP9vA8idsscLGPFR6trZg+/xQ3v8J6jqw/wOkCEfj4yqOqWmrTsq41SbfPcDhkvVwTCqjKmkBCeu8h5fkJRiqyJ9/EhTkEekunEYI2CXG790l7O6juCCck/v4h3t4O7jKm0hahG2rnqE3N6O4eH7x/n//6879jXldUzmGrkmEUcX11wZ17TxBRgEoE7maCIIXWICSoKEEGXURtYV2hFkua+YZ8dITWhnI24fjJ+0jtCIMQPwkQ999HKkV9fUa7WHH98pRP3k6hVjwe7RNaoKlxriJ99IDB9z4EkSKcwjYaV5eYugBP4oTEuQ6mmiB8Sb0paPwcpMQoRalbfNmidEXc6eJbS9MdkN69z3pyjQpToiDl4R/cI15Muffjh6zSkODf/xc8a/BkgFSCZdny+rNfkWQxzWqBtC1h2MUqsK6kUZLlesNyuiKWAdVyvi1+Fg4jwA8ldbVGyoPt8SISOLMiTHKiwwM64330es369oqqKlgXa0IR4tIhQeyD79i4EJRgcfIcWVZEnQEnbzccHuaEoYcfJARJgook4cER1fklk3XJaDAkzwcEKiDMevhC4qUp0jdY1/I7Tx6m1EhjQQmUEDjjCITEeQKMRimQjSSsPVKVYTNH6yRVA6dvbwiqDXlvSNLPCcoa1zZMpzN6+7scDHPk9Jz5+WvyboU/TAj3OwTHH7J//5jy+TN8T2HKEhEHKF8yLTZ8Y9Clu7eH70u8vMvBgwfcvH2DxUeEGWEcEQ8GxGm8dawLD5X2UHGPdrPGLSfYqzeoxTn2/DVrtn2MavIVvg1Q/X2yOx3a6zd4KBABDkizHvu7+8xWc/y8T3eQMr26JrAGocAKSxZo1jevMZlAByF+HJJFIYEQCAvSCnAe6BpWJbY0iNog2gZnKqpmTZZGhFFIkvXQVYWvNKHKtoXWukYlKZeffc2b5ye4/T7H3x5izD+pJn8f80+iyd/TCGsxdUOapbRBQNNofN8j7HdwZUk7mSL7B8jSITZzNtMJQZQyyn0OU4VeTshCnzeXNxyMh/QHOyjPQ9Buc895HxEkOO0QKoXlBZIQaS1SV7C6wVVzOqOUr6Yr5usbdpKIg2GPIIuQwuAFErRicP+Y+P0/wkt38TxFi8XNbqgmNzTaEoUBrRfQLlbk+8cEQYBbzDDFhrZpiA8+wEsyZJJgm22GzzmJUwoHLOZzvnrxgvPJgihNKJsGpM/V5SXekU93Z5c4ChlkEd7slE7SI4x8isUSPInf6RBoQ9BGjA4f4DcNB9/9Lt/qJYSyoelkeJ5CKgllw/nlFba1tIVBWAGRZVqsGHVG4An8UJGHQ/zQh7LAWouLY6TIcHWIzDxwEldscJsNxe01Fks+HpEcPma5NjQXT1kVJddv3vCzp1/xtix47+wJ/3bUp7+7s20Wr1fUz18w/+oF/9d//E8001u+ezjCZLt0Bvcpb99ia43sj4gfPsQb9BGhj7MVZjNDmW3W3TmB8CVKhARWIkREVW4I4oxw/5uImwWtDQl6I8Ay6veIkwg/7aLSHa7nF1z86uc8+tb3kYHHdLmmXqyRCKSxtK6hVBGjfEDYG20vWje3qNzH2+lgaRBxj+5HP8R0v0aur3HzK+JBFysge/89guEQURUgQQQxXtbFlBYRgN8NcS6hWUwoizWVU/SPH6FtSX+QsrtIyZIO91aWq/mC//bmnN54l/iwIN7zEHEXFXmIyKd//wOEtrz47VP80R5hd4QWPtVmgVkuyA+OaSYVLOe45QQ8fyuA+DEyFtvrrh/QNhv8MEIpcNbQWgut3pZgFg269ejc+x7GRgz/+WOy8gQ17hJNS8TrM/xNRdjpogKfZrMVLzthwM1yzZfn1wyTjD/bH+NrSzG7YWd/j0ZF3F69o1gtSZMIq9st8rKoMa6l1oKqtbgwotAejWlx0m0jRmWBKwtE1KOdrjHFDSzOWJ5OSPIB6W6X05kkP94n7SQEQYA3DhB5QNQYIgrScUx8ZwdTtniE4Cc4XaJnE0R/l9XLZ+w+uoNNFbPTKcwmpMOQsLuD9EOEabFWI6VPOBzjbIWQFs/3sdaynC+pmxKEhDCgbmpCXyKFj5ISzwuhMbz/5B4hhtdfnXJ1s+H6ZkkQzRDZirLxKRvFwc4uD44OENUC44XEnQ43k1uefv6UwyzmG++9x3B8yL1jwXJT873HTxj2+sRZTOsUfpzTrtc0mwIv6wDb8jWMhrrEtRrqCrtaYCYT7HpNPb9BsO2gcc7+ro8lpCxKZvMVgZXsJBGdbk4Y53Q6XZQf4KIQ6UnEaJfcHyJNSNRR6LTP+jc+zXxBb7iLF0REcYfGlzhKaIqtTdgL8aQE3eBsu332bDYo3eBqg64KjBIQeDgstS4ompLKVKyLNatFicIn8WOCOMb1+rhka2FfL+YEUYLwA9rKgK/wOxEqjrG6wDUOESWE/QHi7Zxm0WBUjLMeRbUm3wsIApBYZJLiqjVYS7NZIwJJEsYIwVZQC7cdD9KAqVcIa/AU+NZCY/C8DPwI5wQqDlFeyU43583ZNb6yhJFE+AmBCshi8HZ6DLKY5aamsRYf6Ic51g+YrNd0sgHx3g7JsIOzGgS45XTrfmgcti4gVpj1LdY06HJB1ZSsyhVhHuF5MWW5gkahK02aZ3hJSlVrrl59RRAljNOY4be+R7IzZj67xi7OSbIOzsyRLoXaUkxuKSLH/PY5y9srwnDE6dklcRQiu0PSfEtecUIxfvIhfqeLXi5YX98gXItKJ/T8HCknqLALNkFYHz27RbQCFrc0N6dEdw/x0i6Nhs2rlyQ7d5Gtj20DEqHoHO8z+u73ie/c4/CzX2L/4i/59//uJ/zz82sePHpAengP1TlC5rvIMEOECS6KUHFIMznHGoOeXuJ1hoAEu73WtnVNUzdorXFCcXJ1zbtpwZNHjgBBWdfUwme+2TDqdGkDg9s4qBP8TkB+Z8Bwd8Dgmw/RmzMe/em/4N9890NOPvkJ7s5dLk8aOuMM60Xk0ZC94TH17ZLRqIc62uOiXvP5F885vnuX6dtzHn70Pivd0uoak/SZLxpEuaEulvixoFxK4tjgTIl+8wnJo99D1REq1PhxgpMppmhxxQyzmGI3ljZ9SLT8z4ye3CPaHcNOn+rqC6qbr/A7I7z+ISrK0MsCXImuJ5j2iji7ZFm948unBT/+4z/H7wiq2Ya2bVis1gxaiwkyWs9HmBrX1uhixuTmlPn0nFLXWBEROIv0fIyFut7QOstssz3+1MbR2TugO1tg64ZVUWGvLli9+IrVbEpw9AibpLjGkoz2EJ7FVhXaGUoE6fgBMomors5Qfoj0I1B9hNHg7JbQtVnSbBbcv79Pa77J03fXFJe3bMoCVVdceBesV3PS3jaapcZ7W4eHMwgLzjri0R56tqSd31Ld3NBWmt7dfYpNxUc/us9ofwzFDK8xeGGDiDvgx6i0IE4z3js+YlMJvnr5lv0oYvzgfdKde+As0aNDPE8gsgQnAlzdYBeG5vqEcH8XIyVGO2pnECjqWiPzHGUsm9WSjXHURmKspBWKOvIYvf8NWikJlY/wYpyNOfj4x4jrC0Sng8oTjPlPKKVQQUiaDtgs1/z2L/+O1fkNh3f2ODh+Hy8IMdLhO4EyIKTC92KcrmnqYivYe5JQSHw/QK8LaDReEuEjIIywziL8BOH7hGEXf7DLZnGLt1qi6wpNghMlhTREoaJZLTHTK/IsJErv4yUpcVoT9HK6u0d4aR+ZZYh4gLwuuT35hChW5GlElCWEaUIYboEAUgZY6aHrzTaqHuUIJKrVmFCwPnlD2ElQTmBagXUGEOhGE3kBq1rhRTGLxYarqwm9UFG3GwaEBLphsVgho4RBP6ddzLh8e8WrZzXffLjC2jXyOKJ8IFmoChl5HOzt4FcbOt2UzXrNZrEkDQOCJME5hyc9Or0O2bC/fUYGY/ykgyyW+KFErMDr7iJxuPUUO7ulmVyD3lAbw8XGoHY6LM7OOBiP8NKYePeYZroiHh1DtIPzfDy9ojsYs3j5grLQtDuOD37wh6inX6NXLbYsMbYkJiRJUsxqQu9gFy/MCJzDEw6sQbSAbnFVgbU1tllhm4rWVuimwVhHkCTknQynFJfTNYeDDtJz+GECzuf269fcvDtjuqq5M7YECnqd5B9qvf1HNf8kmvw9jdWawFNby7KQ+HFGWzXYqkUVJfXzrwgfv4eYvuPm06dMN2xz76OYwNagLcpsiRTvTq442DvEy3t4foBrDG5xjahqZLaLMxXUBvQS1gua2xNMOWF0POLdzQ2fnkzwLYylTy/M6O89JtndQ8UJNtxmCJ0JiA6PMcUCrMQfHZKguP75T3FewHBnABK4OqcNQpSU2LpGZQMEPrZq8LKUanKJCEJk5OOwrJdznr56xbO356wai3AGJQXWFygLnTQhS1KGWUxOTX32ipNqgJ7NmJ2f850/EvS/+0OclxBkGYEXg1OQ9ugNImQUsX98j4vXr5BhQ5aETM4uqaoKX0b0sxF5P2FRbVi3KwIXEAUJvvVQnk9lCjq9LnghBCEqHYAFu1xgqyVNMSXZPyQYDGnO5gTdPm2omU0Eq+WSapTwZ//yz/jZZ69IQsXbp78lKo9xYQJhitjbobo+4X/+V3/KRgVkrmFWenQO7yOjgPn1C7q2wNkamaY458C0CC8B5jhrccJgsNRtjR928KIYigWb67d4UYfPf/ULVtUKf71kPL5DkvXRGCabkvD2BuMUf/3Tzxj+9hl//L/8a85LS+AHJF6FSGImm4K6qGikj7YC4oxovE+IRXQ6BNJQ3J7SrOe0zZK6LtBFjUwzIiXIDg/wPYG9vUDs7iLiPqJ3CCwx6zl6taSenLFZLCgbi7dzQDjqo4yPaTvcv3+Xtenhlg3DyYJGOKKdXZAWzzQkaYrnC+x8AhLa0jG+9wGBF25zxy6i9RTr6Ro/qfEH9xADgwx9XN1gWge6QXjg/BQnLF7o0zYFutUIKQHBerXBOcGmaEk6fazfJ/7oe7C8xd40tB6Eu4fsPlpgfJ9WhTglaYuCOIpwZcVeNyfyGz56/yO+vXuX9/78Ryz0KdPllGfFguN792lMjXUS3/Npq4rIV6zOXyHCPvQPWFfQ1iuKOKMr2Fo2k9H2Am0lTl9iigXORWRH97HrC24qg0yHJL4gUhK/N8YbHiMuV7SXF8yXC+p5S2/YJ+6PCQZ7WKvxQgGrDs1sQpqP8NI+eXeAHK2oXp1T3l4g45C4O0DJYFtMGCUI5YGIMbZC6DXNZoFtBbqG9XyBSnykVHjSRwmJ8hIIIhJZkR3ts7i54jdfvuRnT28JJXx0J+eg55FYmC/XHPQHDEPJ5WRJHHb48mf/lel0weV8QyIVqJDOaI/H/UOSbMjYF0yvrzl+8H3yYZf51SlBPmAzXxL0h3hBDMLglre4JEc0Drte4dZLKEuayTmivCEOFI2nMM5DSkWYd9GVwVlLjCFUgjTPSfs9wjgm8BJk1CFIMkzbYIIFomqJegf0a0W/d87k6h2HwiL8EOUcXSEJ73wDbEVQlojNBhf5SGmx1iCsRSC2hcRO0giBcRolAqyQXE8WzKcFy9sFq1LQ6Q0IG4sfJ9AavvPtj5B5l2lVY66uaOqaJN+hMgumk1f0qiNir4epVpTLa4pigz8Y0tkvyPc63EwWNHbDqnD4wmKtQEhJJ4+pmwKjNa61ODTWbQUVFFi9QjYOZyUyypFC0M5mNLdL3MYQ9juorIvsdtCrW2ThyIKYnu8xuZky7k0YDPpIPyKJQkLZUteacGCpraOxgqYpKDczqCui3Tv4XkC4M8JIH1OuEW2DMA5rQC9vIfYwpqRcTiicYr6a00pJ2u9TG4HWGxZrjfB9oixFDI9J8gGJ1Nx98IQkiFhPpwyGe/T7Yy6flSA2XL09YXf/Eb1owNmXv+bX//dfMJ0tObmRvPfRLr4fUJcVXr1GO0sUhFhdEe3s4wUB83fvGN97Dy/s4JzG3pxSr28x1iMefYjwclzZ4KoSPbnG2TXp8Q9wQtF7vMRcFujLT1GH3yIIHzLQhs3Na64+ec3mVy+4OXlLrQXrjeb/++lT/my24G6xoqs8oijBHw1w0uGaBXpTI/OQenWJqK6JbAu6BSuxtaOc3LC+fM3l2xOWNxPqZc0X0xnj0S6Z8pmXLfnhmLjfp1qsSYOYdrHCcy0qzIhiQe/RmKa5xTa3pIMDZO7z8Ic/4otLg3E1Uid0sz4Hu/fwrGLhKkw5o5sEvKodSXeHvZ0dusoQOsNtY5C2pWkXKKeZV4bpsiT8nctV6RK/zgiOv4/VAq7fIboGXWmEF0FVYSaXCLEkPPqA4us3RKyYnZ7QH43YvPgp1+UGqzxC8QW9vV2i7hGrJXz+2QtevP4EM72g0g2vrwuOVcticsqghbZa8ebdOW3WI0pD2moNOkLZirpes25qVhbWBBSbGUYoorpBovHShHrTUgjFzXKB8H2SJOP6dk6Qd+isloyUwNUVbVGQHD/E9cacf/EZy9tzzMMfYYSgXS+p9Yr5ekbY3SFUiuW7r7n5q78kPLpPdHcXowQqO6CtCupqQ11u8JRH0u9ynPWxT77Jq7/+K4yARTHn/PRr+uMdvMhHpBlSbB18ttAI5WHrinZ5zeb0GYvzU8LduyT9IVLNCUOBvr0mHe8hAx+3noNRWE9Qz5e0IoFsjyfvd5iuP8cEgtX8hM7j9wkPH+J1MmQkwWlsEOCswoUBQa+Dsy0yDNGuAd9nvVygwgipFFpDURsW6w2F1RgV0AqFGB0RZ12cdbTWUkUB2nM07ZzO4QHSGlTaQUiF9AIIFJ2dMcW8QBctXu3T279HvDuAQCKMRWhJRIdmfYFqfcplQT/vsihvMOWGfDhClxXFbIp0gDagBNKPQUhUGEJrkcrHNI4wirDa4AzQlrTGI2xWpCpmefKOTich2X2Et7NP8OwLxPwtel2hd2LCbJdwfx8Rdcj7r9nfSdhcvGbhtXQ/2DqxVDJEWA8VpQjfA6O3xaSewjYFDotpG7KdDrbVVI3F2haExgmH1jVRFGy7YbwOt7fXeH7O0rQEhUXMN7jlhtPbJUmSUC+XTG5OeXMxZ14YrJjz3U5M//FjRLNhOntFrkKyPGF/v49ezdC+YNM2NLqg3szo7BwgTIvThv3DO5xOrhBG4/s+bqlxixm2WFOvV3j5EKMNtqkQnsSqiGotIO0TxAlSSuLIo12t2Cw+5atnLxjtH3J8dH9LC1IRvndM/9Zw1b7k5uSad+kvObuaMth7wM6gj6jWyMAjkglpnBGYBK92CCxCGUS1Ar2NvNrlFOM01Ivtgc7WtDgCz5HFEWGSsjCKeWUwfkQ8GILymJ3dsjx9SRo47o1T9o/vcHt+ia6rf8AN9x/P/JNo8vc0IgzwOxlR2qFdLNnM55x/+Qw3v0/uSqIPPiQ8ukNwfcHi2RuyIGBy9Y7MdWm1RQYRQkkSKzm7vOTs9Iz8UYoVEucn0BkgvBgChYhCbFViZie07ZzowTFJ+j6tLjAX53zc9dnp9Rh2uvSHY7IPv084Gmy7h3IMAAAgAElEQVTdKIslUbKLy3NE1kEGAaI7RJ+fc/vmjGpV8Oz0BT/4wcckaZcw7GCbAqs1fm9MkA2gqdC3V2A1Ku7ghMPgmEwmvDw/5y9/8guufrcwKyXJk5BuN2HvzhFKKDwp2Bn2iabn/O3LU/7DLz6HuuJHd3YpnaTQGhckBCjquuTi7JzV2Rve2/uA8vqStpkjO/t4rWDU6/BgNOann3xCEmWkfpdBvEuedJlcz8iDPrpqCJMA3Zbo1kAQgvK3y7OvAB/CGpnFxMePAJ96MSOzKSZSVJNTNtNzdjsZLy5mxCND3v0AXzVcTNaI6jlJ3sXf2UeZhrCzS2+nyyDp8/bkivxojzBQWLlFIC5nExI0plwjwxhcu8X0SkGrK+qmpXYGKwV+kiKExDjH/PqM//3/+N949e6cJM0ZSsFyuUFLyWD/kOlywc9/8tekWcz+g/fQzhGN7vCkM+ST//B/4jYrmlaTpgmlDPCCmCBOCDxBPBgwGIzRcQ8lKkxVsrw8pVwXrFuHaRrSXo4wCc7zsUiC0S6EKXZ2CTLG6RV2s6AtKqqVpixrGgGD/RGm3hZyFdc3yNEuXqMoUHjxLkJbKulvl+9XX9O+e7PtgYgV9WaFCQake/t4ykcvlzTnZ9zOlqikQ7Ke4nXzbUdAFGK9GuoKXc2xekmQ91A4jC1BQlUWCOXTSkHVtLRW0HoxnV6P7u4O8d4Ik0o2F7/hdt2gW8v48JB6MUF3dqiWMwIdI7KcN8slj+4eoZuG9x7fJf/ujxh//DHxJfBqgtIzbpc+g0EXP1B4YYxzgnaxwPcUupixWqxpiob11Q3j8B7FJibo7KH8ABkA5QaSmHD/Ee26Qs+uqDwPHQTQepx98pR8lHD0wwxnK6ZXr/nl3/4tp1dXjAY9vlfCzuMuXaHxFAitaRcryqsrkrhDMLiP5zm8ZEoeBkyfnbC6fIuTHsnwLipMsNaALhBYLC3l4hajl7RWcHY9R4Q+Rbkm9x2OFj/oIL0EFUVYA54KsNOIr6+WzFvHH9zpMejF3PnWR3QXS1afvWRze00VGL7z0XeYzqf85G9+yujuE77jPFS1Juv26QzHOOeRpB3c5Ts+/pf/imS0R7mYsk7GCGlRywXOaIwJQbnfvRw22KaEtkI4jV1c0KyvSAZ9PKfYrApuixYZREhjSDojDgfXnM8m9H1JGockowP8tI/yAvy0i5d10dWG0Ck27z7h4s0rJkXJajkh6nZp9Rrf7+KlfbxmQY4hHgzx8wzV1LCa4bwWIRWmKGibirppkFGMUoLWSLQ1WCMpC81m1YCMKVY35FkXK31cVXFnvEeSdBh96/s0r76me/ISX3oYa6l0wc3VK5a64s7BE2QrUL4h6Qy3iO/Jku7hfYKzc9a/es36YkEncIgkJcpSnJCsGofTDdJrSDsRpi5p8Qg8D+U77GKGFD5e2sE2Da4s0C1EGHIlkHGIv7eDGXbRN5cMSsv49St2hMbMZlTXM3rjMUQhjedhdEvbamhLzt884+WLl3SigP3730YFgmFX4McK3WqoanzZItqadrWgVSHNZoWhoUJxO52wXC2Jkoiq0SipUGFCGG8jXKozxumWbqBIHfgqpG4cSZKTRB2c8kg6e9zcnhFnOWkeE4YBw6jLiyvLLz+ZMr6zQy9JMI0mEpJF2dKvSnwhGPT6+FEMXkjv4TeIdo6QMsCsZui6Yv32Oc+fvubDP80JohR9e4urNe3kmsHDBzC/whUNNI7sn/1PtG+fsvjqKV4yJj86pmklk5Mz3t3OOJmsuJrNmGio64Znp1Py3oQof41AQL1C7ezihE87m7N8+5Tk7gFSJjSzUyhLqotzmqKkKCacvHrGyxevqbRj2Rhulw3z2Ypk1N+iMqNgGzezGf5cIJIes3KFT4ttFzA/4fw3f0fSEfhpRdS/x+JywWY1RUmfMEjIwh55NqJeNgzGEc8vzjjOIz7+4Xdx2hBsJqTDHoHdftcXlcWTFqxk3ghenU/oBpI0bKnqFmEUMtqWvbdlg21CRChRYYtbXUNxSfLtb9KuK2w1pY0i/uI//i3DL97x4G7E/R99RNXp0TYV714/4+Snv+XXrwr+8tfPWJQbDiJHIwSHe32OdnLKcsW8rDHtitLV3B13aDe3aLvEZX1MHGK7XZw26OtzirKgajRmvcALFIHn8Jyh9QJWqwVG13hRRj4YcDOY0xQF0jpy1yB7fZq8T7h7SBYJdnoVEZesl6cEXsjy3QVrXTI3K6J0SBClmH7AjZySlC3ZYg5eSNRLWZqCs3JBW5f0PZ+qLMiGB+R7D8ijDi/+6v/FGM3z50/ZP36I5zuktACowMdW1VbkLde06ynNZkJTr0gGO5CmJIHk4hc/4+mXz0nHx/zhn/wPBHKDdQuWdc3F8y85+fQ5q1XBdLFGZX2Gj55gigXF5B3BvQfITor0Bfr2akttQoIyiDzHthVON1jhqIoZlS7oZDlOOurWsW5aVpWmP04JRMpaCp48eEwWJzRVyWq1IFQeQRcWl7/BC8ekB4+ol1dU7ZZwFQ16WCnYffKYqmq4++iYfOcYogjrWoxraW279TM6SeBHaLvBaUtVNMSJxFq3PcYUFeurE0b3PkTEKdZtu6KUs+ApaOutECA9at1uC+enl2Tf+g75aIDnS+xmTbGaUlzfktyds1yW/M0v3vHs7TNy9Qu+9+Qev/8n32fn/hP8ekoYxWTDIZvZnMXlG3YOH+HqDJnECDyEBT/r0db1lupS1EjPxzNgpcQpuf1cT7GpoEVSNQ1ZkkMimV3MaDyP04sLEk+wznPyZY2TglfLgnQ4pGpKihY8P6aTOT74+LvkuynDwe+ThGOu6hPSRBJ4hu7+Dou6ZH72CtFY2romCGOUUpimRpclSZ4TxSm2LjGbBUFnRCsEQX+I1Q317S0yyRC+j9Ea6wwqUPT2dqm0o3GW5fUNl59+yaKo+cmqJfjtc/7Xh485+P4f4ExNax3Dj7/FPVuxN/c4Pz/h+ctXBNeX/OCj73FnZ4xAEmUZotS4oKaVFUp5W/dyXaG02MbMdE1bzGhpsNKgjUG3DXHkI4MAl2acXJbMS4mMYogzqk3N1//9V8hyw93DHfKDPRoV8/NfvGA2W3DvH2zD/ccz/ySa/D1OkCQIs8UFN7MFz3713/n8Zz/hj3/0A/a6KbIeYEOP1tWUZY2tFphojPE8cBbl+/iepBWCr1+/5e7+Lonq4wmJzIY467bKr9O4PEaEd0jufYt2PsO6FtlM6Y96PHs2w99Y7h79Do25uUFEFULUyP3DLWpQ5bh6CXEPU5Ss3r6h8/6HVPWKtKy5mEy42+sT5yF+lCHsFrmFF2GtoZ6e4wKFSjtY0VLMb3jz8hl/9avf8uzdOVVr8TyPPIkwxiKkIM8SZosNj46P2PEdg70h3/74+8w//5ri8py99x6jdw/xwghPegjb8tnTz/n6k19xaBasv3MfFSWUtSHpDuiGMbfTIXce3uF9al69eIGMM5T16Q0PKG8uaIsptadxIsUPfazTiDABKRBBgGtacC22WSLTFL+7A87D+hl+qajLkos3n9MLBEFviCci1m+viKOU8GCX88Waha3JPM1Ia/Kior+7Q6sCXFNz+MH7hFmKqgsaJUnzLuVpQX1zhkwCnOluFf/NEmEMnhBEUYhd1wRpjucHVK1Cl5KikLx4c82q1GhRoY3BTwPi0Kff7XD27g1emlEtp/TG+yjreP70S+7dOwbfwwtDfAdtkNDJu2RZxqCXkQQKggQZpUxWFd1hRtxtEZ6PXK7QsznrqobQp20anK6xjcQGCtu2uHKBMzOc1jSbNVWxpmkbKt1gkhhCKIoV1pOkR0cUQmHqBZfFhtOrOYMgRqKx6zWT+i3Lm2uk8Ngdj0mP7sHwgEyFuCAi3E9JRcunz74k2s+I25awKQnyLgQxwtu6I4LeAeVMUjclEoOpNzRVhe8pqkaz0YayrNAExMM9+uM9iouXRF2PplywauHr8yl+PsT3FN29fSoUqUhZKYNTkvFgyL0HjxC2ptUL0oFP1SzQ1Zo0jXh4d5f/9uk5++MeVdMQ+TU4hxN2W6poSiK3YT27wqxWrG9D8sjD9Ha2RZhnb4l2HyKyPsbTGD2hqEu80QFysWCzdHTvv8/i+pTgy9+w+vIpP/3VFzw9n/DJ5ZTYC1gvV/xpK0nDlHBvTHU5Z3M1ocQj/9YTXD7CixRBk2OcY3DPMG0V68kZfp6jQokzAgkY01IvbnF6ihUNjerSeDFZP8GsNEo0WA+0Z/F8AEsQ+CjPJ0gSfvwH3+cPCIg3Z4S2JNEFydER16eXnL67YpMpxg/uk2xG/Jv3n7ARKU8/f87rL75A+T5N3SCUZDjcASXJ0i763UvqzYbWS1gsFxhjGLYa32raMEbGOUKqLW56NaOdTNlcvYO8R5RmbCZzlkWLlBKBpFpvEJsNx5Hj8N4OvZ190t0nROPHhN0Y2hqVgJc7aBOsV+Hihjef/JKvLtbQHfD40SGNMfihhChG2hW+Byr0QRikamnLBtnMEUmK1pYGQS1AWYO2jlZIsC0YsEiQAUI54jjGGYNSAVk+oHfnMb1mydA2BI+fsHr7BUWlWa83OOHRGsHlm3Ns2eHO7j2Gu0OEb3DWgbPIxiBMQrU2FEXFciUZhgGlrmmrCj9NKOcr/LrCbyL82mBli/N9mrrFOkvY72OVQGKJY0kwOGD59Guq6TUSS+NADXpEO3ukkxn3BzscH+4hZMyyrcCPiQ6OYTXdWpqLNe9++5TPfvsF49ix1+2wM+7Q2RsxGCQ4CbQVbVFjpcLWNboscL5mXZZYWzFdLZmsVsg4o5wsti+puqVtClpj8Hs7mCDG90N806KXa9YnJyTdIWGWb+lFWrNazHn16ozxKKHczLGbKav5OZtKM0oSBnGGMJYozri6uKKrFNrAar3h8Og+fpSghEDFPdTgELve4PwGJxPiow94kO1TbyboeoWt17hNtRVVllPE11/gVIQ8vocVPjKNQC/59N/9DfcePCCIh+S7B+z09qB/ye2zDWkUMpJwbgyL0tKdNFC/pb05x9/Zx6qIxdUZl4s5R92IWDha02AXt0zfPqOuHbfTG/7u8xd8drZg0hhGabCl63iCNozIuylPX5/x/7P3Hsu2JFea3uceWmy9jz7n6lQ3E5lIAIUS7KquonUbjUYzjvh8HJADDsgBjQMajexqI6sLhWqgASRS59Xn3qO3DC3dnYONZ0ANCusNIsIswteKb/3fp59+gJYVwjEIryQixI9dIk9SvnzG3e9esipLfjZ2qayUi/OUu2ZK5Q2wZUAUDFGVRjc2eZ6TpDnXxuXzD99npCuqW/AHQ8rVEt22/PDtOccP7+MYSaoEi8sNp0MfExtcCVqVNG2F4zhY3hjVtbh2CsWG9u4N4f1jNBHF5pJtumVw7yGfVTm/f/aW8dFj7lctg7ig7jMcT/LtOuf/+c1XuJ3ixHNwLcO9gxE/ev+McTBEWpLSEZR1xodPH+IfP8QbRghbwmhC73hoJF25oWsqmrKgyDK01LTKEAUOwSBEhzbrsqVsO5SpGVownk5Jlmse/egegaqxHz3mmghnlTKb2RwcTDm79++pN9e8vnrF5ffvuFsm2LMQ7fi4QYQd+ez9+BOK1Yp8vUDKAHkIfaNQaY7dGZo0xWl7giDiYDzh9NM5sRfx/J//gVW65uUPX+Oqgsn+CboqEcZC2Da2a9MXKdJxiI8PaQQQhvSWwXE8wv05+h9/wa+++AZ7ccP7Hz3gIs95tVxidwkffPQJw8MzXv7ud/S0zD54ii42u/WkMsWqI2xcLN+l/OFr7P1TVN3TFwk9BuHa1OmWomrRjkttFKosqPudZjiMAnpsLEvwk7/4S8LZmLbvWFUVq5s1UysEbZG8ecb86UOyu7e8Pf9qZzsLYwZHj5CtwgKivQkyjmiFhexrEND3NX2nQPRIq9+ZDAcuy5sbfMdhOJqw3SbMD4bY0YikKJiiaJsGxwvQGlSWIW0HzI4k0mVDXyd0+ZrNZoXdN+SbW7KipJeK2x+eUy3f0f+zxYva4rdXt/iBy/HTH/Hby3Oy//V/59/+7Z8hJ/vExw8ZzuZU2w3XL78jDKcIO96tjkQdwrPAsjBtgZAaZzRC1S3oDiNAWxbSh65ud0asFkI3RPm7/mRz8YY+dkjXJYXuqLOGg4Mpb/OSzrKRjcYPPY7OThkNU7pWMZ4NcccHzE/exxIWzSBnefk9Tr5l882GbLnBM4rDabwz35QFUTyibXuEMZi6wtgeXZWibYOSYAVDms3O6Gd5IUhD33UYIdHs1j9NkbG8vqYsMy66lvDoiP5qwf/w48c4fYHTrqnPf0t6/ZYiKcAf4WvYXDzj5Vc/sC4rpgKur1/RLm+Y2gHRYIw3HtHkKf4oxMZguw6ybnZAUZFCXdDrHiV72r6l19aOhkLQY+iRqK5kPh/hTQ6Qg31e//o/8qtfPeP+YcRnPzvF6gRfvrzk+GiC4/ypnf9j1J/u8h+pBAJjORAGVJfX5LcLXrx6ydvlLd+8+YG//fPPmR4d7PIY2hrdVKALVN9hSYlSmkYp4sAncRzWWcZqs8VyXNxoiOg0Qki06qGvMH6Ac/oBOm+RClAtxoLjj3/Ek+ueVgbcbjaM9mL6m9/i+A+wTj9Bnn6ETjbobUL95jmdt0fbNeR1it1GiMkBk4eK7WbDvCoIuw5nPPkDQm5jLBcrjPAHI4SAPlvTqIb1+pqvXrzhy5fv2JYNdadxnQ7bkgwHIWHoMz19RJ+seO9oyKBccTib8G9+8gk//snPSF98w+jsFPaPMUKQFRXXd1u+fXmOKnKer2/43Xc/8PmnPybY38P1Q4qmYXywT5TXPIpD5gf7XL97ix4oZOjj+h1lV8C2wvQRjeuxus7Ye/AhAr1rGjwP03fYgwHGdTF2ANhYxmAtbtm+ecFiecNgGpEYl0UzQXc1XpczDe9juzOC4QBvFGH5Pt5sRllXTB6cEgQ20nbRArQJsCYuQd+gunvU1SXW6h3OdIeFIjSm3uUbWIDvuLRSIMKY9FKhRUivO5peY7kO88M5g3HEeD6irnLOv/ktYRBy/8OnvPjqC4yRHJ6dUm+WfHV7SaMNvREEgzHRbA9pWwit6aoG6ccMoxnrdxeE9FzrM05iAVLSIWjaDse1ULqn71tUVyKNjSpbpNaoNNupKO2QrijompayrEibhuHpCcJ1saJ49wzqhqauqTRsu12j+vLyFquBNEu5WSzZi8dEhydse5t0W+F7DVbeMj6ZIR0LGU04uH9G2ihCbLxiy3AwQnj+Dq91QbU1wrLou10uR3a3QXq73JBGa7Kmp6hbnMDFCnyi40O4uyD57d8TffQjtOeTZjkPDk+o1xmTUQzRkOSyAXcGaHrtMbv3AbMBLN99xe0Pv2TkpWR3V0SBw4ODIVcPerIkZb1JiGwPSY+wHIptge0ZFIqm78iKimS9YTSZ0ZZbHNfFP7mHPRzTN0DTUZUZchCBbxOEYxbFGzZKgZ3x/fdv+NVlzpc3OY474vTgITPTUGcZq6sl09kCt2rRqqNWMXIyIi8sfLfEFwGWdJH+GFssiDwHJScU60ss0e1MAcLaGXxEjaGnqktWdUnWdUxHe/RViLRsjKMRjgTZInq9y0aRO4PXp0/PQISkl5omXxJ6/a5J2D9k1gms/RmtgeNHHzE+PCHfZmxuN6iHT2g6zfruFn80Y//oBNu2WT37nvKbX2EdnmLFE/BC7sqU4zTHG4YoNEoaaAtMW6GalnKbUmkQgxHGsQjDmOMHLmWeUmQlDi2uD+HoAKn3kTLGPX5AcHyGNwtRyzs0LU22Qcme8vIb3n35BavWYE9HREcHVEJSIfD6msFwQG/VaJPRizlONKGvsx3xgsLUNQaJEiA9l04piq6n6zssy8byBLbr43oeVVkQejZSwGpxgygL+jjAHQ53SmwLqr7DdjwQFkYYhOczm+8RjiT+ELTpsaVF39dkfcHVr39LmWhW64IOSW+59F1Hvm1xHYfAc9CDENO2qLZHVy0mEBghkJ6HPzpE9wZpOoRt8I5maBHh/dVfs7pKKMoW0bR4yQZV7JSOT/7mpwyO74OM8O7uENKA6+DM5oi65vW33/Mf/+lXjGTFyfEh+5MZgSfw7A4rHiCdXe4L0sU0WzrlorHp8oy6a1lt72hVh+26uIMBbTNEdS1SQN12iDAmOjylzCviMKRIM9xtQvzwYwJ/Trda00pDmW+4enuOsEKaxlCXOYubG1YvXjMa+zxsLeLRIV64x+mk5uqHF5SuYN3CwWSCdP2dKtRyEI6/U9hSQafQ3W7VCWmo0gVSKbqsoMsr+jRHvlN48/eohU/37j8w/sYD3eKOT3nv3xiu/vHXnP3kz/CODnFaw/XiOcqSHNw7xZUG6oZf36Rc1JfMhwEhLcZ+xbbpeblcEU4DsHoOH93H9z0ELf5+THFxyZvlHb+7zvgmbfhoEvDRJCB3fGbzKdILCcKYw+MJVd8QhxIZudh4jJoBfigo75bcZinXlcCU8A//y5dw/wnR0XuM5nsI7dHUhrppqIsVsTskyVZMxxGT4R7rCrRjcfDkMaKpaYuEzc0dF7d3XBUtZyeH2H5AbrZcrRNc1ROHPrQ9nh2gpcai3J2rugxbGxQdnYLi5pbV6+8osjsmRwOe/vlf8Mnf/bdor6YVHavVinT1lqTuOB5K/uaDAxZvt2RlS+z7PBnEnA2njD0XlW9pu46FG9HXFe9HEhkHNGWFyVOsMMZIm76t0V3Pcp2S3d1hRQFJ1TIcxhwHHk3bcbdZMz84wIkGCMtGYXH46ENc1+G9e4cwPeDF9ZJpL6kaaKqah088zt/8wNX5Oc+eLbh6syEchxhPMpvvM987I5weUG+21Ouc6Hj2B/1yi9sK2qKizEtEr7HqHF0V2FbIk4cPGbg2m6t3pKtrrt68QCVrBtN9LCxs10EPRxhjkK7BSBs53KP3fKq2oGkbtAM/+viIR/MhZZ/wmy9+x7erBYtsS5ps8Wyf94IpQTznyacPCWYjmkFEc31DvbrGsjQ6CgABYUh9dUW7Tujaht4LscYOq/WKPOsYziYUSYWwDEWpKJXBDSKm+zPuPX3C5PQeSV1S1Tk3715T3a6w9o6w24Df/Odn3H71jDtLYR3MKRuIxYBoPGc+mZAvl2zGF9SiY6AbmtYgLEPf99R1TtmWOI7HYOpj9RKvh+3qhiLLiOOAtimxfB93MGGzvGQ0FxjPRiBBSNrtGq172rym1z1FnpEVGa02bF5/zZfPXyK7GmEcqryizXsuN3d8n7ckWvFvj0/4d3/9MevXktnQQR49AstjYByCwQzbC7i9eEeuXcx6BUGCUzpYcbTL5ZI9WvVoIVBUaNtQ5y1O5KB1R9H2lGWDUC4Gl9bUXK2v8cZDtts1daewLYHneax7A16AZ9sssprDcMje2RH5aEnXt+DYONE+jjPE9SST/T1Et+Ly61/RFimTvX2ceEhzt8WyJWVVEJcZjhDoXtNkJdP9PdrrjE43yCrfZYJ5AcJ4mL7GNAq8EN1rlO5Yb9ecv3jB3SahrSu6bcLje+/RnRwRj2NGi++wN28p07fkacJ/vq5Y1y0f7w8YhS0/+fkDZsuU4XyKY2mqzYLrBvxwTbiJiachTS7xowGuJZG9ga7HNT06Lyn6jt5S1JZDI6FWiuV6xfG9M27ShJHXsn84JxgOaNuWTVZz/6c/ZW/oEh3NKDcVP/6zfc7P3zGcTP4FO9x/PfWnockfqfqupSoyZFGSpSl3z36gTNYQB7xarXj2f/yffP70Az7++V9yWzXkqytkX3O3XKD6Gmc4xLcsXFswGcaUTctyeUMc+vjxEGx3N/01YEyPNT5A+CNMcYuYzBF9D2uFd3yPw88Tfv/NDRerivjmmqDOSF/f0HjPmc5/z8RyML3ittaEj95ju71FWIru9dcEvkdhDLkbsdEw0g3OcEjox/TLG2RbgGCHGWpD29ZUTc6bi3d8c37FMskomxaERDgOcRwymc8Iw4Bys+bByEJnK5Q0BMMJ0/yOoMg5/egDivkBMhiwXq/olM9qvWU+OSBvet4ULc/vEk6TlMcffozWis1mSxQN+au//hu+/OENa/ecg/ExfW+wK4ntTtmu73Ajm7YpaXvQjUW+XjPZn2EQf1iLscAPUVWC6Tqs+BCkpqoSNtevcAYhd9aEajzGqnNGwhAoQyx7DqYuurjGrSOi/Yc4szFe4GM5HcJ3wBFIo9GWRPcuji2whzPqNMUNop2toC+x+45O1vRaY3sBfR1g2Q52PGZ0KHE9ixfffYfn2ziOYDYckK+35Oslw/uPyJc5BEPSsuZgPuPV+TlHjx8ThTGD0OfdZI7yYvzZMWmWkiW3LBcr+rph9vNPmZ7OCFbXTEdTlNRkd0uapqLVAm27tEWKPxxhewGN6tGqRWgLVTf0naDYpFgDj6quKfOMoirR8QArHtA2OfW2RgkLI12KRULeaByp0bZNJzTfXF1y37bxXI87bRiWJYXj49sZHm8xyqDbHi+wqauE3rIxrocJZmT1EjtNCbCxAh+kjaqXdGWBCEbousS1LMqyBVdSNRXL1QZhO/RK41kCJwrZ+/xzLKkx0qK6eIcqEvL1LY5tEdk2bhTQDIYIIfA8yTa7xdE7rH//9IzpwRGB6/H2bsl5kjAcSP7rnzzi5cUWS1ogDbZw6UVHNJ2Ql2saY1gmKcJ2WW8K4psVkRtiS0m4d7obkHY1qstpuxxbGpRloeM58T3D1eVr6rai6Xsqo5nOZgTALNDcH06R3oB3y1ui739LNd2RIelgjBAV1rpjMowYTIfE0xhhBNLdg36LHwypmy1dXWA5IZZtY9nQ9z3YhnJb0DcdkW9TrS7xbQvRWzStReQNdkGiwiAtjx6bJlmwN3VpWk34+AHFnYMqtshwiBPHzE4ER+8/ouk0l69f4rs2XVrgS8nZvbTCQ8EAACAASURBVEeky1uyPEc6Pk4QMto/IKkK3A8+J3jwiOTNc2xdU2Rrbm5vmd47oO9qrM5DOC5IQas6sjLHxEOEF4Aw2FGALgzj+RQnyFFNTVM2iNGUQGpE3dImF3jVISb1MF1Itc64e3dFJ7b0qwt0HBA6A8LBiNQYGscl6zpGIxt8F2GPMLFB+AYjOrTRoDtUWcB4Rqd2wYGmMyjdY7kOCo0lDL1W5HnOIB6RrLf0xuPyZs23r98wCzxGQhM+fopTVHz91e+4XS3A+hGO7aJbizAYMhzGHBzu4Tg2vWrpK4ub87e0OHiHhkrdUZiGqjdkjSIeutTJmtiWlJZHEIToaoNbNRBIZLcjpXrV4WiXvgdnNMcOApTvonuF0i7B+8fooqKvckSbI5stkw9PsOoUZTYEj+7hPNxDdxITWijhkW8z1q/f8rOzo539aeAhAwfRJBgxpdreYB/MEZ5H23QoBL1paMuMsizZ1jVJloHQeJMAd3ZMd3vBOsnxHJui6Rns79F2Hb7vk+QVwSBGa0W+XeJ5Q9R2Sdb2bOocezAk7jVVsSIray6XKS9f3PHB+4+pFwmi1QzqjlBaHMU+qu2wswQzHWOaCiMnOLaFFD3d6i00hiZJ6JKU9PwldbmlUdAUBXmSUacFfWNYtDBQR3hewfWzL3jy+Ij5p58hxhMs3/D4v49wBoeY6AS9uKEXhvc/+4QKcPoa3whoWoqmJ1usWG7WvFhnrLTF8dTnPQ+++fYH6s2Cg+N9FJquqbhebFltDItO8tm9PX5+f8JYKNpgQDSc4gYxWd6wPz+ibAq07SG0wYlC3L7l5IMTTLvg5MO/5XGfohYv+O0/XSH2HmF7EZalWSTvQPiMzJTAGXJ8b5+TxzNefevhdjZIn+cvnuP87ClH90egLJy9K0pzyXa9ZdMZTmZDAt/luuwYuB3CdtG6QkgHLQu6PiGyj7GjCW2S09U13eKWxfoZ25uX3P/gHnXXIhyJJz2wbEQ8ok18ztcvqMuMWoZ88t4Tho8sFssKJTRtmRIY8IVDuk7J2o6qaEjzjCe2YDSbIIVmu96gqhLb88k3S4qyIvA99N4eRVNTlhVBHCNtm21VM57PURhi3yWvKwaTCUrbeOGA4dkjjB8htw3L9YbL8xWjqU/y69/w/JfPuTx/x+ubnNtlhXOX8fjnT2i6hrosd5Ry02H7PgwG5JtbtNpdb15ViL7DSIOtOrwiQ9KhyoqxUPRCkQLXyzVWlaKqElfa2NJlcHqGMS2CjrbpENMHNABVilpc4OsaazqkulmS1A1fX9/x1XrN99c3HEUxz9+ec/j4CQ9++lPCiYfxbZQV0MYdm8tzZFejhhOkF9OlOd0moS5L0u0ae+jTFYo8KehrRbNpcWKfsql5/fYtvS0ZTYacnB4zm8yxLAtRF9y8fsWbL77nON7HdBpjwS+XK149e8mDJyfc71wUQ64urmnu1njzA3IhUBa0oqeqaxwp6eqKsirp64aq6cCyGAwnWMZhdrRH/UWK7kp8z8EZBNR1Sa1c4mBAmtwyCSOMseiNwEibJk9pu5qmqMm2azZdhxrNWWwWeAOfiT/jy2/fcVnC+48/wL96Q7RY4TsW/jBgc/uSttqg7n/G241kdfkK19E8sC1UV0A0JVMS6fuYZEHkShzTYEmB7EG5NqarQRpwwAokfd/Q9D1pWeA4HkXboxx7RyDaEsYhbuxwMPVZ3l3xcrFijuDBySFtr3h9ccN4GjGa7WECsEKLYLaH47oki2vGBwOMKCnKhCgeYYTg4MkTkqQgKRXr1Yrj0zN0key+J32Dq0G0PZVp2ay37B35dG2H1BVogRSgvRCtFNookqLk2VdfcX51g2xrllWP68dsrAGj00OK2GNv6lGtzjnfVFxuSn7zdo3jCfpecTjQ5I1NMJoRTKYEbYVwe5KqJM9bRqpD1Bn2UNIUK5QFSjjYTQuWRV/VaKGoLI/et7Fdn7vrNUWvub55y2AY0w9C4tBFdw19o/nw5z/l4/CYtjNEbsX2N/9A3TYEk31sz/sX7XH/tdSfhiZ/pKqanjcv3qCynH6bclMXLLuGi2SDLQXDOCKazXj56iWvLi4ITEMgNbO6Iwin2E1J5O9Ud3vTMeu8pen6XVaA6pCuv7MiKIVpcuRgjNFqh84FEbrIaLqEze07cq0QE4/lGv7x+TW2Uny5asi1zWkY8unxEY0/5uAnf8n62bf4kYOjFUm6wglDOumhAo91V/EwNhiR0E2OsOst3c0FJl9gxgcoYVEkG7b5ilcvX3J+fUfZdCgNvmczHo/Z25/hOgKtFMOBQ1mXpHTER2c4h/eYBCOsN28wwwHz+/fJk5wg8FhsejwvJvAF7bBliIV3fJ96PAcpyDdbtqs7Do8+Zra3h+ok71qbpmowWiN0QWALVBiTbBaMPEmZpOS9zXrxjmjo4zoequuQjgtNie7qP5hrNpS3r1m8+oqGBh2PsEb3sJYJY9li+h5XKNrbGx49/iltE9I5Asu38R2IfAc79JFhiLDdXR5Es8XSkt728T2LjT3ALhIs18XrAGEQnsBxfHTRIl0X6dh05ZbvfvMlth2zyHJG8yl909K1ipP9faQWNMJCjXZK26HUXHc9nuNQFSX7R8f4cYQ7njPYi9lsci6uFywv3oJWFJ3Dp2nDE1MR3D/Fcz3KdMVis6YOBmRlzvJuwTTyyHsNSMrVhlHkYwH1doPuGpzjU9q2p3cEneloLQtvb4+270jTHKNAY1OXCav1FjnfJxoGSMtGdjW/f3VFqjWR7WFJj3VRkBQ5yZua0LF5Mp7weDrn+N49lOdSaYjDMcaX9P2AqqkQRY5n653OO7mhkz6yKTCqIlnfIgIfTUCpYJsV2MEA17eRqqMt19ine1iuT5tuWL15gakztreX3H/4mGgwoCxzRof7bMqa4dBif1Owfv0cdzti/t6UcDBkPDsm8ib83//pF/z5nz3gwVOXx48fYns+WtrUbY2wDAm7sLKm18goou56AumTJjl9kyOEQZUZ+Jq2SKnrDmn1FMUWa3SfrM2pfB89mVEUazrdchSDXwmSVYIXugwO55S1ze11SuTckeuCLp4y3XfIioa7TUXzbcbjkxMeHETE0wGiaelKGx14eNMD2npBYGmMvSPd+rZCKUGR96A0bb0mdCW18nA6zWQ/wtQp+CFIFyxJlpTkWcHQt5g+/ilFo/DjkM2777CGM+rllqTMicYj3HjIb//517z5/e+5d/aQeHRM13TYHHDx+iVtVdA3Fc5kwiCOmX7w7ymKBPHmGaqtKLKU1y9e8eSTD3EjF2Hb6K5Ftw11utkRHWGEsGy6psYYUMYg+h4hNFnb85sXVzw4s/noMGI4H1LWK8Tb51jtBfQNl7/+TySNhoEg2POp3BB/NqdXPZ50EEbRKM1ineGdTXBshXaDXUaJETu6pM0RtkNblxg/RtgVPaDtnb1ECIlxbJqqZZu31FWNcHzuliu+v11zlRVcbFLa8IDvWfBEPefq/Dts30NIi7ZTaC3w/QDP9wiCGNdysK2I5ZslyaIiCkZYoqf1MkajAXlR0rYdUkrqqkYGPlZfo9uWyHUpyozIG9BYHv5kSGs5WJideWA8w4oDFCC0BW2LY3uMBx5uZ7D9AdWNonz5HXZbURUpZnpG8OgT7CBC95ri2UuufvFLwjAi8vepuwrLFdiOQKma9Pod4wf3yTfXNDJACQedrynLjs3iDmNg0wuCMKAsEigzihdfITH4rk2apkz25jijEee3axwhdpYR32Hv+Jh1sWX15S+wijXR4Rw5nBJEEYu35+hG83q9RmoX40Wsasm9T3/E1fMlVtUxCkMCP+L87o6D1YL9gxlV3xNXBcooNAKpMpqblOZ2RbVZslmnbJbvuE1yyqpDK8M2a8hEyGf7EVHkgGcTTCesrAinh0GVIoyF98FfYQVTis2am9WGww+fUmBIu5yhEDjlhq6SiKYnt1vyzmbQ26zThkWhmGUSLXw2373iQVoQDUKaOicpNNu0588fPsZya+aHB0SiY/jgPYIoxhYWJvQQtkNdanzfAi1Isp4mHND7I6YPT5jd/wDbdfhuUUEoGE2OyPNbVrc1wXhErx2ULxjEPoNJSDwc0+UKU7UUyQYjBe+uEoQVkKiQYnSGGZ6TXl9xc3FDXjfMfcl45nNXtUg3IJY2qArP68DYNFWCJaDvDJ0ylNdX3GxWHJ3NGZ0ekVxv6YoUE4+xhI8VzhjOTngQ+7TlDe/7Rzi1Q7/IOSwqVLEmuXxGVeUsk4K8KrlNCoZRQFZX5G3H+A8D+EBIFhcXtLcZ2XZL1uzOclrI3Y+FpqVoaioEVV2TlRWW5+P2hlIpollMPD3EDyJkPGYwGXPY9fz9//YLAmkYjT/izXnA1a3ixduSbbFbo5ChxfhkSjQekW7X+NEAcbiP2kiuFtfMj+7TOQM6B7SEpqsQ2JRZSc4NnnCp1it61VOXJWXdYqoWlW6RQjKaTrG9kPLuAmnrP+SIBXghaKkQTYo0OV48QRw6RHXE97/4RzbJmq4u+fTwiKcPH/Lk8RlO4NM6gkpYSGGhbQ1BTKYM+bffsXd0ijfco7y+RbctTa8o6gpkTV7v1LyusanSlFoaXr99geVL3HhMPBwh2pb8zUvcyZSbV6/44v/9JcIIvLG1s4u5gsnJnP06x41G3K5TkBZlcsP/9T//j/z13/0thS2o+gI3cijqAtPUNLqjqRukMSitqKsehg7RZIYz9Jg8eMjNd19QNCWx7+EPY9I2Z9DUOLbP5uIZwfQIKRyM0pRNQ5PlpMmabWPg8IyqrGl7l1j03N3WxPMD7p0EoBs+/PGPKL//juuy4U1e471+wdkkoL694N7T+3z0+D66SuhVSlHm+MMIuozbdUOEwjQZkdZYwsGZ7KGkom8rjFEYCZ3u6XvNep1RFi11m2O5EXUPndZIz0bgUtyldGXO27sFte3SZxXTsubxk8cIP8QZOETzCW1ege/gzUdIeoKhTdfmLLd3+Ef3OPMPuPvhK5wgYGL7fPnF92gt6Loe1VYI1aGbGqM0TVWhupK3yztENGEynNLVHZ7qsQVoYaGaht4Ivvni93zx7AWeJdlWJcYOOX34lNHeKbbnIL2QVAbEZ/vcff8f+OSzTzHqB/anFngDUmFzMhhhRyFttcXyNL5qaDpYblLSIqNyoG4chpG903PbLqKz6FS/yygLbEppE4YetRB8+d0zTt5/yrNX3/HB+wEmcBG2RZFvOTh4iD8Z4wyfkKYVw7hEnr/k9usvmTz5DMv+09Dkj1F/Gpr8karVhsYNWSW3vHn9iqv1lqJX+JbEDTz29mcoYbi8u2WxWmBbkuPpkIu7O8xkhht6HE2GGKVZlDXxYIg0LUWRU+UZ3mAGlouhxTguAKqrIQxQfUFx9ZzN4pxWCjJtaLqKaGRzkRsuViW3NRyOpnyZbrEnFZY7olxc0dmavelDsixldvaIpGiYj2KaPMVpShrRMYosZLdBxAFatJTFis6zkMam3K5J84zbvCYcTol70KrFdj38MALLxhiN7zpE8YBBXTEdBlgWlFdvGToWTuhjHrxHuHdI015wcX5J5s4JpwdoCsqu4XQ2QvsRwWCE6hqy1S2Xz35gb3+PMPBR6zf0zS3zo4ds0wLttEQyRHcpbWxRVRV5nnKX5wQ3hwwCwzCeYdk7hNt0NUKCcBzquzcsf/9PVEWCiof4hDh6zTxsaGrAtNSbW/pFQ7N6xOzp+9SmRExnDIYjbDfCHo3QtqYtN1i6QYoG0ddQdNhGEHhQdDbOzXMYxljzEyzXR1BDYEOvEa5Howxt02CcAb//zX8BZRiMRtiBTxjFhK7D+ZtXHJ0+xMMGN+DBg/uUwxhlNEWRM55OGB/fp817ikXGepOwTnPun5wwCCLauseuS6y+YfvsO9quoslzFuuM3GiKMkMYhRdK0s0au6l59OgRlgGFoevAGfqgapQBfAdHTrAHA/Kioq12gcCLqzvaXqEHAbVWDHyJbxuMYzGcDnh5s4amINKCd6sFi6bCkpI932eZJLRVwbprGBweMD57SKU7srphOJmSJAtUt8LIDjsMyLWFE4d0SmG6mkJrRJXTdS2J9tg0cDAKkY5LFAW7g7rRCDTJq+/Jki3X64TPDg5xBxOGB3vIdLvDxZ2AcKiZHQ14d/Et22zL8ScnKNWSb64ZH+zxN//VXyLtGttymEcDilaT5xmxZ2G0xDIh2XZN6NgEgU/faebTB8jkljpb0ywucO8FmEYjbUkQ+mS3F1TComtaKitnleeUqqDxLNRoD9v2OWxaZK+QWrNd3nE2nPL4/Ufc5AYVeohhRF+lSGmYDCw2peT/+8dfEfzFU0yxwLI8lBcwODulWr/FuAFtW+BLm04JpO9TJw1dKbFCj6RYE/Q1ZV1wOBxgdEHf+yhtEMJCyoDb1TW95dFjkJbFeD5mm19ixvep7Cl1fcM3L96yv/8to+tbtkXN7PAMe3CIFDbD0IOiwrI9VtuU67fnjI3Gc31k3yEA1TbUVUlVVyzSLXeLFYfOlK7MEAZMXdLUJcbzEK6PqgpUU9J3Go1BW5LtNsX1PT59+pA8zfju2RVPP/8Zg4FLuDfGZD3GGzP88D778RwhNet0w+tM4gUDPBSzrt6RSlVB3VXcLm84Pp0ifAcRTTCmhr6iXN5h7x3QdQ2yr5HCYLkeTVNTNjWO60Gv6LQgCn3KuqZpFYttQl5W9BrCIGb66COOT05ZbjdEsyOK9BrV90hhUbQ7jHygFTsBkYfWil501FnLZOST1Q3KE4TDkDgPsU2H0Ro3jNiWPXWWsD8M8dwA40BebbF9D7cKCKMRru9heRGu3yMDH4lBAK4oETaopkHdvKTICqraQ3SadF2yvl0z+vXXDC4qZK+whGF9cUOS5RSWzXh0SNzlRIOOpk4xnYXjeDSbjG2dUBhNnmxoFTSthbQ9lBT44xHSFQyDOXWR0hclTZWzLXbKcRONWZUdw9FkN9itKi63a5wPP+De4/fIry5QpsQajJG2jcTGt0OaRJCsOsKBxf1H77G5WCAmhsN7D/GkR54mvL5dcltrxLslxx9CnW5o4nC3EiFtmqtzquslTdqwuLrlZn3F29s7Xq4LWg1CG7a94OmDI4JhiO93uNKw9+ARq2TN5flbzh6dEs32WN5tqDavuHvzjtYLCIYhVCV+MGAyGmAtepbrl7xd53Rdz+H+CAY+Yd7z5cWa58ucWdOzbjou6wWHY4ezoym56jg9PiKOQp7fvENZEcE8Zu/eAzAaUSsGjkfVNuhGIW2PzXLF1SZl7/59Gia0zh7fffU16etn3Hx9hXf2GfZgxuHMIX/Xkq9cFIbIt7BmNm/fPOdgMseREmcQYdqMri6RpqPuFaukYVMZeunSKEHbGy6u72iHAQ8nAZYj2aQJvdciXYlyxvj+7ozRtjV4MXnZscgyZGAzvX+K5VnYccDq7ZLeCxjPnyDCmHAccW/yGelyCuEJprKQ84JhntAurpG64u3z73h2fkMUh7z36B5WV+MIDXFMka5xgoBof066XnN3+Y789pqbJMf4LtpxaJWmbltwHdxBzMSx2FYV2B5p2fDN+SUfPA2ZHp2hjEZKcIzClwbXsYlDHyEcJkdPWJ8/Y38/xU9SjN0gQ8kkmDIanZCkr0lXt3R9hS0FjvSYnHxGd/mOQFlknUa1HZYNQrekiytko9GtIk835H1PVfXUVUFtWuZdg9c1VNlrbN1huyH23gHhLCTyajzbwUQBLRFG22SFg/L2GMwfEqw2vB8P6B2H1nR0KJq+om22WK7GFxJpC2xTY/mSO2NYff17RoMZqlVI6SCNQFiCJOl2JKurCbyYrGk5/+57GtFyFE+IXBs/8Hn93desLy+4ynre5TWe1oyGEZbjIIRBG4twMOTs4QN0b1HnG8aDAFWmPLv5HvvFmB9//jkiFzRdTbJM6FVN1WYMwslOGd9rkmIDzxs++fgzVKC4S1e0sqNuMoZygGNJdCPpqwwhut279fIHLH+Ibg3Fak2W17TSQs7mXG/uKLdbfAFtKwj2TtgWG0xbkjU5qukQfsC96SHr21sq2+W67OmSGw4+akjrekcspYZO9nRlAVpjRUMWyRb6DLPnEI5CmtUt2qqxTIe2A3CdHblawuK6IBw6CDq6uqaoFZXSOwuntpgdHbG9arDjmDQrKTdr7h3MOHvwmPv37lF1Ce54iDvJqLuMVmgiZ4gfj3B8m31/Sp1YXN9ccPjx31Fuv6HdXCG0pqgNfZNTWyGO6dCqp69ykiwjL2uK3vDt+Vs+ezrFlw61Usi6xjXQ2x7bbc6XFwvushpPghdFfPrZXzCdHTDyQxzXZzoEry4ZHx3zZx8cM37wmEnscv3qK6Jhy4HjoGXLJuupes22aRnZNo5l4XiSq6xiWcK8yTkcj4giCANBmdQ4tsYLHLpa4UiFQbDKar65WvEs+4bTiUumbQ6HAQfTCNsGOwhouoLBwCYvC7RpGO1NOfrgKdHeMVJa/2L97b+m+tPQ5I9UQkiyRmEFPvFsn3axJBGS0HOJBwPusop9aTOeTtjmKZss4+1yjZRDBrfveP+j9wg8SegFhCOH83XDdH+f7OYtebolmJQ7VZhRCM/HSDBCo4o71t/8M33fk7awWhUoCY7vIioH7UDpCOjhRVUyGQ542WkOLfB1iyor/Dzl4x9/Dm3DvGvI1xsOT05IXi8pFzeUkxnDyTF27GNnI9zcwhrto8qCziiSrqdxfPb3xvQoku0az3eYzmdoBACOlGjpsLe/z8AX4Lk8//4Zp2FA9PGPmT1+guV66LZjcb1GSYlwJJXpKDSsb284tg5BgFIKVZXUl2/4+//pGf/uv/tvyN69odwmjCYRs/0ZA0vi5i2j0ZSkremKhlYpsqQkXd5xo2qsg33iyZi+jRCdQHUtfZmzef2ManWF7Q0IoiN0XSHTChxNtb7m4t0Vm03OwPIwv3rGvJhw8skDZnKAZQTbdzeEusZ2BdK10EIinYC+60E0NKvrHULoD0naBs2Q0JG7wNJeYKRGmZ6qq8itE+bv/TW/f/E9qe7pWoXnaLpWkfcG3xjCvqFaXTC5/xGH0wGO63DbtWhpYbsem9UW4wQsqoTajtl/7zP2zh5zL7bZLu7QdUexWBKcnBK/9wmv/8svuXp7jX8w5/9n7z2WLEvSA73P/Wh1ddwQGZGqdFV3AdUN9HTPYDAUY7Mgl+SKG674dtyQNrQByRkD0QQa3WiBEt2lMzMyQ15979HK3bkImPENgAXwP8GxY3b8/ML/7xOWzb6s2WUlnl8xHEQIKSjrAi/wsAMPGQT0vUZJjTeOaHWFbOBQtOxWOywEh21K0TSoMMBgkLpBGQFSE0wShsLizBi+WR54k2dUSuF4PpHj4boOg+GIPhliJR7BaMSh2uMJMN5zsk4huh5dHRCuwu4rpOdRNT2OMEgvwIt8yqqgaFuuVzucIEZbNpY0uJ4Ntk1bl3SrG25+80s+fXWDY9m4UQSWhe1HxEC33+DZLa7n4A88gvMxr14seQIMHZvF1UtUC09/9DOWL39P1zu4lkPoGIxsAYPpW2JHYryI+0NO7IZYUU8YgG2PUbKhqwvawwZvOseyQqqiIitLDkGCkILDdsO+zBDCIQ5i3GGELRQ+MAkS9jcL0tslmZHUOqJPTqh9D1fnZJucVmjSXtLJkI/eesLNzTVlE+DHAYPpHDe9xbZBRgPavMTWBiMl2Da9k2Eih9WhxEuGLPYPrI3SVLjKQfQurZLYdkxpRXx+daBZp5x6PZ39LV1bo3SHdfzhA+jStmiQfPPqhnhbgBXxTjgijAf4rk+7uCPwfLAcNuWBb774Hc8ePSJ+/j66qdCrG1Rdkmcph7ykMYZvv/qG4dFPEUWJ67p0dUPdqgdjwCGlzXN001DUih6IIpdwPKPB4HYd3aqhLFt2N7ckTgBNizw6pm329JGkcxVOMKcqHCanMapY4LoS1x/T1Qc2ncFxQ/bpmujQ443OsUQHfUtbF9QILK0JhEK4LnWe0mJR1y2269MrjdQa6Th02uBbFllVkhcVnmWT+CGhF5C/ecV3+x2T2MV7fE6xqBHCQmloO8Xd3S3adHiWIR7OQMPmcM86u0KsE4xS9L3F+GjGarMlEhKERVYLbncVlBWjwEVKw3B+AmVLr3voFJ4BPwgwnk+TbdCdIowCurTA6ivUYY/S0KUV2WKPLSOa1ObqumG3bdl0XxHerhklFp4wNPYY/3hMVta0jmI8PMKk92h3RNGU+C0cXl3SCtgetqRljggS4tEcqS2E6CiyA+EwQdclba/ptKYoCxzHwQ0TXi3WBLNTRpMBtmXR9w5plnOzOWA5rwm1IprNsTwfISSO4xMFI8pDziAYE48ckvGQk+EQywyI/XPuX37Pi/sbXmYN8XTKZ/crPrrbMJAGq2uJx2OkZXH/3TeQl2zXB65uFlxt9/xhm5M2/QPsF8OjYYxtPQw96nSF5fmMZkfIRvD67pb10ZTaLjGWz/r2nt16TTg+pq9yTo4jgvHDNLd1eqppyFBYHA8SdnWLTcG7RyHLQvHZ7Yq7pkTagsBvuXBC9pscy3vCxxfv8e2rbxlHIzwvYHz2DCcYoHUDlsYyNq600Z2kaxW16smrBic3TP0plndBW+1581Kj2zN88RjfmRIMBpxcCLbf7wh9D1sOyCqJWhZ0q5aLp2/TlDVKWQ9NSFsS+D7Cclms1sSDMcm4JC9KurphLzVF18PgmG67pFYNmQyQ/wAEd4XAcT26VrGvMtIy44/+1Q/xAwdbKAYDi2wQ0DYFlgu+L3BcC0vY2OMRve2hpEQ6AjyB8iX+MGH27Dn7q5fYUcTQg8P9NcF0Rt+W3N9umB7NcMcWuCCiCGUEV8sVF8+egRC4nkud5wSjAZOTKf1mw3gccX8o+Obrl9Ta5vMvfs/8/DH77YZ9mmI7Ludnp7z/wx+SXr8iM4bsdQAAIABJREFUvb9h9s6HLCKP0/mU6SjGdgrCCNzWYDshg/kZ6defsrq7YX72hOn5c/r1BnV7R7tZEw2H5PstVZ7T+AFNa1jf3mNaUJ2mLBvqvqFRCmUpdnlOOIhxXJeqFMTBEOn4DwpeRxAMY5AB9c2ew2pPeahYlS19HEIYEyUuvWNjCcO6qxkVW5KNTdA02PMRnYFe12hb0sieXV3Q9xrbS2j7BhvwXRttg1HQNi2rdEWuFK3r4Dk+Bpc4GfDNN6/4y//3N7RNQ2f7TAYDfM/Dc11s+8EDZwcjfvjHP+IPv/l76qpDRAl9U+O7NiYMCAOHaDjA9Xw2qxs26R4tDF7gPTCSlKasSrJsx3fff8abrz9lehyRi47hMMFG01cFpuv/oenjotqeukvZHXb0zYLqUNEoC3c0opea29s3bO+uCRyB9CJwQ4TUhOMRxfWapjegCqQCT0s+eP4BoV1xe/uGcHJK3nZ0eo9lRVjBgK7UdO2WXgvaeoU5LBlEPtlhS9k3OKHE8QS6NzT5HjcO2aRb8tKAY7PPO3qtwBGsDym6MzSdIc1zXFugLItwMMZkNYHvc/zoCYvFLY8nIZ1p8RKPSI5QhaZoO1zR0QtNHIwwOGzfLHn24z+iarb89i9+zVgpZsdHBGVP2zS0vk9vHgQYRV1RVBVF3VIaSRQOudxkvHUyRjouQmiqTtNXJYfDHml6zo+mJK6PNz1he79FVQb3zCbwJW7X4w9m9K2F9gbk+wxT1qhO00rrQV0vFLd5xmqTUXYGW0pGnovjSmyv436Tc2gUTZfyqHOpuxhhefRK4iIIwxDCBxPb3eae07NTbhcb7OmEqiup9/dU/oNCe7l8zTef/5qTd79hlEQsdzW2NsyPp4gwxnb/pZz/x4h/ecv/SBFGIW4Sc//6JW3fc/L4Gfu2Y9RkXG2WhIMhvbDpuhx40LeVbcdqn/LsySlC9dheQugJQmNRnZwShwKR3lDsVwTJCGlJLN3iDycY1aKyOxZffcp+f6A1+kGfGAb0RpPZFmnVUkqLYeDSCxhORrjJmJEXkczneEczvK7nbDAh6iW67hnFIYOpINQFbhAQCcPi5bfIMCE5eoSVRICNbQmEZyGGAZvVitlsiFW6rDZb3nr+FKUNcRwTRiHTgUvXNsShQ+gboEdEMd7HP6F2XZLRgL7tcGwLx3OZnYzI94brbUptejpVs14vOD8/om4qtArpO0W22fH5b/6O3/7lX/LR209574P3UPsV56fHeALK0qfrSizlYCyfMBhh+ns2r2+JepeBWmG2JeF4iuMPUVVLucsoFveIOGEQnlLmOX7ZodMdn7265MvFGo1kGEzo7Zgvso5n331FvnzDo4spYaixQkO+8oknZ3iDc4Rn0NYDkLTfLigPO4rlCvf4bcTkOQw8cDy0eLh10aOo+4Z12XB5uEIO5oiJj/R9guEYT1rYxsG2JHfLe/7rH/0IP/AJbYXb1/8AbO3ZbJZMplPCs3MSV3IkKi4vvyMYTvjovfdIshVPZjNCT5JutgRSUi7WfP3tDd/crPjY8+nimN5Y3K22+FFPmESMjk7ZHTJiS2D5AQiHPs2wA4+66+h6TWcP2Gc5t9sDWVFR1S3adXCsB8veUeCw261BWmStIatLailJogDjCRLbQ/WKgedxOhkzGw6JR0NUEpKKh8lBLxr2mzuCo3OE5SIsSS8s0D2O60P1sPLQNTXGlmgpSIuaQ1kxnkaopgLfRxiBZbtsFkte/vV/5q9+/XsWacnz4zl+nKB0x2FxSVNXjM7OGZ7OKaslvmuITuYEJLy8WfH43bc4DQLi+fvsbhdUh28p6hx3OkMYRdn1dFohVYeip5KCzgoZHSfo2wXh0CeQA2TXUPYNnqqRTYFwDLv1kk3T0gc1h6uvUJ3BdRwsN2A4HKDqlqo8kHUS351w/M4F4myH2axoakGkK6yqpcMHx6PsCw5VRuw9NFtty6HOW0LT0PYHAnlEcnqBsW2a0saybUCiLUGjG3blmrqrEEHE3d09T955Rtorxm6IcSSdgFK47Iueb18vGA8Sri9f83/91f/OD9454/kf/4ig7kkmPrYXEXou46M5xvJ4c7Pky7s1j6dHOJZNMBhQ3d1zX9esVrcsdc/0Vz/nJ0bhuw7V4g1Z9tCIznuFkRavr+55d58iBg87zlWR00uJbEq6KqMvStLtgVJYaNtCOxJLKqqup8gKml6xyxteffkdAyWwrSHyuOPqy9+SWRbn70wwtmA8sLFLSa5dtCipd2tq6ZAcT6jqEmHZ3K3XePMZtu1gipymrnCmE3rd0XYK1xYP6w5ZSdXUWEKgtQY3YJvV7A8FXdvx+nZF3Sui0Rw3VIQYng0GVCiaMqfvOwZHJ/+ganQos5rNek+Z7QiEIV1sKSrF66trvvzyS3xh8+zRY87OTvC8mnESUKUH1lnNfa7Y5zWukezKhmFVkkQlYRxjS0leZwRMcZ0AU1fUby5ZffeK43c/wTQaVReEozF2PKJqLb7+6jWqfDBbVLkm9gKK6y1O1nA4GjAbu0wfzfCjkO1twTo/cDwSdDJE2h6icSnLjLxu2ecld6t7wuGIxA+QDlhC0DQNUtjovkG6Nr7rkNUNxnJIBgNuakGpQNYVnQGh1D/8vBO86TG9Fri+jeO5CARCSmxLkBVr/ImF48W8/6OP8SKftfctpoLi8o7BIMbeSgwW39+sKOuaL+/3PJ1GdG1DWlY4jsv1as/66obb1Y7v1xmXac2+VViWxcCB0Jb4toXuWjarOyIzJjl/jHQdVFvjmJYXv/kdzskzNC7N6o5IQJdmHI0TfOkSGofqsGP69odU9Xd8FDc0neGmqEnGI7Zlyul4RCEtLpcLniYhp8OQuuo4f/wBz08/QDQ+oYlp7Yqj4QmTwRxHSJTn0FodtuOQ7jNs36auaq7v9qyznshyKIqScn9gND5j9viHlK5gcvwu8cAlS39JV9lYlgPa5WT8CLSm7l0evf0M1wsYT6ZsF5LZ6RnC1qR5Rd21DGKXpHRwHOfhO3IctFJ0wsKEEW4fUR8KROsS9h1xIBDSoVMtad2z3K15fDoinCRooambGild5u9fsH55iWwyArvHsUEIsFybXko6W9P1Aun6qE7hTBIsN8JWPZv7G0w0ZHj2mMPiBldHpIcNV1XOI8+jbmqEI/BPpnwYOVj+CIRhu13hOzZvffAhSkhGkwl3u4w3129YrvcYaRFN5lzf3nE2HWDZEieMcP2A0TAhv7OIwgBdl8ShjzMOEHbC+flThhEEtotWCpCMjo55ff2Gb778ih/N3+PyF/+Jbz/9ivkPPoaZh207SMsmK0pk09Lqml2aUlWKrtX0XY8xGsu3aA0oo2nLElcGSOEhlcayNMqyMGWKUC3Z9ZJVVpOmKZ2T0AQu8WzCvjqA8fG1QHaaptxTCEUYOmjtYJctFAeKKqM2LVpqXm03PDu28eIZlunRKNq6pS4VG2nR6BbHdQhdCymgLBsMDi8uX9P0BmUEnvXwvrq2Amlh24LLTcX5ccTT93/KdrHi6tUls9kjVlcrkijANi19kaG6jq5VZHnDYrXl4tE5wkh66VCkO6oio2prlC94lS0pDkOGUUxV1Li+i+4M9C3heEi+TfEcD2FAYHPYb9nnPfFoxrrIKdqWFy9fE0hF77oo9QDcttoCI11C2dKkBxbpmq5oOTkXfPzuOWXt8MN/+6e82dRkhy2dZ1PXO6LhEY4XQprTVBuUHyMdj02hsRxD1GWoqiI/KGR8RNM2mG3Kd/crtHZwnQhpBHldEYQeVdkyDqZUXo0rXLK718ROwOnRCUaGzGanOE7EcrHmF3/1BY8/eovHf/YJfhdRNz1Nrbne3zGcTBlNj7E9B+Mpdv0B0S347rO/4/ks5uKt57y6XFC1HQpNrxWqrqm7nrqpKZTEGp3x9TIj++I3yH/1Rzw/m9H0AklPj8KgeX4yZddJvrrdcXn5BaLruJhPeXy45XGo8C9OkbPH5MEpN11C0gaM5x9RL9fcvLghGnh0QrJYbLhPW9KqZVMrKuUwiEIC16LHoSpqfMfF6Q1HoiF0LHxCfBmitI0fhmzqntvtDqVrzucxUSAZyZZIWhRFSZY2LDcbPv3bX6L+0//DxfkRT997n/c++bdYXsS+qBBC/pPUtv/c4l+aJv9IYVmSsqzoLZvNIaVPBpy9/R7p5bcM2opKKa43e4aWomlbVoeUtutBhERJjBsEWK6PMYrRO59gHwqWt7dEyYzNesHy/oqurRgMYtzxFNMUbK++YZOlKBkQ0JOuDvzm8+/51eWSAonjWITCxo18XNmDY4gin06BtiU0NRfnT3h0dA77PU/eeoYMQsr710zmMeLREFU1NN99zuH1N3iOwJIGETi4YURfQ3g8p3vxmuywo1Ga0/n0oaDtO5CCIIrZ7TfYjoetO7q25363Z3D8HsnRKXY8oDcdfd/T9wrJQxKpTcf1akNXPayGJGGAKyX7LMfMBoRRxGyY8OGTc5TRnL77Q07f+YgAB9+xcKTPtivZFg2TwEf2DcNxxOMnc9683tLEFxS2QbRLpKMRwqYrNY1qYRTh2jFaR6QvUra3l/ziu1dc7vaMvAFH43PMYIqIj7DDmMrSpOs1fnpPJjtc0ZI5FoPRiOjRc9rQe0gAi5zV+p7dbkUkOj6ScHH8nFGYYAG6rcDzaIqMsuxZ7m122x2+Edwv7okGEV2dIMqWtmlpy5ajwYDQdTiZTdGug9A9k+EQ37ERxpAVGer+Fk9XnBzP+eQnMYc0J2oL5sdzjmZz8u09Wd4wyRt+9V9+zs+/esFoPkPbIYttwWAwolc996stvRvR6Y779Y7T6RhpO6heIT2bvmyp8hy8iHST8v2rS262B8qmp9eGeGBx5PkcDwfkeYknLLZ5RaOgUJCEIQaHiRvQGptoeMRuu0JKGysMqY3C0zWmMVALcCSJ62I1KUY87EZvNiuGkxFaGJq2ww+8B/2c9OhoebVa0ksHTwoCRxIOQlxPgtHs93u+uLxhmWYMXJsWxd9+9hkRFY/Oprz/yY8xoqMsakQ4xAlCwvmYxxdHLNc71qXhdDzBdizCJGR8ckbVHNBdg3Q8ZCfZbXeMQpu2b8h1jnE7+rYjDHyM6XGTMYE/xXNsdFvSdQ19q1guFvSmId9VdL3C9YZE8QjVQ7He0xxaQs9FtYay6zCOxnGP8R6dMZuM8asNcSDY7/bkWYvnWYS+ZLHZMIrm2MMjtNWTtRvsuiRN10THc7TSeNaDHUwYBZ2gTW1MI6nrirbLcHyLrte4IqTprQe1eQRNX3GzTWl7xf3mwNHFuxR5zr6B2oqZDIdE8QA/TkiSmEPRUdQFTduxe/0d3dM5wfApVZ4CHeXqhn1ZUrcN/8ff/oLl3RXvPn8OxYHlbkNW1fQGuraj7xW3N3d44VOquqKpaoTrY7KUYrUk2xzY5T0q8AkGIXbfY3RL1+SURUHZdiyyEtd2+fK7BdP0e07/eMTePmZX70mynDDx0ZbC8myqLmRzf0Nd5Gg/YBT7eI5A2B5F3rDbLIksTbfbQJBgobClZn97hTOZY/sxCkGnQRn1ULkJm1XeMZnNubu6YhInjOMxrQww/hBZVhxdPCcaDbm+/h4lJUjQfUtXW1hI9vuCbxbXhI7ND977ENcYurRCKsPd5oDTpyjjMRnBKAzYblNaJLu8JGt7AufhGU5nCiyFN3DRjQEebE5e6mKbnjB28Z+eIyUIabH/7pavXv2SdjDmflfg+TN8e0hUtjwJPL7eplSWy+1+z58PZ9S7nlq/Jnps4fUFvewpugbhCKSpKaqM4rAhGI5JvCF1mGA7kulsilEdloZeOiijqdoaOo1tW2S7DV6UIPyQfJviuAGeMNh1Tt32DAdDbMfBqB4cF8e2EUbg2DYgaOsKupx44NC1HWEQI5EkQUTf1dxtrjDS5+LROT9zR/zFr35LWZS8Xm45vP+UozCgbUvqvED7Md/uK16sM64PJatK0SKZ+y6+Jwhti1IZ1lVL4Pco26XXmsPijqwoSPcHvl/mhMuS6fFTxkGIrDMmgcBRBYPjH2BUxeTtj+k7wdi9xOBznypaK+Hr15d0xYo/evcZZ0c5c7sndAS+bTE9f8ZwckZaZdDk2FMbqRT+yEXrGtcZ0iOwPUWW7ekdQ4dhuSq4yVu2bcs4PSAsQbnfMD89Y3L6GBvDyQ+eEs4k2dcx6+++IRr9CN+PqMue/WZLtd9xcTxnNJuSHA3Qfcn3X7W0Rc35bE5V17RdTXFYETqGMArY1QUaQdZ0OL6Lr3yWyzVCCPqmRAeCToDt2RTFDoRm9vYFsi8QwkV4EZYXY0uPyekZ1maFOMuxBiOEdMDykdKilw5CKoTQIB1MXSNUjxvESCfA8mIs3SGDGAeD0/dcvb7CQlP3Gtt6sEzZDBhPZgjVgWkfGsyTIV5gs89TvCAgjIfAnqbVRGHA9s03OOWIH//Zf8P8/AlZ3dG2PTZg9x3ScokTj4EbkMwuePetU6Ru6dqOqiywkGjL4+LJc9YFNDqhEpLRWz/EOzqmD3p6taRvWxzpUdeKPC3JVUeDpqtLtJG4tk3RtEhbYlmStCgIpyO0tFBNTplrijwF7dDlhvVhxb7oaVqDK32CYYwfD/D6FsIYqy04HcbUShE/PUY4FenugE47inVJ2ezRVUbXdpimoaYj9DtqYeNqi6EbYvkS42hMZnCwqKWFEopB6BIkQ+h7jk4ecbdY0LUdaVEzTEJsz6HqBG10xL61mAQzvOGM8ZlmtdxgBxGJpbBNQ+KD6iraRoOwCP0I34tBaA5lTZke8GyPeDymaluMI2i0ou8Vlozoe0FbKuJBQJ9XqM7gRBqlHs6Vqu/IiozbzYGi7ih0T1Ok6NAjsCWuqlBWjE1Om+bsbi95NJsSCpfhbMaxb2NXDV0tkZVmPojY7paktovjOhT7Bt8LcEKXslDcv/qWxBkwjmJWWUmRbrEHLspPMGmG6TWL9YaXt3cMhlMcuyWOAjzbIstLAj8iu9shWxvhSoJ4yOnjZ5z1DeO7NT/57/9Hyt0d2+sXlF9+jXFdur7EMgIqw3a9Is9zhGkZz46I4ke06sCv/7e/5vKz35Be3nJqzRgff8Llfc7qsOdoNgYDvZA0bUPW9uwrye8++y23ix2u5eJi8eh/+A/4kcR0DbLvGIw0yra5vNrzxe2KbbrD1oaqrqkPO8KzEVvXxTgJq90WP1Bsr75EHZ+QSouDNeTF1ZJ9UZB2BiFs7rclWafZNyUvNwVGCsahy7nv0rU2Wg4RtiD0rAeTo+vhWAIRhLx6eUXaVgjXoVMduyxlEir8UUDge2y2OVVbo9uHG0SuhsgdIGTIcrVB2zYa9U9Z4v6ziX9pmvwjRdV2bHc7gvERR0qwlpJId/R3r7EmM5o0o2oVWbFFWg9rO40yPJpPOTl/RDg7wTq6QORbdJ7hdor6kBNfPEJvNuiupa5KHC8gbCvqxQ031zuioyPWL6/4+tefsl4f+MWbBbdlje35RH7IXisc2zAYhERhRGwHWL7BqAJ1qGiTiM+vrtndvuG/En/Gow8/RtoV/vFTRC/o91tG2WPuNxv26xVBGCCiGcgOYxl6oNWawWiMrWByElHkKfv9BqM6kIay6Siub7nQJf5kyHetx0Uj8bRhl2Vsywr9+gbPkqTrBbPZhPtVw91ySV3XPD+bcXZ8jFCKdJ9RlxXJaMo7H/+Yo/GMu+WC4ZNP8I6e4LoVaANBQFYd2GUL5mdnyL7DsgxHj5/QGAsjKuzRCcIRGEeRb95gDU6xVM/g9Dl107N8vebqu0/5j19+xaJqUdhk2uW1lULbcRpHDIRDdjgQbZd8T0ESDujtASb0uf/8tzjWLynRaN0+8CCCkH//737MWydjqBqsokZYt5DMMTj0bUvWaNapwFYJVbrHHXWMRxMcO2AQj+ndjrvXbzhtWhxvRKUVnVacjQekvaGoW+I4QkqJ0IKb77/lbBJyND1mevqc2+sbyhd/YPL0CULYlI1Nemh468kzfvDJTzl7/4/5/euX1Mbi7n7FkfsIT8Jbj+ZgNDc3C+ajiLJrsYOAXnUIy6CFQpmW/T4lLRXXZceLwwMMzQ1CHMumWB5YHQo8z2crBMqA5TjMIpdGG5RrUdWKxLKIXZfh0+fErkApjR1H9I6mLWv8iYfnaraHHXEb4TsenXSoF7fEkYf2XVrV4wkPZXo6I7jNWpaF4uJsjlAtthCYfI+JQ7quQWhDaSS3WYlBUNwfcOULnh3FdKpks9szOjnj6O0PmD/+Ka1ysXtJVSlGE8GhbjgWIV19wHYrolhSNQacEGMMvuOxUYZt2mIrTZPvsT2fQTzj0C6wnIerslbggzHIIHhIrrqGumswlosDtI2CDO4uLzF1Sat6ZlFInrU0xiKZPMZtCzwFyh6wutvTlAXN9g5Z77BcQ6N7rEiA0uz6NSJ0eXLxmMNBUxct2zQj2a2IpnPausSxDV1T0eOQZy27dUOhJYUqGU9D/N7Qli1iOAZPk7Ytlcr5zdfXJKfnFPsUIx0YntDZHWmactQp3DDATgb0lk+lBE3d4FoPCePvv/o9xg5Q2uJ+teW7XUatFMK2KfqeZd/hLO+xdE/eNmgh0AakZRF6DvvdjjwdY3kuLZI4CrB1z7ZpuLxfU/cQiCG1BY1tMQoFh9WBrDUI3+PoeMTrqw2/uPqO8NsFP+sG2OMZHTX7wRZXgCUfgHJOY/DGM2ohyXY7jNCAwhUGIW22RY29uMe1XGLfR1mC7FCwyRqE2jKeCbK8pNcaKR+YRnXVMj17Stlo1Msr4miAUZKj83dYbPbkmzXHxtCVNdHkBDfyyIo7VFNTIanKirKouL5P+b//y6/Z3KaMg4T99kCRNoSBizN1eLF4TZo5JG3F0WzGptJ4gY+nFMJxWGQ5n73ZoTXYXsJkPEO2FabNaUoPZYHr+jS+RGhNMp4y+OAHjDqPX3//mjY5IXj6Me+OBpg3L/Atl/NP3uW+lPzVZ3/Jrz//nnEs6VTJ7MWCwSShl4r/+PkXnE4TAk+w7Q3PP3yHZ08e0QgPdX1P3fYYP8KzDK7l0B4KVFfSK4VSLZtdgRXFuIFPqzTSkriejxf6mK6lEhZx32HKkuz2ltnpDOEMCMdDQGB5Pr4XEccDDosbksgnvblEFR3RaEZ0Ouf40RuuVzmzD36EVX/PLBlitR0mzVi2htNkTND79G1JaCTD8YjqZkWpBY0xBL5HnAwQuuG+bpCtYDK0SXyHtuuoq4LrzZ7tLuPT2y2yb0izmifDY8JogheFTE8fER9P8OMJulqj0xy12yOtiE3tstgs0W3Jn33wPrKaEM0mbLcrrOmA+6Zh9uw5p4/fYhjG2JZPm6Zsvv6CydynqHckRAQiRKAR0sJ2A1y/JMtT/v7FglJpPM+j6AzbqmY6GeMEAYO54nZ3S94XuDqg7R2EdwyWS+DHSPlgNGurnr/7+d+g6y0n6QmHxR27+ysOneH4+XPiQUKUDADoyhTHEgSBT+Ia4jhA9B0yHhAMh6TbA86hIE4iVLVDODWbrCY4PsWzLRxbYgmJ9EKk66O1R7tJufziW7xfvuTix3/E5N/8GSYYIu0AxwXbtDR1DXWJqxr6NqOvUlzHeThvTIfnWkgHSmERTUbc396gvYjj00do3WOHDskgRNcdejyjcRxsqejaFqNqRsMRcZIwnU7p3ZjNZsvw0YSmKij2K246hTaS9v4F9uGafvYUx/ZIBj4eYx4/e8p0OkT3JdVuTZfdERy/RbrtMNLh0fuf0MsZ4/f+lCBLuV68IIknRCenrF69QPUSpTWV6umVIU3rB7CmVqhO4/g+Zd1hWQ5P3v8hlvToLI+qKVlfv6IrGpTx2e0yRGNA+wyiIb7jQDhAxTHD0KaLE6x6z9GTx2ijGE/nNHffUexT6n1JvSvoRE+x3tBlDbu8YtRPeTQc4HkRTm9wOoOqW8omoxEKHIe6ynGjiChJuL+5pihzqkbjIDg9muB5Ln4UcrdYIqfnJGdnDKdHuH7E+TufYKq/hFJQa4dR4GKritCRhI6BgYed2xzPjzjsdkynM1R+4HBoOZ0N8Z2ewSimagt6JcjzgsgbEE+H6KagqSt6V+P5Lr1qaNqerKtRUqMsQ6UKFlVBfihJbIsWcG2HLrAoi4oy27Pe3RM5Dn94vcB2PHKrJ6sl9tEQOTxh3+yxhaZH0xU9m+WSbVGh+5rTizOSJCJyHxhWXuRgG+iNS996oDraMme7PPDq9g4vdijkgSgI6T0HO4ywkNRlS1pW7K5vmL/zlPH5Kb1umU+GvP3RH1Prjvmjp7z5w+84ns8YTQY0qkC3mqLasl7cUGQpUnf88q/+grc/+JheSFzHYZlqpBNjTU/wjx5TySWroqVqFa4UqF6htGGxLfj5H665Xuf0OISBx/evb3n1ZsEH755heS40Fb5jE9kO00PJ2cmcrqlp84Km6albw6ppedN1fP/6FQAD2+YP391yUoT4/hjbDTmaTem9A/vNgu16hWu5qLKk6fTDcENYLKqU+CjiPPRIHJfeTlC+Q+go8BTK8ig1rA4polMMbY/W0gSWje8FBI6L7HpmgUPr2kgTss0qrFVJ94ev+f71LfbQY/rRexRdzuSfprz9ZxX/0jT5R4rNbs/dYsUP3n2blBlnSUx29Yrz2ZhXb1Jmxyc0quPq9QZhFLbrceo5zCcx06Mxg/kUTI8zTOjuXtJWHY/ffZfecRnMLxDVFi+IqMqCYr1m/dmnLF+tOfeHWPmGt54fc35xztOTOVdXN7zIG3a4ECfoqmCX1ezyLX2/xvV80q7jKA74w7eX/ORnP+Xjf/0xs4spvlviPT0Gx3+wJxhNMJkQO1P2iyv0fE40kGBLVA951xP4EtsLcY1HMHvM1etvaVd3GARtU3H65DnLpsV3A2QywgmO+dXvvsDxfOaTIb/9/Qs+++tfEKqK84sT3n77Hb7pCHJYAAAgAElEQVS+zcnTnmQ8YX2oGXmS1WrNdDyiMi5JEnH23gdEwzHHQcJ7P/vXNHlNtnhBJy2UlFzle66v1zy7eIY7mOAyIjQKN+24evmC6eMpo/kpUkJ4MgLdItwRCpu23XN1d8XfXL9h0yu059JrqE1FpA+cBhbD8opRv+QiGZOcPyOKB1g40CosX/DByb/hdrfgPt+zu7+kbQs++vAdfvSnf8LYsejKlLJJiQnAcR/I7U3JZpPSlyHonrbu2a8rZs+fcPFOyauvviDwFGY+JXQc1L4gz2v6IxutJefHR2x2GbvdQ8L92Wefcre443/5n/8nOm2D41DZgl7aDwq/w4rL19ecjUOu3txz9OQdPH/IwR+y+Pq3rG+XJNMR56dzdJkzcgT+syd4Ucxyv8OR1v8P4sxTlss1d5uSGxOjhOIHT49I5ZDz02d4+YJuteSutjlLZoxUjQgcLGFYHnIcAV1VMA4TQj9E2C2NUcz9iGVaokyI60V0bU1XlTjSI88LeqWZnwywuxYlJbvDDrdrcDyfLNshjKHqNFfrjMixGMYRSvUoYwj9AA1IaSEEbLOCZVGTlg3KaELXJvIsnjsuf/Lv/pzzj39Ga4UseweSE5pDStXsiKOItO1Ybde8/c6HBPEcozfkVy/xpYNLjyk1sRezuN0QOQahwFeGusxRaKStaZscx3fBDenr/mHlqMhwBgOqSvPtmzuoDOvrO1xd4bgOtuPjS4ckiamylmZxixXMKO0pVd5w6/hUhUBWAf3mHtGvcaMAdVDEof+QfBZbxokmCVxyJCYaUDcNflfjRAm6rzCi41DuWfVbdk2GEYLR+Igo0ISWjTcf08kOLRz2RcX1puCrz7/n0dvvc3T+lNARvLm6JjSaPK948fIFThjRKPA8D1u3RIFLU5bgRPyfX7zkq3XH+SDg5YvvyMuKpusJPJfAdTg+Psa1JaquKduOpldYtoUfJRzygiTPKcsC2TzwoBzbQiQhg2fPGeYN+fUtVV3SqxZhaaQW7BuFLR2EVkRJiBuXVHuFG/h8+vJzfngyx57NeL0sUJYFKE4ePcG2BZ7vPSxeSsmLyxuGcUDbN3R9jxuGdKdTHp+OMEZRt5pwPCEYjdinKWXdUtYdTV0hMEjbwTl+jDs6xey2zMKEoRtj95Jn7/+Qv/37T8Gx+Jvf/Yrh6Snnn/wJWtZ0XYfSkr5pybIHaKDpFa+u9/jyDY9ncxCaQRzhD0IWd7esN3s6R/D8dEzo24i+wHdd7KMQLS3WWcXdsuDycMd/Zzk873vGkY0uS9wwwPI8qrKmLlvaQ4XV5HRpi5nEnPzoT3n7J3+O7wwYeS7m6Tlt7VK1Dv7tHX8yG9A6U17kGXf9gMsbg7665NEkIjx5C3Uy5/gs5mx6zNH5IxKrxOtrovWOKPSpugrXcmn6GmN1WJZLWRekaUrTtdiuIvJdeiWQUtD2Gi09lGlR0qZUmiAKUV3LaDTBdSyMAQOYrgP0A1MCxWScsHz9Fa57zJOf/rf0bUl8c0JiH9gLn7vFliPHZTwYYNFh7Xboi1O8KMaPI2wvRLkejmMT2pLKsTmbTXGSCSbfEhrB2xfnvH8yZeJJ2l7xu28usQEnTnjvwuIilLRZQ7Z8xdPjmHg8xrMFSTyiub6nXrwB26YWFia44A+/+hWhBx9+8AEmCDlsFK7vEEg4KJt3PnjOW4/PsYKIMIoRncXq8p5oGFK2JbGuka5L13fYvodlCRxfUiz3vLhPuVxlJPGA4XjEZH5GnAzpNEggjkOaPuU//8X/ytnZkFDtGQ5PSWWEJR3qsqCrK9q24w/ffs9vf/tzjocWURLw5PHb+P6A5XKFLTRSWiSjMQZDf7/Eswb4siNwLbzAwe4L5s8es1z+PdVyBUISSY2hpmgFZ29HD6aY3iaczbBbSb09UN+UqCpAcMLLbcn9pxs+Cq6QXYk7HhAfHyEtgef59DIA2ZGuNxjHRpoaPxzR7hocS1DWCn88Rfs+1WrBdnfg5PwCHIvE8xnGIa2oMarjNHmEUpq6KxGmR7c5vu/g+z5v7pdEwwHGjDk/OSKyFKLeIWyXSShZRQne8VPKpuVoPMHuHEajAa5n02iHsmzwnAOqb0lmJzRth+PEOF7E3vx/7L1XsiZZdqX3Hdf61+LqG3EjMjIjMyuzJAQBFIBu66bRjE89gB4EH8iZ8J1DII1GdMMaqEYBVegSSBlZGRnq6l8L19qdD7fGADwAawruds7Ze+29vopXL37Bxt9w7n4fe3zI/PYGtarJqoLuYEK92dFaEtAgVIFoW1zVpCoKJFVFMSyE5qAIQdZY3F6vuH8zR2TQNVRsQ8eyujheD2vkYI8G2PLD5Fiu6DjKOefvPUaKdyiKS56r+PdbGlN+yIsKcioJ/DJjtt9j+3s+6PTQ9R5y2dBWKbpVoGxTDF1ns/NZLm95+vw5imnx5vVbVusNltenVXSKuqFOUrZxRs9xOLh4htHx8LOYLNcYTM+J7w84G3b58re/Q5PBNTUGgy5yU2LpDnma0QDjyYgoiEnilCCsGXcVqEEXEj3LpshSFEnGmdhoWktRlJRly9HJMSotuR/RyCqizWjzklZI1IpKlGTcByFlJVBlDXOXU1xvMaQGV5ORdYmqTlGFillVZFSonsH93Ypqr9KoBevdDdvNHa2io6kttRBAzXp/zeHR+MGI6ttUbQaG+RD6XsM+zLhZ7Hn15i1lHmOXFkNVpdfXURXlwXxTdIqqptUUbv0lZviw5nZyfkGbbujoB1w8esTe35Ov3lFEe1qmhOmaIiq5m91wf3tFWzWokkpbFOxn18iygWQd8L0ffUiTJASK4DevQz578RatrVgFGQeeAYpG1cq8uF7zdranrGHouky7fZw85otf/JbjowmeqyKr2sObTtMYDHr8xR8esxr1WLx+jdKdkhsWmRxzHQv26zWPD8+49Ruef/pTlvdLbNNkldZoZc5A6Mi9I9pW53e3N2yyBlvTOPW6aJ5DWUaMbRlNbmhM0HUJSbKRpZaKnEpSuFrvyRvQTRNdVoiSAluDsoVdFnMwndBvZd5cLclllZfzlN+883HNBc+e9Pjwz59wVbzjeeb/i9S2/9r0b02TfyYpkkyeZly9foMynNDRNCxFkHoujixIRct2u6aoSvKyQq0aLKWha+vYnofnGOhqg2I6aBdPMJEQdo/byxsKFGzdwTQNsrIm9X0uZ0vmUUg/XDA5OUJSXMpc4vQg5P1hnz/cbfl2nxHIOvLhJ7y5mfFqfkecZ8iGzbir4nQcbOeQ1jtE8izipkYvM1TTpS4zZM1EKDKSreGYHmUdE8YJRpHR6AppVbHdzLBNlaxSsN0Ru9hnt93QICEkQVpUOIDlOLhHx7TTQzqagx1GJEVNKyDMSjZxydeX19ysQ7ZhQdiaKO6YKs+YzW7Y6Con0zG242J5XQrRIlSD8dk56CbJfoskQOgmqTCY3cx4+W7Pfi5xv0h4fDJAUSSKOCLOJabTJ6yXPkcnpyimi1B1ZMlGEQb+YkVSSYRByg/ODzkfjNCsHgvFxdylnBp9rPERpalinw7oKAaKJOPZLkaWY5cZyqNHREmEe3fFuE64fudQVTEf/U9/SefsY9x6RRVKpPuC1nBpZIU0idgHAbfzPcOeRZRtiascK8nI9gmTg2fsNynl7BJDN0nL6gFlFu4oioKqhQoZpTvlb3/+T/z3X/ya+ewKXVfQ7C6morPfhjRZgue4RLczvvv8SzrnF3RGRxTFjslPPqWsBf79G8zTMy53e1azFV1TYdS1MDVBLWSqpuXyboGWJ/QHQ+JdSrAq2IUNt1ufuzJAshSOTqacmQM8XUNzR2SmhVNKWO455W5PtXiHqquM5S5hlnA8HrNOY2zPo20bRpZBr9uhN5oQFBV92ybXVeabDZ3aogTi7R5TtHiOheW5lJLA0m3iNKJOQmqhkUgmURjx9Nkz2qpEmBZpEqDoFlUro9gDmmiNZWqkZUWYFaiyTGfc4+LDZ5w9ntI7PsYbDPFzSFchrawQSgq5JDPQTLK45uubJbo748nFUxrhsdyWmNOUQpYQdYNoKnS5Zb3cIsuQ5jEdV+AYKkWU4pgukiIDDYphURUFrV5R5C1vv37B3e2MXZBg0WL1OgwtjYP+CFc3GTo9nhyaSKVMGtRcree8yjXe6hZ3d3PcaEVfbijiGEvzEZqKrig4toZclnz9xWt++pOPMA2NRsjEgY9jm0hlDk1Ele8I4or1/RVxHqH3PRpTpZYFrSaRtAlNY6LUDYvFjn/87I51kKAWFQPHwzENOgfHZFcvkAyTuhXsfZ8qS3F1jTgMKLOMStJ5F6ukONyGBcF2RVNVtC3Iqk5RlXS8hyaIIgsKIaEYBl7Tkso6cRAgJJ31esdZDaKp6PQMhCRo2hrL1Ri/95iwkcjCANNUkEWDHzRokozS1uiqTCkATUdxZLrDPmpboit7bElls8n52asXlInPT3/0IVJ3zHq1ZrVckNYteRxxuZojVBVFAj3PaN9/itPrIAkwVf0hU0eWUXWbMNzgRzFlnmKYFqJVUbQOqv2AzvzoR39Mm5Zcf/YV+9/+I8V6g9PxaCWodZO8he74iCkhtIIsCon8ANqWkecS7mPu5j7HoxN6no7VtZieHHH3u2+p5huqvCHYZQgilFbGdT3CuiX9/epYWtZskoS/+vKG/1i3nB8OUGSZzqFJ21YgNzRSxXazQgpDlNZAFDrP//CnDB6PMdwuumlTSCV2Dj0UxtMTkrHCJv4Rh0HG+7qGOzZYvfmc2paRpgcsY59G1Xh8PEHvW8iNTHafoRUWqmviuTVRHlFVBUKTKfOS9XbLdrXG7fcxdJOqAVnU1HVNZeikRUFSJFieTr/fY7ec0+0/uNGtLFM1DUVeUgN3t/dsNj4Xhy7edEwc7Lh88w3WLyyUyOft796ylgdU2RyzLBl2uljDCX4aMwtKnmQllWOhlBnz1ZbbMCOooeuYmHrDWc/l4OwEPXXotCmNO2Y4PcCiQW0b+ocKm9t7uo7OeHKKYei0YcD9m7f8+sUX/PSPfoySqex++2vC+w121yVpTfy84MXrv0dTBO9//4e4h6fcXb5GmB6i3rPYBUieTVkl5GWI7ajkaQh5jjM2qH2bd7cb0DdMz2pUtSWPEizPI40D3lxf8er6nqySCLZb1K7HaVtjSqBLMqqsIsmgqRIvf/ML5rbKDz65IApgePEI0eTcX71hOV+SBvuH8HPD5N39Nf/+z/6I8+cfE0UlmzDG0ATdXhdrfkeqyBxMBlQNVFlM13PRJAmhaMiKxPDkkBcvLknrJZOuhVyWGJ0+qqlRU9O6Hi9fvCK53+AJl/7wKXZnwtPD9xld3vDVqyt+5YR0ZJ+Os8X59g2NP8cbT+g9/4CqEdj9KXmZUxQRdZGQpjGyaVAXEXnis1zt2QQ5RZ6TFymO6+DYHZS6RdINiqZE2BpxGmFqBrtVQJNn9Ds2S0vB1CX6vR6a02W/2/HooMvx8Ql5rRL1Dul0L9A7E6LFmrKysOwGVXkga9RpRhQkGFKDk+6QnUMqOXmg8dUbrt9+QyggUhV+/cVnXDyryCSVWpLwHI00jBGoKIqBbpqgCkSVM3EsFFkijHM6EwXN1Gk0lSwJuZ81/Ldv7xmrOue6zJHrYjiCHIs4rUhvFnidPus44c39FYrUw/9ujdXuOfn+E1aXSzR3Qq1U5EXILtqSNS3eeMBBLQj2D29Rz7VpWqhLFSONaH2DKt2RRTGO06Eoa9Kq4Xq9I0oSZn7MD/70fybcbWjzCFtrGZyccTIdcXx0QInK1SbAswzszpib+zsc10UqAvoDl471cPfpHY3uYMRqsUQSsNptuFttKRSDub/lfGKQRRV13YCho2syYeKT+AWO9mDwWV2HbL+jlBWUFhShYLhdNDKIMta+zz6JibOKvGpohISq6TiqQsd0MbUWTVPRhYSsQlVUzIIVDG3UJOfd6oYw9mmpqFsJURUoqsSmKInrgjf3S/70+x9z5HTQVA/FEFT571HomsrnL37FbLvGtlRqTaEnq9SagarpqKqKLDlMD6fcL7/g6dkFk6NT6iJDNBVC1okWN1RVwef/8HMeH3ZQLYPpZMA+2JHtc+5u71htdohaRmbLsNeligKyfE2aXxOnDUGpsVgH+H/3azQZTF3j3TKgYxkoTYuim7StRNMKbMXgk94hTvVAhao3Ia+++o6Pf/wMhd+H1gOW5eDZQw4MncasWTcu+uMPqUTD2FDo6xqabtG2JlVUcqja+HnO0UmPJApYX1/y3774mlfrNVFdoimCg4nDn33vOY2tkxcByfyGqe1iaia6bSNkBVVWSEvBPi/ImhbT0ig0FVPIbOOItCnotzL3gcAuCrzekNV+j+m4GN0em3hBp6PhHne4tyqC1RVCav9Fatt/bfq3psk/k9Kqwul0kEwDxzboFxHysM8s2KHrBos4ZptXyLLCbrtHN22UrkMlq+idHobnYusaqunSVg2UOVkckEU+aZqiyC093cEyVNazWxIh400nSFWGbAzx05rl3R3Pzx6j1i1xmnBoldhFyYHa8KN/9+/4m19/zhezOZWsoFou2BbqYIJQarb+mqbwqZsRrapjOT0aWuQ6o1VkhGKjun3i3S1h6NNqGn4Ys1n5JLFCXiiIfE9ZhBwOPXaORpjlBFHC8FDGtjTq7gD9yYd0kpiPHZuO1ycvEuI4wbAc7N4UYRjs4pxdXtGRXZqsJNqsuNvvkYXAc2x0VWa33bNd+ZxPuniOS1aUVGVG2SpktcTNzS1pGHM7X/HZb2smoz+kP+ziv3tFX/PoD4bc3XxLIXQcx0OiRQJIBPVeR2tkLBXc6QTJazAwObT7tG6O2Mf08x0dfUSZquimhiu3dJGwvQ4yAzCnqLvXHD99n8wzcCxBXO45Gffod2xEVVLvZ9iOhaQY1JJOVmfM73coVYMoM9JMYr/fgGpi7DP0jsFgckAiGoRSs7h6i0SDJEkMt0t2mw3bSGU9+AFlM2YweY/O+CnBdoYsa9RVg7/bU0Qhlqpy8+6SdL3mgz/5C7zDQ5ptxe715/RPzrj4+Cn3Tc57B4dc5SlXdwu6nUc4vQFVC5vlkiBOWakSTavQVgaLDWxjnaSChR9xenGK3hlAUZCnBbJmYwwGDDWLNiuQnS6FdYqpq+jHp8RZSSDb6EFEL1nTd03ajvdAbdJkwt0C3VZozC66KRPVKv56zt3lFdnW5uR4RK9jU5cpqmk9OMlFxS5JuZy9o+d5mKpMraggS6RljabpCMNGRsGUBH9yccTLl2/5TXyPqcl0HZOT8zP6Jwdsl9eMzj9EFhqirsnqlrwqUXXj94jYivVe5v/+f/8rj0e/osl3LNKCSRGgdWzyOkfoGYpZU8gVRban55ogQ0tLlOa4RU1bg9AtBNCUDXXZkG2WrOb3BP6e0o+pVeVhHapyqBULcTyhkDRUz8NULA4ejziPcp6sQ77ZxATqEK9xCBdX7I0jJA0SReXdZs1tHOPZKic9Db+1edK3yOuEarOi2jToskSZ7ImrguU6Jo5KsiJj7PaxTfAckyT20ZwusupRlTrBWmJ27xO0Eh1JfqBL5Cnj0xMUR+B2HaaTA9xunwqN9f09SbSjkBRq2WEWVMiVhFa1vF34DGyFqiyoZYOe4+I6JkLV0OQa2bVoxAR5tyVe7aiFRF63rHYBfpxiGwpClpE1jbqIERIovQHaiUx4P6MlosxzdMNCliU0Goq65X67ZxXlyKqKZesUpWAldPQmJCtKnh5OIeuyurrFzSv28zV1FBGnGUmWc7/Zs09zDFXwx+8d0NNkZElGsx1oGmpJoixLsjQgrSEKI5BlgvWO46fnmOYDEalWNNBlLFWl+1gmW1xzYLkUckt6e4Xh2eS7JdrjE6TJMWUZUyUhaRTi6iq5pnI6GbDdF8zXMcPxBK/n0WYNY3dAcXBClaUsggDVqpA8jySLidOEwN9jKCqu/vDP79Oc67DBWPtMJ0OqLEESFVXVUiEQrsl8uUdqE1At9GqFqAcoRUUTL5HUmuLyClnRUQ4OcT86x9BtiiijkxdUu1vcj57Tyi2L9S3S/g5ZNZDEMW3bkCYBob/F7nsUskSjlqg8kJWKNGW5XHDz9grVcjB0HaksaERFgUkhFCzToGuqoAnSyGdLw34fMH70hLRuCfdbAj9it13TCoUkWJNmJct1gDVKyK0e97sr/v7//L+oo5xF2vL0R3/GVK8YHp4x6A8wkxjx5iVhWTPbBZiGyqDvcr1Ysylhk1Z8MunQliWW3OBSMBx16WoDvrtdU/ZGCFVCaVt0SePJs2eodYxiKlgHR2Q7HaVp+YOPe7x7OaPPPY4MhtHn63drfvbtt2iqxfHBKR8/uaCpGmZ3C3aJj9VVeXs9Z6+rOIaB5ZokRU6fHNMwKHWdet9CHaEpMptFyH6xRpv2QdHI4pi7uzk/+x9fc7uMyXQH03PJG4Gi6IisIG1iCjdBdx1E0+B5Lqau8OLbS4yJwvCiIdztiaOQcL+FKmMyntLxHrG+cxgdPmJ68ph3Vwuy9Z7dKkDSQVENKklHUQVZGGEaGqIuqIsCiZaqStBUgdlxuZlvSdIMQ5Z43O1D87B+qeUBThPw1WzB+cTFGx5g/eDHWLQYVoNnxFzffsWbKOJ3uznO5JDt+p6R9Bs++PLvOP70U4p4i9brgGMSbxfIpkya7NgtVsy3Ee9mK7Z5y6MjD9O26HgeCgpNVFNXxYOJ4QjyJiFLGqpEoqlBkwW6InM0HSBbKqePL4i3C9K8RrdMNK3De84AzeoRVSqFkJEWb3AtA0m0UFe0dfUwYVbEuL0lhnMAioF/+ztUyyM3XHrvf8K3f/v/sVmviLIS1fAwFQ130KPNSyzPwvYs4iSjLlOOuh0MRcMbD8kNk8axqKUW1dDQe0MmF8+52Cf84HSAKMBfR/zNPED2d5gjGTmc0yYJtdMj0gZkZFyvY070hFe7X2J3PNxGRTYEq13OfFfw+PEJQpbo9EZESY4kgWypNLWGUHR0oWJqeyIEqv4w1SErCqvVBj+MsGyHnmWTBHtW2w2PejqD4YiT9z7g/vaaNg05eXTBwcBDEzVRGKObLjQFnmuiGzreYESZV2jUDDsuiszD1JOoeXd/TysbVD2dyWCK6TiEaUTR1DidPnZdUtdQZzX7YoNmvKPYr1GcMbrSRTIsiriiUVRaEdI/mOJNII1qrmdz0ipH1WyqIsMPdqDrGEZD2+Z0DJupqWPqBkW85bvbNxSixVGhRKcjC2Rd53ebNZIQfO/JBdf7LXerJc8fTzBVE6QaDIUirvn6yy9pNA1vNECranpml65uoMsqiqphWC6zXYOQDJTuFNsymK/3dLWWvKjojsdIck4pVGxH5/HFIdUsYrPc0Ago44QwSVlvEpKkRNMskihmZKvQFBhlTtMWxGWGUic4KqRVS5SkvLpbcHE4xm4FsqziOTaOrvP++fd5b/QeRp4gSxVldIc/3/PdmyVPLkbIUoskCTqeh+natLqgkS4YJxV1R8MYHqGbHqakYJQ1RdoSVhVbXWc2uyHfrpjvb/mHt19wG+6pJQnX7jBQZSxkOnYHb+oQ7RoWix6u0qdrumhtCqqEXxf4QUSAhznoMpZtdlGCqSu4aUKwS8gdlTpPeffuNcdtgduzCMKIR2cjmjqFsU5+PEHSuxzaHrbR/Reucv916N+aJv9MktqGXNPo90d89METLLnh+sVXxFnGHIWv7m+JgoCWlqJuKOMYRZW5T1qEYaNZDnVdIiSZINghFwmWO2B4fMTVz/8789kNo6NTnOGQaLd5wL5FPrkkEUcmX766Zb7wOTz7ANPusZN1roN7LncRf/36moHxKyqhctrtgl7TtQTVwRMkOSVdXbPtdMgqiVqO2UdvOSwSut0xcplSCZnIHBE7LeXiDUUrMZuvmS/nXF7dYzkd0s2eVZZweDxC0VSSRGGxXjE9mTAY9FAclXww4Xg8pt2uUJqS1XKBq8o4jsPB4SFlXtAbjJiMexQznypPaURLFPoU8Q63zan8NXkyZLfZ8E/fvKQoT/mji/dxDY3t/ZLlMiTOE0ohMb+/Im9D/sc3l4wf2/yR/WOitMAZTpgvfCohM1tt6E2PaKqMtsxo9RbDySjiEF+B5S7H6R8RFRrN9oaBZdKdaEh5glTt6JYShq5iCYVOk6E2Dkb3HOOoQzt9j0YqKOWKQvk+s7uX6EVAcfMSbeyRJjG259KiIgSEu4DNfIsu6yRRyt0iYn5/h2eNKKWSukqxdBP77JRG5Ii7G+a7LZsg4Os3V6wzDe+j/8i42mGrsFlEhH5FuNixWfu0kqCpBHIrQ9NSRTkffvJDuo/OEB0L3TlHtlv823eElzO+/fu/o9Qtzp8/52e//DllI2gkhWCzwdRUuoMBaQvrIEIUIUGyYBb6+I1GIoGsGqQ1KG1L7O9ouhKGrlFkO3ooGIqJedwjj2OC1VvcyZT+2ECSbaKXO+QwxhAK5XaLNj1i0Bk9OHqKhHUwIEpypr1jDoY2q9kdSIKwlmjTAuKEqsjI8oY3N/fUQqNvGNR5Rd3WdDsTzKaljH0G41MUw8ETGz44H/Cf//KHlD9T2BUSrXfCZeowdS6o64DL+zmW2UGqBaKscPMaQ9HQZIVWVlAVDV/S+Ktf/IooWPPDn7xPlm7pd1SQNVJhkKcLXEsQ1BKyaMiyAFlWkIUEoqQqa0zNpK5KWgRlHlFnIY+enHI47vDl52/Yb/ZIjcxeG1P7Fd4HAxpDIQVUXSNsMoQMo+mEHx1abMOEejVDOho/0FqahLv9BsXp8ctvv8Df75kWKd1eD8WBfSiIcgVlE9HVVYq8Zt8a7P2IzmBAVgmc1sYVAk0I1m1JIxo8RaFMJa6ulxi6hpbDgWqi5w2yYaGXGfbBCZ3hkLypaZISzTAxLBNJVphtQsZnj3DajKvX33F1nSLKHOtkQM/WkQ0HXUi9IxkAACAASURBVDdQZAVJNVHlAl08jJAnuxZVUxm6JnEck+Zwdz3n+z989jANIanUZU6OIC0KgvUtL16+YmyrHHdtdreXREGMJ2QM0yBtQG5qXE0w9iQauUu3M+X0qMO0qmmEwmo+I5MUwvsVpDnBascmitlWNde7iLiu+f5Jn6O+h0VDq5rkWYHcVki6jSKp6E5DMltTSwqr5RrL6eP0DrAkUMuETNdJNBtS0D59RP7rnH6mMN8tCNKIJlJRNQWlKh6i4sqSNEqQqoqOoeNNR+zMGFUEKKaM38p0W4t8fs/29h6pkTk9eY8yLYnSLSKrHlZT2hYNaNoWIcmYiowi69hulwjB9fUdqgxnj05RVQlFlBi2ROYZGN1DJo8fkxU7tts7lNJBrWvq2zvSVUjVaIj9ikZRwLIpgz1x2RLnKaKIaJQWc9zl8egpZR2SSFCsZ7RZiB9v0PtHKNQkWYaiqlBUzO4XvH75GpqKvi5TJQmKbYFQKMsaRTVQmhxPU9jlFaamEoQxitOlFAbfXs+5+eZrsvWWs4Mpj58/J7QMfvPZJQkeL37+ijKOiPyK21Lj1XyPApwVBUkc8eTZRxiKTnP1llwzUJqMXVbz4mbBRVGA2QHDQdFUbNvGqjMaGUy5ZNAf4nU8nsk6kmbw7u0VJ6MxUlmTxiWu7aIUKWY/w5lO+OT5D0lvfPLE4asvvkTsl9Ttil8tfRpJ5cPphN6gy2J1g5y53JeCNL0je7snbBJGB2OG0yE912LoquidDprZR+QJWrYjDmNm13e0qsXt29dQjWmqhrqp+bsXt/zjNzd0HAdNgyrNOBz0aSMfrR1yMBpBkZOGgjjwacqSN7M5uqiZ6APIE8K0xvBGHJ6oyG3N+ePHlEWFpRnsIpgvfJbLHXkYsdsuibL4ATvftNze3SPLPITNCxNZEdR5SZkE1HXFyfGExdpn4ccMLIMaqIMt6yymdRxkJP7X/+WnGO6YMovJZq+QuiMMC8zTMY+6HfTre/rhO7IioJj9js92Pi9e1fw0nGHYNkJqMV0bZTQkXhZs9xHrfYjXdzg77pFcrZCEhGUZ6JZFk6UIUyEvYhRNomrh3dt3TCZTJM+m2DUISjxbpxAKZQtt26J1RtiTKZVsEcxv0S2XGljMtoSXN7hEuJPew3ko1Q9rpnXL5dWS0ydPsJoKQUu0nqONFE6ff8wvfv7XhGFClte8eX1Dt9Onb9jUvQ6G/mCuBGFAlYWYpvZAnSsTyDLqUGH+9h2H7z1C1mT0zpD3fvxDPD2na7QMO2OktkNym3K/EUQnhzSioXrxDa8vvyVOd7S2wW2Rk7cVSbDFCwLil6/o92yatuZweIDbO8LoehRNSo8W2VApVAPZNMn3KXkUsNol7LMQt2PgdV0kVeOLmxXbOMeSwdQ9dm++4dFBj08+/R7N4IRnn3zE5//wM/7LP/2av/yLP+fiez9EVVQOJn2W99eYvR6aArZjo0s6RZFRbpd0NYta12mEwrA34uI45PVsD7JJkkmM+lOa9ZKySKmKgqJqMSUHRa/YRRtevbqk23U5dHWqpCRMCtKsxC8rkrah152gdYZYts3JfMm7q2ssb4zWmiS7gNK/4UgTnDg6nqzRMbokdU5faRlMh4SSSkyOlD2c06Fh8h8++jEfTw6wz6fMsg23s0s2oY9qyuiKTRrGvLu7p3FN3p88RaEkC2NMSYaqQVVUVEVBlQWX715RNHckqxlPLs4ZHz/BpMA2LUauTolJ7/wjDmpI6hR4zX42I5M92iylRiKtaua7BMsJOT8qcamQm5asbKBuKMsW0TRkZU2UFtRVRVnD5Sbkw7GD1MC432MySPiDP/5LnnWfodctsoiZXf2Wb5dXvHpxg1+WPHs0RGnFw3fUNRRVoshdciUlDdYEQcLNMuYff/s5jVA4sBxElZOsV4gqQ5cgoaSpCjpOB0fXuTg7ZSzLDERDG4Z0TqfUdk2pR3SHEqYW0eo2YZKRZBnzZcjh0yek+xhVthFhTFKpTIYT4s2OtqqZjDpIHQ9Zt+gOJPKyJadFDzpkpsa764RxbkKvpc7+xcrbf1X6t6bJP5M6nS4fvv8Bg16XXZyhOQ+UmtTqUI9Pyb59yeTiPS6//A0NINqWLM+4ur5hF8QMXI22LlBMF9t1WV/NUZ0+SRSS+XvSGr756is+/dMJluOBEET7DcvsIVDI1QSlpxMqEvZ0iLo94vLVa17uQ2ZJQbYJGNsOp3WFaugoRYEmX+LqMoUkk4kOYZgRRC2qUuLnFScHOY7IkVSNq2jB9uod+nZL4fbYJBVvXrxks4/xw5Qs3CG7nQfHT+gkyR4UiaquKfOENAmJ768ImprjcQ9Nk4mDPYrhYJsOSa/miWpg2haHx0e0dkTib/D3W0RV8vHjU076Lm0eU/hb4t2Cxd01//Sbf0RoChdnJ8yWEfelgeHKSKqM2XcJ7q5YLZb8P3/zcw56fcIk5Oz9H6CbXYpEZZuUROEaS5ehTomiBZlaEjUpm/WWrtvHGrpUeo9GjyjjkFiRMVSNiAxDWdEIh7SRUGWD4dkAuh0qkdC0Gel+RqG0WN0BysxEtDn57hbFmlLKMrUso0oaVdVweb8gzmJMWyMva27vZ9xdXyK1Ju8/d0miPZqjMJr26HQm7OKc+d0dURgRFw2Hjz5h/+prrl/8hpMnH1DtWrraE559+pzZPqc7cHAGPfTAJ9sG6N0e3adPwLGQdI04Lti0MnZZcX/5hs7jI6LggfxU1TUvXl+heR2UOqMuSxTDJMtLdvs9VtPQ6CqKobGOKx6dP6ZsBTezPaKV6Ltd6rxmaLSEYcB87zMZD+mdPKI7PqJTlZRJiNv66HaXyY+eogiTMoxoopw8FuRBQekHyB0HzRTYqoyjmwhV57uXLzEsg56SUbWCtmzY7yOWyyVZUfD4ZMp67WPLGqbbR24MJAl0uUaUOf3DDuIyRVQlz56d8eeNyV3Qko4/oJYabtcJqu6yuI4w2g2T00dIdY0kHvbdRSsoq5o8L4mLFtV0kOKYMi4J/JiunWJaHpopqGQFqgCtbtnvIjqujiZ06qKlqDKMOibNEppGom5r8rLC6g6RXSgdD7OyqNYZkt6lefQDFl/+lq/+4XOGTx9zoAlODjVOPrygiDJ6RyfYQqZ6M0M0KYalYXgqu/u3OLXDE1oen/wpeZvhDVw0CmrVoZA19q2GSHakyzuErhFIBk7XY7kPmYwPGQ161CJByILTozGtYqKoBvtVwjpPKAWMD0ZMHAdDUYhVDVm3oKjRLIfpdEKcJMzfvELVHcLWJapLJkKGIsNQJYogpaxKrmYb5GmPR0ML2zYfgqcHR5giRiQ+ZVninDyh0GbkeUm03RMEMTfzLR9kKbQlpnFAHscolkedLkn3C4pww/W+ZbdS2ewT0rREq1vOux5dXcGpaxzXpKc+TBNa4R167dBIFpvlGjkvSJOSrV9xdz/nZrNlWVZ0XIOLwz7Pnz3iw4MejipwdR2ahraqKNsa0xTQCorfr4PdLdfUVcvZ9JSyKJAVBU2V0SQF0xuy9WvezCOOR33aXYG7vcPyXEYHh5iuiywEqqoR7TKyJMFUZGxVphU6TdEiH7vMNiFFkSPJCrXmMl/sOJ+e0T14n8l6hp+sqVWd1CjQJEFQmWyTFEl6wJe6eYREw/jwlHgtWCw2HB5O8I7OkYM9qe9zcHGCNzonjxLqPCdaX9FXx7RpTJZtud1HFJVKs05QHZtWN4nCgEVSUqo6QxUOP3iOdeCxm93j+zmV71PlMVFWo7h9bEOlQqBqgjRJmN/N+erFKxpJwbUU2qalrSokWlTNZL0PcIdj4qLiLgWlFhimyXq1IN9F/O7tHdV+y6Fl8OkHzzjuD+kYLmVZYHYGeGdP6dQJl9+9ZBcu8Fsd6+gZ7X5BXNWc2g69/gg1jEHVMS+e8e72Lau0YpEnXN/NmfS7dJqSqWORVA0Tx6aooY19FOWY3sEBez+mqDWSQub6ZsvE6DA6ukA6fIKqlaDWCCTa1kIeG7gVXCgK3317R5aXTI2UNNwQFwG7QGKrqqzWb/lucUm3a3JwPOXQcyiyAFOfoFsqhueRZDmtHGJ1emiFh0Dw5eUa11TQq4hsP0c3NN4FJX/12Yx9WiApBWOnIRMywXaDNh0S+SG+fIdhWGyqltVsxnqzoaobyrrkXFPZ+TFCNXE0g10ScnpyxtNnHxAmGaLOqYqU2cJns9pQNy2NkGmaljKJsQyNwaBP27hEuzWqqlILlaopUEwPT6shbej1eyzna5Kioi5y/F1AuNuyETtMb8zggwGa6yAnKUlwRbp5DaZN0ygYH37CYcfClVPyKGP67GPOZte8XS/57KsZw6FNK2rytsZSJczxhMLp894nz3n8/Cnb9SVh/jk9tY+ldhBJgGZ61AKEVCPrDhUyZ4+fkWYFRVkg6zKbm3v8oKY1h2i6iSlKtllO9/gRWVOwWMyJ9y+Jo5R3l9eo9ojHnx5hW87DpGOdYZkq41GHb16/5c0m4tGgwul2MHSFoqlYbx+w5f3JlDSrCf0Nm2SFc6Sw3kccdbvUQYQKaK7DYNKjAJJVQBvvKNucUhekcUxdluSbBGt4gmOC0GUqW8ezbbzpCYPrgi/eLVjoKpPpI05X9xTJhiit2UQhVS6TFgmhoqAIGV3X0EybG1/w+qs7Tvs7Pv74KdNRD9l2QCjIko5tNiRKgyQVHEyGmJZJVlTMtxHf3czoHz9mOBwiNIV+E9DpuFwWJnKs836a8cMPn/D+xQlNkSK3FSCj6gaTYY+Nv8eyLWRV+T0xruX28hJvOCapNfJGJo8jLF2l5+gotcJmluMqLr3RECXWMTsdtLKiDGOqqkD1HCRZYzzuEu184qhG946IwwVZHLCKI7q9Awa9I8xGp3vax+mNCMIcV58wvhix3e+4fPHXZNuQc1NCqVsU1SCoG9K8YC/B+wdH2F0N9fgJZUfHPR7hZAllFeA4Bgdn53z31W/oDLskYcrtrc/N1Q5VF3ieSs+z8E2LvIyRJAnd0RGKTI1Mnu55/c0vGXd7NOWYIpYwDYm2SqkqE3NwQlXk2L0em6sFoklwul1evL6m33FAMeiPO0Rpw2IdMltuGZ50KZuGsGhYxjX3m4woylj5KUnRYBsqZZNwtQp4Np2giZbTgyPC1ODCUBmFl5R5zDzdsi5jct2gaSo+f7uApuD8cISnKGiajFS3lKbFcr7kv3z2mpc3a05VE6VoyLOUm6blR5ND+oMRVdsQlSmfbTbo1oCOaWO4Hh8+/gh9v+LoaIAsAnRFgCwhGp9KKDR6jwyV6/WWfZyR7BvOaxnfjzB6XdbLDR9+ckiS7jk7PqJuUlrN4ejkDLvXJUtn5Fuf7XVBVukMpuc0NMyu93z965f8p3//n3l89sG/bKH7r0D/1jT5Z5Ksm+h2h7JqoW74/KvfUdU1j/7wJ3hxQlJFfP3Lv0dXBXUl/f4CENCUfPvFZ3SNTxgOurQAbUVVlFy/ewt1S54mNLLK69mK+G//hidnJ4RRwtKPCDOdfbMk2vt8e7viFy+v+E8/+RiKhKPDPqs04SbfkaMiDy9w3/sB7zmCfr7l4sOP6Fw85f76LXEcEgU+i+WGKI+4ml2xHE343kcXOLbE/NWvyMqWqlAIgoyb199xdbNgl8LBdMrRozOSNGG9XOIcnvPm5XeEcURR5GR5SdnC4YXMkSExeO8E0+6TRBm75Z4rv8YxOvQsi8F4xOjgED+f02YxUVNwOu7z5z/5AbJ4eDiVWUQV7SjjHa/fvuF/+9//D45Ojnj6B3/Jp3/0UwxRcX19ycoPiIuS5WLDarlkYkr0NY1H3/sTBk+f8OWvl7z45p9QpIynB92HfVFMCDak9zMSTM6HPYLtHUn5DqNpGB2PQO1S4XIzX6JSYWYBimpQLK8fCtNxjNof0ciCtCywOh1EmyFEwWy5IrENTno9MD2irEZzZfIs4f7dO1RFIatq1mXOYrlDk1SaPGG/ukdyTZa3eyzrKaPxIV5/yjff/A7f91F1lyYqORg5VAcneMM+bVdm6Oh0pyatKYGqIhU5wjAojJJc09AOpjSqQt0KWgS3qwB2NZmqc3R6gMhL/usvf83QaKnzmO12j6oIyjTl+KjDYh9SZTlmx0WSVUSUY3cVDF1lu14ji5bRwTGy4yGXW1b7kKJUiWqFNsuR8hBRBRw//gBLnNAEIbp5iGJqSBJ4BzotDVXRkm2XRJsFlWJStgWtKlHXNUkY4WcZzO5IEgdUnSYpuLm6wVIFp+MR1NCRJbazNUfWAF028cMdlT1ENzu0/o7Zr75kvZ5x9OnHfO/ZKc4qIzp+zNqP+f/Ze4+dW9L0Su+JiC+82Tu2/ffvj01TWZllWGSRaguNOBcgDXQFGumKNBEgCIIgSGgJYostiJTQ1V1MVlalPXnc7832e4f3ERocSpdADsh1DREf8K73Xc+SDB2rP6CqSxTLAUWmahtyQ8WRa4oopwwz6lVEeb/BVFQ6y6FNa0gatkHNWJNphU1t9AnuV9iyiqZZrJc7fLNFUQUPywdqzcDRIwyzT5GnlGWLLhzqXYJhzuiNPcyehGVaFE3F5uAJ80bm8j7lOt2y2xZ8f7nkuOdzerVgGaTYls6kyUlutgSeR5jl6L0ezw/HdEpDVCRIoqGqSqK8Jq7hMUgooiWuVOHQ0doWtpA4GrlkVHRKjqIaKIZAkToUXbANNmyKhrSrqU0DMR6j9xz20Z6eOUazdPyxh247tIpgMjuijCMW6z1FpzIY+Chdhdo1mJpG2LZUZcVjkuIPxvhJzsF0hNPr4w1HaPYx3L/CERJSXlG6Lo2cMxn7eLaBJMHNzZInZ2PSKEIybLIsoy1zJFlGkiBMc6QWPjuboksyZZQjhQVqJbPdxTxENX2/pGcr1HnO+mGN1R8hBVtsuWZTVLRZiagkJoaDIzIOp0N+8kefcPLsDNM0MLoW1XIwDRVZMugkibqpSLOC1WbLchuR5hXD8Qlp0aJ0LTIdVZ7T6xnIZEDBp3qIjErY+ngvf8LPf/VLjk6O2e1iRqMBSbYiWfxIEYYMTR3TcSiLGmNq8xBkpI2CKkGelTj9McfPPubUP8L3J0TrJTe7CKOuWaUFqiJTtR2a5TCYeVRRyMwdoHUdyBIHT57RZXtW6wXeeIjUJZiGQDYNjNEAczigp+gfaus395RBDLJAO7S4frOmC+YkDyWLoiJGUOsOp4dDhn/0a9yPXlKt3iJLLUIMkPMPb4Cm6/Qcg1oxaJuGrutYbRO++v4Ncd3SaTK6JKOaJprr0tUlbVUSFx0EMZrtMPYdjFLmar7l4t0lt3f3WELwx598whd/9GsmB4fE80f27+/YFwGxZBItE3QKyk6ns3x8d4iPIFhYRGXLdHrE2HPQTZ2iq5ENm6qtia9eEZs6lw9LRBbhlgm3nYRtOyiWSrPdUUQ5m+WS808+RaXGtiQO//RnBJuM+GHDzd07Rq7AOzmhaHTstEHJPsAFyyRFtyxGTz4ikQaUl68QTYGmW1SyTphk/Hjxhr5e4rYCLY6Q+xNk1SDeb/AcldI4ojf1WXz3NWGSoysShucyr2U2uxRPk8jrGtW0+XJZ8LhPP9TvygrDkU9ne5SdIK1akrLhcbnG6/ssagVJs+j7I7a7HVbPx+lP6JqKJC3xbJt4fY9+PqOjw9Vg4FoUXY8kL0iSAFsHVZGRgMV8xfjoiJ5rs1ne0VKTlBVVVWNoCqZmkeYpZlvTd03CyCWNQrq6oa4qdmGBSsUnz6bk4Y4uXGP0BsimIKsbwtUjQtJRogxNrjDPzjAUBzur8B6ume72hFXDY5JwF+25W1+TVAFncssffXrOwcuPMCcHWPUa11YYuz2stkRSFMo0pqorVK2jaXMk1aYIK6qqJQ5ykiIlCDI61WdXKMwGQ6I054vPP6Xf87i+vMAdH2J6Q6rL9xQNzI7PMRwPw/ZQVQGNoJNhdjZlvDzkP7yfI00ypq6K0/f4frsnalWG0wn7/Qb/8JBgF9IWFYvdDmdgMxp4NJRMjkZQVXRkzN++p8xKclnn9PwZa3WFvfEpVBBVRZsaqJaJ5unkbUkTLTFEij7sM17u+eabt7xOc/bbOXQZqYCeYVI0FY4wUBWD4fiYoFNZBxHv778l2t3y2dkZo4nP9MkpznCIoTofoO6o5FJDHO+pVGgrQVrB3e01toCBIeiiLZ//yS8gj9jnNUJqOZo4mG2BPxxxoBvU6Z6uLtjGCa3qUtcbVF1H90+oJY2yDTDdHss3F7zbVXzyxa8QyQ7h2WhOD6GueH/1iKbV6EJA6yEcCRkwTAVD2NSZwjZJ0B2L+TqCokaqG+o8oawq4jgmThIOjwz0IkaKtvTNEZI3YKjvSXc7FMXgZ08+hk3C8uKvWVYSmyBkaM9oLZlpUzOzfSbeM6Rn59QmVFXEw81r1m2INfSQ9D66ZSHpJuu4YBft+fqH9zRhwGdPzugbNkKqcGyDJmkwLP3DMqiVCeIS/+xzhlGD2uY0wqBVDO7mdzw7naEbJnp/giKD17dJb0tuwj25oVM1MmmjsNol+AcjfnYwY3mzZ5fD7SpFlTv2QcbtKuFh/aEGPswq4AO4u6lbRJYTtzoTTWHcl/ns2ZCeBWqVwMTBV/ofGFDXF9yu1lxutvzNmxBdF4ymU4RpIJcFaZzw77674N989T1JnOM9fcGvjw8QaY3SKMzOzzFklfV+x6vr9/zNcsHZYMZHvQEoJgO5j3/iIUY2tC4SDY2kU9YtcQUT12bxuON+teMxzHlx9jHb7YIoLdgHt/R0G0sRFIXM+ctPyKstiq5j+gM6WRAEBZtVQi08Xv7qJ3RKSxIFhEHKcDbBdK1/yBH3H43+yTT5e1LdNtytljxcXpAEAXme8sUvP2MVhSiaxL/+8/+Ucn/PxTcBTaczffIJZTDnYGhx9eZbRlMfpz/A0VTCxQ2P80eu7taMhxNW24DBZEaSZvzmt3/Dar1FU1R2ScHVKqCS95hCYeT3OO476JqCYXs8NS16nsOL04CbqCOWbLpsReAeoxgzbm4ifC0B75R+v+TgIOI03PP29Y/85Ve/x+zdMDw44lhXub25RO1NWYYNSnLP+mrOZp8ymI7xeyaKKvANjbSVWe73GLpA1vocnJ2yriQau4f5yS/oiZi2rQiSlFrRudtVxKWOZmn0VYm+5zEa+txeb1AVDVsIXpwd8PLJMXlRst2syaIApWuQpA5oSZKMt5cPfPwvLLI0YB7sufzhR6L1inC1oKlKyqLkL/6v3/PJ1GPw/N/z81/+a7789gcWFxdEi2uUP/6c85Mz6n1KtNsRtCr+4SFpnZGsH0nWa2TLoDUbeqcOpm/jeRMsTaArOhUGSBVJEaC0Aap5iDEYorUOeVNTVhX++XMev1tTI5MkKarjQV2QRREPd/ds1yFOv8c83xOq0D+YcXV5R353hW6Z+MYJTZaQ7tYodOy3O4qyAkWn//QXuP4TDMulEYKiKNBMi0rLKZSCRngomkaXp1R+n6rTafwhmAayqlGUKXVdEcQJnTEkdcc8/OEPlE3Dj+/eM+oZzEYDpKagkgzWYYKsrgj3IU+PjyDLEJKCOxpyVjR0KBSahm6atHHK3SrAMTo28wd83SbrNEokCjXgxUAlyxpGkzHO8CmqIoFhoc0mWEpN8rhGHUxoWgs97ajbClVzibePrNYrFndXlEXBrpZZpVtaobGazxkNfV6ezTC7ClOV0EZDFquIppC4ubjDEi1l26KZNl0N4fWe3qSHefKEsaaQ92qusgLT6dEICccyCFJQdIu2acmRUKSWcL8hvd2TL3YEqzXFOqGyWizdRBMmZd7SoJKmJW7PA0yuFwWeVDNyHJxWg1KirEvCcE9ZyPTGEraVYEnph61eXdJ3+pjDQ7BS6tUWYzzDNXsMZzL2j7d8Njvjqij4Yb9H7Cv069folop6PGW7XNOaOlndoakuvfOPMMcTVK0lWD2wu8/JsgxJDmkk6HSXooF9GNGoMpKh46lg2jIlEmmUoSk6nSxQhU1NQ5o0vH79ntKefAALui5HZ8csm4Zj20ETCllcMhl4uD0Xx3GRxYdsvtBtFMPFlmu22y2upmDKoAmFtOvomg6he/xwveHpyRlmb4RhmmiGhvviE8LLV2RViLA9RNPRpQpNV1NEGRd3KqOhi6LGeKaO1DVUZUFT5Axckzwt2EQpp+Men7085mg8wdR6yFHL97/9mlfrjNuNzvst+GVIurrg5FBCTnJapWLqjPh88hTvVwb4GturH7nPcoanzxGqQBE6qqkiaGiqmqopqJqGqlPYBDEXV3ekecnk5Dm6M0BXNZIkwYx2SMLE8Vq0rqSRZEzHxOiZxFnKcPKE0YHP8eEEdbXHsVWcWuPdlx0Dx2U8GiFJEgwM8jSlVgT7tEA2bIpGwld1Dp69JFvMmb/5iof7G16vtnxkTNA1BWE5VFlCWOS0q5IoTjg7m9HveVR5QWUaHJw/p9rN2W52uLqB4biobh9vdgpVSZnElF1HbThQyah2D92paBZ7ohgWQcJv5xsc1+T8WEP3BWF4T/smQldKmiZD7vehyfA8i6rraGQBkkRdNWRpxo/fv2K/3ZAUOYZt0B+fUNZgty2NrJHVHVVVISQ47lvYmkqWd9xe3ZF3gpHj8NHsgIk/IIkytgQMJRezy1itH3jz8EDZPpAle+qqxp895fzZJ2wXcxSgK0vsnovlWOiyiqaYNHmNJRmwibHHDY/rPVGU4MiQVC1C07AsE6VISKKE/e0l66tjdFXBn/jkVcPTlz9DaSC8/JE6XpAvKsK0I9R0+oaGZnm4wgGzpetaOqvPkfaM7GiCQscu2PLw3e84FTXHvsVo6iEpOiQZzeSQpit4++MV3X3IwbPn6JJFsViiWQ5BkHIyHbB9nCMBZdWyrguCJMfQNaSuxdUFpqKQVDWSpnEf5DTNjqezAyLNYxEnJPoAb3pGUkncr7fYmFMypQAAIABJREFU65jBsaAOA2q1Y2BLpPevyX0bz7FJ4oB9qZFXFQCr1Zq2bVjN1+yjEEWVmJ7NMHtTbi8jdrsFyrNDHMNAESp1J5PFa3qmyrjvcp+mVC3QCTRFxrI8HM9lu9vSVg0DzcIdnSP0llpL2K/3pNsFUtsAHjg9auESqDJZP6YtI1KWbLKYRV3z7GTIn/yzl5y/PCFvoZVVJDwOdZmhJ1NUDbYqkPKApJDphIWiq9RlhNLlmMImaAIeHjZsE7iPNuh9Bcv1kJwhdSfR1CVlEvKw2vLk+cc0jyFHvzjHHU6wnAzNcBCKQic5SHofz/H51DriN//9v+E/fP0tf/7P/gWNPeLuu99QCo0or3h3c42sKMiuRdpEdGXOercnOojRVI2e82HRkwQhM99h3cUIyWAXRAhd5+rmmsnAx+75VHGO7pqYpkW8XBIEEZJi0NQ6680KU+zYkhCQEBUNFDJqEVFXHZre5/lnf0KrqKwf7rl9vKHc3+ArEk2T8u7mLac/eULfc5BUk1aSSLuWIg6Ioy3O0QzF0Fk93FO0Hb5j4Okyk6HPfr/DPTiiWK0YyymnRoXn9dA9D4kWpcyo65Jo+YBAwpgeo2o+ijGgbgRxoDBxYk7OnvDf/K//nttY4cXRgFlPZ3txBbXg5bMTuqqkUiCJGxxbp2/IyF1NmsVIivwBXovM/XJNmxZ0SYpihLjjU5y+z6gBQ3QYekbVduyya4TuYfseAy0l2Gfkj3f8whVIL17SF30G1jHD8TPqmYcoM6R8Tz45JhIliyLCaWM016QxDPJiT71bgOZiD6bcRyn/8atvCe5vOD8cYfdUega0uoaERJyCKQuKJKVRLe5uF3hHnzM4q1HTNbLl09QNR7MZtttHVi2avML1XdSuYfr0Eyr/mKTL+aHIibMcozcjaeH0o485P+nYblNevfoBt41J85xdmJLlJWlZk5c1iqKQlQ3nJzPKMKFJS7SDCbqko8g1umdD1XLw4gllJ7G6uaBJdoiuQFUFd9sd392uOJ6O8PsenWpw8bBgG6XYQtDJLW8Wc/75819y5FpIWcX2MWIbbLmLA66iHT/pHfKsN2KgadS6jm5oWOdTijojjHNcXUNeLdA0Gc3QiGuVxyDlYp3StQ1ZGhJI4E993l5c8snZKXmSfYDcOhPOnv4UodYIIfPm9Rs2eYn502d8dnpGXKQUcUCVFuiawfmLT7Ft7x9qvP1HpX8yTf6eFIYhr9++QWsbZLkjjtb8n3/9F0zPfP7z/+K/ZL1ecnBksXwvQKjQ5ExmB/g+zEYej+9+oNB6PFmscTSZulNI0Hj8/hVFnOJO4P72jsUm4PXtgs9ePCXMGx6DnLhKGPU9jkZDhoenuAMbw3UpUnC8lLG5YNgqmJLGk5OPcXtjNHdK2WnIioZUBDRJzi5TWacuD+oRDPYgKq5fvWOfHrHYZ5RtTppUBLcXlPsdR2dHPHl6TrpeYJh9yqKmVCzSaMPJ4RRjNKbSVHRSRlOTkVohaHl3cUWaSQijT5m1uLaHaltI7RpFVgg3O7Jwj9+zUGON07FDr9ej13as7u9YbQLqqkaSQJMlTE0gHAeJlmA1J7l7w+L2jiiMqbKMrmlp25ZNmHOjG/zP/91/yze//Yp3Nzd8dDbh6n7DVz9cIHcdtiyRljX69AnK5hXx8gFDV3CfPSNLcqJWw0gKdLFlZOoYrkPnHiLXGmaxx/VfYLsOuqUjyxWNYpB1HYaR03MM7J9+QZPuCMKEZLFBbgqs3pB3P3xPI3WEZcVNmDKd9Tl9+YImr6ijGM828ByLMrdIgz3R4hHqlp4/xVRdhv0ZNS1Xj7dogzGq4/Fpr4cnu+iZjpAUZCGQXA+pi2FsU509IzRcdN1GLlLqqmAXRiiaTdM/4Q9ff8/ffvklslCQVIV+VdI0DV2TMuh7CKExPThAKBKq88FIUE0Zu2jYbwOKJCYJAtqsQFQVj3X9waAQChNNIygk1ncRZCqafEUeakzMHmPPxD6ySZcFtq/RrUukJCT+/ppkfk+uqcRFzt3qiq8uv0fXBYYErx+XBFlOnJWcHR0wNmU8lb/bUAm6qsT3XHRDRRc6pq7gDvsUio579pQX/9V/jVEv4OCA9XxFjUJPr5EajaAWtB14lkmQlbiajKgrRJKxvrrj4psfWW8jBo6HLEuEcULfdxBGy67NOOg50MjUjUTXKjSNxM06INBiDl0T29LRbBtNkrm9fGA9Dxn0fUaeyXaTcXT+jLauKOL36JqHMdDRXIe86nCOTzjqBO12x68//YRfeQ5hmqHsA+rtmryMsHyTkhLncIwwJZQmRA4b0iojjEOStiNvJZo0Q1Ql6oHFwcEYpAgljenMHq2s0rQKJTWiE0iVQJNb6iKhERKXtyseHhMOz1WGlstwOkUVGnFVo8oSdZaTZhWtLBCKQGga+yAiilIkRdBKCqrcsElS7EZFSgtU3UbNS5qmo3hcoo2O+e1Dh/nRkMP+AVWdYk0mmJZD8NXfIBUhWbQlyVIaJIpOYrHacTvf4ViCUmqxbIuebXJ64OObCscDh6Zq+ezZIYokUaQbtC6jVg30AxffcDnsDShbGbHvOLH7/PzP/hyl3FOUa/J4i+lOEE+O2G9/xHo540lR0YqGXVYhqwpqraDoKpJcU7cyaQVR1fHNq7fcPMxRDA/JHmA5LgQbKk2la6UPoGJJ0LTQ913iRNBWFabnkjQFL0/HGD2LdLsh3uw58C1GkyG9zv2Q5dYM6rLC0HQUZG60kHAxp2faIFSEo7Ldyvzh29/x4+OCqCoJ04yk7VCynKpp6OsqcV4CHVUn0RsOsR2DLA6JdwlVJYiimImv4BoW/uxDdO3/++9lw6AZHxIV18wfH0milK7csclChKHwk6MxpqezlDre7yLu93vOxg7nT47phMDQajS/T9e1KLJMqRhkZUeaV3z9t7/n7eUVt+sttqkyNX1kZHRVpShbPFejLCvyouRA0/A8j6rpWDx+YO78qz/9FGk752gwwnPG2MJidPqUfm9AuQ9I1I7l179jvVzS1BWq5fLZf/Ixruti6DqFP2T/+EDbgW7baEJDSCbp3RpZ1pmOz7hNb1CKnIvNDlkRqELBkFpcS0VrXPI44/5xQ/x//CXPnp8zPHnOYDqjzjd4gxHq1MP+6CmqO6ErYP3umuTmAbGN6HQXqakZaxJ1lBAULXpTsd2skYMN2vIW2xKomkXPcWkl7UNEa3+D/+yMw7PPePf6e/7q9/8Luj9kE8Y4/T7J4h5HgNH7UJFcmjZh1uGZ6ocoSZwx8BxMy+a76znHlkvPB1nR2WQtYPJucc/95T1j94Mh2nRbmg4aYHY0Y+xqZPKex7ev6Ooc0xsRSy5hsKOqKzTd4GYX4XsWnutguAZlkXH55jWT0ylnL2fkd7ckeYrvDtCERNtJNJ5DUVT0y4bY1iiaCkOV8Xse7mBC3krkVYtlWsj6iKbT0XoWstlHMofoU5mig7KTaC0HzbaYRjquMqN6+xrN6Pji2RkPn+ikqoQ38LH6BqtVgNu9IC0k/J6HP9Rpm5hGHNBpBfv1iv54DE1NGIQsohJL74iCiLKVuVlEbNKS54MR68WcZx89R/Gm7OOM0WSERIdtGkxefs5IOORZhmbraKaGLEy6vyvXaJuSnqfjD4Z8/4ff88vzM+SuReg692GC2xvi9Fw2jyuarkHXVNS6JY8Kbq4eeXF8iONo7IMPzB7PtGhdEG6frm6p6oLhYEZUFKi1zPTZKfniPWpTY9p9GkkjzAse767Z3N8Tpg27uCQMduyiGEvRQVHxVRO1SYhe/55C1xmYMqcfnxAXR+jpnoMXJ4ztmnhxQTl2Qe0TJhXxfkOZbTg68mkkhdXdmpvLa1I6huMDtPEBzsDhRjZwB1P6TcaZrTLqmbStRLKPUaUSSVao65Iy3qI7PbJaYM9eUmc1pCV17wm5FHH+xSH/WSVzdf/I9PSEcr+iNxjw+P6OgW6R0lF3EkWmsFgF9H8yQOoq9vuEtmsBleXtnDfX99SNgqUoqHLBef8Av+8hqxqmkMjiiLZr0G0dyTbQps8plgtE/sDb9Y5nXUZf7zgY+BweH6H2TejbNEVOcLchj2rirkDR9ih6TNsqNElDEO2424eovSlxWPCH737g4f6G6dDgwDMQJGSpAp1NpQokZIokJ5ME+zhkNZ9zOjxFo0V1+wha4vU1e0tjejABSUbOAlpLQ9gG5vAYf6BAHjBbryiKnL7XY7Va0R89pdjlJA8XXD3sKdOQsaNRVy0g0dQNsgR1XTM9PuXnT57z4w8/IKkaaAJrNkUtwB72yW4Clq++Ii1KCklG7/VZ3C9I0oQGSCSDm01AfxShCY3vf3yHrVj8/OiMOTekRc0yLfn49COckeCsKsnTkHUcsi0L2qaia0p2dYEyPcB2FMh3NGVGVbfcpA2uZX+ID+9TMrfim/eP3G9CXhzP2G+26GnO+n6B6doUXc1iP2c27FE1EGwVprMJsiLhTFtenH2BbHrsd3u67ZoqrqBSOTp8ytHxUxRF/Qeabv9x6Z9Mk78nZUmMJnWMRh4Xl2vu7t8zf3xPJ814WH7G+v6RNI0ZHD+hflwitTmHR0/xBwqTiYPjOFz88Dsua8HJdMx+H7AOCt5fPWALsNY79mXDar8nSzO+yjN8y6LqJKK8xKs78k7G6A8I25Iuz8nymg061tFLyjBGTyKMNiN89zX93pTh6ARVt0k2C4p0jZnETFyX6YsJnx0bXC7uCbOMJC25Xhd0RYoc7dgtNxz6LiNd0HQCtT9FI0OxLVJ9QHZ3h+t82Ap0hkOynqPfviHwZOzBgMvHPePhMfN1wx++3+DZLX1/ROU5yPcRj7e/oy5bXh4PUaUU0SlIEli2zmgw4OHhAa/XAyTaDlTVwJBV3n71LcXxjHj3QJokaArogCJJCEWmk2SSpmWktNxcfkN/dsr09ITN2uaH2y22kBhYKkcvP0cRNtHyFrPO8CZTVEXGES3UOVpVYAsJuanRugYtXTP0xuiTp5i6iaaqoCrImoHqeQxsnTLeUeYRde4hehZ3r9+j+Ie0mzvuX79iuQ+5C2s2D3Oc3pCulbAMnd7BAfq4RekECI3tYk6hdGhCYJkO6D7WyReMpoeIpmG73pJmoEQtMtDJCklY0Mo9WiRqJKqmomdbGNMDQqNHXxK4uk4V1qRFxWL+gOePME4+Q/7hNVm8436X0SLz4mOTpswZ9fsYmomsAG2Fpet0bUMbF1C07Odz2tsr3gcZjazyYuBjSQqibKmbFG1g8ZFngmkz3855yC6pvJxdY5AOD+ldByjuhysdsQvIVnO2SUZr2Tw8XBM2FVdJSN8cMTl0ebVccv24oZY6jg8mmIrMPirYbGOenPkodUm8eUTvHSFrBopmglLTaoJlaVFsS+zpEzznhLIMuYuWVIaNYZbUSU6tarRCR1VkylIiLVpURSPaP/D6zXtulys+evoC37bI7q7ZXq05faIidBUhOoSkYNg2eVawfFxhmi6xSLjf7NhuYka2imtoIHVsk5LkcctoGFF5OpU9RRMgNwXJ5hFhDxFijOYY5HFHFm3wRwbRtiR7e4U4m+G6Os6zCeLFBEmBOtqw2If8P5cLHBEyUGt6tkUrJBrDYDhxWEUKwXaJkkUMihAz3VJZxod4x2CELDVU1NSdQNN1Olki7zKqumQelnzz6oEorVHdDU9fvIBGoksiBraPpagEUUYrC5Ky5Vg3aOqOm8sr9kFE3YGhqeRlSdd2CElG6TraqqasQVJ0KtVGqlsqSeP3b28ZHg94OrIRdg/d6/GZquJ881t2D5colkcaBsR5gSTJzFc7+p7Os+MpqulQ1S09x2Rka1hPdTShoioyctvy+LDgu9cXVHmNnLdIwkfjg6kjmw1NGyMna+SyxbZs/F8eU3YNSbljG27Jy4Q6T2mjLd1ohipLZGUFiky02RBUBkVRcXn/yDfffI+kqEwPP0HWLVpF0MgK48mY/nBI2YIQoFGiiAZ93Ge/2eJOp6y2e76ebzHShN98+dec9B2KpMe0N8E3QemAuqI1HbLtBts0cXWNTRgR7ncIRUW4Ho3jYBweYhQld8s1rzYB56MeqmFQ9gaE2xVV26JZDq0q6LkOdm9EX3EpihShW8wfF2we5hwMfUynj1wVqKaH4g5AqLT7DW3dkC3nhEFKVnU0qk5eN6iehmxrvL14xMorTmZ9Xlg6dV2hGyqdrtAqOpIs0Unw+LglyCref/cNj9fveHe/RBg6uq6jCIWuqag1ga6ptEBZlnRVRd8x6Y8PmD8+UEQhL6cDXMfGffovMfOM6XiMY9jUsonqeei6hhkfolk+w5lBtNvijo+YHRwhSR2zwx5VlnGV5aRZBnKHqiu0lYQiSViGQytpTKbn/CKN+Z9+9zVJUdLv+2yTHKFrdLmGIWT2dfvh/X/zQKl/yed/8muUpqVYxlj9IVq/R5klGGaPl3/2J9Qf7WkfV3StQuuNKVd3tHGICDIkIeHoCtJ0gNieok3H9I/65GVIh4KlN7y9uuebuyXm+RmeLlE3MnFasZQs/re/+L/57GjIc1/F9m0yWcUbDugFKY6uMi8qNNPl9HBC0XXIkkxXtdRpTqIYNL7JYDim0B64eXyklY44ffoxlTAwbA93OOJoMmDkCNb5A2+CLffblBdfHKMMDojufk9XZQwHPrZpUJYNs7Nn7FaPXDzOMXsueSbYhQnlVsa1ao6PLFAalCKnLQuEomJrKq6hoKvyB9i0amFNZiiaQMbGt3qwCyiTBn0wRqg6St0wPTgkCGNKUholId7c092+Z5lURHmJFAdQdWwa8Ps222iLmHcgj0irirprGBweY7oOXZOjmBAkH5pP8mRPXrcEccYuqFnUJcFy9yEqdrPG6g/RVY2RZ9PkBYv1lv7phKrrOH9yjqp77MIFd9fvKIuC9uUUWZjIigKSDF1D0UAYxpyfHOE0JVd/+JLjk3N6Qmd++wNZXtGzepRayHq1x3ZdKDKavGU9j5iMazrNwFJB+C6l0OkMj0p0fP/NK1xFo85LRuMBmSQRPQpE26D7Y4TaYPaGqPstj6/e0LYN75YrLhZLXpg6vz70mfUmWJqP5x1RD4aYLz9iGaxo0jW9j3/Gu4c5TrllNrSp9ndYukaYBDhVzP5uCUkERYYsCe7nS958f0lSZ+zrEtv9Barnc50ErIot282cf/70gKE/It9vEC3YwylVHKPaOk2V0ZYxUmdgmzqKZiDXBUqboRk99lHHeOzw5MkaUxEokkmm9VBFiqor/P6H73j+8ilQkRchsiLxsCl5MnNQVI35YknbCcJCo9Is2lbhcrVDqiqs/oazswNkS0VXVMIyJghCOttm4A5okw3+9IhlsETW7nm3y3Gbjn15y2dKxSDRyB5NEqmjlhMaK6E0LJbxGso9sqRRdTJl3bJcLllfPpLuS/Io4mQ8wnNlUCXyrmJsmEi2QytBR/rh6iir+O7HG46mB2htg6DFtl3263vIQ8bnH6MZJkVRIZNDlSDJPVzbI6lh15YYvRFGV+G4Dqg2vnfIzeqWfRCBpBBEBWGSY6sSQgJNCJqywjIM/uzzLzjqj1l7W9IgQz9RUJQO/3SE1LXIUw9ROVTLOfNlwGIf8MvPP+P6/oZv3r1jvdvxSi44ODgg3ISMpwc8PfsZxcOSpdSxTyqW99coL/6YTukhn44ZpQnWZokT7NjGj+yKBNMe0RsZqM2OYNfR1AWG2+PHmznPRlDrDkktc/O45u3dAl3u0MucsqhYxCnCcnh6+DFFFuLoBprTI4tLFpcXNE8Fh8+e8vTFU3KjY5dGJGmBabksigcGo1P6RyOcgU8na/9wA+4/Iv2TafL3JKFpREXC6mLJ/e1bWpHjD3VW91v+9//hf2QyecLk+DPiaoueCQa2xHTcY3Y6w/FVZr5Db3zGX/32e/7mmwso07/biDQkSYEkzdnuYoIkxdY1XNfFdHyODJtmuSRICxa7Pd++v0JvS0aeSfp3rnaUV0iKSVkVJMkOpU6p64RGldFHA8pkx9ffXrPePiIsHf/sFNXS8FyPRhYkUUy839PEBdVmxdRROfRtDvsOxwceiTAwq5SiKtnuQnqmzjZOSA0XNc0wDl8yfXnK4UBCpWN2ek7TWLz5+pr1csGquMN0JujuORd2w/72O/7Vv/wVbhsze3qCrkFwf8vgp59zcDjj4vqGTVqxKzS8g59gNzJyraOLI9aphGhlNKFSZREDXRB0HbbjULYNiiRjmjZ9XcZWCqLdluF4xKLu+MPbBUPfpp1UROF7ujxB7w1wPR9Rx5jOkCLPKbcL9k2N/fznmOhEqzW+bNNWWzpNRzk8RfGGKDJIkky12ZLs10iWimZZKKLFNC2KYEOeZbz68TWpJPjx7TWq6dCfPcH2XCxdw2gbiiCiP5yiCQVT19lvV9iaYLWLaFuNietTlw2WbvPx8ZhasVkpNWXXUsk5jVzSiEMiWWOgSbj9PtsgxpRaVCFTA3vZpNL7KNqOPHogShK6DqaHx9xcfPjusrzgy+/e8+LJCYeygmVZ6IZKW1UUaYyQJWhqit0OJ48Z2zrzfcxVUnLbdIzGTxnLKlKeYMchhqrQ67kMp2PqbIOpFhimyT5YkdUN2VWBKApu765R2xrZ98nbhjCPmfR8fv7kAO9EY9/EfLlcMJmOkaqM54cDnk3HaFJLVdYIodHzXDxDUFkHyFafx8cls6MpOzFF7mzUqKJqO6ZTn+0+YF4o0NScj3sokkRVayx3AYPhgAPPwqAmjXKWD2su73Y8/dmf8eLogNXFe5qkQO0EFA2KpNK3HcpWRdMGXH/7GxQUsrxC1Ux0JSQrKtZJSVp39C0VXSgkiuB6vqWt+kzZUUVb5LqkTQu2iwsGxxbo0DMt4vsV+4cNTZ6j20PkZEf6sMY4naGfHSJJLY2lE9cDjGFJVasUhkTSJdi2RteklEnGQDeIVYW6lCnrGsMwcTybddVSlDm2JWgbhTwOadqWWgHFUdmkLa9uI24fNqiGxzwqaKOYtpI4PBpg6BbrXYjkeGijCXvVIetUpCQliUIc22IR7xhODrjevcYZjKnKlM720IWJWnakWYni+qx2Ia25Zjjyubu6Zyz3kA4GiE5F7Q85/8kfIbwDvn79lss3P6DJEGc52yglbWQqQFMFvX6PrAzp910c10OhgzKniGN8xyBJc97c7wmzFk1P+VOzo1E01kFJlNaM3/6e2Sc/Z/JnP0MSGeVmTrTestusyYWMoaikSYDTlB/iF2FEUZa0msUuXHN7f0u437PLKnqTAyQUyjKjUmQsxyOKIlxDp+yNKDswbRthqNSKhm67bKOSbZXxu7/8iusf/h1qk1L/9AvsTz/CMm0sW0BTQV1TFjWmO6StNziaiuf2kDqJzXqNo+qIuqMVOrrjIAUhD0mGZetMxzPisiKsO3TDxPM80AwU3cJwbTpV4NiHrDZL1P6YTZize7+gqX7go7JidHKCplvI7YeGJNvQ8I+O8T+ZcNjJTNcBQZzQNvAQhpTvFxy4Ji+OJsh2H9UZoFoaiqYjKzJ1K/H+fs1vfvsVdVkg7x95N9+SdxITx8WwBLIsg6ygmRauoyM1Fa0EcV5QNi1NU9GkESPPoT/wMcYT7PEBhukg2hLH85DQKDdrNAlsVefjn/6S3XbH7dUFo8NTVNNEV1X8wRC1A1HVVHVGXpTougpU1M2OoFiij1Us1+N5PORp3+H7+YoyzwnyCiF1NHLHcOghKTKJ5rHYx/zHv/2GxfUl58cTbLvPi89/hTF5gtPzkNMIWVfRZodI/TFyq9J2Ok1vQJvmqPsAWZMZxhuS1T2zukIfTtAPR0hCAc1A/PiWs8plrsD79Zx3yysmno0saVy+fY+pwIuBia116IbOwWxGIys4ls16E+BKJQc9j6OjA7789gJfMyDNUCUZxbLxTp+geS4HL19gf/ctmmUjDJsXH3+Oa0j4jkrPhC6PaNoOY3SCqnhkrUq+XGHrOlWTEYUhB9MJptoR7CPqrOJwOqNVQDc8bh92ONqEm13LYa5y2rdBlCDFdFWJqRn4vR4qEpbtoggFezxEUTREIyEv7wg2Ga1iYO4mtAgUBJv7e/KmZBfu2ZcNYV6wnd+RljmdEKT7OYreofZcIsvm42GfvK7BSKnyNY4pITWCrk2RTYeikdis5phCUNbwsNxxuQ7ZhwWD/oC7ZcirxwjNHaJbDqjah6uDeEtLxpwYXc7xtBNM3UKRG5zBgCIrEIqMrMi0dY5q9ijyirqVudkmHPeHnD2X+at/+2+pygzNtnBFx8XrHxn2B+i6A9WWZBdjKtr/b7LeLjd8+uk5ru2iyQpCqsijiGgzJ09SbKfh7vItzc6nPpyhKxKT40NoO7q6RJMFrm4ytkxSS+fYs3Da/5e991iyJMvO9T4X27X7cT86dKSqrOoqFBpokhcGXhrIAe0a+AJ8HTwOOeGU5IBmpBkugNbdJbNSREaGOhFxtGu5nYPoZ2gM0P8TuG3fts3WWv/6v4iB0hJ6KsOZyeHROQeHv0D58ufI6YD5xwu22xXus5f0rsvMOqPY37LtRzjunG63Z6lesr25Z+h4qKrDviv4/dUVu3hJ2/ZgWuhtw7s3v+f66kcmh1P+/suf4cuO9abAUSvarIZOwfRMNENnfX1DUyRogxDbEtSAVBRMTadcrZF5z64q6XuN+ckRUjGQgwn55pqjwznOIESYJm1bgd5SpRmPCViOiioMyrJilexZxB2fFmtML6LJCs6mIY5aYes6ounpuwbbtrjfxViyZWbVqPUn1h/fgWYyGZlUjqAqau5bhSK955XnYHvPEOEJ1rDDiHR620Ovjli8+QNtEVO2Gosk4cPHO5q2YeL7HJ0MEUFE2tZIW8UdjlGQCNmQ73bYQvLVf/qa/+P//Dc6c4SYfUZjeoyGDVkWc3d3xdHIp1cUQGH3eI81n6EAWq9iqDpVHNjWAAAgAElEQVQjQ2HZSwajMVLWhMEIU224fyzZ7Bt2SUePjqLpVGWOKTz6tqaXCgoazw+PeXX2gnk4x+wH1HRYQlCmG6x5BGiohkB3BPUK5iMbaxDxw+UtruNxNJ3wabdloan88pu3FPsdp7bBTCv5RMvp4Zwv7Iib24R0s2Lw6pQkbdioDqofkTQNzeSvEE1ONLWR1QM0O27XWwLXxHIMFAoub9bsGhVFVfn47i27zZ5nkwDLNEnrhoc45uvDMbLf4/kCP4hw3AFJ0nL3cUG57KkfLE5VD+PERBY9hmFT12ukYeHMJoyOz1BNlV79Szn/59BfTvnPpKZpuLm5RVE6LG+A6+pQuQwPTxj4AWcv/5q7xYbZ0VMKuKiWjAYuk8mEycEQPd9w+uoVf0PE490NF2++426T0+s2+/XqiUIjVSyhM48GBEHAw/0Dvqry1fyQ+yTh+mFLKQXIhtNJhGwlY9dh7Hn0TUZRdhRpShXv+f9+/y1nB295/uwZy0byv3//I2aX859/9gxNKGA7jByb9cdPfLi6oSgrXK3j5SwkcnT8aIwXzp84545JutkTr5f0FSR1x2Jb4oqCLi+w5wJlNMP2SyxdpasFt+/vKB4/0W4v2a1zjMmAo6Eg276jaiq0rmTkWRw9O0D0kKYFJYLYGrNpbP71N98wP/+an/03X/LjNz+gSJ1C8fDVmvV6TbxeMXINGqXns3HIqm1RTAdVVfACn1lo0xQlebIjGh8xCMfEisKbm1vy5r8+7TSXNY1RE2Qxjt6hDUb4wzmxvGHz+Ehr3dCqOqau04x02jSmbSW6N8U0SmRb0tQ52fYeMR7Q5hVtX1MjuLm5Y3XxA9cf3yNlz7rTSeKMk+GY0dE5tu+h64JwPCIpG+o8oVYFV1eXqCjgD6hLhReHpyhVyWNS0Y1MDP+pAffywCcTDYou6esGb2Bim4K6lqBqoPQ0dYmmKvRdR9P1lMLDHE7p+UCdJ1R5huvYBEFIluVUbcM3by6opcb5ZEqgqWiGSS8lntDI8hrP9Wn6KzTP5H6tc+i5HHkqVqNyPDnD8SK4f08rJbeblFguiU2PbTdESUvmbkxTdSyThrKsqR9uCWXJzDYZaxWu7TD96gW+59HbPXqokq9z3t/c4w2GqLIi3W6oR0MODuY0dY0wBK0uMEeHtKXKbpdiCA3huJT2CFcz2d1c4x4Oybox/3ZXkjcqpuXwUGpM3ICgbFlmGoYuyKsS29BJk5pNqTM+/4KvXn1NUFfo/pR0ELN82LB/rOAsQDgz6rxglV4TxylKJ+k6yT5NEIoGsiQpe+K6Q6IwtHXmg4BbmXIXV0SDBtmVDPyQcDAmXe6xj47wj+d0aY6M4eHigYdPK1SxYDYd0csGbxbSxltQJJ1lcHwScP7Cp6ejKAryNOXTp/cUmwfCyEGoDQdjl3XcY1Gj9wqqZRI3LRPTIM1Siqxkl+dIesLBgGJZsy8Eoh7iujW3qzWZticYtswmMyxDsN2kaMGQbWsTf3jg1QuHHx8lSV5h6e6THbfpCQOPKxQi1yHOE3ZZgdpLFM1iMJ4xmsxQ3JDhZIBjP71Bsu8o1gv86TGNFNT2nPncIvTHTB2Lt+/e0nU5RV2RFi211KibDsM0UAYhQtdRNYFlGiAEhm5AVfFXJ2OWj3viQqLrKplUabqGTgMxGSAOhyhOTn31R5RJRNvkNPGGddHgewZdI2mkQrIv6NKG9faJgPYYL/jpwxVlmTPwXUzbQTUdsrrGKHNU2TGKBgjbQLEddKXHMAVSSkxDgK6y91z++ZtPrG4WuBJWN1uiEBSewnNtXUUYCmov6LuOXu/o4xilB50eYbg4TsTDdkV19ZHIewo21m2Loe/x2DQ8JhXmPuVxt2MSBQhdkJcV0SikqmsU00IYFobjYNFhFAWjY4Vil3C1zcj+8CNf1jXDvMQdTqDp6HWL4RevwAmgl0ye92zinMfFI7/6l3/Dsn1sJ6SWBjgBRddj6Ra96fLpYcNvvv/Amx++py5zhgJW6zVxXjIKQ5xBhKZL2r4jyxKCwMVQDISpE2c9bSupW0lRlJh0aGFIEEbY1Jj1miB0UTod4fsYwqLvFdKLjzTxhiCc0nQGkyMVwxZowsR2bHzPx+x71KNzNp9ueXzcEw4M+r5E2BqdrDh5fc7Nx3eItuUfv/ySTfl72h7qtn1a9xv4FEIjcmxMPaDWNHbLmvePMbdpx3gs0UdLwpcajqaimiaNbDCDMYrR0u0zdL1FKJJ+GKLaKm3T0AqJmm4wbY1hqGIejag1j4df/pI+3nMQ+gTC4iz0CP76JZqt8MebO24XC4ZDk8A16fqW4eEc13Noe5U8Lxh5FkovMTyP9T7n5v6B6fQE09DZJTFidk5dgLxZM5tP+Yf/5R/ZX11ja2DqgtATWErN/uY928clVSUZnX5FVoKiauxurjB0ieihqluOj2aILmO73NBXLUmSo48cgtBhEDisFg+04YDLnUS1dAI9wPQaRFxQFSWapmIJDc0ysNwBpuWhqgZel1IJlVrWLDdLtPUjiuGgKiZJnFBVFat9zCavyBpJ2lZsixRV6EhFYjYqz32TeL1FfvEac2iS7XYIU0HuKroqR4siet0kSxLapkNqsNjG/OHTjuUmJgxDlnHGj7drdmlLODU5On3GcDRFo6Kua1wpaKuCKl1xVdY8eykIhxH7YkdSlWi6S982yLajKUs0XZBut9RpwtwziDc156dH/Oo3P3D4/Iy+KsnqDCXRsESEYpk0ZUdV5HjRAIRKnZfcXN3x1fkBhtJTWD1K3uA4Nq+eH6M2FftNQlyn5Fe37FYrivUK03GwhME4miIMG09VOR4NORxNyNFJdmvkdkvedGzTCi1usNY1apbgKy7+6yllr3DqBVhOwSpWsVwXVdGoUbj/4RtC06GVPaWs+fbHN1x9+IDaKbRNz9B2ef/rX5IUW+Yzhy/mI8QuZd+t0J2C0haoygC79LAGM6qqYL+6RegKtm2j9T1d09J3/VPztWvoN1uy2wJtrlKkdwxnI9qmxQwcmrsHTKmxvbrGOJ7RKxq7vGDsBry73PL58wmav2V5c8HDMiVOC5pdhqlrpKbkUpZoquTZixfoqk6gOUhFgbpEybds8pKi7mkwUITFYG4wc22c8XPEYE5oSEJ/xvhwSrK95nG/ptxcI3uJFQbkTUWXF3y6+MjBJGAyDnCEh6YaFIpJulkiegUtT+iDEffbHZXsqdYLlOMpw8BCl2Pi/Y6draPlS+4uP4CUDEczHMukzbfU8YpuOEJ2Haquo6pPwz2hmUT+Ia7noCKgKri+vmAb52jOACucoW23CCGZTeeIuiDLM3ZxzrPJM45nx3SKzuv/+X/i6rvviTuo64Q0WzEMxyi2ga5ZqLpFo+nITcps6HF3tcDoerSmQXGH/PqbH7D6Bu3ggFlVU2dbgmjM6NnnzM8lu/f3KNWa2fEpTd+TxwqK6TIIPIzZEXmRsb5Z8PHTNW3fs1NrrNKibBseVhlFA81myeJ+gakrHM0m6LpOMIzwBgF1VbB4uGE6ivAiDysw2FQVuVmgaTviPma13OLYHtvlnoebFbt4h1A81N5F9hb5Lqet5b93mfsfQn9pmvyZVOUx25sPOJ5H3bQowMCP8MPXpJsbrj8uyIqaeLNEr3Z8+bOfEQQGXVMznswxKpvi9gPPDk5xdYmeLxkcmrx/+446XlI0HbquoWkarinIkh1HkYOhCETX8eXpKXE24mK1ouo6hF7iDQacmBZNUxMEQ+xJiG07mNEBn4/OiKIxUTTAbhv+y981ZHnMfOLSWzYfH9eYrstiG3P9sMLqJX//6hkjo0PvG+LwiNQ/5+As4Ob6DZcXn1huE5ZS8PsfP+C4HkI3MT2byA/QHy4oFYfo+Bm3H69ZfPev2GXCfCpQ7RMMGwI+opob9EhHVnsmx59hjA5oMEj1nJ+uUhaPO1JrRlVoNHuL9fcZShWiBhJI2D0saLI9bV3jDAy0gY3um3RxgdQ1TNtCU1SGYURtNah5TttVqKqCMB0sa8DbDw/UTQqKgnmzJr+3OZ9GzESE67no4yPazuTD5SeMTuJbHkVjoXUKWtOQpDnueIDpmKR1ijUJUBqL9WpBUiZIy+X73/6SxcU72qZmejCHpkXre7JdTJNseaxSRuMJ4+cv0VWTdLFAUTomgwGO7REXDa9efE7VtCyLktLw0YcB86OQA7NDLZbIvOO2SXA0BaVtMbr6ycGrC1RNp/wTNlAzBaqqonQtTdPiDgIeFm8YhBF6I5iNI+L9ljxNqcqSm0/XXDx/hRsM8VyNrm1pe4ESDSk//ohaV3SKiiEMxrMhRtvzsGlx1g8c1i0H82PMowN+aOHNuzc0wIvXxwR//SW7iyuMxT1K3dDpHUNnjNHV+O7Tf2zDCUowIYsvaYsKtwn5/duP3K22nNsuZycnJIsLdNNkeHBImedIpUGYAtMfUzg2ciuxa51MH2K4Eclux+btO06Hf8vv399zu9zS5CneYEDbq5S6i+c2DAoFVdMZj6ek64ykD4mOPsMxl3iWj9rrqHaI6Y6w3TGXmzUvW531aofysGE8nmL1kqKV9F3HJilR6oIDx6KXLa2q81jA2TwisASuH7ArOnTLwfZcnChCU3VUXaAPXHpNYoQO1daidWy+3cX85vYDL1ydc9/mRVMw2c3xZ0PCr78kPD5AN3WqLEFsl9TVnpEv0MPjp3uhanRZimxSTEcQBkMeq5Y6z3m4yRGaxmJXUTQVkWuRrjOqokbRApKbHV9MnvHq+AWxJRjOTogGT46IAps0LnF8C6cHG53dY0wDuOPPsMpHDHGPqZlEo4js8QHT9lG0PZZhElUxmzyl023CcQhKh9prpPuUfjxmn+SMoxodcC2PcrOFrmc8PkTaQwaewur+A5qmoNg+ih1gAWqxx3YtXD9AkRJN15ESHDtg6g/48sU57v0OzfMJhj5V3RJ0LU5VkacLbv7wA/FkjHN2jBV4iGHIc8emiNf0ZUmnaqzSjE2SEcd7NmXP2+t7VnGKaxl4vkowiIjTGE1VCHwLofX0loVi2mRFhtPUZGqPNT9CqrDrJL96e8X3b97QxzmHkwmnp69BXxH5PoZwUGWHbtioikR2NYapIJsGYVloqo5tmfTOmLr3+fTDv3I0ylFoEKaNIiw0BbIipyxzTE0hrjpen72AvmUeCKQKUghM04SuxdIE9DytIDkunhtweX3F/ndveH6WcvSixkKlb1v0ZEeTFgjHBWFTJym//e4d1++vsG0P2RlsaoFyt8YYC8oq490y4//+l9+xXNzRNyXTwOWuKUmynJHrYVsmQ9fFtFQMWdDLDiEEuqbTdx2WqlOWNU2nIIsMug7DsPGGMxwh0EwTpYzRbJ+qB8MQmJEH5ydoZQHkRNMphu2y2+/pmh7X8Z8Kg06C49KGM64/xUyHGp6iINueIIpQaVDymLPnzxhnBf99HPPHy0vUKicvS8ZnR/idT1HUSGdIj2S7vOfl568xJ6eoussWl91u/+RscR3qOEfKGuH7qIZOe39FcX9NscmpKwW6GgIXdehy/D/+DxhyT7F+x/r6ng/Xa+IkRbM9htM5h7NjnLlDUuzoLj5w5JmYNCz3CceHQ0bzMXnRkaQ5vm2j6wYFCs70gPc/fgBVZZ1lFD3Umk3ohPzw9pKy73n5+hXHs0MCQ9BvtqyWKwahT9tJZFmT7mMedw3u0EN3BiTbFVm8Jpctke/i+wNUzSYcj2nKmt12TxZvcW3I4pS6qlD/5B6te5XvLu45m3icTk/RK0mfXdM2LcJU6esWa+ZjOj6GpiOSnNZw8cKOvO9Zrrbc3t4iFYO6btknGQ9pRlI11F1P3zdUAMIgHIcIR0WxDJQ+J+ktTqenT67GrqZ6uMPxXKpSIrWG7eKWQqp8eNzz25+uuN9VSMWgtyR3VzdUvcHh85e4tsnJ0SGzozM81yB0NQxNUrUS1ZtgDkKKusUNdA4PJ1SNpGtyyjihSGKsaEyrKChKS2Q9ORZF3/H6+Ixq1fCvbz5S2xVyvyPvFFpd0ndPlK6ylSz3KQfhAKOuufrpmlPfwT+aImRHGIWYQseoch7WMTf3ex6Kjrxo+cXBGLPrOD6cYPshZfdIrwpUx8P3TZKqxTJs3NkRxXZLutvzWCvk6RLv/TfMPZf2KKB5TOnqAisQ7LaPZPGWTjVwuxxXs6jzDn86oOw6fljc8odv35CnKcafKHRZElPtK2xf58AN0fcFteOgRjpZfM8+7UCbMzo6pZMt8fqezeqOyeQIQ1dRhUWZtKiyoy1K2rZkmzzQVQ1u7LK4XJJs7jh+eYLnCHzHJcsb5K6lVNZIE/KqZv2wxB+EXC4yNHfIaLxntcmwdI3z8QSNlrQseTTgsChR0h3DgzmG2uAJG9loOECaZ+x2exoroK9LNNXkXoIqU+YDi2y3Zbn+yObj72mqNcumASHA8tGlhtBM0v2CX3x2iCMMurpCqjq9YbIsSrpqi1K55I2NWjRkioVvtcRtz/dvrvBnn1GWJrYsGRhw/5DyuMv58mdfYNgemqaTbh4p84JetuiGgaLqqIYDpotmFYg2R+tN4qRivUyQnaQqKwbDMW1dsby+xPMDjqYHDLWeIs9Z7XJOZudE7hTN0VADjdOvjrl4/z2H0ZzFT+9wXneYho2u6aDpfLh8x8HBOWfDgLqUOKGLdAIuPl2RlB2PeQbalmlScLuLcUKFdnuH3iv4Yc/iwy+Zi5JwPsOaCoJ+QKl0FMkl+fqB1eM1QofOsEl7KIuGj3crklKSLu8YezY//+w1V1dXGBJGwykNklkYsFrcEA49RK8QGCa2blLLmoaWzmzZqyv0xmdU6njmgJEiaVqF3ANbD1Dap4Gnadr/XuXtfyj9pWnyZ5LSg21oZPGOsqjomwqdMdu7S5Rmx9vLn2jKFLWvmAQOrn7G/PCcYRhhuyHCDVCMAWXdM5uMUflr4veXHB3N6cqEm/stXQ953ZI1HV3TYDgWoRdgaSbZdsNkMOL88JjL2xv6KMTTVSpdpysSZp4HhsdSMRiPQ169GjKaHiBslzTe8tqfobUpXbLkIc24uX/AHgy5WGxJ44x//Nuv+ezsCKuv6LuaS+OIiS24/3jNw+0jbz8+Yrg+16sN8XaNKQRNWnB88gx7cMRB1IOskOWeoFkx9Hquf7pl4D65ciq5wjBKdMPAtnUGYYg9mbDE43ax5+b6gd16x26/x/F85i+/5uP3n3DbktmLF1TtW+pmxe277zHtDk0By9AYGCZdVvFiMuDDOmYWRvTqUzDsKAywXZttXpBVNU3RYJoGjuvT7VryPCEuCpbrmA/rjJetw2TfovWSKAjRPMnV1RX9YsnF3QOKKlB1k9D7xHjgMDycERxOCTubdr/l48f3JIrKdvOOj2/f0pcps3GEo6skcYKULZHj4FcVZa+S7hOefXaA1h6i5ClFXnI4m9J2CtHJCUUjuLy6RWsSXh8d8Pn5CDvb8rBKKJuWw+NDvvAjJhMfTVMRQqD0PWVVgQIqHeusYmTaCCo62eG5Dt4gRDguxvwlvtkzsgVl1XFzdQVlxvFwTLrNuL7eIlFhu0C4EV29oypLEDbaZIa+LAkMUIoSxdLYpI98EQQ44ZzBsy/4h4HgF18dUVcrxHxOP3Zp/J/RjQKq+0eSeMs6T9BMjxqFTGgMbEnVJfRNQ1vvSNWOP765YOj7jKMho+GYvozp+459kjI9mNMkMZpqYFgOSmegiobeCLFPz1nlHSKrqDu4XFXcPiRoikTrQdN0FF2QN5K8rhmPIm7LnkHXsF6VhLZDnWaMDw8xHIdSGKSKSl+1KFlO+nHHHz/c8mIo0PseQ9jomoapqxhOQM0ji+We2fmcWTTAsh1U4ymgdjwJOVIksbTwJzPQaqwgpMky0DXufvqOIolxgxFZUtNGEZ//7AzTVUmSjJ0/4qdOkJcKXwUuUmY0yQpNGUDfIrsK2wDj+ADZNeR5RlkUJGlGFPp0skK1bB4u3lDsN9wXJrVq8Ol2zXzooZs9aZ5gWQ4D2ybd3yDLa16+esXM9DCyBktr0e2QNw971IGJZ1mYtku83HH57oqj81MC0yQrW5q6RdVVxtM5xXqDqSg4lkNXVswGQ5S+oCrh+HiC49n87K8+Z71ckZQqA3oU5QlRaBWPdHLHpixoigzHC8itgDrsOfYrTMOgN20s16N6vKKXPX3XoqoKCip932E4DtHLz/g6WBEYl+SqwLBVGl2jSiuuk5jH3/2WyWzG+cDjRFWxhMB3JM7AZyN61ssVRdmw325pZc/44Ix337wjqzoGfohlaOi6AbJjv1tjGCpKf4Bq2DRNRaJFmIZJZ1uUdUkLZJ3Oj58e6fZbHNnQ2iYIleDghKwEdzjCcN0ndLqh0Dc1qq5AXaGpOoqqo5kuX568ZtsY7C2Ft1XH/XIFXUPg+wjl6Sxd26JK9lh+wPDZC04Op7TbFb5pPJEnlB5hGshc4gjBcDgk3m1pe5XR6RlHL1+yv19wu89YfvMe33SwhIrlZtiDKVrdk6QbfvUvv+Hb33+LLQTDyQBP11hd3RCrLcs7g43UeXO9JksyNnGMr8Pt+imjZOI5OEIn8D1cU9C21dNOvuzRjKcGkK4rjOyQv2ltujShTT20HmzLxjIMLENHt56oPD0KZZlh6DqGriMci/D0hPzynsl4RhSF1O8q6rLGsS10VUNDQ6dB0yRJuePt+y1fHA5pqoJek6h9j6rpFGlFvd0xcx3+/qvPuFzcsc9LhGUidAs90JCahbkyOZxFPP/5f8tyU/GwTvFGPqtdxmHbY7g2uqci+5qurlDaFm04xPQc+jjDzDdQx3SGS6doNOmWfLNms7zjdrdj2TeYwwGzoyPmx2f0Etp8RSMzXh6O8Iodbxf3dEID02Sbdywet2hKj6kbCNsh0ASaoVPkFavNjnAgqasWMXvNYlly8+EDXQ8Te8TUjTiZzNhkOet9TNE1nBx/hd735M09SavS5zW+BVndI3swNA1VU/H9gPnBCbLIiWbPmBQ9BTqNJlF6haas8HwPz3dps5j1eoOuPjnHprNjZu6A/Ls31LR0dY3wInTLxmwrehQ6VUURBlIBhI4wBO/vHrnbxeyrmqaVNCgoqk6nGxiei+16qL5DL1MeH5ZEUcDdxysOAoFe98jFLZQlmAZ1rXC3uOVqG3Nf6fzzH97w9vqRVrGx3JCsXpOkDY7rUmcxvj0kXS/51ElOjub0hYqulti+w2Q2Q3gepuvQKz0YOpZt0FV79vsFu/sb9PERwWROnJR0VUmlCWbTEVlScPzinC+Ull/94bcUqxyzFShah+8NyPcpJk/DnsA0CHWFNi9YPKQcHM1psphRMCUtOzTL5Ls0wbIEWibZlzW/u1tyFAWcjyTOUEMVBko4JBAa795ekac5wuxoAEUTGLNDaFVW+S3L7QX3not1bzMLI0Ynx9SNznK5QrQdtt2iah6aquBaAVWn8N37D/w///WXPGx2eKZA1RW6tqCWGqrQmQUO7S6j0FfUfk1SLdDUml4H1dKRfU1Tbnj48C2mInEMBVnVdEpNsunwLP1piNFklG2C7Bq6VYHWafz4m+9YLS6YvXpGGAWojSSa+FzdXhOdHRG5Ph8+3XLcCZpaoWxqVDFiNi0puyW/+MWXyGTDwyZBUQ02ZcfjLmYyDnB9E0+oVIr5lCHSleRlzW1a0OqCh0VKGt/g6RdcvfkDlm+jViXDwOT8KAI3pNMMLEU8rTPT85++fIUuNNI05eL9O6QO/mDCtlVpFIXpyTF5WlLFKQdTBVOr+fXdDmdwzOEwZDo4Z3F9yePqlrtVyov/7r8Q2j2G3oGmc/nxE9NgQtc09ChI1WaXamxv92R1h24ZtO2TU1w2DUJREaqG6/nstCVBNCGwBNPJnNA2kFXBaFSgWibC9Akih6YrCI9GNOIZ+zcf0dcJD5/eEc7mCKvCCR22aYq3uUcPJOPI51/++JEyyRi5Dp1msk8y3t+vGF5eU6UZY8dhkOeQZqRJzr6S3H2z42RzijcaI8sdy9U1tcxxz57x8vyA1X7PvoXNKiZJa25urqnqihfzKXPPwTMsTr4e0/YVhtAIXR+ha3jDEdPZjCbZIoQGuiDPdqBKatnRqBVSKei6mjAcoZ4JMt0Ao8ILA7zAo6VF/UsQ7J9F2j/90z/9e3/Dfwg9btZf/Pq7H/9X13WUqsjoigzLUNlvHmniRyauwtnhkNOjGZ6ls35YcHZ6xnh6wHx2gGlaCMNGQWG/XKHqBq1mkaQ5im5RNZL9PqYoSvoemk5imBbz6QwpHLqyJLAMZrMZXZZTlzWX9w8Iw2Abx9QdLB7XVM1TgTQYThhMDjDDiH1R828/vCOuajzDYLvfk6Ny9bBiuVzxd+fH/Pzz15w+e47r+7T7R8ZDB63OMGyLh1VMuksxvICLuzt2+w2W5TI9OMG1PQ5PTuhsC7vZUe9vMboE31Eo4pi6Sjk5DMk7SZblmO4ANwh5+ewMd/aMu8eU9SpmvdySFjV1WZOnBcIw0Mye6/t37JNLbDem3N+xWd4i/Al1suE00JgO/kR10RWCKMIVgt7y6euSKPCYTA9puprl/T11XVHVNUWZYuoKsqmesjWajmVS8WmxYhenyB6qViIMh14V1FJSKQpiPEILQ+TApVUbGlNF0VSqtqEBfri9Z/G45PbbP1Dtt4wHHoHv0ioaD0mODoTjMcPhjMOXf8vs9c/JswJXVlimSZnnlGXH+OCY8eEp67jkfrHkbBxxPhliKz217KmFjTM9wptNiUYzJtMxmaZyu8vZFw2eoVLsNzSKzjapcH0fXTY4hs5uH1MWJV3XIfoa19TQdAPLDqjSgoGELz77K776659T5hWbdUyRJeRViRcN2dzfo5QFcZKy2sZM9B61aziyTRqpEdoBx+efYRlgHU4Jzk/xDsYYrg5ti5JtaR8XKEpLM57Sz2Yk2ZplssOkxFZXMQMAACAASURBVOpTtHpL20viuuKPH2+5uV3g2Ra27eBZBvs8YzqMaNsOXTPpmppgNAPD42bTIDWT0evX7LWAx1WO3G+53aZ8e3NL2TWolompSaoqx3EcHEMQeS6W0Gi7BlfXWN5t8V0HIXvUTsHxXDJVpREKZhSQ+T69ItkvbjGFjlZXBEFE03Z4pkFTtXy4+MRmuydUNYaOy9nBhNP5CG8woJEds3mIY1mMDo/RhIVuORimSbxc8rs/vmG9r7i7fUSGM9aPK25uFzR9R6tq9IGPQcXk+TGGo5M+vKWVDUVRsLz9xPrxlqapsH0PgN1mx0/vLvjpdkGjaKzWK6Ru8u0fv6VGYbFv+P5mRZGXvB7ZVHFO30pc1yMIIi4u76DXEaaJqeqEoxF9UTAxBV999oLJ4SGeN6BvJZc/XXPz8YH1zYa67XHtBqF03C/uCcMhsqwwZAdoOI6P1tRY7oBNWnE4OyRUA3baEM+QRJ5BEEbMwwGaMOm6jni3p1Y04mSPGo3ZZhU392uUtmBgKzhegG3bVGjkuxVC19GVpwl9lWZoTkjXNDRFRic7VMehQUFXBcgni6wdTfib//x3nH3xGX40xByN0UwTzQloZU9Sd2iqwuT4hPMXr1GH5ywWD09vbzRE1QWG0iOcAWme4Q8G+J5DGA1RFPBcF1WY9PSommArBlzsW9brPV0nEZZDremMohCp9myygmEwYDYImTkOhqqgGxpd16L0PbIqyJOEThFMXn7NZDLHbirMruTD+7e0VYvvOPS9JEljhKqiq+AIHb3Jubj4wBfTCN/zsMYzjCDEsW1MywBNR7Udql4hebzH8gcEkwMOTk44//wLJmcvqCyHrJM0qGSdws16x4/fvWP5w0f+4eQZA9WEtufEH/C3L19h+ROudh0fPt6gdhXhcMRqu2Eb7yjLkrFtETkOlusibJtetnieT1Xk2LbL+OQZ4eyM8fiAgbA4GI44nY+gKSmyjGA0JghDbD+i15+yUIQwELqBIp+CtnvZUvXwb28uGETR01vdddBKDqZTfMfGVZ8IblKBdb7m3dvvcLodtlDI4h297NBVBd8N2F9e0WQ7Wl3BDxyEKRhOIizLwB1GIAR5kmI5PqMXP+fb7y8w+55kueS+7JgdHDGMQmTTolkuGTptWyPLmDLZ03aSsspI1w/sN0vyzQPJ/QVluuduG4MXMpkNmR0fEU7GWK6gkzFpco8fDqmyjM16zfvVhpfPZ4zHEes4Y71eE5qC6TDCsUwqVefybsX9OkX2GrJXCSfP8AbHVItHZoMZrw+fc2CHjAOPUeRwd3vL3d0t46HLaDom2SYsVyXR9JhW9ihdS13XgELb1Jimw/TwGdVuT/zwQF2DG43I6hRV0+iE8UQTaxoGvsdytUMTBlE4YLvd0nUgwjHjkzMMz0fRBZ4Xcv/2J/p4DfJpql20PXcPD9wtt1RtT4tC1bQowqTWDMxgSGvYaEGEpkKe7tD7DouWpizodAO1awiaGj0v0fISpe1AkWyLlKuk4Q/XMb/+4R0/frqnaBRU4aPqBmmWoamgazrD8QzbtvE9j9Ewos4yIj8gyRLuPn7g+v0bLEsQuA6qprFOazzTRM8fSB8vuL25odJchGlQ9wLhTZFtR5skKNqAqisQRgnllsV9TJnWNLVEaVqasqKXHSYK+yzD82xGgQuyxA5c1LbBdR16JHmyo9dbTg7nTFyPoTBp246qrDmbjZgezvEOjzGHQyrZs7m5IXItvCBEV3RQdbpeoroO3mDA4GBOdDhiHDqEkwG9a/P+4RPru084QqNvC4SiYOoGdduz3Oz5v/75V/z47gJTU3BsG01V0JSeTlEZDVyMrkKWNXQdUEKf01QZWVHhBSEn4xH76w8sLt4QDEIOX3xBODmjxeDdt9eYQkVpG6oiI9tv2D7co3U9qpSUWcnF1Q2FAv7JEXW2RFEyrhZL9rsERdepyoquqkEY9IrOepNg2QGW63AcGZzNIywFGkWwKho2lcTxPaahwLMthCHYJAlCE6CZ5EVF2faggmNZ2K6J7llYrokbDrGDGWY4w/EdgjBCbypCC16czBgOA0zXJytSLu7vcYWFaQfs8oq0qTAMg8e7R8q8Zr18AGHjjE6Zn35Onhb4jkWeZTS9iXv8BePpjMCQ+FbPdnHDw9Ujp9PnGGJE+Ppr0lRn82nF/YdLPt7e4h5NSYuGzWpHWdeUdUtVFBiaSlVVDIMBfdvx8vk5gevi+wG2adHIns/+5nN8X+D6Jkqb4po6bbUi3lyzW1xTVwmKqlE3DUK2/PjmLVmVUHQqUjP5cL9BRcEQLlIz2G1XyK7DFALfdXA8D92yUA2LqqnIZMv3D0sedmve3T+w7UEbj3F8E38yoTNd6k7yuw8LFus98W7NNPB4Phyg9CqDYMjx8TPC+QH3Nzecnp+xL2vC0Qjf8/BcEzcYYA6GfLp7ZLnb08qGvC5J0+yJHug7eEOX1BQ0hkAVGo7r0/c9rw4G/5tvibf/TiXufxj9xWnyZ5Lr+RwczNivl7SRSy06BoMAy4DkYYNQDCbDiMnBjNlwwNVP36O0NadHx1imiSo7urJC6yRCEXz65/+XenxAWfeUqs1gdkbb9LTlE/e87aHq9xzOWo4nEQ0RgW2hCp3xeIiV5fSqytvrR/ZpSrgt0XqVg1HB8WiK+fETZQvu+IB1miM1g+8vL2kik4/Xj9ytV/S6y989f/n0SNo2hmVxe/mOeJsQGWvCo2dING7vH2jyhNY0qKoSVVH/hMpUcT0PuU1QNQdVPvDp5j3DyGY0DHj+cs7V1T2mXvP5ixkX9y2j+RQBiHDIOu8oaolmmFi2g5Qqbd0RhCZd25ClOf4woG8r3r9boLe3NMUe0kdk0zCwDYKBj9orJLuEs8inlyraYMbtZsnD4pFockBgGgS6wl1aUXU1vexQVVBVBejRFBUpe6qy5urTHdtNQjgaMnBcNFVgOANk4NNJDTdLEbZGadqosmN7dYmqqsRNy2K/p7q/YqrDyXyCqoLtODzGOTQNqqqhoyCbDgsNTRp0tUm+U9BUC8twMNWUyB1Q5iWyyjl2es6nHtJQKXuN2YvnrCpJoRiUqobu+VSaQJgqaqdQofHdJsGrFYQwSG9uUIcm/sAhT7Onu2g8OQLS5S3WwKM3AwxfJ/I9np2coDRgSZWj0YzNes33t/esVx85X2YEOvQSkvXjE86vN5kMfKLBhPDQp19uKJZvENHP8RwDrU/xjw+Qpka1vSLt7pEhJLnCrkj4VNZk9wvGJviaj9UrYDokec2H+xU/vvlIaJo4jociJXVZU1QtquUjbR8vHLJb3pO3Kpbu02kxZ69fULhjfvUh49QUFEXD+29+i+Ho6LO/o0EhSTM+f3nGOArp2pZ1VnO7T4hMHenqCKGT7FMi16Wt9yhA6JiQVjSdwmngYD57ztbUubv5gG70WLqGsEPy3Z7bT58YmAa54yJUi1//dMf/z96bJtmSXeeVy/143/vto4/XZosEQVI0SVYmq1lwipqBzMqKRpVEkSBEJpAAMvO9zNdFxI24fefX+7Z+XExB1A9hD8HN/Pjxvfe31svxGaKvYKgqZhigGzqijah3c/ThBXknELpOp6jYwyFRI3OIG/75//sn2jSlXq9wbJvh17/AiNb4Bhzu/kirvGD28I7mxzeYrk+e52im4NmzW45VTl7U/PDHe95NH1nmMdYuJTBhu3/Lx8cVh6whLWrqNOZXZz32yy0qMByP8IIARVFwNY3kmODRcH02Rh/2efx0jyzLlGXFOtohaTpNBU3TYZs2r79+Re/cx+q2ZE3Dcr3HEBZO2GexjZA0wX6zpkFgWAbXZ2MUWaeMIv7KzJBCEz/os61aolYhlCVaWUMNxzSLGXGW4qgaeXGgTPbMawWpPOL5Po2ukJYVUWcT7SvcYoltmSfNbxZzPGzJ65pMFrRSiyxkurallmQUx+His9e4/RAj7KNoOiDTqBZ5J6ONbpjoHoquoFse66bH7M1P+HaArdsIoSPk+rQZUeYIVUfuWgQtbVeBMKmbhjRPMHpjdih8+9OU8bNbFMtArUpUqeb51YT0WFKlFVIORaWT7nNqy0LxdJosRlZUuu4EpM6znOHZFbZuUqcVV8EQ48XX7KaP/I/vv6VVJHRNxlQViqJA0kwUIeHKFeO+iaI0GLZBpWhYQYhCgyTJyAgkSWE4OUdWDY7rJQJwen0URUVVVWzfZ6lqzD++J8sTuqLm8OmOF70Lrl79Ry4UlaY50AxC5lnGevEBRSiM+iGSXCPZHoYdEEcbepaBbZpY43OauuKYpFyMB2iKYN/AxeSK6+df0jNMkumMdL4kvD1ncnNJXVb89PEnFFU7xT90A1U3iaM9ZdUgdAmhCjo6FEVQ5QlS05426Bwbz3Wp8pq2bZAkUBWdpmlxAxv3+oZFFvF3//JP/LvLHlp3Ot8VuUMgCIMxm+2ezfqJy9shdVWyXm+wRQ/t7JzyEGErDXq/h++5qKrCr7/9A//x9S2DKuXdj29wfY+J79C2NaqmUjQyq82B2d0H7qb3OEpDaCqMRiPa7EBS1Tj9EZ7msNwdGI4nOL0xtuOSxjsOD0uEYaJpKmVZsEpSbkY2/dCh7mQ+fXpEkwR6oGIYJp2hslqt+TDdEEcRg9AnrnQGo1sOyzmiqvg0f2LpTbi5+oxe6JLZKkIxKKsO1zJxdMEmLk7g0rJBt1wOi0eSOCKN9hiqwOmPwRqS76d4hke0WVBtYs4djZ1tMK9akjhFrk+NFtsLCDyXKDrQd3TirGAgg+eouP1LssOOH37+gcXHO4Z+wOuLCXVZUFQteVmzS3Oev3jNqANvueKukBg6AVlVs9ks2W2WHOIDCi3HMsbvezi2BVXDZrnloevITJ3CFFiuyV7xEYOQqljzu4cnfv44JU4LZNVCUivq+EjXlHihj+X1CEYXeLZO0OthBxMs9WRgujp/hqmqNPmWKs9JkoROFhhqgCKp6K5LW50hpxK9yyvcoEeySWnqGiEbDCbPiJYLAk9hvy3pGzp/c93nN++2RElGJWvIikqW51i6Std2rLY7HF1gmRrv3rznyy9uUHUVqdFBl/C8gEHYRxMxAo3nF+fs9wc+LvZcvhI4moURDEiOe/76b36JMAN2yy2bzQa7UUgaQdE0py3F/oizZ89o91v20YzZ8gP5PuHV89doXc0u3WMYKmXb8JTs+Kff/Avfv32Hp6k4tnN6B9IEWQbP0FC6gt3ugG8aIIW4Vg/bUai6AqkqcFSJeHHP/NMdoT/m9a/+E/b4BsVwkVY7NrMFhgKGqtDVDZomKLMjcVHh+yFBeMGuUvjD2yVtb8mVr1HFMq5p8MdPK2QrxrEs5E5mtdlg2A5tJ7Pc7Lm8GCFMC03p6Dv6iY+R5Dyujvz3f/2JKu3x+SRkNDlHSBKbPKNpK4LApjqkCMPFtgKG4yuEbtApMBld4Pl9qqqiKxNM0TB8OUQzBC0yLS0iK+mWa4oK8FVU22B7/xHXUJh//ISna7y4OUM2XT4uUoKbL3jY5Se4s7UnGJ7xFMHQdzC7jLpsiPZb5tMZlAXRvqT/V1+xSjW6Y8Jxteb9H7+nuRqzjUqSJCFLM+qmpQKc/oiuTLE9H0v4UFWYpkOvFyLalsyISQ8HNrsVoTvG6BR0QyfdR/T8gHo0Zr3b8tN3P3G23iBMG114uELw+x8+oDo7OmtCI0wW6xW6kdMUJ/D+ervBUQSDMGR0PsZXFKSy4tUXLzEHE5oyRzJ0ji2sDnssAxxRkjYtlW6xSpYcDissXWFgdlhdjeeEFHnJqy+/BllgaCr2L0y2xznHumZiKBy3CzzPRdcNhBC0bUNVlmwPEeJwwDkeieqWTVby/NktvfEZaSrIo5SqaWialjwvAet/x+/t/1H156bJv1FJEgzGY47bNSoN47Mek1FIk8VEjE/5dNdl0O8zHIQ4+jekaY6uKSiKglRDM7unLUratEJWdQ6//VfyRrBMT9PORjpNS5J2R1nWrDY7fvz0kboquQw8zF6fpi7RXYdWUbgyTULX5f1qx+/ef6Cuaqa7Aw/rLZPlGvXNW9zwBN9aRwnZ8UC6EhyjI9eTW3758gXb5RMPD2/YrhZ8+OknquUTL3/xFUVeweKRddEyfbhHQoK8IM8zLNPBCwdYjoul6RRRhCkd+Hk1Z50pPCUt1uMT41Bn0A8wbAd/FKD0Qhoc6rJAUk3SrKKoK/KqQrUMit2eqizY5yVFUrBdF1yMnlPKKfLiiJoZtLWBJAS6qLENBakF3zSR8gK1bbGGI3Svh+0H5JpFnOeMJtdkuyObzVuaTuZYFkiKoJNk6g6QQJUFHdJpKt3JVFEBssNgNEKyHGb7A5vVlP/73/8HguEQxTV5XDzwm99/T9tU7A8HAlXii7GPLhRs20NRBY0E8/s5QpLxfY+2a5EMjSyL2Hz8iCELAqfH0+bAw67DVC0kSSaLY+R4z4tnV/RGY94dJSqjxz5tcUMPDZCamtlmz3IHl89CTFXm6ZAiNTWKF5JuN7R1weL+A4OXVyewo9bRSCqyblFLKjUqo7MLtusNlqJy8fw1lDJvf/0dlmGw3M6pVYlDWvHb3/3Al9cD5MBGc0OKeMu+rDkfDvB6PZQGOndC0wIDHVHNkTIFqRlCoyPTggx5HXM4JmRJjp0VDAIdQwgs00VogiItmM9WfPg4I9B0PNNCVgyyLCXZb1HahtUx49X4ko+Pj7imTSFMjmnF81/+gkr3+M3//ESTSciXQ1aqwbrpuL24olFVNDdg3DMwLYf390/MFkuCswlev48vWizTJPBd1qstppCxDYO8rKllcGyTY1ujyBKOrNEYDt3wFlvJqNFwnR737+4o8pr4EHHmunzz+mvqokZpFFzDJS/3xNMt+mSErCrUhw15VRNJOnvDxAnHSE5MErX8fP+RZLulykpsRXBM9mT3Nl9NAiTj1Cxrki2lO2C5fkJtE0LfwuvZ7POcxXLB48cpd7OMh4cHyi7D811K12Q1X7E5nNgRosq59S32+wMF8Nn5BNHJGLaFhMzIc3iMUkgS9h/e8XIy5uWXX2A4Pv/97YxtK9MfjjAciy/+4jOassV0bKqqoGtaqqKiNxyz2x14fXsJ5wk/v3/HMc3w3ICuKzgcNvgvvuSmP2R53DIZTdDUDlPV2ZQSrtbQNgWKpqAYCprnEdcQ7bckhz2y4/D944KklvnVF5fstyuEYbBY73hcrumpEnWWI4RCmhccKyiiiKqTUGRBfMzoug5/NKTRFR6f5rQt+GGPtqnZ5RXCMDAMjWA0RBIGiTYmn23QqgzfsnA0HdUPqOqKKj2yPyak8YHEtVjvtpiOgzrUifYHBheX5BI8Fi1NeWT9OIW8o29p6KqKaDtGrkliGhw1izqr2Oz3lH2DtlFAEtBCnRVkSYas2wxvX6LoLo0G6z98QGwKvhhd8ji74/3jnJ5nU0st0p8iEoFrIcs1l5Me/XGIrMp45Ch5QqfpdEKiUzTIC1TN5Pbzb1guZqRJjCxJuJ6Holt0VYVneYxcm8NySb7P+cgdw94AOxiij3r87u3vie/vORQpvdDGt3oEkccx3tO0FReDEenmkaatKTqJqGoJbBtbbrFNh6wocJyAV8++IJBU4qcNu9mey8kF49vnOIMeXdcxKgpk28EZTOiExiHLaJDJiwrV7uhkibap0WTo6hLVsjkeDgz6fQajHkmc0bSgqoJWBtnQkEqJ0HE590Kmqsd//ee3TDyJ28s+nm6dVNV6S+AqBEeJ6Sbm4mrEYn9EFR3ueIijC2IdKkPD8Vyev7g52ZUMlfhwJJzNONzfYz57geeYNHEEWU6WpXyKU36aTvnyfMzLZ+enb4B1Qe/2OVl04NPTHzGGE7zzc8LBOeVhz2H2xGKz5ctfvgYFKinjcqxhWz6V1PH+ccZ6G3PVC1B1BUWXWSYFH2Zr0jRjt9tTVxLBYIhaFpSHOQ+zO1TD4fmwhzsOOcYF5qHC8Udcvv4KZ+iQ5wXIGpqpstpskbICP+yzXc+BFkV38frnyLLCIBwRTT+yuv9AlCxpLQXt+Ss008Q0NVTppJXu91xUobCa7Ri4YwbjAeNJn4nZkm2WbOZTnj5N+fBpzsTeMjAUFE4w8FEv4GxyRqc4HBvBNIXJxOewnJHFezxFYleX1EWBZ+uEpoLUNQgho5sGXZmTZzm5kIhUnUIz6I+H7KuWN7M9ZZlxiBI6WcMyPDpkVN3A1hyEYeMMLgGBYvr4V68ZjyeU2znntoLjqpwNvma7nSIsA8O0sC2TvMpokSmqkqyR6F3eEI7GqJqHUehQNrTdAUm06LbEPoqhKnFsi89uXdpM4t2uZlt1dFQoskRd1xgyWELmabFEp6KtfO4/TtEVjcAyMQwPZBPLtNkqKbqjMwzHnD//kjyveD+NcM46rE5mfHGFHoxoUBGyTjx7YjZ/QnVDmqqlyFOKMmG125K2GXsyvHHI+fUlRgd1XRE1OWUnc5ht+PbXv+PnT/eMAwdFNjBsiypLkGQFzVQpqoLdIYOy5GJgYAeCTgiipMYJDELPR6Nju5ySZzFff/PvEbSU+YZOaalJKcqM9WLB+WSELHXQnjYGj7stnt1DmB6Xn12gliWzpycuz69RDjUvrlU0b8I/fPst293prBCmwX6/Rm4FdB0/vfuE0l1iXfjoQmbgC4QaMh70WT4t+MdvP3I83/D1syOO42NafUzPoVusaB2FfZphuB1lvGfsXCLpJoFt4Vg2clsi59A/66FZDpKuU9UlyWFDnWwo4gI6CdUKqQ2Fqk2whGB32ONcnBNFMX/8cYYRnnN4+wf6vRBZasmqlnh/RGo1dNUnOdZ0cU3YKSTHhKJsERfPyCWNvq0h0fG03KAqglKC5XyDLLUUeXkaePZ8tuUORTNRFQ3f91AlQaUY6LZ7MnBJOpKQWOyW9IIGTe1RHFJEU2F0MPD66JMrsn3Fb//1HXZfx3YcdN1m4Cj8OF9j91yCYEJZtWTHPT0vwAv6bNcLZAlU00CVOmQh6F2OkBUZocnkXYtsa5iHNWa1pe86LLcbUgTTxYbVYsPNVZ+kSvjh7ZKvr24YDXoMxs+Ra4W8ynENk6yR6Q8uufvN3/Hz9oGz8QBnMkZRVQxNx/M8TNs6bQXXHaokkNKU6rjlsNRxLYNnbo+fdi1NkaOqMlXT/G/8w/0/p/4cz/k3qunT0xf/4x/+4W/T7UoKTBm1q9EFWPpJqxr0+pR1Tc/WEUImGJ7hOSamaeMEgxPc0QmoGjiuV0h0vPv+B9JDTLqYcdhuaZqatmnRdR0hK2iGQ5ZXSDQ4jsWzzz7HH59RVTWGoZEXJVlZITU1oi6p65osy9inCU/bNU/bPR+mD8wWCxazR3zVYOj4fHZxwcvxGLWpeLj/wPfvfubtm5+p9wfOrm9xRgPc/oCnhzt+//Ytd9MZg6DHrmxYR0d642t6/TN0w8R2XCzDYLtasWlN3MkLguEN+6pGaWKuzgaEgxF20MMdXnCIUixNpWlV6kaw3R3ZH47ESUYSxfhBSNgPcZ2ALlMJPQtVazClDb5vU3cNTVmi1RmfTQKGYYAuVKSmo64K/MEQfzBCalv2pUQkaez2B5wu57DZkpclUXKCCTZ1R1LUlDXoQiBkgW0aGI7HWf+SfjjACUesD0de9C+4HU0Ih0P2ZUGdFqze3bObL9nFCVZbcGYKDCFhGwaWbWJaNpuqY/64xPd7qKpGXlb0L25pW418seXq7JIcgTYaUJsGtiIhy4L5cotsWFy9folzfs486bj7NKd3NjpdVouCKkk5bA74oyGGLSEJiSqLcUWLUhfIqkbXwWbxyKuBoEFmW8o0ncR2s0R0DU1dn7YJZJlutyYIBlyeX9ImGd/94Xes1iscP6CRJbZRxMNyjdRJFE3HLoqpO4nnkxHD4RBJknEm1wQvP8MaeEjFhnb5SBdFdG1KHi3pDIdS0ygsg/4oJPAMLFVBRUVtodkdWcxW/MvbD2hCYxwOCZ0QtesQqsIxy+hUnfHVGWVRkaYpdm+COTjn/PWXJGrIP/3hie18j91WBD2f2nWZKzrexQQ7DBj1fdrsyMdPHzlmFde319xentEBnm1SVxWq6tBIMnVd0OQVjm3S6go7WZAkR455jqIqFPs9T9NH5nHD1eQco60pk5gszWjSnK8vbgn6Z1wPJ0TTKWEQ0r+8gCJj/uYd5TGFuqQ6rOmylM3mQFY1JGVJpqjI8QGnKxn69ok3IbU4Us1oPCCcjDF8l4aW8Pqas5tnhMMhwtR52h643+356f6JN2/f8+n+gSSJsC2duu24u3skzUqysua432D86QKpdhLXmo4ryTz7/DnhZETbSiync7q646tvfok3GiDrKsHLL9kWEr95/4TtBwwnA0bjIaapU9QVfuBiWSpqc2rY6rrJYbOjL2TGV1dsq5IsjvB0A1VoKJrMoUyZXIR4Q5dw0MM0BLoCgWfRVDmiq0Hq2O82PG321KrD0+Md+8UjiiTIk5iPb94yX2+wLQNFCJazJ9bLHcPbz8mOCW/eTfnhfs2npw3zdcRsGzFd7NlEKfNtxGIfI5qKdH9EbcDWdJAVLO00nTVtm87oU5pj6qyi2G0ooiP7zYYsz9HCPmY4IN1uSLKEdbRHNzRs28ZyTrEXzXHQfJ95nvHj+3doXcfloAdSi6poOJaDRIfnBsTbiChJCM/H9AcOFxqn6XSZ09Ul2WZLFsUMnn2G7vUQuo3mWnRSTTR7z2HzhJRVXFg9VnHMPk+pupZ+4HM2GRDaKooq89nnn+MNL07fKiGhmTbICp2knM7XtsMaTKhbCSEEoqpwbAshCYRmIgsNuZPQNJOihLc/fWRkKJii4Nf/+Pc8zd9QaQLFsdHGA+zhGE2FtsrpFJVCtqjrFr3LORv0uPQcXEvHUgRC0ykbeHXznEBX2W+2uOfPMEdnBAOLVpax+n2EItgnMYPzS3TTJW1qFAlUduUC4AAAIABJREFUSaaoGkxdR9c0RNdCUxFnBd9+2rJaLtA1hSDwUVWB5VgnNpEiQJJp2pa2qumOR9p9yuN0yZsPHznuVyhyie8qQEtVpJRtxQ/rA/5kgO/ZbPMKrSuwdHBcl0Y2GN58jlw3aFVFWzS8PLtm+hhhVxBv9whNQagq0NEUOUZdcuY5nHkW/fEQDA3FdlAUQbTbsC9bbj//Bf3xGWonSB9n7B7mjC7HeAOfQ7ZGUyK6NseybYq2ZrlNiA4Jfc/g2c0leSv49ndvWc93ZJVEVcHIH6EiI1U1w3CEa/comoaLz/+CoD/g4e4BISlMLoZEVY2syjhSSVHKxHGGJMk8Th/QFBldU7EdD1VRThs92w3bN7/n/R9+w/3TBxb7FYeiRBme0UoSRZpQVQ00Fa7nn7SpAgxdZTTu88XzM0QZ8/T+HdNPU+4e10znW7K84MzVkbsaJ+ij6zqWE1I7A3abU7TYBKpoyyHLSfKcpsyxRcdF30NTBKHvEfoOLSAjMfRP0Tb3Yox/OSZpO/71x3v+8dd/YPq4oahBMXwM28cwbTQZVBmCoI9uWHiWzsXlJUrb4WqCW0dDLSLkukE4Ps5wjD86o0aQ7OYozY5GD9nN3/Pw6eNpsKSbVJ2KopqoioAqQyoz2qY5RUWanDJL8TSfLm/p2RZtmZGkOZqmIoSEJkHTngCWTVVT5TlVViCQUVSBqgpEJ3HcRNiqBkhoTsDo9V+g6A7e+TWlpKN0EnrYx+wN0UwLua5Ri4oyKdisVuR5SpZEHI8R98spe0lm8uIFL19/jWvbtE0Nmsr7j/eUVcV3v/2O2WJ6soOZPqOzaxRdpcozbNekKnOOaU6eV2hSi+PpJGmFZRgMx2cEk3NKGi4GAdl2g6EKzMAkKRKy4sDDw4+8+fAGoxmRpTmKIqAtoM3RJMgO2QnQ6vawJs8xz8c0dU2juei2SXpc02UHqHO22z1FXgINnQyWoVOWBW3bEscJcRxRNh2BqaOJDkVSGPcHGIrOLi7IspzryyuG4QWL6YrHT3dEhyOHOKIrW9qiQZXyU6RaNym2G6TDhl7fQ3d8hGEjmzaqpXPcrcj2G96++YAiG4zOz9kcFuwWU6Yf78mykqQoSTqdXFjIio5KzSD0cIMzMskgO8aMB32QZNywjybLpJtH7j49MJo85+bzv0LvZFZvFiQflyhFQlzFKIFP5brkaUpyTPEdG0VRqNsW37aQO2jzlKuLSyzLQpFlAj+gKyu6VrCZz7HMhn7PpWtyks2ONs+QBZRpiloniK5kPj9wN99y2EfUdOStite/xXVH9AZXSK1AFCnXN88ZjM+Zzx64GgSEjkvdtljhgGDYR1M4vQNdgWgLjDYlq1Lm2y37Y8TTbIoxchHDHm3oELoOV96QppUZv/4K3bDQJYV0t8Xu9fEGfWRN4c2b77m5PMfrDzEdH9UwkQyb3T6mU0z83gTLOzHtVFmiQ0a0DaFt0e95PCwPHNOcl2PvPw8D58/xnP/F9eemyb9RTZ8ev/h//5//8reB3ko93+B4iEiiA55l4QU9bm5vUITCdjmjzhPGV7d44RDaFiccIYSgjg8kiycUyyXaxeRxQrLbMdtHSLLMfrdD7ho6WSCEjmHaBOEA2Tjl+WU6bNdhdHuD7nnomoZtWziGQS8IsUwbyR0SSzqfHj7RdBqB7nJmh3x98ZzPzq/wvRClg2q3YrdY8uHjRwaGw9gxqJoaVTOg61itVrz98J5/+uEnNFXF8UOWhxi9N2E4uaRuamQUBpNLsq4hUVUc18W1HcJ+iOEGGCIndA1koeKGYxy3T91BtFtTZYK209gsTgBYVTHojYZc3ZwThAF5XSO3EqFrUWwSLEtmeDWg7STaIqWtMj4779Ef/AmoWNZUnYSsSHj9IU1TkW8WLJIjy9mUvufRFjmHzQZFCHZJQdVC3UBcNoCEIQSGoTM8OyPw+2zyDGM85ubmJaIo6A3PCZ9/jtK2VKs5rqozsFz+5i9+Rf9iwvThDsfQGAx6eK5PLklM76Z0VYPb6xMXJUJR8f0+xS5jPLrBsz22tUT/ckhxTAhUBbmRqOIj/ZsLvLMhbt+lbUruZjFHdJ7KBlnTGHsWptShy+CEOmWZU1YVNDVtesS3TWJ01oeYUc/HsU9qyegYUxY56fGIY58ug7ai0OUpz7/4FWE4omdZSFlHFaf0rq9ByKw3K9K6Jc8zJEBXdY5Jys1owHjYx+r1sQdjnIsLrEkfzbepDyuKaE8ab8niLcvFjN1myY9PT0iHNVpbEYY9qighna+4f3fPh9mGYy3x/PyWQX+AG/RQDI1Waimkhl2WowpB3XbsoxTv+hX+9Zc8HuHtPGUdlTR1h6/J9HsObt9l14CsqdRVRRptydKEIyqOZdALfHTdoGgbjq100mG2CoquYNsGURpTVgWmYVB1LW3XMNvv2VU17DYsZ0+oUstIVGSrKck+psxLFBR++dUvcbyQkRuwf3yiriomzy5Q5RZT1Tg+Rty/e2B1jCnTI/nxwPxpRhpnLJ4W5HHKoHfK2yuGSRB4DEMPXZUZP3+J5gWkWUIqq+zzkvePM757+5YPj1Pe3z0yu/vEcRdhazIDT6fs4GG6pMgL6DoO2zWK1BGaOleBzdjU8GSJb754Rv/FDZptU5cV+T5lcnGDoqpY43Mmv/xLJN3mj9MdzuQSJ+hh6DpFUWHpGsgy6Bq5LJHsVjTZAUGL30k8/vwR33JxhiFJVVGnBbbtYFoO42GfKN2DrhHeXlCpNp7SUuYZku1StyBVFbv1ksflFtULmU3vmN59QFQldV5w2Kx48+YnHtcxpqYR7TYkJfjDKzxdPim4y5KiakjykjgtKYuaJK8RrYQpdOyi49IO+eKLv2L41V+jqzKG5+Oc3bDvbI6yj6za5NGBMk2p04z1ckkhKwhFZf/0iCy1LA87irrCtC0GwyGObWG4IZoXsKXju+++ZXb/jmK/5mzkc3l1ie0G2K6FqmhYlkkW5UzvH0jyhKtxwK2joEodXV1TJxllHIOsMnzxGYphUJUFnVTTFQe64sDdh4/IRUvPCRiNeziWgK6l7Vpuzk+XybbIuLm5pHd+g9sfIdGitBVS2yFUk6ppifMCxfXpygqpbhCqxnG+RFU0FM1C0nS6uqFtOo77Iz9+93ukIuJxecd/u/+A7No0po06OUft9+nqgmS3ZH88kjfiZEpRFSxNIrB1XN+lqUoC16eSNC6vX6HSsZrPsVWbsLUJdA/X1yjTA7pzirVUbYuqqdC0mLqOoWnURU6FjOv5tHWJQgd1RZxXvFnG5HnB4nGKauqYtsloFFI1HY6poqkKbdUgVRVNUlDtYvbrUzb+3WJOl8a4XYbpKlR1yXa/J2s7DFvH80wM22O62iLVOf3xGZo7wBnc0BY5ZVbw+LTm+WjMs+E1phbQNfDpwx2SpjI/JNTRnuPskSpO0OqKrm1RdYHUNaRRxMPjnOGzV/QHfRRJposytu8eKMmxxjqKpZCVO9oqpUMimAxIsz0/3+0oshLH0tBMh9+9eeThbkaa5DSdjuOEJz5BB9fnL/jq81/w+uVXrOoKYVvE+xgha/iawzD0GY4DRJtBfiBOO4QkSJIYuS1ZPHygRcLzfTQho7YlxfqR+x9/y4eHd6ySiKSraTUV/+YlRd3+6WdfQXQVitxi2TaD0Ygsjnh1M2HgCLYP79gsFpRlxS4uma1PA5hQblFlicFgiOGGSKaPYXjUxy1FlmN6A8o8py4LsjjGlysmgYMsVCzDQNYUDDdEFRJ5mjIILAzPwb0Ys04LpvuKh9mW9TpmG6UgbJzRFRJg2y5tXWKZJo4f4IRDXMtElVpsuWWilBTLe9o6Rw/62K7LfLViGefUnUQSx/hhn8OxYL9dYTo2WdXy5vsPFCX0wz6qopAdlgSOAUjItYTUQlu3yI0ObUeVHzElKLKMfZJTdx2KfGI3NbKCY2jEWYxMR5llFO1JC60iodAR+BZNW1PlKW6vj9E7Q/hDdC/EnlwhGzaKrNLVNW1e02GiqR5CtakwUf0BpRHgXb3i2S9/STg8x5QFVV5QtTUfZku+++ENTw9PPNx9RJIUgmDM+PoZnaxQpRG2rtBUOfPtFisccoxiVBp6rsXQHeC65/QnI2q5pd8LGA8CijSmbRtKM8C8+QZ1eEth9Vkda0TqAAp1mWO5FkK1UBSTGo3NYomuCNpaJpdkNM/E6vXYxDmOUtI2BXmWojQty13EPk5QlNOWotw1DHoOSttyTFKQZIokxdMVeo6JbVtousGLly949dnnvPrqL6mPCdHTR3abFfPNjm2UsD8eqZIDu2jPcbdic3+PFM24vB7jXr5E9QYolk3X1kDD/umO/XLGTz+/ZXAxQtJyPvz4ex4+zdhsUzqh0htP8IaXaEGPLo0py5xwOEYPztkcM87PL6ibhrYD1zGRqpwsOpAec/7iL/8TjuVQLLfE739m++lnvNClsnX0wCMxdJI44rjbEIYhpqECErahYxoG0WrL1fmYm6tL5Ba6osDUVZqqZjufUWYZw56Jqal0Uksc7YjjPZJ5skQ1VY4hNWiSzOZYsNjnxGmFavXpnT0jGJwzOn+G5Q3ZLZaodohQLeazJ0xNowOCMEATHbrcoBsqiugoohXHImFzPLJJMnZZxeDFl2w1ncxQ0egz1HW+vH2B1HVsqxLddxGWRX80xvAd4jTj9tUrymSDZWr0+kN000Q3TexwxDTqwBwiWyG1ZDCYXKDbDmVRUFXl6XnbNrZtYdkWN2PvP4eO8eemyf/i+nPT5N+oluvVFz9+/69/a2iyZFsaXduxny8IDB3dMvFDl8D36IchsixTVQWWZaNpJ4Cl1DZU0R7V8dl++ogEFEnK/MN7DtER0w/oJFhtNuRZitB0NMuh6SSCMMQPe4zOzunoKNOUPE0RugFCJc9SHhZrPkQl0uQ1Dw8f2a3nOGafgaoTaia6KmOaLq8/+xo5PSLylIvRBUbbcT4ZMzybcD+dIlQJt+fx+59+5tfvPlBLAtvvY5sOh1rCHZ1BB7IsGIwmaJ6HGPRJi5zlYs72EKMZOsNJD8+xUNuYj+/fomgaQqgoikpySFBUjziuiHYRXtDDcjz8QYCmG8iKYHE44Cg1qqJQxSmGo+CGOlme8c3rES8nJpso5sXtJbqmUaQp/eEQ2TDA8dCEjGupqEWK0p5sMqZpsZ0vOManTZOoKKklQdlIJFWNUFR0VXB2do6kCL798Y8k+5h8dcS1XIa/+itS9WSl6dkWWVXw+PAJ1w+4efES1RCEKgS+T9VBejyy2ezohT0qJNb7CMdwiLYFA++M6+tb7GGPuh9QC4XVcs3ItjhuI2QZnOtzbM9BqAqdkJltYr7/3VscL2Do6KgSlFmC5dmYvnai7gOClixJWEQpB8kAWSYwFDzbpKhbomNCluUkhy26dtITh4aCnCc456/oD88QbYuQBV1ZMV/MkSWZuq6pmopDGiPLAlNI6F1F19Y8Px9jhyPMwRnmcIgeBGi9EG3SR/QtkBvS5RKpa9jM5uTLFdVhi2tqmHaA4fXpmg65EvzwuML3+wx7A4Qk4QYudt+npma23dFIMlXdsj0U1O4ZXXjD/TbnkLYoikbbSii0eLrKKHTQew7TY0mVJ2SbOVabEfYD0qLGdiz6toHr2khCsC8LDM1gF9eoMki0GKZOlWfMHh6xXJusyKjSBCnJaLYrtrNH+nqLVx2xNPU0ybQcLs4ucXUTNxjQHmOkGhxDw+nb6FpLuT/g6A6mZrBcbfnwuGRzSEjjhDSKOB6PFAh2SYmq61h+iG67KEDdtmiDMULXOCQp80PCt99/z7uPn7i/u+e43SKKhKGtc9Ez0alJ8xIxuGC3XFOkR+o8Q6YjMBRGpoJFx7mr8/VnV/gvbvDGEyRFIT9mPPz4kXB0ztmX36Cf32D2h9Syyg9PO1rDIe9kiiKnQ8K1TbJO8D8fDxxVBU/KENkR2ob9/U80ZY5u6fQGfeRRj8Nug6mplGWF1e8R9H3Oei6bbUzSNYw8HWgpZYVF3qC3FdF2y8f7KbWss55P2S1mFFmK6Fqiw57dfsd0OuNuvgfdZXTxEtPq48gFTVFQNQ2KouK5LqauYsoKZ7bDi7MrPr99Rj8Ych4MGF7eYkwmNG2BNjpD2AHL7YH8eMDRT3rzNs85zlbcf/xEY1koikK821O2LfPNGkkR9IYDHMtBM21aXWdn6Pzdr/+ZN//433CoMdUOy9TQfIuZrPK0WNNKHUHfxzBUiqKgLVJGnsR1YCP+pLVuqop4d8QJB7iTCYplIqSW8rCgPS4pDiu2qx2SouONA6xBiOHoiLakqXImox6DwEfIHbapEfYDDK+H6Z14JW2Rk6wW5GVBUpTkeYkkn+KDltdjtdnz5vs3NOmRrqlINxv2qzkPd3f89s0b3i0f+cN6xU4xsP0Qc3CG4ftITcph9cBiuSTNy9MGlWeBUBF0nF+MkNuKtmnQ7AB//Axb19msloyHA7751V8zvn6G1daQrMiLIygSRdsQVwWGeRpmqIaBoirERUUnTkYSXZIQZU6ZxCRpwXcf5miGhlRm7Gb3dIrAC11MS8U0NExFQAdULVLZUEVHdrsFeXVkE8esooRrtaFrE3xPphMdm6wiLivCfkDVyajGSSusaTre5Dmm5RFvNjR5w2yXYgC3z1/RVgLX6yFqibYoqIuO9eOU2du3eJJMuot4fHggi488PD7ysE84v75ifH6OZtnIQuEwfWI+/Yh6phJcBqiWynL6gGmp1E2H0BXm8y0Pj1t2UUHg2ByPOfkhRZEFiyihFAay5TE4f0ZoegzdPk44we6d8X45ZTmbYgc9Lq+u6fkBpqGzW6zZRWvMwOUYpaTH5AQFbSvqsiSOE6IownMt1DZj/fCeT3fvSJBRexNkXUO3LLThBcKwOCYx1BWeKbA0ceLoeB62oXN7HmKScphNmd5NWSy2bOMSCYmsKE9GqbZl2O9jBCMUw6fNMuo/3Z1QLao0oYy3yE3FzcUFSScwjdM3Mi0KVFUlijOkpiIYBMhhSCppzNOWWtaZ3j+xPySUWLj9c0x3AJ2MYZiAhPcn1bkTDBBdhVlHjNSGbL+mqzJkqSY7LKnzmKYuqRSNYDCk7gSrpGMdFSBkwrBPJ2vsdgmruyW2ddrGNQ0VpUmpixZTM6BtyNOYONohdyVtWSM0E0uWkZuavCxJy5K66xCahtYf0OUx8THBsTV2UUKcFWiqgh96uK6Nqmls1lsMGWSpwev3UWSFTtZQNAMMi1oYlBh0lo86uUQfXmKNr3EubjG9Cc7ZGUXXoiktyWbNbrlhnx75+7//rzzNZ6xmM0LX4vz8Gmd4jeSPEVKFqdQUacxqvWa+i9js9uhdTc9WOTvvIVwPuz9AdRRMT+fFyy+whUV+jOiGV4y++b8oDZ9lXLBPK5JMIn1KabuGOD6gWzqa5SLJOopQaLqS2XZKJ0paw0bzfbJO5rA/IpqY0BQ0RUrTtvTCgE2as9sfKfIKSZbQFQnX1AldC1WWsUyNxWKNKsv0fIPeOECoCp998zWO49FECXW+h6ZhFHiUeUEUZax2R8rogNqUnPccJrc3OIM+kuagGPr/z96bJMuupVd630ZdA14fP8Wt3n0RjGBGMJOZMspMLWkA6nIi0ihyImxqAGqInbRMkiIz6vfi1qf02lHXwFbDoympR7bi77qZm8EMMGCvf61vIRQJfUOXbojvf8PXb5/RIpfpyuPp/jOb+0d0qfPu5ppgFlGOCnXdsn96hn7g9fc/wXQC8ixlEgU046XdMfAcFpMQ27Z5vt/w3WTC1A9YXt8ynS1gkIxVherbuDe3ZH1PLHriOGHoG1zHZgB0Q8UPXQwNprOIvmpZLGZEUchQ5nTdgJQ9RZnz/PiI6+msVnNUelTZ0zUtyTGmqCosx6BvJE1eY0qBo6rQDyT1yHT+6sIKmkxZXr9hcfOWsWrRVR/HnbF/eUJvSuyhRvQpbZ1RJEeOhwNp23HoBLXpgTtHGHOSWKKOLv7Uosm2/GS2ZjpdMHF9Tt9e6PqecLFksVrDqDAA0XyGP5liqBLXc9E0A9ex8Sczvj0fed6ecfwAP5ryENe06LiTCUhJ25b0fU/ge5yzgrfryd9Fnv1n0eRfef4smvwbTVakP3vc3P+tbRmiGySGqlw2cbrNYn2FaZmIoWU6C4lWN9y9fsPYFGiajqFAcTqg2j51kfHyh9/RFQVp3oCq0hYpg2ljmja6gFOWkRYlbTegGxaDVBGaySDB8zyi2RxF0eialvvnDb/9/R+QqsnZXJNXA7uHD7RNgz95heNNkAImfsj7d99hKgK1iXn3k++QSBADQg4s7q55eblndzpRtg3/9OUraduxWL8CzUQdBxrDw/B8TMfDi2YEqxXW1YI0PvH100e+/OE3yL5hslxxdbVkMdHp8iOnw44RQVEVeL6H4/pUo4tm2YyA5UZousY4dHRdT933jH1FGBp4tkpbpfTdiG5JhG7y/n3AdzcRbZ6gGDqBF9AUJbZlUg4CY3ZDetgzNCV903DcvXA6bHACnywred4faIYRKQVVM1wcJ1JStDW9UPGjCX3borSSK2fGzJ0Quh6DqqDOfCwGzNDjn3/9j+gU+IGH6zhMFivK9IxnWbRVQdV0NIPEDibEScr2GDM2A5614O3b9zizOd5sxnNasLiaXA7D8Zn9docxX2CEFqqmoWgaed3SM7J9OGIPOkHoMl+GmJaCYZt0hqSucrI0pW07TF1nFxfsXl7wTBXfsZjOItqmpW4HHr7do48tpqahGhaurhKoFUkNq9UN7eGIquuEUcTpeCLJzrRi5FQUyKHBUFV8U0cXkrZpCG2T6XKNEwTY0ymq0YMs0aIlWjBFn85xrlaomoJpaPi2hiZHNFXBiaZowZqu1cg2Zz68bFitrwkWM4LFBHc+oeoqDuczmzjhXNac8oq47LAWt8R5h2o4hOEUzXLohxFbU5h4BqtliOJa/Ophh5XveDWx8ScBI9ANPWE4YR75THybrKpJhh6JQllLQtdAVSWWoWAMku6UkMY5texQFRWR5ey+fqFvGyJb5S/WPtPliuXtOyaLG7qyIt+dCKMpq5trdMOgbgb8yMayTITsUJCMdUVg2ASGzimreIoLtllFXjUMXU/StPQotJpFUVYoisLk1Ss2pzNNlVFUNc8vD3iUmErN9dzh/V3Eq6WHrUjqJCVNc4oOdtsdeZow9C2GKvBNjampEro237+54vZuxuxqjjudXBq+ekmRNpxPJfrqLZOf/QJsl7osGYRGqlo4tonl2Li2SWCbbI4xhmUx6IJ5YGBVZ2R5ooy3JPGG29dr1u9usGcW85mDInpcWyepGhoB4XSCYzvkcUI/FDSyo8kTLBXKLObldLnHn58eGXWb5HzmtH9hbDtUoZBkKWmWUbUdlulRtRqWd4PjzFioKUNT0XftxWHlh5hC0LYd/Thy9+oVqzdvcf2A2c0N7noBukAPfIQiEG5AmuZs7r9eam0th+p05vz0wlOeozsWfddRpWeKpuRUpFiuhW3Z2J6D6k04SJV//Jdf8fi7X2OIlru3r7FVQLQoDEzCKXXZUBQlOQqy73h9FeIZCr5tsLI1dPVSn9yUJcUpIbpaY0ZTNNtEaAKFkS49cn78QtGMBIsbnNDDn03R1YGxr2mHjuU8xLVNprffwTAw8QxURaCbPrrlI1Dom4b8eCA57NhtN5yTlDiv6RWDvh/YbXb813/4R/7ln/+BH3//Gz7+8Hs+fvwjz6ct/7zbcpYatj/Dnl7hzuaooiM5PHM47NjsT4yaQSNU2k4SuhbqUOM6FlWSoCoaV3fvmU7mFEmKrwp++Z/+hqs3rzEcgybfYngauqVSNR1x26DbLvPVJT6qaSpV21EPkrof0FAwgTbPacqarKj53SYhDF1sQ0FXJC8vT5Rtg+U7WJqKoQkUISjykr5rSE4bii6nkzV5VZHmObeBztt1QNVL0jQldHRMW8NyXAY0FqsLhPAYp1iWT+B65OcEqRgkeUudl9zeXDNZXHG4fyZ5fKJJCvxwgqbqtFlNs9/z+eNn9knGH49HzJsbfvKTt4SLGcUA+6qlLjKevn0gbQ5Ea5fJcoEUKllyIJrPGGRHlcccTjmf72PadmDi2LSdziyIeDknbBpJuHrF1buf8/YXf4Nn2wS2xt1Pf0Zhenx7+MZkseLq9hXz5RzfM9ncP7I7bdB9nUHXoRtpuh7ZlmRJjBwltufRjaB1Ba6lc9o/0XUt9myJOV2gOA6K6+KvrpC6jiZ7+r6lb3scx8FzDJSx4/V6zszXGdIj5XHP2La07UCel5ySgrrtqNqOfpAoCJa3r1FGQX4+M6JQtZL0sOG0feLlsMd0XRTLp+w6mipnezpSVTXj0DEKBQyD1gpIpUk6wKBq3H99BNPnXAq8aI1uRrjBlKFt0YTEtixM08DUNVzTxlVazPrIKa2Rtk+dnnj+9BscpceLJuiux1NSgW6Ql5dDvnAj5pHLOELbdvjOhLrsCfyAyczDcVSa4oSqGMgemrrENHQGGtLjAU1zUDUfRTPpuwZLjGiKQEpJ216aieQoYehREAgEaV7S9y2e4xKEMxA6rmlRJim6UCmOR+g7bMekSDPyskY1dfIsZ/pqjRwG9tucdhjADvDXEeXYUGVndvc/Xr5/Nw/8/f/19/z4+RNdWeBPZqyub5jOrjCnNwgvpDltaM5nxrHj88uWU15iq3AdGkS2xiT0KDrJfLUk7wpev3nHav2OoR6RwmOcrcBe4rg+pmPhmA6hP+H0eCZJYvqupVYk/myO7QQ0TYtuqGi6Qpwc0RRBa/kEgc/jhw/kmxcmnooYG/qho24HLOdPjZiDpCxbsrpByku8XjN0PMPE0jXaqqRvK+Yzi9lkwquf/jsM3YVRIpsWK7w4XQPd4DoImJs2r1YRU9/GDwMML0C3LyKEUATK2NElT8Rf/29OWYr4W/SsAAAgAElEQVS1XLC+WdGUJXl6wnUc1jdLVNfg8ZhxTgqyNMV3bO6++0v0ICJNUnw3xA0CxnpE13QW8xmuE1DXkupw5s4SiKYnvLlFn07phY6/nnMoWzrdYLRg3xRkWYIUEkNXkUJgmCqWpeM6JpOJh6nrlEWFH3qYqsrYNgA0dcXheOJwfGERCPSxw7Btxl5iCZu+leR5x6hoqJZN0QzEVce5aHlJcoRmMV2/Z7m+xQ0iHD9ksb5lMVkRmgE/eX3HerViGAaKXlL2EvxLdXOhO+RSpzjHPH17ojodmIZzvOU1qmHjNg2h6WA7HoYT4jkB8+Wa67s3yKpDV3SEqlJ3LYbj4noOihjRZHupund9fN/nh09fydIUFdBNnWN8ph1HbMvBNBye778QRQESyWoW/N08/HM85197/iya/BtNWuY/+/Tw5W8VIYWhKci2BaEQLa9QDBOQzP90yI2Wd7hBABIMw0QzTNKXB8rzkTorqPdbXj5/pqpq+n4kPp8xHY80LwDQlcsLrKkr8rKibjuaXlJ2kqpuqOuWuqw47nc8PjygKBq1ElCrLvH5wDCAYdoIoXL9+i949xd/zdv3P8NUVQ4f/on11ZwwmtIPHcFkwn67QRgmh/ORzWHH755fONcVfjClrZs/2aN1NNNED2aE62uEbjJdXTEIhaf7B57+8GtCXeUnv/hr3EXAdBkwNSVdmaNoBuc0Iy8KDNtFUXyEGaGZNnUzMIzdhbVQFBzvn6mLHFUZsAwV37PI64K2KnFNA81R8R3JcmoTeQb7hweO+y2O44FhkksT2/Npy8uWirFHURQQCucsJQo9zocT+7xmkBJVCNqhpx8GBikp+4Gi6dAUjciLGIXKdLqiRVJ1MdFkwWQ25ze/+wf+5b/8n7gaGLqOafu0QkHIHvsSbyepGtAsGAZ++/ErSd3jWQGvVu+IwiWTqxWaGxC3PVnV4qsD1WGDQDC/vaLoWjzvAr49lxWG63E4JOhuwOJ2TitGpGwRsqXSRk7xmVERCEAZOp4fn4gCB5MBx7aZTCK6qiTPSrIsx1YGGHtmUYRJg+9aZGmK4fr4hkqTl2zvv10YHmVJ1lTkfUdZl/i2iY4ksA0sRdC0Pb7jEQYLdMPF9CMU00JxA4Ts6E6PdMPAqBswjgxdf8l+2hH27JZBsTl9+Mjv/vgVd7pi/dPviVYzFEOhHmqyImdzTniJE855wfl8YDqfYQYz+lFluXqF5vnomoYcRlxd5TqyWSwCDsPAUBcEskGOI2ga+6JiMZ2SFxXzWYgQgqJrydoWIcASBpYmUBVJN46kTYXe5eTZkdqwqWqF7ss96WGPY5vIfMv3V1OW6zui67dURYU+jMiyx7RswsWM2XqJ5rkoY4pNydAryLpH9COya6EdcFSJpQgYRopuoGxbVDmQlxVlWVM1Dabj0gwj2+2GKovJzxva+JmZp/HubsXE8bFGGIqcuqwp24a+69lnNedzwjj0mJp6yX3rKqFtcD31uJt73MwCdMdGszw0x6PKCh5eEli+h2DGOckIwggviGg1k13RgKZhaOrlw9owkarCfObhewa9AL1NMLoYVbT4vsn61Zysb3ACG6XaY8mEYx5jTAJGQ15YEpbBqGsolsouOWEHPmlyJq8KGtPinMTkVUM7QFMkpPGJOD7SDZKuqSnqCoRAMVxmizv6zTPmIHkVOfRNSlm3WLaDYZiYpkFVX7LmY9sSOhbRNMTyPazJBCsIaeqMUahowYy8qtl++4Rt6IgBtl8f+PD1MyIK0U2T4nQkyRLOZUbe1gShi+LYZKhkbsj9/QPVboOpgDOZojoGTXIgcHXmvk/kz7meLYlsk8Usomp6xr6HoSPwbab6JXogx5Eqyy/39mSBPY2QgKqqCEbE2FDFBwZhML96g1KBKmFoC3rZ07YNr67n2LqKO5njRx5aX+EGDmLskWgI1aQtG9q6o6lryvOZ/cszu+2O/TkG1aRre5K65tPLE1/3W6q+Iy5LBtlS9Bfwp26aGIGPaeiU6YmXx89sjid6VAwVdMPC8kJ810Q2OeZYk2U56/UNy/UtY9lglB1XgYOpakR3r+nLDEOXWBOfUUKRxoyGxXSxoGsapBxQgKqpKcuC7Tkn9F2GtkUdB9o0pW4aviQNumVgmQq2Z2FYGqo2ct4eKMuCsWnQBNRVTVfmFKczQghaJG1T0NQ1EwPuZibTeUCHYHtMURQFNwgvG0jTo2gvWX1tbFFUBV2zGEYVA5U07/CEYLZaoegmh+0zHz7/wMvjV+Ljicfjln0cc3/Y898PTyxvp7x795YgCmhGlU3Zckpz7j99YPv5N1zd2diejT+/opcdimzxpyuGvkA3dNIk4/P9AUNcDmKLSUDX1XyIK8KbN1yt1jiOzc37X2INI3V+JljN+bI7MzQtgesjhMpgqEhGvn35SN4U+BMfw7YY64omL6iqElMdOR93iLHHMrWLW86yyA/POK5JKyS7OKG3XIzlivk0AFUhz1M8U7u0kmkqDAOBa2Fo4JkqfVsxyktMjaGnblpOcUlcNAyjRALDKJnO1tCWbB/uSbDYHhOyeMvudESxLLKqIc0zTnFMUpaUVUVct0jDoRY6peZTjyODotF2kkOcU9QDRd5iegs6YRNd3+H6AaqiMjQVfhDQDwOmOuKaCn3yQpzmeDfvQXepj/dcRRbhao0yf4UIF1SjIIwChrZhkApN07OMbLphQBU6mhAohs1kOcWLLGSX0RdHuqrDdD00TaeqUvLszDk5YZg2g7AYB4EYWtqxQzIiUDFNA3Xo6Osaoaqg6jiGRlUWdF1P13TM19e4foQZzUCYF+AzgvR8Rsieqsipi5QqjylPW0TXsfv8lVEBzbbQPIOhrzltd2TbB77+8HteXu759W9/yylN8Wyfu8UNs8Ua3XVQDZfpZEYXbyHd4wQex+TM/fMLpq4xdXSmtiB0DQzXwXZ9UMBWPK5ev8OfL+kdi92QEgvr0t7i+TiWST2OFFXL/suWrm9QDB3NMlFUiTcJaJuaru+wbBuhmpieTT2KS5uZprHfHhl7QTj1qeuarhuomx5L1zAsG0Wo2I6HGHtOSYYcRyaTAMs2WEZzbGWgSmPGscWfzy+wd6nSdQqKYaAoGoZqXNpwNAPd8ZgvF7iOgSEGlK7EtlSE2lHne4riQK87l5i+akIzYBg2jufS01LUFd+2MXnZMg6SIAyIFjeYmsrusMezLFwvQCoaphPiTnzcScAs8EheTkzaBFlliG7A9kOm6zlZ1ZIPA3bgkmUp0jV4yo7E8QmhgGqo9EPLZBah0GNZFpap4fsWgxjY7vaEvkFbd9RNzSg7ztmZ5LRDqQp810DVLkDqTo7oioZmXNxxjBLLcTAtC2k6KJbHKSuwvZDJ4pYRlflqSt32qJZNsJrhTzwMS8eZTohWS6zJlLYbSbOS8+aR549/5OvHT9AUTGcLvMWCxMrxtRqnHXAtG3uywHB93MmUc5qxXC4Zmp7T8x7N0ciKjGYY8f0IGHENDQWJqmk4tovpuHz+ck/T1Ex9j7YfCX0HXdVQ1Mv1CTmgqILX6/nfTUP/z6LJv/L8WTT5N5rj+fCzjx9/+7eyb0SZpmRxjGE6RPMFI4LzYYemKhjeHG+2RO0K+qrEna7o+446iUl2W/abHd0AQ93QqQ5JnCEVjVZetqhV06JpGgNg2h52tEA1XRRFYRh6ujLH1CD0A5aRhyYhrSDXfFTLpSormrLAj2a0VUEQTljO5iwmc7rzA7ZacXt3g1BV8iqjbyueHr5QNxl5kfCrb194KgoMy8G2PUwvwrMtWkVDn1zhzOdYtoum6wSLKcfziZcPf0DvGu7uXjF7/YpOkazmEUabEDg2mmlxPicslku6QWBbJu1oUpQDSZIwdh1lmaMr0OYHiixhOgtRGNFtg7TIEEN/qUG9m6LpA57SYJiXzdP5+YXD8UQ3SgrNQe1qQEFRBLpxiVK5gU/XFpTJGbXv2KUVWdsjhbhUIyGQCIRq0I+SohtQNIUyjy9tKldrjsmJYSw4bb/wm3/4e5w/gdUmUUAve+Q4EC2uqIoS0xJszjnSsLj/9sK3Q4Jlufj+lKv5Fc5iydV3b2gNg2AeoHQJV4FKXyZIteHqbkGFQAoVqWnsk4xBU+nanlHVqfqC5LTBDy4v1UL0lGVKWTQIOuo8pywL1ldzdEZcP8CzLeaRQ5WdiXRJZF7EhNnUxRMxpucjdIckb4hClz7PqeuWzfMj1dCT1TlN1yDGkbGr8U0T3zRgHDBUnaYzMKwl4WKK7moopgn0dPETXXaBZGa7Dd04MKoWUjcRdkA7aMRJw8O3F9JqYPH6DZPVglERlHXF8Xzmy8MTnw9HTkXJfr/BtTTmsynCDJiurrHsC5TYMlRCQ+Mq1FhPHEbb4Lmo8XVJmaQoikSxHXrDQhlbosBF2DaPuy2qCuUw0g4jV1GIZyrEZcUujlFpMWWLHDrE0NGmObJIsHUo4x19cWQWONy8+R5pBNA2+I6JNsJkcQ39iG1KJusQb+ohixT6DlVoMILGRaBRhpq67anbkXoYKLuBTko8Q0FVQNFV6FqaIkHIAYP6Upvnewg5Ylke86s5fmSh6SpdM9LmHacs55xWoGgIJIamETo6q8DhZmJzt56xvFqgmxaaaqJbNlKzOJ0ytscWI1wyCB05jiiKxnS1ZFA1Hk4VQteJXIvANVhEFqFnMghQTJVKSEIKZLJBUXtUVdAMGUIf6fuczcMXRJfz/PzI0OesFlNC30VTOpoh5zw2mLbGKMFQBac45pScSY9H4qKk7EbiOEbWJU2RkVc1mnlx5Q3DQN91IBS0viZUJKNi4TgaVVlhexF+NGHsoW1GhrGnrWt8XcXQDQzPx5/PaIeKw8s3jOkVqjshy3MOXz9jaCb5MeHbty+kYsA0TJqqRh179vGBpK5RLAN0i8EJiF59x+F45vDxR3xLpcxiVEXFDnwc0fHm9or12+9At4mCKU3TYvkuiqHSVQV5mqCOI0uzR9dh6C+iiK6M2J75J+fegKrpKKpENhVDniF6BX91jarajEWLpWhYvoUXONy8vaOvczQhCWdznElIc07QLJvyuKeualANsvhEmeVojk1Z5JwPB5I45ng8gaLzsj/QDz1lkVwOFigkPbSaQ1WVKHJEUxR0ejZP30jLGsNw8A0T17QIHBtXG7EtG4YO2VY4lsXd9RpNmIiq52Z2jaPr9E2B6VigCNzZFMM0aJIdVZXgrW4Y5MDu8SvIHkXTKIqC4rRHH1tUoV4a0oaWIj6QVy1/POYMckDTFaQY8D2b21e3uJZCn5zI9ns6CZo6st8f6ZIMhE7TVhiiY2ErmOrA7cRAtxVUUyfNSk5pTYegbVvmoUYYuLTtgFRNmqLGcVyyskHRPeq6QwwjjmmiOhZZXVL1Bd/2D3zdPfC0+8Jvnz7zVJxo6Zh6Fov5lPliQTEMZFVJ09a8fP4jU6tjGlq40wXudMKIRBOgmQZD22Do8LLZ8+XbnquJztj1DGPH192JRrMIHJXb64i337+lqAeGvKBINhiGQjvC2EJdNYSLOcbERdMF5TnB8HWKKkehpy9L2qq8tPDJnr7OEH1BGp9R/SmKZVGeXkCF7flIIQXu1WvGcSDyLKSiMfYdbZFjGTqepWFal6XUdL6AJoOxQyoawyCpmpamaRi6gWGEuu0ZpcQyDRqpIITgtH9me9oxqJIkj5GqpFV1jkVF1TYkVUXS1LRCRXc9es0CzbrAI20Pyws4n3OEYTKOKqMdMru6RiBRhUK0XBF6Ll1ZMA0C+rpCGyu0oWS7ecGbrplNl1jFnmkU4q3u2A42nWpghROOnaBJY/rkzPkU8+1xx3zug65hyo6yyJkuAnq1A21AET3J/gVdtyjOOUE0w51EdGPFw7d7ul5DtwMuxYclXddQ9wN111M2l5iOqapkdUPWDliWia8r9G2LblpUVcV0eY3uBWiOR2/aCNNBmCbH3Z7N9pn0nNKVOYfTibyqIPDoDY2Rms3zE0Vy5v7jjzz+8Fs+fv3Aw9OGsmtRHQs/nKOgIVQVJ3Aw3Ql930O6QdUt3OkVX75+QulLbmYBytBzFVl4UUA5aLjRDE038d0AzQo5Vz3JMHIscvz5grG/gO4HOZJ2Lbs44/Btg+UYFGUGhqSoUvxZQDf01E2NZmpIx6HrRxRNkmY5QtOwHIuX3Qk7nDKgcU4y6qalKEq6fsQPHcZhwNQUXFMHKWnKiqpuMDSBabss5hOcSUSVl0g5YrgeEoOuE3TdyND3SCSmGyAUkyBa4AczXNfFjgIUS6A6KqpvI1yHtqsY6hOqqWB4EdJwOeYnXo5H2kHHCH3quqGXOnbgI4YBVVFA09D9GVYUYc2uKIsKXdO5mgYwjmwen5hZkipNCaMpzaliUHT0wCFOU/qx4eHrE8c6pTIleVUjFQkMGBq4gYMhQddB12qq+oRpDhTpnq6pcGyDLM3Iq4J6bInPRzQxYKkg25Zh6BnakaYeaZqaYRzpVZNBteg0m86a0JoRoz0lyXJsP8S1bNp2xHJMsiKhHFri84kq3dDnO/J0z3G74fHbF+4//Mi3T59J0kus1Q5ntLoJVsth+4DVSXwvwg58BiFoxwsEPU0TBlWgeTYvm680VYYXBaCqmKaFaRjo+gX+26Rn5DhgB1PiOCbPC1zLpWthVAxc36ZVBHGaEHkutZC8vV3/3Sz4s9PkX3uElPL/88f/8us//GfH6KmrBtc10BjIdnt2X5+oq57Vf/xPhLMZVCeOz19oGwelAFnWZAYUbUPcVvSuhiwLpkLy7//DXzGdzVHGlrGryJMT28d7jueCaDaFtuAcl+hORFOXaEPF/lzhTaYYpomj9qhCMiomqiro8wTL86jrCtUOaauKm/WKwyHFMGqWd3fs9wllWTG7foXjB6hORJ4m9OWJPKuw/TljscF1dIQRYgdLyvOR7eMDRZJh6ibN4UST55iBj+V66I5PJw3SsuRmohEslzz2Lr3m0O6eeDPVULwJTjQHJA8vn79//PRP/2tedcI0TDxLpR06JlbLkMdo0S2N6rGYBsihR9dUDNNAN3qSfMc2GXnatSRPz6SfDhh9iOxy0v1vuZrbaHZEV5fsD0fKNOOc5ST1QKW4FFLD9GfMopDr5YzFakGTxfiuyyktuT9WBDdvOW83MI7MVnOKRkEoPXc3a2zP5SZSCconrgKHueXRdgNt71E9b6mPnxmVlkYo/Hg6U1UX65twAlrhMWo+rbBpO8EwqKRJTtk3WI4kT/bEj5+RDMzmEfbiCn8+4z/81S95NdHxx4zz/Y88Pjwx+/4vWL2+o+4DHuKOnpa6qHDCGcV2h6cpSN2glgJHHYgsBcW0qeMa9VDSNjr9YkXvdtTpPWnX4IQKZf3Ct4+/wbMMfvrmexamiSMblp6JGDqqU0KjRezjgt3Xb+x2MXFnUkuNLkswTYuhvmzjz1nBVRQQhiHe6hW7zRENG8+7ZV8NtLSMY8zL0ycmkYnlOQSLNU2ZovUFP//FL3k8ZpTxkc3jE/NpSHo4ULUtrmWy9DxupzNu7m65efsKLI/p+ors6SMYNl9eTiSGg7j598RfJfpZJdIKWFT0zkg1jvjLO56+fsW3ejBBUyRX8xlN1dLECbbrMlYFgy3Y7e9Z+RG+NaWvM1TDAqmg9TF9kWJFN0hF4/jwid6ekuMhpMB1XdI4I7RHTk8feNrs2ZxKaDNkX9P1KnVeM5YNfZEwjzyWV28xLI/Xr5YEoYXuRMRpwmIWkr58YrZeUx5eMPyQq+s7jvcf0C2f1dUN212MJmA471HHDvfqFVndc37a8uGHH3lMW/6weaFFoqgKpu/juh7paOLbJn7g4S1fsVzMmQcOum3z89dzZHrPfdpw+9O/BkYctSXPMrT5FapQsF2XbhgZzl9R2jOde8OuUnj4/MB8OqeuctKyJJhMKXcv5EWNsEOGqqGIY3Q5UhY5S1tBFkcmr13+8j/+D1hKSLx5ZPPhA8fzQDRf83pqk5y3PL1ssYRk6RlUHZx2e24DG9FL9pst5mQCQqEaGhqh02omvi3ohx5n+Yq6SPF9F9MP0dWUKn/BmnxH31Y06RnoUN2Atmh5+rxlUE2OxzO75x3WbI7uuMTbLf2fREV1rPE1iKYzvOUKQ2isf/IWqj2nU4+3+CldXmLoKptTgTddcvXuPfU55tPmhHH7ittX1yxDl/Z84vc/fCXpOpbXPrKLsUWJpkkUWur8xP7lgdXNHZbrcni8RygS3XAYhYaiGJziM2XREq6XFEWGqup895OfUhYbHr/8Dj9yeXP3M/bfNpw+P3PcpTiuRVfm6LaPOjTU5y27uCG4ekOTp5yen2mrgTCMuHnzhnfv35GWNXlyYra6oUgrHr58YffwBdOxWV6/QtVUFFVlqDIcS8edXqEYDm1/cQepCLrDHtuxMC0f3zBQNBM7DEjqnHoc8SKXLj9gzFcQrciOL8Rf/4VzVdMoHlFgIXWF2+sFzfYL8+s7mL/l3btf0LSCYuwo6zP5eYttO1jCxlEEdV1iGQZdesLWNBTHYTFf4cgM0R1gMmGbVIwvD4ikRg/XKIqP02mMx4R+bEjKF7ImJnuJ6VtBN+2ZvF7TPe9x3QjTn1DkPcbqZ5RVy+75ia46E+c9T89bDqcTcgBfg07X8cKQdPeM3ueEvocfzjENjeL5ATswWb/+HlWTSGOg8CIOhcBuGpLTAX/1muf7Z0xdcHX7FkNRSU8n+jLnfIiZrd/Tj4IseUCxLPzpFF1TWC8DbC+gLHMsx0Yqkmy7R0fl3S/+Emc6QTE1todHVle3aENFmycYkzXHzYZBs/jv+wwpG0oxEngabn1Cs2FsGhQ0ul4nsC0C3yX+/A25O+Cs3vF5kzKeH/CblofHA+9/vuT8/MD1egqyY6hiOsVC9yf4loJQbXot5LjZYtsGiubQYzEoFnWao48j3TlmECrnuERRNGxj5PRyjz8NOGQ1o9Coe0GfZ3z35g1Xdz+l1ybUQpCnW5zhhKNWeL5J1pS4vge2j2aaeJMJXblDMz26sufHH+9xXZuqrnl8euQhr7Gu3vD+Fz/leumziiYMtU6RCbrsGUNMcJYum9OGxjZJRcRkNmGqlDw9PTC4E0LTRow9dZESMVAmGbpjMTMr8u0jg2qCvySchPT5EV2pOW9fGPTwAnPcPOJd3yIVwXDaIOuO7rwnMDXKzZaml6jehKGtGYSkKHPkKLAsm6oVbHcHdpstI5eDahTNma9uCAKf8nxAc0N6oRNNAl7uH5nf3aFbGlNXJTufQFFo+x5djMTnDF03GXQHqQiS3RONMHHCiCbLqPIEw/YQ9oRoMacaejANpKFjGhpNdiTfbDDyI3eupG0kpXPNzbu3rJYRPQrmZM0hSTBFT6Fo7OuOoe8I3BBH1RnPHzC0HqXPkbrNuzc32CZQPtM3Oao1QY4+orNpa5X48Iw1HHi5fwRrShLvCB2FlW5SbWO6TmG3PVNUJzpqlKZhG1ec6xEr8GilSqMY+PMrrqceyzCgFiauExCs7kjzAl1VsJyA+x8/oIxw9WpKuLgmjwuaIkdTVVQahvJIXSR8fHyibEfiNOWQnGnR0Q2XoeswDRvHcTD9CF1KAlPD03uc5RsOccrYnGmlys16wUQWRMUj7uqKzpphKyPOWJGpPvbt96TNiYaYRo2IFtccHx4IRM3NzTWNO+ePHz6hZSVhoKPaLv5kgmZpuCb0dQnmFd2o0Q4DbZ5T1RmPX+5RhMvrd7ckeUGvKZhKx+njrzh+/Mx9afGSjiRxDKiYfoTnujieh61JuuyE7wcspxNknRKFFqvrdwjPwZAj14sZSakymUfkx4zT/SP73ZHN5gnFMjEdB2XIcB1JN0pUy0b2A7rSY9uS0PNRdBthe/T1JcYrDZ1OCuqmp60apjOLQ1nhr74jPZ/pywzTENy9u0Y11miodMWJu6uIptXJTwcmSkZ7PGI6EW0x4IQh6dCxO+bMQovdty/snRXbyTuSJKU8vGBZOlIIouU1b9Zz9C6lr0smV1eU2RnaCsfysHQXSzNIH3+4OEo1jSLe8TqQzGcLNEWhL1PKLCXe7TmdMlrVRVMN8jQjlzqjPaWsW05JQtsIDN0gTyrs2RRFk7S9pC8Kzvd/xFVHXNcFyyXLSyJbQ6NFqAq2H6EYLqajMY4tbZWzWE4wTY3A89CMS4Npn59J0oKsGxnMAEUqaEISTObEZYWUI+tA42blE4URqulimSajM+NxFxOfj5d0gjtFm95dGJdIjucTlmdRyl7+chb8H9Y4fKq6lsk0ZP/ygKhHXDPAMizE0OIvZ9RdgWjPLN+/xw7XHF9e+PrxA0iTXXzGtkfy04m8bDEdD10ZsUTPfOoTLa4Z2gbfENjREnSbOj6i9A11nnM6HEnSjG3aoBj2BaegCgz9Eqtqyho/mjCdz6gOB45JAZbD0NRU8sKTKroehKBvKnRVYDouiMt/+K4LQ41r6YSTCWNTYnkejqmjagLZ9eSnA/taYF29uSzm42fyskVXXeokpm5qXKtlfj0lCm4YG1isb7GdiLKoePryDVtX+R//p7/53//fdBHt/09R+eHzH/832ZbYukAfM5A9RVZx/PTI4+dHfm6ovPr5X1GmMfe/e6T74Zn86cS4nLDXSjZpzKatqeqc5umR/+Wvf84stKirDF2MVOmJx68f+dU//DeqsmK+uubLj3/gy/2O7376MxxLJ93c00mFcLmGpkIbGwSSUbORKHRtwdhU6LrB+tUa3XJ4jiJULI6PH7j6/g5MmyTNOJ0f6YVFtH6DbnnEacrm4QlF+UJXnLGVAtef4kY3aKbHy/0jDz/+/vLg/f5HpqNgcXeH6ofkZcN0ElKqFr+SI4ZrM6y/5/MmYW6rHK49bt+/R00KNFVQDz3XszVpkRBOJkSeQ9/c41omivEK4X/H9ljihzZlniB1QMnZ7n7kSztw1L/jV8cNz7+5p34+837uDBIAACAASURBVP7mimr7kXcTiTNz0WyX03lkVCGvc85pyqmWpF1K2Q0Yx2eU27d4nk378JX95hnV8hiEgTAd+ibBn3h4kxlt0/H9+1taGoJAYWLXzGc2C+8GN99jmjWhPSM71gS+j6je0cY7RiSvvp+yO+zI64FaMUjqjoIOaS/YHlLq9Ey+fyaJ95zOWzRgauikZU523tN/+8xD39B8+DX+//w3zNc6t+oG2e5x+EtmpsuhbHGGE6anknYdt0vj8vBWDebMp2lrvLbAcm06zUC4Aaf4nn5Tsd+VfB5z1EijUzvWfkhh9Liv/oLVxGbmG0wsDU9ouGqPbzp0V1dsdwWPzy887WPCxTWv17dk+xPPn0pur+dsX/Yk5cD7twv+6pf/juDqlt/89gfm3y/59pTwbfuB9+9/wcte4ctui9A1FDek0TTGcEo5DhjC4J93MY3h8PHlBGXDodny3WqK1ZaMWUqVlaQiJRBbah6Yvf6e4WWP3H6l/38oe68ey9LsTO/Z3rvjzwmbEZlZWV3VXWxWk0M3JGcGg4F0IWgE6P9Qf0cXupEgYABJHEoEhkOym+xyaSPDx/F2e6+L6FsJ4A/Y2MDGB+z1rbXe53FPOBxKbsMWYfqZcGmRv10y8VImXzXMmw2X337LoCcihBLdXpd898hi+sDXJx6tprFKoE4OyKqMNbT59XLDw6+/42L4BdPVlEJqkVUdzzQQJJ0XI4MwK3g4CMSHFKvfYx4XnA479DoKF32FRzdFOx6R/PCRxd0O1TJYLA5UdU5dxaiGQG4I/OPtO169esX9bz8zHvZ42uQUeYksyxx3DOR3H/jmj/6Au+UOt9N7VrP6fVTPoduWDCbHqPUpcrygirasltdIVYHkCzRZS2pbKLbNriqRTYt1GCGQP9tUdi15uMWIu2xqGJ6c0fRa2LzDry1OHQgCH7kOSdUdspUhGwGaGD2zRWyf+PYzquNzFcf89t3f41y8pkpC6kbg0ObMp48UWUmn37I/hHS7Haha+icTTgYuq90js6dfcxn/hnb8S66bio+Le3xN5fT4FXFbcPP+ln/47h1FluG7LpWkMuq4tIpDVmUcfftLZM1ELg6cdjtoXoeiaWibCs1wkZoYqe1Rigbe4ASqJdG6wT37kvXykTKtWX/+iXy3QNf6XJz6FKXCMOgz1g0wPYyjc8KjPdvDgVLTyaOQcLdjGzYEZo2qSkSrJV4g4788wdD7lOkn5vM5h7jkabHi9vNHpLLifrPn9j//Z47ffMm/+fd/wZGtomcrPv74W8xkSLt4j3J5ijI5pqlyAlcnXGsUlUQTlsRxQVMVWAMfigJDyqEROR71iJMDI8dAETTi6Ufe3v6GbHbNn/x3f8blqUPk2fyURJjZHlVv8d98i9xU3P/496zWMy4uvyIXJGaf71lsN8R5RaIIWILAY6OiDYbczHa8//EKWbc4yBJz2UKTTcKi4fb7HynzjCwOUYQW1zTRFBlNM0CU6fkBnm4wTBQCeU9r2fTHE3qujXVxjjcaoDsGklSTHbYkZsA6PyU96/Pj2x/ZpjX9Xh/aksvzU0K15OPbj9RbOB6/xrYs5CZHbEvkQEa3bbabPY+bglbTGFoWpapSaAqWJLCqDgjLd6hSDkLLarmi3K8gL5D2Bd3RF6iWTpGo5OuEaF7y9LTgYfXEZrfloBa8Dk+4/7Dl/OwE/0iiVocEyDxu5jzM5hRFxdXnO2aPdwhAx7GYRzsuzl9giDWardMmOT1FRI83TOwh/tcX+EbC+FWAc3zEriiIbYc42nD7wxX74Sm15lHKEG4XPKwf6Y4vkIYjHt++4266pKePeNztWC+uQRRQZRFZEvBNhU63g+n6eJ0ugaUS3tyiLEtc7SXBv7IQlQrz5AXu8Ihk/0iaTSmqNbsmIcYgNKCItyyzjHPbp5Zytoc9Lhm6oeGenmHZPup+Rd+r0CavObQOWpjQth73Dwukk9fMQ9A9mY3Y0tFqBuMuqDqCrLPepVSSQ5S17NIKWzFJkpKyLEh2V7RlRpkm7JcL6ixFVlQuLy8QhBrbqXDtluPLr2hykfc/vaP/+g2/+NVfEstD3n9Y8P7DDWkcE4UrfDujytZ0XI1SlKgQMBwTWbPJy5xev4NjBQSnv0dvdIIi5GjBR4JkT+31Uaw+jekiICKVDRfH52wTg6yOEV2BYv/EWnjJyWWfwFdIpnc8re4QmhrPO8EUJOKywvFMdKvB02W+evmCaD9GlGV2SUuv1yEvAopkx+mLExTdo9k8UgQjEk1j/vBIk64gr8najN2nBzYPM/K85FCLpI2IpBvP37LTRzQErp8W5EmErqmYbkApKuSlQlrI7H66pt/rc9Q5oSkzjP6AQNI4ev2G05M+riFhaQJSFZPtlmwXC57u5nidHut9xj5OaMUGw9FJmgpNkbANgyzeURw2lOX+eTJdKySVgdoZ0qjQs/uknzPC/YxGsBi+vsQYjfh4e0fv6IRaKNF1AR2B6W7PwfK4+3zNt184mIM+s6v/G6mJEZoMzetS5D0GtoRlxeT5HXezBR+ebPrj16yfFijbKbalUQguquri+Tl/9kUPSwxI+hnb60fa6ZzTkY3vddg8PiBGEZUAaVFydUjwOl3qJKM/mfB+tqFoREZDicf1W3r9EYLdYRvGOEd9bLuDpsH8+j2e55FFM2xPpM4zFrMHFEnGaRqKCsaOw918zSELUdUMoW14SmcUrYhlWQw6HQyxpe9bjL0OWbrnrO+ziFs2mUD/9BXyVqRMUk4mAWeTDkUacnUQCTwNLSz4cPeZu0XDi4tXSOsb5HiGoH1NtQ5IPr1jPHYYdQdgGfSPPQxDoQiXyL6I3vdZhQJqXTGbRsiyTOD7bB72tLXIyYsReXxHNP1IsrthV5UI3Uv2iyvWhwOoNr7vUeQtODbbcE8Ri7zu29zvY7qjI2RVwvZOMNsQ06yobAdsmyUtH58+cdhmrHZ7lkWNO+nzz3/9n2jjkCNX52lzwAt6z83p+QM0JSeDHpbj4HY6nJ4fo6o6miUhSypNWTI+OuPk8kt+YUvogcf9fMWPv/lb2D3y+G7H2UtQ2pzFxx/oNscIeo8m27GvIuT0CUtx6b94SdXEfPyn71F1lfn7O2bzJc7X/wbP8SjC+Dm6VdcYqshFt0Ob5uw2ezqBRxVWaIKDZdqomkiv28G1ZOTxJYoss98nHBw4Gft0uv3njdFlhSCWJJmFLkgY1oCqeo5JW7JCLRWU0Zpm+8huG7HZ7ihbCWfps9pukMXnyHCVJazaFtPxQFgjyyqGf0xUyUSbJV5Ro1slrtLFtD3qUuBplTGwnw2WvmmgiAIyNUm5Zn0/I28VXK9PW8Pth0/4ns1yeccP0RpdEzg7mfDqF3/AV3/459ieQa/J8awe6+2Bk9dv6A0nbNc74iimTfdsww2yaQu//e6n/7h9vCerWkaDDqubT+TrLZbpYugmQa+L5Vssd2uk+sC/lgQMu+TT95+Zbx94Wj/y7qd3yIrA5unxOaLY1M/WNkfjy5/9DKc7Zv5ww1HH4uziFYLRYXv/mTaLmD08sF5veXu34nG1xzIMbNfleDyhDNdIdY2l6wxOzrB0k9nHjxzyEt12mM/n3O8jFFFkkyQkdUMLNG2DbliYpoGpSdiGwrjn4ZoKo8kEXdPQhYyOAbKs0rUlaBI+PB744WDz+ve/Qfdkrq4XtHHDfrGkqUqqfEtw0uHP/+TfotYWaS3geBlZWnC/XDL99OH/s2ny/xvP+bvf/PqvyiylykPSaE2v20GSVWwvwHM6xIsDhutQtQJ+Z0R7SDlEO9JAwRgGyJZFGkVsbq8Z2hqvLo7oDwfIskJb5bR1QZklaKqGJGscDjGLpym6LPPi5QWyKBAeQkzHp04TmiikOBwQ6poir2nKElWEnmvx4uIYpa2flW2qQuBqCKJMnJTYXp/ttuTii0s+/MPfIQk1vufRG07wegNEQeAQxkiUCFWJKOvIsobrOORJQrqYYogSnmvj9rpMeh28NOLq3Uc01UHyn8Gq8XKBKYl89eYSBIGOa5JGO1TfZLOcUSQ7Vvstri+htntMYUfv6CV2cEl0KKCGKs8RFQmxjqiTFfvNmnXb4adrFXkrYaoWpydDer6IVc04G3co8pq8aJjP1tzeT5mtDiStQqU8T4E8XcGxHfZJjq6pWKqCaHq0ps3t++8Qypg63eM4z7DPLItpFOgNeqiaAELNjx8+4I58Bp7B4fGO7cMOQTCp4oYqLZ6tDukWjQhdbCmyjDROEeqK9XxGYMvUgkaSP8PZsrwgDPdUZU7fCuh3hnimze+9OGfSMVHJ6TkCSjZDJkQZ9IjlIRgehm3TKC11XaEbBorYku63PG0O+IM+Yplg9fq03oRc9Lj5dM8P//jPvP045SmCylSRlZDhyCKdfsbTJWxFoKsIhLsdxWaOUrf4bg9J0Fk8bbj9eMX0cU6/N6Q/PkFMQhZ3tyyWW6JDyHg4QEDiZNjDHp/hDyc8PTzR7Y/pDYb0+kNefXHO0XFA4OjYls7Z5Tnjk3PyNOLp+jNZFDE4u+CwP1BnKR3Pg7ZFMW3G/T4SDXfTFWGcgwiea9IbTsh2K2hK1GDIvrHYHyI2TzP8wKVKV3S6LbKY8rhr6H/xFVEcYwUB4XZJvr1HkBpMUSSPYg6HGFUz6PS6JLsts7trNpvDszauKBClCkvTkRUNRbfQ7S6647PKZBaCS+/kjMuLCZO+jW1JROtb1ts1d08zZqs1n777CU2VyVqVvqNQpSmXkwFZ2XA2GXN51KOuGg5JwdPDlGi3wjVUet0evmPgmRqS5uGNT8iSAtcwqaM9x6enmLqJYvmYfhcpjzCKLfL8mvUyI7BcVFSuZjuy1kANjtAtG1moSeIIy9QZDfqYMuzjjNOzC3abLaIgc/rFN3jdHqLYPE8o65I8jqmiJeLuE4qqUTewu35PjcbDwyMPyzVWt0te1RwfjdiFEXmco4oysiJT1Q1CK9GWAn2/j9cPCMucu8WS26tPhKsHVjcfOA0Uvv3lL7GDAU+3t0hpxE8f75HbFkmUODs9xVYlRMVgePoSW2pRxRYn6JKVDbPFjkpySFKB+08fyVZzSjFAkcC2LIooRVYc8lrC8vpIooCt1QjZDNvyqcIVtmEhNSq1oCDKMo7r0dYNuqGT5SWdoxOMPCWdPbE7xLSCiBt0GJ+eETjnxIvnqdPN1RXb2Yz145TF/S2+3+FP/uxP6R6f8un9NdEmYuxbzK4+YDg6ni0h5jPsjkf/aEIeR2RxSFPmbMIUpa2p6hqv28fv9tEUFVGSsSwTQzdpG4Hles2g10ErBJK7Bb93ecpXby6ot3OKTUSWgSJLeEEP1zZZXL/j6X6KZfvUkslqOiOOImpRwXI8upMz/MkrSkGlSBLaViDaRcynD8zXe7onx2TzHZKo8fR4TzA+Ig33pGlGnufITY1QV1AWtFWJWJUYogRlhYaILitomoGuGyiGgaJbNC2IqkYUR4RhSCia5IgIxYGqaaiqkjJLMUydznCM5np4fof+IKARSgRRxTQ7dLwOZRqRly1pnOFYGl3fpcgiDtMbPn73jxyylODoBEVT2a8XbKZT9vucUvE5/+L3kcqcLJyThUvqcE2ZHcibHFUUMWQZQVIYTYZktUahDnGOXpJlFavZkkOcE6cV9++/Q20LDFmk43c4OxoxcE1ssSFdLyDP6do6/SDAVBQ8z6epBepWoJED8EZUhoFKiy+3vPv+La0AvdGAStBogO1uS1aUtLKFFxyRSSaJqJJsZyTbGeNXXyEqGrL0HFtVFAXbsRCpnk1tuoZ1NEGQWzbVHrsXoOkGPdtiNbunLmtEw6coSuIiplgvUUTQ2oo0CmmKCldsEESJz4eGYn+gL5sY3hEP+5a8bInDmP18Q56BoypEccRgoDLwFcTigC6VNE1FK4BiOMi6+2yEMEwkzaJqRZaPzyYcsa2RyozVakPTCkjAz968RGlKTEWm1zuiKWVWV1dorcAf/4f/Bv0X3/K/fndFKvrkucLtzTWarrIPd1w/fqTIUrq2g6opGJaNoiqk6XOstW5VdM1B03XKumC9P/B4/4QsiBwP+4w9j45jMRr6CILINooRlZK6adC8Dvukwvd8wipntXtkutihaTamoUKbUBQN+X6DJECRHDieDLBtk7YpKcqSw/5AuN88bxuIJTYxQrYlWsxZTJdIkgyiRF1VhOs1++WWMK+RLYeirJ6ZFq6P4XcpBZnlZosl/06lLajsspa8bokOB2zbQ6tTbNvi6PySju9SZClHL15g2Db9QYdOv4trG7RVRZ5XICgEroUuCyymc+p4R0eH6WJFlaakRYnf6SMoJggCTVlQZjm66aFqGmWVUTd7XN/HDyZYdYVpyKhqjWWZNKJI09aEywWaUNHkIWc/+xlZWTL79JZaEEjLig4plvM7YL4mYJoe3f4Iz7VJwy2f7yMkwUGqRYrVjK5toGg2im6ShUt+9bMTjiYvWd/tef/3H5hfbYjShsmbMapl8nA7534dEys606ymEWVsx6Xb8Rn7FrKmcnx6ymQ8ZHg0RJB1RKPFtHPCzSPZZoaYpXRthX7gcHY+ZhB4WJpJMJigKCKmoRHvt5hCSdrKVIgkRUkriNRVSdPWpEVFjYLt+pimTi/weZjO6fkGi0PGch2iayZ1K7G6vyMotkiWjRgMgWf48np1xeN6xT+9veOsL/OrUxu1zZGpWCQ1evcUUSixO310O+Cw2XDz4T0PN5+xXI8sr9CoqeqWz9fXPNw+Mhm9pDM65mk35+zrl2x2c6L7z2SZQKVNuJklbDdr6lZE0W3yLEWSZJpWot9zsR0XscqYjMYcHb+iqwj0XIeuIRNHB0pjwNXHO0hDpo9PbBZPrLcx29WOxfUNdRzx8vINr199ga/I6G2FIYuICJi6TpnnuLrKcr7AVmVMw0BTZHRVQxZl0iTBMIdUUYxU1AyHQ0qlw3/9L98hKwqDjsNPv/5HtvN7er0+omwgCi15nPBwe0+yWDAY91GtZzCwIkNZVtSiQax0eQxFDEnA+p2Z8eRoTFVkbHY7kv2aZL9CUxXGwy6epTDqOrx4cYpt6ZRpyOLxlrvrK9q6pBMENHlKvJ6ShQfCMKWRDERZp6x/9948RpQV0rRgeX/N4RDRIqHrBt1uD8dxcS0TSxFxdRXL0HENHVkQyJNnBorn+dRFTprmIIisZlNcVUFWbYqyRBahRsIzdVQRbNPAMCwmkwmuAlQ5cRITxwmz6ZSmKkGQoS7wNRVbkfAcE93QQZSId1uc3hBvcMxgOEaWFYosJYtiptN7doc98X7HYbWgLHKKokCoW6o8JdvtEUWQFRnallZqmc8XxPGBb37/97DdDkVbEFUh3//Tb9imGRevL7AVgeV8yXy5pakqJsMux2fnNG2L1lZMuh6KJGLqJmJToogij48zSsUnFU0CU0drcl5Nhrh+QN+x6Tg2b16/QUYi3e3p+R6bbcjjdM46jEmLnG2aYWoarfjMSarbFknRKOsG03ZwXIe2zjE0CUVV8IIOBiWeWqJRYGkCtuvS7Qc8LBbcLdeoto3Teb5XxPuIcLtmF+6QbIvB+Bzqhraqcf0ehmWRZDk3nz7x7/7tX/5P/+Kmyf/5//ztXzmuT16k6GKJa1s0CAS9AXVeICxj0tmOVlDY1wWpmiGPLdrAopJk8iRhfv+AQc3pICBLEwbDIZ7rsHy6eS4665J0t8QxDJSmwLc0jk/GuJ0R6+WMIivZbvasnmbUcYSuSFiWiRd4vDg94nQU4AZd0qTg5uMdhiSR7jY83d+TNy3ewKffPQHFozMIuH3/Dt3scD9fE1ctR8cneJ0uTQtlvKUqWkoURKBtQGlrDMPE8x1OLi8Yn5wgFQXxfMb6ECGJInfTOY+zOUPTQM0ySsvFHB5jyi3h/Irl8pq4LAg0GcNU6PoObRriOl0ko4ck2+yma6qsIS9KWsMgjeZs7z+w2FcU7YBi3hLODviKyvGgRxvdc9b5HTRwfyDD4Kcf37PbHxAUneFgCGWOa5mopsc+LfE8j9cXl3iui2EY2GXC1y9OeHPxAl2WSQ571osZUrlms12TlznDns7p5YD7DELrkrjIsG2XpICPP4bcP0qItUG2eqASQ0rNgsMN6f4ACGTRgflqx3a7oR9YGKZDnBXkWUaahRRZzpER4DoefUWh59m8+fZXmK5NGk1xjQhjMMa5+GO+//GB3XyL7/vkmsY+TTlMb9DrnKRs0Dt9hsdjNMtCMiyiNOe777/j7Yf3rLOSylGxBxKDsYYoZ7hqxdPnnzgaDpkEHsvHWx4epjRWn+PzLxk4Do8399xe3eB3etiSSHcwZn73yOx+SpgULFc7NmHCie9wcfGCwXBEpz/iaDKm0w0YnF3wxdc/58XLCxxTot9zuHh1wYvzU4LAp422zK4/IKQRQ9+hSVPqMOJiPOTFZMTx8Sme7SC0Ja8uz+ibAkJdocoynaCDYZnsZg9IiooW9KlFhTh8LrjFJsZwRHIiMkHE/fIbKkNldDxGUGTi/YqkqBmev0GNNjRVzW53oDsY4/sO0WZDvAo5xCGGZVPRUFKj6ToiDU3TkLcSmj9hg8X1bI/aZnhqzsPjA7kIhtzw9uNHZF3n88fPjC0ByoogsBnZMqNugKLrvDo9RlYkPn26Yfo4JU9i9DJmYMkcnRwzOT7B6/YQmgoz6NLr9aCuGfoearjFNQzqOMQanCCpFrLhI2smdasQbiru7nakpUEhDqgFh128Zb16QpEgsA36nvN8gapqjidjzo6GvP/heyqzj+r1mRydIggtQp1TlQVNVdHGK6rHHygWT2wenqiqlko22YYZm6Jivj+gqhq27ZDGB1TNQLddRFUiTEs2+wP9zpCzly+QTZ11kvKw2vHj+3s+vrviSz9jGBgcHZ/zcL/msN4TbncIdYsuy/T6AzqmgaFI+K6LaVi0Wc5ml/KwiNkWKrukITwkqG2FpQgMT1/S7Q/xPBtZMajTlP3mQNFo7BYr4vkTWVYjywbtYUG5O9DmEaYRIOsOZS3gWCZRFGHZHn7QBVFEURTG3QDdfFa1doMO52df0BYiZZLRJiGzpyeunpY8rdcIpseLX/0ZZ7//LX/453+CJMKk36XX7dDkCaICbb5i3FXxhmMazeTu7o4iqyhricMhxPE8HENHUHV8t8MhDDkcQuJwjyiJtG1B3C5RzQN2K3EZjPji6BzHDnj64T1mcEpVFGiyCIjMZjOWixVp2ZLnJYtNzHdvr7md78lqCcN06I5f0Moaqm5y/eEdjmYQrjIW8wfCzZTj83MmvQGqIBBHO45fndOmKVVVECUJSZ4j0eDqKqoAVVFQ1i1ZHKO0DZZh4g4meJMzqt0SSWqp8oSmackkibvpnEqAwvKI9wdUWSAIXNqmRpZkhuevGA5PaJsChJhttGYflbSN+hzHyTKKskYzNRSxpkgibj7fstmuSMoKtz/g7HTIfrXg89uP3P30gcfc5vQP/1t000IrD3C4g/1nsiIiLPcIskAjSYyOjxiMx4iWyb4xaMwhyu/Oxv31NQ/3j2hiC01FmSYcDTqcn50RGBpPNzdoosBFP6Atctq8Rq0FqEBqFfxOgG3JyGVFVTng+AhVhCyICMmeXZiSlwKj0wFWr8c+DQmjBFnSMXodYstC6dhUmxlllnB88ZooSVEUDU030FSZuiqRBDB0GdHWKU2VZRnR+g1JGaFILQMtR9Vk4iijEnXWYcTVakmR7hBlEc8waNIYq82Jt3t2ix3hIuRsfI6u+zw+rUEUsWyfdB+RrFccnRyz2B4YOBInXZF0PUcKV3Q6MnavT60NMNwBVd1SFBX7Q0qWVoT7A9PbzwhVge+YTB+nyIJAz3d4dX7E5cmI4+MxF2++wTF8lCilzQr6XsBBDVhmAv/H//I/E5cNZVoi1QVHwy7Xtz9wbOn0VBUhT1mFMVGSYzsBQaeDrHvEcY7ne/QGPZoyJa9a4izn+uoDm2jLOgvR+j6joc8+3pKma9K0oGoaTDdAEBWmsxlPSUrTDdgsF8Rhzajro6sqogRi29DvuFRlhNrmdAOPeD/n6fYTWRLhmzKe1mA1G5LNPdvlgiKvaCQdzfKI1wv22z00AmleUVc1clPSsTVMr8sub1mGKfs4Z7NPeFxsCLOSpKgoq4bOYAJZxMD36HgO46Nj1osF3Y5FmFZcfPGGPInxHBXXtqjzBN99hjdaboBY5VRphERJr+NAUxEuZyiawuN8/WygKhoMy8G0LARBoC4rVNnAdjtUaUxd1Qw6Y9RWhLZAcV1iQcf0Os/Ri6agRuTT/RxZqAnEiiDo0uuPOT85oV18pK4SDuGeKMwYjI7p98eIgoFijHCdMYHXo4pLos2efVTQCgq7/QHHFvjlN+dEqw2//eu/5W9++4Gf/+ovGA0dqmxKtnviYX7g46GkNWz2Zcug16U3HPHVy3N0y0NzhyRJDbrH/XLB7ecPzG4/8+6ff0u5OWCKBlUpocg2SXzAtH0QHBB05o8bFN1HFmuUtsS2VOqsJBVNdNOmbRqqMkWTBEQB0iwjTgtkSWHQCfAcm6oVWadwfXONY1vEWYnelOx2O1algKCoOLbKfjfHU1bsNkvkNqcrxThiTrjZUbcicm9EVGS0eYIZdBgdHUFzYHH7jmj6QNvUiIhYbo+n+zVZ0fDp00c028QbOtx8/EeKfIls+6hOn4IO71ci680OqoKyrknTFEEU0YUGsS7Zzh7xdZO+LTIMDI67OsOBjWeD1+uCqKBbIuvlLZunz2yWKyhVqkTkYnSJrxn0OgNevPkFF5MBJ+MjAttGFSVUScL3u+i6gSqJiE1NEoXkSULb1vieht8JUE2DpHnevDpM3+PqJb3BCIwu1x8+sZndc9gsOD4eIpg9VEXE0HW26y1peMBxDAx/RJ48P9c96lLs7liv98SiQ2sP0DQNRRYxTR2xzthtljiWTbSe0+u6g2WsEAAAIABJREFU/OKbn3M0GeHZKoFnUWQxV+9+4rvf/IbV7In54yP+4BRd0divV4SbLXmSopouDRpNK5GlBVWR0zYteZqyW22QGvD8Hv3RhJOjY/pBgK3JqDSookCZ5xiKikiDWJVIkoRhWvT7Pfb7HUleY9ku290eW5XRLZvddots6HT8AFEQUGUJAZAlCVVX6XQ7WKpELSm8mxfs0wrf9EnKhh/vZ1RlxajrYVsKm9WMtCh588s/xh9MqMoMQRSI4oi7609URYJhGny+fsdhtUGsKvKsoC5LDE1HKlPizZJ4v0VsKpq2oREF4qKkjHdcXJyiGhqz+R0f3/5E2xScHR9TFy1JuGG93qMoCpO+x3jYp9frYisSjvK8qanbPqJiYGgq0/mcRtTwjy64fPUaJd5x3vXpT05xDZOL0yNsWSbbH9is9swWWw7bA/cPTxR1Q67oYPqEWUpe5CiyjKpptAjPbElFRVY1LK+Dadm0bYMk1FimTlmWz/cuz8TQZWTNRNUNBj2LWXYgEwz224QWEVOzyA87FusNhS7w7Z//a6pK4vOnayzdpipL6rIk3+354z/9o3950+R//0//218laYbtmJiaRBbv0Q2Luq5YTe+5+XDN480DYs/CHLrkVM8KqF2CqGhEyxWbx3tsXSWNY5bzOaZucHpy9AzVmj4xOjpFbFvy8EC2X2ObBoLmsN9F3F7fc3X9CEnISJO4HDhMhh69bkC/P8QUddoadONZofpi3MdTROokYbFY8fCw5LBPaBGYHA+xLRWxqNANi8/TA7/57i2lbHB+fkZgSUjUyJoDok60WaBJEIYHNk93+I6NYhgEwyO8zoDsEOIPLzBdgyrc8dfvvmO+WpBHW6IwZHg0QcwPZIeQ6fSR/W5Hz7dp2udJcJPGbKdT3M6QsoRou0cqMyRFoKpzku2K6rDGUB0efrrn03dXRIsF8WbNUd/hyEvx5Ybbqxs0VacT+BxWC8Sm4XjQp+e7iAgUgoFmuQz7A764fMnL8wtOuj4vB12+OD9jdPkFim6gqRrRfs8P33/Hi75HkmZ8+eY1s7v3fHUxZDg4QYxr5ChkvQlpRQPR0DiUW7579z2zw4L5NiY87KjDHXmcs1zu2OwOzDcxSZJj6DpJmtHt98nykvVmg1S3BJpFFafYokLQCXBHHQaTYxZhzt26Zd/4KFafwHfQRWjKkERTaNsaU5VoJYFUdDh7/QZFEmiFhl245m72iXf3n3j/uOH6MWcbCfg9B9MWUKUSQ1MRqBl2fBxdQ0bAdTucjI54ORqj1CVkER3H5fT0DFeVmd498e7tDdNNyGm/h5BFHFkqPcfi2HfpD4cYqoRlu/TOX+H4AZZto6sKh+0Ky3HwXI/VcoXSlIw6LsNOgK1KyG3Lb354y9X1LWl4wDYM+qbKYDRhdHSM1+3x8mxC35U5OhrS6/r8+P2PPMzXKKaNZjtkSUKaZayXc1rdZrVZUJd7/DenBK9eEIy7FBSk+ynDkzFt3VKmKRcDC6FukWUFhBYEmN0/Iggti2zHcnWLbIk0gIqIqllUrUBawLY0+PGnj9y9f0syfcvoaER/MuHiaIilVvg9j0ySCExw5BpPUzAUAQ0Bw7IQqoY0PPDbHz6x3cdUacSpKzPy1GdYsRNw/voLRFHG9jz6nefucmDapLMpchiiSzKa16XVDGhF6qxA84Zobgfb62M2Nt3K5kQ7YnvYsDvcYog5A1vGN1TK39mPShR818GRWoajIfv1Eqr8udjRTeqqJI8OtJJCvZtzeHjk1//X3zN92NN98TXO5ATBcKgk0OQWJJ0oSZk9PZGEOfE+pK0boiTG8nxevrrE9mym+w2/+XTF2x9+4vHDZ86PTP7Dn37B9X3M+5/uEOMQy+kyf1pQ5xlVEqPRYhkKjmlg+H32h4x3j1vWlU7aqjiORxZFTFwLW1cxkRDCECkJaQqBcDZjdXfDaraiLmUef/qBqx8/UiQCs+sFi6cdUlthUFKhU9UKhmXRChJoOq0o0ut0sBSZYr1AbBvc4Yha1REFmZ5lo1sBomxgGvbzdEQwWG73xGVFKpvMMokfr54wFJGjvs/FyxcINNi2QLp9wvM8Wk0lzEsaQaAXuGi6gaooJFFK0zbYmkS0WtDIGkUSs14vkRS4OB9x8SLgm69OMayGw/KOYjfn4me/wOie0jYC2W7NYbdjtz+QZCWz6ZqPH29JkoK01UjiBEmz6F78nE7Qo6pqojQnzjL2j/coYkudZeTxmnE/4ORszKtvvuGwWNDxLC4vT6nDNVEUk+cFkiTTCkBdMwp8AtvE6/Q5++qXHBYPqFT4wwm9i0vi1SNyW5OkGY0gsKha7mZzGtVAFKHVTOIkwczmhLvnyJoggiTK7OI9srrnfnbF9d0Ux3FJsy2H9RPrTYxs6BR5ysPnT9iqRN1KLBcLBsfH9H2T2af33F3dcBtqmOd/xGKT0O0FWE1LkjccVlum83vSZM8uSalFEdl2MPtjrqYRu1hAQkZAANHg/sOPPN1e82LcRUwjzo8GXE4GnI+GHFYLeqZK1zbpdAKy9ZrtJiIOE9SixK5K5LbF6eoEkwAn0FHFBt02iaMDqqxRVhXTpylX10/4roHV6+CfTBB0hfliijvRkZMNHe35Xzc5OWO5WGBqIof1/FkfbVnPHDFaWipkpabxJLbZI8eTASO/y25/hSwpKP6YpJQoy4rr5YKqKbF0DUfT0Kiowj1xVHBIW84v3zDqjVivdnT9Pr6hcthsiA45TVmy2+7JVkteDAKa2R2OUHA8ktAHHpIzBrVPuAsJ9yFVrXJ7N0OoCjRJ5v7zR1xDxTQMmjxlGNi8Oh3x6vKYwHMwDR2v3yc4PkVSHDzTRVVMmrTiMJ2jNdDEEWcdl5+/OMFpMy48gwvfgXRHniXoiorsPMeZ4zRnMJ6gWS6aqtANPJq6IugP0E2Vos15PGx5EiWCUQ89zljeXXN9dYPnuSimiamrmIbHvjBQTAvTdUmKlGS5YDQc4JgaUXRg2OtyMhmjaiLTmx9osy3xbo1QF4z6PQY9lzbbkCw/oDkGqTpENrvs9xFxnFIWJVILYisi1DVVuONEr8kUmw+LjJvlHknRWR9iwiQnyZ+NWJpm0jl6gWuaeFJN33OxLRdTM7E0GcdScQbHWK5HEiVEhxWnR13y5Q2KKGK5LoqmYzsGmiYhqwZlJRLttohtTVbCfL5g4hlsw5SyLJFVHUH9HSuubNBUE8f0ybZbxCxGNS2kzgBsH8f1SPIS0w9o6/bZ0Dc+IlmtCG+v8CandIIOuiQx+/APrOdPrA4HkiTi9OSUbtDD93uoqkNTS1iKSnE4sI8rbmZrPLFBVWR++e2XuNKezff/havPt8jHL/jL//7fYxgFT7efmV/fc7WMmTUKmmXjei5ffvkVvf6IOCt5XDxbgu4f7vj46S1ZvIc0pgpjyjRHU1RW+5j311O6nQnr6T2jgYs/6KKrGlItIeRQJmtESaKIc8hSorx6tt0ooAo1aV7g6iqGJFCVOWEcU+Q5/a5PLWqsNzuKPOPk6Jj3n28pZZ2ObRJu12R5QVaL6NUBkwqnFxDlCSeOxEBJWa72zNYZim1y87TAMWGftTiBS8+R6AUG/b5NZ3SB07ugriXyqKaIG8ZnE4KOg6A0eL7B7dvfkpctXvdnPKzg5voeQdHJs4wwimgkhSoOkdqG3//ijEHf5pdfD/n2mwteXxxxdnmO5Rjouki+33Pz9ife/8PfcvXumtntjJPjV3zxi3/F6fnXDLp9VFlhOO7zF99+jdrmdHpDbC+g7zmM+n1efPMtnuNjGRaW5WBZFnVRMnuaUqQ5tiZj6BqqraCYKuFuitSEiM4QVXdYrTdEyzlFGqLbPpqmYlgOTdMSH7Z4XQ93OObiF3+EXAsYmoHd62M4EvHyE3Elk7YugiRSVwV93yUJD2RZjus5OKaObeu8efMG1zbZr+cIZcR6/sBqNqcoG9q2pshyBievKdOIcPFAmmSYjo/idEjyBknWyNOEPImI1iv2szlhmFDWIpKsICOSpekzY46GPE2RBfBNDcc0UUSBMs8QZIVhv48gq2y2O2zHp60bhLbGNG26gc/i6Z48ifAsh3i7QW8rLNPEdnwUzaBtWhw3wPT6yG6fi9d/wGDyBbFkYxsOruk8265U8H2TTtdDUWVURUJXIQtX/Pa3/8RqMcO2LWzHRdYF4mzDYbWGVkZsoeN7tPGB/WrJ56sbzEbGHQ6oJBnNNLBNnbPLM+q6JTpsEKTnQcDVu1tUSUXVZIS2xTY1TEVmOOgjyxqO3LB6vMPpjTB7J2RxzGG1ZDefMuh0GXZ79DSRy2EfQ1E4HQ/pGjrpcsHVh2tW24h0n9BTDXzLQSxTepoGrYSoapR1TZTnlEjU7TPHRBBFkjxH001ERaXX7xOlBaIo4uric7OirHHlGtPU0W0boW2xxISWhLuoYbPYo0kCWZgiSepz/W7A+ddfc/HiS3ZJzXY+w7EtNqsV//Vv/ob/+D/+D//ypsnf/v3f/ZVt24iyTGAppIcNy/mUx7tb7m5uWMchnZ+9xD4e8uPVZ/yuTx6vMdIFeRTz9LTisJyRJglhmLCYLxHblpOTY0aDEU1ZI8oqltdHkBQMy6VoRKbTDT/9+J48ChlbKieuSaDI2LpOWgmkcYYVDEnCgsDy8AKPfrdLuVjTxjGaLNPvd3lxdsb56RG61hLtlhRxhm1ruF6AqGjM44IfP93jDMZYuoxtyJhqiVDGZFlBS4ttaJRFTh6n6JZLWeRYXoc0SrG6Y7LtGiFLuV/v+H85e49lS9bDzG6l9277vY8rfy0uL0CKZFNidGug6A5FaKCBFKFBjzSQHoMPogfQTBorWmKDYhMkQIDAtVV1q44/Z3uX3qcGBy/QeoCcZA7yj+//vrUyBHbRAbOOCdcP2JpEU+Ucm47TV8+ZjgP8/oCmbNm9/4DTdQSnL6kaQNXIypx9VZBVJXleYth9/u9/vOLj2yWLuzUP15d8cnbBX/zZCUM9x9MluiRGbVss00QC+rbOpO9TpBnLtOWYZCiSzMl0xpvTE6aOwcR3sS2bWtHpbJ+2KFmt1qRxSN/S6I9GnD5/hmdKSGXKwNMZjc7pypTt3RI/OOc3P8yJWhlZTtF1KOuMKI55mO841BqPx5LlLuUQxqzCnLzpSPKSXRyj6yqe75NEOaaqkecFTdPiOQ5GYDP+8g2WJmHpJsukZPbygubwgK4JjM6f4Y8DknTPNs6wPQ9FM5B0C88PEISG+9UDUXPkn377n3h7d8fWmqJ/9m/59NPPeTbQifcLRCoUWcFUJXq+w255z+bxji5OeDYdQhoS7nZ4fp+TT36GLGlsr295+917yrLDsSxOeg7PTme8OT/hsy++ZDCbYjsWtmXSNSXKH0FcTZ4h05JsVhyuLnH8Cdluy8P7b1mvNvQnZ/T6Q6ymQG5q4qxgnxZMhkOE5ICtSRiqjAJYtsvr1+dYUsNhcU8aRVSCwumbT1lt1jR1gdufENcdxzil6RqM0QjZEiiLnPff/o7jT7/h1XmA7bs0bYtc5ASSiKSYqIrC4+0NZfYElJu9eIY69Li6+pGLl+ekokGT1pi6jqLoLHOR5XrHMUyIwz11uObTF2d8/uYF08BEa2JEWaJuK6byFjOLEMuKqpYJhucc90fW6x3v318jNzVfnY85DxRezwJOpiMM1+Pzr3+BKrQEjkHPsRGbCjHe0sUplu3Re/EZajBANl0U3aBNQ2RZRtZ0RASktsVyhnjukHHPJSCiyZYIdYwhwSaKWccFRm/M6cXzp5qyqRAMh2imgappiLZHVjZIioooCAjpFqGIaGWLtNUwRzMaa4DhmJRVRdQIDEZjJNViswu5u7tn/riiKioM0yGvSk5evKDnD6jLiqvbG64fFmw+XqJKcPLmgr/8V/+KwOxRZjmj0Yhj3FKEEcf1lp77VCMNHBetN2URN+yzlrwVqbIUz3WQ6gopOTJ1Ha7/8A3iZsHQEFEEAVWzoIjxvADP9ZDFDlsWGA8HOIpCk2XklcTqAI/rgvU2ocxyVEEEwyZOUuqqZjAe47Q5rq4h5ilCU2KJArIowB9/3pVsUYsKg+kZtthQxBHr7RZnNAHP42//9/8N0zB5fXGOpgiQHTidBuhiSdt2dIqM13PQNZ0kjEjCkMeHexqhZjjoEScFeZVjaRKK0GG7Cs8vpryYTHg5PsPTPcp8g2IXjMYWnjdD0Ty2l5fsNyuW6wOKM+JxdeQQ5uy2O1pRw3R6oJho3gjLHSDLCuFuRZWmuKZFoIOmqIyGHmeTEZ9/+Smz6Rn5oWMUBHz25QukOqU4HnAtHbHrKNuOsm4om5aybRn7Hv3AxzJMRqfnFHWNrXQYiojh9+gUjaJqyESZD/M5v/+XfybOCgqvjwgcw+gpQMmOdIqFqclE0Q7XF6nrOb/99lc8zDeIUsdmcY3RdTSy+aS1fbinTGLu7x4QJA1Zgq+++ARFFqjzJ9W79+lfouke/+H/+D/JOou+N6PNaoQ4pNwfWK53PG6PpGWF7DhElcL17RpJtUnilLYVGI6mhA8fkKuMl+OAn715yXAwZKiIvDqfYssS2WHPfrNltVyiigJlntM3FDQ142xUI5U18RrsvoN34iEpEkkcksYFtaRTlw3b7R7TtKmjiPndHYv5A0bQ53RsI+7uePuPv+N0MubzL74EWWO33SC0NelhS5GG1GWOqhtAhyC0qHKHXm/Zzn+NrKYswx27j7/DcEYY7gmSqHJ/ectyu6Hpavqeg0pHl8dkScz+GGP4Y87OniMVMc0xpCpqkv0WQ1KIjxlpeEQVakxBRmoFBpZEXGsIgwHB+Wska8x2uef920uyOMbpTVnc3tLEewzbf9Imiy2ebTHwLE4nfRSe1LrBYMpxvkJqG2Tdwh6foLszBNlCREJrCvq2yatJnxcTn0CpcYQOq6vIjiuaIqGjw/cc0k7gdjFHlCTyRmA46OP3+hiSgKwZWI6D7jpYWofvB/RMl0Fbc/PNH7i+ukdQlCeDhyrTtCWKY6DYxlMb5/YRXdaQoi2GJCBqOnmdYEodfdsmTVPefrhi/vEtmixiGCaO4yHKJpWgo9k+0uA1u0JmuzkidzWm6/0xKEmoioosLxkbMt8+JBTWlFWUYtouOcrTpFBUQFJRhI6B56CrKmPHRKdBlSXKRuTZ+Qt0TaWqCk5ORgSDEaqkEEXJk/ErDbl595F+4KKJHVUcItChaD75ISTZH5EUDUWoGThPauy75Y4KiThOcPzBk+GjqqGuUCUVocpRsi3j0Yjp688ZTs+h68jDkGy/JkoTTMfDsixs26JWdI55hmKoFGXJT7/9j6web5lvNmRpTj8IcP0BiqQQbTccdwd8XSd8+w3760tUSeLcUbC9Hi9fv6C7/47jd3/AG/i8/Ow1SpuQbD7yu+9+4sMmZ15CfzxiNh0zOTmlaGWOecX2ELI+Jk+hUZehSaCILeHukavlljDLOcZHRqcj4jTj9cuXOHpAke9xPYfAG2CpEiJ77m9v2G1TdFUjPO6JKhj3fYY6nPR9GiQMw0RpawaWgaMpNEXO7nDENg1MVWY0HFOUFT+8f0tRV1iWQxltyY5rVosloqogiiaC5HDcPiLlGVAxG1nsK4GD5POwT7E0nSRJMDQJ37FpsxbDHNM7/ZymE1nOH7Acj7rNCY8bZAWy/Z5kt8e0TPqTCw6lz8d3H6FrsEcz9ss5yX6L2jacTyecnfT44rNTvvj0gufTAF1SkBSTqu44pCWL1ZrHt//Cb377LX/48QFJ8egHI7745BWdoNKfTsjTkOd9lX/zr/+cwNJQNQOpA9syUCQJw9CRO1BkmYHv4boulqYhCR11VXF5t8B1PIS6ZLdYEh4PKLpDIzm4wZSskrj96SO6ZZKlEeFhR1lktG2Dazs4jo3reyiyiOeo9AYOspyRh2tk0+Hh9pGrVUmtDUizFLmr6doOQ5VwrKdgddj3sQwNVZFJ4wPzy+/osj2DwRBFM5EUna6T6fdGdILK4RAiRnPqqsEMZpT1U6Ovrlt28zmrmxui1YZjmJBmJbQdrirTlSWz4QBLkTAVkdl4iKkIqJKAaZhUecb6GHF2eoZm+xyjBN206Pf6GLKAo6oMhyNkBNLjDlVWGQ1GPFx9JEtT9kmBZjp4vRGGqSMh0TNdRP+Evejx0y5ml5Vs11u+evGal68/5fHjjxS7ObJQ4poq3nj2pJ6npI6W+K5Ng0pvNEXXTf7pt7/isNqSxwWaqmJIIkJbkyUJdZojdRKK5+OPhyR5jlA1fPknX9OfBMimybro+Ptf/i03V9ekccH0xTOK5Eh8jOj1B/i+j6LqdG1NYKpMnr3hUIo00Q65TLgY9ZlOz3A1hWp1T7HfEu92HBePpIcDQlEiSTrnL37Oi8mUnqnRtTliWfC43TAKPAaDKb3zN4TRgWB6DpKKKMvIovhksUIgzwum4xFRktAgUdcFA0ujSY5IZY6pSViug8LTRYuqGezTgtUupW2frEt1XaAbHp4zQzbH/OmffM1gMOTxfk562HL/8QN3l+/5n/79v//PD03+0z/+v38jCRJVmeMHLnkS8vHtW6oafvjxI6Wk8+nXn3E4rojrhOD8GdF2zv1PH6lVj4eHFdvHB9bLJaIoMQw8LEVApmM4GjEaPe3QiywjjlIeF2tuP14THY6oXcvIMTmxVKJdSHxM8SybFoGiaZk+P+Pqww2uqWH7Pulhx/zjFbaqozkBk9efYPX6XD8suP1wzWZ54Ljds5iv0A0Vz3WoOkg6g5evX7FZzOmZFf1ApSoOLB4eiA4hiigyHo0RVY0izUh3e5okQZBVlj98z/3NPV1bcGxFPD9AlSXOtArPM8nrlkOU0A1d/IGIp6qUaY2nepz0Rhiag+j51G1H3UFRJ6DIdFVJmqb8w/f3ZAT0hqfUicaz/mf8N19OmYxTTLnEsXRUOlxDR2xaLENGqSt2ux2xaKHYfUzD4PnzF3z1+ReoacjANnA8nyRJUXUTWZQQ4j2BbTIdj/B7A2affU5ga+hSw8XZjLZq6fcGtEVButtiKn3ijcz737+jLBY83F3j+Taq6YDpokgKrmvRSRr7vGOd1myzikNW0gK2aaIaFqZp0bQdhzBhfPIFPcPCEFNsqyEIfHpjH6SMLn8k8DuGJw5hWiCoJpc3V5iGhKRo1ILGmy9/zn6/xTBktvGCD+/+AaVd8slfn2E9O+MXr5/zpZtRHzZk6ZE0OlIX+ZPJQhBY3F7xcP+IYxl8/vKC9d0NnqEzevaGrmrY3d1z2Ma8e3vJD5ePjDSRlycTzl9/wnAwQgj3hHe3KIrOthIpaoEyDhGbDLkpnjgTqoyjq5iaieuM0IWOLIoRmwZNUSA+MgyepkpVlrJdLbFVhcn5M+QqpylyBMNG1XSGsyGmKiJJMoNnL+naltvra3RVwer1qRWTUtY4liV3t1e0dYKjNxjNHi3f45kSTmDTKgpX79/C4o4irzls99x+vMHQdWhFXMfleEg57g5IlY1pjhBlA11S6awBH25X3F9d0usFeKbOf/WXf8qr6QChyvA9C6WrUKnQsg3t+o5tLBAfCizTY705cvn+I12e8ryn8/PPnvHJ5694MXY4mQ3xxjNGZ88wDQ1bbvE1yPMCz9GxTBvv5CXu2Utk00IxdCRVQe4a5K5FlmTaIn+66a5yEKFUdJTpiP64z4lScDjs+Kf5mhAZ3QkYeC6O1HE+8GmqElnXsAcTRNNFMSwWiyVJEmO7HpIkUKVHsk5GUFTk/pSLP/0riv0Dd9fvWTUKpvPEQZCkJ73oYb3BcQJaATpVxguGjMcT8rzi/v6G9dUtlqahigrQYlombatQRgWmarK8X0PdUoRH6qomGJ2QGwHv5nvm8xVFJ3B9+ZFo+cjI0qmSmH6X0/cDyFKstsS2LXTbpchSFFlCc1xUzcTWFBzTJHAMTEXENgxc1yWYnFLkDR8fNlwvdySKTtV0xFlB1bacTyc04Q5TaDH6Q0RFfdrcth2qbuO4Dqpuc3O3ICo7TDfAEir6lspxu+H7X/89YplwNpkwCmzC+7fM+gbBaMD2ELLZrNBskazKWa22XL17h6zK3M0f2ccLTp9Z3O9i9A76vSGzswmzszPyqGViOASOTbLbsny4QZcEDMMjWxxpa4n11SVhmCKbPTx/QNcKNGUGbYfqTmhlh6yVaAURwx9S1i3JboFtaEx6HqfTKSfTMcOTUwYX57x89RLfdTGEmhcvZ+iqiC1UdHlBm8cIVUMtyFie/8R0SlN0TaNnGYzGY0azc85evUFQNbLogGLbyNML8jxns5wTJxHzd9/w9u1bgl6f2+sr5KZEQsQL+k9GFUFANWr24YLb6x/4+3/4kburB7b3l1hdguG5SP6Y9WpLuF3RVSVxljEcDvn00xecnkzwHBNBaFnj8ObTv8RXZfbrA9/801u6RKDXCpRhQrILyfKUpCzpNANj9IzrxyNd0yIbLod9wvORy+nZOUKR4RoqtuPz4uUrnvcdTi2RNtxT5zn58cDd6sAhq0mqFkFSOOYpr8YquqViaDoDe4qi2Khei973aZU+jWJx2B0o0hTBHTMIPNZ3d1Rlial5fPL8K7pDyv7jJUpbI2oWF1/8HCSFLI7ompr9boVQFQhtg0xHf9CjbVskUaAn5+yuPvL4sGJ7yDmbPQPZIKk7tmFIVVXcrzZomoqpKmhtQxpFHA9H4qIhmF7w2bNz8t2axd2c+WJDkZb0LIfomHE4JEiyjWN6tK1OUshY04CTixF+MGS9CvnNr77lm+/e0x/OGPSHZIcd8WGPpmrYpgF1hmeoTPsB8f6p7j/sD7C8HvkuxPF8NMdmdXlL17T4kzGqKJFGe4QyJdut0dqMNlqTHrd0RYhQp0hdjWzYaL0+880aWRQZDUcU3ZO+XJFEVEVGtyxkTUMzDfJOJl2syDY7Ln/8nrysEEQRRRXpz8ZEYYxCeJSYAAAgAElEQVTpONQU6D2HmyhDSEOEcMdhs0TSVPx+QJUeqJMDhmIgyxaaEZCVLTfvPxBujzi9GbL/jJPnb6i7mtvVkbBWacMjZbgijBfUSUx+SKiTjvH5p2xrg13SoLo+/X6PRrG4WuzJ8hxB0RmdXlCFO0wZfF3BsT36gwmd4qBpGp5tYpgOtutTNxVBL2A86KFqOjUyXs/n6t01zTHFH5wh5HsMQ0Q3ZHRNwgtsvMBBk2v0LiTZrVmHJUHg87Da0tQ1iqJStiptJyB2Ar2gjy1UDF2L/mSKH/Q57g9sjgeapqYTBQpBROgERFFEtW0aXacyDBpF43D9B/JsT5Q+8eUMWUKuSrZ3l2yvP9Lv9SnimMWPP7A85oxmJ/j9ANc06AdD6scl+4+PpGFGz58w//Y9V9+845dvF8iGxmjUw+rPSNEoGpFjUhIeQjZhTGCI+JbKYb2mKEs+3tyxXB8pawlT1inTmItZj8lkiuOYzE5f8evf/BM92+D5zz7l8XFLkUfc3NwBNWKZsFqFlJKNo8v4SsNs3OP05BzH9tDEjrjqUEQBQ9VwLYP9doUqQiuI/HRzyzEOqesKQRAZCDv+u88EfncbkrUS08mQ2eRJCf/hfk2cNTSKRaj6JDxZ8saBh6bpKKqOI9UokoA/vkDWXVbzJVGY0Mgau90dyXHB3e01m9WcOoMs0aj1MYdtxHa+wDM92iyniraMfYvz6QnPzqa8vhgyclRMuUOqazTNoK5UZE0n3Gx4vPrIL3/1e25vVxRZwWT6gteffIkrtez2e8qy46tXT20zS9fRdQtdVZ6UxFlElufkWYaqqXRNQ57ERNsN4XbDcfHA/OGB213I6ckJ40FAEuWUjcjHP86so0qhlV2ufvgWRaxBMrl6+wN1nmLoT/y5YDhC1y22m0fmt28Ry3vWjz9RFyF103J5eyDtTArV47BdInYNbZXRNQWyKELXIdQZutyRhls29x8ptvdMxwPcYERWSdw9rFmvt6iKgihKHA8HVFXH0Ew6yaDtJI6HmPnDI5vFAqmpny4nRmPOTk4YeRaerTMZj9EUCddz8B0LlRZDfQqa2qbmGD8Fk25/SiMouJqMKkq0aURXFri2xWQ0RagbZFHCcV3c/pCry0tkw2e125GmOaJhMOiPkEQF2TAxVJmjJHH+868Ji5ZVdOS42/Lv/t1/iz0+pVEVFMdA9QKEuiRPY4r0iGmoDMYnDKZnuH7AIYzYbTP26zVFntGKCpNBjzZLEdoGVddwJjMU16OVnpTQr0anPH/+DLPnIzt9/uE3v+P+w3eItFi+xWo1Z/XwiNi2+MGQs5efIJcxk16A41hUWUy2niPGIcVqi9JJNFlLfCgocFlsY8Qk5PmL10zP3nCMC8azZ/ROXtFzbeokZHV1SVSUDPoBmmsj6RqSptIZNqrtkEUHirLCsCzqqiAvSgRJxtBUZKFlsVggqBZ1VfJq5CHVBfVuSxcdENqGjhZRdqhakV1ek9cih31IckiwDBM/CHDHfTzXRpclVps1h+WCOg1pyoL//n/4H//zQ5O/+/tf/o1s2KiahmPbdE1BGsWIdKiyxLMXLzH7Aa3QUvo+b5cb4kpi/v49tqSwni/IsxxVFvFcl/PZhK8/f8X56Slt01HlCUV04OHylvcfb5jf3kGW0rNshKrEbkpsWeLqfk0gSEz9PqZnIss6w8mANKvQhIbB6Rnrh0cGgwHTl6/xZxPyruP2pw8IRYNnOkwnY8oiZb0/IgkiRRIiqhq9yRmnszHz2ys8dYVj1UhKQZOF3N9uiMMjw8GA0XhKV9X89PYn2iSmRWL/+MDHy0uqtiW3HU5enFLWJUmeEZYVmSChugGGp9LTStosQ6xrnp2cQ5KS06L4Dk2RUiURZBn5fovYVfz48YaVfcGbizOM3S1fzHze9HSmfoKgRviegULD/vgEx433BzbzBev1lkQ02VUKqigzOb1gNjtDKnJ6mohru3QIpIc9o7NzJr5HLwgQ/T5C1/L8Z19hOxaX339P1UJg62iyhKkrtFUFSGRRgt4V1NEBocs4bB+4n29o2o7NZksriKiqgmNZ2KZJYOl4hoEX9Ahcl1YQUEQwXZ84LQh6I55/8jXp/oFpX2IwsBG7kqYp0QMHxRLQkw+I8pq0ycE9Z3dMSKMtaZYjOwF6b4Tc5dxef8PV/Q/86anGf/2LCbMg4M34gkFaUi0WhKs5692OKk9J0hhEmbaumYyGKJLE84szznwd1zIYTE5QRYnN2x9Ia5lkH7O8u+OLUY+ff/kl52++wtIduuUCMS9RTBfz7ILLhyOCPeB2nVLUOXUR0YYLqv2SLs/Id1uEVqdtOwxVRREEyv2GPD4iSBqGaWF1DboscEhzLMfn8fYGsS6ZXLziYbnFkDpGJyf0Zmdohsl+s6VOIuI0w/Q9CmfCzWbPan9gvduy2mxR1Ba/p/Pq3MUSc6R8x3pz4PZxhd90RNsD337zlrIsMC2bwOux+3BJFKZPtgTTQ5E0siiiVUzyVmS52rBZLgiXj/z5L77izz57Sbh+xBAlhpNzKDOE5J7w9jta0WbX+ETbkP1yz4efrqEsOe/ZvD4fMxn1Gbz5ArWrGI2H9AZ9RuMR/dEYz9ER6pzhbEJvMsIMemi2gyg+weDE7ulQJZQpYl3Q5jltntGmMW2W0VUlcm9Iq6pI0zFd1dBvSxxV5zbMniCReUl+2CBnMV1ZIisK/tkFqq4iiwKiJJAmB6q6RNF0MDzWyyV+4NGpBnWd0yYLjrs121qm6sA2dVy3xzFKaOoM1w/YrY9Ybu+pZh0mzK9XbO43CFJLuDviWx7joMfAtXDcPoaisbtbcthnSIKMJssEwZBQtrla7HlYrUmOT+0TtW34fDbhxekJRlvhKSKu18PxPKokxtBUDNtBM0100wBJQew6ujKHMqGOjzR5hm6Z6JZHV/0R2GnbjGanyIrGr374SNt1vHr+AsfSMfKIJv+j4tQyUIX26ebKtXG8AF1VuLpbc3t3T143pGmBWKf0DBlVaOg5FlIVs7v6gTOtJRj1aRSNXRihlBuO0ZZjFLPdbMniCMe1GU5tAj+irAsCy6eJcoajIYO+TxTFKI3Gp68+RWpr8sOeXbrhw/trql2B0Dq0mHSNSJwVqIpKV2TURcoxLimNEWguD6stFaBpOlXbIggCQhFjqjKOLKAKIutDQY3GaPyCLi7QhQODoc3w/AW6IpEsb6Gu6coc2/XYhAlt09BJCpZhUiNxcXaOVOVP1VJdpTed0JuMaduKcr8kiXfQljieQy1ISKqCZDvUaUzRtIxnZwhNwaAXkOQ5qiSzmS/IOoEkisge9wRNx3QwxO1NKTWbLCsIDB1DfgrIJoGDIYM/HNL3LVbrBZJzzqB2yO73SJLMrs759d/9XzyuN4T7LbvDgSTLyOsWeTBlE7dsdhG6KmFpBp8/P+XVpEeaVwx9B1/s+PyLL/j0+SlOvqVLI+r9hvX1LckxQpdFijKnk2WcXg/VNiklCdtzsAwdx1Jwps9obRfJMcmrjkzskUchadERBD7LuxvKLEZ3ejiygFDVT4diy0PSHFprSH98wv3DA/vNkqapuPv4jq5+YtsEjoXluDh+D1XXsHwbdzRE0ANmFz9jdPoZhuVxCHfMV/eoqs5yvqahwzZUdFriKGGz3aMoMv/Fly84f/maQ5gz/fIvOPvsz5DsIZZqsXhYUtQGTW7Qs3VkBby+yMlYZODbNFXLzfUSoRMIHI/RaIxmOUiiCJ2Eomr0BwMsWSQwFQzdINqs8U0L29Bx3QHdMcEwbEzHQ9cUxCql3C/QTInpxTP8wGcw8OmKCKE4YrQheZGgBQHOeIg9HhGXFUqd4+gKvekplQCPiyWmpqEoEo1oIUgitQCqY/F4f8fV+w8s5nNcx+L04oys67BtgzjPsGwHJ+iDDNvsyPzmEs3UMEVoq5ZOgoHvILUtraAjCgquZdKJCnnVICs6n/3ZXzM+P2e+umL1+BPL1Zwff3zH44dLpOqJ3dKWApIo02ou0sknyP0phmnjOjZxknO/S4mLhvCwQxU7TFoc08RTRPq+R9O0BL0+w9kZpmlR5gdm56fIWsDp6QltmqJrCm4QEAx7T9yhcEm83aGLCkL1BKUU6wNSlyCUIU26Zn//kcXNPbtdyGTg4Gkdh7QlK2tMTedxH2JYLooi0TYdo+EIXaiQBZEoPFLJEobjEicxmuOybxpOegMEBNLoSP/klOvDjrvNCnbvUeUc11A58R26LOXq8ob37y+ZDfoMRhN26y13dwtqb4KmKbwIQEgzVMUmXhxZ36748HFOlMLlYs/38x2ybeAMB5RGj7t9QhSFqKqObTnUdcUssOjrAqvdkeX2yGOUMt/u6NoWXzfouwE9XaUpKmZDh+l0QL9vkkYxlqOikqOpOuGuxOnZFPGG79/dUNUdqmKg6RaBZ3Pad5lNpkz6PSa+haToxGlFLSpMh33C/RaxbamyBF1VyeoGBKiaikOSczzk7JP6aXJal0x8F9cf8usfL4lbiCWVWDCRVQlNKpFUD0UzGbgmYnrA9XxUVSMOQx4WW7JaYHeM2S4WvP32e8L9Ec0ykVSFTHIRNJltmLG6uSE9xixWa6LDljLN0UTo+RZKU1FkEabSIssymhew2Cckosbbf/kNf/sf/5HNLuHNZIRYtZy5PYaDCaezKaam89XrKafTAaqkIIkKUteh0GJrCrYfMOr7jMdjqBq6LKXNKnxdYeiaVOEepS7YZhUnJxN8z6FtQXMDrt+/Y7t45LDb8f0//zNxkTDsu9R1S920VEVEVeWots1wOsExbZbLNd9++5a/+9tvaOqCs+dvcAfnhFnNoVDIMKApSeMDRZah6xpJElGlIZZcM7+/Y35/y9CzCGyDPM346adrvnl7z+NyT7hdYag6jmWQ7Fe0VYVs9dntE/LoSHw4EK6XT00nWcWwbGzHwzRtDE3H931Uw8Tpj1B0myYOMUwd2bAomxYEgTgvcHtjatkGBBRBQCgzHENlPBzQG46Idxvi4x5JVrD7A8S6RUSgPx6TlSWKJNA24PWGGK4PyMiWgdSJiEbAIoW0rSnznL/+iz9n+voV++Lp+Srd02Q7yv0Dbbx6Cld1i/5oRlPXvPvxJ9oaHu9u2ewPaKbLZDhEagq6piHLCpzhKfsk4ZBG5PsVX3/9BlVrCGZjlvN7uvRIHB7oqordZke4O5KnKZ5lMuz1sTSFKlxjmQaO61PFIZfvPvL7X/+e9pjT5S3Tfp/pxRcMzj/nfOgyGARYk9cEzz5lOBxjqTJyk5I+XrJ/fKBrSqanJ6iDgMHZOXkaI1NydvaMrszJjjsaRafIUo77LU3TIIkSoiBgazL3Dw8YukpetQx9m9Oh93TWT0ICU0DsKuqmI05yokakUTzWizVheMDUVZJ8y+BUxzAlirRGVXQerq9Y397x8f07/uf/5X/9/wGC/c2//E3btri2QRiGWJZOXWakUYRhWBQN6KMx6AZ/+MOvWX7zewbTZywet+iCQLheQ10ysDQ+eTbjy6++4uWr1/iegyRCejzw07tLPlw9UBUlalPjSiJVUdJGe8b9AF3VeDV2EDsJXdZwhgNEWWAwGtHvBViKQm8wJQh8JEBGJDkcMUyDrigJVBNbMWmr7gk4+clLxr5HfNzz7t17FBl0CRbXbxm4CaohsVmtifM1Zdpw3CfIsva0N/N9jvsju0NEnObMb6642mzI6o5CVZEtC1FR6fctZMvgIPX45K//LcPpCxB0PCVGTCOSmw/s5teYz8/QbJv8uKepKqLlI6Iss44yPuxLnp2dc/vdt9y+fUfQ83EDDZEI02oxpIxkdYNIQSbarO4fiY4hx0qktoYYpk1/NGPQ79FEIUNKbNPENp/836LyRB42TRPdcRnNZthCTTAIMGUI+gGjnsu73/8zN5dXQE1dlSiiSBJFLB6vMXoduqVQRRv2uwhDlbi6usVzLKpWQNMNFFnGUDXM3hC/16OTZARRpMhTFBn6wzEnFyfIcotiC4TxjiQ6YogNrWFSGgGaYbHexbSOhjl9Tto0qGKD6ThYtkXRwvm4R53O+eG3v+Sv/uRTfvb6NX23DyHsb0LEJCfd7gnjgof5iiSNScMj+8OeJI5QJZGXzy+YWCqW0hD0R+iWhxDvoW7RVB2hyBnQ8PL8nKA3QukEVEFGlhT00QznxRu0wQjTd+gMGXfqI1kisq1S07Gbb4l3CUJb02YR6TFF02zyKCZd3xEdjmiWS3oMyQ5bxsMBWd3iBT2+//EDuqpx/rOvUWWZ9S6iHzjovQmCAGIWQteSJDGioqIGfdK6QbI9wqIB3aAqEg7hhmHQUGzuWNw+oNgGg9GAU39MXUIramR5xdn5cyYnz5hOTugEiVoUyKKYrm1QRBFEkUNSIAoiitByPhvz1etnTIYe42Gf2flz6rJDoiPfvKcqMh4OIj/95hss0yHehbyeDfgvf/45P/vFV5xPh8xGAWJV4ukywWiERoM/PcE7fYbpB/jTE9zhCNV2UBQZocnINo+U8Z5sdY/QZJCGdGUGskknyLThjrYq6WipWpB6Q9oyQ1UVhENMX/WZTJ7TmQbb9RxTqHE1GW8woOtNMB0HU9OoEZBVhSzag9ChGzqdKKNIAjQZg76LkG/oBTayZbMMYzqxRTct4kYiSXNGozECsNscGU7P/7iB3RJvU9bbLfvjkqLNOX/+iul0wmA4INzt0LKSzf2KvATH8QkGE/ZpxeXjksuHR/JojysLvB73eT0ZPrEVLBdTFlEBUZSw+2N0r4csikiKjCDrdEhQ5jTJ8emdNRVd/QTpFBHI93vkrkGSFFRZokgi2rJgNhoyO3/GwNJQ4y1SmUHborkekuMh1RVyVZGkOaKk4fseUZrzw4dLbu8fsRSZxWZD09YEjoGrdMhtztiSUD2fSrcoq5xsf0+8ukQOPAzXoWobTk5GeLbOaGDhCgWC3GM2eIbrj3Bth3C3Y3l/g2IJvHw+QdcE3L5Bmx1o0wYVG9QBh0NMeAypy5L9ZsPxsGd7zAiVAa1osNxuidMC1fRYb9bEhx19z0OXBQJDxlQUHF0jjBPUIkcrcp7PPE7On3hMmmxSrB/Yz5cEvk0Rp7ieS13kSGXBfL1G0gxGJ+fUTcfAd9EUEdtQoalQVQVJBNPS0DQF1dCoygrb1FBNk8DrUSsaXd2g9sdI+3uyLEQUZUbDAWeDAVV1pCpjuqhmbLtYuodp9RD9EU3X0rMMVvMFXd1SRHs28wc++/kvsISY1WqFo83Irx/IojWdUiDIDVGRc/nuG66WKxZRwjpOyQUR3QlYLDZP9WzL4cXJGdPRmDgrqbKMz8Y+X//sU54/O6dd35Et7th8uCTZHtjuIuq6xXF0Tk8DnH7AYDykNwooTYdQ9zg9cTHtDtMU2R1a5GGAbge0aUIjGLi2DvEeuWspiorBZAZFwfr6A3QduhvQn55xcnbOYn/kh+++RxIElvM79tsNkqLS81xMVUIQBILJDFHT8QcB4+GA83Ef3fQYDC+Y9oaoEuzjPWlS8bjcgyjgGRpiU5PmNW3X8GJi8ldfXlDYI/qnn3DQp3SCiErN9e0GsRWIwgJb1/B9ETuQcPWcodEiiSpp1lE2Ci9fvmYUBBhShyyq5GmM4z4FO7KsPjGYTBO5a1G6FscwsHUdVdSwLAepE1AVGaPnoXsuqiZTRnuyZE9bxShyi9P3MAMDbeBjDH2cgYdmqnR1htKVOI6DPxwTVS273YHdMSVvdQx/TAnUXYuiGRSKSs9WKLIcXVMQxA6130M9m3JzOUdTVEzXoxf46OpTEP3Pf/+PrJYLuqpFaCpUU0XuwLcNurIi8HwM0yIucmRD4Yuvf8H07IKszPjx/pIff3iLI9bcvv2evmMxG51jKh7RIaVRFJ7/+Z+h+jOUBkxV4bDfcv+4pDN8orKjjg+4moJj6Fw8f43p9vG8PpbtIVEjtTmz2QhFrmnrI6Zv4boOqlTjmDK6IROHCYIIcp2gSTVdHTE6PYdWY/8wp4kOyLJOHu4hjyAJ6Qc2/Z7L8nGNLCv0PI9OlLi8uWMT5dQddEWC63o0TYll27g9j/5ozGDYZ+BbNFlIVpRkaYqiKE8tOVmmKws8TSG6+z2aWDB0HaaKRpXl1I2EqVt89skbXNMgPjxZuCbjHmNPQc4jJNNje33H5mHBep+yTiq+fVzSKA3YGrms0ugemzAjL0sUVSXojxhaBkUWUUQHsjRhHhfcb3akRYlc5wwtFUPuGAyHiIXA+WiI2JbYqoKlyrx5+Qzfd6g3S2azGZqo8+Nvf+L2YUsYReziDEXSGfYHmLpG4Cv0+iN6wz6K2DHqBZyMJpyMZ7iORd9QkdqOrqnp9QMkETbRkcV6TSPKiHYfkY6+rTLxNDSpw/IdHEfEmPU4Alf7I0lRcdyFvH75KYFrkR/WmF1NU8Hy7p40itkkNXUnspwvWKwPeG4P0x/iD8dohk3ZCNx+vEGXLS5/es9i8cB2+UAaHpj0XJ5NBhiKyHZ+j9oWGDKYnkVUNrz/6SPxas787oFou2M0mPLnf/WvceuM4hhxEjj0JzMuzs5xDZUmTdANC101ENr6iYPWttiWhaKqdHWNo2n0DIOBa+MYKsluja0JVF2Lqet0koJjmciGSd2JlHlKkRekxyNvf/iWPI65XUeIXYcldTzMl4RJQtAfYRsuo+EQy7aRyoY6Lnjz8zecPP8CSdAJo4R5LNDIBoooUlcFrmMi0lEkBxxdwtEUFFnk7PSMlxfP2G/3/If/51fcLFNExSTarajSCC/ooagqrqlR/vE75VlClaakcUy435OnGXUnIYoyoqKj6OpTEFp1iIKMJMlYcvdkF/V8vOGYrusoypqklWhEnYfFksALGEymOIZG4JpYpsVutSSMYgxFZzIcYcoaZRTRNVDUAkVZ00oadAKyJOG6HoZt0ckKRVqyvX3g9v6S5LDni5NzfvHiOf3ZkLfzG3pyS1dmPFx/eCohpDm63cMdXSDUNXcff+R4TFFMl++++Yb1aslgPGLsWrR5TnjY03RQiwpmr0+U5yjlnnC9IMmOyKZL9f9x9ia90mTrdd6zo+8jsj/dd76umtuRtGzK9kQwDUOemVN77on8L/iDPJNHggkIpC2BgnVJXt6qulX1dac/J/vo273Dg7yAxtIggRwmMgIR+13vWuuRJo2EY1FRlQ2blz1FWSP7jvevrlitzqizA7MoOCF+XY+PP3/i8eYZasmffP1n/Mmf//fMLi/wz2IWX1/hzUP81Yr4fIXjCcZ2T5tvyO5vsG0NP/Apm4bpYoXme7hRSNmNjIaFRodjagSBRxyfImKqbU+ixCjQRoUpFFlRUNUdQeCg6SbzyOPdZUxR9OzWOcL2EZYNo+JhXaKFS+qypm0adEMn7zqeH34gupgQT95gGB5VIWnyjPX9F/73f/V//OeLJv/Xv/1//so0DDxjpG8adMNEo6fY79lu9iSzJa3m4gmJUTzhNh3F5sj06iuarGR/f0uVZ+iyI7ANVss5vu/TtAPrpye++933fLh5YOh7XCQBCs8yGZqaVeSTuC6B5zGaJvOzBZPFDNtxMAyLcRgRvaI4lsiyZsgbyucXItfDsSzCyYxoOceKYoL5jORszvL8DEczMJTC0jQCx2Lz+MT9p59x0Ikcn+ebn1nvviffbvAcj4cvW3zP5/zyijSrcDyX9f7Ahy83fHh4omh7Gl3nYhGDY+NEAUNX02Ew+9V/jRAmShgUhwfevI5QQ0dbHPGWc+z5aXPU1RV9tjspw67P/eMz82TK+scfeHx4YnnxlleLhIktaao1i5WNVuyon+453H1m8+kL+7zlLh/Y9BZRPD0pe55HdzwgmpI3iwW27WI4LlEyxQvDE6HENHBNg7FvCaIQwYjj2MzmE0JbYxVZ2EjWT0+IAfLdjmy3QQ4Vqiooj8/IukEIDdHU3G8zpnFMVlRsjsXJWjgMDG2PFAaOZaHQyKuKNM2JZnPSsiKMdISpo7sOThIz+fpbbDek7AVuvGA0fbJW0Y4SY0hpmxwpPNwoosxTvMCjfPmEyje8vbzEMwyqhzX1wxHbm0OvcffTR/JWsj7k7Lcbdoc96/ULDB2xpbG+/URiCV5dnGMCxtBgCYUzXSEHUK3EqUuMusXUHcaiwHZ9GAEpEP6EIYiwzpcMtoU1mSAsA8OxeN5ucSYxm3Lkx08FQvaoakeTlaimxxDQFRlKCbqyoC4rDkXDYjHjkKZolgNCsDw/x/Nd6rKgazumkyl+FKMJHYC27alHgRkFdLbDrunxX3/DGM75w9/9DckywXYVr95f8Pkp58O6oqtLXs9eAw6m5ZJMpswmCcIwsPyATZqimRZNdsR2XDTTpOwVT48PACRhwFkScDYLMS2XxdkVrm3TNR359hlNr3nZtnz4x88MWYnVCn7zzXtiTeBZOpqu46meMU8xDYvVt3+G64dYoid68w2abmK4PprQTlEbJdFtD9qWvmnRLRPNtOiqguawoz0eGYoclW5AKYSunyIA2R4sg646YNoCw7To9xVeHGHKmkO+I21btCBm8uYrwtX5yTJuapiOhxlOsfyAcZT0Q4dlOyjTxTehzZ7IDjui1RtaI+R5/cx2u+bu8YFPX26ZJCF/9mff4ngWP355xrQsBtnzvH7h4f6el90dx+yFQdeY/+Yb3MDkp9/+B3abIxM/pN5ucfyI2eoKTUr+6fM92zTHHhp+fT7jT64vWEQhmm6y3e6YxRGx59O1HXk70mg+7vwKb3mG5cXoXnxCqwqBpgEoNKEhOH2q/YY6TdFkh2maOEHIqBmkZc3twxOP9w8Yho5oKnql0MWIBILQxzX108Zis6PqQVcDnu/x4+0jH28/Uzzf4oYJz4cSqRmcLaZ8fb3CtzQqNWJFMV1TkqVrhuZIdHZOM3R0w0AcOtj6gK4GAj9inwmiYErgODRFy+b+hdnCQ8kdHhWeHbCY/oUAACAASURBVKA6jfsfb6iLAcOZ0esJj88bfv/77/jpww27Q0pWddTeinbQ6AbJdntA6TbDCC+Pd+iajmvonF1couqS/T7DoePXb1ZEocf16xVBeGqUdw2b/rBn/3IgCXVU2+C7Lq5tYnYVY9+S1R2bw5G2KhFtRWdYlOkeRwdtHDA0gRpaVN9R1g210kEOVPkRx/NxkxltLzEdC8f1yWqJjiSZBASehRdYBIGkbnao0cM2XUzNwLB8tk2PJjTGfM/m8YX0mBI6gq/fXrM6P8OlwjZ02hb6viJYWCwWOlevLpjO3zCkGc9P9xyLI+XQsVyd0bYdqqt5l7i8unzFdLFC1ywmgc8vVyGXsYOGhmx7hv0T7XZNezjS5g2DFEwv55z94ityTGZv3jFZLfnhJaP2ZizPrrm8eIUQEMxcejPg082OZLVC62psWaO6Dm1o0AwT3Q1wDTAE0FQgR+5u7lBK8uXzF477A6Hvku237NbPmLpGEoVEnoOhCTzfI1qd43gOUWgRaDWTOGIxv2I2PcOzbfqm5FA3aBjc3N3TDwPJZIroO4a2w9EUrxKbi/Mzej2kNFf8n//637H++f/DKtfcP+5PWNxmyyQQxE6LJw/MtewkbNohmmZjGg5DXmCPPTQVZZ6jGS7FbkOdZhhoaKNA020CPyJxXeIoxAtiPD/Am0wxfRcrSUD1GGJAjBInmaCZBn2ZY7omQ1vT9S2aaaOhGLsGNbTopoYXhIjJJbs0py5zAs9jv8/YZj1+MqMaWzRbYzQ89hpMExutb+mHnnYckbMJ4yAJbYtODkRJhOOYaJrAtQ1eiozq089YnsdsMcX1DNr8QFNmWOYJHVxWNUV9ZLGMmM/mLCYLLFnSjCZNNTJzTK5mBqHvsjy7INt3J2zr9TsW598Q+jNkWXF8vGf3sqbtesqqxXUDAm3EVi2Ja6MbDvFkQTKZMQlcpskEXYwkvsUimXC+WkLf4Zpg2gY6ClmnHNdPFHlKWdbME4/jwx2m5ZNEJratIwwHO17gRx6uJQiTED+ZUhQDahhg1JgmEWXTscsLas1GWB7pyw2xb6E7Ab0wePvVVywurwnjKXlT8/DzTzw/b9H/iCdF6ISuQ9XWNE3FcPyALXummoMjTBgFgzQJoilfv/+KSJcYXYrv+7RoBKakS/fUeck//e4PSMNFJHPsyGa+dEiHlg+HhsFwsfwJSg4I4NX5GbHvsl0/s1lv6LuOwbDZHlKOxwMr36ZsOkJDJ7BMfvn2Et3yOEsSJrGPa2k4wmDix8ync2bLmL5IcQxwNZvdseDnxwd6OSKExfvLC1y9ZbmcEE4i/HDC5PwV2tgj5HAiAC6v0LoGXQwEroUmFFWR8bg/oJREjSPNqGGaNsiO95dzvNA5RUPESG0KKoNTcf7QMyqdeRCjOkmz3zHmOb//+x85bnZcvP2aXa3Ii5qPf/iB9fqI7oRcnK3wHJ8oPOfjP93z5eMtpj5SlBW79Yap73I2ifjq6pxRKrabDS/bDTPXIPRinNkV3//Dd7Rlw2575PX5AiEVq8mcd+9/ydVigsqPDHnLchYRJTY6oAsd13Yw9RFLFwjToRg0yu0DlmFi6YI2y0GNyLaj2DziOzpeGGKNAxojN89bvDBidnlNW1d0bYvtuTzucjbrDR6KTze35Mcjdd2R+D5ZVXG2miJbxXQa47g2Wm/y/HmNGCsur+ek6yfS3TPNaJPWAksbOF9OsC2T6STm+tUlb9+8Jg5s4ijg+voa0Pnd3//jCRQwatRFjslAHMaYjo9rmaTHlKZuyPdbbF1nlgQ4psFiErKcz1iuzpidXaEJHU/X2b1sCD0XXx9R6faEWfYjDNdD1y2UZiDtkMEM+Q+//XtUW+O4Lq7nnYShwGesazTVE0UBs/mCyWxGOJlhxQv8s/f4Z68xJme0ekjZaTw+PtOWKZP5FD8M0QwLmWd8/t2/53f/8W/wZMEv3r0jSjw+fvieodpztrrANHUsHWzPp1IGed5gIum6Ft2JeV7vub27Jcsy5qslsQHmODIMPbppU7U1i1lMmu6otmt++ukz9uDTNQHzsxVeEFLmHX//73/L/cM9fdcyDX1WiwWuEyAVzCYJhqadSp6/3HO5WHEWz5hefcv7v/gXuK8usBIT15b4kwQ7cFC0pI+fkX1NWxaMqic4u0CYJrowcYIYc5rghx6hHxIuLpHCwPYCNDGQhB4OPZYuSJIZvufiahJTjLS9wrQdujLnkBYMUvB6lnDm6/RlfnJmRxOapuNpX5H2AqFZqNGg6SS9hEbT6QywjTljaWNaAcUxY1Q9/+v/9l8Qz/nX/+bf/JWhOpJARxsVSglMy6GrUsqiZHW2Yn37gOhhEq8QvU6XSlzbpWgbGBWTJOKXr8/40z/9BdfXr+mkwcPdPY83d3y6uWcSBqim4swzmUQxhhqY+S6eftqSOoZBFCW4wRTD8ghcjygKSZIYHQ29H1FNhWtahLaJbzl4bsioBFYYM2ojdVEBirJp6MuMLi8RSmFqOoY2sjvkNP3A/ecv/PDdJx4+boltn6aFz59eCF2fZLpCypFRCOSo8enuiabryQaFZwjQBQNQljnHNMU7f0UwW6BrGo9ffmLplcSRRTiZYIcR4WJBXp8agRlHhGHR1A3HzZqHQ87YtEjZcb18y7hrWU11kjOf6dIhCVyymweePtxzc3fgcd9QNYqnQjGdnzGOEk0pqqIgFoqZ47CYzfD8EIkgjCb4XsBQVvR1i6brWI6L5ViMfYOtS2zbwHI9/NmCxfkZl2/e4XsWuuywDXj7akXoaPRVeWJcWwb5MWPiWCSThKoseXjZopsmTjhB8xOEbtIKE8OPKIuMsqkpesXi6g2+a3NcP/L44z9QjzD/1T/j1ZvXCAQv97fcPT1Rti2zqYFvCYoW4tkZpmFi6hqPn74jpGIexdS7LaJqsIWNvXiNJlyevv+Rx6ctx1aS5QUD0NU1tqnz1fmcp+dnAkvnn//qK6LAw+wKRJmhmpYhL2n3Gd1mB+s1lmHR1S3lywt2NEGLV4jVJSzmdLpBPWpg2TyWAwclqEWL6lqCeIbmu1TCwHIkxWZHcdjh6j35ISU9HHh83uAaBn0nuV0fiHyf9WbLIU3xopDZNMazDKLARxQlpBk6EmcyYZSKvmvQJjMGekzf4L7J+bEecS+v6I8fmM89XF8jiie8fv+eMIwoBhtncOnr9iSMCp2mzLj56Qee7m9wHZu8GTikR6RSmK5P2Y+s12uauiYKPM6nMXHgs7h6Sy8FFCl619L3A1macfvTR46PGy7nM6bGhBCL6WqGeXZOcvVrnK47kYXOLogurk9Z0fMrQEcTinEYEKOCcUQNA7JIYejRnIAyK6izlLqqMZM5ddNRr58QdcU4NHRFTte29H2DNk2gWqNkhtB1pDul2+2Y+TaWq9EZGpXQ2WQ51WFHnmdMJlOc+SVFO9J0PYZ9Ks3UhKAcoBk1ZLHm4+0ztfDJ6p7NsaDq4Lh+ps02LJYRk0SdNku9heudUHU3X76we3lC9h19U3J+tmLcb6if7jBbiYHGuWujCR3L9UHoPO2P9FKR2Dpfn885S0KEksi+wwsT0qrh3NEJogmj4WHGSzR/irO8wLIs/NkCNB0hNEzLZBxB0zV01GkIGAZ0oWHrirqo6KoSw7QRhoXn2MS2hqbr/P7TPX0wR3cC7CBmdnbG2LXQdwxdT912rIuK/fHI1fkF9w9PHNIj+/Uzlm6QdSPVIDC8U3Tgw8uaXQeNlGwffuJ8mVD3An++ZNR6WtUROQZ1lXPYbojmb4njFZ5t0TQVz09bHGUQxx6hbhNYLs8/PXJ8adgeKqazhHpw+Hy75vvvf+DLw4Yfbtcc0hIjviCXFm3TYpkmu/0Ry4sY5MigRrx4wtQQJLIlSibYYYw+veDMFrw7P+Efw8UrkiSkz/fk2y2T2MF3zNPhLo4wVI+mOnzfZzZNMIRGut/juy5ZmuImC9p0w2I+QQ6Spqkpi4qh72mKgrrK6ZuWqpeMSlKVJV6UUJUFluiYzUKiwCEO/RNCd5R/7N3Q8UwXSzdwwojWCZGqRx8l9w9bqvTIt/FIEvkEsyXTwELma7Z5jzWJuPRGFoFLaEf4ysLFwNGMU8mlYbKcRLR5xmVg8f7iDH9ydkIGovgm1pnqkroq8JavkbuUYX/DkKV0WY85fcf8N7/Cni1wJgGj5XNxdcbd5oi0A66vv8asapxgRmb7mPGcrFHsiv6EXZUdoleodE/T9oy6iRdG5JsXRF2gjwLT0Nhs9jhByPc/f6KpK+hbzq6u8WZnRJMFYZwQ+D5RHOH5HnYU4zgGkSUwbZdOeOhuyNBU6AwciwYpQja3t9w+PmOpAQ2IgwhNSjzZ8Ho2JVEdjQjplE95WOMNB4z9DZbjIUwPWx+YBxJfdDhDgasa8lojmZ5j2R6+qSOGHiUFZdNR5CnFfoum6WiaZJQdsq7piyPj0OP5AZYfYTsOuqWDadDkO4auBtkg6xLdMBmRqGHAcR10obBMDcf2sEyQbUVdN8i2QzdM2jxnbAts2+JwzLAsjTAKGYXAsHUejxmzN7+A7ohtCRzr5MCTQqAck93LM/v1gfPpEjeKiKcRghHLcxiHgbHKuf1yh9a2uEmCaej0bcFht2H98oiGQmgjrmtxuZwh2xqrPVBmW3a7jrNkBZ06DXZZwWFT8vjxGXe1Yvnm10Sztwxlw+Hhluene/Kqo+0UajiJh8F0Rei42IZO7LkskgC6BqF6psmMwHGwNR3H9tExWc1m+LaDZ7r4QUxTNDjGyO7+nl5BEljsXnJ8y8bSFePQo5RBuj/QZwfkaGIFU4RmI8aRaDLj1dtrHNNAFwopoS5LxuHUbeeYBr4fU5Y116s5Ax43d3u+//EnMtlSqoHDqIguXxEYOuVxz6jrp/+4esTqOjzDoi1rXkUuv1ra+H5AHEzwHRPbMkkbSdErpqIg3R35p7uU+fkFgxBEs4DD7pbffrrlqVIIy2eSTLFtC13XScIQTQgMOfDp7oFx6HnaH/nl9TlpXjDUFeeBw9T3mQc+F7FPoAmuJjZVmRO7IYkVomSPZY006x0y7xjaivLwiD91MTwbW5f0VYU5wsR0mMY+mmWTTEMC38JyfKLFJW1T8uXLRw6HHc8vD+z3a9q2wQ0CsiKj7TvqvkfT9FPRuG4gBAxomI7NJHK43aX8lPWUdYUpeq4vz3h7ec7CcUjCENdx+fzDF+4+bfj1r37D9X/3P1AM+n9aIp1f8e7dW2xdQ9UNbafz/HDk+x+/536zZXLxilV0Ik8lvk/kh/zw8QbRVQipMHWDyWJJVvbUxy2e4XD9/pdYjonZSRJD8O1v/pwoucA2I7S6I9TAdTTCOMKPJhjayFhl6KaJGAW2LmA4RU7E0GOh0T4/o6kBxztt5GVboSHZbTZsa8n59VtGoZ/ES92gEQZNVaHUSC8laV4glaKoKhzXw7FOBCPddQkih7EbWX858uH3n/jhux95vvnIUO6ZzafUvcCZXbBcTJglEZPIYTmbMJvNcGzztNQ1TvfnH/7wEw9fvrDdbsjzgkkY4Jg6PSaaG5MEHo+3X5B1SWgbxHGEpWvsHm5Pv8sL0C0fy/EZygKLEZqKQFeUD59x6PDiKe7yikG3iOdLwsmMSvNYFz0fv3zCGSqu5jGXF5fkxwOT5Rx52GFKxfmrV9iuTysl9uwMbXFJozSOzxs+/OEnlDDphMGxltw9PHB8uiWZz3EdG9nWOKqnLzPybMf98wf6/Qvj7hlhgGE72Bocjzs+fvjA+mXDPs2IAg/ZNHz4+IVu0MjrliJL0TWDSTKlSXcA1EOPHHvUUFKWFXU1sN8eqKqO/+Yv/iWri4Tbn3/P3/7ff82Hz58QYiDwba5W55i6jmefzn1+NGG5WLA7pAxVx9X1G84vLpi+u8KZ6EyWHr4XYLkeqsqo9mvy7QbTdsi3G4ZREa0uMGwbzXDp245wcYnhOxi6ju1ajF2O6QS4iwuc1SWqyXE0RRB4TOZzfMfCdy10Q8fSQEdRljkaCjUq3kw8Jq6Bj6IucjrNwDV1nndHtnWH5seYvk+WlejCxLMjqiN0OzCEg+u4PHz6gu+H/OX/8j//F9Bz/t+/+atJ7CO7Gtt1UVIhR4Xvnx6SpqbRlQ2H2x16H6Jngvol5ebmASwbKwjQxxHPi3HdBMN0+PjxlufbG6qypshTpoHLKvKZJglt0+KOktg18aMpshvwHBdNM9H6Ed/2cb0QpSRCs4iiEEON+LaLq5uovsO1PZwowQhDTD88fdcEY1mhVz1Sgm0K+ramaVpc28axLaTs6dEwTJO+H3Edh8+3RzbbgsVscbIdJxM6OeLFCdvdkc0xwzAEyI6WkapvqdsGaYVE1+9RfcVh+4xJjat2TKcuXjInmi0xHZ8iy04ulGOGMgyGqmTz9IyyHM7PznBHjS47kNUl/sJnNrOotzuqtEAfHYrNHm2QBPGc29bAsDwc22GfZpgCXEMn0XUukwhL13H8CKGbMLR4mkZoOwSRTzBfouunrYmuJM3m6aTi+SGqSnEsHcsw8HwH33eJfAekJHBMpqFHFNh4nscsiVgspliawFAD692BblD0w4Cm6RiWecKrZUfKpqasW4peoXkByrSJ51OsSYT7+i1y7Hj96pzs5Y7q5QM//+F7rNmMSbKg7QTbNMV1PWTfMiLJHn7i9WpOHEY4boiuAmRj0u47Dj+/8OX7LzyWDemgyMuSw26Prmu8Ws7QlWTiO3x1ueTdm9c42ojRVpAfMDUD3fRpDxnN4wu2n2CYPsHiDO/yNSqIMa6vKM0AM4moB42uk6B0ZCvYvxzpdJNQjPz8kvPS2/jGiIbCiQP2uxTV9SilEJaN6Sfopk9flKRZTtq02J7Nh+cNwzjy/tWKIs1wTZP8yw3tp49Eo2RQCryA2kkomo79/oA7tzjwQme1FN0z13/6DVNH8vN3PyIMwcXVG+4fnpidn2NVOvVmD0KnMQJU18A4gG7g2AZ5dsQ0DAzPR/MmHMqa3XZDMyj2m2ey3Zqv37/Di2eYlkO73zAWR+o85+bnH9GGCg2dOI5Zri6JzSVKjhjKJmo8otmc6GIKxkC4WjLWOW48RVguQ5Ux1ilCtiDEKXbTVtBWtNun0zCjNKrjgW7o8eIJ282GLEvZbTboYqTrGgZDMFojYtzR1zm6NSLCFex3qHyNFQf8/ssX7h4e0PqGs6tLvnr3lhadLjynaEfSsqbqOjTXZRx65DjSmQFjr2h7xbuvvqaVI/kgTrQdJXEdh8d1xvPDA//w2+9x3Tmm4ZA3NevNmnS7xTJNkknC+dkli3iGqjrub+5xLZPE9wniGUozOe62CE0j1MGWDaJvcTyf9dMTi8mE2XSBKjISx8RgxAtjwjDBEgKZ7rFkh2wqXMtA1gWya/DiGIaB9rCjzfbYpo5pGoxSQd8hu5Y8K7BdB6EUlmUAgnFUPG/3pFWNncxP/UBS0VUldaeoRoPHfc7Ptw+crxaMQuf5ZU2W57iWxaCbbPOKRnewzq+xLcHLyx3l8QlDO8XSgskcTdcYZU7fVxTplqHrmS0u8YIzZDfQlSVl0/Dy8oRpwtSLCYMJQzvgLq6x4jM0BsRocr+pafIDXV2x2R/xHYez8wsaPeTpeU3o+5yFPvtjih1ExJMpthAsDcXYVFRtx/vlnKurS+IgIvI8fG1k4ugYXY5qavwwJp4mWKJnlD2O6yPr8uSUkj2+rRG5Jo4GJgrDsBjGEdcQ5EVBU+Voo2SQI7p+osS0bUNbnuzGvdLYDxqa5SDFSRwvtk/YNiShSxQGp0iKHaMZUGUdpmbgyI7QC2m8KYdDxnI+Zcx2hPQ83j+yOL8Ay+M8FJTbNbobMhkr/DZDtIq+MYkdG1cbMbWOxXKCb1uopmLh6VzPQrRwQS8shq7nm2XEmWcwYhAuL2EYkbtHxjyjTms608G9XrDZ7QnOluhI6u2WJJowmc+JXRfXcHENDWFarIeAf/zuE3/48MBxtHEtk0jWDFUHfY1UGkYQIcv01BOVZYhRwKjT1jXB/Iy0KHjebBCaxsSzefX2Hce8pMmOtF3H0A84QUQ0iXGpsS2ddhAoNGRTYYySpmt5LkEMIPOcp/XjCbkahtiGhtakeOPAxPVYlk9oUsOcXlMVDV3d8Wq1whGC3WZDfXzhwuswVYdqO3bpgBtMiZMpjhcisRG6R9MKimPKIU0pipzdbs12t6etKrRRYhg6muoYmhTRHGizF3Qq+jKlSTeMQ8sJGK94fnph7Dpc10fXBAJos5y+TmmPW0zLwrEMDFNHaCaG72JoGn4UE8ynuK6FbevEiylplnNcZ3SlxzJwMYwWT5OorqVvW57v7hCDJAo9BhPixQQ0he6aeJ5NqyTtds9xsz5haD0XHJvDfkNaZCilGPqeNM3wfY9ZHNCsn9l+/JGuU9i6RrHdUu4LHh82ZGnGND5jW0jC62vefPULLGWQvaRsH7+c6CvdiBfNyPYbmrrGMU1mk4TFfEEUBRhDgyYgdp0TOaepWC0mGLpFGAY05eF0SO8E2aFg7AvS3Z4mz9FlgagHmk6QH9fYWoNlT7AsB8918SZTNAVq6HEcl3iSkEwXaIaNGiRNmWPYPlIqXD8mDEIc10dzQsY2Q1MdCI2ircAWhMsFq6+u+fB8RylbrCanaU7Uo6enZ7TDLf444pom557iv/025Cwx0IVHMZjYlo1UI49Pz7iaZKhKfl6XrN5+w/W7K9oy4+GHf+D7hyceqxE7mOCZJo5tMkjJYbejKwvOJxMmnsPHmztiXbDyLH7x5hVSShwlWXo27xcx88mUqe8xtXUWk5B31+dcLCecXyxxdDDGFtkcOO4PaH3HUBVIKfF1iW1qlMcDettjMvLNV+8JIwdNM3F9D10bsTyfyeqKMt9z9+l7uq5iGBXefIXUNYoiY9Q0NmlBMwzYlolr6WRlhYZiV7Qc85ZMi3BcD5Fu+CrWeff6AilCEv9EETFtj7kT8Kt333LxzW9ILq+olaDHxg0ikjDguH7h+e6G24cXjoecsm3+KIYNGAJ+8c23zGcLQsvi6f6Ol80GmpKvpi7zxYLVNKBRBsU+JXFDpk5AqI1MrZGr5Rz/+tckyRRjHFicvUKMBq5t4LgmpqFjaIKurhl7iWnqGHLANHQsQ6DZHkNZUj/cQp5ihxHVYY0uGzRdoxgUlmZgRvEpuhJ4HA8H7u7usW2X6WTKAEjZU9clVdMyDj3ni4S0bMC2mU2miL7G1l32h2c8v+Pq0ma1mHDIJI0e4kchGhAFDvrY47omoNF3LcV+yzh0yK7jy6fP5FnJ4ZgSxhOiKEYphWnbRElC1zTkhw1nkYPnWNi2g2xKZN8QhAn+9Jz8kGIJdZpV5heQHZDrW6auxjR0MUyb8OwK6cQIw8SbrZBOxF//9b/FNRzOZhPeni0IXRfX1IniCd0hZX9zj2WHlHXF4XhkeXWNG6/Y3N6xu7vnT//FX/Dn/+P/xMX792R1Q9bUlKOkfPzExdkS27DIXzZkz08U2ZFk6BiOO+a+z6fHe+bLGUIIRjXw08dbPn55om17LpZTJnHIy3pPIzVu7h54erjHixKuX10hq4y2adAsnYfPH2jrkuWrrzC1hG/Proljg+UvXiFCg+9++7d899NP9F2LhsR3bBazGaPsiQMf0zTx/Ag1jggpWc2WMAjybE/yasp8OcHTdbRhQFYlqu/o6hY5CrLtSeQPpnMEGpZtYzsBdVay+q/+OZox0ncdjuPR9w26GE8QFsPA80OqskCoga5tMXVg6GEUdFWB7FuatqVse4ZBcZaEfHsRIywLoetsasmgmfz4dOClkvSGS1blWMkE2QkCL6bcSLoafC+gTQfq4xFNG/jLv/yX//miyb/7u7/9q6uvfonjR2iaSdu09E2DGyaYlnl64bg+Ap16ndFUPffphn25Iyt26MOOJNCIvQDXsiiLkh+/++408DDiWzqX8wWmaeI7Fm2WMrEtXMfBtRxc/Y83ZjPi6RZBEKJbDqrr0YWG1o+0+4w+axjbgi+fbrB0HV03cWcTlO8hEXjJjFFKXMvDYDwJPqaBbWh0XYNQA2EYoNke9WAyYLA5dqRZw9B3LCYnvGcYJthegO6EKN1mv12TFSnHriNrOwYl6aWiMQI6BV2+xTegUyPxdIJrtdiOi+24NHXD/pByrE4Zd6PvGLIjVZkju44mT9nc3tCNGs+bF775Z9+gioztlzv0XqGPOoa0kU7EfS0oOoXnuhwOKUVREgQBX89iXA2myRRTgGPYBI6NylLsESzNQLedU7ymbnAE6KaBd/4KXdcwadGbPaobKPZr0u2atsyxbYfQdRm7GksIXEMjSRIMobBHydg25PsDVd3i+x5VXbNPUzQhUKNgc0w5ZBlV29HIETdO0A2NXijiixXF9hZPdLy/WrBcRFiGwp9PMVwH24sBk1EVeIEPfUl53BK7BsvFAtuLMbwF4dk7sGMOdymffzpwHC1yVbLPC7qu51jkjH3LxSREG1pc22IymfLm8oKxyJBFhhAmdnJGeqjY3z6iGw7W7Azd89GSBPvN1/R+RG+4NEOPQEPTDfJ8OLmyNBPP8XHaBt8yyI4Fm2PP+WTK090TYoRwNkHqJoZjUY/m6Xr0PbLr6LqOrG3xQp9D01D3kq/eX3P78Mgvf/krDMei2KeM2z2zd+dYqwWVHGkNhzQvEaaFag4s/IjEGnFEzvvXl/iORGiCYHqF7AeKdE2/N4gMg/0+ZTQcDNPANEyC2RkoeXqZGQ4FHiUmsqsoi4znpxeQPefLKb/49muGMqUoCraHlHzzRJ1tUW2FbRlcnE9JkpCuLLFNk+hyQTwRRKPCmVqYM1DlLV4covdHLMcCDIRmwCgZsg397pa+TBGmhawrhuJAuXnCjKYY8RzTj9AtE8t26YeBrJcUVUVZ54yWpCHHXinIUjolEYPA8ULqtsF0LYwoRKoOw9BOOOsj0gAAIABJREFUIumogR1w6Cx20qfoBaluMdDhqJpjUSAMB80JYWixHYefP3ymbPpThDGZUnWCRtr89NMTm5ecOJ6RlRLD83n88hFDCKbzJV48Bcvi5sPPPNw9oNBYXFwRWSZuEPJ8d4NoayzLZXfYUad7VtMIoUZM2XK9WhB6AQwSW4yEyRTTcrENjSjwCZMYyzbRu5KhzNF0A/oeVVXQngYFy3JosiN9XWE7NmJU9IOiLEsQGowdXd/hThZYjoM2Sn66uePT/SP/+ONHtoecfdXxvE+5e1rztD+gRvA8GzeM+fnTZ0zLRugm/R8xcqVSHHSHr9+/Js33OMOR80VCsnpFmMQ0xRZhSsq2xrEsTMNFWTNevf0T0vUzRZUzDCPH/IhhCVTbI9uGtDzSuT6Wa5Ldf6ZOC+SguFpOCP0Q1zKIPBfhxBTVqZD226trlkmMJUaUHFEKnLHHQRFZJm9WC6aexdSxOJvOSJZnp5yvY2OqHmMckGWGYwpcz0NoFsiBuijx/dO1aPMCqQSBqWELieEFfPVnf06RHhCaYLN+Qekm7tk127ubU5Sg6WjanjQvGJuGQTNQXoDqJeuXF/quwbUktjgQ/bF8d2g7gnBFPxjomoWnC+JkzmG02e4OCGFAmfP9P/4OpZucX10QBw4ru6VtegwrYCwqVFkgjID2sMWQLaasCXybvKh4eLxHUxJdjKfFiuGBZnA18XntjbgaOI4PPch8T7N9QMoelcQox+a4fSErM7zJGbaQTOP4VPI4jYldg/N5wnwasljOWHgm8yhh9/CFHx8aguwzV/MI6grV1rRFitJduiJHjDBIkMOI7AaOhyPxfIHh+YSey3Q65exsySKOMCybavdCdjxi2R7L91/TZTt0bcDQdcZgQdX0aMUeTQPdm5BJk/z2nu3LC4+HPSYCyzAIXRvV9rheTGzZeHVO2Zkkl19xsVxxsVyiNS359oUy22OomsB2EJrHwyYnOxZ88/YtYZKgOQF5C3e3z3z++RP3dzc8vKx5eNmy3x9J0wydkSrdMxZrVFvgixaDHmQNSp6Ia9qIYZn040iFjpAK1KmoUNd1dN3CsEzGtkTWFaLvQUlM20QYMJQZQhWYY4MtS9RQ4SYBgzAoigxDG+n7GqUaosjHEAN9nRNEAbXscWwd33WxPZtjlWNYJtPVjKLNKZWiPr5wfHzkabMnuXyFZemk2ZHdfo+UksS2yNKK5btvoC65+e47dusjQmqYpkD0DYY8PUsM28ENfCzXYT5fMXVjZFGRbw68/LF0cxZ4tG1PejhgWzrG0EKdE0celpIMTYnve6i+R7Ul2W5Nuj+SHo60RYFqK3Shk24y8nyP6nPG4RQDFePA7vGJqmh5etwx9UfGrkdXglGODMPIqAZkcQDVoRUbsHxGI8TxQ2zPpa5rhrrgbr3Dsiym8zme76CrjnHs8Xydo2q4T7dcf/ueySxmt7vhy3/8O/RjymqxpO567vdboj7DEBpL3+BM5AR9yfqhZcf8BGiwRx6eXzjmJaHvEM/mDBjMJgHbxzvub7/w8+OGm7RnOl1wsZhhaIrdfs/DegcS/uT6grdXr4hcG2doeHe54k+/ectyEjK1dcxRYQkFCmzbxewaVrGPkuBaDtXLhvT5mTBwGasKwzSZThNcx6UrW5rDkWKXYTBweb5krEpmUYxn6sznIXWV4oU+uqEjhx4EOH6IEqC7PvHyAj+IqOuKvmsYgX1ZU7WSEbANiG2Nru9R6NyXJo6b8C4weTexeRO7DMLg6aXAMAKquiGM53z79W+4fPsNTV0zCskwSrpB4PsBzzefebz5zOfPNwjN55hWHI4py/MrLpcrvn7/NVdXl5zHAenjPW1RwNBy7tsYQmPh67iOyyQIuTy/4HwecT6LSKKY2TTG1F00zWWxXGGoDn8yJ1hd4c6vGfMtpqqwghgznJ2Kb7MUw7YQo6SrK3Rdx7YNdM2gXD+j+gbV1hyfHtDdAE1oaAomkxl5XqBLSa1Gbu/vaboe29TQZU9ggKkGhuFUput7J0d5FIeoMqeta16/X/L/c/ZmO7ct6ZnWExEjRox+9vPv11q7yZ12OrFkhIRLiANOgAPECaiKC0BwG76pQipUVVgIG+OuXM6dzt2u7u9nP+fo26iDmTdg7mFEjC/e732fN893PD09ovuG9bahkRHeeE7PQJmfEENP4OlzJexgGY2nHNavDGVGdtiz3R85FjXa+MSTS5QJmS/mJFFIoBXH7Zo+2+PSEgUevtG0Rc4ojpksr0jzlraqzs1i0zHj0Mc0GbGxLL/8mmixJBrHdB34yQShA5xkxO9++kSxfmIWTviTP/1TZgbIU6Y3N/hxjG1a/CBECsX773+gLUuEcVm8uePl/oX5aMwf/+m/oLMDm+dngjDit99+y2a/wfVcdJORuA7Z+plBKt4/PaJEz2I2Y3Z5ydF2iOJIoBWjcUzZduz2KdfXF9gq5asvbmmtoWpgfziw2+9xlGIaeRyeHimzms3LCl8rovGEaLzguG741R//57z5z97i+5KPP/3Mn//l37JdbxnahlFoSMJzQ6Wy58p1BEwnE2xdsV+v8FVAf8wwkcObP/yGyShmqAr6tqZrOo6bNVWaMlQdUZKQTGco7eKGIRZFXZR0/UB8eYl0NEVWoRUoKZBCoT2f159/wulKwt9H44u8IN1tqaoGz4uRskfYM2uzQ53v7KbibQimqbEm4tt1w7cPe06NZZPXtDg0dcOgNb7rIzuHRfIG2WpcFWGkTyA1q+17/uW/+h//+aLJv/4//92f+eGYq5tbZosl48mYURIym46wQpAejrTZCakUne9SuwKZGGRgSKY+SVBxd2mYxEtUL/j86TOPT/eMwvPD8GIyxnUEo9EU0fS41hK5ZytiW3YExmDswMiE+E6EkB46DPFHCY5y0NKjXmcExuHw+sxvfn7CVy5lXjO9XuKMEk5pihNE6CChp0eGEZ1UWCVo6hLtSNKsoLcWz3XppUL6CbvtgSzPCI1hFEUUZYlAIE2IFRqUIq9qDllGJx0629N2LYOQ9NrDaPAcgfUDkss7RuOYq6mgrWv6MqWzgqLuUf35o+za82MkPW7preR4OPC03pMVJd4kZnZ9QXvKGPkxN9dvkARkRcPD7kQlBHlVECjJ0DRM45hvLhdEtiMJE+LplKqsEE15FkaUS1fXDH173lK5imH7cm54yQ50+xVOk0OV0+5PDNLFCUI8451jUdYy1A1D09NkGXYYoKxxOQ8IfVnQ9x2+1kwnMZvDkdUppyhK6qbBNYZe+9RS0bg+KvAJbEPbFriRwze/fMvd3QWJ0SzmE8LYx3Y5r0+f2Gy257ybU6NosW3D9vmR25srktEC4c9wwgua2rJ5PnL/0HLfJDzuVgyiom0ryqaB4QxCjLyzGHd3dcnF9R2zJKTeb7FCE8xuGMqO7P6R58cV44trZDLBiXzcUcIQTWjcECeMabKM6rBHWMirDiEUZV5ge3uOXqQZMyXo85Zsn+Nrj6rKMK7L8XBCGx8/SWjajqFuwfUQSiK04lQ3pG3L5dWS2WzKPs/56os7iqbCDQwPj8+MRi5ds8GlohSKQyuoEVTbV/LVC4vA8PXFiKkneHN9wSh0MKHHN+/eME9cuiymyUoMFte2BFGIENA2LYMAlOElbdnXkgHB88fvUaLn9uaGxfKCr9/eEoiO3fMnynRPU6Y06QbRV/B7Noy2AsdKXGEJJi5K5YjmSHAxwUkUOhwYTi8YVyCG4Twk9j22t2f2hhhAushwSlPV2Px45gG1LcMAh9dXyryibWps2xJdXKJHU1qp6O2A9Cw7kSJGAnvcY62PxKOvW1AeHQKZzDiWJeMoYJ/X9DrmVPWUxyNt05GWNUWbUtYPbI8vtINDGE2wSnNzsSTdn5tehKsBBX3Lx4ctu1PH4XAkTmK8IKYbzpnh6rhnOp4iPZ9dUbJ6fKJPD3iuy/ziivl0wtzp6cqScruh7zpQLq9P97yZ+FxNY7q6JtAOI0/jKUXgBUhhCaaXBIsbRFPg+xoTjwgnU5TW6HiMN5mdz79tGaoShEQMA2JokQwUp5S2rZF+Qtv19ELRVCXtINB+SFvm+MYQBiHHvEAbj67rzvbTw56RFudBVhlwPJoB2n5ACQlasXp9JU8zotmE4vjAH//6a97d3OK4Hm/urri+vaGrc6ClpeaYphjjc8xqRO9ihw6nPWLpyese4VrS4wsffvqILVKy057j6jOPP/wT6x9/QrgJ4ygmiSKGsqJvGrqmY581uCbk6+WC6+lZuJJdC3XJ6+oFUeU4wnJ7944v797g9i3zUUIYJ/iOwjcuou+IxhNMGJ+3Y3lGtt0SRgGO4xDPZmSbVxwx0KGIkhFaSZTtqcuCcDTFaAdNz+l4pO866qKg7S2uMXSD4PX1hbZpyIoCR5whw3Qdr48PWO3iDzXHpsbaikmsGZC4XozoBU1rsVWJpzQHXNIsPzuC8hoper58d8tkecHN5RzfOHTuiAqfZvVK6Prkz59Rw1nM78ojj/cP/PVvf2S/3+NKQT9Ykigmqzu+nCXMPJcJNbrLsPmBZvdA1xw4pQdQlk2jaasjtmm5upoRBgGji0vC6ZIwiZB9iwnG9EWBkhotFaptGPmKpS8IXcGXX9wSDBVdXlDtt/RNTS8lRXakbjq88RVdWVOcUuquRYUxeQ+bw4nNbsc0iViMAxIFQRgR+YZksWR+ueT1/j11WeA4DnroGY8nhOMpKl5yv6so8pLhsEd5Hs/bFX4Y4hqPUAu6umE6njDyDY4/w/pTykbQN/Dw4w9s7j9xaHroCsa+g69dXjc7Pn964WY25/b2DjOdsSk7fvfdb3l9fqXpBb03wZ0siY0kMYL5OCA0irEnmCc+89jFaIUUlqKoCVwXzzfY/lzh/DFt2ZQVl8sFsTFnsauHLs9pTxlisCjXodrvUPR0TY03mSIliK5iKE7Y/ICKIxo0Sin8eMQgFflxRzu0eL6kz3c4WqMcQdE3FE3NS57zVJ4Ybi64W3h0+T3PaY5wPbo85/Hb35J1ECYJ2jhUbYW1PZeTKaF2mM6XjJMxkQOb1YbCSShVwE8PT9x/eMIfz3HDgFOeU9c1dB1X82tcHXDY7Hn//jt2qw/Mxoa+KhmGFmslTpOzCAR315fkpxOJC+PxhMgBd6iZmp7Z2KPuSqJQMUoUu+2O/e7A48szRpcUacFhV7JZ7clEx/cfPuDSk+9zjO9gVIt2HKrTCUmPYsBaUH1Gs1ujojH4Y+pe4sdjRr6izFPWmx3PmwPCWkItcJVECIVsLZVQdMFA7VY0h3tCW1K3BQ//8FsiBc3QMb68oXm+h7LmLtEsh4KXf9ry6RBBsmDuNxT7JzrpUQmXSeITRDF9XdLkR54+vOevvn3PoeyI4hEjz+Xl9ZXPr1s2h5SriyV30zG/uFoSaofFZMzYOHi/Zw6EyQifgZCWu2nEbDo/352B5pR35GmFTU8Y4xN7nKNjXfV7YP6G9fMOowyh7+CHHnE8IvQ049hQ746YugGrcf0RvW1xjEa7msEO2KGj6S3Cj9B+RNVbHBOQ1SWn04Gm69nnBY6SuFKgpGBhBF9dTjhUA2lWE0lF00qWnmX99MrLpmA8XdBWHVYa3r79A7qs5+F+RYcgXoSkRc5+n1KmOUNT42qPunf48aefKfKMke/xzVdfc3t7y2wy5vjyQrld01Yll6OIy8WSN2+/5Go+JzAR4zBiPk5Yzue4XoRWLm3V0JQ5rnSYzmdngT+vCUchfV5hwpjutKdtWkRTQl7g+mdui+1augHaLIVhwMoBFYXgag4vTzRlSbxYUJ6OFGlOlEwwWqOCkF45vG7WtHWFa1zqpqVoe4wYSAKPsuvx4oTpJGHsKX746WccR6FcyyjqeX5Z8/B0RGgPE5/TAMYzlHlGEHhk6YG6Ozus6rZj9fkTsXFYrTacshLHRIxGZ/fp+OIGIRWH3QbVt4g6xbE90/GYwLjYpiJwOPOYdEAYRjhS4ElIbI1uM+JxiLI9fnKBkyTo6GwGcMMYJwpZvayoj1t0kfHF2zcsFlOSQNLXNU50jq40Zcbl119TnA6ErgYEu8OWQTjnxR6S67dv+M1vvuXf/Lt/z+GwZxoYPv/0PWnVEXqCRWQIZhP8L36BVD15emQ+nyKNy3cfP/BmMSM/HIjimOubGxBnJ//+5ZE//OYdjj/maZP+HjPR0nYt49CnL0qKU8368QmLAHFeBA5Fy/XbOcliwWG149tvf0drLXVZ4DsS3ztzcXzPYDxDGHgMnCPZfVsRGI/0ZQ1Nx80f/yHjScRQ5vRNh5Saw3qLlAPRZEoYBmjXoISD7Tq06+IEI8o8o6trTBKiA48yraGtKfKMIIoxxmVoG9LVM4fNCl+CazuGviOOYxw5nFuxmgrbtzT9QNNUFE3H9WzCm+WCyFjKquS7bUte1yxCw6my7E81nhsRBCNsb0FqVp+2HO8PeCqmqUuqbsu/+l/+f4gm//ff/t2fadHx8rI5W7YpGIWC4/aF7f7Eer1j8/xKmRWsHp942m2phcV1NV5/RA8Fu73DdltTZEce7h9YxD430ynL8QRXnFkey8UlQ90ieotnfKJojB0UnuOhrCH0zpRiEc7YZSnpJmc8jXC1h1Eu/X7Lhx9+pu4lk+mY+XyEm0To8ZjVakMwTvBHI4qypBGWWgikcamtpKoqtGdouh7tak5Fi+N6FFXD4ZBS1D1RPGK7PTJKEqJkTF53HPMcZQzPj5/Z7XekeU7X9+A4aHO+ZPL4FjO6JAojlsuEi5lB9i3Z5gnjGTrpIYSgKEp0MiXdrpDKI68H0qIhzQueXtfEd18zHgdMoxgaS19qXj+/8vC0ogs0jR047A5MjMa1A/PAMIsClB2IoxDXC/BHCaJrcZTCH43xFwsGGvo6pd2/IESDUBYdx+jApWssUkhUoBk8DzW/xhZ7qCua9IC0kO2OCKVxpKDNU/q2oxksjhQI4RCNEso045AVtFagPcPr7kBdVWglqJVD52jwzzAm01V02wfmMmMZhSRKIHcbHDXgaDjut3x+fEBrh4uLmCo70tcdyvYYzxBPr2mFR41kfaz48angdwcLXsepXFGUR2LHss0KYtdhFAWMJjNu33yBpx1s3zONQhzpEMxvGE4pzf09x6dXFssl0c0tznSOE4+x2gPtU9QDadkwCE1d1Ni6Jd9s6ZqOtrdIQHQd+9c1rlI46QtDWTLkZzt5UTWc0oLAczlkBUN7ztFaKRFGoT2PvG25325xfY/pYsZyNmKxXPD4vEF7LnndMjw+MLmbUviCfZvzkDaU7cBx9YBnO7rTgdenB4QomY5c3tzMmDolbbkhDCasXz2qQ8nl5QKwlGUJnFkXg3TJW/h86FjvdvTlgY8//cBm/UpR1lxdLnl3PWP16SdWz08c9xvyw5aADmUtxpxzqU5nEY3EFRJbVfhDSTiNUbEBLdDmPKgO+w3KDbHdwGChyY7YKqWrqzO86XDg8P67s6rvRrSDRrgBp6JCOR51lZNlJ5puIKvPDULeKCFvG7zpGEd5VMc1otaIwUdIRVGBDSZkXUelfap8x+3dHY+7nOfnFXXd4noJDy9HPn965mlbUjsOUhuWi0uaqqHtesbjMXXXMzQlVdGwXe9AuggpMdrltD9SdpKPHz5yygtc3yc97nl+fKDKTnT7HcvJFIGAwXIRBySuy88fPyGGgd4x5HlOIlqWkSb2XJSAQCsMPY6AMJniBGOGAaS0GNHiGY0yPlII3DjBG0/oygw5dAghcYxBuwppK6xtkV6IFJa2rrG2p7agHIeqO8dGtBR0dUFV1XijGcr1OeU5yvbMI8MkDtimBZuyI28H+r7nYrmkFy6O67FPU3Z1wfG4IkgMi1HC28spX9xe40UhxjhczBLq4ytCDlgXyrqm6iTzq294d33F8fUT6/UrOp5TqytW64K/+Yv/l+q0Y/uypapbDvuczf2KU9GwuPmKLK/59LRhtVlTnPas9xklAYsoYe77CMcwhGPSzYqPn96TlTmh6zBNIhI1EGhFEkdopUmiCMeeobTGjyiPeyTgRwHajxBNRb3fQFvRFhmeZxiERErF7umecRIx1AUCcLwA4wjy/ZbEd8mqBj/wGc8X9EieX19pypKyHcjygk44RPNL6qKgbivoW/wkIj3u2O8/s5wIlBeenVqDpGw6mnrAInjNK9qqZv38TNP2jOOAu3dvKeqG5TRhNp9hvTGrj/eMXMnxmHJcvSC6ht0+5cPLkT//9iPf/vSZsVH0fc9sPmcceCwCxUJ2eH6MKA6I+kSb7djnGR/WOUGgMUZzOGbUm1fuvv4F48vbszMnjKjXG5y+oi8bhBOCVGfRVAJWILqOIc+5jF0S10DXofoBoRzKztLqAOsYwKEtKsrjkaYoaB1NIzVZemJxfU2ap/RlwTJ0WSYey5tbnHjKeDYjdmH19ImX1QqhXIIoRA0t0vhYx8d1DZsffkO+XdFJyfPqBU+7+J6DazusFYyTCb7xiOcXPH164nd/8y2//Zt/oN58RkQxwnXx7QndpLw8fOb7Hz7gBmO+uLxkcX1NZgK+ff8dedvy9dffoJSP1AEjV1KuP7HZbmnzjEiez5unLGEQ4BqFUIrFbILREs81eJ6PG8VMk5CrJCIxGjkMnF5eeflwT2JC+rykr0vquiH58ksQA9Z2CG3OLpQiQww1oinpe0HveGzWe/KiB+uglTyzI4qUMj1g+5pBWNzIx/E94knE4uaKES2Hh5/4aVvRBnMCISnSlM8/fwQrmc1mOK6iqCpsZ7majglNzH53YrG8YBkErA45/mJBdLWglQ2O7yDjMSfZ87rdUGz3jJXi7stvOKxz1qs1u2xFqCqi0EMMPdl+w5fXc/q2ZjmKmE+nXE1D3n31Jb98e8XFyLCMzo/SIPAIfU1RpHy4f6YLXNbbNaNAgrBUVU1RZNihYPX0hKDHKEVd54wnhqLsocgoTnu0UZRZSVedYzYIGNwxRV5x2BcoE1AWOZoOVwmU9mj7ASFgUIZeh+Rpjp7FuFHA5vGZ+//vL7kYJQxOx3/8f/6Ww/MLg+NSCUX+8SfIK67CEX7psN8Lgtt3xPOEJOz4zfefkdGIvu8IPZciy1AIHj4/8ld//x1dD1a5lIPkYb1nnRbsi5rL6Zj/5k/+CN31zKIAj54ojohGY7qyQGqXMBnTZ0fi+MyICbXDxcjHiIHLiyvmsSEyDtluj0gzmsORvpWMkpDJOGJ5FTGahwTjCap3oMqhr9HGwzcBq6cH/CTGjWP2acp4FtN3LdIY6uyI1prH51f6vsPEE+rOst5uOR53dMPAKTvfvcYRRI7AaEVXt0yigM2x4FdvrgkGS90PvK633K9ylDYIx0M5Pr6JsM6YyTd/xOv+hS9//Q2OgN/83T/y8v5HTvs9SMNqu6drat5cXXJ5cYZuJkmMEZZ6s8FpK66nY95dX/Du5pJ5khB6PsloilaaQGtoLX3XMdQlou8Z9nsi1+BKDU1Lv3lC0ZJcRNimwPUiHKHQnsW2JX2VYxmou/7cRtK3DF2NGCoGwJtO6WyPmUzPAm3X0DQt3vyKqizp2prlfEo2WPq+QzkOs9kIz1HkvaQTisCVOLIHaXnZHjhsDxitqZozpzL0XRzboR1J1QnG8wX+aIRFMAC77YY4GeEHIYf1K6/3nxh6cMMpweINZQtJHJCfTnR1RVMVGCVwHcHnj+/PQO/RiNA35PsNSkDbW7Q5f3OBqxkZB3F8xeiBcDqntxadBJiLN7iTBYMyDAiGukP0lovFlLubL/B8D9/VhHGC9jWOH+DYlr7rMEFMEAbYYcDzQ+ajmHHg4KmBxnbsTjl10/D9t9+y26y4iDx2r480XYdQkvkoYH59xf3TI1GSoBm4vbpgaGrq9MQoigknY45ZjnY1726XOLZhnnhMpmPqDj6/HNgeMw6nIxeXV8iuRQ4DZVpSHQ687vdEcUjXQldq/qv/7r/Hn0V8/Pk73EBAX3ParlFCYBFIx8E3BoaeyBhc7XBMCzwpcYTg8f6Ru6/eEY5d6HOMdDDap65K6vzEaHIG+7Z1g+sH2KqBoQNX01tBttoyffsOyUCdHtFGYduGrrM0dXcWJyT0VcF+vaYoc5oiY7965XhK2W02tFWJawx5VdN1Lb3tqZuGy+mIt4HBtj2hq7HK4bDbEgQhq1bzsjvRtS0KQRD4SKkIMHT5QFNkrI8fGV24/M//0//wzxdN/vyv//7PZrMZoinY3X/H9v7vuL6MeHxYEU8uqLZrnj/f8/iyAldRNgWu7TmsX2jygiK1JKMLPCkZypLylPJmNmGRjHFQtF2HDmKWF5ecthtGkU9o9LlPW3v4xhAFCT0e0gS4UYszihhPDNpRyOFcsbf/6R6tFfu8ZbEYoSOP3jFEyzlFUeJFEY5xsdphAA6b9TkDrBWtYyibjuMpI69btCPo+jPA0tHOufmlH2j7HuOeYTibQ4ZyDYfdnjRPuX98om5rUBKpNa5sCQIXHI/QFUwCSRQbTPWI0Yo8z8nrDh1PCaIEMTTsnj7TtZaqtWQNpGnK50/3jKdjRldjhGvP6qPt2a5WnMoUPQqoreX55RXb1IQCRqFHHIUYVxNIgRQSZ2gRdQFNhXI1ytc05RFnyHFVjTMdgeehPIMdTnS2ws4WDKrB2g1VeU/XP9GfVmQvaxwJ9SHFaAfHiyg3K9oyJTumRNMlbVOhXY8qL6jrmlNek0QRWinqYUCocxuJ62i0cfHHY8KuxFjBer0l7HImVOjjBo5brG2QYYxNblmdKsTQMBsP5Ic9TQOulCTJBcodY1yXfV7yH5/2fGgGPpU5Tx9+w1AeqeuKxNM4QwdDj+sH3N3ccHi+x7Y1kyghmc7RfYepCtr1hu3Pn7BZzvj6GhWPEH6AEyV40YiqqmiK/PdAvYCmrHGUhgG07dg9PqKkpM5T+qZntzki67MLoi1yiqLi4vaG0WzZIsS2AAAgAElEQVTK6+uG0NPEyyWO7yO0QzcMKN+nGixpkSNtj3EV08mE2d0XaNclL0qORcv7+0e8iY9482u2SvKyzWi7ludPn8m2G94sI7x+4Pi0Zv38TLZ/YepXhC5IC9t7B3U6UVYVnuuiXA+lfawJwR/xus/49PzK8XSiL44MbQ3a5+pyydurOaGRrB8fSIuS9WaHaEpmSYjrSFzXRdsO0ff4rofoBjzHoiOQvksP9FoBDY4F2w4oL0CEl8hwBlbQ5zuqLGUwCdnrM56C036HMCHOaIkOp1ih6ZRBaBejHbqqRI0XlF3Py2aHlYqbi2tsVZPtCjyTQM/ZtaI0LR6n3qHzIna7NX1dorTm4/MepMYxI4phyqZQ2HiKc3vB+GLEF9M5u9WG180OPfRsnj6hh4bV64b9/kQyv2Y+W1BkJzarDceiZrd5JcsOZLs16XaFIwW+4zCOI4buvG1YLC64SGLoWp5eXpFKUhY58zBgGhp03yDamtj3SHxD15S/z4sGBH5AnMQE8QhpfKT2EI5Hn+5QAroso82O0NZo91xR2NU52nVp2gYTGPqhRypwtKSra7zQx1pLLxTKUXR9R9+fLc691IwurnjZHfi02vC0O/J4SEmLnGOWMp+MWS4WtMLhWKbUuiP4+mtEl+JW8F/8+l8wG/u0tuHias54luDUR55/+C3B/BodeWdxwF8wW3zB1XhEXRxBOHy+fyFyDT/8h3/k9fGZoe0pyo6q7JHSp7ES5bi44Yy07gmcs6NmfziyORT4fkzsuRitcYF2s+HTx5943B8wUiBtxzLwmAaGxHWJfZ/AGBwGHEfiJRNsb2mOB1zb4LoOQ9+hXI1gwA6WYnMWTxzXRbgGoyT5foMfxdihI686fvH1Fzi2xniGQ1aRlTVY6IYe6RgOecnhdALXQ0Vj6rwgMArXNWfmRlehnBYx5GRljms8+kFhB8nQWvKyQkYJT/uUPEvZ7rbstgfevL0DKUj3B2Rz4t3dDcf1Czbdc9ideHl+Is9SPn5+5u+//8Tf/vjIh5cdDgM3kwg/CHCVYuRYLmxFj6CSGrc4ILuKrmnYpiUXF3N0m6PoGU1mXL15Qzga4ygFRYpyQ2hrVF8jhGQgJFhcUm4eUdYi2o72VNCUHY60DMWRvmyh7+mrjk76CONTlCXtcUd1Sul7yNsBkgmPqw1V0/Hu9opReG79W458jHEIPcPFxQWh7yKajKzI+acffqLue5CSxdUVvXJxXMPIc+jqkq7vWa+fKaXCdT1cGmaLOYvrL1BejK+gqFqa/ZbTyycuYksqFduyJnF6HNtQd5ZDekL0Ld+8e4vofOKrW16OJ3aV5U//6/+Wvla87gtmN7doIcjW93RFytUs4XqeEE9ijJKEgYfvh7hKEEcR2tFIMZxhrxKiyMcYQ1fkCGspTxX5y45Ae/iTOcrTIDqsqzGz5flxpARVWeIGPvz+vJdFjhfNSIuW0y6nzl20GVM2DY8P7+nrmqGoyY5H6rIAAcXuwOnTI/nrM33dYcIQ2Su8DorDgTbPqOoWPwqJ4hjVD0wnM27jM6Dc80MuLy6YBQG+5zNPRnxxcc3Sj4h6S3PIODy9cLi/p15v+NVXb4nHNxw3e15ePmNsStDXVC2MPI1va2JX8Ks//AOuri6ZJT63V3OW0VmENgrC0Qx/vEA4GttaijTHUYLTbk9R5ig7cP/wyPNmQ9aUVHlOlWZ0RcXheOCYHUgYcHDQrqBrMup6QNCDEAxdiw5DrOORpyf2hxQ/9pBNg/Uiei8h1BD7DmHsE43GDL2lrAoq6eBN57SD4Lg/st9soe9p6wzHMSTLO5q2Yu6A6UE1Dq9PJ75fZ6jZktY5V8i+bLfc3V5Q5gXp5pVy88Lz6sRf/+6J7akgawbSVvBySNnnBYHnMY9j/st3l9zOEpAeNDVR4OP7IVEYMJlMGS2v8BzJKHAJRjN6HSE51yEPOqTNTnR5jqMdknFC6Ce4BCy++AMWb25wHUM4ntI3DUpqHKOQwqU65fR9izIOddOBI1BmoKsbgmmCFZYBSV0VeHHM4bDj+/cf6ZqGZjgvcAJXEngOxrgERmO7hsBVRMbFuC6xq/GNx68WI95MEvZ5w48vKbkKiMYzbt6+5fbylvSwYxgFnGRNUa15++6OdPvKX/zb/4vVeod1PJ73Jfs0o+9a6qZjurhiuVygbIvqO9y6YDIaM5vP8bRDf9wTaUUSRsTjOUk8OTvpjidU25wbspKI+eUtfhwRjKaIHoQ9QrXHkQLZlwynZ8rnDwglsY4iL1LKuqQpTjRFTl/ssW1G3/Y4qkeIc5mFdDXR9R3BeIKOE5LLa3AURZYiHM10Medw2GNthyvPfJDBcThtXqnbBul6PKyPrF9f8bRi6PrzItw7N+r1wqNpWkLP4PgRvTJkaUYYRYihwfc9HEfzcP/A06cHqqrj5qtf0VpJXdc8vf+Boc7Ijju2r0840kLfYtuKJPRxHefcDFSkaOMTJdNzY+fhlUAMeBLG8xFCObjTBf7tN3jLNzjJCOknDJ3ESo23vCaZzInGM3Q0pVMCaXv8aIw0DvnzJ8IwRMfLs7g81IymyXkW6lqi6YLrq2umSYQXeBg/wPgBTdvRNjX77Rq6cwR/4liiwGV3OJKMYha3X5D4Lp8+fkTVNaGQmNGIzWF3LoAYOt7c3bC8WHDY7RA6oJUuP/70kf3hxGgyoisyquxEP7TsDkfqvsWNAsLJNd/84a/54hczXp8+4HkDbVVw3B84rDe42iEII5I4QUkBfQvWggUpBY4Q7DcbmqpicTMF2RH7HhpF1zVkeQ5dQ+h757ndOiipUFqg4oRucClXr4TzKQC2a6mLFMdRONqh7waE8XCNjwC6+szY6bqOtsppq4LtKcULA6oix/MMo1FEXTe0bUfX98zjiF9eJLhqQEqBwnIsCtLBYZ3VDFIzSE1flxjXo+8qpLS8vP5EWj4hvAPr9SP/2//+v/7zRZN//2//jz8bJRFltqN4+A9cX5a8+fpPePnwmcP9j3TplvfvP59bIwaLq0D3NU3dEBnNu5tLQs+nTFOK45Gp57AcjXGlg0WitMENI+IgoDwdCB1Q0hImCQwdka8wfkSvNP4kxAQaHUlUNEErhasCTj880WxOSN+jVoJ4OSeYxYyWU6wSIAVeHLLZbglHIwYGmqbG1ZLquEHZHusYrNJI44EdkEIg+pZTljMOfeqmPj+4k4RqgOftibwsaZEUdUPWNKA1Kgio8ozeng/BzeUYmx9IfEmsGwKxp61ajnlJnIyw2kN7Hn2bcjo+0jQZLy9Hnl+2WKHQUqJ9Q9akXL2ZQFVDd6YMx+MJu8OB55dnDrsDtqpIfMN0MkH4Aboq0cLBFRatJDCgpKVrKrL9iiFb02TbM+HeGOrNE6rPSDePNLZkU2xp5ZFq90BZ7MmOR/IcojChOpwo0yOOVZSbFxylKNIMx7jnn/rxQJUe0UpR1g1F3ZIkCX3XcipKqrZHYJnPZueascCg+xaHgWawHI81l2NN4A3IWYi/HCG9kHJwqKyDLVMisUPUFYd9yWw8IY4neF5C07T8/OGJ96cjWuxptx8YiY62qNjvj4x9F1dJfM/j+uoG0XckRjNdXhIEIWPXIVSCOiuoTjU/f/sdt7fXBNc36OmCVp6ZOUrKs0MhK7BlQVsVFMcU21S0zTnfWR/3FLsdfTdgfIMQDse8Zrtek+UVQkmOWUEQBmS7DQ/3D0TxObpRVgUmDNCBj3T172vDWpQAVzu8/eaPEHZg/bLCi0Me05SisTjumDq6YNMLvv/xA7JIeblfUWQlf/BuyXIaEzsKm7eU2wxZnHBtzn6TIHBwPB93tKB2IionZFtryk6w3a55uP/A0JS8u7vGM5qLqxvu3rxhGntEamC13lI0PcoOvJ2N8RgQQuAZQ5MdkGLAkQO2z3FjhfUUVlmaaMFaKWSzQVuFF05pjgV9p+ib5uywqBvqTuEEY5rsSF/XTN/+kl75tL2k7S3KBEglAYe+bZASHONTOwY9mVHVDduXZ6J4jBaaoRto6g7pnH/k20MKt1+xOaU4cqDroaganncZjy9rPH+Ca97xms3wL+64eHvFNxcjJr9/hN+/7PBmlzSbJzaPH/n08TNZI7DSQdmB7LSnHSArC/Yv99DWuFLgG4/RaIKrDWWeU9clvutxeXHLcjanOO55Xm8ItEvUFVyN4zMQu8wI1XkwDcMIRyt8Y86lwdJBKoUZTTGTC5xohAk8bFNgqxxre0zgYjyFbRqGrmHAIl1NU5ywTUFx3OM4kq4f6CxYa2mqCs87206V8dmn5dkO3DQ48YgBifFDqq6n6Vq01swXSwLfw/M8pGd4XD/i+5rbixuuxzNmoxFffXnHMX9luvD55RdviJKQh3/4C1bf/ROMp1jPYb1ek0QxobKEQ0psJP/4/pX37+9ZPa6p05Sx76F6mIwC3ry5RXox/XAGe3fhknLQ7NOMzw+vPK/W1FaRBAlCGbS15NsN6XHL90+PDFjGYcBXVxdcT6fESjJUOaLvsO2ZCTEMAtB0VY2ykjrf4/oGQY/FooyPiccIMeA4ijJNzy0RWtLUDc3vOQw/f3om8hyMgCiO0a5hl1UMwwB24Hg64YQJZdXQKxc7QHHc4XoeyWxG08Pm5Zk+2/EmFkThCOlFBNGEpurp+46676iNz/vPjxSnE71QCDuQBOcs+XQ6wW8P3L15Q1c3nDZrtvsDH18OHPYZh7KhcRNWWcdhfyKWMHYVIOgs3JqBcKgwi1vSzYoLr2doG7R2CIKAUEKbp7iTC+LFJTY/0Zc1Qrp4UQRlg/ZC2roGLwZAtA1S9DSnA7IroR8wYYDsBqrDFtsU1GmBVJK6aTgddwxdQ1401L2kd32GIOLp+YkszXF9n1pIEk8Ty55ASbxoQl41aCuoqwwYOKQnvv3xR4qqARPgRDHuUJIEhkkcoo3H4ZhyOqUcqhbjCIa+4he/+pIv3tygxUC23bBfPTIKXIRj2HQGL4qZxopR6FBUNcb3+e53P3A3mzINRgy1SzgZ8/DwwC//5E+5ufmKz98/ctruOG5/YjYJ2T8/4YuW2SjBS8aIck8cj5DCnh1L2kGKHj+OUQOIvkch0H6A7ftzO0c8YTSbnx1qQYA7DlGeQ9uUWGHxwhDX8+ibiroqCScTur7FcRSW84a07jV5WTNYSdpDGGo221d2+yNPrxu6pqSuzmJCU2WcshNtV7Far9m/bmiOOb5yGUcRVdnStZbxNEEbja0bFuMJy8hHa5/L6zc4dclUO0gh2K9WnJ4fWX9+xBMKaTvS/Ynj7sBXl2Nurr+gOHU8Pz7iiYou3RMYD9F1TKejcwzcaEJjmM/PjANPWbASL5mi/QitNcJEZPv9WYiajPClJXAdZqHP8VhwPKQEnqIuUtq6IC8KmnagrCvysuDNIqQ8FmR5QdUDTY5SLk1dU+Q5UmvQPun+cK7dHY04vj4wDAPV4PKyyzkeT9i+Z388sU1zwNIPHcNyifE9msGi5EBozqBavBBHx8SeISpTLpIxRhqOpwM/HjJyHKJRwM3cZRw6WMfQWcXj5wc+vGT840NOieb+eU1WdwilcR2Xu+WCu8Wcuevw9SxEIQmNB23FchJjfO98rxUnHAFDmaFlj1YKbQJUVSCBwB9h85zIN4SjBcl4StdZRndfE80n+KMI6RiEAMePsH2PFD5ONGEA2q4GzyWaL0FajvsjUvZ44zEyiGirjL7vEMbHKoe/+rt/4PWYUrXnmuHT6cCn5w2r7QFHWsbR+cw4UuGZM8j1KnC4US0jZyDDY1c3XF1OCacJv/yjXxMFI+q6QjkWl5b1wz2vn9/z8W//kn/z53/Dz09bLJJ9VvL8+sopTXl7fc3i4gJDz3H1TBIGzEL/DHN3DafnR8ww4GsH7TjYuqE5bbFlSRJFJH6I7mv0f6LsTXokSdI0vUdEVHQ3U9t8CY/IyMiqrO6uru7p7gGGHIAEiOEv4Il3XubAIwGS4G1+ES8kQB5IAuTwMmAv1T1VlZVZmREZi3u4u7nbovsiCw+a0ycOgbn7weAwVRP53u99HhUidE623eD7E4EOEF2LufsDQliG+kDfNDSHO8rzgaGvmNoKaXum0yN+apDCIwIN0whS4v2EFqAjjfzpLpMtElbXL0jXa+I8JcxzwjhGBOIn5lGIUAHaT6ggYAo0h97w+LjHO8vQDQRKsNusCCSIqWdCEscRi3xJ7STZMsNbQ3U6kIaKLM/p247bT/fsnw54YLfdYKeRt7//LQ93HxnbmrFr8N5RFCumvsP3DatkNqu4aQDnWO8uibSGYSCJArwVLC9eEu1ekrz4kmBzTZAtQTLziKRAJRnGSkAQxCFCggolgfaM5QEdL4jznGH/kSgpCJOYfLXCtBWm69ncvCZNc4amoT+XhMsVWkqG8xOvXuz48vUr1okmiTVSaYQdmfqaLFRku2uEUByeS24uL5mahmNdosKAfJkhlSTNMo6PnymKnNXmitOpnt+H54p/8ze/w3qHUgqcZeo7dBhSNy2hDlBhyMXPfs6f/ZPXHB/fc3584vB4JhCe06mirkoC4QhUgFR6NlY6g1KSYbRIIembksf7B/AWLT3b7Q5pHM4YjHFUTQV2ZJGlWOPQaTr/D6MEJxSeABFodLZA6hAp5+2u+lzhnUUAXVlhnUcFP50tHOAdWZ6jVMC5bnDOg/cMTnJzc0Xb9pzqGRq9zWIuY+hHTyszNCNuaDkayV+/vWOcDGmWEycZzhmiOMJrqI6P3N79gHSCT58+8N//D//tf/jQ5H/9n//Hf1WeTrTPd6yiltNTSzsUxNGS6vjM22++ZTQeozQ4Q2AHdkXKy8sdX7+++SmRSzg8PaOGnk2aIjyzDScISZMMi2S3Loi0oD0fWa5WBEmCFHa23qQFQRiQ5gt0tsGhiZIUSUj5/TNT6Xh6esDHEbuvXxOsV0SrFdM4IrWiLEuCZUHTtoRpSpxldG0PQF+eqZ+eWCwyusEwtCfsOK8GJVGIc5auqYmVwHnPoRmpuh6lA5IkRUmBCiSjNTRNhbPzC0jrkDgKyPOE9e4CJQRpMCDNCYsmXGxI0xTjRtx4YrIf2Vx3NIR8+9v9Tx28DNwM3GrrE4kwxKHCTRahPD/84S2fPt7y+e6BqmlZKskqi8mTkCBOYZrmw4e1WOdBCKwzCD8ibce5rAi0oreWNggZnu/xfYeIM8Tqhtv3H6l++Ib68UD9eEJYDdNEc/9AnOWEXuHGDj/0KKWxQlIeDmRZgpkmTNczeZgcVIMljEIOpxIVas5thxMSnGG33eCGnmkc6YcRHefU/UiQLdlehLTNPUaOpJevMFOLrR7ouzORcphmIFSaNF2RRSF2cDzeHXh3d+L1xQ59vifrznz+eOTth3vO7cgqiYijiCiM2V5cssBSXFyzu3yBcJ5YWOIgoHp4ZP/hjstiyfUv/5xBBKg4xTlLoDTee8I4oitLjBOEgcQNI+fHAwEw1hVhlGGnkaf9AeUtpq1mqONgeaxb0iSlHc0MY61KQPL4fKQoFpTnE3iLHQcmY1AyIMtzVhdXbHYbNqsV2IHdtuD8dGJ/Ljk2Ezot6N0Fj1NOdTywcWc+/fiZ/VOJVorLIuFiu+WL6yuyJMOOiu48UfIzOhNRiiUNMYd64uH5QF03fPft73n39juGvmNVLNitF1xfX/LHf/JLLnZb+q4hlR7T99RNzeV6RcpEgJ25DSqYD6FpTl8eSPIEAkXVO6IwZBQFZWMpAgisRqoYGRW48sh4mNfQVZihF1tUssBNI8tXP0fmW3RxRZgVM7j2J7OASJY4EeBNj3WOwQsegwyrYmI7cnrcs7x6hemnf1zTa+uS0zgyJhkPz0est8Q6QAiHCEKsD3jz6iu+/vJPub685E/erHm9ixHNAdecuS4y8iShbhpCJr79h1/zeOoZfEisFd4Mc193+5LT42fs2LPcXJAUW5QKiAJNdTrSdD03Vzcsk4RikRMoxVifeH5+JhSer7YF6zzBjBPZcssyVITCESUxcRjN20hRTLYo0HGKmUbc0OGHBjFUxHGAznN0liL8hDcDeI/3nmSzxY4NZuhxah66BFGMCWMmB05KBJ626zDOkX3xM87Pz6gwQQjo2gYbxKgwotjuWC5ykiQliTMclmVRoFLNYrvgxctLduuMJA4JUmjNnm+//47r6w2JgjBN+N//j/+bj+/vCHdrBjFgHYQIdrJnEWv2p5FvH3rcMPLhwyeqU0MqAn725Uv++E9/SfHzX9DGOUmUolXAqRrZHyvevfuRp7Kmmyzb5ZJVlpJ4gzmf8Nby48MdozMsYk0RBri+hb5BC09XVegwIggijHHz5aBvUT+lIgQBbqiI4hjrPOM4km42jG2DihPC9QXV85GxrYnTjPp8ori44Hw8crFd01YnurYhiGLKuqdpO5QUTNNI3fZEqx1t17N/2jNYh8qWFEVBfXiirUsW0oEKkVITqIR28KA049hzqo/4xYL9wzNt3TEax2a9wvUl7374yHIRE001F1fXKCX49OGO33w88vah5R/e7fnNj4/83dsH3n/eU9Y16zQmloLSCDbKsw3mBNFYy07OgwQzTrN1bzCEoWZ5+RKdFkgVoVRMevmSKFkgugZzOKAXOc4K0tc/p/zwkUAMuH6YQ5HTEW8GTHfGNg193zENI+PYopTE2h6cpXze0zc1xjm6ceT5WGKnCYnn0E80XpJozdUyQ0wjWnq0zhj6hv3pTJZpjPd888M7qrpmfXHBbpXT1Sde3VyTKdBaM/UdHx72GCHRWjFNPVEa8IsvVsjumX/4+9/ywzdvSZcFF1/+DBEtEKbh44/fE8YJ4zTx9HDHaA1/9Rd/RoBkrA3WOkrX8au/+mdIYp7fP3D/zd8R2W627p2f0RJ2qxzTVhSLhCSdLRReBawurmBsSMII5yaiKEIK0OmCeHOFzgui5ZpguSF9cUN4ucNJA3GBKtagQ8zYo6THOU+YpdihxY49xlmsA7zHWMGHzycwNdtiiYxiJuDu8TPDNOAlc7XrfCaUiqfDkTgJEEKyyBdIH2KmiWK1QUQxbvRMQ08SBmzznJebLZFz3Ox2RNNIOPVM1YnRaT4+HqFvuFomSCZub++ZjEUJKPKYIi/ou4qpP2H7Euc1UZLNetVAI4VmefGSPJQkSpJu1gihyDcXRMVuZrUNFVGkiLXEjS1T09H1FuEl3eAon84oIXl8Knkoe6q6p247lJD00/xZuqbDWUvV9XRthxKGpmoQeAg1Xd2iAoWfDM6BCATl8cixGkgUdCLEIWidQEQRxnqsTkDC0cx1cO8swzSx26xYb7YEcU7V9ERxyEUkaeuemJ4oGEh3F6yvXzBOExepJU5z/vq3H8jyJd99/4m3B8dT6zmXNfvjiVWWonTIZrXmspgB2Znp2aQhsY4I45irqw22r8mzFBFEBEGACALE1GO7jufnmuZ0RDQVh89HVB/gjs+MZc3UWkKpCIKMYrVg+apALxPCzQ6VZ4znR7qyJloXmKkhKDaEyxx0RFjkEIZMY0PfNiyubnDOUZcnJu9IVyt6J7h9eODu6UxnPMYLynOJlDD0/cy0iEK2y5TtIqbvR9bLJX1VMx6eKQdHVGxItCWQhotXL1gtC/JFTlYssN2ZD2+/5+HxwP/5f/0//O0/fI9DUfZzcKYAjeV6mfLmyy/JAslykVKsVhR5RuwMfV0j7IT2jsurC8I4IQgUCE2+XJDnMUGekb+YDWP0LW4aMPuPDMcHTFkyVEfK+0cmKXBxjgtDnJKIICLOV3g7EiiJ9w43jTgcARDoAKkVLl0jxpYwAB0naCURYr436DhBuBEp1T/atnQU0UiBGhrqacL+JNSoTmeUUvTjiPOePIlYrzbsD0culiluGhBhxmA9cRwTJhHZYoWzFrwDBM5LmnbAe0GsFdie8nTCC4FUAUmakSQxyWJJmi847B9ZakkUhwQ6RDJXiRfFBiUCzOhYXL5m9fJrZJIhkwUyXYJSKB0i1RwcSalAeoJI05Y1Q31G4dBhQIAgjiTdYT+bQL3FdgYpBRJHd6pwXYsfOhYXO2x9QpiB+v6O9vjMdr1E2oH2dGS73bJaZHz16gVfvrhEOAEypNhd8O23f6CtSlCaYjHr67MsZbHborWmrk90TcUiTeYNwDjBTAPHsucP7x84V93MR4wCcJa+aem7gTTLcd7z8suXhMpz+/4T+JBXN6/QIXz73R9omxrnLMNkyZdb6rpDBxpnLUJphDMcDwc+PZ1ZpSGr9ZIwDOnbBilASEnZjgipSMNgPovLgCAQeG+R4Sx2COIEnWUg5VxD9yHWecrTbCsVOOq6mU22fcc0DRyfn1mtV2itGYaJh+cjm/WKqq65ub5EKUE9TEzjxMtVzi5LkEM1V6KNobeC31ee9/sTbd9ijSFNc6IgRkqBw9HVJX3TsAw3GBPw3/x3//V/+NDkf/vX//pfqaljswgQQmNFznYzT8O++81vOT2fKNYbhmEkxLJeJFyuZ2c2Zj5ACSR3H+8IzEQYBGTZglBHTNYRpglmLFltt0Q6YJwMebZATBPb1ZIgzkizBfkiIVjmDF4RhCHKJ/R3J/ARt9+9xThD8eaa9HpDtt0w9SPOT5RNx+r1lzwd9nRNRbZYAA4hFUqAMBOmrRnalqxY0LY9SkmEEAhn0FFGPRjGsedYd1SD4fPTgefjkSxLmZzB4YlCjXUTUgp0EnH5xQ2rWGOmkaIoQMXsLi+4vFogowVBkjNVTwjTov1E5Gq6U8f7946u0QivwEyMo+H7dx8QzL3zLMqIw5wPf3jP7adbynNJ1/XYvmcTa3brFWN5xtQlVgaEaUacZohlgVEBWjj6quRc1lgvCJKUx6cjsZ2Y+haHpzlXjKc92zQiDhOSKEIrTZ4tiLQmjhR+MFhrmOoaZy1DO6BkgJ/6OUUZRwIJdT9ipWI0lqHvKLseLyRlN862IjkPchZFQSjjSEMAACAASURBVFvV9P1AGCaEYUrTGuQiIrrZEW2vKOuOyA+4sebp/p7t7gItA/wwsL15QxLGnJ+e+e33d+xWl8jygc9vP/C7bz7wzfcf2e+fkMC6KHh9uWWZZ+zWG9IsJ4pTmqpGjAOJEiQCHj/cEgPXr79kqCuSzYb7t9+TxzFBvpyBWm2DMZL68TOmb8E5umqeMJuux1jFZCzn84lz2SOkZLQWHSdEUUhvLA5F0/dYD1GasNysuLx5Qde26Chhsp7yXBIFgrKs0NLx4vWb+cdkGgmcYVnkfPzxE58/n1jEl0hf0OxbroqW5vEOpo7zuaVvWr642YEZMNNIli1Yrq9QyTXHfstjn5CvLxnHiY+3tzw8PPDx/Ts+3d3RNjWBH7i6ukKGMa9ffcFmu+ab332DHFuKPIGxJ1KKRahp9p9JA4HSIcYr9HJN9fw4E7LTDKMTwuWGQCXoqWXRH1BVxXDqcacS33ZEYUSyvCDevCBcXSOkxnmJF4ow3zCODqfmtMS2NdJPuL4mEB4pPcJZvOCnQa0iCGNUVxNIgRKKcTJ004Dx1fyMT2Ct5/HhkSxN6Q+PTMYTxQmPx443X7zhL//qz3n5ekuUab799IkPH77n/OFbfnZzhQoiHu4+YesjbVXRGUUQZRyenylPJU5F7LZbTH1AOoMVCr2+4Hx/R1eXDF3Lplhzubvk1c0N3guUs1T7O5QQxIFkk2cUyVzvWC4KpIqJtCJQkiiJkc6SpDFCzcadOA4ItSCMAhSW59tbTsczWgJTP6tt/11yI2Hqa6ZpICjWiCTBJymdzuiNQYbzsx3qkNFY+qqkH8a5qmMMURRyKEv6yRIlKfliSZKmXFxuGYYejyDNY5yoeH/7nm+//Y7Tcc/nT5+pzyeO+yMMJ9JAMHh4eDgy9gMyD6jLB7abC25216i+ozwdaHoIBZjySNu3eG+43i75k1/9isVmh8p2tKcTtm4Y+5GybCidpvjqT/BmpKtrLhYLYiVgHDHTyLE+81weGceJUHi6tiXRikQJpnEkjX667F+8JAwkw+lphqxhYbEgXBbQHlHK4WSA1CF+GvHW4O2I0hoZaKSE6niY+QVhyP7xie1uQyTn1EZJyalusc5Tdz39OM2XI2Pp+57Beq7efI0INMY6Hj98T6wVSRSzLlIGLNvNhmyZESQZRnhO5T3P5WdwEdMk8NaxjaB8euJwOLKKDTcXm5nbVdf8m7/7Pd++veN333/g4+cn9qeKpp03oUKleJ2FhGLm7rxIFUtlQUlyYZFuJAoEVTOSBIpVsWZ18ZJ4uSFwBtfO6aptatq7O3zXohez0lCKjuF0IExi2kNJoMFMc6o0HB+wbcVYlzMLRke4cWRoKvAWFcXIIKCtzpyen3h+euJc1ZR1y+e2o54mvLegY17fXKOcJfDM9Z9M4GTLbrfhuR15PpfoOGKzKnh1vWMZB1zv1gQ4Qgyn1uCDkP3pSKQF6TIjEh318wd+9+u/5d/+9W847I8YQiQjWlnq8oTQGXGxJRCCw/HA9vIFf/T113THA59vP1DWT2zfvOFyd8X93TOnqqQ5fyJJYzQON7Ss8ghpR/w0EKcJSZqDFCSRJvQdSoDWKTqNCeIUHSfYsSeIYoIoAaWRcUqQFchQopY7fLqFOEeEMUGS4b1kGmYN8NCcuP90R5gsCOIEDzgknU+5f25wfYhRBWFScG5PIAxCCIZpZP98Yux64iiiWOesdtcEMiSMc5Z5QW8luijom4Y48GyLhKtiwTZNWEYBom+R3oGx7G9vSbCskxBbHhirI9ZYmn5CxymxVgQeUilpTs8EQuCBJInRQcQiTUnjkFAHRG6iWGYIb1E6Rudb6M7QnkiSiPzqGteccENNdzigFSzXG9LFCoFlEWskkmVakKkcnCESzCB3BALB0I+M08RoDVVVowPF1I8zMPRckyWKsWkYHVgUpq4pqx6CkLFr6doa5yYOT0duDw0+0Ex4+nFkND1eglKCNNIoZ1hvLwjjiAlPfW5QdYnyjjwThMuC9Ys33N3do7Xn5otL9j/8jof9iV//7gMfT5Zi94qu7bi7f6CII3bLnMt1QZ6kJGGAsiOZcCziEK01lxc7kixDyLk6KnRMn+z48PGR24cDP97ueft5j6gOnI/lXK8pD4ixJxSay6vX5JuXrH/xS7Z/9eckLy6QSYQIA7ywBNmCaHOBBxABTs6DpaZtcN4RxDEqDEmKJeemY/XiJafTEYQgXq05Vw2D9fz4+RGrYiyC58OB4+mEEoZYmDlYtJZMw9V2hUPx7e0z9z08O80XP/856SKmbGt8kBBJj/cWIeH58TN/+OGOMC4YjaHpOo5VjwzC+d1kHXmacLHd8eaL11ysl4R6vn/kcYQ0Bi0FSkCW54RxQlKsCbOCNIsRyoEShEmKVAKdzHw0GQUEeY4MI9RySVCsCTZXqGVGtF7hvUcrN4c+UYRzHq8C8J7JOKJs8VPo2SFFgBgrEHLeRPMW3ISPF8h8hRKgdDizS7zHjB31+cDUtZz7nnG1o68b2qoiizSxFHjvyeOQzWaNFZrD4cBlKlGBpvURwziSFwuk9MggIlssEd5SnQ5zpdEKhrrm4fYTY1tTV2fy5ZKqM1jnsR6MDAgUjPt7EiUJ9RwsBmFEECbE+ZYoWeInhTUB6WqFCCVBHCG1RnqHxwNillmYEeE8pu1RocI0R4bjE7bvwUqUUmhlmU4nXDtimw6lcqbqQBwoTN1Snc+oJMEKgZ1G0strpuZM/XxA2ok0DBiaGu8Vh9sPhEFAlMwDhKe7T7R1RXU+k2QZL168II41Tmk8nm7oOe0/k2g5NzKiGDONnMuaqh+5e26ZpGKaDKGS2GliqCu8ECADiBJW1zeY6owWktdf/oLldsH5fODtD29xzhFFIUmSoJLZmDt5gY5SJjMxdi2fHw+0wzgPGS+uCCPFMssIAz3bFgUkoWa1zLHGMjYNWvp5Y1w6lAasnRlNOFSgCXRAEEaEcYLWGhUo8iKb2SpKYe1sb4yTGGMtp3PJsR24uLyiblsiObNrns8l1nm+2K54uQhp+oHRONIwpA7XvO8jHqp6DluMZbAQx5qmKtFxjpIzFHq7vqJYXvJf/cv/8v9zaBL8eycmQKgV3elEfvGarpMsYmCouP38wPFY0o6Gw+cnLjcrtB2IwgCmAe9SsuUKby3nc8U0jYSBQijBNA0IqemMZRVIRGdpT3subl6y3G6QBIQ4sPNKdawjZJpTj55kkTEO0PcjoxTc/fAttez46p//GaN3hNtLVCzJAqjOjnC5mI0YxrHb7ggDQfN8ACFIsxSyDFOsODzcEwwj0WJNfX4iiQN6PxEDm2JJ1/ek8YAwlo+PFZN1XL36gvF8wMmA4nKHxc/99kBTpBE/e/EVh8Mj6yIn332FjgymPTAaz3jaswwNxfqSy5df8OH77/nD+wknNrx4nfN495n9/okwjjlWDXGcM9YGP3o+vvtEXc4dMBUEnMqKrQ4QQD8YMqmxY0eSWLq2YxwMyniGwxPSGgLAe8d6uya/uCLJEoQQdMC7z3si03J9tWEINc1kuby6ItKK6v4WhJ8vR3GCDmNEnDCcKuJswTj0BEGAdRYlFagAHWqUDYjDnqbriAOFxPP6aoMXiudqTrWL9YYoTQkmjxgylrslp9MD7+8NLC3t+JmV6GmGBjtM+K7C2RuK5ZoARXk60aF4//YTQ6c4Pbzn4+c7fvv9Jz7c7en6niiMeXVzwyaNcCIgz5aEzjANPd5YojAmiZZ426P6nthZrl+95PDpM6fHPX+UL4iEIohT+lNJHAe4cYAJzGgZ93vQKWGU0VtFezwRuIjWeFarDYe6JQhDjDEc6hYVhUxuACyHc40zPePYg7d89933FIts5lxoxaJYIaRiZQTn+kSRppTHI1++foFpKwIv+PM//orDueEP33zLGyJ2q5TA9RSvXtDuH9BSMHQTnz7sefOf/ccEvuXwVLMSEdH6JQ+nCScjvB0Zh4ZFnjEMPZ9vG4ahJ1KebLEgCEOuXr6h2F7x47u33N/eoq82KO/BGi42Gx5//IFQgBCSsR9Ypjn96UCS5nPlKEsYncQZBVJSPt4TYsiKAo3BTwNj2yD7CbkEeoMYLb0xBMsNyXKHnQxSSsqnR7SSmLrGmQkrJaY/4fEzO2Y0BIsNidCIbkDpFGcM9bnk+VCye3PNp8f3LIRGCs84dago5u37z5ixR+AJwombyzVhKInDiWo88PtvfkRFnmyZ0nx6mqG0ARihOJcNKkxJEsfkwBqLF572/pb+PLMt2p/MKM3xwNR1aK1ZL5ekcUwURXTjRBQEdE3Fsa65iBTLNKFCcyE1EYYkUth2IEgXqCwDJYjDCBGERFGMlA7c3J+3bYkUHmV7nHAw9XjpaasSpTWBVri+wnpDvNtilKZqPcJNdOcnRBjz9LQnjDLiQKGDDtv2REmMiBK65kiqI66XCz6eW87Pj1y//II4yhnGkTiMccYw9SPvbj9y/3BPFOc43dJ1I9uff8Hq5oa/+POvuMpmls71zWumsufFVcY4CjIlWGrJ3eFMX/eku9U8uOwmXiw2bF8k7HaXpOGOxfaK1oyz3rsqOR+PTM6wWcWYqScUsIzDWVcnQQpFVZc8HJ4ZphHrofGWTP87jWVMHGpkoOi7iuruHUkSzYfzYk3XntGnPX6MUdYQe7BDT57GIBXGTOSLlOp4QOqIOFlSXAhO5ZnyeCQMNX4asdNAqgUDjqtVyr7qqYd5I8oi8YMlWe1Ig4jD4YnVZsvbH+6YqhNdF6KurnkRFWy2CeFyyeVmRa0SZBwj9orj3R2vr18iSYm2Oa46sbzY8F/8i7/ClXu6Y8Pdh9u5h60ktmvp6xpvDUp4EA6lJKmeAbCDlag0RdHTG0OhHHmicePAaDw3r14SGEecFETbL/Bdies7nFFYUeKMYfH6JUJ5/DRbL4bDGeMl0eUr4mVMf9jPQ/18g4gWtI/3JEnC2LSMfUmQxdjJI6Wbv+cWVnmIGRVV1zA0A8+9o1chJowJveB0OvB0WHCVxvh0ifGecOiIpaDtRh6eH7m8KFgsY7a7NZfbJZtFwvn+I8FmQ4/n6vKGyQq+v/1E1w+kqUJPnscfHvnhH37k44cDm+0Fd7cfcVPDP/mLXxEkKWKqqZ4fWWQhr756wzpPsU1Jddrz4fY9Xkle/OpXDFWFq1pU+cjL69ekocBUNSpbcnh4R64diVIoGaDChKk6zKmpCQjjDDeOSJEiQo1gBiLarkFHOWGS4aWF4YSzE6QbzvsHPr39A8XmgstXr9BRjAoDTH1EiZD72wes1+TLAjcx1zlRvLj8mvtaMQwSHYasbv4E//gdbpoBgTmC0Tr85JhKS/HLS77/3ffo1BLmG6rTiUgrJiTOSZS1xN7hqzOH0zNxELDcXvJ8rnl6LqnrAZpngkBT9g690iwuX/N8eGIoa4IooG9rnJ2hyXEc4/qOKAsIdMYwDSyUJBYOpoFokSOFxVb3xFmCDlOCfIsZuhkyH4S8+tM/wwnNJCRD35EuNecHic5Ceh8iP+1J01mfOg0Th6bHW+gGg5kgGR3j0DONT1wWKSpQSKWY+p7L3RpjG/L1ksBbtNYgHHXXYCfPOk0oY4nD8FidWPqMWkg602OUoMtiNsuIKI84NT3ZIidKW9KNx00lUjoGGbBYrlksYla5YrNd0E2at58qfv27T/zbh47rqxe8LgqOhwOvNgVuGlDOILzDWEeUJpxPBy5TQRiGLIoC6xxWaOziJW1d8cOPez49/p7z0z0pFuUsu1jxbCdebjbkecQmVbz8+g3LN39JuH1D/PI1wSrD9Sec7ed6hR1QKsDaEiEDEKDzGIYJYyTZ6pKuOmNGSxBGMDn0OHK8vyVdLBkQTMbjpp5ikfPVl6/58FQRaM1oLM1gGIaBZWB4tYpZhB7hLU0/8Ov39yzXFyzyhEJ61qlE5zv+/sc7Log4tD3fv/8bwnRBU/dU7cjHz9/x/HhLV9Ucq5Y4K2bIdrFiuyp4sduSJBmjsciftkjoB6QU+DBD4Qm1pG1qZJQTKjDNmSwL6M4npn4g0hphB0SYoMKYIAiR6QJjHTIM0Vi64yNSC6QH13Uw1HgRIGWAn8ZZTKAD8I4gjOnuPyK8RyUZaIFIckzX4pzDywxBNYe7cUqSF7TPPdY6xq6h7TtEoInLA1MU4pOI8jgHDmkcI3UMTnB62iOE5NOh48vrhCiJ2D+eCU8NK+FRQYUSHtO2mK7h/ad3vPzqj1BhyMPTkbGpWW3XnJ8f2N/usdPEer0iWyx5Pj+hRsPJlERxiDGeLF9gB8FQw+e371hmGburhL45sUpW6DCc7Yzh/PyRLxFSgxlgGGfGlvCIJMFIx1jXCBPg4wRz7tG+Q4aOfnym3bcECkxfMZXnmaH1+BkdBXRdi1iuCVdbyg/vINDUhxIdRsTpCu09U1lTdTVCCpZZOjPl1hNaCj7dfWJXJGShR2sxa9vVNaY+wtBSlUce98+kywJnA4IoYno+0dQVwmRsixwRR2hp6EdDvtgRhAlmHLh5eUNxsSHJE8q3I6eywkxzpXo0An1yvLjc0jQtVQWhMLi+4dT23GyWbHY7snxBFi+RuH8EB3uhsNOEswKdzCYuO3mUlvSnEh2NOONQUTr/rfPoNEVriLMQkWr6s6c+PeK6HiE0eMt2s6U+H4hjPbOBNmuK5ZIPnz4gpURGKaOx5FHI64sVE5ZBpXwsLZOasEGLIyAMQpTSjMZQHR6Jw4BiucTakclbRjMg4pFsnf175yL/v0MT254p8oQwEOg8pby/pZo6/vbXv/lJqxpixo6+qucE0QuiMCGMUqbRIoH9fo91htZ6dsucOA75fDyiwxiFJws0cRBS7Q/oOCMqCmTXMnmQ8QLSgt4JrDHUleXw/hORG2hPLWU/cPXzn6GvL0gWGeFmSXs8o3XAMi+QiyUyhDSLqE8HHr7/nuLiAofGOwlOEEY5+XLNaCaWizW9cUzNARVl2O5IFmt0GJPkDlPX5KlmshBgeSxLfBTRH2F7vZlp3lHAxXrH1eUFm/WCZLlhebnj8d1vWC8NyyzCE/Dy1QuuXv6MwWqem7cUb/4pNy+/5v137/Cf7inrhqAfSdOEzXqNDlMOTxWBiljkG6bxkafDPcM4EoUKhaQqK0SWsskLwjDi2PTUQ8Uyml3gOkxIQ8VkHbvLa1QYIczENHasN+sZSug9tq8I84LFYonMCozULOMVpimRApCzOE84T6znGhHWES4LnBdYAAnxMGGTHNW0yDBiEaYYqThWDffnEoPCTBNdVSLjjL5zpFGCOeSkhcAFhv1hViU/HB7YBB7XVpzOPZurn5EHMWmSca4nfv/2HZ8PJXGS8ft3e7758MTtwzPjOBLpgMVyxU4LTFfT1hHq8gorJdILsiQlCDTeO2Rbc6zPBNYxDRNP909crxaMDw/kr75giteIrmR8esa0LUQLdpstRy8YxxGdhsgwRQSa/XNFVOxwrkcbx9OpIQgVo3VMzQxcPZXlzDoYLf04ME09RRpzfzhxuVrQ1SVxVbNd77jaXpAsF8RpytSdUc2ZdLWmPB15uSv46uWWDw9HTP8e12VEyjMONcs05Ga7oqlK+qbl8fYzf/wXv8I0R+LFFU6l9KYmCj2H/T2H04nydJrrOIuMYpFjreHFi0vefPWGqau4+/SeOIw5Hg/ssoChTRi7HjlZmuOBOBYYY4lVgLMWHc9pgvOCYVI0xkNTEi002XqH8g5vJlSywfUtvj38pMXzqEIS767J8mK2hdQNXnhUoMnyBZMxRD+teD49PnI8VVg8aZqh4hzbtXOvse+QgcbpmKlrMcZxmDSTWGAC0FHPMAwMTcfLly9o2h5vRobJ0dU91fmZw+OPkC35y19uCZcZj/tbXPgXKCFYFTnZomA8JhAGDJPBAdJPJHHM+emePFhSdhNpvmLoaoQxFLs1kVQkSYIxlrauZh1uGJBJjxsHoiRjoQOMGWlNQhKH4AxxEs/PLAHkG0Sk0eGcpLixRU4dghjTNWAGYq3IkpixayAQ2GlABhpjRuzUMZoehcUlKS4MiNOClTMgBKubK9rTkbpqWK/WlIczw/GEEfIn4rqiPR1ZpEu80ox1xWq7wwmJSDParkFIT6BjUIrqfCJN9DxsChz/yX/0n/IXv/oF3nX89d/8LfX5TJ6naBkRJBuW+QZjHJvLG9hJzvVEkeWI3Q5j5y2huuxYXF9QXL5iTU/59ETZdExBQJqFVIc9UVQh7IAO5o3CyQhaM/L4+IDzDmMNKEUSRyyigHEcGE0CSYQMQmSoUIHH2g6k4unhI1moMRgkA8b2qJfXs2a0H8jCGC80Xuj5sBtqvHOoMeDF66+4v/tIPwzg5hXqYezxdiBW4KYeqRR1081d3EUBTUXnW9qmnQ/ZYTibplzPoikx0xUX119z82KJThLSdI31Bq1HCAvUEPHFdYofG/b9kX/xL/5z/vKf/hmn/R/46//pf+HdD+/ZXV3StwOhknx5taFqeiYz0vUjznpSMVeGJq2JvMFKxTIOZ+NamOCGiaJYEcqIMBIIGTCdnxD9GWM9i1/9c4bnz0T2CVvdztpvGWEnQ3S5Qg4NfnjgfHckTkJcXzNWNTpdg9BUzyeUh+F8wpkMpRVD3eLchDETznTE0rFahIwISjHR2rluptOUx4fPnL+8oVguWVxfIibH+PREIAXjCOVpT99XvPnqa7arNV+8uMYPNWhFnoYEgaLvDzx8+pFpMLO1xgwskpyhX9CMEGYZF9dr6qpHBpp37+9oyhphOtLlhlV+xSKfQc+jaeiahofnE8ZJgqbDnWsylSLSlPbwiOlH2lNJ3e7xDqIkww4zMyQWHVoatA2x3jPYM6e7I5dvvkRphYoClFJIHdI/3ROoEJlmDOcnCBQqXFIUC4bNEicdjA3eTDBOeONQOuXV11+DExhvcU7BOPMcqt6yubjguRtxGFIcNtaEecE0GbIxIlSSQCnSMCUk4uarN3z4eEvVVpyNI/78yOVqTVm19Idn6urAw8OeZRKy/PnXVMcj2oObRvbHE1NdkskJdIQQgl6HFEpwkopFHFKfj1gCutGRZSlxvKLte6w5ESlBlEWEcY4PY6wMCISchypJjhTBbAOsSsJ0gd/ukEnK2JaEOkeKA645EUUZV693BOstIvyONIS26fH9RF311HXJ+fnAuR2ZTE+RBPRm4OOh5fJixfm5ZBlKtJrNUc+f78kWOa03FOsFdd3iswusgDjUBONcgZeqoGwn+n5k0iWXScy57lHCEiYRy2VKtsx4ejrw/OmOVwuNlBkvlzlaChaJII4j/v6797w7wh8OE1ZojGc27NmJaZqIhEcKCMJZluAQSDxCKrzS6CQHITk8P/HNh2956izH44GpLVlJw/XFCjX1bIuE3as/5tUv/pSlNoixIrt8gV4GRDsP/oA3HhkF+FZiWoMzAjsZhEzmwC8OZ3aFn+HkWgT4RY4xI0NzRnpPkoQMfUczjmy/+gXD0JBEkkR7lB+5KDImFEprRLKgazsCAft6YBEJtE75/v6ZfTvi455/9vNXrLXHNPeUtWByjvvbz+w/Txz2j1y/+oLzqcbLkPKw5/b+iadzg/EB6VITBYplErHMchAKKRUzAsqzSGNMU0KcIqTAWzszrozFmAE31axCgzneoydBcvUG7yDQCqUVzk7EWcrQ9SgNSoExA1GxI4gTpsMjYqjxE7OGOQgZ6wmvJLabmKSaIZlJCnGCF46xPBKnS1z6/3L2Jr+yJOmd3TEzN/M5xju+Id/LrJxYVWSRTaoJCRKknXqrnf5GaSdBgFoA0ZAEqEURHKqLVcXKyukN9707xY3BZzdzMy08ob24CiBWAUQE/Bt+3zkLIjwe8M0Jmfx0qtscsF2H945JauJE0DY1bduRRQKMpM8ylonCOk8SSerqhFGCQ9PzZpp4dpmwv38kCh5pB4ZeIcUJZyciJbCjpXp84PthYnNxTblc0TVH4q5nd2rm5GeWIpWk7zqmpkW5mR/WtgPDGDjtWqqnhvWFJzCRrUqW51vSdK6Ngh0QKiIMDuUtDD1RHM8J/2mG4k5dT2RiZJSiZIW3Lf39HpnOZrYQLOX5Gc3hiHMzC2WRKPrbG0L7yKkK1O3IIAR5nJCVJVVdE+mcw+6RRVDkcUzVtrS7R4ICqQ2b60uMGzg87SnLhN44mt0tWZaidISSE93pwNPHGh0b8tWSfhxpmp62azgdD4TJMfaKQc9XE6MbQUUsygw3Nvzil79gWS7pR8u3//yeb7+/YbCeyY54H1A6ITYRbrQoFdMPDXYaGdueRZ6zWa/J05SIwOQn7Dgx9QM6LkiKDD+2M4fUmPk8P1JIInwQSATKGAiBaRzwbqDva6YQYfsBP83ZH9t1tNWROFthIo1TkuAn6kOD0hGXixWj7cmSGFFuebx/JNKG80XM4XhExpIkz7nUjtwI3vUTd48H0iRlc3bN/d1HvLc0xx06kqy25xBrGiW4e7ihWBX/uqFJHE0kSsw6uYc9dvL88e1H3t/t6MeRq4tLsjxCSYjTNTqN0cGSxREBwW535FTV9KMlETAJQTfNINY0XxCCJItLRO/JSkOYOqQtSJdbNAFvcvb7E64biZRGyYFCO2IR0XvP+WcvKV5ek39yTd+0jBZ6F8jLWTHsnKXd3VPv7qh374nTBBYrkuUabVImnSJDgwweHWmcd0gculwzuRHpPWpyFMuC3nZM3rFMYnxksH3LfveISjSr5Ss25QI2K8pFwfnZEh1HXFw9B6UQ7pFNNtK3J86ffcmrz/+cIBMeWsehHiie/wW7qsOqiKiI6cee7XbFqem5vLpERxGPjw3LzDOOR4ITPDw+8nRqUD4QI1BB4K2jbnuSJCOLC7JgyVJY61nFPPYjXdtwfrbFRBEPNx8pszlGKIVkfX6OyQukmPkUw9hjcsloPUZlROuS09ATRQLb9eg4wuQFXip/9AAAIABJREFUrm/QaYEbRqQdiIFxGAiA8p5yteEwBg6nmqarkUoQyzBvxRDUdc3l8oxh6Nh3FavlmuX2nHq843RyfLJaE6Y9P75/T1e3xLFhaCq6JEV6y+3NA845qlPN/d0T37655+7YIf3EJo85X+ZcXy4pNAg3EtkOqSImD8nqDDMNeKnQ1tLXNVkI6HJBdzxypgV6HPFNTWhq2h/+hdDXlIsVYJAiYmpalkVGY2Pq3hJMTHz1giTaE0WGfgg/NTWgjSD1E8f9kX6cY4xVdcT7id5amrahsz0giRKD70bKyDJOd5wJx7NXn9CcDpwXKeVii48iFpsN9cMtry62dHZujoQdGHcDo23RwfPF9Rl32pNoTRgnHm9uuX71iuXmkqfHA4tFDl5RHSfe3NzRHPckauL9zXukMmwurhhVwurqivb2PdXxyEM/cHa2ZZ0n9HVNamIOTwfcYBmkIokF1kOZlHiTYr2kPR3ZPP+ERFoioxBaY1bnczFWPWLSHP38Z9iqwh92eCWxw8jhn/+R8vKaqNwgixXN7p58uSSKc1QW0e+f8G4gzUsab+Z7SDvQtz1TCLOByU/0xz1BGhCGNM3wxwpfe0bhMJHCOE+933H/8MQnn3zCd+/ekiy2EGAaK2x1y5dfvODy9Wuk1tw/5Ny/Mzw9fGRoGl5vt+zfS54e7yjzkkPVsshThr6nXCzJ8oLe1SQ6pYzAZQmRToi1mQGYckIx4eyADY5jV5GICYFDiMB2vZp1iW37E+dmQV4sUOUaLyNQMUFr2q5DtEfoK1SY6HuLlIokS8GFub13A7ap0PmI0jPENC5TRKLZHx6JVhvG5sj67AwRHM3xQFEWTNPE/mGPILDarhld4MPjE2VRsKsaHh7vWT3/BJBMbU3X9gRtkEKgleJQdYxT4HH3CHh8GDn/+gumSSB9gow1PiiMitgfHnnQKdutph09Ss36wCTyDCrgpo6hOTI6mEJGVi5ZPisoMsPw5Ah9xuE04BNJ/+F7ngZNWixRQZDgafqW2CzYPdwyTRaEwChJlsTEIiCEZLlaE8ezmal2gSTPGMeByLYsNytyOSImi/MeQYwsVlgRkShNnmYoJZAmQmYFsdRzOersbC0aW86vrtlXzVx8alBSEqxDADI4nvYN6JTRO6SdCP2IF5Lup5PK9umRvCwJtqPrW9r6CV8/MTQpefaMOFnhtefU3iOVBjERRxEPd08kucZOHdoIyjRwkR/4/v0dbrFhsVhyfeFIoidyI4h0yenpwLEeEFOgdxMrGYgEpH4g0QY/eewE5XJFkcQoMZEWG7wuiDKNXm7wrqP98E9zEuzwgEIwdh0mX+KmAZXcMw0TQW3p9zWMKZOdiBF0DzcIkVAfDmT5GlRKvT8hk1kJa2KJsxNumhhsT6Q0RabIB3g4dnReEKKIfhh4++EN2+cJcfMBVRtyHRESRY9je57zfLHiy1evef7sU/K8oK/2+M0KoyOqux/wvUOGgbSImdwcE/aj4vG2J8iIzz7dcHF+ydg/0vcDp+oAduSLn31Kmi1BCu4enljmCakfSeOEIos51o54HOjffYP1KX074PoWJUb67oQYBtaLJWVpaLoTRgiCVURpwhQESnhGa1m+KFGFRukEky4JwdLun/jmb3/DX/13V8T5NVFW4vqWwGzCePH513jb0t2/ZzgdkRicdUQy4urZK+w4cvPuBu8FWiVcFhm/e/sGmcQkJqFzjk2qGVrB8bgHwAtJLCQm1jAF1pPi06//lKjYcHKehXWEtscIxTbR6HrgdPdArhWL9dWsx356ROqEF1dnVA/33HRHPjzVLPKJZdISTx2t1RAErqmomwYXJFJqqqdHxmLJUFVsi5jFokSFHq1XaJOTpCu0CIgp0N0e0caQFClmtUWWW7yMAU+EIopj2qPFaM3FZ59TVy1REnOxztg8u6aqGmR6Rv/xLVkUGJuO4GO+//GW0+GeaTrx7e0tD40ljyI+7mucm0iTA5fnG+QwEBnP0Kt50ZAbTm3PYrngvmpZJpq660iKc06PHwl1T/V04M/+/Cv81BHcSPX0xLFpGPsOLT3HQ0WkY+q6x3U79rsd7z7c8lh5fjw4hhBRlhnbxWKGSftZV277atYee0uWlghg8OCEYdI5T12gF4rf/fE7HquBqq2xzZGfLQxfPb/iZanZLC5YnJ2RLTckyjF6QZZtsF6TpluGwwmZBiI3oNISYQpMIQi+o9t7ZJqTXmRMQoHrGdsD4zjgRoedHBI1+4lihR174kQjgiQWjikS6CilHEdWhaE7+fkEIM6QvWe1WuP6A0p7dp3jXx7uMWnBl1db2rHnaf/Esy9/xg/vf8+HQ81TH/H1F5/w/m5H23vqZuLDxweESfhwMw8iJ9+iiyVKRazzmFhH+DCfEfZdj8nUDLwMHsWEkhPCT0zWsjseMEkCYUAJiPINwwT5xRlRVjD2Dh8ptHJIIbFBIJNktlqNPW7yCC+QRMTxEq87IgLeR0x9h1DgQ8BHGo/ECUF6fol3I9LMwwCvBH7s51oidIg4m5cediSNJHLqqHZ3pGmGGAZ2xxoVGbr2hNGazTJm11gUHU1dUXc9QSmafsQkKfeNJfWOV6uCclXy4+lAezqwWK9xbqKpmrnJnnoe3v/IqkhxRlI1DW03zvKQSHM8tbhpIheC0FlMntK0E0MluX94x/rsAmMythcXbM63SK1ASaYgwE0oZRBSYbSBaYRjPRs6Cfi2JgQNwRL8gIogWItZaYJ3jC5BLjOkdBRpinUz985WB5Z+YPSCRZKSVjXff/sdVTpzgXxcgBCM3UDX1LT1EbMoZyPq7QPZYsljsFy9eE56dTlreMXAaEfGk2WzWWOHif3jkbqpyBY5ShtuPhxIVxuGvkXJgB0tu92O1ETzckbHM/Q0Lnh+fc7UjfzmN7/hw+0do3e0U0Pd9ATvkJGmjDS+b/lwOFLk+fzbCRNFXrLebNhebDBZSjtYYt0BE6uLKxbbc3AdkxDoOEJKj8CjdAohIFBMUYQSMDQd0kOYAl54oiRCTIq+OoAUqMQQDZqgBMVqgXUji82au9tbnDacX55zf/uRsshZbM5Rj48Ybbi4vCYVHdY2yL5DZgs+HDvu7YT2I67pUDqhWCwZ+wrvRqwdaOoDfrRkRc7Dhxu6ofnXDU0uyhTrAsEHbt6+x4qEP35/Q9f1+MlSPdzx+uVLMgmRayiCRBoBfmAi4v39ju/vdkzDyDaJMTph6Af8BH60TK1lfb6FYPHTNN/ty0AYBlxccnuzIxaSIo1xXc8wHOieTox1j4tSrr/6Cpkk7G8eEJEi2yzIL5+RJIahOWFHh1luKCKJNgrXVQyNJV4oZJQg4pIomd3rdrRIY0ijWfEohCBNNP3hxFJFVEnGeh1QUc0kDFXb4vpuJgMHgfQBpoEkXrJcZLz+7BMiOXL74XuKBIqN4p/+4Z7ly6/Zu5i3P77ncV/xxRd/wmqdcTi+4d2bN7SHR5bLmDffP6BNTHdouH0aWeQZ+/2RTElMbKibhrEfOI8iVJhVUEWWMU4TQ9NxGCwEwbPtmjxJ6HuLl5rzZ884O9siREBeXBCp2cltFgtkusACQ9fjBkkgof1wj/UeZ2L++P6WWgSYJrQRBGe5WqZoJkySMqVnnKqWIsmRusNEA47585RliZWaYXxAR5Lkpwic8x4tJXFckJQGoRKGqKXzgaTI6IaBp8ax2VyztI7AHcdDw2F3JFcRp8cnPj409KPg4X7P+4eZqbBINVol5LHm55+95uX1cy4WGX2151g3DFVFtj1DTB4XBFoIxrbj/vaRr55dEgK4047dwyMvXjxHFEvs6MmMJ8QxiASRZAipUdIjEkN2dY30gmM1g27XL16xv3+HSefTC3Y7RjsiTSDPHUIomqYiiqI51RACPsCxbtHG8MPtA0ujcEqyNSlPVcOVyUiEJzEpYfLEIRBriUsSFosl8e2BH775LVni0WYGfV2vc7Q2lNkFmzIjizxhHBAqgyA5PdzRnjZk6+cUZ+csHh4Z7IiJmAdfOiItStLlku9+/B53f4sMgpevP+X1X/0F6viBw7f/Akz0zQkTQaQ1UxSzuX5OcXbFuw+3tMeBuh95GN5TZglTU6HcyHK7o1yuSU2M9bB/+y9IHfP86y+JgiNRgcyNyHyBixKiYkVpYoS3VFWN0HOyYqo9eZbhraMLEqEUKiuwzBP36uGOvrWYZE44RVLh+p5lHDONnmkckUi0Sbn9cMPu6cCiXHB790ikE55fXbFZzpuUZZbgQiCyA9IN3N3e0lRHvv7Lf8smMTyoiCQ1nI5HnO1ne0y+IM8TTvsDiZwYpSSJC4RU+NGCtRRxwti3GG2o24Fk6tGAcx5nR+RkWa3XFGmCMQlxeY4oN4gsIwqWaWw57e4ZTkciPyKGBtcPSJOjU0O9O5HmjqAMrj1SZAY3tkwjKBFo7j4Smpb9fs/aDgThsdOGJM1w9RFTLNhul7i24Z/+7h/Ae4rtOeGnQU6iFcfqRFxVbK+uMUZTLJdUneXU1Iz9SDs4piAxScbT3SNCwfsf3vHmZ2/58mdb+kNL3dT8/ve/ZpFleC8QMsE6Qb65IDq9ZTyeaPY1ze6JfnC0U4aMF5yvNkz9iQ8/tkgXYcLIIo652T0iVEZqJkoliKVEyYjdvuVht8MNHSaSBO9nAN40orMFi5efIo9PBKF+0jJGECay5Ro3FaRFjOsahJTk6y1xkRMmiy43MM3RcRs85dUaISISJRlOsx3N2gkRBNpPfPrsHDt29PURH2aKvPATRRYzvr+nrmqUSejahnSxpjsdkVJQnZ4IQjIOA05JJj9xGhqOp3tW2wWVHQhCoqMICLz/7vd89emfkupAP/TYcc//8e//V7S752Xe82JzxZfPLR/v72gmz7ivKIXi4pNr3r+7YWha8nxJPzi6oSJMHsaBSHuUiEgSgx97FpsZcJetVujMEK8z7NDi+obm4SMqeE67E8JHCARKSaw9IMSETufNJtGEUQFlBK6LGO2IUobgLGlRoPMcnS3wjwGhFUkyA9ln3obADRO9hMFLstiQmDkdOnqI45jvbz7yy//6NXLtSVNBdzeSrnKq+/f826+uKZ99zXp9RZ6VTG5A5zmD8DT7R06HE8iIF5+85sfvf8TohM35lmGIOQ47VtszXr6+pEw3jM3I7cePnOo9P//ZJetFyruP93Rth0kXLLPnJEqxWuR89eqS01NHMtaI00SSXaDynDrMgc7rbQrW4myDPR7JDWgT4ycHAobJIb0gTQoiE2EfD+TbDFmu0cU5ZrXlV+tz4rPL2eqVL1FLQf90y1Q9gFRINyJHi/Ye52umepyHAUmGMCmbzZq+aemqjshZvrxec9PWDJObvxM0Z1mCcwnHpiPREUmcYYwhLRI+vL9h8fwVf/WrP6ftW54OFR/e3tD1Ha/P15wXEz5W2LZlbFtS6UEo9oPkfn/ki4sttjthJ8jOX3D+4hkpE6LrSdJZJTkOLWVRMrkOZyXuaWSlHf60J8ogKjf4IGaOQftIszvOicTigkkvsF6RLTOiVuHHIzozqMkTjidCN2CSgnEAQ0xWLlhkCaUxqE3CqFLMdkUcPMnqCjfW/Pw8pz6dUT3cEuWaUzfMbJM+EJTEesG+avAChqeRYlGiVEKZaMahw02eYnnGMDnevn8gGkF52L97RyYuuflG0A01qZpmuKRJeHmx5cdvYPdUsdyccXPzgfaw57sf3lF3FhWXhHFksywoiiVtUzOMAzbMNWUSF0x6NtNFqZ7PZJThmzrwzU3DMDxxPB0Z+2ZmaYnAz9Y5v3q25vXr16yymCj0LBYlwlniJGGUCW44orxnipdQ7/Eu4BuHGvaorAcVwPeYfObuyE5i7US8WhO7NWNIaOoBYU90zQFhNLZ+gimeOWBCYpsGsygY3YgUik2Z8e3NWzblOWm5ZXo6kZcLVBFzf/uej35iUaao4EkVJGnCw+M9vxOOaer533/3katVxstqRdM7iuWKzvr55Hpy7KseD7SjoxhazGIxA/BNQpyk+DBh+5p4c4XQGj92iDghyAgxWY7HAyorGaeR5vRAli0IOkVvPgGjEdIgFATXkqwynFgwiflEX9qeqQWhIkScIq1FmhiXbvCxR0Uwjh6T5diqYrUsGR14oOt7jGQ25hBh2w5pYjyeMI5Eiw1CgEoTVNdQxBpnHYtFQXs6EE0WE2t8cs5QH0kTxfnZOQ/390g3MlqHyUpUlDAOA75v+fy8wJ4ODDEIAvXpxDiOJFkBCFAxows87Y8YrYl0TJJlyLjEemiaE94HmrbDFCVhnNj1J9J0hbUOKQTnZwvMQqNiQd832OAIUYHoWvI0mVN0cgaUMg0gDVN9AtuDnOG4wfUE2zE5iffz+y4IxiBnlhsSvEcqge/3qFiQXZzT33wAU1AsSq6vthzbkV11IgSFiAS9baESSBNjrWWxWfGwu+fj/Ueu9RVP9zeYLOfs7IwkL9hcXnN42uHCDFaPTMrNm1uiY0+al9w/HrhIF0zeMjlL2zS4APvjkcIYlJLIaUKNNfXdW37/3Y+8ff/AYB3ZYkWyWoHWtIeW1Xpefo/jiLOOVirWeYbBE5u5fnEOTL7k/PwMrSSpDCzKBN9XuL5lcXGBCODqw5zUFgcmqejqI7arUTKl7wNGKpACGUny5YpIxQRvMXkxm5DymMfdEZ0tKDYb4jzlqa44E4p+6DCRIF1uiJOYJE7YbLccu4nV+RY1KKY45kM74aykqY8YKZlsjxCBLFIIEzNNP50+25FT3VAkhrJImWaK0v//ocnj/S0vnn3Chzdv6JuOkw88POyZrOVsteBqXZLJQFnmM5hMGawbGYaezikOVU0kxAwPQtL18+YnTxNECJg4xTuB0YYoS5kmDyIi1oaxOpGEiVgnPHx8T323QyFRNhBFKZuXlzBBuzuwvDzDlDmq+InOLCQERVLmeAnGJDNluKmx44h1jrHpUFGK1wVCloRQI1UMCKSfGIceJSJiY+ibnlwLnDcorem7geZUsSpymmGYbSltQ57nnJ2vidOJ/f439McPWCvIzDm3u4ZG5Pynt0f+r9/+bzy+/8hXX3/B5j9bA4Lf/va3/Obvf80nn33B+uyS9tTPzbOSLOOcLMsY/axwvH94ZLSWYRhZZgsSrZm8RwjJ+dmatu5IpWazWpNmCSGSbC62SKlYlxkmy4mzjCJ4zOYCWa7Q5Zqu7WifnsBUmKWYGRt9ix7nqW6U5mR2onc1feuoB8v97Z4Xz85J2wrbPxK8pw+SclFggsA1DU1TU/c9SbHg2dUFp9OBOJJ4GWEHO8dr25GsOOM0jgjRg1aYOKOfEh6fdqhEkq1eME0ReVrjesvt2/d8uDswqYQ/3hy5fazIs4RXZ2c87iseHh6ZnGPoenx1oHEt+8MTi6Igx+KHnmy1Joo09A33+yPDJHBBczo8IQZLeXlNKBf0UUacFtisJC7WiLgAO+GkQS8KfLHE2oDJchZnEW3d4IMk9gNuOOHaHqk9Oi3m2748RwVwwSMkDNYhnSM2KRMwBRhGS2EMkwh4AcJojvsdq/KK8uwC3ESwHi0FSVkQD571quAxz0migSTWqCQiNQZjDIw9zX7PdnHB9vI5+eaC2z/+mvvvfyDeXHFzbJBDw3pTMrQndJzwiz//C06HPcsi5XR7x6Amnm/WrMstL7Yv0aNESokd+59e5yIlXqzRxRIZJXz4eIu3I31XEQbL4817/HqJciPxZDk83dIWa5RJUVFMli/Z7w/sdzs+++WfkuiAjiVq6MGDPTzRVkeEgN56FuclUghIMprdA82pYn+sKS+ukHLCdZZhmkiSArnUuKHGTp54ucWfdjA5XAApIzwSaWLiJKXueo4fb8mznPX1cw7HI85OvPn+zdz0C0t/e8Mf/v7vZ+BUseC27UkTw/n5hjd3J7SO6E8jz89XfHyoOboJGWdoEzOMFqU1SZrTH0+U6zX9aBFS0XcNRRLPdgX1ExDLjbhpHjjIuMQnOXVQnOcF/WHH5DpsV8/k+mmi6zzR6JEhwjtBVJ9YKovrO+zkWS8S2mNDFMf4YBmO93gtKdcFL16eEYYKZQz9wxtGpdjf7zFZwe3tA42dODYtHx52iNsn7k8dr55fEUKg7xvevf2eq+sLtNIMw0Qaa9wU01vPZrsl7gzSTUivGFxP6Bv6cce//5/+B+pTw/Wnn+Bcjw3ZrN21lquFxt7/jiAE9SQYX/yS6vgPBONJVYTSln6saU412iRMXU3d33O2XjJ4xxRK7u7vccFj+obBB2Tw2LpGC/DTnJoIYh76KW2QQ0+ZxJgoIkli8nxBlmZ0o0VKiTExmkA3WMZhhMViVtYPAzpJkToji+dn43g6IoJispqAQJgVWkRM4oTsavCz02DyE3bo8HaijBUT4L3ndKpQcc4QKoRUTLbHuRGPRMgOYzSn0WPjko8372jGii9WC/KwpmlH2v2eJA4MQ81YDezuH3nz3TeUseT+MuPn/+1/w4tf/fek/CP/y//8P8Jk+fz6FScJoxoZvESZjCLW7J/mzeLoQY49UZZCFGFiQ2YiJI54sUIvS6ah5njze077A13bUx0akjjFDpKiXMA4kuoEs9kgZYT4CTQqooTll89A5MSLibHtmEI/n/E5j5sUU98SxRqhY4hjZJzTNXuc7UHOfKEGRe0gUZJEa+q2RkqBCJI339wip4ZtusQUC968uWU43LJ5/VecrbZESUSiJafTnqfb98TG4E3BU9URhQm53dBULYkJLBdbjIzpT498vD1Q5Eu6tuFx/8iuObGJBfZ04J//6Tc04xxd//kvf0VMQLiRODJ8+fkrpm4kLRSmKGizcxIVEdwROdQM1RNj3zJNE0ZLghQo5MygkdHMfYpjlDIk8QJcg9IKqWNCHKGyguLZK1SSIYRG5SUC+ZPhyzP17cyGChr7tGe4f49UEoXED5bj05FsucTbgNERdvCstSBaRvzm/hFhAipRaCk4z2PSLGJ/6pmC5fmL1zyc9nT2yA///Fte6V/x+PRElBiG05F6mmhGwWdpwrGKaf2IcZ6+7eiHmLuPH8CN/P7J84uvP8OXDpUu+dnrVwwP75m6msqNtHXDOPRUbq7bpgkWSYRvGsqzDVmWArPxSNqa08db6mPFsVNYMyC9xtUt5XJBuThn+ewV5TZFaEjKGBGlyDTFHh1REuOtYLG5orl7YHl9Sd8fsUFAskCla0KTMN69I3YBeX3J6yKletpT1Q2mKJn6Bq3n+jhUA3iHPdRkq4ixb8mU46HpKMsl9XFkmylUKhBhQVM9cf/+PX448OXnL+fhhY4IU0cZLZFekeRb+jHw7uaG+9uPPO5bQgi8Ohe8WJUcbU6eL2j2I4fDxCQkkx8pVOAiMWgT8Imm6kZODt7vHmn8IyFMGG/JRGCb5nx+vuVXZzErLciNplwt0HpDnOcI2xEXC4xUCHkkigX1YY8anlhEBUFmTIPH1keC8Ogkmev4sSMSgigvCUFgEkUsS8ZxQBUbRDnS2Ro5HOh3N4ixR/YdzbGCNMUJhfWBLI4ptKJvW5I0I88SvBtZLEvauiB0DS8XBcFNnBnHYRT8eLencXAKitYJPJJvfrhlIOI829LVDeNoqap58TWMI2frFedn15xvz4n4iQM1NvigEYuYSUyIrgMdobUmMHE6HmiriovFht3xiaj0FIsCLxRSGRAKoQ1GQl7ECJMjApjgkYwgHAOekGezVrwf6B/uiEyGKZeM9ogKI4O1qGTucSbnMGmCV5IgHCHSgJx5hCIQZSXjOBGsI0igHwheYhZbhFQMTUN1OIK1bJ6/wDAxbUpsU1EdT/MzYHPGci3444cHjlWNkYL2eOL90FAf9si2wy0ypr5nqRR3H2/JyiUmyekdrC5KbFcxdB1109FNc3N9qmfpgg8BJwImjnD9QIgUSMf2vEBGDnyPHAVd98RtN2Ck4OX5GVcX10RZhusEQRuiJEbIACiCFRBpJI7x5jvIt8i4QHjFWJ8IBPphovMtAwlmGvG9RUegs2K2MZZr9vsDWkCcJRRKI7OUUzXS7j7ihafpjqA1cZ6gtWdzseThxxM2ElTNCdk1xLHBBEOYLCY2oCRKxzgko7UsFjnvdi29F1RtT5YvcdMDw2hBRTTdCM5RFgXeT1g78Ic//JFv/vAdx2YkiWOKq+fcHWsGFzBZSWcDVVsRCUESRQhnGX1CGsekiSGLFDp4+rbmsI+IlWD74poiyTFa0IVAkS3oDg12GGjbE73rEUIQTR5ve5rqnsFLIiGoqgq85/LqglWxpNvvufjkOadDDZMnMfMsQEeabL1iub5ArwVDWzG0PctNSZgcV5cXHJuOp/2Bd08Nr7crgq3YxIqHpieJJLE0NNYztDUiTlkuF/RthdER/WAZuw4rPZHWLMp/JdMkydbUTcvT7hE3TUy253qzYLVecXZ2hhawXCwJAuq2QiGI4xR8YLffI4Wg7XuE92zymGEcuD3uefXqUy5W8wkOar6r05HGMSvU2mFgtz/Q1TXNwwNycGRxSp4tiYoCE+d4D83jnrMvPkWvSrwAdMQ4WuzhSJxnyDie/+w2kC8vGJKSaOgIU4sbGsYAIilQ5dyw2TChIsPUnxCTB+9QBJJIUz/eEaUxZ+dbho+PrDdL9ocTuYzRMnA8HFgsY6rjPdX+e0pTsywFHx80H24s3hvevjuy6u5YLrf8+S/+lHKxoD3OQJ+//z//I0/3Oy62F9jJsrl6zvu/+3+QPhDpGKEiHu8faNuGoR+xo2OhI/I0JStLjFJIHfG4r8jjjPX2jCLPcd5xdnlGvsgxWhMv14jIIBcbTJ5jVtt5pmZi+ocH4jgi0QVtVREihYsitFkhguDz8gwbAoPz5GlCczxRPd7y8fYD+0hxvr1iKR2+a/F2Ii1XRGlJfuy5eTqi7Z4kyzhfLZiEoD00KCFAgCDl8EHhnp0zJgeah1vOF2vWy5z6buQlozmhAAAgAElEQVSHuz2fvnxG5yIePh6IpWDqB+rO0vmWfev4+k++5Fd/+Qte/9l/zn/4m//A//03f8Pj/Z5v3nyA+kQkFc8utvzsxQt8nHNsWsr8JeMw0PUd9eHAKo65v7ujlNAnGcVqgzi7RBtDVR0wmeB4aig3huzqOZHJcFGM0JpMCZxQ5ELgvMZNI8X1luo44qMe4oJuDHhWaAdDVWHbHusFebFCRQl5bll5S9s3jNMMXTQaIiXJf4KEepVzaixnZ2uMEoBDO0VsRopiidYxu31NPxwo4oBJDFkk6ZuGF8/OyM5esrl6RffhRz787nd88+1H+OWfcapOhLFnmad8+fUXFJszvv2XP1C1PddXF6AMTzdvqR/2vIhf8OHXb/ni37yEaSQKgb45IaOIxfYlo4Cut0S9ZwqK6rhnUyQENMsV+KHj9v0HpBtxAS4vR7bnz1ier5FG8/rFC552B57u77l69QljfaQ53sxGJqHJzq/I12dkRcqwu5u3BELig0SqiDhJsONIWmQzf6JuII9QUqGiBJcpyBao9sA0DOA9Iopo65o4OC4uLug+3OOs5emwx/34Lc+fveDjY8X45h3dd7+mUAN/98c3fNi3fPbLX9Fah+8GUBFje6CvDhTFGrXMuCo8tx8bmr7n/OwCKUHIiKRcEE0TqiiYnEVISawVbT3R10fsMOATjZ0s46QQSUZULHkc5o1YrBT17hHZ11QBdrcP7IbAXWux3YDtarYRPFvkrI1A0RMpSVqWDOPIcHwkK1J6Idl+9hk6TwgowjTQHVumtuK43zM6z751PFbv+fbDjrcPB7yMOHYj+/aAkoJqGIhMzCQk3bHm8e4jF89ekhhNVZ2IhOJkHYPzTF7hpaBYLVmaLV/9yTU/f3VN+xDzUewokggpJG9/fEuRv4bkGacWCgmd7RnqPffvH2laS99anOsoX3zF04d7Wh8oX3+FfdxRHfa0jSeTCZWrKfJ526blxDSMGO8wSsyfSQB4jDHkecZqUXK2LElNTJomMyMHiYw0JIFhtOg4nSGFcYIu1whtSKVAS0O2PMdLTbzZIgaHWSW4/ggBvFIo29MdBszqgkFEGCmo3nyHXl4TPvzIUN2TSNgUKcfHE0LAMA54Mf/GvZs5A5Obh28+KHZ1w9tjQ1jDr//jP/F3337g67/8L/ny80+J+8BUQWeO1Meau/t7TnXHv/uv/gtev/yU7bO/Jugrzv/iz/jr5h/423/8hpaR5bZETIrftT1FYpicw1mLVIoyTtEygDGYvECEgawsiddrdHmGKDMOh498vLmnPjXsjx2rconKztlebclMjJIeky8w5RlRmiPjFGFiZLHAB8XUWaZTjWxbkBPDZAkixbQTYn/HIBU2BOI4wrZPCGWRYwRacLKOx11DPUGHpBt6unFi8p6yLDjcnvj+/hb3/FPOrzWhrvjly+fkyhB7wePtDYenHc3pwNC2LM6v+fHHP1B9eMfF9SVPH9+R5ylpJLDDRKYmEgHPP/2cYrNh/PEPlKuMybaMhyP/6e7AMAkiKXn+7IIyy1Fjx+Q6IhmRlQvILZFOEEoSDQ/4cUTT0rYHTk2HdAPL1JDmKVkSEwWHCQG8II8S4iQnyjPi5QbKFSFO8HlMtFojZIzMSkQUI5jPQ0UkUPliVo97j3MweYMNEV4ktPU90kScdhVN0zKOE5GO6MeRKUoQdiTxnqsi42kaMDIhiSOcV2gEzz65RFlJFOuZkyZizi4vkW5kctDtKm7v72gEfHIewzBvOZfLBf5wTz/O6lJ33HH3uMdenHFoLH/9b75GMyHHj3x//4aq9jgEbVMhvJtNId7hrKObNNvNkp4ctdgSuZ76/i27928Z6oEeRTd6XPRAfewp84x6WnB3uEffvCXNDZefP2d5fU2SRAQdE2dgkpQw1SyykjIxiCghLRL6rEPGKd2pxQ2OIskZI8PQHVmXa2LAxCkybng8aIIUVI1F4AkeRutINoqhOaC0YrEsiIJgqQZEIglFyrEOrJY5ywzyXJMHy3K1ItMxRmpcdeQsNVQM3D7s+eHtHY9PNe1gud4UrMoUFWmsNJRZwlBpvrw+o5nEzMpzPaOPuV4v2TvPQzNwGD11P6CkYJUlPDMRl7Hk5WrJ9WqJsC0mKUlTg1aCcrNBZ0vwjnS9QkqYkkCUJWg/EoIndHvGux+INs/xGKTRTFNASQheEC2uIV0AI2FsEcKTZJpxkhDNbMKjDBxUzduP96jxMPNL6gNxscB6QTtYEqPZNScSkxGpCJ3GTP2JVxdLbm46HnZ71onm778/cBw8qdQYK1msl7w2km3i+fHmiElSsn5AhIndbs+p60Hq+TR0+5y4WNFHEe7+WwwztLQ4v8JkOZOdewqpo5kbIwXvfnzD5XrD8bCnyAvaYDnLN8gkwag5iSeMJooEOo8ZRzfXzWHEPt1DucSXa3Qk8UOLimL09gw1gVzkhLpl6hTCQyQ8QWoSI3FB/H/PIi+BSBIZg3UTEwKhFN7OooQpinGRRivIr1/y7T/8LUrHXCwXLIuM/5ez99qRLEvT7NYWRwtT7uYidGRFVpZqVvc0ZjADAuRgQAzmAfikBEjwjtNkN9jNni6ZVZkVGZEZ4REuzE0fLfbevLC8JS/6FQzH9tnn/79vLSUFXVMz6pBo8ZKq7ljd3fHD+3cUx8OJa+f5fNod2WFZFxUXfshF6FHXLeDwoxQnFFWx5261BqFPoFxrTwt3L2T7uKKta3ztofyAwA/RrkcFgsVygdYOJ2AcB3Tb81iUJ0mFLxBC8Ptvf8tfvD/yk9fPuHz+kiTy8IOTdtjLUqwdT7D8rjvB0z0P01YMXYW1Ejt0xAB9T+A5cI5m7BhEwNC0+HFOECp0NmHsTsptd2yJlIeOR6I0ZWgbqrKkblrafQHOkmcp19dLmrYmcBaD42F9zzR/SuAF+FZQtC2p77E8m/PyyQW9CvjNd5/IJhlTB74WSGcRgK81VdPgRkkUh2hOS+5P9xv27YDDob1T5Xiz/nQatgYhvtB4yQIJDOMJt3DYbhiTDOUHhFLSlEdM32K6gdkkY6gbbCipyoFsPqGtB4bmlFZxoyKNL3CmpTlu2W5KHlcbxtHinKXterSU7O63REGKHTq+//Y9bhgQOOLpAn8+oxsEIvBxwiF0SNt2LC6vwI8oypIkjCnrgSBOud+skHQ8z33GqsD3FHaw6NESBBGdqWmqgr4fWF4siMKIY3Wk71sK2zPNMoZ+/NcNTfwoZvvwiBktMkjJwoBFkhDFOfrHabaTHlYr6qFguZxB16KcxfQNZujJ44BAavIoJPI9mjDEkye6va1rjAyQQU79Iwjz7f7I4+c7DoeSYOxoygY3gnYaXz/w5PlrQlEh7245f/GK/cMav64ZxgHhC8IsIV7MUA5M25wgMj10mz0uEPiRR7m3dG1N04+EYUw/OIwOaboSKVOcGnC0lFWDc5bQ94jDkKKr8TzN2XLBzc0t8+U5qBPgqa1qTF9ze3NECguAaTvy6RkXV5qzyznLpeT5l78i8nzyZMIP37/n5s9v+fz+Ft86ziZLTGNYre7Ybzc0dYMnHMV6S9uPVMUeT0r6YeQsiZlJyJOEPE7QEup+YJFPeHL5hMQPCH2NFY54eoZzI9UgOZYj+7JAmhVBOiEMPxKGGh2EJ2e21jhn2dzd0jYN+/0RM7S0g0FqHz+IUEiqKGIoS+r9DuoOoRW/f3hHPp3wap6j7YCoB6LphKdPn/O7dzcnZowrkLZnmYRo3+f71eEEP+y21GODKB+4eHNJ+d4SegpPSFSYcvvuPT5wdfWEdFJx3O6Q+MymMTOh+eVPL7l+8XPifEqkM5r1nmUc0vmKsqhoE4+fPb/mq5fPyJKEyipiTzO2PV15xFiJpxSm7xik4MOhoelGun3HstNEcQRmIB1Wp+rK4x364ycu33xFupwTxQnOgUNijGUxUaBiWtuRZilt79F2PY8VFIXkuK0JhSSIMprdFuUM2g6MQNvW1G1L1ZTsypLKQSB8MhEQ5wuyxYIOw67uuL5ewlAjG4unNJGn6LsRi0fkZRTFBr9uaZQkSXzyxZLs4jXl7sCHr3/L13/6wK5zsN/x+LClaQfky+f823//b3jy/AVBkrDf3tNVB8qq5vHTe4LZnN/8/h+5mFyynP+M9Q0Ya9F+QBqk6Cg9mUXGgXcfb7EWfBwf7u94e7dlu9sRYgmkYJkEXM1ybh42GOGT5jmYDptPuHz2jKapaQdDMjkj8QJseUT4EX6aMXY1Y7nFNC3DcYeQPi6d4M/OmU1O/WkrFT6aoO8Z6xodZBgNejCU97dIIU7JmPhE3w5kTWJb9u3A2XzOVoC1jqHvGMeRx/WOptjyu2/+idvVHdMs59VPf440A6Ku2Dx4KDHw8YcPhHFOPklotePd6oAME7xB4BD0bUMaR2gBvRlOGmRP4gcpZVWdep91w2gMVeeIh4HlxRInNR/v7vDChDM/xgwjd49rHjdrPq4OmOZIURYc+pE4jImFRUWCyLaoOED7EudGOlcymyQgNcM4MHv1Em9xjjUdDC1D21Lsj1SHkm8+3lMJxZ/v9jS9oRwM27oliUIGIQnjmDgK2e330PaEYUwzDNzf3xFGEfP5Eq1P0e5ue2T9sGJ+tmB6dsb68yeW55fMzs5Ro2F3PHVr97sDx6rj8X5F8/qaMIjROkBKS3nccNiuMYeeqhB8ut8RL85xVcN+u+f28Z7nvaTertgfdwTxBH8cuf90i9KSy0gx9hYlLNKNlGZksOCcI8tTvOBkBqud5lMx8PrZBWMSYwIfTytirajrBjyfKAnphSOaLRisJJvPCRwEXoIkJjxfoKRFa4HrB3QU4qWWoakYjhW9HGnanmKQDEPLoW7py5ParzrWOGCRRtzsG8qupR8b+tGcFLPOYZ3EAsZYBuMQTrB92BOMCdUYUR88hMy5v1ux++4fqY8VeT5DAZM0ZvbFMwIdULYjVbMmW14yXBjGoOB/+J//Cx8+7Pjmn3/D48MGh0FZx+O2QALOWgJhTxfp0GPsO1QaYHTEpuoo9h/ZbnZ8elizO5Ro5XE9zVlcP2MynZHEKVEcoYRHuLhEygCd5sgwQkYTTG9B+Vi/x4gQHQ2Mfkg/9ORpTP25wPMTgukVfVvSd3uUNyIDkI1EBoqls3RAv6vZVR1uPFkzTokuyePdli9+9Zo4m7C+uWVhexbxK3wRoYwgDwO+/fgDN5/vuHz6hPL2nu3Nd6SRR3E8sioPjGrCsRxZhw+s65PG+9WTS6qqII4jpsmUz+9u2OxbdvuWaRaQRQFJ4NMVOwId4eyI0gKhwPN9RgueEsSmYRwbdseKpu6I9CmBeTaL8aVEao10pzNHKY0fhOg8xfk+OonRQYzwBJ1p8DlVLaWQCCkRSIT2cMIyNkdcWzGUR8b9EYXAD0P6yeJ0R6pbXG3xRmiqGiskXpwwjBqhLc2hJFGaXiswI2U7MgwOz5doHEFy0mNePXnKJMu5vnpGpz3OZcDDek0ap5jiSPXxM4dcMp9O6dqW7Y+g9Eky5d/86ks+ffjA89evePHmS7brHTPRkCUaqQAlsV0LtgNnkNJxLGuElJwtL9jVgulYc/uHf6I41pRlx6poMVbipKJvBmZxyrHtqbqBxAt4cnnO1A85Vhs+fhrQ1YE48pmEIfPZjEieatASiYyn9BaECvE8h6kbRLNHjQMyn2PGnkSODGOPCDMCL4L9DulGisbgac2H1SNOeegsI2xHJnpAGp/g6pJod8tFJhF6ymMPWlra3Y7dxz2Xswi73ZAvZlxeD/TlHh9JdyxxSrA9NuwOJcZYJnlGkucUvSSyI6DQQULrTpD6erDs9uVJsR1PqFxA0/QYJKOxaGeZBCFfZAE/TSSZFigx0jYleeAxm53hpWdUzjGUI6G0RGmGams8aU73zMHg3IhQ/mkgYAXGeTSlx+TJHPAx1UC4yPEuntA1IyrwsY1EYIm0Y9z1dLtTlfRw2PHtN9+yPa5Zr28RpsMPNcH0gjRNwXUU+yPR9JKx60mCgDRQNEaTR/AgBWU5sCt6dq3BOfhpFvLL6YxilhJfXHL/cI96aBiNY7deEYURZdPRDo5eSIQZKT59j/Y1eT4nV5KyKrGeJpy2XEURTVcT+R5d3+Fpxf1qw7YoiNIpceQRphlSjFipcdYhfEdT72jGPcn0HOqKsetRgYdmwD+fsd/XBGcLbHVAMTIOFjk7w9QdzgswI2gdYpUDa3CDQUhFYCyjHaiLLUMjcDrhMAqCyQxfAMJDOIsTGjtYjOmRsmfmQ2Mh9/QpyS4UycUrJggA2s7id4bddk8eRxw8zTwOebc6Ld8Tz2MShkyjkKpsKMsGrRReLGnagbrt6LsecTIkMw4DFjhULeMwIpxj7A2zSUicJyTDqbLoS6jaFuX79MYgB0PshaRJhrDgOsPiekrd1fzl67+wu3vk2fNLQl/iBT7p2RnKUwhn0UECng+2pa9LrBAIP0YqH6l9stkU6SmslWRWYMzIMA60o0BoH2Es0SQniDuSqUdZ7mmaAVTEqDRaaOJgoK5L2uYk+Jjn6cmkiQTTUx523H52nE9TlPJYBBEIg5clZOdX/PbdZ8pmIIhG6qqlbSzWnLTBUmsGY6nbnqqq0eGpiq+kZrmY0bUdQZxSVS04QVc3KHtKWc/nlwRphqcl1FtMteVQHrm5e2Q8mxOLkaAbCYIEm1g8LRFAOlsglYfyPJTy8MaQJIvo9mtW9w+sN6d0nVSaQDjMOCCDCO35SAm9cYzSx9oBPVgGI2gOW0RbcRwln7c7yn7kxVc/5dWbL/GCjLptieKEqi5pBsOuLtkfjxw2DcMyI/U1ozH0w4BTAb6vsYU5cYUUPNzesFgs0F5IGJ7soVJKhFb/uqFJ2zaUhz1lWREtrlEq4PPbbzD2M9pz1FXJ8mxCnOX44WlTLhG8f/cddXkk8BRhGDENfBh6qsJxMZmz8AW6K9FxjHEdbbPhdldSHSvGpqbrRvq6YTQ9oe8zWEvoRRTNwHdv/3IC0uQZj3/8mun9PfFiTjhNWbx4ivM8uq47bV6ModwfeLx/wI8iDAO9J7FupKv3eF6I61usFyBCH+UMTTdAMgUz4icj2B5jemZZRLk+ImzH+TzjWKRUrSFJJnz44Qe66jQsiQKNF4akacrFi5Qsi7m8OifJz9gXPZ/ff2San/Gnx7d89803jIcDLxZLZstrvDTHk4rNekPTlHheSN/VJy3mOOD5AWVdE/s+z87O8LqOLAiIo5DROl5fXOIrjzTP0erUtQzSBLIJbV3zw/vvuPl0y2pXkEcBYeAR+hHni0s86REEHrPFHCsV+33Jw8MHbm7veNgeKboRJyVSSDwpiJTkKp+Q5RP8LOf9do8IAm4+fKJ8DHmxXJBFAd1qi5SCST5hfTwSCwnjiLUlF1lON43B15S0qLBHiABve+Tl2ROGcqQeWpRQtEZxe3PHNJ8zXT6nqVqWixlPrs7xlMdyeUUYT3n7xz/wm7//B373268JbcfTPKbqRiZZxqunF+RphNQBrj0dvmJsURJGpVFYPmz2fN4c2BwLJlFEM1jSxw3z+RlBEJFlMaFypJEjNJrd7/7A7PIJ80XA8tlz/CTDC0NGd+KB2NGBkgRRiKc9amEZ2pGzsxRvkTI2A+M0xAwSKQRt33KsKtbFke2d4a585HjYkASSWZpzs97x5u6BKE0JPQsSrq+WKGOQWmKNoR0Mw+jwk5S+LjlLNA+HA6+uEq6fv+Dmz38kTjP++Lvv+MP7R45G86tf+8TTGVEwodOSP/7hdyRxSL+/Jwo1n28/8MO794i+4bD6xNVyyb/7j7/Ei0/U7dE4Aq1om47vPtyRxgFdU/F5c2Q2mbLaH9lvN0TS8SKSuMHy/OqMp8+f8+xqSbvfYgbH4dMNajqhDR5x3YDzfUQYoKcZ3tVTdNdSl9WJkr+6YxwNfW8Y24YgSji/eok/X2CswRXVSQU6WRAvn1I/rqjLHiUjwtFnsHuUsIy9YxgN/WF/4ooIx0xZHvcH4jg5DU2GHk/7eFFOP1oOxsOzlqeTlKuzBaEbGLRgv7onX06JQ83ibEpZ7vGDCD09Y9xuAYNSlqJrUUqgPUkySdB9RxRNKOruVM2QlsemPakIQ4+z2ZQ4zdgddlgdkUcTKqt4++6Wu/tbusOGvi6wDs4izetnFySTc7LAIxhL1g+PRM4nDyLMMICVjDIgyOdEiURnEUI6PKlp9jV9ObL6dODd7ZpvNwW7bqSzht7B9eUFX16cE05nPLl+xmAcu9UDNzcfeffue8q2ZZ7GmLZm97giny1Qvo/QHvXQY03Pzcf3zC4XRHnC+v4TfbOgKyf01RYhBJ/uj2SzBd6nW5rjgbEvGdp77g97jiLn8aD58P0dq1XB+fUzEuXhdQ0Izf3jjrb8J55cP+N8co6MQprdljBN8PqayA2M0lIaw2BGnJBILfHilF4KysFwOO6pmgd8P+CbuwfyLCPxFdeLOT+5XHAW+RgjUDolyTOsUgRxSjRdEAiPeJbihT6eNyKURjpw/o9b9M5RH4+IsUdqgYcg0o6q6pBewGa1ou4t+2Y8Va2QJL6mcwljVTOakb5rTwkTpdCeB84yDh1ekp4+LvqB2eIabMj3//JH3n/8I2dZw3IyQ5qWtmv54vUzZpOUzac7rrOM6u3f8ZePX9MWBw5rR/JsSr16pLoraLYFCknXdgjn0FrhjEVIhdTqBFH2T9rYf/rLR24OFYeioag7BJJJnvPVxRVPr5fk8yXZ+QVxkqCVRMcZXjxHBylSecgkBhUiAoueTunXJVJqaFvGxqA6iWuOhK7DxAlycY4+rhGdhk5BG2FKD/qWWRDQK0WvwCiBUILWjBybjuNxx9q3KOWRhyH+2LPMU1w3MlY1GEd2dkWSxXha0ZqRt1//kZt3P/Ds+gydzxDxFKU9ImVIPUsrO9LIxww1GMNQW3arHW07MBrH86s5s/mE8nDkeDjiX/VgfIa+QyMZhQV3MkyF3mnoW4yCzlh0nBIIwzz20cISRgHK8/A9D6U0bjTYwKdXI14couKU0Qx4IqI5bAjj48lcZUeE0wgNiJ5m/cBx9RmdBIxFTRAmDFVDHyXINGU4llSyxBrFKBsO9QPH/ZpuXfF53+BHMYnW2DggDALwFJN8zrcfDpjWETnH1eUE60uSaYxSipt39/zkb/+aou+4uFrwuJoyGIPpDxw3BZPZFB9D27aMo2Vz/MBP3rzkb//6l4RByNv/9t9wzZata7h89gQ/nNKu93RdhzGO2FN8etwzjzS9U7x/bIlNRzd2/Gl7ep7WlaUZLBM/JQlgdB5SRAgzYKTi9nGPTHPSixlhkJNOJ+yblrLqGNSBsRzZiwNBEJBnM3SmaeoeP9P0TY+QhpvHAi9N2T4ecYnGkz4WQy8jmr7BqpBxKFDWUY8GGSYc6opxu8cJx7N5xJnvkPsbAgw9CqU9YsaT0rSracuKj1VJVaT4qyP3Hx9I6AkDj2mUYpQi8hTnswlNOxBECVVrOB5KzhOPxSKkLI90bUfTNFjpkacJoRI8FD3zRYwb1izSKY+rR2ZxwKss4E0WkokWYQ1aBaeaswrYlJYfvvlI9fgZkaVIJdFYponmxbMrsnzC7PwaL0mIsgClNf50jjWWaJHgpSkynGEHi4pAyIogGBi6kr4+UO+2vL9f8ff/8C27w0AoFUNTo7XEtj2xSGmN4PFuQ397xIUJfujRHrY8DXOETFguzrFjT1kVPO4LGiv5VBo8BLFUp2XGMFBWNSIKeLw70DanyjQ4OuFOiQ8vwPQdzgx0fYEWDjn6DMrhnS0YW0XZtaAV1hlMV9P3J2SBnkx4WK1xSpEvZqTphOunFxT7PV1TUe/uqI5bPn//lqJpefbVz0+WS2GZns2JhaITMPQDQ1dhNis8qTD4+JNLvDimvf+AaYofpQsaqSVKS7QMcH0PpiNNUtpijeePdEg23z/inCSYz/C8FC9OMZ1FhDH90JBKmC0m3N3eMdiB15fXTCZzpPSQbiSsSsZ+RxScaq2Jlvyw3lA0DcI5Mq0wwmN9rIgizb5omUwmjFZwOBaYwaD8CCcUXXdicjWD41h3+J6GcWSRx9jekkUZcWhoiwozWrT2IUwYZMjQW8a+w/tR/+0GS6AEkp7FxeL0nisiWi1w48j64Y7LVy9QDkTQnwQZWPpih9MSWx4wQczoOoRSSAEqidDC0tUtLkgIQw+JxAjojhWHfUFRHilbQ1sXDGOLniyoVYCKfZTWjNIy7HYnq1wcMRjLdlPgBz4Pt/eo5mSHs8kUrRUq8JhcvSB4KJnmBYHn8+n2Dj25ONmBnKC3MI4jZhxPwNYRJkLy/OopXVlQFnt6Kzjsd2ipQfvM83P+6st/y8XFc8JJxqdP73l8fyScXpJMl+y29xyPBaOnmCYnY6svFflsTpJnhEmKwCGUQEmFw2LLNXY4EIeSxSwjzwLqHjwhEcIgrKNuR1An26QTlkBabCWIvIj71Y7PN7es64H9YDBS4JcdP5ld4Ps+yhjoLe6w59JPKIzjfvXItml4v234yZMrrG0Z3YiyI8p2ZLGH6BXH/RbpDEclyKZz2qYl9D2khOX5+b9uaGLHk77PjQOuLmiGgswTDO1Atavo6pa7qiGKd5xdOa7PztgedhwOFfn0gmwC86qAAcbiQCAdE18Qe4pxGJGepTs23Hxe0TvwOZG6O+PwogjVg46W5Gc5qYOl1HTGMjlbEGcxnhcQ5BHJ2QVhEiJDzWp1zzD2DMc91bHkYb1hVZaEgc9oeqypCUIfASRZRj67QPoBcRoSxjEizxmKNTJK8Y3FtnuGZiQJPeIkY3AjfVNyvZxxc7vhh+++Y7vdEWjBJA1II598MWUynZIm0anGUhR0LSzjjPv7PYduz2G14vr8HHV2hh5H7h9uWOrXdFZQVTVlWYIDZw1NUzGOhrbvmcURF3nOcjqjq0riPEcFIZMB1K8AACAASURBVIv5gkkSgz2p0YwvuXnY8f7rb2n+a03R1mwOR1CK8yRCxzHCT/DDkHIcqfZrjBlJVvcMUmIQ1B3o6QXTZIZoWja7A6v9nsEaPOBzWRGsHljVLbu2xdOSJ5OctvSgaXj25Bo7NkgGzkKft58blpMFmo4o8JDCcpFoCqV5LGsQkmCEYddS65DtzRF/GjJdBpwvLyhuf2C/P3CZTHiynHOWh1xdXpBMlswunhEpxeHb3/O//ua3iKojSzyeTXPqwRAEAUl2Ahjmlyl5BOvHHWLs8YKYfijZHAq+v79nU3WEQYSOMiaqohtqjodHHpqRKIyIPEU3Wn79s5/h+zHt44rVquX28ydefPVzJtMpQZoipEYY8PDxfoQ4iUPBdRYTSoXoWoh8xjTH8zOM1Byaju3tHe8/3vPufsXj+oG+OVAIy6E4cDhsKI4bfvHmDbtjwe3NB/6n//yfOJ9PTkDjHwcYCBDKo256vqtKfvFkyvl8QbvZ8s3vf8/LN79gfTgNA5dhxJOLM4xqODYDeRQQhB53nz7w52+/pW9KVvd3CKWoh5FZlvJXP3vF06sJrj3+mJDVNH3H7cOKoqjpW4+6aZmnGa9mCVehRiwTLpZnnM8TtB3wooT59UviOGEsCw6rDW4wpzhdW2DsgEhy9CynvHlHfPmUTvoM9qQrG4eBuq4I0gnxfIo3OUddv+Tu03uK1QrlHE3TMCpFFJ3MKt7Moyr2dP1Ievkc25TYYouk+VGDNtBagRJAX1N2I1GaE1nDJIygH7AjvLp4QjNsCaTiuNkS+D7J4hyvXqHswCT1sGNNNXi8vFpy8+E9gzGMVuCsQWKIkwh/mrB4+QLzsEI2DX7rCLWkGgaG0eDkCfQotGb1+Mi6HEgvXhJEM75+94nPd/dsVp8IGflyFvPV9RnLPGU6W6DzM5TUYCyL5VNCB3rsCOlwOPAz/MzHiQY/CRnb40nF3HQ8fn/P433J58eaphkwxrCYZEzOLkjOFvz8P/1njDEEYUSWRIxNwU/XD3zx7V/4+3/4J85nOfM44HDcUxYHdJjQtB374oAOAvqq4MN3Hzi7mODMwNvffsvDt98xyScMYcxmfeCLV0+gfckk99GeZOgcjzWUQcZ69QNN0Z7i3U7S9yMX5ymHdYdtYVOvaduePMh59eZntIeSenfkzTIiZqCxEAWatlNUODon6Dc7vNCnHy29gbYfOPQ9u84w7S2xL9huH9ivJ5wnPj97/gQtEvwgAi1wvsL3PMI0QKiTttiYHkwLQ0N7PDA2lqY4UBY7tJZUhy3W9Bz2Bx7uN9ztasqm5VgNtHg8FEc8rZBuxA4jfhggRwtYcJahH1Gej9Y+QliUHbFDhwkTrl++ZHf3QHF8YDpNTylQazkWFS9fvuLy8hJPhLz9bqT9S8nizRVl3dMWI6J3/OZ/+d9oW580XfB4aAl0z4DD0yeVa2NGlJLEoY/nSVrh8V//9Jlv7nfUo8VZx8T3uLy84Ks3X/Hq6RMy0RJmU3QUo9IcEU6QQcjYVSgvg+hHW4N3iqTbYUAEHnQKO4606wfa9QotPfzZDCfsaVggKqyoT+mKOML6PrbaEAc+6Thw7hytlaBgFIJ3xtIbQ1U3HNd7KjPyxbMXKNOfuF7G4F2uUa4mzmZ04jO/+z//kaFuOVQ9X+YZ+9bSlBvaScBkFuL7gsK0rA47wvMJTmm22zV1VTCfTwmyCVI6emepu5F2cMRaYLqGsRtQQuA77wTfDhTlIPm0KikPFY+Pa6a+483lGUGek3ga39d4QYSfxkihTx1/06OVww4jbXWk6Stmswvy+TlttcdqiddW+HF8Os+LPW1xpGr3dDtLpFKqQ81+GHGJ4f5uzTf/8i12DFEqo63XlGXFfn9gvd6wL0vCOEeqmKurp8wDn8AXLM7OOWs6alNgrOVYNMh6ZLLd84tf/DXfHzeMpmHoWoqxZ7s74GmfPEjx7Eh9LNBdTR4n/Pn7WxpTM7+45nB44HoWcRFBazwm8wXT6y/YlC2e3mN6i8MxDAY/8Omc4mbfMctKPm5LzgOJRkFvWEQBZxcT5lFK1Y8kaU5gLJnvQPkkhGze3mE+lmRpyFnZUY8tOpFIL6KsBZMk4XgsECpht7vl0+c7pNA4Jzi2HZ92d5TDySxTtiWxsiRJhkETByHOWZIwO7E7bEiIph0djD2bzYG+7xGvn/CUHq3hIhYoJ7mKU46VhzkmBKbGw6HFwHnskwSWRZIxnU64eSywVpIkGZt9TZom1F3HYbdjHAeW8RwdxBRtzzh0zJIQ6QUMfc9qs8cde9I45dXiDK01977CGMFStJiqppACD8eA4uN+w6Ht0e49gXKcxxq7dig/IA8kB+vYPzwQhCkXZzeczxcsnyyZPX8KxEg/QGmHcAOu3yGDGNf12KZgKCse/vgHyrqhqks+PtxzuP3I4CTbpsF1PRIPKyJEMCNO5nhBxLEoqJFsHjd0TUm43TF9MicIBJdXz5jda6oNeNZyOI6owTCRAI52GLhbb5gkEbuyoagHjHXgLKtDyWDBCI8sX9I0Db6zXE9yrq6vWTx9gQp83v7un/Fij9BXyKEnzlJs2+M5xzA6kILFxTmedph2y+PHimO1YTcY+qGjfHhgaHr2x4L/59v/nTjUzEPF8mzO3/z8DYGSmKZH2ZHYUxAnODRduWcAQJzgzskMLe2psuNp6s0dpu9oGWlMzf39LX1ZMyBI4zlt1WN/+Ig304gkJVg8YcGUsWgxwMQa/rh6RPQ1/q9+TeiDVB5mEIRBQCQtvu/hCce2buiHkYWnCaRgOp3xuagYippX+Yz5JEMpD18qAq3oXEAgfA5FRdefLHJ105+WPZ4mn84ItEea5gztyOjJU8J8egbO0bY1vS0pi4rxUCGtJQ5CjDG4KGCSSzbrFWdxwLgLkRK8H+tFzXD6HbPF2el5lI7+WCCCgKYsCfMMpERqH5FPODx8YGw7wskcOQ7gB9y8/cD9hw1V1VD2I8b2SOmDcvRmwB23fLAtejonaiT+qbBF1xuM0lghCOKcrms4/GiFXM4X2PFI4mvoA5bLZ7x5+QzX19ytNpRty/XSJ4xiqrqm60cQJwGCcYKqbrh6EjHxFB9XK4RxOOnTNqcFZDY959nP/ob8xRsuv/o5SknOXjzlrS94uP/E2fICFYSUm1uEGFlOM6axZponZMsFSZ7jaR+pToldrRXG9hjb4/kB8TJk7hxNWVEdW9To0W9XJ4NREuFEgHWOY1NRHteU1ZaPh4bP64ay7nEqQAtBEvrIrubjD/dEcczF5QVxHhEZgQpinjwZ+f7DB+zhwP2+wrLiYpbhjKRoDU1ZohkJjEFjsFjaqiTOpwz9qbp+qkD/f89F/n+HJmXVMg4dbjSkWvLllz9FNCO3H77n9uEW4fZMLiYszs4xXoiKQsrHgfl8ghaKs8AigoA/f9ihrSXVHonvoaxB+ycAUD/0DEiatsMqj8NxpB4VttyS+iFUa+rU4k+nnF1ecJnn+HnGdDLF9xQqTxn6HtOVp4+K7Ya+Lin2e45VRWHgMIwMqwOZD2ka8vb+hjTLOfd86mJHc9iQRiFROiHOp4zFGis0geeBCQjciJQDkzSisGDGnjj16LuWsalRUtK2A0PXM/QDXhgwm0zwooz04hlKOETf8PHh9Edq9h1Iyfz6gqooGKuGejvge5KPn25wo8XTAdZ07Mv6BMh1MMtSZnHEIk2JPE0+X+CFAdlsjg4jbJCyfnzkh/sH6q7n0/0tH7cbjm3HiMAiCJSiSBPGtiEOfIz0sFIRac10tkBlOTaMSeIE3zn2VUFzrFDLmKP5Di9KWH3+xGG9QTtLpCVpoImkwFrLnz7fonBcpTEfN1teLTKiUCNMjx0Hys5wngd4nkYKyALNoAPmAo5VR7s/cP/xAeXPubq8Jsk1ZVFhR0eaTRgGi5SKi+tLrqchSZ4iEUynZ1A0RN4Z/+HNG9aPD5RdxzzPcccSTwl2hyNPr5/gAdpPqJKebjRY29M1LWXbEfghT/2IV5dXvHxyTbN7oB9anI74uD7yw+oRaySPdc//8cevmc8WBJ7P02nE9Tjh89/9HdfPXpPEPs9fvUJqn7quCZMQupGLUJJkAcWmIPIUAz7Z8gyVTql7+Pb9Lf/y7iOftnswPVezCUPgqJqKceioasv93WcSZZnP5nQi5f/+v/6O//E//UeEUDRtR5alFIXAsyNBFLDaNfzzD2supgkX05i/evOSMPP4D7/+krY8EKQZn4XjZ1+9Zrvb4ZqSL978hKJsUEFMY3d0fUd12DHJc7784jWz+YK7d9+RPntCVR7wtOJ2U3G32pJOpswWU575mqmnYOiIZ1OmizmXL5+xmEQkcYT0PILpDNe39EWCyiaYdkQ4g622uPa0ZRgNDL2l+u5rhA4xfkjfD9RFQZznzC5nNIMhnud8un3ghz98Tbd+oOoG7tdbfHomiwlOGozWtKPhfjfy3/3q16SexvSW2IvQStIqHz+bUI9bJpHm5vOaOIoBwS+WZxTFDhunlEOPUT7vN3vCUZBfXpLO5pwLjVAW4oTZfIGqT/UJ6yBOUprdgc3hQBL6nJ3P2RZbzN0PzKKMwWm6VpHKkZ2zKKXIs4zLiwuckxilOH/+DBPNudvuef/+W8auZh46XkxzriYZl3lEHGi0lkQMaN9Dq4BpmmDHluZgUJwucdpTtKMin51j2h1duWV3e3uCtw4lVXlkEoQEUYZK5mRXV7x48ZLzi5xgmrF4/QV103Bc3dM0JbMk5Py///e03cDMc9iuxt/uqXYbzl9N+O7mjv12zWhGpDGUj48Mxz2LRcrnmzX66RmXTyf8/nfv6MuSy7MJz968IKgK2vsGWxvMAQ77P9FVNUXVURxKKlb8u1//ktXtDb5z/Oz5kl25J0pzLucXXC0ibDtnEkoWusV0jkEJuqGlGCz7+nQ+SmfQvUUg0NLj+mKJ8yIun7zGYVndvMcIx7HraPoWbXteXS9xXoiwklBrPDVgmg6nJH25p6627O/eMzY1VSuhV8jEo+m2xGHI8XhE2Z6yKPBcjxwqRFuiJOD5JEnCOLQEypEEisdjA1L9yDrSjMYigXHsCQOf2XTOF1/9kjQMub5+zdVszsPDHaMcociJxpJISBZnlygdITrJ4nxBGqQ83LYMsqAqeibRE9QLSzc6/vLuPb3rwQnqztD2BusEceDjpCRKE24ONb+5uePb+x3GOYTySD2Pn371C37+i7/h8tlT8sAjlSPKFAgt8CdzdDoHZ2m3D5jigEoyVJyj0gzpxQjPMtYN1vYY0+H6grFcMxqB8YDIY9w80vdHdBzTD9B0R/bre9a7HUJq1kVD2RlGrdBK8ourCVU7cHssscPI3YdPnFUZj8Lx6qs3DIcDxe4Rsb7l5ts1N6s7vvvmLW//8oHr5YKffPGKy2evOXz9NXmU0brT0uFDabi9v+PXf/uUL3/1grf/8g3O87h4/YIwnbDaHQjGhmr1wKd25MXljNDz6IfmtHG0nNT0SlA1I3/48zd8XB/pu4ZcWBbLKcr3iNIZYZIRTyeEkwzXNzg3MPYj2oaYoWEcJd22RgpJWe2RoeBoDrjNZ5JoQuAl+FHI490tTipKY7BWcrcv+XC/4nOzphGWD9/fMk+WeCbi493XjN2BV0+umS6mGDfgtGJzOLJtd4xa4nzN3MsIQ0GWBAzFqdLcFDV+EvHxwwdevfklv/rVa0atuXhyjhg7KH/K/s9/4qyvEIE43YmKPcoPeXZ5gfETjoeC7WbFb35bchFL3rx+wmTygp05p6RAyFucG0gij4ddy31hETKksoL15wNaOIpGcD1fsEwjfv1ySeoJTDWceBNa48oDaRRTlD2NaUFayvKAFANZEuBCyf7Y4lIPVEu53xOlEz6Xf+DTdsOhKBmM4MPtI4e6oho6BmtPW3hPYX3NsD5gRoE1Es8PmEcRi0lMnHi0Y8GgTiwH2fcMo+XmbsvZF1MiMaAR+L5EUZKee7RPIqZMsIMljkK0hTD0efrsBdIpvv+841g3RJnAl5q79ZbD8YinIFCSwPOIA4+yPPJ0nrOYT0AF/Pnte7phII5D9ocj67FnMc2JPYVtDHU3sCoGDgOkvqAba3or8Dz/VBG2lroeyDzJi3nITxYhTWFxUpBoS7Nds7cW0ZTEucSNE3SUQpSdeAZaQd9gjKZc17SrLWZQSHyc8/jixU84my3ZHvbUbcNms+Zhs0NHjkY1pGcXNGsDo2SRBGjn85fjwOZQsx1vePrsOU3b0pY1ph04yzOeZjVR33Ge+Fw9Ped2tePcT4inOc0IXgirSrEvB8q2xwnJ1fVTgnRCXRxZhBGh0vRlzWF7ZPH6Jdn0jL4+kAQpURhyvjijb1uaw477h3u01iRxwGa75rD6TFvUbMuaeuzJsoTzJGWZZzw5X/D/cvYezZIcCbbeF1pnpM68ouqWBNBoAD3s6Sd6xmbmCRqNXNCMv5XGDZ9x84zkzLxmTwuggSpUoW7V1Td1Zmjh7sFFYksu5i9ELPz48XO+c5Lk3G23vFvu+ePtnuv7Nd+czziJI3qBS6sbdLUAS8doajp55Pp0XUfyeI9mWORpxna1IUtyqrZhVZVovkXXCPZpiW4Z6MY1fT86XrYvawajiHiesLcDpsMZmmESWC6qVtzcb5i9+Y4oHtKbPEWphg7oVIuFoOsUStMxTYuuqThxXVwvRI9HtPnyyL2ZzVFtTZHldEJR5iWNVNRleRwXEIqmlXi2xaA3YNiLCV0PwzAomhozsLGCHklZ0ZYZmpKUecF6s8PXTKqyJikLNN2g0SCKAzSRcylq8u/eMhyPCYKISOt4+/GaYc/DtR3icZ9RHBLYNlZT0NTHhCYduIM56eGGqqlphaDbpSzuFyy3W5aLHeW+ZNgbcvH0NbY7RFMaWZZg6iaLTc4h2aI9bLAMl9gO0JuKKj8ukLWagcWR47JMK+62CSfjgiejiMhzCAdj1qsD6WbHan1gl5b4gYNQEkzrZ0yAhmk7YB5X/zQ6ppMpcrMl3R1hy5WlIUSLEA3xYMbpl7/i13//n/DjPpZsKBePVJvPOex2XHzxNbpqGIU6odHy4mSOb8JwPmCxf+T+cM9wOGQyHBAEPpqSaJ1ED/p0rYfMUmzHRGs7bE9QJzVO3KOVksN2h5AapYQ/f7rl6mFFVVRUdUsQ+PijAY7tMXY0LHTMTvHmux+QOpgajKdTAtfDNsGyTaaTKQ/rLSIrWO4OKKXo0OgMA9l1WJok8kzQ4JCV6CiUqKiKHNd1cT0Py/r/tkb+f02TNCtoxFG8f/XyFb7yefx0y+qnJR/WD/x42DEtKv7+9ILxeMSmqEnXK+LA5vnJhE4qhGnidGss/cioqMsc0zCPPVfPw7IMsjJjnRy4XKdY+hHW6FkBVV0RDyY4BqzyDCPdYUU+ppS0RYodB3RFjmlCo0mS3QqEJNsd8DwXgoCubhl0LXoXokRFg8aX37xAd0wuHx8or96jmhbVVIzGI55enLFbPeDHU2anZzQ/97ZVp/BMA+UEdLpBvt8y6nnURUR2t6FpBb5rHg8NLyT0bU6nQ8JxH1225LuGsqx4XC8JxnPmpzOGZzOWfy7QBBhKkixvWCxvwTAIA4+mtejrJqL+OTakJK7r41gOjmlg2h6Wf+xV3i13ZLXg08Mju/RA1jTkZU7TNqhOoWs65s8VlFpKrvMaq5Y4RsMo7nPy+deM5k+ZPXmB6RjcP9yyLRriLz+n75ls0w11T2e3WJNWDYf9/kgcbgStUjwZxsSeyygULNKMmyRnmaTcrR0+P50Qhy69wGO9T3g9nmMbYOkc48ICsiQlLRvifoxZC9zZjMyEp7HH47sb6iwhNHU00ybJG16fnzB7MmV1vyRwbcTjCkdqfP76r5C7nO/2OWnRoARkteDCsRn0evhBiKZbIBrGvZjH9Zq6KcAwCXsRbV0TOTZPZ2OenZ+gnc5YLhY4tsn5/ITTu5jb1ZJdvefy8Z6r9RJTN3kYeDzdjrAtk5/ubukHEU2WEEcxtm0iDw5haCJki5YZ+HWGbHy0cIAziBGayWaz5tPDDZaj86uvf8nz+T/gdw2Hhw/cX37PYr1mn+Qs05T7xYJGSP7981dc3X5gs1gck1B5haEbCDRqIfAcl/PIoxUtV4872rrl/HTC+NTjxeuXtLqG7Ey2xZhXL55QpTEf3r9jl6RUWU6nBErTsR2XKIwY9nsMxhN+fPOGWeDwYj7FNiDLc7Isx3ACTNtF5jmR3cPpFIYXEE1mxLMThlaDnm5RDHBGQwxxoN7foyuJhaS2A8K4h6V0qs2GpqioqwrlDWixyXdrLLdDah39+Qma1lHUNUmScne/4nJdcv3hA/d39/i6TtyL0H0TTXRkRY5AEEUBtlnxv/2X/5VX50+YD2NMBWPHRLNMyiRFN8yjoHFNmjrnxfyCXz77kt1mweXjJw6y4c/bHNFJ/vb5Cw5Ng5mlTJ48Z7m85te//RsC3+Xu+pHHdUPcH3B3d0OSpcRRyNl8jK4Esd5Rb3dcV0viwRC9qXB10HWdyHN4ejLDMI/0fLc/pT+ZIOuG5XbDr1/OCF2T01GPUNewNAdHtuTbHcU2xUxaeqOOyFZ44QBpGZSdxGwknVJ4Usd2LKq8Q9YKWZqkW4WuMpSmcIdjen6fcPQEqzemkYLY8QndAMO2MSyTkdfHdx0YBRzub1Ct4ItXz3A7QZ0e0JXibp+hadqxwuXYlPsM2bRYlklTVRy2ikHPQUjBx8WO/rCP7jgEHrz+csLiTy3trkI0Hfk6oTjsWBwSiqKlrBrk4oHFpwgpFck+wXUNBpM+p9MxpyenWLbLy/MxvnB5uLsBy6ZqWvZNx6GsKdsWQ4PTYY9Z7CGEwOkNePLic/xwyGg0Y3t/QzWxeVgu6OTx9WtTNqR5jhsOsG0Dqykobvek+wOykSgpWa3veVjdUiiFFvTQMdHoKKsSBUwHfRrZ4lg+8TDGjyMe7h7ImoZUanR9l91qidVJXO8I6UvLBk1Ap2nHaG0n6ZR2nJ1VgsWnK8RowsZ2mc8nxMMJm+v3DNwYXSpiz6fJUrLdHqOpCac+oyczepMY1zapDw11VXB1dQnV0bzVUOSVADQ8S8dUUEuFYdoo3eTt/YqflgltB+M4JPZsvnp5wde/+Xe4/TGmbWL6AZrnokTMPl3QbNeE3c9nUplhtCUkG1TX0TQ2ndvD6Y/I6wbaAkfXaUVJVmXQSuydRB1ayupAKVqSVcOHm0fqDtKiwrYdlG7QKbC1o8B6Ohng0PHVvEdWVegalHnJ3rXwlhtUXRH3Ijod7t5+z/v7exaLPW7k8mQ2YDLq8dUvX2J5Dp+/OCWXFlmus11tj8tdWYL9Tczh41s2jyVnT3+FUoIyTXk+s6nLjOXDlvOzc16MfZAtRS3QtI4oOE6UJsLm3cc7Ptze0gpJP/SYxBHS9ljXOnKXo9Y19iLl4ukpceRgIQFxFIe1RFWSNgc6RSML2q4l0xOU1vJp/ZGTkxNa2bEvMjJsLu/uMYV+hPUqnQ/bFZdXD/iOyZNhzSyMeDn3Mc0eo+GUfi/mxdM569WephW8vVuz2B7YHhL88YQ2LzF0i1SArUs00aIrF8uyefPtt4z/5u8Z+BG5Bv2zp6xmZ/zh/hZ9f6BNEkzPpVE6RVITjee0+zWXVw9s6w7RtmRZQ6ZtidsFwSygH2o4tkuhOrJKcbMpWeUtZZVi6zqz0CKyLKKoz+vXX3MehVzEHaqsaEKFH8bUWU6taxgyo+wkg85Go0JIwSpN6FwDTVhsyxZdM0i1ijKpaDYpH/cbStFQZSWtEkhTQ9AyjAJM06eSGkmVkqY5VVsizQinP0C6iswWFOmC7D7HkDq+a2GicE0TqelstlvWk4B536QsWyJdEPQdHCcj6Wvs7hpq0VGWFlpdM4iGyNqkK/eYhknblvSUTlsrqixD7xRpJalME88PUB14tklb1hR5QVpn7NPjzLHv2DidxK4zFh8WlPWR3ZDJmseyQdMtxtrRKOnZHoPxCZ6WE1kl/YGNPRjiOg5dGHFiuniaRejbNAI6IRgELqreI8yOTraoOkMzDBplgxVx8+2fqeqKWq9QAnaPOUqzELqBiWK/OfycRrAYez2mT56S5in71S3DKMCfz2nqikgLqZs+pely87jGD3qEnkbgOxRbDdfSCDyLtC6ZuDrB1Ofr8xj2JrsGFsstuntkAomfjQjfc2nblirJ0TqBMl3usoJikxDWBp8NZoxn56T3EkezcGyPLCtplcbDYoGhOvqDEKOD66tLPny6QeuO88C+aRN0Lbt0gzNWzOcjzsYxdifwDY0fHnb88XbLKqn5z1+9wg0CUB0dHToK2VS0VYkUgvUh54efrtjnNbUQNK1CCEEjjzBOHY15v09g+jiOjuVbdJbNqNfHcxxM08S0rOMinQGGDm0r8R2PxWPC+8sbeuM3fOYPEY2gLXLaMsMLfCzL4slkRNpTfPx0SackYZ3S2Bb96RTfUYRxRJPplHmOZZq4roeqaoIwJE0y6lYSuC7DXoTvuli6wXq7PeZoPIE+HKOVJffLe6bDIaYGRZbSCsEOg8oOkE6MaGuy7MDD7SM9WxE6BkpIfvh4RSsUnaYzCmxeT4Z4ukHy0yfC0OPV2YjPTueYCkxTUquOwt1xt15zdf2I6/jc3N1z87Cib9vM4yFeEHI2fUJ/+pxK6ZRlDeMYKVo8UXHh9SmKA7v0wL7Y4Rg6WV7StC2mbZKXFY5t4jk2ZVlyt9xhdR0i9jEGEzrDQOv1ef3VLzn8y3fEg5Ao9NjtcxzXRXYNlmODMBBNhU6H3VYUecPQH1KogkNZ0ek6pm5wPh4z9gKaqqV/6jHoxazaFmkZeKEF2ZJfvDxFJS7PzoaYBoRxzGg+oqUjb1uutlsur++Y+w5B6DMdjbF1G902aUVKZ3botktHjpQ6pu2w3a/YHRIe9xnffVqSlRKlHgTCkwAAIABJREFUJLKFedxHc3xMxyK2JcNen7YW1J1kv1/xuFniWQaXl29R8piAf3LxnMCPKMrjel7VtByyHC8IKfMSoTQ828S0bbwODN2lFRJNVOiaRl2VqKakSLb/OtNEiZasgbjTWD/csb5aYmYuw3hGcn8Fms7MMujyBGMyok02jCOH8WiI0iw0W8MwXJTWoZkGEg3T9dFsj20lebi74W6xIEkz0qLGMR1MzSCyHZTvYBku+6LEPxvT82x2+zWmJgiev0Q1giRpiAKfpihZrpZ0hsX+4Z6qLmhdi31WEToG2WZHIjv20kTTOsJ6T942JNtbzPLAxXSA0XORSlBuVpidTrJeYBoaoaej6+Zxflhr6cKQRkr8wYCRrlNLqJXO4/0jltER+DZxv8fhkHP44+8ZTu5J9gme47DbHihlicmai199hlsrLgYDUg20ICJLDhzy4w+2JLStwDJ0wl6Ma2pkhwP9wQDf87F0EG2DcucURc2zzy5YbxMa2ZGkCX29o+87OIaHUJJlWR9J6ZpOKhTbtsKyTEa+z9CymYxnTE6f0IssPt5+onF9fv33f48VeCwfbnnz9vf80//+X9g+rpFCoXWC0SjC1G0aYXCfFMRBn8/PB7zQOq4WC24eFqSt4sPjhi+enDDo9bhdb6HrCE0wDIvM9+n2JSejCKcQmF5IVeY06TWl1LkmwXUskvs9RVujo6GUjvX18yOUqW3pmg1pXqN7PuVyze7DOx7XGzChynMGvsvnr14wPTnFdhw62dI5MZ2E4XjGp8cH3n/4SF43HGpBHA2IT17gnH5GZxiE8YrFpw8U2ZZOO5pns8ClkMfvWtYlHx4zDmVGz/dRCuLAJXB0ZnFMP+4z9AzszEF4MYao2V3d0wRTvNcTZFmwOez5xz9/y/u3bzgdjPkPv/lrJpMpxXbBY73Dy2d8eTJjeUj53ZsfkbJlFPg4OvS84Hg43t4y7veoioKizNnuMzqlqFvJF9MeszgE1fHheo1UOp/5MaMXz7H6U4KPDWWR0xQJTbKhKnMeHlaIsqFYL7A1Rd5U/PjjisPdDd88OyE6/YIiyxBlgW9AEITs646hZ9NrUnSpwHEZDEcMp1MsA0QlMEyDrm2oljfsFh/AEFjDGfVmxf3HRzLd4eTpjGG/R9OWiIOBVBpmEBy77vHwOMUnG+psw6d3P/Lu3SVpWXH7uORhfcDQLXKlyPKMUT+irjtGsxmn51NcA851xcj7iJQNBgo/jDC6DikErmlAp1AcCf6r7ZpeOKJyhry6CFH5ik1vzMmpxDJaTl++4sdPn3DjPr0XDuMn58yiErurWaoC2WkYhoZSgkHcox95tPmO9WHNdrUiyUt6cZ94NGXguSRFySDwGEQhga1TZRldb8DLzz7DajL6Q5evnk+w7ABl9milgd8WmLJGNGA5HtvFA0oorq4OnMQmTnJ83V/vM2Ql8TWDnq8R+RaWmaNagWxKRNdnu9tQdz6F22PXWhwqnWkEvgedzPG8IcGgT5UVuP0IQ1Rg+YRhQL7dcj4eIpSiNHTauqIyLBAts+mYq4dbsiShqmq0DkRd03QttSn4cCv54slnfP6LKXbb8ptvXnL6JKK7lzx8e42sGvLtgbJuEO2xnuK4HkLB1fUNozDicbMjijwOWU21bxnac6ITl2FkUidg6SabsqEUcMiPpvIocHk6GzLp94h8D8uNmD77gvnLX+JoJoGusE5mHPYrPloaj6vFsbusLLoqQZeQLzekVclmvWKfZmz3e/KqoZY1rmuTlCVe0DGI+vR6PbRaUZaKfd5RW8cUXal1DEYjZq7NvBXc3N/TKh1TDrAti6yRCAW3qx2dUqDpFEIimu5YMY2H2HSgBLFrw/oeNexjZgciy8Q3TBy7Rz+IuL9b0By2PBkPcHoDGtGRVAI/HuLpguRjiaW7NJ2FrCVac1whmQQOom2phCTXLTTHYVNJ3q1TNmXDfDzmP/71E876DuH0BYd0S13sacqK92aIciN2aUa136DqPbPJnGfn5/Q6ydhS6FXN5tDx/dWGq1WKMg3CfkzfhdezmLHvIZQiS/doVUqDJJGCu0PKsmjIJJiWTaM6eqaHaTqYtsU00BgYHboUlMkeLJvrfcEhr8ikYiM7KI7dZyVbalvn//72kYc0RdQNF/MRv3j9nPk0JjQ7bj68R9QV0/Nz9IPE6DSaskXmLW/++RNdHRHNfkWvf0J1gO3NGyAFA05Oz5FlSt9pyeuKJM2PfBjDoHWG/OHdDcvtjk51nA1jDE3n42LP1SojuH5kGPj0wwghJD98+/8wHem8eHaCbdq0uoVrOkhhHAHZjUDXoWtASAPT02mKnJuHPYloWOQZi33Cw3KDZZjsdzVFq7jaJIi2IrB8XFcynfs8mTzFtYcYmKhOYbkDLLeP4YVc/ELy47t35EVDnW4ZTQe0qmGVFVRtjVOXxE3LdDLmZDohSfYM+wEuDcZux8vVlp12ZERZqy2r5Ya20xlOZ2SbFdv1lsC1MR2DogClu9w0Hh8fS6ZGxa9DH8fWcWyb+zYlKypEWePIjkno8svncy6ev8ILLujHY6Zmhd6U6NYA3Q4pDZuH7SfawxLD1LGGZ7T7A71Ihy7DaCXv7q7RQ/8IexQNmoJWN2lagaHroBSuptPvDTAHLk3dIBuNUnU4nUEgwbFcdNOl1nQesiX75Z5lKzEA17JwbIumtgBF2x1hiePQZp/nPJtP0VGEvqIrczaFjh36DCKbH9Yptusxc0M8NOaBQ7IvsRwbN+zR6jayqpmHIYcsQ6iOeT+i3+uxTzJqIWjrlryo8KMYdIMoCHAsE19VOF3Hsq64OhRUUuLpYGsarmVi+wG+KYl8iKKagS7wDJ3zcUTv9S8JAIWJ6fj0RIlnQGyK412g1WgqgRA5pl3TaQrVGeweU26uEtL0kU225/urGzzPQTc8mlZDtALVdXi2hedHOLbDbDpC1x18p8OOO6So6QURXeDgmR0qiPk/v79BSklbN1y+fcc8tjg7m9But2i6Tq1rfNgWLP/5Rz5/MuKrv/tbrAqu8geUq2HWNlHUoVRK0wps3aZMd4S2TaMZJFWBEw355u/+J7755kvS+/dYqkHrFC06xS5DR6LbDkmbMPAcFrcPXK+2BL2Q6XiCb7rMvB6hbXG/XVGJltuHNW7XUIuWMskZWWA4Opsk4x/f/MQw+pqx4dMJgRSSqq7J9ltqCXerhE/rlEqoYwpB6zA0nZ5j4+oG86jHL776JVJTHOocaRiUosU0XSLXZTQdg66jZMO+KVllGY+7BNu2CNyQLGm4u9/x9MUWCwMdiWmaKCVxTI3pcMC5FxFle8K2Yd6LkaZGEAX4bofvOVSiQVcuVXu8WLumR7Ve/szv0XEME71TlElCnuZgHpkZRZnjuSFZpyiyFCkEJ+MxBENGpzPc4SkNJlVb01UZ6X5Jun5k9XhNltf0bJjGPrJtWSUF1+sCpSQvRn1OowDRKQz9+MjiOh62Y9A2iu+++5E3n24p6xqt6WiriovRkC9ePWd+9oRP9znLrOLHt39mk6QI3cYLe4RBQKwZBO4QK/Rw7CHrNEGqHE0zqVXD43JN7Np0nSD0fZTqUJpOLXQMzcOJXvAP/+P/wjYvuHz3nvvFHqUyqrLCs4zjpLpm0DQNptbRqI62rFjf3yK3NU9PPuNuf8t1esXoxZfsP7zDM020VuLZNrc/PbLzDLxqT1ns+fqvvsLVO/LFHaPJlHVakQnFxHE4PNaMew56AyfOiEWpuLlf0Da3tOKPjHsegzgi8Hx85WEjqIqUPFfojcZyseHjcscfPy7RNR3X0KkaydlwwOx0jj8/pS6y48y61iGlwbYUzAOPnI7tesn+sMWzLfaHDbt0TzCaUzU1WZHj2jaVBKttjxPmmo5ugmGY6LrEMQS9wEcaNmlWodHRaYo8Sf51pklWtUjT5mG14sfLf0ZUkt/+5u9YVzphP+Z/GJ3yn/79N1T9iLvdBlGmDPt9hOrwvQDb0KjKlqqqcF2Hom2xZcc2b/jd+48sdztUXdGpjsB2j+DSnwFzg8DHGp7xePWGbnHNl8/OSEXBx2WD6dgMwz7+cMjerhFNQSdb2rbF7Y/oncy5u74k3x5ImhqpmaxSgR0EmJqiLQ/EnstnL17SthlducfzHAajCVYQkB+27HYb8uUdZmDh98douoVpKgaujnB7bA4JbhBwd/9IL7DxXpzR5Cmt7Pjp/TVtVTCJXZQycNyQ+8cNlTBxPJ+z2ZzV20/UDx39eMZeKA4S9rvDsTOJjuf5BJ4DsiVJEtJDxXwQQZ4R9iLCKCYpjuL19OkTUBLD0JiOR4wCmybf07YNjYRNJWmynF1ZUzctVafwoh55tsfVDHLVUeZbRPHIp7SlDYb85m//DieOSA578u2SP/7Tn0l2KW3boqQCTUMonRcvX7DNdJzeOTeX33Fa67z67AXTi885+ekNq8d7OtmgTJMno5jNfo/RKTzLxnJslKnjOhaibBgHOrMXJ/xIw/3NDZ7tsF4WGJaNHcboTYZGx3b5QLq4Yy1Lej2PUX+E3qToq7fI9SUx91gUBL6PE5oMR32iKELXNTQFBCMUNo3W8ub9J/78l2/Zpwm7JCPPK0rD58SM2e1KsjTjsF2y29aUaUObCdq8IWsFlqYRWSa2rqMwSbOKuhH0eiFV01I1JXltM3JH2JqkrmqkLMivH1k+bqme+uiffqKWNf/459/zh+++YxCHfDn/LflmwfrjJWa6oKdXjC4ucB2L0WZNmaXskgNaU3FYPXLx5AKjrgj0Dtu2iR2PwIt42O4pq4pD0RDsS56fnTI+mWBFEf1xTNN2PF5eI81HGjnmzU9/wZAV69WGu4clTjRgtd5R1+URwti2hJaOriSBaWKbNlLJI0OhKfG6lpHRUe92uKOIyelT/KiHKRs6DPLWIk1tbFPD2pRYqsD3+0jLJY7PUIVEs3c8Xj7y49sb4tjl9bMTgqGO7gV02GC7GK6L7oQgW/LlFZfvvifJGm6We24XW1rZ4VoanuuCbZN2Lq0Woqw+L15+iSUrjGzN2dMnVEXG/c0dRZqhnT6jjBxkWSFVTtq0lKIhrWu2VcnvPvzI//z6jNiFV6cjolEMRku1vef1V59jBzFdmjAaBuj1gsNuxXQyotBASYnv2Gi6jqoSbjdbVvsjq+hkOuTZy5ecz2bk9/d4bsB0ZKPQaJqawPcZnp5wMp9h7BW+bVIVLZrt4vpDgk5HawLoBK0UZFrJw1ogtivWu4w8c4+C3jTJW8lyl+AZDpFr8/XTIY5pItoG3TDY7BJutjkfdg27ysC0TL4QLV9+NufZl18hy4wgtLBo2C43NImF1pTYlobWacgix+uNaIoczXMQwyGNG5K1LeNhTFtXiKZGNSUKHccxMXXF9lCgtxrrzYrRzOAffvOC8/MY3w7QBVhCIrIM0bTsKsk+KciL4/fTDIuMikx02E9eUGYJs0FMPBjS2R3zkxBtl1P+HDFflYKoK5mELs/6NsO4R9ifEJ++JC8blqst9+8XnDnPef7yNVe7Nd3DI3OjwSlqtjcPJHXJ1LfY2waRt8QQkvvbJVlVcyhSVkWOYeoIVWMRMnB98qpg32wZ92KePbnA6fWJBhaFrHD6E5JKItqMytAILA3T9/jw0xWaBv1+H08oDKskyQqapkXTDUyzI28VsuvQLQfNNDh34cTR8MMxJjpe2MepM7q6xmwEy/WOWjfpWSah7ZAXDWXzyPVdwWFzwtOzC/a7Hb7tsnos2W4TkrxkHjgYsgVNp3NNEmUQ90MuNztaIRj3fP77/+45M1uipy2509KUe6rsgDBaroVHWjRUZYUoFIe85L/+/gekZjDrx3wxG/Mfn83IdzWqaPG6mlWq2GU5B9+g3O/5chYiq4okT0lER6abXO4KVg1ohkEcxWBYnIw1Jj0XiU7oOTybDxGipJMtQRTDdsV0uOMhq6nyhlrsuWgCvPmINqlYNDUf7hc0dcOTWY9Zz2VoG7DbIYF8f2CXprTYaGoIpTrWPj2f1Rqca8Gvv5zgjCOaWCM8zDHrPrVW0OY5+v4KRwmSQ06S54ziHsoO+e7DLcvdhrvVmqoV1G3DNPAp0oRM6vzV51/zYjKgyQoedwdyx+LysOZ3bz8SRx5mP8TQNJ6PxsfKoWNT0yB1CIwI2wzwpza32Y6fbu7Zpxn7rCTPC5JKIJROYDv84nTMaDrA6/fxhxNqLD7cbKBaY1shnRlg+CGdyHHtBbapuJiPkG3FwzblsEvQfIv44jOK7/+FuqoRto4tSka6wEbDcxx6usY/ffuG//qH73GzhEW6xNxv6JTEDWP2ScFquWW12rIp2+M/9lyuKiBQ9F2TbrNmNZhy4ZoYhoGsalwUvZ7FaWQx7wVMTiZMZ1MCe0BgKA5JyW5fst3veLd4z81+yf3igUBrOJ1NGAUOWpEz8m0mjsvzeR9Ch6vNFr11eDjkBJ5NP7DQbAeqitCIsAOTcDBAuh1CdohGUWUJtu3CNEbZFoVl0lg2z0TB8u4jm/sF20NB2zaUjUCYFYZpIrsOhaJu4X6z42zscTLUiUyFaZs4hsPmWvG4kZz1Q8IwwgI+3t7y5x/e4pgO0cUZYdSnKxsc06Tfn2N2j/QNjZOnT0Az0E2TJk0JXYtffP5L9nlLWjZkeUmx39AbOvi2heIIKe7ZDp6h0TM7wjDgxbM5Z54kdk2iyYzOconUUR+lHxccDA3LgqopuTdMnkwGjH0HHQ3TsGjbii4vEKZOmWcUVU1yKPnhww1FXWLrHWNPo+kkJ6MA1/W436Q0RcVjXvFYtOxbDW3ZcDJqORl4nPR6RK6k50U0dUYQ+fgDj9+/v8e1DGxarK4l0A2S+wc8y8b1POwsp2eY7OuCdQcJEq/nMBv28QKXJN+ilKKpaspGYZsmtTie0Y3sMJ2Ayfw511cPfPn1XzE5eUJ++4FG6yiEQCJId3tc3+C0PybZbambhkE85OxkSuj4OBgEcZ+8EuSNxvX9Lfu7JQGCsaMz6jmMQw81injcppRKstof6IfukfXWNFx+uuExqSgEFHVLrTraDix+TsnoJp9PR0ziHr3BiMnpK/CHTKIQfRhx++mS8v0bkvWWQ9FguBZa3RzT7prO6XDG6fgM072irhuoKqosRQ8ilKywTI2uLemFEVPHQWsF85fPODwsCRybUdwjaTJ6vYDAd5BlCZ5Hp7UI5bA97LBsB0M00AlkW5MVkk4qdHSCMMawTUxhQgFG6KGR47gB3uScyfSCusl58+4tUtMQRUJ12CI7A0szCNyQttJYJAlaZPNyPGRgmTweUpKi4J0QjJ05jqYz0U20WiL1BuVavLu84cPHO8q0QKDhaIp5HPF0EGB7Ae9rl98/XB1XxFSH24uYXnzBsxef42LiS0n5cMfm8QbP6RHiktQlpZZxv7lHiQZb07ANhyjoYfgh292eoq4QdoDTn6Hh4BgKXVr0wh6+3+PDzT1oR0yCZVu0TY1hHk3dWjSgKTq95afLP5G0BaptsBuJrmmUeYksa7LHFZ5nY2Z7qt0dL04ilFR8+NPvCbuWb//0LVfbPcFkjvpvv+PZyZCB76CLFiUFHR0nwwk6iuyQc/ndO1xHI+6FnDw55/nzOZ0S1G1F20iKVnK5KtB1m75tojWSYdTDC23qOqVYXDGfjDl/9pRO6SgrwBMmobTwRmNuPvzExw8NRVkiOzikB/K2QdcEQrTkUhI4DkVZHlcrRY0wwLaPeAjDdfACn1Z2OI6JH3h0ncZ+u/vXmSat6DBtlwMGu6zgYnLC6dOXPEEyzx/56re/ZTjx2JiwP1QMTjz07HCMw/V6iLrE0FtM12FZtJiWgSY6/uXjex5Wa6q2pe9amLIjbWoyWdFRYho6n6qGgXBp8gKhSlpVEwc+mjehaCv8ckuza5kOLpC6iROG9DtBlhxoq4LItNB6PZq6w/c8PnviMxj0yLKMh8drUIJys0XvxxxETb7PaLSUZ/GQXhDQHHbsiwLLjUjWK4LhmE6Bo4OlSiajmMMh4XQ+5ub2kTjyuU5S1ts9s8mAomwobIOwqtENj7JWZMmBwbNXvDh9SZukXFbXvHn4E/H5Bc7JOdV6ie1AHPeJehFllpAlGUpJ6qZCNB5W6KIphRf1ceYD8sWC5u4T7x9XpEmCb+pIwPJC3PPXGFZAeb/E8mv66T0fb68wNQ3TMAjCmGA0o//0DCKP2hAss4q/+ZuvmE0iyrrk6vu/sLq6pm1aBienVJcfkc2xH1g1LVbU5/Uvfw0qRIQe++UtQo959suvCQZT4re/xzMko36MbenkeYJvdvhhgOOYaJZLT+oc0hRNwvsf3vK4LVmuD3jucfKsaASDOMIxLbIso8pTkvUG1hu08zmn8xG90z76fEYXJHjFhs+Vg4pjwvGMThpoXYfewcNqgzBK/MGUH978wF9+fMshS1juEmxdZ9qP0DrF3fU7JAaLfcrdbkuVptRlfYxviZJOVtApJArLsPAsnbDXRwiJ25n03ZBJ1GfUGzAIQzRq8vUSaxhTKp2dE/LT3RWH99+yXC242x3oLJdCePzhjz9wuLzm1TiiPzthMDjD7w1B1qxXW56OY56eDHlz9cDtwwK7P2IeD9CkRHdsDM9FNSVNK1kmORoGHzY5Xx9yTr54zfjf/psjmLDM6dqGJi/Y/WnBh6s7XJnxlz//BaXpXLx20VBkWU6yXBN7Lp7rcOoZWKJmv1zwZDykriWWYeM0B5aPC54+vSAYnzKan1FXDVlR88O3n0geF4i2oZMSreuwDJ3JwOPiNGD7/iNKF1h+wPjkjOJ+yd0qZ3O45q//yiVye1iRj2X2ji8ZRkfbtKyu36MhkU3B+rDHti1GvodhB9jhgDDyiSKHuG8TRi2P138kHI9xvY7xLz5nnWkYuz3391ve3v+J7SFF1DXDOGJTtRyKkrwsMSzFt3/4P/jC/AZDFwy/+prbH77n7k//jdHQR29PuHh6yqYQtJsVd7v3BGbL9PQpjWaxXi6ZTEZkhwPbXcrNYkfkeYwjm/NBxKuzOUPLQOg6ranjdQZZ2aLqitkg4nzgw/YRqRQNLa7vYochmqHQLZM68njYbvl4c8PNhxsOe0WTCdIs5/3jAaMTR1FrdRi6wTIv2aY6Mx/i0KPrBG3dcPW45eZQcrmrsUyX//DkOf/m8xNezUJ6sU3r+TRpQr6VrK+uaQ97LA280QTLtcg2a9rNnmBygmHaWL6P4wRUhx2jyCHyA3basXtaVTWSDqsfE40jel7Hq5OGqXFDcb0kdwuE/4pkvSaTHbu6Yas6UqFIa0HZyON8qmZR1xVJneFrS56dnzMMPfK64nL1yL9zn2N4NrXroAdDzhrB5YcVY1cnCnxcz0NISbFb4KJ4+uSUyee/ofOm7LKcUmm8ediSXl3xb18MOJ+OeHd5xWFXk6y3lP0E8gxbtXg01LLh3NHwbB1Cn8A3MZwemzZAM01M18IPHKLIwu3PsJsWXZm4WoHhBTSGhmZYaA2cTUq0TkMoMJoGpWAYR+ySgk7TjyJYF7RKI9+sEbJm1s3Qzi5os5y6vmY46JGWFaIs0eqSROk4rsdodoTdeZbD3XLDdrfm+x/e8quvvsRqWibxgKws2O4zXEPnNLQwOgPRceTWDMYM45DV4pF55PDVF694OQ05LB9pdB+5vKHf84ieDdmWFRe6j8Qgy6Cnxby//BGUYHXYc3m5J9/mfDN5xfmzF8wdnyYt2B5ySg0Wq3tEXXL/uEfKgsdK8X3a8X55R9G0GG5E4DuMREfk2aBM2nxHaHW48RAx7tELB3R6h/BDpGUxvN2i3azp+R7zfsggdKkVrPKKQ1vwej4gDhxG/RADxf7min5g0f6cmMjSPXla0BkeUig6bFzbZjgY0CmbuhMcPv7Azc0DvuPx4uIpTnTO5m7BbvcTbSORUhK4DoZpk7XHdEHbVJidxEIxcmwmrs1wOqIRirFr8otf/RaqnCeLR7bJA9fLhH2h8+HTllzb4AUGbz888Nl8wKgXYEUBoetSOgatJuhkh2YIpFSYrcCSHX3XRmkGShkMHIs4cDHsHonssVxJiqYhSnK0/QrL8giCgL7v04tdxuEAXVfsD1uub685e3qBrjTsaZ/0//qOYruj55r0bIfd3S3XSjI5S3n9/BwvdNmlBZ3qMNqWMskoVltsyyY2XNpKsslalsJEmSbD0GNbS9ywj9UbstqsWNxfEpsXPPnmDM/zmEY+vgqZjwKi0KEoBA0aojYoFj/yx6sHLtcpm7Qkzw7sygZhGLRdx7qpucxypnHEeWizrRoWVsYLs8MPHWaNQ9cYfCxqtM6kER2aLXAcHdFI2k5SVymW7oHUEVWDkALVCOgCSi0m0XRWZYUudJTe4/mpycDfUxYFRduR1Q2BY2E7BlXd0NGR5iVlVaHVOiVgSwujSZkIePXklLasmQ1i/vm7D3x3s0TKjieBROaC0TSkytbEtstkOERUBZ3rMTs9p8m2aP8vZ2+yY0manuk9Ns9mZz7Hjw/hHhEZETlVZlVmVXIoUiRbJBtSN9DQQkutdQ0CGqDuQoAuQBIgQBDUYkGtbra6Wc2hhqzMrMzICI8In93PPNk8mxaHWlKAtLaVrf7//773fZ66pt/ropQZm8WMvBKIk4zpYokuVLQMC88QeTq0MEyDttelqCvi3Y7HT97j6OgYTy7J84LZIiXLI/JGRCRHKgJ2RY4hV7ScfeLjP1zd8mzc4b3jwd4sJ+tUZUFZ1fibNfPFhjQtMZqMMs8A6BgWhmNT1g1ZUuAaNpU3RKplVlGOvw1Yhgk3715x4LV4Nhzw9LjH0DDpdhyIBdB1PjwdIlzNMUjp9+z9OayIyIaOo+UY/Q5RkjBut/nkBx9xdz6n67QIVwlpXCNToaoK7ZaHvPOJlzeoooqq6Hu4smVBUfLw9jX//i8V/uk/+QwBkGSJXbZBE0rqJsGoHBxUqjoiKWt5J/KMAAAgAElEQVTeO31Ek+eolUAlSHx3NaN0xzz67M/ZGV8yX02Jk5q4ENAblZNud59q9wLyIqPII6I0RlMUijzlYR1wu92nXBX2oFNXVXB0iSwrkeuGh/WSqsmIqFmb9+R2SZbW9PUestym4/b2Nqdof4dIshjXtukNeowGw/0DspG4uLqjTAvyLEcTA+I0JU5SpCKma8lImopcigiljSVUxJKK2WkRBWDaDlVRYjsOWSmQFhsyfwdFjqbq+EFCWewX4kFeIckarq5T1QKm7tJuD7EA127TsR28Tg+nMyZPNsze/oKPDrr0ew5So1GkHZZXS16/nZOFASCgSiqrqEAulow0geeeSSXCOqlYBglPWjZJkuC6DpKgkCU18+USqpzDtoOt6eimjmbo5HnG1I/47vyXfPT+R/TPfoAx7DK5u2EThix391y+W3I2PqNnOSRVjWu0cLpd4u0CqSgpH25ohJIoK/BMC0HSSKOQvNwvvRpd5/z6NbP/bctg0OPy/Htc16LV8zi/uiWKE0QBSgR004QyQxBqsqwkiDNMsSLNt2RlSVOJVHFEXRZM7y4Y2L9kd/+aw5MRRyeHaKbOfD7j9uqKNy+/R22gran86NkL7N4Bly9/zf2ba6JeB7NtsEtj7u8e6Bp3PD45waShpRms/YDNakoYRlS7NY9HLRxLp5R0lLVOklUYkrBfpNUVm6rGLGTaqsCRJTM+GiINTqkMh/nS52H6wHpyj79c4qkVp6Mu399MsQyDPE2YL5YIQoOmKSRJTlaw5/jpBqIsIAsZdVliKCJVVaBrGlItYOj7ik6eZSRx9P9vaCKIICkKrV6fIg5JVBOrrohfv+ODR1/w9OOfsp7+Ej/N8FoebrgEU0PWZUDYsw12AY1m8+3FJYbTYpLv1ZhdU6EuBQRFxY9S4rqiQiAvUygakrpg+fqvOXQ8ppVMrcjs8hw3DFlLA/ReDyWsSOMBAvn+srmb0oQb0iilKipUSUMQGtLFGqNVYg4GOCdtyiJkM70njNaEiwkXQUGcxqTJa1qtlzw9GtCWa04ODtF1ic1iQez7SKpC37aoqNlWOYKlUwz6RHFC5Ee0bZW6NDF1hZbZwg9ioiBm7ReYXpfNwwbNj1lO1mwWC27mE9STFsLQQIg0hk+esrm5wXY88jxnvdmwXm+wdZW2ru37jIZJIsiUpoNRF9higW1YFIZM1GgUZQFuB/fJD3lIRa5u7zl58j7d4ZDg+he05YqsyHh1P6MUJZYivPfhx2jH7xOWCbvdCqoAhZSby3d4FNS2gy5W3F1fUOUp0CAIIIgK04cJpTDBkwyeHZ0ijQ5pDzr02n2cTo/r60sGnkC3Y6KKIp8oz8hWd2iqjK5riJJMx4QJMFvtSCqBg4NHbDcrkizFMnTiOCDY+Qw7HrkIaZYxna4otT13AkvEVY9BBL/JUY5VfjAakurH7BYZUa6gayqiIBGGEat4RzObE+62qDQMDYMnnkecpuzSkk2w5d2rr9nEJZMoJYxjZFGCukKWZHTDoN0e0ZQF0W5OEAYUpYgk1LiGhampmKqCvw0Zd/sIFTStDlZvTFbWCLJG8PaGqy9fMl8tiAqROKtRFBVT1Wn1HyEmC8JdiiD6NLXKULQZnj1D0V3+r/sJTbilb2rcBiHr2ZSZpdIzBSRJY+UHBGGEqcq4tk3SNGiSyP0u49NGQAm2UMckSUacpFRpQRUF7HY+fh5TVhWyWCFTYmgqpgyx0FAVBQU1ki5QVdAdHSNUJQo1sqQQFw39/gGdw8f0hgesl2u+v13w8m5GnaXIWYgtQd7IZFVDU2ZcLgRS8QQhWKELBbVQI/bPyOU2KRlBUPDV9xN+pzdCbHLIYhpZpkgDptc3+IsJNDWCCI9HHrNtyiat8AyNk8GAR0cdXEdCyDasFhPu5iuCuqE16mD1z4jLNmFjcD+ZE6cZRV5QliVBsEPQTJI0hrrg5fe/4Ul/wNV9C2/8CLco6PYs0oGL3nJwTQVdLGm7Fu++O8eMHshMCdvxcLUOhmWQZCnBbsN0sUNVdN4/e4QjlqimgyYb5HECooxhmvj399RZyYFn8/T4AFEUEcsCkRohiqmahsgoaLca4mjKzf2aWlR5b2Dx0fhjtqHJy6/Oubh7ycN0TpoWzP2AniHTUUREUQRJII58pKagqnLWQcIqiKmKiqctjbNhl4+OXRy1It3Mqa/2mvnZ+RXbvOA2T3n19hLHNDF7HqcnB9T+Fk3TEUwbqakoZQXJMGhJDVVd8sHTU4LJLULZoNsa67SgEgW8dovf/+MXdJoNv/0/fk3rgxHW+xLfffkV9wufICtIG5GyESiKBt2wURvomAaLtKIoq/3mMs0o/RCxN2B2+Yo0TilFA7fVJo4LSFOqIqZpanotG9syidMCvYxwahHT62IcHGFKKllW8ts3l8yigPn9A7PbS6ZLgT89FBh7CrttzvXDhp69RKtDyrwiiVNsTSErapZ3C/I6xXIVvFGPTmeIbFpI3S6N16GwLERZwzD3TJ10VbKd3+Nvp4iyhu/HCKjYXo/AX9Nre1iays06opY0sjQFoBZLskYiSxKWYchv0pxJUDA2VI4fPyZPY3arLWzXtHo9HFPhcDTCUDV0xaBoGsqqpKga7icL3t78W0bdFgeOBUVBmqcMTYWepaHJInlREmoycsuh17bw2zYfHPVp9drMJivIaixToOVYdEZHVK0OL9oOTSpyN59yEc648W+4nF9iiBKnbZtHT8Z88vxzPn7yCMs1qJOMRVHScjto4RahPmCxuGUZBCwLkV89LLndrFEMg+7gAFSZKg9I0gJFsNmQ8+buHUKT4UkCR+cveXZ2zLPnT+kMjvDzBkmVcA0V11RxLYNaEHnY+Yi6wiZK6ZkyCgLzuxlllqBSYz8aspwuOHraous6aLbHrV8j5DmaKNPrDbG7AwrTJd766FLJm5//nOU6oP6dH/LTn/4JVemTKw1JDqK0B0U741N8uYtdXHNUZFiyhCXLDA0DWZIRVZmqasi2S169ekXb8gg2AUWW01UNFNtEFRp2ecEiyvCLiPMy58OjPp1KQHJFRM1EVRVEVabTlHz6/JTNzmcZlMy2Ff5qQbJecrGOSIhIqxmybqHpNrKkMB71efTkA1TFIE225HXGbLlGUTXcboepv0IxTDxLRhdEHvwteh3jSRWOILC8u+U+Tbi7n/PPdBX/7i3q6WNc2eBQVUjShKASmEUFA09HTnOCIuNuE1BLezOEYduojswuKbm+fcdmt2bgGcShSy2cYOoaR30Xwd2bcSJJxi5r+t4BTVZwMVtwPZ+TlCJP+l0yW6PISgJR5SHcsfFr6kYg9VPOtz4922ToSGibmrHUxrBkPMfDF0J010NTRSJ/S1KURHlCVlTk6RJEEa1SyCqY5jlho1PrGVLXprZl7n/zK8gCum0Npe+hUOG1LSTZJM4a8iZDlGtoTJIsQ5UFyjQlC6HOFJpEZr5M9zZFW8botgn9GBqBqoZtXqDS0DNUdF0lU1U8NcfUDDRFwxofIikKSZrt6ypFSRZsGfY6bOOCyWJBnKUcdGxGXWdfYxianFUyoqKgaBboXQy7h6iq0ICr6/TjNWG44iGtkYsKOysgKLjfpWw2O/qORBin/P1uh6vWdCwHvd1FdyzqJCKJaspUYjJfE4QR2xxWSUlaxajyFtO20ZwhZruH7R4yOHuGI0to3/0dg9WEy1nOYjvlbnXPV1cqP9094Q9+8hEDQ8FxNX76/hFBkGJbCtv1kjxJuQngRLdZb306js7ZQQ/Z0Gi7Axabe1bbCbIhst5FWK5OU9QYioJKTRDnNKhomsHw+DmLQGB185pHvQMejQboNYhNQ9nUFFmJqSh0HA+5qsj8iDzJGI8OqeKY1I/RVLhZzuk+/5Qnf/xnPPgJ58s7FqKI2+8gA28XK/Ig46BtY5gqtqSSlAWB7+Men2AYOqNei7wBBdBFkBSV40GHrmfSNJDnKV9dPPDrTUS4LSjvVnSdHqftMSco9E+eUJptisTHVCWk5YSXixl303s20xmnRU7Pa2PLKo5tsytC8mRHJZoIVUkVbaizHU0FqqRTpgmOpdA0NqmsY1gWHblB0RTi7Q5NUmnqBlkzMPScuihoDAtRCsnrhqyqKQURQdFo3CHuwQlOp4+pashpSlWn1E1JJihkUUCzfMtnZwd0Og673QPHH33OOpDwrApXeM385pqXsylFVRMKIolmUegQRDuO2zp926LrOTwedmlqEUu10Ds9NmWMZ6pYiker20USVe6nc5Zxsk+9bgOsoqZryizvz/nw6DMqq6AONlxPVgTrB345+w5T8uiZLTK5xcHp+/SjQxRZ4c27l9RNjUCFKCi4lgd2C9drUWUxuywmXd8QlTuC4ApVKvnwB58yHB3yt3/3CzabPcJBEBUM02R5f0vTgCxJzDc+A13Z2+WCkLIqCJYPtDQVVyqQiiVHo0PGT85ohJKXVxesLt5y+fqcOM759HjMh++d0ekdMOoP+cSWmSyXfHl9jdY65Xd//Blv/8O/5d3Lr3j1/SsUy+J9C7qmQZyDKTcM9QpFUFFMC9cwsadrWopAXTcUdcFtmvJsrPGoJaEAkutykdasvvmey9sJi/mMJE5o8gKxSGhbJt3+Ab1BTZLEbLbrPX6Bel+1aUryvMSUpT0Uua6pFAVZ1pD+gc0miTWq6WLFKbKi7e21QfyPzkWkv/iLv/hHP/7sf/kf/sI0VMo8YzZbkBQVL1ydxwcjDoZ9/PkliVGx9NfoeYipShiyhKHKiAhorkeZ59zPVvz6zQ3rMKbOUlxKxq7Jo34Hze3Q0TUoS+q6RhUFVFFAkQQsWaFrKFiKRoFAniYoTUlQlmy2azJBQvVaSALIdUXlLynLjKzIqARYbENuL98gpBGmYVGrLWRvjJAGpOGauilJ4pg0DtlFMbssZ+5HXC98FnEFsoqiqoiyQpAkqIbJ6PAQ8gxVVfEr9o/xpiAJfFRAkGSaMudo6DHqt3FdD6ERCaKEjZ+SZyW3Nw+IdcM23uB1C54/77OcRkioKILCeNDD322YziYkyV6DNPAcRAR0r8vZo1P0OGAgZNi6jqKqCGVOWtS8WgT0n/2YWGlzeXXL8xcfcDwewW6BQc247THstlHylJoGPwpZrJZUuky7I3I0zDDEBFU2qMIES/VQDA8/9nn7+nuKokKUFHTDREJgO18SrlY8HRzz4viIR0dDBqM+vV6XVrfN9f2cV19/idzU9LsuvUGfpirRyNEUCcWx8f0QFJ3ZYsvDcktaw+jwiMjfoqsqVVPR1BWGIpGkKdswoe208EwH3erw9+czfnG74rbOaAYKT096lHIHVXa5uFxiyCYt06LTO6A/PuL8/DXn7y4o8xxXETkddPa+8CQlynL8NAdRozRdwiimLks0CcS64nA4pNXxOH1yhqPreJZCnackWUpe18iygKGJ6LpEImS0HQXXHmB6IxrbopQFVuGWV+evWSwWJGlKWdY4hsVZv8+T7gAEiYf5jDyv2IUxfhBRoFBHEUazj9q9eveGhgZHU1FVDc/UsWSFooJfXd7w+uqGrKzYxCmGrXP2dMzoyYDDoY0pyKze3jJ5947vv3zJ1y+vKL0uaZoQBQGWrmCZOqNeG1NRCLYbTN1AlBTWux22IjNouRwMBvRbLlWa7uPXWUH/+AmqbvPm+pbz83PKNObzH37M559+xPPDDgd9m3WS8hBm+GVNUDek1V4NrOkmZdkwm06JBY1FVBLlFWUpcNC3sF0H3bVx+g6GKRLN3rGZTxF1nVp1mGwC3k1W9Lsd3j9sc9bTGXoGru3QGhxy8OgJ/VafZulz/ttLVlcPNJstq0Tm+8sb8jxDFkWkpsbVZISqRJUENEVEqitUQeCo0yOzDnjYTCiie7zRAEk36R0eIFGA1eb1mwtuX3+Hrmto6h52mlcQRiXbjc8uSHh0eEgjKni9EYKs8/zxY/L1ksj3Wa/WyGXGqO3i2iaOZyMLUJc54WpNWpYsShH1+JBocU2dbBkOe7x4esaRZzAe9OkPx9h1Q1cpqP8fIn1RUuU5RZljig3HtoIilaRZip/krHYZ26igqQXahsyxu38kS2JDFiRs1lvezQJ+9eqKv/r+DS9nC76dLLnxQy7XAe+u71nvNhRVQ4WILEBh2UimhedZiEKDLCuEWx+yhLYi8PywR79tcdJRGSg5n//kI/q6wpOnj0jKkp/9778hC0vMsiJNU9aFQCEoqLLGoWFRoqCoJpZuYKga426Pj37vpzQieLLKyBvxwYvHeJZMFWWkic98sSBLUo6GPSRJpKpyyjRjtQ4oao1Wa4QpiyA2XN3e8ua3v2E3uSTczFmsJqy2W6K0ZJcVPPgpYingyClZnlLUFVFScDnZcu3nLKOMtNxb1ZJtSVYUyErNvb/lOhbwVQfZtFBlAZItqT8l8H2yLCFJYuIwJGtkdkFAngQ4lkWtmYRxBnWJaRiIiravvGQJeblfPhR1Q11X9PqDfSU1T8nynG1ZcNJr0en3cSwTzTApKqgljd12Q+yHxHHG9xd3vL5+YLUNqIuSpwOXjqVhKgqWKqEpEobj0eq0yLcLzFabRalDsmW7icmSkkYyeQgb1lGx13lHMkYskey27O4e0MWax4ddBEVnt8t4PnAZti2ksqDYBqSKip9mXC83bJKUydbnYZfxejFH1AX6bYf3H4355IMX2J6G788RmgxLMtAkgSgK8AMfmpowiVmuViTBjl67xTJMOb++wfd9RAEUgT0wrykJowRVU1kt17RMGVUAoy7pGvsB8njcR7EcGklBkRWWy4i6FnAUi3anh2x7rJdzPFnAtQyk3YZvv37H8n5Lhx5KuqMRc/I8palqDNPg6L33aRkaVbCGPMVVFVqaQhLFTJYb7jYRGz/ibr3hy3fveDudsEwLbmdzFqsNSd4QIyPJArYChiISpilpmiFJJYIEvYMDxi9e0Or0MWWFNAp4Odny5mFFWhZs1gH365hlnBFkOYrb4cMv/ghZ1gg2GyTRIM4koqTC7I0R7Q5JAev1hjgt8PojakRarkKaBBjmPvEYLufM1xtmuwAN8CjxTIMDzyaTdb777iXX569wJIFst6YqchRZRtN1VkFCUkIjyhi6Q3dwQJxXbLcbkjTGUEWGrkFSQf/giLGjYokVbdvE8TziRkM3XYQ0ZHpxznrrQ11j1nC7jni7TTjfJlzvAnJBxFUkeqrIyNDoqCI928AzZRxD43DU5vSDMb1Hh/S1msOnp/QfHaK5FlHko8oKcV6R5RBVcL/dcbvdURot2i8+5fnv/hE/+oM/Z/DZ71NoDsnkCn89J8tyHCFHbirkMqety3R6Du2+zWDQpqkqdKlh7KiUWUFZQr/XZbpKeH29YtzrYDYlV+eXdAyNtGhYxBmeKvPkvVMESdnzr/Ic01ApyhJ32CMr0r0uOM8JkoysgqoomC3XxFmOLMDnJ30+OfTo9oaMTp/S79oYtY+hSXiD0d76lCbUgkT7+WeodUJ4/4ppmGPLFa0yJIkT0jxHaMp9rTJMyLIcucxR6hxNztF0EI0Oox/+MZqqM729ZBoGfLeK2JY1YSkQoVKIJrXRp9cacDA+pNMZkJc5rK85bhmcjHt4tkZTF0wWM2bzJVfvrsjTf+CEeTaS7pBUAre3t2yCGLfd4X7yQJOnCIhUjciw2yGJc7Z+iKnKtNsWQi1Q/QNDS2hKFFVB0m2KvMbWdV58+GPszgGTywtsVeCnv/M7mKrE7fqaXIsQ/RpTUukOBlRJTJ6WdDs9ykZh8jCDOGK52sDoKYcff867uytuLr7m8biF43XJaoWR6zCUFRabiLFuYjpDGqNFk0Na1vQHLfROn0G/S8d1KP0daSEgqQatfo9+p4VrK0z9lDeZyumnn/HjL37C049/wJOf/AHDJ+9TVuCNRuidDkGaEpUFheYitMeU3SGz5QyjKDFVHa/dYkeOrkHP0airiqrOiYMNmirScnTIfBSxQTVMyqahlkUSakRVIQ92+Ov1PsneH9AAUbBFEiUU02Wz3VAVBWGaUSChmi5294gXP/1zHn3+BWcff4p5cEhci+z8LeF6hp7uONBrDg+PaASBh+WOm0XJNrOpzTFuq0cSbDl2zD23M47IRJ1R/wA3C8nLFFGo6Zpg91xGvS52q4/W8tit1wTrBZ7nUWg6b6/3zEpbLunrNT1H4cmBjusZPHn/jPn8ktv7BxpDQbJVCkvi+uKeyWSJXwg4g0MGh6c4jg1xyMPDO3abKbZh4DkWw36HArCtFo0ocDe7Y7qck+w2yEXMoOWi6Rq24/Dzv/kVs9kCw9CwvQ5CU5InIQ0CCCJZUaFJAlkUkRYFcVkhCQJd1+bZ6Qn94QGZ5ZAZKr/55b/n/OV3+Hc37IKEs+6Anzx5gaPYSKWJUxk0FQRxiKxKlLKK7fVJt2uk7YaOoaFVFVVeEoY+TZUjZxmPPYvh4SFOt4veaiNUJbPJkrwquN5FKLrIJyOLJi+4WSdchiVffnvON998y2q5AMXgR3/4nzE4eo+iqmkElcocIgkCxWaJJVXYqoyjyewxU/s6mqaoyLICgoAq7e9GbdeGpsRzbRRFIs1KBEHEX+/Y+RH/zb/8l//t/+ekia5JqLqOY2m0PAvHahHEa+7DDXUwg9MTdpVCqWhY/QOEOserI9LZhKYq0EcnGKqPq0jY2v5A6RsyJ5aGpmjEQY5a5whFwUAzkEWJME1okFBFkXVWsokzFENh5DgUcUGMSCE6eEKEJFV89fVL3usJPDk7RHckKtkkE6EJfbJow/12TawqbC4SBlHKj49OkVWdcLPFT1PKvMDTdQRZw4wj1mnBOkm5uA9YrWZ4hs6436HXtjn1emiGjV5VlNRUbZPF7JZOr8N2sSdZa3ab1WJJvIt59GiEYXm8d9biZu4z2WSUVUPHdmjbNveTG775qzv8387QvENQO7huC4oSoSrQFYVKkSiLHE3TaVkWA02ina5xRGi1T8iLPQMmSXK+PL+kbB9wGxWs7y5wZQllu2U1u0IWatJSYrauiNKU56dPSd+cg6wx3y65/uVfId11Gbgq8dEhySyh3R6jGC0UWeTzH33C9P6Wb776zT7eJ4EsiqSiSNdz6bY9FM3E0BxcY99TVC2NZycnfPu3FZPZkpYh8+HHLsOzxxST15i6SCkJrJchdQ29lsM6zlhMJ0Rpge21EcoCqQZFlPZk8axElWWiSmQnGNQx3G8S7jcxjx5/iC2KrHMZSy64fpjQlNA1dFqWjWXo+IHP82EHalhtN8hNRVhUXM6WbMOIZVywyiocTWQzWZDFW/qeR1cBx1B59PiExPLYreeI0QalzrBdF0SR7c5nvg3wk4R1FNH3DL4TK0ajMR3zCYquUhdQijJ+KaK0x7TNPrLvYzYVSeTz5XRKrrQ5ff8zjp+9T0sRyaqSxcM9m1evGJkiuqej2m3SaMXzoyM6gxEHgx6iDLO4IIpjKlEiqUW2YUymS7Rrn/d7GmKnwvVKXKXHtb/mbrYj0Nrogk6ZpdimBiikUYilq1iqSOYpLGOVWMwRPAdRkajSGKGIkTSN1slTEmGG2+iols3twxRHFDh5/AS71+e9P/vPmT/csT5fcxubSGcfcNRJuJ4vuZ9NuLx8YKCJtDYxp5aCQImpBxyOO8RZCVVFKYroPQe50wHDRtFExs+fsJpN2GYCC73F1a9f8fSkz6OWglWtqIKUHQlJGqFFLlZ/jDl8n2fPXFShzZurN6xurpHdAW7nmLvrb3H7LXSxwdX2g19Bc1BMg2C9QG4gqEtUq6GIfNjdo3gf0Dk+BSFF1WT8NMbpdHm7TVGnPqKkIQBloyLKHiBzeDCkpauAwHq9ptcfYkkCu9hHLjJOuh5ZoqCpKqZtUVcN1DmBH7ApZNK0IVjNiOq/o6VnnA27OFVA4y+os5Jcb0gLATHZ0TNUPuzZiIHDUoEwWCBUBU1ZUxQNQqUhSRKqICEjUokiXcfCU2r8aF/tqgWRMI1Zb2O+nu/49XRGJTRYnRGxkNEenqAUCXG44b6qmCVr+rFCx9J49onHo4GOoQnomowfxByOB2iKghiuMcSaP/z0Gd2Rg2rW2EWNOO4yX274P//Xc8rcpAx36KpJAeR1g+N2MFUDYTlDkKS9qq+oGLkWH5ye8t5oTJZlrLMcogxLFEBQMS2T6TynLjIen40RsoTtYkWYVWz8BE2R0NMND9dvuJ+tWM3nvJnMCRdrlmFAku65A6+zjMgzcQ2ZbVkSPSyQMei7CoKsMt0mXGclu6xEFhqapKBlVwRixSIWMTAZ9k/YVBpXv/qG73MfS4cXXRMrj9ms18RpRlnVqJpCy1BYFSlJEmJoGi3bRZX3zBNZUanCGLFIkQUwVZkGAUWEuIbb6ZTDfpf1akuRp+RFhvHxU0xJ2g/0ZZUo93F7PYY7H7US0GczTFHm1dUdr9ZTHrkaLcvGkBo8w6auMmxFIVEsBv0hKjUXb69YLqdcTDdso4Ivzg4Qgy2GACd9G1cp8DSRXNHpZw7J8hArbygrndw74vc/bpNsF2wXCzREqryhECSyTKIQZcIadnnB5XKBIqcYgoQsK2zCLen8jtPxGe8fjan9DU4jYSoKj45H+C2NssiJi5wqSwh3PrOHGy42KbsgQhYFtKbkyBYxSoGsbBh4LURd5TbZoZUFZydDmiJFKvb/YNoGdcuhkTWatEEXQnZZhmHK9Lpd1oLK0PHYXk6YTFfY7ogPzh4R+jlFuKVWRTo9D7HOeQgSUs1Eb/fYvXtJvroj2WwZdrskmcAmiNkECaKkchGmbIoavygYqwYnnQNuQ5ljSaFT+CRJREKFrFQYqoijCsh1xXobcXoywrZtOqMT3MExweQt892CN1cTdn6EY1qMXYcmb8i3EWnks55P+PKbKwQyKj/k0Ys/Qukec/PqV9iZRMdu0z8+YrEN2ayukMZt1IFNKmywWg62IRE6MhPshTUAACAASURBVL+OYtKsYGBojCydoamRhgG7KKG+vacIAgaGjhTuULMETVFRNBNRs/A8jdGBRWswRvOGoOjk797RlTTk7QqhTpmsV3iSQSbIKJaC3Gi4qoWuOii7CVWUsYo2fPswp0hqbtYxUVIwzwUqyUDoP8ff3bPbLIklgZGucTYweXp6gi94TPIMpW9wd/cWp6viPXuP/O4WWxNpPXlGdxSThT6BX3I9v+AuSoiiBKMuGZktlNEZsijTqSPamc93X/2CdHZJnq4o84g8l/EpaJoC1dIR5ApXl3E8B8VwaGqRdLskiEputiEHrsLI23DckhnpbQ5HPf7dz7/mq4sZ7zkqZ16LSZQiSgKaLCPqJt7BmEUtogs5mqbS7fa5urmiSHPQDVI/5WG2ou/Z2KaJIokIVcGHR116XRen08bpWlx/94rpIsDuqKhBgGzIKEKOHyZcXd1yf3vLq1d3mLLMVih5U+RkRU2e7xPOTdNgKjJ1U/FymeL0+liihya36Y1PMUddXN+gO3D515cTMklGEkTKEnRFxLVU0iwjLYEGDCnDCK4QtRJNUzhod/nsi88J85if/Y//M7PZjvU64j9++ZY8TPn93/sRLV2gHI949/YtfVnjzd09SRLxtKPTVAVVUTJb+eh6TBzGrBYxh6MWbc/GsDzyyYK8rFEtA10yyZKCosxxgB998iOe6yaWlNHtmAR5iNJAWdZYkowtGhiShntwTJWk6LbLdLlD0CyKKGSRw0mnx/r+LU/PDvgv/ul/yfXbC/7+b88pBJXzhwc0TFTdYJZHSIZL7/HzfVIxDXiI1rwYG8imiZdllA147RFip4v6xX+CooTc/uLf0R0M+a//7CfoJ0/5+rfnrMsWrZMv+JtX93zxUZujHzxFykosSeCb//g3+GWO8+Gn3Cs6kuGSkGMcjGiPRxjZGrWoqYqGsqnwgx3heoEmFthdD0uriaOEUtQQLI2qaCiCLe3xEfNdBXWDJEGd52RRgqFbFGJGo6tIskIjiKBo9AcnxElGe3zExz/+nM7BmKvLey5e3dKEOUmSUywXHGQy7uAZWucx1ukT5PcLXr18zc2rc9rSFDo9Dp8c8fB6x+dPT9n8NmSVbJnPUkwVjEagp0CTZqxWa44PTrBaJqLtYrVdHMcml2W2iy277Y6uLtJxTLrHpwwHB5i2gtp1uRYhlAx+95//IUFWsw3XdDcBd29r4vUl4XLK5PWv6OYhB+Nj2nLDqNVmdtNQZCmy3Mdq98h2S1RdYxbCcuWjiCA1AtU2pHDXuKePUPIMTRYRacjimOFYQWgEfFFGUSGOU6gbNokAVYUkigjUSIqIYRtsdivCOKC8vyT4RY6Sp3Rtl1xRiOSSgWWTZPDsT/6cFz/6AM8zmL1bcPWvfsYv//pnmN2Ekpyrd+cowZZnbYNGKTBVnfm2Igg3dB2YTlaMngkoqoukOdhGi2GnxzL0yZsGq2x4mPlsi5rXQUnRZDi2xQ8/eU6hOQi6g2KI6EYLb/yYaLuDoqCpJQyjjdge0nV1tqt7lO0aSUxZhSll3VAhIIgyqlwDFWma4No2uqpS1qBrOlEYk6c5kviPz0X+X4cmTZlhaTKqZXB6PEYRVTRFZLuYswEed36HsFxhDgYorT5WOEddThEcEzHPaPwlYtWgiCItTSFNczxNpWuZPMw3lFWNJopoqonhtOgJ9Z6030BcgKDJ3IQ+ZZjgNxpdXSFOSzp2QybJ7IKQw06bujH2B45jYTQJZZSQZyVilbIrclZ5gSEXvIsv+Mv//r8jrTKqZMPI8WgrAroq0FJlxppDmBesUpWHZJ9YybOU1c6nFgTKuzmf/RBs2aGOAlxVZy1bDI6O2c52ZIsNmW1QlS0muw3l5T0nx2C5Lv1OC8ftITQKXdchDtaEfkgYl3x7vabvVfTaJQfdEU0SINc1pqpgyw5tXUFpSnTDYrqL+ez5U4wyRXVbNGnO2+/fcX2/wDRb3KUVN19/iVqU9A9P8IYaT774HGtwRG1YfPv9G/7Nv/lrFm6XTjeh3s0RgLqQkeOQQbeHW+QUswmL2RRRVMmznMl0in9zgdw0GJaJJkGUlEiijFVX3F/8BjHfoH34MZY1pkw0DLnm0JA4GJ/ijjtU+Ywsjml3OwTtA7RiS1OW1DX4yy11A65mUNgiQRKSlBqKAJ7jUhU5QlXQcT0s18F02kw2KbOowXE8zlSBQalgLhpWoc/F3CcJMuS6oYx86ixjtVqwur6i03L5J3/yATevX/PlV9/y9atL4iQhKGpuw4yiEVncXCIIAoedDk+PDlEoOTl5RO/Zp8hSSDiD65cLJpMlZn+M4ZjURYaQFxRNwzxMOey6tGWBZbRkZGUomoImiTSagds/JGPLq+/PEaqampIgSmkEFc0yaD0+wTp9j48OPc6OW4jxjpd/+a/45jffMGw/44MXH3P1+iskalzPQ7Q8yixmOrmnShJGvQHz9ZpGlAiihHmcEt5dkJo5yfyBaKrw6t2GTWPhOh0EAeKswpChyPYU6SgO8VSTkSXSd0wEbch65VKEETk1mqZRhAGSDgcvPmG32TG/vkaRVKoqJ4wTbK3N9M0E/+4lklBgqyWS3cbs9hF7bYzxiO++e8e72Q1umrBKUwaGjCulvDh2MEUdgRK926YSxL25CWkPAZMF+qdnxKuGzTevGXgynzw/IljOWMcpd1GNEUrIekOUrqH6lmeDLi1BZzQ6otVu8fbtGxSrjVAo3Fy/oqlrOqaOKIpkRY5LyfCgT6I2UGQMhjLh/CvyaEOSR4irB1RVQx+0yfKSJJohCbCNSpppgCjuuTxBkDB+9JT+oEsehmh5ulf5yRoty0Kuyj3EuTsgywt2q8UehKaZxElCFEcsk5KrTGOblPjBkvcCk4+PLYI6Jp9MEEQbcgFtcEAmuUT+A3VSoQsNj22FvqgQaH2WYcIuXdNJBMYti6enI9z+IW/fXNIpG9qWyuX5JdNdieGXuDG4bY/LtGEnqjwbjfjo7AnWyXu8Xqz5T//ZnyIt73n1i7/lu5tbJmHK6mpKRwPTtXH7LRTZwDEVZLHGlkoaQ6TsPKbaLnj95o7fa79Pq9diNw85f33D//SvX7Lb5fzg+ROyIicRZIpKwDBt7E6Htm4w3a4YI5A1DYXVYRH77MKAQcdju92RqNDWJUxDRhALkmLN1dU1tmFQhTGxv6URFDJB5uS0x3K25GG2JYuuUPs1b99dcLfeoHtHZEFIXhXUdUlNwzRMqND3EO044jLQGR84OI7JTbQGvdgbz8KUuIB5kGJ6EZO5gNRqc+oIjA6OENKGzQPsghU/v7nArBJ6OiRFgiDKpHkKVPQtlUA00FSFTJBwdIW6lGi3HFZFwk4WibJ/gIhrGqK4Hyo0gkCYl1hui+1qyW63hDLBti06vRFpltLKMmRZxHEMIixO3FPmiyWWCO+mE4aGSL/bwW5ypLJCMx0Qa9IyhdaQm+/P+erdA5NtjGeovDe2OW2JHPUtnEGX9timECrCfEa6yVnf3zC9uGCZC2xzjX/xX32Ok8eIbp8sXhKsNmxziSYMqdwBhW6QFCWL5QaKAISKXVijpRVhndHRenzxxQdUj86I1zOEIKHYzGjCAsMbYQ0OQTPZzq4ps5iqrPnu7RWrYG/4euTpnLYNNNng4WGGn8S4lsZp36NrKQxtA9ftES3mCE2DrinonTZReL+H79Y1ZZLQGh0i2i1a/pb72wte304IVJ0//NM/4vTJe5RxwtHTPv2eSrK942GzYbYLWaxrWpdTPu60qId9HF3H6B0xixXEeYhbCkRJgSYIGEabgIzDD3+XYZayKS7JioR1k1EjkhUFYlVgywqWqtMZDLD/b87ea0m29Ly2G8v7tdJnZVZl2e137967ge4GCMKREimGRImKE7rQ3bnRa+lO0pGLOEFzRIiHDiBAmAba9/amfGVW+lze66IQegC+xP9HzPnNMVwbchnPNJCKDFWpcQcj9MYWQZASxzmqUBBUYPT3aDddNs9/SZUtiZZvEahQBQdl8B5+lGBpFmJVcX1yQm90m937P+An/zknfDfncGSTODaaKqFJCbtdi522hyOJ6KLAsN1EqUqysqKsKjbTCaYkUgg1VVkh6iaGlJKV4Gg2jSqkael0XJ3WaEhpd4jTmuT0BKMUqYoQIy0oSgGZEj8qGJoOpqGiAA2zJJzNefr2At+PuZjHKGWFIqo8GGzzJgJzdJ8wWlDLKoIoEGRwNl0y6jQZ7Xa48/4HjD56wvUvf8KbT/+e4YMSd3+EPjzCcD0URWfkdnmVzjleLPFLEUNW2NJ0DE0nWk4YOTbyOmJcXHH9zVPi9IK68unud9ju7GFmEUayIs1S4iyhqciomo1hWLSsnCD1yYMQqa5u1LJphifLKMMeUZTy9OSaniaRFgVJnHC74zIJYuIkpdlx6fR3yOMScX1FqyVSUlFXJWmaEqQ5l9Mlsm4yXkf0bI0tz0ETag4P92mYJaZtE0yveHcxJxUMLFFBVmC+mJGXFVGSodjX+MGSqxjebzdZzsdcLtaM05KaipYCliyT1jKmLBIVIk7bpHMwpHHrQ5gFLH77DO1ghN1sgKxzq9sgKGC8CJEVgXa3y7OrDV++e0WgWNwnJz57zVbHZrC7i7O1g7J1hJGE/PEfLXj79WtenJ5xfX3J1XhBWkjEwZI0nNLvtnn6+h15nlLWcLaOOWqJCHWGRIFQVBi6xuuzS8S64OBAQ1cqZBEqVcP0GnitAcFiyXq5ZnF5zODuEx5+9yPsrSbv3n5NWgo4sk4RRhhNB7XRwFBsXEOCBiRlTeVKdDtrnp6fIqgaYuzT8QZ8+PhjFMPC9Fr8wZ//t8x+8immfk6wfEeeTrmUCpr1lCw7wh3s0HLv8u75p9RmEz33CSSBVFIRbJt3hUQ1n9JxCtzRHRyrQRonEEdc1zIHH32H//CfPmeTxSyiBXfu7uOsI8gq2pbN9MXXlJrE8dsrDFHk9qOHjEYjMqlCFQQ0WaAWYOVvWCzWXJ6P2WtL5FqO7VhkUoGq5OiWjT8P0Q0dEJhdXpLFOaIUQiXR6AyYzeYIiBSigGWZ5FGI7jRp7B7x7t1bJMPAsEx++y+/Irmc8N0H92kZOmdvu/z8by/pdHrsfvwn7H30IaVpYBQ5ctsjDKZcf/ENShHi9bq0BwNqf02/YSOtUjpiCYVELojseRayBFGRkczH6PtHSJ6Nm7YwHYdK9hi/uCBPE7qjEWani6LK6GJBJWhMlQ6zTcwf/Vd/jmy6ZFHG+ESnml4z7OyzPL6mLnz8y1O8R48YGSlVGjJqGLw1dDRJQDN0hLrGVjRqRSZPA+4PW/SbXXYHQ1q9NpIu8O7FS15+9QyKlLZjoSkqwXoDVU7D9Sj9lM3aB1Gg5OZSShLFm0BVFvEaNlkcEq9mdPt9ei0HXWjQtm2+evEW3XTwNYu7f/an7D++g+FozBcR2kEX+/EHDE6e88mnP2e5uIYqIfYjkmDJyFTZPmqyvTXkp7/5hK4HYVJQJAuKvAdxiR8tKcUIP8tIi4qkqIhnMfOkopBkGo7MYHdI68FHxP6M0bBBLSacv7nk9aefE68DbM1C003KSmJxekq8s82os4Nal+iSwDLMkGUFVVGp6wwoKYsCVRJxHBtd1/CjDFXRWIRzhLrCsc1/W2iiyAKqDIapsJ7mbJKMoulxHsYcbB8yzRM2lcCOJnJnaFOMF6zjFpbTIX79GfnVMbXawhQFBpaGVFZ03AaHvRZ2Lf7/SqCtw7voiMzGF0wyhTDPyAWQRVAlia29h+hOj3uOwPOXXzCfntHvt7BzgWozQe/fJi91PNujznM0tYQ8QcoySkFmHKUUdUaULVG9EQePf4D/9Kf0LQ9TLmkoQFVS17ClwZYmMfJMZkUJdUGU5ohAEYW8/M3v0CtwLY3e4T6e3WA+mdI0VMTRFqFk0Go2GY91ri7OiaprLqYrJM1BFTVcq0FDV5jNCwQkNNUiySJWYYxhRGiKhCPqLOsSua5oGSotSyOJYgyhpD0cIjkdGrqI4jSoRZ/dvW0qQabtDbn87aekV5f0LY+eabK7d4hhOaS1yOnxlG/ertgUN+aEvUcfIXzxLwh1hdDskMk5cQLRZsVW00S3DXRdQhAbBOGGwaCP1+6wnM2JgpA0rVDsAS2zQQOJ6OKM342vOOu0Oby1z3uP72NkAR9/+2N8BexAp9Vqosoy6nCX+jIlDyIsWWNVy2S/J39XaYqnaiyjkHWSUlU1mizScx2oa9abCNsTyIqKZD3ng/fuIisVe5LDZ0/H/PzVC+50PTaLJW0hxwSqqzOcyQWW69E9uIPUaOBeXnE06NNSDSargH86GROlKVlVIAgyrttG9toUzW3863Nu7xzwwbf22SxOWcsOQtDEsCrmUcx8tqGuCmrgRmIrcDkP+M6ojRj7FGmIaba4uE7Johv2x3wdk6YlvWaLfHNJlt+0q3V6iWhP+ebZK4bpFkMHFEti/3sjMslH6tzCk0psuUIixbEs3GaD5fmK+fiMsq5YB2ummyVFmSFnIuVlyKcnIeVxDqM2gdJmorXYGmxxeTlGnk/wPJfZ1QnJek6n00S1m6TpGtPSqfKKVlPm7s4hqB5CliFRojsOtWzgHt1HWq45e3N8AyZLc9StA2jvomc+GDJfv13Tf/8xUpwQxrASRIqmgyLfsJPiquQyDCnQKHWZStORnC5isiaPA2Zv39DaLtEUCVXSqUSVuiwxrBsz0vc/vs9qOmYZRbwdB7ydjvFMkz/8+Hvc+vAjNpnE57/7FXY04cmDLWRBxrRs8rrisNVgb+cAvVyQITDzY+S6om9pOLKA6jrIpUpSV5R1wWy5wnYswmBDowjQ9G10VWL69EtWgUCFxDLIWDy7QJNFkiimEAyevP+E2e9nXHVZIVHTch10t4nteEQbH3k1p4gNSmTmcYG/8jm5XvJ85jNNRZKiwJZi+pbLF5sFb8UCT5TQNQvTbfPhBx9hVgrRu5f4aYKiVWhKjqRAU5TZc3q8mZdskhBVEGg4Ol63QWfdpQwLomTJ08mSKBNoGRX7qkGimPRvHXLLblKenTDcHuLcv0f/Vs2DW3sYO206UsyjR3e4jEW++O2vseSUxWLNOgJDy6nSjCQMcVUQyw2aCK172zdml3BF5it89s0xr8YJjdYAoV4SBgl5UZNmEbLTQDRdmq0Wq8sxaQ1bQkWZhCSbOU6zhdHbwtIljF4DQ7qHR4KkCtQoZIJEv9vCFHVCP2W5TLhex7h7d2kfdKnNM15884ar40ve791hr99nvFwwuXxJlcUIdUXbcCirhDiLUMuKliEziXLSskDXPXbufZu0dUlv/IrVxYxPgoRpkpEJAo5Wc+lPScYN5taSPS3ni998webiOe8fDFETn3UaM1/lZHF0Q3inZNSz6bRbiLKE6rRYLCNMWaTVbSGXMbkmIosCIKCpCpIo0Gp4qLpJXdVUZYmsayiqSi1KKKqKZbuokoJQB4hVSTQ+pby+oggCxKzAjEI6QkHuGoy6DoYqo0oiclGjSAai5yL4KyYvv2RxNWbpx9zZ8niwZZKGAWW4JJVKrIZIVdYIkk6y8JlOFlydX/DS3zDOVHb7ItOvf0P3/SdklY7bNDldvyEXVWzFuwG7ZxViHOEvxpRFTFHk2IbObsOkOzhg7+gOBw+GhBevmZ6ekMc1dZkTBCuisGIu7rJ9NOLO4yFqEXAVhGTJU6okpW8p3OnadGwVQRKJDI0iTlGkmoUf4McFQRlSL2RWmwTRcjk0b9ggWi1yeXaJlGc0DZ1e08OqSl68ecP1Ys3VfIqkqqwuL9jp9NksNphtB11YcHpxxt998pLjZYRp6Dx5eBfvzmPkokQYz4i6d1k9f8ta1AmKCFFQaOgqZXlj77P9FFcX2HMdkqymVnQmfkBRZmyLUCQluQangciBY9BxbVrNbXRBJEtKLscRstKk024xW51TxjmiIlMsfUq9T8NsEtYJ2WpCDZiWxrt//Ev63ff5YP8WRGNszcIRNaLrCT29ZD1+TdbeotZ0akNHlFQGW22+dXvAsxcFVV4Rr1bYroUiiSRpyjLIyKIYARBVFTOXb4IfUeT87BytLCFJubpe0p1FDPfv0nNsxqbNfDmnRqbRHqBpIoamkKcLCtNBsy1UwAxUrpKcdVxzvUq556o4FVyVOnW3TfDmhNmnP0GTDDSrwWhnxGAz41uNnHR9jTI30CceneoDBj/6L/jm+dcQJTS7h2hKA7nO0eSahtvBnq/Ik4Q6zTE1C8t0sDyDbi2z0+sitltczhdcvvgFjV6PwdEdjh7f42Bwl+L4K9plihCtmS3njMdTZFXC8RwMTSEoC67GC0YdG9fzfh9elXhug/G7ax5tOfjrms8nAXaV8+GdAVxOCFcLjFaAWNd4hsLalzk4OmItSRRZQpKmrJZrDFlgGQSEcYRQqozaHr2mg2laNHsOaQkvj6/Zuf0+/f42m+WcL1+/5fk8YZoKrKKU7OkVq03AXsNF0xrMhDWLUmYjqITxGkmU0A2NSFCpKGjINX21wpFydCFHMF3K2sdoHLB1+AEf7F5i6QqB6FE3G5y9+YqfvdswXS+QC59NNCc/M9htaKR6RbwO8dwEMxijVzm9B7e4u9Ph7uIxf/fXf0PXVpCqgngx52IWUAoKWZ5RVBVxURCmJUVZcbcn4ZUVgqYjyTq243K9Cuj7AZoskCQRtuOxt7eLo6pc6QLrMuXLl5/xuNdCDg9hplOlMbpuYioGcWaS6zau06QlK+jmjenMn45ZXp5SXZ8xn83xvCZWsODO/h9S1jpn5yua+7c5v9jwLMiYT8452Ne59+M/IT874+RsjpWv6aj3UBUTNBPcLkrpUK99RMdjnaw5Hx/TMQuSvS4H/T6vP3uJ5HVoyAaT8xO+ev2/8rP//CuKsub9H/0Rl5PH6EGMuI5YLBfk4Zr4NOVuo8V7D+6zs9XFlGWmyykWNXFWE2cxqyAiyzLSKMSXoaUWNBs2zaZLUdcolowTCYh2k4vrCRolRZ5SZSV5HKIoCqIgESUJsgKu65CFIXqnzyqNiNOY9XrNm6fPuPriM370ne8x3N3HNRQif0an3eOjH/4pnbvv47Y7pGLNX/7V3/B//5//O+8dtfjoe+9hZSKKrKK3XNbxNWoByvOIO47O7eEOr+cLXo8nPD5oY/UGqNzMWERBQbccZNPhm6cXbJIcUzeQRBl/fEKv75ASYnhHnJyfsXvvLooisdpsOP7qNWlu0Ln1hB/uPGadSZx/8QvEKuBqOuPJ+4+woiXD2QVbrQaKCIp4c1Hsei6TYEqSBaStEdLwiKskoHh1xh9++xGHt+/z//z13+CvQ7qNJqausUozcgRqQcR0bIz1DQMtyTJyRFyxpuuYBHmOWSZsD9qImUej1eHdeIbaH9Dd2ib48hV6t0lr/4jh7ggxSzl/MWERJIiNNq8//QXL6wvkCq7OLxg0PYqqYFFkbBkalmkxbDRoKQZRmbFtWyQb8F9do8gFq+UYP1pzsohI0Akjn2VckVTQ8DSSTUSyDGhGU0ZmyX6/heF26cpd/DOfSplzOBhysVzy9uw1VewzD30awx5REqPJIm3XRtZsBFEkTks0RUUyDGzbxTJ0yizDNGyCOCCJIvLs5q/6N4UmVVVi6iKSJJOlARfjNbuuyV7Por/lcZxGOGrO7ZaIUwXYOz0MUWQ9mXPtZ/z66TFuJ2XfsbjdbSAICj98cAc9iVCaFr4E9nAPye6yvDjDj1LSvCDOMuK8JC8TTFHEiGZ8fDBiX5dJDJlKU5htlrhqG6+3gyZuCCYR3e0GesOiyj3U03NOL68p4gStFiglFdWzcWSBB2nE4O4jTs9fsAxCrrIYQ1YQAEssaakikiTiNdo0LRWhKlihIuo6tw72yVchZBVaYdC04eTkAkuGra0GldVC1izee3SXb774ksAPKWuZxdJHlywkQaBhN8iFKx4cPeJ0uWQ6O0YUZUSzQVbXYHrESUaRpui2h2tZjHotDFXCssBRwWg0UXQDVRSJ1gHd4ZCTWIHllDuqyoO9Azp7dxDb+wR+yJe/+SnPz1Ow2jiGzL9+8mv+p//uT5CO7vCLT3/NHU+jQKOQBARZYjWZ0MoMogKyQmS5TOmaDqVWYaQxL9YhuruN5Y24iG4AaO9t99naaiIWAUK8wn/9lNz3uX33Pj/5yV/htDSs/T56WVCsfZJahFJAFiu6Q49w5XMeBDfk7TRDFEREQQChxlY1FFlBkCR0U6YSVII8pyglatFjd2DiAN2qQmu1mPkRT4+veNBv0dQq1MUCtz/AMG00y2JyccX07Aqtktntdagqmay4QhTAVDQkwyUXFOZ+RPL8G6RsyW/+NUIOXxDWOaZYE8QB3f0ewiIkKXL8OEZMSshr6gJ0WcKSJRxFJplPMPQmn//jP5G3+mwf7mJ49+m4OmaWshhrXG4q5puMxfwp//w//y/IODQ++BBh9iF3vzVi+uZnN+aZpI13dA8xvUUezrFNAyVPuL68QtUt9gY6k2fPycuCKs8pipr1uGBZlqw2GW+vanrbLr377yGKIvPwhCpbIqkaMjdNqiaLzC7PqE2RviyCXKOIApYuoZgS/rKiECWiLKczOCJZLVldXBBHAdPpFF1SiZEQZueE5YbXlxeMHt5DcnY4nb/gk8++5OtXx1jNXdQ0x5FqPjjc43h8wcTf0JEcwtCn5/WoZBVFFVGFkuXJGwx3C6PpgaBSI2C2+7RGe3S0a/71lxdM5yvyUuC9gcfDgxH7A5O9LtSyyYeDP2OzWHP2+hJjM2UxW7DKK3bcLsOGS74JMCyd93pt7DrFNTRIUzxDI61VFlEGYg2CRFlBb2uIYxvYjo1UJ2TLKxaTAtu0WG18VpuIJI6xFIHV9TVi4uMYGik38MgizZFUk0ZvQL6akSvxjYI8q3hxdcnlYkMeh0w3PtdxjqDoaIKMruu8u/CJ4pyGgcLy+wAAIABJREFUpWNKFY5R4EYKxVdjduuQZLnAlnXKTUwYpTdab7VG12Q+ONjm+ekZhqViDIfoe4/ppA7Ru6+pSommIrBnamy127iDfRLdQZBEWlqFb5hEmwXi1THTWOJyp8Xju1vcffKIOEnYWq651S65Gl+zzEU2F2ek1yW2BmmS4To2jVSj19ZoDB2ETIHUJ4gqhFKi7Zq0+kOePXtNlWYIQIpIWQgYqkEWhFRVSV5BYRo82N7hNIrITRvFa6HKCtQVrtPAqHwUTaauKvqDEeV6Qy3YnK8nvL1coms1e2aBpWpsPfkWw/e+zfrdBKqaT99ckPtT0jDG0U3aukNbVljlNbosUucpSZ5TVSArFbIsYXs63z16gH9c83Ui8buzjFpOWYsOpXrAZfg5F2/e8XpVMRFFZumMQUvne9+/yze/+BmfnJ2xyGUkRScPEiy5QhJKFEXFbbZAdWhYNZbYQpOhTCQatk5NTVGWVIKIJAikSXxDhVcsilqgLgscTaZl6bTdNp7TRNd1xEihCEOiyYQ8jsiCDZP5mmC9YZWlaLbO7nYf05AwTRMJlaLQOZsGLKKCOJ9zMV2x1W3z3/zwCfninK+ul8zWCekqY13JRJqEJ2ksXl3y+emMl9cbFpnIppR4cb1EeCUwXot8/PB9bNeh199GaI7wypKvP/+clloyv/bx05CiCDDFGlEqCDIZs/C48sdMzj6hnl0wP/0af5GTFhqOadDZ3uHpdUB+fk6eN9gd9Bk2Km4NuggNkW1TxhJl1EpE0RR6vSbxdIGhCiz9jEWWUkQFe12DL49XmK2MwfsprnRzrbA97HE2P8cxTFq2y/jykjgIyLIMzzIxDQNWK2JN5vBoG60IkBXwg4LFJkItC/YchTtbTUzDovSamHKH66s11yevOFn4eLXMUbuBKssM8op1aZFOQ9KWQUs1Sfv7aAMd6e0ziquQpiLg6SqrvKIMFniCTKvTweg2MJo9ZlcThFKk5Rp8+OAOi0XIKkwYeTZpmLLePCMXYhTTohI1ZFmjaTZoaD5OcUoRHtH3muwMPNr9NmGdMBhs8+pdwOz6mNH2bTRdQ9ZkymhFxzHouwavjsds0oLdThNBViiKgixYU5cCdZZTZimOprKMEqIwIq9EdoYHDHttKsPl/HrF9RefY7seZZIjSxKL1RJdExlujXBMA6vUCIMIfX8fMV5hqhpbW236k5DIj7g/9PBDHVKJqzhALVNW0YJKVNgf/Zh7929jv/sd72/XtLZKfv3yClE6QFwteHv+DrdMSc/P8f7gHlmeEm1y+nt7eNtj2kuFg1abNNwglCVFFGC2GphmG1kzsBo6B4rLf/0H/yWBIrNpiBzcuceh1yDzx3QtC0s3KeuAq/WG2fiUPMuoy4Q0CG80rkWBTMnST+jt3MF1XbrGlIkqcpKU6JqKowrYqsCo47KqK968ekFdKgj+hmFDYrTlMXl3ThSGXC/XJGlGGEWkaQ51RZrl1HGIZCnIpofZ6TF/+ZSje/fQt+5jWB7tHR/DMRDeTDDXAs5yymmQUhch1/OY/+PNW7K8wFQkTFmklmv6tobt9kkkjzw+42hbB8UgR6CqE4ytLupWl7yIcQ8O2B90KPKUpiByNT2l9Axerzag2sRZSBotoVmBZCIqJtQSSVYwe/EFJjWuaWKYKlvlkn/3wwfYkoBaB7Rdk09eXRJWAkGcUlY1RVUDAn4BZ35Gt1OzDmJqXcAxdS79NbNlRLTYUIgykqPTsjXG5xfEoY8iVgT+FX/38/9IdjHkwYNbWN0RpXqLltfATwKakoMd5WgtFVESEWUFqRAplmtmq4SsqtHSBLcuEcgoqoTffvoV1msNr20hh99w+eZXbK5lDrY+4gf3PuA8Pubq/Iq9nYDAkEl1QFcQ7T7y+BzdVDHKnI92PJw6phJVZFVkM79CUDSm1xE//9kvOZssicIC1Wzy5PaAy29+xYtPn7LldTDn5yDE7Lfb9A73aPZ7N0BpQE1vWJS1JJNlOXWe0XJUWneGOEpBt+WgmQ5BmKBINYpQoakK0/UGf3lNt9fB1EKiIGc9XaLZCzTNZTUPIC1QBQnXNBB0nfnJGdFqwvz4BW8+aXGrPyIpKkpdA11FVGTeu/+QnYN9NArqNGY8XfB3/+mfOXnxgmpjsZ2N6DaPcA72SNQ1129XvJuds2Pq3DrYZWdwgDfc4a9/+vf4mksrg/7ONpQSpb8gnS9wDRMj8xGSDMUwmK4SLFViNl1TiyppnDM/m/DwyT3KtGR5fM7kbIKxdZf/8Jd/SenKHNy3ufi8RBFLitUMLJumBq4qopYlYl1jyQKGKlBIElmR0H/wGDp3CWr44z/5Md/87d/wi5/+ir/43iNG9x9y/sULhBIsWWW5DqkkCcf1uL68QBVAM3TisiTPUjJFpGfbaIpEWeSYqoxi2czHV2RRxSYziccpVSmhKhqW20YWZXS55mx8hmSbaLXBVkPjxDIxTBtpk3LPlHiXwiwuOdoe8N7H3+ef//afyasax7BotnpcXq6wOjJ1mXA1HrMKEyTVZNe0mBMzC2OkWiDdBBz2LB7t6Ow3Ega37mB4WyjWLlt3b/Pe9/97/uH/+iu6ssmOIKD/9K+Zbq6Znr6m9q+53XawDJVcLilElcVqjVTlGLJKd7BFmhdkYYDrNUgEDX9zhf/7KY9ta/+20ARRQRFFKqH6PSRyzZvpku/d3iWXoG2IfLDrEpy+QmwPaL/3hPa2SrZesw580DQSQUFrNbg/2LDT6dNvNQjGNy1jJcsUmxUD1wFZJEJkluQs84ra62FKFbK/QExXWLpMHs44clUu8gKEgqoosN0WhhjCekq5uEbf2wPZwLpeYmkvOVRFTKfNi1xiVWX0xIhk8hkXsk7bsTHbHaZxznc8BbmKmczm1GWKokjseSbXSUocJwxcBbdlIeky3mgHZZqjJjKKbrPX9UijiunMZ7jfwWlvE/krDg93efr1MzrtLlQi59MMd8vDcVxOUYlEG9s1EGuBdZrQPrxH++gW5eUJdQ2KpCBVJbYi0+10abbbqEWKa4noroUkiKSrgPG7dzjDfXYtmR/eu8v09Ay5zG+ucYYjvvrsM85endAY3qbbEnl9ccoiCikUmfZgwG7D4YNH95EUGXKfPMugSJgHBVVVoqoq29sdemnG+GrJrJQQ7T1k89sMH3/Elh1Rrhe8ef0NtlNy/8F9osvXHL8aYzYcRp7FB49v0SwidBEMVSOvE+pEY1H5ZGVOq9cilUXmccF4uiIta8I0QpREVFm5sX1UYGkKW4MdxpWHQImnuySFiqS2MJWUWx2PtNPgi8+/xNMUFAGapo4qCIh1hdZsUIgyy/GY5WSOgsQ0TAjCiLvNNpZukZcRXruD2e7hNmzicEFVQrepkYYrTNNh1GgRiSYlCc+nS46vE9ZhRstVud1vsZ4FjCwTva7Q8oLaT1ienvPotsNVVrK/00e5XDJ49G3ixQo9L2m4FZPZkrPEZbZaItRLLt5+TbF/wMvfJpy9umTU6SEToKsqYrfLOo9QDIvl4przxRJD03F1MGSZhmGhlRUNRaAGNnGKkINmtOjuP6TfG/Lls5cIjR3WV78hDiMkSWC7Y9NydYSipPAD5LZNUVWounKzg8xjTE3GXyyxJBlJUcizGF1VOLj3gPl8ytev3/G+1aQ0RU4n1/S3GnTcJufriKtFQdtUebJ3G/X3Tep2/4h7Ow6jhsTXszlpHFBnCYpQkqoGNRkiIq3RCKFK0AyNtPIQBJW6SOiZJQ3T4s9/cJ/x63dUmovrejQdl+HekHaziaTYGF6fYLpmWxZ5+sUMqax5Mw/xopj7wx7DQ5teyyMVRNQiYnI9JUgLJEmlEhV0MSOMQ4q8QFd1fD+mM9ApixRZEZF1i+nFczqdNnVZUGUpR02D94YN6roknF7R2j5kEicEcXJjM3BtJKEiKxI0TWcZ+Hz59pisqNnveEiiR2O25LasIesmYVxSe30kVSFYzjm61aNjZGwurricZ1z8/O/xixhDM3B0k2BxxWqTUhQFO47NsN8E3WO8XBEnOXUSYNgK3cMeF69TpCTj1qBFFSV0um0qzyG6XuKVMufLMUkh8ubkHGe2oXn7PTpdA62OqYUUWYgR1QS3adHWeszChFcXc3796+fIEjx67xbDVhOLJYZtInKjWJV0j1K6gQ/LQYxkmFzo6k2jqipMElCtFpqiUSQpEiJ7R/fI10seHo2QpzMCVccqUoo0hLpCM9s4soaqGCAJ1GWGalhUapfZ5e8YegoPj7p0d2x6d/apmoe0JI0Fz/jlL/6BOA8ZWBotTUaSVBxJpVY1tNrkScshXU84XfvkUYxjypjajc5ZVzVKXadly4waFpOg4LLICa/OEPKKrAhJ0rf8w//2Jbpc8uTf/SlG16HVt+lNDJJ5zovpAlPXCCXQpIpemtHRNBRNQRJtkFOKNKHWFEpTw1ZlyqpGRGAdpxh6ShKF1BUolouuicRhSKfZQjdMVMNAEmrUqiQrRfoPP6QYj/nmd5/wfBawWq2py5zdpk2n20WSa0RdJSlELq4jxKpm0GsxCUHQFP74D39Mr+1QyBJJVpK9Puezccw9L2fXGvDgyQE7joBcJsyXMZFkoeotkCq+//F3eXLQp97EzE9ekSoOzUYDT8wxZRGj36XIcr54o+KHAkVZsskKiiBDnCWIcsDZ2ZTx2294/eoCISh4fHDI3SdPWFQuW4bD4w9vo4ox4eQdhmrRb7jonkDbNFCrHME0EBQd08jYtU3W1zOCvCYtJVqCTrM3QJ2k5Ahs/Jx91URLTIhFdGt9o061XaLxjJYssNAd+m6HplLiiDWXb1/SMwUK0USWRO5ud/j3P3rIZrFGcz12R0MEVacymzSUCu/0hB1HQ1Du8J2dPmKwpK4rloVAXilEfkS0XJJUJV3XQSOkFCHVVTQqBo5FMPNp2RqOZnK8zGhOrjCdFlJekIYS7Z1dnjy8xeuTK2Z+RtNSqGyd+fkaQ1cwNRvTNNFkHVNTsGWVYVvk4EDBa7p4lorp1RhiTtuw6e885hc/W1CUJX5So6gWjXJOr2ESdDyW0yV7nkUlS5iGRpzmnF9NaNgWqqZS5zKipmBnFUleoaPQbvS5+/AjhN6A5S9/zuuXX/F2comoKPhpgSSKBH7AerEgjWJqVUQVJYSswtAchHbJxcWU+SZh13Ox2/cw7j3GCBXiZz9l35xSJCqypDFo2Yy2trGzjPa2j9OZc6uMeHN+zqT3jtnLFwwVgSJOkAQVQytI4pIKCcds0LI93tsfcHyc0bAttFqBvMCqYtLrdxiegdm+y/0//DGres3xxS+Qz39GPt2jKes0OttYto4kRhiuR6fTJFlfMzs5Z7EK6ZoShlyz3oQ0t7ZothooQoEQrSiThOHODnf7OxjJErPOkHtd5pMFwXTMby/G7Hsmd77ziPliyuTinKvZnNnah7rC1FSqGopKxpBEWlKNHK4oahDsBp3RAUZnG7F/h2AxpfYjhnu3+VH3kOtlwXo+5s3FCVdti3ezgnkoYIoZu5ZGS8lRFI3djsNOd5dnl2to2hxuuVToVEGBEAQIbo5gmhTLBSkbGru7JIsFSDq7QYG9CtFMi+frjLXocRWt+H/fXnPHh9a8Zm8aob+Ysbe7RUuYULopbbmNsFnjJeHvjXHQdS2alsbl2TWOqlB7LnIQUQkiqiggyzJBktFruviiRFEU2LpOmtes05h2u4m/2nD66hnX57+faHgOZRRQFBnXSch9Qjw9QWvrzKYateNiVhW2KKAIIkIJKApVUaNVNV2vw85Dj+TqGEvI8K9OqBo2J6+eM52N2d3z+OZf/oaqEgmWIqfPYuZ1Qk81eL2YUdRT3pUZylBAEATyDLTOCFX6ElWGfttDqEvS9ZSlo9LZafNydsWzZczKX5LlEUgSRenz1T/9RyJVYDFd0b37AV6VcvfeHaztPlavi6IbSFSUZY4klOQl5GWFoUiEVFRZgqtKuF4Dxb0pdwcdnWQ1Ia/A8Lq8/vSXZJLEndu76NqGLDhFKwWmxxd0h7sYmoWi68SrGMPxqGUJUxLQFZlwdkF09gxx0CWVS5LAJ6ldZEVjtLODomlkoY8/rSgCn0e3RrAYYdc5g9YObTVk+fxnJEWEnofImyW1pHCaWWj2Di1xiWXrKBR0HQ21e0i8XiPKG8ogxrTb7A06VElMXEqEpUThDhHymGyjMZDaHL3/CPQtsvkUyffZ2R3xxZs3nH31M1bpGnHU53sPHiOnc5qqjFUVWKpIlUa4ioBhani2hu44nIYFWmNIVmn841/9Fe7dR/zJX/wF//5/+B/5WZJTIjD86MccJQLHn3/JcrZg7QfojkeZJkiSRFGWFFVNISjoboMiWiMIArstD0MS0HUD12sQZCXx7JTFV7+l2R7Q0k3isiKIY5I8J48lGsYW51XF6+OnXPsXTNdzstDHEMARKjxJ4LoWKO0hVmPAw4MOqX9Jr9dgWYik8Qantqjkm/jB1WW2myJX8xmGXNEyRCxVomVKbI9cbt3eotVvMksSui2V88mcttimP9zlo+9/n+e//Ya2bSDICqok4UgSjigiiyKKZtNWJNZxgiTVCJJCrTj4qYiUZ0iKhKVKbMKcOo7ZcQzyGlrDwb8tNBFlmTiJMRUJ23HouAG2IdI8OMAWC4aHLarxK66evmPdWnH4re+g1gr2cJsn33mC8fqcF+cRoiTT73XZriVUChTLZjKZ4QcRh7LA+vQ143nGF3OfcVaw3Wzw6MMPMPQNyfFbMrPB1mjI+umSleAwWV8wsmS2PANTqykXK/pbHUylpl5NaW7voz66zXffPeWbiwKpscuOUnB6cYpUleiywKhlMXQ9Wv1D0uYO5eVL5PDi5srEUNiUAsOtHrdVnevlgpev3rC92+X86pL+cIfdO9vUsyWWCqblEacFlp1it4fsHN1iPZ8xG49pOCaL2ZxWu89yOUFII2Q6WLpHlKrIqsc6X9LvP2C7tYuNyFqoyZMItSqR8wKyAlVSkMsCvS6xvSaqplImMcXkHZal4z7+A6R5QEs1mLe7TC5nFFmNrklsNjUtqWIx/YJNbvBnH+0zD/bZazeI5yFHR7fxbn8b16yJz1+i6TKyAFmaUlQVoiSTRCHL+Zz9ewes1CaT11Ok9BIvP+Xsrc+3P3zE3bt3mP3L36MUItvvf8zy9CWqWWF5Bve/9RHC+gqiAFnTECqVIpaJ0hxZuXkM5VqgZ6kM+h3OJgvysqTMUlIxZdDpEM0XlNR4igL9PVRbw1FlHLvNyemM7h2LcL0mDGM6mkL/6JCtdpOGXGBWBabtopk2RZYT+gGrMMWoJYbdNqP9A7p+zpenx1wvr/DElLaaoUkJ11XC/Vt36HQ6eI6MplbkwZpCSHhxMmbhR1i6QFEZ7HQtDodNruKUniZhIuHZDs3hFis/IYkEPLVEqiqQdNZBiWlYPLz9Hovza2CAIOq4kwusSuDb2yN2my0qGbz9h+zs7GC0e7iuTVhXrCdj/PWGd29P6DYa6IaJ7/tsWRZFnOBYGvd7HpVp89nxGEXRaHa3cQ2Ny7MrfCyy/SHq/HP8+Qw/iulpGU++u0+z1+X6fEY4W6KLINQ1pmkgVAKmZtzsqxUVqBFkBaM/IikK3v/wY4Y7h6zWKfFmQ7/TQtF0Fi/fMlv5XF74PLr1CNW+xp8tKZoWg4FN3fDwRvs8iS54/tWXFHlCGQfotosoqKhyhePY5ElAfPIK2e2iOF3y5ZoyTTldzhFqg63DA7YdA0eTmc1y5qfXSEFJd3SXTRYRrQXSecytrW12HR3hq68JQ59OU+PBwT7tbgNBqFhMrqjSFKKEWhaRFJU0jtBEgVHDxBQzxqdv6R/dYzKesNVr3KjeNAVDFDhoOPzgaJeHuz0MKeO3X3zD+OIS02nS8mzWqzWVUGOR34CfZZFNGCBEPoNmA0UC1XJRrCaqvaaMQpI4Yvvh+wy/9X1arkBx/Qar36SuRU6fvuD4Ny/51eu3CHmOp/p4hoaW+4RhTF9TSYoKvTGgMTrgdpwwuXzF5HiCpH5CpeikuUYYSext73B+esE8KVmcXzKZTREoWGQlpWBxtfZRojPEywvaygzrW7dQQ588SwhLKCuI1nMcW8esYqaLiOlmQ6/f5l53iFgLpHGO7IgYbovS7iFnJbYZkZcVmzRFzRIUSUQ1beqqArOBiEhdVKgIWEWOIkmUecWT7/6AdyfHNNUamYLFYkOtyezs6IiiREWJKIJtWPiLDT/48AhL3EISa4zuNo1mF6k/pLpcYP5/nL1XlyXrYZ73VH2V486xc8/0pDMnAMQBAZISJZGytGxr+cq+8X/znb2cLuQb25RkiAZokAgEcIA5YWJP595578rZF41fwP9Qq76v3nrf5xnq/PMfnnHWrfjDqzdczrdsK5n9s09JhcZRvqYVzGgPOuztH/GT37/ipGcjNwpSGBJ/3BJeX1OXOw5aFWGW49QFXVdB6XTY6W2+vVyi1jvqouJXlyHZT77CDiQOjj5BEivSekdeRUTJjm1Ss4pSpk2JY2uYtU6abyhqlUbIFEJw1vOYpRK7rMAyDIRhUeZ/BJ3rKrXs4zsWitVFEwoCGblqELpJ50//NbfLHa/+8Vv+4bt3fHN3T1aU+Krgmelge23UMkGuM9bLBVbbZjI8ZRWsEXXCk2dPOXv5KWoUYQ+nHJ+c0jp5hfeb9/zDqxkf//efEb27wGfHfLlDbkoejXv8y7/+VwwmA05OH6NkDTe/+C223cE02ujbDXGyQS1Tul2PYfcx17fn/ObdbwnzEt2xCIoSc5vTsXRurwu+Ow9Iq5p/871j/uIv/pKidco//O1rvvfiJfv9PgYRoZTy8eINSZZg6zLbMEamptMbkQgVEa0erDVI7Ns6rxc7ojCm4/scPzsiqVJkRYFMol4prJdrTM/EtFsIGrrtLkkc8uUnj3F6I7bnv+fm9gO71ZZwG1K2fahSur0evcGAIn6Y5jqmiSortDyXcLmkY6nELRuzsDh98oTw6pzbi3vKvRdM9kcUd5ckyzuKdEeZ3rC9WyAnIWWpktYl1wkousO41WMyeQq2zfbiI22/QxFX9CfPUGSZ8XifT0/3+PrDLbLpIisW7u6COgFFlui4Jn6rDbIOdU1hq+x2H5ArHa1woDBRPB3F9PFthU9fPmK52uL3WmRpgmlbWLnKpSJotzxG7RZBBY7jstgFhGlKWWQcjEfIioTtuSRFQ5rlUCsMJnt0T17wzWzO3mdf4J8e8X/9+/+J+d0FNQqa+qC7leqKPA7QPRuyAIkGtTMiFCp/+PgzXn7xJU2s4Esq9uEJRWVT3fySIndR5ZJKlumlbxDv1xiaz+Z4n+j2mmLVcPfhI5L5MzxPYzVf41sjSDIsv4Xs+LxfbVHrCstyODmYMru7xTVNHOthIqc3MpJRUFy9Q0orhK1x3Ido8wGlrph+9pxhq4Xb8amzjEY4SF2JfLalVhSubxeEcUadNQw9i/HQ4tF+n07boYozmqxg5Dvohg9Wh2J9T5QH9KYHFLcbaGrIUtqmR62ovL285GY+p2okbNej22pRJxGuB5vtjoml4poqUpGSr+eo9pd4qkaTpxh6gT5oU7R0stmclpRhiobUFkyOjri/mjG52OKJc4o0YuIILK0idy2cjoOrKuwnDZ2ui2/pNHlDvYmR0wa5lhGyhtUesL2+xuv1yKMcXbPYH0qM+3BQKUy3MefLe767yZEVj47joNcNrsjoWltEKUiaDJEI7DhGtz1297doqkC1dGwLDgYt3l3P2cQpQlawNIV1lCApAlkXGIqMYWm4js/Hi0vCJEMI2Os57B1OCaOUeH5PuA34/OVLNAmuv/2WXm/A5OwE1XOQNINe28BteTS7NUZTYjQ5ctkgfA9hORi2yf7JMZ3+iK9/+0t6dRdDUyjDJel6zsQxWFym/OOv7xBljVaUSEgYhUl0uyQtlwjHYJZvWW2ueXF6Sp0L0iRCMnzsVpdst8A0LVxLw9Q10mBO92TKs35A/XHOtSUR7EqiIkeSS6Kbc/yDIU+O+hzs+7RbLTS/j9FroasqqiIh5VAmMXJdUUUPwVsmBJrUsFquicnI4pg4zlBVlX7XQ2kKkDTmqw1lI8hrmeU2oW7A7feYZzOCbUAWv6UzniCVYAK1JFNLErqQaRkquzhjs5pz+91XfG88wlYqfFejbvmoxRJdV1Crkt3FOza7FU/UkIvditI8YH0HUjKnybY02Y60KkgLQewNWbaGnKQzou0df/7kENvVsPbOqGqowpgsS4iqhsrWsU2TvbbN/SZiU1YoRcFyuWMtJDbnt8x2r/jvHv/3BKsVSDKLYM7Pf/YfibY5TQWziyvOzo5xVJMyWGOkAY3x0MQ5GLTp9HxG4zHfzgPubu6xJwfcbpcEixuiQuIPf/OfefT9E86Oe+w8m9u0wdIUWo7N1e09mixzOOixjEKEUBCyQt0UpHGAlIQP1j3dRMgSivTwI7vrujRVTTmfs1tsKeWQo/0B7mCCVu64+MMrcttht9vx+u6SD2++olif88wUyIca6yjh1XZOUDSMhyNcy8axDaqmpt/voPRHSFGAImfUZYKwXCxXpyXXPDItyjJhHRS05YbHvoJsGrR6bWzHxHFMukfPub654X674adffcV//df/7QM3bjGDq4D1zQds00TVFbq2Sctroymg6zZR2RDFCaqoKauSIg3peCa2JuEYJs39PXumjN8dcLNJ0Gz7nxaatLoDojTGMB1sx+Hx0QjbUNFNwdHBPl7LpbHP6AyfEC0XSLKC4Rs4iU8ctjk4BL9dks6W+LYFZYNi6Gwvt9SNwO+OeT+bk0ch66zghyd/Qp5tSNN7nrgZ+wdtNu4xW9FlcXfFwFNQVJs00+l6JtNxj2x5jSOXGLaNOxzSyIL8+j1sNzx+8ZRV8Jael9LttBmKA3a7FR3TZNDy6Q6GWG3tEsGjAAAgAElEQVQPYctkziOiK2i3PFJZwilqHk8mNLLOo9OnHA7bRI7Gx7sVt/e/RH62wFWgVdbURpvx033K5dfIUkWr08W2LYLVPTfv3+P5Dt3RiPdfX1GlEYal0ep0yALB3f01ZZ4zMBz2jDHZ+g7XMHAMgzSPkVQV3XHQZRBZjtPx0AwdybSp6hprMKEn7XCqEt0zEeYx/eEhR5uA9TYmfvUHno5NPt7bFJdL5HCFosg86h9gBzuSMOLp2WOKYI3u+WDrtEdTijTDDLeUdf1g76gqRofHpJrDoOmS/uY7suia89/nlJKJ9OKIvf0J0x/9mHR1ztg/Qv3iT1HNklKWcNouWscmOn+NYlo0dUktSSyjBPuPOzhDkanihK6lE3o2dV2TpCmOaeI2Erau0TQNq/s7KiOlqky0UY9wl5LtFtw4KR3XpYojZNMg3G2wDR1LKDiqjGrbCL+L3Bnh9gecHsecDAfYB8+4K3yyd9/wKJijZAZRlrO6vSG6kTncmzBxbTxD0EQrovsl57MdWQNCwPPjFnJtcLVNcGUJT7dJTZ2OZTDbZRzqHnIBrVaLKM54czkn/3COVAs+GbSocEi3Atc0Ka/XpKGNPz3h0OvwuN9l1G2RVSnW4fdoD8fIikQeRQ8JchKy2SwYt32yNCFXVOqqYmgbzG9z5LSgncV88aefIwyfr1+/I1rc8yapibRDikc/ppjf03Ut1LJFtGk4GblIRUy43rB/dMLF7hVJEiLJoBo6IqsegJ6WgekPqSUVdBuSirYmGJ59gtbZ4c7vUMoSGYVksyELt9TC5cX+IWbWIMU5ShoRhGvuViV675T7uwVXyxWPBi1WdxuOT1V0VaZOMnIastWOIkup5AJN97A1A/IFhuUSZ1tOJm3SKOX8wwe8ImMyHOEUa6TIZHF+g9ZR0VI4apuURca8lHnx8nt8dz/DkCr6gz5ESyRVYOoGtudzt91h+W3qGt6tNpwMXF6MuvR9i+tU4quvfsF0r08hhmRZzHjYQc0KDjs+33v+hPGww9WHb1gv13yYhaiGycsvPmfQa5HGMVWVI2kqhu0RBQ8faLNtwCZIEI2GnG3ZLJaYZfpgN5AK1LsPdBWXrMnwu1NCycXs5wz6AXlmMLv6wG0c8XY1QyHFV02i4sHioso6o+kJi8WW+fwKIYFOgT0+5IkkUCyP6zeviUqVb2Y5kiOT1hXrJEaRBI5r0tN03p5/S9eUMXanfPuL11S7BXarjX/6jOsPf6DY3HHyeMqTvS5/+eULfvHqLSJP0FSVqpHouiae51BrPqvGoEhWyEJQ5gXL2RozS/HaXQqrjW2q2JqO2shUCBQhM7TdB4ZVDewWmFKN15uShFu2d+ck6Tlngx8hKTKGbSNJKZZn4XoamtGlSUKaLGN+tWQRv0L9EOE5JkkY4WYpaVWyb8hEmkJHGDw6PcJzR1z//P9GLQpOj/aQ+hOCzYqe66ApOtVyRhbOidZrmrTCEhKuDMuyINisOB34fDG1mHo9Pt4o5FJKp16RnV9zMDrFqmqcpuCL/TZhoZGVFoYKhuOz3oa0hjFue0AdWAhZ/LHxlDPodDiWPL579wF3OEGTa+L5DMvQyKqGar3G8D1sx8UwTao0JkfGHpyQyS6Xb36DGUZ8eXBEHu643UVYsoxrauiGQjLLkag46I3IqxypTlkv57x7/ZZPf/Bj2sMx+e0d2/kdhmtw+sP/gv7gO/bM3/Effv+e//FnX9O2Zeq64jovaYVLpq2aw3EHLQuJdwpNVOJ6Bpg2CibFeoltmwwOj4jv3vOj52fc72ZIFHzclWySFavtNbOw4J+pn/BfffklIyfleDpGjD7h739zyWePnnCyP0LebNkltxTpAk+XeDYd4eoZWpmiyAqpZ5GrOpackNzMMBHs+Q5BnHLUFvgdiePOEWlT4ns2RRIgjIj9Tzus5xsMXUWRJaoK/PExupCYX15Sy4IgTjFMg22QgCxTNhK6aaHrGrVhYHgVlqFhWBp3r16R3C9wTJ/BcIyyrXA9H3s8xdVsEreH5A2hkihMk93qhiLb4Cg17+9S7qIUSxFkhUK/5TDs96hs54/NK4fl7R2to5foUkkZJVAKxn6blbPjYr1D9xVMAVnd0FQ5VRpTFyZm22GtGthSgGpbyAZsVQfD9ciqkGixwPUdHh1MHkDiUoNm6lTakFZ/n176HYpuEa3XOKZNoais1iFJURHFGbY2ZzIeo9suTi5TZDmNbKJ7HrlU0zo+4OX3HrFNF8y1D/zN//DviVcJZVEjhIxEgyZkZGGAHNDoEo3jsL6+4QefHqGqPpraY/2738A3/wnhHzMZ9DGaJR2jIaLBrAKi+wWabxP9/gPFJiLdSYwNgS4nLOcBZSTjGx5yEROsFdTeANtyuLx+RxZuGHg2ve4QOcnxLQ/bsKmKnCKPyfKEJF2TZwnO6ZTT9hmH+13aR4/QpZwyXyFUF103acoCQxNsipT5akeQlBSKzGTisX84oWOpKJZHIdvo2kc2y2vMjsn0zCaohyyuMtxuG9Px0FcBhtEwHozZ++LP0aOEnfoKxbikMU20uiRczdlsd7R1wVnfx1BqqlKgSzJVsIM0Qvdc5KpGNnzqIkOxTZLVLWUqUBsTsauZWh7+vsLEUskVmb5bIckVtS5IhUZ+/4FWR+L0cIClgpZmSElGFSTUWYVcNAjNxNZ0LEtH0y0cRUUyFCqh0/c7PFFVwnBMlD8jTwrq0qPX6SIpKR0zpdPvYngeZZYjZyl5U1D3RoSzG4QiMJA42Rvzt1+9w1Ekmqag7VjYmoplGrw8O6EKt1BBXgt8z0ERMBp0ePxkhNsZ06Qh568j9vcm7O8fEKxWTMb7PP2TP+f5p8/p6TXldoMi6fTaLtlCxykKlKZC1nUU20Y1dSaPHrH/2ecYfhv/cEwWZlhljZ8HCM+n/2OfP522+c1X3/HTeMci2aG1u0h6w+s4Z9/r8Gi4R505dCUDa6eDxQO7SlbpHTzh4++W6KoMQmC4NprWohAGam3w+HEXIWyOPl6xDlM0y+V47HCyN2Q6HGG2JqC6mFYXwzTRBEhN9WD4REavwJAFlA8Nk7huSIrmQfKhVDh2jueZyEKhSRte/+4bEs1lMhxwvVrxhzfvkauaod9Gd1zKdUQUBNitFElWEbWMpMrIloZlaWh1C0VJ2QVbqu2c87//f7CagtE/+yu8rkt0XaBWYFkWRmHTpGuSKsATEAW3fHnwA3z/CKkISPMdP//1b+nYYGsl9d3vyGufg9NHJKGF6dsoskGxWEAFaa4QZgmaEqPKMpZtc2CYWFFGnEV0RwPmixt2N2/J44CLX/4Ez2/xYQ5ffbxjdvWWOGtoGplMhnj9NXIQowsNhERgmoxGQzpmieEYBLrH9uOCYL2kVA2c7hBbk2mSG65+85/4NnnNy8cHrBWdq+++YjW7p9fvUyQxmu3S7nbJy+oB0qw8GKgUWaKsapqqQtc1hoM2RZLit3ykpsTTFE7PHvM6ecW47dKfDNG6HV6/e8/Pz1/R81pMRgN+8OSYHz/7a9htaMqY1d2Cn/7y/2OvZ7KSTKow4Wxk8Ie//xmL5Ryn36MuE3brOVVdocYpIi8xdBMliui1DGy/gyTV7FZb5EYltyf0rSnNTcimusOXBR/+8Vf83e+uyHCYHZ5S3UfMXv2Ud3cfScucdm9IluxoaxX9Xoc4SdBUBZqasiywdQ0hQct5OBM93UCRVZQ8oW8LHj3e5yCDv3118U8LTYajETdvvubizZzuYIQUa+hyQ8tqsDyLKpcwtB7Xr77CGQ+RgSreIISEZVuIgaAuVgRVBZ6LnibYOnz/+TGPSosai8X5e6LVAlcv8Noa84WK0z3Gb1WENzdQQZluGKsuWbpjoDWkvQ77ky5NtML2DbrDIXarDaqJ2Wph2DpSsSNJBGfHQ7aze0ylxYv9MedXJXKZk8cB6dbAsG1MS6AYJs3BIVdvXvPtb3/N94/3yOcm/sljRL/Ps7N9Zjfv+NV//iUpEj9985bPXuyjtR0sw8S2oJb6KLZMuF5iuy6GJtBNjXZvjyzOuJ1f0S4yGlUgD3ysngFphpVW2LVPNSuxD1128R2HB1OWdxIt33k4qOIEq9sjTzOaPEPNcyhyvCfPGbw0qAqdcluitRwayaDup/TCgDAIsZqc3pOnbHyfaHXJ/sERiuqxvJkRyhWT3ph+12GzOKffbaPpKkJRqaoG4pisKVHMFrJpoBsOo0Tj7PSUOIhx2hMm0ymfHfWYeAK3dch25aA69oNZ5/gA5m+p4hi5ZaH6HYo8AQEZDXlVYNs+ZZZTFDmqJFElKWpdY6oKmmTSMy1GhkXH87m4veLjcsWwFeJYRwysI5aLX9PkMf/wq/f86z/7Hi1V5u3VnF2ckfoBzuGAerdEMyeI/hTVtjk83kfvupBXqOMJVTNAXlwRi4aLEqIwJZMaJpMB046JSEKiLCDPE3RVwvPaoORMNYk4SwlihTg12GvbmKZJ3nawhMp0MgHboUxSaBq6/S7zIKWKE0rFIYsCpvs9mvGYzWLNmVTQNQ55d33HJtlyvcvZvZphaw1POj+EukKpFbIwZnn+lni1ot95UJDuqhxFBkV+YKl0dZPvHz5nv0p42m/h7z0mXQYoXpf905fcVgd89fYjdrVjdNDioK9y8z5Hk6GUZJ6+eESd6liyxXo9Qx0pSA3IioqMwFAkaBoUTSPbLqlnM2zDptR7eD0bS8qo4i2iFmCM0FKDuJLQwhnLVQLRGtNSGe29YHDgkusFUyPDLyS2t1tsqcJzBJ4mcBuJ8ahH1cikjUUSNxh5jmkZuIZCWGi4J88pdw98IePJU2bfvCFc7zh+8QVCaxNvAqLXPyFLcubBjgqJyjTp+VN6Z1O6XRvHs0HO2c3ukDQDW1cREjiOQ13UD9pvTbC5vqUKfPY+/ZyL5WvWFx/xRclwOkCTFObffEDRBLuLc7rZhuL+js02Js4K3lzc8uTxMUd7I169ueBqtuI5gqIswfQx2n0muw1pmjGfzRCyxs3tPZ8f9BmOBoz3Ovh9G12TCSTB6ne/5WIRsLy7pV+VjKcDZuQs7u9YiIbroOQu2CLZLolksF1vqcMAxzBRNJO8kEi2a8w4pDfdZ3tzh0PFo8+/YPG7tyzurjj0LFz1IcRcrD/S9mz+y5d7fH404dPPvkDSRlR3FyhSRp6mTHoeTl/B6jg0ms6fPdPZLm446LuoErT6I3q9FnUDRZFiOS2qyieLtqRZyeXFLfJqw7DTo+wOuZzXNFWJECpZVTLwfb7/4hl3Hz5SmyZX79+BBP7T5yzXEfebhCrOub/dMDnZQ7dd5HKHGPUR8sMhqvT7UKa4XZ9otkKqLygjGTlM0fMMU9U4nk5RxJpSklDW1zjmgK6qovbGON091nXFUc/CqWXajoAypYpyqkIirxRc22TPyajLlHVREm4TgutbPDx+dPKYwUQj2G2wrfbDu6IsGA0NZNMiCrakcUwUJZR2H2fQpZZqVE3FNE0kXSOJUwo5RskLuppGt9Vi5GiIpuLONGkaaOKIwtDIsgyh21RIZHGCYrTQMJl/+zWb87d88Wd/yfr+ho5e8vqbN+zyHLOpKOMMjQZXcxBVRbQI0PUutq5iWxoHpweYpozZEXSnLzAmZ2yTjDCAx59LyFLBL75+x6/vt9wmOUkNn1sF2zfvOb+7RtVcVGNEvrpCHzxF9SxoTNKLlO7+AXIZooqag8dT/lz+kp///g98fzDi28uPpPGGZ4Muz/smB3uPcPSCi0Tw5j/8jqHb59mhT7q955evf4skRfQMwcCW+fTRIxbzCzR3TC2pyKqEvd1C0ZDXAk1Ssds+Zy2bHz6d0CgGfVmmsNp4A5/Z5T03mw9MW0+xTQuQqLKEjq6SNgbHT0743LX56d/9BFPXcVyHuixZrgMsO2O659EgoWkKqmUDDYpoaHsO3XaH+Tpju1wwUSqEVKB7PpLZpb1/RrCJiYoGxXJoq33ef3fPRSZxVVYEVcFBt8Unjx+jqRVxGhPdzHj55ADDMhGahmm7NCVkmy3rq1uiMMe3LNphwO3dNbok0e73sUwFwzWxTJNttGZiO7QEGJqM6HoURoswijH0jG63hWG6CFHTc2xuopy5ZGDbOsswxNQVwnhL19bZSA+Nt7p5sGEtFxFxUVGmKYrl4DgOWRySSyaarlNUKU+fv2Tab+GngsPDF7T3v6Kq5sSbLc0f76uGYVJXYGsmVDlNU6CmGz59+Yj46o718jXjPQVdrRDqPYZsoYpTovkNSrTDFyqmXdLVVMRWodYc2kMVoxSEjUmynjGwfSxJpc4q3JEDVk073YAquFQkikKh3+/x5tVbTGWJ1pXpDnro7h5oGhoFmm5j7Z8gFBU1viXdXlDIDarXwvQsyjxDLyRMySKNH8w0RVFjOhbj/UN6jkZTFshGC7WU8bwO426Xv/8wo9Df0lIKvMEI3fWQavCcFoqcoKkt/O4x3hRury6oBn2KqiCPC5ZpTpxmnO0NGTga2XaDqqr4lgXrOZrrITcKQjHIk5SmrFFNnc7ZC+pGoyoUOklMtV1SlRkHyjEUOeV2Q51vuF0uqIoVjVTz4vkRhg5CBrlcUdcaRa08sMKagjqvQRJoVYE3GqMFCe1nB+yCmDSt0eoCt9/DsGzQLGRFQUaGKsPUawzbQRgexeaeJo9B0ag7HfLdmqbIISsYtIf0HJv1asPYNel2bIzuEFnTGLZcXi/vyXWd7WpHGBdsw4zxWOfo9BmGCsE8YdL3STGZ9H225NCa8uyHf8302T7p+WviuzV6BV6rxbrbhfUK9IcASNYEumXg97torRaaaTLotAiXKwxNQyoLyigjjWK0WcCbNEP393H1HbpIGDsph70+bbtPrepkZUGVS+iVjNxUaIaBabkM+lPmmo0sVGoJ4rLBbPsIWSWRbMLLK6b7x8SlTfz+nr2+z9lnJ+xPO1iaTNYYGPYIU3+YMaooIFQqKX+4+wkNpZHRJInadri+vCQKEzqegTBtZKE8NF4Ov8/d717xd3+44ouTPaYvDqgNg9/8v78gi2IW3YjD3pj+sE+yCYm3W1RNIwhC/J6HpWqMfIdcVTAQ3K42BHHIpCr5/a//nmUa8ckPfkThmNSGjvA93LaPe/qY4bMvOPvhv6WezXAsm7JIaTIdrVBRlAqrinDykuPRgIPTQ/LqARaqlwIpjEhWM/TpI8p8hufoyIaC4zoEwQ7TMfGMnHKzBV2mt7dPkKyxWhbp9TlDZUJPsemKjIElWNQlquIyMi2KzGQyHPJo2qUllkjrOVpHJcIAv8fbmxVpuIMyJduu8HyXf/XPfkj07lus+Tm9F0N0W6OOdvRcF9n1qKOCjmtj94eYpk3h2tyv1mhCJZOyh3lTXSBJEKY5upDodz1UucHUVDRJoBguj89eIi3v0SWJT/7kT/jkR3/O7fl7qt2Oo9MnNL09TMuluntDcfGabVSyb1gcP33Bf3xzy2BssgtvubuY0x0MMXQTwxQ4asUyrYjzgn7bZ7taojQyUhVyOHW4S+YoiswibJi0Ve7ucioV1ncR4T/+itX9R+JFhGY0/Op/+18x8hw92XITr6lVja4BghrftdA0A0WGCpm8zKnqirKqEBJoioSMgq4ZJEFIEQZ02zJNtKGMZaJd+E8LTRRqTAXCPCGPAvamB6h1Qq/rotl9tu+WFHJJfv8LjKf/BmjIlh9pJAedEjQNy2vTHtUoloe7vsFoUgzPxx8+JVpF7O9NoU7IV3fkZc3ok6cIU1A3Efr9R96//khFjfBkNFVg+F1G6oZivaDlCCynTbFcQ6uPopmomolkGqAZlNq3pGVDGiasbha0PcHRaIqoIlzLQHdsKimlmG1QXBfb0BmNbTrFBFUGza4RIqYsS1oHT9C6bX78bxNoT/j2//xfqGmopAZDqxFNjpALRD4juY0J71y0JuXFZ8/J9T6//OnPSdIINzFQspjOoEvwdsUXL/8lxfgGkRW0uhbrYM7s5pzTgY9Jn+1qTVkXyC0HkGjqhvDunr5sYAgVpZDQOl2axiALZphVRZUGFIaFNBzjeDn67Q27+RxVURm8+AFKv8PiwwXrtMQ5OUZt96lV2M7mtI0a4ZjopkO0aVCbhqoqyWuo1Qqdmmm3y7/4/AeoqkLb9Wl3PYRuopYlhqZgHU4pywC5qWnmSyy/jZRJFGmBcH3yRYKua2TFH60OSNwutqRRyqDbIpRUYjUlzmaYioStqpiGwf1uywaJXAjkLKKqI1pCI2gs4qxAyDoXtzv2LI2zo33iOEGlJA1CLEkmW68ReYzRaSN6ffROm2oXEr5/i6yl+E1InZV4toduqNRSg6+CFkcoWo1umfj9Id1xi0HTkG4vSPMMSxP4noWqJHhKxevLeyy5YDDsYdsupaqjOw7CMNBqGPc8bjYF056H1NQopk1cqLi6SXfcZW/U4+mTU+IkJgpCgstz4t2G7dUHlDzB8yyqNMM0VPq9FkKqkABD0xAN6ELCEgpfDLt89vhTJv0x9lTn+X6ff7cIWBUuw6cveH8d8ft/fIvpCLq+gatUpHcKy9mOz/6kxf6jz1i/W6JVFk2uP0BLZYGgQVZUmuLhPZGHW8r5AjVN0XUPNUiwpIjA1qgsj3p7S8tWEbbLUFeoCp2mzqEYkMVQC4Fl1CRJTls2aGsjYq9mk9VIuolimji6ju3YNIqBkkIyvyNTBVKrR7vVIsnvKbKQupHZzJZ4ns/0yTOMvEBWVHS1wpr4uB2XdJfgrGYUQkeyXHRVpqolWodHyNmOGpmqbKg0maapUSwbyzLZrbaYhsGvv/6AEmx40grxPI9h22W2ralkQYlMp+uxzjNurq5ZXlwQ9yxKGlQkvjwZsStq7m7vMNs9akmgWBZ5HCDyjM16TZyXdI+eUHo7jMtL0jBi8vSEz54d4XVbtFsmZtdA8vcfZgX37/Dlgo02wCga7i7mNEqDrEHbkDnWfaJc5kOcsmxU/ub3r0llaLVdLE3HsU2iTYARBOi6hzsZozQl8/s5x/0uZhTQdjRkfUwplWRFg5QHTDo2vgbxh6/RWTDcG2N1W6gdk0aZkG5uqBuoFI2hmvD9Z0dE2zUaDUKAaErKvKBpYvI4R2qAqiKNYpbLLc0upntzg949oigUFFUjbwqCeEtnMkAO1sjrGVbvKd7OYr2bU8YBi82WTZoj4jXJ5p6qeElTCnTTo4m2KJqCopsopkNTJEidAfY4pYkC8tUdarFGtR0c5zlBVOEYd6y2K6Ikx9os6XstlrsNu0WAbMq0mwrHcRG1TBqHFHGGkjX0NANRFxSmQV1UuLWO53dpGxJ5llHVKU/Gjwg6A4bHY1zHp84Siiwnk2S2N+fk0Q5GLRA6tW+hKAJVah7+8pkmZV6jGzaqldBNKr58/oQkidgFIUI1iLZbtCQmlFtYskdeVWRZTJbZoGtU4Y7y5pzBaJ+4rilMnWffe0a7DLi6X2IbOhINZRhSahmapdPqekiOS1vkfKrkDLttFNtE0h5jGj7lrkYKA0xJZm3Y9Pf7/Lja0dNlrtYxN1nDXx5NkbOSaLtju/1It19gJwW13WO93OJO+1TdEV5fp9zM2a2WzNYb2qbgydkp9+8XvGgbmMMpRZ1wfvs1y+Aepz3gZnbPk+kBUz9F2pzjuC2GHZV019DRJQxArsFzhyTRDU5/SE1B6ShstyUIBUuRGPotnhz1GI6HJPe3aFKJvTclTRMEDS//9Atu3mzRTQfqimh+SbhMaR99Rr4OuHj/HcU2ZDIcEkcRb88/UFUFwxcjKB8AirWmsQtCuoOcOg/xD47I4pRWsyHutbi/WmArNXWZ452dESU79OieqNoxeXnK8t0aRU9oORYDY8BaFByfPGIyGrHd3FEVcLQ3RlcN8qyg0+kh1xVFJaGqBqPBkCgKgZw01FBkwfk8QLMMOv0urbaH32kh1wmKqdEkAT3Pxhp00CwVLbeoKoGhG6hSjVRkuKpEt2Mxm21ZRSaHWkUjMurJgNtVjKI7rNYxRVHi+x5hGFDUDY2iolomct7gOB55o1MXOXUc48igVjVsE+ZfXbK5S2hPzlCkjxTRFk2R2W3WTNpjTNOnDDaU2xX9QR+zraORoTQpSaghqSqoCpOeRWva4bA6JFvcotQ1RVNxfrWlUXUUuUSSZUpREyzWJGHC+HkXezhAaDa15tLYLcr5Pe22Tx51uH1/z3Aw5OrjNXEWocoddM3AavdBNFRaTUVDzgpptSXdbbEGHYxWD0nXkZoCRdPI6xxFVYnCmKqqGLUcnhx06eYbiEysw0NkxUIp5xgWtHoeL4dntP0u829+Tmv/OTINjmkjhI/q1VTIvP/uK9S2zofXb4iDDFmVSOKQu8XDlPJkf4SRJeRhhGUZ2JoCSJQIhKYTfnyN0hlhWC4NNWVZISQLIQQFJk0uqIIlapxTpxl1XhCuQxwBSQZ7j49RUKiKHXWZocgyVS2TbgK8QtCUFU0TUWsy6DKeY5AjkDQHu22hbNcodUO710KzW8hOD9FkNGggCUh3yKpBkxfoskFW6zRyhm7YGJYFWYMsKxiqyvF0QhaGNGWGKHJMKharNTeXl2iaysdZgKpbSELDdx1MVcP2PNRiyeDRMb7v8vXvvmF1f0Pbb+F29pE0jdu7HbsPN7BJcBoJy9Vot12qMkVRFSTbQmgysqagORaabiHLCoqjoicZUlNTxxlCaBieBqePOMsLktev0bSCfs9DsQwUdMpUJm8a4rIEucDWVahS5KqgqUsc06Y/GKMrGbJoiOIYu3rQBJuazMGox/xyzfP2Po8/PaLoWhxM23RsSLMIqz2l6/YgTR94WshUYUpdSjR1RaNUyHJNIVRKGoI4JQgiJCqGgx7y6IDBy+/hD45pruf8Ny/P2OQl7cEABlPc378jTjISSSd3PHq+xLTdIU8L4kZF4WHq23Y0eu0T1qsNMzdkkSYs1ktOnr3kxekSCGMAACAASURBVI/+gmh+wz/8H/8zB0cnbE728bUespCRVAUhDPpWD+00o5jdUa7uKdIN4WJFvlxzbEg8fjRhb/8Q/AF6NEfXBIqsIeU1qu3RqApV8WBjrfISv9VhsZhDXeCaJnWVk9UpSmtILEmIcMbm4zVO3tDZP+HLicuZ/wX324Lr8xgRLvCrFk+e/ICjKTTbC6y+x7KWKCyXWVoxv7vF0QQt02Ab7jA3S558fkr35J/TJqc3GlBIKqurb9neLpAlmSjOabf6mLaP1/FQ5IrLuwVBFCJLMqamUDcP35F5kVM2DYpUIVU5ktJifnfN+OApnaeHJB8u8eUGSzfwxhNalsH84yVpVRPfzFCdmuBiRXW7IFne0R91eT3PcEXGftdis7rH8lymwyGaqSMFHwksl15LQzU0DMeiqQo2u5Aqq5i2JVoTkyU5u6hhe3dJv5eTdEbovRF21cMudKZehm+PcPxTkvCCj29/RV2l2J7JwBX0xiN2hcAybOpasN7tSLOUpoGqbtAVgaVrqDw0otIoxpUaVrOQn7+6J60FvYOTf1poYmkShqbgujZNlqIYDsPekPbhM4pK0Hm+h93ScPp/hd49pkSQ5g2lVKGoNloDrlbSKA16FWP1B6jbGYrbptY0WlMbxeqgGBZ5sERWMrLNnKbMqWuNRL6nkUx63TZ1KWF3TLa7JXq8pu/bmEKiNxzBeoVjuA+Qv2BOkewQpoPtu7S2K+TH+6y+uaLOElS3j6aA7ao4wz5Kq0dTluTBHLk9otPNSV2L8OM78iRgsVgwfPYlqtdBazmcfrri6v6eT374DKmMEIpgt7qjyl16AwdLy7AHEyRzj8X9Paq14vxiycDz6FsmfcuhmN0x/fyEzE2pkhtst2ElBzjHx1y/CanSEFEIsjhEr0ocwyGvIalqHNNme3+Hq+mYk2NE00ASonk6tSiR8gJhu9SuRiVkNENDl0fIlkG2mpOmIelsRS102kefYHa7aKqFUgZQVBRRSJPFqLaHhIxhORDlVGVDKeXIWo2tSLiyRBPlJOsbtosl02dneKaNVsQ0cUwj1RRJjOXYqJKErAmEZVNkGbW0RFYqojzDMXVMXUGWHp65dr9PG4356hxHPNQMQSDLMqus5LO/+nfov/wJWqPj2C2ULGbsD7kMvqbX75MnEauy4ubqI/P1loFjYOZdep6N63uIzS1a10cYCkJx0AbHNIMasdiS7GQ+/d4LTqqKxeqhFqeLhpbv4bVcZEPFn+yh2hp6EVEoewSNQhwGhJsANV3w8X5JXNTsHU4wnBaSqqIYOorrI2wXuUzRN2ui2SXj7hTHsqnCgFbHoK4qHMuhlh0koUBVkO+2RK7K5uaKXsej7RlouoqhSCipQBYS365SjroOsiwhqhq9qejaFpNei6ERMxhamAcHSB2Psy//lNkiw2y3+PZSJq0H3F59y/PPVVzboGPbDP0JwdWM1ZuvqSODwfCELFcItjOiuECTwFNkJE0ghES2WSAXMbrcUCdzms0NiqNgCPH/c/ZmS5Kc6Zne86++xx65VdaKqgLQQHeDzV7IHnJI2siMJjMtZrok3YpOdKQTyTSiZBpqKNJIDpdegEYDjdqrsrIyM/YI393/XwfZNyBegruHe7i/3/c+D0xPUXaHrLYURYfwioGp8YcFEkF4fB+nEprle/q6pc8PmP0W0Qpmx3dJg4SYlsRqjJT0TUNQt4i+xypLVVW0dcvpdEyzfsvBd7zrJeW+4DhKMKMhVbFFNRvMeEJ8fEZy5x5uEePsGGciVFXR53sOiyVxJKCq8Ah829G2PUe/Z5xEgcZKOJ+P+N+eX9DmNXcf7Zh9ekLre6wNmZ/dY/vidzw5GvH+7TXvbra8v17xF5/f5d9//yOS8zPeLHYsi5LhMGQ4HnD94ZLd6g6R8AjXYOhpmo5odo+xGSI216jmwNF8ShIrZL2jvyxwmwobaFR+IBMWPRjQr7YkYc7sNGE6ndGsXnCzuCSsFCKIuNxcULTQflXyF0/OGCUBpgV0SLPdEk1PCKMEe/8pMghxVwsunvfcvLvhdDRkPEyphGB5WHC9XbFTnklWcPLZkPG9U8x0Sh8qZHNAG8Vh8wGRTdHNBQ9HmjUhSkKz33LoDpggpK5a8nxBrzRV0+Bdz3/9h5+yuFxQbw9cXi7w+ogq34OsqZrbMDRNQr749AG//c2/EJqYgYnotjv2mx3FYU1aL/CU4Bu6Q43Ohthwg1YCE6a3L9lBhtAWIvBBjmgl9pPHjAhpdznR20sSLMXmgJMBJ8djLlevCGgJZXvLbzCKYRriq5K6OGCFwIQRTmi08RgpsUZj9jnJ0ZgnZ3Py/YKL5TXvnv+KwWc/QjQth4tLunxPNB6TTSZURqOylHg6RClB5wUtGgVYq9FKoIMQ+/tJv6l64rP7/PIXv+TZu2v88IS8WoCrSQLDoRvz+uUb/t3JkCwELyt0dUPTeZLvfcHrv/8rfvf1L/jZn3zBnZ/9BPH8W3ZSgVXINKHxPYFShJGi6UuGQUp2dkbgd5SlI01v+UKUBQPdYXyDNJ7m6BhT7Bkbw8nNnr3O+PTho9sagtDk68Mt4DxOEOL2mKSrmdyf0l+/RMuKw2ZNvf9ANh/z+f0Zru/ZPV+R9pLpcEpsPVFoQZXcvz9iZDvYv6euNGkkeHByRh0ZONzg2x5pAtLxMTb2mDSkbmt652i0xwUeiWE+P6Hbrhn/0R+jO+irnCCe8fblv3JY7NEuIwoTNnVJVXRMkhm9+MDcaCZO8vffvaUDoqHl+YfveH5xSS8E+0/vUhYHtNBUh5reWGSd48MAbyNMEBIPhwwmBXXRI/uG6HiOihUZOfG4ZhhqqvUbhrrm8b0ZB6UQa83OeKbHYxoKjIX56TnZZErX1IxHI7RNEG0NLXgTEQ7nzEZryt2SaWSYjDNsGPJmccAGmjCIGUQJSTIjnc4ItccajdAS7QrCKMSJIb51dMWGw2pxqygOIW5LEh1Rmhh7fJfqZk+USHJv2C8W9M4xOD3lzukpri7BOUaBpkRQ2JC2hrapaA87DhfXvF/dKq4Xv/6S2eiYx3/wJ1wEMYt339IVB/qqwiMJhkc06+eI7Q2j04dY5WDQoB8EuNcfaAqPK3f4docRMf2hoNms2XYe5wOCNGaibjWjh/2em+s977cF5+cz5kenyGiA1wN8K+g3Ob6H3vVE4xk2ywl2LT/84Re8evYtXe9xfU7brulMxt7vMdstkzbj6GSGPp0jggilI5D9bXDTd5heID00TcFsEDFNLZHqEeUW2RuUTVBaIXxJ7wQiGCGrFnbvGRwNicdD3HbFbDJiV0SkyRHnd4Zsih3XeUVV5KTJmMoVdLIjDDXz4ylpaOnzPVkak8QJ1ipc36JMSF039E1LnAzR2YB6s8YM79KtdlgTYnRE1zXUwtHu15TrC7pyQzZPKPqQe4/HhIHF7QqaektX3FrQpO0wgcB3Hi8UvbC0aAIhUcZTDC1dfztwGyQJqi4RfQtdT7NaQe9wOqZtejJV0MkGaSJ032N0xCG/xKQhWmtcpzE24NB4+h72LcTa0rYtq8t3/OJyTRpFyHjAu13JaNgzjCKssoyzjEmWECiNUYKmPDCwkvFszihJGZ6c0udbbp79juWLZ6jAcuwFkRQMBin74oCIIkSgkcbglcBrS+88vmpBCYIkozzsUVGIK4pbpowVPL034nTwmMtdzsI5elGhLQQ6QnewPayIVcnFb78ikIJHX/wc5cAJy+j4HPavCXxPU+SURYnOFNp5VARPv3hMV8QUfUQ0MsRRAziGx+fE2THS9Yjg9ry5Q4noHL7tqF2DkI5eaSyOvOsRxjKcH/PwyQMefu9TVosFrvUE+yXsN/zpX/4lX/72a8R8yvurJYM0wk+HfPLpY+7fv8/+zQuCJODu6D5X+4aqLtAOIiXJ0ohRFjOZ1+wRvPj6G9Zdhaz2fPbRfdrjCc9/9y1/+38uyP7b/4bpdIYSltkooylbRKiQVUx3mVO9e8X63Svq2vPxJx/x8PGnKKOIA4nsE1RRoU2MFy1mOKbvSqSUJGFI1TgcjsDEeBpsGBLagM1hRe9K7p+dsr2U+NUNH96tqfiA62vCcMBMhjw/7JG7gsztGMWSoD2g0gHx+SOWX36JsyHb6xXN5garQiIJQZJQrjcUV1uO/ugPIVEcdguGyQAlPe1+y9NPP8edlbTbkiCOqVzFIBoxTsa8W6xR2qKUYhgm7A97fN+x3W6IZUaQJLQ6wPSSMBuBHjOZPkIsLpGNwypJOJszHh9x+HDN/sMNfnkJ+wVKtdiR4Wb9gabJeZBEZAGs6Tm/f5fJ0TE2iymXDYnJaHRAmKVkA8t4NqM4FLy4WXJ2b8x5dMzCWj5clywLjSs3HK53THzN0aN/z+jBF4TuBhtE3Ow8i7wjkYL5MOHRgzNslhAPhgSNp+oapASPoGl7AmsJA4vWAUGUslutmcUWLwTjkzNevHjHTbHj43nGD//kT/5tocmtdWCAMTUiCql7TTj/CKcystGYIE6QsiX+6Of0tWe73rLrU4Q3DHWPb3YkylH3B6QIEfEAJefIKILdBebkHGkOiEBjowlu9Rwja7q2IF8t2a9z5qf3kK7DtzXdes88jkiO7nJ9s2Q0HtNuCoJwBPEYpS0ffvlL8psbjh49wQxTsiSgXl5x9nBGdbUlkweCNKTNN/R5CF5ih2OCJKXtIox0CGvo56e0ImDw8CPS+Rw7HODqHeHhDceyo7zzgC5fQefYLq8YhBE2mRJnljCb0sqQ4fSI1dV7Tk7OKJYtJ5Mx4WDIxfKKI98wPhnz8vkbchvz4MExg5Hm/btvOCw3vLaa++MBOjAECkIj6Zuanoxyu6W7rxBpepukao+UDjsZQtmA1XD4QL/f4cuarhcctjlut6EqdjRBQHL+GXJ2ThKHZKbDN7cTuN3NkiwOibMxYTbAFRXBYAR1S16VdPsSNc6YjELk1Qo7zojmx6i2wxUXVL5G6gw1HDE8mqOtpM8X9O0W6VNsECPGU6rlew6HgiQICJXgdDTgernnkBfUmzUZPTqJeLPOkarnKArpraX89b/ys9kRu/qE0dFdZFkwOUpoi2PS1NFVezweE8XcvHqH87Dc5OwPJcPZHFc3tzBarRE2QqYDosRgEk1oHmP3J8S7NVFm2RpHvt2SWENoQ1ABNprivMNaDXoI+x2havlw/QzRlDw8myKutwQ2xMQDnAfvFDbIkNGAvpG0XYeVjmq/42QyJcCTWU344BEUW1xdEoyndFVFbxUpPcfHx9h4iNQG2grRlugoQq96ZlZgtcQrTdU1rK6vSLRiMp4ynYTEU4keDml6RzydchQ4yjW41ZjR5L8jXzaY+juicMC9Jw85P/8hr//ub3jzX75hOnnM9OQRbRJweFFSVB02MvTOEYQxWmvaXY7CgVQI0eCp8H2IlAJ9WGGtR0+GZNGAKI0xpkPwERDQ9YpqX9EVHWrxHdXVB+reE41PmKURYn9FkKUYYal2Lc02p9yXIEHlDpl6VFkSD2eYIiTwHdH9c7qmIQsNIgmJ7z1Eb6/o8zXuzdfItqUrWtTsMU3RYNoa31TodEZ+8wGaClqHDASdu538KSVxHmazEdFZyn+1vGZxs6PUCWEQczL37LygaytWH97yh+fHzIOUE3vFan/gw87x4y8eMfrsKcXv3tJdXfL08Smv36/wTU2eFwRphDYKhKeqKtR0QKRisvGYbvUerTXZdIrWivLQsP+wYr9ZUu2XHGoFWKqipOoa2rqhaffs8ys6K0mHZ7RlTlM2dKUkyDLWiyVPHzwC7xkNxiggkBLRa5JsSDA+p2v/hZ/+WPCrf/4l63xF0VbEYcRxOiELZ4xDx/zOCZPHD7DTKTIIb7fAqgMmjpE6oNsvkUoRqR4zG4LyvNvntEVLFKfUPaxXOdiAbVkzOjll2Nc8/eQxi1XNq1+9YZOvGQQBlauZD1NcV3P/p/+OLIspFu/xhSA9e0TXg3OaXkb0wQQdhLiqofF7fBUSjU+RzQqBAi9QUYwwt9UrRIKYDVDJhG65hMMFcTqkXFyB68hGR/RtS6csY6t59uy3RLHm7v0TjBQI1zCII/rWMLjziL5tuXr9kiBIOLsTkmwtvTpQbgrSOOGT82NK3+EXL5icfUx4NkHGDxBC4dqOOHnKbrOm77vb35+ydAj6qiKKAvquwWuFMYaybZmMpxyU4VffvebN5sDYB2TjI7rdDd6GvN3vebF4Tf+jT+nKAt2vOOAppCaRipmyhLM5WTghPXrEyw8L9usF66pjmMT09RZvDJ2XGOcwrkYFPXhDZEPU9pry/XuS0QTVQags0/ExtRFEDyOq2Q49K1Eqoivg5u0L6u2CfQ1HUY45PiYYTAniCdr09MsNQqa4ZMzkXJB//Z6wrQhsyp9+8QlfCkH+/APV6oCNejIbkAYGE8YYpdFBgLUKTYgUCa67pisLTBTiOocKI2R2gvd7lI1wvifIIvbbDcPBAD1OuP/9n6NJcNsKO7II4Zg9/Ii2aPj1r75hOruH73u6VmOTEaJ+webZNzTZnA/rnGw6xeAIvGBiAj45PWW1OpBnklh0yCDkaDpEOqBpcTLHmPgWeD6KqTcDulowGJ6CEKgkxQUhFBv6zQIXWYL4FLYVu8OOMLJs8j02GzA9OiWJI+rtkiSKUFIRDKdQ1zT7HDU6Q0lLlCQMopA8jLFJxKezOSa4Jt+tieZTBoMRNkgJVcA4tYRRQll3qLaCaocNhwgp6ZXh0Hvq5lYhOT2a00uJVJbdfoFTAbt8S9u31EVO2DUE+4DB/A77SmOikEApOiXQxmK6Ht91rK6vebBbsb1YsH/9isfjGa/LgvPzRxyefYsfjrF+g287+qqia1u0HeGLHLlfgNK3Fr50xOxRQrHeUy+W5Nsd3aG4BX3nDVqFRJFi1Nbsdluu9hXaBNStIE1GfP7kKcH4HKUThAPRC5R3VEpBL4nDhNE45vLDc5Qd8egHPyKUBithmCUMjs9olUDf1QyCFqGhkyFKR/iqQQh1u4HpO1pXAwLXdBigbxqUGdGIDqEEqtyhywOtEOjBhPuPfkr24hv2l89vz0d6a6XRVpHqMfO7n3L80YTHx4aL929o8xyvNC/fv2F/lWO1otjuqPKCVGvauiWyBvl7jpzqO7rdknh2TL26wbclNh3QlgfqD+8AA4CoVpgkRGUJOrhDzCmNDIliCUJAntOHHV1hkIFhMH9AGMbY3t1uAMkI0beoqsEKgRVghzHbXY+TDp1laEYkRkFZINsG6XNEBHI8xMoYX60odit0MqDbrIiVp7p8i+w9aIPQIUJbrLUIG/DmkGPqnI+PxszikK2XPLu4vq1PWcsozTD69j7pixXR6Sn1bkm1WXD/0SPufvFTKHLi4zMqFbL49l/oRmOqMGbXdQz0bRA6mE5pqhqhDH3fIqVEeEdTFBhurTdCCKw2tG2NijVRNKW6vkDYhnAkmQ0z8tevEUowTDOa0rPerumKNU21pdjv+OTJI/r9lnA8w7ueNM7o9hojHKkxNMsbXKBBCzopKLo9o+mIY5EiDyXeJiT3zjGBut3+7CTSgG9qJLdD8a6tQDic6xFagJAoHKdHM3Z1TZimVH1PV1e0zrErOiYffUJ0fMadtuZSw+LdM5SrGKUBTx+d8vGTO7xobygursEcced0js9LtvsVsbUkgSWKYmZTRR2GhEHAfn1Fs3hJ7TYYEzCLAlSx58v/43/nBz/9CePzM2RbIY2lq2vK5TvKqxdcvPiGi8UNd87G3H/6PcajIRKH9EAyRuoG0dY01Zqu2WKnRxgFUlikcPheMIgSDkVL17So0CK0RgmJLCvunNxHRDPq/ICrHd2hoVJ7JkHAnz/9GOHu8tE05nymUcEQMZnQ6QG1c5Q6xmiBbgu0VpxMR6yvdszOHhKcfYKTY/rlNVYaguyI9PQxq7/7L8x+MmR09y7XbxYMBkOevfwdy+WKpqwYhRmbckOYBJggILTmdjNbWZyWdK5BrS45SlpM4BBpilER4fQj8rJlLiUmiFBBjO4FgWtYvf+ACTQ3zYi37YLCVcxjxb3zMYVrGJ/d4fhoSjQZooKQpjvBii0uiJBWoyKF9Zr56SnP3l6TJSlHwxnz0RSflcQrx0iVmECgwgGnqWcY9jgCmmrL5v1LynfvCe2Ms4dPmD+YIwNFHFkGvefF85ekw5iqPNz+J2iDtRE2HrDNb4eTom+ZziaMZyf87Md/xJd//Z+IxzP+7D/8xb8tNGmrFqdTZFAjtSVIpyTxgO1yhbYJo5MH9O2BJt+jTEi5fc/Nu/cczaZgU2qTEKCJsxTX9fRKIs+f4BeXSNfR79Y0N5fIQBOdThF0t13uV99R7/ZkwyHF1QpZF4yPTwhm91DZmGK3prr5QOda0C3xYIQZDQhHI4IeVBJhkEgviZIBo7mg3LQMnkzplgtk2QCGw/trZJBjr2/QRiDUNYQCCBjdf0SnUqJZTCBLunxF/uYrVLUh9IKuAS96Wic4lC2xE1xfXhLYc+TqCucuuXj2HbuNQ82mGB2QjEa0riN3gs3+HaOHP2QSW+zgmMyXFIsl+WKNrFuECLDDKUbuCH2HlYIkDRB9RTybYydjhOjRcYZQHqEFZj6jr3p802CVR3go9hfU62t0U+KsxFpDHw2Iz8+Z3DkhUT3WN1x++YxuUzJ/MsaEFp/nxNGYBvDG4oqGONC0vQNqBvfPcNEYnKe1EhH0hMMYm8xRRiKlQPgO4RR9scN3B1rhEPkeFRicUjghCYzEKs0kDjgepnz96i29cyRRwK46sGsaWl8QBRE/fPQR+W7NYDrjDiNU1nDoKoq25umnP6Ap3lFaga/3GKWZD4cc8gPPF5JISx5sd9z3DpWOkXWOECB+34dVgwzRndLra4T2SN9RbDZEZU7fdPi+JxxFyL5ES4WyMVJpgvWK7cVLKAvmcYrz4OqeSCskAoGmx1JUijSS2DAlnc3g+Rt8cyCMArTSiN5jbIAOZ4imxncdvmuwcUAbx/R1C22FCW6DBte0iN5Rtx3j0OLqmrKquLq64atX73g8jijGCdyZIE8HuOpA9e4Sc3yObDoWLxb85MEj7jHmm+ojguEFg6Mp05OQer1idDomHs6oOkiOIibzI4bLmPpQUPSWNM4AjxAC33UYZTC/Z52oUOLbitgYlOvoi/p2It7uCeoWO7iHSI9w2y2qc+jRGLoEDnt8sUX3lmyUUb55SVV1pPePCYYBdnhKev4Ju29+zeXrd6yLl4xnQ5zVGCFAK/CeRICdzdGyx8ueODaY6A6qGSJ0BE1Dd3WFyO4QDQTtcsHu/S9xvSbf7WiKAwwG9HVJkKYQRzjh6HtPpuDzz+9xT5SsXlyiopDLtx84ORmRjsa8vbogGSbE2RRVG2YfP2AwTPFDhco080dPOe0jyrrgb/+v/4eX73acnZ6zWlyS2js0+Z5qvcCpFF2VTEdz4uUr4jvHSNOj4oxgOMPMDfF4Q3Vp2V4r/M01dXFDoCq0BF+tuN7tObKCbS2RnbuFuAmJiELiasvRyQTf19gwxXrQOsJGA3SUQFNjlSWLhlQm59HTJ5AvGASGIEtIk5RsckIyn9AtnyPFnn73Em8DpO+waYQ3EiUNfX6DL3O0vq3Y7A4VZdMjpCdvc7aN4GqZEyWeLor5/o9+xOHqA1fX18SBYjgZUb04MAgSRtmch3dmHK7f8/7qhsfVCNSM8GiECyLquuDpwyfsyhxZL7BK05YHpAPtIM93pCcDvNAoqwCJFKDikK5yqPQE2QnYl9jj+/S9JBnPCNKUr59/xXzxCt11VM2eTVuSbzU/zzJk3RDZAC8kwd0H6HjI/tuvKVZLdm3H0aMZZ6cpdd3QtSUUDbjuVkevBAEtUTZCDo5w5Q6SDFWHCN9RFzt6r3Da3kJL2w7hGrSx2L6jsAapJFQHrl9eMNGaTRgRGsNgOMEnCS40OG2Qqx3lfkObpci2p28brpZrzl6mnA7GmMnPaBWYtiXymuLguLlckx7FhKrDdzmil1hj0FFE1eYERuOXLykXC6gc26sX2GSMlJ6+73El+Nbim4hEWPq8pF0uUPs1MT06iFF6gMtOscfnmMjQ7q7xukKPM5gMsV2FHEwo+gPdbsc4yPjJF5/zVmUsnr+haQraosdpgR3MUULS5Qf8PqfL36CiJfn6muqwIh0PCWwGKqBNEugEvatxTU0fhOyqhtFIEA1CdCvY/+45UTzGuy1IOPn0R7xf7sjf7lHbLSJKEQry7QXCV7x+/5J7j1KGwzmtUPR4/vjzH3AvPeXJp5+xzl+xPlQEWYrGg+tp81udqm9bVOixgUJ0AWkS4L1BdQK0wWaWtjiADCGaoZ3CFS119QopPIdaMp6O0XHEfrum2W2RynD8yWfYZIBWISaL0WWHkIY2LxE96GBIlpSU9YF0EPP9jx+wWG1ZL24YZCPO7gyQ+QaHZrdcMDq9C2pAvr663XwQApfnJEGIFwbXO+xwws6GrLYrfFmyvLggSxIuFztmGuIgIHMNI+PpXEAQJrQojAQjIIkSfFPSdBX76wus8Dx4+D1Gk8cs//M/8Pav/4o5PfPZMZeXK+rNlqa5va9UPKCuOtrNEjM8wlU1ajTFZDGpT0izEaPtnm7f0PY9o/2BtjYUTUNR7BBdxjAYsLzeEYVTPr5/D6FmHC4KnNjTJBtG35+AColHcw7vVzRdTWwD7h0PePniA/H4DuOjEwbjKbvFc6JRQzY7R3YlaIsPs9uQ2vWga5r8gFAa7xxOabq+o28qZlnAIa8QWKIsRVQVfd2gjafxniwbka+WmDpnV3ekj+6A1CijmIwirvaG9HjC8NF9BBWD4wanFR+urnn29XcU2x1N2zJKpkjjqMuO4/uPmQ1vbRrKaLp8h+x7hIfAKmS9BVqUjBjem+PaHtd7hI9vOUpC0XRTvHZYLanbCt2VuK6nbBt6IRjPjjAiRPWGSNmsJwAAIABJREFUIBTItgQkIDFG0asIGaboIGasJbtthYoG2DTDRBEyGxNJiS+WiL5H2ASfH/A1BF1Bd7VHNAW6qwiM5Hq5ZzgbI+OIxc2Ks/M7TD9coXEs+oY2TPiwrtm0HU3fE9nbD+H9fsXszilZmtD3IHVCOlQEjzRVpUiSFBXHiOMjnt3c8F23YffqPddCMXgy5FyNsUbSIum9x3cN9Ldcrb6q6KoGozVICUKhhEBqSXPYoIwgmp/g5zPM9hX5t7/gaKCxNqDTHdc317x985Zmf2CfV5ymIYPZKbPJDPYVXd0ihcbVHV51BErj2o56tySeTpGiIghadHtFNJ5iz56ihxkSh3A9rsqRUiG6GlfucJ3AtSVednjX4ujo8fSuJwgDTBxhjabsHMZoBqMhuRM8+OQH6NUSIQU2HaCUYjKdMUgu6Rt4fHfONIJD1HP0oydcvVhy8fKarqjpyxpaQRKGBEag4ojPtOI4Tnj23TNcdWB3fSA5PidNI8ZHR1itufjyK3YX75ncPSWejqm846tf/C2Lv/0b4gD6RPK9P/4xp3cfo8oCIRVOgOxboKIsc/xwjpYK70FYTTAYkV9c04ke0XuSZMCu7ejbnixMKZoK7ztc1zEcnZLeydh8eIOrPKYpGOqSk6glO3rA7LOP0LpABg4RSOrDGhmGxDZGbQzWSpCOZDolDMcUiyvqZ7+haQsGd6YMpnPKtuH0/lPiJCMONEkYcnb3PoPRgJvDlq9+9TVNlTPMYvb1DoUkDWJ8AKWGsmpp2pBdmTOMNC4J6ao9cVSSpilIjTcZVdljowDfggxCBJ74aEafjgiv3xNffsN4PGI8DyFN6KqGkR0QhwYTBDgb0AcZranxbUXrFKXvOf/eU8aDCR8u1gTSMDi7hz7yDMYVr143yHLNaGiQ4RAVdrTFe/avL4niiEEy5vFnc96+fM67/Z5R+glBppDAfr8hCS11U3G9zhkOxmTZkLbYUuy3TLOEqrwVnJw/+YQQyfd+/CNGyrFYbYhD828LTYaTM/JDQ6FmSBuTZCNcdeD6/SuW3/yK5C//jK64odo0qMGnLN9cowOJcxVNH7O4+sDdO3cIh2Pq/R4TBLdraYMZqhsivMeEE4RRtG9foowBJUgmE9TknLf/+BW26zh6/JjkwcfIyTG+q9nn7/luseZwuSYAfvbnf8o8DTm8/IaX377kZrnlj38+IRmPIZozDI/x/hKTDjFW095cMzz9CCVAp2N8UaCzDBlpdBjiy5yuzGGWIIyAw4qmXuE379BBQOQcnatoPeRFTe8NTQOr1Z4kWjGNFc//83/kN5c1s8/+lPMwJc1SkjTiZrNjOB6xubnh0WPPnU8esC0NY2K+e3tJZkNEE1AubigTzWQ2wRYH4tEIJQTCaNLRFJdv8apHDAeoKEUqAVrjhEZIgRAe0TuYzTFRQOc1dXFAFCUEA8apJqxuMKpHScvNu2tm56fge6LxKbYXiMMBtd3RtA3RdIKJj2mbjrZvMEEPCWghEQq0BhMalAKEB++QeCTw++YN3XaD0JK+1ni4XXcLDNILpBJkiWUQWdabPXnVsKtqvHdUbcXLsuIHn/2UYbFnf3jH/WOL0S227YiFp8v3DGKF6i3LXUVd1swGQ9qq4N1izfePx6yWa4QQdKtrIquhc8gJOAlSaDohMEbTaYuNU5QQ9J2j6UrKtUdLaKsdCDDTIwhDwmrN1SZnHCXQOvK+Jw40kTX0XUdoAnarPXu/5I6CdJIR2pCu6TA4QqNwXYf0Hco7bJgigoS+LqEHn+/ReGSb03eCMj+AgHa3Jt9v6doGqSOqIqcsS/7h2xe82e3ZVAVF0xGEmrr9B8K7n9FsDvjcU4b3uHm/4N7Q83CyRv2RYPPoEYORIgwS+oGlspAO5zQuRM0HJOk55ut/Zf9uRaBSXNciTYh0PWkcITtPGIX4XuBcAQKU0EgTQd3BbodOBDoOEFWJChoUAUoa2s0VQbHFEjDKJrDc0bx9g+xaRCOIaEgGKUIpipsl7776mkNZ8/Djx7ebGUGANQa0oXOefLOnq2tG4xQBGCHR8QBpQ4RJUdoSpHPabY8Tnl44kqNjKjy9DnCxQ4ch+IY4vWUkLVdrAudoXz6nP6o5ffQx03DCIZ2yfPYNTTfABQlJlhJEFlU7hucPGZqPCR6cMf08o9pfojPJ6YM7LFc3vH1e8mFxQRhsOJtOqeqam5sFXVFisgFGeMKr3zEeZ6TzGcpoXJ6D2SG9QpYF8WiODgYkNmG7WKCSgHa/oNzteHRyTLsvoGl4tdqhxC3c9IEp+PhoxnQ0pG4blvsLdDdhOnqMjUbY0Yh2tSJ/e0Gz2iF6STq5Sw4cH6cMphPCyfFtqDvM8MczZBwhohRl1O+fTYLeQRAY8uXNrSFjNqUTgryoWOUNfSzZHmpWh57yUDLUhtOnDwhHI5784R/w7T/9A//0P/3PGHuO85KybJk8+Rw7n7Hcwf/6n/6Z/zCfU0cnTO7f4fK7X1CVW1p5Tiwl0jXUxYHtYsF4HlIs3xAOIsplhzw5RnqFEhLqLfgQHUR0/R5UgBnE+M4jxe1LQhIFrLcrRimcPzhlVQQMD3vujkakokGgicMAbwz8PnTu19fYrqTd5SxfNdz77AFhmFHn4IWkO2xRTYNykv7mBib3sEbSN5qmbFFAaAwdGhHENJ1HInFthwDqwwEVZ0jh6L3g+s173l/u+PzhY45EzE5ait2OKIvobciDJ4/BhiilOWwW9MmIMi/Y31yx7hVHj37I5PPPufnqnzm8/IbIw26z4vh8TlcFOGGR0qGVRmJuQdZNgy/WVMsbkskxWInvHfnlN1SHGl936EAjzZBBkIEVFOWOYQbns3vsDxsWeYQZnxFNJ6jQk799zut/+nvWr18RObjz4y+I7t3D2ASFo+pb6nLFIOq4/9ERx0nC9nqJbmuSwZjpg6eIKKMrS4r3z1i/+pKiWHMoGm5Wa47vDHjyB1OU6CgbSS0CiuJAvT1Q5i07J8jzikwJNB519wxRXHPYb1lfLhmEI7796recnJ7iNxXr2pGGGqVavOmYzjRVqpkkI9LJfXZXzzk6n/Pw0x/jlODyX35HahRKS4SQNIcDQkd0+xwTBTQebDZFasvwtGN9VdE3e4xMEZVEliVufUO9PtAcNrRlRxSV6MGQkYlQ6RhnAsrOUV6/5ng2RyqN9JL69Wv0yR1slOKVp9WOw/pAfcixJsR3OcZBFEcMR8eUVYUNMwIHo+kJ8XhKc71HywipFXr2CFfsaHY7uv0OjyAeTmj6jhMF/rCm263YrlaYLCOdznHvrgnwRFoTWU0iOqZxjBNgs4RmtSPQhiDKqPcHtocDdZUzf/SYYTxj+HDK/zC5zzd//zcUxYZcQ379HYeqBaHpe4fUIXJ0hya/xjYCe/IF0mhkt0a2FT6eIvUYGZWopkHogmJb0DYdvtf4DnZXNwyjKW5wBtkp3kvSQDAYD2maDW1ZIIcjjNGk4wnV1Xvy6yu6fcP5OKF3K4bm5LbK6xVus8BHMU46stO7CBTKS7pmR9cL+rxGD2JklyOamt1mQ2JhZzTWCNaLJcfBhNZ3EKZ0MsOaDcJ5pDmwkY7k0Uesi5rM90RK4L2ga0pQPdlsQrVd8e7Za67evuWr3/6Ot5fXSN8zSQOi0FN3GwbK3PLf4pjOd3T5HilbTDKkrzukLvBSIKzCNx3EAwQgjYKuRfgObxKMtfj6GuXbW1U8ht4Et9ehaane3XBz85Kjk7uEZ1PknFvLiritkrpuTbPfEghLEI4YmYTqUGCyAWBR2RBf7JEqRAYGoRJ8Db0vMQjKwxIZCHzf4LqWKLrl2Ygk4frL30Iy4u79B8zGG0bv3yGVYp0XyDAhyoaEStK1NdoGBBqUcL9/5vUcz+ZUZQdFeTukmR6zNwKTWDZJwvP3v2UnHBdX93GnpwgZIE0JhaPcrkBA2KS0fQ91S+dvgZU2ThBKISWEUUxfrhGiQyjo9lsS4ZCyRwWWlx/2vH35jmJ1g+47TFPQbksGrsPnNb229K1DGoW2MaIuUSIgsYauKrGuR1mLkj1Wl8QTiR78XrXaAXWNlhqaEpoG0Xa4IsfXDX17a/0rihyMJdCKunPcrNYMTk9JZlO8lITWsFmv8Uqio4Dq4hV2PGJiDdOjI4ZpQLOv2V+9Iaoivv/knHsP7/Ld6v/m7/72G/Z9SBoEtHWDtQYVGKSGodfEx0MG0cfU2y2rqwtMkkDVU7QV4fwu4d2HhEKwfnHB29/8lqI6sL94h5wNWdaeJz/7OfefPIDdDlqQSqGtwIuWtq/xSULXtdgI+nyLMQojPdZ7XFVjOgdhQqJ6DvslQivGoynr1QIbJnRBR+Vysk8fMV5HqMMa2zqCUJKcWMzAg5D4rrqtpotbhIERFuFakIrOezpaokHKo8EDZNOQNjvG4QlStbz87pecffJDHj79hN1iyew45fjoHoftmsuXL1hsFxyfnLIsG7Ikpu5anPeE1hKEM/p6Q1OWHLY5to0Zz49odxUiKaGtCBToZsHuqsCkGVEc0zUVdbHj5v0bms5Tba85OwsIwzO2TUvRgYyGpNJgg+z2e9Q3dF1NX5U4ISgPB8KBIpqcoecZfyYzfvflP2LTY2wwJBn1jM4cxeIK4ytUliKHUyDF3/sUiaCJY3arK7zbs3v2jHJ9RVsakAIVKMIo5Gp5Q+MkR5MJVbGlchrft1ytd6RKks5OuPf9n1BcX1C/fs7Jx58S5RW/+NUv+cFf/vf//0OTw77BSEvTdgwHGZvFhjsZTNIpz/7q7/hf/vp/5OijkLs//XMiPUMGJZ4tQTqg2t9gpCPv1G0HO9C364dtjbYGFaZoFeAah3A1zgFNDzaB8D7rX/6WZrXg7OPHpPf/AHP2EMKIw8WvWSzXJPM5X/zBD7j4zW/4f//xn7GjFFsfuNhu+Y+/fIHwjp+FjviTL4iGA6r9gbLqSc4eobMB7XqJThKisyNcIxE45HD2e5XWHq0C2qrBiYhmV5CcjhBxTOdGtOWe0LXkSHb5nrpuuH53ycNPnmKSE/JiR2SOObYb+gasDUkmU3SUMLUhgQHTA2vH3aMpRy7i/cslFIqj8YguEcj+QNAX0CeM7t0lSqJbonbXYa2h2KwZWYnvOkTXgmsRUYgSAViDr2t859EmQw0H1HmOUD2EGh0nVJffER8PSO7dg6rh8ffuc7i+IpxbjFZoIZGhBp/SLa65/PW/kj79GPv/cfYevbZk6Znes9YKH7H9Pv7cc23am66KrCqyKEJtBhr1QIJ+m6aCBAiSAE0EodUQxJZaJJtZZNJksjJv3szrzfHb7/CxjAa7fgGnGwhgIyIWEN/3vu/zDsd4yuKLhmAUoRqLcBIlwNUVsquQwwkuSnBYnHH4UZ/i/BwpDUiBE5JWN0RxuDtQCDzfoyoK7u/1mKY+88WWV6uc5A9VjueLc8Z6w+kgQMT7pHsxQVURJpJV04In0Z1B4bDW0hlH4PuM44h5U3Ox2HCYBJiqQegWjUOFAU7XSD/CGosQCqUCfCXppMD3fYrNBiEVbbHFNTX0EuJhBnWOrdfcvHrFNm/o6pq8rNlomB7u4VsfzzqEdThjidMMGaQIa1BS4gmxcxUsLgnDmOKyJO31cMrDud11Sgq07jCLG7QQdI3GOYvebLHWYLsWP8soi5yirHh2veDlcsX7bQ4ObmtN7b3izotbJtl7Hj7+CmcndMUVPfme8uYJ/p0zTn/zMVquUZHBegnJ6JCkN8KaEJNrWuMzHu9hgjFV846BFnR1SzTw8QIfD4mSlnh0BE5QXb0GuzvvGEcQZ9jlBp0vcFGEdbf4yqIGJzRvLxCL94jFCm/bsHn2Gpo1+/eP0NEBrYZufY6vQAUKXbSkvSHPXz7h6Gifs/sn6DAiSAe4/JptWbFcFCi3RrUlSRLumpOGe+ArnD9FOoMIJV5ao0WLnyUIOcK2NaosqIzEVxbfSVqt6eoWoy2eEuyfnpL0+vT6+9R6TGM7hNbU4YjIT8iyBJqQbBjiyyFOJkx//QA/bSBpwNWMBhDEEcttxyx3POwdIoOIm/mC89s5XtdyPDlB375BRB5hNCYeT5BxSqgEYjtHCEW8f4TOa2y3wXWC4f4dhNDUxYy9pEfS36ORK1arS7CSrD8kC+F4MiDzI5SAYr1httyw3Fb86dk9xC5Ij9OWbpPjnCSIUlS+JpARBH18o4jiIV7vAOX7OCGQvQEiyRBOg5R02yUEAUJKPF8xONhDi53Kta0187ym6Hxm65LGCjLfIx4MSPsDbi4u+ODzL/n4F3/M8tkLgmJAL9/VwOpOUm8BNaSREZcmZTJOCccDTv/k11w/e8JKW7LIZz5vyfM1TbOlWt/SLNd4/hgZK0xV/SHyAspaMAZUgzJbzGJFd3FNu2nZvDlndnVN05X82ZePUBRISsxmxUni89XxAaGXEh2d4AcS5Wu06bCmIelL5Eoz6Ss8qWlubsnu3yNVGaZYoz2PQb9HcnSHeNpDtA129g4vjHdKY1khnCPyFBUSP/B2+feuwfM9tHZ0ZY5zFoviepFztSnIRjV/9vlnFINDvv399zjdcLvZ4hPx2ePfIJoXlMWWpjVUVcN6fsNIRGwvZ4S9c+ZvrxkkHf1IkTrYXs1owpDpdMf2sUZT1zWN7/N2VtIb9sjiMTIcg++R+CVJL0G0BiHGIEKcEUjfo715Rf38mvfvb3BKsXfUpxcnhLQU5y94/n+84fz774ijHqsi57bTHCpDfv2O2HOI2pA3a27mV2zjmGh6h4OHJ4yP9xDVjvmVHo8RvTFdK/B7KeGgz/f/4X+mbTac7PXoTIuWLUpoVo1gkW+5vLrE1g1xa1hUcDYKCYKYKJuAsxTzn8nnNzx9d03+17/DN5ZtcclguE/baqwxFIXGG+4xOp3wZqGJk5C1WVKsr7HJp5z8ya949/vvca2Bbge+NrJFpgmDxEMXFdJ0eF6IaHJkkDI4+4B8/Zwmv0WKBpxHu80Jkh5Zt8WO+mRNh24MRiW0FjqR0ZYrynLJuJfS6/dJhvsos2sL8KIMJwVN0+GkRQYd5y9eIhGk4xBhLJ5QJGnKOIupy5ae7xEGPXyvj380Qm/eQ1MgtcVoAWZXce1NDxF1jjSGyBeE+Ybi5holYHR4QhwleA6enM8IcXxx74Dk7n1EmLKRPvNa4zUVXtLHJBlB1VFcv6FYLIn/dB9rA5JeyIPBfQYDj8vvvuXJy2eEYbQTstoG6xQOtxPo9h9inMbqDs+PESS4xS2yd4r1EkS7wK2voayx6w3tbEG1zGk7xf7whFvdp3QH3EnGDGWJSkeow4f0JzHa9+kCiQodnq4xzAikJPV8bq5nTO/u0S1eEGT77I+myGSA7zTp/glKJejlDK07ZK+P9BxRBrqr6ZqKpm1o13N6oaQZZjt2l+lou5YuUmjp47qWwAswTUGLJL5zj8IIvPkt5WpJb39KVdfkecnFm6fU+UdsFlvmL684fznj+nqONR1ppDg7TNBdjXVDVCDxREtV5eQ6Jo3Adi2mblE9SbdZI+IEpVpkMkJ6Kda0oDV0HV3TIkcDpLBIJXEqQbYNnQFEgShyen5I3Rp6k1MG974kHCaIcIAIUmSd43sBvhNESmHXc6SMiHsHCOtDWaC8CM+mOGdxTmCLFpUNsY1BOIXVAqEbEJam2OI8Dz/pIXuTHRfNF7g4YvHynF6/x2C6x/lijRYKpzsO94eEQUQkDXtZSBQoWiPojycYFWINmMZy+sGnOOGI4xBRrfk0DUk/eshPxa9ZLq950DZ0mxVBNMZJSVHXRErSFDl1EIBSyLpGKB8/jDE1KH/3O0LgC4ErZoAhMg2t9gj3z7jaGi5e/ES3vt3d98GUdBSh8gW0OenJIW1Zo5TDWZ9tlNCs3tFUBS7wCTMPUbbEQYJyKVE4QpY1qqdxRkCncRaUdNiywHYWVzVQV+iioOsarHIY15ElAVqF3L47Z7kp2IgremenzG9uuXN8Qte2rH/+B9rFNT6S9MPP2G7mRL0hwyyi7XJ+/O57muMhJx8fws2G2c170siwXG1Yuowmr8BJsB2+kYgwpNysCdoK5wyzbU55+Z5+OmK1XOHVLYM8p0kz+v2MyOuYVTV6uMdtVzP68BPOPv4SWdzgmpx4eoTWEm1qtN2Q57esV1uclASBxBeSdHIXJWLCIKVuOhokoeczjBPqzQ1CgJWOydExRb7BDwco4VhePKUf+Owd7ZNlCUkcESQpKqgR22t0rdFBihWSKNzB20NPMhwO2dYtUZawfn/B/Ycf0U+mDNIUFXvk7YrXP/wjyXDEg4f3effTGyZZRT5/xjd/9TuevPqJP/78lwyP7/Djy58puoJ2s6Efp1gUUjkqFKuiobfI8bWiiHZxNzUtUZ4j6mWETYPOL5h/vyb0Y4I4RPqWfs/SVBuGgaQuffLa0OsfEI8jFjcXxJ4PxmG1RTvY5hvS4SGDZMRmtWa9vWL25pKTzw8ZffiQg9vnBHEfJXuE2QghfbKzDxG22TVreQGmcLgk2Ym2rqPVBTJUfPWbr4gmBzTaEGQZ69WcbV1RNy3K89gfDTBpwFy01K3ZQaRtyfDBB/SnY/b2xowinyjJ8C7P+X9++A//MqdJQICMxwTBmKJrOL98xuMPfsVw/yHHHxU8+6ag8fYRvVO8NEANQ7ZX8PL3z3HbLf3JKWE0ws+2SBPTlCVeZ/Cjwe4Fawu80RFS+HjhxzgDujCwXOG2G1IfgijC8yNE42g3t8x+ekEUHPLBRw+5fXnDxU3D1SLnL//z1zz+5CHHH51xd1HybFvw8OodoyxkfPcxtq6R0RQZT0AkqLRPc/kW8eoJXjZB+iHR8T1c20GgYAsmn2HCjGj/AOdJnLdA9cZoq/GswVQ1xgrSKOXi/D3WWibTU5o3V7z859ecPXxA0dWgwdYVk3GGlR6L2xtGA4GvNtw8/Rl92+Pq1ZZ5ecX9030aHfL+xRwnIoI0Rvge282GYS9DWYuTAaP7nyHSCIfCblZ0q2uiR31kEIKxOGPxvAAVZNimhiJHaItxjsXFW4b3DhgcHeNHIVf/8I989+//E6cPzxie3CdIYjx8VJjgO7er73v1jOvnP5FOdz3gp/cf4o/HyNBHKh8pFdITO5dJGGLaFiHAOJAECK3RbYEIgh21WTp26zRBGIUUxYZHhyMWixW9SLJVEHoS31PcP5zijGbx49/gH+wzPruHU4bBQUpda4zsQHlUWtA6i/5DPrjTsDc9QHY1ZVESFjnd1RXd6QkkfeR4H2cNoikQfozfH2CbAiEFCkc67AOS9bZE4Gg7Q1drxGJLOi9o6g1X8wUijMjimBfXS4IkZW84IIkSQrVr6WjDAaPJPoPMx5QzRF0S+wE//fyCar3h5OCIg6M9ts86zPgAJSUqCLFVjtms0VFEa6DbbMC0dKalbR3aC+jqLWXTcrPe8NPVDavthqLdbanX2vLz9ZxPvzgg29tHKUG5es3q9TOiQCJOpsizPkFo2VydU/dDPv/tv6VrYfn2BX4wRG4brv/5luWN4Pq9oarAoWgajW4qAnaKRHz0CeHeXWgb2s2adnFDt93VxlnTEXoSVyva97eEwwKzXSAfJHixo9vewmZNe35LVs8Yf3ofeXBGUTj09RZbtTTvXhNMJMWswtYlMfD7f3rBwckB2UePEMrDxkP6wwH3vIjLF28YHZ8Sj6bIeotbXiGSMSId4VqNcB2u6UDt1CeZ9JFCEEUBRjrapsY4S9VJssMRerGmbSrOfvtb+t4WfwWif4yZv2JweAcTxoSeZbZd0x9OmD7+Cle1OK1AzDG6Izm4Qzl/R7O94PhownDQ43B/n04bwtBnNbslrwpSKVHVhrbVCJfsFm/Cw0sHhGEAfoiXDLGbHHf7Dld2RH6MrjaYYo7faobZlPWiRnWOSCjGUcRBFhG5mkRbwl6ClB1BkvDho0f8/PXvuL66YWKhK7aYpqLNS5p1TusszWZJ3M9I90/Qy1vsYoYMUyQ9jDYIGSGlwlmzgzpbjdO7rLPwI4IwxhhLuc65XhWsK8uiqihqzagXM+qHfPHHv6DUgid/9Q1B3eKk4cFnj5m/k/ReCR6c3iXQhiCIkdmQbVXzfLliNAlYFRVe6DP55HNuvv5LpDUoUtarLdvlDNm2DOKEtqqQdYq1gi7fgg5xUqGaAlsvsEjqmxnFmzfUyzWrbYWmIelBWxoi4ZMkGeFxzFrPyEJFcnSEHIwJJmO81N+BzG8vMdceuqq4rS2/+fNPqAtL/eaCwb0DOtsn9jS+iomnxwR7Y5Qp8fv7iCjeWaGblrYB3/OpO4NzCnSLUgIrFXgWqQ3W/OGjxHm0TnB5PScNfuLRFyl3D4+Yza5Z1R0hhrv3PsT++AzjHOvFnLIxbJcr8mCAN93y6i/+gsE0IvYj8k5ymvbZVC3SaWpTo61BtSWB3zLbWprWYm0EQYgIJ8ggxIsDpGCnrjqB0xbnFE5XdPNnvL+cMTqasprVlAUk05g6v+LFz1csV2s+/PgT7n/6mPrv/xH/cEAThRTrW/xeQDI8ZPFiy49P33KzzBlOn/Nf/Poxn/z6v8KXB4TphOhoghMRsnUoTxHFAZ//239Dffl7DKB9hcWgrWZ1u2QhIxqb8vrlKwaeI1I+Ves4f/ozmydv8Gnx+j4/Pr/hVd4RRgGfP37A85/OcVWO5xS+yBj0M1bWUskhdTUjr5aMx1MaHK9/fsNnf9JykA7peQOKfE4vygmyFOGgKws8P0AGfURd4doCfxKDF7P/4B7LZz9RlEuUUPSmB9im2SntRmMp6cxuYRI4R1EsabYLMqmoy5L1as1kPkNoH3l4iu0cxmq0bnFSkh0eMjoccue4z2KeUy7XxOkYEdZEvR7D/RgVKTBrZLeLkgppsEWJEwrsjqfkT+7g4ghdLbBdiUHDdsv69oZ50fDBV48YmJIvPrjD8vKG2XKLQ5BmCXXnCH2/9T4PAAAgAElEQVSP2fU5AQZ/fEw2OSJoJYGR/HR5xacK+plHsbkhEYJJ5uDOgMsbiKOQwFPMbmac3TkGoNOWKJK4YALSQxfFzsH32W8x2wZhBLQCm7dUixX1tsWP+gTDMbkFGY15/XzLxyenu/Y230Pojq5RpCf3kMrRNS3JQGG6DfGgTxh9RFe2tMWa7aLg7N4B29UNCMt0PCXeO8aTMUr5+L0U05QYXUPXgrE025yqyynyBaZa4mEYZwHy5JjtasliW3I6GBDqGplfI4RFTQ4wXkN+fctyMaezlvF4iIxj2m5BZzqefPt37B/t0e/t8/Ev/5x823E9f4f0A84OYkLfo7OKvaM72G25A1+vLxlsA0bDGN9JTNNg1jmyl9FsNYlrwGmafAE4lLBAi1ISPzAIX+FkjJMSa8E3hqbISX0POxqhmoLydsns93/P/pe/Qh09wk/60MzxPY8wStC373bg0nWBSK7xe3tEownKdbSrOWESYbTeubC7lnpxSyBa6CqErenWW5xwdEjoT4nGY3S+ZP/sHm00wH77I/XiFhH3mDWONApIkpBBGnB2ekjsKcrVkq5pyPMcaxxl0fDi6pZpXSH3GvzRCOkF2PUGWVQ87B0wvf9L2rOWKOvRXVyR3B8ivV2McrNaEkUVmA4ZBURItJOopgQ/QA4n4AJQPiLbx+kGff2KrgU5vkvR+Fw/e4rSHUIrvOkBH3z8GF11hKtrnAtZPn/BdnWBKLdMzu4Thx7aOd6+esWy1qRpzBe/6RHs7eMnfbxsHzU5xuFAuJ1THQvFFuoSawDT4aqarirpXEujBWVZonyfvO344adnKCWIlSTYzEmHA/x+hptds7l+w+zmiuF0H/XyKQsEw9GYJEkZK813P77l2dtb/vbvn9L3HVb1SI+POOs3bLaOTVlimo7+YLD7b84yTjMKHEnkc3nuM1/eYkzLcDRhubml2s6YDIa4bYafRYi44/b8nHVb88nJkETmeGkGhAjhgwDnFPW2YHO9xLoWbzoiGk9RnSFIezgVUbQFVVeiZEDgBQR+QBDGNM0G0fqoMCTrZ+TrGb04Jog8fNFRlStsu6ZRknQ0QYSn2PVmx9ixGhkGYD1Wiw2mtfR7Y7RfkozHpLqjrpdMz47onKSWhkYorFSsb87ZPzziZjDm9fU1i5evccpw//iQycE9Tu4+YNOWvJjfkHQ1QkoSL0JJw0LFtO2aummo2466bfFdS371krQXI4d95GCf/tjhtMZWJd1mBm2NMBDJHlJqNA3R0T7eySlh1LGd3xCqAC/yIBRY7cj6faZHJwwnE8x2yosngmfffMfuKWom90+J+immAoII6aco30NgEYrdDGY77GCIqBbUF+eUy3MefPUZrdUYoejmC1DghSFCCG6WW0I/oilLpDAoJxke3SHwPTIp8XpD4jQiCiJMvsJPUqqmYnT/0b9sabKdLbh39yEXN1fkmy2Br7iZz4mjCeLuEQPzK8aPevQP7+7snzJmvtZMsgF9QqanH7N3/xHb5yWe3lBXc5So8fr3dwOzLlGJwy7WiHQf2R+C2mLzjiBwzFcLitk7/KSPuzjn5vw9ebHh4NMviM9O6Xn/TCCXLOsN1hpevXzD9bojHAzwQ8VN3nD1F/+Z49O3qN4hwy//CNkagv6ItpbISYkcTlDZPlKpHdQoTqCRiFhjN7eoUGHqLSpO0cbi+T7SD0AnzJYzrJUIpWjzkpfffIe/qrnTy2hWOd2mZDwMePPN73l9/oIwsGhacDWHx2Omxx6vvn+Bahwf/+Ye+voEYQVZ74i3z39kuSnorzeEniTEUhcWoy2Zc1gV4LyUTjukF0I6RW83qDQEvRtsZZRhug6BQ0iQyrK9es/V4oY7f/wZwkgWX/8j//5/+F+4KlvEeMRxkhFPR1BUdG9f7dpflGMyGFCttgx7Q87nO4ja4ChEJBnKC5Fqx5PAGJzuEF0HWJwVoDUCn67T6LJCY7FKEEgPz/fA8wg9hedL/EHCcluxbRoST2Cc43SUkgQ+i3VOMb9hW2x59CcHeIFP6HkEpgOnEWlMXee0dYOxEs+L6JTkzuExYZvjO82rpy/oPX6MSjt01xKEEabc4tp2l1t0FqV8pIPQakaTAZvtlrzR6M5QtwYJhKs1tWkxvs+H9+/ww4/PuF2V/ObsjDSbEmUThHVYkTIcHzLqpchqga0KvK7F9wTn8w2zTcGgn2BezJn+9r/EFWuMtxu8vMDHJgnKi1D5Gpsm6HWDDQJEr0e3WbFsGm63W26Kim1ZUTUNQghGWYznHLWxvLq6JhuM+P79Je/e/sSnfUUYTxmeHtFKj/XVOdeXS8qLLcnxU4rCIpqO05NTwoOAzds3fPu//UdW85pBGqFkQOSHCBGg/ADfQtTvUa8WJP0BzlpabXaq03aDT4fXT/CnJ4gowjqNbS3ts7c4FSP79wiCmrHXZyMcpgtoloLz738mSzOEl/D+73/kYvMzZbTP69fv8EzD3U8fcfVmzgePPsYLB4iBxq2ukKpGSsHm3RWRH0FdUG+e4p99ied3yCTBaQ/ngh18sW5wtsFqjcMR9jNk59PUG9q8oO00OMdov0//eB9/JQkOp3RNjblZEezt4fdTuu2ct69fc+eeR5BGEIW0y1tc9QShplg9YnXxhuXFOZOzj3lw/y7LLfi+papyZrM5eZ7z8PSYarvG90J0q9FO4KTCkwIlweIQpqUrCtrNmu76HXp5gZ854r0Bzk5Y/tMzIqloCBinKdLWTLyOIE3x4j5RliKpqfOSZ1//HZu6ZrO6pdouifsD6vWKYn5LXVTkjaFuSg7u7OM5CPfu7Iam5QV0Q+ThETLywRlcW0LXYHWLBWzbQJzivADbVVzPl+R1x2xb4Zwjizx6ScAHj+5w9uAUqYZMq4iLf/iJZBoj+z2SZI97Z/c5OjrCthqlQ9r5FbVe8/3tJVH6IZ8e7vHBV5+yfvse1QZcvr/BtoK8sKy3OVGUkW/WuLbGxTF+vsT3LDaX+FGMXt1itpfYoEe1qSDMUD0IrEQoiy1baEqGp3fI+iP8CsrzHEIPNciQiYfKBpBNaDYLZObwzu6TLnLq51f44/vIgU/z4hX5uxnj0zE4TRiFeMLuwI5JiEAghIfwEqTbYFdz3GAPEYhd/aptwfeRnUPRYp3FYemsoegMq7omEILQdiTCMBr1ef36Z2grVte33Ln/EbrTVE3Bal3grKHoGt5evedXv/hT7mUhpinoNguq7YJRGoMKuClbKnvLNIvxpE9XdEyOE06PB3hoylWN6p0SJCle/2BX9ygsQimQHrbWuM0t3miPkw8eorc1/eO7DB8+JMDSlSu6osB0hr2Hn/Pixx84Xy05uXuX83xNGIekvYRQCmg0PeEh45R6VfPjN99y5859Dj67hz/cQwxGeFkIixJpMqyv6dlfIfweloZG36A9n6LKmb15xsJ6VH7EaHrI+uI1oWexTc3ra8vy+Qse7MWU8Yj/6+klg4N9jtKUf/jn58i6Q/Z6tK1DZCNa6dEpxdvzJVFvwOnHH1FezVD9gMXtDf/nf/8/4hnN2/NzskHLaLwDahscRVHRra44OnuAs5IOjUoqhNoQKsH4zgH17QwPhSg3+EEIMsB0FZurt/jjI6IwwxYrRJAjQ0ltFFVrWL59T9M7ZnD/Md5gijXqDxFag6PDeA4/sUR9yYOzD/jpm2eYqkJkDg9QBkLfx3UlbCuQIaaqIRignQ/2Gl3V+A5MtcLRYrAUmxXVak0/SxnsH3N3OsCrFcnHn/Gnm4IfX75nfHxMmPRQq5xqvebq/Jyjh/dIDvZJJkNGvTHz5ZJZs2W5uGX/3jFZ3LB69ZL1+Tk3N3M260uyfo8oDcmLOVWRI6cTABwewo8RoY/wOprZAkWIqxpcNaO5eEtbajo3gERzvaqYG4HXG9C4GOE2jL2cIEiJ9k9Ihj4mVJi6wstCYk9hOoELxsSTXeWy0CWrV8948d1THv7ic9Iwo5zPWLz+noMQ/P1D6DTWNLthoG1oizXWOpq6pN6sWcze4dkS3xMY6whsw97ehDpfUxowXYET0x2TJlL46YDAu4BiwaYV+KFks85ZrFu0MRSbFT//7mv+9b/7bxnujTm+O+Wzzx/igGa7QfqSLz//nP3DEbOrS2azW85SS1nO0O4IoS1e6OOMw1lJEnm4tkNTQLdBCrBYZGCRYYwrlhDHiCjCdBopPehqqEpUOiaKfKJ4wOi4w968x13/TDMYowZjrA1BJvjhEOHNGR4fI4KM9c0F24tvcA8+JZ2e4qkQV3dIz4J2CFsR9TPM4oquyDFVi9EG4wQ2iKnqhripUJHPwfQhwcEdPn36A3le8HzZEMcxEsu4F5L4BmUr9keHbGgwreHy+oayarDGcPv+km694kh4+F/9gl2JZU4WxejOEEUxWXZEt12wefl39CZ9wmCEM5aua6nyDc16jhz0sF5IkvZAO6gEzoEcTjDSQ3gxdnBCV3c0yxua5Yp8dU3gNLEnCMcT5usti5sr/r//9z/x7778lOTTT9HSYasV/V6Prq5Rnk+SxsjW0laO6V6fJ3/7A786OsM/OYb+GC18cA5hDMq00DW47RzTGYwFW9forsK4hkZ31EKCFEipmF/Puby+oTceIosN68WCyd4eutzSD33QDd++P+fZ118zHY34xW//NbP5BokgbwXCS1jVLbn0QLcMBh5HMiCeDIgSR1XllEXB1JsQxwFd24HWDPf2yPOcwf4+lz8t8LQmMh3D/RHSdFxtbunm7zHOUTcduml4ePeIuJjjq2OkFhgrcH6CVBa7XNK8vaDv9Sgw+NkJveEA1Xb4YUpZ1uTzK1QUUjc1dAZfhQzSAcsmR1lDYHdRm0ki2Sxu8HBEaUzc6zMcDugNh6ikh7PgjY8wVQFSgRdS5i04cFYSeopROiDf5qwXS4ZH+1T5iqI1HB0OqbTAD0I2m/UOxeAFaF/x4MvP+OrLz3n/es6rNyvyTUkoM6q6IxlMiHs9hBEI65FEGTezNf31msA2KKk5Gvcplyu69RB7cArCw0t6+NMxCom0Da7rsEbS3M7IL14T+CnRyYDCFdy8OUd1imR6jJ8McGFIEkGUZqwv1nz3f/81XuBx9/gOjQAXBzRkBElCMDymY43rGkTcQwY+KLXjT6JRYYcKNE5FpKcndMriRRnVZkaT51RpAkogBbRtzXxTcXAyIQw8QuVjekP8wRBfOeLhKTelxljLYDQkX9+yvHhN7+gOEx39y5Ym88sLAuVRtC1NXZNXLW/fXhEGEz744DEy8lmZOXFvBDXo3GM6HnDvwX3Mqqb36AE6SKmNIGr1jqScJqRJgvQjUEOQ4Ioc7/gOrnGIpsNKSzzJKH+Gd69fUXfQyYSL2xvOHtyDYombB6iqYfv+lg+OD6mbktuLDcn4mL39hHJ9xbKuODka4p+eMvrwz4jHJ7AuMPNbfD9Ap2OMcPjJACQYW6HMDtSktcEphWsLjIpoc41QAUIAnkfVtBjTIlWAqUv8MCAkJ64sdx//ksPBCGdrbNvQ62L8qsHzBUkWoAcRZ/fvcvrgAX5vyptv/5mTX5/im4Sb7/6WtqtI0hSkYLFao3yfSb9HawzWul2LTt1goxinJG0HQkTo+ZLIBgjU7v7ikNahncFhqKoNz1//TNnrY7YrNrNL3v/wlLcI9j+8jxj4FG/eEgce7uaW6x+e8pd//TUfP37M0eEB1dU13uPH7B+dkN+ucJ9IgixGKB8nPYR10Oldi0rX4dotwkqc7miLmnabo53DeR6mcwRRjFSOIPBxUUBdC4zvc766pew0bddhrGW9nGHClC9OjvGlQgcep2dnRPEIWddERu9cNPWCsihpak3gx3h+RpqEFJXh4HAP15a8nc24d37BKI6QCAwWV1eIMEGvFpj1An17iS4rbFURe5KDQcp2XdB0hq6uEErSaofnCz56/CHD0YhffuGThT5RoEjSjPT4Lma1QamYZLyHpzs8PyLYP4VO88mj+yjg6ZOn3F5fcbI3pm1regdTkCGwiw7opkV6ChXF2KikKQJ011FulsxXa2bLJdoJamMxpsM5xyCJCYWkHwfEUcyLyrB89Z5sPOZ2vaInY+4f+FRRwOTTx+xFEf/rf/cf6doF6//9f6I32ucXf/7fEGV9tN/gn/VpXjhurm6Rtk/T1ARBjzAKibIe8TBECUinU3CO1grqRqPzLaYu6PcjrCcxSLxkhIjCXfY5TfAmJxDEeNsl4u0LYj9gs9ry85NbelZwtdgwOhzjT2LGU483b0u2Ycy/+uwzRnfv0y6WaJEQ90foYoHu4MffPeH160tCJGJT0E9jHIL+fkE3u8CoEKFrtLNYXWPKLbor6bTGOrOzFXsS6YdI2VIsFigMw+k+RnT07x3hNg3Vq/c0tiEcHyIk/PDDU968vUWIkK5eoYSgarYUb1vCLKesXvDkr77h8OSM/UcZJ6eP+PqfNnSioukczveZTiZcLFYcTA/ww5iVdow2a3ptja4rXOghfYkpl+jNDe3igm7+kjj18Mf7iN50d7bSHtH+I3Aa8/SfsOUlg36f6MOvEH5Elg7oTI0MLinXJdvLAi8JuHr5nJN792lXa3RXodKM0TgjqDaUV7MdJPToDP/uB0jPIhXILMYWS0Bj2wrbbtDlGn+yj8VijCYYTGjykqev3rNp3a4hScEgknz85Scc7SX0J0OCeJ/occSd40+RiWW2+hHX1QgpiEOfoq2obUMpDKvVFVW74W+efkfb1hwmAYt3OTcLD21bVuWCfpGw3GZ4wRbna6TXwzMVdb7GuA7pLJ2VO6ZQtLf7wPcipDLoqiRKQoSrmZc5/XGP4dE9nJHEKsalt3z9+5fUP1/TCxNOHnzAd++WPL96yxcHI048y+qy4KPHnxEePqIrSwaHFfPzC6pSs3eyB12HKBaoyUeo8RGgcVWxs+g5gwhjiq7DKo8gDMirLcIauk4Du4hFUxm6zuL5MX/08DGfPvqQ/aMx0ztnUGkkgmKzJp40rGY3+J0hNhbr4N3tChkkzDdbzpcXfHh4SLlY0JUrzLbAT4dMJnv8fnHJYBRDGLPOS0ZJgq9bPF2C9ChXFUmyxSUDpC+Rkb+LXgYZOAFeh2ly5GDK4W/+hOrtO+jfJ3v8R7htgavnxL0h/s8/EauKn579RDs85FxIhlZylPYJez0yIblz9xP8bcvt/JrDkwlivMf7p8/pH36J6u8hbYboPFTiQxsi/AFKd4TtI9ryFll2OAFvr2c8ffEKL8nQXkhtwWkompoi8KhVwHU65c1szZPbF/hJn1EQY2XIixc/cagc2jhUGCOVxMQZZVHRNoZHnz/G27tHdVPQ6w8oBDy7ecf1YkZRFIwbONzvM0gFTVkhnCBSAaa2aFfiRQq9XaEcOBUgTEvU7yPtzoXoNjkikAhfEQ/38Pbv066u6VY5gTCs1h2mtoyPHtGtZvgyxIsG6EYQnIww5YL88pL59WtW8xt6viDxY+J0yNG9M2avzjHZBhf6iKCPq3duSwRIoZHSIg9PoWxp19fYpsYUMypXYOOYzljatsFZi/FC9sZDekKD6bCbOdODfe6rhNF4QhRnhGXH2yfP8GIYnBwwPd5j1O8zUAl75SeUr59Tbm6otgG2rLFpirzzgKS/x9AK9HSPKl8yX1xw8faSk+M7iCRFhQFSgjEO03U0pSUdj3AttMU1Za4pSsvVzYp3iy1F2MPLBvTiMRgIpObm+RPe/f53HIwj/uy//i3J/U/p2hvsjY+VMaWziGJFeXkOxZyIGlM6hvsHeOkeflQSKMV2dsvNj98wrB+iwggpwB9O0FVNXS7ojKZYz8nzDeV2waDnE2cB7aojCKEuV/SzFCNDahsQVw1hFFNcv2RRNnhhxmA4JUHT+IoXz56zrhOMCDgYD4ic4e23f4N5eJ+uXfLoky+4ub6giWIef/U5x4dTQt+xXG54sWmIlMYTlvxwxqA3prP5jsGSC1wcoOsW08yQTY00LUEcEezvIZMEoTxkkCCCBN/r0Itr6vcvWV28Q441px9/gIoGdDcLRHaIUoKuXWJmb1CxT9AbEGR7VPUCm8/Ay+if3qX45meWP/8jFAuS3gAv6SGDGKsNwqyw2yVOOgyOThuKvEV7MHu3QKU9Cl8QZiGFXqMR7A1CFpWmBQaDhOHiiiz2sa4jkBrT5owHCct5Thh6dNqgnKEoCr5/9ZrP/+hLwjgkiGOiKEA6SzgcgPQIfcf1D99hiyuqm2eos18iPcVyvQXTUbYlrGbIo1OUUgilUHGKcAZdbFBBgKk3mLLAVBUmz3FVQSgsSeBYpyGzZ6/xu46jycd8cJQybxrE3gFRuSWaTBneu4eTEUY3FKtXjPbHfPvDJb5OmE6nPPn6n/hqtEcYpUjpIwMBwu7acZoSPA9n/jC7NVtq3VI7TScc26amczs36XK+qxovtMUYycQ5yuGAuBeTWoN1KebojHkr0OsF1hku3l8yn22oGk0yOsTbGo6GGXW+RTvL8fExZedjg5ZmdsP7iyvufXAHI0DFEb7RlE1DGPoEfkA2mdIaQzYeo/wAoRXZcQ/PlzRFizawXS0I0wHpcIiwli5vEE7ihSGuaeku37N3PKVrNfZ2QZYkhGGEbR1SpfheQ+QHEEZ0riEIQ+IwxqgYG/co3S42L6XEeR77Z3ehKRFGkw5GSN2RX58T98eodAQCrLN4SuK8GCEdkogkhGa+Ist6hMqgRn3AUVYli6ZF3lyzrXOKsmRdNvz9u2/57Lf/hmivx+Bwj+njD0nvwPXqd/zw7RM83xGLmDCJCYIY3yk0DuMJVG/CZb3FKYOLa2zXsu8LpmVNt12RpQFeP0Z5iiDtI0yH7SyWAG1DhIZ+aui6OU1eUd023Bkd0Jse4WV9rFI71qW16JuO4vqGw+MhzhYYU3P+9h3js3tgLcKLkEGHXtUIJRC+Q6DBC8AKvFEfpyU2jvGCkMw5qsUMP0hQfcmmyHcLvTJnttiSRCnSi4nSlCwQeH5IZTSjLEFHIT+8ec+9l6/ZOzohPb2P6xps0kdcrf5lS5PF8opNvmB4fJcqz5mvt5zdO6PVjldPn7Hd5PQf9Gg7g2otSRBTVzC/PKepDZtXz9noG9LNFWNp/n/O3mNZkuww0/zOce0eOuLKzJs6s6pQGgSJBskGumlNjrEfYKy3Y/M4YzZvMdbWm1mQQw7ZJCiaINgQhSoWSmWlzrw6tGtxxCyiFrPmItYei7DjJ37x/fhRQqvEjrnhukg/2P3hTkqMrrGtQjcp1jG4kxm3PnjE6dk1c+3QG/Wpzp5SN3Oa83MSexMBhNGYalNhu5rE9whExUEgCN+9v2OlpBs6XyF7Bn+UYBHIIgWtEI1GoTGiAyeCrkblK4SyaN0hfB+rOrqswZUDon6CqXOMkWyzAi09pHDwXA9tLMNxj3d+/2Nm77+F0Uc8/+9/SXGZcvOD71F2La2zxPoW72DG3vERk8NDBtMpg6Bg++Tn2OiA0KTMz07peR6bssRoTe1uSGKfJi3phT0219cMxvs0RQY6wHEtuihRWYkpCqLBDDEYYrtu9zGausq4ujrldHWN31WcfvEJti5heoSY9Pib3/xP/utqwx/cOeR//Q//jkHT8vc//Wf+9eKa+Trjxz/8ARfXK4Jf/4poPKGwHrXWBNKC6yCEgxAGlMACBBG6qbHoXVxdaTplsa5Eug6e6+wgS4FL29XkWQqNJs0bTjclfhDiODl126Klw0fvPOBGNKAottz+nd/FDUOMtQjPoz8aUG1yjJAsFyva2rDXG4HsM0h87FDQ2ZR4OCM5PmDZdMR5Bm2N2V7t5ib9Hjrd0p2/olnOaZuOuqixxiIQhIGP54Eyhs5qhLCc3DlhtneIE/pIVZFVDaX0cZdz+ke3iEcRQruM9oYI3eGGIU4/RGdDZtIgWo1XVRw/eMR0b4ZFoeoctxci/BBrwRt5qCrHqhojBO13B2e6WnK92u46sXaH25XW0A8jHM8jDlwCxyXq9XDZLRXhupRtyZNNzTjbMHR94u0GawZs8w78hLv7B4wOb7G/f4wfuHTG0kQDtm3BspzjuR2NjolcB9dx8fyYeDrDyB7e7BBdlUR7M06/+pS2rHAQBJ2mWKe48WAX+RQSkcQ4e7Nd99kPgBJ6LrY34vRZRtq69JIx2oGVOUAhWKyXdL4knkq+ulzw45ObBLFPOm+Rezlt0fDm5RXPzhbcfHiXQkJ5vaYdNPQOT1Btja3PwBniDoaIXky7XlJnG9q6pLIWIocyTanqCjcK6bRBVwVuGKAahVMrRDygWea8/OwF6STE0Yr58xdcvrlisa5Jwjnbi8cIa2lln21WM3/8iuz0grG1SCNJTxc4yufk5rvU5hzhFYxHYx5/+ZimLDmc7hMGHrbT1JsF3eqKznfQPsiuoF2tKc9fUF2/pDcZ4s9muP0RIoxxrUs4GhJHEjyXYd+QyAGjvQFR4uDdOMQ/ekSXz+lPI5psQeV6EIx49cUzYiegy2vCgxv4yQA/6RHVDYtXL8jKgsnhAJEIjPDA1FBvsG2JxaKqgnbxBi0FRgis41K1mqZoOD2f8+ZqjUKAhcCXvPfB29y+c4OQGs+XBLGLPu4RPdoH36P81wvmX73g8sKhbQpi3dBmNbHv4DkSg0Q6ll/89l+4fv4ZRRnQJCOGwwE6X7LIKwbbmmGvpsLgqwa3yHBDn6bc4nsBvnSRQuIKiyNcHM+ANqi2wHEcfM+laRv63hipDKZxGO7d5eF7Hr/44ksGQcCyuuTZ6YJ/WCxxox5FlvGf79/g8NG79I9vkbeW0POJb96mDXpsr06ZJSMCaZF+DzoBzndiaZ5imoJqm9JYSaftbinN34n2WmuMgbLW1EXDtqgoyo67B3d5/8MfcnDnmKAX0Nub4l9couoCg8BLRqSbLb2uo+sM9IfoVcY6K5j0h8zXS27NRmyWl5imIt+WOKMpg1nCYRNyerVl3f9wCk0AACAASURBVDOEvYgoismLFHRFoyHwx+BpjG+wtsN0NbQ1/o0h1khQBgOIMEaGCj/S6PqC6vxLBrfvI/QI17lPmyu+/dffsmpbYq9BVBuc4D6OGyG9Ht5gxMl4j/Wrp7z5ds3Rg4d878d/yOnnv6A4/xa3N9xNwo/HCCHR0iIDFxH7iFGEcBLQPVRb8cW3z7herEj6HXEUkhc1viPpDRPSpuW6XvNiVdAah7JTnDgwX68JQ584jqmbGlO19EWA53pUWKq24WAyQ6cd9fYVjoJoPMFiSLohsqnIi4JyU7AoKoZJCYGLtIIontLqBmk6dF5gRIVrzC5Z5AVo1ezQ6q2iuXpDMBsjR8eER1NMZ5HaEoaWskywShD2GuLjE1a5xhvewIlnCC9EOC4qW+NkC8T1OeXZa+q2YigMgddj4EKTDPGswdQFunBw6ZBBBMJBtyUCg1q9odnmmGKBbTY0+RoxiulUC9KhbTukHzEMImaRTygF84szPGs5vv8I5V0wnExolOHi4pJ0PufgwTHxbMB4ljAd9Gi2GZWrcPf2ydbXzAOFJ11OX19Q2gCjLYuqxJsc0EhJal2uLi/Jtiv2o4im6YgTCRacZIjPTkQw0qcL9ijdjKdnT/ns29fI8SG9JAEvQTsx2hEc7I+ZX5xy0ItYLJc8+Ye/5t6whsExuvZpckmapjz/7W+xVcFsOmI8GeEN9rk5u4njSHwnRA6m2NYhvX5N/fVnRLMZQX/IwPdompqmStmslqTbnM36ml7i4vkOnr8zv1TbEg175HlNEScYxwNqjNtHS022mZMWZwS+x+D2bRabOfE0ZNKMUfgMBzMiK8nPT/ny8hXH//E/MBaA7ejNPuLhO28ziKHOljR4rPKWp51FIriRpsS9CEmHNgXW3aN8scZ0FmElpkgJfBdnOoM63oFDo3gndnsOpipozl/gJRGTG7fo3DHewV2E9FHrBuIZ7nQMi5e4sYtMIghDcPqo8Qzrd2ino1hdIaWm7WrSl9/gTKfIySH0p8gwRucrbDanrRraIqNqc3LVEo2PuXXrPsV2TaPXxMmAN4+fc3o5Z1k0vFzWuL0JQeBwMJ0Q+nqX4FM5/WRGL/DpipKDW7do8y2b9YrrxYIuCPni7Jwf/fD38cOA4SAC61BWhk4IwnpJu1lSkzDwYoSqiSMXbS15vhNCCAROuNpVd+Jwd09UNV7ko6sU2YBK1+h8g1Ua4e7S2b7nEFYlq+U1YRDzf/63P+Nqm/HxUcHDn/0tk9GAp19/yeh//JTv/+l/ZltL3lzW0JuxZcWnv/6GP3r3AZPEsrw4Zxa6OFEfPB/szqm3qoWmQtU1uq1pdE2DJq9rsk5TKouIE8psjdAtt45n2CiiVC2hUXSnrxG3jwmHY9JoQDbZMLl3jzvLFX6vz2hY8uSbjt5kH0c4DAcZs3FCE0ik6Xj73fe42ijW6w0FhryqWS6XHPdvgrCopqYXBzSd4vBon8FoRFvkOGHIcDDEdT2EMRhrSPouTd1gteHwzm2i4YCu0RjTEEQRTiQoXz4jcDK6quDP/+LnDAOH76klw7sPCIc3sNLD1QWqyuhEgxEBTrBbOxrt7zM+2SPdzllvlxijcI0gRuOEAa4/IuyNkKqmWBaYUOG4O6yA54ffVd5bQt/n8PiYxYvnRJ6HMRIZ+kwGI6quozKCRVqwevKcZZZy9513uV6tubz+mvuiQUwi/vXyawZvBqhrxS9+9rc8fXbJ4dERB4M9Kho8KZFCEklB21oC6YHw2RYtfqhJiw3bwGV2nNIbXZOlinAwwpEB1vGQQYCtFUJ4uANLpBscsaY3ekTUVBTLmkE/ITk8QEZ9lLYgOjAVs5uSn/zJ7+H2Jlw/eYrerFg9rdi7cwfTLCmuvsEVAUaBUTU4AcJ1dsYBPnQNSBchfIQxhIMJ7XaF1x/Qprvl2FZ4LOZriqwgAGb9Pv1+vIP6uwGB79EGIWerLc+ePSZJQmx/wkHsEnUlhROQldm/TTS52CxROARVy8FkRiRcAi8AV/HZ46/R1vL9uz+gLAuEUrSixvVi2mJLLwq5+uqfaEXI/u0T2rxGSY9ARGhlEL7FCoE1OwZGt77AVJpuPacrlhhc/MmMgYD+0QMcU7NUGm95TRDH/B//198QW/hoOubt+7cIEomNXUTogugIApfZ/XdoF+fopmD59NcM9m4iXIkcJjTPvsWUC6L799D5CoIYbzjFSfqookCnFdqWqDxHJD2auiEchCjVUbeaxTJFa4U1Cs8PUdJlkRUssg33Rj7dyuWbT75lFI4wmxekzYY7t6es8hXRZEL/4AQ/ivHchuOTO9RJn+x8zk9//jOusoLpaEqNQLUtjrLM52tiLJtVxrhfM7l5EzcARxnS1RJXK4plhnfooucdfpPjuC5CujRlRbZdsE7XdEozX6wwjuTu24/Y39/jo/t7SHET7ZxQL6/5p99+xh/cPuad9+6ydzhm7+Qeq0YTHd1iXgm88oJwsg8O4DmgKoT0EQisabFaYY3FBgGmSLFaYx3QQqAseNbiSAc/cnE9SRAIvGGPQrU0rk/jxww9h4OiIDwe8cc/+SG/+4M/pHl5irY3iPZn1J2irUukG+A4PsY4pIuS8/M1+4Nj+s6QZDajcRr6A4koO1ZpinfjGDEc0ggJRbqLlOo1JuzTpil6cUVxdoaa7KOMwhiNE4Y4xu5gsQas0pzcucHR7dtIP8CRAuO7SM/nkycXLL++4H8LQ27eOkEYn9XjL+lPBhBYKF0cXXPx5oq//Muf8ujuMft37xH0+9A1NHUJcolrh+jvepa666irXWqprCqury5YbjNcRyIdn6xrkMIihMfh8R2M2fWMPc8BC953jlsrLMoo0sby9OwM/ekvCH74+2w3Gw5vHNNiGc1uMprdII5CXMfFFApdtjSblCJbkXUV1tzZQcLQeGEPtzfYAY8HEdvVgqqsWK63qLohiWIareiH3x1+dOBK5GCAkAYpWmxb0S1f0Vyd8uzTp1xcbHGGBzT9EYnXQ+EhAo9xNCBRLZvtgrPT53z6xWc8nI1ouo6umLNKV/zs0zfcufuA0fEU3SqCIKJqS4bjA7JNBtUVDG8S9iJcEdJqRdU25FlG2hkGvSluEOBUJW29c0qVsWjjMY5iulrx5C9+zvXzNcuwRc1m5Odrnn7+hKOjKfc//j51saXMNwTTG4S9A9yBQXoBvSAhsQOas5xtmjP63m0+/tBytR1D45LnG6psg/EirLXEnoMIQ1pXsnr9DCENQZdCscYYl+LyJa7vYKMBYriHs38T9G6ucPbuIxa/+YRqs+T51ZIbR2N6x1OEr3BdsPWc+vKC/OqaVefjDQ95+XSJ40jmZ3MG4ykH7z6iSVO8ZICpOxJzwursKYfpHC+wWKEhHmKaku7qBUpZtOOTX8+RgYMvHaqmJeugPr/gV59/zbpsUQikhN/54G0Obx8jVYd2BNXikijeJ6g9hMzoqpRgEKEchyq/5PnlY26MxoROD7c3I/B39QZhJNZx+HI5p2jAb5Z87+gBQT+mSLfkVUdVNcSeQAtN0zb4dYWH3H1n3RDGPaS2CAESB4sime6BkLRpyP7hCcX8iuTIIb79Nn44wvNa/suf/id++fNn/N35NR8cjfhPR1O8eIAOYszokHkYUxnNVDiEe/sEQUASR2zLnLLqCKYTcASG5v+X1smpFhes5tfI8QzHs2A8MIZOQ4tD60esXy4pWsUmL2l8j3e/9w4PP36fweGMVreEQcCyfkZa1ETDKY7n7xgYuiOrGya9EcODYxq5xAlDrpUm1S3K9Vmt1lwXDT1pGMURo8mMbAlbrSmynMQVGKuo0xxXafYPxyhHg+9C4ONEIVZVmK7GdhpTFrvaT7XF1nMQG4rzc/Szr1j9j4iTn/wu1g5osiWPn36LG7qYbIXajIgaQ9I/Ijo+xul5mHTO8M4NfnLY5+id76N8l8HxlOL0Ai94tauAFmPcZABeiPQ8Wl2jdI1xDAbBMl2zXVzuXN2uI8MgmpLOgvFjCiOpjcOt731IMkm4+MU/UxcVThQzny8QnaE/ntDvRajaYl0fYQ2+UdzcnzGZ9cjTEjsbYpwYpVu6+SWh5+E4LlmmOF9suTHuEQYeAo2SKY11wQS4UmK0wbYpphBIP0R6u2l5ERrik0N0We8caNGDTiNbTUdM0ylcxyfNMp788jN6xmGyWjKazZGupTYh+fKCz//xZ7x59QwZOuz5HtsX5zvI82Qfvb1C+DeQnsaWKdp6CEeAsd/dsSR2/RIWV1gjMaZhvrxmPL2L0IamKhDW0LWK6STA6Qp6+w/o9faRneHy4pLJbEbeKNLGcLEu8FwHvx8TDkI80eHZivPFa4yj+PDjD3DyM549f0w/6nN5ecnLixV5mlJ2YOZrbOAwL2p0UXP/+RPG0ylW+TRVShAOMNqAhDa9QFUt+fKS64s3/PLrr8htxDhIIB5g+wfo/gBHQHD7JgMHzi5f887xgPjmmMUyxW5SWC/RasL5UhEe7tP3PXpxD20aGtMxORwiREfTGjotkHGI058xv37NXpIRTUdU6ZJivqGuG+aLa9JNSt2VjGZ7SN1hjGY6GtJWOY5wMdoh8l1arWmVBAM6mBLHDTo/ZXC4R+W2uJHDw9//kNNnhioTJMmIKOoT6hF5u6XfS9hslnhRxIO33+LwaAbVmkp11LVGGZdFYxmXhuU2ZzIe0bYVJrHo1TPqywzhDkEbRFPRSYMbSPx+iKgHWC9AWo2tM1Q2x0rL6mpNdfWG/XsfIoI+jgQ/FnSbJcp3sH6MqQvQGVQORHs4o4TtRcr25ZdY0SHiCKHh+nyBLhqmRUswyBBBgrAGvV7TljVlXbHOaxrXZe/mDRw/RDo96uUGMTygci/4ly+ek3eC4f4xie8jreLBzSOU2VI2Kb4r8ITGdA1HN4/Yf/AOVy++5uz8jPN5Sn885cILWW83+HG8ExONQTg9wkDgpNeMx0PWOqJsfHqdJZCC8XjM9WKJ1pp1A/5mS38wwJXs4ORGgQNO2NK1LUK1aKOwjkD0B7iug98pzKvnWODrZcq2a4ljl9N0w8+/+JQelq22nAw96r/8f/j7F2teXs353z++yz2vYf/uMXduHtKtXlEuL2gmIZHvIhzQbYe1uzqObTt019B2ig5B1ZRU2lI1La3jk/gedZESSMNH79yjMJbT80t8DCMXurqmHUoiP+LtOw95NJ4xPc7ZPH+K53mEw32s12c4mZAWFUpvaLqGm8cHOH5Afxyz2SzorIau4vWr1xw9vIdULa4j0W2DBAa9mMFggBT7uFrT5jnDXh9MjXRCmkbRWsvx7ROiZIqyQNfuJrW7BnN9Srm4wIsDXrx4QeoJbt8e0T/ew4/GeMkU1wtRvkOZFRSbNd5gTNfW4LlINwQUo9E+UkgW129wBVCVRKM+ji+hLpDCYzCYoVqF9hTCcTDKoH2XtK6oqoqoPyMZ9dFFTtp0BE5Ca32EIzFBjN9T/NO//AI38EmmB9x8+BbzywXj4zF1z/D8l2dcff3nXH7+grMX10RujJQ3efjoB5xdfI10FYHn09UVnufR6I6DMEBVimqTgTU8v7pmNn6JP9jnzskJnfUJUQihAYETuJi6gXqLQ4c7miF7fYSsGd97C5Ff4c9GyLiPyXPqJuezf/wpv/iHXyHyig8n+xweTTgcJLRWo/MCZyRp16+o8xytIrzhENtPsH6MFR5WSBzfgbZBmhYcMK6DFHKHVwBcP6LeZNhOkS0LjvZv06QZ42FEFEc0GrIgpG4qmqYiy3N+84v/iR2PGLuSq7Nz3nv/HeLJ7N8mmizTNetiF7uN/IBBP+Dy4jV3v/cjwtcSVfkEos9ykdG2WxLXJSBE6Qq9Kbl/+x6tddBtS1MWeMZHWUWSrUi88XdPccAams2CLs0oTt9QbZZ4/R6VhXDvgMnJId38gg8/vM+vfv0NkZ/xRx+f0Naa9M0c8jXD24f4R8eEexMa01JaaEqFYx3qdUp2/jXT8QmD2VvobL1TdZsQ0e2msLKL10S6wY1HWAeE07A+fYzjSVy7hxUOdbGDYV1fXrJY7zbfO6vACEotebrKuPzzv+Kbp89JXy/IX11z+47D05/9lP1bt/ndvbdxQhc5ifEcB8ku2uY7PpqEQc/j3z16n6/OX0K/hwx9nr54TVGUdHVFz3fxPY/V/Irh1Tme72CtItssUVmG5wbUWuGFAbquEN0uktZ2LevNlk2jkWGIaTS2P2J0+x5e0ufhg0f0mxrPrel//xZEEdvPP2d2+w4Pvv8x82VO1xpM3bIoFbbuuCEMNDnWdDiuxDQ50guxusbUFUZ4O0aEI+m6AkRHswulIH0PISXC3TnLvu+j1x6tgng84NEtWCyW3Dzc5+69m0z3JwQx2KHEiUdM7t7nxbdntE2Joyy6E2yv5nz9+A10YwbubQK3R386IfZzArnAEmNUC45EWUuuLBaHNs+QFkxR0WU5rTZ0QQjGYK3FCAc3itBIdFnSWc3BjX0Gh/s7orOqd7yJJOL7P/iA0fiCr8+WXL15w8TpWOeKF/NPaLTh0fGIR2/dwsiQv/rrX3L37i3e//3fwxmMcHoxdD7GlTR1Sac0wovAWlRVoruGzfKai5dPeH12jRsl7B/M6L5bU6ralvFkTLtO6fcH1LQ4UiAHJ4S+Ioxd8qqgNxqiyoxaCr747edcbjL2j4+Z7R/g+AlhOGUQHWM7Da6h7TKWZ8/J5wu6siZtBaoElMVqjQx6mKbdTSA/hjLdsrx6Td41WNVhm5pE+5iwh5ESHIHo9bG+j1ElIrugS1dkz7/h5//4OYvTOXcePmByYw83HuMLD1c1aOFg4iFXaUfXKfx4wq9fPKbINqCe4T39hosGhnsHPPzBD9gWGTpP6c9GhEmPomzp0i223KIXW7z1Gs8P0PmWMs/ImgZ3MsWJ++imQLoBuqio2454HHNddSwfv6ZtS9yoID2EbeFjNjVffvYFZ6en4N/hJ//xEYNxj2lf4SUj6gaatsaL+hzcO8Y0CX4Qs/h8QX3YcXB3ghtpipWhLAtuDfosOlgXDbdvxcggxBVQdxVnT76h3R/j64Y6zamKnNF4DyMdVFPhWoMMEoQL/qxHuNfj2dNXfHKa8eXlhv+yPyZxWy5+/QlfPb8izQqkM8AQ4AUuQTxg7+iIrqvwXJ9ms0JEPdxehDQGKwWp0uRFgesZrG6QSYNuOzavL8jKZsd+akrC8YDN5TWbNGdddJzNl5xdzjHG4no+J8fHzE5uYKuKzpOUpsM/PycOpoi5JTt7Rddv8O/dw3UdVF3hYdgqgdsPSJsSN46JkwEYDV5E7Vjy+non2meHzJIYqVqM79NIgXYcirpDBgpdbnGTPp3dVXParkJ6Btk2GOXh9hL84RjTdgjlsn/zLfTxuww/+BFYgW02dE6Nnd3l9r+/x7vJmHD7Lbf7EcQRzmCCEzh0rqaolpgzjTIN4yBAWLP7/fsJqq5xYgn5YufsSU2drVnOl1SAX1f4IkQ6uzRZZwTbrKJNU4QXsVpvOV+VRM6QcDgmniT0ZiOabU4+3/LqyTV7t95hazTlakmOIrEVoRRUWjEcDpCuS13VvDh7w9iDQym5bhXbKEYayzZLcfsBRR6xrUqcNIeq5cZoiK0LfG0JopxwP6ddz/GSAUJahFXofImtW3RRootL2tUTuvkpUmt04lKuO2y5IP3NP6NUwotvXlDpnOeLgtZY9vOWtK756suvqGTL3jjk9iBhO3/Dwf1bpF1L1LQYa6nTLfX5BV3TkW8XuJMx3mCAIyX1Nt1NZtYlVZezWC8R0mPaS9g2Hdu6pc5S9nshRSG5d/MOw1ZQmBZTeRyc3MVWBaui4NuXr7m/N6KTEitdOlcifR+vbfFUQ88qkrpEegL291jkG1rHp7Maqw2yU2hlWKQNldJEXQOOpDMWR2iqfEOYDEC1qFVDlAxQVY7UDlZDm7doJCgH2i1G1bt4d9awXWqWqSItCp7WLqPjKadPv6DdXOBsnhMf7HFZ5vzms88w1ZrByZD+9ICTpMes30MS0FWKer2lNprA3oDhAPwYtdogfJAyxLguqs3I58/wZifIgc/+w1sUbYdwXPK8QAkJ0xP6033IFwT793Ebl/z8DKUuudqkrIqOuD+iP90nXy2Jk5jEk5SLU2SVk2Ub3n/vA6bTY6pFx4sv/4VvvvqStoPFMuNynbGYr9hWNUHSg6qkDiRNZ9m8eUVwdLwDCSq9Y3Ah6co1bZaxnr/i8Zs3rKqSMAlxpcGNAuJRHzfqEYaCynS0ccymLXlxfsF4UjDuNWRG8OrFOYE7gekDnN6MOggxOseoiv7BCBEYWqXAthjVUjc1VliUcXj6/IK7QuKHEcU6ZbHYcrHdsklTpqMA0dW40kG4PlYbBoMEbSxKa7TosEpjnB5tp/Fmx8zCgNlBTFrnfPXlN1S9mLcePmRy7NKswBiHveMjAsfA5pyyzLl685LRbMbewCdxNfPzL8nP3yBUg7KSvK1ZV7v04Gad0o8CgkbRZCmbvMRxLKYq8YzB+W7txSiIpY+jWpxyl45qjYbhmNFbI4YnY9RWkb18g+9oZLFErS+4/uIT8m2G3V4yO/SIbx/gze6yubhi8fgl1hW4ocR3BQ4e8XiPsxcvsZVitAd+0CCspclq0kaxrhXLRhP4AcntE4QTs/5qwfl6Q2QsW7VbIGqNoqx3i3ZREDAaJJRlhyctbuCwXF8zHY24+87vUbcdl+fPefr8nHmu+OMP3idOfJ5//a/YYoUjYHJ0G6fVhNEIU05IC6A3Q3sBbVuD1Rztj3nyRLMtChphcB1INms8afBci+eFtHmHqDxAYOoCYQzWdXCSePcO7WqstHxwd8boOuO8cNjWNbUGbUvuHk0YBxJrOz69uMLEDh/dn7Hqama3b/KTP/pT1PKaOVukNai6pp5f7FgbVuzuv53CVBVKGfKypa1LyqYmLypyDdG4j6ozIt/D0Qq1XTM9OiS5c4Om2BKpmsDzqbVE5BVHvseNo2PO3jxntbqm2Gw4OpzyetGSK+gNJ0y9mChccPvB2/hRhM3ndAIO799l+c0X5EXB5WLF8WyMMAqrFN53DAulLJ7rgQXaDtV0eI7EC108L8R3XYIwwZiWzvh0lcF2UBdrbJnCsE+wP+U4Tvjxxx/hDUc7MPDgPmgfoTusyomTGE2fSkNT11hhcKSmvHxNfn1B/3CPycFtbLmi1+8hlcXVBYgA6XyXXI5jdFPTmhYvicjyLV+/uMD1PKbTjiD2EcmO5SHDiG2e4w/6O2Pa8cnzitBIHCdCegmP3vsA1+kx8MaMemuCTc0oqbjx1vcYjm+SFitunrxF2SmyzWNc1yLCgFoaTBSQNSX7/R6OasjTEoHkN189YTY5YjI7xltkJHs19GKE3MFZoUKKimh/f8de9CWiMQTTQ7pmjW5KhNth1Ja//r//jP/2X/8CZ7vhwPf56KOA6eQhTuCQzS/41Z/9d3Ti8+4P3ufOe3foqoL8zZf4s1sI4YN0caQFLXdnYtsirAWtkEGI1dB1mrK1dK0iy0qM16M/nOBIS5VuGO8f4FhNJzw2TU263ezYgaLH53/7//KjP/lf2D+aEfQSuqb9t4km87Sk6VqGA5fYCTl/9Qq5dHjvdx/yh3/8Yy6fLoiCAYvrUzbFG945OsBxPXJl8TTYduc0uo4mW10xHN+g1Q3F5bd48Tt4WoM2mLqirXPqbEVRbKnLDV2TY+OQu9//E5w6o2wCfGfCe//+37HNrhBCY5uGVkRs5m+IhWHoDQnuvY/vSwKracoNSkuc3ghlLrj+7WcEP9hDlwUyiHEm+6iqRHoQxBG2a7GmQXctbZWyqSom8ZhONdBsKeYbsm3K6eUlftJDOgG2qKiVYl02PJuv0Nrw2zdzDn2fSRBweXXO682W9/sJwbjHdK9HoxtMk2NqD7RGZWuEGxP2faZv3eLY76gQdFHEPM3JtluuNjm57+K7EoHkycuX9Pt9urYiSzPaPMd3agZ7CltXdAZcP8BIQ6MNrZRox0HGfY72E977vR/R6/eIezGi94CbSnH287/CuBmtbfnmcsGN+AC3X6FNiWssXZ1x/uac0XCA70t0uqKLE2TSx1Q1Jk8ROKgmx0ofrRS6K+hUSWUUtVHEToCgw/F9vCjEjyNEXVFXkEsfKSWh6PAFHBzsMwgn+DKmXFzR6Zbi/DWqN2R1dkVZQODGLBZrvv3mMWnVEsZH1M0t9pMjoj2PrnuFyS+pqxIvDEnLjhMBdVMRDfvU+RZVV0jh4KgGGcU4wtlNexoDXYdjdrC2TlgG0zH+cIBVLcW2IUz6RMEYJx4w6u3xaHKDePiCy2+/4eui5DevljzPOm6OI9p5hN/mBP0j7h4d8dbHH0HQw2iJkM6O9YFBy92yh0kXtEVBU9bUWcpyXbDJCpJeRJDEaKXolEapFmU0SS9ioAyOo/FGE3xviOjtEegljgeXp+cMBgH9YIAXBXi+x2iYINuKKBjgx2NcBiT0qdcZusk4u3jJ6fNPWS0uMEZTKU1WW5q62U07ZxmyBlUvqfKa9fWaN69fkNcNthFgDWUX0HQuAz9Cxj1EECCiHjKIMeUS1RRsleXlxYrjScRez3J0a0ww2sOmK7Jvn7M53VLpAMIxibUkxuGbQvFZm3Ew6iOLnNuP3uZ3PnwXQ0Onaiwd0dFtlIhxeg3d2iXNtywvTglWG5L+EFUXdK3GuB57N8fIIMS44GYZalURRzFxP0KVGReXCwKZc7g/YqM90sJi1+cUZ2f4rk9nA77+7Gs+/sPv40Yj3HBA4ks26RmbouXGyQA6F+P4JI1kW52SOCccTBLm2yXjpI93eIx7eUlX5jTaMPQcAmHQOOQtvDydY6oC23b4naJ/4CP6CUYYTLPdKfE4IDSyP2Bw5y4fCcnl9RnXL16Rfdnx+LLiWdmx0hD7GT98510e3rmH0obJ/h6yrlF1woa0XQAAIABJREFUQbVa4Q06urajqhuabEXdFjj9AXIyRTclVVHR1R12dAvXSynLgrIWzC9zKtWSpltsMmC+3NJ1iiQIObpxyP7ekKYosaZC+j510zDtR7z69O+4+vYN40iy/zsfUwuBJxUH4yFa7JOmGWWZIz0PpTSj/T3qdUldCeo8x3VCyjbn6sUTbt27SRMlbPOMddwx9EMif4C2mrJuMV6LaVIGUYhSCtsp2u2acHwPb3yADCWmKjGdpesGDO+/h4yHGFVSLl+wvmhhcoJmhbe/z8v1C+qqYhy4uDrnIOwR+xLH0wgawi4jK3ParoV+D380oi3WyM0KpMBwhfVcOt9DBSG6qXfnkHAACdJBywTXMZhIk21XzBcpXechtcvqMuXi2RtWry8oVlsW10vEoM/B/fukTx6j65KXp8+48WCME+2SETgOQeCzXVwhheZqO0dKFyMtXaNZrrb0DmeMeiGBNKiqZJlXuMYhlB2+kJimw89WRFmC2+vjbs4xaoCtyl0SqugwWYFevaSbv6DTDsW2pi46yrAlvy754p9eM5z0+ZuXS16qltIY6Grm6jWr+Tmv1zlWwINpwk/efoubdw8wnUBVFRMEopNsyw2+ewr1Bj3o0a3PSWZTelG0Y141HUWRMl+fI23H/TvHfPH4KceDGL/pOC0dBqFP4nrMTu6TPHifl//0d/QGCWk/4def/JrffvsUoRVZkxDkBclwgAoCHMfFdTSRblGrM4oiw964Q7ZcssozNgZyDVZbAt8j8jyKsqVuO1rfpReGmK5DOy5Xb865cVvieh6q3iUuOqtxIhdrNMbxaFtAeEg6HKNpmpLWjIge/R7Fb3/DWXFJHrYIZ4jyLT/94gueX75ienhA6QkG+z2m/Zg7jx7QH9+kfXGBF/bo3XmHi1/+kuura3qORvs+ShrceIIzGNOunyBlTWflztmbHWEcS9s0O94JhratEK5LlpeIuiBfXDMcJiyefUOkXS5ePONifc1Xz0+ZzvYJkfQGA4bjEZ7vI3VNsU1Jry85vU65dfchsVNQFNd4jsZ14OzNJbV2qIuKtlMUec5qvdlVVPdGbFuLlIZseYZanWMnxwRRguMlaNVR5SvKOuV8u8ELPXAMviqJHYdhHOCElizdsFjPMXSkVjPPS9pXV7wlSr5ddWSNRLVrDmPD2CpCXVJUGw6Oj3CExdoMbQ1tWdA0DQ4KVWWIrmO73vLNNxWDaZ+ibMjyhvPrFYEUTPv7O3ipNfSCGDwHTUtWZCAtcRRgHRfthghV4Zklzo092kXL2a++5fOnZxz8ztucvrrkYPI2PTcgiMd48ZThJCZ9VfD6zRsW80veuX/A8tmn/PbVUy5fvqTpNFW0h+d6bKqaSjk8WWmG/RpHOLStxu0kRdfRba+R1iI6ixcEpK0iq1p6WUY8m2KlgTgmevRod183FgF0sqG6eLybJF+d8/RXn/H5yyW9uEeRzfmDP7hLcnlN+uyCq9Mrkv6IvXBAcjClyVY7vpPwifZmXF1dYdqWOOrhxAPKquMqLShEgxIdvuuSLpfkm5d88utP0MIwWi9omoayVXiug2lruq5jNh4QRx6oLctqy/lyiZtIbjy6zd7dW+RbzWq5oVaGvcM9ZnsTstUVr7885eWTIXfe+pAPxzd2QMswoj18SDt8ja5rlNmtOTlS0BvF3Lx3h8WvPqFuO4Te4LsOvgBpNXHQ4oUhUiqkELvau2OxpkG1Eut4tHXFtphTNhtCTxGHAiVDEuHzJk3ZT6CdJhjfpz9x+ZP3PiaO9+kLl8OTe6A0RSHwpKFaLQnjAJ0kuHWHDGK6okQI6MqaTik6bcmLgqzuKFuFDGM8z+X6/Iw4cBkN++Rdi9e19MZj1u4OAO5KgXb7LF6dcfveAW++/jXPXj6nXF2gGsPJnXucXX3J06/P2T86Znpyl6ODGbdu3+TeW/fAk+y/9yHWwrfNhqZtubq6ph+HjGMPJ4oQRpEu5rhBSBz7eDbA6zRtrfH6fUy5wfEjBuMhXdvteG0ypGs0bdPhOx6Dm3fpHZwgraYvLVLNUWaL5gDpW0zX7hZXm5RGRrStxXcFqiqQbYbuXGyjmd65wfb6iulbb5OvJTQVjhSopsU6kjDysMZSFzmi10Nah7zM+fTpKfO0QgYhVau4ub+PjXr0+z5NnjNMIpCwbDouXrzg3r37DKdTDo5u0OsN6CcxXX9KMNzjwx9NWD95zaN3f8zrv/8VjvTYO3qA1OC0DutVhu8P8KzClDnx/8fZm/TKkqRneo+Zz+4xR5z5nDvlvTenysyqYnV3VXWLzRYhElCr0UCjIWmnv0L9Ce0FrQRtBA3UimxKrSalYlVlVs555zOfODH6PJm5aRG5pQBpGYhNAG7wMHvt/Z7H8yjKDKREWh6Op8iqhk2S8tXXX5BnBT//Z/+c8ekebi9C2g5CCIwxYNtYYbB7DkLTG4S0WUxjHLrWpiks7v/+t3z+v3/Or2d7fPD+kFVa0T8dM/7lr9CLW0TfQy7PWacFX/7Nf+Dw0TP8cIzqNugiw/IjLMvbtfyNhq79sW9hoZsamhKDxWp+h7EcFA7vrhZIpZBdiT/cQ5UN0hJIp0eWZliug7AcAt8jcCRSwPztKzZJxv7ZA47OHvz/C03qumE2nbA3HjF04DxJWF0s+Oqv+4z+iyOe/OxDHKtHToIcnuH4LmUW40c95LqiWC3psGilpogLXCtF+AHL5RZ3NCGIxqB2yVuVpWzu71mcvyLNtli+z8FHv6KLC/KbV+TCx0wnDH3NoA/n5xcU2wzjBVRewXY5J2o0j0THgw8/YHj6iDqIqKIeTb7BnW7YbLd4b79mMD5FNrs/L13nuL6zGxXSmrZM0E2FdD3OPvkFXZ2Rr7eodYYJHS7Ob2iahrAX7FSqYUie1UgpCIKQu9Uax7aJVUuiNXvjEcuipmhbrFFA6IfoNCaNN7imQ4jdTbTr2XT5mi5ycIYjlpVG2BGzM01dFri+yzbLsW0HR0q6+YJHDzYo1UNaDtPjE+o0JtnMCaMRqmpw/YAOSVZWLLKEjdJYgwFPP/sUy7HpmpQyzsAYMgrqYcib2w2tbXP6j/6Evb0nlGgGgxHV1RWXiyXPP/0MKQRlUZDeXOB4AULp3byl3t2k6U6gm4yqKtFNSpVvuV9t6VB0nUNneWA7IB3y9QJVphS09GdjtGUx0wZtXAZej81NBXqF9Szi8OETrH3J5cVLLi7u2SxbWm1zd7ckT1PquuNkegC2xDk8wXM3GByU7RP0R2RFxXxT8IHusAW0WtP5IV3doJoKicQohVYtndq1cqRS6LLCSPCHPVqjWa1XZIkgdF1CDc7j5ziDHuiOUBY8fnJCenlBudriKMVZ6GIKg7IFdwtDeb/h8QePoOt2QKWyRPg2bmDT2DZa7RgLnRC0SrG4vOTt+RVZUTI9OkQ07Y9aP3tncDFiZzCyHQY9yWT/kKqLUHpHw3Zkn8X9W9bre/zwiND78WbUgSSO6R2fsF6tGcsxo56kLBLarGBTLPn66y958e1LsrLGCGh1Q7y5plEuVZlTrldo26FJ71ivct4tYi6ub8lrjW9sfCGpFeimQZruR32YwbgO+DbC7ujSLcusxYo8gsgh396RfPPv2f/sF4imwhtIorFNFBxy9e6e66/+nrWSHPUPOW8rhm7I0/2APdmS3L5Dui5u6HHw0TPs3hRNAD9aReT6Dum7XCxX7CGwpERLwYP3T+nPQupW0hoba+BB0mD5IW0nEFLw8UcP6HTLRg9JixhVVTh1hds2lB3URcMXf/V/IruWz/6rf0OaldhoIl+y6Four8/Zn+6jrYwkWBCv7rAuWo5mU6ajEc7pCYlYUK7W3GY5XVVh9QK6rsEPQ4quRtguDYK8SWkdm20cY/suvgflTYIZDLHDiCYvaUTI4On7xFpxGsLXt9d4jstKOFS2j+NLWiGYpwWfjgcMJ1OcKCIYTchev6Be31PlOxhkViluLi+wQgvpeXRusKOaNw1dlrBNsp2Jyg2wbZu8LFjc3yNcD1da3M/vmEUuB3tTJtMevWEf33HI4hgvq+gkaGnz4uUb5q9v+JM//yXKtrC6XWMqCCLiomWxvGWxhI+efcxkNsEOQmITU8c5dVdRtAWqEzRFxmq55Oz0FNM1bJKYw4FHazmopqS2HSwTInRNVTQ4jo8OI9zxAXIwRhuJaDSmTkG42GfvIacjOgFV7iCPnjM89lnMY+K7KyYHfeabQ75484L5+S2eY/Fob8R/+i/+E04PRqwWW67/8DW90RGqP+XZHz3GlR1F21DVLW1R0WGIDgY4jo1UOVZnY3RLpzt0p7GMoqwSlqsli9sFWVHRdIKkbvBky/X9EtyIy5e/xbUNzz75CcHhCbPxmGAw4Nsvv8SdW2gDddNSaUFXx8RxgiXBti1+uLnldWt40h/gOBbnt7f0DicMplOmjk3tusRqxbC3h2uDritao7lYLglGETY2ushxAxfbtfH6fcy2wKQxbXJDYTTbsqZRFmWaUVaKBMOVEvwP319z22oejPehqXmXl9R1ykoZjOUz7PUJBxOi0T5p7eNWDfHqHq83pC9DtlmH1Jf0JzPa1RLLs9msLhDDIY4dojqLTbJicXuD53mcTQb4Hz7k/HyObUnKwCYta352fEy/KHDurnhyfIwKbRJs3qw3ZHXN0PPI6pZ+oGlag+mF1B0MXBdPCq4uzsFYVHcLEmNjhX2cYR9kRFlcczgdo9oa1+lo6hIVuGgBjiUQQrL/4ARjBFVS79aAtNB1g6oKWlXhD0K6VtM1Ake4yLaizDb4z/+YtFyTWiXybIxz8zU3L18hsgrbV7xK1lzohsfvv8837xb86z/+DN/xuPzma/Qqoy97+DdbXnzzPctNzsCycK0QwgEi2WAbaLVANC3G9jC6BcuirWsMBq0VqiyoGkWjO0DycBoymu1TNQ3ruxfk6w1E+9wWmnmSMZhMEY5DGEa4oyneaESdZ7RFwu3VNfNlwf90c8c//uwZPcdiPN5nsUjRSmMLi4PZlHWSY9suqjPIDhQQxzFZe4yna2rLprv4Dj+Y4Az2EE6wg/w7DqFv03Ye0hiKImHPNFiiJc8b3l1e8OYPX3Adr3k47eGM9rg2GrU0VCYkDG36xwd4oYMoFtRun8gJ0J1LZzdIqweqoFaa1d0ls2GPtEnIdElVGe7WSwZlw6qqaYsanZecHh1gaYmFjxtK2lYTOBaBY6PCHnWb01kWxvYQjo0/HGD3fKzAZVs3cHKMpw2P/tkv8LVPPzzGbDSO3aN/dEBR31O0JdvNiq7rUEXG69cv+fv/+w9cX605GPUYP56ihfWjEndGWlS7oDSIkI2iLWrSoqDICsIgJJcBdqnpBwYjbbTSlNs1tu8wPD7AdAUoRWskGIHybLLNHJ0nuNJm+GSfE0ciy4znjw/54XqFvNtiOw7uMKS2W3KR0a4U4WSMJVxMaRhMBywXt8RZhe40rqWIq5qkSGlcDxm6fH95zRc3C24XG+haHj08YrGYowxINwCtsRyfstW7ENLx2VY1l6uYtMk5HvY5OjnAj4YQBBydHvHowxF+L6KpYvqey2UWc3N7zUb0ePDoOYejKd54j04r/MNDRkVJWhTYnoUAZCd49OCE67fvmN/eUbYtSZqRRAGRZ2OpFt00WEZiC4lBIzwL7blAR1smXC1ecbO+4z4uKFvJspKcHuyhdIQOx7yOV3wbb3F6Hs/eO2K5XfHR80/pOyH1j8IAx7PxRmMW90vKt9f0x0OiUYN0dnBvVe1MjEWekTWKbZZRYeM4FmEUMF/HbJZLgrNj3MCn14uwPY+8KqmqCiUH1MbGy0tuf5jz8fNnHD6aoU3H71/8gcHsMXFpONwfky+uqdMV9+uQs77EFaDLnL29fdzpjPVqhbAFurNZ5znrq9dEx/sEveFuikFCL/IxRtOphtA39PselufTtSMsNKpu6VSN7jRdnaG0wXUtJg8eEw4GWJ5HffMaHAvPHdDmc3LHw7LHuLaL6Qz5usCzfJRjqG1B1Wjub28J/AHRZA8cBc5295uiPjrZ0tkOlhtgOkETb6hUiRgOdhzPWnCXKz5/cUErLU5PDmmVojYd2nV2rBvX3nEOPY/zb15iigJjBMl2S9W2+LZDbzgjdgLK1uLgwTOU7lO+uebhr37NcHZMHhfcv3oJyZb87g41AOl7OJaNaBqMNhRtzWk/YjLuoaczlvMFrbHYZls+//u/5ejpGb3pAClBSkFXl3SqBTRC1buLn7ZGqBpLa1Td8PbvvuXq96/59c8/o17ec3FzSe9oRP/RDLV6gzce0mYFv/inP6cbjUkvb7AcidEWTjBAohFtirAakC5CWHS6gQ5UrejMLrAv03gXykpBnKW8urji+dkZi+WcJ5OAyHdwfI9EQdu2+P0BnusyiEKi0COajOm6DkcY7i4viAbjfzAX+X8NTcDQtg3Hsx6He0PWs31mxuNPf/HndKXg9deXvPfxczo0keeguo5GGgajHqZa0xQlXbt78bsypMkVdTInGtis7q8Z9XJk19EUDWVWEmcZcWeopUPbWOwJj9XNOdlyg3f6kKaGqK5Zfn9OvLpnMOrxwyZlXQnqtCBIbnh1e8/j3/yen/3Jn7H3i3+MG8ygg87YGK/Pdn4HZY1jOXheRNu2yKah1QWONUCVHW4wAGOQVU7XOshGUG5SYmm4ulxxeHqAIy2EJVGdoihKLBRne0M816YoK3rDAZ5tEXgus8kY25a0tKgiIc1z0uU9zuEejhNQJxs6logfN/u5G6IdG12VjPf3KNKU9O05tttS1w2ttJFFxWaTYAmbyWSE8AIcDclmS5bkqB8rwEWr2eQF66JGhgFPnz/FuA5VUyAkWNJCqIxlHtM/+5j0es3pezNOnnyA7x8yv7gkfHjEw4cfMHj6E9zBhIu373j78gXNd9/zkeUxOOqQcpc+0nU0dY3SmiJeonXJcrMmb9udJccACHTXYZTm4vIKig1e4OM7Nm7gMpqNKSoFlYttTVgv5vT3BNNPTrA9j0lX8N13N/wfn/+OtGholcZ0kgd7j+jPRjw6cbD79/T6kjaWiCAir1O2ZQ103NyvePb0FMu2qaREtTVCgJISi46yKKiTFG9vf7e5si3aDtZVySaJ6YwhcGwmgx7vHZ4gRYNKl7s10zREruC99x/z6nff8vHU4j5vGQ1GiKLFXix49ukHuK6hTtfYtgZL027ndE2OdbC3g5oZTdtqyjjlepXym9e3rLZb/jQM2D86RDUGOnaE9U5w9OAxMhjQdiHb3CG0PTAxnciIky2rvMDyLPJ0S+SMkNEUX2q00twt7lmZGtvqcMyKwnJpcsPFxQVffv8t85sNWpud8lYYztM1lTqmzO4RwsPSgmT5lvmy5u0iYZNlaFywDLWtqGVB4wyo6phIDkBUGNHSiZ3mez2/B8shmg1ojWLw/kO8cY8u0Ax+/meEeYHz9ddY4+do/xt+TsGb2zXN6BEfHJzQOi6HfkMolwwGA45+8hEyGoHj0rYNTt0ifIt6kyNdh9HZI7pewna7RQrJyYMj9k4OUMUS6QxxfJvGtnD7AUobGmNRKqi3DU2yJTqYEHohtpUztAVN6LFoDZvLSxpVo/KKJN6AHbCN13RtTRS6vHj5gu+//gNhOMR3e/R9Bz90kJYkGPWxJyn6/JKuaUm2W9arJcNRD0cKatWhLBfbaGxb4LgSYyyWRY2zjTGjiLDn03keTVmTJRY66KPyBDGakOYx9WhGbeDhNGR5URD0ZwRRQNDz2aYZR6d7BIcTpN+j7kXkK5ttUrDMVlzc3lI1Bb/8J5/Q6Za2rbEdC+nYGMvgBRItJJYj0LUiWc/JteRgPKVKN4z6IY/2Boxn+wgpME2J9Gz6gwlCCsJBn1rYRI9OOXAcwsN9ekcnbJOMwcEp0SZmuXpBUe1AmqPojvFwHwtD1HeRvsDybXzp05oGLBvfFawWlwyGI/xwwKaGWVtinB7Stel0Q9dpVKnwApfI2bWgjGODDW1dIXsztLQxvkOtG6p4jVIdxrKo65ilLlBhRHl3ie33GU8fk2hBX2gc3fHV777huPdPqbZb+rLmyYenWPsPCCYhXZ3hHx7RuiFNuqSIY0ya4oY+SAs78Kk2K+ygxjIOdatYrubEZYKxDQ0G2w/Iu4r9k31GR3uEBwOO3GcMPZfZ0QNWXo8iXfH8J58wPT3DdQymOCdrGsLA2Rm4VmuMqvAdybu7ezptKJXieDbE7UXU3e5zW1dQphz3fCa9gIiW0likrabMMy4uLhF5w3SSEPSDHVw3tHEM+L5PrUvyoqEoNDouKMqGZQWtEsgg4MGsxzbN+WG1Zuq6bBtFohukdHDdHmeHT3i818MtCwa2YE+FNEWCcAVeOMYNp7y8esmkzImGEX2rRxC6pPcpUW+EEjbfvrzAC8E1EjrBdNRDaMW3r6+RWmMDfcfhaDIhGI7Z+Ba/e/U9mRNwsH9AkxfIusGybCplqJuGyWBI2eqdqU3YfLeYs0pyVuaK93/+K/7o6QfcXi7p2XuoYMmjsz5KZ3hSge3g+O4O7itAmRbP9bFtB9k51NsOoVuEcMiTGOm3bO+XCANSOdSVQaiWWhYUi1ck6RdMjx+ja4U1G0K1Jd/GRH2HrBVox3B19Y5PzvYJOs3Fmxv8YZ/+cIxeF2w3G2rHYV13eOuSIGpg2CLDBiNXKFvvdJWWQrUNpjOoDroOyqomKwo0krpu8SbHCMuh0x2WERg/IDrq0aiQTTUnCiN6gYfr+9StwuqPMH5vp/XcbEniDNqWu7vX3B1NeXp6gG07qKbFD3o8Pjzl5vyaR8enbI3k8u0LqAssxyEua4r7G/bOjvB8l5ffvWDWWzN5YqPbFbbj4fX7nBzuIeZL8mKnAG7rhLjMWacpt69/4G9efE7eNjR6yp/8/COC0EeolkPPphc4bNOEjleIbh8Z+HjBGCV2FibZaeh8fMdn5NhsLq9Is5y8gXVRsS0E95cbtGUwRcnxuEcvcnCMIugMvuXi9kEiEPRZJfdo1eGNexRNRVg3DI5PCAYWWqccfviM0ehfYN1eYrqM/f4BsnYJAw9h9RF9i3S9pShTrm9uEUaxSTOubxYobJ6fHhL2xsStRBpDGEakRcnIcrharBkMBphWocuSZVmhNbTaYlPDw/0Zjiswno8VhmAb7OEYQh8l1U5xbfs7wL6qaYOApm1YXVxgVMs9kovbDWeVhRP6ONauVRUYidUZRF5iN5LWqulPDvFCH60Eg6Mp8bxEaQFxzO22ZNFKPKmxG83fvrjgtmgQCCaRgx14HD5+j7qpGI5HFElCXRaMhyPaDoLxPptXX7PeVMxmI/7jX/+KvjfE8SPypOb48WOOTo+xLfjhqy/J6t1BXauK77/6HZ89f0qyvuPJp/+IenGHSld4vQnKdimymGHPxwiIPI/PfvEz/vZv/j1ZlrJNM/qBR08aZOgTRg7SaLoyA0eitESrGl1VpFnKN1++4t11QVLuhJXat/AdH9WZHag6OkLbBWFkE/QHFCplq1Y4gSTCoZ7f4XU1Jw+HGNfl+xe3eMmaw0wRRRGe69EWNVariDtDQYO2HCyt8YIeRjp8890XeKLhYRjRlhUidLGEYdwbYDkWPc9HlRV6e8t7s1PmLxPGjx4wGfZ57/0P8KbvcZ4I/MkeWV4SDie0BvyjR1R5zvz8mv1nH3JzecX591+jmhYpLNqu43q5phdYaNURBB62I9FtTdcJBp5EVFtU6WAEWE6AaVroWlRrcPoD2rzE6gyDgz38yfBHva2Ne3iErHNcFyhnlP4Bqn+ALDUmyakul/QHM6y2I2lqTFmToGkHLSUbhNrSpFtMPyIIdq1i0bTQaASCumsphMAyHTQ1q23Md4vd+WwyHWGHEUE/It1umBwc0RQlQT+iyhO2Wck6KVitt5wc7LP36DHHh0cMe338aMDnLy5ocLGNy7qoeXtzxQcPn/PBp49ZXa25/uIPDIM+Wbzk/qomOjqgUwq3zmh1y7o0PD7ax28b3Mhj+PAh68U9+WaFKjMWt7eMDmZYY4MBdJli+SGWK8AGXec0TYoZBnRxSLz6Ab9fMv3gPd69+45tUPP0zOL9j58hq4rizffo/gj/0XN6j95H0TI82+CENl1WYuwWVWwQ1g7kjdCAxHQNXduiiprN4p6qKGm0wNgO8d0t33/1BUfHh4wfPaNKa4Z7RxRNStl1vJsvwAI7OMYLQ2bTCb7vU1QljIcEoY9pSuI4+QdTEesv/uIv/sEv/8f//r/7i8cPD5iOHMYH+zx8/2Ncd8SzP/4lsh+yqFykMLy7uKAfOXR1we3VNYHVYXkejYLWgK4b5m/eYZweaZHjuGIH8BEd+XpFWxfE6yXz1Ybr+ZIkr7F6Y0b9CJOs8Y/26RxNV9yQzy/IlmvuNwlf38RcpQ2ZlpSlIis127Ris80o3p3jK41tCRYvvyVeztFiF+wIIVB1QZWudxt916Zpcrz+AMuydzfiLdB2iKYhud+S5jXXd7d4UcB4NEFIiW2DMoIfru6Jq46X7y4Rls3BwSGh7+H7PqNBhBdFjIcBe2N/B/y6u+X2+oJRFFLXmjTNqYqSarNiG+dU0YS268iSDVlZEvUHmLrC93abKc+1sS3JsNcj9F36gzF+1AMMwrHRnSFJc66Wa24WC+6TFH88YPrgAa4jQBoavWNh2JakXM3p+YcsvrtHtCW1zNibOgSexOpqGmERjieotkIZQ5LsDpznV7cMohBHKbqiQDUVqmlpqpLN6p7tZsFiu1PjNmpnKAiind1F+iEXd/d89/IlxrLwhEFKA9ZujEhYEt0orm+vSJK3lF0FsxNW83Pa+6/56rtrvnx9S1KUdJ3meLLHxx/8lKOzB4xnA4KiQ3ctRbMmjRe0dUzatLhhhJSCfujQ60d00qKMt7RFRmcESincwMOOQrRlQadpm4Z1UfNuvmBb1LRth+vGoz79AAAgAElEQVS4HB7MGBz08WSN1WYIo7GRlPcLNrcLqlax7Sw2LTRa0B9ErOqSV5fvWOcp7y6uMet7nHRNt5ijs4omSaniGCMl5XLNxetLfv/Fd1zfr3CjgE+fPmAwHGM7LqpVGMvlPm05X9UkhUNcD5HWmCiYYKQhLZaskxwpLWQT06kGz/MZnj5hNJrgWYKLd2+wbY+63lLla7abJecvLvjhxQ239yvSPEcKiQRs10E4Fs+PD/Gtjq4tKMqU5fqK17d33GUNpVYoI3GcAFcaRpFLGE3oT0a4oYMTCKTvI4yivL2m3G7xehPi+Ypsq7GjCc7kAGcwwxvP0KuEctEgjx6RvH1LTcjB0WOc0ZDZpx/h9UAIOH3yDC9PGTx5jjud0ZoO1TWoIqNJ1jRVTasEeVEzny/Ii4LRwT4Hs4gg8vCCEIShE5KmLEi2G7A95rXk7ZsL0s2KtDL0R3sMpETaA3726ISjQcQHv/pj9vs+cdvw/NMPGM1C2ipjtjfj/uYd9/dzri6v+OH8FnewRzQac3J2zNNPfoqtNW5nIElIFyv+cHHLdVYiexEnsyGu6yAcbwfnlQZTl7R1jbBsmmZnUnFsCCcuxnIou4BSuTRakWy3lFVF3DRkSmB5HofTCcLq0QYz7HCMsSO0cVBFwsAHlSXEd3d8+e1b/vK33/PvvnnF+WbDg70hDx8d0ZtOkLaFqTPS9QK8cGfKQVM2DfO7W1ZpSW/vYDcH3HV0dcHeMOTs0QNEmSO1RgFOGIBj4/SH1JZCnAWI4yd4QjM8fEzXO+BmA6utoe4Um1pDNGJ++ZambAmjHlooor5H22nSbIvuNLKrOJoNQBjSPKMsCjzHYjYdYFty1zLrWugMbaN3ikvPw/M9LBS6bSEMIerTWhZGl9TZCiV360fnMWkSY1sRodMjuXiLU1XkreHQc/j06Ij7+T1pXVNmKc9/8pi6LnFmEyyvwxhF1ynatkJ0BdpommLHNPB8DyvqY5kdcE+7LrbnkxYFmzSjKWvStGCZpCQEhP0ZZ6dPePjgCC/wiIZD+r0hYX+EGO1RphlNJ9FNRxIXxHevKMqMpm64X60o6hpbwrasWMQJT6YBHz4+xOuHhIOAu/s14TDClZIqzTC642BvimvZaAnYFqpVrLYZrgTLVQhLg2Vh93y8fohlQZmmxMs1adyRLRuKTKOcEKkkxhpROvsk0ZBFVVCqDmVLlJHY0mccjHjuWcwsGAcuNDFTy6DzhNBxGYQ+dZ2xKHKuF1uStmU4HdIb9OlHAWmWkKqa2rEo6xrP3rU7WiMwWmFLEMbgey6etBmOfRKV8+++/JyvLi/phE26TRn2evSCgMj16UyHE4ScPX2fphHY0qJDcb1a8P1yg9Wf8Mt/+W/55JOfcrV2ufrhlqNxxN7BmMMjj7Dn4lsSX3b0AhfXdhCmQwhN0B8ghCErc4wlKcoSRUfbFdzPF7RtR5ZU5Nucsqqp2gJt1pRSUU4P+PJyyfGTZ3Qa/DLn0SRi6rvs9UKqIufRgYOxNN50gOiP6BqwwgFfX6bMkwbX9bhbLolESy+wsAMb4QiK7B5hCdq2QTcVTd1Sa02W5jsVtv5x9E3adP19tnGMURWXF2+Q0mJ69pSmhM06Zu/ggL39AzzPY7VNsIYDBhMfU62okhjXdfAdH2lLJuMJApvt/T1RGOEKm+HwiMloH1srGgFGa+yuoS0KRqMRs0HE/nSCQDDem2FHQ/KsIElzGq3JtjH1j40V17ZI0xQhJKI3Zp6WfP3qJbWwGIymdG3BoawpFwvabcF2sWaoDceTKY6R9JwZp0czen2JMc2O61aUSF2TrJYs0gpjd+RVxrtlzG/f3XO1ThCiQ1cVPpKT8Yhhz6IXejgYvCBCo3BCFy2hyEvulxnD6QGO74Pr0xtEoFLcyMObHDA4eB/XiTj/6itkUpGnNdF0iPYjbtMMla9588N33FzfslpvmYyGdLrhs59+xic//ZggnPDizSVt15IXBdPJjKKs8F2brm2Ji4Ykr1jE+Q7ybjzGwx7Dfkgv3I1c25bBdm382R7WIEQENpYfgOuh0EjHppMWttej1RW5qmidkETZrJqK2gEROLihjZICYQDLRQiHKm8otwm1MvSGLrYXkmWaBsnlcst1XqM8n7AXsq1b/vLL1yzTiqLVCCnoRS77h8dcLxK2eUMYhbStwXN9euGQ/eNTpLG5ubriJ5884c//9b/i8PHHrNcZb1+8ZjwOkLqmKTNUq8FAksSURcF6vaJHwVCnFHfnnH/5BW9evsYJ+1hhRLpdEno+Qlgo0+FICFybdLNFSol0PAI/3IVtlkOHpM5z2qZFSeiERZy2fP75t3z3+oqbdUHTSmocTh/NcGRLL5RItyF0W3wfXm/XFH7H5fKetlzhYzgMXHr9Ppsvv8UfDOkFFnex4t3diq7TOxVvVYHWZFqzVRVtB5YtcXyfIOrxbrHi5ZvXhL6NG/q4vo/TFSAFXriDKKsi5e7mjjAYcPb4UxZvYsKJ5u7+JY4zRHVDutEBaanpLJu94zNapTh5cMZ+P6A3mnD83jN0vOX2d79BSYvGtpG6RSlFWZZEg8GueWAERVER9fpIY0jnV+AEWOEAKQT1coEqapzx3q6R5tjYgyHRwSEIiTIddDWmTtHtGlXHCOMR4NIfjgkCD98x+K6Di0tvvAdNAXWGLVoW2wV/ePkDV3d3BIGHDEKk6XZAXaUwXUPZGZRnYTyHVtXMk5qvXrzh4vYOP/IIfIfxeMTR/j6h5xC6Lp67Y6DFWcGX5zfkWrDJSvrTfYaDgFEYMDt7RDjZ53/5n/9Xfvsf/o67uxW3b1/x/Re/oc1z9gd73H73PcbA3fyc+8U5i3RJrRWNbsmKnLqpELZg73Cf42GPk70DOtVSZDl0ijRJCYdDjo5moBuE0RhpY/UHCNcFCXWyxjiasipp2pw8vibrBGttsynv0atXROmWfmCxLSui0xn+/hHRT36GKrf4swMs32Co0aakbGPK+SVGA9qiU6BUS1vGVPGS9d0trTZYtk1ZN1zdL/n9H75gfvGao4cntNGUg0ePcR24Xcx5u0rYpAmz/Rn+KKRVMXbX4XsBVd3iT0bMDk4Zjof8/g/f8l/+y3/1X/9/bpo8fv8ZHz0/ZX7xmt+9es1/9GcfcHQw4nz7jv7siPc+ekLbNIwfPMV2GxZvX3Fz/o4eJ0ymB5hRQHl5TlNVWFGP5fqesm2Q0Yy6K3cvhiKjznKq1rApM1LdYiyHYeBhLPBnY+pyTrFekW4zJB6x4zOvBKV2dvaQtKIpQSqD6AQbpYjre/K/+ksenZ+gfZvcaIxdMJ1MaVVC4PmYKmMaDcjTLd7sACMddJVh+f2dFtWRdKUi3u42q1necDQb09Y5VuAg8ehsj7hs2duf4r7x2WwT0rzi8cMTpuMBjm1xcjBgEMLi4gVvb9aE0Yg0iTk9OsHzWjaLFWiNIyxa2Sdfrbm9vWKTZyjpMRuOGc+mbOdzonCKkBJUQ1FXpHnOoMjwXBulWlTdkCQJi23MKk7YljWDvSlBL0B2FXVaYtB4fkC2uePq9i1Dt8fm/DXruzfsn/bxWp9WHlLG32KJHkH/EEOLbhs6vauJu7YA0/BufsfA96jaBUIIOmlRaU1alqyrhrKpaJqK8XiXPmPbCNcnrzXvrq5ZxzE2itAbEVqSMPKxjWQwHvGqvOImu8Oy4f7dDa//2/+GR4chv/r1zxjP9vngScc2zSm3G3wbvMhhvD+g33cwecXd2xT7tKEuM5KyJJqM0KolrlrOb9dMD2b4nkM96FMUGaYuMJaL1grPcXCERaMasC20FKzKFmHAciRRP8IeRrh2g6UqTK2whwes3y55+3bOolKss5Zl3pLWLVmVsVQt2zzF7fV4e13ws+c/YTieEb99QW4qpu89xeQxdXZJG/iUdcMP373iaLbH4WxCENkcnj5B2hZVVe90uK3mPqtJKui5hrDfp9c/QGQe41rz7trmaptyeLKHHS1R8S1SCtyuwhke8PrV97vRMmzqrGQdr1jGBdtVy/1WsU5TlGoZBD4CQRAE1EqxLRv2bU2axqTK4XZVcJ9uWZUulu0SeT5GGqQjMaZD14pWu7RK0LQKqyrQRUVyN8cfHdDerQntgJuyYF2GDJ0+bW+fvKp30KyDQ+YXV1yZEB06oBrqrqB8+XeE4xD/YJ/wcIRlpsx//wN7/+SnGEsjGkW2TSiWK/JNwny+4M2bVxjL5uGTJ0SBhWoyjNijw0I6DrrMyEpF3hpsy7ApFMKLkJ2LsTwarQklHEwnnD59TjY5YtvmlHt7PHF9MII03XCwNyNbXOG6NmmacjNfYgkH29opPE9PD3AcwTyJMW/e0N3esdhsuGs0znjKIslZbRPcIEQqjetLqBWWNGgg04IsyTHSIdQdYZ7gOR51F1FWJWVZUWNQGEazPSwpmA1Dkk3JcDBhEk6xw95OHezYrKqEb377LdIo3ry85jYumQ2HaMdjb+JxcjrBDgLqKkeK3UagkxZKK6TtUsYJq+WS6/s14XQHz8aSWAj6gceDB6f0fRtpGxbGZn86RDk+q7zA91xaodlUmrP9D1m/+C3N2yuGJ++RbDcYyyIazzgTNrcXb7B7Fi/efk5cr3jw4IzQCxiMBkzzCQKNVC1V2zKdTmmSlPVmTV0XPD0e4jkS2wnImwZbd6haI4qUwcCnqzTaFojJQyrpoNItbZrSpDnackm7Mc5wDxkX1PM7HCenWcbsObA/HfHByR7p3R2vX79BGIdU2vzd/BrnlYfBplqtGeiSwHPwPTBip8Dr2obtKuHF23P+KHDBD7DdAGM7KKNpdIsWNpYdkm5vyPKaZVpTO5qnTx9RNzlZljKNfCzpYLku0g8YC8HhT3/KvKh59fqc6YPHzH/4aywtSaucRbylqhs+OjukbGrOxgH/+X/2a4L+kKLu2Nwu2CwSsjhhv+8zGITorMESDo5t47cGJSy8wGJdJbzdZEipcXwXv2fvNIXSx9hQtZqbTcP/9vcXOKVhz+nhBZCLgCbcQ3k+niV4eBywXt2yZ0mG0zG3V1eMHcGxVXJQS+xtgxsKivUG7Tps7+8QbUaHYTQJUXXNdtWwWWim0xCrH6CLijSJGfR8eu6UeJujlSYxhrosUVWNY8F4FKECn797+4bfvLriu9slQdDnRLl0TUO8XDHshUSDAcm2xi5rpOXSmoYkbxgMJkwPjpnlLUfHD1i/vuJW9IivtphGMhwfEjgNg/4jusGa7c0VSissS2B5Do4bYuoCSQdeiJAZyjbIvkMTV6wXOdeLDM+uEY0mwsN1PDwrAnuPcxlQJRtOjgakmyWmP2Xv2Sf4izn1eovXG9CzFaU9pAsmyNbGb8BTgnffXxOXAtOf0R8dMuj32S7PWacxMo9wTEqlUnToYlk7SGHVNNieh8H8aCJTSFtipEPnDZhXhvhyTt9qCUf7+L0xbix49uw50+MJeZJiVIvleUyPz/DkkmRb4Ls+jh/iOA7DomIbp/THhyzXCdPJPnmSE0WC987e4+rinJlQiFHEXRHTGU29WaDlCV4oEF2HdEKMVaPLHMeVYDq8wQA7K6g7jeX6jIcti/t3ZE2JOHyfRx9+QL+p2C7O2d7c893VNb/YP+LJh5/y11+95P6bOb8qbT762SfMTgZUV19SdTVOMMZyJuRtR5Ys+Ovf/C1Wf8Cf/vFPwJJcf3fDq1WGhcCWMPMs9mZ9pv0pDg2WI+lsgWorhOfsoPBA3YLl+rRdh1SagedTFAVJteRoPON+uUCW35JnDfG7GzatzejkhMGDD1isUu7u18x8qFpFlmWsVhteXd7ykydHPHr6hIcPPuLVl6/J/ur/YptvmYwGGCEJwoibbUxRdwx7IXVW0dSGfuTQ9x16gz7ClgjRIiUoIRhOZ2hdUd1p3N4Aa9zDmQ6xwgitNL6j0aXGPvEguIC0pIk70umEib3BYqeUL8sSTwgsvdOQFkXLKk3JuztGfYdf/+KnOId7bK/uaBybwcFw1y5wHW7vlhhpo4RCmt1ltev6ZGVOjcQOIozpGM8c8k2GYBeCnD58j9O33zMY9ZBBwGDvmGWzIq9eYPIV455LvFrg9qaorMB3bDCGxwdjTLYkCh7giI7K7fPhn/6Su7evKdZrqqrGCIM2HbptMG3D4cGM7XLG9fUtdV2xTdKdgajIMdEAuz9A1TVt3ZEXJa8v7/n69RXzpEZYPtLzODgc49qG8aBH37aoMrBag5Qe5eKe28U1aaNZ3zVkLxK66R3PP3jIwUnI7fdf0z9+QBi4GNtmkeRYdPRtiyKIIIgwAlzXBdsm8D2043N5N2edpgwHAXkSUzYZvfGQrIoxwqLr2I07RR7uMMDrNRx/OEJbBX/43Zd4XY/p8wHR0Yjl3S1BGCFti9nRCatcMYn+H87eq0mSJb/y+3lolTqzsnR1tbwaI+9gZgAsVpDLl+XaPpFfkkYa12AwGLjAAjPA7Ig7M1d139ZdXTJ1hhYe4cGHxCv5gG/gZh72d4/j5/xOy7DXQxMCX4CJhmYaeIagaUBvG5Jccj3f8ujeMdDg2Ta6qdM04B89xHBcWsWOv2d5NI1FU1ZouqKlwe06NFVEbVhotU4jc+pyS7m5xfAcWgTFxTX+0wtGn32KdTDFPz3EtixaN8AKBLPvMq6uX/Hi+ppv1xGffXCfTJgYaUrbCjxN4Ng6eaPT6gZ1W1OVNXklefn2iut1xCLO8DUD07ZoUVimgW1bKARKKVQLiayZhwlut8/09JzHn/8UQ1XY40MUGm3bImhZvPmW9bvn9MeH5NsNX7x7yfr5U85OHnO4d0q0uOL08AG/ff0/iOcLjMDDEgoLhacbhGWCeXwPuzPmrLeP358QL+cs5nPWUUG02eK4JoZjozk78U80NU1aUoQh0qgoi4rZek28qbm+XVHViqKs2EQ1gYSwKsCEeHlD9O6OE7emsQ7QTAdlS+pWIGkpRUsmCjbXX9GvJb7t7x7nGkmV5QjVomuCcD3n6v01r68WfPPqDdk24+7pa0bjHJKQpS242IakwmI6GRAEHQQl5/ePmSHQ0ChVje86HH/yCVfffMv87dv/T13k/1c0OX1wxnh/TJhm5KniarHiYDpkMB5yeLiHbutcRVtUHvLLX/4PotkcypxAu8QLBkipEIZBrRoq02Qb59zezIg0k5ODPk7A7sNsFFK3kDQI20bWGqNRgCtC0lXCOt4SFQW2N2QRCS7ebrB1l7IsSfIM0YLSXBYyx5A7y/VWg/Uy4rIqGU+GCNukMXLWaclk1GfUben4PlLXcAYjnPEBCJDJFmWDaQnKNCfdhqxWazZZyd7RBMPcQfJq2dCIllWVEbgWXuDx4PFjXr98hdA0WhR1mTDZO8W0ffoTnzcvfstXz6+oG8GjByfMl2sGvT53yzXRNsT2fKQKSUvJ1c0NaVFguz6jfo/haEy+2dI0iqaqsUyDoiiZb0J6vSGqVoi6Il1viNOcOKsIi4reaECv38G1ddoiRxg6Ng35zQXvr1+SRCuaokHPJIHTQq2hVjHzb//I0V6f1jnFrEviq0tkGFMBStUIGnRTw3VNEiHQyhytharVyFXLdZySlxV5FtENXGS9g1lqponSTV68fYNhOYBBmpfkeQGHUyzfx7VtSqVjdAL65/exHIfr67dk4QW12WdWmHh7x+xr9xB3c47ja5aLJa+v3mAHLvQ9ik3OVtb0Uotg1GM7j4jjCF0X7J+d4/YC8lbHqUpM16NQLaJpoCloqgrR6WAYGkVVoWBXoWlZGG2L3e0y2fMZdWscFZHPJGYwZf4m5sU311ykFdIwmcUVhdKohAEdj+tWIIIpzv5jvj/qc2LB2cdPaHoBV7/4f1j98Vs03WCbZGSWzapuePDZ5xzuDfjmV7+giHI0TcNwO1gIqqoGVdNqOl7XpzsZYHkCZRbUlmI7r9luYvpOS9tq2L0TonDF7XpN8ewb9Ocv8R2L/Sef0W62GFVGnpSEYcZ8m7MMK+qmQQhBI3QC28ZzXKSsmaW79gxZJCwTyV2icR0qiqbkbL+Hadj4toam1yhdIcmoZEZeGVAomnhBfPMew/BIlnfk8Y6ZkoiSTZUyziKCRYoWG9jOBD3o0yQ5beCQuy5q9QI7cJj4FmI0Jk8Trp+/wa4rWlVT/e5L/GmPssq4fXfJ5bsr5vMtF3dzxn2Do8MJliFoZEESSeybSwzbQrNctmHE9dUlom1ZVSW384xW6LRKYWiQJhGT+/fo+RPixiD47M/RohmxYbE/kWzDW4xW0uRrFtfXJMrB6kyYHFS0dUXHEoS3V1TxPZZFxm+/fsbv/upvGaiGXPexOgFdw0CheDtbMjk+wXUdBA2GaDBME+l2eX+3JUxKCiPH6gSYWQdPNMhiTZKUSCXIZY3T79PXYWCBzEqG3REyNWjrBrZzLrZbTh6ek6xX/O7qiuXshv5ggjEYsqkahAednovhGCy3IcKA0jUwHRvDdsmjlCRcsVlHvL9b0hkMOD09IC5KGiUI1wWO5+N0do0g3ZNT8m2KcHfxSDfwMV2P9SahuAnJ0lfUaUWY3LDYxGy3Go5/wipNONzfp41mvLmrMR2duBV8+ewpnqnjOy6moe9mr1I4lkmZJxR5QtW2JJuQ94sNjmNgtIJSNXi6TltXhEnCgXFIXhRUhk6dbMnymmq9As0iixKiuCQurjEEOFmK3lSU2wJX07BVAY2ia42QMqfKK95EBR3fwzMFf7hYcH56xmIVst4sye4usbWCH/77f0e6KhHU7B+OUFYLoqUROm1ZIEydstYQrUZZ7twpt2FKnhXkrYkpNLJ4jTuekMqWkVDIpkXUJgEgy4TGHO1YKWGOKBoMw4UqY5NkrJMUrW1wXZdTP8AzE04//yFt6/Lmy6ecnD9EeT1Er4PraFRVSTzb4LouJpLlakFrOfzh8o6n724YuB4eZwy7Nb1A0dZQN6BpBlWpuI4yIlVTlw2P9s/QXZ/hcJ+qbdFR7Gs2r9I1j/ePubx7zQPrgHv7EwZayqPDQ+xcYbUpsihJ85S0KrhNU/zA4OD4gNY2+N31CmrBtJRYnQHK1EDp0GoEbo/KNKmlxu16yd0moiglgaFjGCbeeI8XNyHfXS/55vU1UtYMDZdNnCOLlPFkjGOYNLpO2TSs4gxhWWRJQqkaRntTjk7PqU2fB48+Rq8NLr78NeVVxAeTlsZsaAKbTNZ0Wgdb97H1bOd2cgxk29LtD5CywTMFnu9TVAoNQR4XPH1xxTZLGPZ7DG2bghbNcqmdgDA0aMY6bpphaSWG2WHouNiy4uxnf0l2tUH3h7z75T+y0qYUoY5cFfTFDKd1eD1P8Ho9euMxWi04HAgGH5xQ5ilRukFEMZ3jPZqmQeg6paxpTHPHxAE2SUGaF/QCD8u0qNqGA0cwGR8Tzq5AN9GEjmN7PHhyiNkx0TSDzXqFM96nOxygVyW5pmP4PsPRENsAM85oTUWa5tytQ7746gWWZnFxNeet/QWLcEPSVHQHPQ72RsiqQkehKomMIixdA6OgTAq2UcjJ4f0dWHu1xNI1dAFKqF28Jiso5ZaJvsE8PMDMbDwxQk9vuLtJeXozw/PXDI5+wPm5weHRgOXtc7755d/QsS2C7gjPbdGtFs0OSC/v+OG9T/jwZ5/RBlBZLRfJ70AYfLg/RSYzAm3nQrVcE8M2UHrD7XzO8eEeZumimz6V3MWQe/0R8/mWwyMPdIOybgm3JWZuQHdMLnXWb7+jIzTs6RD36Jy7HO5ub8nCCK3n4fdGGIaBamtuVxv+9CefUWUJeb4kqxcUqqAoK2StoG2QSlFgkiQ16zJDlRVCNrh5xcH+FF0HW2/AAilqut2ApNgSrxaI1qDOG2y7ixZMsE7uIeoGKVus6RmR6NN0u3T6OaPVM6gkrtNhcVtCukXUJjWCrJREWUJWpIS1xrtwy/mezt7JnMPJGdHz7ygNnbzYPcbGWUqjGRwfTAmzkjxLMUyTrKqJ4py3F1dYbkCv00VlBYPhgCxNkVnC5HSfgwdHbLItL56/psYnUQFnn/wJsz/8NdEqxPW7bKKEVjVYKE7PH3I0GdI3GyzXRdcF27sb5he3XFQwdASu0XI0HWPpO7aJaFvaWnJ8cshqtUZHIAwdZVgIFFVV7lzXWkvZCpZJwdvZnKRRu71vG3q+Taff42ivz9nhEYP+gGq2IskqfvWrL/A751iGxCgy3s7u0Mip5HsqK+TxyRHWwGe+XTOf53iORtvaFGI3C21Np1Utpmnt3I+2Q6sbzDZb6ralG3jUQmO22nAw6bPOazzXp65rEik4//R7CFlSxhvm4WuGh0cUqmC0Z1CVEn/PYhmF6G1DdzimaSosQ2c8HhIhefbmLdfbBD2JuM5SdHeAb+z+v9BtWim5WW8JugFnkz6mbaPYOZNM1wOgaSSG6yEsj7bezSwhJZ3RAPkv55CFQpX1DmzfJiw2M+p3OXquQ96Q1C3Zy18x+fzHuL0pFC3Cqug+PETKJbd1xPxmweMPH9MbDDBtl6wq0doY3XGQjUWtW7sIk4A0TVist1zMNiihI2tJlKYoTWHdXfHo7ATD6aAjaBGs0gWFbAh6fUzH48GnT/jshz9Gd31kGtG2DZqmMex3GfYD8iQn8BwGnWPmdYnodvjoP/6vOFlGubnli69/g2wa8ipHq0p0TTDwbXRcDFlTKkWUbzg+eMzJcMS1Bk53gB70yfKSskjQLB3DMjAaSZ21RFc3rOZXVE5NEm+J1ynhxQYjF9S+xcWyQsUlt7ZHeZUwnli0vRFyG+JehTjDKWW1oLV0KqkoiorKsCilS5FkrMNrTs5PcB2Bpmk0rY7SIclSNlHIs5fPeXe7Iq9rStOmRcPuBqy2SxLd4v1iyWQyxVA2gT3A7mqMT3v4rs/ies5xx0XzfOLFnO5oxMMHD/91osl4b0JeSbzukNJo0ByP716+5PL1N3zw8D6btGG1XFNlKW3qM+AAACAASURBVF/+7mv8oMuw3+XNYo3bvUZWDXoLcVqQpimRrIlbQT5fYvo+w06FbVi0loXj+EzbAYUy6NQNLiWr2xV38zWJ7mL4HeKrDd+9vUPVDUWh6LkdOqLhIiu4NfbojU/ZT+aI5I5LWXDVwGKVsl8oOh0f2zWw0oK4ltStpDWGuBpo1s5WKzSNxjDRDItSlhR5yc18xXwb0hsOSPOSTBWYJmBZxPGO8q8BhgYPT/cZHu5ToxF4Nlq6ZTweIiyXYBCQdUd8+tBgu42YHJxQGj5lrciqhou7NUpLqBpBluXMlityKXn0yWf0h2O6TU3k+qzDEN/3qKqCrKp2gKmbO44mY3RVk0nJKk5JZI1mWwS9gI4toK6QOrSFYvbikou3F8RFhcxSBprGgW1z1p9wdHiPzoFPXhdEmxViVEK8oUgy0s2WssyRgGOaHIyHeJ5LVtaARts2FLJim5eEaUqe5ztWSN0iDBPH87E8n1cvnvPy9XvOH97n9PSIMlrgmuBqCk030C0LVdY7Wr3VIZHw8Cf/E+ur7/jq5Zf4B1s603PICjrDmo6vMD2XWlgsV5eI3GU62mcwdKjKhFqYJFKh0pizRw/RbJujDz/FNhWbF3/EsUy0IKBtGqpK4gU+VhDQVBXX1zdMRiMM32PY75LlBbbvkqOx3uRsFqDVBvJqw8Us4i6t2MoGt2uRKY3R5ADd9lmvE/YmE8YnH+HWig8OB/S1nPe/+QP2/JZn729ZCcHx9JDu+YfIOOLRkw94+Nn3KK4vGGgGmW1TFyXuQKepDFzPJWkKwjjC3xvQshP7ZJNAW/EmfMloXCJrhVQFZVWDt8/i9jlFWXN4csyDP/0L+vc/YPGbv0bENmZukeWSOKuo6xrXthCGhed38bWWWkpc2yYsFbXlkEUbZKtISskmbzk72OdkOoRWo1YCHQ3T0NAsQVFXmKUivV6xvb1DNdBSUeYSVUk00wGtodUiymXDai0RhycI16aVCXqpcG1Jz3YIrSM6kwMsVbLd5HQbh81mTeUF1MUu5hD+8VuiJGaRxSRZRm885fC8y3p9i23o2LZGpWC7TpG1xPZcMrmDCKZxiu56fPf+lk1a0QiNbidANy0Mw+R2uSSvGmaLOR/dOyXWdW7CGGN/n+z2JTJrefl2xlYKHn78I3q6QximdDwb1Wooe0Ct6Ww3W357seGPixRDKR4edDnf2yMNt2iWw/U2Zr3ZcOpZIDSwrF0VZVNDfctitUZVkolrYhkGWW7TlAVoJoZlsBf4OEGALitqJRCeTTJb4Y265EWB6XRxPZ2yTAhvrynDBd1eB388JK4b8qJh2PMZ9j3CvGFdbiiLDMcyGeyNgYT5fMn799fMVlvsTofv//QDHFvHLirSQjK7uaVjeaR5gzMaoSOxXAW0lFlM7/QetWpppSKbbdiULYbrE0wGDPfGhA3clH2M7RYpKzzLxfY67D3+GO3oE775u78iun2HbWoEno9Gi2PqZHlOnkXEaUlaSsqq4tuLO/bHXTq6jmWYlLKiacBoBJrXoUlj4uWWfJmxqaDMSlZZzcuX7+goidtI3LpkG2U46Ey9LusoQVOCTOqY8hW17uKOHzNpFyy2S+yqoi4qWj9iFunkpWSkLLZVRLwOCUYjbEenaAQTw6GtM1xDp1AGVbYDPYebNfwL60K1ipt1zDLXOD+bUpQ5q6zB7HcJsxJLgOnu9leaNsuXL9jUgvlsiWO7+I7D7TxnmxXYlkvPNug4Pmfn5xhihpx/RdFOWK/WaFOdn/zn/0gtNG5fPcevUizjhkKmWJ5JLhp0Q6eRFWPfROY5L25nu7agjkGjV1iqi1YqDOExNR3+l08esb0rOTl9hNNx8T2Ppgbf3EFPn3QE1BBPTKYHE+pLjcnpAzqDCaLugJ2RpBnbuxnr2RuEYXGbb5kvE/7pZsWL+QzT1Pn442OEvatszRKJ5nlkmo5sFDgaaV1TqJb9UQ+zUZiWQLNcXi8vWUiB4XXJNyviKKXbLYnCEB14cv8+bVnS1C2jQY9WWKziAtfyqAg4OH2C1x1wcnaKrnTm1HRJ6fUs5kKxiUOm+wPUdo3CRMNA0xSaKDGwsJwArBLDNrCaDvUmRWg6VsfG6tk82HMZBH2WNxviumZr5BiujrRKRKFTxA2mNWTvdEyxXqFlBXZ/n01pk1eQe13ma0nJLkbyMi0BE288pu10GfdHeHnI/njMaDhA+EPKsmD14gs0V0c3TfKmZZvmvJ/PmG1T9gddsiRDyYqDyRBhOwRmgjIUSbTCLApcw6ZsFO4wYHC6R57EaKKl1Gw60yGmabGdbQl8Hy/oMRqNqbOEri+wOx0u314iW8HlJuLje6eMbZPLmyVFnmCNJwwPj1hdX9GqBnSbPC9pvAmi3KLykiQKeTXb0BsXtLXE8j1UmGJ3PLbrENt0aAyDo4cfIB2bttzSt1ycyQjf+AjUe56+v0K9/ZbhtGH/8x/y8NMBf/x1yH9995bPRxP+9OQB5z/4nMDfp7p7izr7GO3BI1QgKKL3aE3AWafPf/jLD3BEzNcvt7R1jd41qMjxDZey0RgOu7uKTWGwTWt0GpKwwh9ZTCYDkrSkW+R03A5aazB/fYF+3yPwAnTdZDzaR7YN2F1uZnOu3r2jlTV13sPr7jE+PCEuSs4+esT4wRPauOTv/+YXPHvxgihNUEIjjDPOTo4o4w3KNFmWNVkpKYsSIWt8q6CoK/QmxxwcYJoC07UwPYe7qzvKvEYzWyoh0dQWM8mwv0poUoXmdwivIhZJSmmB6rv0XYeB31C7HZTeRaUeIlFklSLczNE7NdM9j58cnlF5fX77u//O66sl08EeSS3ZSJ0wLdG0Et8x+eHPfszwZsk6zrmbz9FkRqcbsAyTXXVuUeH7HlKW9NwOhmGjGRamZRMM96kbg9tljO1dM3z0J1StYjrucfPmlnVSMNo7IN+usD2X4fEZo0Gfg1EXs8owW+iJhF8/fUbpBNijIbnt7pyzhgGq2UHxaTEsi72DAzbzJagG1SjwAwxzVwjQSgVKULZgOg5VC5Kdq/vo8JAH9+/z4OQAA52/+/tfURcZ7y5uacwAud2C0XJ4usegK7ncFjiuzq/frYnymoPegLRoWUcblG7jeF0aFAqF1+lgOD4IBaZGIwzCvNrdOWqJ49iMh31My0Dp4HvOTnhCo9QshGmi6t09spIpok149W5OL9gnJ6TKYnp7Z7Ryn802ZDqd0soUz3PQNAtXBLz48he8ff2OIi2YjoYIAbahIaUObY2gZRYmeEJyND1ANyyqWmIaYJgWmqWj2w51FNPUEsO0qZRGVqYgNSzdoFzfEc/mPP3ya5gGzBdXNJsUSh3L9HCanI8Ox+T//I9MOkMEOpu6pPD7KM1DP/6Qv7j3CdHqBktVCNFi6B55VVEWCt3RoZaIukXmOWma8/Zuzd5oiDses/rqSzIp8aRNGscYtommGxiaRlPu+BpJrej1OmRFSbpZ8uLZt4yn+4gqZjwegm5ge116/TG2XTI9PKHTGxL0RrjugMHJIfbNjA//9/8NFdi8/K+vaJuKqpTo+g7OvGtqMrC0FmRMNH/F45/+zwz+BWSP42KPJ9RVhKp9qiRBFjnb+YzZ+yu22y15kZKkOaY0oHD5arbh2e0FLSEngc7LSDIoa+pBl3CxwTU7aGGFl90SjPdJypiiqqFpwQRl6OSZSRlVzI0N0/Mxtg4NDaVUzNcL/vDFr7m7u2MblURRRF1LNLPhu9cvcV2P6+UK4bn0x2Msr0unM8LrmXiORdDPma83yFSRXd0wOtCg1bl3cv6vE03yaI1qGvzOkFAV1LVkvdxyV0QsNhFeZ4yUDU//+Re8enfLcLJHfXTAsOtzsw7RypxG6WgIUqFzs9ywDBM0q6Z5d8X5wYfYnkXH6NHKEjNwOdJsNNVSyozXsw2brCVvcsp5ztV8wzKVOJrGkeOh6wbPlitS74CD+z/ClSnUBRMUIg+5qArWVUpYxYyKkoNRB8802bNc9GCINxhQlSlFusH0PFrTRvN80FpAI0szbm6XDA/GtJqOZkNRxhTo1I3kxfWWo+M9er6LaWjsjffoxgm3YYnldlne3RJvXnFwsE/Hhp/+2Z+zvXjPIizoPfiUTZQSyQbP9mhaeH91R1HV5GVJVlS0vk/3/jmH9+7h3FxzUeSkcUKv20WZFnklKSpJfjvDcWxcjR2zxXVoqoSD/QmToYdJSyYrsiTh7eUtb+7mVKXE0XTGps1k74Bc83ieeWhvCsK7jPGTfaK2oppdghegTJtYlqTbDTWCVgh830H9S8UgLVR1zWKzJcoy0qJC0w1cy8ByHDr9IUanz3K54PnbCyzDREMwOTjiJllTYyAbkNGSoHdCLE2iomKz3TJ98BHCGzB+9DnDvQMmE5NEWMThgjTaMtwb01Y1Q99hNBywXqzx22pXL5alpFGFrGoCP6BVLYePP8AfDHBtg7Q/4M2XX1BXNQPbppE5aduiWzlC1zl9eA/b1Aksn7vVBstoMbSKy1XFs3WEKcG3uxSNoNBs9M6InhJ0LZfgcB93dMhd3PDpX36PTV5h2wVPTvfoeDbJbMl///0fOLItNoN9Kjfgwb/5M/z+AGV7TKYHiCJl8/U3HIyOqPsdylJhtApDM2hMQasK0qbFFwovcGlUSZNHvH/7liS9YXg05famZuA22KbA7QwZGN+j2l7h9YZUaLQILM+hKXQ03aTVDErZMOz6TLoDUuGgobAdE71VaKZJJGtC2SA0RVVHNDRssoK/ON5nEGhooiUuQNcMNFNQtYJNKrleXRCuFiB0Wt1CCIu+49O1PWxDYRsaqopILlespWD9NqOcZ9wbTXBOjzg8PcK0NOpaI7xbs6pTkkVIWmTML9/TPzyiFBXvrt5xE8XcRSmdwOMnn/+AvYNDNllOo7WERcmZa5GVFbdhgqX5bGuTJE5ZLO6wbJuqKnh3PdtlYAVYlklvNEaTGWnd8v6Pv+FynfDfXjxHd12m+3sY2y1CaKzWCcsEwrigt04wjRwNeHB6yHoTkhoDVO8etVFi26+RdcNwNAJNJ68lg+k+aZHTWhbz+Yz9UQ/N96hVixAabiuZuhqMPZKsYrFY0e34u/0xXCzbxNItPDcgW6c8/cMfuLq4Yk/rMPV6+L2A1rNwOwGdvo2eZfiuwfn5ETkeZn+CzDMG+oaHR/uIsqJsW5IipUwTbENQKoNos+H91TUXszW5pvGf/t1/QHRH6KrA0QSFVLi2iWoqXMfC1gWO1yGrFTfLNUF/iGhb0rLCcn2cbo/a0HG7Qxqvy/XNNbKZAgLbskhWMdPRHkWeo00O+e7Zt7RSoNldsniGLkAXEHQs4jSBFkopKWSF0A3mUc4yzBj0B7RKYpo6ldqtU9gGRq0RVzVPt4q///3XGGWKVZfkUY4pdLRa4bawDzw6OOZwekLpzNC1Ia11jJbNeLmxMFwXu4kYVhXvohUDV8epaib3HvDnP/4xxdUV377LyAqXYbCP5ekYVYZZaoRLE6F0xL9wBdJcYgY+NhKFIJewzGs0q0uYpVRKo9RCJscNq9WafreHVybkRg+8DipfYRURo34Pw/VxHJfp9Jju4IA0z9HrnLKqORpNmUwfYYsZyWxJeLsgFQ0/v3dKJRVXL57Tmj7Dfp8ojHD1ANf1UcLhw4Mj1n6H1XyF7XbYlDUvr685FwV2usFoLcyyYnjcY6p8LjG4TUPk6o4j28XTNUzLxBU1912XVtiI/ojucJ/379YcPfk55tEhrEOy5Qvoj9B8H3/fxFxccvl0zS+fXaAZLZ+fjrnYJCxXEa3poURComK6pkfVlNSWQ7wJqeoK2zWxXRuPFs9zuawFsVII26J7cm/HZlIVsizYG4/pdQJUViHKhieH99k7OSNMCxZxzt5oTFQZHO4dEgx8fFvj+P4TDu8fcf2H35IUEd3rayaWxmQ8otZb3r1+jT2CxjBAKTzTQheSZH1HcO8Bmu5SJBVKKUTH5vufnmLUCs0bYjoesVTcyZJVuaWpBPlSYmou7dEB2uUb2tWS/mDCV795xpevL0iVJKwkSdVSxhmOaWP4PrWpoekmVqOxTCqS1R3f++xnaL5Nvr7BHJ1g7J9DsaSyXKK65SbfENWCX794j2FYPNzr8WjSR5gWruOShRG6Dh2/S8+0sB2LNE8YTKdUecz1y1fcRS2De2dkaczB/hRRTGmzjH6ni6lb1ELgihrTsQGdMM3puA79/hCqik8++pjVKqKxDCpNx+33Sa4uqNKI2aKhqVOUbuE4JkPR8Kmhs5rNEH5Am25JZQWmSV5VNLpLfzIl140d80dBU6zp9PoYTsDZ8IQfjR9z6EVItcZvvuav/iFmEcb85Q9/hLa4o+fUVLOXbOq3CG2Nc+8ApcWUaUmehmjhDf/202MODx9QZ1dIveLN+1u6okYrKu6KisfHQ0zPRokSBgOq9RyRhrieRZKmTDu9HfMGA1lKOvtHpHHCyNAJ724gL3E6HSylWOYF8XLB7OYaVUmaccPpyRHTe/dpLJ0/+enP6Y1OaKwWzVyQRG+gNahVRRon5HmJUIq2aWiqgrrVKGpFVdVsS7lzCgQeqGonvLk+27Di2fMZy03EoO+iaS1RlKIrnU67IE5rvIGD1AWaMKk7PaqVg3PvAd6gQ7m5JWhaMi9Aui51kaNVS4qyoWxy9kYG/tk9vvi9Q1woLudbMqnQLA/X9IjDLZ6uM+wG9McjtklBkpyyuLtCMwy++u4dhmWS5gWJzOl6DpKWXsfFtAx0YTIeTZkvEwajA7ADymSLjGKocnqDMeubNVmcYGqCfqfD3v4hewcn+I7J8sVX1Ms79o5O+FR0uFpveb9a4TQQJhHdrk+rdm1TspZstyGybfF7Pco0BttCCh1NGOiuTWsYaGWN5bqUTYPj2ERVxcnxMY+fPOH+/j4Dz+X//uu/5XdPvyPMSlrNxWkTBo7NNof0zYJGb1nHNc+rgo2tsw5jTv2Uo3GPRkrK1sZoGjTXxe12UC1oho3pWCgUTdsyW88RtovleJhFSllKZF2Ttor0/Q3dboCwFYOjAfP3bxlM9hkfnzHsmsxWCZvlFocMz/XJNgucMSAM3O6AqiyY9DwOJj08qyWZbbEshVktiSXUrcKyHTQFRVUiDJPA2bG2VpsYxwk47nQwGhPNMGgaRa10lFSUpaTMKxq9wfY9NM2gLCq2mxmz60v+8Z9+xTyJSL5pcXVBD0EtHDqe5ElXEK2u6XR9Xl9e8dvXW55WBicf/oAf/eBH7E0n9EYT7M2UZnOLnsUoVRM3IVmSIMMMvSkxaoVoFKVSKF0AgmyzZNR1KdcljVI09e5u77o+Ki8I05LS9ImzFfO7G2zXIY8t2irl5Ve/oecZdP1PePPNH/A9n73Dc/Jow+HhEXuTMQ8ePWQx27BZb/n544d0PYNHP/4x/j/+X2RVvov91g1StdDU2I6Gaio6PZ1G5NzMX3Ewvc9Br4fhuBgoaBpqWSHjjLvFgtdvX5PEJXWp0JuKXm+I5lr8n19/w7OXX6PTcP9ozEraHPa7JFnCq6stg67EcCvq1MBsKry4QqmKvCkpZUEjGgxHw3I7lJVG8iLBGRj4nk5VldwuF7x984aq2FIVMXVrUshqx/9SGZZTULUNd+sVHTGiEArd1zD7FuO9CXG2Zjvf0Bvu88ff/jdEkQEm9598jGu7/zrR5OU3X9GdHDBxBljdAfMko6gk14uQ4mZNf0/jxW9/zWZ2x+GwTxbHNPUebnfIxXrFQJRstjEaOi0trWGC7RBXinYbM1uFDIMxTuAgkxLL9qiamCIpuF5ueLlMWWcNKJ27qGQeZVi6jmZq/HE+J6tqDvtjhqZAvfwHZL5FF4pSaJzZJkPTJVUaqypDqgavUewPBhyenOMOOwynE5zAR5Q5NaAJQYuOlJIqSbh8d4WwTOxOwCZcE6cFSV4gHIe3sxV5q3PvozEqrukGXSxd5/7xPkEnokTQPTnk5uIl2/WCpMh5+PgRZn+P6XREIgVRmBBYJq7rsdfrkcQl6zglLSpMQ+fk/jk/+eRjvM0MTQl8y2e1umBbXvPkwRGNUiRlhSYbkqrEci1KWVHLBs9zeHL/ANuAvCwJZwlfv7ri2cUNUph0DBvXsEhNj797syQpagaaxle6xpGlePLyJWZPZ9bk9J++5eThA4R9QmW4JEVKW+X0uz5aq5CN3K0lK9jGMYVsdtT8FjTDojMaM5zsXs/jzZL7J0e8W8XcLjcUpcvdKiFMK4pW55NHU3RRkDY6h/eP+PJywbY1ONg7oFgvcA+eYE+6vPj6JbXQMF0P09KpWoFUDWGakALPb28xNEHgumRFzmq7xR/38UYjnH6f3nBEtl2xmi9YrZaEaUkzGtF3bJqqJM9zvG6X7miApmvols3jh0fczeZUeUYRTPjiIqONYg76Jo8/+pjj8RTb7GC0Hrrhc7cteDov6H78KfLhCUE656SNaPOQ3/z+d7y5CdH659QH+/z0g8fUTU5n6GMNh/QOj1FJwvz5e1ScM7p3RqzVyCqiqRW6oWM0LXmj8D2bbuBQlzFpvuHd6ze8fPGC/WGP2dohafq4BPjGiqIwmNz/HmF8n4vNDeXTl6RZQa9WCM2g0AIaI8BxSx7du4djOlT+Hje313T7Lqre1UkWZcHtasP5ZEi1CWmR7PVchl2NbsdCtwIsqZEkCes4JI8XzKJrwjilYwtcv89wPGQaQKdr4ps2tm4wHe1xl9zy4WcPiZYNb19uGfYeEeMT3micWwUEEEhokhWXd9fcXt0S6BrL2xte3V4S1QWxUizqmtqw+PH3vscnn/8U17VwZ3OyIidcz/H6QwKhdrwfw+R2GZI1EbbjgGHw/nJGGEW0CFzPxaBFomF2h5iG4HK54t024+bylh/+7M95cnKPpCgIgj7KasAQaJZBUQuiOGO5yYg2K948f8X64Ps8DiY08TUi2eCaJqZp0Zo2eVnhBAKj0yVQivfhmsPlmn3P283QFgJD0PdsxKgHp2PWyzXbMOd9tEXkNWd7AyZDB/IlZdPj6Pgjkjrgm9e3vMslR2XO6cTGMTSKSmFj8sHxOebAozE6aJbGXDWsb2+4//AxbRJRtxlRkdI0GWlZsFqtubtb8d37OZVh8fjDD1k1Ou5qw7Dj4jodNE/fHba1wLMtuoM+MpyjU7F/OGG1WlGbBpXf29XHNQorGLBMIg4Pjnn6xXuCyQDhG7jDMdFyhdIszp58yjyMUOGaT/7yPzF7+5zt61+hNSWilVi2jWsr1usQ2Sg8z0dou9ewMI4wnfvowiBNUjQBmmGiaonRCZg86tF5fcvPHo14+3TGdZhyF7f4boc//+BjfnZ2yNDScHon9I6fIFcz8rhh8L3vk76+wLmYk5Y5Eyfh+rpGLHT+eX3BaDLgz372PQaDHvPZhuP+CT1rjCMszLqhdbroHRslLbKyoBQwW60pDRs/UjQBZHlLLFvCpKDT91lGGb5yeDANUOEtquNiOxZF02KrGrmcIZQAu4NodYRQnJyeI+ozrmZLOkWBkBnLu7f88buv+S+P/z3D3mNMunxf+ayqjItnz+j1+qSRRGpdGtNH1QVV1WKbLklcgK4z2R9T5xmToMew67CNIjarmG6niyUKhFlz8vE58RLsOOXm2Vtmt3M6Jw8YH53SH4wwcTDcU4zJEK8nCB4c0v3436JPfbAltVzSbitKqZCug6YNefPyHV9eRpz4HT58eMDxn5zzf/zNP+ELD7cRRJWERmKiU9cSF4vrqEDQcjzuYwnoOzaRVNwt5gx8k67fJ8JFa2qq9RIhBK5p4rQaRRQzcHrYto/X7ZE1IHWbtBG0rY5pW3jTE8LbOaKp6Voat66NVgumgcJ/cM5sswDbojBrClWh9CGt7WDoElOH0ck9hBDYrobbcSiKCqNssSwT1ZRoXoAc6RTRlr/9h68RdU2v4xGXFV3bwSohKyR1UnFzE/Nu9XvCotxVWLo+pYT9yT7bLGe4P2CdpVSrCG9yBHYX5+wzyv4R472AKFqiWzbu0TnVnSRMM67nW7a5zrZ28P0ezy9vsDTBTz96gOb3aQwbf+KSz6755ps7fvDJR0RJzKZccje75OXVHeG24N5nP+dgMKDb84CWfr9PYwwx7N2cE40gSysCPWU0GTMejPEMmzIvWYURjj/EMDUCx2IRxQT9DsnKopA53cCmKULMTo9KNnidIbUykNmcy5stOSaqrMiiDCUEZV2jBx3u7i4Ruo7r7RxpTZhClPHxtIfnusgq5XDvjDBf8qM/+wmlMaYpWhav3rEWMVm8RJMp3YEDWQL6HQ012eyOPN0ynU7puBZ563F8MCHOcobDHl2vtwN+WxqmJ9jWDcubCzpOwOW8JBEOnWFAXpVYqsEubWzHRBgWtemRpzltWdLmKTgBzmCP2WLNZjUn3izZLJfUecXBaELQ3+Ph9IDR/j0wdMJyw/DskNHLCZfLOfM0JckKVrnk2Hcoq4Rhx2OVFJSVRCnFKitYRCn9TpdtnLBn9dE7I2bX70gUbEqd1buErmcx/X85e49lS7L0Su9z367l0eLqGzIjUlRVViEhCFg3Gm0kB80BrSeccEAzPlXPadaTnoBAA4RZNyEKqEKhVGZGZui4cdW5Rwv341pxcOsFiKlP3fa2f69/rfW1uziWTlU2rNMNpeFje21Gio5clry/m+EdPaZqhpz+6Au+/5ffMnn1El2uWYdb5tsF8T7gP/z4EYZvsJ59ZJ+WSLLg1ftrhGqwyxoQFbquo9gOimbgeQ62aZC2PRxT4Xa+ZhskxEmKqt///7BKMW0NTdGRZZWqkbDtFq36mApBXlWsP16QlCXKLkdWLBynQKgKlu1TJTG6kFF1HbM7olbfMlkFaN02iTtgcrvmdhMykARhVpDVDXJZUjU1uyhkG4S0h4cYQmP27g2UCcgmGDqNJCEJgaSAQoVjaqx1nWePhzx+cMqg3cKUpmhCagAAIABJREFUav7qr/87f/4Pv2BfVBxYDkLR+ePzc/xWj6JsWEQBsVog3y24W0wpLZVNVBCkgkoW93GtuqKoaoSqISsC1/NoFImmzkHTWc5XTJdrer0OpmFSuW1Wywm6ZWNYFmlWIe1z/M4JQVAwOhhw8ugzPEtw9eprri/fI6oKw1YoihzTb7OYz/HbHaokw9QVTo6G9LsOTXDJzd0rguWUpKzJ8ow6DZCUNiLLMYRELAl0wyZOcpJSIr+6w+8O8CyTpqmQNA1D0SjSHOoShIJqWDSSxn5fsF2u+PD+FX/3z//MOggpqxpkGV2CqK6p3AYtrohUk50mwXZP2dxDMf7ss/8RdXSG3jGJsoS24dHu64S6CYtLyjrHUFVy3SLfbQk3CWZTIVUFVsvF1TXWt7ekUs062iH0htaByU9+8gM830fICpUss0tz1mmDomhohklZlWQVpCVYrsfk8ju2wQ63f0and8z4+ITdTNAbjjg5OcKWSwaOwSqaoXin0DTEv3MSqapG0dQUZUMtNUiqjKGC55nIosZUJfRsShn7tPtHCE1B102ybUrV1ITrHR/eT1kuUqIgwqxqjkYjvHaP//buHS8nb2l3DIy0YigrxO02mm3QHx8S1zWuUnE9mXJzN8MUJhImddVQNyVFmbPZ7ymknP7ZgLOjB2hJw93MYHDQY72as11sKcMVSlORISFpBvusoGkkyqZBSBJvLq+pmhqqjGi/plAzBgddRqMRu3d76kXAaneLqVpcXdwvknu9Horp/utEk6Ko2a0ChLil/eQz4u2GOAipa4lFqZKsA4IkJ60aNllBv+UxXawRls9ms2NvKDhCYxfFCAlkVUFSVHSpRtE1riYLHp6N8A0N5C7QYJUVWZKxzWqmu4xlVLNJSsI4BWTkuma2D3CE4BPTpEWBliwZKDXjrkVLVTgyBK4tkHyXxhBso4j5fk9i2KgnXVpew8BrkIWEbDigmyDuhZ3yd8jcxc0dRdngd7vkdc16FzLbhqAqzGdb5kHE8PwRqTPCLSO8Xh/FbpHvNjwc96lVQWM8RCozLt69Id6mfPvmmpbj0VIM1jdXVNEeqVBRLR3DsOm1ffI0AdvE8Vx+8oMf4Jfw9nLOo/EI125hmj5ZVfHxboFlW+zi5D7HX9dYto6mgJXmGI5Hq2MhU9PEDberNd+8v2YZ5zRNQqUIKlkmTu8o6xpZkgkUmaKBQKr4bg2fHbRoe4Jv3i65Wsf88Z92yVTYhxWmqhIkKY5mI0kKZVNTVCVFXaFoKmGc4lgWg8GAg9GAaLtkcn1Fv+MwODqidWaRyyrf/ctPuVlsQMhIiqDf87FGJvNox+h8xBfWn/Eu0FibJh3bZDWdU9XQ6C661TBf3jGpMwzXY7Zd0qrhbrFEkWRankOcrNkFIUWZk1c1rYNjJFmhKCqu3nyHqilYrofRNZnOFoimxnYsKhpUTaGsSpSmRghBr98hjPb3l7Fp8X/87/8R9iGX11f4vQGNZFIJnVrxWAQZX99MuQpk9N9OqP/+a3Ttjm/VgN1iRql4/PhHP+HZ02c8HA/I1gtEEKN1fNqPH1PFKftNQPDmPSPFgE2I6hk0KFQIyjyjbmp2cULbd5GFhGHoLBYz3n18Q1nnNELhYrrGHjxDtgxqGUzdRnUc2raNMe5TJWtmywi7bYA9otjuQI3od2V6owMaxcLRHPJ4h2KaxLsNpqGR5hkX64QnD0/QjCmKiHk49qmrDGE4WK6LnFTsNku+v77l+5sN67jicHDA05MB/UGPfr9D39VRiwrF0lBVweFhi9m7NW63z6PPn/PsRzJSqtFM9sxeTfn6794xOFJwjw9xGsEnpw8xFIcwSvn29RWzNGWZ7NAVQdc2ePbwnKOjMyTVYLtcEiynaFKF7TrIls3osI8+uSErStw4JnNdCgXquuJmvmCfZDi2hW3ekwFkYHByDtsVjtvi+egca7NlfHiI5rXQmh3CcQn3E7KiRLc9drs9RV5yc3PH+7fvWQQJS3lN1TnBCddUUYTt3A8e3bZ/T5zYbOn2uzS2g4zMN1d39EZ9dN8liRIQAt0wMSqFox8+pylzFhcTzkZtWnsYPD5D9FUaCtR1SVNZnD39jM+/u+DrX71AVXU21xNur2s0v4vutVku77A0Ccsw6HW6aL7GUWeIuSuQVyHl2MVsGSRBQ7wL2S5Dvr+aEhQN7W6XuBYs3r0ldzTyUY+D01PKskAoMlQykmawm9+h6gpOf8g6zVnsAs6HY1TH4erjexpVI88zVvMZ3795z9NPnrAraqKiYjQYUqx3VOs5w8MTZPWWLx4eM7t+iVSWdPpj4vUNoq7xDJ0m3+M7LTxHohAVdVMy7LdIGlgslxydHOLICpIsU5QVeVlitvp4PZc/6bXZH5rcDW3+6mcvuX5xy+Ohx/NOQbev4nUOkJxjCmqMwwNEdh/lkTSB6ZTUJCSWRlBLGK0D/uz0MZ0+/ObDa54cnnL2kz/EfvkKspD4do9mGQjPANtFlR3KZcwmSMjyBlNXScsSwpACnSjNkSSJOK/JEZhHz9iWMl6WUzcFvZZL5B1gqCr6fkFeycx3CYbtsFmn9P0O4XKNJGQsQyeqMwqh8uLqFvMf/oknx23C7YY3725oZJVfv7ziix8/R7RHCGFQhXuW0/fIaoDm+6ybnFiUDF2b4aDPcrKlZR5wODgiKpdYSKiFgnt4gqna6Ic+k4/v6Hg2R86YNM3JygzJcDC9Q6zBOe6zHrKcoA48FLUhvJlSF3ds5wtipUHuuMiJwfbNjs3thi8fnuHbDoOuxXg85vzwEV3VI48hXixpuV2EYbIOEkSWUJXQdixajgZ5DarJ3WpNuFrSVjTiukBoOoXSUCkystxQFxnzXYBoQD1w6J8eYZ72WawKvG4PQxGYOgSrCf7xD1ETlX/6y69JpxvSkwMenGqUVsHwk0dIVx9ZRSHu2EdJp5gix9JdGtOjUA0Mz0FSBLKiYpcSxdUNqiZQFYsm3hNlAdPlgvndjK9GFqvljrvlGgHkUcqHMEWgUJUy+3ROWSu0zC625jPfxyiqhNdqM0syskZG0Ww63SGG3qLt9xj3PJI4JU0E20rByWuyJCXR+lzNZ+yME94uJ9RpzuDgIXFWcjzwMF0XzWmhdPoQx+SbiJFfkNZwObnlN69e8e3FDabtc3p4RpjsyanptNvMbm5YLRect3VkoSBTEaQZq8WGuqwxlRaUFUEQo2oW7cEB2T66pwcaOnKeI9c5ouPSenCAIUNWNJR5juO5VJUEqk6hOGyjLR+nUwTQVDWq61MUGZuLC+KiZjzooaUrFlGOisPj0UPkYk2mRYxOH+C1FNJNTRnHFFpBnDscf/4V444M0QqlLonml2iOSaFWVMGG928u6J8M0R2dyoTtJscQKqfjAcJ3yOr7s6vIEpqmES9jDMUgjhq2uxK/51EWgkTU6JYGQka3PdIkQlY0LMfHdFqsyvsejLquUUyTspEpJRlhmMhCZ75YMTo74/jBKZbtEIQBH2c3tC2LRpVAFuRlTVk3LFYbhu1TKimmaUoUqcH3XIIwJK0aglLiarmBxsFwXRxJYHsef/rv/pQ8yHn1m5t7x1FS8PDBMYOzMf++5SBaLSTZQOht6ijlJzfv+fjxko+3t7yZHPD+ekLHHbCd3/Duco4s4M8+f87pkzGFbXA7mSNVOZtYpdJAkxqissQsS4qyxJHaNEJDKCoKCqahYWUli2/eozWCdZpR5Sluy8f2Wki1gm3YyMiUFWimi28o9wvdqmK+CiiE4NhtozYpZVhQFQKh6PjjNioF5DFxmlMZXeyzL3i/ytgtJlzPFuzzmnZVkmcBcRJh6SppUhFEEcKyaLda/PzXLzDKGiXOkbQY1XKQdZMqjanlGklVMB2Hx6bB4OCQg1EfXTP52U//kb/46c8JkpxD1+GHR0cMTj/j8dEZuyjjVz//R+psy9FRH6fvUUZrdnlCJkOJjBoUPOnp94W2EqiajmmbaKIgR0EydLJG4t1kSlOVZGmBphn0WiqmplNUFXm2x7ZdtO4Y2WzjOjbHDz9FNWx012W63PLyxXf02i7e2RG26yK3egztIXkaYxsSB4MWHUfBqrdc3b5hdnvJer0iSjKyrICqQtN1pCalSlM8v81qE7AOIkxVY9tIOHd7fvjgvgxYNQxkSYYiR1EUZN2gVi22+5Sbuxkvvv0Vr96+Yh3sqYuKJMkI04IZEr4mo5cFpm8yC0ty08CSJAxJoNgudVFi1BFJVNA6HZLR0BgOliKT5wXZ5oLGNJGFfO/OSBLiJMbWJbyDMWW8Z5/sULOas6ePqN2CkyenfProJ6iZhlzJpGRsdiH71ZLR6ADVNNmXDU7/kNV8Th6tqPKc3oHL+OwBmzDHczwMqeag12LQbmPVMb4qMfvtS/76z684evqYn/38b6BKsEyFolGp6hpkHUNSsVQLx/RpmzWaDJqQ2U+ucPxDdFNBqnIM26fOEmpDpZTg1+9uuXz3Hjkv8P0D6Nr8+v1veDw2+NHnD6knOeNCENk95HKPJekojsfv//gZ7e/fYj84pvjwgVWakYiGf/76DZurLek+5Xq/I3txww8ebvjDT77kKFBIvYLVZI9eVlRJQVE26KpOHhYYmkoQFciKxj4rKKsKaKCqSXdrXFfHdxxELZGsdvhum2wf0dcV4sEQxxugVg3ZPv7XiSa7fY1XpSwmMyTNQdUMyiLn7m5GbXqgabjDIdZojLxbYTot8izl44dLsmhH78EpteHQs13ScEMRZfi+RZLkgMQiTFktV/jOGFnVKJIIxdRRDB21qZlu90yCnLyokAFDljEbwcgw6WkGp7rCsaPjOiaWYuJ4Aw59gdMxESJFjB4CCYXUcFjWTFdXpIZA1e7JD2lxr8prug6AVDfkcczy5pb1dIpi2EiaxuvvXrFYrpGA2WLDIq/QbRvDdsjqBt90yYqa0WCA3B9RFTlZGpCut0iSShxmiJbPy4sZDw7uHSPhckYe7YlVBUPqIeIUJc046XUJZYVmMMJ7+gkvs4YMGT9OUDt9skbw3e01QRbxR58+ZNj2KMoK09RxPRtyhdLS6Bwf4/bblEVOVmc0QkFWBFmaUJQ1iqpx3u/hWw6iKNEU9X7ok2oOWw4JFddhSFiYPPR1JvuYt99+Q2N0yAsIgoJ+27/PPNKgVAIdiYEis48SFN3C9X2OTk9o6oLvv3vBaDymMV2C7YZ1OCFsJDylpt1usQkj4kpwtckRi4RdtAdX4wdHPp3KYa9pWI3D6m7Czce3JLiEmy2N1FA0DRIypSS4vJuSZTlVVbLYrNBliTzL6Hguvu/h+i2KPGd6/YEqDalqiR/86f/EJk758Bd/QXB1yxePzmjkmrKRUFUNQxMUYYTltXFMF0kvsds+h0ddLOscZ9jjxcuPvHh7ySZIaXdHREVFJMucf/UJnXJPdbVhOrnkan3FaHBAa9glijbMpzdU4YpBHXN8foDh+4SrNfvVlvDmllffv6A0NPzxCLXvU+125Jsdsu2AIZOVBb1um+1+j6zqLFdL9lGAJGu8nWzI6wMGcs7TI0CzqLU+jVBxPJW4LLDUmqyoyZWKplZ58tlnPHj+B/zmZ3+LZtroto8iNCLLJKwlbL9NVWTs4x2G45IaPr3xIdPVFqEa1LJHUZlojovVNlBUhXWcs00b1tdrPs5maOQctW1M+xDTddClCl27pxV1+l3OsFHsHkkSo1odWgcDGtdB0x3aR31e/vT/5vZyxfsk5/D4gNbghDq54/cf/SHbpuH11W85G7aQ4w3F7YRf/uVf87LbRdYlDsZtDs4O0P02sq5iOD7dY5n51XsaIWG1W+BazKdT4jilkiT6B0dYcoUpSzidDoahUWgqp8dnyHaXafKa9WZNsFlyN7ml2U3p9ASNrKGYPkmacvPxA+8ubllvY/Z5helk/Pw//188Hfj09HvCUKfXw7QMtLqkUVRub25o93v0h0OuNkumizVHjnOfxZfl+21ZreJ1fExVwrVMqk1B57iLaepox2Nk3yd7fQWpgqJaPBIW1S5hJizyVxHPLcG7+YTfvvueXJZJqhKamkYVnD98yJNHnzA8aOMOzimqmHi3JVnv2Qc7eocHqLMNPU/Q6Q/QVIPp9QemxZ5wPQbTxlRkwt0OSwjiYMug76PYOpWmM72boWoasqqimjZ2e0ABlKaFmeZ064qr92+o2ja2ViFnOS3XvUf2FQWHh8d0ZLC++w1mk2IMjviYLNEkg7Ojc3qWSlnCcrFksl9iuPdip2pZXC03HBwfozku6XZFU2QkaU5LMxGqgqLYKEcnVGXFf/DafHb6Ab2uUeSafbhENUy0siK9m1MYLRAOsmpSpjllkhFsG1a5zuDRMxyRsYgrQtNGjy558OOvaPXPyaMtk2//O+1Ri0YuMWwN//QcFI0sS1jczDFUH9/3KMuMMIyIkj1JnpOUDaps0D04pTIsahKiSqDpFrsC8izHVBtuNmuiJGMapPiOjW557NKEi5tLgt0WqW5Ii5LO8IxBr0vRJPztL294c/GBKC7540+f0agNr2+mfDE+wev1EErF+9sLlts9Q9OjSBOUOkcqLbxujzyq2KcZA3mI6wjiPKJtG9SphuQoeP0enn7HSa/PuCMRxgXbdYxy85rKXiGCK5SohdbXyC4S7r6fs1d0FK9Cszs4B6csi5x0veHq4zXnhwc4Rx1IK7aLG6pX3+L1xD1WsZgS7xJkE/ZRTJxmVIVA1QSeY2LrGokM86zh+nqKIUDVBJYuCOWGy92G/W5DKQRC1zk87HP+yRMkq0eq6ki2DkGJN+wydAzW8Zy3v53wpw8e0XJbNIfnvJq6tNM2trKjtCLmrz+wuHhD+6RN21TIwoJGbig1hco0qBybStPRTJ06rzCGA7w0p7i+RBIK6AphuKGIA4Y2dActYl/l5WTL61XKLMohLlAlBamWEZJO3/AI04ywSSntNoprclMKOmdPMRyH52endDstPE1mNp3T7Evmqy3FWmOzj1jvr7m5vSMtVWbrgO+vrpm8e0HXkjk7GPHj3/9jTtU9rc6QNTrNbo8nQJgujlNwsUt4sVzzD1+/pqwrnvSGIMM//+pn7JuMR+cnJNsdvpBRTRNFlsjCDVVesFtsyaIEvw3HByNmd3OWqxUtw6YKQiohqF2bxjCQlZrx4QG6UmMImQydQpIRpk4e7qnykkZTUYUgjmKu1nsUTYNdhtAs5vMFA8dllZWsyhJLuLQtk+XsioeHOuc//AHXYcJNuELOa+aLLfqozWoacnZoYXc7GH0fISQ0BUSxoQxDZpMZpSgpBUgUNNsFRimRKDqyW1HIMq2Oi6YrqKpCFqfISDSyw91kShiWWGaJrcqYiklZFFi2hSZU1ruUWRpitQZ4/QHtk8c02Q72S6ptim67HD16gqVZKKXg8u0H2ofndAdjpCZntVnT1AVvbi7JDQXJMWmWCg2w2azIeUCj6KiyzIHfoihqNrpKWRS4nR6K3DALM/RtRKcWDB48xbEc5KIkTxQGg1P2syVWFeIIG38wRB10oFHQrB4YLuXJEb1HFzy8fc/s7o7BSOXttuLq/XsECp89eEh/NETWLXb7ijgIKWsQFESlRthIGHVGI92LPf7ggGwbkNYFaruNoqjkcUY8X0FaYisGhSZR06CYGhUGhm0iNYK6ESiGS7c1QLIUlrNr4kagWC2UbIVBQaoKFNvDcRwsTcLWVLQqZv/ha9bLmI8fPrBbrVhkEKU5rt9Gkit2wY4oDnDdA+J8TVQ2tFyN26sPfPjwlrqS+eLsCBEl1MqeBgnqkqK6707seg6mIjMYjvD9DpPf/ob1u4+cmi6HZosvHj1FMbtcvJ9wc7Ul36yokw2WCmZZMz46QLYsfn05Y7kPWSQFUV3jd2yet1rousB3dRRVoOgVpWyAYXF7NycI95R5gW3XDIYd8lpCiBDJNEiiAKmpSBWDomqI45AkSxk4xyCBoQimd3P2qwWqInj4xSHhPkXSS0y9RhcNthxCnrEL1sSljOIMSZQtk/WU/S7kaLRH1VQoFEzDpGgENzdTgl1AEGeoqkEjGzw9+wpNxMgyCEWjVks0x0HSXXa5wtuP7/jFv/wj6+Ud290Oub6f7fKioswKoqpmtm9gI3ExC3li65y7Bm3T5Nnjx9hHn5I4I1bCZnR8hOQZVJRkVcN8s8C3NKrMpUxDpKam4p6MVlQKvcMRlWFSCwnVUvn0089p90ZE9ZquO4JURlV1GqlG0XWipGTUO0A1LJbbhEwYmEWNIiDOIzzfp3v0EL9/yHLzmt5oTL43GQ1H+LrAUVxqU+ds4PLLv/87Xnzz99zdXeOYBtu4QdFBkwSqYSOpCp6jIesNsqGhaTp5nvFxNkF9kKEVBppzXyKP5aK6Cb+5vOH/+ed/IM9z2naXo3ZNMr2jjUDEEmWQExYVdQk/9IcYhY41OkY4HcJXt8jrhPM/esB6W1AlO+oyR3N6PDo1+Ozpn/Dn//RLfvnyp9zcbgmGIaVQuJlM2M0WyHVCUoJhWzgoEIUIRULVNFTLZb1YUTc1kiRTFiVFWhIsE7bzNcKtUKoGyfL4o9/7Celqwq6omWcyF6/fsp7dwf/2H///iyYjz6MqUrIi5/LNG4YHB/iuz3CQc70K0fKU7fSWJE4Y93sIWcK0bG4ndziiocpi8NqEFXQ7XVp9ic16y0aSSKMYQ7fZRilJHGHZLiAhygpTNFSVRJE3nLgevtCoyhqrzmnRcOo6DAdjekDfk4k0n9bjH9BxLRw2yG4LefuGigrRHWIdnaJpMvLsgPfv3lDUFVEpo2oeohFQNUhVTl3UbOZL1vMNmmlTZAXvvn3NpqzZ1wq79YplliEZBoahoxQZ2eQS6aBLWdX333Qbp9VCNwyuXr1EvL/DddpolsfHxYaj8ZhkuyberQk3AblpIFSNVrdPU5VcpAWBZjLo9yi6Xb795h0WFvOvv+eH58+53JdM9xmqqnO9Cvl3v/c5Wp0x7LbRdPt+a5rlVFWBrBsIRSCpOmfjEX/yNObb+i0ftxFlLdHIKsfdLp6sMPZa9A8f4igy/Z6BVMxYbXYYZ0dEasNsccksTLhYBqiGS9HI7Ocr/MEQx/HQZBVLkkiiCMNMSfKS09NzHFUw+3hB6+AUp9vCcW1u3r/iV7/8FaNBh/Z4xHDYR9YN4rImyhuuJxtwBFUjs9ltOR63wTPINdhOHK7fvyWRMny/yyLesYkTjCxjs92z3Wyo65o8SxBNTV3kuJaN5TmUskKc5bh+h5vXr0g2c6Jgi9lqkeUFD06H/PSnl7jTGafDDqvlgv6wf6/E5jHZiynd1hGur6G2HIo8B1/l8PFj1P4Zy9aEy5cvOR7U/EFLZthpU/kVG6VLeOjybGJx9U4jySX0umB28ZJesefRp8/oPTihkhuiOCcpEjbzObuLDzx4cIZu2ygtm8YUhDc7rIMuktQQRRGqCq5nsdoFhMGWRtFQdYNtEBGlBbr7bzg9/z0M7xaUEmqoa4291CH2AiQ5p4wydhmkccZXz09pqpyPvUNqkeO5HvvdFlWRKNc7KsugrGqyLMX1O2yzgl67zXDYJwwS8tpgs9xzcDxEAuxun/FxStdxsY0rgtomWK/51TevMUwd//PPcFoeqqaiSTWSBA+Hp4g6J1wscHstmmxLky1xH/axRh3s6DnC6fCV5PHu3YTiakE3S7HqDK/YcHQ2onvU5+ZVQtjAoDWisjys0yGeVRIHWw6OR5i2jTAtRJWR5AVCVe8tlWlDlmXIms4PP3mI325TZQlYNoPzBxRJQB5H9IdPqFOLL48KZlrNfrslWa3QTZ0iy0B1CbZb5tMpb15/5G6+YxelIAn8tsbAdRh6HpqAfqfFoNtCTSOMXodX7y7JZIkq3BMnCS3H4nK64ODpE1Sq+0JYy0bXBXWegazht1sEeUJcxuiWDMUGNa9QtIpasqhLCXPY5vFnz2jfTNiNj5CDNT85fcQnUcJiu2ASb3m3D/gQbPj4zZr/9vJrvnryKX90fMojs8U+2nK539B9ekahGTi+i6Zb9Hp9gs2SZLNjX+VUzYTT5ylIJXVV0agquushmTaq57APtlxdXjLutpAUQRLtyZMIz3WIi5pEFnS6fQh3qJ5JGERM7ta02j7+yQnraI9QJRzP4fPf+0PG1++Zz28JDInzB2d8+ewcRW5YLbcUxZ6gthC6wGm1MA2D9TJlvtkx6ndBu0eoRlGEJEERhwga8nAJuoE9cHhqeWTbNWw3lFVOsL5BLmE5mbGfhTidc3R/hDBc5FYb4/iUYbhg8fEtF28uWCoWrX6PRz/894RZgrK7JWhSrnc7rrZ3fFis8ByTz5/v6B8MmSxDkkrmZDBGkaHxXUpJYRosKJE5Oj2hPz6g7Wu0WwG2bdIyFfxOl7KSsIwC0WQIVWI9D6DISYMEVZZZbALmq5DNdkPb9Tk4OOPo8ATRSKyml6x3Kapp0TEkZNNDNyRQaoRl0Ds8RJYk3moGQRij72LKWkJXNYo0xLZqhkctJle33G1VHvaPAIVak0mzBVbZpWgylE6N02ikpoXbtVD9HGkxZ1/OiRdLzGKEnQ6R/Qb7q08xbYcivsVUNTJDp1gX3F29xemA67RxuwPqVBDM13z4cIdkaQhNZZtsKZoQFR1TllGKijjO6LYtDF1G1mWm6z3vb7ZUNbTbLTTbQtV17ELinaZyFydIssTYU3jSV3j+gwPMs6/421984PpiyeDJY5pKxowDbrdbvr2+Zvtf/gv/y//8v9Ia2HzyY5XtKiaeJaDYbG5DXr9c4m83zLdzxq4gl2BbFQjbRhUKslxRliXCcKnVFuaZj7besQ12qFYLudwjA+PxkLZlMJeXBLc71mlB0TS0DB1bqORZTUfT8OWSh46H4ZrInonc6SN1hsi2h99qY0ugBwFlGlKvA+5mt8ThhqIuaJQGSYVaaERZxturO16+fEEebWhSjTMwkgryAAAgAElEQVRX58gyePr8KVqe0GkkkqokjHMIA5qqQR/0cYqGT58/J81SPv3sU8Ig4uMvfsVuO2f7oy959uQ5rXYfWcmRypQ6rynzkiRN2YUxumYztNo8ePQJ7775htn7N4wPDlD7fbarJZQZhtdFVhvS8I5GrpF7PvuqoavqoJbk1RZHaujZFuPRkNfzLUGUYGg6jt3g+ANixaJoIE4Cno9cTg6HPDvy0KQA18h4bFu8vt2j986YpCabXcXd1QvmhzWD/qfIvo9QVWStYXd9y2Kx4O3lHHfcQpEhCTbcLDZ4soYzPsUtJTpdH18TGJpCLcssV1tKWWYxW7DcBRiuQ103GJpBlsS0zfvOl2ifIKsmVZxTlSVNHqEWDUKRiVSbNN0g6zbnhw8QsmB3eUO0T7lZhZwWGrYikFST5XzOdB6guy2ioqKqCpqmQRUyN5cXfPHpJ5RlQa/TZbOc0+q0qcsK09AwVJlof9/ld1rK+KaHZNvkwR7NkNFbHoNH52imTpXuqaodSg2qWtFsbhFmB7Hf00w2lFcx+SIniErM3Zo/OT6kUQSl0mDWJdQKxT4lCTOQFIIwYtDVUdt90nBDU6aUkoJqGCTbBY7sY9oW+7xhHyZUsiCsa5AEtqEjZMFyNufB2VNqXUNVFLqHR6yLguW+oGvaRIWEpNzHh3erBYpn0hudYnoe6u/ePPV+x/LyHevFinXjsg+2JFmCaXc5f/iQ+eyWPM/ZxjHX0ym238ZxbZztmiIJ+bgIeTeZoqg2zx89IEhi0kYirmpazj0VTrMsWkJDUTUys8/V5SVZmfLFF5/yeN9wu055sUpYLN7w1fgTBnYHq/MQXWswxJ72oU/luZAVxPUbLnc75ssFm2DNP76d4vg9/mDYou/pGK5JjUAjZlc0TOdztlFK33c5GB+gaQb1PkQWMppu4Ds2SZZSZyWN5RDfvOLm1QsW0ykGOW1d4k9++JSL2wllURLvdhijEfs8QFcziiRhsdtj1kO8Vhunb3P37Zyf/+J7rq8nqBI838Uoqob4XZT5w2TN3d2M1S4iLxs+e9DhxJLZrHd4YxtJlpA1nSYvkA2JWpa4uL3jr/72/0VEa0QaM9RUFFnFFIIz02C72xNmJdOsICgqsrrmTZiRV/DHrkV33GP0xSe8XSpI3gC102OX7pGDiLurKwoSLoMlZpFgi5q4KpCkmhro9tqopqDU76lXqtmQWSGJauMabRQUqBqE+js8tq5zfv6QfZyx3kcMB2NO+odMphOmF9f4rk1veIBqmBR5gt/toyoGimfR9R1sIWGKe3xvyzLx212idI5vtmji5h5qkKYUJZiGRknFLllTSz2KAtZJwtubOx4/ecpoZNIEG0pyNLdFUzYIu4ckTNqqoBI6h4MWX371EzzVoZrPCdcfkdEZPmiT7kuurjbotUSdbJGUJWQBtlLzn//TfwJV5vXHFae9Y2xbodZl+o+G9F4YHPTHSE3EJrslKh9wd3vFwJBQFZNSNFRpSBzuiaKAuq4wXJ9dnFGV97OnJO77uoqs4PpqwuJuiq+pQMMXX35JV62oDvqkcUKlO/zizSVoxr/OaaJUoFkOZZIiVSUfXnxL//iErt/G8PvUv2PFN1lBto+IVRVNVXF0Dd9QSKOY4bFOJaskWUDPtUCW8HwHyvsSpOl6z7Bjo/7uMOT7HKHpdLtd/u3nz/HriizKKGUXIRnIuwV2E+IaIGUJitmhbVSY0RsoDHIdlHJBrUgoxy3kwYBSSkiDJbJcItkeVZmTCwMjSVCESt5IlGnK3cU1H168QjMs7HaH3cUV213M+2DPLolpNI1C0TFUA1U3QRIUeYMwPcoiZhuEnJz2SYIdyXxNNN+SRxnlJqNM97hdh7bakGyWJOGe6XKBqak0NPidDvr5E46Q0R0LWZJp5RLaNuPN6yucMKWlZYwGz4kLCVtteP5kTKPomELCNO43Uw33pXUX7z4yPD1BUzSKQiLdBjx9/BQ9KXCv7rhMGhSzBbWE5zm0j57RPv8Et0nRmpBM13HPz8E3MEnxvAPefP0LlklIsJiCDG1HZ7qY8kmng6zoSECR58hyxsHhCS3HZT+/xrFs8vUKzbdoW21u64YP0yWmbTG2HJyiQtLt+16RCuKsJmsaRCoTZRlxteL44QGDToe5ZyELUBuZQmjIQme7miOEjKbc51EXywVFkVFkGWPfxT0+Qn9wQiLJRLs1lu8RZTkCmN9eokkV46MjNpsVSRLx9at3yOIJRz2f7W6N1jaw3BKpaqhcCGLYbEArQTUL3KGP17X58ktB+6HOuZ/zo7GNXTfsJxEpgo2rEx2d0e4KXv3mJaal4lqHeN0R+vgEdJ3takmV7QijkBdf/5ZTVcU9OUYYJrWuUqYbhGdReR5ZGhMEAd2OT03G4cGIq3VIY5jIpkO22uE4I07PfQ56AR1nxFWk4jg5phwhqjWVBbHu4mo6tqKzXH/g4uNHyiLndjrjswcj/JZHFGxYrLdoqkIS76nLEgGUCFzPJc8r+qcnbL99haE3zFdbTndLusdPkISOpk3Z5xkP2g5byabye2RRxIfrDXZngmk8wPJshCyjuj56VZFstuylkihc0DY8os0VTRSiCh2pJbN98WsKqY0cZcw3E/I0pGcLimLP4SfP2UQNpv8Zj784J5pdw2DE0emAUqS8v/iG1XxGV+5Tln1AQhIKluOSlxVlIREVFZ99+SXt/ph4s0L6Hbkkm1ziejYVMm7/CPmqIsbHOO1TyhWjc5XWYZ/3P/uvBGlMuNsync7YhhlldW8VL6ua9WzK1hRI4w6WaTBouXRsA6EJiGJ0qcLrD0m3Wz5+uOFgOCLqdoninI5vUNc1tmdDmiM3Jdk+pxIaZrdHNNsgshgrBKWomFwv6TkVmjBJkwhF5BwMXQbjH3H33XsuX70kLTPCqqF0Bjz2h4yqmJSc97sFf/Pbn/Krt7/m//wf/g16z6T95AhFldknJa1uF6EZOIbJx6srFpsdo/MTsmjF5N1LHj5+TJGnmC2PSjXJVAspL3j53feU8Z7UMaEssXwDRdx3IJVJSFOVzFZzXNcm3QesJyVpkPFw+GNc36XSBGQpvcEBs8WcTn9IuF1ycjzm8z/6Pcbu/eOibCo2uw3VIsPRPTRDR9VVPN9jFiY4dkIeRaiail3k7LcbyBNsS6eWJIyjpyzevaUp8nsRujumurthtbxjF6bkacY2TTlsdxh+/gzT0siLinB9Rzi94v2H17xbrrCHBVZ6zeoqIX6/ZHT0hEo2WTgD/vJv/iuTcM+nB10qRae7jclMi/Ozc2RFQrNsaqnAtCyy6h73rpAhJSv8vgZ5SGUa6KZKp63THh0hyRBtVwhhkhY2201DHsUEi2sk4TIaP8Dzu3SdFr3BCNfzabKSPJHY7mvctktRlVRC0O8fUxg51+/e8PDROVFe4Hr3D7I0iZAaQcu9x6BXSYBseZw+Omd+M2G/7XL44Bi5ytFEQbheIjsupSJAkbC9Hrap4eslaRQRG138kwe0zs5pHYwx2yqka2rNoGyGRJs1RVwQ3r5Fl+e0jlxawx521yUrTMJf/wubqOHHT0/Y1xlUBXbLxNIMSs2kWe3otnQsw8BwTG42Ae9uFqRhhud3kIVBto9xdB3bszkc9JldXfLVWZcvnvYZndgM/IaICL/bY/3qCjkv6Ns6VVUSlDlZWXHx6lv+yXA4e/YViuni9uEmqolXS+ZJjHP+gF00IcWkqhKE0LEcH9HcC9tlrSMbLnmlk2y3GG4P8/xH3H37KxJyVFdFKFt6o0Navotmu4ymIfOw4P/j7D2aLUnM9LwnvTcnj7vn+rrluqu70Ri4wXAcKYmjjX4U9Ge0U2gpkdJoKFIDcAgMBt1dqK7qcreuPf6c9D5Ti4stF9Q6NxkZkRFfvN/7Pc+Toc8vH59yNBzRlx26YiJJFtt1zrvFjs40MdwB26igXGfsbtbcRiGOqjEZT/nip3/OPpwj1BXzq7e8+/CWqEzQbIXbMOL15SfSJEKRJIa2idjWsFkiVacYmoHcNuzjiLYoaNKUousZnZ3xV5+/YPjyJZZjcXh6wh++fcnscMp9nPBxs8crKpxS5NTSqYqCrhMQ6h5DUrm+vsbTbYYHQ148/wqtqLi/fA+WhdQ3RLsNWRbjjwNcRaCxLeJwz+vXb3j6/DOWm5ihY0Odo+gm2skTRvqOz5Zr3m4SWllHVDQsd0BneMgtnJ484rPzMx6PTfyBAoWG5E3pmopHJyMsd8hIGJDmKSPtc6omY/7pHYqhYfpDVNsjRGJbFoyPhgwCm7TIScqSxXIDvo3TrfFNHUuVUXWTrqxo+xpRU1luVoRVT92WyJJAXubUVYHlm5iWhYKCPZnhigKbP35HmWdAgGLoxGFEVMlklYBk+ijeAWKZo9s2T778Eb1s8ebdDkfrMFsF2T1k8+qKDh1/csB+PadvagauTZ5FNG3N119/RYuIbJhIgkQebvFtm3izRhQlClEljBP0QUOHQBKFtHWG0KU00hD7eIyozujymDbf01QxYp3SLa6ooph019CNjrDMEaf3NwhHx+i2Rhov2ZYlcRyjRipZVVA0At5oTFj1qJJAFa5oywpREnBtHVOoUNWeIt4gOw6t5hFnMcs0RTEU2rZFVxVUUUbUJcquo5Y1/BefUzs2Vy//yOJ+wcnRGG0WoAgK88UNP50c4/r+gxiCBl2WybYbwuWCLIrZ7fYk2RJFUHFch94wCKMFrmMRxxV36z2W7ZBnKa4s4DkGd/uMy03I3Tbi8Mjnu9sNnx+4RPM1TtnT9zWj4QTX8il2a24+XvLm9684GLucOAqabvGhrfhfXv4TWVYgCiYHMwPZPKfyHax4Q1HCcq2iI3C1uEYs1kzUDj3QUQWNJAv5w6tveTL8CePZlEpUEGWFpu0J04br9QZVkbBVHRmFNq1pyxrVtDg8OKQsM4q6ww6GFKtPFGVGtrrnh1//AxcXx5z+7Mf8q7/5N0xev6QXJbzRgG2VoFsmebwlXN1jKj1HsxGKbtGmCZbl4wxnmPscRwKhhb7ukXQHXZaoizuaXkDSPX757DN8sWO7z6h+uEFXzzlVFGRLerDCNBV9V/PmX76hLyq2SY0uWrw4PyawNPSmRKxLyiJntVzyldiR1x1hUiIICi/ODnh66tMJHZraMj4YsGl6knjL7/7wz/RNyfbmknSzIAlDFuEeVxV5fjJlcnTA+HDKxBHY7beICExtj354zLvlDWfKQ8u/Ey0EUUESH0I6xJ7T02OSUmRQtsRlR2cFTLUhm/lHZscBB8dn2MMBhquBYiF0IseejilLyJJIm8eosoTvuuiWii5KKJ2JaVQPmAypQhAewlpdqOgrga7R6QWZ5TZF6mR020GoEsyBS9fIlGWDqlvIQsPRaMyB4yEILV89vUBsKxq5Rx/MeOzYWMc2N1T0jwyMymLknrCuGtLla37/8iM/eTZD6fZ8836BUjb8/MjhSla4vQn5z//w7xDlmidPz1msrtlkGZdv3zIwZCzDoe9LhkbPfSlQygZVtUKzXfJWhK55YNUJAsqfQjaajnSTMvCG6JrB6fkjfMfEFiqM6XOSxR3L+T0K8Jd//Xf//0KTo/GQtGuQNJN6scTTdbZ3c9TpKW5TU/cdh+MxkiDgWSZiU4MgUNUl2zRCsgz2mx1nT5+gNQJtGeIaCrumYTz2SZIYSRS530QIAkymIzpRwphdcGA0eOclq+/+iY+7FR0duuegjI4odzdsNmtcBeSowUQnbVN6JCxbZ3oyxj44oCo31MuUVrGJwyW9otMaAWmyf2h/GBa1IJEkOZffveL9qzeYuo3v27x/f00bptzuYipRIOkEdlGKoBo4xpiRe4wxPUKbHrMWHHxP5Grf4I1KVh8uEaOC7XxJcrvmr3/xV8RCx22folYNWRRTZhnrXUjb9ZRtj1dUnHgTPMfm9ft3aLLM9PhzDmWVpajjH/yYT7GG6bsc1hn73UeePH3Kq+9+S6wKWJbBaHBELUHawf16xXy+ZDjyufp4iaypHHoW7fEhRDGd1DEIjmhVnYqccD+nu2rZSz267+IeT5DlLcl6zyrJ+fUf3/Kbl9+zTzPq5iE9DWwJz9J50vb4nkldVTRti277jPyA9OaS/XbN+Zdfg6oh9xXFfsXdasXJ6Rm1KLOaz+naiqTsuZtvyMZTjtwJsTpCLCws08S2fLS2J7q7R+lhNJ4QliaKZVH6A8KbS2xdxBMhsF3aLGIfNQxsi+cnx+zKgu1mzWg85faHVxi6TJvGyELP2Pe4/fiB3/zjb9juQvqmxtQULm9ukMSeVmjQtJJe3OMeD1DFkl2ckAgDdluD1hcQ6wLRVLGFii+8BqtIqeKaYHaCbp6QfErpPlyTr96gFzGB2lJ3NbYzpspiortrdN9BlGSyPOM3v/09Zl0RPD2hRmC/nGOPhvT0qI5Lvg/puoaiKTEcm7JpH7R/wwCsCfrthkeaz8gZc3gqo2kNVTuj7ByOgi1CXTDqZMyiI1Nrsr5kt44o4w2//vd/YLl/qCyGA41iPKKpK8w/NU5MXSUtEgaeg6KAqkls1xtG4ykHR0esdytESeTy8g7r4OIhDW5qBEHk8PwRctZx9+6GR2c/onJU7lYrAj/FCgZI1kNwqnUVjSbT9iVJNqfKS6Shx+3lmiJO8fuaxtd5f78laTtMS+F4cojuakRXH/n4aoGhTXn+6AWtVhK7ItpEI07XrPYrZMtC1RS2ywXBwRRZaMiLDMsf0xcVzTpD1A1OZo9AkGjLhHdvLplMD1FF4cEMpWikVUrTR0yfzLiWWzzT4sN2x+LlK968+kBe9dD3lPWDHi0vSvq2RZdEjLYg224ezhg8l6Hvo8oqQjAmv73CcGyODk9YxDF9UfDD9R3nhs1+u8W3D0GSMWyHTsroq4oiSxEVDV0Q0acOWZZiigptq7EPG8xqC6ZOmjQIZYuZpUhSRfD4DNlQuH73PX3do3cCcdNQNhVhnbLOM4ZBwN/+5DNOfvk5iiqz2dyyXa+RvQmWrqFYHuFyhVW0PHN8XMdFOJyw36/ZRQlZVdObDu9WGYFgoBRrbq7vMIMxIFIXGc4ITN3g7v4O5+CI+8WSKC3ZbXbssogoHfLs9DmKLGEpMqpkEuYJ0OGPRlwWJcX4jK/Hp3xxdoSJSBZHpJuWtt2QJhWoCWePTSQJmrbGmxwTtS2mblI3JUndkmU5VCmKIqKaPnXXosoi+yTD1A0EXaMxLMrNhrjIaFs4/fmf8/jZM6pkyf1dxHa9Y7ve8el+QSaAOnCgzqhS+PDDEhSF1o7J24Kt6lH7U84ch9nBkKQVubm84+TZZ2R1h6oJKLaJQEeDQBhnFFnMZHbI7GjCwJEYHsxwP/8LRmbPgV4gdTF53SAZPXmc06RLrj98ItzHlGXFT3/6P2LPDikzH1/VCJwAw7aoihQp1tjHBcOTgC5LyYSS5xdT7la3vHp1RZH8b0iKgtyUSKJAFu4QFIPeczAsiayWmO9DRpMTBpMZl5+u0S2Xs0enGKSUecny/T1do9D2MlIvousWspQhjDze/vCG31y+5eTVmOPRhLHec/YXn6GcP6WWdXLZZH39Lermhql/iDs9Rh3aRPN33K1e82o95y++foJlTpHrGAkTSZbpTJs4zyiKCtf3UDWLOC357s0187uQaTBDKCU0VaczHjaU9PDkcID2xREXBw7x0SGHX18gCgX/+L//OwaP/4aTFxdUhkQtttSySNE1QIcZjIj6nr9/+T2iNuJIqvG1ElfKmU4hXiWEecN8FXNwroNuoWkGD1KFjiSK6bcVbSNi6jaibyAPA5zjnPX1K1RN5snzz9FdD9nUGZsWf/lLhcPDBX1eYtsqnqdDJ2PPXiB5R+i7iNXrH/jt+wXZ5R33+xa5EQl0nUNniCLpJKuSq9++RNXBswLsyub5wSmj8yGaDZeX7zj0VK43e25XWw4Cl+ezgECR0Dtow5ioTKB5GFrvNjsqd4JfNdi2wNMnj2maHlmQcF2Xs8cXNIsdpu3wfpcx1Ho6T0SSJDTTxvUdRqMhb99dsl1uGB+/wHY8Hn/+BW4QsBbAPxhRdw23V5c08ZZGMUjzGsMbcnX1ie/eXfPooEQ/GVP1PYru0DUmQQDPnl0wqhSuBJ/takEniAjiQ4vTEguabkihDuisAdogIFc8WlpM1cZzfarFGsqaY99lcHBB29TcbZd8ePlfOJsd0Koew5MZnm8iyhr7qiDoOsaGy3Z7Q6qpuJaFYtlUSY7Si2RRRhgmfLzdIKsWuyRH9zQM23xQkSoqtukSHBxhjyc0ksjg9pr9csVweoSsygTDACOL8XdDItEmjEIMOoLxlIPDE5LG5A///BoBmE4NNvc7WsGg7jXKTgZFRxASqrrENlRoSxzXxHBH9IqNb+ts7nSaosKybeKmRlU1dlkB83sMVSGLI+gzyvAa3bfpmCEbOpLm09sWbZlSyTuKtCQnIrVURHOAqGYcSgGF5rHbb9Ecm/HBCftPH7mbr+ll2McRsuXxaDqkKWIMRUboe3TToEDmbr2lUxsMRUIuMgQrYLHbEXcdlueRpjFFUWAaOq0kE5cF8mSAeXbE5adb3n33PceSzOzkEHsy4z/N51yvdzyuElREguEAU5FJdxvmn64o6551XJBHD5bRqMgQTBfXBt+3WO9aVNNiudvg7iP8+Zx64NNXLZui5naxohMlFusts+ML9OCA93ffsC47sizhzzwf2/VYhXvu0oJ9XVDexwzME2xfZ//+jrYtkcWWrktZhu8ZGCZ1YZLWCXH0ifb9HEHpKcWWTb5nXhR0bU3g6YwDFUts2ez3SLTITYFhBcStTHi3okpCXM1kNp7iyArxfo0+HnPw+DF9W1LVJYIVMJkdUWsCx2Of4GBGYGmcPT7DCsYEkzG0FR2wjTLScIVs2dRFTFXmdHnNPooJph1tC2fnZ/zFz3/ObDBG3q/R+o40b9ECB6mvabueSTDk509+zNh0qZKYTRph6T7XH68YeY8xvA5REhH7nl6wyDYhM8vm3/7spzw+fYzaihS3S3oa0iYj6TOiskHsYg4NDVuxMM0p3ukjRCNhtV2xC1dItkQ4z/n0+1s+vH1D2pRswjXb1ZoiSVBFAfVgTK+qSLrK0yfn5HlCudsgFhWmKnJy+JhBanM0OUIRVPqqxbBMRHoQQBZ7TMPAdBzyRcTidk54s6cSFB7/7O9whA2zk1MaCZLqhpF3QWBOcFSRpnqwXm3DFN/V0RWFqaNzLYEgtdiuTlakdK2BqsgYqoIoaRRUFOWOUp9iui5Hj2Yobc1+tUQ5crAsi3T3MF8k+4jR0SNGmoPmGFw8f4pvmaiKgec4qN0A1VQx64KwjKiUDvtiyDRwufqXPU/jQ5zZObmgMB1qGE7Ky92eThJwTQV15BDtWpJtjBtM2KxvKHOBweEMy5RBqAhThbSpme8LNlmP5enoUkcqiRjGn7AbokTXCQyHEybBjLLqUDQd21bJN0scS6bTNLLtis31e46nn2Fb//WmifSrX/3qv/rww6vvfyXLGrqmU5UFJ6MJZ5MDZEnAdx1c00QWJaS+QxGgqgruFysWyxW2rjNyBuzzlsPpkOHAZDYZPJzBdC1t06GbBlH4cJtYFhUKNbLuoNoOndDSRXdoNOx3MTfrDdnuniZZIos1vSjQaRq5KCLIPaJjMP3iBbM/+zn242c0fc7q7i2tAPuqI24NZLGhVx1E08OyXExdo8tS4qtrLj/dYYoStutQ5zmNICFoOoZtYzku86IhLB/evasqql5CO3jMbaqw7F3eNQ7R8Aytq1GyiP3iltffv+X88BRNM6h0EdNSULKccLNhvVpxvdmzDCPKqka3bSbTQ+bXV8RhjCJrTEczFtd3KKKKrUy4WclskpinLy4IXI35zUcWizmyqhMmGX1VYPoBNx/es8sLGgRESeH7777jZy+eMJuOUPqOxf0doqyRozE++xJleIqptXTVFs3ocX0ZxQLFkOjElkUY8YcP12yilCxNoK1QFRAllaOjEy7OzzEsi3i7pqw6Rv4I3x7QxDmCqFBXFV4wYP7pLcvlgpv5AtO2GB8eoQg968XioQ5b1gSDgJU4YSEOqQZHjH2PgSpSRjkffvhIHCZokkyZNciy/NBMaWqi5R1S1xMYBo4iczYecTwKODyckjQVE13n8fEhdZmyX97RpXsWN1d0VUYYRYS7PcOBz+nRFKFvkESIigqh77FchV7vUHyV1p1QqgNuSpEwXeNNTJB7RFVC1US8estY1+iSDCFJURQdzbJRGxUz7BB3EXHUsIh2qKrGYrmmSVNMQeDD7YJ/+fZbhobGVy++YBCM0C0Tra/p+opWFKibjFbsyaucKFoxPT+jLgvyKkMeBcwXaya6Qh2nTI4fMZpO2CcFO2mIEKhY8g2WXqCKBUVbkqxXhOsl/fwKtdyhCg1VVaKrKmm8p81TirJCcgOS/ZZ4v6WqOw6mUzRFYDyySJIQ29QYTE/YzZfIssTN/A5VURgen3Pz+hWKpqIPxpRI1FlO2+i8+O//LZUIy8t7XN/EChxkVUdSFNqmIAxT2mjLeHaEZJqgyNiBTFfDVgzIuwyxiaGLqfuWd/MluX7I9OmfMZwdE+3vybJbKqNBG2pswyWXN5ecXhzTVgVxEmIqPWkWU9UNju8hyAqL+QrFHVDkOQIisqKwXy44fvKMOk/p6gLH9XBch8DMGB8PWYQJt9efSHdLPn3/HXFeUpUNWVGR5BVRFNNWFQPb4DjwOR4HSJqGgMDZ0QG68nBnr6sKeVaw2e44HI6J5vdYhsHlLmIcOIwDB8vQ0S3z4T/UNAShp29b0iRGVRUkSaAqSkzTwXR97KFPNF8gAbVhU9YlxXZDVxdIak8j96yiPW26oWgb1k3Fpm2Z1w2S7fI//PXPOZ16YCv0qsjt3T1ZkmAFI6IGRHPA5tUb/F4iOHlErsiMDieUbdkwj6oAACAASURBVMt8u0cWIK961rVMK6h8vF2gWS6KIlNlIaoqMRiPKZFp6hLHNlAthw8f7vn48Zak1nBOf8TBo3MGsxGaIqMJ0GoGaf2gh432ewbk/OLzczzPQxYEukpiuyy5vLznZr2iKEIGwwGGaVDXFa47QDM00iRB6Vo64YFDo1kOtm1jBWNMFbQ6YbPeksQp0KJaDrrrYTkOmq5y8uKnSPLDAH356T2XixWLaE9vmYhyS5KFDFwdJIXMeIQ9PefqbsG26rmdz3Eck5+/OEdVNCRZJkkzurqiEh40lCI9huWQpSlv3r/D9Vyenh/weCRxMhCZ+DIjR+DIl5DqBMN2sAZTihZevvyWb16+5vWnOZLpUAkSR4dP8HQTx7LQZJ3BYIRlOyx3O3735iWrao+s9+i2x/HRmPE0YDp0KeMd6/mab779HkFU8U2VMNxT1BV+EKCbDvPlnpc3S95dL9CcAV2SsNosOT2dopkmqqGz3qeEu4Q8VQlcD91VkZSCXi7RVVjN56wX15hCxMnXp6jjgLKX2EUR89fvYLXkeDLEnZ4hySrJh9fs1yvWSUstNBw8PUGXBbRORhZbekMDWWK329G0Pa4XEO8KXr6+5Z9efsA0TRxVJzADxBYMQ0F1TGzXQRQELMdiGVdIX/2Sn/13/xNK3XOXmejHjxkMXJIsRVZEqqZiv96QxwknF0/xhlMEoYHklmp3Q5RsWIgKKWDRsVpu2O33+LbAyekM3x1gGCpFkvLdNy/ZLzeoooamB+wWMcvbBZJiUzcNVZVjWDa65WA6HoZu4A5GGLqF6Q5xgjGKaVE0PZUx5C5MudquCZMVXRfTCT2GIqJJEqbpMZgecnL0iNNHj/EDGb3d4Ooq588+4+zZGSdfnHHyxVOOHx0xm0wwFQWxa/ji+QVfPT1n7Lnouk6tqqx3O+hFNssNy6JDCiaYSo9tG6yXc377h2/pJJEki0kRwXDRFQ3fDzj1Lc4NqMqStukQ2wYFMBSFm8We4cEpim6gOz5xVZGYFr/8u39DadjsV/fU0Zqua+hkmdV2T9vUxGnO9f2CsaWg0lOLCqYXIAodkqwSjI/4lDZ8/8c/sJzf07cNhiwQxyG73RpJEpF1nbvbjyzeveP7b96y/OEOo5IQ6xKhg6sPH0l3CXd3a7I4Z2gYLDYLrvcRn18c4aomSaOj6Aa2ZpDEewqxQrEcHDugyjK24Q7NVLi7uef9MqGWDLKkgLpClRQ808A2DLyBx+z8HMcbIBkWsmogUXN9+REUFc/3qfKCPI5Z1BppA7vVAl3TOZ0OGYwC/MGIJu95/U+/ZXH1kfmH1/S6T9MKpNGerkjpmhLPVHh0coBta5imxmQ6xRqMUQ2LLs+wHYc0zdjv9rjBkDLLaYocnZYm2iG2LV2Ro7oWkmehmjpNliPKMr2iIqkqmqWhaA2SrtDlW7JXv2Z+/Y7lekmlqJijEYIqopoG3775AcdUeX89Zzo5QJdEyBM0XUVQZHpR4maxpEgTNEVENnS88ZikbPn1N2/Y7mNsz6NvGmzbQjZUFE2jFET+7F//LaZt8OF+wfHshBdHB6AoyIaBqChk8Z6zcoFQJBiSiG7a9HVDk6Ws9wmvP9yw3kZoqvoAyi0rxkeHFGmEIAq4kxkf5hukpkRWFCpUkqZDNy1uFyvW65BgMMBQVYaTA6hKtnFCWFSYiohlGnz6+IFO0EAy2KcxZRJjuS43yy3Rcs2JZTIUBIRiR7H/SLp5Q7p/h1yskGkIi4zfze94u92R5iVTU+cvv/ocRVUJy5qBqREEAxTDRDQckqLm9YdL5vd3dJ1A3ctUjcDhyRkHx0f0fUPfNqRVizUYogottiYzGnocHB5jjw+wLYvp+QW6rqF0Jbpp0TUdUdnCYErf9izul3z6eMXRbIoiySiyzNWb13R5zcwNSOcLFlHB6PQRk3FA3xREux2ye8DhwYyuKHCGQyRdp05WdH2Pq3a4vo0sSrRFjTQ4RO4l/u5vf86Pnh0TODqWauAILoo6RAsC8lZgcHBMVCWkTY2sqTR9R6P37Jqcj/f37PKcMA359//4G95dXVMkMeubaxaLOUrVMLNsDn2PpxfnDA8myE2Ea2qowZgoL4k3C+K8QtM1dM+j66HISyzXZWC7KIpC37b0ogqCStbK/IdvLvmH/+s/8MdX3zM4OOLg8RMOpz6O75O1BTU7BprHyJugayqCKNI2LXd3W+Syocoj4jhlX6SstndYYo+mGmRlR2AZmIqJLCp0Tclg4mMOJ7iWjir3XF9eU7cGujfEcT0EQSCZ33B79YladXj/5iMHwyEXj844HPoMyhy9T0j7liJNCBSZR2enPPvsAsOwiO4/UcQrrOEEO/Bp0oTDgYZp6GiGjqWAPpywqUU+vb+hKxvG0yGb/Z7JyOHidIRjyAiSyDJM+eb9R67u1rSygaHJyCLUdU3X9X9a4nu4zoDTkzOSPEWwVM5nEzzTIN1tUaqSvmlB1nD9AYI1QNNNDqbB//zfHJpcvn77K6HvsHQDqhrPDQimh8xOztlvdmRRiCyKZFlOUzdEWcVyvabpRczJBbu8Iw1DXjw5RpZhMjQZTTx8tWO1i2iRERWFJK/ZZSVSXzEYj+lFiWa/pG57Os1At2yW6x15ntILDbYjMzmdMLw45ejJCd7EYTC28Y4fITsWPQ2tZnK/vCXuJJZ4FF1PL6pIhoPnOIxdE0vqEPKMMMwwBIGybpG7HtnQmUzGAGy2e+IsQ5BVbjZrJEXHNEx6BJoO6q5hvV6TFxUXZ0esr+8o8pIoLZHSGisFzbBwL04eqPebLbv1mt0uJIxT5mFC3bb4roOlauzjhDrPURUdS7UZmDZVGHH7aUkuavSygKQ83Ea2VcbhyGUXR9wtd3SigFonBIMBYVbQyjo319es5nNMTcabHtO3DeF+z65oidME39SQNANhMEb1XEanB+gnj7AOz5DUnrBqebeM+c/ffM/t/R2W0PL4aETgmoiywnQ85dmzJ5T7BeF2R9lpXJw/x+l6DAFOn79AKHN0y+T6/pay73nz/iNZUSI2Bfc3VyCK2J6H4s5o1AGXN2v6eI8qSnjTc2bOkPvL91xd3uDZAcM+QBA72ralr1q0TkQVgLZBose3DXzHxLMdvMBjYCjk0Z6mLNis16wWd+hiS5PHrFcbECTGowGBP8C0TSxVJk8T/MAnq1vyoqQRZRoZYs0BcwpVykB/MAo4B6cgKWhtjSnpGIpFX4vEN3dISUxb9AiyShW1SIlIkWj8P5/uWa9rsrji080V8T5ks97w+ckxj84fPVRA+w7VMKh6WN5+RLZMyragaTJ2ccjANxmMAvqmItqu0d0BVdkysm3EHkzbxXdNDmcj8jxhMmtIlYaRrxA4CkWaMO5zzjwTDbCl/sEaoKh0TUO425BkMcPBgKrIifZbRCS+fvYjBsMZ6zjl5HDI2NUQug5FVrEHAeHqnr5veH9zhzMIuJsvMDQdWTPJ84Y0LVBzUCbneI8u0GWF+ccPKDoP8C6hp2pq5pfvGY8H+MMATBtB6CFbU+72KI7PerNgtbrnLmnYdRaNd8z0aII21Nm3NV21Zp8vwNPZ5gnfvv6O6UGAFzh0bU2apUBDnif40xmm+8Ag6QyfHpGma1FVlSKLkRQZwxviDQL6Osf1fepwwdhVMU0dSdVIe4GBb9MpCveLNbvtjgYZUbHomhaxb3Esi+koYOA5nBxMWMcZZ7MJnqFTZhneYEBTZIgIDF2Xtmjo6Zlv18wCk7pp8IMxgfPAQpJkCUEAWeqo8wIzmOCMp8iiRDSfI3UtfR4SbfYokgzZjj5c0goyeV6wWK+5DSPkwzMqwyduRcTBDGd6SqXZ1O0ezRCZHR2yTiKCyYj5aoPr2RjBiLSGYp9gr2MObBvv9Ii9JpBv7sgklbcfPqLpOr0xQNAHvPrhI5VoUbsnHFx8yXgckO1X2IaKf3hMGEdIqoqkWvSyQ152YE8Znz9nNJugWQ6GaVBWJZIqk6o6cV5TJ3u+nOpMjw9QDRtRUGhqheUm5PLuI1frOfs8wRl4SEJPmUbkVcXFk8/Jk4Sm7dEkaCSFw8MZnmshtBVSlSHRoZo+BTp5nNL1IBs2gqIimEMOHn2OZXtofoDiDXFHAdPTI/KyZL3dI3lTxifP6fuerG1Jk5C7zYa75ZJdFPL84oRnzz9n6Hu0RQmCSN/1JEmMpsromoIkS9x8eEOyuucg0DmbWPgGD1tBVWE09JGkHnswQvenLKueb9695/2b75GGhxiDCZ//5BccPP8MT7bwTQdZ1FBVHVmVaSyDT9GSTVuyCjPkwOOzX/yCmaORxCFp25NECXHZklY9vaTiyh3UJYt9hKqp1ILM+7s1xS5D6xXqtCKNCrouRxBBFnSsyZBU7Fjv9lgqeIGDpPZojoEgi9Sqwuz4gMnXP8V99JQwjXj/7i1X7z+Rr0NGypjD8zPsw3OkHuYv/5k02qCoDY0qUWsmpm1gGwJJmqHaOr5vE2cpd8stmmqQxCnff7ji+09LREnCNjWGQwd3YKOoEmIPlmthuSayYZDLGk9+/CMuxhYDuef23Q2hNmHfKniaSdOUNE2NIivE+y09PadPPsPyPHpJoBNbvIGO0SZ8ijLWSYvYtGRJxmazxlQ6Ts8OGI5HmKbNer3j7//P3/Dhak2yy1hfz3nzh+/QBJmTk0eoqkmYpYhij25amM7D2ZmmCIRhyvD8BbahIxoPNp6qjonnb4nKkpvthl2WEZUFqlyjeDaioSI4BvrQxxh7jI5HiH2C4yoMHh3jXhxhTV1EVWRxe8v+bs39XYxhO/zsz79iOPExbYdWgrDvuL+dIzYCN/c79ljgTrj84Qf+49//3/zLD+9QbRtFVdknCWEtMxyMsL0AzzQ4NiUmUk1TNggoNGVFndeo+gBVMSmzAtdzqMsSx3Op85hCN7i5vULKQzpJRi4jTNOgqirquuFyETLfpkRhzLGvUaHiP/4cwzBQdIemU7mdLwhvLwmjPUUcIUsSVa+w3myIN0t283uaJMOWNXbbhLv1BqFpWF5f8fbdW16+e8urt2/49sMn/vjDW8LVLeOxz5NnT/FtD12XqauHoFlsDO6uN0ieytHsmL4S2S9CyqqiF3t+//ojRStyd7t4aJfSYCgCpmUx8FxGh8f4kwlF2RDtIrI4BVFEVlSarsEfjrEcA1nV+MPlis02Jt9vOTscc3R8jOO6tJ1A0lukm5IffvcfWdx9pEwT2rqgaVvqpoYm42TqMApsbL0ncBRkVScYTnBtkyraIUgaaRQhqzqqbrLbbumKDKEucDQFRZUQuhZ1NKZTe2RdRtRkGnraYkebrMijNbswZp+WrDYbvv/tP7LKKnp3jDOZ0qX3VNGSuutYJSV5URJmBcFojNgU9F1LL4i0gkRWVgiKjKKI7Pd7LFNH9QZc3q94+cMndN2maRqGgY/Ydw/zhqYiDDymj065XS1QvRHTkyPSPOZ3b97wcb1BFSXy9Zovhx1CkZPHGdvVFkkQEeqGKskwTJNWENmEEZqms0tzxuMhqiKwT3POvvgxvaqy224QpIeAZzIeI7YVP7z7iO0NsQ2dka3QNzWyYtLUJfNdwnIXg/hgATk5P8G2LLZhxGoXEic5aRjTlg1fjqecWmOejL7gJDhlZjhMTAOxTan7lh+SjFYQOLFtnk/G/KsXT3j+7BmVZnK/2qCoKoFQM5hOQdVYrlZcbSJu7u/x/QE//sVf8fyrH2NaxkNTQRQwHYe0qFEFcFwHJxgjFtEDbNsLGB6foQod1f07VFVCoCe+v0cYzFhjIEkScRgRRynj8YjV/AbXdZEVnWQb0dciQnBMUVaolsPx2Sl1FrFPco4ePaMMt1TJBoQWy1KQuwzbsWjbBlcqMXwX2gbdtTg+8DCElKZMEAwLyXURZ2NS2yKqIjxfpRfAnY5ph2fUlsv97pYPizmLuODbT3Put3tu5ws+3N2wXC24vr9nvd/Ttx0Hps3TyZTHZyeMjw4QxIbN/Q2TcYCqG9wv5+iGjtBXBJMhsqJTR3sEUeL0/Cm6rqOrCl3T0fUSu1Tk29uS//e7G37/m//E0XTK8Zc/RbZc/IGHY6rkXYciyliyR2APkCUBQZRoqpr5x1sWbz/hjxyKZEuclFR5SRXFaH86BXIMi6IsaMoeBB0U8AbiAxevr5iv59zu9uhCj2cbqKYJgsj+fs5uU3C/jvnzr7/kcGwxME26XYjWV/inZ3imhzbf0LRgHc4Y2DqOJqGbJqYqozY1Q1NFH4wwJ4dYXoDiDFklJa9fX5It1xz7PtORRdbk6KrAF2dHZGlCT88372/5L9+9p+hkbMdGlaEuS8q6fWjryAq6bjEZjbEtjcVqQVen/M0vf4Zn+6RpTl9VTJ9+ie4OEQQJ2fRQNJsgsP7bQ5Pbj3e/EtoSTdXoyhJJ1jl8dIHpeGxub7m7vSFrOuzhlLwRiJLk4WWtCXlW00Y75K7ms8dHmK5BHoccHThIzR7aik2YsU4KsqJmHT8MrrLYQNuSxQmm42J5QySxp2tblqsNogiuYyIpAn0ZIjQRmg6Gb1MJGvvVFeFuzr6C682a61wi7iUs28J3PYbDAb4hIzUpZbhjt09Yztd8evOOsaqShTHxLkSRNda7PV3XoegGkm6yzStEVcOxXTpBRBFFbEMj3S2J5x/YXb5HKjLqFlJUHGfIF+ePOHz2nEpXSe4+Ea5W7PY74igiL0rKtidve0bDMZOTM3RFYeS4uLpNnbcoRcW7N2+4jyOMgYcz0FgvPrLdhmzCAkloyZKQfRIzm04I9yFN3xOlKbfLHdukIstrVmGKa1nkYcQ2TKiblijLWe/3SFKP0JUkTcPJF1/iOCaarbJbb/jhdsv/+n/8A+8/XmJKImPH5GfPzplORkRpjuN5jF2LvGi4WYZodsDTwxNsd0B59wlJELCnM0pgG23pupoPN/cMBgEiDXVdo+omhTqgkgPuNymiqhMcPeXJi58ycacUtYqmmkwCh3EwIkly0FT6vqftBLqmRUIiLQQkx0PVRBzdQlUN9OkBI12hqws+Xd+w3mxYLNe0VYkiQplXRHEGwgNAyrIMNFVGFmqCoYdmmkRZxT7JWRY9rWrSVC0HnoHYlVRFieqPsRQZURCxFA1JEKmygiytCa8+IeQpbR4hqD1tHSNVJeK240w94cXolIHn8uhgxGg45vn5Kbrjo8gCdZpQ7zeIikhapuimREtDVqZs91uefn6BbahUacQ+TbBHE5LOYPXhE8dnF5iWRVlUNIaJIJeMBhJhWTNUwUtWfD22+PxkwmA0oQhDTFXA8zwsy6Jtqodtd5EiqwayrCAJ8Iuv/4LPgid89qOfYM6mVNEdgaUjWy5tXaOaDrKqUiYxNze3XC22SLpJleX0bYdu2RR5Qd9AWUGCQpd3mJrGLgypsw1dn1PGa+LFDdOTM3TbQTNUqu2COuvo2gZZVlA0k6oTyCSXycUzBr5C1+7J0j1NWxMmC1JF4PtdyQ/LLZpYMjsYIAsdd/M7VNOgbSpUy+Lg9JwqTwnTCtFw6ZCQRdjv9qRZiec5DIcBkizTtw96wWJ1jdhk5NEWWxcQHYf5ck1jDFhuQppW5OziOV/96KdMDw7JwxAkHTQXRInJdAaygqDonI2HRFGIPpzR/+nb+5YPrcJ+E2HbOpUsMpoeIHQVmiQyGAU0PeiagiyLVGWJPTrCOzhGty2iOGFxdUm0WRAlKYJqogsViqahuBaV7VLICqarP8BPZZPp+dcEoxPs8Yz5dkneJVRdRpw/bNDc6RirKzF0i14y6IuKNm/47Ksfs64yIqFENWU6SeRyvWO/3zE7OUewxnz3/pomjVFMn8mjJ/iKgH74CN8UUfqcYDRCM2126xWKZmKNDskbGWd2gjeaISkGwcClBfKmQ9EVNAn6KsUj5fh8hj45oFFk4rbiMk7Z9wWlWLDPUooiw9ZBEkFAwLI9VM3k+PAQIY8p8pS2anAHQzRFRqgyTMtF/v84e68dS7I0zW6Z1uJoP67DQ2RGisrMUo0Ww+E0yRuCIMA36gciwJsBezAERrCnuqqnVGZVqpAero+0Y8e0Nl54vUDzBexmwzY2/v/71rKGWP4AUxapi5oojOgQQFKYv/gSb36CatqouoFlGBjuAMseIKk2tWjiHj1HrRMqUaFNdixWC1TTpW0rTF3i7//uF0xHLuOBjzecsrq5gbpENQ3i3QbLdbl5/4Z9sGTi20xH3qPe0/dxBh6qIiIbNoY/RrM9VnnHKnuUk8uSwvj4ObJqMTs8wh/4OKKFJZtIsoqiKwi6yqaOaQ2R84+eUorQlQWfnkw5nQ9Z3H3gJhbwjp+zur9FEESiLGcfrFEECOP0sWqyK1AElb/58is+Oj5mpql0ZcNqEz7et2WF4g4RFYNsuWI2G6GaGtsoxJlMMBQHVdAp3APE+TO8s5c0isHi/Zr55BlPP/6c8eEhmiGz+OZrkmXEZnWNKqUYA5O276mL/BHw3IioNJiuhaAaLLZb1os1Zdzy/m7B97cret1kdniKrEjMpj6CIuL7FkVUMR3OsCYefV2yj0uO5jOeTH12l+9ZbwVs84BoXWCkNZUlIkkysiTT9x2SJOCPD3EH/mPCJU+ohIxqv0LpOjZXD+y2AaqqkMd76qrg6HDIZDLGdS2SOOK//tMf+PWPC8pWZ+RPkRswBZl8nyCqNqo7IYk30NXYto0qi8iCjOJMMGQZsSnpBZE8z6n7nqJXCYuW1SZkk1RkjUDbg2GpVKpIUcZAQRndoUkdpmNiWjL6yEVyNSRNIArW3H77GqE0SXORi5dnHMx96qaAtqZoWm5uFyRxThQmFC2U/gG65bNd3LLKYgbTGWdPn3J7c0smGqjWAMtxsW0XS9UYShVOsaPrBVRnhERHkaRI7gzdnVB2PdFmTVkVKBJYQsU3//U/cvXNb5kNbWRJZLfbsY9i2rqgaEWCtKFoJW7XIbooMbAt/POPkCSZdJ+izi+w+gox2dEUBaKgYHYSlqhT1JAke/ospy4bPFFkIKm4is3z4xN8U+XDass3l/dsix6lA0OROJ2NeDKb8NHHLxFdD0mukczHyyfLU9LdDbPDEVmjcne94vZugTkweXt1zSKqWGxjHmW54iPzSTcwLYvhYIh3dMomy/nuh7f0SDiDEfpwiGiYhMsN0X6HJosIssDvXt1Q1JDGEZ9++pLReIym6pQ1LJIGu5fItjl5UpDHa6LdAknsqaoSTWo5Oxrx9MkhhlRzOLPphEd2nSGKCKpFGGePdktVI08zyiSmzDPktkJRNTRDR7Jd1NGIrqupaWgFSPZLks01ZbRFNH1qNJq6RRIVfF1BFmRMz6dIA/q2IMtimq7nfhOyzFuocoa6jC70j0YVRaVsau42O5I4IS0qsiTDsi0aSeFfvnnDNsqZHp1StR2WoT0m31yfXtUxD2YU1FzdfqBWRFZRwm4fsw9CWklmOj9EznLOrJJoF7ELUupOZrfeogsSD3dr/vzjO9qmZeC56LZF0QvotousyDAYYRwd8/lXL+mbltXtPbPJjK4u6KqYRpA5OHtBso9Jo4CB5yPZE+qqwTBsbrcxbz/c0HcNJ7MxsqwSBCHrMMbsGhxZRGx7jkYHzO0DTk9/ycGLX3I0PeHYcdgXDYWi8fnHn/H3P/kJH3kWz49mHB4fYvs+uW6x+PAeWepJy5KD6YRGUrm8uqJCJAj2mIrCfDIljfdE+y26oXB8fEjSysiGjes45GkCokzfNMS7DfV+g1HFyF1Nut2w+vZrtlcfsGyP2plwlYsY2uNSsxYUNEXl/t0rgiBicvEVq3fXiPGevhVZZRW+IjI6OqCKIjpzwMnRIXLXUFcF680GXeqwdBnVch7NntmOyeEUxbEejUBCy/7hnqrr6VSDpq0QyxjbkJBGI4Jih2voCJKLefoledPwzesfudmEPOwSdvuEzT6hTFK6smYdRLR1z5Hh8bPpEz6/+IJnL75gPJ6gOjZRknJ/e8eBZ2FNZjzsAvZRxHAyYhHEVE2NpWnYtoPl+ViOiyQIUJS0Jbz69XeEuwrr+BmCoGA7Q2p3SoVG3SnoqoJh6SiShCtbGLqJIklIAuRZwnc//JE//OFXnB6OkFSF3foeWRJIsxpVlBBlAUMVqIqMdbhDVUVWuy2ykrAr1kiexv1+zw9/fksZbvEtG02EMk4Il0s29zcEUcDTixHz+QDL9RicHaGNfRTDRNdAHVjUqo6sCEQPt6xevaO92dGEKXnZEGQ1WSoSbGukCsrNnof7B4IgZSwrXEx0BkOdvmvIq5ojW2IfRrwPCv7zb79ltQkxDBPDeBzAdUKPbpjohoEIiJLGy5efUhYlfddxenHCX/38pxwdHTMcj5FEA91y6AFJ1xFlFUGU8DzzXz80uXx7/Q+63NPkGV3TUGcFlu1w9+oNyw9XZPuI1ze3LHYxddvStQ37rME6/CXO4CV/++QFYrxDtXWevnxKUnWE0QoxveZ3X78iSBuQVfZZhiTI1G2DKEosgz2GojA6PKXtOvI0RhREyq6jq0t0XaajQ1AUHM/E9C3KumSXFSzDmF2vcpNU/LDYIEo9E0NmZGi4qgTZDiHZoMkSkqqz38U8vLlGLUscw2B8fIoqiaimye39ipswJisKFFnGNB00w8ayHXTdwNBVHMtCNzTyPCKI9mzjAv5ibUGREAcWw+fPKLuGzbsf2AUB2zglrhsEzWJ+cMTHzz9hfnCCIyqcmwYT26TKaxzNZbPckQsaWV1TtCWGYxJvrnm4v6ITJLJe4Pz8CEnsmM98il7hZrunaVuaTqDsBIKsZhFE5GXNcDjA0FTivEDUHco8RWgy4iSkKjNEVUUSO3bbLX96d82//y+/5dWbt4xth88vnuJZBmcTn9HhIasoxtJlhrMjFkFEuVnx2fk5o/EBmjdAtR0E00IajHjzzT+RLN5gWTqFbNPIGmWW8vbyjrToKNBp9n0cuAAAIABJREFUepXLhxBGF0ye/4y6Nwl2JekmRysELs6PKIvmkX2h9YSLDVUGYiMgCBC0De2TIVm6Q5YfieOaKuOoEqYs07cNq/WWdZhQFg0Dw6CrHoFPgmpy/vQZY89CkiV0Q8E0DcqixPNcNvuM9SJiv43RmxJZ6OmQqJoOhQbb9/Fti67ryaMIVTPpethvd+w+vKMK1zTxiiz4QJmGrDY5UiMytE0G1gDdn2LLLZbjYHsOnSChyjJVXkDfkJUZsqGwDVcE4ZaDo0OOjqaIXYPUN2RVhWx6CJ2EUBRYlk2R5+yzEm86ZBcEOI7FTCr5fCxx7sq4qoB3eExtDymDNUrfoesGnudD21IXGXWZISsKpm5ydHjE6dEp4XrFwZMxhtlw/+pbPN/FcByqIkNSNWrDRjVMujzj7dUtWV6yixLGtkUaxdAJpJ3EcDhi+eo13WrH+Sefo4+nFFXJ9vo1VDmi0KNIMq4/oIvWSH2LNZohVSVNmiEZBopuU5URupgTR0uSIibSfHZlTNBWhIpFJSvkrUDZdkx9harKkDSD4cgnzRIm0zG6LnN1v8IYTsH0aMqEYHnDJqk5uviIJo+hrdEsh3q/Jrh5R5rlXHz6BccvPsawDQauTd+3ZHWH5h8xP33K3DIw+xZfV1EFEUSd8Ue/YLddc79cUjRQIvHpi6dUZUbclsyePmUThPiHH5PmHZ7R43gat9sAezxGLXZIfYU3GqOYFqJlI5YxVRqjTk9QNJ2uqRBFiX3Rsct7KklH8ocMDQFZU9kXHZvVjjYOKMuGvNYYHbxk6o9xFR2pqrm9eo89mVN0AmlTcOhbjI+OEcrH9IWsyiR1S1hr7IM1jiFwFwUoqogo9CxWG54cHVGqPnfbiCJ4YD6f0TljjmYHFPfv0XSDk9M5uqkhGc5fNgUVUfwXYKM/QdZtVMPHUhQ0/ZGRU1QFByMHTRGp6hx/5JBpGpe7gLf3t3z956/51a9/zzaMaUUF2dIYjIYItCRRjKIZyLLK6uoD52fnnDw5Q+r7R6uCZaJKEppuonoHIJl0dYvctMhpStdKCLJBlpWIgzmy8mg0EIFOUNCcA1TkR8ZDllJXCUVR0O7uyduGomrJu57JZMzY1Xn59ISz01NMXUeqOqI376g7WO73JGXJ7eKBNI0YDWxGIxdvMkEfTxDbkmj1gCQKyIMZpuOzDELCRuN8fozA4/Z1MJzgekP88Zjj+RSxEKAW6FvoHYOgzljulji+zWTqMRqb1HXCR0+mWIqAJPag23SyilKG1FmE77tsFw8URU6Z1az2NVLb8L/9T/8zz1+8xDIGaKJKX/Xswj1XizVd1yKiIKgGWlcxPzwi22xY3t6BZDM7PcHwxmjWFFlVMEyDo5MTfvLTzzk6P0VTobi/Jn245P71a/b3D+gWyGMfRRGoSlinNYPhCEvqkXQD0dRZBBHXl7cUVU/SCvz2zS0PYUFb99iDAcOzp9AUTCYjJFmgaRqOnx1j2gplWWKMJ+imTbYN+e//8gbv07/GcAcMJzNGnsd9tsM0DURJwjA1srpCnczx/QFd17LZrfnqmUsR7ynrkjwMOHjylLub60dbSlPhGiqDyYDRZIYqAbslYtvQ9jJfffEVLz79jIE/oq9a+rwlWcfIto8uJ5iygEyPKCmoAkjpHgQJUdGR6B7r0IKK0HV0dU0UZRRFhyLJ9JKCppkIAqhdSpmHaEqP69mYvoVim8iGRBLu+OHXf0SMamTVZegajOdDBBriuqGlZ73Ycnd5R9+rGIrBZQnC+BjdNFje3/HD27cstiEf7pckyGjTMzzHRdceK5mSIuOJFWa8wrAcJEVHEAS6IqdDQzVdZN0k2MfE2xXBdoPvOzhqRxouaZoGVRJQncHju7Go2QYRZQu7XUTd9qyiktFgyOgvaTxZFKmLnDrast9ukGSDv/3ib/jp2eecaD5PpxconUyVFaRlTV70FGkCXY9Utby+3fDHm4CLi8/5H778lC9OJryYzvnlz3/O+cfPoU0wHQvTc6n7lm0Qsl3dYxodjarx5vaOP333Bk3REdWeN9f31GVHlqT4tk9dtsh0mLrOaDymkC0uo4p/+e4Hnp6eMTl9xuDJczrVJCpqsrzh9vKSNolwTIN1qRKVNYphcHx8zGQ8RpVl8rQmTgu6MMRWDKaDGdQRu90NoiQiSCIvnsxxLZmhq2PJFWHSoVk+I11A7FtExWEV5siGS5umVEVJXeSs1xtM3UBWZNzRBGswQrId6nRPFm+pRIntPmJzv0BULQRBIdt8IH14R7Jeoxk6q0pG80bYts5us2ATZ5R1Tdr27OOUuutwbZ2macnrBk3XSNKcy+WG5T6lKiskOkTN5NX1mleXN4xciw6J4XCCqunIikxVVViHZ4yfPCUI17x59w0f3n/Hy/mMc3+IVDcMbZvDyRRDlBD3N5RRwvXtktZwKeOELs3QJYWrZcAP1/cIIgwHPq5j0ssSnT/CmE3YtCn68YhPXnyMpZhoXcNk6NM0EMQ1y9UWVbcZD0c0RcHAthHqCpWW4eSYspNYLhfkDYymB0R5xdXDgqppMVSVpycnNK3AxfwIy7LxzBZHAVFWEBX48uU5n33xcy4++YzTpxdIloE5cNCGNrliEW7WuFLND4uA07Mj9knK65slsiRRFzk9IiCAIDI/nPPs4+eIqkkkGlR1RxLuaKuS6dExnajy7bffceYojKZjVMslrztuXv1IK0jUncCu01nKQ4Supk0CNHdKllUkYcjt2/eI2oguSbh99wbbdKHt8SUR2fEQNJXB0EMtY/o6xXIcTNdjtVljKCKOYyOrGlXb4fsG5vQASbEpdgHJZo05nj2mCuihLemiNUIdo5sabZmiCT3lLiDa3vL2zSuSJGMX7KmLiqZuSIsSS5HwVJWRPearJ59z+OwneB99zmh8QBWEDEYm93HGLtpzNB2RlxnX93f0og6CQBBsOD44eKwC2xbD0RjLtFBEEbKChz+84fXvvqdWLFzXxx7PiLKGPRofrhY8PMRUVYfrPtaExfpxSaKIAk1dcHP1jv/7//o/+cMffk/0cM+zyZS4rJElCU2SuF8uOR66NF0LishivSTPC9q2J6974iJjmxbUdcflj0u+eb2k7yXmRk+xvKfvIElC9uGK+WzEcDrH9gcYjoXuD9A0lWb7liJekRcl8XpN33bIrUilH5FIGpk9wHSPGYUVvmrRChK75Q1pozD25sy6FMGT6XQF29Aok4QekXXe8fXVhu9fvUOSZVT5kZEl9g0D18a0XRRBoO06ZsenmN4M03R59vIzZqdP0D2b49kQTREQhZpOkJFU9bE+iESSVYz+/yRNfvzzt/8g1jl1mpKGe6LNhq4oUCUF23LQFZU42vH26j3LzZKuFyjqnuHJx/y7f/u/kH+4pxYizJnHyecfY049HpKUH6/W3G1i7lZbJNXCNi3COKaqaxpBIi5b6q5naFvUVU0WxyDraJpCVdeYhsLJ2ZzDs0MU3ycva5ZRzjZvCc05lw8LbpcrBlrHE1fFFRu6JCR/+ICarDFNA8u2Uf0Ju9fviG+X+JqJ6w2Ynp3jzI/IdhE/XN2zb3p2ZQ2STCtJpI2I5XocjIeYtk2w23N8dMjRUMM1Cso8JNztabMUSzeomo60bSnLiuDqR4KyQ/QPGJ4+5/DkjMlwjOu4nB2ecOp7+OMhfV0hiDqe4RGvWxahxTZP0R0R3VTp24w8zx8BqmmEbBhcfPQxoqIgtyUPQcTDNqJuGsqmJ81ygrRkuQlIk4SqKrAdj/HsEEkSefn8nPOTI0aTKWEYsglSvr6MWKYawS5Ba1I+Pz/n07MzDKWloUHwhvz4/pKBq9HLBjfXd8xcj5dPn6IJPX3T0MkK8mBMWaWs3/wOxzMRVJN1nDIfeiyCPffLLbVicfWwxZ2dsti3TH/yP7K43/HmT28QBAvhNmIoyHRlTZVHiKbE6u4GVdQowvIRLKcZaL5Okd9Sb7dogoJnG/iWjmfpdGVGkSSUaYatanx2ccHZ0RlnT5/z4suvGJ49ZTIZUBcRZVfh2fpfbDEpoiBiGgY9PZv1nsXDhqqoMFUVf+hRlQWWoaOaJk0ao2o6XdtR5RVVC8F6RxJERJuILKkoWoOV4FKXNW2RYSkK7sER5AmyrqFo2uNZyhJtmbKPtpRCSyu23N9d0goCn3/+Ak1VkCURmoptuKP15/TOAWUYsrm7wZ8dorkOumk+djOblF/8ZI6riyT3t5iWgeCN+LAKoKrRRBFJVlBVlaYs2G2WRFGMLMuAyOef/ZyPXnyBLfnsy5oi2rC+vEcb2OimRFGnVG2PNT1mvwvwPJe+6Xh7fUcY7hk7FpogUGxDdnXP9OwpetdShQEoFu5ogNb37HYBUbhBbECSFDzHodutMIYH9PoAqSwJb++gF8h7mau7BUVTc72L6K0RmAqTkczx2QTHEmm7FknsidOUIo8w5Y7zizMsyybYrnBcm7e3a1R3iCILjIYuq/ffcXt3j+1PMTUVsSspiwxDkajDDb5Q84u/+zecffm3j0DpKkfoH3VnZVlRiSamO+T8xSeofc3y8g0yAoLhc3x0jFSEjGydN+/fs1qvMWjxTIXr+1tOv/iSwcEBhtyg1iF1FbJZL1mu17TZHs9SqfIMRRbRTYO+ypDagr5tUP0JdbqnSvb0TYmqKowODpgcTrENlc5wUSWZeJ9SxAllDXHaoGse097BTESIS7aLFUlT8vSzZ5SqhNDuefHiGSNNoW9LVF1FtmxuVyHu6QWmb/Dqu6/JvAGm5xGHAY6pEpQ9FQrb1T3zkQdNS79PcNsKV9c4nc8Bhc49QhkcI8ki+W5BUvSIkoyq6QiGjyo/MkHEHrKywlDgYOxhyi3kIct9wB8/XLMrG9TpMb/77R+4encFfUcYBYwOZkxnI4Jgz2a5Ik1SqqKijGNOx0Oc0ZT5+QWHBzM8Tcc2DTTTQTVtxK5F6jpESUHRbEx7TJ8XlHlJFKc0sv5YaSsLRMVCbHvqICZaLMmKik0Q0KomlayQZQnWwZyRJtLSYhnyYz3LtvH8AQ8/vuXu7Rsu93vudjtW+xDT0HlyfsLTixN8U6bPI8j3GJpKWTegGojuhLLIub58SyuraKYFYs8mDFENF384JMwyPM9GVy1006TRZVZ5zOXtJWGwZT6f4nkWvq9xMLKRuw5LFvE9j4lj8Obr3zLSRNI4ZbEKSOKEMCkIkoKybvn7v/sb/ubf/Fss10dtIUsSsiigSCKisuXNdkdRxyiUqIqFP5zS5g1Jsufg5An+2QWy4aDpHo43wJFllDKl2a/o05jX//jvefj29xT7G5bblDQNcA4sbEuk61WKJCOSZYa6jGqYCKrKrup5/eN7dkFC2cK/XK54e79GaBtGrouqSCiawnB+iGuqVGXJ5PSY6ckcWVOIi5Ja1VH9CXneUBpjhONTZieHBMiIhsjteo3jekiiiD8aIGkKpa4hj4bU2R65ighWKyQa6qYh2cfoskSRpeyCLYYCEuDZOuZ0yGjsYwoFP//iOV998ZKr23tMy2Z4cPA40KPBFRraNEH2LRSxQekbREFEaBr6qkMwJsiyTJ3uQdCxh8d4/ozp+BBbNcnLlrbt6UUJzbQwLRPd1JkcHOH6DvZwiD0coJoa6XbL299+R7bM6XoR2RJQXRGElqbKyLKUbbjj9n6BKlsMNYubIGGpD3GPTtAEkSjJ+fHH7wj3Ifpwzvz5J/iDIbqp47kukqSSiJDevuFc73HHMwTFpC9K6qanaRUM10NQFZSBS9k1XL1/x76tcIY+RZHQtTVC3yLLMqt9SpHl7PYJsqaTZCWqbtB2IlnZcHF6gtGmSALUTc/u/pok2nN+fs5kfoxmuozdEe7wjAP9iKngIp18SW8fIdUKu3VAVYAxvuCnn3zFL3/yjM++OGcwtojzCN1U8UdjFE1Ak2UUx2d5c0+8jag2G/ZVxOVmyx9eXUJSM3Jsrq9vCaKMIIxwXQddVQmiFBBw/SF3Bfxwt+fdJuHg+ITBZI4wOkYyTaKspJMUWklF6iEPApLlgn72BMnzsF0T01QZTmbIosguzNhst9TRDs2QsCYutqNQlzEPy3tsXeDvfvkxqtTi6QJZkjE7PMHTJKKbd+z2BbrpULQSXbCi3O9oBZUwTmmbjqZpME2L8XyOORo9poHrjGi9IWsl9lHMdp8h9hLx4pLF5Sv++Xff8+Z+zeUmp257XNVgPPZJt/fEZU2n6oyHQ+KmR61zFEPHch3apqGoKq62ey4fNgg9qKqGrqpERcX3l9fUVcnQNh7PxLCRFA1NV7FsE+f0CScvXhLuHiiiBScTn0+Pn2DKkKFytdwgGhamBM3Nd0xci7E7oNmFCHWDWJQ4skoe7Pl+E2AOR8iagqEIuCdHDE5PWO7WBGLGzq45O/k5T+ZPqbIa6gbV8IjTFFGSODl/Ttd1PCwWqAIc+i6rYIdpWoysx8Tvjx9uuVmF9IpFGqdEWYam69iOhygKyGKLb/VohkJvWJR1zMzrODifYw9HmK5JLXW0pkYX31HXCZrrcLPacPVwz90+ZT4dcPuwQDVtRp5LU+b0isXzz77k+ccvOT07xjIMahTKXqZVTKosxTY0BEUnKUpM00SSZFT5cTC5+vABoe/wxweEScGbfUs5uaCtO2TRoMRhHRS8uw6g0xn7U8y+J1ovefX6B2RETo6f0PQi9vyAkaORBku2qzWy6TA5GDMdeVzd3mO5NgNTRuhahLbBmR+hqjrJm2+xJqdIioEkSggIj/BnWaaK96xvbnh9ec/V9T23l2+5ubokWCyQ6xpdFB+XX5KIrig4usrY1vG9EcPZKYohkzRb9uE1E1vAPZlT9RVpuOBgPmXTCrx5f8Xh2Rm6KjN0PSaTCcU+5Oj4FNv10S2btu2I9zX/7T99w5t9TwvojoXvuQiqyuhwxvH5CZrrkEQpSVHjDjzSICJLSvZBwofvXvPu6695+/oVb9+9pd0EHIUJ/nyOajs0TcXccXn4sMA0VWpRJEtTrh+WtFWFIet4ts72NmC3z1nuC1brPdcPa0TJRCozRFFEkxSqpkfpBA6OLxhMDzFMC9100W0XCRnV8GiykiLcsVssyYqCwvEwfB3f9XHsIWa5I8h33G0fsByTk/M5jpiQ1QWjiYM7n7FJKoy+ZrcNCSqVuNNIkpgyT7EtE1kCz7FBlBjMD+mqGtOw0XWNLM55evEJZ08/Ynh4xL4q2W/eIhYbdvsdhShj+D6iJJGVDR/ul5wfT/71Q5M//uqf/6GJI8r9juWHW8aTKYenp3jjGUWSkoQxVVESRCHraE+Sp8iKjGAOyJwJit3iH/m4Z4doB1MQE8J9yPVqR4RBLrskncxAFZiNPOquJYhz+q7jZhMCPXmagvS49e/aDm80pKsrLFvDcF2aumaV5NyEKXdxyW4XoLUF50ODZ9MhQ8vi7nrBn3//DU9sOHhygTM9RB8ePNKCVxFm1TA4mOEMh9A16KrK4sMt2zAhF0SSskY2bPZJyiKtyOoe0zQ4OT6lyGNkVWU8cDBdOBn3aKpMuE3oqhLPs1itFtRVSZzmqKMZ7mCC4/roikRflzx99hHHP/0FvWHjeSJ9suH+YY2ka2wWC7quR/ZE1psVZVng+TaSIqEoIqPxGM+zMDQZ3XHp+r+ogIOIIEpRFI1WkIiTx+m7IKv0XYeo6JiuT5YXHMwPGc6PQHe53ffI4+dIxozJ+BCtbRGiBw5HDs5oQFjlhNGaDJm3V7eMRkPC7Qa9azkZ+EwcG1MRMQcexsEhiB3p6h2uZ6AaOg8f3vP+8hJLlxj5Pvf7nLvNHtO0mT35jMHhx0iCwQ///N9xnDlOKaEnGbahcfXjW6p4zXBsE68XCChYkk2266gVg/FQQ6saqijD1hQMTeXs9IQmTx6haIslTSPy93/1C8b6AMl6jvf0EwYnx4xPZtBHbGmgzhk5GmLXsgsjREEABIReZODaiIJIlSakSUpb1UiCgGGaCH0DvYBumORpSpEXSLJGL6vs11uauqUVNB5qk0bzMIYT2raFPIWiRBBEpK5HEgRkUyePI2RF4fbhFkFX2EUbbhe3/OTz58zns7/02CXkviZPU3atjmF5KIpEvo8wBmPSJKVsS3o6nj6bMhgZrG8uSW+uidY7/vTtj7z+/hWTwQhTU+h6MFSFhw/viYItn794zkfPP2E6nODZM+bCEWxtlJGJbjnsL1dEXcx47oAsktcNhuWCorFLcg4OZkhVzu3DmqoqOb14QtML7Hch9uEZlqkjyDJJleNNhvi2hu0/qnXjXUiVZniGRZ5kaLqHbAxodjFXf/yW5S7mPq3ZZBmC63N4eszkcMLFscVk6mIaIqLQsY/2KJoOYkcUbvirn37K8fkZWV6yXi54KGTWhYKlSww9lfViQVE3aJaH7/tkScTDzQdsQ8XSVL786VccjDwOn36E5k1IGpFgeUu1X+GMDug0F9XQOTmakycpRZLz8OEKmgbLmXA4mnI2GWGpsItTaveE3T5C6XIORhbGcMB4MsC2DML1guvbO5rRAVmyRxYqfEtH1jTCxT0Dz0bsauq6RTJMNNtB0zSqLKEvUoS2w3CH6CLopolYFiRZiaEbjxHaKKcrW2xU5E1Ifbehygre796gzjXGE4Wi3HO/uuPZx8+wNcjrCtN2EEWVr99cUeoav/vNfyPJM2YnJ8h9iWuplFVNbfrUdUNfpiiKArLO5Y+vabOO+fgpcVCR5R297tKLKq1k0NUNXd1Qlo8R/FLSSEvI0gLaiiwOmNkiri4Qh2uuHx54F+W8fVhjTyeoc5/f/ef/h93DAss2SfKc4ckhCi1FL7G6e6AuC1RZRq8bThwbeTxmePEcXeyx/AGqbiH0HVQFoiDSJDFNnlFECXWe0dcNICK1DavlGkExkHQP1XYp8pp0HxKlJerkEGM0Yzhwoa1pJQkxCzBUkXWwYTQccHZ0xGA0It7FfP2bf+aH+wfeLheERcaTk2NOz455+ewYV6ygShFpsCwddTBGkiXiNCcTbaK44De//4Zv/vgnNlFGHKfcLbcktcRkNKbqBD7cLxHKnrrr2CY7rh8uuf7wjnwfcXx8xHjq45gajmGxCyPevb1jMDnC8S3yYEtZ97xeJGx3IbYiEoR7dnHKZDDg//jf/1cm4zFNWbG/u2Z19ZZ4H5JXFWlTs60aNmlOWzQgqQh1gSAaaIrG6acvMVwD1XJRVBNF0ki++57b//KPPPzpjyz+/DV//v3X3N7f8LDbkVcp6yzhxWdP0C0DRJm46bE9F8v2QJJYbkOubx64v12TofLN1QNvblePJq/REEvVOT45JI9iDPVR+yrLIhcfvcDxh8iKRJQkrFqFRhSxZBHXs2iKjLbtUfKCMCl4FwR4roOqyFiOje1bKFLDJo7omwIxuEcoC6azKQPHJwhj1sslnmNTlxVVFmOpKs5gxD4OOTiYoMkqpjvBHR2i9TXh+p5ekRFEhWi94eHqPQ9X70FSUfwJNCViXSN0Aqp7AEWF0FQURY919AlSo0PeU2ctpqThaiaq5dB1oKgaA8fAdX0cf4BlG7iej6FrxOsl3/7692we1lB2eJ5HIZc0ckWRJezLnDxOoBcosgq1lwmCiOu0QpseMbQdbO2xerFYB6j+iIvPvmA4nuJ5Hoqq0ukmV9uYjSDjVymfjj30wRgBEeqKKkqwByO6XkByXOhb7NEAe+jxw80tpaLg2wZBElOVBZ6pIfU1Yd6w3WdIskbVQNsJaJqOKOnIosyRb1GkMV1bk8QRiqbgjyYkuz1d1XA4P6cqFAbqCEsxmX3118wmp4zCkmfWkI9/+tc8+8lLdKPl4vMzjKmH4ujs4y11VyFKHXXfYfoj8ijl/u07aGr2Ych3H275w7dvSHchI8+iKFOuHpZswwzHsnBti7btWe5CRM3iKhf4+mqB6Y+wfBvbG1ApFs7BIWlZM7Q0BFnBc13qaMf86BC5acmsMY1tcjqxEcWWRlBQJZlwn7Df7ZHEnt3mAUnt0W0FUVWJiobjqcnZzEalQaTBNHRm8zlqk5PvQ6aTCZo1oIkSyiynqjpaZ0SVhOiyTJKk2MMxw/EQ3XXRDY0iDtENkyaNiNcril1Esblldf2e37+6RnGHeIMxWtcwskRMTcCxe5qyAMNG0CxiQcVoCsoyR6xL6rqj7nvCrOLHqzuyoqTtOpSupe16Xi/WhEmKIgm4qsx85KMaLqbtMp+5HAxUPv7kIyShpttfYWoKX5xfEMcZ90WLKPSoksr85JjxyKH4w/+LJgiMhmNsOqpgg2bYOLrB/uGBztCZHc9A6FF8n8nzZ4iyzNX1B9ZRjHf0McfuCa4xRDEH3H74QJplrBYLZBHyOKZsWoqyIi9KjgYu84NjwiRjt9kw0EU82yLNazZxQ9l0WIpE03Ro3vAxxbNZIiuQVB1RsqFN7/G0ClEVSfOMcHtPJjTsoy0/vH9N2ZSIqsxdsOf9hyuCvMY0dbqu4fz0DENVSOOE+dkFn3z8EYYmMvJsJFkjEy1Ud4CcbjHllqrpaDWLdLdFaetH1oykkW1WNHlKlWYALJdbbkoV+9nPkFuJD3cxq8WOD2/eEGxCpkcXHNo2Q8dk6vms1hu+v1/y7PQCxxtieyaTqU9bJNS6gyEDVYJtW6BZ3NzcMnMlLE2m6URQHCxdR0BA0Bw6RBBFhL5BUWQUVaWXNYpOR89krM6jLhvqJEEVQBYFLF1nZOqAwGzgMRn6dIpBaw4pwjvEdIElNDybOUyenqD6IzpVQ8i3NJrB6/fX7PMGy9RxbIuTwwOkskJRVEaTCc5wjGo4RElDKXrclSrL1Y713R2epiK7Dp7nIAsdk5nPdGhwNHWQNZmyh9d/+jPvvn/D/evX/PlXv+Lbb/5EksSIdc7ngxFeL3FyeIR/dkLd1liWTlPG3EYhtmUzURQ264BlnNELLbQNmiijSgZJWtCLMsvljtuHFZpu45tDhdLSAAAgAElEQVQGtmlgWY+MT1PTmBwcIDQNim6g2D6IKoKko2oSzniIPJhSm0P6tqfLUuSmhCqikHs0S+HsaICiivxwf0uWrTmcGpiOgeMMEaqCIolZxhVvFjssWcBXBaKywrRtFElElUWqMmN0OKcoGsajMbc3NzSywSc/+xkHTy6oup60zvnVb37Dn37zTwxGPkfnT5FVjbIsWSzX/If/+J/4d3/3i3/90ORX/+Ef/yHfronu79C7joPTE4oo4eH1e3a390TBjjhNiKqCsEjJ6pbJZMJsOsIUKubHQ6q+4ebununUYDLUEXiEZ374cMl2ExDHMVJbMR95uIaO7Ti0gkyPwNX9mn2SoamPNRjTcRHpELXH74iq8PhDKg6K6XE0sHkysjkcDhh7FnJXYWkKeldxasvMjw8xvRHO+cdI9pimBFFQcE+eoPlDNMsiCQLSMOLubkFW87h5N22wHK4f7onzDGl0giCIeJbOyfEJWZLhuD6CPkQzXXRDR5Q10jjGVAQ0VaZIM/zxnL4R0AyNum7osoTDyQTr4Jy7qMD2RHx9TXH/ljcfVrRCRyHWbLqS64c1dQ11C4ZtUhWPkTRv6OHaOmGw5OHuFk0RGcwOsUyLLInJyhpF1Wnqir5tOJ2MUESZm1XAPimo8grDthEVm9e3O3p5jDU8xvM9bGqq9RJB7piNDWRd5mF5w7asSNOMICnp+w5HU/ns4glq13JyPGN0dIJxeIIoC6yv36CbKpoms33z9V/sKBJ101K2AnktgKjgDWcMJ08YH5zTVy0yCvPpMfVqSRYtOT0/ZXzuUNYBitQjCh29ID36zKuauOkYTxQUWSaPY+gqBp6DqSqIsk4nmlj+Ew4nP+MnL0b0ywW/e2vzrp/BQODoVKYubrne3ONJDWNbR+pbwjAiTnMMXSfJS2zLYuA7GIaOa1qYukYYhFR/ieyqmvZ4ITQ1aZyimyZV1dB0ImWR03QSP64KshpEVcGczalFgTSJqKqCOk9QFAnnYEqZxeyTkOVuS6/KfP/qGxxL4rNPXuANx2iWhaKoCHVJnlXcLgJ03aYoGkzXJ05yBoczgihlNPWxJjpVv6Nb/kC/Sem3NaPxEd7Qxx+NEQUQ2oZ0F7APAp49ecpkfMjx/Anz6Zw+KREWCXWwRTuFUoh4uH3Nen/F9NDHHY3pRAVkBVnR6JqaLEkQRPBMnVWcY2oq09MzBFV9jE6OZ+iqSNE0bJdLTElA0WTs0YxeNIiTkibeU+U1VS2Rrffcvbtj2xuox/8fZ++xLEuaXel9rrUKHUdfnaqysgSQRDcItNF60sYJOennweOQc04As4axAXZVl8hEVWVWinvPPffoOKEjXGvvQcB6Dpq/wu+/b197rW+9ZPjiOc9fXTAIdMaTPo6pkmcJ6WZJnYRIwmHrFQx7hGHEZvnExfkx06MTFvMF3z7sWeYyfi9AbDOkJqNTTKz+FJqa5dMj97c35LsVY9/lk7/8G47GY1RJxOqNyOOINIoQhBYxW2C4Q5JSQKRjGPgEusLi/RVVHDEdTSl2Hd2iY+hNkJSO948zilbm5PyMKNvz+uNnuDo4tkZblYc7qWnRDY0o2ROt1/QDF4mOtiqIwphxr0dZlmh+n6brMHsD6jSmWD/ROmMM+xDJE7MQoRPon5zhHR1jD8eolkeZFVS7HdF+RVzsiOWa7/MbphOVrogRFZWrVYjvOhhyQ1aUOIHH7P6BH/78Z77/6td4So0sC5htfmALGDaPaYPYn1AVJSpgmQZF0/D2/RU/ef4pcu0wGbxEeHZMp3RIkkDXFBThjsCyGU9PSbOYp/mKuGiJwiXh43vS5Q3h8oHZ4x2bJCaxAu7XO9q2YTmf8y//7z/x9N23dHWD63q4Axf//BxXbEnDLd54jCu0yF1NGWcMBi6jkxG256BKIlm0p+2EA9OnyCjThDJNSOMCwR3QVSVFloIgHLYmWXoACEvaIfIgisiuD6qNPOgjGyadICCKoCstVzcfWG03LKOMj968oed7KKrG48Mj33zzDXeLOdum48XFKedHI56fHOFqAoYqYQ+P8CcnKIaKIDS0TcVstSdMGzabCFVRWCxCmlxhdrfh3dUjSVySbmKqrCAvaupoz9NiztX9B+arB7IkJlnueXHynPHxAMvW0BURZJU/f1gT+y+QRYn5eoHY1RR5Sh1tSKKYOC2Js5y//vQVf/H5J4hVx2b+xNPNO65vrwiLjLRryTqBrKzYZi22blDnCVGUUmYtuqXT8xTEpkFTTGTDRNZ1kpt33P3xt0RxhiSKvL29YV+UJMDtZs/FaMDFswvk3phWVon2eyzXRTBdru8f2a33XL67Zld0fL/c8+PdjDzP8QwdzxtheAMUy+Pssy/YPd4h1QWnJ2dMpxMsx6al43q+Iq47xoMRbZ5i6jLTcQ+ZDmG/o04rHuqaMAlpdBHP0jB1HVlqEfKQdLdGLnMMy6HJc7abFclqRlUJlGlCkoR0ZYEqCwz94HC3NhWB40GUImg2pqVTFynRfk3ZNWiaRpPmJHHKfLvHMQxUQWEbZmiKgZJlCHlGKxuIeg9ZtSnTkjqX6DqVbLtBMRzGJ6e4boBQV7iWiWVq1EVKm+0xZIHZ5Xd8/c//lbuHBa7r4AcuiqmiGxpi2zLfhsiygC6I1GHO/XxDZbr8OJsTmQGDk3OMIEBGoIgSyhqM0QTVNGglGd1xEAyLD3GBfXKE5tt8MvA4t01E3UIUBNq8oOMgloi6jihJiNQHrpMm0+/Z3Hx4S1YkGLbDrqxJNitsXSKMUqq6I0xryqpFFARcf4AgqxR5gSLJmJpK09TsogRNs9ElhWy/J5zP6dsBPUMnerwkDudI0Y5eFvJ6YDN++QnqxRl5WjCdDrDOB9QiNGQkRc56vUK2TBRNQRRknm4+0Ao5P9xc8f3lO/74wzVJkjAe6himxMPjlodFiK56nA0CTEMjr2rm25jHXOB+k6DbDqphMgh66IaFYbucPH/ByHMYuDaGLB0czobC+PQcpzfkPi1Iiy2T8UEEfHt3i9C01FnJerVFUUW293esHm6QpQZ3ENBpDsOeyUlfZz2fEYYJR8fHiALs53NMoWV5c0tbNbSdRFO15HVLkcQItGR5QVOVKJaN1evjBT6aLFA1NbZt06UZhqKQ7Bb89k/fM4sSNmXD53/xGUlVoQkZYr7h/HyC5IyQdIPNfM6uFCgakX0YQpnR1A2tppPkFderHQ/zBVLbYcsStqYR5wUVIlVTIwA92+T50RjJtBgdTfmLX37KR68ODt+ySnlazenpIl0R8V9/eM++qPF7E4amDHAooXi4JN+FGJJCvl6xS1OCo2MUU6eqCzKpo3c8wJsMOPr4YypRoG5aHu8fWM42TKefozUmg36fsCm4fviWm7ff0XTQli1RGNLWDbt9hGM7aJqBq8kcXbzEHR7ztA6Jwggknen4HN2waRGxDRVVkRC6hk4UuVvveNyveVjccDV/oKoLNFNF0kB0TJ4WD3z94Yai62i6ilZWuF2GfPX9e3RTY+gZfPb5T5gMh2RRRJIX/PLLv0IqYjzbxLBdZMMjqSTErqFtax43Id98/S/8/je/RljfoUndYUGrmUiagSQKrGePPL6/QiwrRsfnRILH7eUHdusteRqzmc9QZJmpqfD8+AjT7aFYAacnZ1idSLhPGY5PyPcrXE9HcX0cy8S3ZJo8IS1rbENBlQUW8zljVwVZo9gs0VQNxXAQVZOmqWnS/QGaKsgIio6iWMiNiO9OGARDhoMA3bWw/vXeaUXxgIRQVfzBmKiBWNDoTc5xhmMmfYuzZ2cEz16jOxaaZdFKKpfXH7h7eOTdw5I3H71B11QcTSOwDTabLc9evqY3GGIEI/JSYJ9CZQ6ZNzp1UbK9uqTpQHE8HM9DlkU0z0VTJRxTpWeohHnB4sMHpKpCLjI+XL3DsH1GJ8dcDHyOXJuf/+3fMt9v6YQO1zXRbZddGGJZNkkU4Zg6dlvzsN+zzjKiOEVVVGxdYRo4GHWF0Ams1jtW2z2ubROYOpPxEMfzEKqWNo5poh1NvEdsW8pwj1BXiFaf61nK/UYiyiR0TWU8MBgd2fijPk7fxpASqmzLbZRSiyJjR8WiwRBV8lLk/dv3ZHnK5SKk6mDsO8SbJXXbIkkio+MjJpMhtdDROzrB1kyyNOHq9oZXf/23fPzTL1BkmTiJ2K5WzB6euLp/IBj4nF2cY9geuyjmH3/3B77+zW/4z//n//5vF03+n//7//q78GlJmTe4gwlJVvD4uOL9jz/y4f175usl27IgaWuiqgUrwBo/Q/cHvHhxgaJIrPcx3nTK0dTh4mSA3OWIokBZ1KwWS5LtjizLmHomtuOjqzqGqiCpGpNhHxBpmoYizxG7ljCO0UyL/tkLxs/eYPcmDIM+Rz2PIOjjaDKua9OkCbdXd7RZimnaHL/6FHd6jNEfo4yeI2oO3XKBJBtIloNo2dRlyebmlni7J0kKNCfAGp/Q9ibM7u/YhVs0TSXbLrEcD98y6fd82q6jQEa1esiKhyAaB2u5JCG1KeORiyAZGJqP7TiIokzPVOlrApasMzp/Qd9WyKWChdax2kbk+4SnxQKx51OILtVWRGREg0wrFqzXTyhyx3A8OEBcww1inXAc5Hz+5c+o4gi1K8lqCVnWMG2bItrjOg5HrovQNux2ETfzFXGSM1+G3Fw/YRguugjCbs7m+pI6jeiECn3gsdgt+cPlNVmnUjYCq23IyWTI3375BbamoYgCp8+eodoOkmmzfrimjHa4wyFSHVPNvqGRDcpOoZE1JEXjfhXiej0sd4TljVF1G9NyOH5+wWTUx1JbyDIGE4+zj4+whi6qo1O1LYbpkJUpXZNQNTGqaWCaKmWakCcxp+NjTKNPkgrIzjO0PEB9nHP+omNwKnP53Td8Nd8T+RKTsxyhmpNtVgwMjcA0kLuWPI758XpO13XIskxelHjeQbX2bBtNVTEkkYfbGeF6Q9vUB5Bn25HEe+qypukgy0ugQ5Q1tjnUskHVQlHmaIEHvR4pDZu6RVAEsipnuVnwuF2RNCV3j1fsoi0fPz/i9PwM1bSwPB9FVunajnC1Jk5LkjinKBt002aXlpQdZHVJXIRs3ZxPjj4QSA2G2mP42V8gux65qiLUHaIgIXYt6WbJyekp5xfP6YoGqWrx+30MTWB++QdiN0efSpTZiqe7HyjyENMzcPoDJMNBkBVa2WAfp7Rlyma5pBRkHK9HVtaYukqvf8j76/4QVQBPE7EVmaf5ik1akpctWVaxz+BmnhJGDbv7BWVYYwUnjD56Q28ypDc06I8CFKmjq3IU5ZDXlKqK5cMDVZ4gGBZNJ5HnBfPFE71+D82y+ec/37HOJRRNxzJ1XNdmcjzBcnuUTcPs+pLrd+9YLtd8+fPP6Xs248kYXZJwelMEycTqTVCFFrXakqwfEPQe+6ikFiXoROoohqzg4uwCxx9gCgOOeUH4YU2ShtxsN5xOPca+yuTFM9yjM07PTglMGdoKNeihiC37zeLQsLTZonYtYttiaRrb5RKqGs+1KeoKIxhg2i5tGtLWFabbw+v1kesSw3Hxzl6imxZicaj+s0cj/MEQw9YQZQnR1/nN/D2wJM12qJqEYqrcrPZYgUcVrajqDkmU+ear39HGO97eP5K2YOsa/Z6H4fb48LhACEZ0bUe1W6PQUBYZ93f3yIrKp29ecf7yNV2vTyhV2AZoqkTTNkR5husHqIZN0O9zezfnZhOyW854uH7Lj99/w+3sEf/siPOffgG6TdUKmJqLYQUg6Idc7m6PbsocPztl0vcxNBVfhnTxgDsc0B8chHIUkcnxiOnRFNfSydYLFvf3hElGUovEWUUUhcSdRoNItHykREH0hlRZQhRHrHdrmhbSvCKNtjSyRrg7xCErAWTHoygyLu/u+NO7S97f3dOICuF2w/3Tgtvbe+5u70jzDN1xOTo+4sg3mAxchsMeR0dn+OMz1OCYUnUOwNEuR1JEirrjw+OOcLvHcT3s3piygLiV2Gy2BH6AYZlUWUlXlOyjDctkQ6OWSCrorsh2s8R1FM6fndD3LVTpAMy1+n1+/+cnjo9GvDp2+S//7be0eYLUFOx2CWGa0dYt/+HTNwSGxXa1ZDGbs9humIUx9/uIfVVTiDJle2g8Syp4PR2zj0Jmmx21UJJvl6hxipTlSA3IukYLpFF4iLm0Lfs4RjQMZKXDlzQ+ffWG3ps3GI5D29WkWYGqmTwtt9xe3jCfbfiwSbndZ9ws1+yj6DD0KBbW+A2f/OVfE+VgmgZPDzccjwa8eX6C57vousIqSfnzu2s0QUKixVBUFE1BtV2G0ymmbZCWCbVtoZsiSbQminY4pgxdQ5PHSMkaRRTwhkcU8Q4tvMLvNuSo2MMxabgl3O0JTANDVXB0g3q1oa9oGLKGZNm0nQBlRZrlPNzdsYs3NKpMlOc8blZ8M1szdm18RabIO+q6RRBFCt1FElSaOKMrG9RghJA1dGmCIIuomobTCyh2K5oipS5idotHkvWCJtryX/7hH8iSmJPzc/q9AZJtoNoyktRRtCWKY+HpJl3esFisCStYbUNmWcv4sy/Qjo6RJAldlKGsadMESVaxp8fMNksqQcD3fE5PpthCy24d8TpwOPMPgknX1CSbNZIXYA9HIMoouk6RxXRlhSp1SJQ4Wsdu8cDD/T2lovM4WyDTILUN631GLVmMxkeUeY6AhO/36QQZyfRQFJmmKtntQybjEa5lkIdbws2atKwZGCpivWM88ekdDTA9m9Jx6ESNMk7Qij3+xQishjrb01UFqueRZAU1LVmasls+8Tif8eH9Db//+k/88P4JSRA4HVnIusR2E/H+bosoiJx4DoZmIOkacdVyu45Ypi2W16eTVMbTKSfjIzzbpt/v4w96HI2HSIgkiw1VHGN6LpbjIOk6f/zj79nu7gmGDqJUc3v9Ld9+9x1C3ZFFKaosYVYVu6clcbhictzDc3U8vaWvVzw9zanKGsc2sRUFk4I8b3n39o4vjkxE3eH9d+8REIiSlLaDsqqRFAUR8AYDTMtEokYUBVRZpmlqkATez9bogc8+jVit5sgybG/fcmG3jF0NbyCgTSZUokO627FubWRJIN+vMVWVddES1wKzzZa72SNJmuEqKrpw4G5UTccgmGD6Y6os5qLv8PrlKb3RiJ//8ie8PB+jmRaK28cYjFHqHV225e2HG7ZJgiBJjMWCY0+nrUqS2SPHQgUdROvDGZEnE9xRn1boSOuSVIbR82NGLy6QFaibmrppyNOE9WKLIPYZBReUlUCpQm4X/PCHX7OdhXSdSLTfY+gGpxevSPJD5G5yckYWxohtg9cbYQgyn3/+F+iqidCJFBUIuo3dJDhSw9jVGI8GjAKHgWfw7NkF4+Mpbt9D1UXS/Yyya3EHPaAmKUqSVuH3332gbUs+f3PMZz/7hP6wT5GH3N7f8eajTxn4PlVVMjo5x3J9JM0iy1re/3jHvhT5/maJ3LVouzsGjnFYINYtVdNQliW6YeAOj1A6kZFtUxgBX91t2C5XKKIAdU2RhFBXeGLNyxfP6feHxK2A1x8xHE5wNJsPV9fMV080dcLp83PEJse0TbquY7ENkcQORWoRgEZS0MqQOt2yvr9FNF1EzUAAotWCYr9BllRE1QJBRUBG8xwk30EyZDTANSxsRSOJYyTtEIOq7YA9OrY3pqoreqbEdDrFPXqOEUyoyxTFMMnKkv/+m9/ww/UDveERk2GAb2lcHE+hrtB1g7PnL3HGz9iVKm+//p7oaUvRqYRxzvzqiuF4zDpKkC2H/nCApamIpkEliYiCgCwIZNs9XRHRdz3avIIyZzToY7l9/upv/hd6ts3pZ59xdnrEd7/6LROvhxy4xGlMV9ckaYqmS6RlRZhl6ELHKjq0wumqSKAJ+JbK2NOQO4FJ4CGnayhzxv0+vV5A4A1IVlvS7Yb14wPR7J5yv+Lhh3d88/0Dv/r9NxyPfWzbIUwqWiM4cCOrjtt1wc3VPV28Qxdbho6MLbWYdcvDTcjj/YKb+1tWVcOHxZpxz4c8IY5DADTHI17NUWSRUc+j3+sj0PH4cEPreXz5H/8TpqSQhzvi7Z7FYsbi6Ymj6Rne9JikjhFsn7tVwmKTYmo6//H/j9Pkn//+H/5u2B9y8dGneKMjVMPBMAw00yWpO75fzLjarqhFmcb0sSbPUAan9C5eMQwsOgHGz845eXaBa2sMexbHQ5c8XqNILbLcossdYltTVw2OpmPZHhJg2y5lVjLqB4BAmKQsNnsESeSXX37G6OVn2L6Pq+UobULVSAT9E8JtxPzdj3z/3TWP93MUUeCTL/8d/eevMaYvkHonoLkIbUv9528RBRV5OKEO9+yub2jqjqyVcD76jMHPfok5nrC5uSUN9wA4mk7Vdmhdg1AX9Hp9FEUhKmrc/hBNN1EUlbbpqMscW++gzjh/8zGaM6ROC/quhqsK9DyfrhAYnxxjBBphXfFul2MLJUPP4t31jFh26Z9/hKIOqTMZ3YVOjsjymCjc4wcebVsjCR10FbrtYUgd5eoavY5pmhY0m0GvhyArVFGIqev0DJtxf0iUFOS7iOXTnCIJKfdr8vkDUh5hKBKKqtDZClG245vLS3aViOP1CPcb/vLnn/E3X/4MUxVp8pymg5Ozc0RJZrN4Yr/d4k+mGI5FG69Yhhm7qMA5fcW7qwc2UUacwybuCIZH1HVFkiSs53O6uuX4dIxKg9KW9H0bx7bwpwP2TY0kd4giiEKL2Mb4pkhZ5YiSjNAJCHnFieWzW25okoxBf0C8mKEXVzjlJf7nY+TjEW9XaxZNhjqMORY3CHFGoNuHysa2oSkL3t/MmW8S2hZ818UyTURRodfzaKsKQ7cITIMsTrm7umH28ESepiRRxH63p6xa8iSirDko7qqLYA0QZA3b9ZEkkUoEezDA6bkIlknWdnTaod3ix6vvuHl64KOLESPPIOgF2L0+lusgSwLZZsXT3TWO49N0Iuv1Dt/v4faHRGmG7LncFhGTn53y6uiCXWGjShPMySmN5VA0IBYVqq7TpCFCVXD27BV+MMLRPOpVhzseoPsKciBz+/gjcbQjWs9oqhhBaojzlGAywfU80qIBSUH61+riDoHddkvRiTiDCWmSEVg6uqrSlAWmP4AixZBbpqMerqGjyAqqrNMzLMRa5el6zYk/5dXFK6zJEc5RgO5qyLoMZQJ1web2mvXjnPu3H1jdP5HFKZtdhKCqaLbFZrtlt1tTSzrXocDtMqLJ95i2jR/00TSZrozZbddcvX3HbrMhCmN+/tOf8ukXXzCeTGniLY7poYsuQmoipwaS0KA5MvF6CRiIuofaG2NZJgoipnkAU1VVi27YB/huK3J1/RVKIHF07GNoHX7Qw1RlFnc3OKaKoUg4fsB+syLbznFdhzRKqJKIvu/huj5iJ7C+f8AQQJMlojTFMC00y6VuQBRlHMelyzOM3hjKhrbq6OZr6v2hqYq6QqWlKxOuZtf8/b/8iigP8WwTz7Up64TlboUgdixXK1zHZn59RbSaE6UZbx8PlcFHox6uaVAJB3t2z9CoBQlVklAlkTyO+P7yCt9zORn10DyLXCjYhRssQ0ZRJQzbIWsOrViK5aEYNpu0Zr1dE27mrGa35EnE5NkpP//bv2E0PSZtBBzfRXd6PD2ECKrJ4PSMJCqRZbh4foytSKS7FbplITk+SZqhaSpnb14xef6MwNZRdYN+f4Aowma14sPlNR9ma+4WEeswpkwTimhPtN1gTS4QLJ/Fcs7D/ImnzZbb+RpklSiMqFWX9W5PEm/Z7nesNzveXl1zef/Ad9/9C01V4uk6niojNy0UFb4iMe6P6Ht9XF2lbUsuTqecn57h2C6yqKBILZbZoRoaWbghTWPM6QVPiy1xmLOar+n3+ozOTlF7fUTDwh0M8AMfxTQONZ1aQydLBEEPSZVxxyqi19A1OS+evWTge6iySJHFBIbAsdPSbh4x9o/sopCzkynrpznbzY6iKDFEmc+OJ+jIFJGIJBkIbo9MELnZ7HjYxqStRNs2h6EDgdPJlJFnksYpl3ePPD5uyBMFW7ZRswKlg93jHX/46vfchjF/unrH29mcZBcihTlvnr3io//tr3HHAYKmUtawXsypkoaH2weubp64XOwoOxnfcrG9Aa1mkaYZKAbj13+JYI7Z375HzGNGwz6O0WGoMq7v0Ugy/+3b98wfnvAMDakD1/cwHJ8UEdPr0ckyuyIiKjt0U8dydKoqZbdf0CYb9g9XjH2L0cClClcIdUHgqOi2xfJpQRqGhLuItixo6pphz8PTdWy5Q4lCbEMnz1Jk3URRNeqyIEoSru9uWa2XRGVCq0o87vbc7yrUqqKtKvIqJ2tayqqlKhuyTUS62JNcP1Bs92RJTlkkdKJI+6/PZvHI5vaS1XxGFYao2Z6fnAZMhh7H5yeoTh/bttju93ieh2EZ2IJIVx+WL4/LLcso4jYsef6TX2AGAxRZpd/roeQ5dZ5TxwnxagOCSlE1bOKU569fMh32aQUYmDIfj3z6pk5b1xRxTIWEfXqOrGkHLldVIKsq6XbL5ukJockxVQldBKUs2N4/sN7E3C9jPF1DlVXSJEdSD+93V9eoqorjeeimjazolGVJGkdMRiNMQ6MtMqLdnlKQ0S2dOt1RSwKZERCZLkldUG6vaZJ7vFOP0peo6og0j9A1A0FS2EYxcRSyvLsj38e8f3vD1dWc6/keW5QJPAtFgcUm4uZxT9eJnI5seq6FZVkoqkKY1yzimmD0DMP2QdXxB6f4pkNTV1iew/HxBNeySRZ7ynWIqVs0bY3pWciKzFe/+UeeHq4x3I682JGsnthv9jxc3SFSo4mHb79pqiRJgmUrqNWOs4GE76jsVyvW2/AQSQ43mIpMvEt5EXSYbUS6j5B1h9l8f2jZc8cU2WFWbloYDjw0VUCzLLqmRVRk6q4lzjJEd2a6M1gAACAASURBVEBwdMK7H94x+/CesVQyMWHsypx/8QvuVyI//upXdLsVu6ShKw7w/YfHR2rFYJ51bNYr5ssnFrsdmqziygqBZoIosK87xuPnnJ+/YjCeoHcFb16e8urj55xN+xTzO4xghDl6zs31Hbd/+g2WIiCKIuF2h5EnWG2Bo0qITcn66pKp5aBqJkWWsoojgrMTDMelqUu2WczoJx8xePEcI/AQupr0X8GVAOE+YjELOX/2U+pcYD2P0Jw+Wdfx9MMN4WZPFGUgqeiaSVkUZFnGpB/w+vNf4LoeRpWiCCKWdjjLctcwefEZk8GUJK8Qyh2CLGF7Pp7nMZ2MePH8lMHAR1cFJKnB9D3c03OaMmO723H5OKeTFLIs5uNXp4wuTkgpiPMZj4+PfPLmJ3z+k5+iagqSojA8OUPVbfKw4vbXc+5nEuLRiFfnHmNbRO0O7X9Of0QnK5iqQhOGyLqG5XoMjk/RRJFFLfP9rkXTdcSuRNMNqjIj2y8JbJPnz5/j94YH93iS4vl9TNdBpOXuYcbdcoljQuAauL5HXjckaUa83zD0dZoipUNAtS3EKmf1NOfhwzVJXiLKKl0Ld+8/kCxXBzaNqFCVLarhoNBBktNmJVInUiYZUltTdB1tcMzNJqNqJRy/j0rN+fGQIOhh+30kSSZaL+hkhQ+39/zu639BtQNevXmF3BYcDQIMRaLIcz75/BdYo2cstgWX399w+duv0OYP+GVOmNbESU5dN6iOT1FV9PsDNMNEURVKSUJSFShLlrcPaGKL2bToiLSVwPMXH+NOhpy+fsbZp59gOg5WJ3Pzq9+QvrvEu7ggbzPKskGSJO4fFgh1hWkaNF2Hrghs84pR32LkaZwcDam7jrPPPuevPjkmUAoks8+m0unSjL4f0J9e0CKzub9iMbtnscj4/iHi1998RSeL9PyAnilz1HPouS6abaG0FX2lxvEsTLnBDWw8z6dcb5hdPTFb7pF1nVlZ8Kf7O9osRm8KqixjMughCCIoMk5wiFWLvSOQFL746UcgCcjBKWfnL9BklWSbsF1vCMOQwPV5cfaCs/NniJpNqRi8+3HOwPfxvT6/+Pj83y6afPvHP/+d6vQYHp9j9ge0ssZ2vWG3WiF3DSIdGyQ6d4B9+hrDDnA9F0tXUGmwej3OXz2j13PJs5SBZ+BaLppYkCU7FFlCEFok5QDNaqPDBsFxPURFRZIkECRcS6cfuDi+x7//X39BzxeRVQlN2ONYOZurr4nSDqFVWVzd8u5Pb/nx/YzAsvjFL3/B8U9+imR7CLoDmknbtNC1mBdvEIcTyrwgepzR5BUhOuqLT8EfsA5Tdus9iw/v6QTpQAZWFBRBOKi+rvs/6/5WYYo3GGIaOk3b0DYtpqljaQJVnuNaNlVjoJY5rqVgqRJeEKB6faIsRnGgrlOOLQFDqTH6NqllMQ9b9mFCp3SIekVUrLBcg7YuCfdr9tsNktBgWDb9ns/L51Pq8InVzXtWmy1NXdI1FW7QZzI9YhdFdEWO57gMRyMkVYe0oG/7TPpjnp9eYJsmJ9MJityxzhJGH33K9XIHdh/LNBjaMj/57AWvX1xg6Rr7xRM/vr3k/NkLDMNiNXtkvd3SOznDdAOEriFJU9TpR3y4fWK52nJ5/chmn7AvVVRzcMiSPdyRJwmW7ZHEMZY3QikyDBpMQ6QscgxTQ7dNyjaDpkCRJJqmOqiTgUdXN+RhylR3KOOC3WZHsg+xvR7UIYHbkdQ7kibEunBpTzVu8oTnRw2vhTllWGIbPWxNg7KkSTNoan73wxNZUaJrKrahoygSoihjGA4UBYIgYWkauqiwW+94/+6a5WLFfLEi2u7J0wJJNRBVE8UKaDUHMxjQKSKNoqC5NnmZo9ketSwjKjJZEfHd1fdc3n3gZx8/Y9IzMeQOf9hHt2ws1yPZLHn4/hvqvOD44jWD3pCn20fasEZxB9Siwt1iQ296zs9OLxAyA61xaKqOpqow/B6lKGOVJUpTImQhhmkxnJ6iWx6q5iMtO5qyQe2pqJ5BJ1bMrt9RlynHZ1OaJudxvsQeHUjguqbR1A2ifIBEFVlBnpekSYKsGfjTM6p4z6jn0lQFQpHj9gcYmkrbtkh0KB2QZcTrDZubO86Gx/z80y+Qh0OkcR/NVoASVa6pkxXrmxsWN7d0eYctuRiFSik6hK1EVhV4oz6KIvPh6j13cc3TOsLUFQLfRg+OyWsJpY0JN3M2mx2y5eOOThg4GgPPwNRUBsMebbTD9ic0uwhxmyNi0sRzJFdHUgOqhwrVP0Ee+kiqgWbZSJJCk+dE4R7FdYibnFbcs9i/xx5ZKJaBbhpQZwx1GV8Smd/cUbQ1jmtAEUFToxoW+31IvN1iCGCbJlWSYigqj7MFalOhtxl5UaDaHnQtVbjFNHXK+QyhaRDLlna+pa1VirtHiuWSJjnECC6vLvnv76+wNIGXZ1OenZ3g912SsuZ6NqMqUtabHUpZsp8/UJYFVdewTXJsy2Q6HpE2kDoDRDoGfR/aFsN1USSJ2f09T6sNtmmTZgl5ltKoOt75C8zJlMA26AQBWdXI05wGgbSoyPKctAhpi4g2j/ECD92x6B8dUSo6s+jQ+uW4Luuo4ub9I3bQx7IHNEVFv69jazKSILCKUzpV4bxv46igaRpu0MM/Psf1faBF7jqEsmb7NGd9e8ftzQ23D4/MnlYsNiFZK/7P4WyXFlRIbHYhSdXy/uYD2zhlFVfs84Kb+wfmiwUfHp6IypLryz/jCzUvBmNOPZ+R7TLyetiCTJdU0OkE4xOQO1xP4tmzcxzbQVFNZFlGlEVQRDo6yrol3OzIzT6247Hb7EjjAkmQ2a8j2qzE0kxM1eSsP8IKfGRNomwKEBVsx8V0HEqhRjdFjk/O0FWHk0EfRezIs5S6ynANEUMsieePSMkeoSroexaGKtIUBUrT8WIwwO8dc3T+GsHwqNucriyQ6MibjlZUiZMUURSgEzg9OmZoKLiGAW3Njw8Lrmcr1LhGfHjEqQve/+Fr/vTukt0u4u2HW3abHRNF5cvPf8Hn/8d/Ihg5yLoJkspmtSRaLNmsd3zz4x3zuGYwPOHo6ATTdUEUaFWLWrHZLu6JFg+oecunL97w01/8kouXz7i9eY9jqAwmI368X/LD2yukVkItBSxDxwh8VDsgLVtazSRtW+KipJIkLEtGECFNNrz70x+oNo/4xiH+0R/4OJoA8YqyaIjTjtVqjyCIxPuQMs1QFRnf1OlZOj3XRq9KLFXB6veo2wpV0xBEiboTaDt4mi+ZL1Zst1v0tkCho8kbZk9PpHVB2dZsw5wqq4n3CU+zOY+zGbf3t8y2K7Z5wTpJiXZb8nDDenZLGMcMDJXl7I6gyxnaOuPjAW2+RWkSzMEU3Q4wDANT1KBqSJKcME14d/fA1WKHf/wCxeuhGhY9y0avWjRVJ8lytCQiCkNmmw2KotE/fcmugFy3mScxZwOHkWlgC1AnCXleoIyOMHoBsirTJCGSLCJIApplUGURu9WM7XpF2xSIkkjPNdCEFkVSmO1K6ARMVaYqS0TVwPED6ixB6Dp0/bDlVDQT6grbsegFHkKeY/SPOX39KcvVisfHG9o6J8lz5k9XNMkjulHh9hUwJUqhJE/2KK6HbttImkJZ1jzd33J3c4eQw+vnH/OzL77k9csXvLt/QFELdknK7TKiKuHMM9E1BcfWcA0DQ1XZVBKl5tHvD8mrFlXTsGyT8/MLJBG8wZDRqI/SNmw+3OE4JnY/oBUFKrFDECX+/PU/8XT3jrwIUTUJQzA4PzqnTXek+w3pfocuiFi2hyJDkmw57ol8+vLoEEGrCu5u7lDp8AwdKxgR72NOjIpovqFDYRV33N3MaVsdWVAp65zJxUdkRYbS5uimiWNblB1Iskwcbskb6L38FENXCeOY9e0lR77GT18GlFlMU+dktUK0jVlvEprGpO8HnE8n3K73PC7XbDZLdus5uyyjFURsRcGVVSRRpDN8RoMT3py9xFJNjt+8Qafk9ScvOT8aks5veXj7A2lUc/t2jScoDAKHfr+H4A5Z3b/HN1VGgyFlGlGES6LljBenr+jahiQKKYUW7+gI1dCJsph6PEYejtBcF9uzSfZr9vsdm80WSdHRDJsqS6kam9HwlDzKmL17ospUZNlmO39kuVwiyxKyJJMWLZauU5U5Z+fPGI/H6IZJEsaEUUqWF/TOP8G0AsSmRpI1dkXFevOEaVlokoCpiNhKhySJyLaP7LgUVU7dtDzsEu5We368XyBSYZkywck5lSzzYXlDWxZ8/Pkv+fTlZ7iuTV3mOL0RpjsgSXJ+/P++ZffNCuf4hF2W4RkJnqVQtx1FkiFIEqrjIhc5UtMiiSKCJOH4PoKqsMhlYmOIYei0bYuuK0hCS5unqF3D87NTRqMhlmXTIKAoMrKkkCcJuq4xOrK5vr1GlkEXKyzbwrAtsixCE2pMQyHa7Wi7lq4DXZHYxwnvv/uB7WZLnGYYtsefvrvkw4+X1HFCm1WUYUYTZ+SrDdFiRxonLJ8WbLOOzBrzUAjc3X6g61q6KkeXBRzLQvXGdIpJkSek4YZtuOXXX/2RbVpwcXGBK9ecjHzGvYCqaZlevMHtT9mFGeE2YfbuEkczUPOc73//NbJpM5lO2T/eUkoHl+ugP8AwdFRdJ9M0SkFELEvi+YrewMf1Hfb7lE7qGJ+f4vR9WrFjeDLF7vcP/7HZnruHOZ3jYTiHqFLVdvimSTZfo0oy5sBHkho+ft5ns00oyhZLlakNn5//u3/P0amPKuQsmx6cf8k//eo3bK5+RBYgcE28QQ9VtmhQ+PryHVmZoMoitB2vXn7EdDzA6Y9QVQNVkg4ivKEjdCXhYkW6WHH1/TXbrCLRLCq15Z/fv2P2rxF+qeswdJ3edIrnWqS7Lb3jE04vLgColjf4wWH+N7xTPLuH5zjEaULRloiBy4uPXnN2fE7bNVRlxW6VUyQt06MjTF3lk4vRv100+fu//8e/ExSN8fHxwe6nahSdwmq14+bulsxxGL7+BMkZ4gyniHRoqkLbNvijPt50ymgy4Wm1I4l2HA1d8rIii0Oq9FDnZJsmk/GUY3+ALmjMr+9pkgxF1lBsB0kz0XQdQZQ5e3aGr1dUZY7S7emqDW2jEMUp4Tpm9eGBb3/3LUKk8OXZJ7x+9YqLv/4rrPERkqZTFQl5tKWuCoS2RXUHFLVELmkQTNluY4pOZT3fkhUNw4vnpFXJ8voKzbIZT6csnmYIZUnPcXGDgPV6jSIrIGug29jOgXchipCmCZ5t4hoiWVrieX1kocVQJExDxjQs7KEL9Ybt6gOq7xJ4LmWdUMslD11NPfyM68sb0vWcTihJsgjTMlAVoGt5fLghi3b0Bz6BZ3M60Anv3/L0+IThD6kagaenJ6q6ZhD0GE+PiLOCMksxTQNUnSTKCGwX07TxbRtZEJBsjzjLEMYjiqZgtnxCE0tOjwacXFwwefkFmmnhiwmz+0doBPr+gMXlFclqxdHzl+jBAGSZVpCJG4Wk6lB1jYfbJ364XCDqh47sJNzzcH/Daj0/WMw8j+Pn/4Oz91p2LM3O7cb6l/cLfmO7dJVluiua7NYFeY50FHFCId3qlfhiiiDjKETbbFaXycqsrMztNzyW90YX6NA99QK4AbCAOef3jfE1Y8ekOz7jmIIkXCFJDaoqYVgmeZMDPWVRYbouXRJBD9PxjDar6eqGtuuZTBboZYI9shldexz2dzxlKbWhs9s+MLRPKFOFkXbkStQUmYRmjHAtC7qWoWmRO8iTgp8fjsDAi8s5nn+KmSlCOtlphKApKqSmIzBtLEWmq05/WKMooyk7iqimzKHMQdE96m7ACXySosAeTRgGCUkeKLKIzfae97/8QFLlXC7GnM9HVPEBy1JRJLBtm/yw5fnnnzisnrl8+Zrx5Ruc8YTZ7BJtW1K0JvtmoNE0vvziFZQNhqbhej59UXLcrMiLkgYZu6zQh4qmyPAnU9zxBM0w6auKeLMijTaYZxbCVEjTA8n2gde/eY0/cqnSA59Xe7TZOYZpE3geSIKibBkGGAwPWVGoy5Iiz/GC8UlxKXUsLy5Ow3d8xPF9RvMFqmGjyBpt21OXDb4b8Iff/x5NajEmAYppIOoDit5Rxw/sHz4xIDh//RXzsytm1gzLf83Em2GbLpVUU/Y1dZ7yw+c7kqZnvDhHSD12sKDFRBpqwtUnhO4wOn/FxfmS6BiiSi3VccP1xQW+50I/4J69wpzN6eSOVqrpugOyrWMGc4YQokNDMTJQZUFdlDRlcYq8A6iC0fmMOtmyPjyBY6AGIzTLZDH2GI8DRNtiC/jpzz8SJTFnE5fteoUkVI5hRJPnlHHCyHVQhczQ1MxmU5I0o4iPqHlIlx1RFZW+KWmSBEMRpO+/o49C2jAkvXumi/akjw8833ziX77/E6ssZ3q+4Ktvvub1F2+YzKcYjsPd7sifP93wuNqi9A1FtGPoO8bjE61/EyW4wV8u/pJAqisWEw/XtciLlLHvIguJ3WbNIS7okDG9Ca+++Ar77bessppekjA0ha7vKeOUeHMg3R4ZBsE6PJL9pT6gqDLT+QQhCZIoIzqmfLr/lUMSIykSg6FQ9zLhsSFPGoa243yhITc5nmtjT6cMrk+13zAUKV2dMhtZSLJAVWQoUvLwiNS2dEXFZr3lebNls9ux3mx43Gy4X29ZhzGr3YFt2rAvJUo0kqqnqkrybuD29oaH1Yp9GPK8PTBoOun2GY+OVxdXmLpJtN+SRSl90VMlHaNgztnbN/gLmyLdcHUxw5/MsG0fRVFRDBPFcGjKkrbvoanZpg1FXaPaLm2a0vcdmmYyKAabMEftYRGMiXdHdElQSwOyMtD1IMsyqqbRdh2u5XGxeEnT9Pimjqmp9F3DdrvB0BRMRcYLXGR6ws0zfVOhKqdEWJVkvL4854s//A2D4YI8UMUJeZxS1CXOZI43PaMoMySh07Y9E9fiYjFBk06LBVcRPB/W/Hj7gf3jDdnHD2RhyOX1NbIk0TUd177P//bf/zvX375l8e0XIMvIuknTNjw+PBCuN/z5p19Iyp4XL79msrhG9wMkIdO0A4eiwr/+iq7ImWtwFXgspy/wzq+Yvb2kLCJ8S+U5a/mHf/uZLMmxhcrUNLEmE6zZhGFQ6AcJPRhTdh11W7PPU7KmIQ4PPNzdIKqYVy8u8B0HhgpVHvBtg6GKWf/6C6rpkmNx3O7ZrHeUecnIsViOR9iaYDkZYekaapFj+SOEqp44OQzIikzTQ1OVZGlK23ZkeYkhBGejOUWWcnP/wL5pKE2PQ2+wrQd2acZ9eORmt2GdRYR1TZHFhOs7KBNev3jF7795y82v78nSkCvPRlUE05HLer2hyVKuvv4a0w7QGOiqgTLNqYuKzXbPdzcPWGev0M8uMaYLpm/e0OsG6CaNLJOVGXMV0rZn1/Tops7l4ozxeMLNPiROM3oGXEVmqiq0eUbedgTXV5i2hTR09GUKQ8+gySRZgu2aGJ5OIzUUTYk18hGKjKLqyKqG5QQnoLdh4LkueVHCIJhPxgw9NGUFyKcDhG1Sphnnly+QpB5/ds54tsTQVO4e7vg5SpGVgbNAYzbxsadjhOVSajrlMGDbPuOpj+m7qIrGYb3m+3/9d377+gV/+1/+Cy+/+i3OeEZZJ/zw8zv2cczdNqIoWma2gW9ZTAL3NHwZNq2kIKZX9LpDnJ4MdpahYRmnC/lieYY9mtCLASk7Eu/XjM4WKJ6LsE2iumcdZSTrd3RViugHbG/O2fIa35uiaXA5MtHzDFnYKIaObqrkxxXffnPBbDZH7geGLMFSZeJjSFY2FHlDtT/ywoFwFVHELU8l7I8lVVnQtx2OEdAoDv40II/2CFnCdDyafqCXJOoqZ7A8gvkSWZxYKN999zPJMaaMS6JDSVXB++/v0BrB5eSML978hvPLL9FMh+9++o4Pnz7SVgVpXZO1HaaqokjiL7UgmevJGa5QqSUF1bDQTJOL8xkzV8HXOh7+/Cf+/Md3PN9sePP2dwjDZLb0uD/mHAvQJYnZ9Izx7IwijTg+32HbLsvxJWWasdttsS+WWOMRvYBEFdgvXqC6PmktoaoSdBWKgLzISdMMRTWQJYXtJsaxz6ianr6uuL95RMgGQnNAUsmyAomBruvoBnBEh64bzC9f4boupmnx+PCIanjMX3yNTEebJpiaimW5JFnOw92vSF2Fb1ong4yqgBCkaUJeNjzHJT/ePPHdh08UaYSqysjBlFRWKLMD007lN8tvuJwvmZ/NCCYz8iTGGs8pW3j/3Q/cv39PHzgMaoqh7Al8Gccy6NuaKg4xVQVFkbFPiio0y0azbWgbTNtmX8K6UXFcF2noT3ViTUGRJdo0ZhJ4jP0AVVWQGJB0DUVRURUVSRq4+mrOfKRzf/MBucnQdRUhK8i6jaJraAoICao8oxtkojjF03XGrsNhf2Dz8HyymrU1q13EDz9/5P72jv39PYe7ex4fHvhw85lf71c8Hiu2reBpvaJMYqL4VE0xFcF8MWN5/ZKiGTAViNd3fL77xLubW/JO4nwx5ywwOJsF+ErLeBygB+c43ogWBTk44+HzE5YkYbsj1sfTYSYta3zLZPbiDR9uH5B1C8910S0LRVXJkDBMA12WOMXYYegG4vDIeHI6EmqyRpOmhOGaYDbDmQa4yxlD1/Ict6xubhl7NmWTEuYpjaqS5TmGJHAcjVfnYy5nHov5hM0u5uXLJV/+T38N/gLVcUn2K3a7PZswJH68YXfzM3W4oQy31EWOVBf88HCHoih88fLFqabdtNj+HNP1cc8XyKpGW9RUZUvyeMPj+19I9yE/7jLqHh7KnL//4XvuHh4whMS55zJIgt98+QXL5YK2rRn6jsXVJWWeke2eOK6fMA0NzRkj62PaUuD4PkXdYIxcFhcLltMRmiqx2xxJ4oo//9//joLOeH6Gpmn85sXk/0c955/+4+80w8JzTLo8o06OZMnpDa1NE/d8SY2M5voomomqCMo0xvAcgsXiBMHsen559xGVkuXURZbg88OG28cndFJs0fD19Vum3oShlujTiu3jmiJM6ABFFQxI2OMxpuOT7B6p84R090AeRWTFQJ7D4Vjx608f+eHdPeeqw+tXr5j84UvMRYDm+9TtqWt+eL5jaCsMy0F2zxhMn06zWD+sSO/vefh8x+zVSy7+8HsU1+XjDz8xJCFCllk/PtNmKaamEfgjSqGwjULkAYLxlEYz8cYTAs9kaHuGvqPrO8bjEZJQcTWDtkrxRjambSNTo1oyigFFeqAZOnokFF1i1x75kLXE0oSu0zENnfDpM1Ec4Y1GDF1N37Y0TUWRJYi24OoswDMHpCIiOhz49LDleRdT1h20NXlR4E1mBMGESjIpK9CaE2V7aDpcw6KsG4Rhop8vUZdLsuLIan3L+XLEi5dL3n77W3Jclq+/YCRipKagrgUkNc3jhrGm8/KrrzCmUzBMhKrR9dAJnaSoyGuZ9VFGc5YMaETrJzbrR47xAc91MTQdU3R4Oqj5DkvpiaMtRbnFsTR0y0RWdDqlJ68TBkXCsB30oSXZrJF6TkwNFGRhMFQDwTjAnOjswy3ff/jENithdsGnx4T9rkJKj0xMmeV4RpkPgInnjRBtzVC3iLZDRyIrKlb7FFWWCDznVIMwTDTDQEFCRcYQgq6osYWMperYuoMrDORWoy81skgnT3yqwqTsWuo2P1WM2pL48MTD7Xs26zvWhy2y46JIA74hcB2DKgvpmo4sSajikMPDPVV0JPB9lq+/QvN80B3M2TnqZEnZmuw6lUY3GE1cNmFC4QS0fYNcFBTHEEM3CBbnuGVClUYMfY87CjA8h65tOd58Zvf8mdaW0KYmWRGxWX3i7HLKeDE9fa6SmJvVHu/8krwZ8Hwfy7SQDZtjnFFWDVVR0FYFXV0BMJqM2D7c4zkm0+UlA/IpFVS19IqBpGj0dY0qybx6+wZD6mnCPbqtQH1EtnqEWlIfPzNeTPFnCzTTRjNdZHeK5E+hzpG6FHfqkmYxuyjm3d0D/niM59t0vcDyp2RFSZqG6P6M2atvMC2L/fqJ9fMjeh3xuy9fcfHi5Uk5a3q4Zy/RnQBhaAitR9JbED2KbpJmRzrfJlE1wv2GPDwSbp/pq4TJyyuUyYLNIeW4+kwqtczfvMQejTDHI0amgqIqoCjoQ0eb5/z6uEJTJRR6Hh8e2G6P9JJMcjhiqQqGaTIMMJrNYKgZzyZU/UC8eiR8vqOJj1THHUpVIvqWbHVPq6hgKmSrj3z/L/+DPrDwl2N24Z7pdMpocU4vScRZyTpK+efv3/HT51vqqsASMPcsLmdjRp5N3g6swhTfDwjTAttxGC0vaJIjl9dXqEKg0zCdjInTgm0+cPHt3+BPl8wvX/D5EBM4Fi+WY0a2QZ6kPP/yiTaMcU0H2/MouoKsjNAMGSEkHCfA90bQC54+37J9egSlx1Ql9psVQxvjzcb0dU1VJfiOhinXKH3NyJQReYxp6tSKiUqPLgtGnsvMNSi2K9YPj2TlyeAjdy1SXXEIEw5pQZikxEWNM3uF7s+IK4nxm99y+8vPRFlMNUhkWULd9vSAJE6Vo/iwoY93vLx+xfzsiqfVlof7X5FaiRfmgt+8/h3zr7/EW9okyQ7dgOl0ih+M0XQdzTBRdAMhq8imRZYkNFVFMsgIQ6fqasTQ0jUVuu2gzpYkg+B8eUFRVji+B7pK0bUolkEPGJZBL0l0Q4ulWZRxyurhEUvt8B0HaegxrdMAqKsKQlVxbRPbNOhRoIeqqDjuIr55+ZbxxQWygL4eqKKcOArRFmd88Vd/QxfuEV2DrDog2xzThN99/RZDPSlfhWYzFCUaHduqIq0bfEXh67MLXl1/wcuzJa9fXBNMTObffoU5GUPfI1SNoqr5+MMPfPrlM+t1yfn8Cwx3wqDqNF1LVZzSEPssw5zM0F0PszxyPfNYGfyhNwAAIABJREFUjANUQycH0tUt7592/P2fPtIJgaGr6IaG7rtMrs6xPJ8ia5EVC1nT6GWJqmk5FBXHKOawfkaXwbc15rMprm3hey6iKxiaBK2vkZuM7e5IFGZURcVqtWPq+7iGiS4LLidjHNvEclzkusI0LITlnKL68QHaFkk2kDSTychBUWU82+X1YkHfwdAO5EXGw2rFKk452CO2lgfjCYpjITsOUleTFjH7zT0j0fHi+hXnb95w2D/yp//4I4EmM3YsFpMATVV4+cUFo8sr9PECRdGQJJm+haHtWD2s+en2jn3ZIIJznLMl/uUVwyCj+x6dppLmGbOhZRoEHLOU1rJ5+9vfIMkyZZESRTv6MmQyH3EWeMxUhaKHwdSwXBdJQFMkNGlE37W0QkWzVAZaFEOjU2RMz6UuKqpeoioKHNtCGgZcxyHPa6q6xjUNNFWBtkUzLFTdoCxKhKRhKjJt31M3JbosMQqmeGfnKEOPIQZSzeLi93+LNb8kmM/wRh7mKMB2LDTT5sXbL3CDMZqqkK53PPz8I19/ec3bb/+Ad/4S1ZvS0/Pr51/5f/7tT2yThLZpWLgmY9/Ety0s00DTTUzDQbhjlMmSY9WfILWiZzKbMRqNaNOS6fyc0XRO1WTEqxvibUg1KDwcEtY1FL3EcX8kfP6Jui8IFmfIqo3j+ciqzOX5nLku8GwLVdXxl3OqLqNLn/jqiytsy2BoaoaiwtM1yiTlw82auuow+oYrV6XNan79fMDpDdaVIIxDPNPBtlxEldDnGXlRoOo6kqYgqzIoOmVdMsgGo7Nzmqog260Ityv6uuanux1iEBzDir/99lv+9v/4P8meb5CkFnd+xXqz5v/6x/9BXWZkTUszQNP3DJJE33boQuO1N2Vu+8ynM7B9PMenaDsmvkd9eMLpYx4+fOSwS/nii7/i9X/9nxFKw+H5R+LjE0VRsl6tibOKKJO4ePM1cncy9Zz5M7b7A70K7tmMXpGRHB1zPsMIAmx/DLpJ31XohoKhqSiKgixryIaD4XqohkaeV6fXj2OyJCI6bKnbgXaQMf0pZT0wDJCEIa6uYKsymmkzObs86cEVgTt/gapbtG0LTU0SRTiOw9nyCnN8wSbMOBz2tF1PVZ2g8Z/unvnXn+/51w/3fPj1M31TsJwHp6O3aSNnCS/8KXN3hqPZzKYB/myE1A/kVUeHxsfv/8T6lx8xgoBg6TC98jF8G8vxURioy5IsjjG8gCZJqeMYKxiDLJDESYxB37KvZbatTj+cQPddVWAaJqahow0ddRydjtCGgarrqJb9F1NajzV3MMwBqSmZzEbMPYVyd0OWHJFUlaoe0A0dRRG0dYukOai6yXG7RUbCNh1G4zG6ZtAVFcowYAqJtsy5Xa34+08f+dfHBw4tdP45t3XDT5+/J4r3uJrGcvkC07H54ptvGC0usG2XKg2p4zWPjzfcrndoVsB8PsOkxDMHLgOV+djDHs9PdbeqwppdcBg8rK5BRWIfJrR1zbIt8WQYTSb0skbRwSDB8mxxAoELQVh1PCUnnoshSfRNRZNmVGlJ11RcvloiA8X+yO2PPyEci/n5HMUykWQoe9j89A5pu0GZjknKjLauUWSZwLKQerhe+pwtfJYTH63v+e3v3qDPz/n84WdmjkQW7Yg//pnvvn9P3klcjyz6MmcxnuDbFkVV8nSIyKuGVy9esZxPkJocS7Po8hKymmJ3JHx8ZvXhJ54/37BNGsJO4dfHFTebFXcPn/m0XiMkcDQVW1WZ+T4vXn/B9GxOl6eopoFuGPRCJz1sOF/OuL4+5ylXmSyu6KqW2WiKYtvM5lN8rWd7/4Hd6glvPCYLS4pdysgfU+YNsiL4/Tfn//mlyb//dPN3rusxnvjIVGSrT8RPz4hgSqnqIARh0aLZAYqmkEU7+rrE8ANQDRRFYfXwyObTe2y5wrRtgvEEMXQcjhH7Q8U3ly9wVRvdPidabRiKgb7q2Gy2JMcDXVuBDF1V0JY5iqqTZg3bbUxdDRyPNdv1kZsf3vH+8wpHV/jyq0uW316ijg3y/S26bdD2ErvnO8LNyXDhXv0WxZ3R9D2H7Zbdp09Ev/6K0Byu/uqvkVyP/e7A0/c/YNATb9ZU4QEhCWzbxR6NWCfpqU4gwWx5zi4tkP0Tl2CoKsqywPID/MtX6KYLacxQxmi2gmYJFEthaFPaOkOSJdzpgrKrOeYJw9CQ9wZyNSD3PbpjoWk6bZ4Tpxmjkc9Q5yhCICsqkpC4mNn05YG+yRE0bHYpx7Qmr1oMQ2cQMl3doLoThObQSxr24pJgsiCtalohMdgW8sgj7yvaNkP3LPzFnMX1NRdvviGpIQt3jPstel/j+wvWvx5QjkdeLuf4kzHm1EP1fBTbA0VF6CaPac+gT9geWopGI4tyPn+6od6vSeMDqBrT8YIXL99ydnaFWueIrkChYh/eYWoNzijAcqekh8Np20N2eoA0LUbbIA8D4XpNvD8iNAdvck6RlkwWAUWfEWUZgywQkzmRsPj18cDNKqXXfK6XMyajCXQddSfhez4qgr7pkXoJWVExFOi7jqxs6IceyzTRdQNVCIa2xTZMdKGh9oIqzijjgr6XsYwRrjclsM/xOgszl+nqGdJQMuT3JPtbbn79M3d3H+ibHNexqCQZiQFDdLiuBV3N8/MzURjS1yVj38ZSFfq64uz8Ak0z6cse4UxQgjm94RKHgrZ3GDwPIVUISWAoKkMUonQdSt/RFjkNAqfJKI8hiqqgOwbIEkl4JE0P9EpLmkVsds+soz3j+ZTxNECSoC4LiiLj6Zgwf/WKWvXZpzWu66GbFt0gkScxTXoy2XRdR13m+J5LWZas7m5wbRtnNEbRNJq6pohjPv/yAfKEV69eYKoyydM9XZnRWxKVXGMvfIahwg5cVHWgb3sk3abJSoa+RZYriuMDvTIgbINjFPLx7p5VkmE6HkIzMLwRw9CfhjvDwJ4uGCSBY5ns1w+o1YFzBy6XY5xgTo/AdAMUIaNoJkLR6NoGRTdo0wNdVVDkMVnXs64GxACbzYZ490QcblHsgAyd5/WGaH+PPXFRbBPTc5FVlfS4wzIVdNukrHLoWsKi4d3NGuocxzIIw5TDMUbrBzxDQ/QDkgSNrOAaKs3QYTkujmuf4HxRwuHxkeNmTZ4kKBevmfzhv4IokfoDVR2juB7j8wWH6EjS9CRFzsfbWz6tVrz7dM+Pn37FkODV2OUysHF19S9MFY9d0fB4iEDVsD0P0/YpDBfNstEVGdE1NFWOaWrYi2uU+RtaoaIEU2TbpQr3vLg6QyiCtmkIVyuK6MDl5RXueEzddyR1SlwcyIqMuqlQVJXpdI5m6JR1RRId8XwDTTMYqoZk+0RXHMnuPiDkAcd3mE9dXNugrnPyPCMvaybzMZPAZ+zoLEY2WpvTFgnh8xNlr7CNUqo4oqma04VLN5BUg7O3v8NdvmQQKmnZ8/zpZ/I0pGxq8qphUFRk4zRY11XBbn3P8emGse0QjGckac3tx3f4isGlN2F5/pJgOcK9tMmqhDyLWMzHzP7yB0nXDRRVYeCUrBCaTqsYhGFEXJeYwYjdeoshScRhhG67dO4Y2fVYnM1RNR0zsPlls6bqGyZTD0XVsBwLIQbqtsW3HXbrZ0wpo4mf0GSBaZpokoysquRRjKoq6LKMqqpMpudYyqkelkYZM29MMJugqCZVVjE0Da2u8/qv/8AhF8i6jSYkmrrFGU0p247RdMLSd8iiI6bmUtVQlzljy2JkO9htx7gocCQZqSzQAoPFmzPM5QWK7dJ0Le0AT59ueffv3/HLxx3z4BwnOEMdTRCmShodOOz3xFlK0rZgehimQ37cMHMMvny95OLFBWVX8c//9EfefVpR1qdq8WwcQF7hTcYEZ0u6XqKu+5O6W9VQdJWiLnnc70mOEbIi41mnCjJDzXw8xrYtqq7ENAw0w0ZRNbI4Iy0VVuuQ0WhCX5TMxxM8U8e3LRzHQTd0dMNAFRKy7VD3PdF+TZxmDF2DrCon9oXpMZ+fo7YSSZiiSSf+W9E0HOOQXbgll3pkaUArEprDM0WRcUwSlDJj4Y9BsaCv+Y9//yNlmROMJ4ynE/yzJcL10adnyLaD7J6g98gKkiST7EI+fb7hZnugt3wq1cSdX+DO59imTdM0lMeIhVRz6VmUaUIaHtDmE3rLoNUVPu1WSLaCLhpURSIwLTxZpRp6Wlos26Dva453H0h3G1RdQzgueZYi9Q1t29AhUeYFXdsjaxq6blDkOU1Tn+CjhoEmIE0ShqZGahpoGpBkhKJT1S110aAIme3qkWN45PzqBbPpBSqQlwW7w57Z628oFRvv7ALNtE/JuLzk6suvscdjhKyQrHe8/+5PTCYu7vSKzvTJBpkkPz2n/vmf/on1bofvaAxNjacbmLaOYejouo5qBWhWwOAv6f05xQCirWnSlJHvY9kehqHj2mOC5RnIcPPuAz9+955N2vJus0eyLQahUJUVdx/+RDMM2COPLDkySCWaIXE+CRjqCn96wWBPOGQhVX5A68JTAkzVGJqKoazQBlDKCltV+fiwITzEvJ3aaG3H7TYlzQs6IfGU5swsm7QoGU8W0NVIfc0xPGJbJlnTY/gBcZ5TdxKKGyDXMUMRQZEx0WXKGrKk4evFhMvlGG82o0g3HDcrnlY7/uFf/pFDtOdQVjRINH1P2TSIfuDMdPjdeIpvetimQ6hZKKrO1NRRVcE48JBpcLUc0ojLqYe3PKOVQbN7Hm5/5rhb4QUjDtEpHbJZ7zGtAG80J9ztmTgmVVujuSaSoaG4Js5iRlxVKJZJnBfomkqRJ8j0FNmRQZLRTJM4zVE1ldFsStP3rD7fIukOeZYSHTZoukGSRLRth+uNUK2Tfr3re+g7NFXDcn0cb0RTlMimhxACTVfpqpo0PFDGIfQVjmMzvXiFFVxQYbAvet4/Hfnp9pHn7ZY2C3EMhYnn0WkjdP8MramxhUBqJTzbIph46KaJE/hURUNXy9x/vuHTD38kmM9RJ+e05R7dlGm0AMvzGIoMhY4iLzE8D1FleJ5H1TSYrodu6LRVSl+m5IpDKLnsd3v6toG+x1BlZCFQNA1LE7RleVqceD4w0EkdhmOgGjLyUDIwsLi4wHJtTEPFkAfaIqYucsosQRIKQtb+osWuGc0W1FmJEAqG6TD0oGoGpm4wIHF/iPmnxxXJIHE2WWBrNufnc6y3XxLvNlxNF1xdv+Li5Ss0XT+ZoYaMZHtPEW2I4xjTdTAtk/F0jNRmeJbEyBHM5jNGy2u2h4Rwt2IUjIhrnX/98zOa6SGVKeHnz4xMHcuykWWZaLvBmU2pVYMO+f9b9LRCkA3wvDkgmzqmpXK4+Uy+2xF4Noql0igK85FNFoU83H3mZrXi6nKOqQykm2d2jw+Ml1fkcUoYxTSWQVjV5OGRvmswDZWurbh+OWe+mEKXcv3qmunEQ6lj4sMB1bJo6wxnKNhHGb8dyxzjgl1SYdsusqIRliW7NMf1XJZnl6Rlw/niZH5F7ok2T+SHDZvHB54eN6x2R25ufiGM96TJkfs4PlkhVR3Tcvj9//K/Mzl/gdOXGKLFNDSml1dESXmy2qoVwdRH1U0+JydepiYpqAzoY4cwC0nSHce7d0xHLsvlEtd2YFCZLRYIZeDx0y3//X/93X9+afIP//jvf2faFjQ56l8uoOFhz+0upuxA0TSEaeMGHqoykEd7FFnGsEw6oEgT1nef6bIDVAVCUbDcU3xfN2yuJyOWvuC4fqIsB4ZmYH93R5EW9AxERcbTbscxjKAtabKQMi9Is4pDWBDFFU+rI8/3K3ZRzSAUrhYTHFtmkDv6vuT4/IjQVeIk5en+AXV2jfPyr8hll2Oa09U14dMT5SEi3e2ZvXmLPp2R1z3Pv97Sx0doKh4f7hA9CM3E9nzc0ZhjGlO3NbPZnPlsRoGMYbs4qgx9C8D5m5esk4rw+RFf6ZHUAde3kBgYaOirkOiwwp1NMYI5uuXRKjrrXYghq/iWSxYVJA1sjxGL2ZQq3mOZ5mmIH3qQBNORw9xu2axW0JSIrmK9Kyjrgaw6Kdem0yma45Me9whZRygGSbhHNgzmV1do4yla4GNOJ0iahOL59LLC5ZdvScsGw7JY3X3CaFOupmMca8ztuzuq9ZqXZydIk+pYmNMJmufSqzoDgm1UkRQ6z88Jm3XB9nbHzU8/UCUH4vRA39WnyJ0QKJLK8voV89mYNk9Qh5xj9ITr6ATBGEk26LqORm7QDZkBBV3V0RUVmR55aIgPOyTNQnXGmKaMLuXkZU4vK3SaTj+7ZpOVeGMHJ7BpJZljo2DaBo4u0zctjuEgJAEDDD0MkkCSJBRFoAiBpsgURYX6l2u/ECqSJKNIEpKQ0BQVSWjIpovmzugUl20lEyUh++SJTfwLD8dPPG1v2GzvyfOIwHWYTcbUksTt8xOjwCfLcwQ9m82Kw+HIMrB5vZzgGhpdnmIZGn1XU0UHZH+G/fIrBs1mG0t89+eY+3cHDEWg6AOWp+NpAkOVycIj2nBKrdRCwmkqmqJE6BoNPd3QoRgGeZ6hWTrr3YZ9XXP2aslo7CKGlrrI6JqGOI3ZpC322Us0Z8omalBkBZUWoSh0QqHtB/I0pSlyivykIUaSuLu7I48idE3BMnVEW7K7+8ztrx94cXmFoQnC9Yr90x2745Fe67DPpwwyKIaGZpr0/UDX1UCPpKp0dUaxviWOItAUiqpitd3y3YdP1EJgWSaGoSHpBllWkA+CyZuvSfZ7jvsQ0ZXM9Aqj3qPLNUNbEUzPUXUXQ5UJP36H4i0QqklXJtAkpI/vEbKG6ox5XB347vaRPMvo65z10wOdrOIsX/BpFyPaHZraorguaKcEQZ9HKENFX8TYwYnOXmQ5Vd/TIVEUJW2ZI4TMdntkaBp8TcEwTAzTPNk6hIIiJDzPYRg6DNs+cWZGIyzPo9Nt5l//NZo/oYkeUU0Vocscogxh2ki2x2bzTFmV3Dw9k6QFTZXzYjLh0jVQ+wapa5gGHuPxFNV0+LjaEeUlg6wwnUzQXQ/HdriYjYifbhgFLi/evqXvO+YXl+S9yv3jmsVyThXu0RRBlGYYoxGqJCG3FXI/oJkmJR0fP38ia3I0rUeVJaq6Yuh7JiOPdmhp+xpDlfFdm/nyjKLKaNIYk5Lq+ITpGlhjF6ELriY+SANngYXexKj5nrElc3E2JdmvSY9bPNelyTKOq0dkWZCsnsiykqzXKHuJwVsQXL1lv3rCcWz0YIouBgzTQHZcVN1BcxzyPOO433Lcr4l3j2hCwjI08jwjXn/GFTDxfM7OL3CnFsbcJs+PlFnMbOwznUzRdBvTtJAkFdWwAAlF1+kVlWIQPD3fIQwNw3VpELR5Trg98SI6fYzn+Hi+yyD1SJZO1jXM51M0VaFFIMsDSZ4QRhE6PYZomDk93eGBNj9Stz2OF8DQIQkJRVERvYRhOmhCoz8eMYeOoa5Js4bJ/AzZMOmqE1jTWyzxzpd0ZYpj6khNgdqWlHmKIsvUHSzmC5Q6I40ThFAZBijaAX885vWLl9ThGkFD8M1bRl+9RBtNEHZAJxTqruEQJfz87j3/9m/vMa0pwewSczxDNi3quiRKjxzCkEMcUSHR9hKqqREfd8htwmRuk0gSf3y/Yn0smU7GNJLg+tUL5nKDaxq4Z5dEsoFhGmi6gmqotBIYpkkSxtxstqiGgmUJFEXCtlVU0SEA3Tbph5q7249kRUNljOklg75saAYDfzzF7BrkAWwEI9tBM1RUTUPzAoQkgSyRNR1RmpOnBXGckkchcZKi6w666lLlHUUUckxjurYlqWvqrqOqKsyuZkyLU6XYpoqpaex2OxaWjz06R3Fn3N0+IRQFPxgzmc+wfY9SqHSqRlp1FHlKXZUI3UQxrdOC8xDx7sNHNCfgKWsw50umL1/RCRlFVTEYWOhw7tvURcFQVoRxRG7aKJ7Bp4dHBs9gtvAwFFhMfdQOPNsgLRLKIiKvC7o6owq3hKsHnMUZg2nTdRUSNappU9YVTVPTtqDqNlVdoRkOXdehihOEs2t7LE1jaFuOcUqaZxRFSt32yEKlbVuKIqPvGjabZ/K8ZXnxBXSnpeLjeo0/X2JO5+R1j9BtovVp8PHnC7IwI9ruub/7zHi5YPTyC4zFBVowYVBUDtst7374nh9//I7p2KOoarq2xzEMbMfBND1kw8ZxJvT+ktb0cEYTjps1Ul0y1BkXyzlD0+IFUxohY4x8DEtj9cs9puQxuX5NrkrMX5xjeS6OY3N4+okkC0+9/SJBDA2TsYVNjpA6VH9Gp7nEcUS0vUfva84mEyR6hKzQVCWqrCK6Fs8yOJsESG2DVFYEpspml3KflZhyz2PZ4GgGYhio6xY7mKLJAsfQqaqauu1ohEzV1LS9jGXqRNsVShVB21GlKq/cBb7WYRsdr771ePfTe7IkZr+LeP/5jn2es05Lsrah6Xvy5rTsmugmU9tH0S1mtoMWjBFWgGEZqIpEXZWoqkTgaThqgyNXOI7J4vUFva5TVinhfs0hDAmLDs2ycTXIwv2p1mU4SH3H3DsBU63ARLZMguWcpq1opRY78Cl7mcMxQhlaovU9fZ0T7g8Ylosk5NP3ua0wdZUyidhu9uwPIZppUMQRZZ7ieR5N29PVJZ7n480u0N0Rh92WvOlRLRchNIayoCxq2jRByDKaohImEW1dEO1XtHlKV+cMqk6naKzjlPvdHkOTEW2F6frUqk9RVJAdmVgynu0QuB7TyRjh6GgjkwYDGpXD85Y632PrHbLpYGgSttaiWAHBZAJ1xpBskCXIyhrPdRjynAFwggl5mSOalDY/kB9XZJpHqE1pioLNeo30F06mPPTojo9jnpJ6WZlTIGNqCn3b0LQdXmAh9xnxcQ+aBUOD5fogZHRDx5AlTAWywwaZgUGo0LbkYYRq2Aw9VE2H4U9oBtis9/xyd8+/3DxQSjKLyYz5dM76sEXIMsHZOVV0wHcdZFOn7QvyaEWbbFDFQHjYIySB6lgUZYnluXRtRVNlnM8DXl7OQbWIy47V3SeGpsYZz/nTdx+5ewgZVAPRVrDfYNg2vaZRlSXGeIR/5qN4AVne4vsupm0QNi2drtG1FXlVYVgq2eqOdPeIoQvOrmdEx5hkFxOv1qffkCSi3n1mKI9IQ8/8+hVdkWJPz1ivV6yyiE4WxFlJV5ZIbY9mqLQCJjMXmZbzN28I1zfEyQF1+oqokXFFjesIFmrLenUkyRpyzWUV1pQop+RP01FWNYphoKsQHfaYuoKkKBRpRniMuHn/kV8+/cJdfEAzNJI84e54xFBVTMPi1dtvmc6XvHn9JZ7cI6IVvmNwcX1xAuXmCUWeEHinBVirGKTuEneywFYED4+PpFXC5njLZOJhSSXzkccwDMxnC4TjMwgVMUAVH/hv/+2v/vNLkz+///h3jinTtxWDNNAz0OQxz7e3FHWLdzbn4vriBHisMqR0h2npmJ5NHYfUVUGRHZG7mqbMGRk1lqXRSxKuojFzdUR+5OnTLZvbT9D3pHXGITogK1DRIdPTdx3HrCFOMrqmRKOhqjqapqeMW0TZMZuMmS7P8AObxfWc5HCgrArM5SWbKORpHSPPXuFMr0mKhuj/pey9eW3J0jS9J7QWW+8j7zl5RWZlVlZ3VfV0ozHj0CE4Bv8FfwA9uvND6NIkSKA5BB0CBDiYJrtquktkVeXV5x61dezQWtDYSY80xg03ECvW+tb7Pk8Ssz8caI8B1TGg61vSMkMbT7AnE5Ky4OnjZ7oso4oO7HcbZEHA88couoEqyxyOB0zLZT6Z4Ls+JQKibmBrMnUQYLom7vQUWRvKiLEl0ooNmm2iOSoDOVX0TNODNlnQKibtMCD2PVUnoogShjRwTHKM8YgmK9HqAome5BigSS1lFDA2er678WjqjDwvTjcMTzH7qKZoB9pBoG17bEXEMk0ERaMI93RNRd21JGlMlGcUZUUnCmTtQNl0mNM5oiyhSj1ltCfb3zNRam6WPqbjUiQFQxgx0jT8sYugqKi2hmjItENDmafsdgc+32857hMev6zJgoT1hzuC4JEgO1APHZIiUbQFdVPgGjrudIQznaFKHV1xpMoTHK1H1zSc8QzbdWioyIqM4SdNbl9kqDIgNAyyjD2ZIQgDniPQ1DnpMcKeTgiankIbk6QFpiEgabB8cUkaJ8R5iW2aiKKM2lYYqg5dB4LIIEg09UDbCSiieIJOGQZ13ZCnOd0wQNfS9gPCAE3XI6g6iulQ9QJh1REWFU1Xg5BRygUFOZXQIKgivmMx9WwM1ycfBr48PxOnCU2Vk8dHbFXifORgyCKaLNGVBZIs0/cDtXTSn9aqTlo2HOOGj5uabdYRhgdctUBsUkxTYpBadEshrjNcdSDPEkRVYeH8BDCWFVAVRFkhrwp22w1ZnnBoG7TlDN3UqcuCNitpquHUuW47olZE8s+oBgXLHbM7RCD0SJJMkSRUZUnTdDRtTZZmlK1IWRQkccqXxyfi6EiWpgS7LZ8/fgBRRtZUtqtHdusn0rpEHjnIroGgSChiS9+ktHVBkYS0yLRVShU8MwwN8W5FJ1sIqsr67p7nfcj9foeuKoiihKLKVHVBFGfIpkm6e6bYb5hNXNoiRe8LFEmmLVNs20S0FtijM1RpoM2ODIqDIOu0eUzf5lTRkb4HxZ2wO6b88cMHuqZAGjryusSZLGg1lfC4Y+Sq5HmC7E3RHJc0ilCEnjaPOYY75mczClHimKTURcp+u8YeTxCakqYZCIKIuqhxNRVDk1FVmVbW0Ez7NKzVHTTXPxV6JQnJGSEpMorpoI+WJLsVTZFjzi9Iog3W3KfVZAQdBHFgv12h6xo35+e8mC9Rmo44Tei6Ft8y8VwX3TRJWnjcHxCHFsNycR0LQbc4xjmOY3I2O0HR5rcvGQQYhoZ1WNIPA7ooYoo9bZYh6qeaiOk6KHVFsFlx9/hAmCRsnx4RxRrbb5Q0AAAgAElEQVTdlJDo0KSepirRDB1VVjgGR2xNxrQNFAUURUNVe+Q6xXVtxmOfF0sPT8rQ5RqFjCHbYgs17shDVWTu377j/dv39FVFLyogChT7HYosY1qn93P3vGYdpaBqyJKIqoggnrS8RXYkzQPKLKXIUrI8o0gOpMcVVXpSzsqSQNuUiE2EInbopolq6jRSjyiWNHmMKILn2jjeGFnSECQVRVNPXChAkCXqvicrS57u3lPEBzTbJs4LhiYn3e8oshzZdhmdXzFazqna+mRUMjQUWcC0VECkr2sMXUKkp2sa6qZmZKmYfUKTHXFHIxg66qpCEmXyJPkpWm0j1g3F7sDu8TPRYQt1wS5JEDUbSVGhKYjCkMnlOfFxS7FfEQYHVEWjLBKKNCKLdyDq7LMO1bAI91t6QQEUBEnAd2x0z2N2u8BamOiX56AY9JZGpUAx9ARxzN2nz/zTb34kqwXsyTn6yEOybAZxIEkO7PZ71ocdZd/SiAJlWdDWNVVdUuQxSSfzuM+pEDC8KXm4Z2QbnE9cVF1F9X16RcVfeIwcGV3uEMWeoi4QZYG07omrBFnoEaUBVewY6gRZ6VGknjCNWQcRfRZjKCpNo5Aecqq8ZzId06QpruuhyCdjRte3GKaCZlp0igyGSVFVZK3AIa8py5YwKhhElbRoKZKIouxpyop+EAmDPfs8pR1aakFgMRlz6RksZPAtE11VyYqaIM5wvDn+/CWFoDMAgqqCItOJIsc45DnKKMqCfRiyCY5EVcNxd6ARFIqqZROkHCqwp+fs8wb//JJi6LEnYzxbRG9CZrYODAx9TTd0tL7NoLSM5zaVruFOXS59BaXKcSwLUVZp64qsSLB0AUUcCA5rmiJGMxSUyYi8Ltiv7lB0FUVVqesCoW1QTZftaovtuERphuX6MIiYmoostLRlRV/V2JpKVhRUdUOapbR1SfmTpjlPM8I44f3Tnq436AWBPE84HkO6XkL3Rqyfn2iQeH7cMfZtyh722y2bwwZlNkKxHfKmJcky4mNGEiXkx5CPf3lLkUTojscxybF0Bccy0Q0TRXNQvRG96iHOLpAkg67vqfuWLjky9SzqImM2X1BUDe5kStF3uJ5NW+VURYNzNqY0RYJ0jyCpCELH87vf0ZURdVNjWSrjqc/IhOq4BUmhKCuKRiCOQyRayuTIyDOQZY26HYiPR8ShQ5EENFPGVHsMuadOc0ypp8oKgqoj7QdMRSLpOmTVpG5rVF2jURSqIkbXTUxZIgoj4ryjahtoC+SuItztGDoZSx2RHiJEzcJyR4THPb97+0DdiWzznqqpeMpK8q6lZyBvWwRRxNR0HN1E0Ux8Q8f2fBpFpRKgE0V8z8LzbYq2wTYU4qcPjKcuhu8ytDkYDlXXER93fHg84IwXTGZT8v0jbbLl6uaMVhBIohS7PdIrIs7UQ7MtdNegqhJaEWzPpRcNhnagTBKUNuXzh7tTokG2cLwxktgwUgqO62eoUtI4psxz0ixnoKErM1TTPoGJXYemTDFUCd9SYajYPD8RJQmq7dKX2YlplMVUdMiqRFnnHI4bwnDD0/qR9e6J7eqOLw/veXr6RBAfSZIjJ4t5g6UqeKrIfGIycn1c30YzNBRTRfZ0JNVClU02nx9Ik1NKPkpjzOkFQ5OiCTXOZHHi/3Ul8W6F0JW0dY0kDicWCQOiolAUOWWe0Fcxh/0zsWCykWbkeU5dJuRphNiV0LeYyzPoGjSxR5stCdueKk1RhR7ZkBnEhix+RNZVZMMjz2IEOiTdQJQVZEWkb1sQZQbNpaxbaFs0y6aMYnoUGmQ2TxvW9488rna8W2+Juw5V0U61J2GgymMQOg67Z47BlrqpyIuEWugRdZUqCVFNA0WRSfLsBGmVJVRDIy9ybi/G2IZEnmc8Pj2TJin71SOCINNKNv/yx79QZkccMUXoImYTBVEWaOjRJg6DoYAk0SkqYVLgmCaGbZCJIll5WkOiKIahxhpy5CEnigIGEY67A48fPlDXJdbIRHMNHFPm4f1fcFyb8dUNnaCTpSFZ21CLEmEU0TBwzEuatmHoQUIkLBq2x4SRK7EJQgrBwRhdEgYpvtLS/lRljrKOsDixvjrTJW4FkqqnqHKKJEKsc9KiYR8cSTf37J4eePr8ibc//MCfV8+kQo9q6OzikA/7HYIgMHJcakFhOZufZgm7R+T8wM2rW7q+RzIcrMk5SXRgaEraNMAZezSmi+rPCdMEqa9ZPz4h1Q11m5LnB4ahwFQE8qzC9afoqkwjyqzWW0wV/u5ffff/OTQRhmH4/x2a/Pf/wz8MSbTDj+/py4LGnaM+fWT/+TOrfYznKPzt392inn2HNNhUcUY3taiJ2CchyWSM3xcMzx8pjgHm6BxRsej9F0SdQxY8MZUqNs9rNpsD26Akq3vyvKJvKuLDCkuTObs4w5/NKaId33zzBrnLyKOAb372hsXNX1Eed4hiQ9kPYEwYTeZsHr8g9g2l6nKIChRJZHM4MnIUiiRG11UMuaHJMrzZFYba0+c76rrm23/zb6Freft//E80RUGFxR8+HjnujvRZBF1HUdSIPViyxNI0UJ0x2vwa6/wKOglX1aAH++aWIuw4SAlf/ZtviIsSWWhxTRVTzNGSH0mznkI7JznuyYId95uC8fKWpm5w/RHPn99haQaLi5dog8g+WmHoGWpwz/5hg+2MqKqSrmvIipLd/kjbDWx3R45RgeGciMqOpiBrBrbrIQoKrudRFTUMMj0yVTtQZDn1AO50ivCTxriuUly1x3NNFGeEqYoYqoTtT1EZqJsGU4E6DbDGM4ah5vh8h+mP2T89oLYhs7MxgzEHfYQoCiiWQ+K+prNGSJKMWqQowolH0mkmoulgSRCtn6kFcCYTjDRiFyYYX31N+PlHhq5hEAQupyOy9YrJ9TXTkc1ut8FQJA53bzkcYiT/mvUuZvX0xOeHB9ZBRqcaXL/+isurS27PphjHNcfNM55j09UVQnDk3BkxAJWpoXQdrWuArnNcP7JcTijNKZJmI1QBCiXeeIZnywhFhmMYyP1Ak4d0ZYEg2+RJwnG75XhMkR2P43aDpascD0fu7h6ZX9xw2IdEcUwpKPzz3RND27Kczrm8vGE2mzKaTnCWlxiSwHa/ZVe2EEXsVs9899U1wjFDEhWmv/oVhTRgGCq66xMPA09//N8xLY2wGlBmN1xfXRMEAbsvX/grX0f3DOIiYz6/RKgyPr19j3f1huqwZ3tcsfyrazbrI+eTKdune7Ih5at/9Wv8ydf85rf/gfThDku/4O7dE6LcEOUBniqwW29JopSmbNBUiTiuiApONwuDiL+8pq8KyEN0WUaVNa7e/JxgvcaU4fzqmuTpC5PZOaJm8OLqArUvEWWF66sr8iJjdnNDLijkVPz7//F/5vZsyl/erVitPlO0FeMXV3z9/df0ectuu2Yyn+JMLH783e+QJBnDdAh2W/IKVN1H6jtAIN49oisiF7ffcP7mV5zZBm4e4Cwu+PDwRGeZXOkyxcNn/MsrojSl7nr8/+K/ogIoc56ygvt9hJaF/PoX3yGIHdHje8aOwzaIKJ/u8It7asXlkEgE+y1VcmS7P7I5FkRhzBvf59If0fYyVj/g6jq2OmAIBcOQIbk2ojshUj3syzfcPdwRbR+Qhpoz3+DV61tkWeLzx084Z9e8/tm3PHz4M5bt0pkuUpuR5AXa4pZsvyY7bgkqmSzNKaOYdZDSKjrtYUsfHXEMDWnoGKriREp3PMbaQKvpKJqB68pg24imgzwUbHcB4uJrvjw/EokSk9d/z4v5C25mc0a6jKKq7IuOeLMhXn+hkxRG/oibswnrx/eEh3uyumBxseDp0zMSDbZi8nz3yD7Zkw4dD/f3OOaYkeNDXXDhg+XBPkuYvPqe73/192TRnm/OLJosoWh6OmnMYZcwms+IjgmGPaZtGqLNnqf1nvvnNbuPf+Hw+IV92qHoFpPxCMsbM59NsFWBuq3xHQO5z4jiAn/qY0gdm6cnnvcllveSqup59+EHyjxG1TR2UYYgqii6haad4vmj6Tl9W/Pym+9PoFZV49tf/RKRhmj/xOtf/YKbqyXHMCZ//siZ7XH4GPHhT//M+Tcu1vyMvpX48vDIrky4fnFNW7Y8vf1M2ea8+tVXzJfXSP2cVjTwXZVov0FUDBRVZvf4id3TexZuh1wHmNc/w7THvP3te/xE5vLvv2e1e+D+xw8orUgWyDSPKX67Z9VvibuMMy2n73reJyKDPWJsKHxze8nl2ZyrmYFi+6iTJRgeom6fkmH5CWArWFOSrKQqIuQ2pW17tmGFoQmsVjsedwmi1LLeHKhEk65t2KxWBOuHk/rYciiyGKFrsRQJ2gpdBE2WUWUZ03VAtdAMjXNXxhI6Fjdf8erVLXO3p5XGiLqH3O4QxILevuXwXBL+5i2qcs7yl68ZvXFoVI/n55wkSpCNhj/8x/+VMi+YKgOi3NBrMnXbYEk1YV7gX99w5gsI4RP62TdI3guqeIu0eYdy8S2K94p9o/Cw23C/2xEEe9JjQPC8pdltUQeByXhKmOa8uX1BHoXkxz26IhIcAopWoO8HfHXAV1vO3ZbHp4x/2Qmg+ZwtxqhCzs3tFeOJh+t7PD4+IA1gemNk28XUVLIwQLV0ng4p+4c7yrbHnS1O7AlBZDYdY6sa/nhC33QIXU8cRvSizvu3HyiLkzXC6kuSrkcVBJQ6p5F1Xr444+uXt5SKzeOHt7weK+gXr6lFG8uQ2fzTPxINIvbrC5avx2RdhyJ0VI8fePyy4fzlG+wh4NU3l6jLv+YYHZjZOdX9P/FlrdE6V7z9Xc7Tb/7MKvqM98rDmk/RNilC3JHHR+62O+6TmjCvMBwf3XTY7vbQteiySI3CIMhoEliWzWx5g9Dk6FKLOV4wmixQh5IXN9eMrr7j+HRAVUte3L4mDB754Q9/QDEcXry44If/9H+hSRIfPr6jaxteLHyaLOP8YsHDZodn2piGxkiTWXoax7RGEQTkIiUxJjzXCscw4f2XJzrF4/LqJVorYTHguh5DWdPHj3z1tcPkZzMe9xrrXYl6aROJx5PNzFQ4aLdsgwxbV9GFjny/p60zpvMpddPhKdDkCa++/o67v/yBhRHz8pvveDqcFKRTS+ByqiFma6r8iFKFHLYr1pucdrCIwpy8cxjsBU2e8vi4otQ86vjIbrujEmQc12XuGNCWuIZGJ+tY4zlJkqDLA0EQUgs63uwF8+WMONgSdz1vvr6izCK2z/fMF1Oe3//AYR8hdSWuqWEaOoquM5vMGds2ru2gGR62PUHqOwbNRDUchOgJ9/yWqhvQqx3Hh48Ui59R9RpFuOXdJmXVj/jy9s8kxy2XN7dYF1c0WodmZ1yNOrxX/xqpVjnP7tE0mZGrksU7Fsszdpsdy6++o8pDqiTG9GcUlUIWrvjhTz+QrWJenn+HM/WxFj3S7g/UUYDqj0njkmz7GUlMwRmTKjNSYcqXj3f8+PYzQSlQChZtnKJ0NZpuMju/It+tmY89xrMFwX6LIlSIioHljqmyAFuTGJ2/QOpKDGoc32KQVCR7TLJ7JAojpq+/JYtikmCHPx3Rp3u0oaEsCsaeyfv3X8gajYuzBatPn1kdCnoEqqzk+uKaMK/4dmTw5vvvKfxz/vT5gc8f3mOZJr1ocHXzFSNVQMgPzG+v0SfnjByDLLinEHbo598z2N8Q7nbYpkZdFtBmFFWGbqqsPv6BcLtjMTnj6vbn+LZHV6UISsH7d/9Cvt+w26c0vcbq/oHp2cWJx6fKyIaJKusoiOyP8UnPDGR5yeH5kbrKmZ8tUYUGz7ExTAe6Ct02kc0J0+WS3eNnsiTGP7umblu6dEXbiSRBgEqFKEo40zltkWFbBkOZMPJGSLqL6Y4ZTabIbYYsQidZ9IpJnWfcv/uRT097JtffoRg24/kCWZIIs5RwvcUSLZIs5W71hfHYo2kK/uXhnsb0+S//7X9N0Pbcvn7J0jbp2x5THKiKnO2P/zdtEXIfJixHGn0QkpQDP/v5z/FsmapKkYqQthOQDI+bV9+Qbu4pOo0o7snjlvpYsr67p04izl79jGqomCw9ng8b6uHA+de3NLLD88OKbLdBHwpGFph0xHFBnmTs12v6oaeoRUzLIVw9st4FZA3Eec0gqViWg9YWWLL4078tw5V7rs7nlFHIj/fPFJLK1XwCVcVzLZIkGVVZYFgeujtjNp9jVwkzz2X+q7/j08M9vSxw3Dyz2W25/NkvsDTpBCN2PGaLKa9vpsjsKMuY3npF1YiMZkvu/vRHjHxHWlTIs0vkY8R/89/+d8J/dtLk3/8v/9u/6+sGcejRRWiSCASJvshRixhL7JgvTPzxDE3R0A0HzRAwLBlx7qI0a8xwRXGMEc1zesmnH2RU/4Ki6nEMjWi95tPHOx53KaJ7xuzl33D93a/wLJ2RJDI2dZbLCwRFRCdjMpnw4vaGPttDHaIYBoI9JesGwjBGNkekvUajesR5jaqoWO6IdpBIkxhJVtBMlb5p2T7vCYIjw1AzPTvDMnVGvkqV7qnbkpvXN5TBHbOLKSja6UYhDJAEqMqcrq2o8xS1q2irE0uhLwo6AQTLQBNhSFNQdfTxGPncw/zpdk/oGlypoI73CPqYpqwJ1mve//kdQVzTDTKaqlKEIe0+4WZ6y8ixKauEN7c+CzmjOqzpBYWug/V6z9PuyNM6pGgG0npgUC288ZTJ4ozpyGU0GjGeLbBdl7bMkYaBoRcwVQtTklC7FouWvMgogh33T4+kRc0hynjYRgRhyup5xTHOCMOYIj9xQlpBpFcNJHdK3Q8kRU3dQV031HVJHB3RpIa+iekYMAwBe+RhT5f40xnzyyX2bI5maGiaim3pDKJI0w84rouoaCDIzGcznvIKDBOxyWmKFEkQEGQFRAl/7CMKA7ZlIfY1h+dPbPchUSuzWa+4+/yZ5+dnyrrl9S//jl/+7b/m5e1XnJk6zWZDfEgQWxB2KULY0AsquWkhOQ7mi2tUS0Poa/J0S5Bm7OMSSdVwRz6L5QzH1tGkgenYwXI9EHoM2wR6iv2GLAxoi4QojFlczBG7Ht/RII04822EtiaJY1RJxFIUmnbgmGYk9YAoyXiOgaYZ9Ch0kk1leKSyRtoM7PcBh8dHyDOyJMJyHcZzi0GXMXyXpq/ZPHxAlQZ0RUXWLbzRiK5t6ZuGOtyRDzHbNsWbLajinKqqmC7nGIaKJEuIzYCsjNB0l7JosJYLzNk5VdNjWyMcfcT23QObjx8YjzQkoWN//5nHDw/kaU6e5TzvUuJKJM9LsqKgqBtUw8WxTkCzpulwx/MT8V6SqMqaoaroBRHZMNAlmXT1zHzk0+YljmqgIFN1HZOba2TVYp0VpLqJoEh8un9gvdvR1ClVW3AsGr75+TeMvRm+59DXJeFui9hLNFVNFiXUZUWWN3R1gyAZ1A2kSYGim4TFwNSUMeuIz58+8PjlC8vpFLHvkQWRJC+php7pt39F0w9IuoWiquRVwdR1MEWB1cM9I1Vi+/wAScyVpfHp/QOrdcRuG7DdHHh82vL8vGd/CBG6gW9HPmXaEK63LBCZ6hpER/LoicVCY4/LprPQRzNqWaWJN0x9i+vlhKppmZ1dEmc5pmVx9uIlbd+w3zzgjk4WA1nT0cSa9fMzqmlTNjWyYXIME7qh53AICaKMTjIwVRW565GaBlMQMRQFR5WR6TBNB+oUz5AQZJW6GyjLmmC3I0xykAxW7z9BrfP69muWswm2bcHQk5cVUZLSKwZd1/P6esl8MScPVjy8e4soi3iGSZ/WuJpJWZQc05Ddds2XDx95/PRMkxc4cseZr3Mxd9mv9sR5yeXLb3jx1fdUVYlvKiRxhihJuOM5lzff440v0A2PeBezXcX88ONn7jYH/vLjO9brNWleoVgOo/kSx3ZQDQPb0GiymNvLEVV4YOYqvLw9Zz6d8/rbbymylOe7e7K6RTNGNFXG02ZL2nQgqdSCgLm8ompaoiQha1rKtgNRxJ1MqBHRXA9VNyjSA1lZMpmf0Tc1hlBxcz3Hsm32f/wzRZzjzOaolkU3dHz5csf6+ZnosGP3/IXJzMPVZJSmR1cnqAhYmoqm6kxGY9oiI4pC6izDU1Joc/784xP7TUTfVez7nKfgpK4NtgccxYCmpwmPSHJJPuwYGUf2Qchfji1RJ1APML++YTr2mKgtkiTiXb/Cn03xfAdN6vFGHtbIx56f4Y595ssJi7mPO/ZJ8gRzPGFzPPL7H/7EoBtsk5r/+NvfkTUCUZITRkfKpkUxLIq+IzxsyIqCtKqI4hChr9HFHkEcMFQVQehxbZPleMzZ5QWz+ZLbizOmjszY6vCNEm/sIIoGmjYCBIoSNGNCW+oEqwJnPMYzLNJVSBofeHr7e7QBhqw4watVmb7tGLIjnqtzdX2O5zhoqoY9u8b2JnRFjK7LTC5fY4xf0CCT1w2ubZAXOWHXs3peEQUx3SDwsNqy3gfIfcPj4yOr/Z4OgUbWuVz4eMbAzUThdirTZAW/fyoJGhXXH+NqHS9fzFBliSxNUWcLfNdkOp9x/foV09kYVemxbBXNn9B0ImlREKYlnaDQKDqiplNXzakOaJ/WDNX8SZUuCgySyNDVNHVFHe9oi5wwK2nSA/NhjysmYLp4rsNo5OP7PmPfQ6WnXK8QkxpRUkm7ENtuMKSBIj7S5jHj6Yj5xRVZHmFqA5cvf4FATbX5DUO149AofGiX/MM//J7o4Ucuzg1evFhi6y7hKiA+pmxWO94GGau0Im86dMs5Kbt/UqNmZUnV9UiqhiKLqIqMaep0Qo+knDToRVnhey5R0mA7Y969+0jRZ5j+mErSaAWRLE+QVZ24H8jzGPqKx9WKD48rhKHFNFWiOOHm6ozH7Z66aRFUk8vzJbZpoFUJiuuxS2vyLGWz37MPA7qhR3Mdnp7WPHy5Y/v4DqXc4o/BGrv4Y491tKc3B1Sp53n1hD+yGIwzul6m6Hq6osHWNVzbYb3P6USTZL/mF6+WvLxeMFZz4u0dfd/zuG/IyorrhYJQH8mzlDQ8koR7slYgHTwE0+N5lxO1GrLh8rTZk+YnG19UNATREUUWEfsO2pKJbRBmOZPZkqppcQ2ZOCsJK4FGNqhkDWd5Qd6U+OdLRMtmPB1RMXB+veBsruNNxpzf3uKOXBigH0ChRxl6TBlMqUPqWzRDxXJN6EtM20DUdAQG6nRHVRUUVUsm2hxbhXVYsU96DnHJMUzY7TYckhhtMUVQWpbzKbJ9jqobjOWO0cilSkIc28ayp2iqi+NYuLaPYRpo5pgwjLn/8I7f/Z//hNzC1fk5y8WCq/MzpL5g//CMKagU+x1CmXLx1SWCapG1Bs/bmCgISWrYhylZmp+MMLKMrCjkWUxVpFRlRZbHpzo6PUVZEQZ76iJhkFWyLKGMDhi2i2WZ0LfoqoLjeBi6QtKLnL/8ilozOOwD0HQ0XSSPdnRFxIvLEVIVs3v4xLnfE4QJStPQhyF6XfF5tcNsW3TXZ9cI3D1t2YcxYS1w+4u/5fzyig9fHk9JMBHQTQxdoh1aJEVC9paUqBiGzGI5RVFFJLGnKHKe148cjmtubi+5efma8XSK51topkySBKzu74gPRw77kGC3h05EUG2SLEc2HOpOQdUsqnKgRyU+HOlFhfAYE0YRpmXQNRV91yHLIkLfsThbMJstOD+fYErgWAq2P2Z5cYlrCLRVgW5ZmKZBEcUUWUIRbpGajKHOMVTplC6WTvV8VRbQdANFlrFMHVXVUDUDBJkkLzjsAybTKbbt4fhjdF2nbhuyLKWuB1aHPVWVcYwDPj/cM7m6QRBh7LtMxiMQBURJwNYlBgbq8At1nVOVBSNVpixzTMfk6nKMpimcX1zgjTwEOvzpHF3XyLMEJB1J0qmOFXIvIVQ159dTJosF9mjKar/iUO65+vWveVZm/OXjR/pkj5DH5NGRMq348f0j621INZySrLpmoCgKonwyNgmSQFA0NIgopk1alcRxRFPXqHTMfBtBMxjNFhRZiqeKmIbOdHnG7nBAbGt006IfIG86RFGi6wcaQUaxbIzRGNUdcYwzkBWOYQyItEWGLArkdY/UF5yfTTm7/Ap3dEk7qKiiwFAX7L68Y6J3SG3JxXKGbut8/e2v//PrOX/65z/8O3/ko8oS2tDQVDVd29GmMW1Z4Hg+49kE1dCQFZmiGNCmOp0qU4gCcd5QPTwjixq9rNM0PaPZgladoCsaaldyWD+iOGPmX/2MxrlkcD3++td/jW2YaEVIdNyh2w6i2OG4NrrlczE9bVajtKFHJGlN3n94IM9SPn2847A7sF+tiA4HDoctbdPS1h11UVPmFW2V4/oOqiojSjpxXvP57Vs+P66hrph6Ko5jYfkTNnfv0aWB0flXbNZHprMpUZIjSRJ13aIJJwiloaoMsk5dNBiyDrKCKjUYhkIvdbSGROcqCH1NkYTMPJOuzBElg6xseX54ItlvqMoGyXRwxwtEBParNcvLN3z7N3+D7Y8R6xijP7B6+89sn59ZB0fuHvc8BSlBWjNdzkHWmU6nTBbn2JYB3ekwaukaZV5QpzmyoHExP+fCnzCSFKyuhSzh6fkRRRjou4akqmkFBcMd0SNQNC1pltEMAnktIGsmkiRRRQe6ukKWJBg6LMtCllWG9rQRknWHphmQRGhFDU23kBSVOC/5uA2oEHDGE+SftKRpWZM3JzNCkiZodGiKTFTW2KbO/vGBIsswNJWmqDB1BQQR17FxPZcy2vHw7g9stwHbuETWDR4eniiqGkE2WLz5Fd/84pcsFjNGtomSH9l/+XLSw4Ypl9MlhqJhzZYoIwfdtamLA5u7P/Lx7Y/85sc1ouWzmDjMRgbUKa5jUEYBYlehiAJJENCXGfkh4LDanqLXcYYqCSwvlqi6gaOrPH16QJNEbFOlTyNGnoNmeYhDhyZJUFVkRYWAgKvJ2MbpQ6+rFmSdMqPbBQoAACAASURBVE7o+h5ZVwnKBqHJubi+ZEDA8W16ZaDpZYokY3vY01cpk+kY2x+hGDbp4YiCQLm953CM6OuGZL3h8X7N+VevsWyDJE3phob5YsL1i0viIqcRS47hjqoWefPVd4ysBfc/rjDKlrsvnzAtlbJqyKKT8aBqBg5pRy/biKoGooxme1CXiG3FMAgoooxpGMyXF8hDz5DnCP3AbDRhPpkytx1musr15RWXr75h4dmMXIfpfIk4tEyuXjBdTPBcC2s+w1A7VusVzmLGhasSbna8ffuefGj55ttXLObnJHlFWxaUdYWoSwRBTJmXVFV56pTqOqIgIUkiQ1OjiCJxcMQTMtzqyPc//znz+Tll31OnMbLQ0YkC8sX1CX5lGRiySJkkHO6/ED7dowkDFCnh/sCbswVKL1A3IknRsw9CNpsDwTGiKEuGQeDbN9/y7XRKdQjYBCH5MaAOA4amYDq2UM6+4sOxw/J9bq4vcDSJLlqRHta4usbXb14zGvk8vn+L7ThMrm94//s/Mp746KqOOPR0TU1VVVRpTHAIaZqSMtjgzuYIyPSiThnl5JstvqJzM51jmxZiU9HmGXQduqbTKBozV8W0jNP32bUoMkh0FGWNJGsUgsb+8yPpKiQKI2zHZOxbKJLAerdntdkw1wcu5mOkoePLhz/T9AWS2HM8HFFFk+lojG4ZqFLP0FYkxwNF3/LyZ7d8+90Lvv36Cm/k4k59TFNDMh3OLm+p8wipSZktLzC9Be74mpEzQaobvtx94f3nz7x/+4koLqiahuCwRekafMfGNCy6qmIYOuokRhE6dF0jSVJs12HkeiQ5lKXBux/uuP/8keCwZ7XeUnQC8+mI4LA/ra1pTD/0NHmGrGpojn+CTdsu4jAwmczIm4bReIJtmaRZQR5uKdMj+8dPDOkd07GCZSuYHuw+B1jOGcbUpu4qirbmH3/7Wz68/zO6UHH74gxNs9AljbbSkDSDLA2RJYmmykiiDXQDknqq0+VBSDr4rI4N4TEiL0qEfkDuBYR8YG6NUa0WSS5ouj1e88C7dcYPh4513lG1PcvFguuzJdcTD3Wokfw5kuXhjGckSYxiOCRpejLvmSfooCRJ9E2NJIIoyQSHA0+f3hFtn9mtN6c6YN4g2xNURWBoSiSBU100yxAATTdpqhpRFJEEgbyq0SUJSRTQNRVT1/AcC7wx9mSKoVtoooBhxXTx7+kEDdF+QVmLqKrMP/6H/8TbD0e0xkOoTorl7JCy2ezpxJrk8R2iIiJpMtbYJkwTBqHm6mqC5VlIikKVZ8gSPK/2fH5K2Ccd7uQad/mSVnaJswxNFtE0A1EU2a4fKZuOqqhO3fQwZKgKLEXA0SVsQ+V6McLXZBamwOuRiNkVJGnL7x8bDrXFy8sXjG2Rlzdzrs4XWKbJZLHE9secn1+y2+yoipr942fK8ECUlDwfK7IoZOw7FEXJMUoRDZMwzlBNB7oOQzMwTPuk6nUdDE1GEQc0CWRVIao7irpjfwgQ6pTvFhLXry7xL19z+fX33Lx5hagZaI7Ffn9EECSasiKJUirXRvV16EXKJML4iRO0vnugaxpksWVy5pMlWx5/+CO6LNINPTe3b1DVgYlb8ze/eIGWpZTbLS0GUVLyYbtnVzZ0iGiahaooCJJKJ0hIioYsSVimhSIKKELPYjHHcT3aMkdoGyTxxMPJ4gxpEMiThLKscP0xEid4uDsaIasWE99md4iQEPD9KUWesQuOHMIEta14cz7BNAz+/Kd37LMK1bSI4xhBNYmyivnYxh5PqbuBQ1KeqgWChGuPSOuaIDmgiTmu12KMZAahQxQkRF1gXycotk2rnWDuDS4dGkLfMXEdhDzD0BQUVcNU4efXOlczjeDpRzzHIAhDzl79miAFXcyZWwJZdIT+ZHa0p5fo1hm65hEfG8JDQZzVCLJCGASkeUUcZ5gSBMHJmDUxZN7MbFxLx/MnXF9domk6jeSgji6QdJd+gKJsGE/nVGVJHofMz8/wPJOR72HKAqPpDKnNMRyLXnNZ3JySKf50Qi0prB+ekUUBRZYQRYm2rEijAt1dIDHQVzl919H0PdLQEWY1g2wgDANxmCJqNoNmUTQVvdzhLkaIdcrF5RWO6VO3DVoeQZ2QRVuqsjpVgVAoiwTbG6FoNvvDjv36iaePP3Lm2byaL7nwrvGVKZLYMLRHHh+eELoOugpNF9Hn58SViuFOyYqGL+uI52NJIxoMk0uU0Yw2ibEUCUMSUOmg7zAkqJqazXZPGASoiohrm9i6ymIyxtR1LN+nbbuTxMLQGHsWPSKdJFMKEtbZJccoIk1CRssZn1aPJMcYW2x5da7w6qWON9LpyxKt6xjJEp2kkXQSF2czbMfm/TYmzStM22QQZNpu4PJsRl1VTBwFiZrJ+Rm6oRHvn6i7FuwFGDadCFEZ8/buHcF+R5xGmJ7OyzdXfP3ma0aTOY5zUqBnWcx6v6YrE8o0J4wLBkElj4vTUH4yxrE9DFXFUAwUxeCw29JUFYKoIMrQVDnhbg1NTV/XqAws5x7j0RiVDrGrgJMm+/89l4htjSLJBEFJnNQE2y2f7lZ0ZUm2XWEKDRINqiQgCT3C0DMMAogqigJNXdO17el5XVB3A2makaYFgqTiuC5N29EJA2kWU7Ul6+cnOqDuSnZxdOLGTacsl0tmk1MKXpRk+q5j6Fq6PEAeekxdxdJOchDPNphNx8yWF+iGQZ1HtHWF5U0o84IwONL1MkOvkh9DjuEz89sJiqpQBAVv//jEj5st49sZi5v/h7P33JVtPazsxso5Va4dzj75JvKym5TUlow2Go0GDAOGn0kP1bAF2JIlNSlZokTey5tOPvvsVDmsnNfqH0XYv+VnqKq1vvrmHHM8gSJH2q5YvXvPh59es9vsqSWH5WrL0LfxPR/b0lEVleH8HEEQoK0oewnZCRDtgH2cE4dH4jQjykr6tmfoujy5OEfTbfIsQ+l7XM9HNh1W159YJzmaouIpIqoksthsELqe87ML+r5HU1SGoyGN4dDTU5YVmizQNyWW61KVBaZS01QZVSehexNURaFMDhyXt3R5hKOK6KpCFMWo3ojPPv93//ZLkx9fffjLpu2Q+v6kF8xqdqs9bZHjqSKipjOajVC10z5Bb2p0CnR1Qx/ntPuYOqtYbzaUZc3g7DGSrKIb1ilV2K6I85xOMugVi9tNxDf/+A8sPn7i6mLO73/7a2RJYDS/ZDidYSigdBWHXUJcKmS1zHEfEa7u6LIQhZaBITK1RByhYGB2PJl5OEKGWMVofY5ch+zXW5qqRhT6k9KpqamaGscw2UYt795e8/bVW+7fvUMUegxnwLMvvuQYxjR1gaSZbA4JjuuQFwVxXqKpGrUgE8cxTVUgmD6iKFGVJaoq0XsOjXzaeKBvsKQKhYau76mSkKYsUBSZIslJWgVJtdgt11zMz/jqVz/n8y+uENuG3atXhHc3bO+WPCy2/PTugVUlM754zGg0wjENBr5DGobEx5iqyJBEOO4OZGHMyPW5GM95efYIT1CpdkfMP9oRyvQ00KcbOllVkTYdsm6iKAqyKhMfNhyTjLOrpxR1Q1eVqKpOfNjTVSW6LHA8RMRZiaydNMl935OXLaLuIGg2eZ5jOg5V0dALAt9+9y3f/vQjg/NLzmdziuhIHMcIskZc1JRVRRKFaIaJIMn4nkd93JGnMVlZYuombV3RdT2KLNKXR+5ef8vu4RPRfkeU5OhWQFm2xKWAGpxz9eILnj695GI2xZfg+OEjN2/eslmsGZk2ui7TKAbObEjdnJjG3/7mb/m/fvMHbkN49PIlX3z9FV2VIfcVdB227UBVkKyXOP6QLEpwHQ/TC3BsG8M20SwVbzLBcBzqMKeOMyRqgmGA1Ld0VUFdNvjTGaIAfZoS1x2OO6AVZGRFQ5UVPPukSk2jHXfrA+8/vT89nHSVLEuYDn388YQ4SXEGDnFa0PRwSGKycAd9w2Q2QtV0KtVlF0Z4XY4qyxiyQVu0dE2D6TlMZ0MeXQ05m7vYtkqjOaTJnvcfPvL61QfGTz5Dlgx+/df/gI3BwDBQjBrJcqiNAVUScTyExLVKrzoYlkvbtLRlhlBmyKKALIrIkoypm0xGUwxVw1U0XMfFdzw8WWGgmhh1zch1mVxeMZpMMAwDfzpHlGQ03eSYCQTTEYFrEO8WvPruewLb4NnzZ6hty831kroqUaQOupyrqwsM3+KwvWG1uKWXa15//xFFEimKgrpuEPoeRZYQBAFBkFAlAdn2GXgmM1vFH40pdZdCNznslmwX95SCRD+dodoux+ORvipZ315z+On3DFQBc3LJD9/9AUuFMw0W1zeEpch+tWV190BdVdiGji0JDByXP/vqT5nqFvlmTV62jE2TvMj47OyM6fOvGH/1P1E3FY+uznl0OWVkySh9iSyIpwaWqVKFOxzbYXJxdaqnxiFpdGS5WJLnKU0LtAJ0LVVRIsoGx92WaL1hMAgwndMQWRnFqHWFWIMuWyi9iKbIyDIYuoIjlaexMtdH12REIMwrJMujlXUO+z3jsxmd0PFopjPwOh5Wt0Rpgef7TCZDmjIiun1HtLqhKlKS/QNe4GKbGtFmgS6r6KoBVU0R7wn3O46HPdPLKf/u65ecjQOyrGb46DFhGPLu1Xvu9yFf/OqXDGwfRzcZDCa43iUSMvFxz+phyft3N9zeLjBkm6oQ6JWGvkpRu/b0HY5PQ5G2YdB3HZIo0PcdRRwhKwbL61ui1RJbqCDfE21WxFFKVjWkRcNoekmZVwj0tG1D+8eUq8xiyvy0z1NXBX3bMnJ9OvVkZ5pOx8itQNtWqKrEcb8h237A81XytCGYjrAcnz4T0AIHRREoqpgk2pIdtnz2eIYM7LcRhiYiKENML6AXTjrk42FLlx0JBj7Hw4HFYkF0WKMpHcfthtVmi2W5BP6A+9slt4s1Z5cvMNWGOF6RtWv+8dOOf1kU7CvQNJ3JcMijsylPz2fIVYxURBRdjzua04kytuOCZmCPzlHsIUma0yMQxQlUKUW85/0P37Bf3GHo2mkMcrOlEyUsN8AdTqiTI30eI4vQdacGnalqCG17+rNguhzihK5tUUQQRZHz0Yhx4PH40SVpDy+eP+Xct2i6FrH+iDOP6SSbmgs000HTVT5cf+TX//jP/OuP33BMc54+GfLjH/7AgRpzILD88OqEF3U9iiLSKD26KRL4BrJ0aimoYk+elWxzmUJyGZ49YXJ+helNaRGp24qeFqqG9HAk3u64+ekNm5sFZRiiixKXA5+q7pmdnaMLLSPbIDAlpDqnbAX2ccPvbktyBjwZzTgfWvgjn5/98lcEQUDg+Timg6mbJ0S3ruiiHWKZIAky+8bim29+4v7uHl0ScYMBTVNTSiq3d3c0PaRtjSPLWPYpMW3bHk1T0FSZpoips4hH52OCYUCHxOoYIxgml1/9KcHFU9I8YzKdYAcDVMujF2Bz+0C72UESsxcymnYHXYMkgK4IGI6HZaooukZe1QQ+mFqF0GzIthGDQMZst1woKUbbIdYFlBVl3/KQ9XxaHrjdHKh7AUUzUDWDumkI/CFN2yF1FU1dksYhpmngmzqabpFlJarQoygy2+2e+HDEFnvUrmbuGVyej3h6+RjXM2jqkr7qCQYDDN9GlzUOuwx/MkYXBUxdom87jknOIUw4HEIEzUQ0LF5MAx4FDtvNgdfLAzUSQ8fGcD2itEZWNSbDCWnZUfewXN/Syi1NcSDabwjDnKYx8IIh+sDhdr/F8wOS+2ssa4aomCiiwG65xFEVqrJG0RSk9IYvX86ZTOd88/d/RbLfoCki795ec339CUsDSxORRQnLHmH7c3rZJ0lb0t2RJCwpi5ZjGGG5HvtDSBLHSILAwNQwxI5zx+DxdMDl+RzZGnD59AWoFpIzJxctNvsjdw/33H76QJ7GnF88IggcxL7HD3y6usRzdPaH5PTOffwU3z01iS8uz/EnIyZPLjHcAa5rc0xaNg9rNos11C2G4SLWKRIVdVmimCZ101AmKeFhR5S3tB1sN1uWyw2yYeJMJ4iuij3TGbsio+EMUFFEEb9PUeWevu8IpuekxxTHsakBz7EQRJlelEh3ay7mE569eMHAGpN+vyJapDgXUNYHPn28JtuHXM4nOIMAaxggyAbrm3uuf/iRj7drRGeEOrukswOSD68JhAZbBs+yOR6ORPstcleT5AViWzEb+XiuC21LFMXso5hONREllaYXUUwPVbeQRBHbOinOhbZB1gxkzUQzFKSxzTJeES1TNosEKa9I7rdMbZGr+UmUcDEOuH7IGLo+kgjuYMwPyx332wNRVpyMJK6CIbYYioyryxiGSTCboKgidbyiI6SxBtSSzSbc8PrTO5YPn5gPAi5nZ1xNRww8G0PXkSQJRIjjiKJM2R1O1tL760/sDwVxHFEVGaP5CH8wRBdVhF7Asz3yKON2cRq5RhB4/fYti/trDvsDruNQ5jlnsxln0xltntKUBZrpIig2bdXS1LBf7Xh4/5Gbd7esdxGypBJuDwxMjd1yAVWNiEjT9CD0yLQoApTxCVepuvYUTJUNdVnQlQVZmrAJE5AkNscY0/boBRnV1DgctqSHA+vFA7qps91vWRy2uJdXXD55jmGaSJqGpCrIqkJd1whdR3G4IzruUBWFMIqRJQFNgdn8DEHSKfOcrqnRDIuyasiTmPAYYloD4lXO7n6H6ah4Q5+Ojo8f3vD7m3dc/fvP+fo//AlSB29/+IH/9ve/5sc3H6Hr8LwA3fZwdYWz2RhFFlC7GtexUA2DPI5BOKGPYSWxPiQkSXJq1IsisiDgWwa6rECacj4cYJoWlm3jBwOEviONjgiijKXK6FVK3vYIXYcldqiywuNnX9Ah4rkOhyiiBUzTIImPyJKIoqonyoSW969+ZBOlCLLB5uGGbL/AdUyEpsLsYsQOjGCKYNi8fPn/w57z+7//27+UpVO9um9bdPn0ARV5SqBLmK6FPxrR9z1l19AKIm3dsL/dcPgUcfvqnt9//z1V33Px7HNsb4Qgq2i6xcNqT5hnXL97x91ySS8ZrBZbiv2aR8MBPRX1+panV4/x/AHlcU162PDTj2+5v1vSNy3Rbosuw3g44Gw+ZzYZYagyw1HA2eNnuL7NeDJgPBszPTtjOPQZ+zpyuYMyPG0qqAZFGmHpElLf444mKHQkac71pwVlK2E6HoPJHEGUWC2WtG1NlFZIioquKCiyiKZrRFFKXZ3WnetOpDcHaMppwElzdZiOsAyVrklw5BZ6UKWe5LgjT0u6qoc/codh2lBke/78L/4jgqZR7j8R31+zf3fP4XrD++uPXK+2CIHPX/yv/wuT4BwTmT7Lub9/IC9LLFWib1vifYyOyOP5OU+CczzDR+5BqHr6rkNXDdosoSpzml5A0k3ypqGVJIbDIboiU8Z7yqrAC0bYwylaV9HlJ9ND3Ytkuw1j12W32aAqCpqqkMQJdduiqSpVkVO3YLgBbVeTxxnTyzOuLs/I4wOHKOHzp8+YOCbb7YaylzBNE02COtzTVBW7fch4PECkY7na0IsySn/aajV9H7mOCe9fs1s9oEgiCAJddUoTjlnNchtie0Ns18UyLcaOibjf8vD+Pf/w//wjTx49ZjYcY5g6nuVQ7A7cvX/Hfr/h19+95uLlL5g/OmMU6Oi6QZ0meLaBpirIosRxeYdUpYzHMzw/AEHEsJxTTa2oETuQFI2+bmnbBl0VMW0DSRSojjvyOOeQ1LjjEV1VQrwjjDNWWc352QWD0YymhbZtORwiFFlG7ODTpw+0ikIRhkiigNoVOIaCIWuI5hAMg06AOIlZ3t0g9hWyJOI6DrvFAimJsGQRAdBdF0XV6Oh5/mLO5188JrAFst0tD+sttSCz2W758btXDMyAr//kT9gelmRdxvOZC03EPk74dLtBEGTCfUhRtIjWAAQBRVbpBen0fagK2vbUqHE1jZHjoXYt2XaPUNZUaUqXFDiCiK/qzGZzbNthOBnjehbOeITiuciyAm2FZhi0VUvflghZSd/kXF7MUJqGmw+fSJMcW9NwTJWh51DGGfNJwGjko4gVktISLw/0TcV44NC0AlVVo6kKkihg2i6262IbBo49QilTTFXGsmzSNKWJ9jRpin3xhINqISIgVjnhYcvi+hOB77KJSsJOoelEHtk65eIjd/dbwrji5uYWUzcZBkMc44RiDf0ZX06mWAK4msqFN0FoJGaWzvDsjOkv/hxzdsb500s8VybcrbGDARfPXmDKAtPARe1bgumMwWSGpgiYmoIkqiRxQnTYcH19y2ITn1pkeUpbV4RhjCgb3N8vUCUF3/VpBR1LM9EFiXC9JTlE1HHGo+EIzbawHRXd1FB1Hc000DSZrqlo6oYo3FNVOX0HsiyimC6yYnPx7AVnzz4DVePm4YGu77iYjXj97e8Qu4qyatitV+iGQN8WWJqKpajsNjvi/ZbdZsdhu6cX4OrJORfzKckhYnfY43oBNzf3pIcNL58G/PznXzIMpsjKyeh087ChrypWiyVxnhE1kKFgDgeIGjws7si3S6L9jqwocYYjLF1BAmxNps9Dws2KmSnwxJGY2yLP5j6uraFKAiI9sgCqopBlGZamgxbgBjPaLMIxbTTdQhNb2qairXLKNDpVrdOUz778kkNW4g4GaIZO9kckdDzwOKQ9Z09e8OIX/yO6KaN4PnnRoek6TVtB26L2LW1V8OjsHMdwMRSJuukxhs9o2p7Z2RxRkjjsljx/PKUpM1798AfevX2L1qZ4aoeuKVR1y/DsS24ejtze3hBMp8weDdHFgizasdrHbOKOtm5xLRvTdPjqq1/gmiZD1yA6hpR5xnw6xvADovUSwZsi2RNQdJb7hCIJ6auMaPmJw7t/RSgP2FJLL4qnhKysyNMUURCokFE1DaHraPKYtsrZ7Q4kaUaeF7Rth0CPZzk8Go+gLhD6jpFhEGgKL1+8QLMs+q7lxfkMCRFNkag76OUhcSxSZgWSZJyaqGFCWYJu2hzzFRdPz5g8PUcdWsiGwvL9dwiqjOoZKK5C3Zc4eo8m5FSCguSMqEWbtweJTeWg2gHz6YTz80tkVaesWvI8ochSHq6v+f7bbzns9sRJwW65wtc0vn7+knHgsz4mqJrGk4lH04scc9jkAq/uUz7sFFxlyJfzS55djpEsnUc/+5rksEMSBNLD8XRQ7Tri2094oxGurWM5AXmj8Obbb3hYLMiLmn1yOsc4toWim+z3IdvN+mTFqysCz0VTVBRFoyxLdE3G0BTyLGe9fsDVYDoNUCwHXZUxxJIkPqDIEpPJFMcfICkKpm0TxwltlhHGOZmQEcws2rrG8X2KXkCxHVRZ4HAImZ4/oq1DXKNDpSBbpcj7iuJ6we5tilg69HjcL7fc3S7ZpznvbndERY2omeh/HIosq44gOG1XFVlCW9dosoxrGqcmrKzh+UOSJCE9Hkn2O54MfS7mc3RZoC9iDF0lRqbTLMpWZjaZ4dg2aVaeUGFNIioypkMfqROwbQfXC1gdj2iSwBeXE54MPZ77OkND4Js398yHI9IoZnsMmYx8RN0iSnKKBlT7dNFZ1w1lXZN2Pe9u1oSRgCafRAjT6YS4DKmSPc9nMwp9Rl60OLpCW6aIdYOmqYThlvT+Oy4mOqJQ8du/+TuqNOXDVuD6JqNOEqZDh+l0jOMMkDXn1IaMc/Z3K7o4o6k7oiij6wWaugIkyvCIpRm4psnz+ZChIXF5PqfWRkzOHiEZHp0xJSp7bj5+JMwKREHEVUWqLKFvW54/f4QoCByPe87PRziBT7W/wXVdaFoGgYfn2ViKRBzu8CdPT2PIbc1gPsKfDRgNLAxTpa8zNENB1nU6QaSX1JOOtuyo84zdbk/dg6Tq3Dw8sFneIekSkxdz6vg9g4GD444xVROh63DEgraMEfoKw51QlQWea2M7Pk2Rk8QJ8XZ7CnBHEyx/QBKHlJJIJh6pWIHSIioS+bLBMS9wzqaoRsfh9hOvv33Nb18vSdUhk/PHSLJGFx2ZyqC3FVLXUvcC6X5HU6TYpoFpWgh9R1E13C13pOERQT/hq5QpclsRHw8MXZuuzDjsj9RINHmKaztskhbXsRFMmdAo0SoZq26QEXn+9Io2yml2EXpXcnlmIhxT9Krn1cMBRAnRdvntmw9Yoyl5VXH79nsuApPnjx8xm0+xHJde0zEDnyY7oig9SRbS2gPSRqOIYnzb5Mn5BUPXpa4KNLlFlv7YTq9zsmhHmtbkaYUu6yRhxHq1oOoayjRlOhsxmczo6hp7MEFTbcq8RlAMNvGR5d0npK4h2u9oigxZ6HAti+lkwvnZBOqC42ZLXcExl/jw/pbvvv0D//Sb31FUKkrfsN9tcbwh57MBgaFCHqMLHYPAQzNthpMZHz4u2Uc5dd6iqyaiIhAdT2eVPG+o246maSjynN3+yD7OsCyLwBvTizqiqnLc7TiuHthuV4iywi7a87Dfop9f8fLzzxkOhtRdi2k7CJpC3IHWt8Q3fyBcPUAv8OOPr/FcE8fUGY7HmJaDLAj0bUORZ5R1T5FnKJJIWyt8/HaLa/jono43dtgdN1zfvaH3deZfvmSTFfz1b//A//2P/8TD9Sd0w+LM9/A9D0s7nacNXSHfr9FkCUkz6ESVsGw5JgXbtKFSTN6/+om2a1E187T5Qo9QFmhNi1RW7MOYwLQZzc5xXAexKbA1mdlkjKPKtE3NwPcZBz6upqBSc/b4Kf7lM0RJJKtKtvstsqKcLIH1aeczXK+QJRlXrNndvKOoT0FKVxcMh0MC38FI72nrFkXTifdrvvrVf/q3X5r809/97V+qikabx9hCS5mEtFWJJPRYaofru6i6RV0lRNsbFtcfqMuCu/c3vP7+gftlhDVQuHwy49HT58RhjG5alGXDcntA0jSOmwU//vgGzx/x/Olz2vDIRWBhliG62HN/90Cy2yE0OevNkqaquJyPp3DTfQAAIABJREFUef7kisA2GU/PqTqRvhNQbZ+qrBmfP2I4P0MQQBQ63GCIbnlI4skE1MUHmuhAnURE+x1122G7HoZporQ5QlszHJ+h2WN+uEv4+1//luPqniqJaDuJMCpZrEJMw+R8NmHu6fTRgU1SUzYdTQ9C29OKCpo3QFUkOk2iUnpkscMUW5osQtVU8jQmWh8QJANdk2lliahVeP/mPb4scvnoJYPZFXc/vqXerdh8fMc///NvcKcCFy8uef7l59iiQpUe+HT9gaJpsAYB4T7CdyxM02WsW3z9s6+5OrvAkBTKY4auauiGgdRLlGGI3Hcn9KoXCGbn7MIj09kc0zCgrZHpsDyfqyfPmZoiYpmg9zXjwCU7hHi6ji6rhLsdaRxjeS5JeOT+YU1dleiGTlk3FGVD38lEm4JB8IjzJ085m08Z2xYaPULfoika1/cbdE3FMnREWeaQ5JyfXxCnMRI9Dzc3SGWN1v2xUl6XyMWeaPNwarh0p1r5sehJ04Ki6dntYwbzS+IwwlQUHrsOx9s7Pv70I01T8+e//OqE+hQZ7775Ha/fveFY1ySyQtTD/PEVg8CjbyuEKmfgO6i0WLZJ4LnEuw3joY9tmrR5hmK4yIZ9SuNsE1k2kDhVxlVNRZShyQsOD2ukrqUTJNzhABHIDzFlXjJxNKK0IENicvaI+cUFhmEiKiqKoiJVKYpqsPj0id1mgWaaWLpAoHXIqKiaTim0iJoEgsDbdx/Iwz2DgXeqOysGZdMxdzVU2yKPS2RFxh/bPH8c4Oot4f07Fg83pKLLLi5J0gJZVqE3+OKzn3N5PsW3HYr1ksNqz7s3H6kFmXC7o5U0amSatuOkaBBJoiNNmdF1PZYzIPDHIGv0gkyyXiF0ArZu0nciw8EYz7JwFYnBZIY7GKKbCnZgI6gqqmUiaxKaa6LqUB7XlMcDy08bDHtKFse8efsGcXyOrXY0RcZ4NABEjtsITZA4n54zmZzjWDamLOEZBq7jIAoiZdMhSAp1WQItbS/hOA4iPdQ1XjBAr0uWb3/CtSzargXTwri4oqenLTOaIidNE0RJIT6GOJaN2HWcSz2vf3jNp9sl1zdLZoMxs9k5neHhjM+RBAmlyHk6GmAoCnJ3QpD8qy/xpxc8+tV/QBkO6fqM6dzFDRwMQ0XVdbzZBcFkim7ZOEGAqlto/pgyL9gvH8iSI2F4JI1T8rpkHx3ZbDbEYYSi66iGTo9I18L2kOEPpwy8AKHrMW2P65sHllHMPt5hlRVf/Of/jdnLrxlOHWxbQVFEBFGi6zqSNKNEZXPMSPKcWpRBkhAahRef/RLF0Hn52ReEecF/+7u/4WIy5NmjM3brLY3mYsg9x/UNPSXTwQhJFk5D30oHXUFVlNi+yWQ+wTEsdtsju/UKQZUYTW1+8fmUFxcD4sOeYDwniVJ++O4H8jBG6DqqGlaHgmB2ReCNyLYRdzcf2N5/wGoy4iilBwxVI0lTqmhLV6QMdYmnswGPhh4vP/+Crm25fHSFohrIislwOMA0LIq8oK4rVts9Q8emqyp8w8R0HCzDYOT51E0HXYPlBeimSZ4n9HXLi5fPsVyfumspqg5RhPHA4/Of/ZyLi0uCwRRVUcgbKDsJU1W5v72hrwu6uqMuaxRVgqbh6vkTpvMLRHGAFwwQVYE43DIbaLi6yPX7N/zmN//A9fUdt6uQolOpGhFn/IhO8Wk68EdTRsMBU8+kL2NWD/csdykDf3zC2BSNy/kZs/EMmgpbM7h+WGG4AzzPRzEcWlFH9M5Z7HPCY8L96x+Q4wVqX1At3nA+8Ql8F0OVyKKIDhFFNaibjv1uw+GwR9ZMRsMBWRxx2KzZxycbSi8q1E1DXWRIgO8FXM7PcWh5aug8dYdY/cki9+TJxakhkRcUVYvYddxdX/Pw4V+YjGIE7Zxj1GIZFk2pYFljfvaLnzG9vGD2+AlVU5OnKZv7HxEsDcGUUJSKrk7x9RabjM4acvXFn1CrEzapiK6pzGdjnl09wh9M6XqBoijYHXa8+uEPPNzd4foB9vCMb3/3HUqe8eWTx8wvrnjz8Q7ZsJhOz2k4IZoflzHLY4XQifwPT6745eWUxzML1Tfx52domnbCy7wBgW3hyhpKXRO4FrrjYA7nqNYAta1xxBrf0AmCIdebmIeHB5qyAt1ClBVEXT9hlIrM0LZPKlpBQhR7dLHG811cRz0hpKqIpoq4ns1ut+Xh9iNmHyNLHRdXz9BMD0XVKLOcvuvZHY60gkhU7jBcCV03kXUX0XI5uzgjS46MhkNUTeOwPRItbgjGZ1iDMasf79h8H1MlHos1vPt4S5wmLA4pD1HJw6EAWaVpWwzDQJQ1RFlDkk/ni7Is6boeQ9OwdBPLHlA1Aobjs108IFQ5z4cBpqbjD2fcLlY8PZtSdyp3scAg8Pnpd2/Io5q+OiJLLbJh4g6GTM5mdE2DpumInchw4NM0Dbui5xjn5EnEh/ef+JfvP3AWePzyyQSxzAjbU4NPUwV2acMhKaiqkizLESSQFBlb61C6lrzsGQYD/IlxUmJLDUYbMXIdtrVBhoajSBRJgtX36IrC/vCAL6aEd+8QupK6V6h7g8NaZb8oieMNv/zVZ1jOiK4TaOqSpobNYsP23VtUSUWQFJA06qphvz0QmBa2rjMajnny5DlyV59Ma8MLpmePcGyHWvHYFiKH3Q7//Dm67TLSZeyuYKx0SG2FblmomopuqIwGNmWeokk9rm1RZgmB51CGS9qiwLR8ejlA6qEoWo77DEnQaFCxfA/DGaCaE8JjSVP3dGgIkkgWh6RJyDFKafoe1zEpZIOy69H0Bk8vOT8fM5zM0VUbAZG2a9HaCNdQKZKIvGjxvIDkeEAzPZIsxbVt+l5AlQQEoCpS6qbEGBusd69p5Zw//S//mUcvfoEqTGhimV6EaHfDq+/f883bBUmjMrl8ga7qjG2DARXl6p731zeIfc/Ti3OKNEZsKkxNQzctru8WlHVLmWU4qoSunC4AJ8HpP5qlaziKgNLWNGWOq0n4loZt/nHYXNfoywKpKrjUTao4Y+y5VEnB1dM5Z49H+EOF+nZH/yHi47rmoYT52RmrsubbN68p8xRdBE8XGXs2guESDIaUVUHVNiimgtzFIICgeewbFScYYxsahmGgSCJ1kXN7/wnb6rEtnY6Wqi6RBA1ZMsnTijIuKI8RYbjmsFrg2w6SKOM4LnXV4ngjTCcARKIk4ttv/oXNeknge/T1ydYp9i2T8ej0vhbg++9esVzuSJMSRbP5dH3Hbr1BqHs+f/qSwDO5vJzz6HyG2pVE6xWT4ZDl/QIJGAyHKJrJYbNnMvCpmp7NNmZzTOiaht3+wP5wQKInO4QnIqHt+eHtLYZhYpg2mmpRFC1JmrJYL0jTlDRNyboKYTiiFUUG3gg/GCDpBnHb8D7J+FRkrOOE8uEt9X6FqsjUTcPZLMB3TCRRIs9Sqqokjfa0yGStSFuV1EVBvElZ3iR89e9f0vUnRGiXxizLklS1uU9Kdq3I8hCSffpIMBji6gae3DH2LAxFQhAFhLpAaEpMQ0cQFaK05uObtwxGU1pnzOL6miaLGA9HPHv+8hToNRXL7Y4kr0jykqeOQ57lZGmKabq4foAznOIGAYZl4ToOZ+dzJrMZs/MLgsDHHQScn59hD4bENawePhGHBwRJRVQNku2K8LCj70W88ZTB0Eej5HD7Adtzsb0B3mjGNixwPI/jbktZFHz95//zv/3S5G/+/rd/qYjQZxF91yJrKtBD36EpMnQdgqyRxTkPN9c8LHYsF1viWkYPbAYjA8PVGcwnBJ5LGoXoTsAhg+u3b9iuloxtnSbLmYzGvHz2DFuGaLugrTJubu9Q6pL5IODq6orb+yWXgcmzx+ecXT1ClDU+flqwXy0ZjKYMn/4cU+qxHZ1gMMR0PJLDkbbpqKr2tGLcNjRpSpdHpLsd+THkD2/vOBxiaGr6pkGVFTTdxNJUmrohL1r+8NN7lvdLbFViuQ45xhWeH9C1DcFwgCt3ZElK3MmUskHFKaWWZAUlmCAPhnhjC0VoUamR2hJd08jigq4R0XSLNElJamg1k+WbH8gfNlx5U0zBpi9LyuOCb/7p1zx+YjP/4jny6Amq4XLz8Ya72y2qIp84MBQ+f/EYx/YZ2xbz8QhXMyiO2WlbI6zROhnXCJArAbMSEOuaOq8Yz84QRTBVFTsYYQ8GWF3Bo1nA+WxIINd4co1vqPiuidI1+KaJ5/jIdYsuqtA0SIpClldEcUaYZNw/rP7f3YSiKFBkk3QDs6spotoThylVp1AVBYok4o9n5FVHHMXoikxaFKi2S1WUmIZBVRR0ikwriSd7hSkjxPc0dUXTduT7FcluR1gKJFlJkldomo5qB9R1zcVszkBVKfdHou2Rq6c+UrFg+/En3r5+SxhGiLrO+IuvyYUO3ZAZjAYMxkMO6wfqMsdxHHRDp69LbNNE61qkpkQXewzbwxhMiPYHuq6lbVsUTaOOK4ptjKb0iF2JUKcnft8w0RwbURQ5riL6qsZQFIqq5WLiUYsKpWRgD8eoho0kiViGTV3m1HFIEh3YJBFdW2EpFUOrwwymVJVInpdktEiSCIpKHocofUtf5QxGc7IS6nhPeozQDIOzixlyl+NqJW2VY08uQBtwLDrevH5LlqTk8R7DlVFdGVPpqMMdm1dvyaOSKIVS0MmjHWVdU7b8fzxn11MUGXQ9rjvEthyaukZGQFV0KEo800I3LSZBwPzRM4aTGVbXMpjNMP0AWcgRqgP6aIIoCnRCR68bCIaKJIMsdTi2jG6oaG3FNHCpt0eWn24YjQNqxeH+9paqTmjFmvPZBLEz0DUXzxoiIqApKm3bIckahySnbWoEQSSJQgTVxJYEkBTGl09xPY8kiui6irxp2aYF3eQcUQBREMnSU4qsajqrdz+Rbzd8fnmO39a8/vEnjusDn188wZ9e0HU9rWFxjCLy7QKxrrkYBsh9TxQdEOoG9/yCyz/7MxRXoWliNGIUuSHeLsj2a5poT7leUMQxmixCkVAmKduHBYeHe477HW9vVjysQz49bHh7u2Kx3rPfR6R5QZGXpCUYloOoGFQNKJqBo5mYqsrQH2LpI6xKII13jHST4eQp82fP0G0LWVcQFJlWUOiaGkHokSSZY9UTxgVhnCMpGmPXQetF9kUOioaoqPyf//t/pdqt+PzpExbrFetWQ5PyE+LR1diGw2q9ppdOI8tCD0lWYAcBrufRSxKdqiMUe4TqyOdPplxNPa5/es9f/fXvKd0JqmLj6g7hdsN+FaHLAYYzgFqgPFZsbpdExz1iE7Ndr3lYnVhhqc44dzVsXWXou1zMZpwFHmUY4ugm7vyC+eUVStczOrtAljXyRkSRZbLs9ByM84LZcIgly5Rpzmx2jqJbCH3PKAjQRRFR6JFFibYuMFWZ0WzCcDQlik92CsW0ePb0irCqCWyZ/WZLnFYEwxFSL3Dz3RuSNKXpKgRRJIoTVssFwSggijOKnYhoWeyPa7L9NVd+Sbr9yP/xV3/Dd29ukRWDYDgGSWYdVSwONVWjEJY+iCpqlSK2HXmX8X55j4mEJgmohgVdS+AF1HnGxFI5m41pkHj+5S/pVI9G8ymNGb//8SPXr39i4g+YzyYI23dMxy7zqydouk4dH2nTEKqMJEqoqopPd0t2+x0KHeF2TY2Ea5tsDzFt29L1p99alhwQ25pAlRFljdHkgsAyEJKYKq3oioYACcv2T7XgtuPH737AMwWy8A0D8T2H0qJtZ2x3BZ53QklEZ4KhB1y/2hJ4PkmUst/u2WzfgSZjGgJ9HZInR+Q2x7Z0tgwwRo9pRQPL9hi7Os/OZ4yn54iiSpnV5NsVP717S3Tc8/TxY7Ks5nf/8j2rD+95OfYxNI1tnCLJMp99+TV/8R//E3qTsX5Y8njo8dXlnD95MufxbITmuSiTIfZ0iuW5aBIYqoo/HKI0NYaqYjs+ijsESadvamxbx7ZNhpMpjjdE9KbkcUSZxMRFRVq2LB7usW3r1E5xHYaGiSiKVEWJruu0TYWpSyiKxHDgMhw4GFJNncXcLHZsjill3fL1L77ED4aopk3fQx8ldPuWdB1yG264OyzoZZidn1OiEUxcZvM5dZEi9ad3WHjM2N+H7B8W0EToIxNp6HKoG6L8nixbc7vesy5F1hmkVYckq5RFgT8Y0wmndo0kKXR9jyiIiNJJRe9YNllRgiAx9j2i/Yap3PN0OsY2HdBMxB4+e/aM13d7gtkjHs8CjutrttuPZEWF3DV0Scby/oCuntLO2WhE4PmE6xuCoU/U9AQXVxyylrtDTKBrTFR4/eGW9w8r6h4UVWN7CPF9n9vljv0xRJZVwiik7yo0TUaTwTRknr68gD4jy3MmszHh8hMfv/0WZfYFkuGyebhHEaGqWhShZ3oxYDpQyQ5r1osDqTxml1tc3yakecmzl2MeP71A03VoW/pWoKnh/b/+jjaOsQwdSZRRdYvbm3uK8EgVxxiqiqPriPGekakymV8yGM9wDJWyETj2Jrrt40xmWKbBQK6ZShUXroEn1Gzvb9jEGb4fkIRH6jpnNnTwXB3XsYjCmKFe47s2i5sVumkxGs84breMpgH+2WPu395yTHOSPCE+Hmirkq5KKbOQdPdAEW7I04i2LsjbluvVAd1Q0XWZKtujySVn44Dzx09B1hAFmV7WkBWFidPh6iZdI4B4GvnsZJ04KYgf3jAYDVAVmXi1omsbaHI0BfbbDccownYann32DLGHIjqyXd5imD1RuOLDxwV3YcP86eeMh0MsauyuwZFF1ss1s8DDEOF8PERVdaS6RJclpLYlLSvKPIe2xtJUDEVh4DpUZYWmGTiajCELRElC1/dcXcyRJBHNPO05lUmIZdj0osl+8wmlgfEg4NN375AFmMzmuMGIZJny5m3Cq32N5p6eBz8uNsRZjm/pPBp6TEdD/PPn9MNLZBG2H15h+zaaLtLlG5omoTenFK3MMU+5fbijEzqi8EBd5bRNia70WKaGJBuIioosicRpRp6H9F2NLJ0siHmcQNvj+wM0xcK0XHQ/IM9LDusVy8WS/87Ze+3qtmXndW2GMXP+80o7nlSnThVVpCgQpgUZtgFf2HomPo9gWPCFIRkETJigKFKsw0on77T2yn9OM6fhi79egH6JOUfv/ftamz/csd2uiFwf3RBUTcfFxRWT0ZC2qnj74zt+9+YapVcwNR1NNYjDGEfoPBuPOJ9NePXpMxRdYOsSygxF0/+oqF8z8i1G0ymubWOoKtPnV4S+w2Q8IohHNHmG0FQOh5T7hzmK0pHXLYqus0sz1scMP/KxPI+6rkA2/PDTDzhuwGq5QLVswtGMeDgh9EMURUW1LWzfJXQEZt+wXz4xrjdo5QFd6AzHE1TZsV08UlUlpmWfWiJ5RlY19G2HpUJ2yPnwzQcM02JwHqH0CstVzTfXj5Smw7buWGUNBQbd0yPafkWxWuJqENqC0LHp2pNyWOgC2pq+7Vhvjmj9SSATJBMq1WT+9nsS38E3DSwVurIgsS22uz1d0xAqKlbTkGYFsWGhSpXDscSybXw/YHp5QTS7wp1cMv3kS8LJJdMXrxheXBCGLq6pg2XzcHvNYv6ILsRpAVJXyK4GJLo/RO1abNfGUVqcaIDlRnhhTNGp+AY0bQOGz5e/+rf/8qXJX/8/f/tXdZ4R2jpK3yHbiq7KkU2B7DVWTwuUXqXIYber+fHDIw/LnIfVipaem+UT0Sjm7HyGYfmgarheyGGfkq/mUKRMhgNGcUzkGFhdyf37N8j8iKdIzpMYU2g8v7rAH08ZRD5WlxEnEbPnL7HCKXUjuUgCDNtlevUCy7YxugrLMjBtl04aNMcdtqVTHNYoaOxW25PaVKgI06JqJO/vlxzSjK4qSbMMFZB9g23ZDCKf0DHYbTYodcV31wtUVcN1PRRFRzFsTEMj1Duesob7Y0VZd0ipoGkGzvQCezSmM059NlOpUVWFqpH0TYchHLoayqqh7yA97Nlcv+Xm+/dY6xS56RHFng9v/plg6PDsqxdsWouXP//XrJ8q2uJ0fTyfTvFNA7UraTY7RCsJLQPPtlBq6NIKz/FxHBO1gnabIjoVmoq+VokvL9F1jaw4otk2rz9/RdJtuBoYDM9neIMRrtLgGypBEhOOJ0RRiK2ZOJrD0B3TrjOKw5F4OKWoStaLFZ1UKeuGxWJJ0zRICXVXo1lguSpdV3M7X/L8F/8G3zR5eP89bhhxrMC3TbqyQNd0fE1BCEHengA/i90OXZXouoJvSrpsS1V3pGlKne4pWkmDQAId4IUDhBuiCZvzi2e4ZcbTzUd22zlBVHPzh//K0+09T63NPCvxogBshwqJqp8ubJZt0eQpoq8R/SlpUFUlluVgmRbldo6t69jJBM3xQNG5v57TNSVZfsCLHYRj0BUl1TFHRUMqGl2vc9gVlFmGpRv0BdzePCE8l2QUEYce5y+f0zUl+8OO4pieetSKJNtuWO0O4A95uH1Lnx8YBwLDD3GC6LRV1gVt32AInf1my35+TxyGGLZN34PRHCnLEtOxMPQeQym5ef8TjmNStippeaKz3y2OPD4uePf2hp8+PrAtcp42OxJV8vRmzupxS+jGrFdLOiRpXnCoO4q6ps4zUFQUCY6uYygKXQ/JYIKmqMySAbbsCYOIs09/xfknX2FpHaPZGabrEZxfogrtZNFxTezERyoKwnPJswKpSgxNoukaumWg9BXVYcV+u8dQGy4vB2iTMbu24vr+HlkeqeqUs+fn9C0IVaOVGqrh0RYFEp1U8wCVIkuRyon5YdFhWTbJaMyH+zlJm+PUOaVUkJ5H3vQ8dRAOR9SKRtm0rB/u2Lz7iXKzQZfwp59+jkAldh1sRaeqBceuRnYlu7t37B7es1ouGF284vLiCktVMBwH+/wl8YsrqmxFlAiO8w84Jmznd2zuP7J9vKOtGzxLx1Elquwo8wJNaPR9S9fWpGWLZri8vX5gsd2Q9z27rCKrOg55w+ZY0MgWTdMRloMfDfFcn916zSQK8V2PycVzfKnyiWlzcfkJg3GCIWBwNibNdyiyoesbMB2q/EB+TBHG6eHp+QFFWZEMQ0Rb0bUtv/v6t/z09e9otmve/uZrrs7GHPKKHz5co7UFvtpgmxa0ksf7R1rZ0tQV69WWWiqMpmOCMEQRAuSpU/vZV79geHbG5v6Wp1VK8uoX9PYEX1XYPtzzD7/+A0+POa7uY8VDvNDmmK7Z7JccyyP1MWW1OzCLR8SWQeQJxsOY2XR6gpxOx/hCoT/uePXigunFOXYQE199glZldLsVSRgjswxT41TXQqGsW2zT5nw6xfEjFg930FZUnSSandE2NZ5QuBwndE3NZr0hSKb4UUheZQRewPnFBbeLFX/9n/+aw2pOFMaYQvDw+48svv6O9XaOP/AwbYvb63u+e/uRwzFjsd7z7ItfojsWKg0jcSRQ17z5/js+PB6YnL3k+euf03SS+WLO7pgjrJjh+Dl1ofEnn4wZITms97yrDhR2j3ooeFyuqOoSzxDIrsWQPZ+NIyZnl1jhiNIaUJsRu9Lkd+/WbO5ueHkx5vWLc2aXMyxDx2gz1L6jb+oT32v7iKk3tMcdVZ5RNvA4X7Neb5F9y3qxOCXuVIVdVuKGQ6RiYLgBSlPiCg1DF/So2HbI5ShmZGvMb+/ol0vK7EjfNriGYLeYkxU1jVTRnYDdLqBVhhSVxDBthmdTtNGURSPoWoljwN3ygVxL2axucMweW6/QlIbjIWV9yIgDD2mGHLqA7bFFb3KezyaESYJq2DQtlHnJ3Ycb0qIiDj2y3ZJff/OB73/zW8a2jtANigYkKs+fv+B/+ff/G58/m3GRhLwYBIzDAN/xseMx3mCAMRxgRQE9EtN2UA3zBMXtJVoHnu2g+zHu5AIrOFn7+v0a+h7d9vGSIWEQohdHtLYjvnzJYvHEfrOi71R2j48MBkNGwyGaotI3DbphIHQFU+/RNQ1hBeR1RWxWBJYEVcePEr76sz/n/MVnpPsNli4xhUm9TZGLiuOHLXutpNRaGiXHikL8yRhDzhlFOs3mCWEEHLdrDNWEzmS317j+YUGx76hKl9VW4f27jzxsDuxblW2tsa978rJBmBZSUXEcFztIiAYzgsCnrUryogLAs2wURScvGyLHwHUs6FpMeiJDMBqMcC2LQRQynsyQmoEVDXj2fEYcB/hXL/CHMy6nUy6nI3RZ0BQ7yt2GdL5hlCQYnoVhmzR1yWIxZ/r6NZrUKKRG00t+Wu3Zpjl/OgpYlg0/LVN0TaVXda5v7+gA2zlVfuPA5+JixMtX53iOxyxymd89oBg6vucikTiv/4y2V/GEwigMsS2LvEx5+SyhKTaE44jxZ3/B07bl4eMKqZuMLsdMpj6zcYDsJJowsE2L+fUN65tbfMskPaZsF0uyw5HE0jEU8NUOX6hYSsdkEBNNpmhBgm0IhCLZlhLLMhkENrLIUXYLmvsP6Js7Dg833H14S54duFlvGE9mzCZj5g8PhEaDZZs4OgxdBVNpcP0IQ+3QVJPRZEix35HuHxk+ewl6QWdoPKZb/vD9j+w2a455zmAc0WYH0sOBsgX0U4X8enVA0QTjJMJJIqLAxHUtBskAN5qgniLrGJqGT4Hag6xqXN8l8J2TiaksiIcTTHdAulmRZimtHUK24rh+wLFtoiSiKY9kD99QPb3ju7/9nv2+xHB1bm8feH+/IxhfEvohT/f3+HXGi4FP6EdoqspFEnA5GXI1HpJEMVlR0aZHEt8jch1AEtgWju2w3u5wFEkSRjw7P2OznKMLQVsWPD8bY+g6VdmgeiO0tiK2dYqiphAO+XaFOOYMBBwflgwin/ubJeOLK9wgpi4VdN3CGg5IhcNilxLYBrFjIDSopc6zL/+UTkKgd7Rdhzeckh3vqKoFmm1ykIJG1VFsh83uCd+zkF2D59sI41TNilydXnZa4PBnAAAgAElEQVRI2dLWOfRQtgV913DY7lkuFuT7I5qmYTsukZegaQaWsGnqiuvrNxzXK+qqpq9zbF0wm1xwfnWB1tW0RYFS1bRVRezYp8RUVtK1PW2tcHX1Cbaq4FvgeRah72CaBkpbo6oawfSM+f09s/EAN3AxDY3iWCBcn+1yw+J2RZunpFnOrsjJ85SH+Yrb+RrZNTRNi/ACnrYnJhBqjxCCzWrDu/fX+OGAp/kDtuchnIhOkQwmE7AslrrAizxGpk4kDAamiXm8hzrF8UMUTefdd9+SZzm257PfHbi7uaHMjkSOyTAZomsmd7ePLJdLzi4TDMtkNT/wd1+/wZ4lJJcz/uGf/ol3v/s92XLF+//2dxy2WwxNZeC7hFGELvtTilrVcT2ffL+nKhuK7Y5su8axbUQwpGk7jGzNdBAxjiNGoctkPMTxXby2oSoKQsvkxXTCeeCTZjmxKQhsDXrJ490jQTIhHoQk4zGD6QloPpxM8cIQ13dQZUdfHFkfMp5Wi5Mtq67I9hvyLMMUBm0vScKAtFOxhhfYhsVgdk4v4fb2nqFWkBcVed3yy3/zP/7Llyb/13/+m78ShollO3hC0mZ7ZHXksJyTVh2aZvI4T1ktwdQCFEPh2DWohkA4NrZv8tUXr7EtgXB8FMPDcx08U6BUGePIx7UEo8kZjqHz8P4tStPgKC3T0GMwOyPyXCxLcHZ5yWAyQelqQs/Ccw0GsxmXL56RRD6ib3HCId5wQpcesUwDOxpRHXZodUpfF3Rth6oYLG4+gqpjew7C8XF8n31W8/5pxzatTzT3XqLqJnlZEDuCyShBU3W++/DI4lAyikI8S+D4AU0nkZaHR0edZRR1yxYLw4+I4wRrfIYdugQDHY0GJV3iu4JGmtSVQpXmbOdz/DAE0z0tGdaPFJstv/zFp0wvEj7++FuUPsULffY5VEXBfrfECyMcVaEpjzx+fOD6/S1KkTFOfEZJiNpk6LLHdUPKxxRRa7ihT4+K4btYvomqQDAcYvomLR1hHPDlZ5ck+pHIAUuHwFKxuxLftdE1FUUqdBJEUyLqHheXZlcg+5YwHBB6I9ZPC+qqxQwjijonzTOW6z111dC0DY5roKkqvdazerpm83jN5ukjdZlhBRF5e2IidD2Yts/65iN9XRJMZuxWS3Slp64b6GpCU6FIU7aLOXWrkPUmeVFR1Sdyc9lpbI8Zlp8Qj8YEtoEo9+yXjzxcv6XZr/ntjw98fbchb2v+/Fdf8uqzz3ncrSnKlDAJMU2DsiqwXA9HaaDvcEwDx/VwXA8/iimPGULohOPpqX/pxxTrkuKY8+u//TVNtmN7d4faNPRFS18pFIeGdL1GRz2ZW8qKKi9pqgbdsUHXCEKXQWLz4tMXhI5AFwLT1BFNhmHaxJMLHF1BqTOi2EN4NpGvohmSed4j/JC6aanLEkUXyCpFNy2E6VB1KrIpESoYlkHo6WxWC/JOxQ9DCsWl7yUPtze0vcqxqOjaE4E/Pr9kNhjiZDXrTGe9eyQtjrSWwWqz55gXHPKSrpeoTYEuJY7Qoe9wvYDp5St8XWEW+jx7/RVyv+L84oJkOuDii19AeUq/9FLiOjZ2FKJaFobnQJudlOMKCLVF70u2mw29rtNWBW2R02ka0fkEcxBjnj9D7SsCRdKXOavHFdOpTd1J+r7HDyNk11FULcrsE3rNoEeh6ntaNNaLR7q+Q1FU/DDG1FT645qfPZsxnY7Yrxa8zzLujylbxTjVA5GIriF/uEEpMtL9AQuNX15e0uz3SM1msS7xHI/7u3coWo+iK6hKRxj6JGfPCLwAzTQR00tUP0KTOWqzw48t7n/8HXW2YziIGEzGDEeni0fg2fSdpGl7vHiAJiyEZdOrgm3e849ff09aFiiuhTSsk25TFQjLpJFQNR1ZA5bjU1UtyWRGvd9j0hIPh0S2idlVaLrG+WdfsH74iDA1vDhg/fCB4/aBti6oswN1VVLVNZ2qc7s40GZHEt/HG48ZJDEOCn/ys3/FAINzK2Bz+wFdqVlmJavVDs/ScdWaMmuoi4L58omnxT0PiyfuFyvc8ZTRdILn+gjTQlV7PvniS8bPPictT1Cw4fMv8AfP6NYrFjdv+Y//8T/x048f8EyVi8/OmVzMqHs4HnYstgtsO2C/2uDqOpeXlzz/7DWvX0y5OJvghwG+rjH0bUaeidnmzGYj4vNnuOMzXNuiT1ckF6+wTAOOO1Q0wmiA7/l4poFOh2s5FOmewPcwHJvBeIhn6owDl+ezIQo9eVVy2B8wNSiLhigKmYzHaIqOJlQe7m+oVmvKNOfp4xOP3/3EzY/fcewK/GFEkxXYpiDbl3RSY3o2Y/LyCwzdoM+2vDob4no2qjCxo0tUO+Hj/YJ319estluOxyOvX3/KVTzlRShY3Nzw3ccbju3pe3EZhdR5SV/XVMeMsWOyXO+4inxeTQaMLp4xjAKCOCG5eI4/HjO4fMaf/9nP+NknF0xGIYamYDse9BX7u2uQHXXbs19t0PqS+rjlsD9y2B1p2471ekNelFRNw3azQRWCppEomokbDU+Go66l7aHoFFTTx3R8FmnBV68GJJaOE3hkmwVuWZA+PJKv5tSGjlQFfnhBqyYc0o66rImihFqC7no0ZcqhKQk8g4MBncjZfvwRywZTtKRpzuGYsjkUPB0lmn/O9d2ap6dHHL1FCBXTCyha5Y+1h5JdcUDTVXRN5b/842/46aePlKsFQoGybpmcveDy6hl/8Zf/HZ++eo5Md+SbJcV6TeQEjM5e4IUn4xqWRd92lMcDph+SrRcn3lgyxFUUhOkSXL1C+D5WEOBPL+iqDpUOdEF+OEBRYBs607Nz+laynj+gKQp+FKHQc35xhUZPedyjqyoIHVPrkN3JBJHXEqlZ1J2CF8VEk0uev3rNeDIhmV6i6DpCA9M0UTWD7bJgt83YPT2Q13vsiYcfJASOgZKv6Re3tHcZly/+FCkLlL7BtFw6bQpiyONNxvXbhp8+7Hg3XzMvOgoMdrXCPq+QioowHQzTRkESBSFVXZNlOW1ToyoKoSVo//hv7Moch5PW8nw0Ru1atE4ySRJmoxG2pmDbDsloCGFIJ1WmvsssiQgsA8X0GE7HxJFN5BqYXYZWpTSHLU1VEE6nCENhvbonOB9jCpdsv2fX9Dw7n/HqbIRmWlynHY/rLVJK4jjhw/0DWZYiDANddzgbTHEVD5n2jP0hkVVS7vcUvQaGw/nlEBmck1Utz67OmY5HzBdrEqvDcxVu7++RTsLdSmH/tKUpFLTOZXI2oEjvGPgOpjBxHIficCTb7mgPe4o0Y73acMwK8s2aNj+iIjEdh2R2RjK9AGGiuyegqy0rmrrGsSw8TRKJnkR0zGKPWWQzDC1mrs7UlIzNntAzuV/nIC12yxW6orN6+Mg0NvCdHo0OugbTNNF0FVtXaKuSdLVBlbBb3ZxsK16IEXo8bg68ud2yODbUaGh9i2a5rHYHNrsjxxb2dc8nL58hLcFgGOO4Bq7n4idjMqmi6hq2prK+/hG961HpkX98F+iGRY9OMojRaVnfvoV6g622ZI9v6RRBXnXcfXjLzZtr/v7//i1f/+0N63uNKHmFM4KffnyLZnhMhgP2ywUXpsqfXAwZJAOEqhEEEel6ycXAwxEaw+GYFz/7JY/39xhNwTDwGPkBQphoqs6LUYil64TxkONuTa9ZDK5eE/keiWuQxBFePKKvSpy+wBAnA6VepthFxtgzKRYbLF0gy5bjNiMajxm8eIYWRuhJwlERfFjscePByfRV1Tiuz/MvvsIQBp4s8H2P6OyC9XbF4+NbpFKhhi614dAhMVyfvMxQ2hbaluFgSFZW/PTTdwxCj+n0jLZXacqGvu3ZbJfYhkJdHHm4e8AQDr4f4lgmsu3RTQ8Mi+9+/8+khzWe72EZNlV6wJAnSLmt6xxXC7S2Jg5CDE1jGke8mIzxdEHguoyjBKRJEA4x6h2O6DFdjyovcTwH23XJd1ssK0DVBcPpFFQVwzxxJHulQVMadpsNVdsB0FYFddXytE952h5RdUHbSjTToxcmgzCir3t++OEtRZGz3S4p6xLLCxmcPaPsO7q+QzYVq6c7VNNgaluoEnQFusfvqdMNmBE//nQ6oBlCcH19yx/+8D35fsX5dMRkeo6wfCQ6X//T76HvT2npPOMPP3xLH+vUpuD26YmP799SrNeE5qlBYArBNPYxhI4XJ1BmpxmtreklKB3c3z6yuntENh2GbYOmMwp9uuyAI1QszyecXTK8vGQS+qhdi973rPdHRr5NMoz44tNPcIcDVMeGPGW/WrN4eESUW4y2IByOCAdjdCGQbUW6WVCnB7LtmrTtOVY9RV6gyJ78sGO/36NrCpauYocxiuVRtwpOEJPEPsuHW/qup1dUPEOl3S74+V/+r//ypcl/+cff/lXft5iyxdElfdeymM9ZrtYsN3vsMKGRKjcPS7b7imMBwtFQTJ3B2RkvX13gewaaooByiurJdIkmT+wKW1eIXJPysOPu481pIDZUEt/Bsm2EpiM0Fdty8MdTwtjHcjwc20RvKlRVJRhP8eOY6dkYS2gYpo/Sg5IfaaqSevWE0rUc5/dYrguqQbpakRcNwvFQNAU/HJBXLVEUYorThWEUOti2S+j7WLqK2pa0UmGxL5BSoqgaSRxjWy6P6z0iGILssTSFm/WRspVYhsF4PMWOhyhKixMoKOWeyLPpemg7jd1qjUqHZWlgeSyPFceiQHQNvtpxdT5B63I+vn+PpglUM6RudV68fI4fmPRpy/XdB96/ec9xv2ESGzybDIgdC6VrabIDliIxhE7kDVE2LaZu4UYu3iCgLXPsJMQaRgQjhygUnJ35WGqJ2pZYvocuwDINFNkjdJ1wMCYZjxk6JqYhMN0Q23OwXB07crBGHpWWgdkhQhMrcOipELqCovTs0/ykfTMEjiIIwhDXUdD7Atc28aKYWmroTki229LVDa1mYXo+rQTV1NncvMF0HagPDAKLum6oFJvt0yO3j0vuHx4pqoZd3rNJG4qyJt0fqHsVbzghpEbdz3nzh9+xrWsM3WUU+szMnn/38+ecf/oZjyU8zB/xfB9bk3j2aYE4Hg1R+w5PV1CqDKWtMSyHpqqYXFzQ9xqWG5Jt9hi6gSo0LMdBa1SyTcrju2vmt3fkm4L5hyVlWVLVBelxB1XDcb+j7Sta2bI9HFEdD83UiBMf33cZzqY4nkMwGJJcPSMIfKr0yPbhFkMofPbZObI5IpsdulmzLG3KqsW2DPKiAM1gd0gRponhBOiGCemKMPTpu4phYqHZIZ/94pegabiWTicbnh4XbNZb/DgBTRIOPQaOzdDzSbcty3lBg4IWm6x3S9abLR3yFPFtW4o0PbFbesnlMOZ8POXTZ1eIOuXlOGTw8gscTSWOXQbDASYFluuj294J3Fge6RQJmoruOkhFoe8bqjxH6TuqIqdzXCrTx9R7GmHSxyNcU6GXHXVTYzc1alkis5K+7RiPQ978+EihNoSOS1U1KH1LJxxq1WC337JeLlmvlidjVNugazqj4ZBoOEE1LIw2pa9Ksqqk0VTyLKMQFoauYauS9rAjyzIU3UAKj5ehT6Sq3P/wDnvwjOLxgZvrb/FjFzMKaQyTfZ7TNC3T2QWxpdPLFkVtKasD9eEez+rQdIVivSRyTVy9wzYN3MEZThRhuCH29CX+9AxFUTGGE3ongHDC/lARxAFdUxMMR1zf3HFIc/ZpRd/BLq8oe5W2U1AVHWHZWMmALk+xNZ3ZZIRlCTzfxAtC/EHIw5sfePknPyetaooi5bhd8PDxI9vlmrqTbPZHet0k7XTu7x+ZLzcosmEQRfTHHHKFQZTQVw3pZkGrVHx/+0R0dkZogi8khmNRtQU1NffzFdd3a0x0rl6+5vz8GcI2UVWdy5cXfP7Z5yTJOYZqkO5z0mNFtt2Srzf8n//pbxCKgqp4zGZnjF/OmF5eceg00sMOpWlYXj9gtDk/ezngk6uYZy8uGJ1fcH71govpkHKzYuD9UeHq+YSDIW4ywo4SdNOEtsUazpBNg64KVNPC9CPapmE4HBMlA0zHJYwGJOMx04sZUWAzjBxMVZJu1mwOB+oO4jimbiqOhy3HrOLi5Quq9Ei629A1Lb//9X9j/XTD0/U13/7+N7ydX9NbUJQZk9gHKQncCD8e4EcBljtB62oipePixWuM6JxDa3H3sOHbn27Z7lNQFJbLJ2xT8NWnr/FzhR9/v+CxiHmqU+JAYRo79GmOowlMXSd0XObrHZvDgX/74oxREjN98RwvGZ4uTrrNcBAzsiQTDxLfptpvTu8BJH3bs15tMLWK4rBFSo3lak2aleRZzeF46njT9aRpzvqQ0/c9x2OK5QbowsSMxghNh6ZC6CZSeCyWC6q6olEEn07H+GaDopwqu+/e3LF7XBBokqNhoNs248tX7DPI84rBYICiqhyPJbKByHVxHJ/NfI9MC5QyJ938gG5KVNlyOOYcspy06GiFj26HfPPtt7z/9p8JfZXPvvwS0aj0nJKwom9Jt3ukKni6fs/f/f1v2D494hgGcRAyCAOev/6Mv/wf/h0/+/wVRt+QHY50ZY3r+GjCodcNmvwA7RHNNDgc96iqxHBcmvSI6/gEuo7aq/jTc3BcTNdH2DaaMPCSIao4aaidIKTOUtqiID+mGF2LLhUsx4Omwo9DBuMxfVsj+5amazAdE52TjVChQxMmWaPQ9h2adgK/GkLD1FQOxyNBNKDIjih9SZlnPC7XrNdr7h5viJ5HeLMxXduzf7rm86sZZtqy/2ZOfb/E9FLsWEGaLhsZoDs2od/TqDmVaNEdFcO1OFSSfVbTSgVVmKBbOH6C75zsIX4YYAqBoUq0pkLvW+q6pspzxr5LJBQuk5jz4YTYCxmHMbYwocwZD4fYlkno+USWg+cF9GVB4JpYukpzrCCrMWWH51uESUAyDvAtDaXMUNUOJ7bRvB5hdQxUC0vt2W523CzW7PKKXS1pFIHj+pimOEEOy5aybmh7BVUVRMElgTbAqqE97pk/3KP2UHU57nSI7VmoyYyul+iyYTgaUdU5msxompKiqCi7iGJfUaYlWi8olkeUbocmjzgCoiiiTVOq45G27dkuluzXG45ZxWqXn9S1qsCKBmhejOEPaDSTIs8YRj6+Y9NmBxzLxlQhUGtEX6ArJ0ujbmo4gY3nO9ihRzhMSMKAvpLYbsRXX/2cqum5upiyXW2o0hLHtjBMk7qReJ5L39ZowkV2Nn1dsFo8Ui4r6lpi2wFC1zk8rflws2BddCyLDsMPacuCIk9ZHnMadKajmJACezAkSGIc18Z2bXrT5uXlJbQd//T//g1a22AoHUVRMp3O0HQLy/QJHZNyv6KpC6r9HMtQaRrJ+mZFlwpk16ObBoYfY9gTwvA5XaeT1Qf2mxXD4QihqAxsmxexgzBsLDcARcM2NJLxDFUVDOPwxMbJc56dn6PLnraqGLkmZ9Mx08mMvioZRhGzyYj8mBJ98Su8KEGpC1xDR1N6LKGTJBG249JrBobSozUnrhFVgWmZqMDq+xt2DwuGV1eUfY8/mSDDIblioZinulU0njF59pqrL3/F5OySwDEQmooiJQibx+2Ou+WKXO9QBiHR8ILjIQMpKLMDtBWy77AdlyLPef/T97imwuzykn2tIFSbqqhZr7aofU2dpmzXa8o0wzQESAWEjTucsN8t+fDtN3iGjiNMosEIxbDxbQtL6THUnsCzMXUT0zCYDBMsQydMhti2i+gahKbhC5PECdk8PSHoiZIExzkplf3Qg7ZFaApSqsgeRucXWH5IW5U4lolmqnSlZLVJqQ57+qokrTvSFubHgqJuEULDdXzKRmIbFpvFntX+wGI7pywyFKHTC4FtmAzDBMf1iDyT2DbInh7QZM8hy8j2B/TtNU2e0UjBev5IVxZ8+HDDmw/3BJ7D5WzIi2dXaIaD5QQ8zXfM7xd0VYZrGzw8fGRbZAwurvjnr7/md//173Fkx2w4YDwYMogCItvEoMMUOprsKcsSWZe0UmV7rLlf7ih3Oza7I66q0tUdat0ACnYyQg4v8Iczqu0WWeZYpobRVAzH5zTpEU0IziOPvqxIhgnReEQYhIg645vvv6E47DlsNghFxU3GOL5P3zcsr99y9+4NVVXQtC3CP832qqKQZjlt36PrOo7rYeoqqmmzXs1JJhMcQ6UtjwhhgCqJ2iNC1nzyF/8/lib/+3/4P/7K6ApGlnKqqyiwXq5Yb4/crQ/UqokfJzR9zWL7yPq45mE3R3MMkumEFxdjaBt8z8UPQgxFUqYH6iKHtkLte6osZ71Ykh9TbA0UKZGoOLaD53kIBYJwcAIFmRbRZIbhenjJANtz0DUdQ1Vw/Bg3HGIJDc+x0FQTteuwTQtBj1Yc0CW0FeRpDpqJcEOy9fykYVShbjomsxlhFDEaJkzGQ7bzB1R6bKFTtS2jyYysVqjLnCTwT0PWHzt3wvEI/YAUh15qBEGIG8Z0isBwDPxYR2tKLMtCcxI22wOOrhAFDllZsyw4gVg1iWVaGBoYbcnDx3uyrMGwPJKLM+LpjH2r8vF2xz/85hvev/mArEouByGXo+QEh9KgTVOEphNFMRo1lmdihR6qIqnqDKWvcAcuwTjCdCXCkDiuBn2JLjTUvkUIgSZOeithufRdR1dV9E19iu+rCkESoOvgxB6qo2APHeyRj+XbmKaKYemYjkHbNidPupQUvaTpezzbxFB7shY0N8YMxuwOGcv1DiMc4gUh9WHL5v6B4WSIHQVsVouT5rjvaMuM6Simbmp2peT+/pG7jzest3uKBirFJK8atusteZ6hdB3JeEqs9xzubrj58AGz6jmzBrjjGa9+9oLhWUyl2azLDk2ReKZGV+6hyuikgmFajCdjHC/AtSwM00A3LISmoSLxkyG2Y0NbIUwF03NpygOOo9MWBcIUfP/hIzeLjPVxg+XrrDc7sv0RScvT44rV5kjRdOR1B4bANCTj6QAFBU0YGJZB31WobU6+uOW4WVJmBTeLNefjCXHoYJgqnVC4vi+oywZkhyoMOqnQ1QV0LaqqoqkKY1elrGsMA4LQJ5pMOL+4QBMKxf5kjMrLhs4d0nWS2VnCLDHpZU2Zlqzu1nRNhRIISlLe3G9AbxBVjtRs6ixDBzxdZRgPiFyH5+MRzycDDNnh2jajZMDo/CXdfnVKcWkKuqZj2waW0aMJMEyNvk1JD3vSskKqgizL6GVPXWQnfXG+Rac5KaG7kjY7INoaLTuSrdasHtdUaUt8domm2xz2Ga0sCTyNqtU5HI6owqLrNbIiJT0cThpeVUNVdWxDpyoKFEATBu/eviE7bBGjGbsqp1d6avukHC+6nqvPviQ9HFFMi1cX53hljlr3hNGAzWrH/eM1IrTwr67YqDo/fHhP0UrOhgmOUpDNP9I3Bb3aE4U6MpvjOAa2KahXc/S+QegCQxjItoWmQQQJqm7SdSWKH9KaDseqYX/c8bh4pKgq9tkRMw455il13WE7IXEyBiHwxgN0TaMrCpqqRWgax/WO8SBiNkqgKfHjIVbgs3z3DuEYWHHCdvnA6ukJPwnJ64bV5nCCUwcnE0ajGry/vkcKjaf1Fl1TUdueux8+sry95/HuI4bjc52lpBKiQUxsqwRWj+XAw/0D++3xBHcuW+LBgOnFJX4Q0UsIxwO+eD5FyBqV02Pyd7/5gc025Zsff8AIAywheDYY89Xrr4hGCdNhjNAsAs9HKiarmw8ozYaffTLh9edfEJ5fMo4DhnHAKHCwlYY+T3GFwLcFbjTCnT7HdmxMz4eeU+8YBVXVMUyL4pCj2x7+YIifDPCHMcPzMxzfxhQGYWRj6RKlbcj2O5qyOJHtFZVO1dge9iznT1i+R7rZopYNh+2WbHOgTVf8+O13vPvxJ+bLJ7IyZ7dZ4ygFs8hgeH7F8GxGWlaMhwmaDLA7jUvPI5xMOOQFD49zhOHwD1//ljLPOaYH6Cq+fD3ifKByty6ZS4vG1BkMO2SxZpIkbNYrDocMXfM4HI7kecbU0nk9CImTmPj8CssLcf0Az7ExaXCFgmuoVPs92XKNZZ4MdLphoLo+N7f33D090vYNWdny7vqBtpPczTeElo7Z1QSeRWCbKIqCMMTpymkKRsMBquzQFYmqaugiRPPO8L1TynM6HDCZjukVGAQ+Z5pOVte8rQouXl7iDcas1gdU28UwzROcsKm5uVlQlx2aqhGZJptdyWa1oaxSqv0bpNKgIsnLmqySWF6E7QYMkyFNlfPlJ2f8z//Tf4+UHl2u4vkR0uipszkPNzdIxeTNDx948923KG3Np5fnfP7lV/zyqy/4V3/2rzmfzbDoKPc7qjQDqaAYDkJT6Kloyg2aAaboMA0NxXAwhKCvKvSuxcgLHC9GN0w0x0O4HoZhoP9Rpy4AmhLNDzCCGMX20FDI9ye+lmubNIqG6zm0XUOW5xR5huv7SBWq/Ijrusi+oeslnWqiKyCblKo+1UI36yXrzRovTMj2c6iXzK9/4OnHt2yyitvdI31o4g6GNPsVY6fH0TTK/YF6v+Hp4T33j3OqpjmxvJocrdtT7dfkxw3L+SO7zRKkwuLYUVbtSffs+ITRCM8PT+wd08J0fAxVgTKn2G8JTUFoewz8kOdxwKvE5zwKidyAi+mMYZAQBSFRGGC7LqbjoQsNxwuJ4pMpLz/sUJEMxwO0rsC1FTRaLENHky3C0jC0jv38gTrLMIROT8PENhgYGp5j0LcNsszwafnx7oHF/giAAuSdBoqB1A16qSIRJJbBYf6e3eIjfSdx4wCFnFwq7DqNWnZois7thzfc37yn3D1iIFk8LtisKuglwrToCoWH60fe3/yIE52SFE3XEA9H5MsVqpTkRUnZ6izmaw41GH6EEgzovRGLosXyAlRdR2gKiaOjttUfocACU9egLhBCp207NH9AnRdYWg+HJWYQojk2RuDhBw6WzHMf0S4AACAASURBVOm7nuFsRNe3JNMxk4sZwnbRVJ30kKObDrrhsrqfU2Y5Vbmnane8/f4dRVbhWj7HrKTKclZ392iGwfaYcfPwwP3DA1mnsskKOlUgDIswjrH6AkO26EGI51g0fUvZFOiqZL96YDPf0NQS3/cYDRMGkyltb2PpJl1Ws3g352BOiM7O0GyLzjglv2Su/n+cvVmPJUl6pveYm7mb7362WDNyq62bbBLkCBKFASQMIOhOf4r/SIDuBEiagQQuwyGbLHZ3dVVWZVYukbGcOKvvq5kuTo3uqZ8QBx7m5t/3vs+DER7pxQLparxIIwOHu8eP9PUW7SrCICQKY5K2RstfEgvGopWDKwWeH5NkGWqocR2JYyaWgcf166+Ishly6HEdh+uraxbzOWPTMVkDfoy+vCHOFkzFniz2uVgtiKIIM/QYY3H9ECscnPyAbVpU29PvCpT1UK1FI3DjgI8f1py/foE/v8CLl4RJQhzHhGmGq/3TArAuaA9PDHWBFbDpJ7KzS9x4ycOuQicZvhPQ1IZhmpB2pGtr2qoG4P7zR8Ziw+UiYJ4GWGs5li1pMqfMa46HDle6NGVJV1QIa3GUSxzNEePI+uN7xDji2IkkiJinM778+lfMZ0vSNCRNYrLlJVdf/4ZZmuG7Ch1EKEczCzWu57Pb59yt16i+J/ITxGAZjxuSxZxwtkT7GtM2RGnGOBjq4450scRxFI50GQfD0A9EywWX8whPSuoJ8qZnmKDsBjprka6L4ymEK0E4jKZnne+5/fSeKAjoBERnl/ie5pjviWOfbmiR08DrFzdk8zmfHx/51//yD79Ux0ZGKxmbms+3nzkWFWmScbZM+fqrr0iXF4TJHCXg/vMDU9sxlBVdXYGQlJPLp7tH+qqiOOxpq+IXRXWMFhZfCab2lHZrmhZhRrqmpUfzw4dH6HryQ07iaRzHI/IDtFJE2iWME5ZXL9BjzyxweX6xZDVLwFG4WuFMPXEU8/LZBVrB/vMtztAyv7rG8zSXoYdSAXefb/Ecgw4yBCNy6imOe/7mb/+W3fqReD6jHkY+fniHGXtWZ0v6fsIayzT0J+FLGCKFwJWCdD5ntZhj+hYtwfQjB6P5i3//P//bhyb/6//2v//11SLCaXI8JXGk5uOnz1T9wLq1+PMV6/2W0PNQSoGa8BOPl6+vefXynEgKdBBzdXlN4Crauma0inK7ps/31PmRIi/YVQO7zRan7xjHER2mnL36Bo1Buy7Z6gJnbLGAqzVJEqG1ix+lOMOEKxX+8jkCB7rmtB31PFytT+kMaxFtidN10A1IP8TLFkglOdx9oCoKUs/B0xpPa+4/f6Jpe/woRtme3eaJIIrwAx/pusTZEiUskat4t84JfY/F7DRhnC3OOJY1k4U4yZBRhpytiFcLVkuJMzUIIbCuy9C0hK6kKgs+3u8JopiV7+MCdrJEaYZj4fH2EaEjXv+7vyQ5i8innu/ef+TNd3/E6VouFwu+fn7J2WqJL08K5raqMVVJmsQ4SFQ/IjGoUBJkPtkqIF5lSGdAaQfT5Mixwws93HSJ8DyUI6GrGboBf3VFV5UEysFzJhxhCdIZU13hDA1mGhmHGmM6mnxDN3RMxtBZ2FUNhzxnHDrAEIYunuviei7j1BN5LipI+fBwZH8oKasWYx0mKViuztmv74gCjQoDNp/egTodMOunJ2JPkCUhjiNY337g4e4zm0OFDhJGL+bu7o68KFA6xBGWOAqwXctVFlOsHygOB76++YLA1Xzz5SvOljEW2A0wmoHFYo6vOPnol0v8dAZjz9T1RFGEH8/JlhfEUUgSekS+h+dpXDHh+y6+DrBDhw40fbnB9yU68JC+Rx8GdKbj229/RFnFMe/Ja8PD9sCuaqj7kWM/4gaaZ88WeJ6LIwBrEMo91cD2OUN1pMoL7nc5nqu4XMxZXJzjak01jNw+1PT9dHruhMLohOqwY5omwjjFuAGR09C2NZeXS5aXFwSBB9NA15YUdU/djFg7IvuScDGH4cD+8SOOgduHmt1hRzBLsFPJ5uE9ldOwmLYcq5axPXnsL7XDsyzi+uqS189vuEgTnL4jijNscySdn7NKU7J0QSgUBkUQODTbe7ryQHfcUh23NE1N27aUXc++bnjz7gPdZJimgeN+iy8tDB3KEQzF08lhX1QU6wek1kRJSHqWoUOXYnvk7vNn7u4f0MuU2eU1gzHguPRSU5cVKIWSAlfHRLMzHOC431LXDX2xwwjB4uKSLpuhw47amejcBfePDzweDuRtx+b735P6LqljUVVDXVTMLi8QUcQ+fyIfGvZ9x08fPuLFKdfPn1HcfWS729FMI8tFwmwRkKkOOzR4whDogP64RzuCaH5GPxp0PMNPIiYrcIKAwfFxF5c8PT2xXj9SlgVKK4qmBv8ErK77icn0uK7LzZe/wsFSbncsVktUP/L85hndfssXFzO+/vI5Q3nE1z5BHOI49qSS9jwEI9Vhx+2Ht3T9yPzmAjfUVHXNoaxRUYSxlgnInw64UcbDbo8KfZ5ub8n3BSpMCOdnjKtzcAUqCsjUiBgO7I5b+rrHlYpmGCjbnmyeMVueofDoJvjNn/0JKn/k7t33HIoj+eiS5y0/fP89+eFAki1JdYwfhJhQU9IQ+z6+cNHCZXf3hG0OZNrw7Pqc2XxOFAQskpAsSwk9hWwLwmSOH55o7jqMCNMZCmAcQCqkq2HosNOEmy7QacrUH0mXS5L5giiaEQSnIVe4mNNWNY93H07A77ZE+5qqqtltT2T5zlj6YeK4WdN1NX1Roh0P13GwdqIfKtZPT2zLCt+xpMISS4cXyemifvb8BY1VtE2FVimyn7hIA6ztOTzeEYQhb9cFXb7ji5c3eJ7P1O74d18InKnFejG+b9BeS1ttKA9b0iQ+GbHKDlG1TEOHFpbXgUeiJIurK+bPXyKFwtPeL2wqB+17MHZo7ZJeXCClQLQ1pqpxuhaSmI0DW9/FDyIO+5K2HXBdl77pEMBkIAwTVvOULPTJQp+bZUymRugr4iShqysOxREnTQk9yBYzCjEQCdjnlk6OxDOXbuqohhM3oZA+H9Z7VmcX2OGUPnhaP7EvOn7+8ICQLnEcMbouD093WGUp9j/iuYLJWHaHHOXHjJPl9Rdf8sUXX3JzfcE3X7zCDCeulqh7xMxln9+Tb57o8haM4offfUesLX/6xQ1/9T/+B16+esUsjknTGZ4QmHyHbVsEpw9/Z2wZmwONnfCyBdnMUOUHvNmCvh9Oisl+IPNDPGMJPY0nHfzFjMkYnGnAkadhlReHOGaib1rcdIYXxzhegOtqlHKZhGC2nJEfD3z8fIsXBoRxhBuGiKGmawpu15tfIPIC05eYseVh/UDZDURhiB0qtOtQPn3g4+0bxOET+f2PmLfv+eMPt5Su4vzVBaE2xK7herVkvzny9g9vcHyPl//tnxCfL0iWFxy3LcfNjnK3YfP5nj9+/548r9CuRIUzPj3kDJNFKkU2P2MylnEYiKMYP5phRkswDWwfbslCHzV0uNZwFmhCRjLPJQwz4niOGia6ssaPEvw4ZcKSLs8o8pyxH5ADLAKHs+WKKArxPEkU+ZjB4CmBbY6YqsBzFTqKCCKNqwzWTJwvQvy6Yip2ZPOUzw9PLGYzwqkjGDvaaeLY9EhP03Y99WjphxEpJWNX4o41c+0TOTXRPEO5AaEe2TY53vNzDo8PyHHCccBpt5zH4IUpZTMxX55TNyOYiNvvH/nw/g84sSVKA+r9jouzJYEwuGagPBZYoRiCBXdPB97fPfF5V1L2ll3VEgQ+XhQhpcQpdyzTGI2l7VriQNOWOZ6EshkZHM04gRprfNfFInDi7FRdC3zCLEKLGtc71dAvry+I05ihq0nTCIzh/v3PVMeS+7dvAbBiYPd0x8/fvyEvB4zhBJjXgoeHJ3ZPW5SwuH5ANznsj0fq8kg9CUYrQSqenWV4/R7MgLUDMs0omj1v/un/4v13v+W4uWc+e4UQHmES8vLmBbN0xtT12F3L4999ZCwbFl9cET07p2uO/PiHf2H9+Zan/Ja3H3+iG3LapiFOM+p9zvr+E46dCKMYB0XUt3h2YBQefbjAdjXTUCOlwlOKzfufWGQx1tUsLi5wppPxI5ktePbNrxmrAmdsmc1SLi/PWFw/QwpDMpsxPztjcX5FvX1iOjziC0PgnxZ+U99BVaAch66qcKYRW5ZMdYurfZL5nP1uy3ZTkD67Qfgh0nWxXc328Z63f/wDh+0aHQQMTcH28/uTKdU4vPv5Z4IsZb5acXF1Q+CFdPuCripQGtpupK1K7u7umKUZ//K3f0+sJb/++jUSMH1Jvtmy3zwhvICy6qmOHaYfqA97lOOecAxhSLF9pNw8sVyew2QIHEk39PS/VO6iwCWLAlzPRSkX1Z9skdmzV2hXEWjNPD6Z+LIwREsHX8UcNk/cv/8J0VlCz0Mqgas8lB8SxDHl/oinNeNgMN3AbDYjXmQMXY+denSgEZ4mSTOM4zAisEia9iRBCJSDdSz5OPHmzRtcB6T2qATEcUIcRSAsg7Lc3X/AnTratiFJZyzSgFS7zOVEuX/CjxK2u5yuG9G+Zjafszo/4/XLF6zOrnDFxP7hjp/efcT1EoaqwkWwLVt2hx0//PCGqizxA5+z5RLtafI8Z+haTFPgKwFC0ORHtBRs64ld53B8XOO6HovFkmkYeXFzw8uvf00cRSwvLwl9n2CqOV8kXF4/I5nNMf1AFEVgBopi4GoVg+/z/OaSJI1QrsvZV1+BlMTLC5bzGfn6kdn5FUpJ8rv3OF3BhIM1hnboCQIfN4p49/M7np7WJ7Wy59K3NUPXkmYZMggxY3NKHHqKLJtRH7cE2mWzO+CGKX/5V//h/0c951/e/HVIw3B4ItQeCCibnto4oH32RUHpeezXdyjPoR9bosRndbngYhYTac3Nqy8QjstgDF2+p8t3mLamKivu7h6Rns+btx+wTQVDj+tqstmcLEkZqholBIvza5LVGWEcoKYGD4MYDVPZ4esAnZ1juo6T5MvBjj2MA6brsAiEAwz1KS1TN1jroJMQj5NJ5/Pne0xdYceR84tzDmXDbnvAZWJqarq6YjmLkGHK7OyMIFtR9Q6bY0WiFflhj+uHSAFRGCC9gKd9AW5AfP0l3uoZ6SxCmB2hligh8F2F6RowI9vNDqEjLs4vcKVCTSMCyWBOPnZGw9mrL0kuzzlUDf/57/4Rkx+YxxGhL3HGEzNACcE8OEWl2zzHExOh650oxlEE0wTCopwRO9SnKR0DYhxxQ5+uHxiL8nSodh3ad3FdCUNL07QEcUR/3GKGDh0GNE/3iKFnqhv6tkWnKY7gFHU9HiiKih4P4hWb7ZZ6v8N0HU1V0w8j1liiMMLzPbQ4pU26oUe6HlK51HVLnKQwtLz85k/44quveP/T94xVgRWSar/l/GxGVRZUVcX608/UxZG2MzjRGX3bMI4jvhcgjUVrxTgOKGu5SGOaw4EsCpnHIVcXM1xq9rtHqmnESWIi36GrDgRhQDZLieMELUZiF0LtEijoixzbVdi+QwqJlpyia8Jg2x5hYKwrpm7EQcA4/mIj8Rj6mqatSVOXSYAbz3gqKh6rms9lg3Ylh37k5VVKkgRIJamqGukqrBlx/QTXVQRxgqsk81nG2eoM4bgEcYQbepSD5vu3d/TjiDEWRydUncFzFX3b4EgP5XrMdc1sHrE4PyebZ9ixQcmRoe8Z/BVd07O7/4BRHuNQ8/jpHXXZ0E2a+4+PZPNzxDhx//GWw/GIyY+U+4amnWiqDtdMrEKfeRQy+6Vetzq/YqwqVrMlYThj3K1xBoGWAcgEMU30x4Kpr3HSBdZM9MNAMxn2RcXkOIxhStt3fLy7Z5wsxzynrSukECgs7X6Lr32YHDzXwRk7rKsYrcEOFYw5QSiw2mMex7x594l5HJDM5nRG0TYdnjQMw4SQLkGS4kkPrP1lU+ggMLz+6isG0bBu3tEwIv1nNMcD1dOa+uc3jPmexXzOWRiSKIkwEzr2+XR/y08/v6XuWu4f1zhYdrsdN6nPfvPEajnj65cXLOchoT6dGe1+yyoJoG9Jl5eEaUq4WBJdvcBfXSLDABklHOoBmZxUsX/4x38lTSKGvuWY10zDiLWCbrLoOMFFMEsCnj27puuOBKLjxWLGy9WCi9Tj5TLkMg1wzUgSBYRRwtg2mKGjrXMcCz98+y1SWPq25e7+geX1OcF8dtomCSirEoRDFEeARCGJgggdaOL5DOOmTKPBCzzim2s220eM6xK6Bt/k9FOPIxWjFVhh6fuJ5WKBlgHlviVLlry6XPDTP/0N/+f/8TcUk6UeNe9//MTj53tWszld3ZBGAdZCOQ2s7x5YLDPCIMB3oal3KFudwH3zGbFnmScxcTonCkJoS5Q1JGdXhNmcaLHC0xp/tkJ5LkI6COHiAMP+gPQCxtHgugGOA5gBz/UIoxDTNJSHE1epznOEsAgzMjYV5fFI1bR0w8TDdk8YBrTdQNu0FMcjeXHE9hNNfUoThpHHMT8wTT1/cXPG5XKFGQZcz/Li9Q1xEjF6MT+/+wmhPbJZyCyLyZ/umYDC8VnMFrgOBJ7DZvNE6h1ZujuejoZNrXl/f2C9OzL0NVqC9DxwXBzXozYDge9y5krO2hp/MmTLJenLrwjTjKo4ouMUnS0ww4DT1TC2mKbBdCW2b2jWa+qqY1se6E3Ah9s7fN/nehajmYiTmPnL1zhFzmIxYzU/VUk8KXi1DFiqHlMe8DyFBeaLOWPfMuQbhrHFv54zpfBKCzzPp+xGVBiwHyZaHXJwAt7ePZ4gpvM5h6Jks17TdAMPmz3f//iO/NhTDQHhIqO0NcfpgSn/jMRisLTdhKN8/vTP/oJXr75guVjy/Nklts55eHik3FdYP8L1BtTY0xUTzbGhWu/xxcBqlZGkC6QXYKscuoY4WyKnCdk2tHnOmOd0w4B0XYwO8OcrhvozptnSiBDjeOggw5ESaSZk1xD5AUJIPO1jjYNOEqTnMg0j02SY+uGkkAWGYUB5Ln4UniqwdqQvjxwe77m9f+BYN7TDgOf7RL6L6SskhhHBsaoYmyOeK5BSoqQEM2Ich6dqzz/8498gzIidej7fr/mPf/cdnmswjst2mJilCk+e0hYSi7CWvu2YX1+gswVV2+Je/IYhb7Fjzfrhju8/PGKXFyySEO26dO3I+3WJUB5ukBJEGb2BJMlYnV+z3x2o8x2ZHKmPR85mGRjLQjksPMWzNMYYSzxfcXFxgxKK6xev0FGMFBZpGkJHEA4tCx3hTx2hnmBUuF6AHDpcJVHaw7QtY7FHAWOVIy14WoPpCaTBq2pUV+NMHY4DvZEUveWx6IhCn9h1CLSiGyeejgVhlCAcfUrzTA2hsrTHDZHbkgQd8Syg2W/YtwVe6qLqA8f1E5402OMjs5mPCS+Ikxn7pw2H+4rqsWC9fsskW4qmIgw0sRasFjGi7RETdNNAZSR379/TTYK8s0wyQPrJqfaXZcipJ/VOVXaFwVqDl2ZErjzxvVxN73hgRhaJS7XdITB4fohAohxFf9wTX14TX7/k/Oaa2dxnmkrSJEGahvWnn3n/4Y6yaEAI1refeHp84F//6ff88OYTjhtQNT1l1aC0yzhOfPf9B8qyItEuVVlgpUtZt4xmomlq6m5AxxmLQKJ9TWcFCInwQ6JY4FV3FLfvaPd7rn/979E65eXLGy6XMbavKdefePuf/x++/e1v+dze4c4HzjOL6jdUj7f8/MNnPry9py0rrlcJL7/8krafePOvv8f0I3EUMQqJFuJkujMWNwjouoGp7wjimG6AYbIkcYyVPouLK2xXY8cJ+QsMO41DLp4/ZzbLSGYzjDUsn10zv7jGVjlaCpIkI0oXZGpkLPe4WISjkBasGfGCkH4yjF1Ll+dUT1sEYCYYe0s7TQTn5xyrjtD3TrWV2Zz52QXLy2eE2kV0DfMkQYch3/7+Dxy2G4IwoDzscaTD5XLJYrlEKoGUgmmEqqro2gbJxMPH91xeL3h29YyqLMgPR4yFp4cHinzPdrOnaTp816PLS6yFoeuY+T7b9WdcJhZpSnr+HM/zTzUxX+ErB+VqQu0TSovvihPb0NOYYSLyfRJPESQpURyxTAOS2YJsuSJWHl8+f0kUnmoxpshRbki4PMOOliRJ8fwQzwsoNxvoWtQv9/CyajjmR8wwohdX6HlG6Ic48lQXCcKQtmkZLbSdocgrXM+jM5ZA+yTJ7HTWJhF5/sQ0tIxFzliU/OGPf8RYmPsKp95QH3cMBoZupGlalHPSAc+igMuzFXHo8/ntGx7WT5i2J0tXlPucaZy43x357t17+nHi8WmLqxzqusYLIgSckup9+//drfumxlhBjUe522PbiiyMuLh+wddffc1qPufixSuCICBbrphdXnF2fkYUaawjMYhTjdYRmKGj3u958cUL2qrl+a++wc/mGGswQ8dkBfHVM4Iw4sObH/jmL/8bhrbm5+//wHy5Inr+JTJOKfdbhHToXc1uv+dYljw9PXE85ug4Qfs+juvixyna91jMUhZZfOJrCfCZsIdHFlHAr/7qf/q3D03+4//993/ttntE15AmMcV+i9QRnfCYupb6eMC3lqmtaZoWPw4wCq6fP+NiMcf3fbLZAqtnSEdCW2DbioenPT+9eUtrBP1o2T4+cf90IIxirs6WJNo9fXjnB158/SWe9hHGIPoG2benJEkwJ5hdoIxBhjFTUWLa/2q9AaYRa8Aai52g221QyRzrJxjpIeyEGDo85TAME58/rWmtwrWWxeqMCYdx6NjtctZPO1bnZ1w+u8LTMe3oAA5KeZT7LXf7gsfRZ3n9Gqc9EPoek7HUQqPnF5w9uybyJ3yvw3YFgdaUeY6SLsM4UpYNi4sXdG1H1J2I/uUIAotjTpUK4bkcjcO3v/2W43ZPXlQ83D9w3O2ZpoGz1ZJn50ucpsTF4nkeU12hcZBWoJcrjPZojwW+PB1WCE6H5Vif5p6OwIs8tOoxxR6HkanrEHZkKLb4oYcOQ+q8hrFHSRjaBqX0iQZd13iBy9Q1SOEwdC3N4UC+3VIWOVWRU5UlY9efBjTjRNt1+K4kiXwGHLbbA9r3mczpxdWWB9Yf3yL8kNevn1MWe4Tjst0d6NuSWRrTDwMffvieu0+fTn3D1TlKR/TDiKc1Ugi6rqcocrCW55fnzF2F1gFSKKgK7FjTdhW9cAiWMcM0kPgOdugZ25JAQECHdixRoEniiDgMCDxJHATEYUASBcipRww9zf54glIOPX1eMPU9zXbLcb3FWEldN6cqT+LjOKe6hw4U0nN5fnXOPPWJk5jzRch8HtN1PdM04SUzrIVis8aRDsLV2KFmOOY4rof2PSYzgrA4YcR9Ifjp7XuapiaMZxBmNN2A8iPM2NH0A6F0cMcd5xdzcByun13iyZZq+56qbcEN2G8eOO63jNPA9vGBfjCMQpPvDxyLHoHH4Viw2R5o246+N3Sdoa8Hiqpj7gcsfJ9FFCEwRHFCIBW+dPDl6X8pkIouP5wATn2JGDv68ghRzNCPNHVN70j2eUE7WTbHHCMdkrNLhPIYjKWfDPvjkfK4Q7k+ptijhIMZTjHEqW+hnzCTxI4lQhjaCRYXz2gbxdPdE9vd4QSsDjXlIMgunxO4Icfthnq3xQ99lHva8qezOVoIQlfRDx33d59g9Nj33mnAoN0TiDlOkI7kZj6jOpQUjwe6puTvv/2WIIs41iUf1huEqzi/POflzSVpGrIMBDP/ZNa6PF9i6wKGhkBr/CAhjkP8KEJ6/oml4WmMcKiKI72Z8LMZ64db+qZCuy5t1VKUHbPFEmFBYPj8+Yk//9PTh4im59ffvGAVWm4SeH5zxsViThgESDORRDHadVHCwVWSaTwB2h5vP/H08WfqqsJY2OUHlpcrHN/HCIfJGj49bBgmg+MqbJRRdx11XRPEETqboYcB34FsFrJvKu7vPyNdl1BUPFtoXE8xDCPKcbHDdPrYmyaKfc7xvuJPX/6GqdrwL//wD/zTTxukF/NQTiS+xgPiNKPoOna7I7vtgbqsOdeCeZaiXIUyA0maQNeQpgnZ4pxZqImSmDhJcRmwfYejFF48x1Y5cupgaBHil4G9sb8M7kf6IodfhsNmGpHSQwgHJSakNXjaw48jHDOglIOSku64Pw0qx4l2GGnGkartqJuOIAjRvsZVDsZYbNch25G6LZmmmtCXLIOQL16+5MWXX+K4huPY8Wd//huUdNgfDzxtd7iB5vnlS2LfZxhHkqsb2qGjLQ4ox3D7+ZamaxmrI+t9y5u7lo9PLfu8RAiLMh2z8GTJUUohpcSVYIeWV6HPuN0QpwmXL18go+SkwVUufuBhqiOi2CHGCboexvZkb5ss2w9PHA8ts9Wcze2W0AbI+p76Yc2Q56i6xBY5gRK4WLQZWAaKVRYhuxK6lmEYiNLkpFT0HNJIU7YjVVmSRil+3XPuOZihpDAO205wGOGuGnh3d0/fdywXS3wpKMuSqippu57vP9xxt35ic8h5dvWneFGCngfIYUe1v8X1HIIgwI9nxLNzstU1V1dX+L4Hfc2w/hnpRXThjMETHO7+yOGQUzWCp+2RujxAW7LeHZmEQyJB2Ql/cUUYhuh6z9R2eEFIEGhUktB0DUYKbF9y2G2I59dE2Zwg8PF1gCcVpi5xup4gzvAXFxg3xDiSyRjsNNLXzYlpZe1p8WQFU1Mj5OmyLT0PP02IkgQxDQxdjREO99sDrjzds0ZjmLqKxXJBPFugXQfNSFMXKKmo2pHHskIHI6FtiLSHY12+f/fAZleQdxPJck5lXPxAMQsssyzl6uYZ7W6N1gHNYPjqT37F7ad7jrXClz2Pnz/z8/2Gm6++IV3d0Gx2lMeCXTXxcOhQbkAQxhjpodxT/XNsW/LjgVWkMXVJURbMPIffXC64WWQ8u7zGVYrZ6pyzZ6/RfkTohWRhTCxdMFPacQAAIABJREFUPv72nyk//Ej983d4XYfnBNANTOUBqVOEcBnrCqYBjKErtgSJZqoOOFPP0DQgXQwCR5yWV2BOZrOpQ0iX3gh2zcDtvqBuO1wBeduzqTuk9FhcvGA0MA4doQsXqeDVr5ZcfjUnjBpcd2CwA9ksQUmJA6RxSJPvEEFKM3mYYeBx/UhVFbiRQkjDer1mHCcOhz1xFrM4O2M0hqZqKPZ7jvsdgxX8fLvh4dii/RAhFb720L/waXztkSlQDiAVignGlskYpB9zHAy+sgyHR4TSeFIh+hbTd3hewNS3SO3BaDBNTRyF2NHyu3/+V25/+oH144a+7Sj7E/9ot9tTNR24PvkAedXzuCuxUvG0O/L77z+A0mz3Rxh7hB3Z5SWdEThSEXmScZrougYnWbA4X6JdDyMVjOA7AoaceeZz9eI5RF9weXnF2SplnsYox/Dmj7/lb/7Tf+LgCW7+6r/nMhXY/RPlsebu0wP5ILj68hu+/rNfszybs9mWvHt7z8OnR0LtYYXAkwrVVqclXxThSg9Nh3CgsQrtB4gmR7mnZ4fDA6H6hVHkSDxXQXMkyGb4sxn+bEGYJEhryGYZF2dL5nFIlGQsIo9Iuxw//MThcERKgas95NRSHXP6YcIoRVfW1PkBL7Bsdk9MwsG4Lp1w2OYNZhzwHEtb1biuYjVPSZMEZxzou4FPt5+pyxLledR1jbKG7377X2jLHClAAdXYg5QnvloW0BYHFpnm+fU5N5fXvH/7gU93DwTJHDNOPN0+cH97T77d4UqFpyR27NC+jxgHiu0W7XqkcYKnFYuzC7I0IQxCZuc3LK9f4TIR+z6xH+J7PrN0Tuq5xB7Y0eBME9F/bTKMLVo7LM+W6DDFcST0Hfc/vYVBUKxzbNfhCIX+RWls+pbj3UfiOMKVoDwXnSzom5ym6xgmy353pC4qiqqjx6XpOpRUlHWH1gHb/IgBsvmS0M84v7hhEBNJ4BDoEw5iHCeUA5mvkF1D3+TYaeRQdFRlS5TNybKEs1nC+XLBfHaGkoqmrri5fk5RjbjTQD9OPBU133285ZAX1M3pneC5Cu35J+DxMMDQ4zsWYw2O0lgVIIIZgXIZm4oXi4SX50u++fI1V2mA8jxirUjnGcvzFZ7pcZkIkpQkjvFMRxiHOFIytu2pESIc9pstz7/6As8PGfuOqetIzq8JFyua3Za+7UhvvmDoWr777vfcvHyOlRJPKyZhGbBsi5JqGLj//BkpoO06Dvs9UZISpinPri84X81wnRFHwDhOJFFIZBp0vaUbBn7zP/wv//ahyT//7o9/3e3viQIfV3m0RU5dljg6omuaE6fEVUglEY6kbo7Eocevv/mGNIlRCGazOQYHZ+oZ8w2fbh/YFi37Y4HvBzyut3x+2hN5mqtnN2TaZWxrQk8SBhFZluEIBzuUOG1PmC7wsjNcL8SWNVIMMNYIJaE5Ipo9pioYmxHTDRgL1jq48YxxHLDCQ6VzECP1bourJWEY0auQ4yHHSo/5akW6WpLXLc7UUxQlqQuRJ1nOU1ABD085cZqhrGG9fsBxNXYymHrPfJ7i6gB/cYmfzvF9hzgweG7HWOf4rkN+OBKnS/JjTuhHRH5I0J6GCmU30rouom8wZmK93jMqn9+9+8j79+/ZbHZgDJN1cD2XNE25urkmdUbk2MJ4IpV7OsAOA77v0bctdhiI0wTpWMZh5HAssHZCjD2u6cG0tLsdrqNgqBmHAX+xQGBPL75pAuGcUhLFAWsMVvnsDzlmGpBTy9ic0h1jP+IgEcDQ1Wil6KaRuukom5amH5msYJwMV6sMISU4HvuywZEu4BCEMU/rNbY98OPv/oWHDz+iXUhX13y6XTP0LXVxpN498eH9h1M9IUywMqSqWvqmZ7fbcDzuyI87wOIKy6vLFXPPwQ1nHB/uOM9SXE9hlcPy2RkjI9YYAglaWeahjysdQt8l8n2kFFgzQd8T+S7ONOIxIZkYmhHbtQTZDMaJoawwkz0ZDXoQU4+jHLp+ID/scFBME0jt09QtdVVS9xM69ImylHSenBIO2Qw/zei7jvJ4+u3rpiFKUsZpYr3esr1/wAJRrHF8j/3ocbc+MlmLQWLDBZN1qOsS4Uj6ck8YBGjP5evnGWni/5KWkjjjA3e3H9gecsahQQw15RTQ2YC2PLA7lHSDoKwm+v4UTa+KgnEydHVLVVXkec2x6gHBRZaxDEMcTiyPRLv4QhAFKdnFC9yxoSl2RLMZOg1pjk/k+w39UFMetmwf7ynqmiGIcAIfIRVxNjsN/szA6uIMaQdCP2Bxfk7TW+q6xdQ1gTMy9QOTUlhjmMojtq/BDnhhgjWKugmoywblx6RphoOhrGpmsxVRfEGazKDcs89LHDiltvr2l3ioxXMEkfb586tn+OGKj7scMXYkcYiv9S8f0UdmYYTnZ+T3d/x0+4FWGIqh52F3wAtCZtdXvPjiNUvf4tuO5rjF9zxQHqtZyvHhM6v5jGB+yeS4xIGGaUAFAZOQiGRBXpfUxx1OnDFIlx+//yOWicEa9GxJZ3rq3hAmCX3b0hx2xF7Ciy9eM+y2pI7h6uoKd5zwp5EwPG22ovkZru9j+x5pJ4axZxoH8vWaen/gsDvycP+I8j28JMQJPVxf44UeBof1dk9VN4xDTxD7DMpjlqVIz6NVipvzCzwd0owdnz5+oOo7hJR8eZVwnipGMzJO5rQx9zRVUVF1A093G7SRvDw/Q0YeN7/5kvPVAkGETBY8Oz9js3mibEdUdDLfLGZzXN+j7VrG8kgYJyjlI8aa5TIjyVbEaUrsWULtnSwhQ89YV6goQ+ngVJczE1I62GlECAfbd9ihAwRSB8Bpi4IBRzkMVYkQEkx/Gjy7Pm15wDQNkpNdRXk+XhDQjQNNXbE9llR1A0rTNi12NCTCJ3E0iZS4nsdoGr756jU3V8/Y7vc8rLc4Wcqf/3f/jtgODM3I6mxGM1iCcMbF4gIcB6NjZDZnHEZ+/O53fN5s+e7Ht8wTHyUmPjzmfHoqAYEjTsaIONCIocXBYsyEHBpMe0pdXgYOSaA5+/JLzn/1q9Pfozw86TAVe6gO2GlgsoahqhBNA3ZAOBMqGglXHoIa3++I3JHjp88s5wFXV5fQtsTSkGhFEgV4U4+WJ3MGxjINE9ZxGMxEaxyqskRag8HBOg75bkdfHHg1D08D2bbl065ABiGTtfjORBqFSAzb7Yb99nR5CufnvH/YU3cDTdezmH3NzetXvPcHNCXF3TusPVUd3XjJ7PwFr7/6NZfX10z9wGG/4/7tW779/Q/URYnJt7z79h9RwZJD0VHmBaF0ODYDfrri8uqGs9US5fmMxmHmWMa6wriaeLmgaSqGvgXHMBzv8FyH2fkVfphgR4v2Y5Ty0a7k+HDHVFXoMEaGKTJMcKMExImJYPqG4vHp9PvVFbbvMU3FsFszeS5WSoSjUL6P1BoHw4ePHynqBld77PZHpDUIYfDo6UaHwUjk1CGFQQCRHxO5Gs9RYC1uV7P+eMf9tsTiEoUhniMQfoqONarNmS1nPL+5pKsaNruGuw+fcEzLbrtjnkbsHu/4/sePPH9xw9n8jHfffseP728ZJ8hbwbGeUMrFlRLlOCxW57RVicTSFQdWgctQFlzPYr44X/JslhH7EcqL8ZSH5ye4OuZiniGLPd2HWzbf/o433/4Tsjuy8B2kVSihYRgQLujFAhVHOHLCZcIRJxudowR2KBnKgibfo9MZ+X4DQuGGAWNXgTUYYxmnCalc2nZkvS94v96yrWpGA9Vo2ecHdJDghwl1VeCHDn/yZxesvrpArpbUY09vBoSAVRKgsyVSKaI0o51Ahafn6mm9YfuwwfM0vu9x2BRI6VHUDcf8wNiUOLZHDCcoplUeg3H5XCnefXigaU9Vek9CKEa0EvRNg05nJ9jtNBKGAXIakXZisoK8G2mHDrcvmSaDchwC9cu71HGQ0hLNEqZxQNgR25SMdUkUzzibJcx8iTUT3/7wgZ8/r6m6gYfNgdv1kT9+fKRsR/Z1TzsK7p4OPG4OdMNE3/cIJcnLklkSMHQN+6rF8QLG6cTDsGbk/GL1/3L2XrvWZWma1jPM9HPZbX8XLjPSVFUWpVaDGuiu5gAaOOWK6ga4Aa6AQ6RGHDQItXDqSqooE1mRmREZEb/fbtnp5xyOgxnqIxoJjpeWlvZea47xmfd9XlLpaNoapTXGOsbTnNqlNFy8/Ak6+5TNakuWaLJEMwwTVdfhpCa5esnF8yt2r7/mq9/8js3NC+KyYLtKkULz9HBAK82xtnzz7Tt8388pTc4QBwsEdJKy7y3tODJOI+0wceotd7sD7fGJTAZuy4RNpkk3l6i4JF9tSaJZZ2/HAaHn8zldb+eEv64lilOyxWaGHvcteqxZLhcwDDzdPbL/+J5ECcauw+kY5yzj+UC0XVE7iw+Gj08PZOsLQpLx8HRkf2rYrFfYydDWDe/e3/G73/6e+3dv+fD+LfvdDhfAE7De8/KnP2N/POOEYDADOhjQGqQguB7GjuNhx83NFTfX14xNw/Hpgbt373l7vyPNLlBK482ERLD7cE+ZxQxdgw4OaQJ11fDyxUs2F9dM3Xnua6xBeosfR2LpWOUZZaygHchkjJ4mzPER340sb56hEYhxJF+syFY3+MlguhaZr4hXV6A061cvyW9fsnr1fObIeYGxARfk/D3UZ+IyZayO+KEnXa6wKkElEUFAsVoSLS4I3pMWJZM1GOcwQbA/nXHBkRZLXrz6CbfXt1g80tsZkyEDBoX1lovVkpv1vMh3bsKbgcFLHu7vKLOU64sNeSQo0pRXn35JGqVcr5eUyxWnxnE6numrHe8fnvjmzXviJKbvOrIsY1Eu8M4wTRN1XbPMYvIsJYlihnEiyUsOdx9ZYvnJl7/g8uKSl69e8fxiSVlkPPvsJ6y3a9Rk8G2D9oY0ScjLHNM3syMkwNS3VKeaq+e3FHnO0LZcXmyRcU5W5Mgo4uLLXxBpSRxrivWG5e0twRu++PnPWXzyBcRz3LWVmv254tz2eKV48+YtTdMggMladBTRdTVaggswDD2EQFEuZkByCFSD525U/Ef/yX/+/31o8q/++3/5F939GxKtUAIQivp8ZjjvkUozmJHJdnRtTT/0oCUvn19yeX3LarmZPYSxmmXN08i7b7+lG+eJlfCOc2v4u2/fcJloXm5Lyjia5WJTT6QUm+WKVAPtGTUOJHGKVAnCTIR+QkuJD4IQLG6yBAL27e+wVYMXMSGAHwfcNGKNwdTdDDDVGhlH2KlFItHFAucckweVrlhcXTKOI5bAMI4sYonWkstlge0qlps1g77g/dv3lKvlvNExPVfLjOANm+WSKC+5O7XEWqG8oUih685kOmD7dlbeRNmPF49GtBVSiFkFoBR+muh2j5iuxnh4qlrefv8DxnrSNMEEQbkoeHG94fNXNyykI/QtqVYI78m0Rvnw4xZaoWUg+rHIl0AsIUtTCJ7xdKBvuxkgqQJj24JOOe72SAXS97hxROUlk0wYup5IOPrzmSgvkXGKG+ctvrMjOs1n5Ym1CK0QzjAMA0pKXBRjPYzWM7qAC4HVeo1HoOOc8xhmObvWJFnO4XDCm5HPPr1lcXHJ4DWT14x9h5aORDjOhyfqU025Kllf3XCoRpyF/d0dQXva+kzwgTyLySPNT59fUWpIMOjgEMGjkoTlzRbHyDjNKhAtIJYedEqUFWgB3pmZxyIlhfbEUuGnEeUcIkCxXM6GeyvQKiaMI84FnI5wY0d9PDONA5Ox9HYetPTdQL5YIjSUi5TgDcM4MhiDjmPujzXnfsK4wGgM49Az9gO7/RGdzqwFFUV4b8nz2VPtdMzH1vD27QciLZDlhuPpxPl8YrXaEkcK052xU89qUfKzz1Y40+LGhjDueHz/Ld+/P7O5fcXV9RaDQuYrZBQBI0mWEa8uMP2EMw7rPcfDHtN37Pd7hFRYLwhBoITgJstYprPq55NPP2e1KJnahkUeY+o91e6eJIJxbDgfH/HBI9TsPT7UZ0KSYnG05wOJCngzcqorxNjR7+6Jsox294hrT4Spp1xtMcPAOPakCoIZMc5jhx7X1dipxf54yek4MPmex/0Tu90eFRWkScrT7swiL7i8/hQN+NOOj49PTNYx9D06WKqux04T4FmlCdfPPkUXC37/8W5OCCtyCi0Y25ah7bhalpzu3rJ7uuNj02BXK6bFhiJS3KxKXt5cssk1YupQY4u0hsWyJCuX5EmMGzquNksiKUmj+ZAfJkt+eQOLDXXX8vqb37O5fs7TocLJhPdvP9BYT75dcdzVPDwcmLqGMirJYsXY7hEBlhdbFkWEHk8sy5SyWBG6AYVjGjrGpub89Ahu3oYJZzFDw/FwoDpVvPnwkae6wQjP4moDOmK0luvba06HA30/0lYNx6oimU27VE8t19sr0mS+kHfHA23X8Xg8Ug8Dm82a5xcZZewwzmADLMol1zeXqDJhfzry9HDgZy+uUFPGr/7xP2X7yXOO5zPvvnvH6fGB9rTHjgNaBTZFDMbiRk97rhFY6tORzDuUjIiVIk9iYgm5bVksSlScIVSC9B7rAmlZovHgLQKBMAN2HPE6Q2Qlrq/wzmHNOFug6hqCwxuLihRTPRcM0lqkkgQkQ3sgCBirCjc0mKEjpAX95BnGgXoYCAhG5xmspROepq04jQP7oSMvFF+8ek6wUB1btq9e8k/+i3/B9faKN7/7DXXbUaw3eJWDKtEiZhKBJxw7P8t7q/0T/+ab74i1YLta8OGx4s39CRcgTyMiKRidIMOgwryhyrIMHxy+rfnjz19wVcQUWYqMFBfPn6OVJ8ITmj0Yg58mvAw4GSFxaG2YugY/NAzdieF8pjlWM0DOG57dXjIcT5w/vOeizIi1YupqpOmx04hOMiIz4INAlUvKqxs8ktF6lNb0bYudeqwPKCVZFAXOjOQYjucz+35mqFX9gJCSoakIdo4zzRdLLq5u6JxCqpSudwhZoIuCT37+OU9qpK8O2Ic/kCQR5eUtIr/k5sXnXF7dEseavq2IspJvX3+kPte8ud/hUWRpys3zz7AT2NGhVYRWmtXNKwISwvz7zKOYVZHTu8Dy5hlDXWHtiKl24AeSJCJZXaDTHBGXpKsLIhWjlMT2PQ/f/4Gr6+eUFzdIHSEQTOcTQ9thxwbhLHE8D3WjNGMu8yK63RNE0ZxQFvxsc1YRXXUkFY52HHn/sENFKdY5/DQglcJ5QZoWc+OrYiYXo2TKOHqss2hz4qvffsNX3z9wPlYUWU4aF8gAWMgTySLyvPvhPft3H9jvKpL1C7TwZJnm9sUnnKqGpqnYrkpU+pL/5X/7Lb/5cI9NUlZxzKG1dFbN6SNxjNYJSijSPKVvOwomfnKx4rZIeXa55Xp7AaMjTwvGbsRPnovtLbeXF6i+4fT2Oy5vrhh2TzztP9KNPet1ST9M5Jsros0V1XlPulhgpx7R17ihQ6+usP2ErRqiIiYES9e0RGlE15wZ+5ooiRjPB8LUY4wjIEBGCKVx3tK082B48gF0Oqs4zcizl18wWQtaka40Rwd/9e2O1292fHj9QLtr+eUnt4TFGhVrjAnIJEdEGee6wweFTjO2RcL+4ZHz6cgkPOvrJdb0eGMok4Sp65mGntEGPp4dP7zfUzc9QimKLCVVkgjHYP0c6RksRaJASjZlPsNApaQOEYfziU0iSHTATZ5ysSQJHh3HROUCKQLST2TrFX4amLoG1zeYfj77XN+SiUCepnx83PHh6UQ3Gg7tQNVPnLqRfnI0w0Q/GYwXOO84NS3dMKAIFEnEOIz01mD8PExVOiaEwEUuUCLw2WefM3rBelny8c1r/KSoPtzNdsOXf8Kq3OBHj50qgrfIECNlwWdf/JIf/uoN3379GuNa/vQ/+Mf8j//D/8pXf/0b7DSgpeb+wwfOp4b37+5ZakkqQXiHUPOQxiCxccmu7jEB3j4caA5PyL7iF69ueHl9yWKxwjuHmSZ0nBBJj7QjKopIr54TaYViblTdNBFlKbYbYRwI40So94z1GaVjNI5lnmJc4OH9W1yYo8SH3T1NXSGSDDtNtE3L8VxTbK9wSnNuao7nZuYeeU83Gqb0gpacc9Xx2++/51zVuCjm/nBExCnPv/gZcZ6jr644n04kSYJzPVIYEhFQGF5++oovvvwpdrDcPdzTnY88Puw47mrGaZprHhH48O6O86nm+XZDdz4RJkMkFWkSsyhKZAh4O1LkBYlS5EnCcrkk15JcBs7v3yEmg3YQ6hO+PmPMxPrmFVmeY6sTcaTmIIKyJCpz4nVOenVBdrkgWW9Ib67nZ1VLsqsr9LIkWS4QUmPtj2em6amePhKcY3GxxUuJ94bzucJMls3FhnEc2J/n53z40W61uXrBpz/5I5I8p6oPTFNPkALGEczIEAJppHh1vUCikOUl3f7jDJxW8se/t2STRTx+eM+z58/5yU9/QblcstxckC0ucYPlzd2Ofd3z2x/eUjfN7DhQETpO6caJvq0x1oL3c90ZHGKa653IW366XfKzV895ebHh809esEkkmZxByaZpiZ1j2D0RK8ni8hpnBrJU0x73xOWSIAKmqRm6lqwoGIeOZZlw+8UXSJ1g+p5svSbLUpQzTONAenGDs5axqbj4+R+RXN7inCGKI6I04f3DI3e7B9Ki4O3He477Pd7Pqti0WCAJZFlCoiXVeXY2XF1e0J6OBGuJo5TH/Zk//8/+fyhN/tW//O/+IpWOPNIA1IcjZjJMk6HrWqapZxx6zs2ZEM2DiJfXG3TQFNGKNE/YXl0SR5rdh3fsD0diHXH39i2Hc8t3dwduioSX65yrzZJER6RS0Fc115s18TigujOhH+fJf7FCq2iWlQuBkAI/DtjR4Rx4MxF0iiPCTwZXH5BKY6oK9+MF46zBjzXODAQhQEjS7TUyTpiqRz48PLLKU/p+oJksjw/vWacxp2OFkhpjJqJIoxcb9lVL1zYEZs/+7vGe4C1BBG5urjke99T1HuFb0shSbNaEvibSEqkj4jQnIEncxLTf46YJDYxNjWwrOut4fDwwBHh//0AzGdpxYpEl3GxW3F5sWKYxsTekfiKWiqnvWCYKNw7YccCFgCpLzscD09ij1SxD76uKcejRSsykdGOIlESJgDMjLs4QcUyQClPVdE01szSUptrtkSIAMDlPtljPnlUtOFczibnvRzySbpiIohgpoK9PYC2DDRyb4cf4PNguVyRxRLG9QaqYw6kiKUuUULhu5Idv/sDm9oLVy18gowUIgR8mrOl52B/Y3z/hvcdYGEVG140YazifjwxDh5KesixJ4ohMS242S5ZZTBEr8J6m77m4uSAoS12d0LFC64jN5pJFmc3QYS3QwrFaLljmKQkGN/R4keDEPDjJ8xwzGvrziJQJdrL0h5oQBAHBx+9eM47TzFPoWvrJEicx02Qw00RQAuc9SE3V9qw2S5ppYrCefFngnOdxdyKKIoIP9JMBlZBlKRJPslwRpSneW8w4cHca6R20TYuKE9qupWtq8sUSHSzSDyzShDySrNIRNx4RGHZPB46V593dESc8/eRIb74kWV5wfHzDx/cPnExOSArqY8VY91RVQ9/2nKuGPE2QKp63mVKQRQmFFLy6fYaKU55tVmgpMfWZrj4hsFgzUTUnnvZzg7s/nei6M1Z6skVBnAjM1LHKYxh7gplIIyiLhCRN0FJyeX2NmFoWsSTSkjTPSJOEtq5ozjWl8vN7PYxthRGKKFF05yOVF5TPnmOEYVe1+MkTyYihNZTLW/pzw+H+EZnPQLVZul8ho4gAxFpxncdcJTFv9zvuqpoo0uR5QeQsw2SxY48yE/Vhh1EKmy9olaY6H3Btw+F0xtmRxHd0VUX8Y3xxkqTksWS9Wsxw7B+bnCRNiZKYZHuD0RlP+ydMvePN3T3F+or6eGT08O0Pr7m8Lnj7/j3LVFCWC46nj7y8vSKRhvUm5Zd/9CnXq5SbtSbSEVGSkyxXxMKTZylpFJPGKTrAoigRKiClwCOJlWJ32HGuK/bdyKkfuLy9pGoaFsslaRzRT8PMunGew7nGShAq5ng80Y89i9WGvmnp+47D8YguF5ydpz/uWceC5SJhsiNZnnJ9dU22LDg8PXJ6OnC5zvln//G/zzK6JIu3PDy85utvv0GlCbooeP/2NY/3dxAsp7qh7UaausV7z7k6I/ozn10tuMhjFsqRxTHKjSzyhHSxQSYlQmmUs7jqiJIgrJlTERCgImReMhrDUJ3AjLPdwQNKEULADTUQECJCSEF/OqDTFDe0BGswQtMPPVEcMw0j3s30fWMsOMep7QkBghD0fY/1DuPdDLmzhnWR8fOffs5yu+TZq5/xj/75P+Xnf/RzTD/w63/9l9w83xCvr3iqWpzJKPMF3/Ytv377HbvDAXs+8s3DI1/vzvyjL7+kalq++t33TGYe/FkLo2XeTLuewvXExQqlFGN15POLFZ9ebVmUBVmsuHl+S6wDTD1h7BFphogT8D22bqA74/szpjth+obT6cQ4GuJkLmZsVWO7jmH3ROga0uARZkQaT7m8wNqB0c4S++F0wI4jTduxP54JPxY9fdcTaQ1C8HA4M1mHFAKhI1zXMiJprETlJaOxsy0hT9muFywWS7I0peompJ6bTa0WXG1fki82bFYb0tGzlSOHh29Ji5RkfY1cPifLUp7fXKGEZzo+MNhAXdVkkcAZR5YvubzYEklJM0YEldLbucFT3mKHHgDb1ry82oKYlY1SgGlPyDAhvSGSQLlBJhlEMQFNFsWksaI/7Tnevye0NamWCOsxXQ/BooVARxHCO9yPkGx3OBCGEVvVeIBFibUDwlhEnIGOyYqSbLkmTWN8d+Zxf+DpVKHihKQo8cbQNB2nc4Ube8xkqVqo25jWLDm3AyESfPftd5z3B8o8RwI6TgnGESxcZBF5At1kSaKIQyv4yZ/8GUkYiZVisb7kL/8elKnQAAAgAElEQVTP35G6lqkT/M+//oFvPz7QC7j59FMmqzh2DuEDEol3Hi3nQc5mtULajuepwDYVWkqcsaySjFQIptGTZTm//NWfUSJJbGDcPWKHPX448vjwxL46MWnBqxfP2WwWxEnG6o9/xTRN5JcZcZaSlClh6jDNgFQC0R+ZjjtE8Djm+ip4R1akVA/vcWZgmhwuhNkWpRPqweC8Q0vJZCyjAxnlEGVESUG52rC+eAZSscoLFumCl5c3vExj/Lnn8fFMogOyyOYabho5NhOL5QIdJZxONWHouH//ga5qqOoGYw37pyeGpma9TEBqpIzZnXr2PYw+4t27O3wIxGnONPRESpBlGU7Oz20YO4o0oVhvaOuawXoGD/e7AxepIvITZRKjRGB7eYPvaxQetEJFmu70NJ8bBLLFgrE+YyczK6Wnie58Ik4ybjcrlB3phxGHpJscxnn6YWQyhmGcz8V2GPEIhmmarT6ToepHHAJrDeViiXOONNX89MWWyI7cPT2iZCAAdVWzXF4z3O3QIqX47E9ZFgv6/cDD+3scI+fzEaVzlIoQQlAWMS9fbVheX/H1b77hxasLrtYpf/M3v+NUj5zPLbbt5wCEKGZynskFOpny8VDzcXfA9B3V7oFEwhcXSz7Z5LzYrkmiCLwnykqitMT3PdPhEds1hB8VDmJqsW3LWFVESUQYJiIlUN4iTI+pT8RFiXATpj4j7QzNR2u60TD0/VxPxnOS4MP9Aw/3TwShEUpgEDgR8f7hkSQt2F5fcfzwdrZR5CWiWOK6GmctbRAMo2H7yWc8f/mSvh9Zr9cUErabBSoKNPUZKRRJnFMUK/qm4e7te77+278ljzWx1Hz+2SvSWHHcPfD9H36gPtUkelbanh53FIucOJLkcUISRQhnWZYFZV4igqBcLkiVJhIwHE+M9cBydUuaLhiPOxYXl2y/+AkijYmLlCSNsc0R7wLWmh9t8D1jtWfqKqaxR0YKGWuCUgSlCUoSgCA8UZGBdTS7jyQ6zImC60u8EtTHPU19xk3jfKcT6L1E5WuSfMGyLJFSzIPt4PCuZ5hqJjciFJSpJI0Vl5uCyI+ksZ57p35Pfz5S1xXBS5SbGNqa0+nMn//5P+f5p18QpQXZck0IDnM+8uHujvuq57vvf8DbiTSOMB5G43HGoMUM0E6zlEVeUBC4Wq/49PYZz65v+PTlc4pIkWYJru+wTYUMnkQKhoc7xscDcVwSJQu2txe4sUMFS9/1JMsNMniG84muqUiKApQiEp44TuaULS1ZLBcEN+GcIV5dEC83JFmMHXuyzYY4TfEEzrt7VBQh0gVvP7xHyUC8XPDu3UeGviOJI1brFXlZkqcRZmyJpODq6obNoqT68Br6husIljH8yT/7L/8fhyb63zkxAQ4fvp0vbb1gGg3OjJyPR3pdINKMoTYczw3DMCCk5tXzV6RpQdd2yFSRXmwwbiRRAmPBiRTTnWkHz6EZ2EjLzWbLy2fXbJZz7vXhbpZcLfOcyAa0zkkWG0SUMbUNeIdOC6Iow0tJsLOSxAsFyuEng7eW0A+ARvYTqEAYdkwEgg9MbUVUJIg4xwkBUUnMiZvbW/Zj4M0Pr0mLuZDK0oxPv3jBxzcCYs36ckuSpkzO8Ozyir11+KFn3/dMk6Hva9KiYBw7Ujnw9e++ZrPMUfanrG8vkTricDqx3lzSNAOLNMLvGzyBKJsHAuK4x6qID/d3mHHEG0c3DEx9C+PEoTkTipTYLpgQrFaaZL1AJil9dWTQDuEC+WKFd4bz/UeK1RppDefDjpBnWA9dN7AxA0WWkKUJIlvgggExMRwfGI1juVmjVSDSAnveMR13uHbi/OMW3RrL2JyRUjKEhPL6Gd3hibzIcOmSsWlQ3pCTEUlNV5+4yEt4fsPHpyMGMfvRspxxmGj6gc31NXlZIgV4b7BO8ObjA8n6juvtCwSSD99/QGWOurcY62janqhcE6mIIit49/ADSSxZrVYU6QuGbuB83iGimDhOkUJg+gHvPOVmBbFimjriKGKRpVy/eEloa8zxTJooRBxTLpf4vsKYmLpqEDonSRVBRJzqBkdHWSwoNheEENHvK0zvieRsQ/JoysstXVPhjEV7i+kdeR5zPNaM3hElKbbtEYmm2Cx4/ZtvabqBx9OZZ8+fMQXBh8cjmywCrXna73nx6gWJnONK4yJHiYTj6cTu0EK8oLegu5YsK3AehPfUpxOrIqEfJyYHH9++JY0mFttLJiPxIeFwavjqm7/hV//en/LL7BYXFO8+njibiNtPnlHVZ5zOOB4/4CfHZMKcGKUUQz8RgoMgkUrihSDSkkwrqsMjiZwL9+X6Aj9NIATl6pLCTHitWemYqFjSNhVK67kgkYKp7yiLgijWWNthThPJasNUHfCrkigr8bZFtifOnSHVitVqSxegnQbMuaLMYlCatCzo2wZvHeN5x9D0ZH7gk5drzmdLX9dU5yeE0WRRxtu3D4jtLanOePH8Fd+cz+ixJS0yRAicj0fiVcr9uzsqlZEuZ25HrAQymjdJTTd7fPf7I7t2ZLFccCUd0TIhlDOgc6iOSKGINmviZCDPNFN9wm1WpGlBEJJotSXZbBFJzKhzqm7AIXh8+4HOGCrv2B2fyCKPTSzf/+Y3vLhYojvHYg1yk7FJJpJlxNgXpC7M6gkLmzSh7RyMgmSxYjjviXSEyBd4rbHVATHOA+dhmJAabl9cM5qJt4eK5seow7aukd5zOrfE5RarPjLi0JFmaHtWN4r1ZcmH+wfUZsl2c0OcZByqdyxwJM5ivKUaJibvUVJRLHIurrfgBV9+/gnSDAihufjsUw5xx8f2K/7617/mcXRsr54Rb9bshoHYWR73J1SaU6QZV5s15/2Bx/ev+SdfvkDrGIUDNyFEIEwDefkCETzCTgjkLLcPs9ycuEQIjZcRU33EVEdMEARnZom0kIgkoz/vyNdXmGnAdS3ON0RZSbK5xNQnvB1QUqGNQWcF7WGP0posjjhVNUWakGvBKovpgiKWEW0/4Poe7xyTD0gVcRc8x8c9n//qS8ryZibtm4GmMfyH/+K/Ao4cTke2ywXer1mu1ui7I//pz37BRbHmw3ffEqUZLy6vuL284u/+8t/g7ESWpOhYoYRG2kCkBFUDvcyI255FfeBZHvFynbHOY2ICi0VMX++JpUVHKQGJaaq5WMcigiMohbGGKVli84LRB4oowQ4T1d0dWliCMWRJTFqW1EdL/bBjvSwJ3UCeJMTXK05PB5pmmJkwDhLrqXf3lEoRhKbuWoKfoxIfmxatIx4OI5XW/ORmQRFH9OPE/W6PdCPf7J94LDOuVwWX6w2Ly+csN1terG6ZTMybD/WsMsOx+/jAlHaMQc3D62JNE6CrK7JIEUUxVQicPrzm/oc/sCgyfv6rP0MlJb56IsoWXBdLOgPSTMQ+x4wjo1TUxx1LFXB2IoSADILp+EhwEz6J6QdDkiZkQnA67IjjlKJcY4Jl6FpEaOnPO7rmzDYvEKlAxylaJ0ihce3MT9CrDSoCc9wRrZYoMzHuHgjbDbadt8HeOVhtECQsyiX99Qv+6I9/ycOx4v7vv+OwO6G1xuhAuVqTxTFj3xJJTxAdgyjo24qrRY0ZPZ9cX6LGAWsDq2XBONlZ9dcbwujZdRVf//DIq9slZV5wevO3XC5iLq9e8offH6gOZ/Js5H/6u28wScbViws2n75iffMFv/v1XzE5gdQxph/J0pxVuZzT97xhrT2xdeRZwioRXG/muPE8zTCj5+WLF6i+Y3x8xBhPso5omx0ej/MzK2Sh41l9tb7GD5bm698w2QnxYokdK+J8TVwmTHWLO9eErsYMFSIGgoMoEKzBGY/OS4JLiBLHVJ3o256QxuSJxowDSZrhESRxjE9ThFck+QqPYr25xmY5i1zQ333k6mLD1KwQ/oKLjeZ4rFkGhVIKx9z8eeNoTk9gLPvdiWka0UlMnOd0o8M6z+QD/dBwsYRsUSJ0hpM5P7y9Z5gmlBDEYbZeDf3AVK4pkoi+PRGlMX2QTI+72Z4aBVYk/PyqYLFckEcSLQRZvkY5g9QznL+MY5rBcLh7YHm1xXVHIrnCOT/HharZxixUQnNq8dby6eWWTVlw6ka+29d89fYOEzyTcQRgmjxSKoJQeB+4P5zZFPnM2zMWhMTZicnMdUozeT65XLFE0DmPcZaszGnrjsXFJ2xuPsEGR3NuOb89cN7VPH2okOnAzc0V7z98oD3uGbuGw3lgs/6eX/zsFQ8f7vnXv/6K13dnPv30E6a+p1Szpbn2mnHoGcyAihzNOLHWUArPZzcbVssFm4tLTF3hPZiqwkcW6SByE1mxhKREZwlJFAi2gzFGJinp1Qo7OqwZ8L3H9w3j5NBlgWsrwlDNVhLr0d4RIUmU5tSd6PuWOE2IooTt9TPy1SVNVdH0Hd5Jku0tKjia+sjf/X3FVZHx+OYHjt3vIc7xUUr2/HMiqbgsSsrNmtPpjNCKcbToYo2SHtscmM4V3iqqXUUcUoKyvP/hNYssY1kuudhc0vYDHz7ezyzIEFB+burrc4WSEuUFeRRTxBnBzUDfWMVM7UBeLBEOfAgcz0euypLlTUmSlzhjKJ89I7+5Jr2+pmsbvFbE2y1eCfLLG6qnE972CGfReU6y/RFmLiHOY5xaMo12Vqy7CYMikJJut6jdCn/u2d89sXx2Jl7NYOq46mj6lqHvUFGOwtJVDSpb4N3Mk4rTiEQakjilXF0isohIOMoiJY48Q12jxEi+XKDCxP3xiDGGIFOGfsAMlu504uc//5Jyc8F5/0g3TPRdxw//8DX7u0eOg+PpeKLte2TwNMPEYEHp+bPsNOK9J1aKdbng81XJ5XrFar3B1Wem+oxMU2w/UESz60M6x3CqsKeGy5tnFNfX6GXKdKoJ9UA/SYrrG6ybwDuS1YrrxQKV5hBpXFuRLApUsgCdILREaU2c5cg4mxW3tWDz01+A0vipY325xdqRyViuXyy5utzwh2+/IxB48fyWN697jDX0zYlnt1cUZYkIlqIoUErz9u07RFVj2wNNVXIQ2b9zLvL/qjT5b/+b//ov8jRGLy4hzhmHASckTseMzlGdDhxOOxyeOF+xTlcIHM9e3RAlhtUyIhYC2488PZx4fLgnjRQPT0dKDS8uV3zxyUtWmyvGwVMmEcJNLGJFXqzJVheoKEVqjbMTUSTgx4LWdRV2aPC2ZxonrJnAeayxmPYEweJ8YOpOnO5es//DP9A9feT48JHdmzeMzQncOINjp9lfacxEvLnkaXfkw4ePDGYiSQSfv3yBMRajYl69ejlHvhZrmtbSDBPBGaqmIipKIhUw1pKmKUUq+fD+B6r9HWWRsrp5ge9rzscD2WLNarPFVhUMI/lyS9vV+NEwjobReZ4OJ7ph5FQ3RMJjp5FVnpCnKXk8p+y8WGdoNxe31WnmKJRFSTdMSAJ2bLFdQ9c2KCVZ5RnTNGFEzKbMZrBgHKOLkt3hzNTVCOd5f3/gtNuRa0+q58bBW4txFgEcjhXGBsbRzXYnqRmcYFApAXg6HBnHCaYRMww4O4GzfDzWtN1IliZEWYYXiiRJ2VzdEsWaYZwYh4k4KcizLfY8J/6oIuH5l59z7Ftun91SVRWPDx/AzKCgc92glhuuL7cMdY+xnpuXW26vLpDOMfYj3ltWZcnLzRY/9NhptkKVmwsCc4GeJBrlPe3hAH1DrAVJGqOkQniLGwbq1uFkhE5LxtHhTGC1zCmzjFRAaBrqpzNSRgiZkK4XWDNSVWeElhjraYeJtm2QdgLnZkCUjJASqrpmfbFhdzjh7PQjbFdwOpwxzpNmGc55Tt0IUpGvNixWC8bqiEAShOD+1POudhz2O87HA1JrhNIk+QI7tFTHJ7SE9XJBUqwpwp6szOiMZrlecT7ueDrUdKMkeM3jx3dEskHJHuMbfAT9/sBkF5zun4h0RIg0QUjwilgGlFbEShP8nDTz+XZB389xqqvtmu3lBik81k1sr69AMCc2JBqHIokVWkNfzwCtVAcWqyUieMZhZiqo4BmqBjH1hKEmzQts35BlGXmkcdai8bTtQPKjgqB+fMSpeAZcWcs0GaqmwwnNw/2O83FPcbFFqZhpHKkPj/j2PCvTZIRVKfb4Hmsngp1mG5eOGPqO3bvX9ELib18SRxHSGPAWKSXH+3ti4TkcDxyritFMVHXF8XTm/f0OM41sy4RCSYa25+ryiuvNkkWekGhIophssSFdbVjdfkI3Tng8XkW8f/M9yhtO3cCxG3mqTjSHe077J77+/e8pIsFlkVFmCYtiQWw9WSzRwSNVTF9XKAtCZiTJ/H+vD/e4YSDRGjnTsojjGDsNiHGchwPe46YJgScISVHm2ABpEiFEIMlz2h8VE0m24vHxkYCgN4aLxQpvElSiZptKAGElP/zwA1IrLq+vGQPc3KwoYjtLTtcFcRRI04hMa8piyfpyw7PbT+n7nr/76q/462/es729nq01KkbYkSgIYhTbZUGa50zjxMe7D6y149l2wWa9RhNY5CneWNYXlxTL9RyhqeM5FSc4MBMyWSDyFeM4+33tMMy8LJ1gncWNHVIKnDEQadrjCeFn5cnUnmeF3jjMKSLTiLETwfSc9ntUsaQ9n4i1ohtHrNCc236GwyLpxgmUZhxHghRMxjBOA3VbM5qBvEiIguIv/4//HRcsn3zxJS++/IK4LPn6q99wPh7JFjckIlAfPvLZ9Q1yGnh4eODy6hNu8oxobPjdN3/AIUjznIvVYh76OE9wnro6zcBCN/Iq1yySiM9vroiDIdEB03UIP2FNmKXv53sYDkjX4seOoMFIwZDknKViIGJ1eUu7e6LePRJLgXYON87P+GQm0ighTWIYBoa6ojod8FNPsBNCSvw00fYjdW8IUcTpXFM1LTZIRh9m5lLfE0UxwzTRDHPCSaQ1Y5D0o0HJQNPUnKqac9vTDBN4mIQmL5ek+YLJ9kg/n8GHbo9PPdXpPcVygS629IOl2X3kxc0txloeHx44vv2O7797zSQ0VTPQdCNqdclQnem6hqkf6A3U/UTVNFSnI+3pxKsXL1HG4IyduSvjwFD3jP1EpBSpjKmrM5gzWniE8/SnM862VKcPPHz3HevVNdc3L9EiQwwO29Y/mrknzLmhrY5MYf4tqeUKiozmdIA0xThLVJS4viPoCGcnFGC6mixW5EXJD3dPnE5HtNZ0dUXTjRgvUFIgxGzF8P2JWPRkkUWLQCkdV6ngxdW8OR8nT/ASP9lZaTH0RLHm6qLg5dWC20XMxXLF04cz//Dbt1zeJHz3+oGv3p9wUvPZi8/5ycufEkbN8XikbRsyrZFBUEiNCprNoiSWgbD/wDpVLPKSq4stkY7mDbALXC4WyL5hOpwwTQ8E4uUGL8DZWVk79ANhHFkXGVGcs3nxkxlomsQI6cgvL5iOJ0xzRmcZQUC0LP+tzcGZCRkJjB0RQjJ6EGmJTjOmvsUhMS7QdgNVVdM4GELM/tzMZ5EQNN0AUrLcPifxkPie8fzE3/9f/8DHD3s+3eRsrkua84lPfvEZQc1K1270FOsLmvORrqqQcU6clvRdh1cJD487htEiAlinqYzkcVdx91hjRMpxf2Qa57qyjCRlJNBSoqOYdaIYu4ZMK0ppicLIy03K5XbBMokpihytFVmW461kvSzBjKg4RqclQc4DmvJqS7JZoyOFr/dM1vO0OxLHCWNTo5VESUXfj0ilafqRrhkQQBZptssSJcA4P1uEnZ9VW9YSEFgf8FIxTRNISZym82vO4pzlcrth9JLbL35GEol/e+8V0ZKrVy/YW4Otat7/9gcOD0/smxOUit4FPr59z/7+kWHoEcLz9PDEMEl+/Zdf0Y6Sq+sbsmxe/pbSzSDUYeJYN8RS4IQkNT23keN2UdCZwBQk68trfFuzijVhMgSZIJDY8x7t/Zz0Yzvk1OFNQEQRQgVc2zA1Z5yICQLCOEe+4yxTdcRUB6wLhCCwXc1YnUiKkkgI+mHg3d1cIwolce5HZak1dP3AZD02eJCSb79/TRLHZEJwbjtePz5ybGa7RfZ/c/Ymu5ZkZ5rd2p31p7+tu4eHOyMYZDKZicxKQQVIj6KhAL2jBgVooEF1IIvKZBMMRoT3fu89/bHebDcamGsoAapnOHbM9v7/71uryOm941yeEASCkGy7QHr3jFmoWYozV7OYJBJcLVPWV3OaqsQoybwoQCqediXnxtPLSTZwOZw4HiuMMZO9q+u5XsyJtQYvSYuCKE0wxiBVQjab0zYNcRAkIRC5nsvDJyIsOlYsvrpDxwrnRgYviecL8CPejsg8QxUFiEC62kxw4ywjzgukt0gCwYMfW/zQEkWKYL8w9NoGFUn6umK7O7C+29D2HdpoxiDpg6Eqm0kn7gIfPz/SNDVNc5mSUEi0MsRKIQjEyrPIYnIjMWJAuTNdVcLYk8yXbN+/o+09x3PN+Xig7weOxxO/+eUr5kXK73/3e/7w+39lt71gZMTV9RX55oo//PkHnrZPOOeQSk0JcREQtp/O3WlOGkX8y+uXqMsRGQL9cU9oa2zfoUxKHMdUb3+i2h9I04woikjSguL6Ht9dCH1LlseMrie9vwcjaS4ndJJOw7nIEKUJSmlMnDJeDvixJwwter4GkyKDJ/QNeIdUEp3NsHbA9xVjfUZEKVYldENLcz7x87uPCAFD3+LGnigytG1PnOf84tUr3NAihWAY4eFhx67seTjW/PDuiT8+XPhf/tf/7f9/0uT6eoOJYqr9ZzwxXVMzjh3lqaKsG+q2RmiNE575PKcfj8h8RrZWROJMfwykyzu62nM5X4hwDN3I7XqO6yNu5xnKTwfR2+s12vUMZUJeLDCzJU4pdJrhPYj2QpA9QW0YmilaqIuCEEd4J3BupLPTYUKME/XZSEXTD9R1zXF/IosU8XxGiFKetkfcwyO3X71gfjOiVExkYJnl3D//lvdvP9H3J26ub7icT/TDyKk6s9/NyJOIZGaJshylT9O2vu3IF2t6m6IkKKcwLvD8ZkPTxtzcbhBK0ncOYwxVdWS+WqMBIRTVw0dwI84LlNZUxwtVXXK51FR1yziMRFpx3u9Z5DnX85g8idFi+iB0dYn04KzlVNZkszmH0565EUip0VEGzk4skGKBsJDNFhjJZFE57EjxZLMcEeAXr55h2xpne9qqZhgt0sRY50iKBeublKYbUMFTVw2bxRVFqgnWUiUF88WIHy1tN5IW06AmSVO+Wi/43dsnrvORwsTIPCbJUiKtscPIoijIhKa3PV2z51xfmM0KoiydDlQRfN5+gmTavjTniqYdsA7iOCKPUy6h4ZvvfokQJalUyCFwOZwmfTKOzg9IrRiakSid6OlpnFD3Lba9TNFnBPOrgsgoTJLhrMN7gVSG28UCKSU6igkqww6WOEnpD1tGJPWxJZ3fYseRrqxpLhVVNw33vLB8/rzFSsHx3DFPFUUMWZzQdR0ynzFbzFES6rIiSzXnM5R1B0FOB+u64fZ6Azri0rSMY0eIM0w+n17YPuC/dGQP2ycGO6L6iFmxBBFozi1929DHku2TJ80LknVB7/yUrko111cJbb9mdXdDdWhYbWY8fNjxw/dv2NY9i/kTSZRzex9jJTijieIIRk/XdkgMGo8xEmunw/BlHDFS8tXLZxgF5WWP8p7lekmaKPpuRMgJPJinOV05EcSLxRopprSTSXKGukGbaajSW4GgRyGwl5Lz8J5iMeNStaw2G1R1xg6Wm82a6nzERBlWGbyFoezB9ZAk+H6PUpZZsWD36RPtD99TXD1HCkcnHJ+OWwial6lk9+kT57ZBJjGYiCw2lFVJHmn2MuGrr76CLJ4qb0bRVxeMEjhn2V9ahHN470giQ4zh2HcUkeJuHk92Gq0osoxUC5bra7TvUUlGnGUIFYGZ0bcNCEtZD/SXjrbtefr8kc+HCz2Sd7//v/j1yxvyfEHic376/jPpmBF5Q8QRhp7BOHSxxqQxLhbExZqgAmNTIoXl7u4aOzi6uqHre7Sy2HYkXyzx2UD78Ejf9xNrZLTMkoh5kfFP//Arfvz5LVYISDLq6oLoO+6+esn9i5fsnj6TLnL0ZkP14yNd1ZDomCQLE1cpSTleLmTzJb949pw89tTnA8soYRg6DucLK7Wk7yzOQpFf46zE2Zjl9T23Xwuu716wTFMedgeqS83NZsNwqDmXPeftgVQpuvOJZJ3hvQA//SZu6EjSZEqLqQiERBDwPuCsx2zucZ7JqlWdkCbCuR7v7MTESjNse8aeD4xDj5eCEAwDEcX6imAH6rpEuhHrA8JE06XJe2aRZH864JM5gx1QKsK4kVmW8HRUGGMY6gGlDVk2YxxahARvPa0d+a9//DNXm5hlUvDN61t+/ctvSJKc+WqJG1u2pzOqrsjmJ64KSSEE//E//AeO+yNf/fqf+fb+OVslePOn97gQOJ1O3N7e4bzicqnQZrqkO2spjOA+iSiSSVmugsU2A43tIYAWAd0PeAeJ6ImGgAkgsxkIQ5TPpqTB+orBK+reU/ae+eaO4XigtQP5l2Rc10zRZC3BqoQxsWglsINjbGviOKaTYIxEjtO7r/uSIqyHhk5oehkjhMCOHUFonA+821/4SifoXLGY5bSXgbv1it3pzNPpRO8gmJy7r7/B9g3n7oHlao02EdZeGH1PphOczpHJGqkTTg/v+fTmr8ixYT5b0jc9hfesrq4YdMHn7Y6ra1i0KalxaN/x484xX94hkAz9QHU+ssoShqamlprFak2132HritD0pLMZo1cczw+0rib4mvnmmj7qSGdLhnrP2z//lcQULLKc+mlLEi1QQcEw0JwbHJ7Q9wTlCC6mDeCVQKUpMk2w48Qo6YcRD/i6REYp3rrJljA4vr5a8T/+499zOh7wQ0fTDjAEoiRl11pKLchWK24Wmpk5E7sEa1dgBes0ochTks5jB8+2OdHFCb3RFMmcYmzJsoJnz58h6j97OOgAACAASURBVJLL04HLtqbvz0Su4ITn5tsNr//+H3m2+oqhcVgHx+MFIUEpiRDgBstsmaKFonr4xBqIgsA4sGVHPp8xHnbkyVR99F2Hs7B8+RIpFKMfCTqh6yrc2KOkJJaase7Ilxviu1tckKjYUG9/IlrdINMZ/fEzcr5CNPX0PdYRIlsSnJu21MLQjw4lBcftDi9BJzmxyZBBcqgmRsV4OrNaLDkPcDqdCdIzK1bksWLsTuS5ZnadsJnPKT9+z1jW/Pa3/54uEnx4cGx3Z1Z3C7ryxCwpGNoOj8aphGHw1E3DMI40fUdZ1sRJDDLCYPF9oO0sRbFA9hVj3yFFIE0TurZlPs8okoh5ArkauLufk0eGNDEUWpCkBXESsZrP0c6RaEGa5qSbDNoaO/YoExEvlghtsPUJnUUIHMKPiGJBrBzXXtM3DWPXT1raNCMxCttbtJBoJZHeYUJAqkkb3fYS6QXeB0wcU1k3gXa9xzYtQkmCn+o3CEgizTBYHnYn7p4/Yxg6rq7WtE1DvigYPrWcfv7Me/0O3Xds3z5xPtVcvXpJMsYc378lsi03VzMe9xfev3mkvZy4vr3m9uaKurWU7UjXVyRupA+OOsC+nr79l65D9iN5sHxqLXXnWc4XvLwp6HY7vlovaC4HYq2Y5TlJooGEcZzg4fEmJZwPCJ0gGQltixQQG4V1DQDO9oyXE1IJlA/I+TX9+YTtqmmYh4DyCN1IrDUvnt/zeXdkE8W4wTGO7otCfKA6HcgWa0apcc5x2j5hTYQJ8M39DWcUffDszkeO2yfW10vidUYWFxyajv2bv7GZDYThxHK5ZJWYCZhcHblJE5Z39+z3u4mDZGbsnp74tz/+G111QYwWJaZ7kkchBSAFXkiIYpAwCs/gBasiJVgo0pzIez78+ANFEvH6N78hLpYUd/fYsacvG5JNSiLllF51A1Iw6XC9gyRBpikMDcPxCb1cIqVHmQQRBDKJKfdbPAsCirGusacDXoNZ3fLsFw3NpUImCQhPzMhqkRPijP35zHw+J8iJH+Wdo6wuhKajLc9coohnL+9J4pjd+0eeX18xf1bQOEXVN/ShZ/9xWjT1XcPTxw8Ez5S4CgNPj5/4L/+pox0E33zzG9azK5RQDGNL1dQMfU8/jCgpUM6SJzGXy2mqFXsQQpJJQfvpHdWlpKgbbFNzc3uNTjJmxkz2q6JgXcwRcUaxukJpjRCOJDW45sJ4Bhlp3NgglOFS1YjZCgWTES7O6Juarjyg44zYxAjbMTy9JZiMkGVIISabrADpRrSAbhjomhKywGg9n978lVxKTrszehYzX8zxOE6HI1Ib4kjhvSNNc/qu44e//MCpbDBaY6Skezrx6m7z/zoX+f8cmtw8e05Xd3jrOJ93lOeSw+HMpesZracdWrywhFijMihSxzrtOb37N65evKQ9HpGjQJgVTx/fc50p6qZhkSXILMHEMSZOmUeKSFoQgufffIMWEQImnWEWI6xkOO3xbYsWMSbL6cYBdzlj0phxGAlK0zU1kQbb919gmS1CKHoXUGnBqbqQhoZ0sSSaLTnvn/jwcOBOZ5PGKY2IopTbZcQvX33NH/70e3CORZFghw439hA8rXUM+z2JuiHLC5q2Y7ZYsz0cCL7ndDgSjh3L9YKrq+eoNOLm2Q3OD3RDj1aKNEupy57NOFLuHwjO4SxUw0jjLXXbcrtZcjmXdG1HU9fM0phFYljogB8G4kRxqhrWOuCHHiE1kdEIZ6mOB7I0JYoNUZyQzha4oUOaCBkEi/Wa4AO9FbSXhizVU6UmSJyXGKNJZyvGrsUPDcVszuAcysQMfUcmYtzpOG0UZUyQCUpHjJcHZos527ZjfZUjdjvaqkQK0NKyXs+JHy8Mo2cWS0waky4XjPUZqSO0ELQB3OhwSiKMxzqBqAeGQ8nmak3TO05PT9hxnAZOTYMXgVmcMI6OxXrO1fNr+jrGdwOohnYcWd88Q/eXCQyoFHXfcfXiOfXlzOU0kBU5ddkRuYaXdyuSNAIBfTsQxQmZDkgFMRaICF6j44g4KbB2JClyXNuSv3xJFM0ot0fifI4XgrI5Y5IItCBOFSr4ydyUp3RNh8czdBaVOtCasanJ0xgVKby60I0jY2DaGLUD4lKzWa0mG0BTUR72zOYLxrrE2hHpHdXuI6NzOOsYraVtW7wb8XYgiqaLzmKW09QV3M6II0/sO/rmyKtX91zfvebDY80xG9DRyOdjw7F2JElGGqUsVgv8KDDJDIHDDSPGQSQTdJi4DE4p+FLP8SFQzAtEGFHSENzIfL0km6VoJcjyBEkgSdOp9hUXJK4jm2ckaY73nq5vMbHGOYGOUoQSxFGCFgKkZLSWrhoYQ41NZrSXhjwMOBuQwlMPjmxzxfmwRwvFsWyRKiZoTRgHhFIoqTjvT3ivSOZXU+/fWrqmovz+yCA0Ll8hpKIYeo7NpL6WSrJarVi9eMmhaZHBYruGtjxT5Dk+wOl4ZpbENMPILEmRSlKkBhMEeZqQak2WZfg28PDxI94Jlnky6X2VomekHfeMzlFXF07nLWXTs69agveUXYDY4Ah8fveB5881337zkmqekuuOSLUoPSOdTfrNvmmJsdiu5/P2E9JM7I7cKCyCZL5ErTekOmVAIs87lB/wOmf5/AVdVSHUBBEd245lpthVLdd3NzhgPssY/UhsAAXz2xsqAft3bxkfHrl0HUYJ2q6lECO7pkRnMfSBthupm5brZcZQD5RVD8qyb95xOGuGMtA9Kn79dwmneE+rOp62JcOloa97fv58oKou9IPj/faEFhHnxyeyWcrDhydyPeDtVPuyQjFYR5CKYn0LOkJoMx1kVIxzAZ3NcCiGtsbEhkhDCCMojx+PjKNm7AzSaMqqQQuBFwJhAGvZvXuDRRJnBUN/xLc1Oi8Y6nqqnSrF1Sql3tdsmx6ilKHpiJUgiQ3VqEAIrLUUcUTlpiWB+wJE99by17/8jbv7W/6H5//Cz9//G7N5gxKGjz++49U3r/HnA/gz1aXjdlGz+yRYFAVaePbvfqY77bl8+MSH9+/xUnA6Hdkfz1gPfrQMw0BkNDe5ITUTxFZLQT/0EEb6PuC9JEsSjA04e4BZzoAg0QXxbIOOFd5E6CwnXtwwWsk6jYmcQzHZbvbHE/u64uUvf00S54i+w3tPvDAkkeb05i/IoSPKs+k3mxe0+zMqVljB9N4bLZGYoOM2eJSYNI1xEtH2A0jB/nTkysS40TKLJNJKVnfXzNKYopjxi1ev2B0O/PTTB+7vn/GPX79gNp+xe/yErT/yWPaMyuBFRN91RHietnv+97/9jV/c3/PNt7/mx8+P3K1zrr56SVFkBD+QRh5fn+l1wiIT5JHFWcljfUFISSxgrEqK9TWH7Q4/tuAh1ZJurKnqGu9qBJZ5YWiDw4SB4+N7Ht6/Iw0Rm9kC4QV4jXVh2gw7h8gTSAzDxQMKleVESYz/ko5yY4+rPdliSb97wBgzPXfFGmmmQaIdpgTdP/3mO968+ZHPjw90XUfdWy6XmkR5RCzgJHnsIvqoI5svSRYJSdfQZArVOZbrDU0z0GYxVswo+4q72xl5BZEAKxRiFLjyzOnzgWK+gmjG7O4ZtpWYIeXNv37ku1/9lsfHd/T9gNQJQsPoG7J8gVcSPw70ZYksoCtPFAiS5ZLYJCQEkiRCZRlplhK8wmyWDLuPdE1FZBoGt2NsW+6XK0RY4gKk6xU+SlDFAk0g6uaYzRp3viDHHrIFSufgO2zXYbICZwR2rJBNgK7BfTG+7Y9byL9A8p0iyVJmeYJ/OlL3A7f3LxnCZ6qq4lIe6caB+e0dozf0cco8z/jNv7snPj1QLM/sPnQkGZgoYPueOIoZ4EuK09B3I13vGLsO7S3Hz5+JtMTacWJfaEjzhCjJMVLSliVJpGmspa4rsi9JOETARBHzosAJhyhWiNkcbzT5co5OZ4TujKJDCkizabNMqpFtinaOsbkQra+RxXJKb6IAJmHBckNtNSZKmSvN04d3jMOEBegHixEBqSawcjw6ysGCVBRJwuVcoYSgaxtC8BNvwku8s4ggMVmEdVN6UkoISMp6ZHG5UJ2P1IclRsHy5bccPv3E5zd/4ofuTHc6ctyfWazvuTLP8NUBdznxtHviz6cLZe9ZrTekxZKhGzl/Yf9IHRErxVJD2w30julM0PZ0bcsiMnRK8VWR85v7NX/3y1+RJjmgiHWg8QGj9MTBqFsSE6Nijeze4h8apLwiWI3tD7i+QcQZXkWTkKFv0VpjIsFYX6BrCFGGrHvwnqANyjm6+owYJoBVj2G1WuOGBkYHXiACSCE4HE/EQZGtrsjTlF4omrLi0vXUfk8vFCIvSNdr7l/cE2zD+bSj1YbmXFEkMf3Y4kLJcr7icjiRxIZ3P3/g5volZXXh8ekTPsCnxxNvP+9pTye0AkEgiQw4GJydkjFNy2K1ZnAObWKCA5XFOO9ZFpLqcObn778nFo5f/vY7ks1mMm2dK7SWRPPpPGeshWZKJsSrJWEYJmuNUojgSbMZfXXB22nhYYcp7YuHZLGga1p0lqE0tEOLiXMcgXi5oL8caZqWorjFyIZoaLBNzyw1hHYgUoJ9WdN1DR5I0xxjU5bZitP2HfvtwKvnV/ShIYvnSJdSGTXBrdOG49MTXR8IIVDVDc3g6Pqaf/3L3/jum2959vV3HPZHPvz0Dh0kaZ4xSGi6BuscwQVirWj7qeaipAQpkVGC1FPqumlb4ngKBpg4IV+s8KMlj2Dx9SuQMSbJ0JEhzzPs6YSKUqLnr9BZQj5PscqgtOKVMhDHMHTQdwipSGdzdPCEKGFAEXmP6ipcfaLvC6w0ZNfP0XZqeMh0jswXKAnbpwc+P+3YPjzRHS80X87gm9sVs8USEQIow/XVDc35SGwMl3NJfTmzfdgjpeLmZkOeZ3RV9d83NBEqpu9PjEEjlUSYBKtqhrFGKI2OY5q24XqZsUguiHGg+twwRjEPekuS5ghjaA4tXVsS8hXruxfsHx+Jpef25Wtk3yGGir6uKBZLkiTBe4+ZrxAhpqsrYhMwd/doGRA4rB9Ibu8nWF59BB8IKkJkkrY8IHWCNwI/WJCabDbHHbcMLnDen5gH2FxtuH32jL99eEAdz9zeXFMeK9ZxhkFw9/yKt9srth8/MpeSS9VxdXMNQXDz/DUftzXlcY8mcHu35nyZtMefPv7M58OO6nTg35mvefH6t2SbJfn8mg+PDyzmOYfdZ4LW/PLl17T7J3yagFDsPjzR45DC0ZxPWKVYzjKUt/SxRHhPTEDYgTSKSUQgYDEI6t6C1mQKIhVIlUZHc1qhEB7M6InzDVJo0sxg+x4pYpLlFfHyhiQG73oiExHNN5yenqibhvVXv5qii0PPUF1Ybm5xlyNu6CmrmrF33Lz+Gp3NcWHqkNq2xkvJ939+Q5rnrGYrhqGBRpBGhiLPGMUEOEvjGNu1qCRBSUHVNThryPMZ3lmWqzmXw0DVVLTlgRZLVlyhxKQyw0yeeyElSgbAYzJDGhmkNRNId7Bs7m/pm5q5UQx9h1QaJwR1VSO9RSjNdnugrc78y29eslrkRHFGWsyQ1iKGhuFcEaVzbEgQwpLdzYGAWSzQQaL1LV1ZESULXDci4px4Nac+HfAiYGLNaAciPXUuhfZ0VUs7evI0pZhpfIDFcslpHMiLnN5PG9TbTcG+7Pl8bglC0u7PpGnCV3cb9vs9m6trpLeYKKIaPPX5RAhQNzVGa9q6IgiJlIooMmQ6njZCWYzKUnSkkZzRoqGICubzNfMiRivNs+uI7bbnZ1WD2DH2lhMn4tUGK8CkGt9Z5tJRDg4tY0SAQUic99OmXkITJ3y3nBElCfvdI/MiRxBw3YhaxmQioql7NBBlCfntLc4FbHsGJFII4rhApZAs1oyDQ4VApCASgdFJojSZuqfKMYSR5vqW0+d3tPsDy2ICp45OTnC8vkWnycSSUZougDQR1gakiijPJX1vkdEMGzzBGNq6gtBhg0cOCUIFgrOUdc16NefYdCy9JHwxakXC0yvFbrsnyXNOxz11338ZfvVAoK5bIgHPpOFwOBETJjWtD3x4/4EPOmO1WnLc/Y3WWXoX8MERCUeUxAxB0QdHNpvjFUgk6SynPm5phwMmxLz+9dfEdYl1FqwF5UkWc+Q4GXBmxZoi0mA0eIjTgrGpp1qdtPRlSTlMoOgojhisx+sYkhGCIFtv6KoL9cGRxl8I7MWM3ds3yCSlGwI6btl++Mxiec3VP/9PHJsTZfMTymsG62jHkWpssUah4xltWzIMM8quIRosD7s958rwdGrY/+GRobHELqeY31D9/JH9seL3v/srd69eMfQdRimWqw0LdUV5PnE+XSi7lg8Pn4j9SDyLCKKAAFGSkYp+so3FMUoZpNagI3xSIKXGN1NE3qQ5k0M4IvTTt1CYmHA5EaUFY9WSLFbU2yMIiIRCGYlqA/1o6SJHmheQJAxtQ9VMdR47DqAcxvUkWGqhsDJhVx2J0wxhB6wPSCnpncPEGcZ5rB0AhZDwYV/xf/yf/5FN4fjL354Ics3rr79DhIZf/uNv+Lg7YHzN+Vgi7RuaY4TKn/H1/TPK3Uf2P/5Aw8jxfCIrClx5IZ0tGYcBKSXr5ZKZcqwTiRSBZDZDDh1d0xKMZOg7Ritx6ZrFfIG1jqaHze2a2f0tQoOabdDza+LFHVE2Q7ctiYYx3aOw6NtnbD9+ZvvxEfenv7AsUoRzGCPQIoPLCRnleAnBRVw6R9l7WjPDC8fuVIPWuNHTW0fwAYkjVhJlFM3QoUWAsed0GShmC5wd0QrySDObFayXc/JiRj10BK+4u17z8vkdq1XMYr3icvnEzaKCqOVt+zWtj1hHEaP1GKkIAZTU/PTTByKtmG2ecRwkf/t0YqZaGEpskMyvZvTBI7oa5RXlpSSPIgjgUdSXC+MwIJQgK3KO+x2EnqACJpYIG2jLgbE903QlBMU8XVGIQBYbtDRoFeO94FKf8EOLH074yCBVjLcWcfEkoiDN5wgE/ktVwdmB4CzjOGCFhnABqdBGEscRu4cnZld3vLy9oto/TAf40WL7nkYICJrWWerWQgEDPZsC6lPNIlsRLW+IZkvSvILticpNVdnqdCCmJ5vH7N+8ZzlfMVQ9o3W8+fCEPbfkmwWf3j9RuB1fv/iW2+s17z5/IskKPODciNTxFxuEoLycOJYnrqKE5XKGXs5BQ/A1Is0JmaF2niAcaWJo6geO259ZzRe0bcPtP13z9Psf2Z8uzItrhqphLE9kdw7hJ2VuGB32fEB4gUoyhI5QcQZkpHPoLgeUzZF5RlCGoDWuuaDjhOVtRNueUQpiJRm7hsE6UAo/wvL6Oa/nN+z3O8rLEaUVcaYpCsV1VhA1F5zIiVYv+df/tOXdtuT+u5fEScpIxKXpaK0ljzyjgySfYUzPWB05HC5cqnYyyRmF0YIRjRihOm7ZrJb0XUfXjMRxgh+nmvzgHLEL6DildbCIJ3isQ+J0SuhajPcQJ6SbG9I8IzIKe9mRLhaYTUL7tKM6nNisQBczpPN0/Uh1aKDcsv5mRt91VJeKPM3IlmuqqqaYL2i3O+qqQQUwRpPEEZe2w2iNHj2ZMVSjnZTJAaz3ODsCgeA8Q98j1QTVHIceawfGsWe92lBezoQB4kUEYwV6IL4uOPzxA08POxIpWV3PKM97ZMg5bB/ZPm1BGjAJdd3Q1RWn84Uikl+G3Y5ca7QEI6B1Dh8kVdsRBU+C4+82S/7hu+94vlmRaI1AEaUFeM/iOgMPjCPOjQgjEH5kfHogW2qIGzAJ56dPROJM9OJbXO+gG3BNjWWq8gx9j7ID/XlPealQaQ4mZhg9Y9sydANaalzX0+sE7yx2HAlS4QPEWk0mx7IknS+ZFzPavmNX1ShjqIaRzrb0XUcaHN6lLHLJ248fMcqTJRsE8P7DE69fzFmtVvi+4+O7D+gQuHt2hXryfPrQ88cfPhClBbGWzLMYjQMjIUj6rmXopiUPAYQNoCUiTojRLLOM7njg42HH2x/f0p6O/M///re4caSpztR1zfr2HiEzTBrjnSVe5AgkQs9h9MjgITBpqZ1FakmcZzDtL+j7BiEC3o5TYlUJrBtRekqwqwBBSYQxuBCwyjAAo5VTXU33bA9PYGJuNksGZ8kSg/UepSMElt3jRyITeP71DWmqKHJIIkV16gBHWV7waOqmpx8cl7KmGyyXtmccBvZVw0+fPnPqOuq6Z+xGFlmGUhleT0EGQsDjJzkHARe+DC2NAefII01Vn5AB0jgmSWYkeYFwjjiNubq7Zhgti6s1Rmn8eYd0FclqQ3L7coK8LzOCb/BoMhVo3IjyCm+n51NHMVoKottngMCODi0K7P79ZCOLBqQxnB8/Eac5SgSUDSA1Ol9wOvwbf/rDH/nlr37F212JcJaybMlmMWjDV6++ZRxahrpkX9asFnNiCbES0wJeOtzo8EnBp8P2v29oks8KysOBy3bPIGKariNPI+yYMPrAvMi5dQodAu6x5vWrDberG6ydonnXL65xo2f39hNh6PAeTqcL3g5s7m8xrqM7PxDJiKxYkWRzxh6ixZxoPmfsBkQnadvLBA5aLdFDydC0k7EmSRnHFEUgijOMVAx+oG07ijyjyCJGK7AusNlskMHTOofQ0yE3yWNei0AjEnqZ4d2AD4F8vaKygduvn/Hn331m/OEnZsWcgCCbLxBjx/p2xaV5JAiF1DE6VCRJzObmBd/akbK8IPOYRaa5vVnSSYkWgaaqiLOc6/uXzPKMy2rOZvOaoQt0IvDp7Xt811CdDhzKhny+4PFxj7fTRDXWileLBC0Co4hQChxu0jzGKVEUEQdPbGJMsWToLfE8x40NsUlQQqLTOVEhUUqg85S+b+mUAhRt2bBaPiPKZ3Rth0tnDJczQUhGZ6mqErNYEg89d69e43xEvnlBb3uiPGMWrqnGlqov+Wn7gHkYuH92N21OFmvMOLLMM46DoxsHpHWMg2fUCmU7utEhkox8tQRjqOsW6ke6sufnN+/4u3/6LX19IUkM1dlRVTUeWM0KDts9l0uLSSKa84HMCBJtiK83nI6C+rDDZRKTzbFDxyo22OpC3TVobaiahte3a1aLAqM8iGlIFwlH23fE+Yp8dYuOIoSUZPM5+BEHhDjHV2eKfEMIgvp4IpktEEmCGjWmkHRdQ3U8IrQhSmKECiRCkZtJu9eFkWboGXqPUgmCAK5jsZjjhhajwCHY1wMm0iglgWlQ1TUldpERvCa7fo5/+xGjBMPQT/FCMemLoyiBoePmdkGSxHR9x/3tM9p6z/NrhWSGVIa2LpFxylA3zK/uSZevePPwO9QPP0//HTNDmjlawma2orIXRqkY3IDvWkII6MUcX17QUiCiiJUJLBcZrmtIgTTWpPkMo6YLmIhTCp2hhCbJl/jhQlAxwyjIN/dYb/FGoYs53fmM0XKyaPmRsTkTGUOa5AQ3xag3kZ7YK8uU89OOw9MjJjBZNOIcI8Hi8WVJmqdcjiVZGmOk/PJ8evQ4nYNGF2jqeup9ChB9g3AjbZwQxp7bImf0nqfDAf3uHXKZQ9/QDhbb19TlkeXqitliye7zJ7wPNIMlMprBBdLEYCLDPIkQwdI3DU3rKDtH2TxybAfKYaD3E8/j5dUMYzTHU4+KE9xQc58VCNvzYr0kLuYMUY8SjlBd0GnLs9f/wMftex72O2au42qzQQmFnC2ouxrZ92S6QGcruqbDzK4RQuLqI/kcZNlQn0tkvCBd39J1Da6p6KsL0iiiLGcW5cRBUFct5fmIkaCMxipN39eYJObhYUvdfubrVy95fnPPqSzRznI5lxyPJ8ZszjpK2dwspg/5uaKtG+q6wXrLU3lhtz9zPgzcrEbiP/6V169/zWXXkqYpNzcrQohIFjlP5YX6cuHp4YHTpWL7+AhuJIo1I5Be3YEUuOMHsvt7ZJSik4Iva1pMEuPUFFGVkYIgGN1IlKZYFeN8y1CeCEKTzdcMZYNXGplfs9AZ1faBujqh4gisQwXB+cN7Tkph4pggAtn1Hd3pQJQVdE4wnqYUmRkCVdszesn2XCLSJTLq6JqSPDKM3qIijeoFWoASGk/g+SLh9P6Bz2/e8+bwPWad86uv7vn+j39CK8eHpx1//4uv2Z7mnM9nbgvP4d0HPv7uP6OOj/xwOuLHAdu1FIsltm9ZpBGzNJmGlzjSCIzv6YaRPI4nOK2PEDonXxSoSHNqRoQU3CyhWCc4Bb2NacWadXZPajIMU1feSENazKm2W+zQIXVM2fS4piViQ+gakkjhLjWL2yuy+YzBetqu43D5wJtdw4dTyaFuGawlBI/3UI0BHUUkkeHSTCay0U+Jvf/nYLjdbbnZbMANRELghoFiPmeWZ6xnS8p25NmLZ3zzzdd89fUcKQeurjY8bWeEtiMoSVrk5Isbnr0ydF3N/kco1rfk8YIij7m6uef88RPLFOJxwAjLbHFN1bXoZEaRFhx3J6ryQpQVhLygPRwg0nhAKCiHlrGr0VFAmITOS/zgqcoRKUeMUGQqgLOoQmFmMVYZ2qrF9gO97Wj7GjE4rFTT0FZN7898ljO7fk4SpxACKpkYHDorCONA8JI4jemaHhcGtB1QIeCt45vX3/D+/QdaJ+lDS932SBXR24H7q5Sr2ytirVgXESvhOJiI+eqaVGuEkixvn/H54ydC7wne4dqKxXqOcp6xafh0nrbkdpZxtUg5dp5lvqEoOtJ5wfObay7lgbofyeZL2m7A9S0qTuj6gXbs2e2eCEOPCxFeSyLj8aJEJQtMniPSiDQ1yL7leHyg6yvi1FM3Twxdx5//6wOZzVgtNrjRk2cp6dWaeHVFmK0wsznOVpjr59D3yHHACYXMZrhhxAePUppIC8auxixWUOTQ5tN3paoY3QReVGq6kfkA3gcudUPetbx4/St8kAQ7TADT+ky6umL7/hPfvb6DNufHP/yF2+QGFU3/TEIvEgAAIABJREFUqfJ8Jl3M0UoRqZgkMnRNw9B2dNWJ7cOOS+cpy4Z8sUJpw+l8RMjJ2LTMYpZZwv7pgB0HvLNE2mC0IjIJWRyTSFgqTywDauzRneSmMEQIZokiKBiBJE7xWUYyy9FG4ZwnuX9OfHuLSgoY7WRlCzH56g5fzLAqJb+6J4lPjENHsryithChWcw7nBvxY+B4LlF6AryHL/fqLI7onMciSCPF4CzeewJh2qwHj7eOtqlx1nK9WSGC5/D0RLACIyOGxlKpE7vTE/PrFZtnL0HHFGFksZgRza44Nz2P54F+DCSxIIsMx/2Wsm6xLtB1HXYciEzMs3mB8Q6koBWBseuIReCfb1f88/MNd3fPiYoVQWjaqmaxzJBaE+xk+FEqwfbj9HxpiKIR2wVcZZGuQkaKxU2OEIGxuxCcQgo9MR67lqbtkCbmcD5NFScfkHZiug02kMSapm3xOsY7zzDWhChltt5Q7nfgLBrFLNY8tj1j3yO1wo+K1lps11Hk0yA4Fp40jBw/73n+zYxX3yrqXxaEU8yH//Yjr28LZnlOX124u77h/LTnZj2jOnzi4e0Hnj5tsb1lUUgaa1kkESI4qrpDSkMUpTghidIUtGQMI6vNCyKjKFTEm+//ytv37+jHQFOW/OO3z9FJyvl8oRlHvO9Z5oqxTQnxl0FnECgdI3RMYECqiDEYRBRhyzPhVCGUQEhF8AHXdwht8HYgyMna+n9z9h47tmRpmt3ayrTZUa6vDJE6s4rFJjlogA0USIIckU/AdyP6BTjhlAQbLLAazS6VKjKzIjLiKtdHmjbbtjcHdrsfoOY+OO44brb3/3/fWkNtEVKRXpwx2GGuMCmDKgpM09GV5TyYHeaUk3eeYXQs8oyPj0/0fYO1I0M/wDSwiAN675iWMZd/+StevbycBwZhyG5/YBw99XHPZCeqemb9eDl/xxernKxYcX975Om5YvAjdTOiEIQmJAoChs7hvMcoRT9anB9RgJYKiZ8ta5NnFIblIsWkGauLS5JAMrQ1l6++Znl5iRSSJM9g7AjOUtw0EaxvEEmOfX6ib0uyi0uk8/OCYrXG5EtsU8LQzy2IIEZIg+9r3OmAz5YE6xck6wuYWpx3iEBjx44gy7FtjQxDyn3J4X7PMl7yz7/5Ix/f33IsayrX8erLF7z58S+YmhMfvn+Y9ehSkESGZr8HZ7k5X1N3Fm1CNpszMqP+ZUMTb3u8cxyqBpQjjkKeHg8I5wi0ITIxqzRmvYjYbCKWqSaJCpL0nMEEjELy/cfvaeoGcOyen5HOc35+jvaO08MdxgnC60u8ChlFgFkv8Uqz3x9wk0VOFpPmRJfnIA0yUETJfPGy/YkgmiNq4zAg/By5TBdgnUDZDj9ZeusQbiRKX7PbHmidonEBUiYsriL89ki1e2QVzS+runNMJuPqxQu+//YPHB+fCWJF2Sj+YrOiPR3Rm4BmrBnkiqeHE4937ykWS4y3rNbnnJ2d0XvHsSy57Cs8JdVhj8kyRj+xurxGCUmvAra7gdNdw9ANDKc9JtBIM+uxyuOJPI7YHkqM8lzEEYFW80ROeZwMSZQjDEOCMKKfHHq5IlCatqxYLc/JdUSQJoRJhFSekysRZUl3KMlXK7bHE0UsCaRk8prF5Q0SR5JmRHGC8Y5pUETmkraumPoJHS9JFgatYyY0KlAIIzEXr/n2P/4jv/3md7THE8JZHo//jNOGs/MrXi1illmI8gHvH7fQW5p+T1+2JFmCNJpAS+53W5I0p69bJj/i/YRWAd3xgPwM3dRS0DUVchopj5Zh3GHtRJGd8+avfkUQa8IwxQQBWbymfH6cif6AUwGnoUe6DislbuhZFgmbZfLZcw9FlhGEhv44oMOYdH1OtLkmTDNUEEGQoqTEqRA7TJgwx1cnhm4kPbvBhRHl80f66UT64gzd1oh07m62XcvQzNu4OJuHYL6dGQDDUGH7gWkSCKEIpEAlCVoOXJiI1p2QyiDx9F3L6vwKiaMrjyT5irY5sHzxGvfdp9nmAYRRytgPCA9p6EhdzdgNbHcNgQlQaUMdxhTrM87OY3aPOwbbkK1/wuuvfsJ2X3H1KuTt1xfsjg35+RUmMAyNx01yhmu2E1kR0NqRU1WSG40MDWVX8zJWvFqlyGnmEQRpRhJn6DCmKCK80mAyhJOMD49IXxMnMTrOOfWKKIro7Ij0E0YJTGLwE0g9J6mky8iKhMkrTLSadbwz04qk2ZHJiUUoKKuGY91hVUJYxIz7BwIjscKRZQnVYDFaEgYGrxV10yLHGhnEqDBAOMM09Agh8AI0jqduIB0GhjiewafbB4r8Nc57ur5HSOjamtvPw1zrPMe6Q0rF5BzFcsUmDegGS6okp6ajrmD94md0j/c83/+R566j93OMPE1CrIe6GUiyHBUEpLFjEys2N1eEouf69QuWP3tDbgLCwNA1LXX7xM3bG0yf0Ry2HB/uaBHoZ8PlcoESIaenA8gTSZIzTX4eMDvF5Ed0FLAKz3BScXj8iBOGMM1mE8TQ4eyImDzdMM2bFcD6GVwoo5hYCpgGVCrpj0e++fXfkSdL3t3dY4zDB4ambtFCI6OIQShWWUp/+ES9O3Goasq25XCqqeqBwASMk8LpBcv1OQ/vH3n18hymiSBLGBA8PO2Z+ho7NGwf7hiHnlRLpASE4HQ60ilDs4g4DZ5ggEM1ItaC4+0HtJqIswU6XqGEQ3kY6pqpr5iGARVmRGHO2LfQtSgtkLaitxORh2JziWo7mlM5G8Iet2RRyuPzlkZUDDi6uzuUibAqYgCyOKefLNvDgbKzjEJx+7zDJAM6jhkOA0UY4KRHSDVvo+1IpCWrIqFIIvaHkiIOOFtJqnLHOJxz//6Or3/yGifUfGEIUs6uYxaLJe3hicfbD7THZ94dTmRRSJqmZEmM8tOcLNxXBGHCqkjRfkQJUNYyBAG1BcHI2I3sDhWBlkgp+fr1klWY0uxvsa3FbX7COjlDyJBAyzkC7EE5jzYRURRT2R6pFN5OVF3HVh7YZDGnY423lrKsiRcLBhPQ9j1BsUEcOtqp4jA4tlWH8zO/YPIeGjt/HqXQOkArQW/nEoD1foaxFhlGCUbnSMMZgkrfcvWLX/LzsxVfvLwilA7GO6RuWa1Tto89h1ax+DrGf+aWRFnO4eEW83Lg1YsfE6OwdkApSZZo9g89kxNUU06gC7TypKkkigXdhwotPWmgOHz6QKEVfrkA4dBa48YJLzzlCFXbc9ofoRtZhCnni5hVUbBeLDDhSFDE8zOiHQhNTJTEHG9rrAkY7UDTtEyTA6fIAlguQlQaMqqM0LXgR+wwMjYT6BCJxHYtRivqU8VwfEY2Lb0/UcQxX79+Qd+3NNZTNy3D0KF0wOPjE4FRLPKCy4sNcSiJrq+J8iV+agncSPriBf79HUln0PWWPAzIQk19rPDWM/QjpTO8qyeeDp/YXKyRYuCv//VfkWUrpE6xnSRaHHFVDVKB0EgT0DUNx/LE0/FAIuxnToHD9hXh5gaVLXg6HrC7j5wOB/QwIOyEGHuycL74F1nC+uyKcbcjygVBuKIrWyYTo84vEcUSU6SY0wv6g2VKViAGmuMRE0fgJ8ahRyYLJqHwes80dnPtQSm0MmjvMMqAOzANzTw8kRKBpKpOfHr3z6wubri8ecE0VFTlkfK0Z+wjqrLiuV2RX+csqwvKuw8km5S27YhcBm6YDZPTQCDOyfOc2+OJvmnpLQyDJQwDhLM83T4h/USaRCzzhIt1gREe3ISS4CZLP1lCDAjP3CNrMbFCyQCjFZerBUEQEkcJPjBkRUGxWhAEGhUqVJzOKZzRIqcRoTVj1SONodnuUcoQr14itKDvBxQzxL05PGNHy6mdB7pKG5Isw0iDFYIP2yNJHGP7AeMMsWOu+UsBUrFMQpR0NF3POOkZDGsnhn4gNArBfHEduwHbO4ZSkP7oFc3Qs7lesLpa0yWaNFCkYqJYL9FJzOP+iJSeRZGhTMTjds/QdgRGMYwdXdfh3UQaBqRRiGg6EIJAChYa/vLqnJ9/9RVFYNBKE3pHfaooogicI4sM46iwQpPGAT4wSJ+i/IgOHerqDWP7gOoqghZkkuHVgrHqEKGk2z0y1C1xXpAkCV3XEMUx4zSxOFsx2olYaaTXHPc7VDjXWpQS1MeSQQ3sjzXKWZR3oD3rLOaxPuDsbFvx0oBU1H3LttsTxREyNDhtkCbh2BsuizXTpz329p4364KbsxXt8QlXJEzDwKuXF9ihZ/u0Iw8MX7y44up84lT2kOa0Q8+pOtH3llVmCHVMX9eo1QKhQkZvSHRKvT3x/uF7vr+/4/Wb1wRtw0+/eE0SGoZOUB0awm5gHXjaT3foJOU49lg3kSQxQsdkL64/p8RG3AQ4h+wr/NDMdfPRMnbDnNxxI64fZ4Or1oz9CEowWIH1EwqP1JJJhQRFwNB2DH0114Ktw4Qx+1NJnC+RTNhhoGurGZ6vwAhFGEgC5VkEEWGQIxmoTw2f7vYUYUhnBwJT0LRHtAkYq4aiSPjq65dcxGuehgfunp9oxgEroK5bnDsSBwFJscE5h/s8NPlPLJxAq1k/j5+5mMrMlrYkpSgKgkCxPNuQrc/IN2dEac7UlegsIE5CxuOWcayoHo8YJQHPdHxGJwWgMEFKIBUmKnDRbOPCBPOZxltaO2K0QaUFTANGr3G2wXclbdfy9P1HVnmO6mK8leT5Bbfv/8Q3v/mGpplB7nHCnATqKiItWa7XVFVHaBRt03H/+Ex1qllvLrk8zzhWLWPT8vJs/S8dmswq0ChbsjuUDHVHWbccTyU6DPj6+gVTdyTPMiwWrw0y8JxO95jVNe8+PHH76RM3YcKH/QmfZaTpgo8PW77/bs8yCmlcwKoSXL+9Igo9i8AxDiVhovEqwomcMIIsy+iOp3nzYTvcsKevD0QqATShMZg4YCg7gnyJ8A5bWRwaJQOmrkJK2Fc9CxMRFmv2fYtIIq7Xl/RNgw7CmWjetkxVT6wdLy8v+FR3fHyoefPVkmq/pTwNvFlcsMgi/p//+Hd8ePeJ/XZLkefEJsCEhihOCaKA6nSkeoJWK+zYo31KmuV4O7Dd7wmLFX/5X/5r/vE//Jrf/t//nqZuCawhyxP22yPH7YGyn8iM4iKJSLQkjmNiMVd1ZDD/bDspunEiS1OiMCQQAlOErM8vMMITpxEqcJTPt/xff/sPyHFESsXVzQXGj5TTxM3lOV4IxtMJZQzpao3sW9q6Iiry+ZIoDIOTSAQqTOaJdnVAho7j7QO//9M7/vF3H6n7hnbsP//TOZyceD7+mfdxzM3ZmjB0XC1T3u9qnssj1TAigwihNEmWEmcJr95+wenpxPP2DhHAYnXB9vGWzdk5caDohEIrTV4UlKcTp/2RYnXBL3/xK6LI8NNf/QTbtLS7CjeNLOIE5RvKU8kkJEVo6CZHVTa8enHN5SpCK0egNWFSoOIElKa1JVmSEcc5Rii01EiTwQQIgxARYRoA8wEzSka6weKjgNCl+Dib481JiIwN02gRcQRskT5jbAeUFiQqRWnBsbLkaYTpRwYRILVHMc0X9clxtSnYH2uqU0nERHANUZrhpgGPw7cHlJ04Pz9jef9I2TTU1YkwjJDCM2nB9lDy9u0NkwhwQvFwt+dqEyKnlof7gaF33L77luw85tWb14RqQDObEZJsiY5iojhCjJ6B+SG86GpOdqRXAVmc4ZxnmEZUFPDV1ZrISASO0Qqy9QUmjZChxqc5k04wyqBHi1kX6FGA85+7oxIdRUSDZBo7pB0JghgVJKjQoKYeP87DVSEkwg3zBiBOUSYlf3FJdP6S+HBH9nRP9PTM8XSYlYJpQV0386UzSjkNHZFRBGHAOEDdNGil6MpmjqSO86YtjmOkmyj7nlWRMdiJhZqNElNT0k2ecrdDek95ONJ2/WcjQoXRiigKUdrMF0Yp8V5w93yAJGIRZbx88RPi1SXvP35AyBlQZQJNvlywWC/QQ00ahdxcbQjkxCZfUCwWnJ1dEASORHmK/BI1OpIoQqUWh0JMHp1uWC8usNURGRiE0EzdQJgU5BtDX5/IlmcIIbFjz2gtymTIIGCcoDpVeGOZ+pZxkqjFDVO5RdR7hB2Ydnt6JlSYoooVgYemOuB6R3888uHpRJAU5JsFQiryTUpbndiVJZM08yF9GumUoJaKPEyoyo7toaVuO7p+IjQJSRQSmoihm9BBSLYueHp4pPZHFibjVHX4rqU97rn7eE/bdSghkEqilCZLEsrDgUdVUPW3fNo2XD878j/vyL/9ATGNDOWB2s6Qs9xYimKFHydiLQnChMX6muzyDdoYHAn55gVJ1zBWFV5KmuMJ40OyosDblihtaZuaPC/YbvcMYjZlmGCitSXVMPJtVdMMln3dsu0sp6bFOs/TwwMqX8wmFSEZxxGp5s8xuRGjBVfrnHWRsHve0XcdzaHlm7//LT//6ue40fDr//BbVpcZ/TCyPTW8vHyBHizvfvgzeztwUJoojrBKEmo5c3xOJc72KCU5D0OiqcNOFqUkk4TBzSZVO7TzdxlPqDWvLnJeXBriNMTHGWQZYqFJ1EAoR1w3oowmMAblJUlS4MoK7QTLYkViDIfjid3jM91eY5RkHHp02PHNxydKBI0QVMNAkoT0zhNHEbmHXdXQO+jGORlWjxMwEoeOUGvCQGOFRkwO6zzPhxP59QXW9rTCkGUFyjYc+563cYB/uOfh/SP58oRbVyyW/wVvvzhnV53RRhE6CLl/eGRoaxSOv/yv/w2ic2zf3+Kt4vl5y25/JEzXBGIiST5rJPVclzvudwxjM0eKH+/w/YDebPDjhGeYeU7OcjzsKdueYYQiybjQhpeLBWcvXrFIY4RR6EAhhEOGAVEa4ruR0+GZbhwgUByajkAHxEmElZJ+ONE1DUVypBtLJjfhTYzWAXiPMREoxTj2SKFQel5SPX36RLh26EXBVZZwG0jux5bIKJphmqGhUYgaB3Ip0J0lSnOi1Qqf5KSTJzAGrRXXNxd8endCmoC+mqhby6f7I8MwUcQh4aLg/uMjT/ua+13Lbj/ifpby+uWSxfU5z7f3HE8nJBrbnuaqb9NgtOLUlDRDS5EYtJYIJTlOjv3uxP6PD5hxoG5KVolCCMVlkbKOAzaLDKE1SRSSLNcEL84YT0eKqyvwDplYRGYZ2yOTFsgsIihCfBrjXMSIwiQRMGJPD3gNTdfRNB2np08INcM5tXKoZAHDxOTNDDeXGhlowkAQhJq6Lnm6e8/i7Jwf/fRr7j994OPDJ+qqJkBRlwppYJIt2eszitAwPD8htQc8wk8MfU/VWgI1q+KPVT/zD04nrJ1wfUtsBIssp8hTFqslN8ucumrREqSbCIwm1BrFhFYeLQRGSqIwJsg3ZGeXTFHIEEaoJCbbLIjyhCAUaBWggoBxmi+R3ntMkqJQ6CzAO4WvHTI0yDDBC0cg9Xyv8JZgnC+pN9eWsjxx2O+oqmZmK6w2XOqIP77/hNGKcdKoYSAJNO00c09MYDhbhGSBYLSOT88nDqcGIeFqkxMrRagCiuWCaleyfThyPX5BuAxw7QHbHIjNJevligxLmObU3Ui532MEhCbkuWxpB4vwgqqs6IaB0VoCKYiDgE2ocaNCeYN3cJkmfHVxRprk+L7B2hIVx0RqYLko5tpquSeOE3wQ0FlPEhl0ECLdhAwU4XnG8HGCqZnZTU5iR4dJ1njXUm2PjCiCdYxXAmNmYH9sBFo6Ig9qnJDdCPqcqiyJw4jt02H+uwnH3effMTIzkFypkMjMaefTsWJSAWmWs6sahtHSljVGruhJOL+8YLB73v39E14aFmFMGnp8fWTyHfWpol8uSAJFc2gJhCFSEukcp+OBspnjvkoHTA6MkgQKpq5CCYuWhiBeoMMI4TzGJKTLJT9ebbhYFlxEEb6fU1xd3eNGRZ4n2KbkeNjx3N+xXqzQytFnMSbN2H/8gfz6HIQgjTOE80RZDlLi0AjtkWEwD/2bCSsFk3UgHVobxnFATDNg3mIRzhMEktpavPAIFeCmkSA0eBOCntkpyyKnrU/oOEQGs70pS0JebBLWRcb+8cCLl6+Ii4L6eGRsOt7fbzlbJERFThAE8xlpHLm4Ouf11z/j3Me4akBOnvdPjyAFgba03UDV9qioRyjFaOd3pXMTQppZ181soAqER0lYnp2xurwiWa5ZLlOSOCJKQ6rymf70EdtssYMlWF5R7bbIYbYvTlIQBAYfp4gwnC28KKYgRGVneBNhhxEpa0xWoHRI/uJLlE6QxuCFQmXpfF8ae/I0QxjF3Te/IcoWhBdv2R93BKEhiRNQBsoD3gua4wF/1bO5ecHQNSgBHz7cM40DTXnC9T33nz7xoy++RHhHU5fE1/9CEGw7eqwwGBOghOfp/h4pIIkNSZ5yebUk6yxOjFydX7BebkjymK49cWobPn34iBw67j89UZ7mA/Yffnii6xrOs4BbIRmtQdzuuLn7M1c3G160N2SLMyKZkOQZbX8k1ilxqInW53TPO/ADw3HH7ljx4mKD1jG+LpFqJGSEao9tjgT5mtbPm30hNafHA0mcEpiYNEnJzs/p1IBJIsxiDc6jlMdXDQ/P9wg9sUwz+s0GNz0yNjUf331ABCuGwfPVT3/JD+XI3enEsN/x/u6ewGguL87Jlmus7Xi623K1yZDnG/r2B6wqCdKC037H/odvyW9eoWRHVX2PtS14gXaS3f4J5yfqpsd7iOKQIo6IjSKIYoy3RMsNz50FZ+imiTeXVyQCgjDGeE1+VUCWUTtH2R55/823lI/PHPYt0wCTHQhlyzBavnh1Ra1WnJ1t6GSEbWrsrmK9XFJ+uiP5+S/prSZeXDC0lqgw2L7F24a2+8B3//gN3//wiU/7ikiHjG4ENetv68HSdBNCKX54PvBuV6K9YxEFJFlOWXfsyoogaFkUK5z2ZGchsu3mB0ioSFcJ1e6RzTJiqALCqGCaLEJA17T0TYNH8t/89b/hv/rZOUN5RFef8PtnYgyLeMJohXeKNEkp6wrrBF4I1us1iyxCDD06jlFhTLI8w05QbQ88Hwby8wvk4gYpNLbVaOeQ3iICjxsELnDoOEHEhlH1jL5BaolZnTElHt+2iKbBNhYTx4g4w4QRU9syyJKuqtBGAgFGTkzWEXhH1zc4FdDZCVXEqH7gcgZwEynJMs8QXjCOjmy5ZOg7hrqiLUcMDu88XV1inUdryeQMjTU8fXzmi6/ekkQjQWbAhtzf7rFOEEUhd/cPPD08EB8r6mlPqAK+e/fA/rkizte8XV0wCUV3KrFDh2FkEJpBwCRARSFD14HUvLzccLNZo6Rjkgn5eo1ZFoy0oOYLuxEdKkpBR5jlkvFQEYURSow4D0pYnAGvIsIoRoQJQZLQ3N3PHeEkR06aMImZBkOUx4SrNdYKcHPnWZwlqHgBUU54qtnttjTVI8Wi4HgqUcojlcF7yELD/nO1SEqBdRP9MKBMgAoM49jjlUIZhROSREmU9yxx2DRmWzdYJ+nKI/1oafqRuhvoh440CtBS0jQ9DoExhtPhCONAKiS/+ItfIQfJt//0Dxy2TwzWEkUhF1fnLIqEZR6Ty5wiiciTmCQIyRZzXzwWEtdDerEg8BN+csjJEaY5zoIdK7AOHeao1CCNmYcjosZIg58capyY2hE88zZFR4yk3D5uOfUjAxOjiZjaeRsaZ0vcsCWUIWqREnY9zW6HdxVKBYx+QvmB/lSyiDWZgj9++z3r8w3FaoE2mlYorBcoCXQth2kiXmywTcVQNuxPNceqRatZM2hMiJIQBRG5LigfS+q6petGNkVOsSg47Y8ECj6cGppxrrEJ4VFSEoXzcLapWx7Ljnzy7Jod46ipm4Y4Mbw5O2edFsQmYNiW1HrC144oWqC0ZWpLxh6G1hOnOdoLTJqikgUqiLCnA2E7YJsaXRi8lRhjEKctQT8yTYLb7RFkyrunZ+phoPUSP3bUTUs7DPPGPImpH0a6oUeeDiSLJVZLpn4iMxGZMVSu5myVssxj6DoWkaGuBUUAx2ng3fd/QknB9nHHqzcbukmSr86QRtHun9g1FT8cDqTFvGl1QnC/3f1nDkCk4CxJyRUzsd5JQDP1lnqsiCREgPCS80XMj94seXVdEMchUhtce6LpR3zd0z/f06iAZZYTJyuUjjE6RAhFEqWIMEHYR3726i3vnGf7+Ejd1QigHy06GKiGkT+cGkrnqa1lEoLOzrH3QMmZcaU8kdC0g8V7Pw/whwGJYxgHpAkwYYwXnrbvqNqeLDYkYsL0NYNR5F3LD//0e6IoYyEK/vb//Btu/tJS/NUCI++pK4fKMuq65bR9RtmGL1++JZZL7m8/snuskAFMU8X98xN5sUIoT5JmDKNF+2FOzTYdT/cP1HVF246so1mN3HUnng97Sms51jV0LRdFwRcvX7GKCxYyYLlYkiYJOo/meLSbwI0IofFNj+s7dD/XAI51jRKSLE1m9gSQ5wlRKJhsT6JDBp0jgoD9ocfj0HYPGBKtEE7MlwIZ8e1zzcJWLPx8oL5cZ5y6nt6WtMOE8JCkizkl0/Z09ZFsk/Li658QFwWJtrjyAZ0GrIsIFbVIlRJ0msfHHYfOEYQJLoqxXhIqwaIoCLOML758xeX1ErMIud0+cPd4j4pylkGBswNPD7dUhz2X6yXdMOJh1scazWNjufv0TGs/YoRBu4lCQ6NTlomByXF5c06c5uSrFdnFJV4a4kgTBCFtVREV5+ggov32nwhX54hpi/KeqRqRTEgTE8UO2iNSO8rhRP/wxONnDsf+dGB33LNcL5FKEochcRDRMoOUJ6cIwoJpumeZGkqZsLh5CUIyCMHrL18jlMUPHUmaEAeG7mng8XFidZNDc0RNlotlTjsMCOEYR0vfzdW3KC047fa4oadvW0KjiYOAwGiKLOHrL17zFz/9KYdP77mva350uaaqu/k72Y9zEkHOzCeTFNTBAuIUI4iGAAAgAElEQVQLdLCmHQfiKGKxLAgWOT6McHGMFwIVhEjbYoIIJw1CSZQKZ07P5FFnGzCayVncNKdbwFPv9ugoxmvDQimEUQRJQu0l37//xL5pkUFIlmfcb3dEYYTtJXlksN2Il6C1IoljFokiDDVFnnB//0wQGl7cXHJ339CcWtbFkmK1QEpD2+4Zbh3nmxi1zDjejWzOzhmqPXZsqE7lPBQxEafqSH080JRzst5ZO79zmEBI8iTBKEUYRwx6XgpfLQrsMPODhupIEEukqwmMo21PyCjn9sM7gjQhW66YvCZbbzhLE8I4QvgBp0LiL3+ML3dMXQ1BhERgrURNkjhbsLm8ZlIJ/WgJtUNjcZNFGcmh6tB5jmkHhq5nsbrg1LTEPdjJMjhPkiYcTxWTc0Te44xEG03nBHaagaNJNBs9RRAhg1nYMSE4PTww+oEiidEE3H//kWJ0SF8wtDvONmdkcURfdTRVjbeC8lhyPJ0QSLSOcFJy2j/OlWw/G3PGyaIQKK9woydZnWOiiLI7EhQF59pwnq+wtWXqGxId4ZXl8tUVAVAPPZ0fYfoMiY5iejlSNVus9OyHkeN+y9VqgzYBOtAss4Ti9ZcgBNIIGGdtMWGG7+dokxVyvlsZjW17pINx1J+NeAYfOiY/P5+HqcG2FZuzFY+7Pass4kkptAI1QZaE3NxckxiBtx7tR9w4oHRKZCRFLDkdJh6eS1IbEUUp+1OFk4rrL37J+fUvSL0mPVmeyoGuu6NxI5O1aCEYvaDvOkJj6Lp5iOqcJwhCur4njDOKNCXRgizKuHr1mmJzThQaLJ7f/O7vOe2eCKXD256uLLFOkOcZWWjY5BlXV1dEeU4YxYRZitEaFQSzqll4+uaA17MpDxMwdT1OSEyagReAnM8QdsDWR3zvGUvLcfvMd/dbfv/rf8ePfvEr0mhDNw7keYZrKtbFglGO9MM0M1vGjs16zYf3v6EsK5qq5sII0tDwfKgpHz8igiXPxwMftf+XDU3y5ZqnQ8/QtRhn0VJyt91hFFxdnpEqQRhGrOMQPQimZqJuSzpb8vtv/kRV1ayV4/3zibIa6A4VfT/yZrNkkSkuz5ZEMudwkhzLR57f7YmGPcGXP0UVPyYyIcI2BJNDupZwcYG2E+32nv12BvttogQHBJOmq3qKN28YD3MktFchUsDh4VtsU1EPhjR/QaAMYZwQLFZ0dDgjUExYMaHlTP6XtwbbDURZRLqMKKYFp6ri737zPT//Vy+RYYCYPF+9+Qm/+6fvMeEWVE87DGwPBzarFZ6Rs9USEa/IlucM/TcIaTBSUe32uDHgu//vj+y/+cAPf/w1xSIkiBKEMPT9iO0/x0mV5iZPiI3CJAlSKAgTju3A/lThbUisFVEoMEGE9BnRZsl+2PHDP/yWx8cD1a4jNSHnWcYvX63Ik5TFYkO4ucJNHTKW7Pd7/v7Xf2BX1kgpyQLF66tL3rx5SdMc8c4xCcfq1Q0Wxe7TPd999wPf/eNv+fjhA1IqzjfnXF1dct9aehTbqsb3HRmCdvBoPPXkuP3zH6iqitd4EiXYTRPeWrRwXF9knK8KEHB2XbA/wGQ9j59uCaY1tmvJFw1yUmRpRKAFfV2xykNuUsfw8AHVDny8e2S/3bK+ueHoJYPtEUIxOOZKjbU4N7HIJHpoqPuW4GIDOub+8cRxX3N4fmZqOzYvfkpUG/QINBZjaqR06ESi4pFxqtHFRJBngEaZiLad0zxSJihhMWHO2VlE23RzoscZnBboHJyfmLxjnCzdMBEa6IVnMiGRAKynHT16ucR2DdeXoMaem5sL8jwjCTVCz31XHYQUsUcIuL48p+9qjk3LME4UJiCLA/L4Gp2suFop+rYm2sTEsqV6fs+70vK479nuKsZ3R5omJo7O2VczP0MlhjjNODUdjAN4Sz1ZwjBhZEA4j5YORYxv4C9ev8AoD8ESu7qiylPe33+gOj1TpBkqjFFuYhUblnHEan1OEAVYLEoZjJsYqnuCaA1VicZh6w57OpBphY5i9HIN3qECQ7Q5A+lRUQLjiJ8GXOPpK4c3S/RaEIcHVlEEuwS3vSV1cGp72qZBG8PYe6ZpYhjtDF8WHmUMUkqcHdBS0g4DWiiMnbiva1Z5ihklFCl1XSPGkaZtqap5+zROngloJ0/oHV54rIPOQtv2aDyD1Gxe3dB8eCDOIlZuxeJsyYu315wvU2xXc7ZeIPxsWDBK0uwPOBdyqkZU5FhfXxHlKVmWoP38stFBRLBc0+8e6YdhHo6goB9BKYIgxh5rmu0W4R1G50gtGU5HuuaOysEP98/86e6W26ql8gqd5PiuYhMIEuU4u7zERCmRBeKEsqoh0gRRNCf9tENqxeUi4vtPjvtPdxwOB6zUuDijHyfkMOJDM6s9u4YkygmGkUBq4iBikWe4yVO3HV4osmTF1zdvWUYRwY9/hJ1+z9WLF2zLjrosubu7xTmLEAKlFEoKojAkCzWxFqSX5zRVSZil/OrHXyCmkVFdkJxf8enbd2Qm4OLmFakyuKHi090deWyIl0uMCUiWa9LNGRhNEsbIMAY/4fHIKCe5jgk2Fms7qrs7guKM2ES4cUCENT7OuT0cWUrDOkl4alqOhwNvLxXDYLk7HCjvbwkVpMbQTSND3RLl58SpYL3I8A6U6FjEmkjCJtZUp4a3q5CVgT/vBv70uz/wy5/+gsV6gYljiizh6faRo5/NUK2WjMFcqQ3ihGN5xE4TzjlWcUisYBUHaK35UHtUkLLUEhhZxRFSCezYs1qkvHq15uZFjJaS0UnqeuLTyfL93Qdqdwsy5PWm4DIp+OrtV+TJgjxfz1XcKCCJQ6KbGwqjuLi+5vnuEz98+x273ZZAQGsnNlHEKzvRAr2QlOOIE4LT5GmHkTzStMOAdQ7vPd34+eDkPN47pAA79gx2olitcUKz7weWeq7oIIMZCpyk2LZGvbzmn/75HX/78MT/ev2SLNmSFpoX8oJP3URTlvTljpUG0SnuHrb8+fffcLDPpAuN6Cx902KUIC0yLI44EhRhDEbz/a7h/ad7prZnpQOqwbN9rHlsa7y3tMNEpCU/uz7ji5sbinzJNHjavmZqJKf9iOgCsoPherHAiAStJbbtcX1LN4x048QwCRbLJWGS4CaHmEYSPdF3Dcpong41jd2ihaCqW6z3HA97FIYsKQiVQSmF1IpD1/L8+IEXyRVZYkiygs3K8v7QEUeKMIqJlEAjuNuXJEnMzfqGy+s3FIscGUhG+RWu3xOfduRbT/PhRNtbptFz2J9wsuWieENm4O3mP/Xpr5DacP/uOxZWsPcL4tUaRk/XlAhjQEiK9SUTFmMU3k8UkebYD3x4OOD8iNaCUE+skll/fBYKLjYLbq5fkqYxl+uMME0xWQ6hJlycEcYZ/Xf/TJiumJhtIsPuCaGPCCmQSYasK8zZBUZD8/Ce8u4DHz/8wIenZ97fbyGKabuauq/J9hu8MkgVscxjXqwLaC1aWfJIYqVBCkvIRN10/PjnP+f2/Q8oDGGcgtKcqhNKb1kvUy6uFsQBvPvzE6qrufjxG5SUM8BawfGwZ3PzdlaoO4FHoIRnnceYMGS5XPDl61f8q59+Tb/fsYpCzCIlmUbu7UgjA7y1TDpgFAFhcUYjYoSIOJ06RC4Ynm75snhNb3u23UTsByYdkwRiflap2bQo3YhE4bsB2w14qRFaIZX6zHOzTKOlP25npltY4KcJO01E+QJvBoLVxPkoGR8euH16miu8nzW4gTHECFoHnXV4axmHgexsyUUectJwnV2TpRHvH0uWRcb+0HPYNry8/hF60aISiXI1URYSpAVj+5Hd0LE6X/Df/U//Lfsamv/jb/jd//s3RH5gfyzxCLSURFHMYCeUHDEC0ihC+QmlNX3TUyzPiIygHhx6v8cennCZwqmeqnScphDbT7RNTxoq8jwlTzPev3tHnEW8fXPNZr0hzHK87ckXZ6h8gZscKkyxZYMtG6KrrxBpjkkT/OkZpEcgEErz/t07Wus43r6nnwR2soRxiFeal6+uqTPN83ZPLwK6YWQaZosjbiKLQraHPd6DlhIpZkYUk2UcPF4KZDcPBUo7MiY5P/niLcXNC5YX5/S+J9CKsW1pqxPGxMRpSrmvsA6UnpdJ4zQb46QfUWIeiHsp5jqYlMRGkCcFq2RB07ZEacHlIkO0A+0wsTy75KxYEOAIVcdU72DoSJNrxmFgWTaEsYA4pjoeeD41PG2fcXYeMNzeHwkCiOOIt0UGzlO8ej2n1uIAH6bIMEJUNVNdop1HZxl2tAQiRwmHqzvaw8zgCbKIEYe3I4IJo8D2NaFRdMKTxBFt1yK0IsAxNiX565ekBoTvwPfUxzvOlhkvX57TtZbtrmGyEzqSeA/r1Tn1sefDx2f++n/4H/nv/+f/hW+/+QP/+7/93/jbf//vKD8nLsRMs2UZhoxS4pyfv7ef9dLD2KNlRhIErDcbojRldzhRlUfubt9z9+EdgVYc64pUebI4JE5iqt5yvi5Y5CnpcoH5/zl7jyVLlvXMbrmHllunztJV59wj+go0AUMbaU12T2gUGPAlOeKAA7CNNCOtjWCDwG1efXTVqcqsVDu33qGVh3Ow6wnwCmERFv7//n1rOQ7StXFGEyxTYgYRWlioukA2LUpb9GWLdF3aT4lgVI8VeIekpVQ0yZLk5oZ0nXB3/chmm3C3XlBmLb/97f/Hv/9v/weOn11Sqob12wTddVSqxlMBAjAkfP/jj8wfF+R5Q1HUuAObOs+ZuQau2bLoCtKi5G69/ZctTaqiwACyJGXzuKSoW0zXI7QNjiczHAwkNm3VgQeGKei6iv22wMbHrCt+nq9Z7Qq6XjOMfU5GMZ+dnWKah8igITtco8YbuORFy1/eLvm4snmz6Hn56hmDYYDQFdW+wjQsdC9okpz59SOVrEktgzorOT4+xo/HaNsHPyB7XKH6Fa1WLG9vSfMcu9OcfD7EiU+xgyGW6ePGY7bL92y3D6TpjmAQEMzOCcdDtosSy7DBBiFM1sucddlhfvwBa9Bzen6JO7pgFM/YBhtsbJJkBbpnvVkTDWIGkxlNmZIt78mLDNu06HVHU0FXSmIxpLjfYgG27ZDuUooipSl7iurgTj+LQnzfx3UcvMGYrlc8rLZ4Rs/AszG7hvFwjDIErWNhjgc8piVXP7ylWm0wWoPfvPySKDzBsF3GRyHDWYQhFMlmi+X4LOf3VMmKzXLBzXKDFpJp6CG05vTiHCPLMByLfP9IpxTz64TV9QM/Xf9IW7aMghGXpzOS7Zp8k3G9LblJctKqIesapGrRbYNnCAw/IDYtXK3x6DkLHdI6QDgu/jBEo8jSgng0ZjJ0CGcx3/7hDxRZSZ4VmKKlD6ODNs6U+G5As5V4hqS9+4Hac6kKm3/4xz+hVMuvvJg+jDDoUEqzXm1xXRdhwPHAx1YVearQgB1NWZUGtx/uebi5Aa2JPJ/l1Q3rt0t8x4FOY1oHI4PRKCx/gHd0hBxEOFFANBsjHRtHKnSnsCwHy4iwIpu+bbC0QNcVbV7R1AW9bqnKjl2WoKSkEQb7vAXTwQoD2rrCEA3SdsjzHM80Mf2APu9pi4y0KrE5+OuEMJFKQa8YeiajOCAdDSmblq7vcR2HcnnHr3/zNb/44jVns4hvvvmJMm0x6pK8aEmTnLLs2JcH88H8n7/h6OSEsyenFEmNdGrW6hA1FragSFt6x6XK9oS+R17mqDKHuuHz518wcm02RUJbZ3hxx+7te8yuI0sq7m8W+J5PrztUW3Ec2Qy8gNnZM4ZBzMVocABHiQ6VPx6WErlJODunR2G4LpYfY42GqLbBdGwMz0ELiTBdhGWiWujKLen+liRd4IQOuu8xPBdvNEZbNv3KYJf/TN12lMpiW1bsy45GKSzLIK8b2k6BEJjiQD5HmNhBCH2HYVpUeYkdhcjRFPFwR5pkVB0H00x/SDiYloXSB7W40D2eFyCFxnFsirICyyYeRrhVgRn8K15KQeQJjo4GFJsVVZExGE4wHJ8uS0k3G9rOYBTM8IUgHgwPWmdTUmIQhgPa5RK1LAle+OS1pi0yTMtC2h5d1dL3LbrvsX2HQE4xPQfheGgUqrBQvYeoKmajCGU/Qaz37Mqezb7iYbHjfbJGdzW+8xOTwGc6HjOdxCR5zfx6y8WzS2I7ROoe1QssrYhcm6I9mBKavkHULbZjQy+wDBPbNDHbBicyMaTBKB6iyHAsi12ZU7ctuqkZjH1OLwf84svXVBp6bXB7c0Na9zRtz2Q0oaweDzBiaWJZJiezAaeu5jgUWAMPNRtyNo04HgeY0mJ8ek54/Jxff/WrwzDce5ycnmP1LUef1RjSpNqsGF1eMjw9QwOGIRFCotsWzcFAJByN7hRaQt8aOGcXKGVgGOahHlkqJCW0EEiLqw8fcQYRx4OYKtnTtTUDU/BqEDEye/Zpzi4rqXuB23aczqa0fYPlWDjKI7Q6QmrsXnMcmJiWQeKZWIbNdQJZmTM6nnJyfEyTJ/SqYr/rEIZN23dEkY+2bGSbIYHAsXGtTxVI22A2CtlVPYZhkZYlFhamlGxbiSFcwmDAxfGY06lB39XUfUOP4G6d892q4dubFQ+7HCkMbMPgdDLj36SaU8/n86fPGU2GtG2FqBIc38eOAjAk0fgLjp884f7jR95//z2yPlinLmybdjiiF4LANigV1FistxseNht2RUFSlWhtItA0qkf1GskhLSMEtGj6XtGYNn0vWCs4Nw5po+lXv6RyPBIt+UE3dG+O+Lsv/j3DFx4om7vFFZbvoVXHfr+hy9acXxyxWd8yv7lnmXygloIgHPMwf8QIPJTWjC4vOD0/J7QNXGmw3Wz4yw9XbHYJnoS079kUKUWnaHRP0ykiW3ISBRyPR3Rass5L5qst69Waum2RtsTyPcaOzddnZzw5fUHkRXSqI6sylO7pPY+hGxCH3oF34ZgYXUenBQUG1z/f8tOHOd2nhZJjWtRFSZ7nWKbBZ0+f8NXX/4oyydnuEqqy4Xo3J+lzLs/HGFWJlJJBHFDsDhcvsq2oGokwHG5XGa8eJX1l4R97gMYVgtrysYNTAiOnlxabbUmRZowGMUdxzNg2aMscT7Xs11uubxfsS8V4OiI4/wI3ntB3BmQVu+UjWhtEoxl1WUGb0XUdtilwHMkqy/EcC9P3GIUOru0wnF3iKoOTgcOzo5jR8AjXcw9KYsM8cJtEixfPUGVK4ILrGTRJTpdtsFA0jxu6tsc/e0FnVOimI73+jtvra+4e5iyThGVZcJ8kOPGQfbpFWZJ5WpC2grapORqFbE4njC2Nb0ls4eD5MbtKEbkutz/9EVcq6l5wcvkZXdtiejn+ND5crjkGfZ3xxz+9wzIk1T4nrcGyenrD49mbFxiWy54B46NTNpuEYdtArxgPh8SDIb94+ZK/+uwJyf01XVdQ1BVtVVIU5ScdaYPr2FS9gfBjgnhMHAb0CAahT2h2RE+O8HyLsiwO1SN7Qr5bY4xHCCGxDBPy6lBRaRqUVkjbA6mga+nLkmS5QuiOvq3QqqVXHdv5gtX8AWFZSNtmlVcstglV3TGbHaOR7PdbthryqvrEM5FEQYAqq8OwrQVGp3h2cYylGqo0Zb5cE1uQmw5N76JVz/rhkenJGCc0acqE4PQYczjm6WnD42rNts755uNPTC5/Q/z6Df0//T+UNQjTwfN8jL6hrioMAdIwCBwb3/MQAvoefNtkYAsc26HsNVfzJaIt+cu8pNNLto2g6g1eT6acDIaoDmRrUqx2nJweA5Kff/ctD7bN8eU5/sBn+b4iHPvYro0VNLRli+cNEYaNth3QLcI0EFpRKnj39pr5/T3rNOXucYc2JB2CSitGw5DpwOd0HBIPQnAOfKjVYoXSPYYAS2rKuqYXFsJ06PpPQ7gAKSTFbkddlZhC4zgulutTVRW+AU1TM5p4yNondEySzZp4MMJybDqtsaMIlWbkZUXgR1RVjZAmWmtcy8UQJruy4HgyxAkCojik3G8ZBDGj0eBQv8RgdHTB1Pcxe4XvmJgyQA8j+mKPbkpUpYgmoCzNer2hMyVVU1E3FXmnaDWU+ZbI8RBVSyMFbVUhbAvphyjLoqoayo/XSKUI4hBpBViuR1O39B2HinlY4U9GLO5u2a9WBNMhVlGglTgYCnVDYHsUjosbhmBIZFdjmB2+7OjKDMvx8QMLUxh0xYamOBilLs5OODm3+eHdnCbJ6DtFWuzZlz9j4rNbbYm++povX3zG+q//LfvlI7/76RuyIsMQoJVE6/5gkeq6QwK+rVFK4bge8XBIOJuhpeDPf/qO1eKRtDkYIMtKE1gK349RbY76pCk2TEkURzx9/QY3ijFNC8NxsKL4cEkajeiqEiFAqBzT9g4QctOmTje0dYPqFE1XU1Fyf/uO+/lHHucp+a6lbcAPYqRSnE6e8nF3y7vvv+VofI4XBuBYh3cpLciSjOXjA9vHW+7nK3abDXnZYpoWVe9yu2kJbYN/+9ojXVccD2N0r/5lS5O+2qMQmLbLOskpOnhy8YTYd5hNZgyiANccYNQFEp+06OmalPXynvljQpY0rLYVrRaMJhF/9ZtfMrMCdJYjo5DF+x/pq/JgjnAcYl+S3mxZ7vf0P32PIyvawGJwcU5pWhz1Bn1SUBRbVllB223wOkWngE5wigPqB6zAouoT1suK7XbL9+9ucRF8eTJFWBHO+AgzDmmU4uYv37Bb37Kbf0SjMG0LnFv86RGu5SNNjTUb42vBfu9z/3HDYrlgfB9T1h3BKCVvVnSGomhqjqIJu3yJ1of+p217TGxFur8j2SfIsuf4dIc3GpPtVugWqiZleDxmEAcYnWTfrXAjlz5PGUYOs6MRgXugaKd5yWq3oyxyWsdgNhoQDGKkISmqmqTTfPvjz/SLJaJoCJGMAgf/SDJ5fknoOhhS03cF+X6Pavbku5LN4p7Hu1s2mxStNJ2ABoNUWHR1QdPlVKni7mFJUUkeHzaM/IiT2IXhCY/3d+w3KWlWkzYJfVWzX67R0sAGsrpB9y0VoOoGS/ScRi6RY+FEEY9Vx75qSDc7aGvURGF4Lhdn55h2Q3k+IqJD645ku8cfTBmOBigliFzB+OkMxzQZRhMWt4/88PYa31ScX0w4uTyh1CaPiyVZmh5sMloR+z6ohqyuQfeEQQj+mIeHNausJK1qLNPib169Ig4HJPuKbZtRdh27NDlwNKqGqugYhgNGT46wohHhY8j4dAa9wJY2nn8gSTdlhelYgEnVKLRpU+/3VFXG/X7PMi/oNBRVjTA9ehTI/kDeF2ColMDosbVB3mlOL56g1nNMxAEg9slhj+fQGZJJ1XH3sCQMY+zNntDxOAskR2HIq7EkrJaU64qmFezznnxVs1qVqE4zX5Zs0sOixbJNLN9gt92RZjXjs3NscdDXJdqm6A46z6Fno7qaMtmi8i2nx0e8eDpms73HsDXB6QmmbWLLhjA8YuxPufv4LV2raHBYpQ038zmd0rhvd5wPA764POH5OOQojjGFwHaHWH5Eh8KJIzAdjMBDGppiu6OpTFSi8E4v6dXBN9/UObvtgk025/79W0zLxbIF4WhI2/agLbzpOYM2p5tfoXSHRNN96nAbUmCInqpXSONgXdGqJ4o9Yt8h6CRCg7BMiEJMLyBPc/Kmo67qT7FHMCzrUFepGpRSqE6hVEpg9li2hSd8huOY2GkIvnxOmncEFHiuQ5kk+LMRjv+UbLOnyfdkmx1FmeMGEzqlKbM9RaO5upmDLSmMBscxkHnG1Hb5KvApN1tUm9FVBXE0QeuezjxoWYUQSBsqajbze5LHhL6RaMug7QWGPWZoCl46U2ol6VTPtrjk5sNPfHj/jvvtls0+58NiS+Q7DOKAtOwo1Q3nT05gn6PQmF1N6Bg8phrLNCjzQzTbsixsy8K1LBwp6euK1WLOgIMlRfWKJE1J84KyaZBC0xU7bN/m6OSMos15djri9uodoeORWwZhMMB2TO7loebl2ZLXs4CAktg38Fwo64SB7VOVFRcvnzEcTjHaCt8LOR4+wbBjLOngeB5D10PoHi0+OxwELEGTZ2hA9D3COlD1hSnpshYlJevlA9k+wXUdlO5ZrdbsV2uqXYKUNnVZ8fH+kIi5fn/NsiyRnss0sBBd9enZRwxCA9swyTsBpkYEI3S6xXF90AXTYcvQapi4kmE4REvJuTSZ+AV8THj74ZZ9nHF2NmAU+ZRl/glWJ8nzlLZrMM0DnNixbfquoalrhKlwoxGhH1BUCQEtkdnhWRZlD0WWomWBP4xwWpt03VK5NlVdk6UJm+2WtjaY2jAZSR53NT+vNZtEsM3e8uT4nHU/4PPWIBQ1jiqZCAsLgTk7hbYlGs04H89orAO7ZJ9nSA3DQUCrDvUbJU12dYPpGISexc1qC4mgz3OgRwhQqsc4nOswhDhU0/qetqmpqoqPlUHoB6jJGdkqYSpM2vkc14L//u/+HVkyxvVt0lxyfC756Yf3FDJks1wQWQLXiyiznLdX7+jb8lAT0JJGtdgiZDA74uLsjPF4RmBAul7zw1/esnhckVUlNZoUcRhMLAfVQxwGvJzGjB2brFbcPz6yLiuyvMTuOyITaDWeqanamo8f5zSFxas3L3Fjj2AwpW06An0AB0shaOpDAqMTkh8/Lri6uSevFcNgyNQz2e1X1HmB7A0G0RDblrx4/ZQnL85wbA/dmgyHE77/+//A3XKD7ZnEoqdvakKhsLSi62r2jSK0HYQ0KUrF9ucbtt8uOb+c4Lg21b6h2XVUqWIYxyzTnKbTrJOSXZnyetYwpOV6seV385S7rKYDLmczhqcXJI1Bvsu4fPKcfPcW1xL4foghBX3TsJxvkFpxHAcIIQ4Df6eI7RAbTex5TOOYp5MThqZFEI+IJiGO5+IMhhiGeQARltmnIdxA1B2mVDR5CkmGUh3t/Zy203Rph2F7NH3HenXHKq+wTAFdy9CV+M96ggkAACAASURBVNGQx6xF0LPKenZFQdk2WFKwWC6ZPy54cRxyPgyZDEfYrkue5Qx9H9Ur3r79gWdffI0zGBLULWp/xyA2ebz5SFoq5rdLmrpHmxDH4YE7Z7a8+vKvefPlL3Etk2++/ZG2VRRZzt628KMBw8GQaeQytTRep9ikGbLtUI2iajWB59EXFZHv0dU9+1owi8eE8QjLMvECn8nRjOHAxvWmB9i+aiiqkur+CtOOeHy4ZzQaMQyHyEYdQJO2QS86ym2OaBt0UbLdrBA9FElG3VS4g5D5/JHdcos0LOZZihnEpMmegWliCIvG7LG9mJntYTsbNrvt4aJDN3i2heXaaN3z6vKIk8jE1j2+aYB5WODGjqQoGyxhEcUetqnp+4xk03L6fEyb77BNiUawLhq0Y/F//Mff8nD9v6PKmtfHEWVn0al72qZC1RVNq/BcD0sc2D2BHyFosURPaFsEYYDphNzmK75f52RljiN6Wi1AS56Mj/GjKb/51S8ZhTEeivXdNZZuQEimn/+C1c/v2d7e0eUj4tmYx6tHorGPECuk5yOcQw1cmFBs5kjLYrev+PGHKxarhKYXKO3w5sklq/0GacAuz0n3O/K6YJ5VPHtyznQWMetu6EuXfdUeLo3koebXt2B5Lm3TgtbkWU6nIXRdHPtgvFFaI9qSvrZwZjPaIsecBkxnEywpqbIcMBhNj6nqOUmSMTua0WmTpgFpeSRVQZ1n0PeHM1nX4zkBremQdIoL32M6O8axLcq2ZDweEIoCo8gJJ0dIy0UJg05MIBrTbe6xIo2FgqZg0Ds43ghTKuKRw3KXYAtwOjC1IB76RLaJ9CwWmxVWU5Nu1+SrLXa+Jzg5ozckXWiwul5geTHj0ejAJCwq6BvGxzO0atnvE6Rp4BrgeDZNU6OakoEn2boObZFiWTbB4AjPbJh4NpPIw+ksisWGs8/OSHZ7LARZoij2OUpDWRYUZU1advztb/4bvnz+kve//R1///GWl7Mj0ttbPM/H9X3qpkT3PVIc3mtDSuIoRCnFYZtiQN/jBwGbZMefP7ynKXOqTuG6NqYwmMRDjsdTzmZTel0wmY5o2oamLijbluU+ZTSdYng+ZhiD6dAkG7B96rpif39HU+xRdY7uW5pOULea9WLLu3dX3D4uyNM9VVXTCoXteWhtotrmIB4wbNZlwbbsWP3xLW/OS5x4yOWrl2zqhlW6J01ybm7usUzJarkhLwraToPqKbqA2WRCn+2J4iHDKqOsBB+X+3/Z0qQoavoaRtNjjicLlLSYnZxyOY2JQw8hBK3SOJZH2daE4ZTksWS+3nKz2JElDaY2+OLinK/+5msuXrzCcyxUW6LoefJ8RLOdkyeadFviu5rfBDaPRY0QYNs1q8U9dbljbYXsrq4JhUmRl7S95mGe4tSSNO8ILyzy9QPprkF4Lm8Xe759e01dtpg9HI+HYERUls3q5i3r/Zqff/7A8nHOZDJmMhwSjE4wPQdMh4/3G7QueXIe4lg+47Hm5euOt9sCJ/JJsxrf6ejaDU1REI+HtF2NbTnYlBRtT5rnGLpjVzas05y26VB1yvzulsC06dEgFd7gAGxrekGeJyip6VqwhWA2HBBFQyzDoMwr7tYrHncpnm0wG82oe4nvRXx/e8u2qJmnOU2eYmhF6LkET455+fqM2eUplrWj7RwML0B3AkPX7LcbVGWgWoHhBQyCnnFsYFg2w9GYo9kQ2ZWs13vSquL6fsM6yambHstQONEES8Lo4oTFvmCvbB72d2C6PJmdME9LVsKmtjTJ+gatFZ570AkvVEekDBzTxvQ9AnkAhAnbBMvECQ10u2cSx3z56pIraYPouP/wM57noZua01FEaEFnjhkOJyznCYvlir/95QVNU1NZAWdnR7ydpyhMEALDNIlcG9HVzLd7pGmTVzWvB0f8+dvvSDcbNustZlvx+vIlzz/7nLKVVEONiYFjSCJZ0s2v6dY7qn3Dapvy8dsV46dHDHYB9zfXzM5OGY2mqFbTZAmGY4HuqJOM+48fMYRJUTfsqpZ3j1u2RXHQvfU9QgjqusNxXYLAY+h5xDYEXkBn+ug4wI4DHD9G5Gvarqfb7LBtEzccUNeHg+vFLKQzGx5dh+k45uXIINIB66trlje3XHzxJXXtkiYZTdWhOsFi11L3FpYlEErhezaBY2PJAYPLMcfnxwRBSL9rEbRErkcoGrpC8OFhSdG30Cn++sUp01lM7Av80YTzl2/o85RsZNPKIfv1ivNmTKUsGtUjRUtvhSz2FVW2JZEVv/9uz+b0iF+dT5mFAaY7QvoOfd1SbnaE58eoNqdeJawXC/ZpQaZqjNs7dlnK9hOEVaiKKt/SZ9uDaUsoZA9BOMI0LAbDMeHsCeOjlLxagADLEHj2YRnVC5dqUyCNw7chVYdBj0r2aNvGsy1C3yNTmnT+cNDM9f2Bk2Sa9KpDSAthmLRtjmGYoMG34GxysAQp4XJ5OmUUGLiRg2tobO1Q5SVe4GELzeLjNX2nsG2Xroes1ti+yf3DnHmyp6w/kO5TyjoHE0ahz9l0hj4/5ocfvqHdrBhOQwLLos8TTNvD8UNMx4G6obBavvvLd/zzn97Crkf1ktyyD4DWHiw3wnEEbSc5mY2JXMnXLy756izm7Yf3XK0yFkmGqgvyrCfvTPaLNbWASBds10tmgYnvuISBQ9NqhO7pu56+aQ6LkSyj9V2igcae+ORZTZ6nNEpQNh1V030iywv2jxu++/O3PH/+gjh2EUpRd5LpbIztuESBRpUZT6Y+uzTD6gqOfIXRW9imQVelnE2GRKGHMTxCG86hJy1tem0hhYXjuAcLl+sgLBMhJeiDUUL0Gsf3oa9RVUFbNnSqJ1kuWc0XB4hio4Ce1U3O2+srPtzf0KqG4WRMWjYkacHNJqUrD4rKHk1X5Hx8hLPYwTVNtDhE6UPXxRMmmBb+KMSNPeoiw8ahKnbEp5rY97F7SeAPMH2bQTAlMTbM367odIdtZNRVSeAoNps12ooO5PymoZI2aZ7Rqw7LkISOjW1IYs/h2LcxahutNQiT61JQYaIAA4lOliR3O966NruqI9MGSZEj+4ZpZPPZxOTZ8ZDKGPKPNyPu1x5pUfLDfc7t5nv+MHrHy5OAWNf8za+/Yupa+GGE0IAAzw95NRqz2W4Jq4rjpqZIE4Rps28b1mXFYyfwBwPoFSM0pSFo6TEqgdl1SA51HVPyaWlgUxoGUmm00PQIfk5yDLtkdTunRfLKdsje3bL64wescYs7PaNucmyx5OIo5Q+3FmmSH24BtSBJS6Rp0dYVlu1iSI0UEi+MePX6DSfTI0ajCW1ecTX/kZ9//sB6k1K1mqbvsKQgcm1Op0OORkN8yyYwQbUNd+stm7wiLwokYNsWjmXyxfmYk6MpSdZwfbNmU31gpzK++vorvCDAsl1s1dFUNcoyqdsSS9v8cHXDd+8+EHhDnp6OCWwHU5fQBiyrDts3OZ+EHJ9FxGNJ026wo3OCUcSbL59w+f8G/GX+SGtJRp5FoBWOANsyKJvuAEg2DHzXoKtyGueRf/z93+P9ouXp00uUsHm8X/HDN38mePUSup59WqINm9gzGdgWdVaQJiVp3SKEIHZdTqYTotkTGuEwCENkl5Cs7nj4+J6yE4Bgu1mg+h6pWjzfZptXeI7L1LOZGD2+EzP0HM6PPOpe0EyeI0/P8SJNENhYtknfaeRgghEMoUrQdYehJGpfYPkjZJYhhEOioKx7dL2m1orGbujUHssHbUjoAippI4MhrVuj5YIw2WJoxV4Yn7hvHXmxZb1L2Z0Med122NogDDxs0+Tp5y9YzDfUVY7UDY5n4rtTktUdRyczpDiYu7aiw/FsvL5CopldvuHi5eeEw8PAFjkGT4+GKPk1H4VEpRtGgwGb92959foJuiwYeC7m+RP6qw+YbUlVGwgh2O8rlkVNMD4hHk3ADUk6hReOCIYj8r7GlLBYPKJ0TUiDKVrq8hq0w9X7t4yPj3g6m+JIgS7Lg0617xB1Q7pPWO+3eK5PqxSPmy0Pb386GH7qngaD6+0Oz8+QuuehFxyPJsi+52J8RJNtiMIh0rQw9jtEUdAakqapmY1DXh4PmHng2SZ9mWFLg8jzSMqMyPdIy5Zea8qmQfcOthvjH58j1YZsc0/ZBQRH50QnQz58u2b97orQNiG+JM8S0mRHXdWfGDoHQ48QEsO0qasK02gJAx/LNLHCIR93Nb+9uuVuvcMxBM+OJvzd12+IpeT09AkXz17ihz6e4yEtl8tfvia/e8/mfs766po+TaiLGlXVSBS9YaINGyuwqasahaarU+rVisViTVnB27d30JT4XsjR0YTp8ZR46GP0FarvWJWKq/We/+vPPzBfPPL9quTl2Qmfj0NMe4enwQ0CtnlFFITstiVN0+G5Hr5t4khBaFqMbItOCUolMG0bix5D9xhCYoYxppTEgY3oD//SOs9IhEkUxbx7f0+xTXlcrIjjIYYUoFoC5wDQlYZBFAaIric0LJq6YHTxFTKID7WzKsPqa5bXc5hOMQcR2vVQbUe6u2e9WrH8+BP1Zs4gdjg7HmH2AqPM6LMMt6v51YsTHMvGkppO9Qil6dqe+4c5999+zy4p0VXLIDiICvZ3Cz6mGdttSuR7ONLGdxwuz8+JJzHRaEwYhwyPJuRXKW17uFAL4iE6zzDrDEMYTAYBeZrQNC2Ztpk4DvV2Q21ovKlPmWzx/c8ZRT6d6CmfPCOuWua7b0iSkrKqcb2Y5ydPGQUD7Kni//wP/yv/sFnT9IplU2F0NYFto3SPtB2kYdC1DaYEx/PJiwKBJg49+ibjYb1kNI4xwxlNXRJ7NpFtECLxfRfH0ZjY0Db4hkEYBKi+46d375hMx5y6HpgWfdfR7FbkqwU//flH5sslss6IApPOEDwmiqo4JK47x+b41XNoe+xPLDIMg6zOWNw/olXDYrvlPikQhoFhGnyY3/PU8XBMgeRgHy2yjPljj+9Z1E2DKQTNJ4hyb0q+eP4Eme4wwiGxjri6Twij7l+2NLHdgJktSTc5T84v0eZhI2Z7Ho2ShAi8ICDyXca6ZbXd8eH9gt99/0DZayLT5m8/+5xf/81/RXw6JYxClKqwzSlCS1R4RuU/BWtB2zxQ9T3m7Cnq40+8vV9yV87xfZs3JyFZkrNLKgLToakP+q5d3nNPju4Fm7TAtHpu64Z3i2vmqxRb9TyLIiJb4nkhieq5/fkd/9s//Z5tVTHwfSZxRF0L8t6mfNwfBtSxJL68YJ8l/O6H7/nyfIxjR1xehLxcKD6uCxoJ3mhInnbkuxJlu1iOR6M6BnFM1SviQYwhFLPzE/TOZZoULJYZdx/vmQyP8B2bPGnYLB95/fIMoSF0bbq6pmtaBn5AGA4wLJMkybm5nzNPEgqlmU4uiS5e0amG33/3jquHOXV9+GG9OZvx4mLK9PkTLp4+JZI28pNDXRUdfeuCrujbil4dDAzjwZjpxfkBMlTvcBAYbogwJGmSs93nVF3DdOgTeQ7qk+f+j9fv0IbFsuyQvWQ2OOa/+PKXFFXPVgRUu4I3v/wr/vDnf2K7vkMaJj02g/ExoSlIgpBaFbS9xnFdXN9jNPAZhCbp9Tt+vNWYnz/nza9+w/nLNzxevyd0NMIJCJyA06GH6ns6w8DwIparD+w3WxYuXH7+OS+evqDrFLvVhrY5fAixa2LQcX23JKsOyjTXNsnThHK/wTdhYvdMpiMCq+PdT39h10sW+4ZfHL8iyxuSPCOvM8yuQCU5rmNimgbz9x/pj84ZDQZcvX/L/qzi2dOXuKMBumnoEGyTgtVmT933bIqcq8WCoqlQGnrEJ9aKRmnNbr8jTRJSy2TheJhWQTA84mxss1usCaOIYPSSvlpgqoS+1Wwfl4Sxj4gsTNOnUoLdbML5yMMn47v3c7K84cnFEfNNwaZtWc9XmH2F1oLRYITpHjrUTd8SDjzi6ZiLz37J6PwC0zGpdzW1NCiVwvJd6s7kp5sP1F1HliVMIouXTy45PTnGc54xGI+J4wFSnpDtT6mLEnU0YRHF3N8tyGtFWWlmw4ivjnKWWUVZlHRCsitqflwkmBi4UUO9S/AjH2VKHt+9Zb3fI22b91fX+IFH0SgeHn7LLk/YZxmdavFDF8uwCB2DTZKxTVIMSxGHGXEco6UCa8TRyRHzx5yyesCVBwuN51n4oUdSKZSWRMOYusipq4K2UzRti9mZWI7k6v2WrZCUXkBV1qi6pWsPwGI/jlBNgzQM2rrGtSTnE5dJbOEPY46evOHXz08JIx9pCQzPpNnn+KMJKMX+4wfKImdfaZa7FVfzDfNdSskD62RL0x8YFIbuMW0DDEG23pM/bGnuF2xGLuOhy67bEQcBI8PECwIGhkFgO4iuY7m45U9/+I757Z60UezymlppBrZF6LhYls10OGHXNfhmyXQyJfYiWuXx5uyU41HNLk3IigQ3CLhNFW8fNtxe33IcO2gtKdueUWxwNIp42BQHIJ2UoHss08akh76nbWssYbLb7+majtAfgGipOwV9x8ixSLZ7fv+f/jN2IvjF58+4Leak+w2DOKRI1pwMTtCiwgolu1XK2DfxHQPd2+R5xXjgMRjEaG3i2iGeKdB9RdsbSHeKM5xhuh4YJj0aoRToQwxZIA7VpqZGdxWPP31L0Vbc396xvH+gU4eFtme6rBYrrq9vmGc5j/meTbanubphkxd0StNhUJcVAo1tOSgMojDmepUwGw7QfcvziYstBarX9LaLR0kjTIRpUmbgGA6Uik5YuNGAwBkjLYk3DLELh2gvufrpA7tdgmEa7NdzuiZlvtwi7RjT98mrEoE+KHuVwgt8TK14MQmpigyhNa2wWHQm895hW9ZU6RZPFQxGJu8bAy0E+7Zj1Uhc3+Or18/45YshA6fDNQ1G0Rn/06uveVi4PDzs+DC/ISsXnAQlertChmNudoqFY/Bs0DMOD3BmrTvaqqBvK8rNEicaYFgWt13P+82OfV1Q1x09msj1qNoWx28Y6CE6SWjLCtV1eBbYUiOkxJQCJQV51VA1Nf4nzbyjS7L7JZUrGfz6a5470HUlpjvh9m7HfnnP9u4jvWngOi625RC4Fuluh9F3jMcjujAgsAWu5zKaTrm4OOd4MsYSkr5oyNcJ79/dc3M7J81ztBbYjsdxYPH5xYzL2QhhWLTaoE52UKWcBILQdtnbGkO1mI7k6HTKr149J7Q9mk5D0/HzYsti2VLm50RRiGgaekAgaKuCokhZrNcslhtcK+DXv/gcy5Ak6Z59UpFUDYPZjMnQ4mhg4cuU+nFPzh4pDlB1y255fRbzp9sb7hYb0umIuKsYSZCNoqw1BpptnqD1mPNpTDwJ6I2MD3/+T5jqOa12+PH6il2yRW634PlUTYcpDabjMaEj0E3BzLP5HIstFpbrYVgulbY5GkRUbcqPb6/ZJ1s26w1N22G5LtFwTFcVqKbDkDbHkxiB5NwTuA4cDQ1C38K2hwh/SKUbDDNDBAHW0EdUJZKa6uEt7vgIy5IHmLDlk717izMdItUSY/IUNz+jfHikrCsao2C5u+U2K/mwztm1gj1j7GhI2Vc4boDtHROHU+IuJ0yW3N3NaWqNUh27VPFdu2LkCjrLwTRNmrbB2Gc8O79EmhaPH64YDAbY45j83fesN2t8z8LxHc7OZ5Rlx931ijNl4UzfUCuH1bZgudlTLTOCMuXN8ZS2fs3jh3dkiwdM08HyQmxT0dkWqsiwuoZRGNC6PftWs60yjo6OkX5MqTX7x0cMz8HJDORDyirZ0GwfybZbPOcAunQMTeA42NpHaJO379/x4XTKm9eveTka46qOZJfhOgGOV1FtFavVI3erDW3b0zUd96stnunSthqpBePBCaXtMg0j4sGI0HXxbYtYn7P5+BYlbYaGRd0/olXH0Tjg6xcnXEwjfEPh2DZN51AZ4IYTrORHuqYhHIxoqo4kafnyxb/m5Oklk4nP3f03jMceV3cP7Dd7fv7L72mTHYMgpqlb/vOf3qMA1XSoXmE7/mFZgmbkHzStlmmQFRnT0QA3iCix+Ob9jyRZxr++POfZMOT1q1f8m//yv2bk25i6wxACkwbdJqi+w3ZdrOkUW0AgNXsqdqqhzDOyvYsYDFAt9EWJ1oLdbsPi+prNZk8uLMp9Rl0VxK7JqydTLNdnMI2QSNqyQY6OefJsiLNeg+fxD3/6kd+//cj7+zU/Toe8CCWqyvE7sASINsOxbKTj47k2vucz8EosIYnNA/to2RqkdYXr+0gvQNBTJBnWkYfj2nTVQSNvGD1NVTAYnzGdjnh/O2eXZAemi+uS73d4jo1tOwfrXuhj655aaZ6fnDEajXncrJh/vOVsZHKba+6v3vP24w1N/0f2Rc7IlpyNA2ajIacBLAvBn775nv/7nwsmvsN5GBL75oG99voZYRjR646+bih2KTe391w9brndptSNwrFsZpMpu6xhXuVk6wWXkyFT3ySOfbzBmFJ0WFoRui69E6F0zfDomNuffkRVNUjNeDQk3YPVtswGPpt9Tpqm7FeP/JzA8EnM0es3DIdTirRAdgXNZk5WKUTrURaHOolp2ViGgWs71HnGZ//jf4cX22yWV/zH//l/gaZi8/9z9mZLkqXXmd06/5lnnz08hsyMnCprRLEIgA00rdtobZRJbOlCuted3kxPoBuJolESeqBATARQQGXlGBkRGYNH+Hzm+deFl+kB+ArH3I7vs/f3rdU26KaO41o0EipFpUOAsjfftW2NZRoYmkBXOsospalqyjrj0aNjDp48wPN6WCq0WUwTbZHxlk2UsN2UKCj0fA+/56J1BW9f/ZnJsLc/BgmDJo+5ef2ei9dntE3H06cPyZOM7y/m9HyN48MhXq+P6o6RukuUlGRRTNs11E1DvLmnMXeIpsa0DYw04y6OsE0TRYFBtGK9hiJJiNKUqm6J4xwhWyxdo5EtmjAY9FxsQyWJYp7PxgwHPebpmmnPo3D0f93S5JO/+JTF+S3tNuHwwTHnlx9Jkog8iRkeTmh+gC41nUkWl2zuU96erUnThsmwz2dPHvD0y68YPjjBckOErLBNZ59Q6VTyOIK2om0FXhiyWq/Y3C6gMenrNi8/3LGoWv5wseZgHPJsMkLXNIosR5cw6/lEccbIctBEx6tFxP/74Y67JEdIwdRUua13uJMh7wq4jXf8/vJ74rxA03XW2Y6P6wj4iGkITg4nzI4OUOUOmpDx4SmtfMbZzTuenxxg6yYvZifUbNklK7I6YxMVCFUjbytEP6S4vUHTVJqyJPAsClnj9T2ckUcsdDDveHt2yZ9eX/Bvnp0iZIfteCR5zdBUqKTcGy8U+YM9RHC32nC3WO777E3LwHGhhfkmwzRUZFFy4thI18I1BCeTPkfTQ4bDI+zaRLaStjUQVctmvmBZzYnbFEPmkG9xpU7Q6+P7RwwdA9t5TB03kKwoyhyBhiJVmqJGGDpS7i9d2wZu05x1tGBsGjw/mKDUa1bzhK//7n+Go09Y/dO/oB6dEN5doWo6iu7w4MXXlKtbfDek9+AZqh+w+P3/QxHNkW2G3tSINMPQOqqyZvnxjIefPOThpz9mOOrRHwQs7xP0piWKI7q2w7NMqqpht9lysclIEPxP/8vPiLYR5x/vsFQFU9fQVB9Hlbz/cM79OqZuO4SqMewFBKagreDxwRihWQSOS7S45+LNn9ikOR0G7zc7ctkjbhVuV7fMl9e4BvQtjUfTEeN+SNekFK2OHwQUyY6szLEtn1Y20EElBUlTkdQ1N7uYvOsoO4VdFNO2kqJIaZsWgcDQNAJLR3QSo6lQupriNuHjUmc8GSObhuuzdxw6+zRVEVd7FlGnIFwdT6k47ukI44iBKGk2Cbbrs84jpATHC7i6WpFnOboiCdyQvDZoyoyoSuhEh+M7vPjZz/jJT3/O7OCAu13JH3/5B7rqI6OBz2aXcnV1RRxtydOYpi05ePKUg/EBfb+H69oMxlOkVCh2BaJqqeOMPGmwVJfQdqmqkhqXf3xzz+O+4EiFg8DB8HrUqNRNzTzJ8NMMN6zYbStKw2S3WrFcrbFNHU8TpLuIq+trsrpFsx0Ms6Xc5hgt+LaF7zm0LahC42ozp6sy1vM1cX6HuXAxvQHaD9UCTYCmquiqSr9vkXeCdVzieTaqbEibPZzRpMMQcLHegqYR5yViKKiajrZu9ywTTce2LKquxndMhK0ycFSGvkEU55TNgtOnLzie9vdd2w5kLRGqQr66Iy0E7z7Mef/xhtvVjlWck5QNpu2SlxVG1+xVvYqKInTqpkZpW5K2QzYZrd7ROgEibXFanS6rcUY9TEsDSyB1BZk2LN4smF9s+LjNWRUlniqYei7fPJwh645Rb8x52TIROnUW82Z+j6qAq3aUskNRNUajHv3QR1MFx9N9uur8+hZXmCSmjzDqPfndctjmEtNMkD9YhOpWksc5pqnjOB5dWaG3DV7YR0Gj7SSq7Bi6HseOQVaUXM7n3K//gdcfTrB8Qdy0GM+e8qh/Qmi2JIWO0kpsXeMwtNGUliwv0A2dIOyB1NCFipKm3Nzco5oh3uFjxobBLRWtVlE3BXWRIpsCS1OxTB3TUPFNG89yUYqcuqn58PJ7ouWaqqq53UVIzeDs8pr1LqZsJagKhqbjeyZnNyscTUVo7Ctu+l4HmZQ1dVMTJaCqGovdFtdxWVcqnzw6INA6bnYNttvHams6S6LkOkZpItIO1x+iCxvDUNEMhxSDbQW9QR+nt2S13aIpGXQxq13GfN2ByOn1J8iyQcp2v0DQtX2CynSxVUHRtliOx1UiWVWSBJVou6TJt4SOSlQpbIuKuJFkUiWpWkIscjHmTRri1XvjTo8Rn395xNNDj+OjEU/u+ki9Jd78Gb1NeDTyMaYOZSlQ1Iamksi6Iq8qvn/7nvObOZXVQ6taOqlwdvmarE5ZbXdUls1im7C7viUwDNSuQdc1GkWlFdNx4gAAIABJREFUU1TKrkG24Fp7oKlU9pDMotGJowhtMsOSKV8fWnTWhM6ySYoN0vP47tVvqb5rMEd9Hpwe4Polv/xjgRqOCDwP19HIsozNNmKz2aF0DbNpiNA0Th8e8+TxCboQ0KnUacrtxQXn17dskwJVSnRVYeoZfHPSo+9rCFnRVpCXKf1mxbxquC8lm6Klp7Z8PnEYzUIODodoTYVEwXEdvvnylFl0gGY5BGEIbYNQFRRFRxU6WVGxy0uKrOLhaITl9UA1OF+tuJjfcr1YgaLwpTfhZHyC1HRKmUN1z7u3t3RXCZPpCrNteXQ0YOpbvFnFLG9rUkOn0MVeX9lCJVtMVUMqkvUuoSgrJuMxbid495tf8+ZqQdTo5EVN0TWkWUbVgm3q6ELgeh7buxTbsQhNg4tVwWqx49noAUPbwLJUvHDIb3/5KwxdYTjqsbhfU2Q5hlQo8hjR1piGimuq2LJmdBASug6yk/QnAaYjsfqCuoj47ru3/JfVirHvcDKZYsiOKt5hIDk8fkTgh3RVSiUbKBdYfZ+umSMciXM4ZnH+lt+9es138y3bRtApCr7n0+8ZdKrEsTSCwCQIAsLBEHc0JRgG3P75v/L7X/0z682WKK3YxCmrXYrmgq47WL0BaZUTbe8JegdQKvQHB4yPx5Au+N3fX7C6joijHVIReJ5LFBd0wibLOpavr0kzSV/VOHSHROs5hrzj+aSHqB/RWSqekHSaSac7QESX7HBdFxXYpBWrfMO4F6LZLuuqZrNdstquUQ2Nu3cFPUPjaDKirVpsRWVzt0UXNes0ZRB6+EaNZ/p0Vcnq8iNr1+bEd3HCIcMwRJcqTVtimSbr9QraBrUFicLpeEzfCzFVnXAwxjh4zDrNoGsZnZxwdnWDFwT4no/ruszP36GlO5a7LZ2En372hGcP+lhCUMURbZKhSIWi7jDUPe9CbwVFXJAmCroYI2XAp//+S7wDSSvvuX39LfOL9xiWhykFtbCR1ORFRislqm7SVBWWaWGZOmVVI5sKw/BQhIaKgqGAY1qYjs/ZVqKbHv/Ni6d8+flX9ETHg5MjDoYDVCHoypQuvqJYf6DcRSw3DatViq3ApN9H7fWxHj7DcVek11ckZYNV1cTzBZVnURgOV5cf6MqEuupYbu4Z9lwmQZ/xICSYzvaa57qlk1tMz8Mc+FihSegPeXgU8OWXn/B//uLX/O+/+Gc+3M7JfRdZ5dhGwUnfxbYtQr9PUsm9eclx2YkNRd2xrnI8JIEmMGwb0bUEvkdWFETrJaublkDvYxkGlmVRJAlVHVGXkn7PI4gsDEMlS3PMH2YDRxWohkZTN5i2R9uCbukcTwZk2QrDFlQk/KfffI+mKKwWa7abhLquERI8XeXJtM/Tw8He5OeY/OTFjD+8u+HV1YKzxYaD0ObJ0ZDleoPlWqioCNMgXu84u16wiDKirAbZkTSC+21BJAvKNGLsebSKwaqULKOKXXSNqqvkb9+j/OZbHj9+wvPTB8w8F03X2aQ5wx8YGn4Y0tQ1omp4eDzm/VlOGpfM05Ty2VNubnKqOuFg5uN7Np88e8LHmzW7sxs21yt2mx2mZuLbNlVTsbi95M13b3j33e8pb19zl+XMVIGvCioBoWdTdrBtFDopqZsWRRNoSOqmwbccdFWSJRGmqjPpjxmNZ/tDPnL/++x+sIEWCWqRcrfcskhrRj2Hp+2AwDMZ9WzKOkMtM9SuRg0n1OUfqZuUnu9TFQmr3Yqi2BGjoxuCy1VG1C5ohEtRS/Kmou064jjh6uaCIt0QmHvjl2YaeE2LEAJFUbi5X4HsiHYRdV1T1jVtC3YBvh1g6gLZtihNQ9bE5Laxr+I7PtfrM8ofoPH/qqWJ3R9hLjcEByNWcY0UCi0KSdGQpTFtVaAbNrbtI1SFTRSzWu9wdZOJH3J4eMLs4SeE/WN0TWB4GtvrG9bze/Kio8lTotWcqEgo6pzFer1X1qp72rxjuYg62W/27lacOR/55nTC2LKZb0oeHR+Srxd4qkrdNby+WRHFCbaiogmJJlsSRecf71Iu8iXbogBAUQR0EtfQ6LkuXz2YEHo20+NTZl99w7BvUiyu0FTBZPKUPyRLMmo8XePJkwdczHfksiOPU+7vFsgOLHt/4bYcD62tcUwN0ebErYbx6CsCzyPY/RJ92dFqaxZxyVWU41OTViWO9LBsnSoSUFWM+wFVvYdG3S2WbNMcWzcITZN+EGBZFqFQ0HST8dEJlAVRlmK7FhKDm7uYi91bZCsoS6jTjibLSPIlqlVjqCpFUdC0NQNNY7pbcZLFiOkM++SE8eMXVOsF6vwNddHQVCWDaZ93Z2+52sREZct93pF34Jk2cavw2/NbRNPxtz/9ax6fHvEmSciTFT5HfPLZj/j+Fx55uuXu4i2uaWHqBuFoyvGPf47QLX77f/yv5EVJmjc0ZsHBOOBg2CPwVdht6JIlg8ClmY7ZbjKS1YY6z6jKkv6jhyBbdNPgyekxB32XMl6RJRlS0UijGNuy972/eEuWlvsPMEVh4Ll8/eSEx0MbWRbk0iDLFT5cnBPHMZuyJMtzVFVlfXbH47/49zz7q5+xOfvA+tcb9HGfq9Udu+s5nx6MORl5+BpU2y2DyQyR5ihuh2lYtF2L64c0qsE62Udd75cbNus1dV0jO4mj63sQplBQu44kr9g0JZZt4+o6ngaqUpOnKU3bslteUygdWZJgKSZaB3W+ZfzJKULkeGZLzzFpGo15YvOjv3zE11XB5fs3yGJPGzdMC8/QcPQATSjUWYGpm3RdxtHBiIePnnJycIitGSzqji4V6EIlLQq2qxVZmqNqKrquYlsux9NDhoMRXtjD833M3gGrqwWr2ysMQxLtbvj+1RllW5M0gjwquFklzO+v+XC24qeHY755NGYYuATDEVmtYJsGVVlSFwWdolGuc1zbQPFtoqjA8Xyqar+U0BSNXVUyv/mIQstdFKOaO6ZBj55j4wbHjNwp22jN7eoD55eXuLZF2F/T6433bKMcNFXDtUwcDV48GnGza2m7Dkd1yJOUJE3oDJ17Bfqui67A0LWZ5wWdIqjbfZXG830Cx2BTAF2Lo0tcQ2UVldR1xUPL5YvTQ2whiddbumZDmubcz+9YLFbcbgq6Ru5TH567B9opBUfjAYvFClM1EIaOphj7CGOTkzUVddvSNs2ehbArcaXAkGBZCj2/x2g4QrVtWllxe/OO3798zYdNRN3CsWMzdEymfkDfdjl+OGL2+U/58H/9V4xyS5LlNGXJ727u0IXC0DU5GQbQSsLJFMMx0ZuIHx0GjPUKzTB5uy4pixRD89BUA1Wr6A1HZHlJ2+z5PW0rKYuKum73qlTDJNR16kqSFyWOYTBzHfqWSd+wSfKGqC64Wd7SawOcsYdhdKhVjmFZNJ1GnsU8CQ16tkkpBZ7pUtGyw6KpbeJFys31ByrNwnQ9/FeXaMZvcdwBTVeBgLKuiNMNsi0xNRVLgwdHB/ztf/d3uKoOxT66TycoioJou0MRAkNRsOy9Crira0Jdo5Eqz2czQGIZDuZwwvb6PYqqkBQ1cS2Ji2q/SGoa8qLgatNhO1tePJrgjVTC0QHR8h7V7lh3Mds6pvU1yqrEsSZYjosR9jm/jNjerMjomD08xDBXOFrFMqnYFA1CU3E8m0UUITSbqq5R2FtmPMvgYDihVk1UvWaT5tiqxVDvyFa37LoKFLAMHWS3rzyVFSowtlWODqYceCaHMuXddYHjhgz0W/zyW8zZz2m1AIuKvO4oB3/F+XLNyURnLDKscYgoEoospVR1/vzqFb/9/j3fXq/JhYWlqwzsFpSKvGm5LyW7UqVrW9abHVv2FTtdAccyEAIUsVcT7yoYuyqupe8HRwFN05Cu7gnQqfKMp491/IPPEF1Bb9zRVCZVqTE4OWET5Vy//0jo9FhlCWWyA6eHojp0bUtg6eiKRlQ15KuIv5wN6PX66KpBWVds7m7ZRRGrKKVFEDo2DycBjwcmuqwosgTLlmRVQVPkXOQ1N1lL3Ko0LXxzfEDgOWwyhcXbFK1e41iCYBxSdCYpDqHtM1QlosuQmk6nSFqh03SSrhS0rUqU1CRVylV2zy+/+xNpWWOqHX0/xFY7NFXiuhaqGpDnBuQJZ1dLvn95gaFC33XoOwb2RqFqW+qiY1vun3NW1nRSMBv0KIuCwDHIkpJFumTqv2Cou+yuv+dPV2v8wEdRTdbbBN0w0E2TVjWpW0ncwEoqHB2PuZM7gt4AYXl0bU3jeCRlzcNHjzA1hdfv39F1HTQlu/sdsq3QVIFvWxi0nEz6OJaOEwwwLJf+dMbV7o42j4jSitcfLomXG6qko0srBj2VwIKpa/Pp9TnTwYDJYIxuO0jHg96Uuq7xnj9j++1v+f6/fOS72x23aUvWNvimQJMVJ5bk0dNjwuMntN6Y0nBR2hzHhMF0zIsH/5FQbNgt7pkvY+a3CzSlo6wKNMsmyQuKqqXJIpzRgNGDIxzTZnu5YujOmAwHfHtxwd16A4rCZNDgGjptlnP78hVJ7vDi2ddM+gGOlpKjEJ2/wugfchAeUpc2Sl1gGBpC7s17RV2i6haqZrLblaRVTc/zCV2boadytY3ZVRlNWmF7Fl3Z0mYlfX/M7HBIQ8F6dUeZRGyzgsbqGB6ZHCk+I9MmdPfctlqV+IMJWiuZaAI3CJn0erz87nt6QUiDTlO1KIpGWUm8cMo2K6h2C2Rbc1lt+f7sjKJ4zOnBhEF/wMmnz3n7h9/j+gHleknaqAizR1fs9vYO0wbLYYogXqzoBz5JW3O1bJGtwoPTI37+P3xJ/6FJUa4xLQfNctGlxLMt4hq6UiKJ0DUNRYWu69A0DduxaZuWrmupu/3i27EsAs9h5ipYhkap6FSqwTcvPufQlnutqypwdAW1LZCaQ+c4lNoJut8n1BX8OOZgfs2rP7zhH3/zEj/ocXB6imMFCC9AWg5m2COwbZyez8vLGxzXJylTmjJl1neYHo+oyo5YqihJho2CGQhct6E1JU1xh9RMOqnQVSo9XePnP3qG2EX803dv6Gi5LlpE0VK1MA1h4HS0uo5umGhCwdAN4qpCMQxuoy1DXSAAPwwJXZt5ltDULXGaIlqHPMspogyl3bOc5ncfkYbBbHZMnubcXN/TNQ2aJjAsYw8TdkxQNQzdIPBspBDc3l3x6z/8gfntHaLpMIXE1TSen4wpi4ykqdE0BxF4pKrgaByynC9R0oSZrRCHNrdpxrwoUP5/FfUhlu1CV5MnFXYnmVkmfaGyKUvepTn3SY6sKySCPNa4d3OypqUxbbxZn8efP+bUU+B+x927l6znFxwEI6ymoWqhQuCoOpauoXg9RJIz0lI+WjZuT0UUFqu85e7mFZ88OeL0wXO8sI9l65TNORdvz7FkgWepbNMS2/VIVxvmF694+9sQtev4lz+/wdY0Bq5NWxd0qsSydLoGbFUnK3LUvd8bRZE4toGp/QD7zXNGs0MmL55y+OQLRJWQLa75cP6eq2gHmk6oqyhFQ25qRFHGm/c33Ccxf3k6ZTwdUrcVXVuiNDHOwREPf/Q1iujYLJfcr+/ZRDlNUbKqOs6jDWJ4yqMv/w2K6XK7uOXDd3/i/vI9FAmyLamLmt0uRdf3iSNvMECRCkkcU5QVTduwyzOquvnBoAdt25JlJZNhCF1FFEdomsZg0N9LQMI+bm+ImkScXV3/65YmTVMzPpqSFh2O46Atd3idwnq9YeCqDAc+bs8lK9bsojXXm3uKusIydUbHBzx8/ozB9ABdlBiOyfUu5uz994jNCh1om4Kz8wsuVjHX6zXbbA9PbBUVVdFQBXuSsmEiNLjbxPxjlHEQWExcB83xeTh5QEBJnCXIqsQVCkNbx7NsImHwap1xF6/JuwZd1RCqhq7tu9qBZdFTW2xNYXYwZTTusbu64PrVmlko0BSJbro8GTq0dbLfoIcej55Nyd9nbOOE9WZNVXcosYbpuTimzjaK8R0D4XqYlmB7d0mRTrjf5myjCDcIcE2TTbTB9XT6gUtZNLRlS1tWWLqO7Yes4pw0SZBNx8z3CGyHXV5iOS6yg5u7G3aNpKwbhNBxgoC224MFFU1StzuEq6MaILr9s0zSjHa+ZuLafDIJ6Ts+SiewRQ1VTJFY1FmIqaY4nz5BHQv05YLgcY90ecOfXpZsopxWKoRCcNgf8DFXuY0T6rxgYOj85uw9m7//39gWDUbZMtVOibqKg5OnXHz/z5TrM4ZHp6C5jB5/yuR4hlH9hPXv/jPr9RW675KmW27vNxh+yI+++jkHB300YdJWDff3a5Z3a4yqJI4SnkxGeE2N4rp88cVzqixB1hUfX71Gnz5mu9lQ5SVV2ZJJjSotGfsOjiawTZNPT2YcGQ354o6P6z3JuSg6kjSnRbDLG3ZFS1kXlE3L5X/+B14v7tis76nSmId/8RjhtajC5Ga9xTJLpmMYT4Y4gwG6ppDv1rijPQVdMwOKTuO7d++5me/d875tozk2QoIuVJpmn1BQFYlQxR7uKix8y2LqanvQsKqiKxqbvKIrc9bbiIFpoDbQ90Mm6RQjMNB1BVczWKSSeLvFFJKvf/w1zx+NeXO1omeZZJqOa/r4ukuk1Bi6jgYMez7j8ZDo6po3ZYfqT0gVh6rJcVyLq7s75tcXVHVHU1XURUFvdsyjoxMCxybvSqrG5O72Ix/+/EfuFxekyYb7jzcsFxsub9comkHohZiaQd9VkaWCZSkIv8d93hG0FQ9GM4Ru023WIFUsR0dWJbbnE4Qh5noLKAjRYpkmVdNQyBo1XhIlMU2UkcQrvl/c4Bs6YX/M4cnnDA9eMDJCFrdviZId68WaTsJwOmHxIUIIBV1TUYVOP7QwQ5fVJuEqydA0fT9c0FEVObXsOOj5uKMR11dLmrzAsOx9/a0foHYNXdtRVTVp3TIJbXzbotBUgiBgEHp0isI6Svjw7gMXtxseTmcgBYeBxS5pkHlD1iqousXJwYif/uTfsrx4i6pJNnHKZrtlF23RZcfMtOhUhbSuaOsc4oSt7OiNHI6//pzJyQmW+UMCbX3Fm9dvWEVbJpbByA+oq4a0qtkuV9yWDV2ccnG748PFNa4mUNqKtMg5cAyqDnZ5RXK94nKVMlw1fHY6xmg2GFLy/PgATddQtQ2rqMEMBtRRiakLOsVGtzyaFtbLJXXdoFkGUlH3nV/VwjBtynyLIls+e/aUL05PyW7uiW9XTIyKto4RQgXFQFcsJp6NpahURU5bNhibFb2+yTYtwbBpNZ15WnP+6oI6PUOiUAoN13VhW6BaFlKLsawt46DHxFDospp0F9MPXR4NDvFcg5PTAxTRIivIkw1VmdBQUbUtB2FAmuQ0UmVX5PRUnUHYw3Ec/unNGZ1m4jo2ljPkwaNPedLz0HWBN+hzu95xdn5JHG9RdI1O7kFt1AXXd2senhxzf31L4FiUbUSltdRNQiYdpNZRi5ZGkSRZxqqCKs1oqozhl59hqB1NJWlMlcmxBM2n7lScUnI/v8fQIcn3RiXHsjk5nKIrCo2h0VRLouWSdVpS1h3ImqoqyErB45EHdKiKxng84j/+u5+hu1MUXaNafESpO5I8ov24Yqmu2dyFaMYDjgGRJriuzen4AEeP0eo1RmugWA6dpvDHX/+S7998IN2l2NR0RcoTx2Ta8+icI/647qiyDcXdjmRxjo6krmo6TSB1wSaKcYy9PUkoKkVVY/UdHEOjZ9msigjL1OmqjCrXmN+k/OxvZvQPIq5fL1hm3zM9OaUTLoZv8vHdB9Kqx8PHD9icSbLtCq1vEwx6KL5DkW+5inKM0RTbNdBsG4RGmhVodU2yi7i8vaUoCzzHYRKYHPcNlCYnynOEohI1LVUH66QmTkuiGmrZMfADImvKx6ggL1N0pWOstPQrWMUrkkonb1UGox3W4ylBGOCYFmqn7hd+pk7VNFRNg+wEeRHxpw/viOIdrm3zoB8w64VQldzdLBj0cgaDIT3Xp1gHGOqW0LWRbU1eFsiuwVElgabT6TabKKarW9q2o5Edd7uIo34IrUq0WRFOT4jma04PA35y8oCuVdlpJo7nMFN0qnjFKqvJq4YdFbpl8/J2izXT+auvPmGpBMxjyXgypchKPl5eMQh7RGVGbfcID1sWH97QtBmqrhD6HrZmcDjSCQYWtuNQ6RrbneTNzQWv7y5pqgRF1djlFY4mKLOCslZY3jRMAw0tL7nIS+r1Gu005+DJM3TTRLEDjOkh+qCPNj3EPDiku7xH1immVGgabd/jrySbXYJu3PFoMKH3xWds13dsrt4gkhWzx19wfHiI2N4wexygfdrn6nbLt5cxrWkRSYMoXtM2FeLjJYPREE9k6Jslm03Co3DAXRgQRTuSsgGh4lkm9WrJ9nLJg6d/g1OptPN7dvkaLdXotglxfIl3KInbAgwXy7bQRItsGwbhkKxqSKTg/XyBqUDfC9CQrFb3JHmJJfccoIntUrYNqzgj6zIUNBRD0nP6qI5PUER89/49d7dXvDjq0fYGDIafoaqgC0EQDFC9gDreoOq3lNGWaRhys1qzLvYmSUMzKMp9QrduOhAKvmeRrZasz15RzM/5XrYMBiGz6QxFUVHVFqErrHcJ823FuD9i4Dh4nkVb1+zu7hi6NlmaI7qarMo4OnrG1//uK05//ADdqbi7veL23UvSzQKlLkg3K9rOQKPF1gTCMomLmo4O2TVoQlA2ewi90FRs0yRwnT142vTodJfKHHLUV3gcWKjJgiZe0ygdbSj4OJ/zsbKxjz8hHBzQ7BZkqxVVJLCbPr3Hn/Dc7PHLl+ec/+5PPJsMsV0diUC3PNTRBCwFy7HRDInaWCiyBFVlvUvIihrLtGnihNnBkEpYYNioQUB2Nye6+YCiCDaFje56dLXCj06PCJWG1/M1Wd1xHWWQVRi6ht80eG6ArapMhyEDw+DVfYKraryJY66qmseeR89zMA0DQ1MxTAPL0knihCxJoGpRFB3LcRgNQhZRQrpY4BgWgb+Hfeu2jhAaKoK6bGiVGrPnoioqlxdX/P67P1JJhb/7u/+ReLtiZFkMLcHV9QW/v13gHT2lVh2u8x1bueHybM7noU1RNmRlSyvg89mQtm5pq5ourWnrFq1voSouvUGf8WKB7dhsoozNfH/UObJ89MEhjaqTdQ3z3ZZSCkJ/xsCa8PHbBQdfPOfZ0SEzNeTs7AOv3/2BWX9Aoem8uVlhCkngBdimDXWNrikEQcgu2TEY9ekcl9OZySRoGNkdmqKiWRY9Bx4cDhGKZJndI4RkWUiqtuZufcvJ69/R90f87dNnGIZKJ2rc9S27rkEPQqpdhmUY5EUKUmIY2j45bGgM/D2E2rMMjiZDBkHA4uU71pdXnC8XnG+WnK0XNHLfjOiHDn7oUTcKUoGoqHm3KXFuV4xnW8LJGNXS0MczAqXloNyQVDk3cclN3lJ2BkUjMYchn//0r3j+zc/Jygb5LxXKZMYjQ2e1vuf+/oZ1UWEZNmnTkEYZWrVnePZsba/Fzst9bf4H4HsrO6pGoqKw3aUcTfuoskVXVVarDc6oR1FknB4M+PO7CMe2/3VLk9BpiYqMySxESzR6/ZA3l+eUZU5aB8xcD91x2C7vMXo+hSKxHYPA9ZmOBmgKdHVCWUu0cErf0zkduxhHYyxvxO72GhSd3miL8U6BrsftJuI2K8ga0FFwhKSpK9pG0PN8HLVDV1TQXLZZiq7bGJNDHj8yEE1NhE5n+qy2CX98e0WapQyDkNCxcHUD1/eIi4yiLLA0Dd91yFuNRg/AHjJxXG7OXhJfrhiEHr3JlMF0gFIqLBYrLDNmMvOYlzNevr/lfrvGszwUoeAoHQhB3dRUUkeaOs9fjHj+QOXs8gPzZUIndI4PZ8g8JlouiZuaF0czmrZDw0I0Nb5p4PkBhVQhjTgZhli6gx/0SO7X3EYpuzRllaYYmsk4CNANk7v1GongiydfMvnqJ+xGM5aLG65f/pH7Ny+pdvf0LZg4FqJrudkW6LrDp4cDPNem0ywQHYqmoqkqhqlTBh5tsaIpW1TD4IsvnlE6a1arGLqWXVlxvSmQ9oheeIwtM0xLR0/v+frF56i9kKhaM3/9Fl/pCHwfW6mZiJiHj8Z89uljPE/HMCSPxwPSPKX/6CmHfZN3v/oFq/s1mRpA/wQnUNksrnl3vqIqO+okZzaeMdRb8tU9juMy7Pkskg3Dkc+nX3zGm5sUQ1EwdZu4rrmfL9Blw7HnE+oqjmMTGhDttux2MV2nkuU1cdESl5JNDeuyoGhrqqYhygqE3iDvrrCrltMHT3l2cspdfM/DZ6ekWp/Fd79hm5fMnoR4sxl2ECA6QYOAsmKbb0niiDzaMQ1tHNuhKvcv6LppWCTpHkgpJEpXozQ1Y7vhQd8gMBR6lofre6iiQ9CxCnz+9H5JkmUcezYjz8NuC0yZYxsBVVdj6hZ9T+J7Np5ro7o9RicPuV79Fj2RqFLDNW1U1aArSnTTxndsvIMxndZjOV9xcb6kcEc8+uQF3sBDkRlK11KUFbvtDiFbfN/h0cmU02cPWW5veHt1xf1yg+06RIsV2/sFt3crNDRm4ZRuaBAXKXWR4vkmPdPCHwWcjgNmoUt/Oiaaf2TU8zBGM5pGolGhtDrhcIAidFpFxURhs1qw3sRIoFXAEg1PJiPmQqJ0EtnzqKSCaqt0ns/oxZSDwZR4GzCwE3Y7g1W0wTQVpKYxlyAUuR+OPB/P1DEEaM4Ry1WE75XUjU652eKrClNVZ6ALMgRC2YOpFCR+EGBZJqaiYkY6QtVJqw5DKGhIhr0+w6OHGKYJikS3DALP4q+/+YZOGNxenPPtu4/cVw32YEa0SSnKFrVSCd/P+WzcQ3NsLCvG1wyWXc3Z/ZI3q4iRpXPSdxCOSV00qEWK4z/n6Ku/xDdN2qZE5DnFeQpxwovDAZ3QEHXL+fWaTVkRN7BpUn69jNH8iu8XC6AlMDWehQEHlkvXNQzFyaFMAAAgAElEQVRdj7yoWBQld/ML2uiSB9MBs6ND0myHprRMezamZ7FpQGlqQsfAwKSSGvObOclqiSIlAhNZFhSaztHsEBlnmLpGbzjmZ//hv8UWHXI4IB6u2f7qD8RZQ98P8GwHRTMwTZNoExEtl3x8/YYfT0Ns3ebj3YKoiRm9+IIy7VDqmkZWWD2f/vgBo94RYVWguMF+wNUsHp+EHIyGdPdrVvc37LZrdpsbPNVBSzWqOwfDcXFdlbrIaIqEMotIs5SPdxvWOcStxFRUZp7P6fEDrkqDXNEIXZeprXGoNTiPnqKbBuHBlOemw1+1Hdfn3/P+29+ySzNAcDINOZ0N0ccHlOcL6raBqsIQKkUqSSyF2u/oGkmHyr+8PWfVBAR+yO35Gnlzhz+xQZsweOLxdDpCaxPS3ZK721tMRfCx1EnyCiHBcCwG4wki3rLbVDRRwnfzFaUiiJuGuq6wFElXlfjeAbO+R1W1PHr0kMBxEaIiy1Lqqkapcna7lHUlOVuvGf5bkySKUcOMvNhgRsV+iO9PyWVAEA5RLZNuOcduKtQs5cCzOfJsdmnGyFJ4dZOy6X1GWpdsbl/jWiYPjiYUyRZFsbB0nbqu96B6x6ATOk3ToEgFXdN4/uknyO2CNM9ZbnXariXPGjpF5/2fLnjeKGRZiNYWqPU1rT4kHGlcf/hA3drE7QSUO3q+i6EIdqsVummi90cMvW4Ply0TNF1DESpluuXj1RVtnrNbb7AMk9mTJ3hGh97E1GlOVAs6KSnLjKttjkRCJ/cWHqnwcRPx/v73tELHsl1MIZjZGk5b4RgmPUdHkRDfLXhXxnz2kx/hejY0HXqn0WmgaCpVklFVLQ0dh2GARkvXNrRtzd0u4j7N+d3dCtvSGbo9DocuWlexiXOiJGE8HHJ80OM6anHtGocGYaoonssmSeiaDlWo1HVDmqZ0hoIsU2pNIY7XtNWQILB58eQhf774SF2VDMMeZ51K0zXEaYJeSgamwidjj2i9ZxVpvsLDkwOePntMpQiSaMV3f36FOTtEH0148+1vKLdLwukBuqrS5ikHocmg56EZLvO05Oriks26JHACQlMhqjSaomZgm7R1SRA4pLuKeZbx+j6jdTTcoKGndoh6hacaRFGJ3wvwnWOaYkfRdZTCwDFUDn2TdVoiFbAVhVlo8unRkNHsGK/nosX3aAb0jyaomkBtKw4fPyK7eYlmmjiOSq/vcptc8bHUWJ3fUrcS13Uooh0v/++/5+nffManDw6ZJxnZNud4OCaNY3Z5Qc9xaKoKTXZYXY2bLTj/Ty8x2gRTb9FUiT8eUSgNyf0NTafiPXiILms0JSNJM0zXIGk6fvXmDK0qOB6EDAOPD9fXXC6WXG0SOtlxPBjyaHrCk88+BduibCC+vebu5po/n60oZcPx0OWL4wm79RKrqfCNjI4daltgSrB1E8N0KNuGtD2HOqGoal4vI3qOTVk3KK0gcHx8zcDr+Riui+36WK6JocL15QUfbhessoRksdj/7wpo05TtyqCrG3brGO8g4O7ygqHv4DsubV3T9xwORjpPGpfTb77iky8f4ModbafguwFeP2Rx/YG7xQpVi9H8kMDQSZtmD3gVOnVV4pkaVZ7tbXlCxRAKjtIydC0MXSfJYpzhjNKZchRYhPWO5XzL5eVHlCJmfnfDy0zl4K//ex7rCr/6h1+gxNco6ZYy2mFUFbVi4gQTGBxwfvmBu/MLHs8GGEGL0zb0ZEGTd7iuRVMl3Ecli02GVFoc28QybQJHR5Um9xHIoiPdCdLrFbQtTwdjTo59PHtGqYb4jcRafGQ2cOm/u6RTVExtw8U6YpVVfKGp6J6NgopZVDzsOcxmh9zfRdSrORdpDEJjOJmyiBKubm+xDY3y/+PsPZotyxLzunW8P+f6+7zLl64yy1dXO7DRDTZbBAVAhEgoFBIn0oT/R2OFFAFGaCIhQFIhih1tgEY3qlBVKF+Zlebl8+Z6d7zX4EFDaYAfsXfs+Pb3rRVF+HlKEqYIokK37+I1mhRVjiIKhGlJKcsUeUUcJyiGhagaKIKIXIFY14iCRIXE9c0QPxP4wz/779g+2CNLUmzVYPXiBafj52gHb/LidIhii9S1ydfPjmiIPq/yAaZQIUsiG6aGWoPrmaiqimFozOZjenfuoCsOW/deY358TJ4mTBYRSDqv3z9koTaIRYHFaomY55RiTpCmtJwG/Xt3eWC6HP3Nryh7Pe7f3eLdH+xw/O1z8izDny8ZzIaYlsY8L2jZJm1Fp4pSLCQkQWU2WXKwu8/dex12pSHJ+Jrg4glWy0HMrrCqC8aTkDIvUHSVIiuAmkWScD0dc7/b487uI5qvvUMcX6F9/gu+OrtGUTWoA6j+X414jiyJyIJAt2HjKiJJFFIkGenS59VX33J8OaXZ6mHsP2bnoYYazBncnBMNzvDjgDhdkuQlhlBzR1O5d/cQudlhPFnR34kRNAnEW6uV6FoE3gbXJ0PW110uTi5oNj1qr8lkfIP5/BvOvnmGJ6T807cf0+/vspr7nLz8hk/+/kM+PXuFs73DfDllODzHXy6JNZmupuAqInKtMoxvGXhVfQvSFwURsSiI45xuu89yOSeJE0RFYzIeMB2O8IsS3Wv+40ITkRhDF7DcBtfXzxiPrxnMZni2RpgkIKskqyW9Tp95qdLbO2Q+nNPz2jQViyqKiYPFrd4vNNEkcCUJc/uAVZQQJxF5VRLVCp3NuyiCjO6OqUdjjicTcgQasoArAYLINEswDIV73S1maUGR5lRVBkJFa3OHnTt7xHKD85sFz778HOd8gCVZ/PDNR7z24CFCHvGrz76h0FoslyFXsxlqqlDNF3w6/YLNtSHbd+6jWRssb66YLQN2agEk6HoeiiChqhZKJeCqDkJ2RZnnRMWS9W4XTVUIogTLtVnb7OBKC4pIJE8TmmsblNIYU1PxTIXhcMlqNkdTC+g67G2skYUFiSygSTqWplIbKeVGjzDOKLOSvIypZZlppjBZ+TQNk3XbhLpkOpuhdbZ562f/kp/+4PuojQ5//u/+I3/31z8nWpwjkdHvNEj9EV6nyWudNrrZIKMmTHKMZoPuzmPU1RBN15BUFynXcJUOZX1DUkpU6Bibr+HEYwwvZDhfMD47oWnbrN9/ndl0xbrZodPQ8Ta6KJ6Bd7BF07Bwt9dQ/k5nPDxCiGPkqqRdTeDFx8SaDdcntISE3fUeoyjCubPH1uYOYbQim09JljYRFl98+YLTccKWLqEKAg1F5PLiGkOT6YnQ2eyj1wl3Hj3AWrtD/fIXaJJAiMpgPieIIhQqdM9DLVI0SWQwXZImMUmSEaQVoiBRFyV+KSKaTXRdRxQyOkKOHakkRUVR+zza2uTdn/wItapJRB0rgyqPCUoRUddBkpEMGcXxQFQR05RFMOf85CmKXPLgYI/Vcs5i4WNqOqeLiOFsQa2o7L3zHvUqpSFm+NfHSIJAkKSEeUVc5GzJNbap02pYfMd7jaEfsDq/YJwW1LVP25IRihBdat260VUFpUjY29lC1nXyICCSBBqtNheLKxzXQVc1xKrGsF2m+QJJENFllW+enDA4v0KzGuy9/084fE1C1nQGiyWWriEqCqqh48qwZsvs2AKiIvDy+Izj42OCIMSwLVxFR8wqHhxsce+1B2wdfp/z82OOPv+IV8dnzOYj6rpGFWuoa2bDKUVeINUJ8WKC1O4iSjq6q6N5HmmwIFitqIuaMk1YLpYMJ1N0TSZLEpI4JEozlnHAyA9RFIVGo4NldngxmTL49DM2tnbQ6pBkcIrjNdjf3MLxDI7GcwauDoaC4d0CyzTLQaJGNUwaTZfZZEqZ5RR1RVIKXIUxuarT2nSRFB9ZVlBUGctrIEkKpqqgygoNxyIvTfxC4U5LpSpSVLFGNW1qf4Ltudx7+z1EyeH6ekJleNz9/bd5IGdcXI0IqmsmR8+YzY+RZyc0XztEs0zCpCRYrZgtfKI8B0XiPI4J84R3d/tsN7uIacw6GYaoYPa3yPKEdDFEtjXKumbb00nLmtWqYl01mP5DY2EUx8wFHVPqkZc3OIbF3QePUdMApYppqjLr/R5ZtKK1WjAPfBZFwdH1mFpRabkaQl3iORaipDO5GkOeoms6iiYxnMUoAhimCUWBKoqUSQZ1QJ1EKHnMwl9h93d49P0fMTl7xUcf/D0d26G71mU5iHEdF11REIqKxM8ZzwJ+9ZtPaaslzQcbNB0HXVc4DyNGVxdEs4h0ETJYhqyuFhz0EqzdEjSDbmsDRXcwdRvHXiOdzliMrjm/Pme1WODnS8pMxbNqbF3E6K/T2N7HfPaM5SChjgJGswUnc5+irrF1lYaioSklbUPmp++/ze+++pZwOSXKFRaSgKramI6HjIytGXiqira2QaN8TCmJDCdTpDxgo+nQ2t0m6d7h2YsvkSOT+Cghr2TC8PZBEAQx19EVz4ZLkjpht9XHuxkwvRhQqNv09vqs7fRx3AKjHnMaDiliHz8ScZpdoqikyms29g7QdJXaFyjjjMUqQgIkocYQQRYF9h2dbUuh12rR77Wpi4L1psvxV5+jaRrezgNOl/Dbb5csopQ4zSkkmV727+lJMnWzjVIn7O5u4qQ6rqHQvPsd5NQne/EpdRbSkku2t/YZzGZM51OyNGNaqXRMiwedjMp7m05eMVkE/OihxHB5znQ8RNMNsjxFFXTWtteRWrt8880TVEryPEdXVGpVpq3CXtsiF0WiNGcxz5hOKspkwvx6QSj3EUULNU8JlgFpWlFXMsPrMXIt4PX7VELJ9fUFeQWyrJAlCVVd0W67hH4EVAT+irOzc8RaRDZdNhHRhIpWwyGNBWZxyqoqmaxCiiwhRkFTNSpNYb5Ykue3jTZRVnEbbf7oX/3XbLoWz377axbDCbOkJg5z2mqFKMBkmeFPlnQ7LrWhI2g2ZaSgOTbxZH5bma4z1gyZjrPNyWjEIvSpKNCtBsMwZ+EPWe9VHJ0/v4XJ1jlNTSRZJYyzJX4hsNHxsMl5OQpI0gpNkpGUiiQvEBFZpgXXfsKGY1OfPaNa3ybJPTJBpdlv4S1W1LbH+GYEVU6ZBkiyQCmInNws+N5OC80zkLSY03BOJUAcbLCSdIaDW7ZGGcSMT85JlzOchs2j995lOZwgjU7ZauoIkszffvWS4SwgLDJUSSTUQjptlzXToEhEwiAEUcTQJBRToipkRquKcZgycGrsKOKjD0ZU5YhFH6yLAe/8FzKJ3GXw6hvm18esggChrriz0QPNoUgDhDyHxEchRixydCFHzZck1MjNTbIkQyjBbHUxt/aoEx8hnrP/xpssjhYE35xR5yXzwQDHUvjhYZdGMKOaqTTqlNUkpIxTHFmi2+9SyTKj0Icio2UbBOefc/LtM8o8w7Etuu0mXv8NNvb6XFwNsHt3KMsSSwWxVhFVgyjP+eTrp/QbTZKqJAlC5kwRK4GWriO3RJK8QKhrxosQa1qjmRAvpywmS4bDBUeDIbVQM1nNOGwquHLNet9js+ERXA1oyk0au29jmg6iCJG/oihEkkwgs3qYZshoMkQsIZIqXo6X6NKItYaL63psbh7S7+6TFwrbrcbtdBeoixyvLhEFEa9hIloKgb9ilYS0GgYyApPhmE63i2Q46EWNnfrc2+1y+PZdPDmlHF2zWI65mYcE8zGSILAKQjwLHEUiqW/Bm6pek6QZslAjihJZVSFQI4kCNTWqquM4LqoAQl2iaBa6YdA1ZYKzMVEtUes6Lwcjfn38FXgdjJsLypbOP/vBA8rkDqahMz694fOP/44giBj5IWkcUhsaN4uQcDBjraqwBxc0tRqv00KW4fJ8zmq6pMxDrG7ntvEqgChUFGnCeDJhvArJNZXdu2vsvHaI0Vljrlo4hoOGhCeIlKsZVbPD47famJ1Ndl485y8/fUZcVCySjEMF8jxHqwouRz7v/OAhLUEhubIo64K1ToMyTxmNbz/3ZrMYMVHAhCItcPSaLE6IwzlFkaMKIiYCQV2iaRp5USBLGpbTJIsCFF2lTG41vkkYcDOcsLF9F73T54NvnnK4e8id1x/Q6m1zvoj45dcfcHn0kjvf/RGT4yvqomKelviijFnGdJWakpy5KBKRsSZLiJT4/oJClBHcDs07Cnd+8H3Onz4nWil0Hr7PUpb4s3/9R9SrgKsvP+fjL75iOBxSZjHHTz6l0iPef+8PefzuT9D9GedTeOP1Qx58b5/r85dEow8YDyeoQomtKsS6RmRptFoNLKeJ29BRhBWSZGNYPbLZNUkNi8sLsrlI4E9YTCe8OJmTyS1qscbRBMyuy3CYsyhyFnnCeHiGYhpEqzGEIYqmYhs6VZHiui2yLEdEQBIEDF2n7bqIZYoqSmRlyuX1gON5wsGj7/H+f/VnjBcBUa1i1jUz/1fsvbWDnUwY35wzWqxIs5RxAlHks7FzwGK1oMhVyHxy/xySMWnsc72IWbdr/Mszmg2PtL3DIBeRy4gPf/O/8+bOXR69+V3Wth8iYqJ4IUmW8Npswsl0wTu//zM01+Pnf/HnnJ8+vZUuqBItx6QpiBQznyDPKStucQyihAYUQUjtWBwc3ENSJDrtBmWVMS9gc3OdV6+O/3GhyejqlLrWsNyKNJqxXC5QvA5ZETJdBuRpgijduqQpVaq0RlE1Gs0WguaheWvMVzPm4yHO1SXdZhfRWiepVJ4eP+H5N1+wFNrs3v8h6WjEy2+/IlpFxLVGs7uHv5gxLxMUIWO/02ZDFhhOb2jYAg8evcmTb79GKEvENCQe3rD+459RzSKq+Bqtznhnq09ne5u3Xn8DR4D/4z98QlxLdDb2aew3mZw+53owQO9voNo2R8MBXx/9XygS3O/I7DkqMz9mXRRIi4Ja1HAsgzBMuLg8Ry9Deo5KGGZoZUK0nFLKOutbHVwtR6tSbFVGFSKCxRVhEOBqEvOrM66vLijCFXO5ZjQe0/cUJBQEVcUyLSxdQlcsqtpmOvMJkpyTmxFXoxmzMMYQRdYsA00QiAWRzb0Dulv32dnYxNnsUyoaYZZQ1AVG20CQdLqvbXPx0ZhVrVHKNjtrb9Boe9xcfkGOApKN1dbQvZJSVsgKGdFqUQsKiqKC7CC7e5jSmLG/wOtusZlmmKbC1fSEaDGnt/06tunQ2H6ApNeYno3s9tC6d3gsOFyenrMaHeEqOQYRDSWAxQXML+nakIYZWjRDG2n0PYuy7TCfTnj2vGQWllzdzFn4Kf1/COCWVwMursb86Z/+jHZTI1pOePTWO1jtLvPlAqEWCPMaP4hJ0pSb8YSDTpO2rpFUKas4YR4lxElGkma0TYOmZVKXFXpWM5dVRsMhax0N11LRNJkkKxEEuFzcUP7iL3jn7iP2u2vsrnVQPZPDtRKt3acsUlQVZFVElHXKsmA5myIJJWvtDo5hMNRUdCRmuUChFYhSQFnWvPzgr7ENC1otOppGzzJwbYuG26AuM8LVAl1uosodLFXhR3fvcj4YE0cBhayx7uooUoWnioSaynwVoOsSjqWh6DY3pye4moDR20KVpVtwX15g2R5+LqDrOWqjRhZURsMr0kpGFmQs3WB+M0KLFzi6QqCr9NpdfFlh39WIo4CGbTA9fUFUV2SSSJlE9Da7mHaX+/sHyLKE6mpcT4+Y37xgNbikCnzKOEdEJBUFwjxGz1PGswWdnspav08tGVR5hGQ2USyDJBwxv7kkLyTismI8GFEVPpejFVGYMg5zKsVkVVacjVdUdUZ2tcC2p0iygKLlqOkSLVqh1QW5kiOLClQCdZKy23cBSHSbrBQpazAshziLcUwFRRKQDJWlH7FKcpqGxlajRRzHyAKUkoyiGiDpqKZLEq8wNBV/5eMHEXEo0lYb9Jo6Wh1T5iGaoSIoArLdI1gUrKY3iEnIeh6jVgK2LCB5JkK3SRwERGnCzz//hqQSiAwXSdTIVytioUZSBAyhZpzlnAURd+4csmGIaHVCsVygvvYuilBS+xM0x0O0TJKiYLwoeDZJuLfzGml2zg+aBsezMbNCYpmM6HZ6dDfv0H/nIdPlCeXxNZrboffmD7FWA26On7DV75MK8OLqAj+K8SwFr+mSuU1GCRjaAsG1b2cSisRqNiNPM1rNBpEfEIUhaBVN16OIQuo0o64qrk6P+eVf/iekvMQRmswHCwzZo9toY7sN0jjB0XXKJOPq6oZpEKJ6Bnqriaap2LqBF8SMp1NaKAiOgyKIpKVAUzfY6PYwLYdeo0koaDitNuPTKyxV4ny14mJwA1HKIvEpAoGDtRZR0KC48zZVZ4/m43c5P72gKHPyIiVPE6qioigzVnLKZC7x8vgZkjfj+Prilr8xLTEGI9YnS/Z3Dum0TAJLgyJmOrlGUBTMZoOuZ9LzutR1AYrJtufxxTJD8BeUWUZJRSZAUglcL0KehBXzLGGynLC/sYZqaaRXM8RSZHNnm/VtDVMZsrweMLtZkoo9Hr31iMXkBFsRiZchmizitHoUWUZV1iSCyP7OFlldM5iMWUUVW7bOnqfRElJ6TQ+xKkknQ8IwYJbCzz854fNnz4nSGEEySbMIs2Pyr/9oG3cc8/XXV3QVi8vRiN03XsdodlGdJrIisxrdIGoV1AVZVjCbL0lLkbySmE5TmqZJYcSU/lOW82tOByc4SgtdXhJGEXlZIAGFJjIPa84G51xeTel7Or2GzXQ6o6FI6ELNo77NOBOpFZVarLi8GiELM2oMJCwOdu/T8myevbjA1Ez0ZpejZ0fUmk1jvU82HxBEKVVdY4khcRQjayaaZhMHEav5iMAPqOuKwE+QS4F1z2J/f4NOQ+fy+BXPX50yi0vCUqLMaxIB5nFIVdcgCAiAKCm0WgbrPRlXTvCsFi/OrglWEY/uP+Ti4hJTuoWorm9tosoWmiITShAHItVoguv0qOUlRTGha2nsPHqbF8OQxdWYZS4iSTXL+YykkkAQWC7HqEbN7lqL04tz8rhkW1UpSdk0KhxdRlUdBolIMA9JsxRZUhBLSIsSAZFJnPP1aMFP7u/hWCKCUiHZLTrra7wuVXzw9ITFbE6RRBjKrdnIUERS4OXVhD9eUzC6JQ3DJDMaWHbFYHWrI0/8FaqaoBY+oinz2nfe4v03HnL57AV+NqXVbXE5XSLVOa4m0NR1HFPntTuH7B9s0mpZRHOf+dkV51cDjqdL0jhBzgvWZKiQCaOKQq35fJCRfRLw4O5L1M4WVx9+RNneZXEzIs1K/AJcw6CxtkZnY4ur03Ny4ZZzVIRLSnPI1L8hjnyUziZee5flPODmZsDzsxni+ZjH99dotpt0RJ0228ifnzM+ekrDUjnotWjKAp//9isM9Qmv720jVDYNWWKSF5iyzDgvSdIcURTptD3y+JyiCHgxXRCN4cFyzsaDXXrGAabXIa0F0jjFdB1MRcd1HIbXV6x5JnWRMZkuOZ8uMb0cQ1GgKNFqAdNpkwkaN4XGj99+i6oW+eCv/prxKidJKvxCwK9KpDigSGoOWzqjwOC+JNLquxheB83ykEQJqppS0mgcHHL04jmyZ5OWF0xGczZaLdzeNlc3c3RVRmz1uVot8M9fUIslVeQzXiyZriLiLKeqSq6qOffW2vQ7TVKzQafTJ/XniFlJf3Ob4OqCIo4xNZUAEUrYbFscOiXzo085eXXEWrfF6bNXzJKCJMmokciynGQyIkFAKGrKoiRLE1RVoZJUVLEmS2MqARBkKkHCkCQarosYa4gItIsFemkSivDw7bd5KKSs/+2HjAcT7PUtuj2Xg67DfBqirh3yZDTj44+e8urFJZMoxe1toAkGgpKyUF2GyxGiqSBdXLHhmDT7PdZ2NxCyBZoUURs99HaX6XJBGSyYhCEvLlcgS+zvdvFaDUaziK9/dcS8vqLIMrYsjTf7Lo92OphaTRAmeLuH7NUgJ0vOB2M+uZpS1fXtvVSXPDjc5yDLSfIAS8jwFIHdtRZm0+V6PGQ+nZBnKbIkEKUlR2GKKgi0BRUhjLhZzqijBFWV0HUTq93BNDTSokRVNdS6wvQ8dMskWCyhKpmPBlwNB9i7B3zw4W9Z29hne+uApuORZQVN06QczGgKIicffUgc+ggUmKbKZsslTGzCNCQ2JGyzwSqKyOqYh46NhIxsNJA8B0Gr2f7RP6f2tnmVfcILP+Bf/vd/yP5aiycnV5zkJlt/8Kds8Aumn/2WJEnomTtsdHZ57611qqsLzlchT64m3Ntuk4kiWSmRpSXIEnbb4+H9OwhZDHmMZLVRVjn6hkejZ5AGF3z74lsUau7uNGjLNYPxkm/PM+K0RjNUkqxit90kocTJE7xWi8fvv0lXqlGLKbLps3dnl+H1lCgI2NvoUAgKUawRR7eTc8+xb2fKlUYjzcmzirPpirCUMbodXl5c0/Nc3nvzbfBsVvMBi+efo9cCKrdikjuOSyXUHJ2d4lgKCiZZLlMuE8gq8lVIeDPAv7wkn064Hke4Bxs8vbwho8RuyIhayvrr92kdbJGrBqbbQi+arOkq09EV2jdPsJwG/cO79NwGzuYOr65P0UWBhuMgUlLmGTd+SEp9a7MSJZqKjCwJ6HUJ4QLBtHANhZtFSmtzj8lyhaH/f0cj/7+hydMnr7DcBhu9hNn4hrpKaTbbTAchoqxSI6CaDYq04Ob4FElUKBERJIlK07mezrh5+TV912KjtYncOmClNvjqkw958eHvuF4E5EaLV69+w9X1Myyh4M2tHTa31wmihI9XMyxdZx4VXKU1bzYcpMxGliTu3b9DTsL0+CVFLLK6Lojmc2rZIEkSSkHH9Vrce+f3UHSNj3/7tzgPvoNhGPzN11/yb376My5MiaeKTLO1znf/xZ+Qmir/2//6P3P+5GNOr0v2332IrlVkSYGcTfHW2qh2TbxIGF5f0FRy9toqI6HmbLbAaXrc3e2yvqaw0W+yuX+XqhZJ0jmXx3NUVcLSRG5mY1Ry0jRj7GecaQI7nohnN6iR0DwH3bIp05RakjHSnJt6R+UAACAASURBVOEqYOKvOFjv0AlSwpWPp2uYjsduf52drW2oa5rVjF5TojAsvvvPf8QXn/wKIfVZ3kz4ajxCA1SrjyZraKpJau9g3JOoBseodUCtWtTkUPhUdYagG9SWSuHX5FJFpcIoKum++WOsTp8sWuLoCe2mTLpmIsQLYkEiWE4xCwNTVNF1g+fPJ8hJxOv7LYTtu6TLEa1WA0OTKWwLp9tGViXE+ZJ2KiIpFarV4rKQeHJ0RncVI5k2QZJS1DVpLmLUIpPBkE6rQafdZHnxktAPUSWFOsu5PB0Q2NtU8zM0SSBLEgxVxdJ0dNUgSyNWsc8yzpHrioOmycO1DoblUppdokqlWM3Y0CvQJJBrVNtDkCSSaIUfBvjBnLJYcOe179GwdLS2R+GWtO69y/L0BQglAjlqXRImGcF4iohAmYWU4YrhcEJtNlh79AhtOuKT3/w1RRKjibDbX8dobyAWBeQLDNVAEcD2GlS1iyoLjM4vEesCXVN5Z28HYTngTtdmf7OHZdkIVYGrQKJrVHWBrBrM5nMuz07ZXOuieDGabmLJCzRVplRUWpZNFEbkhoNZ1Ww0W8R2idFoc/ztt8TTKfd3+7i6imforLkGhy2TyI9YJQWb633EKqO5vstar0dyfU6/3cHd2Cddzbk6O2F5s+Dw/j3uv/Eu6mhCGSSQ18zjnGUpMg1ympZAvFxxUqjsrrfRgwBHElHdDpKaMb08YRrMSCqIo5TBbEpcxozmKyZhjiYr+LHPHJNVVqMIFfMoIFBa5MsZUhGRRBXNuqBviVgWaIJMmZRQgalqCNRsmDqCrqOZ7q0JhxzP1G/PaF6gahpVUeJ5DWTLZnB5hai56JZDWZVUZY0g6yiWhOAHWE6DKK9IopjLZUKUprj9dSogz5bMgxSr8xqyHfDmG3dZjmf4k4BgFTI7eY4ra2waItdSxTj0ScvqNtgUHR7vvUbLdpnJBXKZIFQxk3BOp2HQabl0++vEwyskRGRRQqwy4uEF0mKM4XmE11Mug5xBkuOmCX/8Bz9hq/TpTG54OlqwXIas0ozKP+PZX70EuUSKYdfqkp0cI2QRYpbTWO8S5Tk/eOctoirn+vKYunZYhhlaVdDf2qXWXfzZDVkcoeoGq8WKyPfRFQ1T0xHrmjLLKHIVS9HJlBKCOR/+xb/jwc5DfvZf/re4ls3JF18ijgQyS2a4WKEVCv5wQFOGh1s9FElEFFVsW2d+MURXbVptgUpvUFxfkycxhqayTHNmc58MjcpfMs4E7FLl4mbAvabNcDjl27MrzKLE1QUswySJImqtQSboqAXsPn6H2dkzlp/FNChwZxGzNCGMa2pN4YvBEtSK9zbbBMGcm1WCa9sYuow/9Yn0JZuiQXg9IR4eY8gFmdPErhv08wBXrHHkgvziW/rb9zloexxff8vsZknfVDFUlVGc8+T8jFczH02A+1trLBZTtra6XA5HNDZ3yIw1UHUkswFWzv13DrD0bcpcJA0Vphttzo4uMGwDc32DAAF7c8Rhq43eaPPtt08JwpAsTejbGk3HxFRFpNUIAVj4PqNlxNFkxKA0kKoUU1Hpbb/H6cUTkGT+6qMhP/zhP4F5yPMvvmS3ghfPn7O3fwdJVpFtB8VtkKki1W4Lnv2SMi05m61IoghTNaAIWEQXfDL+lEE4BVHhk6scQ0wxZIGu0UJQdHY6JsskYXRzdatYzgyiIKLISzo7HTRFRpJlFM1gUUCrbRCqAeXKJ0JhZ8OmjEMwZRLNQPGaqL09bAyyyYz6dkFDXuSUcUhS3UL+PNPDdj3ENMQgptPvESUa01en9NSM7751F7dpUoVLlPUOfdfg+fCaMKtvtdtlRC1IOK6DYVsUaUxW1Wz1LPZ7BsXigm8uzkiTCFWB/fUG0/GUi/mCuw/v8JM//gOOnnxBpYpgbEHp0N8wKLOX9PbWGd4o9DctUtXi+vqIx3v7DMOE4XJKuJog5xlSlZJEOdNKox03kRWNPFqS+TPqoEZURbp2i9fff5fufkoaJnzz5AmXkxnTpEJJM0TVwJRvuWpfjVe4rSZeLRDWIqvhBN3rUAiX5IJClOZkWY4h1pCJqELFfVtEmftoBwYba9ukks11XDMfj0niEN3Q6LgtmnWBrHv88R/+Adkqo2fWGE2D5nqfRZpjmxrrjoEpK7Tbbb7305+wdnAXWVqQDAasPJntnsDupchoEDJbJqRlQVkKRAWcLwpiYJLIrJYSDx/v48c12eCSPCt48Pa7DJYpX51eknBN2684H09o6wJJXZKUNfXJJZpu0dzap5LaXJ2csAqn3L93l8Ndj1eff4ynVCiygiLLSP6UB3tr2MENfVfibk/Dv54yHoVsmiL0E0TVok4z2p6LX9ZkeYFpmjRtg45jMFdEXF2hqytcRAkvFwu+MxvxyPNwMpgeXxJnGfpeH1UuIEtJfJ9eo8X1aIEfp/QsE8V1ub+9y3gxJ0Elr1VKUeDCX/Hvf/sb3P4OC8nG+9F/w+zrp1SL/xPXzFBEGA1G9IyamwlksU3DbWF0+0hCgUhGLRsojsv8/IydvoN0PmbQsghNg45ls9ZqsL51B1fT2H77Xf78//45f/vtZ3z+4lu2bR29znF0gyC+Ddj9tGC8CNnor9P3GnTJkVsuzvr67Swqi1DrkirP0FQZhBpThurqBeHRN8xfnlAv+9TLJVfXU7xOl7ComAcx05WPZ2iYhkWmKiTJrbK1qEClxFEEUkFGVkzqSkQSRCTAtC1EsaDtqpS1QHe9S8tWmNyMufPmuxw8lhhM52ilyNXTp/iVRFh5/PIXv+D8s79hEUd07ryG1l/H8pp4pkb3+iVH33zG0/GEVneHeZpjNdewWhrlqstiNELvdilkhSxPuBxMeHWxYl4JfOftA1oP77CqPUZijfNgm4PtbYqbE6KPfsf4LODXR8fs3j2g02sRHh2jCxndtsd7Dw64mAdQgSyJ1FXJ2uPXabgus5MTzq4HuIaC23KJshg5WhEEEVGWockSsqAillDKEFcSp5OAxcKnKdW0bA1JUmG5omE4zEMRzVCxLINSEpEVBVmAJI6hrIiigOX8hsGrF7z1+F1+/p//Mzf3D3l3s42NwL/9H/4tf/V3n/C7z35Baefs3zugrlfU84zd9QNGsyUzOWVf14nCjFWQYJo6ltJA0bqIFZRhhqAptO88xPi7J/jLCRcvvqBj23x1Neb7f/InKJbJvccP+F/+p5qnn/2W848+40HnEKnTwF1rw+Ejjj/5mNOjV6SLGaokonjrOJ0+mVIxr23evH+XxeUxS81jHh+xv3NIt+WwGr1ikeY4Ss7zY59WKXC9qhkGErru3rKlFJXN9TaJBvOy4P7+Ng/319m6c48sDinSgJfDEW74JS371hgXZDWWbbH0A0RRpO3auLYFgoSIzCooWRUhgihyc/ScMsp47w/+kPBkyI1wyrOPPmQxumBgyjhVRl1XKNQsk4zL64h19Sl2+xCKknSRoWlrqL11eH6O7H/N5dwnzCqCwRVJJlGRMp9ovP56n1F4hjrdIM4qtnYttLygXCUUdo+CmovTp/z2i9+xGJxw0HQIHJeuLdEyVFQJyjRBEWpkQBCgYxmYFOiahm25UKdIechkNGBaGSgGRKsZklj+40KTRQiNTpunz84ZDGcYqsjx4Bqv0SQrCkDA9BpkSUCpaXQO3uD05IIyr5kOBghiTtcyWWt1WczmLLMnzESLT3/zK7LFnCfnCzR7jmVoWKbGwdpD3nj9Pe7ducv4/IRVnDI4+ZJt12SSRuSVhWPYrK/dxbPWuLct8NnxFXUBaZYzPXqCuX8fP84outs4ZYppW1xPx/ynb77lX/2b/5HfffYVxydn/OrXv0ULl7yxtc/j19/CbLaQ11vs9dYQhm1Gsykny5LNHRetyLA2GjQdEd3QSIKEeBni6QUHjkCVCKi6g+jYOJqEk/v0uzvsbW9RyR7jmyPGk2varU20bMXWegeaFs+jmEs/4XwUwGEbt+1QqQJ+mmPaKrVcI0syoigShBEd26BhmPRMhyuhZnd/G1M18dpd+t0uuu0g9jZQBJm6LNlqunQsneUixhQhSTJEs8Pa9g8oF09xrZrj0UusrU2M5gZxHqNaBnGY4kYxipIiaRWGbhPVNbJSAxGH97Yo/AHFquK11x+zvHiKqNYoukMS5pSViOAPSCORyy9lNg8S1OEMZTmnHs8wGhVOr8va1iYKBaKugmMjSgKtKoNlgeaYVG4H/3xIFickUYJtNxHlWwWmrhYocYwsifS7LQRKdt98j+XwhiSOGA1XzDKdOEvQDBNTEdEUmaZjI8gykqIiihLdhku3Z5CsfFpVRNtWcbtN7P4W8uG7JMfP2bo8IwwXLPwxk2BKUgkEyxVxVrGMM14eH3HYt6HdQMs6iJbHq2dH9G0N8hRZqhDKmGw1J/dXyGVNHiecXA6YBRmyKvD919/i6Udf8Wj7LufXJ3QtnZ3uOuuP/gnF8Bo9X1CuLqmymNqUWe/1abo2nXYLRRKJggjFdZge59xd99g+2MN0HBRJQKDA1WAalP8AI4xZLENURaG9sYlnalzEMZFiYhsOlqyxbcgc30wpDZ1Nx2JaCCzilPloiCHAwpLQXYle28PprbOarxCub0jzkv7GPp2GQi0pVMs5+v03KMocpcjIAp869smXEdfXIHQLlssIP8oIk4IgLZhlcJnkyHVGHqe0jZLTkY8kHdPbuYeiSCCKWN011jWFvHPAR7/+JdNoziTMuFxlrLIaiZyG18HtvMVK+JrCP0XSFYo0IwuWGKaKSEEp64zTiupmzGoV0O13cVSFRn+D2WzGYulz31EhDQmFW0tI4a9ouh5+ELHbKrmuKhqKiBwsMWWJlXqrH5QVsDWVJEyQdBWv2SFJUrqtNrlboIg1F4s56YsB/zQq8coERRFoGSGu5RDWLpoo0lnfZ3J2jhzPibQG7nzJcroiCnP6ls0oyJGtJg+22gilRSOcIcYL8kKn46jsbfY4X0rc++H3qMMPMBwHigKEEr23hjq5otk0GZ8NQap4c8tmzU3YkK+pKgHRcdk0+zSmA2bLMb2mTVbm1HWJZTR4tL+Fa9lo5iZHL1P81ZRGr4nb65GaDZJogaQo+PMVlVAipBm5HxOHMUJdEMymxIGPIYtosoSgaZR5SZ0WSGZN0zHQK5G+olPnsOP2ONy7R6PtMT0/o6Vscby4IklDrkchHaPHvmfR1TZI8+xWAe+tsYHGk4+eMc/B6nYQ5QGKInM8jwgqidXRCb21gmzuU8gK26LEi+tjlqMMYTImyysWacr2eo839jsYqoZmuhSTAY5rIQP3Hz9C7/R5/uyIOPoApZ4xiXLKMiMta86uSp5efcTZPCJFoW71qFQdOZ6zce8hP/nx7xEsZ8yOn6PEYxazEcNowXlS0rZzsumYlgHl9JrFzQXBMsIURRqqSi3qXMxjLkZzDGDDdTAKsCUFxzJpdZsYnTZBVHB6tuDBvS5bm5tsvCEjVjajmxUXRyHaZhcBA8UwUCSw++vs/P5PaQU+BiXNhs3Hn/w9hiyg6zJtz0a3dbSqYFlLLDKISjjod7EzlVeDMXmtk8wXbBz+kMaWx/joA87FMxytgWo1WV+7Q083KNISQVQolgPknT0iUcFFJ/3N51xNrgmCFbokIdbgxxFP/TGTLKMWVGp1jRCXMHmFJua4aovvvf9dvnPY4vLihKaY88gr+O5rWxSKyfU0omUKDAoRS5HZW+8wWoXIqs5oBZNFyc62xfRqQN9OGZvbFJsPcVWPejpn5+AuJ6tPqeocURJRRJEgL4nSDE032Oh1cTQFPQ/Y3XiEXzTIBieE1ZLAH2LUBY5tUBs6iirzL376Y/qHI/7y578mjBJMVQBFQxahaaloXROKnO2miC5Cy2nAYsDbh5vkSczo4oSuJuD2W7Rci9nZKZooIioGcqUhFBVis89SPmU6eo6oeyjNDb54ccbrb73D/Y0mn332Od8qIpdFgpnHCI6JoqnEacrpYIhYZ0h5QZ4JbK+52ArYUk1Hy3nw499DTGLef7DDx598zn/88AsEWaDj6Vi6QlmWeJZGphmMVj4pK+zeJrLhYrc6TCc+lahQ1SmqppFmCWUFkuVhv/Emve0HRJXGLIpRkKnDgCQK0GSFSgJ7c4MH99o0hRTDK9l4tMfzZIVnmcyHA9a6Pd7/7g+Ri4jJ1QWryZjG9gZWVVEVPmW5oPRnaFFAr47oNGVq3WO0qvhmGHAT5my1LEzHIihK0qxElxTScIUuCeB6PH78mDVbR1J03P42rf4mn794wX/48oytswVv7O+zvrPFLPc4/eXfsPn/cPZeO7qm6Xne9eUc/u/PlatWrVqhV8fpnqZmOB6SGkkALYiwBO8Yhnd9NN41YBje0YYsyQAh0BRMyCRBysMhh5N7Oq28Ktefw5ezN4pHwJN48L73cz/X5Yl8/OljlKZGt10OH52xmt5iyhqOJvDkdIzaxAT1DnK4YCi3lJbOe8+6xOsViihT/EPbwXR94jhBFe4BuGLd4JoGy7zAkgQOHI0nBx6CLCKIBaapYQddhIsrwsmE2e013ihAaEt0wySq4Mu3l2R5zvcenbI3HGOPdnnw3R8SJgVX3/yW5XpJIDVM3n3L733+T/B/94cstYDpyykDd0RXW1EnIYVr4SkqoqCyTkQGZgfTGyC2IlQSih8gZXfI6YqBKWOfjimqgmwxJllHbK4vGI5qjg6eIRQRWp0z7PUor5a4po7d2WOyXLCdznkauAw9m7iqSfKSD3sBdRTRtAW51yUSbYoS6niDblqYkkCLiFwXNPEaS5U4HHbIyoSnOx2SVmKVFuRZSpTmRACCiK9UtAhoqkJRlPimiCKINLVEEHSoGpGiyIjTDFPXcFUDTVOwbYNNXGELAvFkyt6DRyhml2SzRvcCbt9csJxNmCQZf/Unf06hK7R1RJJsmV2/5Ort1zhej263w0AT8OSKTdMQCRLX6xXbaIZu+Zi6iKZLmKpIWGTEmy0vryJuopzPP3uPwYNTbtY5m2xOmBpsN+cUWckPno1R9/+Iq59/gYnIeS2zLQzM+Tl9XcIPPPb2WnaCcyxFRqgqpLZC2izwDkYUpo5EQ7/nUck1bV5iCC17lsbrsiSrKjqqialriG1LUjXM1zFJXrETGOx1A5xBh0aAdd7gezaKomJZJrplsVzM2W7W1EVNkubQVMjxlr5tEK6n/MWf/ide/Z3H8I/+FePdAZNM4PmXXyGmGaam0VMHPP9mimsUCF7Fe48+5fLVrxD8AdlqjtEJ0Pq7CIIOokRdVFRxRjW9RXa79AKP9Ntf8fqLkjyCV+9SPm5ELi6vePn8JQ+ffYy4ilHDKbf/9f9hFqh43/8udV1R387Y3Jxzetrji2uHRgdNt5GjWyZvN2gPdunuHhNnJvvHT3F8l6xqmZyvePVmhVhXjCyNs3GfxXqKpBgc7nR5Pd+gqyKuZTLSFMaCxkfPnnFwcIDVCRCCHnm8oHn3jh3XYL2KMUUQTZNJViBLMrpyz/mUJBFJNTAqmG9eIEkq+8MdtDjBi7ekmyllT+ZP//j/4vbNl6ALNKWN1haUVcF1vGHHt6iRySqJ/e6QYrMiTlOU7hGCOsR78Cm7vd8wnS8Z2DI1MXlV0ootTAreZTXLoEJRTzg8GKIXKcnbGzbvznnxxU/56HjMbHLO1Re/oi+31LnIZyc7jPsdOo5Oug2JspxAU4iLGlWSEcoC3TEZjPoIikqWVtSCyOUqxB06SHJLmsbQiv+40KQ/2sfvBGRpStPeMlsuCZchtmlhdgMWYcx+lZMkKf7BMX/717+mrGvWqw2+JDHY30PNZ0TLOQVwPdlwW0rE64h3t7fsPf6YXm+f1WpDGCbcZjIre8BGNXkxXzApGgRZZr/jYUQhmtRydPKIwfFnVKWEqmuoioBUxFS1TZtsaLL4viERLjE8n2R+QxVG/PPPn7C8fMG3X/+WoSLhra/47uNH7O6cEozHlJbBL//y/6O/uYOOwyat8LsjCl3GHQd4+3sI4S2qrAMlZluRJRWXrUqn62EJKp7vgdhid4aYLURvfsY6rvH2njA6OCGZVtRxzqOzB5SrFUJSo6gzNsslYQiG7iO7FqtFSFEVqJKMKEnIQsvJXo/Z3Zy9QUDaCCRVyYPTUwJ/QJ3GVOEKzXYRq5Z3X75hvq4oJlueHDzjxXYO2hZNMxkenXJ81GEgfAfJVxgnIZN3X+J4AzTLQqAmjjOKPEVWXUBGU3UoFWxFpRQEjno2abtFUreUdYu3NyLcbGglGaurIVYSWbhB0GSk5I70JmXXszEP99k//NfUYsRifs2gFyAKAkUDguhQCQ3ySrhXHAY+W8mkFUBTZdqyoqHF8Lo4joufTjGrLXu7fbQmQ0KEqma13KL0dskEk7xYImw2OLKE7nTodnOii7fMtwmlrOBYFgNrgCSIVNb9ts8yNTxHQRcWKNc/RhMU1EGH67dL5klGuIlIEfBMFaHJSdoGua24unyFUI0YWRqDw0PGqsbsfIokyAh1RkNLS0GS3W8/aCGOEx50TFJRYPn3v+CwyNjZP+DDR89YL1fI8Rb9zVccH5zgD97j8uVPyYop7D8CRyPoiAQ9D8vvo0o6ouPwXycX9AY+mgq6qdMUKWVVU7U6RXFP1ReBTZQy6AcUeQl1jWWZqKaNIYkMdYU3SYxmGBSqTrqNmKxCDM9nZ2cPoarvieNhztAzcHQJbVshCjmWZxAEQw4f7FGtb7lezZi+Ocfsj1gsLxCaCrlsWC9WvLz4Mb+sdYok5Hyds05zsqqkbiXu7mLWesOTwOag67Be5rTalrq7prg5R1RVTNXAf/iYbemgCxqGKhKtcsI8oxVVkhrG7oDDJ89wA7h7uUaJUubbCarU4ugybRYimwrBzhlWPmXgSkSbJZKp4OgO47Nd8iShqSEzfSgr0tWKMExp8hrPdsgEmf2qRa5qAsfGHthM7kJEoOt2MFSNlpY0DDkeDqnDLe9urpBVjbSo0EyLOEv59uKOH374AL2pUYoWMzAR/B7bPEf3hihpjb6ZEUkGpqrxu08FXic6B+P3+DycUtoepWlRhUsot0wWG0Sx4vGDPayOzcGwh1QmqLaNbHhUeYYsF/eq2OEJxt0a05vSbmYswxyhyKmiJZJsgO3TRAUUDfujAF+VkVUJzfYw+0f0HZlyfkm6uMS2RQR3gKoDbYwpaaiGiqLprNYzFNelYzg0eYYtNcw2GZaukckS1j+YpLz+DpttRBmnOKaJb5o8Ccbo2wxJUJDyiurbdyw1hTiPSXSDm/mSMInI8oK9ns2Op+M5OqttyTaMUbwevlLwww9q/vQnv2F9dUWyiREkFU2uud4kROktdd2StQJZWfDi7/6Goojw33uAZQTYvoHHmmVR3YMInQBFllGEiioOEWyFOkq5+e0V21WGrGk8HHn4qcBkk6AXBb4iYSBxKbZoEqR353zyyXd4z/L5fN9g16mJ4oLh0EHRfFYziyApqZuS7dVLbiYLTFND2xTc3d6xmq857DjolsV1mLMMIxRJpqlqJtsEVIXDqkASdDqmjlKXxKsV55eXONqH7Hx0SpVeUMe3zN/dEq+2BA8+IWeNr4j3pzmiSSHoeEOfjljiGjqaLHB7cY4R3rG730O2TCbLjL/85WveTrf806ePePrJJ7ydxijyCy5nMXK/x/jpe+TJis74lP/xv/t92qTi5bdXHO8eEEgRebgmv3yHJOWojo+Q55DGrFyH8yREpqZGJixaNlWLq3VZlxPypsRxB4imh0tOE0+JJhdU0RmqeUgdrvhkV2Xv0w85PNql1Tq8u5iwXqyAOaogQp6w2/N5cTFBKhsCRaeOIzoBoFfMlT5nB4+QGnjz5VcU8pZos6E76lOUFY0oUiAgKRr7gy57fR9dhCZVyKYZ6XbKu1/8lJ8//wJHN/lh8oix7dHqDkpnwObiHV1lwsPxgNvZlEHHoWoF5tuEcLlBScExVbZrcPaHHHSH2DnoZcl6VRIvIsJtjt3pYGpQphFdv4ugdFBamSYrKZYy6dqlZ7iM9hzaaolvCzRFzPOv7hDziKGpsdYdtKBDt2PT6TsMx8f88b//D2xWaxShRbccdo9PsKoNlgaWrtDzDPBcOr0ehu1yvYz44u0VDiWPRwNyUUa1LOq25u2Lrzg4GNJWLmkkUzSQtVADpq5jqCpdz2Sv57N/9gD74RMu311xc/kbJFmkPTiGSqQfBExur5jdXvLe9z/n/fcfseeJOKrC4uYaL3Cxgi6//08+wdl/hrNzRrG4RRYb3r5+jiyH7O34xNNrNtdzbt5sEOqY7kACQ+Um0tlOY2gEwkYk1j2cwEcsU+Iiwww8hDhh6Egs8hJf11FHAVVZ4XdNHgx2eXjYYzG5I8fg67c3vM2vCWKZ26sb7KyBuYyguWCK9zNrqqAaGvHNGk1R6FgSM0PHd3fZHQ2Q1Ssml1OEpKSuoJFk8qZGFRrGwx56knA5mUPT0MQxRZSgygI/+METgqFDIpu8fjsjW88J/F0kUeDdm5e08QrnO88o0hxJuYfC9x2Tvb0+Hzw8YnhwTOHvoj/7PrPn37JvwTdffcP2xZp8tcZQFd5/csRPfjZh1Ei0ms6z7/wzLl7+nOTuKwLHQex0iEUXrXuAWNc0WU5T1AhVScc2ME/2SBcqcpZwnLaE04Tn8VtMw2F48hh9uEcz3Mc7/RS/SihUiZFc8NH3fshWMfl//+3/ypNdn95wh9v5mtV8RrgJ2Rl63N1eMaLEWt2gujatAtQlsqLjGiqaWFOES+azBTeTGV3fwRRbnu51mZcCP/vVcwJVYB4XSLJCXjdIUgNVwaDjowktgiigqAq216Hvd5i/uaCoa0TTRNckFBEkAfJoQ6nJjEaHdAYHFGlJnld0RAHn8IRbrUt0OaVvp1wtL9GEBkMUsKSGPNsyiyLWk0vCThfP8jFdjVbQicMt08tLH963TQAAIABJREFU5PAO11GgTpHEgmRyyfxmgqBK+IMR+sGHTNjjz//8P7KZX6I5Pr//R/8TngZ//Z//Cx//6F/iv/87DJIb1s/f8qsv3tDbvEHZ9WnzEM0wORkFFIoFCPQ8hzaaEb56QZ5UFKJIKotUWUJelGzykmmcIssiimowHAwxVYnVZstyuWaSFAhtw5u45JHjcvTgiMndnKRJcAWFSjZQZAm5EfAdl5vmmm2WsokTPE1joIhIjsbVb37CSV9mJDXUszWi5zOdTsmrgjKLyUqVn//9b5HaFLNsEf2c8fgAxBpZizl6eMrOqIPpjNCLnHJ9i2A5VElEMrtB3MwZdwXsukVbxqy5IxA73F7c8b/8b/8789e/5fHRId/78AcYN7+lXq/xVJPF9ZLlxd/zvjqh89l7KK5FcL4g//oVd/PXDD2To6GLZPhQN1CIyKaCIIssN/cWyM224NS3ON07wLFUhiOVVrUZHD9g9c030MT3KnjFYvTJGcO9h+j+A0zHpQonbOeXkG4YuDZKU5BIApNCoa0zJFHC9zxkSUCWJCzHI1pukaoax/I4PjyD1RQxj7l99xapEFhObmjKAqlSMbMJGSVl3ZJkKYGioRkavcEBRx2PbLVC740pZlPieUK2vmI86jFbzpFVE9W2CaZrZllDI7lcbSz6cc72m5fo/TNIrikm59xdfs3p2MU0A379zdf4skybbnB9ldPhPuMHZ2i6yGZ6xyqKkEUJSRBQ2gZVUej1B5iagmjopFVGVOa0IghlgmnpdDybJCv/caHJeGdIna/ZblZ4rompK+RpiVDfb0jX6zXpdsF0tmCzCBHqmMndBNUyKD0XSVHRpB7F1Tuu0oq9jz6kmOXMFZ/aqnny4e8xv7tkMTlnvcjY2Tngz/7k35P87o/4+vlz7CZDszy6Xp+Tvk3gmaiWj+6YlMmKMlqjSKCKgGGTZyliuKaMQoRwiWprXD7/lsV0ged26AYu//rTZxhtysh2cEdDtL09BL9HmhboV6/ZEWAt+BTlGkORkBoY7h0h+33KOEJRVXqBRAPEFaiiQiPI9H0LWW4x3A5SkvPyL/+W0wOX8QOb9VRmMP6Ar159QbZacdTvoJljfvSjz/lo+YZf/uonrAQBUTvAt0TyVUo8naAPRoiSgi5LHA+HWKJAL/CYRxV+2UGyHHqPnlJe36ILFU1TE99csblakoZr8iTlvb7Gwff/G/KiQFFELE/Hk5YMBrtImoFMhZ8u8TwNw1BoyoysFqirHEEAKgVaEVWzaIsWWgUcgzraovsdRFVBlnQ22y1pmiNRU1UttudRh2vkIkEpNAxtjNnZpau3GL5It9dFCG8pyxIECc20aNKQCgGz16WyHZLbOb6pkjoOlSgg1y29jsv1fEWZhVRlQbfb4frVa/7kP/4nfN/h8L2PGPgjAlmBokQyJJa314w8m7waslrOWK/WLLKSfd1guLNDozo0iylNeH+aZLn2fRXQ90nmCas3L6jCNUJZACLzbcqx3aGSK0amwkfHAScfPqQ33CXYf4DVGbK9viJwRUzfoc0TqrakpkQ3A8bDE27ffsXQdcjiLX3PIBAisjLGDwZIvSPYP6W6eIVryGhKRrV6zelOB9HeYXj2Pp4Opt7QiA2yKkMWsf9gj0+2H2ELWyRNJlreImkaouVSlQJZkeO7FrKqMxj0aKqacDEjFXXSusESGmzXRCkqbNuHyYIy3rLY3p9NbLZb/CDg8OFjdAm2SU7HdrBkyEcdkmrJOjdx3B6qpNHkFR1Lp+h3uaollFaknoeEy4xNmDDZpiSpwM2qYJPlCG2DIwvQVhz7Pk7H5rtnXcxkS5Y3KHVBGkdkd1eY/R10yyYLIzRNpqfZxJ0ur7YZYpgiiy1j38bI7/DyKwZPnuHaIovtFOnVtzRlTN/RsFWdodZh/+CEaKGxt6vSqgJffv1bsjhiJ7BRDZ9sE5LrElNEiiRDrBosXSerBZLNho4foBc5iiD9A+E9xDBtek6Hpmm4u5swCrp0VJ3W8dh6IVFRkCYFcVHQVCq/Ob/m488+RJu9xe/vIggyhmnQdnts4xSt1yWoj6lu53RVCTvwEC2Hw8ePKF4KJGlIupiTbeesltc0ZUpv1GEw6DAY91Gqku3NWzrdPm11r94WjYL45pKmVVC8gO54yCiruJ6vmYUZAMHApkoWSLKEJQqQJmzTFs+2aZuMuk6Z3SSk2+V9A6jbx/NGFPkGQ5MQlRZZVgizkrxukZoWpzsiv3qLJCgswhJD11FkGZEWsW0oi5z+wQHTly/RVZmO7dK3XFTZIl6tiMIlv/6r/8CN6RO8/5D1fE2YJORVi6YoLMP7x5lGjULL3WJF0bQYnQ6dcMOzwx3eLlKeRzF5WSDkJTYtdSvxrOeC6XIzXxDH9x/NM0vm4x98l+vzW+ZX11T5DEc3cHo7iIKKrKiUeUqrNsTxlnU0p21b2rql65qcjHyuNwXrTcQiKfHUlq6eYyga+8MuTzsael2y+ernnN9eMBh4OEFAGm1IFku6O4c02YbfzFbUac56uUF2RfLlCpuabuBzl7d8eTdjHiXUgCCIdHWVeDJnaKrsfP4pPVWi2SwIdo95cXfDj/9iw/tP/me6/UO++vLPefWrOwaHJ+wevEdVnSOnSzbLFY1YIKsqvuGiVhWibeM4NrGh4ZhDvNOH1OGKJmz47//Z75KtQ5oCHn3+A7qxgmP8mPE3z7lczln83V8Q7D/gX/7hH7A/NLk5v0DScmytJZ5t0Ispek9F9UaU64g4q3n+s79Bq5bUikSc1ZRFTtEUGKLDp71Ddv0jvp19TbL+Gq/1OT0YYw5MXLli8dVP+fHdVzzesdjZHbP35DG6AXKd8uDREVcXJs7X55iqhKGqSJrBerogDxMC32Lg6piezKsrBUs3OUHl9PSE8PyWq7/4c/KqQVOGRHWNa5lEUYzvuhyMh9iqhO+a5LLAu1/+hHUi8/X5F1CuieqMxXqLqjs0ikEYJ0S379BEge98+ik//cmPOe2aqFXKm0bgNi6o0wrLs+kfnvDo4IDpy6+Y3E6Io5QkzoiyEoGaR0e77Pf7KJKMIAjUeUFZZfc8LQVSS2O6DRBFkWKz5Hsfvke43vDt+VvibYJuWJz0fW62MQUy+ydPOR6MOdvp8220QJFk1pXCXSTw/SdnZNO3SJJA2zRI96RJdnfH/Kvf+5zDYYBaZxiOzWWUU1Ql6XaBJMu8PL/Gjkr64yFJIpKkGYYoEFg2hiIjqgJiZ4B79j5vJ1P+7z/7S8L1gu893WF8uoskyoSbNfPJHXsDj65UISo6u4cHkG2pkoig41OZfUZnDvbohAKZJtjB2ORoFwn/9v/8az4YKxBvubpdEyYZf/jIwXAsKrXLKNWwXCijlBdtyyxuyYuKvY6DIOnUYQZ5BYpI1xfI1iX9o30yBDbrLXUm8/TAhcNHSJ0jPl+VGP6AVtWps49YvPxbNEmmraFKG0S1RlcliqKhjmJkrUJHoG/qjD0L3+1RCndMLqcYqkwrymyjCMXrICoKmm1hCiJRdo0mi+SzO+IwpDvuYHVc4kYjOHmGH37B3csvOfrAxBRydE3mfL6k/dWXnPQ6qIqMpeZ89+wQWRSoigK/FyDqItvXv8RDxR7towsiUhGzzirm75b8IvkF4aJi5KoYQZ/k1RXRPKZoFCRzgON59Lo2UpUjVCmCJFLHa8pQQzQURN1F1hOIE3zPYv9knyZtCcMCMUtRJZtWDVCmW0RZ4LMf/Rt4+2uCViB99ZI/ODkEoURRLbr7PR6fPUYXMkDE8Tp4loFWReTRmiIM0W0LqclRhZY82jBbJPz6i2+p8oI2D+gNB+waJo5ss+O5FMkWS5UxfY9NlKKJJTsDG9nxKWoQmpL1aoGkyIiOiSlUlNGWtCyQLQdH10nihGVScDQa4AZdmiLFNGSM3SE33z6nSkoMU2Fn1OEjRhx1FaR8yGa74Wo5xzIdVllB1ZRIosjZ2TFdzaOIZlTzLdubK/aCp4iGQ5WXvPnyJbPFmigqSGLYf7zHL378K/Li51y/fUtDjVpE/MUf/ylSW/KgK/Ho4Rv0vUcous0Hh11e/uxvuZ1PqFdz9scBx49OOT7aZZnUJFlJd2eXbsdiffmaRaGw6gwps5A6y7gJE+7ymhyRpKrY6dqodUMgmUzyik1aklb3AN11UbNYR+iCjKvrRHEOvs08LGmQUCWRzTIirWtmcYrX6WKrKr6msDvsEG1jlCZhZMgo8QpmOr22wKq3JG1F1UgkeYgpNHRMEzkVEbOSenaL82iPYc9EtQ3ixQLfd8mnN2C7NMUa+9EDyqJBXH/FJ49GbKY5u0lKqkjc/Zc/ZV+oESXY1zR+5+MzplLMOvo19WqFLpX3lwndPcydHYoyYWyU+MWcPI7wvRG7jz5GNLsI4QLdchDzGVIDtiKRGDqBZdDr9zh5dEbbCvRPOoSriMnFLZoAsudCW+N6HkcPH1IXJtZgj2JyTb644u7Fc9JtBJZHlmbEWcnV3QpRMJBlCcfUkWgxVQXHNEndDh88fMC2tej1x2RlwsgLiK8nrN7O2BNkClWBKsNsoUXE1U3qtiBwbFRDY+B38aUKp/8Ae3CAJIJcFGwvL6CuOBoHLDKR5+scNWiwVwW6KtCXZfZsF3W94PIXv0QzPKLVHb3DAZ1uQLxe0EYRh45FJtR4to1n23T9EcX8hvhixnqyQm3BlGQcScFuJdL1Bs/so+k65RrWcYJhKlDn6KqM5xikWfaPC02KJMRRW1RJwHF9BFnlUSHw6u0C13mAZdpsthEOFS9e/IbZ1QyxiFBsnRoIegPISpJ2wbPPnvH1MmJz8RIZGPUfobYqyXZBuLyDUmI9vaaqY158+wvMOufDwGSWbyi2WzqnfXqeBqKEXoQ0RY6CiKsbKHWKINRkRYGZrglslXnYUKYxb84nyA10Oyri5Tkf7O/g9jtQlNR1Q7aa03R6tOsZulhj6yonho7jnzD2Fc72A0zXp2kaFEdFylP69j6aZrCJFtSVyrDjIEoCFTK6KLF++S37jgi5gKyPKDchgrFldn1Jvl1wbeqcPXyf7/6L7zG5sAjchJcvz9nIAh2vj7WNKNYpTV7R1A1NUWF1VEb9AMs0KSQw4wRbUaina/qeh+YGNIqFGicINze4Vpe2zomy9F432kpkdYOkKpBsKedzMkOjKhOcbhdRl8mqEqWqoW1ohBYkaNoSyXRodROKNYpS0Igtkmlj6haqISMoOrUsYAsqaZSRR3N0xcY4PEaqRbxBD83pURQylg2aIaO0LnE6J4sidCcAWSIqKoLdIZGsk6cZ4WZBUzV0A58CifofKtlluEVtU6okRR/3GO6MWSzX1HqHNtjHtF1UXUFtGqZvXhPFBR1DQtjtsVx0afKExXLOsO/QcSwEe3ivtFN16ipDqEExHHTXQ5d1TOkY6+3FvRK3UngoiriOBAJE0wU7PYfBaITTH2OYNpLYYtoa6s4OrSjQtA11nFK1GYZ+Dwcd7j9ELCuycEFTlfi+huSZbOcRxvQNqqrRaA3x8poqlBkM+/T7u1h+F1NqUWUZFBNsg/zm75AaCX3wgPHREcXyjiIPKcoWXZcoUQjDLVVVIkgSQcdCqAqu7+4YOQaCLuHKAtQ1Q9dh8eVzsk3MkaHz9XxO2wpIrYAuNuTxltXdBWVocrS3Q6s66GpDFS1QdQunbXGdDsL8AkuVcE4f46kOh1XC3auWl7NLlLKg18DLskJ0OkjpFq3OsYQWS5KghZOuh923CTSNxazBlwWyMIKyQCjuVceaPyS5XHP51c+R6pL9p5/SVwPuNr8gEAWOPYvA7RPIIoOdM1TR48/+8/9BEyWoMuiqyQ8/+wRrm6MNPM7bEFdvMHyLy6NH3F5+xXsPD5EbaCSdYr5EiRKqVsDqdFAFHT1rKZUlhiihNzXqZoPkdhAQsGwX3QlYz6cUScpwz+L6t7+mrDKOjg+4WC6pJQVZEshUkbeLFd/OFjwqK+pWReA+EPNHe6hJwebtK2RRJOh1WTQz4uWCs/EOAzUmPuwQb1uSmwtu4xuktkT3B4wPxrimgVwXhLMZpgf67jHU0BY1jS6iuj5NISAwQ0HgcG9IUrakUkpR5mTrFbujHqrtkmc5WZagICGJFVm8Is/WbDYbhKah47tYdU7flMgN9/5WXBIwTZPVdEGclQQ7NkUS0TQNYVZgmQ6ibLJZrBCylCROmUVXPByM6Y/6yHWFpekgqkhWy/o24jaNuE5zdntdHFlmE90H2q5lcLY/5NHxPrIhomxmiC3Yskp4cY359CNEWUPTdJR8xVFgs4kShp7JU3vAm5sN0+mcP/gw4LODx+TbkGR+RZJmeG2ENRLw8pq6sFHcPobTR6xaJBRUw0KwLFTX43TH4eJmyUVc0Yo6rqGxM/DYbgJe3ixYhxlP+g5F3WKWFdEkQvL6NOstpiEgbGLiZMMmzvD6e4iWgW+3fP/RPvPzDFMR+PZqThil9B0b27b46MBHlhXeziO2dUtb5phig5aGGE1CFW3wXYdVntI3TD56+owk2dLtjhnt7OD8U5+9/i7ucBelt0OeZ9SLjOnNFsf3EPKE1eU7TNvHcRwEw0XXVIaDLv7ePiK7DJ5IlFmJKGiUq4z49SWy2OXZYIi9WOA1a1ZJRR2/JX3Z8G4pcXF7y7t5xLBtMMoUs7dLWwo0aQKKhVRv6KotiatytNPn+ZtrBqZG4NpYqkG33+PUecynU4Pz5QUJJYHS8Dvf/xQh2zK9vuT8+oasdBFRmLx6xcGui+qY6MY90NkwdPqBgxW4LOKKdB2TpAVt1SK3Im/mNe+2t3xgzxDyHEfT+fDT7zD/u79iFuc0eYQX+CTbFbuDLoNeD982EJoGy7YIPIt8NYFS5fDghPDmBlHSEYsWRbNROgFltEIWDcp4Q7heIIsypijT77js9Lss0xxTbtk5OqYUFKbnL7ibLpCyBKlpoJWRJImDgc+HZw+4d4TINFWL1AjEYkvfX4Ns4PQKenGD1KqogoRalfiaxtn+DpPpmlSU6es1u65FXtUkL1/w5uI1A1unCBws12N3f48PjjscPzrjKp5gCC1lFoEE1BVC07LT85H3AparFbEIhlDiOQpF2XCbSUhuH2SZrGqhzHB1BUWRydMcTQTNdAmevEflOCxefY237/Ls4z7PHo8RRkPE6ZTtZoMiiqg0KNEGS7ew+gfU61sMN6I76FOKGnIwwvYCfvk3f8ssarH1AaJ9yIO9ObU54TunEmfdEsN22d+1qOwBbDXCKmN1uyVtcka2RsdqsaUSSXbIog2VG1C3JWUko/s+mrrEEBrGO/uID3Si7RohXmEFAaol0u+PUawekm7QCl2yboVSrhDJgJI8ynCcDkWaIpYZTbylo9jUXpd8fk0imeh2j4Hr3AdVokJdbJF0HdMwuZlMsV2PnaMjhKZhtV6Q0RI4Dr/4+pLv/P4/IW8alDxCi0rym9dIRcKo3+Wbyzv+5pu3xMcVnz1+gC9KjAP/ns9lBKRJiZrOEeMUBQu5t4+nyjw7OcR2R0TJmvT1FilJcYsIv1tSRRELvQZvhL27x8jM8SwdoQYhTWgFlabMKbOMxeQOVUjQaFCFhmw7ZX+vS1GIdG+mGNGS4pvfYC9i/ocPTtAtCb3b49ezC97+/CcMPIuVJLApBfQGPjoeo6kC0XJCtFmzd3qE6ZpolLRVjea4SCIIkoIitlBWfPHiijRKONrt03EsaBsUSaJYzLFVCUlxkBQZ3bKIDIU0TXF7AetGRSgj7m5vEIsCUZEw6bFpGsJoy0FZ3AMoNZWqLtnpd3BcE5EKuWoR2hhJMRgfHHL+7bdM3r1im+U8efqIYPd7yLJJfDVn/vxL3s3OWZYZbRMTRSnr17+lf3hGNluzZ1uodcvkdomsqozG+1x88RVp1fLeyS6b1wv2rYr9scTNzRata7LOchSxwmsW7Iy7DAMPffISMY+pej49v8u/+cN/zpd//1P+5je/pWhX7B5XdGwLWWm4rTY4YgllQRaFXF8vkNEwqoJNA98utoiahu44WLKMYlqQZ2zKiiIrqOoWWZao25ZGuLdYNVVJU9eYqoTumCzjBFGAtm7YrkPiKOfhgyfsPX6fbHaHbQg4nT6d/i5P33tMW1QEgkJ6+YbAsDj1HaqNdM+W0XUGpsW45/Lk9BSz3vDJ0T5Bv0dVrqjjBKdMaUSPZL2izRMUV0PSPLLFOarp0OsHxPEtopxyun/MZJlwVqw47O/z+f4pY1vldRmSZWt6johpSaRig3t6hmTq1HXKd8+Oef1XChvBYv/hp4yefBchW6CoImJVIxsVPVukWsSkccHhMKDX8ZlMtrx+PWcxmZNslpiGTv/pDkGvT1XlVE2O17fI5hmbL36OWG+Jps85f/WGtaCSJHCzynh7s2C+SbADGds0EABFbGmbCkWR2dndY7ff52oaE4oqkurQ93vs+zKbyZwTY8x53+bl9IYsWiMqGlGR83jYpaNKlIqFVrXYtotqdpAMH6lOaeYXlNsVTX1vnTKFHKuNyQ2bsVxxt5ijkbMtHG7nCcaq4vPf+295evwJbrshvLtkdXtOGW043dtFVg4Jdrr0hz6KVBIla0S5xgssxDsRU1MZBB384ZA6DVEMk6qGMK/IqxKpbJEFkOociYaDg/1/XGiy3YRMwhVJFLP/6GMsQ6OMI64uZwhtg+93aYQSR214b9BFKypuywq1yrA0mfDmhq4g8dkPfsBqdMSLf/fvUCa3rMMK0bXRkobD4AFz+w2r1TVVuWVnMORJT+OjZ3tYmkb8wUeEmyt0KUdVFSTdYTWZ3H/IekP6Tz4lev0rqqqlLkrqJOLkwSG2rbJdrzk9HHE9C2mFCk+pqOcXrFUFa/8AszNAtV3CPETWKnaenZCvHYTza3QcPn52hGspKEKLKmSgGNRRhFpJdGyLy+sJ+7pB3YokacVw1EFOtlRRwtttRd3K+MsExTC5fPGazWJBsp7zTbjEkTI2Vx3k8AKxiTCFivX8EuV4DzvokJUlcVyhRglSKyLVFZ7poBkqaCLvLnMsSjy5wO0OkDp9lssEqW2QSGmqFFmxGAxHYDvUYkORp9RlQVuLlOsNtWSh6yq6aqAhUOU1lAIaMrKmUyMgCTlNEtM2CWVdYuoGRd6gyzKqDJpm0ao6jiQjaT6GVVD2fLJwTltmuAdnaJaNavn4tkldhNRtjaxoZICuG6imRpMn+B2Vu1VKlWeEmy3xak6rGmzjBYJm4g0G6KaGLAtUyzVCkWFqOvJwTJg3aDuHiJJCGm2ZXK0xVZkyL/Fcn1oAyzeJjnYoog1lvCazRXRZRqlCNFNDtAyQFBqtpAkn5NUaWZAQmopOv4fUGbNraZRlSFXXCKbJVG0Ijg8xHA+5qRCKhKZpMJwOomHTNA1VvKUpK9q6QVUaDCkDRcY6echi5jKb3FDWOSDgOA2ryTvENMbVdfaG+9jBGN110Z0OGB5NWiLrEnVWUGcLpHiONHiPPAlpywLR8pF0CUkVqVpIk5QwCjFNA0VT8E2VQ9+gVAJUAfTOfX0RWUORNCTDQ9NrbiY3hK2ApBkETUGdbbjdhji2wWazZDa5YWSrDD98gtRCU1QYoo5atjRhgewbGP4+mtCQrLfUu/u0PzBo5xsGz79Ems3Qe6dcv73j9dvnjOWKJG+o6op1OOfhwwHVZkudpOimiiAoqGKNUDcIrUCTN+hmgG/eMatWRDdLDjr7TJx3DIWE3Y6P7TiYZGjLS84MhVeuRr818RydH/7+9znwFNLpkiK7IU3u0IMOga1xNvZ5EXXJozWS7qNKKkK4QiwKlouUi9slgd/B9zr0fR9JgpE/xpZVJlmJqWtopoWsKIiijGN3kKItq9Wc6zDkvaMDnjx5ymwx5d3dLclyyaqpWX7zHOXZCUqTIbYKCAKK6eLqAlISsVpNINrgWSbud34Hw/TZXl2RxjFtlaHbDbsHHZpZxd7BIR1XR6xS4umGcpPQOfQQVQ1BVAARoamRZRlurrDqhkVRYsgt+3s9bu5W1IlEEsYUVkrP9jH7Aaqzj4BEHK9Jkoy6KvE7Oq7nYPsBmq6j2Sau65GGG8oiR5JENnEOsoIoQJXFlFWLYXfY39tlenXOuBcwv71jmRScnD3hd3/0h9x8/UvqyQRVVkCEvGmpTQ9cEVuRUYMetSCgStD3bA6OPT7/5DGu22UxX5DFW3RNped1kJKY7O4W2fQxm3foVYmoqkiBxgcP9sH2+YNPNMLpBDFcoJYNuVBjmwrdkwEPjvoIQgfX1ckbg47uoOQJkqogqCaICkIrYso6vtvjcl5gazJFWSEgImsexycOe3tdFncLXt2GJGGGp+kc7I4Z7BygaQrh5Te4too9cAgePCDMW1RTwyxznu6NOF9dcp3WfPX6irpp2aY5Q1qORwF7vQ638y2LbUKUxmRJTLttOPEU8ttzzONn6L0xWdny4ZOnNHmM2jQIrYiqORx+9Aeojk2Whgx6HrOsg2rJxNuUtqqZ3kQc7I0I1xGTRc7As+n1u1h+gGpYtFlyP4PMHvWOjBdVpMuUTHZ49J3v4l2tKMoQ2Wtpswmvfvb/c/ZmTZJj2Z3f7y7Y4QB8jQiPjDUzK2uv7q4m29jcWhxqTEOZXvQ19Twmk2QmGTkz0nBtsordtWRVZmVmZKy+O9yx36uH4CfgE94Aswvg2Dn/81/e8H+/vuZ+V5AVOz4+PCA5+jUyGyJCDzu/xjcN2g3ZG8kffXxBXTT0TM3Tg4yD8ZhkMiAQlm36lEyc4ustFx+e0M9i9ivFKLBo16HOziBz6ds3BL5E+wFCWoLAZdhz0Rqi3oDv37wl7fVQXUvoeQgrqPGp93NmL19SfvIpizQl9F0OXnzK+PotdbknTTP6SYSSkn2+oXM1TpIQpRlx4FCFDns75/NffErx5IJ8sUMGR1iVoP2MybPPiaOYycvv+devvyGfz6krS+94QiPDAAAgAElEQVRoyOGzZwjXhXqP25YUuxUqEUQqJX8w7EtBKQ2JMPzs8w8YjMbo7tFIuTKCtpO4OsfV0MkO19cMBJgqJ4pTZGUfTdLPnnJw6XA3u4JmDsKlMobdfktdFEwCgzuM8AdD/vDLF5xnCt+Fg+kRnuNQLlcYUaMcSWMspqwQRYG2lrxu2a6XTJMpdddRNpb5/I7hZIDq9dFKMjgYczufE0mL4weEly/wRiMC1nz5m+d8+Z9+hjAlXrtn2wYEUQgW6s5S1h2fnB3yQd9DWHCTA7x8TzrMMcYSDE8J04Avvvwl37/8ieu7krNf/orR+ROWs9/h9VcMn27wPYPpNLoy1Os5y8Wc66rgpio5P55yMZoQqgbbtrhhhLAuWgW09R5Z7OlnU0S3wHMVfpqQjCYgWlQQIf0eSnkoz+I6NUJK/MMp1UOFEC62q3CVC7t7rH1k5c3fveNg3CfVPt7JM46OTth995Isjtkbw7Zs2ZQ1dJYw6dEf9imt4ulnz2DzmlWec3A8ZFfW/O7NPZ/kOcp0HCQBTVExf/cTupVMs5ibbca/3i75+vqBP/2zP+bAlsh8jSjWDNMM5btIFRC4j953m9e/Y7/N2ZQNsezhuz6N45DvdjTlmk5W3JqCwTjj/GxMlgY0qzWaHrbc0XTg4GDCBlO37LdzuuoWnY7QQlC3BsfxePbihB+rGmfTUdzM6LsZjq9QRU23XTCoa1a7FWsKouGY2HOZHh7jU1OuN2zWOVpZ4n6M70uaTUFTFni9Hl7Sp2lbmqpkfr/g5dt7dvuC2sx4/gSyfYmfDVjfXHGYxLhJj22xRymJWzd4aYybDmjuFyxurvkw8Tg7mBL5AVE/ZXa3Zl+1dPsCqVysMcROxzBRhA44nocjwWyWWLFD1YKjYYqoj5gby+D0nJurG9a7gid9n+mLY8ospLq+QRc7nsSWh2LG/ewWXdYcTaf044Cm3nP/zVeEcY/zo0Nevbtj5Pv8weUJb1/f4juCyyxh6oWsmz2e49FPU9LjCceHBwwHfdL+Ab7rI/0eyfQ5R08/pHL/N77++p/ItwX9OCIMNLHnUm2WvLl7w7dv7rhf7dF+QDYc8CADvLiHluA7DslwwOzujm3bcLOv2RtD5AdIx8UKweUgoDMdtzcLJicjWCtqx8HVhl7ss13umC1WnB+dEE0v+c1//Ctmb17TvPyKoyenOHGCKUscBNP+gPX335LvCv7nP/hjTnqn3OxrVBRzlvbIIpctJSpqGR6d4AhFt9kgtiuiwQCpBcW+oM03JO4UqxRa+/ihz/Fnv+Ft+x2b2SvGquOTX33B07ND7l69QXt7br7/R9798M98dDRCiJyiqhh+8jOCQYbB0FrBk7ML/oc//mOuc4Nz9hHjbkfgNNRSEpUFmVPSbAqEEMzz+nGOe7/g9y9/x25f4hnLkR+AK5CeTz/xcHC4ev+Wm9//lp50MF1J/4NLttc7Zvf3bKXLgyh4syy5W+5pu5ZutWJydETSi2nqHCkErh8+hh3c3/Dp2ZQ3NzOuupK2LkjOnhP0Jpj9Hu1KwpsfuX//mp8e3uO1BV9MpqwXC4RtOTx9ik4O8AfHGOUhTIewEiEllQmxrqSYXzGSlrYynB4dcnag2K6XMAz54MNTYtHnaCgZpR7VXYnIC7Z3cz58/oLR4YSroqB3GBNnHr7qyE4HiNiw/rHBV5J+FHB5foYjLFGW4QQRy6bGSM2uNnhOS9tUpHGAH/U4PBj9+0ATawWh57IwBfV2gdhDV+zw1KNB6bCfEkcO9eyaow8+YmFdyvWe/H7G/vY9Yehz/tmXpEcTxk8yvpwm7HY9qi7nxuzpqUf9WJZm3L77kaOw4+Npj8OjIVk2wloYNAV6VNHkK9ARy0WHqDvS8YTAzxgkBYeffUpRFMx/+hZTV/iqZXpySDJI2Vclxx9dsH5Y0K1npKOMcAxNZGhVgbSKLLCUxYyquKde3rMrGz7/1c84PIyRWMIwpNssaPKWrmxhXxL5AUJpVvmeSQdeEHH25IC7l2u+ut6y2Oz5g05y8YeW5aJgsVZ05Z7dZstUu9z/7mv+a3VP36356bbi+fML4kzQbO5QOsDrpdRmT75akSiJozyiJEKIR9bPs7MTQlcThz6uF6Jdn0EGnSrx6oB1l4Os8cIWFdY01pLXJbtixm55hx86eL5D4Hs4XkBTtNiuo0HiaIlUAqV8TAtaa/q9PtXMQ5kRSdSwBmrTEGmNdHxQPtr1UFFA1QT4WQ9TFJTNDk1ApEpE2TyCPkLSlC6+F+K6GlPldG2LNR2maYl7ET/+OKMpcnw/pCoKdqsNyvMYnZwyjjzGesyLYR8rPepmRzC9wA08XGVRWnJwcEC1XNDvpShcTNOw3eX0PMUnL57y7oeXtICS4CiJ48eP263hCFeWUFfcvXlFGIb4kwvc4YDDOKLaXLG8XuONDyiKHeloSHIwRRpot2varsPrH6CdAISDtTXSWFwpcBxNNhrj6pCeV7MvHLTUVA3c3/9Iz1WkScTJ5RH5/R22qMDukaKExmO/uEWvVsTHY9r1FidwMV2NjS4BSbfbUm+WeFmG6QTC9am2Wzo6lssV48NDXMdDYvjFzz6iM4L3dwuSfp+3aY3tGkTb4OjHhrcbHiKKkhCDLypeljvKsmE2fyCOY4p9ybfff8+Xn32Kn45wfQ9btihrsNZDqwGqc3BDjRocIG3Hj0XGtL/DrBZ8IANUekG4cllfXTEJGjptKdsaQ4vf5hSrLYnvIjqJRONXJfgjun0D24JitaHZN4z6PYrZkmy15+NBTLmpEdsltqnxhUI9vGI8GfBXX37EauZyfPmU009/ju8rzOmecr1iNM3oZAvAcephU5dIO1AblNS4rkPZGRb7lsWuIElSUlqEtCTpgNHhId3DnNn9DWH/iNBRJJFHHXh4gcPIdaiTjGXd4vkxfn/I2JPczWdkvodpOlbLLV1r8P2Abp/jhj1AIpWid3yBl/TY/fAVRg3wsinFdo1o+9TXBferFXaxACzZ0YTh9ABZ59jWst9siaMUNxlirUMnNFIKBP8GQJUtvhFoLZDCcpRFdK1gOd/QWcn9bE3f9+hnJ4jO0ksTstGYfHmP7WrCUR8nCNBhiONotOtjjEF0MZviAUfCpgYhBW0HXduh3YDhyVNs2KerK+R6htnuGPiazy8/JXNcXq6XZJ6LUoJkMKApW8Z5hx8dUMUhjMcUTcFgOESIgt1uxn67I04PmF484+urK0a9iMm4jyM68reviC8+QQqXQAhaI/jy8oDL4wlRNkC4Ds4vpzhNSVmXCKkeN41Zgjs9w9SPZovrlUFsC3ytCeIIN/BRjqDM1xRNS13leMWcxHPZbytEpxCFIch8eoHH8dkZ0/mS7SInDcBVkmSkCUaHqE9OkS64oyleFJBZS/HwgHYTZLXG4vLmfk7XdJi2QfoRTQPNvmPSj4m1w2HsUtPn1ctXTDyf3WLL1XrBxfTpI0ut00TWI1Adi9//C5N+xvphyWhygJECR1U4osD3HPb5ltvrJev5kvV9zuXhBffXM6quIX0yxfcktjboxMOs54huA2qE2c3wtEb5NWpXocOMWZiwrjuepAuMLTg5POI/9SLe3i3otkuc6RF+0KPZ7nCkwLYtsthRt4KL83PWsxl/+Ue/5P6bfyUQ4FiLS0XHgvDZR3xykdBPNaJZs5vfEUQunon4/MtfkJx/TNNWhFsfax6QToDtoBcFHI56+OmI5WrP7N07+mHIdDTEWsPDJidMBhRX9yxmM+bv3hH/7DNcx6V/co589wrfkXhakA0GLB9mmLqiyDfIgxHa89FBwHI+Z7VcUFRLvvjsD+nJR5YHSiFthxSCcHzKsfJZvX/HIlS8edhSV+BY87gFrXZUs1vyDna5ZD2vcRuPSEvabkvy5IinX/wBvWhAu1pA3SDaDhDEjqFaLuhcF98JqE0MToPvSrQB1wlwk4TOcajyGY2VeL0QZ+jTuj51l+Ku13zz3/6G4ckRz6Yj0p6PcDTBs09hv8VKhS12tHtDVdTUyw2m6bDK4fr6hsooagOO76FFRy9wGA4yZrM5943HYHTE5PAQZRriowlxlpL1IzzdEMc+gYJqWyG6GreXcXbUx1gYDYf8hz/6iE8/mPLkMINmA+GI4fFTtA6YXS/wPQ+hA5LDKR8PnnDRKorFmvYAju8N9eI9Rb6iqQtcaWhmD1z9sOTvXi/4apZzdjLmVz/7hKBzkPUDurXkVzcE/gYZuHiOxex3pKMJ++AIL01Rrod2XLTbAynQrkZJi1Uttmseja5FQ9gb0LU7TGVoqx1aOmBbhAW7zSmanGxyzNmLj1CNy3q2gM6SpSm/Xee83eT0Bxlmueb88pLk4hne5JDuH68ojCFxHb6/eiDWisUPr8meXfDD62tmtw8M+ynZ+XMO04gXVcXOnPPp0YimKonHKfnqHtvUzF5/x3B6gd/L0OkQN3VJp1A2lvXakKsxnVXsNjndesl2s6JQLZ7v8OXFCYEH290WXyocU2N3a/b1FpcApXtoND2pcIIM3/UAy+jyY3TQw9YF7i8/5O6b1/TjPV35E8t5yfJ6RjoY0B9GPDs5JowceuMjnOEBdr9E0mG6gLPTlGq7RpQFxo+pNjmeHxH1EqSrMRb2ux2b9Zp/vsvZNx3zsmPQ73FiDY6Q1K3FiyPcXoQTeezXG3qRj5USRUe4X/LpyOeD8QDt+RwNE9ZNRa+XMH+YkUU+vmPQosXTClcJnNBH+y6O50AYYqsWu8uxZcvheMzB0ZRWQHI0YnF9x/0P39JWO7IwJpk4tHnEzeIe05U4XcXPL04YBB4eDrrtUEZTbxvSaEA/LnDdiIP+mMBLKcsdVQu9NEW2Fj8ImE7PGA0CUj8lv3+guX7JaHyAfxwghEOUDvmLv/wTdH4PUiP8kEAI0qDEliX/+P0Vb+7XRI7mST9mXxTcrnNOJkOssKA91k2DrSsaKZjvStJeTBb16IwhCRwuxhH1ruZuseXwyYjBZMxqW2KNxWqHh9Waw0Ef68XoKOB+tWQ8HFG87zHojwj6PTAGW+wI+wOSX/8Fq+9/x6SEDz/+I9a7knL9wP3smr3TMT16Rpj1UJ6iLnK69YaRFxCFMb7jUuR75u/f0hV74ssLnCgkMhVz4XB8JikJ6do1VlmOPrpgME3YPLznbvuWX1wkjEZ99MCjf/GceDJAeA5t10LdkvR6TMYjRucx4cDD2g0NBuUqRkKyvtmxWM4ZZwPSKKHaLPnt92/ZbXNSqXGVZtm2vF8umaoLJmmAbUt+WM/5z//5f+dp6PLhZ5+Sqo/Q2ZBsMqXYdVw9NNytcnZVS9vUBFaghMTzAhzV4UqJ68b04gOK1Ra2d5xncBSNWM2W5KsHEr8H1ZKsgqIuua8LUi2Ix0M+ePGCdy+/p5Sa6eVHJEfnuGEK2kWZHl5Toa+HOK2haFoOj+Cn73/A9xrceMQw9Dk+OKLIniLTFHN9y+pf/xuyn+EHEUoKps8uSacDOllTPrzCd25x7IA4O0NrF+F4iG9f4QcBJ5NDEl+TRBGe7yH7E/L3b6Et6WcZXbFAmvbR6Hk5Q08P/n2giZSCxgq0G9LkD0jH5Q//5NeE3j/TCYWPxvcinNEE7UY0+5IoCImmUy4HGUEQIaRCN3tUPueTWFJcnPLi8wl3OkBFKcenKb/6k4/x1J+x/OrvMfmS0XiIHyfYtqLZ7qh3LUZ5tI2g2hSEjku127FdLhGiI4oipNHssynrfI2TtsgwZHR8yOL2JSqAwyfPEN0lIp+jHUPSd1HjA0yxptxssXVOvd+hfZ9f//kXjMZDvNBDKUW7usU2LXXV0RYd5WIJnSUJPBw/RAURH3/0lINhiMhH/PmvPuXmp7d8/stPCPsTrr+ZcfjkKdFvv6JyFcPQpycML//+DVXdMsp8jn+VEF9coL2MfFmSDYfsioJ9WTKIY2xRoZMM6XiEnsPPv/yCujR4rofruCjRoRIHkYzwphMS09BVJW1VU25XVMUaNlu69ZzQ13hhjOvESCEwZYewCi2hqUs62yCkAMeFsgI3xssO8bw3dKZC2Mczb4oKawxa28dPyenwXQfXSWisRIUGIwyBBt3VKO0i6wrpOeA4KCERRYk21WPUsusThz511xFoRS/2cH2X49NTFruCbDDCDyKS0OXJxTM++Pxz3n/zHQ8/bRFB8GhKGwdMpidIpZnvdrSRxqst+WaDpeUxMbzj+OiMRJSIzoA2BEGK7yYUeYkbtgSjY5zBFFSHoxSClnr5nv39LcHwCUZrdJczfXKGaju6NkcIifQS3Kj/eN+mwxYFtiop1zOa2sF1Pfyoh+c2iE6wX20ZRD0eegeETkmcxAR+D78X0xQ78tmc3fvvCJ2Q4UGf7Pgc2hX5eoaKE1Q6JPR8KHaY3Q7b1HTVHoGlbVvqtmFbtQzHIyLfo6sKVte3xI7D3TLnIa8YnCi8KEZ0krYsUE1FXG+h7PB9D8/u+fZhy0PV0tmOcr+lPxjQH/axPJr39QKXbV4iaJC2eEwmKUvMvsabHCAaRX37A8/1CipB58WYoGNbzOhREgNN3dCUHY21PHuS4eQlvpJIQLYS1VlkZxFVR7PcYIQD+Ra3U/SEy1EvIht6jIeKct8n8VzWDzmmbTgYRqQHE46ef8Cu/AV1PET2Y5xuhhAWu75ldDRAepqm2rMr97RpiFIurutiakOQxNw/bPnh7TWR79I2DaVV6LqB3Y66quiNMp6HAd+aCN/zUW5AHEXMH+44uXxO7/ycQyRuLyBOYv757j2RH1IulxRth/J6lK1GegFit8HWObZLkW4Pi8FLDnE/SWkelphOIaIMx03wBweMnz6lXizYzq6wcUZXg2gUoGjlo8xHhRlSSiQGrAIjQHhYFG1R4DoeXZXjYXk6HTFLI4rljvzujjLfsr27Y3T2FNt2KNtw+PHPkZ7ANDuUdlBKQb1HIGjbBkdapHIoqxrh+zhNR9fBNi8ZZCPGnqQLQ26LkkEUEV9e0ropRnV889//htHxCbOvv2JeNAxEgKNdtNKPEX3W4PVi3n1/he+B40V89/1X9F0NdYurNDqMiRyfyPPRtsaWG8o339PrRWAh8zQj7RAYiS810fQcN9OIICF1XQQdTddh6w1Sa1qrqJ0EWczw4+SxuYhiVOBglGJ1t2A3mxMJydPDCVkQ8//+9iXVvsDtH6IaiKMIxw04Plbop1NEmGKKAl+7uKGHHjyBIEP5PloKrGmQ5Z4u39JZwboQ3C8KfClIsxiBoWk7urbCiITA15jWJ1AOPRpGNPz1TytO+yHrd28JB1NOT8Zs3l2xWT3QFkvOPv4UR1muXn3L0QfnqPqeZv4tzVZSVYbtess3373iaf+S22/e8eTZlM8uPyGNGprbH/DC4JG1FMV0JkP5PbRpMPkSd5TgpxFVHSBiiNaGrG0w/YRMN/Ru9lRNjbaGLAoxuxxTdBhtEEKjhGYSKqqmJu736CUR9vo9+WpNtc4peI/nOgxGISfTX6ER1FVMeBJQ71bEZxHh4SldZ2jKHbL/BXL3A6Z9lAZIpRkdHrIrLbObG7zOUlV7Yt8n76DSPk4QILUCx2Hz5iXf/fX/xeeffczDq2/Yzm85fnqKS0ul5CPzoWqQfReDpDOWYpdzfX3PcrPDth3b5RsCJRmmYxRgywrTteC4+K7LxeU5dl8Q/3RFuVyh57dsdhtKq+l2JXUBk96IgeNjtltW+Y5e2ufFL/8I34lRyqHpFAZNayzSVbjS0hiD8MNHOWMq+N2bLelhiO8LlHTwhIuQkunhMa09oLMNOCD84LFclBsunz3l+SefkqUZTuAg6oJOWlotHusJknq9wmy37DZrWu2w3Gx4N98S90KKXcH4+IBxEiNczbasyI1DrRxWD/c8Cxyq1tBY6D85prACKzX1YsX1775CS8Hxixf4o5hnZz1+9fkzYt3x889fcPHJZ/iBjzU17f4eKz36own1pniMnbQCo2K0r/GKAjdzKe43tMUDga/RJkR0Ptt377j5Yc43tznv64a//OUZH33xBb6fUK12rK86PCPQ2tCqljiMaDuJI8AxLZH0qQqfIOkhzIZ2t8MNY0QF1hqMrtFegCPMI3giDaapcRwPhKBpLNpRxI7GMRaRV0RxjZ69w01P2dctWliU6/D+fs2utVStwN4+UDguT7UmbBr8ukYFActtQeIpzocjMtflb/6fv+Orn24ZeIqyNsTHLb6Ap6OEi/GA5XqFmV2hnwzwg4Cbu3vGR6e40oJp8bIhOswwVmLnG4KiIu5FFPkGiju2YoM/neDGHgfDkNTTNE1J11YoIdgv5vi9jGR0hjGa+mFOWwuUKzG6RrkKHSXoLKRbbyg3G4ZPnmFkTPf6KxwjcOJD6mcTZFfhRQEXX5xQ7fa4YYQpK9rAQ0UTMmvZPdwgBBTzOYGGJt+SDAd4Wcp+t2dfNVTbDQ+rHT1XkTmSg37I5fkx+CGy2XF48ZTXX7+m73kY46Dijn2e4wxGVJsNB6FmnTd8//6Bie/gljv2boLCQYYBK6ExVoC1CKHwwxDH8aGtEIGD0D6WBpoOty+J/uA5TVWwu3rPfn6FmN+SCskuCtguV+TrOfluTSEsPc/l4vkJQ1ez2i4JVUg/TkCOEb5P4UlC9x673zLsDegNU65+WDEZjPHHfaz2aas9cXlL/uMGc/iUaDRh2OxJfAfVGbrucXmtJHz080/ZbHNE2+K6Cj9w6DqPV/McgeDs7IBKeewbyyD2CTxB7HsUQtFtKnTPY1NVtG2DJwXjJMMTBt2VXL74kKA3YvP6e9wwwfMDFvMNxnY0TUUWexycnvDq7RWLq1f8w1/v+Gx6Qt9zCUIX14EgSGjocD2FjgeM//g/UM3XlNsKubhm1jWEwYT4+BjtKRwKTNdRzwt0VRFPMrz+EGENdXlDvt6TyC3duiM4vQT7Lf77d3z7X/47f/rikMBtaK5/z7YY4ccxg+MJg/AYuhqLxUknpOeXCMfFYtFGYJsKpSVZv0cBOK5GaUG7XxN6HkMl+K6sKMuKuiqY9gd8u9qw2hdkWiJtx+t9wc4YOuCvYpck8rh9d0dnG353O+PbRc7mvuDt3/7AyZ/+guHRKdt1i11cke8r9tVjHHjgulTbNe14gC8dkA6qKjBqQXY4Jn+3RLuCyZMnXHzSh8ayef+eu/1r7h/uabyY04sLwmXCk1HG6PQZfpLRCUk0meL2+ghh2S4fUEoQ9DPi4QhVVxTX1wyGfezRgHneYeuITjb4niWOQ/zBkE60OD1Bt9tTFhX+dMrFeIStc/aLW56OxvRGPdS+xnMCnGFKXVWUZcvJ0SFHpxdkQYDoGmoh6Joaz/fZFQUSy5PpKeMnh1RNx7Cf0lr77wNNwDA5OuXytGX5+mtOP/k50xe/oO08fvpxThYGuNrFCQ8ptmvK3Zbh0ZRhmnCQpHiNYXvzjlSXaFeR9voU2z193XJ0ekAyPceLY3y1QdQ7Ri/OWRVnhKaGtsJULfV6C3mD52m2lUB3La30KJoKfz8D0UGs6HZLfN+j2Ei6CqSp8EJB0j+m7VZ4gYeMM9LkFCEEXm+E9EI271bUd7co4eAPD0jTjCyOcbo13X1NZyyiWtLsa5oKms2azWwG1hBGIUdHB5w9Pef0eIKocg4uzulPDjnqORx/8IydCdlWC4rbByaDPo6pCULJQRxynA54uJ3jmZZuXmCSe9Q0oDMFSRIxk4Io9KhsixEgHRfHEUgh8V1FkvRRfobja/BcpKOQSiIN6Kajs5a6KelMDastut4RWoEbRuD2wDh0VY2jFFI7AKhGIuqOzU9v0S8S3MDBmgrlavrTCQ9riTucosweqXPKcod2Q6TrInAQtUFqCPwQmgbla2S5gyp/lI0gMVWNcgzSGhztIYykERAKCMqSm1dv6MUBvfiMu/kGma+5PLlk/OwFYX/I/t33OAqUbBGOoEGxmd9zdDQliVNsVdGpFifps7//CbPZUec1xlX0/Jhu1+AaB6U6hLG4dYtW4IYxURihZAHtnjBJkK5Du51Rze7pGkiPzsFPqDdbwniIkJAvV2jTkI2PUShM1aHcALMr6ZZzWltQW5+2aEmzFOvEGE/i14Y4jBFuQNc0lIs30Na4yuIEIbIXQD+hsw2qLhFULJdXeGGfOEsJhmO0lIi2pJjNKNc5+XrLKPVompq27R6HVSdAti2u51LXNf/y3VteXc3oBR4fPj/FOh6NcDg4GCFsR9e1OKMx7v0t4yDgqx/eMK8bXC0pG8G2LJkKsEpRlDk3tzc4oxSpFIvlnKrLGQ4nGLPB7m4x7RRbGlRtiJuOwnoEvYRmt6PZ7Aj8ksAVVHmHbQ2+5zFOE3wqOgl115HIDt3kKP8JSmlUGNFuVqiqxLcSW1ZEuwppIJgcYhS4GqYveuxv71n+9M/0Yp/4cMzo5Bwn9bEKqqWmyS0mjRFJBnQoZTDK4nou2j5uu5WGUmpe3S8pygLPcVAIHjY7dssNH3ghqZB4fsDx0QmzRU3ZGNrWECQpfi8hPD6iPz3BRgmhW/P2t39DuZhD98jqCpUhlTXaFOTbLam1qHqBDB7/c4REWDDaoytzpIoQwkHaBsHj0OO4PvrwKXndYM0SowMwJb1eRm9wgh8kjwZ1joNQGqECdDJEe29oigLX9Vje31LlBdmRy2QypIgHHI7GtKsFUeJjdzuqqkCFU4LRCB0FCMennb3F7lbgeEg/xnQt7WaF42qqjkeqtVZorTDSx5OS+fe/Y/pxyslkyl7UROc9uuyIZy9esKkb5psVs6+/ot5s2dzd4gQx/uAA+iFpEDDbrLm7v2Z6MCAJAvrDQ+LBmO18xacXJxw//5j97Ts8V6AakL7P8uY90onIehF2t6VcbyiciPToDKe16EYg4wihFNgaITVt60FroNOUD2vcrqHJW7zBBDdMUV6Mpfs3ZkRFtczppRnCTzgcXHO3WJOk5aNUsOoIHPE3xMUAACAASURBVImpSlRRooIeun+EKGtkC9JIpJ8hXBfRPUYyKymx+5JuX7HdVoSOQ7nPibSPoyUno/QRDLMG5TgEoWC+XPJ05HPeD/nkaotwXX64es9nHzXkD7cs3r7m6tUPhFHA0T98xZ/9r/8LvWKD7wuq/TsWb/6WfXNMYSaUBDw5e8phMCDxA1787FP6T/rYaslO1iAdkC56kOG4EbYpQWSPEbfaRcQRnhPih3f0wxnNsqBel8yWM25+usJrLa52sbsVbb5Fqhbb8xFR+ihpaA1muyWOE9q65HA44uurO8SuIjaW46cjxuqW5t2P+E8/Izw+x9R7uqZEeQ62KbEYRNKjaTTV3kEohdA+ypXcPuxoyw67LzFlhbQC0xo2VYtRmq41jLOUg/GYgRH89H/8n3j/8F9JX3yGkpJeHKKalvv9HieMybyA+WbLAIfZbM6gF7DdbNhsN5yOM5I0Yd059PwITIOoLVQVRpbYfEl/POKL3/w55/Ml1z/9iNtuOXpxiT+cUBcd5fyK7e01661Laz2Mq4mffkIgJd38HVvRQ+NgW4FwNFGg0cJHpgM64dA5itFgh/f7JfuNQz8FGUUoK9BGouIhBIbN9ppkMCZwnMf0NxNxfPEbsuwQJRXN5j2i61BW03Qu5WZHs8xRpsFi6ZKUTgj+5esfaJuO0HPwHIkr4fjsmId1znZd4wzGXAhYvbmiCH3c4ZjjZxfEgyHz+ZzxwDB0GvrjIYOjU7At7HNODo74n359ycBpOP/wnDDwMU2DFBYtOqgqyvoxzUhKTVe2SG2hMwRa0FqJ7B/iq47Zt3/HdrliPD2HSR9fbUnHlj8NzgiOT9BuTL1v6JSgaxqsVTieSy0k+9kSW1TIpENnY0I/xewd6pUi6A/QdoY0FtF0aC9ESo1sa2y1Qzo+1iq0lXT5Eu04tOZR0he5DmGQkL+7ZdA90KGxJzF+4NOEATetZZPvaIXAVYr3+4ryfkl6co55945nXcMwjdntCz67nFJt1xz2AuSTEQ/LnFiDpxX7tnusy22Jcl3KztAWFaYoCeIe588/IH3yHNU2lLuScnaPkxqEE9Is5qhtSTm/Z7OZsy/WBIceH/YTJBrVSbymZdsUtFYxX++Jg4rWcWG3QaYxUgcoz8UGParlFVW3Rkd96qJB6IDoyQeU25yeH7LXGVG3Q/sRyWSKsCXa9cAJ8OMcqi1dWdAJQ7da0NQtbHeYYo8RmlpW9MZjgvEhnWmptgWr2QOh7/Lx2QECwe2u5sVBRnD5IRfPLijefsfx0QT/X9/gdRbjulQCnKSP8UK0nTN9fsnvfrzhb//lOzIl+HRb8NEnQ1LpU1qDwAAGgUA6GvVv0l0n6SO1C2WOrQpMU6InQ9xRisw1ZukQ+R7O2YS602QN7MRbHoqC0AsoVE3/6JjAl+znN8zmD7hxTBhGxFmEkA6mN+H45ynv/ulv0PWCbHJE74tnXH/zHZv5DdrzAEMThoQ9n7h9YGIc3CSF2Mc5TWnevaJaLqHao33/MUpdWRwtCDqXvCyZHo54/mRIv5/w/cOOVDgEWYaptmzznCDpcTGMWLCGUhJI0PWe3fw9uYGj4zF/+Oe/pq46bswGL4qw+wpXaFw6imLDZNwn7ScMlj7L128pNzN2tmXw7ATlCjCGwA1xohbpS0QgMabCO/CxYsluv0c/GTHqHdI0DR4NQsds8op69UAvCQjSIa5USAFSWA6fnrNdbBCORVAQZkP63/6e//FyhO529KIeRjZ0i5+QZoQ3nuAGEcrrUwtFdPYx0g+xtv23et/R1hUKQZSGBGFMXVZoIZlXe9JMIZTLrjNsm5a4WDNIYxzHwXcUw56L23TcFhX1vw34KogQUmM6gyMFySCi7Dqy05QPPv2U8OKY+mbOslrx4vSUn97foGzLOOnR8zVdW9O0BvojhPIenxVFBKFPmHxBu17Q6/eJ+kcE/TG7o2PSUBO9/Br6x2z8A5zrG572HVwr0dpneHKBDmIQlrbcMnv/kq4uOJ5O8bIhq+srZLnFGU0YHp0S7xvevX7D8GcvcCIHXVWYmzsit8W4PsJP6fUPcOKUbnlF2ywJ44Bs+gJha9jvgYCmLLFlgfQjLg8npGkPp21pmkdVwdYJqERFnIzwXEM0nNA/OGZx956qMSRp9u8DTWpChtNT6rtv2BcF169/oGlqqn0OXYnQlsBVuGFMubiFtsXzXcJsQG8yRjUtqql5WK7IrEX1UiafH7FcLmnzAvVwj87XEEm8IMBJU7QuodLkDzPa1QxVlEgd0Foft2npaLE4NLsaJ3FprEBUliQ7JGga3s7uMabBsRa7mhMNh2y6Ha7j4WqJdDx0FCClxZENo8sLPKFBaLAtXVnQrhe0xQZTlIhmT9O0tNLFVg27zYpF0xH3M54ELqPDCdODIbbMkYbHhuvmPQdZhJSal9cbPN9n/vCOdDRiMIxw8wVh4FHM9uSF5ez4mCAYUG/WNOqWTvXQjmA0ybh5/SOR52McidSgLKjOPF4dg6NK3OjxTUrPx7QdWhgUDZ1psY3FLRuyKCLvOpQvMNrDahd2Ek/1kK4ArZGAsIa2LCg3S1Y/vmT82XOElyKBcARps6MxBu0pWhXS2I66aHFdjetECNsipE/bWMLAoa0aTK0QwkcWFcgO6VnQFtGWSAFIgVIKB0vTwKtXV1itubx4wvmzS95fP+C5msAUqPV7bLVmeZ/zzf/3QKMSkJqnp4eMjg6J+kPa7YZ8McNNEmY3t4yVj5LQmo6uNVT7gsAqHJngKvU4rIgSN5kgQx/TKNrdDKtalO0hgyHBsxPaooSmo57PMPsc3ffJtzOazYbecIhWHqLqcJzgkXlVbqjWa/ZCcPNQkmDRkUGnMfvdI93QDzOy8QHa9Xi/WaC6BlPkeF4f7bq4UYiUAjfNcFzn0WNFxWgJoi3p9jntdku3Lem6DseVVPkWoyRVU7LcbCEw9NIM7TjYrmV4PGV4es44dFAYrLC4noOf9jF1jdfvc/fjK6zs2DYNq7LmsJ/xdjZj1zw2w+/evaJeh+Su4l/+/r8w/Iv/iO+4eL0hpikQLqjIwRZb6ld/j0oOcNwY32/o5jPKpiHwU2xR0ciOkzjEakmMwE1T3LbDcyXbuqSta2oEkecgcRA6AOnhhAGgwPHBgjQd7HfUmzXekxHCj+gNp4wOx+RvArpqzfbtN9T3lt7pFBwe43bjGBUEGCxdtUFoRdsoPDeApgYpEY7i/mFDqOF0FOL1MnwB29k9QjvMq4be3T1P00vu9jv6hydUywX75Zpef0L/g88J/BDpRXjjM25++prBYMwHpzn/9O0PGGswTUmiQTcl+c1r3NEEaRVuVWGrElG32OrRhFn7Md1q90jf3pfQNrieixwc0CxneLJDSMVmu8SRLcPRCcHwCcJPEa7Aqkd5jnQCbNT7/zl7j2XJsvRK79vi6OPH9fWr4obKiMxIlMiqQqEAFECgjd1G0jjhkI/Ax8BjcMCX4IQCZKGtCUU2SqIyq1JGRlytXPvRZ+/Ngde0Jxi7mZv5seO2117/+teH8vdGyiDIOJj8Efl8xf3tPdN+zOT5cxAhujGozQohNcmTY/TAg2YJskO5DpUkdKaj6wymqnB1hTEOkPhRxK6+w3R7M/dolLG6vGR790hd/BODs4+JDp8RBILx02OSwyNePH/Of/zbvyUZjKgvrjBa4vka2+8RHsx4vLpifX9LoCVWaVDwJ//ur/mLn/4pVCX2/e85OD1kqR2q2qLXNS6MiQKPh/sbosai04Ryt6Pw7rD3fbp8gZge4OMhAoGjQscJKkpotjnlskUWFc4YyqrF9UqUkmjPB7PHNGtbs2kaMiEYjKZ8/GTGdXmBrHLq3QZ6E1xtkK3DFgV+atH9DGcaMAZXGig7aC1OdAgsEoerdqwfFqSDIbOqQbQVxjm0c2ghacqaJAoRSKr1jjbf8Pr5jIM3P+Snbco//8tnnC9yvusH3K0W3F5fEo7HPPnBj3isHddXN8wONNpcIbp/wmu/oMoNSZDy4598zPb+lpln6UdHHJwdIG1L04IfZQjKfSLMOmhKBA7hxehM0t6+x7EB0yKbBrF6RGxr2scF2/mOYTTi/uGKXqiJZIyoOxA7cFOk8gnSAabruL26Ie0V+FFGP/R5eXbGt1+8xW5q3Nbtk22Lewr/HE+HCGH2fQGDMSZfY6ot2A5fQtk56AwqjCnzLbaz5LUl9j2afN9DVtQd1sJw2KcLfY6PTsn6GfHzM6q2oTkeUY8nHGxX+EpSrnMC6TBKYayjaRoc8PjwQJVHKOGIPEmsFE1T4Q3G1FLTtS1OgqtrUAJR5eAF+FHCbHrG+NV3yB+vqB7eU13doNU+penJhNg2NEGfo6MxtdVc/v4r0lgRxUOCoIdTHuFwQIxB5mvuzi/ZzTccTidkB0c8e/IBX31xwdHgADlVOKH2a7aRj9Rr3PETwniCv7nDOM347EfE6QjPCmxVIsIR7XYF7b5Avl0v6CxUjcEYRy1gWZTcrXOapiJfrQhmPTb3d0xnA9xBD3k64nLbcf/1O8aDIUkSIQNN1ksodjseb69Z6j5PjnoMpo7Is6yvbjGd4ODkFcHrQ3Rbk4QhpqpRgQ/CYZoc6SVIIZBdgzQG4RxYgxYBSrQI2yKcwliP0au/ZPR0hWtLGrmgcIpw8hKp90QK5SoaafehWuuII02RtxA5FI7Wd8SBBdHilCTSHa5YoE7e7I0omyOEQjQ5OohxTYfoDEq1WAOiNkgXY9o5WimazoJzZOMxunDk7y/Z2ARv5vYJlTjlMa9YFAUyjAhNRxbH+ErirONhueF7RwFeteF7Hz/D71q+nD/wq0+/Ylc0HMSaF0dTamNQwrErSwJfM68N50XDWBtc0yK9EJVMUDpGuZo0VbT5HOdrms0CWzyilCMZpfRODnDeAZ2p2D7e7F8LFxF6IcZUONMybxxGGqgNZlsgom6fLFE+BpB+D+sZjAyZ31ySjSco3ye/vSVIQmI/RawqxLbBmR2IEhvUCK+mm1+iXYuXpAjbYaoVSnpIaTGuQwcZ2Ycv8NI+WEtbbtmulqwf7zkYZ/j9MQ8NfHww4/bt14TzG7phjBGKLPEZhFB2DVoBErqm5mT2FOeVfPeTH/HkY1ie/89sdzk66NPJiHE/pcIyCASyKugAfzRBS4FwDpVkKM+j2y5w9Y5uM0fEjvYKurKmubtE03L57h2zQYIrDD2vwH825PJxzuHpGw5evMDmD2x8i7CKpy9e4wvwoxDr9hdtaTWD0ZDpi6cksz2dbzAKef/brxmOD0n6CdpY0ILlfEWXL+nyLd3ihvaLX2OdxFQNQRIhqop04KOcJfAVXW1wWcz3P3mNJ6HrOrI0wOgE07Vc3r0HITk4O8XfPhB7PYolxEoxDjSqq1g1hsP4kObhhoEnWXVbbKnwhN3rQaXZbXPSyQGDOGLTH/BivKPJc/xuh+hqtIYwCNBRgCSmawu8yMO2Doo1wajHbPZ9eg3kmxxTNGi/R9E0rK7fE3YNvpL4QUAQ9pCmwsv6fP773/Kf/vPn/E8HE978d/8N+S9+ib2dE69LclvRfzOgtT28gwlql+M1Bt0YpOfRe/oanY3o6mavEzqDMS2iLFDCESqwbUUY+CzLHbKt8MQAJxzjWHLxdsmqCzl8OuLDVy/5+t17PD/m3715hv75r/iX1ZbaOYwRtMay3mzxlWJ2dEAVxsRPnjH99/8BPx3CwZLb9re8Ggjy9ZKHq3PypsW1hkEc8HyYsnECJzykkiitkEoRJGN0NiQUBmlqXLGj10vwXjxFRz5d/znxpqZZbxDlkk9//ktmz54TTc/QXoTvB3SmRQPWdGjs/n5zMMJ3M8LpU5RICOKaj4Yz8o1PED2FcAbFCp0l6L4PwYhkNkVR0YUSa09BB3TVDtt6iN6Y+v6CbrOg6iyD2SHZaIZtDM41KB3Rpn3ezgWtSTl6+T0iryAMA1okNR4tihb5bzNNep7j/e9/x839nMPjP8PEAW+/+Jzzqwey9AipJH4Y0RQ5nYNIa0TbYFqD53mUux1Bv09wfEyeb2mqnEBJnr88JvQVvqfxggF+lGHrCrZb/Cqn3uW49QJRVvhBjJVg1yW6qkliQ6e37BqPbekIlcJU+0bqaldR1i1+uaBpFdPI0Asz+ukUU24I0xRfRijVw4tilNSgInqzY7AC66Bd3lMsllSFw+U1rtjSmppKhWy2W2qtWUuPwWRMu/XopRFp5NHNH4m0Yjw9ou0n5KsFn9+XvH17yXQy5Onz51yulhxlM6p5RLO64+ZxziAeMnv2PfzpKXeLC87Ofsi22CKkIcp6xNmQztS0wuBMg1KgnY8yAq18tDIIHDoA11WoMKXblWhTQ1MTSoGIE0QlIEnRFnI07a6mm5d4QZ/0ZEqlHdoZhLXoWOGrIb76A2Y4SxBSoL2Y3thnUxZ7UbhdgpWosMPmJR0BWip04IBmLwLaDil9VGfBtiANIgJpQzzrIZQFT+GcReoAKzX36x3lbsfscIw0ksnxMXESkoicen5NlmiaLmQjPNIgJhsGDAZjfJ3g96fQdtSLBbvHO2b9FFkZoIUoAmdRvqYtSpouoC0MARItFHQNsmzRkUT1DygufgPDIX56jBIhxvnIej9l9ocJjXLUyx1pFpHNjml2IKZTZDZDSA9ZG5xVPKxrrr++ZvJHr/CQzM+vyVcLoMFLDpgcHyG6ku7+gp5qsc0GjEEagaQlSlNcawizKb4f0GxydODR5CX1ckm9WgKOTjrink9e1xgh2O1KirpjOBvgBcG+uCyOefP6BdNXb0jikPf/+Z8pOwNYirYhjmO8smRVbUjGYxarFX/2+gNUELLqLO16uae6SDDWIKXHYnHPxcV7nh0dYk1DvV3g2iOQISJwiLKkvvwK01m6qobVAr/OsXWBqEuGKuInZydsrm9ohKbqDYjDDt81aFmDszybTZGtIegNkG5vGugkoHI51XpBMu4RROBvDcvVA3Lokw77+KomiEOij98g4yFmu8Zt7rD1lvzdV6jx0T4tEMVYIalrcBg0ksDb93I47bNuBV1ZM4k14TjBaEVYG6JQs56vGIeKJ9GQVgre3j/y8tkb1krRVA0y8Hj25DmxcrSbOdt2jl09oMKA02HE8skp+S6nbkp83wdbQ71H+Pr9EU7p/ZTc9xBRjHMCPTxGeAXKClRZoOuCTmtcvscea9Exv75gdb3lxUcvSIYn+LNndHRIk2OLCttWmFZBV2BbCLWmcnuR0tMBajphez8n7Y2IjwfoZEgUv0GZBlyFsCXST5BO4FYP2HyzN0nCFLtZYMsCYfemHBLoGrwwRViHq0rub+5ZP6xpC4sMJpx9/0dgV6yuvmZ2dMDy7e8JpaOfZTj/jtxYSu0x8D1UU5FXHZfXD4z6PWyTU7Qtf/X9v2J8dExbtug0xPcALQniGLfeUxKiyQHu9p662JH0RwwGA2TXsjs/xxv10dJgug02kIhehPZOscKjXTXowhKKgNpUeAKc69C+jxICa2vyh0coKk6ePiPsj3HW8PTpc3qt4PxigT7ooXSNFiHBcEDz0BAEIeRLpAhxRiLxIC8QgYJuh6kL8CTNas1yWzPo9cFYaFpaYcG32LpGhpqutYTKss0LDo8PCCcJuj/l8M2HNJ++I+wJZK/P6m5FF8cEh0ekh0cI5fGz/+1nvH4W8OJZgWwC7OBPWa0tWgtePplgepr5Z9eMxwlyc4PJb2kqH5FKTF2BcCDVPm2jA5SvEH6CPPsOtqxw63s6UeH3BK5coLTh7NUpm5srrq7u+MmP/pSDj76Lnw7oNmukr3GmQXuCuu4YH54wPtwbibe7e56fTRl7Y1xdUq9KiqtH/KAP5kuKxSXxi9f4H34fLCgvQJgW29XYriLsH2DaFOMkq8UWvIBsEtIK8CKfbNDnfdnRaU0/DFF+QH8wIe336HRANjumfvISOUiw6oq8aFg+LKnqFk8HVK0lHk1Ae1xd3eGKdxykIR8+f0azWbF9uGc2mNIs7mjzM6zq703b1QLVNFg02AZnC5CWtJeR9L9PUzXY7RJbdsSTQ3TGfp3D5Lx7+3se7i7YavDdJbPjp8RPXtIfTEmCjmqeU6xzPvijj0m6EhH1eP3dU24+f8fN1TeILCAYH2GNQjYO4UUMoz6qrRHhkCjw8XtDlAPKHartcLVAtpqubqmdz3y53WuFIGaXF4gwYr7bIbTG1IKuNeSrDVkvJAo1UeSRjvpwV3C7fIQX36ULApII/CSlNC3DxOP+fsE8GvAslTz8/F8obpdM/3xGEGUMhzndvIXW4UU+5AVoh0PiuhZbm30ypG2g6xBhhh85qvkdyvfwJag4wNUdpoOqLPA8j+TkezS7LYGwmPUaqTRWKG6+fEugfFrjkUURLnA4K0idxFUGr+nwtSYcDnCbB1af/YrjTz5CaB/lp5j5LcJ0e3pO0eHu3iInp0jfw5YlpmyQvo+tu31yp62ZPD8i36zxkwDhJ9iuww887i5uKdoOLRtwEPkBURDgOccyLwiCKYFoEb5PmPURKuDTi0suVgX/4fsveHoyZbnJWTYVfpIhfZ+mavGl5Hg8QmCxnSMSJRQbVDJAyAAZeiRPX2B2G0xf4uIBVnh0+Q5bb2l2W4yryMOQHT5BDkErqGtH1nX0rMBvNZ7IqDcWL/HpGosXaVycYeslOunTOzDsGks6GOANEh5//Y+MsjHB4QnCaKT2qR8fyefv6J89Q+ZbvNkYMTiC3Y6uyLEyQJIgyi0u8AiPnkBb05UlzW7L8uGWfLfh7IMnhOMDTs9qbs+vubx8pN+2DNKE/tkzTFNDnGClJJQOUJjhBNWb8ezkmP7kFNvN+clHr6jziiTps1uXHI4n9HBIP8Tg9oM6udfrkhpRr+k2LabNqR5vqBY3mMV7Vg9zms6yfVySBRFngwFSOITXQdjD1DW9LOLln/0xSX9A/nbN20/vyaZHrIqKevPIaJQxe/U9rPDxO0HZi7BCslltSFOf6ckYLWH1YBievSIK+3TrO7J0jNmscVVDZ2uoaowRdLalLTeIUOOJPflP2RbpLEmvx8XFPffXt0yGKf3DGZ32aTYFoyxBB4rBbsHh0Qh1B++WjsD3mWYpmRZUZp8mfPd3/wdxoNhVLerVa0Znz9g8rOl7HquyRAqBkoonR1O8qmKnFEVRsN6u2dUl8WCCUAI/7VPPcxQWL0ogyrAojLHIbokWYJOEpm25/vpb/Pt7AtvhhSHa36f2gyghTlNO+z2e93zWF2/Zzc/p6kfkwZDd9S1KCAan36EtLV2l8U8+RNo9PtmfTJBKwy5HKYFC4ozFrJZ4vqbZPJAGAVVjcL5me3FPWe/AHeBrTRr6GCTLXU7dNszGQ2b9AZ4RjHqH/PT5B3TffMOnec7d/ZqrUcT1wwYBnJzOKJI+rVHkDw27mxsKKamtQAuJqnLqzRaJo5Fw9vQJJ4MA1QQ0lr3OV+D5PlJ56MhHlNs9vVL51FWB7aA3fEIT9OnaHSeTKe3tCik0R0+e0csGRIOMIEnoSp/+wSH5XBKNZ+TXF8hkjDfcD/we7+/pyh1PXr0hjYb0X74GB62r8Lwe0eEZ7eIR2VYgOrz+4d4wWT/S5SVSeNh2jbQt1WKB7Qyz6RSnfYxrKVpDrTTzXcfido0zHaezD+jPfOaXXzBfdNzcPdIb9mna7t9mmoS+5rPP33O5cvRfPqVSml999o98+81b/uu/PEDHCnxwXUl/PCLspVjjaPKa9cMaUTdUakNv1CedTeibBLQiUPvDwfcjZLWD3QrPGbrdHFvuy7BYbAiCHh0e5c0txXrJogUXaaKmZtrXCGVQ0YiqzYmnGdoJ6nKLb2NGowPm315Qbzpmb95AOoZ6jct3SDkFO4Soh3AOaQ22tkjl4WcjTH9Hs1xhhKQsKxqh2NYVreezAwQtwu4PRu2HCKmJMPSSBD9NsCvL7bxhdT1nEIe0FrJsSmYd/fEAKQy+Mvi3K077h2RnT5l+8JTmGiavvwt313TLc5S2nD474at//YyD8RBDgxEBYFDtDt0GOJni2hy3bVHDE0xnoXMo6+0FuNQ4v4cTCmklbttSWsX226+YBIo47EiiCYEOkK7DyI66CRCBwks9vCDCCwJ0kkILwstors4p64LNYs3s6BhTlOhIoWSCFymUrVHSIVB7geUKOtsg/RrltkgncfUY3QV7wS8NAoPtOlaLHYvVjlhbwijmi99/Thx6jBNBMMtIhgNkOCAk4nQ2ZrNc0uv3sXXLenNFEg9oNguausO6CoKQpi3xU0ld5rh0gAg0shdQ5IaiqcniGPINOk6RIsC5GN17QnoiaO++pC0u0f2GUAfQdrhsgo19ysUFQjtsECH8AFOskc5D+T1sXlLfLdnMC9a7LYXZsfF8xpMZDz/7ez7/8vf8+MffZd3dk6wmSOFI44RMOnqHE1pnsHS47TVOdOieplk+Ir0IZQVtsUVah3IOEIjBiK54ZLlcs60qjID75YZ0MqVGEBiLKXNkHDPoJYRdjSz3k9VCSpCKpjW0gxjnHiAKCCcjntBhN467dIznXXD89CX1dkm+mmMdCBzb7Zb3bz/noJ8SCMtus6arcmRnoHUIFaM9Ac0KDRgnUEWJbiST0TNsXlFXV3RBTDQ9RjQrJoMUrGFXNRxMY9IsQDsPnYxRcoQ/O4Ymx7OO3scfE/T7bD7/NTqq0SNFbWt8AnzA0xHKU8goQI9fgHqOdC3e7BAZ9XFNgbANSipclFIuLzGNoytLtBbMdwW3hSLflSxv53RCscsfeJb2OBsP2Ag4HA/RWZ9P350zevUxk4MDpF4SKIuvfYZHQ9Sq4GCc8sXvfsn0eEaxvELuHjhMY8qnTzj/tkZK0FJh2pa2qln7DX4PEtNiJQhTIYzDWoMLe/skzG6LCHoI4SPtishBPr+muL7j9NWf4PViovGEcNQjv7nB5BUohfAsIuljnY9zX/Kv+wAAIABJREFUEPiKsqzQ2mN+eY3S+6kz6zWit0EHCa5c0pVbwuEYmcywdQFVTTu/ptsscNJDpEOstRjboaOAwlikcCAsR8cHjHyP5eOSWgRkJ29o8gJnNHGQEGvL55/+lv+4LhmeveT165c8JAFmOGSuNSeDHv3hgNvlbr/zn/QI04B694AINL4XMD06Zn75gNAZVX6D2eTYXkw0GNPN74nShHg8xkkPPwgRfkr/YLIvJ1QNygmU18NslqjBDBmN6SqL35/iBZZuMcc1FSrto8MYYy3ddoexNfX8jkxLLBodDvCEI1Y+vSClLf+V3cOKQV8h0hhajyDt47ZLvESAbJF+jFle4vwheB7C1rgux4UeRd2h4hi/aujHIaejIXeLR6QO0FLS1C2ma1nkFU3cJz05Yf34nu63v+b83TsGH3zAWD9Su33isnd8sv++MGR+d8/d7QPn3+6Y9CXDQcjXt5aukxycDOhan/kX98zGbwjbmPP/+/+Fbkn/T/4CLRXVbodnOqSTKC9EOmi+/gJvcoRIxqhgiE01yi1wtdunn15/SLtcY+7uOIv2Brj0YpT0wQaIpsWVD7iiYDw7xR8OoS6RpqQ5fYYJZ8TTe4L6kaifYLsWrRVeOEZrD50dQNdCUwLdnlzRVPvkgbU4HVHsCu5u7skmU6ST3N7PGYzHPNSWeZGTpimdgdF4itYRu21BP8qIjp+hZycoz7HcFITOwzhYzBc8P5hSCxBhSN0ZqqrC1g30YrKst08heJpAWkoF6+UdvaSHMQaExTQNDgGmgM5gXY1SDvwegRdhU4UcpfhO0VY15v4dd2+veXh3zkcvzjBNx93tDbrXJxifMjw9xtydU+86euMjgmiCkiHR4QHWebz441d8++5X3Fx8RjxOEc6ijSaLDgmsjw40SntAAdUK4kNcs0ZWOSIvcJWj7Toe5zuWu5wwTui6EufAGcdoeoDyvsIpxd22pL/YMhkPiHsxfuqxmt8wjIY8PTtgbjvSdIqXSFolkMaRRjHv333Ne1GQnE7p+yOq5YbIH2LRe2qTvUPUDYIOsd1gAyCMMG2DaQXWmP1zNQ7pt9jVgiAMsHi4aoWqShAC0VX4ODo7wpWWqMoxywe8JAIv4vrT9/idppdKjp++JH3ynLKpKPOctsgJogxfx4SeRnsB/uFzgnqO3V6hsyGg8MYn0LZIse9/seYE6gK6EsoVQgdILahXjxSrBa5pcX6Lnowpipp4fk8ceXy73nGz3WGFpLWw2e04e3JGnGUUneXo7AkicGRxj8YJvNGI6fEhb5YrpFYo6chmU1Q2ZHE3xzYVXVNzNJrQ15LItdimxlOarmho5ytGZ69RwzG6HyPKLcr3EYMJLp4ghEQbQ1uu0IMZOEEsFLqqEFbS0VGubznsxxyfTojSKUF8SJc7UDEqzBDSx1OCMu+oLi5JJzN6o4hu9Uh59y29oEI0twgRoEavkV5CMp2R2g7R1HijKdZnv8YkOwwe1pi9PhMKU1fYbm+gVesHdreXXL47Z5AleEkPnfb55L//hIt/+gfa5QLnOmxVo32f83fndFbQVQXO13hhyvPnHzAehYyyAE8bbP7Id//4e9SV5f3X76hu56RxyKEv8TEUZU3kK7pqgwkVtgpoH2qa5QP1Zs3q5orl4yOrzY7FusDPxpw9f8ZIN/ha482eIZ2Hq1vau28Yyz5RW9Jc3nD97ksWqyXx0QdEvT5HL44p785x9ZL02Udg+7jNOzZFQRinXH72KcpYTk6PMVFLdf4NOpvQ5DlhlqGHM1Rriayj6Qqa3Ya82FLUNabukJ1HlIZ0TYGnHDqJaOoSgWEyHuInKfP5nOL2gtl0wnA2xRcw6Pe4X+aIShLFEWkac3owIu0PWD0+cHdxxTASnL05xfV8xHiGOKzJmvekOqQSe1BFHCVMDg/Jer19gefijtXimslkDGqIVD5+3MesVqjhAUiB6BxaSqQOQCe0rmP71S95+OIr4n5KXVh8ur1hbQzCBMi2o85zRknA//IPv+B/TCArd5R5C9GI7/zpn6H7T/APerTrNaYqkdkEnY3AtbjtI65rkUmEqT1cvoWuhnpH4Aqc3rct5k3F5flbnFbsVmOi6Yyy2HE4GjC/vWW1WDIZTnl5eECzqEBEJKNTvlNbtg83vD2/RbiW3bJgkKUEYY+0N9tDGUYTssmY/Be/4P3nvyNMhzT3c1Re4pzj1dkhr549R3Ut4+EBF3dztrsd/dEYISXSDxFa4WVD6vsWjUI6hXMevdPnuLjHoGs5Ph7wxc8uOD4+IBuPAMtus+J3v/g5B9MxUmqE6ageH/bl97GPMAOi0QAdKmRrWd9cEM8su28+Ix6NSQYpUoNZ3KLkH2oZlMW1O0yxwW43dIsNaIEpt/tEaRBhGkE82ndo1W3O5c09t3lD2h/SFRX5tqItGg4mHxDKhquvP6duWvyy5O3V1b/NNPndRctX94JwfMI///xTRJNzdTlnWxiWqx0itNhwQxh4BGLCsw8/5PyzL9jtdqylIAtCinVH+/AIzY4w1PjjKbgaWW1QUtJudtB0UJe43R0tIevVGpGe0FUVy9tvyRc3XK42eLNDnh29ZvP+gt++XZEOSt68nkBlUJHEazTTkxN86egPRvQPXvL4q1/hVhvC/nNEkOE23yLiPqIp98kHP4XSQqtwpqTbLhFm33XRbnc0rSPXguuHBYPpiE77VJ1FRRFpoOgPUqT2CLIJNvCQUnB3ec/dbz5jenRE7+QpF6stzgsYjvrkdYMNE47ffEIv6NNsC3TfQ0YeR8+fU60eSJI+q42H6zYEkWA8G+M6i21bOuXRINCuRdUFQgW4coPTHtgZNGYfHawt2pPYRqADn9YZgkhivILq/C1DuSZLBoSHGck4w3khorUIQubtmqZes7264vaLd5y8ecHkT36Kjgc4BwIFjSUZDblfVHhlSbvZcJh4+Eg6I7GtRCuLaztaOnAl2uXgttD1ccsaSYSh+kOrtkSafWHeNEs4PJqyXO2Yv3/L+HRE0BshhMPrj/Fkn26V71MtXkDW78Om4NN//hVXv/4KEUYczvoc/eADHhZzlOioNg8gFGXTUDtLaVo6Gm52Kw56GqtT2k6iRIrwEpSt8ZMhwYsfoqsKpRIEDpcorJQYv6N6t0JYB23H3ft3hLVi981bbLXfld/e3LF9uCfu9zl/f8HLT/6YUsB3fvgRzfYeKzTTozG351/R5RWRkAjbEPeOEP7eES+Npd4scG5FcpThlIdb7M1Fpz3QAcH0iFpBvnV8fflAZS1F0xKnEc7zUMaghIFOEExmuKJk/ulvCYIQIz38ZIAQd7RFTlsVdLZDxzHjMOS2aVltdnz0nR/RbXZUacz1xbfkqyWe9jga9mibmu3igbIsQPtstzn1ZomPQwmNE/G+7M5KpArxYo2IWnzpMDqjKxeIbIiMEm7qllHqM5oekD/cEynJPIffvL/mLz86ZaxDZJLhDTKayyVB0ic+fYkeZWRSUF2/x1y/w1U5Qb0jGB8gZYgSILoOKTx0lOJcg44ynLOgLLRgjEHpAFRIubpDScW2qLkvBdY5hHP0soz3t0vybcXGKZ6PJ2jfZ9cYhIpwqiKOQ+JQYmMPT8SMZ8ekaUpxdc7u/VdUdcnkVcLt23tcteXp4ZThdETmmX1niWH/XkkJnmRz+5bg6BkqSPeHRdOC0AjRYraPtMUOPT7G7UpksYLiAbO65+T4DOMUWngI52gel5htyfZhifMSDg88HHszzVU18g9IZ9c6+qMh+f0d+XJNr9fDK0t0lRNkJ8gkw5U5ThlE22HWK2g6rAxwUtBt1ogwwGqNlQLTSvJdzvHhAQfDlGkUcPHNtwRhQv/Z90nyknGc4gtNFvf5+Id/jjt8Ri8J6PdCjo5Pma9y/P4Q4fkEWYYsLP0g5nnoc/X2M+5uLzk+GHHz9guWL15Rvb2hXddkz4c48Q3a08gwwvN8qu0WfzBjt9kRj4fIUoCXEmYxgRY4aTHzHfrwGP/lJzggCAQyL7Gexi5WhGFKG+zXD29/82ssgrpaQ16iBhkoHy9M8BC4pkOpkGcHh/zum3uaraWrWrxEo8IY0XYI6eGqHJoG+7hFpBKX9bD1Btvm4CJKa9FRSKw1NBX9OMI2KffFBpkG+IHPZpfzkFcc/+SviAYhP/unf2D75dd8+PFzDp4/5YlI9olDP8W2HcJY8vWW1d09jXH4yZBvrq549/e/R2qN9CKi/pSL9++hqem9fILfGlz9gqpb0IoG2zg646jLfE8bQoHwIEiR6QQhA1wnoKkQVYUWEf6LU6zTyHJHJCsSapbvvsDzfPyzJ7h2y/bXf0dd7Ehf/4B0eED49CX1+efY1ZzhbMLduzVHn/yY3Vf/QDrz8Y9+gmwDlNRIY7CrBmEuoNkgRqdYZXFNgXUtTmqs6bi6uOA2b+h29wRByHy95dtO8OnNI0HgI3RAdXfH/XLNeDwhjTI0PtZ49NIp7y+vsK3h3dWK16OELEnYbFYM+kO6UJNoST/LWJU7ptMD8vmSXhjSHw2RnqZwhmJ5RzebgdmXJIsgwdUl3WKOyjq8XoRtKpQ/QLo/pCKDIbbuUJ1gt6h5+OaWD85OGUxm1FVF/QfC4OjkBGUFtmsJPUW9W3Hz+W/omYzopiH56BXTFx8Q+DdcvPuWi1/8LW9++tekvUN0Z5HSITuDkxbpW1ACt9wg8LFlg823dHVDbRyXV7cYC/frHXXb0ktjRpOMOEqYHh3w9uYGYQzzxEOOehx+9BzlOb785u/Zmh2hcoRK0kjBIIrYFTnjfoqtLOUu53Gp+bLcMvNSTr735/Te/JBOBFjVQwYh2C3WeEhhaIodzvP3VD6n6Oqcpi6RhUEaiwg07g9UPVsWuN0Ws1mgwh5Kj8CsYPsZggb/9Xfo6orFu7cs73KeHp8wPD0hPPqQh4tryB9QWUo8fopUHspPUNEAISNEmBBkCfn53xOKFt8L9ppTCbrFHSrq7TugpMC0Bc7zcQKEAttU+EowX6+xVcNkMoF1zma3xYYx31QPrBtDax0KEEKRhiHjwYCV0vszsrzGG4b04wgnJbMPX5CNB7xZLNist1jfJ0gz7O0jtuvoDQdI6Zj0E9r1BuNABxFms6ZZPMDhMdQ+7vYS6wnU0R8hkwmO/UVeOIkVAaAItU9VV/iio01TtndrZFQRHA6QhzOi0zf4aoh5LOh6E8R4Ruda2G2wreDmN78nHd8SHR9yf/019vGC6WiE53l0bY6XBjjhI/wMYTtEW0AlcdUW11WYukH60Z58KdzelGwN1e0VptjQbFfcX13TtAYZhHRNQ4+O6vNfMPAdf/6nn2CFIpuMWG52rOZzzGbFOi949sevOfjoBwglKC++oij7zL7/YzANDw8PnH34QxaXl2xMu8eRZwm+VtTLDUZ4NPmSwLPUbU7lDNubSx4ub7i4mbPY7f9Po6MjXv/0L5g8OcPb3OHe/g6tLd5gSLW4pdneI4WjvPiMLy/v+PZmzfjwEGdKguHHdEGCCDuqao2/ucQPInrjhM44yuWWwAuQwu1/Y9ayfn9Dle/oTU5xMkaFCW6zQvkC6QJkZxHCYZylqDeE/hAlACHRUuGqLa+fHbJOfZTvo6SEfE1dFuTzB55/50Ooa4IgoqkNwsDR0RGdNCT9jEoIhqdPCCYDdnfv6c9G6LPndMqn/+QFi8WWkV3hBT6dckRRyKF3yOPdDdFsRFRvuf30X3k6HmCjAKIhOvQRdY1oCnB6f8dpa0TT4RlD/XjHw+9+h7Yl9fwRW1Y8mX2IFyRoT2BdhxMdq11OMh1zagN+9fkNZyNNfzDix3/975m8/iGyN0bocG/SbOa4pkR5LSrrI/QQs3rE7B7BSYRvEE2NqgscDqEVSiouvjnn/G5N3EsZrXf4fkLe/aE6QUk8z2fQSzk9mHK/vEA1Bts5fvrf/g/sfv6PfLW84BeffUkgOr7X71PUDYejKcPRiOX8kuxwQr1ds1xvmXgJUnj8xYefcH37yH/15o9IXv0AqxV1V7MoDauiJttuiNKMUIL2fCxmn/JyEuX7JGen+OMjutZi8jVu1RJ6mq6rufjqC6ZZxv/5v/7vfPmrX/KdH/6An/7Fj4iTFC/KUKZFpSHLzY7zd+9gNCQvKqr5AyLaE2GL+y1uF5LMTvCGI0QUYZsd1ftfY5sWf3qKKTua1TVtVeJ0QNN1rPIaqUJ8HdDJmi/fXvL519dsHTx9rnlcP9BLBhT5Ft/XHM9e8f/8X/9A2RYcvDzj3fXFf9EXUX/zN3/zX/zw7/7TP/5NI0PCICRKIpr1nKvzS3a7nNmwx6tnL0mimEH/kDhKGA5TNssNpqxpiopeL6EoCly+Q+dbhI4R0sdt7tFNgeha/CDeo1lrQ9coygo6P6TL+pT5LZfn3zCvSy7wmZyd4LSP9EPO+j1O+yOS/gSBhy5rpNKoqiNvBJ9+9ilPXp1g65JyuyRI+/jDEXa1QVi3R/wFCS5v9jSP9RYzv6Fb3lAt59RFQblZUzUl286y2KzJRgPui4L5cokOfcajjGEvJQ0UYeDhhxFO9rj8p1/iOkOXZDR+yMHxDOV7CC1Yb3d4YczZ8+fMZjOMUmANUeRIspQk7eNFPRY3VzTFBmccgRdCZ/A9hRIKIcCx7zCh2SGkQKoAITzEH0p/hWmQpgSl6FyLkwbXbinWN9w+vOd+XdCKhHh0SHZyQnw8RcceOhsjPcHq/B2/+v++oslbVF0S9we42qc6v8TYFq8XoeOI0IMk7VHnOQ/rlmQyxbkWh8I6RW06rKpwMkfJGqnA1pZ2Y7GexvkGocBpQV5UfP7bfyX0JDpKuLm6xJRbnG3QviI9OET0T9DJmGa1JWprQJGND/e41PWWYpMzOz5g8mSC7mVsF4/c3D3wcHeHFRKZ9jFWsCt2FEWBFT7PjscooZBxhpACFWhEtYYqR/kpqn+IiHpYIXGBh4sC+MM+dH45J3/YcH1+gZ9osB6yU5TLR9aX35AOUpwCHUZMnz1F2Zbzz78g6M8YPnvN4HBGHGkCpcgfbhmEIVGvj5cO8eIUnQ4Ip6foOMMagecHmKKl61pElCKiCKKAqlpzcf/AF+8vud8UWO0xmQzI0oTIUwRYutZy8vQpSZJQnV/gBzEmm1Ah94JXehhjSZQCKfGU4tt376nrlidxRC+K+e1n/0q+XeN7mjTt8XLaZ5zFBFrxdDJACkngeWShwsdg2xolFNQFUoBSHq5zOOFjRYxMR4imYmdqFnWJjDSRZwnSPXmr6UqioEdISLv5/zl7r13btjRL6+u9Dz/G9Gb5vdc2x4a3GWkqsvKmXCZVglskQCXEPW8Ab8AbIBAguAEkXIokk6QqMmyeiBPH77PP9suvNe3wpvfOxTy3VRK8wZSG5j/+0f7Wvtawd/wWMknwjma02wXN7RnebIKKQvTyDmslukrxrEE0Bm/vFOUFSAnKcVB+gBAg0SjHQUi144J0DaaqsG1HcfGabLXGCsm6VbhhhHAdljfXLJZLnl6nlK3FUw4EPVwEajjm5HAPhCXfrjj41g9QXkBelbz37e8w3d+jXN3S6xqSo328yCe/ec5bDx/h+j5SQegIxqFP4Cqi0MNVEtodXd5VgLFgwWqNbZrdJVdKDBajDd12Qbd6TZPdEg73QAacf/wJg/kBrTtEVw2bLz/izYcfcnf5CrM4R2S3NLdvWN0sefPqlu3dhupmyfT4kMFsTFOWnL+8IvFdouEQNChchOOhNwva1S22adHaoo1BBD64HlprmqZCfy1UrtOU0bDHveMDlFKcPX/Ds1cXUKUUl6/pe4oH773DcDJEBT7D8QinLYjGU66vbsi/dllFcbITwZwYN0pYLW65PX+NpuNgFKCaik9+82ucdcv7//Qf4k9HVItLojDc2evrhirNad2AOt3iAm40JRnOCUIXbz7Fnc0QUYB7ch81mSGk3IlUwQA04Do09ZYXb57zt3/3c/7q737F+dOnREXFOPQJkwR/MMZPxrTXC7rLFcrrIdqW9OKC/slDPFkR7t3DGR+i3ASKavfOuD5H5zW6M1/XsLeYtsQqRVqVaEchlKLVHUZbhNG0XbOLsihJXtdUyYR7j9+jPxzR259hmiWn75xSJVM2ecHg5G2i8QxlLb4xFHdLsotLXt1e7TLwWrNJtzi+T1PXeI7i8aNHTPYn7J3u47kS3eYsimuiqUfTlpi22EEspUBKd+cyDIc7wKl16c6ukbpAeAHO+AjZG4Pp6K6fQnlGf5aQFwXZ3TXFakknDa5nEPUCoWu8+QHeZI6+PccdznGCHiorkHWH6mpkt8aJRoh4gjuefF0VLbHrgvrDTyAYobt8dxhpKpqqYLNO+erlGXljWRWGz19f8cmrCy63KeuyptaGzXaD7Vp8pehkROwm5KscX0W4UUTnW148+e3ukOCFzKcTZNfw/G6L0RopYTwe0+sPOZlOiJsCV4Czd0AyndFVFa6S9Htfg4eFACHQbYn0XZwwwNTFTtdtfFwZI+samh1UtLu8JD17RrG9xQssbpiQr0ucssR3LMl4iJQtVbZks1lSVhkFFSL2abKSzUbjm5wwrIl7EdntFcXlGX3Pw7ESR4PQFuH7u4afzQrSFRQp3XZFu11TFDk3Vc1nX71gW1XkTUfZakbTCZODA6J+wibL+OKrF2yKiodvnfBnf/4T4kFMlS347INPePVmQZbVOPGY/YePMK5E64bDyQjXdcgWS9o8JQpDbu+uGe7N2f/eD/Bin6baYKVCtx0GQQO0X89FBDTaUNUdVkX4YYLWmk746KbDVrs2I6kCVDhEKoloDHb9AilLnPk9Fl99Qn59S174yOQ+s3vv4RIimgpWz9HpJfnNBds0Z3zyAOlFKNfDS4bIMEb5HkrcQrVEBfHXINAA4QW7WV5usHUGnou2FiMFXV1w++VTZJ7RD3zapsPzfCSgvYit8Hh2dsFduZuxk9GUh/fuMUhiXN9n1Wr6/R7fPkjoS0OsLE3TEcYJ0nYoL2A4GRHPpvjDEWfn15R1g+t7JElEHAZ0bYurFL1kgGshivtIpXDjGKkAqRDhGFqDsApbVmAFOB62KtDpirossON71EKzWL4m61pebXcOztHJ24SzY4RwUcMZwck+nXKgrWk2a6psxc3LL3nx8itW58/Zm/aIZ1Pc/gSVDJHJkDTrcHs9pG0Bg7UWvVlSnL9GKG8nLtQFWVlSNg1CGDxHs33zDBslpGmJNhoniIjjgCgM2bx6wdWXz0gGffzAB6XItMUNQz77/ReME8Vb39lj8viQ+eNvMe5LfCvwB6c40QGTg1PctiN79ZKB22d4uIfjO4Seot6skE2Fa1uk6WjLku3tJc+evuG3Ty55cr7ktuiY7c04PT2kFzmocotrOtKXX6DKLdQVzeaOssi5uLrji2dnpI2h9+ARVV3giYaD04ccnBzSG4TEsyHhKCAaDlB6S71Y0OiWg0f3iYcRw7e/hSvAo6KtIZwc4Y+PcPwIdA5VheuE6O0W5bl0XU3TFYwPpjjSolwX43h02oJ1ePb0GYeH+zx/c8n/+cFnvLzbkhYlbpkRxTF+GPLbT1+SVfD+936MdV16gUPTdfzBX/xzvDBgvB+w//3vUTBEiJhBb8j6ZknTtXieYhh6O1E/CCmLkuF8wmQ2plkvUOmWQb+HoEHYBimBtkKYDpoCTI3OtzR3lyyffM5ydUN29Zzi9XMOD2aMH70LvSO83gRhNU2+IT2/JI4GDI4eUg/2UcMBt3lL5CkO33oHJxntjlzKxRkMEQqo1kjXga7GdhUoi5AdtqlAtwgh0HVNZ6CRDp9++RziPvvHh1gl+ezsGrc/YpvlFMsF/Sji+OQe1d2adpUSdwZbpzi+QxDCokm5uLkjLSr6g4DxZMjb775FMgn55f/1V7z67AlOElMhEcbS8xN+8C/+I6LenOkgpH8wZjSb4wlLWVUsN1t8V5GEHr4f7KJhptvtz0rgBA7h3hF4IVIYbFPRrBbUqwXnz16wtIbR8QH7e3N+9IP3SIY+psg4evw28f4Bju/iuh5GGUwQopFY27F3+gAJhPNDpBdSpim+tCgFpi3R+Qqdb1FJQpOm1LeXfPHBJ1gBnbFsqppNq3DjPq7vcXe94Jd//zHP7zbEvkccR3zy+ivwO0Zzh3h/yKNH79A2GqcvCXseXz1/yX/w7/8n//n/Z6dJ3bSMJnN01yJ1xe3XD9gIh+vbLfkq5d7sBKeKsV2Fp0MePnqb368/Icu3rIsc3bTU65xgmMAmo8tykshBVyvUSFDepWB3ANWm7SB0aa8v2Z5/znq7QjgWN+lR3uTkbc50sE8oA3R6gxco+vsJXRUQeN7OhRANScwtf/vLn3P/ww+JIoVKFOef/4JD9R08FHYL1o/Rl5dgLFbHUFaY9TXt7Uta61FVmrwuaXWLDUOG4wnGCm6ub6i1ZSDBpyX0JE5vjNPVuGFCuSy5/83vkRU5v/n0UwZ7R6jeBLfLkJ7HbD7jbrkBN2Ay2cdRI3Rm6R0mRAlYU6FtTNUYim2NpKOqd+1DaV0S+C41EtkZynRDMOhjiwKtFaHbQ4VqRxGWLVZXO+Cj1VBvMVgaadh0NZny+Juf/47V//Yz/vybD/kX/+m/ZPj4LfRqBVXF4o3FUwGRKqAZU200NrsimPdwfUuVrtHGYmyN6CTDwZzu4pJqUxNGGtocx/HohME6YKsdIyZ0FMJKKrNFygLHyt3VCsXd1TV0HW3XkS1WuIMpQ1riAOLRmDerloG/wothlAS0RYkKwl3ezgsYTueMp3v4x3P6xyPePP2E3330EYvlhsAV7AUeceDSGVBqV/lWtB13dc2hL+jaFNuUuFSgQIYJVgZoDMZ1kVEfMAjTYBuB35sxeBwQdhlufoMRglJ2pM8+QdU1g6MZwXyPKk8pswWbixeUro8Te+RFQ5nnyMABbRC0zI/38bsKjEUIByEcpDTYKMLxXPQHef6dAAAgAElEQVR2SWc67GC049R4DnWZYbuassy4Wy1phYsXOEynQ1w//HrAOWyzitloSOw6eKMjytOH5GkB/R52m9E0LU23JdtsOfn2t1Gez+2b1wgreevhY7K7W4K4xw9OT7la3/Hm5gqtO15cL/knP3qPveNjDlzD2eUdnZxTlgW+ivFdD93V2DLF1hUqGCCdGCkFTuSBW3NXXnCVbQBLGAwoigq/LnhysUAKlzbPGOma0IvIri4Z9ntUrz7h+vnHLC+vmMqCvUePUVph8xrZScK9+3TbHFGU4Aikp5C6QZoaYSS2q7CtxSoXrMHWNaKtaddbqk0KfkRbVazTFXlVUTsxn15t+fjVkkVaMU5iRG/Ik3XGP3r3MdVmhbAdBBG2awnDENfrmDnHTOZ7xJ6L/M53MLNzFpsUUad8+923GB4csM4brj78EF2W2MjHKgeN2u2fpqHOSnTcw4oS1WmE8qHVSFeidUXXlthyQX37hjpf4g4nKG+IIzZcZwX2KmXgLhHpU57+/a/55HbNsm0IZcN7BwOG44R1DTSGwBoGtGSbDXvfeoe55+HKcy4/f00QBQwe7H4XjYNEYo3GWIsMQ2SzA5xZ6aCFQHo+ZbtrcBr1Y2wYM+iF6MSh7jSrqwtWlxe8N+oTPxgjuwyhA3TVEscxStUYIal0Sa41kyDAU4K6KklbSdRzaWpNMpiSL7dIDL4URA40dUp+t8bZixBeiNUtwvUxYYLujWi2BaI/QStFozuk7+EkHiIKkeMhQntYIbCmQUiJSIYIrcAayotn/Pqv/nd+/elnfHSzZFtr9t96RGw1YX+PKAoQXoQSPrbpCA7v4x0e0niS94ylG01RzgLXB6lATqfYIKJbLOmcHlW9hvIWlS1xIg/ruxCGdF2D0+ujuwZPR2A0VbFB+hHSERgpuc5q+tMYKgkE3PvGjxHCEOtLRnKEeHWDdHyKdI2rFP3+gNt1Sm1ajGm5vXjDoN8n9AOW6Qa8gFXTUs6nnBzMyXRJffacxflzclsybncfmq0VFGmGqyRSuFAbhG/BeKgwxhnOsKtzVG+A6QyEFswW0V7Q//F30a0iWdfktyvW7h5/+8UXtN2af3pksZevkUkP5UWoZB9rJN3Va9TmDfnTDzC2pX9vD1GX4KfoQiHYVecK6yPGP6K8MLC/QTslTZ3TGsvz81u6tiMOXNJmF3M0QtEYgfJCHNfDNiWNsdxsM1R6TrtqmYU+oeshN0PY8xm6hkoE9EZT4kFE1XToVOMGAdv1iqurG2bTGfHRjN5oRNXUOK5LXeSoIMRgKLI1SdJH78iZ8HVDS31zjigbAtXDjRR0CuIetiixZYHOryjqNfN3T2kWt6yefEleV7z9nXcwJub6w99Reh4phmBvxmj/kFhaVJETJ2Pubu9wWCNNh990xK6HMJrbLz5BHJQ4kyNMbwj5AulJpG6pihyBoEm3lF1LHfV48tHvuF5ntNYQxxHj6ZjJ4SFe4ON4PkeH+xzvTXn7eMrDR0e02TXxw0OeffSC3338mqpzmUznDF2FI3bRnCbvMFozGo852t/n+mXGap3Tpg1XWcU3VI21HY0ucXtz2uIC07UoP0KokCrbYIzFSoUKFMYWbGsHXwWoTiObEtnmO/CiFNBmiCqFegOkOAffp71LuX1yS7W8ZvIP/h2mdkLcm+KHCcE0Yv5nf0T64d/TXr/k9bMbTKEJ50NcoXYOslYj3A6FAT/EpFcQtwijwUhssQHbgudiTIeVAmscqm1F8fySzWLFXdbSSYk9FhweH1GqmOdnG2wQcjQeMVMetVDUdQmiz01dE81meK5PV60IYkWzXiMHU4LRFK014WTHk2mLAulKol7M9XJN0LSkaUoQhmirWW3WTMZzfC9AegptFHgJojdHuQLbtAgnAGl2xwck4usjqGkk1p8S7B3RLK/xkwHx3pxJVe8cnDcbVFjiRRFuP6IuWros5/r5Uz795c/Y3J4hhebw0Sn3Hj1ie/mE3qiPO5yj/D4ISAYetk7RykU5PjrLMZ1G9afUeUaxXrOpc2zgY5Wi6CxW+fRO38E4LsG4IXt9RrJ/hOpPsUoxHI2osprNOiUUimi8x8WnHxH3YvzQY3o0IatSHvRT4n6D7EbIpEdpBdNH77C42lJf/xWj/Sn33v8JaiB58fxjnF3pNWhDW7ek6w1WSm6u1/zqyys+PF/ieT7ffrzHZDYkcmGQhCR7hyjTYR+8xfrZ54gs5WaV8ruzJY3wOT6Y0T85Im1LDo/nOMrl2ccfUF28xGQb6s2Wzo05em9AbDek25z9H/6QZHJI/uILRL0lGCTopcIfOMSnB4hohmggms8xaY7OVugmo+sqXN1D1TsBxfU8tNH4rmaTlbiTGd//6R8jsPzrv/kNP7tYgzXMtyXol4RJQGk0H391zje+/xO+8YOfsLw9ZxYYsrtLtLYM9mcMT95Gjo/YfPQVblsxGo/Zf3if6w/uCBwfrQ2R76LamsB1iazC92Pk6SPQGfniAs+R0JOYpgHH2x2dhMCUBbqrqLIb2uoKUy+p04yH9+6x9853iEZz3PEUL+pjtx0NHoPehCwYshA+D945Jc4LynhB7EUI38NUKa8++ojZ43cYnLyFGs3Qa4teXiOkwegKOehj6harW2B3+DYYtLRk2wxBR78XQFvRRn1evXmDM5jg9QfcbjMeHkta03G9WhMoy+XijOlkiB9ZfvrP/l1u//p/4ma7ZLFccVUs+cNTQXzk4TgCux9xvtxwNP0G70cJH/7yd4S9Hm8WC7Tnkjx6H7dbUV+9Ybu8ZOJ5lP0+N4sNgp2baDzbRyhnx4myGnc0RbguypFooxBCIFyf4b3HbLRDxpYuX9NzLJ/8/lf4vmQrXeaLQ6SSRKMJOt2Sf/EZX33xBQQhbhRxcP+A0Vztok5CoKI+6eIOSblrKMTS6QYnCGktbNMC1RuRdRKdVdzlDW7SI9AG0Rnu1im9oxPuuUt6gU+OxgssRXaLnDwmmSvCicc/+Od/xq9+pXj6xW/xQvVv1EX+raKJcUI812GbbfAU5Js1Qir8IKLsDFfnr7i/t0dkFQ4O/njK9J5P/6sXtF3FqqhQ1qLTlJFrmAeadFEgoxgxSNC1ROoSUd1Sl4ZmMMPmF8gI6k0GtqE3P8Q7eA9/8zPuLl7B5orXLy9Zr7Y8OJjzp3/aIsME14GBnbFZ33L+/BnvnA54s7mhvKl58PCQLNc0H/2ah9/6NnabIpotyusQwmJaSVsq6mLLNk/JTUTd1FRdSycdYqVxexGV53N2tyaIfaxQBHGM1pbAdeiHHqIzpNbFDCbMDk/ov3rFarHg/T/8KZ99/jvGrk/blCinY50uuT/bI4xH9I/nTE9HdOU1uq4oFlfoumSdFcxHIXVZ0ynorGFTFgSVRbgxUGPkAgcX1/nachb0cZydPdl6cqfilSnCC2l1xZqEIA7o9QO+lc2ZnPoc3B9w9+wjPKcmfX7O2Vd3eAE0pubpYo07jLifaPxAIENBubrlxZMnpDjEwwF7wwGqKBGUpNcXBPfHIFoaa8nrljZviBR4TYTInV0XvdI7wQoHoSydlayul+hWslwWXKcFgz0YRwPcQciLxZrr9Q3HZUfcu+WdgweUrWE8TnCVgx8EuPfvo2WIE2jQHfndcx4fuHz2ssIXGtdRqGQFwkMqhygOQHlcLgtmp0OCfoComl1cBDDSIqWlLRrcvSMsPsIRmNbQdpZWRYi9iDb3kNGAm+tr6pslQdvgNC1urrBrSZqV3FxckXWa8Xyf3mDE5maNUgov8eiNewQ+uKaPrRp0YVHGIK0AozBpBZ7GlB1W1whH0tYVttBUTYbutpR5SuB7eL6D73sEgU/SSxDCsk1LXOFgi4o3v/+Q8f4+8fEx128uSNdr4tEYx/c5e3XGeDwBs2vmUEZztH/IgYTfn1/QJAPKuiDP1mhr8RxJHChUecugCekaQ6RzyrKg3GT4tkP0R7hCYoVEK5/A96AqEL4AU7G8eMqiTTHKIKVLKx2SvQOqJufweMZNI7DOHb98/ZLKePzFaA//OuLzf/UB/8cHv6V0fXqTCd87+IA/+aMfUd/eoMIQNbiHbQtsuUKEEcqTtLdvkL7ztROrpu06hBeAbtDbDbrMyG+vyI2mtR3Cdwkij3Un+PkX53x1sWZdWTzPw3dcgjDCVC2jtx7z9vvvkq0XbK6vkb0xYRTgOZLm5oaua1lry+225PH9R6j1huWnvyGOXGxRcXjvlOV2w/WZQ1ts0PTplA9+j3p1gULRth2qWkGQICmwWlCtlkjp0qVr6sUd+e0lzmiG6E9BBSgVcP/Hf8yzl+dok7F49pSv7jbMj46pNxtsuWaRG3rzKUfjASpfI3VF5LSE4yne3iOSWuDuW6q04uLZa4Tn0D95hBBmR1cP/F2RojV0WlNXBW7SxwoH6QiqdInRBs/zcAKPwHOw/pjp/JhJ9IaeEHzrW9+jt3dMeneB57K7akcJYT8irSratkVGHo00JGFA03wdPZTQH8Vc3uXUTYruAoIgQUjBb7/4HP7WY3wyYn32lG/cO8GJhzjxAL/VmFUKSlLUJZ6ytKbBqAgrgcBHKh+Tr6k++S0yGeEcPQDlYdIrPv+7v6bLz/nxd+7hPlW8vK24Pxsxmx8zOnkXN3FwkgTH62P35jh+H2ssWsWUyQy9yhk+nOJMRkg3orp5hRoeoDOPVlu0NNimRLcNVvV2Lgnd0QiJNB1CSYTv0ZqO1nEgctCOYJXmVNIllj5NWiO1TzjYZ7L/gGZZk7g9wtE+l8+f8OJmxb3TR7j7B2SBgxyPCYWla2vSdMtkPCatCiop2bo+n8d9pqMxZVlyszyjqFeYrqWqS3zfRwhLi2B5dwPCw1cGYcBx+lCmiKpGlBVms4VhH7O9xLY3BN84RczfhdpDbXLcwRJzV3IwG/LBB5/zUd7S9y2TRjHbQjQ+hPyW8vUV0fwe3eU1b756hd+f4KYVUt9hihQVJEgh0PWWclOQ1grfW9CKnNp0LNKC1XKFFALR1niOw247BCkVi+0SqRwCJUnLEoTDIBI4Yo0Sfbx0QXEpqRcG3WmSRCGxmLYlTmJO7x3TiwKuz16Tre6YxgHddkMhdxFJ4Ti7D9N6tyOV2yWeo7BIHCHQuqVcr8mvrnGLEgaHID3azuD5PrgOphOkVYp3/22SRNL5IaZryW9Lorffw5MxUVVQVQWxEphRn3p5SblKsW5AU5+zP0pwUoVedtibNfoupQBOfvBw18RwfYafLpCRh/EcRBzjTY+RKERvjE23NNmar15dsCkLUC5j3+P4+JDBYEAY+6ggYb63z4+//Tbb9ZqXnz/leNKRbisuzyomsxlXlyuGg4C0LXDqisCLyOo1q9sNQdsQD/ocHB6yuL5gXVd8tPicH7Nl7J8QJxNqHdB5CY4odhburkW6HsYYDC6dqSmagr4nsbbBa8HrWroWXNPSbFe7hpjIw9gM9/EPsaXF+Fvie0eYnmT0+G3arYs/fcibq5T98ITpwR7j/RPaJx/jH97iHD7GHc+xZQq6QzkW0gv0qyeION7NZplhmg6hPKDFVBuI+nSdwRiLcCXZ8zPysyUX65xCKKJ+iHQcOgRLEbGqF2jHJ+8MTVthHZfecJ8siKl9yXg6IVAK7+slv+46RuMx6fnlLnp7coSpUprtluLumiR0qY1gscnwXMXFxQXSWKo851QKPLWLqgWTA0R/gKFDNCXtco1/+D42z9DbJbop0J1E1xpdS7Qb4Pg+wo8QYR9HeYyO7rO9XfPF01vu1pKT/QPiRmJYcfbiS373s7/kYnFFlm9JAoe57QhHfS5fNORphjMscZW/Y0egwCo6Z4jpBDrfUucVbb6lLreUUiD7faTrUqxXaGEJ9/fxo4Dt5Tn54g4VRAS+g7UdUoUEh4fsRX1EPKapCrZZicDQlBnJfEYdj/jVV7cE80/5rqmp7mr6h9+iF0QIPLxej+sk5sEf/Ij+yQPabotzEeKzY265nSWIE1ToUlQVF9stL7OChyf3yfOU8SBidjBlMktwfIHX6+E4DmZ7S3H0kJvrWz68SlkbwVsP9phPRxS2YTwek4wGJI7DdFxTaRjNEhx7Qtu4LK6uMQcTZj94G0dAef6MdrukOHvN6HAPp6nIzm6JT7/B4PA9hPRQcYK+XWJ9D0/XiO0dbtcQRsnXrDiLMQbX1ZR6yersku/+5Pt8+PNfkJclSgruJyH7kUuQhGS15rcfPKduNEcPH3D4ztu4ic/+1MWvDyjSNf25z+zRN2ncOdviK7YvPsaVJS0dWtkdt0ppTLHFjwbsHe6RLlcoV5JEO1eKrnPKzS1+v79zeWAwemfDt7qiXd/QLa4ReY7ZFsS9MePxlPHBPv7+BKvAHfoYd4rXnxLsP2BtBXG1RlVbXAFSVezvn9AtUvy3Tjh49z2k9HZu+rZFhhFWWdqb18h+iNXN1y58vRPFuxqtoLFwu1rRtTXWavRgQFmXDGOJjBy075H0E9Z5TrlNiYTBiQJ6Dx/xj//8LzBxSO+d9xh/9ktm05j+0DC9FzK95xMOHPJ1yWQ4ZOqHCGMRwuD6AaYThNs74vkBk0dvYZbP2Jw/xaZL+pP5rqq8blmu1/jSgm7o9Ua4jiLwd0el3TvTItBYAdJ30cKiRcf8aB8nUDSrS3RbsryruT8KuPz7f81CxfSn+/QfPsAbjvjGn/6U7esXvL5eYJQHgzG93hDbNHTWkF/nVBb8Xg8Q1Hc35Hc3oBw2eU7VtmT5hloL7GiPOIjwXAcjHaaHJ0RH7/Dk7z9gtVphrGZvPCSIHIZeD1UbsIbxeMQwCGhKzXuP3/r/J5pMRz02ZYd0PNJsizEGsIzGE5Ik4vxqzd2bV/T2W8zsBNdTqNoQ9HqERU2a5TSdoWkszrqlo8QtayhyWiOIhYdwLNIN0MEASc3q+gLZH6IiBy1DJm99EzF/TBB4pK+fUtzccC+ZMzMOZ68X/A//88+4Ew0Tr+T9B3u8vu2gzRkl0BcR0WDE3fkST3TclIp5uiBSEVJ6oDvM5obW9ukqaIoltjciX1ZUbUelO6wKcB2XMB7wwZdfUWQpXuhSW8G27vD7Ll6cINscEfXozU7ZvPgST2nuvf2YtpWkizsOjk9RbLm9u6FpC15evOLxwSnSadBiRV27KLdHtS25evIxV18+o3E9NH1c3+fm6ob5yKXUFVJpum1LbSyJ74L0sWWDH7qYqsH6McZKrHXpqprOGZAbKNqWyFrmoxGma/ij752iopjLm5e8efYFLz76mLvrLbk/wrYNf/nxh5wtV5x+9iX/sdZ85w9+iA17vH7+gjoZsEo3vL54w02/z+l0RGWK3bBYbJGeJfIEdAZP16gO7FZgpIagxtoGIVxwQ4yVVFkBVvDqYsknX13SmYbWGqIHh9hgTEdEs3jCzdU57wweARbf3X24SiEwXYeuawb390mvXlMXC4rbc9Jsw5AWq1yyRuPWmixfkG5z5gfHBJ5H2ZWURhCYFiM0bbHFRxJEYxw3RkRjjNxZpw1g/QThhXhNxubuGnc0IE81/YnH6y/+jvU2Q4YBq80t907WrCqDUooPP31J+OKGR/f3cYXATVyGZg/RSZpyB6JVgwnGadDb7a7CE8A06OUGXWcgFcYa2mxDVW5RsSLb3pHmKVEUMBoO6A97xIGDJ8F1dzyLwA8pNws+/NWvefe9x3zrH/85nR8gTIXnukRxwCiJ6fUSri/OGChBIAW9YY/t61dILLLK0fmG6+0WlURMY4d3jkaMAkuTLVFxjO9bSgwbLQg1eEYg6goBqDDBmBbdbhHJmGa1REuNFZaiKQl7ASpwyesSqTVZuiaTLpfLNVsjeLrMaD75lD+5OSdfnPHuw3388RQzOuB05HPz+hX5zSX3/ugnkATIrrdTwK3BZBnKHyKEh85SyNc0dY0YTnYRiHRJnW5YpxtKbbG2pelaKuvwyyfn3NztBOMwiunqCikk1nR8894h08Nj9r/7Y9avnvHlkyfsnzwg8H2GoYteWz77m/+Fs7MV733jh4jpnACNW67QSqAciduVHMia23JLrVvapsX1XNquw3FDjIHWSqSwdPkaOo10Y3TXUW9v6NZL0ptbRNTH648hiDAqpnNg9CgkqQ0XFy9w+kMOBnNuqob78zGh08dxfX5zccXk5oY//cmPGFRrXFPgOwPqi5RmadB4LLKMKBry+tUbjj3/a3BXAHYHEbZW48Y9jCMRYlchXtYlddtRCR/X9xHWImyH7M1IDn/Me+8o/LJi9vZPGT/Yp12fY21Hrz8C18OO+jTXVwyPjtnc3NAZSxBHeL5H2lrG+wOy8poqXeDUDSM/pheGXC+vuMuv+e/+x/+W0WTEn7x7ynY0xvNCHGsxdY7rWgopydsOFXlsVxfEPQ/PmWAdHwIfYVuqV0/In74gyUpU6GObnOO9BH3rcXuXcjp/yKa+5hdfvcR1A/5g/wDpzCAM8SMPOU3Qtwsuf/UVH3/2JUjDWw/uo4b3yVcNbrhGK4VNl7QSdOhha0XbCajNzm3k+1RdxWK1JJETFDW601hfomMX5YYUZU6lO2rh4vQC/EHA+nZJ0/Mw2YZouI82Dr3hgF/8/uekXky3uiXfm5NZTRCG9NQcF0O5WDIZj7Da8uruFnF3A198xuzeHrqtWa83dGWOAJq6wtQZDh1CCtZZgauuEb0K6TQYUaPsFrIU2Socgl17lc6xDjiTB1hvQKUlLZZlmbG8u6JZ50TC5/Nlxc16yd3vLviXP4V3jnNk26J6+6i4jxGKZVbhXK45mN0QjHdikW7WoDvaVnNerkhtwCCrkZ5hWxW8WW1xBCgpdmBYabBSIuWuYrEzFoNmk6W4rovvOZRZwTZvQCmm3im//d0XGFFyOPJwhcs0VMg64269JplMEU2BMi3z6ZAg9GkF1HXJg4MjxME9vHJJFEJ69oJisyWI+wgnwpiWtsjRWLIsQ+XZ7n/mOnizI6piDVLQZAvohwymU/Tiii5PqcqGuqnpHIuRJVqVxJOYrijZLi/JL59j6prJ8Zx+4O3g7sMhvh8S9AYMBj0+/PQzKm04+O4PkNaDViOkgCRB9gcgHHS+QRiNEbDcpqyLCmMtw17E8f17PHz3fXzPAWlxAp8wCBDKRfgJjx6dIgkYjQ+I+w/wvIiPf/+EwXCCGe5R6RZVtnjWoSlKbORx+ew1YQjR/pA7p+ZZvebnT37Bn7wFYpPjj4/wohBbGYzdRdaskDTaoK0Gx8MYwTpbMQhChHRotls8r4duG0xVk8xiumaDmh7gDIa01Zekr35OI0Jkb4AIBpRrwac//z3/xX/zX/Hv/aP/kB/+8fuI6g33HxzRf+8HOId7CE/RXbcI3SEo6C6fQ2Wpr57iHnfI6RHCF5h0DV6wE4W1xjg+wncxdUmxWBP2+3zz8T2qpmFdtrRGUDgJy6YjTiKKpmM0KGiBeDrBH82ZvPUNKpFjsUzuH+BcXKO7Aqc/YHP+mrvbJfe//31suiU/f8mLTz6jrhvCw/tEgc/tJsVojeu5YC1dVXJ5ecWD+w/opEB7Lo4fg+0QwRg3maGrGpuvMYvnrD//FHf/LVqtaNqWvG1pi5KyA39+SH5+gaLCrGt64ZS0kjz5+ClaveCuqbi5eMqrp1/y+vaGuS/Y3x9gNnd8/sGWWRxB1KND0OVr/KRPl+dQlnSbJwiVYN0xJnAor65I85QuSgh7MWWW0mqNDH1MWdCZmuz8Ddss5+hgjzDu0VpFYyRRv0e/v0de1uiqYjxMmP3o+9ysNnxRL1k7CTdZzX/5X7/iHx694o++/02G944QnUt9dkGyf0BveoQTx3jJkOY6o59MabIViF3DkxMFeKFLpS25gT/5wx9hnT7PX7wkKwt0mYJ2MXVBt77EtiU6X1JVOXdZybJomM5HJK6lLbZ4oU/oRniOJvQiHNGSJAo/SZAInOWao8f3CE5OMM0Gx+SosEUWgvQs4+WbBUrAZllS/Pz/4f29U7zDdxD9/q5woK5AKFQQwlITDfp4/R7WNri2xXQd44MxelEglaYVisezPlPV8f13HzC5d4LSFbeLlOs84+jxI0an9/GTmN58hFAlYTLE3zsk8BvqzTmLcsNv/vJ/pV1f0uS3RHGMaTd0aoSQDo7n4joSZVsOT/eg7giiCC+UtK3GiYd02RZp9c41qnfwZbNJMcsFNttiqpq2rBk9ehsbCnS14rP//q8ZHJ1y/8//Ce58n96jB4Sl5s3f/4JP37zg3rvf5v2Jy5dffU4SG96ZjnGuQlwEbj/BlNsdmA4DUkDg755fp5FeQFfvatHbrqERgrzMWayWhMMhWdNyfnXB/GCObCuqm1dMjk4ZBpKmaSi7ltn+DFNo3v8Hf8bshz8hu35DEHmc3J+yvByhggSrDL4OUZ3CMz4+PqPZnH6S8OLiOb2kx+VqwffffZf9e0f4ytAqh9lb7xJOJ5RFSmJ83MSQLS/YZBu8O4ESgjBwMa2H15+guxYhJFa3lHeXLJ894ersnGA2A9ehakscaXn7/pDsZsGra4O7vOVHPz3AnUwodY7rKWhanLjP9N6Azg3RjrPjwoUxjumAfTavv8DYEfgelem4W9zSOoq7u3PWNwVauiRHDxj4LkHg48Z9EAH3J31sPGb55Rk3V7cEkxGHscILHfJ1zsWzl5zMTzDpkr1+nwcnDzFC/xt1kX8r0+Sv/9Uv/7PbTYVyPZTVLO8WtG3Lu+++y2x+QFXuloLI9ZBxH9EV1GWKwWGTZhhtMZ3BNB3oDk9qgiRGG02YGExdoKsCxqdoJ8CUGmRMntVsNymj/YccvfdDXC9hPDvFyxpC0WM8PWY6mfDl1Q2/ubnjo5s7Xm8ybsuWFsXUczCNIaYkjh1GSUi6yQkDg8XieX2UCjHFlroQtNql2iwp787I65q0bqi0xdKSDAdYL+Cyanl5fs5qs8WTljDyuH/viDh0GfYTevND3GRAflxjwVoAACAASURBVPEK3zb4cUArJYuiYX58snNdbC5Ybm64Wa8wjkcvGBC4ltvzz9DCJerPsdbw5e8/4MnnX5DlOWGvRyc82iKjM5qi3PXSu55A2xYpNbYGRxo838NUDY4SdFVJIyTWStoOKuWislv6gYtT35GJFuMp8nzJR0+fsViu+eCjZ/zfL95wlq1waPjug0MmruTR4RSrDNCyKgoGDx/hS0sv6TMNQ3RT4oyG5K1ACIUWCtN2GKOpOr0bEnWG5zQYNhi/BU9glI+QoIWkw2Wb5gg/IDk+5fXrV8wmfZK9PVaVRjge4/mcR+885vjeCY6IqbKC0WTKcDiAquLqo9+hmhrHVUTzgPriE3754Rl7012zwutUE8V9wCIdn+FoipQOjuPQC11Cz9tlyj0XLSXuYLiL5IQJ+D4dHSbqYf0YKyxWl5TrC5brLfnyBqtbmrxDD2eclzmfvbqkKUo264w364bKjUkmc24vrvAdQT/5fzl7s17LkjM974mINa+1533mc3KsrK4qFslik+xB3XJ32xbg9oUB/wD/Kd8LMATDsG9k2JZlwS21RbboJjgUi6w5s7Iy82Tmmfe45rVi8MWuWxuwfsPeWBHxfe/7PBEBegfVFIaybIlHM5wX0K6WqL7DmW6X6KxK+jLH9A19UdIWW/q2pO8Kyrah6Tvi6RTiBN0b0sgnjQKQijCJSdOYveN93jmd884/+TP84ZRCg9U9CMmmtvgSLq+ueHt7x/29PUSv8ZuOLt8SphlFvuGm7bmuG0aJxzv7A+4dTBjFCit9wmQArme1bYgne3hxgicNyvZYY8HzMH2FdhbrR+h6Q983vF6saWyDn6Z01tC2DZ3RNFVJbRwv316R1y3Wj1lUNd/cXBMPIu6dHPD+h+/yzqNjxoenDA4OGD18ghqn4FqQIdZJbNcjjMFVG1xvEX6MaVr62xv6rkZ3FfXymsZqKutwSqGNpqpb1i08fbum7TRd36Otw1lHIBWedfzkaI8wjZmf3qO8ueKzf/gZXTrg3rvvQ1vQ3b2levuS1etzSA9pKk148zWbz37N2/O3HNy7j1nf0uVbXt+u2DQd8/mEcRYhixUyTDFmVxfwldhFI6ucvqrRbUOXr9hcX9EJn2B+iEhHKD9EexmroqSuSrSSrBtN3lsqqQjThLxYM0wCZBRxc3NLW1dIa3nw+AHCG5E++j7e7AgX+JhOs1ndYWKJ9j3afI0XKFQYglCYrkZFEdZpZBhhtMEAy/WabV3Tf/co95RASgHxAaUdkcUjAgMnZ4+YvPsOo3FAmAZkkyEuSUimU2yU8OrFN9TLG05OTxgOxginUJHPaBBxe3PF9dUVyjV89EePQTpW5Yan5xfcrDe0WrM/TBhkKcPRBGMsfVmQ1y15XbMtKzqn6PMVgzQhGE/xR0Ok76HzO0y+pO87Fi9fcnV+TbEt8JTh+GTCZDzj2cIyD4YM/ZQvL68hv+AfPv8Dn37xOeN2TULL8tk5n35zyclHH3L86JTpozNMkOBP52jT0NYNTZ4jsFSbHKO8HW8nCJBxjPZ97m4u+fbtG2QY4qxBdw1F3VD2hrYuaHvNXdEgkiGLbcHp6YTpo8ckkwluc4c3SCjajh7F756dQ5KwdIK+N7SLBdM4YT6ak4QhdrOhXK2ZDIfUvUYYg7m+RFU5q28+5+binChQ9AYOZhN80dNWBc5ZnNqdVcpqsBrrOly7pV1egx8CDttsMdUWl86wg2Ou65TV0lKvNW3d026WyLpCScHrmzWHkxkKQWgdwyjBdY56s+bl119y+eaSUkakJ/dY3l3hiRalLH21pdcNGo0XS7yope4ramP4+vqObztDKwSzaMcO6puaTd2yzCu2dUfda5qmxgkIfJ8wCJkcPuE0HhFM9pge3kPhWPUlx8dHaKEIhaPrWureMpyM6fIVry+uaY1AxCmPT48YeArbdUjpODg5IIp98uvX6GLFuqgJowTpDLbXdE3DZrlicX2D7CtMXYJQOAt9VyJCQTifoduG+u6GstjS+x54Dcl+gpCOZrVEBxFl2/Hm6y/Q6w1COmYP7jGYz6Gracrtrk8uJV4cgS+oEaSHBwSTI5Sf7vZrQiCCHVzVdC19XaG7mpevzrm8uWY8GXJy/yEffvTHO3h0GO8AzJ7PuihpmpIf/uh9hqOUB997n9MP/oTJwQGuWbHdVqzsAOIZw/k+tjEoJL4QzNOY1e0dL99eslxtEKFHNj1gvTUsF1uUihjNT5DOYq1F4+/upmoH9+61wQsSGi3oywJrHbqq0HqnJRVBhD+cIPwQGfgEwyHoHNsuMdkcOTmjc4JOS1qT8MXvX5J1Da+u3vDvfvVv+Obrj3n11VM++OgjvCRBX7xCUiNVA+0CSY+wiv7qFltvkEGMEB6mKrBSIJMhLvBxykcEAX2+Ynt5y3BvyuEHjxgf7VNXLW82NWJ6TO/HeGGAkwrnBL0z5FVDEu9zdPoe7/7xTzh+5xFVZ7gnKoK2JBxNWV9f0VQl9955yMv/++f86ue/5tefvmA6HjGYzWilz8XtmrzRlE1Lpx1lbxFaczAdI7yAcDLHixOE8pDJGGsVru8x61d0i1tsOKQua5qioK5zyu0tizJHZCl11+DCkOJujet9JntHhJM9Pn/6jM/fvsYNBpy/eYleX3N/b8z+MGaehghp8QOFDGJa29PrHoQGJ3eVnHxLtdhQrG4hEDsmkjV40zGttdws7rBdjQhCFnXH7eUFl8++5vztDel8zv7pEcbtNvBJmpCNhvh+QN+2NJev2T+Y7wxYUvF5GVGrAVoNkf6ITS148uiAw/d/RDiZ4g0zwnGG6GsWz56xeHpOpyVepDBNSbPZECnLYDIiGk5Y5zVBNuXek/dJgohhOOKrb18wCARKGEK1AxcX1y+5vbzgq28v+P2rW0SaEn9Xl5MCgsAnDiVBGJIoH0ULskOXS9qb14jeYqSPGsU43aK3d7SrBaubNbdvW569qvj0xZaXNxXb1ZrZKCOdTVBpiqtrbF1gmgKZxGwuXiBHEaOjOZIea3q6XuNHitHeiCBKSM4e02yXzAMYjmMOHtwniH0K4xG98xHp4SnT+2ekI5+qzOnLJZ7IGd97j6bvqe9e8S//+X/Hy08/p6lqwsBHoci3BdPxiCwJkLonTgKC2EcBsR8hncELBNb2JFGC3mwRukf6IcJTmO0GvbrDdi22LeiKWzrfZ++DJ4TTKVIp0sePqZUH7TVe3bB9cc7Hv/41X715wd/8zV+wf/8+RIpHZ3voxYbx8Zx4OMBVBUKCDMNdxdJoMB26yoEWpMRZR1tsML2mrSqKouZuVdA6gfMCnn37HEXLOPOIpCYcDomzjO3tFVJ53Hv0ZAcSH0xQaM6+9wF+7NHXOa+e/w70lulkTCR9pqNTHp492i2LwghrPXw/5Or6irY1bDcbUJLpKCDo1jtF8nQPPA/b1ZR1js72aYo1VZFj7a5WKMyuoeEFMUGcIF1PfXfF69/8A1cvv0EMxjDwMV5HXd/RbG+pltdcX20IhiPerEuq/JKi2EAQM987YHp0SpAMyIsCKxVJEuP7392DPIUUlq5asVgu2RYli+WGddny9uKat9crTBAyOD0jyAaESuFnKf54hjQRewcPGJzc54vf/obz6zeoNMYJxdHxKSKJEcKyevua2HNEnqAxklfnb/jb/+K//v/PNOlUhJeFdG0N2mFVyHTviPv37pPFIYvbmFfbO8Sbt7zve1RBjDeeUeQ50g+IUkfd1NSmIRCObWtRsWZyeMK6vENulsQ+jCcFCk3X1HTfQQWjMGZ+8iFxOiZyjvziLe36guHJHDmYcfF0w2W74eFByJ6IqLuK1BOEbU2UTXl0cEQ8FYiwRw0MR6Fguan45vlTVDwinsyQ/hBp7+i2C5q2Ydl5dDKm7bf0wscLA4JsyLI3WNsShxFSSozyiLMhQZwwHKUoT+INZyxv11wvVtR3C+ZnZwTzA4a9x6K2rLcb5lnEwf4eeaeYZYd8/vwV672IbnXOyQ/+KZPDU9Y3jtMffsRnX35NUTV4cUpT5pg4ZnN3xShRNG1HU21JfEWaTOmsQQgIncDlCzxpsSLG9TVdlyP8XaTftm/oTEUjK2yg8f2IMgc/iqg2JWGa8c8eP6AeD9iPEn70+AF/KQOevT7nZnXH5bbl9HB3EPmDjMyPkcM95KgkiCxB11NWDV0lCASYXtF0PRHfgWhViQstmhict4szG+iFIhyNOHv/A4LHP6H/7a+YjDNGB/vEh2d8/ItfcTRPOJhlRNEhyfSYxdNzfM9DBgHaaLL9KfPHZySTQ0zb0q0Kmm1I1Xp0tzUuDqnbnk3dEkgYzo+IswFSCFzf03UGg8M4SEdjsGAiH6TFcwa0xngGpMCisbZG2Yauh/xuQ7mpEG7N5XrDxy9fc7CXcvbkHkXbUFY9ZhAwSUcc3X9ENxkSlSvsqkKrJW1d48YD/NEM2xWY3uGFkvbqbqf7imOMszhnqO+u0Z3dDW28lnVeUgmL9H2UFIwGKY20ONthbUCQRBhrGE6GTA+PiE+PGRyf0PWC+tsLFos7/DjDQ3Oz2iDCkEAF5I1mFMV0+WKXEGgrmmxE70XMfcU0dYS+wBiNPz4iMCV9s0EpHxl75PkGzwOpwUuz76CrEq0N1gk83cN37Ivrm2t8X+IFEaH0EXWO9EMSKQmkzywbUzUtrpUMRykjGSIGEXmTsy5KrB+T9g4vTlDjOYiS8uoc4hlhOsfJHTy5v7tDtRUeln51zXZ5hetitBRYYdGejwgsdB3aWrSxaO3wvJDAb/Glh+fHOO0IJEyEIG0b5Nu3/O5//B9oqpxNVfOO0OjlJVHo4RvDe9/7HvNkRG+u2ZcDsmrL28sr1rcLfv7l1zz50fv4BzOSyRRrDJ7vgTF4QYi03W5r7Tq6bQnWofXu4JUO8sUNZdOSHp/gogwHVK3l4vwb8q6kXy4pakuvAlold/YGNMQJrxcLoqTi+OSQq6+/5svPviAsGh4+fJe2e87w9ATtWrTt8NOEOlJMD+a0xZLruxUqSQgThxeGIMUu/aA7nFTUTcPtZksPhMlo99v3FaLoGe/lHHkli6wlOEth/Tli7ZHOhzgLXuhTrO/QnqIutvjbG8aDCKTDSI+qW5GNU+r2gjiy+LEichF+IPEx1FXLarPB4ojCkJfXC46nl6RxTBLGtFVF4wRlXVN2PWW/pZeW8c0F4WyKN4zBDci//RI/CsmOD3DCEPgDjPARusUQsjGCqnJkteP2bU5jJf/umwtetC266bj46mv+m7/6Cb0dcPTBO0zP9rH5Ajed4JTG2IZOBHRO0lYVnitonGUwnULX7oxyOHTXcHlzTV3m1KtrdBgAgs4JojShaRvyvAQE0lniEM7eu09wcIJBkJw+oskvWJw/J9t/SJoOKLUhajcIBK4oaZwkyMaMBjO86IanL18S9D0HacRtZSnbjt//7vccjyLiMKTrOrSxOCnou5a+zrFO0IqQzkV064pZb4m0QVm4/fYFe3sNNB2CnvDoPmmS0iuPf/+0Yf3lW/7icEZSS6ZeQi9C+qon6z1uckEYzLlsQ/Y2hshWBInP+P0PGD5RnOBTmYJmVfPlF1/x+IMnqDjAWo03HGOUjxM9eIKrZc7zuzUrP2A6iWi6Fh+LrwTT2KPrNUVV4fs+ygvAGpTyyaKEw9CxP9xDjPcIMp8nZ+/iXUfIekvf1GjRQRAglSTyFXetIZ7u03ctQRRSO8dAGI72hmT3DkknE6qbHHSN8yK6Ime1WDDOEpTReL7P9PAQ3Wm2RYGQCtXV0OWgfGQ4oS1XVJcXyNjRNh2bZknVbdDtgvOXr9heLth794NdP77JGYWC0M9wdUEtzQ6InSYMjx4hnYfdLpj4gmg8QYUC022R/hSMQOgWW2y/M2I12L6jqxrquuPRO08Y7U04OX1IEkcotXvQS+XvmCK+z8mDM/bPDhF2j3A0RoQZShU4oTg5Peb55xtGez7IjHV5xzyb0NmKolFk4yksbll3hpCAYThj7973WWvLZWG4pzWRlBg/pK011k8wtsXzHHVd4sWSqthgul0VS2MIpaPvChwg/AApBwSDEGc24PswexdUjt1sUYnP4uoFpW2oxZZ04jG2C36wN+Bgf0aoUtavv0HanHjs6Mo1ydkTGJxiZQ+rW+Thu7SvfwPbLcoo5DADJcF1CBUgvADt9G7psTffgcwnQyhLjBM8v23YZivuffghy7cX5FXJm+WS5WpJmGUc+AN0LajKDQ/feZ84SjCXv0XGKSKOCYcjRoeH+HFM0Tk6K/j+uw84ePgYP0pIIsN8PuH56ytaY3aAVKmoq5Z37t1nTwV09RaFJZzsodsaawyYHusP6IMRm6s3FKslvXU0Fjpn0MWnqLjBdSVVpUhmZ7z93bc0y4LbylB78P5f/VOS8RjlcjaUrG+u0EKTBorQCqrGsCyumJo526plPtunXLYMsgxloWhAiwBlobEd/miIsZYocYRNgDYSJwSrumVlFK2NGA8CBuOMeDCgLwukc3TW7u5cwlC9+Zaw3HD15Rd89eI1Zz/5E1w0xRCSjAXT2THCnvFKau41JccHDwiGGaJpkaGjNks+fvGarD7m3cf3iEZDgjSm2dyBBBlFtFZy9uQxqIg0CmnyhsPje1ilUf6QonZsbr/h+mbDbV7y9aJha31k0WGwtB2MrGZ/GJH1O5udExVIaLucVnvUK8fm8i2HfzRBn1/T65J2vaJbNly/bshLRxkNseOI/OaOy8s1+3/4HclkwFTXeMkI1xfYtqBa3NJ1DQcn95Gew3YGrKare1pnyQ4yrO4IGs27D8745OqCLz77lu225o9++iPEwRDsBOlHXC9vWC+/QLcQonn32CMvbnBO7eyltmc2zeiNI81SIpVBldNVHd5hhK1KTJ/jAotTEc6zCGkxNkYpUMpiRY9te3TtIxqffrvC1jm2adFaI5MB0+N9BrMx4WiO/13S7Xr1B/7xf/k7jixsa8k/vr7kj//8Ix4+vs/5smCQhcSFIj7IcPEOfRBmKWo0AemB2C3XcHYHnu1KEJK2qXHW0Ouacrui6GFdVlROUfc9L89f8e69GaGriccBW+ejfcVkNuV6Y2id4Xg+gE1Jef4Vz3/xbzn+yU+5ffOU7fKOs/uHRFHMdpUzigZUVY2X+TRBxSffvmI/mbHZrhEiIhmPabcL2npDN0yJxhOqxtHXsN023BWGeNwwGg1YtiWttmzLEuE0fdcQDWYUd5d4OG6efcHVm3Oa3qGcRlUrrLE0q9e01+eIquJyBQNjeH27QJmQhyeHHKRj4uEEfzRmEMacOcvF0y+5KZeED99BBfFuCdKVGCFxSvHy9TXr9Ya+M9RaMxkcs390RDobIZTCGQNCIWRINtvHn++xuLjk1bMvoC5A7nN0ckwSZOhyy+d/+JgHDw54dO+IKt9yfHTM5189+3+di/x/Dk38MCZqCzxpcdkIFcQczufsHRwxSCNm0xnnL3y+fPkcFcSM0pSo7Fne3aKtYFN3BElKNNRUy1uEAIqGeGLZ3G2YZBnBIEXrGk848B1GGLSUpPMjktkQXW1Zf/OU61efkxyMKFzFz/+Pn6GymL/68yd8crHi/bMZp0/eZZSOcE//wMPTE4TwabdrBvdmWCr6ZoMNaqg7VotrDk/OUFS4oMXS0yuJTQe0ZU3R9YhEkY0mNNEAI2oi4ZhOhgxXY/zQI05jwiShKGvCpGJgLE+/esrP/u3P6auGP/8nHicf7uEGM7zhnECCNo7ZbMSmSYnDEavFWz5/esNAOf7+//oZvYZYLziYhfzx40N++dUFi9owiUJE3bDSjmZd4eeCaSZRQlPVFb6RYCOacotC0HQdVjhkoDGANBq9uKCobrHWQ2cJ8/SE9auC7dYwPjxkPOn46PsnpCcnvHr9LZ6SvC5a/uwv/gK3d8SDMGJIhXWWVV6wbDR+d810doJMQ0olcFGDA4p1SSwlYesTBZJAOGTTgGvQMkJ7ILFIX9ALRVFXnD24T9Vq4jhBo3nyvfdJHzxBDsck033ubp/z7nFEGiqqYkVrLYM4oW9KTOjjHxxy+Gd/SbspkVZw9clvWK0l8/EEbxjwzd2Gzu3I30hFECZEQUxT5fjGoJ1HZx1B4FFbhwf4YmcnUZ6kb1a4QYyu7xC6oC+3mHVJmQviwSGRLDj/4jMGvuSjhwcEqceLiwWhH7NqHEJoTh9OqJuWbDylLrdMRiGLi5eURcK4nROUG0Lp8P2QZpsjNkswPd5ghLEG07W79qBuaaxGC4EaTzgYxHzz4jkqbgkDTRzt4uLS95FBiGsrdN/vKOfWkV+8Rmd7+AqCOOZquaXcNvSm496jd+haje/AtS1W+bjxlKqqCPyQ6PYG5xJqU9O3DRJNXpfspR5+7GMGe0SXN1RtQ9gmKN0SCYefTlBtTRAHeDLEao21HW1bsz9KWKw3NHlBWzeo1jCIMxKVoG3HsGm5n0YMhzsrS6oEyhfkumfTt1Dv4sfG9XjdFvoc7QR6dYUxliib0WiNiUKUL6nefkXX1rSepG1rvDTeDYm7BuGHKK3ptUUKaLoeJSXO7qwgme+BlER9wyRL2Xo+87MzEmd4sV0T7h9zl1ccnz9D+T77T94jzUZEvSCdnZKNptxdfs2zZ+f8/u01kScZHB/x8P4pbrkiHYx3Vh4nEF6En8b0bUkURhi5S8AYZ6maGtO2bPISGY1wYUZZFvSbktubBcuypXbQr3MIYrIsYj6doLAsqy3bvqXoHXZbEcqWF+scowZ89btP+U/ubrk/SNh/fUw4SSmrDcuuIdk7RIQZgzCmarYsNiVzTyJ8H2EdTgjKssUFERerguUmhzQlFNBrjS8k1gmS0YwHLsDenNN0t8xmA0Z+hbQxcZbiRxGbtxdcff45bNeEkaELJWkWozzN6f0Zr9++4tmLb5mlGXuJpNMBoQPPCJqmIwr8nX5zOOBqseDV5TWeEIzHM6TyKJqW3hnAMZqMcW3DqiqJr94QzIfganpTI8IBTdezbjvargI/wTc+bV/zh09ekBofD48/PZvzy9cvCdOU08mQ8SAjEz3flgV+EnJ/ZGgW54wePsIoi2BXIWispTctLY7N8o5ouIeKIpxpwJNoP6ZrS94uVrTSp6wbUuGw0kf6AU3fIaTAKo+OHikUe7MpTS92Dw7naIwhm+6hXEu+viZUHr2R+B5QbDFlRak7ijRlUrWMpGQgFTeLBYm/T5plbMoKmY0QgUD3BTiBClPqTiNwVE1D0Utuo4TOKPYrC7QkvWY8HrP/g4+o1zn53Q2jyZT07F1EMiSUgv/svuD5VcNIL5mEiubS0vcxfTTncap5tllyWed81r/h6etv+MnjU/7zv/iviEf7OCvo6gZT5qjYo+sKFmVDbC3b7Yao6cmmE1qj2VQlf/j6GSsrGB4esp/ERKZHOQiDgCTwUJ6i/c7CEscpTdvh+SHOj7ksW+zBkCf7I2ajjDD0sFWL7hsGgaBZ3RHtHzGajIgCSToc0LUN2jq6YsvFOsf6kJ+/5Yc//Cllr6nKimw04XpzSVds6HpF7J0i+waJxAsC9o8Pd/XV3tLUDag1vpfBtiO/eIPZLOmHHnc3S+o8J7eGi1evMX6ITiSXNxdsyg0q3xDMB+AMfblF2RrhPObvf4CKpggREEz2iE/ugdP01qJzjTEN0vb0dYGzHkZ62Lal3W7YbjYk4zHj0ZA0yxiOp8RhiOccfhLS6xYnFMPpHBmIXc1HKLLJjGQ85vrVFX1n6cMRTpeo1gEOzw9pNaTRiE56BLMzxnlLV62ZvHuPex98gOsVF89fEOJjrUBgEKYmDiIIEprS0DU10lNUVUnflnTlBt/1pGFM07f4UYgXZXjD2Xee3xZjevzxfXSVI6MtftMh0yHlxvF20TM4PiNMAh5EAxaLl+ydfcB47wgvKZFpiRUKKWr03UvU8BCsD/E+ar+nvQwR0iGGQ0TgdnyiOAUpcMpSrBucC5k9OuX8108pfntJ2RTcrDSL2hLVLXWrWW4KXl3dUTSGt8sF7xxPuP8n3yeeCv7w9d9h1ZL2rifVDu1LksGUKLphdv8+0d4h3/uLP2eYpdjpfRhOqKo13nrJ4f6UvO356vyCu22JD+SB4tXNHaPphPb2Dd7sCBWk4Flc3+CagqYsKauOqqvZVDVFoxFBQGs6vIOMcRbSNwaB5bJa0QaKT19/xfm6wB3c4+73f+DHf/Zj0jhi8oMfsbq6QtY5qs25vF3SNguUVBRrwV4csxQrnHSs24qTB495/9ETmu2a1jmSvd1ARzqBbgR+HNPVFRpB3jRkgxmDOGQQGLSQ6KogVj75ZkE2SAFLc3vL9SefczyfUTclHzy4R3B0SlwK8lxjBfiDDMmA123L//mbZ/y1l3IwnWFurvj6D7/kX/37n/HZswu+/+OfcnR6yDgKGR4dcru+oyq2iDDEKreDsPY7DXa6FyOuJOd3S568c4gcDKjrnqvqlle55ct1R92VTCNFoEOScYoxHtXNlqIx2GVJiWW4d0onLQafovGpgil3fYZ4XSK0xNgJRjcEhxGh6xlq2G8Ktonh86cFlfS5fPp7lDTE8RidF9TrNeubSwgdShrQLda29LahaTYstyXRJKHvGz797Zf0LiUaHnIUZIzGEY2fsrjZoG3H4OQ+d3crLj77DwjlMTk4YDh+n3f3UoRTfPn8htHJEShB4AXsHz0gyifUkUJ3kk53BKHAaEvXVLioI/AihPBQvkBrgbUGhKPHo9cByhSYYonRDmt6bOAj4kOSg8f4wwEqELSm5Oe/+CXaE7B3zG8/+YogDHjTdrz+h1/z4Pvv09cd5W1JGKbcLN9QP73m7PFjxPw+nne6+4703U4wYHuM0WhtcF2FsA7dltRVQ5mXrMuWqulIJge8XZwTBIq+3jKID6k3C44n+1ysr/CEY7h3hHGCaDTA9+Hpyy1//9//C7z//V8RT75C4QAAIABJREFU+o7ZoxFHw0OkNTSdQBjF+TdveHt3zuffPOerL2443TtlNBjy3gc/po8jllcrrJF4gwzjBPVGc/7pS755+Yyl1fzRn/6AwXBIXZR0zZa80HjC4vqWu8tXNOUGhePjX/0j7bZkdHJ/V41sa/LVHdXtLV3eUG8L8gpCTxFEKW82YF1Ae/6cbD5BjIcIT5AOMo5OTzl/+ZxifYtIh0hhuXzxnLbaklc9fhQQxwEi8phkI9J4SJYN8RMfnKTvGnzp0TeCpy+fsb76Ga/+8Hs64XZ3/UFCNhkjnGAQTjl75x2GmcfNzTVJnJAIwfHRwX/c0KRpaozRSCmwccpwPGZvlDCdzUjSDE9Y+qbh66++4tOXlxzszTkY9VRth6d8gsjHNDXGaTo/YOQ50ixGtyVJGmJdD8mIosxJXINTAcIPEL5mcLCH5/fkl1+z3Vwj/JibO8X/9ot/w1o3nD084vTHj/jbP/kpw5HCSw5Ispiuv8CPWkJRInxYfHPO7NFDQmcwoce2r1lvNS4cYOqSRg/olIcf3uyAa76HUiEuCUgO9miNYBglbNuOyXjA/YdnWCWZzmYgFVGY4AUht9dXfH215JurBe+dnWLSKde148XVLQcq2GmvrMA4ifBShPJptaasWg73x1RX5/zqX/9P/OTdU4L9PUZRzN5oQoBP0wmkn0AYsNnmjJzD2ZC7VUsoJKNkhBIOU63x44TGagJf7bzVQNdJilVO5UtcNiXZPyZfw7rvCI8OcV5EbDe0ag/lemTdMH34Aw4ffkAnBsTxmF4Y1OgUU67xup5+3dI2HdZdYqQiOzihcoI4VGzo8PIGS4uOHF7YgdfTpz69bBFWIKyPtVC2PcX2FtMdE0dbfvuLX2JtR3b6mHUnGamA9z/8I4pLj2g4wovHJKFHlwaEQUa+XZHEIV1fE/ohxfoaeodVgiAbchxGLNstQdDQFA1vLi6ZTmacAnWxxhMwG0+gq2ibegdvtD2eH9BZTSgdbVuhuwqvazDbgrZq6MseFc1RI5/9bMLm09/SrAv2H54gtKZVmrOjfSbjGVWnOBkGVF1NLiS5dkSjIYWUqEFAUXdMg4T1co0UL5jsHeAQNF21U4quDLZrCMJgpydDsm17RJQQqZC75Zamt/h9T9OUDIZjslGGsQ7TNTjb8fz8Ddl8n4PjE6qy5OLFC/woYTDdY1X2rE3OowcnWGEII4VoLb70MArkZISMI/rrG7CG69s7Qk9gZmPSNEHokrJRDIYDutVb0B1lAyNnKHtL6mCkFM5ojNklN0zfUNUtzot2H+VW8/LyjneP93l4f8QwHqDMgMaqnR701TVpmqADhdMOoQWV51N0HZGS9FGGHxi2F9+SzMe0fki7XnB1ccX9H/w5PoIege1bnHA0UmD8kK6r8JXDWnCeT103hKGPdew65N0Oug4Soy3SWZIgIksS/MBjvcm5vbgiFhLCiFAFhGFMd3OL5zRu/wADxFHM5OgE6QTjk3d48vA9Pnl9x3B+yN69h0TjGfb5t/hhgpCD3fbT87C9wVqLEwKVpOSLBbtPicN6ChNEBNMDFuuc28tr8qqlqDo6K3HSR6J4fDCB3oKFNxcXvFkv6JUk14LrskU7qPHYFitM1zK8lQThPnm55ddPn9K3FX/54SNmwzEyDPA9SRLH5MWKomwQno/RHcZYtpUlv1uyXV8jPUUSeASeRxCFCN3Qu5DeRKSjgPd+/GP6osC2FeF0vuNUoPG8iOXlDXef/pZ7x0eQRCSRj3E9B0cD8sUtH3/yj7x69Zp7+yf4KmAwHGCkwpMSJSR7g4zE9yn7nrxpebXIGcQxUZQgpIexPcZBnA2IsgQRB0ilII2o8xV9ccemaBiGFebmLaHw6IHXby7pOslxagmc5jhNULMIVy950kgWumeeZNgsw48Vcn6f/YM5USgZPTjGm8xp2hIjQ6xucX1L2xp6JD0ent2pM6XycUmKUoLV6pbFOsdLU6oowGt74lGGDCMUjnVe0hnH/uk9TJQyGI65fvMGtCSwjvE0xounTO+/z92r11gNvlQoz6cpt0hnWW9WzLKMPCjw25rRYEBT5qyqmkBmJNmIJPCRtkZJRa81Rlus8lFyx6bqgoSrdU/aW9pgzKre4CuPorX4rqHrNXJ2RHRyDxslGARKSeZDwf7fPKJ7c0v7+29hdYFqU/ZP/pK+/BihImbFgscYPvzeCe/96Z8wOD1BqJS+aem8EBF4+KplPB7RBCHEMUPh2LYdsm24Wa355Ns3fP7mDsKQbDLHtJo4VDgjuLUei3pDkmZ0fUeYZPgqQCUTpOk42Z+zDKaskyErC/t1wcGjJxzrRyw++w1EEf14j05FzKOEVlsW24JN51BOsj/IWOQFTMb84OE7RIMhfduQzPawoxGL678j0Ib16pY8m5BFPkIJuqbDjyJCoNoUVPkNWowIXUNerOiaW2ptaDc9Ze1IshFZGFJbn8uXt9w7OeYyF4heYRvFaLRPMs5QOOqiYHzyhHCwh0CC8HHWIpMRzvZIY1HCYAtN39e0i+eIyR7OT+mqnlZbVlWJn8REYYQvFYHaXVxF3+O6DpSgc44gHVBtc25e39Eu3/C4qUnSV/z2l/9IUXX0csh8PEYvC+ppziBM6FtH2QmCVuJ1mvjgHnvD9/FHEdJLePv2La2Gi6s7tlVDlAUoL8JqjXYeDkfX9xRFRTwe4IUxNqgwVmOE2v1nBgNQEUayG7Yrhzd9SNtu0H2JChOU33CbG96u1jROI/uWRJbIROObmOydD9FqwGr7ikxY0AI/zjBNibu7gLaj61s0DW4QUOmOVGiUlyDjCJTDCtDW0Gw0mRuRHOzz6K/h7su3sJaUt0ta03O1ycnWBd5wTjopudzmGF/yzl//lAf/9AdMRwO++hef8D//t/+cUXLEk//04XcLih6rJBqHjGJIE8L3fkStUi5uVvgixDnHwHc8fHDKdVGyaTryvKTpJZu6Zr0t8LRGdhcIG6LiCCENZntJXxd0fUGHwgQpQlqqukRlIeHhkNZpvNEc51levX5Nr2tuyjViPCSMO9Kw4ubFZ4TKcflqyV4UIHSKH8REQYYzLX1V01c9N2WHVA4heyqj+fLZcx5/+Kc06w2RH9FbS1d3RFmMCGB7e0evDdYP0EJwtdxydLqPySaYRKK+42T1XU23LanFgs23L3j61Use/e0pT/7Zf4lKEq6ubykbixU7lobpDSqMaFrLx58t+Oy3/5IfTiFcXPL3n3zO88sFRnhcXi0o64rpcEww2yPY2+fq7oaRk9ggBGUJA4/rl+dEQcpkfMDX11c8fXbJ2d6GUeZxejDjbbOgdhv25nuMwgRlGsq8RTQdaZbSNw0mdgR7Yxweqado2p6+2hJPj7FRQnq8z3QyxDQNq5tLpvdSQi9kc1HQbC7pygU28JmdHeBFljdff8L85AF92bK8XrEpcx7+8CFeJGnqLU2/ZdtuWeZLVpuOWW1R6Qjf9dSLl4wm+8yOzwgGCR+fL1lsK8qqQSYjKmOojcd4MiWdH7GVAy7L3Zm2KBrCwYiHJ8fEXkpkj/F6TfBgwEK8ZZM3jGKBcR0jFeEZhbEaJT26tkc3DV2coBuDilM6rZFljW8FtBU9Fht4yPQAon1sNKBya2xf8fijD7h9/Qrj5uQP3uNf/+I3rJqWv/zph+RFR20Um3xD/x3fr/vkFRffXPD+R0tO4pR4coaQFqTGiZ6ua3BW7JLV9RbddHRVTdM7Ws2u+t521MWGcRYShA4ZhhzfP6MoKtLhELGVxJ5ibzaEdIRViuG9E8L1mm+efU6UDWgHcFpMMU3D1W2Obd+gLPz+8y/59uKGy5uayI6Z7Z0xPnlMW4a86a4oXQehx2Lb8/v/8DM+/vhj3lYb4jjk4PExB8f7HJ8e8eZ5jrOWoiggCjDLO8rtiqauuFhtmIxmaKnwdcdiccebm9fURYGrGiwhD6YTMi9gVBeMD87Qvcf1zVPMUDJSoLIR+duXbMoa7ftcXr3BTOZIp3l9cYmgJ0iG2M6gYw9pNOk42LFkAh9hQTiNF3g7Y2I6pVJrXq5u2KIZHh8g2hznw2A6x/ck23pB6GKiyYzt6jV703fJsgEPTv4jhyaj+ZzNxQJhW4ZZyuTgiDTxSbKU8XSGp6Bc3TGdz/nm+beUXc96naB7TW8d0zREKUVpLMJotOcjhYeMEsJIoKoSXa3wkgQZDGmaEk3N6GBMIu+obyoWb25ZvKm4WPf8r5/9nsu6YjrOOFUeZntLMjTYpUBtCry9GVDQrCq0rmjblr6TbO4k89mYcazYagtehvAlpokRpqa3Q1rRUVLSx5KmgaOjI6J4hNdA2xpCP8XInpFOaJwjGgyJkwiBoRMhr69WPHnvMUnoUYuMJhpweXnDMI3wlSD0BZETfHu5om0FgWspy4a87JAyYv8gJYt8ckLWFxuuekE8HzEYxpjGEAQBm8GMxd2aXmu6PicOJbd5jfIi9LonmCv+H87ea9eWLE2vG3OGNyuW3/acfWzayvLVjk2xAVmCgABdSITeQNd6KgGCJIA3Altiowk2u7uqy2VmVVZmnjx+++VXeDNjTl2s0gv0GwQCiIgZ//99YwjXw/YSdFEibUGHTbnf0hgHYXnY7imLz7fcXV9TC4GYHxE+PBwMpTCozY6z0w+YnX9C1MSY/YoohsXqFj8MqeUQIVu8YkFWNayqhrarSYuKIAlpgiFB4KDLll50OG5PI2o8NFg2SlgIIbEd6CVcLzPStOTF//XvMdLh5c2OtNIsc4V2IvzRlCgOuSkaWmfAPl0zGT/AlqD6Fsd1kWFMV2Zsrj5ne33J1c2GQVNieS6nx6fs379mW9zjuwGOc4iXJ6HPIB6iq4bAcsD2KMsttu9hByF1WTAYWNAWYARd2yLzjD7NaFTP4PGn1NuWulLMXAVVx2R2hPEDQtthmlgMvQDXDrh5e8fE9tD7DU5osKVH51uktWI0GBF6PekuJRqF1HnOtmrxCKj7HscVyDBA6pBmt0MjUBzo2cs0JfE9lOqp6hKr9iHwSfd7XBsGyRhbQlnVvHhzybvFmh9+71NWyxXSdjk+OSMMPGbTCVXWMB1HvHz1iqPTC+qiZhh4GJHgDBLE3S1ltqdpO47GCXVT44UhURIx8AVNXVI2DW1ZHrqRToAyh95joy2M0GBrpOMdwKt9iZEG05vDlNgIrM7g2C6tiLhftThGY7yYKqsRXYcjBKZpsSyLttckcYw3nqKSEXfZmqPIo5MS9lvSxqDKmn1Tc3P5lpMHF4gwRNcFve2hhY2xBH0vKMoCISycIEQj6XpQSqOMhWobHMehly6FMpwFPqpXBGGIF0VMXEHYS+TqjmA04tHJMY5qya83WGHAm3/4BadPHnP09EMsYdB5QXTxAZ/89F/xX93nOGdHxGdPseKAwWzKJtsxHIW0tgB5IM4Hf9Qft3VFXtQEjoXt+TRtTo1FWzS8v75jdbf4I1DTwVgWng3HsU+23HP16i1106JcG+P7vFzv6IdT5HzKZp1jRRUPj85Q2wWF1LyuO9L3N1zudnx08QB7evRHjbDEAH4Q0ghJmi3Q/RbHcVCWx26XU1cpTVejXR9t+7RtjePYNK3BiYd4NFTrHdJ4uOGQXjd4oqLvSlpsrE7R77bcfPsSr6iJHs0QF2ccPTwnjkO++d17yqrgm1fX7HcNf/Hn/4LjJKIXEsuxEG2Fi+bl7R3rrMRzLIbjMduiZFaXjIZjhPQZjqeEcYJloCozwiQ81LTaknS/wU7GB226Eewah9u7BdrYoCXbIiEanfL6xTvutzuSQOPYDk9PZoyfPOG7+5xBPGQ+mHCUzLFsC2SEN5lgKo+2V5SZRqsCY0lUURz6y9bBjmhwDzBFBG9fvSbXgrGEMBngeTaN0ei6oaoaWiAcT5g9e05TlbhBxJvbBUrlzJOAWg+Y+AFX24xkNCYOtigUStp0lUOnDWlZ8e72GvfomEkUEng24zphs0lp2o7JeIo00PcdtnUYJG42O6oeho5HPB6jtM8H4vADv1nkBMMpdV8QSJuybvCCAC/yUJ6PtkC3OUp0SN0idE1wnNCfxFRvFHe398TZFFed41slonvFDz57yNOf/JTJh5+AE6G1wOs6lCuxbJtWeaxslzZOsB2DJQKE0Sz3GV+/vuR3l1saLYgtB7Hf0lgV9sMztlbIuilovBFS7gDQqsd3bYajOUYrbC/gzx+OaRObJ/MxuuuwcElvGzo/opYSWwoC0RPZh1h26FqQxHiOJBollFaCHA/xRkP8MMDzLKriFmMMKE1k+7zLNvT3ax6dH+MoRSBdDIf3kS8drtKManmJ6zhkxYH5ZNsBR0fHJKEkXe/YZmuCYcT8ZIIvXZy+QWhFkjgMbIehtjj56MeU+w3x7BTHjTBKHdKIQYjRCu0ECNEdeFR2i7Z6dBxhdEdZ5KAdtlXBYr9nkoxRWFiWjdQdru1iehthOQctuuZgCsLi9eWaV1+/5K//5ucMAou263n88WdIzyVXK+LRKdL2MNpiGIc0taJswZEBm/0N2jQ8u/iY/XLL5dtLQs/B6I6r+wWxc4wvLFTfU/cGaQe4XoVVdwghkOgDT6vpCQeSaHQEjkRbHkYaRCDo7CFN3UCTo/NblPFZbw3v3yxR+RJpCUTf0VouZbZHpzn51SX20Q9wnDF1WxB5HkqbwxklvaW+X5NWHYNpiD9NMIM5XZPjxAnCgLRtDBZVa9guenQ5ZPrkGfFkjO3HqM9f0TQ1nTYoN0H3NvPZmNfXdwjb4/HH38OLTmg6i6aT1M2E/XrIw+mnhEmEY9Zcf/UlmQjpLm/ouxZrcko/0Hz31dcUWcqjxw9Q0ZA+3TAcjfnw0QO6puW271G9IWsUTVXQ+h75bo8WNwRJCLLDqIK+L+mlwY0jRCvoqxo7GaJjgRVHOMkRnTvl5bcvyZrDAkken4MRNEVLZWW8ubomEhFPjkcM6RicndIUG5RyKasa7QY0XYcxLfluRdPUHJ3MmDz8gFYKvEECSLAl3iCmzDNa05PmGf5wRJYf7E5aWizvF/jDiGk0onEsVFNjXJ9mv2ever59ecvO2FQYxkmIc/wIvdoxPxpQrWr6rsMNAlSr2Bct69UeVbYs36bw/g/cpBuUtOiUYXufUeeg5mAHIfGjD7guW+7f3+GNIggHjEczGsdheXPDviwwbsj7oubx82OwOyxX4HqS2cBhGNicPX7CQHo4neR4liDLw9LP0x39TlOvbuibjG1acdMpfvxvvo8/sAhiSTBy6bYN06cfcvzxOdXrl7z+7muiD2NerdecXswYHCc4lubm5orXn3+BbYWku4zZ2ZhwElLut2hbkVUbdnnGap/T1tAUBdoZsy0U48Amsmoib8A+z7nZ1Ly/vefs0QVKOghpkxw/ZDyfEAwS3r6/4/Wrkk+ePEQICyN8xvMHhNEEqwuQQ4t2bdi++APLfcFnH1xQ5ymyqTCTmFhGWD2ESYAdhGitcHybrslQjYaqOyzcRA9qj/CHdJbBCS06C+qqo7cL1ut7vv3mC7bbDmHNODs74b899nlw/oTIO8GzYe+ktNmCtOh5d7lmYfbYZoKUv+fiz2Ok6KGp6XYbjHUw/ZlGge2hnYNivKk0xgvohEPZ9IyPpvTpFaFdY9V7Bg8/wJ1o9m/u2OxS5henqKbEcUCGM6q3r8nbhvk45iYtOeod7jYl67t7Fpdb7qw9XVny7vqeq9WeddnhhGt+dHSKiIbEXs+0tSk8hXI0y7vv+Icv/yN/+/Ubis7w2aPHdFmJwMbxXPwoodsvsW0PpTWmbanKjrLMCeMIJ/S43mx4+/Ilm6YicMEUJZHlIG2P3aLhd9fXdF2HebWgXD3m4ydTdm/vcTb/iac//iFZm7FqWzLVQq9Iby4ZRQm95/Pim7e43oJw4KBMTW+5zL0OoyP8yKPXHM6Q2sKN50TDhOFozGg6oVwsoe1QjeLs6ISzRxfYWtBda44+e8wgiimvbeJkSDJMuLms/5lJk6bBcj2m0yGqzJkczfFci+EwYTQa0nc1Q8fGCyOaTnG/z7lebpkNB0S2pHBtTN3hOQ5p13PqOXRKoFrQvsAaTg5kdqPp0EjfR2hD7JY0+S2rncWuCHi1r/k/fvtrbvKcJIyJkgmBEHS7lNqX+NGUvFTsXn2DzjZY+Zq+O0zPciPR+YJGDnny9ISTcIiyBhg6hKMwgY/VZBRpzqqz8QIXes3xxYf0JUBP3W7xkoimzBnIAA8IIx8v8PB8n9e5y8t373hyccKnP/0R391XFHnDrz//kvOLh3x/fswm3WP1FVerLZPBHM+2cTC0nabuDH48QtJgnAgpFeHkGEtpbNenaBQWHvPhMSvnnqreszUK35NoxUF5OB5ieT69EZjNDsfxkJagr3M6qakti07FfPefv2T3bkHjhgw/+iluNKS6fksyThgNxsyendJvc7zNDcnFQ95evSZ/taFzXYJHPrFnuNum7HKN7gVZVdM0KU3To/uIIBjgRAPUvkTRYoDQlRjhYIx9MBQYhTIG7UTcrt6RlS1NZ9ErxTbLSKuOtncJkzl51TCaRkyOTxFCMp+O2GxTLC+myhu0NgejjdSUVco2y8h2K4Q0jKenaCkYD2ckgxTZCxzfg66j7xr6psKXFtQNSveIYEihemIMvTEoAVIpit0OoxradI9UFlnWYR9H3H53y8nUonh1w+XiChU5CFdydDzi7GhEfXePZRQPhj7LN+8ZTodYwwFjDEJ7dAY2VYGSOarao6nQSmNphyi0CEOXVjeIvqPLcrTqKYsC4XnYocvYiih2K243a1rXxWpaZuMRMrTwgwhHKywhyCqF5fqs9yXvr2+5ev+W09MHzI9P2e72rFZrksBleX3Fq29fEk8eELoOnZTMLh5wt93iWAcPe982LPOCk8RlPBwcfOiRfUjj9AY39CnyAlUsaZI5ri3pLIeyzglcF1sI6u2CKs3RPbhOiGsFTAYjHs7PWK4P8Vl7GhMMLwhOTin276maFf5sRlZWCNuQzEeMpmPGgyHpfouWPbvGRveKdn2HcQKK/Z5Ow+L+Bn82I8LHGEMvJF1fYdk2ZV1jVEUYxVhGEwQBWZYhLJt12qAtn6OjiLS2sIuSvmsQloPr+QSDIYNxzCgM4Owh2pZYg5jvvv4DD4QisH0mpzOkE1Ds9gz2G5q3l/SbkvjhY55/+DGD508QYUixWREen5Atl3S9pmxaNBaOa1P18tAfbxVuPMConqLYst5lGDsmzbZs10uWWU7VS6Tt4PgekW1Y3Kwp1wVNa2iFQ9V1fHd/xeiD58QXH+JFCfsXr8HkCF0xOz0itAVZD8fzKWdPHzOIB+S9wO1aTG0zHvgIo/ADl23lsS6XeJaDtlIKrWgsB9ePKZoKnee49gAhJEWtOJ0F0NZ4jke7zrHjAaauUcsXMPfxk2MsDG7bkV3d8cXlPZ8O/4LR0wvGkxESmBzP+OyzT1ltO7JNxsnpEZPJmPr2lmq343K55OvLG5Z5RasNP/rwKQ+ePqfd3rFYrxkMRwRRSDhw8R0b07X43oCua/5oUBEMxjGDUYwTxWT3gm9+8RvWa4VrhQhlyLSkyVqq2wWJ7OgajXECLpucvL3l4uICqSz2t3eMkgCnTqjuVuhGYxIPZzbGcy1yAU7gcrUvmD4+QfQ7TNdgx2N6Zbh98R3LbYbWPQooihLwsG2XVvcs9xktDg+ef4IVJuB6WGFIta743/7v/4TjWvyP/9P/zCScMnn0Ef3+htkgorBdiqqg9R3KTKAR3GQ9jdQ8siyOhgO0bziK5nRa4dkGlw7HdimrjKbtEJbFcr1l9vQU6ViMuga9rVmsa545J2S3K5ojiZnZeJ6PbRzoodPyYHSoU+gMfdsgRicgffxnz5iXHb1/xX/4xS95s1kz4p7nM4MfhNRbTbkViIFC0RMEIfZ+jbADahlgj0fkwwFWURCh6bRksbznd+9uWe0qsFx2hWI2PYKmxA5sxOAcky15+82vWG12uG6AkRYIG88SCMenbhVX92tOLBf3VDA9OWN5U1KuLbrQw/SK+SCiLzboPkCiqbMNTaMYnD2k6wUWFfv7HfWjEcaAYwvyfM1215IKG1u0KLvhxeVrotBHuhaxc2CkeMKm6io6y+bdNqesDumiMEz42YdnqKwj3a6JBgGj2YyiKHjx1VvcUcw4CXn17pb7NEN88Y4fnx/xo2XN5GxC2AvE8AQCHwsb0XcY18XoHmNZWLpAqD0IhRjOabsO25bkWc3NYkGjWpRqCeIYdzDAskB16lArNAojDt8523bptWG3z6law80qxaHn0cVDtllNZMcHqL0LLR6qbulNCdqiTEvqdsPRxTnWwEfKgPXmiiiMcLoct85Z3V6zm045imzoOxzp0SsDSJJkSNU2SDSuJWjKgrZr0NLCOBZC17QioqkbhFexX94RiAzamsWbt1zfFOiup97vcAIfgyaKfOwG4nBCs90i5D2DiWB5uUAdRYThgK6pcAMPeX5GWBVYpsJJHlC3GiNdhCWQtouwLDQuu90971/9lufTHyPjz7Amj3G6FCu4wVguyvGZnD6h6RRTDA9PTlEWDI5GpPd7rr59wTtl89GTT/ng336G6TvceAGlTSp8Giy84zOaICKIZmyvX/H+9o5sfcf3jgPC2YzL7YpQaMZRwMkoJktzRoMhfuBTdQrVG4wxyK5E1AJES725ZLPY4SYPqJWm1QY/SqgtQXQ6wJlOqN0Tvvh6jRQDkliS+BPaIqfa7DGegyddjsZzfvL0Y1xTM/TBcmLStaDKUgZBRN93ZOmWu03Ku+2OF6sV31cN/8XFI9LFe4bjCW2REiURfa3ouobVPiVvOnxtUFofQMZa483ndFKw3e/xRMTQc+lVRb5JycuOZefx9M/+BSaO0IuvSTeXOINzNt+m+H6EH/p/BF1blHlJkWWotqfXGhEn0OSovqdRGhmELFa3PHnEYO7WAAAgAElEQVSSgJCEo4Tpk2cstw2vX1zzfpPywcffQ2iHbV2TtRkm8Ni3Hb968ZbzWcR+U9ALQ+xLLmYhY2tLWdsMxt+D00+YXMyZRx5h1yKqnObyDYEnGV7eYe9SpJ0QGZexe4SjbbJqRTx7QJmV3P/2C8ZPpvy/f/9zLtcZH51Y7NKc682K23XBu0WJ42w5ncX88NkRqtxiUKiqZLfacbcqubrLmI+GaCxEMMB/8BS217iezb5u+Q9/uEQMZrhBRIckHA1o9+lBVGEs0rSiKEuuL99j9x3zyRiNhRuN8UcDMAbZ2LhY7LKKm+Utk1HIPHRQ2lDlDbZt4bqHpBltTVUqXCGRRiOMpBUStED0NcLVFKpFuRadvaPavqYtewq955dffMXurqQrW1To4giJKz3Ku3sefP9nFKXh4Wd/QX77mvz1C145S76+vKb95ef0jkd8dMzwfI40GhMESNtglMIYg+4btLRRUqKkhRsPub5bkpw+IJ5PODkeUl//gXg6xh8fsb1b8ep6TWcEqBppCZRSWJbBjkccz4/Zp1v6dcbJ2Zyz01Ns5ZEvHd68fMt6teZus2fftNQajuIRxxcXOI4gsW2s45hG95jeIBt4cbtn3/b4bsJPPvwBJ9MTdlWP9DTxdMpiu8RybYLgAAcv2g2d6lCW5Pc393z98g2qrHAcl0xIdNmStjVSNuiqQaiO0A2IIo9fvr1ievEQk4d0rYCvX7CtU8replcWThBzs9nwzHWohUVyfkqVp2Sqo+4rAs9Q1ZrJLKaVFpY09MZhkbXEWhJgGE7GTKIhVTKk6Xpy1eJrG9s4eFbMhx8cMTgeULYVozhi6DREcYLjyH/e0MT4PjEuUeyCSQkGU3a7FMt1SJIQlXV8p0A6HlEyYLVa0rYdymgS1+Fqk4IxnAxjLGXYaIugTPEjix4bx4/QlNg+WJGPbVkY2SJdi2wj6OSArO64W99R9oo4ijiaTTkZBVi9pmwTtiuL/s0CW8H1boPnGEIvZpHW/NP7WxZljdDw4/k1/+v/8j+QfPpDlLARoqBvBMqSGEdjOQbPsxC2z3TuYakeXB/tWTi2R50fkgtCm0Mvy4U02+GYg5bWHSS0GlzP5oPHJ7x4fcvk5IRgesRVb1F0Nj88ecwjMaTdZTRlRmhrHp6d0nYdVdejTYvuFRaGIHAwTY+xJUoayqoniSckk4csb3q8bs+iUDjCITE9ZVlguwIrDvGHPq0xSOfgJu8sjbBtvvnyBX/7i28ZxSOS2GfSBAzzmsHgCFlV2EGI5xwRn9eo0iVbNgwePKe2tmg60rQif/8d+92O0kgkPoFtEJ1Nvd2yb0uwBJZ3iitzjNNgpEuvBG7sIW2B6dXhPtFzv35P1bcHxVrb0/YS+cfovOOFCNtHK42yfI6mI0RXglYMpudcfXuJbA3VH60N1SgkShJ+/K//Ne9ffIdOU3zbZXOzZrGvGU0fovdbqnJP59n0qmO33zGPYtZVyWg8wpGSXpXkVYnuWpA2wvRUqw1Nk6GUoW96xscXZHd3RKKhutry23ffYRKPs/mIeDxgGAp0fo/O16RriMcTHnzwFGs4JlMKs69pV/d4Q5dRPGCza+hFT1lqEIoyrUhbwSS2cFAYZQCbtq2o2o4g8FFGHjbEWcnNriDD8PTBFN1rBskQR1pIo5FuiBg5nAUJ06bDd22SdI+0LFqlWCxWXF/fcjGe0HUKL4wpi5zT8wdEfYdHT/PmDZtcMRtNOBol3GwrhqcnKKujatRBNxuOaLI1nZaUtUKplrTcMx4c0auGUoJjWWSrW5qiQWsX0RscaREOx9iuhY2krK6xeoXV5thugwh6vNjh/PSU4PwxVdvR9DWj6ZjpIGY4vcDeLkh3txRVQVXV7MseU94eqmaWRVFW+NfvePzJZwgBvTqwgHw7JooCjHZoGgVliXAMTVXRKYMlLKR0SYTgJAzIvJBaG4xrozpDXXcsNhnjIOLsBz9g6Lms8z1PPvwIbt4zfvwUO4yoW83mxXcElk33/jWyUYQPPmB09gB7dk61u2bx5lv6B3OaqqJPYnTfY9CovqMpShzHxY18ml1BXjU0TUUvHerOHAw2pqdQPXmnOHIcZF1QpFvul1vyRtO7Adu6ZZWnaEfC6p607qi7nj7bchJY9F1DZ3yqXjEdjtl1mpNhAK7LbbqlsXyqZo/DBM8fEMQ+jTCs9zWxb6Mtm961CUOBqVpi28cNY1zXplGKTV7z2HHI72/xjaRLFZb2UGaE7fq4UYibDGjrltC4fPbsM65ubw7fnSxlubhjNhoiHJftDv67n/333N7dEsUDxvM5X7x+Q357y/vVhqxq6LXmaDQk1B2h7xIMp2zKkqbIiOMhjj/AlQZciWuHNG1FmITYnkcc+Ti+i6Bh9vCYJ0+vyDtBLAfsX/0Br3Hp9JAo/IS7ze9x+5xKdEwHEvqOttoyOnvG8MEFdS/RjsDKAur3NZm4o5d/wJv6RCenfP7yikYC6QKTxMjREcKP2F5d8fa7b+kdl1wZEmMom5qyrogHQ1ZFxcvrBZ/97M+JxlO8QUJvNLaAQVxieQ6njx4zmczxggQ/CFneVQznJ0gkwnXY7/ZoIRFOQCvOeVPMWb9fczaXjOKA3ghiSzPwBHab44QDFuuaKt0ShAH3t1c8e3TMJJKo/QZURzIaMfNsYumz361pzxJcz8dyA3Z5wcNJgiuh3+XoOKE1AXZjcITB2ILubEiTr3nPFjvYcjQKsMaCnQ2qaxn0ii7tDtvB0MUJBwihMVaDF7icSUMX+Ii6pyxT6qZiudkdnhVL4CYJTW+4D+eYHNbFjl//5vfUeU1etQRBgMLCSJuqMwyTgPEgIPADyjKnLVOabsQmz3n40YQ3799hpDzUjaSgrGscDJYUHJ3MKLUmlgKpS2aJh+4PxiPbtZl+9Gfsvn7NxY9d8uUQXf2a3asNV/cLho/O8fhjTVIYRGDhei7S9sHtSOKQj549p2sElqg4fzJhkEzx4xl+nzN59ZI36y1vN3sqBEEU4TqGtaq4L1LEXUUgDP7xHst1DgMTx8XoGm00VluijMTQk++W2KMjhLBojWab7bi+vWN4NKOtS2w5QmlNZ1sYCQKNQdMbg3RCLEui2hLVNsymM/brBV2Z4RqD6RTL5YY4iimrBg+JHUVoZYiigHf3l0SjgNVyw5P5hwSRTxDHXF1dYeqc88mQ7/aK0bZi4CW4rofu+sP1GHmwPfTdgacibYRtY/oOYRSqLHDiMb2GVaporv+RX/79b4nqBq09XHuA74YIDb3xoYbxYEhiHKotdLrDDzvu3v4G+/EJIqh58fIV04sRp2dzjNKHBI/rYg1PkLLBrirKtAU3odcVpulpheZuueDzF18QPKl4nj0iPj5Hjid4vgeWZD6IEMWa+flHaNtjnxYE8ZDTxx/xuy+/4vbN3/CDn/4r5hdPkTOLP/z6P1I2DsV6TWcsHM85/NDOHxygjmnJarnho6MR+X6HN7QoasXI8/AjcByP4/kE3w8IhiOarqUzCjcM6HRLlzUQRKRpw9024/FxRLlf0OuK5XqPN52yWdXc31yi7A2WO8Yuc9K379hvNujmwMoxwmBNhvyL//JnDKkoliXLtxvaVlDqniJbs6szOt3TqJpf3lzz1eKeZ7MBedNzeX3FR3EC4wmqazG9T7bdsl4tuFqvSSYTjDBIx8ZShqoscRrFKAjIixV7E1Kv1rhNgx95bOuOwWd/zun3f0pTvUWehcSOi9IjTmaC+32HUR3KCLI8p9ivSLdLVKcg9BmOJxyHNsvlPd4wZDCf8Hax5CfiObblIPqWaOhz8dn3uMo6/unr73i36/jk+XM2ecXtJieKYoyT8O1iwd3ujvPjEx4k9gGuLB3OgwCSAV+9+gNqm/Gnz/8t1XRK6LvYXcF9rZF2SHEDahCRKQt33xLYW5pdT+cG+E7N6us/0FUlv3+/4Fe//gOxJ/n99YK77gsuVymLXUbb9nzvyZy/ejZGdhuyjUL3ijRNuV3l3GxK8rpnMgZrMsEd+Dz67GOq1YybN+/41W9+x7eLHcdnFqdHxwjPxet7QsuhDWIsW7LZbEjznJube9aLe/7lz35MFIZox+AHHrZ0MbZm1Ws26Y66aPjy29f82UcP6VyBsAVdo9BujXEdLFsgLRvRNmjLQhmBcW3qViMQtI1LP5pSmYZ++5JdXjD2Z/zmP3/F7e2KSLtMwhlbK2RLx5t9g1i/52z+Kzoz5Ddff8vDkxnPzyb4n37MX2d7frO+p/rdb5g+O+WjyMORICxBj42R4iCRMD04DmXb4wzHvFtukH2GyhdICaotKeuGdF+w+/o7dsql6Cx8W7BdL9FPHmIM+DaU6RrHswgjlydPHzAbJsT2iMbRhGJD7IVc1XeUTYcyEttPiOfPCZI5SThkn+0Z+GPcJqXtJIPxCX/1gx9Qma9Q9piHp1PcwZC/f/sWlS/40dOHSNeh7zoIDEKCsRwyJXh1s+TLNzdUeQmqJ692FFVJozp8aZEECT85esAPzs559ugzxOknlHevOJ+AOD7harflzZt3iMSiMRW2DujLmjrtuDZ7To5CymxPaQzz4wllFTDxjjifPgXXxZEOuu/ZZA0v3twjbyrS0yUBNqN4SHp8gtMrPHVEEMS8+e4bLh5/yvmDM2YPZ+zyHV2mmQ48/MDn4fnpP29ocnR8cLCv7u6IVIXYvybEIS/3IE/p+4590yF7xSjwKMKIrFhRlCVta6O1ASOYeC6qaYjjkEZC4CoIxtzc3fNoEhygdjQYERBOTtGtonf0oV/rHswrz2YjlGUfOl9aIZqOJm34u8/fIJqaVLhY01OGXcZ2f8/nyw3brkPaFk6v+MuHgl63BA4YV6KLGiEVrWxYZhV53ZG3PZO5x9HRI9rOotUt4Sik0z6yb6B3CCxwBhEgePHic47OHxEePePBgxlJMsIKAsa+z4PHD+hdH+lFFI7HeJywW7zEdlw6KVBGIyyXSRRSFCmO49PWNUWWMRkPqVtFb3osadCUOLGFZWrOH4+52t+i9hKlFIXvcrerGA8jOm1wO4P2rANIUtf0vUQJHwd4NBvz33zyIZFsOJocEw8auuiMqm+IfIFcvsYb+9R7SVrC3o/JLt+gZYgSNq/+7lfYbk2X78iaDiVdjsOAUTTjXbrgLm8Y2oqHx3s8S6OlxpcKbQuU7kBDJwAcNiImUxkCiRY2ceBQtR2LrqfuevzQJfADoiii6i0SP6DrW769Tpl5j9i3PfntHXVZsby75uEo4vGjcx78yb/koRexu3yH1fds1iVFYUgGEbko2NUKaWl6rZmMZ/iWQ2danMCn6Dos7VBVGt00YAqq5T2bZUqrNdHR8JBQ2t9iqivSmw0vrlcoV/HRPMJF49Y5fbsizbdUaUh4/AQxGdK1BaXTkzcQ+ILh2ZRqtcKPAgaDARXQ5g124DI8HrG4X+LKQ8dceBJHS6IgQGBACHqtqVrFrul5u9wyno/QCBqlyXc7wukYf5CgogTbcvHTlOW797jA0XSK64fc3i/ZbNKDBi3dYXkBn37vU47PH+MZ8LWkePue9OU7VoXNk+cX/PAHD/jdLsAKpjT5V9R1SttoiqJEiQPbotjVFFVL6DacHoFUFb3l0euO7XJJlrZETswkiXFHc2QQ4foOKt2gyg1VWXN/e0v5879FJxNM1zKIYmQ0IJ4FNJs7gmEC84dcbxVdDa6X0BULil1KWdXc3K8p65qmqTkdhQwHAzAay3Go13eHlz8GrTts18UygqLMEbZGqxZHGqLTC0x9h6k7Rp7HnR0yHbiotkJISdM0bHZLguMR00FEP5/TfLOlqQuC0zPi8ZS6Kqi2BevbW6SqeXh6hH96RrNeIH0by9WsNgteffMSXZWE4wAtBKX6Y7yzzsAYkvER1XZHk2WU7YEWn+V3FL1PGMecnZ8gkglRMmPs+4R1xucvXvPm1SXLsqZB0Pc9rgDfuGRXl7TyBstyOIp9uk5jW4ZJMOdoNqfrezwvIAljVKvxZECzK9nQQam4OAPLtuhUy6ZU1I1mOHbxXHnQZIcRTdFgGUmrYLvbIN0I4UcU79+zeH9LEs2Ih0eEZw8xsj9Q+vWhA2x7Dh/+9E/w37whms0QiaTIdmTbFa32+Mv/+t8wDU/58p8+Jxq1lG3L/XLF/m5F32seTBJsx+Xo/Ix+fY+1ekdy+hBjTkmzNcn4GC92sewSz3cRxlA3hjrd4syP6R0f14K6zFm/XTCfPObPPim4veswwzkDDMn4jMu7EKfV2M1rWmmz1RZv0pIHqqbKvuDy9hL/5oTVas39puGjyZzvf3TM6/2C2dmQj2enSMcmDn2UNDRdh4gCagVvX7/jer1F+xHCsrhabRgEHq7ncp33fHO7YjQaYnsBThAQRDG66SiLEs91eHB+xJPZOVdfbMg237LMXhKZEms0I3YiNnmBdAPccIilXZJwxtQOELWkKFK6OiOKQqZjB6de4Ps2pi+ZDQR2MuBuseTd6xUff/qcs7FH1WcoJRiMXXR9zb68pkhTdguXSRQDYA1iXKunXd7QKYuuyrBcF9WV4CWs7xdsFyuytkXMH6F3Pd3Y5VWbMlM2Q9Uhri8Zxj6VJXGqgyUn8GzcwQC3a5Cmw5U9uzwDL8AbDA8HaA0PT0/IOsGmbNE7BSPJ6+v3dF1LqwVGuoSRT1PXGMvGdxwsy2GXFjRlxvNHY0Jfc3V7izMY4LsS3bdYTnCooUQjeqMIwoCj8xPeXN0TxgM8O+D09JT5fIx0HPJ9ijMaMAimGOGQJAmD0Sd4X73DDSrutztOx0O82QQ8BxybvnI5siz8UcK7+7cMp1POjqYU9zekVY/l2exv3rNMX9EKl7XqUPaQ6cjwdOBT6Y5VkRN5FkFkMzqdEXz4MWI25wBKKkFltGVBWzSYzkEpDcKh7hR+U6J6SVZUfP3VlzRa0faaiefhWxLRlIhoelDN2wKlBb3RxEmEtCTpfov0YiZhxHY8YZumxJdLBoMpd5amazW18ZBaEwQhjmNh2Raj8QTjWkxPh9hRzGK94d3lNf50wvHZz2jKjuvtFvvtktNxwsiWmL6jVz3SdmnyjFZ1WI6H49hoadE1FaZJSeua0IrobYeb19/xd//wJf/0899zZPmcOg4Df8TRR3+KqW7psxXj0Qixybm+fcf5dMzp/IzJOMJ75DP+7GOaNqP9Xcq/++vf8qd/8pxnY4fkwSPC+QWWlPSqwPNCbL0nT7eEyQCcgK4teXVX8q7qaF5/w+gf/x0ftj8BhtTCZziZ0G23RHFEr1oqK8L4I4aRTxBNSSZHVNuCcrOnGKZUfYUSHnebPSM3xhQ7wkGEFQ1ptWC9WOM6DsIYzk+OGUxHPPjsR9y/f0OnDcFgxPT0HGeQo5oa4XssF1vOTyUEHrQNaVGSzM4YfvhjBmcZbSdp65Qv373FjxLa9zu2WUXZKfAjmlaT7zKkMgewuhGcjoY8eXjCNJToxQ2bzsUdPeV8nPCPv/g9ed1zliSMwoC2zsk6lx+cwMgP+ODDxwhdkTaG6/sFXjLGlpL9esn98p6b9Y4wjomjEOk4OBrKfcXyboUMfG6zjIv5jDpd4yEp64Z6l1MQ0Vk+2pFsFznbzMYfJVy9f0eVGjzt4AUR16s1+X5DvttQpyvSLEcnA8LZkLOTM0azGZX22OcF+2zFptY8iWyKbIuuS7puzZOPT1ig+PKbb8irhrP5EQ6aYeSha+iSMW8WJU7UoIXGSIu8aWmlSzJLeDAYcfndii//9/+T2cljPCkwdYra7TFtTUrL6JPnRL6HdjSFlWGcAO8oolrtyV7d83YFP//F79Ha4v22pDWKrxdv2BUVtiX48eNjfvZkjFXtqboDZ60pGrZZznJXsy0VxnewoghvPqKTFtJ38U/n2Kpi+3uLvFNEZUVct0wSC1toHEsRRB6y1wgpaOqaNM1It3tsLL7//Y/Z5muOzuZg9TRty/3yiqYskQgW64yX7+54ej5H6hqlFFEcEhoQ9v8/BLbQXY8VuDSZQqHQImBtbDxnTqNyurRmFE7Y32a8/vqW4/NjonDI8aOPGPYdnzyyqPc5N1rwN7/+it264XJ7x9/+U86H8zF/+Rd/wZ998kP+/T/8PW/ud3z+6orHHzxD+DaWdOg1YNlIx8WKItLNjkL67Fpoen2odUqFZdsYabBnJyjHJhyfEGqP3rpF65TdruLyfsP86BTLDXCiBMe+ZbFLOb94xsPTU0Qn6BsF2rDfZwyCkKqDJDzGCqaM3ClhmOC4NoNRwmqzIghdejrCY4+f/NX38SaC7aZknDhcv7vHSRVqsyINJYPRhHJ7SxT4aMeibVu2teHn315zs9widUsgxYE1phSuFJyHNrOhx3R8zJNnT7l4/gHDjz9is3vI5hf/D5vb37DRkqzcYqjIXEk/8Ai8ENlqul2LEoZx4LPbBjiNT2A8wmiCVhrpaYyE9eWK/XrP159/Rb4rKB885ad//pccffSM8HTOuzdv2Vcpvd9xu36NmvlQDam3/x9n77FtWZZe531re7/3cfeee64NkxFpIjOrKqtQgAAIxADHUENij4PqqaOhF1NHolrSkEgKpEiJAKpQVSiTLiIy/PX3eLO932pc6AGEJ1i9f601//nNmbHZ3jLUOzT7ER0N/b3RP9FpUiS4pklm6swuQk4eOtj+kLubdwSDPtk2IsxyRFNimSYH/YYiSwmThLwo0HQD0XWs4hhNloirklUucMOUnrRF1Dmt1qeR77M4DEu/Tx7WJHS9oNJt2OYopoTb2dSyimJZbKKY97cLqqykK2scu8eo5zP2XEhqRp3HngKv1jtmWYZryny0b5Ina9o8RXaH5FlOWSakSQVNSV5ktJpFMJrQChfn0TNW2zmdVCBqF02taLv7LXPWlKw3C1arK7Im5MFghCSVyMYQzeuhaAZlmnJ4espivcXLYX5xw0cP7pOwo6JA1A15DY6s4jo+SV4hdSqdJEFXIQAhOsoqoqNF1BWoKpIscTDymWU76krQlQ2GqZFmEparoiiCJiuR2wYUmTzSKNIYzVDZPzolsAP2XZVO9ekkF1Gk1JbB+YuXeFJH+H1HKVm8LSR2SYzrOXRKRq4HnE9jPCVCZHM2RU2Ul8zrmqf7I8ajEV1cs5nnPNQDHANoG9pWwZElWqml6WSkTidu9ohCnW2cYpguWtwSZQmW5TBbf6DRbEzDRmo7HMshLUtyyUHXCu7ChIEQhGnGN89fUqYZfbXj+E//iDBOmL57SZmmKMq9rVqoCn3b4N3FFXlVk2cVmmNRtC1l1yFUBVeRkWWBrhpUqoyoC7pG4eZ2Sr7JeXu5RbI6nngVnj8k3KWEqy3PFztSITiwDZIoY3lVE0sNmiJQLZ/xR08oNRdzYuFkMc7kCU2cUq1fouoj1ucdu7TBUQ0Ut6FSNIqmpkGgqjJJUZNmGa6jIWk6RdNhui511xFlGVfzBbfLxX2oX5YxW27QDB1zEKCbFsJyKJyAOsloZRVkhSzPqPOSdpOQdQodAsP2MFWduq345IsvqdOYd8/f8PTBI3RFx+kd8Fcn++RdysnZET3F48WHazpJoqgFtA0NMmlWc7uOqUtBUqqM04KsKFF1maosaRS42hRUpcxwv4/uGrSKoDN1MCxkCm5XC95f3vLt9ZwPYYqva0iqwnDQ53Geo1geN+9f8+jkgMlpjGvY6E2Fqqss79a04X0byHq+5c1yx6IoOOvpTCZ7yIpACEHRFveNL01xn2pOS9vWbMOYus3oey5xElGVc3xTAdNG0gXlNGVXZfQMGdNSWYYb8vmUL49G7M/mlMsFSlmyzWr29g9QZAmplVnd3LFcbpiuZvijAG/YI9zsuNkuuPn6N1ycv+ZDuMWTJD7Z/5gsyzF0k6SoKcINe4MeSbijKEq2ixW1pLHZxuy2Md7BkKxs8HsBZ0ZBaVsEjs/QOiCYHPH54cfMb2O++/A1i92ComqwdR1FU8jqmoaaQ9cjGB+QxGt6qoLadnR1g601qFWNI8s4/TFhHlE3KbP1kq4VnMqC7W5DpbaEIkUVMm0mYVkWnWiRlRpBS1orxI3E0WSCUFRWu5A//PI3/OjJ59gHR1DYSKZ2X0OtqCTbFVg67v4Be4ZG4RuMewZpkvDi+7d8/Ol/wemjj6nKjqPPjlCNmuVsyi4M2SUxvqVxfDDm4GBMGIUM+2dohoVlmiSV4OLujl44x+47oOhIkkxTl9RtwWa9xu57tKVMkhS8+voNRW7SN3UCZ0BpRnTuKeHda3p+x9N9hXypEBYtD12dhw8/I64LrMkQZ+yxuX7JbbTB6OmoUstP/+xzhmc94ukBlhTRqiquZbH4sMYdPaSK1uRJyMX1iqvFkukuJhAKRQdxWpDULbtlyl2UoWka/sigbko820ZVDCTZJ13dUVJzfDjmo2dfYkv7bOKEjx4ec/XuGzpTRxYKsukyPnlMWUR8Ziv4nk0eReSLhunNhvmuoaxVvPEBSlHjOCaeXSEHcHsTU+cJV1crLj+c8/T05yRVgKRkKN2W6eyaFzdXnF/dMlzM+ZfHB2h6B5s5eRmxm4eomk8gW8i9IaWqELVwl0RESU6hB6wOJuyyBlvJKfKaOpdZTedMo5i+rTPyTSRT55vvX/JnP/8JE/+YWpbpBGRlQVjXqLqO1VmcHO6xSyRc75DdNrpv1tEz4krh1YdLtosNpiTd16tLOp5vk8chtgq61IIiOBp0OHpMlCXMdilDQ0dXTQxNoZZkShREW9Mf9NBFx3q94WgywvMczj76GE0z8FyXNC+5vpkjtQ1NuOLm+19TP+hj+Rau72B5HsXufr5bjoXvWliWSW9/j14nyKIVkqciazr9wYByu2SxuSGuJMaug2wKTk4f8XTviKrMSN6/BmqKrkFeS/j7B3SOSigrFNNLdtkOt99HVlWqFqJYJd1l7O1pxPEay3Ex9/Zpqo4ky/n2+xe8vbrCtfzmGsUAACAASURBVF3kKGS8d0BX1jS0dEVDKzIKBWTToEPgWBZpuqXoLA4PH7G9fIHvuOSGSasZXM2WpK7D4WSPuPOIwx0CGd3po2sGo70TlJ6JFpgItUNrJWzf50///E8IRsecX6/4u//wf/Pyuxf8+OExrQWeoiJxH1YsayaiqBBdiyIr1KpC2xSk2xlFWqLtP6ZIa6K0ZGzBf/8v/2tK7ZTbF7ekNxe8ff+WeneO2kRcvHnHUFE5Of6E06/+BSd/9jMUHaq6IhWwm/+em1VDpfa5XUY8fvAx9uFDhNBAtEhyS5UllJJCsksxPYuG++Y+yRngH0/Y3M34H//13/HktysOD8443J+g+0c0RCRZwUPbotR0RuMD3rx/gxR4lHXN8MEDRqNDFvMrojSh1++BWpDkCYbvI9sBnWKw3eyYXpyDJHN0MGKZVNTZDeOjQ4LRPoswxNlzMVSJuCloOpBVnc4NaGWZFgnFcrF0g05WUQwPTfcopzc0kmAV7bidrtBUnTytyMuWpNmgdhKyUDgK9rAUhSPfwnZskl1JY03Ik4YtJqfjU67fPWeVGfzV55+jdVsqs8W2clZxQvzinE++/AwjCIjSiIvpLR/mWw6OMgxZIlyviYoa1bLQrHvUrkWi7TqqukYIQbjakGoCO9/RKhJFXdH9YxOYNxngDGU2L/4Op14QBo9wRvv09vfp3tyhNx3pdEaZ5+w2S5LdijKLScMVZbbDNVXEwZCD4zPCSmLx7XeUWcsirni0B21esJstKbIMWhVJc1gmNYtvX/LF45yBH6DqBoYiYSkWaVny6nbLuq/RFgVNDccHfWzXwXE9JqXEbl3TsUGQkeQr/vO3v6esGuI0RPvDf+T4+IBRr4flu2DoDOxDrCTi8v07VsmSwWjIeiFYrROiPKWp73G2Lx+N+eqsTxuFrDNBrmu0dUOWFazilG3eUjYCU1IZjw4I/AG7oiMvBGle0Tva59FXTwjrirZuQRZkaUJVFFRNR0NDnhWs5nOm8xllU5KkKd+9fEelSOgHAvtQRtNMZm9uePHdc4QkIykqSZLx4mKGLgt6vsne/h5RnOO4PookIQmZTlVBLu9dgKpGLausq45E65FnEloJI3fEYpvwv/7b/8yqbigXMULp+LB8eZ+1ZQccHT3A6J3w9s0v6NUND0THLbCYr/n6//kVTz7/CV89eMq3N1dEyw1pmmCbDp0kkFWVriwQbUWaplwtQmp7xDZMqJoSU1PQFBnLNumUBufBGXZvdI+Svr1klxY0QqZqC371D7/l+PSUw9Mz9gYe8w8th5ND0jRldrfC0S3CKCTahAz6Y3pDBSnvGD/8inQVodYOu23LwM3RLRtV0yhETi2BrhoMzx7wkaqyXGzpDJ/yzYafPnnGq/eC6fQCNxiSIRMmEbJaUzQd58stuzBCVU3SuEA1NALLRGoaMtHR2QqDfY91seV2PqXuJIb5FCQd2WrpWQq27dG5T0lWMxaXP/Cb568IhUSLhGcbHB2OOPVtsrQmykCSKwoKki5F6wTLqObi+hK5UynSnO16wx3XbK4WHH76OcFwxDyPefHb59y8W/DqzXsGVw0fr2WycsvQy/jzLydIosV1A+os/KeJJpIA1zXRtQnhZoozeYIuQ/LqFfMPKtuwQxQhsiKjSAqHwwF20OPb5y9ZLZdkeYGuqWzaGglIyxzj7Ji9qqFXF/iDAMm0aYsdbSvRaT4yHV1xhzBsTGuCeneHoinYmktvMGSv32N9fcebTURWZIwkhc88nUNHxR+4dGZDdLPEHHj81ckhb9Zr5kXIRrVYJyXjLMbMVlAmdGXKYjZDNDWrJGf4+CmaGqChka7u0FToOpCUDtnoUDWFsoU8SSmalrtZzMTUmG3f44ucweExdZ0jKzKqKpGlJUHfp6kaNGlA2Wzpmpae1DHLUybjfeIoQhMdAELIrKOEydDFMiRaYXE735FkMBr0UYByuWbgDmlHKdFmgSzlyJ2M0Qq6qqMqSnT7XpzIdi0xFiVLVFXCcFSaVqahQDcaMKGrGu7e/Jbp3Xte7zKa/BWNO+ZatjgYP2K6LlnP31K3HbezW56NZPIiYREmLKKELK+4m875eLKHsz/Ao+Ju28OdKKiqjoxMWws6TaJrW7JO0JCiCnB1nbwoaeoCWkGaF8w3O4I9GyG3aKYOdYsmBJWwMFyZE6/iODB4HYdcXE8RRYK151MB5nCf5998i0rOZHJAIzziKMIMRuw3Lr/77vf3VYZpSpImHJ3o5F1Bq6gYWoOiqWRZSZ6URBnUZcPldMnLm3P+8ieHOFaHr2QMDkeMfA+9l3ExmzKb3fLuMqRv+3x+dsQnHz+mN5nQWC6G57B/4JItdOq7HV0VY7Qq6++uqSqBbWok2Q5Laen8gF24gq5CHg7J05CRH1CWDVXT0NU1outQLJNtkrALQ1o6sqZlt40xLB3T0HD6Q1pdRwoGhPMFL354i2QYDMcTrv/we26vbukFPoPRmEp3CFcrekLCMkzS3RatLSGP2e4SDh9/xLG8T3/0lOzmLVZv//4MS/BmqnJz8Zq6SCmKiuUupaxawqQgLSvMrCBKMuRGQg765G2HNxjhuENULafRJAxLRlJaijKhzlP0gc9//Js/kFctjuuiaCoIiawTrIuGwABvdMgqzDGvFggrwXQMlLSiWJUUpYTRaMhVh2dqVArsDT0cVwdRQie4XmywdZnBIEDRVMqqZRelXN8tcN3gXiWvOqK6RPMneFKDGdeMlI5AMWjrkrRsOd+EREnOv/76OZ9PF/zxVz/BffyIwURgBj5CCMpdRrbNuHh/TaHVBO/e0eom06sLxNNn3M1m/Hq5Zp2kjK0dT5sGXdPv3SZpjma4rLchTVFSNBKq3ePidk60WAEarFe0soKrq7ieh+w41C0omsb+cY/j0y/YvbnCM3fcfujYpSXXcYJtuhyYFqIsUcuOXpLzydljZNvAdj2gY7deUxcNUZWxzTLyOqdUQLd9brcrNFemqFqGvYA0Le/FQlmmqwRFI5Blk12es00T3KCP4brUmonZG3J8dIDmGDTU5HlKOb9k+Nkz2rpiNl+g6AaKZTB+eMyq2xFGIW9evaWME+5+uObZ44KqqVlMl4zOBlR1S5FXbOKEPcfg7NEDHK+PpMicHo5R6grTCxha8OH6lrttwiBP0Ho+SB2iK3H7QxzfBwFxWDC9mnI9TdG7LcVWJ9FtNKEhmpY4g7sP7zANk6jK2NQxShiSvYvY6w8R84Lr6Q1hteboeEDT1PzJnz/j+LNH1NQc7jestgU315eYRUZh+FRpim65ZJ3MKop4d3lFUjVUUUzVwOVyxzJOEaqOZTvY6r2gaNs2hqEiGQqGYdPeNSxnMXWXEUZzjr98wPrdDVmW4Xh90lVO17QEnoVtGhwePaVvpZS7c37xD3Nev3nL4uqWtBDs7w8JzDGG63MwMVGa97z55iWv3svEuYQsS8xvb0mzAqHaDAKFcr3iZhvyu3nMdJNxUq64O1/z5JGFLTUU0w+s6XP60RP0CuhAsg22YUSd5XRNQxyljMQKSYso8pQiC6k2HZIsiMuG48mIBw/6yF1BeGdS1S1t3YAELR2b1RJJtAjDRJcF+5NDRpuSXQPL1QpdTQk8n9+8vCBvGpQyQaYD1SNOM4z9CX3TIs8y+r0BnqOz292SNRVPxxaeL5GoYGigSS1FkZEgI+kNqtwyHNh49ghF1xhNTtG1AKHoKLIg2yXcfHjL1fs3PN3rsLnmzV//e/T9fT5cxihawPBszNX5e8ZZglE5OKqPZOhIsoYtNexJEpIi0wGqN0QOdvz+wy0SMsc9jx8fnnIsahxdxjwYkso6It3hNzXDvousC0pJp04y8rwkCTPs4Ig8zIkXMx7/0Zd0TYmsmRT1vfsuz2te/vCWf/j2OU2VITc1wyBArgqaXMN2AkTd0lY1qqqTlRVKMMJwXD5cXBAMDqiSkrQzkDtwgoAm6OEORxTbkNfrAj8QHJ99jCJ0PMvGth2KqmCRh2yWG7768SnTxYJkF/H1m5c8URw2mw3pZkV4c875zZxy5PO4byCh0JYxiiTf5+6VNZJlU+cpRZ6QrFO2rU7QtWwXbxn7Au/RAa4/5GDyEdpP/5Tz/+uX/C9/87/z9WKK3iS4skxs9agzlWFi4ky37M6/Q+/prLOStF4hORYfPfuU00ML/+SUVnag3oFk0JYFwu4R2AMoz2mbe5w9DNcMfBWEQ1iumV3FTM+/5dCd8fj0AerARVdNHh3u0R8M+O11TppX3Fxccjef8+XP/4ik6rhOYg6CgOubK/LtjsmpYGDeZ3kVsodbVIS7Hcv5jM025NEnz7AtE7NcM3/1HWZ/SJUtEG2NoUqYho7tu7SyjGwahFGM7feRdQ3QQTPIkwjbMDAsF9NxcIKAV5fvKRuJ0yAgLXLmcc6+1ePJ3j4HvQGGXPHgzEQ7OaNMfT75s7+k/vCSX/3P/xvbacc/+9GPePJf/Qzd00mLFeqhglJ/T/im4ud/8RfIQUDRlLBecvPiB/qBQ1lVyO29A9IfDag2O5I0v29Wq2uEYZEVM+oG2rJGD1Nuy5SNq7CnCoxWQtQtk1HAcK9H4JusZ4Jv3lwSqT5p2ZJXGaKo6ZR7h1m03VBXNbIsI6s6ZVWyWq+pu4c4jotoFA6PT0nyhFVUUnQqkm5RlBXxLqL1xkRxQrxd0VY537055y9/9sdokk7f0RBKhymPOVdVbrZL0jQnMC1eX04ZPvoUrd7Qs1XefP0Hvr5c0coGWS0ju0f09yYYs0vKu+8JP1ywOb9GURVaOmZVR9kJnk76fPnxYyrZ5sUyRnctOrlAVj38gccuXdPb6zHyLMqyoAhDJFmibBqEoaE0OYro0C2Tw8dPsTyPJq9Yb0KyLENyZM6enrGJMtqko2cNkDqZpChQHZW6jsirCiEk0jgly3KELOH1A3Zhyje/e8NifYkrFLq5QhtVGJKglGTmYUZTlbia4KzbpxUrmjzHD3qoqoYsychdTaso/5/FnbYVrLMOwzKQywRbE3zz/DX/5he/ZbGJkIRCWq/JGsiQOPQDbCdiNV9DK6OpPs/2+xz2hghriKs06CLG3A/Y6o94+OQxrdogdTKS6oKsILr7zI+iEVwuUja1TpmUlElEl6cYPQtVV1GlmlqArmtUWUgtDHZhRFEU3C7WrOKc8f6Y9XzK9MYlGI44fvSIN69fMb+5ZrA/RnQ7ZrMddf+EfX+PzjTp9yYYQiedrdmlKZuqpdVsmhp63pDV9JqsyTCGJqZj4wwGNIqF22psmiW//Df/jr89f80XnxwRf/+Bk+Mhd9EWx5DIhcpus+For0/ZGKwlCUlXUTqJiWJwenTAd9NbrgsHuyr47uoCd7VisjQwgwklHZUIKYRCuLlFWlwhbWOkWiKPdwgB80Tj4vqG5kefMDR1VE/DVC1kGmRZkOclFx9ukKgxVJ2Pnz7DF685DIb374ptitnvsZI0Xpzf8M3X34FkItklxaLB8fbQGmgLnbwRdHnGq+ff8dOv/tv//6JJ0qmoqsJeYNE8Pubtd7+jkFTuLs/RpILpTqPnDUESBIM+nmPhmxarKCGK7gdWW7R0XYtr20RFyd1yjdY6eBpopknXdXSKTCNJCAFSV1JpPXZpQrab0pQNqDY0GocPvuQ0cBgdf4T38z/m+puvCd+9ZuzZjA6PcU8f0VKylUraJkc9fsCh/jH/06/+nm2aUZQZ8W6D3BvR1jVZK6gVnXVYIdt9+r0BhiyQmxLflimqikoopFmOaDqauuXuasbtdM1wv8/B5DMkTeX621c0BwbK+68pR49QdR1JdkEZEguZD0VGE+940GVs1zs8y6ZcrymjkMA28S39nhWuW3xDo6pBlwRJHqNqNmZV4qgmcbi7V6bROR6fMJcq2jKk0FuieovSyAjDp1YMqDIaXaLezijqCq/r6NIQXVNItzt0zaGVUqJ4zS9ffsdvX77j7XwHQqWS3vHswaeUaUa23bFe3eL0R+iWQ1F33E4XvFlsSMqKsq750HZcrHccLHacHg0YayXb4R6eYd1zfdq9ayZCYZMW95XOTU5cJCRZRtNU9IIB37++IgpzXLsgL2tkS9zz21WBJDdIuktdhsRRDJJA0VRczSbOS168fY/b8xFNzXQ+Q9p/xPDgCGW0pNrMySUFRVGpKInSAkWWqdsGw3bQDZU8TtAkBd3wyLMaXZHZpDXrNOL0oMfZgz1Gk310YWAhUTkD5KCjEQXbzZKHp4/50cdfom9D1j/cYeIyOHJxRz7xXYXSOsj5lmS5ZX21pEs6yrYjzu6IupTWVvGHOrqsUVUJtmUhG8N7fKmsieczlBaEqtAkCbskxXJdtpuGMM0paRFIZEVDUZRojket62i9HgefPiMNQ0zLoaoFiuFSoXG1Tii7DLKUH+2N8X2T67evaPOU9xd3JLng6OkXBNZT3vxQ8uWzP8Z/4LM6f0uhBfQPHV58uCRdp2i6TINAUVSyKqFrO6I0o+wkZO1+s1eqBoat4xg5chuBpFB2HW2ZE63WbDYbtrXgTz5/wuUypEFBkiSq9n5QRWlFR44k6VhNR9j16EkWct7i74/58z8/QHFkimTFz+KIdbTi9d0dUdVQiY5wfkkrqyzTiqZKsI0WWbfJKpl1mFK1HUVTE8UlcVqA5uDsB7RKi5xlDBwDq4XLecpGKIStTiHuOfFIsyksn9P9CdnleyzXoogK0rrlbrvmcrMi7Eqkl2+QFQNdqBSbGcpwwGDvgO1sTlh2pGlJ14JmGFRlyc10zsBzSKKUpm5Zb3PO332gLu/zjMaipef3yPIMQ7S4vYA0qyl3c6RYorViZLvAlHI+eXDMZp1wnGZcr3dYRo/B+CG+ITMPt8zf3NGpEg8O9zg6GrM/OWJxc8tqlzNLQy7jmB9WK3Rd4idnQ8Z1wH5/D03VCaWEsikoRUOcbEG2CMuYrK0pZZVxL0C1XZAkpOEej//Lv4RNRL5ewHAA3pC8aIi2Sy4vrzg7PEZSFXRTJ85S1tMNZVkwHPY4//Z3/J+bDUlbIk8GFCJh9eE9bV2RFRUEDnVVEm23jA8m2EGATU06vyVXHUb9gMXdNZtwh7N3gCzLaIaBpmr3+GTVcPfhgsXdFbpSM12mVFnHke8zcn1wWhzPZHp3jpYIMmTedfA2jTjrCgaUeLrCUoBchZTbCqM3wO9JJLsLZKWjzu+3ntJuy12WUVYNUdQwHD9mFSXc3lzQKgqy46JIkKcFV5sIBFi6jKpqGNo9PtLruZhKS1ZHrP9RPDVw+Ps/vKRVZJK6YXbxgSene/ijMet3VyitjFTnPD5+xNm+DtHXPH/zb/n1f1pyeVPR5hF7e0NOD8f4nsqgP2Z59wNVeMHNVGK2adkmBaeTA6o4ZHF1ia2I++DszRKz1+fxA5XDwOdAVrh8OeNx8DHmQEI+6/PUGyAsCaHaKI0Mqk59c0ez3qJ3HXpVcNxt0aQNKi2SLNBMi6yosYXAiJb88KuX2H5AkhXsVncMBg5FXbOLdlxdXtHfH2EIKOuWR3sBrdyyagOeL1cMHA1FVpGTknp2R52mFKqOrDTItOi6Rt8ykIZ7ZFVDJRkEk6dYBqiGz9GBzy/Kio2jYakmsiSTxRsObBPN0rEDn6EPjufijB+hWwPi1ZT51XsuPtzw4fqW3WrG8tEeP342offolOs3c+bzivHJkI9/8lM2Scrtco0XuPfvII37ZUJvyCDok6ch04sP3G0iVmVLXLXMtwnf3Wz5IRT8q79o8dqUq3VCUtZM9nx6gwGeJdNWFXmUY1gWimSiGwNe/foV2+2Gw8dj7j68oe0aDEOj7gBZ5eb6jlfvzymBoq7xTI2iLkmSBE8zqKQMTTMQqg6SgqxA4JrEUcTtsqDpFDTZJMgP77GYfZ9ttmbg2LiyCmg0eUeetPT7LnUJ2yJiE62Zb6Z89MUhqiiZXb3l+s1zfvG3/x7n9JeU8xiyiOOewYvvv8f96Y+5LFOOBh5tJ9PUIFpoi5y8aqjrhqaDKkkopI5wcY20eotSFviGQOkiytUFvtvx9HOff6X+CP17i9Xla/bUmnHg8slJx0h9SycsvAMFx4NqXTGfK3h7e/Q8m72TY4QTgFTS6T2aIiKOQupSYPl9HM+kFQp101DmJa0wuLi4Q9QN+AHn646waPnh93/Ppw8OGT44wXM90lqFNsOU75d68WbH6mrK/vExi8tLitOHBMMjFCGxKacI3UK2A1Y3W8o0Z+go6Lp+PyPDHaqh4ThD3LOPUA2D+e5XZHmB2+uzy0sMxyFKUwzDZJls6WUxhrOHhAyKQhGv0DqB7fXxBoc8Ptny1S5jWUj4/gC/E6RxThqXtK2CIdt0ecRurXBwqHF+PWXzf/ySXivzo8mPePbjT/GPjlGHAcLsUDIHIWK272z6p4/Atsmamq5IWb39gfFen08/OsMbBLRZjKbKyKpKVJTUlUxZ3iO4ohWEaUlRVkiyRLXcsSXHHRpkiordyfiWRdMJdMdG1VXmS4VG9/jtVch8saWuDOggjhLCXUTdCKq6w7J90lpDbRtQFBabHZOiAdVA1i36rkWS5sRVheP20RwHZbNhl5YISUYX99XcYZzy9ev3fHRyTC/w0Joav4XgcMh+z+X5zZzpfEmSxjycrvhofMjdzSXdessXQ4+7ZUZp9rH3PsLpD5GEyrJaURYhDZClMVVdUaUZuaJwMH5Mh0yUlvR7LocTAy0LSEqZZVqwbGUk22Xv5JiuLqnzkDKLsJKYbr4hLisUVWLw6DHqYEIheqh9mfzqhk2UUjYVitsyOhhy92FN3lSIFtROoLY128WS7TanKe8JQUMz0AY2+/sThJCpEoXVyxLZ1rFlCUVV7/9uVcsmTgGJXHG5urhBNGMs1eTm6g77o1MUTUHSLbqiRlMaZKlAOCZHwiDOIuqq4t/96lv+7tuXhGWN2oFcFKzTEk33kCS4mi1hOkMzDBTNQikang0G7D35Eu/TP8LXFZTpaxIRo+w9ZjDUaAgxzQpJlekkQdPpdJTcLXb8+rt31IaH5ZjoTYquqyiywJA6ZAGaoaJIHWgWadoxvZuRZwVlWVGmMaZj8+233zC9veIv//SnBJ5Fz1Y5ngyJo4hF1BDKQ0ann9AbDbD39mhVm2KXEAR9mvUae3KC0FRM0SAaQWz0uYs+oNgaqqyiotKzZBRh4QU287tX/GTf4KtPHvD2/AM9x2LZFEzDDMtTsEyDwNaR9T5Zf49lVhGGGxRFY7be8slkTKRpmLR0TYkwNb5dhTSphWkYuKKjS6ZU1Q61S5ENGe9gj+m7DJeOppAo644f3l/wz//kx7i6gWYomKqKqmrcXN/RxVsszcDqjxmKknwXY3l91lmOVdVc3a75T//h17z49h3JNsEfDKiTlHSX8PGjx8hdw3otKDSN6PoDv/n1H/gf/rt/gtOkrGvSBg4tnY+PA364jnnx8i2L+ZYs75CsQwbevRrd1SqeN6bruxydTkk3t1zdLIiSnLhtEdJ9mE2YRESuyU1SorsZ7eKWvb6Domq0DRTCBtER9H3S6ZpGNWiSW9aVj6p7SMmaqthRD8/Y/+LnaJpJOr3kej1nKLUYmkwtd5SqRk7NLo/4b/7FP+Ps4YRme04nQ5rtKIuSq4sZs3XIbLZm/+kzOmFQySotDVEcI+sWeVqjVCql0EnKhj+8vICmw+9PCNwTVEtBUwN2cUH0w4Jwp0CXIbwRWV/wvoI28BmYCl5n0qgpRZGTJBmdpGL0VSxVkGchdatgjY+omwzF8FgtC0o0xuMx6TZivkkwPA2DDlsJEOoJ89v3iLako6EtE/LdDjEKSKZzclRqxUGio20aFEtCLjuqf7wwyzbkzeUNl+uIVd4gCwXRtNRlhrxecmQGDCYn+D/+GW+3Mds6oyqWyJXET0cTRFuwLWvSukVqWxRA1DlpoTGPKgJHoEgNpVARyFRxA6WgUzo6VSCjohsGQjVIioL3l9eUdcU02uF0JV0HigymZpFWMWkr6I+O6bQKw7YxbRtb6aiyjBfXK67Wf0tgyPQ9myeWh+J4JJ3MXRIyTWtKR2O7WlFLFcvFnMHeHrYT0DYdkqYiGQZN2aCpCuFyhSqrGJ7P2ckxrWMSpwWabyFZfZRSMOzZGErNqS+zf/gU25tgVg1KXqCYLnLdwbsFpWGxeP0d28t3FDRY/YBW0pnO7miA92lBt8hp360Y9RQ6DbygQPd7tEJF0TQ2eYVUFghZkEkqlmkQhxUIiW2S4boWaZaR5zm6Y5Mjsbid8ejZF5DVlHlONJ/T+gdspyG7uxt0wyGvawLHQpU00qRBtXv89vlr5LykDiNaSeHksyNs/YajBx5mP0CZqlTTW9JO4DUpu0ZG62RUTWW5jjAtg7osaNp7S3jaqUhVjqzeN1LIqkDudGhzirZiOl1wfXlNklbEcUYuGbiehJBUmga6tqUtclzVxHN6SJqBrQm8YMTQ03DSGcMHNmpgE88uUH2Nge/SLCK0nY7aKGS1xHw2Q/b3OTp5iCZSNKUgKQU38xVFUVDUDavbKU0DadHw4GTAkBy97pCkgj1LIkolNu4R9v4xTvMNUgf7B2O+/OxjMBzy21sMSUKSNLJsR1wnZFJFK3dUtYTmDlgst5wdn+ApDUVb8OjhA4z9CdPVmiwuEHS0TUvXgWWYlJJJKefcTm+YbRPu7mYYqsrReExZlkRxgufarNbr+6YNyyUM14RCQlg13WKGaAt0M0BxOvzjR4jn3yJrClG4o7HPsL74nHKd4CzvmF7FhNdv8ZWKuK25jVIMU+XT3gjP1Xg/X1IKHdVQUZUOTRW4lsmulKgo2NYlTQO7KKFxfE7PHiCpKlmWIqsman+EFfSIL87p6hqkDqvXp+3g9XfPCa+n1MNDRNehagai6KApOTwYIQsd7+c2b394xavbGV8Mf87r393QVTWWYSIkmeUuYTGf4zoen376mCSOqNIt0uOklwAAIABJREFU69UKeXDKYheiWTY/XM7Q/QFH4wGKZWLYJrIkkexmzG8viOqazSZhk6bUGaRpyXYTMvAG6L6EmNdM04xSM7D1jkRS2Soycq+HItWcOhrDR19S5CGSZRHGCbfrlPHhmLxJsRyHJstJKyiqAoFBlKRcXN2xjnMMy0Y3bDRdIQ5TNMOkbWpUVQFFQtN1LFnFNx1MWUGXIZVbKqmhq2XKKOVXf/MLgsMRn5z1UKjRdBVNhvXtNZORhy237BZzfvjdKy7elPzxz77CdmaEixl7e3s8ORkSmAazmyuquKRIJ5RyxfMPv+PkYI/jySHhbsvN8+85OZogVSVJGOGfnjHIBP7BHkaaE80qbu7WPHZdzOMesmmSJhHb22u26xDP9inSmr6uoMo6geZy4A15MBojFIXb2zsM1+duOsNoIt6/eElMx2BQo7gORRoxv74gQ+Y3f/8bZmHEl5rO2HZoqhqta6nc+xasfRcGvoVm21y8/YZ4vaZpWjStxRAaEiB2t5j+Q4YnZ/h7R6yWSwzTZDd9y2a14mA4YlKEzPMUVTNoixJLygn8IYYXsC1lVEXFsBwM1aDNc/Jww4fLa354844sy0nzltfnIbtYoMsa0xvBm7uKz35yxHC0z2eff8mb73/PahMxcDIsw0fYGsKx0ZAIV1MWl29ZLHfQNvR8C1pB1RnIQuXdpsZRdDAUTh8N0dQOQUujKtiWgt0JdKeHarh8//ffc3F5w/HxGN+x0CyfOo8RkgSdxGods00ahv0eUZqxqDKKrrsXmouaPIvQVEGZG8imSlNkNE1JuozZNR6TswmgcP7yirQRPBj8mDlzpMAnjUKyOMKUJYLRp+yyguzmFk83yNMt4SbEME0OhyMMSaLYrZGyHfXNLe++e43QDBzX5enkK9oiI9zFSKZGmy04HQ+okx1NWUFdo8kKedtiSgqFouGLlnp5BXmBKiCrQG0rPCsi3T6ni0NcdcE/fyT4wdonWa1R9I5KJMj5BUruki6uWRcubSOj2TbBXoDpm5i+j1AlOsm5x0GFjOo3XL8/Z9BKeLoNncR2GyPVDaKQKBYbkngJQuL02Y/46MnHfPPXf83AlRiaMk0jM1/FDHyLXSLjDw/YXl9zFxbMvvkWqe3okpTjJ59SCINWl6g8neVmzfR2wdVFxl/89GMGJw+wXBdVM/E8jw+vn5OEPj3fpbN8ijQlcBwCP2Y6n5NVLfJghPB8NlGCO2iRVJU6T0nTCFNTKYscuRH43ohPTgqeT3dEacZnP/o50m5HGZbsuxOOD58gJylZPMfeGTzzPMhVDiYnuJ9+jtaTUccWxmlAUdWU31zRVila8BBz3ycvU8oopS5zVEXiq88/wXcN2rahUxVEDZ0ARVXJ0wzJ06jrhqxTCNOCTlKYL1bYjo2hQHgdYXgWpaKQ5BWPw5gsTaiLjLTMsQZjFnFHKHSGrku0yZANlWpVIHcdKDqiVQl6LkmyxfNN9GCPVSHx6eNjTp6ckcQ76t0tRSMx9GzsXh95u2Ex3eE6fTzDJi0LNN2kqVpSuUevf4Dd5eRexaA1CH//Lcd2wFxOOF/c8vZ6y/7kc7bFDSfjAZ8dnyEqicUiotNr6mqFbAseHh0ThjtWneDN++doqs3Q0Sl0BU1y2cQFlWZjGyrabk5gaTzYC6gsh9+/hTDOkJUW03PoCsgqlWbdIlYbhCKh+n0e/snPSdWA4f5j8iZDcfvcLF5jHtTszrfUqU7XCsz/l7M3Wbbsyu/zvrX32n17+nP77DPRZAEoEgXSJC2RskNSOKwIaeaJB34Th5/Bj+ChI2yFw7YsUbSrqCgWCwUUgEo0CWTmzduee/qzz+5bD5JTaaA3WIO1Yq34rf/v+1yPumxREfhhn2l+RNOsuHo7Q3QSVdUYTQ8ZDY9IowTL0NHaAtnUGJpKUdVI0yGex4i2o8hTskLQFlBULbfzBaqUTOMMbeCgtmDoOk1doXkWIm/w1YZ9EfFvf/33/PbHt8RpSV1WRGkGjYKv+wycY7TxGYWSE6+uibcr0n1EXed8ub7hz4sl/vYSdzyltFTibYYhEwwqFEtFMzpQFFqhoGoqq/mO//X/+v+Y7Qssv2Dqa0yHPk1VERcqPanTlClCVaiKEkU6xGVLVnaUVYEhGp49uIfVpASBzSDQiLe3JKsFeZlzcHLCy7uWVW0zOHyMaTn4gwn94RTdMEnsjNlyzol7xP3JEFPUbHcxY0+iG5KvvrulqRPOhmPavKAWGs7AxTmwGT8YU0qT622M59loTYTnGHx/s+HAcAjDAaYh6IwhqCWTuKSnBZTb1TuGVKsw6Bp6/pjasDkaaBg3bzAsQVbnzGbXbNKcTVpyc3dDRc3B/fvUVY4iOkbukDjO0ZsOEx3PdjFMgbRsdmVHFGUMbItOGCTelO3sHNNzqbqK/fKa619ueHVxwfXtW8okxbQC6kZg2h6m4+BYDp5lUrYlv/37VyzuXpBsmv9oLvKfDE0cTRDvI9aWoIor9HCKbrxms4u53sL7T0YkcUKLjufbqEGfRtYEnsWTp08oOp3y7Tll1ZBmGZ0EQ5hcrzYErkU/SakokZpE12M0XUPTWxQNdmnMejEnzTKWWYPmGnz9+a/I7ZxDz+LtKqZtFJpoTtEVRNsEGe04DH0GoY/fs1DsikNXRY4tOtOlQdIqCm3dsI0TCinYxRGzXIGo5aHUqRpoFIkpBa3oSPKUumhI45Tf/PYbXvz0lqODPne3MyZnTxBpSc8bI20LoWmgKBSlyfWPcwy/5enj99AB6fh06YaWBlWAYZoodGiiwZCSTr4bZzf9EaKYQbnB0TWwjljHBSJvsS2PtMkZD3z0JidUfap0gCxLdlWBXfHuQpm/pZSS2vRJZktCP0BKnU46mHqNoio0TUNcV5xHMZ7j8ek9k36r0DN8FuuItFGY+AHD8YjScNC0BKupsZwRf/wnH9I3JXm64q5uWQLtzVuE2aL0bS6jLfnthpP+ANcw3z2mECyTHa3QkV2MrkCeFSx3GwzXYXY7IzclNTVNUyKiDFk3qEaHJiWaYrDOUtyeTm6FrOMKzbKwRyOS1QLX8bm5ndHVKjUK33z+G7wff+CHNxGtf4jnFnSuQaPVLBY37OKY1XpDEPhI10bqOmUWQwNdnqMKBambDMIAwzTpZMA2W6DKEt1s0Gwb13Nx9TGl2FLKBsWzkJqJUZY4wQhNcyhfXaKXLXJ4xv5my7/+6jecHhziOCZlBj/7+FPCMqOY31HVK6xBRiVLrtdr1LzA8gfYtoNumTSiZa8o6JZBlWcopkG2rKmqmqxsqJFsS0HcaLz4uy8IfJdH733IerNFFYLvX77ldltjjB9Szdfs7m7QLQc5HIA0KPOMIBzxj3/xKcXNHUVSYYc+ddOg+gb7m3OackWb7rAkrO7uCP0QVQhu9zHpfomhGwg6GinYFw3bfYKhCVS9Q9F09K5DSJumebcHl8sNn794ze0yoqsaRFNjCjAUFU3VqOoS1w0x+xr94RGKPUCtMjSlxQnGeAMd5htuvv+SXRqD1jEY9xCGQiF0Tj74jNntNcu7K9ZRzmRkY7QKaqvRaC5NmaKbNnGSsYpidvuU9T4ndD00TacrE2oUGjq0IEQGIe+PnvDZk3v8ramz296jTS5wPR/D9ZCOidEW1HlOvNtQVwm6IemFPqHjYIQDFE2halrCfo9ys0b6AYfS4vuLO7bFkqYRWKpAdT2qsiQqClpVQ2gaSZrQKgqqZZFUFav1jr6XkRcph+MReZ7Rlvk7Q0fTUO0TzDQhb0rI9wSuw+3dK2JVcGrpPDl6gNAdVlVOOZ4yefiQ9SZjvS3YzH5CtmsOXZ2HHzxA79U8qDYMLxzKRkNKA6kJ2ibDdN91hFfLhHWSk7UFtfQ4nJ6Rxwmjs1Pc8SGqZmJqku3NBf4woK4VkrpAa1r2mw1/+OWv6Vs+zXpPF47o7HcAaV2TSASWrtE7O0IxVe7KmtnVNVoraYoay3IYjwZsNmvSNKcfuMRJ+s4cIxV6moVy+j6hdNm8/AJRJXz/w7dIHjAaTXB8h7ZpKNcLpKZRlnv2VYWh6+wbg81mR1o2JEXL1PY4PBozXK/I6BjoB6DU2NMH/PX5W26SBZ95U55bEmVwyCyOqKuag/EQ2/foco2qKMmEIEvzd8wA3WC1XhMlOUE4wDJz0qxEaDrpMsG1bKqmxnV9VN1EUXW8wETILS0uhh7Q1inSavBdDdfSuDm/5av/43/H+dNfcP/xM8poh5ru8G2DJ08eoqiSq8trFumAP/6r/4GhpUP279mGNg/unzD2Bb6t0+U6JS6pOWL+4hsGfkDbwO3FJR2Cu7bCaq/o6ooGFSXLkQKKeI/jBgwPa7bxD+yaD7CU3rspDyXn+qfX/Pp3f0AqJj87Pib0AlovRLMC6rzCKlq6vMCpYfXqnG63Yp+s6WwdY9hj12o8sEzqtuNytuTvf/+K765uyLuK8ekxp22D2yTkdY7UBX1RcOLWmLbJar/FrVMushSEAorKQa9H04Hl+SiqgqV2HEyH3Lt3n9Vmy2h8AKKkThKmrYIRJ+w7iWy2TCc+umVi2CFxkvHld5ec3Ow5GgvyomKTrVjvCiwnYLHaMuqFdF1LEtesSrjKbMquRgIXN7ccP7pHka7Jbm6J7pb4qo0w/0GbqQjqdIeS7jiaDkF3uNlkbPeC8XBEWnT4oyPysmIUugyenmEaKl1Tk68W6KaC7oVsrze8+NsvUKKIP3v+PoMn9zCGIelujgh7lHlC2UqsvsvTyQmzqzcIqdJQo6vvJmmswAFDUqgC3dToREdNw2p5hxf0CSyLutqj6j7S7pDHkqZykZslitOHTvJ6ETHfrHlqVcg6Id1HbNOabNdwOD3h3rOHmLpEVQWmEzKYHFMVBaoxY7/LcN2Q46MzBrbk8vKKkw+ecXX+BkMzmfZ7NGWJKnVoWxRUOt1ELWJIE1qpg3hXb/N0E1DQ9Q66krzLyOsIyohDq2QdWqiKJIq2vFgvudfEbJKY0XsfUNaC6YHH9OFjDNMCCtoO8rqjqUs8zUJ3Q7Rggm6a72xCncI+2eGbNnKR8TB0+N31BYUi0F//ns3+mv/6w2M+OhuzLFTSCobHB2imzvbNFbPFliQXFMLkh6/+nvuPH9Ld3aBpkoMHH9JJi9kmYnF1x8Xrc7brJV7Q45OPPsIPjlGzGK8/IJwkXF/+xKZSGH3wc9Lf/pJst0BTO7zAwTIC4jhl7PXYbZfsdzuCwYimqhB03F28ZuD41HVL0igc9UKaRqXtJG2R408mpO2CebRmMKo4GB4gleod/+DpM9rax+o5uGc+9X5NJ2uKeM/maolS7rHHNsLUQIMuimiKnKYo6IUhluNQ5BHxdoUV+GimSR5tEVKiqAptB2UnqJsOQ9coqpJdWhBnOYPAJ69KLrYZfuCgiY4X379GkTp2r4/SPyZXHOo0oVVU8jhBVXSKOKKtSwxTI0kEHWA7OqET4gYe0nAZTY+I1gvGQ5OPnxwQ71zyNqfSBL3DQ67nc6i2PL33EfnRAxLTIW5bxpMevlagOz6etPDKCoWARH/J159/jmG6lLXCV5dbPvrn97hOfs8nvSGa7WCh0q43qN2eTg/ZbfZsZ3NGlsmxH3Lvz/+c4MF9/re/+TWtJrA8l1zoWJrAqVViBIHvM713xq6MCTyPpIYiq/FcBYKAJpfUqxVZ3SIck8nzR/inFpODPq7rkEc7iiZhOA653UWIOqCIckSrs9tEeJ73LkhGYtgeVbcjTksU3SZ0hwxHR/T6A9R2g65L1vMZjlAIUGiaFlV/xwhxdUmRpHRFwdHRGZpSoakK+92Wq5s7HPsM6bUohoEqVTrFROotdbXmi2+/499/+T23qw0qggPXYeL10IWOJS2KYk1zm2BbJnYH0u8xyzR0xUHtGhbxnH70lm264ubuDc5Yg7gE4eOoPpppIRSNru3Iypa/+w9/x/ffvmRd1Jw+ekwd16iiIXA0jCSjqRscr0+T7+mEIMoa0tbm4fNPuLy5ojFN1ukeuynwgzF2eIg7nVKnKxxTxQkCtMbn7PQY0+mhVA1K0aI2CoqqUZYpVd7RP+gxtSR5CdIyabWGXTrn1euvyW417J9/hi1NrnZr5DBgJ3MKQ7CuJe9PBpyODzh//ZLZek+8a7jqNAZ+gONY1FrI5eUbvMMHHGoO66+/QBgaSZfhVRmrux2tkVEsWm63Kxb7FX5g8sWPb+kUE0O3iZOCtMyouivGvR6brqY/dLl34GFIla6p0BSQmoVAZTu/ZiQ72hp6/T6yH8DYwzvwuH35gt+dX/DDzZJOSLq2QXdHaEbI4PgRo5OHtGYI0sCxTJq4xjY8stxmMHn4nxeaaGqL2yVcvr7DsGxudx2rKKeuS7bRFq2tsTQJWo1lKWh6huWZBI6Fd/aENGtJN3eUTUdZNSgdxEWFrlfMNlss1aEnW1qxxvVt9DylbCw0RaGzA/xDweK771lFe5aLiMh1CA97WLrA6Qc0SG7OlwSmynQcEnp9RtMJvYMzaivk1e//DX1lh7nT0BQFTXdQAEWRIDUuLq55cb5FegNkV5BGS2R4SGA5qIZBLirSfImmOlytVvz6xQvifE/e6XR2Tl1GaLaDblhIaSFNH0VTcK2aJG+5vrlB12xWk46syHjP0hFSo0r2NEWCqpuoXY1rBZTRhun95zQYlOYB9X5HKz0GjmCTxiySG1S95d7pfWglspLohoYYpaxnt5RlTdYa7OcJJhH6aMLyao2dKwizRB9O0HQNQ1URTUdl9FCSnDZvOPEnrB2D48DjUW+ELXxez+ac7/fURYJt1ByNNIQ6ppJjnjz7FL+p2Vy8pNEU8rsLwjbF8EwuWtjeLIjzW+ZHfcZ2n6az2VU1uxrqqmAQmBSiJW5yjCBEqypWdxGhYVEMJmRFxjZPSdOCvGhwrHfrdlXBqq45sRw2cUpRlKhSQzUsVtsIRVFRTRvNtPjtVz+AOWBy70MC2yDaLJGWgTOekNFxF2eM4h2rzQrLtdCEoKsL6rxAU1RMDbZ5i2HbmK6DYdv0wvuURUEpoE731Ai0rgN/SpFV2FWKsCzaTiG9+RFTmrRtTb1PUXSX4PCE52XD0eP7HN87JLmN6DKFrlawjk6oE4fOzFHNhPriOzYZnAUjqqrB7/VY7RRiBGFbY9gGVQeqbjCcHmM4HubkjNod8WajUtmnVIbGZp6w3RVs72741f/5b4gbi6OzB0gnJJrdILOKrmmpnv+comrRi46hFVK4Bf5HD7B6PRaZRqL28I0t+7c/0CodXdOhHxxj5RlVqjHwQnKhoW9vsSyDLIO2rlluIkxLx9ItvCpF0S0aoaLUCaUR8vkX3/Li/JY0SVHaFkOR9AwdW6hQxAzDEaaiYwgFdR/hdwJdU6HuMMuceq+yLTzWV9/Smwb4jkR3HJTeiJE7ZCwtTu7f5/zlt6xWa8pKvNN5tyBU+Q8hZ02U5OzinPkuIS9rHpyc0qgqeRpzOByQtAVxuic4e0pXw6sf7vij6SH6k1O+/Unj1Tzmk8NjusCiiVbkUUSRJNRZxsB3WToOdhii1zXbJEVdL3j8+CG98Yh0nzHp9ziyFTbNBCwVVRM0VU7QH1JtIvRGMlMlbVWxihIulzF5XiE6Qd82OByElFVNMx3hawpuEBLoNk1ZUScbsrblzewOKTX2aUZhBKyTHf+YhL4fMrQtsmRDudrRMwacHvtMPvgM4+yY/PYVVbnkLn6L7pk8+vAR3331mjZvaF2dvMrRypSyaVlsUxabjLSTPPzoAZ2ioenQVBVSKuiOQ7m8xqw2pNdXWI8/ozV8CtXim8//XzZ3C/onLqJsaZOSUtmzLxNW8xmOYeEdHJDuI1RVYhkGy9mCk4N77NOaPCvoWsl40CPPCyzPeQd/axs28Z7l4o4sVbhebclWS+5PAu5mMygT7p1GiCbHbCtUTWHY75EVHZ0w8Fyfh1XJrz6/43IRs9Ad1KnBo/4QxTC4S+AwuE8hBD1T57//ixOuL79k6OhERYpuSIYHh4STMaKrKMsUadhIIWjrGl3X8P0AfxBS1SXariTebdnttlRVgzY4omwFUjNQFIHSdjiGTtU09PsWhiWomxxbBkhhoGkFrVETDF20hc33374m1DUsU+fgwVMsBU6fPuLg5B5ZWfLIDxiNT1guV6yiOWpb8+HHnxDP3oJrEgQDLn66YB/noBu0WU7fdsiqktl8QWDqZMOHJPE7eFreSbT9Dk9tWM/uyDXzHR8knXP94x9wj0Jc0dFWJX1b41/95afs1zF5bdN3Qyhr8nKHGqWYacH65pI2r3n88AnWyRkicHh19Rr/aMzxyZB9vCLKMpJ5wpPpEz64/4iflte4miRv3/32RZ2gp7ecmB3O42Mu45rozWsOTXilAF2LTkO8nTOdHPLgyTOef/ILTNPCcSxGZ2dM4hHzqGC/j8n3d4wcj/nsG6p0T8/sGIx6CFWw3+9Y73J+OE/44m8veTrOOXk0wX/Yw7QrrLp5Bx+uShSg01QUw0ZTYvSuoo22xFJFGweouo7Z7xFlFavlEr+tsJuORnbc/nTBq8Tkk49/zmQyxV/u0BWVi/Nr3JGP5bgc913iXcJmHeO6LoHWMO2PWC/nnH/5FcVqyaBVOH5wj95oRLu8pVUV9E5B6ILKHjAMAoQiaFBpu5q79Y7RwQGGFLiOSZLvcJ0etSJAU2hVQZplVO6Y/qNPaaqYt3//Gy4vNxStRVTmjIYmlmuxXb9l6GgcHUxJO42yKLl68bck0QbZ6Hz68T/jT/7Jz2kGJUVxh+j6KIrk/nsfMZ2MEc1vyA4cxgenTA5PqaMlXbqnQMfVDdJNROEF6JbPPtnTVSW255OlMYp0KcoEtSzR2gpDmliOBdRIrUZaFqql0zYxRZFQAiPPxkBFN0w0VcE9mKLrDmY4oC47xmeP6KRPLSS6blIUMWmWsZ7PODs7wTD72H2VNLrFMnR20ZYsLxn2Q6xyw1CT9J2AiyhmcbfjtIPTe1NC2+Qq17C9kJ5n8833P/LDmzu2+xy3f4BAwzQ97i5nmAcT9ssZ5a6AocFuN2N5/Zbl4o62hTfnCx4/FvSP77FfXZNeZSj+lP5Tl+GjRyhSxT05gfM/kKcppj+mbARKV73TlLo+2zRDWgl13aKYFrvZNUVZI1rBIkkJDIuhGbPLS6rdNWUTo1kWVdXxzYvfEAV9PEtDL0wUb4FudyhlQbGoULWWNk6o13PUzRLTFwhVI20kTbqlyiKaVqXTDLxej1ZVePvDV1iawNAkVZEhDROlqFCkQt02qIbNcrYjDELatsG2bZabLUW9YeB7lHXD7XzHsO+zLxW+fHmDO2owHIPDMxchJZVmIJGUeUXbgmY4bNZreq7JPq/J85zB0YDxZExveEQ/DNhv9nz7xe84Df8M0anc3i5oW4dnx1Mmownuy0v6rs2f/ck/4vyn19i2wbQnMIwK09ZwvT7NeoWhWUwsHaftCJuaDyYnvH79I//z//g/YTZbHv7iQ+q8IZyM0MICRRjkrQJCYXpySv9oyr5T+PAv/gsitYZff8nR4QSkxUnfIl3cUooabzjBch2kN0RJdWo5J28FUZ0z0EJUXSXfRGyWEXWp4h+d0Pp91vsN/mBFsv2JF69+zzqJ6dBplgKrF3B8PGZxtaFqBP5gTG9wQNkVYPYReozuhJiGhaKbTA7vIYuGvtdQNh2qanK72eLbPaRhQVVT5wWeaVAaGnfLFX/y/D16liDPtiiKyuJuhWv7PLivIA0dIdV3X1+6ze5uw83lNT2pkkoNR1V5MDzkYHyMp9i4hoFRdeyiHa5t0VQVi7rCD3q8//QRbVfx1fKOLQm25zA9GREEJoWAMtvjtAZCunRCUnYNr356xedf/AHd8dHrHddv3nB0fMj55R3HkwBzGJDs97i+gzBsslbnq9dzUv2Q955/zF/9dx7/97/9X3j75et30OnWxHA6sugOO/SQwZhE9An1Mf7kMfE+o00K1ndL3KCHGdgEA4dS7eHZFaoOoakTKSU3mzkvvv2a3WLJq9sb8jzlFz/7iHg256LcEy2u+fjZMU8+/iPqeEceb7i4niE0G9GULOZzesFDvHBIpZq4jo5taEjPZnA0Im0FzugR+ewFcSpxlIwoq5GjJ8xnvyTDxPaPoGmgrejaBomgzQtGtsvA1nk4PaDTJPuyoLVsTM9GVTRmu4R4vebYs1Gkycmzp3QKhIcmqlS5/KFgp6hEVUUQeGioOPYhjz/7pziKQDcMFM0gsEzqLIW6YuD6DAenDHr/8VzkPxmaeIagiWasLm7Y5SpNp3CTeGwSFd+10aSBUG0s16GSDbal0XMd7NMzuqqji5bcXPTZxQnjniRLMnTDwZYglZbWchFdRlVXLBZrsiRhYBvoh8cYloHIdqhSklc1qqph6Aa7rCCta6r1DZ1qoDgGLQVdW/Crr7+m/k3GyaiHPx4TFXv0RyOwJ1iWpO1aVNMiKTXevjzn+7cbtrXK2A1o2pJtNGN4eESjCUCQLrborc6r2S1//btviPKcKE4pcp842eI5GePwBNe38YfHoNkooiGNIwyrIEmv+f7Fd9zTHSb9HqqhIgzzHVApTQlcG8swMNSO/uQYwxmx2uWofogzfoSRZ8wvL8mzHFPXCHrviNqq1adaJZhKRm1I8sAl2kesopimrRCKiSYK8u0Kw/VYxClO6SPNCUKz0C2VTpMkuwZXVRgYDo8H9/HNkL7bw/LGfDRtMVcJdV9i2JKyjTHYU28V+oakjkuaJsWKtjyRDcqwTzEYY5YVcjbn6uZHlkWBMCSoKtt5xHaXoRFS6QpNmdDzAyoki9evKauWPNpxejQkAsYHx+i+Qd2VSEOnyGJsw8TSdZpOIBqB1E0sqeJMD5BRSrJPwFBoNZu6sbGGT+j3BjRFTJblNG2LKhXswGcxi3nx6hWeZ2FZOqPxAUJRIVsgGqgKgSpVdFXkSZ/kAAAgAElEQVQnSSLczMAyfFzPZL3ZIqoEuxEMhhPqDtLdgm52/g+qRI1adKwuvyeZb0gWe3qnP6NoVFpVIhyfbWeghhPqLkb2LWpDcPfVDfO3l2RdTi179AYhmmkjFBUJZNEeLU/Iqw7TtNAMnWA4REsaTDek6jSitKVexvhhn0YfcrEoGRgeTWvh9Y6Jbm5QRcfk7CGX569Y7yI6IUHT0SyXxWLJwNFQDI3TX/wRRmBwt4uxqbAPxuR6STyfkeQZbGNsBMHBMW9v5qhNhjcYQ76l0iSmZbLZbLFsC9exCE2JCTRFhoLKKm64mi+ZrxestwkaHRNNw5YaNB193aW1Wjq9RZOScrujzDrMMCAMfALXIDzrwYennH9T0PME/bN7mOMDyjwlT7Zs17dIXefs5BDTNMDyUEVHmSZ0TclutydKcpbbPZeLLWmacnYwRZMCVQjSoqBtWgahzeOmo+lZnCgqYnXHpz97RmxZVGpFp4E5OSCPblBVnWR+Sx7HOGEPw/K4n1dsqxqqijqO2WQx3/67/4fQc/BcH1Uq9O/dI5Q6laaBKNh891saVaXVTfb7PW3d4gYe1nrPYrdns894Mh1x5BpobcVPF7fQdTx/+gA/cGmrCrVq0AKHThFUtsfsbs1F2bHTdewm59X8ln0c4dsBspEE/SFTx8C0dDRNhWQGpMRVxBYTZ3BEXwf98or9bgWKi+oGtDXMNxGXd2vSEo6evYdimAjDoNY9EIJiPUdFgOnhHT8i1h0q20XVHW6vZszuNgS9PuF4Qt1WbOYLzJ1C3C1wNZV4Oyc2YBc3FI2kKgq6pkVKG79vUywy3HCCXWUMA4XNLmIYR6i2T15mLFdL3nz/lsVyhWuqnI59Do8PuLu6RFclWbSlb2uMAwfbH/PQ9CiynP3sjm2258jXeHVbkO0LDM1molkEQuO9T/4YzXDJkh2eCe7DM86eP6HKVvTcd+dACwO6KgNNRxU6neWSRTu6f9A6tkIhb1Xmq4jZfMFPr39CEfDk+S/YKQPsIEVVXyNpsU0TpRVIKTg+mBC6faqsptgnqKZJkWaINsaxFI6mfRZVzHyx4tvPP2dxM8Oe/oygP6QVKpbtcTrqUQ0SrrqK2x/OmU7HjDwNZStQVBUrGOD1RwwmDlezHaOej2uaXM1umS3XyEHIxcUVxtDGNXVyoeJXJVZd0NUFm/Wcwfs/w8727KOY1199w7PPfk4T7xj2DZQyx5+YrDODcHqE7fRQTY+mlTRxSfLjS7K8IPjwI6J0zz7ZYC6veXj/Hs7QR9nqGMsY325ZqTF2v6Y1cuKmpFVatkmJ7DpUGoTUiNuE2ewOM91gGSpPBw6NIsH0qIQJbY0hWmy/z9HpGdv1Cq0tGA5sepMx83XM9esE6g2n9455Hc+wlRqpCFbbDbYz5q402KYmVRHie33cgYduW4S9Hpc3t/ieh2eq2KbBNld5exez2OTIGm7ma/7y2VNu37zFdDy2cQSewSrZsb7c4+9i1nnJF692PHr+MfdPHuA4JrZuMfvxJWbXoOk6B15Dl96gKgK7LdCKEiqNaLfl5se3BGpD1VQcvv9HqLs55ewt22iBmyV4B0cscpADE0dXUVSVFhU7CNBtC9d3sXUdVdFQaKjoUFAoqgrVULm8PqcbTLmZ7yj3t/hGze9++StaYeEND5mOR6B09MMQqoQzV6MeB9y9ecXm5hzNMHn2/id89l895uSZRSVqri4i0p1K4Lt894ffo1Qx959+gDQ80n3G8vYakwrXdZlfX6HHMY6pU6Qp0u8xGgqu3nyL1jQoQKVINK+HoevYukvbZHRdg+u/05W30RalKvHDkDo/wKpV9N6YKi8xTBfDCbH9AfbkHnbgUtQNmuOSlRltlVFkCpVqIlQNzUm43eYYukCtclpVZbFcslyvOTy5T5sliCzBVDXueyFHvRFtlfF87DIJHEpMFE2jZwnevHrNbLFhtVowHAwxghHTgyPK1T0Wt2/RNIP55RWeuQJ5wHI5Z7PZoEidw9PHNLWJpfUw3CFtz+U//OoLMu2Kowc2D3sBi+UC7+CENNug3N3QFDn7bYRjmBR5im3q7NsWK8vece7SHNXxubq8omggbhSirGWsahRFzNUuRY9i+q4P7iFJvOf16iWh6dLzfLofYmxFRx1MCI7O0AyJaHP2mxtKYgI1QFVKkkqlzSMUKWg0E0VTkZ1KkcRcvDmn52hI+a6ealg6hm5Qy3cVX0Vz2O5vMSwHGe/xLIuirKjKnDhNkaqKoWmYhsPtKmZ7uea4Vjk9HtGpKppjoicVuqKSJQ0IlSxNUTUdQQVdiW7oxHFCnr3BdqdsNhHD0RDX/pDD+++zi3fs0pQvvvySB5Mx/fExJ/dWWHrN0cGAI81icTfn+IOHjMYV+epHtKM/p00SdB00W6WxDE4OjqgbQdAK4kohjTV++801Tq5yMJjiHT3DtnuIsiQPb2iKNdL30KbPcA6OieI9jjcgCPo4mkIgKlzPZ+/4ZJs7jg8GRGiMHrxP8eIN2zRCSN5N3q9XLBdb4k2K445g+gFfv1nwN5//O4zB58RRxvT4gMf3HnJzs0JVdWwj5OBgShgcY7s+QlXYr1bERUVJQCNtTL9H2BtBB4P+iCbPwNR5c/4G03L47vycNM/59OkpebHBUDt0VaU2NSaexXw+5+T5EwxV0HY1adGQdRbrpGLoNBiGAbUANG5mCwI6PnvyHpezLcUu4unkCe7JB9AohI3K2NIJdJ1gFCK6hpvFLZt8zfGzR+zqAtN6zNNHJzihj6HVtFVMnMQkrYKwHBTDouwUNrsdP3z5AlkLyrQgsGwu7uZEyzWNrfFjkSGo8QILfblBdfsstwVf/xThjIYMNxX9o2f8k3/5L3jvuYYWdQzNA8bBmCxek2YZRx9+hmccUMw6ammiaBWLdMH69pa65zIxGxRFId1vGDo2tq1hSZVkX/HN77/m69/+HlnBfpHwN3/9W5IoQ7Y1pnnJZrvGbFoODvvMLy64utuQVoI2XvPe0QlfX8UURYU7OKCOt5wMLF6ef8u8lbw/HmA5PSpVYXB4SOsfUuRziPdk0mVyNUSTkiefvsdPv/+K3W5O37XoKp2yAbPq6AudnuWg6gpFssfRFNK8phYKf3jxA3a6IWtD1J6DqUmUrqKhRLNCek/e50DbcDHfoCrghWP6k4cMDYnVtkS3b/jZf/nn6HVOHkcgFFzLwPFC3PHwPy80yRdXLC7PuXjzlqLRaMwe/ck97hY7eqaCgkDTdOpWoW5TqrJBqBZDz0FtO6rDIx4+esL3L79HI2c4dhFGgJomqKqkLWtE2CeKVsiRTbLfo3Ul7nYOdUfbtXi+hyolbV7S5DFxp1AzYDA9QdNUwr5PV6ZoSocTZzRZizO1cSY29/wek+mQNpyiigKlyxG2zX52zas3r9lkNXZvgCBmm+QMW4eKAqk4SN0gTxvW6z2vf3zFZrlCqhqGNBGlTlVo5HnOajXHdg6oixTXdumAqirZ7vZcXd3gOg5tFNGfjpGGQdKoCFXFUBXquiHPC0TnEU5OyYVOkW5RR1PiPThGTGtG7JOaRNgcTaaEjsHdbkMQ6oi8Ruomuuei2A6zmxtMDVKlZX2z4aRvIgwHL+yRtSoDRyLqEmGoNOjIOMLVoSOjSa9I9xusLEYWKa3QeXQ6RRn4CKXjvFCotxF1dM3+x5qmTimjS3quhWK65IpCrRT01ZiHZ0f8ePWGTVxTtArVMmW/3dNmJYYfkjTvaiAdgmg7I1FyWr2lFTWOIWnbFt+RHNwfEzoupq2i6QHL3Y6uqsiFwvT+AxzL5uRoTJLkJNUlTSNoVZPz+QZFGHz83ghdlaR1Q1XVxGlMnuzY7WOqtuNmvuHV1TWWZWAaEqXr0C2XeHZDVQp0wyeJU8ZnBwx7IbrjoQgAlfltyc2bazYlmHVOk+fcLW+wnBAMDVGUpHXFKt5ys1kRx98wGpxwu5oTXPWIN0uoQVQVhShJygKyDfbQJ3AntEKwimP2pSB0JVIzCcOKdlvh6BqdIjFkx262fgeFNC26pqUTKm1VU+UFi+WaPM+ZjCfklcPHf/bf8EGxI0u2+KHPcvaci5++5+hwgm05bPIKc3yEcRDidhH2aIy0LO4dNuhoWHpHeh2jCNAsGy1bU5QNeVlQLLd4XcPbtEQpKhytpawburJknZSMspK5oiEcDZEldN6Q1b6GusDRFZZNyT6r8FyPUgFDNWmEiYaP5T/GsRyksmDs9Th68pjwwSFy6GKdTWiaHN1sQKkx+gNUVSAVgUJHI0wU3sEpTdenEsq7wrNmEW+XzDcxcVbw09Uds3XEYegS2ga2FLRphKNqlHWJ5XsMDgPQSnqOjTuckOoaiWLQdjqd0pIqkt7RKYuX3xBvN9RVgWfYGJZCl8YYXcf3by9oigzf0Hnxh295MOjjHx1hFTXD55/QVhWNKrEPzygv3rC+eIkzPQRFEPT77HYbRv0Ay7B5dbXAbGsGusXYd0mKhrKCfZzT93KUtiEcTuiqGkVf0HVLRGHS1gWvd9c0Jaw0EFXGm8WKPSHHWcP9IsWtM0SV4x4d0foaq2pPKxVEU7HPWlBV1tEG2QtI5lvSvOHVckGUVYwfvocb9LB9H1VVcB0LNfAoVYFihgjNIWoL9LENikFdKczuNniDMaFh4fSCdyat2U/UacLgwyGDvkG2zfj2D18jzR6dEZCnCXVZIaWAukUaJn/x6V8xzGpmd5e8Wn7Pm4tLFMOmTFbopommphi2zXK9ZrveMu6fcXJ6AnWF5rjEXUfPMPHUGs0f0aYpbNd8s05YZTWjXkAU58hqT5THHD94n+OHj1DUDiHGdLaJGtiQbWhtCKcjBBVNkSJcn5aGAskyyUiWa2azOefXMyq5p2pek22XXF7fIJWOZ8+e0uk2ZSUJDh/QX8woogWGpqNqGrbtcDA5wtAcDFWQ7vboikYaR9RViyF0jgeHkOecHk8YTPrcv3dKe/QI1bSJNjscSyMRJSKNsJsM39YpG4vZ6x84OppweHaGqsLp/VM213OMKmbc6/H17CVdVVFWDbPNjkGRMet8RqMRqutQ1jV1tGObxJhVzWI+Y2yaaEKhnK9Ynl8Q+gaiy9hFW6J9jmX5zNMh9w+PEZqD4Q/oqoYsi2nevuLmm99QmQZ3qxn9vkdb75ndReRRjNwodFtJ/8ihNSIc22C3K4gVg8vljuHAJ1RUijRFiROa+QxLdEhF4V7fw3Rc3N6UWeuhGRZB2McNQpq2oykK8s2cg8EDOlMHxUYkLuV2hTc4Zv7j59RpTLpVSNcR53cJsyYgi2MctcAMM9S+xPZsFvNbmrpCNx28nku826EgUaTk4GDMzZs9382X/KXrEPgOi9kVN9e3PLp/j1ypyKKY9XZLUtTcH7o8GrpcfvcH6kahLmusruLZOEQfjtC6DKUrIZ3T5SVKOKDqeszPX3HoB2RXV4x6I+TdOds4oihjCC1KIfjip5fsZIe/tTnKp0xOHiE0A02BUT8kiTaEloNtBxRNhul6mLqNYhrs9xFvvvuOxr7Akw2f//W/5p//i7+kLROWux1ub0TXlkwnfZJIkEcN5XaBrCrizS2aKnn+9BP++E//EQ+eH+D0VJrOJOkP+fHHl3R5AVnM1du3/Nk//W9JdxF3RcmbVz/yzz79I4LxMbeXb3n1+g1/Gvp0dUlTlrjhIb1Jzvrq9TtOgGkgbA2UjlbU2LaLGw4wVNCkQm25VLrAGgjMYEAhA7Ldnootuu1jhccI6cNqh7QkdCZNWvL/c/aeO9Kl6ZXdOt6fOBEnXGZGus+W7apqstnkkEONNMRgKEDAjCBAAnSb+iENJHEIcrrZjmR589n04eN4b/QjeQPiXTzv3vtdSxF6alqSJKZTNbbRjrv1A72g87PPf86rb3/LzPeIthv80YiBJrO+3qAJPRNLo5IFBr6HpgzRuxhTNdjXJqPZMTkWYbLE0TWm/oijxYDZ4oIgLTg9u2QxWVAEO97e/4rG1nj6s6cY3ofYroc3GqLoBnIpI3kuoqPTzgwiw+I3v/2a/+2Tv0CURHo62r7FfP4zwl4hev+WVoBe1bBdl6SoCII9mqIwUE06UUGxBzjjkvBujahZ1GVLiIxt6ChZxZvNnqhs8fMKU9HI85qbNGJXN+RNwVRX6fc1WREiSCKlLCL6Q8bzE6o+p96H7JICR+tRvSGCIlMmJb0ATdtzujhGlXpEWUE2TNqmRew7hP7xS84mDHEHA5BVyiLncAgZeR6r9Zq+g1oQ8QdTjp7+jEMcIbcxSQWK6VAUFY6mY4k9aZrSCwJNnT/aRU2N4JCi6RpN3yGIGqOTU9KiIrt+jaJOGQwd7vYHpM7GdM5Ik2+5uX7gfDzh/PycspaYeSZxuGb04QmDEwfLLgh2tyQPrxAVnzwPqMWcSpWwXJuzk3MOt1t+/P4VU3vM6PwzmvGCh53MmSfQ0COrHYLtoDgewtBBXoxp+pa76zUDf0Rz2GJZFpagUEQZTZRyfH6MZZs0nkc/PGEfJ8xmOmVWsLpbExYZ7672lI3C4qNP2ZnnXP/ujm+/uqfvr5ksxiyOF9w/LPn+6zdMJjPMkYc5OmI09zhsNmT7DXc3d4iuRaePoO2x7SFjf0LbNDiGQS0p9KZJ+e4N4WaLKMv88O4KVdc5MgUQJQxRpDV1ZEWiQSDOSo6PjomLmpMXnxCVJW9uf0JTewzTphdBEhqipkUeTTDNOd7F5wQ/vmJqDbgcL7CfPaeXRZq3d/iqiD3xHwt+scNqFVxLQ+pFVL1HszUEOkTTRepkuvBA3wkg6fSqzXq95uH1Wwaq+vgOfvv/4h8dYWohu92BfQjewOKHqmB7iPjso+coYcEmVSiqnuhugzc6xRiOQfqUWrxh4FRcvvgFhqbwj7/5PygV+OjiQ1zrhE2zJg5yijxht77n+x++4mr1jpPFCX/0i1/gGwIT18FQRMqkZPuw53C75N2rK049k4llc7Xa8F//9vfMfJf52Kdte9ZZxs2Pb9ntd2yjhrLquZyM+JMvPsY/KXl1u6Fc3yE0Ja4qQt9QlyUiLnYZMDAfy7Z+4hMFKf5Y5u5+j3I0oa4PKMUVud7hSFNmTz4kWC0JqhrbsHFbEUc2KZqcUd+QRQmrQ8h6fWBzc8PHx9PHRf75iDLYoqoKpm2j+BNG0jFD7hh88xOqJDIejlHFmuT1P1FXFS+++DkTaurtij5LkGfHSLqOYtrYw9m/LjT5p6/ecHd183jkOw66odIbRwynKWa9RtNUJFkmTwtasUWWRHRZoS8kHHfI2QdTehkMKWd9SOizgKHaYNgeqiSiazJaW1HpBnEHH86PiPZbzAryvMbw57hmxcCyUKSCsa2j0VBXFU2eMnBGoJmoso1p27z84nMsU8CYn9HKAv36W0RBQFAVRNEEoSarW7Y3IUFmUUoCUlNB21L3Fuso4yRa4wxnLB/uybOcKohIggj/6JTd1RWmJiP0PWVaI3gtai+gywNM0yeLIw77Ozab97z66ifC3Z5ekMnrlqIXkCSVuBZoGxVJFOmahqoqqRHxBlOqrKepa7peI00KykZAd3ycvmZma0h9z369ZjIYYFg6BQldo9OkEYvTOdF6RZDEPKQhQVaithaqKNFINl67Z0PNcDhGVXXkbEeXBRS9SNr1UBVUUcLNw5LJyMWYzHDlEjmRyMWMINyQb3eYTUMSR5iOxnjmg2nRqhrJYcfy4QZR6RhrBovZlDwvqWjZBnviSsYeeeT0TGyHtuoQ25woCknzGlWV0TWVToDZZIaqaKzvb1GOZgxdB9N2kAyNuGoRVZ3x4hxdkEEUSLOAk/Nn6IMZb15dcb8KeXJ5hm08ztklSaZsWm5urri5vSYvGxx3gCxKrDc7uucXILSPDItehuEENS9I44z5ic/5kYcgtsiKiiKAbVio5ojVwx275R1VVUKZsT9kCPIPLEZDDEkijyIyAazFBS8++3eogszli0u6w54iDsmamqIpELocVeyRjnw6XaeuH1Wk66xCtR1USaAXVWRBBMNC01XqKqdHpKxbJFWnKks820OiRZRVBFGiKUrSvmd5eM3t1Qb7yQuskzPsxMCxTf7i3/81v5ZlppZMLyoY0xP00Qh55mEUa5AEJKlHqCLyJKQTO6qmJiprQn3E+uE9yBZOnrLeRTSmiqcbfHe3RNFFlKYASaJIY5LURDF8krqlr3OE0QVZcsPUljl5ueBPn51w2BxIMgFTNRlZQ2zTR9F8nCcv0EQHZ+fgOkdoi48wnnpI6uNyrEtaxF6lEjWKBFzXQJE7jPGQZr9FEHrSNKcqK8o0oW1rOkHm3SphlUu8uQtY7iIcVWHmWhiSgCpJ5GVNVjfMjzVkWcEwDIo0Zr/PcZ++RBlaeK6P+J3MLsk4cxyUkUn6w5es93vmwyFNlTGbjulTh2x3QKZjE8dEkYBQtExElfEnv8A6uyArWsr7FZui4HzxlPnP/3tebyIOMYhlQ5LlaLrJ2bnHYb8nSTOGsoRtGlRFS51krA8plqqgU3FxcY7h2LRZTtH3eN4I15+jjUK4vuPqYc8+TRmaFsdjn1qykDSRuM1RpIrJ8w/oHJvN/ob1YYmsCrRtTKTapHGM1Eu8ut1RlC1VW7PeJ7hH59gjH1GXWK9uOT4/RzQMekQMz0O3HPKiRqOlqRuKVqBsZBpEvOMjjHqIhsr9+3e8vnrNcnnDv7v8M45OhxiaTpauSYI1kpajyipFeWC/XyNLKpPxlNNnT1l4J5xlAc2vO37zm7/Dm8wYmaBoNkgRti5TWyabKOWySBl6Ll1do9smkukhuAaCqaCrKnWZYrgm8/OnRFbJR4qOFu85o+VseoltD+jLEMnUqdMMNBGlERgOVCR7QG/aNFmC3LX0QCmKLK+v+PHdLbv1jrdBjnXyhPXNFfHhkRekKRLDkYfmjLndV4hmjyLJOI5Hm0TIqkpHx3wypaxEylpCkxWqOqGJEoIsJwgOjCczpN2Wy/MnlH3F809+xsC2KG2Ltm3Z371nu7rmXbLF1HXOLs6J04Ky6NjuQvKsRDGGtPsV5e6B1f2B1SrhzfsHqqqglUQESeYmTHGFlmDfIssyPrCOAsyuwXIdxoZGtXpPPj1DVXRaRSRe73DNCbJpouUFcpaRpmsMe8Au8PDGz6nuHkj3B/abFdF+xeqwZRXtGNgm4+mQ//tXb/DHAyamRRFW2P4YWa3Ii4i2ytFkmft9RJfnGI2O1Eq0RcHt1YZwFyJbj42bKiv4jsvx2CNdtrxbljijnm//4fdMjhfosshkNENRZCS5oZFKCrPHdjzuE4k2DAiCA5vlCgQZUc0ZCQU7CjoSkj7h2HaQNRNvOMAfOrR1g6abJEmB2MNQbWlbkESB2+WK3375PR99/AFpo9D0Aqv1hpFpopiPQcvYETCHNqv9ns39GgWV509ecOT7iFVFF5UoA49O7CgPb+lUk3z7jqDbPIITgy1VUtE0S6rVFe/ykpVi0+0c3v3Te8Km5PzY5nhi0zYxlj9FURuKJMEeDBiOZ2iSTCt29P3jireXRcqmYrlao8kSR/MxrqUzP5pRZiXniwkoJboq8HD1BoGOTlIpy4ayqBnrFre6incy4sXnP+PJJ5d4voEgd/Sdhue6mLLA9fVrBnLHui25e/OKNE4pyo6hLHJ8ekndK1RFzXYfUhQFtuOCpNIWBYY14uSFx93XvyMLAmx3gCDLtF2P6Y/QDA25jFA1F214BHVLkwaIskm33dGKPZ1mUqQqt29TbLXDrteUVzfI/hRBzImzksZQ2R+2/NP3X/P7b/8Rf6Jz+vO/5OT8ElkzaA4rRo6NPxwiio+K9jqKmJ8ccbh+oAvXzJ9e4hg2GD4Pt1v0oMZ8MUYWVVANFqc+ujNCdYZMZyLZeExwfc/ff/8POGpD17fYrolljrBdl+l8SpmVlGmFqPR0XU2u9ZhfHDMOjvHGY3oEiiJHaAvMwZTJ5TPuDzHx/g2C1mIJIq7rcrteUVU5ojKjyWssx8a2LdTBlIeHDZORSZalZE3F0NIZ5A3LOEcWNXTbYH48o0NGEhQ0TWEX7PlxtaFXNObzCU8vTrH1irZTaEWZsuswF0+RFOiqhK7MqPLskT2kKYzGE7qupSkzxKYGqSNLE0REWkljs99QCyq2M+D4YkgnGux2W7r20ZLpz06Zdjq+MOXlJ3/Etk/JxAp54LHbHxDsIbok8PrmDYKgoykilq1TJS0IMm0H/nSBrKps1jsYCVRlwOYP7/lf/vf/zE8PdxDrrG42nF5+yv1ux2zc4ZgqtqDRNiLa5QzJNHB9jW7zhofXb0l+umX2/DOqqKKrezpRxPZnLE7nnPvHLDSft//8PX2jwMnnSC+mROv3mFWMZg3pxh8jjjSacEV7WNGLDQ9XPyGt73ii2zxdzCi6CtlUsObHCEMRdTJFNTy+evWONNjROgMermHZ1DzULe83CX/0iz+hm3+AJAyZTp+w9ZcEyQZJ7UmrPb/52/eQyQhqzXN9RpIK/PTdd6zurjg5OkF3xhQyZFmBLEkY3gjXHSF0MLCGpG1M01U8Ob/kb356TdM0NG3PP3/9NXcDh7HnYusiI1UhLUq8yZhON3GfvGCgSwRxTJuuiJKAd69CXNdHd4eUeYPct0z8EYbuInljxpZJ/OoVu/W3RPmWZDxmJHUYWYG6S6kUjTTb0JsdZZEiymBSY4kpsuEgKhDtE1ZBSi9KOEhkdcebb39ALxvm0zNUt8ZzXMo0w3MdtuGB9SEkjTPOjmfcZCH7w9eMJlPiUgLrmDCOubvboZsG5x8ccTT/S+TsHnnygoE/wGs6bt58ySYqENT6EWPxsOXV69e8++rXrK5+Yt4cY597zF0Ntato0gObzRoDGY2acL/hsNuiFApT12XuedwsV1xnW6q8ZTo/om4E3OkJT19+QFnUCFXBYDBENGye5nsOckcUZ3hKh6IZnJ9dkAQhliZR11kj0FoAACAASURBVD1h3CO6DoZoM5o84WxmIqffsPjzD3D9jm++e4Ocj6hqkZHl0LkzvooPyJqErz1yqFzPRbcV7oOIZBOzu73F0w382RFlHOCINeZgxGA0ItuvwV+gdz3uuOf0kz8mfPMTtjfG8cbsNjumiwXQEacRfbDFdAd4kgiahqrrFE33rwtNvJPnxNVju0AaUEs2YhJyPBuTRwI9MrKiYtsiD+s9Yj9G7kHThwiKy9jSKScnlJcrxtOauq6JN/dIbYcp9bRNiWKYDCwTfWDSKiqCbhBFMdPpDNGZIKYFzy4WvH9/haBZmLaJKkFXxFRhh+2YzOcXTC9fYE+OUR0P+pa62pLLUCURYq/Shh0YDvV+jZB3bKse02rRVXAMDdHUCLYPpOkJq32IVNc4hsxdlbOtOgTXxFJE0q4jy0uMpCAOEy4uXHaHiqy8Ik037MIlNzev+fHNHZ1oIggiTV0TJgWiZiFpLu/DBk82aOKIqT9CUixU00MtYuS2pM5T5F7k9i5l+nwCZsd0qqNWMfvdgYQCWREQJJh4LvluTZREDMdj3q52bNKCpoUfHyJU00U0E4qmJQkfFcZymtC1PZusY9uqDNUO3RYZey5lBF9fXXHz3e9RJANLktEtiallIM8nnI99Zv4Cy5tSyQJlllF0LUmZc71cMfQMFFfkycyhlnrSUmG1i0izjqKGXoa4azk6mvH66prVesf0yRMkQ2O/XqFpGpPjU2RDJ2ti0sMDueeiCAIz12Wm2jSSQmwPqJya++tXDEZzPvz4M7Kyosgbgs2ase+jywJC92hhiZOCzT4gSQv802ecf/gRYpPTJRsOUczUH+LYOl3f4FtT6qZBiWJmUx/6lqpIkayGTpQRAEPsGI18WkHmfnPgEK44ZDHJj1dshiGWbtGlAYoo87PPXjAbCBiSjHhyQZ3MSMKQ/eoOMQ6QRQXBMCm7mqrtKIuMt7d3YFjcLVfkCkzPF6iiiKCbtH2DZlhkaUlS1rQt6KpGksQMNIO8KAmihNfff40sSYw1n4+/+DfY4zGppFO3AtVmx+zkmP/hP/5PBA/XiK6PgMhkseDq/oFnY4cqS9BVmSQKCIsep9g/siRsm3C3R1FN3t1WCPstnWqQRiFaZ+JNplzfXlPlKUNTYSCLZE3PTFFpVI2szlHKEqGM8Ac2iqJjSBJDx+P64UAdhWS1gNQLSFJLfPdbql5D1mxyBrRKQ0tFX+X0h4xyvyPeLil1BdMb0iY1QpMieDNEoaetCxTdYSg17JuMMCzYFRK36aM6MI9CjhwTlQ5dEpEE6LuWTVIyGi9QNYM8SZH7Dl9RKAQRU5cQ0ojl2x1lLzF/doHtWMiGgeyMOGQp/tExk+GAOg2xTJVdALZtYuUmy12IIGtM//o/cfxHf0wlyoh1w/Kff+Qqbth/e417ecH8L/4z3/+3/4KcrSizGsXwMDWVvi4ZmAZ1XmDrKmmQEWctb8MY3dqgqSqGsUVoW3RVxzteYLo+bdthOCukHig6HGPE7OSC8fyIycmCwcSnL0O23/4DrSNSqw3ywKA7PDaySVGSdCqHOEM19H9pUpcUbY8xWzA8miIKNV0ro6oSfV2RZBmuqROuV/SDCsvxoBWpBAVjfMRPv/uOpqwZ+R4WPfnDlrATkY9PeHI0Bk3HG59R5g0vUPinH69J84LZ7JTdbk+WZPhjD8/zqPsCcWzhSBp/ov0pt8tXXK0TFkcLdEnAdXVKucP2hgwsnaKFMIqY+cNH9s7QRVIVBFWkFztqUUQdjPjiyXOeZS37d+9Y/hgSlC1zsSY8LEkf3qMoOvLAw7YUym2AaggM/JeImkHbCBQPS+oy5WZ7z+urN7y+2/C7d0sE00FabRGrFJoSEQFjMGIw9CmNGUGY47s6fZmgKxrz00uoc7IsZnF0TB7nvDnsaYUesanpxY7l/QNH4yNUwabKejTHJS0jqrKm1WvktkTrQHFk0lwnrlV83yPKWoreRR/ZqMslumESJSqVJNMfbiiKBnNyAvcHOjKqsmI4GlEJAlmVM7Zk4v0O+pZekHD8IYYsUucxWZiy3Rw4On2CY5kUXYD/4RNGR3N6UaC3TGr7BEZTKno2xQ21MiUoYt7fv+L9m+9Y7jeYUsuuMvmbq5+4O4T8m5fnMHbxBiO0QUDTdlR1SZ4mWLpBsbzB0mUERSXKau5XId+/u0frOgRBoJMMQEEzbQxd51xIWIUd1aamtiuK6IBzcoKgmsgiCE1EW0SMZ0cInYeW3iKWNX1Rsd4FeJ7DsT9nm3SYfUZcRTwEBy4EiayoiKKItsyoq5KbQ8hNIqH3DdVhSVqAqmkIdcEPX/4BRRZRDYuk7MiSNfJsgq4YdKpAKkIvqYRJgm7ZvBxP6PdL3r67pohLmkNAr6jML88YeHOUeEd6yEnKmKzsOeQNbVVwlx64TWM2ioY3HmBKHbOBjpLXHJIcUZHIXr1DH59yevYMJIUiWCMAddchCj2qItEh0LY167sb9tsdsqJwcjynqXt+/h/+Z4TigDu6x4hDNssHhqMJTQv+0EMqEpSsQS107k0X9eKc6ZM53sxAVgUEJIq2pMozhoMB52cLvvrD76myjG/+4e9xZyfMp8d89vwTZM0kXG/QdZ2yLLm+veGPf/lLBEGibwtUzUAUJUbnH7K/e0t82GE6Jo6t0wsyijlAUkR6zUIyXAT1EU5e3rynykrKrCE+VKzWOVO1ZnLxKdb0JZ0sILs62WGLMu4p0iVNozB5+gkvy44gu+by+Uui1T1uX6KpKpY7QOpbRKGnbxrCMGQyP+P0dEZyCFCEFnMwZhUk3N9ec3H+DMIDU2eC1kkojoPqjqg7kb4pqbqKIHzN0UzAG35MUsYMxwMKbYg9GjH0fYokIxAPlEVO19VIUodutfzlf/ofORqBJIrUVYnctwT7DZJp8eLTT7kyLfLVil4QEQUJ0x0QBDGzEwnXdZAUHcocW6+Zz6bkac586KIOPdqywBpGfPnqiiwvaQwTQVLwnAG6piMjIug6xqDAGPgMxyNMb0ByuKXqG4zZHGN6jCj19HTIkk7ddPgjnxooyhRrOEU1NPJwh9BUlGlGGieIqsHg6Al2bdDFGZY7ohck7LQkTEpachR1wGHZcjleMLWf4VsOi7Nn3Pc1P+x3NA/vmS1cHFNH7FKC3Q3Hx3P82ZjrLOLixYfYwzFBVrK+e4cogjswuXl/T1nt+c2vfsVnv/wFzuyY9cMDcRzy/dUPeLbAZ09PCbYZQVaQbFY8fzlHzgLSKEL0RqzfrXj1d3+P7p3w1LPAtBnP58iCiq6IfHhyxlk94jerLUZwy/aqobDHyE2LUysIUUa33yNFNwgTi+/f/IHV91/y+dzl8vILykanFhsKt0S0e+YXQ6quYRcE/Le//Rs2t7eEXcq70CbOKt6lLWd//An6yQWlM2G7KtBHPqJhItciQ9fjq7+/I92kjP05x7NjhLbl1Xff8P7VT7x4eontOoSFgtyV5Ic9rSDgOjaqZWAbBqquI3YS+8OWkTXk6eVzvvz2S0RRoipyVkFE1ghU/pCPn1yyGE/44IuP8YYK0qAnyQJkMopiTymIvL2PGXo3vPxsSBXsURQNV5OxpZJk+xatk2msjv/6/W9RJRlnMMS0R9x1EiPTIutlZO/xLeTIGYpQMXB1OgEkw6SXRA5xwdX9Cns8xq1b7t7dIqMzHnv0ioIm6kyHZ+zTPY4lEVUZ3b5jGyTESYVh6YzGHuuwQkBGdRtyeUpSxjysN+iWgenNaS2Pr75ZkXFNlCcUW53f/foPuPorblcl12/eEwdrJsdjVLlApUehJz6ETG2Tw3pJ15V8cHnO5u4Vb3/8miyNuYoaBroGTc2xP2KfZjys99Rtz2wy5fr6ls8//2soMqLNGtOfYjse25s7KBJu1gHd6RmXLz9CyBrqzR1GU9MJBpI5RKZDCQN6sef+kNKJA5CGpLUC9Y6jgYalPJpCXy23LC7O2e1v2AkVpiYxnk+I65ZgucOr9pRxysXZE4qypW870qpFNVxESUUazKlVj64NMHuRsw++4EG0cAYO/tEJ7cDHUBWariate6Je5VxRUUwD1VTRTIP76yvg8///oYk1GOMfi1RNQy3baKqO3FaUZU7e9BimhePYhElKWj4ex4KqU3YqY9ujyUs8zSOdXKKoazpNY6PpHHZb6jpBOV7QNMUjCK2O0V0d63hBGUdopkXftxhdwwdHPk2eIphDHHdAU2eUiDRFj3d+gW2cIDVjhLCnze8RNQmRGKqaJsvp24ROftRR7vfXrKo9rt0iWRM2uwJBUBmbIneJwO3DDtOJmLkjHh7uiavyX5RRD9D1qJqOLMuosoRrWaxWS2gfqJsSyTYwXJP7ZUEpDPCGE2Tdoax7qk6klxQkWSUpQRAdjD4nCw7oX/w5kmqgaTWGrBAtbxjZI/J4TXFQkUwPXQJZzHAHDm+v3xAmIpOJj6KpWLpCkwtUhohi6OS7lKLqAJE/vF7xvBR5eTzFPl5wvTqgdg2yOeAmalDpsEwDc2BjGw7+qc/g0wuaeE+XhCi9j217KLZGqYq4koo9uUCUZdSuIYn2pFnMm/trtkWO0qn4dcbUlGgVgSxP2CUJhWCjFxlnF+fI9FR9R9HJPP/wE2TLJNgesBydXm5AqhkNJxwbI9IkpCoLVE+k6xp0VabuBIKqp+x6VHvMZD7Hdgf0UYxpaEwmE0zHRTcdpKamLUUMZ4CqOYzGBp/++V8hyx2WLlIEDuvggWfd45cj3XSQRIG6aRn6PnXdgiShiB3l9gHx6DllmqOqEqPRGHfoYzkbiidPqbuG5eu3NLuAuKpQjCG2KjEwO5rDDXknoY6PqOuOMt9SRHf0uoSmi2TxLUUrk9Uy64c1huHSiRJNGBFZJpN/Cae8oUvVKeR5wpvbJWXTIUkqvawjSwp9lbPaJlSiQSu7KKbDxfMPGXoDwjQjrApmgyFaZ6G4LrqqYYwfp2i+bbLaHMjzmvtMZ9IKROsHVE3HN1TqQ4nQNVhaj3y7RO0rnow6XiUQiw6b6A41z1FsC1VRqbKEu11MLciog5izU5G6aVE0k6rMHiFtwmOw1ag6hqXhzjRu0oK6yGi7hijckyYZUicwtAaMJjcclW85f2sxOT/CODmjEWWCXqCND5RlSuuYdEjIUkaxXSFJAnnZEIUBVSexiSoyY4xlpKSbexZDm0NfQV0iiDJF2ZBkNWkOR1lIvVfwTp8gj3z6cMfsZIrq6FgDH8lKCUcmBQ3RYYUojlA9j+HiFNF1kYcj9FKiSQNOPvmA4scfCaqGueEwOFrw9Jd/BqYNTYM5dqkXz4jeregPBXeHH7BnIz76/N/yw69rVuGSJ8cuqiximQ6WZbAMUhRZ5PzI58iRGYc5jdCxPxT8c/iGz16cMfJ9hC5hrNooggBVhYrIJ4szZicvmJ69QB+N0SdDBKVH0Y7AMIizFDQF13M41VXSaIVpmMTbgE4zaRWdt2+vkLqa6ZMnTC/OEAQRQRIRxZbxdEpaVMwcC8N1aRIZBOFx8SMquEcL1ruMn94+sNA7yqp9PA4WCz59/oKq7yjX1zTNklbWmL/4OW37FZdZzw9vH7i/v8cdDB+Bop6LZViEm3tWjoZmO/SazcuXz4mLn8jrDrltMA0dWegYzE9wHAvfkAlXD2Rljdb1zEcDVEVDFR5hnbblYYkmFRbZ7YGm7nBNmX1V8/XVFUNVIw0ThKZiNJ3iCC29YWKNfaK373CGNuXhQHDznu1uTdJnOAODYWajXIEm9whNDKZFkQsUaYzuzRCHT3m3SjAsF3vgUCUdI39CVZc0VUYryUxnJ1xeXKJpEg+7Jb/9h19RtjmWP0W1PVTFYGG67IN7dNHDP3mCkO+pywp/doJgKKSyhGpPURSdsFDABUWGo8tPqJKIr7+7oU5SLLll7A35/VffsKwqkGW6fzH/OKJIUXYUVcvMkamTmFJUyA2N6XSIhIKgK8TbhF//7ve4gwG//O/+jOnTCwS5xxjMaUSTIElo0gi5qZG7mrJdcxPfc3f3E+twwyGL+CaJ2b0p2OUlvmuyDHacuBLboCArDQaOhSLrKIqCKEus0wpPEwmjmK6p+fHtLVVRIogQpC2ioXLmD2nVKferDu/ogv3VgffvVJ4ZLk+0jhcfmahCS5+vKcK32N5zRNOlbnTE/oGF7ZBuNnjuiPPFDHs4omxiGl0hOjTsgpB4u0KwNDrZZJNDst5TN7A8tAiCSBWm2KaFrKrIooApwOH6LZKsU6UlaRqhKwreALq+R5IVVGeIo+iE6y15FqK0FeOxj3Y2pd2HpOs1b7/8jp0oUgs1YbJGEWuqpiPMctqmxJHBcB1+cbZgOPJRXJtKEnkfRnQKnD05ZbddEu5W2PYIBwUKKMIAxTIo0obhaEgnSASHPe/e36LLEqooU0QBu5s3/P7vAj794mektUJnjHCtjqOjOfPxGGcwQO068k7j8D5kMPSQByApMYpcI/QtHQK0DWUWMxy6JAeL8cgj2dtswxyhqnk2MXCLFfHSpAkjbt/8xHa7JZoN6NsaVVPJSwFJEqCp6OoO0Vtw/+6e4tWjEVFXZFTdwNRkNNunVwyawwPNakO0XFPKNoFg8ePr9whRifvkQ9IqRFGPMBZTZEfE8BR6Yqqkwz8+Qat7fv2H39OjkK3f4g6Gj1+ZvBFtlYIkIyCSBnvi1Qq5arl4+Zyb779HMS061ea7b78jKzLqtqZOAizVJRMt6rJnd3WPapoYpso2Chidepxf/gJR7snUHHU6o28MJEXFGo4wTJsoK2n7BlUW8XWZD5+fcR8XdGqM0He4psZquUU2bMQ2RJQ1Lp8/5TAaUa5WiLqJO5kT7wOiKMafTKHrQVGwTA0Uk3i9Rh+PmQxH0At0WsQ+bbm6vmZ9CLB0C2c4pe4EFEXG9ifYmoW1uMQ1FDSpY+BpyG2CZOn0XUUva4iiSIOBOTRQRIW8Kok2K+zBgL5v6CWFIjiQpDlx0WJ7HqbtcvbS57tXd+StRJ5n3Nzcc3e35BCkmJbIdHbCk7/6M559/pxK7SmElnC15fU333F5PEJ3Bo+hu6XRBg133/0ziX/E5dkzdEdj8eyEZRgxG/Q0Tc7Qs6EbkcUt77/5lqu3b/mr//i/8vSjU8L1e4Kf9vz9r/6O48F/wFFc4ihmGSb4qwcET+F+nRCmJXHZ8M0qZVqucQcvOFqcIws94W6H5g3oPQPj+RFPJxqvr3/FZP6XaEdzhF4j3d8jFiVyV5IVe757s6XqQv7tp1OmT18iu6eYvYm5P1C2AYovIcst6+t3vFvm/PDV7zDoyVv4ZhVxv40ZnV/ysw++IO+GIA8I0gN3yxWLF89JDgplktJlHZqmYRkq1A1t2VIXJR+cHTG0dTa3r/npzTt0f0QuyrRVjTP0cW0P+h7dMpGUjrauudsf8EZDThcnXF/VRG1FVWbE8QGBHll3eeos2Lci+f4e0XSwbIdayum2OZojsgsEfv31W/zz5+RZh2fqaOKjJVPXBPImx54YnJQTHq5v2NztkbofCUyH7vwZ7nyBPjYpDANX7MjylLRR2UYllpxRFyuu37/hdrPn3J8+Ls7Lhsl8gSwrKLpDlZR89snP+T//9v9Ck2U+Ov+AsulJ9glZVnK/O7ArSjzHZjgY0YsZghTQ5wVy01ElBYLYITs6qjrg4f0b8jInqxSyw55OCqDVmU8H+AOF+cmczZ3P6v1bqjwjinZYQklbpWzv3hO//4Yv//FLHu6uKIqcqq552O6Y2ib+aMzUH3OzWpPGGdbCpupksiTF0nRU3WTomNRZDE1NGEXs1xGqbtC03zJwPHzXQswLGstj4g3wVFBkFVWSkXughw4osxj/cookyKRFT6nqnE0GvHp4h4rAen9gMvFR2waaGlcRcTWNXDOwFBFTkXHGTx+NQZZLGseUxogeFZWOia3gPHtJVfVo4RpNVRhPZ1Thnrqpefdwh2oPUN0hmmWCICHSsbp/+69bmgRxgetP2K239MYAVRaQiopGEBC7hulogCJLOJaB4Y4IgoC2rdAsA1mp0WUZtbHQhBnrJuOg6OhnNprYEwQSh/WSqgpxnj1DVlXausBwXAbTZ1RZgZhG6E3ByZOX7LHYbHesNxsWQw8haxmffYKYSRy+/xZpHlJbDoK4xz1yaLUBZdiTbDc0soQxVYnCG767vScrFM5mJ+zLHK0PkXoLyfCZzxQe1vdM5kfYmk7VdySdgDs75nr1FUVVoksypiLjKhJBlLC7XoEos3j+AZcf/JxufY19+gV/+umUi5nP6zgjT0PyoiXJSoLgQF4WdKqB5Z8iujrmYIQCaLKKP5zw3Y/v0DoBW89Jl99w8ekn0KtQVehKy2ig8823X1Hmp8wmQ0QZ0v2esio5GznsDzlXaYRp2+yjmK9eXdEVGYfNEsMwOTl7xt16w379wPnQxNYdFGeIarmY3pShIaH1l8iSQVs3iJ2IIIvUgk552CDqIn1f0TYp+zTgzfU9qzThyZMFBj266xCFB4SmIcga7rcxJ4spsmaQxxG6peOaDh99/CFFHrHZblGEHm84RtEN6jjgoco4XsxZnF1iSDKqKmM6DrJl8nqTsUprRpaHNZoThzvyokQ3DSxTRzdNVEVC0EzkLEIp+kcWxuiUkXNME3d0Ts/Hf/wL1rfvid6LtF2PpqnQloiigmVr1HVPnUTIukFeljQV2H6Jppv0XY1hGNBV4Ht0ionct5waMm3bEe93ZJs1xyMLzZQQmo54eUu9vaJpW8q2QvZMJAWSeM16eU9pHnFYhXiGzXByRt917PYbNtEeBAFVVcmyEvqaIC348s0dYQXD4YTqsEcxHW43AebonNniOWeLJ9TBgbnuEic5oudwNHBoJcgagbCRsbqW9T7g7OwY1TRY362gqRFln31SIsYr7u+3nD99jjacITYlXZGiWSZqWrHf3rHO9nS6ju5aPCyXaHlCUZXkZYkkCTxsdyiWwS6MkYYukqgjNx192yIoDophU6UZQt+h1CmFJFFWAmVeYusqjQBpU9I0OYbdUjs15cSjGY6oFJAUgdHLj9k+3PNw95o4DdCdAY6sUIoaZZKw362oBY1VWKC6Y4L7O6pgx0AVUIdTkiQhKnIcUaRF5GYVcTzw0YB6H4KfgaVjeBairSJoMsrIwx2NObtfszsE6I79qC6bHvPsi19SNhWJruEONDRhjK27bII9n00nVIJG3qvEwQFT1tBcl7SouLq6ZbdL8E7PkJKEt//4im4w4ujDf4+iDZHSO6Q+Q67bxzm0HpF3cOq7yAMT3ynZBQFRXXMVpzTCiidZT1+m/PjTFU9PjhBbEAUFuW8xi5zy9Y/07hKhvMR6coZkuXiXz+k2D3SSQBIfqOuaUlAREInrjptdQBzHSLS8eHnJxcunVE1J2bSIgoIiCnRtzcT3cE2N7XbLyWSCIorohonhDLhLWr775jXF4UA7spAECQwTZzjCdF0Omx1XrxKc4wlNr6NrJoI5QtBDPv35gvvbO65ulkhNR9t3OLYDbcmv/p//wvFnf44o1OzjFM+SmY6HNNH20QZmO1gDC2vo03YtF598yv7+htVmi3OUMBxq1JKM7fs0RUPXq4hFi2loHJ9MCNMNuqSjSAo32x3XZc5DEFKuNtjv32OYGt7QYjH3GDkmXVtRlAXOZIjRqzQdGLKAo0uEZYmgqBRBSBJHzBdPSSUHkoLNasPJqYXQ9uiyRqVbOMMRy6vXLI5PqbOKKEwZ2hZ2ZzI0x/zmm3/kLz74DM318XST8BAwOzmjBIzREUPliNvbHXlc0JQKuTBH9E2yNCGvQrKiRNREZM1hs9yTRDH0Gt+/2zE+dmA4QPYl1m8ChKLC6Dpmisi7JCYuG0aGzMCUERSBsiywNYW6rqmq5v/j7D26LEkP88znC+/j+nvTVVZmVXV1ow0IEASHPBxR1Ggz/wrzh7TRYjQ8R6QOHUCAINp3l0uf17u44f0sElstpHWsI774XvfQNA0dVUItUz75+AVlmiJMg0bXCKua692e6eOSgSRDXmDoDlq3i9IbktzdMY1T7sOEpCzQNRXP0hnZBqgakuFA22JqOqWkUAvBLIhJWxjScohjHmcroqLFcTxIQhRkJqaKImRM20O3Wjxfwe2ZFA10Rj5ffN5FSqYUacr8folz9Byla5InFUUNRVaTtzrD88+49A0oQ4ZHJ4T1mnC3Q5Ulkixnt9kgVya63UFy+8yvH5k/zikbCdvxyVuJ4hDj+Tq9Tg/d0RgPh1iWjevZfPndjulqR1W1dH2LGoUyz6Bt2Ad7boqSUZXRxCVtpaO0LZ4i83IwQppdsZMiJt2G+T4iqUpejDT6moXljxicvGL06ieU1MxXS5KypkbibNJj4EhUQUKTQ1OlRFFGHWXkBQhfp6ha8qqlqFK++epbirym61g4vQE3tyuScI0tBA/f/sh2X3N6dI7ruIyGIzyvjxAKntPFQmW12TAYDtA6Evff/XcGxp72+BxVMyjKmrY4PNWWkw3nx11evPzPrAuN5c0V6n7Ov/z7N2SVykcvXyOSnIFj0pQVoqmedvGQyDdrTMMAoVKlJUUhWCc1D7/+A8Fszkdf/ITnL05xpC2KnlPuduzeviEWGpnqcHV1TxgssTWDQ7lD3z2gTU0onowdlJqkVlD8MbKucJj+wGgoU0cmxWKGompYjo1Z5QjTRDNNsjgl2ezojCeIskZTBP3jEyyvz3e3M/796oaL4RDRtORpTHT/gd7FZ7xdPf1L+a5Fbtu4xjG24WCkASJJ6Ns6gdUlz1qqtkU3LRTbZ9iA4ZnYho6qa9yvM4aWTlKE5HmCa9usBByCLU0LTm+I67icnNok3QH59BbDtJH7GsE+xHccTK+DUHVoIFrvsHUZ09BpJRVZUhDFio7lIp88YzGdMltvGYxP8HwXWzPQVA3d8cgbQRUGWJ6B4Q/QlB6tqCirjLZtqGWdBoFqEVsf9wAAIABJREFUmFR5ThEGVElAVqu0ioKu6ayimCiKyBSTyWiMZamEUY1/fM4+zMmyPftcIkhqbO8EWTJ5+cWf4L+eIPV1qjwjzSoetnuOX7xgNHbojrok+y11FOBoEsJQuH77A7pm8teff86zizGf2BekaUy4mROuF/SaHntbZm87hEnCm1//PZefnPLFF+f8OO3zcLfkq/uAP3vRoW9D5Snkacz9NuTN7Zp92iDVNXJbcLs7cJIVjEZdqrZE0RTWyxly7wRNyuiJPWdWw80//leWv/9HPM/DbmvUKidPAwrDwLQbfvnpObKoKShAyZDbDLleI0kVKC6r6RUP0ylXb6fUeYqqStzvDtwFKYrl8J9/+Qs000U7fcH3qwRVM9huVrx49QxNueTd8kuErOC6Nk7HZTTpo8iCti4YHfWZP9zx9TffsNntGPGaAA3LcdFVDdO0qZsGw7apRQaWjDfqsgrXaKrK65eXTGc6y+WMoqwoUdgmJYOi5TGMOT5X8U/HtFFKGKWoRkOS7jlkIVdvVlx+8jPOJ0PKPKXT8Wg1nSxKMU0HX7M4Go1oPn9F0aiElQJFjmfruJ6DUHVKSSOvS/IgZRZplEGKnC14uLnm7f2MWtPQ/SFULZZuYVkOMhpKrYFj8vyLS0YfhgTLOX29y88++ojH2xm73QErVqgsjfKwJ6wyirKiUktOOjqVqJ9w2bKBLKmojoqmeximR9+QiNOIOtlz0h+hqxqH9Qq34zDsDOnJNvP9mrLKKRuD6f0jslxy8823fPn19ywXcyQBshAstgG2IjNoJVTDoms7/PyTTxiMniGUhun9A5/+9At0y6DNUrLdmiIvyauaooE2S3n31b/hdob84he/oOc62P0+jgKKDPrglG7HxZAlVF1HVQWy3JAGe7bzLYQFyfqeeH9LW0b4Aw/HlPF0GV3TcWSFs5MTwvkCTZLxBmMsVeB1emiOT7pYkwch5scnCEXC92zCrCJva05O+uzWt+RhiON5hG3NbL0iy3OeHU/odF10QyWtauI0o3ty/r8nmqRhjO12kBWVPN4w8i2yuqZpanxDxbRtDENHNC09VWO2XrGa3XP5XKZpJGRFRwhBXtaYg1OaPGdz9wFDM/F8hc16x8PDlKrI+OijVwgEehagqhLoHUzziOzmLYrtcfHslKys0BEcFitGH/0c++QzZKmh3mpEKMikWLYgUTzqUiNKI8JAQmgZUb3l69s1j2vBRy9PqNsDedRQ1Dm1LKHVKZLeMuhYPN68xTYsZMsgLxPc3il1VdJkMa2qUhaCpHKYXt+RVTW+1+WZbCAJmzxT+NS2iHcr5CJhNDziJiuIt2tEHbNdLzg/7jMa9SDPGHcsZFmibRpUNFxtgN3EfPWHB46fOXxYPNALF/QGz2nShjyMqZMYuRV899U3pJcThn2PXZkQRTESMhPfIE0LprsdlmmitBX7IGEfpqBEPOQ6y9WOsVGz1xrGkyFlXRGVJVaZoek+kqyhqD6izBCqgey6yFlOIwKi6SN5GbLcbvj9jz8yDTNenBzRsxRUVyWuGwhaDmXLfrnhcXtA4o7Xl+dEh4pu7wTLtgmzmHC/wnI8ZPOE4v6B9e6APTji9vaWMK8ozD5D26InCdS6oslTyt0GXxWYZgfftggVhbe3C87HHVzHwrEtVFlGpoVWQcpA3mWcumecT17xL2++Ih60WJ0O+lrHObpgET9wIsvQ1JRVQVtnyLKOIgnqqsIyLSqRs3u4Y3z+ijwHJamgyjAkBV2VaIqSVDYRBnSlioEFI0dFs2x0y8MejymymCLakEYHojhmPn8g2G9YRRAdthhFS6fvk5U1ZdngGC5JFlFVDYoiUGSZKCm4v38kiGL2aYWk2VxevCTIatTJkNPL12h5QrTZo0sq+6rAGnbQnCdMYtg23BUCex+QVQVqldEICJIUw9DZznaUWclaSBhRwSGMWW+29I3wKU5sOHhHp2zmG+aHANmSacmpRYvvOyy3a4SiUJQVsgDRVDzcT+l3fPSXF8iKhZBbirpF0U3a4im5I7UantPyetxyN3tyi+q8QZclNMvCufwUpd+jNSxkz6fQbAzTZr+4Ja8bJLtHKvuk0RSzCVgFIXmeIrUts3WG7mrs9xvqpkXzXAbU5IlBiQBFRddNVM1mf0hYryP8UqZxfPRJD9XQcTWoZQl0jSLa08rPIU2RVw8MOz3syYiqhTBKkLsj+o5JmsZsgzmuXDMY9jm+vCDPS/TuhLvbe+Yf3jD719+iGB5FnNOuFmTLmDR4hWglrKhgs7znhzd3WIaErQxppQOmXtL1u0zlNWnZ0MoSdXZgvwvwh+fYZYZpGCzzlPfTLXUSI9UFVcmTy5qW9DWHkV2TJysGXh/F6aD6HpLcku32hIcQ2XE4pAXfvrumN+rzuFrzr19/w8PtHYaucHLcx7QMqiIhWt3SOz6jEQLddjA0lWC3wXC7OK6L4bhomkGpqPw+gW+vtoTfvmFiqgRB8JQWGfVRDJ0wTpjP5ox/8imdY4ekDNnsE6LWxR+/xO/4nL18jfQvv+H2wy1xHJPnBdFhx83dPe4nLY/zDe++fIfVJDw/P8OydWrHoHs8orBsHM+j2a+gyjn75V9x8/33PNw/oTN9RUJ1+zT1096Pogg8r4FVSjU8wlK7qEJC8R7ImwLFMdkmKZs0ZbpZET1c87P4iM8/OufsZIjbO31CnYYBm/2BQxpjqHC/D2mQEIqCsHsElUyxWLCRA/TuGKU/QLEsin1J/+iErEiwZBUtL1h+uEaKcihyqjxDMzU6Zp8ybnB6LrrscnrWYZUGmLqBkE3wPXZvQ358d4MQ0tMOmW480fCahqiqGfdcojxjvd1z9eEdr04+Qm01ZsuaXS2TlBISBj3L4WWniz57ZIXMNqmZWBWVKvG8a2LYCh21pOw6HOICt24xihrT87Bcl+X9jLzIkG2HvHtMnsrklcr1YsZ+9TSqpxtdWsnDHJ1xanco5lM2wRZDVXjW76HpLpblc/HiAq1uqOqSIkuZbg/MtgGOrrLLK8IoZrbc0fM7SJpNmReMvC5t81Qxtus9k56HrBZ88cwgMV0mvZgqyNinU+b3Vxwfj3DrmPrxe9CGWOMuLSYtNs9PTynyParnktQ6PddH6naR6opDkfNw/R7/889o0xgjP2CIFoWaoioJgx15keMYBv2uz+TomIIKw/fpD4cM5GdUksRvf/cvNHVNWaYMBkO08EBbljRVzj4uMSyLw3aGuzugyy5KeCDJCzrHA171Bgiz5eNixaaocbsummRiDT/G7B+jui7T2yuaumG/ekC0JaJQWC5CEsVFLmKyeE4eGQR5yL6IsWMFSdHI85R3b97y7TffcnJ8RNcxKYoMSZVxTJdRx2cT56jENIctftejKQrmj48cT57jqy4hNQoqUbTh/HzEPmv46nf/zOmzG3rdLo2AuixwbJtPL7tUYgiKyTATvPIFu6++YrM+8OXdktvrOX/zH/5vXr9+gWLqHHY7VN3BMg3WqxVSC3XVkEYBuiyo44hWs3k/T3h7+w/85JMLXr16hi0aDrMNu32CO5ywnN5SrOeMJ0dohoXUpmTJPeGypG03lOKExhwhD31kU6KqU/Q25y//8pc0yOwe39PKNSo1xFs0rUvbmKweV+y2Ace+Rx6uKWuB5nb58sMDf/u7P6BJAlNRATjECbPlHUJ36Q4/o/V8xGDIdH9geDxGZNrTkPb8nt30gU1rUQmDsmxIkoxux2LUG1JUTwlqWZGY2HA9n/Iwv8I/tuk4JpblUTU77u4eydKE0u/S6XSZOArTNiJbLHG7R2CqhNsVVZ7SnZzSShLkMbQNQtEphYC2xbZN/vRnF+wXW9aOz9vrG5azBa5QKJSavAnRFAu13mF3TFRZBSQaISOZDuV2gWJoGLZLGASkWf60LzZ7oKkKWl1FbirWixnLfUDWSrz6/BOOnx2R5QlVUjDo9lg0HutdiT96wX5bISKZn//yb+hMOiz2e1ZpSHjY0zs+wu13OLZU0iJjJjSmleCw3tC3JU5PR4yOJgwuX9E/O8bteVRFShFvWN9+YD+ds9+sWe8C0jggrkoUV+fP/uIMyVR5+Td/hfZhwdcPG6zJGaeqQhwFkJYMXIXepM9+HmF1u/STkvtFyDIMeXV+iuPqmK3E7f0W2oaB16NyWmRN53VPR9Qytq8he13avIBmyCba0nNK0vUU0ZS4vSGqWdGUNeLIQBM1882Wm4dHdNelrXN0qeWQlURZQVbD55+9olRtcveI79+t2Cc150celqWyeZxzfHSM3z/GMPaYcoUhy5i6TJYdePnRBUpZI2HgGBa5lpDnFVp3gGxYFFmBoqpQ19SCp+R7mbHf77h8+ZLZ3RWarHE06GCqLUEYYo5PefXn/5GPP72g16k49pc0WUS8CdAqBUPRuVuvubmasp5FfPtvv8H58z+nbAWlouNYDuvpGr/n0et4OLqJafkYXg9FsajznHS3AE0lryXyBqosoOxPuJ5PuVsfkGSJr9+8Q+90+Otf/gxPllHKFlVoKI2KoqhYRoewjOmOTf78P/2cv/sv/y9ZFDMY9Dn66Sk/vrtGbKdUoqRsa3RNoTF0akXHUDSSXYDoH1OnFZrvIAuwDYuMFsdzsb0B69UUuzeib8kMbBVhmFi1TL81Ud7/yOJxgSdXtJS8/+4r1o933E4XnB6fINPy8DilKmp2QUTPCTEaGE1O+eSzn9PvDxGS4P7mW15/Af3eiCJYkd3uUMmhzHk+GeBrUKotmzTjEIQc9y8wFAVVE6iO/1S1bGPsXh/NcVFUibatyfMDh2TPdv5ItLwj286QTR3Ns8mrnPtgh19Br9dFyjPu37zlZDRE1CV13bCeLRl14PG33zL56Z+S7iN0ShzDYTyweD10CXzBV9MrUtejlZ6IvFGSMh4OOB71kRWJpq7Ji5LOYMDHwxf/U11E/tWvfvU/ffjf/vmrXyEpSEnIUHmiUcRxSBgGPB92uLw4x7Q8mlIiWMfc394xGDmMjo8x3Q5lKSEXGSUC3XWQgy1VGHP7/ob71Zoir5gvtk+DTE1F1UIwu6Y/8NENmyTc0whBlBWE+w2mqrC5f8CxHKzREQIFyTTxjs/wzp9j9D0OuwXB5pGirQkOU969v2ZbCe5na+ok5vM/+QxJlMRlSi6ZPNw8cDZxsV0JXW3pDCeoMlDXRIVge4hByGw3a7brNZqioCkKRSu4X6wpajg7u+Ck26PdrbFVg/18zerugQwZ+/icpGzIwyVCZByPfC6fn+A6BnIe4poag8EQRTZoC8gKhbpQ2MQF+zRkG27YJwGabZJWBbYmo4kWmobrq3tuZzM0G2brDatdSJGUlFWDLCRaSSVJUvqWge8YKIrG7XLHfr+nyiLCvCKrJapWoWkF8WaDqARq26LVLVJZUwYZ1CpNWlAHO6JgzYfvv+XNhwf+xx++ZlU3vHp5xpGr4egSbZlR5A2FUNhEIWlWkSURR6cnFFlIIyRePD9F6Z2yDgIsW2fw7AVhlHH17gNxVNN/8RE3739kcHSCqas0eYAQAtvv8rAKmV7dYGkulergmQaqaZDVMg/bCFOCIstQZBVV05A1iSQMWe936OfPsfoOqQJBFtO9uGDs6+z3BxTdwKxjur5HHkckcYIqKzRlhWFYOH4XTTfJNhuqVOD1hlC2SOVTssbzLepWkLYqk76No7R03CdSiaypaJpGKysonkeZhmRpSBQEzJYrotakaDW2qw2iUKBQUWUDVZPIiphNsKU3GqAbOkmSMZs9stzuGPUHPKy2NA0Mul3G3QFNDY5uMPA8rj5c08oywnWYXD6jAZbLFavtjjYOOfZthq7NxdkpRtvQtgLbtHBsh9V8QbAP6Hk6UhHS9xzkMgVFoypLkiREtR0elyuyKuNutqKUJYqmIkchl3TScItMi6aqUObsgvCpCmbayMAhjLEkibZRMGQVWVbRJAVFKLi2i2u5aLaPbHkIw0Y2LOqmpEoDRFsSpBm630em4pCkhHFOqeocNnOyvGAbl6R5TYDN8tCw2x9QVYVnzy/odTrslwuEEAhVexrATDKKWma2z3GEzIltMzo+ear/TJ5j6QpVtIWyxPI60ArWX31DFeVQt9jdLovNk9gjawp+r4vje2yCkPl0hmGoqKrg/fUd89kcWUjkVcPt9S1XX31L33KRWonZ3T0xGr3JGVleEtzdEy9nmIbB4+2SONGJ4hLbVskOAVQpxx0LiZYWhdPn56gKaJpMiQR1g+V5REnJ1XLPNspYBTGuZiCj0nn5Kf7rj0l2K6ospikjlusV98sVi/kDN9fviauaRZTzd//0G27fv4cyx1DAtg2cjkeRBFT7ByaTCd5oQtNKuP0Bmmlj2g5VI6hqiMqaXSXzu3d70us5zXZLHkek+x2jQQ/P9UCRCeOEztER3bMzNknK9GHJ7GFDnMr0R89QbYftZkMSJ+iajqGZuKbH7nHGZjbl69/9K1//+79y8+E9lqVx1tFRKbFNDc20sHwf1zYwBKRRhDGa0L94QdrA8t178rwkK1qKWpDHKbqq0iYHZAStYrDd7pElqCmJ4gN36zVCVej3R1wcTxh5Bv/h56/4/Gef0jsagaRg9zuURcrtdMF3148Ymsr1ck8ja2wOKbVkQAtZXlHVDb3+EbrjEywXCFHhDwY0SUy4WrJbL7i7e+DD1TVhkHB58Yru5JhENAhVZTDo0h/2UAwN1bbpdHyKqmZziGkaB01WCNcbsjQnyxqkqkRVJDZVQ11kdAyVD29+5Ic3b5GTArlWWMYxoBJcXZGudxy5Pj8bDaj2O6I44VCVGKpAEg09R+P5wGHcd+n5FpL8JB4DjAY9Tj/+hP1yxf2HK/bbA4bQQWgMLB8pl1kkDm9utrz5/oq7xxVRa6B5EwYnL+lbOh8Nu3x2+ZLz8ws6nT6Dfh9VVajLjB9ubvn6/TWq1FDXJatdyHy5Q5IErmUy7HbRswZPNlBbqNuWXtdn0OsiypK2SJA7PaJgzcuJhdnEpHlB7+g5q23LzYcVQrWYPBtAVRB/9w5L19EdC398jOfamKIlC3Z0PI9ou2GfJNh+B1UzMA2dLDpQ5BlBlFE3LVVV4loGLy9fI8sSg9EI2etx2u/gez7D0RhNlri6v+cQxch1jfJHh1ARoGkGrmXQ6BJ3h5Dddsku3DAVEvKgR3cwxumPELKCdfQMf/w5ptVBt3oIRSLeLFjOH7lfPLBKQmpTcB+E7CtQZYWsLJAQpFXNzWqJ5Hdpqwa5bbm6uePX//RryqLANXUs20UIiTzc0+QZlmmxy1ucwTFHp8/wPY+qyFDKFjMs0WuLNq1pgphYyzDHNo6hE8UJRZbxcH/HdrOnzGOOxz7jkyMs00AIcOQGIw9owgi9UjDjls96fT7/y79GG3hIssHuYcnF5QuKPCUvG6qqRkgyu9kVcRqyXC4w/QFxlhPHKauoYSsGfPvb33N3NycunsgchixjWRb+aIw/HmJ0fBS1RT56jhg/Qx6MaTsuQoOyTFFEhmgy5LLE91xMx6Sqc1zvqY6p2S55Db/573/Pbr3H0zVGx6cI1eTN3ZR/+PoHaiHzbDii77gYhsV3j48s1ksMzcUbvKJpPTI0ZEchyzOGQxPLk6i1jKLasa5M4hSSpCCKcyzToakE2aGk61vohoIQDbtgTRBs8HXxtJWVxxRlyWG7ZL/b0tYFHQ3i+S2b6RRbFRymtxSHHaJIicMIpW1pipw8L8iTGKHqyJJKXlZIQkb3e7RlBVVL1/aJdwHp7oDagigqTLtDpz+gKQsM10U2NKq6RjENhK6Bqv7xYlNQpjHb5ZLt4hFoyZOEPE+5u78jalo+/8UXnJ846E1IVOlsg4B+r8/tw4b1wx3BasXA9zk6OuP5p69YxzuWmw2L2SMnpyO0bgfdtZn8ESW9biTWjw9U3/0Gx1EZTYZc/vSnPPv4MzRNpcxj4kPA/dU7llfv2M7nJIcth92GxWrBdLkgqUv+6j/9HL8/Jk5yjgYdlLIgKGqObJkyWPHj9QxV1zGlluUu4na+I04LqiInkxUu+z7Dro+kPr33y6trkjKjVFoO8Z40iTFcB6nfR21qimjHw8M7it0dvgWHCtAddEfDOjrG8DyELphdv+Ob77/j2emYXZTxm28+cPM4J80LqlZwMprQ0UyEZnO7ynmcbjm9eIFpq5iaRhnFOJZFWRUUyR6KjGcnR3S6PRpJ4fnzCwy3RxxkFPGBrK2wj885+/RP6XR6LB8XjAYDOp6LpqnYxpPhvlltcB0Lipwyy5DqmrbIcGwDTX66V9nyDk8JmbgWIkkwVQ0qwePVHe9+uOHDuzW7fcZQqbEVQYvEzWyF6vRYzFdMw4Reb0Cv62O4HWRngOp2UU0HAYCEYhi0ZU4hZKI0Y7GPefuw5N+/+ZZG1PzVX/wJfUVGaQoKUWM6Jp7XwXJcJF9nl80wLRvTctk8zNB1mzqtGY/POLt4hTmasE1iKAokRUOSZLzeiH53jFQJVMfDsDU0TcXRNYqs4GG+pj8a4lgGCmCZKkc9G1PX8G0Ly/KwhYKqq6zDgPSwJt48slnMubu7x9ANvvj5L2mTiDjYU1Q1kqRgyiqnz19wdn7B5euP6XW7KIDr+1DEjJ8/wxpNqMI9YZSz2+wZdDo0RUGFxtjWyNOM0/MXWKqEpT+l6xxLp4n3iCanLUPk+kAVzFi+/ZrrNz/weHdNGAZMo5T1ekPRNk81e0ouhh18z+Pm9oF313e0NfiSwHc9glVA8O6GtlWRnAFZ26C1Ma2igmHj+Da2pdOaDre5gicqNo83dAyZ569e4vo+jmNjGTolDZOjPn1P42Lg/j//y6LJ//e3v/lVR0gc+z4SgjJPaWjYrRd89vyYbn+AZrnIrQJlwWq7ZRE80j86wu31kBBQZSi2jmgbpLxAalvy/YE/fP0d08WKJM1ZBgnb7YGyEWzWG4LtBtHUKFSkuw3RPiDYhdDUjE5PkNwO0+kD692C/eaRqthTNzlRHDKdT5nNbtkGB364XRK3PvezGEft8+KT1yiGzf31lEpqKcqEm5t73I6H7XVoW5n+cIhcp/i+jeV1yPKGpGpZTqeIpiFPEsbjCattQCVUeoNjjk4vMPZLOo6P1Ttis9oQzB7YNTre+Bz/6IQ82dEdGXQ7Pv3xCKlKyYM1Hd/HthxUTaFSZKZhzi6KMH2NQ5ZxtzlwP50RbtYIShS5RZYlqjwHIfHuas5suSFrapa7EGQVRTVokdFkBdPtEkQxrqFx1O/Q73bY7A6YskASEtsoYxakxMGeLDkQHtYQL2mjkHy/Y3W1JN8eSNchm9UjP779jv/629/y+/s7SkunZ2s4VUzXM3B7HVS/w+6w5WG9YZM03NzckuaCGpkoyvnTLz7D64+ovVOiQ4JmT8ibLnmpYAiTLCkYnl6C+oQqVSmJN3OGkxGt6fNv7+bc3s2xTRfX8UmLEtGCJstEeUUax9imgSrLZEmMJMlUdck83GM/O0FydSRbQXVNgs0Kf3SEa6oMj49JywqNCvKY6eMMQ5ERAmyni6apVEVFtI2IHucYtYysWihOF6vnYipg6DL9roWlNuiGjqyqJEnIdvZIlWUc1guyaE+4XxHHIYesRtJciqrluw93NGHOKhQcux06jkFrGEhSwzrYoGkyVZGzWs65vn/k1atXOI7NzWyBpOm4ls1Jb8D5yTmTzoAgzIgPKa1poZ49Y2BqRGHIu7c/4rQyn16ec352TC2B63k4mophmOiWwWa25PH9LdvlmqpuOD/q4poaeZ7TtC1RnBDkBZk3Ine6rB7uuV8skV2PokjRbRPZ61OGW2gqFEkgC0GRZyyDBMv20RSIwxhJyJgAVUNbtciKhemN6flDPLvDs7MLnr3+Ca8/+QnDyRhBi6QZWKMT7N4AXVNRLRvd9p+GudoSVTMQpkuBgrA67PYhqiroOxpnJ0eYtk2a5cxvbtB1g6ZuWe5j8kJG9E9J4xjL0BGKDIaJbRt4kwltmeF5HgKBMxxRlRVRlPIwWyAk0E2LsJGQdY0oPmDaNrbrIRsGldtlcwjZze/54cfvuZku6A8nyIZHnJW0yIx6Aw6bLcvpjOVyQ//ZK8qyJT4ENHEEQkNCpc5rVsuEujTwPIMi2eJZCm3dImjI84g0zzEcm9GgR5YklFmGbTkM/A6S0FgcEtIsI2tq5vstBXDYbokPAYc0493dLdfv3xLnKVKnR256fPnuPdPZjKos0BQwDQ3XttBUiXB+g29r+D0fvzdkE+aItkWSJPJG0B9OaISMZrr827sD33z5noEmUNqG5WzGfjnjfDjCtR0k00TSNHrHE9K24erNG978cEtWqhwNj9ltUkSr4fQ6BNs1ju0y9PuojUGTSTze3EEZ0mRbqjLneOAxNmo8x8TxPfzhEBSdTq+HpgjiKOKA9NTJH02QnC7LxzmPH64Ip/dkmw3RdkO2mmP1huzXaw5pTVYVlE0JUssm2HK3CWg1HbPT4/z5MZO+he2btAgkRaVt4e76nr/99dcYlkrXs3jchlwvAgrJRHO69IdjDNvH9XtUrUCUBW2RMxyP6Hc8wt2Oxc0Hvn//ltlijq5a/OIX/wcf/eQnaI7L2/kdwtb56MUlpmZgWRaqbbPe7Vk8rnjz5fdYkoHvemiyynq5oowKTlWdJgqxDZk6T3F0lc1qyY/vP7A/JNjmJQfpGEWJqcs9wW7J43LOZ8MuZZxQliVxXSKrEnVT07NlnvV9Or6PZVt0ew6WrdHvuHS7PfyjczTFRJZ0Xvzl/0X/5JJed0THdhkdnXF++RK/c0ydVIhaAtWlkXUMd8izkzPawxqlquk4Pn6vR3c0JNrMuLm95u/+8DVVmVOWFbswZhNElGWJZyhIskbf8vFVF7sQ2LKJM+oyOhrjmybxPqDNYpxehxdjjzO7pjc8oje+QNa6GO4pncExXsdGM56G5jdvb+mMj9A9A82xkXXpMzn3AAAgAElEQVSN9c0Hkv2eeLNDSRPCOAZVJakEsuFiqjKHQ0CWZuR5gWgbdFXj7OQU13UZjIag6uiDPl3LxdVNhqaL1jTcLhYEUYzUtNiWiSwkfL+PoavI1CiqgtTxSKWGfbpjsd1SCBVNtNRZAfiUkYoUhLRRyOHhmvnigfeLFe93AakiMG2FQdfFsEwMBbI0ppJUylamkGQ0Tafb6bOcL/nHX/+e+WqNocmMul1Mt8OgP0ApU/q+xyYpWTYqdnfMYDRhNBmjiZb53R1Vo+DYHoaqEz9O2ekl7vMBCg26YYIk6HR84uhAx5V59dEljtdFU1XSpCS4/cD82++Yvr3jsAj4yclzel6I9MxDCJX13T1vf/cd/e4z9F6fvMzZHzbIMqSHkMV0yiFKMN0eVZaTZRlRFFMeDgjNeqoDpSmCFsv36Q+P6IyPnmgfgyHOYEzbPQavT63JaHJBHO5RpBhJF5ClRO+/R2lydM8mT0L8jodm6KCZvPnuR/7p7/+ZgeMwHo6w/S5/+O4df//7b9jFyZMp1DZM+n1u9zv+4cdvOOQZcVIRhS3hOsdUNE7PPLquik6FIoNmNGTSgcddSyVcZFVnv0tYL2PkQkVsKvq2jt/XSeviCVO627Pfbjgb+U/ibZqS5ym7+R2vjrqE19+xX864uX6k3/HwXY9wt+Hu7o5ouyHcrp+qx3lOVlbkaUqrmaRRSNW0tK1EGh7whmMUSUZBRv2jCRPEMVnd0lYl6WFPFIbkWcJmsaClIWshDQPKMmO3mLNdLvnxh2847HeUVU0lC+IspTEUvvjpBYoc4Zgt2vA1j9MN4T7A7/So64b72zvurt7jGgbnLy+xBj3CouRus+VPfvaay4tTSiER1QJbVWirEqWu0fOcvpxx8vIVvZPnqIZLHmdURY7UlBRpRBHuKbKYbtenqXJW6wWPqy2HLMPrW/zyL35KfzRBrhuMdMupr/GsZ9DIKlkDV7cz7h9myKLGNTVkIRBVjRCC9XKN3+mgUWCaBlJdoxgaaRYjaxqaJFgvZ2zXM9KHa4LrN9z88AfC/YLx0EHpeoyOuzgXHyPJNd6wi6JCsHzgn//hX+j6DmgW/+PL9/xwdc9muwMh0Xdc+q6H2kpkQUQYpbjemIsXl/z4/bunM6MBYdh0JsdQFNimTn/Qx+kOcAZj+sMxsmay3x2oq4xDmnDx+c84vfgJvV6fw+5AvA/pj8b0ex2gxlAVijzh+uqapozxHBNdeZIxyqbCNkzIY1S5YHDUZXwyQVdlwiDg8f6O+/d3pLHM4zxCVA1uW6NRY1gWt7Mt148LKt3jh+sbXFNFkWRaSUHVdKosR+QJRRLS1gW0NfFhzyqKuL6+5rsfvuWr77+EOqQrIsZ6iWnYlELHH3QZTgYYqkDVBWVbEccHfLeD1rbsljs63gDbHWI5Pm53iFBkyrbFMwySJEM1XZzJc6KsRdFVpEGXRtM57nURAirg7XRGnCb4no9lWbi2iWNIeI5FSYtjadimgmLIVE3O+uE9m8WU5XqLJjVcHo9wbIftao2tyDQV/OnP/k8m3oRBd8zRn/wZna7PeDiiqitM06Q3nqAbEqosYfgdyHN00WIoClkY0et2kdMIVdPRDRtRl9iajKlpGKaJoyloiqAK1mTzB+LZlLhoqGQd07XZFQ2y4yEcF0nIGJRMfAfP89jGOb/+199htC3Peh3Ozy/J4owffv8NSqMw/PgzIioOWcDg8iXa5IyybtFsE1VV0HWVOsuYfXjD0NUYDQbo41PqtsW0TBQhUCSQLR1FV3net//XRZPvPgS/GnV84IkmEUYH9tsNE0fh48tn6KaNbtmIP34wyjrnYb7AsAXnJyNsXUFIIAmJdreBqiVPMqJDSBwcuJ0vQBKAYBOEJGGIptrsthG79ZYwiCiykjA4sF2tiA57Oq7J6GjE5PSEIk95e3PFh+t3bObXROGezT5gF9VcLwuulyWHJOPV2YjPPn2F3TUI84D76ytePR8guza/+9131G3LeOjR6bj4fhfH8ynTCE1u6U5OEDX8+O4GRzQYhoHtdlkEKabdYTgcoW/njH2HzmCIpDq4js9Qgo9Oxnz0Z3+G5roUio7mtXQ8F0ORqMM9rq5hmSZ5mmLYLhky8yjmEEW4jgm6QSUbbDYB77/5CiXPKdoa2TApixxNeSJ93FwvWW8iDoeMsm4Rkozl+FSSiq4YjI5O2B9itLbi2ajDp69e0Wo2Mi1j1yLJGhabPcvlhjaKKXcJh7BmNt1x2GzZHSJW2ylfv/+e//bD91xHB+yOR1dpONMqzgcdRF1hDzrkRU4kqSRZTRDG3C+2HNIchZa//vlHDPouxtErslohCjMG41MGR6eYmka4WtLWFVqr0T+/oClDTNOlSgO6PRehGhwqg1zotMKga1ukWUaYZuiqhKgq4iimZ2kokkxyCDE0jSiMWKc5/fEA1TLIipxgu2L7eEV2WHF6fsYXFyPKouDt1QOrx3uC9Zq6aZBbge04NDWEmx3bZUie1hS7Ay4NcVqg6Sa2qSIrMrLUUhc5eZohFI1W1GwPIYvpI+sgYLvdkJQZ949ztkFCsA/YByFffv8es5Z53ZlwdnSK2e3Qyg3Q8Ob2ioaCIEqomgpLhc5wxHq9pmmhROP86BhNSIxHpwSVwv3dlK6Q8XsDzkZ9+rbBIUqxVYkz38LmaTQY2+Q2SPFkCUmS2IcpZVKg0rBYTHmYTjnyTSaTIVWRY41O2WJSCIlZKVgs12iOTSkJDppLU5Yk+xXxfo1oSiRa8jxHlmVURYEsIYtTTNV+IuQIBcqSuqiQJQPd7qOpOpQNVZKi957RcXy6vsfZxUvOLl9y+vyC4fkllu0QZTl120BVoCkCqa0pW8HtMmS52rJdLUi3M6RkS7/rohsmsdlhe3NDk+c47pPwtglihGzSmi7paomFwPR6xEWFYwq6psAxNTrdLna3j9Yd0VoehzCjzCv8fo9tLahUDcXUyfKEMk8wXQchK+heh0Va8HhIWM9mXN8+Yps6mm7ToqBJMo4QJEFMvtuhJyH/P2VvsmVJmp3XbbPf+t7stt6Fe3hkRGY1QqFQJEFwqZlwrqU3wgtpSQMuUAOJIiCwiEKiKrMqM6OP8PDe/fbX+t408HoBDOwNbNk6ds737f24z/GnR5R1w3YfY0QzQIauxVF7sixDNxxM36PJd8hSzz5OMV2Lk1cv2a83FPGOaDwmnB2gdNAVJYGu83w2w9JNalmiYKBrcjTPQXJd7ssE19epFJnWDbi6XfL2/VuKeEO+eMDUFAzRowqZruvYLR9wtY7R2MdyTDzPwQwPaJAYT6bYfoQwLCzbJ+4t/vN//h0UMRPfQSD4/Okj7fqRse8T+AG1anJwdoRqalRVyWq9o+tkBCqj0Qgk8aSktw3cwGNkmghkwvkhy8UerW4Qso5pahiG4DAymAYWx8+On2wfjotz8Awhy8iShCINPCweKVQdFJW+l2k7WO4LLj5c8Pn9B+LFijqv2WxSluuMtGpZpQmb3RqkFstQGISC4UX4oY8sZCJXx/Vsmg6qquTi82f+8dsfWZUNz08OURSNzw877jcJsqKhWVOE7BI6PnGeoxgmbd8hIzMZR3iOzfs3b/n04S2fb2/QrRFB+Iyh6hl5Pt4oIul6Do7nzKdTTMtGMi1qSSZOMnTDwgsCTMmAsn4Cm9sOTVUjFQ293LNvSwzbJIn3ZEnGw8OKshxQJRXPszEdCaVPyPOYuq15d3eHIcnMPJeybWiklnNfpqg6TiwbrTFxpzZWFKJoBsFkgudY9OiYzoTDX/1bvMkhQ9mSP26Qe+0pmm2ZaH2HqyuUGHS6hWkZ+LZG6AdkyY7tzWfKqqGWZTpT4/b9n/i//un3LPcxTdexTjL2ecXQD8hdi6EIxr7/FEmuBrRBZTqb4h6MOZxP0CSJcrulr2psBZzAB93GGB1iexGmaXP3KSfdC/zIxXI12jJne3WNPwmxwoC6zKiyPXWaUGYp/ijCdF2EKtDkAWSZVpi0fY+maVi2xdBDP/Q0ZYHnBoRRxHg8QepbVNdC9UZMVBnPcZiMx8hVxdXdA/s4+TO8WkUaBlRZoi5zgmCMbZp4poqjdzTFjh/uH9nmOV2T0VcVdVqSbx7Z7WOWpcSbZcxPqx2Kp/Dqm3Oi6QTHtTFFS1o0aJaH409BM5AFTA/PqXKZ3/5//8JqH5MXOZ5lEjgWfjjC1DVMRZBVLX+4vOfi4jOGGGh7CD2LaWSjOz5VMzCaT9Esnbar2A056vxpwSZLMn4YoakC11I5OBwxP5ihazJSuWR7e8/F60us2XMm3oAqNRhKy/wgo2tShHtCFhc83tzyww9vcL0xy7olSXZsFmuUoacscur2yZDTVB2yotKWGWleYBg2hh/RIrFNYoa6wfUCwskhpmFhGha67dHVObImoGtpuxSlj9EDG82wyHcL9rfvkXQVISSGfsA0TXpklps9/+f//nc0+4z5ZIYmdL79p+/57vV7Iifg5eEzDoIp5yfnxK3E3/3wHTf7DXnXUfcddZuhmx1BYCB1HaIbqPOEvsjxTB1FH7jYyqjWGE3V6Tq4u1vz5ccvaJscO02RXZla7RmknizPyfMCT1eJfJeqrqjKktOxzlys2Hz6I+8vNnSDYGiewNCO4yIjcbNY8vHqjsViRVlVNGXFap+iGhZZ9iSOyPcbaCpkBhTToc6fgMxaEKBGAXVfsUljlusl2yInqQoqWaJXBEXXs92uWT/ecH3xnvefLlAMldHhHG8yprcMvEhnPFLY7pZMTw7p9DF6eMoffvtPNGWObdmgGlxf3tE1NWE4whtNUf2I6HCONR0x8VT8wEbSVB6FQlHVxNstF0nFtoGvLRVDM2nrFiHr6IaO59g4jolt6fRti5BlJCFxdXPFw3JHUhQUdcPRsxG/+IuvmR4cI4RAUQR9vkSpFrh6j+xGVGVD2fS8/3hJmqS0fU9Tt4xdh32eEScpatsxHfnYjo6uCZqyRugKh6fPGB0cYosefajQRIs/9jl+dcr4m6+JjiL6Lsc7PKAXPMGDL9/xu//2Bz7fb5kdHvD+IebLw5qbqxvapmXm+EzdAB2BIjQ800Fu4SQKOJ+MIdnSIvPwuEIzdIpOAsPnaH7IdDpnPJ0jqRqz+YwizSizBEVTqYGDs1dY3gRN09FVkyYraIFgOkLXBLQdQ1Ox3ixY3lyii4HRKERzPTpVwTIcwmhGlu8Ipj7j+QF1mrG6uUJRdNrO4sNtSZx1+FLP88AmjVO6tuNwHBCnJbeLHZv1lvXigabt2SV7+ipHynYU2weUtoKuYbvZkCRbrr584I8//Yk3N1c4jsLRyODs2YSuTJhNPc6+Omc8PsYynaejkWHRSSp902AbJlLX0zcdm23N2bNX6LqJE0Vsk4Q2y5D7jjSrcR0PO5igGxZFW+MfHaG2DZHnopoGqSTx9vMnOgl++YtvMBQFua+wTQXHNpEVBSEP6CogoMi2PF68xTYN4v2Of/OzF2gy0Lb85q/+HePAQQibf/O//G8cOj714wpd0Zi9eEXSNNRJjClUZq9+hmKYNNmWLk/QbZemrDGESt4pnMxnWJpGWtTcXF1iSNAkKaKtGeIddbKnb0H1R3T1wL7VqFuF6/sV+zxDFjXPJzan04ixH/K42iKERGv4vP3xB969ecPcdxj7PuV+x8XnS+7u1szPXzI+f8H15zcMuoZ3MMMZjWllBUl5wifk+x2Pl59RmwrN9lBtj1WaYY5njD0HSZIQdcXtcsOu7fnL08m/fmny4/vF3w5tDW1NXaZk8YYiXfPLk4hoHGHYLoPQGBD0RcNmHYNw2LUws3vGgY8sK8gIKFtE21PkBTQt/WJJ2dQ8xDFClpCAOK9YblMsTaNpJAbhU5U9mqpyPJtgmiZZlqMOHaPJmLOX57w4nmFpPbahItkhi0LjJpWRDJej4zF/+c0E3xZISo85Cfn85QLfgOPzbzg6f8Xr9x8pkj3HBxajUEMIBcu0UHWD9f0N69tLIlt7+kEvUibRiF0tqOqBaDpHb0q0dINlWCS7mDCa8vXX3zAPfOZRQHR4QI4g7yroE2Yjn8A2kdoK17EwbZf9YkXV9HSDhAJokkn5WLBZpZSaiTeZ4GgGl18uETQISSLLcpSuQGoLHENhsUlZ7AritEKSJRRVx/NGqFaAZvs8/+prOqFRFyWhZfDVVy9xD05pqoYD32XmeExHMxx7jKZGlMKlMHy22Y7Pqzv+cPWB7+6v6IeGV+MRP59O+MXzE45PJowOZ9iOi6RpxJLKxcUNn292vPtyxzZJmAQO/9OvXjANDczREc7Rz3h42KJqBo7r0fdQ5jnD0CH3A5qiMIpmGK6FqUlMQhtdkXGckO2mZOQ4WJJEXXWYMmh0rNOK3jTp6wata5+iYFVDn1VkeQ6GjmTq2K5FVTfkyY796oHDkc7PnoVs7j6ye3ygbVpW+4Kr63uKuqEpazzPJ9ln9C0MCFaPO15/emTy/JRoIpC6DP4cQR3qinIfs09yCgFxnpOWFReLLe++XHF7fcv9w4oySeiqijxLuVvuSOOa0HA4iqZYhousqWiezWJ5x5urjwhZMBmFuKaK71rolsXB8TOSvKLtwHV9ZEXHDyfc94L1LmHuediuw2HgoqgKZmBgOwr397cwwMHEf7rWZzkBcHf9wOJhyX615eH6hrLM0F2f6eEpoaOjKTK14bEtGlpgt93Q5ilJlmGOI85fHZOuH2mbBiEEkmGhDi1N02BaJn0PUtcRioEm3mEKnVI26eoOqgIkFXUQtFVPlebkqx1SURM4HhQF7vEpKCqaruGZOpbjoesGQ5FB11DkGderjNdXj1x8ueTu4j2LLx/I4i2T0EO3HYq6Q5c00oc7LNOiyAuubx9RFI2mG7j7/Jk2ywhMm0HTsF79gmnkYCs9dZljGAbK9DkZJutdim7ZVHFCbfrs0Kj7AYkBzVKJkwQkMMKId48b3n78wE8//QTjY4LJFEfIWKaFG04Yqo52taYuatq2J217Lu4uaeoa23DQJocUaU4pabhygiXnRKFLURTomoHpWnT5nsf1hiDwQZKR+pam7qiaFsdxoeqIDAtNUjAVjbOjY05Cn1+8eMHh8QHHX79gV23YNwm1NFAbDulmSV0mrG+vKHYrFCHRtw11VRJnJXmRczjWCEIHyzaxbAPT8wnmh+iqiqLIKLpO74657HVu66dvdbpYE3gOhulw/eULtvp0KRt5IV40Qgs9gshFVQVlXrPfpiwe1mT7jP2+4Pj5HNs1GTkaycM98Xb3tKjTnwbWYHqEqvWYZo+ptcxmUwQNOg3Pzk8wpyd0yAzDAKqgrnM+3tyTSSpNnFJut9TbDUVWsFxt+ed3l1yvErK8Zl/J5K3EJstJqwLbMtAsnePjGeNxhDeZglDw/wyBfbi75eH2lvVqyw/XC6oeRpELisZ3H25YbGMkJFpJh8Of4XjPMQwVwzXRTRvJtJmEAR0y3377z1xcX+ONz5h+8+/5+td/Q6TaqEXLZD5DNlRMU8MxVUzXJh0kZFVQ5iVZ1WI7Po5u4ZgGTVFSdS2aaSAbMsY4ZLFbo6syuqLw+LgmyUq6TkYzLTxbZ+TISNWWXRqjCEHTd+yrigPfYRAyddtw5igcGCpqodHuA8Kxiz7WUS0bZzShrRribYI7P8V/dooQCkORsflwxZfvP7G6WZMuE8p0hW2bxJZFq/TYckOggh+EdK1O2xt83Fb8158+8ffffeCfLh7Z75fUTc02K8mrFl0V9F0HfY9n6oyiEcfHJ7SKgRY4SK7FbDYmMG2krkduW2xNQS4yjOevyOoaoeg4QYg7mWJZDlevN9Syy/jQw3ENVpdXCE3HDh2qfA39gKzqaK5PkSS0Zc54PmEc2Hi2hu641MIiGo2RJDB0E8PQKcvqSW0uKYzOznC8EEc10OSeUJHRNB1V1xmNx4SGwXqxZLte0xUZZVWjSQNZlmNbOoFpYSLohh5JGqiaisftjlySn1KOccxjtueuLrhK9yyamNFU4y9//ZL50Qn+eIou95RFwTqtCMdzVCtgt9lgBWPU4CuWHx54uLpHsXSQeOLiSAP0LXJTkuc1n1Yx9uiATlKZRzaHrqDbfWEUGvjPvqYTBoFlIFU5RZUhRy6dr+EYGoau0VYVvuchqSbzw0MC30Zq9mSXv+f+xx+gg6OX50TKhkko8XC9pt8+cr+TkGffkCcl28cFP356zfuPb2iaDvPsBYuHW2zDoC5K6qqiyBI0IaMoOk2RI8sKTQ+yquFNDtHcMcvtDqmsMFQDtR/QFR0FCVnVkGQQrorhG5jTGUI3UYQguflEunpA6gdkw0YMPbppstnl/N9/91/5/P1rIsOGsuH773/i6mHFLBozi0a0ZYdlBTzsaqpWkA4SWdcTBRM8b0Q4ijAMmSJbs75foBsWqqvQ0qDoJmPb46ZSGVQLRVJoqoqmjHm4fc/Vh39hkHNsq0c4Kv3Q0/U98X7HPt7jeR6WJhjKNYdTk/DwGbZekKcZo4MjdoWMJTQsw6JvZXRVoW8bdmnG7d2S5S6mKCuKeE8zSPRdR13WrNdrirwgTbKnK7DrUVsOgwAj8BF/BsqjCoxxiBfY7PdbNvc3fPn4lh9e/8g6jXGmE5RJxGDrFEqF1q5INzeUVcl0PqFXdYKzX7Nabvnht/+AKYPvmKh2wC7JqPIcP4iIxkesC4XFIuF4PgW5fbLtyYKsLPhyc8U2L3DDgMixOVU7bN0kjCIM0yIII1zfRhEdijwQb1bUdcHj/T1FlnF0NKEbGiQZvnp1gueqzGYzbC+k7jtcbYBsQbb4hNoljEcukjyw3+1ZrhPivEFXVbq2ZuxY7PYJ282G0LIJAhc78LBnE+oq5f7uBtHmyGqPYtqooynybM7xNy/QTZCGinVWER49Y7t+ZHl9ye/++/f87vU1Z9+8opMVfv/DR969fY8MHAchnmYy9GDb7pPRVBrYLBfsb66Q1htCIfN8MmN0ckjgOYgmw8jWVLslQ9vgTuY4noehq0/vQl6gaApWEOCMD9BNH0VRaOqKKAgp8pKH5QovtLE1ib6ukLqGy49vyNIdlvOU3g38iL6WGU/nIDX0Q4mpmrSDQpnXGNaYTT/iy6clyApVWfLLozHj0CNvesqyZuK5nM6n6JbPcpOwvL1ht1oxJFtElSJoaZqK/XbDzfVH3n+55P/57kcWdYsdBhwdTPAtwTy0mU5HeKbGbDbCcX0026cWKlvJxjIVTHmArkaWBXnZk8UN8/kxru0j9TJ3qw1uOCLOcuqsQA+PaIVFUbWYtsPYCxCSiuM4CE1QNjVNP/CbX/wcg462LKl3j+iqhGnqqIogr2ssVaZI9zx++cB68UiWxJyNPb7+6pyqLPmb//i/cvL8JcHshNH8HLkVbF6/wxKC7d09L/7yN4x//hWyF5ANoNouje6xiTOKuwt0WULRLbZZBbJJNH9GX7e8e/+GfL8m3q6pepnPny54vLphcXFLUsPDlweuP13x5vvXfLi4pM7WjMyG43lEOJpiGRqT+Zi8qEEz+Pj5gu+/+x5T6pkFIWQJny+v+Xh5Rzia4XojFF3jcbXk+D/8zxhCRtcFq89v8KIAqc4ol5foMvT2lKLpUWWJJs8xTBOhKiiKitY37B4eub/6wv/41//Dv35p8s///OZv5aGh72qqIma7esCkxNfBMk2cIEAW4skwkJVsNxuKIsE/PkZ4HrbcPUX+FZ2q7hjqClkopNs9fVFQFjkZA/ssR8gSlqaSlRW7rKSpW04mR0TBAVL0jM0mYXRwxMmrn+POj6nriqpMQJZRnRAxeUFrH+EdnPLq/IAXp2MsvYNqR91WzL86Q3YjPn7/ieODE05e/RJFDJTphi+fLvBshdnEwbEsVM1GU5/UQ1efv3B3/YDclkw9A8sQ7JOaTrY5PXlGefMRW4bldst2u+d0fkDQ1oSeixUEDBK0qmBfJqj28JRUMXXapkSWJFzXA1Un3qcMyDw8bAh0gzYrifOcjdKQDTnTwxHj0GAottRFiq5r6LrCYrFAFzKKNEDfsUpK4qymrBqEqjE5OMYLRiA0jo7PmJ6co+oWq03G5YcbwvCIxgzp0wqBTtEM1H3Lh4cbinzNDzdX/P7mC/fxFoWBA8/mdBxyPJ9w+OIIfzZG8T06CTrD4W5XkmYDP366JasHRo7G37ycEhhgeiP06RmV5JDsEwxTQ9V0VNNG1wwQKqJrcQwVx1DwojGO56HoGo6hYpgmpWSwWW7xHZehaYm3Oxy5x1MGqqYHWVDlKY5uoGUtm5sHWtuhGBqEoWOYJrIsMQw9dbbjr//tz5lNIxwxcP32T+x2Mbph0csKq9UOVVExhEZW1rhuiC40+rxjU3Skhsb5r77CDjTKdEm5u6dKVuyTmO3mgeV6wd1yCUKmrRMcKWVkSUwdhdA2UFWF+/stTSnz9fgYSzXoyhbXMmmFRNPV/PH99yR5zHQ0wnNdDo6PUGRQTYP1ak2SpCSVxDQaY1sOmhOyLWFgwNBkdorA8Qz80MCeODxsVxR5zvx4RqVqpG1PaFt0RUm8S9iuFsTbPS9fnOFPA05ffo0XTdhnFbqqYIzGFGWFbllkZYZm6azTgsH3yNINaZahqAq6ZWPoMmWa0HcdmqYz9D2i67ANE13TyfYxJAnVINMMKl1Rkac5+X5HkWbsdzu29zf0ZUGtGnjHJxTJjiZL0Q0dVSjQNlR1zWaz4cOXW96/+8DNx7c8XrwjXt6jKYLxaIypGcRZyzSYoMoa8WaFhKApKtb7GPqeqpdY73aYqorl2Ci2i5AGujJh7FoY40MqZ85FDJ3pE2+2rG5uWWc1UjAmGI8xHItdEhOOfZrhScNYKho32z1pGrPcblmnGc9efo2maFRZyuHhCToSVVqyXG3pgKKpeYzXbNZ3REOJCVjRmEGWqJsOwzYIfANFAdFl5HlOKwTb3RZZkjANHd0wUA0Dx9N2vOgAACAASURBVNDJtjukuiUKIw7mh2gDhKpBEEYYnoM1HuEezcmbhDRdIVQBmslq8YAydOw3S/LdhjLPiLOCvG6JfIOXzzzCwEDXVVzHwbRtvNDHDsdU7YBpGmjuhO/uY/6Pf/yOd6sE9/AQLc2xNB1D10n2MUPfMp0/8SAs36e0TDzPQtMUHu8X7DYx2b5gH5fIQmZyMGI2cWg29yxurri/+kLVdSjj8Im3YyoU5Y7ddklkS4zGEYoMo2nI6PgE2XQoqgbD0FAFSLpKWha8e/OOLs+eFHdVQR4ndE1DmmXcbnY87lL2Wc5qv2cVb9mnMas4Ia1q6qriYDpBkSUkIaOLjs3NJyQ6jk5m7JOEf/jxEsXQmU2mpEXNj1/u2e2fqleScJG0EdmuRlVNDv/q3+NOj9HmR+iOw3Kx5u0PP+GqJqezQ/7yN3+NbvicRi7nhzP8Scgui3lcXOEGBr2qs8syZFVFaAo//ek128tHfPtJNa6YGmVVEGcpimeh6AJZ6sh2KyjTp9pn0WLbLtVgIbw5gasRtjGr3RJF1VBVhbbr2JUlgW0y9A2RgIlt0DcDkeoSTiMkX0KxLYRuYY6m7G7vcV/8Em9+iDQMtHmOGAbybc/usubDd29pmgJJge4gZNfuyPaPtFX9pOv9+AU57XiIe17fviGtSipJI062JEVB23aoikARCllRYQrwLYPA94kmc+zxFMnQaeoCq6nwhMCyHRRJ4AYhXb6l6mUwbQzXJZgfojkOZuQ+AYVlgek8Gf/WFx+RVJUm3UKdY/ghdQeKkJDbjHx5Q9M3BI5AtCkHZ89QdJd9ktF3Pf54ihdMYJBRhUovSezbGoUOrWyeKtC2jaeqDF1Lk2c0WUaTxOzimCRJkZucTZo/MTuqGguZtigp45Q0L+gVmXZoGeiwfRthGTS6IFcHjKnJeCQ4evGc0fwIz7aRu4pisyQeVMqyRZdg8XDLoNs8e/VXlI3Gw4+f6Pqe3lRRNRXbNDE0Dd1ykZuau7RikZastzF/8eu/Quoa7r+8xXdMHD8imB2iGSYUKaJK2Fx9JrdNElPB1DVUMWDZJvt9wsHpc+bTANqCYrfm8ac/oHQFk+mI+59ec/XTe6Re5uJdwuhoSq6aJImEpoY0WcN6u+Tt4xW77ZLFxzfkSUxadjiui9x3dHVNGqdYmok0CPq6wjBdes1Bd2yC+THTk1dIhst+tSNdb6BuUXUL++QU4/gAy/fQHQ9NM5AkmaGp2F9/wNIVTNdFFjKmoVOUDX//X/47v/t/f4siydxvY378co00SJyMRgS2hSKpuN6Eu13Ct5/eUOUlX8/OqDQTy/EYTaf4kUeVbcnzLaqQOHs2xT2c0OvS0zyGzLqVKHuJPCueBn46RJNS1QlJtsVWO4RjISwLpIGuyKGpWazWhKGHJ3J0DZZX7/j84QvR7ABJN5keP6etHZTUpStk2q6j6Tt0RUEZBoo8Zx8nbLd7mrKkzEtQDbpuoKwrUFTyrqbVBJLnkacxeVVS1yVpkTxhADZLHm4v+fT5LX/44Q88PtziWjpRFDI+PiQbctblkvjuR5QyIwxHRJMJim4xP32F4RxRxDEfvvs9mtQz8l10J+T2foNt+6iqih3NKGSLh4ctvVAxHA3TGMjajndXt2ybjnA65dAxMOg51mRM2yQYhchCYLsmQu5J4y19U5GslyTbHfE2ZjSfI6kybdegmCpe4KAqA6PIYTQeI3U1+lBjGoKhydk/XLN9uEZqEo4nBpqmsI5r8iTHMjQ8x8XWVTZpzv1iga0raLaJZpnYnodu6XiRgyIG/ONnjM/PGE0DoplHma3ZxTGNMBG6xts/fc9vv/2Rd485p998Q2UGfPsvf2Lz8MDYtng2nWAIlUaSkBSBYRhI0sBquaLY7zCFoG87bNsjGB0TPjtHkiB/vOPh8iPv379hFI2xohGGbeM4FvFiiYJE3w2MDg6QVRU3GtO2FXXZMI78p/+r7SO7x3uGKkHuWpoyQ5V7vnz6iOvYHJ6e41ohamuQbTPi7Y66SlBNFXQP0wjpRMTt1Zb9PkVWdOq2w5Dh5ekRke8QRiP6Afq2Z+7avDg4ZBLMcBXxdMCoIU5qLm4X/PPrD/z9Tx/44bGgUU0MQzCb+Ew8lWeHYzxD4fRkhjz0zI9OcMMpiiowHB/bNskfbzE1FQbQTItm6Lm8XjE9OMLxPFa7Ct1w6FB5XK3o0FBMj0LRWec5h0cHaJJA7qUnu6xnk+wTgsBjFNhAx9nEI4s3lHkMMpimQdO29FVOullw8fYNoa1T7Db86udf49gG44NnfPWLX9MzMD46w50csb5+QGx3fPuH/4Y9wNH8JdNvTjE9j1bSkYaB5e0tm6wlSXKcISfdLFGHlv3mkaZqSYuSzeMDadNw8/CAFUzozZDVakPe9NzfPfJ4c8Xi9gNRqBHqMqczh9mLr5icvcTyAoSqogmJfZzz7k/f8XDxkcfVFmUAXR54fXnHDzePBLqJgsJ4PMXyA9ZNTz06xZkfEl+/I71+gy7VuKGHPx6TdYJdLWN4Pl3bUqYJrVBwbAdJUZC7GkWRKeuUf/ebX/zrlyav31z9bV8VdFX+xGLY3DOyZWxdsLi5ZDyOcB0LIat/7s3HxPkjECP5YyaHM2yppmkqpKai3q/J0owiTuiamnUPg6YxtC1VVTL0A0gSjqrStC1pvMM2TGYnL9FUg9HZOZ8+/onR0TF5nuFNDzCnz3AOXxCOR4zGHqEj8DwDVRnYPHwhibd4kcvs/Bs+vV+TPyx5+fVXOL5Hnuzpq4rNegddxWTkouguvh+gKAJVkaiLjLzoubi45eb2AaVvOJn4GO4YIQmaxS2ermEAx9EIUZVMdAnDsljd3yFZOrrnkvQNWDJlVeJZBoamkqUpsgSW76PoJtttyiCrbFd7VqsFQu2JLAlb68myhAOzY+qp6HJPHG/puxZDNxiAvqsJbQPPELTtwC6rqJoWTZUxTYPpbILjBbjRHG92TrUt8WWLyva5u7iAuqGpG/a7FdfLBzb7FXfrFRI9KnDo2MzCgPNnJ5w8e0Z4NEaVe9zjE2RNIxsED4XE1d2GHz5csNntmNqCnx17GFKFH9iYoym9HsEgs92tiSZTDNOm6gWaJjDEgD7USLSMp2NQdUrVQbECmh50VcXxPVLFRBsEou2o84x4vcFWxNMV0jExTJO8aLB6ib5sGTyDpMzJq4p+AMu2oGsQCrw6n+LbBpqQ6JIVRZ4Rjqf0A6RJRpnl9LKMpmrMJjMMzcLQDSzVYN3D5HDC9HiCO5ugBRaSOdCJjl7pSeqCdL+kWF5hkDF2dSauhS0khBiI44zFrueb018QmhHb5Zp9uqdXBGmR8u7iJ/7w5T1B4HJ+9pzT81Mc3366ppy/whtN+HR1zyDreGGEQEYSCtteIbCfNvWNKXBGDuNZwDbe8/HLNX7gIJsuP735iDwMjB0NtWvZbhP6occ0DMIoRDc0wihACEGc5NztS4QiM/QlRVOxXC/Juxo98hmfH/N5cY8+wOP1PVLfIWgxlIG66VF1A02VkbqWrofA9dA0k6Ko6IuCNN4R5/lTpzzPSXbbJ8ZOnrLdrck1FYX+ybbBwNB1lEXJbrFgeXdLu9sQmDq+CqItGRAYboCuG3RVS7IpmPpzJuMj4niHGFoc0yDOMhRJRvU8cqCSwFVUdFWDtsZ2HRTDxJgc86XS+HC7AFX/8xUtZ33xhVEwxXR8iqbG8116wA8cBllCNjS2SUrVDdw+LJBUnbOf/xJbFpwfHSEj05UVQ9XD0JM3HUrXkO1W7IucoqvZZBlVlWH0Lb7o8D3rSeco9ehDgaaApkBc1AAsN2tkaaAsSlpJppcGbNvBi0JkacC0LdzAxz85xphMcA7nuOMASZXJ8pim3NPkW/LtHXKbUu0XVPs1ZZGi0OE6Gs8OPCJXxXN1ZCFzdDzFsE00XcdxLEzboekVan3Eu/sd7356y+d//AeKuMQ/f8nMNrEQyDJkeYHnBxyePwfDQnFsKiFjeTaGKj+ZccoSYZlIgKoJXFvCVWtuP30gT2L2+z2ZonB5c8fjzSVSk6PoKm29xzVgMvI5OX+BpgpMx0FYNm3bM7QlLQPNIIHtUmk6DxefyR4faMqSuqyenrohK6unqqls4XpTNLlhn8WsdluyNCEvcmRqujKhLfcUyZLpxGcyG9PVFRfXj/zxyxKhaQzAJm/5dBeDMcGIXqF6X6EjMwkcsjSm6gc6VedmsSEfZALf5+jsFZ5sMAsDIsPmVy9PmYcWs8MRkiH4ePkeTc2YHcwpyoq6LEjiPcl2TxHH6LrO8fExAwNIMkII8jwjVgZqMWANNeuHG/qmJm9a9kmLE8548dUrnkUGUbWEdE2839EqCrb9FEOu/gwydRQJo68wVAnbEKRVjGU72COXso5RVRnv6BjHsxG2jz07ggGEpmOGIbblYfshptEiGSWdLQhGMkEY0w8du9cf4O6SuWGC5XDXOTzu71FUCSQoypyuzdGFhOtYNL1EXRb4miCwdMZRyHR6gG5aeK6Hp8ic5Jf09/fY00PQdczRiK5raYcedXTI+OAIw7JQDBNJVpB0FVRBNHMo0x2Pf/wtTbGl2FyhmAqSav4ZiFmguwZtvme/vCPZrVHkjuPzU8YnL9AsG8c2McMDtnlLKGt4iotlmti6QCpLAj9AKQdUd4TjGKhtS5nErG7vSNM9cZzwGMfkZcXU1KjbmvttzHq/J8lTsrJhmxfkXUvVtUx8i6GtkIRKp4Hm2Tz7+hTb6FEtj7Of/wbdtBiSLU1dc3V5R1dmLJcr9GDGV7/+D+hOwPpxS3m9Js1z1NCn6xradkCzfexghOg7ZKFwfHxCNJlxfPYcpd4z9QSvfvUbwsNThKahqBrZ8p708jPJds2KHvvsEMPQUKQBx1CQhw7bkHFtBVX0DPWWodwjCRXr8Azb9Sh2FasblZurDkWxqCyLXfVUp95vNxRlStzW7IqKtm14vL9lqGo03aXpejRgtV0TmCay0NGkgSJL0RSB6kQIIYh8j2g8Y3J2TjifExwc4Bw/wxyFmOZTSllRFGRJpqsrtjcfadfX+FGErMoISSbNS7779o/8p//0X6iqmvv4Cer7syjg5XgCQsPzxuxqsK0xu7rnp/tPFHXBV9FzCtUGU8WfhbTFEk2tsSwJ25ZRlRYv8hkMlUoeqIaeUpIpy4p9ktH1Nbrc48kD0KPZJlJbYFompVAxNZk22aEKiTJLKcuK4+MZmmjQhzXJZoFieZi2S5nn+LMRsuWzXSbs4g11W9C3HUJR0f580IiLksfthvU+Jk4TugHaAZq2R1YVqrJgt1mxixOKPCErc6pe4i4t+Hh3z+fHe1Zlwf3dNSotrqnjmBpUMcntBcPyjm8OJhwcPdnJegbMYIJkH/CwrpCBocppkj2e72O6Pqu4oq5bRpM5pWzwYREzmk1xbItO0/Ainc/rNbv9mpOZTanaBJqKOvTYZUrXlKgC0nSDaajIXUu+XxGvl5RpSrLZc3h2hhNMMVyXNCtQdJ3Dk2MUpcezZbzAxbQciqpFRkLQops6VVGyuL8nTVMMd8To6Buu4448K5DoCcKISeiTNR3vr26pd0uy9QNFGrNaraiairzt6IceyKmSO6p8y/LmAkk3kd2ID5+v+Hy9wp/NOTp9Rq8avHv9ju3iAV/XCB2Hse+BUNlXDZ7rUbctcRKzXD2iyk+128nRGd0A+nTOu2XKx59e0+UblosntbYzmuAEAW1dEo1G1ElMHSfYnsegGQjDxLJt0jRFUcGxVBiaJ4B9U/B48Y5yt3qqILYViiojqSay8IlGMyzdx5QtuqZDMSTqvuHw7Gs0Y8qXyzXxKkZTNYo8x/VCtnFG5DocHE5RdRPX8RmNJziuh+/4TMMRUXSAac9otIDFPuHbtz/y++s7JNPDn8yZeYKh2OCoPYeTgINJyMhRMUVLOBphuBHe/DmKaSP1LfHDLYYY0CybYQBZ0cjzgsurB06en1OWDWXZoKgabStx97jAGk0Z2pZ0syKYHuCYBkqvPIlA5lMsS6drG2xLw7NNHEMjsBSSJCXPE4o8RRHQdD11sWd3+xm5r6BrEXXG+fkZmixz9ovfEEwP6euS7d0Nmqo/1Z79Ma/m5/RNz/wvfkarCiz3aa7brTdIQ8+bt+9I84wwsJDyHXfXV1Bl3H9+y+LuCqnraOHP5iWJydHzp1TeAJ7vEzgKE1fi/MUZrm+hWSbh8TPc0YQiiUkfbymzlI/v3vL7739i6HuyssSS4Xaz53KfIQuN02jMs/lzJoenDH7I++vP3Nxesl0saCRB6Ol4owh3PKVXDFpZp1NNdnnDKk6xNYWBHkXTnhaDTYkiBiTP55cvj//1S5M/ffv6b4cmhzpjt7qnydYcjT0MIXF7fYXRlYwjF13TQFZoh5amzYiTNbplYGgDkSUjtSkyDWXbkVUNQ9+TlAWZotArOlXdILUtqqowdB0wMHUcVKApUrLNAsMyscYhQuwYHU3I8jWWZyBpOpdvfo8uFei6gheFGI5LmWxZXF/S9x3PXv2cRprxp9/+kWno4LgWAzWXnz7ghyGqodNmG0LfxvdD+rZH11WqLGW/WnN3fYcqC7p+IE4y2qrkIDAZmoZ0s8aSBo4PDpm/+gtkBiwxsLi/JXpxijudsVys6Wyd1lJg6Gi6Hte20AWk+x1pnmL5Fk3TIcsq68ct69WKvm0xlR5NGfBNGanY4NgGrqVjDE/wrni3YZAkTMumGwaGYeBZZGEoMk1ds90n1HWLqqnomolqRiwvV2y+/QOm6pM7Y7o8wZVAlgXIErIk8C0L1zA5DAIU1eDZ4QmePyGcHuCFJk40QosiMtmilhUuHjOWy4S7q3vKZM3EkvEtCbVJORi7mLaEMD0kc0xZdQhVQ6gGKAa+72FpMnJTkO83RGGI5weYjsNjXFIWFYpmsc8bFM1AaDpt0SI1PW1Z0DYNbZFjGDqTiYvl62zrmq6pGJoSWeqphERVlmzWSxzXRpF7hK4w9U1GoYMmeoZiy+L6mpt1TteD5XjsNjsEMo7jMZ0d4oYRkqJgGBa6poDn/f+UvUmvLWl2nvdE+0UfsfvT3nvy3pttVZIsFkskTdmCTBiEYcAjTzTy1D9D/8cyDMjWwKYt07QEqsRiVebNPvO2p9393tG3X4QHp4aiAY/3eOOLtdb7Pg9RZCNsE8sPMP0RhmVjqBKbnEBv8K2B+WKCaxuoTY6pK2gMfPvTBpuAmT+BomfUDnyxviZuclbxkm/Xt3ie4PnTc+Zn53iBD6qKOZriRmMOWUraPdaUfMdnKGrMAVrDJ1RVQkPjdOEwnzrYlk5y2FEUCaWqk7Qqfd0wCQMa2TPUJXXdMpuOaZqGQUqi8LGP7PkB8eHAICUPr36k70p6yyTOc5brW4zpmPXxwLvX75FVhVLkCNNg6KHGpCtytKFjkD09Ck3TYpkGtuujSWjlAIZO29akZUpSF8R1SUVPZ+gUukpWZaTxFlkkNEVCsTvQ7HYYdcd0NOHsgxeYlmC9WlPZI4bolNX6QLpZU+yOzMYzzi+v6IeeYr9EF4+qzF7T6G2btO3odYMhPhIZKn40RhvPmHzyGa1u8e3rG+7vbomTA4btEHg+Rq9hHzOUsubk9AxnOqKsSjzHwHQtWqBse+4eHkirirzreXJ6yqnjsH9YkeQlQjPIdjGeqlJlFUlV0Xc9XXKgLFNq2aEJi0Ma48iG0zZBq1MsoWO6FsFQYiUbyqZCVwZKCXU/sN0/XvjatkOiIduWTnZYnoeUEpSBARC2ia5D23Vs7l5TtjHBdEqjGMTbW+LtA6rSYwiNMLAQhoLr6PiuwBQ6juswP52hqhonZwsGVFBVLC9glSv88PqeoToSuBb+ZIwhHKzxgmnkE9CjKCqOqXN6esI4DDBchw4FqSmYwmDkORwOG+I0QTgmwjLpZc3UhWK7ZHV3S9u0VIZJdPGE43pLvj0gDBNNQFtu8S2Fy2cfPBqwPAelr3GiKWiCpm1pewlOAIqOoqkUisYha4kf1mRJgmxb6rqjajuaHgLLp9dDTs4+YORpRJ6JMdSYqqSrcro6x9EkZycjJosJuq6z2Wz55s0937xfo2savWqwKXVqfYxieBimjxkuUFUDVQHVdpBdy+kHl8R5SRcnyLrFUA2evnjGxHZ4ejZHyyqGtGJ6OqYcGnJKLL1nNJ+jCY9GdmzubqnylPV2j/AdPri4REehaVsUHXqlZ1kVRJ7DkCasb94R+A6a4SG9OVdXl4Ryj5U/4FgW6WHHLkmQwmEchKgKyL6nkx0jc6CtK8xBIoSKaWgoUsfyIgyzZagzvJOn2ItzdFOgWgGKaqDZNophoCgllpXhznV0u8e2G7rtjwy3P3H/Zsnbr695Nj5FdXyU8w9YKoJ9sqLvKwxh0lY5Q1fgGBr9AHlZ4WgQCB3PEoyCECcYE/oupg7jwMUxIfAlrT36vX43QHgeQ1sSfvAZpmUxtBWm45LtMzRTRxEaqq7Q5Ae+/ff/O7IrUAwVRelQNYV4t8MNLQylxVZy+ipjcb4A02R8dgnBGcIfYwqBMFQsx0NLa6LaYnVQGawOfzHiUFQI3aXcHDACD1dXqA479usVu8OBsm7JypJNlsHQ4wuTqWtRNhW3Sc62LMm7hnVW0Q8DlqFjODZ536JRcvJ0AabDydUVXZXiRjM0w2CzXPPmxx952OzIO4XZi5/z/Bd/hhNNyMuW8lBR7o4gLHANuq6jyEoO+yMeHa7jsD0csIVgtjhlGDpOfMl8MaPTbUzTRA4qqqbTtg1tkbK6uSazBeLyhLrKELqC1lfYegdtTp4c0NUO2aQIz8ebz2mqxwW5Pz1lGzt88+173q3WjOdTEjR8L+SwWrLbbUmrkt40QTPJ8pztfst+u6TpFKoOhP5YI3GEQNd1FNlR5Dlq3yFMgec6jCZTXNfDNQy8IMSOQgxLA1VFN1T6tqOra/bv3/DuH/4GoUlUpaNpO9JDwj988T3/6//y1xRFSWiYfBL5PPNdPNtFd0MUJ+IhyRhZFo4zZjxa4AiHXbJn5J0zO/2YwRIU5Qq7SzA08COXXlb0fUVV5hihw/vVPYZvcmwgyyuE2tNmR4QCnqbQ0WEFHqapcLoY4YY+cZbgmCpZmuA4Dm3XEbgmumERhCG9rFA1HVSbsunZbR6wIxtzNCIrc/a7LWmekuU5ddsCCqauY+g6bS9J8pz14cAuS4nzlDRPyeuKVtEYdBPTc1G8MZlmsktiSs1k8fHnhIFNsbnBFxquqZAnB5p4y8IzeXI6I5xMmV6cU9c1UvbY02esCsHq5p7pKGIaOvTJAT8IsT2P5b6g7TUcP8ByA455h+cFDLKh1A0GHbr8gFBbLE1SNi29qhOaJhE1mipp65SurAh8h64skWVBejhQZBmqZePNztB0B6RBnJQszs8RQpAcVlh6h+/rj5Yp3aZvKzQNqiJHN1RszyctdSrzgpuHlH06IGZPyFqIk4RmAMcfYToh94eU+HAki48c9kce7h/Y7rfExy315hpkgSJMnPOntPaMvK4QxsDzp3M810SdPyOpW5K7OywNRn7AOAwfjVl1T16WlHVNXmSsNmt62eG7DsFkRLpbM9QJmtJwv14jzJ7j9g7Z9zhexGDa+KGP0paEgY+uKCS7HbYtUC2BZtkYwqTuGnRNASRtW2OZOgotQqmp84QyjymzjCAIeXr1KW2jkDUpVmgjdMnQt6RFyezyFE0TtJUkvt9S583v1dUafd1i2S73D2si6xFSazo+wnbxR3P8aEIwP8dfXBI9e44qVMrtazxXZVAVhK4wCR3mJzOE0mIONWNbYT7xiSYjXMciOn1CVUvCkycMqk4d7xGGhu4E9FIyyA5FMyiLmuv3D0ThlOSY43oeVTOQlQm1qWKPQtbvbxC2jReGDLJHM3RirUN6Lm7gYmqPNRzb1LGFiqEOdE1O2zWUZU5ZF5iqpDksKeIDvZQoZco48Hj65JJ+UDl58Rm2G2DoKuX6gd3dEnP6hEYxOH9ySdG2jD96RlUWLH/8Djf0kIqGqSrExwNJXaG0MbNJRL7Z8P7VW9q2Ik5jNpsVtjYwC2zCKMRItggnQKomfa8ghIWpgkwTbCdi8eIz6iIjW90Qr5akhw1fvfyOX3/zGsc0oG1QZcsmK9iULaZuEHoBl26IrwpO/+BX3GUHXn7928flh+theCHCFphDjut7aFZA1UjCwEKhJ44fUR99VdKoGoqqY9DQ1Dlm5PPx05P//0uTL//+638pq5w627PbPhD5glnk0NcZ2+UD7XHP6WQEHWiKAdqAqg90mkKBQeSb+IYkP65JdxsqLJI0Js+ObLZranTKQUPTVBQFGMAxTVRAqCqeZeI7NoaukyY7+mKHYVqE0wWaqZPFexYX53T5ljAKiU7PEV5E1zWsrn/ieNgRjk4x/acc9h2bu/c4akedx2yv32EbGqP5GZqhkSU7wsBF1QyC2YJie//4+K2WTMYR18uYIi85GXmUVcNxv0MMEtlJRJ0xHs9Q/dHvtYoKtm3h+B6K7bLf7miFAaFA1U2qpsM0BZH9+MGQVDHHPKPcr0BRiQ978iLDtIzHRIQxMLQl0Sikqx7NHkJXsQxwTB1bg6rtwRD4tsmgKASuha49Uo6bquR4TFEf68a8+4ffoNYFcdezShPi1R11W5AWKR2gGgLVMHEcDyyXspNYToTtOwjXQzMUelOg2yFFUVI2CvtjxmF1S5fdI9QeR2/wzIHF6RRF0zAMDW98ynIdE4Q+sqvwghDLdjENE63vKdMM13ax/QDdEhi2Q6HqHPMMYagcixbNEKAqZJsdfVVTdRLXEhiKZHE6JZoEdPQ0Vcpm/fgQIBUUVWUTH7A8l81mzaAMSEXD8wSuLnEsgzY9sF5tkTyCEx3LQgOGAYIwQnj+ow5MMXBDj141GJ3MMGyD6niHYWrohoGhg64rCMvCdR1MfUAmO5Sq1JkfhgAAIABJREFUwhI6DCqbTUmSGZyfPMX3XNRh4G67plRavEAwGBrbqkBVBwLXZugbhKnjjiZgmuiuTycC3l+v8CcL1LJkd3+P44Y4uk496ESuTjifYPkWveyoqoKuynlYrelVwWw2xTE1HKHjthmqquCYCmrfkG52+K6gkQNFVeMIg7qT1G3Pdr3hmMY4oxB3MsEdjzgcY/LNnvxhiVCgbRqaHmw/ZGiqR/NW19I0LYOqIdsGQziYpk9ZpgwqoCgoKpRtSyM7mr7DtI1HTsMoxPADFNtBaBqeLQjcR/hyMJmiWharhwfiTqFxJ/zw42t2N69IV3e4uiByI3TdoGsyVEulHySa77FVNAxTo0x2eIaC0uSkuk2iWtRexP1uy93r74lXN2iagjeK8EcLplHA7uEBWwhGoxHS1FAsneXb1+iKxByFHPOS5XZDUpaskozJySmWojI1tMdB3zTRBsk88kmv71A1jc3hSDf0yCqnbWryuqQZIHACLh1BkaWEGoz7ClOWOLJBmCpy6Om6BrVtwLAoeojzgqJ9ZJoosmN/PFJ1PVXTsdpsaKsSWVckhy2H45JOzXBnYxRTYJgK7282nFw9Jc9zyrJGODZJXjOZTuh7ie04zOYhfS8xTZW2qkAz0VSVqpUcjgVZdsQyIBzPKNuBy8szpGYgbA9/GPBcF11TOVtM0JUe9/fVtLgsGEU+I9/m4faa3W6JpkGRpeiyJLSgyI6URUXZ96zrlkOaU+wT5mGE42ok6ZqhOnB+OsOJQqLpFEVVMW0LZWjRnBF129K2DZrw6LueooFBd2j7AfrHIarMc4q6Yxig6VVcYeO4EVY0RzF0wsDAsTQsrccTOvORx3jko6sK/iiibRve3Nzz7796zy6rQNXZpj37tMUMZtRpgRVNMGSOJRQ6wJ3Nfv8G2o+mr9WG0DYJPEHTdzw9m+DbJnSSIj5i+xaNpeOPBPvNHYqiYkczyrohS4/k+y12EJLnBafRlLYdQFfpdajVnqrM0OqKcrskO26oyhTTNzl98QFVeqTeL5mfXSJsC1VW7OuWBpWR72LqGn3XI7uGiQVtU2EwYBg6fuCi2g6DouGGUzRFIqIAc3yC7noMbQ2GhWoKFBWGoSS+/5G6OKILlcPyHW+//oqmD/jyHppyIKskRCOM8zmVK9jsVlTHFV4YUVc5sknRVYW+l/iGiqMpBKbByHvUX/teiKbqBGGEY9tYrocZhVjjGbrno3sBaAqdbHBPLynjBAaoi0d7mGYaDJpG2Ui6MuX65a+p2xbH0en6jqwsaFAZT0O64kiZ7Oi6hvnpAne2wD/5gLKRMAx0wyPzR+kbzGAEik7WD5RGR7rfEx8zjllJlmdsC4lt6fT7DdlmR1U1pHlB27XEdU3dNjgKtEP/mMq0BKqhowuBYz1qPFVDR7csQk9nNg/xTy6QXYO3OEfXVIoi5+bmji9efs3rh5jBiTj/8OecffLHuOM5vWwp8x4qhfaYY7uCStORraSuG9LDHjXb4RoqaVWjC4u2rTgPFehbinZgKBLID9ToqJpAGyT7H76ijGMOto19OkJpUkxq6mSDIiviwwHHEQzVkbYq0Fzv8TKfrDnc3tEZPj++zri7vebdfoXaZfjTCZYX0qYtTV2TFClJUdCjIWyXRnbEecYxPnBMU4pOpWg7yrqg51FNLISJ7CSGlERugOs4CK0nCD0MxwZDAbWjawqqKqPIM5bvrvnNv/mf6IuYvqtpioy8bPj6x2v+3d/+B/Qe5o6FZ5qYCgjXww5HdIbFcrsmMHUc22NftJiOS6+ZxEmMqru4wYxpMCHPKsbCZHQyxhgJur7DVjVq2aGaKrIvMQwF1Z3QSKhlg6B7HLYMFUUbkFpPeDrF0XpsQ2W7usUSOpYpkG1D4AiE0mCaBtl+CbJGdhVOMKNre5L9PfFuj3AEqmkxyJ6sKDlmBYcs51iUJFVN0bYoyiPIOAgCVPPxf1LWJUWZk5clddNQ9Cq96WA5Ln7gYkRTZk9PefPVb2nyPZvDkd3xgNbXzEc2ptDoNRVDWLhRRFmkRIszFHvBzU/fYw0D88glCjyU+jFRY+g6WQtZLnGDEVlRoZqCQ1Ly+qc3xHGCOYCrtli2TtK27IoKP4qw+g4339C3NYPssE0NxxLkWfJYxVM66rrg9Nlz7HBKcki5vX9gNpvjeDZ1lSLrI6NAx/dcetkwyO5xgNQG+iZH1S2KWkEJn/Pq9ZK3b284lJK2lTh+wGD7JHlBlmS0TY/jBvSGS9wJhOMwmwWcLUY8e3HG+OIDzPEZgzWmHmzCccgkNDCGinS7omoGRORxuL+nbUoWszGqpmDZBgoa8SGj6QbafqCoK5IkRuklM2FSpxm67Ag8n5NFhOGGVIrG9ZtvYJDMF+cYToDluyQPt3jWY7q1zBLk0KGJAan2dIZNLyVJlqDS07UVvaxpqox+kNA1lHmMIQSnV8+xgjHzizOSKuP65kcGWpLDmjyLScsYz7Upt0c6qaIrCoPQaJoWz3ZQNI26V3h/v0SrSyLPIgj9R06d7WJ4AYOpUJdHTFN5rIYqKp7vUJcpk8gnCD1c38cdGrShIQpsmjzBcWyE46HqFsNgkB+P6IaOLiz64TEBruoGsuvYb9cc44KuGfA8B8MS5E3LpspxPJvVcok9DAjDoFckraqj2ybrosCMQoLIx9R1hG48JodNA9lJ8mQPbc4ga4Sh0FVHquRIr+iMHYOuSBmPpo/2KtMhOr1ARaE6rknijM4eI7wIuUtR71eMZhPM2RiVgXi9Zb97wB2HHHc77HDMu9sHis0Ns2mI7wf0XcN6taXpBlzPpmpbhDA5Hg9kuyUP6wekouD7IfkgQNOxXIEmTKr0QFsVbG/fcP32FX//1Q/cbBMC26TvKpIko+0kD3mN0A1Cy6aV8PPnnxKevyALR7x99xOyK5k8+QDV8RiNIrKmRe7eYzsCM5xRlgV6m6DJFE1Yjwcf2VKVBXQ1apejUYNp8Mmzy//k0kT/RzcmwGp/i0JLVe7RXAM1tEn6jjSPqYaaZZzz3avXRKeSQd6iBSEVGlILKA8H1ncDcicZmpLD/T26E6ILl2NeUdsCFYmmmUxGV4SzgPS4p29b2vxIk+VoXU2rtGiqpB9UVscEY2Tzw3dfYqsNwrLY3V1jWoIq3WLuLdSqoaxqqqzEC06wvDlpqWALi0lkE+9u6RWf0WiOSs3h4Y6061DsEVmRc0wfOEoTT1M43N6i6A5xp9OaAVdPHuO5t2VFoNWkdczpsyvEcYVv5/TdmsKYUukDhcyhPDAkDoUxcHf3isn4CtlLbENAE5OVOUKtCU2Fu82eMk7p1keaWsX2THKZooQGXfaOqlTQjQsGEbDab7A1laZsKeKYFh1LCKxhoNZ1wnCMUqUI26bpdYRhkXcDzfGOXVPSmz0icGh0g1Ax0BqHukzYVjWhP6LrGnTTJa0qmr7Cch32VUYuY0q15di6hIrB/T7F9iyaQecYH6HNOZlPSIoKkxrfNcirBsNQmDoOukw4nZ+jDTWB70PXkB3u0ZUMXQfFaJFCULRbukqnkxqB8FmbPY5eU7Vb4l1KMJ6gUNMOElOXqE2FZrS0xYY4UWkGhWngotgKlm6S1j1F0iDLI2W1paxLutLi4tlTVKUk3ixxxRWt6hKMZgjFJpyoHNYx08kEYRkoqkq8v0NXOxQ0QscFtSPevmVgTLG55ubdK/zARUeimBY6A226p6srytKkLgZk05GlLZW0COYOnaGyzg6PUfqpzdn5c4oiR0ESISlayba3EG5EN59QaTV939MbOi+//hoROTTHFUV+YHquI+wEbxSgmBmq3NKnBWr4hHLQKZMtfrPnSovRrAhvfEm8XmOpkMQHpKI/Qh9NHUVJWN4eUcMFjVRx1B7TsVCsnrPTC5LDPcPhFZOrZ2iOSump9CMNYZ0R7/c0TUeWZwS+Qj34FGZDnmSkDOSlJNcEuqLQUMA4QNEFnmlidBVO16IJi7Lu6Kqc0XRMOJ7QKgbHqkFXesosZ63cE+0PBPMF0jS4f7ilFRa3796j1XuE2tFZBsEsQnGgNQqskU/VVXgjj7LLGUcmSdZgjwRm35ONJ8yDGS0GVd0yJDHCVglPPkD4PpOTU6ZjAxnfkR/uUTQDZIbcLAnjBUm6ZZAF5TikaBv6vqNsaooqQxQpiyjCUcBybRxH5/iQYaoFJ09s0kNM5CUwqKyPOYOjIAZBdjwQ+DpK34F4TDE1ZczQJiiyeuQmWT5GO2AbwaMlJZgzdA1FtUW3LaRt4SgSVUgavUXTTRKjoasSQndELRMsc0E3WFTxjuuHW7KuQk11tHBMkz2q0CtF5/phjx+6dJ3G5tjjOBa27tMoKooWUvcadQqma7JQfl+13KwxWpNm/YAlavJ6QFFUrkYevlIjhgbT1tgf1miagpA5x6PJRvQ02Q5bHjgudwjdwJQZyQbaIsWgIC0yNE0j3a5wfRsvcAgDBX3TY0Yh2ihAzCJaWzBoHo0xUBUZqprQqxqDCoXU0O0QM5HMo4i+Uihak22jQG9TGwe6psMqG0rTJYhc9nWCo7XUdUEQ+ChCoJs9taaRqw69avLqZk9V1rw9gDO75Mo/QXYt5aAjRYAfBFSRgxpEaE2COlQ0GvjzDtNwmZwoaFZHKDUWZw4TW0NoJlLuEUIgI5M8rXhYvsbpIjTPROkV7r75lnpfkusqu/s7srxk7jicj2zSMkMqJqqikzQtAIZpUKYFeVFhhxHIlNnMRTMLMqvDvZxSORp6JxnOfJ5qM6xVijpYDIPOJ1cWlCo6BdrJFYpiwlDRRSOc6RR3PqN3LfTxCUXeQt4+MoVkR72/fdS5VzX9oJO1FnWRc7h/w5tXPwIqtR3hBDVDUaG0PbnSsHzzA33f4mc3WJ6Op5ZEkYYyWmDZFpF4XBxYg8QxFHRDY9AH8r7EbCu2hz3Cv0LzLDRdp9MbrLFLlZfURUemjCn2Be1xj6qAOT3D8Ay0sqaQHXHVIouCPhgjdAXhmdRdTY9OEPn02kArVZzpU+zARUQB2uQKcFCLguzwBi06oTd8zK4iTgsq0ZMTI+uYKjuSH2OWDVhehHP9A4f7M2Zdimg60q5Cc218fc6575GnMVZk41oCqer0uo0ygK5BYOtYlo0V+ti6gS4rvHGAZfvoaku+qShalfX2wObunroZ8EczxqcXhPMLqqal320ps5RWcSmPCWVf02kdCA3VbpnOBGWiQqcg1Z7z0ylVnVMf9pRhyujDz1H9GdmrrzEHgXdisM9yXE2l1g02HThBiC1sZN+x2e7Rmop1VdIhKbqa89MRwhjT9zayaMlrh9pZ0HYWzrgheH7CdGQyPZ8gXEGV77FDm7lygjaymKYJ+6p7TKwOEVmWUVQtndKxOq5JhcPOeLymjoOQvsgwdEGdDlQ3b9jme8JpiLEM8D0b4Qt6dUDWPUWWMmgqumOxrkr8TnK3XWI7Pq1hsd9nXF48QR0kWtdgeyGmomAqCp3p0bcDH55MaDqFYwNxJcnKDUqvMDp/SuCP6Y0OQ6i8+OBD0nKFKXqcKMR0SrR+QCqgaQYTy8RUNNo6py8KtLoh8kza/HEYdR0wm46Rp1GnB5qkwepLmlrlbBIg1YYm27BNOzTmWH1DXXfUvYC2pqtSrK4jzge2D1sU1aXXBf7khLTqycuOvK5IG4mhG0xMnbrvUTQFy7IxLBdTU2mlpK0LGBK6sqGJM3z3KYY7YjaZ0QxwdvUMcTnh7v1PDG1FXxfs0egw8AaDsS14OO7Jmw7HHpHuN8gmwZqHpG1NUjyyfkIxoBo9l2cenm+RNwVtcqCuWzwlwm9WmMcjZqaSd2DoJkqVslB07P0WPbDpuhR9kBiWQd21HHcFbZXiRyGtoaBMQozQoyp7sCMUuaMZDHqtpjdC5me/QGVPt0mo4p6s3GLZBnm6QjEFslZIm5DVUZLHDVrbc3FyQVbkbO9u0DQVy7EQwRSlq0jK9NGCpgxUtcnbu57VrmGdavhTwXzmMvZ6PMem10KKume/y9jVBt78GfGuozi2nF48Y+gkfijJ88fFsxNYdELDbmvMocCa+I8K+x4sx8b250xOLhFhwLmvc/PNO+I8xws9iiplMh7RHA+YmkqarPB9FdPSOcY7Oq3GtgyGJqWtK2RboZgqdbxkf9zRMxAKFdkXDH3G5OnHjBYzpASleeB0JDGl4OH+HbUmGeyBtiyo4gzNmNLrklprGJSSSJSEqk7BgOEJKmnx8u0N1dAzj1PC8QzdcB6bDij0qkmlm5R1T2X59K2CPzkhKSvCrgVFIK0JkoIs61CFwM57Vl//iGqHePcxk9mMyh/TdxtU5dEi1is6RV6wvFlytyuxtCOXV1c06ZrKaBmNGroyZWGsqDnQqyaD7dNbKoPSEVYHtCQk32i4roV0bSpU4lpBVxSqfEuRH6mqBCkVlDohKxpmi1O0IcOKLArLYZXnKLLDOK7oqoJi+4ASnVLmJsfbtzy8/gEnzTj55FPUZA2GCsHAMTtgb2847I9otssictgdFFaHjtNQpTfB/ehT5DEnO6zRrZDBcmllzK7o0YXG9cMrHvZ3mMJF9iqB6zKydca+DbKglC1pkdCoFiK00HSFqgV3rFEkGV5voPePhwvfH3HbNqDmNA/fYLsDoTZFsS3i/YpZ5ND1PW83e1zrmqzoMQKXtNkx6A6z0RnbtkJzI9rNjvrwitJSqA0dTWv/0b2IMgzDP/rjf/vf/9eD4ni4fkQ3SMzJhEHCoGlQx6xe/chGmXL24gX1N18xH89ozHPefXvP/t1PtPmK+cUcYarYWkcwcrBGU2RT8Ed/8ITe8JgvZoyCEKH0qGWC1uaU2zuS9S33b6/58rt73m1qjrXKbHHO1HdYPywZCQ3fMpiGNueLEX4YMF6c4I2miNEp6tDgWgODajF+8im245KuXpGnR8q64Vi01HXNevnAMW+4vltz2O/ZrJaoVkDX9ziuy3RxzsWLj6iTLbY88PT5M4bgCYFjUKc7/vCPf0l6/45h+R5nccEPmwfW8giaxdBUbNMC4Tgk1zf8d3/5z+m7lt4IGWQJx/cMqsH84z9nl/V8+/07nGBMkjzS7d/vVvzynz1Ba77jNy8P7G5ciqRmd79lc3NNkycYQ8NnF2M++/QDTMfhsz/4IwYp8Ycjlx/+jF53MXSTNlmTZwVVrxHXkJY9+wak1BB+wPsfXnH+9BJPKiz3e/JW8t1XL8mLFM2y0YeB3fqeIJrTGw69ppEfd+hugOO4OF6IpffofYEf+ghdIxqHyK7Gm82Zjj3yN7/j0z/8U84++iVakbL89f/B7778DfPPr3j26QVtkyJMhcPtaxytohvgw7/4F6jOnObwlt2rl+TGB3huwDfrgWUpsFQoD1v67Wvih3fYH/4zPvjwZ+hlRv73X9AGHv5HZ2wPW/72737DuSf5+YcRH1xdsJioqJuXj4yDi7/ku/c9T2c9L7/4lmL4mP/zr79kFiX8V//Nr7h/8xWvv/57nnz4CU4woW0k5SElS1Ie3r9nu0/I8wrb89F6iQjHJMeYNE1pGolhuyiqimI6DKpBHO+xhYHlj0DVcCczTi+fsjg9ZTGf4gqV5Hgg7z1WmcHzK/iDixW//Q+/5uWPBy4XCl98+Z4XTwMC32Z2/pTmeINmhmjzn2Ema9799ku2mYlYfMz51Qv+7C/+c8bpmtvf/ZpDeEo+OmMnYff+BqU2yLIKL7CoLcGbb16iVzE4PpeXTwkVg9OzBZ0mufroKRM7RTS3qArEeU0WH+jKA4McmEzOuf/pa5LNhtHpEyzbZXfznuvrB97ep2SNwbPP/pjP//xXvP/mS5599AInmiLsgL5vyY4J7vQM0/H57tf/D2F0ju0G/Ot/9T/yzVdf4IRjLMemLzNW2y2L8wsi34S6ZBw4DF3F2dmUxeUH1E3L5dXHGPaYMt6B1hOEPk9eXJEmNxS711x99Bm2P6ZDYDkRuqqRVaAaLm2+43a5xZt/wI/f/JZk+Z5hUOhWb3DcGYW5YPm7nyiXMVcvPkY8v6QTPZmnEriCZ5fn7Koa04S8LbE0jbStUU2VQ1nyq8snfBDY0NVk735LvnrDLlX5t//Xb3l7eySaLFjfXfN0HlEyRXXPyNf3cNiyW64YqSaTyTmLkyvaQWVx9QRv5CEmLu7EZQgNMlmQ7pf0TQVdRlWWFHGJ7HqawaGpc5r2wGBalGmOoplMTsYc7u6wgxH+yQm3r34k2a457lMO+wRNBIzm5ywunnP+0SecXTyhzXNmixP6oqDN60eeTVnQyJpX7+7wbZvDeg3ChWDMT2++YR4IjHTPx5/+jA8/f4E5FNTpHWnfYz39Q96vjkT7G6zjNVkLmizpsgMHHOL0yOWk5uTDn6F6p5yfzQgCDwVJl77iuL4nbx2Cp59Td5JSmdGt11S7Ne0QIMbP0EwVLxBIb0aWHtDiHa1iE9c62mrJzU83WOGYdfEa4UW8ubsmN13K9Y7d9Q3Zbst0YmG6AaeLU5o048nliI9/9hH36xLfnUB15NNfPKXQp/z82RVDl6HbGorlkuWQ7ZfU2pG+b+mqhG0aU2k6pT7l1dtrNFRI9vTHI+agkGaSkW3yyVnE6Sf/GQ0Om9/9HfHbd1gXn2DKgWa5xpagjjyMwMKfRxjtFmXo2F/+inXVY+s6/niCGHri455jVrFdLpHJnsDuccVjbemYVqiqwhd/92/54z//hF9+csb+7oGXLx/4+ptrhBPwV3/5p/hKwvnFKWcf/xLhjth89bdYwkH4U/qmYfv2R/repK56sqojyRXuti3bJsNwfb794rfMLl6QHGOyOCdLNyT7e7IiYxyO0K0xbX5gpDX8yc+eg2YS+R7rN7f4voPnqDhGTXAyYfHRh4yePcMazRkUlSLP2D+85+v/+Hfc3O/IjBG7rOGXf/5POR6WjOZnjBaXRH7E9tvvOPx4xBkt8J5d4E4tqmzH/OoKOWi/h3lWZHWD42hsbh/wXYepa9DIAX98gt4WyGOMMDxkUhCdmUjbJ9usqd7cYZoW2907lvevydYZSdKgaBZFXRMfNyR9yyGLadoKicIhy7AMldARhKHLaDojOj0jXDzDGc2RqsQQgsXFKeH0lEG1MVtosiNdeXyszmxTelkjekHo+nihR5XvMVGIs5yiONDLGkPTSJOYdpCojge2zTFN0GyLWtG4vn7LZnlDtt9hairBJEBpK4RlYZuCwNFx3BDDjvDMAbvfM764JHz+TzjsEiLfIZrOEKMZZSFJHpYYqkG82dD7c9TpBWm852G15Ol0RJse+fL7l4iRwj/52SfIsuGzzz7HszyqLOZweMAwak5nC/I0YblMuPrwT2jqmma/QSg9ph0w9AOyyoiPB+LdlsN6zfu7LWXb89Pb60fAua7xbrWl03Sm4xHr9ZrdMaFnwPNsRoHHw/KeLM1AtnieIBxPmZ4+oc0PfPjJcwwrYBz5zGcT6ixhNPYpioLTJx8iEYSBRZ0dmV99RK8YvHvYUA76I4PLdqGtefX1V+wOKev7Ffcvv+DJkw958tFnWE2PH044+fknSNdGtiUTw2JzsyGm4/TJOdk+IZqF6ELj3/xv/4o4i1mcLDi9WFDJitAx6LKMuigRus369XuenpwjPJ1o0tJvvuf+29+SpilmMAEjwPFHjBaXhOEMpevZ3W65/fJ78OZYoxlNsiHerCilyvLmmt12Q5pnpK0krloGZUATFqZ4FEhowuHk6TM0ak59he6wxy6PnESC02CEM70iuvoE3ZtDNEd1TO7XD8TpgaTMSZevadqW8OIZdbpHQeV+dc/o5IJeQpmlWNEYzQ65/ukN/fY9f/nHz/jFX/w5s7MTDBKa3UuO3/8NEhd18l+ga5fcf/mefnFCoeu8vrvBD85INwf+73/31+gnAf/lLy5omoZgMqHMEnZvfiKQKbNPLilmV9zJCd1moLs9oAmfw2aFvFywyW6Z1GNeeAs+OakJkt/w8MV7fnxf88XygbvsQDSKGHs+c39E5E5YnMwJxg5O5HHzsOR43PPVt99R9QMX8xHr9YpdkmIrMJ+MCGwTQzxap8ZhgLBcPNfh7PKCyckZgxaihRNaV6GWLcZxQ5V35HlD1cA2PmCZKvs4xVQkdVViex6KbNGrBP2wxZmeoIcBxVDSTU5ZxQOvvvqeLn/Pqx/f8rCHj158TORJzs5myF5nfHrCz//kc9rdA/ubHaYwkbbGaDamKkta2SB1k5HQSN+/4XdffE+hO/zZn3yOr/eEoYftejiuhUWFp9cM0Yha6CwrMHQfsx7YLRNWWcB3PzW8evcD1smaZ4sj5+WRWdGRbzIetjU3cUsmJgjPIy9r8qIky0sOSUGRZZR5geEETMZjiiwhzXKEG0DXItQe13GYRD6n8xm2oeEIDSea0OYJ2/2RxWzCUBfMr15gdjkvX77E8z2+eHPP4Xik0wzc+QlCqxhPbbrIwJ4P/GwU88upQpRB8qbkhzVEf/BLPv3FLzB6yfvvrnmzM8hxUQdJNJ4gPJ/j+oGLj66ofZ2sPKLQsE9jsryi72qO9/fYwgHVoe4lal9TtD1RaFOs7pkKk+c//xWv7iu+/PV/5OaH72nKmsXZGS8++pTnz6+whwzH0Cm2e/L7V8xfXDF7/qdc/+ZvmEQmlWbxw7evech1WjVkECM+/fxzHLNj8/on0rTkZDbl7u6G+OGW43ZDWtVUqkU0GTGKQnzPxfQ8NseSJx99SM/wmFS1PNLVNYNsaIqUpirZ3bzFtASTyQjZ1TimxsnZGaoy4M/OH4ME2sD+7p745beo10sao0c+jXj2q5/xR//0r1AMlWO65fzFL2janvvNkm155DY9cjW/4n/4q3+h/Kf2Iv+f9Zz/+W/+9b88u7pkcXXF6ZNLMADFYHSywIki0DweHnIu/+hXjKczZo5Llpf4pkOdxVRliu0Kuq7AtzTs0RjVgOenNtb5JbYl8HSNkR/gUTBXf2PUAAAgAElEQVQkK463rym3S3b391xfb3nY1ySdju8HGIbg1dtrmlbiBxGj6QzPsR67XY6HpmkMsoO2wHEMdOuxr2Z5IZqmIvv/l7L3WrYlvc7sRnqfuXJ5s91xhTKoAgESoGlHRjNCuuiH4rvoSqEbhRQdoQip1RStRBCFMqeON/tst7zJld7rYuEF+AB5l5H/n9/85hjgdofIbUkT74mPAZ6roTsuvfEMXZFPSaphUZQli12I43YQZYWHhyWS2cM0LTxbw+/1GU2m1K3A3cMCV1ehLFCylH1WoTgG290KoS1Pay2SztVwSFNmrJdL0jCg1+9jjx5jdC/QDJe0qPl0fUuwP9KbPmZyfsHPH8/I44gPrzYEm5rdas/1m9fQ1Ahtw7Db4Td//huGkzFnV4+4uLygLRK8Tg9RcxhML9EUaKsGwRtTyA61amF1euRVzXA2IU8T+l2POokRlJqXz5/T1gX90YgsCijzkm63h6nICILI+Pwpw9GE5TFhMV8geANW2wDZ8oiKluV8jqpBEoc0okgrS4wvHzN59iWW30cSWqQ8oE329J9d0Z/4/O7/+QdGF5dItFi9PhIlstWlFFxUCdLDEkHrEsYCwfZAkMM+aRCBge+BpKBZHlmtYToux8MBRdOYffVzorLBcDxcz+XnP3/E06spz2Y6cvAvlEmE4H+B4kx5+WrPw13C+7cvef36ji8+69PzG47bNXK+w9EaBlefISo2b358SRvHJFHMcrlGFkS6Xf/Eviky1qstm11AUTaIooRQFWiaSdfvotDSH47Ii4Kr8zO6HYcs2JAcNlDnDB2J2fmY7nBEUtR88cU5VbVBqBP++WVBIXSYPzzQ0UvqvMBSBTQxw3U9DlGJZXoU6BRxxv39muMxoUxS8izB1TUaw6Pujrl5947Dwy3T4RhJ1SmrGrGpWTzcUWcxkigiiiKKrmLrMrImIUgC5xOfcdfDsjyqsiGNY8LtGlOCi8unuLaBTIOlyQiIbO6X7Nc77h4CgkzgyVc/50//6q+YTRy6XR1Bc/ju9z8wf7gljnJE3WI2e8Z46LF88z3D0TlJkNPmMVW05rDfcL/Y0B8NORz2ILTstzvqskRTT9RtyzJp4g2Dvs/sYkz/4grX7ZDHBcPxkOF4gtebEMdbFFnA9YfYboemzsmzHFGU0BSRcL9F70wRFY34eCCNj2RRSF1X1Mc1vlaT5xnLD9foVUvStkg9m0JrGQ37lFWOacjsghV1E7E7rEnKmP1xztWoyzPXwpILovUN2fGI5M1Y7WLKWiFNUoLwxMBxB+dU8pA0ONBGAbd3Syyty7OrL7G7YxzPp9NzsIZ94vSI2dPxn86IqozgsKECsnBDvF2w+fiW96/f8vHDLTcf37Gaf6TMcqosQ6Sl1x+R5QmmadKWFePxGF1REeuCrmchVjVZkiJIOp7bxTJsDLNDbzCkaQQUTaZtanTV4LgPaZuCMo/I0iO0FUEUcr9YkUURiqIRBzs6usL0vIfV61IpMrItcLu9YxWF2A3IRUbVAHVBXtcklUBepFiGSH96xvDsKaPpOSIJllZi2y6CpFFgo+o+cVwgVgLZbkO+T2hVD3d2gaiqtIJO3bQn9o7QsFltMLwucXQgjJeEdUIryySNwIeP93x68x5DU3j4+AHHtXE6Pv3JGE0RUEVwNLB1lX7fYXzxFEkQ8VwVVTWwrA6KqSPLKuQRYlvTCjKKBCgtkqGCGBIlAZEkUcgaYVayD47EYczy0zWiCGnZ0mQJOjmaaoCo0hQhRRyjSBZNllE2NYZjoVgWcbinzXOi8EDmjghL8DwHmRP0UVcl5h+vSTZLZuPuaXXP84mTlOViTnxc8fNzmHWhEHs406+x+5eUScTVpMPnn11x/viK7uQMSVKQJJEiPCCKIjQ10f0t+1cvefXDe15//4nNOqJxB/S/fEyuyZSGgWN2iQ8BZ1eXJEnIbHSOVNXUZU13+ARVFNmsH7jsOciSxPj8DFHRUBQVQ7eQdINMkOhPR8iqgCKKaLaFZpiohnWabmsa2+WSMK8wvR6m6xKFp8mZ7XYxTRvL9Ll9t+GwK3BnfXabHUleIgugqy22qbGJUiazHlqbcdhFKKIMBfhOD8/QkYsS03JoWxm330UyDKrsQLm4YzdfsbxfEGwSqrKhaU42NFERqcuULI+Yb7esgyNlXdFKIqKsIIgSvX4Xv+/jTC+RuwNa1aSSWpzRgOnjn9GbPaHfHeE7NqYiIAoCh92R7SYmShselluQFBRRIq44aeo7HXRVQ1A1HNc72c8k8Q/V5YoqL5AkiaKs8bpdNNejFkAzFCzLpCoKFEnCUAzyvARBIItjsuQU0IbFqQJdxKfqdmc4wbYN4uMe2gaqirqqQGzZxzmi6iBLMmEcokqQ7NZUdcxuu2XY60DVYts9JFmnbWs0GUbDMU2V8en6IwU6vf6EtijR/2BQMh0XUQDaCkmUiYOQxcMKSXPYbvcsd3tUWSZMUnZhgqxqxEXB/hiSpDGKKuN5LmFwJEtjXENBU8F1TGzPJYsjZLmhEFV0wzgFJmmKIEonQ5dao5s2bVMg0OJ2Ts85nR6t0KKZNkEQcdzvURWBsshZzFeIssLbFy8ogwOapDE8m9EbDgiWS0RdodP1oWqpswbX7YAsYxgqmqpQJik3189J6xxBlojLnDQ/Ygg5mirj2B0M00ZVTEaewWysodcJtz+84OX3bwijkrSUsAaPcB/9kn7Hx6hiis2K7SqmaCVsv0OZp8SbB4LNnsV8wTGKiMuGqBFOMGtBpEY8rUM7NmkcIbQ1iCIXsyGurfPo0mc0UHDVFo8cq27QBANLd08WSqnF9Gwk08U0XDy3gyyWSIKIotpUpYCpqWR5xsM2YheExEHIfr2hM5jQai7+7AmPz/sn856sI6kWticjLD+QbmMEFDRbQrVcBMHAVnroisX94iP7aIWkyjhSRVrUKKqCLiuUQUglKlgXMyLd4+VdzqufEsJ5STS/Jkrm9GYW3e6ER23Eo4nJxK2o1jsWDwnf3y74FO2IiwylbhmqOkOjxzfffEF32mN6cYmiGFRVQpQUvH73no6rkaUxhzDAdwxmkyGDQY+yahlPeihCy6DrYKkCs6FNxwTLVFGtLpLVJTV1XE/BNlQU3UOVLKQ6RdMkKmQESaMF6rKgLkuy5Iggi9C2aIAkg+Y6lLTIps0uapivF2RFTB7F5GFI11TYH9b0z4e0okjH9dBkFUs3iPZ7DNulEcB2bJarDcHugCEJ6KrKanOApuazx2eYmkZRtoynU4TjDYYcY408Pjzc07o6jfs5eaLSVxWMdMfyzUfu5nNu0yPYG6ZGyJXcUDwErO/2fNrkrBuNWlZRdJ08jagFhSSrTyDx8EgrKiiqjiI0GKZLEOdIooiqyLSiiqQ55EVNdNgiVSlV3XI4HKmShOmwS1mDaHXwun3KaE+ZlUhZgi6J7NOCOA5RFBlFEel5Dp6m4RgKilijFgl9Q0SlITrkBKVOt+PSG1/i9EZsjgWVoCJKAoZlkh1DijynFiGoQ0pqsqTgsA85bCPC9Y7dcoGqKaRFSllUJFlN3TQs5ve4psR0PMZzuoTHnMP6gSyOcG2d8XjK5dUlfd+jbynsP75GLY5c9lt6doLdv+IYldy8v+bD21te34dIdo/e+Jxet0/bZAh1TZEmPJqOKNOYJisxRIUyK6jLgkYQOCYptuOgywK9ro+gajRZTrBZY9kGcZTidHyC8ATkdwczjscjnmOesAPhAU0SkBQJidN6sGk5GK6PKArkcYogakiuRyGr2H0fzdWJkoDx7BG2OyDPT+y/94tr3n94iyBU/PWv/vLfzjT5r3//v/+NaRoIpkFT5gxci0qARjW4Or/g/OICsWkRo4JvHl9RpxLbUGR+u2H96S11fcTteTiKQL/bQZYkVGrGFzMa3SJeLbDa04EqBDdsrt+xWWy4W+TcPRw4BiG7pEYxPEa9AavlmjjNOe/3eDgkmE6PthWpGhG9O6FBwTY1LO308iumj+11UFQNURARZAPdtKiLFEmSqPOIMg5QdZ2HTzdYioTfcej1e6A5+N0e/cmUj9e37MMEoUwZTsYYho6hyUzOH9Hp+hyDI1W4RzdN4rziULfMVwv6roFn2vQGM+KkpG9aJFFMXeb0+z6NZNIbzVhtdmx3B5bLNYZuc375OU+ffcZ01kNtA3769ieu3+3Y73M+vnlLnec4loFvG3z55IJH5308S8QydJSmZDAc4rouvX4fxzIoippUdHj/4YHnP71iOBrTG40p8gqv45PuDlz/9BxNkWhrSMIQU5OJdzuOuy3z+1umnkOvN0QSJS4eP6XjD9mst2hu52Qj0SzOHn+OYrnc3TywWO7IsxSZk+rrsFuRtyXTyxmOZZPMP0AZcv5Hf4RuO7RpgGSN6J9dUmYhiiZx++mB1WpBEy0Q6hJz8AzN7nE4HLlehESVgmXoGLqG61hEx5BdWDCentO3XQ6bA2XdcDgGdMcDDMuk37X48spFjG9Id3NK/5e06OzXO8oc/uv/+YYnX/2CL785o64PLHZ7Hp9bdEwZpTtju4pR25blx2sEQWE4GuIrAh3XYzqbIWQpbVkQ7I/sjgm7OCXKCuoWTF3DskwMSWQ8GOA6Dl6nS5CBIOv0el3qMqUuIhwNRpMBw5HPPs4YOCeV5P/yv74izUdITh9v4lLGBwyxRm/3GIaGoDiIqkFWSghZyHwR8PLVHcvFmmK3Idqs0IYjJLvHdrWmDU4T5lySqOPsFAboEmVVIaU5tuucWletQmcwYPx0wuOJjSpmhMcdh8OOzWqOImTMplOMPzB84u2a29dveP/6I6t9ysf5kfkh5PFXj/mP/+N/4umzK3TLY7k48N13P/DD739gdvYF/ckllj2kJ2hMz/tUdYQiZDT5jsWnN6wXCx4WK45hCGh0fRfqnMPhgNA2qDSkWYIsqnz4dMdg6mN4fQxdxesNUBQTWoX+cIAky/QGQ0RFRtNl2rYkT5cU2Ybjfsm7N68oBQ3D6QIiraShqDrH9T1UGeF+g9amWGrLJgh5fvuA3fXROjZq18CxNBStZr29Jc727LZz9ocNcZQx8Ef88vIRQ0cn238iXjzHHT0mykRubu5ZfvpAsN1wDBN03aIzfEbX1Fl/eI/aSsx8j68/O+mgxbbkYuQhyS3Bfods63zxJ08J25LNaoXWZqzv3nP9w7e8+vYF79+vWWxiTMOl2zHxXJ3hwOPq8QW6ouC5faaTCZaloCkivm0xmU3o9rsn1bFrIUstaVYi6x5N3dLx+pi2h+t7ZFmN0JS0TUVZ16zXe0zH4uFhjqGcfgCPdcFqs0IQBRzXQqoTdPF0YbP8IaWo8u7uBlvt4OQxVpuS5wlJmlI1DWlRU9QtuqUwnnjMLh9huy5ep4dQHVlef2Q9X2MOL2kElTwryIKEKsxQKg3NGSFqHqbjUuQVhyRDkhXyYE8SHgnrmn0WsFl8oIz27MKE/T7ksNmyWW3RENE0jW7f4+zzLxBUm+M6ZPPpGq2OSdOYx0/OMR2HwWxMUzcokojtWURJRde3TyFSVZAlMaKo09QFVZ1TFAGC0JDmKZLlESU1mukSH1OyuODh5oHlYkuZJtiqhCbU5I1MGaenSVBwwNItZNWgbRuatkLXJYpsj6qrZO4IdzDEUHXaukTXdW7u7gjmcx6dT/FcjyqpOcw3fHz3DtNQGA8cMtFAmvwM0ZridKYkmx3EK/7s1z+n2/Mowj35YYOoiFh2hyQryNYLyjhl+eIVf//f/oVP1wEd7wnnv/hLBl98QU5DmESslmsun32BErbIWoNuKfz07Xds9gWPZ1d8/uxnvHz9Cl9TGTkmjunT9X28vkuRNzidDmWZs1xv0F2PwbSPZZtQ1yiqhqzqiCJoEtRVSZTkDGcXHMKQNC+wXR9ZUfEcC0XRafKa/XzJw80dw4lL13f49NMr5CxEMg1GswmKLPD2/S1q3VImLYZpoQgnjXlTFCiGTt2AZkmk4Z4P//qB9fWONA7QbAXP81HFhjRvEHWXLNgTHncstjvmcc6xOAUmkqLSH/Tp9rtMpkN6swtaZ0gunIDV08sLxtMZ3c4Az3LQkJDbmjqvCY47NElDK0QW9wdMt0vTSoiyQl4reJ0+ZVlSIxLXJyCqqGlkeYkkCeRpQtu0NHVL20ArioymQ/IW1vuUpKwQRZGiqKhbTsFE3SAIUFUlbdXSIJKEKfExpIhTFFWh2+shCiK7+ZI6S0ijFN3SyWsVxehQNw2HOKCVIA5WVEVCGBxwNIHReIbn9+l3+zRVjaaKaCqk4RZBteh0p0iCSBFHGJqOLCtIgkDbCjR1Q1XU3Lz6hOF22G92REmE0LboikarmETp6ZLueifbmKnrKLKI2FZEhz2mBJLYMhj4dDo+nuuSJckfANgOvnVSUcdhjO11mC/WGI6PLEqYhoSgOZjGyWDTijoCIggylm2RxUfC3YZjEHLz6QZZlkmjmO16A62A4XQQLQPJNEklCb/jQt4QLAKqpqYzcYiPJ0hpmRa8fv0D++2Sti25uX9DEa5o8xRZUTFMB8/zmEz7XMxsqmzF+v018+/eUdUij3/zx1ycd3g0tRh1XORkT7F9oKngmCvoqklTQxRkrOYrXr5+y2KzYxvnpE2DBOzilCBJKJsW1+/gGRKqLOJ0fS6fXPDkyRln0w6mVtAfebRFzcPvVribEsewqWUDyfWoVYnNaocgiohyi6ypmIZLctwgCgKIDVVRIEgqed2w/PQR0XJ42MdIosSjx48x/BG6LHM+m4Bo0DQ6ZZyw/91viVYNQquhWjr++SNkrcNhlbI+7Ok+7mKNXYqmYuIbyLJEfzikTSuiuMWeXlGLGq/eznnx4zvuvvsdcrjAM1Q8R+ZqJPKoX+LMLhiNJ0jHPflGYH4siZWatC7Iy5LLjsvTwZinF0/5/Ne/QFZa7E6Hts3ZHg88f/GCLD5gqw2rXcB4PGAy6iOrOqquY6gKjqGjayqqaSLRnoxDroXlGnhdDcfM8GwXz1QRxZZWtREkjzotIJxzmF+z2h5QtRNjSmgqqrpBESE5BuiSgiWLyHqL7pqUbU3awK7IKJMl0faIKgmMBj6KKtHpGMyXS+TkwKDbQWlEosMeQW2QbZOqyLFMm7KBnm2SHw/IbcVkNOLi8c8wTBOpjPH1GqPdkx23aJ6L4Y/JSwtd8BjKGsXNA/Pfvuf1i7c8v35FLAUMuzkTJWVQlkTLkJuHhLtSwxuNqOoG2/Zo2wZR0hAEOAYBYtOgiKfwxjYtHL9Pg0KaxCiqQa8/xLd0VFXHH87YHhP26xU9IaejC0iSQNpIzEY9Fp/usB2dMil5/+H+1ILo+OR1Q5xmdAd9ZKnFlAR6poUgtOiGhNkUmIKM2qjcftgiOQNmz76iP71CFVqOcYpuWgTbHVmQUOY5vWmfypApBE7fMtXgEEQsFvcEhy1REhHGGYblcnlxjqWJPJ1p/MXXVxiaTtPI5IXCfLmhrRt8x2Loe/Rcm56pEs/vKdd3/Pm//wKqgub+migKqWqZXVByt8lpVJvp2QWDwYiu76EIIr5r4us6SpkQzJdYmsMxCMnTDNNQkdsWypxGlCnzEs/zOB/PKIoETZc5HmIO+wOKZoEAg2GfshZ5/eINeVHS5CnDgY9lGWhCS12XxFGOqavUbYusaqhtS7IJaP0e3a//BHNyRRiuyIsjomFStnC/WLBPM9a7LVVbM/B9/tM3//7fHpr8T//b//w3xyhlG0V4lg7xEU1VqKqS7miCKBtc9Xt81e9RLRI2m5Z/+od/ZrldUqQ7dKXlbNxHA2hrREXGdSy84Rjb81CSCLFMiKKcYrvkw5tr7rclqjMj3u9ZHwsq1eeXX/wMqa4w24qRcyL2a6rJZrdn1B/QCiJKW2OoEtExJggzNLuHiECTx6iSSNNKmK5PHkXQSii6QZUmGMZpKl7EMU3VcH97z3a9R1cUbL9PEGUsl2s2iwekNqXv20hCS29yhm7auM5JLRrEJ9WXcFjjGjKx0FI1BfvDnl2Q8/F6zdjzKcsKU21pmhZZtxAkmcNmw7s3b2ialsfPvmHUG+P7Brbdsl+/5IfnL7ldpsxvFkRBiGdqnPc8vrgYc9Z1sLQWXWo4Pz+DcEHfVnB7EwxN4e7bf+KYNciGRZFGeN3eaYKsWLSCxMvvvmdz/YIXP3yPo49R6paOZVNEIVNLYaILXFoqZZ7SH1/gDUaMhwMGsxnrxQpZlCjykrPzC549fYLUtHT9LlFacff+DVLdUEQBI08lXrymKAPcro/m+kTHLXV0S7r9hHP+Fb2rr6iyjPubW3RVI4mORLevsDXhNEUxL7A7Q4L9nt++vCGMUjxbw3V8dE2hLkJ2QURdyzhxye7lHf/49z9y9vmX/OJXnzEcuPjSBqUKSJKMKJNpRJM4OPLw8TVZNMft6iRFxHb9icPDex5ddsjCGFm1qQoJ3zBPIF5RJIsiZtMpqgBVmVMXp8tymmZkWUFZN6RVgyRKHLKSvGowFAVH16BtGUxmWI7NIUy5vX4HZc3nv/g1htvj090DUbDkyeWYfsfA71iUx3vWm5br2xzX7fP1rz+j55z0zU1+JK1K8lLE9XokSYZUpGi2x+Zhw359YLPZ8aQjcXXRZxUWSJJCd9Dn1c0dgqGjOD5REZFGCU2coLQiqqYi6BqGZzN5OuCzCw8xvObh9j1pKXAMQqpWYOQoKCIURcNhMefuxXO+/fYNLz8GqE6H2cWI2WWXv/4vf83ls28I5w/Y/Wd89/c/coyP2NYV//E//w/MLq948f0rOuqBjucT7le8/uEFeVRzdxPz+sMSgeoEkq1ELs6vWGwWRHHMYHZBlUXoqorjeBRljKCazPc7DNvCslT6oxFux0WVTQ5BgNftUIsay/tr8nhPXaf8+O0/8Nt//n/ZHXOSQkBsW2RFwdBPe68CLVUakScBSluiyRLGcEYg6ig9G9FTQEgJ85CsjHj4+BO7fUCaZhwOBbPLL7gYTng2HqE0OVWZIUsKL759ze//5Xc8/913vH/7gZdvH1gEFePZUy4uzjk83PPxzS2aalHnFVWa0SQRZEfyLCIvc+yuw1d/8Q2CI3L//jnR4g3Ld9/z7vufePXyhuCY0FYVF8MunX6X4bRPdzih0+viOX2G4xltU2HrCl3fZzCe4Dg2cqOhKzpdz8axbXrDMY5nnqB+tQJVi2ZbmKZLXVXYvouuSChiSx3HoKjEZcn6YU6RJ1y/fUOwjxmMhpiOQ7hfo9cVjuciyDJpVmLaNlkRUmyXmHVB2UCLwGa7Q1Y18rri2eeXXFyOMXQFTa2JN69YvP6J9ac5smahdydsooS8qtGQyLdHkl2C4Y7AH1JLNWERgWXTtim7+UfWd7fc3x1QRkMe9hHb+S1pVPDh3ScUweCwmnPcLnl6eYXfHzKbPaE9xISrHV89PkNsa8SmwXd8TM9hfPkY0zaRNIW81NAVGcvWmM9vKfIIWaiIggMiEk0tUGQJbd2wWN6TpSWWNyVJSj5+uEVWDK5fvkUxOojWAEXV8JSaIqupW402jVl8vD4BH00bb3KOZBrIsnCigCsGWXcKgoitnr7dWZqx+PjhZOkajggXIZ++f8+bb3+Pomf88k+/Atng6Vd/jOV0uXn/nsmgh6PWnA88HMtg/ema48N75HKP1hlj985QBIGHH78lmG9ZPOzJagXNnzD8/E9wzycga0jiSbUd7I+QJhRpxX//v/+WfmfE5OIZA6fP+eWIl8+f47QCj859Lp8+o21tLK/LYNSjPxmSxCnx8cD7uzmm59CI4HoOncEQSdUoy5KmzCnTE/C6aEGQJA67U6DnuB66bWPqGm2TQXXkfn7NfLPh6mrEp3fX5MeYMi8YX5wh2wYvXn8gOUYIWYxuaKi6zHG3xZYaJLGiqk9Q/OJwz+Knl8QPR1zfp2gjPLsHkUiw2ZDUxSngTw4cwgN3+yO7CkRFpzscMei6uL7DZNTD7PjkukeQV5ieh92b0MgqUVwg1zqKAEJTo6k6YiViKwpDVccrM5L5PQ9xy3J3YBckCIpGI58MaaapoZs2811GCewPISUikiBAKyA0NS2Q5wWdzun8DncB8/cPbFdrsiylKRKqPKMuC8S2Jc8KFE1BaqGuaqS6RG4K4ptrqm1ImrdsgxjP7dCfTcnSmDAqke0uRVXRAvvjgbpMCTZzNKGmziO6noooVqRphKr8Acqq6MiyBoLMMYppqhq5btBU7RSaiAIIMk1esPjwEVmTgYLl7Q0CkMQpedlC3VILAq0A+82KINgRhwGmJiNWObpQ03N1/I6F55gMhz36wxGapWO6Kk0aESyXxFGB4g746af3mJbK7OIZ+92BpkpoBBVFs1EVHctxURWNpJawTIPjYU+ahMznc+5v71BUHeqaKk1oigxDM+k/esLw6hG+5RDdr7l5/oHxxYjWkmlUBampkEUR3TN4d/cC3TixIfJ0T5UmCFVFv9Mhqxscv8fjsy6qmHNYfETOUxyvz6PPBwy7oBQbVHKKJCELDqiqjmRfEu0LquORJizZzg/EyZGqyHFMk47rYEgicXgkzHNkSWTQcRn1OlR5iq4r6JpCfzxGdzqUecnibsXt9YZO9wyvN+H2+T3sYrzBCMHvY4676LZFHEfUeU5bS8iSgixpNE1Nlka0TYOqyjRlATQEcU4lyhyDkMvxgMFoSlRoeJqKJChkx5DNyxdsnj+QBBp5WJDHMXrfphFFNts1xtDDG3VY7h94+/oFl+M+dZnTFDnbzZGqBMvU+PTphk/XW3Z3c9Qy4OrRlF6ny9OvrpiaLb/++uecDydI0Y5yd88uStlnR95ev6GqKs4GQ85HPqPBlCdffI0/7iMoLTQlYXDk482ab7//LZomkFQ1hqEz6vXRTBfD0hHrBqEq0SWwPA+xLpjM+riOiSKJVEmE63ZQWgG1aVBFBYEG2XJQBBlJAFFWkBUJOUSl7YgAACAASURBVNqwXiyIippOr0OeJDRVRRGHlFlOz3GQhBZZSFAsKDWB2yxAqdZ0ZJGqFOn7HTzHYDIZINcNyXyBhYoiqMT7HUbXphRFgmCPohuoEngqFGlMU1Uc4pb1asNPv/+WiVowGjm0ooY2eUbd6kjGhK59idm4LN4EvPkp5vffbpivF2DWqFbF1Ne5UCXiuzXv3m15sYfZxQWyopAWNRICli6f1M9JgS22xNEJvF0j0TZgKAq1qBEFWxRZptPxUcqEfrfLk8dXfH01YtjtcoxihrrMJipPkg+loi0L2sagODQoZcZmueYYRYRFhWsb5FXF2cUUTWpp8uwEAZdVZFocRUGqZYRNgdN7xpPf/DsURaEJNly/u+aQVxRFzflsSm/UJ8pTWkOkqAqUqiXaBaRZRZZHZEnMYrVl8OgzfvPHv8GVaqY9gy+vLinTmvU6YLtLMTtTiijAkSqaukIAZpMxYhqyePmaR30YPjmnc/41z//uBR/f74nLlg/3WwTDZfLZF1i2R7frk2U50/EYi4rw/h5TEfH8EUoNdXhgPOijqwqqKCALDXka4/pd8rxBV1oGkzMEwSJPApIwRKxrOp0e/fGA7f0KVVNYz1cEQUjTNlRpjGFoWJpCx9HRDIP4GFOWOX4lYFw/8OYQkHQ6+F/9AnN8zoe7n3h/+4bru1sk1SRvQECgRaTjefy7r/703x6a/MOPf/s3iqjQlhmuaSDULZfDLk1Zs0saFEnnF7MLepLCv/7dGzbLgEKHw8MLOnpDz3WwNIOiLMkkg8ywkducYa/DQKrRmpI3b++pkpC8lkiDEFHQ8QyJrKjpuD5/+Wd/TNfUcVyPz59cMutYTEdDFFll0vUZn18RZhV3qx3r5ZpGkNE7Ixq7x/rmAxoViiQjigpFlCALAkJVICCgaDq65SABnqtT5yWH3Y4gOLIPE7qOA02FJoEsVAx8C0lqyZKQ4XiM7/cRhBahadjv9zRVDXlCVFbs65S6iNFUg1YzsQ2diW1TtxK6rhEc9rieh9fpkOQVnY6HrppojUeyiOiduSTlmp/ef8/vfrhle9DQmpzzvssfXYx5OuxQJgFTz+TJFz9j4Oh0NehZEqqqolkOZVYS5i2H7Q5J03j/8iXnj5/iDqcs7xZEmxXzm09sbx9wTY9nsxGWHHE5dnk8MpmYAue+RVeTUIWG0uwynswYjYb0fJei4gRzfPKEp0+f4JomWRwxHPegKtgu5ni2SRiFNEXC8bBm7KiUWUTZSLSKzurdO+7ez5l9+Rs0yyQLV9y8f4lq9hiOxsymPXrdLpZmEQciRSERR0dKUSHczrHlEkE20TWDw27P4v6BIsu47J9hGjOe2Fc8+dUV3ZGO0iSYbMjTkH2QIHcesXxY8+HVj0Rhwv/xt6/5dLNhdXfDtCMz9my6uonf7WGaXTq2h2WqNHlCZzCkTVN26y2iYnCYP7BdrqjynDROSIsKONUSBUQ0x0cQJVarFWJdI7QtjuPgeD6CKPP2zVsMGWazKYcg4jdfPeW43LK6v8MxNZqqxjRNhjMfUUi4ODf54nGPoS2RVS2CM+DDPD3ZkxoBsREIwwR/OKVMcoZqw3/4+pxf/OIcx23pTy9RTJ/7hxWzR48QRIGsqGmTFKFtydIMUVMpRQFRVRlOXb7+2RRbhcVizma9RpZtVEWkb4qI5Z40jinyivcvXxGGKfP1kZ99+Yz/8Fd/xtnZlM+/esLjL39Fnghsl2uQumS7iFrK+eIvfkUqN7x8/T3vXv2WNl5jSwJttef5777n6qtfYftn1MkCQ6t4Nj6nb2ms72/ZRycNX5IkNE2Lpclouopja4ynjwiPIk+edNm+f4tpKTieRyuIlKmE23VA0qDJ2e1WNOoQRVF5+/Y9y3XE8mGBrst0+0PyvKQqUwxNQZYlhKamqhvKusbpdmlklUbVacQM1a5RbQWtiVClkkxQaWSZxvXwhz36jsbUhPywZL88srgp+PBmzz/9y3f8t//vR1ZBguZ66Gafq6tHGG3L9jpAyF36lkbH79CbnDHsurSyiihLXP3RN1z+0VcYvsKb59+yvn7Dyx9e8K+/e8v1Q4AiSdRVSc9W6fs2taggiRKabrJe7DFkE0u3GU9GaIqKpkhIrUwR1zSNiK7ZWJpCHiZ4nS6OY2IaGoOLSzbbkKYB13ZQZR2pESnqClFoSMKA1W5HU8Fys0E3DYS6QlZNRNlAdyyyIkOtE1SpRlJFdFsmLUKu795gUDF0fYK05rjfUBYptSDSvfiM3mTK5WyEaVoc9weyKCW4WfLt37/m2Z//MRtEYrGmCQ9UUcD8h3fIloH96AzVd1it7hAMC9P3Wdx/Ito8cL9acv36A2EsER8T3rx6T5U2xGHA8v4GS9HomSqeqTAbDPAHAx4/ntHuY64uz/FGPUSvx2bbMhk9oolKeqMBhmnhOA6aJp/WJtZLDsGBaP+BND0gyi2iUNKKMmmWUhYJu0NIpzujLiUyQUMWJe7ffiBNckTZwJ89Oq0voGINLllfX5Nu15i6giQ0CE2L4XnQFAhUNLS03Qm269NUFXVRslktcU2d6WjA+n7Od//XP/Lh5Y/UWsxf/5dfY46e0OlPEJqap1ePsJwOo26XvqkgtxWHh2tunv940uxqJpOvfoPp9EFUePndd7z94QW1bKKOPse9+iWYCv3LHqancbe45p//+z/y4rsXfHj1AdPwmA4eE+5zonBNkm548/o5UTBnaFS4vsLZpc9oZmB1FUStpRFAkkXyKicrMxpZ5v7hAVNTKesGtz9GtzwQJOrq1PqTDJusqEiTGAQJ07JwOl00VTvp0ZuMbVZSYtKkCUmS8tWf/BrF1In3G6q2xbS7iJQU0R5Z1dkuHuhqYBsamqbhOSZlcCB9uCYODuiOTSpJhFlCtFsQ7I/UZU2QB9RFgdIWfFgtmUcZ/fEEt9Ph4mqGY8qUZUxZV4jugKjV8Lt9up0etu7QcTvYHYdOz8OURGy5oaPJ9CyNzh8MKG0bUh03/PT6HdfzWwzLoeOYRFnJ3XqHIEkQb2mR0GWI45T1bntSrEsKuuVTZDmCdLIa2qqCZvoouMRBym63I88LoD3ZvKqGrCiQRBFZVZHqgrYuENsGQ1GJP21pUhuz36WVG9AUDus16D6FZCEIp1bILjqwCg+s7z5h6wp5mqLLNaqq0e328f0etu1CUxPsdqwWC/ZBhGt5tEWObZq0SGiaiSTI3H+8pywzWiEj2J04b5JicQwTakEAw2YTp8zn9xz2O+Ikpuu5iFRUaYynisgijMc9/H4PRdLo+R063Q7hYsl+sSGJCvZRyvOXr8BquDwfYJsqb15/pOuZeP1z6lpE1zRkSUU2HbIKkGTW2y3Xn675+PoVx6SkrqBIIihzNFmmSE8Bu2GZrF9fkx1i+rMhxsBDMA2ktkGsagRBpBJbVvtPyFpLUWaIgoBrW3Q8F0PT2Wy3TM8G9GyRIl4Rrq5xun0Uz+K4f8dxtaCIcqrkyGEVEqUazuAzKqFDeNiQJxmKYuJ4Bq4jYygNbZ6RxylFmpL8ITAZdlw0VaWVJI5RzGQ2oX/1jNvlkTLPMTQJSdL48G7J776/YfToVwi1xnB8zna5xzq7xDqfoNoOuu2hKi6GppFlGZpio5sOvt+lLHOyNEVEwPS6iKqNZeqUeYqvn0CSF+fnKJKIUNa8/bsfia9LOsNnHFc1+SYgj0qCdUjdxiyDObGoYZseSRzTtC02FY7vE4Ul63mEbekcDgte3uzo9y9wVQNHVTENhUefnTEeOpz1fbq6S77dsfl0C43M/frI/c1H1ss1Hb/DdDiho2t88fk3eJ0eTt9F1nSqomZ+u+S7H78nCNc4rsns4pLZxZjuYIDWCviWjuNYxFHMwNVQihSzrVDamirLcWQZuW6RW2hrCd02kGWQFYG2bREARVUpW2glBdWysISKLEvZbbd/sCpKRIcAQVYwDJWmjDA0E8c32QkpkrDFaPcM6xazO+S43UNd0nE69J0uvt3B0gzc7ogyS8mEmmMaUwGLxQLb1NGBJEpQZIXxZEqwWTJ2VZ6cT8ijnDBWsGe/oKwN0jCmNmbc3Yt8/zLh99d7gniPIWxJygBRLunqIlNV5PrdmpugpdMfgaYTxQn9no/vmFiGgaRoVPERT1dZrDYckxRN04njGFEUmEymhMcQWWzp2yaznksryJwN+8yMhs8vhvzsaorX8ZmOBviWiWdaOFqfZp2y+PCW5LhFaBru44yL2QRFlTmER2y/w6Cj45kyjqqhlOKpOanJUIFQtGjoWLZNut8y//QBu+Ny9tU3GL7JZn+CyOq+xy5L2IcH8iwlywoc2/jD/U7Ad0S+fPYZT4Z92jzEVGpMqcHxn2JYHvFhiax6ZElJcAipqpqnj67+f87eY0mWNE3Pe1xrEToiMyPFUXVK1/R0z4AYzMAAkOCCe1zPXAyNMOOSizHSjAbM2KhW09VVXeLUUXlSh45wrd2xyOaOXBC34Gb+++ff/7zPi1hVyNEedX1Pv14huznRzZqbtyFRpxMJAoVsMD1/jqqaCAiMTi6wJBFH7DANG0USoWyZTSZ0SYJUC9RpSrjbEQd7kjTFdzx806FtQZZFXNNiPPDoDQaMJ0Ps3pDZ8RGSqNNVBbblkqQpdZkxP79guQk4rB8QqgJVERFljaKqkCQZ+h6i7nOVplymO8KeweknHxOHIb/8zT9RtHAyHkHbIAoikqigyRJ/8fl/x9Lk//i///e/Xi12iJ2Aoiqsr6/RdY0oSFjfX3M+6vPlk5fUSU64fuDu5hV6u+fpvIeQxtSNRFM31EVOV5WodcbTixPqDtZRw9DzOex3xPstE98lFUZ4Gsh1xdTz+dPPP2M8GmJM58w++RJfVbAVmV6/R89zGQ1H5GHIYr1H7k15/eGKspOJ8xxBFAmzgmCzoUwTpKZFoSPfHBDaDsmw6ZoWoeuQ/+jqsHUFQxbwLQPPdfjh/S3LXYgsCgynx5SSTpmEeI6KZbtM53MUSaaqChTNIt1vaZEIZAHFFImTHEGxyCWQmoq+pJIWJYosURUpZZph2B6WP6Q/HDMcjlj8eM/tas3sRY8gCbnPSr55dcm//sUJvzif8Kxv0lME0v2Ww2bLi/kYUyjRmxhTeTz86B4llnmS0Moa9ugIw/GQdJcOiSSKWV6+Y/v+NUPL4cg3+eKTEybHHudnc1xLxVEl5CJ5rE+VRRxTYx/F6N6I3nBAb9Cj75pomsp0NMCzba7fv+HuYUGapGhCRxTsOJkMyLOYVhDI4gOnx1PKPMfUOpbbku/fbqlKAZMSpUsIF9/x/u0l/8P//J9QTYc2WdLzeyiFAGuBm9dbOq3m7vYDQ7ujbiqiWsEwTNqm4uR4zHAwxncHPP/qM7ynPWop4BCtaahYb/bIbcLvvv6B3fbA9eUli1VAVChobp+ZJ/PpRZ+j8QhZMKhR6T/5U3RJR2hKmjzFsk2Kw5Y8y4nDP27hi4I0jImihLaDsga/P0QSJGSg60S6qkRqKsIkpawbXFNH7DoESeWHH3+kyVLm8znX1+/4+Z88YdjzUQXY399QZBWW7eA7Bk/mDuOejCI12IrMdHZMJk9pZReRDlXWyKKcIi+ZHB1x4glMtQZLk1BVGcsUefvmklRwub36gJRHhJ3KYbHDcizyIuGw36BrFpqhYvZczi9GvLw4hrrmsFlTFjmT0Yi+bVKVCUmcsb67RpIMlrsUz/c4PbvgxWdfcfriJbbTYngOunPC8mrH929eY2oV/tAlCnfc339gv1/w/s1P3H+4pN1v8bSW4+mA04sx06dnJNkGxJhPP/2Ui5MhxAuSOMM3TOI4JclzyqpmPvJJggPT6QBVN/F6A4aaRBbkpHmC7Vt01DiehyzLCIKA49o0koLqzPF6LqZjoVkjJicfM5tMkBSFEpUuj4nDHYqikCUBtDWiAG12QBVb9nmLrOrIroQiiRi6RZjWmLbL/rCjlCo+eTbjpKdid1vC5S2Lh5LDDn56d02rZkTxo4/HHZ9Bp3I+GxMsFghZizE+4umn5xhKiS611G3F5LOf8+lf/RvMoYNmCbz+8WsuX//IP//z73l3/UDX1HimjuM4WIqEaSiYqsJs3EdSHgeURpIQmozDekuX1hiqjqUo+J7PYDhAVWokSUGzDCzboK1qDFkh2GwQxI7JxQX5PkHsJKx+D0dXCDY7JLEDBPb7Ay2AqFIIHXF8YLlYIpsmumVTyxLTqY/nm0iajCipVEjEaYreSRiCRB5uyaKENEuoZJkv/tXPOTnyMIwGvzflEJXozhHJImV2foYxsEj2D+T3V0jbEEvoE13V9E8+Qx33aFr4cLnCOT5lE1XEwY7X33xLXtfs44I3336NrTvIdctmvSILdliKxEnf59nxlLFjYVkGdS3Tm044fz6mzbb0fIWnnzzl7MmMtqmYHQ0faw0lEU2TaeqGtsrJsxRDLVi+/44fvv2B2axHXhRkWYmkmHSY1EWB0EEnmWiqTZnEaBJ0ZYUmQZtG2LqJaE3Y71J6lkSTRAhtgyyKSJJA21SokoCugaS07JQ+lt8nTVLqquDm6gPn82PS9Zrf/N3fUzYhw7HByy+f8+lf/ls63WW7XuFaErdX7+nKlqFp01Upy+v3rBZbkrxk/uw5s4++xOhPUDWDushZr5f88ttX7MQho2efgqKBVDI6HnPz4ZJ/+sdf8eH9LZPJJ4RBwqs3v2O727LZ3XO3+ECeHbBN+NOPz/H6Jm3XcnV9z+31LZvthtry0PwR/tERmCZmz+fHt+94f3mF41pEwWOVoaI9uspEWQE6WmSWqzWiolN2Eh0Sg76HJEnUVUMcJsSCwd3dGiEvOexLHGfGdrWiyhLmFzNs36XrOuIweHQ6tTmz/hjH89FUjSqrSZYbrj9c0okStaqzSWOCxSVj18KwTbK2wLI0JFnikMesghjLthkcHzMY90nTiPX+QFoUqL0RWCNk3cQy+yiqjIRIW5aoXY1ZpThNSF9XUeoEIY3pkgC6jLrJaZuEJj1wvV6x2+2YeBaK0HB1c0tRg6eJdG2Jb4qIisIujlkvHnBMjTDMEDsVWXnM0ittgSQJSE4fwxkjKBZNJ9EIEmmcIEkCdOB6HqoiI1LTlgV5XqAaBq3jIkg2kqax3d8j0dKUDXktIVh9NFWBTnhsxSpjrq8+kO22yJLK5GjG6dlTLNtF13UkoWLz8BPfffctYZggagaa4KB3Lbpuous2iqQSP6y4v3vAH7ik+zXRbksRZxRxSZRVvLq8ZL1ZUZQ5q9USkZZxz6MrU7bbHV1Z4ioKjmFAUzGZzKg6FUtWkMqKs/M5tiZRZBVZXD7i9lJHzxJQ2pzNNkBzRqQYOLbGwDcRdRfJ8Cjbjn1c8MtvvudXf/tf0DWV7S5E0zSC1YIk3GNbBu5gRCvJSLKEYVh4kwm9sxmGrdN10DY5NC2aqpKHEfeLNxRtTlZV6IaOoZscTU4wZIX18gFD79C7A2Vwj5AtOf/oS9I8Z3N/x/7+FkF2efs+4cNNhOUMOXn6JWUjoKga/aMZoqYRxzvu3r7lw0/vuH9YY4kGmgiWImEZGobro+sacV7jDceY/oBD1qCbFl2257C4ZjA+ZrnJeNgJpIyYP3+CpBmMPv6EMKmZfnyBInYokoDqOtRlQJOGIJTIMiTBFrGpQNQQRIU8OlDXLV0noBsWdVWyuL/H84ecTMaoik6ZyPjunPOff4YztFn8y//F3ZvXrFcHoujAMtjQamMsw2ezW1CpNYakIoiP3g0N6I97rIOAUlTRVBlNEDgejvns44/o9w3y6+849XUqfcpqk9MWJWpd0bUNRZLg+j1ESWHse7QVnM5PUWUPVTdpO4jKkv/6939HkKwRpY7xZISr6ZiKgC6q1FVOFDxWrHddh9k2RFFCVRbIdU2Ttmw/bBHDHKVKafM9bRPSdQ2qZiMKHaIkUbUCddGgmTpBFCOpMm0LVd2x28fIYkuVpkiagSx2CHVDVTZIlcLIH+NpIT05RbnZ0OkOumnh+Ta6ZXA8P6M36JOWCc7sGFUTiZMAdzjBdHvUVU1f6YjWS+IkZ3Y0R1EVuiLl4mRG0yk0tcQ3//gvtPsUTfGQB0cswpLvbkKiaEtTblhtPvBuseIQHhj5JhfzGWWY8N3lDrQekqozHI1A0tjtQ3xDRjJslLahp6sEcYaCQFWWHOIY19DZhTFiB2fzc5SuwVFFhn4P2x8zcRRGfZ++0THwLHrH5+i9Kb7Rw8wgf1jRhBvqKkTTFGRVZTCZcShqEDRkVWEf71C0mvnYQKdCjUtMVOqyxHItEBWCKOH27SX//E+/QqDCOx0TyQWxeODHN2/RUJFqiahMiLKEpiwQVIGmyhElgTrPmXomz4/m+KZDvFmyvXvLwKmx/SPyNOD69pYkKTEtj7ZuGQ9HeLrGYb1Diw+UdyuidUqc1rSywA6NZVIiaBbDoxMEvY+pGXiOy8AfYjYl+f6Aqqq4/THpwxpbFaDqsGQJsa6ItiviYMMq2HMfhpiiiNo1tK2A5ztURYHvDjiaP2E47lOXHUrXIasyWdZi2z10Teb0xQseNiFJFKJJ3aN7pq0xVQm330NqS4yjEd3xHPurPyHUNWxdQ1INrpcLqDM2uw1Z21IUHbqkUmQx//4X/x1Ok//8N//rX9eChun2cXwP6gpR1rFcj8Ggx6dPnmCoBjfXa+7eveLy6j2L+weoK3bbHWXZUpcZXVOhSqAqArMXz7H7Q/qqyOruDrl+jLzoYotel0hlwdPjYy7mF8yefAqmwejll1iGSbW+fzR1ZyVyVSN39SOK7z56RfI0YhcGJGFA2kKpaKwOIVXTsV/c0yYhUtegoFJXLU1dQV1R5QWSqlKlMYYIjm3RtZCWLVFasFpvqSSVo2ef8uMPr0mimPn5GT3fQ1Fl2qahFR9vQcQsoq2gkGSypmNf7Nmld9imjS/ajz/UVYNr6bz84gsk3cXrDbF0mTQMaFqZxhCZnIxQdYOr+yV9J+HnMxkPmSrIOKzXLB82lFXN8biHXCUIbY3T79M1NbJmk6QlSStz9eYVUfgoxsqz7FFS+vYV1fYBW2x4NveZjizGkzGe7SEVJZrYIiUBsqqiGyZuv4c3HDEe9Gk6EdW00GyH3miEY9moQk2bZWRRjKmKSF1Dz1IY2QZKk5IEe/zRmKat0RSZyXRGGEVovRmLg8j/+V9+y+LDDWK9Y3v1is+/eA6qTtvVdPmB5rBEkh2k6UtyWSGrMh7WC6JoQxzF3G8yZsfPGE6POZ4OmZ9dIHUKclZhTTWWh1vurt7iGhL3izWb9QpDk7j98B6hLtBkEauLOBuZSHVJldcI0oC0bBhOBnimTs+QaIoEr9cjP+x4+HDJw/U1uiqTxI+RhyzLERBpZY3eaAptR5XlRHmJadg4skCZpfRMg7Lp8E2NaLtiMuwhNAKGDMPplNXiho+fTkjigtFkTJVGxPuQsBQxTZVBf4DhWKiySJymxGVH2WgomoPtjgkPGXfv32GYLlZ/hK/UXL9f8PbywGKdM5/7zM6PCcOE3fKB+w9vaHULUTWRTY28LEjjGF3RsZwRv/irf8+Xn71gZNvEYYTQGEyHxwyHHnUZkR42HMKAh7s76qbFHx7R6jbnH/2M+cuPcfsGD9ev2MQFw8lzkm3J6z98y3bzGlXVCaKCy5/eE2/X3F+9J9nvWD/sGDsuk+GcJz/7cyzXRa03HPUMBopAePUWsazpKxrVIUFEoqgrhrZBl+d0XcNoMuRhG3AyURCSjPn5JwxnT9DsmqYV6boKVdVBlP64bFQo0gpFceiNTjD8KZbr0zQNVdUgCR2H1R11HtGUBZLQcff2e6osom1rNE2lkezHzKmvoRs6uipTNTKKprPebxgNXfqeg2O4WILAw+2KuGh4/eFHRqc9JFlCMHXUyRmLRYba1cz6Nou7JUURcTFx2e+3hPsditJx8ef/Bv/sjCiJaIWGXbjih29+za+++Z6qbXAsE1cTcXUFQxIZ9y38voOqGpi6SZaV6KqK540wXQ1NblFkgSLaIrUlmiig6zq2YzEYD9F0HVHykFoRTZFQJQGhKvFsk9lsRpRkBHnFcNhDEXkUrVUFsq6SRCF0MrXkkBYJ280SU1Ef0fSex9F8ymQ2QJJkkjimLDKKqkHOEtpgT5GlrFc7JFni/PmMo4mNa0kMej1MZ4RpqFRZTh7tcccm+/Ut2XZButxiGT5NrtI2fQTDpZZLJENmuy/pFJvbt1fc/f4th9We1XrNT99+iyJItHFI37A58mxcVeW45zA2HUaeQ1PVuIMRs8mAqhIYDI8ZjV1cXWXgOviez2jsY5gqhyCmq0qyooW6ZfdwjVBniGLL7uYN4SHFtjuKLEEQWuqqpaxbNFWnbRs0vUeR1ehCR9PA/uGeNo9oy4QwySjTjFPfRpFF2rZhf38LgOnYOKMJUZpSZCFdnSDOniHJGpKisL2/Iz/s8EWBn375W/Ko5NnFCzzX5eWf/YzR/BwRyPI9y9WCd99+z3xygW/YrBdXXL56hSl0jAZjTMcDWUbRTARBYLta8atvf+QgWDz75AtOTk8Ii5S6iOlkuF3uWF6+Zn72Mc/OPEQhYR+GNHXIwBOY9nUM10J2HBa7A8t9jGnoDKZTXFvjX/3VnyPKBtNxH390TNVIlF3D/rDnECcIisDiZsHQlFndXVNWJVm0J4kOIHTkVYOsPdr5UQ0k4bEGG0EgzWs62SbcZkzHA371z3/L5mZJb+Tz5NkxtlJTI7Hfh7RJQJXEPDud4w9GyIpGuAvZbUK6KKCuQdEVtps1eRQw9myoYLdOacoGUZQI8prd4UApynSOR6fqPKz3fFjuCNISezhA609p2wbDUBHoaJUauc2R8xVWtkYNtyhVga1p1FFAEx7QLZMqj2lb0G0DVRYoy4yODl1ViMIt6+0K2hrX0umyAFmEKIqQAVFUGfctFosFh2CF5ZiokkBTZJ1fyQAAIABJREFU1whdRVhktH8U7gqaRSsq0DbUdY0ggON6dGWGUD/KtRtEJFmlk1XUnkclgKzrzI6P6A0GHOIawfAQeYxPZVlKlZdEYcjNu2v+9IufcXr2hDg5sFu8R1caou17Lt/8C394+4Ek65gdnyJUNbYmYFgOmuVSBAnRZgVSDa1Avg/Z73YcNnt2d2uubu/Y5wnL7YaqyPEcC5mGrszQpQ5VFAiSHKmTmI8m5GWB65tMzy+wZBujadBkjfOLc4aDHrb2SPlYSk0R7omD+LHe2fbZb9acTlzEMqJuSrJaZLUP+cd/+ie++eU/EO03DI5OuVtuGZw/5aevf0mdhkgCKIqG440wXYve0RFuv0+VVxRlSxZntHFEvt6xv92SZSlX23egiDRNja6b+F6f49ExQifgeX2SOEdO91S7e+Qupau3RIeQo49+juz4LLaQ1zqjyYyLJx8xOHpK0wo0dUe2D3j922/58OoDbV6y2+05Gw+Y9GcosgRSB/0p1nCMKClUqoUxPuGnn94hOEOaLGdxfcn2EDE5nvPmQ0CuHaO5I06fHtOJMP34BZsSplMXmRq5bVE6kNsKTWzYPrwlXF3Splvy9PB4fjQdoqwgKhqCpJIUHVUrIgmPz2HouniOjWYpuCMdb6whdVcYxW9YrwN+uj0QphG5aWFOLgjCAzert2yCD8x6E0QamvwxDqBoKlkDkuUz6vfJo4CJPWI06JPsLpEPCYPZEcboGEmSkbI9wfqAqJqPgmVBRBcFsrTA80cMRn2snoUgQdykvH/zB968e43j6rj9Pqqs4zkeQqfQdLC4XyJ0EnWeoRQJdd1webtEFQUkyUJVLUajPqomszgc0AcehuUidhoyClJb0RQx7R+XQXVWkqSQ5QmdKNCiIio6kgxpUiD2RgTXP6H9ca6hkzDo0B0VNT5glw3pJiWsZNzBkLrr6Gjo2pKsqhElGVl4JK1LSWe330NTc+KI3L59zSHrmJ+dst2s8LQORZLx5y+QDIfBwMX2VHJnhN6fEEcZbRZz9f4dN3d33D8saRBR5IonF0doosDN3ZrrZcTI97FthyJJsCwHWRZxXA9JM+jiiKSosf0+A9umjCJsVaauamRRQeoE5kcXXBxPkJuKgWsw75k4mkTv7CNUTcXUDeqixDUV5CJDiEKqMkL0dFpNo1IsYkwWQck+a4kqOD07o21iBL1DlEteTsAVGrR9Q1EoyLZGJ8qsdgmvPqyom5Ynz55QuC5BvUZsTI7dOT1rzHKxIyxCGl0hDHdkyQFZVgm2W6o44OXpCWJWY8kaTVZQZglF2/H+7p7fvXkgw2Gzi1FVC1NT0Gg5bDfcvr9Gi2LSQ8zx6RxtOGIZN/x4n9M7foLpeji2i255uKaBrco4uk5dP8bATFnGsnsokoBnWwhlg4qALrSMPIEXTsKYCq3oMASZY8fE0mWSvMWwHx2gCi6e38MbOrh9B284we33MTSR4fEM0x+x2QWIqsXD/R2aJpGnKZppoGoyhipiuT7O0QtOj17y/OSMri253614/f4ty+tLVosHgt2ePE7pWw6dKvI//tm/+/+/NPnf/uY//7VpOriDEcskpxJELFUhiWIaBIaWSZtECGgUWc2mHaI1IcF2ye6QIMgSYltRFDlllnB8eszJ6RxfaCiW96RBSJBUpPsQoWkhyfnk2Rmz8QlHF3+CefYRklEzms0RqhohC2lrqNKcYLmirlqKrMDSZGxVoWeqWKqMqemkDQiSyPvVjuXD8rHmdb0kyVJUqaXOI7qmoM0KxFakrgq6snisyMwKNFWlaTtWqyVJFJJ3IicvP8O3deKswjZNxO5xMJA0m6RVKYucJM+gg7iRWO/vUcSCUoG2kjnRfURRQFYNojAmDEJ2hwPT8ZD44Q03l5d4R6f0piNcz2W3Dbl9s+bZ0Yy+5HO427O9X7LbHri829J2cHY0oAwPmLaNPT1C1U322x1pBV//5l949fotigDxbkO+X5Hfv0cIN5wOHY4GNprUoioOiiBSbzZQFeiGhmz10PvjR5+DLCLKKtZwgGsZSF1N03SP6JcqonQlhlBhayKOoXI06NGzVIyupIz2aIqMYhgMRlOyLGO/WlFLOqI9pDZPyMUZ37+55PX1PbKqcHFxgiZV7G5f4Xk+9+9eY0wvUAYX6P0BaV5wCHYURUPXiCRFg6gOESUdx3XoezZhuqXSG2bnEw77HWIXMnQNuiphd/WKZL+mzR5zumIacVgfSNOaRrTJCjA9j9OnZ4xGI3qW9YgmKxqy1LG8vuLywxXm/4MUNxV11SCKMoIoYfcm5FnBIYiQZY2ebvDy+QuEOGRkGfRsi/OTOZ4mU0UBPVtlPp+hKCreeEwbbbB1iTxrcfsD1K5ArDKS5RXrmw+YtoUqyeRZwd0m5le/e02SVeiGjdjqdLVMlRfIpo+lwqBvU6YlgmBz+mf/EXugcvr0lOXygD+YUhcZodSjFmQkqaXMM4r9GlnuMX/6BS8/esrFtI8utbRV+UizWAYqObvDku3dNVVa8v7tDZvVGtvWGYx7KLqFLinURcBmt+Eh6RgN56yuD6weAt69e8f66ooqBkO0WD08EO4OlGFOUyncXR049Ueo6oTB/ATDUJHTmN2P95SbAlNwiG/vEKoKoW05cg36ikiHwGDYZ7GP0YUco8gpU5WeOWR60eOH7/5A3CpMpiPiaIdmWoiShIjMeh3TVB10Mbou87Bes767Ij5s/pgJT3j76nugQ5Mlgu2KKjlQlzmiKKE6Iw5Fi9lzGdoWtmHRtiWdBPsiRZRFJt6YnuYj5bDfbrAsi+GwT280QzQ9MhS2kcDl19+hyzZdpdE2HWEkYhin9I/OmX36MRc//wtUzybOIgZDj/1+we+//g3b+xscS0NqG8gSuk4kijKoC8qywTItdM3AsX10VaWua2RFpyxrBr6Dqcv03B5tmqHIkJUljqmiiB2qoGNbNn7v8aciDiJc3yM5RLiW/jigtzWKJNFVLWIrPLqL6oJShF2YEMQhcZFCVSGrCkFW0h9PMV0X2zSpkx1CUVBUFZrtYXcllpjTdiJJkGM6Li+eD2nqjKpOOJ6foagD4mCDJjfIZBw2Vxx299xcvsNUdTxnRBrVCI5L2AYovkCtWyz3B9ZX79hc/UASbbDklmwfMPENfNPGFAWaPKXJSzxNZqApaIqGb9lYwwk938FQTGRRxvZ6HM1PaGsJ33IwLRsBh7YRkUUJ2+1hqhLRdo0ogWaYFOmOIt3gODpFuiMN9ziOT1kUyIpBtF9TdAKSOaVMMtqyoKwF7m9uOGyWRElIabQcTUbILRR5i2aapFFMEcWIXYsgKXinT6mbFlUVESZnBHFGXaTkeUp8f8P6wwd+89vfEAQJk/4z+rMxz/78I5IiwDRVBEkk72R8rePFxUfEh5DN8oF4e8Orb78l2y1wlBp/0EczDML9nu9/9zWLWOL8/CWj8YzJZMhPb37iw9UHzMkpu+UN2/sr7h4euLq/Zhdl6JaJrimMz0/J0oggKuhNjyA58OnFlPNnL3AGE4azY4b9Hr7nkGx2jCcnFIcE02xpq5Rhv4fStbSZgNI2vH73ntHsiM3ymsPmgU5W0RwfUdOwPO+xpUZ+dL8UaYJiuDS1xO7uhmHfxDQketMJX/zrr1CrgvjuGnVyhNXrsXn/E2InMh7MsE2TtsnJixhFTOmKA/tNhmIbZHGBpugookSbF4SbGBGJ3WHPbr8nKTMe4pxK0UmrjvVmQ902GIMJ/ckQR2nQ5RZJEhCFnHR1jbS7xsgDbGoGbh9L03EdizoM0WQLSdZoyhTVdKCpkVWNwWjEi6dPMAyDti5YLBd8+eyEukzZbZc0TcMhiLBNk1HPwzB0VEkiCQ6UTY7tWHR1S1PVSELLchPS1jWqrtAiYXk9miJ9JKtUCfIIge5x+dzUVHWLohm06Pi9PpbbJylygiylKEUksweCSFVXNFVFnIQkRUbbtohCTbx7z8Pda3xdwtQEfv3PX/MP//DmsYLZt9CUDlvRMTQFRdepq5oqi8i7gropEVuBJCgo8ppVsGf18MAhOLDJUlRNQRCh7+i0VU5d5DgSzGcOqiazCzMGXo9Bb0BHB13Ns5efo3cStz/9xPxohu3ZnMz6CFJNFe5p0hLTMhm4Pm/fvGfgaTi9EZrpUJUlN3d33NytaPIURey4mM85hCmziye4gx6vfvVLyjxDEmU0WUPSTETXRmw7PNOma8FWFOQkZfnda4ptALKKM+7x7uEVeZmT5xmmoTGbnnE2PcH3e0iChNIK9MSG27fvubu8Yr1Y8OFqy83Njm0Arehi2R6OadDrDf/YGvaOIg559fUfWG0D5vMzsv2SSqw5OztFMR00R0Pt+2yzhijJMcfHRHHCdrMmziocv8/Dm+/omRrTgYM7HCNoPaJC5Msvn3A6dlEdG6mpUQyLk7mLULekYYyqCNA0GKqKrpl0ZUgSRXR5glDF3D7cEyQlUS2j2j1EzQREyqLA0iTqOMQwDGxdogjukLsF2z/8DVJ7QHJnfHcTU2oy8vGcgpb18h1XD9eEScZXz59RpI/EiOm4tIJGkglIKEhlxmGzRS4dbDx8U+LpJ5+R1AKSAHIWs725Q5AUVps9WSGQ7HbkScx6H/P5x5+j6DKyLFIIFa9+/DVv3vyAZmioukVXSORZSpZHCN2j88Pp9VGklraOCKKQKMvoTXq4I5/j8wmGI+ONh+hun/75GaOLOZrlIls+bdzRpi1tUdDVGVWSUqcCeSGTiqAZGnXVkqQlWZZg2hZCmdPRoQkQpBVN3aDGObqgUksKRdVSZDVJLiCaLlmeEB4CsrzC7Y3Js5TNYoFmWAimxvJugVqm1PsHfv/TNWdPP2LgO/hKh9hUNE1D27ZMpgPsnkermZjTE+53FUHaEB5iqrqiLGo0Q0eQJDQp45OPz7i9vWax3DPxPSQBug4GvcdLatoWz3HI8oI2y6jKFgM4OzvFFlpMVcY0bGzT4exoTh7ljNw+H7/8BLnKGNoqtj/AGU0RBAl/dowuQ7VZ0eQhxmSIpLdkxY5UNUhVl1wy8EYXOP1nlIpJI7RM5jOa6kDYZDw/VhhqKWZeoUo9llFJ20EY5RzNz7l4coban7ArJHRjxEzr0RaP0ECS5qyzHZICbZkh0rLdbiizmCY4MBn0yB+WlO9XJAeF3skFWm9CpHrEqs39hzvSokMQTHy5o0xzfvjhJ6hyPFvGmfahP+AhLrndFTijEZo9wHftR/2AZj6eKfWjT0sy+7iOidS06LSIRYnaSohpyvTlMRefzLh4oXLi7xmVFUpq8mx6Tk9VGQ6GqLKKJktEWflIqBsSlmOCoNDkHZ5voBkqsqrRdjKbXYisSOiqiCrW2LaJYtpYloEuC+RxhNOb8MXnX1EnCWke8avvfs/i5prd60vqMKLNcnzbRtYlOlT+l7/8j/+vSxP5/3NjAqQ1WG1HslohtBWqKdPVAoIgoqk9HMUnXK6Zz5+QGRlfDpd8cx3zbnd4bKcpU6IoICsrdE3DtWx6ioBYN8RJQVU1zF2b9JDThQ3Pnr5kPj6id/4CczYFU0BoROQqQhVaZElFLAIsVSZRFRTbRy1KVvd31FWDq8g4J6d8WCzJopj9XcxQk3lICt7dLlgoIndBxHq/49nxCEOAvj+iLjuc0YCGgrYS6Boowi0DTeakb1O2De75BetXv+P5iwscbY47mPH+/RUIEnZ/xsMuoUw6OlSyNEI2LDTRpmstXNNEbHKauqVqBXqeh6bpbFf39HygjHm4fI1henRSxXDQIw1bbr6LST4EtJbBJtmx325I6oZNVCNrFkmesk0ajLxA3YXY2wjh5JTry69R7CHr+3vC3Z7QVCnDkIFr0vcdbNfEEFtkUULWDLo8I9+vMew+umUgqyqd5qCoMlqrUZUSkmYh6haS3iHGIXVzoNmElE1Hq5iPHzNJwdYUBFFgn+YoXY2t68RJQoeEaXoork0QbAgKidX9GmPq8cVfvMQbCNx883fsi5a//fvveXqkMT0a8Nuv32GLNue6SxQsUQ2XaHNHHFcYuosglKjhnm9//fcUn35FtWkJhhZBDqfPviAvWp6ezQhsCFYL4jAmPiTE2yUCHXlW8naZoBsGjizQ5QHH8xn9voFr2aiCSHyIUY0+ulaxX7znbrVlNhmyvr0h2G4pa9B0hwaVqhEQspy2LBkNR3z2l/8T1eU7SCK8yZCyKTF7Q5xenyLeMLYkmipnYKvMn3zOwzrFV2X2yy2WJ1JlGW0UIVUlxCnRYcfvw4TP/+1fUSkawfqALumogswffv0DR0en6LKMP3qCUD3WFLeCzOzpHG+S8skvRtjGkCq4RSNE6c1x5x3LVUaeBNhmn4GtEGQhdbxnoth4goRUZRRtQhruuLl7h+dZ6GOXt1fvYLfEV32ytMOfjzgECdHhPedzFbfTaXSB7brmzcOes5N7dsGSsqhZ3GfcdxFde4fl9h7f2V1Ik5dobYesNrz63d8QBwvK+M+ZPT3GO/6YF//uGck6ZPXjt4xPXNIgJFrckZUlizjnJq747dUaU+4wco1UVzg/l+kdCVx+9y1CWmMNRF5/9y/Mz4aI3Yi6FhEEFVVzEEnYrF6Tpykjb0Sn5bx9dck+zDk+nbPb7ZmdnJHnKdvVHY4q0tYVCRKyFiNqLnWlkTUyGqAaOvvoQNmU9BUfz5qwjmTCOCTLa3pHR3iyyfZ6TbpOsZU+2fUPZElAqQwJJJmnz/8E+8WMwfE5n/xiDmXA+mHDeKjTdxXaLue73/2Gw2qBLMjsNwfCMKCtKhRJw9VlRFqEtqZqFOS8Jdmv6Q0n1IKMpci8ubxhNvoMKTvgezMka0zTtQyPRlRFiipmOEe9R5mgImDaBi9/9iXxoUCUF2iGyM3ilk4d0HYV213MwDJwbY/7m2scQ8I0FfJSoVB1GtchikOCMGIXzxklfSp0WkFF6DLqtqapG0y5pao7gl1I1Rh8fPYMS2u4ub9FuE84PR5x9NRFlnLqpCY5HLi/XrARK6LzI8aCTRCuML1j9k2H1IksrhYYeCyDmNvvfkO+29G1DWLd0JQKdaPwcH/FwDSRBJWh00PtKmzNwjdcbN3CHU+5vN/Te6nRFhXhXYx4NH5sWFMl6iTGcVUkVUaQTJo2p2srLEsjLwVEWqRWwh0cIwe37O5SBFTKMKYsc3RBwXaHVGmJ0AjkwRYUE7c/pqogPkRIroLnCRTRjiQFx+pTiwI5ArosE4Uh2uYOzdIwhn1aQSRZL6hVC1k36ASR1rBYXr5FtzXO50eoA5nBZ2cIWsv1q3ekh5BnH33CfDwAR0e1VLJEpswFdNPnxVcvHrHYwYS87bj8/XeUdUuaNczHx0iqwv3b9yT7gO32QLAOKHcB8SZhFQp0nYylqxiWTleDaLvsNzFlXHIy8BloIvJ0xLFvM/Ysgqzi4ugMezjAUGVGkylCHfL80zNWdzeIT14ShTuufnjFy599zv3lDwRBQV0bPOwamjIGK+Hs9GOsTmK12XLYrjk7c4jTnP0hZDI0EcqCgWWyv1nzpz//irwFuQiIgoDRYIQsdmRxSFNlDGYvsH0fSRY43AYgdtRty2a3xxh7QMNqGXAy6JEWW6IwpIgStrmA6ptIlk1SF0ieQSaKJFmOZlqoUotryqh1Qh7kNMqj3yoJVvhqh6bZ9Pw+tu6gdCoqKuluh6JIj1RrmtI0NQglbZFjSh1Tx6QoO45GEya+w8cXMw7bHduwANfmh7eveH7+FN+zUQSRMInpOhAEA12WqfOaOI1AAtNxaKuMNM0QZQVL0QjTAnc0h/LAdneP3qZoUosgCDSdiK6L2E1HUWSIEqiSTNM1j/LJQuN4/ARFESnqlqptKOjIOpHR9IQi2fFfv/mOk7HCn7w4ZbNcEu8DPn7xMao/xTRb6mCPos+QBYWuEinLDEV8dNiFacxmt+UhCPj+hx/5sPhAmkXIpoivGmiWiapAWWa8PB9x2GzRmgq9rfnqoxmrfkSepsitzenRnKRKaLoUZ9BnZHlIJUi6Shkc+MXz5zybuETbHZtDRBJvObdbJpbMt9/8yBc/+5Lp2MfVBVzHoj05oX72jCTNmCc5lt/nx29+z6jXZ7cu6VoRRTW5/fAW9+SYtqoId3vmJ8dE1w+s39+hayrepIfSN8nrlLoGRAFVlDE1m5HrINERxyl1XmOLGpu7Nbe3e+7v9mRliz87ZnqqMphMEBHZX19iOCaGorC5u2W3XDF98hH66IjpAEZDjyK9ZXA6wDR61FWH7ox5d3dLFuxpRRld18jjCEtsGZ1NMKSS0fkJk57JcOTj9vucnAz5Stb5/MmMgW2jWC7Z+sDQV5EFEFWVUnqkdXVNI0sSTEVnPLqgjGNWUUJbFgjJgVfvf0BxRnjjOaLuohkWY9/DElqS+0vuHZsqsOg21/z45te4bcT5z/4DruvxZPkbDlVOq+s83L8jLgpqUWLUP2J7e01vcoqmWVCLHEKJPO2QxIKizRC6htdXP2DUEdOvTtEMlyivaauOZLtjv9tThCFgoHUNRZuxywteXDzF0HWqpiGpI65+uuaHH75nFZWIgkSRbxi5Lkm+JytzZM2gEv8bZW/Sa1uen2k9q++b3e999mlvH5EZ6ci001UIoyrLNUEISiVGwJfxR2GAGCCEhIqBpaJEQUHaaacznRkRN25/7j3tPrtdfd8wOJ6C5O+wpPXX+/7e5zGogy1RGJJXFZptsJxN8J4+B1FgRYvbVMz9I3TVRzIkJMdgf/uZJMuZj2dIbUfX9ZRBTINAL+gY9gBT8Em2KxQELM2kqlOaKiPaHqjaAsf2iaKEFpkuqCmqDuPVjNbKcWcCfhZweXuPYkmUVYWi6RySgKZpWV19wY93+LMT5pMpI7Fi9WnDIa7YbjZ4eo+Q7BmdPGFsqXTlgei+RvOGRPIMIe+RVJnsYY+qCli6hGVK3N8nNG3F2dGE9f2KrhEew3PAlEVERFarDaNORug6ul5k5PnImo6h6Aw9F2MyYexYRElMJ2mEh4AkTNnvM6aOzcjxsY5GCBK0dY0s6ZieC6qJOjVRdZNkcw1diT2yyKQFm/s9QZLgnDxltyspVZPJ9CuuvnyHqhn89PiUPr5C6UQ6FFpXZn2bUakqNBJp2WEoBqPzV9wmIrughkOKvzAgSggOGW3TYjkWUZVSVzVCXdD1DV2Zs1tteSO9RssruoPA/KvnzGY/QeCAKzYUwprQMpA6haGuEoQRdRIRhDFqXbEWXQ55SbO5p9cMfHeAbjgMfYe+bNA0C290hK0ZaI5HX1fISk+XV/iuTRsEjD0T2/ewvjnBPJlAtqONTbJcYPxsw9PDFYI54JDGGI6PVVfkTYNpeySbDZu6wLJthmcjmqoiCEJs3aCrJbouZXp0TF35xLrK/cc/8OXmkvkkoshyho6K45rUl3/gYTJBFCWK/ZYuKLFxqewRYhlgWzZd15PGKaZR/n/mIv+/lyb//f/6P/yl1IFsmCDAyHcpywJdNzkZLRhbLrvNlpvLFZ/ffseHDz9wc/9AGOfkVck+CEiznLYXME2bb1+ecz516cqarmtxu4Jo/cBum/H8yU/4+uKU4dEZ5vIY1ZJRdYUm2KLICk24hzx5TB+rFns4Q+xamjSFtiHPSqqqIilKTpZzxKZG7ltkQcTVFKqyAkEgLUoOUUxXF6jUj7pHWaSOI6qihK6lLgqauqaVZJTBENP3CcMI6ozZyOLV8yfUTUvfNpycLNEcn1/9+jXrMGc2dOmajKYsafOYosrYRTf0bcOxNUB3BniDEX3Xoog9tgynz14ynU9xXRtRlhEVj2jTsPu8AeVAy5a7+w+stysqZcRhG1EUOWFaERUNi4FFVRQMF0uyNOfjjz/SlSWKKODrMgO5Z+LpDEwNW1dRDAtNNxE6AbEqyTc7/MEYCRlF6kFUsE/O6bMDqmMjmg6qP6Ivcvquhb6jaWrapqbLE+oiJzgcKOuGqirJk4Dg4Y74sH1MxtueqGpoq4rh7AgUGWvi8fbuM6WlMRwPmE99HNelKCvapuPf/fu/5//520+cHp/yzR//KaYus7n6gCpLIOvsDhGKoFLlBduHLbeXH/j45rfE6Y44KzC9Od7ogjiI+PLh9xxuP/Hxhx/Yr+7ZbffQdHz4suHt1Z6kBEXSGRsaA09nPPYYDcYYso4iCljGEHs+oxMz3n34jNq2FOGOzf0DXQtlBZttxi6pOF2eMpjPePbtz5n5Hm7bMPOHmG1N31QsTo6ZTSbsrq8Q25qnLy6YzoY4AxfHH+K6LpOpw3g6pAwy7MGQuogIbtdcfrxCUmSSLCMvCzTdZHZ8iqLJ/PX/+Wve/P4d+aHGNQaYuoVmi6g6qIZPI+ksJzVCfcvu9hO76ytMUyetFPIk53afIygaqiZxcaSjVCFffvwD68trXn51gulXXF++48333/P+6i3Pnj8lD/Zs7z/z5cM7VKHBMFy2Uc6Ti+ccnSzwPAvVbAnSALw58TqkCiLWu3vefH5DLjcEcYRAy/phS91UREnGiafyzcmQ/+LPf06elzw7k1C1GilPiR5idEtA03Psgczg+StGRzbz5ZDBbMR4MgJZYaDK+DL8eLcjywtEqeHN50uubh4wNJ8oeiBKvvD1z/4TyiSn61skTUM3TfI84vr9F37340ds18JRYtp8y/zoBMnw0SyP0XjE5uYTl+/eUqQxAh2SplH0BknTMTybYjgOulBRNRXbaENbbXl5tuDTNkfXYKhLGF1N18Ll5Sf2N5+RnRGrh5Jqc4NrWZycPefk6RMGZ0e4R3MUXyCOVrTxClPrcQc6naqyv//Ipw8/8HCzRqSnrmqKqkJXFFQaHFOll2R0RUGTBTA8DAm6psM0TMSmIgwiQGc0ntFkOZP5kq57nOPZA4+uaxDbAl3TUEwHSTVAUpBlka6t2a139FXD9fU1NQ2y1CMKLUXREgQxTZESJQnBPmETzZx+AAAgAElEQVQ0XrAPStI4IIy2TJ+9YGB7zFyTpsqo2pCs3lPKNYZkQ93RNyWKKnPxckpPxvXlNV/ef6GvN7T1HtvUoRZIdhu6tqXpYWbblLd36IpGZ/pU5pDLhx11HCH0PY3i8+79Fau7e/aHA1UNimbz5eYaoS5QUeiaGl0UGNkOk8EEmgrbtBhNFxySnNOvvyYMYgZGw/2nGyzXwXIfJ0xCW1IkMYpm0lYVVfpoeRDoyJOArk7IwwPRdk1y2CAoDrIk0VXFo/bVHNPZM8okg6Z6bKc7gd3Dmi6NcFQTv9VQ846yKKmrCt2yqfKcJIoYj4ZUSYCpttgDk15V2ZYtTS/RNSXr+xuqvmUwGDKeTpkdTdEmFi+/OaVNN5hCyWww4OZ2haarTIcTFFGkrEtMQ0DsM+h6FN2makVev7vmYR1yevEUSXNpZZvVw5r96gqx78mSjPvbG0AiLUocXYW2RO0qtLbClxt2q2s8U8eQJf7ofI6rKPSKQRluOTk9pcsTpo6MqmlEaY03nWMYBk1dYfpzRBri9QrPnWAZOlmy4/zijN5Qeff+Db9//Z44zRgPXSpkgjimrtJHCr+oo1g+4e4BVVRQOp+Hy4QyjEm3d9RBwni6wJ8MiPYHdg/3tH2HbZr4tkK3D2hrBcczyOIdN1efsTWZw2HHYb3D0G02mxvSIODL9Zr50TlpHRJlAUnbUcoaNVC1jyy4risx9R6xL2mrBtVw6KsKT+mZexYXyyWmZSELIkorgyBQ1hWGYyPKEpICfV0jSipVloMAqjNGUXVkRcXRVTSpR9M0Rp5LXRXkRY6vD9BkFaGB+h+DF1EScFyPPC1Jkx29IKGqAmUvcL/aAC19W1NVLWXdIkoy1CVxWpDmjyWZLKtYzhBF1uiRmCyOUFWNthMZuC7IFpLhU8kSWV+TFBn7PKFrW17NF1AVSF3GzFNRFJXJ8RMmy1ecv/oWx7RJdleI8YGhf4Km6PRFRVfV9Chs79d8uP3IbbDm/Zt3RGkIYs1sajC2TYaOTUmL0LfMhwYDR0NTBI4mI3xbZzZxuHj5BNu0SdMEVZC4eP4CWVOwLA2ja3EMn/mLcw6fLpGzDE93sCwdQ1cYODpDb8g6KChryJoe1/FYLqYgaoiyxeTonNnRMc5wQJSn7Ne3NGVE3eQ0CIxPn1AUFWLTM18sCW/39HWDqRpIDViaThnHbFafuL75QiHkIHb4tsnZfIpUlkT7gDjMUU2P6j7i09s/8MOPn0hKiZPnX7M4f8rFxQs0VePjD2/Z3d5wvlwwHg7pmh5ZMxEMhxQdazAjD/eYioZtGoSbCEF28JZTNusVYtPQSQqmoXE89jGknuXIZzL0eHl2xOnymOOjc+aTGRfLOS9mLjPfxlZETFXA1HtUWXicd0kifQ+iKCIIIkWwQaSlaWo0RUbsCqSuxpTA1USiw5bssGU0X2LbLgNLx20LhKYkCiIU1WAfROzef8CbPWX+/FvK1iIOUrz5M/TFkuv7zyiGievNcL0hct9QtyArOm2nc7utWO0eSKsM6IjTgMPmhuOlymQ2QNcdLFNH7xryMKCsGizVRKxz4ocb4rLHHYyYHI3o5Ir77Q1XN9e8ef2WVZAh9Cr3t2viOCCJY/KifYRMDwcMdI00CoiSmNF4xMXiiPnimCIqmc/mDFyb89Mpk8UTRMOlUXRk28CUBSxvTJ5XBPsV2WFHFO4pqhKRHknpqQXom44s3NFWLXEv02QRfdchyiKHzY5Wkqmb6pFR1rbkokQvi4+4AkngPggJwojPd/fc7Ld8vrsjLDqQVcKiYDKb4+ompAfCOEQzTSZDh8nARpIVXn7zMyzHRZIlnIHLbQo3hwpBlAgOEVEY0BURVRZT1wVVkSH1ORMbmjyh7VryskIVoatrBFFCQMTQTERg6DhM/SGz4QjPMtFFEVnTME0LlZrl2SmL2Zix7zIbTzg7XxJt7uibmtHpUwYnT7A9F9e1MCwd1TQQdQNFkxC6kjIL0ByfVlKoy5p9UiD7U+yhRdbFOMsBafLAqydjvllq2PSISAiiQZL1XK5jDnFOmGSkdcvzn/4xgu7huS6qJHPz6QPr1R26IoAmc71fkeSPnLIsiOjzgmQbEKzCR4TGLiY3XPTTV4wGCqrSkRUVSZYj9gJCI5OUMnXTcH99zd3tGtkeER5ymjTDGbiMT04wLB0ZkJCQm57Z/AJbUzEVgSLJkAFdlVCRMMSaxXLA+GyJNbIwRi6SrNLlKX2vINszBNGmj3IoKkRniOY6ZPs9bdczmk0pk5C7yxvyOEHWTRRRoKkqqqrDsG0Uy0KzTbrukS0pCgJXl58wpRpd6Ugr8HyPuW+wXt0ShDtuVzvaTqcsehRRQRdaRAE028H1fARB5l//q//ynz7P+av/+9/+ZdMImLaJo8uUZYGpKszcERN9jKZb6GJIFt+yXq1om5pdmLLeHEiKiqYqqdsOgOFkyh89P6MtU8owpN6sKOuOQ5Dz9fOXfPPNM0xTxD4+QtBAkTuEVqDaZ7R5Snq/IUtLkkOEKMjs726QBYk6yzEsF1VRkEUJU9OQu4ahY2L/41TH0VUs08RQHuFGfdtQVRVt29E3FUWeUzcNtDVFUZFmMXXX0XUNsmlQ9D0iDePpmKPFFH/gs5yPGY+HuIMhHz/f8qvfvuZ6neB7HlNPJTxsKduUtD1QssfUbGb2gtFowmg8YjL0mbkaA0tFNRzs2VNEUaLPAjabFEXS6MnorZqiiUjzkiyHOBEQ2p7Nbk9cNmRZxmg8eTyft32KKCCNY8osQxU7pq6JrQs4loasqmimTSuqCEi0eYlQFGimjzVeUu0OaI6FPhki6iaiWCGpKoplQ/yAUKVU4Za+a5E0CySVMs8o0oSsbtndfCbdr+lVlTQOOazvuNns6O0hTZljOQ6OoWDaOkG6pTcbbrMt+AaOoTMb+KRpiWbY3FzdUhYlX796xouvXqLrjz/Fqu5xZk+4ut1zeNjRFhXZLqba3HNYr7i7vsPQDZqiRxF1/uGv/w/6psWxQOg7urbjZvVAtN/xu7d31E3L1FJYjE1mkwGGpjP0fNpSwTIm6IqGOXRRHZkvX74gixL1YUW431PnFderjCBuOfJ9Xi5n/Oybp4zHHstv/xhdBOHhlpHjYsg6g8GIyXKCLnVcXBxhGjJd1TA7OcafzDANE8+38fzHtLaIM0ZHR7iWzP7yio8fb3lztUaUFGzXYvvwgG1qiIpC3dasHx7I4z3RPmcyGaC7MpYlU0R7ku2WpszI1iv+6n/5G5qiYnm+5O/+/gt5I7OKcuoi46vnY54eCzhygSKmjIYW3/7FL3j/5vf81f/0b7HdCbcP1/z862fs7m758Xf/wPe/ecvUbxhMJ6itxfnygtPjBbOTGTf7gM+3a0aLn7J+G/D6178mCne8v1pxfb8nOiQcDgm9qOKoJl+NNCxB4qfnF7z6+S9xTIdcEHnzD1cMbZXxfIBpymT31zRNg9LnqLKEOT1Csx285TnzowUXEwtf7TDbilZQ+e2HFZe3e6qmJ8ru2KcP/Pyf/QlKBfkhoRJ7eklC1kx0RceUPH7zm4/USonne/zdf/j3rO7uUXSb0XyJJjXsHla8fntJXjTYjkkvO2wyCRQJZ+5gaRqWrhDHW3b7T/zyROJ8tuB2F6JqBqZhYAkCb358S5ElyI7NKhbZbO6I9xviOMH1HVbRFsmyGbomk4GBrgvMfBPLlLlZXSEqPW9/97d8/nyDoIkYskxTxgxsA8+xGHg2Q3+CprsYpomrC4iyiusNyMuW7LDHUUT2QYzhuwznx+i2gkwNnYyhKtiehyRLUGcIPSiqhtDKiKKKposokoRhW3R09HXND7/9gbQIURUJ03MQm548jciamjBNqWnpbYu0LCiKDFXXWS6PsTSZuq3ZBLdU4p6qyhmqPmq+J0kzdFvEn1hsgz2f391wdxNyf31A1mRcd4AmiMRBQidITH2X6u4BTTbQTIdWMDlIDmFhsL8N2D9s8F2fdx9uWQchjawiuVPu7+8pswxDNhiYNr6qcTzw8CQTRVE5Ob9AaTocQ0PRXZzhiHi7Q2tSHK3j+sdrDpdrhK5CVVr6MiPf7emKiirP6OuSuoiQxZ6mrqmLlKZMqTvwhzOaIibYblENnw6FXrEp8gShF8jSEkHSKbKK8OYSsRNQewXL9h4VnIpGFMXUbYeoGEx9F9sU0bUKSSwwXZfUPUY1NNarG643W0zPYzga4gyHOJMpomuyGBuIxZ6js1fc39/z8fMVqmyynM2p0pQ0ObDf3xOHEYf1gdevP/EPP1yS5jUXywXT8QzTHrC7uyXNE5JgT1q0XF7fIMgqV58+kK1vCNf36F3N8dBhF0aYkoTUtzxZLDAcD0fqEdqaZ89fcYhS8ijCbDJ8TSQKQszhEYpi0uYpXQeipCEKIoqm4ngufbLHUAQWz19ye/OZzf7Al9WOoq6wLJ3l6RkdoCoKumE9QhlnI7a319zdbFkePUFqDP7mV/872eHAYnGOqmtYvs74bEHcCBS7LfPJFFtpyQ8HVMsECvIw59Nvf6Dpc+qmoxF0tus9mtyi2R5NJxLsHgjSA43QUKkGYZyy32/Iwz1dXWEbHZpY07QtquGimw5i3TGQW57ORuiqidDU9GXOYDBFUkR6arq2o++hbaHMSzRNQ6SlEyRAAUWnayvaNKSqc5JgT1PlWKrIyPfYHFZ8+vieZLtHblo810ZUFeh6kiBE1WQkRaXtcyRFZ5+WhOGBsq6pq5oWkSSrUE2btspo64oeEVkxGI6m9MiMxzMm0yllXlDmNbrp0gkynWJSSwJ11xKlMXlWMFItzkYzurKiTSKi3RbZGfDy2/8Mb3jKYRXzcHPPr37z97iWxnS8QFM12qYljWK2DweChweiOOCQ3BKFAQNF42jsUUkSAhKdBKpvcjZx8HSZ0XDAYjrDVg3uVlvyIOD4eMHy4hmL+TF93ZGFBbY7Y/7kBFEEudNxJlOkJkZIczRBRNVM/OkcXVPRFAXPcTBcl6hqCNf3TMcjhq7D0DMxdRWBjvV2zYfL91zdXlKkEWEQMjg6QTNcDkGErMuotkV1iFEFCcszaLKIh3fv+Lv/+Ffs1isGyxMEu0e3NJS2pkkCPrx7z/X1DYZp4JhjiruIT+8/UfUNT37yNadPn3N6ek7TtvzH//BrXn//Bkfq+ObpKZoI4XZDmqRIukUSF0hViVzEUJYkux2abrA4m2JZClrfYBo6jmkw9Gwu5gPmowGS6dFnGVmS0Bs+jiIj9R2e2GFqJtQldA2qKKFKPWKZItYxdZkhKRpd3ULb0eYxVRzS1h1FHiKLAkUUonQ1migytC2qvEBoKkaeh1AVaJpG39TE4QFFNcmbHllWoK5Y3+z423/315AZzJ78hNGTrzB9jyhLMGwH15uynA2oipwsDBBMh61icYh2WJ7HSG5Y399yMvU5e3LB+vYDQrYjKRpcVSEOE5qsRqhatlfXXF49vj+XFxeIqkEUJ7z9+IGrq1vuNyEoKkPHxpE1fFtmMDEZTQbUZYfUC6weVkRlguVZDF0bTdHxTJPl4pSB73Py7JTB2TN0y0NULRJRRVE7dATKvKFuHmfudzc3/OHtNcOhT9U0dG2FIQuUjUCR52RFQVvXdEVBnCYIksBhF5BnBVXbo5gOpaDSCD2CbSF1Eqqpk9UVt/cbNoeUh3XEeDbiX/yLv+DF6TPmszmO7xEfQvoyRZBgNJkynU7RVZnzp894WK0I92tmx3MEZ8BV2GENxnz4+JG+l+gE8ZGd03cohoWqSohNRpcd6NuKsqw4Gg9BkHEsh9Fkymh2zMBxmDgunmniWRZi36OJIl3d01Q1nSCgKyLVYYdrqEwXU44unuAOfDzXRjcUuqZCaSs0XaXNQlT9sYzqugrRUGjkhpaMw35NXsPoaEFVZhyiFFWVkdoEvcshTeiCgJczB6kWSTKRKGxJCqh7kTeXdyR5iaHLuLpG18H9xx85PNzz+uMnVNulrwsEReehjCib5JEF2bbE24g8SikPKUVW4Q4tZicj/IHGZGRSVyVJqxAHMXmS0aFwfb1maGncff5MmkQ0WYpvaEyXUzR/wGA0Ik9ShtMldB226TMYHSNVFULdYTseuixgSDAfyYxsGU1VUE0TRekgDx9RHPke2bZo0hpBkRE1BdEfIdgWXZVRhiGd5WCPF4hiR5MF7FZ3hLsIa2DheA6aZaNZOqqqILQVigjhbo+u9Gwf7hCbx5mSJD5eXXqGSl41vPuyRlAtFHNGknV0VY5pu/RNiSqKKIpGkrX8N//Vf/1PD03+5//tf/xLy3WJyxLVNGmSGM8yeDIZc3b+nEYUaGh587vfs7rfs90HXH65IS5qBNMjjgK6vkOVRKauycsXFzRpRJWXVA3EYc3zp+ecnE+wzB5nOEDUFIQ6Q5J7qs2GOkmoghgBAdl2Ce7ucFyXdL+nKwvqLKcvOyRRoxegyVPyNKZHIAxDqqogSHMcf0SRF2iKgqRoFEVJXjwmq6Lck2cpnQAtIFrOo8WgKJE0FdNz0A0Vy3VB85BFUKjxHIsgznj9/hpvvODD998x8GxGvkMcPT7ySxGCLGLhzliOlsxmMybjMaYKalfiDEZkRU2aZETbDfdfrlHNEVEcszus6MWSZBuwvd/TtTKibNP1Ekny2NpORiPoerzpEZKiIolQHrYotDiKhK6ryJKELCt0PaAa7IME1RkgixJV2SCbQ1TFRRI67OUQUVcQZAFFFZENE0FW6MocER65CNGGJtkTrG4RBUASURyfaH1Fsl1xd/WZqhNIBR3BGXJzf09d12iKgmEYRHnCZnfH0bjFtA/0jsDFaIYp2aiqBpKMpam0bYuhiAxHA6bLU7oiRuxyssbg8+cVeRBSxxlS2VJuVnR9y+lyxmJo0JUBmtpAes/Llxe4tkpXN/zw41uSOOL95wfysubIG7FwDFxHxLY1RFHGsR0sf8bweIZpixjOo77qy7uPKE3L9ftPfHl/i1i0zN0hf/Gf/jl/8suf8OT5gvHYYnT6BAmB6WyK1tTIXc/w9Bxv7NMkO/zpAFmG0WKKaRnIXYNpm+jOGNUwqOOQLstQTIfxYkQZxaT3O7abgKbtaEQJz3XY3q+o8hLHH+AOPFRDZrPbst+ucAYauq5iGQrZ/gHD1Ag7ixdP5nx6/YnFyYCjswWNNEQdLPl8v8MyBH76aky+fc/dl0+Mhhrf/PM/QrKGfHn3HZrQ8uKbl9hDg7EhkmxS7t594R9+vOPLOubJE4cnT09omxxRgbjq+fHDPZ4+4/P9it1+zcerK777cIkrCdRJTp6VnE6G/NnPf0q33vDzFxf84hdfY3lHSF1NuM3QVI2T8yVqGmHoBsnqAcMwGZ28pCtzZFXHmj+jKjqs0Rjb0VHFnqE/ZDby8EQY2AO0XuBhtyUL9rw4sXGalv3VDcH6jnUUMjw5AdlAEXqGoyGeP2WXpPi+S93U3D7s6IHFxEMWa0xTpShbJE3n9OwJb65D8gp6VcYbeyiaTp7vCbeXSOkn/uzVnLE/xZQl9pt7XNtgoBl0vUDX9TSiQ3goENoOSQR36OMupyxevuD49ARTgC5rmFoW7kglTfd8ubrCKGM2DyvCosaSO4Q6xTJ0bG8CooLYPz5+VGpmI5+2A1VSGE5mhIcArclpmpagbBjPxmQtHM2X6IpMnkWIbY5pGGi6jKxZ5HGOKFtohoLYFoiyTt/36JZPVdUUQcHm9gM/vH2DMXSwBguavHgETNY1dScRRyFFkWGNhqRxjOO7HJ0eU8YH8iRAUlQO8RZBqDCzimIfomgy/shBUCW2uy193qDLOpIk8e1f/EtMXUcTWhRJoC87mqJCaRukrqdrRPJWIczVRzbKwwNlcaAVezJB4er6AVSP5BASr29RJQ1FsThbLOmzgqFqMNA0ZuMZ4/GEpsiQhR7PVrFkmdlszMCxcQyV2cRn6MgUmy3lbkVfHNh8ek2b7lEkkSJJgZamaSmzCs3waLoaVVJI4j1JsKUqQDUssjSjlB0ERafpxUfLQQdZLXK4/oyEgKYohEHAerPmYbshyQsaxWE4XdLmAZokE+3WqIqIJAtsewcEgbvVHVndcHp6jKPK5FXOPsnopJ75wCYvckRjwG57x6e37zg9OcMxLboyY3f/idWXd3x585rff/eO7z7c00k6J4s5ry6W2KpCGBesw5zX379mfwgwB2O215+ot3dMDJmzoYtnWbxajEjygizNWAxcpq7FzS7g2fGc5dGCLk0YqPD87Jhnz18yOj5DljUsb0Df93RFTnrYQx5TxwfaLEZqW4pDQFMUDBczBtMJMhVBFpFXPdf3G9qyZDQeIBsOD7uAKIhIsozb2yskWeEQZ7iugeoI6KbIapUR7mtur98j9Ql4Iy5v7xDKFt8eoBQ5PQqy3FNmCYd9Qr7eImo2jdhxd9hwKAqErmIfHVgHW26DHY5nY3gGSd8TpBlNWyFJPbJQoksVAiKKYaEYPoogYEkiI6XD02Uc1UTuJWzDRDUseqEiD25BkqAvabsOAZCkHkRo6paiKIj3q8erJ0Gk70Vk06ZqKvquw5DBG/jIcsNqd02VRvRpQ9/0tEVFvA8RDIk4CWjqElU1yKuO+9U9fd+R5Tl51YOkIAoChqZhGDq24zGdn2FqDrKsMBtPcS2L/SEmOGzJ45iiERH8IaquUZQ56/2Btm2YuyNEepq+IcsOZG3LL/7ln+MdPePy+0vKsuGQH8jze06XUwamhCgIZHELpkNdBDi+gGgqWJbBcjLFdTxqWWAdJ4wHA0SxR6NlqGsMTYOTiyfsVjvasmUxdJmdzPDHPqqkcvHkgpE3xNcthKqmyBImyyP8s2M010LOc0xBQBVEqEoEScHwR49Bue3QNw11mjEdeaRFSdCJqLLIw+HAOi0os4i2zdFEEbMRmU6OsGZLdmlG3TRYmoiqQN1WROEOoU1I9zuuPr4lTGKOnr/CPZmjDlTaOiM/bPny5gfauuRn3/6Co+USU5XIkh1Vk3F8MWU4GnN0fIohOfz2b/7A2+9/wJTg5cLh5cUpotATRQlhEOANRrRVyfWP32OLPdFuy2zuM5mPkaUGOlCkhqaTUEdz2sMGQ2iYTwacHs0wdAP/6By17zmyFUxVxZZ7RE2nTDIGAxexbRGammJ1yeYPr+nyO3TPh66nLUvapqGMD4BAtL5DUSTKMqHKUrL0saH3LQ25TpD6HtOfICIgyDIIEmVVP17zGR4ff/8jv/nr32JXOk8Wf4L//AmdKmH5HuvggY4O3x5AFVP3PX1d4Y1mpEGMKcHEUHCEHl1WWI7njMcjdMOkaeFoOkeVZKJDTLbbkay2rPcJv7u6ZTJ0MV2XouvZBRvKNKHvBSTDxR+aNF1F1+XIpk6Yl+yjkKrMKdoGeeDx7T/7E2ZHZyzOzzl9csbp2XM0TcKZDDAmp4SyTYeA6Q6J0hzDMiAJyeMUZINGeGRASH1PmITsghhZ1xBEAUVVSauWMi9pu8cpYlbX9F1DVRSUdQNIhJVEWHYEnUYsyrimhCyBaqpsNwfKvGLkGvzZL3/ON8+/ZeSOyaMASVYJ0wxDajk+XSLLGl3TcfvlM6YCu0/vmQ0M/Odf0blz9rXC6+9eE+4DmkpG1jXSRiQvM9Iio6lKNtcfENsSWZLwhhMU3eZ4uURRDPq2xqCHXsC3LBRRwrJc+rpFLXIM28YdjnBHM9zJAsfQ0GUB2/fRdR1nNMIdOIxmI4bjEYZlUiUBQi9Q7lZYngVtRp4nlOaATABRU+naFrHt6JCJq4ayyBgNPKosJY9DyjzHky0MVOpGBkWjaR8db70o0vQCjqlRxCHrMOO7Hz/wq9/9HqmvOXv2graqcE2Dz+GWdbgmjzOkrqPNS8SyZ9wreIrJ02/OWZ6MGI8GWK5P2oms4x7KHLHv+fD+ir5rGesybVmgmyonixGTkcV4OvxHHbCMTAd1zmB4gj86QZdN5LJFlhQUXcPTRAamhNa1KIL8j1iNCKm6hTxGsmz69IE2qyiCCNm2qYqaTlEQVYWmqWhaAWNyjKBJ1HWLKLTUecRh88DN7Z75kyN6QaIXRPIwJthsHueXSYjQlKzubgjDkKKoMA0VlYo4ChgPfYKy4zqsiYqOOMoo4g1dkSLRkiYBXZ4hGwr/3b/5b//pTJM4ylANA19XKXfXSG3LULd59eoFLSJClPLx82c+fr6mDEvu1gcQoGtL4k2EIAhoisrEt5kMHKoso89zsujxNPr0+Am+5yLWCapgQdtTbB+oBJFmHyBWFW2RE+8znOmCZL1C1XTi9T3D8YT93QoFkTRLaeQa29JRJQ85V2lEidlswcNmg0JDVzx+GEESP6rgVI2iLLg9pEgiKIqEJ4kg9VRZhKhqqIZB0z82Np1i0vUi9D1ZHELeooo9dBKOZdDnFd98dYHUldRNh6a7FNuAqrHRGo++1JD6Gl0WaNMdbfoIgBRFiabIOGQZn9++xpZF3FMTtcrRRJMkLkmTFk2x0F2PKK5YZTtM10ePYyzXw3RtaskkChIEFQaLM0yKx7ReFZGFHlk3CLOch32CoPtovUwURUwHAxpBQTY1BFlDUlR6UUZWVYQmhq5CkBToOyTdRClSJEmmbWqUPiM5pCS1gOI1iH1PL4IgdOTbG/zjJ0SNiqZqeJpKmxcoosg2LpGrBq0wWMgeGhJW8di4jtwBTZaxuHjG7GjO7uaS3S6gU3wsx2Xz+Z6DeEBDoMgzlLqliiJsVSbsNX75zSvoKmzPxl9MMM5PWIxHBFnALgyp4wqDx4RZE0QcVUOXdGxbRzNUPM9BdVVEXyTNd6iqR1s3BLsYypQ3P3xg9W7FT49OOD6d4CyPGMyPcTwboS+hhV5zyMqOLkuYv3pBE6V0ZYPuGIiMaaoSy/Pomwp9cUKepEgN1Ot7zPmS4XCKpqoMdZO2SpGrAsNUOVtOcdIcYz7k08drbjc7wignqwfQJsUAACAASURBVEpGJye8ODlClWS+/8OPrB9WOAMPRRdRe4FgtyVsDQ6zE/7Vf/4LmjImiRK6LGd0NKVKA44mY/Joz7vfv8eUW+bzIcP5DMdX+fqPfobyrYDleBz1A67f/oE8zYjqntHMJxUavrsMWTxVefnzXyKqLp/fXOPLA+J1xW9//B33mzW6XEPdsN7GWLrB7MjjxXLKyXyCsz8wdIecv3iFjMzhzQ8cLi95djFl5BjIkkCfiwyHS/YfL1GEAYqpIxQlzeYBpQxRhCGi49OaW8zJEknuGfk6w7efmHlz8jc52AYJI/6vX/9An0Ysjoac/+mfQRphOmP6pqHoG5bPxvT2c6gSvvr6W2zdwNB12mpDL9t4ns4v//SnVL2A0Et8jmXCMH/Ue3cVVRHTFGs2D1cMhZiyrKg3W8Jtjpp1jMSO7WpF+rDBsm1sZcR9ndFULd54glRnWJaK5Wl0yYambJjZQxzDIlo98N333yF3Ao2uEh5itKZEkh4DkfF0RBZlWIqANhxSlzWW3GPYHtuoZDoc0Lc1M1dHwCLv4avjEc7Y5yEsCXYl1lyjoKWrRaZdSb7JMVwPezAgSw9IoklfFHRiTlXX5HlFvt1jWiVnZzOuHzb83d++wRxMUIoOy1IRYpXxfEyw36OqEg+7GMc/gbJBpqQsQqL9Dk0UUIVHNXQvZahKTye2GK6DNZ6jP6w5+voFb777grN8yeziJ8Rv/h5RainjmGAbo8oiVd3RNyKmqZEjoXc1h3CLasPVKuLL9vc09ozp6VPW11dk23skQUFRLWZnF+i+R5cmSJLMZDjD6AT0umX45AJ9PKMO1tiajK6LSPIA2hLBcumjDd5ySrq9ori5pw8PrN58j+H5yOMl9skxtSxhOTrBbocmSrSihG04NHmLIIpEmwOlIJI3VyjTCzrVQyCgrzNocuricYJ5CB5PtztBIu+giwqO3AVjBIqs4Wg8osgDql6gbXIUqeJhG5HlNaPhmCaJCboaRAh2K5pcpXx2jC6ZjJwhVxgMp2dkcU5TdKTrHV/efuDHH17z/ZvPHNIW17E5WS55dnGBa9mIfUO+usHodX72/Jw6jSnCFYvzIaY4JK4lKnSocuq6oigrTpZH3K7uOfJs/uTpOUK8w9Ibnv7pP4fdByYDiX4xR9YsFAFkGYSuBFGlzjTauqBrKppeQFAlLF+n81Uk3aTtOiauz8yx2Yw8RkMXXRPJwi3HZ+fkhcfVly+IskKw2yDIGkmScXvd8tVXP+Hs5Sne4BRKlZu73yFbDUl2QNd0lKJF5XHWq2k6RZZSpBFdnyM6PTc3n5BdgyrLudlHHKiQyprVIeFidMxifkwm5yR3D+RVRtWU9E2BqQmAgCLL9HVFlwbUnU6NiKLr0Cu0DdiGiqzLdEIGVUOdV3T9DsnxUIcWolCTJyFNmSHKOi2PHK227lDtAc7sGFtzsLKEfH9LGh6og5CTxRy6hvVmy/urdywmx9iaS5+miJ6BLMmIQkPdlkhKh6qIj2YixWAfPmA7I9KwYjywmPpTbMPAcTxoWwaaii4rFHGGpSg8xCkf3r7Dml+wnBxhqTJ1WRLFAcPhiKSq8BybOE6oRJmLb77l7MlX9L2MszjFrEpqUl599ZImK8niGrmIEBqZ/XZHJFbUeYBiiYSrmDLpWe/27KMNgtDRiQVKU3M69VB78f/l7D22ZUnONLttbuZahI444p4rMxOqIBq1qmqRi+Sgn4zPwCH5Lj3gIruqiEIDlchEIhP33rziyNDhWplbDwIcdg/6FWJ5mJt////tTXHMGDrDxXyKbVssF1OcMEF5Idr0rN+/4/LFKyaTEVrC5vGB6m5De1ez+uU17mJ6ZnDcb3DDmKqtkBrkaIrbd3iOw2I8Jhss+jAiOzzxKBWrixXL8YKinROOZ0STC6rL1xRpyuN+DdJh3WmaoiRdH/CCEd9/8w3HuwmekYy8gJc/+wXx8+cE8ym32+8py4zQtZjOR1xeP+P18wvi8ZTTNicrT3iBzXGz49Kf4lohD3/8RH5b8eXNS0aRxWok0E1Bl/d4nkvTaQ67LV0PsT1gi5rnz8Z4toUjDNl+i59c488uOd39geViCtFrhnzH2FXYTcbs5hIvShBDhx/62K5HUxS4k4Rm2NMe9vjTKcYI3Okzxn1O37cU6x/peoVyI/QgwPYxg6Av8zMPCe9s7+q3DP3AY14ROor+8IRwYtzRBZYwCHPmxdVNx+BHWLNLxrXEDlckv3pDdDVlmx/RbcPVbMXb93+hDlMsU9IPBt/12H6+pzmU9E2Ju5oxnUxQg6QoUg7HLa7l8vz6NclsSfb4xOe377CajnR/4vN6yzRJePP6hmzoKPOOj58e6fqS8ThhGKAsc/qmIcsyBKD7gTBxmd8scfwxi+UzJAnTaYJyXMLLa/yRjyctoniGDKdss4HVImZoOmZxghpq9vsTlAXCsemwMV7IaNrx9q9vkVHC7nhEC9CHFNsIpBLUTYPyAgJbYZUHdOhRdw37ssE2LdYAIyxkXvPYFKzGNo6ClzcrhsZgM2ALwe7xgWyv2WW32KFD1TRI3zCrQ8pCYzUttvAp9ydW0xFyPKG2JE+HPbtDzrGqOKY1QbPjcb8mHvuMkhDTa/RQ0ZQ5lqWxZQwdmK5m2z7iKB/d1niRg+PYxPEI0TSYuidwI2g6RK9pjhk6KzBxQDydMJQp9T7DmzvousVWBmF6cAKUGnBljLEssn1Bm2YI2SOFoFw3VPYKpXo8deLufk3VSp6tpuxPFUoZXGXwHUVbGb7/sCEPQQwDbVPTG8PT/kQnJIHnIm2XzekE7g3zL34JfownYb3ecLG6oMhz9FBTZgVx6KO1ZnqxJLkKUKeeph6ILqbYMbTDQFblHEpoS4u26sjTlu1my2I2xww9RXqiTQswBi0M26oims3oq4quzIlWV4znS1wkomtou47IV8zDBqdvcfozANyEY3Q3YKo7LKWR05e0txnCvkAkCdFI0g8Gz5kgtYTthjCJsV/9jPKUkacnojCiTA+MkwlNu+X23bd8838nPP/FTwmnYyzHxrUlYRIzDj2y2ublF1/wdXbidrum61qGRYR9vWJ3ODJNVvz18YF62HA65nRtReAM6KHBsga22ye0kv/NXOS/G5o4TojOc/pUM51G+J7Fl69uGC1veHt34E9/+B1OkxH5HtWxRg+aU16gpCJwYTADs9gncS0C1zknlFVJ15Qs5guSyEaXe3x/RH4sEL2LJ4ezEsqdUjUHdKkZBkN63NMXJU16gr5HGhiNPBrPxfF7jAVZUZ9BfnXFqSyxXZ9pFOL7Pnnb0UhB6HmkRUZTNiSjhK42PBxKnk1djqcj0+mYIEoo2o66KNHKPrvfbQ/P1liH97SWxA4D0uOeeLbiehHiFjBLPLL0hBkGtAopG0ldV8TRFKuF0LVRNJTrJ0STQpMwHE409ow0zflwv+PNzTPqPCUORrxLHynrBmm5LK6WNEVN1z3RNg1tr5lNZ1hCMLp6TuQIxDGl1z11MyBDD19ZdH2L5Tnsy460V4jRgs2pwrJ8inrPMhyh04quKhC6p28EajRCeBGi7hHKxQgLpGIYNEa39F2FFY5x24Ys29PlNU2V48rzmrPWZ+aG2t1TmYDVbIplO+calLHOXAnVMZ9Aui3wqiPuTw5YwiEObLaHAtVk/Oo3P2Pyv/7PjCMf5SU41jVWnBKqGbr5EWwfSAmSAM2cRZXi+iGzxUvmo4jd+oFOKsrAoahL0kPGJAnotGDeZOhIMgkDruIRiSOxjUteNIRjw5CfsL2EwI3p8477P//I/fd/ZqwMP/nHn3Dz+hfEr95g2gNh6GKZgfaYUWc17XDADWKUVBiTYytBX5eYsiOIIvrK0O3WGEtiT29QwjtbjNoUfXhAJUuS0QJtWlot6f2QxfMLBhsuLJuqa/n0Q8PpVLHP7rF9j0+3j4ynE8LxlC9fPz+D+eioyxaFQlqGoM+5v3tgMQ5YjnvujoZeJPzzv35kNApQ0pCdDsTJiCiwCKdX1J3BK04EpsMeBE16JO0LPt/dk202vPlyQuy5mHDK5KtrVtdfENlT6ton3Re8+/4bhjbidLemyTas9+kZ8qpc/unLn2LKPb969RIZJKjxmLHn42b1GS716jU///UvUZGHM1khnQBLuah4zOSn/4iMYkyVgwRteqTrI6SNaE6Ey2f0xmL8+hd063foOic4dHT9wO8+F/z5D098ePyArQy/DWz+4eKKdHvCEXcEyRytFKZvSBzJqe4wwmb34Q7b10hPYQcjJmGMo1wceZ6uvn51wb/+85+pTynaxOT5kbYs2OxLrNhjU3l8+PDIXz9uubn5gj9/fOJffvc1LxZL9LEgiT2avmUUT9DZEXqLvqhJmzsury7Ad1hejciqlLfrPYeHewLbowpCjvsai4YkDlksl3TGMDRHLp9fcPeYEowjBq0pqp751QsmszFWmyMnMf5kAUoigwCMww9v31FGOWUwsLl7ZHrzjNNhRyAVp3XP5HKO6iua9P832jydtxI8H8vs2D9+JA4D/u7VVxy//gvf/e7f+fJnr4mciEmScMrBCA8n8Sg+/8A0WZJEEUPfsd48kG536L7jYj7BMYouVsj6gIwVTjimL32Wi5esno+JVnPGyyXF3Xt828bxE05HjXQNXhQSBiPqww76AVkVBG7M5v6W46lgsrzk6eOJp7cfkU5As79FDj2B7TMezZjNZlTDwM3lJXNpiCcR1CVKGuh6TJbD4EDTo/UBfxkgx3O6sqEtKizPQXQDdJLR6AqOObsPn0i05PG4JXlzQ3ECYVlU5YG2LajrnOa455hW5155nNA3BcXjR/x49rczWBAnCcFkTvb0mcN+T9P1WK6Pmi5QZUWHIFqsePZsiamPdBqOhwqkQxXWnE45bhBwsZhzePzEcjGn6jqyIqWpDOvtjkQJ/uWf/xN/+eEdDAoGzc2zG9brDd/86S98/PEzrrJ5voy5WK346bMll4s5ArAGzeXFFau2wsxt+lShp5KmHdgeMk7dGQ5Y58fzOxaL027PC1/yv/3dl1y/eIVyBnzPxVte0S5HNPsnxNMt1niC9HxErXFGCSgXaUFXCoTr0QuJZdv0XkBXpxijMf2A50fcrK74eHdPbSzm44jEtcj3j0ThnCgZsdkcqMoKW7WcHh+w8j1Xr65pjMKbW7z68gsuDzHXS8nHpyNdneMaEH2DEAopHcqnA7tDirEhWa5Ii4b79Y5Pacpud+B+0EgMv7ieMJ1O8CcRxWCTVR8oqppOd6ihpRUWjuXQtJqhrnGx0KLFCT3kAEqNcBwbdEuZFaBbbMtheXFB1wuUcmhPJzrRMxiBGDRSFhjpYlsOxjKk+0eatsWJl1jSpys7+q5DWhamg9VsgRCC0WjEYZezb/Y4Ex/PsakaieNYdJahqlsGPZDnJZqCutEox8PSms2mJk7mrIIE2fd4WiMQHJ62LOczgiBgFIQUyYhoNqIzGmk0TZ5j1S2hdLANmEHw8uYVfmS4WM1xLMFyMsJZXrD+9JG+sklPHh8e74itECd0cHSLawbG2Owsw/dv76iKgWybEYqUi5GLKzzmkyl15RCiOW53LFaXzMMI4TuEsU1eDPjuBDsIuH37DbNxhD0YgmnMabvn1c9+gehaiocD5nTEdgPcF1cEl69oN/cMhx1Ga0Tf43k2Cn1+n8mAw35N5Hj85f07yk7j3R4Ryqehp6xStvmBKj0iigq7aom8kIdDxtBW+JXhbv3IUOa8vlwxjCPC6xVO4tF3FbunBxzVcf16xShwyPZ7/vqnP/CT//A/0dQ16enEj28/E4Q20+sbNrefuF//yNwRdCU0p0e0DOnKmKYqaZuOSRgy1Dl6v2PhCRwBqi0YjEclNL4C0xwJ1Yjls2vK/SPh1Rvi6QTVlfi+j7JtPMfFd2McZRAyxJuPQQjCqytAY4SFJaE2A8HFa7q6oTrtUVZJe9rTDTaa4MyvanukFPR1Q99oukaTuDYfnjKeNhkvLhKqzWcaXJLxHEv25Mct3SBJi47l4orYm/Hyxc+IXs9prZoqy3m8W6MjTXbcI12L2cUlVVVgTMvDh0/c3+dEUUQfR/SBT1p13G437HcllxeXfPXlS7q+py47jvsTQRTS0GMHLr9++YZW2nz4dEtedxyrmpvlGOV5VFlG1wwMvWQ+muLaEcL1sTyB7Xsk4wmT6ZIy7+jrgaubl7jCIUsN3mKGI2OafcvKiSieSmyrYzA9lm7Iyx67rlE6pW2grHv8MOLlm5fkeUFRF/z1289MJhNc18NzE3zHIu8FtD1lWYOl8IOItDoS+xZpXpJ/+BF/lrC4lCSiYm7DKHGYT8cUac7Tesf29DssN+Hls2v67mwCc1XLdr2l6ywupgtiXxHbFm11oheaIn0CY+FELXgKL47oypx4GiPVwO2H99R5zpAXVNkefzRCWBZNWREGNr4X4XsRXWeT+C62sBnKAksPGBx6KRhdvgbT47o2gSsx9FhG4k1WqDCk3O8R7RYVhzD0SGEjhMFCU+7W+K6D1bf0VcVgSSJjUa1LglgRzS/Q2mBSC+0ECCV52BzptMG1bRwVUpYn0gbAsDnkeMNAX9UccIgCj+3+dA5DmoLJ7JK+uWS5mNNVNZunNTfjgHx3QiIYjMFNIlaXL4i8CUNVc9ptcMcBeZvTHffsD0c6ERGPX3B/bDk8bpEqxFMSMRh0U7MYBYiupeoNl5evsEKfMPQ45gWL8QJZF+ihQRiH0Thg5BvsMsOqM4zskSrBtD127EEbY3kj6BNUHMNkcn4ePYehH7DUgINBOAp3OiU/ZAy2otc9bXbAtgTxZEbVNozSI4/f/IHitOVn//QfkGGE5YY02Qn+Zg7yg5jV1Use1xs2eYf0gWNN0d/y7IXN2DF83GzoixzXj/CUZLPLMNQ0dYXIj/9joYkN1FnFZORzOqR4yzmz2XPybM/7H77lcjYhVhPyfU2fSh50xihMCJyAtmuIQ4fDcc8xLXl9I2nrliAIsC2YjhPa0xblOOwOPhN8jGuo8hpRtpRpzWA5dE1NmZ04ff5E4Hp4wlAUGU2+P3vXG41uNd0gcCyb3gzMApfQVQzG0HQduu/xEIRJwi4v6KqSVkqaPKcdNJZlyCpwPYHuevquPrvQpWRflNTHIzqe4zoxqjnguQ6WVAhjKNIdgRPz/OaGp4dHDruWT487nr96TTLeIk97urLAnYco2z4f8E1N+vSEEBui1Ut0EPPp9p71Zgu9xvECkmRKGA4MboyJQ6QRiPo8zZWeTyAtjuuUnp75fIa9+4yyDJ4j8V0XadtI16YpjijhYAcOOqsYipxXr98QJyPiIMTEMXEUI32P5tiS7094lsJSCulG4Lgo10HnNgwa4YT4oyl5VuKN57hZxnDKKMoKy/WIo5Cw7iibhjTN8JPztNqybW4uVpRVTde27LYHbMfFmyZ8/Hhg535g7MOzxKKrWj7+8JYvnq9YTueMxjOUFyHECCldQJIWNbLMcSToOCAcBSTZhtk45nJ1poL7SIqqoNOCwA+Yr5ZsTMNY2kznDtuHzzh9g+4LBBNE7zCajpHCxrUdXAX5wyP544n8/Q/8/OUls4sV8WSK64fYdot0PWgbTNPheCP86TOMkND39OmJrsnP1YsspcpLLM9jaEukZbDjgKHYwiAoy5JotqLevqM5rpFOhDZghR6e5zLokOtXLynzkvu375k4ioso4NunA48PB7QNnz4/MplPmS6XKMdmFnuoMEJ1NX0piHzFwzrlbuPym9/+ChUd6QrBaX/CRAPSGujahtVqiec7pL2HcyxwLc1uc6BtSowbM3gWd+tHik+fmb+54OpyyvzNF7z+9T8wc6DYHXj3/Tcctnd8enhEWTaPT4+c8pwIzevVhNeXV8zsnmR+fYbuCs3sn37NbDpBNTnhMsYef4XlOgjbRvhT+qLEiAEhbIYgYpAe0INuUPEcy58zGND1EdnniDJn6Gq81RXG2LjLirT5M7bv8fv3d2S2g3AEf/+bX7J7+4nHvz4Q/8f/iNYexurBUey3GfvsgHRbcrND5A0TOwbpU3aasO9Z7zdkRcb08jVBEqO7gSKt0Kan7nKMUMjkgtHFr/jZ0mY23+ErxafPD4Syo6+P2PYVGhvbdbHNgAh8yrTCamq+mF3jqjFV37LbrNnuDnz/zdc8Hyss3WPK49l0hYUaOsajhPfvb/GUg5QJji+ZjWJsxyHNK6arJdbQEScxZggYcJFByNA7mKrEbnuG4kBzqHDajLmt6eqC2lFkh0fCiaQvK7SusOMRbqQYVMDdu7f4UYxr2Xz77Z9oBgvHarj98S0yTAjnC0aLmE22Zvrqhru7H1ECsAeUa1FUBZ9ub9k/POAHCnfssLLmCMdFDQ3Kc5C2zelhjeNqLl99RffhPbNJwt13t9iixqieixcX9G1P/nBL/pDSti2BN8IXkjzdonB43D2y+3GD40b0vaHK98RBhON1LEZTxqMYsoyvfvFzXsQhxdu/0HctFxdXuEqSP2zpRg2L6xfYQ0NfarK7J4STnSuPQiNFR9daqGCCblpcd0Jb3WPbZ63y3f/zr8x//gXaTbCQ9FXJp2+/Ic0LqsYQXq5w5hG77RbUEWFZaMtD938zn41mlB/e0vY9nuefqfOOz3g8J7AF5eM9+mKJP5njmmfsN/dYXogTjpCnln7Q6KZknMQcTilBklC1A0W2490PP1DmJeXpRF5WXF5eYYymKDZk2Za6aZlMRrQ9jMdjEt9h7EnkcJ5GSwO2sJDKo68bSmsgrVtcL+BUnT/iKTKkF1OlKYfNht+spvzy2YqgO6HTPXIyo8VHZCnKD4mefYXUFcqWGKEQ0gEG+vwEto+lXHRdnM1LrQKlECh0kyMABotxOObVxSW3uy2mKVH0DFXG4ViDFeCGI+Ku4vH+jrbTVIPg+z9/z83z12R5w/DphzPfI1iAOJIVJ4LORnc+Tdsx1B2H9RPRfMagLI67jl1ls84HqrpnNB6TFgWXqxHz1Yz5fIwziqlPkFc1whLQarwwxnOhqRv6PsNzLLo6RxmIp1cksYdtCxzXUGUl89UKzw6whcS0NX1Zo02KMB2W68Mg6LsOLIkdRniRQ+C4xFFCpXsQDdJIprM5ZZpyPByRskUjmE7GPG13RKOA0XhOWQ9nxevQYyubQVdMk4R6fsn93SMdPX0/UGRHLN0jhp77hxFJOGbih+TFEb87sppN8aSHqerzxqfrsd08EU1WuEpS1SUag+AMoNXGcDymIBw2mzVfvHpFmZdUsuHT5gNDn1GWkqpxOFQH/G6DF4zQuqfOTpzqjOZUElouLy5DfOnw6VQjNDiWYX/YMRo5XF/MmcwWhFIwDD2bT4/E1z+jyzua0yNfvHyOdF0O6xLPjJgtA8RQnWuZC4+hOjC0BcV2h+X4KN/Bu1zRd5qhKaHpQA9YQ4FnCy4XU+q6Ihxa/vj7f+Mnv/4FjonJ6xo8nzBW5MeCxgh810aKmO0ho2l6uuKIsAVpmfJ0kCAlo1WBdTA8/PhIUW6ZPZuyfXrk6fM9++2W5bMXJC9L3LqiSFP6ruPm+Rti1bJ/ekfgFjxtH3j8vKbtOp4tXtH356BvaCp00VLltyjdQTSiayukY4FysHWBFJp47NDle64uL3lMtyT9CW/0ExgmOKLHcWwcWyF1h3IDBgtsS2DqDFqNCKeUxz39aQ2uR1MVCNGhu5bd5pbd/S3KcYmW11jCPlfPBui6nqqqOWVn+8VVbPMwGPJTSdBblNU7xABmOCtqq8OJU1MxnS159tVPSa6uOXUp69vPbDb33H16wvNdTDeQnw6Y61co1VLuUo67lGkw42L6kkk8ou6PHNMND5sn3j18pi8qLhczLlcvz/ps28K2LLzRhOeLBY4DRVlQth2Pp4LRKMJIxSkraLsB15b4oQfSxbFdBqHxoxCpPJQQNE2Lo2ym4ylW1yMcD2UpqrTnUJ2QWlC3DX5sM9gDBkm9a5G9RbS6pEkbdJ6ze9iyXI2wlIPRRyLHYd3U3D/eEwUxOCXKCWjLFE8KegR5WWL7AcvLC/aHI03T0WlBdeioAwcpjlihjefPWMzHTJMRyXLF8vKSaHKJQvDD2/d0XY9yBLYwYAZOTyW0HVn6xIs3Ho6sGZp7TnnKQS34mBYU6xOBBevdBvqS5zfPuXn1mq//5T+jdU9eFpi+ZzGdoqWkKgtM2zBxXJxBMjQFnRjRtQ0TFWBrTVcUSMfBUj3VboNlK9xIYNkWpsxI5mOyuw+Ioce1Xeh2dLoFx0Epmzbb00qbXg8MSjL0PTPfUB2PSM86b8sVT3x62lMNkmc3F5yOKdle43oJ7/6y4+nzZ7K8wpKKpu6IlCCJAko3oC9bJuMJXb7j/i85ad1hS0O23TJozXwyQihD4rlIL6DWmkaC7SmaSlNahtN2z2Z9j6VbLm5eIaXD9piRTJdsNyeiSDDyIwbd4WHoiwwvinFGY+xgQlnsybdrLqdLHOnjSJtkMoVuIJQN8rCGwcLyHCQ9lujPv+2H2/O3b1chJgEYzZBtUElMm9cYN0R5LjBQnHpcz8F2BEESY1k2hRnO7ZQ4ImoSRllIUeTc//lPIODNP/72XEFOTzhKUisPadmMxxPCMELohrZuKIqaxWzC/phyMZpTa3DcAI0gzw5UeUFZZNi+RdWW/2OhSXkqCL2B3eGA77t4XkSWlWTbb/HKLW9+/vc83W/QXcdP/u6XaO2QHX8kS3Ms3+fD0yP7LGeeRMzmc+hbWgbsYESTZuihwzYGKxpo8z2HrsTGcGprhkHRDRo5NASOS+JJdJMxmIFxYDP0YJRHOI3OIBlL0bQd+e5A12qqvjsryXwHW0pMUWIJm5GjCBczyrrkkBcM5XndLi87xhMbIc+BSN/3jMYjWiHJ85puGMgOOa6RFLfvsf0Nyna5uZoRTuaIXvKn3/8R5ThIN6asG5re8HT/RKigYxU9dAAAIABJREFU2B8p62t2uwPD4chxf0I5Npm+h2Agzws+P6z5+o//ju85/Pq3U+aXK5pdSpNleHXKw34DQhBFEU1ucJQ8J5y7WzxxnoAHnovr2hilsBybNkuZJmMOh4zVbE40GiFMzSheYi0WWJbCUS5SCcLxFDcMMV1NV5XgTkDYmKbDWDbGCKwgxmpqKCrMAEI6RHFIO+ScsoxgcUkQtoz7nrKq6XWN6gt0rXDsK2ptMMCpKNmdcmZ+gtYKt42Yzafs9yl11ZKlNUWeUxQFt/cbXMfDKhuaDlLdEkYx7eOaru8xtsTYksXFilEcoMuMqm5p+obNMcM5VcwWHoFvM58tqY4pRjvYWBihsGWI6X0601KdnlDOnIvlFeXhgE6PiLrjp7++wfcV0mj08RFT+TQapKUI4gSkA0Jg8ow2Sxm6nvJwoGk1aI3tB9iBgzse0bceuizOfIj1J9zRjHR3hhO1vWaojwirwiDQJzBuhDOZMNQFutig84JZGLCMWh7TnPSYMlpM2GcVh/yBojWMJzGTScqz2Zx1brFNbaLJFCUPzGcT3v7wDr9eU7QhP/n5z/nD++9o6wrlgxDgx1OyGtJ8T6ACyjKl7hum4YjQDyizlv0u42ks8MYdz5M3ON0jVSVp+5a/fviaP333Ix/erxkvlvR1zS/nMRdJQBzEPLt5BetbXn31FZfzKXHoImyfYDwj/dPvEAuDUC5DNzBUBUomiGhG/u5bxq8DLN+GocPYNjorsH0YmgI9DBjbA3W2EfS7HYHj4fsV7vwZf+eGuL///9hFkuD5M0QU81/+8/co5wei+YKf/sOvyQ4ZljFUzUDWaaQNh+OB2/UJ2eVs9gfCcM8omTH0Lk+bFGUb/GRBWRzQtovrXDAYDUZwfbnkt7/5DdKecDNecLP8ku3dO7qiwncEn9/ecdi+Y/EqIcsb5qMRgxjobJfXN0vKLkD3HmNfsbv9nvv7B+r9E/bkiizLUAxcLiPqxmKRBJgBFvMZ87FPEkxx4oRB15i2J7I9zKFEDwUHYyEdn/llyOF+jWvbzFcz/um3L/B9j2K/QwlDt30gLwr8iUN9Stl6Fsr2aIuO9n7L0BuE7WEJl4ePnxHK5fLyhoftmqvLMU9vH9h+vuM2nPOr/+UL3JWiu/sRXdWM4hDbWAQqoMpqUD2TS5tnLyNe/vSS5eQrvPs7TC3wgzGu7XL5bOD2w4/cf/iG0Ak5re8o9muU1NTrLZZ4pGlqqt2Jumrx5xcQWKTHI4MWuBbsDyX7LKfqM6qqRlkus0BxOR9xPV9wtViQjMZMnIokSnBffYUuarQlGZRheTXFSB8xFAxa4sQrVOLiGE1b92dt/elEV0vCWUJdrbHcCDEohLFoTjXkGes//onRyxt6qZGuIpkvqPBwJwJnMqcdbNr6yOm0Jy87/GSKGyZYjsNydcG9tAmDED+IsV0P0VaUbY3se1rX4eQqfCdmcTFFWAWO6jm0De1gCJIAW2p6Db4fkdcaHJ9pEvHt73+P5dgkyzmzZ5dMZhMcBbvdDiwJls3DtsCNY5K2JgzBdiRm6LGEx9APOP1ZeeiGM9K0ZTyZsDn1uCok6FLatiJzxpyOJ367SPjZs2tG1zdQ7mnSA9rYBNLHEqfztohJEI5EtwMqCTBAXx6xzEBfpAx2iCU9uqLA6IoOBbYCY2jLAuG4uNIisG1WqwvsKCaYTMmzE8V2S2WPGc+uyNIML1rg1y2b9RaF5ME4vP7yS5QzoEzJ5w8fOBYdCoHn2Ajh0emaoj4ixz6d6Li7f+DDw4FO9MggxB8ajm2NP18xW85IJgmeO8ZxA/ruyNC1tNWZ/j+0NWnZ4Ct5hgvWBlcMvLheMA8lwd8upnV6QGKh84rGNNRtj7AssDRNm3LaH/Ech3i6QoUzvMkI6XggHKQfISyLiBbLtsjTHb1RzBcX5GXJ7f33GDMQhQGOJTi1Jev1JybzK9zQIownNF2FbnJ82yVyA2aTCz6vP9K3Nbrrz8w4S5Keduy2G/xJwjSKiNSISejSpTnni4TGl4ratikPO8xsRF03OH5IEkYkfkjTVxSmZLPdMJ/GWNJmf9rzxYs3HCuXyPKoth9ZOQ5hf0A5HkVn8GyPTbFhV2jiICGWIetdxjYvkLrmReJx2OyILINvnbekHt69pZmM6docXA96zdAXrK4XeNEYxnMS/4jqG2whabIG6TkoO6A9rtFqwIQKYSTdYGiyDOwIlczo6gzdNgjdM+Rb5PyCoch4M1X8eH/gd//8bzjxghevL6k2W8Z+wsh1sJOQxm4o0oqizbExZKctRnd0fUtZ53TWgk12wC62dFWGF0uy44Fv3/6AF0aoYI5xZuy3Ry5DmziMuR7b3IwWZO/fUdzf8sOnO76/37HPa3wp+YfhHDq1VcHQG/pOU+y3SEuRVR2J76AiD0mHcH3aruHQ9khpEwQ+i9c/R5YHVLbBe/YTHAl9niLL/dnMaQSizjCFPvMF64FBVygMzmROWTZIJ6JY31LmR/pO44ceWmvefv1vxKMJA4rR1XOqusUIxTAMtGVD3fXMRmMejzlVbfDsiofPPxIlI5SSCCnpdEVelUyvL5hfX+LFFiJs+f2f/hMfP30m9Fx632LmrzB1A8qmHwzz6YS69+hkjgxDqlNFU2Xst2scCVbgMdg+xo7QnJhdzIniEeKU83h3x2mXk9UVliWZTxMspRAIEt/h1FbYvoM2hp4BV9ZI3RGGE4ZW4mDRZA2ur+hqi906Yzl3sAKbqu9ohaHJG8bjhL4o6IocaVlILEyQkLU9RghMdx5kN1n+t3NT06ZHIs/hh0+PxG/OldOhHrBMT1c0YAYcpSjzjKzrUVIihg6tQecV9Z1EiYFQDxRBQ+SFjBZXDMZwMbngxU9/S1+1nHYnPt8+0ncW2elI6IY83N6Rrvf8/VISiCkjb8zj6Y7HuuZ9r3msD7j0VOsC2WlePF+ilKCqMx7u7s6mu0GdA6IuR6c1I6WYrq6IbU2XH7AtG8sYpBOiyxN93aEJQAqG0MJPEsLFgqHIKB4+o0Kfrozxwpj2tMdyPVAKYxm6TtPnKegOY5VIP0RXHW1+wnIUw9+EI11TM/EdqsTl8y5nffsJP4jxPYfDfsNiNibf3nO3K2h7zch3CBKfcRxSdyWNsum6HjT8eLfj4vo5k8mc4bDDjhJ2xxO616AEZdVwOJ2oqg6l3lOlOX1v0H2HEYbLxZJTrbGpKOqB1bNr3nzxJfuP76magsCGumpQrsL1XaJxxHH3RJB4VFnH7OKGOBxja6CqcfSAXT/Rbh+J5itc42K1miF7wAQ5Q20zOCG98BDaYLUVQrkwmL+Z90LqvMCybRwvwbQNoqlQ0sf1fbpoTBBnlH3FeDGnzA4oG1rT8vjxHcE8IZpO6IUhnCzxQw+x1megsR+yP5QEriIvKjanmgs/oS1zlvEIZbl8fnhif/9Ed8rxJPhegu+F/81c5L8Lgv2//s//43+3rAHfd5nO54xGU5Iw5On2lh+++8h+I/juj/+Gr3oWywTTHnh8vEX3HW8fdjT9QOJ7XExHzCdjTFvjWYJIwm5/wLPOf1rHdWnyE44SFEVJXjRYysKzDJ7nUNUt28ORURKRzGZ4YYw/X5G8/Irk5gVWXyOUxHJcuq4B6aKkQlmGYQAnDNF1jS0Vfa9JjweEJYgCn3GS4CqJJS2sQTOfjfDjGGNJ/CCgtywsL6Q2il7ZGATHw44exWSxYr/fIHTNux8/8ZD2WEhW11f0AygMp+ORp9tbBt3yy1/9gjo7kuc5Tad53Bz5dL+havozlKYoURie3bzkh4+3tFVJIAyOdMhrTdsPCMsiywuaumHoWxaBzTz2cNAEvoft2HTDgBGS7HhiOZ/i+QF+ELOYz4hch9F4hudHaN0jLYHjR7SdRgUR2nLRRoGwqU8Z9W5HX5dg2Rhj0E1JX5fk+wPaspCOx2A0fduSFyXG9uiHgTw9glR0gwUILCkoW01VFGxPR/IiJ45H9EKSly1V2jCergh9D99zMZZidnlNul9D36Jsm+2n75DK5dDYbO/uybIUN/AR8yWeMnx5MSPNS5LlBcftgYeHJ6ZxRDto4nmMMQOb3SNtWTLoBt1UmL6naFrQPT0FbugQhSMcO6LYPOLKgXE8QhpBuX2iPe5wMJiuxnQD0o0Z6gYsBW5EWxborkU3LXYyIVhd4c/m2IGL8hP85QpL2bRVSXnco5SAvqWvS9ryRBDHDG2FCiOkF2B0D6ahKwqapqXa77H+dgAWVU3WdGAJ4jgib3t2eYXtuliWII4i4tGYT3nNPhyz7wY8aXNar/nu6+95++ePvLrwefV3X/B4qnBESeBaDMYQT+cYLB7vb5n5miQYGIUzdCvI0yPH7YHjIccfxRg3YGgUg3YIXJ8f393z/V9+BCwiK+RqtEL2FU7XsQpDbq5vmIxGzFzJixevEE2LYzsU2y2u6bGlQNcF0g8RXkzfpgxVjfRGWG0HfYmQ4nzwNg2WbhFGIrRGdOfLq+k6LC+iPmZ4oQ1dB3WO4yroW6TyKQ81pm74cHvH7f6EFzmMJgnCSPZlwcfNjv1Tyub+Ca1rPr7/gXR/okdySnv2Wc9f/3rLcX9kNh+hhcP7t0+sLi+ZLH201eIqeH1zxbPrNzR1xx//yzf86fdf8+0fv+H//dc/sN0c+fGvn9kXLYtnL/HDBM/zaPMO13KIkgW1MTiBYuRkfP/112TbHW1V4o0DpAxJd1su5ku0NsymEWo4r43aYiDbn6izI0OVI4cOqykZxxBNfCJXcPPmhunIJ5Y905FPMhsReA7KsYjjkC5PEU3K4f6Jp88PnHZrDtstm13Gp6ecwRLkWU5R1lRtwzHdcTpsKOua4/4IlsCybQ5pQRhO8IMx231Juj/gWiAdRVm1TCcB8wuPZaL5yYsJzxYRk9GIyeqKYX/EVEdkYLN8fsFi7GLqE9/9/t959913pLs9nhiwup71hy3ZtgAiPn53x+mUs3hxQ9MNDFrwtN6xy2s+bVLyskZ3LQwD08Dn1WrKFxcrLqYjQiVYjZPz1p0xeNMxq+trwmmCO05wRiPoa6JFhPIV3iREOorTh89I0SAcgYrH2I5Cippyv0F0LXV6xGDRNedu8GGf4YcJRbpDSRdveokVnWt2xlI4vkurBZ9u76nKmqbIKY4H+k7TDZLN7We0gSCekGU5WZ4iGGibiqKoib2AUWBhWxrHclCO4qn1sIIIZRl8xyNPS7wg5GG/w3UljmmZjkfs1zvkIPjZL36B1Ibjbs1ut0UpRbZ+Ymg75uOERPYsphOC8YrZaITSLdIMhLZAa4HwJ1jSQXYVfZ6hLHCLE6em5369IWpLvkg8Qinom4bY97CNxnUdrOMG8j22G2A5DqYfzlB4x0F3PW1+orn7DtG39E3DMIDA0BU5bZmDpRj0AAL0cL6nlU3Nw2YLyiWrOtLDjsNuy3qXoi2Li+ur/8rZm/vasmT5eV9kZOS8532me+70hqpXxW6iultNApIaoCjIIAi5hCCAgEBHhvRP9F8hS6AlQAJkEYIgS6YMgSJr6FdvuO/d8dwz7jHnITIiaOwC/ZZ7zH0SK1eu9VvfR5HX1GXJ0A2Uh5ZJPKM4HPFcT5HnCM8/1R8hUWVLFsbopuG42xFkIUWZ88PHB3Lrs833iFByU5Y0XcNkNuOr5RKnDUm6ZLaacru74e7TZ0Y9oKR3sioNHWM7kHiWX5yn/OLZkmUakoYpkyBGjiOMJ26ZZzt0XWD7HN22BCr6k6pzRTpbIqME6Z/AobpvCWdnxOkcYUecE1Tlln2+ZegOOF0SxD7CCfbbPXrsMcbiK8XTNqcoDwjhSLIUKRyHY0GShuy7Aes07dDTdT1mNDjrEM5htOFidUE01LiqIB1HFB7SGuSoqcoKG0h6qdg2DXgevfDwfcmzxYLz5YL5IiWNfKbTjLPzK+aTKdNsSleN3Ny8g+NnbHmkriumgaBlStH45I87ehPgywn7RvL5MadoBxLPUO83XKSKLPIRQ41wgnE0KKHxlSCbzlieX5FNJixXM4QXYo1gd3OPrp+IQkWczig/b8gmEiF8POtoi4ofv/2BySzCd+A8j/1mhz+Zo9UEKwPGpsLWJWMPke8j/RCHYfv0mY/vP3LcH3FmZOx7DnXNz29/QlrNGPnc393gjQNVWVKVR4wZsB4cdU/bVVjbM5iRaBbQ1RWH45F9PnD28leE2YLlYkFkNZEMicYZaxXz7sff8e//8BNvbp54KFsMkCQBv/n6+vSOtZZusDw9bBBDRxKGxKEilA7lgzD6BCAWHokvyAJBXx7wg4z5+TMm0ymyz6FvSKdzoizGGXk6q7UaoVswIyrLUKbDNw1maHDZknBxTjxNcXYgXl6ye3yiPB7IVktuPn0mChX50z0OQdN22L6jaXrutgVSKWazjK5taZsGL0p4zBuG0SCsQxtL1Xc8f/6K5eQK4RKSecKn/U/87t/9W4auw/MtyXzB5eoCy4iSHnrwqJuKl//gGa3rOB4LPrx/jwUu1uecr1ecrc4IRocu9ycduIUf/u5Hfnj7ltvtHoSjMQ4vigAYh5aqqan6AaxDdz1SGHxnCNMIP5gRRylRkJLM1sRJiPUgi+VJY3+sGfsB5yxeoDBa05Qd9bFAigYtQEQJVgTY9sD+8Z5sOadvO9oypzwcGboOM47syoqua5gmMX2Vo5REKh9jDQhL23WMgC99jNH0eiQIFcssgNHDVR3T2RQpU7IwBGt5OhRcvHoJAj58+JmH+5+ZJjFtVfN0t+NQlqjQ8Od/cUF2lVHlWz7f3LD6csoh31Hfb8nvS/q2Z5Il4AayNMR1Pd/94VtOAEqNc462bZhJweU8RTmL9H26pmaSTvE9H7RG4XDWIq0jSjykkkRxTLV5oD/uGKojdVuTLpfousKZkaYsGH2FCAKkp3CeR1ceePvTz0jByVzWdwx5gTMWKX300KB8cTJGBQFPTxuG5sju6QnnLMKOHLY7pDmZz7ph5GqeEUQRaZqRJRFDXZFOZnjTC7754gVnqwVPuwO99ajqGi+GZuxxnkAKQeRgaBvKsiZJYqI4wHMWpKTpRlSwIojmBMInQDMJJdNIoqyhqhuSJCHvBsIoZjJbMGoDo+PL69eEXkQgFKHR+OWWIPZJ5xPC4QlR32GsB9EZcnGFf3WNf5Eizy+wUYqXZjgvZBwV1klMUyH6BqUkYtRIKRAqRWuDMIahqkAK+tGejDumJQwlUnkYPbDfHZivlnhRxvbpEfSAtYaH+zvqvmOz3TNaR5KcMAqe5yGDkDDOqOqO5pjjjZbM81BBwHS15uJixb/8F//d39+e86//9f/0t5Pl6WNTeRHL9TOeX11yc/MJ5wUU5ZHy6SNt2/Ddd9/x9sMjTqY4b4rDkcYRkRLESnJxdobQHeNoyI/FKZYHJGmCZwzSE9RNy2Ak0WQJoyZQkq7tOLaa169fcfbiNf5kRfrsFTJQhJMZHh7dboeaTvCDhKYo8P0A3Wq6pj0lJ5xDcqIRB8mEvqvpug7hK9LplHQyYz5JMWNPlsYkaYw2liCbkRcFZhx52h8otg8EvmAwjrw48un2/gQ9bUrypie9/IrFcgFmRI+Gpm54/9NPfPr0ieuLFV8+P0O3NYf9jv1+z77oeH+34ed3N0wX56wXc754/ZrV2TOG3nD76QZrRpp2oCw7nPAoNg/sj0f6vieQMA885nEIZgAgnUyIlY/yBWkSkWRTlPTI4pAoiogmGc6ORLMFfVUhRocZLbcfb/CDhE5byqqmzQus9E4bIycZrYfRhrGtaMscpE/ftAhPMeiR0RqcDDAImrahaVtGJKsvv6EfNNunByxQ9SP744FAKQZjaEd48forDFAccsbBkAQR169fkgtFGirevnnL6vwcXZUYEXMoW5rthoePH0mzKW155HIWkQTeCQYYzumTJYkcGPqKd/e3CN9wdrbE9BrnRnbHgnUa8nS/YZalHMsCJQVZNiOdLBjLAn+oUR60hyPtfo+wFhUkmH7Eqpjw/AVeOjvZB2ZLSpEwqACEww8UhBEuiOi6AdM22KGh2mxpDhua3QOeM3jeSYHdtQ355hFhenTbYPoWPYyIdM7QDdg6p296onROcziim5YKDx2G9H1HlMRYpU7WgW5AKcVkfoJ2fu5h8APwfDbf/8BPf/cGoy3X84BJ6iOk4anqSCOLMxqHxVcRozG8//SOidhz3D7xePPA8emBpm+4uy1RTiGtx5//1T/i13/514hOk4QL3v7hPUmUMlQ537254d3bD4im5uV6zfV8wiwMuDq/YBqHxNKQzudYFZNNZ9jjA9IP6JzECYEnHLrK8XzvNIhKEsZig+0rECFODwz5E14Q05U1oiuR0qHbDql8xNjg4XB+iHFgqoIwSojiDHA8bD5T1y2dUVwu5rz9+MQ0Op2spYnPLt/TYxDK591PP/Hm3Z6f3h152tYM+Dz/9WtM3fD666+pdcLN23uEECyvJkS+Y+KHfHHxCiUj+rZjmiQU+yM//PCGbdMTphn3nx5Ynp3x6sUvmMyeURU983SGrwdknCLlyDS03L//mfvPn2irirPpgiKvOD/PGHqLbXrW8wxle8pjTr45kCpJFkXMgpjl1Of6KuP65QXTxYLpYsF8lRDGMdKDwIch3+ErQZLN8IVESYXfl6Tpqc4qGbDf5zzsj4RScPvxjqf9lg8Pdzw93bJ9usczA73WPG0K6nagKEp8P8ClE5JJDBhefvWSwEvxjE9eNzjfY7ZOeXEe4ddbAm2otjX7pxJrJBHgm562r4h9g66PDF2N73q6tsFqw9nZDM9Kjk85YTAhC884bB5ZvpwjESRhjCcCPj0e+PZmT1vXWGNJpGKWxHy1nrJME2JfMU8CJvMVg4bykLNazImcJfJGlPRp24pkuqTeFyS+wA3D6ayz1wghiWcJ1kp0a7B1TnfcYEQA3ohxDiS0xQHTd7R1w75oWMxTyrJksn6OFwaYcUBrjZAhMgro+5GHzZ6qKNCjwxkLzlFWLVYmqNk5dhyIVYASp+YsjSbE6Zrr84R8e8/ls0viyYw2SGl0e2qghKSpKoaxJo4kZ8spu8OeLj/w1Zev+PLlc/qq4qc/fs+3f/iON+9viNI560ghuppJqFjEiun6ijiOOEtCfGsIJgtaLQmm56fhs+0YqoJ+FIgq5+Pthl1eEPQNLycRvYF2dCRDgdc1hFGMkBkqTLF9B0GKlyRY3UFXo/PT0Eb4Pr0eEaYGT9KVB3AjUnnQDwxdj3WOcehxOKwQjMbw8HDH/pDTFDuKw57dsWCz2yGc4+nxAaxmPktxo2PUPk3eE8qEIJowW58zWz1DxTHK9ylvNsQeHPdPVE3FYEY+3d/w/v6RvTbkVcWmqDmWBReJ4mw65dnFNQ7Js6tLklnAmze/5/FuS69HhlZj+gE7jsx9j6/OM16cT5hEPlJ4LGcrXNedbBCzKbrc0Zc5EoOTPjKIkAgcjjCbEsQJiD89R3WDFKfzBG90GANVWfL57j2721toG+ryiPQ8fCzTyYIqz2n6BmslURTxuN3Ttf1J8Ymk70fiVHFoe/L9jrqucM5i7ClEYq3Fl4okSkjDAM8YvLZDlgWTocf4AUQRvbVUUUInFc4TiGRGOpuyShXTZUrjNJv9lsePN1SbHWfrC4I4xI09Tle8/eENRQN2e8eVMicQ9OjhRMTnyvDd3Z7bu3u2D3dIKRFjjym2zOOAy8UCazykSsFAEqfMFivS2ZrF5UuiALqiQGhDGCsCLPNFhhKgmxoVjIxtxdBpPKnwbE8ykRzuH/G0xg6GMIkQSvL4+QFjJSqMGY4HRFcxNjWeULj0jPeffiRIJVr4HMuKlpYwntPsjpi2p+5HPr35xFjnHHdbur6iGxraoWdoS5xtCKcpL37zl5ihIAsleAHZ8oo0mzNfrEjjmMPDA8vJlFhJ+nrL4ZjjDyFikIwIpJJkkeJqkRHYEWkNTT9SH45MlMQXAulLzNgjrabuBuq6o28bdFVgdc98NidOEhQGpzvoOqI0g+4ITY6bXTDke2S3w44G4UfYao/NnzBdw9B2VEVHNwzotkN3NRYPj5FkOqHMS4qux2iNlJKmbbFO4IIQ4RzbY0EUxnjKRw8DxpiTglQl7PZ7DB6+gLxpyBZzVpMVzVPD7/7t/8v/+X//7zRtThTEJMHpZODV5TVOSNqioWt6IqFJ1oKyr1GtYdAjURDyfH5B2w28fvkM03UcHh+pDg237+758f0NT8We8zRkvpjSewGelDhnwWiejgV2HPGlR+j7TKcpaZriA0pF+FF86mVsx3QaYdoCZy1D19JWJYEY8XzLaAbwFEPdEsYJyTxj0I6u7HBDj65yNo93BNkMIT2stSgV4Jyjazu6QeP5Hl3XEgYedXHq+52wCOkz6IHegnOWvh8YRkNZt3RNS5FXYBxmGDg/vyRNMkDw4f3P/PzhPfv9jr7cs9s/ECtJEkdUrWbx8opkHrD+4oJglfL59g6Cnih0/PHbHcaGNOVIV9borsHagd12w+b2nny7xxgNzuGGnmkoeTGdkEUxzjhGA1kYEsgAO/R/AmP7CBVggwC1nqN8QVscGYotTVXQaQ0GVBhguxLhNGRznm4f0aPGMxrTdjgLni9QcQJYRndKl7T5FqcHxqGjrYoTOHvoOHv+jGQyJ0oSmrbFGUdfFkxCxdkk5vkixROCMMnoUKShhx164jShLmu2D/d8/vCeXsR0o0PaFhmBTMKTkU+cftOhG4jCiDSOwUHbdTRNhx8tkP6c8+nsNGR3iod371BmYOyHE0e0Krk8WzK7OEMFMU93j5xNl1wsLlF+QhKGtO9/QA05MvQR4x7X58hFjHr1D2F2SfDsGm01IoqxKqZqPboxwhKdgPdGINoaW7SYpsf2HRb1pwWJwWGxQ4cMFKPHaVDSlgjP4YcBMvComw6LJcl8imOBkALpezxstwjpsz/mSN/nmFckRq4YAAAgAElEQVR4OLIsQWtDGGYIEbA6u0Th47qOMJuSTSaIouRf/qv//v+Hcvjf/G9/azwfRsuo4ctf/IKX13O6uiTO1vi24f7de5COm/1AtlixiCRCgHMaM/YYo4migPPVkrap0RaaqiSVljSJScOAAENVNVg/QUYTxr7FFxYhJclkxovnz5lcXBOsrojOniM8D9c1MLSnLf1gCNanv5umpC+Kk1JXQNcOIARG9/jSA2ex40jXD3QWRBCSZBnT2ZRn18/wPAgihQoC/Dhl7GrGUTMAm92e9rghXa75/Hjk0+dbHp829G1POpmRzc4ROPq6BHFKWLRVTqYEv3p9TZQotg/37LY7OiP48cM997uSohshzPjlL7/hz/7sHzCZLjnuK0QQ8+XrlyTJhM2hwIwDUtd8uLmh7DWXWcI89JjEAVLAZDJBSgXeSV+ngoDZeo1vBiIfwjQjmq0QQiKFJM5mxJMpUaCYr9Y4FaEd6KEnWy7opMfoKwaZ0OY5++2Opu0oygZt3KlQdjV1WZwm/NogowlNXdPrEZlOadoGbQxtXaH1yOZwxJMh2hjqtqbXmi//8q+ZL1bESUgUx3Rty6tvvkaqmJfPnxFOFiwmCaIvubvfUB1zXN9DX+JJx9PdHb/8+jlJIEF6TFdrqnJHmW94e/fA0/5AlkoW89PtifN8urI4qat3R1w/MhQdEYLZ8oy20nTHgvxpg+dgHC1WW5pRUFaa3faI7gxd05F/vqHNa9Tykv3NWwatcbpH5zu6vKCvc4b2QL3ZUj3dYZqCZr9Beh66G9D9cGo8tMFai9EarMNagROOYRjQTYHWHQIL0j9BwkZNIwM6IbBS4gcKESi6vicMfFQUcnl1QT0Y3j8dufn+J5q7R8q7B5q65ZsX51xfLBjHge/ffEamEVksCAOffjBoC/PZDNvn+M7w9ucdD/cbHjcbHrdbOmc4bguS+RztRcxjx3HzRN8U3N/c8fD4xLsPd+S7AxdK8OvLBa8ur0h8n2eXl0TphGyS0G8fCDyPYrcjGFqOtzeoKMRES4yD4e7dic5dNwjpY+oGIfxTc8qpiArf4QbwVIoudnhpiFMhHh6ebnCeR90J5OQcqUDYFt+HIPYJMdAbQhfxw+5InMQMA/jCRwUxxAEymzKEIR/f/szZ/CVmcGAM6/Waf/rP/ob/5C9/hWdT+kFRHlvm05gXvzzH92AdZ1yurpivVqyvr3FWctweqLqB62fXMGqWiykXiwWojMETeJ6HMg26K1ksFsTSI3CGh5+/ZbPbopQijSKGImfsW55dXaKkoNkfEF3LNIh4dXHJ87M1F6sZ119cM5+HBLYjiuaoNCMUA0NZEkQxnnVEkxVWOPw4xbWG4jHH9RpcRzTJUMmENEmIBLT5FusJhqZm6Eeqvqdsc/quZb/LqSpz2hSPlm1REoaKbnTMz5aU/QhKopQiniwYxpFBDyzWMSLf8Oa3v+e7797y8097qtynaDrWUx+lNQ6N5xl2D4/87t+94e52Q1X1eNZy8WzO829+wdnL56yuXxJNYHYRUNUtYTChbwVV0/HbT1veP2ypq4Jp4LPMUi7nE5axz3QyIRSCWEr0MHJ2dUUSRqznGbG0uKZktl5yrB2TSUaEIY4UfdPzdF8y5j1xKrFtQ72r6JsGz3P4aYhwEoc7RXWHAasb8mNJ07b0TcN0NsEIeVLudQ0yDjDKx0mPOPQRvs8xb9gdGoqqoWtbhBsZRktvFYGS5E83rOfnvL5+TV3uwWqimeLFF2fs7m6YpgFhEnN0GXe7AhVIkjikzjd8+cVznp2dYbqWt2/e8ne//Z6+6pDejN//fz/y7e/fczgc8HxJHASE4nSvLawlmixYXz3H9j2r2EcFATaYoZI5w+aWqfJobUAvUg67nE0H3eBYRj6LOMT3PNIwwPcUwhhc1+BZR5Cs8ERIvFiiTY9nWnwFKhBsPt0RTRKsAy+KGPVAu99hdM9oLEM3YoaWocoRnCC5/aixnk/d9ezynPvdAT8IcEKwL2qKvODp4QGkwhlDWQ1cv3jJNL5gaCR6gMN+g5UWL/AJooCbDx+JnMT0DU4YRieoBkee5wRJSOhDUx552O+JfZ8/e31FGMR4MoFAsT6bE6ie3/3hW7a7gr4/DcQ8a8hCydfncy5XKdPAIw58fBUynyxA9+AMrm8RXYMYR3CnUySlJOPYEoQJyg9xxiFkSDhbEcYR6eqKbHmNsRIviGnbnP3dR85Xa0Zt2eQVxzJn6CsiHzwpaduWsm5QvkSPlrJpCEMfbQTGWNJIoaKMzaak7RqqskYPGmsd0g8JfIXvBygPeq3RfkDnQClFr3sGHI21DCqkDyK6tuPs4pzIc1ytZzRDx08/fsvP339LfSxYzxdcvrwmm2T4StHudvz+j+9o656V7EjTmD5aUSfPeLcpubm74XGzwdnTmcEq8AiHEt8OnMWSyIPpZMrq/OLUx67WxNmMJJpQ3G8wdY1nfJLUY3QW0TdI4eG0ZahLhiHn7ZuP4EEoDHaoCOOUKI4RztDs9zjrSBYL+rajOB6J0gnjaHBtAcPI2Bj8dM7NoeXzx/fstk9kixjp+dx9uCHPe4Tvc//whO1bdFXRdzXWDfg+hAFMs4jzizPm2RKJR5U/Mokj8GIWZ8/o+oHrq0uOuy03795yvpiwPp9jpCBMF0TqkjCYggqoMaxWM14vU2LpoY2lrWrEoJHG4ElJNUKgTiyjOIqJ45gsCsmigDSdIMOEsevwxg7POYLJBC9MEFYjwwjXHHFNAW7EGsuoB3Rd4CcpuqwQbkCJAaFHnAA/WeJkQBh61Nt71GxFlE1py5JhHLFIdnnFer2kbxuUJ9g3PU4FaGvp2o5aWwYLQZzQNDUgGEZLNk/5z/+rv+H6zy+4+johXu65WAu6o+bi4gJnHednVzjrsdluCS/g9WXB+vGPLOIFyl+i4gj8gMVqzfkqI8sSlLU83j9Q5jl5XnK5mvPF+RzhWXoV4fyQqh1omoZ+PF0ULtNTXw8WPwhOCt3ZFC9ISScpnjstOvqiJskS/Eixv98yzyZ03YBUHvvbT7iuQesOz3NURYPVp4VStz9gHBDPEHgM1RHGFjs0jG1zUsv6HhYLOJq6YpuXKE8wWoceBoQfIXCURYkD2l6f+veuw5gRJzySQLJezFierYjCmKaqaVqNkvHJHFdsqOsGGYbEF+dkqzm7pqUcBYOU/PufP9NMBM2h4vO7lt1dQ6AUlxdzJJa+6tjcPiHHkbKo/vR+1ZxnKS8WU+bJ6QNZRhnj0JL6p+sGPQLKR6qAKMsQvocdCoZ8ixhq4klKtFwTLRbotqLdPhBEEUPTMvQdyWxG/vAZicX3TjXB9xXlboNUHg6QUYDnOXRb0nUNwo2n78OupqkrOucThCFRFCClz+b+gWNREQURs+mEaZbg25GiG1E4fKUYxxHthWg/xgYx49DjCYjQVEPL6At8T5LECSf3mkeoAloBeXF6/qqiQY4el6s1rjd0x5z1akoaeCg0Q1miQp/L5QW66+l6TVHU6N7wxYtXnJ+fEymBrffUn98QpgnBNEJlAcyvkOdfYV2KpzRWNxgjGIcRg8R66Qk8rCShHRF6RIZ/SpAqH9NDX5Tge+jBYI0AD3Q/0Pcdfiiw6BOA1heoKEQEPseiOvVKWXJaF7iRqmlohhErBGVZnwQtCIxxhL7E93yiaIrNa2YyY5pOmCRTfBVyfHjgX/0P/+Pff2jyf/xf/+Zvh6HDk44gUHz19TXesOP24y02eX6iBeuBUMpTsVSW3XZzikwlIUkcIHyfaZyQBgHGOmxbEQjHNIlRGIauxTkYrM9suaKqWyLPIZxlev6cs5e/QPk+vgCVpsggos/3qCDE9R2u6zDWnqj5XY/rSnSnUcoH4dHXJWZwaK1p+xHpK4SApusYraUfBsI4wmGJkozV+TPGoUeFPnroT4VYxWgvpLeS8rBFMRBkU5qm5HCs0NqQJjF919DkR1SUglTM5jOWsU+mfIIwoCl3NE3NoEfqfuTD44G81Tx/+Yovf/ErvvjlrzlfL3n2/DlJErM6WzNJUvRoicOALAooy5qq61BS8GqekkjwvVNDlaYpwvMIoojJdEoYhChxahKCOMILIoQQJ1WgivCDGGFOSQflKxABcZLhjz3daPn54w23P/zAWB6pNp/YHY7cbo6Ug+b+7oZ9ntMOPbofaIeRsjuB40AgBDw8bWm6jjAIKNsOfAVC0lvH0zGnrUtG40jWV0xmM4IgIJ7OGANJKH1ef/ma2XLNYrWkPT5RPd3y7vvvyTcbtk/3dF2Hv3xG4I1czCPK4468GXh8euDu9iN/fP+Z3/74gWQy4fWLNWkIYRRhLGitsVrjj5qnbY61Dg9YzZd8etiT395hjSNdnVPs9xz2BZubexZn5+heo8aWOArRvWXx6iX95hHbNQjb0e63DMc9fVlyuL+jetpg24pQ+oSRIowzVJIRpFOkChA4jHXoQTP24+m20hr0MJ5OiITADBqtTxttbQxaCFwSc9zvOVQN8XSCCEO60eCHIfPVChkE3B5rHu4ekdInDHyul1MyT/PVq3OWixlNVfH5sSJazpgEA21VE8YTwjBFjwPZfIoQPnU98uHdhs+7msd9w3Qa8vnzkaKqub6ckCnFmx8+8ebmgZ/e3vL9m0+8u3lkKQVfr+ZczJesZwvWl5esn79EjyNxlIAxdFVFNpvidIfQNV3T4yVTXF3S7zb0h5yuHwnjGWMzIqIpKpygt/fY7ojVOc3jE55w9PkDQpxy+ML06KqAMKNtB+LQp948QpDR7A7EYYjnBI6Bss3xvZHVxZLPd7c87DdcXl1RVwNFc6Rre/7427/jblPw+qtv+M1vvuYf/+bX/Kf/6K/58stXWGd52twRRIp8f+D5VxdIYRi0oRlaOg/u9zkfPz+hh54X11ecnS2YhD6+EzRlT7nP8VSIrkokAlzP+WpBta+gLrj78DObY8mLX7zk7uMHlmlAojy8oWceKhJPs4hiLhdLFhNFYHoCYQjjCGFG3GBPaakwYKxLkskKASgPpJQEszP8KCNKQyaLCb4cCEJJ37Yo3yeczJC+wXQ9cTw7vcylIlIJP97c0Q+avGqpm4Zj2bJvavbVaQugTUBn4eJiiQoj8ALqtqMoc6Ik5JdfnJGYmvu3P/Puww6lEv7pP/mvSddzwuFI4A30fU2axBRFy/c/3nK3aXm4b5kuJ7z68pLV+Zyz59fEU4Fu9jzcfObpbke6uMbzJG3Z8/9895amM1gn8HEntTECnMNzmqYqiKOYNIqZxjETTzHkFfNnV7Rly3y+IJvOiGOFZ1qU7yHClCwNiWKJEo7R+iSTiCSLcBKMHrFVTl8W+FGIbmqqsqLvW9qup+5P6a7lxRkilBSHJ6SKsSrBOINznIb8oyMIAobRUTct0hN0vcbzfIamQlc5SRgyP7/g+bMzysMDs1Tx/GJCKDxC3xFFMXs5RcQRze6Wr756zdkqIwkDdrsj9zf3PD3eM40XXK6+IU4ymv1IGknmEw+jK9qyJYrS0+moL0mnc+bKsVgsiSYLAhUQqgDbVigzoI2j1IquqJAY7KAJhaXIc1ptabXGaE3ke8RhSHPMscPIOI5E3oDwRlTgYZs9zraIQBGv1yd+ghOMeqBrW/b3d7RFjsXHCR/nBKYr0c3hxAVRJ10vStI0JTe3dxzqnrzsKMuSoqo5ljWHwxGhFH4YU5Q18Tzj+vUVs9UMREuxvUU3BefXVzD0UDT0Q4v0BU/bHcNo2ZU9PZLdoWLsT9rTCIunLfmxpm0Hzs4uePnimnQa8Ljdcnu3A8COI4EUnE18ni9TpmnIPIsIfA8pAyZRgtM9kQ+BtbjekiYpSZQSRYIwjQnSDD9aghcy4BHGU/xwju01oxYEkwV21AhhsKYhUIIwzQimc4QfURUFzmisNaSTFOd5HIoKZx1Kns5mhvF09iScZTZJGGWANn8CAOOfUiYGhBNM0gla90RhjO47RjMi4owKQZTGNG2Ni0IeyxqbxsgwYTabc72esJwlPD3cI60ljiOmWYrvn86uojgBPXL8/Mjv3nxm1X1mNlY0k2vq4Jx3d1vu7+643z6R9y1t16LsyFmkkEODsBZjHZnv6Osa6QzO+KhsxvHmI2N7xDOGMFvQa4u2LabtcU4ijMM3oLuBri8wfUtoBqSnaMsjnjUE8Rzn+Xg4VHxKCfTNQBAn5I8PeJ6i7TR93zB0NUkcoiZrHp4OvPtwx3bf0HUdiIGmb4jOZ7z9wx8wVmPciLAdq4sZi0nA2fmU1dWaY94xDhYrJJfrBCUl+RiRzVYspxmhCvj48T1t13PcPfHF80tmszndYOlGQSs8CmH54levuF5PmAUQGM3QjTRlc7JdCAHSw9mRaRqRTaeoIEAGIUF40lFbPyLIZoRKEPgeYTbFi6dYFTDUJaauMHpAqABnNEPTgO6gL9DdCCrEjCPN/hE/inFtzrB/RHBKMA1dT71/IogSdN8ThDFl02GsYBw1njMAhNmEQ16RTqbsD3uMJ7g/lMgooe96EJaub5FS8Z/9l/8F18+uWC2WvHr2Bco1HJ9ueNxULGYL5pM1vYnImy3qzOMv/uaK16+XROkVrZlydnGBEIKpcvjSJ1IJ7eHIbrfl4XFz4gpOAqw3UnQNjYFxGKjrBmMFwhkWwQkkbq0mmyRIFeEZj2k2x/k+UeCDG1FGkCVzhk5jh4bIjUTZhKqp0f2AGx1D21IfDnh6YOh7Wj3SW0s9agwCoUeEdoxtiy87hubI7e09aeLjKY+6qXHO+4+pkqpuAIevfJw1dF2LNiPWC/DjmLZt6boOZy1+EOE7wzpRBJ4gjGJi5dMYwfnlM/a7J7qx5+7xxIFbP7ukGQ0fPu/44893bAfLkwyYzjzyh5pVGuKPhsOm4PiUE4mYojRYJwmMpixKjLEs45BvLs9YZyGeA08IsvUK5Umkd6pLIgiJw4A4CjFdhc43iFHT5kd8DFoPOD3QVwW63NMWB0Y8PBnghtP7uq8a6v0eZIjnScbRsHncEM9ShO8zDC2ef1p84AaK3QYznvhDwzCQrdY44VMUBcJZBB5tUaCkj1IBHpLZJGIaQDydIoXHIa859oI4ndC3LXV+wOoeMQ4EyznhJEbFUyJPYoeBJIhotGY3dBT5AT0MRJ5kMVmTBT5CxGw+P3E2DZhlEcVxR6wsXXeqcfd3RxwhTljiSPH1V18QBQrXlAx1TbxaE19eIaczvGSBTBeocIoMAqi2BMrhjMF5ClRCUY14niSTlvGQwzAgnMXWBWNn8NIUgYGhxvQaGQZYc7pk0FZjjQanCeMA1OmZ85OMrhuwRqOimDjLeLi7I4hOeumyaTns93gC4jBk0OY06BWC1fqCs4sLXn/z58RxRve4wZ9M8M5S/pt/8d/+/Ycm/+v/8j//rR4H+qElyxKeXV+RKPjud98xnU7w2iMfbh4pigrhBF1TI5XPar3GkxLpn+Csk9AnwCCER991+AJM1+HZk9quFzHTsxfg+cyD0ws5mq6ZP/+aOE4QdsQXDg/HUJdEl68QYUownTGOA6OTmK5DCAmMtGUF1jD0FZ45fcbLIGQcBtr2pOsVAsIwwUmPqirwPMEwaMI0Y3n1DOFGjvsN/TBQdz11p+mGgTbfIThF/DwVIv0AX0mwBq01yfyMvBo4vzjHGYMvJWNd4YeK+8c7yqohSWJ21UgxwGRxydmzL/iHv/4VV+s5h6cHjg/3HHYbdNsgnGV7f8/D05b94UhR5DRNi2kqXp/PcUYjPUiVT6h8QJDE0Z8MBpZQenjOIjyF8Hx8T+CpBAy4bkAID+kHAPSHA6YqGPI9Y9Mh9IjXljg9sDtW5CN42ZSmaajKEuFG8j+lToZhQEUxfd/Tdx1BGFHVFfvDaaKtVMA+rxm05lAU7A87pDolTvwoI84yvvzVLxGe4PL5C8rDHinA833macTjzUfe/v63PN19ptrvGAaD8SQXlxfYoeJyFrMrOybn1xz2G3777Q/88efPjMbxy2++4GImmSQhXdNix5HJJGYS+XjjwH5XUNQnts58OuPTzS3H7RajDdF8SXUsyO/u8N1IXTangnXYEXmONJni+gGdH3Cdht4htEYKBcaSzibE0eREcQ4ShBWn/0OUEsyX4E4F3BkI4pQgS05ALXOKV3fDeOKlSA+BdypATjCEESaMT+TyQdMYSzZb4EmBDGPqXoMMuNsdMRaMDMimGa+XCS/mEUNdIlTEbDajKArSRUzoDXhC0neGIF1wKCr2h4rnv/oN03TJxw8bbu8PHJuRx0NPtJhhtSX2BckoWU3npDLk9uaJw9OBlRR8MU04n825fnZNOl2SRQHRdAl1Tsjpgz4+e4YfJmxub+nbkbwasGVB+fhA+bSjKmvC9TnW+QTxDD9LGDEY21Ftbhl9Hz9LMU0HQUjdVCe/fFvT7LaE0wVW90ghGLa32GTKEE7xVIpyBhWEHA450WTJx4cNu2PBY1EwX62Zzs84bO9xQ4NSHs++fM5f/ZO/4J//83/M66+fsVzPEbalONzz7Y8/Ey8M168vuHp2RpEf2N8d8ZyPaXuiZEqWxizP1iyyk2WnKUs+f/rM5naH7gXloSPOJiRhigtDzqcTTD+g6y37zT1SSorDgVUs8I0lVgFjUTJxmlWSsVqviIPT4DSQpw2S9BSeiMH5uO5IOJkSLZ+j0jlCRgSJwpQlvgpxncb1NSr08dMJarImylI8C9IL8dKQsetR/kmFGkcJOEld17RmxPo+RTOwb0Z8GbMpSqTwkSrkfl8wXUy5XK1I04woiCmLhvP1jF++mCHVQCAbgsBj8fyCl3/xZ5xdnLOKevr6yDCe0ozGeez3BUNnefX8ir/66y+5ukxAt+jqyO7jDfc3n+jaju2uxvcToknK+7sd3769o+974jAmDHw8N4ITJNmEYRiYpxPOzp8jPQ8xaJarJV07MD+/ojWGyfyM1PPwTY014FmJGXrS5ZR4mpyAn9MpVmvqukL3lj6vCIMTnLvY5zRlgdED0jtFsuuhZ3SO1eUKL03oR9BDi4hTrJC0TU/TDTxt9ig/YJrGqMBn0JqmabDOZxnPUKInSSCexbw4e4k/akJhODubMJ+vKQ8FcarIvYSybphPI758dYayPb//9ns84Xjx8hX5sWG5SPnmz3/BdKEwpqTtc/ZPT+zzluVqje56wrFnHkgWaYryPLLpnDRJiJMpzsBYlQjPp+9G6l5Tb+7INw/c3285ljX3h4KhazDG8B84e5OdWbIsvW4dO+dYb97739w27o2MyMi2GlESitCAAwJ8AFIPIIBPpoFmAggNBKEoQATEorIK1WdVZWRE3Btxu7/13nqz02jgAUEDiQO+gjncfPu397dWw5khlicRUZIiZEiRT7B9A64nTDRt3zD6ANKCaHV5DpOdw+HBGe4fd7R1c37feTBDj0Mw2hE31ng8PswYjMcOhrauubl/oGxbqrY/n7xbQ9V09F3HOPSMIiDUAVmhWT9dc/nskulUcX095/r1F4x9z/7dDeXunnEYuL27o6kPVGbkh7s7Dm3HIp/gRs/+eGRX1gxOsLh4yquLJVfPLimHlt3mjptPt/RDj/CWIgr4bBkxjRXTPCHRgjhUxElCGBWEwhJjEaNBeYkYHZFyEEisAykThJwh0hUyztBphgg0TgjCJEIEnqE6Mo7mx9pjgRCS9rQjlIJplpBqxanuGNuKME7IooSyKun6lvk0J80mVH1HLM3Z6hKGHE41oVRoFzI2IxJHkmUkSYIQgiiMaLoWaw3D2BOmKV5ppFYMbc2YpJgoppiv6IeO10/mvHh6zctXrygWC5q2ZXd/y+l0RMeKfL4AEfDdD/fc3Nyy2x84yCl1OOfTvuWHH96hAqirI8YMZEHALEvx1RY/VEzDgLYbiOOEwQW05UAoRqrjHYIObwVRPEGHCW40hKkGF9JZiTMj9f5AW/Z89+Yti4sVcawJhSROzsYLjyco5nRtCyIgkBHeO0Kp6XcPNKcDIs6wFo7HLYEaSCaazms2+4ogW3J/85GhOrGazdjt9hzu7+iqkumyADMQBwFPl0vyLGW6nPL8xTWr6xXT1YLId8RxwakemBQZ0ySmKY/0Dsqq5s2b35NrSMKAAMfhdKISghe//CnPVprdu++IvCfyjm6wlKcGiTuHQAFMJhn5ZApRigsUTW8xo0GpkOn1y/NnnybI2QXGne18Xd2g6RnKCuMDxvoDIitoNg/nun1V4oXE9DWMLUbndINFCXD1jn6/IYwkcaQJ44S+bggCMF1NPp1jvMePPVJ4XBAgZYDxnrpuwRmqfmRTd0yWC45VjelrYqXZH0+8+umXvH79hFAZpDjRVt/w5h/+ifLkWC8vKJIrqnZE6I5QwUVSEFDw+9uaTkxI05S/+su/IWhOdKPjYv4Uug4YGZ1nvpzQDz33mx13hxopFU1dY/uONDDM5IjzEg9M85A0jYmVIlYR2eSCMAyJAkFgPVqk5JMFQgjGpseHEfVhT1cezmgCrTGjga4mCPjR3jkQSIMKPFJYpO1pqgrhYTgeCWNJKEc6HRPqlLE1HPZ7uq4jUJqP2yNRFOKMoW5aiGJkHOOMwTiP8RYPDMO5rhUFgjSAFxcLLq+fIOOI7XbP+0/3RFHIqa7Y7I6Up45+kLy/29M5ye2m4t5IkkWO3w1887e3hI1hEQUkuUSqlLKC/aFhbFoUAabvSbTk1aJgFgdIQDrQMkQYwzTPMIMlkiGhHBmb+oxSaCqUNzgCpA7PF09dR2s8rXFIcTYeRWmBShLEj/wZPZkSzZcIFeLwWCGI5zNEFCKEOxufkggXCJwZEIHA2QGUoqoqBjswf/aK0/FEohSH3eGszlaKqqxI0gxjPHGocFKfq0/9yN3uyPFwIg5DrtcrAjPgPaTLKTrSCA/CnKvHcZxwd7ehPZ6ojg2mbJnnKxKVcNpsWExyVospSqYIJ6nvHxZ4YOYAACAASURBVKk3G5x1hGEISpHkGc4MFFnI+uIKJTizXyYL4vkaGUnC6RQVRudrGqfww4DbPMJg/x/eo7GSXSMQCPQ4wDgQWIvfP+DqIypWZ/D2eAInUFmAqe5RsUJmMV5H6CSlb07ISCKTDC81KorwMqBvKuJEYUyPlOA5L5tGM1DXLWF4RklkaYw1BoHg+vlrPvvVV3z26y+4fLZEyIB2tPS25d/86//+/zM0+c/ac4QU2DGg7y37uuGhLFlnUyZFyu9+83+eAwGZY3zHcXtgMpuSBOfaRudgGAxSSaS3dHWJ0AkISVlXjIHDW5BRwaRYoKIEhpogDUFGpNMVkQoY+g7lYBQBgfWEszUyDGlPJTJSeBkRRo6hNshQ0+44O7GdBx9ghcWrgICzRjeVEmk9/dAThYI8mRJlCW1b4fzI5u4TYZqxXl5g727pxwEBREFAIj1JEjGYATG0tE1PIDWjcdxtTgRBQyUKRiN4+fonDO2Joij4eHdPrKFpK9aLKU7G9DojX81ZzGd8/rNf8uLV58juxOlw4Dd/8eeE3rH67Kfcf7hDGHvu2Juzqq1IQmx1BuLZ0ZBlCd6frSdpHKIDgTADSp/hUMZ6ojAjXV0jtSKIJwRC4boWZx0qyRCBQh8OeARGn6sjeWDolcQFIafyluTJc5J8Qp5EZE8ucWOFaUvqsqTrBxIdIYTAmAEvIAklcSjZbB6ZzJecqhNOnLVraZxwrI54qTFm4OHmA5+m5x5xeTpQtSOP9w/nDVUkWS6XvJUx1anitH3k4voJq+mU08MHpKnY9wVidcXN3Q1ff/eW9w8HtApYLSZMkpDd7sRnz6/ZbW4xXjOfFSShwExTiiLlw+2RY90zKwoSLF5r6q7l8e13jMPIVAqyUDOJJdNgJF6v0VIihoEwy898kzhHRGeGDgK8GfGRxjuHaRpEcgaejYcdXdPh6g1KKwg8SAWBwwzyfFFlwPmR424PziC8RwbqTECXjlBFqNGSTzIej0cSLdECnA8Yxx/Vnr2lLBtaFRO4gbBu8KHm3YePtE3FC5mRTa55/eopjTbYQWDx2DDF2oAPtxvWL55w+eJnfP7HzzHDMz79T/8jp+17xtZidx3L1ZxwekmoEqqHA/Vuz8Q7IiGYAIXULCczIhkTp1NaEZDUA+lkjR1KRhcxnT1hPB24+MmviSZzCBTdbkO9vcdWNSrNEEnO0FvK+xtOd28RiwyVRuj1Crl8RiAzfNvhTUt68YwAi6AnVQEi8OhAEQhQ2RT8eQBTeU7nnzJPJrzYd/zldx8ZfITzPVVbU+P4+s17PrtI+e7d9zy7uuL61U/55Zd/zDK2tOaOH+7+hpsf3jDuDHkQcHf/wGQ2kN7GHB5qVvMrsmjK+slLrp5fYcea3f2OtvGUm5o3X3/LD9+9oy578tyyWE4IO4/OIuxoKDc1Zqg5bB5IY8Xd4z3zJESPFj94ZpM5+cWMp88viPP5efPbNpghOGvc3An6imRSQJByeP+BYfMAXiGlZmwG9GyOCgt0kqFjh2kH+rIkml+j0gyvJErGeOdxtSZfXmCblqvWc3/YkSWOF+sF0UnRBQFWaPrK0I4BoxWAxAw1XW1oG8PdZsvTpCBwEZMoZzUtCPOMb99VkK74k3/xE+73NR9/+J6vfvETlArP1io0tYuhyLh69YTLi5F5HrOYxlSbDaQJNs1JJgXZMDKOB1qz4fb2E15KbrdHtseKUAqsr7BRSGc808TT1h0hFqU0m7tHnl09YTJdIKRl/mSJc57r56+ZX0wQ5YHhsWcynaImE7xpwXo8Ibie+nikK891xEmWMso5BJ6x70l7S5wkHLcPDKbDSsnKe0prSLIZTmrmz55yd/ORyI1EccEw9gjr8DbgcDgiZEDXNJzKlqYdkdqhpgnPrheI4AzCi9Oc2ewJSbAlCgVZrLgpB4p9zSnveNjuCZ9e8jd/8VfcffyB97cH/od/+2+5fPqKfSno7r/n04fvebjbUh1LmmODE5rlcoVF0dYVMgP5/6qC6jDFeXXu8G8bTqVh7DpOD7d8ev+OQ1kBgq7rmaYxEs+qyAgCwWK+QgKBVITJBIFHhDHZ/AoVgctSiucv8Urhg4CxbZBaoaIQP3hUXvDFV19SHg9st0eGweJtD8Kjo5h+cETdgEwHrLFEccTVcs7hsOfvP94xekk3GEbjkDJACsF+f8RtD7i2pd3d4bsjL14+Z5JrpqszQ+b20yPV8YQfLYfygShLGU3H3d2WzWHParGibXpuHx9ohxbpLUkaMwsHLp8vUJlmYpPz4O89ofBkkeLLy5Q89OSTCVdXK7RpcR6iOCcvpvhti2kHQiHxXhCmMYQKFc8xSEYrcaM9bxxdS1v26GRARhFeGEx3wgtLlKdI6XF+pKp2NPsNi2evcM5Ro7iIEo6HA4yWWAVcrqa8ed+SpCnOeZ5OM9q2pW8GlOrp+4Hdbov1gvXVBLd152fqPNafL9q6ccAahxCe/XHHMHQsJznCDsxWc45RDjiq7YbTJqK8WGLrlpvNho93n/jhze948eQz0ljTNEfCYsXm0BFmM8bumtKO+F6w3z5ixo7SeOZFTnmzo1MamYds64pJYMkkZEpyOJXEKma+XvOw2zDPFbPFgkgqfNfTtg/EcYAxIab3eCcxs4zBDFjf8vOff4EOE2xb0pYV6WzNYBrUONJ9+kj25AlN2SMsuGFEi4E8iQi8wrUth6rFBYqhNUSHA+s84upyzYdDjY4yvGnZb/Y8Pm7Js5RRQhw4Zs+eYKsK5z3rxYzlckGazeh6cFGEasANNeHYEfmR3f0NUXqu25T7B7b7E2/ef6JtGp5dXdH2Ry6eveTqUvPD333i8djw7MUltj5wKhuMdQQS4lARJiFRmvOxHDjcHOirikzB9SSmePGKvtyRioKjUYQSxuMJ7XqUdDTNAcIJptyg7A+Moac7dLjUYj3Evj+H82FAkK4pP33Ap5qh6c/1kuZsrAmSCXmxJJ3NieKIzjiKoWdgOMPiR8H2VDFLz3Nx2wna8cwLaesGO3YcqhNiJhBhxF/8+Z/ysy89i7xnd/Nb3v71n5ON8OXlgifPn9AeSgJvWS0L1kXIzd++5z/dHmn0nEVm+O54wI4jpY64miSo2CJCgYxiojhiNJb745G3d49kYcLp2BLRMY0h0R6PQKozY2M2zRAIpJTkxRItHToMSFWCjFNOnSBJI7QwFMUzbh8e6IYejCP0Pfubj+j4bIoZ6x/DAa3QmQId0guNdJ5AS7RQqGJBkCqkChmPB8Z2QMUxRRHT7geGwZ0XdqYDA0NnQcaIUGOFR3JGLpRliQojhr7nsRxoC4Pbt5jtIyKf8ORiThCNBKHGHxwiUHy62XPch6xev8Bnno45pD/BcKDvKl69fsaMke0PD7wtO442Jl08o+967NgjFORxyDLPmCTx2XIkJDpNiKMMJSUMI6ZrsKnA1w1aSkzbMjRnO01oBdPV+oxWCBRxHKPyGVGW44b+bBvSChVHRHlOP9rzn3ZGhqZCRucliB9blFf0zSNtXZJOCkSQoyJNexQ0ux1FEnG335LvbrlaLRh6gxABSTEjFjAJJf04EE0m6DjCeMOsSM+muLs9h64CIQiFRw4dgY7PIWISsX3ck6QJYugxjSFSmigIiaVGFRGJknx8+5Yizvi2/Ee++PJzPn/9EkZPf5eCXFJV1TkYihJG79hVW7766R+eLzUsTCYFcRhhu4Y0n6N0jEpCQnIYBFqfzZd2AO8VjJZjU9PZnJW2UDVgYWw7gtOGIPAMo8GlDu/BBiG2PavrbT/g45QoDHHxhKn6jK7ZE3iHO286uFAJp9OBvmmJspgii4Cao+/BDFxerdjtjpRVQ6hGRKw5NR2t6dGZhqAlygO++O/+hM2//w3JKv3/zUX+s6HJoT2neKMUhPMFTT9yvy9pupHBKz4+1MwXEWPXcjmfoPIMzEDZdCRJhreeiBHftHSjpTs2xEmOlyEOwwgEyYQ0z0l9h9ASgohsvkIKi6kOBFITr56CEBg7Mu5PqLpBhRLjCwId0z68pzudcMRnGq8PUMrjRo9xcDpVxIlHxwl1dSIKY5aTgnoYmM4mzNZzdPIc7z11XWOGjtEXrJ+94uEf/55+HJFJShye4TpylGcOifNUdY9Fcqx62vZEkMz4/Nf/NdlsSpYqhqZmX1YkyjObJGSTBfcNPGwPWKEopguW04w00mTJnIfbT2RxxGp1xdCNJHFMlhVUVcM0SxBIvv36DtE3OGeJVEAUaorpjDTRhIHFm46wWCCFR4Uhs8tnBOm5X3rO+QKk1uAFYZpi6zN4VIYRbdMjw/Tcde9artfPabue+OKKwQd4DEV87gB2dsEwjMjmRF4esH0FgSPQU+rBEseaIktoBkPXNUgp2B5KismEOJS0ocYFEUmW0bctdx8/0nY9T+JXrC8vGLsW6z1JHBIv1sxffIH89nc0vaUfDaMP2Dw+8OIyp+saQiE5HY+Mo+VXX7zAjD1Kn7V3qZKAwFlLkkTMsoihPKCkIF3MkeqRqur44XbLYbfnKgvJtWJsWyahJtURWp9/gLrjHpnn2FEjCOhPJWNniFcp4WyKdRYdSlxTI8IQh8PWPVk2wwmBjGZoM5z1btWJ0Vhw3Y899XP/XEQWQcjyMqTtB7xpcd4hAolQGtEP0I9nM1J0/pEVUhKHITqMGYMf0+y2o9rfEkUR45Nrvt6W9D92U92HBxbrNaNIsHbH4KBtDa4+ECYF09mML7/6FYmccXF5xb/81/+CbBXyH/63/4Nv37zlWDeUe8fmU8mmrGl2R6SFf3x3T1M2vJymrOcLkiQnEgFKSLLlmjTWyMmMKC+Qw0geJQQX52c39Jb+dEDkcxZXzxFK02wfKcsTcaIxxy3V5oH6Q0W2XnL98oK+10TXr9HFEm8MgdaYIMAyEmZzhJQIbRjqFh9OGMpHtI4YjEakZ1vNq1/+jB8OHerpz/mz//TvKSYLPjwc2Jcdzs/YPOyo657BxKyKK4JR8/a7P+c//of/yGl75J//yc/5/NXPMR89+8cDbiVoG0t0oZkWmvff/yOb+++4nqw41YLNoeL9N1/zV3/1NceyYpJGSHoCd6Ku9uSTKZFOsW7gdPeO5rinbityJQlGWCzXFFHO889ekhcxMoC6aZlkE7L1lLbc4ZXGRwmT9RKlPSrSqNefM4wNdDU6m6LlgNYewgR6hwwzVOEZghIzjIRFgvMjKtO43hGPA8vLK073D6wvU+rjkcob0iKksDl2FFxdT+gedhyODUWWEerofNrvHQ8375lcLHDCgzasn0xYPpnS9i2b20d2n/a8/hd/wIvP15R9Bd7QPJxom5EmUARjwIvrFXdvfs/h8YHUTKlPkkx3JIsJeZYhRIxpb3n34ZHNruZimbDZ17x/PJ5ZQtYRYEjyGbE0DF1NjCctphjrWcwzlpOUq4sVeENQ5BSpIrYDtiwJ3ICKIoKoACPww4iMC+rDiPSSeDJDugDTNwgZQh7RlhVORCTzJXbsCCZT+rZBxSlWSHxfI7KUcazpjpbZ6pp2PNeihhGwlmeXM8w48P72ESeg60e6biANAgQ1Fy+uieOENMq4/uoV9c2WdFYQSo21I2W1pywttVhw2G2x1pAqw/sPe/px5Pu373HO0xxvaZueNJ6Rx+ezjd1mQ5pnHI4npAgIx44uTrBRdgZHKw1C05wG3r77xLfffaSqB8bRctjcMviRGM8kDinimPV0ysIriiJH2o5EgZYa7yxxliNVhCDARRnBLIdEIrIJKI3UGnfaIRzoSQ5SMWxv8WNDPp+DjKgOJ/p2YLvdMl3MiaIYdITre6zx2LEjjjTrWcblPub3j0e80iCCH69QI8ZmQAYg+pb3b25oto/cf/ct+azg8z+I6W6PlI93xGlOta9p2oHYeQ5tS+NhGDqyWGKrFmtHMhXwel4wWU5IpaXvGrRrGYaWaV7w2ZNnEAwsUkEylFhrePX8CaKvUMF5gE3SBLvforxFhwnea+IixQsgiRlEClmB95ZAaYwfkZFGyYi23RN0jiiKzpA9EWCAuJgjvEPVJyarS7KiYDCWZLHmtL9H2IHAhxg8opJcrUe6tmU2mZ6/O/kELwUGiMKI/bEkEBoGTxqEHE3HaBqWyyUGT29GRhyjLc+ciiiiHVpCKXFOIpWmOh7o6pLff/OWQYYcywOH/Ybv3vwO3XU8e/mEKJYM1Z7DqGAUlA8PqHGHkpq6Lvn46YfzJZkQFLHCjD2BGxl7zeDs2cjgBRpFHiWs84KqaVBBjxchd7sWa1oKtiyylEdG4iwiTQqmyQUOjZyGqL6nPu457r8nkZK2MyyjBYNwxNIR5gpnPcl8jhsGojg+/1lQMWnk6HZ7cgSjCvFeYuqaRTRBdj2B6VjNJ+wOhrvNA0PbkVhNlobEkSDLFE9//keU2wdGOkZnIZA8efEclS5wm5G333yHdBH73Zay6bgMJE3dUlUtbd9y+7hhPcv5y7/7e548f0GexIRSYXTO9WpJoiTd2KO9JcxSGDoOgyUNJTe7gd99uIOxZ6ZhnYV8tJZ6+IAf37HKM+IwQTnL0JZkkxgZS+IkwlPinMO0PdPhFjsWdO0eJS3YmJ4EJVKiekeahjSDI19cII5b6qoCEWJsQJLn6DxmcnHB4+5Az+2PGuuAaD5l135gqE+E8ry1xznm0wmH3SND1xFKQVmVpLng+394w1//77ASB6LAcR1d8/pf/je8+e0nYjnwKYwIjCFGoHp4/2DYVSGff3WJMJa2liilub3fgDD87OlTDm2HbTryKGN72PD+4w3jONKjSYMzQ8sxMDqBDCTWW+bzFREtsdIEyhNmIUkikUiU8mR5hhECORpMN4BPiJGc6oEIhxCAa/He4NFYe+ZMChdg2g6nNHJaoHXIbLXCG4sxFrCEJmGRA9HA9rgjmWQkVmC7ARVYmsOJ9scL9diPVL1ExRlt0zKMHWEUUp7qs8HGOm43DfX9A9nrlCiPsTLm9nhGH5zKBj8KZsmSonhOwpq7xxvwBbqLqH/Ys3+4YT3V7L3jUAnGISTKF+z2FV3XnqHX3rPKc0KtEWZEaI0RAeF8wejPVhbnDAEBynpiea5mqzBikk9RSYbMCpI0BamRSuG9Q06WhEmOkAJEQDIpcMbitSRwnpsPH1iuZyRxRNc3yFDhjcY3e/LFCjX0oCMG16FiCG3GVFgOVUUuA+gqAi0o4pQijTntT7h0Qj5PcccDY2+ovKOrjmSTCcpbpLecThV9NzAcDlxmMVcvXjL0DqE6/DhQbSriKKQbPXmcsdkdSWTMJM+pDiWnY0UsMib5mocPj1yvblDGEfQ15f0tt8eSeHlJoCJ605OGKZO0YBwNSkX4QOKdQUURIo7PbBEPpq2wbYdQCSqbQQy4DidDtlVPkRpE1dI9HjAGwlDCKM9cx0ETxAFD3xNkiqGHIAInAgLhz4r2tgWZEE0iXFMTxYLAdYg4Zn75hKbaEgiLEBaJ5WKRU9YVrnbY+QLvoOt6suC8bPj++29ZvwjZHQRffPVrLp7/M376x7/gN3/6p/9loclx32LGjuxihhYCMzi+/7QlDiUPN5+Iwoy+KkkDT9fVjEOLHmpGndNbiJPsnOw5T9UOjN3IoRlYz+ZUxpMkGdNJgQKc0ORFTlJMiXSE9OYMNQszjpsjKvDoUBM4z3DY48YWEaVgz2d+7W6D1BnD4GlOB6zw9IOBICFQ5nxWJRS7siSKY8IsJvEB7dATpQnpfIHSmqX0mLHHCAgXa4Iw43FzQxFonBvIkggpA0YVc3/aYNqSQ9mdbTthhBcBWaZR0rF+uua3f31HECXU9Ynr6zW7LuDj3Yaqbnn+/AU//fJzJvMpk3lBKiRZPufq4hkBkq/f/p7ydOLi8po4nWKs47Tf4hBczKYwjgjO1Rjvz9wZU7dM5jPCOCZAkK3WhNMlqBBblejkPJC22x1SCobyrGUMpEROVsxeXOCEZLSWQljqY0VsRgos1hhMu2fsa0adYKOQqBDUUhPlGdRHdF3RNjX99kCWxLSjo+wNVgh6azkoQddUjMYSKonTmtNuy6svf8L62bOzbquuefr8OZM0xbUN+2PFPEtZXz4lmV+R5FsWyzXV6cTDds+zqxlJXpwBUwKKOEQJR3GxYnZ1eQ590uD8ZSlmzOdTxrZkGEbKeqQZBFbHHNsjwaHCdAbhPD5PyKcZMo6RaYqQAdZ0OCUJ4pwoywmCEGSM0ikIwbA/0naeydUKU0tcP1B3LcopAh/QNi1xFp9d71i8StCBwA4t3o/IvsY5g7eG035DmkfEUYHpJbZrz4ydIEBjSbGIsSOJQkhTjAhQIgBxhvlWp5IcR5ClWBGgrWW08O5+y0WR8tOffUkRS0ov8brAuo7FIgYd8/T1a359+Ywg0Nx884mfffYUIU/8V//t5/zBL17y7vtHfvfxDVVdM/OK8ft/4jQe+Ou3t+yPFc9DTRElpNM5+WrN2BjUYIjyjHCxJi6mxAJUNKC0OncWrQAlUUnB5OUTfJwhghG9viQZWw4PD/SuJ0+fsUAx2JHjocabgcAqps+/PHNztISmxnnLvrxnOB0YbIIXmlBakOm5H/rwyORijUeho5Sf//Rzfvtmw4vLJ6TrGf/wzRs6JO/6Gmc72mCE3T2/+fM/46fPvuLxtuLTD1tefT5jeXFNqFN+/rPX/NZ9y/4wYL3mdDriXcP7mxt+/bNfsri4QjUV/9df/Bl//7f/wOFUo6REuvP2PEhL2rrCmQ4RWsbjkXJzy+/fvEMHis/WS14+e856viBMMyLOF3PdYFBBxtgOBNOUVORIHeOVogk0oZNoJ4ivnhMIjZQJcuhoP3yLv/2e9NkX5/fp0OGahjAKz++M+xuE7/FhjspSRBgzlDXzqxeUj7dcv7rm5uEOJzWCmHTUlMWUuQvwwZ66NecgPJOM48jj4y2rh0u2iyueXM+ZTKZML3LG7sBkNuPd37/lt393w7/67OdcXlzw9vtvOG125HnKdLmkA8pDyXxxyeFug9UeJcOzJlEUVO3I8e4THz9u+PqbR6ZZigtC/v7NAx8fd/TGAIJEaXa7DZGWTMOIcbToQDPPlyxmM2bLJbQOqUOWyZSAEdvtsMGMcD6HSOAJEGGM6AdMLxjrDqc11bFEm5HACY5lRTaLEVagrEClU6omRieWvrdMrl/iAoE/bPEyOj//oWN0jmg6QcoQZxxdVRGnKVcXBTqW3Nyfr/EEnsEM9LYhv5Y8eX6B6hSL5Uh05bmczImlZywfaI6P1JHBxg3r1ZxJkXPYPxLnM053t/y7/+V/5eL6AludyHVKolOOpxIhBbP5gvubT2yPFUmcYMYRRAYeHAoR5Xz/3Vtu3nzL7cOBQ3VenjhrSYKAxWTJNNS8uliwWs/RpkdPlqgowpqBYGiYZBl9XROlBclsiXcBMtJEkxzfH2AY0bMLRgfRRY5wHXZoCAiIiynjUIIKUXmEbkfSNCOMErq+pTo1pECaFri+wYwDpm+JA8kiiZiHkt1gCISgiEJCpZlmilBJFvMpeawIZUAaahZFwWm74fffvCfPl1zMZ3RtQ313h/WW0+nAYbsnlZ7q8Y6uh1VW8HQ946pIaAnwThGrhPm0QPiMf/4n/4yvPn/BYfvA49vfY6xkev2UAAHeoZUi1hGRGwhCSeDnWCdBxLjIIZxHRCnWCJQDJxXEAV1bkoiYrttDIFCx5nQ4EipBO1qyMGWyeErQndAC8rHB2QEnIo4P9zihSLIc31m68kSe5jy5kJyqkmboyIsJQ3vmeAyBIFYgRUDf9oy9J/UhhfHYOCGONZ0EKQO6vqe3Fq0kYblH+JynT64JohAHxFrwuH8ky56QzecUyzlNP2AGw5c/+wUqjthudjRDB3FL43tGU+M9PB6ObA7v8cNZERonOXfbknmWQ1cSmJZQCAIBD83AKRTYYKT1I3W9Y5ZLbk47lHFM4gRZTJHNSNnURGNPVddszQMALgyw3UCWapyRZNPpecbKQkKTnbfV0fmS13uwSlGX5VkyYEK8K4niDNvWFFGO68516DgYmaQJ2x++x4cRUZygZETnGwIVoAIBzmL7muP9J159+RUWj3I9xrRsyg191fDqx8XV7rHl9nFPnOUIO9K3NWVZksURIYbT8cC+MYQd/OHz5xQqYF2kqGMCfU9TD4yjwUnJ3WlgHAcODw2H3uCFJMYSS8Whc2zakW3fkY49ru64yAuiMMXVlg+bR0bhyOYZaSwRSjJbXVCeQgIVkK9mYFraIKFuBhaqwsgE4yGeTNFZggskiyefIZICawxRktI83qJjzbPXn5GsVjx89y1NXVO1Lev1kq0/1+vzPEHva7I8Y7PdMnbteeaIAsww0lUn2uOJ61/9lNXsCaf9hng24eGHR6ZzyXfbI9I7AjOjHUGrghfXMc46pIqomobbmxs2jw90WH513CKkxnrN4fGWx8OOQ90TSUEsDKH39IPHhzHCGQI8l7OcJFZEYUSSJTgiJpkmiTJcEBHokFF22KFnU43sHrZ4+YBmYBoKUp1h7EhWSBrr8VYwdi3L5QwtJGMv6U3PIosxwqGlAxkgCejaFhVEDMoipEY0A4M9otIIKUBHGlMPPNY986lC9oY4Ehx6QRdkDO48z+kwpO+Gc0XCWY7lI6aPieI5WhfoyHPYVhzrjnw6R8WCvBAcT284lSfybM1V0VJvQMQFY9/hIk06n9F3ntqGmOGIcw4hzj75UEpib88BeSAI88m5+naq0FqiZMh6HpGiUGGKcR4CgUtCgniKTlKcUvRdQ6xnJNkEo85zo0pyvBkgiNB5BIFASnj6WfCj3vn8XLf1wCSJCcScMJjj2poOg5MW6wxCSsIspYiPeLnHe8AOtIeWz794TVUPIBS998xWF5h+OF8bhZaqbBFu5HKS8bubHf0wEFrLOg4xoyUYDaYZSbRis7mnl4oon+JQDL3BO4/pRmIlWU4yhq4nl+i9+wAAIABJREFU0ikvnr0mzae02z373vDt/SNeSp7FMcYJwPPqyRIVpugohUDjjUFkITqfoeMQb3vs2CGsQ08W+KFlqLdIFeOGDtsNHKuAyHq6+gRNCU4yGI8sZoxeYrsT/hgQTHI6KxFRglUGMw5oHyCEQ0cxQmf0TqB1Bq7H9AGxtkxXV/Rdje13JGGETCPu90eKNOLu4Y7DriGMEsLobIx03vPp3Tv+7N99z6/+aM6vfvk5wlUQtID8LwtNNOK8rbQWPzi++afvSLKIn80NT65zGrnkYBT98YDoWxpjmaQh0jkMnma3I7aWphnonaTuWyRwv9uzWq25evGSOE1IsglxsUDJgCBfIaMU3xzohaR62DBUNXhBIBVJlhE4g7cN7ekGhgEbCHaPj/jggDWeoTHkoca5EZE49scKpxOElsgwZvQShyItUurTgWHo0RaSIiFMJF5MsP3I4CwvP3vJ775/hz2emOQKIQRSabQxZDqg0QFFFtH2hiidkE4v0BLGZou+mmOtYT6b4POUnpTtvqasK+brK776xR8RqoRTfUBGn+EHS1HMiKOIr7/+htubj0yLKbPpnPnyCuUMbXliubhAdAds3xHFIZPpjMBb+qokjjRRnOBlSDKZ47xiOLXYoaSrWuLCEogTQkjUdEq8WiKkRkYRzeGA1BIsKBzOOKSHeDJhaGssglHH54uI5kgcRBjboZoGtESkM1QyJdo9EveGbhwphKYeDZ2xpMZxuZhwrFvaYcA5WH/2FJVG7B4fmK9WTBdLlusV5eFIpELG0TC8+4B+dk3ftszW15iuJcsTXFchBQid4oylPe7YPW7w1qK1JLCOPM34/e9+j35SkEWKy6dP2H78RB5KqrLl/rHB+AyCgDTLKPsR4SGRGr24ZIgzTt4zDooilqg8RcQxbjInnC5I05ihqggnU9AhupjgbIvyISZOSSaSRKyxZYXQBVmYgh/PgykKGPF4UCHCCdp2RyAknRXsticeHjqKSUaaZSAjQGK6jq7tCfCss5i6ienihLY3VE2PDyR3Zc/mcUss4XJaIJOMxWrJWCr8xYL1csrL16+YTxWbY4kNNfkiJRCS5dUVL54/xTjFD99/4uH7kj/6w1ec2vfU9S0X0wV/+IdP+fKXFxwOW5pNw//8t3/D37y74/5UI5wniiKC+PyHdb+tWCyfMnv9M6KLS6LJDOUNpq2xZsSqhGhxjU5SvAd1nYA1+CAgUAEuUujZGjW9RDx/gTIVcrC0TcfQ1gynirbs8G+/JpwXNO93jLan6Xq2H7+j6kY6rzCdYfXkGWmSsn6yRngICLB9g7OeyWzCl7+e4i9m/MNv/5ah7ZkUE27ffUBnCh8Lnv36D7BDz87d8eSPL/lX17/icv2cTF/yd7+54cUfrMiTlDCfMEljHu8/8vbtjv12yy8++4wiy9js7rm9uf8RTpsTBSF2bKjHloPfMQ1yvGkQfcB2c8/N7SNZUXB18ZRn1ysmoUDEjra6IwjBpivcMLC4XNObmNOpZrFccRoaTBRxXw1nM5WJCbcWJQfcuGexWJFMJhy+3aLEJ/TaMzYPDHWDTlOCJMGOA8NhYGw9Is4pnj0DE9IPAzKbkoiAK52iyoqoahju90wDuJhfE+cZH28fET47VwXLDVmeYK3B/ajojaQiDUKixYwvPntB5hWnfctp/0jXGOTgCERIddqQJykmEOwPexIVsLh6iq3uwXrmL76gtoLjx++pDgduHk5sjw11bVjYiJt9w7EZ6KxFBZKy75HeIL2kEZIkyQjjCYvpiierCzJ1QZwsUVlEEAYobfGqRzjP2Gs6KxnMgB62VB+3bG7uqLqW/eHIMs8ZDluccRSLFZEYmM1nJMsFYZiTJSl+aPErweg6CvkSm8R4e74M9GOPF2DGEVOfWCxm1NWB0TmyOGWzbwjjlMvrgubtO7wd6LsGxJZsPeUq/YrEe16/DJinU/qHhm/ffOTrdxskmofuLbaY40TAbl+y3e7Zb3eUVc0P337DMkv57MVL1NQTacB56rZkfzji/VkhGwcCbQ2Rt6RRxLfv7/ju2/+bs/dYliVLz+zWFq5VqCPvuTJFKbBAECDZaNI4o3UPST4ZOeJrkJM2o1FbkzQD0EChUKjMysyr75GhPcK12JuDyCfAQ4SH+/d/31pvOW7XlGVL042Eoc+LxOcsijnLFry4fEaWJUSzk5XOCTMCL2DsGsa2RyhFevkMKzz8ePFzJ9IghUGEKVIHCOXh+v7polfm2H5E+sHpqBJP6OqapB/wzEBXVMjJHFkVSA70dU9fNZjRnjbbSuK5kkmW4q1znL7DcV18L+BQNhRlRRJ4RL7L+WKBqyANNaas+d3v/4a6Gwm+TkE5FNWRSRxwu1xSdg22b2iMgX7k5ewCKR2enZ3Rty2H7QHfm3J+/QJTNURxyDRJ8UdLu1njC0PnuswvrqmWj2SRjxYCbcFzE7rWY1ATbJgwtC3CA7oOz9WMfY4cS+puoB1alLE02/703hJ6VJVAjJaiq+kMnL/5j3Gs4rDaEUSaJJtTH7ZE8RTRGfLdjmAyZaw7KmuwyiG2AtP1YAV936FcjUQgrKA3gqpuaJqeoTcUQ8EkmjFLY6TtmToOVZpSLWu6vqduG3SpkdqhtYbn84wizzFdgRKGaJLx4vKMY1uzb1uev/kVl1fXlGXF3WrFer9nU3zg6+uvSNKAfNeAADOe7ELH4kjV9SgBKgj4+iwjYKRWGZ6WjEgGq/jSDFSHFd7Q8GyMOBYVE0+cAOplB25M7C+ohh2Hco8jFZmvSb0ZXjY9MWXSFFcFBK5EUeP5AY5OGFqBlQZEx6hdVDajtQ5j0CNdj3q1RHjnqK7AmpqhKnFEy6UnoB9Ybvd40an56XkK05S4riYIQyaTkMDTrJZHXv/6L1BKcT6fwthgFfiHD8zPp3x/f8TxLMXynja4pixy0tAlyRYU5ZGfvjzinb/GO3+OpxXNbnkCMFqBoxS+61HIjnf7mtt9jTUj3TgiHY/E83FMjxSSJAyJQh/rJQz5AYNlcyg5v8qYfPMtEy3Y7A7c7XdEfcPcdenaCqEG0iTGcvo9j4Ml8EbqQeAnPkaM7HYbbu8rBhly8SJEDQXGDAxjj5NOaXZr5O0n0jSlCDSmV0jpU9U1zDI+bSv61hKHHn1b4QuD9k42qLo+cfjGYcB1YxaXz4ijBdZ4NO0GWTa0kYfrKDCGcn/g0PT0xsULYu4fVqz3Ox4+v+Ow2qGtpV7vuFsWLDzJ9rBkddzz+fEkRwgiB0dJXKlO3x5pipINUeixOJsShAHa8Qn8ACk0rvJpC8tO9gyioNhsaDZ7XKEZhEsc9Ay2x1UhViuso3ACxbnrYR1NX5bYuiGcBAyOIrI+h9US5UhMWeJHAV7go6TBjTJE62KsYRYkjJsl7fFIlrkns9VuRXG/4X57wFiJ34848RnOODI4Lm1TnWaWnqAuSzpt+TC0/EY3ZMnAQICTxCSDJp1MiMMJftsiVU+73SFpMWpPnEwRzcjYGc7nCxzXZbfJ6dGYY4UE+sEgpWB0AqRyCDQEYYSU+vQMM5BkEReziGhUuIPBcxKkK/D8Ep3MaFTMMPgIeTKPhtMJruvhhTG+H4JQ2FEQpFOsBSldhq5F+w5hPKEfegYMKgpxKXAdCxyxElwvoW1rhtGQH1fI3qKsRrgJfirojUR7HsVhRRwkJ4upcBnaBsaeoemJfJfYXVBulxyLhkBp5r5LUdWMbYMaBuaLKX2S0LR72vJIV9fUbU9kBH48JfSDE66iq7F9x+s3z0nTjPnlBb/67W9pd3vy23tEVXMRBBDFWCNp2o6zaUq2uGIwMHQ1rtOjnAjhuidbjTUMTYvnOMgownYtw9Agg5i+N5iuQ0U+b2YWVeVQbRg2W8BAFNGZFun69HV7OiY3FTJNEYEH2sfzaqTnYR0HI12UlqfDHzFy6NAmpilzoswQFEf6Y884lMDINPGx48Aq8vh0t6bvhxOKIk1JopC6HBn6Ck3M4w8F+y/f8dOf3mHV8C8LTeI04u5pQ3qRkK92LJcbgizmLMhog4RDozisNwTjSFW1pFnKOPbUXctgR5R2GaxgU9TU3YnBYbqORDpc3TxnPpvh+AFOPGNEUjct+fYTZlQMXYcdKuLg9JEYhgHaCZDSIIwkjBKCVDAcjzTrPaNxeHxc0TY17ejja4mxBu353B62yG2O54WMQoPck0UB8+EMzw3Y7mp0sKfRI4IUN3BRgYsaDc9evOD6+UvevfsBISOiwAVhseYElFnvJEHoEiQefjpldpZw9+GPxM4LBvMK5YTsV0tevHzFY16RF0essby4+YZfv/klYeTQ6TW9PeIIw2b/Ee1ZNocDvu8xn6TM5jO8MGCsTuHR4XBgpg2eligpGIwhcjTSc3CSBBFNMEHK2z98jzYjDKctYr7eMJvNiRfnuHGMUzY4h+JkJOoGtFbsvnzBDSNQCitAuSFdXjD2JW15xGoHV0d0RUm7+0DXNVRVQWXAhgkiTNBodDYj80LY79mXJY6xSMfDdSuksHTDQNGNBJ5mcjGnaQeaqsQLI25v77g4v6CuK8a2xXYt3WDYbtaUVc1ms2ESXzKYgShO0NGEpjny+cs9j+uczaHCE4a/+vVXSD9kMom4vJiSTacU1UhbtYhe42fPaPZr+rJitOAGPp7r4lvDYnFOOL/AVAWu55L4Lp4WaD/FnZ1hvIhWugQ6QLk97TjiBg7Ci7GuoGsH2rrDSc9xpIVAIhwXLS19byh2NV3XcSLBSqwwDH3FNj/guD5l25O3hmO+o+5rorrC8ULCMEQGKRiLMiPuYEjjiA7NaAb6EVaHmvefvuC7Gi0tdC1RmnGWJWQzj27mcvPyFV//xZ8z5g9wv8LzLUJrfM872Tjqnjw/8un9B1afD3z3d99zdbXl3X/493wyFa9efkX2/CsCJ0W6km098nF9AAuLKCSMY1ZlRbzdod2R6OqGt8t3iM2PLKYpbt9CL5DxjHTxLaEaOQ89AtfBFBXGCozpEDQoz0MQIh0FWIZdi9AOrisQ2idIZ2AE3X5HeX9HWRd0bUdT5zhCcNgeqNqKnRn4zEhsei4eE9J0jnt2wdAOJ1VpU/L8q98S3XzD9lDg6Ji3n27ZHUpUJ1hcz7n9p++YTS+AgOzlM/6T/+K/4faHH/h//r+/Zf3Ukr1ySbOQIs9ZbpfI+kC737P8vOff/y+/Q1qXdX4ENL4folzJPIx5vK/I6xphRpwwZmgL6nbkw6dbhJbMZxMWZwmRa3l8usMTGm17Ks+hrBoC5dBUOdvdJ9rO4cf3B0bVY7oWZR1uXn3FU7VjNokJPUu/K/GakTQNGQfYfbijf/sjoyxphcJXkiIvGKTPUFncMOV2uSM7f47QITroCc7nKDGikwTfQBzNaa3k2LSchSGmVvzi64RdPTCagGATsCv3CBw2D4+kwZQ6MUggdjXffv0Ni2yCkYLA9/nu+9/z5d1nLlWL6ygcN+DDhxUY0FkGfYKpdxSHhrNvIlYPdxzzhqaw1OVA6J2AuF9Ky7EeGI39eZ4zMnL68BcGHBTR5Iz5zQvi8xu8SYYbZ3RWY62m7SLKwwBaYXYr2uL3rLcN9+WR7XZFsd4wDiO98lFSId5/JBhahmEgurvlMvTZTmbEj1ue/0e/JJiE1L0F1wUDBCOx85ymeMAag+P7DE6IjBKq4wFkx/zigoe7Jdr3GEZYPi2RXsjLr9+wW39BC0P1WHEWe/jOisx38H+5oN7UuG6FqXu0FCerjRdz6BXttsQOhrZpkUojpcCOhjhJ0L5L2Y+EUtI2JfcPa7R2kEJg2gbHdxGOSyldtu3Au/c/MVY7lBKMvsdlAjdTn6+nAaNVKL/i0H9mKHxaY0iun5ElmjB0kI2gq8Bqn8Gd4SUL+qJFaQ9lDMKVyGyCnGTga7SnTlp238VjAUOHNOMJ1OlnDPkGlc4w1sPaGs+RCOHQFzmyHwkcTSMt/amUR+j7BK6D3w4Y7SAdn6FoMcNAUQxsTUe7WTGPHPzzOVsbUtYdcZwQRQn5Zo2rfVpzoDOWdXEKLVxhWUynnD17jSND+qGlOB44lge+nnjEqcBxNKatcMRIpxzq4ojnqBMAvzoSeS6+r8A6uNE5BzxkEKEdn0GMWC8k7w74SqOHkX2+o+8GRBDg6p5x6EnDhLEDKZrTB2TXM0kzGAcOXz5h9iVCKTAu5WqLtR1d8ZEomSHEBBtopFdjgGYwNCP07Y5JmlGNHW1TMw4DSik8z8fxHLb7gsALcRxNPZY0neE8dol9Td4p+tmM47GgH3v2xwOT6ZSuG6iKnK7MWT7ecXNzgan2/F//2/+O6RoOyzVXizOkEbSd5cP7W7788M9gLDehi3QEdV2hxIAc2xM7b+ypjg2R55FoHzuOjFrhhgGRDnCHikEPGKUR9IQ6oGggzabU3Z7ehceuJx0qpOMRTBa4SUAgwLYWUw4MY8vk8hVW1KCgaw6og6WTHQOC1o2QQYwOPcqhpDEVQgrqbkANPTYLaVuDsAoRZoi6wXYdobSkWcbdeo3SisPBkAYu8cUFfd8RhAmajsQV9P2G+rhCND1V11FqyTA2pKsHnMQjCnzuHu5JooCubcnSlDzPWS6XSAnlCL8+O+cvv76G7T1lfuDq5Uvk2MPjF/oR9qPk8/ZI0Q1gDa5W+NpBCck0CPAcxTQJiV1BNnPxXn6NYxT7+xVOGKJCn2QWkzy/JGsrqrrCNT3DfoUDdG3N0OZ4SYpyPYTj0cqAT+9uMWPP7d0j5c/62NV+S+RJAlfhBjGXr1+xr3LG3QH3sCaMJwzCwRxzJs7p2TZsKhzPZeJr9s1AGvo0ZUkvJbYz1HWFd57RNpKuaimGR6q8J799onvM2a73dNMblLUcdxuaQ4PKLkBbOjNQfnnPlal5dRGD9PCCgK6xuMmJa/ew2nJs259NmBpPjAghcB1J6g6EizOEVkgvQUiXUXQMxqHKO5qHT+RlT6t7xrZDWwehHUbvZKwahMbxA6yjsV7AYPuToVHHOL6HnFyi25MdSoQDfdv/LOaoqHc72v0aL46RUYCyDYkPrh9RdyOOd429f6LseiI3ZCs9Ll5e4y737PZHbi4knltjBqAbTjS5cWQcR4wQlK3lsRH88WD5jZ/ReJcMU4ko1/zyN9+S7wvax5KqrhjGDuFItO3Yrh8xxYFnN88I/ZiHL59oyorBSeh6g/l5lmORSKHxPZ/IlYTKQcQprnMyuC4yj0RpXOmBDnGyOVYe0L1hKO/Q8UuEiZA6QHkuSgkCL6Ite2RXoBxN3XY4jss4jmjpYrsR67roKEKMA6Kt8QIfXwJKMirNOLRoz2PQFaOQ7PcH3r9/S5kXREHI8/MpPiPSGhyl6LsWL0npjaQFJm5CX3eUVXtqYUlNj6Dse27iE5foMkm5vHmODgL2Y4cYB8a6oK4a9seaqh1RfkGYztBOyP2HDU1RoaxDGp4ROpLdpx/R1kUjCLVCxClbBHVds5jOmHoaXzooa1BSoz0HlEBpQZ0/URd7UBlaSWK/wVUaKR0c18OYht4LUCOMXUl73J4WD4d7VJQhZUiTb5HRHB3EDF2Oq1yUI8FV6DBAyABrLdLzGZVD1/f0o6JsKpabNckkBuliUPh+iqMMY3l7ei8Yezw5kgYOrhLkZUmcZBRlxTRN0J5HGIV8+rHh88f/g75vEI5kfvPNvyw0aYzACUMcIdjvcvbrPUVZsL5OkOGMfJvT1i1V3aBcj0PZEngOZgSLxdeSrmypu56iHsAYAtclni04n8UYBLtDxf39I761DG3LMMA6r0imFwxDzSJN8MUArocnOrq8JfY86voUqPS9wc8ypoHG8zTLxx3Lfc42rwBBZY/cNi37oUTqEqU1kQuRqwlXW+bplEniMJlpGm1RWqL9CWNn0H5AgOHPfv0L8iLH9DUDDtKRKNlyloZ8edTkRYcXeQyHHGsOZBOP0Vrq4giO5u5+iePFiDBlHC3xZMJf/Zd/yYtvrzmWKzYPn3j/6ZaXkyvuH95iao3CkkQRApikEcv1DtN1aAGHfMflIiYMA6xQhKEPYiS7uER6EbWXsLl/5O3bD5SrNVVR0HU9WZoRrXZEdys8V+OFHtZafD8iW8xPJO+6wfMTsvmccDbDsxpMS18cKXc50vdPZoGmJV9vqZsK4Wrq8kiz39JZQRCntG1L3hqUgN5YXD/AlwPDODAZfbpxxOlGyu2SyxcviZMZh3xHdjZHK827n37ADCNfvbjBeIqqKDAG2rJgOp0x/PxAzpIEWx/5cP+Fd58eWR0bgjDg25tzkshj7GumaUAQ+GjXZZ75TIMEqxPuj3Pa5p6+KnFdj7JqCaQg9CPOZgtcKfDjkFkckUYhWiqiyZy66dksb0GcZlKRA8dDzvRGMfHOUWaAqqfKVygp2A2WeJriOSMDHavPbznkJaNVbLYb+q4FMbIrSrqhRWiXwcAmX2FNxdOxQCmFEJI0DLm4uCTwHIQUOJ6PM0hka9FKIbVmu3lACEGeH5jMYwJXE3o+rhcwdQWTq6+YXD0jClxubxt836fpdsRuhB9EyHgGeGx2OftNiXEH/vHHv8d1QuJpwv/5P/2On/7wnuc333H++pe40zfcPa0YDMSBx9l8jo4CfCFptc/n4xJWIcNjx367RnU902zC2I5ML18Qzp6Ig5A0nXCexlzfPCd5/g2OHyN9h6EsEOOIcjRj7+DF5/THDVIH6LFhd/eOrhrYFhtkU7BbHtjnHeE8xXUUWThBhhllvufx8xON7FmJe5LJjNwKJn7AWOXk+w3EU9xozi9evwE/4vvPnxBC07cN+TrHsQpfTbm69tlsD5QzyYd373j99TlnFyPDOLK8XVIfHJq64f7zku02Z0TyafPEP33/lsvrGxbTGU3TMdQNceZxxpzv/nRgGEsuhwppa7a7ksXigmzicznPcIYWLQSx67HIZnQd7I8VTdVRd0ea2w8cNltmYcqh7iiqBi0dZlHCPJwSeA7l8pbWk5hOIj402Pkl7VEj7UlbuM83jJ5gXxv2eX0K4aqazQirqmf8008YIQjSiJevz7l8dsP52QKjLI6jidIA4yhMa9H9QOfGnF8FxE7Ax2EgCAO80GO1vmN2PucXF78ljhSR5zLkAbb3Ob+8IJumPDyt+fDjD7RywO8trpIsLs6QekK5O/D05RNXZzOk9mjWS2JH0soe7TnMpxHrdcE/fDyCB/3QI7H05hTSWGMxCAbl8OzyDc9uXhPEM7LpHDedYmOPZrOjWUFRK2ozsvEF4UIih5I4HXl+dsEvf/0cD43BIz90fHp6YP1wS7l8QgjLYTz9yXa2p+sL3M0DmXsJSjKMI1ZpvHSC7Rt8Zai3n0BpbJRStAVNeSRJYxwvIFucs8kLFpeX3K52VE1/aj8kEZ6ukKajvFtz9k1KEFhcUsovX/BkzbOpQ/ib52SLS25rjzTIkGNLOw6Enke+HRi6nlmWcba4wPcTQk+QPz7x3dvPaDc4wZTHHuX4KNdh4LTzflxtCceGV2/O8X2fY2+Z2BE19Ji65VDWNMWI6TdMHUmiJRfrGu/MR5xdkJ6/YvLiBeWXW9LLBaNMcEaLchQChZpOUdOEUblYYRESkAq0j9QKugrT1ieYdj+gs+mJ65FUHPZ3uINhaHqktdiqIcxiaselaFtceYLpXUwyynaglQ4g8LTEDz2EHQnFyEQLJoFPkGTEcs6scwnjFD8KyL985ljU7IsKMw5IQAK/PZ9ynqa4tKSOx2G/pygKrmYpl9cLwigi8cEcT8/9fF9hmwrX8YmiCE8rrA4QSjOqgNIG4PhYA2Ox5FDm6DShaCscrbg9dJhjh7YCcSzwfIujRw4YpJWEwieLUoyq6IuW6zdvGB3D4bAkyKaYfMQ0FX2b0/YH3HakHCWy8/GM5XiowbH02iU5v6BrB0L/ZGuw2jAAciiRSJSEceiI4oCvJwmRN5C4Bl9bMk/ytClp6xqlFYHv0Y8DWik26+VpjhKETOZTuupIHHnUWBhGxNBzeFjy4+9/4NPbP7JeL3EApyxRKuXq6pr89g/YekvfG4a+QxiDLx0uIoe2qRFK4NJjmgYtBGkccLVI6aykK3oYoHEF3QH20iXNEop+YBeNTJJz2tLF9VyySYA2EkdUGCzWDhzLluxigec5SONiZICTprQY9oc1T+svVGZgtJa+6U6mFysIJDhaEliJF0QU+RGv3fEmVbxViiLfE5qU0dW4rubqes50HiCkRLQwnUcc1585u3jJdpdzdn3BttwQTmYoZyR2ByLZMgtCRmv5/Ljk7afb08zXdwldn5fTGF3lPCy/oMYez9G8nmX88Ok99WD4vNpRdB0GReI5XEY+kzji8uycs2nCfL7ADCU+PZHoCSYJCIfrr1/RPi7R1qDqI+nkkmgRs84PgCS8WlBuCoptibCGQ73DSyOsE/Cw2/L0tKIqaz4vdyRZhmwP2C7n4iyjlhD2Dfk/fCG5vMRLZxwOa7rGEN58g+8G9OWe0A+5GTWfPn1EKcE0cpHCUImBuulAQDMOMHZ0zZqqeORY5dz+84a7D0s0DrOv3lCVLa49QTt7I0nDjHkUcPYsJbkP2O87xGgZJWAMxaHirt3S9T1+5OO3HaHW+NLgSEscuLhKEQUBwvHAGo77A1yeYXqD5QTcHW2JK1rKosGO8PFYIB2HLFL4RjPSsz/kLM4ndHYkTDJcPyVZXILjEw0DOo2QfY3tBySGurA05UApFU/LDXW1peh65tOMxki8NCXLUvyh59WzCcvVnkk0JYgU6+0efQ6OsLRdR2AaRqMZpMBoRZJl7Lc7BIJ2NIw2pNpmyM2Mi8sp43nIw66j7gva+kjdVrx9f0cYhWRZhvV9hsMRUZYUYom+UEyyjKMxlANo12GoSoTS+GEEw4Dj+khH4IUxVjmEE5/pbApVgVwsIJ4yCs0BF2lCmsqhOXTMhyO71R4nm+ElGUIKer89WQfWU02QAAAgAElEQVSVouw77j7fc/MLjRt5DHWP4/t0g0GMFmMFyg0QQp5g6BhU7NMOHa0x4GvUaND+gkFF/HD7nr5u2b9+xfk05lkmaJsWRzQks2f0Q0e6iBmGFr928ISm3B3A03jJyRKZupoX0YLQcXlzcUY1m/B4d0c/dhhjsQbKuqM1gmpzRK4OvHrzNdcXM8rA52x2zvMX50gz4BLSNiP7suLQDfjphON6gw4gDgPiNEAgTpMc0yDGgWPVUDTFydbUVaBjmtIytiWB5zOZzFH6lqvFnNiP6eqCrq5PtiuRY+IU5QQoBLg+gwCpJE7sIzwP6WrcwEEHEisd+vrI2NQI12f3sGR9LPjjuw94yYTjH0u043BzPmccLVJHOH5Gf1yitWAS+szihqt5StVuqaqS2XSKxeI6PsINWG83rJ4+4wp4/e1XtPv9vyw02eZH0rM5SkqaqqWrTy7krqlpRUJRDQztSFV3eEbgTlOqpkEIiKOIwHMpBT+nqYogzHCV5tVZSr7bcf/5HouDJw3KDCRhwGAUynN4//SFL8eeONxz5loib0WWhKSOS6I1SktuZhN8NH1/omn7nuL1q0vOqhnr+1s2h5JV3rGtW/Z9i5ANrpI0WtJ6msobT3R95dO2Z7ixQ9322MORwRp0V2IQBJ7D85trDtslaIemKHCFIPR90ijmYfVAVVaEgcvQCuZXryiagc1qhasFi4sb1nmJbxRFWeDrjvcPf0MzvEfIHKnW3N1tcPOvmE1S1vWBLEvIdwfiJOLTh08gPUItKPdrisOO6Do7mXRmM9zAJ/Qdurri9tMtjrQYIbk4S3isD3y633N+NuO+LemrhurDJzI/xnEcrhYzsqzn8WnL/HzB1bMr/DAiSQLiaYb0PPb3O9Z3T9SDpPj8xG7zSD+2mKFmXx25vLlk0AHlYUdRNXx52jBai1AKozwOhwqnanBdD2NPtfNpEqHbnl570Nek5+eEccB29QRK01ctP333HeMw8vrFM8rqwMP9FxxHo/0AJQbOZhnlscBR4ufwxyezkj//q7/gt9++5PjwEU+OLGYTBCNBoFivcrbL8jTNyj/RrFen4M1ROMIghOJscUbou6RpRhonZHGMxbA5VLz9eAujpWtbNnVDf7tk6giG6oD5/jPPX3zmanHN9SzjsFqhg5B6cGibOwQFx3zN9lAwoOlHyyHfo8XIZrfjKS9ojcUohXQdOjuy3+8RwlL3JzL5pBqo0ZzFHotphh9EmGNDoBUPdc3yaYPpe+IgwNeKQSr8IMJKid+3Jw33JMGLYrquZ79ZUTU98dnpgi21yyRJOdYN1ta8+uYF98tH/uEP/8ir13/N1y//jMXrj/z93/7EP338wLePkrOXggGNFYI0yQjDkGQ+Y5YtMGXHNHU4iA4zDFxdPaM79lxNzlBSUrYVsa9wPcXYHtku96h6jxP4hJMF6Bk6jRmLPUPVIIUFBI4fY9qa1YefWD7c89PTivef/8jj4yOldBl7xWA10pFMk5Szm+d8uziH9p7RaErb8fcfn/j9fuQXF1MWStGVO7xsxXA4cPv2Aw/3G2axS3P82QJje6quxnoD6+KR4U7xFA00VctmzNmtLC9/dU0a9IxVx75YnRg2jotyTkn3JIoQdY8jAibxJevikf22ZTqZ8dWrns93Sw4VTAjxIsk8m7GYJGAqpHVJA4/k5luSyRlleWCz3vHDT3/i6f6ed5/f0fYGTyyZBA5mHNHKxetH8vsvOPMJdbNF+iO+m5KPDq6IyFcbFlces4uXpBfXdG3N5nHHYb2k7kZcR+LbnGkkwFXsu5EgHPnuw0c+bJb8+uoMZ/SZTRZIX2OEwQ9cJmHNfb5l9VgxW6TMLyZ0aH569wMfPz+xuLmiMzlmiEnja3Tv0u6PPL79wqN2MEXP189f0uePlMtPpMeSZ2dv2DceY+NxfmPQdqAqW7a3WyZhy2IS8fi4IXQMlxczguXpytNVp4psP54UgsPPE7I3X33Ly9e/IA0iHOMwHASF7fmyeU9b1/T7I/4Q0rY9j0Kyuq3IHE3ipDz/1Q3T1OHMd3CUyzPt8iv7DdV6w+7ugbcf3vPu8x3Htub28QtKGObVjvThjtZ0JBeX3Fxd4jkOfpCg/ZCyOWJp6QbB0J6uOe3QcWw6hPJpRoEIY6R2sPbECcvClKGukR0M+4JxVzGYnv7Q4hwbojDEIkh9h76pUcS0Y8cxz5n4Hq3r4vohU6l4dragLWoYBDJ2uV1u6QYDaiTyAoQEL4jRgYOvGzwBw2C4yGKur65RccIzHSKKguZxxW1e4HuSZ4tzhNa8znry5Zrnzy5xlCLOMpw0w7qa4OtfIYMIN57DbA4j4CmQBiEt0tYYoU7mN+1ihUJKcbo4tuOpKWMapCsw1uDogWQ2o28bZG+pmpHueGDc7UinGTs/RNUlsYLzxGdfBGxHh95auqrAU4KzyMVzNJPII5tm+FGGDS7pR8loBMddTjOcJkuh6zMGIUVT84vzN/z1mzcc8xydXGHLmlfTc57PrwmuUp7dvMARCjGOOE7AgEv19JbQc/AmCwajWK4K+qomCT26viJKG4QWtGVFV7fsj0fsWlF0DZ2EXgbEQUrQCmzTMqMBORLbDjVIpCOIgjNkHFG2R46Fyxh7qFCx3W8wXUtXFjiBg5WKdv1E1w+0dYXrKDTDqSI9gDMaXDc6HUn8mLKq6NuWs2SCHUYSV7IIfC4SwTy2zJKAruvBWlLfo6kq2q5mqEfGIaQKfQQjke8ySslXX71i9/CINhV/9+Nb8qpncX5BW1XcffwT33/3J1abNX3f4gY+sVJY1TAPC5xhQ+mN1O2AcCSR0ryexaTpFD90OJtO6MeOqWvxnOmp7CnkiYeTunjJBYf+yGoXUzYdm0PNdRpjWkXTaLRxwHoIP0HUDWgH7Y9AQJg6aMfFEoKrKXtLVx4ojkc2ecXHzyvEJOBpfU++259anWbAdySJ75KlU66SOdsqR1rDwhNczRLeP7T0fYfjnzgXcehyeTljMk1wnRjlCOpeofGxnWKUiotnNyx0zeHpLa8vYmxxYJUfOG4qeiPwfZ80cPGE5as3b5j4ko8f3vM8NHT1EV1uuHs8sD6U7AfYlTWp5/PV8xuuI5+JHnn51Ruun70gDly0H+BGLkoYbF9ijnvaugVlCC9mtNsd1faA4x0IXrwgCjrysqH3fGQs8UWIGLuTdaXu+Pz+C5v1nqobaY0hO1vw/OUNL89T5HggTCbkRcHQFBgN63yFr3zUaPmyXnGZXDJdXCIdBw47ri4v2W3X6KFkEALHU+yGGldo3AGOrcH2HX3Vc/vTPbffvePHH3Je/+V/xr/+b/870CO//3f/DtP2uH5AmCmmFwuez2OevvvA+9st75dbhmEk9FyCeMKvvAVKd0jR4/uaaeAgzEl16fkOSgmUPgGcMxmgbEc4CVHKQ441XbXnrqhprWVf9OyPObu8oWgtxgh6uyL1E4wdmcaaQ7nn+XSKM3R0vk/bBoRuQBBPUG6GUgbb9nT5E/sP9xwfP9O0Hcf8SNkNlF3PcX9EJTHdaonnOoSBR5xlTM6fn5h6Y09bF3ROQhJEHA4ntogbBDRFTzOAaAsc7eIEkrZtKWqJM5zTbCNubq7wJi2V94mqzVGe5lAcKYoDvucReh6ECevNhkXok4QelDllXlBVLetjj3RDhq5HCUUQTQiGAo0lDCKsF+CEPk4yhTCDcEo/v2IMIopScFw3jLXGLre4B0vq52grOT527Pc73DCijSoYDH4YgJbMvroiL5Y4lQTpoDwfeYzQG41QEjeJqKqK425P2w20wmHXtxzyI2VbY02LsiOtSRBWU1Ylv//hM5NJRvvqmvMwoB8GssxHuDHbwwEdaRwbMdzfE6cW1Sny3qC1RCrJm199y/5pQ13t0e5zfM/HNg1aKRzXBSy7/RGlHaxp6auKfL/l7HzO9bMJrjvQlhVFKakqSRSFVI7gWJfsqpJvn70k9D087TKMAo2lGgseHtY8ViPdMNAcS6SR1HWFHCVBGBM6Du7DEusY9ucpF7FLFqZoldLUA0QJIkmwxmHoj6goRnk+OnBQfoQMLJ5rEOMBW/Z8+O57Nk9PtENPOQr++fMDo3IQSiJ8j7NnL+j7iofbnDRMMGPNYp6h+x26rEAOTH3F82lI3Q487Qr6pqKtjijlMAyntYuzOxK7LvWhQ8rdvyw0uXz1irY8oLCYweI7Lr96fc3zMGZlBLdlRdOPp5qYldTtCL0hDj3KdmSSOFyeZ9RlQRBneOEU2Q8ESrJdbxkHxeTyGjcSXGQ+k3CKqGExDzgWW+6Lmn/8/kf2u4JVb3DdgCQ4qUNdx6dvaq6TBFdLRtMjhUc4mRKGNZP4NbNtwZc/3WMOOTNP8Wq+4FAd6UaJrz2U7SnyLb/fC+4rePV8z3SacP3sAmEblBY4YULfdkwCj3ga4XgehzQhXz0R+Jrz2YSfPj5gjGHsB2Yzn6ZzGQdJnheYAZ59+0vyY0G5WdM0Lflhw//9P/+v/Kt//Z/y1//mX7EvW374D3/gdx8/8Mtv/hwlY+Jkih0kfhCBNUjTMhwLXClO8wdXorU61YsDh2L9yKEoqHZr0jTm7OIZ8ZsbrmYpXz9fsJc+hRXkZUXiRkykx3q1pawrRtGTzjOMPgFEs0lKc8w5rlcYIdhtDyz3BZtDzWp5jzEdxzJHOZplceCx6SiHkbFv6LRDWdak3knxHC8yKh3Q7FZI7Mk+5HoorRmsZTFN0WJgMB1GuCipuP9yRxYn5D8zK4rjEVdI6m7g09uf0NLy7Pk1AokXBERxjPVjtFL86tUNN9MZdeewyVvefvc3VE3Lm2cz9B/eM09DppMJkyzhT//8kbKq0Y6P73tYFOH0AifK8IIQkV3wbn+g3S3p65rd5onNaknonKpntYrZVTVDW+PaER+DtQMP9w+8DxM8NRJeXFGXB4p8Q1WuaZoj5SjohxEvSqnrGtNXHI4lTdMySMWIYqg6pDT4KqAoc1zXZXmoedgeycuSP7u5YJpNcP2IyC+pjyVnkcedEigz0htD6HkkUYCXzJhNJpi+Z3fISWYz0rbn3Q//gBwN9SAYigYlJKqukE85npNgWlg+PvEPf/t3uNrhUAQsnv2Cf/tvGiLl8/b7L5S7A639RBTFTOKEaRKdQMnGsC63uFFGkl6wmJ1zvbhBFHs845CGl8gwoth8JDq/pMeQ0KG6jtF67L/cobSHdn3kKLFDSd8U1EWB8gNkcWT77iM//v53/PDhE7//8on7suA49DTmpGcOtCWJHHbNlsfyidWXgHMv5fz8FbOLlD584na55U9//Geup1PGEXDuSZKIpih4uL0nb2viizO2282JWyQj6v2Rm+wl//V//l/xmz9/w5n///I//Pf/I3kxokKF64E4joxlwzgKZrMZdVvz4vUzbl7cUB4V54uUQ/GZoik4VA1jM/Dt6xfMkglVo9COw7NYI23Hu3/6JzwpefH6Nb4/JZpNcEON53ho42MWPvppwJkkoH2GQeIFFmt6ykPN5dTF44DWAdb2PN6uePN1yGFT4PSCsnvi+fwr1GTCsDM4/YAygjevImrbMKiSp9qnw3A/OvjVgO8ptCrYbPf8br1DOj7J5Mj1NEb6I4feEngRZ2lA3bXkRctqf4d2PZaPW0LlUa478rtP6MUvcZVHNNfE+pr93OPz+1vevv+RvDtwGYIXpjgqxHSGpw9Ltvc5z68y3jy7oNt84u6nD3TzjvM3l7hhiFUWp7UEvqVuO/phQIgTF2sYwfVcXrz5iouXF6hE4zkhotL8/5y917IcWXpmufZ2LcI99NHAQQKZSFGKxaohOTPdV21tM1fzsHNDs7YW7Bmy2UVOVVZlpUICB8CRoZVrsX3PRdQT8BXCw9x/++z71rp9/5G8ypi1P7Gptsga3FoiimMF2z2dkFoD0qrgUH1H83yEePEpsWfhNoqe5+P2IuyTBkcpzDTlv/3rj/yQLKiEwHz6QCU0bi/k5PyM09mU6WjE84trxnGMMX5B/fiG/faBti3on16w10feQlqlhJMJy80OxzIoTQPdKQLXY76qqHeC9CmhGuZ0VsX9v/yRsyjA9SacXpR89+0NtlNjDV0s6TLsD2nzDf3+kKZqcAWoukU1ktOTM2p1wJAm/TjCkMbxnViXGG0J2kJogS0Epi2Z9E4IghC0QTh4jtHTlPaawWlFGNgIo0O1FVZXYO93VE2Ne3pNVoPKc1xLYroGkgTdOmAP0UogpASVYBgmSIlWgGmjRYtQJXUDTZ4ipaZdzqh3M4wwROqOKjnQdopOHScpttkhLEHdgWgbRsMJ8yTBbDL6jslpHNDmmsddRt1B3QlErjmPLQzDQilBEI9wwz7LpwWLhwecqM/12ZStUmRaICqLwA25vvoMz4sJnT7jy9eYecZyu8A8OUX7HbUG27VAtWA6FMstukyxXBdV1Nzdrin/MuPbOyamLPlwl+EEDqZl0RtN0YQYVUeV5qyShF29Rek1vrQZhjbbZMfYt/EmMaYwWS+2DAeXqMGA4OqCSpoUake5zjGFRtcJbZfhyhhpmnRVSZkf0IBSEj8eUGtNne/IyoxhLHGwyJMWLQ1sx2EAXE3Pmd9mnLgdE0/h0mBhYHsWjZb4ncS1LXaHPa1SVKXAdoNj865rGPV80n1CkZdIoVg9PpF3gsHZKfOHe97ffuTQFMQXY2hKQgltsebVaMzhacVSWPiOzVnfRgqD0yhg5AcMfRtfe3RViWgUm7RDDW3yYoeLooeB0VpY84LU92hNn1aZ+EJgyx4WGikFjTKILBdTOrRtgxlHGIZCYmAZLiqv2B5yEsvmbr7k/eKWTCm2rYEhTQ7zO7I8YbPcHG9Z2+L0dIjwAlbzObPNnqZuCKXCFB2fTiJm2wNlp0n2Bz55PqI/7BH2R/i2jWtbSFtSty2PTxmyrWk7gZQV0cSHDlwDIqOmMDtM2+F+saMqMg5a8ctXL/Btm+++/gZHpbz47WuaMsVqS9LdDqE1t09LPMvkZ1cXnAyPPKRf/PoXXE5iZNdgWTbado5T2SYH26YpGtR+TmtYaG1iFDm+55E/zqCusS8u6HRJpzXICmG0NBqetiUP6x2z9Za2bWiF5OLyki9+8QWTQQ/XNmjahuywJm1htit5XG5YHzKEfkOrBdPxiJX4wC+HF1x+8hWLd3+GJOXy+pr7akfdNJRFTT90OdBhyA7TspFCkCc5Nz9UfHiTEoUTvHjIzY/vacsdnhQUZYPSisnAZtJrefrxO7757oZNUdHqjrRpaNEos2Sf7vBGPttdCqrBdo7NdNkZaASOZdIJEwuTIIjpWRmyA6o9h92efZJR1i22FzExHYJogqW3tKuKXB01rfMmwbE0SpoYBpgKVKNwnR6+G2K6OSp0kL0RSko26QcOqwcOaYob97A78AcDtFYsNltaaRFMTlglCVgWWVVCWXNYLKjcEDceMUHz5t0HJnEf17VI0oJSddDkjFzJoeoo6xb1F/B6KXxW4hl39TXNTGK2DVguhujYbnY4giOctK7pOoHTtfiuS6fVsTFWF4iqYLtLWaz3OH6EKSWe5zCKYqLGQkqJEwTQG+L1Y+yoT+v4SDdgVkpUY/C0M5CZJrmZ0dvc4W1+YBBoKsNmZ1g0votwBJ4f4fUiZCkRQlMtBFJaf7G4SoQTUGpBKaEVitunJ8o8w3U90ixntdkwX85wXAfLEIyGA8aTc1wDXr74nHSa8MMP33Pz8Za2KPjyasr1yyscV0JXcBGZJAakpU1uSyaipC5bXNfGtCyKJiH+8mfY0zm90IR+QPpDQtsdf2/ftoldk7KsyYoS1zPwbIvGAEO1WKbJ7dtbdFdzNu6w8DC6ir6l2e8PjIZDetEA1WnKuqFWsKoUq92c3SZFKZO0SXAtaLMOB0HgaRxRY5oBofDptGb5eEduwMC1ePbqC4JgTKkburbADjxggFQFot2j1NEU6JiK5OGWKj3w8P4db25n7LXFd6s9T4eCorMJw5Bhz8F3W9aLJy4uz9GWixUdvyOqlpimjTYs2vyAiSbuOZhPDafjPmle0SqNUi2bzYazk1NG4wlG3dCWLSqt/22hSXxywu6+pCkLdCv49edf8R9/+5zD/o5sl1G3iqyo0EohLVBU9BwDwwpwwzGDkyEv3A2T0KQ/GpOWDvunJ+ZPc4QWSEOwnX3PZOwTn7zi6sWE0B0gtaa3D4jThLEpubvbcP+45XG3p2w7LMeiqRL+9CGnO1VcTMYYwsMwQgwEhm9h+x6OH/HvRMDzUQ/fD/ADj9unBW3XEQ8n7LME0zUoipIsmhBdfcJ6fYQciWLHsB+BmYJps09yRpbAEQ1h6OKLIVXbEvdqep7DLmlQnaBTLipTWIaDlDabzRPK6TN8fs78/iNSCFzHx5Yh+Rb+8A8/cfP2z9z+tOGwTnn38Xf8h7/9O1zbx7u4YPZwT1eV1FXLy7MzbNPkfDyirlvKuiG2BA8ff2L99MDVJOL5y3OC8RRpBWihcc5PiC4uiMuadx/foRqBVhW5G6H7EU2dcrN4wj5sMaXgajhguXxkNDrh/vae2+We3V92zGWe0zYljmOSFjW71Y6kLLhfb+nQ+GGPXt/ndBAyjByi80sywyUcT9g9BSwe7sj+sikzbY9QGgwDj6Y9GiM+3H0gGp9ycn5Kvt3jWg55lpGXNW/evqPKcnq9iM16SZmlXJ4NjvaiNGP2OMdQGlcI7j7c8b/9X39Dmz6xr3NWi+0xXR07OKbJ2fXnvHvziNGUyK4lLyviQQ9/fIHoDXlqQHQGj999x2y9hbokNAS27pg6JmlW8H6bk7Rrqk5hAkIrzsMe6zRHi4bH9YqzyOfx4RbHNCnrksVqTZpn+FHvqHYMfIzIpsgcfN8nrDrypiFtOopWsUkSbGHSDwLiXsCJkLx5WjA/5MS7gtGoIQw6PMdnrDtcu+HLywmmgGVSkOU5nQl13RCGPnZXYTinPBGQvLnh9u0PvH79CmF2SCSt6igOB5Ra0aotf/qff6Z/ccZhl/Gbn/8tgTNlOc/px+f83d/8nOvTER/vE273x93gyXiIb0pOT07pD0LevPuJ1xeXPPv0FwQ1TIIRu6Tgw4d7yvoD26ZgU+9wghCyPSe2jW/6fPXJ55Rlyy7vCAYbBtcjZJOye/rA4vGR97e3lMmeOimp0pSbxZKkbujZDrkCT7RIoSmqllleI40S38qY2yamscf9kPDq2RmvzmLC0RD79Wta1yVfzvjhwwc+OR9hqJJxHHBY5fi2x5f//n/nxeuXhAOPoOv4669+xeR0iBs4nL+8pD+I+eLnPX7xywseHw/c367opHnUHtomTSu5vLyiqiWdcVTDlWoDbUJapFTZHtfQXFxdEsZjhCNJygN3Hz8yu1/wVy9eYFDTqQRSwe0fb9jdP1EWNVVdcXlxytX1FZ1hUJk+QiTUh4SmzHANwWgwQHqSrvHJDJfVIWEzn5PaS15dTygtm8V8RznrCPAJRmNw1jRtydNeweiEpha4+x2265GmCVZtMw1DWhNay2BT7WhmCarOUbaBGY+IewMc22S3SSlUTZJmjMIeJgHLu1s+/BTw1afX5MmBw3zO44dvqfM9TdPRcxs+3s3BghNHs1/sGHsnOMKgmB+YfvI51raFROM0fe6fHul/4lJXM7zoOQ8/rAgdidAWtmGS0tIiCDyHZ8MB40GE6gwW2YK77Qec1kFgkZc5pp1ia3U8MjvN0JF8NR5w9asr4sln+LqPN4yIPJsgDpB2iJ+1qPsH6tWMvEnR2uTTs+c8xd/zJplTa82yqGiExmoVd9sNUXRH4Af0+99y/clrzsdT4koiixo/sFmu17QKTKeHZ0HQC3jz5+/RVUXc6yGkAdIkdFxEJ6HSNJuEu5t/xU8P9IYDjBZU2dIULV4vQGqJLCtoj+2b4bhPz3NYPK2wXJdI2lyfn/D7Nwvm6y2CDseysQX4pqRtW+qmZXh5zmgYgGETGhqlIJo8J7x4iewEweWneM2OentLlSXsDnsOqxV1ltE6inJmEfavWcwSrg2B0TR0dovWHroFoQSG9EErVNOiPZ+2aoGCJFnT1AVFp9jnGcXsESfZktcZh66mWm3IVhv6vkdS54wcySiOoTNwJxc0ro9ZVgQnZ6Qff8KRHUPfppSSRVJQ1IpWd+R1R1HWlLnJp69CglEf4YVIGRJ6Z8T9mLqt0MYx6HQth3AScXr5GeVqzsWzLzh78SnJeo4Sgv6rl6w3H1nu1jRaYZmCJu1okwTDtRGtx4d3HykPGVleYVsBm8MK5WgK1dLzXUolUbeL42Y80zR5R96ZaFWRpRtaaaNLB3PoUrWSulL0+i7uqUcpCmhdpFAorXhafUAJiYHCbHOEJVGOg6o0xX6JbXv4vR5+eORMBIaJb9mkZYV0XaxOcupZrHJFVu0g3/N3n3/Cj7pAtptjM9S0KBrwpcSzDNJ1imMYWFJiSINRv0+vF9B0DaqpmT8+YrghSVpw9eKCyckGDJu4q3nzOCNJE87OJwzPT5BtiVEXOEIxNhRpUxH4LmdxxC8nJzRJRpkkHJKK7TahMxWPyw1Z1hyhy+uCQ1NgaUVXaNA20nZZ1gWG0RJIi6nRQ5WKLEt5uS8JBhO03dB0Fb7Zxxb1Ue3adNRNzo9vF9w1Dl/fvWe1W7E+7NjohhqFYZqg1XFCpY8HuKNNHmYHnuZbDNPCcz0QHYFtEqK4iAOmkcfN44J1nfKnrw8cFjHV6ppnz645OTsjsHwmZyNiGv7pH/6JWinCoU/uttiWhbRsnDDGKvdHeGpdYtFxOp2g3ZD/+a+/py4KXj87Z38o0XVHVTYYXYtG4Jomv3j9kove0Yz56he/4NlkiCGhLjLaosG+uCCrwDFt6iRj+/GJ/U93SAWbxRqvU1j9GGybnYL+OKDJtxiih9YtylZkSCqd0dYZnZSE/T7nw4jrL75iOBhioVCVoJU2B971A9oAACAASURBVOHh9Ke4ekyvuGG7veVhlZI2LbOk4xqX3X/7L3x6MeIktOmfXKDdAP8+RCQ7RpFLkjQY2iIvFWYHpmnQlmCMBvzqN59xWCS8/U//xBc/33P9737JLN2RzldYjsNoOKScP/J0/8CrX3xO73zK2z99z9vHBb5tHgUcquWwP9B2HUodb5JSKUIroJFghyG2hih08A2FY9kUuz10isD1oYVKleiuJU078HwiL8I/Fezzin2Rs62r4//ouJYkU4LkkLBZbwkcj57vkvkhTz/8wObjTxzWHziNXSw6zp5/hmVo8qamqDq8S4XoOjph4sYDzOEpXbqgzlK2WYZsBYYVMhxMGA8OrHcHep5NGHi0nUVogmobgiDAdjrSQ0rdtOyrhj/OZqTPN8RfjDmxPHY7h2SfIzQMh0OqtKIzLU4uTtmvV7SdJpMWh6cVpla0bcfdfE1R1iRZQdSLccOYLtnhxT2cICY4e4HpOCzmyyNsuVpzSBN0L2Lw8jnjYUjf05hSk72pEXmOn28oc0HpxiSlg+Ea1HXGNt/i9o5NNMew0FLSIdk2ips3b1mlGYc0oapLOjp6fkCel5i2g2mY9MOYYS9AiY4kyVHVLXEUMxj1OD+/xlAt3715wz7P+bja88mv/hoZjrDLFSLdYSlFaNg0cZ9QbZntCraHGtOEYWBTrO8wLY/nv/kNq0OOYxxXF0JrPNvAswxizwTR4Tompuy4OJ9iGA6r5Y5JP6TKUlbLNScnl6zXa3SnqQyX8ck1rmWjqoLluiZrC96s57TJCl8IFILAF9ja4fnpM87jCD8ENzqyPs2sxPNiqjKh2uyo0oyHtz9wefEcPzzB0hZ1WyOlg0JjiY7qcDTN5ommnD2yfXzk3XxGqTtmjQZ7hDKPBqOkXJPXOeOeg1QlriHwwh4Cg4vTE6q8xAsjapEgDIOmShFtg+eYJFXNdBThOj51J7ANi9DxcHsd69kSs9XIRv/bQpMqKxkORixubjBVx6ejAR/+5Wtud0uy0fhIUbNsymyLa1jUbYfhB3TaYbfcUMYh0dBn9NzGjSfM53v2bUEUWMRRRH8c4xoGJ5MRk5efoweXpG2DLvbURk0tS0Qv5OIsJhIDDHHLYrcmKRWWCcIUvHsoEF3Bs7GD53lYniCIfJq6wo76fOIPOTs/OZpIdgknozMKVfOUHEjKBpV2VKpCNnN26ueogc/i4S1ldqyrTScDqiJju93jhaCqDtfrCMMISwmGfkkc+IDEdAO8eEIcjykOFaLeUVcNq3ROXx4nJF2nsRyXMJqiO8mbP77laZ6xXDak+4KulmzXCVlXIqTBzYc7Bq7N2XhIL/Sxhca1TA6zGxxD0uQJh7uP9ESN13mIeETqjumcEHs7x6wyulZSJxVjJ2bkSm7vHpiXt3yczVGtJt/smUR9OtWSbg4c0vJYadeCVBnYlsSWgsD16PUj5psd26SgbjV5rZAoAsfC6sBrGk6DEb0gpisFl6Gii30+v/gZy4sh66cndoeCWndMz08xJeRlQ5cfkFXF0/sbXD/CDyOWT0/0hyNmH2/58z//v0z6PVzTIo77CNNklxV4qmXx9JHNbM7QMPjxx1tevXjNuz98wziS+IbNs8mIwDwelZ3lkBcdyfqJ8rAj7MX0+meUdh/DKnn//gbo2K9MHODE7zHomeiyQEmfuoXOsrFUhUdDX9qYdChVURZb7huT0IuwDYvHXYX15jsupmdYrk/QHxJ4LrZrMRr0GQ5ClByyXi1JDzUmLpFp0VMlXb7lvI7Jixxd5YSuh+3btGXFm/snfnx/S3pI+PUXn3F1foLbFjiuSxj0GPZ8NruUbZqSFBWmqmiqFs8zkJZLkhzQFjQISi1xfJ80WaJ0R1Fr5jdzxoMTXM+jPz3lV3/313z58opv3v8ZzOfEWtH3p6hxSOykyO/fsd7c49vHZsHQVkzGU542e/quQfL2ax4eZ/xuk/KUFMz2CTgOru+SpTuUUkSmyTvDxBKSf/npHZEbUVca0XX89q9+xq++/BSrq1k9rljcz3h7f8vjISHyHEJb8/rUI69rhqGLKU3oFHXVcFMa5DgYpkXP0niGotEJb273zBYOP7/6hPHzU/zpiK3jUCYr6qpjt94SRgHmViJqzW8+/S1/+x//PdcvTlD1jrbaUNZbttuaor3jy889bNdju2t5/HhUO/YVVD1FVykuJqeMegMOacr8kDEwWi6Mip/2KU/rPdMoolUtq/UaZQkuTl4gaoesqBkNIhoLdJuzf0i5+/+W7GcL/GhINBwR9H3CYYwx8KhMyXz5yNM8Jd/vqA5bZFPQn61oDQO3P6XWFu22YNSzEW7ADo/Huyc61aJbgzpX6P3RaGC6Ju7gHLMzSasMS3gstnOqvCFrBbYJpW5pRIGWBqYX4tsx67akyTNMIHIjurhH1SkCxyDZHrhb3FFrxcN7lybbI1tFvaq4+/M9f/zTH+h0wnA4InZ8uioFx8CoFPVmR2hZfPn6Fb3cIH37lqfyEYKW0u2x2Wksb4A2e9hiQ2C6pGRoCQqJZVp8dn7OwLeYDGIMW/M0f2IyjPFUjVQGU9emZUJtSJooIu5ppmbD1LbBNKhlAgjyrGZf+kwKRc/wOHx3z/buHbVnUfcNlBcihybTX3/FM89ko1vGuqapO6oiIa8LosDDD3vsDikfHz7i+Tau1NA1yKolMg1a4zh/81wPioJh6LDbmNi+h5QGuoMw8Bh4gmxR8bs333NhKl5fRHTrHdHoktdfPIOm4psPW7yTCLNtyPYVZxfnTKcTbt9+ZHr1HJ3nnA77+EOXx9mMtCiOkLpWIVVLPB1jOi7+cETcH2B2GWWWcyhSzMkp4bMvaLRBW+2p2ox3Dw/Mbr4lX88ZiIZ9UlG0mmCzw2ge+XTwkWHvDPkwYDQ2CcI+Rr/GGI7oOk1dKaQhaXVNF/VAmBRZyfJpxjo78O3NO76+eY9sS4qiQmjYpimRK+nZkss4wHQsbvOU83CL5QQYjUEwPacqM3qDAcnMx1AJgSWJOgPbNGm7DoRB22m0MDC8iPDyGYqS8+cn/C/ulDLZs1o9ke1TGqUxRE6VW0zCEafOmKRcM/RHSMtg0Smi15/zfvbAT998zfmJR61aArdHk+ygbRAS0m2GsH2MXodn2Uh7iB+FGIOIdrnkx9merkxoD3scx6RpQHUm0jBwRIcnJYEFngttp1FS0ImWRit8L6BUNSJNwDVYHebMNmu6usRzjnPQpq3RiwVtUyFMkzju4xgGruEztkPi3pS6tinUHsMJ8V2J0Qn8ek+RKfwowK4arj654uldStdqWkPgWTZ0Csu2iLyOviPYORad1pxOBgS2wBAG6WbPbL3g9Pol6W5P3ZxCXSNcix/fvKNtCjzPpj8c0VY1r7/6nPT+Hf2eT9LVNLbEHlzwYjKBtOJpm7Dc1RyKIy/PjFzSSlELm8I942kzI822aNWBFqAFLRDYYJsSx3F5bFo+bJZI0+HtdoMwHxnGPX797JJnwx7P6BEOQ0Td8M3bD/w/9wv+vJgz3z5Rtw2i09SqxrYNtO4IAhvDDvDsGN1VmBLaVtOpFssSCEp6vk2lBKKpuQosPjkdsdkfaOuKapOwqBuMfUtouQziCHs8wrRsLi7HXJxf8U//+I80Nxl28QkXUwfdtfSigFrDobLouXsmromnS376w7+gy5zANMkPO+pO8OzFSywpKasWVbd8eXXB9XSIYzkEQcjENcl3KZ5vouoGGZ+AZeHZQFlQHQ7Mc8HbxCR5eqAtMzzd4tYt8cUpJClP37zBccC4do8svjxhm25J64aOlsmwT388ZXhxjTO9QBcV2/UB9/yK4JNrejaYtuCiKlhtl7x6+z2bmxv++fd/4uO+5MPdlrOsYPnuW07HA559euDTX/4GL4rxzZZOtTi2yexpge8Z2ApyWlpLEj07ZRC8YjRuMPKatz/e8l22ZXg5xDRdfMcj8my+/+F7lk9P+KGJhUdnBlxOhww9k3klMC0DaWj2u4yqqhFCkuU5BpL+yYD+ID4GrX4fyzAQrkPvcopVGywfZxwOGctNifR92qZF5XvatsYObNqupuoaGtViC4nVCezWQIiCUpgotWOVQL6UVMsV97MHLoc+l6MxX375FbIrULojraAOJONBhFYdbZ5xmN0dOW8ff8SPI7ThE4UWWdsx/+l7JsMpl4MB2jYp1mscP4CmxZYG+7rF8S3KMsMwJIHdY1eW7Ktbzp9XmMUH1jc3bO6XrHcHyrJkEvf4q19/xWAY87ROyWwH1zQo0oS2rvE9h/lyhWqa42ITEHWJR0Dwl2D25PwCwxBk+zVZtqFpcpTqeJrNiKZT2uKORbEjsn0uvYiTfgNpg1WWdIVkn+9pzYhOgRSg64pOdzhuQFLXOJaFQrBPC364vTk+RymP8gjbRqsWx7LohSHPnn1C3B/ihBE7pcm2K+oyw+5yfMthMp4yGRwXA/PFkuD0glsV4JoxrlWiSbGblm7dULYOGyzCYYDQBtvlgV7kE1cFYRAhscAU5Ps92lBYlkmrFJFj09RHBEWv38czJW1R0omGi2djzK4+Sk1ci0YpOgGNEMTxgGHco6kriiRjsdxwv0tYJCtiWyJtl68uLrg48xgMI04GY0xtYmDSWiGVkaLdLUFgE/avOJs8pzs8IqoNdjZD2iaNGaNNQCr0YUVp2qiyoFvVqM4n36fklYk9/ZxUhkSNzXV/wG9NgRGkNF3GZrPBqwqatjma4lTNcj1nn2Z8fj1FahPZSWwEvu2x7kq6jiOCQ+QIjnr7stbkTsHlcESd1Ry2W+qq+beFJlK3+FFAXra4KH745mt+eHiiNQ2GrY0bTln9JR03EESWhVFm7JOMYdSnJ8BzeliyxQ1jvFVKHNgoz8J0QwaDMaeTMVEUY4dTLMNHew6l00c6e7S1wzET8m6LrgSD3AIdsd3nFE0LhmYSSmwjx3RMhKNw4hglNMJz6SoBRkVdluyyHZvDDstyqLH5xzc/UbQKLW2EYVHrDW/2f080miBNE60Eiyzlblcw7fsIaVLXNVWdYAgT16rxgpi+a+OHfYJJhGU7HLKU3XzGHsXpxRlaSCzbID1sUKrDMBy8aEwweoY2JXn+yHazJ88KfMvEEJLHXcrZ+RWHw4Fxf4Boa6ajMVWagbBQuqYTGpcSF8Hz0zH90KNSgtuf7qm9PX7cxyoyzLrGxMDu9VBFRZ5XhKbF9rBn5BoMT8/RmYJKsdvsyJqOWhjUSuGFAWMkliExLYu06bhZrFGGgdsfIVTLwJpg6I7QMqiKjLJu+PbdBzzPZTroUUQBl5cTptOXeL0hI8+gKQpWSY0M++SHBFvUQIuuK4pdRr5L0dOjb/3jn79h7LsMQpdkPcMeDOj1h3SOSV3vmE5GPM62nHgu+TZhU8PLZ+dE5zFdu2e+mZFnJfHklHbXcXp5yvLQ4Tg+0+vPWRpD1ssN+WEO7hDLtmiTNX4Q8+LigrZQ7DYV96uCx8OMQ10ewVbSJvQHhIbg0oZh3KNrLOq2wdQtcTRFac3jYkVdN/SiAUHg4gtFtk+QSrF9ErzfZfj9McPnL4kdh7ysKYuMqqnwpUFsGuheiELQtjWR63ExiCmamkOW8q/ffovqGqaDiNCx8U2b4XBEvttwcz/nbr2HoEdreChqHudztOXiWhGm5eK4Po0UrFcNjdB0WcH8fkXkxJxcXPDp5QknocntzY+8/f4Nq5t3DHo9/vZ//fecvf6K+f/4Hyy2Fet9ShsaxM+niCqnWT2yun9gYyiK7ZqH+Ya80RhOxPTiOabl4wQem80jqqnZLhaYokNpA8qcZL4kz3NcIfiH999z8V+HfHl+xstxn0BYTHt9FtuU5bbgvin5P16e8HocsswKZknBumzIlQH2EFHmVGnGXLRc9iMmsY8CalXz09NHsE2u8lcEPZfPnr9g83BPmmS0yuKT6yuk7VBSMYwtjHpLtn/Pw+wNTS4xTJvvfnzL7/75Lf3RKf6gRdSKsm0J/DGjVtI2JVfDF+QLzdu7O1yrIHdMbu4WqLbDMQ3cXh/PD+mdXjK+vMKJhwjT4PryOaqq8WyHNx+WrOYLyuS4xTTLPRPtMxz1KEsTWdmk7dFEYVsGW9/n4LskywWP+4zYsYn9PXE/InYjLA27fc7twyPaUMwPGWWa8/m4R+9sgOMPke6UttJklU2d7tgcDji2C50i3SXcbXKSsqIQYHkOhSdwjIYWcCRsiz3PL0Imk5jZek+2r5mtS3ZZStwPcDuFOmSoMqFOHrHLHWaW88ePd/j9JV9+9RWXkxGyLlg/LtGtYHzykuBZj+Uf/8B//e53/JRvcRyDz56dwHDIl7/9K7rOwLFX2E6LUVbYdoAWLc+nQ/oDH9eyKJI9vmURyYDdfMe8zGkrhW4DRNcj9WwGXYVZJDw2mpUZsXUj9NymKFJ86fKzq3OSLmH9/o+EGJxdXVI5Nrf7OXr9RNfm3O12FIamq0tknSNbjdW1eAh0nuJYFj9/+ZIPmz2P8w1nZxGWZaAtSdbZRw6WzkDD8PSEyXDI3WxDpw0wfdJsz/Z2Q9T0mGcFsSXpxh5BPKCrK5rNEqFdlvMNWdMR2hZPacHJyYSwH1KVDacXLzBo2d39SC+0WT7dUyRHxXDZNPiui+V6KGkSeR66qY6A+PsZaZJyPp1inXzG/dMBI5+RNyvubz/yYb6lVA3b5YZnrqRv+7SuyZvkQJOXfDu/52/OOj5Zb5m9aTgZ9bm4LJEnF6jQoSu3SMNmnxzYlDmrqmMx3zPbF3x3e8/7xYKybRBdx0UYQtcQOA5F0+GaFnlrEKEJLJtFobBti2r2RJQc2DUdZ90VUdxnX6SIv1jo+mGAaZioTjCJRsSO5NmrL1itG3qDFi9yiIVidH5FnixZbNY0jUJ1in7Y4zI6oVltWa7nFL//eybir9DxlB/e3vD7r/8Vt93StSZFoxgg0GVCXZVUdYvCpVIlCpCBzf6w5GGxw30KEEh+8+ITmnpLk9ioquVwaNglDduy4NAZ2Kak0zaV46BlgNeaFIUm9KBzLXQtwJHsdjsW6y2OD4ei4vF2Rl5UlG1La5mMzk85MQPyvOVpcUPZ/oSpA4Z2H8M2aQPJ9fMzVKWpd3ve3TziuJKybekU9MIeu14f8j0OHbLpMF33yMrpWnwaziKPQpj0Ig/HPRoLy/xAV+V8+PFHBpfPUHnG2dkFD9sDVVEcbSd1w+1syVe//Wu+/PJnvGkTpkGI21ZYoxGvnr2m3BQofcCyAianLjrL2aclQWsxz9uj7a9eUQsDQ0gsBNKwj0Y2w6AsM+qsYFvU+KaNYVhYztGaU6qUvGx4c9+Q7YckvROihzltseOHg+K77ZxF+kgrGlrRIQTHnb+EIPAJXMn11ZQXL74AL2K72/DuxzeUmUaakp5jYusW03boAyYd16Mey3FAnUl6voUTWtihSaFTwthFmBatahmOXJ6/fM4f/vB71h8eaNKStUoZjjwsyyIMA/ADRHdDTzSMBHz5s1OupgP2Rcs2bejaDi8McWwXW77FdzyGcUwU9HB7AwytEXWFFgamdDAHF4TjExzHwbIV0u0T2Cbe4ITBaMS3v/+aDx/ec6gLZKNYLraYrk2XWUzGEWFdIlyPxnYxTQOLFj+KcMfP8KIxTjhG1B32cEA4PWV4McbpBUizo+X4Pgtck8zSXMYBPd3wdrZFxxOCyysev/sdq/WOXfkG0Tun3x8gLNgd9mjZEvZCyjyjlRJLWCAaSlsixgFJsSP8/DM2//2/IEtJ3I2YxEOMtsFKSxZ3C779MKfcHbCDiE4JPMfm9HREt69xpD4qzjvB/FBiCM3At4gNxUXfI+zHONH02BI0IK00ddphFC2VYfPZz/6WV53BZrdlu0s5bNcc0h1S21RlQprlqA5a06XRHTUljjQoO02jFZvNgT+++SfWux1X5xd88sv/k/OzSxxDkJYHskazouMk7qHLFHXYUmQHlFC4oc96+ZH5dokbjBDRBEvWhLbNavZAfzCmqzpqBYckQbdHUUFRadqmxQBcy0JJkyC0OelbuKsH/tPff83j+4/84ssXDIcef/2blxS7GlX6fPHVa+Q33/LTj++4u/kAQD8KCS2LqWsQiAAJOFJiC4kXhvhugOm4nF+eU+7XZMmOszhiMJggBESOS//sHKvb8fbxnh8/fs97VfHqtM+vrkdIfYbpKdrHjrIDKTVl22DbR+tR2ymE7qhLRWeYGLrh+mTCIc+P0FUEtufhBz2Gwymj/pBoMCAMA6J+hO17tPILVFPQLO9R1REcbZg2z6YTAtfjniE//Pktm/mWn396SqxMXNVhl5og1+wKxVnsE7gtB63wpMQTFYEFb/7zf+bBAs+y2BclHQaW42HIlMCxUFIQeC5FmuOYkk+vnxHFAaP+mN1iyaFoyIsC0zRIippgMMSwHLbbA7vNmt1uhdnWXPUcLgYuryennA6eEU2Plhs/8LCQhN4QGfRRHDAam+rwRO/FObFjYxwkxiGmebgh/fAN+tnPycsO3bW0+YGibrGEhS4bDGoaKaE/JvTHnF1e40z7GKGD5XiY2RaE4pClZHc3zJ9uqTqFlAo7cHk/X5HtNJPec5wg4jB/RFc5hjBQGpq2xdWaTujjN8ELEJaN4XkMJiM0YNTq3xaa1FkFUUhXlThtxc16Q9IKTNOi7o7UYssJaIsDUkBb1zzs98SmQSBqurSPF15gU2BoAI2QJrYpj2pTKyBTIUZtIg8HZNXg+DGONBBuTI1P2q1YZC07ryU4P0fKBEds2WV7MtWQNiVXjonpSLRjom2JNzxBN5DefGS/2rLcrNmVBWsEN7d3PKY1h9YkqRWlymnamk63zIuCV4NzzvtTdstbLNdmnR64ma+5jB2MkYtZ1vSHBpZjIdqCeDzh/PwI1Wu1Yr+Y4RjghwFZkmPGMY7jsl6vcb0Q7A7bHxKNTskf37Hb7ijygsDv4Rog0bx/eGJyfk0QRKi6RbQuTn9Kef8ey2lJypy6U0xHPo7tEl+cYFs22W6PTjLez1b89PY9Pd/H5WgEErsVpYTlIWMchESWxcmgj+HYbPcH+qMh2rPR+x2D0yHZLufFJ6/QHfz08T15nfNxtaZxPNarBaYQjMdTxp/9Cj/scbj7iGOssQyJZZroJme7TWirgkFk46qcXuSwjQKUrbGk4H6fYAsNBvihS7pas1ttsWwH2Ta4hiA0JNPBc+Rgyk2RgNY4rofTD6nWJUUjiF0bK4pYbzM6VXH37geehx22m/PZqyHv3j9RZAXTi0v6p6+Z702iU4P68YH8/gOGBgeJ4ZicnZwhA4vr0YDR6Iy2s9GRxP2ix+K//9/sH9+gtGT68rdMRhf0DEn68GdOdcJ4eoob9fC7lsFwgu3ZbB5dDK3xQo+v/ubXfPzDP/P2bolabigxGY2nvL44wXQlyjYpy4bacNkkBeXyjrbteEpSaq0Z9QJ6liD0XIQUHPKMqmlYpxnj0zO8yQnFeondVsRxQG/robcFSZZjZHs8w6auKqSArLK5uLrAigdU9dFMkyVbDNvE8RyUAYNJjCM0Ks3oWR3Dgcfi8Qn6NoOzz6mUgXSHPD0eK5NBoIgci3qX8P2798SOwOw0oetxcXLOY9Yh3JhBNCCQimy/ZoxEBSGDqc1qe2Cb5yg0btjDDQO65IDfdsy3a+63S2wBZ+GQ67jHadhDdQ37wuDNKqMsa7ZNy5tdTtW21IbH22yNNB1E02J1OW9nKYdqzPXJBMsPiEXL6uGGpkp4+cUX+L0jJLfFJKtKyiblxesrzi4tZnd/Ig/V/8/Ze+zakphpdiu8j9h+H3/O9SYzyUwmyWKRxapqoUsChEYDDQmCpprpifQC0kwDQVA3JEjqUlNks0g2XZqb1x9vtt/hvdHgEHqAeoWYRMT3/d9aXL/9mrM3Hzh4/AMUT+Df/x+/4+1ZhLOCoyOBZ0+OWF2uGA6GSIqC3FrUQsXX371iubpgb6xQmiaqLmFZJqasIykamqly+foVY01BHDk0sonm9AmLDd+cXnO9vCVPE5q6JWkEZFEkurqk1xtwPB7wYneIpknYhkHfNfAUDcVwOHnRo0pKTs9W+GHKkWsgywp5nKBp9wayIEywNZMnwylOUxFXBrI0INgIvH7zHVHZEVcRXz7fpWg7SqmjJ0momkqeFFyFKWeblNM2Y2DbOKqAkUn0vD5ZUqGZOYahoVoaJ84J8nnJycGIZ8cnJEHK9fsP/PGX/zev/vBnujLHamsWyy1Xl5dM1X3ICsQ8I725w6gkFNdiGS5p3BGWBJf+HHvjc/PHU8Zf/EscucZVFUTbYBGnVJJIzzIYuBZFWRFnBarWEBgus2ufdbCg7XIQFKJ0QVvLHE+GGIKAb7vsHO7w+Pkn2PsveHsZ8st//AXPjvZ5d3XJ/PW3yF3CJw8eEM8vkcweuu1x9uo9m/UtSd2SpjnrfPuXfXCDKIj3++i2Iy1bQmNC7g6QBZ0kzcj8mJswIU4KRkbH0dBGkjraNGBkmYxGfZJappIM1rMFiyAl6FkkQY5uaTSNQFHKuIf7KLLO8sMVs6WPrHsUScLBwZimromjmJ3RLrbt8v7PfyRabriMEm5vbjBpCWWJNK/I8pxY0+jXFYPxmIEsILQd2zCjqVpqd4+z6wVtN8cQI2abNWqZIqcFI8PkLGxYrEssVUHUZZoakqylLRv+r8sN/+W+yEDMqfOAPE7o+T6MHQQRulbgZrHif/nqNbdxQVI2lLVI14kogoZrOAhNzr7j8Ph4H2tvh00RIc0vcQSFYBvgtx3LTsUqEsyuIlgE6D0XT1fxlArJsagKH0MWsWVwDJO8aLHlHk+O92kak7ZQsUcvUa0BJ3t97m5WoEioikTTdqiKhWvYmIqF7y+RXJPxJ4eIrsP7mxl//PPvybIQWShI04qzdxfsfM8mD5ckmwXpfMntXUjeJWzzJYoq0lUdPbliYJXkJVhC+MIV8AAAIABJREFUTqOoxLJLGC4ps5Km7RAQKVqBqOgIm4Zev4+g6ohNTb+VGQgGgqghaR2z1Tl+ELLersmqjLKqaJHpmRaaLrHaRqw+XFPpayZDF6HLIU5JqoZClJE1jawt2Mw8vJ5LnWeYskbWKsiyTJplGLrM3m6fbNliyCJdJ6BoCpIkY8kycQWqrjIcDhGA9C9csKwoSbdbgrREUlU885D9/T2ubm8p8gJ/G1CWFQ+OHyOGFfHlDEOosXSVOhYZD1SKvCQt4fbmijZLmW83xILAYlvROH02RUNWZdRNgKkpPBkOkGsJXVAwXQnbHdCJ4C/v2G4jVFWlUwzCNMI2VDwZ4iZHRcEQM/RugVR1CJpDKqY0XYxMS1nliE2LJst4moZlOFi2jSMX9EQRoyw4OhjSvPwcLQ5J4oisrmmqDEcR8OQGTVJxdO0+6By5fLXyCdOceg2Gq2NaOleXZwym+/R6E5o6Z7zromny/3+p/OjYYzS2KMsCx3HoUnDlliNb5vGBzeMHFt7QJe56XN0k+FFO13Rk6y09zcCRVBT1njcnthVi01BXHWbfw957QFvJyHRIbYXQyrSSjKiaWHLNeNLj05ePaIWGd8s1aRohSjKCqqKINXEWM/cN9gc95OI+8CxMh6rRyAQNuWkR8hjHG2IpMqatYwk1aldTlBXzxQKta3ElGbVrKUyN6uQId7rDu3cfkW5zJl6f2yKHuia+/cBoaiJqOnkdcHW3RlNldOX+O60DZCTyHLZpQZlGnL79jqTKSVcVj549pc4KBFFi6wf4fsrAdPj0cMwVOn/14Jjrs49IVg+tCGnqmizLCJKKuKjYtRUmrsbQtZnuTxDNPlGW0HQtyTZEaxWOTw5wdh10/RG6NqTa5uwdf0qRNly/e0eQ+eRSSSGIROkligC10FFUHXnTIjfgKAZVJ9BTJfY9nYPhAd97/Dkj00NKG6JljPDwkM7RGdQJ/aGF3CV0PtTv52zubriebSjrmsVigyJvkfR7hlPTQll3rNZretM9lK4hDANkocG1dfJaYOWHlEWOJCuousFkYGEWAXevviaJO6bDPfZ2pjz9bIeXn465+vCOX/3yitjfxTJ0Dl0F92jM2o+YHB5gUqM3JUXD/bOfL6jKkr7QYBk6rqHjWhaeAobQkYQ+mb+iEVWyQmDQyCSLFENS6Y0N5LKkSFd8d5Ey3T+idQcsLz8iSzKyIKPIMoaqomsGgiwhSApd09DVDULd3BcTqkrLvfDCsjzG4x32Dh8huS5VFtHv2fSHQwTNRGwr2jgn0WT8OGO7XVBXJaYiYbsuN38+ZRP5rO8M7s5NHj044HHPomlqdD9Db6BtU0RBQJQF9Lql76h4x2NiwySrO/xtRVoVpGmKqSmoqkFe1ig0iHSIAuzt7DBwdKpsw7vzOW3TkrYq7ugQ0zZJBRF3OECSJBRVoq5zJKnFUxT2LIm9sctwaGAaHbqqIJsyXm8HsSuxFAHdrjDdEaa+S731iOcfWS4XjHoG7v5TynhIMV8x//rXFJpNVDdIqkzZgNhJKJKKqNt03phOtRDrkvXqO5rOo9uIHB4c0TNsBqKMK8D20VNkQ+Htm29RZRiYBubRIYoq0lbFvUZbui+c5b8E5FlRIisaclmR5hmSrBIkMZp2xJOnI05VyNbRPy80sdwedX4PeaqBH//s55TaDr/+7S9wen2snsvCMsnqAhGR+WZLnaU0ioSjtBy2JV6/j9LoZFGM1DTohklTVxiKwuziEqH4wMn+DuJ0h643pK2gKDvSomN7t6DJYwJ/ye0mZB6lOKaO09fx9BohSQmyjrbWoVbpap1O7FMlFZIAoiRxfbPibOVzWwl8dXlKXtVUXcc2jSibmk6QQZBpESmqkrDVUfP7JFNXFFZJyny+4Pw84XsPdnmxf38GqYgKkqrgSB16l1N1JZpuEPY8siSiaxqiOMG0XRzbpmwE5strZMPj+OFjdDqu12uCMEI2XCRZJg6XtGVBmJa8fveOR0cnNEVJHifEiyWm2GJoEoYuM8tK5MGIQW+A6Q1Jghj/bkXib1HKAqPrWC2WSIKIKLRsqgbVUBBVhTdBzEm/j0JLWxdUbUaSidzM1siqzCefvWSo6SiKRVh3xHLNN2/e0ogiWtvxvQcn92EHIK4XVMslR4aMfXiCJMloioyii4SbGXVbMhr0cWSY7EyZmCJXb77m/dWCxabA1BQGls6up/L5y4dMNxmirNNzDGyhY+g49Pt9lnd3qLKCIit8PDvj4HiPwXAPYzQk3ISU64jpziFentPo9wRnWTIQaoXnD3ZI0xbdHpMWCkO5Io0WyEWAa5s0qsn5OmExnzM2TWxJIo8K/vHsG+5KhR/9N/8dnmAi/KdfYrkHVEVCtprz4Gf/BSfHj3j372vi5Sv2TAcd6PddqmjJ7uCE3ZcvWL5/x/GzYyYTl+rkiLQo+HCzJCkqdk2Z0F+z2MT4gsLBJz9EkxXssmRzd3mvS5QE/Chltg3QJThwDcqqJElKJLkiCiMEQWZzfYfaVVRiizkYkHQKV8sNkiiyd7CHv5zTdrC4W/H05Qh3OKQ3HLGaLSmbGkkUCDYplm1jORaKLBJGBdfvrwjCGYv5Cj+uePa0TxyuScqc1XyFLEqomoKhK2iySC0r1E3B/nCC0knMgoqrrMUY72I7fb744scMsojN4oar2R1xGtN5Fppq0ksKtuGWVRhTdjVdp+IpCoeGSNs1tF0FXc6kP6HMCpQKCiHFkRVeBzGn8f1J5ti2kB8f8dh8xNNP/pbFr/8t8cWfoaxYZQWvZ2se7O4iOBZ9XeHi+hbZNTl++OQe+KkLpILG3e0cQSz4fRMQvXjM8+99ijM64vEnGoKY8/bNDWfvFxiGgeW4DAculqVxGsXsCiXT6S5CK/D24zmXN+95NNb47NEBhunwTXNDmHSEUYIfrMinHk7P5ulnj8lLCUU3UL2as9NT3t5csGsajIdD/CxBx8CyB1SGwUZq+P38hlc3V/zoZJehJHIndEwnY/aPn+DnWxyn4MvvD7i9uGLjR1QVWIqKYuqYxgDZ9sg2IekqJRB7nN8lJNVbtnHMtorxLI29QY9ZKaJKOq2k0QoJiiyCobArqTSSyodtxnWYsOc56CJkYcRarBjJIyxrwKjvoTkWk+EnjB0Nf7Fk0/MI72a8+nDOt5d3HJsyniiwyGqubufs2wa9uiYKI9qiIVxtePj8GbtHD3n2+THffXzF27s37B4e8YfTO+apimd1TMY9pA68MIXVBksRqbKExrDY+AGW03F+eo2MSM9WuPYjNpstdAIDo48ktPiVwECfEOcGX50FPBZL/vSr3yGKLS01X337R8LZjP3+gK8uNvzn/+Zf43Ubfv///gcuVwtS/45dU0NyBpz7c+qmBUCQJFzTwOtP2GoDErlPHbX4VcX/9tUfqNMNhwODk+mIvUkPQxVoAEWRcHSVv3n5lF++X3K+jukA19BpOtj3TMy2xGhq1tczyEsme3t8vJwRFC0oHcNhj6RuoW7Y7e9wND7k/PUFH795TRGvSeOIqiyRFQVTUSjLkqapydIYXxG4uLzAefIUUZJZBwkCAqezLZvoGkNokHUDZ3cXu9iQ5Q6y4WJ2l6RVylWaYVk2D22NqamxJmWd+pwmOqpRMxmIlOWSi6sMu5oiqTJ5dh+UbOKCMK8xdB1TF5AEmaE9YKc/Yjyw77WnOxNap4eznpNHAVUUMXRMFEVFCAvWUYRflShih6rpZKsNmtyg2j06P6NIUkQ6bF2FOqftQjRvD1XV8PYO6ISA8zff8vyLLxnt9Bg/OOT6zTuCYEO/N2LUH9PWAreFz8//5d9hHOzwx3envHrzHavlDF1XGUxcRLEhSBryZUAZzcmCS5JgxfV6y22UkDUZUtfxveMRqqFSVzVZlPLmq1fkqs086fDTAk2+D0ilNEQRW4q6I25quu2Cwc5TVEchaRJKtUXUoa1rdLePJbakdYTZgr+uAI0m6VitAy43PjuOimeYOGh/mREZVHLDPKy4WgcERUJ+ucQwDYY9m/3RiMOpw6g3QpS30NXkTU0pqeiqjK5IyG2DIApIosr+0xckqQ+iSNOJmKpyP0WtO8okoSsa0vWS1LXIHBtHURAlFUGQkMWa7eUFH5Zr/u7HL9jRe9iNQue4LLcbouCO6/UKxRaIwhRdFsj8BKWsSDIZTzeQO5FGqtkxZDxZxvZ6xH6A0YnsOz2GO0cEvTHB/Pz+WkpQmMgyWl2zNxxxk7R0ZUneprSaieRaKKKB4G/o4oQ6TrEkEUXXsD2DgWJx6A14eHKIbcnIckNv+JC+fYTkTLloBSa2CqqLH4fk8QahLnFNHVsWkDSZk4Mxf3p7RVm17I5cHr44YHU+40Z8xcOjE3YOHuEvV8ThksePd1nPLqmLjCzUaOv77zVNlhCqgL2exnhgQJ2zvfZZz2YkXZ+oMmhEk6bpkGWZLA/xJBWNHnVRUEc+nudRdgYtHtmpj9blyFKHhEbZKuRqixTd0aYpkiKQI6JOp2idQHCbk1U5TtthaQpVnZBvQDsYIqsaWSvTivdFSBfdYfbv7Z1lYlGJCq1Qk2VbciOnGuzgGQpSHpH4W7bBFkXoGI5GaGlCujPmjx+uOHj0mBc9j81yTl9XEYSOShLI8gSxaQn8FGvgIhsSdXGvE75bxSTlNUrVcBUtuY42KLWB1rQswgDFsNA0EcNyePZgj90jh4NPf8KzH3zJv/0f/ydKQEs/EG4SxK5j6BioQsPJQMXwbPYOD3An+5RFRbQKSLdLTEWkN5hQhxnzOMcZash5TpVIiHFDEG65DJakwQZZVdAYIAhrdKOhZ7lkrUSShZiyytgdMHAsxLrm6GAXq9/DQCBfrlnefcAePKCIBNwHPeRti392hSSds3swwDMzSquj8nTeXK25XqZsk4KBa6EaEWVdodsGuq4xFltMz6LMUvKuurdYagq6KiLqGlXb0fcMnh70keoCTTP4/IsHBOs1pqli2jZJUBGt1rz+49fMb9acnBww7ntMbI29nTHW9IRyPYc4YDQaEvsB475JT1cYjXskgyneZAddlQmDhCQOWCyXVDXcBBmzQuNXH65wxALbKRDHffb3enw21NnpVDaZzXzR4I5s7lYBUl2CKqLKI0zTRbNdZEVBEgXqpqVezqm6iFbsSPMaRVcwpIY29lnffCA7y3h2vI+Ni9BKqIiITUUnikimTR0HrOsW/26OPOphT3exLIMoXLC6ucOfQbC848PomIfjPZpC4bgFRRZQHZWBbeIs13hygDOFowfPiN+tGa59knBNmUOdVTiGTZ1XIDTIgsS43+PRwQnnb7/h1YePxFnKyLUZHpwgKRJpVSA5DoapEwTlvXJZvF8daJKEq4hobU2bZ5TtiqgOUAYGzmiAWYcIskNbquRpB5qJ1DpIhYBdNGzfXqOu1piaRRtkLC+vaTUVNJWklel0HSQJNIOoqbmd+7w5u6RsRA6n+3zx+Zc8f/EIJcmgyKg0BaVukKItI9dEefqI3331NbphsndwgNA1CKKEjICke7SND22LrqroqoapayzXPrKm0dFQ5hlyUdFD5PmjfVbDzT8vNKGFrCyZHIywpyp//9//t/jyU+ZNg6FtGQz7bBZjrpKYuq6pyxJVkUjynNug5Qd1jsS98rSpW5yeSxz5bJKCbTzjbrnB0k3misgm7diUM9ariNtSRpQb+jpIuUgahvipT5KnIApMhiP2+hYDQyP1S3JFR+r3kRSDLunAkqiLLV0WEFUFf7qecReHlE1DVtf0d57QaT7+5hpJ86gFCdWyCLe3+PPX+JcRhz2Fu0QmjUJMVaSpZc5uF+yN+5i9Af3xgKZp6IKQ3WEfy/SIiwrPdsjzjKIo0BSNoqowFIkoT6mblqHrYhkGWbwhimKqusM9eMD27oq8garI8XYmZIh88+or5LLg2XSKv75lejCmLLN7Z3XTkeYCxmCf+ftLbq+uGBsFY8/A1MDZ8VAWMXebLX5WQtUgiCJ9UaVqRG62G6ZDj75lcHz4AEOQGDoOu4+fQtNguTZxlnH6/jUfTy/I8oQnO1NsSabIUjZRRKdoTM2MkeOg6QZVVSEJHSOvj+nY6JpKsLni7bszTKllMhohREvKcM3NKuB6nfP0cIe+beAoEk92+7x4/hLTNFAVhTbPkJAI1hvK5QWZv+VyVhHlBf3pmEeTXUzXpT/dR1isGT95yvVixmB3RNc1aJqHrAjcLmbYikR8veZRr0DRBNRhn6wGRSyYBznv1gHRNiDRdR7pEmf+nK+ub1G9Q377j/8PTx5+xtHjn9L3LmjzhDTPyGaXbLIVX7x8wM2FjtRtEOuArijRaDDkDtUdsfdcZ3rQR5NbLNvi4Wefsor+A0IrM8s2rO5uWCQVP/zyJ1yezgizhNxfceMndE1NWRakVUle1pSSzDatOZz0MSyDri7RZQm5rXFNE12XyTuod5+hhRpH+wG0NbHvs45jsqbDdvtIwHg8QrIsNK++3/olBVUNRbBB3DlGVCTqLMBxRObbEsGxefxwl0++fMj65hVfffMOezBlMB7gh2sUAWRFpGeZKHJHEQfEyJxttgjOgNnyjlenbxmeHFIEG04/XhDFMUVdktUVZd3du+3LDF0EoW6Ji4CbXODAdphoGp5qstdz+NsffIrlOfziV/9ElG85jwKuM5iX95bS29UG8gzdXLCnD3k4GZBXO0SFglrLRInP5WbLNpb4m+MJjyYj2qzk9uIcshDTsbhdR1CXiG2HqYgks2v83pTP/+Zzlk3Cd99+w+uvr7BUlUqosHUFbzTk9mpBkxdEQczzxy8I45QyLnk+tPjp956zd/KIvEx5c7lGkCLCJAREJEWkv79Hm+ts70J29zwMtSRNch5Npuz0eyCqdPMZb29uqIIUd+cFD//FP9DdvuPjP/6v/P79FZ+MPU5GPe7u1qzyDmVokkZLfrgz5GDHw680irpC8fqIkoAiqDzZG1MObrg9XYNoMNREFosVzbCHa0755MVThEwhy3KCMGW53rDyI8okuleHItG0oEsKRV0z367pjVx6loRcd1RJhTuSmeztg6jy/vUHPr67Yeh5RPGWze0VwfIOSeiohA5PFdFygSgpWG0yMlpOb7aITc3fP3tA0hp87+iYIlrzbGjwVz/5ryi9MR/9fweLOdK4Q9B0RFFC6FocWUTsOqKqZZuGJFFCsQwZT8d8/uljsuUlcRLSGBpF1bItUsLbCtexmcXntEXBl//wr3j58ITkV/8RUWoRhAJLU7mpWs6CiC5Wsd7ecKJGvJ4tKLIUV2754pmA+3yH+S8afv/NR4Z2jyT2SWkYjaf0x3uMRrucTMfMLt/x7ceS3b7Fg/0hx+MxpmGg2RqieP9z2TXgaBIvD4Z8vFrQ1h1xWaGJEn1DZCBr9DwH19AwEPjw8Y7fn62IW4mXoyFJmbG7M2U8clE6mXg24+s//Jr54o4gDqjKAlsScUQJQzVoRQk/9CmrmigvsdKCxWaDU2XM4hzZ7nG7DsjWS3769BEPTx7QP3mIrImki5CPZzccuRb7QwlBEpgVFfO1T08QGOkdfRnq3Mca99h/cYwjNXz4+oYkThANgyxNuVnFKC2IZU3exJiqyONHx/zkP/s7jl/+AEvro9YlTRwQLRdIxZZqNKHSTYqqQtc1ZNmnr4os4gw/DBE7MB2PJphhOibOoIcfxZhCh8I908Lt6eRlwWjPwplovPn2Dzx59pjr179jvUk4fXtFmiQYuo6q69R1iS6rfPbznzF88YTr5YLrqztuLs/ugbqqgur00LuE4OYjkdcSbmbEyZK0SvCMjpVfMAszRrrO1W2ILMAiLPCrhm0rEjUpVdPSdhIHY4eJJVI0LaIIjSQilCCkW7LFBcroBbZh0ykVJRmmYWA3JtF2haMaxGGBKor4kU9RN6iqwI9e7GDqJgN3hGVbxFlMlseUZcWhozLKWy6Xaz6uNgSbnKbQEYoUg4zDsc7J8TFpkvAu/sjZ7RLH1Hk4dnBUCUOTMVWR491nbDcfuLi8vjf1NBpl1TFxNJzxkKbraFWVzfUVdRKzO+3TkyBXVOquxTEkdh712X3Qx75d0sYZQS5TijppUiFGKYgKnuOQNh2YHXKXEmQhKA6KJKN3AmVekLDFUBVkWSItBVZhR6MUFPG9zW2gS8zzFKHI6Tsmx56GIsHHRYS+t4dlufQck1a02Rln9C4lvFanbRWcyQhT6xiJsKsU9NItjuEiqD0cXWEwNPCLFLmt6LoWKUsw25ZCUCmqhks/5IU5xtYUDs0Re5M+VZLzYDRiaA54/tN94njNzZs3PHzxAyRBYX49w3Jtjh8csD67QkQmiWrsgUWexli6SH/YI2nh67dLojBB6DpqlkiqzsPjA/amB/RHHpIGhtiiCQmC2qdSLCRVpSoyNh++IfO3DIce60Yg81MaQUEfOphtjlaUNIgkrkVj6HSeCaFOGAUIeUumdYxMBVsEkhx7OqXrYnA0gotbBqrIQBmiihCt19ydX1JnAfFmjT09wXnymH2vQkg3JHnL9SqCJmegiyiSgCiJnM/XNIbN470BD3ZG5GnJq5sZF1eXdGVFluQkRYOt6uyO+2R1hlp3+OsVaasS5xWirrDOM8ymItwEJEmK3EHfMnnx9CGHu4c8/WzMKtkwv7qG3iFKvKRrQZY6NEXEVmBs2qiyQM9zOTo4Il9tSPyQse2i74y4vFtxdT0DM2arCTyenPDZFz+hWIX4qy2LMmDZaURFTbZdE+QtQaNgijqKa7I3HJCkHjuGzotHn+AOXdoOHK0lDlcsLj9yU54S5yKjTrpXFBcRvZ5OldUkqzvU/IZiO2d7uyYtdBzbo+h8ruKIZSkiyTmepeAIEnaesRIqpuMR4+GAhR9QFw22rZEWGUWSo2sanilCkYMooCoyw4FLuFzem+ryNUKZ4Z+9w0kTqvNTSlvHdTwM1aBqwBj1OF/csjvwePLwAEs6ovFXbGdLuq5hb9pn+PwJ+fqC5c0Zlzdzln5I2UqUncx8u2W2Wd/zeDydgbyPNvI4r1rs6SG73oSDZxn7x0u++uYD785nREmMXhX0ZRnd87AmExzXpS0KRFmg7QSs1ubm+pYoDEjxuapKRKFj4Dr4ao4uKaipieYNsJWGaruhzgLqsmXk9nE1FU3qUAYDvvgMLvWM29uS+WLN7PqSKEpZ39wyNofQ1IwlnUFPRBY7HFfA2ZdAWCOnNVKakGcRUtdgiBKGqFKVKWPPYxkGSELLye4+4WLOx7M5801KWuYYhsETr09eNVSdwHQ0wtZsuiLj/c2MmR+y3m4QDJEEA7suKIOI2HCYTvcxKhCWp7TIpHKHoAvIrU6tCZidQicY1IVB5ofcXlyyO9AJEkjzmiNbpGpqVo1EsM3IFI2bOuXbu1OSssN1RvzDz/6WTx4eM+hN6PV2aJoEQ60p84Ay85HyLXmeYWk2O6MJm/Ua1+sznQyo8gIBhf5gxPr6Dpr0fs7WQVZD1XZ0dX1fEBkWQpSTFGs6s+PwePjPC02KIqPnGuw8eoTextxsl6zjls9++pLt3Q1C3uCZHr474ObsA46uMtJBHZg4ls7zXYVue4H++At006Opaq5PL8jjhK4oSfKG2yjiV6cbNsVrakFEEkxOdsZYckNVmTSyijdx6LUW2+2aNK4oY4FmYLJ/4FLYIpVSo7o6pmuhGR5ClRAstnz79Stu7gJspWPf1unpJmlRE3QV62SDp+rIjoufZX/5OapJbt4iySJ+ZzKZOBwPDJKqYSnUSLRomkJv9xDPM8mSkE5SkfsCbb0ljrYkgkaUFHRlSqOb2LpKXlS0cYYkyeiWg2Fo3N0lJEmO258yGO3Q1h2eY9BUFYKiIpQZaRwgtw2iLuOOJnSSgiGkGF1F31Ap45DV2zdcvbuk74isZ2vCMGf8w7/C+/5P4PRb+h/fslht2K58PsxiIkXAMlXipsQ1WqYjhYFn4eztQ16iyTLb+ZwCgeV6xenrVxztH2LIKlEUMg9Tnh6e8Nc/+gl/enfB3cqnaAx6nYhSZWiOhCLfTwQGuxPOtzv4X/+S+WLLZrEgvb1lNvepq4a2rqnzFFMdINPRNwQkvWNvf4CuGVTLGb/71X9kdnnFWFd43NN5880VyBq6of+l3bcpHQ+mE7LlNaPJBHuyQ77+yGTQ48WzF+wdPkAM5wwtGUvtkDSLDgWClmJ1x9v3H1jezijzHLU34Nb12OQVO0dP2P3+z/j+D3+GFMTEhowtQxn8pQnazNjf2eegN6XfGGyuAs7XAU/QGfZcKjRa1eTw4QHi9hShUZE0iWB9xzyLmOctc3+BKEhYhs3p9Smr5CNX65i2A6HV6RkycROwjVLCLEMSoWl1esMBe/0hqlxjGhqmZYGqoIwmaO6Q0vAQmndYTUPaNJyu5uiDIV2d0GQpI8ei53ksBQl5vAOCQJkWCJ1MW7Vk25hgvmC7WBH7G/aPH/PZ4IAvfvQjlK5g8eEN+z2DQoaqUyjyklZTABldbmhKmUUaEKQ1VVtTB1vSPGOsNtz84n9GMGweHD7HryZcL2bE6y1FU1OLBs5wj6ZTiaIFZbuELmch6LiTJyj5BtWyObtd8ePpgEcP9vjthwtWecUyL1FkhbLJQRYp0xJFzOnvDehVCv7SJAojHp28ROl/H9U2efPVbxFMh6PJAVmeUHU12Lu8Xr8nCGP8MOFwf8KTTz/ngVdCu2Bz8ZZf/+Z3/NNv3tL3+jx/cEi+3yDpCucfL6jiDF2QqZOErhRRK5tJ2zFUJBZndyyuNkiKDIKGqsjsDD3EFiRBItxEnF6fonYaPfOYJhL49OkjNoslrWQj6T0Kv6BprwnzgPDyFfrpEVkS0zUwdnukVcf5MuDHnz5GkjrO33zLXRgwrXcZjkb0dkbML3zIwdRlastAcBTEzMAammz9kN+cnfM6LKj1Ec8++YQf/MO/JrxY8uHjBSlz0iCgxTEyAAAgAElEQVRikZcESUhStvQnz9AMGz06pfFLgrzmyg9wDJG+a9MzdMqkJUqusQdTdE1DkDp0VyENVrz79g2HloI9shn3bJI4w0hbOs1g2u+RbEM808CRRBTDpus0HEXnzauvOLu94+e7U/affsLznT7R298QccDew0eESY12fYdCS95JzMKCdRQjCiJPHz3mhz//ayxXY13OeD42yRyNP8wLmlqkaTqCtCRIF4DI//nv/nd+9/tTiuV3vDzwWNYxL58/5sPdmjDy0VSJ3//TL5kPNOJGRBIEWq3Pb3yJn+4f8S/+65/wn979D6QNCJKC6bj3L/AkJlR8BEfDqmL++tEuslCRlwWXN7cYto6umxRFjiaKWLqMZ5o8PXzKvmOwKELknocky2RZwmi3x95oQpkW3JxviFqFrBEY9VyqpmHU03n+ZAdn2OPb3/yB99+dcbu8Jcgz/CJHaDtkQaQP9GyPqeNxdXfFxl+T1w2rOEW4vmW6P2JVNPjpGkWO+ftPX/Dss+/T6w1omprl3Ybz8xnnsxnXfoJttZiOQ08Tce2CVZhzuq5QupYXjoBpiVS2hNhUOLqI2h9QijLnN3f88mLJtmywVZmBrXO4O+bJ40N6I5eipxIGNenpltnXf6De3iKToSn3rIqqhipJyLMMQ+zYH3qYnsf0wSHOcEoYBnz8cE1jWuRItE2FpkhIrY1n9jE9lyTborUK/YMTZNUGBMbjHrdvP2JaJkmU0bdsUDXM0RBtOCJtG169u+T06hY/jNB1FcPrI4oSniAg5yvSTGK+2fDm6o6kuNdHf//BgE8LG5qGy3XONmsRNZf+jsdwMODs8pLVbAFdzc3igs2Kew6L4bKzN+Xjxwue7fVxNJCLBME08cb7WLqOpHT3F5zCiPVpSpBCWwkMByaLrERzdEYPH9HfOUG0R+RbnyZckrUit7cXNEWGa+gc2GALNvMwI81DglnCu3CD0DT88MsvkA2bOK+4W61JNAkhWfPy4QEI9zwhvSuwpxPWa59ONfDDCBDxekNUTaXKU24WK7arLTc3M2iecXywhyp3JFnJ9PFjDk+OqP0CsSrJipjO0lneXHMzW3Ho7eLtHKAaCsn8guXtjNubG6I0Y5PmyIKCLQoUTcd1EHBTpMiKzTIRMRYlu+6ckZTR1glBXqIpKnma48gSSbClpwgotBR+hNwfMOxNSFWDnTLh+32LVu6QnEMCZIpsSyVmpE2K7BdIpoClauTBDddizofZitPrM3RZous6hjv7HDx6gCC1rDe3XK63jHdGeG6Pz778hLuLUzRbwxs7eLs7jDYKtmuSLy7IhAHzuwVbP2CytwdBjCTKxEmDPfEIl+f0HBXP1Xn7fo6oG/z9kyGWWBJmEn6qUHYywSZGFSQGro3W1XRViSI2qHqfIMm5mS2INxtOZzNU22NbVPcloCgh6zp6leOIEtNxn+HAQrUN+mWJ33akacG6EIhUi1oQkJoK4fqWQaVzVyp8uLkmCAN2XINms+Tj9Zyo0EHvIypwd3eDXa1oF3/GE1pG1Mhdw6KUmSU1PQVGjkKpO8gi7E8HDFwLS2rQPY92rvLu9JL5LKAqG/qGQhqnSJMeiiKhyNDkGfFmhq0avFnM2XdsLFVGtyyUNCIKAyJX48nRiP2Jh7N7jKTYfPvVRxwyVuGaNCuoy5Z+T8OQBCRBoKha+o6HZzoc9hy2Sxlki20oUnUty8WWy+AGy+vx6GnD3dk51+8u2G4SirZhWxf4QkalNCR1Qw4UScFeNcQyLHqTPWJ/heSYaM4IwVKx24wyjtmsVnx3PuPg8JBhOqe+A7UdEzJiMQ+Y36Yob+6wzQHzYECVlyhixQ8fHvL8ZJ8K8IuOV+fnjAY6NgVtUUBV4bge27zGFHNWfgbVPRNElsFWwFAEbm+WpFmJ1R/TczW6xODs4zVCGPDQlOjv98mymiYvGe9aWLpMWjVYusQPP3mAJVT0en0kWSW5k6HICaKK8f6UQU/jw9ma3371DX+6WhAXFa5pIgoKVQMHro6tCPRHBnoRUL1ac3s4YJuE7E4MvuzXHEx12mKfMC84v77GLGuKogFUNHeM0XcpViu6piUvCuZhyk3kk0QZcXbP2RToeDipcIwRiRbTZQmjSEYOroijS4LtHUEaInU1Tw53GT95AE6P4tU3DPSO6dMDlgOD0+slt1sfyVO589esO4/PdgaYco6uilgDg42ZMTr2KFcSqi2QBj5VljK0HNqsRJdkyrpk0hvgTKa4tsfH2xVBBbdJgaFJTA92cHoOaa6gqBKaKqNpCqlUstmuCOOI758cMmhT8jjm1WyJY9lYjcY2u8O+yHnf3pcGldFDs+7B4bbYoIk1+5MJXSZTdTpxrrH8dkHadHiazNjQcZ/tU2k93n93xS/er/jtIqJF5GTU4/mDHfYcjS7ZUHQxuVai5gllV1PW0NQNSgNRGNDpJVkS4ZgaZR4jiANEVUJQJIzRAFSBkoasKtlECY6goBkWRZHTtB2uoSCUAfNFQt429IrePy80UWsB2zF5cHLIxNVRekcoxh7XFwrXqs363Rs8TUEWJWRBpCkyBn2Xl5++5JPjAc8G4Bj3LxdBVbn8cIq/DcjLlm0m8NU84iYqqJsGAQFB6BDxUYSakSayaWpKzeTB3kMI1iiqQs+yON47Yvd4iGNraD2HOI2RTQfFlFH0ElFXSJKQy3VIXNeMHQ1LczB1A9NweLeuUGWRoojAHSIEIcgCUuMgix2GbuB4JnVT83R/QidAlGbEacbY0RmPhig0lG2NoigICHRtQ5NGNFGCLInEbYenaBhOj3C5Zc+y2WAiti1N3VKWFYgyuztT5CZFs2V0b5feYERRFszPXxM0LVVdo0oyuR9SdDaubjC0HOSuI5iH5LdrsiTm8jpl7cc4qkrw9TuS0wg5XSImAVVR0VYifdfk9SLEKFSGrsnVNuNkv8RUCyxXRLIMis2GvWcPyeMcdXnN4+mQyWBMnat8/f6cp9MBNAWrq2vurmfYB5+x95O/5fPPn6KGc4LrC6yupWtK1Lbm6f4QZkMWyxkf3r5nago0LXy64+HpGiPPvGeK6AZkEdvLt+yOXMaT/4+z91i27Tyz7Ma/vN17bb+Pd9dfeIAEQVNkVibTRFVFqhpShCLU0jtJ6pSklhqSQiqppMxUVfoiCRIkAMJd3Ivrjjfbm+W9GiefIJ9hxR+xYn5zjtHmycdfc/r1ZxiyhKZ3eWNnh/MgYZpDs92j0XAgXqNqMpLtABKNwYBKkgnT2/1hvpwxaLdR2neRMh9VEghNRzea1Ddzri4u2WlYWGWL8WKNqms0Oj0e3msz7Azo3HtMZ7vPWNOZJhXFCIL1jCwe07VVkmsDvTVErcdUZoVvWVAXWLZLVMi4aUJ4dgyJjxznSALyKCKIb79tWUNUlFxFC2aNXU5PnpOFaxTFZtjfxdk8oi2ldK9PuJxMGS+nVFXF+XiMYwzYsDQ6LRtdB10XlMGEMAwpJZNsNMIqSz49ucQvSjzd5P7dAwZqxbDfpkKgS9CoMogi0igmiGrqTHB9coFtNZmNrzk7vcB6dc373zdIwzmb+7u0nbdpdxyevTymriqWa5+O10AXFd2Gzno9B1mi4drkpWAehewYNV1d5Xq64LgKKKaQJBl1FNIxHTZ7G+Syhts6oHXvp3zyi79isfw7ZEVl7/5Dfv7f/Ld8+u//Cj++4IOtIV98/g1xFJMI8POcHUfHMVXCWmKl6eRqm0HLZvvBLtG3l0hIPLz/gIM336O/MQTTQc59moT0dzfRdYVarnlycs7o5gpbd+i0O2SJjyMyOo7D6HzCly8/4T/8v5/eXjwVG9WSWc6XpGlMw7EpdIMki1nMlgTTBVlQo8YhX1xfc+7HbFgKb9/bZnjnHlHuMBEZ4+s5+TonLOcknTa97TbCLJGTiI2ew4vXZ/SGm/hZySjOGIcxQtXIi4hnH/8NhmrSdDtsbO/SUlXCKOTlxZQ//PA9RJYQzBccn49odbpoapteo2B/axPRbHE+nZJJFXbXIw7X/Ob3x3x7PWF45yGF6PHOwx9g1hXraM3l6SlPTl4zmo5ZrScIIdGyWhwdPODtR48Iv/0Hrs8KXt8k+OWtFh1ZAhVMQ2I8WZILgWuaOPvb6Co8+ewbZvM1j+4O2em16faGfPvkObpW4nY72I6FR00RRwxbTZq2h6zoaLqEKAt+/P5bTF4+p9vvEI6uefr6O5oNm4Mf7tJKM9yzMyRZxU9ypos5eVWhqRpqlSItJ5TmPq3tB1hphghTTgqbyTqmqiokYbD5+D1OvvyceHVNGc1omSplomLqQ8aLiK7T5nw9pcgz1tMbpM4hf/TzP+Xpr/8OO1lwMs/4H/+3z9B7IZK1SRxd0WttoLtNmlv3SEcjLs9eMH8qkcQ+W70OR8MGnXYXUp/1ekmyXpGgEeYFal3wzsEeLV3i+3d3+V9ePqdrWVRCJiwq/LTkxXXA19+d0coz3tnf5GG/S6ZqtN0mzV4bIVdcv/yOy6dP0GuDP/zZTzm7ueLTzz4mDEIMAbKm02k2cbw2+4Mev/nyM2brJev1CiSZeVphGxqLdYRpGNzvuph1xuzijLSqOfMTrsKAqaHyNIzR/JiGn7Jty5DlFEVJUdVQ1diaoFZkrF6f6LvnKP0NOh/9jJSYv37yjNLSqOsIRIlc5jhUOJZNy2nh6E1GUsbf/+eP+frTf8SQS7quRddQ8AyNhm3SbbfRFAtbE5jtDncaLXwBsmljOA2+PvsCofu4jo0mF3iGTl47ZGtQJZvJ5JKEmL233ufugwc0XJ0kjtk+mjO5/ArD0EjKnLLIsWwXVYGsKpmvYybXF1iWTn+4xdGgzY6dI8cZSlVQhGt6/QHfnVzy8nLM/QOXt+/vM7045+JmQVZWWKZJw2wwTZb4FyuS5RpJCGTNxHLaVNGSR702l/M1l8enSNT84N0P8JM543RNbfawB3u0N4fIekaxmCCrEM2mCN9gb2ufRrvDQXFrqbDkDs3+A2pD4ezmCUEIegUtTeZikZOnOaYkyPMMTRTIeo2kyiiiZHF1xknTRHIdooVPVVZkScWkLFgtfbymR7vXhm6bTOR4rTlnNyOKskTVZPI8o+e1kEoHP8zQJwviMOT5F1/SGw5QbRvXa9Ib3mU1HROPpritFrIwiWcjptMpP/zj/4JO4WDZHmHgc+UnBMoNUplTFDnr2MfS3ds6OtDQXBApsqJxdzDA1Vy2HeV2JpEUWKpMJdkc2DUfbG3QaaucTy9xNJk0WiJXHRTptmW4GZwTajXLhs25XpJnGXmeUEoFaV0wKXPEyQVxcc40qClVF7/M2LAk9O6A3d19mpaHksYolDj7d5mdv6CoISolwqRk685DWprEoO3RVAWVqdFqNVjeXJBqGecXIwxDJYpzHNtElBV7w23KJAEkwjBh0LR5vNukb8DBbgO3NwC1w3KpcHwcEQUxIohpOU3SaE1ZVyiOQhiGnFxc8fGzE6arKZM0ZX+nyUb7kK4nMG2NytZY3ZyxWC44Pr+kO1W4szXA2xzQcS3imcAPYhw3Z6vjQZ5jSDJNMyeoarZaDZitCP2QJ9M1WB2EofD64iULIRMUMuPfvWQw7KHlKWYe8sZhm3cePKQ1SxiPRnz7esSsGJPVMDQl+k0L3TARbpttRWNrc8COKbDq2yn/JCzIixLLNVEUhaZqUek2T778mqZSIxTBYbdNEi6p64rlekVfGqK1Pdp9j2S+wN10aTsy333+HeHKJ4hiIj+i5Zr0HQ1NlREILF1CExHBKuJ6dMMiLEmTktk8JCok+u0BO5v3CM5nHF9+TCBUHMPj5HzO4J3HzF9GGP6IRmxSs2a2nrGc32Dc26XT7aOhEE9v0NsuSqFgNwc03mzx+ukT4nqEo0j/1G4LqYKAYKPg2dkrkusr3t8Z8r0Pf0R3NOXmm99j1hn25japbjCbjchkHdMxif0pDw8PKYMQRQJdCGxdpUhTHFNnOs2QFQVFFhTrJUESoNcF5+fXWM02el0y8HTubQ3p7w9x8pAoiMmymssUaqCWJJqWhi5X2JaEIRsIWaJWDZRml9Ywwu4pDI6OkMoE25DZ6bdYRwnrMMbWNFTdodHeRCAwDZnh4SZKlZKOXzN+eUx0PaOxNWAy1Cn0kvPXVywXK6IK0gyqLEeYOlqrhdXs0G33KIKAF6+veD0ecXZ2w2ajSVPVkITEKklYFhXneYgvr7g5f8rNC5889mnveDzqNrnb7dCQChrDIW5vm0LT6bkaSS2IkoxBw8Y+kLGMOYssR7M95uuK51FKS0RsWRJS0+RZUtENVmjuHepNj0p8SZHE2I0WsixIghxT0dFsC6vdoRCw9/4HTIXNzXJBr2Wzu3dEoWikomAdRmxZJqbbYLKMqKuSP/vBR2w5EpV/g8gi4kKQxBXXfs4knuGJjGG7jd3eYrCxw+Uq4vj8BL0I6Gsl8/EYoyqQhYQmyYxyUPKYgaqitTdoPPgRNy/OaEoGRSpTVDJ9S0evKuaXZ7zKErIkYeA1ePDev6DrOcwvX1Egk6YpUZVRSKBaDnURM+h2aW22kRQZVTaQRUkkmQi3gewnRKWgqGuiJKaswTJNbENl2NbxHDi5mHIxm3GzVv95oYkkMoooQPgxB3fe4OImw9k36fdamJJMdNVFsVKaroe2tUUWLlE1maGrc3dvA6NY0hhsUKRLvv7yK0Y3l9i2zsnFhC9v1kzj4p8c0haWqt4+lFqmLCoCSaAgoxtdVG3IWXjBejal3erQdzWMoUe728ZkiHnjY8grJLdBLRdIdY0kGew//oirL36PLlJs06DT6TH2c7xBG3W4wWR0jSwMTLtPYQnGVwIl82m6Loe7O2w3NboNnf7+DrPTl8RhhBAFkb+i1bRRDZMoEUiSQpoVrH2f2A8QQqbd6eP2ByiyRqkolNz+hNq2SxyGFGWF6zbwHIf55JqG5/HwwWN6rS6Xx8+pg1tQX52mFElGLHKM4QCpjojikPFyRRCEdC2LKAjxw5xlkHNaprxhJ6jlGFUUtwqxrCTOKlZZgm3pTP2MII9BqXhcw66sYbX2MDWd0eJTbK+PoUfs+HPKLOeX37xksQ7oOybr9Yo0Sfjt6Yjjic+2uYE+XvBvd1u8/u2MenAf3RSo82OCyTGr4xnzlY+hGzy9nGHseBiGTcdUaSgS0zBFqYvbLWlVk/krosuXzJM5n332Kc8nS3RuTRx7dw740Q8+5HenYzq9HrYmQ1EgqgLDtRG2Qykk0jBgss7YT0ua7QZ1VVOkCbZuQg2aqoLRZDqesdluYtQFCznDkQWF0eTOw7scGQpmXsDkmloYrM5HnL58SjS6Qldr+h0dTRRMpy84e1HQsXVMkTEwKoZbGySlRkuuaRrgaCq5pqD0+9SFifniNdQS9za6eMuIX70cMQoiFtVzknCFImQUq0s0uyFSNPYOemxu9tge9Pnu5JRwPaZrGcxXPt1On7DIuLo5pe9obO0ecOVXpGmEEBALiTBJyWpBFSXoUcTRu4/xehu4Xpu0lmA2Jw5jEj8n9HPKvCIJUrxWH02S6XgeO1v3ePjeHR483EQuIkbXzxg/f8bN6xvGlzfYpo5hOwjLwm3o3Lc0eouYMBIcS9cohc+mWnM2WxAUcJ3nCDlE01t0K9hstWm0uoSVwI8itDRmtrpCSGDoMqvpGa+++g2PHvSxZjWHbz4kin0+eb2g1dqkqGo8kWHrOn1NQ3d1FllKFsLsl99xd+sByv2foukq+XhC5ZS0vEM2Nrdw4zGdjSESEFcR6/kUXYDmWOieRdsR/PpXnyDe2EKVMiqhs93ziLMUy7U5OZ9xfnpBSxV0XR17b5cXLy6ZzOacHX/LjqYxn4/4YrLElGr2Nhs8uN9B7HeJqfEXSwxTI6lCmsMBa0nCTwJkqWARpTQ7u0jNKaqoKMIJfrxC0w0yJKhKqCSKOKK7/Zjtn/9XNE3B/OIJp7/5Jc++e4mchEhCYrmKkOIctQhRWyX6Tg+peUgzMynySxSvwehURdEN7rVbkOZ0GoLo29/x/z3/BZapsF4veHH8Dd07P+SN9/8AsV5SnX9HK55ij8/xVJm3P3iLr7/VOY3WxGWJ41jYjSayY9FYxViqjWbrCAHXL4+xNYkP721zcHcfva5RVRMhKTQ9D6t3a0PzbJud4YCe6yGXObPFNUrzfRJJsAp8Oq5NcXPBfsvlxrEZLQOSuMAZDtEsG1UCqczZ7bVptTuE/oKDoU1XrWiUa1ZJxclaua3N2yXr8ALDbVDkMtNnXyHlEaos2OwP2LB1biY3+MFLNhtd7jht8lafcL3G1DTUssQoc3rtFka5ZuynTPIZHSvkbq/JZBRQ5QWXoylr00MKVtyML5GlikrIzKKY19cKnqlwb+gxtAWFkLA1m2FnSLW4ZnfYwdNkPrh3xK9+/zUXN2cYqKRpyTSG35xdcDFZ8o6pUaUF93a2+c8n52SVRFtTqMqS+WxGd/cOd+++haJZuF9/yWR8fhsABiGW7eI5Du1GA7ku+WB7k68vKq7XPlEUMy8lHg26DLQlVqvHdLYg930MwyRUPG7mFd2jtzl+/R3zIKCuckZhxkjTsWRuGWeSYN/RyXSFpzchO9MA12vRPPyA+XzOYjkmkWoe7TT56jglrhWmQqKY+iTHl8ySTyg+fcKLacivvvwtq3ANVJyGET3DxFWgo8H2usnhsEW738Pq9pFVnY5tUQ83qecjerbFx6+vUDWdvc022xstTi5DrEaLuooZzceUrOhcWUzshNbjN9nY6BMe7fLtJ8+hBEW3mQc+A03QHXaYrEJMqWJnawtDkzFkgSflrMe3AL639hzEckpv7x4//9m77G9eMjh8jK0piDInTFMcr42tmxRpweW0ZBSU+NQgoLt7wKP3P0BLBcunv+SwpZLmMlZniOjuIGUd5OUrMilH1SNULUJzmghJJo8K9M4Aq3TQ+lsYukojjajCNZoWMPAU0iJmXK5YX54wixdMFkuyMENT4DxIMOWakpqgrNHUmo2WRcNVqPKQ5dWC1WLBOEypazhwdYQkIRSFre0uK6EwCzJabpPr8ZRSlLfK9ckMoyh4fLTPVm+De+0Gs+srZos5n19dMa1U3vjJz2m1e3z7+lvibAtN81jPF1y+fMWWa7ExaCIil+++fk44vWQVnDMLfVZ5gl9Ut1DaKiOrUlpGh6NWh54RksgakpARVsXN7AVGmnC/YdEbbqA17nD+7BlSmeNoDnrnACOZk4QTdKtEb5YYLYkqbLG0LZ6er/nLJ08YuhYNSWKZJfhFTi1ktloqShzyzs4Rw/13yU2FUk4wmx6aBFUakMZr0FQSP6fb7FBJKklRUqQJyyzDPthDk8G/uryF9QqVp0+PafQier0GYRhzc3mBB+wMb41269ElpmfghynWxoCW5VLO59xc1MxWGW63oNYdimzB+mZKe+DRados51P0psOqFnz57RNeXE4ZOCZ3u9vkssLRj/8VW3d/zPV4znevnvDJ7/4WURcUpk0tJJ5Pr1kqU3724IDddpv5aEIexchFyk6/Rb4OKOMEUdncP9wmHl8xKSom65AIi7jMOL/4lkCWaR08xm3tcTG+orl1n4cb++irCZaSstYP0Lcy3hwOeTC54q+/esmeZ0ISIIkhZV4xtC3u7Te5t6FwcfKS62++IQ0CTEsmqyvaps4yzlj5EW5HwTZ1smnIbtPBa7oIoVLkt+aT1nAH794jNLNidX3BF//xr3j2+pLM9wnjlPlqTZompAWYuo0sbkG87U6LLAh49eqSV9djZrM1qqQySRSMZoeBoXNydcnF8Tn54R0krSadjmk/uMvcqqmGLd764B7GWU7xm4+ZzSIWoYlreOiqhelWSHJGp6mSr1eYskGRhNRBgC1q1vMp40IQ5lNyc8rXH3/KqjboGTlX8pgvPvmY+WTJnYHLYPsuze1dVn7C9OIMWVW4u7vJxVmA7jaxm03qJKESNV3XIEsSoixF1w1ErSKXCZPpguskpWmbJJVGEseUaYo26LDV6dAqQspQxevdwV8EZPM5VZphejZ5KZOFPp6lICSVuhbMzo5xXA9zY59es4vX7eGPzul1O/zBh+/weH+HwF8ThBlr0SQrDRaLFWGusChcFN9HTmqoFM5OxoQzH2XVYq9vUlc1o2XEqlDplYKqLkHXaGoKtqHTaLr09o7I619wen7N23fvMjQVrq/GhGWEn5ZE4yUvZ2uq706QOm+gaY/YHz7mzccOd7sVrXBExzEwrVub1U1U0G9ZyHaH7sYmVqtNmvocn5zzHz/+hkKpKajJtIzYMXC8JhIhv/zlhFJkPNz3cP2QlmPS2OzhqBp1liFUBUmRsDsdhOWyWMdo1Aw2dtnauz26mEaLvMqpFUF/ewdbd5AqwWo85w9/+iMGpuD1s9+jUXG4vU3f60CuE+QpN/Mx3706ZlaopL6g0GMGBmx2DW5mIWerDCNZsNu2sTQdSXOYI1PmNUNDRxvsoO3cZ9MbkOXQGJWoYcEoLYnKDFd3aLgdsAsaGixuLknmOi/OX9NrKpimjmG1kDSD5WKOXBfc3Bxz+KBP6bTIo5QsjtEsAz8TSKZDu2VzMVuTlyW6AM/UGbg6llmia2tG6yuoYu4ebv3zQpOt/X1sKaEYT8jmGcllwvH1U7YPG8hVhqZKWLpM1zGYjTPiomQV5rRtFVOTURUXxXIIRzecHr+m02kzXaXENTiWRa3UzIOAXtPF1g2SWkEoBmGUMgvXJFlGFV3y4vIcRQZVFuThkps04e3BBu2NDk1crv2CWi9QdAPFMilH5ximQz5+TZXnKI6BplkIRce1ZGxdxiokJMMmCFe4jR7aYEi4GqOIhLs72+z3+xhVhnA6bN95gFbmxPMRhm3eXoiiGNUwKXKV9m6D8+maKIqIopBSUrA8j82dHYq6wBh2cWQZMcopswTZscnygm7Lo4h9guWMqshJ/RXXyzLVh3sAACAASURBVBFFmtHvDTB0hXQdYDcbNGwXP89om7e17/lqyUWacaWoGLLGySrFTzKoVSbHU/783/4IJ7lh9uIZVV2AuNXdSZXAqHUs2eYyCohDCaMWWLqMZWh0ui1Sf4akaOSV4IuXFzRNA09X+f3LE4IkJVUrxkWDvKzoZEveUmJe/O2neCpsOA3slo3S2ifr6ignz0iLiAqJQHN5NVvw/mYfs66wFYW8jgCBKoEmS0RxQjCbsLo+58VkxXA4pCcXuKaCKgq2Dw4YYWIatyDefF2SKwa1FCCKgjJLuTg5Zj6a8J0u82GvjywExWpC3mhitLtQy0SLOU1NYnOjgz+9oX+wTX9P41WgcK/jYCxvCKYrsuka//VroiRjU60R2w2SYEm2nuInIfMoouM22WwMiMucQbdHVmkouoGuqiApVHWMoZaYekQmVXS2N+keX6CbDo8HO6Rak18+O2e1uoG6xt64x87Oe4jrr9lum7c8mM1dpP4BWvMFJ9/8kr5noKjw1qMDLO3WWGSrGpJhIHIVrRBYmkyWJrRMk0rTaZoWtqJTo6HrOjdXl6Ren3WUksxSVtOEMM3IigpJSvjsq9/x3gePOLz3kPt37/PWGw9JJ5f86i/+T/7646fkcYakO6RJQbfVwtMkKAsU06Wt11iyTBIWrKYZQoc4KTjouvQVnXyaIiyVNJhiawaxIuNHNbPJlGWpc39rycbOAS+WT9EkeLQx4K2DbfrZnKbbZ+fNB9TpnL/8+oSXVwHvv/Uh2tmXdLt9aPSIi5i2paOqTe4fbtN0muiH38dt2Ij1mPX1M0TqczDQUWIbhRxF18gCCaNU2eq1GOclN6M5cWiRWqB/c8nPfvIBhpRyMGwgcXu1/uLTZ+wrFQ1dJQ9TNKmilEHoKjfXF2xtdGg5Jhuqxn1H4sM7fe599B6R1SItK8JwTbPVZHwzIUkSepVGvlyTh3McDbpbeyA/pyhK6izBUG7rhLN1iKgVVE1ByyqISpJA5p3vv8fO/h7HXzznZnzGw/0B39v7Ef/wy38kjcZkvqC/d4BsKOhqyKDvcvOyZlWsiYTFn/zJn/Kbj3+N3R1yejojv5jQaFnsD99g79HbRFaT7sG7/PxP/4xP/+JvWdUZJhF6NuXO+2+hKBnWImCQtanyDFEb2LpLWVoI4eMnIYRTup7F7rBPaQjyKKDIC9rdFrOrMZoCh7tbLJQSSQgcpYEuSeRJSMdtUAub5t4edx4/IluMubq6JAx9NnSL3YaNJAmWJ6ds7Q2p0oyqLPCaLn/8kx/T6brEwZx1nOEaFp4sUBXBOxs7vMg1wvMnZFGI53iUWoVSQCXLSI7JsN9mfn2GKUs86rnc3fKwBnc5NH/CV7/+NevxKXK05OUnv0Y1NOrOLpbSZEe0ODJ1lj2Xi5dzsrImQyV89jWtpoerq/RcDbe/xbOTS6Z+QJzUpELGb8goaYCh+DwwdR4+uEPbtBFFxcAS/Nc//xf8u3//f7GMAvqqRoyBIeXYmk5e15RliWGYDD0PzWuR+ysWVYbldDi4fw/XdBlubrJcrjClJqUlKOIS127Qdhp4tk2xGHG/abLbe4vfnV1zPpkRrlZs3dsmTSJuplPOx1M+ODpCSjKKakyd6nz+j//IMllzMOgzmU+wmkNWUcEqnNI3LVRy7m52OU9ynM4mS7UPjFFUl8ifcfziGstusnWwwTIo+OrSZ1Xp3JQKv/vFp/zrty8IVI2/f7EiDGGjO8BfLajKinWu07QNKiljtljjr5ZczNcc7eXcOdrHa3q3JrFgza5rseh6PB8vmMwj7nR6NBoJqZYxmd9yHxRNhrymCAJujl8htkomZ8cUQkKXBbpj0t/YYHOri+2YzBZrDF1FVWXOT4+RqhLvcBO7rtnpNiCYsyhjrG5Ab6OD1eijtfaY31zT2jgE04JSRk5WzK9GxLqK1xiwPay5CAPWRcji2Wdsbm3T3RqQ+TJmVmM2NG6OP+dyMmXz/ffQyMkWl2DWOLaDPthmdbngi2/HxEKl2StRi5RoMSFYzVFtnZe/+E9EQqK+viKOfCLF5cnNBWaV0zBlVFW9NdlJFbO0YJ3EOKrC5tDEsnRcV6dMPZIM1suQ3baBY5k4TgvXaZPnglfTK2xZxdJMprMFhm2SSxUvn7+kZyi8/867bHofMHryFb9aLJCKioFxq2H3XJc33/qA3sYGpiOospfURUm35yLFt0wPxcx5ffIty8UVp/6CZRShSDI922bbbWDWCVumQkVCU9FoqgbClDF7CpbToF4bOLpNo7vPaJKCYjDxL2mlGplwMVUVRVJJRjfU/hJdHNDZOmR4cIfu7AV/tGMRhjNeL5YkVcVh26Dd7XI0eIQdzhH1GhE/I440Cs1E1Dmz1YI6mOLUEZ5nYzsNHK9FquoEixUty0Enp6fIVKqDpa6xHIeZH/Hi9IpeArpm82p0xuXpFQ82Osiix/X5KaOLK2pVpTlsIoRKo9EAvcP6csTqYkE6W6F2BozGY9arJW2zZktv32qZNZvxaMrmsMeP3n2bRm8Ltb9FmPoU9hZaq0WRR3weLLkeXROEaxSridP0ELLJ68mK/tmUHw17lGlK21ZpOTKepVNWNbKiUPgB63qJVqt8cz1nGpZUImMRnVFRoSgai28/QW3u8NHeG7SrlCNHZ//hj7FVCGYT0qqgEAbY8NZ2zPVqzMXVJWlZs7d3gFoliOWcoWui7e6QTOaE1QWKnBLWGYZpEPohq8UKpZYp53M2NJmGYSArErWpE1wnaKqCqhq0+3vIJJRzn6Q2sS2bMlgzWfqEacY6TAnTEqGraDJIco2pyowna5Z+weP9PUJnyqvrJV/6AUPFYByvmPoJF6mEXbpoIkCxjvBHa57+zS/44fce8+73H5AqK0bHz3k9OkWyPdrbGxT5GqVYgN1G7vQR+Svi0yfIhk6R+4gy4WxRM4sL/EJGs0q85gZ77T6nz3/NJ9cz5uceP//BR9x/73u0tzcpi4r05gvyMIQG5GnFdq9Jp33LMsx8H0lU1HHKVNNIkzWKEMiyYBWmXIxWUGTs1xWaa0BR41o2RZrjWR75eMnu4/eowpDC90mnN4SxydZWFxBIkkouZAzLoUwztgdtRpMVo2XAm//yMdQ1dRYjyoJ2b8Dg3rssLs4IxiMyYZEmCjPH5Go+4fjr33M2uSZIAhxdR5N0FtOCnmfQbti4JjzYTPn9dUzblajkGst10MkgXFMZOobdoNXtc2fvLvfuPSCaL5FtGb2coao18/UCxWhgKRKDbsXuI5cP3C4Hco5tNhFSyc3ptww3uliOiroYIWcRrqkh1zlV4qMpgjtbbc4OBlzMEzQKzIGJUaYYjo4cFShLlV/8d3+P/1HCTx7tsLOxieylFElBsPCpVAXda9Lf3eVqEbJcrRHLgB//+b/C8oDVEsvUiZISU6oRVYmiaiR+wNHRFu+8+ZB0cUGwaNGUM4aWTKfrYrWHZNTsL1q8udXncrzi98djnr+a0bMU7CpmwzMxi5Bni4TnU8H9vRamCusip0S+na8WKcHVl6h2F+PeQ3bmAeXpDa4iY1Px7SzmLDmnZSjUdUrPOedu1+F6POFuf4/t7Q2aO0dY24ck6zn+dJcnT77mu5MRd98c3M6jK4EkG3R3dnj13Qm6ZWPZFlVdo6nQbdoMGhYiyKEl8bOPWnSbHs333v3nhSbResbdh7vIV2f8w1/8H1B3+OjP/kukJOD1b78himOkIqfrGJQNB8OxMCXo9jogBEGcUD77klLW8dpDpqMZr0+vCIKEVZBSaQ22Dt/hyFNR85hVUpLYm2ShQn7+nKoMqasEoaoc3H2LcDWCYIpUubQG92gPXbRlQJUsUHtNFNWEUiZHo9E1aLcqukGTzsYuUpKQZkCWoyoFg86Azf19FosxYRhSi5C3hxZV2sGRS8L5NUbTZn+jg1Fl7BzsMVcqVFVFkwSSKBGKhagShrbBa9tBqCZZNsVrOewOh/RXMxTHAUlnPZ7guFuEQQqAqsjYhsr0+oY4jhCKhlQmrJczFosVw+09Hr35PbTEZzUdEQcBkZ+yu93G0lV2Ox6aJPB9Hz/O2LUk5Faf42mEJQvajgSqzNZeiyyw2TI7iM1t8jTi80++QM8zdEtnaOjoioZSgN4YYigvefHZ78hNj4urBUVl8M7jR/z+t5+iFDJqpeLqLoa3Q2dwxDv9Bs1sjV3HNJsd3FbrtvVRBCiJSqfbodVymScl9dU1fafJoKFRRzGyUOlUCkbLQ9VU9CxHNXTioqLtNvizH/+AzbtvUy7nLE6foSkqZZkT+EuG5n2Kf9KvqgIizaIuY2bXl4xPjxkvfd7eHeCvAob7+8jhElPXkKhRFIFWF7z56B757JppGSEMk0cHR3xfa5AGK9JCQhUu+sY9ZrOQ84sTimBJlpUkUUjoL5FFzVt7e+wNOuRZjm03KRFUpUCtClRLR5ZlqEuEECiqQpGV2IbGwe4en18n3EQ5ntXi4YHO6eiYXLEx+ndwbIPNew/Zs0vkKqQuE2xDob/VYvRSR5Pq29pnp4+lq4jqdocvSTJSGlPlNcQBZS2wLIekhH6zQRGsCM5PeT29IXBaaHfaLFOJxSJiFURkVU1R1VRUkGe8evacxg9bdDdbxLMFH/8/f8H//XdfMVoscXSFzYF1O3nSbSaLJSIJ0Y1tbL2FacVc5pdc3Iwo0pyNdhuzf0TDFZRHgmVqEo+vkdcRrqJh2BZ1AqQqkp+w5w1ZtzYZWCmPB7vc7zZJTy6xWzso/R02fvA+D//zJ8hFyQ/fesCr+Bqphrap0N26g9VuotsmspCxd4ZYvTaNKkQ4NZ3tDkKXUMYFup1TqgpCNYiiJcF6iddtoyoK3x0fs5jN8Bs2Re5w8xe/Zrfn0tFK+psDnrwa0xMlNfBqGbNapOzXMo1Bn6IqmK18QgE//clP2Gmfo0djBns9ujsbrMIEXc65czhgFixxnJL5JGM5OaE2TcrqEFsIVjdj3P4R+XqGYQS0zTmO3CSJc+KiIl1d0W726GkZy1/8JTMppdX0+IPDBzz97TFmo4O1s4fb+AzN0NFkDb0WGGWNXqSYTRXRHzC9POfQlbGSKV0pQ/e67Gw8xJ+N6PYNhg8fYW7sMnj7MXZniF4XfF1mHO3fwcxnbPX7tHaOILuFwJaxjihz5FyipmYWLhkvZ9QU6CKja6gsJ3PKxGej12bvzh3qeE2ahZi9FoFnkQQLyiwizyCJYoo0RW61uNtrIRSDuw8O+Mf/8A1///Qlf/b9N1HjJUfDIV9cTRg9+5K2XtJuNjFMi3/54Ye88/guqlohzCNGuYyYj6hWS7ROC1FVPMwq/O0+oT8n9td0BttkYglFRWf3kAdvvIO1NyAdnaNbDfxCwaok3tjrs+P9G779zd+wvHqBLRQGnk0uG5hhwLBrkfsKrunQ9zwmqzWqJFPWOQ4pRtPlB++9xbt//Mf8D//9/8zJ6SuCLKWBzOdnM7YdBUPK0S/O6DkKZruDqcroruDNwx1+8v3v87//1X/iUX+LrUabx90DLFGxePYVhqJTFCWOa7MOQkYX13hbAxrdA3qb+6xHAZev1ty8jGlYXcaTNUWpYOo2tqohohAlWtHttrA3D+nfe59nz58RTK5ptTpsLBeE0Zg3Nwa8/72PkBqbyEVJFAtGyxUvLr9jf/c9Xn/1OZ+dTdHrmk57Bz2LsaUKq93HWCx4Y6eHMrtA3ttjvpwSpUvmUUSid5kqAxq9KQ9xmOcmqeky932+GAWkUk0YCapSZzqfopFz1N1Fl1r8+R98RLA84/T5l+jpkuOTYxbBmjhc8pGhopsqZpnjmAauofOg06TUFYp4jedIhHLFIorRdVBME7vVRrcb2I0Ol69e8vzrp1S5Sq0Zt8ayJMGfjfHaLcbnL7g+PeXi9IzF9JqNdoeGqeDVMlW4Yl5muG6bxtY9FF3QcBTm0xWj41ekUUr7/lvoikQ1f0HTa3BUCErVIs9DZn7AdBkz81OSySsyVUHIt1v3TtNAUioazSFexyaYT0jWS2rbIFNOqeKYIr2d8qbrFUq84no04/X1iLSoseuKdXHJSlZYjxbcTBf0tu/T1Cw2jJxmw6bfaNCUUhRTIqw0Xk3WVKWGbbYxTAevpaMbJrpyzevXFwy6bRR3E6+3i6aqtE2TOMpZxwGmAE2SicIIrZQpo5CzV8fIqzkdRWJxMyaLUrZMHb8qmT39nMeP7vLue3+CE16hViPKQmBaTXq9HdTJawwU3n/nEUeWzvOXXxKsTjk+v6CUVNJYpeU4tFsDGlKGRo1WCSxrj2bTQDdzlG4Dwoyw9AiSGrtc4VqwWAvKRpt4rdHvbzAPE0aTkMHrM5zeI+ThgN73f8rhvKA3vWa6Dui5LpIkMTBUej0PrS3TODyknp9geiZ5WpDWPmGdMs/mmEpKw9JotGyMVptAmETrJeQ5y/mK9WpFlpU83O4g6YIkyxnPQ84mK4RuYzZ1lquAJCtZ+yGz6ZhsMef5zYx5UfK+KqFKKobj4A5tdvb6KGVKES9ZpTUvLsG2BEIrqalZr9ZYrQ5HR0d4poWu6tSqR5HVNIUgLxKqxQw3CHiv6VAc3uNidMWVv2J2fUYpKiRRsbqZcRr6aFKNqSnc3Wwj5Qlm16FYh3R3WqyDnEG/jSKDoUoIAftbW+wNepgNF0ezaJld9h4+pLk9ILw5Q61jNKGit5v4OdRCUDa77HodqldfoGklR/tbdDY3SWOf09NXGLpCe2eD7f0tXo6nWIogTgtU02ReBgR1TbsuaVDimCaFEJxP5nScNo6po2gS68vXBOM30TSF2fkFWhjgUDCXNMI4RRKC/Z5HnSUoQqLpeSiyRF4V5CLlw7fvIBUFl6sFo9kCtRJ4loOqSew4MvfNLnGmsw4q+mYLOVH44z/6N7x68Wv+13/3PzFstVFFyka3zebREaam4S/XRIvZLeQ4TGn0d5hPf098eczcjxiFEbMspUYmryUUOWRXWTMwTHZ2+mRpg/ffuM+9nW30LEZej6kqidn4miiNcGSLzF8iySWz01PsXh9NFpR5RsOxUfUYSRKoMniuCplGaKhkWYWla9iOjm0oCEVQKwqZH2EqJtMvX/Dim29JyLheLMhXErx5B6fRZ3J9hWe0CNcrGu02clmwtz2g5TrUiokQNVVZ0h30MSyLKKmoXQs5NvDDBFkUSHaKKCrkNEfECq9ylbNFQFVLNAyXeQqy2sQ1ZDYGJWvJwTNt9GYLXZMoooDlZEGyXKI3Ozx+9IDraYBkdKhdnTULJusIFdju7dBu9znc7bNxx2Jze0Y3lWhUNvrKp5YrFEVhOZ+g2iqvnnyOLSfY5gZhEHH19Zes5hM8r4FnNDgrcj56vE9clCiGgS7LVFFE7VfsKRJt/4ahdYhbd5CtiChMKOKEqjLobG9j2ybxyRX7uztMT08ITp6x7VqUDY84CFH0itV6RroO6XUGNLw2e3t7NCwZYfTYtN+hmJ6SjK7Bn6E6Ds7WJuqGTnJwF+9yxmBzxi9/+zuenZ7ScGwaTRdNKtnyLJ7OEqqLG5pyTVSBpluouiBOfaLLp5h2jyrpszkc8uHQxigqSqETZLdTLEeTCfwQr6zx5IIfHnVoeSaS9f9z9l5LlmVXlt3YR+tztXDt4aEjMpES1QBKk2Y00tgPpBnJN76RP0irhzbrJtlsdqELCSCBTGRGRmQo93B1/epzj1abD8EvqJ/Ya9lcc4/hsMsjsp//gOm6hFbLV8/vc9ca7FYptm5Stw112tCWkn6vxzAX7O0LFndLPFPDUFtGHZe+UfPJLwbsH52RzmI2zfhfF5qMHQ2rSPEDl9mr77hevGK1vOJgMubm/QV50xCcPaIRBdrBPi9fv6PUJJbr0hQ5ZZoxundG7h5zOjSZ3L7k4Pgl//lffqDflVxFDb3BgIf7NlUU09llfBeVCG9K51Bl8/ZPSFRUWXPY7aGYLd39PoaikK9yWt9m/WGOVoHhdD6SqmVNIXXwR4we3GevfMPRsyfomsv7P/0BS9dQDIumzkk3CXq+YdIfY4YdNguFu/MfMZuEXhAwHYfUyZLopiDs9dg/e8T66gJNEaimS1xpaLqFEifcnwa88BzysMvecMieoeIVJeNQMOiHvNptyYWgENC2EtPUKYuY9XpDS4ttGh+vqJN9hOEyGo54+OgRbrbmrcz5ebVEINENg2EnxDM0TFXQ1hnbJGcXpfhun3/zaMht2nA20FEinbzq0oxd/EdPiTVYzq4IRj7FfIuvakz6AQidspDUZYuw+uiaw7v3V/x4saQoJf/H//0NJ6Mxz48t1tuIXtjjwdPPmUyP2d5e4Lg2ahah1j5NkhJt1uTrC1S9QO8O2ZY1jdly2O0TlhGW61LPb1DiEtkmbJYbwsEAITSEVGhb6I0PONpzkZVAehOsfRVFL6iqgv/qH/+GTSPQyxRNV4mqEp2WxeyW9d0dRVmhaypdz2F+cUGtWpwMhsgyQXEFom3o9wOa3CAXJbauEicpvX4XxfKpA4tYh7qRKKjYaYkWaNwUFVFZoNcF/dCj4xhMhj0sXfuYuGc7NEXD9zykIphdb9GkQPNUdF2lSXM0Z4BmxtwbOMyijCIpSfKEsaWiT/dJ6xpFWdOnxtIE2yTH0STTMMSXb7A6DVddC6fNsU0NoSgYholUQ2QZo2k6pqWyu7viZrFlto7xgw5Hkwl6nbNb3LDVFeaVzt6vznhwOKGoz9llJUVVU0lBI1taKfFsHattuH17xbvet3SOOkwDi18+POX9xQWWrTI42KN+f8OHxR0nkx4dz0erGoQqMG2DdLfl0dkDhiIj6Owjg30SMqbDIVnnGd/80z8R8AFdqbl/OOLoaMgfX7yHu7c4vT7/6//8v1F9+IZnxz2U9R2WVPEHHtXsLd/+0z9RzTccuRqhKDi6d0YTxai6Sr3bUuzmqOGUzrNnTA99NAnVqkALDMxeSGMYaNU1bWQjDAPZG7N++w7bVXl0b0pvFGDWG/79N29Js5y7RUPo2RwcHxK2S1wNyuWMuKq5jmt2TUtWNxjrmC8fnFKUKaXq81Oc8nenY/76cEB6e87083uUacn2/IbkJmW4F+B6NV0fHC0i3mWoigAUaj3E6/T5/NdP+S/f/EBPSzhrFiSZoEZnGe3I0oQj1+TQTDky7hjmK6Z7Y1zLJAl6NFFGdnnFg8kYEBitQJUNoixRHR3NchgcDrFswXpxQ7leYhsaq4sPDE5CetM9qnZHGl3RnQ55vLdPXuf8u3/69yQfznlwcp9+/4iTp0+QMqfOVDqByeFel10Rk5cKjaIyu7kjL2JCxyAMPUzbxO26uKrFwck+fmAwX2Yotkv3cMLsdkGyyPG7PXQpKduG+S5hUkoG0y7V+Q/szi/YxAkn4yHBYEp0e8HRXsBit6PYbthevMMRNU/Pjnl+OCQ0BKrfR7N09FrSNjaVKflwfk0Vr/H9Ps/vnRBtV7y9XkNesNfdo/FqrO6QL/fGtKuCjUwZ7x/j+V22F1fMvv0tFgangx5l91PqfENRxOTxlolnoGoar2YlB4HD0XhCVbd4vo8qGnTTpTs5wOwf8uc/fk9b7Dg5PuX95QVXN5cYSsvO7lArBpfrFP78gubsmO50itBtbMvj6y+/4rff/sQk6LFdLFjWGz7Z3+Ow26M2DeKyIbR0hKKyqTLKSqIoJr4fEnojLl9dohg1RRMRpwtkW6EpAtG0KFXGpOPQHQ4R3SGd/gSRxfy0uqNVLZ4+fsieb6DrFpap0xt2MHsjamymWcHJYoRZvmOaHPK4N+A6ypgt1uRxxemwi1I3BK6NlsyxemOKKkU2oOoS1ZS0VcoXv/yEl1pNVb9h1D1kfHBEnmyYza+4d/aQ+fKSvMmxdfjy0XMcJeBJf8TDkYn/9FM2Jy5XL/6CeXvDVdqyXm+Y3d1wcrBPto2RZUXPc7lebTgYD7iMEoaDENM1mEdrfNchNGEXbTDv3UNVNG7fv2d2FaOaHfTAR8qa63evGA0skA1FtGH24Q2Djk+buRxPu/Q7PdRdRpHU5LXK02cTHLmkVUdI1SXfvWe1uGMTFeS84dkXn2PsH6GbJrLOyZcz0lVBUKSoOvS7OoWwqA2dVtEQQpAUOW3ZEk6GtNstRpHRJgYGEpFFVElERyjsWS0irtmtV/z+p3cUlsf9r7+kefMSd77gxcUMJThAyB3K4pbPJ8c8fnKCHjiUVYKn1dimRGo2x3VBtljjWBa9YQfNczAcn7ubO6aTIbbb5+DpM3pHU0gLTENHkYLNdsf13RzZNti2jWko2P0Rk/0Joih5/+IVYVujtxKECjToq1tuLj7w+bNn6Ns5UouxTZvpwX1ct4+4uiae/4HxV33sgz6GOOTuzYLQOERqDtvrNfku4SA8pKOnIATLQkMfjOgZEfV2xyJOyVufrI5oihjSHSY1z073EcN92u0cVWlxXIddnTO7uCII/8DY/xIn7DB5+hz1m3OGusljMwAETZagmC2KkYFuEe6dIERGufmAYzkMPIMDZ0oR72htE7vbxej2SZdrjCrH0Exef7ij5zv8p+9e880Pb3l6NKQ/HqEGXe6dHJPWgnizI+wNibcZi02EKRv6qsZhP0CNYmSZImiwXRu/E6CbDoZp0NQVdtMyeLvm3d2KtKpZbGKKtKDvujiei6gK2izHpEYtcpIo4mbXEqUd8qSkLHbshz3GBjyNTC7WEa+jJYui5t18zdPjX/DYgM7QZ2QLqmSH2x2hdw5QWsnw9Anxbs0vP5vx/fdvORqOGXW7uI6Hojuk61vqIubyx5jb83vo7RbqNaPjR0zOHnLYHbC5esd8FxHrI573f8WoZ2LaBsbkiHgzY/biW25vb3Bev+T0wQlO6FFsJEajoRgm9jBE3eyoog1NU/Fhu2MxW1Oh8LdH93B0l8k4RDVatu9+oMhK5PaGp49GbJIuL//D7zCF5OE4pBO4hKZKlqeoioNtlFkmDgAAIABJREFU22i2yb3efRzNoIk37I19vtzvYNymDAcdUtvm65OHBLpDsrhjMwfXzHn46ad0Djys+IZ/981/5PXFFePQxPICTvdG5JsFZVmS7rY4VUGxnqENzxDdgGZ+w2jUY3e5xLYM9j0PW1HIqoZ2M6MVGc9OzzBdh9DXKaMbFnfviG9MGllzdTenaEr6hsbx08fE8xtELbAb0J2PllBN0dAVgSxTer6FaWioquDR4ZAy/ch2MXwXVSjkRU1dVpSJxtAO+fDz77m7eMt5UXNRNHQ7DtF6w6A7QQXUuiBOczzDRPN8VNnidvv0B30wLLzBCE8rqReXlFeXtElOsUmpsoJ4t2WTZWyKlrJJcfWKjt6QGTBPUsq6paZLodXkQmVbaoxcEw1JJwjwdYHjulT1luXNFWacYOk6p/tTbu5WXHx4z2J+ydg3sE0Hy/Ho+TY9vaS71RAvr8i1HYbtYNkaVdXS8R3KOuenF9/z4fUrTvcHbJZbrrY5//ztay5vVzwZu3z51X1+/eUjhqZCkSQkhgNNwtvzLe+ulhx1PD6zLUg0bFVDaCq1quJ7DoqmMhz2EVJQJjvMuuAXj89wXYNFUYHpU2YpslJY7XKmkwMsx2b/YA/Xd7CVHENKqrZAd12s8ZR8Nqe4fYtl1liP7+OcPUURPxO4BoH1Ffd+cHjx/px35xdYmsQSGo9GPscDj+8/rClUk67eorQpUu1AZ4yUEF1f4I4nPNkf0xYmO9Gl0yiomoWjNzAcYouExtARnsEPlwtWb/5I1zX5N5/fx/cVNNFQEmNisWscWk2yjDZobkU/tCniGKUWHI8m1GlKzze4Nwk43u9Tr+5oNzVtd0S5sXA8+18XmkxP9thdvyffrfA6PslVirn4wE20pCwldZYT3ivR+iGJLlnOHXRV4Dk2Ml2TriNavYczfYiTrpGGT+If0O/Y5EVDuo7YbjOMTp+mMyZpDJTVlr/MSyJRU5kadal+VKtGFzw7PqZtc9ZyDdk1y4s7Fj9csDeZoooWFVCaErNpufkwpy0Vpp2Q7PwNqjsg1NSPEFC/g27bRLsV8SYjurpifT1D0UyePn7G3vEEx/PwbJ10/oHA1elPxmiOT76ZoyiABKszJarX6HpB37f47PkTzq979D0Xfb3m9ftzss2Q08M9zk6O+bBTKMoGTQHftlkuLpFtw7A3IrBtkjhDNEs++eKXdMIuHa1FFRWh7fLs019w/uZnqqokDD4+xiAwNEE3ScikRrta0e9aPPaG+OEejdAYPXuGUmyJ5udEt1eUmwg136EAJ3sjQt9HUUyy1R11tKUuMkzDpuv7HE01rpYR4ckxT7/4JZufXjHYbCi2W6KrO9Q0wfMURJ5Tyoy7KqUqMiwdvH4HxRtSKx6+D2aToUkwdIO6rVFdG6k2yKYg6A/JsoSiVUEIbMugylL80OT17/+ArDR6Z88wgg47WWBrGst4i6qbpNkGgSRJYpLVnLosKMuSbhAiVIPF9R39SUWpOJhtSd1ITEWlKTI0/WPVTlUNhJagA77vUgRDjP4Dmt2a4sOPpFVKG8eopcAVBoYjCEyTTndMJwhRNJc8jqFucIdDVNGw3SzJ8hp1L0QVElUVCNVAaBbm8BB9nfB4mvPdyzlGndERKoqqEysS2FBvF8ROl8nzLxkZJRYbosU1umnx118+4Ob8mqOTQ9qyQvHA7/dJljWt0FCahCbLkHWFrevIVqLpJt+/fImWRfQGE6aPv2Zw8IDQ8gmQDFXQDYO4kcRNTSUl+2EH33Q5tEyGakZHMej/4jlF0jBUUoYPHnArbf7l+7eElsGj41P6ozGakAi1wjAFhyfHPH7aRdneoEqLttsjKQXnNyuC7T/zabfF7Z1RxhVWW/Hw/ilO5x7Xly84ffyE/c9OuTa2bOorDva7ZJVk0OtRzFcEmsl4OGY5X2CUEacPnpJGNS0lUq3xwg5uf0A4cGAxoypzVK0kHO4jjJJWBS10KXMTPQgpdIV+t8M2cHh4sE/gw//0j1/w5N4+3//wijxPGfZNFBkzCFXaMuPuds2f1hktChPXJqhLBo6J6mqMrQE3ix2NYfHN+xf8N1/eY3LvPv7JI3Y3N2xuIrarDd2JyTBwMRWFyE2JVjMULcNUdpSyS5unWJtXHAUVSaJx2g3ZmRq+U7P0NcrY57PuGMqEnh/SVDltETG6d8Dk+H9EEiOLGUv7kHRxiUKBrDOQFbJIkDS0eYSQDf3Th8RhxN5Skr6bM//wGmMyoTPwkWnG8of/Qn4b8uZySfPhlr9/fMLxwyn940PqKKbJtywXd3R0i57tQpXQaoJNUZOsF+RZjIaG51jkecbQczHakgZBGmdUQmX85Bm3qaTfU4miCE3VMBFEdY1iOGi+hfAMktvvodjy5GjKNm/ZO9zD0EATCofDHi9vZizuZhyd7DPudnAtFVU1QLHJrS5+ekdr25SGz2QCzS7m/eUMqeh8MhkwtAN+ul5yFZdo/ogHboegiSlVFWM4YeIJ3K5JjwEUMY3iUFhd6qbh5uWf6BkGjWpRWSEXhYvaXNOUOlMvZKHNMJsMQ7cIwz7Tg0O++ZffstzcYRouZVYhpGTkOzR1iW3YRFmKSkGt2zS2h9qbooU9VM1mX3p8fvoMc/6BF4s5rzZbkvWcf/v8IQskSlug1gp63eC6Lnd3W0x7i2xa3I5Bb8/BGbaso1ssW6IqNqoiUJoUhwbb8TEHe/iHJxiOj7Y3orjuE89nnDw6wG/76ApYSoyvVcisoHe2B0KwN9aotjZmGbP+5iVNlCCk4MF0glbGFHnF6dAlMAVSlZSbFcFkwrbJEGaXdnvB7M//mRPHZa3rHAw8BmrG//5ff8GrNwNy+jixQKHkF8+e8/SzL7GcLu3NOWZ+Q3uxI6hi+k9GPPvyMau44ttv/8Ti8j2Tvkebxfi6giMbTqZDYkUlrhsmSovrOyRFTZImNKqOdbvi4ue3rC2dd2+vaWqNrIkYNl3yxQ374wDPMrHqiocnx8wu3qNJwacHX1MVGbtow8S1WGwK/NEBnq2Q3V6QNTN6v/hHwm6Xx4/uIdKM2e2W7P2PGIdj9IGPqEAXfZzBiDIrKZOSNMvY5Q2mZZDnBflujWrbtKYHqocsS9qypkgk5TbF1n3ssI+SrTjruxS7hPfXW1Zxy8N7j2luItL5BlMqDC2ferfk+d6AR0dDJsMB7uEDrH4Pu9nhOh4VUKQr0myNMe5hegGrdYrAxDIUSqkyefiISTDEq2NkvEQ3Q/L2Y5OxzCtW25iybTCbhmA0IHB1wqBDL4/ZG3Qp8pL9ScD/8JtfcvX6Fd9dXrN58UfmQ5NHnRJF1xgNQqzGQq9zcqExm88ofvefGE2mWMWaXqeP3xsjZUOtS8zSBW2F5zgUisVk6lNVM66vNmy3MblQycyG5S4mWc+Y6nA06hCM9riLBLpMaOoIYQvyqGVTJeTLl5SXKsHjTzl5ckj+YZ8+NbbnUu02COlhDfpYQRc1HFMIWL99S6vb1K2kijOaStINHOrukFrTKEpJu5jR8UPS0iCwbMrtjqnjsi0LHNNiFqU0tcrJs09ZvX/Ny1dXBH5AJ/TJVxnzdcSD+4f8+tfPWK82rO9mKGWOYtgYYR/DdFE1FVWCVld0RhPqH1+T1RXpZs3BZIBpaCidAbd//j2erqDKBU1ZkGEihIGSvaONUnZxjWeEtI6PspvzOHQZ2/DTZkdqO1SmgyJ9To+PyW7PqRsFrRR4nTGGbVLtIpqo5q8++5yr82sUcparK95fZSi2g1pWdE2NNkt4vB8y7Y/p3/uUyYMnuP0u7W5NsD+herOlthyW6zXdUuCFLpKW/cenjIb/wPZuxvd//BPL+Qav1yOKtjh9j1LROOp0qNwZu/WSn9cx66wGITjohWitxAtsgmGP3fYOWRck62sco2G9uGW+2H20f9oqhq4zHPYo1gt6rkVTVbR5hem4eLpC2O+gdmw82+RXYY/765KbuGG+WZLfvUPqNu1uSRFHXM2ueH33hkkvpJQVn032OE9SFtGK7sSFfEOaCfK0oJbQVAX58opi7VNkOZuyJvAdPjme8O52RdPWNG1Dz1TpuzbdQMeuVuhVzPz9lldRQlZUBIbGo/uHPLt3TDDeIyliHE1Fd3wM3UGqgk0RoToGsm0whaRjKRxOu0RFyx9/jLHVhsOOw6DXY5k1pKstR0enWPVHJawUkuGeihAhP/xlyaPPPqHb8WikQMoSdJ3VNmHguTiOi2lYtGkCTYEQCopsMUWLZRgUho2hCJaLOXFcsY5yoixjnaRs8oqirGiqmq6p4ugOU9+iQqEqdvzu1Vu6jkrZqIz8AEMz8Cwbq6lRm4qsVmjiDW8vPqAZJo5loMuSzx/eY9pzuf3wFl2V+KagbwnGnsuw16MXOFi6gVQsHNdBMU028xm6a6B++Im2rPjt9+dcRm/IUUnTmCStybKSrlLSDTS6Xoi0FcpGUu8UVEXh4cDn0HWZoLF9N0M78T62fIT8GEpbNq5lst1EFNsNcW/LJ19/hua5FDczVlFOmu7YJBlxmlM2DVVdo8oaUW4RdUSd7ciLls7wGHNQUVo6u5/f0FzMqe0FahnDboeIY1xDcnZ6iK23fPf2A29XWxy15ZenQywqerZGniV0LAUhbWrVQhs9wgkUhrxlFcX43QAyh37vOb87v6aVBqFiYqg5qUh5uVlw3wsomy2PRgZnR2N6rk6drFmvN+RSQevvY1kGlRREu4Rp6DMIA4aewTYr2VU6qjwi2t5higZbkxi+x82PW/xqiOMdoMr6Xxea9IOA5TzgzesX6IaNVDQ0zSBPMiQGVnBEt1VwTZVNGDAZdNklKZrpoKmC3oGKWL4j2JsglRrpW+htiOtbpMuYrNOBwX1yYZGlJeevZhx3TAJb58rK2KmHlNWOyfEeVitJNisMRaEWCuniAz/P5gyDLootETKmyVvausIsC3p+wLya0+14XL254O7ykkboGN0hg4mH6XqIIqFz/Aw0wTaOWN3NMDWLThDguQZOEDCYjNA1gWZ70NTYhk6u2ui9E0yh4LsOWZXSFgXHx8fUmstJYHMb7fj6sy9Qg5CLZcrRYY9NLdgYJZppolLR1iVlWaAoAsdzCfsDWqFRlCU//el3BJ8+5Wg0QQqdF3/5CyRrCn+AbvhYhouqSJo8xQ994psZe9MuumhR2jXrv3zL5IuvCcYBzU2GUEHaBmpjcxPUzJuG4+kEw7DRNQOyhEZrEIDXGzHSXIRX0n8QYA0PyDPB+MFj7j7ckibf0bRb5ndzdmtJtxcSDIfoak3QN/B6A0w3QNFVdN8EXSHeJehSgmwpkwTVUJAqqKpCWUks22OxWOPYBpYm2K1X+MfHfP6bv2Lx9po02WBNT9Dygg8/v8AcHaNZNm1dUKYJyeKOqsgRSAa9Lr3BBNNyeP7Z5wwffELY8SgWNUhJkSeYbohumIjaoK0bOoMhNBUqCo5poWYtjQR3NMH1O/SmB6y3CWlWsdtmuKrEtlzS2kBmJUrTEPZH2OGAIllQ1RWN2oKhIoX4iANvW8p4R5LYRImJrXh8+ekD7m6uWG4LjKykg0LeFB8hR12XsI2YBCFKbTIcjtCA0Hd4fDSmVm3qoqJOMox9kxSB0kjSxYJQ1DzYHyPVJZ3DM6aHp7CeUcsp1uQh+w8/oTV9rm/WuJbL1AsIS0leV6zKjFqoPBpPONsL2A8UwnxOp3dMcHDC/qMTfv7d/4XqjnBii73xGK0uCJUKx1AxDIGhQ9gNCQYBym6B0h9RVB6lt49We3w9zci3b7DyBHf4HM3qs76co8zPeb53j2df/Bo39AlDm4d/9ysqpcaKl3QPbCxTkO0KNEOlH5i0icn27o69/UOka6H4Yzp2he9YWJ5LEy/IGoml6bgHE6hShMxQdR/T9dH6AxTdpMkL2t2W08cPGIx7NOkGXSpMbAvlcMImXjHe89mbeOhaSR4pLKWCpqjobohiWxyKnMk4ZHA4YHF1jdX12DvYJ9VbfprN+OKrL1CtEFndkGwjVssbJmn48TJQFXQtl9iz8WwHpYnouiEKLbqo2Ss+ME8vieMUGUcEqkIQ+Dx5dA8vS5jPY57/1ef4Dz5FGDZSVChJTlPMqdKGu/kNqgaVaqAIDa0qEEWO0AVIBU1qxJscXVHZn/a5vb2lztbc3WYocown+sis5O3FO2Sr8tWDAwadHqaWIaMZZiXJoh3lLmU06BClC5q2QKtVqqQh2sTYoYOqKah1jUhihBkgLR29M6JYJ7jTfXamjSZrorev0VyN3tEEe7aibSWPTvaxXINkvcbV4NXLCypUhvuHiKZhstdn8fYDel7RNoJ1HHFcj+n4DqpQARWjhXhZYXf2sZQFSqMQVGB+2iPofiBab4jjgunE5PF9ldfXO26SlkdHe9iWwsGDz1CrNW6ToFo+hd1l9fYt1SZGkqGoBcddizirwfS5EiEULUe+ie2YtN6Ey/N3ROkOYUuCZoe9vOTx8Rn/5+0FVVkhUDnuuNwb+QxGQ9BdtCJmeXXB2d6Is9/8HcHeIYowMBuDnip50r3P6vySJK/J2hbd8TCDLs3yGiEg7O3jmSZvFZMmr3j948+Me0eMx0Pmd2+4uvyZf/iH56R5ye1NDJuWpmlBhcZwaG0Xx3OwDZ3u2RHD4YQ//O536IaH2++h1jmeC6beUpYbkp9+pHOyjyEqKs1mcPw5j5wjmu9/Yrxa4JdbknWKbFrGoY0TOHhuh90uBksjMzQKSjSlIUsj9nt9DgdD4vfv6I8nWLbNL+4/QdhDvjjcw1AkTtiha0oMqyCdjuBmg7F+jzcOaDRBo2mopk3oO8xWEQ/Xa+oadN1CUzOmnZC/3Mx5NHAZdmy2SEzrY833o+YQXv3lBWpT8ejxAzy/5sXrK+4Wc552HRq15ex0iq0VOLLgr598QpW1+IMRd9cX9DsGxeaaMCgQqmSxbSiLFMUSiLYiHHTRq5R0pXHq9pBZSTmP6Qz7KEJDdqc0jYJOjFGtULKaoqwo65qmqkg2KbVu4AzuU5WSJmuQtcAUApFX6LqL5vSpjRLPcnFUFUdTsDWLqx++xxWSvcCj3/H47OkEXW3pOII6zzAtHbu+pp3PUU2DaHONYxt0fRdTsWkqFS8MweoSVxlX798yOTjDHBzS9TzU9BbDMDBch8VsR5vltLWCUEyi3YJAV3FcG1M3uLm8wlBgGoaIscs//uY31E1DrJ7T6fjUzRYu/4w5eELbSizPRakERCXoGoqqMzt/jSE+NiZ7Qcg2zikqwf7+FDXZ0jYtimIy6Q9AkWSbAs0SNFHBNpfcRhlFVdKzKw67XQ5GPRpq6sUlWpFjmxaqplJKyPOG1bZAe32JUEzCw4dMT3/F/Jt/plgv6PZt3N4YzbZQLAtDtGjRHbpj0tw/Iy1KHFWlTmOqoqAtY/LOKbvLd4iqQtQVvq7z+dGEdLNC1QyiLKHf7ZE2Ame8R+W4CMfDDRxUy6Q3GIBWkaw3NJrO9OgIz/Mx64I6r5BVjlAFimmjajpSSlBqRgfHtMp/ocoTNquWw+kQqWrkWUVvukdXKzB1HcXq0koNxexQCZc6jkhXG7a5JCkSxINTomTF4u4G/fKSH9Ybrn74PV/95lMM0SBNhzjJefG7PxEOuzz7m7/C9FwWNyvypuHTxw94//Nrur7LUT9EUdWP7CBFIwhCplOLwd4I27UwixnNfEOb7LBMePjpU3plxcsri+XsNa5X4hQZ5SqhuXtPqFT8+qtTZvOY7fVHG5XTCUgRBCpYVclFVnCTlKiKwtNJwJN7h9SaihWY0JZomGxnK9KbaxRTsk0+NhuC0YTVcotoWjqugypAVQWu7SGrGlPUBJ6PbQTIwCZwx7TGLe6g4rHZo453pMmGTVSSGl3UMESvWqq6ZBdHRNsVrhuy3zPxFQulzdhu5gjLoK0z8jhmY2isL68IdIPBcIg4FGzXf2YYdBCNynITsasKhDBQK8l2tWa+W6JRs0xa0hpO+z3ODkY4nQDTMTkLhtwsrqmjDaZmorQKGDqeaZCVDVlR0vNtjIM+vV6fIK/pORqzTUbT9QkdhzezO4RrUpU5hdKCrNnsdgy/+IT6PKR/+R0yK2kdUI2PttGiLFB0E9O2MISkTBIMFeq8ZjO/QxeSrqMiG9C6e3SdDsHZJ+zvMraLFcu3r0niHdskJ8kzojgmrVsaBaSUpK0kSVN2yzWrheDR6TFaWWOFOmrb0G53qN0RgeOQ2i40G3TVoONrVKMesw/nHPd8jjrPyXZrDNHiWSahbWLXFaFponkDdN1EVSQYJsFgyt3FD0RXFyzuYjRD4x8+f8LTRxO2l6/47uUHZJGh7BZQrdC0DtguWl0QRYLx0RF9Z8jdT6+QsqRZXJKFYwxbxdQVpG0QV5I2S5F5jNbkFLsURbZsb24ok5xGaERZRlXE+J5FkiaURcx89h6rH5A3GY5uMjx+jKkpKGqNISosUZL89BfW//zPmKc3KJ2HlPkOuU0xypKRp/HLBwecRiFRvKXOY6I8I9Q1lL7Hw8MAq2OiOjZmp0NbReSXV6hNRWg7JLLF8yv++osjvv/pDS+uz0nzDFtvGIQOumnwxYPPsPJLbJmSrjNau4MxOiaJExTFxjYDkl1M3Za4WotbFWTRikd7PV5cpaidgLGj4pgtvq0TBi7bZUV+K0iKOd7E/deFJpYs0eINjmkQFxJRV5xfrnmyP2JXBzycPuKXjw6QVsWPFz9zenrCar3+2ABIEuZXc6yhhb84R3M6aBLQDOzwmHDPoWoaInWEnWV463eUz/e4uVjg315z6KgY9++zd3oARkkbb1j8/I7FKiPs99m+es90EOB3HKReU+UxopJIQPhddDtAzxJsQ2WyN2J+ecf1fINSVEwOjtGQNEmKJlos38YbdJn2fLJiTXn9nrobILwANxzQ7BaI+qOr3rADpH+KpbuIKsaTBbrj0OYputpweu8Rk3xDG3YoVZMfFhmK06NGRTMNTDPD1gXLJGG53lA3Ld1+D0NXUQS4QcCbn17Qzt8zC3WOD/6ek8djhCLQmgKlLUi3K4xOgGHZWI6HKhrGzx8gm5omr9jMNxTJmpt/+S1udYrp2th+F0GLphqcDhVCWycw/39afNsghIlm+wi7A0LDX8xp9BVq0WI0OXm84+buiuFwgPfkiOjmkjZJCfsh+8cT/F4f3bSx/ADdcVEEyLagWC9Rwh6moqLkBUW8+8ggSUpaoaIa1ke4bCOpq5qDfoAhWnbrFUKVWPceM9x7wPr8nKZt8TtDOrVkleUErkNdtyTRFqGqKIqC7ViMDiZUNVzOI/7u4BglzyjWNbLMUQ2Xuqwx7JY63aIqOlbgorUVghKaBtNQsS2HSqsoohIpNLxWousudSuoeyllVrBLwDKUjy0TWSEMnZYG1dSJkgTf95CKhtQVpKnSCIHhueh5S1WCTBt6I4/g+IAzVWVXw9XtDNnkICSGY+CLhGoZ4YY+o8kUrS4xVYEWqKSVZGc46MmKYnaNqqg0UmNzO0cpc/b2Dtk7e4gRjlnvIobjKY0zZouDosDm5o7bMuXg/pCDbkjeCvIqw80kimXw5MBnYtdkyzV3O4n9q89Y/vhbJp98xcMvvyZarZFqwfOHJ+xWK/a6BqLJUaSHgo4b9tG1grJe0OCimSFGNsfqmbRxjkJAr5dgDfp43oCxZ1DkM9TOHMMD01WQZcsmqfEDDROFYDpE0QUoAsoSR1EYdjsUTYXM5kz7D4GGpqppdxskOX5njK7pWK6CYVVQF6iKgaqrCHtEWRaIOscyVY7P9jHEDkXWlG0LdYPGx//VoeeiaQZtkWI7AZqj8798vc/n4x3hL/6On65zOnffoRgKcZQSFzVef0zV1kxPD/E7Jvpgj1YzUDTJYGoT3ipIQ6NBpS0URAOeadIPfOq8wAod2rJCV2paS6O1Wyyh0ngd0EMGXYuh6SNTlaNP/wa962NXS6g1lNBH6ilVJajLjwNUcx08z0FDQv3xgqJUFqqEGgVRQ5JmoAtGA4/LN3fcbVZsiy3B2sbXbXQLdE3A7ApNNbAdA5HPKVY7ttstXqgRpztUVNqsQdU0ZAtF3SKzmt50D8tzUdsdumwJLAujSbAPAl5d3rEtLjk8egCNwt3NBvNY4Fg6908O2EZr2qSBXEX2+gTHA/7D//uC41Lw0LI5Pu7geh6rmxuGtkOlVGw2Mbpi4AYCTbZoomHPz9D9gHbjIrKEIorA6zE8fkDg5chdRpRlRG3Fg57DNm4QyYLx4/v4vQDXGaAWEdQ1jeLQmRwgypZqG1HsPkCxYxl5XJcOq5VCvX5LaKl4ho4d9jno91mXNlGRs9ztUA2DvYN7PDk8ocoTbFNnf+AxCA3c3gDXdrErhztP5firv+Xk9Am6oaNSI1uJVWnsGx0WecOZ77PnuTzf3yONFxgyQbN77LZrDh4/YhUEzKMtRVTz5//4R37zt1/SVjv++//2b/H9Lte3c3747j0//ctLGtkgzQIR9NEMBUuVyLSgaRwG+1N+9fch8eVrDFlhCANFSnTPwdYNys2a1e9fY2klZbSkagVis2aIxBwMKBMdoynpdPs4HQet00VqNmpgUOsKmbJG2jWtUhNv12T9AaNpQBlvaWXLaHqI2RshWgU5HCGaAi1dsX79R6Ri4xzdJzy7h7pWkNkdqq6j2QFq3TDudvAE5LsITdaslwm6qiEchweHE0y9oT8esN42hK5LnGY0ScxP397wYBDgByHxNuPo9IgfXpyzzbdEu4TPvn6Ioytc//yKfHnF8t0t9U6jWKXUVYTwD9CCPvnNBhOVb99uedILcRsJjcRQBLmm0J3soSYV9EyKJKd8+Q5r1MEcD2goqEVLU5bs5nOixZrWdEA1sHQHbXJIJB2c0AczIbmOcVUD2+rijO+h9Edkyw1q0MX3FnSKjPsdDcfvcm9ygFK36KpgOD1FRisoEoz+mGR7hdhKk/KMAAAgAElEQVSscEwLWZqE3QDFdtClgoMksxwqoYGhsL6eY2kaUhTo+Rpn3Me2ewjdRmoG8/mOeLejSGNMJJpmoKkqpmxoqor5comoSvaePGRy9pD5xQWW73Hv3inK24rZ7AJSn6aR2JaORHwMhOsKWRZ0Aodkl7K+m1EaGo6uoes2runhiBIhdGgq9N4RllZRbHaUqy1NljBwTAZ9l/uthWwzXDUj8PuI8IQP72fIXYbveNiuj9K02KqDzLeUSUGSKizeLxiaIfvjPdTT+yx+/H+IsxVF0uBOjlGETXb9BtuQWHZAVtWIxoAmRalLNKkgdJtqcY1Yzgh8j9oyma0Tyu0GrawYdTuc3TviXS25Wy1x9RXCtDl/ew1VTZbt6HR6dJwhSqBRZQnX55fUWYLvOVR5zuz9OVanR19zEFKCpiFVBd0Lsf0QQxas45gHnocf+MhihabWUJRoYR/DNlFVjUYxsQyXuskwAhWv89HiVK0WWKKg54ToesbpYYfAVhk5AlNvaU0VZ2+fm1gy3t+nqhosr0M4leSLBYPDE5bXd2iNxFd0bFViah8DCFnmLC9eohcJuevQtAWq0yPcm37cRZ2GoNvjzLO5y5Ysb1YYjodjqOyuZ8jsI08i9EbktoVpWR/3XsfgZp6QZyWKFDi6Rr/rcfboBN20MA0Dw9BRNQPfM6nXCy6uZszSlH/73/0Njq6yiRKOBx6KquOZKoZu4IUB0lQRTYkiockrdnKL9f9x9h5Ltyz5dd8vXfna3n32mHvuuaZvd982QBMIkACpUHDA4EgTvZveQAOFRghRITFEkVSwmw0QbHf98ed8dvu9y2emBh+eAA9Qk6rKzH+tWuu38hHV1Q2qdeTzS4zqYd0NqrQ4WWDSnO/uljRdQ19HjEeGUSIprH+IcXk4HhrSyFHu1/SNI1KCtqrZbTcc1vckozn7uxKvcmy7ZLqYMu5n1HXDerundtBZQSI003Gf55c5aZIxyPuoNMKkGUZF+LZjkmUcGotSAi3B24qwBaUfGkTTQJAMhyjhiZKIs37MrJdzPh+Dc2R5n6A/pDwemUzGFJXjUFXIbYCzA84HQ16+v+Lm+oqPLv+aoqof3OERtHVDvVqjTUhrO2haDq+/YzKdY3ozRBgjvEcIBTojCz2iKHG9nCgMyYeCYrPGnZzQeonvduzLGtt2lHXCoXMUPmAYRtDUhGGCqzvaFhAaUZUYB9o6fFUTGMmkP6SnJF11QEtILi4xaY7drgkV2MMW2g6hU+qyINEe6QW9rMfV8o6TUPDsJwuys8dMf/JLwr5HPY/46Czg1csr+lREmyvs5BLjHALJfnPAeo1IIgrn2FYFlUopiiMmShHWEyqN9bD88J6ubcnzHtq3fPPr/8ri4pQ0GbLdHhimKQfpeHX9hjgM6Oo9kZUc70r6szlRNiCMMmRT4Ioak02R1uI+heXr73j59y+IgivywQQdJGjhCI0nrGtC/zBXb6uStvNU3nJ2NmN4OiAIIRwNCXozVJkSjUa41ZLJKKR1EiU3jCPN3/zyKT/dTLhfrdC+YNKPmY0jhrkmHD+lKtaQ5ATDKUGaoqqOzW5HEAWoo8I7QX1/z3SYks+muNJxs3dIkVBuPaeTkMR4hK+Q0YGq/obhfEj/7J/YnnN1t+Pt1ZI8iYl0xKv3Oy7OT0j7CXn6JX/9Fz9jNndUQvKqk2zf/cB88QBBajvLwRm2PmBWHOmqCuIYM3qOTkdAR2C3+HKJMJp2MMTINYOziOP4EmdTJoMR9fHIbrnncKywnSfQike9mPl0Sj7qE0YpWimkdTStp+la6uMB5xXKRMSBIX4cI5ykrlqKFq6+/57haER7rCirHdYOmeQDYi0YJz2mzx5jYkM4maEQ+M4iugPOWkIRsbk6EPQdXjX4tsVbhwoStDswDTrGaY/97IT/5d/9J647x19fXNJ6jVcR4/GI6nig67oHi5cXfLi+YxAb6uOesycR4/EY3d5wfPMNzSdPMcEFgW/pj8c0d+9pyz16kENbU5Ulo/mCKOvTFVvs/op+niCbDlHvWP7hayItkVFE29Vsy5Jq3zEfLUijiEgJpAehDDLM0WFGuz9CJ0jCBGdLurJipBV1U1Ev70iHfbJPP6Mrd8RG4RTUhzVGWFzh6NwR1xQ46xEmRWcRyrfYFuIwpquO1EVJZQVlY/FKI4QkDgPOT8cUuy2H1S2ts0gJttwx/9Gn3H77NVF/iCgcWnuqpkUbRbHf0TQeE+ckcUbcG6E3K6yH2jqiwz2Ih7iOiTPq3R53WOKFh/4C5TWiKRHKPRwGWIRr8EGMDzvsocA6hU5y6v3mQaWuJcNBj/16RaDh2JS8f/uKsnUPlunDmvlkhHIe/SCo4zuHsJY4z0i0YLXfIAdjgjzH24bRfMzFxTlFsWdVNGxFn1HiGZmG2eUTTJyDbej292it6McB4tBSVRG+rpFKUmJokdSVh23JR89/Rpb2qYojO6u4u75FmRhRHomCEBsPSSLDrB9jtWdzAB12ZMMei1BTrpe8e3ePkAohLNlozNtff0VvFpL0UsrDkfm4j7FHelmAbywmDgh1iAlSlDNo8Zjg9AJbrRDNAW6/QZgMWR/J8xDpGwJqVAbx5BwbJxyWN9z//r+gw4Tg9AvSdEY67GGSB9GiXS4p7teErsVkAbUPaVZL5osGe4yI8hylW7SGJBCYUEK5Q/gAM16gsyEyDME2iFjR7iRGS0JloaqxrqVuK3blHi88BkXlPIExGCUQOmJ0espYwOefKorJT/n5Zy0v/v0rvttsWd7fMZ6PORQlQT5mvTvy2aM5UZrTtQqX97j8+We4XFOSUFQlx6Jic3tkPJlTFS37VHEmBcJu8W1D25a4ICBJRyjtiZSm3dwSSEc4XqDDiNHZBdoEdK3Dbm/xrcXVUJYFrqnI8xDjOgQOaRukUqjZE7yTmLv3iKsVohX4VjCOI3ap4VhUfPiwZp8deTSek0YJkZQI21Gs3lEfr/E4ik4QjAa49mF9H3Z7mrolDTOEqsl6MRWCpqsYjGf0ZEhMR5zEHFp4+9VLPmw2EDqexZ7BOCe4j1i9v+GknxLHcCgdfrtkryuO93dcPPuMfzOcYXTM6ckZ5ZtXmCTHhbe4xrOrWmZOgY6QViFri+xZ6Erau/eYeIHynn4woe4CunbNsVnTaMPlJ2c0yw9sbjdMpgOmsylqcMb48RNUtQLSh73TOlynaUWElA5jDXVruN9JrpZr5GHFAId0Ftu1yKakl2Tgaj4+f0wcKkzeI8kU/9P/+C+4ulvS7O7Q8uGaRb9P4CqCOKF3+TFPfvQTenkPaS2Nsg9iedCxtVe80R1//stfEJUtKQfe3bwjyyJkfcRkA9r9jiPmIZboNYNsRpan9OIzhtMet9fXbGvJ+PxTel9v0cUa1esRZIY06LCHG9p9zt0PW0bjhqosqKuWwSJFBQNcECO7iiBPCB89IpsvaG9eQ3Pg+quv2BYds/OfcNgdHuYAVzE80WhlscJSF3vM4ITWKWIdEQCRCgi8ot6sGI+nnD854frbN0xyQ8weEfY4li3VrqArO9LZhMnZKfl8htLg+0/prhTdYfewtjuHbmuK9ZZCOvZFiVcaKSW6rTjPJYNBjutlDJqaQWgojaDabnk2Svjpp0+4WR94++23tFbQlAVVceB4F3C8G9BMpty8fcPLr74mDQy7+xLnQ/IkJEsz9h7i8RC73rPbFXxVh/zFz5+C9UitMAIiYxHDPlJnBPKWVqUUbz9wvFmSLKb4ZEQ7yhmoCdG8oq4q2gYaATbKiXuLBxeXuCULI7LegLA/RQQ5uIYuVuinF4x8h38nOVOGq+s7yt0dqTC0XcftdkWsFT6OCFzD6axPEg6RbUWYpKj+kMYrTKjQynGsG1arA67csuhFvLsqUMZg6NAedJQhhHqYhcqafi+l31re3F4xiCOcs6gwpO4sO+vwUuHOzxk8uiDbr1mcnfKb//yfeXF9zXJ75KND8dAMiACpkV2Na2pc5zBSk8Qxm92eQ9uRxRGjIXTbHUE/Yzzu4VvL/b7A3m3YrrZU5Y50fEqSx2AC2kMB1j7UNC8+4vr7Jc1+QygFgfYo2aEUJImmXVqsM+hwyu7oCN++YPSzPrPHM9L4l2zfvwFfc1y/IRJjpv0IJRQ6zQmthfURLcHqhDA2CAP1scB4hytLdJyRxzGRNhS7A8W+ZPrZDNU6vv6Pv+XsWKODiK++/p7LkwkXZ5ck+YB5lDCpI+6ubvn1//d3LCY5P/7xZzRVwR/+4Rsq7/jJX4bESY4JE7yXBFLSPznlePOeXScJkoz97fsHYTQfEC/OCeMcYTva7QqVNPjNNb6oERbMaEKSj1hvV6jtlqo+MFQWdTiQKINoSlavr1ktt+yJOPvscwazEcf9ily2BHlKUh6pXM38yTOW33yDlhGKlq71yKyP0ArZ1myXd4yiR/QuPqJ3PiccjZBGge+Q7QrXVYhRxqba0FUFrhuQzS8wrkdzXFO3NVp05IOYdVMxig2bw4HxbI7dFwz6PX70L/+Sp1/+gt3Va/ZvD9RVQ7+vMVqy2h1wTuHrlskkxUvDoXG0bUcviB6gsQ6s8xipEcEDU/Hu+g6d7JllKWncx4RDRKMwAbjFnOzp5wzub6jWV2jjETR0zrPdl7xcXrE81HSdpRcmTHo9FuMBPqg5bNaEWtLrz4l6GcppXHmgN8p58f2fqPYFQdijNz1n0BQM0ozBoEcaBGRhSB56slhDmCKDHtKDtjV2v0Qpg7YdWa9P5xuariWKDL6FfVkQBSFNUXH3+j1GOtJej4/OTgjSDFtVSGWYB5qmeSgtsN5Tlwc22y1nJqHqBIvhEFM3yEATRgnCg9EarIUo4ViWBM0RAezuV8j1nnhxgqtq7KFAuRKhBKZ/gqhqAqmYnD2lFRHH9YqgfnBBGd8QKoMJJa1pEXg2nWWQ9Gh3ByazOWmSYaylKirasiWSD/G46XjG4digpUIHkv5sQbFbEUjIRkOCJCecn6GiCFlV6K6is55qu+fQVIS9BOMUF+eP6YIKqwyDJ58wmJ1QHm6pNo7FdM6wn7O6fouzLZGrQAe0pePD1QqBxkc5P/nnP0VYePv2yGlXQa3wQoJrSXWI9ZbNdkc2mmBVyLF1mDRDRAHsBGEQsN1UfP74jNl4TC+JKfdHdJggVYCOcoQymP4IOZnj6xrfCWQn6ZmEYHTL9nrJ/f2W42GJ99C1NfumobWOKISmgVorpuMxi5MxpW2JdUA2nSJNBlKBDph8/AWm8hy2H4gk+P0t6fCUeDhhloX4+kCiGxIlMUFAML0km5+C0jT1ka7aE/cDapFQFke8cxgFTVVx/XrDII+YjftcDFOW+5qiqciCiCSUtOsVkT6Q5iD0mq47/tNEE+9CPvmzv+Hmmz+SCcViXTAaD4hTzacf9VDulpvvdkQnHzF+8hO2DTTrt1gLdeNovObbN2sen86IhEZEQ2QLqiqR2uF1TJpayg+vUTYkkkOS6hbVKSZPPqJb3tFWOwwQ2I5hlvHRWZ8sH9Afj0mT8OFQtg7ROWT34DjpdgdsYwlChYoiTH9M8Dx9gBveLLlfb1m+L5EI2q5m9mRObD3+/pbkZET/8ksUNVRbbLVGWk9bFqADdDzkbDSh3a85HlbUrqPuHI1OCaKQYSRJ8wmbUcyzf/sZ+//nf+Nk0mM2TNndCYqmY3l9Td1YQpMymyy4X6/54eULHp8tmJ+WXMxiev2PCWyJX75keffy4c9M2bG8fsd5HmI9KOcJtUR5oLUkWY9AelSUko9KZGcRUuAdHNcr9scj7283xONHjNKUQCikA6MNoQnQ8GCZ3e+grvFVSYTHAYemJRSaarum148Yzs7w8WOSLCW0Ler+FQiHEBZXt5gsJ+z1kSZAeAedptGGpgTfWWgaNpsjdeeJk4iisZycPSIZ5wgBvWVIddjR3P8aUzd09QojO4SAsnN456mtJYgytLO8f/eGy0cfMVk8AhQ6SZDes9wVBOsr0vGY/qMF1nZIJbG2g/qIFDtMkGDMQ8ME1Z62KdBhjtQx9rAhEBLd61OXDVYGCHugLbZgS1xTUx3X3K/uuV3vWdWOPE348bNLRsMxSkiwDUgNSQ8pIAwEUagpt3vEyZAgyrHlllApjFYMRgPmZxk2GhDlGdH+ljCOUUkCKqOq92gTgA7puYpqc8ALQWctPoB0PGO/+p4oSQh0gMKigxgV9pkmIYMsebDwpxnDfoy0LdPFGBqNWTeYoyfvzxEi5Oqu4pubgtyElNuQj/71v2Ly8R3bV99wuFmyO9SEaYqKE7quQAWWzu/wJqUtVoiuJZw+RiYpXrcEAmR3R2slg8un5BeS6v0WqUrC0RiR5Tjh6ecScZbRRBOKIiMNNCY0KKVwzZbNizesfnhNnCUEgwHRYMi+XqN1jdCa9c0HhKvpDSOi0IPLMEmf9PEzZBgjEOAsvnN4odBpH29rfFfTNg0Oi5cOrSXl8YAHolDTNQ37QpBOe4TJiIMoGD3/CB0sMNtr9oFnNZ0QfP4Jd9d32LbiZDEmlQUhe4ws6eyOdDQmCEYIFfPDH79mXxcsd3dUrsY6T1M5NrsKpxSRhq7pEM5jnCCS0JU15f1bEtES5ym9QYrPEuzdG4LZx4RaUbUV9WHHbl1y9/Y1iYKgrRClphNg4xBvwHmPL/coFZDlGb5coYIU6wVnvYigazkZJRRW8O7+PdYnXExmNJ3hfl9hjSecDoiGY8p9wX63ZVMVVGVHP89QoeLgGkwSkWd9JuePWC2vCPOAJBRsG3BBwOubPYfVGmJJ05YM5hEf5085iXuID3f0Rhnl7kBbVnz/8gPzfh/Zfs/TP/sF+dNL7HbN5ps9BRqilLwruWk8ZVMBBcp0dEVNcOyw7Z7OlojLMWYyxeqURLRQNyhRkZw+o9ruECZkdnJCHOVImTB58gnKOnxnMPMzsKDLLb4Cd31F2FZ0TvDHr95xdV8ziAyzQcrBwrooiEKBlA2h8nStI2lbZmfnzB49eXC4jWd89NOEP/6//wfl8o5scsLxfoOOYXr2lOzTnxEnQ3AS5SDw0ApHJ2p25sjZ4wVffPkX1N+/5vtXv+HtseTZaEg/72HrijRPiXtDTvonxKRkekTv5ATCiqvVC/7b7/5Iev4Ji4sT5s9PWH93RI4mkOegFYERVH7DZvuWP/3+NyAUodpzOf0EdICJc+Ruic4MMk9BGPS4R6CGRNnHrJcxxw147zh6x2DaIwn2HPY7jvstJ5dnqDih0QoVhPTzlNhaZFfTlEe0nDPt9wg/f8bVm5cEukWkJYemI0tg8ckzktk5QbFC2yNCaCQWbyLqckmUB7RNgXGCanugiQwySjDaEDuHrbaMhxmDYcY2THHFhqA68igSBGHO5cmMVoVoU7BZ3hGMTkhDRYQhjRXvv/2W1EQ0leVqueX9uxt+8eUX9C9TTqZPcULiug7tO5JIEmURHugNB4jG4SwoHWC0QggQooH+gGB0Sjq5wO6uKdY7qq3GyRFt1cc1EmklJtBAi9MRylVcv3+FNpIgNqSxREUCFTR0TUPR7Hj36jX94YT0kDMaz7i4vGCzLaA4gnME1iIURGnE0Ai08bjWEudjbNMiqgad9KiaFtvt2d7fEUQhiYKurlicTFg1CsoO2daoMMJHGa5oGcaaJxeniLjHm/fv8RJkHKJRCC2QoWF6tiB5ck7v8Zzy3vDb3/5X/va//IbbqqXpHN8v9/yy6lDDEKE03W6N3e8Z9HqUdQdTQ2NXXL27Yrs90pY1o34PKwOCwZgw8Ax0TLcyBKajKGKy6QW4hraqiKI+MprC9IS3NxXrD0tsWRCaBNlCWW7Ad2TGkJwMyQOFcUvo5+x3S4Lv/47ek58jqwuypIeKKnQSoVSACgLs4YBwHR7P+GRBW3va3Q7XNtiiRglFEMVUdUW7XuNrT9ofEgQRYWhY64S+dnxycYFKMiyexjnevbtj0h/z9OOPedxzREVApKGtCx59+SPCxWNu//QN37y44fvlhsFixONHj7BVgtIhh90KFQT4MOT0bMLt/Q2ZgtPzc6LxHJP1kCZEeoFAcLy+gqqkLRtMmtO++wOHwwObq9jesVrtKOuW8WxAPh7TbPcc1itCD/2R4mLU0TvJad4eqfYr0skZVvVpOMDJkHY5ZHcs6J+cEuYDdNojCwN0uScOJEIY0lAQpRo9GCCEwB3WyPpIT3aYaQ+6IXXd0DqPyUcoGWOimOawBb1HGogktBqsdjw5GxPv7jGDMfPTU+6/e8HdDy9IxydEJgQkRgrCKOTi8oyzqvfQzjIdoXctw1GPcZLiO0srDKKzeO/I8oSiLNkt73g+ek7oFNokUK5odve4LsLkI9jZh4rb5kDalSzvr7jebDhaR11ZRiYkzzPWZcGwHyAiR+lB5QPCsGa8OOHJT7+ke/0DmJx4HJPEKY9PJry83WHjCSYZkqEeYpuDMb3pGaE4IqsVQZxiTIr0mmb5Di03dOUR3znMYIEQHmtbuq7FG40vBVJ4dscaHyWEoiXUiskw4t3b9/R6Q5LhmGEr2K2XqCBgv14zCAVdUXD17becjSY8ffKMSEqy2YwuiIl7Efui4di2rKuaTAqk1jSHAy4wyLiPPRwpjiXRoE93/45oscA1NVIpksUjmrs7VNEinMD0JyRtws2H12yOG3yacne/5ep+izk5I/ICGYSkJqTeFxysZ7U+0LWas7NzAgJG+RjBgVdv3nO9WrOYz5iPcqAjCUMCJUjzDC8lMghQrg9lRTJRVPsttW+xdU2Yn6APa+JYkwQhcrklDwXGGJpVTSIhfvSU++WKSEgq67m+3fLHF7eczafMRinBMGFzt4YwxktojnuEkIRhgmpK+lFIMZmw37e8eP2Bx88/x5oMTEQcHZA+JwsvsR6Qis457pdbPnsypEWg0uzB1R0aZNxD9hUi1PgowB3G+N4jRtMd+fFIfdxzWG8ptjvcfo8XoGWLifeI1jBdLPDKoL17gJYrw255y/3r76huVnz++Z8jNgcO/RIV9hHVker+imB2AZ0lwBEphQlyVDh+ALCnM7wAJx4g6F5IshyKww7vHQ5NmIUsv73B7Xfk81Mmi4hA76iWARoJrSd0EfVWs9xvqao18eDIp/8U0URTU9wtCZIR99c3RFrQNZY6NEz7Ld/8p3/PD69rPv7rU376P0/YbaYs7YG2O9B08OrlB6rDjl88njBNDHSWMBgiuxZCjUh76HhMembwSGIfkCU1bSkJYg2TPmEcsd1s8YcNdAmjfER/OiHKcqTRRA+nAdI11HWF3a4pr645bLegQp588SmRCYmSnCgMGIxvOF2tKQ41x2MLsk/uOxKrEdmY0fkT2G2Q/ZxuvccetrTaUFuLjB3heII2Ets6fC1oixonBN63DBdzItEhwoyf/7OP+Ex5zvmeZ5djrq5u6FxCFATYxrNdbQilJgtT1nLH5ekZn3/8BFsf4QDrquDnv/yS4HCHd57+2SWh9RRX39PUJcJbhNAk6QDReZTrUCojufwEoQL81GMPO/AOW5bgHLv1jl6+YDAeo42kPlRgFEl/SJD0QUd4bzA6pN2/5+bDBzppGM9PGKQRcjjg6s09zf0twXxOEmsCEZJOJ+hJjpICpRRSKYSS4B3CObzt8BS05T2ubnGdx7WO9a5gMBrgTUhZlmzLlnmQobVmNOjRlEdef/eK+3cfuHh0yeKTL+icRVhHlubst1u0jogCQxwGWKeIkz6+PGKkZl9UrFzDR1lMsd8y4AQ8tE2F6fVRcQ8lBDQFjgC8xDcd1foNJptg+nOitI/INO1hj6Mlnpxigphiv+L+w2v2uyNlUdHVjmMnEEpxeXbBaDx9eEfjEBlEEApknCF1QBj1OXn+jBdf/cB+XTA8TwnnPUSzI3ACiSaIQkw/RkURIr7Abu6haRGhxmiNCiKcdw/VfImmPBZ4o1DOkuQpg+mEXpwRdh3gcDpkOJnSNTWnJwvujh2+OxKkEaFqGEwTtNREE01wuyXvn8C+4vWm5PeHhlxbrl+95GMZEA8myKdQqzd0t29pyjVdWVAKg3IOKR+euy22iCRCih3y6EBqTD4l7l/SWYFXEukr0jikLcD7I6Lz0BTYpsT3TmnLiNQ2D+yRNMDXB2R9pLx+x8njZ9j+mK46YDykOqK5v6G/OCMaDqAFIyWuNZjFjPT8MSZ7qEPHNvj6CK1D6RRPh3QdvnsYXJvqSOVayqIkiWMOncd2BZPBgLY7kuaOKK4p7IHjq2+4/NUl231AmmaM8zFFmLGv7zk9PWOz2lFHAa7lAZxlQcoxSX9MnZfU+99T7Y509REn4G59S73vCPMxQRQgyg6BJx9P2B4ObN68op8GnM8XxHGCHs5xIiIIp6TzAfawo1reUx82NF3D9s1L3Pqa4Swj62fQVkg8vqtx9RZd3yG6IzoKMLbBNCX7lUf3hwT1AVFo9KjP2Z/9irvdHb//v/8jtx/uGY5PGczmyFwhQ40rO+5v73hzt2K2GDMepkijaNwDfNS5O+yxRhwbhI5Y7Qr0OCfPc47HPZNZj0ePZxTLO1IU8+GInb0jDSUBHdXNPasXN/xpueamLPnXv5jzox/9mOHnf4nJ+2xf/F+oRONkwtouqbqWQRSy3ZWUztN4hwgUSoQ0xz1RP8dowGiCxQRhO4SLEJMnRFoQRwlROsRuV9R3tySXH2GERkuHDxPCrIctG5TWuNwQWoe/2XB1t6UrPD9/9pS4H0Go2FUtf/j+W5T2xFHA848fM8pTfF2guoZ88ZgkTQnDEEXFT371V/z2b/8WWVecz0aMLy9Jnzwmig1hphCVwxGgAMKAwtY0cs8nT0ZItcenDX93d4uznk4IzGBMsl/jiopwmiLylCTs0+tP0IOYOI253ob85M//nPnJBYdjSXEasbtNIe9zMAFhr09jDGG4YXauubnZ8sOL1wjf8DfVGXGWEkiJaGrad68IXN3RYnoAACAASURBVIevSrr1Fau//zuyT35B2u/B4QbLARJJeNLj/s170kGPXn+Aznq0SYoXGtPrEVYjvG0oiw4RalpqwkTRT/pIO6U/6ZEvThHJBCcNaRyjwhylOthc0azWBKMTTJAi2w4Oa1R5pBcohFTc70qCNCaKI0IdUe0O9OenBOMzQp9R7b7G7TZMejH93oCbzYFQpmT5kLy/ZXhyiagrXGvY7o4sj3uu31/z01/8ivPJHHsoKQ8HgjglHcYc7lcoFaKCAO0dDXsGgaaXZ0ipUCbG9APs7ppQVdjdEpNN0YHByY4uGhBEJ5RNgl8uCX370DgnNK0CMZzRDhZUxY5ic83Z06fUlJRC4FxFvXmLNwF5qLk8XVDUlgZBvduRDSYMewHm9BFBEBJLj5Tgjju4f4/qWtpGIK0iGPQ43ryE3RJlQrzrmIUGFWicsxRNgzwWJGGCPjunaywm6VH6hDz2eCUY9hJ0knL7fsHVcoWIQqyQON8RRYbHpxOW798SDVLml49Z/vAS2euz3F5zOB75w5VgtS8YL0B5QXMoiOOUpiyRrmOYxYjFmPa4583bG+5tRxyHON/gdYKKU6Rr8TohjgeEgxwlFM2upjvsCUafwOCUD+uam6++RrWeXtQn7o3wRtO1Lfu7d4TaM5tMGfYVQjt8uUIKgX9/g5O/I7n4CdU31+imIMqGgMQfj2gd4LsAS4nSD81Woq5oXUPnA7xxyMAQScF2c8CWHffrlsfPP8YpTbFeMxzkfHL5GD0ecV3tuTgfkwQBo+kUmcQQOuJ0AVjmwODsY95/e82Lr6+437Q8XQy5//4HJklIkvXQOuLu/gPKVRgBDsHN/ZbsfI5OYmTwj/OdjtA6QIYJQTakvLtl9d13vP3dVw9O0Kp8KDbwHYHWXJyOyKdTSiSB8cynJ7i6wnYPQNJ0NMXLAXX7ADF9+9U/cPvhDo2kPxlx9eaG682aU2NI+kPy2SluuyTMclzbUReCqKhRd69xXiC0xhZ7nIkIgpDhbMp+u0Mr8M4h4wQtWsK6IFIW71pUGOLqmkUvZxAplsZQLXf84X/9dzx9/gnnyYijlnTO03lBnKfUgx5RLyKKz7i+OnDz9W9Js4w86xMZjwkMt7cH8tkQiXuIBXvB4+dPUZHC1RucsQT9EB1NOK73VO9/QHUWP1ighwly8w7RlciqwXSSk9GcIBzSSoGcWMKBoI5T0kAifYc8lijZ0nbFQ3V2HiCsQ8SaLBgQ3m9J3ZHJ4Ay/k4i6I80GZIMxg5NPqD+8xPgj/lijszHmPMHe1hxvXmPLI9R9gjRCGkVV1lhrkbbDC83t/Z6vvnvFz56dMD7JMDpmtysYD0eI2KDzHJzl5ftbEq2o/7Ht5d2HK55+9AmJE7RVx04ElEXHPI25MZqD8xhtEKojDkBZw9VyyzQecbi9JlAS1dWY3hxrBkhtHsTJdIBsO1RzB77D+462ruhFIa42HPYtPR0x+2yBn8xp1xtCExAOxuxLi/SOziuu314x7E1RcQyNJZQRkRDc3Sw5P7kgTIa49khTW7RvwAukhSgOwAd0tUPREAQJzmjapkAKS6P67L/5Cv9hSxDnyMThgpL2cCQMFdpE9IYzDJbSKv7wpzf83es7jg0Mn33Oi73DbUvmJxfs7l8DLXGgkVGHzx6AzGkeIIobnn76Yx49eUbYm1LisGpHebymKw+oJEeGMa8/fCCsC+haHCBMgHMthBEijpFaI5ocGo8vtngf4EUE+og3GS6O6VyIQlFu1yzv1lRS0lssCLSg2m9wkSYVKSoZsrpb8va7N9h1w+T1K2JpiOOYoD9ByVOSsqU7HCjXW2yzpusnmDBFdQ6qPW63QvVHuMqB1wglkf8oSpdVTRBEdG3LF19+TKAVKokZNBBN+mzXQ6rtAZX1SEzKZn3P9c2adeUQUcG/+aeIJi8/bEjKAz/6/OccNju0NKRZRjwYEqUxOulh/BKtczIt+dXnl3xr79htWurWPTgwvOB+WxI2Jbn36MMBfIQKY3AVyjqk60AbDA06HGJVCCKgUxbdHhDljnqzo5/NSLIh8WhBEIR05R7Fww2SXYmKBW63I1WGorW8e3uF9Jrn2YhwHGFGp8RxDzvZUd3fUm+3COvJxxlBb4qOQ6j3iM017XaF85K6cvhM4pWm0wFJEuKqPU5ZOiOo64KycxBJonyEDnuEg3NEYcnaFf/ip0+4USEfdjtcU+I6aI8Vj0+eMzABH97+wCCI+Vd/89eMxkPK9T311TecLOYMZ3OCxZTtm+8QztPuVrRNTRdorPeEUQxCYXdrRBxgshGurDCpgCSDtqZZ3iPiHNutCKMJk6gHbcO7F1es1gWffPoIhEKkY6RJ4VjR7fd8+NPv+A9/esm+k/TznH/+Zz/j8UfP6PdTbt+/xnQNuq2I9BijFKrzKBOhowTwoAOEbaCtH0QTqYjihLoqqStACLI0QQjJ7lhSlCXt9Q3zYUDsWrJhH5wgvPiYxWTOdNiHKOQoE0zQUhGyKy1OwWA6Z7fZMpqMHja4V29ojkf6kwnZ+QVVEODEjraskFlMIDzSNzgZ4wRIaqyVSBPRHjdsXrzm5Cczgt4COgmdRcaablvg1rcY2zBKc+TQkQRD9rsDO7emsHs+/exzpudnDGaTB6hdpMA3D3lLk+GER/d69BaKL774hP/269/QXxxZjC6Ih0OUq9CRQac5wT9+EPvjHpc/qMgei3AddC3eAkLihaPyJcaHeGfAdUwfPSUSErwlnZ3jqjtCuaKXhOzqjrr1GKExOmAwDJlcjGjrA7JUNC6iNz2jWTYc+XucMjye9ihv3lK//4qudXgpab0myXLkZkV/mHJcF9jKIxOJsga/d+AluBoi+Y+OjjnSRCipccURIRTB9DFxOMTWLe3qDu8dnRUcP2ygXRFNThBSI/BI47HeEnQWFwQ4naGkRUnHsD+iunpDbR3Z+aeYwZh4NER0JVoqKGqcKEFIpBYIGYAJcesbMDFgKcqSpnIclkf25Q6ZR3jR4aQjTFLiMGBxMqDXSwmTiNFFn/f/5+958+aG/tMvMeNzglBzc7skG6f0e4bVqiWLUtoaunKPaEra/T0tl9Tre7rGAYqidjjb0ZQlYZzSlrdsig09CVI5AhWQ5jGTaIG2kJ58hBQCM5rjdUfcE7jlK5r376iWO1rnWK2XbHYrphdTFs8/xjYVze07hO3wTQvOI4o1ojxQvnlNvTlQ7xqWt2vC88fMf/QFg909zb7CVC0/+sv/gdNFn//+v/8HcAW7o8SikY1EaInOQ573LhAoFJK2bVBaIBGMpjNuru+5ubtiMemxaTztqmDmrxBtzWLUZ3wxJHw+JUgSbl/c8/pPrxkayeNyz83tlveHlj9sCkKjMScnDL/8DCVbqh/eIIXgWFn2xZr3t9e0HZyN5pTes942zOcOZfeUdUAynaGDCN1pROBR0iF8B2aEERXeObw2JLGiWK7pDy/IpycYIZAmxgFuvUUECV2r0W2FsJbd1Yrtn37gcX9CPhmTPLrkaGuKD2+ItUJ4RxJokmzGZDDj7Vf/HZoOv7qjWN0/MCLSgOl4zq/+xa9wzZre+SPUcEE27OPbClkfsY2mXe0Ihj1oWuyhJJMQZiElR37z4mtertacxRJXFbjrV6g0p1uv0F/kRKMxWZLgjcWrjiTOOZ+fM0wjeuM5y+v3XNmO+azPUQt6WULdNoTSUR7uqLsNs6enSCPZLm/xeIRtkc4h+qe4Zo+9vUcA0gwY/rN/ixcx5lAT5iW5KYmnQyp7QAQRfl/hTYMZ5EgZYaUkkgGZCdg5y/3myL6zmCgiG86QYYjQAdWxZohES4mMUpR1qLZFmRg5fUzQm2O3e1zriZKY5vYNzfZAtTkySkKWjUM4j0ZgjGRwdobpTdAmJHQCXxfkgeRsMWdHwK9/95rtH9/wVz9+zse/+CuGj56z//53bFYrwiRlvdpTFyWx+XtOL87J449Bak4XM+r1DYera4L5GIEkzjNW764wwx7StkgXoWVAZx06u4TdFco7ZOew2y22qunCBLv4gu7giayj3m6JR0NcV6FMS312SXLxlNXvf0ucJg9O0yTndr9jNq+x+z3WCdqqpC0LLCHFsSEIFf2hQSqPbjxKCEwUEJoYtTiF0Yz25iWhB+877PFAYFKcAykSglhRUtDSglLoIKSXJIRBwLEr0PkUhuf49Z4wD8mnJ7z65h+Ig5DPLhe4uqQxkiQK2FaWxnt6qcE2BR+uP/D7b77nZz//kj988z2rP33PviwREm6XG55cVAQRKCGxnUVYSRSmCDz9JOFiPkG1HffLLaura2JbMhlkZM9+im1rgjzm/+fsTXpuyc4rvWc30Uec/pyvuX2TfSaTTIpksViyqgzIRgkelQce2AMD9fNswEYZhlW2ZVmQLLFPJsnMm5k3b/v13+lPnOgj9vbgEJ5Zg4rfsAP73etd61m2aChXJdKPCYdPadyO2u2x3i65ef4tkS4hnBL3B+jeFBvHuGaD74fUF8+IvYAgjnF8EFqAPcxlzdU1/nRC/PF7dPMtZrVEOAJjc8oGkgfvIKqWLttC02CbBkyL7M9QWYrpDuOUsIb9bs/QetS3c3oPH6KlwnU8nv7kBzRBSPr5LymzijBIiCcDLs/PefTxO1jHogcdbAu++vwrHp18yA//5ZQf6xWT+x63L16zPLtEnjYI16Op9ihX4SQJm+srPnx0h2SYoF1N1x7cmDLs47ga02pUNMNXCXeCMYN7c7bX5+zmN1T7FCEETuCD9nEnU4JEY4sl6xdvaOYpT//VB/Q++SGyf4RdXqMcn3xzw/zVGz745GNao5ivF0zllPnLK+qq4F6TY/crBid38U7vUW5TWhryTY3UBh1HECRoJ8RYizEdnlLUTYuQYKygaTukCjAqQCsXKdVhjsUyikc0Zc46rXjw9F0+GT/g8Z//Bbt8z69/+Q+EcYyQgraqCcKQ5TZjcPqA2BF897d/R9UKwkDhhopqXxD4ijDw8ZwG+aeWQjd0QUDXlQRRDx3EyKCHl0yguKVNN3S2oSsKjO/iHJ9imgWbTtNEU2wQoz2N7FaI2CUIPNaLW+qiZNiPcD3L6uUzlKm4/aakKDq0guv5Cu1p9rsV7/dc9PAettjj1hVifYPxHeLpDPZzmiJFmQzTGHBDlBsAGWW6o5e4tNXBtaaC4AARRuDScXOz5pWSPH00w3Ecpo/exxZ7lBfixWM2l7ekuy3eaMSyrEBo5stbHlxf8SDqEZ0+QuoElb6hrWr6oz5n85zcNDwZeweWXt2yzGtiY9kubv6/WTf0NDQ1sm1p5zcYKzCdxhnfASfBXryiWF0ii4rQHzMcRDA+RQ8juvwGcfwULx5QdZpknVHm9UEIqA1umOB6AYYeXtPx+KHiu1eXPHv2HNEZJiMfvz9BewF0CtNm7OfXeP0Z0omxtsLmNVHUYLShbQX4EVZr2nSB7Eq00chE0GYSXWU4noc76CMRrDclX76csytrbtYbvvjbv2UUhzx6/IBaCm6vF9zru2g8pLAIrXGnEzQOT5+8g9t/hHID1te3eCcDrJIILSjrAikli8sLBB1UNfk+xTQF5eYGpSTac+isRAsOS8V9Ca3AFQFKa6SQdBy4nGEgOR642FnCyzPJplaH6FaxPgjazgAnSNBhAmXNZHLKda745d/8kqPegNN3PiYcz5DJhLYAs1gShT3K3Rm2XtHtd7Ta4vgW2SQo08f1PPJNijE1MnBBKOrKIFqLDHpYofB7ISLsMYgluzQjUXA8mRBHCXado6VlnVac70tyk/8zZpJ/5nOPH+NkOxbLDX4YMpydEg1HjKYzWmfGo5884P0nAm/Qw/dDPKfhzp07LI2LzCu8Xo+TOzPSqmUnobzZIIYtsslQQmILQ5fuUEGAcBJsU6E7gRMOQXrUVUG637A9e0NfOXhSoWjpsoJ8t4Vyhy+OCIYjcDQ6HmG1i1YuFZpe7fPV6zXHH7YcTV20UFitsckAL04QXUO13RGOjpDaxRY7uu2GRtdYIWlUgElitqsb0IKy7VCLSzA1ZdPRGEvdduz2GdSWcDChd3yHIAzwnD2+N2V+POHzf/gl0/GE+e2edr/ns08+5cf/4l/jZPD5//LX5N4Vo17MndMTcgewWz784B3a7QJ/NGAwO+L288/ZbVJaoAYW6zW9MAFXI7RD27SINod8S2NatNuny1vK6w16HIGe4QcOeZ6zuJ1zdbni3v37uFGC9HuYcIR0Q4QtcIMek9k93tkYVruCi8UN/+Gv/3f++/9mxOTJU6LpjHp9c4ie1DVkW9rVGc6dd0AbpJbQNdB12KbFFAW2rQ8NMtZQFQV5mh1gsdLldnPL5fWc2XTM1Srlx3/x5wRacP6bv2dw5xQ37OHLmk0l2LWK1jSU6RarXdJWI6ITpscl/d6QxgnwR6fMF1+i0pxjx2deNRx7LtkuJRkPaEyHKyReV4OQdDh0rcGRAic+YvzpnyPjHk2a4ng9cBOc5JgkGZF/+2vasiCIBtS1g5UFaVZwsVrTH0TM7t6nN7tHcJTgBQKNQTkaFUXY7mCfzs7mZFdzItcwG425uE45ej9E+z6OBD2e4I+G2HyHzf4UsxIK7Sd0pgA00ovoigpTZSBKtNNh2pa2bhBS07U11g8RjsS4Prt9Seg4fPPdS/SoY/boCU1r6MqSzc5yEnn4MYiVoggVvbiHVg4/fvAJ75+kHM1CcA3F6y8RgU9HQ5sFBD2NClwcYXl9PufdqiBpI6yFrpEHEaXLsfkOPTjC7hZYYVHHH6D6Pub2NcIZQm2wWYksSorFkt1NhhcmBFGEFydI10eYGhUO0GGPwGocAUXXcHM9p2gyTr/3PoP3f4zJbqnfvESMc5q6hmxBS4N+7ycI6yC1xgoDWmKtwjoSIwRV1VCstxSbknRb0YU+jvbJ9lvcwD9suR1BL4rRViKFR3DygNmnMY4e00hQG0kviTiKAupuyatvvmYwekoc98gyS1l0eEJh00tu33zDslG4w4CL7xbcrktiawi0JJCGUFYs01v6QY+u3uEPFDY8bPicqqXdXBCOJ4h2iRuPMOtzzPKM9MW3lHlH0Qq2ecXk3pTj0yPy1y+5fXlOEkIyGeJYEHmGlZby1XN0b0j/kw9pdw3NV894+ew1wfgOoycfoYIIZzzBPZqi1Ht89OdzvvrFt+zKHToZMIhDQj9Gmo62aCizivXqlngwQWqFK2E0HtMZi2ha9mXJeNiDNuPN6zdk6w2h6/Ake8QP//JnaMfFCXYcnZzSLZbMlztaIzlLSzZFzX82nqLUBBV42HKFbRes5q/AgFYeRVlyndecnN6n3BTQKMqswE16SFvRNSkSDbpFyRLR5uje4LBJ0T1MVmC1pJ7PiZF4oYvcrBCOQegjnDCGNodsj2o67HpBfXFBsexwhcP0/kPiH/0UOx7y7X/8D/zuF7/k5c0KVwuC7zlM7j/ElB1KWmI3oo8knN4lGI0PldBdwfTkCJLHeOMZxrTI1qBcD2sMpizRoYOpS+q2oVksCR2BMHB7vidrWhxHI21HsU9JqVnerpiOZwT+n0SJ2Ge72lHsHdSwRz+IMes5xvFx8gK2Kb6w6EATOhLtKW5WK4qqImsayq4hPhqRJA6mKdC0h3imNbizRyjPObj4alBujzovEGaL6nl44yNcT0BVMRgPGMQJ0XhKI2Ma18HkHZ5y8eqOepXTFJqy6vjy6wsm/SlHd4ao3hBRtVSLDDeYoaoDM0p2OcJPEH4M9Q0SsEWGaBuwB3Bl1+xoO0tR1fiTEWiNUILBoEcQBrha0BnB0SDCTkbc++BTFpXB/+YtR5OWT3/6M06+/xdsFxv2aUpR1mgvoG4ajsYjurIgm1/TGs3T97+P73jcrL6irjaMwmOStk+2WeAHEb0koc33WB1gqgZPO2A9ZHQHN7mDrUFIF6W2SC/CxkMmA5dGpKjxCRaXbnOFiAT+0THzdMPVxWvefP0tg/mawWBCHgX89ptr4nDJIOkRBiHgstx2bOqAXVYjkoqT0MeVAkdpHO2ghUI7Aar3GC0PjyPjaKTjQSswRUq7WdJUGf74GCsK2qZGdS1WKJpij5SGuu2oC4unPYzy6B3PMF8bbt6+RLaGe9Met7uMdL3FBB5REoMnuf/+u+ytZrV6gVBQNw1RGJBVJfu65c18xQ+rDFyFluBIB3cwwLoedZFji4xJL8Y5OWIcR0ha4tjDpEua21eEd9/D7HO61ZL920u8XkYdTjAnx0i5JP3uNxStofM8plPFdOwRDhJkPMCKEf2kxypbETqSKElwT46xVU6XlXR1Tber6N6eod8J0fefYIsxMnIxZYqrXNq8od3t6IqKJt3QtjV1kNBKiZIdnu9Q7vJD62DXESUhjuewub2lCwLku+/Su/uAIl0jy4Lvfe99/KjH7WrH/OySH338AantCLwJi/W3XGUO/+V/9Vekb77j7l3Idrfs9iXfvHmNE/oIsycvc8Jhj/lqy8nDe5zeHRBoSVOXrK+vOb3/gKA/xbYtavKIrgIZC1yhwDTYbE2XeoT9CTpKMEqiR8fopA92wf7lBdv1lkfvfYRz9wPk6A7tvgF7cOpcf/EtXadYrRpkP2H07kcE6w39KOHm9Tkvzy+Y7taUTU5lLNo9zE2dDfGmQ2QwRng9dCjoqox2eYMTh4RdTZnv6FqLqfdgmgM8mJZOmANPKFCU1iNdpQyOhnz27/4tkR6j+jPGwV3Eb36Och3c0EWiwHr4pseXv/4V+7Tg25dnHI0rvvf9xzh+h+gCggC8wDvUoO63hB50pYM/6uN5ASoIUF6AVC5SK+hrnOldbNnQbrd0rQc2Q4QNbnyMDSJcL8JWS4oup98/YrHacXN5zXax4tuuYzrt89k7d0lCn9zxSduabp8hXJfQdASui8mucYcTOhfcRBPNjohOT3BjD7tVKJsjTIspVyitKYzEWkEQuWBbuq6jKmt89xAnVJHPJx9+jGuGjGZjxicT1jdvKG6viIIefnKfVWsIgpDJ0RG+p6jSDbF7cPL/4vef47/7kPvvzcB22Dwn3XoYN8bt+9S9huv9LSMr8PyATGjmqyXpPuP+g8fEs7usXj8n3q3xeyNslmGtwp0+RfaOsZs9CIXFw58dE/kxALuwTxwo8I/pv/cxprUsX1+wXVwQTE5wTyZUNThRjIoSwnFIZF3MbcjJ5JTfffV7mnt32G01Xf6WyWSGpwNM2RL0T2iyCqUq6ASm6Wj2BVYLjBAIKVGzKbJdI7RAeALZ83HcI9KrV2gk2o0obMiXX/+RfdVwOkgIPYfA0TiOg5GaN5eXZKstPgnKCCKhiQYuenCKJ2KyfUAvmbLfrvGp6YqU2A+olE8YJixWS/Ky5pvnL3k0SDiOE2aTKa4EL4wPwojKqIscOkFXSTAKb9gnn69AtEjR0nPBplvadA2exk9OiRsI/ZaylhzPhhQ2wsoEjSYKXC5vUioTkzKhfrtAxxv6dyGajuikR6MsZb7E80L2xRxZ7+kyqJbi4JAJ+9iqRTUlZbnGcca0RUNVV2AF26qjvnjJT/7yZ0jfx3aG3Fr6gwQlW/yhoK5WeOMVJ3c7ihsQtf1PE02SJOHl20v2VYkrDUG/z/f/4r/Al5J2t+Tk6WPEBz28boukps32uHVNJ30YzPj0B5/w4ptnvE0NohUMRIt/+S3S8bF5hDudQnGD9Q6HmsUVEo3Zpggno754QXl9wWx4iugMWV7SbOc02Y5st+L3z77m4fERn/7gxwyfPMIdDxHjAcQ9BuM77NQrusUXnH/zinuffIQTutSrBpPvOfSAebjDMc54hi0yjHEQJ6fQG9ClC5rdmmqb01lB68Q8e3vL64sr7j44pukMbtxjk+WsdzuScUA4ndE/PaUpa5w8w4l6JFYSei7CURijCSZjPvrwU07vjNi9WPKDHz3lelvx+z/8lmq35P5syL17JxS3l7z48o988KPPmDx+gooisqsbiqZBS1jlJQ+UxgkjVH+MCjyqfYbbnyAHx5hOIMenhOGMrrbQLqmaHVWtyLOS9z75GH3vMZnjEPtD4jii0gldCc5gysn7P+RlqvimWvDOh4959eyXXL95w8mjx0RHDxBHd1B1jlICR2roHx2cAAJEmWHbEuGE2KrE7lPq7NB4UFcVtTF0AEjyFr67XLNcrNnXLcMnH7IpA15fvKSrPAa9w0ZOtCVvtwav7+E0LW5d0vc9Xl4seZCMEE3N8dEJ6XxLGw/43qc/RNBhrWVfVRRdjlSCtihprKKQDtrUOIGPcDS2aBGtwCqFdXu00kNrdbhMpUG4FmkV7p1H2E1BfbvECyVZlrHdbdhma947eYrbdkRS4ioXHQS4kYuRDka6WCmxbU1bbKkzhXQnTMdbvn07p1hu6YcOMk4QVmONRqgQ0RSY9Q4cH+m6IDVNsaczDWgFOSjjoo2D1R7rRUq+relPJpi2wpQ5569eU6Q7Lm+ueXV+xYAe1r/l0btP0Y5L7BocoVECxK5F+w2eVAxGR/zrf/kzarFFBDVBdkW2sox/9AlNOUe1O7q8oe4Ei11J6VgutueMp8mBCyMDOs+FPEN3HTo8AdeHYgvjFpRCjZ5g8o7u/BXtbk65vGZ/29J78hHeZHrYVI3HOMM+oqmQqgUrGJzExO8eY5MThneO+PJ//Z/JL68YnD4kfvdT3F6ApcG2CnwPm+6hbKHMsbbBVgVidopVIAYn2CIjX2Wk2w3YmvAopK47ukbgOh5WdQgNnWoBixQOXZHjBAnuo6f47hH5F78iDDVqNkDe3CKQVNZjvd4SeAknckhjfTzfhd6O7WIDwxOq2+dsbuc4tUEoAS34KByr6OYXdKceXZFjw5AgChBa4fYFdrOhXJ/jtDH16hrHherqkrIoabWPDEJizyeJXOrLl1x+/prRrI/XSjzb4GiFbGtsZggfv4dz8oCmgN2bl9R2TDj2Of/DM9xexPBhxFlA1AAAIABJREFUgPYczPICUVTMPv0xnVVcvjpnlW04u77m/ukp/cEArQWtZ8hsSSwr/CDCSXeMA0nmKG53G7JcIeqScU9xfbvhcrnjKHL5QEGYBCyWGSYIuPfh+wy++w5nt+XVzYaiaflX0z6P+xEaSVkY3HJHvr7E+AFOXMFyTacl86ripbHMfE1dlWTbnH6YYIoO0VaooITGIqxED6eooA91jVIW2RvR3iwRb85wXQtKIcgg87F+gfQU0nGwVtEVh8cOJw8IkynzizPKqsHbrnn11R94/ocvuDfrE/dGh8Hk69cExuJ6DlVd42mFyPeIskJWBbLNQDREd+7Q9frYeo+nFZQbin2F8WOMtGALbFeTNhm79AZXeYQ25M3bG8b+lA/v7Flcn1NWNU3oHjLRqw2BtcymI4o/5ZBvzkrujoZ4yqEzkvLqClFm6LrECofYt4SDiOvtjsU2JVvvcfd7RsmQJAhoco+uybB1jjUNdC22LmibAmEFIuwjwuRPQL+MtgInjDBa0rQFtgQdO2ijsdJDewFdqLCbmhtbs11tsTogHA1ZX15wdrZgEI+J4z4qULT7Pbbcg3uIR9JIVKCxlUGoGCtTaEsoM5psTWMUZdvSWIERkqKq6U/6uLLGpcTRoF0Pv7VMplNUPEJNHvLeo/f596FP7Gr67/6AXQV+FIJyGA8SlDXcHSTIrmbQH2HrmpuLa957+H2KdUaRtwymp7StothXYBU4PtaKQ2QQ6PIc6fZwowTRaYTvo/s+tjVIJwSraW/mtFWHNi0i2yC1pmlzHHdItV2zfP2Mb3/9cwIVsG80YtdQV4LMlfTThnSTErgFw9HB1XP84DGOgsuz58jhiMd3+/i9Pm4Q4yAR0kVqn25bYrsK773vYYII6grWBqetaDm4SQ2alhrlH8Q9aTzaskM3Hb7tcH0PIyRRL0Eqn/1mzXqxIYojHt67y1y65LHHULhoZTh5+gBncJf+eEq6uCTcLxkqg4wDGgvXqw1ptidw9CEa5EcIN8JLfNxewuLbr3G0oheFSKso9jtsZqipyewFoqpx+n3CD97FORnREhP6HnVxy+2rF2SNZF7HfDIJOI0UsegIEAc+SxgTBwnq5JIwKnDv3EP3YmT0ALsv6a5i0tsN6ZsVenKN88G/oLtcYXYptjJ05RKcw2PZYDFdQ6ddGBzRrV7TbOcIx0d4Pma7pxGScNTHTyLWm5zlLiV0PXa7Hbas8KqKZHaHb95e8et/+Cfu3X9MY9oDI6UztF3E0b13OHn3KWGicb2KZZ7Seh7fvVmgrcu9+3eoBUSJy/gk4cnpDF9bfC8g8AP6J3cOdbOOQARDZNzHyhrRppguo93dst9uiR9+iExm2CDCeArCGC8Q5C++ZXl7S+s6dG5A794TvPGI+fUrtrsV6+s9r96c0zu5D4Mh/UnCeDpj53ro8YBJP2T59ozrq1vSV9+RzG+YTCY4rksyniIjl/HwGM8LEcqiHYFpapANbhTSFDuslLRdS1ukdKbBCgfTCqyF2JOk8wXb9Ibv/+WP6D18Qhjd4Yvf/ZbIpogGXO3iuB5u0qNetrityyAYsrzZcjLq03UNvuvj+gbqgrouELKlawR1XmOExh2EKD9GOC5VVeIkA5QLNl8h/BihwwMYedTDyVqaRYYME/xkyGDcx5EOZ2/OCP2YyXDE7P4ThkcTvvvtr7g8O+P6zS0/z0s++/57eGGCKyRKSmItcYcRnjGUi1sc25LcvUddb6nLBaaZoVRAKxSqN4W6gPkrquUGUddIISnTlFZ1tNbQWUPTNBgDSRwST6bMnvyERklUvUTdXuI6Dv7kiFJ6zM+/I9/uSTcpfuKhhaWpK5TrsChr/rjOebfXg9UVTe2Q7hXhyOPIcdmWOWavqKwkTWu01Ly8WhCXOUYoNlXJxFPUixvCLCcIY6wxiGxLs9tRrRfstzl6+hgcn2jYg3TJYBCgQhfVPyW69w67iwuayrKr4Pz1Nfn5NVnd0gti7h+f8vTjjxkeHWFtgsJwfzolGYxxgpDtzVuqxTe0mx3R5AgpBaJzqdZrmt0SU+8gUFhlka48uI38GD3q0RUpptzTNR3uZEa3W1MaiWNcfv/lGz7/43MGvqLnD4iDkCRw0MKSlxU3V7eo1nCz3SO0QyQr7rg+nk4olznzN0tOh6fEgyHjWZ/r2zlZa3CiEcvbC672Ob95fslqlXE6mrJPU65evaIrjzi6e59ytUCpEMeNEEWBSQtk1Me6HjKKsXkG1Zry4ku0D8npHfa1JX1zCQGs0zVx6GMsOEWGyht2L8+pOsH88hWTO4/oRiPKfM/LL7/i+OiYQAm8O/dQrkB4Hk3lkC12nGUbkiQiHgZEZUaSFcggptzvaNuatrPkRYbRIH2HxliU9GiETxRHlKsNQRAczrMHZbbmdnHGxWqB1JbTk4Cj4P9fGvlnRZPr6w01LrWsuH80wYl7tHVFYVv0fo7Wd/CGMdntnnZjsJsNuoFTZVnZhtfX1+yyHH884rvbS96f9NHzG4j7MPBp53O0bfFGLmadQpojwz6i2GJWGUIFTN/5HraxpG9fs9ncss0y0sbwP33+O1bblCe+w+rbZ/zlf/vfMT6dIaOEcBizPU/Jn12zzVOa3RXd9WvC7/8EcGjq17TpHCRIz6fLlgil6bTEaJ+6KSnzjMYI9q2DGoyYlw2LqyvaMuX27AX901OEF5JmNYtVij8+xg0CrONS1JJtCub6nGfXL5HCUHeSJ08f4TkeJnZw+4rjd322rsNv/+aKPF9zdWG56zUkRw8p9mueTHsM4gDhhVjpYIVEa40f+CgJRkAnQbsOqjdASMALscpDOBphwVYbVC+BbUYlQ+J792mk4NmLS/7+n27Y65h/91c/4zN/y2AsUG1Dh+Ds4pr/8f/+Pylw4fgOHz16zDiIsOkedzzASRKUSNBBgHAdRFNhq/3BYtp20IExFbbtaPcZXZFjhKBtG8qyZl8WeL0R5+uGxSZjvi0ojeAf//6f2O5r2FxyMhsTjeH55z/nrHLoP/oUH0vcH4BQLDc5Q1cQKsXs8YcUF2dkl1d42get6Q2G5LYFL8SojizbU5Xlgfhd5KjQpa0qpLTQGaxpsErTdQZsjWlcnMRBpHMwObSGtqgxnUFphbGGzXrOcn1L33dYL+f44lsCA6G9R+DcQw366ChEeh5KGGRZIIyDV3m02yWu28PTW9Lzt0zGMW5vgpQ+Js3RrsBYhRwfY6oKpMVKUGFMsb7G8XxM00Elsa2i6HZs8g3Xi4zx0YSuEzTWsEoz/N6IaFjj9Xa8efEVfhwQxjGtaTHCPVRX2xopKqSUdLomnLoESQ/TSZQpKd9sSTcQ1g6tOdRzr9cr0qKkNhZtLW8XFQ9mBYEb4oaCihotWnBC5KZGGIuNTmBfHLg3g7uYeke7zaivb2nyjuS9J8ioQ3CGDkZIcoTtIX0HYVpEtWf8Zz9EBD1QPsoxfPDDT3n16z/QPNpih0PkqI8e91GBg8kLulVJty8gLZGhiwx7mLb7k/mpxZiG+fkZZZZjRUngBOzTgq5T9IYhrW5ZrjMmY4tyQBqDaTuMrXGUQ/n2Gt+tGf3Z97ja5RzVDpfLDtfVBL6iNDtaq7FSgj/EBBJ59wF+l3F9+XM22woXaKqO6XCA7ASudmjLnGL59lAzXOxwvADlOLSdQfZD1NDHWg/H8yHfIvpTwvAIEfao8hS9X2HKmmd/OOOr50t+IhKefvoQ7VQoHIT2Ef0h+t77tDJk9cUvSUtF4Y2pkog2W/Lit3/kffkeNDW610e6MSIKGD56jy7o4V3OETdztrcbnEoSDiPiIObe8RGtBalcPC+ibiRCKHa7grZqmd/UvHu3z0cfPGR8tWSYeNx/chfTWL58dkYwOiaMEwCElSgheX8YctSLGJ0myPqS9fyaYSRoQ42gY3O5ZZeXBI6maCx//O4Fn9075Uh40GrybUEw8hBCUc8vCftHqOEYYTuUAun7dFWHqFvs8+fobHP4vxqD8QKQAq00wgeGfUQUYZtDZO722Xc0dUX46Q949at/QK+v+R/+8BxEx2dP7nPvtI9yQl6+0ry6WROUKUcPHjDqh1SbK9y2odl6aC1Rj98Bf4ynDW2RY6yD9SKapqOra+p9hiwy6qYgrVPS9Qbf7+PYkPPLL5hNY96994TAtJAv2RUNUjoMxwMcV1OXGY48NJB1RU2xzxiMe+jpjPr6inaToo3G1YLEVZTLOV0n2e4LRF7gaJcwjg48KWHJFku6OqfbL3EcF5spDByEKO2DlAhHY9oCJwkRLqTbFelmAy1oK3G8HjoaUzsSV3SIrkO0HY/uzRiNI0qr+P38irPX5wx9j4f3HxAHPeq2OjziKFCtA40F5SGMgM5AYzFtg9WHKGhdtfiDhMBYnKY6cA4kBIFH2EtQnoeQAowhCGPwIqYn9+j1+7gffcb2+ozL58+ZPXwKgcfj0ynpcoWpGmrb0gqI+kPWyzW9wZSJM6J4tiZuJeumIBQ5veGAfFUjlKQ0HVVjaG2LLVt84SNoUXGM8BOot+ieR9c7QeYlXlHSFSvqdA6bOa1W6GiA5wvqes3Zsy+JnZiytWwvbmA4JRgnOMJjlCQ8ePd96t2aYn2LGzlM33mAowTWllxdvELR8cmfneJNj5Bth0Sg4piml9DsDcL3QWq8WUBj9tRlCgUI38N1HepljilyOgnKCai3e4IkpqtqrFQHJpf2GYzGfJsWKAGbfUl9c00axuSqx/17fd794fsEfot2G/xBwst//Iaw3PM01CwlVEoiq5LNds9oMEJHCSIOUFWFtQcgfTQc0xV7TN2RhD42Lyn3G8j3mKKiLQXeqsGNB+AOsIGPKXKyszfYuuF2P+Ckf0IsK158+Yp9rbh7L+TJT9/Dn/RRYkc47OMeTdGzE/RoinBDxEwi8FGvXrB4scf88SUn798gJw9ouznUc2yxoF3MMVbSmgrrhpigj612KNGQVg3aCanahkqAO57gz44JY59IrHl9ds1queKHT9/l65//nFHY48WbC9LzS5q6YZ/tMKagzObs6pbZk2OqneHiV7+nNx3gjU/ZbL/h2a/PmJ9n2N05o94UoTX9IGH2zoCegkC0uNrD649xvENjGE6ASobYIkW2NV2+pltdUmyW9O4+RPVOsNGYbjhFDmIcT9FcfkFdr7n/058xv5hz9fyGwe//ge654Ks/nnO7arB+zOjhQ/z+EC9SiHrD2e9e0p9Omb37CbH2SRCMPIfaCHb7giLbomzI5qpA+h7Rvcdof4+KA0TQ+9M9ukPtG3ACdje3+HFLXhbUTUlVNrStT2RdBAovNzT7lvGDjzi73fDogye89+N/wfbZb3GkAiGJhgm92REXuy27fc7Dp+/jezG7Zo9UgjDpo9gTRhYv9ukQZGXJPisYD0ZIRyM6gY5CVHSItUstSV/cEN5JUL0JwpbUqxvqSuEM7zPwLJ3jID1Ns53Tbm5YZguCKODhY58PHtznOIl49cXvuDw749XtlpvbPffvxwzjEO0HFBgSYYn9AFnXhMMp/vQBTuSw+e4rPNeizQOcKIAupqt2SM+hLvZ0TUndVaB80n2OlYq8rjBS4cUBrh8wffI+2+s56fKaJArQ0ZDEG9CGQ1bbPXWes7q+IAwjamMIlIauJfR8fvSDzwiDIWUr6T/6AWm/o/6nv2E6C3BciVMZNrVL1VocP6E0W5b7nH1VMO4aprQY6YDr0Dg+QdQnv71mdf5rhJHghLijE6qmIhz1CSZTWtWxefMGFfuM43dot2vefPuS/+vv/pHzxRoniDGOh9UJcejRpmeU25oPfvA96tUVcRRw58lPsF4CUqGUw5s//Jr15hlHkxtG/QnWHJw4Zn9Lsb3AHY6RGjrboQKXss4ZPLyL6IXIMqZtK0qrkL0xRrUsdyV//Polt6stLQohNcZaEiciikOWRYWvBSoIWBUF9XLLw9593PGUIJTs3t4QuDmL8z9y79OPCWZ32DUwz25pUDQWbm5W3FxfY1vLcr3lui2IHZfIT2j6NbI9LE7assRuNzTbNaqpMG1Fk2VUizM2519CqLha7rgz7LOeZ7j1hufzNfuq4O7xDHV0hCf22MWcpjNY1+PjTz/C6fcZFx1bv2Z9fs3ty+8YVltkugDpIvIlJr0lijS7yuN3L26IE5+Tbctk35IcH9F1LU3T0uYlabZFVgW0hq61vNmWxL//jh/9+Q9oioYOjScFkYLbV0t+/ptrXr3a0pceSeijB73/NNGkLQ8WS5UMuLxd8F5/wmTUZ5emnP70zwlHQ8x8QbdYUdUdgTTUWYbIUlqhsX6PoFegpWZX1GyLHK0PamduO0KhqGtB/fYc31viyBpJi4xCTJAQxj3K5RKo0Z6LNZb57S0v13s2+5y7ScjTkc+w79LlK9xQYOs1RauxZYrPnqO+4v79MdRrbLXHiT3UySl5mdHul5i2oa0qhCOxEtquozNQtR2NCtgpl0AHsDpjEjm83Vs2qzU36z3RaEAtXdwwouwseVWw3O1ISxCTEf/bLz5H2AVeOKDO4PizOzhSs0h3PL+9Jtrd8uIPv+LZN18RBR4nxyO6usDrDZh9+H0od+RXLzFdR9zv4wc+UmvK1uCrjl1eErsuYe+Qke7yHCccIqSiqxtsWWBdl7YpaKWg641wZseMVMndsuFRMef1PuOv/+a3OMmMd3p7wjqjzTes337Hf/2TT0iSkF7oE7sO1DXV4i29WQ/pe4c2l9aihAErEEEMTQHKw1iJyffYpsQai7GCqsxYr9es0j0qiFBBzOrtBdZxqa1lX3fERcab3/+C8XBMNr3LNxvFz3/1DVFvxKfHT+n8iDAJaHWE6VI84+CbmiSM2aQV8ew+1lp2iyskA5CKVDh0jeJUCvKyxHM0nraY5lD7XFQ1um3pOovrCCwtSlmaRqK0gLKAeo9pJV1R0dYdbZmTbZasFnPGkxFJ4vF3377lxXzJ12/e8uDoLn/22U95JD2iux5OLIn6Pm1qMUphhaBo9sTTU8LljiLbUmUpbt0gG4NwoGss0g+wAmzdImyDEAKUptisEJMxre0wTYexHZ3XcpNvsI4iL1P64xnzoqM2ChkltOb6ABvtLKPpEShFsVlgJzOEkNB0+JFLW3qgwPcU0nrYYo2tapra0no+i9stRhZsdw3nb254e7FAC+h5Hk1R8/r1itgbEvddWitxw4hm3WCLOXZxe6DZcwcRjhG1wjrBAcx370MCz6FJz1j+5v9h9eIVT372b9A/jLF7F6KYdr2iXha0K02Xrihe/g7/xCcWJWFXsPj9F/j9Ad5gAnGLLXbIqIeJ+0ivh6lShO9htMLWJdaCFQ11uef2+i0bUxOLlk26pVMuURTieJKiMuzSPavUZbhboQ34IqKuCpzIIrolvYcj/AePaL9+SV5XOEFI1cwpqz2bbE/a26HdhweIb9Jn4DdcPfsFt7c7doXFsS2D0GFfVgyGMzojiJMJnQaRpwf4VlcgbIAbJljTIHSIdJPDRiUcEAxO6azFNgV2JyiLNevzFd9eNjy9cx+lPfz7T8CkyFEfNT4BL6SsFLfffsPzb5aYzmNw9yFur0buffKbG15/8ZoHeUE4y9CDEUpYhDU4KEZHM2ojSO0W6yiE9BDCx3GBKMBIS922aBGA0eggQDuHCBLScjIK+bPvv3NoLxCK/+M//pyzpWG2d/B7FdF8hb/NEHXHLOwxHo8gDNl3W7ZnfyC4d4ryBuxfvGG3qqhdhTAN90OXRVYcxLLjCVXXst3sCRyFqBvClkOF9W6N9FxE7tE1HdIJaZ8/Q6RvaTcbhJVU+1e4vRCnLKDp6LBIZaFroS1pyh1BZOifjKGp6c3+c774x3/i0WzAX//mC16+/I5Zr8e//6t/ywcffI/KEZRZxqOn72DXc1Z//CVit0L2h9jRGKEk2mwxGTS1RichJtsipcK2LeR7RNWw31yy2a6wrUsQh2wWGW6kGYyHBIlP33f48g+/RLoO310tOd/mvLPdMzu1FHV9sPsLRVaXTPwZrj/A9X22+4Lg+AH19WsMoLVHu94QWpfh6C5R6HI7v+LdO1MkHrXyqOsOd3VJ1wJxe4gUuR5KtIjAo+0KrM2odzdsbm6olCKvJVIoyrzCq2qcIEfWDdVywfbVS4L1kkHkMhrE7JXP9s6ErHB5dbHE7FJOp1PCyRQdOEh9qD0W1QbyOXbfgg4w+Z56syTrLN50QpuVmKpGuoogDsBx6KyhwD00g7gewk9wRM1gNGLVRf8vZW/SK9uVnuk9a6/dd9Ge/p7bkJdMJrORUlkpyZKB8qBqUCgbhkf+AzZg+FfIQ/8QwzAMFwyUhRLcKktKSZmpZJJJXl6Stz39OdFH7L5Za3kQObRseBSDGMQkYsda3/e+z4M0muLhCt9zSX/8HzCqOxxHUl5eoKqGVEa0TkNPSRTv0wOPP/o+KtNs2o756hYZKbSAcdTTNSWea/BGCUrV1Kqnros9iyOw9tt7P0FEESKWmPoW6UFfrhGuhx0JsocVVbnAjgdokyPKFcv5jGy5w08HNFnNcSTIl/e8vX/D49NjKj2i9X3S0YQwHrKqClavviOdpBydnbG9v+Hbb77m8GDEeRLg+RGW7dMXC/zHU9xuiHGs/aG/qPZcLSX2TKgopm0yjONhdEfd1lRVh7AC2nWOtmJwXERgIV2bydEZmbK5mT0QRRFWmhCGLsuqYlVK0qNjkkHAy1/9Ff/ur/6R8mrGkQN27BHaEjyHOPSpe0WnwR8MEXmG6QqcOAW9X4Q4foTpLao+Zzid0vo+XbGlLlsMBdIJsZRBuj6q62iuvwW7xh0fMr7ZMmkfePObb3BsGE8fU1ewzjQj46KzDJkKvOMB9vERVnoIdoRMBuiqwzs+x1sptpstw1df4300xZocoXSL2i5pijtkcoA1nP4+obXFdvYD2mR6QK86hATjeQzTU+w4Qbg2w6mDPd+QbXZ89stfs/nyt+gip1vviC2LYZIwGkZU2Ypqt2GxXvPsox9wcpjw+d/9FT/71/8pk+CUox/+hD/yNLOdQhQrHvKKYJIQuQFxsDch0ZW4vo/t7VmEljEYbRCOg5AWptrRFWusJMEdjJCjA+Rwste8xza9a2GpHUW9pouO+O5yQZPV7BrFt//m79G6QUUhwXjANE2IEknoNtAVdGuN27XMXn3H9OQZo8dP8OnRuzXSsnn8+AOwBLopsX2Pus3YXrzBS36IrR0cWwIuUvv0boAQhrzSVPkSbQt2XcM8y7CkwYtDakK+ffeay6s5H3xzx9vFC55+76f02mPbS7SErM55Nk0YHA4oiyMW1+/prZ7R4ycMPUGVL2jqlnGw/zzbdcjrlrLsaRtDVnTY6y10hjAe4cQRuD6W7zH8yZ+hCoPlpxhho/o77MEEJ7CJooam2pFvr2k3M5pqhzEeD6+v2L58zYc//ITHf/anjDxJQMdinfHVV2+5eHuNYwkGkccHJwccPznnYHqEm0xxggQ5OaQrVxTrO2zdIduKYDACS9ItZlSLFbrvycuKXa3INzWtUFiOjRbgWBrPk5gayvuO1Tfv8WKFCSQ6COkrwWo2w7VsfMsi9By0beOFIU2T4RhD6If0ZUk4Pqb3bLxn5wwnGeKmwTa3+MERWIJC2uS9od/U3M5WbIqaOs84O6yIiwLXcxCdQLqKTnVIzwanw/ZSLMdlt7nBTqa4cfp7k9URg3DA6n7O3ctXrL96x7//5W9Z1j32MCEcHlD2FiI9J1SCs/MzUilYXtzgBDZP/vCPUH6ANhZt2yBcHzE64eUXf83V7IaTdMgoHhAFLnQFxvTUqwekI/DigHybU/YVp/ZTMAYxmFDOZ4jeQgcDVtmCm/sZ0o/Ie0NW1yRhgDYGx/W525T4qU0UhtAZ8rym7QRpC1kDB9Jw/vEhblcxnMR0bovjQpSGCNXgS4EjHXyheTIZsc5btmVL5dmsViWToWb+/oY4tFDbNY4T4/k+uq9Riyv08p6u2JEtL5FJAPGA04MjtpsNyjUs2hXjkwOexg7vr5ecxiPiYUJgerw0Rfg+IgkwYYrJKsRxTKRcfJVTbjQy8qDe0S2uyOZLes9lmMQcHQ65WRZU9znL7oFBXuCHHpbr0GqbsqxQQiE9n6ypuKlL4hz8lyuejCP8YG9yNKLk9eWcz642fLtqMKpl7Gme6uifnIvIv/iLv/gn3/y7f/jdX1S7Lb4rGHiCtlZE8QghbEZHx/hCYmsJpaQqJXIY0rQbtNWyzgpuZ2uQNov5jCrPCG0L3/Nw3IC+rbGkpkNg2gJVrlDtFuMl6GCEPZ2ANHTLGbrrUOzVn4v1ileLJePA5YePpzw7HHB4MKLdbbB2G2xH0G43yCIjduDRySFHH5/jjyIEFpZqoKsxTUWz29BLG2VLeq2otivqpqFF0EqXTFsoN8ArltRdR6dASJuH+YJl2eD5Pl3XYYDB4REHp2fYjoP0QqLQRcsWIRRK2gRuwtHJmNS3oSu5ff8dn//1/871u1eU2RbT7PW1Ajg/OyGdHiF0y92XvybPdwitqMqK9Wq13zZqiIKYNNlbgRxpIeWeZm66fv9qSRDQlzs6BXUwIT2ZYlQFVo8XOESuxhOgtMTSFrosWd5ekO/uGR2MiQIH27dQ/Y4ocajzNWGS4oYxwnYRrotQPdJiX8XJNvs4pLBQxZ7hYoyi2q3ZFhmr3RZt22hL0tsBtbLYVR2r7Q7XD4iCEN12SNvFHR5RdPBwf4nruhwcnTI9OaUqM9ZZTZoOcZTG7xSusHEcl8ef/hDh2rR1i5tE5E2Oakuq3xsQpGVQlgWWhe9aCCFo6hapWnqt6UyHabdgNGiDKjLoNW3dYYxEK0Ozy1jf33F39Q4ZuXz88SOk6lhlFa+XG9q25ma14N3dgsgJ8GxBXxd0dYFt9mBMxxM4VosQhm+//BxbZ0xOj/fwV99D2DYiCNFmn4RAq/2AzxjqckPQdjJnAAAgAElEQVS2nWNsuQfrdgWlysj6luubHKkDwiBGyoDruy0iGOP6Aav5PRaagyfPccKIvs45niSEw5iJebvvTTeGclVgOy6HwyOcVmN2G7rtA7bXEX7/I3Zdz+Xb73j77pLv3s72l6/IIQ5dVNdR1RWTwGYwnmA7PkJ4NOsK0/UI0yI9EH6EsUPwI4QNcjLEGk1QqmX3+iv+5n/+d9SV4dHHP0RYPkJDfTtn+/V7+sZHJIc4o2Mevn3H5je/wKGlb+Dt5Yw4GRANR0gvxIoTjB3uNwGOgxaAK7FCF41CNyWt7lnd3/Hm3VvW6zV92xJJgeO6aKOQDuyU4tffvaNqCkLPMBjEmFqgG4ifPkXMrtBdhXt+TNFqXiwLjPTJ6z1BX6DR3Y5PvveYYHCCbfXo6paH11/x2Wfv6HqD7zm4RjNOAqLQJR2OaDqz/55XGxytEJ3GAWzbRVoSKRqE7HHiGBkPkekAJwkxdU61nvPw5pKXb5cwmHD6ox/gW5rQaQkfPwEvosk7qlby+vO3/OX/9L9yc3WD50k++OgR8fEJZVOjjKYuKmg7pGoRgn3FqVOouuf+cr+xCNKYpu9xXRfhu2R9TxCkaC/gYbOjxTDLtszXe7bHYDBiMp7w6Q+f8+zTJ7R9w/1iw6v7HQifsijxwxBxe8tYWYyHI2LHI56OkKnPus5w/A4HTX45Yz3bkFUd2A3zrAQMU88jjCJGB0MiP2AznxN5CbJtcVyJE3kgBJbt7mHNStFffUt/f0G7eMAsMvpXL2jKBZ1qkE6I6huyu2uUMBhdUa0eKGaXxKcnhKfnOMOETvU0UrJ8+w2PQpuJhEjAke9y9L1PcaKEg8ePCROJrRpWsyX393d7leNwSPJogml/ny5Tv0/qFQXNck4noKt35Kt71ssHyqJkEo8QUtJkay6vr/FDn8E4wQ9ipOoQqifwXLK2JfnDn6EHIywN48mA0PdQqiUMA4IgAK2pih2tY5M3DTJwcCzY5jmDZMzj83McX9C0DYmU+J4LVUFg9ci+RBiJkD5O4IKqwPXRGlS+obp+Q7mc4R8eIJKE2/kaP7S5v5+j6wLT58zffstnv/yMsmk4G4/xgxCsmuF0wsnJKXWtGD79AKNWpJOIyfkZErCDBIHZ/9bmF+jNDJXldNsN+eYePfBo9N5+UTUNWFBrg/A9nMGA4SAmnYzx4hAhJMZxUcJlU0EUJrj0OF3N0Sc/IBmOaOqam3cXVNfvCTwX3VY0XUMyGjN+/CHHz36MrTVCSZTR6GxNLTrS4wN2VUMUpkjLoqtzAleSRgGW4+EFPsIIrDDFsn1M3+5TJ07I+tsXiGiKsX1k4OEkKQQJZV2Qrx94/d1b1rua40dPOExGnB8e021WTCKPJ2dnjMOAgdCEYYQ9mrLe7rCkYv72FRcvX1BsVzimx+1z4oGPn4RYlkZt7mjuLwGFFSSo3iAE6CLDdDVNXVDSYnRHsd3QagOWpipbwIHexrc9vDAA18L2bFpluLi4YZ5lzHclpuswkc9D21BkG1KvI7Aarr/7mq9+8y1DAQdhgCMsQluiLMHR4YiDkxNsKQnCAKEV7WqJwULYDqZtkdJF4GBajd1X+7OSnyIsiRNGOPEQGcYYDM38PYYt4aOn5NsYu7YR9YZUan76J5/y+NOPGRyf0AtNvrwlu/maJK3wRhLv6WOELTEKdAf9YkU/W9MVHTIdYqoHnEEK0gM7wHghIhqhPQ8ReBjbYPoS6doo1eAEAU3TUJUlhDHu5JgodLEsGyNdllnO+xdfcPH5rygf7rm+vOF8mDJKB7SWJJ1OOJ3G9MWGMt9QS5eTZ58gowFu5DEYx+SZ5uHFNU4pmU4PyWkZjEMGkwmhFxG4Hn1TE0YxbpAivRBbgK4rrCDFGU4RYYTlOPTbFX3X4h4cYo0muOMR0tRYxT31wytuvnvN7769RPcNQRzhRz7rWlLWmvHU42AoGaeSSSQJbZ/AEyQHRwySPfR6e/eeOLJxhYWDIZ/dEgQ+6ckTkkcf4Ibx/hxX7SCOcAIXadv7s5PWqCanrTbcv3tLmZW0WvCwyVjmNb60SKenbCuPq2/n1GvD/ZsFX372OXdvromdhOmxz83bF6zyNY8+PCSMAqpG03eacpmxmpWcP57Sm5Yo9ImDAEvboDTCccmyHUVWUGx2WH2+X975NrYLMkqw3AArGIE3QcYDhBRo1dF3HU1VsLh+xW43IxjGGAS2a3O7rbjZZjw6O6TvW77+1a+pbm6x2op8l1H1HessZ5p4nI9SHK3oi4zp8SHx0THucIz0XMqLF7huQ75e0cxucVSNqbfU6xnb2xs2qy2LTY5/MKS2BJf3K8ajlCgNsBBEYYRnxVA0RAMYnE2ZbzMqJ2E+XzG/usCxFGGc0GJhSZskDqBvqcpyXz/UML+55fzZM04//QS/n+GtXqPyO8T4FC2g6jru1zmr1ZqirFlvMzZFziDwSQKX5vcps2yzRTcVxW7LerWmqSrmD3OKVpMcPcb29xrotuuoNXTS4u7iHf/w2y94tViyLnPS8Rgv8vdQ5CDk2eMPCH2XMHQJ0hB/MsKdTIgPJwhHUlYNxvFosHh38ZrV6oZltmWZbWiagrrJ93XQriErtmyKjA6FsQyjs1PC0ZBOaVoDvZA0SvNwf4cbxqy3GbNNjrBs0jjieDphW7dUTYMtbaTjIpEYKbGDgLLRJNEQX8BoGHD6Bz8h+fD7qDaj1S1Kw+xujhSgVE/Ttmjb52GdkWUFiRcSOCFWV4OqWS8foCuxpEVX5qi2oS235Is7Vg93KFfijEcIW+B7DmGccLcs+e27Gb95P+OztzdkyiYdjTg+O2Hy/HvEH3+KnAyBmtuLN/zib37B3bvXDAY+bGeIriMMHax+t2c3RkOsMMaECVVbkXUd276n6GFbwnxXkOn9Pa7XBmFLwLDr4cu3lwTjU85OHxEGPslogB85vPrmJdd5gQI6ZahaQxTFHB4d8p/9l//Ff/P/e2jyVz//xV9kux3PDkKmacrs7pbdsubk9BEXr96g7m4YDga40wnGMRinR+kOpRUPmxX3VxcU2w0Pt7esFlsMcP7ohDAKqbYLLBSNdPaXb91jpWM4+hA5GOF4DtK16LuGcj7DWKDQZFXB3WrLw26HK+HR0YjDowlSKRZffo3KtgjVURcl27InODxk+vwJMozAgCly1OqGrsjIixxGQ5QtqaucWmlaL6YXNjkuq1YgyzWWaumw0JaDUgolDL3rIYRFVZWMDw8Ix1PcJGE0HlH1Bs9z8AOXdV7T1S2hbyFVhqNqri/f8vLv/4ZiNce2BOVui2MJhqPB3iSQb3CKFe8+/zX//h9/i1EK37Vp6xrTd2AM0nbIq5ajJMFzXCwDlmXvIaDb5f7O33eoYkuTr2jqCntyjOlbVF2wnK/44ttv+PztN8xWV8TUdNstxfyGh4f3PP70OUePT0jHA6JBgG8bvNDHNR1WPMZxPCxrf3BCWgjVYZoSXRWgOrTq6fOMrqno2obdbsXVfEbZ9ziBjxOG5HUL/oCqF2DZCGERxQmulCRJSjQ+xfVDvDgiiGKeffwJx6enWGge7u/BONhNxdB1OTk9xzIu5XpFvpntN4+uQ1HnbFYLVvM1oumZDv39BcH3cO09x8NG0Xc9xrK5v3yP3s2x3BDTtaiqQnUAkna3pe8UTVVTbDd0XcYHH51iC9huCyw7YhQO6YVhenTGGsm315fsqgXZ4oLd9Rva3RzX9Fi6xbQ58+v3/PXf/px6N+fsbEwwmuxhj5a1txR0e26B6kqgo623lNsVXVXQ1js0Haqv2dYVeevSVtC2PUfHR+wqw3LbEYwOCAIXpXpm2xUXb79jdvmaQRJx9uiE+9WSR8EVtgXrhwXZricQNrGb4OLSLmdU2Yrxv/gXuMen3N9d893bN3z2xddcLjZEo5Qnj4+QBrTpyXZbfFdzeHyM9GxsT9Kt5gjhIMIRMhpjjQ6x/Ig9vc9BeB66r+gfrqi/+g3d21eEboLvjuiynnq+I7tbQTjBf/QB8fNTnOkQX0jkdoETpPQi4uXNjHZ7w2Tk46QpuD7CC8G292kMWyJcCUKhu5K+b6m2GzarJZevvyMrKqTr4EuLvlWkwwFIxdWu4vMXl2jh09aQeC4GqIHBQUr/6jcsf/kZMt0xXy+4FgF1D240YDnPiOKE++WWZ8c2h+MU3zU0y9e8/+6Or17OqHtAG2LfIXJtkjQlHaQcHB4TDRLsrkJtM0TfY0sH2w6Rjodoc2zHx3YtbLfBTkfQ7uhX19x88ZKLt3N+cb2mVBLyHZvlmrivkapB94qu7rl9/Z5/829/ziJrsG2btljTZWvSgyEP25z57JYwSVGtQhiDsTS6bhHSpsoLCmV4e3FH3vUkwwiExooSVN/Ro7H8gPl6S5AMWG9ybm7vsV0Lz3MYj8cM0wBbFaxXO66WBdIPkXbIyZMzRicpE2kxFB6eEaSug3t8iHAks9mOUjTYoiLfZGBBW27YZRsMhk3bAz0ylIwOJgwODrl9e4nTtTiOixXsn5f2aIqRDkK1tDeX9Mt7umxNsVwwf/sKU29xDkYEzz/GPjlk/uY161Zz8fUXzG4uKcsNbppip0OM66C0YlcV5KalfHhN2G8IUBymMVndM/Ac4tGIMPGQUuEEMU7gURcZN7Mt3jgkDXtMV6OKaj+w7UqgpSgyymzFrllxc3fJep0TxSlxOmC+2bK6f2A8TjBKc3D+AY1qiTQUu4rT0wlRmmI+/AHaD5lOhqRJinRsmrbh+vaK0FS0mxW7LEcEIa0GbCjbHD+MOH56hhMHpJGFoxtUnuFKiW5aRNsh3WSf7DIClS+xXI2xPbAE7WpOfntHcHiEiAfM1xuWuxXSs4gGEUWeM7+6YbXbkpyNefZoxNH5I4LDM9aLB7Kre6rFhtZ1MG5C3yh2u4pOQWL3iHoFfYfaLOl3Fbru6OZ31JsZ63qLMxxQ1SXStinynEVeorWCwMWNQ0bDgCAMCdIRIogxlo1Ccn8zx3ICTp/uayyibdFas15tuL28R5U7VN9T1zla9QwPJgS+jzAeo9CnWtZ0dw2eE2APbdaWRRwPsC2JJQTL5YwARewliM4gNFhCIv0hjhsgbAc5OcZKhtjxECN8dNfRVSVdX9MJSVbmXLy74sW7Gxql+fDJOdOjY04fnWCKDNlVfPHiJevNlh8/f8LgyTn25IDw6JggHRJ4koerd6SDiD/46UfoOkPUBY4lMEWJ2qyoF/c0eY43PkKpdg+tbCvaYkPnQWVblNsNTbajzDa0qqVsFVXbo43ECI2MBE7oI10PS/ioNiV98hzlx8SDMf5kzFYpbq/v+eLzr3l49x2/+s0b3l1t+PhwzDCOcZC4UmA7FtPzM4IwwpZyz2hCg+viDidotTcjCSWQrrtnrrUbZGDhDQ8RrocXhtiej2pamu0MxI7w/BnCT9ltelw5JbAlpx98n9Gf/ivssw/AVah2yeb+PbdvvySNasKxh24qVKOpljk3//gl6ze31JsGezgiOU7oVnd4x8eYjv2AqO8wxiCjCKSF0Q19W2BUjbFdurahajqKXmDGJwxGAwLPxlgu2vZpupY3Fxe8eHPB1XzNI99lFCU8ffIUogSCmOMwwNE1dmihbJtkcMBkfMTm/oJmt2T1fsWBk3AUD5GWy5Pvf0BWzhmNxvhegGUUpsmxdIfjefjpCKEU9XpGm2V4UYwwGl1tyN6+3MNU4xDLldihROiM6vIF91/8jhe/+ppYtIziiDR2iRObru0w6x1HgeJkHOzV3r7LeDImPX5KMhgTBCDLnPu3M7piR2T1+3Rz3+AlA2QwwAkTRL3GdgxYhrKpcXyJUA1dXSFQNNWGMlvx7t0dq/WG3a6iqNS+vmck40eP6YuOk9EZVpXwZ3/4Z3zy8VPsXUl9/cDd1VvWuxseHi4RTgZo3r9fEqVDPN8lsHuy9T3Xl9fEg4TBeLo3LwqQnsNulzFfrijLHM9oBBAGEmFLbD/6fZInxg5TpG/vh79NTbu64/rr3/Iwv+Lw+cfYw/G+mu/aNLak7Ruu72a8fPmK15c3fPXukseDGM/1KKqS6TTh+eNjxtMxB0dHjKZD2tkNlrUfoFSbffJBWBaqy3n95pZ6u0Zlc7LljM2u4GqxwUojxucHBLHDZBARx8m+YmILXNdn+uQTksMpXiwp+5oSm9yb8O7Lr1hdXxLaUFUNvueRjMY4pqUscgwWfVnjWpJ6uUTUHSML9O/+Hr24x5/66MExbdWRLxbc3y94WG55WKxY7HZgNINwDz1H9fR9T1GVZOs16/Wam9sZ13cLst5hfP4hjuft+YBBij0YIl2Hrm/Jyy1ffPMax7HQVcF8NSffrXA9i9E4wXUtotAnCCR+ZOMm4Z5VqTT5bkX/+5plVRWslnfsNnN0X9GonqKtMRZ0RlO0Dcv1ik4IbN/FjXyS8QBpO2jdUzctWtpkmzVN1+AnA1plaJqGZDBkdHDEuqiYzea4novr2jTGoql68lZRlA3DZMhhmtKu1sxffkc8LPGce7ZXL7m5ugInYjbPUYj9Yl063G4ybu7uqcuSURAwikMm44g49kG6WK5LtV2wns9Y3F6zmC24XxasKkVlYFMWRMOUdHKA0hZ5Jfji3YKrLCfvG2Z5yfuHe5RpEaKjzmeU99+xu3nNP/z6JYFv8dGJTxJInCRle/9AP7vBsXqMGyP8GOOHtKrn7mFB3YPtB2waxapQPGQF82xLFDlYrostQQnNstEssgLHlnz60ccE0jAcJRjLYbtqOZ6eYgubwXBCVdVMJxPqpuM//6//q//Hocn/az1n1zbIJGR6dMDi3QVlXfHNVz+no2U0jMiqB57/ySfgezQzB1Uv0K5F2fU8tIZVr1nPZ2RZTtH23Cw2lF1Lh8AdT9C2xAkCVK+pHQeRHiJsBxeFVg3GgEhTdJyye/uaXVEhpOTR0YRtmXG/WPEmEpw9fcz45Jz00TNW1ws2VysYT5l8/H0OnpwhIx9pFEKXmErStjlVVmAGY3phaKodjYZcJIBH1zRs8zVFvqXtdniPH1O2e/CQi0Xqh9zNFtijlGQ02gORfJ9f/fJv+fbbL/iTf/mvQQb4kcfwaEidb7i4eE859Hi7WeM6DseTAbkrWd4/YLTGDUM8P8RyIzZOys//9m+5ur4hGAy4XuyoesM4TYmjkL5TFK2mbVu2VUGUSaQxWFpAb+ibFktv0W2GMT26rahrjU9Jvc5YvH3LX/78l3xz9YptsyM3AsuGdpwxcAO+/6OPcJOQ2mjsrqHL59ho2ionPXqENoqmXCNpEKZBdT5IC7oK1Tb0dYbqFUprynxDnq24WcxZliXTgzGWbYMUaAw9huOT072aerZA6YZkcojteaiux3dDjp58DyFaRsfneEFIlW8QRrPabhkYRQVEaYou4fLL79B+QzqO6DHYtiDLMx6WG4y2edZoIt9FGYGQNsYSWI6L+b0i23YEMjmiaC2sfIMjbfwkpt9tEULSdw19Z+jpGR0E9PWOqum5z2qWvcWq79n0mlVe4IQpreh5/f4bxpwyEiOu32dsd1smrkO3y/jFr19w+viYD05iZvcXDB8/RtYBEoVoNdKz0VKC6dFNSZ3tqNclXdbTqwwrcGg6Q1fp/Ua3WyAcQ9XVzLY10eSMIDzEdW3K/ppWwR//9EesNzmH0wF2EJFvVthC0WmLou0J0oD57JY4GOAm55Ql6OgQ7+gT6u2WarHh+t2cRW7x+PwxT58/JQ49pJMzy1uE8Xh4yLi7u+fEGOgalAWmL6Hz8JxDtOVghcl+u++6ezX18gK3X+KrDd/78TO05dMUKzojaOsWOXmE5YL0GqwwREYx4feeYPf/EV3VEdzdE17ek9dr7l7+FjlMSJMQ4e1ZKCCwpI2uG5To6OuC8uE9rbHp6gLT9xilsMMRluxxUGAq8lbSVw5VYbi4yugzEOqe80nO93/6A+yoxv3ZOY2uKC5eo8YfYaoGN5iw3KzxgphOQXjyKS+vO44nVyR+QL/dMNt0FJ2m6wyBY6OMBUZiCZsoSIj8EN+NsMZT8tkSRxi00uiuRbc2ZrfFDqaoxRqt1gTDE0y9prq54P7bex52cF/1XNcLlLA5H6T87v2OJ9ua0dmWRd7x3//6BXdZzSfHj/j0xz9gcnxMvb4ku3/PZrbhu/dveYHhzz75EbJWqFVG3PdYTUdW1syXO9ZNyyAIubrPeHp+iOj31R0ZxazrGqMMtrFQvYVWNlle8+jYo+0qNos7lvc5X765Znz+AcdPjglqizSOmF/d4Tcd0gU7shCORzAN6DYFoQ6Y36/A0QzoyGcdu22DcFyqssFxbNKRj+U47LIdp4ea8WTEYrWiMy3COSFJRrSze9w0ppUuXbZB5TnLmxsWNxd0ouGj52c4Jye45wcI1yI6OOJ3769pnA5/8UAs9ia13W6HE1j4XoAOI+rtDXFS09c9aZziJ4/Itz3HP/gEN/IxogKlsZQgjHwOzo+p65L7y9cMDiKSA8Fe5Cdo8i115LGrNzS7HYvVgpu7ObETETg+ruszu3nJm2+/4XR6wvmzc6RRBK0mHh+hNhXC1pw+f8R8OMTzPTzHw3W8fXKmrPjy62/5x3/4FT96csbh0RnD8ZA4HVIUNq3dMx06TCNwXA/TGFZoiiIjDkM6BBiN6jq6VmEdRthhStfWOFKgu4pidg2+R28c+laQ5xtUXdP4NkEgGR+PcY+GmNCh62ucvkZ1OXYQcv7TPwckxarCzLZs5jscGaB7w/xijikMY7vByV4SWB5uPEZ0FfVmwSrPEdOEptrH8Puuxw58muUa37EJR+m+piMElgAsgRNEgIVpWzaLV8xnL3n6/CMmTz9CWDZVtqOva6Ynp/T3l3RounqL7TqMpweUZcb4oMEQ4DkaHnnMdmtyHAQuUklsIch2W5xgRLFd0A9LTCioVg3lzQMTb4jt7WuwfVMjtERbNko3dHVNudpQrmasszUXdzMyKTk5P2Kz2fJw8QZhCap8Tmt6hkfH/CcffsjFNy+4ub6kNj3x8Tmt6+HEEdevv8N1JH/wR99H2gYOJmxv7+hXCwbxGC/0sJMEEcXUqxssL6JZzzB9S90V9IcT2rahtiDPcposR9mKu82OwfiAAsXbd6/5WfzHuOkQ34CxBV0AT3/4J6g05fDkgPXyHe9++X8Rj8bcXeX8D//nO7qm40nqEQYuYeSBkNRbhXZtwsAnL2vasiIIXOw42YOo62r/rFc9tiXQxsFJp8jBmK7aYUnAc+iLmmq7AtXQeRbR6WOs4SnYBiPnNOGIdPKcdjJh46WMzlKktaK+vuT29jWvby/Z6oCfxTFxFSM8j/lc89/9j39Fs7zgn3/vR/z5f/yvkM6c7p1Adxp3NERttpjdHNPXMJzuz0+Wg1AFxeqB8PFH9EbR7nYoPyIaHyFtiU2PZ9konL2eVwt2ZctTz+HA8ThwXaZBhHt4zO+WG3TdMYgHRMMBJhziWRpLd5RZz0K0PH/2IVbZscoeUNUVzTxBtgrL7NNmwoa2KOgLhed56DCmvr+inM8oa01bZIwOTui3c3S5wU6GiL5BtDv623uyu2u++7svefvyAseB2I+ImxartnGchB8+P+TNuuAwbHg09dCiJXv/AGVNLCz8w0e0ZUWxrRh9cEr+sOCmLDg+TPCSCO/wEfFHP8UOI8xuQF+sULsV64db1k4HB1NkENPmAq0L8u2GvMh4yDWeFFhGUPVgxiGWF2HJhscfRrR1hWLBB3/6Bzy3XXbXD3z7za/ZrXN284K/+V9+w++ml1jOhJ/86X/Ix88e0YcW2cIwGEsmJ6fYjo1Mfdpyz/ZzpENeNGw2NaqVYOc48zlPpqe0m9VeL265CC1oZ2v67Zq+athcv+fV69ck50/wDk5p8h0vvv2GrNoPJqre0EubaDrkWGqaVvPt3QqlepLpiLNnJ3iBD55N59k0vo8/GFLZEuG7OL6N6Fv0rqCpKm5rzde39zxLJJY2ZLXGDlwGA5tOtESDFM/VtBiUdtFti/RsnFggXNguMm5uFljxlNXNG24vL9BlzXK1JRkM2Gwy/KbHlZq2aXFcDyf0cWybojd8/stfc/XiW57Klp/88+8RHB5j+5pAD9Cvr3BaRVXXLIqcqu2gbxGWwLEtPN+lbGpiz+dhmTFfbmgbTejHPJ9OkDbIwMMeJOA5KGHouoq22WK7kj/+0UdcXtywU5qtttCOzW7xwOHJEZiYhoDWBPvESLagzHYYx2O73lEbSa8E89sLhC3pANdxqNsW2xbkXQv2frgbjke4tkB4Lq1WXN3c81ha6L5GS5emath2YHsR2sDphx+yyQq+uZpTdpqibsm7Hr/tGdkOjhSUqscgSJOUw8EQr+8J+ozs7Xf8H//tLxmcR7jpAH38Qw6tU4LQZrXKwHIJB2Nc+4LTyYDCttB9S5LGxKMBSAfXt3h1fYvVVYxijyqv2RT93gzq2+yKLaFxEL6HlY7xg47hpuH89IyDsY/d3PP3lzNs6fGXf/cZb1+/4uMDl9g2LHeahz7hzI+ZIkj9BHpBPIl4+3LGemeIx4ZwWtMoi3lZc7dY4Q9GOK5h6Hrc3O4oup62VDjhjh99OADboe4VlhHEfsI4TZB9RTiIUV3D4PQRT/8A7t6+5+N/NiW6vMT2Q26vbtl11T85F/n/YJoUDEdD5qucMI6ou55GaF589SVJHDO0Wl7/2/8NOf5jfvvZkg8ezXCehmRZgdpuyLZbsixjtt5hOy6bxrDc7Dg8OkQ6AfguwhIIS9L1FlGaYrsCVSxohQYnwgQp7vkzRKvQiyW2OyX2pzzHML+7ZFuWZPWGkDFYFs6jI5KTE7rkkMGjY/zJCClthOkwuwWIHfJ4hLBd+tWCartiuSnIdEDZdyizpioqZqsNlip5cjREGYEr5X4Sq3p812c8nlDS0/Q9loGH+ztW8wcuX/wjXbvl+Y/+GYPJKfP1lpd6cFUAACAASURBVBdvL5D5jlj4nKYRaZqwtRROkLBe7/ClRAgL24swXkJjJE6ccnTS4ScDVoXiN799xZ//6GMiBNK2UWWBkB7Gdrm/n3M8Ae000M2Qg4hue0uTrVFuiBf51EXG5rtfMzl6wu3sgcOjA7RZk5cOt1VPGMWER8ecPf8A52CInQZ4jqBe39BrBcLgej6b2TW+LRHtCKsf4PQ50g8xSFRdoaqSrtxR1yW9MWx2K1bbNTebLekgRlugtKJvGpQW1E2GshPSwQDHdvd/1FJSNg1mtyZ+8iFO6JKGHpblMFtsuHz7huuHDdt6S2IZHsoMu1eo3HB1c835px8SeB69aZBRjOV77Jo1Ytuwyl3c4ZTOGDxh41UFvmvT7wUZ+OkAbbuoTqOVQfoeVbmjXc0JBxO05YJjo7oMpVqWq4Jdpcm1gxKaIAgI24qsK+kbxeEgIbAs1ssFTwcDBtMBygn57ZevePnqDcNBzPOzQwaHIfn9DdvZeywvxFYNGIUdeWhACIFuMnbza7QdoYWhrVtsy6KpFF3jMz494/5mg1YNTTDg4eKeiaw48l06ocFofvjjHzGZjPjq89+RJDHz9Q7HdcAboMsM27Fpy4a6Kbme3zIIJjS+5PDH38PIBLXLePb8ezx6/4CKDjg/OyVIHFSZ0wsHyw7BWmOwmN9sGSdjhNZIJF1WQ7fnCei2BUuC7ew3bqs7LJUhAoO0JP7ZB3iPnlLcryizFmMK+vKebltSy1tkE+CMpoCN/ewZaplR392gdcPo+AhvOmFz/Ror8UmDPVwTpcGy0UVJU27oKFjfXhKefUheK7TjkY6HhLGP1RekQUSrDFXRIlwfx3OpOsXDtiJchIwPEuLTMVYSEJ79Od4HP2Hz+gWxOKV+cUNX5YSRj1YTirolGU3pQsn7ywfOppLZVcvDsqTpNJa0kULgAr7nE0gP2Xe4RiB7jZ1OsAYR9XKLbCqUkMimw7ZcrKrGPhgiB8fQbtFdy+ztnFY5eH5E6te8zrf88uaBF7MNP5kOKLoKb3vF682OhzynVj26WjAQO6bDY7bOgHy3pqcCT3N5u8B684JPTk+Z9CGj3mDbPctdwbvlnMWmwEnH5HmOe5tzeuDiBAFtayjrmiCOqIxiV25xHQdlDDezJV4UclVJXnz5CmEbgrZiNV9wfPYYb5Agtxtsx0X0FWGaoHsIIpdat8hU0D0o8puazNVIrWg1mLyn7R0602MbCxubYeyjdE16dsb13QNJFFIudlTuCpMkOC4oY9N1NZvNkuvFnJ6ex09GBI+OCJ6cI1MXGQ9JowE/exTw9W8+o6ssqutb7LygdAQHkyH2ZIidjDnSPb5wEJOAXecQpDGupXEDG8/pMCh6ZWBXoecP6N0SV5Q8bFe8/PxL/m/O3qPpliw9r1vbpM883nz2mrKodrAEJJEUGEFNFJoq9PMUoYEm0oAKkiEyECAlghJEAAKa6K7urqrr7/388Se92bk1OB36AfgNmZH57nc/z1ovvnpJ7LngejS9AVry+xs601OtM0Z4DAdjPOWTbzOebp+QSA7rDWGXE193jGbXKGfMdNyS1U8M5hfUSYSThPieS1lW9G1FekxZ3a25e/2Os3hMNIKBBc87LbaCViHSgsH5BX0HRjoU2yP5bkupNX4Y0jc5nQApetw2pc1qVDKnaWscR1FvbiAcYx2PloYyO1If9ggJnlX4ocKoAZZTukJ6LkZ7+PEQkSzojSLsG8R9yyjq6ZWglYpaduwODX0sUGXPQBQE3en7mdU1/SjGWgPlESdMaOsei2A5CDkWFdYKuu63z8L3kEF4MljImM2rFVmV8O7VL1nO/1/+JErwRwmHxx1hPGAaD9h+e/oPt1Ixe/6MMInZ7DZ404TWBnz3978hTddkfU2SXOI3NdmxJI4HxGFM0dcUmaSuCySCIIoQUURXb+hKibER9BWSjnp1d1qWPO1Y334kTVM+PW1Q4wmzxZI39x8IRgl1ltEdHhnGQ/Qw4enhDuu4vCpb/s1/+nsW7i/5b/7gZ0xffkaZHhl5Db/3kx8RJQlZnUJvCGcjju8+UK8fiaOIYDzFnZQ4UYfyI2zfU5cFuadOXfK6YLtZU1Ulu/x4SvJaiSBnOB4QNxJZSXprsFg6LagDy+HTK+7e/mfK/CWDBBbzOX3TcDafok3N4ZChtcJ3HXzfQ6mIUARoZTDGnuYTR7LbH/HiAYE9Ab5dx0EPYux2jzNc0pY10g9wlKRY3SEdD6EsQla0Jsc5/ymML2j9ACVLHK8l6w5s+hpZ7JnvChxnyO3f/N/8j//63/Mf3t7hacXXuwFaWL5+lqOjC+53PZ9/8wXlIWD2xSX+JKI53NG6Lm3R4fQtaprQ7T9g2hotJUJYhAZvckbvSJTv0x63HIqK2guIlEQ6EoMPQkPXMxxEDKOEsyTmWgoSK1hKxTKOmX/2GT+//Qvc8ZRo6CPnAW40J/QSnK6HtuXTr94wETEcNjSHG1yxIZIGHWps39J2HbusQrUl2+2aJPLpiwxZl9iuJj2kPN7dMUwSIqWgLvB6S9N2dEZwfFrzq29fsUkr3NgndsFzXBwEkT/ECac4bscf/Zew+ptfUdx1KM8yPf8K0WxJ39zQ3Hwga3z0/JyR1+NUBau7FQbLxfU1VoApDriBg3U9bOkh/QSU5Hj3iboqGS6XyL6hTHeUmz2t6eloEa1AAq1wENKjaTockxOHMT/7oyWrmwbhOwyur+g9eBn+Lm/+1Wu6tqesQWwbpnPD+v0NV7Ppyfjj+nh5RVFZQqmQ2kG5AVW+R1jFMW34uE051B24LmXXEPoJs9mM9rBl6CXQtSeT4N0Nuw/3fPvLNzwVPa+/+8h9KTjs96DACI9wMCSMhtRpxn57gw4FkeMQaY1SHuFkjPDAtZYgGtAqQeJF9GEIkQMK2iKjT9ccb294/5jz6n5H2xn6DjylSWYDLp6NcfuUvsloao94PMFWOYddhu95CE9x2D5hiid+9as3HBrJ4jogdlwW8YBdmXOzOjCseqYX57i+R5ruMaZHNh3DZIg2hsl4yKHq2axSkskc/9kf0SYhRqW0ZY4bDhGHW+pDQV01tKZHWjBIlsslsa9xhCRLC3Z5xr6s8LTLfDZGa3Ey1lUFQZ0D5sQpbBtMXeJ6LsOzcy7cIfrtLTbNeGpb3MQlPaYMJ4auzmgcw/dv3rK6+4QjLLg+RduxKyV1bVFCcL95oOk7xqGHo6AoC8aRh9WCaBASBB5aQxhHfNzukM0Kx3fQnKySveNhrGUUB7ieQ9WUJEnI5dUF92lH0Z0qKK0xIAQNEj9K8DtL7Pu4CIaBx9XUUsmE9V1BawPKcoDzaNjfbuiGCQrI85SuKPEETEdDlIG2qjBYwuEQW9dUdcO+hXeftiSOZTIasViOEaLHcSTTyQLTFFRNDo4Djkc4n/Oz33XoyxXlVnBnenQ0Z5Ds2GQF367BFw3z5ZCvzuc8ezZjOYhIoiWytOzzGjOseLXt8OsMZ3Wglg6vdxlS9wz8At/V+LHi4izh1e1Jm/xwKPiZ6yGFhO6UDpqPSnzXJctL7GICnkuwOCf7/gPJ5YKzl2cnyU1d8/7DA+Fg/A9bmrRVS7rf48U+dx/e0AoNjovnnFRJtTvif/3zH3C6d6TdHY+Pgp8N/2vytmK9ekSbhu3xiHQ0XujhSMtqv+dL26JwqNoaIU6sECccYUxDV2wRpkZML2l7QS8dOtmjJ2N8KYndHNycQJzT5AfKfMu7t29QfUE4WdJ2isAumYwHuEpgsxVyOqM7rrCmpmsqunKPHM8wmWJfVuwMZKalOB5p6pbb9fGkd+trcBzazhA4mipNka6HlgrfUdS9oDM9BoljeiwOg8UFTpXy13/2vzG7/prI08wGITr2+Ww5JvE8qt2a4eIMdUyJhkP6ICAITtabcDTD1T2tcyLUu47Lx80j77cFm7/+Ff/8p1/j9RDFMaaHrmtxg5D71RZfOVhb060qtOcgwoSmyLHp7vQCUbH9UDC6nMNswePxE13b8OLqK370zY/w/IBj1xBjyKuUvjZURUZZVZj2xOMYD4ZIo7CHB7LVDWEU4Q3GOJ6PqatTLOt4JE+PlKYjqypUlDBRirKt6boe65w+LD2wWa/w4o78WGJ1yOLsnDpP6VrJbr/C3z/g1gOm48/Z7VLuV7e8f/2GxoQ8rnNWXcNCG/7Fv/xP3K8OTOaXPPsnP4bAIH/L2vBHMVJbdsct+2zKrAlxMYjIQbm/hZnZEmMsbdfhWIGoS5SWmM4gsRipaE2HEA5dU1Kbhiwt2RXQWI8g8vFjxbm1fDEdUFQHdlWJ7CqiaEDfldw+PbAUguzjgb6NmY+XjOKeUawQtiaMPdbrFcFFiS4spikJ1ZCuB2FbquOapq3YpxnDyMekPXVeULSKolDYbcoxz3GiiAoPJ0zQYUgjKtos4/3r78l6l5/+8T851RG8mLf3Ww6HJ/70SqKbmiR0+fT0gBCSw2bN7qrGW44Rl1O8+RAVRfS3KX/wj39M+VffMr8Y0ZueTXGkqmucUGNtg9Q+RVuw3W0YmSmikSgjcPuG/LhCLc/pqhplOjhuEeUGFcWIwEOcn/Htv/xL/GcZ1z/5HfrDDc1hQ5V7lBvJrtwz8zsuzpe4akjbJ9SV4Ntf/WeU7nnxO1+gJ1MslsOnN/iXVwjvZEwx6ZHycUNRphz2n6hkj9e2DGKPq89fUBw3RJ5C1PKUSOlACBflGiaLIU+rHX7oMBi7TJ5fgVJsnrY4/hDTNnT+nKpxUKKh7gxF49FYBzfyuXz2JZ4O6OyUb1+/Yv8p4/W7DWVrOfc1npJ4joPqOmSZo6oIW5cQOygtCZYXrNd7RFkjjQFRIqOIvmmx1RFG3skGJIfo4IrJZc5+WzIYjvkm8hHSI5CWQ12wDgaM44ivFkt+qiGvUprtE7/58Bv++v2vuZydIsBvVkeSyZDlYsloEHKbZtwfCmLHwVeCh33K7eaIE3o097csF2d8WG/QjmbiD1G+4rgriccTnp523K8e6XsYTqdYR5O7A6aLcwYXD1T7R7L9gcTz0I5mlW4YvrxAf/wAQqKDAM/z8AcuYjBBPH3CNDWbTPBs5nPsQTkSIxVdnuJrRZF1nC09+qKmbytmy3PiyTmr7RPh2JI3BSqYUTU9mIz1wwNN2fG4z5lMJM7ZBDWNsIGAJIFxiB5qZu2IF+9WFPcrys5g8oYocvHSGtdr0HXOUHSo6jRAjJcTgrPnrL97oH3/HVZUHHZbKikpb9bsH7cU0rDqGj6mB/y0YDTQ9PMF2hHY3lDf7MifSrK2ownAHSX4voMMHB7vtqyOe2zbMoh8OuEiPQ+mMe5sRk9N8NDjyYi+NQipaaua3WaHMC2HhzXZ+sDuKeXVDw9cXv8IR7nI2IDwyLct2TGlWDSEQchxt2Nzv6JKc8yoQ/k9xnXpsIiupikNVbEnGZydYKyio5U9jqqoupRjUdFvVmx++IQ7LsiuFzQzj+lZgPITfF8jA4HnBggnRtse4QaUfU3sS1oVITzo8g7hKMra8rDeME9iSlMiHIEOYuLZgmxzx7EpOT4dOH/u0FhF1db0SiI9h77vWR1zJpdLyqomMhLpTigOkiJ1GI/PeGV+w7/4V/+W9OkTF5fn+PMzzv/kH/H4dE+ePtKYnNFiSjKbnG7atUKGAa2/JJ8tKXpDnT1gDhkDHTJ2Q4zVRNMJPQWP9w3HosJxfHBD3MGQtj4iSo2SAjeOKbdP7O/fcLi/I99nbB4fWW9Taq0Zewuy3YqqKAg8zWI8wK9SZsMh7nAITcfff/c91nH4ybMzoq7jFz+85ou+4bOpzyiQuE1OsynZrR9omhoroNNwWB3Yb4+M8pIRkhAPWeQ0XQPDiLI60r5JqSxURc7dYcvru0d8KaGsOcMjmQnOfvIzRJhQ5TWjIWjPJ5kM+PX/+R94/f1vONvu6G2OmMZcX52zlQ3D4JoizWl2GxzPIYxjZCuxQoOtOdQVx7pjFIbsPQ9vf0DHEdp04Ems5+G+/BLqHlcKTF2BtHjjBba3J3OaUojZV8jpM0gihKuxvSUcDnjaPJDXEcXqwGH7mq/Ox/zF//EfeXP7hK8lb/OKsJ/xv/zta/75qsAL3rLp4Hf+4E+Y/Oz3mYYe6eEt/XFLrR308hpTHFGhQp9fQ3mq6ADY+kjvatRgeqr47TasjyXJ888waJrOomSPkhbP8xF9SuQHvJjNWBjDj774mi+/+YZoPkNNZ0wnM9q+RcUO4XBENBjiCBdZ18SJ4O7bj/zm398z1YLlizP0YsH8esJ2n+FKTYNhtX6kKUoc03Fz+8A0DhBdR57X5HVHWra8f/gEbUsgBY72KavuZEzsoHQUB1dzNYpxHMFwOcMLAxwDgfRoV3vcwOGzP75Gj5Z0fYQKz+mrDX3WUDQgFxFSgjQN3mRIVDa8ut0hhy0X45Zuf0Pvdshkhjp7Rn/7lrbr+OHdHaO0ZHjcEzoK0zbs0iN5WqB6SeQLpKtpu544SAh7QeOc4P++p/n8H31G2VtU32DSDdnHV1gr/3/9cjIc4EcxWvWs7j9x6OZ42qU8bDg+viL60Y+Ihy6iq+l976QqVi7K1UzOphjh8HFVIb59w8vlmsninCbvcF1FneXsN0fuP+3Y1oLHSnGfZtyk3zOfLvAGMWEYUjeGujbIFqJ4irVHPAlVXRHGLn2RozooJHRAPBoDEu1HdHQ01lKnKeXTjtVTzS/fbsnbhlniY6VGxzHLyylG1PRaE8fxacnt+BT5SY5gHUGDw7c//5Yi69mtUwaTc/KswHFcrq9eIJuWXbPizdOOTDqcnTs0SBorUIB0HQZORFbUlCju7IAvPvtT2uXXdEPDuvge0R8oHJ/eXdDVW7RwObQlip68s8RJQuBA5EdUTU/eNPiBw8VsjpQ9bVty2D0ycR3y/YZgMAKlMFWF8kKEVNgOkCVhEiGkQ9/23KRbju9u2WcVZ4s5RX7k9mGF1h6O6mnq02yxLWqaTpzqYF2N09VcDz064TBQFqvAcwRWWvzQRTsOBAFZ80jdNoyKhn6/Yn55SWs1KkwIghYhDJEb8PzFNe3eUj0d+e7VW6xU+PEQG8Qk4xlhDaaqcbse21vi8ZzR5z7qekjy4SMf3tbc3RWcX2pW7+/RL3ryXnDIK5quZTCZsVqfktFSe4zGA7Qb4kZDRG85lzGfNjuethvW6RNdt+DLLy54+dU1ZZ7SiwGHsqWqDygnouhLpmchNgvZumf8F8mIWiZs85Ryv2aQRDiyI0g8RsMx8WxKKzoaX+E6Guf6C8LM8DG/5yatyOqO9/mWdWMZJQ6fuRVnvmYsIyajgMt2gNzuUVrSaU3blNTCoywrhO0o65b1bstilnD5xTXKcxhMQ6wVfPfL37DeZXR1RzKI8b34H7Y0aaTC04qsqcmrnrYTNHVDag2LMGY8GTO49Mh2TxxvS759vacefGL50qVtG/KywnU0UagZjYY4bUF6PLA/HhmPNa6FtCios5zJy9PBstzvUYsL6q6lMgpLQ68s8SxG6xrhW3QnSM6G+OYFr/8uxa6OPLQtyXODnywRSjBIemz6CsKQbptS5CV0GV3b0QuJqfboxCf57EuoW4IsZXt7x6ePJeu0YDodIIVH2zUYaxBuRKdrsqJCS0HV1lih6Iyhqg2Ncfjh53+P2xzZDX2YzFDhgoey5Lu3K7758U+RZ1MkPUop/DCiOuy5cHo+epLBYEQwXZLMZ0TZI7cWdkVDLWtu9znK89jkJb+6feJ3L6bEgUNXtZiuQ3oBfhJSlxVZkfJ0SMlb0P4WX8J0FJPEEePZnNP/2WNx9hzZ7/j5tz/gLj7j094Q+imfXc8odluMLEn7luNui5ZgDVRNzypdcT6ImExH9HWNyXfsN/fgBGjXpzOCvCjJqoqyM5w9e0aQROjjgWb9hNYaKSWO41Adc8xvqWldXTCKB8S+h2wrClOSpgfqwz2/e/mC2IsIXY/RICbyJN9/POKWTxT7LbXjEr38mmP1mvHigsDpkVrR9j5uXxJrQeC6rPKGD0fBi0aQDCNM3yK0A71B2JOurGx7uqbCaWukE1FVNbQNfjTAKgcpId/vSWvDOrP48QjPDXGFxvcS8qftKbJoBZ+HEI+HVFWNdCN0MqQqeh4fWuRsQbBIUM6WwjS0uwLfkUSLBY0QSNdFCsPx4QY3GNCVNX3XUOQVZVfjaqjbBmM7Djh82B05n0hqabDKIbWSXZExXUiU7iEKETpiOLgEf8x/9af/mPvVjqdDzfnZM9r2Hb52WG8eMErzuFszGJ+zyY98/uVX9K6LxaCjEH96zXi+IY7UCXw4neNUKeFgwOP9I/5ggG1qhOpJyxRPe3giRIaarNkiGwe3PMJa0JYFIl/hTGIQIVoHBF/9IaMvd/zZX/6CP2ktoW7ZHrf83Sbnzz4+8ZDteebB//DlnMvJiOFkQUvC8mzM8rMfEyzOMPGIpu8gU6SbFTK5QJgCc9xSF0cOj3fcPt2SXCxwHYWjDIPARRsf0ebU1kJf0hqL1hHVvsMRHtPZGD8UnD+bEAQORdGQbvf85q//lnZ74OKbP6RAQt/RGpdeD+kcw9lyznQyJ/Yitk+Wp2zNL77/jo/3GWMtGUYhI18R+y6Y7sQbaQxdVyOKNU1haFvogyHZfoU0Dk7sYl0fNZkgvRoUiGSOrXe4I02btbjDiGlTkRuJ77pgDONwROIHeI5kMB2gfMUyfM7t9z9Hyp7zswVV1tL0PaPJiGg2p/NaFmcLhBNhUaS7DZ+ebvirV28YeAljPyBUimOWErsuhyrFbTzKVUk8nCHDiMPxE1lR0FYtnZREF8/phs+otcfLr3+P/O4VtinYPT3xcPNnjBYzRldnmPWWRCpk4iDjALkYY7qOfjhAD498fPeI6RrikU9Rd7RGYJWlaBu6puY6eU5jDX1vMF3O1bMZbw6P7NsCLz/C6gknGWHpGVxcodqOzfGJzf4jr2/X4AbM/IrW5she4g2nKOMzmnzO8d/9FXo0wFvOidye1S9+4O3TI01jaEKH3rEsrgJmaoRgQ1iW3P1fP4fesC0L7oqSvOkwFp7ykr85FlRa8PvLhru0ZPpigO85NFmHdVzicAROg/JKBoMIX0a4jqLjwHQ5IAhinl8/Z369ZDicEA8lntOS3pSYacLD0z3FxSUDIXm8XfP48Y5R5NDnFbZsmU7OWD/B/buOZ88c/ADoK+LI593bkubvPhCNIrYPb3h6eGLqK9L97gSRjQLq4xHPjcHxCF7+iD4cY+gRXcP8d3/E7nFH1vZsVjsOec+nQ0e+PzBXI4QK8WPB4LdMmzCK8fwBnra0mx1yMMbUPdqLUb7AVB3CjXFLQ7EvaG3PzWbLs+kAP9AIzzsxI7wAp2959vUX1MYgpKSkwwpLgWQYRWzv7jkeMpQc4KUZTVSyP3QEI0l7kyMDh/Wu4H//f/6Wr84W/P5/+9+RPTyxerznafvI1dU54/mYvqnZ3a6YX1xipKaxlt6BQrpE0zN26y1HUq6+mlIqjR9qgt4nnCc8Pt0Tapdg1OCYGoIYlYzAD2m7lqYtcQYR6hjQ7nccm5JVkTM7X1C0GVnVoMsWuh7teQSeQpRHXCeiywpEJxhqQUzLWeAw/ewl46sBoyQC01KvbynqmjzLTjaspsNUzYll1HS04oD1H+isQeJCEmLSI8Uxwzia1aGk6GC1PxkJAmtYDiLW+Y6gPrAcPKdTLXE0oO0MOvQ4Wy65u/mI47k4sgMpmJ8v2Gy2jKcT4sDj/uMNre4RWuO6Cikkfa9oeo+ybFjtDqR5xfMoYl9URFIQeR5IhWlKkD20R6wRqDDENhJUQ9+1yFpDPMC9+gZ/NEF0R2gKemGRixdMo2vK+yPV3nJ395Z8vcKKiD/97Ir/6TfvCdyIvpM8FC3/9u1HpOszns8wb37JH8kD1WiA8nwoMozrISfLk5nv4TvUYIG0HabJT3NZMMJ2GVJ7dOWOvJcU3gTdK1RtCBxBHHr0Sp8uwbRmeziQeC6X4wnzF58xeP45XnSav1++/IJq9R14Fifx8cOQAIFAMIwixpdjjt+/wxOa58vfJ/7ymkAdUOlrXMelbpqTLSWvSbTDsBXkRYeyFiMcmr49JcW1w0PW8bg6kBVPzF3Ji/mUo+korKb1XFLrUa0zivUtlDUeluHkluE0Ynw1ojQdujtghzG+K07K4qGlLQRlvqcvC8gOBJ6PNxrjHVv+5tfv+NMwoD8+IhX43qliZ+qUQ17y3c0GZ5PzzednzGNN2zQc6oa0LZmMhwx9RW0VXtUy8APKw4qIAhVMMMIljkKSaEbTdRTa8GhKhqMRUeieUqGejzccEwY+ZXagMnDYZzzc3kCZcXn5nPPZgk6VuMM5cW25Ol/gjiLC4Zj1OufuccPTNuP+qeDFMmM2ukM6DtbxaVGYOMBWGpweL1LUfUcjNX1egXCpi5zQUUjHRfYuoRszdzKq4pTOCq3BVT6N8jisMkwq6OYORQWTiwFlXtI3gjRreXu3Y3PMmYwHDIYRadmdbJPHlFmiaEzHsLf0aY6SK6qiwo9iOiVoG8uv3t8xHM0JZ1M8z8X0AkdIWqEYzM+50D6yLOiAsmkpioIkiuja5lRl0grtOOhkQhhdMfjdn1IlPqt6x+vWEJqKwhRkQUwTzOmq7MT/6xo2WUHbWybJiDCKae7uCQKXy7NzWqP5dPeIdzhyWZaYrmd5/YxKadwoRnn6VJlE0eaPVGmJ70VYb8ioh62x5E3L5jHn04dHhHbQjosRHRpDeczomyNZWZI1NXXXomzHPPTAdnS9JYwitCOxroMbnirpju+zy3Mq0zGYTtkeCrRVxK3BypY48dFhgK0OGO0wujhjnlgqteLqbMHD44rt8cAgcAijCN8Z07cKZWoGro/nDNF6jBJDulryi+//Gut7fH55xmNRsn73iWg+oVKC+9UOR7knS9Yw5Hj/QCsceuUQT6aop+tEuAAAIABJREFUvmdRNaimxJqW2krePqxphcPdsef8i2dEowDckvv1mumkp+dIVrasVg8UdcXymx9j7ZhJb2k276iPa1rTo7VPz4jjziUMBZgDrpFYrQnOzxkdjtzsn3hsOzIBj03N+8eMvG8IfIfLS59QeYgpmL5B+j6xH5F2PaVtqHrBep8yFppw+DlV3VCkBd5+zeP7Gz68/kAY+0znS8os48XLF9St+w9bmuAqOgmB71Moh/1qhRdE7PcrJosLZvMRV5OErdvxtL7noW1595f/kT+urn57O9YzjAKGoccw0Ph+wP7YcfO0x0/G+L4mGg2RjoeyNZ1WFI2hyWt0sUPGYxxtMNUBv9/j9xljTzO8mFHseuL4JVeeYv/+E13bMe0loecyDWraD39HU3bYqidPK4qio3UCGAww2hB7DXr5DGl7wr6lD1ysCXjz6Q6rBNLzSXyN6Q2mN/R9A65mMBrzuFkTD0fYzpDvdvhWUKxXbDd7+uKAMUNefr4gT1MG80vCQUtrLKNkSN8USCGIo4ij6XBtx+fPLiEa48cO7v41x/UtP7z6gc2xIEgMtekxvUVqzbunDd+cTWjrlraskBOJUBJHaYSUZNby/vUNThQRSUuQBADESUI4HOAmA3R+gh75QcjZaIA70DzmFaETYquGNs8xpkRJgRYBgetRlyfI3TGr2a7uODseuTwbY4Vk+OwFVV7g+SHl5kDR1BzqlsXFJdFkimlrHK2JkgFCSoIwoJOKQ5qx2h5gc6RqDPF4hnI051dnvH91ZJgEvPzqmi9+/JKraEQcBDR0aB/25p5N2oNwaaUlnM1ZtCEj18ekJ/95GCiarkEJgVIahaA4lljrUZQdji/J6x5fWpq+51gW9GHC+vYTA1ejugwlHJT2Tou2pqTparaHI+u0ZTS/JAqH+G7MYZuy/bRn7IX4ict0vKQ9PmI2GTOhcKxD5YRsbp+YTJ5RBBE6CZDOlMzcME40RZmjgEgJcCTCiXDpMUUNvaLJLJgY0QiaQ4mREXlbcqh69pUhfbdjcPGCLp6Q65A6HrPNMsZFxmg655vf/wPC4Yjz5zPoGzY3BybnF4yHFs/3qY9ryqqkrQU29Cm6BqQE3XF383OacsvIe0GX9hRPNZEfoZSH6C2DwRhXeNR5Tx0VNNk9jgzQwiWrUmpTM75cYnRA1va4RYfNn2ju3hAkGhF0yMijVy4ysBjd8+1uTf5Ly8vE4c0x5d88bMh7S+IFeB58OLaUgeQb3fP5N1f4g3OU79GHQ7QX4NgWOw1oq5zOpAgjaXpLkR94erjl8XAgvl5iOkPXNJi6OVkr/AhdPVB1FbV0cWIfsynJdnvCoU/oCgYDH21L9tsdFtiW4AdT8BMkoOMxQV1TO0OS+YAX8zlDN0TUhnZbsbs7oBqBEBqtDKGjiPwQJ/DwJWhP0ZiWtEjpsoqybajqnoHj0/USUbWooEe7klb0mKrHly6Ylmb/BJ7FHQSoriFwO+hBhy6+HzOZzIg8jVQWP4lQcYDwJEP390hf/4K77ZG2swwnZ/huTzB7xnIK0TjEdUKs9KlHQ+aLJX/s+rx/v2M4njOaD5gMPXytqLMjjdCEkyVeFLMuDny4uUNLxTbPaFVJk1eMXR/bN0TRmOjiC95+9zd8enjixfkZs/k5jdA4/gCykq6TRLFD5/WMfI8oEYxmAc1Nz71tGWwqXM+jQ9L1HYfW4juaQ5YTTga4YYTnSsZTl+UXS9pdikUQxiHSC1BK4y/HiGrP83LB3/3FPX/2/Vu+eZdyEX3iPBrjLwO0P0DsBCr3CJwxf/7dr9i9fsOlUiSmYxwmJJMpfhRw16T88n1GfPeKsbrBMw1JINgfK/b2RMqvCkvT1Hzo4F1eM0gC0qrH9WeoqsELPYq242gMndsSJwGutTj4+DIk29Ucyj3PvppwefWM6fIFs8++oD3uqdZ39E0KscBYeHvzlqT/Q+q84ulujckbGmGRKMbjMVFoCIIJD+medw8rvnmWEMdjmmnK4eyR//y3f8P97QNlfuRqFDHRJ/h0nef4oxnCaWnbDhqFQqJsT3s84gw8dDLHa32K2yN2dM3FNwFHE/K+GdMrxQ/fvsfu4OVLzeB5gO+3eKFBKYVeXtN1Lqa8QWnntMB2JohWo9qTythgWe83JL5gsTwjCn2E6TG1pNzXqPYEIa/yCmMt2nWRpqVrK1ytWW+2RMMhnRtT7g6YXpNVB475Dis1nuOjYpc9irwuGfk+o+mc5mLB+HxGMpqw+/SR9eMTP/5nP4HRlDaHvjc4YcjDrqQuDIE9UtdHrN+xCM5wDXhOyaunB1wVosMhfqgxnaJtarSWdPWR1tT0EnTg0UnDvqgIYx9HCtquozgWeG3PKIhxGtgVOZvsSJN9ZJUV1Kalzlq03+NPYwa+wHN99GSOEFC+SSnyI03TUzca0wiOWUd2LHGwGC2wqyca26C8mMifUaUVWjtsHx/Z70u+ezjw3acH4vGYYrfjcZdRKYfBISfdbQgdH0dpqrYlVJJhFPDsxWfc37xD+QFhPMD1fC7PZkTugqe7OxbTCcFsQKN7hFJI95TCNWVOLQRpJ9g+bji2Hb//zRds+h53GWOFRTgeQjkUq0f84dlvoZsxHHb0ViJCn2AyQc1mp4On1GTHB6zS5BSUjqSPHaJoyW36yJ/9/Nc876CuSr4eDhhOrnna73D9gNl8ShNE+KMhP+wPeO/e8/XlgsVwQHc4cPbl70DgoJIEnK8w6QE1iLBZj+lqlBMhjKRKV1R1wc5GBJMJrVCUVY0bDDHKxZEK6QY4UlAUKS+GA64v53i6pth+oks1dnHOs7MFH7LvEVoRugGB6xP0AiMafO1zcXWFLivqxy2ZVDiTZ+jmnnh2QDsRXZrToEmblqHn4cYDvCDAFVAUBarqMWnNPq/49m7Dx9WRkQQnDni/zXCCACeOiIYJV9fX7N/fohsQscCkFccMGmPZrW6Igo7BWYi9f0UzeYM+W/KYTWG0xE6WrG8+sH/Y0u326DCk1pJ9WfHzX7/jR1cjOvGaibSYtqJMU1brLfu8pslr8rbln/7kOb52kLbFaBc/CnH8AN0brGsYBZBtnvBjjXAjnGSBdEP8JEF3PWESEg2GDKcK0dYoOpRSiDDAdRz2mz1eK+mair7raI3l3cOGL7/+Au01SDS+63C9SBjYMdve5cOrG95uVgykYF+0VLbjom2YXVwwSsZ4fY/QhiAU+K6mL2uUGwEnvXwYBvhCoIyhq1qoanppKeOQ83mC53m4SlK1HSJvGFtxqqLst5TFkZvtHaPxGMqSx33KQ1XRKn1ivOmAkoyn3ZHr8xF1a3F6WD8dcHoLKPBDhNYoKXn96ZFN0aIHPfPZiEhH9L1Gag/H8/HHgkOekwiYnJ+djKOTAXm6w3NdBuMpsm1wkyGBF/LlYE407bl9OvLq6Z5b7TATM2y359iscUYB7dbiOB6tgGPVcLM+8OLyHItCOx5XZ0umVy/59a9e83A8pRt/cbvmfPTIi9snni/P8KMYA5gOKmOxCCazyxPfEAdbtbyUHrdPT6AdyjqkFtB2Ft2WdI1FW2iMwHaWujGUbYOg42oYsisKwiBEaEkwiAnjCB0EtBZ03/P2/oldVjI59/F9jS8dNlmJ7hVGK2aTMV4Y0AmH1omp7z8y9QyjJODtx5pBGNCJE7IhTCKQDaGMmPgxfaco0p5ql/Hu1ZqrxRWz33mJ82JGsFrx6W/fMTM9h6qkzHLcMCTxfTpjmM8muMkAV0o0YJqWvjjy9fU5vwQ+bTKKMmdVvmOc5jw0HZPFjNl0SJo35GZH1TvsDw16/Jz5MMaIMUa5yLbFm3yG7gVV1eB4Ab0/RMUjqiJj8/AJvz1iypI2r+kcjTNOcJycUWcx4ZC3j49UBhzPw5EufhhgVU9Wh3ijGY5y8fwBiWj4cHfDx0NBOJ6zfrjnxfKn7B5W3H//S7q64eU3X7O8foHpeso8R5Utjgr+YUuTEoM/mSBNgwoCdscU1/ZMkxitDbOww6/eotqcXVVxl6Uci5zZB8t0HNO1Bk9rFqMhkbb4MkJan/vbDePpFGIHdzxGRwHagTJP2RUNuz6nySqG3hpH1EzcHUQO4fCSRMeQDGjCGabtcZ99jfinlsO3ryjv3+M/3lNXa6x2WD3kmN7hWHvEV1c405DOuNwdIRQHrhcWZSusKzHHms3ThvXTe5Tv4AWCs68/wwtapOhp2wZhLb3tafqOXgj6piavW0ZSs/7wHl+CGs2JAkn+/hXe5XOG8wXz6wuscrF+jGtqguGAfL8jciUy9hgsX1CjqIs9+9UHvn/zlh8+3lL2iotoSl7XdKZHKknetLxd7/nDq/kpVtpLMAorHTpz6hpHoxmTUYgnO455iet4bFZrdocj84tz4vEc1wsJrq4ZaBc1+YzlLqWxPV+8fMHh4R1VesS0FXXWYWkpio686lmlDa7pyd+vKPKMz15eEtkWdzyhLXJ04BP0PQQ9/nCIdl3AnOjixscJfHprKaqO1x9u2GY18WBKMpyQhAGL2CFvDcrRLJOYaJ8yFi1J4hL4Lq51cB2Pw36PEw+InABrKsaLM4LbR1zhoWSCDhO6ZkXT5TwWLZWxp2icadkdLctIIfoWJXyMULhBhFMf2G8eKIoc0Wp8zwfXJ7TQtC2iN+R5zb4WJMtrcEP2laT68JFxFPM7Lz9jOBojA5/IC5F5RXs8kN19RAwGFG1NdJ7QDIdUo5jGsacEU7WAKGe9+x7ftpi+wqohSIfe86h2B7rGo2ws1hXURYEQktoKjIDDLqXHw7SaogI/FIRBQOBIyiIF29I3FWlWUluH8VnH6+/f8OHmgfFyQVVYiqwksIowGbHa3DEej2h6BzVUVP0WHRv+/F//z6hjwvPPf4ocJySX1zh+grYCWwlowTQNKvGxe4ExEqlclKvQvkcvxenALyVVdqRpMtbvv2P54gVqOkF3DdpacGH5/Ir//o//iH/36+/524c9H4ucSFo8R2O0x+Vsxvx6yvX5CC+RtMU9XgR4n6EHA4RQ9LhULfiziLrKEc6IttNUrWSzXiF9RV3VtMbSC81uuyeKB1jVsm0M2AAlBI6r0NqwnAYk0wR36NF2PdLUCGkpa0sY+zSlIBrNkNrHLWp6z7LwJpxPFozdEMfC+rCi320YScXBD/FcHykqAs8hjkIGwyFNmdP0DbQtUgZ83Ka8efUKKV3+5Cc/QkQRx+2a/4+z91qSJM3v7M7nWod7yNRZsquqxfT0AAPMALPDBZfgcpdmNFsjn3LNeEczil2QBIHFQExvq+kuXZU6M3S41u68SDwBniFuwv/f75xj1jV5XqNUBaZv0TY15DlFGIKiIHSFXioZ+EMcTUXxx6jWGMO28Ec+pi6Itlfc7TakWYNhjUiVfZq2ZHhyRN6AO5oQBDMM1cB1VNS2YB2GLK4+8viLn6GrHWn5Cm8yw7IUnGGAaSvYygG2E2BrDkmZcnW7YLFYk+cNumHdJxPblPjNNzQnU6TZHqY/wz9+QOMNGR99xujpV6iGTvf97+jTGxTXorFAMsAQMDycsTm7ZejrnC1zNkXLtL5fmUl9iy3LSG1F2xZMghOUtqFLExTTYO9oD2nvCHm7QxYVwgHFcRByi2bLjPZH7D99zPV8zibfkTU5d7sd8q2CbU+wZJ2BZDIb+zzpT/nPyxUXWcGTvuNzQ6NLOkxJ4nSyR2/Z1HKNEmVUiznu+JSiXzG2JKK7G1w74PFvf0740w88M2B/7KJmOSNfwTnaQ3QtylDCKlJoDJSmp1KNe4lyrbOLN6zihOcH++hySZHPiW86yiTmw3ffcfLoMcb0kPPrN/fITVMTrtc0ecLAH4EosDQN1wto8hLX1SjbBf/0Vz8y/Mvfcng0Q9dsXNdjPHJYLiCtStpKISkEnmtTZgmZpGAoCrLUU+Y79HqA1uW0ZYgkz+gkHWHKBBOZR/6AMjTRHYNn5h62f8TF7/6e9asfeXv1NdHvv2P/2OHwi4eYJ4+oKwNZASlaUzcGDQLIqduScL3i4mbB1fwO6gxlueTTz0/oZIGi3tcJyjqn3K7Ydx9SVBEoElXdYjo2VScom566EyRFi1v31F3O6jYi3WZQCPKoxjUdpnsBohUsrpYoezdAzvj4EG/k05Qdm8UKZ7aP8H2E7SGamijK2UYJtWww32Wo25QnowEnn4+wlZK8LbnZxbxcRtzGZ/wPjoeuNXhTBRHuaLOQqkyJdxmKo5JVLfO7HT0ymqnRdYLlzRZDVdFbBS+BOC15vVixKwscxcTqBAeDADNQ6OUEbeqjTmeowYzFLqNKQwzNAadC0XX6okPkgqZVqYXO1e2K38+XPJ0afC4U9k/30A2Xroc8SWjqlqu7Fe8vt6zDhnI9R5F6XEchX0ccP5AoM5AkFUTHNo1x1BmmaXHy8Jjr83cEowFPPntGGN5Stip93zB0bQ6ef8Lm9pbk+oKkAU9VEFpLF2VUVU/aCFZpQx/eo3V/9tkTbFXGsjQ0VaVXVMyTp0jafZJaEQ3FpkIdHtCXMUbg0w0ces0k2q1Ie5l0sSLcbVnnFU0vMb+7wXEdam/G7WKH3JRYZYEbrrFUhVJYPN0/Zi1AM3Rkx+AyWdNfXbPZrHl0eIjQoYyvUe0HCNNCVlTabUjf9whZQWgSbVnTVim73kEdj1HLBoRASIKm7SmKBs3REEJQFCW2puLp94vPl2/eEi7/joP9GZ/9T/8zg2CAphvQC6RexZB0FAQ993iF7/jIp8fEtsPq6iOSHxA8mVBLBr1koGg2smqRlx2yd18ZVC2Lrs7Ji4IkLdjkLfNdRi1U1mXHtmkoOsGxrDOzdTzDIdumrMUcTVYZPT0liVM8Y0ZbdAwGNtnqFmfisPzwGkO1iMOM7btz1Kc2XbOiXMlEccH5Ysvy8pZtWdPoOlLdcrsN8a2nyKoK0htU22S3zdjFBXuuTk7H5XrHy9sBnz2YULQtNT1OMEKTetquJqgbHF3herNFdC57VYzpPESS7ysrdRbTtB0d4FsD+q5CUCAJQa9plFVDXlSswjvG0xnBcEiWFeStzLKQOLQDpHSLqfT4oxGq4pCFGZ5r41kGq22Kbik8czyEZWGOJki2i9SWaHKDbfWYqqBFwrRchD1CMnSoS7q8Jt/tUOuSsePgmC62FlAuV6TFluBkykDtkHqNZRiD0lKHOQxcDFvlan3N5XLF+c0N8zij6yW6pKBb7ojylEDr6PqGkT9ht74lLxtkRaftoTMsbq9uGJ88YLmMabKCIo5p25bh0ZQ0rpCRsBWg7Rk4Luv1knS7o1M0jk9m7KI1ogOFGl20cPwAfV2yizZYvsVqF9GHOlcft4gTnSbsifsCyLBcl7zIyMucrO74sFzzx53AUWQMy0C3DqglncnJE+q6ug9C7BLerTZ8XCW8GEUc7Z8yODrB3Z+i1CWW5RIvFmxu59ysItKmJyoK5pslQpVxXZ/xYEBjyGgy5FT0ikIp9ThdRd93ZE2FKgSqEMiqgmUbOI6NbtlohkndC5xgTJHFrLdb8g7CMGZ/9uifnX85pmUgKwqybtJ3FZbjsQkzfEtgqx3h40OKBrZRjGJZhHnJ6dTEMm1sw8B1XdKioN0mZPMt4xfP+NNf/ymrasPl7gx/ZFHGMX9YxBwdz9C1e4ylylKGoxFpHLKdX1I4GlLgE0Y7dEPHHk+5e3VOperUTUNYVjSrFb2QEZJKUdQM/QFxK7CdIf74GKHqVE2O2knYlkpVQhZFFIXKKBhyc3WFZ/h0vYbmTtE6Qbm6oihLVpuM9zcbVllNS8PItbB0l1WywTdlhCwznO1hmipECoGs4I32EZIMoqcoOjx/grlakcYRl33DwwLydMfXf/+PGIrgT379W4SQsXwX1baQ+5bjvaN/2dHEkHtE11LLgpaOum1Z7jbY1oxgaHN9e81//Lu/42odc5N1LHchEj0XdwssXUISPYFrMjAlRoFHV6v4A5v1Tz9w/v4D7X6Aa9sodY3jB7TRhuubJXl8xvJ2w0RqeXFsEvk6+Hs06zuaeYTtTNEMA33Po1dcWtlg+nOD9vELilffE77/iUqWSeuG3vKwpwc4h59QSi3unot3u+Dl6zswBLPTPfJGpmgUPl7eUHYtVi9TlTmrNGcyGtOIGlWVkUWFVFf4rksY7+6ZMtMmSVKoSvzBAD8IGE88jvfHxLJMEy2x1BGW6UN9Pwk1bZOyyCFeMTs8wDx4gDBMtmevePdqiZAlnjzcJ21UKiHIspQ4LwCBbZhcbyK+Ot7DMC005f4nbMsK3dCpO3jx9BG6Iri5veAfXl1gqCbP9iYYikS4yTg5qZgcG7iTGQPLISlNoosb5LakmevIRUWzKSiLDNWAcBdxt1jxw+0c09T5+cMhWQbnixjTWtI2Fa7nUbcCTbdpuoaibvC6hmS7ou87egFuECBkmaapqbKUXVqy2MZY3gjPC7hZbFH6hrJr8SdD2ptzPnz/NcbhiNF0iK0YtEVF2ZQ4gc8iz0BqUTQb27axHBtVlhFTh1oVxGXOq4uXvDy/JK8LDmcOXVuyLiP2hExR9uiGQ1UUdE15P/mXZIQicRclCKUlsEDVFTTLvkdmHJnx6CH/+O13iF4hkGS+eHiKY3g49gz7+AFNpdMut0hZi6kcwOEB3dGI5vUr/IHEeQN13WMNJFSzpdM7vGCfvMx4/+4D0/0jOjokWSAZMkkRItkjuq6kbkp6JSMuGzrVIq1Lzjc7FGdC0zR4osO1TMJoy3gS8PLv/xFL1zk5bKnLDNd2yZKceLMlX94i6RrK0QyEgqyayFKPYcjkVYEzCtBcmfHxM3Tb5Mkf9aSXGwpdw3MnHM0G5EWO6CriKGU5X3Jxfcl0f0hiqaCVCElC03V03UT65xeKru5omoIkiVjHCXuBh+TYyJZOLwuENcB+8oQXjBCjGf/0w9ckixqtbWh1DS8Y8vhgjBuYKEqH6tj0gQ/emH4Q0EkxQrURQkNRTKo8R3MN6jyiRqVWHGJhY9kmrj9BdBV1k5FXKUZrkkYlu0jGV3oMy6bpTBpAs3TSNOHg8RHBdIxugWz4+LbC1fsVH95v0J23bBtB5b3g5PABA3eIa9h0WcndasPl2w90i+X9vFfRkIVKLzo03cDQJDSpw5uOqNMYy9FJioyb+YaX1zv+/KtP2cUpctNCA0laopkpZurRqQa93lCubqnSju0yI0tyVNnh+JNPyA2LQtaQ3ADHNmn7llcfXrJdhujO8D5bXrUcnvyCpq7QR0fs6xrDoYPn6HiWRlHmKIZEkuz4sz/7DZ3tcxmtGO4H6JpB4NqMhkNkx0DXbbq2RWg9l7dLrpZLqrqkKHNkzWQw9DF1BdZL+ukEXTNQHYODpw95Yhoo1kP2T58zv7ilkiU6r6VQcsyBjyq3dFXLZDDmWrMY6yobuWTVN6zLFrWFuuvQ6GgQlI3AMizqpqNXLQzLxjYtmqymUyV6Q8IYaBhjH9KUrlfonBHH4zXxvsflJicY+5iaSRPVdEpHrpdIXUctgzr2cdqGkIJlJdHPXqBN95CzmM12wQiJ4198zvSTx+x++J7pr3+G/90feP/tj6C6vPjNn+M9GuGvz3mmTuhVBd1WEVqPORpRZ+k942vKdFGF6HMwHOKmRddr5LGGEWuAIElqNmff8+LJI5bXG4aGi6PbyAML52hCMJuyUWTC1ZymzMEdMxrPiOOQvq4wdQ1NNWiLgpvrlm9+v6QpFKjnRJstVVmTFzld21F1HWlZE+YVpq5TZQmabdNUUJUZZbTCciyaaE1uWGhGQK8qGLaBXKyRlh/whUGldfhezd6/+pxkaiBXgr6ENEn4+HVI+1/+Gs00SfKUbdFRYLJKQ5ouo5cqwrLkzTrm5XzBoW/gmDKyoWOYJl3Vo+gqo9mIdd4RZyVRGEFdI2sGqi5TtB3rKGYwGtG2LZdv3mIORiwubyhSwe3tAsOU2dub4Q5MirImji4oqkeYgwGONIAOwvkVu82SZ7/5LYrtohgaFALLs0nimEa+r7v08Y67XcyzyRjd1FjWCvMULuOKs9UcS/mB8fBLjNyhzda0ecJunVCjUkkKi13E3aohbi3qoqSvI+RWxqFHVRSuo5APYYzmjZG1FtO2GXUCN/Bxnxxz+jCguTzHHZ1yfbXgbn6O2nXQtfR9QavJIDcYmoowWs5WIV/P12R1zbbvGDghJwMZTd4hzJYaC7UQXG1qLjc5u6yEHkwV0qZgOPKoygTFVMjSiKTyqCSZvmlom5KR5+B6HoPhkNEkQDdbZFXl5sM7pgcHjCdTaFsuP34krTtsq6OoK6JWABJqW9E3FVFa8of3V6htAz9/zvThY/q+oe9qhDuglw1kSaKZn2OdPKGSbJqdgu4f0nKPgSR1xyLK6Oua211OGKU4uoanmPRFwqeHYy46i2bn8VnQ8otPPueH5Y6NXnF6eoBZlBhdhS4pKIcT5vMrkiJjXXfYjUR3/hLaFGt8jISMkAVd29MJgaJo9HlOpQ/pDRfb6lCqmiSMUFQVS7sPBpRNi6pKaLJCoGvUXcf3F5d88/aMqaYzffocdTBEdwzqTiWJS6ga6qpG6uX7YlfZockWtjPAMA2yJGX++luWb0p8veL4q7+klQwc00TTDeqmoa7uS0OL2zlhUqFqDgo5j6YThFZzuS1ZL1dcbDPu4pzpLuHBJmagGbS7HEtS6EvBoz/+BcP9E5q+Q25ljIeHGL5OHbgYzgTV1cjPLmnUlvD2ksXdkrLpaEsFw51QlEvOb1eMDYPD/QmDvSnW1KdVVHaLNWGjsFgk/HC7RUgdfmBzcX3L432fqGgYBUNMz0XtBXWaoCsJdSuRNApKDkXZYiQhSV6xXmwI1yHXV5fIqoOjSxTFvZdCUiQkVSPLEpq2J4xiigY8x8B2fIRhE5Yte0P/3tsRJ+hmRd5JlIrOZG8PS5G4vLxjsYu5C13GI4de7kB06K5Hb6sU9QZV31Bl+vapAAAgAElEQVTWFTQNbbLi7nKLkqcMZJmBbqKJHleSOJlMsIMD+sylDxfkdxlheE3cC+IKsDSqIuPs/IaPScxlnGPpOvsjj+cnYxTb4e3VgjfXVyhyz2dPHhEYNpJpISkatqFhaApSMOB2vUGYJpuiIcoKDElF1B1d3SCrMrrtIBUdnW7TNA1C9Ax8nzjPGHgDdFmma1t0XSLcbBCDIfZkilEu2XMMNMfkyeE+9iDl423IxY9/QFVbiq5nG4Y4rkVHQ1FptKJlEcZ8++oNv/7553h+QNWALNkE6gilKSmLiNXLdyx3GyzDQrhjkk7BriFdpSyXd7jA6vYjge9DvEV1Z3iex2q7JA5XhOGGs2uBZVoYUg8dJFVJVm458Ux8z+Y23TFzLXzHRrcd+r6/XzaqKkXbI1sOzqMX3H39O5AV+rYmL0rKokKlx7Xse+2CoVH3PX3dYWoGWbGhXZ3h7I357OkhLz9cUjUVrSxj6DKqrjEMpliejeu4VGHC6uMbPN/n6X/7bzH3fPKtjFrc0IierA65WRUITUM3NBxTJhgFyKqMoUq4hnqPnZUlSZYz3pshpSn/7j/8L9SyxU8/fMv7Vz/S5jnpLiT3fKajPXrZZDCYMZlMUEWH0FQU4SOymHRxg8hKjKygKWG3uULrGjav3tOKt7SKhm5qkEZcv71iF+U0io6hNJi6YBjYpIrF0DNArv45bW7TthWi65gMA7yRT1pUFKLjfH6J6gx5cPqMjoqiKlkkFQElUVny5nyO7L8iqmE0GbKaz5kdPUFR/oV4Tlt1hPMlauAgFImqremETGfZeJMZ6fKa3vJoUkHX1FRdhNw3LLcRrmMx8gw8XWLgWhiGhTawqJKSJ8dDrjYLzq9uUIGBYeJ6HqVisw5DDoc2p4MhMi2ebxIuGz5+/RNWo2C3OsHYRKkv8WYuimVg/+IL5OE+8lBHRsF49BnMAvLthiKNSMOE+ftzWt/HVHIcV3D0+RdUySWtrBCXBvPlHduypVEMmr6GvkKpM5JeZWAatG2BkCSEBJoiYWsqlaZT9BLn19fkq1uGvkcwnvDwyUOG+2P6+Q1hJpO3ArkskdoS3TCQZA1JN/HGQyanD9D8AJINcRORlyWnxwec3a2wFZfzu5CqrmibBnpBXCckhkYmNE6C+48fZOneFm9ZDBWFoRRQ01E2GafTDQM74LODPaLlGqXoUCqdm2/e0Fev8cYzykJGLBPC1S2b1+8wHAdJ7ynynMvLmEWYkuUFTtcxs1Q0XaIROq8XC6Q7QVXVaNsUSZFR6RGSSlULiiyjLnMsU8Xd2wch03ctVd+TZilFWVJUFZbt0mge0KENJkhKzfFI53JzyfzjBcP/7z9ysaeTjp5RZRW6YiAZDopak+c5smJSVDWK6FANg1ySkOKat384459+9x27KGEy8hjNhsS7HZXZsKZjr0wQ/YCuqumqkqJuwfbJVluiPCdOQ2I/wBwOsFwPfTTBCA5ZpA1fPFkR2DZVUpCmEZv1jumwp291pEJGhDtsy0I1XYQE7fWcuHVIjCnT4wHt3QV3P/3AoloTyy3H+xPcg4fYs4JGdLSiR5Ya6qanVyyqXiKqWtqmIW7uc9OKbHC3zMnSFtkUDAILxRRISovpqOStTGPa7KKYkZ9wenJA0kiYpsnkYEah6awNi8Qdkmchpi5QZAl34GNo9j2uJMsEoycgdMazBdXmDRdnIVltYjkFVduQVRln529ZXK6oigbX9ujGDym3a1R01N5GQaKXYLtdMxzs0ckNlVIw+9lDDN9Gtn16enrVAUnDfDrFEXNmoucrMvY+CK7DEMO18DwHy2gwlAbNcVFsB4IT2DuhVaBvIoRc0BYRXVUTbTOGvo9mdFRJjmTp+CdHtPmWKk0oYwmhyARjH0RHtNmhiHt/TV0JGrlifTtH1WR03WV5e8vhyEUdTzFsl7aqWK5K8kpwc7shmI4pG4007jkcWshtT5wVXJzf8OPX3zDUZGxDAxQ81yePFlSNdL8OEj1S12JMx3RNjSp6JNHxxdMjXjx/THi7ZrnYoHcSXg9pUmLtKlSppUiXZGFMuG1YzkuSomP6xWMiVeFyeUsmXJTKwMsktufvkXsduZ9Q7bL7j7M6xRnvo2sDnn92xOQgQJE64rtXnP/hPcEnn6OaLqpmk1c1y/CCvJOYHp6Qr1PcwEUWMo5qs4szLM8klnre3S0p+grNNGm3G2hqZAQTd4hrD/AMB0PYCNVClVPQCx6cyDTNLUW2QXMturpBHcjIQkZGQ+5rGqXGfzTkYrNgFKsIARfrjEa09F2Hq8lUHYCEaEqCoYugRm5lmr7FCwy6UqFOG+hMRNaDZCBpCkovoVcJh9M9bpMFi03DLz87xf3EJ1c6Zgcdaqogwi19lfJ352/pOtDsfZSHL/j0v/8Vi5d/YP5jy/5gSPDp58h2iXZocvPN37O+XlAYKl/9+7/Af3DA+7tLujZnYltUqoKu2diejtLWSJ1MWfWUVY2qydTCQMgaFxfXjGYeuqFSVTJnFwl7U4fXL+c8Ppxx/OQEpbVJ44zRqc7+00ds73aIrsexbNqyoetLHjw55ebsgtd1Rd2ANlRRZZeB57FLDC6v5lxc/cjNxVvKIuFmHdJWFQiHtCpZpQXHJ6c08YamrqFVkAyPIstI13eUeYHWtPRNfr+aKbL7GpvpEV1vyIsVcrNhGAT4p0PKqEYbTBg6I9rOIn71ls3ZJZvlLZdhzqapoWvIq5BeqlmlKWFesO+7/PvffMbTQMJwbGRdR1Ia8rBBMy36LGQXheSNoC1bRpYKCJa7GGSVKCsozy+YTGZkacWrn66QhIbhWtAWdIDrBxBusL0xge8haypdUrGZ33H200uOnj9n+OgJrSQjAE8TWK6DqspsFtcEAw90BdsfojoDRBtTrFKy7B4X2sYhH7Yxq22IOxjTZxHFes5mFRHmHbVusMjgx1XJ97cL6BtmusJMNwj1HktTyYXB4PghB/sPWIcL9gY6p3sBVXTLg8/HBOaQi9dXvPrmLbWoUdIMR7VRFUGr2AhNp1Lv+fBWKljvNuid4IsHx3z684eUuzmF3mCqMnlvIEsCupSiK9hmEUlZo0gKdS+h6hqyZuC4KlU5J2kFxXzOwYsvEZKMLCRUCQ5Pj5BlhWSzpaEijjMcd8Cz508pqw7DzrDdgGWc4xr3zjBZ0cg3W/KiQNEMPM1is1zx49k1vmvy+PknjD2HuuvRDAXaGiFrKIfHNE2PbLj0rUCYNslqTlYWrO6W1HXBu3fn6NqAgemiiZ6syOizgkNF4unzAw71KW5gMzqcMV3v2AoIlAQ/XCDJDn28RW0KHn/6gjjdEbcd26xEHejcfXjHgSyhBwe0kkRXpUieS6/KtIqO8CzUTkNJUvqmRlJVOqHQSwqGrqJqBp2QURWV0+mEeLXih4s7BrLOf/f0Z3z+8z/HG42pkMmSArkpScIQU7bohUyyiRBSTxaFtFKDbjpYskKvaWzCDbKw+O5yjibJKKbHNBgRRWuKGtSyJi5q0jhnujdhfDCgz2tcr2OdNHwbxjR1TV017DKo9yc4jz+hCjMeTB5wd/6B/NsPnCQFcRry+NEzjMGAsi1xHs4oahsj8Ll9c44uCWImjF48J5UkNm8/8A9/+39ydnuHLHp++eQpv/ryE46fP8WQKiRLRXIHzF8u2MYNB4HH+9WWYpvx+emYsqioyoajB59g2h5NnmHIBU3XMl8uUFQV1R1SCJOPH874+PaM3XKNpDjUskJZtzw+eYqUZ5Rlja5a9w9b9PRdSy8kyrrh7uqKgR/wxZNHjC2JJK9wVQ/ZHSOnKWQNptIzdk2GzgOGmkaR1YwnU6azIVILNzdXuN4Qf3pCLuD99TXL9Q4tjVCEgaKatC3oQseqZKDmMJhhKANMWceaHWC++JxksaPO1nRdTJbGCEWwXKyZhylNr/P5bEYwHhAcjBiPPVpJsI0jVhuZP/vqGb968YS+qZCEDAh0w0J1XErFoJVSjMmUH1+fEeYVlmWjdvcox31t5gCJmtoxkDWByHPMpqfoWkzDoKwqNE2j7zsWcYo5nOFJPUKTOX34kLat6NqcB5+4RP/pHVeXr5hMpjRVRV0VdH2DoMU0NDxdIq8avnt/zsFshquplFXN3icvQLK5lXrKeIH2/oKh5zCYHOKenjB2Apy6gmTLi6MpxBG+eM7sxSdMz9+jPPolg7HLX/2vKV3ksclL3sURN2lC1ZboisrI9/nzZ4/Y12Ve3V6x9/wxY89CtRwkAXkaYbkuvW5ys8u4uHxPNzpAGh+C/A5DBccdUFUNNAWq0BCKTV4WVGmKomv0QmJxdUZxdUEWR0yPT/nLv/gl/8f//Q+oqkQLGAMPf3+CNwjuHwxGU3rRYUky5v4Y3bcwG4tttOPs/TmbOCYtcz5en3FwdEqnWky8AWmaUgoFYbrEac7m9orddsfk8IAHn3yGefSEPE6RozXR/I7Ck5HTiOLmlqztmR0cMQn2GGxTurpCHzh4D4+pHBtvNGG3jtgu1nS3lxR1TFF0JMtLFpslsqIiCRWpajF72LMDhGXgeCN0R2dVQVNJjCZj4nBJawzodAtJ81EB13HpkTAMg9XVio9nFzz6xCWYHBLmIbM9h7KuEb6PF0ywvCkPf/lv6NuGjx8/3h9n+5bzq3f/sqNJKclIyIQluJaJYd/PpTR/TAtsioZgOGX27I/5IbKI/vY/ky3fkFcNVdMhAE1TUaWOgWuiGyatIaC3UdxD/uvrt/zw5oKTsY+h6djHjxlaPQOzw3M8DEMjTxsmD8cMR88QEShpj6MF2OP7YotQCtqLDe3tAgIPYRkIs4VqR5mvicI1UZRym1eg18yynr6UEMKg7CWSsieNEy7fvCVtwZw9II1XHFgWMjVSGSIYImSVvmtQJJmuyZAlmRKJNK+4vZuTbNaYdByNfaoix9w7ZtRmNGHBu5sCQ28R5Q7NG9IIGVlV8Q8PUdUONZuTrt6Th9fs8gJ2EZKs4ngOo6Lj9HDMs8+/5N2HG968ekfVCnZRxnHg3eehyhLNMhASmJ5N27SAhOYMOD3apy5kpg+f4KkOchPx6DdPWP3+Cq1xWXz8iGQN6OsOSbUwGri6ukW2NErRkVUlUZzjGxaWNWATR5zdbDENCUXWiNKabmaQtR150ZJFW6QODg5P0Uwdw9SwHAu6FsU0qOsOZIWsbnAGAwa9TlZDuEqxXZ+9gYHrKni2QjQ0kdSGZ4+m7Bsyd2//icurJScPn7K6rNmGgiJNMCSZ7eIOqalRVYXtsqCbb3j/zTkXl2vGnokmVEYDH0eT0OQeNJswj/DbGt0yKZoWQ+tJox1pnpHkFarr06kOCyXAagW6kNClHkdumD44IklKVHtMdHtHmsZ8e/aG2e2aL6d77J3sYRycoDw6pms7sh8/4NzsKElJLpeE2xscXcba/4xvL8/4q7/6f/lXf/pH1OM9trsIx/MpsgL6HkUyiDc1VSXoZfUekZJ6lKLkapURJ4IgkBl4PrZlsgrXBIenLBcxqirIq5JNFDGa7XO8v4819LjdevRhimfqtMtr8kFPKzcoqo47cokagW8H6IZJuLhhdXlNWucUvcfr735kMEuopATdMlhvIu5urtncbfnZ8y9wtTH9QGEexbRSg6GbKJpCr7SYpk1PQ5PmGIrJMLCRdIWGmr4sMWyPtsmRDQVrP2BWzWjDa2TlCXac0/T3vpqqL3APjzH9AYqtYk2PiMMC3WwRmkebFGRhRp6EpEWDtIuY7O1j1iFpnWC6JnG+o8xq4rgHU0ORVRbbkCjL8U0bIcsISSHM723kZVnjDywGA5so3jEpDEzLJS565ncbylYjrXqmzpAozEjjC4ZDH1PVODs/5+P337O+vqbVFXLHRNPvzd1NB1V/f5HH0BGej6JI6HJHlqT4vs748Anj6SGBu49rjynzFKWNKduWpOkoFiFZvCPMC7ZhynKe4Iz20BwPW5NJXr3lzeKarD0n0AwGskDvOrQs5EEw4enDR+zZPdM/+gqaDuoVYhOxXVyx2dwwfvAEy1EIV5f0XUWYxCzmS9zxGFnqqNuEhiG9DlebCxTFwDYGnJ/PSZKOBhNnNMQrc7qqw9YttFZjz9pHrzVEC64TUMoF59ffIBkdJ9NPMAODYiWhGwGilBGyR6d0KGoHTcbgcMDwyub6OsJUJYamzHXaUlQNquhpux5d00myhvG+CT0s5nOC2YRG9Ji2hmSa9KZF1Xc4E4+mSSFdI9Py+NEjPHvE//X1JYuLLZ5mMjixcF2X/WdHNNc/YQib3/w4o4zg5TrhfHHJ6IcTNo1OO/uMtVrjRw3V5RWtovLumw+8+JPPSXdbbsKEd79/x/Xda6SqwNIc6CWGgY/lzyi3S/pW0MYxmj9Ellq6rqGuazzfvF9tiAbNtvjp9SWaMmBv/IR8q3Lw2SF5XJCmIYOmYbh/xPXFGtWzMTUdzzAo6p4sTmmalraTybOQg+Mj9k6Pqes70nRF3giWu4jXVyu22xVFnuGqgrLtsU0NSQjKrkO3HPIqww88akkmyTZIIkIWLV2b0eUxTZZQZznCHt4fR0cDyqIiulgi7+YYkwf0TkCapkhhSlPIZNGK1lLxT/bQ6xpDVUl2Ia/OJF4ubnh0+oh/NVZQXZt//R/+R5rFayQ6UE267v6wuvjwgXVSE6cVQtKY+gOEJJNmBberLau0oexkRr6DEBvyxmAbZ/iOgdyBYbvM9sdIkkRdNfjDMVQVRVMzf/MT8WLO8PiIR3/8S7SBR9m2dEhoUoU7uP/zHIUbUqnk5OQUb2xS3r2hHo5oGhnfHTEbbqjygpHvEWYJSIKWe+l8GO64iVvwXBqhYagyJ/6IoScTdAl+Cy8+2cOYOVzelPz+fE3SaxwaBk+9CV98dsjrv3+FdPUDy25EEt+Rhzm+pTMZzVjfbrCHQwpTZxOFtBoUMpyfr9ltGv7N51/i7gX88ldfUIZb+ixDOdhnQE+TQdaBrkLfN0iiv89po+I7AXvDMekiRMweI5w9ctFjKjJN1yHR43g245GHY1motAz39tmsVsitjGY4mBas1xsevviMix+/Z7kLMWRYxDlxUVP3PfuzCU1dEWg98WbLuw+XrNdbfNdEEhK9JFGvrpBsB9mb0smgmAZqJ4jiiEZW2WQhSZ7z4c05njNFbiXqJGR7fclxMMWxBnTljs3miotqgfa25F2dEIxdRo8eMDnwMY0JnW4Q3dUMDANtFCBT0+1WGJLgep0ztEzmH98yrnOMg5/Rr++QTI2mr2k0A3oZOatQJQmhadjOfZVGVgQ9HV3X0ksqmqbxs6++RKQRvm6gRxJ/9MV/g3f8CNV26LqKssppi5Sb80t0WccQOkm2ocgq8myHIhv0CCRJo+5LEix+mOfszv7AF88/pYsKDlyXm3DH1TbhaKwwHg2ZBlOqRKCPD6iSHL1q+dMHFcUmZLHZkeYlk9MXjJ7+AvPTFzweBjwcD9j87x2/f/lfWMVLekcn7Rvmr29oJJnA9XD8fd5evudu17LuK7747V8gxJDV9ZK//pt/ZH2zREFGlwW3yw3ObA/n4ASRrUgXtzTdkCpreXjgg9WT0fP80+dM7Y4w3TB68IjBwQmyKiFkmTBckrUOptbhHx0xfPoLru8WGG7A4fOv2Kx+hyHr/O5v/4bWNDg+OqGmJE4SGknG1wwsXUVVZHpAtBVpFKFpJl9+/oyJ1XH3/j1ZcIjlDlG2S9QywhYduBZdXWMfjBBZTZl1jIdHqGaH7vv89d98zf5RR5nlhEXOarfGNwumgzHDYA/n6BlH1phh3+PLNZY3ZPb0OYOZhdTkiLbDsF2yjUY0z9EUhTAp2FWC4eFjfM3AdByCoxGOK6OrMlVXsu+q/NG//RXHj04IBh7RcktVpZiujTpwkdwBeZGRdYL5xTWbtESVJcbTPeSyYmgP0QwLY2CjtBFZLEiKAsfzaeOURAhkOmokLMehSFPWccVTz8MNXD49PGFyeMRmteLdTz/w8fqO11//A3XTs5wvmE4CgoHNar2mqEtm44CRfS+53yYZX//wkkfTEaZpsGcYyLJOcHREOJf48vSIL05Uru9W7C7fYD76lKEbMAwOGRzMiFcrhsaIk19+ifPhIWeLNX274enBhHld8uN8TZhVOJZDLhs8fPKUrx4+5MQxqZZLvrB0FEPCsjWyuiEtKjRFoA2GXGwSfjy7oSpLvvvmW7748gskzcTUNapoR2vr2AOXRtzLy02lQ/cC+q5hvV6Tb5e8vt5y/s1HJpMz/uLXX/Hvfvslf/f9GZfzLb9WFYb7U2xvgCxpFHmJOjski0PKrkJFoSwi7q6u+a9ff4upy/RtSZLUJJHL/mxIS4usShweHlHJEkVdcXV7RdpK7GU57oNDDFGhSSmfnvjkyQN+99MlJ3/8rxmUKXIacXt5Tb7LODk45CgYIjcKaXJG71p0+yf0w32U+pZ+m1GGBfOLK5KrObpoUHQFw3ewTJmxZ1HbKgdPH6CpDYuy5OPViqgpme0d0Uoy9nhCJiSKmwumkwDLsWn7lqYo6PsW09LZ7TZUXcdsb4ZjecRRwmg0wB1Oufh4xnZxy8A0EbrDiz/5c4SALNv9y44mvaLdzwd7QYiKNxljxxmWabNeLPnhzUcApF3Oh/MdktDRdIuu3JFkKfrURlMVDMNCqDrIGpLSMj7cw+3hpuw4e/0GO4xZxwnqdo0mOgxTp25q+qggilruLiTUesa+7+Gc6Ij5Hdr+HuajR8h6T7fbUSdrMAWd3FFslmTXb0h7m6ttyHq3ptd1PEPlbl2SCxnbsdBth21ac/bTR67v5riWjjr1iSxBY8r3i4uuIo52CNdBUk1WJWhSRVZX5EXJ7WrDfL2ib1piw6cyXIbjEU26RbUMJsN9yuuXJGlCXcbEuw7NGzMKdNRyh7X/GZppsbp7y3fvL+6N38uMaeDxxelDhGZycHxA6+zz5fGXPPhZyqvf/T9s44yqBRmBUKGsShx7D8UwobmXuRquh2bb3C6WxIXAd4fotUv2bs34ySfIsofm2vSajbLOePW//Sc8uWMVJiTbip/96mcsz9bMXIvDyYhCFDS5RNHlPDrZx3NtVusly3VE3XV8XGw5HLl8criPaVugaFi6jKqq9LKMJARCN6mSFbvNComOo4MDVMfhcDQgq0taT6JpappdTltWPJgOmB09pMtL9kc2Fz9+ze2HHNd4zrBzWRUpWltw9+GcwPMIPIeLsyXRT1f87t2SuGw4lnVUPcDSXALHYBclJPEWqakpqw7F0jG0nrYuacuKrOrRBgGf/8mvsb0J0WL7/3P2HkuWZemZ3TpnH62uvte1e7hHREZmRqQqARRQKHQbDRjQGiOOaeSj9YSckAaatRlpRgOBIgsoVKFEZqUILVz71eLcozUHjhfofom9//3t71+LTIakkRF5gqk0ZNuMdZxSahbqzhFDx+dIM5Elm/k6IZ/d0Exvkd+eEzcWq/mY1XpJUOQ0Wo2tJehDF93ccnrU0LEPUZWI/uiIPB0TrxYYvSOqWoAZ0aQ5hqlx8W5MuPARaoXRkbgNFuSKi6eoqKqO0Czaikwax0g05EWGMHSyoiZOC9ymIUhykrIgiQP2+h06Byfkk+ekBdi2A5LOcpmw8X0+bv+YqoA8lzDdDjdvJySOwsuvf09WpaR5huW4xGHEbqfFwcEIu9MlVxq8rMWiiOhrBbJyr+e2Ox7UFUKTKSMZQ9dJy5o69LE6OkU+RxYtaEr0joNX7JBMHSRLRdtWBIsxfiExeHCCt3OKbjlItklTKlTRmtUyQbUr3j5/x4fzcyoFeqMuWucQx03RbA+rKHGiHtV2hapI6KZM0hRMZlvW2xRZeKjavTlLMRWktCJpGoyWSbtt0rFNBi2bJg5YyDGX44RFAKJOMVSF2Sri/HrDcjxltZjSFgZ6mtDVZO5sh2Sz4sdPP2OyWaPpGkFWMQ8ySmQ0y6SiBq+FVMVISYnX69w3U+QaWSlRjHvgmN4ZUi2mpEVOnSfM/JCLVcAmLFmtt/xkd58m2tDZecBf/ae/Y3Tl8903zxm/+hYUmaGm89ef/4jR8SeorRbZ3ffMvv1niroiTUIaTUJ1NFaKQzm9Q/cXqJoAxaDIc/IipSgyTNclVwRRntNs1pQSjIZt6lpjdrOmimsEOqbXpZXfKw6buqLIU+Q8ZXC0jxANetMgqQ5hsOXuZo0pVdT2UwJqhK2j6hZQIykaqA1m10XLErqDNm7H5/s3c0QDfQ3WNferkKrKOozYl2CbVni6hmkJSk1ifjdhbzjEaTk0pMh2mzLNqPOEuigwXBe7qmi6FicHJkZdMDm/4lnnCXakUix8ckmlLqFTyRycnvLJkcLb92Oe//If+eJ//J/xLJvrP3yNdrHB9Pqc/uSY+asFi1uVmwV8uH7HqshR7IJdz0AxLTqS4Gj/hDJpKLoWVbYiL2KUyqGUVPLa4ma2YStLKHGG69ncLCOuFwFIb/jFl1+iW33ytMY+OkC0e+hOi9U2wejvo6gOtiKRxgGb8QzT6SDLglIYhNGEzrBLu6fT35OpJxlFrZIXFVVVkJcFeVmRSxLbpKBvW9i6YDabsDPsozY1aZkiDAvTdUmrkipv0GWZKk1JtluEolMsJ5TBlgYJ12mzRWPyYYW+brB6MY5jIRSDuooo4jsMXSPLK7bzJTdhzHQRcDnf8sXTz/mrv35GuLnGaJtYrkHZDIhvz9G8NppnsZmU3C5iZlEOksywo5FmGZKssEkrJpuYsJLJ1iFxllOWNV5/xM6RjW4ZyNwP+ZvZEoSC1EgY7SHDo1PG0wlFkXL67AmDR4/R7R6aYqLrFXGRY2kSQq3Y++hTxpMlRVHQ2emxTDfsxBGOUtPdGTBKIhznjM9OdqjykuHRCKHV1JpMQ808K3mfCqSm5Hjf4+OOx0muoVKhRrd0ZYGeVZw9OaCzX/Dd838imvv8a5LSSmIFkKEAACAASURBVD+nWFxiNQpqV8Ue9Dj8WZ/rf3vO8PgRvcc9Ot+9Q+qdIp8d4q1m/Pof/1/8mwvm4wU/He3xydOvKG3oH5ySOiHZYoNpW+R5jDBTNE/GMxsejWzeTiPiSqJtOXRMG0so5JXE2A9pzeZ8/PlTiixHbXkUuYQkQ7tlcfn+nIOjXdy6oazg6OgIIUMQZxwen3DbXOAMR4wv3uOo94FSUtW0XAdHg5ZjUjoyoSkgi1lcn3O8P0CzVWpZRnY9GkUg6QJF1mlkCbnJCcMNflYyHd/x4f0lrmJj1hKL8/eIOmLPU0i3Y97P1wjTRHHaqJZDJW/JshDzwxUPZ7e0v/iYnS/+nNR0SbYTVMvGdEcsbm7oei5aU6C3e1RNxraokedretYdeDalkCmaBsUwSOOUvKiRhIRAxhQ6jaQRBRs6bQ9FUcgbiVIzUTp9DjoKZ08fE726RhI6ouuCLCMjkacxcbwlCQIsw8DSDBJ/y2q9JM1L2q0eWZ5RySrrKOfttmLih8hUJFmGLFRiKkbdFu+upkSFzKO+yd7BAdk2R3Na5JKBqHKMusAvGn773VuGesrdxVt+v17zkRDcahr/6x+/ZTmfcvrkiP2/+msUWeJ3v/kaUxjsHD7ju1eveNIy+eFuSevoCz58+3te/+f/jCY0FFmgSBLd7j5yvKKnCYhzrm9nPP3zryAHte3iLzUmqzWSa3GzXPLVX/wVJ4d7bK6+Q3b79E4+RlYEjSRI8oJtKTMcDYmnKXp3h8bqgJmgd4YcPHmGfvAxv/n7vyeIcmRJJk62ROGa5WKJU1Q4uomlG/Q8h9Vmi2no5EKgNCVe26a/P0DTNBa3E9LKRrS6SGGAqUj3cC5dx89j0BV6lsVicsvRRyd4g31+8XOTpIRQOOzfTRmvtmzDGFZzXMemJR2jZD5ar4+zs4PVG5BZCnFVoAJyEZEnEcvAJ69iUkWgHp8xPAQl8KkQtL0hblumLpa43R3iKuSzZ4/QRI1MhdBMKmlNU+ZYtodse2SS4Hay4HZV8n6ypKhSdrs9yjJFUgWVAEmTEWSYWk5TbInzBMUdEGcStpsj1SVlmGGbOkgyp4M9jp49pdfpMA9LOv0+soB3FzfMNgWnjz/j1fNvmS+meGbDjmtgSxbbVGG3Y+EqEpSwKDU+TBbodcWg1yNvJOSqwGu7BCuT7u4hapbwYNBmNZmzuXvNjXtIrZq4Xpcq1eic7eMnFXEMdpxRbVM8a8SvNxfE8gCvC1G94NnZGQ8/ecqj/YP7VR6pIlllGJ5Nd9jFTGKi83OcdpdlUvG7529IigJbV7m7u6XVbpOVNV1Ho64qyjQms3Q0U6fOM4RmkldgaCaT2yu6bY9xWPJhEWNYNoW/4tHxDvMHfaKiQbMdTM9Bt3TqQgJJJoxiLq+v8JWEdkvmuz/8mvdvXqPJFTsDh/U25HLi01QpvY6Na0g0hk7bszHrkqQSvB9vaLU8AmSGuoaoUlRVYHc6PP78C1LF5N1kyuM/+wVPD0aUQUyWVMTzOebOCKc7JMkVqvE1yfVL4lpDVWr01++ZvvwWRxN0d04wbYfGNLAHHer5GE2TefLzn4KU0kgSs23K1eacJC846w45Oz1C0xWSzS27fQddU1E0HVmRuXx/TpYEtGwddAVRl2hpinAk+sNDhKRSqw61kHnxu19xtH/C42df4dktgu2WB5/86L8tNAl8n0G7i2M4TMZLRqMdyqxEymOmSU6Ul7y7uiPPc5LG5MHf/k9IdwZ33/6WrGpoZIEkSdRNQwMYtkMcVGiaiiIaDh89wl+vKcqS2XJFy7EQMoT+lu6gR5xITG5vOb+6pieNyTr7NAxpNQny63+lDu9QO+37x4Rroz/Yo/TnSGqXRtohuLhkeDhAa6nEaUxYpkQVqKaCapiUss74xQXr21ssR2eZ1JTBkqIoUXtnRNkazTLJKgW3acjiALlsKJBI8oI0jlkuZyRJQlWD9OhLzK8+49ff/5Y9f8XHXzxh//gxO0uJ5IffEfoLdo47dDsyanZLlY1J1i6hb/L16yn/17dTNtscx4RBr4PnebieRLiN+bDd8N/93d/ww/dvuWp3eTu+5nTU5XhnRFOUqIZO1TT3UKI4Js5rGtWkRuLN7Zj9qxseez0U3cXunYBhEW1zvn8xQUsKjLTmb5/9grTIaa2W/H425/tLi8/3T9lxdTIjIG1ixMrgbj3n6MEpg9GWxaKFbajohkrr4gapqXFcm7LMieIISzGpUNF1naKRqNKQYLPCD0J6wwF7Rw9Qqdgf2YzXFapj0ily0tUG29A4OdxlMl6gGF00paLfNljEGyTRIEkCU1exRU1YlwSRT56sGc9f8vz2NfPwA16vQ0DEqK8gGzK6otLptnAshSZNifI1pmNg2IKqEmiGjup47A+7DCwJw9MxtB3iUkdVJVSR0lQ1dPfx9Ijpu9fotgOSSWp2IAfRVhm/uWAymRDKDnprF88y6XVMzFqmEDV+HHMzH9PJVyDugV+qI+g7ILcO2c6vKOolTV2xXi5ZrjaEwYa7yyVpWWC3FPIkoZJSjLYLnoLcdlENBU0omIYOFegUxEGA53Spq5IqT5ltQ7IixXMdLMdiFhXY2xW5UPCcHnUF3bZLLWQMowYCdk+OCPOUJlmQJ0sOToZIiswqSnFaHcoo5dOTXZyuS6VJtNtdpChndnHBup3Q0wXI4j7dLmoUUyIsNsTygMhPCN695+zJAPv4CM2tQUgAaJ0uXsehTiLu/BRLNTl6+mMwFTIswpnP9eaSR0/OCG6mbJKc69u3fPviB8brFQcPz2g/OMIb7NHUJUUS0Bgu7sggXq9QLQlZbZiPN4zvpliWja2raHWJYppIqo5aZzz46Igvvxhy9/4GzdTRbI91GDIPYn776+9QJBVbl7ANhaubKx60Dln/cMvlbMLJj/+S49PHBGHM5d2UCnj2oz9jtJhxOR2TlAU3izVJtkstZBzXosljUAWS6WDlBZJyvztdhRllk7FNQnYOd9FoUMqaUgiyDSyynIt1cG9LaLUo6gwtjjB6HdpqxS/+4kved7vkN2/ZM8DfXLG8en//o9k1kG0DzevhHB0yPGijqDXhZML47opSVjAUFRQVQ5HZ7/fQLZ2kKkHXELqBYWhICiiaxvV0Q5nVyEIBvYFQ0BuMiFQDXZIY7g6xujZCb2h5LRzdIMh9kjBlHV4jFMHe4RDHbECRUGywDBOyGt3wSPIYT2sxaHfpuXe0bJ2rWUhWNmRFgSpBXMEoCImTAkNSMOqGymyh1BlhvmKxUpCR8TouTZYQxg2qIxBCRS+Kf18ZE4x6Kh2rxfmrO+7++BZjNsJ6doTabrP500t2unv0vvwxrdrGUV7y7sMls3/5J+wHz7ASndffPEfXY/zpG65uJowvZ1i6xnwb0CgmkzBjldX8Rb9DSzexFY0iKfGXS2yjxOx3qFSgkAmSkkAdInaGpOWajiVwWh0m6+/RDI1lOmNkWvSVEqFC9/iERlJJbnzeTm55/KCLLho2wZrN5JZtWCFbHRynj3ki0x72yPOCoqiQ9TbCaJAVFU1V73/tm5q8gqKuyGpQTZsP5+estilfPT6gaSokVaAoOnKdEWQZaVlSxCmRH2M2W7S6QaoqVM9DsSxM3WIabwkmdxSbNZljkpcS8w9XXN5MMFyHBJXrRUBeQ4XK0dE+f/UXX9I/Pab+kKAZOWXkU2Qxi/mUodtGReX8bs77mU+71aLnmbRc69/PTombTczYj0E1qKQKQ6tZRjlxs2I5j3EtA9e9b4poqkG6nnNwMmTQ7VDlOU2ecPLkCb39Pdy9Q3TNhkqiFjK6EKR5CqJEtDqMTh4T/vBblh9ekba74B2QFGPSIGRn94AyT9npGni2QcvVqLdbmjJHeG0WxYzXC59VlpLoJv/h2S6DWtB1PEhbKHXFsFG5/OWYsSGwrT5n7RFyWhHdjMkih6ztELxPUK/f82DUplhV0PJpSgX70zPq/lPkfpvg+XtafoxZyQxGO7gHx6BKuEaHOtNx+iaVopBXKarVIhca/vqCjZ9CCV3HxkSi0/fo6jJHe30sz2MeLHn8xVPavTZ12ZCXDUVRY6gqMjWmUNnd3UdzHLSNj2k5OJ0uWT7FMnRkIVFKGmVrh7vb9zR1iSzLmIZG1zHR6pxep8vWMamRWS4W5EmI0eohawaysYtUF0iaDo1CU5Uk8zsWz1/wq69fIYTNw6NTLAHXL/5EE4fcFhnPxyVRUOG6PbSqQ7IsqcILskbBrmW0TGK2CbmZfctP5grHf/1TtFJGbbUJFlOy0Ke3+wCyEKXQyMwW3Z0dFEqywEfRLWRFQapr8qwkjQIqSaepIS8rSkUnDgOQBGlWQKNQSjWa0yGVauxeC9fdp/34CeEmvwfbIyFLCpLQKKKEqe8jS4K9nR3SbcR8uaCoZVBtJCljHqRchQWyM2Kwc0idR/iLKf22gzs8Rmxk2quA69maOk9pD4a0dkYokgyShpyBPBzwidvl/XJLPl3xRFa4jQO++z/+F+pG0G7ts9s7oyxbqL1DZAke/7hNy2u4mYQs5YIPqxXts0/Y/+gzxndz4vEbuo6C2vJQOiMmNxe4csGua7HT0fHnM4LtBi1eUDQOK9/nw90Vx6dDPvn8x3R39tHVEpw2O4ePMNtdyiwhi31Wyy2Vs4ewu7y5+ANebPLVx12enn7Mqz+95MW/vuDw2Scc//TPqdoe4/P3pP6aqkyp8pjNXcLIamMPOwx6HeqmoS4ztLKL6bZJgw2SdoR3cEySVbwfLyCHUtaoyxhVKDieR5XGJMUWxdIo8oStP8cdden3WyR5hV6bnByfILKC2A9ocgjChPTmPVV7QFr5lD1BqQ9p77WxHAXShDoVKIM23eM+WfyANLlvgxfrOzzJQJYtdD/BEKAd95ANDaPQ6Y5GJJs5FDlFVZLm2X1opZsgDG5v7/ju3ZgPkxBJM1AE5GWB0mph6Qayrt9blqotVbrCsgWFtoOfGMSKR2fHplldkAURwnF58ukz9k8e0HcMtusVk3fv8RyNYLFk5kfsHx1h2xof3r1idecz6NocOCq7nsmDvSG61KDIMmVVo3sSl3dLpkGE2+kTFTVtWyHPY+aza2K9jReFuJ5F/2BEOVnxbx9ek2y2hHdbOlqLq7sZKSZ6aWD390j0ig8fNiw5YNiTMbWErMhpywWGPyO2NHqdNpUKSrjC7AwwuwM21xdoukGKzDcvX7FaLdhGIboicbK3x3y5pC4KVKEiazqFpDDbRny60yMrMzRTJ4pTykZidjfm0fEBn3/xCV88+4jDnk0vW6Fsb3j6aICflZgtE/69iZqXDcF6w/nbd7y/+8DF8h0P922izZp+r8XAMzAchyCKSPMUVS6pywzP6WKoGoqQiPyYtEhRPIdMlkFVaCQo0hRV02ksB1dteHB2hKZNWG8WJKMO+6cHqKpJHR7gSBWt0ZDGskhmDv7L1yTPX3N5ccnVxUssXWP3+AFpWaGZKtaoT52nZKbF2c8+Q7U1wvUGnDabsmIT5ZzsDzgYtNBFhV5ucdwukmlRGW0U3aQqcgxZZrvxUWUN17JIopQiS0hq2HVb5ImPZdrIRUbL0rFExfzyLcFYZbC3gzc8/m8LTdRBD0lWsf7dAV7LCqOdPVRy/O2KqizQZAjzFMOA8Lv/jUcnHeSRQ1rAKozJMw1N16GqiJOIJvbROyc0qkJHzhCmyXHHpCwhiAJMVcNq9ZGkmvOX54wXIXFZsfIXhNEdlXzC8d4uaeoT5a/QNx7WTh9rqBLdvCKcXCPcFsL2MIcDVM3BHnpMFhsWdytcW8H12tSyys3NmGgyQ7M0vEaQNikRNY0icEgxHBuv3SGUVbZJiNwUGJpGlOYoQmKxDZnOl+R5TlU3XL/4jk7LIliv0Hs2N3Of0IsoHI/2gzM6+y5O24NyzfLmB6o0pro55/VtyN//6y2FsKmVmjjNAAHNPZDnbr1gcTPnD7922UYNlxdvkNOEl5c3tB2XYdu7ryPXJVkUk0QRjdVifDfB30R0DI1/+9M36GfP+H665ctIp/foDMnd49lTl/ziPUa7TWm1SNc+ftEwzGROv/iEvV2PWsqIpQAzj8nCgE5vh1JYDEYWdVVgGhpCUel3I4oip6oriixDqTNUq4duWjSqRpEmXF9d4IcRlaywjVMGeYZrygSrCapismfrmMsY2VTp9T2m4wmWa/HgyUPC+QX6009x51vCNbQVBa22iPwlN3c36CrYckywukGWEnqHJ+w+6RK+f4Mm55hmTZmltG0bSTSUQmIbRbQ7GcJuI5U2sl4wGkooRUC4nCM0Gzkt8Mwukt5GVgS6aWMLDYI1O57BfLIgzGTGYYKXB+RJjiQ3nJ0d0uvvoOkeyII03HK9CAjLhLQuWccphchptVRcx0KRJTaTMXarTdEIpCimyROaRiAMm/ff/JHptqDf62LZHnf+klIoWIbKcGRRSAVRDJ6tI+UVelXQdl3urtbsKjqqpuGvV+Q1KJKgqCtevnpDnfic9gWa0BASKLZFWOecPDzD8bqMz19QKkdsExnbHvHgAVS1RhQFXN+9pggj/vYvf0q/N0B2HLbxElsGWdHxg5zvX1/w5dNj2rZNnWtIJcgAskQYxeTrEJ0EIXXIlyVynSJXGk3ZUG98mllEq/uETz2DMrxGGh7z+mJKkgW0yBlfzWmCnPH0ltlmg+r0GRw+4+zjhqNPz+jt79PbH5LOrimqmowaIWrcjo2qa4RNzfn1HXESIWkKmmxRA7qiUqkGUpny5JNHGI6HsdfDn9zwaO+U8XjCv/2fv+Xmesbe7h7OaJfQj3EVmdPdEcXxEXeXExy3hdBV0rDAtXS265rf/vr/42Y5I69yVCGzjAuuJysGfQ/NMBC2hSRA100yu+FusWbggtaUlHVDRsN8ueJkOEIqakRS0HJDNF1m0DJ59uABcZVSJjXF/IZ6uUKTPVxDQ336Kc/DLTfzN6yrDLvKOLJthv0H9J88Jm+NSNZj/PkYyxVYoqbb7YAQyIZJ3tTQSGiyhqZqJHGKZ+i4skA0BsJSSSSVD+ML5tsZXq/LeDah1x0gJBlN0sjjEBWZbquLLVvYtYpU1YhCoto0NHJN5qfoXogll9RVSaFXlHKBUAR5GkOtEAYRqCZC0djxVOrKYhyWrBYZVVUxsCTiNKJOQ1SpochilL7FZhUSBDKSU7HebCijkNaoRDUd6qxgez0FKmK5oaorTFNDUUr2jjz8Rcz19JpcAffsmFlQ0VcKyuAcYfSx2zIPT7usomumX79HVxzMMiNKan71uxtquaDjGMh1Qt+FWegTJBnXccyXjw/ouy52t4WjCqQ8pVYlhCVRFFCUMEkrVpJF3/Aw27vU1YZnT3/Eq3cT5vM137+4ow7WVJXPXuwz+silkU1sQ+d4r4NcpFA2UFZEqwWe2UPTVYqqRogeUVAiZBtZ6tHtS6hmim5YCNWkaWpUVaOucjZRStyuSIua68mWNNEY9/Z4eNahpkFSNAzFQmkkhKzfr8mVJaVQKJMIRZYQjYLhtFAVgWF9zuLld0RRTBJVrLcR1+sNk6xAJiOpM7ZNgyyVtC3B40cWwlwRhRphsGbX1smWM8I8pkBmu9kiqzVX0yWFrLCztwvxhiJLEaZNVKvcrkNUXaMRgjDPMBIZVa0opYBOt4Ukq6AK8jwn28w43lHZP+zSCBnX0JD6PcSgpjPsoFgeUqMgyxJIDUWTIzcNjqMyPz9nOHDJ9naZTBYcPn5GEEUYomCxmtHtKZiWh9du0+s46JZJrrv3QMhwhaE1NFVOnFe8mUR88qDhpCsBGYPdIZ3DMwzJQtwuOP/mBfWwRd7ofHpioy83OKZFa28HpUwxpYLB0UMe//xvkLUb6FQI6ZjpxZhqNmdQyKiHZ0yriMZtMfjxz1j5V+ThDRu/javYCE1C0zyaMCbb3uva99o6IKEnCn5VIZFitV3ktsn+6QOk6ZxFuGW/KihLib6mUtYljm2hNA3DUZ9GkkgqDeGOUO0WqqYj6xZJHDAa7XCzKii1NleXV1TBlq5nQ1lQZDEd18DxLNo7I4KswV/OGV9d4I12keQKZHEPXa1rJEWBCuqy5uZmzldPPuPg+CPCyQ3vv/k9d7e3fAgj5khkko6CQb2NkcOKJgnRJRWoCZoCoxZsCsFtGLD93e/5eb5i58sjkjjn/fMf6Aws4sBHKTJarkecBdSNTSML9E6HuqwRmk6V1xRVjaTZ6Cgs1hu2fkSU+9iqTK8/pEwzFFMlTisKoaOIBEUB3WkhDAt3V2F1O7/nPcgysqSQlQ1pnPPddy8J4hilalguNwjLw8syaqGxzmv8QuZHjz8i3q64uHyJX8SsTQPH1uh5AypxRZqlvL6N6Dkun38xRG/r6BT34bzn0kkKfv75R/zzb77BE4LTHY9bP+LFeIbnjnj645+z3c749f/+D1itLp3eEWlHUOcNP/nyc0bDIctCIfKhrZgcHT7A3Rsi7x6yjQPi83d8srvH4eNDTGL8ZMXs+hxVlwkDn999+wHLMun197AHO/R6LfI8wOnvYXguEhVJFlNEAf5qzbub93wvCf75V99w8ijk8S/+EyfdAWcfbbn+03O+/i//hfn1HZKlouYJZZJg2iZ7+yPGl1P89RrLUrG7LQ4PRtR1wXDYZ3BwwGZ6w7tfTTEMgwCd8dKnqqGltVDMEpn6Ht7pOmypiPyQXq9HGPok2yWGoRGvZ1iyzUFbI2+bzMuUfsfGs7r4UUKdBxRSRrKZEuyOqO5y0paDrtwjACQhqFWBUHUMT9DEOWG4QBY1wfICu7+HdbQLTkZRbZGlAsfxyMMVmqaTRlvKIsWwLUpFYzJe8cvf/MDb1YZtkNEf9mgNuxh2izCJ6XW7GJ6JYUnouoopdWkcmTSUKBYBnhXRalXkYUFuCpaqjrBMHFNmcvuWy/Mrbq7v+P7lD8R5RdN6xH/8j59zrgsaqaQoUvwoRih9XE1FEzKWZSAhUUsSjqZSyxrxconkeCDLxFnCZj5FVgqiu3dswxDHOcKyWxx9NKJxVyS3U/bMDM8u8IyGsi7JVFCHO0TLiMXc4tTy8MwSSVHJlcdsy1vkpkKrc4pwTSME7nCEEBJCNyiLgkZovHl3TrNds2sqmJLJKgzoWSqKkMiqCj/O6PVsVNHQ6bbw/S2yodBxbGTD4M3bD2yzEr0zoHP4AFvkuI6gm9TI+YLhaEj7VieLl6xXOrpmkaUy1xdj3r15w+X4AtMTKKFJlUc8ODtDpaZR4SxYYekN42VJkkSo6hDbMairhkG/zbzMONsZEm5DmiIGRSBZLRTTQKQp0XoKic+nDw+pZY+wKMjyGF2t0YyMaLkgS5eUtYE/W7G8vGIRrKltwfHTzzA1lSRPyTZrsrCgEGtQGh5+9RTFNph9eE2lyEi6w934luPdLjuuoGPIqJqKI0uYak3d5AhdRdVUZtfniKbi9PCAr1+e06oaPNshShNcXZDUGaoMpq4iVyXfffeCP3z9O/Z2+vz0y8fYvZrlygI+/68PTR4+esD2+g5DF/TbLkWe47oehlwhNyXbXODJLeANH3/+EaVcMjISescuK2lEnRdEdUNQFJiaimEq6J0TVMulKnMcSmxTQ2gKO7tDNFlGZCGGKHjxwx0vrhcYuoFmCqRGIakjPsyukIyGk+MBZtejNlVu3n6N7Xdo7e+Q1yW2aSBMk+7eCWnok+U5Q9MhR0bVdWoUpvMV8WqJLNW4tkou60z8hKhoMA2BKEJctYNe53Q0iaAR2JpGWWZINCw2Ae/GG9JSoqjqe+r+D1+zvHzN4cMTJM9B7ozI21u6tklvt0cQL1FDFZ2A+Tqk5Rg0TcPlMqM32qc9qLi8HDOfbrHMLnVZEyUp8+WGPIn49pf/N7NVTBXGRHnJ5WLB8XSMowk6vR6SLFAtGxUo/JD1zSUUGcNel0qxuZyPcaQBjn7AzpOP0DsW1fmUQqTg9UnzBrWART7h9IvPae8aiFGLWinAV2npNrP8Faenp2w3Ea7VwbFt5H9vBQgZTM/B1DVianTtXvtU1SVFXDBbLHj+/gOdVovhoENL2MgSzFc+R4f79D0HJV4RpSmyphIGK+rIR1dPWF2+oAluuVoV2P0TZKkiXM/x57dMJ3cUecjy5ga3iRn0dxnaD/GtNmH8joEzoOsNqCQJ25Bo6gJRCCzDYuVHpFmJ6yk0qoHuOGTzWwpJYhNESPqCOkpwWgVaXdD09xCmS7meYVBi9QcYboftJqJ89YrZdIaf1EhpQc/uE4UbLu4mxFVDWeSs4y2NVNJutxk4PbodhVbPRVNlmrKgKjLqNEJWNZqmotFMkk3M+PyWZV6w/6iP547QhUG93SIqk25rF11ScRUwTQNDs0njGLKSOAjQtXsNaOD7CE2jVnSsdgdpq6KqFZ+cfYy59UHUCOX+gnVsDUkSGHaf3dMvuLmekUQh11eXKEIwvr7l1dsrlos1T08/pm1adHaOUGyd8GrDar2gaXICMi7GExxP4rOzhwhJoGk6kqLgtdv4yzV1FKCbGsvNLcWkom/beP0DEC6a5tD+9D9QCxs5roluGygkikVGML5EkTKMcMN6vWLHVPjZf/83OEeHLLOGqJJoyi00FeQhZTRFHz4m2ibols4sjvEDn22c8e56wqCtYhgarmtjyBKVJKGYJkpTYbZ6nH3+l3xsdHj5zT+QRFN+eHnO67e3dF2HsihZLTcM7AF9zybbhuhSQ5UlXJ+/AWqSouSk3+M62PL++pIyD/nzJ48RSYAfx7yZRHz6sEaNt7R0BUlSKWqJq6s7PlyOuTBMHuwOONrbZSQpZFmOcD0IA+Q8RVZkjvotunZNq9fm5dUd1aakF2zRDRe11SDHATQm+7ttrgKN6WpDlWYsyoy1XPPQ0nh182uKImR/p8fR0R56f4RaFaiWQSV0srSkLhoMVcdWdPwypuu1qFSwPRV0g/cfbnj3F1QeJQAAIABJREFU7g1xUuO1O2iajqZqSGWDpqhIsobW6Ji5xqi3g25q6B2P8GqGmimYZo8OHtqmQslThN1QljV1nSMrJllekGwT0thHd10oc0xVoJFz2NZJS5eVH5IjE8cJcZaxiXPsJsdTNMIs4WI6Z1iHBHqfYddFSTcI38ewW1RlQqlorGYLNM/GFKALGWXQZ5vekWkqoRxTLG5RRwPG72do1+8Q+TvIZfTRCXtPHtHKaqIwx1ysSMnpKi61pSJN71hM52yWM9AHeI7DUXtAhore80CTQTWQZJUoK5GUgrDM8aOYD9s18tCjEQ2lIiH3DjjyLA7/8IE/vfglcVww7BjIb28IwwLhHXNzdYPqDhi1W2xna4I4R5HuG2WUMV7bpkLCdV2++3qKbQ45PBtiuhV1HeC0PGTDQlJ0pLKgkQVJUVLUMF4FbKIMOY9Y3yaEAwe3d89gkGQZu92joWbgWkwDjRdvL8jDiKNBl5GkoFU1ot9H8zz2fvJzivWMcLXCCjKE10WbbvDjAlEUaGlCngb0ewaDvkoc3JCRUjUJ1dYnlvqkSGAOiYKIsMy5niw5ONjHckxkkZOmGaWscLMKmW5DwlJGUWtswyArK4Ikw1VSuscPKcuGvZ193r9+idX4PP7irzn46COiXMa27i1DitNDdfvIiobcgNRIVGWBKWnkusqo47CYTknqisZw2DuyqMKQ5Tykf2CyjWO2/ms+/uwrWoMh7V4HqJAbiTxWqZwOdqdL30tQHJOffPUl3eEAzy0p1gu2/h2updD0j8BuUIc7HI8s1rcTNmXIyckReVKifvIxbST0KMT9yx+hdXWabIciy8guVnR1jVqkJEe76IMRURhgPj6jcXWqQmY7u+P6SuHYfISta5R5iqzKLNcrbm9uUBVBt+1RaoKuYyHpOYOdIcKxqMqa3d4AYTlE6wDddGjqBomGRgJNd3j49JQoK1hkgtbwiFSYVEKgKjKybOP7W8osoShydo5OeP7HKa5V4nkeSBKdwYCWZyEbNkp1P+ttgiXhbIHhDlFtBySJuq6Q6gJhOHSPjvnb/8EhSQ02kzmz67f88fUr3mxCFsjkioZiNOzaGm1FoFFiave68W5rhGyaVNspy9Bnurzjj/4C69VrvjASmoOQ2/WCRO0y0A1UJGR/SSFc0miDZDvkeYrQXWoakqyklnQQMuPZmvVyySpI6bdbWI5H1YBmWuRZSVbdA6sN06IsS2S5QVEUFFVhuN9hfL1CUywkCcqyom5gvYlZffOafrdDmiT0VJObuwlOp8cmkTj7+HMO9gf89vV3fHjzljxJOT16wG/+5TmNUHj4YBfTDnnx9prn2pR254ZHuoPUlORNgVJlUKbs9xw+f3jEuxfndEYdDh+dUr295t3FlOJmxcGuhzvUyaOGtqmhqxaFZRGWOsFswWLis7iZ8thTsK02zuNHbN0+y9//hp8dHnF01kffbVGlS9KrhPOXr4kpmU63FFWLj559it1yMW0bYeqQrbB0GYSEv90Qrpc0acDajzg/v+b88g5/47MMvucf/p9/xNIz6vCSxz/7mN2PQt7805rrDxdY9YoaF9vpY3YsHMNlNfMJkhgpUTBdh9awi+m1cDsdos2ay/fvyBsF+fAxsmEwvZ1wk2R8tOOi5gGaECitDqICkiXr5YzWoMtqMqfVdkm3Plm2Jp0vcERG2TKIo5yeKXG6d0gBVEVOlIRo/gxTOOR5jaK5mIaCrss0kqBIU/zxHD/MqWyVbJswPGpjjzoIT6POUygiFFkDRUWRBaos2Gy3FHlJolQsgy2//u0P/PbFOYUMnu1RJAV10eA4HsFqSiVA63XQbBVTbdBkmZiUebHgioy61RBubhg0AWqnwybOmGcZozSmOxqwnV/xIlzx/ZtbWq0Om6sVMjmb6TXT6Q26rpDlGetCYqdloigyORKebVFL0v3MquZ0Dg+phCDeboibgigOiIMtThMz3q5ZF8dYHRPTbnEmq0Smg+nsILISURW47RbROsN/fkEz9/kzTyLWZTZZhuTaRIpNMh8TzcZMoi2m59Ae7aAZJnmRI5oGkNmGMeubC47bFpo35PvJhla7xd7OgEoULMMtK9nGclP63SGeqVLJDY3tkDcN5DkXtxMm0ztSzcXa2WPvbEi/LfHNv8z4dHcP2dOhXeKvb3gfTjBMl6xWGM9mrKNbxpMrzLWKVrZ4fLrL8dERRRYja7CeXHHQ2WM6T1gWEXmWYg3blEWFoZg0DUhVRU5NkkSUSYzpOpRlSZhVhP6Ss5N9HN2gziqatocwTUxLRRcaaeQzma+p1RaVaSKOj+kcfIyWFBSTd8TzS1bLGavN6r5haLQ4Oj1EVyqm79+wXq8xdvqE8zmmoTJqLIZqiVQkWK1dFNVCGCqG5SBERRZvOP9wSbiYcnh8hKcZRGHCyekeclNhNw3ZeoVqapiqQZaXrKOQ/f0uR3s6ipVQlXesL6bA3/3XhybB/8/Zm2xLmh3mdfucv++jj9tnn1k9AFYRsERSorRoS9ZanvgF/Ax+Js09sa3lpWU1pCgSIIECCqjMquxvHzf6iL/vfw8uptLADxER53wn9t53t3RpQm37mJ5FcrmhcGwCz0bULo8+fU7z7oKfPR6RGDrzqKPprviTX3zFpnRYJ4L11VumWc5EUZC6gZDcL6yWiV+WDAd9qjzE0DVGvkWdC+KsYhGWrHLBsK14fNyjb/buOVhvyORgiFAbdtmeLu24u7vlpGfj6h6m/ceLOh2U2R9TbgqKhF7gUjQKntPj9PQJ7zSd88trpidTYuHydpFS71Z0lYreN2iljugkbV0TWCZSkXRNxS4peXOzYb9e0VQVAgm0NHVDEmcsFhue/LNjFCfg/OaWF19+hZrNGPgKabzlLt6zjzV+/+EWXRNg9fh0csjN3Yr9vmG9dekZX9LEkn14x3Zf4NsORVnSWDlWZ7CNOqoiZ7XdMDJU+v0ATddomxpNKjRRiKVo6I6Kams8//wniLTk7u2G1mjoljvIUihzRN9FnoyRs5DL370lsW2eHrkUSoroG+SVxUFgkb1+i6FCsluT1vcHJl8VtHVG23XESczQGiGkBM1A9wI6VadGstqu+Jt//Ja6rpgce5y6Plmn0aDSWQoDW+XB2RQjumOV77ieRYx6BpXn8Oj5YzRFx3n0mOi73zB8cMZ51bF585G3339Lh4CmJI4jmq5leDCm1zvh/OaOeL7jyckz6ARJAV7gUsYpuuug6hp0MevNhsD3EVKhzGPiLKPfC9AMhXgzR0EQna85e/iUNE/RiwmOZSE6HUVV0ZsO27UZDQOicM8qiaiyPZtQoay3pFXDJorxbIOzcR/VDdgmCU2V4vVPMDwP0VQIAa7nUFQN0CE6SVUq7DcJq2XMwemUwThANVXo7tGD8WjKZHqIY+ioukGYF7RKjaZKVF2jKksQKuFujevYpLsdvaOHUFY4wyFZmiJtD8FD9EMfxdORokMJd9QI0iQmmX+gKwWivReTXl5cstiErPYpRdPx4nGAMTQZHPXYbJYkUcjl5QUjr0+cl1Stxssfbxl6A44GA7quwOzG6LpN3ezYxQXjgc58vcMSFrNFRLm6xh0c0u5vaWuNvDXIhEq9v2QVvmL2wwcObIVHRxPsz77mNql5+NULes+PSHcfcdqYslIopULbtqxnN8zeXzASfezegCLesash2my5uLqkpUN1+0ghoCppNBUjCCikymafcvv9DwSHRxjGjMt3L1lcXfDdmwKpWti2x2oT4SqSuhyiazY//PAa0cJU7ZAXb9B6AWfjKdbwjHSzYF8VfPr8C97++D1pnlMWOe+3O643z/l8PCDe71BNi+1mx+1iw+urJV0HSVagWza2qWOZNlVTI+mQjoV0bI4HE2YXFyzDHbe7PZ8+PcNxLRqhs9vOWccJSgnzzgbdoD8ekMQpqlKj2AZS7RiNfTb7DnfYR3FcbN9lX9eYtkOeSep4h+24JHmBzCtMJErToqsa0lSJEbz6+J64bBBSpRIKPX9MkScoEhwvoFG0+xTs6QSjbxH0AvK6hLzCqDRMq09f9qmXIYrRorsWWqPTJB1dlpOGO4owRuYlhtOi9VwsDHp1S1lU/PTxiD98hLLpCMuG7WZLTYcxPkCIewHd2LII5yv2ImW775GkHge9gHy7RZECTdEwNJUszimyAkeaDMYucROQ7lLSOsKqKvqOj/nlT0mv3uCoLev1DrV4i77do509x3lyijYNWL15Rbe+I1rVbObXzPdbalqECQeuz8n06B59clyKPEIVLbIq0f/IyctS48PHaxZlQ9DPUABN0dFVh/50wL/5y/+FIhzy5vx7VDfg6u6GydOHzG+3/P3f/B2nZ0c8evSAdGuR7VOCfp/j4wNa1UDKHONogmnbFFlLUwksV8FxJXWpcHQw5pdVhdcbsJxlKF1DJQRhXpHGCbsk4/TwmCqvefkPL/nsn3zCcGrQqgqKodM2FUUcs4kibtYbfv3DB54Pe/z8ZMLjyRC97VBMF6GpWMEh7tNv6GcFh+s1D+ZzLj+84eW7C7ZNhueYONNDMhRaYeGhoOgasWhxBESbNW3dEscR613Cg7MHHJ0dorYllahA08gUi4vlDegmiuzIq4Y6TnB1AyFKGmLC/Q7ZCOTRMU8+eYFZDJg8fIhiWKhtQbqKqHY1w0fHqIZAALQKsruv2VVFjiIU8jjGkh1K0GHYksnxc9o0JLAFN/OEtCzYLvYcbTd0qgRFRZEamlOjxkMUPcO2bHquy4vPv+af/tOfo9NidDl6MGb97jt2N68pkphFO6DWTRxdwTye8va3v8IWDZai8/1f/z+YlsWRblBb9b3LJ92hWAZ24KN4PSoVWrOkS1vMp89RDvpswguocnTLI4sjsu0dtQr+cEi83SLlBldP8X2TIheMFMEi2XJ4eEzXgWOZbFZ7Hjx6hGIZ5EVGMByj0NKUGXWa3F90J0eIbch+k6AaFobXJ2pKnN4Epck5/3iJbhhYFiQIWsUkDCN8W2V6dILU7gcHTelASlpLR2oBNxcfCE6eIPXq3qeT7NEsqPchXdOSVA2lpVMoFY0uGB2NiGwTkTdUioVrWEwMwUTTOXJM+prLfhXTk5IDZ4w+fUQ3sXj7/d/zy5e/4XfrDe0PVxyXJbN1zjrNSKuWo2mP/SLEm7pkUYhumNR1iWZDFofUVUlStPzw8ZrZ7YzZJqQ3HDPVdNqmpSpywlpFJDW55RL0TDo1Jy8y6qaizWNu3l9iOyZOb0KWdnRdQ1s3SBQUqXC3jlluU0xDQ+j3IvLp42c8ORnz5KefUiQxqlRoqhZndMbx05/S1QV5XvLq3YKJ20dz9vzmw4zJoEfgeUyOTyjihP1qQ50X1NLAcnR6wx6d0BgeT/nFsIdSv6K5eoU3/Izx1ELtO1RFQZULikKyX+3Iwg0DpeHJ4yPMskU1FUTQp9ztGXUNn31+huhZCFenthraucnHqw2bPCZXDH72J5/QaS1N4DMYB4gqwtQEYatR5imrxYw63iOFIEoL0jDCqErGjkvedvy7f/tviX/3H/izP3/CwekBpRrx+H/6H7CvjtjenbO6i7DGEwKjz6AncPwts9lHFh9X9E4e8PnDU6y+j9vvkRcl61ry3c2KJ/0HKGVJ19VcXl2hi0M+HTvYto6qOeSaRpWmJFnC1cUFkefhbw1MTbK9nUMjQJPIqkK3VeompxY1ju+j6z2KJKe5fk+S+pjNAaLaoCpDFM2jqhrqTqPTO1SRYtY7/LGFYlvovoXoamSVIwSoqqBuKzTVQCDIsoy6apmvQ/7ryzd8++aSrGlpG6iqFttysE0bTTU4PD5GMR0KI6A3cLHrLUUYcjW75kaxeFn5XPzmFWfign/9Z19RouPXPdZVwZvZFZZouLlb8g8v3xLFJePpIUqR8eu//4/kWYKmKVgYdIrBtjYoVB1Vu091S9VEobvXC/QCDFWjyHJWqztqIZFZhOd4KE6A5vQxe31aRaXuGkokk8++xjEcTCTEDaLScMwCw7Hpey3zq5Bq7yCsEZrXoqURamOgdCWW6+MFPrJtaKp7CqEI96RlxfLqgoeBxXDYwz86Izg5I9/OeHLc48fLxX1prKhppIKqa0RZSm8ywjs8RiiS9xdXLPYxF6uUo69PeT+v+L/+/f9L4Ns8thSePf2Cq1KQKBfYbUoZtWxXK4RiUsQxttPRtSXrbcT00GR8fIDpOCiqoKwSeoGJISsspWL5esvd7Q0H0z6O49DkFbpoEF3J0aRH1bakaYzT67GJQqqsxHctBp5Dk2c0dYnZbAgGAwxdR2k7Js+eY0xyfviwpsgi8rxGugpdk/Ph7ffU6xvSqsIIAqZHBwzGNm2+Zb6J7r8TbZ8yb+manLHrsqkEeAMMKbHl/YRRlxWKpyIaWM/X1OEFX/1sRJKleE5H3gBFgu330QTYjoXa1Wi6Sv/BQ/7Zl0+wuiVTO8fu+wSBTbi6+2/uIv/d0WS73tKzbKRnEWc5rSigLMkiHdVwKLYzjuyWf/Vnf8Gv3kT0PJ1snXH27AsOKsHNMuSiSljmCQdZimXplB0EhomswTE1nP6I2bsZRZ6SyJzFfM0iEsyjnC8fD1AMh7Fn4KiScB8hpWB5fc68ytEME9OyMIIett+770HrGl1TUFc1dZZSlBV1B1kck1dgWX3Onn6G0etjTR/Q/Jd/j+4q5E0f1ThHdjWB45MXDUK1SdcL7KMDNKnTAKt9zstFwZuLK6Jod48zCIHQdMqmASFIw5iX/+k/szg54uibn/Pb33/HYPuRr19IFHOKFIIKlbhUSDYJo7MzpgdjkDrbfc5o0JLJgCpyiWYpdaYy6pns6w7XshkGGuOgIMsqiq7jOowYhXv8wfh+mc4LmrqmUVWCfoDq9Om5JiiS3k8fsVvM2F3U9CZjZNBDHo2oipL97JoPs/c4RweE4R17UqrQ5vjkAHF7x372garL2Gz2VFLQzTvoqSj5jk5VUVWVtm2pkdh+QAMUecZyveHvX77m42xBb9BjmzVUTczZ8RG9kyfEmwU9o6VvCaQ+INsvefHpM87fvWGzWvPh97/l5Mkz1vNLPv74B5Rmy2J2zHy+wPR8xj0PKQVdnbNaLFF+omD1WkZI0ljDHtvEswv8/iFlraDrOjUNhmYyGB+yvr0kDncoqksUhTimiWPrWIak6mrasmW1XhIEA45OfJpkR0WDf3CGQCBlglbsGZ0+wrRcxssVH9++IywrNN3AdiySpkAooKkKTZkiu5J1mBDscvJOYrQZw4GPYlqYxj3L3FUF+W7LLrpFsTROn5yRtzVZmqLpAsXXcD0HYbQ0QqNpoNMNhNLQdR1ZWZAVFaLp2KzmqJqB1R9TVRWm6mB0ArWpuVuuyNIYx3Vxh1P64wHC37LfzPj49oLd7Wts08Dtf4JuuzTyHmtabSO+/PITTj89QbcMVre3XM2u2W9DqqJlmYTUuUCiUKTw+9/PaD9TORhZGFmBLkzaSlImOZFh8+jzL7BUFdFJvMEhhqpRvnlL/ONHblY1qzAjK0s61eKrr/+cga3hHPZxpn28co8c2sxvb6irPVkcoUiDuujAsLl6/Zr94pbS7PG45xOFGz6+/p6b2xl50zCaTuj3eni2jipB03Uq3aSsO7abHa9+fMXv/u6XFEgurxIenRyQFpJHDx5hqgqiE3RtR6365Dh8ejDAlCr7KuHuYoa1XmL1+4jW4PnjM9ZphmVbGL0xfqMSxx/Jy4bfXWw5enZK3xFE2y2bcMsizlnnNcvlhn1a0AqFn3/xCaqpEocpatsQ+A4qsLiZYVgueaPgOjbrEsJ9jG3bSAlpXRKHIWkpaA2bnqlwdjTiYODz5NERvcmI08Eh++0aKSpM0dEJE1U1iZKKIkpZRzG1ptLSIoSkQ8EwTVTTIKs1/vD2HXd3K3TFxnYDLMfEcgZsZtfUVYttW3RSpaVC7+novoawoI4yos0WXzeZBj0C1SFNtiiKgZQaqmJSJinJcsF+uaIp7zlYxbKpgaMXz9hnFdlswcnQxQ2GLFcJURRBB/FmzehgynK+wejA9XwMWZFut6yvtsyuNA6HPaYDn4ljUUUJaqfQtw0yTQcUtK7i0bPHZE3H8npNIgX9J8+Y9A/Ya5Lm9hxz2DGfbcjnM4q3f6ARCllVkjQNRVlQdi1ZUxE1NWpviDlwGEyH2EKjREOUCnQNlSxAUWnynDITvPl4x+ubPQwH1HFCnUR0vR6WaaGbNk8+ecH/1rpcLL+kqq54XQnmH2OyuxRX94lubtlrCm09pitamiTC7ffoP3hA3AhWSclmm1O1OeG+RHZDpOzoRIPp2kwnI1693qCYDpR/dFIgWa63GIaKpVfE4R2Bo7F8t6bLS4JxgDKaoKgaQrew/QGfPH1MX5dsViGlP0Z7/BWtZlCHNbpjIoIp9a6ijfc04Z5kdku6CWnrimDQY3BwgK83dFWC2Wp06ZY0TsHSEGzRgJqO5WaH5fU4GA5wPYMqi2lKiRAGH3Yl+6ajaO7xoqKsMVSVWkArIMxyrMBHzStc36WlZRwMqTBxupp8s2BxfokQCif/5AxFuS81aUJBdgpNDRqSLItRW5eeHbCK9gzGJmm+pc1yxqZNHKdcrWpEoxEle/I0Qzu2aNKEMq/pVJdO90A1GYz6fP7F03sfguOgCB9nYKMYJtu3fyBrbCLDA7Y08Z7ANIjHHlfzCx57AVPHxuxq6s0t2//6Fk4Del/+BOPhIbI3ocGgKVOUZEF69x69p7NP7qAs0FWXpCnpii3LmxLXNmmLPUkUs08SvMmU8/2C45MB28WOQlNxPRcMm8uLjzw9e44mO+LdHs0JUBUokgQMh97RE/pDF2lZmJ2GW6s0bYdt2YBNHAnMrsbzfNavPqJIHcvrY9ouy8WW5w9MbN9H1XQUVadtamxTw7IssqQiLGtmH35g+vAFtj+g61rqJKStStLtjl3WoftgyIxHTw/wzIr+1ZxN1rAtWsJSxzJ8AtvkwFA48nz0yRnb6yuSy+/wJhO8/mPk5ASSnP/7x2/5dpGg21ssz+NqEyJNEylrHNukr3Q4XnCPCSkKZZGS5jmzVcj3r8/5/ftLNlGB3+8z9QYkSUGRV3So7HMdmXeMHzrQqQwmB2jNjCzLuP74gW9/9V/59MVn/MkvjmmFRlE1NG2HkAJD01DkvYdsn5YoVooVDNjkLf2Jw3g8YpEmPH78iCROCBUP7+CQar1AAm6nkez39Icj8izlV6/egZT83HJAkeRZwcVsSS1UNM1E8y22Zc5jz8ZSFL7++ktefnfOMlqg50NOfI1gPEA9OmXftvhXHfVKw1AFSR6TrdZMn3zF1lSI1td89vkIw9YQVKR5wiJLeR8V3C3v2EUF3nDKjz/+nudffMazsyMsraGuWzpdo9jtWK/m5Os5miYpa0mYtdR5hYZEAQZ/fN1/++MNPasl5f8gSjI+/fN/xSZa0umSg0+/AVUj6PdRGh2zKujet/zqNy85HI+IqgarrNlvtmRpQqVqPPj8J0RpRlvmpHFKlGZsKsmykjzwbFzfJfZ6dIbB/ruU1WrD++UO9I7JMKCOUzRFIe8UpBQMLZB1hlLWqKpANjWebWLpGlJVMNsaw3BQ/nguqZuGVjNx+g6O3VDGLWUsaU2Toi5RVI26E2iWfS8ZLnIM37k/J1QV27Tktz++593FDVIo1E2JYVv3/sS2oqYhTVKckUfPcxm4Or6louxbit2aTu34w6/+gbev9vhiwPEXL7CPP6NsK9yoo6oKtMBjNr/hh7BgdHKKs89B0WhFSRhFCKkgVZOmqLEtH+kMiTUTlxjLsDBMm6prQUgMKbE0k+1qze79O6SmMQ58jGEPFbAmp+imQxnvKfc7guFDLFNDFSWK4aH0huiaSRl1dNsEkVaYIxfbG+I1Kvn2ErUI8RWTBHD9Pp7roZg6DQ1pmhBGIfvlHJnEDHoDPv36z/D6Hut0T7eosB2DMC3Yxym2bZEWBWmeMz0cU6k6eVkSRRHv373j7cdLrP4B0u+xnt3h25/ibGrOHhh04pSbqiYxQsasMXWNMEzZ7DZohsHId3nx5IQ37y4IwxzNsegNfPJYZblPGB/76G1MFS34bAyVnpOtZ/SCT1E10ByXpshQELRFSZ7s2e17xGGEqqkc9DwM06ASNZ1UyMMtg3SL6R7ei9w7gWpafGbb3F0vuX2zhXhOU2YEDgj3BMW0sG2JRk0erkhooG4omoZCalRZzsiz0U2TcnSAIVvqqkQUKVavj6ab0Ek2iw3b2zvq3ZLZ64jB+AnZLkPosFlvsf0jLHtK1eY0aYxjjHnw+TfYU5B3/0hX7ugfHaDVNbb5355G/rujSV+T+NMROzoSteM2DDnUFFRhcujaOMMeTm/Ewegp/8bteP92zfv2IW2n4Ns68+wW2+sDfebbEMPQcU2Ttq5QLI2mlRxND3n/40uidIfSmXy4XvPqNuGLkc6XL57jOAF10aLrGv5gRBnHLFYlimJhBiMmR0dMD8cYGsgyQ9Q5nX7P1hZFxWazQVFV6kYh2aYMLUkVFqAVmKbC+OwBUZGjRRVNmeFYOqaEk8mQgyZBmR7gBn06BOuba2aZwcW6ZrGNyZP0/kVSVdAVFaHqNFLiHjyg013UrkEXHXfv3tIzUlabjrQIMYaPKGpBlqYkJRwHB4T7hDQK6fs+1QGY/p59GfNh+Q7N04iThMD3mIyH1FVNkuYUecU+iXFch5vFnMHBEVLRyHWHJJmhaQpab8B4MIYyIdnukEJncPoADJPGVRG2pI73JB8vuf7hFXGXIdIN+3nF6MkBE1dSn39PeH1JQ0TaZmziCMsP0G2LSGro9QrZ5ARBQKvpXNwtacqc6XhA2Qnezpb87s0FummAUFmsd9RBgL1eE7g2VlPgmR67bcTg7BFHXx+w/PgKqHj6/IzxwEVIlThMcAzJ3dU5cREQjKbU1YBHDw+IV7cMfIflomErUELCAAAgAElEQVQtfaaqSt8zWJkKZqAxv2soox3ofQzLQTMgyzNcx8XyTObLBZOhwLJ06GxMXUMqGl4vQBVQlyWXHz8SDA4wPJuuqWmyCEUzAYFE4Ng2sj9A7VqabMKvf/uSStPpkPdOnzynUwS7zmDfmhj+GXGtUyUduhDoeYNNgW4adGXG3e2Sd28/oKiCg+cP0ByPPNxR7EMq37h/cR3YNKqJ6Xg4cD9ySug6ianpIASbzYrDw+M/yoIFCIFjOhR0WBIWyxlNlPHdq7e0UmN0esa0P0A1PX751/+R/PaOLz47IV59IDAVDoYD9us9ZdXxzU8/4XBywuJyw+z2Pc6kjxQq+21EEqVs4g2GKhHU7JMdv36Z8uzZgM6oGIoJjuWSWj10y0O2FdF2ixAGuq5D11GrDeV4SN2USCtgaluow4fkrUo5slm+/weC1EY1O5p0xW1consu4XyH5tnkZYXfv2+v56hUmx2juODdu0vef7ggLiu8yQG1VEj2a5zGQvNdFDMgUXT2acbN7I40zZndLFiHDdPxARKVg8m9o8O0DJSuYTQ8oJI22zjjmaFSpSWHjx6h/vGfPk4SMpgOMZQhz54+4Jd/97f4Z884ODI5P3+PZZhczu/4x7djvvnqENqCGgGiBaCTkuvVlu6HjsC1ORkOOP6TbyiWM8LNlroqKZMQ6/gx5WpH0BuwXd1SAk5/hCoVHMvCkwrFJiSN96SNSaaBdHwaNSCtFQJqxsdTVlfvqIVJFxWEq4RtFvL+8pyk7qhqeHhySlw099ZyzUTVLT7czpjfLjAUA8ew6fs+bVXRVBm220NVFDQatkmIM3QRskXVFJqmoW0qFjfXmELhaHCE7WgIO0OzDdTGoFimbG6vuLua0XUtmzThqy8fUtYdHR22Z/Dkpz9jObhFjVZ8+eIx8ucn/PiHlxhViK0r2JZHUoLZpPR6A+7qlJAtH+7W3O1LHPWGQ9/jaNzj8cEAgw5XVXECBwkouoZpGQR+n5HrohkWsoZkcYP0XdKVSdKGiL5PbRpslit2+yVZA1ldE1YVlmmSC4nm9zl79hzVMmlNFVSVntKhNC3+wCaXgjDLycqS5XLPP779yF1SMTANzOkEVVVIEKRCEqgd3tTGMg/xNpJXv5nh+QOqCpZpw2jwhEBdcXjygNl5gu+6kN/jtr3DQxxFZ3+z5sdXv2F7s8WRPeK5i2VYyC6miOd4voXr+2RpjNTv+ei0KomrhpFpsAo3fPPnX5Ct18wur7H6n1Hld4i2xh+MaKSFrWu0toE66nPy4AlP/+J/puf10aRFF+UU+4RymVIXCen6lu1qzmK9YbnLUJwRB4+PsbUW09DpREvbVKhKi2sbaLaNpnfIqiIpa6qqYOIaBIM+UnYURUapWBRun3BxgZQNUgqSoqRuoalSBoFHVpag2/TGI/qWx/L6HE12HD36C+zJMW25J99/y92HP6C7PaT8H9FVla7roL7HPzRHoahryrhDN1TSLOFgNKZJP/Lj1RV5Inh4+AIr6zg7HTK7mnF5fkny9Y6mrqmbhqZsqGuoUJGOy4MnPnWVsVztEfLkPvGp6gxOX6D2HxGFCV2U0nU7FosrZC/A1hs2VchsucLsegxGQ45+8QvsSQ+lu0H1K4SjguMgpUp7Nye5/chmuyQfBACYrkNalhTpnmy3QM8V3ElAmmvUGOiGR9yqBHZIm0SkVUGr2theQFyWKKpCfzygER2tbBCKQJP3F1d/eowoIgzbRuo6ei2RqkZdlFT1HwdW1eF8viba5qhSUpQlm82WTjUwvYBdXvFAdKi6oG5yAt+lKgpM06SQGk214/2rl0gpGT3+HFUIZFUg6oq6KFA0l/377ynWt5R5RlQ2WIHL0K7xipK2luz2e5R9SGdpSF+ldzDEtacka53rNy/pbr7D7h1zag3418++4d99+JZf3uz5F1/2SHybKMsoKoNJMEUqEqEqmG5A0wnm8yVv3l/yy+8/8KuX70jSDNV0eOoErLcbGk2l77rMopLFvuTT6RDTNnCDgDzOcVyDTlF48/49WV5ycnaGbrk0qk6aFuRFiVRUdE1HV1XqtqNqG5abkEef+Fh+n08++YQyzXA0nUzT+Jf//C94+eotbZUzGvjksw0X8xlXsxkHh0eomkFa5fzy5XvSquXp8YQkLrjYJ0gkZ0Od8WTA1WJLJSWOIrF0hb/4/At2QsUe2+zzHQMNxKWCrQqa3Zput6XqBEkXM/jkEHUsub255mQkGI8DWtFgNirh7Yzzj6/57uUb7lZzVE3l1HE4ePozvvrmZ/TNjjxOEKpBVzas9yH75Q2aBDSDzTakSlN6uk5hWYiqRhUw7Af3bqZly/p3G5oCPvzwfxJul+iuwf/6v/8lu2hLqQncwKHaZzD2efTVM0aHQzRdJ68qFjc3aKZNaQe0UjBfbbENlXUOpT/hi3/xV9y8f0eCzsRz0HwVKTIm0wE3N3OyPGa9CLmZ7/EtHUNVCRwHXwHPUpCyoo3W0O+jeBayFZiWjeMoWCMfw+shDZdWqBiuhdrWdG1FRYth6gg5oGhqaEvyqkS3dFRNQ9Q1mqrTiIqkaphvYt68vWC/3iKaGrVVaOuSptLAhizPkaqOquu0XYXvWkz0HKNtaJIddZzw7V//lmId8vOTB9TdMcbRpyjeKVQRPSVnOb9mGdUogU5qtVyXDTYqNRrT6RTdGbOY3zC/fkfTtFhuwOjgEKPvIMs5ZZWjNjWG7dAKhTRLkF1J3++zXq8I4whNVRkdHN3XEy0byzCImobryxumT79GVTqqOESqEolGGcc0aYEQDY1aUaRzdld3iNZE1A2qXmHpsIsy2izHGo2xXI8sj8nJWM7vCK+vOe6NefL5VwSPP2MYKHRvfot/NCVVVEzjA0eHUzRdxXBd0FSkbWP5Pmka8fb9B24Xa1TNwh+N6UyL4eefc2cpPLZ8HloJ66zlIk3prCM0t0RNC0xTp61KirxhOJngf9JHUwxaUfPu3S2fvfgCVdWZTIaEdz9SLW7YfbzhkxOPqjfiOo1YXV/Q6w1A6BRlTRGHuL0RVRqyn50TpQVBL0D3B6Ao6LqJbCvKfUiz34LvoQT2fdGzahi6KubUZijGpGFEmzVM/uQ5SXKP/ETxhrJuyYUkqQSUDbrn0R84nM8zpKnhejptLmjKHIGglAqirJGWzWK/4W9/+R09U3D27AH55Yq3twvINQ4fjihkRysKYrXDE6AbJp3UGT04Q+cHzGmP7TzBt2z0FiiV/3+jiWo5dKpGEq4p44TWNLm7u0ZpAp4/PMF0xhycfoOqVAyslnYQMhoeE3gaghaRJ7TLLXu9j354xE0UM0w2mJaBqusYtsOZDe74gH2yxFQliqqhFxGPDh/SxjsMz8ezJJ2qYvSHiLpmMNijBKfoUjDwTOzREN33EG1B2zYUyR6kBKnQVSWdYTOfhywu51RxR5wJvChC8zpMA1JtSLG9oWsq+o7JwahPoAkcz8b0PDpVZ7Nas4wKbq7XzD7+QLpfomg6Umo0TYEuFRzLIWtrpGOjHZ6yi+44TULstsY0HZabGdtdzlhYlEInyhtOHr3A1jQ0x0UxRsxvP9AU0O8F6F1Gqe4RZYWta+jafRUlrXPGoyFl3fLuzZ60KLgNJd75B46ffEKepfdivQ76QR9Dueca3cDn5uIW2UqU6SOYpyiza4o45f3lih+XezAV1HZPf9BjYFQk735HV2WsLz+QlhV5mZPXJUeBg9YkFGEDVh9XKcjynNv5gpvlGluFTsLNOuLb8ztqVcfRVHRdw/F79Ad98jxkfn3JyeGQm7sF0u1jP1BRHA8Z3KMjg0EPJxjhj4ZE2yWNdAhzmz0u7vSMfDXnzYc5ZrKk79psNhuidAPCxNMFPTdgt9miWhpRHHEwHFDkJe7AZnu3wQ9chofHXL3+EdswEHRYukQIhf5oQl02jIZDPNfj6uVLlrcfacfHPHjgEt5eEhw/RDNd8mZD12W4gyF0gmG45vnZlO/fnlNUJbnQ2bU6at2jPzzksW2hKGBYBp1ukIuW9/uC8GKGV8xB0UmEhbQDBBWO34e2RoiStE7xWgPLHJO1KjQ5qgqWagCSrCzvJVR0ZHlG1zVUVQ5tSaZpmEJStjW1YxM5NndxxKmccHf+nvy3b3jxk5/S8y0c36MyBvzN93uSSiHwfc7Pr0Bq+K6L4gY8+/xLqq7j2x9+z8FkQhCorHcb8ibmen5DVhSMexa6qDFNiyxJeP26RlY1+jMVzx/hDgM0VYMsoc1r8iJDV1Q6VWF9c4XS+4TBp33sLKa8u6DJLvgwT1GvWwy1YH25wj8YIJsOP+hR1QWWZ2PbBmg6eSvQzAF6X2XbaNzO17x5f07WgtQ0At+hH3h4RocimvsfAMdHMV0Wl1csNhs+Xi8IwwLbcLB0FRSNJI4Z9QIG4xPsE5tocUeUlDz5/Gu8+CO1VaIYFpqm0GgOYdYQpila2zLue4z7Bt//7r+gKga6oVNULZvdlvPLO3qDIYHm0yoCITU03cBxXaqypuwUfricQ9vxcLPC1nXi/RakwujsAXEDel1g1i1NKxkM+xR1haoL1nmL77qcTg4olnck6xVto7MPUy7bc3quTputUQybfZIRpjvyEtbrHZc3lwjHwHQDuvWG87fvmB4eYoxHCB2uliv+8OoleS3pNIuSjiiuqJsIp6xpWnFfdgp8ZKeiqTa6otEUFZ3SMv9wzt3HS775yRdYqoWlGDTTCUW85vblDel+x/zmlk2SkgoYjmykZfHuao7lBciuYHz0gFr2GfkmTlsSHJ1x/OQZr/72P2MaFl26YxL0KFNQ2wY1D1jE57xehSzCCoFgGZXsi4qqhednh9iOhWG7yLJG1y1Mp4fq90AzUeqK+c2SqlUIbJ/JFz9Bu5tRXt6ihSEHloGx8dhnGbK+xwN0XWdi6jx5/gIz6LGII+IqJUz31KZJnFd06wbNMdlsQ7Km5T9894rFPsIOhpRZwm4dM5gkNFVBSk2LBEVHcRS6ecXido0UOlG4QQqVtPToeadk+5z+eIwTjKHpaBCotkej6nTKCtSGD+ffoTcCw1zzsDqgLSLWs2sUcnxHsrNcynRH4Npognuhc1FwMOxT1xnxZsnx9BAn6KFZYxa3N6BbuGMfK/Bp65ys8LFPH2MEAYpj0+UF2pGPNnFJ5jHJvGEvXbZqRRb4BIPHOE3J44mGqTU0TYvpB4g6oS1TqDuyvCAIhiz2M/b7LUIz6A1HCFXQ1DlFnmCPp8y2JcrgEG8bsgsT+o7BLi5IipLVZosUCrbUWX54hzM9RiQpn/zVXzE6fQwSmtLE84b86V/+KWWeoKn6H9GclhYQmqBsWhANUbxhOOyzXtrEmw3HpycIt8/3r+8/Y20n0EVFnkdcbxsuPrzj+HCKbTiItqKKNpiypT/y6GyfdbRnebdANXpMRiA0B1Qdy7fphIZQbZQW7u7m/PbdnIeuQdVJrsICz0hxyhQRFvSnA4yBxHkywpjuEKVPGUYk1x+4urwi7w0Rloln+lRtgRqG1EVJliRkKKyEitfrIUwFg5q8rhgFHnEcYbkW/uFD1ml1j4EUEeHyjkRzaS2Px75P16j4lYO9atAP7xPvKMq9M06qmJZGGOdomk5Z1lzd7si7Afbhp6TX57TNnDRJePr4KfHmmjRacXLcwzBd4nCP77vUWU4v6ENZ8vp2wR9+/Vs+s/r4owlmWWNoKtLpoRQd9W6B6zk0gxGeYuBGKbv1hu1yQS1bRj0IVwnLqMQPKywjxR+f4Uwe440trt685uLiLXHSgunyi8kB/+n2A3EU89nTR1xEGUIodE2NYagoqkqS56y2c9alwVqZ8HrzjvlmR9s1jC0LTbSYuoFuaOzzjptlTKP1EaZDZ5hYqoZtaaCD3x9w/Ogph8MBinvAttDYpTX7pCLL74daTdfRLYtml6BbDnZvSKVYDA9P2W4i0nzJs3GPbLujiVO++eQpYVpjlQUfipLNeo1rWHy8uGKZJGimweNhwOuPc97PNpi6TlZVHDoOA8em5zlUTcN6ecfpwQn7XYLtKJw4KnLosk9b7rZrnL6BKDrCZM6+3INi0Ds9wh/16aqGo7LE1k2UrkW1NNq6pUoTrq/m7MMU3Q548elT/vJPv+DF0xM8JUEKA9MwaJFsc8F2s6IsCqRpsNgkLHcZXZ7j6AZa3SFESScllqriDnpkdU7PG3H2kxeQ1pz/+tdc3s1Zr3ck0ZKuXPOTz/+UuvVQVzrTyQkNCkGvR52nbKII8pbaHIFU6TSd2d2MIs6Yzzf8zd/9luL2Ai86YHJwQOCbqEODtath6A6dllIrKllcEmctlioxNQsvkAgKVFNHo0SsrjC8TxGqgqYqFNs91mQK0qbsDIQQ6AKkIqkViVQ7hNTRpEoSRwjA0A00VYWmuS8uCUmjqNzMZtxcz7m6vsNR4dS32bUaadORVzVNnqE7Olpb4wcebR1TqwJVv6+YtdGcDz/+gMgi/uUvvuLdTlJoAVrPIi4EaS5Agabr+OHjB3pP+uSWgTKZsH+/YSAtit2S7WbHarH6/zh7j21LkjNL7zM3c62OPufqEJmJTKQAUFVd7CIXX4LPwAcpPggfgSNySC6yq1m9ClVoAshEikgR90bElUef41qZc3DBYQ+aY5+6u/22/733R1W3SNNCOT6Dkc9oMiHSNqxv2B8OxIaka1qS3Y7W9uiKir5tMcqK/WZLft4wmoagTCzLJRgr5q/BlAaGEjTKpDyucCkQWnE8JqR3H0jTkqeHJ5brPVJ6z3dX9ewgD9uSuihR9Mi+w+g1WZawfnfD1XBI6IWcfPkV7igmdGtaRxBHE6ym5+WLM3D2XL1+TTwICWwT6YQ8rY/8/g+/Z73Z0qCYn1/R9B3LwyP5eAIvHUajEaHl8su7Fcmhx/l4Qm884Xg9QesQ2BbZrsKobcbDGfFv59xu7qErefPNz1y8Omcytzhok8frHX//KdCkvF0tGUxHZNWRzUNBEA5R9HRC0aQJuU6RdkrdahrZIs+mCNNG9D22ZxMOIHm4x3U9DCvClC6i6+ielpQ/v0U2W9wqpyoTItPAiUy2WpEmBrve4CEr0J3gIvSYn58gZc/p0MN2LcqyQUhFUZTYQYT0QoQUpEXJv/7pR3755QbXViSLAR855+x+usdyHdqiw50NkLrFqQ/4g4iiyhB2xdA7YGLQlBLHVliWIvTHoJP/oi4i//Ef//G/+PB//X/+8o9NVbFfLsl2G+y+JUtzqjzn5fkJ46FHPPJw4hjVlGQPb2iaLaOrEzabLQ/v39E2LeVuzy/XdzTCoqpKXEsS+gFePMR1XbSy2GwfsZXEswSLoYvn+zwcSjwlaQ973HiKaTrYjostJa58/lid4oCSIPoeZUoM2wUpafKUtqkxwjGbXHDz5i1J0aANhXBsrFGIPwjB9ngseh7evaPcrRmPBszmM3w/wPE9lP3sWjkc9tze3fPtTz/x/sMvdG2DlBZSudimSRDEz1QBKeh0C2ikbRI5ijSrMZWi376jaVr6XuA6FvZwwenpGX1XU5Yti9k5QRey21rMjQWRZXF9c03V5ZzOx8xHMcZfCz3bpkUAphSsdzt812e/P+LaDqYQ9F3HYHaCRmAHAzxTYUmJ7HvqpgFD0iK4e3zgzf2Wx7TEtgWjSDHzNV25Yru+5fH9z8+RB92hTJOs6WiVwugbqvxIctjRIOmBu/WW99sDaZ5jWxZZVfNv71bsipbFfEHfa5QhGE2mWK5PXxcEjkk0iGmUzeTiFcFoTLp7Yn5xCbJB1BmWH9F1Hdlhz9dvbrH8mLc7SS0CLicRc7OlSTZstxt2yYEvPrtk4CtsU+L5Ie+ub0iLAhRYXYp0epRj0fcCQ5mMJlOk5ZLuNthSUFcNfjwkHs9pqgrRls94TEMjuprHpxW97p8v9l2L7YfUWUa1O+BFMcXuyHGzoi1yHKOnbHtG0ZQvPvqM89kZp6MhM99hFloYjsv45ATfft4ErStFetxhui6DyRDfex4mHc+lEyW3q1vSLMWNIkzDJq3h/HSCb5uYtk0pGnKjp207svWabLvjkBS4loXjWJTNc3fFKHKZuoqi76jyDH+3YjoZAwpTFZxMNIc0589vVuxrl8d1QRS4VNmRqu0ZjSZMTs/59He/wag7ks2Bz37zOzIN7+7e8XR/y3G75ZjkWEJgGjAbDfFND9VDltfIrsH2LILR8Dn+E0YoZeMGEQro64o014jhBXnTslo98rR64HG7oRaadXLAsnoyJDg2g4H/TJdB0poenmOi24bRdMp4PkNbLn2nuf7xBx5vP9D1mih0Me3nTL+uCubzKWowxr34+Lls+d1bkjTj7dt76qZjNBywOJszns7oDZOzsxecffIbVk87NstHOqHo64LLqY/t+/StxjAlzuUp/uUJnWfhz8Z4wxhbFYh6h+EEJIVmvd8jpQB6BsMRWtjsjzlpWeL7Ia7vYUjJYDjEclwOx4wiTRDSRGNgCMEyqVgfc/quZrlP0eEIx7JwjR6j6+jaHjOMMQ3B2emUF4sprnSRbYdv9fjKwBSKD4873t8veXv3wOPdO+r8wGgxQYYW1z/e0JUFyrYYLU6xY599uuWbb3+gbTraShBEM4JxyH61xnOdZ2FntyKMYwxh0xUNTm9yMpmjEByXj/zbP/1f+Lrn1eUr/FFEOIwxlEnxuGS/3pKmGU+7hB8eNggBv/rklGNdsi0qeqUYT0eEoY95+msabbF4/WvcIGIwnRFMFzR5ju3YKD9CCEHe1uiy4elpyd32wPvNkbRusaWJ3UFTa3zXwxuEmJaFHzyfCY4bYY3HWK6Hkha27+NGEUoZmLZDOJ5hRyH73Zq6Ec9I3YtXDC9fszg55/zygo+//A2zyxcc6pa79SOmJTG7nqLI0YZBi+ZhueXudsMf3rzjx79uLi1pYfsuk9mU0I+ZejHjwCWQYAhJnR759l/+wN1mi1KSpqmeXZqeRycUhw9vufrqt7izOcHJgk6Z6DBmX5Qsn5bkyY7D9pHN+oFGZ2R5QjgMKYsDN2/fUmVHpGnSVBWxLXkxjbH6jrvVlo8WcyamQXHYszhZ0CmD8XzB490TT09b4sn0uYhd92StYPDR53hRhGnb9H1HnuyoyoxWCQg9ZBgyOJsRTqfYUYBhKsxsj01DLxS2bUHXIEyHtkjI8xw3ilkuVyy3O4aTKePZGN02FMmG2cTBO33Bzb6isnzu3v7CdrmkbDRp2aBMSVFWtFozGQyQGqzkyMtXH3HxN3+HMk2UkhxXa04/eoU3GhMMxtjjEwwhkMqk6XtqDYbo0XVLtjkSBx6i6vnh22+JQhvLVnS0lElKJOC4eiIrW45JQ2hUnMxi/CiiKTKqMkcDhumCkKTHHevHFY4fEoQDIj/AtByEoRDSxjGd5zlKWRwzzWq1JFSQHlNs3XHmW0zOJgy+/AL3k9fI2MfwPTp6NtcfeH/9jo1hEZ3MiScDHO85+pocDjw+3lPULVWnyTvFJm0Y+B7oDlt09E3D5piTmA52HFG1LcfDkcN2j2fbtJ3BZ3/77xlFE1RuEm46vPkAc+xi2BaGlGwPGQ2SIAioWk2ZVzw9PPHNH7/Dm1xw+vrXDE5ess8168cHfvXFF8znZ+zubzg7GeOHQ6S06cqC9HDEFCZK2Pj+gJ9/umazX9NLRV2k+OEQ3SvqqoEqwxkMUZ5PlaY0yYHVco2uClTbY0vBIPQoywrVN2jR0PUdyWFLpVzsyMOUR3blgU1fgWyY2z29Mp7jfE3HZOAwnAzx4wH7/YaHu7ckTU/eWXT+AjOc8+7unr7JmMYh5/M5jgSahvtNTtrZOJNTZqfnTAch7NaoXuCNY4JRSN47CO+UVW7xsC3Z7lOu//SvHLZLLNNCS0Xem9iDBVeffsWrX33O/PwFu6ynkw5hGBFYJgMDstWWoZTMhjH7+zvSw5GyahhIk/Uxo9SC7W5PLwzOhiG2ZbHLUg5pzsy3uZhPEF2H0eRs9geGown+wCUVLVq1+IHD/OKc2XyCF7nPxBVX4kcR8emcwSh+JlxlR2STEYwHOIMBUkHdFDw93bEtSy4vTgnikN/+6pTXJ2Pi0H52CxsCoRS9VKyOB75/8wOWqUjzlkMF2/Ueq2qxlc3A9bAMBQbMhmM82+SYZWw2CUJLbKFIHp6o+g5n4NGUKftyTTwbYCkLo23Zpi25tvA8jyY70AuB5Ti40Yj7u3seHh44mYzItmv297c8vvmBiam4f9jgqpCh65Hu9ty8e6SpevKqoNU9srdouh4NtLp7npcdi0FoYlHiyfo5dm07yFY/L52HMwwpcAIHQ4BhWfTAc9NjR4+gF4qqqJCmQpkmveZ5yykMtDDYbDb8/OYHlCEJ/IAqS4l9h9FgSHxyymF/BGAxnzIdDYnCCAA9jDi5HBF2G45v3/CX72/48tNfoRaX3BUd8WLyfDk1FGXbUfU9RVHw4e6OTSbI+AjPOcdxRjhWwG615OnpiV4YWK6HMC2i6RmfvFxwOp/S5ikzvadOM455jqUkhjTItjuarsM3FHWes93tGE3mhOEANx5hOT6iB3qNH4S4lsQ0eozqiNkcUYGNsBVZVZIUGfuypKxzOlqGoYthSgQtWjcciwTbMmnKjOvbd9x++zVu02LqnunpOUEcM5rEdNv3WG2FF8doIajzI76lOT8dM5pOMIOA9+/f88v7W7578xPLzR4vHDE7e8lgOOD93Y988WuLv7sK+XzsofM9nhuz+nAgs1x+FVQEqscA+h7SXcEoOiWezInmM05enGCoBi8yyZs9TZORHjPWT3umI4Ps2LO1L3l3EFRVS+y5HFZLdF0j0VTHA1VVP/e8JSm6bfCjAYYhsfwIQ5nPsVTLpUlSyDXtoSS/uaW6/gVH1IjHa5I//ZH85xt61WHHGiUFt6sNu0ajAo9A9ox8m/NphG07OKaJtBxa2yfJCtabDQPPQUpN0xu8fWAFn74AACAASURBVNiweViyetiy3m5oqg7D8YniiKwUWL7H6HyKcgJ0D67nkR7WjK9C/KgjCAXZ48+4Vs94cYHpBAgtmFz95n/6r3aaLNc7JqFPtj/SJAeqzZLF5SvsuuZYVbzyXGwbelnStFvi0wH10/7ZLt21SC8kedqxO6bk+5S3xz2r0Yj3d0/8zZc1H2vFfHHC1ekFD5sloj0QDcd0rabJK8rlHbf3jwyDMdFhCbrHMGcYTozsBaYToNcFRv3XXhGh0F33zL23cix/TJ5mGKRIx8TsoHR86r6iblNKHdFJi6rc06V7Jidz+skZbVth+jZ116J6jRI9m8OBt7e37A87DF1jSoEyPSYf//eU998zHAzQUiCpKNsCW2h8xyZvNHI05/bxmj4/0DUNL0yX84sznE7RtRWDwYDdvuCP3/wb9aHn/GzOqxcLyrs9ATOy7kirO2zHZuhGOFKgvAFZliOEoCkbqqqiEwbvr99ycnZJ4Dr4YUTV9ihpYPQCaZqYtkVteiRVjuP7TK/OGbywyZKUdr963tr1cFgeOOZb+r4G28cPPLKqpmhrJqMBtpII/dd+kK7mdpmzPqakeYVhWhyajrtVimE6DEchyg2we4XrKqosoTIlQRCzz/f4ecXl3/wD4WDI5v136P17Qu8rZqGmH32EoTy6KmN3rNgdKzbHO1phEZgZ3XJLsttw3Ne0coIflBRZimOdYZmKRnacnV7yn37/R9pYI5uWOFZ0eYGBoOslZVExX0xQumX/8Ai6oy5zpDSYnczY/PBnJicXdI6NbmoWsSBLdpRVhb/Z4Lg+lqnYbNY0SUnfdNhITCBJGgbOCaPJFa4zwVp8wmwUIZMVy6cHBp9cgRRsD08gauaBoGxcJospTjxgd59B1YPSrB7ueXp4JJ5M0b0mKY9Eg5jYtTF6jVSCFhNd5ogqIxQNV7OAJsvBlOx3O4K5z367YeU7KMvgxDbpuoxBOOTjT15h+jbJ5o7/83//PV//vOL9VhH7AZy95uZ44GmVUGQ5k9GEL15+RGT7uPMBX30ZkCcZ2/2W1eMDTw9r9mlBU/ekaYcvTQLXxQlcpFRYpiLbH0iXW4ZBjOnYWP4A24c6TTHDBe12ia7XHJ7e8eH2geunFW1dcRA+VujhDk6pYpPxdIhjQpFvSaqMwWRGrwRePKZvK7oio7IVZdVSVTVPj88ZcNtW1NLFQFHut5xMIzoBOhowO5vzeNgwOTvnl7e3zE4XbJ+2KGFQ1x2YHheTCeenVxyXa0zdYtsueZJizYZYQYBpaJoqw52OMSYRZS/pZMlWtHiexdnnn+ONIt5cH3lKvsHLcrq+Y7vZkuzXmHKEsG2msxN6Q5JmKbPJBN91uLt7JGkNfrxd0wkbZRhcLMasyopNXtJlBVgeRZHhmhLPNtEIIlNhFBW+42AbJoPZlBeXIX26wxQlreh5d7clLwpGgcnL15+zfrwB0+Uua7h9f4cjBVevLsh6xR0259GctCgpqxZpeQyCCIUm2+44mY8RlkfXt9TaoNM9WbImCl1sIHlcoq2eN3/+I8vrG/7uo89wMfGckF4a2NMF3mHHiTS5+fYbiqIkcm0+fnVOUra8e3ji9KMFo3FEKwy6puDjs5aDE+IGLuPZc2TRioYEozH15omqqrDHz035vUyYz+ec3S3ZTeA0HHA2mDL1fLL1mvv3W2wnxJAWXqjopEQ4Nn1RIHwPFccEwyltWnD85YauOGINxgwWp5x/rEnzEvfla/zxgE5rtAZ6ge5ajoctZVXh0hILk9KyMWyTWldsM81PH+55v1zxsDsglcQQgt1xj+u7GFJR0bKiYlpllKVA1AV3b/7C/eM9cRRQ5TVN0yC0wXq94rPPv8RwJe5gjBVEuIMh2vFIW83+kFAUJZ7j4Hk+SEFeFGy2O5I/p9hSY1smq3JLnh9Qfc8iHrEYeiwcwX61ossSQuccHYX89P13fPLv/4Fs/YSUFrd3W9J//iO/+W9+gxYKrWy0kNBpBBqUAKMnyQuaKqUpSurDAakcemFRliV932FEMU5sQVPieAHVLqHODyR5Tdn2rNYbHrc7krzhVTykzlNUd+DlJxf0UnJXC5RjcxK7fLB6HMekKTVSGpRVTdvUeEA8GhG//hjf9qgdnyorqA5H7KLAyBKsTy7pW4m2HAwEhhD0GgwhnmcRLSmyFils6DWjiU08tnm8fcdoOuQk9ljfJxTSwounzLXmsDny80/v+fTqDYEbYjkuuilpW4FlmeTlEeoGoXvaMke3NT0apQy6qsNzPUxHYTYdzTDiaj5hKSVGceDMDFjdX3OsLUz3DOG9QEYxwjxStYqHd++5/vGRYD7nYhIRhtFzoX5vkKea7fKBpsyZRB7rVHJMGr58PaCrK2xT0Xcddd2SNBpzPKQQCuEo3n9/jdVpTCX46KtfE0SDZxt2mmAPB4QzC0OZGEqB6Onlc7mjZdt4QnF7v+bx9ontLqV898hweoKQAdbkNf/d//A/YjV7rqYW7cLFCmt0eyCIZ/SlxHZdNh+e8JwBsta8evGKP333HXf3O8JJzN98mjOKBhzTnNj3MV2P425Puj+w227x+g4njnFcB1uZWI7FdhxTPTyyyRqO2R1t3dBEp7iuS2cYeCcD7BL6uuRkFBDHHmYQEmYZk4HNeBRTCsGP3/+F4eKE6WzKNz/eUnqK/T5hMp2T6pxB4INukcpim9e0ZoDpjvFcjyAIyK6vOeyWRH//71Aq4FgaVEbI8rjnabVkPBpjmeBEEY4Xok2L3g6ZzcecuAFpWrLaJPRmSDiLWa42jEOPn989ceWanJ3OiWyL7HDA0AZGp3k1nnL70zsuT85J7j6A1iw3O5aRz+fnNovZCCUEgeugdUNSFBhCEXuSzf1bzi9ecnJ5BpaLZfS4lkT5AxpstNHSD3xoW6reoOl6jpsl+faOaBhgj3xcpSgqQXU4sD6mOL7Hi4szHu7vKPOc/XFPFD+LeIYEQ0nSsufm3TUFYGiTh0OKrlqqJGccxASmg+qBYc3TfsehLDiZjDGNHQ/rJaKDne1S5SmTy1OC0MMOHZ427/nm63/l6uwlTQGGG1BVLeu8xG01m90OpSxGwRzP85hNRziuD4ag7xoWcYwvJcowufn9nxgec1pXU9UmvWHi2QGR19GbGiuvMCxBZGoqDWkNM1viBi7SsJDsMFWI0UuMRqPrBtnU6DSBIAJ6+q7EMEAqm7bN6eoG1/LofZOqqZB9h9AaYVlUxYH1w3vO51NuP6xYjIaYTY4tFWYYodMa2/JwZ5c0hsINJ7h+QNOkoBuKviXtUm5XD4xORninZxxNn3giieOQuqhQukCUHZWpEJ1C5zZdG1AmOZ0dc/ny73FEQd0BT2sO63tMW9EpD6Ipsm9wZMN0PiZ2G+zqwB+uV6TJkcl4hFKCLq/YFSVSSoZByG65YjY/ZzTp6YXAtDyk3WKZJkp2GKFP55xRbd7Rlgl1KzFjl6F/igxsooFFfawQHZT5FgNNk+3ZVCnbfEteZPRFysD1mMzOCHyP0WjAeBKh8x09AjsIn4UtYeBScDkyMYyKw25JaYRkVcP79++4vX8kHEyZX36EFILF/AyshkUj+NJ10McVIvAwjYbFuKcsa8yJjYOL7nuCsCIa5nS6wzQjosEYbVe4kaCXBZHbs368YZMUNP6Yf/omZxov0C9f8O7PH1g+Lvndx4Kpa1JkKbWUz2VfoiPZ79nsEmSSM79IcIMIIQzauqXuNPF4gdHWVNsN7WGDZVuYc596+4gKcuKzhO1/XtPfBujIRJqKSeRgNwbudMTt3SPxIMD1ArQh6ZUiR9LmJWVVcbaYoXyPRtk87Ut++O6awHF4+foj/vznP3FMCh53Sy7OLhh4EU3fke9SvDggPIvRUtL5JnISYEYWXf2AKWr8MMagQdk2yuv//zlN/uf/5X/7R8/xqLIjZl+jdI1nwqvffMXJ+SWz8YC+TAgUNJVGmxFJ3aFVR5YdWd7dckxydklBmmbYtkOWJmD5pDg8Pq5ZLRvqxqL3AoTQ+GEM2kAAaaHJdgd80RIrgRQ2pumg/CEir3CsADNcIOMpMoye1VRl0vXQdJqiLKkOK8o8pdUdVdshLItgPMA1WzoEZduzuftAcdgSRCF2VxPLlr6pccIBtuezXG/4tz9+TSkUZZGz363xbIfxaILVd3zy8jXDUcj0JKZRFtoLcT2b0BWUTYcVzzDzLed2RhS4vHz9mourF7iOzf37GxzLZDibYwi4v39kMvGZX04QfUt2SPmw/cBs7Dxj0/7a0DwYj1mcnDGcTPC8gKYXTEOfzSGBtsWNhwzHI2zbpU0OKHpE3z/b++uKp7zGURI/DPAHYwzHo9Mdtu4QfY8wbRzHZTga4dgmT4c9y6xAODZFUWIIiOIQy37GNOYoCm2AlNiW5MNyTVYUjEZjzi5fc0hSLD9g6Jk4skOiceIhDg2z0zNMx8X3HEzTpJcOtgm3P/yZMj0SxM/bo7v7JVWrebi7Y3TxKX4wxqdHtxJ39pralIxGFkWtWZy/wFOCqijYP+WU+5J0v6IrUxxpELoBvh+z22YEowjPkjimjZQ2u9WaOPJBgOvY1GWBzg6Yrg+A69rMFzPQDenmiea4wVQG0ui5++UN+/Ujh92Wnz7s6GqPk+kL4mhKEMwJW5/YscgeH2nbmqKqWL27QXoGOCbokqou8KcLyiJHGj11cSTJNrz55WcOfc/5y0uO2y2d7JldnWIohWVHWK3GNQ3oWprthuX1L/RVyekkJvBc/CjCjQbssAg9CyEFveOibJvZaM7JxTnj2YTGsPnLmy3/4T/8Cd32tNqg7Xoc1+PkNOLu9p66hIurU16+fkEQxuR1zeO7b1k+vkUamjIvKcuatu0RWhB6EVeLmPEg5vzqFSfnrxlNz0h3a6DHMcAwFJY0IZjSWQPS7YHV5sjTesf105JNknFsG6qmphOKwDEYBZKBKxkPQsLBgMDzsI0eN4xQrktZlrhxTCdtkjTn6emRD9dvMQTgeJhBhG5qzgY2vgXu6Skff/UFYRRwt95hxzFl22D2Bm1ZIzoYBwNMw+J0doLZge/HOMGA09evOHnxEbPFCSMPurqmET32/P/7P2myYsfd4ZFdXpA1IN0pWeuT7hMOhz3CgCzLaeoGPwrwLBM/8AmCAIMWJQWOKXm6v2e/P2DYIYekIC9Lfr5dU2hB1WpWx5Sy63AdG1AEnofUktB2OY0cFkOH8TgiHo4ZDGPCwMFoNdff/czANzibOJxcnVAJTd81vP/wiEYxG485OztheHrC0QoxhpfsW5vJ6QX6sCM7pmSlRhotbdsilU3XgjIMLNvCoKMrK6azOYFvU+w33Hz3DV9//TW/+/Rv+PjXXyEtF3s4RgUS4QccdnvMrqWrnq2wi9MZB93x5sMj+7wEC07OZ5xevWQ8nWPbJmEcoXsTpHp+d8MBlu1i1jldckR7IV1V0ad78kNCpeGTL36H2cNkPGcUDPDnF9jxkOJYYvUgHYU7jNBlBU1L04EajZCmhc5SmmRHcciQhsIcTPEXE0YvPyI+PSOeDAgnJ9jDCdLzaYGqyLj+/i90+Z7OMDgmR3ohWB0SnpKEv/zyjvfrNbpvUaaJ7bhIKXGkhWf6MJyiY5/AkrhGyeH+hjd//AEaiSlt9ts128OWKAoZxCNEVTGIItw4IFicIkzFsW6pe0FR1yT7LenxgDQt1qslZVEwnEzY7Q90dUmSpHRVSd+2mH3Hry/nXA09FpHN2LbQScrZbMbHn39Bst8Rhh5pWSEsn9V2x8P9kmOao5TiqJ8Fu2gwwPN9TNvFi0dEoxFxHGE7DqYyaJsGLJfGkPTJmtF8gtUWQI+gothvOGQpBQaZhsfHJdtdwunJAteA2GmZXU5xQp+uVzxVkk4YZNsltz//yDGrWW4OmI5HXlS0Tc0gCrn85HMGp68ZXLwiGI2wTRtzsyX9538hHo9wFxPswOP4+IA7mWMYAikVWgv6psVAkO4zLGEg7QZtVJgmXP/0I8nhgGWAshVVXtJ3kCRrdFWyWSecBDaDeIipLMq2xng+vdFdi2g0y80WZbmMRkNCz8PzQ8pDjm26OKaFLivK9Ei2Pzyjnk+mjOdXnC4WyDgAU9IpA8O0yTuX1U6yKyz80znTRUzo2egyp0oPtEXB+uED3/7pj0Q2TEcxo8jDNU3GQ5cwdDEMg14YJHlFaSrUdM6x7Fg+PiIF/PbTF0zOLxnMLwnCiDzJKdM9559c4no2hjIBg67t2GUVnTCRSlLVmrtNzX5bUlUG73+5RxsmSXqk05pPv/yMxdUl2/We+ThmfvUKZbmIokEBdV7Qdpqn90ts5bJd7hBCcP/hlm9/fMfbmw+kxwPrh3tGvkPf9c9lk53GKApmkzGD2YzJYk68OCUYj5hMp0SLBWHk4XoOrmex2W0o0i3buuK20eD5BMOIODIZjGMsz2c8HjA5W9D5I97e3GAYguF0gTddsLz7QGc4rI81q9WG6XTK+WzIdDwk8BxqFSEnl+RZzelkRFhmfPhP/4RpupijCbXW9KbkzUPO25tHgjBmsZgwGAzY316TpQnGcMbgxac8ro64nktWPp+RJ9MRd9dvCRyLgWuS5wXDyYzZeIhlmTy9v+X7Nz+w2e959eIl3dMOczJju9+yz1KEbhFti2cpRr7F2HeIAgdTGoRRyOnFJYPIx6AjWz2g/JDBi5eEcYwdWJh+jBN7mJbxPP4kO8rlmsPDks3DitPTIcPYwg4CpG2zW93z4eaW1f6ZdHX18oJe9MxOT7m4OsWSkngyRYieptPcrnb80x++QdgB9/dP1LWm3GxwyxqjakE/o3Pj8QQ39J+JhtGQfZbw88MTRacR9Ejb4fLXX/LyN5/RaoHue777+nuOhwwhXOaTGXlV83TIUaaiSlLKrMEZLGiURV031G2DqRTLhwdOhkNc5TAdTXGArGzRro+QIHpNUxRUuiEMPGwBfuA+C9TDkEAqPNfGC3yUEyL9ABH4qMkMU4G09TMJzw+Qqoe+AdkjDElvCOqyAEMgbYeibWjq8tkxQ0/T1/z4l6+5/vZ7iqKirUrmp2eItiIKA1zP4+7ukdabcvLyM4LRjN7wGM1OaJqaWvX03nOx8t36Ccee4o5PSbDppM10OKRMUrzAQ9sehwbSY87hoOmqkHpnUD5VZMecyfkJThRjGJrDbo05kJgvzpDhCQuV8WIRMw9tAqWIfTDzhF/uV+j2mUSpEHS6B2XSS0ndNkyiGDsa4jouhqmg1XiegyEEhnouku46OKzX1K1ml1cULeiqxNAaWo1RJFCn1Lrkm4c7PmyW5Mc9vmiZDkIuX79m4AXss4Kr336OkC2kKywp8HwX0/UQ0iDf3OBZPW7gIZ2A797e0/Rw/e49Wti8fP0xoRfiug5+MIDWYGpZRBjUWU00f0Gx3bHcHVilJZ+fuwSqQ3ca6J8XK61kfHKO8H3iqYM/cLAdSVfvKMsc+o67Dw98/z7BOf+INjrjx+sH1ruCm7snmrJGGQb0BklWojHQXUdWVNRlie0HhEGEQICAqm7woggrGCItG2UqDNdEBA7S7ekNaPuUt29vSSuTpBe0SlNUBaWGIIpJ8pLJMGIwn9Pqjv0+AcvmYbnBlD12OKDtDZ6OJd9+/QPV8YhpSjzHx7c97u/u2B+3jAc2p6czikrjWSGDaEp8Nifrc9rZkHA+ZhB5lOuf8ZTA8TykaaOcELTBcP7pf73TpD0mHE2LwXBAvq84PfkYW0ks2ZGgn9XDumSzWVMcOvJ1ymb3hEgtRlaFEJK67ejqmsB1yLKEY5YTDmMcs8P0I1ZFQvOUY6mM0cUFytAoQ9LaAVGt2B4O7LKCB2UzlznSPBJYIZQ1DTVm4NMcEnqjQzig65wq29MoSb1f0yEwfQ+3qfHKnH2dk5cF4fQM6QRsDhnVfoVtGXRVhtQt2nYRYYywLN5vD/z07bco2yV0TJrmGlMqIsflcnrCYHLOZDYinjnUjmL/fku/X+KInGKfsj006Mrm715M+dtTl6rqKIoM07TwfZ+Bb/Lz919z9XHL1eKC7SphfjLjWG3RrmD48ZB477I9HPn81Qm+55HtakzdoOsKpXsuPvuS1rtD1BWvxzOqLGW7XWFIg8V0hut6FPsDutOYjsfA9ynaNXfrNU2nGVs+bd3ghhH5boMbDLk+pKRpwXjksysabo4lKAlZwSjyiUcDTMdFOD6mFWBWDaq6ozgkrLME3bZ4rsvpbEJ8Mudxn9ALhRc6eBJMP8I0NJ5joiSYdHz3h3/m/GTI+PwKy5IMF3MsKeiVz/rYE0yumFYGfbbBfXnO+mjhOSam5TC9eIH8MaGuY1A2++2O05MRWdex3T4yG/ns9j37Iud9v8Qh5ModYlgdVbZD22M838E0FLQvWd/fAQJ0y/mvvoCyoDwcELZHl6coy8SxFf14RFpqkuufMXRL3qRc3z5yTAWL8AXzyRRbGAwtC2Uq8tU73t8mrIsdBzJ2OmFyMWUUfIY7HlK/W1IiwPbYLZ8IlKasKn56d8MqLbn41SvyY0HbGpxdXhJ7JsLQDJ2eroSub9F1zXa34+bdB0TzPGi9fvWaFEXdHRgMXZzQpRaCTd3iRkNUZ7BPcvK25/qXJ5brjHh2QVMcqatnYsunn8wZDgNeT22+/XNC6E5RSuFFPk4ssEc+t//2xDCwmARDEiehKisW8xFSC+q6JYhj5peXeP6Aar+hK1/w7Y/fcTKNmR5bpvM5vdVTlmv2d/cs9yk/3y/5+WFFHD4TDBzHwwoixnHE2OyZyo75bIowJbopaeqSSthoDVXbkq7Xz+/EbkO+X1PVFUlV41g+07YhtgWGFFiXL/nkq98QBz4YEi8IcQ3FfHbChx9umMwmqE5gYDIYzogHE5TtMn75Ky5fndMi+OVuhaNLdH2DtEyELtC2g1Qmpm4xupzt8oZ3O0nkLfj7r/4Bd7VGqjEnJ5dcv/sRaVp0WvBw94BnXzIYDIjiCEXLtt7i+QGL2YT37x8AQT8YU+seXVdsdgmO56HbFp2U6LwhGJjsVcPQcVDSII5ChoFNHEQ4jsaRBU2ScffmB1yrRbY7tA45pGtWu5yvv/4BmprLLz6nNlri83Oq4IT5+Zwfbx5Ybbe40QT3/Cuy5f+NNA2UGxD6EVlR4JlQlUdEVaMx6A2fSkuGowF1p3n7tOXy9T/w6rf/gB05CENgKInuG2hqXCFJsxJnPGIhPubm57c0usK0bG7utxRWx0efjCkSH9/zsCyJZYM3nfDhMaHIU4aGh2mY6HhOm5aoLMVSJo0X4gYDPvnqEnM054/7hDAecTo/5ebbn/j1r78gp+Ww/ED/fk1dtviRRyBN4pOWutcow8DsnpHr2jNI84RBk2JPz2iq/rl4LxwipAGVRrkuXZWzaRqS4xbHcyjaFn8Y87jZcL1c87TZ8LhPMSQMB2Ms2UOn6YRESIV0HbpWE/eg65pkeeDHf/kjqjBxOgupDPzAI67iZ+JBmaF0xchdgBtR9QZlkpNXDcpVVPkzZWi2OKOsO4bjGXfvb56dbbGP0B15XrHepci+4yx0mIeKUWgTKIOzL19xcCRhsUYvbc4nA7I8p4vG6L6j1x3h+QsK6fLm7RPRfEqRPMfIkBLb9RFC0KUHMG3C2MCW4MchedliV4J1ukHnCZWu6XRHvdnz9PTEPs1hMOV4SNitV0xCm4Xr8fLFK/z5CHNgYZiCMivIdiW26hHJEiHA8QOUlVNmz3FeKRWD6QV69gmFGXBoNL7tcTAUyTEnOLtCWQ7JMqFzI8zxFVqDNAx0p5ECtCGoy5qkyAldUI5CdRbjccTl61P+4//xB+ZZjRd65GlHV/QobHzXpbAq7n/JeTHaYhkWKrDI2w7LUVi1xFaai9MZd48PFMkVx82SKIzQXUW1XaKcIaJuEWmDaBq6tsbGxzJbwrMppy//W/xBhDAVtR0gHIVKM8Z9TZfeoZqaNqtpkiO7+zuyrOGbNz9QHPdcjKZMpkP6viRSgqoqEKMBhtYc9ntusxZ59ZrHqqFqOtLjnrNxhJQCK1pgxwu07tnulsxcC8uo6coCXdQgFL1jIqWiKRu6tuNxV9GjsIdTpp0krXr+/If/jGUpfvfv/hY7COjpWFydMdSPCMsjPDulG9Z0hwRV/ULbvKXSHe9/uaHrBUVR4gYR3fbIf/z2mq9/uePvzuY4VYPrWnjxEFl1TMMB0naxLA/Lip9jDL6LaZoEs562OqFM1lRJwkfjLXcf7rl5f6BWJn3fcn9I6VxFMFT0XYnuWjaZi/QEJxeXIDr8wYzOcpnNZ5TeGUdLMxiNMHRFKGpcU2DEJ5hyQrFNcE0TWZW8+Zff06yXZE3Lh+2Oq99+zqB8yT7TKOO586PTBlJZuKMZ4dlrwvNXFA28/NhjNj/hbrXH812a7QNxHHKymGMZJtPFCZ7t0ikL1/UYzKao63fosqFcbzAXZ1iWyeyvnXP77EBkK57WO1xlENqKAJeizFhcnOMENqKVBL71/1L2Xru2bel13jf6yHmMGddcacezT6yoIilSIGgRkgAb8DvxSexr3hi+I2ABBmzJNsWqYtXhSTuvvfLMYeQ8fDHr0hagd+i94/9bb6193CkKP333TyTxhucvX0EwQg2Phdai6SmjiPRhTidpDAY2gVpiz6ZUXUGv9qRNxvu377m/W2NaNl988xnClJnIJ/iGj6VraJZGJwR13bLabvnntzfMO41mvkMUFRPTZHHYER8ybFnj8ycv8X0PJ3CxhUdbFwiVo5O3rNAcSPqe6YsvGL78DMPy6HqIdhGWMmG/LNDFseulKCuyuGEjhkyHU5L1lq6XiLOK5SFhd3fL2XjE5OQUr5MwhYJumkhCJZU66jhFqAq6rOGEHkWTUdQN/jikSGIkScbzPGwFVKWn6ypUIeidMcZgCJJACp6hWjKyoyMbCgKQ5CP6vaky2k4CWdDRURc1fXecF6sq5ksYZgAAIABJREFUpROC1XrH/e0dpq7g+S5XjyvS9RzHdrEdl6rrMAYnzIwJCAl/MKSVFNapxHD4GZ0c8WmvUYYDNs4pT1UL4XooqcRQNdFUBSH1aJqOQKUrCrrW5OTsS+rGxqxiNus1ehGwvNky/szDf/qcv5haRHzgYbXGdjKkHjzXwLYNNNHRyRaXLx1+Xuz5/fslqqozHJ6g6hIIFVmCvuvZRFuCaEvlOKh9j6BFlQWyOL49ogPN9LC8mnj1SJSBPBjTLB6REWjIxxSTZ7NOEyZDj4qGgWsTegbPP39JFqUc4hz/ySWSp9Fu5shVRCePUU0fWZUomxZNajFdm17ukVyTroiJGpUgPGFyFhIfdhTxgdFgjGu51HlGsWr5uLqlbVvWyxxN19nutrj2+CiUaCayLSNJCmFwwokVEoyHuKFP22bUpUSRlpRlw2azZr3acL+OSXuFXBtRVTKd0BBC5up2QbSPyS9PePHkKXVbkUUpuqLQ9hJFnnP79h2DcETXdoTjCaKvSeMYxfTQwgFS7R5jNJsHurKgaXuyYsLlr/6a64c1RRmz+BRTyhJnr56img5n4wbNdjnkJbKQybue7eOcoumxnICkhk3W8O7HtzSbJaLrEZJASDK2YTObnnP98J4kyyjbDMMy0MIQ/SSgV1qiqsY+eYluG/TNDtFmuKMz+r6jQ6KTBL32/y+N/FedJv/T3/+vfxcdMtzJkMksIPRs8jSmRcLwPOIWNE3DUnqurz6xXC1RQ5/H+RzfNXm8v+Ow36MqCoe0oO0lBqMBp5cXNE2DpCiogylluWOo7jF1sIMTbFWhK3MMejRZZb7cU6QZTdMg6gq9rZBkk64XKIOQpkmIV7fUbUqynVPSk8Z7dnFKkiVkTUdRN1RNS1lXaF6IGQ7oZYXN4x1VGgESoj0KB50sU7cd+0PE6vGB3e6Ae/qU+HBgs1oh2gZNEqjC4MXl57z48heML09pFAVUBa1Ys12sWc/3DE9eMB6O0No9f/mzcyzbRpIVqj+hN6uiYLvesl1t0XWDuhE8ff7iKPYIQUdFVhcsV3POQovheHjEnWkWTjDG9UOqTmLsWth9ThuvKaM1i8c7fvftd1yejDgZDzGCEfvtjqKs6IQKskovyVwvVjzOl2zTjO12w3K7ZbU/kLcF16sFt5sNV7sDbx9WHPKStm0YekeHSSc0DqXEh8cF929/oEr3OJbOaDxiMhoxHARotodiBSR5QTgMsaSKk4snqIpKt3/AlFvaOscZDFh//ANafUVNQyf3fHz7I5IxY1tYmJqFqqjsNxvOzkZok8/JJA9bUWjTHbQp49mYON7StS1SXTGdTHh4fOQQbTBMKOqELN2RpjlylWHYPbYj0xU5jmWiaSaqouJ6IVKps7tb0UrHFn6JlixrUIIz5L5E03WizZpos0U4U2Q7JK8q0rqnFgaT4RTftCizmDzPOWzWbLdzHta3vFl85C5b01k9dmgiaz275EDfljzcfgR3yH6/g66hyQ58+PiOx13K2Wcv8TSB1NXYmsflbII1cJE0BUk1qKsKoUh0Tc1yvuS7b38gPsQEls7FxRkg8eHqmkPVkDU96nRGq6nMQpfDfcT1pwde//iRx/nu2DuQphRZAnT0nYFnfMbYGvCbLz/nfPACQwoIJy6ub1JWOV1X4TgON+923N8vqfuC0NX4+nKKWue0bcP55VNmpxdHmkVW0JQZh/kD/+kPP1IkBftdzGK14/FuTl5VtE1NLwRCVglcB8+0mIQhrq7juT6e59MWKYqQkC0HSZJY7zPirOT+9p40TaiahvVuy6frW+5vrynqiiAMmA1DTKmmazJOP3vBl7/+Ja7rHBc4zaRoJOhhMZ9z+/EjD7eP6LoOVsDLzz/n/NlLrMkJ4cmM0LdJ04zFPkahJeCAZqqUdY4+GKHrBg2wTnPezA9kYsrLr/4Czxoy8jzipKOjpetz+q5HVnXiOMO2NAzDxPdsRFeSJhk9KqamoPdHxHZSHJcUoWjUvUzTgWK69FVBlOW0ZY2QjuVljmsz9AKUtoe2JlvP0elYvb9iEe354/uP3M0XyELmp7cPlPuYb6/u0DQZ03dxTi9J1Rmx4qIaJq/fXpMkNZruM35ygecaeKZKVRTc3d/S5TGmoZPv19RpRlN2DKbn+OMhHT3+aIg7uuDs898wm4Woqgyqgu6bSH2GTENXHd11RRKj9lDEEU1d449N9FBhW5WoWsuTywnD8QzXDVA1ha5NEZrOoexBEtR1xfYQoVkWom+R+pa6KGn7Hvf8ObIk2OxixsMpwWSKK+n085heUXn13/93LLYJ0WrP4nFNliRkec3h8ZHdbo+kCLI8JYlidvsttC1mOEGqG0QvUEyLHkEbp3RJTB0f+Hj1I3lZoqgCbxRQNQ3LfcT723vWUYxtmQxDj4HvkRcVtqlziBPcYIjQDYbDEE8RKNGWm+9/QkpztNbCM1xKuSetUvKyQJNkpn7A6bPPKNKIYnzsuiqLhFbT6dqWQxRDXbLdbCjKknA0QddNbm4fiKI9tDVt24Cs0LUN557GF+djBoGNJfc4qsyr3/wVxn6B5Qe0/gxZV5nvEyRZZRVlnH35DbofonsD2lbQdnAym2C5PqqqIzUlQhIoloukmfRNRx0fqJOIKo2P93izJtof+4M2h5iP90t2lUSe1dx+uGKq9Pzs1RPOT2c4homu20h2gKTbLPcJdRFjiZqH64/s44JWyBRFTZykdF1PEAwIZ68QWoCrHIfHwXiIJPW4wwF51RKGNvL0hKRX2OYNoW+iyoKu64/CiZCPjtT1Gk2XUfoWqe5o8gxZZFR1xtXbJVFaEAxHtECexXRdi9JIeJ1P9ljwxHfpApmm75EkyLKELEkZ+CGb5QoNGAwGCHqkFrb3G5RDRbXKSfYb1tsNh2iL6BqqPOPJs1cMZheYkxH2dAKGg5ChzTP6eIkqpchCpk6Ogsk//O//heX1LdFqw8tnM8YzH030eIMATVfpFIVeVWkkWKURpRfQDsesi4bdbkt22DH1HU5efMVwcollGrRty+r2hotBgKFqVElGuo7QPQfVNtglBYttRhSlLJYxZd2j6waaoqLKMmlecP/+LV1lEJ6eUeYpL0cKI984dnM5HobhoFgW6ngG5phD3vHu0zWraE/edpR1Q9v16ELiYjjkl69e4IUD8lLAbo+rGZiGgWGFqNqR0KP5PmVd0XUdZZ7SVDmNrCObJnUas1stud9lVL2EOjxBagoC18Z1DPruOKh7l88IhoNjpHY8RR+esLm9IisKtHBGMJgwHA6Yjoe4rosZjmiCGWkFq/s5Q8OgOGz58ff/N4+7FdfLOZIkcE6f8nhokBwPIUlIikZUtshdT1lX6MMZnWQQ72NePLng/OyEwSDEUQS2ruH6Ay6fXHA6GSFXDelqy3A6hCRC64/ORsfQUFpoRjO86SnF3R1NntM0FYGjM7J1yuIoDlmaoJfAD0Mc/UjyUF0HezCmFwoPn66Z3z2Srzfk+wPVdk9+/YnisEebjDF8A1MDWQV5NKFpUtIs4ebqht/9878QhGM+f/4K8pq0Kjl/PqOtOhzHxbA1oGOzWfPd/Y4/vv7EYTWnKxLOhh5K3/Lh/RXr7ZYn4ynPL57hh0P8yRDNNKjbmjLNuLq/52a9pRMy02df8Kt/+x84f/aEts3wXJeukXBsn65vkXV4vD+6lprkQJaUyIaGOwwJJhPiIuX1jz+yXu24nE0hL/FlA0uRsfwQSUDfttRtS9S0HOoOT20YeiZFXpCULbah4ToGitSjCHBcj7aq0EydTrVR/RE9OrLq06sOwtBRDAshH11qbdvTtEeCTpQeiPOG/f5AHUUk8Y5K7lnENY/bHTdX19z8+AapKjCUo8MxmF1gOj4lOr03o5VU6rZFUm3Gp+c0bUddNTj+hEqyyXQfKYsIhGA4nNELHSQZ23bJsiOuVjI9slygGj5yr9PVEqbpcn+z52H+iH825OTVgMVhxdDM+fzC5HRUsH1/x0DIfPXqOb7nokodvdSxJMdWMuxO4v31iqKqaZuaYDymazssz0VIPdE2IhyEmLoOTYvvuSiygixJ0LTIkoyqmCiKidxI1NuYcr1EqRv6tsYaeRRtTacouL6PJEsopsbsfEaWZyyWC/ZlwcnlGLtPaBcfoW9xpueoCiiqoKdGESX68BThn1C2AmSFpJBoVY8kjlk/3jMMBvjhFE2zEG3L8uoO0oynz57jjaY0isqTz79Edzz8QMUNPORggjWZ4Y4n+OMAReuoq4jdYYkk9ZR5Qts2bDdr4hJUf4JkDegMDwlBfIhYbQ7sDxESYJoOjeowmc7ouo4iScnKCk1VaKuKXhIIoSArKkgSZVEghEBTdYQsI0kdVZpCk9FuvqdTehrrHGM0wvQ9iqxk10r4kxG9JBhNprR1Q4XMZnNgsd5zqHoU2+WQ1iyShnff/pHd/AHNcND6I9xAb1XKpMY2LdbbJb7vINETjIaMzp+i2SZ5XbBXAs6enzPUOvpkhW2FdMJmnbU8HnLiFoQ5YDZ89v/pNPmviib/8//yD39XViWSpzN9MkWRetLdCsu2+XB9g61KnI1DkqJEERJv3r3n/bs3rHcRvVBQpCNmNS0qFN2iqBsmpyc0bYtqWdiDIYPQQZULXp7qlMmGvgPPDZDKHE1IiF5CFSrL1Z71ckMexdB1VGVF17U0okeyBEl+IC8jGkWj6hrSuuOQpmzzmuv7W+IoJcmPcQgzGNAZDkkcsbm5Qu4qdNukQbDLSuK6JzpEpMtH9usVxmCGrNmUTc0uipDrCkXInExP+epnvyQ8GaLqKn44wpNLotWC1WqLZp4hzBnT0xm20fDNpYuiqPijGcv5I2WRUlcFXQf+9JL5fMXo7CmuH1I2LZ3hEGcJqSyhyD1tFjEKPFw/wDB0hFDpZZ1QdGR3r7l+8wP7xS1KV0Lfso9TfvXrP8N1XVTPRwRjHncp19e3bOMUNANVMyhVnbvHOY+bNcvowN16xdVywd3hwKfNjqhqCQYDBq7NZDxGWD6VZPLYW7x+/5Hr199hi5az0xNOnzxjcvmS3eqRMAw5e/4Fu7wlqxrOJ0MUqUXrK6S2RGpr1ss5b1+/Jtk8cnnuYXkuvR/Smx4NJnEKfdthmSZN1dA2BdOTGVebmvt9QZSlGFKLY2tYrk3ZtqRpgqUrTKZT7uePCKlEpiLNDuRFwtiBvMpo8gjXkDGEgpBaDMtCUQ00zWTinmAXJun2lrw/Lu9NnhzRrHWFZpiIP9nmVctE1ySaukDqWzSpw5B7mqakbGsW8Yrb/ZKbeMmGjF7rsIY+wWyKNx2zSw+8+fiW/WHDfLUERWW/fKCrMm7uH1gkLSdf/YqTkQt9TptHOOMxT19eoLs2GR2SIdOLHoWOrq6JDwk//vCaIssJTZ3A0nn15ZfERcU8bYicEVsEZ67BrE64v94QJzmH3RbbCxGySpUXyFKP5WjUpeDXX/+Cv/rzzwlHUw5rlX/6P38iPO1xfO1oMV8f0HQFyxFE8QrVkgl1nRPTgL7hfpswGU8Yz06wdZ1ektmvFlRZyma94v9694m8gayoKTqZxyhlkWREZU1Tt/Q9qIqKkBUCN8A2HFx3hKGbSIZJWVfsk4w3b97w/qe3JNGeNM9YrXZcPz5y/fE9oqsZDHw830eiZ7tbMX5ywhe/+QXT0QjbtNAMi16xaFBIkgxdtiijjPcfPlKUJaNgyOX5GUgqy8UaW7ZQq47bt1f87r/8ljZac+k3SIqgyHMk3cRwXLKiZpHC6Oxrnj3/JXGh0KHx8jRAVVviNML3PBRdxw1GqIrKdrvHs1V810LTDLq2grpFNAVVlmIIiTJNmG+2VHWN6I93TSg6ljei7wSHKEaqKiyhMHJtdM1A1wVVEiHVJbvNHjn0ePqLF1xeTunzmMHshOevnnJ2MaTuayTHxjt/SmF57LHQXYukyHj94ydkzQb9GBPwLIebH37LT9/+nv16jWnIUBfsH+f0PVy++hI7CLAMja5rMAwdz9UYDnVcS0OIIxJbt0z6toQ2J6868iRHoULVZVRV4bDfkVcJz577PHvpcHoeMBwNMS0L3RpgWDZtnbK8f8M//+EP/O77N5jugLhsURUVzbBoogNt0yLrFt5wTFlVHKICRbEYnV3gnJ5z++E9umFTCoND0+LNTnnz6Zrb5ZKPV1es9xGHfcTrq1uSvKCRBPs4Z7OLadIITVLoVjskodG3LV2eUR9WrHdLrlY7TNfE9UN0y2ax3fHDhxt2hz2zkxMuJyG+pSEkCVUWpGVD3x9JGbZp4dgG1WHF/PVr+jTG830UU0cxVQ5ZhKT8qX8niZnMzhFeSK8pXEcJrdSDLCPpOlXTkucJURRx2Cy4eP4Zg8mUqpNorZDDdkOZ7GmqYzxKomfqmDyZjRmGLrYqoXcdgy9/hfPNv6ZpJMzPf4bsO2yvPxJXHaWkoDg+wjCZXl4yffYc3RnRKyaWLlCERF8d3am90GmrmqZqjgvpp3dE2x1JFLNZzNlsNszXO95d3ROVHZt9yv7+ga9cjV+/eoo/HaP7AarnoLk2quPQynD/6QdEX9K3PY8PC9KswDAdsqJhu4sIwxEn4wt87wmuZOBpJrJpHh2WfY9h6HQCtCBE9QMeNgfmqxXPLycIIdH3PW3b0DcNfdeyfLjDtgwsQ6crBVLdk6db6iihS3s+PuxoqwzRN+RFTVNUJGmKKgtCDJrlHufEQnKPsayqqijTFNf28C2T+7t7DCEwDYOugzzJmP/4nmYdkz3seFjOuZ1f09Qtn10+Z3Jygun6aLYFqkpbdvRpTJ/cEz+8wfFDNoccz1RosoL4UGJUJZolmD0bEY5DFFVGdRSEZqJaKlEaE+cRleexaySur285bLY8Xt/x8vKMz1+8xA0n2N7xjDdlQ/Z4y9C1qfOC+Zs7pFohfHqGbGjczPdcP2zYblPm8y1lXmOYJpplIMsyousxTBffcdgtM8w+4pvnNr4fIMsyTV1iWQZde6QndgoY4QD34oxDWbHYHcjzHEVROQ0CfvH8CZqmMRiM8YIhVQtNnKJLGrYVIgsd3Q5BNZFNlyLfsV48UEna8ROuqtk8ztkeDriBS9wcLepZ2zIOHeg6FvsYbXKCYWrQd2iWSac5tJ2EMTyh7RXWaUdVNcfl2DYxHBtjcMJta/Lxwy1+2zAOhjze3/C7f/lHkjzncnrBq1/9JbXmsz2kGIOAwHcYDUKioqQqUvKmIYkztpsdRRxxGnjICJQOQts6RrRVBUOWkcoaqShRFZWB7yJnGdF6xXZ3YLfZ0/U9ne7g2x7tdo9aN/RZRt9XTEYBJ56N1DQc9luQe6hqLMMkOTzSdR2266CrGrQNZX4gSvfkiyvK1QfqfAeqwJ0MUMmR2oTe9kBTWS8e+fj6Hb/99h2q7fPysxe0h4S2gPBiiDPwiJI1wdCh7+Fx/sib+YE/vrlifnODJMtcnExQhKCrCm6urvlsNuPzl6+YzWYEkxGKoWHYJnWRkcUJH67vWKQF/vSSn//b/5GXX3yBNwzoiwNNU2GYFoqmIBQJoUASR7x9/Y79eo2lKNRlixRMKDSDqsjZbjZcvbtjHAYoRcVMNgglDWHbyKpgFx0wLZO2alhsNly4gmHg41oayS5iud/TSyBklTQvCH2Lpoe6Ak3VwAmRNQ+p7RGah+QEKMYRmypkmTovaJuaw27DNs14uLkj2+1J6xTJtljVcPew4LvvviVarrn/cIvZNgzcgNHZEyTdQlFUendEa3hESUpRNQxmFxiuT99zjGL3EoHpoLXQHCI80TKdniGrFkVaYvs+kpDZrVYUrcwugh6FdBfh+x6DkYGs2SzjhNZKsEKVXIko1h/51VnIU6Umu30kdEd8+flLfNdFoEAtsahl3mwPPJEFU11hsU/IsgLH91CEQJYFjutSZxFdB67vo9JjOQ6aotGX9THCq9vIlnMs27Y8HFXGNXQMQ0ezLBTT5JAkSKqKpKmkWYFsmFS9xPubO673EU8vx8wsiWL+CamtcScnOIGHrHQojkcrZGrFoJQtxPglb9/f8rDc8+Hm4dituF6iKgoDJ0CVdWx3gGhaurRgFAyZvvyMXtOwwiGj6Qnvr26Q1A5/6NFJAkkRpOkOXZNRZUG8XxxjlHRIbUZbZdxtSszZF0SlzMPDEjoZWahkjUyPSv2nt0CSBK4fHvspT86QFA1RpuR5Rt/1RPsdrh/SVg29JCGrylFAzA7IfUPXVNRVRdc2dM2aPrik6FTqukaxNRRHZx2laLqB4/jUXU+almzXezZZRW65pFlOXVVcfXjPpx+/4/FxTjCYYMoKjqygSAp6p9EWFbKsckh2ZFmMbRioqmD67BJZk6jqhuBkytOBhl5n9EXN/lDw3Ztb/vj2mnd3Cxb7FMUJ+Oriy/920eTv/+N//jto0C0IXRmFBqQOczLEHoU8G/sUaUyS1CyzGltTmM/nrHYRuzhjNh0S77cs1nuKtkVSNdzhmKprmL38itPLM5QuIVBzRp5BXdTs7z6hC+mIpOyBukFqGxzb4ZBUvL1ZsdrsydOYLM/I0i3pYU3V16RZQponJGnBzfUN1/d33C82HLY79lFM3bWo3gBJt8iyGJFucGwVMwiIJY28blk83FNkKdH9JzbLNW4QYNo+eafQtB27zZq+yPE8j9F0wvjJOd7QYTQaoUsqu/mKh/sbxqMxP//qa3rV4u27nzg58TjTEyzbQXMG5EXFbrOhqmp0J6RqBKVkMJqeEw5HxFXDm7wn11QWdYtDid4UNE3FaBBiGhYIDU8LyG7veffTd1zfXHMyDpiOByyWa169fM7pi88JJxPK6IBi+ziDEbnh8dPtgseHO+quJ5zM0NwA3TAIwiFZUx5teK6H7ToYpomq6vSmC86Qx6jg4+OKu+tP3H94g1IXyEKil3VUN6BrG3brOYYd0HlnrA8ZsqJyPrKxlZbV4pFpYKFpJvP5A2fjgKfnJ6haj6LrVEVJ26oYukucFKhCwbJ0NEmnyQRC7Xhzv2Gflsii4263I/B9dF2mbVqSNGMUOtiGQl0XVEmMaGqS3Z6mrJn4Ci9f+BR1SbpKsFSblh5VV9A0k77nGDkZ+ChmTx49IBs2bbqn2i/oVQt0G03X6NqOMouIFo9YjkORZ8cz5Q0xglNUw6DrK5zphPHTp7ihS5Ls2WYxSZnxsN+zjA68vbkhzVIc20LuG8pkR5nHqI7Hi5/9GtPUkKSKIloim4Jv/vyXeK6HLB1JG6kkYSgySlND31PlOcp+zTezAaqAkW1ydjFjMj3+9ux3O6aew9g2WD/eEx8q6qZHVWV6WcEPQqoi53DYo+oSv/rrv+Bv/vZLJlOTzT7nf/uHf+I//ue/p5c3nJ9NMBQN0SiUSUHbt3RyS3aImPgDfFWQZTnrOEO1XM5mZ5iWS9829K0gy3PaqmYfJ2jTZ3z1l3/Nr//633Dx/Aln52eMTk4RskaWpqx3O6I4pmkayqaj7npWh4hDnvPp/p4//PPvubu+p0gzDknMZrvmw8dP7DZLfEdlPB6iaAqW47DYbTF8jZ//5mueXZ7hmg6m4aLqJp3QqLsO3TAQCLqsRZYE++2BcThmu92wvVsyDi65PDnFdSzCwGG32HK4/8Q3X50gaSpF11E3NaoX8pgrjKYXhO6A9aHk2w8LcsVj5CiEjkTXHPHQfjjCdn3GkxNcN6CqWzxbxzVV+ralqQu6PIaupW9bRA91WbHc7UnzHJUW0YEsSbiOj2W6RLsFabzDkgoEJXlZsXnccf/+htHokskXX+DPBoRPLhmFOqPLKd7FKbWmcbOI0WbPUcIRsu2iOTZllvL2zUduVwXaaAqdjK5qBH7I4uM7vv/Db+mrAt9xKA47FEXl4ulLzGCIjIBeQtU1VFnGNjSy7RWylGGFNqprI6kSEu2RIJJmtGVG07YoloasCWRFYfmwQFIaTj/zMU8shCLjDwZ4/gRJNmnbGiFq4njLZhfx4fqBou7Qh5NjubSk0RclsqKiWy5SK7FdbWiFQXAyo2t7ekXn9uMn3l1/ZPrLX5BUBe/evUZ1PBbLR+arBYvtntV2z3If87DZsTwkbPcbDg/3lNEBua8odjvSKCLaPfKw25KrKrJqYHsBqmWRlQ2///4nqqbhm68+47OzCZYh8HSdHom0rEizAjcYEPo+SBCvl2yvrjHomQ4CHMc+lqdxRCpmRc789pazcMDpkyd4rk1XZqzaDgQ4noPhOHRdy3qzwbIt3CCg6CVUWSKJVpycn+A5KlmRcVhvaJqapm448R0uxgMGroWjqQhJ4J49R7/4DPXJK+r0QLW5oW9bVruYQ5ozOD1jMDvFDgcouoVpBwjVZvnpEbXJoOup84q6ainilHgxZ339iYebj6zmS5aLBzabNTePC24elsx3MXXV4fYSf3ES8vzyDO30AiPw0V0H07VQ/RDh2ETpmirf4w6mANzeXNNJMqY3ZL6OODl9yr/+639PvANdDgEZNxySFQneKCBrO1zLwDZkmq5DNXTyrufmww988/WrP9mDBW3Tk0cJbZmTxDlZlRP6LvQgSzKi76A4EK2WrOYrFts9ou/QVPnIoBMdh3iPrtcsogWqWaNaNp0ACUFZ1MiywjAcosuC+XwOdUPbdfQIdpstb67e8PruA1ebOaqm8Zsvv2Y8nh6HUstCaBpNUsD2QJPfU2dzDNskOL3AcSy6IqVvKgYSxIsVk1dPmDwd0PQlumtjBi4tPWmWsNxuWEk65rOX/OHHKzbzOVWy52Lg8Pn5ENuxCAZjLNdBdwYUhzXF/BpRt7z/8Yr7t1uenH+B+2yMamrcryNuHnbMH5Ys5kuKLEfRNFTNRDN16ha6XnD5bAZay8g88GTmYVkOQjr2tpXJCsPSQSjQQ9u1SEIG1aG3LbZJRbTfE+gaL58+IRwMyZIYVVEQksJmF5Fu9oiyw5It0kNCg0Cogq6H1WLBfL0hzuoOpsISAAAgAElEQVRj+X20I2lgHxe8n+9Iygrf0KAseVjsMPwhcVUThDa6P6DuBfPbTwhdxzANFpuI+WqPafsMhwP8MEDSTBa9xXc/XKEsH3h2eoaqatxeX7G9fs+/Ov+Sr7/6NdrsKaphUUUxjZB48uIJYeBhGAai67j5eMP2YUFTlChlia3rjCYnmI5NlSZUWYYiyeTbA+UmwtR1vGGAoal0VYbi++i+S5FHWL7DahcTDCd0aUzXtJhtR3zYEbgKk6GH59rYmkW8j7ifL+mbhKrMOCwekNoa2zToZRXTD+mrlLou6RUD2R2iOwa6XNIXW1pFoeglVssFr7//nt//8A7JG/D86QVFHNHJEsHFCGtgQFeRJCmKJvMwv+f9w5zfffuGq/cf0UenDE+f4qggNRVd/Mi/+/Upf/k3f4Vn+qiGiRP62J6LUFSKPCePUj7dLxg8/YovvvpXWJKOJFQaJHRyhCKRFzlCVpBVBcu3aZWeuKl4fNiQHGJ016cbnvLt209oZYHWdSzv7mjiBEdVGdshtmWArlE0NUg99DJCEmznjzzxDGznSO90dYU6i9luD+yzhk2a/ylKaBGnOUW0A9WidTywfNpGAB2qpdLVKU1dkSU5eRQzv73l3Yf3VGmF7rsofoDkjfj2++857FKuvv+OeLVFdB3Tk1NOZi9I8gpVgD0cUyo2aVFR1TW7uGRy+RTDsinSFMfz2C9WyHWFL/6E9TVVTk4mqJpFXXVUTUdPT57llI1MXEik2z3Zas3lyRllkkJTIvqCYCxTl4+UxS3jS4PfTCsGbUP9cM/DMucXv/7lcZkXKlJRo+5ithuZ7eLAiadxOgmQVJUoio70yabG8310VVBs1qiqgmU5GIaBLAuEoqEY3pFUJlQkxaDvBfQgVA00HUlVkBSZKD6gGjp107AvSooerhdL3j8umQUO53pLE21piwLHd/FGI3TbRHMcZDegaiquPt2gqAr71ZIffnzP2/efKNKEIktRVYMgGCJLKvQC3x/QZRVGo3B+/gTtZErTlLQ93D8uKasaRStR1Ra6hrppaOuEropoy4hkf0ue7CjrCqHK5HlF752TlIL9bk9bd4hOILcdu7xnucnwTy7R6bFUldF0iiwrqIrGcHqGOxwyu5hi+zamP6QrGuSmI48TWiQkWbDfHMENdbylzDOarkAPhwjRUCcHqqylbnKitmK+WNMDeZqwXi+JswTFH6GOhuxbmfndLbcf3/PDDz+SZCWuH+I5Ls1+j6GoqJqObh13MiFLZGXKernEFDKaLPBDG1luGU19xoGM0hV0Rc5mueDm7ob/45/+yPcfbsAKmJ5MkPqS37z6s//2ThNZb5HTki4ukTKHdXxANRVKqcf0LAaeyfxhzb/88IGmkThECc7oDF8+kEZ7VvsM0w2R1R2yZjB6/gpVVxmFHpPZiDyLCLQWV0hYlkVl5+y6lte//y2X01MsZ4TUy2iKQDJUpgOXJMq42xx42KeEj1tGgYPrqbihRa+qlG1HWpTEec4qKamFgj8aYQcuputgGCqWnDIdDdGtkEPZsi9b5refWH/6RLreIKqK/WrNcBCiyCplL7BMjTja49oOu/0W33ao2hbDlHFdhyqtqXIJV/jMRqc4ocPodMoTy6fQSmS9pu0b8rJmdXONbnq4g54yidBtl6RpsMYTgsGINIo4rFcUrUp+2GI2JbZ+vERxsme1i7GdANsa0M87kuuC+4cE07J5/uI5RbznYjbi2ddfYXtHmydtQ5YfQAt4dn5CLVSuvvuW3XJBVrcMvADTdlGEzPnkBNc02RQ186ykLFOSLKXcb8k+3oGqkm6XtEmEoxzRyS0Cf/qKX/7t/8D9v/wn3HDITgmR0RlcvMAst0wDle3jGs+0cC2b9T6iFDq2Y3PzeMd0YtCZLZI2IBxNKTYJvucgCZ2q6sg3CWqssd1tUBSVcBiSZzmTpy9odJ2mqajKHN0wuDg/hTqnyjIszaRICyzVolRrHLnlbDLi6ZMp1brlsChJy5KsbXmlOliGRNLv8YZjPO0UyZdYfrqliffQ9UiNYLPeIZcRtjdC6Xp2uzWPqxWSJKOoCqpcUXYFVZyQlgW6adHUBfeLOx63KxZFhpZ5xE1D3hwR0LYfoqgaWXxA1VSevnjBYDwi7lTytiXNEhpN58s/f4k3dGgbCVFKBLKGokJV5DRtSVuVDB2Fby5CTmwL3/PRdBNDE+iK4KuLEHc8Zt0fsW+LWlDFGVWrgiLjmjogsP0QbXXHk6++4vNfPMfxZfb5in98844/zN+QsOO3v5vz8nnAxbMvMZQATbOR2oaz2YDusGOkm4g8wTJUbF3l0/Un3r17je24hIMJdQPuYcRwknK+S1lmNapp4I1GhP5L5rd3uHHGcHLJ/kXEw6ePLB/ueFhtuFtHSPePZFVKXiY0WYQhK2hCpSorsiYjrmMcxyIMXGzLRpEVWlmQqRqJLPP5iwlD30RTFGRFQRICWVJRhUyZF9RtSyu3WBOX0xdPELKKhMZ+tWU6GfHq1dcEwxGyKXAdm5//8ud8m+5omhrN93BVlajs+LBIMUZnIOu8fX/P+3XFk7MxRRlT9QJDrvjy63MGLuwONXEpk8cZXjCkLQqyJqWtCyxVIatzFFVF6mqm0zG+66JKErasoEoK7/YJQ2/MuT8kHE6R+obYUtkuP/Iv796w2T5gKDpFkvHvf/MbZj//OZLvUyKjqgbGi69o4gWdN+Xjfcr14YAuq4RKi63Dfpszv9/wxz9c01/8nAMKRZZjVy1BLxg//zXTs+8w6h0UBa7rMxjPCAZjsjRjeDFCEjLhwCNPM3oh03QK89tr6Cr802fY3hiagC6PiZYfKNIE1/fppA4jkPGlmlka0uk1H95ueO4ZhE/OELJEnt6jWwJVtxFlgWkZ1PkHrt7v2OwOlL3MN1/+jMFgQi8JWNwiaSamKTE6mfHxzSeyfYwiBLkK2jQguv7Eww/f8+H1v9DXKaoX4LsBH7cr7LrmbODhqgJbk7FMl7LKqOl5XN8SVTnj6QG9jUgUD210itBVfMOmLGuK7MDHm2tmE5+fff0EVZVRm4o4VUj2e7KiYLePjkhwAW0WUWw3SEXM04HH0PGxLR1TPw4PjWRSNDmrXcpIE1ycz7BkmcP9LZbe4w9m6P6ATlaQZUHd1Mi6yeRkSJ6nPC63qKbG2NfI6x3PX05opeeYpuDuwy15FCNkmb7rKFHA8VFER90WxwFUaChmy+DJDEYzIvUN2dUDWV3jND15mtGlFScXQ4okZ35TsPzxgYtLj64vURWZpszZLh7ZLu/YruestnseDxG7LCfKCwyhMPYCLl2HU1XBVlWKrGAgVKSqRzFNFMdDOA51W5Jtr3EcDdVWWW8z8qpiMBmziAQvfv4X/NXf/Ds2i4hPn0q6TEXubXbzhPFnY+qyRnUd0hZCDeoqQep9XONIGQEBknSM5yCBEET7GPqGeLkhC010WUVSBKbpMzg95bN0Q5wc+H9+uOPuccPYL5Elha5rKbueZbnhixOXDz+9p+l7rJMRo5MnmLZ+dAAGIcFgjKyobHcHVustTjCi0XucE5talNidgaVbWLKMaFraKKEzC4rklv3+ET00aY0Wf3p5FBVMB6qaDgUZjSJOsS6GnHx5hlAqqrgGBELVkNqe+X7HbVqhvXjBP/70keVyze5+ziw0sWSbGhlFPTrGpDpDqmPyzSPZbs9v391zs5f4N3/2t+SuS5r8v5S92Y4sWZpet7btbfPks3tEnIgTZ8qxsrrYlAiIQkMSSei59FrSldAQqsXuZhWbVVmZJ/NMMXr47G7zbLqIBu+6AV37jQEO24b9/f+3VotyO+qm53RKiKKUzeMDCIlhWij1zHlAmoTDEX5ootwWs2lo2xYhNCzbpZaK3nY5PD3QYUAPx+OBJM0xDI2X55f4dsjD3QuS5R1F3XI+GhGMJhxXK6qiROoG98snjpsD++OB0cUCVR0wdgaGZ6DTcYoybvZLcgFFGpFGKYftnijJuR66pJuURim++/Yr2mDA//2f/186Jfjd7JqpNyCUEik1+r5HiI7hZMzixSXhcIToYbdc88vPN2i7HW9evcLzh5x2J/oa/ofLb1lMzjDHCzLNID6cGF9cULgGh2OM59qYuqTVDey+IdN68qzAErB7WmM7IVffv6PXYZfHlKcDotWoj6dngGhT4FsO/nCOclz6h0ecBwc/GLBO7jnefCSwXYz5HKuqGApB1icYsmIQKIpKYekBcRzz4f1ndFOgCbi5ueXi8hLTG2GPLyiUg+l2aIYgOT0g2NOlJXlWgztiFzXc3d3x892eYH7GwDeI1vcYTsBoPKbVCqoS9qeEskr48OnI7c0df/n4xK6G0Tc/YFseoSkQlUFTJejVliLXGQ5i/DfvOG7Es1DCtkH0z8B0oXM+f0WpfLRdjCtNks93WF1NNm0wWo0sjZGGhe+59ArmFxe0SuKEIctPj7gXL1meSm4/L6lsjVFfYtU5aV6hRhMwNWpD4oUux2VMk5eUokJpNkalUScVzEEJhW0ZXJ9PsZXkz58feTgmbA8zFtOGodHR5DlXlSIoFda0QwZDHCKqXlHlJwyhiLcxh9sH9lmGH4wZLc5otYaH3ZKX0xmuE/D465/Zb49MLMnlu7cMhxMa3YQywTAMemdE00qEbMnrnuDsCk3XcV2bIneINxuyx3uMYkyLTjgLiIRL3DkMbIXtVpRNT5Q+q+FFZ9OdMo6bFWPLRe8KXKvk/eFX5pMQa6yR6zXOIeZr02Kk25TZlq9eDvAHNop/Hhopi0qO0MqSWZTwh92I9viJ8zOTt6/O2MY1p7ShQ9DUJboQSEOx/OUvyK7HUgoRtJhWiGHo0Gn0TUexjRB1SxXlFFkJaEjdoq5yOkAgOBQNedtyTCPulisCKRg0OfunmMY2ePXqktHFFbrnoQcDpOVQJ3v29x+4+XzDrGrpyoTA7LFNg+MxYbnaMBw/Dzedf5ZtkEaQ1fStIN2n2FnPOkp4WD4QTiacvfuWLP+VNN6juQ5VmSC6grZL2ey37FZPzyGyF+JNzmn0EXnTkVUV7nDCdn9ku90wUoq5P2WtaRi6jX/1NVqVYlgBo/EA0TY4nkvfugynkjzb8u35Dzz95VfWH28pq5QkjvDP55i6zuppjSlBix+wQocilMjmliZX3N+kRE3Bw+rAMS1YPz4gHZfz62sW51dgmeS2T59HrD594KdfPtBLncl0gqUbJJsVVgO4GlJKdKlTdyVd3xOGQ25uO+I4Y1E+Q6iHI4v2+MApfmQwv6QzTA77LT/++BNp1fDNv/8bvv/+W0ZGS7K++RdzkX81NOnLiMkspMkTokOCDBz2px0PT//ID2/POdQX5HlFW2akWcPtMkHTTDypEQwmrOKKka0YjMfE6Oiuj1AKoXSi3SPTxTlGXWHqBoZpY/4zHHXzuOMf/vAnrs7OmU/PaPKK4zFGSQPXVli6wHd9HNkxGpuMZh7WyMfxfaoi4ebjHR9XK44FfPvtt7z+6przr67wFxdUbY9l6tR1Q5bn9FnBbrMlvf1ItFxRJznLpw0Dx3p+TjRC16HrwPZCBuOaNi+Is5hFOOD+8xe8+Yjrq2tMYfElWnJ+cUFCyvv3f8TxPFRVoMqecDDidDhQVBXJKcJwB3iDCbrSCNQIf/oaVdU8fX5kmxXkeUbomeiOJMWh7Epsx+N++cSL81douUnyeCLa1NS54K//6mtG0xmFqaMJwfTyBcJ20B0XuTinWz3RiY60bhjbimYx5mzoQdMTJTnF4VnxdYxTCivk2//4NxTvH/nxT3/k8fN7TEMi+obTbokldc79c6bOjG+uv2U2N7lNHtl//pnRdMahsQjm15SazfXYY4hGk+yokYxnU4SQFG1PIWxuVie6YsPF5QuibkvmmbTZmrkzYhr6HA8pVV0ifailwCoqHCYUuNR5BaJnMjAp9ycOccqrl5coasqqoC/BqW3y7IjUdFpT0Zo9ypIEgzFq4DB/Acdoxy4+cHPzhZdnV3SiwU58eqkwx1Mmby1Ot7ecHm6pH34lSluKosIaLnANneh04sPNPXUnmE3GzxOrY0NbNQhpYpYNdVux329YxRGpEGRJBJrCt02UgiKNifqW6XTC69fXjEcBVZVj2RaV4VNpLb/74QUv5h5Kt+i7nl5UZE3LY5Oj02GWOY6hsHwHEdj0aYwzCpl+/Q214bB9WnJYPvH29ddIbJrhCA8N6oaq1UmzBE3TEJqGUpJwPHnWylkdVfnI8u5H2q7gP/3v7/h0XfLx9/8Xd+/f8+rdW3qjJzy3iROI72N+8/Yt+X7L8rChp8eWcIxj7m5vcG2LH/7t/4RuOgSLSwptwHcX/yOjpGF1VDwdKsKJweW7r9jc3vFwt2Gz3bI7HMhrQT/7iqjMuX/4he3dL3gSlCaet9QQ6IaF5RgMJ2NGkyG6ANd20aSJMVtwAi4uKkJH4rnPZP5eGWjKREiJVBLdsjntdhRFwfG0oe9KZlcvoLWYzd5htjpZdCIfBtSmgRKS3rUILy5pSJFo9MomKXqe9hm/ubDouh7f9XijCwxDIfWW/fY9x+bEty9GXE5bBoMpu1Rn9bCmLnIaracTFut4ydR6Nl4VaYZAQymFH4RMhgVn4yk/fXni8uKaf/Pbf8vZ/Ay9kTRFTmAaTMYWXX5gZAreXp1zvpjTdw0ZGybTOdL1qbINebRHWgFPactfvtyhDI3pxEV3bPZRwsPtkj/96ZbafoVqJZ200R0T6CmLGt0b8N1f/Y7Vz//IxPM5u3qF4w0QuoPvGVR1iSYk+/UWy7JBaISLFyzfP7FbPqB7ISgbLxygj6aY4ZC6zFGmTdlXKN9AYGIMFa7nEWgDqiVUixa58Om7guP2L+jOBV2nODs7YzHf8LCpqYuYTz/9E4E/IJ2dcTWbgWZQFDm25zOen/H5588sf/mF8eu3GIFPe9jhnp3zX3/8Mzcff+J6NuL29jOmIXG9gK5IyIqcqWvyZjRmOgno/DMKK2CbVXz3aog7mpDKAX0uqXOBbjo0VU6SxNzffWFxPmI4f4uhDNo8JdqsiY4nnnYRUlNcjAc4tsEuijnER+pWcDkfo0/OcH0XpeugTJq6oRUdT7s1zeaWxdkEqWs4o4DS0OiagsnZObWuowwTTTxT790woFcK3TAJxyFFGuGPQ3afVkRlhRf6rF2XxfffEy2fCN0O1T/DyHvTQ7MNqixCaD1112FfvCK9/8DwxRu+nr/D/vCBz18e6XQdoenEp5SwrJDSoG4bJCM+/pywe/wvPK3v6PqStEwom4pjURHnCVXb4Nk2i9kZ57qizUvE8UA/GlOaDm9eXlB9/oj71bcY+hihe3SyI919QSkNwx9SNh191xGEAXkvaIIX/If/5T/hOx7HU0o4cokbQdXU+M6QqiypW5OirNGynKEmsUVHFEe4kzNeXL+hajq6/pkbQNcjpf68xh1FVKeazcOOq1dTeltgSBuj8hlfLPhNlCCF4Pd/fuB+ExO6HlKXgOLLMSW0M0aWzodfPjE6noh3CeF8TlO2CLlgMB3S02M5LlncsNoeOBxPlFn5bJDoO7KyY7V+hL5jV/fsbh/JZUl4vWChW4TjGfEpYnh5Sdu2tE2F1KBIDmybhLO//hrT7olPR+LTHtMzOEVbjnnFbdGy92bsf77hy+dbTqs9Y9/GD4LnLSbLRFMaWt/SFxFd1LFfrXmKGyp/xruv3xK8e0U2MHjcZrSmRtt16PLZTtKLHscxSeNnE2MWhxiGweWlj24I8l3Ccb+h6189K0RNG4A8y/Bnl2SHA5bjMmt6jChhf4jYrpa0DYzGYxbn15RVwjbvmDmK6XRMrhJkC8lgzN1yyc2vPzPfPTIY+OimxBsN6A0JaUqf5fzp7omkKDnFJ/y+5cy2qPOKyXjAD9++xT875/NmiTcd8+b77+n6BiF1Zq++JT5s6LVnhs90MscfDEDAanfib99vSDuTt9+8Y2gZdFVPUVXIuiYYTJGjBUd7yHR+RlZ+prMsXn/7htPhwK+/PmJoGn1fUSQZRZ4RJyfiLGU0GLJ8WiLnIdKXjF7NiZaC9e0WM/SpfIf5qxlDWyKEoCgzNFExnA+Rusv1N9+w/OkGihI0wdlXr4k2LlaxwvEFrt8ik4660+hMA+k7JEVOkmfcRil//rLGD1zOJwMs2wbDQzQlpqg4m3qcHAdvNGR984mnRKM2PBbXHm0Hko5wNsEOXExHogydsil5eHzkdDpyt9zw6WFP702Yfv0K0zLwDIkhBHUZ0yc7vn874fXbM2wHHCemn7k0uo0ldbS65SGOWa52+LMLLuZXNHnFaDImaVr6uqbvO9I043A8IfQT09lXVF1HmVTYpsX169cM/Quq1mP76y3VKcGevuC0faRKcy4Wl1DUmHVHXWTY8wWOY1PmKafDHs8dUWs9j4eYM3H+/A7VOoWUeI7F9y9GOLTcPi3ZrQ8oQ0czLX7Z/MJX2xw9/BVr6DCaT3Acnfp0pC1bRN2i2y6D8zGaM8QwNT7cPLA+PnH+8hKtF5w2W+ajMS9GA2zDoP5njtjsYgGOzyYpKFuBoevktcIcDbH9AV0naPKc02pJFEXosxnHaM9TsmeymFMJkx9eDjCVTZoc0KVEkzr7YwplhtGXhMMRTbthfbilySsKBrzzGm43B15fjfhu0aOVMeOBx+EUY3QFoquRGug6bKXF2nxNjolsCj7HFpWMuPICFuczglKw2h5QUtCVLYqOsmv59Y//mTSKuXr1NV7YoukWSrMpDwXloaRPS+LtkVO0Rnk6QnXExx1RWZGnKXerFcvdms3pQFXkTBydptYYTceMQgdvENKikcUJ0onoNHj48is/vv/I6NVXKNfjy8cPRFGEI3o2qyVpnOPZNv7iHKFJlGHSth35bk+dlQwMk+xxxd3uDgyJ6w/Jkhi6jE4rKMuOLFpTJkcENXly4mm1Ik4rRm+/4klWBE7D9mlJaIccDgfS45E8PvHpmPD2tcnF1SVJ3mEHIX0qUaaF7fjUZU4jFPP5gLr8xJV9R/TkYhoGnuNS7/fcf/4L/eAzoxdzLPv5N1FmVB8/YJoaXX1ifyqJTjVl01I0Nau8JmpafvvbOW4YkqQxEoEMJdvPH1hHFcZgwWAyZ+C4lMc1+X6P6QR0dY1tunRNR50VCNEznc8Y347xLR2pSXStY3f7gfgQ8eLNW3x/TKt0lusV7nDE//a7rxhdvMQNfRy9RVbZv7xM8q/Vc/7Pv/vb/8PxbDShkcfP3bekqhCiZeQZlE1JnlckRYVQBquoZ371hu3DkiLNaTHYHhNMU6Acn2A6Q0kBfoCyHQJR4DsGruzwXRuaivgUcTqcOBwTPt6u6bOMumrZ7yOe1nuKqqVqWlxbZxjaDHyLILTwAwtdCcqiJI4zvjzuuTi/5PriisuzK4aeixeYTOZnmIZJ1/Xk8Ykvn29Z/fhn6qzksDvw6+0S2UPoe2gIXMtE1jV6MMINAkRToesSW+qUeYFSkq6r8c8n7NOIJD2izwZ8XD4gTMl8NsbUQNEw9yR1WzMIXZrsRF7WCGlhumP8yRW6EGzvH9jFCaVh4Pk2uuzp6EGAJyocTeDYA/JTS/QQI3LB/d0NhXni2+8uGYyG2K5NV5zQlYY1OsceTtBNC6kEdZHRtBAd9rRNA73A8gIcf4IzWtBJk1Uhuf53/yvDi3Menw5s1itEvsH3AyzbRfWCUHg4YsTl9Hs80yWceli+RhCaz1yY3uDr3/wWW/aMjQq7L0jSjFNZM3VMLF0nKStOWcnk5TveXk4YjkwK1TMYXWE2gjaJcb0Ruq6jW8+XLcODpjhwtM8phUladyyGLjLbcvflC8FgwMV8iKImj2OqpCArW+IiJe1LaqNHN3vOF88MBs8b4Poejm8xPV9guyZN39H0HSKOyU8pImwpkh0gkaZLXeRQJBR5zma1ZrPdkRYFXQ9JUbA/RJzykqSuSeuKU1UTpyeKsiBuGnrLJBwMMHRF1ze0dUHVCeyLt9TOmMvzBUPPQtNNdNNEuT6Yim/fXfBi7GBbFmiCqm/J24IqOnHIIrQsQctLbP154rx+/562bRgOQ+zz18jBgrzpiDcPmKbGYL7gS96jByPM1qOpBEoKdOO5MmFJwX63YTFzeHlm02ZPdHnEeHqJLnvO5gH55jOG6Hn95hWD0YTDZkeb1YS2jaUsqqJA0LJ62tAIaFs45DVd0+A7NoblIswA//obCs2m7Bqmr18yf/OSuHhW8UVxya8f77i/u2W7T5n/5t+hhxM+fPnE/c2PFMkJQ4AhFZYh8TwXzTDxvAG+7WMa8nnzQ5mYsxcEL19yPK15udDxdcVsfkYQDLAdByktlG6gSYNO6hRtTUPLw/0jm/sHmqpEN200TbE4m3JYLbl/f4NuBayTglWSods6rtMhTJPeDbnZRJi2hxsGbLYRvSYREgxD0DYJTb7GUR0Tt6O7/1v6eIdmBBRJQZkWKAl1GiM081nj7VoIOvq6JjoccVwXJW0Ein0JwWCC1hRMZ1PC6QWubSLR6LqOpGroNBhPnxXJ4dU5p9V7yragFhpNW7LfPiKCCQ+rFev7j4Shi+O7HKMT+82aP/3hJ6LOxZ9d4ZkOeisIw5ChrWOaJrLrCJWO3iRYloPUXaRhPBvIQpe+7wgDB93UMQ2DqnoGK9dNRba6xQ9cpOtTdhqaaZHuNrRtAbZOZzRkTcbmtKEuCzzHYTGe4ztDpALT83C8kL6JSbohnTA47W5xXQldT1m2uLbLLmkxbI+mVwwnY5TjozTF80ktePr0CdVLTMOmdSzitiPOc6Rp83TYPcNelU7X1Tiez9B38X0fTVeU9LR+yKfDCX/g8nI2QhssOGZguT51B3XfsnxakdUFr394Szgf4w6H0NQkhz356UjV1lhS4BjPdPisLNhu9wghOHuxwDl/wXg6Zuw4+IMQw3ZB19nGCdH9DTPVoKTCtkB5+M8AACAASURBVByKqsAeD5FK0g6nSNMEoeG6NmXTUHUdVddTN8+a88326dlsAxyLkn2U0omexXSI1tb89VlAoDXIvsYZDLEHI3TfQzke0vFRtk/dSzAd9pslTb5HOQ5FHIFmUmPQdAIlNLZ3GwxNst8eMIRguT7xy9MTp7rE8j0e4gLRN1hKIvoeq+8x6xrZ1lyNp3gXl9jhkOTmA94kYPDNS/TRABk6JKdbiuMj1iCklwZtB8vlhk8POxp7zsu33xN4Dp7ns1pv2WyPVHn3XNOTz4GS49mEng1Ni6tLhr5F2mvkUkdTOlJ0NHVH3XY0bU/XdwghMA0Dy9BI1muULXB9n67roW2grNDaFlGXyKZlF2VskopO0/57GLpPOwxDp61Kqrqh6UqyJEMpDdt0cIcD/MCnqsCyQ4RmoCuTrCzZRCc+b7ZkZcUpSzklKZ1pYI+HzN+9Ynx1jh34aI6NcgK0uqDJY5poR3bY8+XzA6O/+h5r4qCJkv36ia7rqIVkm6akXsjPh4zV8sDTzT3pPmY68PF9i+H4WRrgGRJLKfSuwlUaddkgwxnu2UvCxTXh2QXhaIRuO3RtT5rm7NKch3VMHMX0Xc/i7Azb9cnTmM3TEtGecG1wfRtb18iPa17MRtiOjdKN/868krpO2/UUaUovFAiJ43h0dUt03LN7uEeKHkwXzfGRpo+hLJSU6MpEKYU0bQplskwyPm72rA4Ry/2RQ5ywPUXs4oT3yzX36y1G2zBUkjPH4e1swfXFBePzKZoXcowe+e77r3DHU7o8Js8zBrNzqqrhFJ3onHOc4ZwoLfi0ivjHdYt5dsXLxQhbajiGIo9S1qs12dOK2eKc6Tff00tFXNaE4xDNcwgmAzzPwTYNDqeMOErYPN7SUNIbBsdoj9JgcTVDBoo4P9H2FcqUWLZifDYjmA95cznBkC1JHBHvntjf/YJpGaDpKNNBSIP4aclwOKIXOoYy8JXF/nGDHYxBWiAEbdtQlCVpmpOWDYZpIrRnE1pZZHRVTpGl9F2FrVqanue1/rTHWFxy/e1bpGHRdjqL83PG83PccYA7DNCUJG8qbh+WvP/lAx+/rIg6i/k3v2FyeY3j2li2gyZA9QXJ8hPXoxbfMxhORvizl/S9jmU7iGKPKw70xYl/+Lt/4ihHfPPv/4bJ5UvyNGO321J1LdssZTxz6PsaocF+v0I3BYatEyVHRAvCHNE0Hl2vaIoaXehUUUHyuCS0LV5cXKLqhrnl4dkuGAqhazwul3Rd+3wvKXK2pw3n8wG+79C1LWWRUfSKIivQRYUte5oqJ8tSTqeI9Snh9mnJ5umBfPtIfHdPdLeiSlOUqNEdC93wUb2BITTQBP/wX/6ecDxkNJnxdL9kf//IxLXRG0GT5cyGI2zTQhoGqbTAsPGCgKKBTVzhj8cEYUBVVjx9+pXbTx/wp1OOHTyt1oxmUwyp0exOaKcMS1ekuzVZmWP5HkVSkhctTVkSBsGzshiQesVwrtEWG0Izx0pu8SjwZcntn79gukM6PWD28lsMy0b0PU3fsckadlVLki85pCu2p4imqwkGAeFwjDUY0pQ1tnrW5vZ9R5xkfPnwntV6D21PccopDxHZKSVeb4m2W1b3DyyXt+R1zi6OWEcRhmPiGILZwKXpYfn0xLVvcD70OZ9PCFyDYDAgXJxjT+fork/XFuzXj/zt//MP7EqQuoHSJX/6wz+x2e0xpCBLUqRhMwoDRAeebTMfD9G1nua4pcgKxosF/mxMSYPpWtQ9OJaFaVS4viJPDhx3K2zPw3R92qYmKyvwQiojoKkVXQ9N12HSU8U5bdsRHY/kp4SuqTDomF++xrB9DCnQdZ3ReIwU4HgBllXTiZbJ7DWrz2u6skJJmy6r0buedH9kc3PD0+qJ437LKSlJsp7DsWIXNURpSVHUHJOMT7uIL9uI8chjPAxBCYRjM7h6TSdd/tvPS3plEQym9HWLaho2D7dYvcZiOGMymWBZNk1e09UFXVMzGA7p6oq+zRmMHTQt4+7DFyzLwHM9TGeGEYx5PGRMz84ZjKcMB0M0TcM0FLoueLt48/+/niPqlKw6kZwy3MkEretwjOce39P9PcOzOfbiHdU2oSwKHL1l+Zf/RpPkjAZDNo8rijLmZPZ8/cOYRsrnMEJp+KGPKRNs2WDqGm1bUxcZnhfgejbKUOR1wt//cseL0YChFxCXFetDhiY0TEPStoo8z1g9HNHlhOHlFReTK4o0JQxCzqZjPNtCExqOHSDLZ52x0Ey6Zk/0eE9x9wWrb3jcH7hfH6nqDtc1qMqSoe/TVyWWaWJr0CqF7bnQ1vSui94IDE1QbbZ8+P3f0jkewxcvyTR48eY1Wl2SHDY04nk9kR4GoykaNVIpzgc+xyTlbmPhVzssx6MzJdK3EaZLKQRGtqONYxaeSVEpSqlzinL++OG/Uhwyvp9d8Xh6ZHTWU9c5fd9h+T7jq5cUZYs5HNF2HZrUUJaD7bSkRYRsU/Joh+lP6ZQDMqCuO7bxAXt6SS8UX25WlGVDV0RMpguEJsmiHXWZIhrF2LeYXY3JZcFd/MDg5Zht1bNe7whGM473HxjYisDz0ZRJkaec+TqGbGm7Fkv2+KZO14J9/gMqaLAOH+keNhzThGA4I8nG+P6EKkkpihK9lxQtGJpGJySeY0Ae8fT0BaUEoWvQi468KBGtQutM6r6k9F00VSKSAs0Knqe9EwPNNDCki2GPEa5DVaSkcUxbdayqA10d4++e//PjPsNyQ4zBDLqGvMgZuBodGkXd03SSQehRNz1VVVPXNXXXo1SPMiyQEts20DVF3TTPBP6qpFMmzvwlp9ZiNp+hbJtGN9Asi1qaEAx5NbJw9AJTl1RNQdPVnMqU02EFeYPZtOSnE4amIfUBVV5gBg7XwyHBxTVFWdFEMabnMZjPUZaJsgz8CtK2xrZsSh3qsqGqWoTr0PQtpmsw8EyqNKXOtliWwXQ8RWkWTx9uGboWoaVYfvgLwXDBeDak3z7RahV5WeMaPQ0lhu3SVjV22bI8nYhHY/7whz/y9bcVL3/7P1MJgWVpTIcu8/Mx44lPHGfsDxlx3SPnV4hTiWm12Oevefj5T2TxmiKLMJVAKQ1LCaQUoASeYxEOXNq2pukasqbCHc8JL18RZTlB4KL3BzTlIARITQfNAE3Qdi2q7zCkjqlbSGkwf3FBtNqxXT4xmsyRXUMa78jKFNKKX37/9zhv3hJcjzFMh9yo0A2brBZkrWAx8Ki6lmORsNnscMOQ0+nIq/OQty9f4ssSr37k1FYky1+I8iWamKDLBUgXy3E4Pt0iLYvt/ojeP6/R0/c8PawIh2PypuPi6ju6ribdL9lvNyjdZToa44wcFkzo+zdkZUlepbz/dMN85nPcHemOB8ZVjj654NB59J1GvH/CExVoNpphs/r8I6vlnv0uAX9AfTziGwFW2KPakq5zny+CTYPyQsxghm3oBH6Asgy6HnSpkWUVWWGgpIET2tSnmLYBZzhmu9QpyxRFhaAhTUoaXaEMjY6SvM5Im5zlcs3I6DGkRGt1XNvB9QdUUUppeNj+BckpQykHpdsk0YqLq3OyasvHmy3OdEKalQyclDrTGY6GNIZBU0F48RJ7teGwvqM1oLM8VNcxmkwwLRt7MKaKNvRVRlRXaMphIwz2mc5Y2bwdDSiSClNIvh4aaO6QWLg4IwPRS6K4xFCK868v6WWHZWh0QtFVJa3bEIwC+ianFQ2eo7E/CPZpwaGoGL26YjYeobsBxniM4fnYuoGyXagF0f2G0zpnEZzh6wHR8YDj+9iDIYiOtn2urkqpoxTkTYdSOukxomwrfFsQ71d4tk6bl+RVRdMIHjYRi8kA1WRcWQ2z0QCrUZRRRJUn1L3Essbk8QnbGSAtH29xyW55hxQF82lAfXuPHjiUXUSX96wOO+rJJZooeFouaZuGbRxDMGIsBKZVcEg3VGVClMX4tsnANNHbhqyFy8mMQ9vilimNqWPMx6iXc/L6hOpOdHlHEa3RHQNpGOimxWm14Zdff8VxAyZnY57iE5rlEY7maPKZMXN8WNJTIzQby/FJq5pQamgCeiEpGo3WNnna7lGaoB26ONazKtuUGgagaRLNsp6VrX1KfoqwgwCpmyhlYjkBg9GENqso0pqqavhllbDJcyqpUEIgW42f1hVTE/wqZRtlzEYVRZrT1xr+aE4wGjE9d9jfx4wXV2j2AWUFDCcvmJ6eDU+z8ZTAshkGAcFsjDUIyXY7dH1IuSuQoqETNdHqHqOvOZSC6V//Ds3toT+RlSnHLCOtGvJKclQmx/2a+18fSfYRfdcyGD5XmS3fRLQtdZ7TWDqGFHRlQYtg/PodY2vIL7cxjvJoNZ1aCKSpU5Q52fFI0rRYlo5mmQSjEeFoRNs2nPYJTb5BaWP80MQ2Nape4+x8QVmV9H1PVVZololumORZjum4lGmKUgJNaVimwfhs8fwti2OOq0fU8UhiOWy8EY4bEHYSrVa00kSGExAOrRFCcmCfHunimOoYU9CzzXKSJOGdp3M58JgEIYvxmNlgwPRsijuZ83m34hgnLHQJVcZocQ6GR9X0ZK2GNnqLlCEflgc2UY70Jpy/cHFNHa2pAZ0qiThERw5RwujikvN3X5G3CqVLRFExu7xgn+Xc3G6YzgacDRx0JTgdFHcfW9IkBlMxefuGbLUi73Jkk1KVKW0l0eifoa6OhqoyTpuMwDGRfUbXZtRlhWm3uL5DXoDuKMJX1xSPawbDAZ3rUJ8Mwjxn83FNMLMQOkhTYboOblXxdEp5TEosy8G0PCoN8q7H7mtMpSFNE+V44J+xePEKbxCQFA2aHnD1+gzphaArOgVVlXKKjtx9ueHXz7dEFbhXr7EGM0rAMHX6pqWvSmSb0acr5lZOXyW8evU1pufT6waWrtOnW7KbT2iOje6eMXhxReC/RpgmndaT1yVfbj4hfYfClPxgTEijAl0Hx9TYPNzRVCXH6MjZ+Ss2seRpuUbULZNhgCV1/vT7vyNQHZevXjGczsjKJY1o0QOP/WqH7hioquMQJ9guGJZJdmz5+OGOIAixpEA3FO0xISlrek2hKw1HF+R1j26BVArTNFB+iLBChOHhmENsXyIHHprh0nctmtAQjsU2O2DbGr7nk+UFutRYzBbsvnxCCsnZdILrB3RVRe+EaKaDbZi0eUmnWXRCIJR6vlv0HafjgcP+Cc3QqSyf8XyG3jc8/vSRF6FHagjWux6KgrzMkK6H7rro1jPqoTfA9gzi3ZEyuofaRIiE/e4R1yyYDeakWsf5b77HNAKquwTdstENA+oK1WTolOh+jQh6xEFSNjo3m4hGu2G+qJnPzhlM5tRZBiKhrRt0JWn7nvc//ZH3H3/lfH5F6EyQnU6V5tRVwylOOdYFaqsYDny+/uG3XL24YHf7E/vPP/Jvrq+YBAGfbj7iuArL0rE8h/D8HBUO6YSkKku2y1v+6c8/86eHHYsX59R1xeeffqRvK6SUSK3l3blPFJXYrsZwMSYYDimSFW4Qog8dTOVijacI28EojOezeZ8AsLhQ1G3LKc1xgwHKciiqmkI4qMk51anmcKjwBj2b+yXz2YBWE2iWQdG0DCZDmijjabnGPqYY7oDR9XeY4QV9kdJ3inA0QRpQZrcsH9ZcL/4Dw3nB+uMNaVShuZI27TEcA0M6tGXBcXtAyhO90Gg1SRXYtNGW4/7EPiuImpbAfw6sl6eK5uoF3339HfvK4ulujadbaMEYyzHZLh8oditE1zAMxwSej217dG1DlSU0XYcXOOimyXA8pHdbhgOTx5sb6rqh7zvysibPY7xa8NXXv+XL5hHVa/iahtZ3JHmFKc1/MRf5V0OT3WaD0DWkqYjyhMsXY1Ta02cFSdvz+csjvgxplU4Sn6CuEXQgPaK0pcwymq6hkJL7hw3n/pCySLi+PsMUDYb/3FHvtIK0Kmg7CW2D57h4pk7g6GR5w0/LHYvgef2t02CVpCRVSd0W1JXOy8sAIwywPJ+0aKk1i4urK+bzczwnxNQtlOVhBRZVlFC3DendF+LHB9qyYb+POeUtedVhm/rz4aIUQj1PLIQm6cv0We8W+Ohai6UUpunT5wm+IzDsnlZ1xIcl+17j+nJOWWck+Y62s+n7HsezMRyXusxxfR/1z/Choe3TaRqHpCCNErquxFcNsdJI8x0TWXF3u6Kz5yTHmOjmE8l+x3q1JY/3iLZlIAYkSUKSJJhBgBHOqJIDdZliDxY0VUFTpHRNAX2PEAJddCTJCctzyPIIlIMUEltXxJs1q92R2y+fsfocPwjYbVbkaYSGYBC6aC78tPkL1tBiPJ4QoXO4XeLoAkuBKVuEplNVBXpfY6vuORHswVU9Tp5g9iWhJamrGqmPyct73PZAHe3pzJ7A/4GmqyizHY4jME0NagejB1HX+EqwfNiQbyLOJgOiJCaYnOGogOgQIVoJmkKYkirvCEIXREOZCrQaNBqka6NpPm1fY1o6aemDMiiyRyrL5bCMmISSLDtiDgZooyF9lWMOW/L1ht0xIS070rqn68HUdVoBynyuklUdlF2F0lqyrCUpG/K6oawrdMvBH4+Qts94NGA+DVGypG8yWizEYIQ3CNBlhq71lEVKFG1I64qn/RPx5glLmVieh9Y9d86V1rO++4LVt9RSUQhJJR2kZmKJHFPvSeoWVTboykJVBaJXFHmKbUuSrqMhY5+fkFpB2+acDgKVJ7S6YDA84JgWsm8Z+BZXL86Js/KZVu2GeAOD9CApDzvarqeVFsPApN2XiL5B9C1RHGEYBh9ulniXJ6xQww81guEI22nQ+4om3lEcYsLxiCzL6LuYuy8fOJUpaXIiOq2o6grX0rEs8xnK5liYto3n2QjV00uNVsDZ69/gTxdoUtC1JefnA/p9gmkaaJaklR1CCoSSoEHdNiAkXQfJKaapahbvrqnpqOsMaSiqviM5HWiihqFvkC6fUIGitXvqOqE3JHHZ4g5cbM8izlNaGoSpqNoEZVWItsDRXULLpF2nCGETzEa0qyO7uz+ziT/SexcY3hBlWlCUlHlFVabQQ9dJiiIluntAGRPCyRCtilGDkNFkyng+wrBMTNukLo9YuonZu5SFi25pbLOYx4OkLbYI9wlbmhyjDOl5lPtHQk9nVXQcb+5Yr/Ys10e80QTD8zAHBpZWARZNUtH0J5SjU+U5gW+wePUNvqXR1C2a0oi3G5I4x/E9DGnRypZ9muKKnrqv6HSFHE+plIYoIhCS5T4nzCN82XE4Ham0ms1pS1sUSNvidDhi0WF4E4pqwGAxRymdKt9T7JZkZoGm6Wh9D23Ly6tzlHSJO0nXVqi+5XQ8EpoaUukEQ5OmCTj/5hs+NxWb4x5hZ5R1gzcc0QvBKdrTCAM9tFFSpzJ0EqlhGgG7FtK7NW8GLt9eXyDtGa09pJMmVa9I84LB1MdULa2SdEJDSUnT1ggkypS0josa+Vi+TpRmnOqO/qXFhWOhSwtXUwwdDw3FWNefDWhFz/7THWnvMr1+Q3PY4Pg+nTJJ6xbHsrA8j6LJSdKYrgHfd2ljME2Nvq2JjkcMzaWrS5qqJE1PVHVF33a8uligpTvaaMf1wEIpiTW5Ik5/Yb3docId5nCGrlz+P/bepFe6Lj3Tutbu+72jjxOne8/bfU2mnc4GVQP2AIaMXJMaMEPiR/AL+BFIDJCQkBCjElOQZayyXUXamZ+/9m1PE3FO9LH7fm8GJ4cUEhIyElXPNBSKWWitZ933deXHFW0HVVlAk2KaDlX0iOt6tIpHWfVYesXT7ZL7b1e0tUpTV7RVT9qXFH2GsHRSSbA+RAh6kMSzqUyWaOmZui5tVzE9m+MNzqj2e4wzg83dR2aM0c8XtHmOohvIuoLQfMKs5ccfPtDXGZPpmPvlHaEywXUcqjJGN3U816KaOdRhg6nLmK6GPZGpqpiz0Yi+79AUBV1TeTjFIPccdjm5ZSBJGq6poUk9mqqi0KIrMobnQVqTZym2H9ArFpJqgKKhGDrDQcAsKohrhfZUkBY1bf/MSYmLmrxquPINRN/yfn3khSTQDk9sVisUx8WyfbxLm+MpxZrN6b0RbZSzmDSESY7cq2CpVJpCbRjUUotQFeLwiBA1dbghOR6oJIExPkcduXR6TZkdyMI9++OJVJuzPIVUnUJUJhzTELIKqROUeYtU5ahDGVHnCBWsYIg1PiM6RVhCwnw7Q/eG5L2GrBaopkbTCJquoawL6rYkikJyWaWXn3llVV5gOzqHbUK4f2I+tQgChyZPsKYjrsZDuqiiCA8URfZsF+ue+SaqptNmGZKscTzsUIRE11RYqsJw6NMmI0xN4RTlpGVBdHyHLKk80tMhUfeCvK7+kNRJaNuOTlYoUKjalo/HA3VTMbc1Br7DaOAx9rxnle9gBK5PYnvsPnzP5eU5puOS1BJyqaIbNvn6QG+OEGXPNlxTdwoXFwt6w0YgyMqavqlpi5Rkt+N4PCAZJheXY8Iw5PzigiM6rVYj9aCZFlGcEa5DDAGepTIIXExbQ6gmyArTFzPKkYXp6CiyoO5b+qaj62qauqYuVfI65T4sUNuKoWdSZzWO//yIp9g+mihRpQPuWOWYQCt1KLZB05ro8ynH25i7hx2a3lN2OUVVUpU9nZBBSCyjDB2NhT/G8mV6DTpLo/eD55SgoaFWR8h7rOAG2VLQPY9K0UnbknC/IXq8Zb3ZsD5WCPsM3//D+a4qcQyDOo2xbJ0qOzL2JDRNIS4qLq4vqVQX/+wFti6jZAfufv/XxJsU7eY1emDz6osX7CKJok7B0HDPRthLDywL1VXJ4yNtFaNKGqaustls6Kucpu3J/ILtrmUyH9EcQ4RUs0l2BJdTfFVFsW1s1wLzOR2hio4+DDk8ldRZQR5HIAk8xyEIPA6nhN0+xPd06HpMTUbXZLaJTNGodEIgSzLHtERVexRLR5Kg6XrSosfUc9R+hCM5SLKE6TpY/pDOMsnjA5rtUJUVuqyhmwMU7Ql/PGWsyjh+QFZUONMxuSQzGg4oshJDQC8JNEVCoaHOMpLTnjzakGUn6icJSXcZmBKN3CLKgoenGCvQUazndGyPoBOQlykSFd5QZxDoxIclbXiP1FcUxxDbrvFthWAwRbFnqOOAYDJjv9yjDVwUw0IoGnXVIAGODo8SCCNA1W1aueTi7UtOHx+wowNxGDEcTlAMBzQD4XaoRYFq6PSqzvqw493TGssKcCyPvlegV+lki7QpYbPkS23Ow+cfMTSJd59uaQ4nsIfcvHrDPonRlAZj6OKOBsiOT5Sk5Ns9eZ7z07v3/Pane3JZod0eMWyTLNpT0mMGJudnLkXYMtYKFK2kk05Q6VxeXqN2LdEpRJ5ecKhyuuSELAFNh6ZIVEAtqVR5SC8Uek0jbTtqYVB0CuuniFrSaMuGqmg5nE7oroPQekzPxvKD5+qq7qDqzwKIT99/g7AGTM5fMBpPEFX6zGFqSk55R5ocuF99xzyYopoyx9snyqLBCc7Iixr3+iVKmqJVKU2R0tYlURyRrQ70XUvVKciahWfJaJZJa43Iep0oTPjwUKMImeIxwddtVE2nLHNsQyOunplLg8DH9j3qtqEpGmTdwPMsHNvCsAym5+ckTylPqy1JWqKqEnlW0feCpq0oigh/OMPSTOLkhOmoCBnyvMRzB//uMEnf9//OD//b/+G/+29QZAxLpe4kdMdF0KLSUjcl4SFDsn3oFeS6pCk76laiLhS6PKauEmRVpu87LFtD6DrDgYmmCgzTwLRMPFPDt54tJH2eIHUleRSTHI4cjgmHU0lWNjS9eCZvd4KsrJAEjBwd35TxPZPxbIRQDRrxzCUo0wxFaCiKgWk5mAMfIdXkRUpZ1VRZwma9JUkLkrLjGOVkWULfNChST+D6CFnF93xkw0IC/OEAVVeJ4wTLslBkDdE16GpPmUdYrsMuzEgagWdryFpLW2RErUq427yVq+Of9yCEotCke0giTG9MgYPhjsnijPLhM7Ihs08zVlVPEDgclw80mz0pBncPD5iWgWp6RKcdZhny+mbB9ctLJtMhAx0sU0URPEehDZcOBamv2WyOmMGU9eZAVWT4nk1Wd2imge0NaTqDopZI45g03nGIMlbrI3l8IK3a5420qlKmCZqQ6PUhXuDRKzIq3bPCq+uYjUa4toUhKxRJwsT3uV9+wJJVrsZXDLwhqmcjeT1Ph0cUUdMPfBphQJ8Qvv9biirFv/6Sqze/QkbhYbvGcR3yqkNre1aNw76RkZqapzDElxo8VSFvWq79AVoa8ZRlJPsNwuiJt58I9wfc0YTA0RmKhpETMFuc0QgJazyiLmPa/MjqdkdSKCR5QV2kXE51TNvmmPb4gxF1kdK1guP+QLS8xTBM4t6kaVryJCaKYrKqJYlz8jTDskymlxcE83PSpkNqSlRNQqZG9II4zcl7FXcw5Oz8DIWawSCgEiqGPyAJD+TRCVEnmGrJaBTwGLbcrrY0dYbsm1zMLiA+4gx8ZE2nevcN8TFCVk0mlzfYlo6um8jugNPqHuvqa5rgjLuke+4LPx1ITiG96DicDqi6YDazqdY/4U8nTKZTrH5PsV/inH9JIXxWd7eYdUyZ18iShB6M6USPrpoUhxMiqyjlnijaoXQ9m+UWXbVwTRm5LRhPJwhjDkLF1ExMU6LuetAt0FW0ruDd7QFzMOMYxpyWn1ivH6mKCtcxuLv7SFXmmKaNrshYmoQu9Yw8D8OxGU4sZF3gBCNUZ0LRGxijOdskYWTm1HGIqYLU1gyvfoYiLGxNIUlCdH9GJxuU5ZHH+0fSSuKwP7J5uGVYJSw8m35wgSw51GmOZdukbYsY+BijEaVR43oBadkgqQqODNuiZDzwUejIsxN1lWLqBjPXxaYnPj3wuHvi/XLL07ff48sVoqyJ04L5zc+hruhlmaGpYlg+ZVJSxAfaXmK1fCDvdBT7nNHQR6WhaRtaSUezTCS5Q5E7yx4+SAAAIABJREFUDusQ2zSRActzqIqa/W7LfnPH1eWYME3wLAN/cclhu0QRgriCNM9Zrw4kWYFqGgjLI8sgmEwYLt7iBj5qW3B5sWCoGwipw5ZbDEUDWaWioIyeaKINuwRmZwvKNCepN5xd3NArE6qup6dDsWo+HPecDReYpk+12WK0KevVik6HPD6hqBKmY5IdtsjHiMvXX2IszsjKA8PhhA8f/g5/6DEKXlKkJUWW0jUqQsh8/PEdUdIRNzKS1NMIiZvzM5I4pms7kC22T1vSJGG3WSM1MZauEQxHdIrGYbsjz1KysqXqWvIspa0qhKxi2gaXgc7Z0EcJRmiKwmQ2Zx9njGfXnC0m7I8hs4lLMAyoah1d6ZD6nDy8pegkLM/l/bffccwrHsOUXjeo0pAkisnTkjevvsTXVLQsIi2fkXSn3ZbwVKANL7m6fs3ZZMDIbYnCPVYwx7IDLNfkGO+oZY+87HFUGVmT6ZuEpk7ZPjwruYPpDDfwSKMDvdxjBkOKrGbz8In+tOZ85qHrQ7LOIFkdUaIYa+rgLoboak8YlTTYjEfmswmslgkf7sjzHGs4Iz6eqDqFpsj4+P6OU62iGjbLuyVJktO0Ld5wSl/ntMUeQ/QEpoRtu0wcDd+yGAYBtmvhDCYUWYYnZOyxR1enDG/m9PYIydKpi4i0SHj/uOdpt2e1usf2bLpO8PHzBmSTs+sbgoFP4JsMhnPqvOHpx5+ITjrzm7ecvbxgc3+HUtWYmspgEODOhqzLmqoo2BU1vSxhGTr1fkNeZKhOgKv2iCJlaOtkRYQWPDN9zDLCM1WOjw8Uhw1RVLI9FIRhyOPTE0lWsYlyenRc10X0OdOBjW27NC3UWcjl2RjPXzC7eQN9RpE2hGlJFifkZU/USdSNTFd2VElC4On0soGmahhqh0WLaiqcwgOe8ny+kt0ARTPR5I6yB83oedxHSOh0dCzXe3TdQRgt26eHZz5akuPNxzhegG8qWEbLcD7HVeHu4wdUSaJWhgQv/whDyCjegu2pxPKGjCho8oracMGyWd3eYSrPC+eqjMnikoGhUBYV6yjFnnhoeo/n6vimgm9a0AjkIsL0pyxefsnEM9ivP/LNT0sqfcr1ZIqaFiRRgje2UKqQp08rqlrndNiyyyPKIiNKEwQyfQ9VnNJ0Pb4/ZPNwRytJKIaJ3Z3YHypMzyUtEqL9Gs9QuF6cM5mecXE2hOSAJMuMrl/RmUPC0xOm2qIOF6i6gVB1GsNE01WE6fP4eOS435FJJao/5PbTHV1dcnY5w3UnyJ1OkzUUaY7ct8zSBwxDwr/8BbeHlqJu0eWOpi3JooIg8KlrMDSJQ74lKtdUXUHd5Ni+Q9/VlHWLNZxhNBlKU6PZM3Rdoem25KuP9Fik+wS5iKianiqvOTs7ZzA+Q9YsqiJHymOi1ROy4aLZUw6bI46tc9pt2Tx8RnM8dFsnj0/UyEimTd3UNEWLotpQdcjA+WyE6Tyrd6WmwpdKmjpH9ceYszcgZOI4QjIM0nhPVZacDk9kyGz2B1pFI88LsiIjzitkXaNtUkbTAePZGZ7c0GUhY1tmqIElNQwcg8EkoJZ6wm2C53sUwkAM3yIrLuE2p0IlNix20YZ4/YFeFCBpzIdTyjpBUwWKLHNab/FtA+E4WJMr8t0ROU6p1QFlJVh//x7FMmksCVGmDEXBsEtYf3wgSRs2YYmqCqo2524TIasWY8/CVxrmA4PxyCWYXFCVNVUvaIQOteD4tEEUO7LwxO5wohM1uaLgLea0ZUOU10i6Q1Z3jEYzDP05aTVZLMgUjd1+x8Pnd5xPh/jegLaHh7sNXXRk5skMLQ1Ft7h88wVCt/F8gzYt8AYztNGYzSlCMwyelnck4Y5ltGdbZ5T7J15df835iz9G1TyqqqMXNUwcLA3E6UQjKSAkujIjPm6RpR7bVLEck48fPtFWBVW44WoRIDkjjklJ3lT80esLyGLuHp64eXVFcsiJFZOL8xFis2G9TSiFzd2HFXZzxHZ1kARN1GJ2PbTP975KEWzCkqqTKTrtuSbbSVSaTYNEFB6Re6BroOsZzGYI1SA7blGaBtcxmU5G9F3FxWRA3UgE8wWHzR26qBhN54wnAyxVpchi8iLlcbmk7eHjckXVtpiOTZbESJJAdzTOLsecTzwuXUHfaVTCJslq9OAlihTQbjdskwRpOGPdN4wmI6SiRaehpqbR5f6Xv/j5/zwc+e+7pkLQISkKZdOSxxFFmoGskqYlhmkRpRnj2QBdSDRNh2XYbHdHDustdRyRpTmKZhLMzzm7uMDSVUSRIMkasujIs5KuPKEqNfPFNUXYslk+EsUJujtBampqVcHzHeLDc6W4q3LKPKdrnnmiVdvRSYJOlfGGIwxdpy4zFM3BnV4iqSrpPsJwHE7pEdE2VGlCejqgIbB1G8eygY6iKbFUDdOyUVQFSRKUTUu6v6fKY7q+QxYSpmPhBgOGFxdouoXQLRpZIqtyeknQCkFVV+iGyX/08qv/+v9x0uS/+i/+y//LL/3/Zb7+R/ytd3f3f/6//uu/+PPo6YmsjllMx+iaTngsGFy+YTo9R/ISDvef2W4SsuORYHZOk8isHnPSxx2m1NIkEao1wzJkJjeXXJ/9ERevXyJ8F99SKI5bmr4k3a3J9jvq6DuKJOQQpewLiZuvvqLKNsxnBqNpwKvxhE7ICJHQVUcEOkWWkSUNx0hm2IekZkZYCGTFQjIc4jKgTKJnM5GvU3aCsqxR8xN90xKWOe50Rl21UAlEoVDdxni2x/bzZ/wrA/NiweDlC0aL19y/+9/48PknuuFX+KM5399m2LZHttGptIxOsSiMF+jujLYseFovOUganR+g0ONZHiNTQ1Y1jK4l3284Co1IaQm7gnNNp5NqkqZCqhraOqBz5kjuOTEmmi0o6pbT8cD6hwe++e0PHGqJX//zP2ExVdEsgf/6l5Snns1mS3mMeVxteNgmSNqYX7x4xdV0yvbxM6YwUNIa4/CEedpz+7hDHc8IphO+/OIFUd2xuLqkyAtEU5Ac1tTpiTw8cjjdoYQ1TjBAo0YBvCajinZoSHxe7tkdjgR+yHxxjdWNUPyXfP/5I+HdE19Mnm0QuDJVbBAfd3iOQvjhM5ZUYXgBL37xz/AvXqE6LiczwO1KDMelPK3QrYpq+8Tj42cWv/yK2ainlwVBkPHipUNf5eSew3L3mY+PNcd9jqa4fPruE/54jmPL9BIIPUWogqrpEKqMrgcoVcvV2zlfXp9h9jmKUqBqCmGUsQsLouiJx6eUrmmoFYf9MUMUIWVvUHbvqIsY17dwlRLJbDiWHS/evEGTWtQup2g6NGeETk6fn6gp2J9KLA0cSzBybbTBgEYRDAZTqqrhKdbYLh95fFiS/uUtwewaVXR4WktdVTiDc7KiowyfsHWDH97f0tYZebLh7PULzjwPezxEuR5R9A1lvuRYPqIaP6cPLtEdh+Nmj9Z2LJueMMv5cj5FbmtUd0iHR9rUfP+449w02K1Kvtk0/MVffUvxeMfXc4+vFyZSEeFqa8yBi2l0qEqHOTBIcwdLveL2YY/ddUh5xuNpzXx+RfJ4y3p/4hAlZNEJ1zKIooSm7ZnOZtRtT5k/KyiLomTiGvzuuwfKPMYxdayHA6blIKs6dd0TJQWHfYHlGjThiT7N8XyfavuZmhSlX9C0DY1dMfnyCxzTQpEqRoEBvUAzHdL9gR//fsOlbzCdzOkmOl3ecv3LC3bVgqwR5KLjNjlwyivOdJPRdMa6VzmmKVuzAiEhRgt8y8Aau5y6b/n88D2bO/iZ5SFZFt/8+Mj9UuMVl8iFw3IXE7gudZxx2my4+2nFp/tb7OmcJDpyikM+DZ5ZK2GYsdsfkHWbODzQlDlDW2URGMRbHVVROcQlDSq25xNmNXGccDrt6YWM4Tg83ObMfZdtmjMeTbi5uqIpUxTjO25ev+H4mOAGFoE35OriFYYhMbsIMFBZvvvIba+yXB0IHB15fSSXLdbrDbvNmrIHoQR84ZrET0vCOCGWJPL4wKenI/Z4z1HVqYYe/cDHmgt6a4w5fM1qtaaZXOGcTohwi2yo6HJNU4fIbYHy+PyC9vbr138ASbeM5zPQPZbrmDeLKVl8oNWc5/TebodSmlgzhdAsePd0z/ruE/v1jjJT+NU//Q2aqaBKcFivOKyfkNV79o8rellDcwe8+/CB4OIas8m4e3pPlue4pkmxOdDXNUPbQNEUVNMjcBWGnsXV2YDFYoobBLizMbrro+geiu3TIFG2FUiCJDrR1xbRbsX285LvPm8ohMq5M8QyFXR5x3Fzz+/u7nA8mz/9j1/w9a8C+lZCDyN++7BHZBYDZc707TXRp/eEt59oKp9W2nM9XxBaLh9WB6o8o9zv2P70PU/LWxTbYeEYuLaN0HS0NuPt1ze43oRO60moSTRB7pj0lodmNsiiwm0D6mNCoJmYro9hWszHLvOJj+/ZLJdLtM5mulhgWC7b+99x2O5J44LHY8Epydltd6DoZFVLWxS4pkEjZCzDJAh8qralTGPq/nmh3BUReVGiWTbDyRxNVNi6gm5ZnE4xSdGjmzppmmHZOYPRhIE7xdQktvUSVzN5+eVbLm8u8Rwd25AojnfU2Z6kD/jxXUh/+BHHG1FLEX4wRUlbqrbALjPaKeSSoPFsVvc/Unz+t4gyoqwlStNAG43xz6bUfcbd3R2kJzxNZhgMGAwXnJ+fE5UFA0mjVE2WpyP/y7/6nzgqc/7Zf/Yv+NX1BbPpCFMvePjmJyLZoBUG5WxEsW85lBlxUyEUBbVIEKLl5ddfY6omr2cdw9kFiuVhSBm///uPyFLHzdlL2rLkb/7q/4AiYzqZ8fVvfk2XHghXn7i+GKGNLkH7grTukMyA9LTlsFljag5ZLhCSID3EPH3/E3eP74lU+Hh/y9mba3LpS4bOkZ9/9TXumcvF8ALSHWaSosk9x2SFr2gsphMO0Y7T+g7CPU3jcXhMqGWLML9l/NWIvisIoy2KcJD7lqpXMIrnFIpsepjeCM9zKU4Z98tbvlvCePKS+x+3f0jo1dSN4HiKsQYT+qalPq2Ijic6c0S23uMEY243W+r4yPj1DaPxGZauYbsunusjKTqqJNOnBQ+//xEj6rl4+yX2xEMeQNbFCDMgDg/ETw9UfU+Y76kkhae791xfvODp+w/Mzy8RlYrel5jZkdXxhDcckUc7+iQjrjoOhz33fYs/WbBYXHB+foZBz9h2aeJHNrc/IC+GqK//mNHPfoWsyzxGNcFkQdPl7LueiTtGaXpW8YFMrHh9PcO2zml7mzZ9rgCjGMxVncvJmLoH27Fo65RaUxm8+SXHp5Duh3e4dc3izR8TVTvU9BPimPAhv+Xu8UirGMxGc5JdTJhuqTtBVjlMHQ2h6GguJOERw5lzfr5g4jvISUIbdOxu94SKYKxqrI81+7bl9dxjE2bcrrfcHdecypY8/x26ouJ6A/zxGbNXb8nLig/vd/zDtx8ZOAY/+2rB7e0jh80aT4eXM5tXV1O63OD64msEOcGLlziTawzL4aapSI5rrKwlMw00S+HG8xjNvmDiz5mcfUmvDsnzmvX+yLbN2YcRo6uXiCRD6SSQ9pTJI20RUqIxmgRcn82p8gRnamA4Fkdlzu27H7CHLo8Pa4rdhr/63QOP9ynpfkc+H/P4YKLs12RRTBHGnA8cfv7mBZY3pqh1crOjjCMe/gBcXYUhn8OUqO7pLJ8wK2l0k6sXX6HWLZJuE522FFlF11YY1YnR8IK686iqhs+7LavoSDD0iFWZIq9w8pymyZiOBxxPMamhMx66DK5eMBId6nhIetzTSjVl09Mhczqe2OxDHNvgfDqlbn0ec4nZ2QVdZxIsPIQesPtxxed1gn8z5pA/4bw6IzgLSNcRxTGlKhNsR+Hrq+v//sWLr//VP+K19t/L+b8Fwf6H+X9vTqf9V9/+/d/+S6nNRdv0SGVKk+coGNSZytQZoHYSWZhwv1ojdJNjkpEkKavVE0Xd4FgGg/EEdzxjcbFg4inMxxb+2YK+KbHVnr7K6bKUusjpi4zisKPtOvJGMH9xw2xsMvQlzs7HLG5eIUkalqk/q7toqKIdTR5SpjGaqmA5DqbtE/guGhXh05LNZgtlxna3x3dd4jSjazu8xTW9JGFLkMcxqiSYT6Y8PjwQmDZDb4Bp2JiygxmcIdk6im+QlC2rpCLZrVh++9dossyrX/8Z8+vXtEJmMJ4iySpFURDGCUPXZp8VZJKCVFcMTJ22brBUBSNOqNc7DvuEuCzpqgjRFOzWu+fYa9VysbjCNANGwxm6rSFpHafjI6uffse7v/897z+smb38Y/7Tf/GfMzQaPry7p+o0DocTt5/u+OGHD/z22w/o7ojzi3PevH6BJPckpWBy9QVnQwOzTdgUBqru8ebLr/jieoSUbvn04QHJHtIiEQwmRHnLarXn4faWF5cL4iii7cFyHEbTMwzLxnBcLEPBMTVkWSI+hhR5hjma4s1n3H78yGG94f7zEgUZR1P49OE9u/Wa+LinLVNsf8Ds4prRdIrjGLRlhmy4VJLK+w+fKW7fUYQhVXQkzmOe9lsELS+vpqhSi6oZWP6CulHoW5gGFsd9BEJltXxEqAqyJQECSVMp25q8a2mSBCOrGCs6v/7qkqtLF0utEF1DdMp5XJfsIwlJFtzdLck7jUKYNJ1gtztgWC5xWtCrBlGcEMYpSdmj6wZ5dKQrUjxbw3UchKwwP5vj2iqOZzMYDp5NO1rAbn+ibWum5+eYjkMrZFTbIopibj9+QlIUmrLi7u6Otulpkh02GVmrINtDurZlMvAxDYun3Y6JpTOazlBdn74TiK6nyDJSXSHtGmpjRN00pEnEIU3QDIP1eoXTl4wHAxzPxzRNUCQ+pSHLumR5957lh+9oq4QqCmmzhKlvonYZcpPQ1CVJ1nBx/TUNA2aTK/K0ZvP4SJHGmJbBeD5DdDK3P35PWZSsliukrqapKoqyoe4ED8slwrYRTcd4NOTy4pyzxQUKoIkWg5YwjnEclzQrCbdrDFkwPb9C0w3ubj+z3e7RJDAtg02YYZkW49kZfZFjGCaBP2A0O8MwPQQ9yWlN1/Xo1oA4bPjuux0vv7xh9ekHRvM5pWRwuz6RFDUDO2BgeOx2T8h0RKeQvChpihKhyKRZjKpJlGXK+0+/Q+1qXn7xli+/+grTdfh8v8a1LDTD4PPDI75v0pcZ6/t77u5uOW2fnv9XzhaExy1v307Zfv7E+1VMUTQcD3sANE3lajFl5FjESU5eNGiKzOaUUreCqoaR75PFEbqqYpgmjhegdC192zE0NWxNpq8LppcL8uOGRmp4fHjH5mnN9CzguD8ievC8gL5VGCgZXXxkPBxS5gVPyyWbxxWSZiCpKrphEngefZGidg1lVdAWOZUkI8kSWdNjB0MUXUc2TG5uXlFlAgkd03GRaemPW3RFRmlSFLklTxL6Hpo6pUxTXFuHaE13OtILGc2Z0Qsd2oI8T8mKmvyQ49Y21sDgqCRsD1uiuCCNU6q2ZzgcEgwCJOm5LtjVDbrlIckgqgLR98go5EXF5fUFqjWgyDN6SaFTVI6HI5oMiqQ+Vy6aiioraLKMvimh77Btk170aLqJhIAOVNOm62R6SaIoStq6pO8bLF0mr3Nu71ekFQTjCdFhz/3DE+EhxLMUfv3LAX0dIrctaaYwPXuBKlVsdlsWV1dIuok/DhBkaOJEVUVkVctPjzu6quS0fsTRFLqqojoeGDQtvqZjaIImj3nzs7fMplOarCSPErpWpq4b2rqhSk4UaU2SFOQ1yKaLZdksFnNe3lxjWxZVWWBrPfOJw8Cz6IsI31LwLBX6ju0hJ3Ac8jTF1nXassDXFNqup25aqroha0DRbSajIa6pMp3P0DUdx9JxByOs4YJTXJDlGaqqU0YhSRKjS4I8iVje3SJ1FZbtoilQFjGn/RrLseibHN8xUERFX8Z44wVRnFFEIZt9iKprCE2nQ8YydHrdRqXHUFWkuiGtCk7LD8jlEem5lMVwPmH48gtQDT7dP/D+u3+gi0+8vrpkfvGK4XAMAloBo9mcgWszNFJeeTG/+bM/5Rd/9HO+vp7j2Ra7Q8Zhm+J7AWVf8379yOfNio+3n9itlmTbLYEmMzJknOCKP3k752evZ1RpxuO771HjOz6//8S7nz7xD7/9PcMu4s9+8yWu9mw80hWF85s31HlF38skhyPH7Z6m7ZAUHcdx0W0PyzDIjiFCMVAsh6SseTqcuP34gdX9kqqpiNKI9LBGES2WpuBbEoEB/mRB3gh2h5RTo3F9c0MrCZZPKz7+8B2n45E8L5AUiMMnvLmLrAlOeUnV9lR5S9sJrOGM8fwFk8kLBo5HVRU83N/z3bef+Pj7d6iSTIdMV1dMfZPz87PnhwTLpCkiwt2arGy5fdhj2i6n/R65SpgOx4DGwLEYjUdM55d4/hjX9mjihM2372gft/zpn/0Zi19+hZzt2X58z8Pn94T7R4oi4xhFjM4vMP0BbZZjWzZFXhIeQzzPp89zRM+zXr2rsDVwnWcItqKbFFVDnKTkRUGa56Rpiue7jJWW4cAhGE/RBjPs+TWSIlOkEapuUmYbfvzmL0G3UHqDLitIy4K2zxl5Y0Tbcdqe2G7W5FVFEobIRY2maxi6wtCzcXSLugSpN/j4u79HNVQ0zcA3oRUFt8sNjlQS7XaUdYvtepiaSh6eyMuaon4+2wxtg5mjYqoyVSdhaCrBQMfTEoZqgaNnyG2EqYJtqghFZjIZIusq9uSMpJMpqpbJeE6VZ9A1mKYBho06PONsPMU+OyM9bPAcl1evrxhooHcFlioILIXpwGLkPyfPnNGUwfwGy5/QtD30DVm4Iz5syauazX5LHufousPo7IJOyORxjFJJKFggVOqmwlIUKBtkIRFul5ySE20rUGSVLC3p2hpDk5heXBAVPR+/u0WS4eWZz9/99bcYg3N61SKJcoxxQJmVHFdP6G1NV1V0ccxvvrzCn14Q5zIiE9SrhOjpxOEQsdxuOaU5h6JmnZc0XUuvGcxv3jIejemL7FkmYBl0bU+WlpRZymjkMRgN6bsOyzaZTseMpiMUVaOIM7b7EGc8hLrBczXqNKXJM1RFRpEkdE1/rpALMA2Toigoi5IwKTBNFWSZyxdXuJZNU7ecfvgBqaqgrZFNQWxr3JYn2nONVy9sbFGxXj+B4ZAf9lhyw9uXf/Q/jsbzn/6/u+X++zH/YWnyjzS79cNX77/51/+yzyOhdQ1CSMwnMxTJZPPdZ7Rdwf7zkqenRypaijLn9vYzSIK+7yjjParlMnv5Fm88Q9Q5vt4zWsxpJA3LUHF0gdJVRKcI0zBJN0ua+IgQz9WJ0WSAqTdMz0b4ozFtXdMLGUlSMA2TuijoqpI6LUjTlraq6druuQMoKYhegKLjGApNXWGYFlkcUkRHhGHx/fffsY4S8qLEbStsSaKJInzHZXF+hReMsRwHXTWwbQ9j5KAGBi0Ktx8/sP3xbxB1zuzmDeObn+FPzlBUhUYojKdTirrm/sM7muhAWeYYpkmdxhi6jqxqaFVBtVqxKiUq2yGvCqgz1Cpmu96SRBFf/Owt/uSc2WiM42o0fcrj6pZ/85d/ibz9TB0n3D4dGegNl2c6h2NE3lv0ssrxEHO/TSnLFoTMz3/5K+bDgMnQJTxFeIMJ85EPZYliutzcvOb6+pyJCZOBjeE4pGnF/mmN0jWokqBXLcL9gU+fV5RZwfz8DCSNqu6Iooi67RlPZ8iyiiwrKKh4ToAQLR/XW4L5nHHgE+YFQTDm7tMt4+EYoUgsH5Y8PT5hqj2Tixd8+et/wuLmNVQJbVORhDFZWlCkKbbIOB73vPvxRz7d32JaCm+/eMlw6KOJGn80RZVMksMWqWvYrNc8LXdUrcVuf6LvO1zfRdM0+rKlbxukpqJOCqxa4p//4k9488UFXRI+k7WXMct9R1IpPKxWNE3O4y5D9uds13uSvKFtoUNwPJ1Yff6EXp4Iw4TTKWS7XtNWBYYikxQtSV5hWg49EpbjYpgGg/EUVde4vLlmMB7SlDXrxy2SrGDaLm37bFDJi5b3337Hx893dJ1AMX3QLfoiJ61lDNNBURU0SVA0LccsRcsjzqZTZElHKCZ1kdLLMlUtE4znWJMFMh3IEnfbNbvjHkNV6IuE6XBIWdXIskRXV4TbB777h3+AaI8tOpQyQ60z5DyjKWv6poem5PzinBcvf04w/5IsaWg7WK93tGWKP3AZzRa8//4TfdeQZM9mApmWKIrZRzm24/CwXNG0DV+8esV+9YQmOnTFwJuM2a82vP3iDfORhyUL6qrkbBJQRidMRaGvK/ZPD3RlxTErCUYBaXjCNgxORY01GKHQMfIdLNfDtmwUzcb1fQxDRhEVli1jORpXb14hpIY6e8If+TTmnLQS2JZNT48MVPEJ3zBRLJfDMSbLc2RZUFYlvqOhSg1lsuWf/pNfMxydY1sBh8eE3erAfrcmSyNeX11gSCrRcU+VZqhlQ5tXuOMF55cBfRXTVxnbQwayTVWWeGrPZOTz8mrOxLUxugohyaRFjabp2JpOkZeIrseSJM6GQxRZQhYStuPiuz66LBg5Fn1ZYKoKbS+4uLpgPPYY2C11scEwBJeXE6bTMaalU2Q9XuCgdjVl3dBUBac4xg0GpFlCmRfMLq4wNZX7zQZXE/R1gaTIWJ6P4njPNdZgTFnUKHLBq+sbbNUlPUS4vsN2f0AJ189gtzpDoqWTeraPa1TRk4V72iJn9cMPpGHK9KtfY02vUHWdtimwgwF5UmOpHloLyw+3/N3ffcPH+3tc3+UUhTQdWEGAY+o4lkkRF6SHHULIGKbP/umRNMxoyx5/EOCdv6DtwbFMHNtG0XQGqoyvSAx1iRfTIa4uMxsHSPRYmkQUpcRlhW9bGLqOZGjIioKEQJZVUBSKuiZLQ9oioykzQCbpZD59uiXLChZC1DNyAAAgAElEQVRXC0ylZzy0eHuj08ZL1quQ88UVm8cGU7XxggDLd5GkHk3uEHXBYLqgkzS67EgrK3zap2gSVGlMk8bIsszs7IzpZIhqKuT0OJMRP/v6FXXb0OUHFEUhzQrooUxjyigjOpVUFSR5RdUrnF/f8MUXXxB4Lr3oaatnVpCh9RiWgecHZEmKJmus10eqqkfuOyxdo6lbkrTg/pCySUqatkdXFHzbYuR70DUEjoOsqpiWzXTooTsDpvMZsgBvOEWWVVTdRBUdlqkj9w22rqOqOp5tUOcRjqURRyFl15NlIXK6wpQLZHtG1duUSQRVQRzn7J4eUWQVx5+iyjKOaWGZFoYknhd/XU963FLGB7q2wrR0zl+9pVUDHu6XxMcDjpRxMfawTRshafSSjKZKaEqPomnMBi4D22IcjJjaKkNTQepUDvucaHsisGWypuC379/z259+4Pt/+2/IHx9oooRFMGTkOEidzm9+8XMGhsR3f/Nb/ve/+FsOd+/54Zv3rJ9OGG2NqygcDhnTocuf/Ol/wnA0xvYDDMfHHU5pqpK2l1G9Mb4/RNdUFEmh6zratkUCiqR4Vo8LQaIY5L1GmlZ0rYRMSx2uyZM9XfJIdbhD7lrKssK0PcpOoVcMekmlLSsMAdF2zecPP7JeLlmtD9DJTC89OtGTRxGSolG3MkISGNMFhjviZjJC7jtWDys+/PiA0kCfhbR5jqXK/J/svdmuJdl5rfdF30esWP1au8vcmVlZWSwWKZJHonx8LMOA4QvDl4ZeUdcGDmAfwzgXgiSSYlOsqszKfverb6PvwxdbryBdcbxBRCBizhjzH9/w1JbpwKc3nmJqMkKVUiQhCg3313PuViFFUWP/Wyw2SUsmoyEXTy4ZDk8w3S6yYpGFB+wy5cWzC7769d9gTDzqdI+klchWgxDecn/9kT/85rdops5xs2W/XFLlCUJbUKQpltVBqgXqOCJardEVGafjEOwPSC1IkkRWlpRlQVVXFGWB4/nsD1sM3WA67OMpIIstbq+HrFu4XgfX8TAlEfG4Y+JadLtD1Fogz0K++/SOp+dDup0eSRwhqSZ1I2LYFrskQZFa+tMJvZMnuE4Hscx5+P4tm09zkqzh02rOy19d0psk/OmH14Qp9C2FJo9BEsmKx9KA4+GAoymoskRRCUg0aE2JrdR0TYlKKEm3D5y5KuPL5ySbDWVRYvk9VM+nqFvmQcI+LXn68iWi1WW12WKWEWe+R9/U2Ox2HKIMoyrxhRpFNRhcnOM4Oq5YkWYwHA0wqgRdqGjqgqrKsG2bwdkz/NOXtKKGJArkSUJ6WJGGAbswZrEP+XR9zeq4JW8Fep0uQlMz++E98XX8WDKRHymqkp7jI0syRX6kTHbEYUiSJKi6QZUnDMYj4kqk2IZs3tzTVFAXBWmuIIoOcpnS8w1MKcEWS4QsYb/fM/ZsbFXj+eUlRd6yXuzxyCDasVgsEHoKqZzyaZ+yqyHIK9BshqfPGA166JLIoD9mcDIhFWQO+xChqrFNDVOVmJye0Ov3cB0bx7YwelM265DjIcRyOxiqRhHtcR2bzWJF27YMBl0USeHq3UfKOMD3fTRNoWkaDscjlqbQ6xgkeYsiizy9vKQoa+qiYXz2hDiJCbMUa2ATeQIya0aHH2k2SyR7QiuYZA9z5AZ++s0v/6HbH/3FNPl31l9Mk/8gLRazV2++/9e/V2gESVHodHqcnp5gGCKHmx/543//fwiCLepwQK2qfPzwhsNhQxiF2CqcTCeYfh/fsXHllq4OnmOiWD6WruAZCoYmU0QhSRBQJyF5cKSpKiR/RCMpdDwbU1Ogqri7mrPblUiqh2l4HGdLdjcLVp/vmF3NWD3sEWWFJEqIkpJWVBHsIaZpomsKHdfFcVyKOMJQFIqy4O72FlOReVguef8wo8wSepqMJoqoso6hadjdPprfpXFUVN+kbBokSSXNc7b7B0xDpzs+Q3d8xLbBNk0MyybOcsIgwDA0yvjAMcuxekNU+fGUTaor4vtrdknGpqq4vvrIarPBsl2U4ojn2pRNy+DZl1xMRo/MkDhiffWBP//zP/H5zRukuuLl1894durQHY9RO0O0zhTN7bNarknzmsnTF8iSzJOLU2xNxe94pOEB2/FJgxzLkFCagrqqkeuGOg1w1YY4TPB6I45xiiqJnHVsrr77jjjOOOyP7LZHzG6PKs94WG3wRmMqZNq2xTBN1qslqiIzGo2xbY+0qDB1jSyrsTSdnu/RtT2a+rHO2PMdyjTDUESefPkFz//qb/D6I9z+BEVR2C9uSZKAQNCRDAuxjkGsSKoM1zN4+uIp48mQIIwY9BzEJiFcfUBSFPIa8jJhvd+wPBbkMWjImJaNhIImqGRBTFWUCEnGzy7PeHE6pS0jjqs129WRsLRYJAUfr69Z7NaYhso8VpEVnV0QUJQNm+WCJHjsmC/TGEN9BPyRJ3RtE01zWG2P7KISQba5vbphv1rhWia65WC5Xeoyo9tzGIxO8MfPoEixtZLDZgdtjabImHaHWrEo08eTdEnVcB3vsYHHtYnDPftdxKAzQJQegYKKYaDWFZph0zQtVZ6R5BmJIFIIKoLrkuY5RRYT7veMez2ejqcURUFZ1khCi6aKfH73lvwY8vR0imvbNGlMMF9xXKxZzPes1jEXJ30QFIYnl0wvv0GTZfrDMZqi4Hdtnn3xCsMdctyHQANFSpIUSG3Fzd2M2WqH5XhkSU6TxZyOewz7Q2zNIt7teTI9ZXJ2TlnlKLrOeHiCp6p0HRPX69LrdXFME6HOaIsaW9O4vLggjwNuF2vaqmIy6KGpKoah45gqrm3jOD66rtO2AqJi0JY7gs0tugnDiUWVrUmCLXbXo5Ys3t+sSYsay3JAFNkvZ4jSoykWhiFJluEYGopm8OLiDNc2UISS/uCU8eCComyYzxZ4PZNaSPBsB03RiHchZAV5mBEfSpyOSys3jE8dxOjI/brgdDhitV7jWSpn4z5n0xFKmSFUOZLpIcsymu2g6iaOImNKIk2aItUthqIxPTljOp5wNhri6zID10ATajxNRabGEmG92uHbNuvVhr6h0Pck6iahaSXCQ4JWZXiehyjJOI6NKkloioqpKoh1RdcycUyTP3z7Z+q2RdBMWkGAIqU2LVpBoK1jZvMHBEnl/OIpjunS63fJmpJtuGG3fUBNI9okRBYKmqYiTxN22z1tWyM1BX9+/YG7mxnf/PrXKB2PMo8QhRpZU1kGLRSQJ1s+zP7M28/vqSoFWZAxPItP7z4ShwmaNyQKE4T2EUKbhUcOizmCZtEUNYokoEkKk+cv6EwvmV3dUaY5q8UWLUm5WawRmwarfawY9AwVy7ZQDIOOqdNxHRzVIkli5FZE+7c2MAQRQRRo25o0ShBliSI8kAYBeZazi0vs8QlxXtDUNZOhydNTm8nYpK1tvvzJN3x8v+PdH37ElDWOmx1NWWC5Npahs7td0sQZmmYgthH744FIHz3yr6qCtm0wLAuv28GydIanJzi9Hr5nMOjZJHGIbhgk0YEkPpLFK+JwTxqGtJhEOXz/7jOjp19ycT7lZDJ8bCTSVAytpUh37JYPCHlKk0TISCCq7HcJqunStLDbHri6XzM7pmiGDbKObVoUZUlc1MRpDgjojo9u2VCkCE1NI8hQF7heh65rY6gGpuM+TqK4DgoiXd+n2+2QhzsoEzRD5ex8wmKzoy0THEOlaQSoSvI4RVM1aCpmywNxJbFrLUzdouM6aKqKZ1mUVY2oqKR1Q1UHKO0BaLA8B8n0Wc63mIbE86fnXIzHuG6fzS7FG51w9uSCycBDEnOOyxt6VotlelidcyxrSFvUbOdHZrOcjm6QBEf+9e01//333/Pxt/+ElB755skJRisy8ny+/uoVX3/5AkuEh6sHNtuY7WKOVue8vLzgf/rbn/Krn18iISArFjUqg8GY8fOfoNkdFMNCM000VUMTWizLQhRlijgiWC8fK1eDI0WSUMYRVd5gWC73+5DOyTma06UsGlRJwJIk7t5/5O7Hd3hCweJhjaqZ+N0+k5Mprmvxcb5GSBLEvEARVPIiojc1aWyTyfkIyWjJq4KizFA1k6QQkDWg3vLypIOumNxefWa93tBkDY6mkxz3bA8HjscDiqbx9OUrXFOnSUM0EYQiQSkydvMl6yDDVWRcWcQ2HU4mE56//BKvO8ByO7SIiGVOz9IYnp5hdHysyRC16yGaCoJpoXc8DMfg5U8uuJj66JLIh/dvefvp02MkzNSpipwkS6mbFrkVuP/4GcdyMVyTKIw5BgGWJuF5FkmWUpY1pmlS1RV5EtP3PTxDZehaaIqMLApoUo2sqoiyQVu3yOiIuUG4rkmLnD99+4+IZsF4cIbQthyOSxqt+/i+VDmr9Zzz0zFet48oiXRkiXS34923f+L6bs35119x/uqc3qDh4+dvERUDTxMQhQqpqTgeE47HhLoVOOxD9lFGg4BnqAzUGk+qSZOSN8uMEoW/fjrg2dffIEjKI3vIcdkcMj7czPm02PNpcWAVFZycTnAnF4iDMfuHW0a2xLMnF5z5Paa9DtHxSJwmGLaHZdp8/WxEsVvwsMvpd3xGvospt/RdhfF4wMnzlwyefo2s2ciyStuUROs5++WMum6Z7yMOx5BakXn97WuavMQyLYbjMbKt88Pn90SygDPu4bgukQ6rbMcxXpE83D0eCqcRilDg2QbdwYTdds/i4x1CKXAIEsK84vmLKadjkenEoOuLyHVIFh6Zz7fEYcFo1Oc/vXqBkOZsbrbozpCL//xz1OYj+8Vn7h5mXG1i1nlDWIOsmYzPLukPRkiiRL87pje54H4Ts1gsKdMDjmNA1aApOrYscTqZ0vW6dLoD8rRAMxQGXQtdabh6/4HgEOPrMtvlGtcfcDqZcHtzxeL6E45loqgyqiTSFgmGrjLyDWoEFF0lS2K83hDL8dBcF1l3mP/uWzRFQ/Mt2iDi5je/p1iEWO4JpTpis4jwTBPDEHj+k5//Q787/Itp8u+sv5gm/0E6HPav7j+/+XvdMIUgbxhOTvAdCzk7Es+u0R0H2XmsaSyqijfvf+RquSSrQVB0TK+HadnoqoQhtkhlhaQo+GdP0MQaRWwo05iqyGmLjDIKyMMQy3ZIiwpJlFh8uubHP74jjQpq6ZEi3umPOS627G9vsewObZ6SBTFOp0ORViz2NV5vQp1nNGlClWeUWUoYZ+RhiCLwODFRFuiyRM+xSPKSuqlY7ncUVcFyu0WpC8SmelysLAdZUynLEkGQqcQWQTU45CWV7iL3L+hNzuj4HZAkVEUmDgNQVNLDjp6pU9ldorJBlASUukAoM4I45GE54/buGtN1ePrkAt1QMYQWXZGYnD9lOBhiywZCIRAvA25+eMN/+8ffsd0fGHguit5Bnz6h//ynqHafsIDdcsfbt5958uSSPI5J9lu2s3vCIMZzLOSqptOfcri/wdIN2jJBlxrqLKbnqsyvHzAdmyTOiOKCJ6cX6HlCW5ZomsP7736gzEq++NkviPY7Pn++plVk/uU336FIKq7fY7WeUWQxvt9FFlR000SSTKq8pVFFwiSibBtMx8CwHmGJh13A5OwJg2fPqeuatiwxTR0B2G9WRGFCkAsUrYpQHCmymKIo0E2N8XRIU+WslysMVUCTSqIopjs6pxBtPvzwhj/8/i2HY4xldMjyCtvxAIE8rmhEiULKmIwcvnl+gmEIHHdbVpsti6jg7e2MT58/kcsSQRjT7Q0J45z9fsvVp0dXXilTPM9jvd3jGgrHuMD+Nwjk33z9JRcXZxiiwPmzL+kaCslhjSg0GKpM1Qi0dYvf7aCqIq7bwe1OqJID3Y6JUAbcXX0mK0rcbh9BklBtF0U1cBwPg5ogiBBEhapuaeKYoiwwdRWaGqc7RC4zxDqnBfIkJGsqIllGtBzM4YRjEFImCb2Oj1A2dDs+imqAqnOzWyE3EcvdBkFT+fzuLcvlgt3djGi1JtgFZGWDoWkYlsfli1ecvvgJqqJjGDaiJNPxuyiSyPEQc1gHINVUaUIWJUhtw83NNQ+LNbqiMHQ8LFGmZ6gMuj6mqXM6PqVNE9RWxJBtJtM+20PA2ZNTDE1Da0UGHYv+ZIClGXQ7A8anU0bTIY4q0CQRbdMyPwQYYotlm3R7PUzdwLOsx/vf70NZ0rQNoLBardkuHpBEgVL0OX35DYgC+0NAkKtousXxeKCqa263Ky5OJ+iqRVE30NTUdcn5ZIRr2VR1y+oYczgsKOqGDx8/URUZSA2H/RHf8YmjjOyQMl88cD+bISkGWqfDZv/AiVexmh1JK/A8h66t4enyY/uJIJBsl4xGI2pBYOwZ2J6L49josoyvaziKTJ0XFFlGlRVUWYYliYw6DoYqYssini5DnmEYBj3fZ3U7wzcNluuI1z/eEe0joOK7P/wZTyvpuSaO59HKCpIiIdOQpylUBev1isX+yDaIcByHom6oER7r5NsMQRVom5jxxQX/6//xf/Ll85/RHhuG0x4oAo3UUAs5crBFKnMkKtbzGaKsEwYBi/UWQ1O5fZhzSEv+y//2dzTNY32hNz4lzSvSMCCPt+TFkd1+j9npMXpyiW46aAJUdcVsvsQbjAmOGe/ef6DNQrrdPobtPcLYLB3LUBmenWKMn5LFGVdvP2H4U0zRINpuEZKYIE3ZxxmUBUVWosoqXd8BTcNzPDzPp1FqsiZBUx1UTQOxQRChyXLqukKSK8qspKkhPB5YrffInQGL1Rahadkst0h1juv5nF0+p25d7q83ZEGMINuUScbi7pZWkBhfnENVMP/9t2h1gnNxyiJImBfaI7xWalBslyLPKZIQ17S5uLwkiUKUNsTvOEiSQBrt2S0f2Ky3lFlGWRTodoe41njz5gO2rvDlNy/56ZdPqfOErt9BVWQUueT+43e00R5LVajyBtP2QTVQLI/oELPfHFgvthR5haUb9EdTvE6XxWpJkpVYgyma5WHoBiCQxTF5sMXr+BySko7joGr247RjfKTOC/xeF13XMA0T27Iooj2qUGKbGq5r4PV7mK5NksTUTQ11QxQcyZOI6HCkMYdktYIgqdi6jqaoWIaGqplYlk1bleRxQNO2FPmOIpyx224xDIv1oSQMM7766ms8t4ete2hGh+nJkFdfPGHU9RDbkig8cvvxLc3umkGng2L0SLOWxcOOh0/XOLpBp6Pwhz9+y+///D0//sv/x8uRya9+8iXPzp8x8Rz+7m9/zS//+te0ccp2vqIoBMQWlOLI1y+e8uUvfsn02TNm796xSyX6gymKrJEHe05Phyhml/QQkB821GWJIAiUyYE02NLWGcf7D9x9/1tuP3zP2zdvmD3M2G63aIZDmgs0korf62FZFnkUoysqUpUxNXNGSsKLr76mNzrn9OIUvztBVTV0VWR5e4trWpiGTZgU+KMhiAqSVqPpLY1Yk7WPEaGyrJkOPb6eeAiNQBDkZOGj+eaYHQ7HkPUhJE9igsOB4fQcTVXwDRlNEinTCOIDhiTjmgZlGHB+dsaLb37J+eUXeJ5PbzBG1QyaBvLDlp6t43geqmUiqSJCk9KKIlUFrSiRRwcU08YcTumdP6fTMeg5MqOOiaobhEHI9e0tuuNgdxyC45ogCJk8fUpZlsT7PR9vb3A8F0uTcQyVqKgJwiNVWSKIItPRCKMp8ZSW3vQEURDIj48/xpJhUEomh0PF+joir10Wu5jt9hNlUdPvT+haDkG0pRBU6orHtb0pePbikmMY44gVepGwWS7IxZrcm/CTv/4rVLMhEwR++7s7qmNIx5I4HBJUzWA5XxFGCYgywSEgLRuCAvKyosgrroOK26Dm+fk5f/vilGdnEwynh6TbpEVFsI9YLVe8u57z/fWSm11KpegMp6d0z14wOX9KVaa0cUDP0TAtnZ6j8Px0TM/WsTSdi34HkxxNKjlWGo4icny4o6MbKKrMyeVzhk9eolkdKAvKcEO8eeA4vyKLY4K85na+wLQMPL+HakiIUovnOkwuntM9OWFTRHyYz+h2fdIgISsSIiEjnd0hhAfSOMUyZGQJhLZG1U322x1ZmrOvGi7/9msuf/4EfSiDp7DIjnxebciXd8zuNuSlwNmoy7PRgLOOS7LcwjZnYA7YX91zvF7w7t2S79cl93FN3kpIisJkMqU3HCMqOoPpBHfYo3Y8Dvs1+8UDRRZxOj1DqGQ0ScA3dWzRpOf7jMZDxr0OA89CSjJufvxIsN9hqia6qKAqNU+fTimykNX9DNdQkRWJ5BiSRRHjyRhN13BdB1kRKfICr+OiqgYdr4Pr9airHNl2UByTsqrpux4WLUlr8u1NThC09IYT8irF7ct8+fKn/9D1/mKa/HvrL6bJf5A26+Wrzzc3fy8brqB7Q7qeT5nGJPefEGUVoz/FGJ6RljVZmbFczsmrBtfvMzo5R7T7NC0UxwNyntGVdEz/DAwdS4jRFIk8y1Fkmd0+oIlDdEUm2AVcXy3Y7HP+5U9XeJbHxS//B3LJ4PTiHLGpWd1cMRiMkGSVIgyRJYmsUvn9Hz/Rqh0sy6IIDuz2IW/eXrO5XyAWFckxZDwaURYFpq4x8j0cVcKQQFWkf8u19nmzPJKGAXVRQlmTbbdUhwADkzyUwbFQLJ3r9Z5ENDEnlwiGi2I5mLZL3bQoTcl2uyNPY9YfXxOVNbnhYGsKSpmw2azYH7Zsl3dESczl13/FxemUOAnQJeg6Fk6vz/TkAlN1Oa6PLD985ObtLT/e3dFzDH7x01dMXn1N9/QFkjFgMd/yMNty2DxGeyzDQtdkhCpDEWWenJ0zHbps7+fYQkW4nJMdVuiKShGktI3G/n6PrDqYnSGG4zMcTujIIvtPn+iOJgiSgikIvPrqK6bnI3arNXVREkcBn2/uaJuazshnvpqj1wWnp2esZxsczyFPazTLplYFru9m7FdzdLllu9+gGT6qZGHaFqpjMzq/pCwaHN8nWt+z3uz5dDcnTBqSVqDOV6iqQFnXpEWLY4gExwNlKXC/3PPi2SlNXdE0Ilc/zvnud6+5ultQpDmG7SCIYPYsNrMAVdHBFpE9hRcXU3xFIwmOvHl3zfv7NTEq4TEiDGtKNBzXQKxrwqTk7vYWXag4sVUOYYhSl6RRRJ6mDCyD0/GIL5+cMx2NqauKyWhAt+thKC1VEtL3LXodj9ndAkUQEZqCTs/H77rUdYIkCEiSgCyKBJsV7968RVENTFVCElTiMHq8JkMmiQJQbKIoIYsOTJ8+QxBEDM1ANQzC/ZYqCciyhCQOibKAyvcoNYlSc5gtZrSSiGUYpElGjYguySDUxNme373+HrGuaOqS5fbIu9dvWL39SJ3lVFVN1Qr0RycYnS6nz5/R6ejUWYTt9hDQ2M1vub+/YrE54BgG12/fY6oilqJye3vH7XxN3cDIsRh7Fie9LrZuMRlOefbsKc/On1HkKWavg2sZdC0TSxYAAXc4wdMMVKFBV1U6rotlKFiSjKmI2JpE1zFwLJWuZVK3LVEUY+oaaZohSSKu52I7Dk2V07YtTdVQlw2b9RpNTPiX//rfqGUVtz/kzdWabWmiGja1oGBqGpZlst3vcFyfJIzZ7HbohokiSfiuB4LEp+t7/u//+v/y+ne/QxZEeoMJaZrS1BWaroKYc9x8YLlYEKUtiA1aV6UKZyjJFkVRieOMPAoJjnsoc1RqDEViYKl0XIuTQRfX0JhMp5hCg1wVCE2LZ1n0XA/LeGx+KNOEFoFgs8akJo9jFFnFUGRUEbpdDyFL6Xs+T05GjByNvq1DlnIy9LF0gyx4fJaYXeI4gbplfzyynC353YdrdF2j2/UJs5yyyJEFgSwvqDWHpimpqwBvcMb//L/87ww6PsfbPZPTHplYctyFSKKCeNwhlil5HHPYPmbrBVFgs94i6yaXFxN0U+HLn31Ff3qGOzqnaCWWyxnJcY+sKKz3GeHhiOc4IEikUUZVlliGweYYk5ctcS5wfXXD7d2G4+6AziMnxjVNHNNG1TwEJNIkQ9AMBtNLzhSNu6sbTk2dE9vlVJFIsox1kiPULUHZ0BsO8XQF1VDxB32ypqZKI/a7I07HQigamqZAoKWIosfpLkEhSRJ2hxC8AVef77n9fE23P2C9C4nDkCLMQPYYX7x4fN+GU2Y3N3z69JnBeIRoGZyedah3H1H1hkrTuFnnbLIWqSkw24z1YkaW5eyvP2FJCoooc9iscLQCRdeIk5j1YkZ02NEkNWVaIUgqlj/h5uMDmqzw8uUlX399idAoyKKDbfkE2x2aLtOmK+4+3qDKErpuU7UKkqJSpinzmxnhIYayRmpaFFHEcT3avKBMU0zL5uzsguXDHUKWIsoKhibSMRSivEGqc1RVRdIsBESi7RzDsnHtx8pSSzcwlQrLkPB8B9O2MEz9MTLldVDsDkUjMZ+tmV/fINFgeF0q2SKMIhRZRTE8ZE19jJpqJq2oICoKeRyj1hVRsIA2Yrd+bDa8+rxh0L1gNDhBki0MTaHfURl3dRxLoy4zoihmvlrw8eNH3vzhd/TKBaaYEKzuuf34Gancc3IxZTaf8U+//Vc+vXvL1FP4+vyEv/tPf4OjqYw9l67fY/7+EzfvPnB/dcPF00uUOqPrWLi2hWxYDJ59RdHIiOaEX/7nv8YVQq5+eEfHH6O6fZIkZfP+O+pox+7qLW2wQ2gakGQUWUFXBdLNDeuHO95//sTVbMZsFyGaPdKqpdvrUtcNqqKRZQW66eKoLT//+Su+/sUvePbFczSpQhBFZNmgqUuyNKPfcZFFkc02QNIkVBnauqGVW8LDkiQvSIoMUVZ59ewlbZqzfbijEi0MxaLOSppGJM9ylvPF40Ti+RO+ePUVI1PAMWTyKOB4+w5fBcv1cYanqLqF3+0zHAyo6+oRCN/xUQSBOi3oex7d/oC2qaGKkZWKNl5Rtiqa49HUFeHyHtWy0VwfWVUpjnNEai5efYHnGgSrBVfXD/THE2Bif08AACAASURBVIL9miKP6Q77yIpOst6R7RPSIsV2TeoiRVHA6XgkeQkIOPbjPtEXKzqGitvtIas6SXAkOG4I4g2N3FLIBoGs8uPNhut392iTM5yhj1CXlHFIEwc0ehepbUmKFFFVOBwOFKs7ntoabdNi2h6G41DbPtpAIy3ec/fH/wtVVJg6EO53FLVMI1mEhwOHMAVRJgpCmqpGkSTitGAZF7SKya9fXPI/fvUEX66xDYMsTjlud0RhzGq94zd/fM3r2yWrsETQTBTbwRmd4ffOSbZ7nn3xEkNT0VWBac9FrAtMWaSOArLjmpv7DYagUlUFkqrSsTTSY8h+s2fQsZhttkiijKnLCFVBFhxIjnuSOKU1Ony8uSEKt4iqBLJEpz/CsXT60zOevPwGy3HQ/S7z/QFVULEzGeKSoilQypYkjqjSBFlsiI47drsdnutwdTend3nJF3/9FSfPJjRyTpAELPdzHmYzbq+uqVYb9rFE1/c5cSy+GvcgToh2IaOhRrtbEtytefN5zT/e75k3j99DwTCxvC4nJ1OyGvTekMtXr/jhzY8UWcHDu9fEhxDLcXhyfk52zBg4HsOuS8fu0LE8dO0xZqNKIrIoMPJ1XAUsWaTfMzl/OqGq4cfvP1DnOVGUEBwOiE2NKrW4toVtyLh+B9NysHQZSZTxXBfL8qjjhP3DDNt2cccTnMkUxR2wOWQEQQytRCuqPH3+FFWRkNjx8slP/6Hb/QvT5N9bfzFN/oO0Wq9evX//5u8VWkEUJXq9HofDgSqKMDoDJHtA00gUeUqcxBTV44ajMzpFNUzq+Ei+uadvCvQVkarUsAZjOlaFIecIbYnqeSw3AWLVYOgWt3drvn97y+dVzJNf/RfENGLY85n+5BtMv0d/4LO7ucaUZRzPo0xzqgKiVOT7b9+z24ecnk1JwoiHzzfUionu+PQcg83dPT1bx3VdtN4YlRqpqvB0lYHn4Jsq066L7bgIsoLg9vjh5prb+QxX1ri6WyGGIqY2orFUNNfA9Ad8G8qYHQ+n+zjqmlcNoiRS1xXHw440jWn3a2brPYoi4WoCTVVAWxPvVoj5kSzcMd/saZqS437LYZNwefqE0fiUYbdHHGwJ1/ds7z/ysN4iKxY//9WvufjFL5Bsn7QSuLpZsJgt2K+XOKZOk6a4bo9+x8VRRWxNxtFEouWG/BBhCgKO06Xr+Fiqg9cb0Z+O6V2c4/c6dHwXS9exqEjulwhJSWd6jtbtcfLyktMvzkmCAx3boet7vHvzjiTJGQ9H7Fcr5Dzhr776ijgu2a3n9Pou680GWVXRHAdREvnw8MBmvaCpUsZnp5TxkarK0CwLu39Od3yBYtoU0ZGHxZrj4cjt3R3RIeD83EcSBbIwRKTCNSU+vX2HqmoMp2Mcx8UwNJLNFb/9x99wSGqOx5jVOsQ2DTr+AF2U2e8OSJaD5ftc+Banuk6w3fHPv3vDPGhQBPORESLlGI6No1kk+4QwDNBkiSzYk8cR882WLM+w2xJHlegaOmPfpeM4+KpIctihyxI0DYZtILUlvqMz8G3++MMn4rRktlyjyBq9noeuy9hOjyw5PvIysoz9eslstqE36BGsHjgd99AtF1EQkGWRftclDbYc1gu6jsno1S8Rm4rtfkudJRRVyfb2M2GcUVQpaR2QOQaqoVFWIkmRkQgNVQN10/BxuWBbppTRgeV2zfz+huW7H4i3a+afrolu74nijDIvQZRxPB+3P8D1fM6nHerwlvxwBxQ0aUW4OdBWFZZhcffmDR1D4OmTJ0RBwnG3wXYcut0OfcuiZ+j4nsf5yRmaqtAkJbZuMe53H6M0HQ9V1KFsGA4GzOZLTp+eYxoeTZqgGxaCLCDlGW2SYmgymqLR83xcQ4GmQjVsVNthtZyz3e9p65LRZIImC+RxSF1XNLKK7DroaottNMjkVE3J56NCKzmIooBh6ARRyD4Jef3ddziSRpgk5HlBliaQp4iSzHKx4ubzFQ+frzkxVL548QWa08W2dIQ2RS8XfPfmM//yz39GQGU+WxOVOaYislhH7MOaNj6yP0QEYYQlgWdpDE2FjmUw7nfp+x06nQ49x6Tj2FiyzHQ0wDF0pCxFlyUGnsvJeILnOuiKjCk2VGWBY5kYkkBbV7TZY2a7azkUUYzvWPQ7Do5tI6smstohjFMMoaXj6ti6jCAqRK2C53cIwgh9eEKv18eQRJI45ng4oOs6+8OOugHZ7iPKKnmVYHcdyihAUGo6XQ1khWAX4Hs++cMVVAXB8UhwOLBcrNANC8/z0Q2bpy9fMD7pYzomneklKBZBnBDsNxiqiKAZtKpJt+tiGCqyriBXNeQZRRZRCxK16hLE2aMZUTdkeUUWHPHKhCbPMAQBATBsjzwrMASdQQv7z5/54vScrqEwsk3E8PDI9VF0vh700CSJ2XxJWBbUGiiSiqbrVJqApUiEyw2qLiHLAnWV0gJhY9DILbVQUkgqjWKzXO5YzufYfpftcktR1JiOR9WqyHKLbrb0Jypnpyf0Jyf4vS77NOHp5Qm3774nOO4YXJyDe0IqGeThDsfSUGWJYLsmPu5YX33kuFlDldAZ+SiKTHjYUKV7kuOG5XxNKyj0BkMsa0i4jnl+/pTJZIqkyfiDIVIrYygNjg1lHhOFIfF2SxXlqKpJFsSPP6iNQJVVCK38mInPCkxVRxNFTEVCkRW6/RGWohEu5xi0KLpBt+OhSiKb7RZdaJAljTSrWM1nuLbFaDyAqkRpaw6zW3S5YDAaYjoubq+HYeoIkoiq6uyTkuHZKVVdo2oGGQrL9YG6yDBNg/VyQZi3FI2IpDvUko5EgyBKFGVJHkcgVhz39yxmC2YPa+YPO/zpE/pDh8m0w9nEQBYyJBHiJGGx2bHdB8wXa25vZ/z4ccm3f7pmc/XA57efCLcHfvr1c2RzwPevP5Lv5wxci2eTIX/7zTfURcv19z/ge112690jL2MxoykLvvnFLxDriroqebi9RSpz+pMpqqri2xqukRNd/UBWqsRFi2tpdJ48Z331if7plM/f/pEsDbFHYzqjUyRZAkQkWSPNchaHiIeg4P3iiKA4pEXzuDaqCvezGYapURYpcVrgOw5fXE7pd03qJKAqa5IsZTm7RRElTqZnGJpBU0jsDnvqumC3D1AsEagpadgeAkaTc3xB4P3rd3y4XtIZntJ1+6wfFoS7AE3UUOoUU9U5Pzmja8gYqoQiiSyu3sNhg2O7IGrYrkenNyDfbwm3c1RZwXQ8xBbqJEJXbXrd/mOktqlptm9pkyWN5CJoPqIsI0kQbVcgtkhCA21JflySR3vKNMbp2PRcjdOxz2q5YLFastnsuLiYEG03xIeAJK9QbQ1BgsV6iWNI6DJYjoOAiEiLWGWMfRdblXDcDoZukOc1r1+/Z7MPSaoWNI1NFHO921AoLUUtotgGjimzWd2TFSlBq6OKIkkSULc14XrBC8fAUDRMb4LX7yOQkFHy4eae2X7GwzJFTwLqKCOsVHLBYH88EqwXxElJ1TQEUcbqmDCPCsKixlNk/vbylK+fjnHqFEuVadqWOAjIspKgaPj2zUcqWo7HkIt+j5/+7BesSpWmbugbEsOOjdPp0Fp9TqeneMMJjuNgKQKTnoNrmhRxRhhWzG6v0VU47VkUbYfb21tenU9Is5LV9ogsPfJW8ryglHQKyeDjak9WNQTBAd3UqGUDpzdEtjuogwmKJmObBpKucygKxLzhsN5SGSKoKnV0JN/NcU2ZKsvZb3asZytkTeOnP/+as6++QDNVZg83/Pj6z/zpt3/g9W9+4M3vPlEsj5zaBl+eDJk4Ll1Fpu+apPstbb7DVPZsN1v+9cOCt7uUxtAYD7uEokIhG5w+uaSVZBpFp3/+HNV20Mqccr+jijIqQcMZDJmcjGnSFN836Pd9XMdFkyQ0u4/aFmi6hTvoY9s6vY5Jt6NjGgph3DBfhiw2Rx7WIat9+FjmoSkYrkcRHZH+baqm0xuiyxJNU9PUJY7tUS0T8tkegojoZklVHlH6I4K0YBdk9E7OsbwunutyXC5JVyu+fPmLfxiOp38xTf6d9RfT5D9I+8Pu1cP1+7+nTIWiaGjLkmSzxnU8dG9M3ijUdUVx3LI/huSCjG53kQyLJEk5HvZQp9RVjD3wkJwena6Nr8TUFNSqyP2+QFNUtCrn+/dzXt/tOBlPUWWZJy++wMoiTiYD7OkpVd0yGI0QsgANARqJumjJ85a7D5+Z3y9wLJtBp8Pbt58gjTHaGr1tsXQZtUhxLQNJNfCm54SbHYbQogigKyqW7aEpMo6pMx32kW0XQ6wZDjzcfh95/IRWtajSFKFvUoo1nZ5HobQE4Y66bagbkUYQCaKYMM1Ik5Bg8UCyWeA9/QLBMDEMHYGGpigI92sUsYGqYLt84Obja3arB6Sm5eTiK04vz1Dlis1qwe37d8RRgSQZnDy95MWvfobddbm9m7HdHlhv1hiqwmHxwJPTE/rdPp6pISYRxX5NsNmyXRwZDk6YPnlGpz+kOxliODbuYExn0kUzVdxuh07XRbd0TEtFEhS84ZDB86c4J0P86QDHc6ijCKmVGUzGeGpFE6Xoqo6hWjwZdfni8gzH7hIfDmiqwHq5ZLsLGA4HRFFCnRe0ZcHHH14zHlj4hknbNNieQ5pUkDW0dYNpqNAKrA4pggBBluIOT2jJWM/ukVSZbq+D1NY0dUK/6/D8xReEQcJuG9CUGR9vZ3z6vKTMS6K4QW5U+t0+eQ2GKdNqcD60GRkybdXw6WZJ3uoM+iN0WoqiIM1iDmHKbL6gKjKSLGO5WpMeH1kjoiDwZNDDlgUu+j7Pzk8xZAm5rimLGhEBy9Bxu31kSUCVQGoylg8LWlHFcH0mpxNGQx9/0MNxPRRdZ3P3kTLZEOwPRElKbzimaQXS4MDAVWnyjDDN2azWHKIERQRXl0mPAXJ3iFxGzBYLHN0AUeL++iP744Y0O1DLNXLXQnQ7KM6EClBlkY6p01QF6+OW++UdN+9e///svceuJNmWpvftvU1r10dHREbqK7urqokG2ARI8B3qFWvEGSc9IQECVd2lrsq8KSJDHX2OS9ParAeeaD5B1eiuocMH7jCD7W3/Xuv7ONy+J759z+bDDY8f72mziiKvORxSlG7geT6G62M7Pq9fXeHoDVmSoOkmOgZiFJhGRN8Jnv78Bk+TfPrihChcUI0Gze6RyPPI8ha9HxmLBqoOmhHTdI9chX2M6jv6qkMKwWS1xNEdTN2iaxrypOL805eooaXJUpzJDOqKkYG7hw1jW9NWBYaE0LGYRT5FnvL+5o71ek2aZaTxnkXkIYaWqq7R3ZBk80xxeGC28LH9gN+/z1g3AdLycR2XLEup2oKh75iHE0YhORwyQs/h+eaaIjkwoKiKinK/ZxEGuIbJ8uycqoeyKKme3/PxT//E+3d3LE9OaXtBUeZkRUmWpIi24vZpS1fW1E1D5NmEts7U9/Asg4lroSvJJPQxTZOhOcJgHcdDVwrbMAhmS1Tf0+Y5lhCs5jNOz08JfYepZxF5DrLJMcSIJnpMJZmfXUJTo3UtQ93geDYXF1esFifMgwWLaUjdVHj+0ZpVjoKyqI+jDasTNs9r2rqkqms6cXw+7rdbtocdgopd8sg4ZDhazYurS16/fgmqJ84y0AM26wfKmx9Rw0BVFCT7PXGSUZUVjhvy+rPP0R0TTR+xJlMM16ftR3aHA3W+ZzGf0ouBusvJ03vyZMvmcU282RDv9jxuYu6TkbQecRwX0dYIRk49kzPfYhF46JZL1gpQDoeDIH14JFKCiR3gGoqLswVu2xK//Ykqz4hcl89+8QtCzyEKQgI/IK5qugHarISmpWhKxrqGpqLKEnRTByRVPaKZkt1uzXp9wPampGnFzcMTedNg2hZdXlJWA7u0JpoeT/1Mr4LxnibJmEyWTJYrosmE6XSOJg18y6LtJN+//UAymhhyIN8+sN/vub+95cP7DxziPbrqiSKLyemSvq0QEh4en/n44ZZtmnF2dYLr+Th+hDW01MWBYBYxPZkz8WwMDfquINnsiJ+f0XTJyMj1T/dYuoaGoGta/MmC99+/I08Lul7QDYLA92iKAvqBeRhxdXqKqUAfW8ZRUHUDX/7il5R5xvbhCTmO7HcxYxHzcjVjsVpRZym0Lfc/vkFvEmzToOt6RikwbRt/Eh6tHEKx3+coxyUrW+JmRFcSQ9fRNA3LcRgHwXa/Z5d3xGVH3Y30XUU/jCR5gVKSfsjZ7m/IkqPJqlM6/umEqxdTzk99ZFeQJXviw46b21tubu8pO6jrlrZtkRK+vPB5dXlC3gR8/slrrl5/zsenmj7N+PrFOZEhkGVB/Lzj+u17pq7L5YtP2T+vUU1N6FjMZ1Ns2+GQ19RlydNmS7bfUjzdQd2yub7j8PYtRT5iTS6xbJcgdDGiOXXTY3se8cM1WQPdqKFHC7I4xfCOWuxBatjBlB9vHok8n0FaXD8csAybk5MZ3/3h96SbW2hrTAnp3XuC4iPWkBGefobpL4h3z3z4/nv86RnBZIbrBxhuyP39M3HySEHNZD4lTgvapqLNWyLLIls/s9nusW0bL5gwsRdUWUu6SbFNC0MZeG4IVY0mGyzLpCti8ru39E0PQmPiGFRFgVQ6wersGPCvrjAtl77IkT0slueYmgZdj6KnTzOUO8GYnMIIUoqjUQlJvr5HjR1CMxCazvrtnyk392T7PaMwGLqebPNIlqSczkLGtqHMY24f7vFnAXboUWUpT7sdF8sQRY8QYFsOfdNBV3Hi6jimxWx5gqkpAs+nqntuH7ZkFXSDwLIN3rz7AH1FJwuebv+A6wjSzYFZeEYmBLqlM7QNm/WW5u6O86n/c1f4Ajew6asH4u173l7H/Nf/6+9x24aF3rKOa1rdJ9mt6fPjPifeJ6RpTtV0VO1IPwpmtsn/9mLF12czbAW2ro7Q2F7Q9IJDmvHhYYMYOiauzav5lJfzkNXUZ7m4wBENnilYzGf455/QWx6qrY7Bf+BguwGW4TA/O+PqYkFoDESuInAEyvW5Wx8QwIvljMf7R/Kq4uPDhuj8FQQnbLKWx+dn9ps7sqKmxsYJp2iWgTJ08qqhz2Pu3n5LmcVMlwuyNObDm/fUw0AnOryJS757wqoP2KaiqVvausFzDELH5LOvP2U6nfGn3/+B//f//q/Umy3ROJDf79g9ZFyaS768OkMaGrfPB+aOwdSQDHlCvE15fkj44bYgxSe8fEFva9wVFbk08OdnnFy8oGt7Xr76gt3dmtlkwXI2o8sK5KDhL1Y0h6fj/TJfYXUtfjBhMl9iuDae56MrDSUlhqajhIXUDSzLRHQju6dnWjTyeiCraqTSsDwPdJub22eqND3C4xkxdA1N12Ho6dqGYexwbJPnd4+Mo8HZf/mKytVwHBdnuqTqOkzHYzZf0qYd+d0B2+z55a/+w98tVqd/CU3+jesvocm/Uz0/3n719o//8Ldd04q2HdD6hsPtRzQzRHrL46jG2LO+veUp78i7nnrUiLOc7W5Pmqd4joahKsKzBRLFKrDQxgTLMTg0NY/7irnR8/6Hd6St4tPXn2INLavQZe45RIGLZTmI6Ixs/cTs8hy6AVXnjKNECJPd3SPJwxPGKOiaDj+a0hYZY92wnIfMI4fQNPB9n6odMCwHq2+Yn79AtA2ubWJbNo5tY2oGfT+gGJnPZwxDQxzvqccGy3PwFjOCFyv60KJqaqBjaBPW6488xge6caCsKvquYqgz8uRAsn5Ab2pG28NYnmIYBgwd6WGD1tfUZU6WJVi6ZOKbuLrAm0756rd/xXQWUuUF6S5jkzZo7ozl1eecvLhCDz3+9MMbPrx7yzSYED8+0JQp64cHzpenDPmBLk0oy4oiTgiCBV/86tfMlqfYloWtSVRfYTsWo5CYloNlGOiaQjdMDNvF8ELMMMSOIpTnYHguDCN9mSGROH6IGjpk3TBdLBFtie/Y1DU8Pj6gyR7XMfl4c8f3P91iOi6GHFisTojjnD4t8V0XzTJp2oHtbsd0NeNxV/LNH78nPaQE04A83dL3PXErGA0f2/PoDvc8P68Zx5FJ6DNzR0wNgmCCHS758MOPHLYx+7hBs0x2uwOHpMKwbBhHFJLg5Iy+THl1esJl5BLqBnQKXdnoug1tTRw/cvO45hCnpEVOnKZ0VcHT85qJIbCUZOVZTD2Xz16+ZOkafHJ1wdy1eHW24mQ+4/zsDNePiOYLTEOgK2jTmHr3xGLm8PKLL5icnHByfsrZ1RWnpzMsyyBf3+BaGpZpIjSD6XyBoR9bYxeRw1CX7Ddr0G1u7zfsnh65ub8jSWJMTVJun9mWFVLXODs7Q+mKP7/9wPPzDSU1oy/Q5hM0J0Cz5uRth61J5Dgy1BVtXTDmKf7QUW23PNw8c3ezoWtHDKlIkxxpOLiOg2lZaKZNNJvy+acv6bKCLC5I4paHD3fs84LD7kD84YGJ7Fmt5viWjetH2IFNFWfY48DnL16wWk6P13QSEM0mzP2AhR9ytjrj5PKMi8tzTuYLopmH73sMRUUQhmh1jmHamEGAyCt0JNLR0GTLMjpuTPuqpmtblDKQY3/czDYtuyTlebun7VqaqiQIQ3qhYfsO+13C5lCye7zGWr7mY2pSDjqa6bDNC/omp6gKtki+ffM9ltI5XczQpGS/j3Fsm5cvPsGREAYhxtgzdy1KdMIgQqelbEeqTjIqndFw2a63JIc9dV2T1w37wx5bjXTDyMQET434tolnG2hDhyEEgedSFyVd06AMB9uf0FclQTTBmiyOZhGlM5/O0YWkzzLGMkHXBaFnYmoKx7OZTHzcxRKdAX96hOPauoVt2cxWS5o8w7EcJuEM23bwXAt/eYkQMHQdTRZzf/2eh7ggcmzqJOaQpCjbQY4DdV2zOxxoigNXF4r5IiI0BdP5OZbm0gwp2+1HLHcJoiW/+YkiTtGAdHtA9iOR5vL5Z18RTuaUu4TRC5mcn5PGO/IsIU1jXr24RGgGSRaTbt9w9/aP7B937PcF33z3E+0oOQwmH++eqKqK2fKUoa6ILIPItfAnU/Je5+2mQlMms8kS2bRMTIPTecjEs5gEHvW+5Ppf/p46i7m6XOGfnXDx5edomiIIQrxoiuqgKmputzG38Z52aBmrDIOOviqoigrL9xloEP2Ioel02NyvE9b7GM2xMB2b3d0jWVIgRsF6/US6P2BKRZOPx5E012MYR+o6wXQ1LL3DdSZYtsF6m/C4TRCaiaPXiGbHYbumKWvGrmERWniBx+ziEidwoKuJy56n9SP54cBy6hM6PpNwzsSzGMaG6cmK06szfFPQFDljC5v7PbYcsLoSw1AYXsjDPmV988zYdPTtAAh0oZElOUq3cEybIi8w+hHPNPEdB8oCDThfrY7rkW4ef5uucERP6HgsopCLRcTYVFRxiing6cMdju0xnS0oypz5coIXBNQDdOOA57uMIwipqOqOtG542u7Y7mO0caDtBxwvIK9adNujGCRCaYxDi6EkeXLg4enhyMjInjlka+osB91k9eKcy/M5L87nuLJi83THh/cfePvDd/zwwxu+/fiMZvv06ETTBf/733zJX//mCwZnhR2d4JvHccWx7Tg/WWFJ+Onbb0jWa7pR8snFFZerE1an55ydnuM7NmN15A4k9ZHjtYszPv/0NWVe4NgeUtm4wRTLP46ozM4ujx0ofoRQJq7voRsmlu0xDIK+H1l8/jVd0yOl4OH9OyZXr5GGe1SQBlN++nhPWbScr6YsXcXu+Zb05nue7+6xxQB9zcNTjDG94sWv/hOGJnAtiT2mVJ1Atzxcx2YQko83az789C1VV9EJgWPpmEpHUyae7bFbbyjSBGdygmVPkIMJw4DpWxTdge3zPenzIzQpfuij0TFWCXVZ0bUDDx9uUEXB0HR0VUdV95jhAt0OKYuCqqhZXX6OrWnIrmUoMoa+RfMnSMtj6DokI33bA6CZBnV8oNzeY/sOaAb0PdXDO6Tm4kcL/MmKxcklX372KctpRJHueHzeMQ41vmuTFyVpvGPim0x9k6rIGVB4YYRlSHzRofUti9NLAtfCkGA5LuH8lEaYpGWNbeiczCJGTSFkz827b9CaDVMvRNMtQCPXNHQFTV7yeHPLmauhM5CnR62xUhrpfkP8/ECdd7R5g5beo3U5N08ledVSxVu6tmXAZDZfkcUJqhuwTYuzKOTrRcSnywjdMNG044t12bb0dkRWd8TPj3imxquLU2aWZBE6zCMXS5e8+vQl4WxFEe8xHQ9pRixmc1RXEFAQ+S6OY+O5Dp5r4i6mBJHN+UnA6WqKGAaausGwfWaBx5vvfyJ0LX68e6YdoXenxGXB4fEjWV6SljVpllKjIQ0Ty4BdHPMP//Q7dNNgV9Wcrma4fQVNR9NLsipHaNoxhG1iqqZHk5K2LrhY+vziF5+h6xZ11bB5uEP1Ff/H//m/MlQF12/vqEv4z7/8BRPX4Hr9TCcMZpZFqPW0VXFU+daSve6xtUPeJBk/PG3YFD3T85ecfvI1TVmyms5ZhBHVdkcgYbZcMTQDnWFx8foSu6uRVcNicsLM9gksi3CxQmkmluPjB1Mc30OMA0qM6OhAj+24TCIXQ5d4joGwTDBddMvmzbtrdnHBLq1I0pK2yKn266MxUCmEVIxiIJxO0HyHoXV5/Z//C+e//C1507HeHkAKdpt7DNPAt2zywwZlNPzmt3/1F+Xwv0P9JTT5d6r9081Xf/hv/8/fOm4oxNCjugK7y1D+nOmLr2gGyNue9T5jXw9IpRjGnjwvsHVB5Izoek1wIpCBR2AYRPT4hmToa3ZJiSEH1m9+ZMxrjKFn/f4dRlczcUy6NGFy+gLTn6A0A9U1hJMJtmUi2h7NcMnXex6//wFLKWhaKGts2+FkNUM2LWHoMZ9P0BQEvs/s/AI/irC0EVPXCCdLxl7g2TaGbmC7HrahI9BxZ0umJxG6obh9uOP+iZ1qAQAAIABJREFU/pY4PdAMJeJneN/zwwOWakjiD/zrt3/i48ePFHWJKY+AS98y6IqMPtmRDIrecnFEQ/J4S71/INs987w9IDSbi7MzTpYnTMOIDsWXv/0rIs8jTzt2DwVNr/PJl1+i2RaDobhdP/Gvf///4RkS11Zs7h+om+YInGyOM61lN9L2Op99/WtWq1MCx8BxbZQYMQRQxZiWh9IEAompaeiWxdB0SKWjJIhhQPQ9SkrEODA0A4IR3bCRwFDWKF1hRTN0Bt78+Seu727RZYei49s397TS5hBnXK4iksMB2zZYnJ1RjwOHriXr4fC0xrIczl5+wvVdTFs2zBZThjFh9/AeU4NeCPZVQ4Okrw5IpVjOZywDHSWG48vu8oJ0n5HudqyfSrrB4+P7W4JZyCjANjSUkihNYdsmke8QOQ4TP6CtWh4fDsR5y/NmR5Pued7uqJuW9WbHPkkQumBi6swck4tpwMnEZ+VbXKwW/OrTl4SGYhU5TBwTx9SYLxaovj3CXvOU8rBH6xuWFyecff4F05MV0SxAV4q+H7Etk76p6OoKQxeMbYkwXAZ0urqmyFNc08TVFev7B3bbPXYwwfICHjZ7ulGxSXLyZuD16885uXxJNSh896jLvNk/cvt8y2iCPTOwZxO60aK0z8j6jqqI8caW3f1PtHnO+eoETeqsn3a09Yjp+NimxdD1KF1HSUFZNVjBBH865WQ1ZTYN6MqM+WSOrlyu72+pixr2KZ8vfLwwJPRdXNvENG3KZI8/maCQdGnCyWzO6XzC+cU5r66umPkei8WKxfkpfVlCUaALRZaktHlK27Q4nk8UHbcBmtLRPZ02z5GmR58nUNfIUaDrOnmak5QFEoE2NhhiRGoGhm6Q5gVZ06GUxnS+oCpK1usnMBxGqVHULZOTS95lguuyJhcFH/YPPD8/U3cc+RdhhG/YpGmBpWl88uIFVxdX1EWB3rUsHQuJYJcXWKaBIWG93rCLc6pOkMQJDw9PR36LZXBIc8oip+taPDXiqRFXG7HMo+lHHzp832cYwbNNgtkJVjgndCws0aE5Lro/x/CnRIslqm+xbPN46u672DqosUZXAtf1oGuQUoEQ9EWK6/oY0fS4WeobbFNjupziTgMMQ6GURNoumj9BSEHZNGR5wjd/+D11WWLqOqPtUpUl7WGPY1sopcjLEj/QcSyToRMM7YAbhWy2Hxl0hVIuu/h7tKSgLxvyNEHrBVo+8Do65/SXv+YQ7xlMH7U4QWkdj9dvaZuawLUJpnN2h4z19pHnpx95++YNbx9rntc1jusSLs7YxEe9rW17mKaDLiAtO5Tp0486VTcy81xOZnP8sWPu6yxCn0UYoZJn4j9/j5GPmHJgOV/gvP6CxcsT9LHHnMzxzs5YrxMuzs9gFmGaJiaCeJdwc7emKEoMXaesS0bDxtFhqGIEI0q3GARHvaUSUJUUaYKuDLq6oWpbDnHCLAxo04LD0xNCFgxDDGbL8sWS/vANdAqpej5ue3rlsjs8Y1sahmhwTInjmMwnLq4+Ip0Aa3GOTo9r6/RtS1tViGFk7kdU5cDV+SWBZWEqg8ifYSobNYBoa+rkgDbUyGKLaEuavCKrekQ052l34PlhhyM1ts8bXNPk6WFLGEYc9jG2EISuiy0lrqET+Q6OaaGNA6v5jNV8yWQ6Y356QSgH5r59ZOSkCTNd4uiSaDbHn60Irr7i8vNfUXewubll6FvOX15RFRlKSExDRwqJHEEaJk/rHTfXNwhlcCgaXNMkrzoix2DlOxj+FMtxyXdr3r75lviwwxtaZLVjkB11UxHNZlxcfsLE9ZjYI/vnB37803fcfP8TH3/8wNv3j3RdxxdffcpiNuc/fvklv/jkEj+c0dQt9W6NVpQEXsTs5IzbP/wzP/35O7759s+YQnK5WPHy1WsmYYgcB2Dg/rvf83z/wLYaOOxTlqsTNvuEwDI4Oz/HmZ9j+yGOoeOGE7z5Cd58hbNYYs+WGI6LERyDc3e2xI9CrHCK4UeYts3YViRP1+jhEmEHLE5OAMH+EGOZGrbR4+kN2ljhVGs+3jxR5zkMLWHoI5VxhJ0SQ7XB812EMsizHE1XpEXO9X7Lx7ffMY0mWJYEXacua6TUcbwATUgGa8bZq18Sej59nbPdb1jvnnl3fUf7dI8SI4KBaBqh1wf6qqTsYLVake0TtvmAtEKkE2BPZkil03WKOs2ZBVMiL0JVOV1dYjg2ynIZlYagp9rvGAeBEBIhjjpZzTApk4Shq6nqHiucIQ2TbL2m+JkFoTSfoR+xNUXke1yeRHxyMWM2ddHGmqkNy5mDKQeSomaXd4hR4NkmVVnh6Rqh62IOPdo4MI7yaNlbnGI7DpNJgKkpTM2krnMsrSXwHKTQkdKk1gYaaWAy0mQpXVXiK8l+s6Nta6aL2REc3/WM2LTCIc8axl5SJTFZkpFUoEmNdtQQVsRsumTiuuiaRRQEnLg2J5597MRRisi1GPsWqen/s4sj8jz0ocYeWkwBUhlMl3PmJ0tcz2NydsF8uUDUObZuYlsOrqWjGxquY2IqiW67yLFH1ySG0nBcB9f38S0D1zVZzH1oC1RZYFuCQddZb7dIBUVdEScHHp+3bOOYsmmp0VmenaD6kkHTaHSPQ1Xz13/9G4ymYn97zzjWzE/PuU1TaqMhfrwjED2WrlBjyyI0OL88w/Mi7q7v+f53v8OSAxPfJjkc+On79zyvUyxD4/WFQ98VCM3gZDbBMjSkblCUDdty5ENl8Iddy/tdxj7NGZH40wVXv/obhGYxjSYIoTPzPab6yMwz6IeB6PyCyWSFPY4Elok2SGzdZDadYRkSQwkcQ8PsR6x+oD7syXbP5JtH8l2CoZmIUTGOEt+1YWxxTItwMaOsW7Kq45Dl1N1AXDR49JxEklevLvnk01cEvssoJIajMz27pLNdDnmBN/Npmo6sbum7hq5rWMynDF1FUt6jh4Lf/Pp/+btptPhLaPJvXH8JTf6davt099XDx+//9nCIRZEmVOmOX/3m13hBSJLmVEXGfr/nYZ+xOxwo0j1CCOq2pagKimqHtTCoJxZ9Z3MRhLhDh8xLRFuTPt/x+OOf+PZPb9ms91BXqLbGGjtoa3zLoixrosUKbWgJJxG2rmFaNn3TUh/29HnBWJcM3cBqMUUpgWVazM/OMNRAV9ZoQ4fnOnRtjRwVhj+lbUZcx8LUJZYEoduY0QqkQilB31Qof44f+NiugWlLntcPfPPmDX2V8f79W5q4RHUNY5eSp3f89OEtH376gWK/QbYt52enhI6NMfR0aYwWTVCOQ5nGVHmBUT5z/eGap23D7OpzTNkzW57guB66qVieX+E7LgKdQfNwT1ZkRUnT1Oz2T/zxn/47fRrzeHtP5Ic8xSlP91uG3kAOA9PFCYvVOV9/8RmmUPi+gy4EhmkdFx+pEFWL5xggNQxDOwYlSqKExlDVKDkw1BVdUUJTIUaJYEC1MJTd/1wodcuHUaBrClvviDdPfLhf8837R7KixNRH5pFDYNu0oyBPUlzXolUaedtw/fEGV+isFlcE0Tm25VH0PZ0B3/7+v7Ff3yOHhqvLS96vD0jTwBIVnuvQ5AcCE3RNYZkmk9nqONIzdLRdTVXmVFlCsk+xXIco8NGFjmE4tBU4rss0jNBHwePDnm5QHNKcu8cnpITb9Y7tbo/qWya+w2XgMBYFsimwxcDpfEaV58xdk76qjydOmw2ibemLmi6vMCRMTpcsP/+E2TLAt0b06QJnusRbnGE6Pn40PSqKNUkYRVjeFN2dYDoeVVUzoo4bUENj7FvqIqctS5KiJt7v8T0fYYVsk5LHxycM06GuG4JwgehNHj/u0E2btE/J6i2Wb+P9DEfUzAnr2uTx8SMWHTLb8t0f/8j2kDGg8dOP7wmm5yjDIkli1DjQtz1dPxAnKbZpoNsOi8uXLFzBJLSRSuI4BrPQIbItzizBiSHwXZ/AX+BIDdszaZoeMcB8ecby7AQ3CNHyjKGoUG3L4eYJqg7ZQfqwhWEgmp9iOBb+ak40DZm9OMPxLHTNQPTHkE9XOn1ZIrsBxICmKcauZWx6JB2i78jimKaskGOP6TjY0ZzzkyW+7+JGEYYSFPEz+zglLQrC2ZK7XYkwHEzb4J8f99w+PjDpGs7DGatwjj0qHMumb0eUENA0GFKymi0oDjv6JMbsWh7Xz2DoKNtjbAr2z7fskyOYNk0zulEc1ehNxzCOeJaJo0vapkYNPZ5p4C7O6KqCeeBiuSGmpoiCCGmYmH5IXWR06Z7kELO7u2PMYww6LNdDM0xM38VfrLAdG9O1sRwH0zvCrP3pFN8yMQUw9vjTCUoJ5icTGHri3Y5+qLEdC9s1UKYHpkcvtON1UArZtxRVjTJMDMeh2DwTJzFdN4DQCD2TaaDjzyI0zccyptSVYBm42P6KejQAC6dqKQ/Zca6+rIlmC17+9V+RSkktB8ZAY5ADu/0TWRLTFCmr0zPqFvaHlM31Hd/87juqSsNUASerc8L5CXFr8fHDDWNbURQVu32CZdpsNltEWxNvdwx5jiZNvKoiNC0iw8XTbPq7B9bffMPHH75jElpELz/DmS/wJxP8k0sG20UPPMgLwihCvzgF36FoOuIkY3Z6ijAt8lFjvc8Rms7Y5njGSJelMAxIepRuo0nwlMDoO5SU9J0gR1K0RwaLkgJNdLx7d0uTxdihxuTi1+TJSHJ9TejqPDyueXruCG2bsi/IihTXapkvp1x98hopRpI4PZ6ujz1jW2PbNpocGYeGvqzYPOcsoksuTs8ZqgzP0KAb6bKcKsuRfUaz32KNLV2ZMvRg2Q5VUaGUwSGtuL7d8N31Bl+p46l+D0Lo1EmKpysm0xl+GKAAywsxbQcTcJRiEk1/thIpPNvCs3UmswUn85BJGGDZBpZjMLm4xF5d4SwifFeR1z3XH24YumO4Stsc70FpUCYJmq4zKo2+HyhHidR0pqHHD+9vSPOU5XLOahIQuCb77SMP97cwdHTre04WHp2l0XYD0WSJY1o4Epok5u7dLeV6h2N4eM6EXpgsllPOT+e8PD/ji6tTdCXJ8pz1wwPXP75lxGJx+oLt/T3vvv0zHx+2XC1mfDKfsDy/4uXXv+Zwe0u93/DuT3/g5vqWQjko0ycpa04vr4h8n3YYSXY7yGLsscMxTUw3QrNcdE1D/3lUWRomynLRTQvNPoZDmh2ipMD2bKp4S5Um2NGMrOrQNEXoWsznU7I8p0531MkjK6tkKgu2xVEtnuQ1DB2uY1PGz5j1muX5GaPh8nh7z83Hd+iWxbYs+ebuhiRPccyRdgTPixh7hbJcyiLls0/PefHyFdKaEDouT3e3PF3fslvvmfoB7TBwc3uHcDzOIx1ZHtBN6/hyPjthuVoxnc1ZXH3C/OVnCN3EsDz6YWRoOlazBbLt6PIEaz5htGyEadG3FcVuzTCOaJYLUtFXBUNZghBH3lpZ0vcdXbYHZUPTku929O2AbgU0eUGVxoDG2NZ0ZYKiI3I0XFujH3r6qqLvR7Z5S1G1tAPohk1kCvShRY0d0vLQHI86STFsiyJNaIsU1Q8ozWCfZNRNRZ4nIBR9qx0ZT9MpMk8pk5ixyNGGgfu7OxwvIJov0YaeMk/ZJy1d22Oma26eM767jjnEFd2ggWYwIplOT3AMCyUVgzIp9gkLQ+AYOrplHc2UiiOsvOnopDiOKNcZq9Ajsgw8PzgG96NgbCoM+zgS6SxPseenaH2DYehYYYRuB9huiOyOa4huumhKQd+iWTba0CIBx7bwXAPLEfihSRA5jEo7dmkWBe/u9zxsD+x2W7KioEPiRFMsx8R1TGxTwwsC/tOvXjOf+Ow/fuS7b78jO2z57W9+hbQc7nc7lq6GVpbYjomt9Ti2hqEbGKZDW6S4tkmZpZRpSd8NdFWDEiO+ZRz/u2HiGTqaZuC4Lr3UeZ/0/P56yx9u9+xbQTVKnCDEdxw++fo3qGjBKgyxpaQuWl6cn2AKgWEYGNMFy+WcuaUw6Vk4Gq9eXHC+mjK1BHpb4gwtw2GDVuU0jzfk798QX/9E8XTD9Zvv+entE5q/oOwlRZ4RBj5SCfqmwXddDNtBNDW6AM3QWU1d/uMrE9ezj5yieI9lWyAFk2VIoums64K76w9khwPWyRW3VcPTzUdc2yTbbxiakryK+cXX/+HvVvO/ME3+resvocm/U8X73Vd/+Jd//NvA0UWy3/HuYUMwmXP1ySeMbUm8eWT9eEfbDWweb8mLgrQRrDdbur7Cjzyi1Yp9NjLxT1jZCqOtaPcZ5WbL/dt3/PTukbePOVJoZPsDVt9A3x1BbkpjOY3QBUhGDN1kaGskGoYUjF2LGFpsz8W0TJyJz3S1IJhPsRwLL4oIAxPLENiOQxD4WLaJ61hYwZxif0C0NbZloGmSvh7QdRtpKpq+pddsmlogxpq8bQgihRprDknM+5uPFMWW7faeJN2idCjzA5vnByzH46svvuLF+RmR60LdMNQt5TBgeDZt1aBJGOJn3t/twFsxmh7Jfo9lSeLthvl0QjCZMo9m9FKQDB3vH57xRIkQLf/8j/9Avr5l+/hIesi5XL1glzQsVguuTk95/elnXL46ZWaZGPQ4poGuWYifdctKMxADaBJElqNokGOPEEcIpJQjcmhh6JFSoVAoqRj7nq5ujsGJdvyeGOTxs2HEsI8LZ3x/xz/+8B7T8XDDCZqUhK7F6dUVlg5ZErPd7lG6TpdXaFKhNIvpckU9jhiuzb4qePv+Lbt4x/bumpPVnMsXV9RtT5/ucGzF2Lf0TcksOAY/zWAwm89p256u7xBNQpykPD09sz/EbPc5YhAYlglKITSTi4sLZlGAGDWKWlBXDfcPtyRZgWdqRzONoXB1iexb+qZm/fTEzJQ4ho7vugSmIj8cqDpJXVSItubqdMLyy18RnLwg+uQLpNljhD728hxzvmQYBBguQ5Gh2w4CiTc7x/FCdF0hNYluWvSDhHHAskxU31AkB/I0QbY9kpEyy7l52KLbLoZlM1gT3r97R12XVFWJtF0+//pv+P5339GMBdH5BcpoMJTGdHaObpsoe8bjrsUSErsp2N8/cHv7yO2HOwQ6tjOhqxs2d9ck+y2uoZMmyc+0/xHXMXEdh8k0QpcDE03DNiZYlo3WdgSMsDtqmHU7wtc1LEsxeC5FnOEtJ+iaQfmwp11vEE1Bud+j0JmuzpleXmCFHpPLc7zLy2OHiudimAaGZqKQUBXoloPwJwxVjahLVN8jmoa+HxCuTZOk9GXKIDraAUwvxDJ1ulHQ5BnXzxuKskJpClMp4vjA2LZs85zt/kAYBiRJRoPCURrpbs/U0og8l/XDFt9xudvu0PuOwPdpfw5t8yTl+foDP/7uX/CUIk4y5HRBW1f4rsVh+0wSx2iaos5T0sP+qO0deug7mrYnLUvSomAYB1xNcjkPUULgq5HFagnKwjV0DAmubWMbFsFkgjedMbv4hMlqhd4m9PEWNQ44QYDUNbrDM4oRy/VA6Qxte+x+0RRy6HCC4GibSWIs10QJwerVCyzXxvZ8Nk8bGHqCyRQjnFKWNWVd0XUdozTQHZe8rDg8PlCkRwhi3vZkRYkBnEVzgknEdpOiazaB7XI2ecnYj9RCsd1kaNv1kUfTDzhBxPmrTwjPr2j6gbotSZIdliW5u36LMdT4nsPi9JJtUvL+3RuGLEU3AxarE8BF0z3uNxmPm4T9YU/bDmRZQZnEuHRE9rGD58K1eD31OI2C40jDYoprKTwluPvX/04wNJzNZoQvPid49RpjMcWKPKSmYdgWpqFjzxbIKMDwQwLXYTRNesMgftqhB1O2dUPR1AhL0TMSmRp926Ik9E2B43t0o+Rpc6AsCizLxZ3M8GcRVZFh6ALXtZhMAhzHw3MDRGezv30gefcj9iAI3Ijr65Qi7mm7hn2dMbYJnj1yerLAdiNubx6pq5okzenbBssyGAwLXdd4++Yn8ixjGASfv3qBZyuy7HBkM5kaYxMfbRKHFDkMDHlMj6RFEu8O0PW07UhbjcRxAd3I4z5nHxe4SiEGidn32KbB2LSYQBRNQTcIPA+t79EMA8t1mDoGjuNgT6cYtBiawHIjTD/AmS7QdJ0eCFcThrHFc0byxqBuJX/+4x8RTYWmjs/WQemUWQlDS4+krhvmgU/gRcRFTVllKAY0aRB4PpPpBM+36dqS3fUHJrbD7PyEWoe66ZlEM6qigK7kkOyYTl3+5re/5OryNbPlazR7ShBO2LUd569eEXk+Tw937Pc7bu6e+eH793x1cYZsG95/vObh+ppfvn7BwvVwZyf4ug5tR5UkbJ6feHd9y7o6jhwjRhw/ZPf0iBAC2pqxzHBkC/1A33YM3YCsChQa3WaDGEBIg7EdkALoe4Rhopk2StMZx558t6dpegwvYhCCan3HfrdjdX6Brkb2m1sOd28JxxTXhHU+AgLf94nTnLaDQ5zRx4+o7Vsevv+W9z995M/fX7OOMw6Gh9B06rrCt0w02yNPc6SmMcgRjYLXr7/g4vyK1SQ4mhKLCjqNyF+wvrvj44e37LOMq5OQOTFtXdHUPd78DMcy0W0X5UbolkXT9shxoB8Vh8cnvGHE0S2EkDjzOYMYULqiSg8MXUvfViAlQ99RZTvGIaaJ9zRZRdf2dFVFsX3icHtDW9ag2dCPxLuMoROofqTPawypMdYV/diQJwlNUdB3I0PX01Q1RXMc/UL9/11QAkVoaNRVR3Y4INsG0/XQTZO2HUh2W8o8Y9QdpOWx321o6gLL9WlKgWkGWJpANBVt3ZMeYtTQkCUx88UMIRVFsiXex7i2jTO0JOtHvJ/HKBlGBs2kLqujzScMyaqauqopsxytKvANDdtxsHSBLYGhp2k7egRNfGAiBha+hdKOym66GtV3KF1DD2co20P5M5Q3h2DG6M8RSqPRXaQVoKPQDQPR9vT7owpbipEuT6jjLUPX0ffjzzalAdN1ELpCM7Sj+bJo+PbNBx4enynbEd3x0R2b8/MlXVdjWxpK03BMjUiNeLr4H+y9x7ZsV3ql9y2z/d7hj70OQCKBBNKwkmQNFUWqVGrIvAFfke+ghsZQNcSiyEoDpgMurjvmnnPCb+/WWmpEDr0ByQbz70YnRpgVseY/5zfZP9xze3PLPJvw4sULEn/K/j4nNuB7Aul6pmmMaWvSbIrFY746o20dH9695+OHe96/vWO5mJIlEReTGGdGgiQhjAJ8LWnajvtjy+/ePfL6foefTvjqL/4HJrMl00AxjyKef/olYzdyMYl5tsz44nLOy2nMs8sVV9dXXMynJK5jogaWocc8TYkRRGbEPj0w3H2k3a6R1jCfz5DjQJcXeM7hmh7TtuzLEnX2Ej1Zsc9r6tHRdB1ZGiJwZKFmFgccyxLbt0yzmFUc4tuepw8P3H/7BpDMrs6ZzkO6vmIMZnjJFDNZoYOIb371S0JlaYsj3//uN5xNJnxy9QN+8qOf/91svvyTaPIvPH8STf6VZvPw8NV3v/3V3wauEbv9kez5D/DTOYfdjt//86/Zrp8wTnIoGqq64VBUDNYBjsl8znRxweh8lmefYKqei1QRSI/y0PD4cOAPb295/ZjjpCZSirMsYZamtG17+pJPp3g6xPUNtu9PkNbJyaopnME0FW4cUI7TAT8O6GRCuz9Q3d/hC0e8uMBPJgzdgB0GsJaubdHKRwsHY4OxEu1HBAGYsaUoO/AkMgkxqymbj2/QWqGyBZ6pCQNN17WsixKL4X7ziIxCslDx8uqM6fklP/nJz1kulyeoWH2qymzHnsY6xr5jnsTsjxWdjLi6fsZxd8fjh7doadmtTw6HfQfPr59TFTm3Hx8g3/Hy+oxf/+o3/OFXv8AUFaYdyUKfs8srnj27IAkUL19d8eJiQWAGYjUircUPUpSAQEv8QON7CVIKgiRCjx12twUMSvoI26A8D9OPiHFESoVtG/rdEWt7EAprRhhaxDhCU2BH8JKINt8jsKSqgWFAOUmD5OLlJ4Cjyre4pqA4Fjw+PfHy+oL17oCnA5JsxmglI5ZsPsF6Ci8MOV8seHF9QRhmnD97SdP1NHXDdBISBqfNe+RLun7AeBmpJ7m9ueH+wzu6Lqe1I72x1G2Hn6boQBPFISrO+PKLz8kmK5yVPGw6dscKxcDju98ztkeqwxO36x2b/YGyKAhMj2sqtLMEWjFNYl6eT7k+X5KEAS9++Dmff/U5z5/PmE0k089/hNUJ4cU5yXKG7Vr86TlessCfnePGESU1Q76H0QACFYQIKRBuoO96rBlp8i3N7pG+KjkcSpLpEqREGEtdVtw8bomnc6xz1O0AyqevK+qmRMwW3H3/lsNhjQ59Lj/7kizRmHFgNlviewlN57h/zDmLQzzTUhyPGCMJwpSziyvOzleAY/Rj7NhjqyPrxw0ojR9ERNKgsynh4oxIDkw9j9D6JNGU9Yd7zMNrImeJwymBl+GEwPcHVByT7ytCbVnffkfx4S3l7T35tuDi8pL5y+d4ixkyTQgXM7wsIwpicPJkoR5GhDOAREqFBOhrvNjDdg1+cBJUbFmiPA1yoO9r2qEDGXF8eqAfBoauw4rTOXJzyCmLivVuR8hImGX8YX3EtQ1J6EOYMFpohx7FwMN+zTe//AZvtiAKY37/7bdIAbHUBIFPGATUZUlXHPks1pi6IpCQVy2RhKHvWO8PhPMVh/2etq4p6o52NORFSVVXlHVN13VEnsaMIxdZzCwOSEOfLNRMQ49QS+IoJZstTkwirYmiBBx480v8ICaJE+LZBc6ODPtHTHXANi22KUFIrA7xcMihRfkefnCCMyfTCTqM6PIDoa+ZXl0ipWB6/RxhR/phYH55hRaO42HPfrthn+dYHdIUObQt9XbD0HYYHdKOhqpuqJuWs8mcWXZGmMYMtkQwMsvmZEFCZxwiTAirAmkl15cvOT97wfLqBWGcoLWiqSucGjnkR5qhR+vT1lArj7Lriwn3AAAgAElEQVTMSRKfKInpbUQ3cGI8+DH/9M13jE6x3WzJDwdmkeIiskRRyKtEcLlYEE4WRPMVV8+vmK0WzDzBaj5hEkB5855sMSN9/or4By8JlnOC5QU69Al9eYowTmfUfoA/XxA6hzSO5WqBHySMZmSR+Vy9vGKSpry/eaDuB7ZNz5ifILHKk0ghyRKPzgqK3vJ2U/H6zTuK7Z6xPV28mubUirBdr9ntS7bbA4e7W5aBII1ThJ1y8cVfIZWmNR2b3jKdhPhyYBKHVIPm8X6Dw1K3hsVigR0GfOnwg4D9sUQKyWwS8/wsJtYW5RRNpakLR1VV9GWBdI4k8NBSnlgRIxx2O6qyoi5KKhGAkRR/jL8gfTZ5TeQM08Aj9HymYYCvfJTv4ylNHEdEsznZs2cEDNBUiLYCMxBOZ8STGb4UBHGGTqb4UUwgJXV+JI0kySRj3Rgm5wm72++4f/eepqzxPY8gjpHWMjYNVgiM9LDaJ4tCyqrEmBZfSWLPQ4oApTRXVwuUHtHWMU9nqOmU3nQIqZEODscjnS354U9/yN/8z/+Z5y+eM1rD7piTzWYgoRkqrp8tuN088nD7hvXDI64fiIsDz6ZzJknCH371K9Ro+OoHP+Lsy59x3Gwo9wfaw473jxu++f23jFKRpQlJoAmjUy2ysw49tgz9gJMa54XkhyPGjgSmQw+nqFXkh8jBoaxDegrhBoTWWDSgTk4xqfDiFB1PsFIT+h5dlZMfD0wWZ8ynCcXTPduiJC8b2lFhlI/2Aiahpqpryrqnqlt+8ft7/uuvPvCL7x75p9/fM5YNEy/Bzy64fvkZg7XkxyPF8QmtHe3Q07UFynZ89uozVufPQWjy/R4lNf0f4ZXvP7xne9hTVgU/fjZBDD3r7ZGz82dkaYbtW9qmAWtpB0NVFFhjOGzXjGXD2eUzvCBGeR5dW9BUG4Z+d3KQjB1dc6TLHzFjzf7hLYfb9/QDFPWevtowtj2IAC+d4oQAL0bGU8I4Q5qWscrJP94wttWJtWId7o/CQn4skBIG6yjqnl3dA1BVNZ6SDEaynKV4UmKNpXEeDvB9n7ppeP32PdvDkbqqaeqWvBsZnKHIa3w/QRqLDjVtXbNeb6mKkkAJnLW0TUPoedRlTpFXzM9eUB6PNMecfV4wHA/s8pLdsQRnmE0yhA7o2wY5GmRbkwmLBLR0MAz4UtJ2HTqMWEwmrGKfOAzou54gTgjiANF1BKGPv7rEX1yBFcjZK0QyYzAWvbwkiKckUUjqK+x2ixYgBEjtY+sGa0EpTg2UeUOTF5ihQ1hHU7cMRqC1jxaQH0t6EXJoBxqnGBAEgSLLAoamZL5YIp3h3W+/Ych3fPj973DxhP/pf/0vzOZnCOVT7p7Iy5Yu34Nt0cKSRD5poOnqlv0+Zxwteqw5Wy5w1lCVJXXT8eUPP6eua/quI/ROTu6P6z3v7x4pR01jFHGacf78JXUz0JUFbZHz7NlzLi+uuZxlfHY24fPzCc9nKZknkU4irCCwI7pvUcJHCImvA1xxRHQDsm3Zv3tPpDUEmihJYOzp6wLJ6Xweh5Gq6xnCCSrNsM4xao+HY0NvHFF0eu/6rmUeacrDjrpukEHCdLbi7rt3bO8eERauP/kMLwrQWJ72R45lj9Y+Q1uyTE/8vZvXf4C2pM6PTLIFf/bTn//ddL74k2jyLzz63/oJ/HsZHQTMJhH5w5oxnPDjL75EA01VcKha+qYinYfkRcl2t0FIDzN2CBXQGokXT/C8gHIzcjVd0Nd7cttRDz1vNlve5C1jPOUHzy65SkOyKGRsa64XK7IsZTLNcG1DT4i0PdXtDf12Rzaf4GUpVAWyaanXD3iewuQ5Q1mxvLyiDwVu6KE50A+OLEtw1oDykF6Ip0ZckNBP51RNT4vENB1KaSbzjEO+5/7uiVRHKCXJd2sIQrp+YLWY0A898b7i0BjiNKYTHlOvJ53NUbNz/ChiHEbaYURbxSJdsB96hB2ZpDFgQXksrq5RysMTlnnm8/3rdxz2Bz4+rnn2o4FZdsaLiwVmv2eVTRmqkY9v76A3hEHGNJqRJB5h6PN8NSGLrwj1yZbHIAjSlHy9Zpaeo0eD53soJRBdg+d7uHZERzGUHgLNePiIs45+syVcnWF0jG23OARSgsCDoWQYDMZaqI+UT1v8q2uEiQnDCXZ0TF/8mL/2J/zmm294XwwcN1uun18R6J62q9jsj2yPJduPH3A2pqgODK4kmp8TRT5oQd8MzCcLyGas0i+YBB51L1meXfK4fsLg0VVHtBnBhSh32nDu1gOH7Y7eeXRPH/mwPkAUMn+2RM3PCduOaTIjCOf4XkbmRQxtwfruA2qoOfQl+fFAYx1l02GHEeUMqzQkVBJtR374fMVkvmAeaWa+5WqRoJ6viFYvcM4QCYHnYoL5hNbWCNdjB0mYLdBK4NyIn8wJpMQiMe2c4fhE0+Q4Z5CeYuxqrHWgPYQfUz49YIxlenaFcxY7jjTtgLGQxTHWCerDhnJX8+LiimK/pqxL4iwlv7ljPs/Q0qM/dExmMw7RFGMk8/gMUETqAWcMm2JgVwvieM7q5QVV3fDs1Stubm7Jbz7S5gV9PeAHIcrz8IRBSIUdBlS1RyDoTcRme8f3v/4dV0FBlDqU9RFOMtoWg0TbGFUUQMn3//0P9HWNJ+D6xTOCZEl69SkqiUGDkgphBug6hq5BRzGmKhF1jYxDRJTghgHXnlw+wtdYJzDax431qXnneERnMSbwUVWEby2BDCiOW5xWFIeSAdDWcrsveBUE7A45T933TJZnREnGw2ZLMAGZLYiV4fBwz5AfGZuaerfjXV4QKIGXJGgpSTzNoSiRxZYXywXr333D633FX/7lfyTIj4xDTzFCM1rK3YGmHRiNY3TQGUfbtgRuwI0dYRAwWEvse1xOEnRwahXwXYtpaiZRjDIddZ5z8eoHmLLEnyucFIiuRymH54cQRkQ6wCUpY9f80crd0PcW0xQoYVDq9PoJ30eZEdt1xGFENfR05QB9h4cl0JI0SWjL6hQRkY6zaUzfd9zcfeB+V1E7Rdt3iDjB1i1tUSGBvu8I/IBtM9K9veX5qxV+1pLOwQ5Huu4MFQUM3UjiT4iyBZ4OqNoW30uJsojysSCZxQRWcLzZ0zcN8eKKIJqg/JBUCQ5Fwbfvbnh6KPj0k1f42ufX//QbdrsDfjzixxnH7RProUElHhOdIyZnpLOMbLrg4vySWBjmyjBPEoIwZPPdLXq6wM1meJ98hV7OsX2BNwQMI3hxjHAgV9eIPGcaRjinGYRHUw8EVc1nL1/w9tvfUDw+kS0SfvzpM/Jjjm0anhQIDbYKCIYDK635fBEw9jHFsYZ5yHZ3ZF01HOuWOI5pR8mHbYNve/7D118wo6SuDeubnOdX58yDlNnP/5LffPMLgrok8DR9Y9juK3ogm0zwlaBSSy6vz3j7229wxuBFGavLF7y/fc8nswhvHHDtCRCaeSN+HFDlBuoeH0GR93TGMDYdVb0/bbOHkad9zdN+g/Qiri8vMMYw9AOhMyykw+t7XNui/YAw0PijJZyFyH4k9A3u8RFpOqIgwEkB1p7YRdMzhrLEtgWBd+IEyDDCVSW2rDBJgj82dNWel8/OuGsL3n64Yd8b/qPnIbTEIbGjIT/mhIs5m7rC05KLsyuaouGwK9kc3vK1r1Evzvjksy+xZUu7KYh8wWBCjOlYrx9o+pGvP/shP/rJ/8gknVLvDmzXkmT6A86vZ3zzza+Qx57X//xr7u8+8HLi88XnX7N72lP0J0jlvuoYdcSPp1O0kjSHU1Xqu7t7urqlGwxWecQSfAyur9nlOaMxqDAmSGL2VUs/GrJAc72a0xx2FENDeHYG64/odiBN52AMzhnGKEIZAZHACYXpG/AEUvpEyQQpS7YPB+IoZjGdE2pFtd/x1Y9/QtHUVMWepq5P0RcvIhI1Z6nPh11DVXU09cCxbnGu5qergIurOaEbGG5uCb/4GZ+++iHHssYfc6qmwQrH0NR4eqB++AO8+hrhhQwGPnz3LQ8PW/JDBTjsOHK2mDOdZMx8heeHeNkMYy1907Le5ww6oqtrLqYpSRDi+hadzpFSnUDzIqGr9zTFnihLkHrKOAwUhy3jWKHDEM9JFrNLxKhRvs/Yt3jaQ8UpKvLoixwmC2TfoO3A2CmMa1F64Ph0YLZYoQOB7ySDVsSRZkDhe4LQazCV5XAo6Y3BCk0cWjZVyqt5ysUnr5hevkAKR717YhIECD/hH/7xn5jNZ1x/9Zc0KMp8g9anSCoaQl/QbvcMXc9+X5D6U5q6wYw9URwzS2Mmkxn73Z7b9w/stjn7qmf7cORQdwgvxFceBBHlaJDWIMsC1TQIJfCEpCsHwsUEKxVBEvyR22SQUoOQfNyWeEFMrBRBHOLP57gxwFkfY07R6jhRqNbR5yUKSRArMJYwTRnXd3gh4BwimuHKA91uDWOJL0caa+i6gdH2WGcZmx7rSaaTmIt5iAh8Pu625PsjgTKczS4Ymho/jIg8ga8Vtx/3/MN/+xVxoPjZ30z582jKcrLizft7vvvmFyxefcldLci0wI6G/S7n+cWc3c33rPc18+XAw817lLVcrjKur5+BDlBeSNWOaDtizcDrmwM3j3t8LIk/Ic6mrG8f0HVPbxwTDcQxq/mcq0nIq/Ml0+zE2qIrECrB6ohsmjAedqhsiZA+sutxXcuQF4STCeiI1EswZYPOQoJAUlcGXwiaYkAZi+0GtB2p13c0SYjyNd0ARmhyK/E5OfKkVGSzKT98ecF2uz+1wi0SwouOVy89yqBk/Yv/F9v/jMXnLznzGt7e3aPKkmw25fbmnrevX7N9+sirywWmb3l6fE1vh3+j2+2/r/mT0+RfafLt41e//eXf/21VVkJFM9JsSl73bNc71psNWRIzCsXhkNP2A3lZ04+OeDInW8zxopiuLMhin0QKlDv98d5v9+yOOTKe8sVPfsar5ZzlfIbv+5xfP2dxfsVkdUkQZxSPD+jJEs8P6B5uSD2FqSqaw/G0BfFOdWpYh9KaIAgYigOeF+BlC6wMkG7Akx4IQAaYroOmQrqevhsJZwusOm1jnJ9SlDVvb+5Rywk3r9+T+JLJJCT2FRZJVTc0Tcs49MwTn2wSEweay+tLlNJMJ3N64RN5HrH08cqBoINd07AXijSNUc5wOBxJF+ccq4qHhyfa4kieV+y2B7ZPe7p9hRQJk9kMhWSezrl5/YZ8t0aYlvN5yvn5kvnZFb5TBMIQKEGsJUPRoGVImMb4zpGFEmEE0XSFEx7ONHiBQmmJcSMy0FB39OstOggQYYBpWsb2ZOeX1mKHAdE1tPs1mBEVJlgdoJMUbIhwEqxBuFNsJxAjWRQxmyx4/e4db969p29bdtsdWktmiU8aSPZVz/d3T3RYppdLEu0R+1MetweiNGa33+EGx9X1K+43BdkkZH84ohkp9hsWk4DQCwiEgrYGHSClYBxH3r17YHdo2JcdZTlQrWs8UiAlSy5IvQzZtRyPLTff/paFd2oqaQZL2Q60Xc8qDrgIJVkcM59OuIw9Mg3zSJP5Eg+DGFqyyCOII/w4xlQHosvnDE2LUx6BrwmTBGV6pDhFLpwZEdaihD5VGfreiRuDxdQ5tsuxbsQMI4MxICWMPcJZ3NCBs4wG1ps1g/SZz1L2h5zvP9yjo4T5csnVJ5/w/PPPMUOPrxTWgjYe6VzztHmPkAbfT4niGcY5HJpt0WKChOfXz1mkCQ/39xyeHuiPW3Yf3nM4lljrkFLigMDz6I1DhzGeFBgh+Lg58Ob1H1ioHa/OA0LrIfHx0gyrHEr1jM7j8cMHbJMTKZ+z2YyLT16RLFaEZ88RkcYag6dCxnrE82PAocIYqRXSF0jfw4093X6H7U6tI0ICnIQckfgIJXGdYewtaMVxf9rutXmDj6LYHxg8xa4sOZYlQgms9jAo9mVJ0zTgxwjt0zYVyvdwykMoxfbhjiTNsE1DMMIsntDVLReJz+X1C5wdeXp8pHu6Z78/crPdIy6fk776lHzoOBx3iDija1tM0zPUHWXVUFcldVUx9j3DYBFC4OlTFeo8S/n88oxFmhBlGYlyTEKfLAwIfZ++N0zPniGFj5anCFoUKvrDBmkcWghMvUdKjY5SxrohDAOyxTmhVgRhhLWCh/WB4bgnTRM8rU7AwTCgfLzDlyN+koD0aPMjcRQzubrG1CVjcSSeL9DWnCIG6yfy8sRE6rqeY91yrGqcdYRhiKc9qnbASBBjTipqvMEjjp/hpRPE7i0X4RSTG44Pe8oqJ706x+qOzfGeolrTmp7dfk8UeKRZRpakeGHGw3rPP/7DP9LuKs5WlyyXC24/3PL921s+Pm1o2pb5bI6yI7M0Jo0T5qsLwmTCYnVJmmZErsevci6WC9pjje0Mti6IL1/gxwHJ5SV6eoafZacNajZBexo8j94a7DAQSU0QxVSHCl862n1JHHrIviXzLU1VUB/29HXFl88XpJw4Nu0g6MzAwhe4wZIkGbiBqW8IffCCiCiekE1ntKP5o7PK4IURVWNp8p6/+pv/g09+/Jc4a8nOn9E6x5v3vyPyJVo4qrpH+6don/IjsiRmGvv0g+HD/ZZAKWazGZiGqWu4XCzBegTRBO0pxnzHyejZUPeG221B3g7Uhx0qmTCohN/fbuhHRzJdkUYxvh/iaclimjBbzEnTFC8ImUQR2o8QgKc9fH1yhEprUX2LjzhdXhdLolBjmgZ9do3WmiRwxGGA0idAYrpYMPQGN/b4kc/7795RbnO0tRzLgs60aOloB0eUZVhjqfMjlRH4vsfYd5iRU/zPV/RDi1MWIwJW51fEWmPrlnroadwJ5Pz48SOX10t+/tOfcD5ZQG/xwxnPPvsKL1ygnOWbb37N3f173r17QxT5/PnXX/Di/AJTHOnylqddxYBHmkzQQUzVtByLmv/633+J1CG3mx12aIg8hcQxDj3HoiIMfBSGpu1onSZZndFWJ5dAXRX4CoqmRVhDMFkQpind8YDtO0Sa4foGmvrkYPRO56YdOsZxpO8HECCcoy5rgniG61oOmx3pbEZ+PHDYPLKcp6hoRjcMCGtx44iVAU0/0o8j/XjiYPUWZoEmS0JeXn3K5PJHTOYTtnXF5vYtfVsxjCOXl8/49HIOfYNUPhLBdpvzh9+95uH+I48PD7hu4GxxzosXL3i2Wp4YWtMl6XxF23Z0XUtR1gzG8GyRntpiDjvqbmSRLRirCuEMTXOgbEseb27Z7yrKfUm5z3HSw0/mrObnJNMl2WrO0LR4MiTI5ugwxLjTe6EFNPs1om8QQ4vTHt58hZ/4xJMI5UmKzZ6+KNFaYj2PcegwzjIKj5PPxzBa8LRPFPhIDIvZjOlkgS8EWmuENZiupqoaGhVSD6AmS5LZivV6c2JQxSFagxd4lMeS/WbHenvAOUUgLYdjTjafYtE8u36OsiN3948E8YSnY8Vxt8eMI1IIFtOUKAgxAvr9lrGscKMl8fyTS0tJgsWMtuvRxrD0wI0jnpJ4ElaLGUkY4hxYP8ALAlTv8OKI8OU12j8tRrT08CTowSLqHK1Ogp7DYsodrm8YqwYnTrys6vEDtmsY0exdyGgGGEeq4w6co+9GhBuxY8dsPsXXjtk0IC8KeuETT6dcLCYsE8Hd7RNvHks++bP/hB/O2Lx/yyJV/OrX3/Kbb37Pi+tL8HxMuUP1DevbO7LJDIVACAjjDK00ZmjxwwTnReSHkmHoaOuGrmlom5abxz2pAikV+7LFCxOs1MRRimd6AjOQZRmff/oDni+nLLP4JCRrBV2HjjKE8BB9f7rnCIXYH3B1i3MO7STWQRBHiKJBGMMY+kTLDCEcXVHBKOm7kaorMAx0QpJdvGBsa7SnedofqNueUQc0VYVQEmUGbN+hhUA3O6LqPX/2w4Hzn75k8fKM7v4js09/xOTqFVprvr95JF/fY5sDbT/y9uaB93dPdFVNEAbYvuav/+a//N3q7E9Mk3/p+ZPT5F9plPYQQtO1HYtVxub2juPo6PMjYz8g0hgzGqy1jONIMpkhJpdY01E0JdkiwQ8d1tYo7dMZDyN9svNrFi7kxWTCSltiJYjjCFDEUUicTfA8jTI94c/+grruCaRBRAG7x4+sPvkBSRoh/Ij68Q7p+0g/xE+nKCmR20dcW2D7Fuc0Y9djZU8YasZ2TzKbYc1IX48kmabZ3yG8hMlyRqcDDscnltcL3u1rbj+8QZkzLl5d0+ZPrM5WxGmKF/h09kQkb7uOqVYURcHq7Azf19ixJ99sGeyRufERfUunBXXbM/QdobasVgtsoHl+taR6iHn9oaXOK0w/oiVQlxxuPnBztkTICDUmjOUR1+Uo01LmPYfHA7G/ZXk+53p5TuJrqqc1iJSzT1/iDzVOnoCCQRpjqxp/tcJ5LVY7lAhwQmGlhEwwFmt0X6FVgApSxq7FjB39fofSmr5r8ZKI5vBEf/+W4PwKEWRIToA0pTVKesgBgmzFQvlEac3/8vMf83/+P//AZrOjaBrysmQWSJp8TnTxCuMEvvYQVc5iecnuYcf+8ZF+HFjNp7T7nJu377h49YLD4Z5eSNpyg+17PB2j4xRbHEm8gKaoyRYz8u508ZDSMdQDQZiwWF7y9c/+HK0gyaaMm3u6Ys/uoaGpDuxVzK429E7jSc1VHOCZgbxpiZIJGIvwPZquZuh6KuVR5g3BONB7Fu35WOERZCvGomToB9IXX+AnCa6rGA+PiHiC9VKklQgZwNgizMkaLVSAVgqhAkxh6T9+iwlivHTOsTjQNA3S5ERhQNt13N49sc5bwjDEtTWmKhl7Q1d3PK6fmK+WzM4tDx/X+H3HanWBpaYaNXm5p6k6tFAkShDEMw5FyfLiCte3ZB4ct1uSwGfzuOWwfjyxhQIfW3cM48n+bZEICcKM1INh8917TFNypg2ri3O01VjbI0LJIGswHl3dYbuCeRyR+gm+ivDSDE/5SOczNi1yEChvgs4yjOnQkwnOWqQfYLsOq0DFMcKGyM0TKgqwncF1PaoHKQ39ccA6hwglphZILVFa4JRkdAPCQax86rKjR1ENhqrtWZctOpujtCQTcHd7c2p0KI8YHZLpACUNo+nZ37+lLluUHRiaEZPEZOmUpqmZTafsjwfwY57NpszCCOssXX3guN2wzCY4INQ+ZVOy21ZgGorjkabpcEIjpCMQgjAMQPkEvs8q9EjFwNzX7HLJPEsYekOcaGTX4YodOrnAmJAsTnB1QTI7p95vsW1NU9bMrl9im5o4SnBdiRhGdBBjm5JkMufzKKRta+zQYfoalZxA0heffEqzviOZzhiLA8X6ifPPvkJaiycF9TjgGcv1fMqfffaSfP9rvn+8A04RuthT9FGIFCcL9bGs8YIQ10nuCriINUpUuO0TwfOXHMM5T8c9xeMT33/3PfFySjq8xK9qRNAzyxJ++c1vOWyPTKczZlZgZcL924+8fnPLWbZCzBRC+bgq5/Xrd9zc3SHciO/5CNOSzhY0+ZF4uiSZn7G6vKA6HpgworQjTVMCz+OxqUmPW86/+JLD4xbhPC7nU1QaI4KQdv2A6vYIAYOxyOiCZTZl2O85rNeE2sONkmwyYXPzlkmUsnl8z8vlhFpbHp9avvn1d7y6nHJxPkUlCV3d0dYDcaKYBYbLJKK+K0jdyKtlzDyzlM6jl1N22wMDjlD5ZEnGizDASyYI30ergGq9JokmCKCtD0TKUFSOxWVI0xriLOUiS9mttyjtEYYxRVlRv7thlvnMFxlWa9wo6XuHkyPGDjRFc7qcDjDogNTTaLXg4+Oaj5Ukbx1JOmO2WMI4UlcVEy/kbDEl9MBJDw+LVj5pGOLqDmUhSFKUkIS+hxsNQZISTCY4MZ6cTcOA7Ap8TzEOktz41HVNJitG2yORjHWLNSOLeUJ/0DRbRyg1dVvz3Zs7Lq9HwsUSaWCZJDTtiBAR2WxKdcipyiNOSqaTCcL5pwtH2yKDBOFHxEHAMd+zf9zQ1wWfvlhwsZyzWz9xVw18/R/+gsky4bDd8P71e+5e3/Ld69d4Qc3PPlsSScn2/iNS+Ow7nzDw+PrzH1AUJW/evCdNZ3y4e087Gsq+Y7Vc8PRwj7QG62uapiNwhny/JQ59pmHMYBqK7RoZhIxDg0BQewlDVeCNYPY5DokqS2Jj6T98z/TVp5jdBjcaJBLhn8R86SxaaZqqRQnJfL5kv36i2e3wHFTHgmfPP+PNzR2begDdkGpBIDywERkDean+KLxKjJEUneF+W/KTH/l8/sUnZIsJvZSc65S3vSVUEhFFiGhJryUzr8fkG475jvWbDX3bkG82FI8bXp69INARq3RKGmeMtMh4xvruI/QNdVGQBj5x7BPIgafdnqJomE5WKOHo2o62yGmEY7Pf0VnJxTzESkEcxgilibwQ62DoW3Y3B7IwwYslTkDX99h+xAqw1hD7MUOX08oY4wewfUegfAh8OmPw04B+qLFagjNIIRiHETuMSKWIPE0ygsEh3MCxGDiOimdCcPf2e4xUzCfxSfivcjabNd7kDOcEfjbj+vkrit0HzNDR9ZKh7bBS0fcdTVXxMBienU8J45OLOpwueCp6ZoHk+nLBx5uPZGKgjz1cqBHaZ5LGxJ7msD9gq+pUImDFiR03WlJncUIS+R4LcRJLBhRNNyKdIowl3mRB27UsLq/Bh67qiOIRU+6QOsHioyIPZ2pEGGNbD5PnGKUZBoMwI64sqAtH4HsoN2JFRPl0jwgHvNGR9wOmrQi902+5lRKpfMa+4CKbwSufd+sdvTKEUcDF+ZI0kNjywMtljPvr/8Tf/G//O1dX52zvb/i//tvf8+3vvyMYLYfHJ2okm5t3iKEltg22rnj2yWcsjKQoG3wJqexJz665eTiSJDF9XXF+ec3dh5EqP7AIFY/Hjl1VMwiP7AxeXF5wOJYIa4mSmPPzFfPVguX5kgBHlMSY6kiQJCDlSWAaRxbNhi8AACAASURBVMaiRcoO6QxmMmc09lSA0baYfoDYw5bgBQHVocI1LZ4XoOcJlQrJQkG7eaQ9HNgUNYHo8EaBJwRN11KWBX3b0+we+ezZknQyocoPbMeR82hgv1P4q2uMi1B+g/aW2NaSeBFfXy/4ZbFl+7QmH32ibEkQHlgfK0KvpdMDdVX/m95x/73Mn5wm/0rz9Pjw1bf//I9/G2shrp89p8xLkjjm04slTV3hhwmjn9E2DUp7dFZRVg3OObzQQ3gOYSrCSCO6kciL8MMYI33CyYK555hGPpEX4EUZs8WSOIzwg4AwTPDjCdFsxeJ8RTKZEKUp8eyMeDqhOx6ot1u0bfF0QH880m7WmOKIaWokGtfktIcDvobhuEVbh+cJsANOKLphpMir0+NNRXU8UBcFfjqjNJqnh49I21NWFSZI8LXk8eGeQFgkliCKGJWiqhq0pxHCsbi4JEsC3r+9o9y26MYgqw48x4OpMIDvRtw4MF8tsTj6YUR5AYwwWItOAybLOcvViniaYZwD4XNxNuHh7e+IAo8gyHAyIJvPeHZ9zouLBWJscPsjXd2yWF2iVYgfODQDgdZoP0QECjS4MMZageuaE/jVj040+EmIdRZMQ1NUqCDENA3DcYe2FsxItVmjfE1blzjT44xgHDuENdihgbGFocY5QV9XSOHI4ghPwlNecfe45ljVDONI0XQs5nOi6TlFWZJMMq4+fcXbj3c8vf8ePRpW6TlnqwuEcizPZ5T5E32+py3WZFmIhyH2Q3w0Y1VS1KfPYD8YHuuaXvk4P0D413x+/UO+ePmK84sZoewpbt/QlBXbY8OuqGmMpDNQVQXtcYsaOrphYOprpp7k4vKKs+WSSAnmVy/xwoR5Fp/qm/vhpOo3DWPbYIeR6PIFntQoYXHdgAxjvOk5MpyilI8KYtxgTq4TL8K0DV1+xPcDhHO0VUl53COFQwcej3d3PH28oa1yjvstfhAwmc2pqoouP7I7FiTTFUIHpHFG6i043ha8/f63hP7pD288nzEy8ub172nyA7FWuNBDhmcIIbicTlHCIaVH3bTs8oqv/+o/0xUHNustUoDoKkZrcOKP8Q8z0lU5+/Wauirxxo6Zr/iLLz8nHMETA/gStAIDQRAQ+R6RHyAag21bsJxacoSHH2e4P+bMMRIdxQzG4jzJ2PQ4YUE6dBidAH3HLdZ0J0ldW0xfg+kRvsAqB7YHYRkxOOkwfcuxOBBFEYfDkbataIXgqelo2waDY1vWXF2cnyJ9fsCzqwtePLskDD3G0bLfbXm8f8f+6Yn8kJPXDSKM8VcLLi4uSdIpXbGjPh5QSnH16ef42SljX2zXlHVLGE9oh4H3N+8Z3EBd1hT7NYeyxDjH0HdYawnD6P/foF/PJnw6iZjEwYmjEMQEfswsUGAhSaaYKieeLtFeBPkOL5AoL8GbPsNPZsRRgB9PUVLjDrtTLCIM0X6IcRIdRDhjEAJcV7P58BbpLH6cYJsWP/Ronm4onh5Izq5PkGLPA2tOzKg4YzhuiIKAp+2Op6cN9/sj3TBSdiPaCzBCEUYJeVGctrRhSoJDmgjPRaRxSnT5kkcnCGzNu/ff8jHfIGchy+dzPFXx/MUlk8mEX/zuW4rjgelkzuLsGV3TsN0dSSczhArZHHLqscH2Of/33/+Cp6ftyb3jeTRlwcViztnZJUmaEmuF6ktmnuI8lHieR1s3f6ztLDm/OCc6O+d4qE5A1rMVTTNy2K3xkuwkmltDZ8GPEiTQ1TVBGEJT40aDkZLt4UAaRJQPt3hjjSlzJt6pIvL97RP14Aj06fw2o8FPpnhKnCqR85yb48BvPmx5e7vhYVvQth1FUVDVDabtKfIc19bEGKIsJgj+P/berOe260rPe2az5urX7r7ufKcjKYosqiTFDexCwYYDBAng3AXIRf6igVznJggQGI6dCly9SixJFHnI033d7vfq12xysfkXLF9Y4wfsDexmzjXGeN/n1bSHNc3Q8Obd71lWEW3dcGgcFxdLqtUFoyl4+eKaJFHsPrxhu3lg//iEJiJxgWV5jqNXSJTrGaeeQ90hdELdtPTjRB5FPD1u2e9PfP1ujU4qblZLbi4vsfUJI2GVam6XJWkSE0tFFkeYYoHJc7IiAX1WO0SLOZNWyKJisBZRFajZEokAGeETg4kksjuhXE+UxURGof1EHEmETs7DnTCSGYWOHXEVE2cCFQJ28rx/OlAul8wWM45di/WOp1NDbhw3twVf/OIr7jYN7X5PrAuoE4qyIvsx+WvygbuHBzaPd1wuDc9vL1nNl7x795HH48D17RVCWN68+Zr/8B//PX/3q79ivb7j569SXqxm7J9qPt6tqYo5wed8+uIF2o/83W9+x/f3jwiTI80ZxumsZWgbSqMRnO17k4fRebRS+AD7bsIrc1aLIKjHCRFntN3I609e8+7uidmsIo4EQil2h5ooLxDtjqAVY9Mi/YRSCoRkGh3T5EEZnBBM4wDWYqeJaWqZhEDHMd3QsX68Z7PfYtxA13cIoQjq/F+/jgOJhCkIfBD8k9fX/Kt/9Wd8+rOfo/OC+7blfrPh/sNv6YeByQsWZcnnL56RJ/H5nn544odv3/DDm3c03UA2m/H8xWuqpODF1UtSbRBKYMNZNXSoG4yWXM5SuuMT682B+33LcnWNUAljO9AeT2y2B467A9IYZqsLqmrGYB2Tc5TF+dnztD2gdcz84jl5lhEQiNhgbYfSAhVHRFmCG3qE1oS4QGnN1B0I9eZH5o3HzAuIDX0/EQACODtRd+P5bvUWoSP27YS1Dikl3RR4dbFCxwneeQ77A0bA7z/e8x++/obdqeb+/o4qS86Ae2dRShJsh8DhhWL7tGW3r3E/DmdePr/gs09eky+vibVms16jRCAMA+1giSJNZCLSLAPvUUKwedrhrUP7wEwpUh3Te0ckJZWCVSzx4wg6QcUJSp8jk02kGaYJwkSqPdYFimcv8ZNCAEKl2IPDrWuUG3BjjxtHDs3IdhQ0XU8cRqTw6NgwNUeGYcBbyzDZsz24a0BrTm3H/a4hLSuazuK9B2/p2xYZRUjpWcxyVrOCVWVQw4lMOy4uFyTVkiTLIC05kTCQkBGYGcUwTYyT5e13bxiGiV/+d7/k5c0NyIjLV5+w36wZ9mvu7h7ILm5AGQ6PD5RFyevPPuVXv/k9m2NH3Ywcx4BOM6qqwmhFtVhxONUw9Ty/vWW2WnGzuuDFRYFRIL0/q0ZDhIyKcwiAA4IgKANCICOQtsO1BwITKk4x1RzhHCKc3w8Tw9Qyehiza1wqETIQhj3D+gNiOOKRpIsLejsx2gl8YLt+ou1HdKQwcsJOnskbNvc9/cMBv5+4/vKfs/z8l0xDQ9vUBATbU893bx/Y7XYcNzskniLNqPIErSP+9b/5H//dixev/qg0+S9cf1Sa/IHKe89Yn1gYia1rKq25//57hljzfLXCmpztw5H9/kTd9nROMcqMrFiQasE47dFqII8TjAMlBrzTpEmOHBpyKXDWohdLsjgmSRLiKCIyKVpHRJFGK8HUnpAmJ7l6SbyckD6QzleMux3S99i+JS1L7HGPO2xxUiKYkMacHySEJGiBH0/0gyTKElQqyNIEa090Tc3gPGVecjweeXx85GQFx0PN9ngkkrD9+h/56qtPWVYFU9cQZMQoOQPzvKPtRgSSh33L61fXJH3P05ueKG4YM01yoxGFYRo8jZOkqwVZdYlrOz5svmXTHLBZQn59Ta5uyfOMWAToLGVeMptF+NMjzf5ArAKxTri8fY5zI7dXS7QNHO7vaOoDN7cvSSJFZCdiHxGXc+I0QSmFqnKcighCE6XgogiAQCBIB2NGiB24ntNwQjpHlGb45oTwDikTQt8zyRGTpkx1ixsfcDLBZHOSJMZay9T3SCkIk0CYiCAGXl9U6PgLRJLy699+Q9PWjM3E9jQyqwzL6ys+/fJz7jZ3NK7htHvPsHtHPB347H/6n6muP+PpdKRYXrC5/4DvW8qbitJE0A0EEdN0jt3ThshO1HVD4iUf1g1db7n9ieHy9YqgQbaO/eOJ+mBZ70Zqr0nTGBlg6I58fPjIVRyhhGCVGD69qPj05oJiUWESQ7XU6NkC56DdPoKMmIRisIJUKMzimmy+RCcVbpiwxw1RtkIGie8dQU2EAFKlTJMgjKCUQ6oMV79j9CMOSZKvGIaR/nAgqmZcXT+jPR158+b9mWy+GJkcbB53NN1AVZY8v1zx7Ycdu33HD5u3eKkxBiY/sRlqMhWInMd4weGuYe03MFsQfEOUpdjIUEcxYr/h+sUtg9YMT+/pDluKasZmt0X6wFlr6+jbCeEtUpy95UYErHfMMs0w1RiniDIDRAhpSOMIMXmEnejqgSgEpAooP+FDRRjPn5lcFAQhEUqgYoUbepQMqFlJsI76/g7bDiAFPgS23/0OXRY4JAw9DCOuH3HBYoqEJDFIHZFEAlkkxGnC0HZnOF0nSKQkizRdnOLbFgg8brZ8+ac/Z7Cet+8+UJ8KHh8fQBsmZ/nNr/6BYRwQacbi5WckeUY4nejqmuLmmu/fPbF9+EhezfjNr/+a0/qJ/fqJ5599wfLFZ3RjTdesqZLAcfQc60e2pwO9dTgkwVpWeYJ1FqsNUsBtFkFWUnvLRWSYFxkJDtfWJGVJlJVgwW8/YuaW0PVYmSPdHtF7ouU1o2/AgQgCW59Yv33D6uWIWa5QUUywASUNRB69XLHsj0ydxbYjMsoZe8/UjlTXc4oiBSTNeo3KMrQUaOz591kVfPHZTzhOksPf/h0Ph5phcgjhUTKiqWuSOCaNY5r9jtXtM1aXL0g//QoZBaKhofAjU3cirTIWXFJdV6ho5HBqkR82dGOP73rKogKluP94R1mUxGWJihLqxzXH3Zaiqvjmw8OZH1CWOBERVEyRVdihZySwLJ+Bn6iAZ3Gg73q0Tpinhsj2RO2J6ZgS9keCHen2G7rTDIukqEpMJKkfHolMhFYa/MBpX2PHHqEUAYHtW0SaEvkRJWLyxZLDD7/ByIn9YU8xy/j0ouTdZsO7oWdexpTzGakLJMNIai2fLwumyfG4bdiud3g3sOktgx0IgPUe35wY9g4/nqiHLT/54itiHTHlGVFkmDwc6okkydlutlTLS1zd0DQlkcl49tOfQpqzeWzITIEOkOYZkRsQfmTygcfNkYtnz2mOHY/NQGQn1veP1FZxt2+JZUTpR1S9Z7d+4MXtDalRpJrzcC5AXuQMI6RJSlEluGGgHVqK+fI8aEWhc83D3Ybb64oxnIiyEiklSkqCHxntmeUhT3u0C9ixY0hyVHFWR532Hc6dsEeLGANhilDCkGlPkUq645EnFYjTjEJrimEL9cQn//xfc/2TL5nffMb/+3/9n3TDyP32DfMnw3z5EmV7+v0W4QYuqoh5JWj2G377u1/x7uOR+6MjubpEjw1vvv6atx9+QGrBTy4NXzyb8+XrG/7z339Pmc65nJfEERy3O3797gd+d7/j9evXBKFpt1uGscfgEV6yH3oSJZgcWHeGtQcLSI0XCu8loXckRUZ5fY0bB5IU6ikwW11xnALD4x5DwHuB2j6hZmfOkzcF/ukB25wQyyt8UjAdjsg0RScJlgRRrvBdi+0NOIcfGmYm4urigvbN75nGQEdEoRW9DWRascyXpPkMkQ40fUdcrmi6c+x7ns4ZlWQtPU03YaIY2wfE9pGtCfzuu4/cPTxxEQvazuGcxznLqqyIpOTi4gYrJSGC7bGhiCUuwLvHLV9eFjwcAk8fHsmkRfgC6QN+HNifzufR6CAvC+KyREjBqWlwNlDd3NI5i90e0EjiuCCMnmk4DyV29ZrDcU1Ci8lLonyO6XYoqYjk/pwiWRh6PyeRggnP2PfESlOUOfvjCeE9WigUksOxRilBHkdcVhlNP57tV8cdm+OR5XxFeXFFXs4IY3uGWivNNI1oHeHbA4de8/zmGjse6eqGqR9ovSbLMhZlyu7YMk4jTipMJFnOc+xxz64/8tAHcpMgpyfGusWkCU3bUVYzbO/ZHzuM8CxnOVJLamfR+QwhLKkWTH1HbAzTNCAk6MhgjGIcLYO3XF4tkMGTVDO0SVDVFW5yhKBQsUApwfjwkSnW6Lwg04apbxFupK83EBwRFt8cCD7grWecQKqAGx2hb7i6WhHiCJUU0DSYSHAcLd2pQwtDfWoJg2OxWiHaE707kV28YvbsFQ/fPPCf/uIv2Qx/yb/9X/5XPv/yK+5EoLt7x3e/+0cWRcTrl894/uyWz//k51zMS/rDntPdPWkUcRgnTiFBBLBDS1MfkMHyt3/9twzDhESQFhlVJWmngMehbM+H73/P9bOXDCdBEksui4RXt5foIFAyQkgFQaOzOaFtcN6deWMmxluPNiO2OyARCG2QzhIXGd3jibhcIcf+bLO5fYlOJM2Hbzhud0SyZKpbVDDEvsPWDdv6HYVIcF3L8vKCp82a2ETUxyN31lBpiJWmWlYwGt4PI/2mZTWNjM0jm+8e0MuUpu+YmiPTOPHN794idcS8zAgBahH4/NUVWZb912pv/5uqPypN/kC1ffj41a/+v3//v6XGCOHg8fsfuDaay8WStKxwQvP+4wPOevp+pBsFIr9BBc+zKmGatsRqJPeKMATyJEP9GIVX/qh+SNKMMs3IjEaGcAa7ZTlaaGItkSEgnMWOIzKuED6gPYShw9tAlFdnK8vYo41ERoqkXBLsCEqetwEKhI6QaYHzIyJOcM4SvD37drWhPh6w3pJmGZvDgfV2h4w0gwusd3uapiHVEqMldhxJ8EwBdtsNRgbyPMUhMXlGqkZ29/d8/+YNh8MDXTiCmRilpLOOx4dHpE6oVs/orAdgGkb600hkUi4vb1nMVmy3a7rDkZfPXpPIM7y13qzBC7QIaBlYXiwo04S3v/4dvt4Ra01VLVBCEoeRJItJF3MQEXGREOUpdhJ4L9FSQxRjnQApsVOHKYoz3CzLiZIEMXb47kRQGpVm+P6Er2umaWKwAhMZxt0O7wNRHNHta9xgcc4hVMxUt3hrkZFj9/GOWZZy+9kXFEVOImFeZCwWCz7503/G609eEpzj8eMdp+0dm/ffsd+uGbo1h/0Dt59/xtu337Pe74j8SC47FhdLjJa0+xPDoWU8Htk+rrmrB95+eOLu4cBqfsNnn73mi198xfL5BZeZRI0Njx/fczy2aBVxrBvGfuDh4SOPmy3dZHEh8CJPebmsWC0WlHGEDJZZavDeEoWJKIqYlylxUZG9+Cly+Yx8vkIJgYoS/Ohh6IiCQ2KQyiBMSv/hAyjNQHzeCvqzTJepx512eGlwzp5ZJMWMaXTnbXecYtIEiWN3qNlsa3aHE91gyfOcq5tLrBcgNIfTgWPXECKFiWPW6zXR4hImRx7FVFNPcBNFmqPzAp8s0VHMt998w9tf/z3Pr6/4Z1/9lOGw5c0/fk17OFDv1xzXT2glUSIwTRMK0FHEOFqCc4QQSJTgX75ccL1aEqaOyU+kqyuSoNFioq+fiHzL6Dq0GVGRQ8QxQWqiMkUY0HkMfkK4Hw+kqf6R5SKw7YC3E3GVEVcVUmm6riap5hSLK5SJ6I9b4jRByJF+/cC4XjPsD4Txx0hhI/E+MPQd3k2oJGZjYQwwBsGIpBsniiLn+7fv0UpysZqTlBX7Q40Wgvv7e0briIuSvFqQCc1ituD61acYJn79zTesdzue1k/0KubDx48kkWR5+5KffPqaqdkSB0tzOrHtBj68/Z5pGHDWnrd7wWGtRehzas7zMuOr2yvipGD57Dmz9AxGjOIcPTakaYHIV6hihRpatLeYqxcEorOVTYASBoYefzqcI8WjjKFpUGl+tsn4gIozpr5FC4kfBqK8QiUJPij85JDaoKslwfvzRjpA7c4xkJEIuK49nwHecup66m7g6uKKYbJsjjWTdcQmwodApBR9P+CdQycpN6sLimLG9eqSLE0YkorH736FBGwsuXxe4NyACIrV9ReU5ZJumNht96zXB7q+x8QJy4slXsHvf/87XN3hvODb333LMHqSckGeV8RJThafB8rPr6+IlOBaWZaRxw4dZTkj0ZrEjXSbNd3phJytMHHMqBS7wwkVG3ItsG1D05wYxxElJW1Ts9sfGbwnSIEfR+zkGEeLHHv6fkRIj1Cex49vicP5nts9bc82uESxOw54IUiLCh2XGDciCeSRhOMGJCgl6IiYguB0OlHXRw6HPc5OpEog3MTHuwce7t7RHDZIpfBVgREjh/UTJj/HYjrnGLtzsp2tHR+/XZOmMfPlDDu2LOcpl2XOdNgiAjzV3Zn74SWn45Fmv0Xake2upu0nytgwiyRy7GB0XOQJBofyE3FWkZgYk5zVp/nimixSOCcQwZNXGSo21Nsjs4sZzk50w4H51Q39fgPOY61kt95h+45ja2kPR5rDEaEkmBz8SL8/4p1Ha2jb7tyA7g/oRJ9txaMlr0pcANf3ZEXBsTtvsPfbE4tyzrHumBUxKLh+/Qn77RYRBcpSkkSa3W5PmnmM7Ikk7Hdr7j6+51dff8/j/QPf/u4fOT28J9iROIpQduRVFfHn/+IX/MnPvuTtd+94fnnDcrnk4X7Nqd2w3u9JF9egIrbrDdvHe5LIME5nu6HkPBiz1jE46FxgChKRlug4waQZebkkSSvyouJyUZElEV4YrCnZnXrSNCHOK3RaYu3I0J4TSIKOiC6umXzAJxkqKQmbzZmlFcfstmt0bIhnM/rRYu3EZCf6vmMaBwKB2GhUdAZXVzrgvOfVxQXB5Ajg1fUlq1nF5cUCJWG0E+u7e973I1O95XRoiITk+eWSv/n73/Gb37yhP+xZFSnv77fE8xu0NixmCxKtyaIEkxl2zY7j+h4/9rTHjmujibTkabdnlkqmILAiw2iDkpqmaZFRzOr6Co+imM0ZJ4eRAq8inIcQPGVybkQlgiSOkU4gfCCJNak6N+tpFKH9iABss0OFQBgHpBCkWYYfevp+QgaHyUtE8DBZurbFOfBKY7ue4+SJkpSgDUkaA4KuGzFxjlER7z7e0xy2JCYijWJa67HTyKrK2TUtwiTEeUFZ5nTNI0wDbTfiJkfXNMRR4PnzK372869IhMJZz/ruI7bvaN0ZcJsbQR6BVJI8L4iTnB/e3tP3E2WsSSJNbAzD2JMqyDQsk3Ny08X1LbEMZ9VjNSc2mrgo0fmcuKjwwuBFzFi3TJPE6ZypPeFPa1y/Z+z3CB0x1Uf6hw+4055+uz6rk5MK17WMhw3NdsPQtHQuYgrn5Lz6cKKtWySBbuxJJPRNjdAJbWM5dI58kSOUpN5tkFiKVLC6vqFcXOB1xocPH/nu929ZH1r++v/5vxF2IElSNh/fskglf/Lzn5HPV9y8+oTCJETWMx2OREZxv6/J0phnz674+u++5mm9I4oirA8Mw0ikJZOD7aGh7ifiJCEA9W7DF8+veHW95HY153p5we3tC0TwKJMgbEBHOQqNimOcjBEmw3YNSgxYOyFw2CDP/9exZ9rsEV5iLp8hopSxOZFe3dC2PX7cM+zOipkwekwcY0M4qxH78ayITxL6fgA3UhhBfTqitWa92TKNA2UasZpXVIuSYRzZrx9oj3echhPomFNv+Yu/+QfyasF3bx95un9i6DpeLGfkeU40nfg3//3/8O+unv1RafJfuv6oNPkD1TSOtJ2jVZbD8QPrpy1HL7ntLBdpASolE5p13aIsrLISGUUUyuHaDh3FmCEwho5MeM6U84nQN8hEI3SJMQkqWHCANiAVGoFREMZzUxeCwCQlkYmREnzfMNSSZHGFGvZM1hNsIEoLomSOrY/Icn5WSOzv8SI6H5B+wsyX9HXNaB1SDEwhILISLxTH4xHfjaRxjPB77j58wJmE5dUVTw933D2syVKFCRP2x/gw6T2HuiEtwMwKQt+QEdEPO47DI8J5Qj9H7xxpUdH1Ew93j+x3J3Q05+r2Gh0khUwwF7dIlWCVZXPcYUeIdYxRCRET9fo9tzcrsrhkNisRtqHre7bvtuwf37MyhnR2TXX1nCQSJFVKfHmBShKiKCWoM8g2myUMNkDoYZqYmEh0RFotcN0Jnc/p+440NoDBJxHOa8bTgcgohFZokYBwnJ4ekCpiuv9AaE4ELRHFHBtHRKNDuAYlIqRVmCSnPx24yFK+ePUc4Sx5oshncxaLjHoS2B6apw3tboOKY073G4LzXC6OfPc3v8Iy8eHbb/jiy5+CiXFBcTptmKJALKA5OmrveXu/AanYNyNJ4plPJVHdcBXF2K7mhze/ZXd/B9EcHyyPjx9pmo5d3TJNE4WJuaoqVBrho5xj7ylTRZkvGNWMvCxgOiJNgcsygsmQRYnGIbRnWr+FrsEUM4IdGHaPqNkN5vIVst/BuGd8vCekBS7kmLSk6y2uq1Fxjh07Ju/ADoTgiFREXa+JvCcTkuX1c1SxpG4GfHdiGgZ2zYS3ga7tiITEDS3LKqeeFDpELIsrFsvnJHTooaeaXYAdifLzJtsvZmwOR1IRmEvFh7/6K/6uPXG0A9LETNOIHM6NhzWG9Ee/u7UOF4DgCd4jtGRe5qRpjnSWvvNcXOWUaYHf7tmddiB7XDeQxxFMZ/tUMpc4qQiRQGuF7CdknGLdhEkEk4gxSXS2/sWC4/Ge2GVMdYMymtmzF9SPT6RzjdE5skiYBstw6hj7BtH2eGuxwRESg44NysJiOWMYerbtSFefmKxDmIRcJ9APbPdHpqGjPuxojjOsNBz3R4wWxFqf416DJw8CHRmUlkRS8LTZ0jQt7998y3KxJN4deblcoZOYeZXhuyf2Tw88vL+nms3ot48M3YAQEiHCebAbQAiBURpjEn7++U8o8pg0SZhLi5aCIYDMFmTXr8jskSwzBA36y18iEViZECcFsuvw+w3jx3eMhydUmiKqOShN9fJTVJrh7MjwdI8ZzxbGbr3HZAbnRnSaIfOY7nF35loRcAJk3FLOLom9wA418WQnlwAAIABJREFUTkHbndBphtKKZaIIHuY3t3wZFGjD475hnEakHBjahtGe4wnbpuE3b74jtiMPzZrWfor/k39KOzqm5oAqNamRpFlCPwwsVgV91+P9xJt3d7hx4tX1LXMTE4uBzeMTP/z2a14+ew1CsT01+AmwIyhHFFnK5YKL+YxUeW6jicT2dKeRy6sbZkZiuxP7tmGRZixXGbHRCAHaWvJZxfrjx7PkPgT2dc0wjkRSUZUF2WJO2x44nGr85KjihCgrmMYR3x5xk2TstkQhsNscUFIwWTisa7JVxotnM7atY0IyHLZstWa2nEPwmDjD1zuUlLxYJYSjox8ngpS09RHnHN1oEUXCYp7TjoE3Hzd0yYLLixtGN+J0hkhKojhF4mn2G6YQc7870Wwa7t/fc/3JM5azkldXNwy7LdZKpq6hO50Io+e0+YHH+3uE9xyb6czQmSz1bs/JWhZVydXFFXGcslwscd6Tzy5QaUUiBvI8wWOJpEaqgIgqbDcydEdi0QOBZrOjqq7Okv8sp8gMkYYoaCQSt3tLtVrgKGm7ifbpB5K0xE8jUXyGI6dRjI1SqnLJbr8hjTPkHDCaUWlcCIi+pcoyvPds9YF33/89WfcpOvqU6+tbTkfJJ7c/oZu2tIcHymxBUs4Jpz15lrJedzzcH3n3ccepg9ms4HaWsMgNF6tLurZHDhu+uH1FOVvRT4qL5QLpPb///sRhvGDbNvjykmmC5nTksH4gOMe2aRBeoMRZrp8gGKwAaZAmolzMieIEfMDjUWlBJgIMDVbPGCeFjwviJONZOSdhJNiRNJG4pkdEOb2MkNrQ7x5RJsLuAiEIvBQwTYihB9sz9OC1pKjmHA5HVBSjtSZIxeQF630DUrOIFVIoLiLYtAMhLsnihJ/95CfcXMy4KFN++zf/QPbqiNARUTuxKiJcY86RyElFnmV89uKSssjPFgwEDB3zxYwsjck6yOMY6R3tYU9zPDC7WrKoCmhbuqEnVQqtC5rTiTQ3BCnZHGviOCYp5nTWY4qcSSocgn5ynOqai0Vg8J5eOLQU1Mcdw7GmSAvK2YyxHXFeEpmS4XBE6ICJE7JqznjYIgVoVWGbDoWgWM4ZhpHYGHyAEklvPfXDE5GDVAk2fUDg0QqaYUKEMwj5m/cfIc7Y3d+z2e74888/xeclr26eMwwt6+OejdX8/NVnzKqc+nSPyRTjtqNKUyYRMf/0GVEkISmxznP78pb3H0/snk6kUeDZLKdva4g12fUlWW/pneSHj0/UfYOWYKRASzi1LUmk0UzkcUmczZglEZFSzF7+lCAjgvOE1BBXc4qsBO/p6iOBFDGNdHcfCXcPYFLC0KJFoDsdIGqw00CkPFGSQQhMuz31oSXGkiUGryOGoWUQGj84InHG6B73B3yaIOIJp87Rut5H54GgDRy2lrcPH1kuCuZVgolmmCg6f1/1wM+ez9jd3fGf/4//nTg2ZP3ntHlKmHogJZs/o7eeDk01WYKVxE5g64FPXn/OoT5x2B5p64bjqWGYABXx+PBEpCOsh6EfSYsCk2Qc9jueLUpeLVOqImNWJpRFAe4csUwQeJOjowwnNJNO6d1AIixCK7z3qCzB92CPOxJj8MoQjCQqVtgoJc4Skuae5vvfEnSGEClpmkPvUbOSoTuxUAvG4FiEA63rKXSG7wacAIGlSBO8kkQm5sP6kTyJ+OTFiixRxMbQNC1/85s1WTXyeVIwiJgsPocyrGYzxrZBe+gODZ9fr4hSQxT/UWnyh6g/Dk3+QKWjCKkUp7pmu94yBo9ZLDkJwVXwyNGROMEniyuabqJ2mn6sUbGiO/WoyhCLmFwajDYM7RGlIyLbYpMFRhrU0COCwoZAms5QJkFOA+7Uni+OtCTJMsI4IQ5bhI4wcUKIS3Ra4bo9vm1Jb1/jlYbjHVO7J15cMlpHT8zj+oFv395R5DFFWf248TnzAUbniNB0k6UdLMPQ8WFzJARox4nD/oQ8NWR5STP2WAvL1YLm4SP7yeF+VIrUTUeZDIxDxz/+6gOHfc1qCX/+Z/+EKF3x/e+fOPSW3Wk8w7CqEnE84pIF09SRZhlWW1w7nOPgnCVJYtI0RSnBab1FNR1aCfLY4PYWGQK4wMPDltPpxOtPX3D92SfMbp8RlxkGh7PNuQlTMXFeEKYWpScchokYO/XkucHLhGE6x52qAJIAQuJNhp3smclhFDIpCaeeiB672TCcOmbPb2k3HYkR1L2gTCQ6SkAEgoHh2JxZD0HwdGiIs5pFtuBqucB5S54kRMJiUsO66xncRN0MyNkKGW+pu4ndbuTdNx+4ejnDxJqnU82zytEeNsTSwTDQCYUvEw5BcjzUoDWvf/qCy5c/4cWy4tn1BXIYOBxb1nc7+tZi7RqLIctLjl1H5zxVYpibiGWRc1Hk5EWKVorZ1XOy2ZLBKYSKUCZDzubIPDnL1XVCHEe40KHSkvvHDcnDI0lZQFQhmxrZfU1UzsH1+OMjZnWBnN2i0iVTPxCUQWcGJYH6yNS0xPM5MgT8OLLf7ykuVvh2QDqYVQWtCCipSGzPoRlRUcTm8QnhHXV3RJqSIQSyqzmhimjvH2ndSHm9YjFUjFrhhWF0HiUVX758wce24egE7z8+0UeKh7sHjB2ZrCPJcryHIQiEigh4gp3OA02luJhX3KxKstig/UiRKsqswj+t2T2usWNHmkfEJibVijjOyGYVOEtSRAQ3oYRG6whdLJjqGmFy4sRwfLhjfrXEh5EpztiftsyqEmklEoGUmofffI3ONGPfMGy3GGWwUnDsTshxIiiNwGP3e1Qkz2kzRcp2GMnimPv+hPUTU1AkaQJCMYyO5rDnab1mcXHN1dUVU9+QGIOgxbvA6CasFDy1Lc+aPfuHR3CWzz75lKSoWF2/pHlaE2mFsJq77weepT/jXfdIfJMQRYok1gSVMjQd3jpU8FxUM4ok408/ec5nGczK5Jxa0ncEAWWaMasKFtfP0XVyjoGcXSLiDJXOcU6ANlivkJc5vjnR1B2Z1CghQSg8iu7pjijNcAI2P3xHXFRIqRj3PVrC1Axkr14Sr5Z4Zwn9wGFXc9gduGod5cvXZ+ZJCFh5fk1lLXksuS4N79uW5WpJ/u4DhfS0SuKkYJKQxTHoiGloeffY0a0faD//jJs856p+INaaMYo41DWjLcAK3t//gP5NzNSO/Kf/+Be8+/6O+WrOze0VJovZ7A48rDfEUQSTZ1+fOJ1aXBDkWYQMgWfPn/NqVYEduDCCw3rDhEPHOavFCvqaru1Ik4zq8pJxsHTjBJsN1jpaF84QvWkiK1JkGrO4XDI+bbDTSHt3Tz4vWV2tGA97bN/g9zXjEJDe4voJESQhSonzgs16y6GZOHnPdjzxabnk8y8+g6HDaEE0nBk3QUG5uiJ9+8jTQ8NjW1OP50XHOA6EELAusOtHwvZIkUZcrFZcXN+gi5IgFXYSKJPg+yPBSoQpUBKe7j/gg+Ly5oKZW2GMIosKEjNn13wkTIHD45ZjfcQOFiM1kffUvWUYPfeHDXacWMaG19fX3Fy9YFblaG0wxZzpsMbYQCICGlDTcLYbiAgfLBDwbYfdtZi8oN9siH1MrGcwjSiT4bRC1DuMDWwfd8wXOSrAuP14BtKnMbv1A8VqRdeOdM0RHcdoPFWW4+3E41OHlhGt0KRZQizPyVujmyjmM/Tuifvdjn/6i3/Jl1/9kro5sb7/juBGbq4vseMWY3LQI8FNtE3Dfn9iu20ZrWa5KHn5+jmLKufm2XMiFSF8D2bil7/4nLS85unxkd2+ZvCBvdtRXs4Q1Q3idE4r+/j2Dm8deZzgrceYnL5rMQh6ZUjnC0xk8AR0XpHmBc45huMOGTxD05CmKW6YeHGzwLpAtShQeGZlisBTZDH15hGpFPvNAfzI0Iyo44hIK8I4IJIKVc5wApJqRdMcqB+fiIzh8vKax6cHkqzEDu9YzCrC1LE9nc7pirXncrHCDiNFDM+Xc/7Fn3xF5zwvrq6of/uG7+8e0FWGtR6RjDy/yCnn11w/uySMDVO3IMiId7//PUrA+uEjzySMw4QrFjRjSxCa+8d7Uhlo+xZRLXjYHzAioJKUH7ZHmtaxVBPWd3SDhaIiShICgabviEZLczwxdTUoTZBQGs0P73dUScTV8oKm67Bdy/FpzeLmGRhBe6ppjxsubi+pt3d0mwmlIoRzsN+TJBmDA1EtcEISJYahTykSw+gDXddz2p3wKPIqYfSCymjiKGZfNxBpHrZ7gvuGz26eEaZwViscWgYcdTfysK+prq4xyiLViNcTcaoYd4IiNjgt6RvLbn3k1D7yybMKDZhxyzyamFUlJzugdIDI0HU1pih5/90dkQDrHHGSMfpAP05o70kSRWpi5tevEElOUBNRtWA9xgz9iIw0drNGhA1RpJFuQkxnhYVUklRLCAEnIky5wHuLFhqhE6zz2LHl1DfoSHF5e8s4WlSWYe0IUmGUYRwC7VgztC3IGB8Ej5sDelZweVkSwpbTaX9WUGp1tgcmCadDTdfkCPUMHQSHzZYffvsDXsCLMmL+b/6M9w97vv3+I4tUUpnAPoto6z1xMUP7nsZ2FPOE8NDT3t2Tvf6E8tlr3r/9FjdO5GmGMimP2wOR1gTvUCoiyRJmRUHddGgBn7+8ocxS5kUCwZGUM5wQ6CjCuohodsHkHC4IglZIYZh6d14q9QIj9PkMSCKG4wPTFDD5JbIskYd7iARKT0SiR0QJtg4U1S1JCpOVrNsjVZkyYBi8x/hAkIJVotFBcGwcszRlEAHBjLDdcbc9cr85UdzMMLHh1fUFi67n1E4MU2B9eOT5qqKTKc9XGbIriYPgJsuY+UAyn+Ns+K/Y4f63U38cmvyBygfwQtA2p3P0ppNEheX5py9Jr67Yvz+iRzhuB8ZecRh6XGSZmwzsyCKtMN7xdP/EcrkkJMBxS5rGTG1DQEAaY3VJHGA47ohsT9DnqLu4ukBIiW0GImFxU4ewIPsOMVrEMOEHiK9e4KQ555FHGcXrz5DGEPZb3O58GT7sjtyfNBeDJ4ljjvd3ZLMZUmrG44YgJKe25eHQMFpPOzlSLXnXDYjR0tvAvMqp25FyDiYvaXd7fAhk8yXT2J/huBrePDyileQXP73h6qLC5EsuVhf85buJXlmcHbm8vuT5Z88QBILTfFyvOe4a3DgxW5RUFzdwtWQ6NkSRp7UdkvNGhakjKZc8fdzSdR1PD/ek84LF7TOEivEhJSluyDNBHI0MhyfcUCPzhCACSEmcx7hTTRwrXFMjF+dpc2wMygeUShDB45QiCh5/OuKFwrqAmJUwTpysJAyW47u3GKPohSbNc+qTJ6m3OGMYbE8/SdQ4EaaOQz2xmCZUvSMNkg+7A5cXS+iOrJuBze6ItYLF7AWPpx15WULqMHnGegw8i2Kq2Yw6KIQ2+L6mDRPeeYpqRlvX57SUKKMdRsgv+MkXX5Jby9RIdkfHdrvFDY7UxAzjgd39/8/eeyzbcqRnlstV6IitjrwKwAWSAJNMJouTKiuraT90m7W1WU96UmUsFllkSgBXH7Fl7NDC3Xuw0a9ADsj/GbZw//371nriPFgmIS9aOj+RCs11VrBeLVguClScs3lxhxgm1llKmMW4aaAVimAeCRcrrMmxAUido+OE+9tvsNPA6DSYGOdmXFcy2hFnQ5zPEF+eWTiNK09IkTJ2CiUXuFmAk3ihqA8Vk1RkiytOwy+H6Djj8Okjkza4scPOM6FSnOsS6SxV3TJbR1k1qFhhTUI9zrQfPpEdnliuCtTVCh2lxFoySnh+/kIcxLR+4PrrV/z2v73mcbvnj//498RuwCtFP1m0iej7DudGkiiiH6fLa4fz3G7WfHOdE/mR2gJO4HSADlKazz8TzjNFGBNHF2CfiTRCadzs0cSIwRGtUkyxxBQbCAq8GxlOLd6PtPuG6fQOfI/1nmocmA4npDPgJNaNOAGnh2fmvmFuTgwehrFDBZLDqWOaBpyJGYYO8ctyUqkWPTluioSfm5627RndBPZSPwmNuvTAp5nPHz8SRDF5EnN3fYVH0lhPA6yU5MXqAm+LwpBQCMKbVwzdxPl4wg5nlIt4+OnIX//133KVNrysrpH2TCgnlknArmwIpMR7x+tFyg/3a96s19zd3qDmEaECxrokTDOCKGNZFCRzD+UWuboGHeFMBA5c1yGUwRmDjxLa0RIsIyIVMk4j01gz7B6QQ40dWvovXy4K5/qM+/QeE4YEcUCY5Sil6f7ckL95jVVg8ozYztTVzJf3H1nWFdnNNfFqfbGriQFrB2xT8dUmpn8eqKVgXSSwf+APVcux7S4LGGcZO48JYtabW7ydmaKEOgoZ//TPdIcd0zzSuJIP72rW1yu+fHriH/7+I00z8eXLljgK+MvvvkWHAePcE4QhidR8t1zhZMCftw8gNUGYsFiteHl9w6vrDZGcGMsKM0wYZ4nShPVyjZ1Gmn4m3dyQGkE7e6Kra9ryjLMX/Wp3PJLd3jPamcPjHp2E9NsT12nMsDsyKk03jPRfnsnXC8QwMPYDXoYkRcbU1czSMQcSaTX5ekGPpx8t3Wz5+f2Wxe0b3nz18pdkiqWXKdp2pAvJVZFzm8388amkni3DMODnCe89k7PMCDITsm8H7m8Fw9hi+4C1dMgopA01U1uhRc6pbOlGT1U1SG04lQeUhxeLDUaG2GrE9o6przmdSwyCIE7Z7i/Wp6fyTDNLTLbg5WrBbRqTZkumcaIrG9JMIp1GyQDflBc15+oapzPm0SKUABkxnJ9xw0AYBYzDCZXeEa0KlJqxVY3UCk/AWJ1pHp+RwUXBOQ8V81AzfD5wPDXUXUXTHEgX14R5QXc6YN2MF4I4WbJeW8pyTxqEuKig6SoKrYlUQN329IPlYbfn6nnPb63DC8uX/UeGsmH98i+IZMosQ7QfKE9H9ruK03nEErK+KthcbSjyhKvrG4Z+YvAj5fMja6PpWjh3NfunLYH0PNUjb379kusrxe9+94VAtnz+9IV5mpBeEwQxu6YmwuKcZPaeTVFg0pQoDDFpyuglz+cWNXdMVUUsDbKfSUWAns/Eb25xJma9SgmwpFfXFz6bt5jFmsk60psIP3V4JWnrntAOzN4jpEJP4wU2P1pMlCDiNcenT0jpUEoTRinnumGeB2YHm/xiXprRPHczq8Djh5o4u+HxcUu6yCnPDZuvfsWH7UfOfYsVligqwIKfe6JAs14VPFUlMko4lB2nc8OkYgZ9SS51kyUxAiccnbO4riHS8HCsOR5OvFgveNrX1O3A0iic0AyzY1KGPAioqhN1UzOP00WhXle4aaQZHWleMQ89wg4kSrIullyvNmQIpm5GakO+zBFecep68r6ir0/87sdPfP/2a5ZFQn/aU+93tF5gtp9QwtGt1kRxik9SlDqzWq9AadrtjJgsWZYwOkAqkjTB0jPNDQ/bLXfpgnW2BuGY2ophbFBRTJAVeKmo6yPDmHJ1e0vXSLw7U9cd51PJ7mnLdl/x6tWGUAd8/PEzu8cTXTnQO41a39O2W4zrkOmCphcslwueHo8MoyOUMyLU9NPMwijSYs2r736AsKCsa/b7M+WfP+OTJU1Vs0ouHK5xGDBxRBwGBHZmEYaEUnKyktgE6DBkRhMmMf3sGIcKrwzMmjhbkKcaCRghGLuRszXMYo0PU1QsyIIDvRhw1hPZjGAa+fTpiVPTUQSadLGi3p7omg4ThqRRSDn2uNkSGAPeYpszz+9+5k8PJTJdcP3Vd7x8c8/+cGAaWlqnWC3XZNqR5wLVPeNtx/bxyPHpC/unhrzzZJuLNe/tN2/5+af3DEjiKMRqQSAlF42EoZs9RmsyabgpchLlEXZCBTHKRKBCrNKIIML6+ZI8lZKhqtDKMEwzoVH0hzM+UAzlnsg43HTGDhcGGqeZaf8OGQbIZE2YLDm/++MFZt8MIB0iDMjWywuYPVsg4ojyXCLCEFeXLIyhCyPsOKIlRKFjuViye/7Mx8c9b19esSwitFLcrJYsVopPT5fqVNnPJJuMV7cbjp8eqcuWspdUMuOrb3PyKP43vOH++5n/WJr8K02ShLy4S6ntkef9ped//d3XvP27/0ScLqiHn6j+x/+irhzbk0NGiixLGNqKYawQY8YsJLO1aDsytRNm6pjNhZjd12e0z4iVgWYgNIZ5aqmVvNgVuhbbGWga4lAjdYyIY+bjAyZMkTiEh2DzkvbDj2g9I7ICaTTSW0Ip2ChB5wb+Ck3V9nzY7rGnmrLrkeeRpuvJ0wijNY+HkvEX+vw8T4RBQBYodv2EmkaGXjJNEd1+h3IjWZHT7U8MwwhCIoRk7FrKU4NSkjzVrNcrfvW3f8eHdx9Yns90bsbNK6I4QSqQaqTcHXl8eKQ6dKyzNV/d/8DLt1fsd888vX+PkR4jFcZNjKcT3oR82n0kSxOsbdnkAet8iZxzitu3LF68IEhT7DQgw5j0OmDuDrRP74jS1UUlzUDowU+WrqsYyhOj1+gwRAQa4QXGg2wbvNY4FRIvr5mrLRKPCxfE1wIvI6oPPxImkqaxFFeSevb03pJY6DDgRuaxwSIxcUjbTghxiXRO3chhd2CJRLQtw7Fkc33L4UtJLDS+WCKFYPHiHpmtMXGIEUuWYQLqhA4DjvuOYlnQtB1104I2bPI19y8X/PrXv+H4dCaJIv75T+/44fsfSMXM9VVKfT5TbRvapuKxHGiGgUAb1knK9YsX3N695m6dEyYRd/dX5NKgihARhHhG+vHA7ngiL64REayXKXruL9DdvEAKiXVgvGeaHbZt8OnyAvNjhuGe6fSB/aePzNNIkeYMLmPoYvRiRXM6wdxhNnf0TYlwjsAEzOOM0B4jJWV5RhcLpv5MM80kWvO4LRknS9n0KAllVVFcF9xlBfX+Qsjvxp6uOnF3c8PMjMcg55GyPPG5KfnL3/4ND6cDp9OWw8MDEkGx2rA9loRxgrADbWsZ+5ZAqYsdIYv4+noBXU0rBQhJPXmW8QU2arsOhccYTRQYpBHEqyu8DjFphgkzpIoZa0vfnrCfO5wXKCMY/MwsAoIoQgfgvcF4g5ECN1q0lMwqoD/sGGxDFCWcu5FhsCjbMJ8rksygQs1kB7rqyKkZwARE04wQEAaG+yTmPk94LhvaaSJMMqxzRKFm9Ip+HOlHi1OGcBjY7Y8UafwLfLInVAI5OWga2qpic/uCafYYNZFqwaGGjx8/49tHrq8042ZkGg7YuiHUMWG6IZtLxr7jze2G//L6mtc3F0ZOpBzlCLZuKLQmKK4xQYQyAV4IRivwdc+sJcUyAgRunvHDQFeekXGG0wHnuibJUsZBYY2mLUv6scGPgn7wDMcTc9cAjvZpx4RnUh4ZaALhuT18YnNzBzPM/3+KpzozSUHjHPk0E6YZrtyj4wgrJRLFixcbfv/+icwE+NWKm/2evZsZ5pm270BK8jClWK4R80QvFV1Tcv3dV8j2geenI84N/O73e7LPW4IoI00SynJPnsb88P2vWBRLjsczgYYr47F1STUPeGPY7Z/I8pTs9o5v72/5ap2jnGD38RORvbAYrtZLvAxZLAqMCZhjT7G5wmiBc4KwWGKsJwojDo/P3Lz9Gk/A8/ZwsW2cWqSynLoeHSf044T0M8euxylFLD1WG8I0obOOYJXRHEbMsmAWjnPVEUYRXVsyCcU0O969/8TVizuyMMNvFsgkx/dQVw1pseQqOlFkEYftiXmekUIQBIZAQCwVL67u+NWrNXEa8pvf/gVPVYebO7QYMFoi44zBar48HZjcTN3UhHFK5zJS7QiThMBEHI9H2t2WdveRSCm8jDjuSz59fKTseyYLN3nO67e/Ihlbur5ntJ7IwOF0QgiNDmrwHqfBzSNDVZLHEToI8f2ZeZgIkxS/Tik/fEDmS3Rq8GIEMeHsiJAJfXmmP3XoZE1cLBiaM/b0jO8H2nLH/uFIryTTYUey2JGs78iLFcJC006IwBMnC9w4MsoJnYSMyqGNIdQh5XimSCJqo/n7/+f/RnclUg387l/+RLJY8cbecFMsmazi/PxIfa543tW0kydZXaHDHBFnhGFIddgjEByPR4bzDpEZ3n18oC0bVkHH1XpDuM747k3Ajz//zPO7nznse5SdQQVMo6f3inZyzH5A4glNgNch1WjZNkf67YmxLenbhrWRLIymmgauF1dEWrFc5CQ6Iry+ZXW9xI8t0eoKU6zBzaxWS4a2QcwD8zQhEFSf34O19P0EAkbkxe7U9/TWI3RAluS4oeHL588EywJlItq+5zw4zueSyAjyJESKiWGc6b0mKBztpweutg9siuJijLEj3VTijSYPb4mk4HQoefrwE83DF3aHiii3aKVZXd2wXm8obl5QSEXIperinGWTJZyHitl7Ei1woeBcV7S9J8sKYumJjGZbdUzecKgfaPoBITzDMJAGmnn2SBzdaOlLi5bgxh6Vpfz0vOX5VPJikaMnT1GusPOAiRSrYgFdS2A0v/mLbwiziOZ8wo39Lwt3y6EbMMZgmha1viHcbZHeEqcpYdeRLArkrkQGMcZZyrolTRKiQKOUYHs68e7pEzfLkTdv3iL6mtnOrJcF+7omMJ44M6AGolCg5RWH+QO7w579oaQ61SSR5v5+TbFccOpbHrcVawOzF1SnI8XckKcBe+to6h7lJNWpIjESZy04gRCeb79+gwwX/PxU0raPyHlgEceIIGau9izCCKzFT2Bkjh0dZw9BEDD3E2mQs0hWRGnGVD4wVhc2G3FOXBQoLQmDDYG8gJ2nuiYuMroW4tUSLwyn/ZbuXBLIkGixZjgfSELJ9XrBl8ORhw+f2GtBFBpklDBLBbMHD8tiibMQCsHUdri+InGW3XPNh7ok+vHE6noJzEzWsl5vLmefboc71pzcRNlUnKszm1gSXhv+9I//jPQfePntN5hZEoch02QZZ8s8WHpvSeOY0XukMQQKFlFEliZ4BzgFMgZp8PJXCu13AAAgAElEQVRyfoQBPw/gZpryyDCOeKeY+hHlPf1xi5GOodxi6Ih9z9R1mOSO0BS4aUKkC+Q6xDrIlhnKCfw0YsIQazR6s2YaBmbvMIslOstoyj3LZU45zKyuNxwPJU3bIlAsVwW74zPtOPF0LLm7WmKkQCIxYcirmw2///GMnSc+vPvAoiiYfwEe37/8miw21E8H/Dj+G95w//3MfyxN/pVGKbi5Smn3GpNG/Parb/nh179i9I7z7omm/ELd7NiVM2FyR1Zk1H1LPx7RITjrcECRL3DzxNz3zMGlCiPbhsSEtJNl3D5ftFhK4cb+8lIaJMj5PQstyaMIv7jGxKCiBB0HhHnMfNqhI4GwPSpQmKsrJhEyIDCuxocZcqW5iVJ09J6nhyeOp4pd31H3E2msmJ2nHme2TwcO/UQ9WaSQ5JHBzjOLKKD3Au8d02x53u7JgyuUUkyHy0vcVNck17d0bUMRa+wi59j09IMj0oLd589IoXEovJLEaco4DZz2DzRNyceHL3x5/4gONiy/uuPu+7coNeGcJNaKdZxwsgI3OWwWExU3bKKGw+GZ49MDoYy4+vqGm+/esrpforVFKZgmzenQsXpVoOyZYTiRbjb4sUeHCtoWZ2fa50d6d1FahldXNF1DnkSIySKlwVqIYodojohFiHSG4dwTpR3KJ4z9HU1XMw8ND3/ak17d0Mc5yklkXTHOPX72jH1L7DyzTRDzQGAi7oqcw+5IlhZEkaIeKvL1hk6ciROLFxlJsODlyzeMQrDf7pGhITQTp92Wm1WAVQHH1jE3FeM086u3L/jwNHD79fd8/eI1Uy8w08TX33uWq5DD3tKVFY6LheCpqRmGmUiFbNI1b1/e8+2bW+7vXrOOFGkcsogK2rJFR47Jley3n9ltt0TLe+IohLpHmANBmsAwEyZrhBRYFPM8oZVDFBtsU2KHDtsOmDhBhd+hixXzUOPrAwFglWPo94zTzDyNuHe/x8oL0G7qe6yAXio0HjMP1E+PTCbG6RAperJQ0w4jWivU7MBNlNsHEjzrPIF+xKvoAmX2jiAIGBHoIECNM4kO+PzHn5FhwFIJrpIbnvafOc89kVFMzenSq5eK2Tukm9lkCddZiBp7rFCoMCQOA7ztAJjOFcM4cX93jZGCKEmxoSFcXjGKEOtjnv6wJV8aAmNphpL07gYnIM4zZBAgVIxQIWhF1zYobchZYeeaoa/RicBYEKNgYELaARksUDolrELM7LgNDU0niSuDiTXbuufQebSEAo/BcxNKlqFi17QM85l+nFHCkkUBbdNR1S1XSYq1DiElCMnruzXP9cAwjlRIFtqwWRcMVlE3R5r9npOd2D59Yrc/8O23v+Jw+jN/+KefEQ5e365Q62vuipT9PiLqGzItybMEN48IqS/pl34mTyPCbMPgQ3xVU55Hlq+/ZRYp0ySYjs/Yvmf0gsE66sMOZkdYZJdkUNdijCHO8styeL0hKnKkhLZqGMoTylvKwx53PvDxD7/nNIycuxPdPMC/vGe5SFgsM65fviDXAVGScdodWStNNT7z4psEOw7IuWfsR2SYEYWCb9YRTWXoqxCpJamESXjwjijJaLqG2jq+urlF5xHpAlB7DscdVd1wqg947dFBRFGs2O5a4tBws7mhWGz4/PCMc57bVUrYHli5EyKRbJuO201CkBjefLXhKg5hOLPbn+lOJXcvbojxBEFIvrolznMQlmSxxmcFOgoYrWDXthxONXnsya9fki+XSOfJr9/glUIJT1MeKB8+Y0JDIhTtfk9gDcNpJlgmFHfXVE1NPwz000wSx9g2RaSe5WLkVJZkVxvOVcPkPcPs+PnjM7/5zQ9ktkX6HqcMw2DZRIaXiWalLe/thJICYzSBUche8iJJ+avvf+CH3/4lf/5f/y/b8gvGZITKMvY9ShlqazjVE6fjATfWxIFinGbiSBHZik0mUFPDuT/Q9iOzCNEITseKTw97FIowSCmMYb2+Rg0Dw2xBGdJ8SZgvaLpPv1wUQpxTRFmIMZeF+nDcMR8vcHMTBdi+YZpGwlWKjyIIhothQwXUdUdiLEmxonUBQRYznbbQt3TVmXJ/YF/NRMt7+sOe037LqZl4EUVM80yxucZHgjDNaY874jBlEBbf9xRpjJ0sVnqMkbRVTRxEhAje/e49MBNgkfMR5U8k+Vu+fDoyiYhT6+idIIoTtFFoOSHaE+Ug8N7SVGeqU8ltHkBqSH3PIrO8fv015SjwVvH44RP/+N//N6dDgxEagpBqEMxScqw7eucZhg7nLK5t+XQ8/aIEncBOaCFITEgXKDaLBZKZJJQU97esNtekWUyWmkvKL0sJ714hBEgFSnvCLsADXgXYcbqA35szar+jaY6cDxNqmdO1A2RrzNjRNR06DAmDiGkYMFJyrHuMCVA6oB1Hqv7Mq6sVkzDcrZe4ucNIwepqRYkkkJLp1FBWJ5ok5yqMkG4mVpIP//w71PaJ1c0dZVORaMlhW6FXG3zTES82zL3lfDqRXeX048RzNbBvZ97eLDBxikFwF0EUxbih5VBWHKqOzsLgBLMDrxRjN9BNE13Xk0QxHkmsFE1VEivBNI6YIGQSig/Pe+7yHC8d/djihaJqTwQvrwnjkDw01H1Lcz6zur76pZrbYLqJtmqoDhb95TNJnqG0JIgiVFKwuoppraceR5Iioxsd/TDippn1IqdqWo5dw3P9M4/nZwwQpAlSK968vsMlOTpSIEesK1HBNV3d0jYtznu0MQjhSYolT09H5NDw+goCk0AY42dLeZh5eKywYcTN6goxwHMSUFYSIyVSeuIoovUR7398R6g1cRzTlCVdHGG0ATsRhjFxsCCOQtI0BSFQxuGoWa2WaJ0QqpggCLh6+1eo0KDCGCsDhA7QWLrqjB1HgihBGAPZhuWrl0yzZa5ObG6vmVYFzf4LRiQIrRi9YFFI1oeSbTPQVjVhJ1CmxUqJCRLKqmO5jIiM4XBqiQPNXNW8vs74L18vmf+8491px/Z0QGnN5v6O8eMj312niE1B2Qq+9IJ31cBqHbK5jbi9GVCV4fnnio9/+gO9spz6hm3T4r2n6iakMlijWC2XJHFIfdixXOcYKQBwOiRebEBLZtsxdwPz2DB0A835wNS39G2HHUampmGuG7qmATujscRaY6Ye3TVE+gET5ASLK9SVoFiPl2RNfsM4dKhwge0OqCAGmTDOB5I4ZCSgMGtEEjH0JbbvGOqeLAwIsJQD+DBmsVxQjhP9MDOPFqsvLDbf1izSjFcv7qk/b3ncPeCziKtlxr49Meie1WuPrY8ghn+by+2/s/mPpcm/0gz9QFe3XN/f07qYLAk5bp+IswVf3r1Dn57JVgtWeLy3dN0TdVNipWV2DqkVsjsTaMe+PBMajQGMGphmz8F3mMMJ4/yFZn2uacaZIEgIhKMIDEORMyQp7bm/AE0PH9i82ODLljAKEFahpUVnIUprdBxjmgYZhIyTxKiIsRvIFkukiTkfzjgHV0XOp1MFCH58PHDqR0bnEEJilGB2nkUaEhjD10nM52bCeehnz/P+xCI2eDcj8Ze+Z1ujtSHXE/HNCrdvqHrNw9MRsa1oJwH+jtVqxf6wo9o/UeqJx+c9x90zduiQyYRYOsT0xP7DkWk3sdIpbdsCgt4pXJDSNxP1seJc9wztzA//6W/55jd/w/J2CW5AC4myDUFRsH3oaP74ieRak33za4Q0TPsD0lcYYelPFRDy+PzA6k4Q+4EkTZnPZ6QQiDAgCBxqcrhxwEnBNKrLodxoZLageJXgj3va055T80D79IESQ7S44SZPGYeZx/OAmQfaqmKuexbrBb6tWAch5RBSt2CSADc0HH76PevNS7bbnuWrN8Q+IIoN5eMXdu//wNdf37P+5j9jhpGHzx9Z3n7Nn/74J9Rc8+bNa65v7lELwfXta27WG8IwZapLutIznI84FEYFjM1E04xY7zFKc7u44m9efst339yQLwybNMG1hqarKb/8xGm7w5mQJz+Qmp4kCZkCg44VoRQEXqIdhEhoasxqgx9nAm2QRmGrEt33OBly6hyKCRlGSLVhJqYeG7QcCbRj9g6dxdhBM08DYpoYZo9SmsFEWKkYjweqpkdIgWtqOmFw7qLx9tYSSHmx+EiBDQxP+y2pK4i9w9QQdTHBXCCTBImj71tu1gsaBUkSXYBxs+X25Q378xNSzQipGcaZIDBEcUxd1SyzmHWaMI4T27okCwPWgUGPPc04kgUB4FjdrImKBB2vEFmBiVY0jUeZhMkFdElNEFrO5YFjeWJ6+AhhgkoiAuG4efmSKF+SFAVaBcz1CVMEzKrjuX0iQFOfn6maDhF5glATRQFORMg0I3QKNVTQnZDHMwu/YtkNHMqW06lBBIrZORZq5PscnkrHcbhUj8IwpD7XRAqM0nSnA2a5JogSVqsc5wX3V0ucs9zHIUutGfWKviwpdwf2T18IlGS33WLdjA4DrhZr1GnH6AxFnPPVUsAoacKC+jAzjRaPpOsHlBhBedJ0jRCCaZxoq0dSo/n0/Ig5DHhT4KxlGFpOVYXQChkHhHHIKs0JmjPFoiAzGmMkUmvoWkwqCaKLwtV7SLKMQEmkViyuN6gk48cPn6i/PKCHgVPf8fQ8YJ9q7J+3xGnGi9sb7hYRj5+eGZsz38yeV7dXZEbSdT0mzJn6AaPhh69u+dFO/PHxCtc/Y11PkWX08wxS0pZ73GZDvnmBNyWjnDmeK6IspdntGb3lzbcLZLRmtAOLPGd5fcv7T1/49O5HXr96RRL+CjUckU1Dcu4pDxPLSHO/iSmkZTo+MzvH9nHHX9zeYJKCKDBYb7DFDc/aUA9nnv/8AaE0Y1MzNw1fv3jB67sXrK5fsliukEKhnWOeZnSUoXRArFOyZMWXn37EKE0RbtiEktNuR93sOO9LwlVEtl5SVw12mtFxjjUKPVt81WLExMTlu4uzl/rTy1f86jrDtmeMEMjIUE4hIoy5jyTvQ82+HcFDqA2LRDLOI4cvn9nnGa5x/F//59+zur/hv/4f/5V+nLBOI6ThebelGwaSKCRWnpjLZ7xYJNhzRVsOnPdnhr4lK9Z8fveeY1kzTZYkLrhZ3yKkITAGGWi8cNyu14RBxPr2BdrE+H4kXm2QScbutGMpL/ws7ECcxox1j+5aVJ4g8hghBV6ASnKmrmH0GhEviK9WF83tbCitJS8imuHEUBQIlZFlM/1kydYKqxM+7Z7Y/uEd1y+uuAljtEoI/IRQEisSfN/SGEEWZuhIMgsImo7Tfs/hdOb+1S1pGnJ19YKxPRDmglhdzhLnw5GmPl9+E42+2Li6nn46g5vxXtA0LV1Vs04Uy5dX3L98w2qlWZgRG6153JXs9yeq8oT28GK9YLaCfe3o25lpmmjHjmGcaIaGabZY73DO450FLrayRCkC4dFRihSO9aqg2KzIbjZEyyuiNCSMY1SSEi1XqCREBJf/JukGdHQ5Ws+zxYUBbuxw0mLxTKbGjSearmeqavZPNc5JhDMIBGEYXDTPk2d/qgmjgDiIL5dbIXhfDuSxJKtKXqwKlrEkURO3f/O3HE4nbKGx/1SjTXCB02YFzfOB48MzqyjEFSsyZWgmz8u/uCbMEp6fnnh+/0QRJGitINKUVYM2IcJ7hlkQhRFd25KmGUZrzq1jezpz7idGoZi8xGlD07fYvqd2HukswzRhghhvJ6RzCGNo+5HVMiPSislb1usF9VBhTcA4TESFIsoC9OyY+55US5I3L7EIpHSMQ4tzM23b0A0To/OczieEUhRZTB+UbJYLwihCJZcakVIKrGNyoGVw0fSGGiU1756feJlE+OWK3IT0Yw9uxGI4lzVR7MhSwzyOWAfOS+qu483rW/YtnH7/nv6wJw40q9evGZqZ/njCyYBFFhBq+Op6zcMfP7JKQp6VR3iL84okzfn582fG0XJuGq69QwhPrAXXRUARJeg4I4kLmAV27nFIsuWCJDXk+YZ8sb58VoMUh78YGwMDUqLxUO0o3rxARzGuPmGS+CIZSG7YfdriPAS5QQNytaJ+/0dkqDGqYJ57Xn0f8vuHLfveEiiB6u0FGF+MTNbx/FwSGsW5brhfX7huweqOt99EdJPEfmnZNh2j89i2oxrai3Hx9gVfBs1PJ0tjYrK1AmPprCX7bkEU9vzp90d+2jaUznFqW7rZEccJVoYU6yuyJCJU8Nz2KL0GpfBKIeMMGce01Z6uPzM0JdPYUR22VOWRLEoYupmuOqOmCW8ddpxR88ToPaNTjM1E6D3pfCQ2HaKFIspwzz/jZES6vMabBTLQtHhUnBDqkKLIGQHpBLGYsOc9rhFoZ4kigXUzw9ijhEdrTbG6wkwlVhoOVU9+vSCWgA5xznF3s+HD4zNaKbp2YpmmEIPZnWiU4vqlQbj/WJr8a8x/LE3+lcbZmf32QLJYk2cRj58/MXnB27sXPG13hGXJYn3Dw+GZ6ryj71varkHHCUWcEwhHlgXsdzsma5ndBRxZ1z2hHGm6ASM1mbpssGdrWSyXnLqBzTLHyJjaKiIRkxULolTjkByfnzFJynK9Rs6eMEmga1Emxg8zSghsP6ONYTifMLPFTh5/qlknGVZrTu2I9DXP55Zje7HopKEhMBojFUkgmZ0nFoI4irjTIc9VxzA5PjyfWWcBX79Y0zUNTiiGpmO9hCjL0dqwurnh1c2CJMn4n//j75lVxOLrDfMvtaEBjzIK7z3eKuw4Ydsz+w8/8rMaODzXBKR8dVtQnY6EgcWH4hJhtgHnpqXpRm6+esP3f/sVRWGQQ48QKfMwo+2ZsdqTxzG7hw98eFdz8809b97cEiwS+vKEPVeXnqIKqE8nuv4LbX/k1cvvEKMiuV8z2QZra6QUdG4CGxD6AeUnhI4QUhGqiaQ7E6YGt8x4/9zzWJ0on3Zs8phVvqRvJrrRYYRg2m0RXC6iaZpzm4Q0/ROxfMk6DDmezujZ8/blN3x5eOA0Nwz1Z/K0oFgUdHWFaA6oyBAmBeXTe7RtCEyAkJLl1TXnbk9/rpi6gaGa8f3I46dHjsc9KyzSQ73f4S0gFK9vb/jPb7/iJgqR1YH9YeDgH+nqnqfmomYdJqgJiCPLrzeKl5uvydc5t+uETKUkeY42GulmpucnTHyxSKg4RY0Dc3XGBIZ56FhkBVNfYZuS9lxzrHvePx+p6y1ZLFmsN3jRkCQpTimMUkx1wzBMoEOGcnfZ6ktD3ZyxDoZ5xslfGCEItJRoY9CTozrtUEJQastqs2aZxWhvMX7GK0kYL5H1TBzHtFXJ1f0d1dMT20/PNE2HEJfouokjkvlC2B8GSxIaXm5WxEONw5MmIUYK3lyvcL4n9BbnHNk6R5uI8MU3mCjB64wgzsBrtPEwe8zqhvFcEt5dYXXPoZ5omoqhrRlnx77q0UFEWixYbJbYYeZqzmiGkXme6T7WdNqgljmrIsd4SRI55qgjcDF+9Ix9jq1zsqSDbibuS9LwzM16SVlW7A9Hgnkkk5brRHPqL2kf4S1JqEmkoBEC66Dve+zYgViCuqgbr9Yxp67BtBlxntCdz5xPB5IkptzvkQB4quMD9tpczGDFHV/dZSzlSNl2+GHA9T2TjBDW0fYDeM9ymXKoGjZZwunjJz48Huknhw4Tzh9PjEIj5plprMnjiNGNLG/WJHnCOFZc390TGoEWFqUV0ihWVzdooZjaCu89oTRYO+PshEegoxCynCRfcnsz0VQV0RDRti0ewYfDnpNreKw/MnnPRjvWkeHH4z/w9uUN33/zkkR70qFnmGekCfFdx/Um5fblS8YwZnr3M6MHLT2h1gx9Q9tVNE1DflOgxD3z/N95fN4xeVjd3HC1uePhoSbUiuXijoftlp/+/GfyOGBZpCjheT63nGfL+XxCWcdVfsV6GfFpd8T2E3M3sl5kBOsbGhNwaHo+Ph/4+X/8DodnnlqieSQPC5wdebNc0CQ9Bz+w//CZZX7k1es7siCg6ztWL3KE9BgRoIOC7374O7TyjHVLezghwpjzx3+hrR/orWEYSq5ffs3QTWiRUn4ZyFY3ZOOIalsGoaiqBoGmaRq2P7/ju9u/Js5y/DCAEARasA4Vd6EiiwO27XhJcEhJlERETU22faJ3ijiJWccbwBClOW1b09YNYZZxspLZGyYRY+aGcRy4ur4mzwtcN9CfS+rTFjtNfPpYUtYdw2RJswX5YgNSY0yIVJr17QuiNCGNAuw8Y62j2NzRHR5pyi25nMmulvgwYh5qmGr6IERLg3UjnVFMKiAXoLVibCe60SIkRIsF57oiSWN0NLF7/MLZep5+/Ei+XrO4uyabHOpssVbiFgObIOfp8QP/9L/fk37acXt7w+39VyyKDUjLPIw46+g3K9IwxroZJsvQDewOZ3bHMy9ebRndNbFWLFZ39K3n6dOfqeuRq0XCj9LgJYzDyNA2NFWNnWaGcWboZ4S35PoCFN/c3HKeW4bJY/uSj5+fmaeZRRJxt1oyjTNN7zn2FdPcUfUD7TjRjxPDbJntxGxnvL9AFIW3eMvFXKjVL4mdkCBJ0aury+OSFphigV4Ul+poGiMDiU4CpBLgPN4K3NAhxhrb9LSPP19UuDohvr0nEgnl4cSsHb0fOT8+E2E5qpn4ZsnUt3jn6IaBcZ7wcUiR5dTTzOjARCn7qiGNIo6NpDKWtx9+QmQ5Mo5Y399Tng5kkWLqL0uiSRu4vqWaQTjPsbdU7QH/80+czyV3mzXZco3wmseHLzw97zBBwGJR4JWi7geUkAilmK3luaxpZssgLmfAaR6xzuKBWAqMcCAEiyggMLBIU5AanCeTHuMmtNS8/eolN1cLijQmCCTaTiTrBaHiwucSABKxXDF2PdIOiKnHSM/sPI0VNG2P95Y4Cug9pOHI0XaEYUT0+numvifWktOpZRYJfprIA8Oxbdhsrvjq5opCa6p5xtoJGySMYUEQGgZ7phsn4nCgb2rG8QIgvblZc3+75n/+w7/Q1i0vljmbdcZwOPL/sfcey7Im2Zndcvdfq5Anjrg6b2ZlZWUXVKNppGFA46BfgK/IF+hHaLM26wZpAAolU1x99Akd8Wvh7hxEPQMwQO35P4xw39v3t9bj3ZoLX/D6q+dkqWAxGxPYmNvOkAQBqefQaEuajSg6w66sqZoWg+Xq/Iy/fvEST/eYrsEYS5rECOPghT5tX5EkIzzXwXfHuDJG6pC2lgRxgjWScHFJ83SPoAHdEZ2d4yYj6Crk+AwVT+iriub2msAN6H3LcvPIMm+53xSISnD77kce10sW44QscPDCOcdhS1u3jAOPOPA4VD3daYrE9f2exbMrirxEVTlhFGMijxdfv6KIdtzc3GOkT2+hNgI9WDaNT9lIpnHMWZQgW812ryn2FedpRC1aRCgY2pJDJ6gGGKwkdHzOFxcIAaqvKaqBwRiSKMT1ApAOxnHYrp/QumKzvmOoSsxgcITDKJ0yNC1JEpOEEb6rMFVJn+dU+y16gK6rcaTAGEVtNGLo6Isc8XiNUANyNGFghvZ9cCA8v8JaA46HNhYhLC6a4yan6lo6q1FhCL3ACROcqkQZB9ENhE6AsC3nkzFno5jQcwjiCDMMSN9nuT89lJu+58P7L5wnAY5umEZzonSM6CV18RcQ7L9F/WVo8m9UddOz3pUkxmOf16yfnlhudrz/4T0//vSeq8RndiZo+5a6LSmKA8ZaJskZ0/mczDG0VXmy1AyW0hg2TUnoSCaexHFcAt8H6RFGCb7nEsURQdWigogkzQiFQ+gEHF1FaRpcT5KOX9IrQ+tG+MLQ5R19afECQ71dIz2PJs8Rns/QNnRVwfrLPavVjseyYdt3PK3WPOyOhAi+noywjkI5LlaAVALPdQh8H4HFC3x0q3k8lhit6XvN7fpIUdU8n49wQgdfKaTWuI5iupjjO5o4lFw9n/HD7z0+3a5ogyeaSFBWFSpICT2PQFp2+x1VUdBsd7Bbc//H32GFx9/97d9R5wOmbynrCs9I1k8blBsig4BXl2e8PQ+RfYEyKVYGuEpjRU/XVPTVEYsiUD3N7Qeuh4KyuObli1dQF0RJylBs6ests9jnfrflaf1b2kNHkgYMzpRRFtHvn5B+zP5hyezyOa61WKMQnjzl1NuBxHfJW0VpNMtWcyxbIk/x8+MBtSqIHJdDPZD4PlPX4g8dA4ps7JH47inC0vYkjiKPElbrR8q8om0r3ECwWjZM5gtkteavvn1O+fSFIpDUdY00PUJ3NL2lqDpevv4KZMAf//Ud0+kZg7EM+5MhYvl4TboYgbQ4gcL3PV7OZ3xzdU4iGh6fjhTHkrIfGKRLZXq00Ki+ZSx8fn3+Dd9+fc7ZVcJoMmGUjnHR9HagKEqklIhyh9nc4CRjtBC42JM+uynRcgTaYusC2xw5PNyx7zxW3cCn+zX3xy1WGkablsx3eXs+JYkCrB8ihw5r9Enb3RbsW8MQJgxlRV4WdFbQ6RakQkqXAU03dCgpcaREYRn6jm1dcfn8ikNZkhwLps+/YleXpKHPMc9JxyNev37Bx90juRVo7SC1JQw8dtsNUhiMMUS+w+U44yqL0I2ka1ucroEgxnQNlpK8G5iNLM5kijd/hY5m6Log8B3ccYY1CilBtkekdHHlBBGGdKZDyBJd7bFCsykqqk4wnThcv/9E804QjhJeHyaMQkF2MeGx08xmM2KhiGxMvPARoYd0alytsL3GWkPSSPpDA/sV3oHTir7ucRR4Cpa7nPuq59Uo5Kno2DUDCIfKgLYK33FwPQ9XSXpj8BQ02lIXB968fMbec+miDFGWrNcbJIL2uKM9rOnahnboaaua7eMDuhuYK8Mi8mi2R4SGrmoxwsM1GmEGHM+la3seDhVV1XF/3dC1A6WW9Aby/SPHoUMoiacU51GIEi5ZFNIdDsRdRUVPofeIao5IM4ZqT9i1uMEU5YVIral3K9wkAcf5swJYscsrnu5XNHmDaSF0EkK/J5xNMUIiXGcV9LAAACAASURBVJeHwxZ3aNG2Z+hhKyyFsRzfX/PD9R2X53O+f1EwnYzRdChhGYqSRery+fpIHHi40sG2mrqpiOKMehjId0vOXn5H3QmmiwXt7ckedjbL0DJmMvVJkoTNbs/13QOzNODNi0ueXV7Qa4NxfFokbpZy4TjUKuN3H/c0RcHYEQRRgj+54P2+4d31j+yWa4zRaAPjyRWzyTM8I08XxCRA+Yrtrufzz/+EMJp5lvHl3QQHRRL5vHr+ipff/QLXccCc7HO6anH9hOhFjGNaruYem+Vn8mLL+rBnoz8wXZyhwgx1eUldHJi8eoubHwgXHZv7B4ZOkyUZXVmRN4bsbITmADrCHTTSi4mCkIvM8n51AGEZjRLSKCCU0FUD42jC5Pk5C31GGfTYrkTagb6tiZLTYNNxAwIJWTalbxsCz2XkS4Zyx9PDLetVwUCA7iytlkynC6TyyaYXxOMppmwZjWbINKbZrRmaiunVS/rmtJk2fvMWIVosA50+0tUVKvDwwpRhaE9w0U7wcNiweljyi1cvGDsubaeRJNTtjuKwwnEU93c1VVnRrEpC3yXLJpjiwPX+ARuldLXL8qlgMbtEKYe3X31LvD3jUO64Xx7Yqw2/uPqKsC1Rgc9m/UT08gWxkgTSQyqPwHEZOk1ZtzRFzfphy8sXI85nU26vH3j6/JHnb77D8X2COCUvVhR5wW61o2s7tDYM2mK0QWJRRiOLNeawZoPH48OaSVKSyYGLFzM8AVY41Nql3za4IQz9mkEPKMdDGDDDgLYWYy2nmYnBFeA6isiR+I5CS3XiRiiXNHYxYsAfpagoQk1GuImDiiRu5CA9wPTooWTIt9T3n2nzmoeP12y2B2SQkF28pDjUNMaljkYIL8FRB7K+5nh7TbHfsN8/oUYnq8lgNIO10HQMgPJ8Ls7nSDPQGckwnuFHIUer+d31knq4QQiD8SM2x5bNaksaJLieSzxKwQ7kuy1BktHkB9pjiWsGXl7NiUYJuO3pf1P3BFEEUtJzMrCkwYmrYYTLh6cNm2NL0WrqvgWr8SSEjkvoSIw2OFLiSsXVJMOVlov5FCtdhrrCsScAZjSZk0UulyMfIS3RfIGnBL5yGHYbVJAikhFD2yP8gMhahsbixxGhcogGGIoKTM/NvqNCkwhIQ8Uk9mgQ9PtHVDgmTSLKvGa91zSdxkFRtx1t3yC9gMpxCJRAdA2m6xHZiMFIGBz6DsxgqMqTTUsLzeUiI0kzXpyXfNEa4TlME5+yrfn2IubbZzNqP8EZnxOkPsWHNYFSXM4yVpuIxipKLVlu9ngYGq1ZTFJ++WxBiMbzJIMKcJIZ6fgC0xqM45KFE3SrMaFH0dbURYPvtWSLCw43jwSTOeXdiqHK8WVJN7SEV69R43NEX52sWfEILV26pyf264/89O4Dv3n/hV1ZUbYt0vExTc2+2vHx84GxlJxNp/QoOmO5zUuCpmeq7SmKrCRFWbF+WjGRMZkL7WrJclOjhWIqWpKLFNIxTdOw3SkWsxGeHzJSgovFDDeI2A8dTzcPrDYtT8ogW0tfGPa9pexPv93JdM4JdVZxlbksRiNuDwNhVBImKQYom47d/R15nqOUoDhscIzl9bNvWLx6iZAWhIOXjXHkiZ9IlVPcvKdUlr6qaV2HutXU7cm0o5XA9DltbhiaENcX0B8x7Ybo7DmD6PCDkKKtaaucrq845C273ZKm76iNQhs4th1VWdFZF+lYpKlxrIvWHp7ro5RD02r6QBCnY6rDBicIcMLo9H1eotqW577i2QvB8/885/7jDjf0/1173P8o9Zehyb9RKaVo6hojXYSbMR5PuP5yw2p7jat7rJYcj0eK1nJsWpq+J4sjfNchch0Ep9XsetCs645Og0GAp/Ckh+lbtmXL+WSBY338eIYNHUbj07eO9Gi6lkobemGo64JDsaH4lz1RMOZydMG3r14xC1rcusdxa+rNAZVkdFoiNQwq5HF9zc36wOOuYtN2PB33bPc5QhsWWUI2HRGMElQY0bYtx7JC9y1hkqAECCwdhr4b6PVw0ou2pxc0bY9cLVw8xzDyJNacoj2zOOTndx/57//rRz5/fmAxjdE49PqkJ9bWMJ+k+GFM4sUs8w11U1LnJWEQkGYpfbWjdST5IWe/2ZKoiLNsQZilZJMZvjHEUuKpCVUr8JRmWH3G6gYRuWhjUVactLyO5t2//CPdq5jl4yNff/sdVg8McqBojkShw1wv+PL7T7jDbxmE4HvnLbockzkxXVviOx6uCOiPa0QUYtOM6vhEt7yn6fZ8XK354WaJtSfFXWkEh7ZDeVCbASkshoHDIKCqCCKXyiiCQRApF5qSwCh6PMZnLuvDASs0bV7z+LTisHrixVnM6mnF9O0zyu0SLQy79YbtZsM3v/5bsovXwMCXd//MDz/9iJNlfPvNL/j0+ZHNdosXhhwPByILEpfpaMyzdE592LOscp7yjqJu6C10wqeTHs+nEb9+c8Fz1ydzEs4mFwTRhGbXsblZUnUlebtFMhC7gok0eFIiwwy8EPfyAilgqGusDDDNwNB2HJ7WlMVAZX20ExCmM5r1mn1Ts6o1kWNpiy2X8zOUHzDJIlQS01U1Ikzp64JDXdEJj0YFbI4Vx7oh9hyEHyEdQRiGSG0pyhJpDdoagsBnt91wNRrRW4tW0JZ76kaz/PSBxcWC3f0MPViyUczZeEzTbumMwfV9+qIncF3SJObZYoFrBvx0xGAOWAtvJjEm33Nb14RKELzNEIu3dIPGHh6R1iLOLtntDvgqR0gYdmuUNbSdxhQhxXKHraFvT7A13feUTY+S9mS7GSxt3fHT/R3naUqwGxifTchajZ9NSGchMotx6PCCC3ReobsaN/AIk4ZWgEwvaRKLKmuCwSIdD0fc02lN3IBxGxZhybHpwRocxz+ZAPqeOBH0XUWaBPRDT5YEFNajrRtenj8nmEx4+vSRJPC5fPGc6x+37LqGuijoHY/WONTWZTabcpFIdG+wRtAcDgy9xZssaA8bZNew7wy3m4Km26GUg+LPw0rfRwmBVIYXcYrvWjxXknoBaJ/JaH6KSNoWoQx5VXHcfeHBahLf5U7E/O23f00yvzgZZ3ZbysOB+GxOaxq+3H5gd9jxP377Aw4STzpMQp+zcYYXhVjH4+8mM4oix4iOY7emGQbiMGFftSCgHix3qw2z8ASr9bwAzEDfa5y+Yzab0PUN+7ZjPIrwk5DxZE6WTRhlY8QwcDaZcXQtGE2WxmRRQuq5NBp2VUW+2/H2YsrVfM7QdhTHI8+vzpG9h3J87vM9N9sD2ZnLfrshtD2ziymb3uXp8wPbY4U/Svnb//QVUegRnr3hbPqaclPxcjYlcx1CFw5POw67A3sv4nF5Rys67rY3eMpl1iZczud0VQXKQVgD9CDlyTQ1CpFJTOy+oPR8Pn/4LX98eM/66fcnzoCjcNMJcRRhpSUZKs4Dl9Eso1oVhEmCG8Xc3a1JZ+fEXoupewbV4QhJ5rq8jH0mSUTbdTRdg381Jbta0L3/wuZwx7E9Mn5+wTAYqqrGc13SwKWpcpIwwhGSar/GswPz2RRPneJ9Nw8bbpY71vuexdmY2BXMpzOUCpHCZ3R2SRTHiMicqB/dQJfviScpfV4yPjvDH2UIJXBci1WGY75HNOUpmup4BL5LsXtE9z3r7eNJOW87vnr9higIkMYyyiZ8WV3z04fP1GVHGnicxSNcd8KnL1uatuRu/0TgPjDyAnRr2JRbwlFGL2LS12+Q2ynN3TW7hxU/tP+TV5cXpIFDI332x5pJHOKrExdmpOBqFLEWwDDg9QZv0BSbDZtyzdB3BJ6g6DSOF6CtIC97ul4jpcIYgTE9xhqkgG01sC56fvfuFi+I8bsDaWR49uyC0FMIL2KwDrYL8NoGI2u8KOXlxSuWuyP56gGpXKQ1CCEwZkAJhYslUBLPcbEItIDV8cB4kvFw94l4nGLaA0MLshFoP8XBx5qeoTzSH1Ycbz+wu/nMzbtPLNcHPn564KkHJ8xws58oB0E8OmM8nzObzkhCD+d8itcfOS6vsd2R4Wgp8iNaa7TtkVYTewqMYbPZEvguU1dSbB7xfcvi2Uuk47DZPPD9heTd3rDJxnQD9HXFcbdBtwV+7OJnUx6Wa1brDUkYEgUeYRhgtcUqTdEcedxuUUpijSUdjbFK0A89yJD39ztWu4peK7qhw/MClO1wzICjBL22SCnxXZfp5IyrsymBtMwX50jXZ78/YusD09glHYfEUUx32JGeTUiml0hjGTaPVLuC7PI5NgrArZF9g9v3yDDBmwh8bZi7PtnmiUBq/MBhVQ2EnuLQWVLpE8QRAsgyn+1uoBkkTd/TddBbibCnLUdXKbQjiXwX11X4uqPYP1F1BjOs0d2ISPp0w2n7Oh0nzGdTVN8wCzzG370hTUN+eTmiqRu8rsZ0LW0HTjhBSYsYGkLHYszA+WzM3aHl8WFF2w98//UbvrqYcHU2IZEWqXusMSTTc9ToBUqOkdZgfYHyI7paI70QrXt80xG5AuFbHCvxEwfbbEjOUpTM0E2HtR5tXuPFAUMLy9/8ni8//MzmeOT//dd/5m61JMvGBL5D0dWsVvd8dTHlu8sFsZwSDg3ZeM5t0/DTzWcEkq5padcH0smENHBBSNa7nDAJeDYOGPIjVd2A51PmDXmr6XNNP3T0TUdTjUh9l7fPJ4ySCDcK0W7EMsn53fGJf/ppSa8SRNGz7ixGw3SSnfhRfkiHIIpSZDSm3qwZtCGNYnbbHWVr2B0KqjIn8QOU7vnqq1/x4utfIvwAAodgOgX550jcMGB3SzyriT2H/rijLitqozjWPXLQUDeIAYJshHA8Bm3oqxVhMsZUB1CKbthRPD2yWy/ZtzW3yy2DlLTG8nmZcyhrhHRp6hbd9VzMJsSBixQC1w8oq4ohtNgoJrQK3/exgU9dHBnHPrP5nB8+3XOsKmaXGeG0gOaat6/GSE/+u/a4/1HqL0OTf6MS1uJIl6Y1vHl1Re8Z7j59IvMlTXs6aPoyp2stjlJEccJ8NmM2mWCMpRsEUjhUTUFZVafogFSUdUvbtThS0jcV+eHAKEkZVzOys5R45BO6Iyb+mDSOKauKzeqem80jx2NFUQs2q49cpXPWdw/88tkVzyZj2mrJMFiGdktweUEnBHd3j/z0+YF9CX2QshmOPPaayeIZb88XXC2mSBeKtmV/2JGkGZPplLvViro8cr44x+iBTvRIKejbk9YRAG1Y5w2SLc9HIcpP8KVP3w2EwfiUP3V7sjRknCa8fPGMg0ho24rtZoO0DudXXzOULtW+Yl9YuqEndBSJqyieVqjpBa7yGCcRSZgxvXyONDAdn7H8/I7pyzNqx+G4XcOTxDY1XtDS2D26bZjPYnaPj5SHEp2v+fx+y/D5mnfvfuaXv/6Os+yMwWq8JGXYbUgdh8e7DdZ3+fTHdwxXl8jFM9rVjsn8jHZfIST01ZL7uz8w7G5o+54fP674uKxwtEAIw7btOFjF+VmK6VvatsfxfaIsRlmJQ48jNUPX4k3nuMrQmpogshxW9wiZgs7Jd3uupjH+5RlDW+Eoh6NJeHPxFc7WkFdHrLU4FtqyZBL4/O5//iN/+Md/4eF+z3j+Eat8itUTy8c7imPJy9GEdBJzPpkwaQcmfkJtFJ9Kg3EVkbQ4RqFbi5ckvBxFxOFJybjcbdmWeyoZMAwCXzrorqHpczZ1RYHD1BNMPYfz9cAvf/Ud4/GUwXQMfU9f5tjWUDc9Rb3DGYUEUtFbxaVzxtD33C5veTocKEzNv25aPjxsmU8TXs2y02HqhEjHYxSdDqzCd6gaxbKo6buOajDEwqXpBywCVwgC16VpakLXYTbK8PqWum/p45DjYYvvBzTbDVmaMR1lNIcdbd1ydjFls3yklxrcgLauwAxkWcrVdETEn1eD+xbfcQnjiDhyuF232G7ATUKcq9eUw8D60zu6usKLE3YfPtMNLZmuqPMWqw1N01MNGnqI3YwomhF5Hqnjsyk79nWF8RzcTjMOPBZxgBP6JFnAJJ4QTwL8+Aw38vFCQBmKP/3EYD2kEHTLFfHlBDk7p7i9ZXQ+wcRzwsTS5DmZa5GeoBUSu6xxlMPbaciu6SkMOEoQhz5BeNJH102F50S4SpClMbP5HOVHJ1jv0wNtXvHdt7/geH9DXZccioK6OzW5bVXhRS/xR2Nip0YpgVQSpMLalnq3oalLjs1AMZwaM+WFCM9Dtg3n0wwrHKIgpKtj0jBgPk5PSvPmQGLh2Bzoe0nghyhHMx1PMaZHG0MY+fSbnN3yDi+O6HsYhhr/7Bn90HF9/YG7Lx/5sjsgtCaMfaZxxDjJyMYT7GBwwggpPdLJnMLCpyePkdOTTkaMigMWTScUu2OAcmBftky8mPqwpe01fdWzmE+plUJVFW4Y4YYJm3VNX3Xk+5arVwnlYUvf5Eg/OPFs/BilB3RVsb65w+tcLsYJ28cd9w/3XDyb433/NYHqaPdLNrsjaTZnKA4ktuFqMSIXgkI6eEryv/3VL4mTkKvIxw09ejfFdo+ME5i6muVqRd4H9MeBOm9wfEl8cQa6ZZZJJukImpreDlR1yaDAUS6mNxg7cL995OlTS2s094+PPO6e+LC6YXfcYbRh0DkCiyNWIBWuNFzNEx5cj2mQMrIer7OAvOuxdc/jasebqzGB41DVOVYohO8zCjT/6fUlPz+u6PsOKwXh2QgpX9PuC1wdsn9cMoxdijwkTQKS8YxusEzCMQ/3K4I0RngRLQFtmVP5HkV7grA+e3HOm7NzTF2xy1tqbZnOJoymM4rthqYomZ9fsnx44GwWcvHVa7xoipdmlH82dpmyYVtV3F//jGdODf6meMRPJzR1Tbu+Q+qWOIpo6x2btaQfP2c+O2fQFdH0HPfLktUw8PF2Tdnc4zvvALgYRySzlEwPtGWHcB2M1RwOO0S+QtQbtFG8ePuSXWvY3H7kuq1YXCxohoHNoWA+iojPJnhSEgvDi8hl7qdYNEHogePx7sOSZJQxnc9RoqeuWzoLpFPwCtJMYLVmf8hPDxdCoKSk6eDjU8m+eeT1xYhfXIVcLcZksU8cJ1gZUhn/tLXqGoRy+fbXf8Pj04663xFHKX3f0jYWowWDtngCPCnwXBerHAYpyZuGQffoT5/4piuRyqJEj2NzfLcjTAKcoYO6oTssqQ9rbn/4PX/4x/+P37y74WZTcJN3bNseozyE8onDmF5FjCdzLmcp52cLgskZ8zhCnE14+viewQ7cbXbUf27SezOQVzXTdIyrBBLNujVIWzPRGoRiNJ3hxC7f//qCy8LAb7+we/yIRSP6HldJlssV/szHVQ5JNsZVEtO3aG0pjkeEtax3FZvDnjgMmY8zfCzKTckuL7i5ueFQNThBBIBioOl6rFTYoUFoMELhuBGTi6/4/vULRqFLlo3IJnO0hWhScPv5C8K3ZIHP6Pyc8MVL/CzFoFAWnPQChwStG/qipDMNqt5xWK9o2hM7TSrnFOlIYiaXLbvdjnRX8vPjjrrruOv3jOMG29ZMxjlXF1ccB4XyXPr2QGcsCIG2A7viQDR5zSjLMKbHk5JJmvLl/j2ohunkjHx/pNeWwRgukhSLwg6C9XpHpy2z1xeo0scc9lTGUNQd0eWYy9hFHA/4jsBzFbgxUaXRTcFfv74icT3+4e+/wzUd0g/R2lAUFaWFf34ylJ8+8eLb73j73S9IpKVqIXQNnuPR2IHiuKczA+cBxJGH6zfgS6zj0PUW/BG9lrTrDcf7I3/6l9/zx9/+lqfDgU+Pj4S+j3I8Nk2D4yQsvv2e/+P5GXPVEpdPTMcxUhrCaERw+ZL/57+V3C6XlP0JgN1vtzS+xyj1qLTDbeXSRhHB4FMUGkFBq6FqOkqrORQNfTfwDIfLSUQowe0tQWMZqopnIZhz2K0G/nC9YnvsaXvNxXSEtQaNoK1KzieKQGs2yxX59pFp4hM6gipvyTcHfD/ixcvXxI7EUQ4vvvsOmSXgK9RohHB8hFAo6SKNBWsJfJc+8OkOOXHXUvaa2Lp0hwOyqzGdRkYhji8RjofQBq0bTK0xyiE/7k+cnaFlt9vSDTWD47Nar3GUT9OUHMuKptUIJHl5YBSFzKcTQt9lVdR8czXCjXyUMlBXhHFM23dkRhE4ME1DbA9BJEjQVLuB8s0Zxg3+fZrb/2D1l6HJv1EJBEmSoqWPbCtk24A2PO4K2m7gcuqibUVedFgrmI7GXMxnTOdn7MoaJX1mi0tuDwVCnBgpiTK8nI8IQx/HMZgO6sZBDx1ttebdj5/QQjCdnzNJ5igjWT+uETKgEi2bwxYrAlrp8vPjE0Pf4ZZb+vmcdDQlG8X09FR1ze/e3/Djx1uWd48snr9gW24hEPyX//3v+eXlcxIDg1AcmorQ6bD9wOrxHi9JmY3G/Lzd4u72LKYjQmMJXZey6U5xj2EALKHvopRLVXa0tuD5wtAEmnxfcb6YMzub8q/t6QBTVhPYknmsaLcNT483nJ+/wrqGZObTuxlB15H6PuPQo95vebz9gvESmrwkcgPQA00NbVezrZZkjUXlJZ7roMdzqjqgaVr2pea4yvmwfuKrxTn18BGhYL3c4cQem+VHtsWaVy+u2JWGr57P8WPD6OULmoctz+YJtx/+RIpmOOxYnF/SehGmqdn89Cdu11+oleBwe+Dd9Yba9SjrgrGyp6zkfMQimXAejQh0w6Yq+LgpuN7mfLuYIZQg9Q0dDa2p8N2ErujwJejdjg+3D7S9RvcdrvU5n86I4ktMX3P59hvSyYSuCYjqA57RvLi6pM8PVOsnfOmQpTOU3vDlN79B7UuiwKXKj+y3OxLh8DLLmEUBOjGooWe9L0jHKbb3SMI5WWfQ1UCWpqhQsd5u+eHQYVrLsd1jk4D/66//C2PpoYs9uvdJ8pzr9Y5lMdC4PtOgQh1LqpsbtOvQJx6agd6UNM2Sqnkim14SRiG6aXCyiDh7wYsHxc3Nmk/rJatOs963rDY5nz/eczEeMRuNOJuPCXxF4vkoq6kcyflswmq3p2h7fGOxZiBOxwgJeb5HupJF5KOPe6wfYFyP1XpzYqacXTLKMpzZnK9enXP9w+/Y3j3hNc8ZjzKm8zHL5ZrEc+mk4GIyQtQ1OytRyqGvaoqqZnZ2TuMkHJuBbd7wN8+eYd2A5e0Dq+WGqugYRIvC4Ime0hGAw/l4QjNYHEeQb4/s8z0fbldsa410Q8ZZxMXZnKeiJPANsavYFzXPXIfY+Piqw1M+XubQU/Hw4wd0VdNVOY2Bvm2JxMCu3SD2Evew48PdI154iTMdk4oSaXrM5Jyobnh72XCz2dO0LS/Slk95hyMsUeDi+4rtLkdZTebW7DaPKCXpjYBwwvjS42J8TpqmPF3f8vCn3yLqkrY/cQgUFte0GAOR6+ElPr4r6EyDGTqs59MUNce6Pym7PY9YeXhSEgU+hpay2FBp8PyYLJ1iggX3nc8fH++wnsti4nExgTRwGbSlHyAvdqQG0ijGtYJ0PmZAsN3cnbaF4oS+r2l1w+PdLcc/XxTTwCH1JYmriEMJniCaTVhXA41QuIMh9gRJFPHh5gPSdKg6p8yPhGGEGDT/46cl1sAkS0l9j1nin2JBUUTU9ARpBm6I78covcdYh9F4yiw+ww1b2lbT1B1+DI5QuEafWDeHikSl3L1bsdw+0Iia528WxKGD1yrmccx//v6cQ14jqp7sbMa6MuCmzIKAi6sZF2cXJJGPrFt0nZPfXHO9XrOrBhSWXV4ySB+Dg21bIsfFCwMcY9gbSzNUeFoxyo5U5QoTJxjdoOue7W7Jf//9P3O9X1P3p42lxmhWhy1N352YQ0FAHEXEnsTH8rja8ePHJ5SQzLIR82yCG4UM1Z6b+xt+un7P99/9il+9uTxtGngurufjBpa/enFOYQe2hyNNWxEnCc8uLnn6/IXN+wcSq9hsctyjJAyeE04XjH0PjMbWPrUTo5SLF/gUXcegDY4QBL7Hr15e4lQl7x/vUfM3PH/xFY70ERKs7iibA09/uuXifIIdL3hsW2I/Z399zfLxC2ao2e5r9rs9Rkn2ecWht/QGsighikI8YxgHAbPpnOliAgxEyQgrHYIgYfnjj/zp44FD1bE95ljTIuyA60iG0iGLPeo0IgxiFrMXKBUzTiRdc8T1JXlds9zesifk9lgSHPbkXQtKcBG6bPYBzy7nmK7Fl5Kpr5BeeGL7hD6ftzlD26KGDjeIUUIyDB1NJ+nbnjhwSSKXzfbIoDVYiysFSgi6wVKULfOgJpIT0jAhlJI0SQmjCCN9ukbiiJgo7Dg7m3K7KujMiVviKcHQ9Pw5l0PguEgMg9GnYbnocaViL8FXinXTcWgqfm36UyTqzWuM55Gpa9rjir4uT6r63Y7PH2+5W+f4QYx0es5Th9Dv+Wl1wChNPrhY0bPdPnJ/6+EnKeM04/xswYv5hK3W7HcbNlVNqzWOOFlpmkHT7/aMkohZKBG+g3Ad9rst+92GRkpqB96LKeO5R6E/8LTcopWmbzu8MMH4CWWrqdsGx3VwHBdhNYM2jNKM3k14WN9TNhVJNsJxY9wwZXzxjKHt8WzHNAnJy+K0dUfHNLBEvofLGGst3XCCnKumYHP7iJyd4cfPIDrFzF2hWEcZG13xev4M4ScE83PcIER3HW15xHgOrak5PN1Q1Fu+HA48LZeMrODKT5lPp4ymGV4UI72I2FUklyWzumB694V/+nDPMq95qPdEyuJKzZe+p9chrXAxSqKN5VC2OB4MxrLbbsmEZTweoSQIBpQBlEebd5TrkqbticKQOArp6xYdnIZgMwmJMDxe37LcHBmPRjijKaPzb8Aq0A3W9HhBgAzG2HXJ//1f/wFhDXEY0ORbbu/u0MrnT9cr9j08HUvK3uIGCf/rj/9CPF7w3S+/5+03f89fvXlJXzfo1nDs3dOWU1VzPnUJwwjX85GDhzYd6JLDakO+CuCUBgAAIABJREFU2/PTH3/DZnOgaBqSMGI8mnGsSvA9RpMpWZryfHbF3Iu4GEkEBdnVN4SLFzhm4G9e9qy/vOe3P1j++XbNquro257BWlwHVAS7px2F9fDWBRM/Yrc7UNkTVLXsGvaNph00q31OtS+w5sA2b3AEKNXiyBJR7HjpDuShpi810j3F/Mq6QYURx8ORZ2mMRBBFJ1bO29dvcd2AULpM4ozReIbEo6uPzH75Bpv49KpG+T5NsUZaB9dLcL0YV7gE4QjlJig1xnGeMMNp07aoNNXnn7HHDTpSFEKSuRZXcbqDFhUySsirhs2hojWGfatwRguisUNVF1ylIw5lg5dmvH//gbLYIqViX3aUdU4zdHz91VtK2zPEE5z5lL6tEaZHH/Sf7Tw7TN8zTSO225Z1YZlsBAk+ZybBMf9+/e1/pPrL0OTfqFzPI44zHNfFbB857A8MfkYQ9gy6IEkz7pcH8rrhLE15Pp9xtbhCS4+XqSRVhrxpcVyfwcKxbvj62Qu+++ocIxykL/AjeHySNGWOEBbhKfzpjPc/3/L74zXaGiInRPcOq2KPVAOJK0nSM1olybuOatC4oYtRgkNxxDubctwf+d27n/nh0ye+/8VrFt9ckuwHXN2S+QPV/gvScalMwNO6ZDCnl+7dscIcKy4XEwSKp8cnRp4gTRIuJxm1hqJuGMxpRbbtBqwx+OOMXd+S7w6MRxGB8Biajqe7JbOLrzmfT+nqPb4SzFOPfhJye3PP8XZF01ryoqZsOy7HCc/SGNu1FMeG9+/ec/nNr+lxOX/+Et0bhGpp+0eGYoc+xgSjhJ8//cgPt08M7piuiRDaR8WSXWWou5I4yMjlht643N+XREnC9bsnfFyeqo6b2xtS73R4iSbH8RyEF/Dxy4a/+3VGHwbcf/kZne94WD3xh/ePrMoe3QyEXkIjHL5ZxIS2Z5oF2MlbLscZs9RDdD4rT3BZH/nD735iWR5ZLOaosQ+6pevLEyzVczGNQHBiRxyORwJHUjSaZKyo647Q9xnHEdQFfVnSlEdC32E6nZJNpnz9zTd4xuHm0yeiwOP67omuGbi4fMb88hwpLf3QEE4jxpHPdrdhW+2pHIHuYByknE0Czl2HzbahrDU39xvuDysOWtBql3R0xnq355vDgFIVsi9wrCb1BN/G0MYul29+xSRLwHXohxY7PqfSTxgBd3c/c3/9iT4IobylaT+yyw+UjmAQDmqzxA4OWkS4QUyiLLvqQN539KsDNw9bri7GvH15gXRddNEhmxyagTTJCGJBEAYMuieMI5IkpNyvQRmk1DRdixaC1e0NaZbgRT7SD9C9ZTydsVyt+fDhA7IueX3xkr506I8NkzSlK0tGcUzftlRFQVV3GFx6rU/KTiH5zbsb9seOptPMZhmH7Yb9csPu0OM6UzKhyFJJLyvausF2ks+PLTkdldPi6wYrB0waIHXNssjpTE/iS+ZZRt9ZJB1BBGKAvusYqooq8lm++5lut+Xh5mc2ZUFhLUoJmu0JqKk8j8vZE1mS0dgaN6jQS/hxt0YIRXxxxdwPMP3AL189x49CirKiHDSEDov5iKauWWQBidfhy55+UNRVwXgyZlse8XXP1SijcMfc/vwHJrrh5YuX5IPlabsi9ORpg65pscphcXGOM+T4YUJnHmkGw/3uyLGzHLuKrt4w8R0GY8i7AWMNx25ABj5+2CN2Na1+otfw4uyC//p//gMvLkNSZ0D2R/LtPYfDhi+PLU8biW8OuEOAiSNUEqCSANdTGOWgmz1VU7GtS7ZljsTgCkvXtqy04Y/rNeu65WgUCEkSBpwFLs9GKTJ0yVcrbooNk9Dl/2fvzZZkyc7zyuXzFO4eY0Zknswz1qkqAFWYAbIpsWUUjbrofoh+PF3JTBdqs75Rt5EiKYgkCKCAQg1nzjljDp/d9/a9+yL4DOAF8b+Du+1/+NbqtWbo2DgmnIY2WafopUQYCqUd0pMp2jSoyoKm6XDCEfbU52Q+pykaUm+A2Sg800L0Fq5l49o2smmoXYf1/ZIm33G7vkS0JhezZyRzm0fjFEd2OEHM+NEzivs9Hg09DrtMMJlM2FSKcdiRyD3tvqPMLcy6pi5y2rIjsROiyERrgSoEyorYdy2HqsFwW/qupRctvjZZi5aT+MgBKcsM2QuUa1Pstvzqd7/h6zffkosOw7KxPJdgmPJsNsPUPZahcRwLX9coqfF8h8Uk4eou5+5hyf0243qz5XJ5x9kwZpGEyKrkf2YZr99N+NHLF0Suh+G5TCyX4GTKQ3mKP/COUMEiYxjH+MOE4Kcp3S4jEDWzaYxQGicI+cnPf0y23/Kb1S25aAnDBNu28T2XXVnh+gGnjs9Z5LPLM2aLC86//zMMy6NX8PDuDU2bMX4yJBYDbNfnZnVNe/ktZdnQiI62biiqkkMrsb0QgaKqO/KyphE9WwwWZ+ecLk4RNBimxvUnDEcj3DDE9hy69sBus2U0DMh2KyKzR5n2MQYjJY2hMJBHaLVpUrQVgdsjzDFBPGEwHBArgcV7xho+vO/5sCtZ1YJZ6hOsl1i2idIfYXQ1ie/S0YNtEQ4CzDhh2dtUdYnqJbHn0OQ7mrqhLBqSwGZ4MkaVJVutMbUmCTxsjoOhXmvKtsdAMfYtgiAhSYdYHFWw0nRw7Ri1V5i2i8JgfziwWq0xVEdTl6heEPgeXQuWbSHa+ggB7+UR6IgGjOPpvGmyqY6mF9FLtAWiF4T3A7bbDdd3D1RNQb7bcnm/phE9ddMdNerKIGskwyjh6aPnOMPnvF/fUt79FtW2FPWBbAX1/h5TvKBzXG6zgqJtUVqDaeC7Fl2v2FclwrbJOxhEAUNTYvQW27JmdhYRpTH//R++IN8t+fDFt7j5lhpB7Lvk+wzTdmjdmuU2I8sqzk7nBP8SoZKmT0uE0BrZtYiuJZydsnjyHKPe0K0+0G1useuOoBMs0ojpYASioewg7yRd09KrI/dL9ILb7ZJ3t7f0v/+Gp598zo8++5hAKnSrKXuN0C62drGlDQ3IRtIpxcPda1bvX7N8uGF9yKmrhunJCbPhCCPX3K4b3t4f8O0AQ5lEgctwbDJILb779IyPX5zz61cf2D3c8m6Zo0SPF3X4jkWtHRzPQVlH4K/oNHHgcTZM6GWHFA0nJ1M+PKw4LHfEkcvV5vo49HBtoijAs8HsanbbiscXj5D7DW/e3tKII3A5r7aoTYsR3uFOJ6R+iKxqZtNT3PEZi5MZrpFTt5rd+pbVZk9ne6yLDitOsaqWFOizhla2yF6xvX3PF9sdl198zT/GEz5+csajx09wHZ+qUyxXO7SwGSeaMLGwRY5SPeV6w3qz49U3r3jIj/HcvKrJm5ooShiOxziORUBL2hv0hw3BdIpjeLTxM16XLs6HDaexxWgx5eJsStTvGA89/vtXD2SdwvF9mh72t0taTPKswjGhcBWOG5E3HUWrUFIRuBa25xLaBtXtLevtll1WkTfH/sNzjouDWlvYvUXqGLRCYxjHixGNSegFxI5L7IfcVzWu47GYzbBNC8OPGAiodnt6LBbnQ8zUJtd7ulLQ7SVNXlDl0OQ9oneIvIBhHLM4WzBLIyyzx7AkfVNwaFrCyEVVFloKsG200SOEYl9Z3By23Gxfc/1wx6rssLyQ+XzOeHLC+GSOMxD0lkn5sKTbfMU08QnsMbuspm0amqan8jsOZUmRZVR/u+FnP/gOn3/yEsdoUUJgGgaD0CcdhESeS+O47LIeMXLwm5rDL39F/Rf7f90m999I/XFo8gcqpcDxB2jV4/k+0/mCSSaodluSUYzr+jRiR+y5fDQb83w65eJkwThN6R9e8+bqPQ+iR2NQd5IeuHh0imP2SDomw1MGScpk5NPlmqrIuVreUOQlgRsySB2WD/cU+zWdNFAKmragdU1cDCbBhEHokTkOG8PCbktmszF507CrG2LX5IdPHpEf7vj1/3yHLWtO0hFmnPBwWJHOUnZyyJvLjLe37wh9D1u0BIamlZLTSYwRu1i6x6Xne0/m3Kz3oNTx7NYE0zBRCizLIZqOybQkkZqmFqhW4Vopk2c/4Hw+4s1Xv8SyapJ0jhwGHJaS9w93HHYNTdeSDAOezxICw+X+ULA55FRCke63JNNztO3jqZrReES+ukHkHVVuInpo65au6FmJHVX1QHmoKJuWCoNfIRmPUiKnY2QalNpnt2lxXYM616hOcfpoQpoM+Ob3r3jx5JRwckqyzjCKFm3H/ObXX/Hu+ob1Q4aqJHmnaXuFoXoGVsmn0wSvsUniITYuftaguoxv9prJ+BMGgwhHWLw4GRFuVrRKIHVA5JrYukVqgbA0bW/hux5C1GiOBqO6Frz/cMPidMHjkyHt5Zc02wd2TYZoGhCCx49GzB49Y7FIWd28oxU5dXmMkuz2W/Z5Rpqf8mSWMh4MSEcDDNWiLUUQjXC1YpKMSLXFKt/y6+yaq3XOvpbMogjPTyiynKxrWe/uqaoD//mv/xsXYUDi+niGYmAYzEzBWQBNtyY5e0Yy8IkSl9qwuL2WfPvhC77++ltuWsm2qelqgWEGYGp6s8UyHUaGoNMGwcwjjkx02xFisa9NZFPjWTaNaFnttvSdpChymrbhsK9pLJ8oHlAVLXES4tIQBS5Pn87ZXt1gGppW99ys1mDCYJxS1AVOMcAIR0SmIt8VtMJgavtUZQZWwcnZCcvVA8PQZ38oj9t30WHKnqqrsCyLwHfZH/bcrTfkVc3Id/DiBNuEQmhGF9/h33/+kuvf/gN3WY6QPYeiwsHganNLIQVS9mzKCmUbuMGA0PYZJj7LrCatfB5PRszmiyMbo9pS9iZdrtBeQ/HwwM31msN6S7Zdszls2eoes1eM/YDQH+CpnofNHWa3YZgOmQQp0XhCtTjh6vqO1ftrKltjWyYmJk9PJ+xXd1haYKYug1HMm/0aVTdI2TNJHZxJzKYx6MXRLCC0SSd7hkbLp3/1V2yur1nttjxTJqYoiZKEyXTGyTDGFjWeFliGQTgI8QYx6zc3rIqaZdmA0thasREtjdK0SqMBZRj4GpqqoJFbwjjlO5++4M9//gOeniYskoC2ztGdRVEKrKyg3W35zVVNEXm8mMVMHAvPtfA9m853sbWFoXtuLh/YH3bUbYPWUNUtVduShjFvs4JOHNW0J2nK41HEbDhiPp/RBy6vVhu+vb0mtOEsibCzHFEW9LLj5aMZlhshtMHi9AQ78GnLhq6XFE2D0+cMkjH4LbJv2d5/4CxyCS/OjhnuIGB190Aa+ux2W5abFZfLB8qi4zvPn/HjP/sp7sDA6NbIqiAKA0JTczEwaCwXK4HQMrlcZnhNj5Q2WeWiLYfW8ym2B6qiYhQlWHKLZQYYQcKj+TPKpsawTULDxLN6srKgbWsUJn5nI21FS0lrxBg6oMo2LNe3rPYbtOoIbPOoYQ38o8re93FVR9tKzE7g+QF+PMDxLMI45nsvRqhDwe3NW5Yi5y7P2JcljmkwDFxCy2a5L/lvf/cLfvLsgtj1iEIX5SeEUcBpeE7VCgZ+gOO51Iec3WqL7jqIfGznnHx9wHtq4ZoKzxTMTobcXj+w2x6IEodsl5HlGZNRysU0JlycEs4u8Pc1vuPSiYa+yoljC6VN6v2WD/drHN/G7ASzKGU8fcwu27NnRycEdquYxDGZsgncBi1auuZoalrf39MVBU8WI7Qxw9ANGn2MpAUOtj/k5Mkpt9e3+IHmru2pKompFKEFWoHRa+gLbBxGg44gcIj9ENdysLRN02TMzubYSczovuXt5jWbzZ6i9bFdG380oSpLTNExnM3Y3d/hxQOcMOQgFbNhiiEbIt9C1XvCZI6ZdcimxI5CvPhov7HQnMQRI8+mFIplUdNJcWTdaDAtG9cLMJyIYJBimxbaTxGlQd1rDkXD1e2KuutwDUXZVFhoPD9AaIPpo0dIbZIvr+mbA5YG0Stk32EAtqGQStHqnnerPZZpoOnpZYttm1xe3/Lm+oGsrMiajrLrkerYHPbaoMan7Q3yrqW6viTZrOlER2qbxEGAYZoUSmPbJn1bIE2Hg1TUUmACpgGJ79EozbbpyLMdJClWVZK4AYN0QbI45buffcZgMGDyzuHvb+4ItMboBUVRYHUunmPRtoLICxmmMUVe0fcKJwqp6gZ/eIyPWgqUFNRty+LiOT4d+fqS9fVr9nmHF4149Pg7tEpxWF+ipETaEcqOabslZdPRqp6w0SxGMc8vFkg/4P3117y/fcvYcRhYFoMgpNgWnA3HtE1Na2SIesfu7pI621BmB/JDTmxbjMdD+rLkeldwyApMy6DRGsOwid0QN7c46y0emQPG6TnucMyf/nTA7p0iCW3+x6sd67ZklJiUpcJwAnqtQGvKqiEdBGRlQ+AceSxhEjEt9wTPzug6wfXdA1lR44YpZd3R1AKn6aiKlr7MaMsc1zJRts9dIbi/X3JxavLvhgm21gSBR2FqZk8/xURgxYq7q3uurpfsio5D1TN7ds6zSY9h+/hhiihKNocND1XLroLrleBueUfLhm295mHzhvSbf+Z8dsYwHSNlywAH143wUvOIA9jvuL15x+3lNev9nq5tKVtB0Ul8P8B3bFxbY+sWR0toFSrfcbh5y/Xda3oP5k/PMWVNNZsxnIxI4hF6OOTnswl4Id/c51TKQNQV7b7DN02sTuA6Jjd3W4wwwJ7PEbWk2x8wpCIMXJTS3C0P7PYlu0pwV3Tclg21EIhe4doWk0GA7/kM/IB5mlA1Hau8YpKkdE1LnefEjs2zkxGPRwPMMkNg4AURvSlxZzOMecjd7oHVu5y205R5S7Yv6GuB0fa0TUvTtmjZEwUhLx/P+d7jOYvFHHc45XQ84LA7YJgtrqWJaOg6gw/3a35/c+Bqs+XhkJPJnrwR2G7IXZazeLjl0XpGkgzxXJcXacjLn/+c9WHD+uGODzdLAt9nuVxjWgZlmVFkO5YPFdu65uu7S7734gnPJyfMxwn7qxs+fjah2G+ZeiMSz8Fz4au7Et/R/GUQ/Os2uf9G6o9Dkz9QWbZNLxWqrfEcB6sXnJ+MaQ9bLNtlX0ts2+Ykifj04gk/+Og5J6MhVbblb7/5ir/7cI0exJxePGKWDggGIafjiL4+EIzmGOaE5XXBQ3ZFuW9p85pGKugtzC7AED2Px1O6qjgqa3sD6ZoI2dALyfk0QNgOhehZ5gWzyEYYPZWoefPqFX1WUhQtd0WJ5SrmcYLfh7SZYLlrWNYtF589Y2KdcJdvMbuOVZ6j0WyFoNSSHz1dEHkWvucwiQL+9NMnFFVB9y8NXjiIMC2bPDswGaUYrkfbChIMmkajrATRdJga7L5Gmw0egtAymEQDdkFGk1c4ls3z0xmn6Qn5NqPdH0gNTToIsOkZuCYq36BtC8cKKA971mXNieuiG8Hj+YLR+Ix7OeTV3YrbuxU6z3DrgrYtWG/3XPUSQ3XYfUdo+7iOSfWuIPIklhkfs5lPznn2yQWNCDj7+CnV9Zrr6y3b1Yr11R7PVHiRSxr5OEoxNDTXm5JuVRNGEwZmQpXltJMRBiEvhiOcCNpqj900SKHxopTIdvB6gWX7+KZJk28wXQ/RdHiGSVVUhLaBtiziJMVxXc4fX3DmNpjZnvffXpOFAYtJyOLpJ/zsZ/8BoRru777h9btX2FryYjqkzlrKXuNbBvndLTdtycn3XjId+TS7mslwRFcaZLt7orDg9mbN22XOpmnZVTW2afE+L7mrNaUoGJ1/zPbuFZaf0Js+b/IbQrtjEoaceCZKKDxLcXK4olSfMZou6E2w+h5jd+Dq1R1XO8X7uqWRJaZQmEqwGEVMkoCzNOHl2SnWKEF0JXdXN7SqxfBM5DjlsFFI0VO1He9v1mgp0H2PoXsMDV3X4fc9UrbormeY+sxTmI3nOJ7J6nrN+9sthobpeMhsNmOz32MbLulwSrbb0QjJ86fPcA4HpukUYbnc3n/A6w06ZZLnx4xr1bQ4holjGnhOgB8M8G2HcSyJXJfEMRB+ymwxJQkSHj35PrGVcWV2gMQyA5RvsqzWZG3J1a6m7zVNL7E9g8Bz0U5EbEvsUtHZHioacPJ4QjJbsL1NKFZXlEXB4Tbj8rDj8u6ebSZouhrXVESBiSF7eqFoHYHVaw55S9x7NIWkygWPhEv8+FM+/9E5V9++4vb6ksNuB9Jk8fyU77w4oy8yZqEmmkVUuwGbvqOTmrs64CwOeTIdc1vAOmuZhC33d5c8MQye/ej/YHFyxpe//EdC1fN4cYZ/ckoyTGibivLQIfU5NA19lTHxFGk6oH045oxjx2Y+iKhlj+wk49AjCQJKqem0plU9T5694POf/Ak/vJgzCkaYTct6t6auWsr9HdlqRZNnWF2Nbza82zc4voGKQ9y+JTIVpueD5SIR1HWBJQRuL7kvWjZth29ZR5276dCpFtm0dHJP0WompcmDOWd0OubRoxfcPCx5v97xYVcTWXDiKhLbIK1bFtM5lgm2bUAvsFCsV0uE7EnnIcJouFuuebhc8nK4oOvmHC4VVVkjtIlUBmjY3d+y3R4wDZNHk4TZ2YL0/AQlK65efct85LHwLKzEZeQnuMJD1CW3724pNgW9adN5AaZloZWNkZUkWGgvOEYwuyPE0rAUTduz2t5TlSUTz8V0DRylkL2i17AqS5z9htEwJjEtbKMmr7ZsqgNBGnDSj+i6DqUViIZ8XWOoBwzDwnVsTNs5XhB2iihJ0U1BNHQZRBZqMWU+uGC4XXP55hWhbzPwfZCSEM3VPuPvfvsl/9vL55wtxtSewXAxp248rKJEawPLj1hMT6nu99zcPGAPIzznM1JfUr655LVck9dbkvGMT7/7nP/111+wvT/QCsGmKLjaNbg/OuNlPGc4mTLoFW2x4/7Vt7x/e4kyHOh7GtljCkXdlrQtLO+vCd0dWVtTNgW7KkfKjtU2o+l7lDbplERoAz8KGQUW09jkfDzApUZTYbsSbUlUNMJxAj796X/EdAb85j//V5abHN+0iF0H3zaPAHrfxzRNiqKg2O2JbBslFWXbECsTo2tIZxeIQcx8PuFiV3B9Z9L3NWXV4poG9X4HqqcXknQ0BMemczyyzRbD9YnCGFVvUaJDGhaWYaDqmsayGaVjHNdlMU5JbYtOaHa7ilZ3KN1hYNBIjWPZOK6PZftoBXY4QrojNssN98sN72+XCKUIDYFULcMkpWmOscbICzB6jRtGWOmInZLQ1WgtQVuYWjNwbULbxjE1rmWwyUrWhwP2reZ0nBJ4Nk/PZqz3O8JKsD5UjIcxBlBbMZvOoNnlzF98ws2HV+SHA0Pfw/d9LAPGScJZOuLy4Y7dZgm2h1Cavu+xbJOBY5J6Jp422LcCpTVdW+P4PgYmUpv4hkd+dUntmGyWD1hKH/W+nSSyDHzLwDEt6qbj/n7D/Pycbjqk7QQog76XuNYRIn/QGtu0cEzNPJFECJzZBCFq4k4TRVM2q5JFGnH6kx9gdSX7oubDzYG8jzhEATd5x0H17O8fWGcNP/nu5/z4xUd8uH7P9nBPrk2S4YhltuWZ+4wwDrBw6PuCyDGQSqKyClULcHoObYm0Pbq+p3DAjz3Sk0c8G51wlk6JfINOF+RVzZc3JUmuOU1t/GjMJ59OuWPNV9+8xvsXnbTvO3Syoes6bMvAMsFz7KNVhePg8GySYI8jlqsdxe6AbCTKNPHCkEMpCKVGyZ68lqw3FXlecF/tyDvJKHR5NJ2grRBt9pgexOcL0vMx6nDL7mHPoWi53+ZIHB6PE4JyzcDmqLfG5W5zT1jlnDQdobKJFiO85Jy8kbQ49IcVm/0a2XXEmyWj0ZzN8JS5aBjRgp9gWQZ93SDbBtqS0yhk5fgMTJtRYNCLlizfsGuOKutcKHL5DqkEQ1vx8XzIeWAxGNh0y469bR1htrGPO/D5y3HKi1XF19dr3n24BRWhTYvQNJCiQ0pFdyhwO0WnJK4X4Bga07KQQqHtgPkiwTzkFOrAd+IYIWqutjmXRcdOtCS+wSS2cGXHpizYHTL6XhJZGqPxcLyU55+8IIl9GlFiESANl2SYstctX797zW63Z1+3FLXA7RzSyGNk2wzcAGM2RpQH2uzA3WHPl9/m3Lx/z/eezPnk+QU9CsuzGb98SV0O0Lff8P76ktfvLrnLa6qmoZctbaewDPAd8G0TrRX5doWjNSenC7y2JfBNFs+f0X78kmerPa+/fcUv/v4XCNnRdh2mZXN1c2C1y3j/7pbDbUb76Wc4nwxw3AT0A5FvUZYSVxuMh1N8L8bzUwz1x3zOH6L+ODT5g5VB2wkCx8ONfPpsS18VzGZTtOGS3R3Pxl9MUz5+cs7jszn7L3/N//Ob3/N3N7co02Q6NLEsg8B3+N4nL3Ecj1LEnMRjukNOKy3C4Sld8/Zf8qcWWavx/CGuE5DvbhB1R9O2uF6KhyQOE4xwgNELfjQ1mU480llIUTe8+fZrMiF42Gx4yEtsw+TRbIjuBXXTcehrTtOYH3/vOxDA+OVzztY9c/UJD3dL7swO4YUcTJvf3rwn8G3+/Xef4Ro9ge9xFrucpyFt25G3gvEgYuDZIASirjHjyVG/lVU4wwv6bYXTSzaXl4i6wjJMmkbQyx7P8fBMl8D1CQYeF+ePGfgRjqo5/9E5out4OAiaQco09jCMo262bFo2+wO97ogDQbVvUIBj+bhehOe3WLrAUIJOttS1RU9EPJuR5TsMu6arS7ZlyTqviUMTxwTfmbF48pyWlCiSWMwZeSnFesW8tonmA/7uJsOWioEQSNHzoZUkpkNjO7iihWLN88dzgskYyzegM+mqHoXAjge0d1scfDzDOFpUtEldNnieRWuP6PotAYrAVFi6ZzEcYmhN6ph85Al+9tEpzcakzvY8VBXJJ+c8//gFF08eU+y39Ic7pt/9c14Vv+E3DyWJ64A1wLNNtJKIpmPq+AzantB26Z2QL16/wugFy8Oe3z4sWWeCSkhSz2bfwotOHjksAAAgAElEQVRPPmX51RsMw2dzd43pRsSzj5jGE97/7pZCtHjWiLA58PnQZRb7SMDYP+CGnx83TE2HbAt2mz27vEWIFkMd4cK2ZSHqluHJmFP/lPH4U4YDm3L7AW3Y5IYDloHje6TxgLwsebfruC5qHMMgcgwSz0BpReA4ICXDOMI2W7TqsS2TdBjgGhOeTGJc26JtO05HCeepR1VZ7Hdb3ElNZzsc7tf86Z/+KWr5QOD6kJe4UuFOUh62K7KqpKgaetVjWxbRYMKLFx/z9PE5p3HAN1/+hsvba+q6Y7NrmfzZC/APXP/uH3j+0RmDZER3V3K7b1mLjrf7PaptWZUNba94NgrwHIN9I9mVO/BMRvGQi08+x7QyhgOHyA9Y9YrLXUaXm+i65O39K66Kkro3CGyDslMchElkGpRa4BYKXSos08B0BzwbPaazLfLexahNJqM5w2gJJ4+IQ4+H5Yp8s+fx4wvE+gHH1kwjaJ6cc+e53Cy3x+FFD4aUnA0T0tRF05NISRx4bF5/RaA17eqajx/N2drn6H9Rm68Pa/Jdzp//8FNs0dJLiaEUP3w6J7AUX33bUQvF2XAApk3Xa6TlogwHWdfYUvDy5Jyzj79PrAK+/d2GbPWaurzkPntAGja26HBlhe4rDEeTCYNW2NzuK6JwSzrwCCdj5pM5nj9ALl2oemQruS0V16XENKE3YN9K7hpJ1ghMQ2OamqXcozYrum+/xvJD7DhFdg5Z1eC4LsYg5JvtnplvEpctYzRmKwjCHtM4boeLpuewWbPf5ayvbxmNR6guZ9snDH7+MyZdQfTbkH3dcDI7QbQth11G6NjMzy9InZiBOeXk0TMe3r8hPxj0EgzbwQ88jL6h2RfUuwOHssGyLVzXY9f2vF2tcDAJHIemhlUnyFvBvq7ppaI3TKLROVm2xkeSex4z3yEJPDzXIWs0Qih2tWCvbF54Pq1s2B+25MWesi7BOMYVhOypG4XiqIM8Rp8sfPuorNdhRIjJk9MzBnGMm4Q8CQy82RRR7UgWQ4ZxTCcMyrIgmYyIphM2uzVXWcHiwsF2LaQ3BqF5f/ued2WG0j7nsyHp+ZxaVlS9II5jIsPlcLnjb375K5wp/J//158wmBj8+he/5+2314i+R5oG0m1YbZZI8yVePCDwA7QIccWSsiz4cLflsMuxbQ/Va0ztEvoWVd/j2KCyhqyoQEsWaUDbaw6NIqsbmlbSKgOBySRdkMQD3DDBjkZ4dgCio28VOBGOO8RxLFxnwsAZ4ZtLzL5DSGgtj95y2RQaXIuHzZZvc8Vs1/OpDHkeWiir5eTZcwbpCXutCNs9TxIDV6d0jcd0MiIKInSxwzIMBq6NMl0a22F598B6dzhucgOXvHGoy5Zh12P5Ka22sFpB2XTMhymJqUj8iFXW0e3vjhY+08CxTFqhUW1LaGniwYAgCjFMm07C/e0dN2/fsLx9YJdV1FUFWDS9YjCcEbo2kWNRlyXZ+gpdF5iyRWFhux5aWGhZ00qJbRiMApfQMUlci6buCBwToTWeZwM9q4NFLXsW0wmL+QmNtrj47Gd8/faK8a5k8aP/hLD+nv3r/0Xg2VihzzQJCRyL27JnmQv6Jjt+y70ANKPA4cU4ZJT4VFJzdaiOFpveQRoGOogYj8YMvQCr6VG7PfJ+SbdckzU9A8PCMU10rzB9GyFqQgcCWTKNIw5lR9M0jCMf1+yZzk4R5ZF7lAYuI6fn6cffp9/fMPQ7duuc5W7LZy8e8/LFC/Y3V+zyA9ndPat1DlZI67io2OX5p3+CPOTsb97z//7yVzybpMxHA6xBTCUEVVdyv72n0RC5Pp5uMHwPYRko2aIdC8NyeNjn3LeK++pA1QkWqcvFcMDwdM50OuNsfobl2DSbG0ajhNNZx3L5wLtv7plFBoYf8PFJws0HG6ktXN+jExLbtBG9OirVe4Vva2bTMUEQ0HUdk4FPnmU0ZYmlFHEcUwcJoqwpzeO1XN1IVqs9rbIwbZdxYDAMPIZpihMMubzZ8WKi8eNHpMMxpshQlkWtbaQXspjPCZVg7GnS0YRoOmMwP6NueyzR8HAjjm/dtsczKuy7GzxMbHcItk/TFmT7HVbcMYwH1FJiTj+ibTMStceZD5jnz+iEII0hryV225PQMOgVtuuiDIVAoJTE0QZ+kLBTIR/KA82uIr6/45OLOacnZ4SW4qB7ej/BDWx810WHA4TlsLxf0dQSKSR92x4168GAD4cMy1XsDhme6+APQh5fPMYfBThOT1e3hLbN+fyUeRqQbe5wVU+LTWP6KMNhnTecVhWm6DBkR+w6PJ1PWB92RFHE7OIcZUicKKDUJs3JR1wtr7h98wV9XdIULY02OTsJ+PmPP2FkDnCUico1Xb5nn2sas8O1bLRpE2hJW+RcvnmN7Rqk8xmRFJz94CnLwxccrq5os/z4Xekezzz+Hww7wPYDBo7FPImZxwFOPCVdXODbUO+u0PuO6cUz7McXBIFDvrzmdlPQaRPXDQk9G8cHd+xys9+jf/0VtnD47HuPODkz+P0Xr7hZHtDpgJNRT2wZvPrdV3RF8a/a4f5bqT8OTf5A1QpB2Up8J8YwHbAcbC3RysAOfEaBz9liwtkwJlINN7/7J/7HP/2Kh6rmh+cnBIOI67ZH9hJpe2TpmHvd4Psh1eqev/nH32IHCZ9//gNiI6ToatZVy8OhZp1ldI7LyXTOh4cHqrJikgQk9EwGMeePX/J4GGGtrgilxWywYLJ4zO/uv+GLDxsaCZM45tRpEFUGmBiBg+864E+w01Ock4RR+hIvv0fFE3RWYM/mjJ48p6Pja51zu96y3Q757LsvEWVBZPYk3vHh4rku02HCyLPRvSQMfJTSWLbH+sMt48cx3/v4u+zXax7ub6mlJBwMkVmGNjxkJ7GVy8APGE6GTEczbNHw0Y9f4uW33H7zmnW9o1ID6tin7iXTyYw4ihkGIXrYYdQNN0XG3Sbj0JkkTxU3tw8s8wLRm3RasMoeEL1Bv7/H9QOk52BpC6ktFCb7RvLmfs/JfIAqduAonEmImw4hGBC3BzLT4p92mp0w2R5qDK0YhAlPBi4e8pgt9XqmJzO8UYJ2NG1XY9oJnmWA0HQmREGMblsGoYM3HLMpewaiwOwkQ1NjY3Diwjx0sK2jSWA0TBg7mpEs+fU/fsH7qweSxGc0HNDWNdviA1n9hna/I/UD9nc55S6DXnE+SvlmX+M5EUpq8rLm5GxBFIRI0+JhtaPsCi6XBxqhuD1USG3x4vQR85MJ//z1G7788jc4jk8ceZSi5vnP/4Ku7PgP/+7PsQ9vOdy/Y2wbOL3JzvL5bD5Ba0FbHbAMcGdTbq4ueah3CJUTGwLPMWgNF2VBJ3tCz+bJs4/4+Kd/wf0//xajqhFVhmpbegnLdY5QezA0vm2Q2DD1HIRW2LZmHnsYlkFjurRSEgUetq2xTY3juAw8lyBqiecjQtvl4fqBNAoQ+YY0iii7A2VVM56lPHr8lPFoSGdoaGr2d3doq2OdleyyHKkUlm1xEQ8ZeRGD4YynTz7hWWJTbO/xtcY3bbSjWG92yLYmv30PvuJ+t+FwqNns95imT5y4fBadslvd45cdApPvnkyo2go7a8hMRSUswrpClRUH2WFiQAP2tsDeFaha8uGw4uvt4bjpNAxyAV0Ppmki/QBbQycli4HF0zhk4rucXjzCED2DYUQ66onOBrRLg9QIwBjQi5aurLHsE77/YoZlmxgDm01joaZjgnjIw6HAi2KEULxfL8nqDi9K+OTJU87PH1HffKDMM06SkMV3PiZX8Pr9FUK2bDd7jD4nz9cEtoupHBwcotDhTy5inhgTdo3JTgW0EvbKYd9ItllJamsez2Z8/vJTzj7+Dr03IM8PbN2CbB/TyA1WmlIdKh4eMqqqw3INhOWiDJOi7qh2JWVcIostZjwiHkyReY8vFEJZXFY1tTaxNRRNS+SbTOKEXAhaUaJ7RSVatO7BAMeC2H7K9370Z3z5//0XpOzQfY/r2Cg0V6XEX+55No3QokXjsS0blOxpWonh+AhlHC/eTs8Ynz/l0cU5qayxHAev13RCIh2XHouT01MCJyTQLl1ecvvVO9omZzpZ4BHi49IZzvEyq+m4WZe4QcwkDnmTt7xf33O/LxkFA55MfILAAClw05SyavDc+GgO2D6ghET4Dm1d08iGl47BJPKpZEtvhVS9ouwUwfQpqrgBC3ohj6pKJSm1wbrVtN3RouFqQeo4RL6N79qk8RDfsugNuF3eE2YbcExcxyYsaj7cLmkOG0zDJo0GJLMxrZcgi4azxy+JHYkd+dSmSxS5XK8u2a/XjNMBr779GrM6IU1SosmIgWUgqpLQSVFGTnIyJxiG/OYfvuTR6ZiLUUye1Pz+wzWlEAg0k8hH/PTH2E6A63ugNrRRxIuPXzAaT3jz+pK8aCiKhqxpSIIIw7LJmpZe9Tiux8l0Qu+65JuMQhX0SFxL0WNSVRWbsuNkltC7Axw/xDBDECZmp9Gdwh0PsPuKwFT84MmCUO65vX9gJaBuFY7q6TGxvQhhFtwULctmyaGDw+mcx8OQ5vrAuLsnPBmClDS7DZHpMB7FnJ0uiFwLG4UAnGhAWxeIw56mqKjymp295ez5U5J0jOc5IDVKHt9Lommpqhp/McGxTUauz+XdO2YOhIHLphR41hGw3/VHILRpHFXnVjikXJfcfnjP+zdvuFnvyRqJ6BXT0YTH3/0Jk+kp2eU39Nkaz9BM0pTIc9FVgzd5TDA+Z/3+9+TLV3RdQWLbBEHEk5FL4ht4rovrBySjGPqe1+8zlOmSDkzOTia0lsfbt1es879hsTgjffKM1e07xmbPdHFBrHIq02RdNkwCB6MHx/WpywO9aDCUZuDZfD4f8HjoM52MWEuLX96X9F1DK8VxWYLG6juMLENXCkNInIMglQZOr/Ftm76UmM4xxhb7NbEF9WYF8Yx0MEBqg7qteeorVl3P+cffpbctIldycb4g6pa8+ue/4fWXb/mw7wgnC/7qP32G2u64v7rkZvVAXeSst1vel2tqZTF89Iz//S//ir/9v/8aFWTYjsHbh2scLXlyNqMTLYe8onu4p9ysOR2NMH0P7QYkZxeUBqiyZbnacZXX7MqaSRzyk/MTzmYJo1GKp1sckXP7zT+xWq4IPI9wOKYt9wwcixLN12+XRIMAL474k5cLCmvA12vFdbYFFBgWGgsrTBF1hepT4uTINgnDiLosOez25HlBb/kUdHiyY7vrUHGEa9nstjuEMhhEEYF1vNTSGHRVRTAWjE4eE00mOMEALSRd0zF89h1q7eEISX1/g2GY+LaF0ZWYtoUtAnzDxJQCLaHUIWE0YTQoMcuSTbbHsH3GkU/fS+qmoRMNgdmDP8T0Ynq5JjyZM3mskO2at9/c0rYlpmzJqpZkkvDoZIxpGchdzn694bqR3BYWwvY43F1ybVtkmwH5oeDlruTlJ0/IpMW3uc0Pzs5xq3uGrsH3P74A0+YXv/iS7d0S2zCIHYdkGHFQ0LUlvVJITMqq4Wa55tSfYpsGwSDCDQfYwsa1Fdtb2AmHOI7xtMWuLHBMk5v1no+mY4qiYB4FWIMBTXHg2XTEYpxgFnt63yEJBqxW77h7+xpZN8zjGMuPmQxHPP/0KZNFgpWtyDcVot6i8gPWoaQ8lByKjuHZU9x8g29arAtBZ8GzUUPc7TmsvkVGNsHUxcklRtdTCzgIC6mglBW21TBbDDl1NIvREDk8xfVjRmOP3dVvKXKJNGF4+ggdGPzshy+5+nDJWoa8f3+JZRoUVUdyZjH/dM7QGKLHLtf3W5JU8mQ+od5WDKMIWdYo28KLE5ww+tdrcP8N1R+HJn+g6kVPYJhHRaXjUJk+w/EZWmgM26WtG/5/9t5k17ItPa8bc9X12nVx6ohzIuLGjVtlMismaVK2ZVGABFkwBQOGO+7Z7+SW3VVHMmiKtCGYEpMmM5P3Zt466jj12WfXa6+6diP8DGSD/B5hAROY/7++OUa4WHK5WDI2VcLVmoEp8fT0Ec7pYy5nM+6v75E1g+XVLeVXXxKN+vzu0QQ9S3g8ctC8Cf3BGbPEIbzPuIsi1lnKrs6RJcGTZ58xHY5ZL5ekwYwimBOWNbZpc/LoCXZfJ55dUMYhlX3E+QK63j6W3eKzRd5EmJJGbzTgvsx5NVuzqS2+CLZ01od8Eg8wwx13yy03i3vWeYghHXHmaWhTF132GHo6iipj93x0RdC7XSPNA7q2zaDbwVEEoirpdPvYmobl9uj2CjzR0JEbakPmm5tbvKFOm4TvzR9J+d4oJCpUQ2E0GKLWKiIK0IuK9ZsbfvPNFcu0xRrsqKsKRZYp6gJNFJiGRpQI1uslF5uYt9czGsXk7XdvCeKMo2c/xRkccP18QW84oC0bxh9+xoe/8wF/+2d/QhmnJGlNECSUNGxEy+0i5/FBRc8WOKqO0WRUtSCQZERvRKRkPF9t0IWMJQtqRaDZGoe2jVtnaLYKvR55dwr5hvt5gKbV9LojJKdDWJdMuhX5tqUqGyQcDtyC7SxA1WSKIEAtUipdx9ZUcgQdz+Vof4wV3PHy9QX/6c0CWQj+8OMOo9GIKEx58/w1Jwcy5y/OsRKTZCFR5RnDjk9a1nStBs02iMOIvUGPqe9imyZp1XB7fcXL6wW7rGYTJbSofHzykMOjfSaHBxS1xNtXz9l/9oSiSfnty3Pmv/lLDp88xelpnD77jOvtJX61Y3J4yPiDH3KzfM4Pjva5jytO4g22M2bz8rdc3t3h6ypm27ItBPeoGKaKqFI8AcX8knZ9zvFU5+bFW7bLO3ZxRFKWxHlJLinImkrSNMhyzcORha61dD2duiyxDYm7FNZFg8hS3K6GooLQrPdtHcdClgVnp1OaKGI+22CaGmrHQMgaUbBDlTWe/N5PMTwTKd1h6BbZeEhtqWy/e05TlhiShOU5DAdjlFZm7+AQLVmyjEvWqwWSrOAaOmVdEC5mvPr2BWJzw2oX0hkNkBWJyf4A7CHzZcTt7R1hkBNXLabtcSd6lEWKCih5gdPvMHANPBGDY6K4LpYSo7s1ahtSafB2vSFNKzwFup5O0kqs04KobNlFFbJQmJo6mmiRygq5bNhu5+zqgugqRH3t0H35Le3qisGgi+s7pOuCipYqLqix8QwZyzVoLmecf/eG1nTZPz1FthxWUQbRGglI84JwvaLz9AmDvUPYhcSuhRiNmW+3DNKcX/7VL4i2IUmW8ObNJf3TA+q6oW3fV9sT0eD7HlZXZ32XMS8brldL0jznyDYZ+B0MxydSfBZSlyiD23XNbF6QzBfMlwHR1YKwgazIsIREvitQNZ2BZdFWEZZsoJUNzS6mznK0wx5yHiH5NsHde0aB40/4+JMf8uLrv0RrMxrN4vFHT/j2q1/QNgUIhbbJkXWT/uED/sUf/088GvXorq949+47Wrkl3lVoEjz55DMWV+cMDdBlgdTA3d09hmjRNZWqrJBlBUVWGfoeZweHtOGWxd0FwXqNMC1URUNqaipkRr0hfdfl/vqarIz45sv/yGByyGg0pqKAqsWwPDbhFtX1OH5oo3gT5lHG1dsLyqp5/z2m+5w+PEHGwJxd8+35OwaGTEeXMZwRsTYg14ZsNi9wRMbxcJ+eJaCOsZIKyegQZDtWacTN6p5x18UZTOiUFUruMdsmXL+5IS0zqCtk0aIpAo0aVxFYls7J0T5C09h3Dcpwx8X1OUmaoFouzxdzbrbb9+1FZcOo4+N2uuzSlmS3wTMbpkfHGH6H2D0lm2+okpTDvSGbxYL53S2dJCT0HDTXwbZtyl1AbXWJ44rh8R7zRUj67oZidoklWzw8PiKqK+6WK9q2wmxzqCpQFCRZRmgOltOhrmSKKEdXJF4t19yuI3yvQ1RW5I3MIghI8wrVsdgYBve3t9zdbWhbEDQIIVG3LY0kE8QJuzSmpUA2TGTVQtUlpHpHPltBd4zqqghDxumqHE4dtmGACBKGmoKplKi6i7m/T94U7KIdsuYgayZ1A4rpkVaC9XxFVuccDrp8//wtcd3Q02xowXdMDKNFRrC+v6XIS8IopWpa+pZGmuXUUcLs9oZBr4NtupRhiS5JNE1NnSRUYsTQ9VDSBEOW6Ek1tYDjrs8ujbANnbKsKVoFw3bRTAuhaDR1SJnG7IIdYZxSNi0H/T79wQi9Stm8+FvstkB3bDZxQVbWoLoYtk2cJ1TJnDjdUlUljqpx2O1wenSMY2q4Yo1rStSKgjU6ZL1aUzOnbTMs0+RmkyBEhFBazj79lMOjp6xXKfm7c059Hf309yjTDdX9S6Jox2K7I0PC12T6wy5JEjELQixFZTro8HDq4ToOpTrBmwuiN69ompY6yyjDkOT+jvtgx12QsFusuEsSNlJD2DS4aoYuSXh+B9e2MMuM9XLLNsrJw5b+iY0qC/yOgyJL9Iya1OvgbzvsdVVsVaHNdvQnexylFevX9/z+P/3ndL0+s9mMfm9MVRn85e23aLaN3eRQSFhFl3//v/5bru/fktUBmqXiWA7vlluOXAddqpHiCNQKpUmgLlCUDnZnRGVoyJsNWRTy7dsbiqJkbEjsWyouJfezOfPNjv1JShjuqDWNt+8uMRSd7iAn3u3oWipVGPL52xWtovLh8YCzkzETr0fAjjdXN7QIHNNCVmSizZbBtIsiyUhtQxhsWUY37B0cMOn3eHe9oqgjdkmDIaCqKkzTwDQswnVAXjYkNZiKoBANLSm+0+P84pJPP3qA4Y+os5i2LFnuAFsivJ3zi89fYJQx/mGH8PYOd9ghDjZc7nzEtiBeb9kst0RlwNuwYhVskBG0skXayhRxiKMpqO4Yb/qIzmgfQ9VwJj2un9+iqzseHHbIZgJDEaRpQlSXtLLC3SZiu3vDeP8hg4+esfvuc7zVkqCQWBcFbdtQVi2x3uGvFxmmvmAwcrH2TvEoaawetquyvXpFrcs8PT2mDnNeFSVhmON0egjH5CQteJPFyJJMU1eosk6TZqS7GGs8RNVtJMNF2iTcznfkrc5ocoScwfXiHqmuyfMUJc9JTYOz0RBFkdlEEQWC470hjq6xE10WWUW+XVHvlhThiuvZht7ZCUeDEbrhsAlb0uAdVrVhMYu5ul6iZhlNWpFlggyVBoNcOCRhyrYs8GyJrJKorRHa3jMarUv8+XMqy0KvU3ZRSVQ0qG1JR9WxNcEu2PG8KpntUtxuwLsGPnz2mEUQcnW34DAKeaRIqG6f4cE+xEv0uKF0ofBs0mVJcJ8yt9dMTzsMHg5pq4Z8u2F2vabchrxbbJAGXSrfo//sGbLj/j1Puf8w8o9Lk7+j6IqErUqodUYUCDzLoU4jFN8jTEt2ccy75YaRrbOIdhi6wu/9k39F/6MfUlhd4l/9kuXL/+O9jqtuOdUVHpkyh30Pohzj7JDbdsRff/0dL1485/nrr0BSOTr9iOnJEavbd/z6F3/Co/0jxlpDInI03+fJk49IkFFUjeFkQLubkQmTeJvgyy0jz2Dv4Zg4D1hLYNUxVVXTdT3svOXtzS2zTUD74gXfG58zVFWKbMXUlfjB1KWrFlii4XgywNMlXN9Hlt8/Yak0DUV6X6keDvq4po4GVC1sl0s6JycoTYMhK8TBls52ia7qICmoTU04m5PKCpI7pBUKjVyi/v/vj+NohZztuP5+xuefv+YuKLmIc/r1Eqs/pt/pICQJWcj4rs0u2DLfhFzfb5ltI0y94NGoS2P0+IN/8z+QOB3+3WbN9uo5ktryz/71H3M0Mqhnl6zfPef2LqNMZDI0Hp4+g2rGwDUxdZue46M2OdtsSxaXXN8FvFpUWKOnGMk9B3pFkocsogpHdejv7yE5Oolt09KwCXMuo5wwDnE2CUIzOdg/Zs9wMI0GSWoR4S15IzP0u5RpRLPbcORZfJvE6LpGnqTYoqFPgmUKbi4jPuhbbPOatm3oORYiazgeHTNmj+dvvya6v+fkgx9jKSnPtxc4jseTo0e8OX+LqarsD/t4koapm4T3c9abLQcHA7Ky5epmiWUN+dHTR1hqQbG54Mf/7I9wxwcc9SU26RaZhjAuacuQ3/y7/40qrek7PhND4vTokKOjLjeVx0Xe8OBsSnX5S/LmFqdIUAvwdI9tnfFuGxDVFQ8dG2iYpynL1+fc1Cp9w2S3mFMkKWX5HhaZNWAPO0yGJl2tpSkK8rJi2LOQFKjjBI2GtMyJFBVaifW2ZGJ1aYWOrJqIdEMe7/AHY2zXRb6Z4+ge8yzH6/iEuY5tO0jISK3EcDLm6tvv2C62fP/6JWEY4yoqhShpa6iyjCwvCNc+em/ALoyZbzI2SYwrl3QVQbJesg0CrKIgyxp++/yKXZOhKCbH/Udsi5rbqOU8zIjLBrtK6JiCp3qH7bpBrgVt0aAWDW9urvj008fImouuKXR0CUXWkJuCugK9hYEsYwkN1zKRtYLFLKRuagz5vRa9KASlLsiKhDYL8C2P56ucbmKSZiVq2VJUCa1eUS8DXLmljnyM/RPE6g265WK0d0RBwsX1lnmQcvrDH7HYRO/hmI6KphpIVQbxhu7oEHk6xTBMJNuiQKBdXqLJ7wGHcgu/+fIVH01dVEml21XwRx6SIVCdjPPbDZfrgItNQl41dBXBJkm4x2GzWVOd/w3lX/wNH/3kD9EchberW+bXN7R1QllUtIqOpHqoqqCsVji6jGvKaFGN3mRYhYWnOFSzFebHBuqDh3RO9mkv7jB1idPDMY9/9Ck7tWJz+4rHhx/i9h5yfXHBbvuGVtQIRUO0MobQmT3/hiPljIFtoE4GrJIdSi7h6wJ5fcmR+/5cN67FfB3w6maJAkxci8t1CFVJlrVoecpHe32K8+95/p/+L7IoRlc0/E6PKnoPttQkQVPk+K6DKAuaMkTVJTpdG7VoyCoo4xxhdhB1jT+waYwBBgGOrHEy6JJGCSNLZ7S/j+0M6TgKulayvLkjiEuoClynS2Z5jH0hkhQAACAASURBVKUOQwQffPhjmo7B89/+BaoS49saUQa+pWGJgNGDI6y9Ds3nv6RXFVx/8ZKyTInjHaosYykqbStIUAhqgax7zLApz18h2RKuraMpLXrfwx8c8O7tLesoJdylnPQ7eF4H7CFUCUd9F9eAOk9pnVPSOGR2+QbL0LmPQhYXF7iqRLDeoFQ1b16+xRv0OfvJh+TthpINMQ7G0YjFN1/imzaG4yLSHXvjPqqoyOOQbLFFpAUIGSQQqga6Rbh6x8urOb/48iU0DZbSstwuuQlLVnFCXuaUVYUnxuxPa4oiQNAgqQaKLKMbBrukwHRNTNNlvdkQFydUSg8sA0nE7xsd0o50uUDZ7xAaHrFqUMsm070JUXGD1la4moZiKmyDBX29INttyZKE+yYi2cos5hd0RMmhb/Lw9IjDgyFPjyf89eslTdPiGiqWphCubsnSjKJs2IUJYdEwX+0Yuxpn0xGe7yAzJUkSsihEajQc16MKA6owIApjUGxkRaNjqqiaxGRvzDxJmHgWhtIiyxplUVGVNbZug6JhaBqapiMJgSlLPJsMeHp6SmfygLJpuZwrUObMZ3cEWctO6+E//jFtkhB89X8Tvfo1bV2iKiq+49O1Lbq2xWCyh2gHyO2Ovq+gd/oUuwLVspHzBrkz4XQ4xlFqNm2DPRnx4vUVD6cHnI19VsuSl+dfs9utGJkSjm3jTY55c3nN1JPp2EMWmw3rKKVj61i2w6DbZfTwlGVooynnuIMx0fKeLMuIE40g2BIv7ijjmJt1zHVcEQNmt8e+rqFpgm6vQ9eUuJyXLLYZUV5RZBFWFPHgcISuyQw7NnlScDF/xaTvMRp6aIaKpPawDiQeDqZYDxLOHj/BrFI8zye8uWcxu6dWXERbYtQpUtOyZ9hUWcHZdJ9VpLGYz6g1QVCUvNlG/OTkgDLLkHm/NGmrHKXIUCTx3jYlw818i9mCBjzs+jw4nFC3Le1mTa1ZfDmP8L0jjjsDKmtOpcjYpx9x++aWu8WMXqszHfZ5tQz41fkKy7L4eLTH8VDm15pCWdZ0fZf9SQ+SHVQVjRBkeUmVpWhqQrO657NHR7y7XXOzihCNIK9LkAS1BJJl0coKcRTSljWhomBrCpIEZ5qELLuUmoekSrRxTkPD8ZNTFlfXLJdrDKdPp/HZbAKaLCVIW7LN1+Rml/XVDffLlDfbgm+2KwIlw3Nd7CpBUQSRMGibCiRwdYtN0bAMljyTH6EbGoms0RmOaNSa0dMPubuaEZ/fE0kGF7Mlx47CqWtxd3tDXaqkZYmmCAZKQ9lUVJqJKwuejAbYjsWuWhFWDb2Ox9NeiSkneL5NPFMospxKTnAV2Ds4ozR6CA3CYMPI3nG+ljEM8715qq2pa1BVE113kRWNqhXUVYnQbY7PDrmYLbGqGKsqGagK08GYMIq5X6zRjT10BVRZIBkqGg267SCJGs+OuLqLuAsrvrtYc3Mzo80qBj/08Ywp+VqQbxqy6ysu5/ekeHzSVRg6BrEp01pjNLOLlO7YhRmK1LDeJZjbgvTlPQFLDjouBw8+YpEq5NU1RbEgzypqqUFtARQqIdi2gr0ePJ6OGIyndPen+PWaB32LoGnIwpBCdrAMMFTB6UEPqcq4uQ9QhIxSKxTbkrvrK5an+wy8Do5S8fXbW7Ig5IOBh6UqxCVUqx15mv49Trj/cPKPS5O/o5Qt7JIMR1NwPAOKEt+wyXUDRTNBVt6rA6uKoKz4wc9/zuSnf4gxPmKX15SqiaWrrHcBrmXTVVocucWwLBStjznQSLaCR+uU7oND1HyBOXrIJz/+KWW6oZjYrIMNUrZBlBk9V2JoD3l8dMxVXNHKCpo7QDY7NLpHvr3luGsRlzsMo0cmfBpryDaqODk8wz/Zox8tuHt7wf19iTow8UuJ5O6CgXOIQYJhSbhyhmfZ6P09VKmlKivcXodmt6VUZKBF1zU8U8dUZGgadNNAlyUsRYEo4urmnsXVNUoLzrOPOX76jMtXn3N7uSBv4OljHcMbYhkGbV2Txgm7rMTXEvoDmZ99esj5+ZzDNGVdy0RRiu900ABNEgxHQ8LdlqSskWoJ0z9k0rGw6ghZEVz99gt+8q//mP/xf/5feP3bVyhNSfLqhl//8pLnXz3HbGKSXQB1zUF/yKfHA9y6QZUt9g8e0evJ0LYktyblm1t++2aDLWtoukRRaRxMOmzXG26WAWlRsGw0XMckCN+SVzWG2wfZYn2/wFRD9qZ9PvEeU6Q2o4FPUzfU8RpttyZNYmRVQatVGknClAQdQ8YzHPaGPgc9nb42wFEaRGfMu6t7lpstx6bG6QenjLoT+s4+P/34Z4SjDXr3gJt3b1GtDobjImky+6Me28UK2grNkVFNgaQ1fPCwD70x86KLoV9w3PeZ+hKNbOEdPkVM95j2OgRf/zW6oqAcPWK3DSjSiDSJiaUWdbRPb+8EczpEQYI4xTQEI19GSWQELb4LqibTMqDJbjGaDF3AIohZ5SUVDWWRcV3c0PVHLGez97q6OkYT75tdj0WDVaVoosUwNSRbRdJ0NEuhaCuoVAZFxdU2Q2CQZQXBOuQ4DVEcaFswJBmlrHk0HaFuA0rd4d19gGL28PwOjtulSDM22Q7Ns2hVlbDMSYoSVZKIW4W0bsiykL7j0DdNHp4+wekfc3NxyWae8mozpykD/ruHPTRdwpRawkri++sV7v4HvNvesb664T9+9yfkaQFtia63fNzvoIqaD60MfZ1T2j0OhjbvrpeUcYHrdFAamSwoaZ0uY++AsX7ObZpy4I75LkpISyiTmoEh2O/0iITFYrUmjiPW4r1NY5UrNFlDcHuN1ukzr0peX19z6K04MGr2Oi5et0eQ7VBEjd4UmGWOPz5AbhT0NCfLSjRJYh3nWIuAq9t7gjhF1TT2Dg/xul3swRh3OqapK8xun6ismCgKs/k9g24PT1M4n614mUpczGY8PDzA7QyxJxMqRQMjI3p9x3qzJkgaWkmlKBtoGqp8Rly1RGVNLRvUus2miojblqSqKZL3EFDKEklpGOz9AKn5lq4lYcg1wlBJTI3KNKh2Nc11QHG7QzNlRnsPmYxes1kt6VVbVr/9BbIyonvyIWQJX//n/4CnCRrTIssSPMfl7OP/mrLeQXjBl3/+t5w4Ld7ARVrG9DAYW3C6Z7HJZRaLmLIRvF4XXC8DhrbOD8c9+ppG4XY4O9jnQ0flbDBgVwl2T57x67sZlBVSVWIYGrIQlHmJoirEaYKjq3RHB3jdHlJT4Ts6eVmj6TazixVFmuM/mFCrMqvdkrop+PThlNVsiSwqDj2HIl8jSSmPRy5TXXA3jwkKnUYKkYottDGG6rKpUhbziNs4Rm5q9mwZI+1gCwWpqNCEzv7BlOtXr5jdXaI7HU5GI4JQoW5bVmHEJkrQVJ3zXYi0TTjMFI7SADVpaWYpZVlieQ766DH2+ISHZU6iyBwNJ8R6D1+W6CstjeOhGg2W61G3NUmwxTUUVmFKm8T4pkEcxVxnObbrI2SFNEnJSglRRvSmOhfvXnJ//yt63QHHjz4mDg30GDpJRFZkbKOcrIIszZGaBiHeM3mKJObld9/zm7cLgjTDocGRZcqq5dn+kC9vlqx2GbWkUOcKV8/vOfINsrigFBq2YVLUNbJuMTz7kL5ts333HXlRoDUVptSCYSApKpqhEiwXmF0TQ8goGLxbFxTuHo4f4lU5sizTs3WmMmyais7UZbbJyMnZ7484qMGRJD463OP4ww/RNZk/+JlLXH+J7vhM+l1M22O3vqOoG1pZISlrZuuAXVogC9DDlL0jG003WC6XyGVJg0odRVThDuqaZLWhHvTRqh2+LtM/OqRt4YPxiHCzospC+r5NnaUUSYIsK8imhWvnHO3tk2wjEAp7/T6KrgEV613E4d4hWVHTlNDmLWptcPv6DdtSAqmP446p4ntct483mLCNt7Rlhm/r2P0+cnWN4dS8+OJXJMJiV4GsGXR7Pc6O9+gN+uzSnNXsljbfYLCHOz7EcvuUtORyTNf3GB49pHTHVHXD8dhB1wSq5fDy/JKR56BJEt5kit/p0VkveGgrxBsZYzQlDtbEWUGSpfhtThjHzKKUpJZoTBvv4WPcZoUhaqaTPk2wYreNGVkakhAsspos2GI92udk2sc3dRpdJ45nRJrDyeEequ6gKjJWd/Qepj0o2e+qBM+/JHr7nGwV8eEHp3zW7yEnd8zmS95GLbtKsIkymqphqllImkmTrykliYtdxKeGz/GhQjg/R40z2k2I2psi5Irt7Ts0ucVVJU4cg7bVEZpJ5gxw65JotkDSG5K0Ivrme7xRn25bI2s6u/maTlPx+GCKb+uons2zuuaX377i8/NzJvsT+sMjbMths17ieT57x0d0yoDNckGe5aR6SrJd03YV7u+XjPY0nj49I/n2Hatdwd7xCKczwnX7lPMV+3sT0jRnnWQUWUGoqdi2zizcUFcJ5mQEioJmaZh2l6oRWHLJybMf8ElvHydaEH/118wjiQCb+e09L+9+w3odECYZt2nJKsvwPYMHXg+ltpBMG8fykcxjbt68ZOBq9CYj+gc2ookRdY7S67+HBfsepizwrYa6LqGo+G9/5wTdkLCiHN3UWcdXfLu45TzMEKrEvtdjMt7jsW3z09MH6H2Pry5kFrnEI0un2/HRbBPVMZiaP+Hq5TnRfMP923fE6wrhpehdB09uiTSNogXXNKgExFlGTUNTFsiqgWUbrBKoMBkdPkSxbLwwR85z9o+O6HkWXs/n7uaOwyikVCTaokQxDFTRoPDe+uXbOn7rkrg2f/qf/xaLkn/1ozN8WcFyPY7OnqBKKs1uCxOT392+IaktwlRmlzWUisFg3KeMNti5DrHgLoqxhj5fv7zkY9MmpEui5KTbEku16GoKltRyU2QIIZNXAlFVjGyTvqagFO/bdN7jIaZm0rNdhoYgV1Qqr0OjmyTRgmWYYUgOgwdPsV5t6KcFNQ211CAPTfYejGivN8xeXXPc9/kqiKlb6Ls2m7wmXd7RJvHf75D7DyT/uDT5O4pMiyU1SHVJGWyhbjFVmY7fpSwasqIkygp2ccbZ4T7jjz4DSaIpUtLZLY4oONmfMvvqaw6OH0DbYmkysqqgmH1sv8dDL2WoQHR1w/Hez3H2PqEGErWgpMOBIRFtKhqpRG1N9voeA69l8PgMy1Kp1rc07hBL1WiDiGFPJQ9aqjhEw+fqZoFURHSMGLdbMrVlBk8PeHrsoToudRSS9gVandJmKrIokSmwVA930Icqp0pziCMMxyHOa+IowdI0LE1DlmUsx6XOUlxVpt6uiOIER1MQgy5FkaHKguGgz+1bg8tNiqWp5FWNKbXohka0i1ivtzRljdvTcSb7jB/Y9KYLdus7rtYZb5YRhtyiyQqaoaOpXfZPHqKbC8Ja5w8//jmWJENwgaLr3GeCq7/8C8z+Ho8smcX9Has3vyZYXuNkGetwTZU3DJ0OR5N9PFFyNvU5PRnh2hqaN0QkG1zdw9F0upYgLQvS9RtORgP6rouS50RRSiPJnO8imiCkblvSskGKVuiKxCPP5+m4g+dbNE2FEC5CzrHlmlL4yJIEWUhW5NRItEXBZNAhy3bvGRRdG99QaNuC/mTCu8yg0+0RJjH9rsWkZ+OpAk31GIw/wJBmZIqPqvuMpzrnUYyU5MhVDWVF09a4wy5CV0mLguNnn7Croaq7SGnGSBe0aYDTn6CVGWJ9h6S6aHKFKuds7taIrCYPA+oqQ64aSlFyvX3LXXbLxHLoVwG61kXSDKo4JA01RGgx0TVuqponfZ09o883q4SvtjlJKyM0HUkFS2q5uHhJx7Xp6zKfjoe8Xa1Yle9ho4ugJqXAt1Umff89NyETOLaDLiTKtKCu3p9Jw3VodYssr5i9eMO0Y2F1+iiGgWuaTI/2uNrmJGlBhwZN0UmCEKnrYXd8hCJTAC+ub1kGIXvdDttdTlo3hEVB2MLA67HaRcTlnDfzHZk3ZF+GZHnB/uMPeahuUcYdbFPwR1pNbeqcHjwk6TX8+rsblL6HYikoessHhky0jhDLNXnecDgdIrcZA0NwXbWc+g6iaqBK0KyQqr3h6VOP9VchBx2XNO6wTkJMVWeRws+P9xns6/zV11+j1iVNVTFPSuJcRo4LbqIlrn7No4MpcZrh+jKO3UXXTco4ockreiOXzrAHSYg+OkLQYrUVrqqSSjK145HlFWleIMkyRdWwywq83ui9btm2aSUF2fXJ45jZeo0oS8LlPUEUI4QAQ2MRbTlse5hHP0BucyzfJYxi8nCLJTc8G/m8CEpWcUZTVzS0eJaL4Xa5X6/5mz//P5ENlaqISOMUVdWxbIuBa1PWgt/7+IytVTMc6ATLOcm6xlANGk0lagvMcs762y/IDAWtqXh0fMzs9QWdpqErg/BMrMlHyKvXlOcXmEWDb5uYvsHjsw95+IMf86sv/gxne8PUkLF1C5wOookZ76voombQdYhWJX7HJ5MsLhY3eLaNkFpWScbBYMgnn36GpSg82Rujljmry2sOnnxE/5uviYINSlNS5Cm6qnO73JDttriaQn84oTPaw3QcKDIU20KuUypA0Q2qvKBpFZq2QpZz/uDnnyCnOVtbZbeM8S2NXE1pNyl5FjP2PDS7R+yeki83kC4RwsJ1+vRP+hxlIcftHq8vbonTjKHrIaUJuqIQbbY4PQ+tShhqEm/rhAeHI+rIJMoqKrEiWCwI0SiKAKUskM6/IxEta89FlAVlFjJBkM0vGfU72D2bXJNRdIeRbtGVBZZpcrdJsOweimpQSDaZKvPm6nuu3r4iXq3YbgOyosDTNcIGBpMpoqmRREOUpfSHGr2OTRrlHB/t0+0foBkqN28v2c4WLLKaooVK1blZbvmsKJFKlVqSCO5u2AYJ4XZNEW0ZDbs8GO0TFiCcMW7viNevv+Y2CPEsgWt1cAwJbSxzvowAmZqK4YMzBr7K0XiPZn6J1MhUaQyVhaloqJKE2la4RGzfvUOnRJMq2rLC0zS6+xNO5Ib1NqRuJCylYTCcYCYlD/oDIqfPkSf4yFUwJI2Dx4+xHZ82D/H8Hr/7aUQuNBzXQdV05quALNrRAFFWsAoToqJGNRXuVgHT+zl+p8N2dk930EdpM6owIE9S8qKklea0p6egmgz6A0zNoH/0gLosmY5HxNs1pijR/SEVCk1ZYBg2na7gw2fPmByegWaTxwm3b18T5yXDwZCqLIjTAre3j9/CLs0Z2A2v7zfMmxzLcjiY9DncOybPCtRMpa0bTE3g6FBnEem8QlN0vI5HmEtoIsTME7S6QtNcFGXCs8ER8llCnAmKRkWTJPa7HeJ6x8HhEZ3DE2Kh8k9+/CGepRCGAeFqzu9+eMrRyMOTa1RJJskrkvWKgSEzsHVmmwjHtFFFSVPkOFqJ7UpUhUpr91m1Enu2wkjuIqqMftfj5uaKRxMfISTCyw0fTH1KWaXT6TAe9hCtRFWU9D0Tg5LxoIthe+i6Tl0VdA0XSQjU6I74/pxNXnDy7BF+7wjijFgqMO0zPH1KJFzi+Ib522/Y3swotIKgqlF1lVhV+dWrV/zLsyOMXp9cshCag+R2UZUG9V6lSlJOhj7h5Q3rtKauWi6+/g6vqQmSFDkqCNIMXVMIxyPuIolksUF/ccuPjvcp5SG5ruObY/aefkz36CN++Ys/4/MX7/iJ06FuWwzT5MnxmKFaMRhO6FsqV/M1dVGgAa8uNizWO7o3IR//zifcjgbs9IrhcI//8o/+e9q25fu/+gusroNU5Ly4vOUuygnzEtW0aBWFsach1BIhOyidIUIoqE2L5fmcfXSInJeUcYZ5OMJKVTZZyS4z0VWTgRZwaHSY1i7frW4ZeiYfDW3WWU7ZnSBlBW0e0OsNODwYMZBiTiYP8V0dUayRix3JTsEwDJqywZlO+d0fC15+/z1DX0a3DNy9HlKpYZc1f2yafDsPqSnojYa4vQd0nQlOcIOmVfw3/8XPeLMKQAbhdNA8G+oUqz/F+2jE7ItvoD/h5fl3TFSdUcdAUJMrEi0tpq6h2TZNGL9Xkjs+VVGSKjqtYqI7Fo7fJS8KOo5Pu93QN20enDxm74ef4X71G+ZffsmOiq/uF4yBJ3s9huM96jJDFjKt1cU9fMIHp+f87IfPKDdzkvmM2e1LgsefcjAYoQkTyX5AfXSCnZVYWYmaNEhxxvzmlsXNNWoSYLYpPUPCMwSXbUuwDXhypqHVDW8+f4lqO9iGzWNfZxbnREVF1dZkik4pFAzdwNAsQCFeraiCW8yyxLQ8NMUgNfsUbYGlKvzw7JBYdnkXSXS7LnUaktUNm+WWTucYsypZbxO++P4KUyj8/ME+A1NFVxTCdYw5OUKz/5Fp8neRf1ya/B1FFpDlBbbE+8uA6aE0LX5d4Ps9On4HqzeELKbQdBSvg9nvU+cZarJh2vU4Oznm25evKII1stmlqAEU6JxQyC22JyEVO3Q6OKVgvXhNmUtoco1R5ZTZDkuRKAwd1+rg9vq4vokkpWSLGc7+IfNdg1Tn0KSomsPBgwHZ8pr+qMNnj/qoYY5trRCbEt/uofdUdp5JvgpxRUVvPEYRO5TWBUWhzhI0x8FQFBpJxtQsiiSjTnNU7f2fL0NraeoaIasgSZgSSJLC/PIaQ5I5evAQ7/ABulQj6wbtLmbUs/js0ZQ0TtGlFkuVUWQVISnswh1tKSgdA8UeYg/GtLnGJ//093j19Vfc/Ol3BNstTx+coCo6su0w9Twcv8tgMsHwNJpthDwakUoqHRzKoia5fck2vMPb3GMrEUPfYCUL2tzEEXA66SPagkNf5uR0jOMoNNs74u0O3W5xKZlMevzzn33Iry5Svv/1FwzlgnK3psprdpLLrNZZL+9omgZB/d5q4Vjs4prfrEtGpJx88C+pVJ++LnApoCiQVBvV0JDjhmJdIIoaW1VI2hoVsF0D17HIsxTP9/D7QwhyZmVMbzwiy9aojove5hSrS1Szi2W6VKs15nbN/eWc6+2SRpMYDHv0Oz6mrCKyikZAf3pErdrUVxco4RvspqI7fkz/4BhdBVmqyWVBUFT0j8f0Uh2R33K3TjCQKVuHxtAopYJwfU+62PB9XvE7D6boio/m+jRpgeL5dDWXw5ffs9yu8Qc2Rtci3lzQd1XyXUqWV1imxO8/OuTLVwLfUPnR4Yj9SZ/+0QNmacLFq+9ps4ZFEjFwVDqew6DrkLUa290W39CQhYSEYFs0GJJMx3fRBVzOAnZBSmcWMRmF9IcDusMBr3dzNmGE2G4p8g3d8YSmBssbcHv9DoHKZDRFUU3UsiTP7hFNxcAyma/XVK3Mi7sFGPtMP/0DPjwakn39/0C7xTAcdFth/3BI19kjePGcEo2n/pCtW/PBZJ+o9MADQ+zI1nNW1AjNwhMt6yQl26Vswoq9SZe6KjFMk6bKUHRB0wr0puXIF5xvIo5HLtIiR9clzNGUZe4iTx/hT2LUrMCoC1wFjLah0+8z8SosUXH64JDZ2GSXC+pWp5MriHCGrba0ZUotC1S/QxpscSd7uOMJJw8r8m3BtlXQaPEMk+vFktF0j/5kH8sykRWNmhbZNEFAncV4UokcrwmDNYos4domlmVQqzaSJJB0A6lpqDYxbq/L09/5FLd7QaR26N7HfPHqnLySKcqGHx6O+cEf/Rv+93/77zm/eYdIdOqqgqak2+/zL/6rP6SYX5FVNZ3djMH+A37/B8f86Z//B1BUNGSKWtDIEGUbxO2X9Do+TVNzMBlxtDdGqxQGjo1cxhT3N6S7kI4qkAyFbamhthLhKuPFF7/ime/RBBuGXYPJ/oRQ9lAM+GAqaPIUVdMZVgmm6fD5Tcxus6FuWjquS9q2BCiEQcDDwyld0+TiV/8ved2iTI/xTA9RpOTbAFVTQEiEu4hcguGjE1TbQ9EUFGqqukbQoglYLJdEVYPhjEgy0KSYswcHDHtjlCKlq5QkXYeOL6gbCyv1qYOIm6srSkVDK1U+8D12bUvcqiRpxO3Xf0vX09lzLALLZxZK9F04GAzpDh9w/uU3NGVO5/9j7016LUnSM73HzNzMfPYz3/neuBGRGTlUMZNFVhdHoVsS1AQaECBBO230w7TQRitBgABB0EYDWmK31BSpzpqycoiMjOnO5575+OzmWkQB+gfkgnz/gcPhcHtf+77ntZqH+we8fEM6HdHbgJvv3hG4grPUZ6djXGIIcBz7GXelYx2OMbsrfKPZI7j/7ntOhimHw5TjUQx1RVJVZOMDVBByv9mhZIgnA95e3fHrr77ju2++pmlqtrs9u/JDI4SNE5pekI1H1GXBtqyIQsXb1/fM7x+wMkZj2W22LB4W3Dze8HqxoOmg04bAGF6/e8t+tUQaiesL2u2ST778A5KDlLfff4vvHxKGMwZdTac8PDVkGv0J280DVbmmMxLhGaY2RvbvcOWKT56NqPSO6SilY811D0k8YLdc0o+neM5irIf2NfX2jn63gAoiq/l4nHGRBVRlzEGkuZge0feWN49L6Eo+yYZYExKGkoPzEeFkRBpPyKIh/d09Tf2hqeP09JDVvsEGEV3vuJmv2ec7NnmB6Do8IdjXDWpfsO873v34jqM/OcTThvvlnkpWbFcr1vuc1vUI4bGazzk8OyJKYgI/JA4iVOJBlZNEMc1+xdGnf0AyPaTCEXqGaBxz9pFl3MoPVaqLBcZTbHoNnk/x5iWi6UnPfsJmuSDa7QmLGqt8jgLJ+n7JH12ecXnxHJ3nVMWEcOKThAa1vkVHQ9LpIcg7Xj3mPP/okswG/PDV31Fs1nRlydnxGYnoWOQlq9t3NI2j3O+xTUmUpSSjCX6cIosVs4OUajPH82p+8ek5+W5EuV9j+oamEzzcruiE4s/+7EsO3z/w3/0vf8NmnaMtSCdJrGCWWY6mCfbsS64Xe75+/Qp9cUwQ+MiuJw59Tg6mPC7XfBElfPL5c968vSe1GqM0vetxQJqlGiKPLAAAIABJREFUGOmTpgkS6OoK64f0UuFJsMLn4ue/4LJz1HlJ3wq6JCKMfPzqhLDUrLYli6rCxiGDowNOfvIZj3dX3Nxd89ArHpY33K0jxh+dUfqGio5WCNxyQxQPsF7Ewfk5X337ntS09A7i1rGtW7a9R+0M67pku9qwenXP4+MC2xQ8jX0eVxX7xT2zsSCzMe3vfs1RoviXP/+S775TVHWB8iTPjsf87HxAU9ck4yGFlpwoxeNyhfAj/vqXb+iqis+EIjGK09NT5t4e3WsUhpv313gdXJ4/5yAKMV1H9/6eVd3jS0smQ3zXw/qOXkyQ8QRXFYhyhfU+rJI7a0g+fYFx51T3NwyXd8wuPuEPbgdsrgcUuaOTGX8pL5C+Yd46dO9Y1h5h17FxYA/G6ConDCRxaImzmOV6yb4siZyj3Cxo6pxmfMRZkGJ1R/N4RRwk5E4SxCGJnxBnY6KTirJckyQJo8ND1g8FJmk5f36Id3aJvrqib3bU+zU60IS6x0lHPL3AHuaMny8Yr0q0ELi+IUwS1rcPjH6/lh9pDzEcUPeOyPdQfoBNUhaLhtAPUa4nDSyFtfR8qMi2vaXaNAStx/Fkyjfffsuu7HgiBKFRaGvZvn9LevoEM5gRjxX/+X/5XxHIirvf/DseX79EiAZf5wRDRXRwRN1e4ua3tCbHV1siCkxTokNHGPu83zzy7XpDmgiGcQCepVoKqt99z3SkOR0OuX2YE0QZR9MBR6uKvQ1xUrCrO94XNSavyIYC2YNsSvKHa7RpaLsQEQvaxT3RQKNVS6s8Allzl2/ptyvCMMYIiQkVZlGy/uEGGg/bNYzCmM/Oz2i3C3ZFRS407+cL8qb9h7S4/2j0T6HJ35M6BEoo6v0aoQybdc7x0RHFvmY0VPzVX/wpX/ys5u5xgd/XVHWDcw5X10SjKY2yBPaKySBju1lBU5IXNV4PgWjwqj3Sk8gkg01Ou3wkERWiWHJ7d49xPW1dke9KhlmKGSbMZmPEeoFqG7LpCX0wIdBLvCbHKUvgC4aBpDs9YHN/wzSM8DtDEHso29PkBT45k3GImybUi5J6t6Evl2hfEo0uUbMDBC1F7fCSEbLa4/uOoqyRniKwhkVeY6KIyfEJMQ0hMbUX8/b1HX/38h03XcyzyxM+O59RK8t690AwGvPFNOH6xx+p2xbRt0SBYbMWlE1F13a0xGB8PKMR7ZZ2t6SzU4bPPmV3c08UBghPoo2PF0ToZEK4mqOcIs8bpGeRQfqBZ2Ac1q3xu5qxSdjmKZtuQdHd82w2ZjYNCHRDEhsOD0OkDWlEgCcFvvboewmuZ5gOWRYe+ocbpuEQk+cEjeLk8jNW+4hwMOPhf/5vcG2JEB7D4ZBfHKVkqqOtSp6NJxxNp2Ss8HqJh8GJnj4vkW2DED7R5Jh2taHJ99i64vzkiO1+QxRGuOWWelcQmjVR5z6M+B0c8erNWw4GjkAM6ZsF2ad/jn94iNuseQ/YwCesQrZNCdYn7iGUinKzhnhMOj1mcXvL8dEB4yRnud4zPTtjcHKCaDsQgkh3qB9/zW4/p+9bjoYRobZst5LC1ayLHXfLFflyiS86TqcjyqJCtA0i32CNRDY7XOtIYp/Ro0chM4JRyPlwybmJGa5WrHYbDkcRfpPzl+cHDEOPo9kRBxfPeDI5ZjlIefm//fdkbo9c3LNvambTGUE2JLYZxkpMsaIuOwZBxL6C66tbjjJNOMyYZAlhmLK9v8fv5hyMMvwkolEW13esFku6aESZjJG9wtOW23kO9Zb763twjroq8HFEYcReKHZ5zrvFI2ef/XOe/+Kv+PyLPyR9fIm60qzKEJNkRIfHDIOAsM1pkwySKey2iCimReIpi6KkW7cIlXF2ntJUHe0+R/U51xvHeDziMI3I2xAbHaMaiWg7jA2ohWFkQpJ6QWF8zmYjruZrnooNQ2mI7XP8k1PWmzvqpuXTiyOc1WzMGdXr18TVA8t7x2ByyD5fcyJhe3eHadZ8/PkRO1qCwYBeKpqHK3plUOmY0TBn/u5HCieIooRZltBLRTwYEilJ3/dIT1FXOSbwybd7lCdwVclmt0V4gsZ1DEdDtNcTJWOSwZCq2KKGA9LZAfgJvZ8SjyZc32+QSqM2liBM2TWavirZ/vhrMnpiT1F0FVIGCKlo8o4jEzE4P2O33+K6iKcXl7jFknK9ZeQbpKdRvYaywnmKumxYbzYfTLaTfPrRC+5+vEfuCs4TiYk7tkJjBiFp4DGODL00ZNmI6dhyEmt20hJlPpPJgL5L8dyKMIqQUUhf1YzjhnxveFy8xypJ7VqUgMCTGNfQ1iXl9Tv6Ycz07ILDw3OWdcNsOMSImtXigaqtqFoIo4i+7bhb7RgeXGCNj28MnegRztG3HbJuqYuG7MkFIp/juo7J8QFxMsKTCm18gtt3pJlP33lkckYWGU6OUjadTzi8oLq64YerK/Z9j0NRFDl6MiA7OCYvHZmNcGXO+PDnnIxntA/v8HYb0jjFV4JhFNHWEEY+H52MKKqUarcl8kPu84p9UfIk1PzFFz/DJin5jx0tE+7Klvr6Fm+3o/OgNz6Z/gByVCbBBg3Gl4jOIYXBNTmTQUISRazWHZ7nYbwPwby1FiR4xiM2EWW+xJMhbVVS5gWl1FRVz+tX77h//5r722vuVhuywZAsToGeu/kt79+85uNhSl/lxMmUaHAMxyeogxFCzJCvHwiDkLJsOHKSsheUsxM2/QkV4GqoO8eJeMkk8zkdj3DDEVU65eb1G86OD0hUiysLBBuU8FHKR5kI6wfsHm+oHxYcDRLayQQRHzMJEoJ+wTCe0PsD8tMvcI8v6e9fE/kennE0eUtf7CDS5Fc3UG7R0wEmSUj6lqrvMMayWq/Y1w3f3i4+gIJFz1B7PM0iOgTnacrEN2gJ09Nz3j8sWVzfst7tQUqG1iOm5ebqhufHRxjjE0QJ2vcZJDHlVrBatiSjEWeffoJNRlS7HDyLZ1OicYhpOprOERiNRmK9GOv7LHYbPNtzK2dkTy44zG94vLolrPeknWCQXXAwGjCMA6LYQHAIfUVZXmGnEi87JxAxsml53G/pltcQTInTI6QI8YqKxTe/ZKcMw+NLhsmO+f0tqSdQ0YhKCGQvyOdXjIc+aRwih+fQFBSbJbvQsl44qv2G+WLDj7llPDnk2aefsG97np6d8tXjr1nXFQuhSQ9inp1GjM+e0Ayfcf12zje//hrjPvDKumJHYgVt22GCmEO/JhGO09Sy3m5w7YiuqtBK4IyHn03QvsUEH6CdxlicUFivQ5sp0ktpbt7Q3L1l8f6RulJ0fUAnVjg5IGgdWb7Ecx1RGNN2Fl8bptOUhzxnHRywdTvOQ0e+vmYdBsy6GqU17fIDjnM2nfKznz7n+uoOnx7hIspesOwEpAPe/HhFXeVME4GNJwx1QBodMjw4YxL6HE8y4klKvrthPb8nHI24uHzO1y+/42Tg8fnTY9I4pO98vL7BzxK6tsa5jt6DSaD48ijDJiE28LkYH/DD5i35/IH/4b/9r6l3Jf/R8ydk0qe2I56fnFK1jrfLHM9qRtZHaYHue7rdgnWtMNrQX32DcC3h9AVCBXiqRTZb/EFAWB2T1I7pxYRidUaVe+R1y7yU/LDYIzcL3O0N3X5HPJ7SGMtkMsHt9swGx0TKYa2hbSqsUVR5gVc84hmf7WrNyWGIfHbCsmqZRBn4lq5vkPWKXbMn9UNmSYwA3GrJ+eFHjM6/REXgBQFn6oxyN2cwCLHqw6WCNYLH+++YeDve5WseX/6OLghIzs4onE8reuI4oi4KAgThYEjZVfQ9VE6ge4m2MUYFRAhkrzBSIpOAbHrMm+09f2hOyWYB/+Z3d1wXJXXbMdSGQZRBB8rTUJcI13L29FOUdHT5guiP/5yjy6e00iL8KcoTCLkgtJIq2tK3Bb2pkfWOvl/hqiVdfs006uiEZd031G3P2TDl+naPrK8ZiQmmrAmbhnrdcRwMeDGt+XaeY0OfsQ3Ylg0P5Zbd23dsmob542uGqqJJNDNzxGgwZXw04e7dt4TJkNoJit2GsC7wFThP42mfYZAhOsftqxvymyVPp2MmcYzWH6rTt1VDYANmQuHa7h/W5P4j0T+FJn9Pkj0EsmffC8rK0dQNe6fwZEhUO07OnzLtJWVd0lY5vdQ0xZ6+zKl3BW1e4HuGQRDgtQXak+Rljdvn6P0KT1s+nOQsyWiC9Xuacs14UDFNR+zvtjw8lIynEXE8xFiLl+8w6RA9PKZ2grZcIdsF+6JBeBCqmlg3VCommvqsH+ZoafG7Fts7+qag3raYeEdbQdtp4sGUfrkkDiTa81AClDEo39LYmGoxR3Y1fVXjek0ahbx93BKlKceTAVGzh2RKEUz4Eyyy/r+ZfPnnBKMIP2nYIvC0RvhjPC8nHo3YrFZURc4oHVI1HU3boGSP0ALPU0gt0FogdnNe/MFPKcqOl0GIb8C0FYGdggmRdUvfC6SfIAaS7fUNvomQtLRNhTQKPRhQFTV2MKbZ5JyeHhAOoW8KtO8Tj2NC7bCuQ/QtntZY0+E6idYaLWEcWtJ6QzaOGWRTAuVBt+OvnhzyXeN4uHjB+x9/jdYBF5/+MZuHl3xpGrxQMj1/gqVECUfb1ig/RvkZAkm9XKCzQ/b7FTbSdMKnrzZEymDTmDQJ6HYe17/6Fv/JMcymOOXhZ0O+++qXTNoWO6549ot/Rfrxl9TrJcVigzguYLXlMI7ZL1uKTnKUpGRpzONuzpQjnANrDcoP8KMMbRdYanTTYMIEEKy//7fkP/yWxeOSvKipypq6yNkWBYXyWBQ1q8UWr+t4en7AcHLK4t17us2WfrdBCIuMApQICONTIq9gve4RkxmXp45u/sjleUIrS8rdFoNkElmyLOHk/AwpBLu8ZHp0zuDFC3RzjywStnuHjiN08MEMKeuoCofoJKeTKeuHLa4s6BdrOlPxpz97Aekx7cOcriiwfkApPO7mc7I04Wq+pd5fkUUZ0vuUpu4xNma+X1A2LZHVbOYbhp5ESkWWDNGrFZuq42dPL/kP/+hzUmr261v8zEdsLM8uThkPA4xpcF2APX6G1BbpSbw4Igaq/Y58WVHKnjoaULYNfTNnvyvYb0suj8eEaUSTlyAzdKtQTrNZFZhW0itLEI+Y+Quu9h2WkJkt2S236E6w/O1vObs85+RoiHA9N4s5T5495dmXn+LJCWrxGhUGjMYjRgcDDv09gQoo2gM6USKqD+88iEOC0ZRNXvHu+p6rxfYDc0YK8u2Wk/NzktGUaDDi/e0tq5sbyqfnNJ2hkQ60Zr9csr6/psv3NE2HNZrQGqTnmB4Mabqe3WpBP5liooQuGMLNHE3F06MU0dZkzw5Ixkd00SHff/eO7fff8MnQJ/DOePnwSNn2hDbg808uGA8HDPwh4W4N++ZD7eTVLbGwRFaSBT6+6lDCR3cO1Wt0b5EIYjoOx1P0vmOznKOikO1acPj5nzMcxKxvX1PXO2wccDAIGB9kxOMEqZ9SVRXzOqR9WHFxmGJ9g0aRtz1W9qx3BX5Xk4Y+m31JpzRxaPHaCv14Sz4bU9cdxz/7OXJ2SPXNV1ijiIKQLsm4fv+WWmhMOmIYx2z2Bb/8/gfyvuckC4k9SeuHdMrSe5LpMKFdXCMSS+Uq9GCEjsZY42P9EJ3v0cpDxhF9oPGSEXr2lEkbUuyhdpqfhRG1k7S7HQ8Pd3jW8P3Dnk74uKohs4qhMeQPC7rtFuFLxp//hBfze5R6x2/eXHOaZZw/O6UXsN9uqLY5H4UT+nxHuy/I9COetrhJRDaIaJqS+WnM9bsbFrstT89OefLkU4w/xE+H1KzRViG9nqbraVxHkiUcHh/RC9DS4WsPz9MYrfCk5N31PZ8/v0TVOV3X8fb9nB9vNpwexTws5tSt5PWbB7bLHQ1grU9gfVbrFcY63nzzNYdPn+K7Ci9ICaKI0npMXnxBu+kpt0sedgV2MKMtKrzmHlYLGhHSD5/g6Yrm7W85PRgyinzC0YS/rRO6ZUEaG/zeoVkjqxbVO6Q0IA2id3hC0qxaUtlxO39kMhowOYzpa0N5s0cYD6ngReaQB5e0RyHl3VuiNKKv9tiiob39mnB0iJlNUIMpUvvIxRxfW6y13OUFYRhSdT23qw1WCnKjOEtCPjqcMopCBkmMkobZxTNWu6//fx7AwRGbxSNFXjC/v6PMSxgNMFHMdDygzXNEJ+jqlvFQwOO39PUp1g4+XHZoizYSITu8rkf2II4tcrEhf3zgyUcvqFvBZFnhVInXlUy/eMYT8Yx6/QB3b/GTiMC3CHo8q2jWK/w0xZ8OMTLBNBYzOeap1fzqr/8GTxecX/4UlcR4XUNRNHRdxeRSo4cj6tWSOMwgilFaUWzu8PqWdpOjwilh4NMJDy8KoKmotCZ3ise6pxOGcHbK1avXdE2Homd2eMR68cDddseqgOHkiKPzS8zRM5iv+dT/UMOdRAGb+SMyz3m4eceqEnz5BxfcvnrNw6ahChKOz07pEGRhSF+1YA2ehK5t8MKQ3tMoBEYpjI5o2NIPj4gvHP7sGbtNSFlbNm++Y7O+YrNZsFjesNyV0EtMkLLNNzRuT15XdF3PyZNzmmLNMt8Qn7wgr2tStadoVtS7FX3neHJ2hKvWBMJx+7ij3FYMgghf7Di/zBB9hvUsUXqIajxmJx8zOb9E1zuM2AM5rQfbIqe8LSAMWS02vLg45mg2IY4Ciu0Ouh5PexipmA1jhocBv/jkP0ZulrxdKWwQY+OANPTQuWb++h3TMCDtShZv3xM9+Yg5P/DiYIIvFoj0AGVD/DjgcbnjZHWNDHJqpwish2s8hNJ4nof2JMrO6KVCmJq+UxDOMNGK5t3vEOWcRMBF2lIbR0qKt02Z15Ygjsgf56RWc3H+hPFwinA9NDVt2+MWN5jUYqxh3zuaTcng5FPcLqKYv0P2OfgeNZJGRyjnU60L4hjG4xHpwSHe8TNkBF63JusKhoMZaIM0AX2zo68bQrdhYFsm44zLi2O0g05p9kWFUh5BOmC33SGUIo0CDgbHjESJUh5dr0gGA7zOo6sK9tsGpX1UqAh/csn24YYfmznXN6+5Nx6lVExDzUAahn6I7AXZeEpX5tD1WGvpmxIvzNBBTDA6od5vKdc7mn3O6uElg5GkXy1o93v2dysW64r1zR1dUXJyMUB6AaOyZJPvCJMJuTdi2+5o91tKN0H3grBzHxqGipyfHoxwvWTXQzYOiGxKWYYsKsf3d9f8+HbDz58Nefr55wyfPSccjbGDIXY7Y/dwi+9F6K4n0QYTJjxuKtLIcnAwo12v+H9/+ztmUmDiipE2qNDhpGa1b9BRiAVio/8BHe4/Hv1TaPL3JCWhaluatmOdV3RCcxQM2ZY9m1fX/LODQ6aHh/TljrbcUidDympPu3ykXO/Zbva4qmaaDfCVoOha2u2eel/S7ivsJEMajWoLunSM80GuJOV6i6oqfN/n7NjQdoJoMMUfzAjCFOnHKGGJAp/VvqQWPvtii+4bjInRUmBtj7A9nhxQXO9Qbof2NOHokCC1hLGmD1OqssVTEjf7BJmv8IKQ3lNU2wf0IKZd3uJWD8ggpG1blLaMBymT5YZZbDmMFUqOcNEYtSmQowl/+LM/JL48QeYLPD/8ULPVdlBWtLbD8y3ZMKYuG5yr8WXPIA5oqgJcj6c0rlSE2TH333yNeL1E7B2n4wuaRuNa6MoK31qMrAjGEbs6JBxEbN9cI1ZXmMTSNwXFw4L95hEhBOHA4/jAsN8WPLx6jYlCjn/yCW0U4/kK2bZooVHOp20topII0WPDlKR+4GJs2HSG8+NTAmOJtaJ0Hcd6y4svLvkbW/FusWd49Yq+bcA6hqczsoMMUd/TKYsXhEjV08sekQ7olSJ/uOf+7h25K/FMyK5qSDyBH1mM9hg+fcLYBtjQ8MN8RR+MIMm4rwP+9W+2hM9TPk4O0L6l3kgWjaMWiixJWS7e4B7nOGtJPv6ISEmaBlrb0K/3GB0gpEZpH2JHlCYY0eEWa/B9QlegZyOcENSrgulMsn24IomPeP1Y0KzeorqOj08OUJ1gfztH1RB2EllVyMEEoX16m+BNT8nmC7r8lqZ7h56E1N6M+v6WUeYx/Oxj/ME5brVC1Dnt+pG39/dc/NEfo3/8P0gtmNlTOi9CvvkOoSXSBhT7PcYE9HKDDCyRdkw7S6oSDj3LtFek+Y7k3FKkH3H/7ffYOOOHx4L3Vzf4NqRXFZvVAw/3b1ne33N0dEoQBex/rInSKbvFDdoYssgnlYrKBLgiR7uKl//mf+Kpknxy9hGXxxesi2s++lhxeTbF1TnSCwkHMe02p9uu6YQlGB7g9ktU2yIHGY0A1YaY3erDRFfv8fzkAJNmuLpk1YPwDAaB1Jo+3yG9Bi9s0OWW45ng6lVJlmZILE1R0xQ1cXdNfVVxenFCQMnZpqVdvcH7bc2fpFOKKEPZCCv2ZFajtg8MDlJmkwllvWN93zAcjbDDEe7hnlffvOTq/ZxfvbohjiKkH5BkGbpryQ5PWO9KFndzFtNrrt+9ITpMyKTD9bDbrHFVDs5ROrBhwK7IOb2YImyMtJrFw5yDwwOitqDzMtqqZDIZ0yO5cIL7vuL47AQTRDyJTrj9ruSrheHjP/1Lpn/7v/J4+57jsyP+0//iX5BJQ50XRLLFsaPdLKirnmmUIXUBEpyWIAs65WEcCBehlECyJ1YKdTDCdRWuyJkdCnxtSCdHHB7MqOstpl0wng6wUYQ/GWOHB+zLmu3Xv+LLpxG+jsg3a/aLLaLOcU6y226IpONgEAMCpRSDLGN+e8tVmXN2cU7XNVz/8v/CfvIFbjBCBwFBnTPf7yj2e9ZFxfFgSmhDjB9xO7/h5cvf4Q5mvHhyjusFMogJ4hHFconsJJVo6YXA8zKkl6JsgGdTvKeW+s33+JcHdNEYz4Yfxo83W7QR1MMjbDKlKnZs5SPRvuBuU1AU3ocK1XzHbHiEL6DLK/alpL29Jo4jwCMTjgxHWzmMMBjfEEcJef+WQDns2TGetaADsukhxbf3qHKLHSecPZ3x4mLI9y+vsdR0PmRHU1QSUGzuMIFH6yqqYs1us6arWxJfc1WVSNdB29C6jngYo+i5e/+ej0+OUUH8YQKpl8ymM4QUzFcfQMp1LymdYDYYoIRA9g6tNEZ6VKsFr37zNZcfXeKZGO1p0uUDKg5xoaCILcbtuJm/QQofXI2kxW3u8YQibQp06KHlEN82vF8XpAczQrnFtIbNbk/X1Ug8bNdhncTXFk8rRGhJs4DtakPQbygbD/f+Gh36aGFxTU8yiNCyQ6ERRxc0WYBtd3gyoa1L9PSSMEvAGhAWV3fotiNQ0O3X3D8s2JWOQZJRtj1NXbKuGrR2jJwk2+/Ze5qgF8yOT/j2N7/m6WxKZCKqwHLfOTZVjfWhqluaqiYymqYoqbdbOqfQ2tB1grf/+v9kdvkT/NklwXkIPh9W9KRC0dNLA6HFMz7tNKWpCkIVMjpuyO+ucOmMqvUImgphQJ+dIo0PbQ2eoMmXCE9jR8eEQYTBoiNN6UkGouejJ89Yvb1l+cM3jA9mrOyHf6GThrf/z1/T9z1sd2y9Q4xpCV3B4TDEn81olaG4e4NxDXQ10jlUL3BNz/XjnnXtOLgcc6BrjBfzP/7vf8ubqzuUZ9Da0FSCZe3R2ilaWELP4yCO+Q+++IIH0xEFIa+u71jeLjFlRaN9Lj75GGl8Rjf3fPPjFW1bY7RFSA+lwAQBAlDK0Lcd9AJZ7xC9xUn14QJDalR6SK9q/EZC01FaCXJJ294hTEcUtMheUDRzPCVZlB27suQnzw+J4oQur/EDS6AcolnR1g3WD0kPT9ncXlF1gslwjC5WZJcnPGwL6s0e0XVIpdg0gsB6SOk4mg3Q3Ypq/gqsYj1/zTLf4oRgPJsxX63YrJb4ScR4OCRKM5Sn8YVkcXvNOAkJA0uoDdPM5/jiAtl3nJuM6x/fcffyNWPfUo/GlBV8enTA1bvX3N4v0T/8iFSCp8OMQdQg0wSbJdTGpyEg37bYbgdKojyN8Hy6ukWrDiU9pA6RmQ/zb8HEeCZCdTX6+AyrYX63wqzXuDxHoeidJVaOer/EVFs+/vyfMclCbN/iOnB8mGo/PYyIhiOkc8SDMYvFnLHdI9OUOh+SL29JjlOiwyG9CAhkQODVhFmESS/RUYKKerwowOUNuq8x8ZAWQ+k8jE1o90u6Msc3AVL1PPvip7z74S0yzljc3OHaDhsFBMmQXoeEWvPzzz5DN2vam2t8HaBtQLlYoXpYPNwTnh7jmxjvLCTxjtm9fcN6uWB8MeEP0wBvW6BjS+Rb6tWCEoc0giQdfuBM9R1N06FsTNU66s2axFdUXU/jRbz/+nekmUHWFaKuGMYaOYwYPj8FocgbiVvuibRP5PlIEzK1Cw5SjelXGO2QwzGB8snLHfvdnD97esa/f1gT+4aDgU8STWiVpupK6t0VnpA8bGu6968I7l4RHT8nOXxC1ZTo1tDudygg1IrAaLq6RpQFszSmtD593TA9O+Pg6ABRVNyvduRNR+AcvRAUZfkPa3L/keifQpO/J9VVjVIKISVN29ELgfYEZdtxd33P+Fe/46fpEFEXhIMxOo2pti3r1ZJiU1GVLbLpSU1EpXKEH1GvNmyWK4bZBDoP0zuUllRSI8joE43XeUh/TIaEogQ7pO8sIpqge5BtiW47XNOg+g6dxPR3LwkCD09J/GQASqOaPdpWxOcXlI83dJsV0kiUTiGY4GFQHjg/pfOH+H6Mqxp6YdAmo5w/0uZ7lPJoWlCepWkajJIcDhKeXpwSWIMUim54gPM75PVbDmRJ9/ZXeIMhNT6J77G6e6Qw0FY9QwXK82hki68Ega95fCwp8oLjYUzV9AgU+22B81Ie371n8tlnFPEEW3ZU+z02DGm2oK2hs0P8wQTWK2bPn/Hw1b9FbVq0HxINImwg6VGAsxprAAAgAElEQVR4nYA9dIsN02CMGkYo1eP7Bh0GKF9B14HvI5zGHD6j7zrk+pps2PPs6ZKv3t6iqpLBdIyNZgyCgL6pmXpvOf3iE77+3TuCrqDQGWJgsUdT1utH4jRG+ZK2WLKpNvS9o8Oyr2t+ePual6/eEmYJh0czGmCzK5glAV78gWWgrKFroDUxQRYTD4eEg0Oi/ZatmnD9d18hy4aXr3/k372Z89HlE3bLDZ7yGCYJpm0xQhBoSyBSvLxByBhXSZTs8HQL4QAvmWJUTy8dzhWw3+DqisPZIeMDSVduiLOUX17vubu7YbFc8vPPP2J6fIzOd+QPe5yXfDiEt+CFKWp2TtP0cDzBz4/gzYJRLPASy0JXNMEJotrRFRXBsEVPj1m9/YbFw3sunz1lfHyIVR3SNbh0xnazJoh8+r5Bej1tvsanQ3kSz/dopSR0O05GEQfSYzyaMBikqHKDGo6oRilNEPL1b76nqhp60WKTAWI35/7ujh/e3jCa3qBlT1dVFPuKvm0JA5/pIEYpQyIEssvxcMx3j7x/+bd8nhjyfotWlrMXn2GtpnUe0oHxQ+RiTtMU4CV08yXtbktR5NQmREoHuw313S1ZZBlNjuicpJOaunJUrYcZCxoDTrRI4Wh3JQpNj/49JLnG0w3j8YDN8pFinxPLhr7IKbctw6eXeMMEsXrAK3MGSY4djakq8PIVQnTop8f01scfprT3a0zgo5MEypJ6teL96xuu1yXzzZ4xikkQMAgC7GBCK0Nub6/YbQrudzu+fv8rzs0ZvYGqyjGtYLNdcXV/T9O1hHFIsd2hCKirmtpZmrZje/sGOxyxKwURDUGQ0QnFWGmK9Zow9kkPD2AyYJxZJi/f8e/f/Q1DWRGlPnG1IX/zA6PTT4ilT+k5OqtodyVFL0hCn7zJcSj63qOlo2/2tMEI6xqkjMDE9HyoER7XFaur99hqi3r7S8Kxj1E9anKA0IdYWRIdHOAZjckO6M2ezO1gUVMbDyEApTHKUSkfKzpC5Qgmh5T9ElsXdHWJtAEba7j3Qi6ilPVyxakULPYFt++vkcWWzWLBerdnlCT8xScvKOueq9v3xPRUTcf9csMnlwLf13SuRbQ10vX0TpKvd0SZQfQSOpAYpB8SHA9RxZZ+1+MlMcJajCfYFS26V/RtSd/31E1HW1TkVc/jqqUvGrwyZxoHHI3HGGVwziM0AZPQkRjYti1913M6GbHYrHHjEUpotP59U1hfMvQ9gsEQZTL2V1d0iyVR6DGbDOhomT27ZPb0OfObObv9NSL6CWiDWLdEKmDdFKxXC1phuL5+j1GS2SDlti4/gHGdY5gNqLYrDD3Vfo0LY5CSBs1yV0C75+zYR+HRVDWHwyGOnvV2SxhEjLKEwHUYKXn7668YjRJGSUDXOnzfo7z/Dtd8WGewwwHa3bNZPFJpDztMmA1HCJMi+hhPldxfv6HRiujgkKOkpv69MY2MoXcSKwNUJ6CuUZ7B8yT7tkXEhjZXxGkAVys8m+B1lmA4o95sKe7m6GmE9CXW+qTZGcWPfwfGJzz5mCAdIlVPE44RZU3zeAdli9evWe62zO9uoYd9UTEaTTCip8l3TIcZx0eHdIs5fZEjXQv7LQdZQh1mRGnHfZUzD+9pcol23e+nNhwA2/WG7S4nMZajwwnt/pG7ZUdVveZo4/DiCTYZQ++QCDwh6YWi1xrl+zSdRnoNKhogGzBK4bqermoplwuKvSaIY5TsaXNHtd/SbXYoA0kSYVsPpQQIjzhJ8DzBSFnW8Yz76zvyhxv2v+cLDI4uEdoySBNGSUbVNYxHIarbo62H7xkIYszxJfmbbxFK0nYtDkXVdLTFnnyz46ptSLTj/ONPOD085GFV8O7mjqapiYxhNBiyLxq8tkXu9hz90b9ADJ7S/u4rqqLHVZJvbwtSr+U/+09eEEYx6+WWtmo4G8bQ1KAlUoLVGiMUEkm12WKjhHazpFvdI9MhOhrQ5TvK+3u6sqItctav37J7nLOvSvqiIpUCX3Vs5Yfv9iEvyGtHoAQvphGjcUxOjVI5yoN+d0WzPSKIM7RNSaOO0r2jWa0ZxAPqOke5jkmcsvMirBT4WnEoDGGSIKoCUd2hbIioP6wcPlQlKMXk5JgkG0MQcvfqJUezCUFgKHdrgvEYzw+IByPybY62PlY2NPmH53ASyptviEXA290O1yZYP+L5iwOOJyNulgvU3ZLXP37PeDQi/uiPibyArnP0ncPFCRspKD2PYjknGWSstzVhKAl6R1/taQuHDjowEqXshxXBZg31ir7OUcIQJgO6tmG/KakKj48mGdv9hs16SzgcMdAa7RxCeqAkLYKjcUQQpQRhjOgaujijrWp2myVlH5I8/4ykOEa1S6y1hOMJSibQVJjRIWY8xXMV0u2hbJCuxQymKGNRfY/oOloEddejlKJzEKiednXFwdGAnci4++XXKKWI0iHZcETkWyZJgHf7kkkWs5UCGwaYIKApG6Tr0EmAcwXD8YRgLjmYfclmDunIUE0cr7t7yl3B+GBEJyHwLAaF8WN8P6CvG+qixk8HCHp6JTCRpb5/S1+UBMayH5zz8vtfs17coqIBNsrwRj5yEJEvF9ws1uyrnrHniAOPOGy5+OmMbrdHlA3SM+hsyHhyiNc1PL57TWdgo3yqNieQEqM8DmfHKGuxYsxoPCCYnmLiGM8YbBjQOkNRHFDP7xGuR+BQAhJrOEhChoFPYA0nx8c0t3fkd48USvFY1Lyerz9UsVuf3mqsMf9g/vYfk/4pNPl7knMdXdvSVhWurZkeTpA4mu2KzGquXr1hlGWcfHSODRKiwLLcdP8fe++xLVt2ped9y20fPo4/5/qbiQSQhQJLo1iiKKrLt1BTb6XnkMaQKMqOMmShUHCJdNceHz5i+2XUOHgFlhrC7EU3xt4Ra805v+9ntSuxVYcSmqbsGBVD6nrPbnOA1nHYbBAAh6cVw65Zo8ZnZEmGRSCFROSnhF4S9T2+tnR9hI6nRLalfniADoSM6NoSW90RiZ7hZIyJJN3qlmx+wnB+TlnfoodjBpMp4fAZ3W4QrkFKiYwGKNUgdILwDT4qcJsFrtsiRI8KYJuGPgh0FIHzON+RxYZXr19xfHJM5C0aQZQo5pM5fbPj8ZuSPrRIM2e5WtE3Fcu7O+TxgDx/knhJ3xKcIE1i9puSVCtEpCkGOVXboGJBMAqZFBx9+RPIhyjvsV1FXfUUeYE0BaFxGBFwukKlIGaak7/5BfawJjiPkCn24PB1x/L9d8hqSUgSVHHMxZcX6LxHxRpNQOuMKBLgPObZFyiREJzF6EtEGXH6OvDV58/srj+x72r0hSMaDciiCdlwQjY9IY6GNN/9lpAXrITi3bqirrZoLVDe0dcH+urAOE+QaU5rPU1z4Oi4oBiPCMHhhcX1PUZJYu+Q9YHUaG7WFe3slDjR2LZiniZM8wF+dMqHmx3/8//+P/Ifbh+5+PJrouk5Fxfn7JYPlLsdMjZs9kvOz76A3qF7B32JpCBsPmFOT9GzZ8SzZyi7Q/UHvFUcNhtU8OTxkN5B1QtsJXk2PsF8FfjFiynH8xGjs1Pcfk898/idRZVLlNcIFD5oSGP0dEZ89YZo/YBza/LcMENxEJrZL/8Sd/cdytdkyYTJz39J8J7k6Jy4mGNoQELdteT7DzjRUNse23gSqbG1QfmITAiskBQqMDQdk+mck7/+dwz0J/SgoAwNOkn58cMdm4cVSkd4FKiIQVLQ9T3f/eFXFLHk9OiIIoqQQtK5iERDliQcTae01Z7uELGUB44mQ5puy/ff/D+cFWOu3r4lH4+whzVaG4KMCRjMeIwYDIlNhN8saLMEV2rCoaXbbUgOK0bzCa2Z4FWEbCrqqqNtwXcJk0QSh45EaIKXCBOB7zAuoDrJWZqw9540TxmcT7m/fny6HHc9zf1nxMmU0ek5yfEZqmlhfUceKfIsRU80odrDaE4oBpi4p99XZEmBWqzodluqxYq+bHj3sEJLSSQ8k0gTjU5w0QDnDNYqmqZnvVvyzbs7nCnpxIFxnlNtGz5f33K9X9M6y1hKGu9JfERqpiB6go5pe5B9R7b+AY/HNS06HyESw9Wrl9SbBSrJyJ99STqcMHn7NSePKz69f8/j9Q31voSHz/ijZ0hRkCZDrK2xRURqHYtmAfppfVsJiRAeFRy+6tBZjFQJMgbhAkoG4osLbLmn328ZJCn9yiELhe/vyeZz1HACQYOIUCYiCo7Z0YS7d+/Z3u+YnB4huw7XWpzK+OKLl2RJxM3DnuNhSvN4wEjBwEia3tKYhMP4mJXMqH/199x8fMf19z9yPp9wOptiIsVXX/2MLBmSiA6dF2TC4/MBaZGjTIZWmq6uIBlQbTq0NJTlEp1JuqYiNiPwgad4HYU++wJpMsKhwh+2uHJHnI/oIk3XOrrDitX9lsebFYtFTdjtEb3jNM/JNFSbFbapyMdzpIzpqx2u7hgZxTrKaXrJILNsbq6JLk5JyDAypt1X1LePiF1FMZ1zMhtxOnyOLWtU8MTjCfrkBbL32DIgdU3dLskSQxopyEd8WmzYtCXZcEBiPMI6VPCMhwVlVVMMBownIw7VhtHpEfv1hsvjEauqRZuYOLIURYLvOobDlMnFnK63fP/hmkPbY0NAdZaz2RhnLU3V8Hhzw/jlc+y+xMQFw8Exza7G9gdkEjOYz9FpjvRQty1mcIIj0Nx/Znt3z3wwoD+9JJuMGZiWx7qiGM2pm4Zys8MkOWlhkFh010I2RMaKoCBNY6wwpDZwWO9ApqggGZ++RNcl9JZ2tcJvtqjZhOGzr0EnmLSAuiSIgOoO9GWJqxroOpy13DysOWz3FFHCMM2IspTJ5TNMteGoiCkmExgMmbiWyBiE7ciynOPZMaPRMdG44P/43yL+9m//Eds6Nusb2tMhTdcjlSaNx0wnE4q0pg8Z8vg5i01LVnvSQ4UsS5Ca0AUCEqRAiqfzUJxk2OCotntMnJAOhjSHlt73mDhFD4dINIIe60E0LZFWZOMxuoMoCRidIosxISmIx8eI8Rm5HpNYzU4bTBbT25JWOOLL5yTKURzNWX38kXEmiWevEVLguxbbNETeY65eE4SjKw9slw+gDc456rbjbnvDw3rD7Nt3WBSzPGYbG5qQchHFvLm8ZDI+QmlDlEvUyytOL8+5qbbs7u7BBQZRhPOKpu549/vfEyvD2fkzamdpvGdXt2RDgReSCE/oOugdIRzYLO5w2y3jSU/o3uGFBguuLrG7e5IiZnD6JX0H/XbN6vMHbt6vaQ4t3sRcjnK8DxyajsHRBJVmaFuTKE/sLPXnT2yiKdn5K3AW6aAtSxbLFVf5MwYnF9j9mlgnbLY7mtbRaEluLH1TE5kYPcgwwxGjoyPiNOcyTlnv93RtQwgwHc9JkmsS+STYf2pAS7J8iBea1cMNg0GBsh03f/gnwuqBviw5OZszev0LBs/fMHxo6EXK2duviaodr37+V2RmjLp5ZGkdLhlyeZayXy1pj86ZXJzhhefgDbEPHHZ7pJC4/Z6srXA+kBiN296g+haVaUSkoHpENYcnD4/McQHWiw6ljnhzccx6vSBLYiYhZdX2yPJpcBJFik4qcA1ZrIl9IPIQpEYohRKCgMPbkk6fEV39FSk7IuuIi4JocEQyyFFZAUIgXY1bXSO6mgCYyRHBP3mSlG/pOosiILXB1YEgQRpDOijYbTrKsiJPMiIdMRlPmKeGw6cf+Mc/rPni2SmzkxfEJgMZ0FlE27Z0Avb3d5ydvKXabNnU78mziL6ISY6OuYgEwghkJFl3PUeXF0hn8UikighOkBUTRG8RwiHjGNcO6Lxj/+lH0uMrxnkOl8/xAX77Yc3t4rfMhykvJoqmqqibjtlszCidMDCSbrumaQ/4rscYgzCCeJDRLe/IxzNOTy7og6NWSx42NbmJ6NuO+9tHXlydc3x8Tn5yQTw7Q+UjpAhPm1t9h1UJXdOh4pSqW9H1njhIziPJQFhKIgajEaGtMVLycbnjH9/dsjyUHI2HDLuOtqxo+z87Tf4l6s9Nk3+h0sbghERpRSTck0k+OLRtSWKDwrO+vuPu/Ufe/uynjE8nHJoVh7LFtQ1aanRuCEJhVpI0luybjnK9hq5EqTEqyrEqJdQVymmUSvFxTpoMkPUet1giu6dkmlDV2HKFLbeoIse2He1uS/l4y6woMEpj65p2vcQYDfmASBuMipGDGfL4BKMsMjZIpZ8mjstr1AhcvcXte1Axvj/QtTu60OODQiqDdTyJWp0j1oLZxSk6dCggSXJ0s4fFAhkc0XiK1ZKH5SNCKVzXgve4rmW3XjIejZB9Swg1eIGWgqGG2WyIDFDtN3RckV08p1vvkVJy+/kaMwRrLdQ13X6P8pqkOIYowS+XxKOI9PSKsn+JeviIrg4IUly15PHzO1K7JYwTVnXCV794TjowhF4/cb/aYOIJMtZEJiWKh8h4BH0gVEvyeYbpN0Rfv2IzrYg16LZG7hpUVNN2hvzVJVGm6IqY3eIzZSv53e+/42a/wUgBOArhOS4SVtsdUlcMUs3LV6fMLo7phOT9x0c2Dw2zLCHg0PWObDRi3S1x0wmNrTmdXnL/cM80SYiiARv5NMW5FhkhHhGLEbcf1lxcJTw/P0PUFWo25dvFPcF4dCwJokfKQLdZYsIe387IVYSuapLJACEVtJbs/A3l93+ExQonI9rKkicjZtOE11/+jF4kdO2W/Xe/woxGhFyz+vzAOJ4gxByYgEyRWUasNVEXiMdndIctCs9kHOPKHfXqR0a5wR1qQl8TmYRkeIQiQloISiNtQ1St6ddrrJKodI7wgk52SGkRVoKLkU6SoCkSSVZYxoUnHAImzfCl5T///kfeP+4YTI/Jy5Z17VCRJsumpM7SdT3/9E//yMtnLxnGKYVJ2HnFrvEUxRDjPEZKpkXCeqc5OT6m3u/45uMPiONj3v7N17j1LbovSWYXmD8x53J0jtERvrcEMghrdHWHvb8mrg7IbIQpCiI01oLDU+1KbOXIVMx4NCc2GUIo6N3TgUNodJbivWSUDlE6JkkkiZIk56esb1f4riUfJNjFJ8K4IBmOiKfHyJMz/HaN9hKlctQgJ+RTZCapH69RDkwbcIs1ri5ptwfuNiVl0zNKU4ajKWL+CpuecKhrTqcT4mjKOLvAW8njw4+YvGR65OkbzepmyW9/XPDdxyVVGxgWOUdHx+yrPZ8eHjmeHqMQ7EuNnySE/Q4lNUY8NTKTYkyUDsnznP7xFpsWFC9/jipmmJtPxLFhIizbxRL3J/lnRIzoA95k1Jkicy3+2j79fhuJVhrhO3alIxoElAtEQuAtGJXifI2PUo7On7H4/jtss2d09AqVGNaPn4m0ITk6QaOfmt22wy8/kw9HzM/PSIoRSEcvHb00eAxf/PKvGD9bcfs//Qfm9sAOi+46BqenFEcnXFxd0iQ5N+8+8fHzB6baY61lPB5xdDzkcfXImzdfsLs/8Ou//z8J1vLsJ18ihwXr/YGAIMoyqv2WfdlTnL3k/o+/Z7vY0vuOZ50lDwHX92jR4vYtKh+jiwHOR2AtkU5oPt3RPO7Zrmu2yzX9rkRUEnnYkWB58+ZLIm355tvf0zU7HmefyIYzYhPTb3uk6xG9YxoppBxihaatNtSPC0SVMhwkGDnAbleY1JAngXwco4dv6es9Jh+gpydYpwm+RfmYokgQoqds7gmJpesdHzdLgvLktWSWxVStY3Y0Jyw3RCYhSwxJXyMlvL++QUQxb3/y6glDchFTobHVgTQrmA8G+LpiW1fMEkPXO7brFV9eXDFKU0J1QAfH8mHJq6tz2rpBRCkimYG/p9tuMC5F6pwkSrHtAV+uERrYNWReMb16TiU0fZLjEoOKFHkcEWQMTYlXgXEiEIcGnRlkiP4kaV2yefc9XXUgGUzIZzNkKrCrFTJLQbTEwxlKK0zcEWcBZTLwEhUCbHc4LNYLfLujKxvauiKIp0SPm5s7BiYiGeS0/ZQQR0R9RWYEWZpgZlOm5+ck+y3GdfiuoZWSy5dXPLs4oiNmfHRElhdgPPtqz+P2nsv2glE2II0j8C27KpBIiU4HxCFn13QkiwVycvR08QuKvq9xQQMCIQTCBSKTYUYJdrMAYYhNTOgcznq0EvjePXnkfEAcNkgZMD5HWo/qBCbXCBMjkxyRJIhsCPsOX3xiNvsSPZnhpeewWRJPBpg8QwDZlz8l0mDy4glzyQOYGO8cvjvQVFvaqsIjsc5hQyAAm6rl4WFD/+P9kzxTa7RSjCPFX15d8PLZa+IsRZ6+oE8kGEd2dEx+eky729P1Hc/nUy5mM8ajY+aXU+aXz0FJbj59RIbAdntgU3XkaUbXdjR1jS9Ldl3H6uGRk5Mr5GiO0UfgQScZ/eoOMU4Q1YHq7obIDHDlgUzFPHv5klMZU9uO9W5HCD23h4bRxTHgcU4yUAn0sN0/YtQfGSQZ4/k5KtIcPX/NYrHCtg0ynZCPYySW5MWQurIE554cQ0lGNp2Sn54RpQMi7VGhR8cF2kSst1vQEd55zudHfL7+gYvLMybTGTKK6WzPaJhSlTlxklDojH+4WfGHX3/DT44LiigiumgRw/HT8xoPGJ+c032uaRHctY7/7r//H9jICHv9PVPTsKtaxpMRSVeSCosnppUZm/Ujs8mUEDraco9wGmFSjI+R2QSfGggNxILQJ/j9Brd5pN8+Mr+cMMnOqDYHEpPR14G7bcNkesHLt69JByMEYG2P6kuUMWgccRxjvUCyR4oYLy2xtLT37yjiHDW/IJufMZgMUd6isE+DFCXB9ohgwIKcTPBa46o10nnoIVRPm6q+9wTvqDoojs/xccH+9hODYsBoPCbNEi5O5wzp+OGHli4bkp1f4XsIXYttWvCOtjqgY5hMZqTHAx7XfyTPGob5iKPZCdMXz1B/2HN3+0CIE2Zv36KynG51h0kGCC/QQqG6HiEDKIWXMbI4Jn/+F6jhKZtvfke3/UAcHJfzGeMsp62LJwdMs2XXw0QnDIwmERHdosQ3B7QUSPWE3otQ4Q835PmcuBiBiEmwnMUGUa4wBKIkRUURptxiq1O8G6BFRiRTfL9FVjvCocQ4TYhSqBY0dU2sBJ9uV3y73vPiZEx+eUXjoQoRH+8eWO5L9r0nGQxJsgIpBLPJ6CkJ78/1X7z+/C3/S5XS6DhGJAmToUcGS7AdSWzoOphNj+nqlofrNdu73/DlT56jZ56+ranrFi0CyiS0fUNj2yc/hhaI3uLrllC2+MExxTiDdo9KU0Iw9Ls93aHE7fdEQdPVO8r1NX3f48sFuhhhBAjlCN2WQSyIsxiTxMRSIf9kufYuoLRC2g7dO3RWIHz/FFUnFAB6eo5HQCqRoabb7PHBUpc79uWe7OgcmaRY7+gRGALFaMR4NEApDXWNEw0mHlG//0jfNGzbwKdthT08Mr24QOuIOCtQw5gmeHoidDJAVxVaCVCCLI/pe89+v6XvWkKwDKdHhChj++0PuKZGZBFoRd23VLsNyguUT0CPMSgOP34kvzRkowtCfoy0hvb2gcOH75Fhxfxqyv/1zSf8OOXH3/+W93/8yHmiODqdcvr6lOlXQ0x2TGQ0vunR4yFCOuTIo8QK4Rzx869RkWX/w++Y/6tf0LcRTkrSPKJ//AjtDdHZADk4JTwsKUxMkk6oOkddrgmxZCokr89OyZOINI0pYsl4PEUMRvzxhxustxgtSNOUKBtQ7je4YsDHhy1BBZzrWd/fUPYFpYoZBUWVpJjpKefpjPlsxPtPnyhcwV9/dYKTgnK/J01TGq1IhxFeKUJXEZolXoIta8JmjRkAYoIfjVCqw5iUZHzM7u4TQsWMLr5CjWe023uMj8jymLoVuDhnebOg7wV+v8XpOd4lCPP0nATxhLmZXGNGMe1jjV0s0dMZA2FZf/yRMBoym59g+xJ/cLi+hiwmhCnR9AgVBPVmRTI9AivY7kuy1GClAjyoCKKcri7RkaFvO2KtsPs9JsqRxrDZr/iPv3mH9YGLdE529RW7D++YT45ZBoVRKcYIFtsbvn3/AyOTPLG21rFoa7oeTBKB6xFty7zIeXk244Gem0PF2jkGskPc3aDTBDWyKA/aaNx2gxqfIlWGtRWyaam+/0Ta1ZjxEX2QOKeIRaDdbGlaiKTG2JIijjE4THDI1hP8ASKL9D1aBlTw0AtOxxlEniIyzCcZa9Px+drS1S32UKGaJX1lyKcTTDpDXz5Htt1TipM2WC2x20/017cYH5CuxzYdrm1om46bfYdRhtF4gi7OcOYZ60eLSjzpYMxkcsZmUZIfxRzPOq7vfuTz4j26l3z/7YI//Lhjve1RRhGPpmgf0dYd1w8f+PovjsG0OJHQEyOCBmuxtkT2AZEOMHGKTI5Ig4W6JJ6d45Yb3PV72o/fIauKIkqwcYERMUYYhAuEuEAUcLt8R0+N1BEIQHjAc3Qxo992iEQjowiEwuin5A+rDUblxE3L/u4DbpuT6gsuTi9IxgOSwRQzHSHo6a4/4HY3OGuRzRNPbkPAmIimrUnzAdOzUypiVPAMI0EyzGmlYrFc0QuJBJ5nAx7bHo6vqGM435bkecb06BSdxExmJ0yzI66/+wPffP89L4zh+dkRwzxF5gWtDfjgsX3L/fffEZzicLBYV9IfHGHgEQiCE9B76Hrs9oBQBjG6wC/26ARyAbpIiazElw2LpiQJNf/mX/8VenLG+z9+y9loSBIZjsZjZucX8P4jtdDUDw98ev+BgMckCa8vLrl/VCzuPzAfpczGY/KLU0K9JXQdZjgino5ILr+EpMCu7pBRjuoFouxRThINR/RCsVmtMXHEx4dPfFwsSZOIJE0oshjnKpAxly9fsVsviIKlUI6VkByqlpPxFCEU0+mM9eYDbVmx2R6YTo4Ypikfbm65Xe9BSMaxIqVnmmh0FOPbmoHWdPstddNTOEe1r0jHM4SM6cuG0LQIUz9APa0AACAASURBVIGUNOWBkxcvSAdHKJFCCeW2RJkGIkXjW25/eMemtZy//Qrbt9T7lijJUNkAHWs8jhAcoTwwmQwJJtD3DVIMmJ+9odUfadc3GNUidI9QA6RwVO8/kI1PMKMZoWkJXYUwCjmY4rru6dJjHSJL+HR7y8PDAhM9oRPPTo/oEE+fs4jr7Y5pMcYLzfxv/hv87Udu/9PfU6qEuq9Y3L7jetnw6dM9QkZEseb8+BLvBffrNZGB1HkOZUJd9iSmxbUVu21DU9f0UUR2fkkkJUIoRAAvBMH2SCQeQHqE70myEV4Yqs0eu9uR+gpbdegoBSR2t2L29i1mnFPudoSmJ4oVRmoQGiENQsdIozFRhnIJ2dlbzGyKiBQm/gEZx8THF6AjAgGCxTUVEoUUEAKE4JFSIKRCCBAC2rbFe4cApAQXBLumo7EeoQzTouDLiyt+8uo1s2dfQrWhJ+NQNfDunxk9e0akLNvDPSYKfPnFzylEYHx+QXaUk08n1FWJjA2RUtjrBz6vP3D16i0+1MTJgRA89X5PLxXJ0QnReIY2mmAbqBsiaVGTM3q1pMhn9PcPWJMzvDqjbjoSH4iqDbSWTXVgMhkTK0XwlhbPYlOy+PSAwpBHY9jtYHaGnp2Re8+LV498+5vf8fnjDcNiyLMXF4zHI7LJE8osvCCKYpQUpDImmcyR1Qa/34MNaCIG4zm71RKT5UzTnIVzcFijJxO08Ogspa4qojgBICsSvv7ZK97/YHhsO8478EiKLCEqLD4eIQkoKTk6PuXNX8+Z/+Q1z49mfPMft3TVFvP8DW3f4h4fcJMEfWJprMeZiOX9DUWasjXXDAeXNF2Dl0/vpnAKFTq075C6IDqdQ6yQswFNC1CgVEvfevbLDU0PX//8F6TjE5RJUXFK/fDw9P8uY6QI+Lqmqy3+sHkSxFZPmzeZiel2C1xxROjBlh6dGQgKoQXC9uBBkOCjlF6MUPQQJN5afGcR1tF7i3OOViZsNyuG8xO8TDg6mnDx7IIkSRkNE55fnJBpSeQgf/GSQQzb3/6ert49bSqamL7ZI4Qgn58iQotRYOsD56+/RDXQLpecjAvUs2MGkznxdIIXDp0+YfF4+zSkQyB0QpAgtEEGCMkxcaqYnjUcEOwfH+gPW0y5wnY9Rin6rmNuNN4HoihHNh673xGJADoD2yNjBQKU0WQnT+hzPp4S+o7z+QATaQ637zEyw5iMLElJi9lTlLZUKCEhHdPff0SWHbLtyaKMOgjKVuDQGKlYHHpmieXkmeLBwlYl/N3tAgkEF9BlzVGeY12gFRr/J3zxz/Vftv7cNPmXKiHw2pDlKbbakxpJ39XkwzmFHiOqkq6t8E6BmJAUV2TnKUndslh+QoZAnAo2q0ese3JKjKczpBPYpgEkvmpwQaDzITIZQdsSwoFwuMfvG/DQ3X5PU60RscOkisHFG8TxMa2toK+J0oQoN8RJRLdvKG/vUes9hTIUkyN8eUDajNBZoukErT0iGRCsI5gCX+6wywe8hNDuqcstTmqyo4uni0UICKkJrgWeLoA60kg8Osug63HB8+79BxyKMJ3RLO5JtQBvMQqiNKaVmu1ui4hy0rwgG9QcDlsG4xH7pX9ab5US4cG3DcG2SHqcrplcHbE9lHT1gd51JNWGWEVI/4gMoE4vSc5eEyUxpisRKqXb32Pv77B2y/jZCQfXsqh2dJs1dXrEAMVPX12RTEds7h4w6jcUX3yNvnhFNJogcehC41uH7DqUmbD/5j39oaJcbKiXN2Rv/hpvE6iWqNigL9/iQ48UEa7c82YeMQwRhy6w2AjK3Zr1/sBjrNDxEeNiQJxDPj3BZ2NW25bgPNLbPzWqAjIy3DbwcbHlxZvXfPp4x3rXYKMLZDygsz2elGw0x2cti+U9D/efuC6Oiec/ZQ7Q9JwOpnSrHdH82RMqULcENCZK6NcrvLkhCBBJgtIz8D2iLUknM3Q2fJr85QXxdIJJNX39gF/eIm1Pb6HrwT18Zmwymq554nSrNS4cIU1EcBaCYjyfUH+n2Sxa8iJlmEWIvEJ0O5wbMTz/GcoFwmGFUvFTqtL+kWa3JopjQpzjt2ti0dHv9kjR0fQtHQ3edKRRjHYFYbdGDwdkz94SNfeQDti5EoXg86Zk3vS0eY5OU5SJmYyPGRVnJIMRafmZ1fqW/f0D2+UDu3qJEg3XmyUnk0uMEQxjhZeSF0cj4maPQXEyO0Kt72gOa8R0TjTpEb1Fpgk6GxK6FtfViHpH++E7BsohhkdYnSBsT/Adh8WWrhccnR9h9yXYhl0yRAhwoiOEFpQjyxSRmSCmM8a3W+4ebvG1ZT4ZoCKFSSA1MMsSFo97goV+uWQyGqNFhUlTkDvQCagRQYC7/R778SPGWlw2wpc1vi5xvWXbePLBlKs0cF87uloRDpr9wSDzjqbpmJzPcTiKueXZ6xnRJOMffv07Hu9Lyk1PVzla67k4STh+BZ9+eCDJClQUc7cvGYiIbr+m7WckWuGbhnhQIOIMX5cIoZD5AG1SCIawK+mub+k+faL9/BlBRDwYopWiX99TzN/gpYVEIkTN7fVH0kHOZD4jeI/yAikFm9WOVBUoqVA6xRQDoqCRwhAfzWiGa5IiI44D7fKagIPJBDObIbxChASMof74LWZQQG/xTQNeELxDRRE6ipFCkE9PGPSaYaSYDyZwcsZyV5P3nkZp0jRlt98i8NTbLWE85icvn5FpQZYnjGevSPMxJg787Gd/QWU158+fMz2Z0w5mfFhsiM0Ug6Cu9nxe3NM0imxySrm9p9pb3Img6x3KRMhY0x+eksZknBAaj68BlSOiAb5e4puKqmrwTc0v337J5euf8u1vviX1cBRndAFyBVEMmfaQZiQDxaufpHz/639mv1+SjMe8OS44iU9BWPIIijwmfvkLzGiOCJLICLTOEckEdVTg7m9wlSPUgIxAaFwb0M6wXGz5+9+9p9yVSKHYNJZZIikixSA2NAhUkaPqDUejnGl0SWoihhcvIBvhqz1pkrBcbhjnGeNYs72/5cNixf2+omx7Eq34m6s5IyWIfUcYjylbS4NmuT2Q5hE4i20aTGzIxme0i1v6ssQMMi6//iuKF19CF3APj7SHWyLh0XmGp6av9uRpRno2I0piYm0QQhLRIIMnNA167OjWK6zX3H9+pPx8w2Ff8tUvDSoaMbt8Q60X1B9+RI4CetQgrScSHlHtUYMhPni89di6od8fCHGOShOCkjRpwXKxYFs2THTEpiqZDwcUeUEUR7h8yNn8lOPjOb/+518zvzpHIjikA5YP15hv9vxq+Ujdp7y4fENXCZrdBinAm6dByaas8VGM7h4Zxha/v6PqNFXds9n3ZJslR8sFA++IsuIJyYtyggHhnhoOwYFUTw2L3jr6XU0SOlRbEkyKxxCakmKUEmmNLS2+chjbonqFCBKhIoSOEUKjlH7ypwwnKKkwRj1hFsOC6vEeX0wwwxiCxzuHSDK6wx6hJKFtkAq8twhvCYBz9mnTwzukhDSKyGNHUDGydcwmcy5OL/hXby6ZZDHjIqMLHUInbG7u+cPf/S/UqWRSTLm7v8YYST7IyZRCO42oPOHQEFxHFkfU+4r96sDn+zUqnfLs4ozgHH3wyLxgMDRESUqUZ2A9MikIBKQ+x1U1KpuD9Vi1wzmBkhlCSkK5xu0q7m+X3O32fPHLt09ePxnjQ83DYkdTtpzPBkhToESCVhkmGaGmLfOzU9xux3K94+P1HX/4zZ63X33J4GSCKGYI8YRhG9sgkYjdBtXv6D/+iJhfoidzYm2IkxRbHUiMYTafk+sYu99hzBxJi0kL9KHExDGu67l89YbCKIaTY/L5EUFrMttSTCbsWoPreo4uXjIYjelKx9/+w684VjX31488e/GK4vwFj+/+wPXDNUN5yhe2wXcN2uTIBNq+Z/O4wkQnRArwDViJlimubQidQ6UxQfQEHyHlkHQ8pK8VUtUoGdE3Laen5+Q6wOaWeP4cpSP63YbExChp8CJG6ITxxZT93Sd2nz8hgP1+Q5IVjKXB7h6x8YBgDMFkeKEQ3oPz0Hu8UFgD1u6fMHXnQHmC9jjZ0TUlAUnXtcSDEV3Xkk+HZOMJs5OWxDueX06YXL1mPJky2K/59OEb5Mu39EoRnMNaS9c1mDjiUJV0XcuICVF6QXl3Q9M1PLt6TV1XxNUS1bX0KqIYDaFtiIZTEArfNYQkIeiYoCJQEikDrusJnYBQQHRONJSMuhjjO+o2JnKBqmpQKiUaPHkLbdDYwx4ZLFE6QKic2Ei60GGlwAjP8v6W//zr7/i3f/kLzn7+F4jIcPWLf82jiZAqBhkTa0+UDslmZ6gkAq2BgJhd0ey+hboEW4GX2M6y3+15eTZj7hzn8yOE0twsdwyynEpF7Pc7zoYj5nnGaDAizgqcj0El/1/cbP9/V39umvwLlZQKZWJEV5KlEVGmcDTEmabZH1jf39PXFi0TymrPtl6TJTOi9Jhd+SOZNLi+p2/Ah8DwaI5ykjSYp9hN71AIfOcIKtB3e4R3uKqmL3eAJLQ9wXVE/Zrd6kBfjNk2vyPfb3EE8jwmzQ0qgEFSrnY0j2seN9c8/PEjL16dcvLyNX1v0eEYr8CmObJpEK7HW4c/HICI7vEdTdtgkch8jEpTfNfgPFjf0/c9vbeMzs8JXUcnIViHSQbs1yvsyTmZeUoMmE1G7MsN3va4skQPxlAkqP2OYCuORwlmNOPdtwdsWbKvW6qqIc4y6rqm2mwYjY6w1pKfX+F2G4T31HVLXZekSUF0eMRXW5QIaDshHcyIE4XY39Hf7uhuH+j9huhkgpxOufv2t0wKw4urFxzknO//73u+f+yRneXLq2eE7sDyt/9Alo6Rxw7qNa62iH5Pf/3I9j//kfzLY6JuT7O44+Hv1ryeviWeXRKKEcxmOOee2NHt7+ik4fXJjKtByiFINss1j4+GH25XlF5Sdj2rH79h+izisIj5xz/uuH9ccZHF1CGgspxeRzilsbtb3l7NuF8s+P77HxlMZhTjEd4nDCNBlOacTY/47ttveVw8IiJJEwTF0QmbukPMtxz7nG21Y3nYk8c5AfeUPhMiirjEHR7okwEySoEeEbeEek0QMTo7JppeYbsGv70lmUwgDGnrBns4UD5uiVzHyZvndJVktfAE2yGlIHhL6Fq6xZ7cxMSTU/K//LfUtaS6XbNZfWA4yijmQ7IkRbWe/OUvcaHD2Qq7XxFsRzya4poD1W5JpKGu9jzefGZ4dEzIY3rfYLuKyGS0HU9Ymopwu1t8DF1IeLcOPHv+mjZaso5H7O/uMCam7zzjo0tGkxNUnECmiaOMgRwSiwL7ECjLj3y43fEXzwKRkGiTcDEsKJTkdJCRqYhRkVAtHtDeIyaa0DSEqsL2B/SoQCQ5OtG4uxWmrIiPLwlRSnm3wFYVXVXR1h1ZOmH//prD/SO1yhiezIi0xoSeVEMWa2Rbk54+R0jD5U8dq5uK97cPJBGcP5tgkgQ5TPBFTpEO6LoW4Vq61T369ITo5BQZZyDANzu6z+9w1/dwaKH1hMVnSDL6xtL0LXVQ+ChlW1fsqobzeUJrLdngGOtrNps9Vy9e4MqI4jgwusqJTy/Z7Uqq/UeKWLBflNjG8/bZc65OC3a7z9y/e+DnP/03iMbQyZjVYctr2yKaPbGSIBXSJPi+x9ctohjjmw5CT3/zAdH3RFHGoJjSu4CI8ydVR7en/fh7dDrG+ojf/uZXtO2eyWCO9BItDcJ5fN8i0HTlAVxPlEQEoUlGM4TMMOenVO9LHh/umZ8/x/Vbmt09aEG7uCcaDBHTCaFv8M0en8a4rsO5AHEMQhLaPVYqPv7xG1z6v/Lw6RO5q5kdn6Nkiij80+QvG9B3HevtlpuHe1oZUUjN+asvYfsAwnFycUlvUx4/3JC/+Ip//1/9tzi7hr7FCUm72rGoGqZeYKVh23Q8PK6YpROGKmKzrjnpA7K2qCyQDEcE00Gc4Zue0LX4rsG3FU5Y2rpkf6jp6pJXF2e8+OV/zXa1p9w8st+ueViu+KHuuO/gi9WWvCgYDnLMyTOmg4jI9fzun35g++mB6atjrq5e0FRb3HZFNI5JQoWme0r1KPfQdnjRIuIYNT3BiTV9WSHihCg1NHXFerngP33zketPD2jl0UUOdYkzGqsiAglRmnNYb+h3W5LTOa//+t9x/N03DM4u+M37T8RItDaMRhOC8wyzlH/+eM2nfc26bDg0LSeTKecnZxwfnxJ2azZ1Q0hHuLZludpyPjh5OlArCEKSnj4jSkeoYEmmY+LJCdIaQlPhD7v/l7032ZFsS6/0vt2c/hzrzfsIv9HcPpPJTBaLVSRIVgNCEEAJNdFIj6eJhoIGkiBUkRCooiqTZCaZedu40Xt4Z+7Wn/6cvbcGns9ADsgF2BOYwbD//1/rW9h+RzCbYcOARlg2lxXvX76jiy7xRgP2+x193RIfHyGtQssAZwAn8GTGcHDAyacB3/zNr7n41a+JnrWkX/6E0fEzsnBA9eEKvdmgRyP0+ASbl/TbPQiD6RqMaSjLHDmyiDDGRTFGeQ8XT62pkITKR4QRURjiD4d0TYOttoTigC++/ALXW+42OZebPZ4WvH234M379/zBv/nXPP3iCVYLLl98z7urtzzJHpMNEnSQsq1bMhzOdXQ64H6xoWoMV3crKuFx9uQjtK/puxaJwBiDaltQAdI5XGMf4gchuKol9MD3AtomfgDfC4ENA2xXsH/7knpfUtWO2SRGhB7SKnASKRTSD5DSoaVC7nd0TYOs17iQhzhQ12G2ayQgpcUJiVMerqqw0j2wx1yHUy3OGpx5iMaUuw2+UiRhSNzBPFOkVpG1lvODOR9NxxyfnhN++Bau3xLM5jQC9irmzdLxyxe/5ve/PCfAEmqP/dUCL5tycf+Kkycjqu2K9GiCKRp2txuq2nKxLajevWdyeMyRFyAthNMR0nSYaoe1M6TUSCmwwsN1LdLPHt522wUCjacTisU9VV2zWS14d7dklzseHx+SJTG9B7ot0Ugy4bNqHZkfkSQjtJ8SBDF+ErL9sGH5dsHth0sGWcrp4THV+p76wyv83pA++TFae2gZI8IMNcrwkgjtKrwkwFiPToWItiT2ffbre8I45uSTL0HWhFGI5wVY9cA3CeMI6eDm/TtOT49RxnDz8gXnUYb1Am5fv0ae/pQ4DjBNw/zxY1AeP3kyJ//wkg+/+H9IR0cgga7hzWpD58WkkaYzFs858s0aqQSecfR1TlsXiChA2Zq+6jB6gOwFXppiTAXioenOGYkLxrSNBX+EsHfYDjytyd+8Yv67v4sXPZRD6HKFwqKRSBnivAFeOiFJhhwcPcIbjNhcv+fy1bdgBbiAKJrQeDGi69G+RLgHJxZ9S9cXWNfitMYqiZSCpq7BtDjjcL1AB4J8vSGbTOk6S5SkHDw7ow1niHff8Onjc/zJCQMR4f3s39L94j+zuL0l7wx512O7hq6t6aIILxuw2245OjsicIa7XcWHt284PX9OMp9hb3IqBHEU4HZLPK3oO4PWPqYrUSoCNDJUDxattsb0AuEPMBV01sO4GHREW/fQOWgl2eiEcBDjeRXbXYvZNWgF4WSCFwzROsVXEGiL8HxM35KFPX/8e2f4Yo+mwskhXhhR77YkZ8ckh08weY6zAiE8ZDR4YAxGHs3KwyGpyoLe1OAE+6qmN47nP/6UmRCoxtA2PYkE5wyDwQTlhyghOZwfYYMYffKEdH6EHIz+qcbbf1b6l6XJP5IM0AuF5wWEkxHWs7hBz/3yLYNgRlFv2W8bhoMjtGy5WL8jXIX4aYDwNJtdyShJsL0mTSeEYYRoW44OxvRVidMa01Z09IjOoYKQvinpt1uckHjpkK7fEWQ+65sNVdUzHlhmByFXV2+ZPX+KTjL8JCAMFdIaBkdzBpMhx3crfv1X/42rr5aIYs3pT/4Ic1PSlBu8aIj0MhAS6oo2v8dS03WGzooH6KLv01cFYFHao+s6nO3xwgDb92zLFWVe4ElFmtZUxscbT9DW4NU9g9EYGfp4nmSblzShpKsagjBg5DdosycbpExGPi/fbumqBqk0Xe9o6g5rDMXtJdnoGOcUZr+gzRv6tqdsawovZjxIaXY5QbMjbhtE02K6FtZb+n2BET2d7pDDI0yY0muPT370CcOTZwTbgv9tt2W+3zEfTfn531X89z97wtTvufvFLznQc1SosfsFbrNm98NL9qbhxV+/ZZ4UzM8mtHFA9d23DH4yA2NwZYXyfFiukK1FNj1REOP7EevFPaExxF5Akqa8WO35xfsFczqSt5oPf3FF2wuezzK0rwnSmDCJ6JqOwlp06FNvKl6/fkdjLJMwY7Va8eTZY44mY/qupus6hoOEd6KD3hCMD9gFY4azktvFe26Xa6JRyma7YJbM8D0JwkMrSWs9PFmhTYmyOcIWyA6EknTLe3zhIfsp8eEx+bfvaPMNKk6QdUV+eY3yM05/9CeYQtBevyESC0Tfg/Cg7ZHGMTk7QccB7a2PCVJ29xVu+Yqzz6ds3/6S+nZN+ijF0xVivUGGY7QXQxKDbTD7O/qqwDZbnPZRSpMMMsIkoihrLJrdvqFuGtIgIfBjys2GdnuLPDji8vU1eQWLvCMdzRnOD7HqDr+vSVRGNBvgJwnaBuAJGlFRygLjDJEXY/SE5aZlt3UMhj6pDgiDmOFozlBrtustjVPs9zWJ7Wg3W7R6iMvJ2SG2D/D8EVKDXe+JDh/jqgqXb4m0pjQdxvh4TtCsbghDTUNIOPkI39cEGAKh0L1DOIPnSbi/oLnb4MqO5+cTnIx58/oDg9RwEJ2hdYwYaeIoQvohTmiEaNBRhJeOca3B5ju6y9f0mx1YCUojPA8v8Knb7iEeoDU7HdK6FoQjTlN07LPrckajHE+kGBVipeSTn31MZffUxpLvcwbjZ5ycBtR5jqd3zLwhzx4954vf/YT17j8jlgu6yhInE5piR9GHLPcVQeTjygptLb4QmL4n8npMsfst42lDtbpDECJCn2B+huoMPSD6DmmhLiq291t+/eZ73m/XnD75iHE2IQgDjLUEylKajqbdY52jzO+ZhZ/gjcYEYYjQMa5viaTk/Xe/Ifr0kGQ2Yp9fIco9ehejPlwgAw9nN8gwwvY1KgjwswTnWpTv08kEk9dslve8+F//F3o/4+nHn2KdRNYty9cXjA4PUJ7P9XrL5PknZI0hFhIvG5IMM/b7W9Z5yVk2IbQh2cyQnD7FpCn16h272wsIQ3QQUfYSyo44SxmOhtzc3rBYXqLnx+TVnr43SN/Htg2d2UJnoG9xHTjrMM7SlzvarqN1ln1ZIj3Fo5/+Pt75xySLC/hVwyQKmX/8MZO6pS7uyNdvuLl+4M/8q9kIeb0imRxwdrLhetdSbkoG4ynzR5/Sliua2w/o2uB2HTbcobMJ6BFCOUxTYGmxQlFWDfHpI6ysuL14zTeXH/jb774nz3fEYUBR1fi+xyCDJMvQgzmYnuv1LSdez8mjjzj7/PeJx0fcrxb03Rsi38f1PbQNp6ePCOMHeOOT8yf41zeM64qPnz7h/PwcXwh2W0EYxpRtzYerK3Z5zmdPTonCB1CjUOKh7cxJRF0hOoNdrTFFi0ACFv/oAH/+iLJYUzuLCDyefHzOb75/wd9894qqqfnR6fGDM8A5pJLoJEJ6iqGZ4Yua8vp7smHM3fsF5eItuacZPf8JweQM7WKEVNgwAOlwHQ8X276i77Z0fUNnLFoItOcjfP+hASPJePLZ56QHB0RpijQGt75DmB4vG+L6lmHoMzv/hJdXN7z57itMndN7MV5qGCb3mKYCUaN9Q9vWCOseeCPOgjAMhhGql6y7mutWUriGKr8jb1q2l5e8ef0SKR3paIbn+4imQXoW0a7xkCg8aBuUNQjPR0cJpu3AWnQgHhqofI0I51Tvr7l6dcl+uyJ6fkgyDNBKoIRFOPfw0Ro1HIAybL7/W/iuxgaa+PQcbzzH5jucALIEawzOt0jbAg5cB11BH3h0bYNpW3arJc70DOOIxpQoJONhRto7Bh08HyV8Oc14NMgwgzFWCHQUsFwvyT2JfHKGvLug3K3p8Hl09phY+rx6/RVlm3NxpZjOU467J/S1435dss1rpJMUdyuMEw8RJN8jiWNc26BRCKdQWtHttth8g59NkdEIp0psbTG1gaFGsGe/ec2bdUEXZwxTxWe/c4yLHJ2naCpFaXsGqc8w9bjZr5jtLzH1hOYm5ubv/57vX33LD99/TdBXnM1HxFnG6emILA0x7R6uv0KMn2J7h3dwjsxOEIMYaQqcFyP6FmU7XCUQFpTnYT2PNPZpW0fvIAhDQKOUJNQFfW+5Wiwxy2seffoZUwTaC/jh+7d888uvef783zCbjck3Dl9KmuWGN1+/on39mqPRADca0Nme+/cv0eUGLwhY72rqvkcWBUoIcJIOi1Kwvr8gjBIGYUyEQlQVgVS0XQH9Gm82Q4QZwksRIiAbhKxv7mjWK0y+pnpbcPKjn9LkgvXVN0RDQxYYnJLQ7RFFR4+iaAyuhXK9JfFDfD8g9EKK1YogumUbvMYLMpSncZ15WJyYDtPs6PsVKoxwTYf1FNb1FPsCrXrapkYoMFawaR0u9HC2xViLpyxHniA9OWeaHaFWa7JEEp8/5/HumrvvP2D8lm3bIruWrqno+47wMGY0GqO0h1Yh2WiK80Muvvo1x4cntLsd+WpN1LdEkzGdC8AJmipHikvU3AMnsLUGBzrxEVI/uGeKHdp1mCqnub1BlQKnZ/iHMToMiWKLazR2vyLQEpmlRIMJOpqivQxlWmxb0VkPP/RBWZIwpys3bN58Q3raY/YWu71h2d7R247h8TNk21BdvSX1niAEWFNjqxbXW/q2pWkbmr7DGcssDhkrxdAKlPZoBwmfVy0X+xytHpYvs8dPSB894vDsjOPPvmBXtlgr/ukG3H9G+pelKbkX0QAAIABJREFUyT+SpJRI7dGZkMhX9F5FF9Z4m5Z63zKYjCj2a7a7itNnz/BFhkQzngqML+iVo+pKAMbphEAa0qMxfpIhkgQkSBxSOJyz1ItrbLPHuo4gDeg312BLmmrB+GTGsAnY3G25ra+YfPITRtMpfTImODghYItwFd7BCcL2ZLst92/fElRbsIb84hvig8eYbQXFHunHv30gC2y7pdgvkMMBUkdIL3j44+otfZlj0yFSqgebn+9zc3tH3jRs1jt2+5zj41MeP/0c3wvwrSAMfFwwQ2zuya/fU0mJ8wNa03ByNCUxC26vPpBvYrq6QbmWOEupmo6m6ynrlt5YlosbivUWz0nubxbcbnOc1BStxSNnNp4xPDpDDWa4vsG1LdaB0FNMX7BdvUOMM3QypFMaL4kYPn6MGh4yTAr+/D/9Gb/8xT/wdlnwD8sFN//llv/w9Jg/Ckcs/vL/ZPD0U8xuQX1/D8OAqobL+5wXf/eW//Q//zuy2RHmhw80r36Dd/4leBnu7gpRbLDrDd1vL5lWSHZ39+R1y5u7Ndet5Ve3S9ZlyTTJmAUZZV1y5DsOhzFRpGnDB8v7y8WKoqpQGlrlE/ia4XhMMJgSu+Sh4clZjHPs92sm8wlxmFDnNaeHJxAO8UeWdHBDd7lF17BY3PNkMsToED/WKKkROHarS2w4fLDMigGeP8RFEYg1tqoRqxuMkoSzQ/rNPWa3w+x2xOOE5PAzmn1NHGus6pBJgFAhAonnC7zQoVKBSkMCOaVLNCrao9pjln/zV8SxwKkp5fWGYJJgvTu8aYxtHa7fYfI1tttjqjWmvMXFE5xQpLMpOPA8j8r0bOueVSmZC4W2PXXraKSiLHpevvzAZHjMs88+4d1qz8J0vPzmKw7GGdPnh0SjGKUltrRgBJQR5IKmaOmbnsQbI1zNm9slJ9kMrQIi/wHSiApIo5hASvouYXt3i15vcNUW6hFCaXzPQ0cDrNkj6xrb+NAI7L6mNwbbQjQ5pqsvublcsNzs0ZNPeTbI8H2LDhVBrAl8TegJfFEjiy3u9orb7xcIFXF2+CW7+x3X7xZMBwFaj/HGQ4SKUYAzPcII7K6iv18/OM3KDd0+p96u0SgIMugd+AZnHiogKy+hKlvu9zuskAyGCZ5oqOo1IzskiBNGcQLOR2UhUhoWmytc07HbWcanX3B98ZZIjZg++Rw/zBiJcz47+TFu+Q0XF9ccnZzh+z55Z3l1lzP/+BgtFCKOMVLgZSH1Zk0URTRlDUVBX5VEk1PwJCpOUH6C3e6xpoJ2T5nv+PaHN/y31695ev6I8/OPCdMJTd/gNitEZwnxETpFRoLV/T2T23dMfInzDwkm0wc2jjSMohCtNMP5iMA6Nm8+sLEOshRuXqFk+fD9CguqR6XJbx/Ajt62lG2HCkI603N4eMCzL3+GXC8p7lYkh48wvmZZGS4ur/CGQ8Ig5S6viaxlk9doPwYc9/uG4WBEOpuSDiMmT454892a9TKk6Sx13XCzvOco9BhMM6aHM877ir5siIOUpijIV1viZIDvCx7oJtDs9ygvxjqL8wTW9+nMlm2+pWxyDh+dkpw9wjsaI/yGL//sz8iXK2rT0d7fUt+1RFpydpxxW9b0/RKdgGn3CNlweHLM+u6SeWvASpKjj5AfPcPuVlAWmKLENg7dC0TWYsME01XURY4MfZxyXFx84NXbV3zz7oJlvqHretLUp7YdzW9djTLOSEdj2CwYUvP49BG+hXpxjXCCDsUg8MiLknQwxOMB0rnKK3zPp0fy47NTphoePTrn6OCA+n6B8RSLosRKHyFgt1uz3u8IhwP6tkOpHqs8dOijA41s9g8W7ihBeAqVBfhHp/ROovwI8eEVu/UFb69WvLxdclPk9E2H6UuK/Zp+Wj80W6ieYDKgr3qaoKEOJHUSsmsb4pOY7faC4H5Cej5Ajca4vEIGA0zgPdjfl7d0TUdTd9TVnj5O8ZIBMoow1lK0Lev7Jb3nEeY5dVsx0hpPeSjlYaQgOzjGDOdstxu++6//N7QFrTEMphOWxnB6fkI2ytjcF0yjE+Lngr8r/o5oesr13ZrJsCKaTagR7K2HiwaoQcfu7p5V3TKMJFcf3jAZpQ9sgjDB1x5KPfCWrLEo4eMpH6EkyvX0xQ5bVTjXAR1W+iRnZ7j9kuyj55i3CxarPZO3FckgQh8+Rij5wHaLAgQSNcqIP3tKu7ugyg0yDJGpoGv3WO0h2wq7qR8cObbH2Q7RV9BX9L6ir5uH2uMqp9iuGUYhu6pFewG9bRhEKV4QkW92TLOYeJCxKFuO5yc0YUxrHZubS17fXKOTiKPzx/TL9wwjjziOGR2fcFdcU93subte8uHqnl55DMZTlnlB7yxHaYhxDtV2EMYPPBzvweEWDWZY66i2BfX9EtXXRPNTbNchUHS1pXEBheu4XN3yq5ffc3R8TJINkG2Nmk+wQw8hIWxKdKIgcZBY2rLl8uYdI21Zvf6Bv/3mHe/3Jf/h936Ho3FKOgEdJggtcbbDkxJEj+v39F1Iu92QjOd4JoCmRUgf6XvYav/gLIwAP0RoyXA6pCwV+XqFtRY/8Oi7Fqd82jpntdpzvfyAFpKTx09past3f/P33Oc9n2sfqQVCgWtq0kRTRh2Hs4TbmxWtaVm+f8FlWdDWFREGH5+qkqRO0pUFvTP0wiHqGhGXtPuIeH5M442RRuDHPj0O09aovgPZo0yNLStMDa7c0xQF89MZkTKs3nzH1cu3nH32BHX4lOjgCKXAdTl9nePW1+SvX/P29Wu+enfNH/93jyjLFj+b8+TTL1gt7im29/jXrxD2MUEQYhuJa1aYdo0I/YeYju0wXYP2FdLzcNY+RK26nrIXjGZnrHZ7qvKermmZZZJhkjCeHROP5lQ/fM/yzS+pNgfIJCScTuhXG5a7DUo4TF2jPU21uObRdIhUkKRjxsc1oZT81c//DnZ/xeko5fDxBDxFsdtidIhQAd39HX5naHWEH/eIrkNojbUKtyuwdYdZXFG+/oFydUvXlHROo2YzkDXYHcXGsrmqCLITdNoSKYkfxYRHT3GNRnQC4wKC4QzhKei2tHev0EZAV9K9+wr6htSz/MMP77hcLDl9ckWSDch2U2y7J5xNcNbSb5e0+Zamqti39cNsIxXC07x//Y4oG3H2+/8Ra0vuVne8L2oeHZ+wqXoOj444fvox0WhKXloWHxbU+/KfbsD9Z6R/WZr8I0krjdQeyhviTEGaDOnrNcrrKTd37Io985MzpJtjlx3j8ynLVzUiWaGrmrrK6ZVkno2Jsgw/gP12ReBJQuXhlIeVgrYpEfWGdr3Ej0P8yRihBWZ5i+1LsqdPMPmebt+REPPudsnpKCYeRvSBwkqB9EKQAcQjFBZ6x3iY4NqCbDKi7XuGR2NM62jvV8jVFX3Vo+IBbV08XJM7gU4SrBMoASpKkDqkahu6rqazYOuWd7f3LNZ7Fustgedz9HyIUALPc/g6RXU1Ig0Q2xvuVvfYyRlpEqOdRLkF2/WaxX3FfKKIPJ9eOaz1CJIhoCkJ6IRiMEi4e/ea9c0dN6uSPp0QhQlCapa7grO2IRsOsTw4gpzhgby9X1Is31FTkY2foNMxbb0nyVLwY5rtgtVmz+j0Ef/+f3rO8s1b+r/8r/zy5Vv+9+/fcBgpZtmAumsJpiFuFCJ0Sxxb/uPjTyH790TTGHKHONvRvP8OcfgY1RW43T1NvsZon7osCCYTjBW8vrgn3+wIFfzx41PadMz/+83X7HtD8Nvmz1hLpmnAXkiuPixY9lBVNYM0IB0OODycoaOM27s1ZdtjbcNu+Z6PH51ye7dnsdzx8WzC4y9/wuDmlsFwTqw9aj2mMzM8b8Jyccsg9NmVOfOxpm97ZBzgpEINx7Q01E2OJ4Y4KRBZhnGgtUB0LS7fgge2q3GhIv34KXq7hEHG6tXXvLu44Mt/+6f4YkMwyIjHI4JhhBeDUBWUe0y+pt+v6Io9LigowxbtZxx88jusrt6S73aoUY5ye4zwESbHlAtsXeBEw92+YJiO8TyNQNKYjs51FG3LfWOohaJyDWvTQDBi2XjsNjt6J4kjj9PzMXY65XaXc3g8RxlDmKbEYYSxhtbtWFVbNsWC5fKKKq85jr8kSyS5uOBqf8fV3uf5QBHGFqcF/ihGhJoi31EnKeXtNXHfE8QTGnzY7xHaQ2kPaQvM+hqb99hWYgzUVqEPTinLgs7kDCYRl7Xj8WRI6vVEHoSjIeFshgo1vhb4oYGiwhMThvUP7C5zlOk5Pzrgu/d3eGmIliC2JTpIEEI81Iu2e7pig8omyCDG9BanfKzryVe3RIcfYz0FxJimwkYRfXLA1cuv8OkwOiRJQoqmpCs7+m5OsSyodjseA+NZQu113N7eUuc7ouQRRwen7AvxUIGYHbBoHf/Xf/k5gbpl3xquV1tevHjHo0czOmMp8KmdQFlLY3riNMDYDsIAqxQi1AgtCUYzkB40Lfv1PYPHc1RksF1Pnud8uH7NX7x7RWEMj4czxt6Q6OiUm9ffEumQVIS4bIqJNa7vyVcLfv2r35B9+z3ZaM7zP/xT4vkE2ddMgoTx0Tk6DQmKisF8wOp+xebya5QYk8wPwRO43tCWJVJLpJbYuqJveyoUlXW0zuFHEa7NOTycsygb5p3DpiNevPgBEw1Y5Q1Hx+dsVAFRSisDBtmY1hleXS3IKkHUNHyZJazevqbZ3KACSV9V3F19YLW4xTs+43Q2Ih0OOTA9trPY1uBHEXVdYcxDna5WCoRC+TH9JsfkBd1qSZ+X7JZ3lMUW7QkOnz2hU4Li8oLe9ujRlCBMqTYr7G6HDmKmoxjv7JRBU6JHEVW+ocm3yPkhOhnQ5Uv22xV6METEKd5ghD4YQFdhmhqz24EpsKUPzlF3hq7rkb5h8eE9Fz/8wLsPS+6uN3SdIUpjvDhgEGmU70P4wMcZxJp+U/P06VPi4YSvf/1Lvv/hFbNnnxE8forrGpqyZDAYIlH48QC1uedRlpAeP2Y8nXL34hu0FES+outqXJnTOE1RFpi+wwtD3l5ecTDI0FpinME6gxQ91klUNsZ1OU4bbF/hH81QWYopt0jR0XQdjR8Szw8Jb9fMRjHC9FytN7x/8Q2pHxBpizRL8lclb779FT/85ms2dUUpArxIIccxfgzL7TXedow/PwHnIZ1BCA8Tezg7ppcWZ3tMVxDOT1Fh8lBPGgR03ZarxQ1pkjJKY+JwiNQaHWq0BAesq4Lyu79nl+9ZXb7BdjXHTz9D+prjkznKpjz//HNmg3NMkyFGL7lc3LPZl/hCEYcjNssldVWg4gFpMiCUY5b3Y+JdDgLu72/5cJHhpCRNe2wQ4swe31kCpelthQ1iAqdxxmHqCocgSBOsEMSjFNGVOGvY316Rdw01mr99eY0nHLazDD7/GaGO8SQ4kT5Uth9NGfz0p/hFRd9bvCTAakW/2VF3Lb4KoCnpnUX4Hq6tca7HFAW9fogT5asltniAB3tBQLnfk6QZUgjCOCONJ5BN2KoB08GMJlXsqzV2V3JflWzurtg6gXWWw0ePmfo+Fks48ZmfzfmDP/8fWfzq53z/N79hPpwzPv+IF6/+mpODOaJraDtDlW/o+g5PgJMKqxyu6zBKU+R7tjc3DNKQ9v4O11R0u5xisWK/yVku7/nqu19z+uiI4eEZToHqQ1arjmA2xQ8V2vVoLdGJhzxIWW8bVvcNv/j7f2C/a/iHu4I//d0fkWUxSu2ID88JxycgPMrFLW57RTA7QY3mmNZj+eoDWjrkbogejxCDIXa/xHUPy2XjBEJpXLPHMENHEaJQFGXFQPuYrkeanrqoMEJzX8Lrqy2DueH+zWts0zI9OCIKE6SUxEnHanXD44+eczz5MaV12Ls7lrsNV1XNal8wSBO6yiGN5XrX80maYLsNu3yPTmL6ssHk98R+TBMPkHFMKDWma5CBfADsuhBR91DvMUUDwZC+vEJ7W6Ik5M13r9mVlsPjjyEYI7JH5OEpdVHx0bOntIt39GaJJx3KCLJ0zOTZJ4wfzWnqGut8pumQZp+z3a7A9qShj2h3SN2i0wE60JiqAKHo+gpnH5qonDV0dYWTkqp3ROMhvulQeUDbddSmZTAfMZwe4oc+33z1c3bXl/zhsz+nkGNkKmn1LXl9w3qzIgwCAmlIXEK533N7YUg//ojJJKPOc4q+43pTcF+V/A8//gjCgK6q6PItxa5ClgWVsHi9w01aXFg+zD5tidlvaa5uyC9vKdY3FMUG5/tER2c4Wm5evyBJQrpKEx19Rrkv0VVFOE+Ijo5Q0uCfnaOTGX3t0XgJ8VFEd3OJaJfoPkerGIzBNjWh8BkEa75+veDupuZwCkcHh4xu5oTjBC8Isa0h36xY7za0UtKHPjpJmKRDFvs9EwmPTElflTR1Q94ajA549PQJJ6ePGYynvHt3yf3VNbODM1Tg/1ONt/+s9C9Lk38kWedAguhb4sGEzlqMUORV+2Adz7dcXb9gOKk5Pv8R0VHA9nZF3zYM0hG3yy1NVXAwneAlGqk1cXLErispy4rRtKPtLTQl7f0dURgQjGeoNAEPgo8+whY7XLXElCWWnlK2vFpe0v/8L/jSfP4w1Lbf4Ccp3nxCP+iRjUFevMbUFZNnp6hsjKkK9st7wqOPUNIj/+Y3aKFoV1s645CDCVoKnLXoKMBUNUIIrFaY2rDelwht2dcty7zmcrlnta85P0lprMGqh+pgr2nQkzFJUCMnjk/+6CfsxJT7u3tcXXG3LVlfLJlOxgwmE8ann5H8eMrbv/k5ma242vWEs2Na6aOGGYPDlrKxqNowP5piZEC+K2iqhs70OOuQnoJAYeigrWlW79hVK+KzT/CyM7Q/xG02aKGoNis2bY8/e4RJhlR1xarvuC52nAwz6rrl++sFk/mUZb4hkpKmqtheveP5Hz2n8ocMhhobRVhavPAUt7igXl8Qzw9xmYQgor28oJU1OvIp1zl3m5ITrfn4eMzJ73xBOpjy/d2Kti7whOXTJyc81w2RJ/lu27DYVVRixdnBBKE1w9kcPx0T+T3J3ZLr6/ecffanJDqhrSFJBoyzKcnogE/SGfb4czzTo4Vg364JDiOSnaDsKrpYU5gtqdUEXoiiw1MexCM04ExLX+VIa3FSYSwPmfdxigwUpsmRoyk6HYLt8F2HI+fsk484/eQjki/+hOLbV4RJSjCbEhwfQ3OH2b2lfvMdP/ztb9htVgSjhDA+4Pj5x0yPTzEiIsKwKn6N2r9DHozwkkNwAUr0dLs7etYcnT/HqBjbFDjX4XpLVdVc3dyx6wU9cFvkdEHHRkXYSrK+vmP+5CludICnQvqLr1n88JpI+8wPJqRJhnAWW5eslh+4v//AYnHBKl8xmj3jdz7/16hwx25fcnO94dXNHY9GxwTDIZICoR1KNQgq4nFKlQyo+54mb9BBhtQ+ttxgCh8RhzjlUS0uqEtL+PgZ2eNPaJoW2j3+0EPoIfmtQQ1SiFLC+THeeIYczUELHD02FohYotwpsT1An1UIqYiLWwqzhnRM9vQxzdsblPJxVuDKDa5radsa+/Z7/JMnWARWRch4/ACiUxbpRbjGIJoQEw3Z25CyN1gpiOIIKaBparq2pirWnD5+Qtv17Hc3LN4JbruaVzfvqDYrDidHKOeTlz2d7fDDirouufxwxfX7V0yyAZvKke9W7BeGYZLga8GqbNG+T6gUTinCLKWX4uE3iUSFmj7f4MkepX1UHOH6CqTCKY9dVXDXN9w3JY/jhL6rqa4voWsIw5go1Az8CDVMaBKNs4LRaMBysWB1d83izbdcvHrB5588R/QO6SuCdICUIL0UVEA4zDCuom9runKHsj2mb1lfXpCdnWKxgMRoj8YYbFdxMk3R9Rqv2RHPpsRY2iShEpbLVy+otWYYQL2Z0tWWm/slbjZASMm+tlwXe262NQrD/fUPfHE+RgYO603xlObi3SWhcvSmxUqJcZJoMMD0Fuk0wWDM/WbDpC4JkoSueaiuxjwM/Z3r6doKIQymr2i6koOzUxpvzPVW4IeOSRLga4GgxVcdg1SjVErfFWzyHXJ6TBsMCedHRO2Kvt6T1x3BUUa53hLsVxgFcaTxRxOE9LBdj5EexlhQDtOWWNviPMfi8o7Lq2uWu4rdNkcJn/EoYjDOCIUlkT7SOfq+p3eWRBvMMOP07JwgnfLtq0t81RGODsiNIC/yB8BnmTOPI/wswezvccKBaVnd3bBXPtMgxhsM8eOH3P4ITXl7jdbQYnhxfc3nTx4zCoIHx19vEF2LjlOIU0TjsK5FxgFqOEKEAeZ+RTCfcvLl7zF51kJtCNYb7l2N9WBxveHyfsv05QuCfEM0Tbmvt7y9v2SzWZJvOnZScf7FGXIywncpxaphvXrLwThCxMlvnZcWR4O1FQQKf5xhYw+VDR8iLVFKC9zd32GFRGv1UJldlcjh9IGF0O6RScrrr75l+/WCw7Nzzp9/ytsfvmG/umWezUhGU+LJgOHpM8L0kJGXsZGOgy9yilf/HweDiKY3GDTj4xOOZ2OEF3P5/gMfnR3hmY53797TBj6r3Zbg9gbrYF96ZL6H6WqcFyBVBFIgOgdNhz+YEKQZri5QcYitttj1kv3VLcu7ewajMcOi4q4v+eXbBZ0RnFYwrh3yi49x3Rw8hTUGJgfIkcL/bfRGmA7pBN1qg3AdOtDgafpihTAF1hmMVjRVQb4v2CwXjA/nNK2l2RSs97c4L8H7Lbl2MBlzcPKIw/kMXzlQltcXb+nmh6R+hBESFaXEOiD2awIt2C9XSGH55Kd/yGhyRHD0hPSnEVXf0O4KVN8xzCLmowPurm6BFts1qN48LJv3O+Qsod4uWN5ccfn+JQdZhLe7pri+xPcz8uWOu5sV33y4ZHw0YXDyBJnEmL4jHE7QSsNOYVcLArOi2OyJTU88yIjDDOdKbsqGutM8OQy5vr7gjdrx+3/yI/zRADWZIIIh6XBG/YOlePuK7JMAb3CEchvyFzfI03Oc/BSlfUyxo6326OAA43rapsJ6kqaqsV2D1AH7fI8OQ4rtHikE+33O4nbJ8XhGFg5YXdyyXW4ZjKcMnnyEp1OQoMOW29truMsYPHrKHRoTZWzuc7owIcx3NOt74jDFj0JEkrC3JVpmZL6kbjukCml6gy9jaqNIZEPf1wjrIVuDF3vgQDiJbRucbWkXL2k2b7B9yV/+/DvWmz0fGsHPskecogmtxNQr6n3B+tYS2RCbzOmPDziOJvjLBVGo6LwUG4bUzsN1Bi/IsMGOfH2DqHsiX+OEh2hbVJU/wPfVA+i87w0CQ1eXD1y6IEKkMV2zJcsCujLgzTcXDIZj/CzEG2Qo7Zh88iXPf/Yz5OFz0uQYsX/BvhfkBGxby3K/IvQkB57Hbrth//4tbbnmd3/vR1jXcjAdMIhiIiWRWrHb7uiF4uZ+g65q4q6i3EJgHKKscOkEJSW22tIubtjfrVktltwu7wgHAfPDOS70aTEcfvwZTsLq3ZJ8t2Xx5hVluSUYBPz4X2mOn36KTBP0NEPUlmCU0G5XNIsLpGjRgwjXtqjRnL5ucLsVoyxgEipui5J9Z2ianqoqGLQZSik6NIvVnvV+z/HZESaIsH6IDnyCPuJFUXL1l/8HdQ+TOMYiuNtsmR4cEwQBr9984NXX33E4PuLw9DHZePhPOeL+s9G/LE3+kSSAQIMy9iF/Gg+IPY9qk7NuSy7Xe/K8Rg0P+Ob6BV+9f8HZxx9z/uQMbhxcXdF2HUKJh6u99Ih8HxUNqLcrhHa4tqVvckxf4g2OcGFCL0OgwfoRdndBcXNBs+6xnYfyQmaJ5K+/fsl3Hz7woydTtIs4mB4iU40cDKAz3H79LbLaYU1N2FvCNKFd3tLudySH5+iDAzY//ECbF0SjKVEQglbQ1gitEGFIU5YPxPB9Tt11DIcDyrLlblezrRq0VsRxxGq7ZVdXJFIhRhnxyYhi85rR+THDICNxY/abFZe3OabtKG3E+28+YLyUL//kOaUBPqRsr0uGfs9Yt7TSo9YxNhkSTmd8lKYE0xO2u5Kms1iRk5cNvbEPlcnSYlWDKZdsyxtMOkbHx8h4gs4GqE0Iy54dAjl7zLrp6Js7yrpmsb6ncY6qrzlIPX5RWz58846AjkRa/L7mDz474+7dkmA8p93dsF4uIU45fnQC45h2d0H47FNMXdAsX7NZLZGT/5+9N9vZ5Mjv9J6IyD3z3ZdvrfpqYXFrtkhq1JK6NRiNbdiQpTHgI8O+Kt+JYfhEhgYYa6TR1lKrm+pmkyySVfXt27tmvrlnRPjgbfgOrDmQ/neQicxAxi9/8TwzVOCx3GYcDyJ8qzl6fsbhb3/O8Xvv8yfvrskf75iP+xwfjukWV+zaivPHR/KmQTsBp8c+w8kIz+9h/QS1umQShaRxS284RmrJxd05H7z4mPHHU2zP4fLNG5JoRDSfIBxB3eZUXkU4cbm7aPjB2RG74pooKmjtCqWGeF5EkZUEozFYSVcUyK5BOBYTBOCHWAR6t8IGHs5khvBCbFXA1uDGHsK41EXBF//3/4FJ4ex4iq1Suu0a6Wxp3v4Dv/rTv+CuMRycDjl88QHR4Ud4wQRha2xR4FagZhPSxR3u+i2O50KnkfjYtqUtlkSjCKf/BC0D2l1F11Q83i94u+kwbkDT7g0tjYXrGvKrayZHM9TRAY31aRc5nhCEoUtbtfheSJFVROGOfL2iWqzZ3j5SZSnStRx+dsbkvT5aSfTthGhzwephzfVdxrMnzzFIpAPWEeC5CCmR0zHd8hFjwQqPdp0ixAq3N8B0Au/0Q1QyJZExKpig0dDlqNgnjA/Iv3mN9gS5kpTxnEE4p6tBaZ8mzVhdX2PbEhW5yLiHf/IKuyupl7eItCGZT0hefoR1Xbz3BjTfXyB1B2EPU1W0+Ybm9habjDG4+1p6b4TneujG7q8hlIg2xpnMoQTpeWjBntdUVqxH3PbkAAAgAElEQVTzgjiJoMuhXjOfTCjKgpvz16wUVFXF5PQ9Jp7DJl2zLEsklrgzGL0/FOIoh0brPT9KG+o0JRkNSPMdtZzQufs6faU7HKtRUYijAnTdsnj7HT3fBT9GJhH9J08xdYPebNgtr9g1OTJJsEIghWW7fST1fLxehD+bkvSHDCcz/OkYYxu69Zr0/hplatzI59AdcXl5x5//zV/zk88/4uijT6nTFOGxBxxLid8LcaOY3cMdSEtgDG7cY/TsPYxpsVLQNS1V01GW9d4oIhWvnp8yjSH0NNPf+wnZ1ZJv/vo/I6qM+0pjfR+dDBFezMPdLZejGDGM2RqPTb7m/v6Wk+M546mi6Xm0dU1rOxoBv/Pv/3se3/yK0BHkbUuvF6FLQHboukEFDo5U1Nsc2+9j0GA9MJquqmiKLW3XYJua3e4RJ5CE82PuVxnWqxgIgU0rHi9ueLi7omxTmnaL06TESUDjOsThMY0UGDfEG0yhdPCbjrDVdLuUss5xbEK9W2F9f8+CchzUuE+52WLLHHcU0Tws2e4KymJHKy0q8hCuIog8nh6f0ckOZTr6YUhd13iBD0HIIPFx4wOGkxPU8Yd81PRoH64IxocslzcI01JrsE3F2Pdpi5zHrORhkyKzkqcv3+fZs2ecnR5jrMY/OMGtWoqLC7ZVyTrbYgdDujTjZlfimw7lRvhBhBH+ntWIwZoK6ShkkiCSEV32gBr2kEFI2J9DtkBvC45OJjyeXxNNXvDZrEd+8R1V21C5IdHkiLNnn/Aku4If3PDmb78m6xTPf+c9VDzCdaeEqqbbXLK5f8fw5H2s46Jbu1cL5yuMbdDKIzh+iW072qreQ3Mdn7pp0VjKqqRqWiK/Q0loq5yw38MGEbI/JXHAkYLhdMZoPcMLE7ANyTBhdPqMZDSjF4Q4ZUEw7xM+PUOuLyl0xixKmB0/5ZN/8zl6t+b7X/wDiS6ZzkbMhkO6pqYqKza7iiDI8IIIqTys7xHaZs8gEQbTlBRVjaP2trOuzBFYXCHQdUnxcEPbwejkOZv1jrFV4Lh0yysusxp7t8D2r9BuS6DPEMMpndUYL0ZKhRAG3TYYE6DrBoPG1BkaicXD6ArpCLrW0DUdTdeyWS9xfR+sRUqHdbFiXdQMez7GdKA7RFtRbe+p2g1bIbipGrCC5bt3HJ4cEiQjbJwwOXvJfPsas7zFVx3nb8753X/7Et8NcT74jP5Jxfd//1O++Jtfsiv3bBfVG3D8MubucUlXluigoytqVGMoFguK7ZLbN6/56quvWEcO8ctjBsfPQQbsHjdcLh7YtS1P5k8wfkStfJQf0UURnQpxcAlCFzZrqm1JnT/ShgHxcEDoBgjpE4i96S8exsSnY3Ik/vaBKBygnAicADE+or6+ovziF0ze/wFBLFl8/w7lGozvIPN7dJ3RIPBdRWs6tumWqi0ZC4M/7JOtU9JiR1ZW0FmSOOG77y+4eHtFOBsRVg1LY5gdzTl7b0Y4P6UVAk8qhFSUScjPrq9wb+7Qj3ekusGZTPGNwS1CmrJGNTUOmqpYY8KaxhWkjzmOaWhMh+0sQkO/36MIDE5rkX5EV2ts16Dceg8RtYZ2V1Jtc3abHUWjyau93e8hy/nTr74iHg3on3/NT3/1Twg6/u1nH/LxB6/4uy8uuFlt+Mkf/E88+/S3EVEI2kMUG7o8xRqF5yeoLiLdBvgmxWnKfZBtW7S2dF2NCmIszT5MNjW2aXHckEoLYj9g83BDrVy8JKbuOkxlcb0A13dx3YCTH/4e67tH/N6MwycnvL24BDdg2Ug2ZYs1msIqWBcMJg2PD2uMH/FZNIRdShwFbFYLXnz6ikI6XC1SSuXy9XdXjMKQ555muc2IHIWtKkzb4IQR9eqG7HHB/e2Gu+UWP3AZxOHehjYa4oQRjlJ05Q432VDdvSXxdgS9kC6acnF+Szj/CFc6lG9/SehJRN1H1iW9maG5qzHNI8rVSNel7RTW7Qh6LbPjHuVjxaIVvMk6bLCjiSS92Qzp+bR1x7AXEQ57bFroJTGO56Ksj6kVf35+y7E0hMEZnRuQ9PpUTcPF5RXv3l4gtiXfvL0gW2f80f/4+/Bk+l91n/svYf41NPlnGqtbdF0jrcYKRRjGKAzJeMJ6k+0d8smAm0rzzdU3CAz/2+9/RjKfsNrcEiUJ66Lh8TfqqdPTl3iuj+5aDD5WAbahqXYoT9K2DSYvsGWKkRWe2JKev6EuBMZGGKUIBgE//OR95vOYddOwXVcEUnO3LXj1W0/pigWvv7tlsUiJuwo/iRF5jhdG+IMZbVNx8+1rBqM+Kokpsx1dliInHW5TIesc6ztoLK3W7PKUVZET9/tY5dF2JVEUciwADI4UeFLSNRVq2Mf6hiK/Y3H5JZOzU8p0zTK9JHQNriOYj6b4DjysdrRG4TqaWNfMD0YkkQ/nd4BBSok2YMMe4dTiALkb060z2q4jDALKuqGu9hpkbVrKuoW6YFu1hLNDZBCB79A6Dk7So2gV8fFL0vUW167Y3i5Zre9ZXt/g+i5N7bDtNIfjPmHsMvoNPNNvKs7ThlfDhPT6HfFLl8nHf0jbNbRdBUFAs8xo7y4xaU65bskJCD0HTIVxHJ48O6FeLlhv1hzffsP4JOB/+OiQ80Azmk2ZzMb8cvPIpqz2ylvlcDQfYbsOawWLxYJ+XhDUO+LxCHdb8bDeUGcFaZby/Nl7vHrxEbfLFDeIwKlh6OJ5EseJSOSOrBuixAkTqRBOyOJhw9HcRYcNxkTIVtKV7V6H2VYUywXBcIp7OEcXEs9VWMAZTSEI92dSy2JvrqClyRY83Nyg8pbL728xVx7TXg/XDyiqkuLxgVgJPn02xTsIUDajyi4wpsCLxlhlkFLTVAUHH35Ifv4WLx4RDY/pqgTVG1I9fIOsa2LHgaqkbAx55XC9E6xLTdYKykZjOkMTuCwqxaTvknU7VLVAyyFxFDA/OeD18o5h0scPI6QH2eIenWtUpzidnBGamF27YOa2dMU1utlRbTfQCqTx+P6m5KNtw3TWo6OkMppd09IIReMIRODRyj2vSPshNpxh7b4yTVEhpIsIexAEiCpFBR5BlNDWG2IXlkVGuFrihvf4Zc18MuTx+3d88/pbzh/uybTFBCFOL+S/+W//HZPpFDUZUZVDDn/rU9RktifRVyXqeUx38S1gsWEApUORlpBW4DW4ukF6PkK6qACUo7BW44YHnOd75fjo8IhFmtJYWKQZm7wgMJYgDLl/vOf12zfkZU5dtYSHc05+8CHDKCHxfQLXR3oButoRRy5p2dG2Hb5yaer9R90mLXh18oLlMmV+dozGYoVAK4c4GaD8vYJYJn3ur76m2W2ZjJ4hhIOUEuHs9a/G1JTGMPzgE65ef80wcnioatLbW376uOW3leInZ3NkoBGhxvE01fkV6Zc/p1o8IB2xr0YLQ+BZbhyBmo1pdIunLMU6R68X5LsV0w9f4poSYWZ0nUZ3GpoSKSR122JCF+E6gCZrajZlg+e5vF3t6I1n+GVKOH9JFYWsdltM4LPLU7yiQN7fEsxOKPOSi7sFXjJkOhzQ3j3wsFjw/qsj3NBF9Sa4syGRdMjaS44Ohzj6jN31BfePS4YvnhDoDotPZyXWCpQXkKUl/byAOEGaGtFU1GVFlufIJsfRLeEgIQr7VJ3k7t1rmmLHQ1XipjnSGmrXkFNxT4frjJnVikHr0t7e4HkBTtuCO8CVlrpbY6SgFRqtNHmR0Tlg/RDleyhdISRoTyKoyC5vqRoNXoyMJH3pUdoaIo/T2SHz8RiDpqhyHCckiiO0ksSxT8+XREmfxlSs7u85OjmhTvrkbcnVd9+AFXhRCFaxqypmAx+8AD+ImPZihqMRh/MDIkexyAqi0QG1eMvaGu7yHeu6Jmxb0t2Cx9WKiRrTszlt7ezBf34PG0VgMkTg4/R7QL3XlLoBIkzQ0gXXIW8KbD9mkxd88bN/4o//+H/h87P3GIwCxmcneMMhMlCI+oHl7f/D5FXA+09nMBrQeT6ViAEHJUesr29xByuCfoLwAoRskf0RuAIvGYL26Cjp2gZdtxStZbnZ4ElJ0h/Qn8zpDxLi0GEnPZZ1zW5xS10XRHGf/mRCHPd48cEnXJ5/jxCaLL3nwHsJtqHTAuVJtrJDhDA+PkBnHf1BwtP3XiKDHkIInhxOmXzwAdn1JV00YrNY8sWXX+/5UMCuLJBS0xmLthVCSATdPrTFIRlP6eoSrRtU4NOtH3GVITo6RZSCLO3wrYvfGhIDtRL4UsPsgHoQk7mKuq4QeYYRBi0cpFB4nkT4EV1ZY5WHdj3qaouygGkxSkK7b2Q1XUuabtC6BgUon8X9mi/enNNpza5ucNyK1m942GxoupoLrZkcHLETknEvoSv2MFcbDphOhjx78ZT43S3l7pGt5/GQpvzH//Qf+cm/+RGjuE9ZrEmrHbI3ZnhwjFYOdWeYTI94Ek+os4JSZrgyoNMOqm65fXfN/cUtt/ePXFclL58eo2rDanHH+fUd79Ypg8mMTV7jsEEeHOG4LqrV2GKLcl1yW9L3I8ajPngNaZZx9/qGdFGSGIWKAoaTCZPnB5hRzPUmY7N9jf/1ObhDrIyQQlA9blnd3DFLNUcnp2hAm5Jic4PaOWTbFWVXM3V+i7rTnN/cE4772FWKag3rzZb7xSN13XJ6OKNtOn711Xe8W2731rFdxmeffMwHP/49HGUJRkdcBz5SCTrp0QY+l+fXHDtgm5rWWmgNvu1ovQB1cICvFEZBXmSIvkeZbiAE3QiqbU3btPSTPrtdiiM6EtngMaDLNfR6dG2D0Bpd1ehGUxU5dWdQvsPHz475+fmSKHF4t075v/7urzgNJUXT4IYxf/mLb7h+eOB2ldM/eMr8wwOikwM6JZC220NN0wVX318h/TG+H2H8mNvFkqdBh+M5GEJs06GkQNc5MnKwXQ26oGlrPKVQIgGV0IsPCKVgke0IopjtbgsS2lbgN5JodobpHaMG++ZMkAxohEc8O6PzInxbY+ucUJYo3+PZxx/wwx//mG0D23SH33MZPxkRHs65e/uOnRV8e73kvgRdZZwexOSdIW9aOsejK1NkvaEpdqyrku83W9zIZdT3abTB9SCYjDEqQNcFypfEI5dmW3B/fsXDpmJ2+pzp9DkPDxvU/JH7v/o/OQk7eodzhBIUizW//PI7zi9ueTkKeP7yFHdyinQhOpow8WoKmWI2Wzadx10NIwlQIYOE6dEEYQ3K9Sibhvl8xGrXkDctMoiYJDG6qXiXF/zqdsPT4ycgHf7pm2+oyorbizfEyqUnX1Lr5p9zS/svdv41NPlnGiEEhAM2yzt6U49OQ5gM8KMCPwxxekOuNwXf3t/S4dAL/P/POoFyCWOPJBBkuy3v3rXMxyfYxuKFPp3paNsST2raOqPcNbR5ixJXaKcheTomXbyj0tAaQX8yZTidESQCTIK8DinObzEyQ7UF3m8+Xu7WJZ2I8TyPomlZbWsmrkuoHNwwIuz3UMMZd7/8gmgwxJkfUJcVtW1x/SFlusBmK0xvjJHs690CWt3hWPC9gOcnh5RVTVPl4DjM53O6rmGzeQBpWL29xmyvOP7oBdaLmYaSx3ZN2OvjBpb+9IhXn01YZ1u++pu/pj8aMp9PKfKUMBSYIKKrOrQGL4gwGnJcis7ghwlV9UjRdgR0NFVDvtkgXYHvumS7HTsCov4IPIWRYHVB51m8s1dYz+XNV3/P9uaO07OXTPoDimJHqSW3QrFdLmjrkq/SgsN+xB//4Q8ZJAGXv/gZmVGIy0f6wwRxd44ziGmzDO37aLa0TU61uWHZ5oxePacoNvvacxRy8MEPUFWJvL9ifbXGD75g6DlU0zHjcUKQxGwbuN62XN8+4jmSvuoorOHkaMp0PKD+5jX9wwO88ZRp7bDwe6w3O47PXnL07IQsLzmaT4gH75E3BaPphGpX0W40RRbyeJfy/ukc6XUMepb7d29ZrbbE8RCjLL4T4QgXqQG1r3RqLCJOEFZjaHHGQ2QSYaTEdCW2LhG6pto8kJc5vWfPMFmJun7kYbmkaQp+dZNz10gCKfiT331F72VEmT/SbK/2pg89oOtKHCoa2yIDD28wwB4eUqdLXDdAegoVBMj+iKzQ9DyB64J2QtZlx66oMLqiMx5GKhrb4hko85SiagnHJ7TFjvhogLYuRwdP+SEN6eOOOhfESY+3X98z6M05Pn0GmSTupmyba2Yaynd3tHlO4MCs/5SwGbGs1rx+WHH83CcRAi1D1MBSrAo6oailoCeh6QrQLl4wQBuJ1DWi3iKHfWzcxxqJLnOc4QilXESpGU0HRFywXlwSpWuSIEHGHm8fb/lyvWLjGDaOhxcecjAc82b9SFbnDFzD0ac/IJqdoOIAtAWVIaWLOnqC2d6hBMimRrBFuRojwHQdVoPr++gOUC4iDrHKhfUF399m9IYD4l5CbQW7uiIta1oLjqNQVcVqu6XVhrZuSZ6d0RhLWRc4pqORLn5XkXWaPM1wTEe23QCCLM9Rjktelkg35PTpM9R0QlevEH4CQmCwID207GjrirosSHp9SMYIJ6TrOmS3Py5kXMnBb/8IrSu8i+8ZjQdcPGRc7Gri0OE///pLZonLs8Mpba+PJyRtuqEV4E9Diqtb7tY7ilXKpm158uKUXVPgpPeEvRjZNaTrG/pHY8JeAjUEjSYvSpzegK6pMQKkkrR1iVCwsy61hk1RE7kRf/azr/jq7Tv+6N/9iLP5MzQlg+MZu/N3uEHAJt9hV488O3tJqC2jwyO8INybD6xhOJ6BUPT7EdrCaHK6x7l+e8Hy7WuiOOFhW7C9XvLq+RmuctBOS+DEOEah4ogsXVEVOUEywGCwusU6khrB4ckUmS2pGxdn1KfTLhcPN/zym18RWhgrj0AKhAvnbcZ3dUetA14OenxcKz5oXMzmW/IoJEo8hqcTvFlMKB5phaGoChzdYvRv7FSjMZ4DXdVStR2ma/AiH783pW0NjqxIPMXDAobxgMHRCaMkpmt2JJGiNgptQRiHSejTNjV+ckIYJpzMXrFY1dzUll22QjuKTrj0gxApXQ7dCFOUHPUSgrrk9OiY/rMPcJSkkw3HnzzBqD5X9wcsXn+HEOAFPnVZoLqWxdV3bHo/RBIwkBJjwOgGm28QVYU3mSA8D9PsaNIHnMkxxo3o2hqjDXWd0fkeTz94gbsuWO3e4f34T4h7Hu4gQEUKU6W02QPei2c8CT/GSokWBl1Xex1v6ILp444KVosFs8ExjjLYKEaGHg4CvSmwtsa2DUZbrLNvwwSew2g4IBlPGZ88AdMglMIoF2M113d3fP/6S86eHHH23kuC3oAoSdC2ZrF5pFyUVOkSXeUsW02jXbQbcTJVlAtLo2aMZ3MGvZjD6YRi3TD//A/wognB4B1FuuXJ8RlffnuBRlJ3BpPtcANBUVbIUOGpCiUUQjkkvQFtp+m6FIElTGLCyMfxQ0wnsOsdpthB1IegQPfG0NWMxwFe4vFYPCAXJZHXR2yXtF2OEwR0XsggCogiTVvWdHWJcAOazR1+5OwtQ56LdCV111LUBU3XsC4r2qri5m7J3399we0yw3V9kJKdowj6AuEn5BJ6cUQTD+l5Cqd5YDbuY/yQ5abApjuyq+9QuqPxA+TJnPzdFb/65oL7LmCSPbK+uSKZn6E++IR1WhHqgl6jUX5IEPe4eXuJIzyskXhG01mDNGIfKOQV75ZbfmdTk9XnPF5d8/b2gcwYqjxjcf6G0XSC2xUUm3v8utqvbdKn7zpMZz4TDwLrEeiIg0QS6QGLpiUKe0yen6Fljg08jJY8Xl9z/+4cFSQQjnCaFrqSb64XBLcFf6ADBkbjDYfY3mjfyKobZBeQbla8vXng13dLorRgOBrA7SNZXvLw8IjjKAaDIeXNI11eULWaxHd5Pp8yH/ZJBgPcIMAZzTDGp1V7zsuuWnF3d0s4HUOnUeMp3miKs1mitiHN8obN4xW96YTtrqCanDIIYx42FcZqwsBBCYF0XZQVFGmFG4DOVzgyIt9c7a12rUEohbQWU6XIOCbpu3iTMUeNIu1CKvcG2VQ0naE3nPO6UDRruLIdHz57wmd/8Dtcb1eklw6Tk1NiR6IdD+sG5MZy/vactlMMBwkDRzEUDeFAAWIPcHd8sB2m7ui6BmEMjrHYTiJ6MUVdEI1GrNZbFnePxL0eUJFu75kMxlTbluGzU8qgYyVgJg26N8SdnZA0JeOnT9lsUvLNksXykqFwefHeE969/Y7vvv2WWaj4/AfPqdYFi4c1gVSYoqEzitvFChM4hGcDPCGo2dvxHh7vODgc4cQhYa/g2XsH+Ara0lBmO7JFSv9ZgbSatkipyxS9W+zXNU+Qdy2Lt5d8ZPvUzT9g018TixXVco1YvMa0Nb94u+N///kDPz7s8aPPjgifHKHjCY7osFoTipaJdOg8gS0Mad6xqTsSKTGA40raTqN8j8aUaAFxEnJ1e0/6uMJiKZFc3j6wWO8IehMOoyHzJ2ekj0s8q3j53keM3n/vN2H6v87/3/Ovock/01jpsEgrAr+PEJL+9IgwDMk2a8JkwO2bc65XO3ZFQ290gBcGpFmKQTGaTDk5yHi4f2RRNoRRn6ubW3pRj/58ivZ8irpECYGxgqwqqbuMpkwJD/rk5xt2i1vczuHpxx8ymJ1Q3dyRLZcIr8btCuazmHdtx8MupxCGiy9vqaWL47ZUpSHPNNKzJB2sbpe4m5x43CMZjEgmIxoriU7m1DdXOLGL6oeEyUus1lgBnW6QQYAf+AglqZoGoxSD/gBH7VhXO3r9vaa1LTJa3WL8ENmb0IsbosGI0fg5mxxe//rPaLRimTc8/fBTvMalzLasmzuSYEA4mZP/zX9icflA78UIbzxHSYkAgigiFAJWW9Z5TZj0Wa93NKplnWd4SURb+gzxWS43ONMxWhcIlWC7Al20GAHh0+csrr8jHMS8evkjiiJnuV0z7XkYYjzX4cGxlFnBZDhkubjl9bfv+J//1/9At12Snt9xePqMzWWBM7zGa0M8x8d6AY0xZJsHdtmW+NlLlO/iWJ/KSuLRhG1WMT59Tnj8Au4vKRYZlaMIg4Reb0AjQk5PJzwsb3hxkHC/SGmKgpenE46fzpgcHlK01d5QND0kViOC5JgnT56iK0vUG0BPYnVBsdEk4wHTwZBus6FMF9yvW+ZnM7puQ9cfoS1YX3C3WNAbJkhPMQ4SlBdgHIM0Lf3jE+rGYLoCiQDlIbAY3YE06DKj2l5iu5IaiZrPWa8X5MWGeOrx9qEh3bZc5RW5DDiJJfc3X+NrF2/oY5WDXd5jtYfIVwQS0vt7ilag4h7hkUO+Ksh3KaFQGGmIphPu6g6LQXgWnfiY1RorDJVwaYXDrioIpSWOQ5oq5WZX88HgPZLhkGl/SDA8prGS8d0ty+sFbhBjraZtGoaTKXHQJxgnBGbIgXfCYNzgtS7VKqfzN+R1hm4VVu7IlEPdKQLRIRyXpt4/r0aVbHaSwnP3kEpKdJtgXYvWFTpbEB4fYV1Fl22RwyHSj7DKxfEE08mc3z0d8Ms397hBjmhX/OJqy51uWFjNX9zn3DUdYXDN6d0l17ev+ezFEZ9+8gkNmqbdoqzYKxsDH0GMGE2wukNXGuNFaLkD6VAVFdI09CZzHMfD8bx9AyAIcJQLSrNaPfJYK4LxHJFnxFHA1XJD0bQ0RnAw9Tk5PqLooGprhv0+ceQTx32W9w+sF/ds0y2D4Zh5EGKxGOWhyxzfUXRdy7oo6bTlaTJk+v4Pubv8mrbcYEdj2lYT912U9mmbEmkaguGEtq6RVYkjXZAuypO44wnBbEqVrTg9Oebk3Vt+/PKMv7vOWG5LEmt4vLrk8fGWuRKc+j7x8SnDj8/IfvmP/PTvf87PVzWJ73I4TejSB5w7TbUNQTfYsmIyHzF6eoQKAmxb7Pk/VYkVFhmH6KoBDKZqaaxCeB6OKzicD8jEAO009E5fsdAe43pH0gsJRyOS8QhXK5Y3V4RJwuDgkG11wXA8QmO5W6wJk5iXgyGBL/GjAW1bkm6WWOnSn49JHsc4IuBqu2O3W3O5Snk26WO7Ftd3UUpStyXClTRNQZEtCHwPrWu2aQG6wOtqqvUVbtAnGiWIcMKrD97ny5t3/OPFd3hAqDwssKq3SM8Hd8h39ynZ8p4vf215Nh4z80OS/oinbsfxR89xTod0lcbUW9xen0Y39B0BnqChpW017vSY/vgpXVVQN81vNLEao1vatuXlsxfUas+kQTT4yqezinTX0EqJdD1EMmdwfEaepayygscNNLYjr7ccHB+RFxs81yPpamTdEg0nSK33RxJHh8xPXyClwgjD9vEclVTsZAehQ7PU1BpcxxB5Cu261HVF50pqa/D9AC3AcV2EiMFzsQrKTQ5+hBo/oekqTJFSlg1ltqbKU6qqQjY55eqcr7/9B35wOuX1n/0tAS3z958TDEZY6dC2JSrpY4WLkvt3SGpDYyRqOiO737K5+p7pq99CShdRNdiyQbo+3S6nLXNaIXAHEdV2jec6BP5eU9t1NW1VYLqK3nBEXjW8vbhksd5wdnaKg0Y5PqPRAMdzOb+5xnVcvv3qlxhjkNGI4+OXhG5FtlkyShTtcEQ4mFDXJU25D3DdZIR0Y7zxIbvlBmUl0zjibpsxGY2JI5/QD2gajRWWptV4nkOrLbXWNPkWW9cM54cYYWmkg3V8ZBBgy45W7Kib39ynzQp3OKQm5f7NG/K2xMYJ89bgD07JszVCF7j9IWYyptI1Vd1g2gZPWpS1dEWBiiKMgDbPEErT6Zqua+n3E3IpWWQXPG5SWmP3beJqb9ZQ2zVBMCEMQzzPoelavDjibg2DfkBat4SDGe9urri8fMPnk70pai0yqrajRdH0ZhRRTNUKeh//Lp0TMR0qTHqL23P47s1blDaUeUlaWD76eEBZ5lTrHbd3D7TWwQqJUQ7/8P0t//7lMUHMS4UAACAASURBVG+vHvj25p5lrcmtIXYV/ZtzDBXKtvTckHFvjo+kcjTLh5qhCnDqkqPDGdF4jH884MkgwPgOuizBGnaPd+hewsH77+Pgk4dDimBI0hkSU/Ousfzs21vk9xf8/mHMobX7MCLw8MSc7d099zf3/PnPvyK3kqBoWKwzDJq26tBNg3Itu03K5u0bPp9GJO2USejywdkpXVnw8P23HL14TpoXOM8PcVxFhSUtbsjTlO/SLe9NR9xer/Cbmmq7pnm8wZRrlOdQ5AWe0tRFRTQYImVKp6God1hjkErjKIdylyNaoDN4tNimQlrN0XsfIK1F75YYIzh4+QxjWtpO80kyJsk6Xrx4ii4r3ry74CFv8AKXZ8cn9Kd9eieHXGufsGp5uLjg4vqKaRISj4ek25JtrXnclSweN7zyXzIcRuT1Fis8hPLQpqWpG/wooq0aPEfSaYHtDFZZTGBpox21zakdsHR4KiCJXcq6oNI5WdPR770gMSWYjtaNud6sGI565NuW+OAIZzBB9Ho8ef+UsVfypz/9hoeLC+gank0T/vCP/jtmtSARgrxpWV9fYbOa9O6Wzz/7CCcMcC24ocduXbAudzwfH2MbiI8PYbehzjVa1zRa8XiXM/v+NSrY8xe3qxUqVri9kN4kxq8sF/cl6zdv+TfHOdXdGvSW2HS87O8bPf94o+lFfT7++AXJ8SldMABnzzSz0tKaihTYuQFhXKNdj2y3pRNzXD+gabu9fEIq5uOIXd1QGJfxeIwvINfw5ZtL8rqhF8UIJbm4POfoyRmf/P7v8c3PvmDRWo4Oj3AC/7/iDvdfzvxraPLPNFXVkjcW5UqCZMThZARSshSCu23B3TanbBoaY7BCEMYRy9Uaay29/oDZ4QFnecHl6ufcpDlN9Y6XT19QLQ2eZ6gDh0FvQBSOUROHan3F1199T/tWMB/2cXzFi+enmHTN5dtHym1FkLiISEE8wgYwOxiAcShXGU7iEPZiKg0HE8VyueN6vcNxK0Yjl0HkcH+/YXu7JApdmmhAkMT0Dudk6wWq38cdHCJNt1/8PZ82L5Cux2qzQYYRqjeg6qBuWuL+CMePwIK2hmA0xhnMODp5hl4n7HYVhZvx17+44/xNiR71cGOJjKZY25HMejyel6hly8kznzaaI4Kc1++uGcye4pU5k/EYV1iqvCQwhs4KqrrCKkmtLXXXUeqGnpQ0ZUMtQDiSzrEU1RanE+jQg/kpD3eXbLIHbODy5vYdoSvIsw3TYYIfxkjWqNZD+5aTaY8PPj/l2aefEkSS2Ysjzn/1hmfaUuwsQris3l4zPDnAGoVx4XG1wAYe8fgQugKp93/HwnjCavMN2eIW+fRD+uHHZJc/I28WmFhhpUD6Ja9ODG7dx9gJP3sTE7sQuy2T4xnHH3zEKowRbkTl9rg6f8PpTDEazHh4+8jl1T1nH75k2ptyd2lJ04pDIWi6hv5xzMpeMp4Mefv1PePxEbnwSMtfkXWW6/SReCbRkUsXRLjKIqyDDBxCT1K7LWWe4hiBcfdaub255xpnMqDZ1pRFR5ul1Ls1ympm0wj/Rx/w93/3lsCv6dsC28HtxmC0w6CdItYrgrhE9ReUFupak+Ydp5//IcKPESrAoY/eFaTrG5xQYLxDfFzKpsSLI1pjaXyBlZrWGIxuCR3w3BAjXZwg4maZctYaikIiGw/ZSUxV0A9CBlFC1mr82Gd2dIzr+cyP5phW4cghju7oHXZslztUEGFFQ7de0fY6VFsTDwLCYUSxuUOpPq2WDJKITNc4viQrSkbjCV7oInyHzrYIz8X74BNsEmHqGsIQd5hgTQdWYIwimh3wW5+8R7X7J7JNRaM7vtiu+fg04fyxRuiOqaMo2oabx3v6bs2rmWC1jIn7Dp7fom2DF/RwHR9rOxAO2nHRQtFoi3YDTBgT+hHdNkUYBxXFWM+jNS0IjXBc3F6C4wku317hBAnSGuJej/m0IysbcFxa4TI9OMVzHFoDyfGcTBiENfhxyLCMcJSD6wcIKxB1wycnh3z1pkBLSdduyDrDxabkJ71jes4RzbTBbr7FdB3BsI8xFhyHOm8BQ5kuUH6E4/YQSR9twY9HxFEMUYySDqOXH3J4f8/RMOY/fDigckdc/eVf8s3dI/ftjmeBg+7XzA8z7PqGaNYnPh6zTe/55TrjE2EIyx1XV1fM4piXRxM+/eF7nH30aq8T36VQ6T3fKYlo0i2q18MNPdpWwG8C1V2esdusSTxFNB7SyADblvi9AVfX19ytCxwF/niGflgRJhHjgxmu73A4GZI9XFNaj0kSMegNGYwHmGpJVhZMRgGYLdKb8PTlGTiGn/71F2TSUPqC71YPPDns4xuJocGLIoQQ+O6A/mhIsyvRnoN1HYSjcUyK7TSl28M7eoZVFuU2DF885+XN5zyUHXePl9Rtw9RxeRn1QQo6N0D4CY0TIbqMu/WGjC1hmvNtV/PsccmzV08IB4ZlVoPOSBIfu9EEfsh4PsXHEg77CEciPBfHGLrdFsdRpMbDug6D8YRtVaIihw4fJcBoyDoHk0TkwiKjAOUF7No1/+Vv/4Lx9AWbxSVtV5FvVvTDkNhxiK1CbzcEYUi13WCUpIsH6LqlN5mTZi3GVlz86tfotMNzXbwopp9IqmxD0kuYnZziDwfs8pSpsBjfR/WTvRmhlQh/336TSR9TS+rdAisUuspoNrdY3VFXNY5paHcZ9W5H81f/hfB0jrn6jvDlCdubezoD0g1RYURV7PD7h9RNhpEOpm3JjaVVAXagSe/uSYoN0fQpVrc0jykiGFOnW8p8TT0cE8QJevnAfD4jLQqyxR1h5KH8EN/1KA2UXkSUxCRxRBCEBGHC7PgU33NYPN4zHRyx6zruVhnDQULiuBRNSVPv6PuSD3/wA/KipDcdU1YF69UDvSCi2aa4Tkv78Mj6++/JtymR49LtMrZZRhwGFGWF7/rUXYvvSJRSZLuS5fodZVlyPJkRhD4oSSMUyoCgojN7I1yxycCPGBzMKB7esthtuV4t2Faadr3jvmk5e9nQoNgVJZOypN0ukVXKpihIi4qeYzjs+fTHfTxpsM2+4VhX1T6EEKAcl21e8PbqjnXRYIXCF5a8qGmtohQ5A3GN7z1BSc30cITwPGRvgis1B4Fl01TMBjHfvu3YmIzC81m3GVXV0Hg9+uMZZboj/OFLkkHE/8veeyzLkmVnet/27VqFjjj6XJ03VWVWFgoNgAAb3aSRZmzSOCKHfCuOOOOIPaNRNNpIIxpFVDWqUCK1unnV0eeEDtdiuzsHp4xvgOpB1/8M4Rbu61/r++qywPc9KvuEKLnF9UKuL6+ZL9ZIK2d8eorRgTOe0K9qmqpg4kpsb0hTRmjyEEcXBEJwV2RslWLRKcJMxxCK076P5TjsHR2zvjknKSOOZ/sEzojQtOhNB7gHHm27RagIc/YAZR1jWw3rsxfU06ecvPMEup+Rbyp++ZvPyaKSfLdDtS26aXJ2t+RPZgHFbk3TNijLJc5qtuuIX3zxPbebiH7g4/shjmMj0SjtiiRPqfKIzfyOMt7y9HSfB/v7LOd3eJ6Fu39IHsW8+fVv7/XOj/4Cw/XJ85QyiVHRhvPbW8rVgOmDhxiqQqch0jU602bQD6jLgmK35tvvIk7+/E/YP5gQbbbItrjnPekdhcpI4hS/ZxFFWzLV4Wgto4MjmlZBV6HJiMGjMZrZUHQhWiMZhhKn00mjLXWjczwe8euvvsMZDjg4ecTw2TMye4BBh1ZX1OmGKl+zfbmiLHKiNOfmds4iTvnJX/wlf/nhk3uGzTK9P/2TLZZ1Pyzp7k0WtE2HKjLoWjqtBWlgCIFhGKziO5JtxKNHz5BdSVsosmhDfHXLd4slYT/gMo1wnj9H5hlpFNG2Ldv5HRfn51RVweOfvsPV1ZJdpeGMDlB5zLau2EY7BA2tGzJfLJGWwaEm+fMfv8fs0QMMp4KiotMaxodDDh72sYcD2rylS2pEYWA7GrttyraqqdKCwYsUe6BoXRtrNiOOIgrNovYDUrNC7wnWu4T/5/WakIrzKGeoa/x5oPHxgcknYwPPEQwCqAwPwxBYVkcnB+SrO5a7LZ++XPHtzZI/feeQD/YGrJcFXVtgmAaFKmkADAOjUQS6Bc19MZJnGTgBi/WGXDX0+xNc2yZNMm6ur/GGUybP3yFRsJgv2a03cPRHpsk/df44NPkDxfZCHH9I1zU0uk2U7KiSHds05mI+J68bokLhOT5RvONgOiapWoqiwKLF0HVOTo44vL7izcs31LpJA4xHQ6Qo2AuOaFqQloEfjhFySdS2WPhYIsTtDVH6gBdvL9ndpTjugHF/ijs+oO4q2q4hrxK6WQ/fi6jTllra0CbQtjw91Yk8i9VmTaAaVqsIGXisk5wgy3GlTZZkGLqO6fv3DZ3W0gGabiA6nWqzYb7eklSKka9jWxYtFa7rYDs2rW6imzZmk5M3LdP+EDfsEVUJ0u3j+id8/OwY6y7gli2NL1hsEnKlIbqGm13FZ1+8pC5iVGXw3aohrmOeFSWB75Kv1gjHhaKm3mVUdcXJ40co9ZIuL/ACH8/1aMuKmo7G0HH8ACl+zziwQPbGbJqa1foOES1YLm+hKFnWCpXEHO7v83g2pd8b8qrOuZtnTMigEkRvvsJu9+hNT2n7BneLC6QKcfQAI+xIzxaYQUhRNdxtMg7ffYhtOxRxiZT3xH9DgOX3sestxdlnyOEhsjehXJUEjoVpGdysblGrLcXtmod/8gG940NkmfHlF99Rty1107LNSxzpcDtfk3eSbZaTFnO+ffGam4s179/UPJu+z913BamzZPJ0n3zTYZQdvudwe3NGGq0xOcTUTUR/ws3NBnG1Zb/vMw5BWAJTN5GdRLN8hJBoekNRXmKbFZoI6ERNmW0RgeTuxb8ny3OE6VBnGW3XUTYdtumC1md24jM9rCkWZyw2azZlTaI1yHJLz7Rpuy2VqPBck6zTsfceYx5/SNYJDF0gHUXXAU1AmTe4B0/I1iV1fQOGR14taOmopY5qWrq2Q2oQJwnD8QRDC2mKivXVlrE1JYnuV1g365j29yplJwgwwpBgKvH8kE7XCMMeliURWg7aBtOryGWKa0pW2w7NUEjTZHJ0iGbamK7L6uqGoulwPUFJQ9AfQHn/gmV4LkUZoXt9hOPSioYmSxHSQ/cDOikRhk7XVHR5jjAM3JNT3itSvvr6im1e8d8+n9JkKb6vc6DZ7IyAH9KSbddwENjIsub66xes31xw/PCY4ycPYfKARnfRVE3bdnRA1dTMVxv675yg94e0VY6tW4hOpzOgNXZojUZr9lCdRHf6RFlGXWWkdcNyG+P5IaqD/miG7QR4YY9KWoz2DjiaHpDKjmxzQYdGYOgI1wetQOoGQtXobYuRbOiFIdvd5n7gRccPl1dkoz00S6NvDyjqHg0NabTFmOyh6pKqKNhs1uR1ir53ihccI8Ixpm1CnWD0R6imQRoeupIcvfMuTraibgWXtxdc6TZWP+RYV4S6IhhYNGpHG3Vs8hR3EvC0aInerOla+FfPDkirmEk45uS9Z4z6LmQbOn8AQqI5Dm1T0bY1yuphDCdIVdDSYmDQCYtqscW1XV5fLzmZSX763jH55oKeb7MuNYpqhebP8EZjRsc1Y1qG0z7x/ILx5IjRIGS9TbBMSdgL8W2dGgdNr3h98Ya90ynPD04plUK2l6zWOzB0TDyiTcFN1rFnSvquc2+SMDwkApXu7p9xy0Y0FbpoUbp+z5wJ94nWGfnyFk2fw+w57uiAyeQRXdVRZ1uGUuP5MGRqmwhcMs0hNnsYXcpYbRnogkrX2JQ5Z9GWN9//wKxnYMuKwszYOxhj9nwCXWBYGp2qkUaHpneoqqNuFZ1oEIZNG0WMBnsIaSL0iq5tMGz9nr1V5kSaZBz2icuOr7/8FMus+OLlNf/6X/8Nh4cHnJ4c8ODhE7R2ik+HR8eYhhcXVyyXX+D1BsjRlKqpKfKK/Xf2cLZrlnc2D5yn/PDpt1huiOEkqKrE8VxOHz2kN5ngjidsv19RFhkMh2i2BaaBbkk6IYD2foii9ajLBFU3FElCsYtQnY5j6szTlK6qWWwTDqt76HGWGlwvodgsGUmL/sjDLFJMuyJPE8xwCAKUkNSWTbFdYGo6rW2yuTvDHB0jbJ92AG1ZI0cebblB2A6662JpitFkyNV8iSEEutAJwh7bOGabbtiU9835+z/6iCfPnzI6OCQcjhBtg+f3GB48ollcEamcaLslijOCJOVwNmF2eESvPyAMe9iWSdKUfPGrf8fQMhmaffR1QZXXLNMIDAPN0MnKih9evmbSD9ENg0bTEG1D2+m0bUMSR7x4e4FnWrhSo20q7N0OaXtohoOwhwgzpC415OQYV8SoDjZVxMXtFZvVhmVWoPSORbwGGqbDCYE0UKXLOo2okjW73Zrr1ZasqnjUt/jo2Sl920A3deq2uS9mlKKoFHbgc3l9ew+5rBtMQ5LVDYWCWuvAM3CRrOMcafTxths8E3qaINZckiwhrFOGjsHJ3h5hX1Bs11xeXbLcpuw9/QDb9ShqGE+n+EZHY+mYjo+h5/RGTxHxkkeuhxMuePH6Na9ffs/J8TMc22A4Chk4DdE2pHMDilQxGQwoA4/jZ+8yuF7zD3dvuYg3FFWH55oEnkcldc7nSwZC48kHj+mfPEPLfOw6R9kx3r6L69sUiwX+R3/BrjZwmhvy7VvyxRVLy+EXv/icr75+yzKtiJHUumRowPtDD12AGzj3JqJW0rQ6WZbz91+84uUqxvVcdMNgMBji+AEgqJsSLbZYLQqW8zWBAulPsL0ekns4d5KnHDx/huH7yLslwjKphbw/m6tbLCnZrZeQ7ah2G/y9AyaeCUYP1RpcXFxRbG5J4phBv0fedvRdkzyWOL5PaEps3SJNElqR88OL1zSNhmXaHB3sgevSdCWeo9B7PTRTo4qWtLaNO9hHr1uKt6+ZuhbbNCHsuVg//gDX95H+kKjIsPaf4NFQLJfYfo9tXoDS0Xcpu1fnvL66ojAEjw76jJ2WsqzpwgCpm1R5hmmAphn3JUwNqlFonUaNut+qkDqilewWW7779He4/hhBjipabMOEtsMNXT7/v/5PXi6XPPnrf8lHH/4I0UGSJJw+fsSrdcJyE3N4PEa3BFEcoRkmQeCTZw5lseHF27c8OTpiU5kEoym9MifWbUwhaYoU4fl06n5T0Qis+7O2TmIGAVWyw9FtFps5l6sdm1JR1h3fR4qnAwhGfZKqZpMkrGPF1TxGdQKDFp+Soi1YljWeBiNLcFs1vFyUuJ7iac/G7EoajXtzm3ToDA3/aMKBLnjceFRdwz//5F160sDxfRA5SEFeK/JGoNfN/XNSVehGQJm+QhUluxqqriXJc6QeURY5p6cPaHWb3niE1p+w+uE1X33+Ofm/+rP/gF+4//Hkj0OTP1CkIZnt79Fqkrhu6JYL8u2Cu/k1ndTJqnvNV9koRuN9VNvQajrrouHhpIdb16DrPNibEC0XrBY7mnZBbesEurpvocMK6Ug0R2A3IX/+L/6UUIxpOou0ypGTGX1/jLXf0JSCBQ7VVYGvKWxTErgjTBsyXPaeTlFVRrJcMwttlm++YW/qYhsli7slUkpOe0eYwx6v3l7xyUMfL3RBE8ggoDVtGlVRxQlmOGJ3d8X5Ys18taERksFkjEaHpWvYwxGaLsnrmvXyDs+s2T9+B1XXiFZnt5Y4ukU4dZiM+6QnFU16zk7WXF/fUChYLtfcXbzl1Xff8+mvfkngmTS14nA2JipqkrJFbyq6tKJrOhoks9mM0f4+m8WO69evSJuGoK4xQx/Z3jcrnmViumM6zaQzNKTr0dx8R5ivudpGLDcpbV5hNDVHvZB9N0SsdjwJhkyePeBX6x1eo5HOd1S7HFkpRqmkN5qwXl4y65moVUS1jIizGuIV81VJoVtMHr4DwkAvW8ospRMKresY7h+SX+cU8YJyfk4wHJLXFaFsUFLndlOwb3b85D/7gOMPf8xmPqdOUj7/zuDnv/oK/YszTF1Hmg67DMKDR7x88ZLbecrtVcri+oLf/PYzppO/wCVGf9hnun3MU0Px5qagCULi5A296ZBNXjBxBxTtgLqxuN5UHN8UHO0pOtFhjAO6pgTRUTctSdFRWTqFqmmSBTdf/pJKQZbEZKpESgOKGIEgcPp4RkCeNhQXCQM9ZIfJ6HSG0z/n4u4OKUtC1+B3NyvmaUZaFTwe2Tw4Oebk+cd0oiRvLDoUQtMQvkdHn0bUrDsD5/Exq69X+EqnrkpUWSIMk23Z3Kt9a4VuWZiDPWxbIK0ENIjZsudOyZsct+dRNBXYBrptYzgO+6cjXLuHa5j4roVtthjSYpPARuaEQcHy7QZL+Ijcw3NLhp6PY/pULOmPx0TLFVlSkNUwHgyQVXH/G3QMOq1G2BpCaiiVoekGRujTCZ1OSugams38voHepeR5g5gdsd9anJ9d8mY5x1QtSdNSqpbGaHk0nXDdNpS1TrYu2R/59ByfItf53b/9GU/evcE7fYQTDhFVQ71bs5zfoIYhznhEQ4XQNGQYIhroHJuW6n5wqil0aWHYFpYuETQsNhvaTqNqWta7mL4eMJgN6I8mDEZDsrTi5nKHO/MA7plNXUfTddzc3GK7LqGhMRM1V9uIVN2beiypYdg2har4m7/7t/z0P/kxM1PxsBciqpy2a6nymKYqqfKYJIlYpgXDk4DUCbEt/f7lKxjR6i5FucXtWYzNMZSPKN7kULY0qmAwMNFMj7eLBXmteAuIrOEmV2hNzVUF+w9P+Of7jyle3rB3+JTBGNTFW3xTcHt7y6S2CU0DTYbolk2rSkQGQsp7KGQnEBLq1kCVFWUas9jkbNKWDwd7GCrm+Pm7DB88Ij2/w+jPmK+2TA8PMPozamqSuzc0qsAPfTop0bSOqkhoqoD+/ohN2/L27HuabMUq/pr9o/fRVMPqdkWZZhiaJOiP0bCIYoFttXh2h2OZGLaF3tXY/r0Ou9NAa1tEV1BmCbk14uLtimy9YGRo2K6Gcwje0Me2BUPfpZE6U1PDtk2O92f0ensYQN2Y5CrHEmMas+Pt7SXXRUdlCLYCXt9uMKqMgSuoHZu9WQ+ty2F3geG7CCa0nUmr/Z5vIe7/F0ypkzcNSZYiZYs0deq8IK4U12mH2xvhBH2SJON3v/wN/+vf/Jy3V0ukJrCl4HBvRNe1jMZD5PaGvckho+GMCpOry3P8R+8QlQVnFz/cK71/mSE8da/1FhXXySVZukFoIKWBGwRM9vbQtA47DHGnexSqRNUFjaqQnguaQVtnSNui7iCOt4hGoaINZV7SYWK2FWPbY9tpbMoGs+1INxH99z/EMwMyTVJIweV1Sp5c0R+EyNwGf0R3u8MLfSQCTZgIYZJs19hSY353hT27ZbD3GD2QqC6mrCwYTDAch6ZICI+OIQiZ7FJuX7/BQqGEhtANOtXQqRwpFJPJmOF4guwa8niLpusIf8Tq65csbxd8f/Ga0XTI0fER++MQ17GxbQvHsbBsj7bMaB1Jkif8H//b31LPF/zlhx9w+vRjtDBELVdUqiauaua7lNv1jgeTIXpVYFo2VZpRCI24qLheRUx8j0tthb3e4oUDvP4U9/CQtnIos4p6foVUGWdvvsDXKrIsYru4IYpjeo7Jpigwuha7SPAZ4Js6qo2J04Rku2a3XjFfbFhmFUVsMXQ0vHEfLQzpdIHsNKosxXEdTF3iBSFPjmbcfnuJpgvaDqqmw9RtLL/P6OAE2/FxwoCbdYIxvOfLaaaNiaJoBMvdllVUMZ2OUHZL1C7JafDDPq0m6YchA0vDdWwKZdMh6YUGrmXQmCbx7SW666JpkpcvXnA020NHovUlmh8wODrCkQapHtObjFmFfWyrx/v7z8i/t2m+/4JGKRZpgbaL0YyWJ5MRe+/+lKxn48yeM7Nsbn779wymHtrkBGfah+AFmlzSnDVYQx9X+Fy++oy//Tc/5/sXFxyHAYNgyEVess4rPpz0eWcQoNsGk+MJ0tLofJ94k/HZ9y/5zdkZq0IxUj1GZcPxsU5vOARNUNc10rHJk4j1csGeH+BYJoHvUi87+s+eUHUd0eqOLitIdR9PgNAEu11CkUSYlk1dFJSiwe50/PiKeqtYRzmr7F4xaxsaKFCNYBPFHB1PacuS5UIhGoHtBWzUmsV6xWIbIzCYjAIy3aVBYNgamDrS69EaBvO3t2xIEWffoAmNJo1ZFTk908Z0Gh65AWmpCGY+09k+tShIdgmhDqqu8cMByXrD1fWOvj3g+YlONRryox//CK/OsKVBVTgIWyPfpmhSx7Cte4tOBbLqUKJD6KDqhnix4/L2hlcvv6EqO45O36XtoKFGaBJlmlhHR/Q/+YDH24T+6UPW2w1RVREJi9tGQw/7zJ69x/7MZX79ikYYBP37c5SB57Jd1Xz5+i29SUjQP6K1TJbLNbc318yODzF0Dyl1tMAnrwqswsAPepiWpNzsaFVB23bcznfsypa4bkFozDuDI39AVUruNgmbecp6e7/V7VkeXdwgDR1f96i0hKZq0IDQt6g8HU0X2FJSSPve2NcqOk1Hs33yzZos0lC7iP/8J885fXpCU0Hreqw3a7Su4nKd4Id9hGHTiQ6pG2gIZoHP0rBJy5rVeoOQBm3bEsURwWCMZem8fPEDx48FTx8/oCxKTMP4D/Z9+x9T/jg0+QNFdA22zNnECWdXb8mXN/imjrRD1lnFrlBkaUwY9OlUjePdb2uc3a15cDTD8ktqpZiMRhweHBAaPvNtxNnVNT0LHk49DmYHdHmN0xvR2lMm+wOazsbQbDSlmMc1//jtgp7ucP36is7w6FkGfU1DNwxsVzBwOvTOQbdWbG8WDMceJAmP3v8YQ2iE8Q6rd8Evv37Nr3/+NR8dhffOd01g05KqFqM/QmsErWiBhs1qwc0u4e3Ngk2SEbgu6/FRUgAAIABJREFU/ckehgSzbYjiBM22KKoWTUps16J38ASVF6RxxvLljtVvt9j/9RjdaSnWOdsqJ7c7ciVYbyOEblJkCaouSIqGoqlxLY20athGCQeTCTslcLOCvKqptI7h5IDBaMR4POTF9y9Is5Ry3EcTgq7n4YiGopV4jk2XZ4jWQBRr5p9/yvnFBW/X23vNbNMwCly8uuEf/+9/T7qLGbs2k77FsWHw0bP3ydKI3379gsSIIL9kYNpcITFDnRqdOqsoUsHlXUxjCB5/+AzdsGha7f42UgjyJKfxhxhtRmW6KCVpygqhJwip4fgOV1FGb9InX1zhlwWrsxfsdhnxOoHejFWsOP/qc/I4Ynawz/MPPsa2beK8Ii01DM9HGh1N9YbX332GZto8P/0vyJZv2XU5w75LqQrc0R6+CYvlhsS2qYucwWTKd99+yyhsOIn3CdwBnabRdRpNqxCGh+dLVnVJ7thcXa2ZFw7l+g5q8J0BjiawLQNdeuxuEna3l1hdx8TrEQ5sWtPlzbJh//h9TiZHqOU5/+brb2m9CUrM+fGzfd5/NuXp83ex+4IuvaSufKTro2mSuqzQTR3N99gtL7g+f8XA6GhaSZ7ntE3NLklplULoFmiCw8MZbR0TS0HoCZq25vLyFqlrHNkGpgzIygo/DCkbQaYUnqNRaAWjgc9o6KI1GtEqga1BW0OSVNgyJFpsSOKa06d9AhMc30WuTXzbRoZweXdDmha0rcb+eEDXVLQNWMGArutoqWhUi9Efgq7R1BWyKWh3O4rbJSJw6fyAQhWs5zdc322Ii5pFKWiyhrqV3NCgCw1L2Ez6Af/svaeEKqXbzbGlhhuE6NLC0UuaZEXeNjRphq61jD54ijucUWzWxJs5/sSn0Qq6zkUYgk741HmOQFKrgkrV5LrDMilJ0gzTspHSwPF6mG5ApxrKoqSrO2ajfbz+hC5QWNd3lLWirQpc12bcc/mzTz7h9uaO5befI/YfoK/mpOs5ZVXT6w8YT/Yoi4h/97//L/xXf/UT9MmP6XQdR2vosi1CNUghMU2bVPZppY6ezVGeRPcClDSga7A9C2FI9KrG1Rz0wQOE4fKwgNiJEEVOmae4XY0lJUXVsGtrEqU4/egjTmbH2G6f9icxs4nP6Mjm7u9izJ7D3sMH6PkS4XqU8zmiPwFTYA6GCNuliRNa20QYNrKtqPOYMsnZxRn9/gAjPMDrEtoGGtnD6hnIpCH0UjZVSd2CZWgMHx7z7sd/Rm90yOsvv8aybOJoTehZrLf3FhJNCq4XCz79/GtSlRJ6I15+f4fpSry+h633aStBoSTLwsTTFQNfYlARBB66DropacW9raxSDZtS8NVX35FFGbbKWUmDcN/mJI/x3I5xz0KtNSwMRFthmQbKNJG+AUWNbgrAYo1L2Sk2us5VDdtMslIVjekhmoKuk1hli7J9dL1DmBZ1mpIbO+yepEXQiQ4vDInymKiI2aQx/cGUoi5p2o5VVpPmDXpn0+/NkKaLZrZ0mssP335GTcNw0Me1dLbrFcv5HUmrOCxyBv0+dtDDCkf0nga4+4ds377gZn7O92+/4eRiwP6Bxt6DJ1SrFksW0Ob3VinXZzibohsS0zLpOoU3m1LdXlKqGk9qwP3mm6abtIZJUXeIpsWpS4okJblb8eq7FywvzmmzjL5jMNINKt3i1LPQhMMy1tlUNdpgQOi2ZJs7lDK4KRVnNy9psgjHkOyFDg9OD+mNJyjVkWQ7urrk9vU3eKNjNNunzcrfc39cNF0n3u3I6xgtifB8D2kYSMNGM617o5UQmF4fv6loOklVKVaLe5C04Q/45tsfWL15SVZWGLbH0fEJp49OGfd6KKVoaGiaAsceoLqcsmgo2obUsFg1LW2vjz0ckcQFi3jHF68veLPNSPOKX3//lkmvh29rtI3C8TxAIJDs9YfMhn10TSNLY+okx3r0iOtthaZiipsznHxLmyf4qsDUKvpaxV99/Iz5fIMXDCmlZH9/xPi9D6jNHkWSkF29oYx22Cj6psbDUUDg1BRFThLHNGUKcoDuONDdG3da1XIVb4nqjkcPp7y8WZG2BppuUqU1mtRRbUvV6RzunXJyespmdUu6ukYVCl1r0NDo6xpZb0DSSc5uN2wrhbI89k7G2I4HTYtjGDi2jbQciiJGCdgPXTxLR7MsZNsxTypwQraLDdvNisPDPhYafm/ExLFRVkARV5j9Ae5ghGN4CGfA0WqPdnPLNk3IRMt32x0lFa0xxMlq1tcXTJOa+vqSty8+5b//H/47gkInv1kzFBnFq58RfQOZe8RXv/2cZbQiLWss2+XhbMgPaclmWTB1XPZCn4NpyPDkmOD4iFrlFKViMV+i71IeBAFFtuTNxQXroMfzRw/xXY9OdNS2A7qOY7vY9oirLKf89gzTfsXjo3v1/OjghDxO+fWXP3CTLPlnH7dkmw11vKWMt5htjm2ZqKZFkzo936FpFCQlUZyQZhkD16TfC5gePMTWDAzHwTLt+20VoZPVNVVRsIoSLuIS05BYTUeUJxx0LqJt0Kwhdefz8uWcYlURpy+phItooStKmqKkMwxcr8AKO3p/9tfs9B7NXQz1GsqEqijI04RWQbPMGIUHPHt0SKrHTD/5U3o9B7GL6EyBqVuopmSTRNStjSdNaDTqKqWrFZqtoZqOpIz56s0L1qsNtSoJRzPaIiKrDUbDAUWa0eoGOR1df8je7IDek6f0+xPeznMMN+HuzUvcIMB3JJbj8vqHBDsc0hk2Og1tniIth1Wy4OvVNZ8cHrDMc7LQot614HU4ZYthWZiORx3tiNMY0zIQjkG6WVEVBslqSxnnNGUHgO5I3KHPWVSi1hlJkmMaIa5p4Doh2XpHGAzIDQFdiXTBqWrKQrFsJF/eVPQ9nQ+DgKf94T2EH4tMtajrOfE85ftvX/P8J+8zPQqwAoc6XmG7NsauJaoEm3jHeDpBNyVCdPfPZyvpDIfrTcS2rOiEhiYluuUQ5yWbOGN/NKVn+Zxd3eCs1vjGfTH/x/zT549Dkz9QNss7fverv6OqMqpkS68/ojZcXi9SzucbpK6RVTVtXhI2DcNeiGNJoCVqBFKAbQhsHQZhn7G9R+ivOb+7Qhgtm01MmiZIaRB0DY7tokpFrQRZnjMaD0lkxV2j84vf/JpP9qY8GNgYCqbjh+AERCpnuzrHLOfkeYuvWuRCYVoWZbolzmqyugI55pN3ZmQiQjVrZoHE358QL+4wQh9NU9SGT3R9TaXgerPjt9++5HK5wXUc9gMP3TARbYWp65iWRWc5GLJhc/mag+Ep0c1bpJBcxwmak3H91Wf8zf/4j4jBgNdnc3o/eYyY7iO6juFwwPXFBUKTuI6NajvC/oCuzmmERlmVFHWJkILc0omSHbVhM3FtFBpFXWI7BkXX0LQtSV4SOA5Ovw+bHSpeYnRgH5yw+O5zduuIShhYpku5XGDrgnqT8pubK7JCYdOQ6TF75ow90yL99g3h8SEPej3KoiGr1tjTEY7lQVOTLq/JioxVpnG+Ttl7uE8/tGg6hdRtNNvG9jyWuwJhGTiOQcaS3qBHlqSUeQqyIxE2t6slTx+NaPUDvvz0cxxnw/R4RmZPaYOOxetrskohBPiOhRA6ZVUR+j2izZZGVPT8gMZxaesU1WS0q3O8Yo3QTFaLJd7hCJV0aE3DXhCw3CpUq/B7Hp0UfHm15entLcPBlLBtqGsFdIguI19tKYuCs7st//DpC3JjxJ8eTRnYJlbeEPiQrSPurs/ZXN2hypqj4YC+XuHlBe7kQxwvJF3fkuc5qd3n3aNT3lYtz9yAxw8P2X94ijvs0WodOilCStJMYeomaPrvIYIFru9g6x1mnpItI4o4okhi0rSgUB0iL+n1PE6fPuTsh9dcRBV/9WefMO6HfP/6nPN2SduccXhwitUJWsNED3wkBkEvZLeJuF0vGIQ2vucR6A53C40qbnANi9fXb9AdwWBmULUJhpWjWQI96NHMF4gchr0RFVsWizmDwCbwbXTXBUBIUKqkqhWubVBXijJaYjo21XqLPHpM2cSk8zu2ecbdZoU2GlGmOZrrELWCVuvQNIPXaYlvavz06BF5HjN0JfowoDNt2uiKRx89Im/Acl0sV2BOju7bDwGmbkELrdqSb+5PTXTbAiHuTUXCpOwkeVETr6/xHItN3qBagWPct5y6EzIc7jEd9OnPDun1BsyGY3qzEXf1Etc2qasKLIu6yHn+7DHBaIjQDbJ4Rzg5QFUV2+0WoWn0BhP2Dk852u8RLwvenM95/g6MXQ/RVsSVwB9OMYVAH0xwrH1q00M6JkmSIPw+Io+xej3K3Y75b79kfbmiTEq0OMadPcRXktl0zPUPbzhAkqQVlVaTy44yq3jw/Dk/ev9j7HbC8NEjrGyOezSCeot6+gTdNtF9F2WNKOMlVb5DCIU52IPhGFU0OKMhTZHRShtVC7ZxzibJyaoGz+6w8gUDTzI9PKWUJq1Wk0drGqDFZDYbsF1dsTfb59nzj9iVDa3Q8C2TVClefv+COE4wdYPNdsHF2zuury959T/9zwSTU9579100y8TzQizNp3Vb6npDZbq8vt0wmTjYTp+WDmHfr8drWgNtiWhbvnx5zrc/nKPqBk838T0fbbfmzdffwGAPwzEZjnzy1Ra91amamjTZkXoOvufRag2yuofzmp7Fk/4TtMc+u8ucNnrD5MDkyZFP3SXc5AUFGm3vEOFbhJ5J3sp7zo0qkJ6GajKyOictEypRUTYptehYxzHrbcx4dEykPMx+H6F1SMfD9kIsx4cqwbJMTCnRpKBtaux+yOLmDS+++S39cMTZIsM9fYqm6/e2iaZmuVzw9vw1h2OLjz9I6femlLWOZrk4okOaDq6l0VU5rntAVdX4nk0d9oiynFApjK5Dt0ygA91Gj1d02wW761v+35/9ls+/+o4s3uG0DWbXkiPwPRffdfmHRczL25+x7w2xdJv87JwLf8DR0wHfRzFf/HCG1hV0VYmhKuaiYc+VHB8f0vSHzF8tKOKUze4Ne8+XeKNjpOvQVQ5NndEakhKTs29eIoM+tbDx947vrU+ahug6vP6APM8ZBSecPHyE6kpsy6XqBG9+OOflp58xMCz6+1MaXeKPZ/R7A0zLoqJkFS3xjAxXxJi2y+buDM2yUFKn8Yf4k31aAVfzBf/w8pJfnN2w2WzRNB2x2HB2t+TJbITuSFTbYQrBKAwI3AA3GGCYOov5HRU6V1cXqEbSCJOTvWP8akKvgcPTUzS1xLBSnIfHVJsN0W2GmD3GHffQJ2OSuEC9/IJKtxhM9sn7PrXr4I9Csjji9vIKWcUYhoY0Lbqmpa5zyiLHG++xN3S5WKxx245h38WVPZAWtYhpGsV2syborbm6nWP1JwT+mM1yhWW6TF2NqjZIouTeXlaXCN2mUQ394R49x8CyLFrVYBgS23LIqpZtWvJk5mLa5r1hMS9ZpRWa26MdjjB2O9ZJjpAWpq0hqw1hGFCaAVmQUqQR/tEh2jKjXW7otS1H/TGeLmmNjoNRyKdXa86vr7iZ3zLWa5rz75gYOk8dg/NffcPui68gX/Gf/suHZPGSV18kfPri7zh9/xFv645lVXMVxewnPT67WtHzAo5DH9sx0EMHdzKmdXzatKFUJRPTY+PaPLWP8TWPVVFzk0WUTYthmHSiA6FhNQ1tqTEbPcUJA/72q9+QawULXXH96Wv01ztWqw1pniJtlyiOkI1ieXuJUCWyStkbBpxf3VG14t50aRhoekZd17j+AN02+ev/8r/h+MFTfCJ0I0caGnvTAWnZIAHf9bD0+3ONz+cLLpMCPVvi1wvsp6dUquX68ox0tcWoY9q6pe4q6kZgmTbSsFBC0AYjotkT3ryNaLUKL1tiVBGmbpKVJUPPQowPsbUMc7tkOBpA32Z26KKVEW1d0m63YFjUhsblfE2jSR4egOd4qEqh66BUDZrg5m7J+atXeGGAJnXaKiZdL5g9fgdhGGh0FFWJMG1GB0dYtkuSV3hhQ9U2jHseSZ2zXK0Z7e1B12K7HuN+wAYHUeXYdMR3isXVjlZP8YY2SQ4HPZ+puY9jSFBg6gayEdj9Pru7mHYdkZiC6GaBbfdJy4pW6ihR01kGduCwKQrmWU3PsqAA3+oRHL5DdvUapH7/joGP26SYKqfY7fjyLuFsV/LeyGNv1mPvwRjXtmk0ndu7DVVxTrlW3F5WHDw64ukHP6Ko5uh+D+qS9vYt7njKOu0YTacMQxtHy+iqCuk6GHrAbbTjZrdFoTGY7eFNDpgcPsR0Q4TmsKs6hgOfx1ObutPZLJf/v2L9j/mnzR+HJn+g1I1iuYt5/vwxpipodI9Xq45SZgz7IcsiwnYcDF0iTZuqbtCUwrEtoqqi75kUWYoTgh/r2PYI0wKnZ1F2iu3qkiTasXd8TFPVSEMHW6dJCzaLG7Ryh9Ic/vJJjyP5Hn60ITQLhsMRepcxsW0836ObvEObrWjbDNWZ5KuUYqfwZweMAoG4vOG7+RJv4vHBe0+ozI5tnVBnijSq8fomXSfJF3fc3a05X2w422a8uN0gUYwdC8t2yaMtjqWDYaKZDpssR+Y7qvkNkW8zOjwkwaTsDISVERzWnL94wc8/uyYVJn/9Jw8ZeAFdnJPuthwcn1ClW3brBb608MMBmjZErxOqqkaIDmk71BQYgxDPcXG9gNV6hWl0aKZFnmdUTYMeuGieh+V5yKaDuqWuNfK7G+Z35yziFXnRMr+YE7QNnZJ8fbNACJ3j8ZiHvQFNUVAqnfm2YKEVjHdvONnrs04ynHeeImVNlLSo3GQndXZFx0alpIDRmyDCfZomQ2sVjegoqoJdVROqAtXYeOGUpLhEGpLdesNwb0Be1bRlSjJPKVvB4L0P+eDHz6gqye/OShbnb2k1A2k69IIAf/aIwXRGFwTIVMMwC8yqZjbap47mNKIkzVJ6vonX67PYVZznCvd2xfP9Kb7WoUubeLXCzEO6ZEenNK6WOb/8xzecTA4ZDCfomkERbwEdZXjsSsVXr86pVc0o0Em3O2yrYbo/4Lura/7+8wvaOOKBJXk2GhEaNmUEm2hBvPoFo2c/ojErJj99SmtIjqIjdqrm4tWX1BYUlWK5yZBCIVDk9Q1ef0xl+FhugGXZgGK1juibFsk6pWoE8TYjLyruohxDCrBM9KBH1gpmsz5XizXh3kOS5QbP6eHYLrrlUpQ1ruVQdhXCcqiSkpu7ObvNik6VpNGS6XhMEITUeoXWluxSi53SMcprBgOb46nLwd4ITVaYoUm6a6mK/4+999i1ZcvO9L4ZMcO75dde2x9zz7k2byaZmSwasUhQLAmQIKAaBQF6Gr6MBKmhlgQJKhRYKIlMZjL9zWuP3edst7wJ70ONnc9ANsjxBBGNiYgxxz++ryU6ZGh09DybulGoFQO64gHG1gl0y0DTNco0pcwOIDXC5RJVV8jjDbvtmu31gtVmzX2aU4mCuMhIhUJsWLQYMFAZ2zm4AcgaVZa0hs4+bzHoUFSdq5t7dM/GbCtURTA4b9H98QMUVkpUS0PvT9l++SV15xNYBmVZoqs6smtRVI20g7SE/W6L0nWYtvfwThhMTp8yPppBlbDe7WktG7NMKSOdbbknqStklQENaXJgEPg8evKE969e8vxH/4a7+YJgNOJE0dneCZygT912bHchm2XK4rrgj/5MZ9S3kKqFZfcRTY5WZwwnEya9Y2RVEMcRzrhHvNvieRbz3/6Kb754y93iQOAGSNOlKUz00meqm7z/4ics50u+uD/8fp++IapzegOf/+GjT3AMHzXJCUYupjtAiJoyERiPv4+godivqGqNNi6Ibm9Rn1wilQ4hNRRbA1owLGih6kq22wOHMMX1BxwNHtaNsG2kodM6Hk6ccn52QdgYTKTL9c07vv3lPxCuzhjOnrFYLImXKyaeRc9zKeOIxdvX7KOU1WbFbrskinKkYTKzbVzPowMoSno9k10WkmQluiVJ6zXv5i2urWNbD2tFplRQpKRTW1TTpWparnc7lE7gqCpZWRI3BmfTj3B1G13r6EyJPfTQmwYhFNZVB+EB1VbpB33cYErSmiw6n7Hs6Kc5prpByUp6P3qOObap6xXD27csVnsaBFVV0ig2qqJRpQ1CSKAiKwp2m5jbmy2DoyHbLGV/2BMnOcPhkFqvEZZNJxQMTSPJCoSlM5gO2awbVMukahr6oyl1VZLs9rxfR/z05Q1Bf0wwe8JwvaWrQ/L0gGWaKKqGqqiMBi66qiK6BqHamP6QeLUl3q15fjakFpKqAdnWiFrQm52wvHrH4XBA931aRSBVDdk2NJsNyd2K11++5t2rt1h5yrGt89g1OXVMkjDmq03CdZhxaZpcqIInsyPiumGx2yGiOT/7IuS6CDlkKb4h+d7JBN/UeXQ64Yd//Ve0QpC3Hf3TS5bv35PsDnTkdEqH4tvIOqNqTGqhoAymPPm3/x1RFJEUJaKtSXY76qqg0Q0qRVIJiWlarOKc7OYFp48vyYXLz99EvLjaEJDy4fc/YTCZobtjNMN54NAg+ebtC8xKUm40bGkyX4S8vVvjDU9QtYBer8/9bs8/Xi/4zWLPMkyoywpDF8RpwoubeyaujdRMXMtELQo8LPA8tMkUw5R0qsZ8s+fNt18TnH3ER59+zsy1cZsGKy+wx1NEN8Q4cjBPxthNjrYKUYbHSF1F1ToMdUcznaCOJqT3b8iyA+0gQNoKVZXhTse06R4pgbZG0SRt26HYPp2A+f01XmBzcXzB83XB9bZDt2zQHN5c3RGnIVn5gsV8zXp+z+PHT9C7mpu7HQMjoFNVrOkZzm5FV5t0ns9hs2E48WniECGgbSo6YVOhEO3XaPGaNRnzpWS1jTCkymzQQ6LQUw0G5xcUSUh62OM7YzKh4JydoaU5W7Ul2a/RzYCi16eYv0SmEUanMJ6cklFyooOlOfxuEbGIQj5wbJ6czhCmw5mh4kvQdEnX6rz5yQ1fvr2lrlR+eb3it1HJNoxwVBUFyd+9X+P3HGa+iWdKNNGAroKhI1pBlpQMZk+IywXHvSndzQ3L9Y6Ly0v6Tcnp5SMUy3pIZKqSjpw4bTHVllmvz8dPP+PF/JabEA63KkemQxTNUYVK0B8SRzvaMGT5/jV6VyNky0eXM7IkJs1yklrF8UzGvZy3mgaqxo/+7K/5d3/+J3QdLJaCpARKEG2LKR8Aql3f5eR4yi8XGZKUMs/44l1Cvt0QrXaoHXSNTd/1kCooDcRZQStNak3HkgqlafE+04i/ucGSGgOjZeCbZLpD2bvARqKZNkVvyEezHBmPycsDrSog2tKIkjLaEm0PYNjUls113LFe3aHpNud9sExJkUUI0ZJ3ClfvF6RZRVru8HwfzbIwDQMpFOqiRJEPYOnO6aOakmA8Itoc+Pbr35BstySbhKbIydMS1bbJ8gNu4IHfx2gM6k6hjXdUcUwe5bz62YK+pXB8cYa0xriORK9Uui7CNDSKKKZuHhJ5N7sHo99+X6IV9zw6GhN3LYVUKLuG20OCpUlstUa2GrrlY9oz6ljl2D+jthQUw4B0jtNJlM6hUhS+r0meHSl4pgv+iKKyeP0moq4XtF1HVlTEEZyfnPPxZ5cYjkanu0BHW5YYrk9aG3RtzAdPnmJTYFsOrfFgGs3rkteLJYVo8Y6OGI6mDMYjxpMz9oUkbR3yuOB9UpDe3NPEawJHpyzyf6bu9l9W/eulyT9RdYpG//iC3BjhTV2yvKM8bEnL6IF2b9jQhUhquubh5872fKpWMN/n1AOH0eQcURzo7Q+0XUjU0zmZOjRVyRfzN1wvlhimgTII0AIPVTy43dO8II/3mIbF6fCI809OePPFgTzakLsBjVSIXn+DT4usG5r24YNqegqq06PTYbne0YYbtndv6J8MePTBlE6mKLRQVNytNrjBiDhXEJuQ7SLidhWxK+E2zEBV6Tk2jmViWxZSN5D6A7BNQaXroG0K9OGEu0NCd7ulDKYcHdkkixhER6JKWtdlNj3F7wUMA4ckNDH0Mbv9ARRJfzKjXT9onLu2RTN1quoBXKloGram0kmBsB3KtiaN9ozGU4bBguv3t/SWSwa9Pr7v0iJIi5omzRgPBzTpnjiOsIM+8+U9rqLhKpLNPsRQ4QfnY44HHmqpMAkeY+o98olGvnxLosL16zkf/fiHaBdPaOsNUQ3X65KB41NJg4o7bKvBsyT2cIxaJ9QF5Lt7btdrcl3DVyPqsoayxNANsrKgkypYFo18mFx9d5VQC8Hg4hHW9BmL6x3LOnyY6Bs2mt0RTGZ443PM/gmNInBNF0VPaZoQp+8x6M7R84D59TsMr0fr+FAkRGnF9vYNM2XK4MlzdqslmtIgqo4mrXDtAa/jJT9/teXDL68Yjsd4vRF5lCBVSa5qzPclqdAZDD0+ONLpmxZ91yTJEv7vL68Zey5//dkFp4HDYHiGYZ4CI0S2p7z9Bv0owOnrvHj1mjzcYfUGjB49Ybe9Zp9FlElEfNiRljV115CUFa59z/TkgvHJOVVd0qBQ5zG7IoO2oTUCDnXDvlNYJyVC0yirkqosyaIQX4VPPr7EtgW9y1PufjGnCCX6LsY2ejRSYDoWjRAUWcHN/DXzuzkKHVcvvyOPduiOx3g8w28NDpFBVNbobYMWLTj74cc4wYAmiZDegMJOMbUWE5XmsKbLClarFYZlMaxA1g2KY4PSUVeQ7JYUaYmoasL5ParbI92/45BVVCjEtYomdNarA5pjoSkwMk3G3pDpwKeqDnTeEW0nGA+GaCImRiANg6ypiaMMp+s4hClm4KHHIX3bQDNcijxD0zWkrTP6+DlqJVGb7uGcSUGDTrSJ2K1jbpcpN3crfMsgbk3CqMEOHFxFMLAMFMfEsGxU36c3DKhqwe2X37DNFgwClzpL2K3XLFb3dPkOKU0++ZO/4vzpM7763Zdsl3NeFzuaqmK3OXDYVOzuQzYXrG+UAAAgAElEQVS7lJ98t+bpqYegw1VaqrygEhK7N4QuJU5iDos19vYATcV9UXG/byiUAN0VKIoCRYNr9PBalWrVUdcXWNLhv/n+5zh6RlqlHPKIXCnxB1P0IMA9d1FI6VDpUKlkj9Q8wSYER6FJQt4vKn73m2v+WGuZOT2EdDEGIxRVpS1Lqq5hfjcnzBvudilaMCRNc2y/hzY+Ia8UPANmwx67+/d4qkbYKvz0//0Z+TZkbez45te/wjQs+rYBeY6HoNAk6yShq0ooiwdDl+VgOS7T6Ql20KMqKqpKBQo02bJvQ5wyp60yFpuMnrvFNTQ6Vad1xqiqRmMFBEHHX/zbP0c2Na+ub1gcMn6z2NLt4bOLglNpo1cKWdnRJDkT32FyfMZ40Me1QDM9DoqPpvaohMFj18FOQmyR06kF/PjfoJ5MEeU9hq0yPplyiFOUPEZpW6pMA8ujokSTFkWcsJkf+OqLdzS6ZHN1R9Q1GG3NtN/DtDVWnYqma2i6iS419PrAIOix6w9Ikoj+dIqhtgSWzWA6Zb/dsKpN7OMTEhSixYp3N9ds+4Iy3qIbBq7bR9d1ZtMjnn74KS0KcdpQ3G+xLANHNli2iXBGpGWNZ+QUuzX+5Wc4x49Zzd9jeR6qPkLTDfL9ltvXbzB6T3j+5884Hk0Jv/4FepHStwMM3SdKU1Txhg/zCkwP/+RjrNkj8rIiXf+cm/BAyI5DVWK5Lj84mTG5eM7J2TEfPTlC0wyyIkbTJJ3uoPVnXF48Jzg6paxbVM2g0y0Uw6VWNSzPo6WhbBUUuyZcL9AMnRYDQ2+4Xe653YYcaxbb+RtcXeXtXcKb8JbKPmb0x/+e6rt/YJ7AkWKhWQGdUKGtyfKMNzcL7r59y48eHUNZ0lpHXF9dc3z+DMXtEZcdy7s7kjgi263pqhKpKvRMg7osWCyXLAcevmlRGw6uUGmEhpQWQup0UsMbjtmGMUNH49lAMMvfYskBmhmgewbZ+2/wnj5DcUaIVkM1TfwTD2GoKLqkyRIQBcrRkHp3wFBLup5F69k0bYJoSlzPpjGhbWpaBELpaFRJXVR88/aGqIQ/+4s/JY8PDMYzmp6NaFtUM+XN1ZymgyaJyNOQ+90Kwi2z80fgBeyylqLOQM9R2oaoVbE0G8vJCQYDUuWBx6F0NRUd4XbN6u6Gtir41c9/zna7p9RMhqMp68GAkWMw0A2kbVOqOpubBePRENXq4bQdeZTi93yiOMVTLA6HCDnqE93cPljKVBOvf0yVr3h26jLt1/ynL18SZymu4VH1BnimYNpX6MQeNXNpKpsPo4ZaDUgLnfsk5swfoBowLysUz+Jk4OBJcDSwTB1FaiiioYwSTN2nKztC1aBM1qxXa06fPqdyHdQkYjyZokkdzTDIyooky9l7AR+eXiAtg0vjgm3RIlUV3wsglvQnH5I3IbJ/zPbulnh+xXox56zv4U0HVHXD589OeLeISMqWXLWwXZ/peIpiePzw2SOsIiLOW9Z3K2rPZmgHtFWB0lUoQqAaNqOTEx7d7wnaDNVwyaOcm31Mma0YWRbTQEN4Ot6gjxqHFKLgbVhys7hFVxSGbh+tO3BkOXiOhdpYxP4JIniCZ/Y5qvZY0yMCvUBrCpSnRxjaKenNF5CE1G3C8v6eqqwxdMlmFXF3t2R+d8uffPoUwxTU2cOaj2rorA4Rq+2eqqnxTJNOCAzbpclS8sOOYDRB0GK0OcvdmqPzc0zTYDCdMh6P+fKL/4NXL6+poy3u+TPoOhQBeuAS9D3S+YGhkpDUGVVZEe1jkkPK/Zs1j2dn1PMV1mSMVCSd16PVHTRP0hY1rVbTqSnv1yHvVjmyrhiPG2KhsG9r0qrFlCqmLrFVFYGKp9lYcYhnuvQnR+TZjnp/jyhjIEPaLubRGVa4Jk10dsYpcQf1ISSNC5KiJC9TorokmEx4+ukR0oWiSFDUiiaJEYZH2RS0UtLvB5hag+g6irpFs3yKMuNuecuuTBk+fQKWTV2XFPEWdTrkj77/Odeh5Or16sFGikqlOmzSjLyq/5m73H8Z9a+XJv9EJXUdazij1F1SY0SU7FE0k54pqAyDOMtpO7AsG6WpyKOQw2bL8OQxd3cZRmHy+OmEWLiYnaC1bc4cja7t0Houo2Gf9W6PY9sPJgDRUVYtiiJxTJ0mrzEMk6rTKMsObzThZvOS6P07hNxBLRFFzsn4hGef/gFt0xAd9ry+vabYL/HNBkyd7shFcWOW+zlWqdGKhq5TsfsObt/ikLQcVgfWScUBHd2z+MQyaJoKpc7RNQulaVE7QAikYbKfL8F2STSHSjWoTYdlDvd3L1l/80uq7S2+a7PCIDi9ZDSdUVYVWfagMG5pmU3HqErHIYyxBkeoholtm7TphqrtSJOEvmfTqsZDjLxpqKqMpohRDY/ZbMz7qyviPCPcrnE9F91yidZzjBYaC8JwRVy0PJqd0W9VznsGhunSZA15HOG5JrasEamO2XuGFkpyfcCijLjfXLNJEvzlNeOxiR44nD8+pdJDNFlTH/a0UiGOKmzHRCrt7yn/JWHScH2zxJ0NqPUAWRVkWYZpWVRZhO656LZJEu14+/Ydd/uMVqj8tz/+S+Z7lXehRGlbVGrc3pBGqNhBwHq3x+gfobUZtRhgBwENLa5t0Zv1efn6illnEdhT9LojylqOhqcUeUGNTbTfU3QqVm/A0L1nW41o2ztM26ASFb++njP69hUfPZfkaYnSxuyjJa9WOzrDpG+CbXfYfQfFDtiv1nx+5DAwVAKZYEiNWlUxZmOM6SXUDYVesnjzFWVf49Vqw9G4hzUdc79ZUaBSNYLN7ZxFnFNWNULTQYCqhCz2KcFiwWff+xTTCjBMlXKzplYt8jZnX6TMwwjdMEAYDPyA/mCA1hkI1cK1AzRVp9/3GVycEicJitSJ8wxNtjhmHyklwjTo9QziQ4jruzTZgd3ta37z0/+CIi0eXX7C494E3wnY3yxxBw6+bSK7GsuWoEhqKUhXSzTLxJRT4nbJ8naBNO9wtZZxv0+Xl9QVFIcDh7RkMV/i2C5lKSmWGaIq2ewiasNll3WUDWD1sRwXp6qZGiZDFPKrW+hqFAtmjz9i/Ohjsuw9lrPkbrkj2e/oqhbFbMnLFs/TiDYHmmRP7/wpltenqQvaukCKBqFALQRC1uR1RYHk9eIdhjcgomO5L9BNDyVV0Jwxbu+Uo8kRqqYzPpqhSwPVsLAUD1M00Kmslws2yztUWjTdxnEDbrcJf/Zf/SFD36E3mtKWBb/bL3D7Yw5hynKxRhUKq9sFYXrg7//2/+Qvv/c/8cFkSNUJOqnTKRpNJ2irkmS/4/btW97drtFViT+YMj59TM8bcbVa83e//DWHQ8RH/pT/8ON/R380QxsNyfOIOF5SFh3eyQnGbkGlV3R2QFmEFHGBaQgUXSIdH6la5PYUmTdIt8PSJaOjIz748IJWt8mKjsD1qcsGYWvUQiU97FgtlqSHA/u85PufXeC1KYZ8mOBHJThlQRquSYXDy5saKTYYik4mNIbDI3pBj7btsFSB0jxA/AwpEVVDkxXQQJEVlE3L0eUJdjBEGhZZW6OYgrTOCQ9r8u2K+bbD1iz6nsbr93MCW0WIEUNfoCkdUlMoPJczf8xftj9k8GbE//Yff8EqvAMR8+5X/xnz5JJkNUcUGUeqShcEpE2PtBlCWdFzx8hSMHZ9bEvHaipEniNcG/noMW0g2L95QdHMsc41nN6QYJCRxVu0aZ80DNEVQdN2lGXFYnnL3//6iq+v3kPXUkuV45Mxji4f1kSlRZNJug5yBF3R4Fgm09mMKNyw2+9QyprgaIQqBK7lkRo5g8vPUFWNNDmwWs6J90vu3kUEpsLzy0ccTy3KIsbyAiazU1LhEV1dYVsxyWGL69rkiotrmDiagGzH6vodVm+G9M7Y6T22+wOGY6HrOmkYYp4/Z3z2DKepcEVMtn5Dsa5JTYN6NOW//Ke/ZZ81OC1YaoO/uWVUxnSa5LY8oPZNPvEDPtV04qahUiXruuOyjknDBVXaUkmNvNPJjQFy0sfwTPIGdNuiqVowDITUKVuwlYaubpGaYLfZE2cpphCEjUCzPe5Wb1kt1xRJQt/3uFulvLz9lsY/YnRicvH4Mc7zP6JJb0nSnDzPaUVAXWREmxXFNuKn//iS7371hu9/cI7uga75KHXHRd8nCiN0VTIzJb6hsxAKuqrQ11VyJGVZcrdcMwoG+HZAphsYpqSxDTRNoiBQDZPRYIDsWgK9pUpWdNmexurTCB2n66iLGG29pC1dxDBAdRREk9KGOdVhC21Hm8VU63dUXYpQFdQupy1iyt0SxfVQVAVF0ai7jrJuScuO5fbAz37+W06ePmO7XaN0HbXZ49H5JVKBq3d3uG6PkeYSiIZkv2GZ5FS3c3zT4mwQcDwckDg+V8sVVy++pKTjrNfH9jxUTcfqjYh3G6q6xNQlabRjOb/j6uo9X371NXWR4+qSvdtj7fpcXFzyyfMPURUNPRizjTdsF0vGs9kDAFNpuFkt8dyAZLdGtjrLMGRwMuP2yzVOXmF3DopVUSuCqWbxHz7r8/MXX5Iv9oxNj7Zu8D54RLpNMM7O2K1zjFmLFRzjHFZMzY4jz+O2SLmQBmdTn05UtF3D1DMxNRPPC6iSHNUfoPsD1hVMnjzh7rtbzk8/pxsGLLZ3DE0dxw1QpU6nNDR1RtlUfPJHnzNRwGobLKHTi2eIpoWu5bBPsBsfa3jBIa2xo1sOyzknPZPAEPSDAUVRkWQZnw6PWa8PxHHKdDigP6ownD7HQ594fo+CSs+yWL55h/9kjGrF1EmMopsYvkGMxoWnY/Uc1OEZWdry8ssvaJsW0VS4IqdvFAitpOf4eBMP9W5Bd7hhF+dc7Q4MdBvD8HEGU4LjAUHXYccrnDrB63so2R5Fqqh9H3ncRwjo9hZZfk8SRoR3IZqr0TZLkiTnbGAylCMC3yZLUuo8oalqCs2isvukFXRNi9QMZNNAFiP7fZQWCqFBnWCWMbKMuX1VYNkuppS8/PYLrl9/x+rQIXWHiyePyYRAoWVgCjjc43UVE6/l9QKSpEAIlbaG+6sDm8s1h26BRofvDXHUjlppkJpAVVVEAaZjokUJSdMwX+y4mPgIQxJuUxZxjW3qKGqFqkr0LsNUNSYTF8/TqaoNItvS1RFV/rA6U4RbFF0nLDRS5xnW7JJek7C6+pokzkjzgtswwhq6/ODHn+BPbJouRRQRnQRNN6mLiArohCAMDzizGXqX0QiJ0kGSFby8viGpBVldoekdbduwePGaJE1RLJOTs4/INIVon1MvNxw2N9RKTl0U/7xN7r+QUv/mb/7mn/sZ/kXUYr396Fcv3/2PnuOIriqo8wy1aykOO5pOsN8fKIsCy9CZjsdYvQmON+DId8nmB3rSxhECXVfZbeZomsRzHZASzTap05jF7S1SSso8x7EtHNuhLkuUtkMRCtLpk6Oz3WzJa0GR5qRFSZLmROGKQEkYGjWH5S2//fa3fP3mK8jnnLgCRI2hZpizAZllYdkaKCpNVeEELqZv0tQ2V6/nfP1uwYu7Bfui4dHphA+enNHXOgxVIFXJQHfwHQfDscjLkmVRI22XTjeJo5hGCJarDWoes7u/RpMKWB7rUqPsBJplUUuTslWw/IC8FSiKYL/eENUqddPh+y51HuKbCoFn41gG7u+jjbrUiDuJrUsOi3vSJCEvK8qypswzqrp6SMNIyfzmHlFmGA4ckoyLswuMoqCngz87ojedMb58xvT8Eb3BDAMLu+ejNDnCqHHPLHxP5fjylH0L92nKaGxTS7B6A1pjSFXnxFVJRYNh6ZzOxhiOQ6dAcjiwWmxZ5g1aEyGnl8RpiiEqKlrSMkOICnSD+8Wat4uYrFPxhkMuPvwIaXtUWcZmvabOUpquJVdMrq7ekDeC2g7o9fuUrU2a5ZiGzng0pc4FRZTTD8YMemOOjoasVnOUKuPV29e8fvmWqQ7oBhfnp0Svf8v7MKXpatbbNSgw6TlUTUvb1FQN3K93LHcHXs1DVKlhyI6TQYBu+6RZxdWbdwSiwaBCdhVJVnE9X1Msb2jmr6nDOfv9ip/97heEtsGus4nznN3hQNPUlHnJ2/sdcW1jSAfRKBR5S5iUbPYpX72555dfv6TKQj74+EOS/YbF+7dY/R5J0/HzX3/FPqvIGoHuD/DGxzStim06WIaJITV0TcH3XMq6JQ5DFnf3hJs9lhMwOn9Cb3pMIQ2aJCFOYvzfpzryaMd+uyEvaqRmMzIVgmxBuLvmyYnNs0+eEwwHUKSoukknNaL1EqWpqIQAzQLTZL/boJoGeZig2x7RPqbMM969fUsNuMMBOCOW6zWOa2EEPSLFxDBtZKfy2ccfMwkC6rTi7ibh7758y92u4j7qeLnOWMxLvFwwmBwxmM2o84T7+QLdMdFcj0FwRH2oaIqSztRJsj1mv4fuuBSHJdE2pFMEitEiNI2kqlmEOfe7NWFZ8+tvrklzkLrDPms5v3iGWhf4nsNwdsro+BhF19mvDri2g9sPUGyVQlfYHmLqPOPTz/+QR08+5vj40UN6qaofzvJmyXf/+BOyVhDGJeFiTriaE6cxVZUT7de4J2dcPnqETovSlg8w3a6lKkuuvnvB//P//ZK///aaXa1h96ccTcb0ZIcabjjzXJ4FPRxNxelP6foz5PEpHB3T6ibb9QY5vEDaOm1gswgP2KbyYJhxPRTdoFMVFFp0pUZqOiolqlQoN/e4vo09mIJu4Z09ASGo8oJWKLx9d8O7N29YbHZo3oAPH12imzquJuiPRnSmi2HbbA4Hzj78U0xvwuLmDdvFEk2XGK7F53/wQyzPwWg7RF0RRylFmhJnGYvtnt1uT5ZmeIMxjz76Hr3hiN6gR9kI0kOKZ9iodcH86j2vXtyC9Dg7PScLC6I4Q9N54KyoLZ1qIDUFIVp0XSGsFAzNoKd79N0jJpbFD4YaXluy2Ea8iwoy1cfWPQhT+sLEFwZDoeJVGfrNO3Q6jNMh5mfnKHpKl92xjTNq16UzBE3XIm2XOClohIqiaHSqwSFJuXp/w3/821/z89+9IMoTGkrGAxPfeDD2eK6H5g1Z5wpO0Mfveah1jmkYKFJiei771eIBJK1KLNuj6x7gpoXwSPOCthU0dU2eJCxWG/aHGN2QODY4tuTp0xMkCYbacbcK2a0XqG2N5fexvB5KUzKb9imzDE0xyNOcUrFpFANFaog6RRXQqRJ3MIYiok1W5GVJnhxY39xyd33NV19/yW0Yk9UlcVPTNBVNk7MsS17nKe5kQG9ygT14zGBwxsjyuJ9fM3U6xmbNLtyRFCVp01J20FYpaBrV79cJ3MHk99/+kroo2KURiugeOGVCUDUNCCiaFtX2aITkZ7/4DZu7ObZuUG+2vP3mW+6u3pKv7ynCkOF4wmw0pK4T1DYiCncEgyHN/p7lzTv28xXLVcjLl3OiRNA2GqPJKa7p4DgepqKgdjzYgqqO7XaHIwVHtoXSdrQoDykey2Dq25iWQ2cFaEGAbenomkCXKqZtYpk6qgDRtZRFRpkniCYDWtQqRisiuqKkzWKa9T3Fqy8p3r+k7SrabE8xvyJ59w2N+jBoaquMKg/pRIfpB6hSoWtqWqBqO27XMV+8vCZXXYpO8PTJGc++9wdoUsPy+kymU/a7iKSQDIanNLVK0qrc7/dUionQbZ5++jlnjy45Pz/l+HhKFIVIBfq9AN9zUbsaLxgQJQW+ruL7AdBx9eoVv/z1bwh3ax4FFn3TxOrARUXJK7qsw3EDdNtG2BbVYY3eZRhS0DUtumlQZDlZGGM4PeK4INpu0KRJmaUEtophSizTxFAFA9vmA7/HQJqYVUNTNQxHx+zmWxTNJQ4zXr+5Z7fZQlfwwaMJqgHSNvj45AhP0WiqkoFr0B/20Q0TzfGpOhNveEpWlUjL5/blNbru416cgWdzOGyZTKcEowmKKqjbmvfv3yOyPb4pkLbJ4bDDNE3mGfQHQ4osY7t+GG6mUUp4d0uXvqHLEmbDPr5hMBr2MCybusixdI3Hjy9pmwrRtmiGSVtVPJ0MOD45py4qslbj/sW3aP0xnqlSFylSVaiyEtlViOxA0arMPv5DxtMZm/slgTflKDjBaDXMtEYrGpRaRVd1Bp5Lz9YZeg5PjsYcByMej2Y8nU6Y+n16vkdwfIzz+Jwu8BCORjcdIVxJm+2oyogs2xDvr1m+XyB+b8bp2gLHMTmZjRgEDp5jUmcRStdQKTob0SNVXGhKuiKGqkQ1bEzbQW0bdNum3++h1CWGobHdzAm3G7779hvCKOb/+l/+Z26urlgs50jLwjs6RVAy8jUsQyOOYgxdx9ZMvvruHikVpCIpipw0Sanqmq5pODs9xrB0NM1g3OvT5AWqUOg6iJMM1bZRUSjKCkMTXEwGSF3nkFW8fHfNaRDwJHB5djFicnqMNx6guQFFXrA8pLzfpLyZ77ndJKyijmWs0brH2E8+5OzyEYsXLzgs3+NYOpWiEao6f/UXP+L8+SO8wQBVCoQOqi6RukkW57R6wN16Q5SXHE9H0FTQttSaw+ube754fcPb+x2L62vSLMN7+gjvg+ds39zS8yyOhgM8xWb7ZsHdzTW7zR15tuPf//d/9b8+fXzx4p+xzf0XUf+aNPknqk5VaGhI6wZPQN0JykYgTBejanAdh7quKaoCRTxcAjimTrldkR86bqoEGTecnLscnT0j3V3TdC2a5VDXDVLXCfo9dlHMISvR5S3f+2yI7Uh0INcNasWEtMCQgrhV8Y9P0MOIJC5QSMnzkJ9+d8/7uGToezz1LIZCpW7gu82GR7MBY9VkOJshmgK/55IkMXqvx2aTsLzaslxX5KXDOlyTbpc8P/XwPrzEblI00REmNf3pDNNzqLuaRpoEI59dFCGDHorl05YZTRqzXS+xbI2oEeSNzj7aMl+sSYuKs8kF8Tbhk/EMTy0wLAd7OMUrBZbaMfBN4gbOz08Y9Vzy9T15HOKMJtSahiI6uqYlSgq22zW9IKDve8yLkqubG1zHRmoqm+0CM3Cg8Tk9fUy7PTB/+Zbx43Ms18MwJW20Zff1Fd0mpqlLorxkvX5H23b0XJ1gcsTw4jEnF2PSbsKuLrHyHJlG2N6Muraw/IBFHOE5DpoTkKUp+SHkbrlDs2xmj05YvP+O82pDYvtYOFRZBs0GpI5iWBiug+3q7NchtdDYpA1GnJMXOYYUWLbNapeRtoLJaMj3P/0YdfKYZZTgOA6akeGaJpqmkxcVrdA4OTshawWLOEeaGq+/+gXz5TXRZsl/Tub88R9+j5WtMm9drJ6Kmdf4XoBCg65oCCFZ1hbxJuFmvmSfFayihko4+EpLkpYUZMRJQZFmeIH3+2hxRXEIibKIsiyJkx3F+9d8tUp4kygcJQNG0yMO+xsII4ptyKGROIMnsF3jVCmtlHS9PoqhUCN4v93z02+/45uX7zj51RecjnxqIdnut7yeJ+RFRZ631CXYTUNZtozHRzRtgzUa42o5pm5Q1x1JmPH6u7fsDhGD0SmjD46oSxdH9Rj7GtflDZoKdVOR5xVFozB79BGD2TP26xhtHGDs31LR4fQHlFVNVRXolsuhqEjrhs52Wd0vcQcBTZkgyoRVlKGFHamsae9u0U0XU1pcPrpAs2yWhcJ8F+INfHTPI9xVTHoWff1BeVgU8Oo6QpTnDIcjxlqBo2R0ZcQm2fI2Sfjff/oN/3VSMLrwMC2TUTDDHtt0osIwFapMoUxKousQf+bz/ovfcvbhM+6WEXfXSy4/eMTQsWhqlSguuP7uO8piT2v2SKIYXbNpW4XBwOLkeEiRwfw+5PmnNrYGehBQZx3B2MELTAYc8UQ2+MGU9c1rLi+e8vjxB+zDGNdQMUyLTZhwuL2iqyrWy4ibuw1ZlNBkGXVVogqFNs/4zT/8kk+OZ3x45BG4Jm2WoquSfZzy8t0d7zcHLFPjk8sxP/rwhLPLI0xFMOu7mM4QDZ10sWB5t6IOGoqzAUVa0G079qpCpLfISvDy6j01Aqme4A36aOMzujqnzUNUqWNq0CkKDTZVVNDVNW3ZIF0dY3REeHeLbluUdUNYNrx79Zoiqyk6yUnPpcljvMEYqTaQRTjDE9LWZDw5YRPHhPsMzzJpSnj+8Z+yC68piobhdEi1j8gaqIqcLHlgyNR5Qd+xUbuWiw8/YzSZIQ0TRQ9AqXH8ANl1rG42XL/fcH+/wnAmgESVHevNCsQWVYe2meL1DUijBwaHaSFUg+PJkM/Pn/H1r+/5ZrPHD2wu+x5n9piru4QX6zXLcIspJYnnEQyGVKZEmY7QLAVqQXO/ooq+pvMlStDhHmnsq5ZOmtRljFLkqKaG0E3qrmW/3DC/X/OTn/6WX716Ry0UHMfB0iWGLtEsA1wD3VPJ2pSysWjKEkNtUZqcnutx0HUM2+L45JS2KljMF4RhhOM6SNOl6nQsN6CuK6RuMT55BvTZz6/56uUNp0c6H14cE0xOUOoVyX6OVsc0dUOrmMRFy5PAQ+QhilBohYWUCqv7JVptIPsz9MkJjchpEeiOT0dHU0SEuzW76xeUXYU68Al3O+46eN80FHWL0nYYsmZoGgxdj97Ax3F9hObgej3s7WvsOuPZswmtKVgnCYntcL/aUa8TikZB6/fo+4Khb3OID/SqAqmaNGVFFqesV1t20YHBcIhmOei6wSpOEJqJYVlsw+KBF6DtIEnRqoLPT844n11SDE5wTp7QV1V808D0bNLDHe/evkMzFUYi5/W3L8jSAtlqmO6IfQJh0vCBaTGYnJKgo+oKLXvcrGHq7ngy6qPmCbpQaAyTtKjZ5TVXqx1n4xF2MMI2dYSuYUqQqoIwLNRKQwiFUkra0kIxCtqqpKor9uGKdHtDaFnITqLmMV28QdoCczpCjVyaKiV68+JBs6qMME3jwUZj2BieSit1mroEoSBUSRId+Pr1Nf/w1TtOPvoDflbdYusAACAASURBVPyDj5lePsYczPD6MaawMXSTo9kRP/iBxz4U/CI1Wa8OVHVKzzmjMH3U3gCr18ezTU6cHt0PPucnv/xHdFVhOBqz3SzQdI1Bv4dSF+i6i1AseqNT6kZwNByyCbdssh1/8OxjLo8/4Lg/hrKkunqDftrDGthUSs2rly+4PJ4ghAKoSKmSxCHe7BH+KCDLUupOoJUF+WGNGZygaBLLkmh5idkzsIIzrMkIhT2aHRM8mpLtNfQmoH/8CNXSYGCSlwnv3rzEG5gIJaFuwbIM6rpC0w2auqUoW/zRiLwoWN6uUOsYtz9DPXJpDJ2qyLCMB5i+NAzKKme+WPPmbsnF2KECmpMzlndzzLpi0vfosgZb0+n1+rjDCS+//QpJgS9SRv8/e++1I1mWpel95+yjtWkz1xEeERmpSmRNS85M94BsYEDwZgAC5CPyhrwiOQSImUFjWlVnVVd2ZUVGhnbt5qbtaH144f0KLF6w/kfY2MBee61//Z/noFQ1/miCZQWYskIxrgjDHY6l8cXLJ4Dg7mHPp7fvaaM9sjXAtaZI0Z7s7Jjw4Q510sc3TOr9Gte0KBQV0wtQ45Zp36Lv2Jz/z/+BKNQwwwJtm+B2JpYkY0oVHS1l0yKGFrYGaCoCHUuzaYVO3nbUJCTFkjI30G0XUxMojkGXV2h5Tk1DVaSsr26oWxm7Z6ObDg01stLSSjWO1j2G5Ic7WkkibG3um4yqK5mcPKeJVhRpRJnGtK5NK1Roa0RbgABV07FUwdt373j78QbH92irDFmV0c2W6PYNF//sMPvsFP3sKW3esI4bTk8mNHWOKnXkZcNkNEalY3F/xWZToMnQNh2e24O6A1mh6RqkTkbRLSw/oI5SjkcenibRFBWupvDF0GFiWkxciz87GzEZzzBFQ9vUNKKjaUpWacG3y4q/f3WB11aMVZNZb8h0ckYwcDHzPbe//UekNuTP/uovkOSaaLfkp0XC5MUxftCjazKEYyMMGdn0yPOWJG+Q6hXTYcBUyNDWbPMOqa1ZzC+4un9g31pEu4xsGxFt9qR5zrN/+wvc6YDo4w25d0x/9pTTZ1Ou4zWlI5EXaxT9D8jh34f+0DT5PUlWHvF8WltS1TVCFmiWhdjJUJVUDWiGB1pJVVVsrj9wbCqkgwn+YMbtjx+ZqOd0u4LB6Yy6rknqEk2WUA2DTjXo+x5ipLNZrZlv9syWa46PD5G7DlmUbKKCnusyncyg6Sg3DzSBhC4UtmuTxcOCapfxQjMZUdNXYOw7eIFL/8kJpdSi9QK8/phqe4+ua6CPkAyN8noLnUW42RJ4Bv/jX/070mpBFCeUjaAVJqrZkm8XZF2H2tbUNCi9GWpRY9QtRfIY6lpXJU3T0pkO07MZWVkQSyq7MOLg2XNe/vQbwlqQFCrruGTo+cThjqLImQYGt5uY9SpC7XKenB0gNy1R6dHRIHUVumrSljFdo9DUNfskw/c8ojhCoiGpWj5c39J2sFqtUcsM37XJHiLq+z2yrKBYCl2dspmv2H64QzQNRs+hw0XUNbZ/zm6X8W51j3F1wWmTEUsGtTnACWy8nkVbV+hKixkM0JMUy9SYHR/S0rHbblhvd0RFxbTn4moGD3aPvMowlY68s6hagawKhGmyWS2ZP2xZriO2uxhv2BJVgrKGtmkwdY3bKELYI0ZqirnPMfIt+X7Jh7cXnH72Jxi2i6trZGVFJ8HBbMw+TkmKghtb4blWsri9Y353w3674mEOqTXkT1QLQ1LRLJuqusZzDLZRgtA0qiLm8Nk58WaLst1yd71knXQ0ko5Ztzz0eniOw3y9xrVdfM9DtWzkpiM4FBw0UMYpcZrx/XLHfWty9os/x+4dcOjp+H2TOM6421eUixX+w5JZYGL3PLb7Bz48fOBjXBGVFZap4ekqYVTw13/7Pd88m7GPNkyeeiw3W3ZJSlhIaKaD59pYnkXP0dAMEyEEtfw4cRoOBbf3G35890hLUga/4N1tQZjfMwtbdEtmfX9NkcaIriWOYwzL4cnLb3D8CVWWsrmf4//83/Ll0RS7V2NZOoZp0HXQ1BKKaaL1+ix/fEumugihInQDVTfIqga1k7kNV3z+eR8veCyEFTvAyVv6xQd6nk9ZagSey8nZU4RusQ8h/LBDa3qwCXk2HdObTPGfBEh6w9tf/pLJcs/ldsN//M0H3B9y+n2Lnz+fEegzhscW6f6WONqB7PLp0wWbJERRSva7kLtERm5zmmhF5VrERcX+dk0TVkRxwnW842ERMR4+Q24lpKLBdUws18L2n1DsQD+x8ByLdtpyt77DiVXCosTzp6iqi6a7FJgYms7TJ0N0IdPr+azvr5lnOR/u9yz2OVUeI8sylSSj6QZt90gYYn7Fm3/4r7g/fQlHB2hVAU1FZ3qops3XT2ZoUsfPnw6xDZmDz79CEYLl2zckVY2haqSiY1ss+eH//hb31a/pe332qyXzxR3t+hrLFtRSi+e5CFmllQXR4h7DEJTJFt2w0BwX2o6uhWK9YHfzCUlX0VuPpshpJJWiqojCmOVqw/puzuvbDZph4BsqSlvTNTWq6aFrFrZh8N3Vhhefv+DMsXHcku/iO06fvGQ0PKIREvvdHi8IiJOYaL1jG2U8RDmabnM8sciTCMvxOXnyDN8PyPOMtgMv6BHVKfvVAw+7LY4f4EcZiizIy5y2TWjVnKtlTVm9JT5vOc0yRo5GlUk0Wg/JMOjqlOODE47UL9G/v2Jb3HF+OmFgw5ORwdcflqyXn3DUjEAVWLKO6k1I+wPKIkbaLFBsGWM6wnxxjmS0GPuQ+vqaZrVA0RUaSSDRkSQRRZmxur3j7vKOTmqxPZ2mbvAtg8AxUDqB1LZYQqFDZx02JPuEfm+MioxsGsiqxjCwifY7DkaHRIs7Bs9e8LBeslstiZMc3Jc0XYlpO+xWC8Iw5ad//t+zvrzk1//4v/LueklerZid7Tg5HtCmn4jCmDQr6CSNXt8mUCriPKHchFgdZFmGLiskmw11p2IPRsieQylAtEBbUiMhCRm8IcHhMwbPvsD9/IbJ1SWjiys2ixVVA54ToGg+E0/gWx2mktImKV60Ytj3sY9O2S7vWK5uKdOIrazSP5qRdxmu1LG/3fCw7yGfnaLrKlVVIksqVZ4S7VL6/gx3bCAMg2i7JWkl4jSjP/GpJMEirXHGM/LthiwKSbOUX5z2+Pz0nHz6FMnySZuWtmmxdJs43ZMt7/n1X285P50xn6/I0xIJlePDE+hgOBzS91wkWaaTbeKuo2c4ZPYAZ1ByFlzS5jJRVlIi0xYtrSSTSTofVhHuIMcaSNiiQ1UkFE2jpUHSVLqyRvf7KJKELIPcQRFuadOQcH7Nar9GlVr0tqIst2iKgnwXsnkTsdnuKMqC/qjPsaWjdx6q7iIEtBI0XUNTl3SSoGlq1rsdrz7dsolSqvc/8tmRoG2fsNmsWYQlB8enOJbB2bmMMPdcz3P024giXaBqMs7kBP3ghHJ8gG1q2JpOWzQMhMbpcEakShi6wSjwWEQ5reahKDmqpqEYCm5/yNGTzzg7GHP1y//EwGlwLY/+6Tnn3/wrissL5N0bpi88UGqWdy3zvOA3v/ke19LRrABVd6g0jTTPCUZ9ZFnm5sMFtdxjH0c4+xDHMFBUHVtTIdpiBQLrdIruDVGNFbI2QBjnkBWU80vSuCTZrole32GJDtM2qJEodJCyArc/oZUEd4slU82hXS24/vAKW58wPT/FmI5o2pxOhqbp0FQFXTdpu5btbstvfnhFIQzezXccFSV6+Cv6soShW7TrjGxfYRgmg5OATdehT3xOT8ZYyx3Dnk/PcfBsBy/o0XYCypYijlBosUwd1wvwTANLLpF0Fbmtya4/EG8j+qND1GjHw3yLNpERVUqtgqzpGD0fLS4R2Zo8XqI6Y2bPDonf3NCs5+izCfqTbxicTFC7iiaNaUVHY0hUpkKyX7O7vaMsC6TAp05C2v0Vbb4ldQZknstwYtM/9GlSlTpJSRc3uOYUyVZI84iqKXB8ixpBKQnCXUyZRFRZSicsLtYraq3Ecn36g2PaZz+lLkLaPEWWQaoLqqJApkWIjq7Ksfw+rq6RbDe8ffWGg+MZ44NztpuUdrNk/f5bxmcKUjtFknUkSUJVBGrV0Dd0XDtgcXtHX3bQe0fcbm/ZbxMWiy0nx+dIQNXKRPGjW9+zDWxDJ41iAkPHBh7WOyRNUDQQ9AN+4viIaolqSujugPjukqurNZY35CEv+Lu3rwn8Pr26xDN99KMXDF5+ze797yjSkunJEcd/9nOMwCLbzZGUCs8Y4I96qKqEYjlgmUiGjiwrdKsfcSipHRfF8kmTlF2UcDtf4/s9Lucr5us96b5menJCkdUk4YrsbsnFf/yv9H0fQzXZ924wD4/wXk4Jooj739zTUoIs/X/8y/3/h/6wnvN70s1i+fn37z7+T5qQJVWSaDpBkhVYugJIJNgga0SbNW1dYusaph8wCHqYbY7RJejlCpHdMDyd4kwHrPKKDjBdmzgM6bII03YYjMePlsI4ZdLvIaQWCQlkHa83wJTBVFTkNKTYr5CbGm884/Rnv+DlH/8JXz054WA0ZHp2jqLIINXgBCyLGstzsD0XTZUxXIftdsfifs/tVUqWK5iBwenLMUHPxrBNKs1m1HOR8z1VniFUnWDYB6lFWD7e9Jg0y5EkiThNqfIUupb75QpzOCLMS8ZnT0lQUGRBMBqjmSbLhxWO7aLKEjQlqpCIwxBDylk9XHN1+QHRZZyfHZFnGZPZIZoio3aPq0qa+Yht3S/XzFdbHPkxxVySFQaBR1pUtE1D3bTYmoqlq1x9vKbb7xidDVANyPOczXKPG2gYAx/ZVJANBZSOKt9iTQ9p7Cnr7Zyiayh5xMQiy/RGI1TNBlmmaWvyLKVoOgaTCVUrcXOzZLsPGQz7KKKiRn4suNoC/BG5LJBES1nsKPOc7XrPOs6IK4k8y5i9/Am6E2AYCmrX0JWPZCBVlrl+9S1ZHPK7j7d8+PgJucqxpy9xDANb02iKiu1uz+FsTJamrOY3mLKGrAiycEOWJkiSwB8fcX99yXazpa0bZFWwmt89UgEUweHhDIsSW8owNJVeL6AsaxabhNVy+ejsKGqy7QaTjsPpmOnsgP70lOHpF4wPzwlcDwnBMm2J9QH+0TmzgyecqCXZ9oHv3z/w5scLetstX43HvPjiaw4+e8Z2u+by/gLF6pANQYFEWBY0bU2KRlZ0zNcRaQm324hku2cVZViTUyqhQ9uh6SaKqlNWNXK45NCVOZmOKGSHm4eQ67slwpohnEPu79ds9jVhpbJLUxZvf0m0W2NZNlVV4feHfPXNH9N0MpZrk28XuOMpX31+hiNvGAQmQlGQDBtZUbm9uqJqwJAlqiwhDENAwtR16qbDdn2SaIuvQZwkWJMTrN6QOt4jkoi2dvBPXjI8PKFIO+6v9vz47SXyouXF+AWaHVBXa1palE5Dtyzy0MHu+Zwez5hoB1zFgn+4/p4amSeTPgcvX2CqHWkS0eoOpq5QVBkXyx2vLxa0WcrEAtP1SIVGlOW8/3jJYrHmPiz48eKBRHI5OX2OpljInYIMHB4dMDuc0EoKXTDlaOZQl3te//Y7RLYAy0IoJm0ns48ydN1mvd5RVh1FWbN4WPDt33/Lb3+4ZBMX7Be3pHH0WCxrOqqqoQiFk3HAWOtokscVwK7rEEAURjR1g0KNaygoikRbNwzPXzIc9ghvL/n45hWfXv0TxX5JtF9xs1pyubjj9c0lbr9P3RQskgihGbjegEG/z4uTcxxdxjFlunRHVyZIQqHOE1TDQBgmbZESXr5nN7+hlgz6Z5+hez1kw6RD4v5hyevvX/NPP15gBCMOZyP6coMzOsRUZHQhoQoFWdF49+YjldrnYDol3udsdxmm5lBWNbPpIUcnB0RpxHYb8bDNiGUb3bAINA2leXQlSP6Qz3/2DbZp0rYtmh1g6jpNGXH57gdURWE6e0ITVziGwuT5jKbdUacxGhKr5Y71NnkMZ6xCUG1axaFFJovW+LbM+OgIW1OZp1uGjo6i68iOR29ygl51FFUMokFWZTpDQW5j9L6B8fXnuH/6M+yvPqcTDUUZU3UyrawSRSGyqpA3gpv5A5s44ebdO8LtFqdnUcgNQgbHN6jaGt/3cGwTpI5e4CN0k9UmZ59UjCeHuJqJpWmoroem6DRti9o11ElK3ws4ODiiMywU0yNrLXRdo6krFAV22zucwKFsG6o2p6hy8krjYVezWO5IG4gKwXITUlQVJ0dT+o6NsHtUuz1yWUELTdOiGCp3l++ozADHtmiFgq6oKJJEV9VojstgeobXm6DZPaxgTOD2CSYTvnh+zGgQUGclh5aEh8bIGnB8+BVD3UMkMbrpktc2l+9f8+PVJe/Xe7ZRjGRo5HVFWZfUVUkWbcnShN7kiF7QR+ogurths0kw/R66Y5IVOYt9yGq5we8PcQOfTSuxzUp2WU2SV6itxHK5ZdTrYz/7ktTssysbGlmlayXqLCRZvWMzf+DT+xuaUhA4PvttSFFJPD17wunJEbqm4ff6DPtDFKGiKSqlpCJUlTqLCbqcuigp6pawhrDqmI6mDAdjFNXAsj0G0xmOpaObBpIskBSNomr/xbXp4Q0GOP0hVuDjD3o4gyFOf4g7GGD5Dq0qyNuWzXbDxTbmf/vNJ/7pfk8nK+SSQLEtDg8nGLaL0DSoSzqh0ykqXdexD7f86tVbvr3cE2YVZbrjeNpnPJ4Qr+6wgiPc3hRVVdFUFUmSUOqcfbRmv7rFcQKOzp7z9MkJZ0+OOPRtbDratGB9dU0eJ8iDIcHAQ1N1dssFaZQxCxxs20OWJJLdHtnwOD48QmlKnOGUg+Ov6ZsBRz/7kkwKOXo5RvRGLC/v0FpIdyEXVwvez2NWm4gkikjyCt32Cfz+YxN8OCKuG2pVJ61BqTJcQ8PyAjzfxlByrKGPbhoo/gxFN5ENC0lpoXggXc8pNnOEntEbuwhdpxU6HbBYboiLhg9X93z3/oZPd1teX6yxzRGHzz5j8OQYoUh0bU2jKKRxhBBg2DZRsufTm9+wD9fssgoUna5tmA18NKGgTk4IG5V4F1M3Lf2DIXFdERwMGU5M/C6j5zq4dg9H97D1PgoKklApqoiyzLFMA0mSsEwFratRuoaBP6NZ35LcXDJ8/kd0ix1dntN0GfFuiSJVNJbBtuxI9nvMIkIRoLYtdZFjyCDSHUQbTM/B7o9xeo/uJcPTMIcBxmiA7nnYwyEoClVV0bQdddeSCJ3CDhifHxAc+DRtiaJriLYhv/gR3TFQbYVOb1FsCccNaBWVq5s7Fss1TZZQtjKf5in36xjHMLHdgN4gwFIE8dWcqWFx+tlLZocjhC5wAhdDU2g7GV3XSbKMaLtD0IKiMjx/SSQkhOho0z09v+bJ8QyBTREW2LJMz7FZXN9glDL1LibdxtgoWIaNYamoiopreaxXET/+8IFPV3dUWcLBeIAApK4jihMcQ0FpG7JOZhfHCNvDNQWSKrAMgW7YBIM+rWLwux8XZEXGk0Dl5y8/w/NG7JMSqchpNlvG3pTnP/9L/BdfoI2HdG1LcntDVdV4JzN0Q0aiRtI0ZDdAM226+QXkj+vxqheAbvP+8iPr9RpVN7jbZLy5uGO9CwmGQ6z+GG/oIyyfbLehCGPSMEaqW8ZBD/PFGammIDyXbRbT1in/4a/+8n95cnjwh/Wc/5f1B6fJ70mKJJFmBZZjUxQVdVXhaII8LPEdk1EBN7sNumGQFCmHioyia3RFzPz6lsOTU8Y9nZMnhyiBima1DPomV1GH6MDyPdI7GdfzkTWToupINmtWyxVSXaKpGvbwmDJOaasSe3JMMDvBckway0M9OqcVCuQ5jSxI84Y2jeiEjq6pGJpgF4aorkNzd0+VxWi2zQ/vPmJ7Q/ZlQZkX5E1Cc7/HL3w00VKnBXWkUVc1TSeh+j5lC3kSc372Am84YhsmNHWFppkY9qPjwxhNuduFfHbQx+oP8QOFy6s7Pr15xzMUdNunqWskISF1LXGUEO43POzmRPGOukxYzNcsFw/Mjs6YHMxo9mvWd3eMTReaGkXTkXT9seFSlrimReDptE2N6Gos0yKXOoqyZLlckZUVvZ5BUeU0MdRVjZAr8hzKvEKqUuq8Zn5xxXIbIYlP2P0Rim1Tyx2dJFPXHUrVkEQRagv2wSkKFbIwGAwUFMMiiUKEJnHijajwSYXAbFfU+Z7GcnAVibYskdqGqoT9LmK52FIjkRUJx2eHHD8/Z500tO1jUGTTdPQch+jmhigJ+XA1R5s85U/++AtMRUP9l8BEIQSVolCqAqFqDH2fN99teR9GKJ89o5NVdMvhKOizWCyIk5gfXi3YhCFfuT627aErCkNDQ5Og00xcXcW2BUlS8PK4T1eVfLyWWSx23NcLekdDvP4BveEEf/YEb3yMbvpIZUUt6yS7glIv8SwT3fMYNVvefPjEu0/3/CSw+OlQY3Z0yOCbP2MfFnz323/i7YffcXDYxzmcMZQ6rLsV7y9vqJsEQ+5YJRFprpK2FnbbEm5CJEmmTiKs3hjP88jrhpljo0YrvH4PrSwoyw592OP4cMo3f/SvCZUR73+4RNNMkASaptPkEfHmgbJpaasJUtdw8vQZpqEwno3Qu4Qvn/4b5vMHnL7ByD+g7TKQOso8QTF9mq7lYROB0WNzt6SsaoRQGR6eYKcpICEbj8HJju3QWAHXN7csfnyDKgd8/tVzorsNd1c/sN/skYXJkTAIDgMG5yZmYfD+13Py5IZPdx9wP84oU5lSS5g99xi98Pmqsam6M36cv2f9tzv+O73iT3/+jP54yibKiVKNxg749Ooj13HDX8yeI1sa+0LGzGp+8+oVq20ClcJ2m7Dbxyj9AZZn0xoanqWxz1J6PQ9Zajl7PiZqcna3BRev37N585a3yyu++Hf/noOfnWJrLcKtkLqWvFH5v/6P/0TQCzCp6Loao9dHWy5RdIti+YDj9tFME6ku0C2fF2eHeHJCGMXcXlyj6hpVHOH6PZosJBhOEICiqShCw1ZaXv/n/52LqxuKLGO33fPp+hrDctjHKZuyZB2l/Pbda05mZ0wOzlFkjXa7IL25JF2EzH76E5q9imw0JEmM7pa44xGyoiBJMm1dUiYh602IMQ0wx4cYrk2epKxubri8X/LrdzdcbVOCesVhlyAPA/SuxjBdNFXF8ny2DwsGBgRdyP5hSZkL+u6AOuqwbJeg73MwHmJVPZJdRb/1CfKCOosReUyJSdsqGIMRvudhqAqyLFE1BapkU8QlA6dPpwvSVUKZpKiWh6YIyqwiKzoMBdIiZ/HhLWlRkJ0fcNQFmGVI3YBu26iGSUKGdz7ksJqQJnvc4YR4m6PNLI6cr/FuNDbLG3ZljCgWeJ77iAlVC4o2p04LhCyxX65oNJuy6UizgjgJCfd73n38RJbntIrOl0cHqHJJWLTERgGqiWm3SBKYlktdJ8hSx+L+gcs393iHL2jqGrms0R0bRdXwAo+qbbAtG9VyiHYxmtmimA6d5mArNuF2g2lbdM2GkzOHxf23VE2HYSx48qyHYszw3D51vuNhXxBFMVlacjxwSPYb6qMZtiohNBlJGORqB2nEw+UNeZGzePc9cpVzcHSEcEwmwz6aaaPIoGoWbdUh0NGERasFDPo6TeGiL9Y87ZuYso0rLLRWUF1dUhQJm8UF2fwjsWSR1DUXUca2KXF9k7LOSDWbNk6Y9F3iKOPvv/0tmuHx5LMvIY24ub6hMkeoXQZxx2q3YrnZ4fh9TNNEVQVlWeM6Fopp4Jx/Rvnj7xgdHFEEM5aljCfLxIbD2NQowhC1Kgl3KbvNHl0S7B829LRDxpNTwryhqWs8x0c1bSRjyLy0sQwDIYGQWkRbYgQeq+IZdSEjVXOyNGbQczg5PcdzXAxVkFQN0IKi0UkSsqpSI1OrBpZl4/s+QpEQmoGqSMhdRdu0GL0BVRQSLW5YZjkXUUlWSfy4rfgxrKEDNW6wBxqd5tLKj5k4imgf73AtkCVBUcfcr7bErYTnmiy3e56dDOgNetzOV2RJwTf/5k+hSLF1h0RWCFyHJoj5cubQ/fRzFDOgkD0Oeh4zaqS8JM8aiigm2YRcvPnAZDKkaypkGUaDgM3DB7pJH80wKdOUouo4efY5rtTQPfmMtx8+IekmjmXTGw9RxBTXeHRESapN0A9Y7Csqliy3az6VEU+GNoHnEiUZQlMpywar53Oq6cS7mK6A7O6SeLdnGHjotouumeiWjqxbyOjI8QZZMWnp6IIRbnCAFa+Irl6TpzlNklO0NVEc82ke8fbhksttDMLkZOzzxcsJ49MZ5tgHKpq2QlK1x8ZZlqIrMvvdipuLH8j2D4iuQRUqSScwrIBWNegkqFQFw1SQDIEsNGzZYmDKDA5cOi2HpYY7eMThuvoIRVjUco6QW3zP4/72miYt6IwBwvQZHDhUUUqFjuoHKM0SscxQH3IevvsW5XmfnJai2tE3DVwBpSVQaanrhofdHb4ZIikWmtlQZTH5q/9Ms19SHx4hj13kZ8eIsY6iKaimQ6MpeIqKmiSUWU5dpmhFjrAclHrH7mINKlhugFw0dLoMukJbVJiOTaNJVJ3GxcUNF1e3dEWBZbmsMomrhzVSVdJOD3HGh8hCx3Xh1WqNfJszHR1w+qc/Rx0OCdOQZH0BTY3QDSbHJ7zYh1iuiT44ILEMvM7F0Ds0uaLepzThGn8wQzSQrhMkS2U4nVAYMX4+plIEVZVR1jVF3vLqh2ve/nCDR4VMwzovGfZszo5n9CwFTdfRDYO4KpBNkyrJkU2bm9s7nhwdokoKlXDIygJNNTk8O2c6PGIxv2f1cIV/coLoPL48r1heXmG1Ja6WkS/fIQ9qur2CvF8S7xJ6z/ogVVRljeF7SE6AUE2UYk94/YFW91BnM6KsYr2cc/XhHtfvUwiDm/tr7uZLjmQRJgAAIABJREFUVF2h75tMhjbmVzMeNil/04Zc/fMr6qYjzDPuipxJnaE5Bp5V8PyLUy6aHUL8wWny+9Afmia/J0mqjm1biLZAoqWsW4LAhzpHZDtGVkc3G3Nd18imQ9W05Mt7UnlKqZkURo/GkOmEhOQ5KFqJ023xhQadgeW6KIpC07RIyOzDiP5wxC7J2S0eGLgOdQm90Sma70IrI+kupq1TDw+Ii4pot2F5PyfZx+y3IRNDZqBp7DYPyKpEJwt+9+YdZVsjyxKSYnGxDKnLDW1ZcdYLOH92ijMMyMqScH2P3HXEcYahyJi9EXndsNttMDWVfr+HpqvYukocCxzbIU8jylbi/vaOwNGY+Db96RFxmDP9+hc0cc5P/5t/Tbnac3O3YvEwR+45rFcr9mlGf3qKLNfU+Z4qinj/7hWe36cqEpoypmlbtts9w9EjzrM3HsGP71A6GdE10Egs7ueYnodSRMwODrl48wbR6jiGjKR0hHmN3paoSoumCyph/svUvKZtJTAtpLQlymrqJMW1LToZOkmmFSqb7Rq1qxhOjtHCDSgKbdWgBQOiOCdPQxQdaqNF5DuqtSC2AtpygxA6AhnRaMT7grbIsScjDrG5en+BEBrewSFhWlG0OvNMwuxgqBl0VUOnmeRVQ+/wmMGLb3Cnn2EJQVkVoAjiskYyNDzHQTQdWZTSC3zevP4tUlfxbNqj7/eYz+9ZPtxSlTlZkVF+fEvTlEx7LgenJ9ThnLw2sf9lau/5LkIWqF1Heqwz8E4wfqrywz//QBQV1FWFIklYuoImdai6SVdAJ1ugOpSyiiY1mF3Jx7slP3y44K/Ozzk5OiGOQ+52Sz79l/+TH+5ueAjvORvKSO6QVPZI45CqAcuwUDsZS4qh6riJUhoJ0ixDQqZtKmzRMvFtNM9FN23KJKSNtti+jWQ7KM4Ay3X56ptf4D5r+NVNRf1hh6lqhJslixsDQ80RikbgmiT7LaOjM9q2QCbnZ+d96jhCia8QVoFcFYjeiHx7S17mFEVEF0WYTkC7a1A1k52ko+YxOAYUBZIsAEHUCPZZTf9wwPvfveJv//G3nPYG/MXXLvHr3xJvM6S2wvdUartPto94WL0ja1Y0tUAyTMIypdIj3kdb2nZMuLliHkc4Vp99UTLu60z0E3ynJF/fs7o2sKhoJIE2GlK8+YHpyGdwGDC0JfIiR200ri8+cL/eo9t96jxktdmTphU9t0FpGsbHQ7a7lmf2CcWm4OQnz5Cp0bI1f/d3P7CYf+RhPme1Cfla1vAsi/k2Q21l0FUmgctlf8Cv/uavGUxmvHx+ym55T1PkZEmMLHQUVcXWdXI6Bv0Rnz09Q6lCPl18omo75ncP6Mohu+iO/qCP45oY3gAtSdFVwf7ukstPl+ziFNc0KJqG7z5coWgmWVHhtR3npoW5m7O4v8PSHXQJPBXsck94+z2vL14xOn1J/9nXmEc++6oFq0abBaAq1FnKfrGgVQ2OPvsSWQiKJCVLM9ZpzbvbNf/47hqpyBlqMl0pkGyPnqmimQaF0KGV6Jqak/PPkDSV/WpBWGkkSYrpmeiaiZAVDM1k5hjciRt0SyErOzrToWpbqEGYFb3pDN/QMVQF05hys91SlzmmrpHqDq7rELcW04Mj5ECgdQ2q4VAvt6RSTdc9vnef3r+nyDP2heDsqKPXG+H7AZXQsR0bkWf0XIX7TcmgK/GHHuniHiFpDJ+dMnzxBFkV+JM+ZmBR5zs6MqospDAtmiJCDYYk2x37zZqH5YLlesn8/p5lkhOMRnx5NMJWKjRFQzVdqnyDoYAutyRRTqZEqJYgz0tevbnn4eIBRwvgaYmmGyiSiq7qaELDUkwSBHFRk0gmY93GtTwaVFZF9VicawLZc1GlHq7n0XYJIm+oGwlJH2FpBs0mYrEqoa1p24YkCSlKB2FY1OGaRgHZ0JFkBSULUXyP/V1OdnfHYDwluXqDYtt48jm249PUIJUZMoImjogvbxBCR2o72qLEEiXekxPKqCBdbtnvE5JwT1HmLHY7KqGjulNk0+Ls9ICnekWtSjijAQdeH0k/xLR0Jp2M5va5nS9Z3V5jSjLLJKffU1EMnevFPReXl/THh2iKimVYdEKjaysMtaNn62wv3yNFew4mI1pVoyxKymiPRkaS6VRFxvb+HtFpWLaPrLRYpsN2F9Lrjzg5mtJ1LSM/YJ4ryEqA1OmokkorQ9TU+LKEavuYvY5wvyXdp3Rqhet6TGeHuK5PXRak+xVFWUJb0aGBopLmDZJp43sOqtQhCR1FiMdQWN1BampQVKS6oVVN5qXg+2VEWdTcpg2t5RAoLeNhwOmTJ0yns8d7ZNrINLR1DkKnSSPCeMs8LUnLGpOUwFZQLZuH9Z7bxe/4xR//JWpTQt6SNi0NMoYQ2DKMfYufffYUZI2HROXAt2G/YxvuyVRBMV9SLjc8fLwm+PkzJCMk222gAV1uqOoWWZZpGpBUk9FkghJtMaenLD7coqcF8/0t8XaPa6a07YrlRUKbQahaXOwEnRkwCio2dyvWOfQDAS10QkfWG3TNQqo6UDP8/pjW9XjzD39LoC3xdQPJDWg6HXQfoalI1Qa5F4BsozQz6iSlqzOE7aFrNqvNJav5il+9+cT7ux1hUUEroyoKRZaQhFvatoA6oelMdM2iEwpVEpEXJS2C66u3rO8+Ybs2iqbS10yKMqfNI5aphu959FwbaR0jFPHYAJc7BodDLAvyIkVSHRr5cZAoOSqS3iLLEkQdumbgGjaW0uezF98gTIVwec9eKZB9i3KxoZUTLv/+v3D546+5X12SxgZnf/nnbDefqG7v8PoDXF2gNLDd7dnscjJlz9hzaO0BUt8kWz8Qbr+nNVPM2edobQhRAZJAUp3H0GipwDIVTAkk0SINeqCpZNGS3d0lsqHQjg+wNB3UFNUwUbWA1eKOVoO77Ybv/vkVUlPhOi6bSmGrBeyit7gKVHlMm4UIycVwPKZPnyJtQybnz5AVnTpO0NuaVrfZ3l8jiwRPV7BkmUk/wHl6xndvb7E1B9+08TWTeL0gunlg4JxhmD7bq4hQL6iLgqRtkc/HyFrL/CIkzRPSxZwyz5iYJr5r8n634zpK2CUOr1+95WdfP6dBwj88ZbmJiNYbOrWjrSpkRZAmEQNTkG82MDtF5HskwwBNJhh7dNoJlZAo6wx8ncHZlP3FB+J0QS3tyd/f4gYmclNRiII8b9BlA9mzkRSbVjLI9zv2q1vC0qQTNt1DwYfre/abFNuaEm9rpHDLcnFPHIU8mT3Ddy1836ITNber9wSiZuuaj4NZ0bHJNmzW9xz6NmEWoYQrDgYeivyH7/zvQ3845d+TurZFlnlkiiMo05oob3H8Acn+Ab/Zg9NDPz5ks1mR7JYs6hyjKejPzgh1k1i0rHWHnufSZQ9E0ZrtfIdsT7E0i860QZLQDJPBwRG2Kgjncx7WW+7nS2b+hvMaDElGUzToTQiezmjLkMWnD3y4uGC93vGwK4iziq+mI+6TPYpQqITCp9Wau+2WVhEso4y0grbOsaSGzyd9HF8joUEqK8pwS7jdMuq7mHKNYlpERU1aVmw2e/7o5z9BVWQUIaHrJrpZkUcxdALTGzAta079Ftf3sYIBp32V0cEh6vWc9+/fMrIHj6nTSIRxRFMlDIYBvqXSLQsOhhaF4TDyFFQi7j/+Ft+06Pd9Lj89ILUdvfGAoDfEtUwkqUVRVVRV4fzFE/K8JlqvEXGC2+sRGDJtnpMh0zQdQupwTAPFdTANmw6BXHsgJILTJ+RxwermljBMqToVURfIpo2mdCApJGVLuoxIiwpNbtgmj9SYLC2oVQtNK5HbhlyuCNMMkYYkhc3IMegqQZzHFE2C0jdYLCIuPl2i6YLT41MIZnRtR7zf4VoaVmBgyC66M6JOZfrjY758+pyHfYfm+Dz57CUf/vkN2/UG+8jCUDQc3cbowDAs+tMjBnnC8uNrxsZz3GBMXnbUTY2QW24+vKZrW4qi4H5VcfbiKSgKnQRWb0wVV+iagjY+oP/5c6R3F3z65a846E95+t/+D/zyn75jvtxyPIkZ7yMsswdpRlu2ZFHGNtzSdBW93oi7zYq/+c2v+TqwuF3fspM0ZNNgOu4x7Ln8qxdH/O71dyxvfmR/fUN2v4Msw7R0RraOpqusaRBVwT4uCaMa13M4no45DixWqy1JmmB4HlKZEz3cMfNtqHKkQqJLY4Qkofp9GlVjHWWc/tGfoqzuiTYbhAyubWEdnuEHPkWZo4iOMougCtHlAEUpaaQMexDgen3aMsI/PEF0Ncnukof7DxjukP5kyqeP16imzYfXrznpl1Sei6qoxGWFZtm8v72n1w9wlYZ//69/gpnlpPslZV2yzjL2+5QS0KycSrapt/dcb+7IKyhQKPQeVV1QEZPl92zKlvq+xND+H/beZNe2NMvS+v5V17uuTnnvtXutdDNzTw+PICIFZDQSARItkOjAU9FAQkKiiWggIZGNJJGCDFBmFB7hbrXd8tR777PrveryXzROiDcgspE+XuFf0ppzaozxpdi2wPIl08EYc9DHEiHHh2uyrk9r+9zc3nJ1e0fS6thGSbif459MWWUNx0OCbZrkZcnDfME+yWlQyJMI8oyGls6zKWZtE9gW3b5BIlX+6l//HfP333My7vPZ1/+Ex/mawWhGXrX0fJcwDJHtEz7Z87p0T16w3qwJthFdFSJNx7QDFM2kymPqSkcIlfH0lGHHQykVmM14t1wSRSnrzYHJdIKhGyhCwbENYssm3izRZMDzy3OkUHj75j2P2wNpUVLGOSeGwX/47Bm24aDrNmmUk7UWl70pQ13DJYZhF3P6jMmzZxhjh3R3z/d//Q3f/8uKf/5f/Tmfff0JdZaQS4HemyGFRhqnNE3NLq34ZlvwL/7+LY/7kJGpUuUZcdvF9gOSJMXttOidAVIoGG4HoWpMTy/429/+jp+uV3TGM9JSMBidchJ0ifcpZsem0xuSiRC1VajSDEc32Yk9UtfRDRNTUTEtB9c0yRBcX79Daha92RnpPkZ2HUYvnyGrA6ZhIA2Fo6GzflzR0pJlJXlR8uH9B/aHiLrV+Uy30VGoZYssEtLwiNnpYo0atllK32jwBg51XFAI6A0mOJ0u9tkM3bWQbU4yf00Yp9heQtHU1OGR+dVbbt78zNVqw/3ikVpRGU6GnPY9zDrE1QVu0GPaqOxHXUzbxNThUY1RVQUkfLjZcfPmBhOdeh8iHhaMXn6NXuh4B8nh9oEP795SUxBMXjL2fFzLYDwZsdtHPDxs0AwVTUhazaM1+7SajmlqyOqCMk9RdRuRp7R2gBdAnsZooqaRGqrjUgoFYTkYuk7dQFrWVIbDMVuyiTOirOBVniOCEWnZ8OHtO87PLjB1E022WJZLHoZUaYrecRFNTdvEdE4nyEp9elfPI3pcUziCMjpgYFFkEnyT8cvnjM5HSMfhw807pKoynE6wvAAE1GXF6UxgxBnhbsc6L8h1kzBPWLzbsFw/Ylo2rutjoGHqJjFgOhZNkjAJLJaiJQHUpqITeKTJkX2Zc/niIzZpjeoP0I8ei+sY3xuiaSW6ZqDrOrpm4jgubV0iW52BUAgOe4KhRtEauIagL2LKVtKaOoVloBoWiuUyPfcxhaDX72GZNmWhI5qC3SFkNujSIijKmkoxmTkWalnSqjoKLaKtwNJoZfv0JmVJHqcc4pS0lKySlmPekphDBlOPS7vlctxhNBzQHUzQ/A4YNlJWoKmIsiEtUh5WG9JaPsW+RM3FyYDpbIgiCyqtT6fbY/d4Tz/oULYxpunQtFAkEV1d0Jv0KcsKz1CwZM5huSPMM6o0QaYVHDYYZUw+/5lMG5BHEav5I2XtkKYntE1DI1v0bgff1qkzhd70lNOTM17//mfOPv6avm+y3Ge8/OgLFu//Ctcbs9zXoHkcMsGs2+eVbIiblsDzMTUVKXQcx8YyDOo0xXIDetMZhCkvv/xjFlfv4P2CmRQQjHCGKq0OTC7B6tE2KigtqppRyoY2L8njnPvrJa/vQ/qDE/7p9BPe3Nzx4eGeyXBIq+nMVwumix5+YGI7JrgObduSHPe0siQ8Jly9/ZaRb1I3DZ7XZd/oqE2IesxIDRULUKMMN2x52ZtxaGroaPg9hWi7xlIaGsdCOD1aahTPQtUURAWabkKj4ihDPv7lH2P5PghJleY0pk+pVFRU1I5K0W04mAWds0uOhzX3t3OcwYg63ZA2R3quiWVq7MMdcRRzrFoEGhNP4I76qF2TggqCGtkc4agizBEgaMsSpVUwqyPNYY+saxRVh0ZFoGB5PnINrWKiaTpCBWd4RltkHPYboijmZv7Am6sHWgmm47E4ZJS2jd6zySScDzq4joKhVrRNgZQ6J8+fY4xyDMdFNQx2qznxZs7o8pxKCjSlpU1DhoMuvZNTUsVGw6AJFUxN4is93K5NtI04vntDd/Q1jWqwu4nxXY/oEPEYPrnIdQ3ycE+RpRgCnvkeeZmxihPOT8+wZMV2f+T9wyPPP/sCozdg3OmjBR1W9w9st1e0UrDeHyliwSTwaddb7EmX6HBAqBptI9FdnTyOaHWXw2aJioI+cSnjBq1IEasFu6NCTI3VdzFKFd0PaKTB4ypi8f4bbn74mbKUtF6XxtrR6/Wpy5bVzRpDPZLmKZPTCUqr4PXHWN0xjq1T7JbEj9dcujbBlxdPyOa7fyAiioL49g2553LRHcJoyLLMkOIPTpN/DP3haPKPJJWGmpYKFZkeCLweu7BEwcAIJqwWa9yOQte2qC2b2AlQlIJaNijlHiO+Y9N7yVDXqJMVdR6SlgU3d7eoxp7T81cohoHQdGSe4ho6pmjp9Lps/Q6v337g3f0ju/2Rkety+elnzGY+WbQm2q2IVmvy7QNm2dBEEZqweHNzzVCFRZQTN4J9ciRrKtKmpihykOAbgmnXpwB+XG4wN488G3bxHI9a1bEdF3STUrFYhkfu53NOhh163Q6tlFBXaIaD40DTwuHoYNgtzy4CzOIOzeuhaybj0ZC7h3tmouDm7jXx7DNUXcM1Ba6hoEqdwFXID/d0AovGDBCBjmwly9vX6NMps8FLZtMey+WSd+/fcZImBP0Brt+hjA+0qkolJWrVotAyGI+xdJPpqItlmWThEUPV0dQW19BQdB3dshAINF3FHg0xvADVdGhVh5Ptgnz3SLQNWa22mKpKU+Y0rUGMhWwlt7HEERWWq9E0FVIRKEqFYbtEFUSHLbavs9+FhLXKQLdY7jeUlWQ0FHx4bEjSI4OhycUXl/yc9VnsMvqByqfPTtiFMdsE9H6PsaHwcjJGfPYrTp89ZxylvFvcoPaHGLZDuH4kzzM6hklP09BVBSErPN9jOuhRzk3evH3Hixcv6c/O+ejjjzhcfUtPfUGW5FieT5onJFLQ9zzUKkHYGqproboO/rPfkKQt4XbLJkzxzIKXv7zkz09f8Df/8n/lxx/fIxrBWVLheiFN0XA8bPjx6gPS9jkkCf/3t99BkxHWKuPnr9C7JmO/xWhbZGdMpfg4vR233/2IEh/pdXIc42nonfR7NFFBogj2cYHtWHx+MeOLz17hewGrxZJ9mHMyGaOYFvvHJfF2Q6YIjJMz8vRAFEc0pUab6nx/l1JFBb95NmSjluTdAEPX6A9MsiimPxoQeBayKSiTiO16wcNtwWTQYfDilxRhRdU2ZFmBbvu4HRd1f0CKJbvtBgMfpGSz3jA8OyNNY3aHkPFowtA1UIXC5lHhp5/ecnZ2xrBrEKcRdZLRGU2ZTU7pZAWr5Y5NIWialqbTJU4STF/B64zoOH2kgCJPiPcbxOOCq01G2R2huxmG2XCsdoTLPbquchLlzFSV4zbl/Zt3rDJJrWuMXZfT4YBCddlsj2y3GVF45JhLhKrxH/3pr1Btgx/u9hR5QlsX1H0fRXUYdj3KtuSb734k2l3z5efPGc5OcUZTzg45p5enNL7LZhNSJSlGv08tFTTbo9PvEwxHrHYHnCDAdlN6gyH79YKkyKhNG8vtMbQtOq5LLRo8r8PADjnUFfv9HvQnjKVWV9iGju93qbOUwWhCp9cnO+x4fjJGljV9y4A055BUBL6P74/odMb4ZYtZGrT6GYOXnyJHKofbd3gvz7G/fsVx8YZQLXHPLOL3P/A//Hc/8N/+N/8FzyY9JAHd2QWq32e12SMMh58WEf/2b78l2m1RW0mDRlhJ1klO7k/QyxhhGuiug2U5xJsNP3/7O5abPfP7B95/+MBJ25JKHbc/5pimOJaBpalouoUQCZrhYGJQRyGWF2DUOrJq0BUNTTNpFQMhW2yng+GaTweR6gPyWGN1PYowxTEU0kbBNRRK2+Z+faCqK5pGUlY14fU14SFGFf8Zl+MhbQtCRAgUhG5jOBbb9YbkuOPi7AXeZIDudBCGiZQ56c016Aaqp1M1Bvn6nqzKqfIji+t3vH77nt9/uKVUVBTTZRA4dF2bnowYGjq9bo9aKPhKzqTnEmU1jh9gJxV5Ay0m6+WGIivp+k/HhnRxxeaHN3Q6Y+6Ob/nmzU8IXWEwHDKenFG7HXTPRvM7mK2GvY+Jd2tM30UTNk3hIjQdx3WQlYVi+CitoJICqdVIrQbNwO8OyfMcTVXZrxZcnI6I90cOqzV5XhOmFYvd4cmRkiZUZYHmuOhNTSvg3fs3OLYJpWQ6PSHoDrDKhqbMqcoDsk6olBbN0BicvqLNa1rVoNZ1VMdAsTSUtCRVSx6XP+MYMWcffczgN3/M7S7C0MEPAiopEEIhrQV36z0P8yVhnJAJk8c0Y7d9pKgaLi4uKcqC6XAEiqDUNFTXRa8KwuUd40mPxfHINk1x84TecEZUSrLDntPZKYXhs3s00VHJq5pO0AfZUFeCTjCkaXU6foc4abE1jTSV2JGk1gyOtHQNnVxXoC7QtBShKnz1m19TFDC/f0TXLTQkdmBT5wZJUZEUFZ5QqCV0Ow5KESNbBYUG1Bosk0Y8RXaj/Y7dek193HPcbbGl5E8+/4K4LJCmRZ7FnPUcZB5T1pAVFUVZo1Q1uqnT1A1JnrLdr2lNG6/OmfRsHHPCJq7wDMlmHXHx9S9ps5D7fYRPA1WNsDwOx5Q0Kxh1fSzLpGnAsmvCY0hbZCzmSxbX72jrFpcGO7AJOi6DwZhFErNZ3LPLDLrTj8nTDNlIXNdFVVssx0I0DeefvOLhzRX3N9f89G++Qx3bbPoq28Jl5g9h9YBcr8lLiXBtJqMJHA4YtktV1+iGjmkYiKZG1VRcr4dtWbSNoDMaIjWDqKoId3tmb95xZhvYSheh9aEASUMTb8lXV4T3D0T7jO++ec1f/P4t/d6ITz/6hJPzF9wc/gWTY4fT3hTD67AIH5AIdoc9vVGEkrpklcLt/R2uF3D3cItWRmiqhTBNNEOl3oVkZc6oP8C0bJxuj0MYM4+PdC2H3ssL/JlDetwRPs7RXBvDGZAWLY5r02oaiqEjpERpoN5l9L0xpuOgqhrVJoREYHRzyuMSJfARJw2mm+HsXvD1n/2XzP+X/4n9bscxKzg56ZHHG7K0YBaY5HmOrGviMOGnoqE/GKMNTNxnzwlcC9MN0DpDNNcBXdDUUJc5dfz0PeR5TF1VNEXB8eEO4fhYvQHHvOWT5+eYroMQFZKCIg+5vb3h6vaBt8stEg2kJN5HVBJUzadc3eOqDaYb0BgOSRwSDPpUsoPt9GmPK5pIIKZ9HDehiiM0qfLq1dd8891fo8T7p1Lq0Qmvb5aMxjOaAwSORZVmbMJHksrhhx/XnIy/x/OGZOs9241Ocoixo5BNvGV7WNIUCUK2dCyLjm4QlwWXfpfn/T4Pi2ua1kC2Kv3TS8L1nEoqmF6fyXMP07LYrbeU+x1vFivSuuVcNagKk1oIRFOT7A/UpURvW0RHQdUFSRSiqQIR6BxCQbMrsBVQHEHZSKK0pdJqbv7+G+7eXqMUNZg2ldvBVx1My+Vus+VkPOPq5g5NCF5+dIZq6Bz3CVa/y2wgGSlzgp5k8Mmn3CxS1t/eYDYS39KZjDrYvoVWlrDZku0LZq1F35vRMZ1/x1vuvx/6QxHsP5IeN9vPfnj/4b+uail0BUTdUjUaQnHRK4Fr+9S7Pbv1gSQvGYwnTPs2vlbRihYnsOl2TKrwnsBuKdKI3WrFfHXg25/fI4WK2+lhNDVeECDTiDSOMFQNKSWeabDYhcw3O3TH5eWXnyOLI4ubK96/v2I5X1AXGdv1mjQKafKEJo+RdUbVVMgmQ7YNpqEw8W0+Px3x+cUZ4+EQU1fRTJNKSvb7LX5b0RoWlu0wGHZpnYB3yx1vrm7Is4Q//9M/YjQaYJgmaBaFVCmkyn63p2pakhqMYICqGQSDIZrjM/QsLlwo17cs5kvSpMAwDM6nfTzXIk1iHFNgKhWqAv3AwdBUPlxfQ5Px8sVzxrNLAt+nLVPCx3u2+5C6qtF1nWS/RbQ1tdCgaRCKSl2VHNcL6rLE9jxU3US3DGxTpdVMVNNCaSoMIVEQmLaPKlQ07SkHbXW62P0h/uyU3nT2hHtTBKqq4GgS0/Vo2gbTMWiBpFYwbQVFs2h1g+1uS1RDGh95jEpk0yAUqCvJ6fk5lUy5e9wz6mv0pn3+7D/9j/nh7Y7F4ohjmyiWRZSVdE0Dr9snKRvIc4b9IcFwxOlsgkXD/Lt/i++OqKv6aTHsd7AAo20J04RGATWP6DgeYRiSpBkXv/ojEgS+3tBkES0t/UGXOt4iTIuqLuia0OmanH31MabrkCs+D9sQJYs4/epPaTon0DacTzucns64ubthsXhktdrx8PDA/WLBJgqphKCsCt7vI37380+8nPY4P7/kLin53e//mvb4wCY6cLO4525+xTFaUyYHlDIlMCQ9rcXRwRSSuqh4M4/ITYc/+voV/+xXn/DiZEqaZry7umf27ILJpI+sM9K0INxsGPgOWl1iuz61MeZupfH65wVDy8ZTVOLHDUWS0Ol1QVE1xVVAAAAgAElEQVQY9Gz8nobjecymI0ajHq7nUFcp2XHN+bNLesMhdV0xv7vFVFuKGg61QAG22y3zhweKRqPX7XM4RvhBwOb+niKv6Pk+dVngWhY6kndX97TtE0Lbtx38wRh/MAFFRbQS3TQwRYGnVfh9n37P/v96BqSqkRY5dZOz22+5Xy1JFQXPVVBkTZhmZIcdYZo+kX0EyFbw5uqWD5uQYwWT8YzZZARty/39nHfzFcfwSNdx+PLVM/7o8y8ZjXp0LAsQ5Kj0hyd0hkNOn89w2pbl9S03P/2efmBz+eIZ/mAEikKhSDLVpGpNbFMnayTDfo+8qEjTnMMhxL78mKrVEOWTayjeLkiiA9BS1xWz8QUngx4fXYxwdI3weMQQ8LiYP9ntZQ2qTpFEqLpOnMR4rsfJbILaVGiipTsc4BkabluhVCVRUdOoOn3T4Li8p9xviFFJW4Uojtg/vCFvjjzs57z+9rds4g1FW2M6HuOT6RPOUdZ0gz5W5wXedMQ2DlnvIu7naz589x3R+pFwvydMEhQhMA0DTYA0zafDgGdC20AwYjF/xOmOaHWTrEg4RhFed4Dh9BkMRti2yeN6Ra1o1FmGWtdYuoUuFY6yoTYV2kYis4LL2Qlmr4cQLVWeQd3ieT55WaOpKsfoiKoIJkMfU2lo4h2eaVElEYHnsdmn7LZ78qIgLyq22wPbzRa7M0CiU9QgNZt1GBMf9hRlSSkhyzMG0zNmn3+B2Q04hkdW1x9YXb0jnD+QxTs2y3uWP33DN998z998/zNXUUluOdidDp4OQ1th1CaMtIZB18H1LKJCkhQFrmPy7n6L73o0TUNS14THmIeHLUolsFQNx7bxewG6afG43PLXf/dXvL+/QtSC8/Epvd4QezolLJ6OUEmeU1YlmmGw36yxVQGaQtvWT4WQSNq6pWokaZZjCoiOIRKwdZWOY2BoLabjY+sCKQuyLGexXHHIKspWcIxjWhReXFwwnZxg2C6yBdP1ORz2PNxfsVzeIJqMNN5SyJJtVlCFj+RpitvpoVsuTVly3O6IdnuKqqHSLW6SnEImjIcB3ckYs9PBth00w8K0XWQDmq7StAqH44H59kAUJSzDlJv1huVyTlxLnl9c4Dgeo8EAz3HQTZ1EVZ/6eaIjj/cPHOe3GG4Xxw0wTAPDtDAshyzLsQ1BN/BQy5B0cU1ZKZi2S9O0eKaB1+0STC9QDJc4g8MhYr1LSAsNrTfAdC2kKlGVFqFplFVNlhx49dVv2KcN/ZNzsrLEKFNMy6SoGtAN7LbCsw1sx8HVBORPZKE2SmjLAqkKSlkTPs4po5j09oY6zTEUk77XZTQ7YzQdMZkNuZj0cQd9ijTEdxyKIkOhRtNahCIospjdYUVRF+iOhapKkAW6ruG6LkVeMh6fcOqbLK9v2B8TlCRGlzWLh3uiqGB0cs7Q83BMC0XTUAyDppXkuxXR8cD88Z6frt5QNiX9scfLX31OXRfcvXlHmpRkUU5nfEbQ6SIUBcWycFUFSwXKCt20qZqa37/+ES0ImLz8iPWbf0Mxv8dxZ8i6xdE0Lr74kuvtHk9TKPIMy3aeOsk6HVzHw3afImeBG6BKQVOm5FlKaZikusnr9Z6//NvfsZ8vMRsF4x9iS9l6y/zvv+cv/7f/nd16w/0i5fXVPb3hDN3zefbFZ+yzhs37az49/RjNHdDt+ihKxXDcRTdtHD+goeXN658JjxsqIbj98D1aW+B5Pq4XYBsGx/AArUCzPDTTYnJ6gYJKjYIZeAQnPbqWSrM/ksy3GEJgdl2EquBaNoZuYhoGbVWRhRH3V7dMP3mFPx4gVJVqH3Gc35FGt0/gA7/ParkgPSzZPCx48zc/8Ti/oxQZZRajZkc+evUCRXlym9VJQpUXyKqhLCuysmY4HNAbDwmGQ9yTc4z+GNV2EEJQ1S11nlDlGZsw5lBKDkXJ6uGe+f7IPEw45Dn9YZfRpIftB+iORZElfPjpR35+d8ebbcHykFJUNXlZsT9EaLaDbjocNo8EGnRnZwxOn0GVoZkmnU4HRShs314zGD9HBgMwHGxTR1FKnE4H19ZZ3bzD601IFRdveEGDwd27DzRJgqWbOI6PrEq2hz3rxR1tkyMsA72qqPOUOI5QVEBpKbMMqhRfNznvjqDK6dkOlydn6G2GbQh++ce/pt+1Ucs9N9c3uIMzwqwmTHL83pi8AU1X2K0PhHmBIlVcx0eRDapl0TSQRCmqaaCaOm1TU1QNZSNpNdA9m0bVqBtBllbcrI78q//nt/z49z9ily0T2+aLTz9mk+eU2x0uIHpdfvzxJw6rDSejMdPZGaZrMF/c8PFU54vzlvFQMJp2yJOCb/7+PcdDjmmYxEnOcDaiOxrQGY0Jen380QAEFIeMTz999T9Pp6M/FMH+/6w/OE3+sSQUEDppXSJaAxHuGDt9hGh43BUowiNwptTJnPhwILd0gq5FeSjwRgNsS6Gqjuw395w/n1HtHzke1ghqHEvjeNgRDGe46j8gAb0OvuUiqwrHdlBHE/6J4RBnNecXZzTJhpu3txwrycPuSPL4iKhKXk0HdKfdp0W1rNinFXGrgGajGwZSVVFUBcvpYJg2hyhmtdW4Xe+Ybzb0PBOha3Qck2A2pbQ9dlHNt1cL6rzgz3/9GV3fRdM0WhQQKnVdYuoafhCQ5DktCmFS0ulcoNldTCm5/fF7lCpkvd7x8tkzNscazVFxu11E22Ifj2jNlijL6ff79B2FPLU4C4+0RYjt2vhBh6rKaeqSbuCgHUJ28w9PzfmiJk8rXEWAYT1ZQ9MjRVHwZheR5zmjUR/bslEsHU1VKfZHOp5FnpcYhmD3+i2dbhc8B/ojtN4AxfDRdHABpT1FOB3U7ZIsTSjrFk1v8H2bEgNFMVDqglpKHrdrblc7qrokLiuoClzPRdEmvHzxFbpVE9UKTRORFwLbs7l6N+ekpxGPbTTbgCJjqAtGtvE02KgKghZTCEz3iYDUD2w+u5iQ09J2Oqw3G4q8YOAYlHFFpbSE+yM910dUDR99/Cl6b0CSZzzc3CGyiM+nJ/T7EUV6xLJ1NrdXzF5csglX/OL0FXpvwOv3b3CmHv3JMzqD35CkDUNhcP3jT1y/u+d8NuXTzz7m7/7umycqiGOB0NBsB0tKomPEm/tbhG6SaAGPlcrN/JrAN1gIE9lYRMtr+rYg8B0U0aLLirZoSZGohSTdlTzGDc5syCenU5oGbh7WbB83vF7GBLNnnL98RhynzB9+om0aTi8n1ElCWRhkap9vHl2WD2/xgwBhduhN+2RBh9Vu/xRZqhpGsmLQDWhbMDwXz1SxHRNDa8kOgu1qiWgyyizBFjlJ2pB7PuU6olzPUY0OtdFlNX9AESqBazG0TIwXr4g3G1pFw3Zd1FYQuB1Ox2PeXd2SxDHDrz7D7/ZQVZMqjzDbJyeI73kkWY5uG+i6zbGSbOZLFuEDj5sDZVWz2204pimd4QSqnLrN6FQpraoi2xZdVTnkkmyT8H4VYTgubVFTSsnN6sBh/cB+u0G3bH71ySWnwzFdr4vhaaieT7zd01tv2GQFtqbgqwZ50dCs59y8/ZYi2dObzpgvlmTzFf3JiOn5KVq/wz6VpMccy7CxHZubm3taWk6fv2BVSIbDPpZecFg90J+dU9cV6+UDeZrQNuBZLgCKApap05YaBrBcPFKMBjS1JLVMqqJANUyyNuJk2MNRJHbQRQiBpQrqusYd9OjqHtdRQbleIrMSvW7hEOF6W2x/xLZI2TYRUR1hugrnZxOev3iG3jtDTp/z9ewFTXpkl4HXVdkdt8wfN9zf3hM+rjGBiePwXduiCoFr6Ci6gWUaWIcFzlkH1TLRh6ds9jH+YIg/OUe3PfJaclnDrpC4to6hCraHI9soRBsE2LqKoenUFWSiJjdVbLtDVpbUSUoVFxiVpDEVhoMRTS7JwoRhN2BTlQwGI+6u3vFqNiDfbOh6LnkU0wlcNCTmixHXlsKPH+4J05K6lmTHA7ff/o7j6SXWeIbjJbjZAd/z6PW7lHlBKxX8y+fUsqHIInJFIdQVbtcPZPGeosxomhLD07B7Lr85+ZgYhbebA21d0UYF6jbFsEBxgidinGZzCDd4rkdc1bRNRZomIARt3bBf75FZiSnAFE+9EaqmUeiSq9U7/vbt7xhefsVHX/4Jg5MpTVYiF48YngFJgo1EKxJ8y0HxfKL1mmDSIaGhrhpcQwWp0rQS3zIJN0dazaREQ2QHLi8GpHkBusm+Ekz9HutdgmJ7BB2H4+0tuqLijAZoqooiWhwvoGglSRLj9fvIpuDtT99xc/0ez3Po90Y0VUMeRaj5kRetziiVNJVkt9+z3uyQhkqiw9lHM/p9H68/oDOaoBoWaZ1RrEK0zoy6zBGmSZymzBdbtrsQdJPr9YZtnOBOpvzRl19j0IKmYdvWk6tCPLk1ZZaiawa2pROt7lCslEY46PoIrynxOwGloVMVBWW0p9qtaPIaQ+hPPa2KoDcK6Lx4zlHarPc5j1e3FPM7DHReXEBn3MfsDPA8g1oIijjFMFW603MqVM4uzthu9lw/3FNpkrJtKVoV1+3yGG6ZlCWBpiDaijI9Uq921LsYxe8ijwZpFoOioFkebneI43axbAfhuazrgp6rUy5vyMMNTVNT9wPasuBhuaRtA1ArepTERYFEYvf6mAKgQrQd1LhEKVo816OOUg43N3x3E+LZPnaScn/9QNAf88nnn3LS6WCaT8e4phXYsiYzUro9n7Ks2O563D/ccru+Z9BTUVQNYTl88ut/ivH2hs1f/Y7Hh0dOL5/jehq2ZWIJia3p1EVDHIZMhyOeT4f8n3/xf1CenTKyegw8l0OUY5kOi2PIr/70T5jnCdtv/oYg6JLnJUVRPOGXdQ3VclDaDM0yaeIUTBO945GvIzrTMZNaktQthzDkL//yNb8oA/ozh+Mm4vDuhrjWKO0Br379KR82O/rDEWvNpvPiM+7/4l9zOZjgBn16/T5VmZA1LpphIBRYbFY87t+wur4i6PbYHA6Y/Rn1XiItF2G7KKaO77soaclxv6fvDxC7lHITMT69QD+fYIiWahfRNyzE+JRKK3Fch1Y+RV5KCbWi0QjBJt5gPZ/SDA3m+3vMFvRWsIvuqJSY8exrMsVFKLCZ31BpMcv8hkV2xNEtalpGtoaerBk/+5TdYoPS72NRc6wrjFrgyJzd3Xt6gY1rKqiOj2kFoBg0UkEK8dSFmGUcd3s2cc5qvWYfxhySjNnLF3RdF7/TRfe75GlEUZVc//ia/+vvXnNzKHjzsIE8oWvrFGmKRouZFWhmhlJlWI6GLkvIDniWxrDXQdMMosMGZxhgTjzMnkNjdhGHgjaJkQiGJy/5/KuSOGkxgzOc6YRj+YHR5SXH63uWHz5QI+kPR7x6/oLF/I754wOaWNIPhpimSaHVHMI9UbinLhPapsJQBF3Xx2xyWlWh0xuSRgsufZP0wz3K2MMzDExZo6sGah3i6SqLxz261WObbWisIZv1htXmPV+Vktl48DQrmB7+RZe2LkC0BN0u2jEjSQuKKkdRWwzHQLQe1/cLFvM5ZlUCOkrZoJlPjiNH0VnvCyKjIDMibm/uMKQEpaV1TdIq4vOzPpfGjp7WEPTP2a8S3lwdUFSbF5d93l8t8V0H27Z5+cUXKJpOI1XMbg+7A/p0itXv/LvZbf890x+OJv9IEgJ0TcU3dawWatOiivb4rsblbMTN21viWuKYDs/GI/BVPL0lDQI0Q8ewbfK8JC9qdo+PmKpCeIyIDlsC10YzDTRVJdNtFMsij2J0RaVBJRjPCHdbOi2oRsFJX2M9f892tWQTF3Q9h19/ecFoNEUBHM+nQUMaJnFR0xgWUdEQHmKauqRuWjTTJs1rDpuUttH49PKcftdDr1J6s1O0bo/aH3OzPXL/uOR+seBPPj7lo9Mxhqk9/XhEC6qOqjY0eYYiG8paYpgOWSGJ0prFQaE/7uH1VVbripPzl9SKQWUeCZMUWTdYjoPT6WGlMRFgOh28no1Cw/nZJabtkIoeqmkjw5i2brAclyor0PZ7NocYRbNxOz77wxHXzgGBKgSqaTIZztiu1xzDG0aDPr3AwVIUHNsjSXK0ukI0BiLKkNKkbS2UkY8iDGRVIKoMVBuppii2B44HionTQmvm6J5HFGUYbUlUpDwsl7y+uadqFY5piWaajAcdZs9ecv78EyzbIKsSWquLqSt8+/N7/vl/PuDnd9cURUtWaNhGw269Zjgc8WPYcKZW0Eqq1kAXOnWakZsWiuUwmF2wTwNE0RAd92yOISN3TJmnFPET0cDr9UmzFJWWZx+dcXtzg2fpzFcJP1TwxZef0QvvmS8WzJdrFFvl85cO5tkZj9sNYZIwcU3GPR+ZZ9TLBeFmR6+OKWXO/fUbVFVFKi13yxUnMx3P82jyglY32JUVm+OesKj4sDlw9/jIi4HG6fkUJ7CxR1PW6w5KukZvC+yezfJ4ZLOtcFSJYwlyVTB+NuLP/oMvOJ09oy41fv7hPX/xN79nFRc8N1062w3LhwXRIaKsay4vTzC9DkkOSt2iFzGyaYkyySZvaA8Zh/0ebzAkOJ2A0uLYBaqaUEhJ3UL9D5hrVVVJ85pvv/mGjy5G+J6NJQRlU3OIIm5XIXJ3wKJBt/vEYcX9zS2BIvCDKe7ZhA9lQXw4MAh6GLqJLlSKXspxvebNuxsuRgNsRSfoDBn0ezTKmI6iUJYVVVUjDfsJsbtYsDlGrJcLilalUW3G5xd82u/hawK1KZBlSlOXKE1FLgWJhLqsmYcHVmHy1P9g2ETVA0aVUpUVn036fPr8JcPTCybjgP4wQJgaaV5wPIRkbYtlKdiOitbWGMctP373W26vfsKyXPbHPVGScvmLr/B7Xfr9IXdhyk+vFwSug2m77A4pXrdHlaUopoXYbOg6DoXWI1w9EKclVQ2T6TP260f2u3vW4Sn7nc7I09BUgWwqDF2jjCMeETRNjXFsUDoBtm2RNhVvbx64CDQ6hk62P7Dd7akNm3ZyzuHtFW+vF3xTCrRWZeB2UBXguIX8yLDvMBn3eXH6OX7PQ1YFmt3FMUwMx8TWTVIpyOqc/f2SfRjy/t17wsOB4WTMiW1xc3NLCziGgaqqdLtd3F5AVRXs9keG0uT9IueYlPR7HVxFI68bdvsQ1XC4//CedrFhF2UUeUlv3Odxu2WqGLitRiNzdnWJ0+tQxgmW47JZbYn2EaNJiWZ6aBoMvYD5IaFUUlQpsE2XyaBHYEAjK2zTIJgMqdM9Tf1UVFmnMcfAYdgbs9iFuKaJKGPUcIlsMnKvgzGe0RouaVUTRykXH31GKSXb9SPRcc9+uSTZLDCHPfzLMQoSXVcwdFCVGkU0yKakqgtuPmxJl2smZ2MuPnuJLrcIXaM1AzQ7x3Qs4jBEFQ1ZXtAIg3AXs9tmULXopoXjuxi6hiIAVWUeHTCCPr/4+Cssy6NQHKyOjSoEF76D2Uq2hyPrzQ4zkE8OsIc5cZjijT3SvEBFoiMhT1CTCOoKXYFuEBBVCWlZ8/z5OZ2BjyYr7paPTGZjVKfDh7fvKYqS7nCE5g2QbYtQNAzdwOlMadN7dscFraZz8vwjlg93zB8fuZk/QlVT1w1VWfL69pGhayGESlEW6IbOyWjE+cmIzvgE3TLId3M282uc3hBVtVg/bvAzlbqsaAKfu4c5P7y/YR2FpBIW+wOD8ZRnz14h0pysKpl9corrukjRomgapm1TNBWaAFHljEc9aglhrbA6hpRC5Zll4nsBpuMjm4ok3GOKpyCzho5mCNzukEjqvL6a83BzS7bZkK9WeO4l04/7VJpKIWt8w6FtWkzHxrFgtV2TpXu++vIXLPQMa+9y/fNb9nlFb3zKiW8j3ClRXjJSxNMSIwuSeMn27obHsOJIxcuPzzn59Bf4JycYwRDF6tCWJbQSN5PU4Q6hKiRVRZRHBP2ANM2Jlmvu54/o2tOChGng9gIUTVBKBUUXKKaBNBLEPuPxdkH8uGd1qHm7zDkZTEjChi9ffcKrV7/ifHaGY9toqk7bSlrNpE5D2hZ0y8LxHPygy9nslHfXCavFirIx6A1PKY454XHJZPgJ+31ClhSofoCpqWiKikaN1nHIoxRDtHx8dsZmOedf/Y//PZeffM1/8utfYmspP3z/A0pnyub7D5Tvb1k8bvn81SVVkaM0DUVeoKg6QjNQlQJFU9GCLk1eUGw25KrK2A/4/IXN1Ha4//k90TolyXSGs0s644rrN9/x6ldfslznXL+dc0xToiinfzri+7/6LfUh4uzF86fomWcSHWKEqhHHOekx4Waz5bBaMOu6bFcptaJg9cdYJ8/wfvE141EHX2vQb+747re/x7VHuKZPtFjR7YwRsuRkZHGIQsqqIOj3cQ2dTX5A6AZmrWLoT4X6h7qliDf0zqeg22iWjqEqhOsFh9srVrtbbA0OyyuirEYoLbXhUtsq0gnJSFhvU6Z9j7Nxn+NmxfjkkmcvnrO7gV1dQKtxIkBKSZvGvPvdNxh1yf/L3nssW5JmZ3bL/Xctjz7nahEyMwtZKIEG0GwCaOsp+Qh8QZrRjANy0GwaaUYSbKiqQmYiMyMj4kZcfY8+flxr5+DWK7AwQH3P4AP/9/72WpJQaZoW2XAosueGSRQErO6vqZqGH68eEd6ASjFYSy1VXFEHITgWyccrFqsNq89XBFHE56jlp8eAp8cneqZCXYDUtEx6LkWnMpi8xOlPcart88JIEpTVM8dOTkPKMsXu61RSipKtUBSHQldpxYxW0nFUA9OeES829I9HFJ2gTnM838O+vGQnVH747p+pkpjLL77k/OU5QWCz3QSs9kukSiIrc+IsQREyVVVA11LXFaIVWJqFZHYcD1IO3AlNEHH1m9/w+tWQMtvx8uQM3XeoNgt+98P3FP1TLENCVmzc4ZAkztllKd++uwFZ5Wj23HSXVB1N99FUoOvw3YY4LkiikO12TRBt2G5Dnh62uLJgMpowOXO5uv6MPXCJFIkyL9nEIfKsx/18wSYKOfd7DE9mxBQIS+XsF/8tWrJh8/A7Cj1ktW7QVZ2z8yl5kiJ3c1RN5fzFK4ajA9quY7FaE0chmqKTbiNEV/0rvnD/7eSPQ5M/UHTTAkVFR8IUGmneEC4+Y3UC0an4JmiKSxPmSLJgMBuQFxs2UU6rl3goNG2Bqpt8/vSZ01kPv9fH3UXEYU5v6uL2h3RNhzBUNGUIKHSbFUlZ0/7+YTAeWhhaRuuodEczDhUF19aZnJxgux5SGKFYQxAGkgHDpiJXTeI4pT+b0dSwvL9jtwp5+rDnuHfJ4GRK58Bou2C9vEMbHrEHdos9//APf8cuDOipDb4KRV7QVCVNUyMJ+bmBI0vouopuWlRFiaY6aE1LnOaoUcq76y39nophTvGHLrusZKD6NMsV+zAiLwoMw8LUppxZNqpuE1Ydg+EBRV6yXKwopR679Q69jJBp0TUDpd8jDp5NNsttTJrGGJpCXahYtodwLNpSpt4s0TVBVSp8vH7A1QRj18C2XWzDwNZ0qlpGWj+goKMPLiijnE6RacsdeZyA6ZDuM5JoQ1EVZGVLp2g0ksp6F1NlIdss4uZxyd02IikrwihBUnWODo44f/2Gw9NTdE1QVgGapSJpQ07fvOTb7z/wt//nPzN99SdU+gGVN2DqPWvz8mTPOq15MXtDVRS0pokwVOS2BUUha00s3cARHqpWEdo268UjkWvR1iVVHCAUBV3XmR4dojoallLR8gy0oyvpjY+5f1pBIyEGB6i7mLuHR7780y9pFBXNlhiOPFzXwDY1gt2KfHVH9vjExc9+Tpo3NMIkfbhjMuzzf33+lmWYcjKb4pguUVXzzf0d631AU1ek25Jfngx4MR1iHp4Raya96Tm+e0azf6JLF0jBFe+WJReqxovjAUcvDpm+umQdRMhFi+s7aEJD6Q4Iqz3/8//xG7773T+zub9l6LloTUNLQ55EDM6OCCOVVoLs/necjb7gx11LHMZcHPboEpl8v8PpO8yOhxiaTBQv6CSZINxRChm5bdiu1yRxiWH1qOoGr9+nLHKChyvq6JrgJuDmbs5o0COMEjzTRBQJhimQpRme5/P61Qs+fveR1ecnDk9PkSqBqRgMvT7hJuSf/ukDZ+NLxi++QLdtmqp6PkHLEoq6JdgHxHHEp4cnyrbj7Z/9FbPxCMf3qcsaqUopyhyDkjZPSZKEioaHVUCbFXz78RNBHGNpCkKSaWjZRxF1vOP1pM/lyRHnZxfMLo4RZkdexKRJyXy9Yb9a4nsG0b6mENDXGpJgztNyQSNLeKMhL168QJag0Gw2RU49XxAmFWoeUZY5t9//SF4VGF6fw+NDXEmibWp6msZVtGV0MCOyDKhrRNniHQxYrm7Y7gMWoYtOi9S1SB20dU3TtGxXa8ajAUFes/p8z5GnM/Qcrj98YOc7HO9jOiR2+xDr5JSP6y1JV9ECjSyxDEsSQ2fcm3F8dMTRwMdSJY5nUw6nI8bDAaZvgfZsWOqERBbFRPuIuq1YbTd8fv+BMK84/vmveeWatKsn5KpEkyRyRcHQNZKsINNTClejUEx+2HTM0w256nM2OuCbv/9E/vCB4XjAh8cVd48PzxDb21tsx+eF/AXTCTjDGaIWPK2XoEk4qoKk22RlTdDC0+09F8cnaI5Da8ioqsrYc5mHe7IswzQlLKfFkCVMXUNWBJqmMpnOuP30GU1IeJaFpms4js12F2BrMqYmSKMdnugoq4xdFpP3JhiaTlkWXBoWCIE/PcDweuRZw93nz9AlHM4usF0fSwepK5AVGV1AspmjJTHXH2/41UTneOoze/MF8f23WL6F6ZrIK0EjKWRZhaY+N9jCIGS+2KG0oKk2tmGgKDKyLKM0gi6vMVWHn51PkfcR9bil7jk4ZwNW92vkbcT5kY9mqMimgSRL7POM1neIsz2G7FLqJh4pHQrCtNiXDZojUwQ7yqqkFUgfr0kAACAASURBVAa7SuNCs5mOfJZ3V1RpwDzeIgkN3zdppCPswSFxnNIh0bUdXfP8PzFyZ8Rpyurhe8q6Qjee+RVZklAkEXEc03Qd27IhqlN6js10NOT09JTJ4SGGpdPJLXkY8PnDLUJTOJA1qjrkdrGkV6jkYUirG3x6fODd1SeWWYZQVIajCbP+ADtLKJKGycuX2J5DKUlQ12iqQiPLWIbFejFn2LPRTg/54adr+ocXBKVC5U9YVQ1lmtFTNZxen1ZRSeMIxbKRm4TR4Smu3SOLGlY/3RMGOxzbw+tLnA5nTCZDsAxsUUIjaDWDTlWxFcGwb7C4e8eip2LXEX/zlz/jf/zhd/z4eYs3GOHbOqPRjDIJQRYI0aKYGsLR2IuSb56ukTSFF/o5rZBohGBbNVi+AmkC4R61bWl2MXWZUjeCbnCIpNbYTseJbrF+9zsanhsJmipjGNDKMh0mrejQqgaR1uTxgsXtI/NlyjfzjEwy0ccWJy+/5PDrrxi8eYlpGKgtaLoJTUtXt8iyQOv16GQZNcnxex6G1+P88ILFak6Sg98ZPN4vGY2P0McX/Mt3PzBf7rkYDVCFQBEdXdkhVBWzZxDvNHTH4NXpIdXtHMtwWK62jI+mjCcHnL/9GsewaO6fiOQeQdRx/Ootm+2cPEtJ8wLdrAGZtpOQVJUyDKnpiIoC1XFR1RxldoBa6RS9hGq7Z/Hb99RFwdOnNUpVst5uGB8dcXnxFvvwlKqVie+umM4mqD0XRdNoywLTNCmaktVix912w/3DPcejPllZkqYx3miMYelcvj5k1CuoolsaVcX0PMzhMaPxCYbr0YgE43LC8HKG6eu4gyMeHrdorouuqWhBxcj1kcKIbBMRtinb5TtOph6m16dslOczuCol2S4pq4L9bs42j1mu7hmNDyg6Bev1r9m8f0dWfqajI6lrTscOlirY7yM2D3e87vUwXrzA7A3pL+akuzUaUDUSdVHx7d/+HaerDdM3X6DaHkXd8Phwz2IXcrMNuV3vuA1z+oOIrm2xewP+6bufcF2LP09i/nG7Ynt7i6fJuIMBD8stTw93dEVG2SkohsZJ30NIHYokUFSbw55Buo5w/DGN0PCMFt/WkXVBoSlEuyXrpw/0RYytzsDuU2kT6rLG0AWy0cPu16i2SdG29IZ97nbBc4tjOOBnX/+c7/75G6JdyMHl7PnEXbOIbJPV4xNSl+KbUFcdjesQBRV1WaA0OdbYxx7LKOyp25pWNRiJDCnd0K0CWmWM80Kjrmu88RTj4AyhqZwIlyTJ6Z99wW495+7+ivbdZ8oOpqMprmKhyR2SZGAaJp0ho7k6bi/E8Xpcvf+JH69+IIsTzNEIVROoQ59pOkIRBosw4mG7ptQEnaQS7JacHB9zfHRAoWvEyy1v/vov+JCkvHQtqskF92HKmVcRxja+59EWNYaQGI4HuK6PY7oouskmSjBUCb/noyGh/lE5/AfJH4cmf6BkeUFVN7R1g6TJ2P0+y9t7dssnho7P2fklu6xDVWKKKiOOtihKR7/vkxfVs8O+LojinKZKKaOA46Mx08kYy2sxpxN026XOEtL9hv5gRpxUSF4fOQxQNRXV8RhPTUwzpcwEItvSChvNH2KORjiDIa2tI0sqyBB8+kDT1ay2ezatQqubyELj6fMn3n+349j/Ct+b0RuPUPoGq/0K1euR1BLffvzAchewXM3RqHh9NMXWFSTVRLZc2roBJJqmpamfN/FBsMcyLYIgBWeCXLYkUYRmWSiqyqZr6bSW+Tag6DoaoaN5FlUWEYYBw7MpvjEl3AfUTUdQQpxLNGVNPr/hs1Ry5GpYmoZUdVSNxnQypi5KwmTBfLHCsS0c0yAta7y6xFIUNEOjk3VcR8LzPPZBxPVyhymH9ByDYd/BUvZIkoxch3TpPWIhkLaCIs9J0pysyNnHGWHWoFoWiqmDlEDbkiYRcRhSICGpCqahkmQZiqoynk6ZHp7gTk/oZIkweGQ68hD2gHIbY/dHvP7ynEzuE2lH2P0ZL4RJ8PCZvmkwODigeVyQPV7T83wk20aSOto8wx34lGi0uoYoZfJ9Stt2JOs1P1U1055NmaXPqmQ60FrGfZlwvWcyO2AfRijDAarccvPpE47nE8cd1ujwWZ8pHHZRxslsjI9Dm+1o6xJFyEwPptRpwvzhGl2z0L0hYRwie32+eHnJd7dzfvPTB5qmpEIiyAt8RXBxOOHN0YSjoU//YErpjQlFD+HNsNSEzT4li/c8LgpGsszbcY/JdMjo2Of85SEXwuL25po4jJien2PmIWdTh1++POQ3312zWa4xJIm+7bAvi+dNTtdycj5j+bRBKgMGyXsGmYleWuyWKqO+R+caKG1FEcUonsR+v2G539N9qHA1hdFoiGXqWMMps+EFcrFltc9wdIFlmtx+vibfrhnbgqdP73h6WkMrczT0OXlxQlNDW7eMh0OMnytcv7/h4eMVmmVQFClpViIajf/wq7/C88YgSUiyhGzaSHpH3TQUbcE+K7i+fUD1p/ynv/oVvuOgCBlFVSiKjKbtyDoJpS2p4xAjDlnsAsJkwTZOAHBNgzwOKcqctG5IyoKvT8f85S9ec/HigvF0iKRUJHlEHsckQcrE95j2HTbzLcvdE23XIHc1UbBDtWwuvvqaV+cnzCyDpqqpAA2JppNwpZre6wkSoMrww0/vmSkl2fyKdRThz06pJQfLsgmDNaPhiC4v0DMdOWo4+mLMKrrl4+OcoTVGrWvKtkZVFYSQEU3DfrdH0lU2ecl2H+LKK6aexX5r8OnmAdfWOR57xOmeeP3EoN9nNHaptxkNDcrwnMMXL/j67ABN05j4Pq/Oz3E1iSTYUe8LjL7FYHrE/dVHdqsV4T5kvnji+sNPSKbFi1//O94czzDThFAWxFGCrKjPIMWuw/dcihYKYRIZx6yWOYODMUmt4Q8HWJ7Lu2DPLi0pq5JOFtx++B6hKQx+9ReM+x7H/QFKJ5EkGZJoGega2WqLbjnYpotrOtzdfCJ59RbFc1FtC2GqdIrMsOeRSAVtfIentShCQTd0yrxEGDK2ZXB2csTHD9fsd3t0RcU2LYa2SVc3eJZBXmQkuw1CNdgt5+TXN9h+D6E7bLdbTk8uQTxzo2YHZxiOze/+4b+w362xPZu2bZ4Bhm1LW2fk25CzwZQ//+IF+eaORpOgyzEcG3vYR1bANlVab8jim3e4tkotSdw+Lqnqlk7IaE2L2oLSCRzHR1UNmqLB90eY1hDH6mOcTojVhqSqGJ9OaLME03MRRYWqKqhKR6OqSJZKuc9p4gjftSjKDtF1pFlKq6pYbUGjCTabmOFkzNnplNevp1DFv7d9hKzmS4RhY/WmOP4Ay7JoyhJJCNq2RpGfm1LCUfFjj7Vu83T7jrKpUXUDWTMxDRt7IFMnW/K8RBfQc1zOz885OjnGsE0UyyDYbbi/f2KTlNiazvV8y82nJ8rKoF8tUBSFh6trVNfDHE2prn7CcVwc24KuI0lzDl5c0huO6FSDrmtpZYmGBlOFIk8x64SH3Zq8KBkfHdHpAn8wJS1a1OEYpS4ohcKmKCllFd33MB0XzTIYjsagWYhdid9JOMdvmR2M6VZzDn2PntOhai1x29IqFoWiPy+gkOhPJ8wXTzx9+I4TQxAkG6IkotgHVMEjZXmC7fo4vSGtXCNLGYrlYAzHDI+PuNhH7PZ7fvzxHa1icKAZyL2O3eeQviKQd3ukoqZLUxLRoM9m6DpIRULbQW7VeOfnqGaDpKsYrg1qi26aiE6GSkZFJQ9rnh7W3M93fFjlFJLG6ZsTTs8PePH1Jec/f4nteSArqLoJZYtcVXRJhmTr0BjIcoFl97HsGKEYjI9eUKPQFQ37TUCdV1z87CuyXYry6YF91tB2HcigaypNVYEkYZka/mzIvqqQFo8YnocmZD798D1HusTw8IQkSUminLzumPUmPEYJuWTjXP4pd5sAw9yhy8rzt9A0qJpB09a0TYMjddRti9K21HmKP+mzr3UGjgNNSpitOB+eoJgef/0//HcsFgv09ZrV0xNlFDIaD3BGA1Tfp0hTJFWhjBuWqy2Puw0fHu+Y+Q7IMlnVog2nXPz5X3Bw0Ce5+S2tPqU/OyctBG2nMT17ge/1mU0mmIaBpGsUdU4W5BxOD5lOR7RRTrlPSO8WBFFG/vTAdv2ANZI5eXmI7ffoFBvDchGawfbpBs2w0EeC9u2f8Nt/+nuOmoK6Ltgun1h8fKKqBbWsYng+h56Ma0gIIdEhs13OaS5OsXwVdeiTGTqJoVGEexxJhbIgLlI+/r9/R/jhE/rBIY035P3DnPfrHb+5XRBUNZppcjtfohkamvYEskS+qvmYrFlvNkwNBWkyYlW0fL57IIv2aLJAt3Uux308rWMVxNiOxKmn05UhpuVjGiZNsuLg+Azb8dntnhXmdx/f0R8YqPoBtWY8c/+agqaDqlPRZmPUrmO/2xCEGR0yhmPRdDKaZWLqGl9FJcEmQnuh0Sk6PVtFN3ToOiRF5+nqJ+Jwj6IIer0BB76Leebi9QwMkSEkiNYZimrjnx6w+nhPnbU0zQb/ZYSrGgwHI4yBz+PqWf4gWy6W0IjzFGc047sP74ijiC8uL7g4vUAejBCNRKfbUFdIMqi6iyztuV/ueNisuOgNORpM6ftj/PGI+4d7UFrm8zXbzY4Td0ibV7w5v2STJqizQxKtY2Tm2NlnhkmEWN4gvf1TguKUKlpwObQwVAPHsRkNB7Rlja6qtGGOOfQ4nB6x2i6x/Aal74Gq/Ws+cf/N5I9Dkz9QpK5FUwRSB1mcMOj3OTw75vb/fk+2XmBoKrPTF+wbBSqDdBdRouP5Lk2SsAxzbN2i7QRNI7HchMjUHBwfYfZ0Ol3F1SWEbpOGc9L96rkx0sqUhk2V52iGSlmlpF3AfvNItA9oux2aJuNnB/TtM8g2ZNffEi4XbB52rDYhQdGyyCqStqMoWn56zHgxfMPgYkz/cop/2CNKV2zCLVldc3v7yGafUHcySltxNPRQupYOgdTWyE2FZBjIskwtySiqyj6K0Q2TfB3QCYWmrrAGE9L9lixJUA0d23N5mAdIckdeFWiGgeU4tJqGJAuiSmYy9hkKeLx/JAozotqkweXHd1cUpUrvvIfu2ZiWQ9O0WLbFaNhDVQX2fMvNNmG/T/G0gjSJ6TkOrmMzHFpYholQFBzbIvUskt2Gx+2ORbBn2rPwLJvoKaF7uEWWBFXTUnUdhaRSyeqzocL1kIRCW5Z0XYEitQwHGicXr8hqifuHR7KiYK8Z9DyX0fElRxevUAyLcPGRoVGhazPQXHZJRCsSMDRcf8jdOqVs1xwMXBRqtmnOotU5m07RadiHO+SmwxvNaHULBRlDk8nShHCdUMQ5q4db4t2K9dMtweEhrhDE+y1h+MTxoYbZVsTFhq4qOZh4REpBk+fUrWC/2eAPeqwXCV5vQGoe87AMOeoZWI6JqHaURYQwTdReH8dzuPr2O4RQME2bpoJBz6NrDpjEKcVwzPbpEYOaPzm/YDycMvDHTPp9Zv0BrZQQWQ4jbYQoCpL5ks3na7L9mmIb8h++OGXYNwnyiFNliqpLqLbJaDZmFVe0cYWhmvhWjwN7xFeHFVerJ8Iqx+7ZOLKGput0TYmutAx6Jhu1wxYl//0vzkmNjJ1ICXY1L9+8IAp27JaPhNuUiBhZk9EROLrBwXSCN/CI0oSwLOmbPlmVsHlasp5v2YU504MDVqsNIOHYFmVRE4V7dnuftMjwRJ+2afD6HpPTHp/fX5Pd3lM3HYunJy4O3jKeTcijgK7I6SyTrqmo24ZdXvL08MSn9x9xDJtffv0rbNejkhRkWYW6ROkETdvhOzphWJHmFYtdwjpIuN3s2KyXFGWBJj8P0fZ5QVrWvD064Rdnl0yHpzhOn1aWiMroWfmbNZwcn4OhEMURuq7hGYL1YsHs8IRG0fjFX/8Nkmng9Hw0XcVVVcIwJKsq4hbaPMfULcqiYXowJa0r3rw4RhUSy4d7qqZie3dFVjbouo6qyEhCYzA5pBQhr94OmGYedx+/4YfrjMu+jdQ9b2U80yCIUvJdgHU0QxUyu7Jmk+V8Xu2xVYmhqfF67CBPHZI4Rm5yLL3j7ctDuqsnNkFK21X4oqZna2i6haMqkKUI1cNUdJJ9SBpGGH2HItzx8cNP3N1+YhWEnF2+5OUXX3ByNMWQJaRoD2nCKs0xdR3L1En3AVmSIFyXSjF5TBpKQ+ZyMMQ2+9xtc4ok4d3nLY7VULcdXV3iWDrnb19xcjRmOvaxLQuRNciiwTFVpqMeiRHx8faa/mCG13PZ3XRc337ivGfiuFNUVabWBbKmomY5cXCNc3qEatqYekiy3dLqKl3d0NYtPddHkRT2yQJDCHxFpStrHFPD0BU2wZ4w2NFKEnlWsJw/IukurtvD8iacH9RYkkYdg92ZXL75UxaP70njHca4j6ooVFlMvlnQbUu+/pOv+frf/5r//b/8Z1RHRe31aMstdDy367qOYL2haxtARhgyaacQJQkj18dQFQxZxTFMaDuEqpBUJcM3r3j56ks+fH/Fx/mcX7z4NaLtaMOYZLsjNBXyoiIqKtQ8oz8dUyQC03H4eHXNv/vlG0rRkZcdlaKiljlN1yLrBtODAww55csjA0OU3Hy8omwF+/2erGqoki1xlDM6eQmmha7IOIMZqqwg0SFJzwsHWvDNHtPRhG+/+Y6oKDBdD8tyqNsORxUYhoFraMwmU/r+CE13kFQNWTEwLBezNyR72nPzecs2uMP3PC5fnhAFAfO7e46OjvAnJ9xUt5imjSzLhFFMgWA8OqT2x2A5JIrA7moMVUPRVGgrujRgu3igqHIMx0HIBkZvRqgMmL+7Y2KE6I6L0A30wZCt18PqDXAcE9Uysft9FruGLN5xODIYnk1QTRtt9ArHtqlUieXmCdMe0ckKrqXhOxJS1WD6PsPDKd//1/+HxzggjwuWcc101GP19Jky+xmdJGE7LooiQxWgdA2aP8EYRKjaFW3b8eHdFdePa371dMfR5Us8f0ragtYo1HVD7ljYQx9kkOnIUCgUldIUDA8lTCIcT0cxDBRTQ9JNhKTSdYK4CQiTO9brgKd9AYrCy1mfr98OeflnP2cyPUQxDXTbwNINpOq5EdJkQJ3RVAJdaJRCo1NUNMdhMBiQZC3j0xdUtaAIMxAykpCo05ROVugdHBGnOUrbIRSB0BSKLENIEl2V46g1R2/fUDgjgsWazXrOZjnC6w1QXZMsiGh1geV7iIeQfLXH6g1pjl9xHa5oWOM7GmVRYJoWWVrTqRq21rBbbznueQTrJbblo00GGLMxxTpBSTPqpn7m40xmsNqwub1BbkqOz09QXRcMnTxPQZKpy5y7x0euHu9ZxxGe56P1BsjDEePL15iuTdN10DYYtkuaZgykFsfx+Om7awQmbaJQJS69fh9JFXiOR1xkIMnYtsZqsWd5fUey3XF994F4c8fR+YiT12/pT8eYlgWqi2L2iKKItsjpD0bsn+5p65yvfvXf8Hj9niqMEYogmX9mWwhaWaY3HlMEa9K8RDEMNLNis9mRbOdYloYzeYnSU7H8EfHdFV1Z0VUVuoAiKUjXMYNZH6t0eYhXvBIKYmjxv3y8YR+HaKqKkau0qmDiWBwdTInTAqttUSWZ5S7kX368YbOcownBqN/ntGfjGgJV6uiA2fklimvTtQaefoxsKOiajCR6tJXGyHV5+vg9b786ZzDtgdwhyR1S11AVJapm03YtjWpQqiq7h0eiTcLtZgNjh6atqSUZfzJGSAb5+2uKskRWFRIaNFVFlmA4naCpOu9//A6pzvmrX37Fod1Q5wFVO8BQO3TXwXQqgsecYlOjDDz6RoujCvLHJ4wyZebb3OwTBoMh909Lbj/8hO6OMe0BVV4zOe1Y7DbsfrhhE+WcH8w4PjihqmVs06UtUqos5enunm8/fETXTE6Pzzn54i1JHrNvMvTxkNVqR7gPGXg+xnCIGPYIVYVOlml0Hb9a4EgBwYcb3rxQ2auwDmNWn1bEus341GTgmLRdw/R0xurzAqFI1GXOdhXAwEe4I+b7HMfzKevmX++B+28ofxya/IEiVI226dDaCqkpabKQXs9Cen1O9PEjXTynSR1MR6fKdfRUQx1OWS7mlGVGpuzJHRPDG7JfptzOd8h1hiS1TA9P8GYzNMeEMqc2DYL1kr7QaBoZXXeINRel2JMXKeHTNXEUQddQVDVpntBUGVWyoVh84PHqJzp3hn56iC0k5h9vCYOUVpb55ilF0YZYY4dOTQjTOc0q4fr2Iw/zDXFRsAljJicXPDw9MHEMBjr0vQHDySFtVdLVBbJs0jQVsgRdUyMLQVVXdECJQBMqu+2G4XhIoWisywo6qBHYqsC1LQxdJ05zgt2Wge8S5iVB2mCWNYN+j6ZVuH7aYxsjBrMKxfSIohhbkemPegCEWYShaRQy9D0TSdGYZ6CpKrv1CqmN0BVBGOygJzMYOvjDCVkaYmkSXVux3gb8y/X+Gapm6HiWQFNVGnvEYyCxz1Quj2a4bo0q1ehKizca488O8Cdj5CohXK+ogxBTFUjU9Hwb9+CS8dkrLMdlu1nTru45enmC4Q5oVYt2vySTAzTR0vcLJqMekXLEYhGg6hqm3acQJo4Oq6c5T0nF6UWPpq0JGsE2rfBNBVtT2BcF+yCgSCMOZjOiOGKx3aCdnNCTe6B0tFlA3sgYukp2/4lCtpGFjN7zOTo7IQn36CqMphOi/Y46E1Ryj7v7JYdfntK2JXV4j+ackmUZclNwfHpEsItYr7Y0rYRtlbiOw+nhjEWYo7z9Bdu7K1RVcDAZc3j6isHBFFPVqdKQMNii5UtKoXD//U+0cUB294m/eTXl7S9+xibccSRnuJ6BalsoloniWkibkGy5wLBN2rrDN03ODg/p7JZFnCMJgdezQJLJy5K6bTE1GVeTkJqKg+kQY3SI6vj8cB8gdwW77ZymyRgfOJjDCYauowuVMkgxdAvHc7Fci32wY7t+okr3tA0EJfgH57Rth9sJzoXG8nHJx/efEDJE4Z5st6YcDvB9l7pq8DyXydGAH9Zzbq5uyHKJf//LIbLa0tQ1ddPSSjJZtGe5XPL5Yc71wxOiKDh8cUibp2BYWJZBW0LX6ETLmCBdIRkKQRhwe3fHJo75fPeZYL/Bty382YyiSNmFAXnTMBuN+GJ2yaQ/pe9OnpWroiHLMnRZ4+BoiDAsclVC6Rpsx8YwNCpKFqs1Z5fneKMxlW5QqAq7JKYsM8qiQjQNriKQXJs8KrEsB0cVlEVMVZWoiorh2Bz5NrtdQPj5njDJn+98ZQ1t6uKNbPyZhdvK1FqFHsxZbTZIdUHTPD8+bUMjK0rUJKOTFcQzQpS8bYniGk9I9AwNumcL03DUQzNl4v2e8dDjOG3Z7D6y2zpkex/Nsom2JX2pZhNsqMqcsipQNEEQbnj/4Qd+/HSFbdv87E9f8eLlS8bTMX1LgyAgSmIeVxtqw8JtasIkQdd1JFnGNE12jY5eKfgjn6IoODl0+OdPW377X7+jWGxpPYEkYgaDMbbW8tWXXzA5OmE4HqPLOkWwRapKNFlGkiV8X+dwrDG//Ya2kkAreHz8CWWk07MaDFtFNhus3oD5b64ZKKBpOqqQ6UwdS5XYr9eYApq6ZXZ4xHa14zhqsJwDnFjlfnWHInQMQ6IqS9K0JNwHlHWD0nVkyY5//Lu/Jdwn/OzNrzmyxzi1Qt6GbJQASSgUZcVuuaIUC4b9EdG6RN4W5POM4eGEv/xP/5Hv/uFvqdIYtz/EHrqs7u/QBDT7iKoBy1K5Xayoo5S+aqE2v2e0yxId0P2eG5IbFpPjE0pVwZ6NqDYB1Yer582rpiIVKas0I7E0FF0nCROSuxuGnoukqSRFw3fXa94c9/FMhbbJqRpoFQUVibYpmBkVw75FkSfU6Z5CckjSnLJqyIqGKligCgVbkRhPjmmEjKwaz60TRUeoKpqqUiUtpmZxeXTMD+/es7y9QzcNTMOiMEz6uoKFTBGEBNIKpWqxfYewKtksFyxWe8oKhGoxnjmYhsl6uyIIIi5Pzzk+O+Wu7WH2ElTNYB+FSHnJbHaGP53h64KqqlBlB0lTkE392bjTFOThBk1pOTmaUug+sjtlGddIZcnAUWmiHZ3roWoqRduhOT6a20PWoKQlLCK2cYrlymiWjTuxUYXH8n7BLlgTtynjkz6lc4EQAtMy0XSJoi2RNR3DsWidHv/b3/8O4pS3ly85OTmgLCuC5T1Z/AbX7yEJhU4fILc1Qs0Ik5QGBU3RsTSd6+s7tHBNdveB/sERumYzOL3EcIfono9UldABSEiKiaDhSG0w6wrD6dOpLYrlIqmCVmi0ep+qkUApibYhT0GO4jic9Hxmp0ccvn6FYRsYronjO2i6ilAVVBnoJKoCZF2lTSLqqkGoMrWlIvs2wjJR2gpV92g0Qdy0BOGa6w/vqHcRlVLh9l06uaAqCzrJQpYk6qohy1JUIdEmO9Qw4sI3CLUpHhXQsbr9zNkrE3MyQs5T1tc3pGHENKwpHzcYtoV29oLP9zf4+wAlS5BlCaFq7MOEVph0acfIeothWyzv7jg4lIhXElKn0sgynmeTrFd89z/9r5RdxeTgGKvn0AmZOs8oggAsk66tuX285++//YZVVTE6PcdwfezhFH80opWhlQWGyKnqEn90glJH2JbDwyrk6l++wW5BOzihlQWF5TI8m4Gs4LsetCBrErWtUdoqhjokvprjDm28SR9JUWjaZ4aerFqUdUWTRWiajiwLTEOnynO86Zj+l19w9+4brm5uSdOIKs2ZRy1HBwc4hoZrG2iqwNQUllXL/fUDg2GPNpxj9g5ofY86HlKHIbIl6AyLcdmxvQk4vPg15VPK12/H/OM3/5lL3+HPDsb8drnDVAWmIp5ta64LyIjfm/ZuF1tugohVkuIoCr5l4irQMxV8Bn+wjQAAIABJREFU2yTPc2RVx++7jAYuadFxPHYR8QrHO0T0X2FZLvX8B774s1+hqQXbxQP2dEqbrGmLEsX0aJCQkMiKitZ0aVFoGplsH2Ifj2iUgq6uqVRwxjajZohqyeyCHZqt0cQdSZhxeDLBcz1sS3Cg54zaLU1dEgQpuuNha5CXNbqtM3AFxabkt/9yja1InFU6J6bPdjVHnUzJqhzLcSnDLePhkKhsUVSZrm2pZYX+yQXZes5vbx748HDP2eiai4MZPXuEpnsU0Y73n6/IGsHR4TmK5/NpH1IXAZQxhiQQUcbU6ZHrOubhlFzXWT/e0+95jAlpoiW/+/5HLgYte3fEozPh6tsbbMVm4NskrQm6jdG1TE+PmWclq2SPOHmDaXkoCHzTYrGcY1vO89neH/P/e/44NPkDRVNVLMcmDhqGBqzWK44GPiczjzDv4UyPyToQXUfbNGD3CKtnk4uta2z2W2RlSBhm+LbPcDgjSNZY+wTDDpHXcwaqiaapWJZOUGSE8xs8v08abZALiNOILNpQhhlxUqLyPJnMi5yySAifPpEs51iXbzHGl+TBmkaSGEZ7asvkLiopNxLHJ6fowxHbNGZzHbD7MSOtS8I4I29aBpMZeZ5RLO9w9AZDH+DPThFCoNDQ1CCJ59vyrmuRFRmlkcmLEtWwKLKWspGwez1UqaNRGhqh8nmx4njSR1UbvJ5DlOVkRYnheBRVgSlkbu6WjA2JIs2wLZsvX5xCtGHVZTRlRqs/E+Jty8F2elCP6eqCOApQaVDlGld0yJYL4ynBdsOZZXDy+g2SpNAUJd3vbT9Sf0TTtlSyoOq2JGlGWDVUwsNoO5omBrXPT5/3NNaU2eUrZkcuA0fCtBRUd4gsZKoiomlakihmu9ujCI3x5BhnPMPQFKqiZHt/hVsl0D2D2xACDYXVNme/DckUk+HxjKCSaRWDghQjj5lZFXpR0VUp/vCQzW6L4xhM+haZZxGXFYZuYTsW++2O8aBHr9+jW4A4POBg7DAhJIzmJJsNsqFx8OaXPIYNbdKxCVaU6YZpz8RzhnRFwW4vsI884qclxcBnN3LYFRJuXVEna5RWQmpahNDRLUFPNmmrhu+/f8d0PAGRM+q7KIrKOmsRl6+5e/dbTidD2rxHV6gUkoGwdMqriN0uZhcHKPEKObzn8sji8sURHR26onE0tUBVkDQLSVUQqgpN/fw9GIKyS5Cdjp7ucOqc0u22GI6PoRjE+xhX02mqBkso9AxBW1UIw8RwPRzf4UVRsKo2uK6OPRzTG9nk7DBNDcdwwB1Q1A2dLKEpCqZt0dV9dlXJ/XzNzcOeo9mYsmupdY9ILlDcHucvLtGKlCRLCMKI3j5AVwWDyQQhe1AVKF9eItcVd9cBdB1V00Bb0bQdRZ6z2ay5f3wi2m5wuoJWlri7vWG7CfEGAYPBCKWRKQJIspQgWbJNEhbbJff7LXmdYxsGh8NL6rohzVPyPGO13SJrDoejQ+yejzM0aI0KSanoGhlJEowmU0zdo1UkJKnDMGta08Q0dWS9JS4yZodTyhaiquR6PsdXJGTpGcIs0RJFKUL1KasSp60piwJNkynzlP2+RFMFdZlRZnum0xF2DvLTE2mwYTO/4vWXX+FPHcq4YFiOsHX4/9h7jyXLku1M73PfWh59TqjMjMwseRWAC9E94wRzGkd8nX6cnnDEGSdNWqOtAQMuVFXdvFWVMjLEiaO31u4cBPgKgBmB9QRuvrfb3uv3f/1fp1vSTY7v2jiGiWOYNENLk6QYcYwS0P5LkKaB5lXsMo4CmqZnuTojdCze/fiW4/bAfdIRWQHCabn7/AM/mj3X0zFD01BmB/pe0bUdQRhj+i6ftp/ZVQ2vv/0ty9nTWYtci5VnYvQtVVXRFiUPSUI8jkirnMCxOVUFQkCjTfZFz7npMJ1N2W03ZIctn949YtYO8WKFED1eNCUYQ136LK5fc746w4tisjTH0S1lWeBGHsJStFmKUSR0jx/pdQtDxaZRuEmMUQTkZc/Fsyvu1muGpiaKPQzDxLJMcFzi0YTT7h2H4xHXjxlaje97TCZLPHsCZsuJLboesF0H1zAILElhSpK8pOwGFAY2kg9/+EdOnz4wcadEToDlWfSOwnVb5oHmcuZz/e1vCMdz3F9O+fD43/HmEyw/4Hz2JdnjB5whJTy7RFkup/UjRuBTVzXjKORwSnl/c6TtBZ5lYJkWlutgj0JM00MIA9OyMSyf23fvKS+eM59NaT7d4LoG48UM2Tco2yAMfYQFTm/R2DZdmdLu759EzXHEYJgcyx6bJ3KD6/bUWlNVJbEvWC7GGJZFWWrsIKQ45nRdQ9sOOP6Iouw5nVLG0RFjgOmZQuiYQXvobngaj5I2rmGz22ToDmajCZ0aKJqGoe1wm5bGsEhOJVVQ05wq6l2CGwWYoUPVdQjTYHF+jjoeOSY5x3TLYr7g66++ZBJ4NNLDDBeE/iOj0Zi665heveDi2XM8KaiaJ9enoxVKG2hh0Hc1Zp9AuWE5cVG2x0Pt8X5f0rUD48Dj0q7JWk0vJUpKDNtk6Cu07KiqjKapKKqCDpvpsys6DHLH4O6nH+nLhqY+srg+Z3F1BoaBEALHMWmHhse85H79SLHfEY9CllcXbN7fYAgIgxB3OaZVBtvdDj+M8aKYzjaxjJCueeCwSxhMF+F5eIHLchLR6Z68KhkPCRg9Zf1I3TZYRUYQj3AmU0zfJwg8rDLFKSos28AxJKYboHhywOHMGKwQQ3TURcPNzRq8kNCW2OMZav6C1PCYTMZUrkcxdExsiZaghUR0CrSm6XvKOqe1LdrBQFsSIw4xbJfZakKWJmApWl3RWAMP25+oq5ZWaZL0gdlsRjFoFBrLtpCmAepJOBkGQVWUbB7eE87Pefn1F5jSQO0PZLsNzX5PHM1ZrM5JNwdU0TJxIupTRekUTK9fkm92bO+/g3zH2HdoekXSKCp1y8hzWEUBnm+SFRnnF6unPL7KxPnqNXPRIX2LBsnpuMPyfJrsyHH9gOl7tE3Dh4dbvnvze7ZN+7T/oynKfELG+7bCimOCcPEkVCExvABfGAxdw/27H5H7WyazGavzCdOrM6Tj0BQNSM0oDCmbliTPORYJ4dmEIUsJX1/T1VvqoSNLDiAF4XiGY4UMqiNLjgSOjR3ESGkzPZzYniqWF0tW8xFDPuLTzT1Dr5l6JqIpuN0emPorugHC8Rhvn/HpbscXLw84/gSjzhD2DGd2gSFtGKCTJf6sp8kl/WZHP33O5FfXnLdr/ul//l9YQ0/X1viGwLVMLAVjP6Q3HDZJTltaZFlJUw+EhoGUYEqLeThiFNhIQ9L2A+M4xhMD2cM90+kcp8mxLYvl+Tmm57C7f0R5EdNX55THzxx++Fv8uxHjl7/ACwXS1JiupMXgmJU0AzReRGO0jBdz+qHDkCBNgesYVKrGiyB0NIaSSNPh/naNpSTGANrs+OqZj9huSU8J4TRGotimFdPpkqraEo4iKkCaBS/DGY8PCX/4p5949/4z7tjjou2olcdWWpTlgDWZUd7ekj1skYZFWpQ0TY1nOgS2w7FIWP/hDT9+uuVidsZy+ZzID3EW1/zSDrjf3vFmfU+0N0EP+HHIPIhpHJvp6gkRbEQjmrYjjgImbke2vuPhYYcdx/hXIW9yh0MCy3mMpXo8s8dzLRQCKUxGccT1L+e8O+YoQ7Df3pIfc55fnRNUBfnb9/D1l/+2Te6/k/oP0eRfqfQwoNsG39SIoWM59qA90WQ7vOkMZ7og3R7o6yNF3eKNptRNj+V4NE2NHU3puw6V7yl1iDta0lomlW6QQtLXBXXXYVgWThwxnsTcfbzBUi1aCrJ9ijQkdVPTaJNeS4qmI448pOchHIe6bSmFxfLVb1CtIu978jah0eCGE47HlLNlgOdI8myDkC63D2vsMMT0Y/wwps4SDNOm3twz8RwuxwbzyRhbCprDBm1NGZBoaaCEhZQGQ18ipYmWDpbrsBxrur4hkAVNkhJffYEOQrq+xrUMAKq2pxdgWE/oON3UoAb8oUPYLgiPt3e3XDktnm0wnU7pyhNJcsSKfHTfopoC04+wx2cEVYuSJv0xoaMjyVNG8zP6OqdqKhCC+cuvQAna7EB72qClQLoBYdSjtMBtKpAWddOhjKf9lNaJ2dgkqRsqfKxohRVp3EA8IZwHRTv0NFVBlSUMCEbLFUY4JowipGnQdh3Z/pHR+MlG+5QHMTCJptzdh/Rixu1akeoCx/3Ir3/zp2TpFNIt7G7YnA7Mzl5xUBBGY6bjgMGyuV3viCZjMiUwbIFjCez5hL5XSNvgbCZ4vRo43TwiVIYhO2gzuuKeaWzQKkUUOHzeb9lKRRj4xKMxF4tLujbDlS318Z5ch7yfj7n2bKZtyeHwnnB8hjedwrGgTHfUeYppSDAEnm8zCMVsMcFrOh6znmK64P3tDbatUSrHjyKqSrH59I4kP+IHEqp7LNEwCqYMXUe12bO8HGN6IRgBQ2+jB0ElJTsBC0MwqIFOCsQ4IOhj2lNL2CjswEV1ErQgsGy6usSQENgmWZVS1Rmke0xLI02NWxd8/WLFqdfAUxNhWg5hECIQnOqSbZHhSI1uW0wEUTxitGp55juIokI0DacyhyCizkvkeIasbQLfoWxqToc9YeRRZEfCcMRkvqDPUl6ez5E4bPOcKEtx7Z4qO5HVFffrLbv1mu1uz+F4AGHiux5R3LE77bn5AEIJqB20NnnMDxzqE50cCH2DpR3T9Rph2EjAjG1O6Z6y01zO57i+gzvzqSMXw7UZkFjKZhJ6+GGEYVhIBK5qUdKglwbj0YRN3fLsLEB3KadDStZb2HVJfHaBoRW2aaH6BkvBoDWWqUlOJyyhsAzYJgmu5zCbjMn39wSehSxzTnXPi9cv2H6GpioxHIXr2tSZZuR6uMrjsR+eXDhdj2WaSCGQQpKWFa7jYDoOwqzo2g5LKUwB0jLwHEnblfS9SVlkZFmFKR2qLEd1LaUq+Oc3Fe3lc3SZ8ubdHxhNFkwWC9ZJi9WFOOMzXl2E2AJcxyOUgqUnEF39hNiW0LUtrfmEz4yDgFNT47kurutRY2LaLsbQYVU7yvVb/un7H/CiJX03obBnjBdj5s+WOH5LWVrUg0KYLhKFaVsIQ2J7NggwVUtXFeSPD0S+x2I5o6wyej1QFZ+o7zumF9c4fkB5t8EyBKbjMqinTBOlwTIsVrM5n9OC3cMjbhATj6e4rgtSY80CrCrglGWMFiG+72HmGbYhcRyLZtDUTUdRn8jMgsJJSb2ESTAi7iO8tiVsUgLTYzH7Y+wwpK0qtDD55i//kuH0M1ossIMZ07NL+nSLtHyOm3uEAISNH3gcjynvbnYcapjEIZ5hMvQD8dhDO5JBtEjPxhoLqDOSrOflOMLtG87mMa7nIizB8VQwnYwwYhtDDVjCwJQapKTrIT2eGBwPy5Css5LL2KPtBoS2CSKHuak5HymmkYGUmq6unjIlhh7bsqhMQac004sX2H1F23aYhgFDQ5HtEVoRBc8ZugFpmQR+BMIhOWXoYcC3bTqezk2NwpWgTZMczeeyonZsnLzHUS6dgLLrOWw3PBxPtG3LbLlkuZzjCM14MmavfLaf3uCpiiiKUF7IeD7HUQ30NZY5YXA8Bq0ZACUUVnsi391gScXumHKojuyHkLr38EYTpOviug5p0TAMPa4fsC8rbDkgzB5DaHzHxZuEVJ2LMk1E4LG+uyMt90SBzXQS4HkDWtVMxk9utl12wB5KfvrpB959eI9dZ0wswdevrxH1gOF6oHq8IMaLlhTK4n53ZFKVhKOQvK2pHje0XYvlBQgtQQlmlvt0uSIUh0LxYu7hWoJBSkz3SYzX/YDUmj5LcV0TYdlPIUz/n9hheWD5aMNBGhZNVfN4d4s2bc6fvyDJKqzZBVndkVcd+2OGEhmBYWEDntAEto0tXbAGVNlTDz1d16I02LaNbgcmizn1fo/X11RlQu3aTM8CuqLH62zGukfqB7Ksp5mGNIPCc2w8z6bcFpRZTtN3DH2NlrC+vyUeYPL8S6JzF0MLkpv3vP359zhmgDOOCa8v6S2BXVUcP5ZIziiLmun1a/YPDve7O6r8RJ63JFWJ0Vf85V/8lskiRmuXsoFgFmFbEkfFDH1FWaT0eYoXOBw/37J5vMUMQnTXc3P3mc+bR45dz8XVJceiwvQ88ixndnZOWdWYgcbzPUwaFvM5uiuhq/juf/wD7eOaXz6b0csppj0Cy8WKPXoD8qJAmT2O7XJIEh63DyxGEV1TYY7G2COT0/YzxSFDOSOcU87cjhmGAaOvEdJCWi6IACde4VaPKGfC4C5x3AcuZiFvPmzRwkBqTeh6+K7HqYbIlwhhsklqkkOG5W6ZL5/T9jWqLDD8CapXGNLFGiTmKOf97XdMAx8hZvizEMNz8IcB1zJJyhJPCC7CgNOxYF+mTJbPeX6x4v2bvyatTgyAbbmcTWJGnkRqTexYJBpmIx/XGLh6doZtexhdzvL5syeaZ7anr/b4r18wIOllQGdNnt531aGFhRYWVVUibEHTKx5PJe40xm07dtWGId8jhgHVd0hs2q7CsaHJjuimQUYBrbQJxzHx4ilXsLm95XjYYRmC1rJxRj6VaEmlg1v02CIhmq1IuhLbULx0r+hOHWmd8uFhSzUolOPycDgxfvVH7NMSG43oB5JTSqclu/tbPAmqycnyhCCeEV1+gxePqQZF+nhP1xRUdUEcxjxsHzg7f4YaGoIworUd4tkEbzbH8lxOg8DyPGaBIN/e4oYRjXlC9C0/3yS4o5Bw1NGeWtzFiqIZ8AZNsm2J3AjDCljFkvUhp0gSHNeh50hdpQSxw+NmT1cX/1bt7b+r+g/R5F+ppND4JjRlTdu1TGIHdSgww5iuHrA9l7PLC+qdohlOCCFAGsznUzaP95TZESlqttsNca/woxAnWqHFQFI2xAuJKo6IIKBXEtdz8HyP9eMDZ1cLXJlySEvQmqquUWhM1yKIHPzAQZsWRZajgzm94dIPCXWdstlmbApJOmgwXXxbckj25P2A5wtqPdC2NfFoTpEVBEGE3TZMaFlczLFNg8CbQt3RFBm1E6KXmq5qcSKLhif8cJpmVMKi6CqcYU+xu8MdTwimI05KYdYFq7FHmyfMZyHF0DAgsW0T0zQoG0Fb1Uwdl8D3aU4pceBTJEcq1WMZki7ZopRmm5Z4uz0XV+7Tx8xqcadLSiWJTI/+eKLuMtqmYjYZ4dhgOjZKGBimpgeKwUJrEysaMw1j7HpJW9d0Tckpa1BtS1M09H3LPPToHRtphzTaQBs2ynSo65ShPJEe9qSHHQOCIJ5gemOs0QhJjcThVFYMbUPb21RVQVlW1Oka1zDRfYiwLxiyE1J3zKdLsizj+LimO65Rpx22IQirHfQeg21hmCanNMPHwTcE1tBQ5wcEHY5vs90mWFbHizG0x9uncDsZ4Jo2I6OAaktdBYyjBenmkYuph/QDTK3I0wTXH/DHEbPYwiehyjM2n24Jnl0iGNDJDqnAtCdYvoVhtBhSM5+OqMoKhYNhCVxHorqeq9mEplOU+3vyJiMtTxyrE9uHB7K6xJ1FZKeEPC/5Yh4jLRNlKuJpjD8Z02Fguzbl0NM3sFE2pVKU2iCrW9rBwYx8DD0mslomQ4Z9fsZxd8RVkl7YyEbj+YLUkDR9w8Pnj4zqhlHo0HcKrTvGIuOUJ9juhMEOGbTiUNSEnk3fV9RlRWcZTGwTz3dom5I4isk1SC2ZzOf4iwU/vX1PsXtkMh5RVSWj0CMMQwxDUBQJbuTSDwXSADf2cCKf2WBzzArSuiBPS6T/iawZuN/uWR8OHE9HtBa4roE2TdK6xjQskiQlSxKauqVTGiV6hPk02hN5PnYUE0YjtOmhlHra57LibDRh6viMvZBW9KRKszkWrKYWJia+M2EwYgwL0A1Ob1IMgh4TO54Qij2RWbH+8B3R7Axl2mjhobqWzjRpugbHMognMWowEIMmbRLqpkP3LbZjMh37jEKH6qAJ4wihWiZuQd8mmLJlfj5mPPLJVIvp2phdg9YKwzQYhCTXmkaDcGykBj0oqrJE+j6m4+ANAwwDx1axTQvGnkf7ec8gnsZ6hOniCIu0KcirmkZBWjS0TU3keDjhhLxq2ay3SK2YjcespjOa8oTj2Yzic0ZRiLYMBtNAlRVNU5N1HdK1cbTGYsAwDBw/RFkeSZ4zWk5YxAbF/RtOj3c0VYJtSsoyo+nuGc3/jMlihON1RKXGEpBlCYFtYSAZpEbrCiEMhnagK3KoSyZjD0tqlvMJ44sLDsmReBThjGPEUOOIjiAMqdsUqxvwkbSGC7aLkhbeZIE2Hdq2Jq8LpKEZWkXr9SyezUiOe7pOYTsWgeeROSVW3SPkgGWBkBrbMHGEwdyNmE8XhFZHUWwxLE08OcMJAoSQaBR9meNcTkh2OUF9wtRzwrNX1J7HIA2GpkDYDsLx6eojD+sDuely9mqJaltUVeLyNG8fBhLftTi/GDG+8OgSE9GFxGaLXm8xuoq0b2mHEssXBCOJDCRVWTOoDsMwEbZFcsxRfYsMQoamhqGlaBLC2eJfxuZKVm7FfDbFkIpkc49tCLq6QHQFjm3hdoqiKsk6g8lsiu2ZaNXRZCldENKkPVutGcVLuq5CiIE4Ckn9iLItUYBrWTQalNJ0GmrdY/AkxB2rEqc30HVF3lQkRf4k8Jsmi/mM0PVQZYY5nmDEM+qkw7V6srrl2YtnjDqBEgLRNRh9hapTutygdyb0tkRKzVAcKbIDHz/ekhlj5OgZ+SHH8F3c0YR9VvIsGDHuyqfnqRV91+F5Btp1qPOcMI6QBjAomrrilOaYumd1/uRYdf2AUeRhtgdk/sDy/JK2r3lcv+XTp59YPxy5fv6CZ1fnlA+PmMElsWFgpDsMoVBdA0qxP2VsdxsmdsfIMTk+blBIVNeCHhC2j2Ha2LrHG/m0QrEtJa3REo46yrajlSZeu0cPJYZho2uTocmwwoABE8s3UdJl0A5gUdY9SVJQpCmry2tuH9aMohmPjUV+2lGkDpqBsmvZJw1mkRGJBBXY2O4MmycXZNv0rE97RqOAboCha5lPJ9yf9nSWJo4lrmdhSo1jBpx2ayypmVxeoDpFdtpRjmMcU9J3FUObUiQ7GqG4PyQYpoUMXbTRUx0+4o6nqCDGCgXdbkNaCCzf5774yHjyErNVeH7A/XffE0QBje8ST6aMIpcmPzIUJ3a7Pdlhw8PnG66//Ap/5lMZA11s0WKRrR9oHu9Itmu0AXXT09c1duDT2Sa7w568LinqnNV8wiGvEVLQFQmnu0+YfcJ8PqM4QZqmtPpEP7Loq4zd+oaH928Zew6r61e4i6+wPBvDhaYuMMcBaVpCmuNZFsI0aYaOQ7Eh8gaU4aCVpHRDXCmosEiLDDtLkNKgbSpQAzopKYv2yRk8CHa/f0NSN0TxOdPxA89XNd9/OlH3BlfTBRqHzbHilJYkZUfawSHJ8WcVaTHQNRX0DSYSIzijrtYoKVAokvKR5M3/wD6+J6FkdXnOuzc/82I65s1mR941bKuO/HTkbLwgCGekTcaxS8G2CC2Lcehi0lHVCsf06LoaxzZZnp9xdnmJZTnEgU8QTHHHCwzbp93s6dodXe5wv34SGS3XptcDWDa1NrCkRVmXdNkj0vSfKEdJy5kvGc0DtusHTMNiEB2CAkc2SFWTJBuswMXzOqZXI5L7klFsY7V71oeUBovpNOBkenjPl4jdjj57xJuMyA93eKHHaDmitmowYlQw0N7nzL0J2tI87HfkWUHeS3Jp0XQK6dhQVmjVAIr9YUvXVISjJcuzV9RNw93dR/q6JPR8XNfADDxGyzk1Hd58QtdW2GFEEMd4cYQ/idk8fKZVknFkcnh8hxc4JOmRx/s7jKHn1fMZlmMRRBaO7xKEE0bLa9JSk5Q9abojmB8RsYWlctZ7xYvnT8SnomtxzA7haZD/Qc/51yihtf63XsO/i/r+0+f/7b/+z7/7P2LLECo7YTkuvfX0g2k/fsbzXE5RSLN5z4VZcL/dYU9XnJKczeEG27M4vb1nOBx5fnnB4uw1y7Mr8vUjLxZjDMNC73eklcKarSjvP5M9PlLaLqciw5WK+7LF8DzS9ETVKybLFbbocWyHsu7ZrLdMRiOcYITvOjx+eAu95sXqNce6QyuN7Vr40YRh6DClZmhK+rbE8gKqoUMJgfQ9xosxqrhjfPEF4fI1ETWxZzJdPcMJx5jlmmAUc1QRSjp0XcP7n34gL0tSJ+bv33xP7CvCaMIwmmEdb5iPI9zLL7FG52z/5v/GTD8TL86Zni0ZBwJRrCkai9VXf4Hl+tTHNe3uluSwZ0Dw3bs1X379DSrf8OPv/h7lLfjmt3/Baf2RH797x+vf/hHUGza7gh//+XseNjXXX3zJcjbixYtLps9fYguFqaAfwHct0uSAF7i4lsRwRwxtg2hL5NAjtKaVDp7nM/SC0XRE3ZbE4xH73RHb6tnf3CCdgLwqOJyOxOcvuL29p+0Uu4c1ZQvu8pp6UDihT1e3mEoxDJrX11dstwdWL17j2gNfTE1Wz68ptWR4+D3N/o6+bygPe8T4nKq1qbYJS3eC+ewF3799w7zd0UtB+Js/Z58krNdrJvMJWV3jyB6hGqbjCV1fkW/u0dGIh/tH8ocDX/35/8IX1yvU4Y6+OHB/u+b2NmU8mfDsasQ8lLi2hfBXWGJANglJUoEzQWiBLlIO6w27U044neMWjxwe7ljO5yxWM/wgeAox9F2UadEOgshp6QaXQXho3VIVe9p2INnnVGlOVxScTkfcKMJEY8RzHC8gcG0wLIzRhFOnaUyDolM4aA6bNYvYpes149e/ZTRyqZqMz/cPNCKg2a95+PiOttNEyxW2UHSnB/7k6wXnv/5P3HYOuzSlqltc2+Hy4jm56SCFQFU5x6qhNyTZwy27D+9olebln/wpVlUhj7dlOyGJAAAgAElEQVQE4yl25DP1EvJPP5PUEfm+4vCwZv/5hqpuuT5fcT72iUIf13fxDYnjh9DWGEOL7TgYcsC0TAbpkrRgyJ48PbJ73NEOUKcpu0rQ1C3G0LCchsTjmKzpUHXJx/sdDRaLxZSfPj3iOzbzyGUxG2OGY7xojGlL+rpGtB1ePMfzQ3ovwjZtytv3LL7+DdqJiT2ffS9wwpDtwy27d78nz2vK2QW7h084XcogJN+8umAVOpgvvsWyfQov5NnLF1jFgdtTibRdzHxHkeecWoOLyYQiOZAJhwvPYr++Z/vTP/LHL0MWr76iDFdkRcvjzVtG3YH8eGKz3jNaXWM4Hp5psv7hd0jfB9Nld/uZoU6xF88plMv5aoo6bTjtdwz+hHj1nCLLSY4njkmKPZ5jCMn28Z6iLCmOe9zxjK7tGLqWfnjCO9bHHVKaRHGEpQfK05blaoVhOjw/n1FlCbNRwHK1IBQd8XzGUOY4usGOJ+AGdEjMvqJ9/MDgj9k3BmUPySmnkwGOaRNOZ2zziisUj6eCejTh9a9/SbiccxbayI9v4fyC6Nk1+aC5f3igHySDFhRFwcX5irmpMcuMAYUt1ZNTr97TZFseHg8M05dsTgU3Hz+R3vxE5NjYMsSzbKJZzGw1xWx6QtemqY9kH3/P66+/xZ2c4emS06cfKAeTstW0h0d6DNK8Yr/dcEwKNlmHdn2ccMJ4eU66fcQPJrz46lvmY5ePP//At//pP+OYBkZT0ggLlObuzXfMr66piiOnquP5r/4Yy5SYyQ3GkNKpDtcbY/Y52W4LTc7k2SvCi6/IB5dPn+749PZHrn7xWy6ePaOqSn71Z/8ZYUqSvKZJ9qzf/A3MLlHhBXcffkLS4i5fEE3PkWhCx6PJe7K0hLoiOTyiRU9zONH1PZHvc/rDj0jLIj6b0FEyu4p48/2PtEPL8nzE57t7/uQv/phvLubc/PwTb3/8A8KRbD7vuXvsmLoDr56NWawuieIFnusjTJuRY2PaPqKtseIzTg9r7HjMu8+3FEXBP795i3RDXrx8xd/+3e9wDEHfVKR5yfxsCUozm4+5u18zjny6tiSYnuP5IY7tMJ/EKCtEeiPaNiWtazrXpzzsUPmRb776ksWzL4imIyZ2h87vGE8nBKKlOd1RNj2PucCOLymqiiZNUNLG9mJuvnuLeVQsXv+Kyddfk5kDluORpQeOuxO6b+gNRa+f6HqFqqlNC1HlzN2QH/7wM8qBV89WmF1J5bicX654eT5FW3Bzc4/XaS6X56iioPnwPWXRMxCwv/3E4f6Wm21CUmt6L6LsFE26xVIdgR+gewiDEb2piUceo7Mz3MAnHEUE8xmubWOIntEoJvAthgFmszFCD9hDS1u3dFVOmR04btcctlvWjymbXUqtHGptYPoRX371FUJYpI83TGMbJWOOxyN+nTL1A9ap4tQ4vFo+49ffvsRdubRVxVmx4/HzhiR+ib26IB55SFtguSF9pzkdjiSqZLKCKDDYlT1RGNJlOWPbpDNNNqcjr198y7S3CEMHMzChyanyHGEYFNsd3eHAd7/7e5LtDboveJfUSCdi//kT2o2YfvFbbj9+5O7mHUJIlnHEYmTz5cuXZJ1HbM/58y9/Sf/wmfE3V0TjCeVhj7XwMT2f2eqSvjmSbD5yKlpKGfOwOfDxbsvu/pbo7Ap/es7m8wfub97h2aAth/dv/gHH87h88Yq7u1tM1eCLhtXE5xdfv+Lq6orZ2TNG8wtsauLJlK4sQSuKTz/x7rt/5vu0pR6f89Uf/ZrH3RbZ5Hzx5WuUDJhNZghDYrqSplFUg6YvE7qqI803DNUjZV7R1gNp0TJenBGYmtP2M6dScPH8FSPPZ2oLtj+/4/T7d3z57SvO/ugFWu54+OkPnMQX1MM5bWeibEVRd+SV5ubulnTzgUhqMD3ixRnvf/o9qq6IHYPpZMk0GuF6kuliRexIPvzwPZcXK66enZF++sjvf/iJd/sU/JDzqxXTxZi60WSNSTidU3cNh9u3PDxu8EZT0uTIab+FoSXyLOIoxI1nzC+vubh6weriitk0Iq8V/vIlVTrwt//tvzH098xfneOuVpTbLb7Y8IvrBYvrXxAuv0ALD6suqO9uKeuONpzwY9bR9g0vpyF13VBWJeZszvZ0ZGqapPdrhASkwDUs1nefSe7vcCyH3WaDagai0McxYXvcMX19hdSKuioZewOff/6M4wekp4TN5oRjW5yPXBaTgOsXl1y+eI4TTGj7gb44kZy27LcbgtUXXD5/Tnr3E5tNxj6rOZYKe3JJmiWsTzlitsIuU6TjMH3xkuejgDgKsAxBZEmy0wklHFptI6TJ8XhADC15VrA8O6coCqQRoNqSJMkRdYnR19SHAwsxPF3SxjFeGCIcD9FptOkxWoaEzQNDXyOv/4T59SuE65JWPevbO5z5SP/Fb371v57P5//nv3Wv+//3Mv7Lf/kv/9Zr+HdRm7z49q9+fP+/C8sWDBr6ntowGVsSx3PIPJ+H5EDf5PhGwSkr2CcFeZNTVwnOkFIecibRCNcbcfHqa0xhcTYawyBR3UB2SEFaVHlJnuTs0pLBdNnuTmzzjl2l6HqDT+sE5UTkZc82G7jbpKxPNbU2sceX7LcHTmmB6Y/AiWgHePnyNWE4Qvewmi5ZLZfMJhO6ukb2ijrLcEwTx7ao2hpnukCKnul0hPADrq8mzBcj4vkMxzWwTIXhuAxOjOM+3aoU2weE5VIaIfebDfvHO6zIZ2hT2u5pNKjqagrlUr79nqh6JA5NxnGIqLY0yZbx7JIXz18R2SCbHIMeS2oetgla+sTjMU3V8OHzI5Y/5uF+w+esYVMUOGbAzc9v+ccfbshbgzAYMVmsEJZAxhOqRuHYNk4QUXaaaB7R1DXnl88w/AlXL64xbAc/CIjHY5Is5/2HT0hp0akG2wDo8cIQpRT90DM/f8Ff/9XfMVvM8cIRm4db+rbm53ef2CQZWVmzf1yjbQdt+dx9fuAxq5DRFMuUdEPP6uoFVac5n014+eICMfTEpkaoFtW11G1PL12kFpwet1CZOI5N1B4pPv5EQ0+3mLOtSta3n/AMMFEE4xmWFPTCwjMGpnbL+MWXtN6IZ6+u+e03r1j4Dn2Wkh1yylODaQZ4romnEizVMVpeM5tO8FVKXvR04ilQbLve8fnDDTfvP5FUHRdXz/B0i+05DH3NJPZIyg7bsrFMxdlqzHg+YfXqFaP5mGg6w7JdwihC9AOebSKGHsuxQRjUZUNa99w8bDjsD3R5ieoUbdViC0GvDEzDorUD6rLEtBzywwHPVIznS2zLZ9A2d7sD73/6PVWZE0xHlG3DZOLjOJrpLMS5uMI/uyLtFJvjntB3CYIQraAuM8QwQNeSZSlFnrPbbdnefGQUx0SqweoaFqOQQBWY+480WU/eTzjcrcmSjLqokcIkGo/xbIu6HVBtS98rNBa2LfE8k8jtmC5cvPNLOstk5A+o9AGVH4inM7KqQ0qQXUGdp0gxEMU+09CiLgqKusS1DQLf4+LZJbrKyPOcAhMv8Pj84QM2HWpQhNM50XSKYUnC6RzhzZ7cPXVBkx6pesk2qyh72Kw3rD9+oM0zSmGRGC7Jek2RN7SDgSgydFdh1BWmP2LkuTgMeLQMGE9EliyjbSt2j2tEWxNNF3R1RZsd2d3eIOXA11/OuP7mNb7vE9ktTnfg0/2Wdz+8oTgekE1Jcdzh2yZN3eCZUB32HOuOaDyn0SZfPL9kFbkMVY1tSEaTOV2veXfzSNIbaHeKOV5imSZ3j3us6YIyL9CaJ5JD04LW0HVPgtm/4LVVU2CZEkvqp0ZKQ1NVZLtHqBNcS9L1LVWRooojjucQRCGj8QjfMZiMAyzToGkVfVmQHfdk9YASNr7nI/wAJ4yYqhYZenRi4NnZnJkYGEcB0dklg1booWP39g2JhmA8xjc088mIwH86R5bjYvsh6emRNntkGDq8xRWN8NjvDmw+f2D97j2W4TEOF2y3DwjXRgyKsii4en5NXaSMPHj25S8IZueY9YbQEZhSYXUFqinZPjxwTAsG08W2bQxDMp1MCF2P2dkzLNfll3/+ZxiOzWg24vnX3xDEYzphoUybQZjkWU5W5NhhRKMkn35+z2Gzp20UwvDwwslT/KAaKLISc2h4fn3N8y+/4eKLX7B69oLk9kfyMmf1/DXNoIkWV7z84htQknAyQzJQVTm56aF8H2Vqbg5HzOUVVVlwOCVgSMIGbKnoqxLTEMSuizoeMJqGdnsieVhjeS5dlWCHIauLK/aPByzfZ7c/keQFly9fcn75FVEQ0DY1fT8wij12xwxEj0DR9Iqmz8iyI1XT0fU9hmUzOn/J/OI5pu3gzy855C1nq6fvVT1o5tOI/X6PFooXv/yWtnnCn3rxGCeaYHoRRVlRVhV9V+H6Hsc0pWgawniMkAaO4zGdTxFCE05GFId7zPbE+TJmHnvEnsNiMUM2CeluQ1uVNHXFgIFlGJTHHUOV4wiNrlJ+/t3fQt1yfv2S2dkZlikIPA/DsEg7yDW0aOwgoiwVTdv/C27Zoqs78jzFm444HR6YxPBHf/protBBtlvOJiHn0wmRbTGxYGkODKcjlC2H21tu3/3E3fqO799+ZH860SLYPNyz365Js5w8y6mbhsfDjh5BMBqTpifStmcwLbRpIR2TeLnEHc8QQcggJE4cE0wXGH5I0bRs9xuOu0f2uw1pWpAfD+zu71nf3nPYHSiSp/D42fISYXroFro8x0dQ5zWHxyMzCZuk5u4hQ9cxq7MZcWiyeXvP5rEhyQdmF+cYtoEWksiLsWyXzhrYHfcYsgDTpqwqRuMxhmkynwWkpweswOcXX/6K6cjFNnqiMMANIuLxmDAIiYMQ6oF8s6fTDafDmjyvMVTH43aDOTujwOT25gPbwwZFj1QVQRjyqfBIO8l8OuH65XP8xZTGiNiVmjaMOX/9irPX17hjB8MzEbpnKE/89Pf/nd/94z9SDZrVV98yuf6CzjRIspRuAGH7HJIjZV2wPFsx6Cd3TTCZUNUtWmkCS3A2ibhaLbmYesymE0bxmNFo9OSsVQOdMvibt2v+n7/6az7c3hFNxnRljmhLZnHIdDzDMSSGFPR9hxKa7f0ttqgou4KffvxMX+Uck4Qaj6FKOGxuaPsebVqYwmDz4Zb29p7ywx84m2mefbvg8o9/iRdFyMBn8fxrgrNr7OmYGjg2gnXWkWiL3XHP/X5HbTrcb/astxvatkZpKJqevK2enBGui+25jHwHRzdErk8wmWECy9EYX1qUeUN+KijbDqUVmoGzy3OGfsAyNI7nMYoDOqWotSRvB5q2ResBhhrJQKc1iKf8m7Q1+P1DzT//w49kacXDfUqlHUxTMr08wzBMlrHAdVzCYMqQ7FGnE8Ump40WHIHVyMdua7Q/pUeS1z2R7dCkGd2gabSBUhLPMtn9/JZPP7/j8W5LciiwvYj/l733WpYlPc/0nvTela9afpvu3g10AyBAghxxRkFpFKHjOeEt8hIUISmkkIYMkUOAArrRZpvl1ypvstJ7HSzE3AE5B8IXkVeQUVH5v//3Po9ruRiKQ09zcMYn1Ig0ZcUhqbh/2BIdC9JWIEwTVE3E820uPnvL2dsvmJ6OMMUUmZzVzSdsTeR0NmY09Djtq5AcaJqW0eSU0ujTiDL7zQoncEHq6DsW7mSMdTqj3i6Q2xdeYlNniCLYjoVja9RNzurpjjTPqJuOvO6QdBvDDVB0G8v1QFTpqpY6zimOBULeIHfQpgk6FaKsookCOh1a26BKMqqiMh71MA2HqpIRBZWuE5mO+n/n2Ob7/5bn3P8/zJ9Ck3+j2cbJu2/un/72/uFBmN/dkS6XyGWOr74obLsqpykSijLH0aAoCpqypEyOVHnEbrEiP1bYtc/s9HPGZ1NcVUERWuqipMkymqwgWW8oGoEwjNiu18iyRNU0FIiYlk1c1Fi9IXlZUbQimuXSG0+RdYeLz76k572Az8ZnZ+i2CV1JW8QYks6g16cuSvLDEdf2MC0TSZIYeB5intFkGZausdvvSZIjoqKgGQa+KaArLZoqISkaXbJHVSTSrEY2fdq2Y79eUlcdmWjS/RFGlmQZqiahey664+H6fYwSbMVD2K8QqpT+dIZr62hCQ9lo9E+/oN/vIzU5ulhBmZGGOwxN5VhAJ0r4/QDN8mi1gP/zf/nf6ESZ3WKJ0pTMn1csn9eIooF/fs75uyt8z6Uf+Iz6fRxNp8kqKDv6p0Pc3hDV6TMZuvRcB1ORcCwdSTTYPT8TLpZ8/PGa//JP/0x+3FNnR1ShYzAcousqtuewnd8y7PX46s/+nL5vIjU5hphx2GzZr1cURYmo6uiaQQdImkZb59imhmW/AKbKLOHnX77G1ATaIqUrEuoiY79ZU9cVZfNiKYqPMWXd0h94yFJDmYZs0oTgiy+J0oL9Zotp6ASui6QqKJpG07VM+xqv37xmMr3EUCxmjkEVZdBIqJLEbntktV6yWD0R7h458WtenfaZnrxClkTKLKeQbHabDU/XN9x9eM/tx2uOxyNfXF1wOvDRLYvwGOOrIoEfMJyc4PeH9AcDRMXAmZ0joFDFJW2ekR/W7B4fKeKE/WZPWZTs5nMEUUSUJSRVJ3AsJMumbjqOWU7btohdi29o6JZJ14GsqoTbDS0CSZLh+z7j0RjDsMiygiI+kGcpQb/3Yg6Kj7w6GWL3h3SSzP16T5jkqKrC+XCIWJbEWYmhqTRNS9U0tE3D4bAnCg80RcbA0un7HpZpMdBb4s09x0NIcixYXd+RbFeEy5fgxOqN6NkWap3i2RauY+K6PoGt05UpdbSmP7TxTk5oqgpLLFDKHTIVhq6gmRZ53rLdHghsnabuSPOKLk3R2pqTvstsGNAfBFycTph4ImUSoUkqg8mEE19h+7wk3u1xTIskLzENBcNQaTuQdQ3bNLC9PlVesl4sySqIooTtekWaJliaTKk6ZFmBr8l0dYEmQbxbIXQdvu/Qm51guy7h4YA1nNG2DelhS3rYI3QtVV2jaiqNALrUIrYNmq6zj470Bi7T01OErmG7W7HcZURxzWTQYzaw6ZKE/vSM+BgiZEeKJCbabuiqhrv5jtH0jKvLc7LDnqf7R+7nWxpnxLfv77h7mvPqq18QxynZZsXEs9mtlmyen/BMHakpiXZrqvJFUy5UBQPHRAIuTs8wbA/DdBj6Pr6lY4sCru1QlSWUBWLXvqi284zAszBNnU6QUVWFcv2E4zrojoNquURZyW67J80qdFVDV1W6tkNU1RdQbFViDofIikpWloxPL/HHE563e47bFWQphSBRlRVCU2NaFvswpMkihDphv7lHyNfYtoGoaOi9C/ZRyWazJD2EyF2D0LX0Tvrc3lyTRTsCf0BbxLz+/DW+7+P3XHzXRG0jFKGhTGOKcMtxvyc8hKRFQ5Q3pBWESUlcdtzPN9iGznF/YDYZ47kmp5eneLbJ7v6J7S7GnF5hWuZ/ZYCMhiNEsSNaLzkejlyen3Jcr6nLGstyMQyDXn+I51gcNwuq5IgdBLijGbphopkGZVlw+/ED333zB37+F3+FpipIkoQoSoSbPaZu0yoKN/fXpFnGMikQUQj8gOflAteycSX9pa4lChRRTCu0ZGHI4/v3PLx/T5IcqbWGL//drxhOe5iOjdtzME2dLA15/dkFbSszHgzIkgOqJBIeEnTTpypyJAE0RaetJNL9C/fD9y2C/imGe0X/5A1B0KMsa0TFRJQEkiTHs3y2ywWb5TOmLBInGZqsk6cZmqoxGfpYXsBwPERsGuq64bBd0x9YiEJD17ZYlkkrSFiOg6bpGI6LE7j40wlVlSPXRwLPYnpyim1ICDS0isJuf+Dp9oa6zBGFjnC/ZbfbEQQ9iqTm8btrymOO3qhMX78hGA/Yb0KyomSfphRZyWZ3IIn2+I6H2EpoikCdFiiiSFSElO2RfH3PmW9gWBZCXeC1IoHjoSoGSttxonW4tBCGFOs1dRxRJAl5HJE2Mqbj0YkqWVEgKwriH6tChm5hOgFj33+x1TQlpqFjGRLp6pkoSsjzDLHrcHQV27WRFRVR6BARSLKCTtDoqpI8Tdg+P1NlCUJbQ1OTFTW6ImGqAiejAKFrOWy3RPsDVVVTxim6bjDu9QmGY7wvvsZ8PeFpd0O7u6WnlMz3DUbvnFaqqbqXyna0T9kvQ45RiD20kXVe/ofKnCg+8v3N93TVntNBj9loxDHOaToR1zSo2oaiqdFVlarIoWjYz1eUbUHZlgh1SSHIlHX9YpSTFKIko6pLFAmqokTUbHLBZ7WN0JAooob7+5jvdvCP9zW/uT7St1yMVYwlS9izAE0RkdqS+Y9/4Lhec3p6wtmbd9SCQnSMaLIjVR5T1TVl01K3HYPREFlS6bqGuoWziysc00aSZaKkoM5iBpaMoYCqa0h/fDdlvCdPI9Iy5/HpAaGp+PHjLdv1GttUqMoMSRDRNI0oOvxXu2JZ1yiyyG6747B8ZLfeQFUR9HtEUULdCEiaxbFscIIRx9WO3Y8f+WLQ493XF7z9q3eM3r1BNHtUgoFqjujUMbXg8PCwoMbhflsQpxnLxYI83GIbLoHfpzxuMLsCUwZLU+n1ekxOTpmenBIEAT3T4nQ8Qi4SVLFjfD7D1QyiQ4ll9TmZnWJrJoEmI1QlZVUhiR2W4+C6DrquY6oyoiS+HNJ1jWMUk6YxdDWSCJrcYpkKIi1Z2RDnJZ++/2fmN78jL2vUYITUlciujtcfUh4e8Q0VSbEQRIW8TMjLin3Z4Tkui/tnot0WLBeBjjRJKfKCpq6RVI2yyCmrCjmPuf72e56fn1lv95imy8V4gq+5TP0eci0gmjJpVfDw6QGxa/n44ZpdGDKd9LEtgy/fXPLlT75kNpkgk2NqNbbvQFOxvr0nDY/0fRfdcFjffaAoO3R3TKP2SFuV3c0HkiRFU1TGlsF4NqE/m9FslqT7LXknUaYZy/mcphHIiwqqGFWs0U2bJk+J90uqsibPctL0heEoyQqSapCmGW18JM8SaF8YRbIgIKk6smYiiQJUGZqpI/ZmdPEBsT2AIiPZAVXbkZQFJyeTv3NM40+hyb/y/Ck0+Teax/ni3d//9v/928PySUjDA7v7GwJbpzfosUlSVENDo4S6IjpsqbOY7e5AlheUUsOPP66Yjvu8fveO/mjE+WyE/EdomSrJZHFGttmQhCFlWdHWNVXTso8ijkgskoIPj3PiusN0XA5ZTW82QxZFTsZjTmZTHF2nLioOacabz7/EcUx0XWH9/Mg4MDEdH1ezSMIQS/fwBz7hdo/Ugd22LD78QK834HQ2oyhyDuEBUVWxXAu9jRGblDaNELuarm1p1BdV22GzJtuvkZ0BSVFTFDkPz8/kbYOQrNBsF9nrU6gun1+8Itod2T/coKkiZSegKgqHXYjdn3D1+h22ZSCLFV2ZIEoig+kJRS1QtSKS9GI4EawApRGY322py5K2TinLlMlsjGL5TK4+o391wciSmQ2GaLKGrdnkZYZgmgynY0bj0QtdXO7QmxZdMzE1jcX9AsfSoSqxNIU4jYj3K9o8Zb/dER8PqJKEqet4fg/N0BCEgt54zPL+nt5wjO9YnE4HmIZB15REmyWKojCdnRA4FpPRAEUUEQ2Hx9sbpuMeX35+idQVyEJLsV9RVxVRBVmaUGQZ8TFltdoT+H1M26KVRX744XcotoV2/pqsLBkMesiqQhgfX0wpRYnpu5yfzDg5+QzX8FAR8C0H2/QRK4PDOuLmh1u+/+F7qjLi3YXN6xOL6eVXVCgoEpSNyPWnR67v5lxf31EkOfvdni9fnfOzd2/RNQ3BtNG7htOTGU0nE4YJQpnTVAVq/xUCOjIt1THh+ftP7BZbaDr2qz1lnFAcQ+I0p8hz0jQnimMOUUoHOMELWLeoWwRZIk1SbE2l59mIqkqaZzSCxD4M2eyPUMhUicTy9pmbm++QbJuf/fLFeJKUNZYiYjg2cpNTRFsMXefs/C2Gqr+YqQybqm1QJfHlt1iW5FlKeNhTZxGG0jEY9jgZB2jpM3neUNUSh/s5q8WW5WrHIc6pO4G+pdOzVBQRbNvCHU5QZYnN0yOH9YrzMx9/PESQJTRNpThsCbd7jpsDeZKSZymGrlK0OpquUtctTVHiyR2SIDBfR5RZjWvbUBR0TYPn2Zyejvny7SlyvMZTBSxDxrJtVo9LuqZgMO2hGT5CKyDrxsvqvW7QMzSSw57jbkcum/SmF1SyznK9QzF1zCZFkGWenld0QktdZAzPLnn905/Q9yyy6MDDMcO2XfK8QJQEDuGBWpJRZJnhqI8kS2SHLYv5nE14QJEaLi+uMPwhjagiNAVDW8c2dKRWRFF0DE2lzlL2z48kYczdLmMRFnSiwsn5OY5Q8cM333C/2BH0JtjTSzbzOdPAY3b5moeba/bbFa6moMkSmtBCmbNYLSnKipPzVxhdS1XkvBkPMAwTy/aYPz2xW604bHe8OxkgNjWuoTIIerRN+1IjaxsUoSUOQ8q6Q9N1mjKnTQ/opgmKgeoMyDqVOMq5vnsCQaRtWyTTphVEVF1nfzig9gf84q/+Gq83YBkesR2HTpLooh3xesFa9UiSFEMRKcsGhQq7i8iiPZ5nYxgWQX+E5p1wvy14fnggPYZogCoYVFlLE+/4w3ff0+uPePXZT7l4dc7rt68Ien38noeuSYhtSRy+wK0Pzw9sDjEPiyM/3K25XxyY72P6r36Calr4/R5f/fRzvnh7yuXpkDYrWdze88M//Y4fPz3RyC6OY/H88EzQ83A8l6ouKZKIKonpeS6WofPp2z9QVQ2zSUC83yJKGqPpKcFwgigq6LqKKneIXYnluESHPR8+XfPmJ19zfvkKAEkQiMKI7XyJZlj0fA9ZyHkIcwajUz67eoWm2+iOy2azYSBZVFmBBNRdx2G/QEBg/XDD4+0NsiSg2yaXX3zB480DvXUb8/kAACAASURBVEkf23dYrZ+wej6SpjI+OUNqa26uPzIZW8THJSU628dHlvMVUltgyiIn4x6T01eo5hjNu8R2p5xenGLqKl1XI8kSh/2O9fMto+GI/WbF3fUnnhcrBFFit94jtBWrxSNpmrI/bgl6BoHvURclUlfTVCWiKpMdIwZeD0FSKLsGQRJRVBNV1TEMi6u3X9EbTpClBk3IUcUauoqqE/jhYcUPv/0Nk8mI5eMjq8cVo/EMVVM4Lo8ESsCXP/sVluri2H1ETSGrGuKyJEwT4uhIVVZIUodpOUR5QVUk6JpI2VWstxvyNOTd1Qy3f8rl659yOrnis8vX2IZHEee4dYJeV1RhhPL8iePznChKEWSNuGyJkKlaSOuWJM1JkgQEAUVScDQFR9cZBD2syQTXMRn6FuFmhSzUNIKEpFs4gx7pboXj+Hh+D9dxEbuacL8nDiOQdAzLpYx2yG1NV7d0ooLrmhiqhCqCrsr0ewGbsMIcnVInx5eqgefhBi8bElGdkOY7lne3/PZ//z947RhMX79mXb+AZl3fokhLTMOi7mqCgUuUVpiWQN3lBJaFqSo4psHAsun3x9w+rni6X/Lq4gRZkpAEhUbSaJsKGTiGCVWWo2klCNDWNYf9jsV6wzIsaI0A0QpYzx9ZrTZIsoJsBuyOGQgSUZTQlyW+XzyyKXPSxXv+4t0FX8w0vvjJGVbfQrPUl4P4fsPq+przizNc18GYXuDaFouPv+fx7oGuFTA8H0k3qbKcw37PMToQRyGCKHD+5h2TwCJwHfzRjFa1aaIdniljuzaKptKUBfFmzXaz4vb9e6L9jqwV2Mc586cF9XGLZwgUZYssSeiajt/zkTWdUdCnakUeF1tkocQL+lQClOhIrk+UF5R1RX/UJ0kL5t/+np9PDb742RWnP72ioiReb2mlAN0/oW50wqNCmArsw5yyM9kecsLtDkcRmXgGQ88n3s0Jl3ck0Y6mLPE9j9HkjKtXbxn2fVxVQapLLFVA70qENESTwQ5GON4AWdepy4L1asH88YEP93MEySJPUh4enlBtn2F/gK4paLpOlkQkacbk5IIsPZKkOWlRIHQlMjWG49OKNoLpUmZHnm6+JW8zOulI0R558xe/JF7PKbMDjqnjeC6S6ZFnNVHYUHY6hyQn7xpaASxToygr2qKkaVoMy6TIcpqmJt6tkcqc24+fuL29BWTenb1hYPWYTaZ0acLi/hqxzjA8l/SYcnk2xu8rDEcDxifnfPbuS2aTIZau8vDxI1a9x5BlOjXgm3/4Z95fz5k6L8BX0x8iIuEOJqD4dCikmw3xYQdNi6BZmJMzZC+gSlKaw477XcJ1XPH06T1JEqP4A0zbodjOEQHHsfFsFUeDcL+myBKaqnhRG9cNsmWRdy1CVdMWOWkcoUkCXdsgtB2drCMrOoYMiiojiiC0GU2TUuo6uWaiOw7bcE3fd/6u5/t/Ck3+ledPocm/0Vw/Pr37v37z279ti1TwNYmzcYDv2di9HobtYIgtVfZHaOZigyhCHBfMn/eUkor/JuCrv/yKX3z5M8a9IXLVcfh0Tfv8AJpNdEgokpSmKtltttwsVqySjJswJRZ1DnH6xw7oJY2o4AQBwWiGoihoUodtOITLI2Vd4fT7nIz6SF2HaWhIksjppE+eRIynJ9Rlga5qaLqBaggoiDgIxA+3pEmCYhoMhwNEQWQdZxxVDzOYIEQHVKFBUXVqNDpRZ/X4wNPH96iWi+KfkJc1uzhhud3RAVle0B8MaEyHSpGxdIm75xXh/B6trfD7AYrYsVlvkHWfk9MzRKElD1dkx91LN1B3aBUHoROY3z9hD0eEecT9cs3zh4/c338iyWJ032d88orecMx4EvDZ2ZCBZSEhIlYqpu0hmyqKbTKbjVFoiTZrnj9d41g2kqBi6gb7w4YiPqAKOooq0BsNmE1GBIbN0OmxXy15vn8izyoMTcX1eoiCjK5ZxPGRPMmxvSHHxQJZNOj3ejR1RZIVpGlBVrckf7T9yLaHpytcXpyhNQlyV2EZKnV0oGpqyjwl3m1pmob1LmezOGIVOrbl0+t7COmGdVZw+atfYwQ+0WFHXZWkZUVdNwiSimHZXE4n2JqOazpokkxdlHR1zvzpkf3imSTaopktpxdjRkMX3+2jmz2yKMfxh9zeL1mHBULbocoKcpkx63m8OjtlOhhSVRWDwRDbdvmX93d8+vE9r8d9TFPDmb3G7fmoegdtTRzXSEafJJH59P0nFs+P7MKEXVaw2ccsDjHHumO5C9lECWGaEUYxhzhB0XUcx8H2A/I8f7ll0VUk4NiJLx9hdCTRnh/ff+LDj3/g6ema4HzML3/1C/zAI40jNssNum2jSgJatKU/OsHzRwR+D91yiIsSgY66qmkFgSzLiNKEYxwx9TR++vaU076CVy2o949Eh5zbecLqcclqtSMpO6IadFXFFFoCx8S1Heq2ZXL1jvuP1zx8uubNqc3lZzMkRaOqGlaPc54+3ZMlOVVRslpsiPdH2iLDtGzCY0Gv30dua6SmoS5qbFnEs3QUWjRqhOqFT9EPXCyxxZBFAlehPx4SuD18QyRarzFcldHpJckhokTFGU7J8pqqbBElBV0VacsCsS3paDE1CTE9UpQ5i0OM5vgIbYuuG0zfvMWQW3qWzMnIp65KZNunkxTyJGS7WNI0Df0gwNJU8miHWOWs5wvuPt2webxhPB5hBGeoqope7tjdPVIUJUVaY1YZGg3H+SObzZ5FBqLmIAkiTV1zen6OREVatuiWx8n5Ja5mkEZHRr2AuukIl3OkpuKwXjEwdDRBoM0LbN1g4NicjsZIZc7A1HA0jenpOZYsEh8OOJpG13TYlsU4cOj1+ni+z/z+gaenJetNSBTltIKM3+9h6iqrhzt0RcR0XTTDoBJEsjhBG56xXO8J9wdkSULtOloEXM/DCwIOhwOJJHI93/HNN3/g6mKKCEhVyvr5kZvVHktV8G0DgZaxqyM0FZZtoXQNmiIjSiq7uOOHHz9R5zmubJFGRzarFU+PczRZxrB0vNGQ/+4//kd++fWXmJqOqmpIXUMRLl+2hOKYdL/n7vqO6+eI+b7icX1EVlSuZiPKIuerzy/4s7/+7xmef8agF9AfDAmXIftFSJnFPC2W+LrC+9/9luvbG9RghG1ZNFmColsEwwG6oRMuF5DnXEyv2Nx9Qm5zBuMJdZWjywp2f0Qc7vndP/5n6uMGRVaYXr3GMC0MyyHcLInDAyItnz4+s92ENE2F63k4wYRcdehECccN2Gc5lqYwv7nhajSlrVryKKaoC7bbJfe3H9k83nPc7Jn2ZqRVymG3wvAVTq9mLOePrBZLZE1jHyX85O0bqrhFVcDsOYTL9zR5hix15McNgSGiuw72eEar+EhqgGgEjC5OGfUchKZE6DpUVcc0Xlhbq/mWMm1YPC95WK5YbQ40ZU20P+DoBpPpmMN2zeP1NYpQMx2OGJ8MyYuc7Biz3WyZzWYcwgLDFDH7AZpiYJk+qqYjijLD4QwvmGLYAb7rkyUH4jAmDncURUwvsLj/9ANiJzIczSiymqSW6Z9d4p1ekKQlcRwhuR5Kz2a131HUHckhfLm51USi5IBqqZR5TFXViB3UYotIwp9//Yqvv/qas9kpF+MxtqYidCXkISQhURST1C1ZVrIPCw56wDJMiOuWY1GzS1803+HxgKbqTM4+w9dNfMviZDbDHY6ZjH1c2yDPUuqqhq5BMnwuLi9ZPz4hZTumJ+eIgoThBURZiVRmlHnO9YcbPH+IUDXocsN40GN2fonvWZyNA85OJ7w6HXI6HZIWIvvFnK7IURWdUdDDd10UCUTdBHfKWLvix9//wOeDIedv35K0Lev9Ad0yUWSVyeWUtKjYPM6JuwrVrDBV4Y/buzGz0YyB6xJGGa4xQJdlHMdClWSkTkITOpLDmuVmiazr6F1DGR6I9mtuP31iv92wi3KWlYJ/+oZWUthvt5imhaxoaM6Aw2pBHK7otzkDRUBQM371hcN/+p++4j/85SvO34ywhhbOyEWWFYSuIdqvMVUV13VRFZ3dLsQNAlxdQShTFos5caOxiw4cDwd03yM+HinTHNP2UAUBQ4aToYutS5ydn2KPJ9RVhWfIqJJImefkWUKTZ9x+fM+nuzkfFzvyGvKy5rANEZIc1+0xmV6+fMMEPRRdQ9c1dlHM82JDladons+xbClklfnhiCpLOLpEz5RplksuDYkvf/JTxidntPED6fE9weUMffITSsEhS0TW64a6EQnTghYItxuqZEexmZMe9qiayM2HP2BqMjICJwOHi4s3fPH5OzxDJFsvqI5HqjilzFIsWiYnY0zdwJ1MMSwHw3Yoopxwt+MYHnEsj8HwjB+vv+d2vSOuOo6LBZ5hMBwMMDSZpq5AEBj1+y8wdltHM0waQcGwHEzDQBJlDLePJ8Ts1ne0TY43cLgci7jCnOnlZ1C3qPEGZ3SFrJh0Wc7y04bNocSbBAhKQ3k8IKoa9fGA3olEcY4iiUSbOUWeUTQdbRxxc3fPyB8wNV2m4yl1nvP88SNCEvPlqzecvr7E7imcXJwxefMLDrmIUOUElozU1Xz3m99AsiOwJJB08sYgDDN6hsLpIMDtjzD9Ee5gRhY15EmH0Emk+wN9P8Dr9XFUjbFrMg18xoZKmyRIQodeZQQqvL66wjMMdg93iF1LVb08dR7/kc9nsHh84Ifv3r9cXHVQlRWaJJMmKa5mU9UdRbynKgpUSUARX8DpAhWSqrzUoBFpJJXFZkUlvQQrgiQz6gd/57ven0KTf+X5U2jybzT7KHr3Lz++/9vp+YkwGAxRVBnLMkGUMU2DpsqoyoyqLGirlHC3QzJk6k4gOD/ly5/9mrfnX3N19jX1LiK6v6eqBIqsgE6giI4cNhsenxbcbnZ82B0RTZew6ig7AdsLsB2P0XhClDUYpoHn9ZidnVDXLaNhD8+3qISar3/xc6grpE6kaVp6vsd44OG7OobpIAkqTZXhOiZlVuHaOm2ZcQyPuIHPoayQLQtJVSiznOXdI7WsIYoSQl1QlznpbsvT7/+J99/9gGK4mF4fUYSqKlhlJYqmEcURqDKaLNO0HfPnJ0zLZqDJCIcVnqHguhbJYctht2M0nmEYOmWy4/HjNxy2K4q6Jq4EFHPA0/0zH79/z/qwRddVfvsP/0iWxAgSnL45Z3B6ieX4nEzHDPseqqxQ5AWyoKCZDtPzAelxj2tZ1GXI9Y/fEc+fGA9PX27Dts8ITYdh2pR5Sl2UlLsUpatIdnsUWca2bWzb5mQyxrc08nBOvJ+jKgIIKrLk09Y1mmGyefjId9/dYZsWmiigGiadKNO2Nfv9nvAYU5UFgiBwfH7Ek0qCwEXqWsoiR0CkSGOSJGd1SAjDFF2TkXUJy7VwRhaVULDYHnj9818T5TnH3RqLiu1mRStIDKbnvL76HKNNkesSRdBJDwK7xwWQUpUpebYnTo7Ynkd/NmO92fLu6pSnT49cf7jHnb1i/3DP4+0Nq/mCkWthNCWB6zHwAxxTR9V01MGI//Xv/x/SKOZtYDKZTRhcvsLu+Zi6Qi2o/PC7P+BORlQIbFZL0jbl20932NMJqzCiLRvWSYZo2URpSpQVWK5HWFSEaUojCBziCF3XsIIASXtZoXb6Y+Su5NP9Paoo4ngWtiWwWD1RVglVmTGd9snSgofbB1pRRBBFFOkFTulpEsH4Aq83pK5bnhfPCHSoskpVl0TRniQ64Onwy7djLs9mDA2Rw/UHPnz7idv3j5T7mGOYMD+kPIcxcZoTqBJvJj3auqbX7xGcXdAIMo6rMVITXl36CEBdliw+fmD3fM/iZk4peyzCju1yR5oWlHGGhoRlvwDQAtcmKToGpoQiiziGiqEqOEGPYDLGnZzQ5QJaW2A4Jvb55wxmE1xNIHAlZhMLVZaQhQa3P+Iw3+AMT8jLBhGJ/WqFMjxluT9w9+k9hzBkvd1yrDsO7Yu0TVV1REVFNx30rmCiJGiqyGQ2pcxzbp7XiAJIdYoiVnSSSW84Quig6USO2zVlUXI8HFg+bxGzlouTGVKVcnvzyGYfMvBtFFr0riFPEvbbPa0gI7ojlseM26c5aZoxubjk/GxCdAgZDGf4lv1ye1+V6E4fvWmp4pCBrnHmOshNgyWJBMGAU9fhzXTC69mIiW3gKQqWquIHfVzbRqoLNEVmPJ7SKSbTwEHRFPrjCXIS0dY1u6LjOcwpBBWv12O7WrFZbfHPXuO5FnZ/QLjdU2cJQa9H1Kpsw4QyjTF0FdvxEGWNtixooi3/5R//Mz/87ht++es/5/RkxtP1RwIppxI1MquHJIjQtgxcE0+X0GSBrkrp6hJJFikbgYflkaqoEGuF1e2Gp4db4uOemhK7Z/Nnf/Y1f/nX/4E3lxeYuo2qqohdTbZ/olp+4HiMOe52lHnBzYc77Muv2IQ5Qhby659c8pd/8z/iui59S+JkMmIyHqNbOqbr4vQDFFNDsV361oyPT2u+v/tEXraork8W5/zhd7/DsGz8XoCuyPQGPbzApc4jsuTAYDphOJ2xv/lA4FqYfg9nfMHi7hqZik7RcYMBld7n97/7PdEhJC9rvvnhml1W4Q16mLaJqun0+gMs2+G33/wLd/NntseE7WrF6WSKI2qIdCBBksVE2xXb9TNZGv1xc21FWmcUTcbnP3tL1zUs10uOx5D10yOyojIMzglsh3F/QHFMWM5X1HmOrTqUZY2AhOuPkNUeu52AO77EHwUYaoPcSagoCF1HHIZQlMgyaKaKKAm47gs0UWhykuOBLMvouz1mwxlvPp/RxDvKbUQdNZyfndHvW3RdTZFnTN5c8ulh/aJDFgWqrKDNG+z+kFZV0BUNTbMwzYCsFmhbqMuMNN4yG5vE8YquThlNp5SiyHYXUYoGZm+EHYzpDadItoU+HTI/bFkdDhyOEUVV4QQmDQ1xnCO2LYYqo6oyqmOhWSJXX3/N5dBh7Bn4loTSppRVRpqEHB9uqbKcvChQZAFVhIdNwvMhQxAEiqLkZrnnabXCNzQ0SWEcBHz19jPOp2d4po7r+di9AJUcWepo6o7Vcs1gMGT25idEuy2eqTIaD5lOZ1iGhWPptE2N0DXEaYGCQLh8pjpuMS2b/eIRtckZuwbTnsNkNMSxdHRFxVJkNBFMRcfWDPRaxDVMTE3m6u0Zvct3WMWQK9Xg3c8/p5Z8RMdlH85J0hzZUGjFlg+PN8zTFOesj++I5HlCU9e0mszFLGDzfMsPNwuc0TmuJmEaGh0SbQH7py2tUNIfDtAEgToKiZZLFtePqMQUTcOhkshlm6x4UdsLXctht0Gm5uRkhkqLIQm8OR/x1S8/52fvRrwe6PiSiFAXyJJAHB1QRJGufqkziXWFZhjQCQhlSZtG5FlN/+QUw7KwLIf+aEC6WhFuI26+/5YiOaKZLpPZKbv1gijL0HUdw+uhU2FpIro3oBUEpKZEkFXKJCJaLynygqyoWO1j1mFGXlbEaY5S1yhFher4XH7xOeagR9nkWJb5skHyvCQMN+SdgO7YXD8/kFUVwzevIDvi1keO108UYU26ibEVEcnq8K/GNKpJqfbZHKBrVRbzLaomcYwPxMcdcfjE48fvqMsjs5MpQtOQHw94lsvV6ytOxhNOxjO6PGd795EiTKHt+PjjBxRBom+5pOstw/Mp9rCP6VvksYgkufjBGCewmMxm1E1FkR45HYzRGoHn1Ry1g7Oeh9JUnJ2cINBCU+M5NlV+xLZM/N6QqizoBAXDMJkNXKYDD7NOaKqS2TjAyZ4J5ARNG2IHM8QyR7Y9JFVj+/hAHBfIts0xiuiUjhKZYe9le3n78Ei2WtC2JU2bctxv8frjF3tWnOLJFo6sQyeS7jYohwP/w9/8z5y/eoXapQwvr2g1lfn9e6r8SN820MWOx4+fCPdH2rJAFmWQDfarLRQ5XRxRZTnD0ysUzWXzuIWsQtUtdN3i9vv3JMcEr9dndHJCv9fHsW1006I3GjJwbfqmytBzKJOI2w+fKKuX2m0wnJCGG7JwR5UXOF6fNCsIF0/EUczT4xNtlaPKMqqgEG53hFGCrmnsD1uKMsM2NCShwfUdWlnBsCyqpkI1bNK05vF6QyPrCLbFcDj4u57j/Ck0+VeeP4Um/0azT9N33z49/61mmoJu22SbFQCloFEBcpUgiS+AwLquCHcbtqsF1tTnV3/5N3z19he8mX6GWIvURU1ZNUiSRtO01GXF/ccPPD/P+X5zIGxFNnmJF/SQNQPT6yFIEq5tvdwmmg6CIOAYKo7pIKsGRdcwPj/n9evPcD0PQRBwbZ/57YYvLoaI9QvrwTBVbN/HcV3qNEOgwXVdyjRGlBW8wYh0uUDQZDpRwtB0VrstSZJQlDWCpCBZAzpzRJYkpI1GXAoYpkWSJix3e2Q7oGo6BM0gyhK6smQwGGE7Nr3eiDPPI1ncItc5rqUj0qHoBkHgs3i8p04PLOcL/uGfv+X3H5ZcvHlHGiUs12tW6yVdEiN1FaenYzzXxw0CLi9fY/TG4Oh4MtiaTtdI+FqPtq0QLI3JeEBXFcT7Hb/7+/+bav/M1dVr/P6UoN+nqWLy8IDY1BR5SRzuKasYWRAZT06YzoYMBx6Tfo9hYGPJLdnmifqwZfPwwGa1QFMFDEPH0lSS9ZzF6qUu8sN33xGYOramoKg6eXykSBMO8yduvv09xSHEdB36/QBoENua6HAgS44sVwvuHufESYHYNYiiiOs6uL0euilT53uCV++okiNZdGC3nFMUOabp8Otf/XtMwyfcHQmfnzmuNqSbPb6voakdDw/3JGmO63nMTs54el6hFFs+O5vx8YdnXK+Hptsvqus4IegPENIETRBJkozLqyvUrqVFRJJV1g8PfD7sMTm/ZHDxiq6T0GSZ7BgjKAb7Q4zrBZiaiiwUSJLE5HyG3+/h5yVt06H3AlAVdusNvmsz8D2uV2uCwMM0Nd5f3xHHEaJhYTk+pusimzoYLq0qs54/4Ggqw/EEVYUwPoIAtAJ10yGrMkX1EvrkWY4oaMjDCzrDB0lhF4aE0RFFVVBVnSJJkBSJMnxm6kpcvHrDydkVWrTj8f17kt0Rxwx42Ga8f97QyhphnOCrMjPH5HIyRJJV+sMRo8srRlOfqSsSuAbZ8QUyqikQ+AKmWtI1KmL/p9iWwf31A+uo4c35lC4TKZY7TF1H1S1U0yJLcjzbID0mmKqIogiUUUJzTKBIqdOSsuhojiDmBaoqYdgGg9kpnuUhlAVVmSM7DsdDjq5rdF1HsjvQuiP2SU5WN+z3a+o8RqkzsuRIUdUAGIaBpKgopkM6/0Qw7KGpLxWjuOqoRIVwcUf1R2uKICpAQxgeiaOEcDnHMFUkxaYQffJow3r+kc1qSdMKjEdDtCLm5sMtjeFjOB6tpPMxqtksFjiywLTnoVkW07MzilqgswdIaYihgK4ZSE2NJYKviBhdQ1sU+J7H8PySt+9+Sl8WORuPaPIcqhJdgKKoSMMQx7QIfA/bsjF0g55l0XYCJ7OXw5LalPRdC8nwMBQNU2rJ4yO/+fGBWvMxh2eMxwPy3Ypkt8ZxPXTLomhlnh+eqfIMTZGpihxFU+nqgjza4/V93v27f89f/PLPUBWZdvtAsV9yrGVyw0GSVFSx42Tg0DUlQltSpiFxHJKXLa0xYbs7sF0veXh6JAp35GVKliX0PJfPXn/BZ599zsns5CWAtD3aPCNa3fH/sfdeWZYk6bXeZ661ODp0ZqQo0dWNxsXFBZ85CUwRIyDXulSLxOUCiO5Gi1JZlTIy1NHnuNbufIiaAvDUewpubu627d/f3n/8I/HyjjipWK4zdvuKj5/uePjwnm9OHf7um0vOL+bML5/x/OtfUwqTkaMT3X9E7Qr8kYczmdEAxvic6cRH7Zun6KFqcPr8kiZN+PTTG/blgGO7PNx8QDBg2RaOb3N+cc7i/Iz17Q2uMmAaGqYXYIUTpi9+TaWFhNMxTbwmXDxndSz4+f0H/tf//n+xj3IGSWa/WmMpOobpMx5P8GwNupL/7Z//lX1c4hsy5/MFVitjWRa6rmIqKoZuYqgKZZmwPx7YJhGbLGG2CPni6y85u3rG3XrNevNIfNiimz1llTHQoo18jD4mij+zXn2gO+Somk0tTMpS55hCMlicXV0jeoXLiwtEO7B53LF9XHM8rNkubymOCV3TURUJvqXhuBrTUGdiq8wcE1uo7NcPvPzymomtYDAQWBZD2RD4FhfXlwhJRZgutx8fKcsG7/Scqi7Ioh11HtErPO3vkvLEv1I0ZEkBegLXoO8KurbGsgOOcUQW7/jp7QpDDzH0AGSNydUV86sr9rucsiw47tesDzsMy8Afe6iqiiR6LF1BVzUkRcYNNL756hW/urrAVTWUvsE1HYRQyIuM1f0j67fv0HSJ0DcwqgPD+3+naCWSCn7343uqXuZuvXkyPg2DURDgWi627WHIGiAwRhNUUYBoqJoBXZcZ+zaji+fMTiZMXInXL864fPGSYDTF1E0sQ0c0JVWaY5k2rhiI3n/HzecH5tdf01Qlx9USua2gq5GaJ9h5W5VYmoKimrSdhaZ6PJ+YeIbOaDFiFgbMHIdZoPDsdUjS9dy+zaj1Mbqdc4hK2qZ94nXNJ8zOTvAsH1vNcGyTvMyp+ha1XfPf/5f/nX0j+OqrL1BpsW2T/XHHMUlwJzaaMqCpKlQ92cORPD5gyANVlVO1Mhs5YHM4cDhGtE0HisZ+fc8wgKPCfORwOrKZOAq2PiDnCUMU4/secivIs5LxZIKu6oiuRdQ1Q1OQJSmO40JXoSIjdTVpLeNdvMIKJqiKhtR19HWLq8k4psv05Wv2hyPrx3smizPyqqFP9qgSyFKPYlhPQOQsRdQZ2X5DV5bEUURWD4yCgC5LiJOUsukouwFVVWi7Ft0yGHQZRZPRFImsOLDfR3RDS++6LNcbHm4/03UFhj3w1alO9PGG735YPcWMEQAAIABJREFU4mo2LzyNy0ubzteRvJdo1gIGjzxukYRCliUMfcVxc8dxdUN13DC2LSajGaeTKe0v36DzecjlyYTz6Yw2zpCqhqrs+PDpM2o3sNtnUEpcPHuBY5iYro1ztsB5/pKmFjS9C0aI4XlYvoVlysx8F3UY2K02VHXNl1fPSNePfHz3lsB1mfgupmkiCVhv1ii/fHO7AZpBQXcn9HVNkff41oSx7dAdY4p9SmC6eNYEBRXv9ByhPbV8ta3KLi5Ii4aKlrKM6GUBTUOy3CO6irRIcCch6WHDIHQkM0Sjozge0QcDtW6o8pRy/cjfXj7DUQ02t++IkgPF6BmrOOLx8ydEWxM4JuVxz93tPT++/0zeCGoj5OOP77l9+x45iwkMmauTGaZp00s2fTVg9WDbNorpIeqOahez2cRIkkKTp0/wclVBU3U0RcJWQWkrmm5A0Q00RSa0dCbTKfVhhWcZT1y+rqNIIkaBy3TiE+8PPCxXFFWJremsHx7o+g7LD7lfPdA2Fd0wMPENhvyI8QskXAw9suUxKD7JZgAsfr77metn5/+0mE7/apr8B+uvpsl/km7Wm6/+j7/8+I+rh0ehNzHTwCWrGjpVQ69jaAqyvKQe4LBZ0oueXoLFq99yvvgNp94JUlWzub2lOEZI3UD8cEex23LcbVlu9vy83HKfNwjdwrRcfC9AMUwkyyI8OSXabjEMi/F8TpJW2IqKZSicnE7p6oEqapmPpkhVRRj69F3PbGRgUkHb4voeoqnQdBVnFNB2EIxHyHJPVZY44RjLcYlWD6yXK3oBsq7RSBLbKAFFY32IGDkGdZlTC4OdcMlki5vPd6zXK2RvjGR5qLJMdjxgWDq6qaMIGX8U0uoW3z08kH18wzy0KYoaRVORFI3xaERe5EhDx2g653iMsG2P8/OXgMQgBAwttzefefPjT5iySVMqREmN7YVPWWZDx1RU+rajlxRkWcV0VHxfp9g8kB4P/Ovv/sD9m++4mE+wTZO2bYmWj4g8YfXhDXWcYJk2o9mMydkZ08UM3zXRuh61bqk3a3RLZWgrNFUhGDtYuoQylAx1ytABTY08NHjeCPqe79+8ZRcnvDhb4Dkm4/GEKs1pmgYhJBh6ZuM5Qehj6hLH/YY8S/n54y1v375nvY/pqxbHMLF8B8XQ8Ucj5GbHp/dvcC6/pkhj6mRPkaXUHfzmm79n5J+Q7Sru3+558933HFfvuboaM0gD+0PErmy4ujxBDBKa0Pju379n4ZR88eWvGI8nSG1NcTygzK+pqpr2uMfsGzb7I5JucX26QC4LHqKc88UMm4Hx6Tn+6Tmbj59oowOG6LEsC8vxoVYACc91qJOU6H5D4AV4co+rDIynAcHpHF2WoG05PTtldTzQDx0XV6eM9Ii0BlU3ScuKfVES+i627tHlDXYQ0tb5U62ukBmNFqjKgB84fPWb3zK+es3hGCE1BUPfoakm2TFGckK8+Rmm7VH2A2U/YGkGou+h7anqgvRwj60PhI7NSLRIWUqV12jWmLSxeP/xDtFDIpk8PzvhdeBxffWc66++Zn5xysnFGYvFhEAfMFQdVbPYPMbs7xJEL9PUPf7JJeN5wGQRMvJVFhOLV88vmS2eEf94g1a1OIZHmRX0yOiGSjOA6nikWY0G2LaBbht4oY07HTFZzJnMR1i2g2Gb6JZLmzaYnvVU9ZccqJueWmg0dU1blaRV/dTKURYIVePx8Z4o3tMPPRPXQpEkNDdElsVTftzzmc7G1E3H++9+wKiODIaFNj5FiAFVajnuDxwPMZ6tU6QRh80GQ1N5/uwa03WYnATcLu/485/+wrd/+Znw+TXPRybZwz2HSsYJJ1TJEVmWafMCWxb4joNA0FYV4fSEvJWpOoW8hWS7wZUFQ1WT7Pfc394zNA1hOGHhuywmY8wigTyhrgpED6YiIwmZkWvhKlBERyRF4+z8FN81idcbyDN0IfAcA8fScF0Pz3MJRyPqJOZ//HjDQ1ozCAmfmna/5uH9R5qyRgiwHZu8aHhcbjEt42mvUhRKIaFLgjKLODmZo7gB4zAgNBVmnk4eb8EMWRc9WRxzOrIx5Y6uiNmvPnHcL4niCNU7JalU3r99R1bVVFVHmSasdht836aJE0bjGfPxhHAUYOoqXRIR3d3SNUceP/xMr3jEpcr/+y9/ZMiPXJ/NWHgKL65PmJ2esXj+AoGEM5py8vrXqNYYOdvy6Q+/x1YGTM9DU2RsW6VrDkwXDrZt4gc+s9kMR+rYLx9w3BD77Dnf//sfnyKassCybDTd4N0P3xM/3DGdjvCnE3TPAyHhuB6OH9Ju3qHQICsKu/Wan374jiRv2Mc51mxBfjwgNRVdqyAPKmHooioS2+jA9cuXXJye0dQNDmBoFposIQ0DSRrz7uY92/Ualaf13SuCs8sFQsD5+RmTxSkMGXVd4QQhL569wB+FOL5Otv/AdvOATUXetayXCeuoZ5dCKekI12U+mWE1IEsGhtzgqhI6gr4qUeSGw26DosoEfkhzjEnWG4oo5uL8jEU4hTrn5GzEZDrh7GSOJg8s5iMWizmyECh0zOdz+k7m5uMNoRsSLK749oc/oskSshDUZYpoQO8lmgH6oUceegzDQgwtEh0IhfXjmtvPt2z3OWmpE4ZzNNVndvkM2bUZBpnd8kgaR+zThJv7R1rRs9/v2O+3dF2Ppqm0fYc/8vi7v/2a03HAULZEuwS5LlEkiNIjx2jH+2+/x1AGHMdgvdnx6W5Fh+Dj3YYfYpW6l+gVnSI6YGkKou+xbZ/x9Ax3foGtQjDyoE8RQ47j+xiawnzs4I5cwtmCsa0w8x3G83N0e4zjTzBkGdF1CFRGlk2gygz7JUOdUrXghCNu3/yIH4TkeUWZpliaStWCrLvYomdsq8h1xXjIsTQQpozQDVzXwzYFORHfv/uJ2/WBOEko9lvScs0+inC8EX0j41gux9WB7//0I3XziO6GaJLMYhJyc/OOb//9W8bjMefnF5iGxWa/5Md9znTkIZUxs/kJbd2RbxPkQcEwBYfHz+yXS1J7zttlxM3tZw6HLfPZCarhoLQFU9+mLQu0rqTNM+pkj96VFLuYs/mM5WrL+fk5l8+fEU6mGKaJEApCM57A4IqKLCSGuqbvBJY3fopbdZAcC2xHxRuNMSydIPC5vLjmuFqy/vwB0/MZn19ye/OR3W6Pbei4lkFd1tRlSVNVZFVLXzdURUa029C1PerQYXQ1VZ4jC0E7DOi2wYtXl2gyfLx5w+a4pEqWlFXM+2VCr8oMomf3+EB5PHJ9dcL1zOBE70gfdlyMJlyEIZOLBarI8OcjLG+Obl+wut0AOoNQQNF4fFzSljk//uU7Hm8fSY4Jq8cVE99HVDGBpXNxMmXiB7RxymG7Z7s7crPaEB+2XMwDklJlOrvGsMYsXrzC9EeoboikWKBYCNlAMQxkU0b0DV2aMhQJUt1jqTrXZ2csAofjekkcxQSuRxlHBIGFpsqYiiAva97fPnDc7dA1lUZSUfsKQ9eJoxpLVrk8O+P5i5fM52e4rsn0fIYRuDi+QyVMVrVE10NraKTygCwLQsclP+YoKJR1RGdqrOMcqZcomqfns/30lmS35eTsGSI+ctg9YpQ5vizYPjzQWTrafErt6OTRPUOTcXoyJd5v+POfvueQ1kT7PV1Z8vz8ii/nIT4Vr2YuV5dnhCcX6JML7Mkljj9BZUDuOhTbxbE9wvBpwmcUhshthROO6duB+vHTL6BrgaFr2JbBJPA5m4yfuHx5giwJ/NEYz/ORihRFDPiBz8VijmcqyLJCP0AaHbm/v8E0NIa+pq8z2ram6MBzXUwF6Fu6vqfrOtB0enfE+Owly4cdj/t7/uEf/vafJuPxX02T/2D91TT5T9Jmv//q3/74x3806kx4hopqGCiKjNJXKF1B03XEWU6Zp3RtRSsk5MDnv/5P/zOL0ZhksyLbH5Dals27nzm8+5kyOrB9fOTT/Yp12fP5mICs4nghk9kcRZLRdR17MkP0T9BHz1Do+4756QkKMnWZM/QtLfDiy+dIfY0qOka+izRUiCJGE78cpFQV09ZRFRnLcxmdLjBsC4aeYDbDPzshyVKEIpNVBXVdEaUZim7QGwaSadEPEo8PD2hSRz/A/liy3UXopkHbVvSOg2KaSIpKlhzZblcopoYXjNFti8/7Rwz5wPnQchI4KJZNj0AwoOsStm0yP7vEtDzqqkb3FoTBjPgQs9xv+Pn9z/zlD98ThmO+fvUNeTYgNA3NUjEtA1OVcQ0DUzNxHYe+ypGahIkT8HBzz5s//5nvfv9vnE9HyP1Asd+wefsDUnHElXtGrsvs4pLw9BTbstBlFaUpyB9WkJXIdYXUtZiBC32DIstISNimReC5qKhokkIQONiGRuj51HHCcXvAdDyy5ECV5Zwt5ni+h6Yo2JrGySQgCCfojosuSWyWS37+dM9Pb9+TZxl5XqErBqezCzRXxpsHyE3K1eWM0dlzDhXk0ZqJZ6HSYzpTZpMLpKRk92bD7qcN0c0b1HrN4vqa3SolLyXmJ5cMMpiyRB81DE3J1dmciWczOz3DsS10VaFYL8njFLnvyI8Rdd1yeXWNP/TIQkEzDJKmZxIGyO6IIq2I7u7Q0giJnkHVGQYwDYMmrrDHY46HgipOmM9cqu0Wy3OxAg/b1RktZuiqRd9AXSWczgyeXVkct0uKVuabb75ClnqS/ZIajarI0B0dx9QwdJ0iy2naBl3TcEyNom04RHv20ZE22WNoMmmS4p48o09i+rwga3vW+4jkePhl1HjAMUyGpmO3XqPqMkW0YeYHLKigqlBMH00PiLZ76rLlzBlxabr8+sUrfvOr33Lxt/+Ad3qCHzqMJx6KEPiOi6Y4ZNsGfXSJdfJbwsDGCsc40xGG5WJaDsrQ4gQhnjclebdkYjpcPHuNqegMSUafZzw8rlFMh7hq6SUVxTSf+EKOi6HpNHUDA/RNTtd3tOUAw4Ci9HRNy9CUUFds7u8w/ZCsaJD6nqGXqGWd/WGP0A0aRWO3XRPtVvR9g6dL+IGLZAf0TcXI1QlcG90wWW8jxHHJyctnNP4JZZWz+fiWx/dv2S0fGM1PMD2PtkyxvYD56QV+6FHWJfZkxubzR2xF59df/ApHaljtcxTNRJIkkrJ9gvTmCWmaYXgBfV3QNw2F4jy1ixy2xOtHVpsDH28eaIqS+HBk6DpezAJOxz6BqdEedxw2G4IgwJ9MGJqWriyZz2cY9Eg8/TDZhs7QtrimhqEoT1NSTYnOgBcGBJMx4/kMXRJ0vYykTqiahi6LqZKI4z7CtF0kQLUsLNfmcX3g3e2WqirxPRep7+nqCtN2kCUJzTKZTUbYysDE7CkOK+pBJikbhDdmqAokOkxNIo83ZPGB/fFA0SpY4Wse71bEuxTVtTlUFW+/+z19maBLgjwr8K0J33z9FbqhMLQJ8foRWX6ChyqaQ99K7NY7st0jE8/kq69ecHX9DMt1MVUZU1WwvBGm4zG0LUNTE4zGNFHEmz+/R9VsvMmYKtrRJEf2yz2O5XCymKKqKraiYagqiqzw/Otv0CVQFJVjWtLLBnXd8uP3P3BYPzLyLFRNR/cm6G5A35ZoCqiaCQxPgFPLYZA1TCdA0gzSoqBrKtq2oaDBsU0kBuqyxHV8Ts5PyKqKWRhSH3Jcy3yCwCZHPv30Dl2RmIThU1QtOjI6m/P6m1ecns8o4ozycEB0BapeoykCWpUgmDLzA4poT7ZPqWKJjyt48zlhm4I/WbBJazIUXjx7Rh3vUNWKttiTrTZsV0eq7MDt7R1JEmNYAZPFGNOyCEKXq5fPCGwPYxBcPb/k5OKMYBIyHp8wmy+QURhfXuP6E4aiQJFVLEUwtB2NpLC4mPLuL9/xcHuHt5iimDZtnqHKEp0Cy8OR9JgQx0cUw0JTBdFhz59+/0dubrfY7hTDXVDXgsWz18xev0B3HNb7I0VTsnl4pOkbelOl70t2jw+YskScZXhBSA28+u0rZr5CejwgSSrPTkeoSstmu6PpOh5W9xxvfsaxLYqi4tP9mqbpyNOSTTFQC4OihbIsifZbFEVnMppimRbK0GH1NZZts99vCOxfDjy2yiiwMEwXzxthGhq2rmPbPpJiIA2CchsjFzmOrDIJRpiigyJBtBV9O3B5dUXyeMd2eU+ZlzRCQ5MlisOBQO2wVYkyL5C6hqZMuNsckaSBVDhEgwuHA6Zc8vH9G6LjQDgJULSCDx++4xBvQdMp6h7btSjrhJvthlLuCcYao9DB1U0kCVabFV+/uMAxHUxrQlENvP/wifOTKR4thiFT9AM3tw9MXAfR5+T7e5IkogVWncXb+y1502GqMhcnp4z9gCzast+taYuEy4lH4DlYbcGZ7RK6PuNwxOn5nGcvXmIaFpr6VGesmA6SrCEJkGgZqoKuGVBG54imh6rCtExEXRLvdsiqiWY6jCYz1K5CaRtMx2dy9Zx4t6Uqc7zZgq7rWN3fUrcD682OId1T1x2dkGkGQdfUuJ6DZdkEv1T2jlyD0NcpVQnbtpmOZ7y6ukbXFVzdINokHFqVRh4QbU2TZU+QaGVgZFbYNKDoGMNAdShx/DOGRseZPMM6uaaue3bLFarhUbQyb97fs9tF0HREcU5etiBkZuMRZ6FPYKgsJjM820UUHe9+/sTdw5JDnOEHU2aWz/zyS9zxFXZ4jhbO6ITG6GyBFfqotoes6UiygqxIDAPQVHRxRj9IqIbGxatnXEzHqFVBl+YMdYMuydRljakIDPOJXRjFKVGSAhBHCUW8w5Jb9KHA8SzS446hq3DDkMn1K5xJjzBjejok3aLTAx6yGl1RyLKUpCno2wpT+wVcfHpGXu5493iP5o4wFIVuvyJb3WJKMkIaaIeBvqn5+fYjSZWidw3qs9eEJxNaT6PQGj7+/OenJs2m59tvf+QPP7znfDbBFj0vApMLRyZUel5cnHF6dUlwcom1uELz56iGi2Y6KLpBl8TImoZAYLk2lmvjezZeEAAStiIhFTGf374jPR6e2G1CoKoqQpJpihzH0LAdB7VvGZIDhibjeh4Cib7K8SwTPxyhKoLNcolARlFVjtGBJI3QZYmsbukGialv07ctmuUwSAotgtZymDx/TiXV7PIdv/2bb/5pOhr91TT5D9ZfTZP/JH1+vP/q3/707/84H7tCkiTs0QRJQNsPKF1DnqfoukkvqU8vq+EyufqS03DK7uNnlj++I9vFqEh4wYiy7VgtN/zhuzc0is6+qHFcn34Q2LZDMJ6iycoT6MvzScsCUwLaFl9X0RSZcRDSpNkTVE+VqDrB1fMrHNulzWOONze4lo5paWh9g0KLImRUzaSvC4ToURQJZxRg+j5Ck5B1nU7AMU44xhHL9QZhGKzSHNtzkTSd3SFGYUDUGYptYU9OsGwTIckUyAwM1F1JksW0XUfZFKiGyjgIqIqE9ZtvGZs+oWNimCa379+jKgJdUwhHI8LZGU1bY6gyF8+ukSSZY3zg9vYT3/7lDYEZ8Nv/9t+QdZe6F8TZEVkR2LYNCERTo8gKUdlDldClEYGusHxYQlXy1fmU33zxnNcvr7m+vubVyytOLy4JZ6e4iwvc+QWKJNNlGbQtUjegKwqGbiGKHFkRtEXCkCZIEpiWQbp6ZLeOieIKw7RwvDFy3yANEooY8Bybqe/w4f0HPtw/oAiJ0A/QDAPdMDAtG9sPEIpKXXc0ecLj/R277RYJMByD8SLAMSRs20JFIJoSd35G556yPewwhpJx4KNoLqU6oqwHpGSLqzTYeoWrFShSxmofoTpTLi5OmUw8iqbE0Qc2D3fUWcKrr3+NVOUUmxVVlLB+XHPYHZElmd12T1tUjEZTXFVFG1qS7RY/DJ8mHvqeaL2jykvOn12i2Rb7Y0xZ92z3Ebpr0xQlstCJe9D0lirJ0E2DQVMxNIUwmGAHPro3oilq5uMJ88tXiEGDNuf8bMzrb76kTzKy4xoRjKh7gJ6mLNE1DUMVRHXDaHrC4XBkoOf+4Y4m3tE3NYf1Ftl2oRcomoVWV7iujyYkpKEnaRoC10X0UGcV+31E28DpZEZoGRS3n7m/fUQZXZOkLUbfcnpyxnx8wZeX10xPT9E8D8uxcTyVrskwFAhMD1Fa2L6J5aq4U5/zL85xRk9TIUg6ddHQVw2goFkjsrsMRzMIz15g2CPIamzbR9NNNFVgzSa8+fkDN497Pq2ORO3AoWhQZYNDo7J5uOH28wNSU1LILuUxI88L0s2SpiqRhoGmbtnvDiimx/3DI6osUaAjZI31dktd1kiSRtV1ZGXOMU6wTBNdVejbEkuB8ckC0bdPLCFrhDpZcH+/JI/3DE2B0kb85osZV69foBoW6eEACOpWxTVdijRl9bBCkXtMoXB1OqfKUxzTxtFkdh/e0OQ5aBbZZskqyjD8MVULUV7TlC1x2SGamjTNyPICo2u5HHlUZcXcUjkJXeS2Zvn+E/nqgefPnzE+naN5Iz7/+IaL+ZihbZG7FiecUjUDbRyhigHHdbAMCWUYCMc+3niG47uouoLtB9ijCbppMagWiayy3K7YxildL1C9BWdfvOLkdMr2EPPudsuu7Ij2W7oextMpXdMgMSAJqNoe2bSxdTi++z3H5Q3jy9esVwcejymGqWEogq6tKOItD8s7lus1wfwFRWdSVQVNkVHkNY/3d9x8+ycCUyMMPVTH4eLZGWPfwJA64vUjVZrTKQaqokCZ8vnND0zCANcwuDoZoQ09juM83TDbDkKSUTUDSZKwTJ0+2SEUgTc9QTJdorTm+HiHrunIQiArOhKC8rAhWz5SJyl1ljAIhcXLrwgtjVHgEowmaIaJkFX86Zy3N3eIpmAYBuYvv0QeakRbIoYOSZWRVRlZ0YiiiPfvPuL44RMEOBijDAPzcQBdw2g2RRMy0XqHohrcHrd8+ul7QgXKqMW1baqh4v3Ne0LHw/dD5GFgvVpzyI+8/vVLLM/jx7dvkZSW3/3+D/zw/Y9s9nvarMRQbKaLUyRZItmu+PjTHT/dxLx9zEmSAsNwqQeVRqhMJguEMrBdPVAe1vRpxO6w5UjNzefP5MeEL7+4xnFtRmfnOJaN69mIYcAbjRmdnDE+u+D05Wsm0xmGqjG0PZbr/TL9M8YOApRhYMhjZFlg2h550bC8ueN+taKsKjRviuk4DAy4QYBlGdCU0A/Q1Wx3eyTdZfN4h+3ZOONTgvkVz3/9X3HPLpEVjbqoufvwSBHFxPuE3lKQlKc1PFQ9xgCKZYJUY4Uqz09N8ocfWW0PaK7HscxJ4wOaGKjKiu3Ne5osxdA07h4eOUQZq0OGrJrkaU6WV2yzFpA47PbUPVSKjW1ZzGwTw9DZHNY4UsL5aUgQjnAMGdnw0TSVoe+okwilzNjcP1AkFWPbZOKqLE7m2K6Lqsn0ZU7XdYhhwLYMLAWUMqKrS97fPjI+uSCPUx4f13SDhOu66KpK37U0VU3W9PS9TG1btJ6OtvyApst4qkIrTUg7id/98//Jp7vPaKqgUXSqqsMf+dR1hjoPaV2L67nDIHVYukoaZ0iSxIuXX9ENJjIe0S5ByD2O0lMNPao/5a4yGQaThaVC2zIoT3XmQld5t28oewUhydA8RTPXmxW+1rHdbvEVGGkSX14/R6MmlGUm3oTZaML5YoLmeuRViWV5SLL5BKg2JGg7+qykLysGSYfBpCt2SIqKbLqIIkdRVGTDRc4rmmUKdcvk7JTxYk553PPw6R3x8YhmmvRtxzGOaQbBxLFgeFpTTZEjyRqZpCP3NabvYc8X2MIgcEeMpgbPXo6RHJuq6FmcncHQI8sapj/l0LXEWYzSd9BUWK5NUkQ8v3S5e/cZ0Qg+v12iyxKuP8UZzbj4+/9CNwjaqmF7u8TwfN79/IH7z5/YPjyQHdYwDGimxziwWXgm5lAzH4cYis5xs+PNtz8SpTUMPQvb4Wx0wmR+xfj0BYvnLzFn5/jnp3iLMb2soKo6mqWjOQZCDDTxgS7eM3QlqmYQTH08z8JSVLp9Qh1lSH2HrRhkacb8ZEZXZbRliR94aHKPJgtW+5htmlEPAsWbMg5MJqHO/HSMY/ToWo2QMxQRMcg98unfIGshVZmwXt3TCQ1LUcnimCyKGVqo64oPtx84bu4ZyhqRxXT7FUZXM5tPEQKSJKVoa2TDJ6077vOYd8mOKF0xnpqc/t1vieMtmlQzGY9YRiU3b9+iMXBycsKzkxNCuePVxQnPLs/xzq6xLr7AGo0xPB/ZDFAMB0VVEW2L5jjIYkCzDYahR2VAGXr6rscNfaSuxXYdgsClz2JsVaUsS8q6pixKhKzQ1xXF+p7quGPoOgYh0SAoi4KmzCjyJ4alZWr4jokiSzS94BAdkYYO0fds0pShazENA2XokGQF3bQQskB2fQ5Ny/3mjkYa+Ntff/NP4/Cv7Tn/0fqrafKfpPvV6qu/fPjwj20vib7rELqO2mS0RUZnuKiip2lbhG5RVw2qbnE6nVNu97z93bfU2xQzHDO/vCTKKz6+u+Fff/d79knKZDTC0HTG0wmO49HUJZ7jYWgqfdeTFSXzszP6ukLvakxZwrfdJ5NhtmA0nuDaPi+urxkq6NKUYr/G0WoMXUM3LFRZhiJFNy0ML6QtK2QEkqqhyBKaoTF0DQCSZSNbNqvlkofNGsm0qYUgSlJUTaNtO9KyQZVA6hrKuqdDRjUMJMOk7npkRfD54Y7j/Q2zkwChGUi1YO54JMsVs3GIJfWIrqWqa6qixHMtbNfDsDwcy8TxQ9BsdocdaZ5x//mOk/Eps4tXWJ7Hbn+ginNkHToFTNdFrjJCFXRVoYwT1L5m/ek9oW1Sbldofc3zy1PGtoY21HSdhOf46HaINT15ynR3A1V8QBUCzfTQVAVF1pCEAEDWNIY6QxgqejChyVPS3QbT8XEnZ4zmpwx5QrmLkIQETY0uJBwa0mPEPi0RkiCvKvquRdM0hBCkWYluenRdj2dH55cHAAAgAElEQVQqfP70kbapGdqWvMjou46qKOjaAd+yMUwVSZd4zCoMGkaezWg0pZNsDnFFslly5jvYns8u2nFyPqIAGgUuXl4zGfvIskQ7dEjVAVvX0CWFPq+p44zDNuLmfkPTgWJ5xFlBkhe4uoZnmtRNy2w0pqtqPr//wPbunrZuEAOoQuF4f4smyTiajhACSVbY7o48PD4QmCaKqoHoyD/fEExCzLFP1glM+emg5Xk6wcKh6jsQMqZScno+4+zqmmSbsnt4RJHg7OqM9d09h2OKKqtoukGnGuhDz8CIdBuBprLervn04ZYkjjENHdoeSxYoQsc2DSRFYXZ2im7bpHXNULfIecn945a8agiDCZ7p48gS67sHorjm9OoLks2W1efPtJbHrm1phx51sUAaBahSw2HzmSLa8uziClOzqIoExWwQUo5u9PRVSvJwoImOJPf3aArYnoeESrarcWfn2NNThh6EkFBdH82xEIaJ7nh0bUOx2WIJicVkytu7Fcf1Ds8wmc6mJEWHpKh4ownff/+RydRB1gyi45EP7z5x/7giLyqSNEHYLrJucYgjZFnQKA6rh7unybGiRHEDirqBpiLLc6qmIxyF9EIjTyuaIkOSwL96zWC41EUF5RG5OODogv/y93/P+emC/f5IWfWYhsWn93fkxx3zEx/X06irnKGpmE8shO4zC2zqLCGKUz6sIo5pQXHcU+Q5cdlTSTqd0IjjmGy9pC0LomNEqEhMLIPF2Ec0Da4sSOOM+w+3zETFb17MuPj1r2gkm3Qf4eoK4WwCTYuMiiyBXOQoYqCtOpSuRjdULNvEdj0kO8SZLjA0DUlRMF0PKwhomhp7ZJNkBXLbEHguL69POZv5NE3Dv/zuO3aDxse7B7LogGXbCNOjKp5aFNShxQpDdD+gymOOb/7A5GyB67kc8o53t0uaQcbRFUSTcLe848PnG/b7A/PLX9F3gizaUWYpTVax/vSJ9LDB1Ay+ePUFF5cXTH6ZlHMdB8vQsRwTy3hq37h/9xP5cYemyVy/fIauPzXqyF2Domgo5i9tapJEGx053n8kOFlQREeatsO0daLHG0RXMgAyEn3bo+sG2T4ljTKyOKJKM+oe/MkJcpbijwIsy2Y0muD7Pq7v4wUB2/2RrGo4Pzul2tzSpAd6IYOsoeoWkizQLIcf393xpz99x6efPhGqDrZmomsSk1GIbTkMTUd0PFBuN3T0FLsbDg+fKEsNWZVJ4ghJCIJwjOg6sihhdX+HYstM5iMmswnp/oAYOparDUPfoOsuXaXizJ5z9eoVhuPx7fc/8Oe/vEUaFJpGBt3jw/2KQcjMRjPmjsPNp3coVUagKNw+7lnGMaoG88mUr589YzyeYs1O8MMxhhjo8gzVdJhevsIfjVCEzObDHdFmg2Ga1EWOLMm0aUq5XdOWFfFug2k6VHVHXjYs725IywJJs4iKluVyiWU56MPA0HWcnp5iWzqmYaLaPrZpoagGumMiGTaW49EqJmlSIaQe0zD5fLumqZ4ib8n6yG6/45DuSOIjVd2iey5FU1BkGxYmtMmRP/5/f+Dt+xvqNsPXKk59gyzOqI4lm5tP7PdrbMfl/vMnbm5uyTuF2fkzPny4oakqVN0AMyRPIoo8RetKQqmlrguqtsaRas5OZ7iei66pyIpB3fRU+yVdEqE1NVpTEVgGXQ+nz18SOhaKLKEoGrQtVbJHAqSmQmkr6miHJlpUoBcKvhfw6e1bTMOgbFrytKSRNOS2oqlK1ts9H/cZqm6i5nv0tqBqWrKi4l/+7c/83//PP3NzfwNyh5AFqVCp8hLLMDDDgNvlAz+/+55ZYCIbA6Yq8bhaMVtMsUyH/X7Dx9s1eT1wuXC5W31GGp/w+eM9P/6PP/AynDEPPcQwMNQVTVMQdxp3x567+0fy+EBVpsTRgbopIdnxauYx0mVGhszY0ZlNJkg6jPyQSXiGoZro46fWOt2xGUwLxdEZ2pquakHR6JqSLikZypq+LekHhaGXkLqKPsvpVQPTcjBkDSOuqJZ7VFVCkXr80MN1bE5OFhR1zcPDA4ftjigvcZSB7XpJURSUXUNleRSqhWMoOJMJsjOma8E/P8MYyVy+OMUejdFUGcex0f0xaSvI6oEoOmLJ0NcVqi7jWh1nIxO9bamiGE0IHM/ACy0uvv4SbzqizGIOu5IkLenKA3WR8tNfvuPu03vWywe6MqctExwFtLZiFrrYmsbycc3tpxvKokIbBiaaxsl4xPjsGaMvfo0zmSKcEcZszuL5lHDkICkqDAplVjN0Df3QoqggixzHU5CVGtqKchNRbvf0VYHUtSSHLbIMwSzAsQVdVVMUJUJTsVRwLIO8bkmrBs1ycE2VIb6nq/ZIlo/mTTFEjNQWxMs9Q5njj+dIhs3tx+943K4oBxibBvX2yICCZmhPjZhv/ozVt1ydPaOLI+Qix1Atum4gTZ/YUJJqEKUZ9sVLis1nLENi5Kq8/ptfMb64YOhKbEND1002qxX5cc/Isbg8P+P6xReYPShVhemPcM+vsFwXx3eRVBvJP0FBIPUtspCQFRUhyzTtgGJ5aJoJdYloWro8pc0zDDdA11SCyQzLtoGe9e1n1rsdcZzSVBWuY6HL0JYlaVGRR3sUVSOLImRJoqwrTMdB7mp8Q3664DQMur7nmKaUTYusakiaSd+0hIHPoKoomo7me2yThEO0RzUMvnz18p+m479OmvxH66+myX+SHvf7r76//fyPvSILTRJYdUoS73/J64M8NNRNC32PatqMxyd4bki82aOaNrPXrwlnp1RVy8OHG/5/9t5r2XYlPbMbCSS8m3bZvbY5rgy7ms3oVrMVCklPoGu+Il9DCqmDQbLJYhXruO3XXnZ6THggkamLeaLfgLyqjJgvgIkAAt///WP8v//P/01VlwSOzSSOmYQBgetzfXlFmk3Qoz7psDwXRsU0zQgmM+r9hvM0xAwKMwqKoiVcnHF2PuXw5Rm1W1E/3ZM6PVHg4vsBjAo/naL7HmtosdGE2QQpPVzXQ6BRbY8eB1TX4E3mdNpQDhptSeL5HBHFbFbPGK0JkoT9focRNnVZkEYneGR0/go/SZBS0BnD/XZFudlg9QOLScJxf2SeJASTGEt3xDbU+Ya2asiPOXEcEscxQmgs1eH4Ifl6g1agg4xwNmMYzamKa9t8/PiBoWtJkhQRegxRxjLw0F3Ldr1jVAO6KjDHHYlrcfPiBZEjmaYxturxbYtksiCIUsIkOV0rA7Z1WhPysyUYCwsLjgX2MCA0qKHDSgNEEKIBrWEYDcnZGdPzc0x7xLM1qlM0ux2e5+GakaGuicIQYQyOZSGkw6dPn1FG4Ps+TVUyjqeHviVdjpsdd/crqmZgfzhga41r+/jRjMzzufr6hnqo0KJDK/CDhCiIaUeL9WrDUgy8vrqgbgfGsWHULcYSfPX6ay7PljiWwZGgRs328Z6zWUYSBvRVSds02IiTTjvJKKqGVoHpexI/RAiL0HNJpgtcIfAtiQMcjyWqqmn2BcVmS33Y/tLY0fiOR5pNaHYbTFuRpDFtM2DrgSRKsOM54WzJEPgYaaGKPaEXMjubMpu7J3ZJPKU7jlSbA8tpSDjJyNsONYyI0WVbtYxDgTe/wGEg8R3CKEErjRID0h4xWqM1uJ7H2A/4xiKbzk7/ddvwUNTs8py+qPjy8TP7RvHi5g2vbl6SSdg/PWMLi69e3rBebbg/FPz44894lzdcvLhmmQWYsaVYf0YKhWpLzmZnLOeXdMct+fojNgN9uWXY3THWHX11RI4VydkF4WKBGgw4Gdnr3+JEGbYf0LcKN0owQqNUC0mMcVzMUOOYkfl0QWTHXKUJr84nwPjLSsQ5YZTghCnnswSChIcvd7hRyGw+Zbfdcvu4ZbWvGfqTGu8prxlGTRAEtF3LOArKukIPPfM0wTLqtB8dBCwuXxBGEUVRk68PKOURXL2hbgpuV2t8OTJ3eqq2J00i+vUH/u7v/hnjTelVz+2nd/zrj3/CSJsX53N8S6BHBZ3g8uIaDvd8+OFn3j0e2A8OlheyK0rAphygrhu2mw35fo9lRubZhHkc83qeMfYdl8sFoetQb1cUd/f8NnT57eWE5fWU8MW35HmP6WvcUeEYTlPJKKHbbrD6jjCK2Gy2BNKiLDvCJAEh8EzPkBcMOkCoEd2PBNkcZTSq6YlnGVK1hI6FGDqkZVDYPO0KdJTw88/vGKqSi9mEZtSUxyP+ZI7vSEIUfhLjuB5lWTI2BZieIM4oRxsZxLi24bBb89PtZx42W0Y75vVXv0VVJ3sb2vDl51v6ogbd4bkOl/Mb3rz56sQy8b3Th78jcRwX3xJsvnykzQ+ErsVyMsF3JZMsY3JxSby4IJzMwVgYI6h3G7wopM+fufv+X/HTGX1ds3+6I4lCDqs12/tH2mONGDXV9ogfZrhBhOoUZuyJJgtsA7qtCMMQ6bmEUYofp/ieR5YEtG2D7QcEQcDu4x+RQuMkMwgSdFthSxfpeLQK1rsD2/2eH/70J46HHc/Pt7TlDqFatrstnz+8oyiPLM/mdLqnKlu22w5X2oSRR5Sm+H5IW5Tsnh/5sr4jmLi8ePWawJPorsa1XUY9MJvELObnXN58x/mbXxEkU56/PPL49meCtiNXLpta00qfbhhR+lT/tlRNGjjEgaSRNqkf8bvXr7mYJrx++YLZ5SXR8hqDxvdcTNsSpDMmL17hIKBrGOuGNAtZnF3iWILQ9/EdB7s94lsGW9UM+Z6qrNht96w2G/707hOr9Q6ZLHi8/0K731AcDsTTGaOQCM9lGpwaofM4xncchr4D1+fu4Ymff3xLvj4QpBOmizPuVzvqZsC2LCrdU7YlxWHLvjkwqJ7ADyiKI317pFh9xh06VnfPvPv+A2pQLAJBavccNissID9WPH75jC8VRmn22wPdOJKkE1w/RCvN3cOK7TZHWBZxNqM77k+hpja4XoBxPL59uWSSRvi+B3rkuDvQbZ+R9ZFpkjBfLnH9gDSb0FYnG08cunieA32PHnqGpsfWA6bao5sSM46otiUIAhZphKMVoT2CgS+PWzZVRxAnDF3P+vEJ3TS8ez7w4f0HRJXTdj21lrTtwKEuWdenlaa8LCm7jnEYT7ryWYYXxoy/rFTPIoE0PX1TcvfwgcXZGW195MumxIliXK+nVRX/+v4j328Eb//7P3GeBnzz9QsyJ6BbN+i6pTiWrAaXu3Lk8f4LngW3nz4QODap7xB0Ry5jn9dff41UikjC2eyCy6++oaVgcblkbGyyZEYcCtzphHbosV2NVhrh+DTlnq44oHuDbjv6qsWMA6pqUV2HqioODyusJEGGIZ4fwCHHMiNOYHPc7fADnzAM8BwHx/HwvJPRa1vUCEaOVYnjB+R1S5nOcSyYJg7RIiQ7z2jqkk4YYt/m8mLOcjk9NTaSmGEY+fKwwhI90rYpm5Z+qHGHHVdTm+k0QWkH4UguXiy5/O4rFlevMONI39Qc8orDdoXpcoam4vHhkcP+AAYiz+NyPmGZJkx9i0kc8PHTPT+++8R6vcZn5Cyy+O7bV0wvXzA7P0eGGW4Q4E1mRJOUIA7wHIvAsShXByzVQ1+AahiqhnFU0O1Q1R7LEthhgHRPLSLblXhZSHY9I048jDYMZYtjS4SEsu9xw5jY97FdjzzPuX9c0SiLsVc4bsLm6YgcNM8rCIIJfhLiTSdYXkBXrTg+fsQMFdfTFNFIymPN4DqosuBikiLViNAWwzEniCI612FQA2W+ZX2s6Luez7fvCCl5dZny+uaC65sXfPef/xe06vAcwdjWFPsDt5++oDWYQZH5gotpzMXNV1x992suXr9kOp8SJhHSCTD+HEd62Fqfgk44tRsdHyedIqSHNSosNWJLF2vUCDS2JTBdh/QCRtVhY0gjn9XDPT/+9I6m7Wi6jrys6Q2Yvj01tvwIYdsU+YHRtnFsgRhHGHtmSYBt2wjLplcKgzgFp15InudcpuFp0GXZeHFCOyrarsXYFn/5l//xb+eTPyuH/63Pn0OTf6fzvN//5vdvf/ybIHCFNCOehN12S+9EuBbooaVrT3queHoGSBI/Zug0XdNzPNS0bY/oNau7O77//g8EniSLY2ZJihSGJAoI/ICL5YIkmTBoEGNP4tt0dUPm+nRKE/o+nuMiI5/L15cI0+FpCF1JHEsmqY1vjUhhnVSw0jrBjqKEsWsRqsXSBsyIUR19fYJKohVD34Lj0w8nWNF6t8f1Q0pj8fH9WwL/1FzJ8xLX89jvDwx9D5bP7ObX+JGHLTTr9YpivQLbkCYxjBBEPo5nkb24ZtyvCUyPGDvywwHHj0imcxbLJdIMqGHADhKqsuLDu3enyWTToRBMsjmqg9XtE8k0pK1rEtfG7o4Mhw3b+wcOx56r5RnLwCaWhov5hLPrKy5ffcV8sWD58hXx+Q3R8ppwcYlrWUhp4/ohQjpIL4ShByERRmNZNrQVomsZpYWdJJSbFY7nYdwQx/Sk8ylCnNozjnSwhUEKaPZbGFoO6+3JhuR6LM+WNHXDervhUFR4no8XBih5ajwEnoNjCZquwngjI5p+UISOYHIx5+xyzss3N9Rdx8f3P2HbE2azBWHgc1hvqY4l59MJtpRoNSJdwR/+x9/z8s1XXJ6fM/Ya3Q/oocJ3LBgaqI5I66Rn9pMEDAxakedH8h7qfsTvTx8Yru+jjMVikqHajqZXJ9J9kXORJWgz4tsC3ZY83z0RRzHr50ekZTNPUqrdjmJfMLl6Qa8UXpZi+yG2bUjTDBlOaIMFXW1jao1oFHV+4Lje4YkBS4zMzmeYyUt++NefuXt4ZBJ5zCYpRdMT0COwsayRIA6xGfBDQZnvSdOThcqybKI0xbW90zUPY4a7W/Jecb9ZsV898/anj9jhjBdXV0SuxeHLR969/4wZNS+WM4amoa4qXp9NOQtdRF2hhxbRl0RZxD4v2d+vuFm8IPVT8sdPSFFTbdZYg2A4Ngg7IEljsqsXOMkUPbq402v86RXG8tFaMKoRy7bwJxFmaOkAe5oAPUNbg2+IFks8Dyxd8/HzHaunNVZnmMQetz/9TJXneMmEumvp4+QE420HnCRl6oN0HJqmpe76U3OjGbCAQRkeNzviLEFYFj4WniWxhM3+cGScnHF1MccRmt1TSWbPsbyEOPUQUpO6I7pvWLz4hn/54zt++Md/4ON9zuLsiqZreX7eYAUJ8uKM9z+/o90/YhmBLzJuZgkPH3/i+/f3PK4PHBpFOp2xb0e0MkyWF4xdh247pr7P9SRjmmV8e3UGVYHdd1xeXbLMYrafP/NN5PLVMuP8LCU+8/HOluy3LXHsY7cdYmiwoxQ9NFDmyFHh+D5eHGJLB6MUz8+ndogXuggLqrJBDQNq0FQ9RFnMYXVAJQmHVnF7+4TVt0RxSnZ+RbaYn1oWTcUscJCez3a7x5gR4ficvfkayxJ4aUSURHz68Inq8SMvX98g/IzGTWn7DtsWfH54YJeX9MIinsy5Wi44rDfsqpLtbsXHn75n7HPOrxZMplMuLs+ZZDHZbE44vyBKMiwMHiNdvuX25x9wGUh8l9D3sMYWUx8R44jtRrR1z/F5RbS44PndR4LQ4/nje46HCtVryqrGsiwsWxCEKVI4SBkw1gOmUxxWO/Ro48cpjh+TpTHdYYPnSoLApW17HM8lTiaYtsZGk2Yp0gJpjZS71WnSLUYcM6DH031guS7Hw4FPd3cYBMMwsNo88vD0xP3DPUV+xHIjnlfPtG1DMpkikjnSn/DhwwO9GlhenNoJbd9y2K64ffjIU77i4vULvrl+iewVljC0x4Y333zL1a9fISzJ09OapjwythXy8IzpBp5XBz49bHjMC9LJksXlC9w04vpiSea6LMOUNxcTrq+uuJpPefnmNS+WM/xfVJnlMSfwPSLPwwtjvDBC5y39dod0HUyn8YIEYTRG9XRliW00q88f8YKIcvXMUBUUec7hkPP5cUXRKbwopcnXPDzeY7subV3RVAXLqyvG0RDFGY508X2focxpmgohXJ6/3NI2LensjMXLN7z/8IWmGPHtAMcPsD1Jfliza2qEB6ruT0MLDFX+RPH4SFXUBDIhCeb857/8DVngcvfxE59vH7i4vOLp6Rmr3xM6EjVqjlVPGGcsFksso3Gkw/GQcyg7mrLkIvZI0wQfCMKQOEm4eXHGZeLiByFKjaw/vSf2Xc7SkGmWEqYTpOMSZxmuGxBEMe3xiGeNuJZAShvLtnGDCNqKsS4ZjYXterRliSsloqtoyyPZdEFdHLGFoVZggNFP6aua2/WeY6s4KkPTttRKUHQG3dYErs3truTt/QNm1Az9KXyxnYA4Pa2GVX1PNSrGbkXqKqrtHR8+f2DXlOTK5levvkEVHc/v3/H7f/oHHvMDXrwgzq74L//1d4S+TagGhFIMY0NRrsjtgdvPG27ff0T1Hb7uCITi1XKKr1ouUo8kjvj619+RORLL2Lz69le02x2Li4DQAd8PsEWA0DDqnsF0DHXP0La07RHL8tBa0zcFWlgMStHlOapuaA57Dg+fObYloycRosfQUFRr4sWE1HdQVUlTleyOBfPZlOn8DMuSKNUj0BjXpe06am0YghgdZXimI5uFuIHD4mbB2c0ZpRUzNA2gOB5W7I9biv0TdQ+OHFmvN+B72FLj9zsiu0c3HcWhY3Hxgje/+0+c3/waR4YU+x35+gmhaoyq+fTzO3760w/4foDnBvh+xMvrS67O5ujyiCsUx7zkh/e3HPdHXmURX11MuLq5YX55gyMDTKeZzi6wA5/z1xd4nmRxHpIlEt21OAxE3oip97hyYDjuEOMAzZ76sCJcniEDD2VporNzLFsQThKka9G0JVgG13PxwoBh7Gn6jsl8yuGQk2UZj4cKA6iuw0YTuD625RJnl1y9ekMwX3Ak5Olxj7QFgdtTbh9xuiOqPFAeNfsSrCSk3T/jSZu+KMD1MXpkn+8opUd12HP/cI8VTXj49J43l3NevbgkCQNs6TCdn3Hx6jVR6FLlO56/fEGPI33T0h8PeMKwjDxeXp9x8+oVSRwQZyGOtLCEZMRHRBdIc9Je20IgfRdb2NB1UNcwDKANtuNAEKM9H2l6bEugqhYzKizdIdSILW3mk4juuGO1zRnGEdd1OA6Cx/WOzaGk7BQKm2Oe4ycZFhrXkaAVbdsxmU0JAp8kDgn9kHYALJumbQg9B9938OIAJV20ZTFYNgUWv/v1d3+7nE3/HJr8G58/hyb/Tme93/3mH//4+78x5V4ssgil9Cmp1uC6HmWRM+iRKMkwlkMYJBw3BR/ev+Pp9oHQjU9KO2Hzz3//T6iuQpqB2Avww4g4SYiCgMkkQ4zDKbm+uabtWhLHpi4KyrLg7PycIFsQLa9OL3/XIQ1crKFnOYnwbE0YhITzM1QPDhpL90jpYEkfx/HAaExfIzi96G3LAjSqq9F6REibph1QfUe2WBCeX7LvBlb3t8RBiB/4+EGAIx0+ffrIcpHgLi6ZLGeEgcOhOLB9WmFZAjFqhr6nqguySYyFwpIOzeM9uq0Y1QC/gJG++e1vmCQ+XX3EdgJEcknX96i2IN+s+P37B9KLK8Qo2D/u6OsStMb2BVZxh87veP9hRdtqrs7O+dXLaxzV8vJqyTTxCaTAsV1cz0VogxNNsYMEaUusXwKOcdCowWDZNkIraMqTFnpQCM9jlAKFQKNPCX8QYaSH5wpM16CcCI3EDX3EqLAtgyMdxrqhL0vKw5FR9QRhhKV6ttst1WiwXY/jYcfFPCObTDFagVHkhxVN1eDZkEUuL68nXFxmnE8jsvkFD4+PFPWGODrHC3x039KULa5wSB0H23YYho7Pz88sQkGWZviuTyB9qrwBMTJ2R6QayI85Ymioi5x8u6WpK4rDgV1e0RmbKs8JLRjrmiCb4gwdjhpxPZ/j8cjYNBTrDZ4fsVut6MucaeDT1wOqH1ksljytd9TbIy9ev8RoTVXU+NMZAFGaMSKQ0iGMJyc9c+AgrAHdN1hSkE2CE1jOHqmtDH1sGLuWP/z4M0VVABaO49MPcNjtTjvVxiBtTZRllENDU5enj3/PRUqbIM5wpQvaoPuBMAzYjoZPt7c8PG5JpwuiKMQbW+4en7h9XPObVxen2uYwIrWmKo5sdluiKKDrBjpteH+oeX5+ZuY7/OZXv6LeHLHHkjiSZHGIJyOm5zdE6Qw/nQERxrjYXorlZajB4MUpXdVhDDhRQNe0jCOoMESNA7YN7dgSTKYM48Bhd0dbF1zMExauZP34jCsDXlwvOeY5k7MFVdtzuz0g25bnbU6wuGCz3qPaDulIBIZN2aDdiH5o8YOAp+2aY34gChwcrRl7zTgqLNumPGwY+w7bAkeCcB3iiUccStA1/e6BeRbhpWesi56uVfh+wChjzl/c4NoRpvMZNg1v//AHPr//SBQIfvPbNziWxfP9E4fjkdt1zufHZ8I4xfUjNusNqbSYxQnL9AQrnE6nvL6+YmIb1HFPIi2mswVBGDO3NcskZH62JIxj3DBGLi5oeotR6V+CAQdvNsOoAV0eoauwfB8rCrFs6MojdhDQjYqyUUTTBC90cSLBQIMtBdoAo01zLJmdpejR4ng86cJ9VxDFPsN4atMMw8iPX54pypJZEjNNIzwLMttgRRlh5GMPFakv8GfnGD/l07ZGuC77/EBd1dSjphIOdpxyESWU25y+bnh+95HjcY90BFkUcvHmFYvrGzx5qjFXZUl/3KGqA5ZqWT89c3d3R+xKZrMZXhARTaZIP8BLl8ggo9w8I4RN05yaAOXmifqQMz1/yf3nO6r1Hq1AKY2XTLEcn839CtOO9IMhTuYnhbIRxJMMVVdYekBYhihLqNoKoRtMWyFGkO4JzBcGHuv7zzjSAgy379/iqBaBwEkybNfjp7fv+en+ibwfSS+uUMNAVZVoDbtjiT275tWvf0OxfmKSJczefM2xUeyfCvL6iLBzVCIAACAASURBVOdYHOqC73/8Ax/e/8D982daF3733/6aeRxgI+i6hunLG1zPp9xv+Pu/+wfKauDs4orEAauuaAa4W+ccWoXjRgRYfH15zdXVkjcvX3JxvuTN5YSzacIiS7k5nxHbDl1eEKYTPMtmcXFJ5DpIx0ePLqqs8AL3pBr3AhwEuq1RdcX6w1ts20G1Dbv1mlkSwNBikDwVHU+HitLYZGmCago+PT7Q9j12MmUYFVVdE8YZk9DnuHlG+AF+lqC7HDcIUMNALzT1CMWg+PHjPbaV4smAyAuxrVPzqFzteFo9oRhwbYt+VGg9sLv/RLHbY0bDJF7y13/1VyxmFj98/xPNsSeOU6azKX3TcNxtwYDjhYSzMwIvYKgrtqstY1Phui7l4YBSmqbtuEpcXp7PuJxPWCzmXE0TQvfUPBoOW6ahy83NzQnSaEEQJ6jREAUnsHQQ+sS+y/O7t+RlTZROkEKjqxzT1Qg3QAiHfr+FvgXLMDYV1qhYPz8zv7igrSosS5DXLb4fkmuBrkrernKObU/RjygnZmxr7h4ewDqtQFf9QFE39IPCEjajCVncvMS2QXg2z8Wernqg2W25//yZ73/4xPtVw+/+2//BN2c3fPn5I//49//Iv/z+97S7PW/OUy4WMR8/v2UqSs7CENXV9O2etd7zsZBsDx3l9ki133B9MWfiGuau4SwNcceO60wyDiOLb/4D11+fE4cjHhJrcAj8CFP1WFaEnU3RTUlfDUgvYHf/iee37xjLkuLpifq44VhsKbcP1Ot78ofP7DYP5Ic1h9U9rueiqiNm7BmsEW160A2LLMYHyqLgx/fvGbqeOEoYRsPueGCf57SjoXA9qqFnfnZONQwk/shsYrBFjyNq4uDUFu5VjxYGrTr2xxwhY9q2RQ0DY98TiZaric393RYjIsL5NfHiFWG0wPMSurLh+HRHtd+xf7gl3x94elyz2x1p6o4gmbFcLJjECaqrGeuSPC94e/vEl7snbpKUV7M55xdXyCBhdvmaUTtMlpfI+YzJqwvC1GO+TPB8B1twAsAnHhY9tmmIJxGOVJhyTf18iyUMHT5Getimpz08YcwIuqPve5JsCrYF0qbTHZYnadqBKIlpjzlozfz8gn1ZI4Qh9WEaa6JpxvLmEks2NF1HmC2xBk2933Lcrdiv7vn9739G7XKmZxN6PwZs1HGDIz3CMGJbFvhZTLFdYQZFVxxp+pYw8llOA7795juaouTp8YGhqsguXnP94gIpRu4+f8D3JFK6tGVJ6kteziO+/uqKq5sbrK4jDsPT+o0tsGwPLWJc6eM4EtEUSGkDNkZILMdHWBYCgwDGoWe0oesbhmqLLQxCurT7HYLxZGbqFEEaM/EFvlA8rvfsDjnzLDqxu7TGcRzaqmIYRzQWjm2hhx6joWgUriNxbAs3SvGiKUGcYtkeahxxXRsv9AjiiAEDloQworUc/uq7r/928WcQ7L/5+XNo8u90Pj/c/+bv//THvzFdKyzLZhwFQRijhhbXNgxqRDoujnQIvYhJPGFsBtq6ZjqdMZnMWCzP+fDzT3y+/UgYB2jVksYR0+mMi8trstkMaxwIXUno2Yi+4WKRMQk9zqYZfhQxdgPd0HGRTbjI5kzSlGyS4dguseuS+j6oBltKktn8tMajBsDgeD62lCd7RjRBSO9/BiWIEaUBbMAwjCNNrzjsjxRlhR4GPGlTVzV+FPPq5deUx4rV6pFomnHz7a+Jw5imr/nh/hk/yDg8FmjVIyxN0TXYYmSSJjw9PEK+QbQnoGEymeL6IRfnC/riwNOXT3iuPJGmx4Zm+4m/+7t/IciumE8WlOs9dVmQ1zm2BV1dUrUDQzXiOiHX52d8dbYg9T1E25xsD7pBmgHb8bC9BCyJlBJHAKNGGIHRI5ZlnR60emSsczCKcegBMFIyosELMEDftUjXw2DRNA2e59I3HdL3TzBJC4a2QVgWlgDRdwxdQzsY0sWC8rDjUJQkkym7qqasGvphJMsmBElI0dZgjzx8uaNpOrwRtDKMY89yGuAtLnm4f6LYHJhlU8r1M8VmjZteQT8SBz4YaKqSSRQyyWaksznrqiEQCuEKDspwWN3i2hqDpG96urqi70/To81mTdMrirLCky7Vbo9n28QXV9RPzycgsIbdZk9fVrT5gclkzuH+Fk/YOJZDrQTgc/bmO4wXMAif+w+PyHAKto0tDDg+FoJwtqQ5HLGNQVgGxoFWKwKnQBdrmsOOvq4o8orAsZG6xjYj2/zIu4ct2/0BYUbiJCJOYlzL5rDfoEZwwgnbUVNsH2nKAs93cX0XYUuk5dF2PTKI6fqe+7plt88xQrI4O+d8mtEdtnRNjSfh1dkUSxieViseHh64e7hDOT5fjh3ogd1mxeruFqqcr15eMcsSdF/hCY0ZOswg8IIMYfSpDaQtkB7K+NhhhnQcdNchHQ8xaIZO4WQxuq2xzIDSChyHUQ1Yjo0bZhy+3BNOp5y/uCKOIiZBxMKV6O0WYQlsx0ZGEa602H2+ZZKmHLVN54S4Q3cy8Vgn0HBedzzsjliWQKEQnsNuW6GGgbLVCEcidIe0QVqg1UAQxghtCCOfY90QZilGGJaphTQdd88HFpMU3xEoLWhwObu+5vrmDaZvWN1/oG13yMjhr//imm9ev6A+tux2B27XOW+/PHHjixMMe7IglJLheKQ9HvGlxHNdvv3mNV9fzdHDgKsUrlbE2an6vLi6ojvsyN58g52myHSKPHvBgAsonCSirWtGPTCqHoRmsCUyi2nrCjH0IE6661GA41oUecnYGh7uNwxqpNNgsBmGHtcSBKGF57v0agSlGbqK+XKJDHw8y1AgeNoW1FWJNCNDW9Ps1ghbYr34jtARpHLEdj2aoiCdTPiSd1i2jRkVeVlQjeC5DtMkI3J92kPO6uMD9bEgPx7wI4+b1zeU3Ug2mxI4gtiXSDP+0uA4ga1/+v57XM8niWNsL8JyXJqqwhibtlZURcHq7gvlYUc/KIypKLYbXCfh+W6P4wRcvHyDE/q4aUrfK9pqYHH9mmR6SXb2gnAyxfUkaCi3a6yhIwg9un4gyibsdjuU7ql7Ra86hHDwpGTsG9TQIoVmcb7gx5/f8fz4wHI+QRtNuljy5eGB3//pE3aQodyU9NV/xDkW2JZNMp3jBgnzi2u6IseNQsLFBQ+fP9K1knYE1ZZcLpe0ecP2+TNVtSNcLvndf/pLYtemrCoG6fD+9pbqsOHu04qqHlnOzwksidVUSD0SDB221txWI44TEsUZSrqIqsQZamhLnDhF1TUL3eAJgefYRMmUyfycwHcRxjD2PYOxUW1FlKaIboCypX9YMWyeUEVBP1QUx5I0TWn3T0yykDHfnyrq0iF0BG40wRoNz88r1rstx7an1xDFMdUxJ4hj2m7g7PKCwNZU20d2+QbtCNq6pO5Kjl3Nv/zhT/zrP/+RsWyxRoc4ODGxHNehbSp0M6BGhXZG2rrC9D3HzZp8s6LtGs6WS77++muSZchqc2AyO8e1E6IsxHLMiTGBwTUjttbstjmu0HiWQLcV212Ob9tk8zMCR5LFEbZtYyGYzKYskohpeAqzvLFnnkQEnkc6nRNkM8a2YTqb4XkBZugReiRKJ0RRRJxmdNrmpx/fkcURjhQIrTB9g6kLKHOEADUoRmyMUui2pa9bXNcmClz2ZUOYzuiFTXk80vQDm7KhU4qy7SiqmtBz6McRA1RGkh9z1DgikHhOQjSZIz2wrICzV1/hWDuOh4Iv93vW+4rk+g3/9f/8vxBFRb3+TNEeiZdTXl1f8hdf/Ypyt+fH//FPJAYyS57U7vWBreXzsbvAGSW6bRiKLZNQsJjEBO2ezLNZJjGzJORiEuG0FYRT5KCYXL/Bsh0sP0N3BUKrUwPWGtFGUe+PANhSUh8OtIcdusmpdit0d7I7ahukK9GjojhsqcucIPBpih2dahmiiHa/RQ8triPxR4USsD/kHMsjvu/SKcWqLNl0HU0WMwQenh9iLBvZ3uH7PVEmaYYDP35a8+7Tmrv7B4a+4Gn7RK5sPC9DaYEZ+tNAsduS+pKmE2SLl1y8+R1nyyXL+RSJoD/s2Nx95vn2Ew+3D/zjP/3Aw7YhjCf4yYQomRG5EmkLhrJAdDV3d880TcfL6ZQ3L15z/fIlYRwwX87Bdhh6wfLbb8heXZCkPlHs4wQe8pe2hjW0uLGPE0qCyMVyXIR08Xwbowfc6SX9MIDjIh2fstgTZFNsI3CkwPEtMOCGAUGcYDB4jo3qulMjpK4RlsCNM7QBJ3BJQkhSA7JHiBVSaoRx6TtFvj2yu3smsAWPzyX3b5/55uWMo+3xvD4SeC7WeIIKb55uKQ9bPPe08imM5t2HT3j2yPlyhmU0Q1USu5Lzs3Oyy684W6QMdU5xyJmGNrbuuFhMmKcBqW8xnS/xpUOIwQtCbAFi1MhwiqWdExPweJJBGC3Qrg+udxoKG41xXJRSWNIwNDm2Y0D16LqkLw4I16Ufe4TRDGWFMQY9KOyxZ2gbNoeKpqpA98wnCQpB3/c47mkNR6mRsTupsUfLQSEodltkmCBshziJCOL49O5zXRwpAI30JForhOfTdC2//dV3f3u2+LNy+N/6/Dk0+Xc6T9vdb/6/P/7xb5I0El1+YHn5AmE5DB3kmxWq6xgVJNGCflD0Tc/DlweO6y0Cm7KB6fSch3fvQfdk04Sz5YJFmjCNI3xbMJtEtHVB6Eh8VxJIG8+z8X2P2HW5OJsxm2ckgUsa+cS2IXIhimzi0EeqEVv/Amg1CqNaXNfDcV2kMIx9je4ajIa+HRixGA0o1YN1mpCOxjAohWpqRumiLUlZNwxVjRQWvSU4e/UGzw2p8pq2K9C+x8X1FdWguVsfefPr/8B3V5enB3zkUHcN+90zerdhfnGNjFIOdx+wmiOTLCXwHSzbIo4C8t2GsigoD3umsylG1Tw93zO6Een0Na7wsI3mebNCWyNxGBJ5PnEQEHkOWZRwc36G3VRMkxBUjyMgSLKTytOPwfZxo5SxyrEEjCNYloChO1UgjcGSFv3+if645fD8RJBN0XrEaBj6HmNLkA5Ga2wJ46ixbAvTVriuPDE2bElTlGhjIbQA22KoG8qiIExSuvZkrBBpxsN6hRHw/AsDJfAcIt+jHXuORX6qBrsxnh+TRhYXX78BL+LT+48c1nuSdMpiPiOJJ9RlS1d2vLi6obNcjvtnJlFMXTRIx6XVI56pMKrHVhWZhN16RVNXtE2HMYayaVlvthRNR208joeSqWujBkXb9yzSFEd6iK6jq2osYPX4SOpKJnGANYy0rWZ69pJytPGXF8g4I7m6wMQTnGxBOwoUhqZoSGZztACDTzP8YifqGow29GVNke9xPZeh07SjRZTE6L6kPZa0VYVwI94+7dnkBXVd0tUFtuswmUT44YKxsXlYlzzuH3n88oUir1CjxnNtuq7DPn9FHIZ4nuSYb2jTDOm6aCSvri6ZhZLPH9/x8PCFy8WcaeTx9OUL1mC4e1rTdAVKa9quOu11DwrPd0nPzvjtN68JhEFVOarMsaTAtjwc30HoESNsRuHTK4EfRyfWStudgjajEJagqwawBEIYxqGhHzssL8EaT1PeZlNgwjk311c4UmIJjYxO1HwPgakbLC/ACTyGQdFWDX4YQpzy+eMHZDpjsz8gzUg7jChj+LTNqfsBCwvb2AyjZDQ2CEHZFgxdiWNp/MBDuBHlocL1fOIkQNkj43SCcGxi0UKTc/+8Zz5NMKNiUwz4YYpWA/XxgNANbdfQjw3X377mf/3f/zciN6B4fKZuW97eHxD9wPXVJao7NQheLaZEvk/q+Xi2za/+4jt+9XqOpQ5kWYanR8LAZbKcYokRLw5xpI3uaojj0y+bgbTQusX2JbgOqq+Rzmk+ZfsexrZB2vRNedrN1wMy8PB8i+3ugB+ECANNU1MNLYNtY7kW/dDRtwrbtZFxQuRJhlEgUCd4Z1tz6EFJj9V6TVMWJIFHkM6I/ADX0pxPAgIHosDn8PyF+SwktxNsz+FY5uRthRDgOhGxFyBGxfbuE7e39whjE9gQJxFhFBF4PrMgxRo1gxmJkgTLDairkvzpnv12h+t5zC9u2Kw3HDZPFHWPZTusVmsev9zx9PyE6kpUX/H8eA/aJstecHb5itd/+Vc4cUx8dU40nxIulmQvX+MkU+L5AuuX+7KvjghGwtjHCyTGjNiOg+X5NE2NZUaacodjesrNmnq/p60KhG2RTjPiyMcWcLfe4dsG2yj8OCEIUh63Dft9gRAuV/NLqsOBOMvoR43ruVycX+C7NsOo8aOYfL2h61zarqdsavTQEXgOXz7/TN3X/Oa3v+XXL79i6ns8PD4SJhkPb39msVhwOGwwfY+uTnwsozquJyFW3+BoTey4dMai6jVRFDFLExahzTdnIZnj8eJswWR5STpfEghNkmbY42klTkgPYdl4gYeLQtUlpqoZt0e2b99y/OkWx5e0Eoa6OrXvxgFr6Om6ERFOUU1L+8s921RHPKEQwqLueqIoRGJw0xlCOpj2FEL7vsMkcsmPK9Qw4EtJdTzSVhXbpw3r3RGDReDHOLaDdCStrRkdm3z9SNXV9H2Namss1XPc5tR1geNYvLm64KvXL/ny+TPP+z1uaHP7/hbsDt93KKoaT7WgBvSoiR3JWJcYNaKFw9A0VHVL4HqczbLTWo7ncfnyDQKYxgGi7+h3z/8/e2/WHFuWnuc9a9rzzhnDAQ5O1amqrurqiRSDpDyHI2Q7wr9Af5H3urBDUsjhkGWHSFPsYDe72cWuqjMBB0DOuedhreWLLP8EUhfq7xJXiEQic613f+/z8PLFNXE+w/cdaZoTpTnp4gLX1GRpQpwkdG1LoCQGRzTJSaMI3R5oyiNORRx/YG9JAG1wKqCsS4Iwoa8K2rJACM/j7ojXAbOrF5Rtz9ifg3OEYlu1DNaixLkC56XESYVz0Pc91o5YZ9FGI02ImCTMVhk/+fqnBGbKcfcNTddze/eSy7sbfvz5zzF9QFNtUaFCL19wGCf0RYften702ac04QyGnoUeeH6+593jmj6/ZXBTPv7y11T7e7LMMQ08kzwnSUNWgWOeJ2gTsJznTKYTbq+mpKGgLxWTu0tM5HC+ZXQDXiqcFHz87j31YYN1535Ssd8zNAX73YbBOqwbGIaR6nRis17TNCUSx/6ww0mNY6TeP1P2Fh1FtKcDzvvz6yxBacVoLfdPj6yWC+rB0g3juQoZ5HT5klWiUW5k93Tkef9MnLSk0xnDIOjKmu16y9sPWz4+Hvnk9g5kdP5+Fj2h7JjmGSZIefXqc16/ek1iJIf1M+WhoD5s+f5Xv2L3vOaXv/nA+01N2TuibMpqNicJIqTUMHZ0hw2H9Y6+hxerK/I4ZbF6QT6/QA0ONw54FJc//pr09pIkj/CDRQcBUsHp6YlQDyR5TDSfoH6oNyME3kkEAkSCUxHF8YBQBqMEQ9/z+LgnyicU+wPGBDjrcd5SlwVRHCCloK1K6rojjs8bq14G3D/veVoXVA0MfYNvnxH1nofHhv26p+lGnh8feLz/SOcDXt5dM81isospIsk4VBLvHCZJWD+8oTqdiJIMpTX7Y8Xb+w8IP7KY5ORBSLHbs90dCE1AGIbINOPqekW7X2Nciy02NKcT1bHEDy1pGjNZXBP3HYnRCGlQUiGUQQU50mu01EgcIjBgQohT+mOJ8BbnHFaBDyS229OXzzTFhuPmkb4qkcoz4thuDyg/4uqSsW0RWp2V5kqThwFvHtasJgmzWcJhu+fd+488rQ80g8Wi6ZoahEKECXVdg3eEwTlI9dad64PTGSabIMIY5x1CCrQUVH2PiFN++uMf/8XlH0Cw/+jzh9Dkn2jePjx8/W/+w7//l303inbQ5LMVV5dXHLY1Vduy23zksy9/zuef/zOCNGGzfmT3vKHYHelOI69ef4GSUDw90I8NbhxIpWYWR+SzCaEWNKcjaZqQJCEqjs7hhwQTx0ThGfqUTlJmk5TFIidOz7wSYyRSanQUYQJFEAXY7gz+w3ZnuFnbYgKNG8ezLSeQZx2hEKAUtm2xTjAKzSgMY1PRNjUunRFoTZSn2CDg8u4ToiCgaSo0I/04cDzsCOdzvIgJnSIaR8ryERVx5iAgiTnTqIN8Tn5xgegORLYjm+RkSYCU54vB6ODj4zNV05Ev5rx49QXZ6ppja/Au5LQ/4RjolYMwQtQdvhsZuo5IabCQSUG9W3N5uSJwI4lRxLMLtA5wdYkxBh0EmDBEaIMIIhhqaGuwIx6FGy31w3eo7oTJcmScMzqHA5SRCBzWQe8sIM4/V6CURvxwUPDWg5P0VYEwEShzfmoA6DBkX7Xkd5/wu3cPfPf+A0Z49kWF1prVbEKgFaOUjNWeyTRmuVzycpHx8vUVixc3lIeBoigYho7bu8+5+/QzsiRl/fYdqqyJw5ym7aHa8PztW0yUEqUKbUtCAXEQUR2PuL7D40ELjkXDOHQ8Pa6p24666WlHga1KZklIdSqwqB/AiRnHw5FxsHRVSWAdszTnw/snympEZEuuPv0xyJjpzTXhbA5xjslSstkSOZmSXKzYHyqq/Ro3Ngg6glQg1EBVHGjLFrqGw+aAq7bYrqDrOqpBILzCKMANDCNs2jOQd384MThLLwxChPRjx2w+Zdd0/PKXf8X66ZG66RjGga5tUUYThglplNA2NeMIcjFjdXmBDEPiQNNuPvL2zXdsHx/46pNbMm0ojyXCCt6/fUvRFGw3W6qyROFpqoqyH0jjiJ/cXNAXB8rigBz6M2Q3TcE6JBIL+HSBH3tC5ZFuxPcDWhu8lwx1hzICE+kzr8F5osmUrhoxhBz3JdPLFcZFRHEKTY3QCqkClBzRSUaQz4iThKE+0tQ9F9crRD7h4f170sDQCk3lLEmgqKqOQ92yq1uejwVxEoOQmCDlcCqJQkMSCk77HdaeN11QMV0/EMiYabZkiCTxNCHSQL1jEgc0bc9yuSRJIqpRYbTG+ZF3H97xm2+eOTxsCMORn/75n3H7+o9whxNjW/Lm2zcYa8FLVJSRBgFXRlJs1mRJzGw55/VXn/OjL66JZUOaRkRyIFvkhNMEO55QY41wPVLCMFaMgaKoW+qupNg88u67b9ivH+nqPcfNmuP6ns3zPcdTQVUWuHEAJc8bZqMDIWnKmv1hjzCWZnT03Vkp2VUlT9sdUgYIKRlwbO7XzNIznyIwMFusiMKArjqHqnXd4Z0jUJrs9hPMYsVKtFxOQ4IwJMlnPD+tUbamTlZ0zlIUOw71iV6F3F7e0VUth92RYr1h8/yAMZDlGdeXr5jOr5kvZsxnU66vX5Aul1R9x+P79/T7LduP7/F9QxIG6Dhm/fyMjRLC1TXfvXnHLEuwwpEvJkTTmCTUXL16wc1PfsHlF18RpzFeeIJpho40SmmUDjFSI7XBi3MdaawqjHLISGGys3rRjRZpAnoM/TgiA0O933J4ekYoT5hnaKmom5beOUIlsX3DzfUFu+2WwY1keQZBTG/h6mpBcdzz7tvfMfQtyoQ4QBtNlie8vLvjYC2HqkGbkMPRIRwIbzkWB+q6QMdQnrZ8/dWXvJxd4KykOx1p24F66Klw/P7+I0Pd4kfH+8dHXlyvuEoUqjwQS0mgzwHy3SefspplZHTczVOuX1xzdTEnDxXh5OL8hNh1BFJB16PDEC8DRD/gigP94UBXdHRW4GyNiSKS5QQbxojIoPqOMMvxQiGcwyFQJsA6h8eBteTZBB/P8CYhSVICrfFBjIkTIi1JI02oPGhNlk2ZXr6AsWVwjraq6LuBvhn47rv3VFVLVbc4E+FCjUlCpJDsnz4iQwXKMfYdtu8oigrnLXkc8PWPf4rxgsNmzSIWHJ/eg6+ZzjLC8FwvapseRMjuUEDf0zUdZVnTNcO50qoMAR7jRq4mKdPFJUIZXk0jklATY8kDSTq/JJ5MGMvihy27COVHpO/RbsAPI1Lpc+AYhoRJiq1PxIGkKis22xNl57BDTaA9zamgVynH7RY1tsi6xtkBoQ2jh3+4f+L66hLtHcfdBgmMQtE4SVF39OM5HNdhSKgVoxd4qenbmmEYaYaBxg541fLH/+0v+PynP+Pb779H+UfSyYJXr1/z9Vc/5evXP2P7u2f+3b/9tyjRMUsDPl3MyUbD9vEjD+/f0fqBofrINLY0XY27uOTNaUHXD+wPjxhVcHWdIosD87Fh+eKWvKuY5TmL21vmWczF5QtCqUjyBdksQQ5HXAfIDKkShA7pu4FAerS32Kpi93hP2dUI5dFBiJzNAYHvO5qmOevtheB0KjkVJdU4kk2n1KcjzWmPMgYhHHVVMDiHtZbNbosSMNgR50CEETpOiaKEsayJw4jMeQIRUe1q/uPfvOXXf/cOV+wxKOIgwnuD8AohJLHWhEHIfrtF+ZbVLCFPc5aray4ubtmsN/ztX/41D+8eEEiGvufNm/d8++0Hvn8uOXaOi4trVssFF9MJz5sdaRIR0fLbX/+ORIcsFhdMp3MCoVhdviCJU5Q2zK6umb36lHSeYgKPbWqawwmtJcKORNoSqjNXw3sBdsDVJxg6pJQMdY1rB+qiOm8a9iUKB97R9iNKSX73q19xLGvW68P5f35osdahhGRoG4axRwYRDAN+tFQiZHMo8DKktyHH48goJxxKQzMImrZBxymnskJIyezyBdnFlHiVc9iXnOoAN/ZIIag2D1ggy2eUdUPfdTyv19xezPjq9SuasuKbb98hBsft7Sdst3tef/kZaaYptk9sH5+wbUW2uiFYvmYymXG5nMGpJJUOKc5hiQsSBCBViApiBGcDFVLjBoEdO6TyiMDTdgfK/SPt4QOn7Xv2H94xDCNBnhPGhrba8fTuDWEUEgUKIaAuD/RdzfppzfXNSyJh6duOY9Nzd5nxxRd3pEFA17Zkccj37z/SNC1KKcIoxAh/Nm5qxakZGcYR6xVOn617cZYSXGKrigAAIABJREFUxjFCG5quo2obRJTwx3/0i79Yzf/ANPnHHv2f+xf4L2WUMtjRcyxafvLVlwgs7djw8osb3L3HxhaxnFLmMdWx5sPzB57e33Na7/nR5z/FuY5xlMTzlHmwRLgB1fWYOMR6S9c15Eae6zVByIglTUIC5JnGrELCNMOPPYFWgMZMF4xNgxECHZrzgalrcb0mDOPzh247npPZvgN9hkn2ZY0ODc6N2LpFGIXwirGpaLzBDj19X+O7DqwHmTHNc+Ikpess690OhScIQ6IwJ49LYjdipOftd9/w2787cfPFDbd3r+kPI8f3b5nlCWIlsX7AS4nkHByEoaLtapq6ZTqbsbp5SThZUrUjcTajqXuqnaUqBKOVOKvwp4bvfvP3VEPPJDLkQUSWhtxvj8xDjYoVY9+i3UCcTRiKI2NdkVy9QMYZQhu6w4kgkgRZhnAj7WHNWBSkqxtUGjM0FcdjiWpPZHcz6GpElOKtxfYj3tmz4UMoDuWJKDCMvUcMA3aoiIIQ27c42xGlAuugOXQIN5BNEwYVcfnJ59h8xtXbt7xeTnmuGoS37PZbiqrBC0E6yxHjmfQdZJCuIkxooAXfe6wQJIuE03bNvTEkSqK6nrnRbP7TXyEXUzZuR7RMiJaGpi8Ym4p0tmT7WKCzmOZQcyw7ukjRVTvKw5GnbYUwKcaElLsDtm7o3IpRReTzJffrw9nWoCJojwReIOOEza4in1/hwoyLz79ELVZcfxaQLC/o6gFrNKubFcdDx2ISowJHMTQ0mzVPh2e8sBS7LUESEi6vkKpHnE60bcux7ZnEkvHwiNIhRW8R3uKlJvQjr19esztV2Omcp82eNN5TTuYYbfj+/g3RLGUeWg52pHIg25ZQC7Q8kCaPNCYgjnJMJJjMFsTJWSfpqxP3j285HJ4JtSBNUjqn0WFEfTzQ01NWLRJPGgUcTg3zLGOaRnx6OWXsSrqu4/7xkZeT7GwZ2j6hshmYlroK4NAwn+W0XcGYTunRiLpAxDlGhWgjcEPH8dgTZBNsfSILQ6p6ZMjmBIuUrj/C0JHkc7oupq8LbLwCVRKOI6prsbuBeujQn77m/rd/x8RoPmwOxBNBsz3RKcHldMYY9kw7yb7asd3tmC0kwXRGGAVsjgemizmL1UuavqIODG5sCaSiKiuG3pEEAaskZP34kctlgPIdoZaIKMOEIfGm5P27e/aHPUXdcP/+idALvnrxClV3/P6vvuFV1FFs9mRBwPJVzssXtzR1S7PfMRxqVmnEZDbhkx+9ZrWYELqGINCEWiHcQJiFCBHhu3NA6p1gdBZlbhmswHrP2HY8fPyAUpIgjbBDj4olm8cts8slSoVnRs1wojoUVHVLliTYvsVLjfPQ1iWtGBhHSeg8VvS0oycKrzg1lsknIYfTHjWErC7uUAJMYAjiC77Skv7tM2+eZti+JVpeoJRCNSeasqbJAvrZhHi6IJhdEl5McSiq6kTXdYRas5yvKPYHimNFc6xwvcS2Pb30hIsZPQ49zYgXMaQhMk3YNyc2b99QPjxwnUWcDgcSLTBKQFOxmqVMV0uEMcy//Jw4UGjpCaKQMMsYm548SQCD61q0BuctQRwweoG1I2EYM4wjWimcEBCAXmS0hccIT9+dAwcdGAanCdKIkJF27AkmM+rTnv32ic3pRBKmOOfOtoHrORPlsG3D5eULjqcD+/WOiJC2fma2WPE//Is/5bGo+av/9zfs955wNqUoNggT8cXXv+D5b3/Nx4/vWK0uQXR4JXGNw42W7f6ZwHTMLy7RYYTME96ut+yLks8+vWXQt/zr/+1f48YOfyx493Qgm6QEzQFfDITphNOuZHl1S9dYInvk1c0ti9UtykSEJsKMLUoIEiOQFtT0Fd6d9bau6xiLDkaBNBaFQsSKnvOmnclD2uNZcYqMkXHGCAz5JdpBNLR0TYFZ3kIY0A7PmCBgWq/RiylhEPF2e2J/OqGCkJcvlmgF1nbUdcW73ZaXYQz1idvPJkSTGcX9B4SUeGd5en4knI90xZIwyZnNPF1T4doKJyOG/mxL0YCQkqvra6JQEUlNuTvx8uoTgsginOd0OtETUpc1wg00g+Xh+cQkjajGHglUTYPHsC57LmPDfJoSK40KQ/JIM000wnukCvDdlnQyJ45i0umKsazIIkEcaVABbblD5ynCaOL4XE/alTV6eySOAuTQcDFLmYUZVsJxs6NsR6I0QRtBaDR27BgZMVGI7TqU8CRG4xzYvmExm7ArauTQ8fLFNVVn8ZyZZ9iB7bFHBzFCB5RNS9V3DM4jnaU5eX71n/6S94eW4mHL6+uOcHHJqy//CDqLqxXrh5Iff/KSX/3l/03z9RdMVEZ36Lj/9gP7Yk/T7nj9esVhNaeoB0oL6I5Tc8SqEZN45sYic01QHYiO37K8uWSSzkiMIpvk+AFkOkEkK1xdor2B/ILq/oF2v2W3K6nrkjwyZEnA0Db0hy3DMNA6ARKGhxGJoKlbcCNF3TE6R2AC0iRmXxUUVYU2iur5meNomWXpuQ4dpIxBQm8dZVtR1zW2acgvril2O0SWM7u4ImgatsNALJe0g6TuHE97R3E6spr2GBlwsViRZAu+fDE5Bzdjh+EHOPl8RZZOifJLdvuGx/WWtnfsnndc39xRNz1vHg/89sOBMIp5uZjxyd3N+XwnFNdXV0RhwJu//57RSUycn00uHuLplMFbpHQYaVGRIpqlKCmQXUUQCuJZQBQ6tPQIqXB9yzgeUGOHGzrkcMS2PYQJXXVCOEtgoDwVTBcTuqalbweEt4ixRdiWsdc8bQ588+33/OTLT4mUJo3lGS4epfT9QGA0oe2ZR4q6qWi6ht7OeXX3gjCZE3pP2TqS+TXRfM7rdMLYNyhhGMaW0TYobdgeDqSBRHpHWbUkSYL7gfHmggQpPAw9779/y3F/ItGGzy5vSdNPQUbEYUC1P1BXI8Pg0EIhjWK5SpmYDFkeEbbBD5qucwidEF5kIEa8EVhX42WE0BlogZMeZM9QVxyetpS7R9I0pt6sKR6eMKEi0BF6HGm7kqf39wRBSMBAc6wY6pLicGJ/LEkmObbc47uGu+WUpckZR88kVvzpf/Vzri9SnjcnhD1TDnUIp+2GQCumsyleSA7HA0ZJpLcEsxWnzjIxIb4bCA1YBKfDjvlkxjgM/9nut/8lzR82Tf6J5v75+eu/+vt/+JfXV7ciT2KOuz0Pj4+oOGF1cclnn3xJGud89933fPvNt7z//Ru6csCogJe3L6naDh8YIuXZPj/RtTVdeWI5iamLPWEA+TQ713KSmFhK4ijB6ADXDoRhjNQhAolUGqTEVx3aO7RymED+wORQSCno6u7ML5Fn0KsYWsa2Bx1g7RnyaoXmeVNilGF0I85alLB44UEFNHVNW9aMQlC3A0NnaeuSbnTUQ09ZlARRyGghzhLKvmV/3NOOJe/ffeT93z2TDiO7/VuSNOHu9gYRpIggIhtbJiGkSUBxONKPliCOuf3Rz0nnF5T1wCg15W7P7/7+t5RuJF6sOB1K7PFAUR+J8pDJNCYNFKf9nuN6zd1qzjSOiHDEYYIMU9LVzRnd2pwI8ylOxyAVHofwPa4pqD6+Q8UTMAnWOlxb0R33CClwJkSYM7uk6+35yakbGbsG/v+kv67xwwBImr6jbhu0rfG+ZRwbhn4kUAI3tOe6Trbg8vMvOO3W1OsnAPowoXPi7I6/WDE6SxpEDKcSY2KkHBF2YDZdYHRANQz0Q8EkT1CDpS1K6kNJIiLGtmVdrDlUW757vGd1uWAce96+v2eeR/RI9vWJj9s1h80TfV/Tng58XG95++GZYwcyyrDFicO+IAkModIk0xlitEyDH3RtbU2xK7CDIZutyO9ecf2Ln3P1468JZlMmty+oR0HvAnQSMl1NGAnQeUrfj+RxSFW3RJMJddWiuxN29LTVEdtsKTdrXFvj+prjsaBUAafdDmVbpDGMGIauYXQjVVHSyRCvgrO1oa4wecxyNmPoB/bb/RnWGBqm84T/7p9/SRxlCCSzxYJwesVkec1ut6ayI8IPVIc1pi3YrJ+om5rrq0t++rOfMnSWujrw+PCBYujZbQ8YAcd6IJvNmC+WuLbl05eXcDqwft6C80yMYuwapNBIB+X2ibY6YMsT9e4jTbljt91RVzVBNqGsGo67R5r9gW4YCSczJBY/VAQ6QKQTutFiUnBDQz4BHUxpa4OONPHNBXE2wVf786aVUEw+/RzGnqrsyEKJ6HrarseNLafdDicVo5mwr3oEgqbvaPr+rGUOEwZrMUYRmQATJ2TzKUZrQmOIjCbONZerCWEQs96sCWxFHkiEd3Q6ZDGdUpxKNustxbGkOB6pyorpxSUqTtG2Qbqey2VMV9bgQ8qq5rTdI/uGrm2ZTTMWn3/Fqy+/5PrlNao9kYSQrC7QgyULA8LwDHk2QXwm1JoYlU0RJmOU0NYtp2OBxzJ7cQUmIDSS/e5AnEdMr6/RSUwQaoSCoa8JAoXtSvabNU1VcyoqhqGjagfC2YxTVdHVBcfjns3zmkGMNHFG8fQeRstgBVoFGA3KRERxhJKebx83FJv1+TNlaImzHDFapIcgy7h4cUVbncCOrJ2m6Wq6pgUUSbZku9tyrCuqqqQtC4rdM0kS4pRitpgTRppJnrBaLCiPOx4+vOH5/QPzOGBsGg7bLZP5HC0VkzjENiVD3WJMQL3fE0lJ6B2RFIyNxaQrXNUix544TjFRgghjVBhhnScwCuUdyo+MQ3++RGsFbsALy+jPqlLGBms9MskYnEcrDc7hsQh9Xhl3bUG5XWOFA+nZH/as5hNs29I2FUbrM5x29Pzdr3/N0NXcfPYjbj/7EYtPPuXuT/5r/vh/+p85ti2xd/zkJz/D2YE3b94wIKlPDj+OdFVBUxxoqz1dX5HlMTd3d9x9ckdvFNr2zKKcf/e//x80RcH2ecvHxw1125OnMV9fZiyjAD2OzCc5UyWYX664mKSkgaa3kMQTRF0SakmUTFBDi8Kf/9ZKIXVw1s5nKS5O6asSO/SMRUH7/JGhK+mOW5ryhM5jmrpGJwkoxXgqMGmKwVI7g17eEEhBcSgI8iVCKva7LW1bk01yhJBgO+ay526ZMUYp8WRGeTgyTzLKseN+tyGKE/abI9v1E8fixOPDR4amRXrJdLYkixL2j48U2z3WenQikUg0irZpiYxglmX4uuLDu3vmyYy3v3/Dw8M9I5J8PiVSDjl2BDgmwdnK1bYDVgYoKVHKkIWGRHsCFRBMrkjSFUkYIPqe0cIkDri6vSPUwZlXFiaIricONQJ1ruvYEankDyGqJ04ikjhCK00yyZFG01c1Ckn1/IH7b/+Bqq45nU4I4QjCEC899WgZx3P9wTmLkwplDLvnZ8Ig4GPREqcZznmKsqQ4ns5V4R82IJXgzFVwnlPXY51DSZjOUza7hsc377m4XjGbpRTHHhkkuHLHUO6IMsP0MiF++Qnf3x94//aecexg1JStJ4kUVozMFyucm3PcRVSV55u3v8ePe26MIdzvMENPsrpBTq9Ip5csl3PifIFZ3JC/+gI5mdO2I2NVMgwD63cPlMcnfF0Rx4Y0MXRdSX3YURUHIhMSxRlN3aDxGAl+tITa4Jwlu5iTz2cEUUQYB2ghKerhzHjwjqOX7HpLLB11XSCFgzhnezxStR3HqsYLiUxz+tHS1RVRaIjjHG89gYa6PmKMZLmYcSxH/uGbJ47bmqbpaVvPZJax3+yZ5QnzWcpiluMxDFYTpwuwDsaOu7sFL15c8/3v3/DXf/1bNqea1gqW8zmv724xQUQUxKRxSF9WvHvz7lzHma+I0hCNJctSLi7n5GlA29VcvX6FEA5lNIxnRbYyAX3jEN4D7lwJbmvwPc6eaNff0z5/y+HjO+r1e2xxoFp/xDU73NDSDwOnssIojXE93o84PDow/Pp33/DwuObjeoMQiiSJCIMAN44EoUHiscPAc9GyLyvKusE6gXCe2XJFnGWEaUwUGgySyeKCOE/oux2bt9/Qyymnk0VhkeJcW6+rhu1mQ5Sm9Ai8d0g78PD+I0KdA9S7Lz5nsVqgtCXLFUpKRuu5XCx5cT3n5tUNWSQJpWT//VsS41FCIY0819hcD6FAKEFbFtTVjq4raOsd+817mqqgPZwQwtMeDri2QylJPp0TGENXVsjRsn16oms6kjjksNlRlwX7zYb9/oATkCeGrjrRdB3WWl7c3PH6z/97Zpc5xve4puXh3UcOuyMP6yN9Z9mWDbP5FBMlbMueumlpm/oMl65PaOGwbXk2ViLo+oHD9gkdRfzpn//zv7hYrf6wafKPPH/YNPknGuEcoQrJohStAo7HPb/727/hr//6b/hv/sf/lV/8+EfM8xi36tDNCf3qJeVTjXBgtKGsarq4JoljZknGZlsz9APSQ6IN6WRKMklQoyOQZ+2ddy0ymZNlc2hKtGvRUY4MInQokUbj2h4pJIyKMFK4rkNEAc6ebRb9ONKPHhOGVNWJPEvPUMHKYoeWsW/Z7Aby+YxuHHDDwDiODMPI0Pa0ZYV3AhvnDO68ruuMJ8pijoc9wnqyyQQjDNoEREnKP/zt33B8+MAsm3IVfEl6OeH9+wdWL66ZX16w35xAStI4o65K2rah7BzXOqKpT0gTcXGR8+b+HeXjI83gmC2mbJ/uOe4ekWJgt98y9A21FkzSjA8fPvJqkpBFIUZpwiQFB1qq8xdqPjuveQ4W+gIZGIxRjNWeYegx8xfofE7XDEgnUHZAhRE6mHI4HphmKyIT4IfqbL7wMOLxfYPtRpR3eAtlc0IyUFQFLhREzjEGU+Qkx23u0WFEnOdkt3e0fccikSynMY9VQwpMw55sNqOpG3rfUwUhYTqh7w6EXjJf3uG8oekaBg/LywsO24+EVnE1m1IeB6zOMUHMZKj58PTI1dUlWTrBC0kWZxilqeuKRIPSnp3r6fqG7++fKTqPkprYDrjTmkOvcdaTBYah78jKPQqNNzHWW1Ahl6+vMfGEMA1I5nNkOMERw2ip9yecj8jmGcJXONshJxlIQeYUxoOxingWMSyXPL/dkYmGwVqG9SOLNKBXIUp6/FjT7gaO1lDXB/LxbNqxytCUFaKricS517q6uORYlVSd5f2HD7z+9AvunwuWecrPfn7DQeTMPr/k6qbi49uP3L26wlzc0DWeqmtpj476+Mx+s2ZqNG3XMJlNefn6c4SJsK5DSkVZ7HFCok1IY89auzjN2R/2ZKEiDgL2m48c9yc+vX1BcdgRaI1D0qw/0h3W5wPGKDFxgt1WXN0G0D9y8o50Nmc6mzI4TXq5QiIZZcimCJB5gNEBuY3oyx0XLy8wePp9h5Y92csrunYkWM4QSJyHyeuObvue5unAMhSsH3ecDkfELMcNpzPF/mnDiy+WCGGB8WwVqSq68oT1mjSOacsK8imJTOgbzzzL8WOLkQFKCSbphGJ9Yrfdk3nBdSLpiiPzxYq+a+nake2+JV69ZH2sieMUvKc7PrFvHS/+/IbAeHrXUZQHlB+4DAfG0ZK/WCKnS9LFNVGaEmmFEubMApq/QOiCkLNy3WtDP/SgBCZKsV3P6Aa6Y4cTnmQ2Y3ZzwTBafN+e35eLFfk8PnMwpEHYFKEE86sLisOB8XRgNj1Sd1BUlvWxwoqKN9sDRAl5FiKEYnfasu9O3Pod8yTiuCtphi1RFODHHm/PIfQkgIWGMs9o65ogihFKs+867uKMyeISr0M+vZrw+9/+imbxNceywjlHms8pxpHGj+zqE66qEUMLRjMaQ3L1gtXVJbcXS2aLBX15oisLjPPkWQzesd3t6PuBwUlMPKEpCkKjSLIEmopMguosHkVHjQwd9e6ZeZoSpxkmCBBoQKKsRQ81YZjieosdHSEeKT12aMF76Ee0H5FJQOtjpBHIKIDe0bYDkQ4Zxx6TzvG9w0QNPjhQVRVNccJ5x9vQcnd1xcVizvPjw9loYEeUFPz+H75nefOWV/klry+uqYlpXcef/9kfMTw88fe/+T1v332H/eHS//73bwjo6NqKqjlhh/H8Xg884TQjQPLVcsHHruE//vv/QLE/stkVbI/l2T6nFVEYE4cJbhhx1hNGOf0woss1o8lwJsagCAV4O6JNTmgkvjrh9ezME7AVnZdIE+LWzzTbA8Ei47R+hMMJ6wY612ECjUlyGmmolSeKQoyE8MUcRoGPXpHpZ0zo8TIhns3owxnBImA6wOnpI2694XqSEo0lsYLJWJMuct71PYs8pelKXBzz/HiPPRTovqcee8IkZnZ9BYRM04zWen7zu99i+p7ZfMFoW4bG8uXXv+D03XcUmw1j7+ibgXfPD7TdwP/zl/8Xahw49hXLFyuuuktsGNIPHtl1MIyEEkbn6LqB0WQwdKRNSRRFiOU1xNdI6RiqGpPn5/OZ7RmOO2zvECJF9idkUyNFgNQG13RIKzGhRumEtq6Jwgg/doBnOO5RRpNMl4xNwSSK+PSTO7bbA31T0xw9hClucIgoRUU5YJBVQTge6eoKO44ciwKjNaPQ2LEmiww2MRS1o1YRY9einCIOQ8IkJuh7htGSxCFRkKEnF7R9D3hkMGGiJf/nv/pXfH45YTldUg0T4os5vrakBNRdzWlUmCDj9u6ap62j7Pb86vt7ll9+wtUf/4QPb9/hT56o2ROGU+4fj9xNDZvDiS/nM5ZXN+xbkItP6MeKxzfPHE4FqlgzCRXP2wPbsqI6bsmloC0qkkChlWUSBGhtKNqe7bZknuUkgaDuetASjcMJj7ce6yzZZM4oHIQnmvUe5zVhkrNqa9ZlSWMNTmraqqJpR7LJlG1R0vY93XbHhVQoHaGQnJ63uLbHzeaEU8nYdRSbA1f5gk8/u+Di5oZ5umIQmjSQrD/uSWKFlJJsuqRqBg7be3784wXLacyL6TX9ZYAde4auYBxGlDaM1rGc51yu5gghEcKgooxT17N+3CEQ52pGCEmsUcJw88UVDDV9e2Jxc4cKLPgKhcc6T1fW+Eah8xzRH+BU0ypQQ0u52bN+uCcNRuIgoKpbJqsZWjtcUyL6ioff/J58fok2OUEyodhsGbsW6TS31yv+7OvP+Ntvvufd05HH9ZZZnvHjL+6YZwnKQBRGvFApX92O7E5HmnGg7jpOnePj844kkswZiHxHRUDve7yMaSvJ2zcOMTngkgVVXdOWR+I4pSpLrBswRtIdT0wjgxjAdwO9lXzyJ5+wWs2R3nE87ulymN8scfueNJ6yuJqjXY/ynnK7ZTjucTpnEBKZnB92+KGB08i43iBQWK2Q0p43Sa2EaEpsItp9jfGS5liQJSHCCE77krGraW1Pc9iRZlPq04m2OPLheccsDYjigCSJOW6eKOqeyTwnMiHLecQiT4hWC3xzQkrD8/1H9tsD4Q8w/M9vr1BxxIeHR0wQIqWiagfiaEQMHbraIcWUqnZgEk51TdsNdHX9h02Tf6L5Q2jyTzRaKlJjCJXkw/dv2Xz7hnJzoKwe+WXzbxAPOy5ur/GypVs/Ut9/h2fK9c2n1Keex4f3pHlI43viKGY2zRgSRV0dmCcBsVKYHy75eI9XASqKEMLh1YjJIjwaryO0USh5ZmYoo1FaI4YeUZYIO6CUROPxXUWgFKMYQQq0EnTHLQiFRGGHgUiMrA8VJorQSYYdC/rmxCANURpSDj2bU8MyX3CqGtqyYtAxl9Nr7psHhqFAGY0dBwYPITOiXkAakc8kp+FA3AbEaYR0guPzhmGEaHKuHFSngfW2wKQT6q5nv3nk7f0HPrt7ycs8opK3KN2gyPmw27DfHRgTzeP2mYnyyOmE9WbLNJBMk5hACpLJBFsW4CxDsUd7z6jABQEqzmDsEX1Dv3/i6Te/Yvr6R5jVJ+fea5YQxin9YYPXEcIE6CBEG0PXtfRdS73fEmfx2S7RlhTHA0PdkWhD2dRYKpT2rHcWbS1p0sNxRwhEswvCOMdLT2QgDBTJ6gV/9Opn8MtforyHKMQPDUJJrBvOGwNhTpJkOKvx1iKkJJ5MkdIjdtA6yXG3R4sM6zze9hRNS3p5y/LuhjSQVEXBfL4E0eNHx/N+S1OdGIaRt+/WWBSD96x3R+axxpiQx23B3CiENGgd0FtHojyR8sRxDjrFxzkuSs4hEgGj1bTHCtn3hKsJy5spOtBU+5amL+lP5x53ZiSlDZnGhtNmy4urBXHwI8r1O0RdIr2iqFpsv2U2m4H1hHoglII3zyXXM0s0mVGdtozjgJKKcCi5urjhzZsnFumEMAo5HE+8e3zH6uqKpit4vVrxz/7kf2FdHLkQe+I4ox8H4sDx8O6Bojqx348MbUnbtsjpGco2fXHN/OYGKc/aU281Td1xKhom2RTbDZgsZrc7koSaKM1Q3pJPcxKlcG1HWZTEeYoujhweP+KaGnVqUfmCV8sMLSWTwDAMPfPFDOFh9/YD+WdfIkeFChXNoWE+X2HECIwsZgHNoAhUhAolgzMkKLxRlNsCo1Mmlzcc2v+PvfdYki1Lz+zWVkcfl6GvysxbVUChCoogYQbjgGbkgA/JIQc95YiYsI2DpnUDBNDVBWQJpLoiIm7ciHDtR58tOPDkKwADYD+Bm5uL8//7+9aqUe6ArjTlXDJ2HUkWszQFq+Ma1VbEeLQwdHVFHCUYM57UoTi0MaQqY3/sGKMZm/2Ol69SxqrleHC8nF2wvCgxqWb9tEdEgjiN8WHAdQ06ShhMyYvLG+TdmunFFX/8V3+OrTes15Lt5pl9UyPO5pyVCvoN5xOJGTXtuiHNJti0oPExh05ynpfMpyVZJOmFx2QpRkuissA4i5SakJQkSY4fG8ZjA0iGzhLnOak+pXacE4zVljQvGduOszdTRAyiaZEWtDSooAhSUp7HhEnKsNJMii+J7h7p3D1Puy1ibHFu4NOe02+pc4Tg+Kd/fEcRRUxnZ5gJPHy+JwxTLr+a4usamSgW50vWzUA/nPrr7X5H2ewo9ppEvKGYF8Thvb4lAAAgAElEQVTlDeH2E6212H5E/LgIijy0ux3N85ppXGC9ICsnEAJlZEhlQCjDMHra7YGhq6kOezafHiBPiYymDQ5z8oJQ1S1yUhIlKc1uT5mmRLEhm82J8wzFCdyqooIgI1AxKgTsfo+clSh/qoR2NhDFBaHeo4LAS40KHiFjwnjqoMs4x8geLyVBC5JE0jYtRmtCnJ9qhnfvSZI5GI8Olvaw5Ycf7un3O968uaKYnqLZTdvw+uaK5+cd//j3v0aVMwbzDS/f/pyz+TnzZcr9VvAf/rf/nbjIefOX/z29O93uHp4esWOL7Xqqw47BdcTLBTIqkF7wfHfPr379D/z2u+842p5eCFSWIVuIgEWqCX1Ha0+6XJcWHOoj0aiQWuEHx2yW0++3pFphrT3tj4iIHMihOtV00QwPn9C2I8jA/XffYzdbsiRHRBk+Sem9R8UpVX1Ezi+w1hNMzHG9Y3pxTaIFsXmBGFuGsUdJwegtWgpiI7l8/ZYqxNx9vudiuSQedgSluM4jLAlbUxKlKavnDUZojm2LqBve3X5gQKKEIASBT3IeA+y++S2LJGF+Niee5nx6/5713T2b2w+snh9IsoKoa2nagcNhh/eetjoSRZqut+zrlkPfUdKgnEX7QNMO9H2P8xDCEe8DQRtmyyvSfMGcAek8NgjaPpDg8dLipSE2ChNG8sww9GD3B4zTWCpCv2doYuKFxHY9cr44cW+UInhPu1qjo4TRNSijSeKCq4uUdv9MvatoJxnomObpE7LIiSczxnRCkZ8zPH+mtP7HyoLiqM3p9SOQSUFb9Wjn0QJwjl3bk2SaopwyuhEpPKOD4E5a0/1mjfjDV7i2ZVFo+rbjv73/hos//EvyzHD39Xv+uzeX/MfvW+4fVvzk9Wu6VtP1DYe6x6QdXxSeb3/1dxz7I3G7JVKKYz9wDIZjcUl+MSFavuD3Tz3lFz/hm3e3ZOORrtpSHWoKAncfPiKD47A78tX1BdPzJa9mc4wKEBy2HvDegw989eYGaT1BedTFBebHxHI01BzbgW5zAKWIkpxSaUyScmg6XBAU6mSxqtsGmceYLEf0W3yzI40TlDmBc+umRucCZEQURTjn6LsGOZtjTIztHN9//ZGf/fENP/uz17z9+Z/wuAu4fuAf//o91zdTCIJInxIUb1+/4GpWIOl5vL/l/e9/R101xHHGbjsSBJzNJsynOZNyTjK7JIiUx+c1n+9vkc2BPEkppjlIj9SC5fKSSE0ZQoJVHSjP4fGWcegwUcxQHTAy4KXn0I7Mz0rcoWLoOy6upohuoCAiTSaYNCK9eEHwHm9b2qoCb+k6T4pH2QOMEUmUMSsCg3MkWvHmconvK24fNnTWsT4e+buvv+enb264OZuilUQbeYK0JhF91SKF52m1Ip/O2a0PVHXDxcUZOoopZlMOe4sKhjgqacfA0I10uzWxEti2RUtB7yzeew6HLbhA4QJfvH7Dy8sbXiyv6Q8nvg3BcFi1vPqyxJotdiIZxYBhJITA4e4dRRQgWHScc/j8meA8UT6hswGzvMA/79GmxxqYLV+SlEuCPX2PVaxJlERmMX1dUTtLwJNN52wePqBNSl9V1Ictx7plXiZ4O2KV4fbuHuc86WRCPLvg+osvuXlxifA9oVeE9rSI+eVf/SUymzB59xFjFHq24K//9vcEH7i5WODMBExC7wLSWtq2ZgyBMr6md4HVZkukY4a+A+/+NUfcfzPn35cm/0JnsI6uOvLcDWyeVuz3R7KsZLK44M2XL9hWz6y/3XL36T2r24/02z1/9j/8z/ih5927f2YMjvXxQHZ+hg0jzjuWkwzZj8R5hDYG5yRplmHFiUkS5T8yTUQAF4iyGJUoghsZ+w4VaUbrSFWO0Y7m00eifArJBCElrj+RuV3b4YVARhFiHPDdEQJ0ux0yX5IYS3M8knpHP/SMOgclabuTamvsJNbFZOWEwQeabcegt5yfT3l87un7hqAEySSmaXdcXJ1TNZ66bzk2HVbt+INf/gmRhMPqMz4u6SU0yUA/OKp6YDGNyIsS13bc/vM3/NPf/L8sJyXzy9fI5ALRCdaPOybFhO1xxfm0ZBYZPq8O2L4jnxTMpwvsMEKA4uySCA9SIZOE1npiaekPW5R3DM2Wvq7I3/4COZmhigUiyXHDeBp2hMRMFnTVAR0lJ22e78nLDC8Cm+0zRgu6fmQcW7QW7HZPDL5hvdueItXDSKYyynJCmUcMUuLkkVQqAqBjxeLyglcy47uPT2x3e5xQ3N3esry5pogKhr7DmQhpR0ZZM1lOQTniRU5xfs724ZG2AeE1x+A5n+SYNKbebqmU5/zVNfPrM9rb79DZjFrFyOdP9CHjaX0kNoH7Vc396sDoAkoZ0iRBGs3H7YC0Fp3END6m2xy4mJ3MHcN44hCoIj7BucYRpQzV0ZGVnmSWk0QzlPyx6nTYQltRnp8h0py22yPzktSk2H3FfFqw/ryjWJyRygHZ7ujaAissrmlwfUexuOCwfUKNI6UWfHre4FfHUwfbg7WWbhh5unsg0oa6rkBJyumEw/5IMVmgVcTdh3t+8odbLmXOLA0cwz2fPt1TNQ3rpxpBQJuIw/MB5z2eKVYoZrMSbVK2zwf6jcA+OJIQczmNOa5qYmEYh3Dqr0vxYxT0eALhHU/2qXpwyKbDjyOf1nuWScSxHvjqpgAfmKaSZr+B2TX7bUOoN0yvX5IKTehrumokMhmxAqzFB0+zWlHMzkCdPps6FahII+Ic2Q7IVIJQhKqhuJyy3aW4PMMmR6K5ZPi4JtQdQ+M4jhaH5/N6R1JMCc7hvTrFfyX40FJ3R7yWpHlCKypUKTBh4NhW+HtJkkBUpjS7LfmLc+hWHHdrsrPL0zDddWRFztk04fZX/5Wm6WialsNmjxoFL//wS2YyhqGnXx/p9y2T6yt8ELT1yOpxR5qdM0lyyqQklgFrCor5GTqSyCRFmgKBPoFbqxasApEgtaWYRYx+RBEYux5rK6IkQiUZOi8RxuDHDoQEG2FGgRdgUoVTI50ylK+WVJ/3JFnGi5trTFry4emRXd0wWkf1I+DP9y1xFLM5VAydILeaNIN9VZO3HcYNuNqznOQ8lBNC15KmCdV2y/e370npuXp7RTico2dTismc7n5/uplOcqSJSTwYKcmThDLOkRPN7eqJ8xcLCq1OtawQuL//zFgdKVOJVprtekMWplwsFlTPj7imBrdEJxN0PoX8jMyq081bWQJgmxYlPXiHDxKfZmTzJeHxA8LXqHSCNBGEQJImuKqifd5iyhyJxiGIlSZYcEISZQapJnRtxYjF9/YE2FQxQngkjkgnuLYly1IiKTFC0feW1XpNnCjOZxNMWqCkYDLJ+enbV3z/aUO1f+LDh3f87f/zf/P2l3/KfHlJ3ztGeiJStg/36ChlaFtkpBnakcNhQ9cccX4k0yWm8Rw3O27f33P/ecX86gVSrtntjriqwduROMsQduRwODI5W5Av5nyudkRGIUXAaE1Z5ETB0tYNKklRcqB2e8bdE5v9llg50DHoBN8P2KGlbSpG60m0xisFwWKSOSFVxMtzIhShC0S1Iy7PEDJlaAIiAoUgnSwYx558dkZ1aEiSCDd2GDouz+YIHeiHAdtIZKTxQvGyyPlwu8JfnCGlg6pj21SIsSPPJ/T7HQLBGAJDe6TdrtFuIJ9cMLR7vNUYBb/5/dccnj7RNxVZbDgcO9phYAyBY9MQvMOoGK8M2y4wMwNWhtMg5hUhaIRwOG+xARSKcnrJNJughoHaDwQvkVGMOh6ZZCBUSlpOMMFB3+B9ixIjXlikb3FVixTDqYqlTrDi9vETypxYCHYMKBkwOuBCgvfuZMKRBmNy0mRku93SJhPySYnrK3bbFSorORxH8vNrrI5IBsfQNESuJ40VszzhaEeyYobtK4IQhCzHjhahJFoqrPcoLcmnBS7SNFWNdjlt1/HFxZKFcHz84Z7rL7/kp3/winff/Y7Owa+//YH3tx/wIbA/HFAmxwVHMpkSvfoFebxANt8TtkcyPLObMw6bDWOas05m3Jy95sN6jbOeb//Lf2T/4ROJqFG6wPiRd9XATAVk3/FmmnGRTplF54zbPQe75uWbM/QixfnAPFFoneD6gWrsWY+euYqYnc8Y/EAmDbOupe96lDKYJCMuHLI6Utc1vYPJIoWupRt7qv0BPw40hyMym2HtyOgDNC35ZMnYNuSRoh8Cee7RcSCZlojE8OH2kcOv9hQvEi6v3nN8FlibcDa/IM0EkYZUWtIfeRP//PWv+f6bdzw+bal3e4Z25PLlK4qz1+RpynJakk/OWN68Zncc2K6fWT090R33zCNNkqbkUUFWpEzmF2TpDBcMcW4wZkawNVIL+mOPimJQsN+vENqwWW05PD2wKFJ2xwope2KZ8vLnP6M5VKSTCcFr9vs9eZmRL64Yuoabn13hRIS0R5SOGIYO5zVaaKQL4ByL2QyjInaHI7M08M3nFd+8u8NZS5HGXF1c8vpC8bObBZPdgYf9nqhcYrTi7vmZNYG7xxWXX/2UZbpkGQuW5YQ4q6h3R1xkaeqa0bW4oJhfvTj9V1jHxfKCardFNR3nswmXL6/ZPD4xVI6z+RKvUtzg6VuJTCdU1YHzUiON4Pj0mWb1TFwWxCqiq4+s7z6hjULsdgSlMRaMDdiuoh8b2tWOZPoCqWNkVpAmOUo4nPPUhwM6jUnKKeMYcCIimWTsdlvM5Izp3OCHnv3q8+nCqCgxcUSiPBeXE+aTk8AhdD2BiNAeGWxDURT8/JdvMb7n6XnP/f0jfhjBeurGsWkfyCcTZJRgpTyl4JMI31cc6jX71QOLy2va0RGC/1eccP/tnH9fmvwLHSUl3nt27akLfXN2ydA1zC5vmM4X7NdrHj7fcvf9O6IoIY1yjDdsN3uUUeTplOqwp84MsR2JhKTZ7VmkEhECznU4EXCywCQxSIkSGqk0ymg0ASUVfVchIsWII48yjOiwzZbIZDAO4AfccEQmKU4KhBsxaUxVHRlGRyoE9faZZnfElAtkNmVoRtQ4sN1bVJJhVUJ93PNw9xFPwKLY7LYsLgocGrxj3x+xbmQ5X7Ld/dijxNF2nykmgS/e/pTNsaFvLcVkhjGadvdMPLSEbMp+uyGZGtJsTj6zWDTJZEJmJNNiyvZpy9PzlunykkjCdjjS2ANnsiTqLJmK2ew7DseW3Ajycko0mTHYnjEITN/TCkEiBE11IMgEm+ewPyCGnihOyK5+gi4LVJYR0oTqWBHLQH8cwFn80KPTFFsPHFcP6DTC2h7bO4p4QnVYsfr0A9kkZb3e01Y16+2KxkkIiuZw4O3rKUPfMiiLiDLoOmRc04wDmZyi3EAiGvp6xyTRfPvulkPX456eyV/HhPGkLs2KmCSL0dJhtGcaCcokQywv+fZ3P9DXRxYvb/B5Qofj2VomF0uyRDFUa0ZX8+n+kWp0zJTn0GwZ3EDVOm4f1hR5QVFOaLqOoW15PPRst0fO0ojRWtrDhsIoVvuau1WNGjwXsxmpbWmbiGmeM/qYyxdTIuHQrqNdP4MPqCRD6Yj55dlJu7fbYbSn223xSYdzNW67QveB7kNFGrco5YmjmK4H4pJWaLywDHFy0mbmJcM48M39E2qz5+ZqiXcQrGWz3WPKOdFsClLgxoAIAo9j7EceHlfY/+P/5PriDzhfZHzz7vd8//GWX/7sJS9f/BEPD48MdcdoIUtjhqFnfrYgjRKiEJAmYXFd8t03P5AnJZ/6IwctyIxi3zSYxHA8VNjlhMFaDqsNwgUioZjkOanw3H16QinFYfD87GpJalt062lsRHp+Q3nxFSJJiS6ukCbGNQ3j7pkQpeikZfQNIYx0TYvKCoJOGLxB4+g6SxIJIgGv3lwh6Ak9ZPIcL8Cev2R3P2Cynm73TBrFNDIhNp7UD6w7iwgOZzsk/mRJMAY8tF3L0O5RRYSQOY3o0LGn2Xhs1zOMz0g5kl/NSOc5OtZM4yn2/jOf3t8xdQasJYwnDeuqH5FKcTwcsV4ynS558eYlkQmM24qq8kyuforUA92+Qg6SbS1Iy4QkSdBJRKwMQzohyqbIqEDn59jBI5xDDCNaJTjh8EiESkB69DgwVBWus+g4RZUTlInom5Y4jRhbgQwBnWhcNZBPZ6BGRJaTRAHfWeRsipKnm8NRCEatMfsDu+2WVd1QtwNGC4a+xQfFulkz7KEeNNMiptrekyqDTgyJd5Qq4JOIRAqEsOjlnI825a9vR/7Xtz2v05F6/cx+16FSg1aaKIpJhOLl61dcLOf4o2d9/3gyHKURWVogpWb3+Ak7emazEhlGVs8HDvtToqwfS86vb5C2Z3QjeTlldnaGDJKknGIyg0wjjBMYGWGSBOd6gvDEusM+fIOy/qR60xEyCLz3KGkhhvw8xwaBUIZmu8WYmCiRDE4hdIkqcywRPrRIU6ONRScKPw642hEXU1wQMASMkXiVkJczPjx9on3/ifHlQPnqJcPxSHVsUEpRTDPatuXl67dsf/0P/O3/9Z+4uLjky5/8lBfXV4xCcvv9t6TFHNdH+ABNCDRjR9/XBO+wbUd1qPgcB9a+5/Wf/gWys/x+93eMfcs4jry6uSERgTJLEUh0mtN5j+w7yukF8/kZvVPsP3/ElQuqw4HntsX3HcZ2mHpLOp3SDpbF+SV9c/o+REZhdIYOPUpHRFcviWQgSUtCXhBHGqkizMUE340YqchdzNA3bDYrBnugbnKCl6g8I6y2uB8HROcGykiz6mv+6PU1t1vJJIJIeiaJ4ULD3/yn/8ybL9/QDCNOa1a3nzFCoaXCjQMySam3T2Q6IkSGrjpSRTFWWMbQUNcHnFYgTtVmoxXrfU0znPgAkzxlOS8piow4WNwwsh1ahsGhJ3PsONIdB6SAOIqYzC54tTwjiWOkFOAFSZow2kCmRyIlSPIEgsVrQbffIfVIdFZiD4ZRaawSRCbGC4XRAj82DOuGaDoheIFQEOUZ3QiDMMRJTPPpAZ0koDWWiGAbsmjExjNc3WCbnr4fAcOH2wMmzRjiCV3VY4eW0HVIqSjSExx51wEhUPcjaaRRIpAKR89IFMWUGbSM+ERj+4H9+3tEIVk/PnJoHV+8WZLHcHz4zObjO57HFqENsYrZVD1JfEp/SGW4ujrju/cf2LQbYj9ynpYc9westayfN6Q6QV1e8s1vvibSCb4/8EcvXqLCgqIoiOWIcjHu0BGHjlQ50mSB3Q8U8ZxkbohMiuw86dmUUXmUVgghKLME0TkYBpL0CpPoU1VvesXY17ixw9mRvndEMmWUW2zbYXvo8ahIkbqRrnEErRjbirSY0Gw3KG8J7pRrbasjJskZ/UBeZJTNjGgyJb90rFdb7nzO/ONH/vE/vyObXPNqMmcymVAWEi3hw/sf+Hx3z6yYsj30PHze8e72ES0ky+sv6EbLaD34nstXMw69Z1cPjM4xDB1CwNl8xkSdGGiZnhLFMcIYBuuIdXLi4CQKKx3l8kua0RPqB8auZ74s6dKCPIkxdmSxOCOelRwfHtmut+RlTt20GJPQVh1RXGDHiNHWFLMU5xSjnZKXFwhZMK43xGVC8/wZbzVtbZnmBbMyZ/185HFz5P6w5/6z5HIx5+LygrNFwZ/9/Ev+6Xff0wyei5sLVg/vaJsGk6QcN1vq/nfQOeRiQRgN08VX1O33tN0BOwzsD0fKIsfZESMj2uOeOM44bvZcoZnInNB4mv0OP0jEbEZaZKdnmOeKQ7fn5esZfdtQ+Jjt3RNRkpCdX7CpWzbv3/H8eU2sJNYLhJLE+h0CQZ5GmCQizUvaynH15U8xBlzb0Lc12kSkk5xjdaSqW0wUE0WGcbDk8zMsgu12h5CBeHaGnizIJxPSCKLQ0+z2HGXAeUuezU6mzbFHZAXj4NHCspxl3H14wHnN6/mMdtfytD1yGAek1qcaa15gx56xq7Fjz8e7R5q6QhtN+sVblI7+lafcfxvn35cm/0JHAkPdsdnXFHFCEkcnA4Ix7HZHjrsjq4fPRCYFGzi7ecHifIo3GhVHNIcjj3efOEsM0gSC7wlDg0gLlNJ47xFa4dRJqxWZDK0TbN2jpjk+lgTXn4ZQkyBNDq6j3T2TJTn2uEcSUFFAmIDQkKaGerNBp4ahPqB1wDUdSijSYoaeLuiRNDImE4IxeAYheXy4p9nvsT6Q5An7zQHf7WjbiKzI6G1PGwS7/QMqQJ4W2GChH4lGx261R46B89dfMP1qSpxmaBP44Tc/MMtT8rFhcn5F1awpzq/46vwLqr7lcXsku5gyW17wykuQDhVl1L2lqhuEkngcdd2y2leMnSU3hmWRkOc5Jk5BaZyOqY8b8jTGIfCZJl5cQpaivEWOPUk+AeexvcXRMPQ9SXyC6Q7dgPnxffZDjfCW5rBnmp+xeviISgsOTwfu3n/Hav+ZJjjsOHCseuwoMCrCS8mbq0t0rLFK0ylNIiT7XUWSlAyRJ/Md0jtSbfjqq9f807uP2ABZOUe7kd3TZ7KbG6IsQ0lDlM2wTpEkGcP6yMiW2c3PePXTgY9f/zd0FOMVDPWR4AaEiui7ms3mwN3HD3z/w0cuZhPU9Ws+fX5GaUNnA3GSMpvPeF6v2R9rjIT1vkJiCWhaO2L3e/ZCUrUdWigWJkIxQLVBxRHfd55pPOPz/Yo//pM/JosVwjpMJJEyRqpAs9tglCMyhvZwAuhVXYd2FRqBD54gOzAFBIUyCqRGKEkUDLWvkCrFO0+clYz7PWls2FQNv/+hZTGbEqSgaxqemoG06ZiZgkWxwLuIw/6IHy1CCqrqgdthhx0vqeual5eXJ3ZLqhFKYfIJuqiIjWSzP3AdS+ZnS1QkmE8XuM4znmn2qwgrTyDMQ9uCjBnciLSepu3wcskYBLF3pLEmy3Lqz5+gH8nSmC+/eslZEhEnKSbOKRZXxNNLpIpxVtKnM6LpGam3jLsnAgp76BnY41DEyymkM/Z9j0WQ9R15HGG0JjIR3luCHQlxjkMiuo5ExpTZDJk7BlWTG8tRjhgtkUMHvuZps+fi0uDGntgkBB3hbI8Knq6pSUyJCyOmmJH5I/vVjrYamGlJkqfUt8+8Xv4FrreYxKOKkvHhid98/Tv+NCvIFkuKs5K7o2W3OSACXJ5fMp9N0FHL8QjtMJBdnRPlitCMCAYeD0f2Fi7KAisDOgqoWJOfn2PiJSafgYwRsUUET0AhTXQyMhiN6ywyBLq2I45LBAaX2h8f9j1xnJ1iy7mi6jq2z0+Uy3NMpjE6RbgW3wkGN6DP5jg94ltP6jVn+sh8PuWxSMk2W75/3FC3LYMdEUbjpGK9e2RSvmBI4fnhkTzPKYoUbwOTPCPWisfNjsddxf/0F7+AvubFF0vO33yBN4rk+i3jh18hI0Wa5EzzHKNjYiHYPD/S2h2fx4rzl9ecL6cYpTiuDjw83nF2fUE8DpSxQtgBLeFwOFJkE4okYjqfExcz0skMrSQqWIQ26HyC0hoVwEQJSkfIdE6SRydd8JgyrPeYyQTfepTJ8L1DpQ4XBojj06CDo5gVdKNFqJjIgRUOh0BmU5QxoAVGw+gHGMFHBm1SUqOpNnu6fsRkirgsEdMZ+8Oa9w/PmMl35OnslCwMKZqOSa4or19xXbVs/vG3jIMjjhJeffWW37/7nkN1pLWOTN8glMb1A3E+P6WT6iPVqmJsIvL5FX/29i1jkPyXf/gVP9y9p+sHjIl4cXmJP27p+x45nVAUBf04MkkSlPdstgc+3T3RNRWzyZpqd2B/rEhE4OUspT3sCMIgdIJyjizLUN4TJZpgLUFFJJNzhItQwSHRaCFIsik6Vggd4bQ6gQZ7i68OGNXwePeAmkzY1SOJzjlWLcddy7d3T4yhJZs07PY7IvWCr85mKN8DYMLIL372lq/fveP3v/2aizdfEMUFbTvQ2BEhFVk+42n1TBhH4nLCYn5BVMw5u7rgMFT88O1H/DgQCIzWMowjwkMz9IzO8eLyjOuLOcvLJb2KOOz21ENHKixtNxDaJ6wXaCEAhYpLrpOYGE9oDhyb9gS3dp6mOlJ1W8bzBbu2oVCe9rhlFnuOcYEob4izGb4dyPOctMxPNpI0xZkEZEAWM/z/b7eJcrq+PlU+e0OSp4xDT+sDzWjQ8wUudGy3n7DOUveWwQ4cqob9EDi4iGawGCeRKFCGAUFjG4QUTMuCoW3RIiB/1FJLIM9SsklOU7d4OTCOUOQFjoFv/+kbXtxc4xZXjMEiCWTJhPtPK2Yvb0gKiwiS4+H0P3rseiIdUz/ecvfxkWHwxFHCzeyCbr3DdwNnRcqXhUCu7rmMND/92RWZfsPF8pzZxQv02FB9uuP505ry5pLCD0TCM1hJl0ecf/kWr2tEaHD1QHq+JDKa4bghLkpsV3F2dQ4YRmtRxQJHhLAjPpQM1Z5hGBjlSDtU2LjEjuI0dOuE9w/3zJIAJibEmmazRcYZSZ4ThKA+rtFxTJIlFDONKic8rypsZ5lM5pSLAvUXv6CYnXNxE3H+omboLEIOrNYbCDFD0/G3f/9bFkWKTmP+5tdf87Ta4azlzfmM0QbOi5IXV+d4IfE6oXXhBLCfzrBtQ71bY7AkiWS6KEGEk1VROUY/chxGGjXw7v33BASInKufvMVuKqaTC3rhOH91g5SKy8WPSWk3onqwfcv9/pH14zPKeQ6HnqtXbzhbnJMlOXGkTnV9a0E0WL8nm8aM3pFNC1zfkTcJ3WGH0YI0UdzMC9JU042WY1VRty3nxTXF0HN5MSVOUygjtvvTEnwYxxPb5nBA2sB2OuXyxRf8yS/+lMtXS+5/d0/TDghtQCja/ZYeQZ5EOOsJzUA2K0l1in8+MLY9JtGEQiHyKabf8fRwy7Hfk8gDs7dvQIJREcchUP9wy8OnR7abLUYEhDiltGWwaCkJynDsNHmckvUSScvmac35y2sWNzdIE2NVir48R/TfUGYx/bEDoQlYRq2Jyin9x/dUxyPLix+dZ7IAACAASURBVBucNtTDlmZ/ZDKbkWaGZugI20fE0BCJGKUco1Akl9dQe7JZyU9+9pJ5a3j37T2fuxHTDcwmOSoyoCTdcYvB0oeIZvA45+ls4OF5zezykn4Y/tXm239L59+XJv9CZ+xbbFtTaEE6LVH6pFpcPdwxDhYpTk74s+WMrJxyc3EGIvC43qAiyXr1CHZAWk9vO4b2yDTXxNMZIksJsUAUU2orOM8nyBAzHCuyOMKPFhcboiRD2Y7gBXEcI0OgHnucEEgraI4r1DRGuh7tDbbeo5Sgq2rkUCPqHtc5ovKMOJ3QOPBjjR8b5MWScOy4v33P59tblIzoMWTB0fU1ietZb3eczacYkVBriTOaoR/oqiOT2Zy22TMpJuyeHtjtKrKi4ydf/TEv317ww3dfM0sz8ryk33xGn81YvP05b754C0g+3L7n4fGWpfG0XU8yyXGjRWrF4VhDFDMqz+enOw51Q2c9eRxRqJgkTfFovImQHnqvGL1BhJRseomcLhkQ3L3/gWIy43I54bDdEMtAXhYIGVCuo68EYxqTTUpCdSQIj+0Hnu8+ofKIx0+3vP/8yN3zEdf3fL6/pR0HnBD0nUObmEKnlGnCbFJSFhHWdZgowxNwWlEuMvrOot1AyAJDL1Bmymxi+dM//RN23nD3eUXTdsQ/UvXLJDDUO/ZIXr5+ReYlP3xzh4meue4FkyLj5uULejtQ7xvuf3jP+nnNxWxBQLCt9tzef8LIiKGLefj0xGa95vz6BQTL+WKGtZbtoaacTnleram6gVzDwVr8GNDuVEVKtSAVjsdhoBkDaRJjh5HZZMGhH9g83eO+HrlYnlGYiJuLC2Y4huMp2SKyiHGEfFIQIYiMxI6nKKlGsGsaqrtnpIrwMqfB4XKPR7B5vqNqBsZDy6Ft2RyP2FHQWE87OPphR5xodHC4dmTwimNqERK0BH2YQIB9teHs1YIsD6S5Zdqm+AAIg5ZwfnXF88OGiYlJoohKDYhsydB2hDhivjS8++6JkMNi8Zb69hPr9RPN2DB2PXIYKI2myDJ2h4rnXc0iVixnM4LWWBeYzudMb66ZzabY3pHPXzO5ekEUZafBNDIMTmPinEgrNBBfvCBYi2s7RJpSVz14idtXJ/tEBJoRLQxSRoSQQXtAxCmuOxKcJASJFglFeYbd9cwvb7AOCm/ZEohCT9Y51OAZuxbnHF5Yirxgu1qhjaHpR4bNI5PrG+JeklhD2vcc2yO3dUOeZVx/8QXZ8oLmsEMaRbk8RyQF23f3fPr8zNuLF8zKOdP3tyzzglgqVo8bet/Dj5ra+dkCP44UieZ+27HrRz6uarRPmGpFpA1CKIRSFIsSU5yhdIIVAo+m2e4QncONIyE+2QmkUriqJ9LJiWmQZYTEIf2A8AaFR0rF2NU0x4rJ2QvSSY6rO5K8xG4HxiFBFSXNKOjdiE5j8klKlEf0XtATs5hOKNKM96stD6s19XCCeCqtsVXNx9//wCxJUdqgtCDJC+ZuZIdjvdvS+IC2DX/1v/wVky9/ynQ5pdk803z8LbEUgCCOE/I0R0uJayOyOOc4brg8n1LkMXQN26dPBBvwtqEsc/IsIXYdhREkRuO8JE4yEBYRJYisJJ7OUAqKMgOnieIMHyw6SwkemlEzX14jNPhjhdAQXU3xTY8XHoTAG4UIAnu0CGNQJmbsGtLZDOmhs4oo0diuox4qggXhPCbLibOYqjqgrCcPlnEAncVkQRAOWzweEwSpKfnn9R3mPOfz445YNcxnZ6SLksLVZEnCfr3lD375F6TFFNscSaczmlnJ8ZvfE5wlj2O8tfggMSqmvHpL11an6oQTRMJwubygmGX817//G373m99QW09alGilsGPP7nDAJ5rJ8oy+aXCDxZclm6cV9583rKoe5wLVsWFR5CghOS8M18sptiyJpkum+YQwtKda+xAwWUwwGodDqQSNxOQJ3oJWBYICITQ+CEbfMQhPs/9Ms18xWMlh02EbuH14jxKOthpYTC/BCi6WN9S0jMGxGxyT5RmJGCgTTd1bMj/wk8sZt/f3vP/2W17cXDLJM55XW8CD6sGNRPpUHTYKNI77uw+4WIJzKBFom5YojjGxZrXa0FvLdJqSFIrpi5Rf/o9/zsdPHat/+BV4R9fVIDS1E5RFRlcdkASkUGRKMzQNKorxUlEPI7Kp+Hh3T+8s/YcHXk0jwtgwiyQiCIr5BbOLkqHfcXZ2ye65pb+EdDZn9BJVFvQOIqlhGCDJ6UXMsfpMkhmiKGGwHhOntPUeZ1oqodmttqxWGxwpSSxP6aAkYthted5tqAeHs5Y0TUiiCDH0xIJTtURqjDFEQiCUwjuHyArKck59WCGkRxqBHS37w5Yv3hTsPm+YX15z/XLO7mnNh3/+jqfHDRdn19imQuBpu466q6jbIxcvX6JjQZynNLs1IThm2SVRpIh0jEw9i7HhjI4pKTc3Z1wuFiyurkjzKf12T/P8EXs4cPH6musvf4oaG8Tg2N3fcf2LX6AWM9xY47ojMpogVITtGqLyZLUSyxuU0VgfaPuAS2doqQlDh/USr6Ycdit+e/uBbz++Y333PZGE1krKckFvPR9WFUmsGKoKhGToGqyzDMOAcRFCR3hb88vLmk/blnj+CzAxsoG3v/hzfvLzS168vuJqktPtDdv9DtNAOzakacnmccVivuTL16/44cMDFxdXJCYh1YoiS/m0PhLPK+bn11R1g+sdh+ePp0C3OcMFx9AeiRYxgtNvgY4ihqHhYXXkh7tbqmON1AlSCGKjmMynhK7lejZl6BpEoslmJbiRcTsAGoJEOU1we1YP97z75gfquqWYlCSFZFJCEIK7H574+N0WrRP6uscykBQ55xdnZGqCGwICA52j7g6gDVfnE17kV2z3O47Hlq7piNIJV68MaRrx7rv3fPf5ifmsJC2mrA8VANoJEl3y+uItx77BRg1RkNR1jXMjQ9sinCM2iqEbiJU6pdzRlOmcxfQFu4d7lDYUl0u2eLIk0FUd22oFtufxuebm9TXBp9i2xwnJ4Vhzv6uIReCLmxlJEpMWMUZLBJCUMzobY+uOKMkQIZwW1Q8PrHY7ZtdXoHcQZShrSYzBJDFBCIgMXV3z9P+x9ybLkmTnud3ajffu4dGeNvusKoAEQVxeI2kySaaR3lgyaSK7JokDiiJIEEAB1WVl5cnM00Uf3rd7a3CgV8AdXPyPEOYe5vvf37dWljOJIwJf48Ueomypq47N7khvW5KJT5mVPH/9hmpzYDFd4Gno+w3uNMYC0XRKN4yocuT7b2se+5IwiYimU2pjKU7bJ65f25DIKZ+PJbusIp7MmV9ck5UN2P8aJ9v/9uYvS5M/15gnUJ52fYwXIKzFGsvj50+E0wWucpgtlriOz2w6x3VCTNNyuL/HiV3KbE8cxFhrsXYkngQ4nqKxPbYFxzhU9Y55OGMsB3AN/kShHU0/ttTlETGdoV2FbUearkKLHu36PP50w9lqzjD2DMOf7ASqw3YjpywjnMZI09EdTnhhjPRCGtdnyPdP1Z0u591/fKTLa/abAj8S5HXB82cvEMUe+oa2Pj4dxLoBxwrsoWI6P2O3vkVgqeuGMI1QekBwyem4RYQVg19ixx0/fzElqBLWmaUoKo67Nc+//DlhMOF0OPLwec33794RmivOZwlt01J2HWNVUW1K6t4lQHBzt0VbzSSM8YRFCUHdG5YIBguzOMCVI8s3b5E6Ae1QFznC9Ow//sSHriG/WHA2nbKYTWjagaEyCO2gfJ+mbiiaBldJhqpk//EjYujIPn/i0/aem23Nrhzo6pKu7dAIpNTMFwvOJhGJdPE9jXQFVX3Al2C1obcBnvBAgxMrrOkwdsAJAtqmQgwtgZZcPHtFq3yK3T2eMjim43Hd4WiPKFW4vqQqdmwfH2jFiH52gXZTls+uqY8bfvzuG24/fcJTEzxnRjIJCKZTtHawaDw0jsg4O1tgEASBS1/mVHWL73m0/UhZN0/PqRG03UA9WJQK0MJSDD2jsIRCs6kqJnbEMQqRhMzmMzwx4XFf0DUbUt+hyY78bCiwoyG9uiSezzF99/TBz4DsK8xoUU7MMPQI42FUQ1Oe0KJGi47bm89UwxPHp2068kHheS6uGcl7g+uFVH1O3rb01mLGJwaRHDu6TpLlJ9JZwmAN1gxPbKK7hm6WkkznJNNz+q4jTQMm8QQxiQnu95Qo6rrFTyMcH7ouw/aaxg5E53Mm3Qt++/vf8bB/JNvvQQiatmKqHebTCdoLqfuWuh+Znc2f4uRFQTqb4ycRfjJDjC24PtGrL5DeBO06KEeh/AmhG4B0UUIg2h6LBX+CHCxjXqIZsaOHtIB1kEYjxgYda5Auo+PSZTVeqEAOmHqky9untEo3omcJrpK4fYcvNX7XEdoap9LooadtBwQSKxRKOzCM+NGEMDHYcWDoapYMaKkpi4q+6xBKkoYur776kjhwkUVD3weoNCJWkjD0afsBY0bU2JEfD2wOB+5uPzPWLWevf0WqU9JgAkND1Qny05G2abnfVtw+HHh5foU5HPHMa7Tn4QQ+TjTB+ppRSOrWkB9PFOs1fVsjeOIroUdePX+FxaIdh0EarBYYBrwxYKgHlJYMQ/+nJVpAlK4Yxh4ncqlPOWb0aXGQ0mcwR+I0Be0xuC5DVhJpF6sCGFL8MGK+XPLxxuUPnx/oqwFjLMfHLTKO8VNBdjiSLF6THQ84rvv/o5T5YhUSna0wyYRwlqIVdFWOCidEYc3geBirGPoOay1NU1JnDaHjEc8W+IHDOi/xggDPD0nFgrrM8fsSJUaSMCCJQjojic8vUW2G50csr14Qa4ljBkbpo4OQURiaqqXMMkxtCVdX6OxEWRZESYzuDco8VXOM6dCmZjQjgxnI8z1hmGAHj7EeyNqc42bHIasgcNHTp0NGJ1ym6RltAZ1yaUWItwzgtMb1Hfq2JxgHlDcnOxzxEEz8BDX6vP+YoYzLxfWCdmiQxYbYU/RNhdYRxec1ofHotcVXHvZ4ZOI42ElMlMQ044TDMUMFCcJNeHn9FgQcNjs+lie+6iqaz3t+/M23zDpLHU9Yn04UTcu6q/G1QGrNchLjDS2dhe3Hz9TKYZeVHIoKOwxEdBB6vLxYkbge0g2JJw5tY6hPJaGSeFGMnoYoL6atjwRXl6goYWwalJMytJaqS/ClpqwNXT1Qntacdh8oTncMjmD38MjhUNDkFadDgXRAR5qh0/RaoKcrqmzDy6tzYj8AA/1kguNYYl9Rn/b8/PkZ7z5+5NO+4rg/0lcltu8p6hblhlhrwRqwI3Vd4EyXiE6QKMGeERC4nvu04BOWYehxXYW0HcXhgenE5+H2Bw6PgqrIsV2DGnkC1zojxeEJzupqwbX3pGnvHYe+Nxzrlvp0jxxH1lnJ4ynnOtb8kJ1wpeBWCjwpuFYVVXuDUB6L+YricHhKejQH8AKWToyVAdtDTxw61Meecbh74nMFDlWRIbVC+g5N0fLdj99RljVlY0C7xBcx0vFwpcRai+9XMJ64ud3gez4qy/H9AM/RSCFp+w4xGoQFoSTKcZCuSz30rALLcjKnx4LtsU7P7pjR90/spR8/PPA/ffFLHo4n7j99ou8bLs5Tvv3+jrrIwICx41PtoC1I0wnl4wOxbJmlLtNFSJAE1LlLaA3PzUCoDa4Lq4s5YTrD0THbnz7T7bZMEo2/OOP6H/4RP4wQfUdfFpx/8QUyDBmMRPUhJAswEtMN6Nhn6DqUlEgnxPQtjhAMvsaNEoZ+oB3A2ob153fcr+/YPDyQPbxnu32kqUpc1+GHz59x3QjsyFKEdOP4xKHpR5QXYLuBEUnbtlzMNdmhoepi2ts74jikHwp2dyd++fY1k3LKavmCf/xry3/5t/9CdSo5X86I4ghfCM5mEaB5/eoZyayiyle0ectv/vgOieTVqxZXB3hhirEuUSgwuma3eeCYnfDliKtGLJq26xk4cH//mZ8+P2J7xWy2wvNnOJFLKjSXqwWTeMZqPmU2jwmTCUKGSDWg7Eg3Wk6nA37qUawN+cOe7lSyCAOUtWQPd/z67jO7rOH+/oBEobWDwBL7knKwYB0W0ZJYuwRRhFAeQy/QfUVV1Zx/+QXRxYpTUFL3BqV90kTRFBukPcKQobXH6uwZp7Kgq0tOVcPQDUj7hhcXF1TZhtvbG7qu53Q4ooRBm54xCUEKjvs9rtBIramPBzbf/Y7GcwkuU4LZkvJ4ZLhvmHkSJRV5P+Dj4ycpbddgHcXXv/uMjENe/u1f4XcHrpdTPD8gXsQkF1dI6SNUSNeOnPZHhqwCI3Cnc6qqpKxaxqZHu5o0gta6WCto+w4pFVpCmoSobos7CbHenON+j++MFN2AGiW/+foWL1YM1mAmc9xBslm/43wREcQuar/FKAelwY49bZkTxB5/9dVzrOPw0+ORd5/XKO0wW8xQUpONmodDTlUWCKlZua8pTieatvmve8b9b2T+sjT5M42jNaZvyMqO2fkztB047kocJVikE8Jkhue4hH6A9jw6I9g83lKUGfNkSTydIkdL19cM9ZFhVCgdkecniCbg+nhBwmG/xrMN059/Sd2PNJ3Ei0ICx6cqToRJgGSkPlXIUOAFks3+gbI9EjPi1QVRPKN+2GM1iG5LvTvQrY9EcYw3m9HZimJ3h4hmPNY1v/v2Hdv7T/hRxPLiGVle47gKt8vo2wKna5DZHW2XcXJfEgYpjmPp79YsfRfHD56I3Z4mtB7z4IrhbMFsFXO9dHm7nIDx6DY+21OJG06xMuDh44b+pHj34w/8+3/8C8nC5927n7DPzlgul0+q1W5gGEsEkB0yxtEw9i1JGFMUGb0U9E2HWCzojidYpqAlZd0jnQplBlJX01YVsetx/+kT325+4ng+IXR8lrMZZ8vnBLMzyqwkawo2uwccaaiPR5rdmq4buT8e2BxyTqWhbg1SS+aTGIaR5WzJMlC4pka3A547YRhLfNnRlQP3uyPJaon3LMH+ydCQTjz2VYnSPaoXyNES2oahrnCloOkNRV5xOJ44W05RumeahASh5Kf3N/zhhxsmsxDv4yeePXdBOJy2e4pDRhK6PLs+58uvfk40CcmKDC/w+fTxDtNUxPMpjND2A01x4ngqkIxP9G7l0jYtwwitkUgMie9ghQLl43saj4aZHyNagxaKSQAmPyGVJpnFLN88o246vHCGKXd8+P5HXr58iRgtbTugjGHMHzDWYsyAwmEcDYMZmE5CzoTP0CY0RYX1YpRbURQnTjn484Ss6fFDl67W7BrFbdXTDi1FUdL0Ha7WjENN23WEQUBvOsq6xnV8pJJPh9NmoNzmfGc+8Iu//hmugrMoJPYCOh0jWwNhiOxKXM/gxT5VmZO8fEE4Sfnu7oYf33/PYXuH6goCO1BZB4tEjANCSqpufOr2DxbPUdixw/M0TpKgHAfX89Aqwl8+A5WgnBDlCoQjqasM7Qa4wmHoBhwcbNdhXRc7WMamBN+jr3OqU4sbxoje4E8DhrwHXVLd/YhhYCwkbV+TbVt0bZ+64H2BsSeGpicKpzTVSDRdUfeGOOgJ2pJT06NcB9912R5y3CCkbA1j15AmCZNkiu9qXE9h+55EjrxYpfjLFa+erdif1sixR+qYfLfleDwhleCweaQpK1w/wotCCiyDFMymMW7Ys7xMQUE/WjZ5g9+3iFHw8W7PqRspRknRQ9saLC5KB7hBiuP52FHiiY6277FtQ7Z5YJSGfXGiHUfuP96xWp4RRQn7bEPV17iJz1LO0J3EVSXxcoKxliieIwfJWFtyCceiw1iXsR4Iu5LIDxBaot2QWPsYNyHEEk9imqZlOZ9zdtpwFVouAss/f9hwVz4xKjpjud/uqfsnM1riubRAoARvnq8IXAguzkBK7Dg+cWCExsRLtvtv8Oeapmsp8wxXCYrsgBIWqyAOErSrubh4xtD0ZHlF2TfYNuPqxRmi64h8nyjwmPghjAPPzs6Y+A5e98R5OR0PFMcSN53S0rB9/Ezfge8kdP2vEY4mmPgoN+Ds/JKZmqFGgRNBqBrU0IDt6aoaR1b0RIy94fFxw+a4pWprMjNStQ3baqBzIvrKJRaaUVsG3+HsOiIKXAJHEqVz/CDElhlePzDkR8LQY76ac//Y8n69JZg5XFyvkNLDDC1lWfL2V7+kyDrWn3pm80uk6zE292SP9/Rdh7GWvuuhb9DKIVksSKcr2qrGTwb++Mcbrt+kvJonpJOQu/Udh/Udx/0BrRXSeiRJyvkiwRXmaXnY9nQWHh435L3g+WpKOpuymMxZpClpECM7xWl9xDs6TJYOUeDi+yHOfEo/go5TMHNk6KGSmKEIKRtF4yqatiCoB4rNlttvbzg8rOnaDUW3J6sLHg45ZjSEwkOimUUp9/t7vKLn/PyMstkROw6r+TWp7zEKjS5rPF8Qnl3QlDmxMcy15PuiID/luFLQjSNSKTpj6JoKFQRICXlxovr0nuT8GX3TorXGIugt+LMJtiqw1uApSZnXGNfwm//nlunLCGsiMAKEZhASqQVPbjIwQhP4EdIYmq4j60YeT3uOWQ5dQ99UVO3AJEnw3IjnoUE4ipermCKv8F0X13GZzVe4XYepG0InQFKxPebsuwItFMksweQ9jh2RdISTACMlxvcxY8ftDz/w/qcPfHrcsc1zwplPuEwx3YZsN9CWIIxlsz9y93jA2pGybWi7Dr8ocR2HIAgIfY9TlhN7TxXOwAxIP0W3FU1+4PoqJVgsKYsTTbclDAOyXUmiXV588Yr9ZouUlsuXz6h/+PBkwWlamqYn9D28QNPULVNp8UxD8/CeL9IO17WcTnviNwFjOmPWZqRYHE8Rz+fUMuXz9yd0+4mZrDD9wGz5JWd/9yv81TOU0ggpUQuwf/o/croBO2qQIKVhtCOmqbBWgI4QxjDWLdZL8OIzDIKx7VBDw/7Td2y++z2HosGx4BjBRRKSy5Gy66nLgs3hgKM9qqokDlyariPUDjUWa58SwHJsSKzh42PK5HzO6bDF9DF+GiD9Bu1GWBvz/e/v2ZWf+d1vv+F5FFE5I2PqEvgO7eCT5S2eF7OYuyQaNnXF84sFWT0y9OB4E/a7Nbv1HRNfUxQ5yg2JfIdlHFJ3NWULP3zzjsqOSCWIJlOWXoiDRmuPaTJjFbi8eLEiXJ7RCIU6m6PjOWPZ4Uea4XSgLw50Q4V2HaQf4zkuL58/w1QND9s9t/sTQj7Zq1bzEJFMaIxlHAYuYs3dqcFKyc4OZL3COWRcz3z8JIE+pz+WbNZ7Ll89w9UtEsi3O+LgDONEKBTFqaLMHwniKY7tOZ9P8Fcznp0t+Me/f4U/Sfmnf/6/+fT5E2XZU5UFvvt06VgcMrCWOE5Q2sWbBBy3OwwDl5evwQ8oTzmB1ux2O0bAcxNcMXD15hVJNEW1D+y2GUXbEE80aerw6uo/cTZbIhzzdLEQLPGmr5BSYhEk5y3Z4z3SjGTrNUI91ba6siaNE6wVBA6Mo6EfeiaRT10XyCjA9z3GwRA4Cnc+RY4jgQ6YTyM6+8TI25ct33x7g5Iuby4msNlxoabYU8bs7c8Ymx1+GGIPJU4SYqqO2TRFbPZMkpBTM9IJxXx5zi5vqMucNIlYpgE2eyQ/njDjX0Cwf475y9LkzzR911JUNf7yJRiD/BO8LEqmOI6DH0RPsNW2RgiHrO8Z+4arqytGRnZ1Ser7DF3DYA2tCLDegmEoUZ6D6wcINyCrDqxv/shm/5Hk8hXT9AXc90RXC0rpsN9mxA6IvsYcGtp8S3i54Nf/+jV//9evUZv1Ux1kVJy2d+zvb1COZnX9BjVZUhnLp9sbvn73A12UcnO7Y3s4YMeOrlUcb244Cz3OFz56LEhWU/xy5GG3p9nfwthzh8fs8iU6EDRtTdFbwigi8mLyKmMYRvLshB87pOGMMm94/PQjjlQ4SuL6Idb0PGwe+P6PH/jdb/6VU7nmf3z9D0xCzd3HT4xdg68ldd3T1APacch2O7SFfVkirYLR0nYtWghOVYbfOgx6ynG3RzlHJqtLhFXUVY6UA7M45HIy47c/3pI1JxwjOI+W1Jc989kB60Wc+obtbk2RFXR9Rr7ecDxW5KNFIXBkQBR5LKchmhbfFUwch9B0dN1AXmasD484ISRegJIJvZH84fsH0rziehVj+oZoNkeFUybKou0TmG6gxZMdw5+62q5+gieGQUgUhSwWM4a6p84sXe/w6aFg+UVL1Qt+fHeDzUpcz+P6csXl5RyjBu43a4a+Z3fIeLj/zMvZBOGEJNOE4qd3mK7nmJeEnksUhjT9gBTiyVQyChIvBCuYBgGzeMZimqLiEASkzoyxNcwDQ2AyRJXjyIFZoPD8FcoPSRKfbnuHMT316UikFMZ0dJsH+q5DhQk6mVDXNfEiwBtamixj83APSqFMiLIx2htZTWYoa0mFoewqgnnCVLosq5oXlw6/+fYz+6xFOxohFcNgabr+iZmgBtqqZhx7oijEdC2R7+G3NfWHn7g4XyCqCIRDU1a0rodyLF2xebKodC22rymyA9/+9tfsbx/Ybx7Y7jP2d/fM44S6Khm6DhtHdH3L7f0teuj4+fKJVWH+pDfFj3HDyRNJfbLCTy5p84HhuOXUFFTlBqEsbd2zfPUrAj9GGYESCrnZImwDvkMvBfsqo8m2LOUZ1WnkeN9SFy2dgZM6knePZMcDnQE5eFAMDE3NZB6jvBK6Hk2I63jEYUQVp0RJQ9hY8rJGW8MwGpqmI05nWGO5nidMk5BoOmU2n7PSFd4XF3hDyWQSUk3nDIdbLi9e8nEz4PoOujY8rjc44YQ49jlmR84vLgg8zc/evmDrS5r8xJufXaETB+io65Zyv+NYlcziKXXdk9cdm97wdnWBmSzoOkE3KnT/pFA2/YhpCmRbkwYegx+y2a3JNjuOdc1mu8HTEUmS0PcV7sShqxou4wsuV2ek8wDH9Cg0/dDx8cMtP9yvObQlUt/d8gAAIABJREFUjqNQTcc8SigGw2K2QuGDV1NZRaQ9kjSiKCuWnkGNPWIS00xjzlZLJul7/umb93woGjbHEk9JvMBlqEoGrfh8d890PuHs9VtmMmduN3jOM0Q0Jc8O5J/fYYVPMp/RWsMxOzKZPMH2sv2J88Ul/VATeR67TcHm/o6mPNCNBhXG+GOPaWqq4oS/POP59Rlt2zFzBqahgxaG5nDH7e0txkB2OFF/MBR1iZSGY9k+3bgaGKUhryq8MAH+yGK6IugVoePybBHyxWWEth2OF1HRYygp8pztcc8hzziUOR+3B4qup2oHyqZnGAVIgXYclKv4+NGifYfz62vSxRl/87N/wJYt0g8JxUjT9Diu4vLlJeuHBz7f7nhxfYXvO2jp4Ech89Tn5cvnvHodMrQuX//4PfcfP1NmJ3A8im7EkRYhIfQDQn9KHKa0zUDfQ37q+D/+93/mf/jv3/Lduz/wm1//luJwxPQjkRMRSIunBcvFHCskQ9tQly2nsmaSRFwnE7z5imk6ByPpi4LPt3tCFDKY4vaagBlSOJhJxBh4CCERcYIAui5nQNArqGzGZnek7lryjyPbXc43//Y7VoFPdjqwLo5UfUMQRvRS0mvBWHc0eYfyFlgz0Gc13mzGNAxYnl2jhgZRloTJhFGMaAONnzK/klx7XzPX8NANFN2TncwJIzAjYRDguw7SDhRFTbM/MTm/xktSquKAVQrf0ThiIAhdfM/ldMrpekM3WFa4DNmRvM7peoF1IkR3QFqDVQqcEOFPEGbgWNa0bcshL9jmFUXd0XQtoRiZug6RCHmehLw4mxMmEyaRz9g3aC9EihAtJHrssUNPX1V4kSL1BVFs6bIcp5PIIGKUgqJqcZVmv9swWMsfv/6G03pLUdVEnksZBmyylnr3+QkW30rsKDiUDUZA04/UbUc7PKVtetGju46srnA9D5SmHweUtQg7Etge6XvYsaQuMtLVHBm5XK0imu2A0Brla+aTgPV6S1n0uENPmga8/8Md4XSFKyRCKvLyBMJyNvUQTUEgoSh6tKOYvjpjVD2XE8OzdIU4KOQo2K6PbB/esWsrZo7kKB2S8+dcX31FF1zhWhdb92jPR2gQ/YjSCqPAqIGxfdK4m6JAhR5WWsaqxg6gnAgjHNryRPH4iJBw3B1o6oYonqMjwbpoeHHp0I0luzLj0+MjqXHwupHqT6lfrQVdPyKMxRjzxBdsa7QTsa08dllPy+7JpFPklBh++Z//jngesHwZ0VYOu3eCMPRZLudIaTF9w3Z/wA6aeLok9mLquuDd9j0f7x5Jz664mF6ymMwZZUgQTrl+NSHfPACCseuYJQ6qtXzaZdzvb8m6niDwUDhcxFOWkzlnswXeNGA68TkLJIGuKB6+p+ga+n3M4KfMZpdcqTly6BmLCr8vcD0fOZlx9volwdBx98MNE8/BPZ+yPTRMkhR/GvDiZ6+oB41yBIE2PK8qHrOM0yjZVAmbzYnTOmPiCmwBkY5oshq0x+xsQVWUjDS0VYYYFcqdkE4y8lPN0OS8fXGOQHK1mrOcRLjqhOe2vHiWkOcpN7fvwNon1XBZ0UuJpzWVLTGh4OLsjKHrmM/nOLMZre9i6wqDwEiHrO+wpmaymLF6+QV9N6BGQ1W0XC0Srl/PuH5zxeXzv8IXMNoBN5mhnAVj7zL2AqUsXuiSXjhkH38iWVygnQNmEDhK0dcNSrloR4MUxBOH8nQiKwv8oSYKE2Q/ooxEWYW0CiNGvOmSv/1SsT8dma73tNZQtA0fHi1//fqMxnT0Q4HoS2y2Q1rQ3hMrJYocojTkb3/5hm9++IzYZMRJxPLVW4bbz1wtpwSeQ+hAmR3oupG6/kvS5M8xf1ma/JnGdRzCKMH2LaY6klxc8bNf/CcOpxNdmXPc77F9hx96WKUIpWDQGk8rtvsjSsAkdnBcgRfN8KczPFcShhGjHSi3N7R1A3bgWJ1ovs9R796jew86QXJ5RX/uge9xdvUS2+TIscdVPZu7e97tD+z+o+V//uWXyM0N08UztBtQ5jXT6yWFkLRNyQ9f/47/+P23ZBZy9UhetbRNT+gHHB/2hNonOptjshLmMU7ospglDK7H/f09jzcHjsbl42bg2dsXZI83CGMY8hDZGqLAwaiBzgsoyp7Nhx+Q7Z9sNemMxG8o8xN6do7wPLxoIIgUwvGZpSFfvr7muA6wg8FzJUXdY1GUVUNbVZiuw4wjh2LPLAoZe4sXuBilqXrD7f0Ds9Bj7DuO+YHz83MO2ZE4caHuSOOAN6tzfv/hR+ph5BAJulbhffqJxWKG8WeUeUVXGeqmxxqX2INISMqm4myW4DkuDC3TSYhUmrmnOayPLCYR12dT7rdrDkXLvh4IPUM5Coam5w+/+4nb2MVaS3p24PLZS5heI7uW1naM0iIl+IFkeb6iPu1II5fFbIoXT4iTlDbLiBbXvP1Scsjvma7OsNKhP65Zpkv6umR/OvL4h3ds9/+KGHumsyVZ2eFK6MyIHTuK/ZbIc9kVGZHv4kUpVgiOuwdGDJ0ZUdqjMA5+b3k7nXF1+YzVfEU0jVBhwOV8xtKdsFnnKNUj2wPV/Sfa5omN4oUeyAAvcFnvH5j4A/cPe4Tn8SJJ8e0IEurhxEDO8aHi/nbLze2abjSgNelkQmM93PkUF8t0moA26LGma2q0awnrgXQRo754xdc/3XMyPdrRGKsZe4nSLvtjSeAHJL6HtoYoDNCei+s5aCxmMPhxhBWKx5v3OL5iLDvSWYgVcNpnxKlPfiywxvLNH78lrweyLGN2voKyput6hHKekgRtz6AMpuuY+hNG88TKUOEUnJRidMhayUwJPrz7PVne0CIp2iO2O9J3LW3d4v2/X7NKZ8RBTN/3vH31nOVyhRcFdNqh3N0hx4HjMWMQirv3v+X9pzWbomNnGoryDq0M28aCUQRSIdFwMyBsSSgh8SOkkCxWcxzPR4YxadSRdz151+G5ltD3CT2P/faRdmwJ4ojzNGa1mpN0li+en2H6ivTykpMTke03XPmS2aufM1b3ZNkJN4p5WG9R0YRAhbRNiyMgsIokSFnGIV99+QrRtgwMmK7D1YpWWo7bO2KtYbBs1nesy5LDYFDrlo/f/oFqt2cSBUwnIUprfD9AAKodmQcT2rhDiiMHs+H9h3dIFFHsc3WxYDQDm3rNZbpAjy5NDVm+4+5xy7t373nICsZh4NJ3WM4nPJxyPFw+/rRBJ1NOwnK5TBBlxzJKUXXOYhkwW8xwJ0scP8CLz/mbeIkf+PzTH77j3+5aRiCvGh4eH6nrmsFKXGGZeBbf8dFxgHQEttzS7h857rYUpXjiS1Ql680jSewRoFHKwfcVM3dKl9VIUxPME8p2z+7xkd4+8DfPl9ihQ1oYx4EvvnzN7v6eaexQlQWLsxX73UfKumawllOTUzeGcYAeg+95ZMeWUox0dmS0I+Rreu1zrCom8ZLpENLc18x8ydSHvi+pDi2Pp5LDPud2U3BoK4q2ph86mqFDIRGWJ+hy01DXHb2RjPIJPnn3eCLxPlK8P7Bc+MzPp4RBzIEj88hl1CDGKaauOBxzXr2e4Tg+s8WS/cMts8WS66+e0Y0+32U3PG4faJqGJIw4m01Z3x4Z+xYxdZhMU/BdHDcgUAG5VTx+957fDluqYo/naMboqXo7X0x58/Yl0SQgTBJORUHTDRyrFhNMSJdzdo1h3JXUx4r6tGeiHULjo5Ml2s3Y7HeU3wX0Tk/46pLLr77AT5d0Y48V0HcWuTuwPRz56cMNdw9rumFg3RfsioLylHMoJUq4PJaGeXJJOk3YmJxRC87OUwLXI51OOJtMsccHFukSqUYCCSZIaI5HPCERYczgSMLZhPvdljezBf8qb4kcTeMofCchjEO06zIoS5tltJ0kcn263lCtb3n2q18gzZSqqPCjmNBzsPmJ0VieLZ5j7cA63/Dqq19wOOzB9oxDR1uUaCnxfR/pRQxGUG3uaUOfDwbKomDoKgwSJS3XacB19HTT//blGy6TGaHj4/keNC12ELhC0EqD8ydGiBCGqjgiZPJkz+nUE09LKuo6Z7e9ZXPc0CvN+/s19/uMw3aHayyzwGMWePz9V2/5wzbj+LDmYbun6zuqbkRaQdY/2WMiR4OFehzpB8MgRrSSWCyO42IE+J4D1qKwLBZTjocKM46M5QF/MsWZJvjLkMfdwC7LOJU19QhJcoWsMvbrezQtV3HIoZ+wPx4wo0VKw2m/I1WGKNV4rkL5K15cvYL9Dc+fLXhxdcUGyWm74/sfb/iw3XBXlJRDx4vzZ8Qm5pv/5b/wcvIb3lwvePnyJbNXz3FdDzn0DPRIz0EoC7akr2tMW4ENsWLAjjDWI0aA8UZONz8yGsuIZve45m6TMUqXz9sjRZVjtGBbZETnK3Ri8NsdSShpvZZ9WWKFpOl7AuXSNg1GKiyWrum4e7Qs0oCuLJhFC3bbDM+x1GPB7foz88hjMV0R+Skvr16TRALqnGyz4eFhS+hPSafnVFXN55tbbu/2pJOUchh58favSLTm9LjmuL6nbTq2xxN9U+I7Dstwyt16y+2poBmfODpyNMxCjS6PHJsjQ3FPtHd5sCPi52+JF29YLiaEJwtm4I+/+3duXQ/+6ueswgnjsUApQzt0jL1CDSHh1Oftr17xurmkLDuK8in9oicuynWY9U+/rSk7cBIya/i0/szn5sghF+RZjmk6pkpw5rmcTRRNY0lWMxAOjJahb6mKDULVuLqh7Vse7m95/uo1z1+9oNk98q9f/5rnbwKuX1/xt3/3nznkPfKP78AYqqKkkwotQIQJYehigWJ4suSNjqawljRKsK7DYEZS6XAoK7b7B+rHAz9vXoLv0quBRnS8efuW858/J7l6/lQ3dkF6KSpZYIyL9CRDMTI0FtkZhHJxw5Ry84jpBBKBH0xo+hNYixmganIGT1K3NZHvEQQBjhEIJ2CoS2xvMINlrFuavKfvBhwdczGT3K43tOXA7tSgA4//7q+vaOsGLz9h8gqGHjN0XF8sKND4ocf0bEU3dMRpTKsjEs+QvDxHlRvaPEMJy9XlBfrU4Lp/sef8OeYvS5M/0ziOJnQ06/2Gn718zvnLNywvXvD73/6GU99yKOonEJF2cV2N7Ues67HfbMizEyMGrTVDU1AeSibNCZ0E1GOD40lc7RLHPqN18OcT7t9/ZplEzGJN0WW8/8M7in/vEL7PoDXCdZlMEubLObGrWMzO+Piw5n/79e/4+xcX/NIJyIsGuUi4Kyq++fr/Yl003K8PKEeyb3qO1YCQGsdK+uzANJyQuArT7ohW58zPnmGUYBTgpCnnkxD3BJfeOZvTHq1CjFLYvsO2BadtQ+kq5osUYy1333/PV/HA2dULrl684LDZcv/5E0pHBH5IORoc5RFHMZOp4GIZM1ssuFgtOB0ObB63tIOLxZDlJ6RSNFbi+AF9XZJlJdN0wWQ24dXrn4FSlO2RbdGjBkWxy3h/t2USgn9rSOOE1fSc9GzB34w928OJD7uM70ZDEmoOVcHBfOb9rsaxmlngsIw0YeiRlyWuEox2pGoLYgWm1wSOT17XJKHPZTpFej7xuYf8RcqoNP2oaeXIrronuttT7FpUa7j5qeSYb9mmIx49i1lCerXCcVtsWzFPQoqxInIFdX7i/PolQ1mCLZkECcXEJ55fE8/n5LstbpmzPe159/GG2+2Ow/HIs6nHq9cvmZ8vuXYi1jc/EoYRddtSZznSD3GCCNXD9lhgzMg4dCAsVikGAQjDMp7y5Zd/QzKdcLU6x3MmJJ7hfOYTaQ8Ph5+OGZ0nePalT7vdYS0gBrwgwUYBeA53xwKGE7ILSM8TZmZP3VX8cPOOd48b7g45h6JHC0kYJ3hOSNNZ0kBRNSNysLzf39MqeLvwmaUzkA2DLlBNy/M0ojyfc3M8oJWDsS5auAgjCcMpx3bAcx08rfAcReB7OFoTz6YoO0LT0N7e8PjTO7qrF4xdw0BL0wzESUy+29Aet0zTlJdXK/JOIaWHqAoed0c8rUFKqqqEwaO1cBb7uFLQ9z0inbHXM9bbHZuHB/wRilP2lEAzI7s85+54Iq9bpBVMkxmYPatwja81YPj25gfOZguuLpYsYofFIsXES+pmQFYH6nzH4+6G+6rm1MPYV1hrKK2gHy0HI2jGkcGOhKFmIntU3mBQONsD0yjEcV0GJGkUIOxA1zecp2dcX1zQF3vsMNKUFev7NS+un1Put8xdgX/+nPT6ElnUCDOlrWtGp8E6PkpK1NiSHTPctuc8gN3+SBRNieMC045cTFIW8QTajOxwYqw7qqJlX/Ts7nd0ncURgibL+PSbf+G7IUM9P6ctctoio8wF20fFzI9wlEZ5CsfxUUqzmkUMsiEKPOIkZLfZ0TYFjrXMz1LilU+vOg75lsO25fPxxKfPH6nKnLG3PD+7QDHwOc8QUczx8wNt1ZG1NcvVnPWHnimWPPC5XM3ROsGKinHnM/Qe82cXqNHy1S9+RXo+4+F//T/5aX3CwXLAoqRGh9FTjFgJtLRoHWOdmO3Ne7afPuCHERz3DKNGew7toebx/pEX8zMWyYJ5usLpM263W9o+Y7fZcXf7QJ2dUFLgqDMcpVi9fMM4WkKpiK+vkBZO+xNVVuB6Ib4/QTgO0lfUNqDfQV7t2XUdnYCiLmjHntEYnK4HOspTgQl2qNU56XRK3TkEUtKO8C8/3nHYF5xONWNv6GyDDgTaSp6nc3bD0zvZio7zsxW1E+KJlqY4YasCR7m4jqCo7hHKJ5w4BI5PEgfEriJKI55drrh/eHzqqguI/z/23qNHui290nv22cebOOHTf/67vu4liyKrq8l2hNQNQYCGGvRMP1BoQC0IrYbYKlItVolksYrkNZ836SIzMuzxdm8Nsv6CigPWmgdiEIFz9vvutZ41iFGGx9v3H9g0mm/+9QMmowGPP32INRjhTzoOHj5mMhlxd7lC0xGNArTRI7TBeDRmc7uma1qMruPl379gEFmoqsEzTSYPxsTDAQ8/e45AI9sKWbV0poOYxmTa5e+Xe/quxzcliJYmTdm2itkw4P3tBVMxoipS3BqStiOsr/mHN9/xzT/7E/zJMb0SdHVNa0jOL97zfnlOkSY4ts9muaRsSgyhWW0yHNNGKoEpbC62Cc+eHWILyen8AUZv0eVbgiDEGn5GcfOOcOCiVE/bqvsGHmEibQ+hYWwL8oHNbhJhBz5FsqFTYBkGfddi279x41U1pm0wDQJMb0IQBlio++9xLAbjKUZXUrclJ8+f89/96f9E9v7XvH79S04fPSfnFrO6QhUdvj/Ask26uqQpc+pO0BQlt12LVpq8KrGEJvZMHGHy5aMHnA1DhmHEZDBAtgql9P2yYr+l6wV3hsTw7ps2JnaPtE1efzwn9iTHx4e4pcW+qDFsk5vNFS/evmWZZuybnruypW5qbBRnA4/HsxnRcEwcH6B1yLebmujIpVUNm32B7hRPXZfUdKjSlKIqucwqNnmBIcC1JIYh0KpDKwOhBNK0ESg8C4zREKkLLKGwDMXhfMz8kz/iP/zvv8AOJNH4kKQtGA6PWP1wS5onPH36mDjw+e6Hc9K6oWzvOTCO5RDYLW2riUcuJ8cD5lZGKRWTwRRpOtxu9vzFX/0tV+uUvK5I24ZK9bxbf8/B9TXb0ZAsnrJ653P19gg1mvHj518xHw9ozQQvcjG1RJV7WtWBUkjunTy6E/R9T9M19NRsVwtqJbhZ7vnuzQU3Rc3FdkfftjyZTGi6mtMnT/EP5ngO3BiCzWaL7Xs4rsOurDBNSdO2ALRVi2E7SMOgaxq63mU0jtjerhh5EIWC/fqGa2GR3V3iGR6L5YpWKOZHEZe3a+6WW27XOcOwIXRjQnfIdt9Qtpq6Tvny958w8MBB8t35BXfrDUlRYlgWSdUghbhvTKwaWi04mU8JbYNp4DANLCQ9m7sNQtdUpaDrNT9kBX/z+orHn37Os8GYs9MDjkcV3714yX/6/jXPH3/KweCAQWjS6w5DGdhEdF2PUD1dayDcKTLQ2L6JDE10WZJtUl6+POfnLz6SdJpd3ZC2DbXQ9FoQWg4KTdv0dMpj2VYkf/+Crz/7hOP5EOXEtH1LVnUkqwzRazzLYF+UbFdLmrpgNjaYTBV/9D98TrpOcMOe+cMZQRjSpAlV3YJosU0LXRTUXUc4iNFIPh8MAOibmq4q6eoCwzRY7zZcXF2BLnhwFjKVPWZfc728ZfZ7j4hnZ0SzOao2UQZUmcSLDtlvMmy/pasrVF4ilIOuWgxt0iiBNiW9kqg2xdI20jIRGFRpQte3tGmLb1k4loOoNX3fYRqaqu6whKSpSpSGSvfsdhl121L2LZYw8U2LbVHz4s01Y9/g6GDMqCyRtkNeFjRtx+pux8HTJygpMY37aPajBwd0poPhmSAcilFA6xoIy0ObJuzVfZX67/T/u363NPktqVMQBS7FakGV7eg0tFoR9iXD2Qh7cF8tWu1WdF3LYrtju77F7Dp013H25BFCZLR9RRQGOIZivbjEQONFPl40xggslOHAUDJ85tzHVJwK37OIvIAAm17Y1KpFd4rd1Q35aon0PJ4cPeKPnj2hLPe4UUBRlizWSy42t7w6X/P2dg+mw8C22VWKfdogMJBdR2RZDEdzptMjsAqksaWyBYukRIY+SZey2HQE/oTHT85wTZNwA40pWdgBKt8yGY2R0kVrTVE2mFLyYBYQBB5h6OFbBi8uL2haaKoCI03RcoDE4dHzZ+y3HzBVx+F4QK80t1dX7HcpVaWo8oy+KhiNR5Tl4n4Y61qk7YCEyAs4OjulweXJeMLAgnS95YdXr1hur9nd7fEwWBcNduThWiGnpzEnkxxTv+T9ck26F7iHMZsiIy8bqkZSNSa3e4OhLZlYisawOM8K0rrg4TDE7gyuFlscU/NlFLAttqimZhwFPJ6fIEcx2lIUfYfHhM8fSoI0Y/shYbCq2NV7ltsFWlUE8QN86xmiz+hqjTAUrRLUbc/YsajSLU3fUpFz9ukBcvYEJTs6Q2Hqlu32jqSoWe4ybu7WHEQ2oe+RJCVFe4k0TYbU9HpApW1udzfUbcJ4EJAlCWiBgcZG0JYtqgPLtRmELs8fPGV+MCeY+4QyY/PhFTLwuM18Hn7ykPDApry75hc/fORk7HAoNa6CIr3AHhwxHx+hLYvhaECatGCZ7GqBKjNevf6On7/9yMckpzMMbFPiGIK8aHFVSm4KrnOfyHEYujEDx8bue64u1qzvasxhgFk27LdrTMCVFqFnAwbSsEHaOJaNZUs6S4GUbJMK23Lw2+4efltWDEchJprNxQV9luNKkwYDhEOb7aiVptjc4AUepmFxOD9hZnhYveC7X13T9Jq2UyjVgmEQWCZm13DoOAjdU7WCUvksvv+Bm80dedfiaUVsgWHC6WDIg5HP05GHUILVtuDNKqPCYC9dmq4nsA2auuXN4pzz67f86GjC4fRfUeQlTVnSbz8yOAk4kg8wdymHRUOyS8mqEsoCMxzSK4XvD9nUNctiTVZ1hLpnFjj0qiepW9qypWgaPCmY+R6OYyMDi+NpTCSecrm8xY8nTMYjDoKOW1NhxRHWdEZt+exWH0mKhsIe0rolk1jQOQ6r1T0Hosgr3n77Pc++/IZoFHFz0SJEz+z4ENuA1WZFudlDBeu7hPO7Nee3O/ZpReiMmYyOiaWHWfaoquXpyRyjndP0PbebjBeXN7RpSuAamJ6H7Vl06j5e4CF4NL9nSyTbNagaWTV4homhe+7WO5ZtzWq1pkjvWUq+KVlvllRdy02yI88L+q7D1iax67K/LjAdh9QyMXTN+iLDurWQ7pjJyaccPxqQ0xJNZswfPyTSX/EvL68p/u+/ZdP2yKYnL0vGrgemjTSgFw7KHpFtUxa//DmuYzJ6MsYdjCiWNa3SeLbDarlC1j0HE8lo1xCaisXlgiLPuXr7gdV2i1Q9vutgGPb9/z1LCaOQyWxGVTVUuy1FmnJxuaAzAm53OZVqyVTDaregLxRd09D3PVIIeqUxTYkpHSLbREqTpm/QSmC1Bc9HMzyjo2rhw+2WdL2GXtNbLY3Vo9uWIPSx0LSWxeHJHCf2sCyNcEIc06DMN3hiSLmrePFqwb5MKeuUkR7gllNGp8/xmprJyMN1LYazKaPRkMXlOdFoguva3Oy23C5LrtMV15v/yL/9d3+K02u++OYP+Lvqr2irmqRqqPuawWyA4ZsIWzAehvf8LCmwPQPh1hRZwd26Jx6ETCdzDFtz9OgBx2fHqDyhSuDVeU2VFnzcLNlXLRYdbVPTNh2+aWECvW7prmscx0AubphIg5nns280uijolebNZs+jpz9CS5e0qEDCPk8QomSXFcy8nq7pOPADNnlB5DjMPIe8VqTU9E3J4m2G7ztsdzt0qZhSYxklo3hEFMa0RUYx9hCiRcQD0tAjjFxMJQhcAyuI2Zs208cPcPOWsmoYjgb4voXlhty+/4ipFaFlMbAldS9wgggvCjC0TV4WPH52gsrvWBoFf/yTf8NP/+Az7v76HePhY2pf07YNjuti2i1FUWDXGtX3aNMhywqasiHNa6IwRFgekWw5jAZM4gmjaIZpmBjavIf0BwZ911EklzRdSZr3vMp2bFqN67o8jiSeaMmSjGwPo4GF7QYYXcu7dzd8XF9jGtA1Lct1SgMYWjEwDcbSZGgIdqst3727ZZ8V2LaFNiAvGiylaPsOVdd4SmGZgsl4xMlM8vfXd5RliWP+xh0hBIYhkIbAMQWRCzq9QQvJcDrA9wPCwOVoNuX09CGe+DWbpGdfmOzKjmFYcZ2u+PGPv+bwaMr17RJ3ucEqMozCwnZMVC8oasXsIGQ6m3F6ekq2rRmPB7z/4e+wGfL2/S2LzYZt2TD1HXzbxHVdrvYJtlJYKP5uteBEjvnu7RJ7eMbuZsWRNCidjPjA5/c//Qaz6WjrCms4QAFNVZLu1wht0NSXhFXiAAAgAElEQVSKLC25uLlhcXfLJq/ZpjW7vGIkBdM44otnjwgmU9poTK8afB3j9D26VfdnbKVo0FSVje4bDCHI64a+LtCmhW3Z5PuEoWPgBx5x5BAEgqCrSLM9+7RGYvLDi7c4rssjf8LyesXVMiGvFY4TgbJ593HJj//FT/m8+4L/4z/+XyilmYxGNOk9w64zTHZZRlkUeJakMSV1VWCZgpNRyNEkYOjaDFwbsy44PZzxxdkBsRuQ5AXbtEIBv3635v9591/5WxHx5HTCyfGASTRgtdnw4dX3rMwFDw8OCOIARYdne5S7Ctt2qZVN7UiiAwtDJdwlK3ZXF2zXGW+KhKt6z8ddRa8FtuUyDz1Ox0M+mQ3Jq4KrmzWR77MqG+7SjI/nl4xHA2xLU7cddWmQpVCkgu22Rtg2uhesrm/QVcDDwyGvf7nHtBtWH/6e3jtFColtmdTN/TupaVrKpkVWFUnTMU0SlPkAPR3T9C2WbhGq5fzijsV6zepuxdgH1Vp4jgNVx+zoFMsfQueQ3RYEnsXdYs92V9P/zQLLhUSt6O0aU5s8OjrEaDV1IyjyHM91scyOZJ8S9A6WkPTd/dIIQ99XPyOoux6zAdl0dMKgUD1NV9LkBVmakqsKLwzwtEO/T8m75t4J/pvf/ofzWz5uU74xLWauQZ7kNErQdPeFA/FkSqM0ypB0fc/Z2RRvOGN5dQNNSVO3mIYDfQVtiSmNf7wB95+Qfrc0+S1JtzWb89ekt7dcnZ+zL3pODg45jRyKosIvWm52KW2y5S4vWO33BIMBSsN8FHMSmghlEkQjXA2b1R23+xzpefj+GHd6hjU9wpufYApNtbqkNL/jhzdv6ZIddt/y2PVIkoL3ZcMk8IjjmEa0dHULhiJ0HB5NHyO6mn1W4AcxL379Ax9XOZ4fkSQF73YFpmFgmZK+67FdBzMc4B3N0MMBm13KVttcbmrW71+Qlw1d2zKMpoy9gu5mz+xgjBdZSC0YxWNef3hN0y6J4jFDz2U4HFGUGYPJDNqWt3/3K87RXKxrtDaoi4x0u8MIYDI6wLZiLP8M2xtQJFu6psEU/f2NU2vTdx19XaP7lkkYYCjAthkNR8zGE6Yjj2jqcPb5F8yGE0Re8/rlB46aGjPw2axv2W537Nc12/Q1luUydR0+PZjy+dPPGNjX/HB1zfnVFmEpPp3OuNiXpFXB0XjG4chilWTUhsmbxZK6LbncJEghqNX94eqlMPBNi8OBz1A4/NWLFaazI5pE/OjJU47nQwJHopqG0+Oa+TLj4+17VltNWSWs04y46ZBmRDxuqbocpytJdlvs7R7HDRBNSeAZ9K1iePQAfyh58f0r9vsd0rSIJyPsfcGjozkjB97dbNhkt7iWycPZgLNnZ1xWNa00aHpY73ZsdnuOZiOkIWjzlLt9h9YmQncYhkEQD/jqx6f4UcbH21v+5tUrQtXjGhad1hi/+jmmY9C5Dpev3/O26tFCYrsuD6cHOHd7infnTCaHPI0DHAx019LojnXT85fvznm9y6mVBjr6rqOVGtmAqiTalCAKStPjRtQ0Amw6IsfENjMmSchkPqMm5eXlgvkowLBcbMekUwptGdRNRxgGhD6Ypsb0fPY11Ps1fVXizsaoPuD2csHdOsWzfOquo201rmPjeS5lkqLrliAa4PsR2fUFZdVTN/eLDIFAmg5dXeAEMXNXcRDaPJy4pGXDOpX02zeYVYnbtoQmTKKIo1GMKQzeXe1YFi2W7fLA9ngwidC9zVWSstquWQrBMPB5Ekf85OwE01YcTIdIqaDc88Prd3zc3LJvNAfTx3wycamtlm54yjZfsyvWLGvQOGitOB0MmOHQqY46KRl2Jbf7nLxtsRyXYRjiix7Xkjw/nBKEEXEo0PMvieMpWd1wMB0xdaGbxijXpkORXr6j6Xv2+z3SzpHmiL43qLIE27awW0jzhHx9zcH0n7OvJMOTBwj1gYOjiLYpKJseORjy5t0L3ixWJE3PKqt+005QcfTomD/9yY95dDrCdaEqMmwBo/kB7qHEP0748O41xfkHVL5jX2ZEQcjhdIbnO9RNyTwOsB4/pO3uM/Kj+QTLdRkhSK4vcVrFLHApqpLbzYq6qMmrik5rPM9lEIfYhoOlwELSYlEqE6vSeAOBOYmYHZ8wOBriDwNGwzl+GDGKPZou5dF8zE9OYn51W7Kq75sh2rbFsUy00ownU3Sesnr/A7FvojWosiAMY/zUoE0SVNNTFi0XyYLp8JC+77Btm9FwyJt352gEWVHhSMmDozGtsIgnE5L1HbaEJM1Is4q7ux0Xdwkfb1a8ul6Tlw2ebaL0/WLGESae6+M4FlJ3KEPStB27oqQ1JJOZz3E8Q2rFdOBiGoLAsknThqCDJ8OYuquZyAGWbbDLUgahT103GJ7FYOqyI+BwPmM6HmPImrwYYdLgux7Doz3/6S/+kovlLZukpMpL6s2e46MZ43jAeDzCdV28psF9cEbguWjT4WZxTVq1TCYxzfqai5ffslE+fhiT7BNcp8byQ2zP5+s//ilPPv2cm2VOv8nxfbDNGts3MCqJlVqoDqL5DLqGMIr44kdfcHA04+PbjPeF4EPSIfcpeVFQ1C11cx8vUq0iKRuqvqNqG5TqsKWBNGAW2nyQFQIDZQjyqoebHX99fkcUTTgaDfB+41CQpoKmZ1WmuMIk2WVIoRBFSlZllEKS7Go8S7BKNKU2cMQCKTQL0+DF7SXzQcDx8REyCIh9zSRysbscZ7NGNRN0aXDy+Am+E7LdpPhRxGQUUgvB5GCCJyG52zEf+vimhW1AB8znE4QXUPU98dBlcjTm0ZHLdqkw7AO+/PoTjg9jvK9+xNnjR/z5n/0XzO4+kqhVhydairKmw6JtGkAABkJoVNNxOBkzc8G0Aho7ZlE1bJI7xk7D1dZGC5+m2NP3KXPfpcyhKBSLpGBdK741DYaOxcQ0GKie2cLBOVIoaopqg2orPmwzFrsMaRgURUNWdyyV5v06x319jWNaDPwQy3a5y3L2dY0Wgkx1dFrT9TWeZRDaNiHGvVPCdkmyDInCtSxs16HoFNI08XwX0/dBF+i2pW4btHXIweknuE5Pm9xQlwnvXvzAzdU1g8MDis2K48mM548eIt0BjQx50LvsyxZER5vu6HSHaUtCC8ahDbLjw+2a49Rjd3UOxpImaenqDl8ahJbDwB9wOhnxx89dTGkyOxrzZy/+jjS/od63OJstP+sdzsKQzx9ElHvBq03LKIzxBhLP7tGZQiuDIt2R7PYUWcl+t+dmn/Hqbo8UBmiDoetgCrAsg9ebWzwr5lBWyGqL2beElsnUt3l3t6XtGyzDIPJdulagBPfw27qh0+DaFpboMQWYhoVpSPx4hB8MSLqausjoKoXoYZuXXF1vyWpN1ShsJ+Ts0Wf00ubkcMx8PibdmpjaBTyk4VCWJdH4gMb12WyWeIaLbir6pkBoycnQx3FsttmeNFE8GvhMPQfHGWPIkFqb5EUOvYnvunw5X7DY3bBPUn753QVvLgIeH49Zpjn2KEQ2exZpyBNf0tYFnVViClhXFsqPOJgIkBt+9evv+MU/nLNd5WzShrwFUwjmnqSybBrhscg7uj5lZnp8czbnzLPxPYfLpOZ8vWPf1DRI9stbDEvj2eCOQup9yq6oyZISad8DcyttoayQeDKhq2t261s22ytsw2AYhkhhkLaK2jDItxumluaJJTgaRoS2xPZcYs+hrwqysuL6dklZVVR5hjRN6DWCe0i978e8e3vJfpVzNo+52i1ZZyWm4TP2PepC8/H2mr96fcG+bnlyNOHp4Qgb6z6e60mMVjEeDMi1RhYVslM0RU1nmXRC0dPTtjVGCzpvMQR8TPYUbUFd5AgTbN+jrgtc06LyXGrVUVUtWDZJmrK8TXkcDfizv3nFnzyf4dsmba8YRB5pUXAQeJidYjKdkHYWStgYXU2WFqw2OU1VQVYipInvRTiu94834P4T0u+WJr8lVUXO6vqSvlPk2z23L3/NYfuQ6Pf/kN6NMapbZo7ByraxmobZ/ABpmkSq5usHBzx7/gCbmrauWFyd00cOFxuDRjhUakDVuujs/oVTlhXVOuFu41J1R2wrKIs1VVvhCUEjNVdFwbs0wzINTkc+Hy7OGTx9hM5ahm5AlbVUuuJkfkrWLrm4/s3wPIkpqgbDlGzzml3Vsax3vNnm9Kq9z9V29zWWUlhYponn2OjuDqsvCNwRaVpQNSbeaMjhdM45DqJpUHWFjiJM26Pb7XAdcA1NK6FsDJKqB6Wp9hvMUYwfRnQq58nDR2x3DkXfkqYFm5srBAYnRzPyDwnheE66T6myirKqGcUjJuMZp7MZlupo25w2STH3G6o2pSqbe5BTECF2BXlvs6060jQhr++ou3vY1KvpEU8jk6HqOI1HLHZbyrYmVop4HtOZU4bxAR8vX7CuGoq2wDMNqlogLJOmaZGWTdsrPNdlFg3ITYfvPy7IvnuNbUo+eXCCXXbY5VNUbNGpgqzd83a95ma3ZLvZk20KYn+Iv9xiRkOMwsS3PFxjQmgZ91ETaZEnN8STQ5yDOSdffkKX3hD4Pitp05k9lhcS+R5nRxFpuueZE/Lmcsluv6dD0vljZAFCt8ShQ92E1J1iud4TGj2ya2iahqZrUEqhheb4wZjl1be8WGdIrTGalsnpEUYYEAUeE0Pz6fPndO6Qofpzfv3iPZd3CZf7jG1eEzs2WSeoLy54OQx5NIx5enyGVdvY8SkyijH2Oarr6LoOxzSILUnbKWzDwMTgpurQrsKwPZQQ9E3J+7ymbxN8e8d03/H5ZMTpQUfkW5iGg28XpFWD7/QIx8YQDaE9ANPA9CTFbst6vaPOUvq2pWwUi4srzuZz/KM5SasIg4CuLHC0oO7a+xsnbdHsMurlDabtMw0nOI6LMB2KqqFrBEZb8fAo5iS2sND8+ftb3uxrxpbBT04P+NHDEwxDEoQ+A89Hdg0Tw+Dl5Yb3XYj/6Mfk1x9wnZazkcVh0HJXa1ZFwasu44vjCSfjIeHoAMuSBLhkWcvtqiDQLXXzgl92JXkjyNoAIQWtbYJhMRAmwqrxrZKDYIDnDnAfj5k2t/zw5nsyJVjXPZbnYXcNwjDohOTB0QEHRxN6PyYK5ly+v+HEbym3K2azOVe7HU2Ss12vsVyfpOroK82BYd4/T5DUTYspJUfTIUeRRG0XjKePMfcCf3QPRmuTDmn4vH7zlpd3K/zxiH6VMolDLMPg+OET/sW//oI/+OwMS7W0VUfStqS25NVmieoC8qQkzXrsrqEuC4a2Sb7f8Gq1Ip7MGI5HkJfMTw5wRzHCC2iFwJYmfqyJh0Nulzcsk4zl6oa6rsl6jSkkvQate7okQ4icTkkaaTEIIgLbZj5wsQMX258QCAMr3aFayX7bwHhCLOdolRJ0Ld+cHBKYe/7LxRYpBI4tEUKzXu1AGOSra0JdcvTgGNP3UfR4UlOlKXVVYRkmti0JRyGWVRF5KdJ0mU1GBLbktqyo2p7QCzk9O2N1c0P72RnD0RDXddis7vjuu+95cbnm7e2OrKgwDIvZcMI4ivEdhwcHBwwjB2m59LuWLN2TVAlpVWKJjl73zB1B7PgcBD62F+J4GtsxiC0T2zGo0pJ9WjAZhOi+QSqQhoMXRvRuwDYzKLuSt7s7vM9iZpECDV2raHXPw9MD/vv/9l/xv/znn+GbgvHAoc337O8ET5/NiUKfru0YxTFeEGC7Plep5tt3t/e1p0bPg5MDirLl4IsvkPMaZ/pzNq+/w7FsDHdMEA55evqAoZ+wDhKufrjGswbU0Y7dvscfhDwcDzl68hCV7vj0+QnfPH1AXTcsbu94cbEnHk8pqoo2q6ibDq0EjutgWgJDg0ATmR3bqqTWPZ3SZEVDrxuEMFBw31JmmPTdlq6qiM2eg4NDtNJYWiE9B6k1WVeTCYtkt2UsNW3X4TgG08ghR5JgYdY1NDV125C1DVnT8fJySfzhivnIZ379hqPTCUaueHh4hDltkTIGqQndnunhEcVqy6PHJyTNjqefnmC2PZdtQ2wekGY1XdOBhngQsS4yYITC4tnZHEdnuIaglj0CsIQNesDm4yvOLzMMy6dP1gS2QVELhHSoquYe8mnIe3dG3zN2DXSVsFE+ttPiVBf4do8vem6vUxptkNUC1ffUqkIZ99Ds2DDoFPQNpKVANSbS8zFMwc1uy3hgsm9SOlsgzXtAq9KKdd6wLVuSuqNXGt8QDE2Ja907TXd1SmwaTFybo+mEpeFwu1uj8hSlBbd5yVXVUW8q8rah7hRl3XEW38Nxs7a+B5o6Nq1hsk9gFIeYloNhQL5bEgdHlMkWs685PnvKdrXk7S9/wU0U033yOc8mM+J5gDU646xRbA8vsY2Oy/0aA0FgCqQQ2IbNixd37O8+8NXXz3g0+4wiz7ldVbi+xXKTsysKQikwDJsH0wNm4ynTR4c8PAlIry+5fr2klfDDYsvFfsls1fBsPOHq4zX1SUVs+1iLHYbQmNLGNA1a0XO9u2GzSfh415AUml1bkPeKojfY1jVpL4jPnvHjKEOtXuEZGmEFJGWDY8A0kLy6adF9he24BJYB0mRba+pmR9809FJguAZdB09HEeNuizKmFLhQp0jDItku8V33PkqiOtK8RSnjvslqOCR0eo5nPq+/+xnJbYJlalCKNiuwzZ7RdMD+4x3HcczV9SV5meGYkr738ByBYypq2TMaBRyEIdHwmNdruFnv2KQ5y6JhmxQ4tsnRwOSPTufE5h1Nk9NWHZcXG7K24E3R88l4gMy3ZJVE2h59VnC1WfNqu2dyEnC067m9vODtxy1V1RFpGI8GXKcNFfftQlY8YPLVn9AXkld//r+xendB3nf8weGY6SjGDkocCUYwxpIueVORVylJmWAHEde7twjDpu4KLlYJx9MYs2xRMuLutuPs7Ig+K9gngmHk0eqOwPHwqpZVfV85/Ynr8tDzmPzmHDHwHDANqrxht9lhe/du+IFt8/zBIY5pUHctIzfi4v0Hrm8X/PT3vsRBMH/+Ix7qEKuCar9ktfjIYRTyz58+4v064WKxoljvGYUes9GQXkqi2GGVZYyiAV4lMcoOPOc+ItSUVEqxa1vytERqyWqbcFNkuL7J8Decu6wo6IEyy/AHMZkS3OQ1qyRlU7QUXUf2/pahZ/HtB83pOIa+B1vSier+8lfC0SSEfY8/iOmKhKbTlOaAVneIqsb0LaQb0qvftef8NvS7pclvSYZhEgQDqqok8Fw+f3zK2LNQZQ5SoDcLljcLLpKKXprYpsHUt/h6HvHjHz3FDRyKAio0gyjGsiVPtcH7my3vvvslaIPReEo0PsHyIprGprc8DMenlwF5X/Lt7RqpS56fHBL0Dcu8xABCy8ETFi9ef+B0HDD56ieYZk65WXLomuw8G/f0mN0+oWp7EmWTlQYyCGmyO6q+RzozvMGEcreivvuAIUFaksAJmU3GjOZDzL4iK1OqtmI2mXAyiNkpcAOXwLRwAo9O9TRdj5QGXr1DdTEPP/0Ri7uUUbtkpHqk7jHiIR2a7faOrprx2WefUpQVxe6KbZIjVM/p6RnPjJgP5wl3qqcBtNZYrs/p0SlTz2Zxc0VWlnyuoVsu2KqOm6zh5SLl5etLPt6t2Gcp2faavusQToR0h6AKts2eyjpFsEE1dziWwSgIaOuage9zMD3EHE6oOWMkLbLtll2S4psmdV3T+RZ526P7nkWScpuVmOGIFhNnMMDoe15eXPL66pq/mPwtf/DsMU+P55Si4f37DyxXa4TSdJ0k05qiMWh3K/IiwbUtbENiaAh9F9NoGc49xkcxod9SrT8QSJO+N3HDmHZfkCdbIsfkeD4nCUOmnUYJi1vPw3JdQGL0JXVZsrzbsMsqkmzPxLVxPJtWaUwpsSwTxzR4/GDOI1vRpgURHY8fnTF0bZ6cfMFiX2CJDbGUqMZns9pTZjWm7RFEkiwt2e1L1n2CtFwMs+BdtiLZegihmH7+Bd5wyL//n/89f/m//ge+f/2evBZIpYgsyXgYMh5GhPGIX1/v+FDCRZ5SFiW6LRnNZqimoMwzFtlrtsWEnz6ZEQ09AtvBM1c0JniGxLRNHMdBKxC9Rpqg65JtmuHaQ+6SineX3xN7NofCILQsjL5BosnLgrS3KHZ70ApPdTQXr5kORxwdzejznKthwKoSFNXq3o6vG46HB0xCiW5aTl3N+V2OFDa2cW/lrnuL9WID5RVN15KnGVUD8ZOnePNjVlXHMmsod5f0dclAKuYDg8lwxMD3sfw5YfiIriyp8mueDlquzjOSGi5WO6IAnp9NKHqP//fjHVajsYW+b0mSJo7yEE2HNgvGE4exFfCN/zlFmbFaL2kNg00/xPDHbHcfke5TvGiMjIZUtcIdOTTpFbUu0UIxGU64u11QFw3SCQjDgMZ16ZW6d2j0PV4YchCG6Krgdp3wYLflD7/4nLvWY2cZmAiauqXebKmqhuODOcFgTGD59EXIwHX4/T/8mm8eD5DlNU0HVa2g7kG6tJbDf/7F3/Dq22/56nTMSDVsVxv6pmIUuMSeh9EWNLnEn04QhsUwnOEFPsqEznVxVI/0JAMBZXOBPTlgYtvURYbOa66SnNvtBvoeiYEhLQQGdB0+DQILQ5p40sbUFoHh4TggbM358g1OpOkvvmc28Bm5pxhewGXds+00cRTx7ZsPDCZT2l7gNwVKNuRZwoPjQzrDo84a0u0GNx5Q6J4HTx7x+PEBc9mSbBdc3aXYwkMYEtv1mYynnMwmmH1DHPpsk4pPn5yS3l3w4cMFLy9ueHm1IfIsfvTlGY8ef0IwfYLjCI6iAVFrUxQJeVWwVxWqh7zpsKQikB2uVFgt6CSnt3ymB2MGpxNMtjhNjlIFRZGTih63SVnuUpaZIuB+mH67OSfTYAC+HZFsNvyzz8a0fUvRFCglcX0fO4ywLJv3l5dMvEOU1ByMNIEfIQwTxzGRtoUThvRuyG6z5+XFiiZLWN9uGRoGlrCp44eUncLzPUpb0vQ1vSi5+HDD1ZMC0VRI2TF6MODq4oLYH5Ih6MoGVWgOIhsZzDgaTqgXV9ze3rF+/x6nknieT9L1tFowG08pi5zYFoS2jWXb+J4HfUFY5WRVQ1PVCKenbFq2TY8lJYYwyZqWyBJMLBDpjo1uOJ1PsPwQK54zDB1W1++ZVTmJcklqiTYsEnvEImvYpmu6Zk9oKAaeTeANEeLeyZT9hl1xuy9wfZfxVKD3KUsNSto8fXRMX6e4hmIQD4hLxbOvn9GIlv0mo9wtiH2XfQemHdAkCZ7j0JQlu1XC7DDEGQ7xZIdQHV1Zsru84de/+AsOLJu86PjwbomBjRAQOgZaSSpps9vfUdc1bdviOg7TeIDn2Xi2QZYXWJbNQaSY2h6T0ZAmSah/w14QpmBVaDa1wbbpqToQJvgCRtKmNBRK9Wg6tBdzVfecFAWNCfEgRNs+M2USensGaYG9SoiloO0URau5bXrelCme7eELKLqesJc8efgAjwg7nrP88B2BJSmUoAuGLIqK5Oo9hpRI1d9/Rmgi18byXawgoigq0rxgNJ+Q1y3VxUdcq2U8iditc6aegXl6jO4V+9tz0ptzvk82FMsV3/w3/5Lf+70QoylxMenyGsfzQTS4hmToRPeLv+SG50dDJrHHwePnbBdLpN5jtgJRdfi2iy0M+r5hmecEwYjrZcq+NmlzTd4p+rJj6tv0WvH9Ysf5pmQW+WT2nlHnMBAGYeTijUbg+Bw9fshiuWGxXlL0mjeFYJOXaNWSdYpWC1o07eIjPzv/gZEFsWtjuR4j38EVgnjgcRDZbLMeU2gc28GNBoRlT1kWtC0YqsMzHQ48zYHeMZxPGLqK877mrhFUpWa7TbDdgM+fPqK+O6dqNY7nAj11veVoLnj45XOe/v6Y//p//owzeUg4jJBCkSQ7kvUN6XLB5c2CfVFT1i1TX+CYYEpwTJNpYHI4GNNbQ/76suDj4pJ9mpIVNUnvUIsaas0PVxte38R8GftEAkTTYlseDiZ5VnBj2jy3Q7oG+rZivdnxq8sFy3zFu6uWRyOLQ7fhkwj6gc91pjhPFKnh8iFp6bSBKjuCsODoyScYbkhZ7/nzjwsWm4xvshO+ejTm0YnNYHZEbnYIx8NuwNaKl+9ekvYmmWrpNCil2Ccp44FPVTcoc8br9yuWrz6ivRDbsvGjmK5RWP2eerdlEA1p2oZ9kkPb4A8i/La7f7YVJevdBm3ZnB5OOD6J6fqWsuzI8pKDgyFCV3xyPGbgmnS1TSVOwAooqjtukxU/vH5Dsu0ojTGuf8AnD2JEl9PVBfk+w4rGrNYlRwdD3i82mG3H4WwOWUrXtFRNw6IueXF9Q98peiXQWoHv4nQ9ed8ie0Ve1yjLwPc8Pqz3GNLBGk8wDUlsC0SSUe1zFlsQaYtveczHAXfbBOnGBPMjuu0NjqmJZUX98R/w4sn9M/HuBtVUhIGPMzzgbrOlKst/1Bn3n4p+tzT5LUlKg77vsUyH6fyI47PHjEyNLTq68xfobMsuTVGdZre549AVfHXylKePz5hMRghDU1UVtmkThQN61RM6FbFjUov0vu1CK9ZFSy8t6g52aUVZt6TrcwzHAd1hyYCvf/o/Ei1f8P3715RNSWhZFHnBp2eHnD37DCUNZBgz9ALyvOAnn3xFud/xs1/8Ld+9u2R8/JSvH5ywT67pyz2V4/Nx0XH02Qmvf36BEiCdEMMfs28q6lVCYViErsCsW2zZcXLk4NkWeW/QtDVD3XKERRRFJHTYdUqrO7Zpzu7lS1ZJiynvKxm3u4TxwRn9/8femyzJll3ped/pez/eu0dzI+L2fXbIRKIKAFlgiZLYGCWajBrJNNFEA70PpYEmMprRTDJTicYiy1goVIMqFNpCZiLz3rx52+g8Irz346fv9tEg6hnAAfE/w7Gz91p7re+rayhTlhdvsXSJIJeZX045fW5weXkAACAASURBVHHBqO3wwXsj2nbN7GxDr9sF0aDrJkO/Q9vSiZKETVZh2x6uohKvZnz29h0/+vVLtoVMEKUkeYbWPbiGlckNbn8Hf/cu4btXJEXGcOchVbZmcvVXDDSZTmuAotS0hx3Mto9pqHz65EOKWvCLZ8/Ii4p6EzKPc6KyxvC7bOIQUVVAgxIndIY7iEbGsk36vS6VLhGUEv/p11+y86rD3f0RhmLz9KiPppZcXG15db5Av3iL1+0gioLG0pCkhk7bxXZ96iLBkDSWlzO2iyWPP/weeneH8dF9kuIFqWoQRwGGoiCERG/3iCyKyU9m7A53QAZVMzCUlKCsiYua1WaNhGDsd3BVmTSTSOoGPa95cHOfH3z8AU2R0HgdoEBpBJtlwp+9/iW230IRS7JcsAmfc7GIuIwiDm59C7PM8coFTa2QNSFynTN0W1iOyyoqmG+2GIpMZ9RCkTIePLmNECXPTy6ItzFXSc62hHkh0S4V5EbCk8BQdHJdp+d1+O53v8f8m8+YXp0R1oJEkvjVxYL9vaf0HRNL10mLhqYGURfYTo+mlnB0BUduqESNZ9vYtkNZVcgSSLJKVQvKNKHTarOKU6AmXq0RsoUuldR5wWwR8O50jvbla4amgWW2GHXGaIaOJgnUPMFvebhmRS1XPN5vYykwD3KOFwHPtrAtr5kuQZKS1AKEhGXYfPdRl1+9fMNiOmG1mpPnDQPVxVJzaDIkkZA3EYP7t/D9FuHrY4LNOV+8fU0oSnIAGWzJQKsMLqIaTXfZxAtKkbNKFbq5zm6lMTBdDE3jb758gSnVPH74AbaokSSBbwv2hw6bbYxkumSqR1210Y02gxsZ8yJleVWRxhlZnmFUJfFqyaDTBUViNBozqSQujt+hdBSqMMEzdcauxEWUkSYFux2TsZXS39c5NySiXEE2PRpFp91pI6smySYl3yRUac2e73FzuE81zVgFc7bBgk1WUWQaQazyi/MVz0+ew6DPrxYzmE9xG4GrG8zqnEEjU7suh76LutMjdWwa10bv+CgC0iwmLnICoFBrFLlATdakizmT1ZZNEFCiYOgGYZqyLQrSpkTRbbS0RmsKLFPFVk1UVUPXNERTUeY5SlMRBxvm5yfsui76aJcqD7lhWDzNKl5eLWm3XP729QmVojFqG/QNjfVqi2lnVGWFN26zCBdQ1+RFyWhnwP7Q5o4r4Wo2m6IkOjvn5OqCXrvD6WTGsNfhw/sHvHv1CiFr2K779/rviMUmYR2m3NnpcDjs8Pjxe9DdJ91MqecLXh6nbFYZ601FmGWsS0FUVNdGkAp0JHYchVsGWJqKkCqkMqRl38Vrd6iWJ6ynV1RFhVHFhEFJmpbokkFarJmWFZu8RNU06kqwybZshEogQmxkTKVBUSWa/BRv0EVVJOIkZh0ktHsOB/cf4u3tYyoNxXZDVVcoukGGQllWODKYmsZe2yNfbTlehjz/4S9pdIP+4QHK7j6z1Ypez2M9mfDDP/4Jebym1zXo+y4tR2G91XDtFpkdoRkNYS2RLKfEacyXmwXFdMrzRczRvceU4YpoPWO6jul6bUxJom4kSknBNBx6R7fxvAG9VsXlm3eU6znJckYYxZxEGZdxjm9IOHLDjiZzr+PwLkjRkxor0VikOXd3D+m1PG7vfEidZyynU4Ltlr98u+Hrq4Ag3OLJGV1dpm0ZDPsjJMclD5c0ecT9VpfW7oCLNMJ0bAajPjkN3ZbLqOPR78mU6xNk00QuGq7eHVPIgtvvP8QodAoqik6bShgcv7kkF+DoKtNtgK4qFNEWIoGlHBJFMavZkvn5lDev/oRiHjPeu43i9ZCVGa4uY7dMtnXFTKSYukaR5yiyjKVptE2dtuchXS8VAhVymrNNc9K4pil18qQhiDI2uWBdljSNIKgasrqkVC08RTA0CoaWgWWpdB0L22khEKwahZ4BOgJXEYw8laxWMVMJ3dYQssUmF3y9jpmXJaVo6IxvcFOpkdMVA8flXWgwq9fYjoGsOyAV3BwNkfwxTpwTBQsUWaaMA3RZQpMlBn4L1XLQHfeaJyEcGhp2Dw8wpQLD0CiTiMuzC+pkS51VaFXCwFARlUpT5xy/eUa0nqNvPsbttajrGlmWUHWDWhSouorl+uiqxaNbQ26MFDSppopj/N4h8eINkrRBUSTiaMuXQcLAcWittxxfLIgkhadHj2AW8W625fkmpt3t0mQSda2yqgSRiMnzmtlU46Br4bo6NILWziGt4SP48c853HF5/nyGbXtsYoGlKpiqwbyoqaocp7dHOT3FUgWrTCApGutNQrcpyNKYlueCa1M2oBvXthNT15HqGlPTsC2Dri3RNyT6gz1anompS/QqwVLWSZKA6XzFh/f7qEnMOo4wLQuQcG0bqa64Otly9yYI3eb4TUEpC3qmA5JMmVYYmo1iGJQCkjxHCBi1HDxdwdIUPMvFsx1kDH759orTKGUeZrT7B3zr09/n5SQgUzOOP/9LhCiYhxv+Ktxyw7VoNSVqlqJqGpYmkQsJ3W+ziTcEWcQ3ixXrOKDKBYdDn4+fHrDfKsjXIT9+FrKSZCb5hlmUIJw+htUhCQJWX/0N2dtf0WkZmP1dZpNLjqMtrYWOb6o8uDmi67exbI9lGrAtEzYXl6wWG+SmRpMEuiIjSdI13HQVcF/VqZMEXVEZ3LjJ1WyJqRlIsk7blFhnCYf9PZ7cfZ/Vy684nU5Ylzl6CVxNuX33JnGaUjcw6lo83O3w4vMv2ZQ1T3//U9r928hFQEtXsUyHzcWakh5n56eIsU4wfcfx82ccHy8IgwK5BU5VoOQZkqRgKCo2DWpUMh7vEkdbJKUCU2GZpxhpjiLgZLZkEifEWUUNCAniqiTfFpSiJtmEuIaBpl1bm3zXwrAMdE1lm4aMjwYUW41OoLNdx1QlgMRFkKDoCnktaOUhogzQNI1aljg//gaKlEPbpyhruu02TV2CqnM5mZAVJTS/mzT5beR3TZPfUuqqwpQhySsOb9+m5XiIPCXNCmRF5WwVsIgSsqoiCeZ0vD59z2bv9m0cz6Esc1p+m6vJjKJWqGqNslZI0/xaU5gVFFkIWkWw3VBkGfbwHkZ/H7G+QPP71Ns5mmGjjsa8uHjGPNxyf9jh4bBHSocKQZklNDS0NJXDx0/JSsE0LnhxseZsk1EKiavJO+JgwpM7Jh996JP7I/6Pf/05n/+HP0bi72FJkoJQZIRm0bguk6tLFAQ77RZD32SxWtNfrxCyiSo1NFVBUtbYuomlCBTX4mIZY2cxkqWQbjcM+n2mmxCqAr25BrQFacB2s6Xr2/QUjXgmGAx7fPLwLlaWkGYVdVGiGg66HmMq4touoUg4toUoM0qVa8PKOiVbzBjZCjvjHq+vQnS1zb3/6p/z1b/7N+TBjPvv/x79w7ssuyOK0zfs9ft0TZXmsiaKczxbsIgMOmoL2/Hp9Po4vRFfPvuKt+cz/uAH3yf60Q+J0pwwD8mSmAYZSVFpGoGsGfiDAaaiojYNpqHgP/6QR9/5Ns/+/Ed8/uc/IsxCOpbB3fEOg5ZO17WxbJ1FtEaoCqqsYUkKpi6DKhB1yWq2pCgSkiLl/Ue3WCwS3L6F4UGaxNRljueYlEWBJUsEJ++IyxqPGhFtcLs9GtWgqWvgGvwlyTK2YdDrdPENlarMKdcJsdPmH37/U5TtkjfHpyiySr/bJc9i0jRmGxUcby5YRClhnBHlFWmWMTr4CLd7D6mcUBY5Zp2TSDmWavJk2Mbr93ixjLl5Y8ydJzfJPJ1vfvGaSrHoPXkfb7Uh2MaEpWCaJYgoxy5yikJwESSoVhu/e8S3Hz3kO9/6hPXQ49nf/JBVFDC8cQOz22Eebri132HU80jLa9WjrsmYuoyKid40qPGKcbeL5DgYuk5ZpGSqiuu41LJCUVQkpUBrJMyqIKlLNmHEtshJg4gqTFlFKQqw0DVuDuDeQZtod0RLr9ku1yi+j6nG5KLENhT6rsVn04yv1wsqac2n9+6z2hZMk4ykEmD6eIZHfXiXr/7yx0wv3qBUMS1FIagVOo7HoNehSUO2taAZWiieg3ShcroNKaWGJ0OD01UKVc00zJjnS64KqMwuESZlmbNKIuaxyjyq8CIFq90iTjOUMuTi5z/j/v4QwhQjTxjuDRjeGpCkBUWdE/b6lC2N9PwtQmxxem3CMiNeLdnSUCGRZTnttofW7vLmzZzJ29fsvH8bSdawFcF2taHttRh2fB7suahliG47jG4fUG100ugZg/19ZifnqIpKGK9IS8FOf4DdtnGshvhqxXa+4PjklMvVmtMgZZHCLKnY831OJ8ckZYncNOSKRSHLHA52cNoe8+2ETq+NK+mYjoNk6wjLuibkC400WpHMp2RBQNXUbJM1s82SIsu52WvRHwz4xemcq1yQlyUYDlGjo2gdzk++ZrBJuZnqPEhzdsqEtm/TwiOJMsLpFcs8p3Nrl/bOLkLTIM8ZbgvCuCCTrhXbw5ZF11KR6grX1Og6Bsl6Se/gNmj29cs1EmoSsqtq3O6aWLpNZth4TYVZvuTdtODO4QFlkSJXFasg4vDGPun0ilLrkZfXRda93SFP7h7S39knwmb77iVmkxNmBWmYEBcpoWg4i2qysiAuUtIGFEVDb2qKRMHQZca7ewx2brJJF8h1BUYHSdMoa5msAiFkVqnMspLIRUaYQdVAnldcrALSskRWTOqo5N0G2qaNXBVYMvRdnbYoGbZs7Kf3uNVzef/uIYdHh3jjXeRkg8hi5FpCAKqmYzYVe90WVSjjovD1ixO8wQCnKcglHVVRoWloD8fohsdo9ybrWOX1ywVvy4p2V2a446MqJRgm1CVey2N2fIEIlpyvvmG+CqhEQ62oPDIMptML5sGWMM2pGomx4+AoKm53j4qGNEjw7Zg6LfGblDBPyeoKEJgIqkYwiWJ2TA0ZWAmDjq2iVSGaqtNVNN599jP03TaH3/8uw4++xXYT8/kvfkPw/K/xiShIMCQJlQYbcGWVNM6p1mvkpiRvavqHd5CkPppjopc1hmbQ9lq0DQNpMadO1mjjEZ4HF6tLUn2N2dvy8N4H1JsOkihJUokk7LEI1lydTchlHb23g6ooqArE6y2XJxecvZlxdhaw2iS8PflPfPjhB9wa96k1G6cpcRULWUvYdxWqXKfMNbJSwvdaDPwOunQNbtRsj6auqEqFvCmRigSzuV4jdRSdVJHYt1tchhscUUIjU9YFGZBUArdssFWFrmzQNxU0s02n38OoJtBUSEVMuZpzdbnhPMiIKgnXN5jWDVkDuqwgEMTLc7798e9hlh1ajk1oQH41wapMlJbFOsopypR7vsrhrSO0lk34+jecFhHm309wqqaBkBqSMGDkS+h2i+V6QxzY3PnOt5HzhPX0hNM3Z0TbmjKZk65SRpYBVYoiG+itPtP1gr/46V/h7++CaSPVAt+wqeMQIQlUB3o3bEzNpt/3KbchV2eXzNcXVIXON5eXXAYBeVGTVQXH65KeVeFVDUKxeHZ8zna1ZBHETLKKWOxSZROkcouiqmSyQiwEg7rmYLDL4Q/+ELVJEbKNPfJ4+L0P+eznf8dhP8M0LXZUn802I7IdkqhAjqFbhIz2b7HvgOq26X74B7z69V8Snr1gEwbYusLuqAOj+xRpgG7odLcZgW2iKRL7wwFdQ6EpYuIgxKTEsCTapoukWiwupyiKRhnHmImDqjsoikYSRaiGxXqdMD294OLN/4cQCrXSpjF0qqy4Bh13BkiDHVJb5cWrtyBJeLbJXsfGkBt816Pb6+HqBmfnc9QmQ+QxptvmX/2v/xuSOSb80z/h85/+iF6/hVcM2BsNOZ0uuVitiHQFRW4wmhofBUtzyK0WrNe8nlWswoY0q2mpOjuGg5EqzGOdv3oWI/v3eHFxSm34DAcW7/3L/4WzSc35L/+W9dvP6bsO3/nWLayOS5R+wp/+0R9xEcWMVyvuHI3RdB230yHIcl5/9Yrz80uSrMbVNDRPITQNkKCpS/IKpquIvu+QLS6Iygbd8jAEmJ0xbAOUxZKHDx5x/9YHCNXj0PqGZbJkUcRkaY6CoO17VKLm0c0xszev+fzNGQf7PYp8i99ukV6tkCWVZLNhNt2wrpb87JsLDj99j8nlDCXTGLUHeLZC5u9zuZpQbLZIokaRFBxdYTx0cNsu466LZesYbZ90uuD0y1fEZUMjS+iKTCMaNmlKUlVkdU1aVlRFidQ0lHmFb18bmnRkFtMViqaA3JAtZ7Rs41pOYBkklGzTjNeTEkVtkIuKUb9FOp8x2D1idrJAlBK+26YSGopu4fd6TC6mrK4ukBSFRjWQFOU/Y4X7X05+1zT5bUXUVJWg7bp0bQNZVMiGg2ZbTI8vkGQFyzAo85S+bXLQaeF32vjDIZouU1c5TZGgioTl+VuWmxDZ8ZFknayoSbMSybiGAEqaia46vP8H/wq1Y/Kr+SvS2SlNXZMWKX/0f/3v1HmEWqXstR1aLY2+Y/Hy+BLbaWG12yh1TRluMe88oZ6HrLY/5Wq1RmuuO6t5WXN5FbHYl9HqhKPbfb55NqMWErIkIXOtCLPdHp/+4X/H6u0XvP7iZ5RFjmZ2wXCYXEwZ9Ht4uoypmKiWBUWGbwgqtWJn0GERZWwvLujYGtvVhq9fHiPKgvETgaxIZHGCcEyWyw2P7x2hPblPvhlRnJ+yWIPb26XYbul2d0jjhCaJ2AYb5KNDPNvk6e2bbKKUxjTxuzbffnrIfcniNNfYVO9oe7vUyw2D0V0kvcWO0yaZnNCsLsnzFX/z67/jO7dG2P1DmvIM05QhbzBME9tr0Tm4S6nqRLXCg3tPuHtwk/qjD/l3P/0VYrNF5DmNENc/PAHQEMzPCZCRGhl3dMCn3/3HjAYjrD+wyVJ4+9nPWC2WqJqKpvgMuy1u7Y34enJJkiX4rQ6apCCqHNHIXE0umM5WNLJEISKeaAVF14OOR37xEoUGJIkiuVYV26qKpimUeYWUFbSrlCOjh+K5rDcOWbHF1jVy06AoS3TbZmfoI6qSzIzx7DY7nslslWMoElFe8MXxFWlZsl6tSYuS2nKwdvZYhWcUVUMpJN68+5Ljs9dokoFjtjDqmJYqMe4NmK8WWJbCP/3gAR9/+IT9u3f5Yn7J7gefMnvxJYtnz+kYNm8ahRRB1giKpuFqvkVWFBoJZLkkX73GEIdkx2/pmSZ7gz4qFT/47ifcvjlmcXWKqWi8d3TAdBkihKDv+Qw8h6aSUOKYk+mS0aDH4eFtJpNjLMMkDEKCfMVev4usq0hlgVzklFWFlKekScw2jFEHPVy3RRIklJXg8bDDkzs3+N4/+UccrzZoTcFCESBrGKZFU9eUacEyCXi9iVGB3f097n3wEetnn7MpJ4haptEl4vU5//7f/GtkDES6oW+bjEdHfO/mPi9e/wbddZBEitsZUwZb8qxGRAb5WsLTbPoiZxHnDF2fTBK8DWKiGoKwpGzAcnQsR6JIU67iiGl1hWfaSO4u01efoZdL1tsVe46GUmeMg5Tuzg26vsnry4D16Vv6eRtxfkY73eK2fIxsyypN2EoKpgSlaNC1PmHVsDPs0/F9fFcmiVeUeUFdFsi1wrf+wae0Wi5NsmH95jndJ/8Ae/cunz+LWC8vcdQKqSq5vDpnG+co3RaffnAfvz9ATWM++/lzwtzn3WyONexQGAq79/bYKwKqImGVJOSySv+Tf0ExW+CIDVqe0xreuL4wNxWmoqM218R+JYtRwzVykqNuYzwkckUhKQVZGOHIDb7mMF/HHNy6T3XrEe8++1tEDpauI3ktVmuHd5FCo+6zfPEl428SVF1mNOrQ7gzYLldIacJOz6Fj2qhydb0CYTvX02TtLo/uCVw5x1Zh0PYgrDBFgW+okMbUWYZt2swmE7p9g/ahRrNtsVrnnE+2LDZnxOsNq2mA3+2xc2NMlsTsDbo8HvmUq0vOtjP6B4d42pJHj27Q3dmn0lvUV5c4Tcl0HrGMYsJSZiMUroqSaVZQ5dfMK9n1ufW9P+DNX/8Ql5JNWrBOU+61uhQ6OB2Xpm6oFAPFMtGomRUK0zilkRrO05wsrVjGGandJZUr4jxGURUkkSPngngVoGnXZoZlWPNY7vPgTp87Hz+m37LotW06toJSpkimg1IVKKpOY7pskwLfMmmrMrO84uvpOaamYWo6qqpfP0AoGkGwZXRwCyF3ae/fx6lMktRnsUo5fNglS68w2dKqD0hWU2RVQxQFURxjlTltXWGa14CE71g4wy56XXC12rJNSxxVRq9K3Cxim0SIYMJO5z1a3i5bY03aLDnbJLzdRiRVTSUEugQjUyNtFKqq4s54TJDYlJLB7cNdPvv8c1ZLgdissGRBnudcnW+4P+wzK5b4us9VECMQ5JLMOk2xpIa+rjHs9umNx7ijPbaXS4wspTe+iX9jD1cp0dM1+TbE1DTkPKNv6wx7LnlSELy6Ym0+x7NNLNNF11p0pSsuoghJUfH9DhvVoFEN5Lrh9OVbVqstq0XCahmxTQX9gcpmegXDLo2s45gact5gGiaeVdLvm2zCmKpW6PpdfM+jDLckSc5GyGyTHCFSepbEjt3C8z2kKifdrNEribHfISkT6rqmr2nItaAUBYkQzOoGuZbwi4IeCfuDDvaNMZI54vhXf0FTxFyuYl4F12euaam8CyLmSYGuSHT0awNXT5V4e/KCP/zgEbfv3uXlcss2t/AtE01SCHITpT2k1fVweja7k4qFY5C3XQxVwXQ9GsOiKAocuWa9jGgPhuzsjBk5Ja3wHWltcnm6YjaLMBvBeh5iqRauaVKlCocPnnDr4cc8+6sf8mY+4dXzF7idFprhsLd3g0kwRzJ92r6H65r0BiNsx6ZyUmSzR/bVa+Z1zjwMKfMKWRKYssRJnDFNc6T1lqyuEM1z6vq6iGy5Q3R7gJYG1+sURcJxUTL0De6MTTT3FtrwY/yRwurFz0gX5zRBTrhu2O20aLc79GybZ2cL5FpmIFdEhkXfMHl0cB/HkLAcn55mceeTj5juWFxNzhBlRqfjorQc8pZNWdXsWhOKlkOYJMhVzu7hAdq2wS4jfFXH9trkkkYrqkm21/yRZLVgrUnI3TbbtCSIM/aQOTuZIErB1WpLg0l70MfzBwhJQ7FMeqZGNJ2jNTU7gx6iynmy1+HuyCDNClqDMXfv7VOuZpy/CwiCgKd375O1D/je997jm0nE48d7hJM+t8eHdLIpw3bFXyQh8UYiq8HQNMoKJAX2ZQl/6KE5d/Cmb0iUhEJpgIz1es5nmzWfzzJWkke6mNDfv8M/+W++y8tnP4PLU3pqh6Vuot/9r3nycB+vesbjmyNkxebi12Mup0vebCMOViG3VBO1kuk6PQxUyqxkG15PIsuayt7+Do5UsQ23XEYFV9M1tiIhZwEd3yEvC1TDo71/QDKZYNsLbu8d0TMd1KPHWFoH6/RrhnXARjVRVI0kK/EcEylN+fzzbxibMh/u+/R9ne3inJ5ns142nJxPWEUFX5yesVQ8nh48YnDjAcsXX/HuzYzXswmSvOR8OaMpChzFZne4D/GSy8kxIyXE3NvFurlLx3DwhybFzpo3xxdcxClvr5YskgQhNciKfG0VlCUcz8Y1dGzTwLVMNM1Ek2UsSaDqKrar0dIkylwgywZ632O93WCbGrEQ6H4LRwjqqiEMYvr9BimTORju0Ru2eHMVMPnma7Ks4Pz8kqIsGQwGtIdDDN34z1nh/heT3zVNfkupBKimhe66VHmGZTsgqSTbLaLI8DWZ2jZwZZ8iVdB0g07LQxc1WlUze/0FpycTalln3HLYGw1YBBFL2yavG2hqPFXB6fcI8pxUaIz3d3A7LsUP/hkvfvwnFJsppqIhJwlaU9B1HWaSySSO6ZQlpttBb/ngeEi6xSTJyX/zJVebmOnpOVIDOx0fCViWglko+NOf1Li+wO485ODhEevljDhYImkGumbxwbe/z/t3D8n1Bi2KuTh/jmba9MeHTE9eokmraw6GLDCoEVWFYVaMuyrz2kGxXXqGhFYVXJ1dMm7ZXG5A0w3KNEA3FLKiokRnsQ7Ry5zF+SnhdMnBvSeYhsOo5zMrCsbjHaaXl0h5TJbG7HZ3MUVO17UQVYa9d8DQ7dDpHLI5WXL7bIt9eB9n74Cgb+PXMoiadZky8GQKbe/6ErzeUCxlZNHBUIaYyhZVa2H7O9gdn1//3WfYusnhw/d49etfMQk2DA6OeDedUwtBVVXXCmRZRpYlGiqQIdiU5Cz58f/zZ9y4eUhbUymWKaXQqCWZqCgoFQmzZbLvOpyFMUKSkDWQqNA0DU1S8C2Npuci6wrdTpfBzi4tXeCqsK6v9Z+VEKgSOI5DWZZYnR5yvqKpKr71wXsc7g9JFYW443MxnaGpCpqmE0YJed3Q73VwbQN/mCE7Hvdv3GCv2+HgbsFPn73i61fHTC/n7LdcPNvA27uBevMx8TqlyiZUjaAUKWWW07vzA3YGR8y++XP8lkmh6iQ1yJKGJkk4igRVzdjU2NQKf/f6DZNNzJ0bt0iExWdnx+h1Qd3IiCSnAnTXors/ZmC1UfMlk2efsb87ZtAbICsFupxS5BG9TgcEPLx7wN+9fE1aNvh+B1+XUQ2F+brG99rkWcWhpRJ5HmV5fTHsuQ5GIzAtkyYPkcqUaXqtG5VlGc9xONrZQY431LHDIm94cO8uDz9+n5sffUh/ekJe5Ji6Rl5WqJaL8/dazO4m5YN+yCoueXj7Nvcff8jL9Zz3hcppVnK5uqK0XW7t78JmS9yodDyff/w//s/8/oMxwz/zePGLv2DHcxnduI0sS8giRdavjQ5ns5p1y0FoOXdv36at2WQn17rtaL5BqBa12idly854TJ0siUXF3fefsnd3l5/LIYs3LwnzguM8ZcdS+IvP3rB7cEB/3CLJc05ffcE97pLEBb5tMHv3hjQvMS2Hi8sp6mBAp+0gKzKffPItJM3km9fvmC8uLtN5GAAAIABJREFUSIVgu9mgKhL7ewcEqcpimTB0ZaJgS/rLH9F6oqDqJrKkopUxx5MFUZiw2W4Ymw/o2/s47i6hPmHvu9/nce8+yv/9fzLa0dlLC745O+NyvUavM/q6inf7fe5+51M2lwvi3/yEccfA7jkUIifN6+vvsWlQwjVyU1CnW9abLSgFmlwj4hxUG70BV5GubRO+zUe//x0665zkmy+JsoC6KlC3M/ZHR+RGj1sffoQ/aRgGJ0TBiou3p0z9DZfbjDIJuDkaoBw+RFJBlA1FI2F22yh9j6v1BOoM13avp+k6Pm3fQFMlovkFVWkSr1eUwQrXbxNdLvns2QnPf33M2/kGodb0Bh6iMpgcn9AzDT56cIujro8rVWziAKmCeptytHuAv3OANjoiO3+JupkwuZzT7o2xW11eztZMzias44haaBhehywoUCuZ7M0FY2+IiKaYkkywXKEYMsP99+k9fMh2vaRavUWzbBLLZRksSasNZSWz3KaIpqGWwEZisd0ikED1MAdHaIqBQ4WoF0h1Sd8zcU2Z3XabvU6bnYMdZKnG9jvopkMeBsi6g6yr5LLKcjHDNHQkJJ4fn9FSNYY7IxzHoagFimVzldaslmuM1or9G0e0/A6l4oGV8/HvHfHJt/ZIoiVvX3zFTJJIxyFFtcSxTJT+kFiWKZYrFEngujYdS2N8OKZXbzl0ddZhxptVTNo05NGSPbdNz9JpNRK+bLHE4/U8oCprvj1osSlybLkhyioa06QoNRy5weqPUMseL9+9wut6WJqKJATRdE5y8pbzL1/y7uvP8do2u36bk0QCtWKSRCzLmGYdYMsV+66BXXrcbQ8Z3HqPTfwZjQip0y2XypAdQ5BdXdJ2XTRDQ2QFlmxy2B+yXC1pSzLSPMDe9xGZxexiQXl6TktVGR+NyJ0e8/MZUmWiSSarq1OWQc355YYoqRh0O1iazuRswp1hH2swRpYEBhqZrmGaDr5So/89BNz3HLoth6LJybOM0/mCqMgZej5xVrOsMxrZoaokNnHBRVzyNs+wtZJNVdNVXYa2TVVsqJSGsBYshcqBYV2r1aMNXTOl03VI+h0+/3LBLKpQVI2ub6EYOskyxkAQFzVQ0dF1hqbK7Z7NuNXCH48wjt9yp+titz003WDd6KxTUOqKOgl5sNtmIQZ4mkShKKS6Q6MoGE2NRsYyiMnKOXdvDhgZKr6U0vVd3igqhmYxu1qwjlLGXRtdlHT6Pe7dv41l1Oz1PcLQ4SJOWC3WtNoNqmWhqToqDb12F0XUOC0f2+tSFjW6WSBqjfVf/5xbPQ+lFlyFGcdFgqIqlHmJqmpIkkolCiTFpipDkjzl/N1PsM0+tjliaBYYao1CgqkZ7Dg6IlfQFCCrWL/9JeEmZ7Go0EwdTaj0ervsrQrezBZQ5lRVwXw94/nZK1xNY2RqDIix+x5PHz/g6L2nfP38HVIe0LZUSsNmOb2kb4C14xOINp5ScaOl0bn5iFYVousKpqmhSgbB/BLPtqjTlMvlkrzIuOFaRMs1jmWRRjFJHJOECbKioek1kragOx7R6oxQDZftfEmxXTO0dLqeR5V6/OCDO6j5hrRouPfoPoe7Hi+O36ArBt/71lNuvv+UtH1AulzTk2revzXmxj/7p5hC4Ysf/wcuLmbc7TjEW5eTIGKn2wNZYru+wFczBkpO58Ejppcp8WxLLCyWSUoU5kTxljdRg6oJdn2T/+l/+O/54Psf0OkUPP/Na1TR8PTWI/Q7H/HwowM2v9A4enqA2K758KCP0whWWcUXJxMePSm4O3IYtDs4vR6ty3Nq0aCkFYqqoGYprqNTGTp2CXVZkqQF1TqgCgM6+0cIFPL5DBsVyfXpDoY4fof6ckVr2COr9jl+tyVch2iygt/y0Cgp8oyjjkXfUzgYdOn12rQNlcm7S6bnCyq7SyUXLETAssr41U+f82S8y9fHc86CJZPVgu3xSxRFpdVt07/3lCdPv8/5T/6UdJESxyoYffo7O1BnmJrJ/u3byIbGy3VEWgsUSUFTJDRVQZHBlKDvOlimhW5ZZEWC5+j4ts6D248Y9LtoKhgINtuILKvRdYvpxSlRmlDWDYasM97pEM2XKMhIksbB7bsU4ZIyj1DylLYuQ9ngmDq6rmGaBnsHN9GN3zVNfhv5XdPktxRNlUEIdN2iMVwMVaVBJiwrdNPCaxQkJWdRC+JQYFg2TruDYRmoZYQUTNk/OqJRbObzNX/zxVecnZ6zjmIa5Xpc+GhvHw2JnqmT1iUnf/3v6e/eRFleMbJ8siKlznMcBfpel3Z/yKKs+c3bDY8GPnv3bqKoBprponhtTLciXM9Q8i2aBLpyraEbtlwOkJmEgqDKEEJB1yzuPDhC8v4haRhz9eLXHN18zCcffxeHjDQKeG/coyffoFINVN3m/HyOVfsMh2Oa9RlGU9DVK5w8AsvloGcjmS2WJyUnX79CKSqUqmJ3PIa6xnJMVFxWccZ0vmLU65AGCa+OZ2hul3tem2gxI2o08iiiEQJHkbD8DrqqYzseOgnxNkRNE3R9H3XoEVQanL/hZtcmKwIONIGy17+GOW63+J5NrlSoso0masqrd4zMjP7NAe3DNvm7BkWXUWSBKCLuHw1wP/qAeBmyeP0ldm/IjunwnmbyzS9/hmnZbMPgGmzn2li6hNOSUE0dJAtFqfjmp3/GyNLYtVz2PviEYHPCbHLKMip5ZDroukWvFxJnOUmwpm300HUXkUU4qoTatjF8jdGwiyGbxPMFC/2EPK3odVtsTyRSoVGUJe2WB02DlKeoksTh0/dpV1uidyc4pYplmGhqTF2VeO0uiuvT8toMei5jScIf76KoFrXuYFkqUntLIx2zu3PAY98miKYYxZa//o9/TJKVqLKEYejUaQayShWuqWV4cHiPewOHeZLiSym3Dg/RDZvtOkGfzdB1GSlc0drfp+sYXJ2cMwu37LfbrLYbDEWjb9skioTmOLTbQ97bu4uynHD7xh7DgwN+dXpFboVsp5f4lk5t+ahNQ7/lcaPbYlardH0XXZS4loO842BYEXqTIssqtuuTxSHjXhdN1CRhiB4G15akzQa5KOjLDUkD48GAXd/D0Qq62pjuzg1uH+5y42iAJRVUIuPenduElUO1nKHoOrKqgqLT32m4tUrpBAkDQ0ebzziyVFQ1Ic5jvH6fgzv3cHOYxSsSU6OjqyhvvuLLyXOgZitUDnZ2cQc2mibTyBXCizB6oF6YLOOaSshM3r6mc2sH3ZCJqxJHa6gcA3t0m6ox+fjb95n+5kdMpq+Z/eYnHFjf4XbLo9Nx+eSwz3q9JVqtQFQEUcqObmBaOsHVks+/CJGp0NQEu4HJOqY96NPu+Bi6iq7rWJZN29Q5e/OS53/7Myq5wdUVXEOhlnXa3QFvnj9D37hs2jodp4NMRb2dU5UZYZpwcbUiSQSjVgcDiZ7IkDch0abGHxzyvQ8GnL/e8u2HB5TFFkdVaA18LsuCJTWx7OI1Kq//4/9LMJ+gySr18C7CsPnkH/23TL54hmFa15Nikowoapqsok4C5CogVzQMTaLXNoh7Pew84SzMqcMLrv7tv8XtjujJBqZpERQJUqUg+2OOhkOG81N6ts3B7iPWl1Pa5luswYCV0+Py+W+o05hK1lANiSItyGvwxkMu8xCjTrAsHcqMsqgIspR4Jdi/ucc8zYhznSIIcFUZuZF59zpgdnbJ24tLzsIEITe0uyq27RFnJYtlQNto0dkxkHWVwd4BdVkxO3uHo5i4vQGb1ZJyPaXX9vAdk3nrMRfnK46nLxm5Cp7q4fQOKITLaVFjOj0+vP2Y3Z7FV1/+JauLU+oaTFnCEDkgkDCocpW81Hi1lokbi7CGdZoiKQKhaFSiIAguoSnRDQtj9wHdb/9LxOkZR25F2URorkYrPGdX29JtX+u507ig3euiGd61XtxuMO0VkqxwNo+5Oj+n1R0xGgwZWg6WpmF5LVrdAUWWMZcUmiQmCQPixRLvSRdTEegGqIbL/o0dRj2TSSiYnyxZTy64ef9DFufPaaIL4rykqGo8U8eQJWRNpWwUdK2hrhp810fC4GybcRXEuJpKy+kSNSoXqw1bM+bPvnpBLqn84YMbKHXGtiopwoitriH8IecXG2oBnt3GUCWIrvjy5Wv2TIndXh/TcMiWV7z+6kuUbIVRCnq9DvMiwhIFG1GyiSt2bJObnseilvjlssCcpnQ2IdFijunIeHsdpDrhzec/5XA8AK9LU4U0csNqExKnJZbr///svceSJFmapffp1aucGjdzc3MSERmRLJJUVmZX9XRNE/QAEBkAK4hgicfDDhCZFYDpkRmgR5pVZVcljaRBnBOjasopFo5nqFWdR7iionL/c7//HDql5fWbiPOrV0wPn1JGGU44xrj7gXS1wp+ecHjsErgtslyj5DV5FOPoGqpr8mh+wBc/XuIZGi+vl3w4nuIZEqXTqHWdad8gubrB1iVZVmDbDvP5lNuugCjisOdyHSnss5xGqtwlG9p9SVzEdFVK1dTYhkUpdQpFknUPNdm5ktFWKc9Dg8scJuNDngxssmiNsrvH8Cx8FEQnCCydrCropMX8rSMm7h2vXl2xUxWq9iFvouxqXu92jNfXtJcGpwcmyuThTrRSx+wurjkKWsLBiKouuHl1jz700SyHH/c1q9sbbMvAtyXR/Z7NvoC0xakTZpVLYej0lICPHh2jthn/6WZJWbf0XYOxbWDqJscjj93lNUW0QXNsxu2AeLsiywvut3fohoHheqhSYTAe0lQluu2hyoqiKYk3V5y9eYPaKowXjzg4OIJvviW+u+bl9ZZ9J3CcAYxOqUuVmxf/N0L36eqCv/6f/lf2bUj67f/O//jEJU5u2Cc7bLfGdkraTYKiDlhef0d0+5KGPW0J3/60463DGSfjPnWdE5Yu90WFb1pMfB1bbbFkjWg2TIZ9jP4Uu39M6j/mt//n/8HccR5a7JqMPSpxWvHu6ZTQtzg6mBEOh7T7S0TbIIRK2ui0RcVbg4D1TcLvs5Jd3XLQtGi6Ts9zybKcJCu4XK1xTBvTqJlMZqRRRHS1ZzE9xgoCwirHVBTGo3NmPZ3Tg5D4PoV9hSsLkk3B9L3nvPU/fECnB0RxyfhoSqc0ZLJmKGzm/iHl9hL5iwHf/PMtV/cbJr5HpajYsuFwMeNlsaEpcyxdI/Bbnn32hLu/v0LdZeQd7KqW2yQmqxXe6bt8uphy9uIHPv43f8Y7z39DerWlUscMR28RldC9WjKyZij00UTOxNYYfvicdv4uX/zzP/Pt9z/w6PgYezzk03/zIc+mKlGU8/3Pl3z/+orb1Qq7e6jCtSyJpj/QNU0Dt8sNR/6Uw7ce4/Qm3H7/E7bnEhzOaHUfT9PJv/+Bbr8lLQtWccTNzZrjRwcodQrlnqPFmIEtCHshjh9SFDGGBYfTE7a1z357y130gvXNOdX5FZe2T6FLLtdrGsPAnc3wywpV6ISmwfrsC/Su4dcffUqilkzee0q1WzF/7yOq+5TkZs1ASN7xLF5KybrtSNqOpu0QTUurwMU+RVYaSp5RFlucdMfsaE6p9LEMj6Hu4DgW9rihlSWi3NPE16TrHKlIAiEZ9kKWN0vaqmYwG6ErBvdVxNX5CretOJ0O+O78lknosUorRpM5XtjHMP9kmvwx9CfT5I8kVagYhoWiW2iGxeZ+xejgAGswxlitaLOMbZHgOjZxJImLCt11UHWJImz6b39C0uq8+Pwrvnl1xcsfXjKSFZopGfdGqKXGZ3/971l/9wf26zsyxWMwOaBKtii7FUjJ0vQJzJqZaeFaFuOTx4yu3/DyZoP9uIdlWWhCRWQ5XXNLmsVUdYVr6zx9csx2u8agJk8L+qaFV6f0Jn2iFIr1JfluzbC/xC013ndtBk1J+vUfUBydw0BDcQKG7pzrvGK12UOZI5SAQS+kZkdfb9C6hrzq0Cuw/ABdSF7drdjeb9GblpljctG2WLognAy5eBUxHgbYWsvV5TnPTo54/NmfYXp9DqYjvrlaoRgOjlWR7XZst1sKxSAMZzSKieX3MJUWU2nh/gr79D3a1YrPng3YZPDTTYeV36NmKUbRUFQZrS6xhY/Y52iiRpuNsH0d07XQvAlPeo/YLCOKLGZ3rdAJgW4XGI5DMD7kZnXJ1Y8/YqqSvusj6pLZ8WNaXXL46ITV7SXU1wzmBqP3/pLR6CmbwCe7+omxZ/LLv/xrbl5/yR/yPVGc0DUKhhFg2X3u797gW8YDuaI0rO+v8SxBVXVoLQz7HtFuj9NYFEWN77vE0RKhtHRlgdraKPLhBV1TOjy1Q1leE5cZN6+vGD56h2dHx6y2O3QpOXr3fRJFo2hqXMvAdH3MwYjdJkZaLvFqy2ef/oqZ1bG+ukJutyxXHZt0wzBUeHkek1Q8rJUpYOgmR4OAuWXweHGAJRruLt7wbNYnzzPaVCPb78h3a4QX4KkOx4sFuqtxoJYMHcn1NmPvqtzvS7KmeVhfsEwOLJNJmfDOn3+C5Q+5TlVeL7+krhOGUYO3vCMY1uRZg2EYHMz62I2GTAscXUMKDS2Pmfk+Xn9IoumoGChpyi5K6MoCYzigjCLyuqBDYEpJJzWmgcU48DGVjoO+x+G0z8d/9beU2R7fVknPzti9OaM/e8LJpMe3V2/IGx3PtJDYbDeXPDo6Znt1Cfmeg5lKak8YHng8iQSKbCmbinpf4M/6UHeMhwd45RVW05LbBuEg4PHRFIuWFknZ1nSywWszFrbF9d09nqsym1gosuJjW6D6kiss9m1Levk7bNPnq797QZYtCTyHIlryw+f/xMho+WQ+5smjZ+jjIfvz71D2K7S6oG1UblYJN/crkiynF7ocTXSsOmPk6ii0GKqKtEwqRSX0HJI3r/h//6//xPevLpkfDhkPTNLuIYneaCvmvqCII/7uizP6gx59z2CReaD2qFqVuBRMxjNe3d+hNzkiydAsyfLiDeyXuK9eozUC16jJkpSLVY2OTs+xsG2HtHHY7XdQloRCwdYVerag5/tEb+6YBAGG0kJ6D7qkazpURUErGvKmxQotfH9InevM5hWbi2tO9A4hBMt9SnH/moHUsS3B8WBEZnpkro1dXCNefksZDHgV+zhxytP5DNW3eT7psR78Ck10KKKl7QRRnKCHAcIQrN/c8NPLSwauSTcOOT+7xaLlF++dUComb86uUHsHWKZL37dJtgn7Qmfcf8R2t+U6SamATtGwdBPbbNE0FUlHsdvRIYgbSd62nF+vODU90vWWNK0IfI/Hz94i7nRe/P6Cr3/+iZNHb+FZEqdM+fzHJYUmaJSW4aMBxsKjzSrenU/YOx23txmbusUTHV1Z0kUxWdyQbe7oGSqzwSEvX55RoeIHEw4//IAXX3wN0Q7Z1tApaMWKQbbG9joeHQU8e+8jAs8kuXwDZ99SRzG57SG1gnV5h2hq3OO3MFxJcS8ohEGWb0iyjHq9wnZsRoGPIQ2GYR+1rrAcF6PpqG7PCWwHz7KYDr2H18N1hK90/PCvN4iN4LsvXvDq6y9451HLe4sh14e/5s3n/4CRFeSbezxdpaJB0VR0TSOwJaN+jy8vt5ytdtxkFbuy5vvNjkZbUnc6T/s9upvf8nZf50lvzsB2SMsUe7fiJisIwiFNIflsNmTY69MTDUNLJTdVQk3heOgihaBWdNLtmiqOGDr6A/3aVRwHGmHtcJopdG2H6FQse0jP9bmOtpznBS9vl5TpjsAbUQmT+OpHQr/HZp/Sc1LCnkuJZJukXG0LXl5csdtF2ErLUehiqD3S9T1Pn7zFdLIjQ2VdPfxzH81Diotbuq7DdSwOVB1N6QinRxznKtPRgLbKyW6vGZwcI2zvYciNdgzCgP5mR56XGKJjNl8QODq+77K83uCtC366uabuCgzLIK5KkNDhoLR7Hj/+JWZP4803f6DIIl6scsZmy6Gl8tm8z++WHbbVYxQYrOsStWmwLAdPFYyUDsM3iLIavylpzu5QyhxDqBwHJg0CoQiKrqUoa37300u+vbjgaDrhyH9ErijkyZKQksl4gmE9PA6Yake/P2Gz60juf0TpOizTRGty1A40FGxDMhj0ME2bL/7hJQv7jnf+4t/Cs1O+/PoNdZpxMp/QlwpkOTfffMHt+QXLbUSm2QhDJQhC1vuI7e0ti9EA0TRolonUbASCTjWwQpf0+jWb6yWz8RDXcAg+/DXDj/+GTvnf2LwoeTyY8Ns392TukNniY1bXK2J7iFFHPPUPGFy+Ytp/hjIZMzE7qmXFIAywwwGkO7b5mooc6fQockGZ5ximw+OeS+A75J3LEI3m/oZBOOBkMmHY97g8f8OjoxGTkwXO/AB9cIDetOwvr8nQiMoOu8nRmhrX1JFSo2tU+qZJnWxpDMlwOCXbbalrKNKSqa7yw9Ueo25YeDZXWUHTCYL+kDxNkJpOlheUVY3naTSGgyo11Kbm9Y8/IV0PfWwxf/oMp0goV8eMzAyDPd/fbhFVhbK+I3z2NjI8oNYHtN6C0dwnNAqyOCZLlmx+fsHq+oyuSGG15Mhxyd0hxuwRyt0tSXKOZ1q4lkNHTV2XoOqMygy5vEGvMgKhclZ1ZA1MHJuBaNDbjL94b0G/TulpGu6vf8G2EJjDOUiLbF+zPwu5/fsv0FjiWx7u9BA5P2D8t/+ei8//iWSfMqRmZEuEFGTRFjVJMNoOS9OwLYdYlTRpiqbr1HmCqaooqkTVLVT/oVHP0SWeYaMHPkKzUMYj+rpAc3W6Fwb6+pwkK7BMA7Vrka5EPz7CKrZYQYiu6QhT4LgWdWtRrSB6+SULT+UvF4+pO43LKOV2F3M08RH9MVbd4tUP65zKm28xBz1mj48IBx7RzY8Uly8Yv/02lu7TVg1WoyJ1g7H9YLK82adkbUtWZEhVwVAlum4wmgREccw08NDVll3SsqkKds0ON3/F89Mho3GfMi7Z7tYPZGeScr8puLq+Q2oguwZLSsR+R7zasbtaomQpyXqNNH0OZzMKsaanmjjjCbPFAin/NM7/MfSnU/4jSZMqvmMThCFG17Jfr9ENE9XzUdqWrm3xHZddUWE7Lrt9QtN0SKnRtA2yN0Hsc5Ks5Ncff8A7AxejWJPYA8zZlLNdhd8kDOYLLtoas/cIE437IkHMpkwUyelmhRpdUqUZfVVH3L7Cp+RR+BBaaiggyhjRRMi6xNJUlLYlVxU832Ex8qiyEk33MAW87/t0muQqSZHuAbv9iqDM8UwVTbEJ1T2houIFJ2iDCSK+xlBr7CLmXjVIRkN8y0KXKq7vQ7qmaytc16cf+PhlSrqJ6BqVRjF4tbzhyaGJ3gpsTcWQ4Hsug35AkkTcnp3xTs/js/ffRrdDdAXkZIqrpkSbNa5tk1kmptMn8HtEyzWTQx/DzZBdiaNriCqn54LRfx8VA3lcs/7uW8wyQhUCf9CnVS3qZE9jN7SqDmWFpdgo6pSicggPTzH7DeluQ50VoApuXv5AWzRIw8Boa5rlDaqmcjIcIfIMyzUoELS7gqODdynFE04/e85gOMHWeuy6mp2yoV0tefP3/5FpX/DJcY/GnDIYjtkJG1E3dEWJsFw6RaVKG5S6wTZN5oshnmNgmibXr5YUqUb/ICMYLFiuPap4T1O3FNEWzbHQXZ/ecIJoO2zTZB9FfPhv/1siZ4i+33K3XCKEoKoKXl685qUveOd0juE8YMZlG6EqCqPDA26wOZ4OGLY7GAXM5qecLe85qxNoJJfXa7oWLKnz5PGnvL94Qnb3Crvcs463HE18vIHH6u6WhaZgqCO6tkOXGlWuceqHtPUW+fQp4SxhennDfr0nb2Cbl6y2MT9vInJFMH+2wBu4iCDk/A9nnNotgRPgGSqGrqGLFhlaFFmDIS2MpsZyLBzbQtVN6m1KtLxFc+fkpskm26GZAa00aasGU2podUsj5UN6vhQI2+Et0yRJ9uxpcJ7MafI9rz7/F8aHB+ijAbsffmZ/u8RobQZeSGAKou2O0emAKt0xDCUHPZe9URPXCpZhYo4OaYKUUSJI4w1ZEhNnDf7REyxDw1AlbbmnSBOWZ9ecTscMwz4SjbbVSGWNaARZDKfvf4r8/J+43t6jYOD0phzaClPH5g8vL/lq3T2sopQbLOFyPPCp6xir7xDne3z7Icxuv8qZTx2mp48wlQmK6aJpLYEh2Nw90DO31ykvGp+/mlr0pURRQAhYJimGZWHVFUPL5L23HmO5AVWT09UJw4HPaDxlGOgY/pDXL16QbPe8ON+xOJhwuf2e9z/8JVXdQVfSC6D3bIpWhnTYNE2LY5WYvofVJuRRgXe8oJvOCPY5cZZQ5RPWu5xV0rLJavZVRVl3aF2Fr0tkV6InG6aHfUS2RjV1akWidAmaUmNIyT7tkMkOo1PoTQ/RUCFPKddrfENgaA7bqsOWGo7hokgT27RRLANdtxC5iqpb2IbEOxijOh3ScREywPIc0ugOVaqUZUl6vyJ0JPu2Rnc8wsDH92wuLtfoVcmT4xGP3n2bvOmwLZdlXjMajvG7mNfX12x2Cc7bx7z37pCoekCGe2aPVuhoakGVl1TNw6CWbrf4dg9fd3EfPcaZnPL46QcYrkRJz9BmT7l9s6HvrvlvPn3Oy+9fsM8kfU9jaqp8v77GVivMPGL75icG4RAdi9nxIa8u/pW/+8//hf/l3/0tSt2RxgldEbGJUnypkJQdA9vlcDImN8Zo24pn4zl3rs862bNPEjzdZFCtefLBE05PRhwOPRxVoVWP2FY7xH5FZw5Qnn6KLRt8u0YqDW2e0Goumzhnu75h1PMoO4GULpPxgCIu0HnIDpCOTfTd99z//COz2YzFbIYf+NiWzsvvf+Dum5dcnG/45/INTX3Bb34552/+u/+eVi2pX76gswBvTuvm1NktfuBiuy7Fbol2cMSjx09ZzPZcrZb8/qcL/vFVyTYtOVvectQbYjQavzh9xNHpIZarUCcr0k2HFpUoeIMvAAAgAElEQVRUvT6W0yNfbeg6lXA0ZR/dIKuWKl7z0cmQUGvQeiM6RaduS/qez3KZIAXIMqevdBgGjA0Ty9CQpoMWTPl2s2d7cc13d5d8e/Yjf/XWKWZvwE/f/h632mBPRtimT1uXVKVBUrds9hllA9t9SpbldCqkaUZ0/orpaETTtYSHC2wUOtNjNJyTxJdYLbR1h6Xp2JpCGASUSscvnz1Cair16pqJraCpAsO2ifIE03YZ6za3qxV11WAaBoPQxa5WWOMhi3DC6GaHI1rOVzeo0sfQW+53dyimSdnqNNs7Pp6e4o9ckljHFpKyTkGpWec1Pd3hSd9AV2BgWuiNQlsDdYloajxNYdGziZKckSxxXJMsK9A1g6HvE+1jzrd7xrZBLwgpqoZKMTk720C35zB0GY0DytWaor0jqxo80wB/hF3sUOqSwLEZ9fssL15T5wWHw5DAd5hPJuRxzKmEhdFhZwmL02f0jX+k9l0mowEiiwhNi93tBT9eXfPFvsKychzXwbI0tFxiSklTl4Su/UCaqjqGHVIWIKWGVDt+8Zs/J41Lkrt7nHmfdHXGk0fvsc825EnFQOj87nLLoG6whaDrH+Ioe456Q6zsBjsNuLzdYk7GOLrO8eEhhhdQr7cUxRI1dHAOA4zrPs+LijeX92yjnKZtSGuNnTPkRji84+oEpsDVND55+wm1oTN4+j66bYJoie8vGbHkaBiSrVaoSkHf0yhVk7JyCD2bURggKJFNimhsdE2iGjbm7Rna7o7LuzscTeOTxYTBZottmDRNS17VaIZDh4JlGORpxslgxt31Fd2wwQt7RPt7atXhrQ+f460LHo1DerbN+mLLsN/jZDqhTXLSizvc1sUYzFCqgi7NoO0wOgVPVQjaGtF1SC+kVAQyveX9hU7clui+yuf7FgyJrjd4psRWQFZg2gaK5nAycXCjkpv9nrkX8MF4yJFt8tHjE6zdG8pXOlYYMJAagetDaFNKHc/ocDufuOmjpw1D733u766ZeRWL0QGB8isq1QTTJTg6Zffzd6gI8n1MXVY0TYNjmWR1Sz/w//+a75Zin3N6OMdwfcJ+nybP8X0PtRFIy8CId1iipXJ1/MMh7/Q/oV89YyNhk66YeBpqJ/CHM/RYYJsGmqZg2RYYPimC8s2/8tFC4+P5Rw9mf6vzdqXSJRvqWtBoJl3dEVc1VQkyTqnTiHZ/RenMmGsdz+YTgsGY9Obi4Y6CQpsmmELi0PE4DFmrHufLc6R4WKlTu5ro+g2Ba/HOwQLTlATTA/ThCa9//paRKdjf3VMtr3n/+RNOhkd02Y4D1+Ef/+UHtllKlSRoCuRRwvmXX5DsSyzDQbQdbdmyr3OsyYy5tFinJWYQ4Hkuqvqncf6PoT+d8h9JiiIQioKmKHiaxj5R2exTzLIhGE2o6wYNyO/uEMDdekucpLR1jdIpaLqFKWveeucJru0w74dQ1TThnFaLmG12rC/WbFcRJ14PQ3bcb24xs4Su0ri6+Rq3KfB1jVZ2SFpUpWMbx0wXh7i+j3iAoh8S1m0DRdfw1YayLqg8g/F4xM35LbrssCwb1xlheRaHYwXVHdJ0p3RlhDOYYiBpknscx0D2+6iODdWevCjxHQfX0tAez9EMA0NVMU2LKqmhEpSiYn1xTWAcohsGA0tFPjnG0EC3bPp6H9OxCXs9DKFQxhvMMuX+5oZ/+o//D3/xlwrhfIE2CHEHAXohuN8lGHnCW9MJpqKhLi/o6h7iwEMiMYMQ3e8jOqBT0DUDu2kIzJTZ21P2lwLymgaNpi6pm4okzlEck1L1sLQpWtPgnDxGD4cYmsQJepT7LXm0haok3SzZrO7xLPfhJ6hU6IaJ0Rvgmw62pT4MiJZANTz6tY0jeux+folTFwwOJ+RGS766x+1NCKYLhGnSGAGrn66osgRdV9nsVrj+CJWCYejjGjaW5tHkJaJWEVLDDhQaZYMmDwjmx7zqFOoOVnHKpMhRnID+wQLbMNBMm+k7H+A++RBlU5C2LYvAp25rLrc7+lIhzip2SUFvpkBTEdoCf7pgVLeERU2c9tiXfQxrTB5XFJ2gazROrJCfzTdcLPeMgyHHns3m/AcGukK+fciKGI7HaDqMbZ2JraFpFmqtIIWKVBSaStDJkOjsBXmccjAY0PXH5FlGnMd0x0OeVy2V5yHthnR5xvT4gN98OuPiq2vqMsVwHCxNIVltMD2HVtr44ynRy5e4gY+hGdRNR3g0RVomteVxt0tJbm/RqHn+0S/I0wRzd49QOnzDICkKiijB1nRC0ZHuI7abiHw8YHG4YHi0wBn0qDZnROd3dLWgixXSdMXhsM92c0MrFAyj4+nTOUrbYBoqvRpM2SAUg7jMyOKILo5pG8H44ACDji7aU8QJRbolz0oM3eOdJ08wbAdV6qhoNHkMeUVnaAhRMRn3WO/XJGlHX3MQm5w8tXD7x7yvxWyzLardoyddAm3LYBCSK5Ldek0sLJ4+f07IDktPcXshmjlGSoNsveXk0WOs3/3M/e0tpmlydh+xCU3GekdDw2g0oG1btK7FVgU//u5zbi7uOZgdENUl62VGHe+wTQs5m9CmD2ZQzzU4X6757dc/0w99pqMptmmiAr4X8mTos7s4Y3WXkqxTHr11gG1JlEJF01VUtabYJ/iKpIp2JNsIvVUIDR1T1PRak7oqqEtQW7A1g8koQBQ5hmug6i5qU4MwaWSFqqo0dYdUJYbWoOd3CEPSjKckXU2X1FjSwHUkfc9CdwMMtUVTBFI3UXUDCjDDgE5U1EKgTR6jKTX53RaExLMsmrQmiUtMy2K/u0e3DERd8GwxwpCCmpSRZTOfjzBFhekN+ZE7ys2SujGoZcsmTblY3+PeqPzqvWM+fNZxdbmhZ/V5k0JadvR88yHjSNXQDAvLDRCKQi1MlLZGUTsM10PxnxN3Jpv7n3j+1gKlbXgkV1ye33K73hLaLY9rQVZKjgwfM97j0nCymCDthv/53/2ayxcvGY8eqr2VYk3d1nSo5FXNjgzbcVnuEtxewnDao9BrVNFgCYE2O2X+7EOmR48ZjUcsBhZNfIc0LAzfZ/D0CZ6YoQVDOk/H1sTDuesqSbKjqRvSfUqdpNzd3WCGfRSzj+k6GELH0DQMJ6DULDYX57h1Tr1donUNutow7DscLwKWr3Ky/YrN3R3TEbz9/BnD6SGWJUhe/sRXP73gaDijNx1z9nJHU7V0Wcr92Wu69w7phQYFe9TOhrmL0vT5+nJD27bE6Y7poznT8Zgg9DH0jqKpqGWMYRqMR4eIosJ2JEmtoNs2x6FgffsaQ8LE04m2EbZtIzUFKV2C0RHHTkNWJNRVytDMsTudKC1RWhgGDpaRMpjB++Ep//XlLct8z/nqBhF6fP3l7+jZGmVV88t3n+ELgdp2rLKCH35+jW/bNHXzYDgpHV0niFdL0q7jcH6EM+rz3WrHbhfz6EmPTiZUKwWhqAjVZNZ3kbrL9z9eMBkNcQ2DYNDn4GBInCZUekAjDGwH9DxjMR5AC6baYUuQto3qDFH6h3Sf/yOyC7HtmvUyZeZ6DJ0Z11GJbUpOPYHYL/FReDL3acuG21WG2nWc3a15tvAJRY1h9VBKiahzKBJ0r4eUD3lnR32btaERuhazowVpfcmPZ2sytWHkONhRzHJfkNZbxoMhunfAyWTM1eWeruoILBPVULm/uXlY+RsvqIoKK1/zdOhzuc/RpE4rNK7uI4ZFjWtoTF3JwhMM5iOCnk+ux6iuzrPjOYboCH2Hqslp4zuizZJvooxlrSCaDKes6Pf7OJZJL/Bx1RKt62jyiK7ao2FRRNd04XOCk/dosoK+apBWOm1RMpQqdrVnOfQRh336uo7aSX7YvOGd2S85aNco3RbLM1kld8znx/zyN39BdvU7PNMlmL2HY/apy5iyq/AsDy9omM4OoRS0AjarPbZpcxgMaHST+dBClGvqesvycs3s/bdRrQfaVpgN2XZJvb1nqMNQVkRpgWrrWJZH03ZMJgpWHVNHGvMPPkZTSvQ2g9Zgu9zBzTk/vLrEUBRGvsfTt55wsN+yHnicvbnBNGykouKYNtQdQ7+HXpesdw/huB9PD2jKlOWbJT//098TZDuORyHBwMHUjnn34/cQwqDNW+ptQnS1QsRnmCOBOWhpGxCixpKSvuOj6DvW93dcnf9M0ynU0oQ0RhcNB70eE1WSGRae3qIUJenVFdl2ycDRSbdb5qMBUZmRRVtcCua9IX1Hohd7ujghby2ymzN2rYF3CorWUqd31FmE2a2xvBppu+AeUSgdwtQ5fLR4aFoqU6qqwJksKL58TdsJGsNi3rdQLRuzaqibjrwoH0jNPMa2bE5OHz9Uy2/3VFInkwJhGRh5Auslxe0Nm92aNvQxDsbkl2dstwlaozIbBujCRVcbdG+A2oHoFDAc7Kbg6eMFbTEj3ybsbu7RExjYHp2u0VkesbQodzkekmwbs97+iK9bxHlGvDrn47dPcPwJSpFjGAb17g5HtlRpiaq6/NnjEz4/u0VHI+3P0W2bNrqny3d4Aia65ObyhudPj+iZNlpX8O4kYNqfo9oOxfIN0XqJ64VIN6SOUgQPtGoYhCRpTDg4QHMcZgONarOjimOUrnsgSjQT6ZuMZyHSMFEVBfGn9pw/iv5kmvyRpGoajuvS1hUyHNDvjeniiOuffsSeHtA7PGZ1cYYuJb4XsGxKrpcr3q0KVKlh2jZtC4vTI+qiwtQM6hrEeEp9+QrbyDCPjxlNGoo0Y7fZsTg+xMgEZpzwyKup0g1FI/FtlzRNifI9umETDhxskWBoNm0DmqZhuj0UVVDlKUoVYXkB86ePSTd7tLZG6ypEmeAaLpYTYPcGWIZPdXeONDp036eyS6Rh0jU7sjcvaLMYUwPHsVFNgXt6QNZqJFmKmtVUikGRl1C1dHVKtI4YvP0Rq//yeyzX4S9+9QteX+/QDA/HdQhdC7FfkaUJXd3Qdg0vL244XMLHj6dYQxcvjRHrnBKDu/UNQ8vlJNAo4wRN02kbgeG46GYAdYfmuUh7iJAKVlNii5p9VWIeLSiqlrrTaVaXFGqH7ga04SGiBdZXCNFDtzx0XUNTBUoYYjoOqtrRNhkxDZoCZRox8n3i/Qq9LTC7jmYXo6p97IGH3RuiBwOEKFl/8x1ecc/hYogQAVGboIQawayHUB/MuMtdTBKvsS2JHTikq5R9npHutthqSacqWF2BYymkeYo/tGnYI5QGJUvIL67IFZW4yEiynE2a4/U7hoOQtMowTAfT8XENE2yF9T6iyXJkGnM6GlDlDnWWcbFJORUaUgF/8RTHtrHLAlPs2M0m+IbB9uKWfmiiKwO07254s6mxJr/gg7lKX2QU62tOeiG6dIiLmOlkiLBM6AocTdIUNenqDsf1UJIIQzep6wrF7aMezLCbhqqBKtozW8xppU68WTFROvAdTNvAHx1gGQLPHaKsZzRNSddCWkSoiqTJclrvAfv2HANLt6BTKPcJSh2h98dstZDQqRDlHq3rODo8xNFVLj//LVIq1F1BnmbUeU7QC8nyjOU+oawakqsrvKdPMaWN1Sikr+9pGgFuj8vra/ZKw3AUoKNRNw1Sagg0DMdEhA2N1JB2iyxTdKulnWvUyglqBk1eU+xXNGqD4/eJOqjqLYt33iMMfCzNQBgGSJVG71HsbrCMCqNdY5/MCJfXxFlGdHPHPByitSXqoMfOthmnKjQti9MernfMpizpbl8ydw1SoTI9CBi6Hobvouge0abC8yWmaDlWIz57esR/OD9nk5eUlkGU9WC3pd/vs0kLhCERTUO223N1u+b6ZkVS17ijPq2QtCg4joPXC0mjO6RQ0XWbw35FVW3Joh1ffPkV737wIU+ODhkMpsh4jVK0GKqB0TYIVaJqJtV2j9W3UJqCTkmp24bBKGQ4cIniis3tPas4RuQ1eZGgCcGwFzCZhOj5Httz0DULTREoQqMRJUIVCBV0qaBrOobl0Ok1ehdjOQP2rkZxuUZXTOhKmrwhyyP8fojdc9GtAEFNK8DQLBRnAO2aKisRHfTGQ+qqRPMOWRc6ZT+guVyh0FC2gpurJdp+yWHfZuga+IaKKgSqUNiv7plORlSdzsWPr8HU6RCMPJ9REDAdH9K3ejTNt6h2R1eUJHlKUTp0bU3RtDRmj2UGNnvqukLs1myvrxGOz2Cx4P7bLxlUW6qNSVW3mGgshiFeb8h6taXvVQhdY/b0XSzLYGzp9HyV6NXXZKsNomtRqg3l5g4NaMoWU3RcRxWt3hDacDwes+l8WhmgT3tMH9mcmJID28F0XQK/pK1vKW9bLMckdG1UITAHI2xhoxsGqmzQTA2lqlDqhjovqBSDrm1xHZfbpqGpKjS7oz8IuU9vaYRgMB4TlxUfDH3k+F2+u7xme/2a2VCnq2Jcy6YVc9IyxfPW/ObPT/jFp79iOh6Rx2s6dJIsZ7m84pPFlHfsR/zXL79jGUXklqQsa7zQwvFM9DKh8lxCu+AXRzp364jrbcrV6oZPeER9f4niOKhCYuk6a+FTdz4+O0x/iFBNelZOtbtDNhUHgx5tVtAb9nF6PVTpoGYR0jI48Gw0Y0Za1KSbM2z1njxO2UQJalVxMHKYTgccTo/x+gfUec3i2bv848ufMJWGWdjjyWLK2NXQFUGrGURRzJvre+xwwNFszI8vX2IZOkJqJEWBUmbIIiUYPOb3//IVnarzuINpr8dPVY2la7S6STCcE0UJqtoxOz5FLK/xRUu2iri6vERmLUbQwxAdFDmhpZPYBo6u0hUJko7JdEqJinXUwzFjgoHOdl1Q1g3SOSFPa7RsSbPZ0ZYRHy0miLrgYrdC7RSUuqXvaJz4DqJsQHUxjA6hVIg8RldUbNsk2u7puQ6h05GlJWkrWByfoDc6FynYlsfA2XF2tyNqBeddwcBX6CclgaZgdBnLiwuEYfDT9Y6LFD47drHqlFWWMnEkdjBhl9eEnk3ZdMRxjt8VHPU1hnnH7dfXrK0dgw8d4s0N88MD8v0eDbAGPeL1FWnekHYKRdNS1w1V28Buy6AfMOy5zHo25Hcoiktetlh5imODmpyj+TOkloDqgWLTpFCvznGlSjtZoAZzwukpzuyC7MUl7VDl0fBDVudf8dWrL3h8cMp7bz3C11JWO8l08oSw72EakO4T9PEh/sETpL5hf3mHvdozD/po5hkGHYenj5Bun6euJL27QrcE9f0V4cEQ0+sjuw4Um1bVGE+mWNGei9sVcdcxDW2k2pKkHXVWEvg2sm6pV2vMnovStaidgljdsVunyK7j59WOdZrzbz/7gMfzOcvbSzRNZTAYoas6su1oioYyzaFtaQ1QcdmtckauRxOt+M//4SueHx/w9PDX2D2f6ekY8pQiLmkMA81wadKapirZnX/L3YuMrn745ouqJIn37KOYqq3Y5QnbJKM2XOq6oqoq3n/7hHHocvVzjQeU6xuMRqNNa/qayf1+z7PDKQefPOfm8pw6TVntt3z1zZcc9FzSrMQNhjhOy2I6QlFeUqYpXR7TdQ1FFVFGMV03wHJ62NMRQhNIS6ESOundLen9BYbtYA5HcHaP1WS4tkWDYFeUpJ1KiMS0TFIpcVTwbANV13B9h9y1KJOSfV0x6bkgava3BVgS7WBEbhiYqsL6+pJuKziZDeloHgxRO0S2MRIFpWroug5zMKepK6r9D4QHU4baCFW1yJKKvT5E7WB5+1ua3TV6WTDvWRRxQZzkDEcBveEBhtQoN3uk2iFaiY4CzoL5wRjr8kfuVnuSXcLU6mMOZ+yqHMc2abM9aZzz7GRKkVesb26YeCueHR9iDQ9oqhrnyfskF98isz1NEkMNpmXitYLQf1hFe/rBh4gsodhtiZUOVXm47/eHQyJVIuoCSwrcfh9Vqn8iTf5I+tMp/7HUdehCIIUCdBw+eoy3WTLe71h3LcKy6Hp9RNtgdipuv08bDEl2S/xwAJqD4QawvUAXJlYwQOgaVXpFVpVUqcDvO7SOYFMVeJZH3ChMzA6XmlJ3aQhRVZ94ecN+uUJQ0+/Z2LJB0KC0NaJTkPpDgrpQFRQUXKnRaBa9wQFvtzqv//kfsLWH7AEtjzBVhXLZYHgVrvOQc6AbOkIomK6PZqsEmkdTmaRxhBSgqQp26JN0OlWeoNHSCJUWUJqCwLORqsTxTD795Bllo5CbPp4IWd7cotYJ5faGaHlFXVSUdYtpa2yXK374/hve/5u/wnb7DMM1vr2lpaGsSl5cXjMPffzhACMcobkhhrqjy2Kk56IIFaUDpazoipKuAcMfYCIxy5K6aigGA4zeiKJWaEsFojsU1aCxbGQHalk/OOa6AVIiRgc0RYrtB6imibLd089q0u09tqmjlzVCdCT7FZqSIv4/9t5sx5IsO8/89mDbZjt2Rj8+xZCRc1VlFktVJMUW0C1Bjb7otxWgCzWgRgMiJRFikcxiFZNZjMyIjPDw4bgfP6PNZnv3hfMZihfkAuwNDHvv9a/1fz8WeVwxn+WczZZIMSfQFhVFRGaJlyiU5unR33booWV/90CYP7EKqp1CtD2HY8FBDOSjCa5tyU4nfP/2B6L5gsB6+E5B11N8/w1uaKi7jm1RcLM/8hPjUVUl+fkz9NDSrjdU4gd0GFI93lEfC+p9wfl8weB71McDV++uKL54RZBOCEyE5xR4BhllSC8iDmqiTvLh239ABAt++qeveLG5pmwk9WHP+uaAW+TMx+c0jSXQOb5u8X3FcVsx9p7AmaLvKe8f8P0QPwnpfZ+2KfDyKexWjEdjWJxRH/eU+4IsDBB6wM9mxOfnCD9BDD0WQZiM2Lz7FhXEGBmjQ0FdF7RNC11BrARSOOqyZL/f8+Ptns237xi9+gx1esk8G9M9rimu3nPxyXPqF684Pq5wVUvZdBzKivlohOo76s4yyVJyT9AfNkQvL6ApaKqOEkM7SF5/WCEin8k8J09jbFVjnUQHBu1FBJ6haYenNeH+gOf7uCjFOqgef8TVKREhTdfQFS37w8D0+ZfMRgm+9hEmRPghjYOqAtv5+NKn3RX4gWC+fIa8fY/oS7wsYer5hP2BSTKmbyPqhwfs3SNVXXM2CwlezBm6nspPyVJDOorwAo3TEv/FEjbXOCUZTU94MXnHcprz9vYBLX0GQBsfJ6CvS8bZjCzNaLuO//K33zJ0PV+nAakUHDwP1WpEdUTjCIxmORlx+clzxN/+Bts07GrL+6tbmkHzJ3/yb8gDi+kVnh8Rlh1TP0RbibYKZ3s8BpwDE4V4nqCvHciIeGQ5GYdU+1OORUWxf6SQHovnpyhpSWcjwmTE0Nb0xRYhNCieJodofC0wUUCcZYAEpbFDR5rGDLMzitdv6A81o8mcIFvgyjW2qhkGjTYaT/gYpxBtxVB2eFmJf/mcoSvxRUBTWTzrsIyRrcM5x/HYMgpitrcfKPuaYJKSTHMsBrSP7h4IVcZ0lBL6Bicknz57yVfLV8ig4+x0yYO8ZjmK+bFzHIsddbVnt3Wo/oAOMuaf/4IP//gaVe4pqop0vgDlMQiP5nCkebzj8iRDakMrYm6bEj86EvsJ2jyi7u7wkhRZP6JFQ+KFVL9f41UHwqHiq69fEYYC1R4YdkfKQ0XqRzAU6GpgNJuhPM2os4wWGb7vI5Sm1Q2y7+i2NzR9TJgkpKMxoyzFuA5ZdwgpULFCWIeJR4hqj7D1E1BW+jxsVhT7R6SQjMcz1mVHvTnQdT1ISZrneJ7H3A28+Pf/kfnpBd1/+k/8/vGOURJx7Fq6vuLk4oRRbBlqxS9/8VO+PJmzvvqBwj7db8bTSDQfLWaI6sjsjz7l+5sVb9ZbAquQdUlxOCBtjxzgZ8/PiDX8/ZtrfGu5W6/569/+mj96fs4ieAWD5XG1ZpRMeXW6pL6ruX6oGS99+mJLW3RkQUbb9SgxoJVPGE9Qvo8IDNnmyHFXMzub09YVVfgC2pjEv2J/KOnanjQOifIFcX5O9mxGt7nCnwS8uOr55JefMZ/PWS5P8aWjLwva8khd1gzDgC/hl6+eocs9bhjwPU0QJLSeT9d27DtFPj1hVzdUbUvRFlgpaFRIno4I8xl12bBczBm6lrq23F1dc78rqEzIxD/y8/NzjLWwseRBSDWaILuGZr8lDAyxrDHNPek8ZThIPBEy6QXOjzFpTn1b04seqzSd74MM2d/dEhrFlAAaWCYhxvWIYcBoA55ECYPyfCgKluOnJJlYPllYMqMQ7Z5odEpwecrisWQ0nbD2O8ZRwNtC8F9vd9y8/i1Jc0/Q7ZkYRT4KUcmEq13PMLngEMy5sPdkacKhc0xGc9zDlubhhq9PcqTreZZofO3x7kPD//vNA5fzOX/yizm3P14TeQGzUcbx2HB+MkbNz1hWgvTxPbd1QW8tLQ45dFAfkU3B+eUnJLcPhKFCnn8NukbaI67a0lqfYPoxgg63+SvkEGBrw+T8OUb7HPYl0dkl3nTOf3j+jGJ/4Ie//Zb317/li3HAv/v65ywWE9y25ezFp7jAI0oysA1FOTCJApSwKK9DGUEUSiDAfPE5u3fvKMuaeZpijxtOz+YkL14ihhJPKWx5wNVr9OQFvr9kyGtUuCF6c81nWcp4FNA0BV1TsV49cBo8I5wH2OM9ItEEWYwt7+ibmvPnF/wfShDxlh+PLRweefGrP+a/X33A80KGpieZ5DAac/PuA11ZM8oyKlegjM9m/UAyTbh694GhLcAPn5JWjI/WmrYqUSZDYnGuRymwzqBnGV3b0+8faNuepjL0Q482PsK1zFNL2jZ0ePRNzXpXcagLRq0hlA2xH6ETQyugaByycXy8WDDRkJycMEtC7q+usV1Fno8IjEffPnC8X1GvBrLdmGh2im1qqv0j0WiEsgLVdnhW4EUB4WiOkBrPNtRdzfG2pL1/oHCC6flzxLdvUU1LkufclD3XDzu8JGMexAzKMB7l0DcMbUkWR9i2xTrHoSkI6PH8AD3LuUx/Sq/r9QMAACAASURBVFE3FGFIt9/RHndMo4B56tNWNVka4ocBzovQXYe0Fk2PUAanAlCG/PkntK3CtR22F0i9QB561NUbYlugZM2x3dBXPVVV8/HpjE+fLwmGGtqavofQ9xlsQdcMeGGCFJI0THl+suTd7nsS2RJpx9Y5wpOP+ChVVLdvKA4FrZD8ZJJyOYrwpcJuViQ+DMeKCMfxwxXRdI4KfLRWPD8/hWHg4qOPMENP29a4tsEOPRbQYUR4eknrPFxV0tcFXdcyms6R+l83Tf4Q9a+iyR+oPM8jjiLM7ASpPKLjjg9/82u2NzeY0YjZJ5/S1yWH9QPLkxOu727YXl9xm3QkWY7sOpRr8IcC6hqVL6EfCNM5iAgzlRQ3NxQPK4K6IJqdM2pa6rsbTDim7kLqpuVx9QZcj6ZjHBviLCGwBq91CNHiRxFRPkX6IToweGGM0ori+oDwPZ5fnpK6X/D+N38DQ0E0HhEnIcniFHSCtD1hLIjiER0WITqM5yGDGUNbk+QT2urwBJkzGovB2AasRUqFMT6Hq2tSxoTPnxMYzdlXP2N1s2d1b1lcjHmoGuTQ8HB1T7HZcSwa/DjHGI/xbES7/4G3v/1/OPX+GHncoW9/A92G/eGRY9fyJpX86c9/QTCZ0A8WfA9lO6xT0DtkoFCupt/dESxeEHg+9bbCFR2i2+O6AT1IfOEhbU2rNL03UCMRTqCFQiNQXUvX9DjbE4YJvvYoto9Ekc/ls+fUhz2ubZhMxuSzBaM4Ig4VfhQRqAaTjiD0MUZAV8MopIvH9HToaoOxTykSvquQg6DfHfHDiI8uT6m7I015pGpaHh8P9FWBCQ11K0hah4kSjJ/S1Q1ZaAjThHa9o+t77o4lpZDESmLSBPf4iKsb3v75f+N+/cAqGlEWR5R1VLs9fp4SZzn9ccfDakU+mePqAmsClBIopQlUgGot+nyOH0dUXUJ9vMWICHU4ImzF2YsxvjAMfYCnArquRll4uLvhuN+RJIbZJMP1HW1xpD0eMVoRaocTCmGmiKRGSvB8n2D2CZntcFVH3e5QUU5bDhgNxguxriVKIjatxYkGLSxYGLA4LMb2CKNxbuBut+WbHz9wrEBKiVp94CfLjKquiEOfdrvBFRWzV5+w3dxjy5K6rBFOYLqGXMNnecwXl0v261uCRBLMU8r1jj5O2G1W7KsjO+ex2pVcCsdYQlcUCONj/CmBFsiuJw4CZGvR6ZjDY43dljS7Fb5vCP2A8vYB0VfIWDOfnzO9WBIqgVQRXhBhe4vSEomkw0NKTRCEBGGGnAWEkcfq/g2eKohPTmEd0D2sEH3Hi8++YGjBD3q0OzI5uUDFIUQZSSzwhMIEOf3Q092+wY8jnEmR9ytO/ZaPFyMOVUUch4RxgOwqdmVBqzS6asnmEe++/Y6+KFgEHkvf0BwOeFrgxxGHfcXx9oZJmjPkFVc/fMfm+par+yNvDi2lFXRBzoebD9j9PT978THSWgQDfhI9NdBC40kPqhIvzfHiEcPxAUmPTHL6oocITFwS13uKvcRevMJKQ5LGmChHhRGq2NPtHsForAnAgdYCJIggIMhnDJs9bV1B2zCaTRiSlFnyFYerd6iiw3Q9LjnBDw24FkWHQEKxR/spwfnHON/H9QNmdMlweMB0e0TZ4N3vKKwGGfK4K2mGgcnJEnO4wx86cJb4/CX0B+LYsN8VrLYDL199yvbxgRcvzvn5H/0S5RqM51FUDSpbUl49ctjvUTgElq7ckXgSe/0tft/zuC8pyhbrhRCNMGGMHXqGx2sUI2ScY1TDbD7lw+9uCTI4zUNO4gVtpyiPGxZKYkiZffSC1T/+PcvLM8L5Cdq1iL5G4Qhw9GFM6q84dA6Uj9IGrz/ihg1en2J3NbPZlGSUo7TAROaJU2BiPCHg+IDsOoJsipYGoxUcdkhbAQ1NZ7Fdh21rbNNye3WD9hP8KKKxjqJpiLMUYXx8PyDxDZ9/9RXF45Z8MuenH7/isHskzsY8W4YY11JtIybp1ywzn1BK5uMx5ZvvETjOLk45F47JKKXta6xreaYgnY7J/RAlDvhuYOh7Ls6WuMFSFVt+dp6RBxohNIe7Lb/+5i2L9wc8Y5mNHLPzUzw2DMqS+wNpErDdD+RjD3+U0xYHPHr09IQwnWBdh+0awsjw7TffYvsK6Xo8rVl+/ClpkpGu3tD2UNct92+uqbYHRucL8kSjQ8fn53NiPSEcpSjp0R/3tLsNzo+IFVzOJ3hK8CLxGZ6d8+ffveGuqrgvalaFT3LeUH77Dzy/eMam6ZkvliS1RakAJTry0RjRNgR+wG3ZIIVjNBux2a1JR5JsMiO4uODd/ZYvLuYMWYY3bPCkoOtamqoi8ANcsScQDV6cwfKE43aLmD5nf3tN+/COs3iKPntOOxR0StKt96SdYZaM+HB7RGnFaRyhuh5PB2g3ACCdhzvuoakYRwH+XGGFRRiD1hppIPB64pfnrJq3xJFHdPITot2e2fpIfK55N0jacsvrD/d8FHuMgjnhIuSH9w2fXYbMI4dqJdn8BOHnyK7CPtxyu98wNppR5OMpSbMrSeOUf//V58QXn6HmL5H9G3wvZj7bst3WeF5M9uwjvFrwibljqxvWnSPSipdnE2zfIvc3lK9bvvz8ydZj2j3KBASzFwgpGY5PW706HiGyL2lu3xJEKTrKGT1LaP/xNWqwTKKQIHZcX/0Iq9f8uy9OOb/8kpPzz4iRNCag3a3peofnG9rjjrrdIZD0xyNuV3L3Zs3NP95yfjlnPn+Jd2FIfY2WG8IswSzPySZTBI7q/pYgnVMfHUE6RtDihGCwgotnF2R+T1cc2LSWu82Oq9Wecbjj8vkMJcC2NUMjMNMXJPMeWR3IA49fnUR8PglYGkl3OJCEIce9JQgS7KCwnUBqn4vLBcX2SN8PDHaPlAmOHmt70iwljGMGgK5j6Ay98zGeREpH21ucp7B1gTYevdQIfYpyAr+syIKQvi9pDyu0EGTTGZ7xKcsjUu8omprdesX5yCeJPISCQTasj49s6xrZDWwet2Qne5YnMxKhqPqKwVoCT2HikGS+xHMlWZbi5UuGpsVsVgSzOU5JurKgl2DTMTLOsV6IazaYoMLXHj/e3eNpjR6POTs/5TiAjCfcXr/hYbvlWZYDgqKDUIaMsjGeCfFMgM0nMH5EbHfUdYUahbhmYAgjeiHxoojguOViOmXuOlZvv2fta5L0JdrzUN7THSh5YvjpQGFdB8kFkgeM6bFlSXPc0NRHxOMjbN7R7vY462j2NX3bME0zPrlcEktoHtbIQRNmc4RrEcJhhx4/y6n2FaofiHRA4gUcqz3l+29JPA8GKLuB08WSoikZJ5qxbekPR+73BVmk0IFHkiZoz0PGGdrEHO9XKG2YjDKaoWc5HTGUx6ehWW9hGLCDJcjH6GTK5bNP2W03DNUBk+Ukoxztef+MHe6/nPpX0eQPVNZatO/hpwltUaGEYFA+3nTJYb3CPDwwnS+oqhppfLIwgn3Du9c3XHz8FZn2EV2Bmr+kv9+iBocetvRiRBSn9KYnCJ+TLiaUuw7XWorrt1gZEMicoe3p6pppHlOWaxZjjbq4IFy+RPcdRvXIdoMBPIanpAAXIYxBJjF52lA+vidfnJF/+pIs1Vz/3fdIANviqRYTamgVSO/JZ+dqpOxQ0iKNj1MewhNPl1Rd4Rx4OLy+5lA2KB1ghQeez9vVnuc/BRNFNFFEHOaMg4K6brk4f8V2/Q273YrHbUnTWoIWsiREpSOSOOPhm7/i/f6Ksqn47Z//DR9+/0hT9hiluL37QH+fIpKI/UPF8uUSrQfkYFFVgZUOnUSY5cc4YVF06FhQO0nvJkgXo53DViXNfsDphvpQUhUD4dlLvCBEeIK+rVB9g2obXFNxuL9ht1szXp6TRTFf/fwX/P6v/xdqqBkZyTw2+H5EMplh+wKsIxYtEkHjCYhTlBoQbYfqWky3p+oDBttjh46irFlEIZ7WZEnGOPBYrR/xjMWZntZWCKXx/QTfxIRS0B93jE6fEzx8II596r4DpVgdDvzy2Tl+oOijGB3mhIcjcujpe0tnB9qu4+H+kVfzGUEcUWxbHlcr9vMFJozQ9p8ekH4C1QFnDxDnDNEJXuMYfv+Wx90O11umJxcoHdDutlS1RAkf37V0FeTZBIXm+uGWeXgAbbBlT5vluDxH4qG6I2iFPzml395Bt0E1oOjxzy5J5Al1Z4CewFfgFEMz4NPhezFt3aASSd9ZxOCjB0WIRvgR31/f899/+y2VirnfV3yynHI2TRl5HrKuQArSNEUlGTaMEEHE+v4R5yBOcnoVkyQxP5vNyXyfyFZcfPYK2zb0XYtME7K54+3312wPLS72uSs6stQn1CCVQNYPCHy8aIL0oCv2xNmS4Cynrw116SO8DFcdUfEUvXbU0jCensGhw48moA1Yh8I9wUvbBttGNBXEoUPRkWcR8VgzmklsfaAXkv3dnigKCc8vkUozeTaj/PAdi2cvMUkEWiGaHSZJMXGOEyHGa+mxSOEx/BNAzesqvjwboz1J29S4uqC2A4PyiNIM4xtiWxHLlv/t5QlpFLG7v2OYTXDTKRGSar+jb1pcnhOPZ8SrLT2KbQft4IiMR76Yg7PcfHjP8yxGi4bACAwW5STCPcH+pC1R0kdog0pnCBSuKNB49Mcj9rhHe5LxRy9pojOUZ9BBiPACpOvA9xn6HhklOKlRgSYMA3ZoAqFwhyP2sKEvj3hKcXx8ZP58ik5z0jyhv18haoXyDQ6BcwppYnTgowMfEWUIk+J6h1UOazscPG3CSUfbHTCB4LE1lOWOdx/uOR8FLE9OGaU+2XIG1Y4g9bCeh1tvSH2PF59/yepqRxYMjOcazxsx7Ft8J9HJGCEK7ABd7xiEoRsc1W6NEgoz/hhd7hkJx+AkUmv6uiCKPXJfIuXTp30PLRXlcsn67fcYDU1b0g+KGEiijzj7+ucM6xVxlEMUE7gGowJEMDC4FVLCgCPzEop6T33Y4aUZoTa4psKfZEhqOFzR9TtsMiUCmuaedHaBUj622CMQaOWhrEMcjihPIgKDdYqmKun7FqUkx6qm7wZeX19z+tln1M4iRxNypTBBQOCHpIGPqztu/vLP+ZOffYH98iucq5lOxqjHR9qw4/SjT7l//S2zfEGyvEBcv6O9ek95+4DWisuzBb5vwPMIPJ8IqNsO3/aYMMY7ebIhil4xFI84pZlGhrPJGJPNKY4N91c7bj9csXnc8+nLT9Ha0R8f6V3JyefP6HufNLYc1resbldEoWE2mxIGEZ7QEGisazHTMVkW8b+++R2xB1999gpjHemzL4gjj3r1FnWaABLpKXzf4ccZUggmSYAxEqk82t2WZrPDtR2D7PG6hn9zNqUrK17GHvmLS9bbPVvh8frDDc8mE75dH7i/2fG/L8/41U++ZnZ+wvrHFYmRVKHBN4pADDyWBZ3VrLcFp57iw/2OzvgEcs9nHynqsmB/fGT57Iz7YSCsB8wQYqsGnVlEfcQkEWKAdH6OH/tIFTGbSLpiDH2IihOO64bmcUvR1CxmEdtVQ1dVjMOQ8lDR7Av8IGf+8iVuCJGuRts9tm95uHmkdz1R7JMYDxN4EMVYGRP6HmefvaL8cIWnx+TnnxBlFakX88pqRt2W9fcOPdSMpxnJSc7/FaSE0xGRtCihybOQrDtQNlvadsdmvWdoKhZ+ShxGjE/PyS4GyrmjyJ6zubni5PIlauiRxZG+viObLRDrK4IO/u8Xn3GS7PmH7T2D6vjjP/sz9vsVw/07Xi1TTi9PibMZozzFBDE6niCExFUWL58gEKj0nICc9uqKYbPBdpbMhBRXb3g4FKxXd9y+e0/ueywnC5YvvyRNJ8iuJTq9pKtj2r7D0dFVHc4FeH4Mg8PzPfJszP+8/xbj3ZOkEYvzV5S3j6SnEcnFC7wgwhMWIUAvLtBZhila/HxKVx9ojge6quHs2Qkc7qh6R1B0BFLzUPU4X1N1PdkowI8jRHZOcPKK51px8xd/zvrNA3VR8ulHE6bzMS7OMX5OWe4IvZrzkzNCIVmkY4SLYaHRXsjqcI9w0CE4OT0nMRbqiq6toTmAi/GCgCfDqYdUPqCw3QFbv8f2mtqG9FbT1hVDd2S/ecCIlnx5jgkDfOOx23gcC4tQgqFYIbqOSI8wfkYdxjTeikHVdE2DqByb9TWT5QhSSb8HjWV2uqBXGjOeM/gGGRqU7yG0QkeXiDBCOlAmom8r6rpE9SX56RJ76DjcXePJAU9LuqZEdhHaM5w+e8GHY8v2cCSJEjyl8E3IarWh2hz42acLkvkFUiskPjLPOc/uOe429IsxaI0IntL0PK3Qfc94PObX/+O/8eb191zUHZ/85HO07yOUYvBScCVCCOgd2hO44x1aaobW4WmBlApb3aNEiT8KUFqw3hwQApaTnGeXZ0zGGVIqhvKAkBIvzJC2pW87EAF6EFDUDGWJqxsCodFDT6yhGBzV3XeIUYQcpSyTFCdgsykojw3zWUZiAsZ5/jRM1AFdu2N3v+Hx9p7lbErVtUxPl4wCD9qGpigYmoaha2mtJT05o7UD3jBwfn6OEBYTRXjpCCXlP1d7+y+q/lU0+QOV0oZoPEf7AV03UHYVn/zyV+x/91vWh0foW4IoYHGyYLV6oNps6AToNqA6dsSxj5IWYTxU0MLDB0Si8GcvaIqSYbNBtha370jSZ5Sre9hpomSKPzkjyE7Iimuq3TtkY2kmzzEXP6FvLJlpkAa8UYzn1fh+jB8lmPEprtmDNbjBUV0/cLAe05cZrz7+lMv5mJtVR//QcLxakcYtQbrEDg4/fhKFTDZCag/hBGK4w7UKUFgVYBnw+46+bvD9gEFIVo87TDLmo3FEvFjSez7x6RkcSqbNLX/7F9/x4os/5u79rzlsj+wONVVryQZIopTTkzOm8xmb+wd+992PrG6u+eaHB9peIKQkMR5N07K7u2M2uYbxMyprUEqivJChGvDcEacEMkhwrsfutthuwE+n+NEYWzc0m0foGpTS1Mcd6x/f0CenLO2AsT0In8ELcXZAt45ms+b2wxXRKGIUGPzYQ41npPrf8u63v+b4/g1Je0I4P0O1jng0pynWdPsjwTTHRBmtyZDVA74IUFbiWoknJaIfyJOI42HPYf/IfDFlpH12w45FHqJMQzoO8GPHWCU4FGE2wQ4WLWHTCIwfko8T6r5DakGjwGmHCTRVnuFUxPF1D5MJbrVGa58sGej6gR+vV5zMcmajjKYq2N5dE3g+Oh+jTIRODcaPccUahyBgoLcVo8WCdHlO2YuntIzjgWFwBGGAHBz4mnUh8LShrmqEVCgEfjRiFIUMbYuQEq0VwoK0Fcb5hPMLbFchhg4vm6CURDKgQouUIXQDDA22btFOEuQz2u0ah0YYi7IGHES+z+Y48NvXN5RFh9UV07MLNrs1oTHkUUSLI/QCnn/yCZ0QbPYH4vGY3aFgvjhj8fHPmU1nTJp7EjmQJBPs+TO2r6+Iz0+hbemPR47rO/JJiEh87rcH1rcPfJ4tcL0EBhA9rgbME5MDo6hvPhBkIzyd4Y3GODcwSEvTHGEyQYdL+r0gUBFgkJ6P8gROWGRrCZylHzo8E9K5glA5RBASJTlx7yG9gFbAYV9gvQnG8wkTj+7umtn4nCDM0EJQP97jz2aY0RlCCqR4AmyKSU7fPTU1jVUw9FzmPqMoR2gf2be8v7lncI5EaeaTnNDWXM7HXIwX/H9/+Q2/fnfHZ4HPydmStmwYjTIG4dGGY1wDx87x2avn9PqOf7xZ4/kBZ2en/PDhiuLqluEw8KeXl0+WQ8QTo6ABncyR9TtkVSK9ABmN8JShLd5CZ9HplGC5YBgKbLbAmCnKDygPDW15wJcNfbnHIZCeQWoDdiBNMzZSI4oj1g60j2uyPCdfnHPz+jWyO+ClI7zxKWK2hEOBq3YI46OiBMGA63vwfIQwiMEhjGEwkrYH5Y1wpoOhIjCasnUMtY9nPR53RxIlaE9SSmUYCaDaIPNT2kEz9ANDcWS0vMBPntHd/UhXSbIsZ/XhjncfGqwZMZ21hO+vaHqHVB59B8empRYHmv0/UK7vibKcw/qG+EeFu/0edXlJ9OwLusOOKJ+jtc/QtswvzwmN5nD3nmyaEXkDumuI5gFG9QyqJxnFNK1Ftg1eb5FDi6gKVNcQJhGRr3HrAREF0Fu0kWgHgfSQaYY/dIT5nDgM8YKEYfWGbnWNMyleEJIuloi+RasYWazBKZBgw5S6fGToegbnGJAUbYfkKbnA5GPiMCKQ6sneIiWuOBCoJT/9D/8nKhvxGEWUDAjbodzARy8v8aWHSELkbsPhH/6O8uEWDnv8+sh4NOL8bIknBS6O6cMNsR9wrEq07PGCBKVThqZleHwEBL72GOUZSoJQlmw+4vQk4dNXPl21Z/5sQbNrwNeMzp4zEHDc9RxvV7i24nwxJ0pybN8jB4FCIbWGIKErGr78+DlfvDx9SgJJJgS+j+cFhJ//WyofhqGi7y3SaEySoDwPhwTpw3FPU25ACAQSLwjogoh2qIiVIM9jEmGZLReUP/mMX988YpSkl5rf/PCWUT7hdv3A5eBQfoqOE7Qf4NUdysHQNrjW4vsa0ZZEF69YPnvOfvKM4uYHettz82HFIl2SjxWmTRG2YTckWCq0bZHCR+JhPB+GFs9LkX6KlU8DBKGnyMCnvv9AXW2YXZwz7DY0skd2FTWOOJ+xSD3aQwlOoxXoNIHdPWGSkM86fvd3P5DnEdr4hFGEQONPZzgnCXKfOPKpD3tG+UATh+TVnvMgQ7mA9DClrfeE2YhASc5GCj/VSDtglGPoS3rnCLSCYWB9KBi6nodjx2fKoMojRGPc8jm79x8wYUuiHG0Fo3zM4eYWhyPOUzifMn/5M8I3N1y8/XvEGC4vEx4Ojr0qnlIdvRCHpalKwskZKB8hBWb5EmkChHPgNHIaoQKf7uZHhrrCOQtRT7e5IpK3nKSPNH1P4iXk0wUmD/FnZzjhEFsP3VX0xwesawmzEWEc445r6GpOTnMul3N+eHfNOHvEjwzjy4+RTQ/HFSac4kqDlQbbNgjbgoP2QdCWNbZqSYKQrthTWQ89SHQnmIYhX1wukWnKw/5AGigCpTGjJUO5J734lOUvJdGnf8Zv/+t/xhdH/NGMw6Dwg4RpnjCKAoa2Y7CCpm75+Z99zctPnvGb/5nyN3/5l+z6Hud6stDHFjuOu5KqHlD66QzxtEYM4PoeTyd0VYmwkvruhv2hodcpzlkcCgkssoDMD5DGoxWCYr2mq0o8ZQnFwNDVSGXQ2kcIRVf3DG2H6C2BFBghqLd72qJASkc+y3m4u+Xh6i3Z6ZJqf0sjNScvX+InOSJV4BzODgz1DiEsQntPZ+PNa6phj/YDJA1DfSQ1mm0tsU5z7CxBfspwvCWKUsKhJdAeRgj6puNhveP199d8VUMWxvRViVnMiQ+P1I93rI5zor5BFkfSs+fotqLWhijLOc1n9OMd1bagrTvSmWEAlDIMwxPAGAvSCowb6OsSIWK0ilCJB7VAuh04Sdnt8JVkkQSczUaM4uhpK1VqpDR0hxJzJhCNAxmQzHK63kMKgWg7Ut+QegrZD3jK8WIUUwmfzfGI7lvmbUuW5ZgwJwgD+qZBI1G2xfMj6rJhty05bvekaYYfeFxeXjDPYug7hu5JrBmAY1HhTIgaL3EdmGpH4KsnIVsKBBaB++dpbv+F1b+KJn+g8rRCa41wYJKE15t7vn425vyzTzGRxzqKUELSaYMSMM5H1JsdqRfS3F0z5PlTg6gMXj5j2G/othUiWCPDmHi2xK5ukL6h3T5iizX5csZ+9QbTJYjOIfZ7yocDy8vPOQQBSpToKMDrwR32JMtT7D/FDJp0TjQ9Y9g6rFKsfvcXXJycEKRz+n1BdPqCKEjxeQ+TOX2vkIHAC04Qg4PunjAZg8pRQ4EAZDhiWL1GNT5CeiA0XVXjnMVah1PQth3r/Y6Xry4JFgvqqmQUxxz397xffQdxy7F9QChH1Tmqusdax25fcrJQvHj1JdWxZGgeiUaXeCWM/D1l27FMEnTfY+uWu/WW+eOG0AU0xyXxeIqTGuSA291jbYPOJTIYQcyT8CN8hmJHtz+gmpp+aGi2t9z/+Bp6y/nJDHm4pipXBHmONznDKh+hW5LRhMX4hPXqHX/9+i3pbMqrn/0pz/7oV+RGorZrpLNEcYYREt21SKPpzBgdzRBRhFfvETJFdgWIMYNS2L5FtZYkSljMF7Q0KKnw/QA7OJAtTV0wshNCf4QnNX6coj2fcLbEFPd8/5tvkd6IdBpTURHEOdk8574b0EVFEMX05QaXh4RWkHoB477n8faKQ7UlcZZjUTGODVoGNGVJuXvAsw7htbhDjR7N0Ok57viAqI80xxIVTtFNRVtU+HVHeaiwrSCOUuTwZG2SCop9SVeXjDwN2iCFe7ossgwtJKLvcX0LdYEwCUqP8EyElySIMAUkttmjbIf0I5xrcW2P7ips2+G6LWZ2AtUabT0EPYOEova4fTjQli1aGEZJwmyaEjw/56Nf/IpTI8j0T5mfnKKF4+1f/Q/65Rm+7zFKE3wlmYxGzOannEw+g9V7ZuMZQ7GnuL2iDztMLHBVQ3H7wOpYY5OUpqw4FGv2lxnTeIwWElsXCK1wqkJKiZdqWucxHAvCSYaUgr4sodjiqxA/ip+sEF2P1gHaf2KZKNnBMNAe7rHX7wj6nl4EDE7SdR2yt4i6w4yXSKFQTcF5ovjx+kekeU7/4MjGU9LlOSZLaB9viNOU+Pw5Kk4RoqPf3NPXLcKEDOUBCxzu13jSghP4WUznJFXR09YNOvaYLyacTMdExQPxs3MeNy2vHwvWdU+NpHaCaDTlJDFESYYXpuwfNmyLnjcfVsRhxB+9DNi2Peb+PfurDxyLlvfbnnF7y0+ff/y04WYtQmtk0aN7A8MAbg0CxCAJZKA3vgAAIABJREFUsnPQAU46hmGHylKGcIITEcX9Gts70lGCkprN/RVCOaS0KM/HOYH2e7LRnPr2Hb3sKfY79reG5mBJpwvK1SPp+BTlekSYYWWM0D6iLpD9UwqZkw47AIOFpnnyNHtjcB3CWkRgGNoOPIVrjkS+YRwHLMc5XV9yLCuazZpM5WTPnqFHZ+jGUdVX2K5DhT75yZgh2pPOxlhR8fq7v2LX7wmTnKKs+fzzz/nh7Y+EgaHqe+g7jKnJZUk6TXizs6imJeYDUnbUdLTZBC9MqG5vCeIYPwnRaUiSvmA6DlD1nqEuGI79038oBpBPsb+ddUTZAntose0RP46QqkaFMcZkhN6Wnp5hEDRlTdfViPGUOIsJjKWrKqgs3sQjGZ1g4gTjR0gR4+sQPRyRxTVCN1jrIwQUxZ7DdoMOM7QfY4IUP855Nsto0QyPW2ZpQmct1gpkU7P6/e94eX7O/KufIyOf5v4Op0NsD2E2YZxEeMNA3bS8/8u/QJ6f4CnBTGkWowSbJkTzBbotsH0Cu4Q+aGiNo1rfM47BypahsnTHFk8H+OMM5waEa2Cw2OKOodgSxjGTjz9Fhwv8ucaWBX1vEDJh95u/Io9CkhfnRIsl8dlPGPYH6v0GHSZgJE8j+iPaKpQJ8NMJ0kvRfoQX5qgwQ15+TX+8QkYJw9Dj2hYtFa4f8MoS7EAQBtRFiYkMeIrHxnEoSnRXE+QJbd+iwojZy49Z1N9x/fjId9fXhOMFL1++QiifxekTkHscRtTjOUWzI/I8yod7sjSl6Fpurm/IPvqYj/7sV3zzYY3ucuLAMl+MEdGUNA3JOkPmjXm308hK07cNXaPwjMU0HaK5Q5kIY8YMVmNlRLe54fB2Q+pLopef0x8qeisJgPPEw0hFGvj8/+y96Y5s6Zmd93zDnneMmRE5nvmcmlhVFJuDmm4ZaEGWbMOAAfuafDHyPwMyJBuQ4AFoqd1NNskiazhVZ8yTc2bMO/b4Df4RvAb2j+Z7D7Hje9e71rNM0zGdjndNOdajncWHOcmoT29TsJ+lFKXk2+/u+OJHAcMwQ5YF4fAQGWZY7xFZRNhPCOWUxGzxUtJWNcOTQ5ZnFh1FhFlM1EEUh3RlgaNBJ33CrE918ZZyuaGnA7o4pvEK2RpW13fEXz5HximnHz8CGrZlgewUrjMM+wmiWKDzjPT4KaIJ6YnXPHu6R/JkSjLuoQJLO4sgjCgWM9L4lM31GdloghLgu44wHSASAV7shDKhEcMJYW+IrwqC7Zb4wUOSyLD5ek6W9Gh1j9GLz0n294mPpwipMXWFJEBogVWa1hoOXnyMdi2rs3d0q3vKiwXHkaBQIc1ixTKwxFHA6NmPED6gW3aoLCUcSIIHj3eHkHaNE5Ys0HTUtG1NVVW0qy3VusHWkEQD9iewXN7RV32aMCF/8QWDw8e4uiTrD1BxTryt+bKa01y+ReZj6tWcduspZhsylbLdbLm8PudHP/tL9F6Pm1XBeP+ALM1ZtS2d6WjqhmKxQTYe20raThNrifAhUhgwLc4LlFCsL85ZnJ1Tdwqhl6A9Sqd4qdk7HJP0J+jhmK4p8JsF5XrDwEErPPeNJUkieqMeJo5YzDe01hIGAYnWONPgq5ZusyXOchRwMBxRmhY6S66hHwgoZnghUdkILPggRMS7xiHfVSit0XWBWhu6psV3ks51OKVpvEM4MDLFOs3hg2esypbZ3QVpnCAcDJMB/cd9QhlQbxqiMCTCIiJFcHKCKjd0s2v0YEg+3kMrgVeSJInJpOb5s09xheWbD28oa8PAC6QK6BAEYYYzBQq3O9JKzXYFg70Q2ZY44wmCHBsYuqAlVVsMLdu2wiwsNQLZDhAqoKtK8gfP8Nstzkfo8SlOpngXEFaOaLOkV3Y839vnvlhTtwUjDS+OJlRtTlEWWGcotwvoYtJgihchq9uCGEt5t6Z2kkBo9vbGlNuSOAqYZAnWduANrqpwxYaqM9RWwGhCk+4Rxn18vSILE8L9CTZNcM4i/vHW239S82fR5E80YZSQDkeUnaOxHe/u7zCbDb/82S/Zf/IIvVzguo7Yerokxtc5gdcUxYZqeY+rN8hkBI3AbCvUyUf4eo5ZXuE2IXE+xBNB3MfenaEDt1so5xvq4g3OaJQMOHnxY+xgRNAtaZYf2F7foNI90vGAoOrIHj2j1Q06iFGEtCakOH+Prre0hUQ5Q9PB5PAZ/dOnhF7SXd1RLWaINEG1V4R5RuNABTlB4JFGgxXYykE3gHKLj0J8ErJZ3IOzyDCm7Czz9Ya2MdgwYn43Q+G5/fCeb7//ircXFT/7y19y9HzI1VVCVf+x4tNZtBKMBmO86LEtJV3bIZMQ5wJO9/fZ73XoIGO1LkgTxTSFbrshFgHVzSVmOEYFATLKdnGXFlzREtV3SGkhHuPocGWBdx6cx1cFm6v3uMpysrfP3atvuTaGJx9/AUJjgg1RmiDDgOHBlCfPH/L91//AyekDSPq8+u4PkE/JkpjJ3me4ztPN76nXZ9gsIDt5gI5TApWhhaDbLDHNCpH1caRoucHZDmkd29WaPIsJ8wH5aIBUDcORoqw78kGP0aiH9xHz2YJ+B5PjB0ghaFpH6FvyQYgQA8ZRTRT0yHo5N4uSzc2M0WDAweEJ+elD1vMFSVcQCEOUxPQY0gmJa2oW64BPn5xgTUtXbbFJj9ZVUFZI5/Gmj44DunZN4D2eANtuyGKBbw3zutnl1IOYpjA0XrC5uebV+QVX93f84sVTttaSSCi7in6Xo/I+drMikgbfrGnvC6K4t8uLdgYVWQhjvBxgthuEB6zArbe7pbStoSwR5RlECd4JUBHG1rSm5urigiwMIRWM0pzjOODpp895cjRl4C2yP8KsVuhA4qQilNDUDZP9MfloD7O5JfviJxw+eUobxmxfvqT5cIYJA6IHU0TSoeNbsjghXO7AYbObOyphublbMcrGWKDzEotDbFYY2yJtRjKc4toSu7nHqxDfeXQ8QcuA1lh84QisROd9iHrIOIZygZndEpW3xIMBxc0HZFcDHSIfkvaG0M1QNiUaTLHesX98QjP7jvL+gt6TTwh1D7+eYbuGdNgnUB2qXQIl3nrCQU61WeE7h2sd5ewe267ZloYoCRBGYq3h9n4BMmDQG5AHId31NeiG9PgB4cNT/tvLJa++/gPhwQRjWtLBgPHjp/RDjd0WNEXBYDjg2MNZ7bGze9IwYLXYgOkIohCjFG82JU+sw2qJFQbTFqgaZN5D5jlyAP7DDwg1Qg4HkPfwbKFtYHyAaDz13Rzul/QODwniiM3Za6rlhujwgEAGCNi5bJKU8cEhVSBYX76jvl2B7fjw8i3DgxEPHp8ybTaEvRxT3RH0HoKOEFG94yPM7xGRRkYJPu3vIo3GIMoFMopx3oJUOC2wgUBGHk/LfH3P8+en1PM78jjm7OoWt14RRhnpwTG90Zi9R4+w6wZFQ54a5rLhm9/+DR8ur/jd37/h+Wc/QUeaxbzAtg2fPn5KUSypDIjOEHc1Ns3xOqbXC/DWU6w3aOkIbu4Z9fZx2yVJmkC5odkswTcIzA6eqdKdyKQ7pBMoo3c2fy/I+kPcsiE6PUJEivZiiRAK6QW9vIc2hrpp6QwkgcB1Ddfff8fDh8f0J2N6eQ42JBYxtC1qMkFpidqsETQgOvz2CvI+NogQeDbza2pjkMaQDg6IJ4aegtnFLbPrNZOkjzeCJE1pqhKtHNZ1/Prf/2/86+MJwaOHJMLQhRmbzoCSpFmOKNb0u5LF3S3//m/+MyfHEx4+OeFouk+T9xBKI5IUX2xQowGuMhgsxXJB19dopQlkRlfWxKMxXeeQQuLKAqUdSRqjjj4h3D9B9abQtNhyiZEp4eknzL7+gX4CBx8/5ur9NTLekL/ICfJDOnUPvQN0BpqKtqnoHT5i8fIrknSKCiJ0MkT19lFJjk40fnOG9AalNFbUdLMFOo7J+31M1+CFIxAeFPgkoS5X3K2WPBlmyCxH7p/Q9PeYn10itWK+KdA65MHRKZ9+8iUSR11scE1JIjxITT/PsK2l9Zri5godRxwcTwgoGT/+lCMMyRdPeBpsGO07JnsHBGaNEDEHezHDacjqbktxdk2cBEjh8W1Du3JEx0O62RxvPDr2qFgRjEc4p2iX16jOIRBkvZynjzzWCIptw16mOXp6gA7FziknBXrwELe5Je4qHkyGtD7idjbn7TcX/OTgARRbVN8RjSd03uDqmjDs021n6PyIDg9ekfSmlMkMHY7wIkGZOcXVlnxvtGvpSfZIshyjFaFS/OiLz7BKUV6dYxpDGw2xyZA0j7C1x+iczg3g/B1pFlEKg67mhKM+rioRTcvBJxOGP/4lRWPxLIh7Ey7fnXF5t6JbL6GtGE7W1JMTojAFLxFovLXgBEJ4vDcIr3axiDBEC4GU0P/kR2R7OdXdmvn3MwYvviTqD2Dd4VSLLdaEeYKXLZvrmsHRMb3xEKUgG03x/SGq/o7ow5b/5t/8C7TYUreWxbtLojBm8umnRJNTvAezvEUnKQQjXJXh2xZbF5i2oSmWtMWKdj3DNhXrpuay2jI3DYvZnPHhlOTJR4yffEKAR0YDVNRDBQXy7h1ZEJI+/RFvzs6oraJcOY4OTuhlPd5fX1BricliRi8e8X/9u//IqOuIekOGQUDdlSxWZ9SbOR+dHmCcYTVb0n90hNAK6TWIEN9ZVt98Q/H6Hcrs3HZeC6QAmUp6aUaU5ET7h4DAzO/p53ukTw+oixnf//4leaDpZwlxmtHEKXUzJ1UBMsjJ0IS6oum2XL18y+MvviBAIWVMkIYke/tE/SHRYA8t3O7AUreoeIBtGggUQgf4cNe2JLuW8s0FbduyNRIVDzBhSJhkVCqmP+nRiBCBIkkSekn2R3A93N6vORoeEgQJYdQHHSC6iqw/QGQ54u6aVEB/NEaFIUJqnIf94RhWW2Ld59MvforKJNrUOOsQkcRGMY3wJF25O3ACCBhOUrRS+K2hmy1B99AyQHRuF/27uaVebqgB01hwIVEmGD76mGR6iKwqkkdPaNcOJ2PCbEjVerLNAtlZnA75uKn56t1LZNPQc57p3phwP2R8NEFEGXiBFgHSS8JQk8QaLcB1LY2xVOs5VoL2jq5rgB0/xdY1VVlQdY7aKZyMCJKUbG9C83aOdA5aS9ALMaHAiz/Hc/4U82fR5E80XoKME7ryjsuLS6qupjw84KvW8NP96e6x//Jb7PUNcRRTiTXnd9dsqpa9leGh7ei2S6QVCJnigwSZZsh0hL85o7s4Q/YfYLYFtq4QfpeX3HvxM0S+j4hTfL2BekE0TEkaw9uv54SlI58eEyhN4CEZHpH2Akxb091f0i5u8LYm3c84/Pwx48kBqwVszi7o5SOSwQMiOUY1X9PeX6DaI6TOyPcf7qya6zmuc3jj8NYg0LurlVTU1RLXlbvIkt9ZwaM4Is8TmvWas3+4Ip8cspnNObu6R4Y9rj8sODlN6boIFYQo2xBqy8HBMQdHE85vzvj+m1fsp56kkmxLg0EjaXgwGZBrOElSnp4ccrVo6XzD6v6a/aef4iNASxjsI5BIJRGbc0QQQGzxXYdrHK41tMWG1eU55WLLs8+/ZP7yW77/7a/52V//G3qnpwT7JxDHCBkQ4NlcvqWnI54dHZPFGSaOePrkAe9e/X8EB2MK3zE5+ZRgOEFUa1AeghywiPklapDhDNimBVUjXYmTktJYKmepqpIoiYmUIsTj6gZpDb0wYj8fEOdT5oUA60mkhLtLmmpNEiWQDklHPaIkR2Ux3VbROcDDN+/eoXTIp6Vh3E9xUUxR37G3v4uDJHsTaq9QtqYpNxTFlskoxyPxzuC1wJkt2zeviV78GOFTwuEYVTtstaWuK+rlPW1ZMT16SFc2eC+g66iWG+6vr7i4vKAVktJZVqslzXJOL4oJHwj8eolyDr8pyZ+c0CwuaecXBAdPUbFGeAu2AuN29vpyCVaBB1fWOKHwSiO8xCEgiPG+pTWC+apkOVtw0D/loisYpDk9rRl5R1QW1KuCm9//nofHR/R/9lN6k0vi6SHXb5Yc7E/YPzpG9fqEdLtKTOcJjx+yLLsdPDPoIRKHzgak/T6nSY8flmuEVBTbLd+8veLBkyeEkcIZT+taZCBxpsYXAagGaddIH4FQ6GyAXd/j4h4y6kNRkCQZqp8j8gg1GGK7Ah0rTBWxLRS6/xB9e8/F1Q29bUWapAwePMCuVpjbK7x1+LJjko+5uVvSvP+W6OCEMDsi6+8hVIctFsj9CbLXg64EB0GaUtzOqOcz2ps7NCFd09AZi4gtjQQVSVKbkASKu7ev2JZzek+P8eWW/pMJP//Ln3OYBVy2FWerBSET8jRlOByyurxCzBaMooz37ZLPv/yc2Q8/cHt+SbPe0rWGoN9j2EvJvKdWAmMNRlps6GkxCDFACQ1dgOw9QuZ7oCUisnjToY+OcV5i6y3m3Svcas7qw/eoXkpRVajJATLqo8MEpYMdCDYKUQNJEsf0s4iRb9jc39ELNC/fvEMUGw6mE/LpY6KsxjZXEJ8gZQ/ftrjZLXa1RJ58hOkaUBqhAmznwDt8oPHGYZ3BSkEjA5rOUm0rEud58uJjAtFQ3V7SbRrO31wSJxnRC0t3d8XlD+dMpo+R3YLvv/2WX//mt7z/cIsUOc+UZDCacPrgMV9/+x1WxhwfPmRdL8miFOs8QZyjk5x2UyLSlNVdyaYxpJ1i+fYNvRTiySHSB+gwwDtDvH+Enc3BWZSQeOkJJ1N0luG6PkGUonpHeAp05NlefE83uycMAlQYIDNIw5DaSJCg7U4s7zrJ6uqCaSoIlUTGLcpZVBojfYUSKUEa4DZ3MJ7SbkeIWmOdQIaeu7sli7qkl2TUsmVWLLm/vOfs5RsCr0FEqH6ICnNG/T75ZIJ//IT//d/+W6rN/8Iv/uf/iU22R/TsM+I4IhCCKAhpO0s2nPLFv/zvYPm/8vvv3nBwcsT49BElOwhzXbWQZJiwwA4HqLpk0SyZbhvy0CJNQ5ZnoEICaVGuQqU1aEl4+hQVHyOiPtQtuAbaLXr6Gbo/QlYV/cGI1dk91byGYk7E35O9+JTwYIoY7ROGhm6+JHtyRLrXQ5kN1fU9wdEA5XaQaJ31EErRLZaI7Yb89CGWGDqDsAZhO5AS5x0iikELtlZwdXXF4f4IkaSUzhNVa9Rwwlc/vGbYz5gcHKIrSOKc9XyGkIK379/z07/85wRWs01CTGexRlIVW6ptgUhi1GjI9Mkhja34F//yn5Npi5q9p1m+g1JTS0Ue9tFii0hixGnOzYcZarVGdi0+75OODwl1ihyk6CjFre+wvo8Oc+z6FretkVGCcEM8AtsKrO8DW9KhJJ4eERx8hPQbpGkIBgF+qHC3U0KTIvM9JjdnfP23X1GvtgxevMDe39Gsa1CS5PgpOkhBLGlvf4C4j+wMsXSESYJVjrYsmN+v6A9zsn6KKVcIb9DeEagAnfZI84S0l3G+njPTCVJHJPe3TENNEIbIvI9YLCmLit40pD+KkcWG2ctvOXj2OdvZmsOf/gyhBGFYUBnFtvHkwzHf/d3vuVYWvOexzBjeXzF69CO01rvve1fgW/BeIlQArQPXIeIEwhSlI4SWqHyfrvmObKgIogAZxagsxtXlzrXbLqguX+PXG3ovfkk4fQBtQXhoEChEpaj/n2+ZfvRfE416VLMZ/nct6/NbAu/Y+1wRjA/QaY5UEd54ZOewdYtrLLgOs62xrqalYtNu2YQR315csa5qokHO4PEzjl58ig40YrVGBSFivSRQYISld3DE/Ve/Zfn2Pd3eMaHsMRxPKIot6eiE1hf8l7/5T7TdLeVW8snHX9JIaK1gc/EOHWkOjvfpT/vU1NzNlhw8miBcg9A5QZ7Svvkee31N6ARWKMI0oOs8SoK3nsA5ROewtzcoqUjChHT6gMXNnMuvvqO5XnIw6JFlQ6LelE5GZDJiVlVcXt3z80++ZC89xGzuKOo5bVUx3D/BFxu8bxDFCp0EhHKCDnbxQBWnCGdx3RYVKaytQAiclAgUzXJFtS3ZVA2VuUWi6MTORZ93Cc1qy+39FYiQtDdiPNqjKBqsqXh/c0YoPB/Pn/BCfUGQRARRTBzHOw7Q2RvqYk0UxFSJItEhmXVsFmuy8QjRD5maa1LpcdstURjSKYuIA4wMsE2FBISO0TpAeoWXEeHwANN4XLtACY3sLL4sMXVL1Vqa+pbpyUfsPXlGfPoRyN5OkLnfOa6Nb7GtJI4Vcn8I1qDcPo/DmKu7D2RKor0kC3IwHYPxhOGTj4mzPhJ2sZ6mwdc1brOgLTeIqqJGgPd0XUdjLdI7vPeY1lC1HZu6Qw6mGCmJTIm5ebNzYlcFyXiINCVCxnjxZ6/Jn2L+LJr8ycazWtzx7t33vD8/4/DFZ4yPDhnLgg/f/pZcB9BVyCSgrRpuby8xzkJ/wI0eMF+VTPb0Dqjq5O6xYgy2NnRFQ/f6jMFPPsKuV/jGIPIRIhkRJTEiDLDeYOsN0WEP2hk3P3zH3ctXHD9+jBr1yU5PMZsVPuyRTMZ4X2OrNUHqkG5OMuixuL2h2mwYHj3EBTXt+pIgeYju5ySPPkHqAXIwwtcNspxjaVHZBG8rTH2DMwaDgCjE+Y7F1WtEEBJJSVOWpGnEwXSCqzdcv3tLHoe0ThLnMUfPn7NclcyW11ydXyKMIokj6qqklyR8/PELTp9+xqjc4Osz9kcHFHODY0sjOrbVnL3NEuVqjk5OefCv/geKX31NfXHG3fUtD7uOSAisM3gvUVkf1zRYH+FdCNsG35W47Yq2rljf3XB/dcb+k8/Isz0qGfBivMdob0wgPFHgUWmA7g/AOiQPka/XfPmjT3FK8t1XX2FiT9Rt8ZVjvr5jPN4n7R1CNEE4h7dblLZ4u8XdzREiQbR+xzzQGoSndpKyKtAakjgkDnNsU9FVK9IwwjlPko0J+wdkriIcCarLC+7ub3n4+RcYHeOCHKslo/1DOh+xbAtabwlCTWVa3r96yaZa82jUR4iA11drMJ6p9qSyoywKOmd31yYVYNpuJzTpEKtARiGM9kHtRBsagbSSdrGkW87wtWEwOma7bZFdR7Oes53ds7q+5mo2wwSaVCvmqxXRBr5bbXmapXR3C9aLFY8eP0AHZhcp0dDNZ5jFFSo8RUU5vvWIQCO26x3PRIXgDd431HWJ7vURCLqaHWUziDBVy8XtEi0Duq7i2cMTpDYMezl2W6ClZvL0CXvCIsOIZDzk9Oc/4/ViTZKn7PcywjhmenyMCjws7uiPc/SDU3RvwM3M4AJNL/VYndI7PkKqBPOrf2BVbGiN5d31nE1ryZJw94hzBvQuyka0c5Z019eE/QP09HgHyG07oMMWhlAmBHEPZIiSGtG1hAdTjCkQ1iHu72iMoNNTatny6pu3bNYbfnH0r4n396G12PkKVxuwmvH+AYVp2Z6/Ra6u8NMZ0f4D4mcfI7MBvt3gGoHb3mOKBbQN9WyGCDSm00T9DANsywYXKLrW0st7mApeffueqWo4zTLG2RXz9/+O/njC51/8lPnv/47e3gHHjx4RRgFJnlO0LaODY9xmxfPxCGkcPh+wNBcs644sTtmbTomjAN+2FK7DOYvXMV5YXAKt26Jb8HqAyvcQvQGIBqlLRJIhQoVbbmg+vMEuLgkP+kQ4Vh9esW1y8ukBYRwTRAkqVBBk+CAjMi3d7JquWqMPjhiMh1TLBU1b8uH8mvPf/o7x0UOi42MUDfgtMs5xSYQ4eALNCtMYRLoTR2QQIPI+zjucMTRFgZQJvjUIEmyxpFk5qmrJfr/H5MkBezd7EHum0x6+2eK9RAo4Ojng6vUb7s4FL6+vObsuWWw6jvcTutpycHTC4UlFL90JTvNNwXp+Ry8VpGGArTbEWqDCmM16yebuijAfsl6tGEf71Mt7IiFQUQZxQpAEdPMVNDXCV2A7gsEeUT8Ha1EHLwi2K8xmwfb2B25+fc+793NGqSI8fEKynxL0oJ+FWAe6n9ALPbGSWNlnc3fD9uaONN4j6edoU6J6EVI0yChDBCG2EviupFN6V/FpG2wl8T4EU/Hm5Vvy/X2W59dsZgXFpuZob0CgBK5pCH0Pnw9Q+YD5esPe0SGvlxt6r99QZiv+2UdfEipN6A3OOpxUyP0Jw5/8jL/IE07/039AP3qOnh7il3e05XaXb/cOxod0YkO9WpPYgk1dEYgUHSZ4qdDhDqyuvMMvPdH+AVL1EKZDhQ6iHnZVEvT3kf2YdnaJXCxRaUb/0UNGf/kQL3KktgT7IXKQIfsp3rTMvl6wbVY8epCSHiX4bY0eDTDFgiBSEFiE3JAfjFhdXNOt1si0T5AK3HbJ9vI94ekjvHHoJIZAs7i+Z7HZQBAz3jula2uyLEEkmmfPH2AdTNYtYSXIs4zTh4dMBns8fPaCYW9AMbvHeYvzjnZb4K2DQNM4y6MXjwjShKs3fyDLNccfHeOakAd7ITe3FUbvUauY/sNjZHuLdB6RJNzP19Bud9DQrsG3W5I8AlshZIAOQmyxQayviHoDnMgIxJb1zQ06OSBPexTtObVIcemYYNij+XBO8fYt1fIG7UoCY4iPJqSf/BidCB6eX7B9f038V3+Fr2O68wtkOiEa7eFpUFqj2g1me4axeseZ8o5NWVJv7gmTHuneCIFHyl3zovQGEQRkJ4dcvZ9zWFY4HXKXDilvZuggRHhL7+QBQbGGzZJAe+y2wbUSWTe0d/dskkP6zz6j9+gAUVxjw1OUn/Lhv/yfJNrz8NEUs56DUngcXnhsuUQP9ncsoM0NrgEZ9hBBtos2SgEWcA6sgbpDiBi3LNG+Q0UBKg2QkcB30C2uePUf/wOmmnP68ZeEvQE6iiFwqPgUt13Q6pJeYqAuCaafIJOc8aajubnCtZ7tq5ckB0ui6Sluu0JIia9WuGWBExZb11B6mruGatWwWjWslCSLFUaEHJ6eMBrtYcr6dx1yAAAgAElEQVQt24t3pDom3D9GBDHBaoZ4+hGL3/wGn+X44ZiN3zmhp5MpVhsOnj7i7ttfUS82LH/zOyaPfoRvHU1lCKM+zaalXJX0RyEiUJTVlthpLt++4+TxQ3TaAwn12Ru0kBBlaFPikTsmWKixUiOVwm4bAp0geznR0QllVbNeFNycXfDiYMrRk6fYOMUPDjG+JfGeblsgIsf080P2nKO8mMM2gG5B1A+QaojvapAdYlNiuUTtHSOGx4h411ylpcCrGhVoyrff4AeH2LqmLQzr+4pN51k1K7LRGJP0EGHOpoLff/sDKuuhkh5pHBAmfdr7CyaDHj+cv6eoF8zmnxEHCnSCCiN0FOME9F58zPrDe3y5Jh0MCCQIJM5LOtERpSlZGBKFEaEAmopUKSgN1smdEyq0O4dmkOLLCrsu8ekEV97j6xblFYGHWCqO9oe0rQEUGEPa76OzDK9zPDnc3iFDgapW2OVy5ypOHMl+QEBIJjpOBzlZqIiEQDYtOsoQzhCGiiBN0DpAeAdBCEGK6Rzd/d1O4JQBEknVOaqqAufw3lGXFbUTlM4TAEIImtWMfpYhU8Xs5pxw2EcnEbUH23X/iPvtP535s2jyJ5qyXvPq9a84v7hmu23Ye/iYXp6QKgfKUxuL1wqbZIjWkOYZq6rhen5L8/3XfPogpTfOwbZEOsBXW2SgUDrCZEPUyWOsFXTLXT2sECXCBwg6ROOgqwiGGTqXbH94ze/+9m/pfESvuCe8/YYw9yTHj7HWQRAhhUJ4g2hj0v4+sVN8+PtfYbUmGn7Nx1/+BdXynHA8IcwSZJYihEE2C3AGWWzweLy1OAPmjz3jRoJpS84v31NVNYFURElCHoRUxlFWDTdn54wDT3x6RGAtTd1iQ0WepbS2IRoVJOOQ5D5lowtG4wGjfo/jh49Zz2+x7c92gLFqgXBrWqnwOuBivSV1Dcm0hzeXtN0MEQpU0bK8uybd2wcd4GWI1wqIsP0jbLVBI3Bdi7E19fyC2dkPdK1n+vABgVeMjo7QSlK+f4Uv54Szt4T7U5IHTwh6Q+JRDzsccvvVH/j29Vu+OX/L6O6Cf/bLX9BLFRfvP1Den5H0h6hsH4xEGY2vZ/iqoL55i+gPUIMjqqpGJQOQAfWqxlYV0/0RItb0Rhk31/eYdsNglNKLT8gHpzRri15VXHz/mtevXvHjz5+DCinLjqas8C6hNjU6zOi8ZbksOJ1MmU72aLo1TTWjyGG9WHKxjig3Nd+u7sB0SDz9NKE/3KO2jt5gCMbjrEdEATJO8WFOU1VEqcJ3JbZYg9miwwwZZnQyJslrjEkw24pmW1Ks1/gwYpJFRFFK09bMHfzVJ095MOyRTY9p8Kxvzzj48QuU1tDfA6loLy8QxhI/HyKTHO8cQoXY7QqnBLatMZ1ju21wOsFYT5iFNG2HE4rrxYbFbL6DyEaepAfjwQGyNdTrglB49p48wQjL8voC6wyqrWmLJa1znOxPKLclWZxibE0QCgZPX+Ccp1Uh3fqOVe05GOQkkz06WzHq99mbDBj1+ti6xTvN7c2GwXAPKTZIZzDSo5McIxxIUI8+R6gAn8RIqRDxkOJDAb0hYZqi0wih/e637DWicegsg3JGffUtb34457x0DPdOMCLnd68uSP/v/5fP//rnBHoEssWzRvZytI7IAoWpQ4QtEIOA8MEEkWj8do7b3uNaiym3tLM5pq4w9RaXZ1gMlffoMMNHLWVZ7ThHMmR5t6VY1VgFbatRUc7o048J9k5w/T2CD+8YScfo8ADZlOg4QQ/2ePwXf0X51a9xXrDK+1gHQilapcmGQyajAUhJgKDuLKYxu2tRHhPEMVYaZOgxgUQE4H2NjyQ+yhC6w7YVdnOLWV6RvXiG6Wbc/P4PXLy6Ijv4GMoGWTUEWYaKc9Rwnw6NFh62c/T+CPoKVzXY4JxJXbNc1Lz5w3uevXhDkOyhTx7iqjmuvtsJoXEPh0fIDlNXWBniw4BOCIT1OBwiCjCLEus8VgrulxuUgTQeYVvD7HyG8iHGh7imJYhiSAaYrsMKzXcfPpAlQyRDhllFPx0RBSFBEBNEOX/113/B4nbBfLHkd79bcn49Y3Q6ZOFqvAmompYgH5GGglWoWS/ukdYQao/XNUrOCIISOdpDBT2k22JWK4JMINIMPcxxXYOMHb4tkON9THfORVHw24sVMh5jcUwai44zgkGPg8kBclvSoNncXPP1+3ccjKccTg8ptwXNakWW5cjeAFdZVFTitw0ujCANMW2B9Q6HwpgOG2hutw1XHy6JegldsfsGrhYW11icc9jAo3NJlEuScQ5xwpubOUsn+fwnv8AM9/j6H37LL/77/xHX1SR5wrYqUWFIOpmg90akn37O1FncsE8VS0zXUFUVjY4YJxG5cWRVzenBGO/n3M6WBENHOE4IlaSzhkDFSN1HnX6JFwrvE2TQx9cG4RYIIlQ+xG0Llr/9lraUpI9ekD07QRwcU5kATANDjZoMEFi6+Zr1+RXnG0N5ec9nHx8Qjmtk6lD9A7rZObY8R4aWYDBhf3pM+eECpEIm2S6+8jymXM4hCBDeUllJUZaUraHeLlD31zz74kuiJMFIx/T0iOVsjY5jnhwe8fDxC55/8pzAZzx6+og4jXjz8hYhBVGoaW3DbD0n7A8gDojGe5AkPP74M5rVHdev10z7Gtsbs7qu2V85hocp2cEDRBmxuXxN2su4nQnWVhJXNXtJj9A1NIs1Ph0SDB9iZ9d059+ij06xJkK4nSOxqR358yd065JoMGBbbrh+/Yb4zRWvvv+Bd1cXLBfXqLbiaZ7w+XOQNkaLhqw35H5W4PWA8LSP7me4VYnfLtEHB/iuRsYtwli6YonTklW54c4KxocT4jTBeYcOIpR3xHGA6QxCacYPT/l475T7l98jlWLy9BFtXXDjAybJTlyR0tPpgHK9YjDOCIMenWgJtOPu+5eEwx6m6EinD9DZc2S1gEYwGI74NBLYuo90kOUp3hlMUxA0Ga5Yo3RAVxjCUQQi2B1FnNkthRZ828J2g1/d4tdzmptr/OoSHzXYraD84S03X7/km1/9lv/qr36MDgTm3e+wV2NE2qfd3HH/8u+YvX3D0adP0XtTRNTfOb5eaIq2QfDH/8HO4S4/kAQZqp9hbYPRjno7x2wLTN3QmYbZ6p6VUQS9IWmiGU72ODg5ojcccDubs+oqHj9+QWAtWnvces322z9gtUa9+Iy0qLl8e8bdrOXo9IiTpw8Jejnt9JjBwSF90fDD5ZJF8Q370wn0ewyznGRyyMFxn9VszWGWYrXk7R++I0sFWEMcJDhv0L0EwhbXqV1EONDIIEApjQoDdJrh4xzSIU7G6FCQRI6D4zGb2Yzz785wKuPzvxjRn6Z0ueTKVWi7pV6+5+9f3fL29VvSXPP8o0cci4JyteLwy59jNhuEd6g0B2fwtkSOH+KKAAIF3Qon+gT7j2ialqYucDi2Vctia1nWFfnhEfn4gMtNy9n5DCM0w70JWwdK5MSRppeP6OqQk2HH1dIBEAiPCCPiOEYITyAhH/RJej9iu94QaUXQge8kg+MHtJHBmYog7yO0BykR1tC1FaQ5phOEVY3yHSKP8L7CnL9BygTZl2A7hHAE9Yxue08gBNuqIenlRFlOt91gNyuSI4M1Fd42mM05m7c/YOo1rW9pMXihsNGArddUN+85PpogrUEKu3MIxgGuUygPyjuUECDU7gDa1qA0Ou/TVVuctXSdwUaK1ljwjq7tqJqW+aYg6/dpuxptu52IqjVZf8jm+pKzq0sSoVFKwHTvH3PF/SczfxZN/kRTFAXONkRRSGscVAWxnmARdHECXuHLkurmA7cfzumsY17W9EOFXd5yc3vH6YNHKEB3LQqJq3cVlKZrEGlKUxW05RrZdShZI7zF1Q4iiRiNUf2Etlrw93/zW64rQzw44HJ5RzS7JN7rowYZsh7QLTOCLMDVLZ6YMD3k4fEj3Nlr+o+P+f0fvub7r37Ppz/9GWW5QmUDCDVdFOJtSzzex292tHtTNcgsQYR7eO9oqxWru2uatqJoLeOBpm071mXF1nguZ3M+3Cxwgxh7fc/Dj5+CVFTrFUXbMT48YH5/x2K9YjgasSq2RGGKa7a8/sNvuL/sSOIDSrvl7u6Gy+XVjuuRprTGESUJ//lvX3L4zffoZIgWIffLGcu7K6bPPyIMNXhB25ZEQYjTCpkE2KbEmJJq/oH7t99x9/Ydp5/+hCgO0QbCNCHsJyxv73j11feMhzkHD08orr9FpQPC3h7vv3vL//G3v6aqNsSx5NGzY8bTHjoIGRdbPnz3Nf39E0Q6QA9G+I1FugynYmxtkHGLtRYXJEjhsMKwXi8Q3qOE3AH5uoai3EV1FlvBYLBPcVfyh9/8lmZT8PTRMcmTE0Z7+2xdQNU5VBhzd19Qy5SyDZnNGzKvGfVajh8fMj7sUW5qrs8+gAjItadp13gpWHYeKfwuhzrs04Y56AjvLALxR8ivQYS7iz/8cSFpS0zpINlHyJCubBGbBXXr0UKRZBkyDskGOVESoaIYaQy0FZfrOQePj0lDQy/WJKcnqEjjOo/KBxBFeGspX32PGo0JT54jVLhzGUQGV21xbUu9XNJ2HaKf7JoVvEeHEduqYVM5wigjSjxdZ1ndrajuO/YHGb1RQuA61i9/TxLH5J/9iOVqzuruiv+fvTdZli250vM+d9/93rGjO3H6c89tM5HIBKoAEKBEkVbFxkQNZBpooIH4AnoimekFZCapzGSSUTI1NJZUFCmgUESXiWxue+69pz/R775xdw0Cr6CqQdUaxDzCdkT4Wv6v7+vKkroqGD89RXy4Yn3zHqUU1zc3JOMJznhv90dMgT+cIJRDMtmjL7a0VcahI3mxd0hzXxPEETrr0FmNDYbkvcBTMcqAlHanIvbcHWDQFfRNz/LVDcLbw/N8ZDpARAFO5CEHMYJdrN4UOaZfM9z3GF1ptlnG+rZFqoZ4POBXF3eM3r7j5GmISiJM5mHaLSIOCWKXdulgdYAtVjTvv8JLRgjlYLoK3ff0XU+zWbHtGpgkWCyNMbtVFytw4iHrhwUODq0GrQ3bVhPu7cPokGxTMwoSVJLgxBH7549Zvf6K2zffcjgcILyAwZMXjM+fkUQp+bagfPsW25nds+O5HJ+fMRiPqatydygRkrwuGRgFfYVOBNqvkImPijSGBqvE7hlxHBAt/WZOs7pHzaZYJSgu3nH17po31xmfRSv06oqyvkVuToiffx81GKGSaPc5j0NMtEebu3Sqwjuw+HnJMH1gUzxw/fuvCE9OYDxBpXtYr8T2GmsMeB26qtBtiRjtY/oepSS9BW00vTFkbUEjNDZ0mK/vuVvf8b3nT/FDyddff4mvSx7PUnTfAwJtLFE6YjEvUJHCSM1quWQQDfDCkK5rmKb7tOuW9PmMoeeycjSta/i4XPAoUYyORpRGsNmW+E0HbkhrJFJ4LLcbXN/BRuDGMX4ypGktsi4R1RqwEAxwxiOMtkjd0OVz5CCla0vyjeabNxus5yFdsI6HlAJfSvzQYzKbIByHprdsqhAXza9eXvAfEJAeKurFHDsYYZ0AdzTErDboQGLjiLZpEZ5DLwy26ai7FqNCPAfqrgcNfW14dXnHMsuIvISu7nGDABUGOJ7D7OiIxWrNZz/4gkeff078+BE3v/05Rad3iRApkErR6Q7b1igl6S5eoe9vCE5P6KOQyrY4yqEuctyRh/AiRLPkVNV0s5T7co+rmy0jtSZQEucwxUsnOJ6HrQqMDRB9h9UFqAGmWO6YPIMTrNKUb75j/uYNyeAEmaSY5IisVvzZ//wvefv73/Bf/Yv/lJPPzlC+oLl9w/EznxP3mH5ZU92u8Q+P6ZsV3uwAOf0Mk9+Rv/41AUMCOUP6PlaA7Ttk6COaHS9K+T5GSZabLUjByckhv/j2LfVijbi64sc/+ymyNzitoNsUPHnxhGytca3LZpkThBorDWVV4ydDNnWDrho6CyoIWFUVw8MZy7tb9o9/zP3tHXK74dtXt2xPZigZo/OcrXB58ukEz9yjizm27IkdgfACyramxCXoDZ7ToZsad+Bi2p4uXyLHI4w/QngOtAUicBCDIc7+OdZboxPoHzQXF68oK5+b3ufLdU5etpx6kg/zLX14yU9CF18Ibi9z7HQfodTut9f3EHGDznJMEyOUQcYRShtMVlG3FQ9FC8MI4fm0SFwVghD4nkswmdGuV9iqJRGSv/f8hA90/KKqWWYFp4dj/MkR9pMfIvN7cFyub7eIGqaNpe9A2IBOQ9sU3P7q3zOc/BBbSbTJqLY5y8sl4fEe4+kRpquxXUc62SeIPLpihesFuOkI29agwAiLkIC0u/98a3dwZyVBgFle4jTXLL75GlzB8PE5wovRveTjzTuGYcT64hovltw/fOT9XNJqybOjfeIwJHn6Q4Zn50SPnyCCBGF71N4UcXpK9vJ39KEgPv0U8wfLkmCAkZK+q0DXFPkNq7yi7Ct6V2A9n7qqCMOQKAmZzcZslktqJfBdyUFdU/75/0H9+gP61Uvcw0OiH/wR0nEZ+CF2u8UJxrTK49kPvmCSpkxcn9XVFTcfLinlAV7t4fkpeZPjRJbjR59gTYkoLMLxuV9uKB7W+L/+PefnC4ZxihM6IAxu4FEt1njTCb0Rf0gZSbTyKbclelXghBmuf4OjMqLQ8uLv/5CbqyXLdcfVveH2//45//xPPsVza1ZK8/X9BvcvfsPVpiV2QUtJDrz77ltGfUejP8ff20MikUFEX+e0qw84wwgrUjQ7eLsxEukOoXmgWN2RVxlZV/OwzgjTAa6XgBpwfX1HVRpmkyMSz8NzPUaOxqkLzp+dY7kj8iRGaib7pzumlVJ4jsL2DWqnFMILQ3AddFHgO4re0TjDCUo3dIuaeDyirNYoR2J0D1VHKSSBH6Ix9NsNQiqsahCTEcIKzPY9UjUIWSNkhXIF6cGY5cWcOArxh2Pa7YaH3/wGXdQ4wxn55TXL1xdsmpZVkVE3FUIa3Mjh0Q9/hMEwenSI6KaIrkbXHdFkilC774VpKmydY+VuBacvt5i6ATfA+D46z+nbnq7XtJ6LrVqk1VR1wzavEJ6H+cMKJEGAZifm6IKAu0YTuw2hI/HiCKHU31yD+7eo/m5o8tdUSqkdc6Jq0Y5PEkeEgxRb5jjBANV1ZLpjuVmz7XusFxFPJnR1TdcVLOYr2q4jTodYY7BW7MQPfYPwXPzxmO2376mKDW5VYtQGEQXYQOGkB6jUpW8yVlfveXP9QC4D7oqCQDhsL245bgxPjORwPKK508i9Cabfxb1sVxFFAS4hq5uMSIZcvLxnNH3gKH7An53gugoZgWklvXCRsydY3eJI0E0JXYewhvXVfNcYCEVet0Rdh3C9XcLDD7HhgKy3vF6WPJMK5/1HxmenBOMpsm0I4pSs1ZRNT+KG7B8cobueomi4/c1vkOaIH/3DH1EVGd98OUcIgasUUuxo71o52DhhY3pGFjAG4zqsizXFdksQBjjeTh9qumJnqwB019BmCza3V9zfXpFGksgHWW4RTYMSLfOHD/wP/8/PWTYdoVT89NmCn/6Hn9NWOT//d7/gl1++J68aJD1Pjo6YzEbUjmRycMKjaJ/3V/+K/PYt6d4+snNwYhdtFCY+QOzX1MUGUdaI0MO4PpvNlrrKCVyXKB1hfJ+vXr7iw90dkeswjlKK7T2nR1Pe3y4Y+w6jUcoodDHphNu7B27vl0wOjqjKJfVas9xsMB30bsDNfM73XhyQRGM+rq6xGoxSiL6gLiuquqPpNMKROK4kij0q00M0pF+vdpCq1Nvpcvsa0zcYAoyGVrt08QiCmKYowbZ01tKubsg3W+7mG7QXMBhNEb4i9DzSKKR4uObF2fGO8WJKhJCY1kHnGiFOkX6EsB5i1GJmJV1Z4JQLZHqI9QIoc/p6S982FJWhtQbZdfjhAGt6YLeSFLg+o/GYum7oKo3EkNcbqNacjZ/gpwOCp4+Jjo8oy5rrl1/TVwXKcXCVT1s1yOGQbLUmSAasVxvm/81/zcnZU5ikCCdkenSImyb4zj7V/J7+4Rq1XPJ8PMTqEc5sn1DWbNYLkqMDhBvQWQfLLuqp2wrpCrwkxWjN9u0rtquc9PEjnHSAiiPUKEANPFQa7G4Ee40dushUgCM4dkLs2zn3D/cMzh5RODGbfMV3ry5w+5bR7BHWUTTbHsSKwfgE9+gYs76DzQZTd/RZjYgiemPp6oy6K6itREfB7tBnLXXbM89qhqlPUawpshxfCAZBQuR3fHp+wNHpU5QXsblfwf/+rzn90z8leO7jY4miiJu7O5a3Nzz6yZ8QDscI1yc4OuX08x+wfveexc09QRAxSlKmR0coCUZZTKMRSlCYkqb1CYyLNdB2LbQVtilQssMJHKTjIHwXk5d0xZbecXGHM/o8oyxzPq5r5o2h6xu67JZ222Ho6MqSsQLZzRDSYE2Dbhq217cUbYbsW7K2oegbDg5G3N3ccvrwDrU/Q8QJBCm26zFdi3UcjLBUi3u8aISRFuG59E1F19QUWU6jW7SrMEJSdTXJNCaeBHx78Y6H5YK9SFG2HdP9Q9LDQ3S5RgmBN5oxCVuWNzfUfcnIH6A7xeHBKcPJPtFgwPpuC6amvrln8/4lfZvz6qbn0cgnDX0QAqUcfN8jd2t0tzOjkYQU+Q1BHaOKljB0MNsc2Rkc10U0HaIucaIBbd/jOD31zSuuvn7Dd7+9ov7DWp/nSWRfEQhL//AdnnvA/mfnTK1DU2x5uDCsV0NuN/esLYweP6e5+kizfsCNI2ztIKxCNx2aDX0PWrv0vd2ZvYzBjSxVmWME+EnCotC8uniJrySO5+GFCU2jcaUACTIMWd8uKY3h6U9/RlFuicZj9lRIFCc4GLRuQfesr9/jjSdEeUZw/hTrenT5Cke7WOWSBi5hOsJraqRUtPEU5XkEpaJ7s2DZrIjqhrDZ4rUDOt3imB2cFCR6dYXjK+R0AsE+xAnd6i3N7Ru22zuUcmmKG/pbl9+9uuDP/sf/lp+cfcLv/89/jZw/oZY51++/5fT5U4anId7hDNccIEWP3DSgGkQyxAlnsN5j/vJrhrM13vQAbzBCVwW2rUBKlOsjHJe8yOmaijSNyJqa5+dHtMdnMJ6Q1S1KWN68fctwNGG8NyQYlNhY8+jFMZt8y3a7ZTQe4wQRm7InUQoRhfhJQJfV4PksPr7nt1XJkyePuVr1XM9dPt4veLrfkq8LotDD9WryV9fc/OU3RJN9hoFH5LnUFvLeEmpNpGJoN7hFhm46+nqLOzsBx99xgwhgMCE68Snu3tHVNffrB8oe6q6jcRwGBwectVuWD4KnY5d8uWGjLe/mK+IgxD9/wWf/4EfQL7C9A8kY4XZIN0bnW6ySiNCBEoztuctKCt2TWLBS4DkuyrFYq4knY5TnIPwIXypcDL0GHQ148tOf8fLmnn1tOIw96tsL9GTIprUslUdqLX1V4bgRvRBIz0OriIdlz/v//hccff4aR2lWWcPHbcZZ5DE82EcqCIYDHN/fXczVOVaB8GNkkGBlvtMGOxKUA64LOGAswjEwnKIevcBXNeeBg4ynqOEYGR/RbRe4XsdV9sAwKfnq31zz3315y7vMMIh8/vHZjP/yP/nnZGVFKpeYyRGu14OyiChAjdMd8w1NU6xwwwFaN1Cs0G1PX1fUdc/WthTtnLJpKSqHRlqScciRc0TvSHSVIz0HqwKEE9A7PqtC88u/+C2PQ5+jZxPiwQCK3apf9OQ5wUKgplM2OJSLLS/fvuO7L3/PMu9JJo84f/KITjhEXoBHi7Ih4+kerRJYbanrhqbvef3qI7auOZgNSR2BFwzAChY39xwdniFxaLY5TV1xv3ygaRqiNCZJe+JY4B6kqNhFFxn7ZwdsKBj1OUV6wKuvv2ReLfm/3t4x9gLORvs82nNwPE3uaVpjeLi8Zv/JKZurlwyOnxCEY/qiAWUx7Ybim79ADY9QyQzTa6zJ6XXG9v6S23fvqNqKvLEUXUGgBjjpiMp6OMLFF5rJZIz0DJ7QhFLTWk3fVAxCQ7GBvaMzpJ8iHA/fcxEYHEdSZyW5aQjinqY3NMWabLNiGI2w9ZLsq2+p7u7QiUL4Cm0MwrS0RY7fFljHpaNDrFZgBG5qd/ycrsO2xc6WJw0WEK6Lk3gMD0fkHYSeS1s3LJdvuH3zllILysaSG4UcjvFNj5Aa4SrcOMbqgtnzT2m1oK9bdFMj+g7H8bBtiYgjmtaimhpjDFiNxWJcd/edUoq6bah1T2MsRd/BNkNrTVGUOFGENBbpumir8MZjsk1Jv1zQZxlWSuInn5LMDvFdiXDcv4nW9m9d/d3Q5K+pgjgmSQd0xhD5U4JkALZHBRFGOdxfXTIUGjcMiKKA5WaL5znoDnwZ0neWomgYxz1GOSgvQFpLX2hEGKK7hroztLqhXd2QJEN0HKCGU3QwQPc9pit5+/otIgxpK81dU9AiuWrhsppztf6SL7KGZz98TL+a4kwOQPeY7QPdtuDdTcbw2Tmj84iwueTLv3rF9OwJ7eYaZ3QAjsAstmg1QHoRMvAwWqO1xQJtW/Nw+RHPd6ibmpPzc7wkwFowfsMqb2ksOFGEMIarxqCzBrfXNPcPSMdlfBhwt97gxBNoCsajKVme8/76js1izWSQ8/47RVsvqcuC/fGQV1dL6DoGUUBZV5hhzODwhMkggrZmnTfMH+4pt2tGkzGe3+3ATUohpIvJl5hqTbOas32Yc/L8MbrKsG1OXy0QXYuplqw/vGbb1ISez6MkwnYNF28/8nZd89uLG7ZNT6BcDhIfoRuacsOgTTHZkjiYsX8wJV/eEiw/4O2DkQk2cOlLCYM9QCLdCOk4aG2oig1+6OFEMQQDLhdLrpcF96WlrDNCm/HHjsfnP/4R//Sf/TOmwxhZrql1ysfacDu/5N2HS74YH+DFB2SNi3NG3mUAACAASURBVGkbOtvw8eEa3W2Z7FtO9g4JQwueZP1QEbhDsFv63mCQjNKUou+p64pJGqFRNHlN73RYr0WNQ4RrUUrSrDLym5LNbYM2ivD4ABUrgnGIdROuvrnkd19+hXI9NtoQDAZMJo/xw5CiKVCJT7gf4zgNQvdY6WH0DoCl7y9xhwOs60EywdmrcfdPsaJBN1uE9DHWYI1DvrxhsVrThgOGysEajeN7tB0YR+L6Pn7kEcUxFbDYrNksN0irCYYB6etXPEtjGkdRWsvaccmzLcHjTzBFyfabVzS9QR7N2Dt/RKuuubhe0n54z7H/CO8kwh84qChA+DOc8R71m68ZzPZYfrzlLArYfzzmOrtm/XDH4ePHxJ5LV2saI/CD3SBH646m2OIowfrjW2o5YeD7iCQGGmyZYxBIkYAaI/wQ21gIE+TRMYEWiG2PsTXV5BDjuMSBpbm5I9MCp8gZDKYEM8Xy+oIUhetHMDnCSh9bdRhrd5R7T9LUD2zqCn92iOsrrJTYznK3bXnIGoSqqOua7SbnYJgw8AUHzw5wvADX2/GQejfh17/4FV///hu+98dPuQrGFAOfu/mC45MT1mXDQTqlevhId3fN1e/+CnF8QtjA6vaKdLpHMkrRbYPBcHVzyfnZI6xoyMQWR0a4VY+d+GjPByRuHNHbXWpK6pq+2lKVFSqd0QlFazW5kKTTId/Nb3jIc2bukPRoDyF7lN1QXnyDWz5ghKRZzll8+MDD/B4ZaBwvIN+uqRWM9gYsb1o2dzeoo1vUaIZMprvPylHYIES6Lo5QGGnpdYXoNH1bs622O2OJ6+IPB2RlT+AnHB+dsRGav/jqW2xT8mgQ4ArF8eMApEIJixMnuCbFq2omk54o0vSV4ONdwdHpHoefHbF/fEi+WZFVisWl5n5+S95W3JqWN3cLPj2cMfB2OsdeKN5+vGIvSciqGj8QeB1kWY4bZBgjcboS1wmpqxrpyF2KRAqEhPa+5OXvvuHVqw9UwiVOPPzQx1hwhyOsKvCGPfGTfYzvs726IZt/4P76Ldu8YhTHPP/kEcPzx8jJiOLjFUF+B57Fm0yp5mscG2OtoFxucJIBTddRdRZhBGVdM5od4g0mvHzzLfPlgnEc4OLTqAFYha98Ij+kzDKqpkIenWCThINpSrVdIg8gDH1s35FVBU2xprx/zcMy4skPfoaaHdCu5uAoTFPuNJ3+gNALoCzJP9wQPf8eKo5IFpa98R71Zk3VtXRNSddmuGFIv14gZ+e4kxlEAdYPwB/t4MvC0BUV/sGY8KDk49UV8m5At73h4WLBf/7FH3FycsbV/D39b76jVS2nnz3lw8dbTnvD8OAFXXxEFAY4g0cgHfBdhJeSfvoF0cEYWTeoYIDAIpTcQd6twR0MaK1m9fGeXlii4YCyrtF9T5Qv8UYR//bXP8cZT6hsg1uXBNGQo4MZXrrPyekJ0+qQIPIZjoaEdwltOKAplnhxQFIH7B8f4XuK9bZi/f4Vv18taYy7MzLhcv1QUG02qMN96ianubzk/n1OUg15+k+ekeVrroyHkdALSe+GBMePabtutwYxO0QMpgip0F2Fxqf3Be40pLi75W59x8dG0LUGR/e49S3zRuPHMf3SpURxenZM5AfYdIJIQpK9Ib3e0NQ94qHFez7DagmewRoPo3u6pqNpGvK2ZaMNjueijcF0LSLwQUiUlIT7h2htwQvAk8h0hHZ9Fr1gtD9ltN1SuZCXJYNIsM4rvtv2pNMJ5bagdAYMnB6UwXguKvEoipLXm45/8/9+4MUTj6fPzhFGk7c9ql6TpEOUbXGcHV+hLZZUi2scP4He0hcFKnJ2yaM/8CeF/MOLtRCGyOkxjivwVhrBH9TqkYvbKh4/es7Dywv+8rt7CuMSqSF/fzZkrOA03ePmq/c8+dn38aYD9PoBGbjI1MNUGdZ0yNEedV3ibZc7sKwbYjKJk8S0bUu+zik2Ja1tqWnZljl9NCZEEoymqDggDiRePGR4/ITEleD62OGM5NM/pshW2DjGGwxp8xuM0Ww3GcI7YFHDX375juLhntdffUOxbXG9GFdBNElxBzHogrPDPaaDAOk5XFYdtukxvWK5rBg5cHuT40mHu/trzs4fMT79Hud/+hQZJLRFzmaTcfHxhm2e40QhVKBciZOECCvwjIcznEGl+d6ne7ifp2Q9vH3za9zLb/gX//RHHHgJXhOQa03NTot7MBozdCVN0+AIw/b2JU04IBjtIXRPn62hLdEXb2i13XFUxinZ3YrrV+/INi25aRGhSzAOIAmo3Yi8EfhxzLHnY5Tmbn6HCl3GZ0ekiUf1sCBQmnh/SmcEvdY4noeyPdKKXSK1yplf3rB3eIKKxwid8/qbX6DbjpPD5+QfXrG5vWP64inpMEEKQ7a8xbWarpEoKch0TVwW6LIECxIHmgrair6o6FuDbir6rgXXZXwwpF52XN5nhF5MdbegbzvKzlBZcByPsBUMIhfrx2RGYJVPELl0y3fUjUYkh7iDwU7t3HV4YYpF0ymPbLvFVWB7jXI8hPJpm5KuKqi1oe56Np3hvi7BavquIR4OGUQRnpRobVFJhJOm6F5wefmRuiw4++InGNel6jWDONhdDP9d/f9efzc0+WuqrtdYx0UFIdPTc4bjMUqAdQN6PLZlze06x8dQFTldsaXAZzeTtNwutqyKjmOx85ZrsbM6CGlpW4NqGuqqpKxqFJbYD7FxSid3fBJdldTbFXVTMtybsLlZILse0/dkvaUoKm7LjHVVML+94Xvff0aQXuEnEY5qKcoNJy+OiJ6doLs1w2XOL3/1juvbJcEo+MNai8XZ20e3Dap6QOjdgV14ElrDdr2k3K4RoY/nu1BkaE9hbY/nBfTVBl9aojAgqxuiJEZNxsyziof1lrPDPTppmFclru5QyiF0PCwud/MtFx/uWBcfOHr1kpNpyuODIa7puVu5XG9q4ijEdR2KrqcD4v0TdLbGOjcUlaapCnRRILwYqRtk5GGsxAqB7lqafMvo/BnpZEC5vKUqMjY3rxl7Ds3FG+K64b/4/BHrvqO3kotVxc9//g0PnaUTCt8LybTFqRrCjca/srQm56QtwFsQnOxhN0uqzRKpPILpEQKx4y0oiVAOCIm2EutKeqlx4wCpHB7Kig8Pc7ZFR1m0+EJxPBvxR5885cWLZ/SnRxS3H7Gu4mpdcPHhOxbbjMZK7q8vOfrZn7C5W3J9d4/0BJv5A5vNCiNyfvj9I1YXd1xdLVHuiHK9xVqDFAYP2KxXiNilajXa9bGmR4QB94trlBREQYJjPTCSctNSmwDra7L5Hfe/fcnpz36ErwasHz4QpSGPnp5Rtw1XFx9pNw3RMEaIMWEQMNs/YzDcw9c1Dj3W1FgFdbWiK+ZYXRB98WOsYyEeIsbHOJFLd/ktJsswbU+9LlkuSxphMQI6bfGFBOUhgwhVd+AorIW2qqibjqzqWNcNSRRz08Of/U//C6e//Ct++I//FPf4AO15bAdTDhyX5PgYs7knf1hh2hYcSTia4SY5DSHh8SN06u+GCmjytqWPIko/gT3FfhhTFiV1taRrCjpdoGxB07SkvoetGsp5TbJ3CFWF9Er6fEm+vqVxfKqmIGrX5Bffcv/Nr9g8XPO9n37GwT/8R4jhPkZ59E1P3VnKFgqtuSs7TCbZ3w8ZTCbYdoo6PscIh+XVe0yes86XTOstXjpEmBI7GKBSl2a7xtDQGUMF+IeHyDDAmB2YrdSG7y6uMdZwucxYLBbYuqOLDL7jMB7PGI33EFYi8o68X8B4SGNa1mVD5hnyqmYwO2T85PtUWu9YTaZm9er3eJM9nj3+lG8X/wrXaNLZmMBXGMdjtVmiAgdjLJ2UVGaXrpO+R7lckEQuynHwTI87SBEO0JRU91t0vI8OQky5oe5bvOGU6UHLn0xmvHp3z+h2TjzzicchSmra9QXl6gN5BR/eXfLlt2+YjkNODmKSUcJmu2K8P4LIJz0aIeOQzYdXOAdneNEI4cfYQqMRoBQiDBHC0m8qmjyj7RqqqsRKg/IiwiBB3q+ZHTymkT3rbIFREKYx2ncZHM7odctmfsPo+Iz5tqIZzQiimKPhAYvFPVe3dzRiixMbVCgIIx9HDrnNc3737gPr1RxhNb2Fu/WKUeBjkhCvz0isZZhGIAVt05HXNZMwoLWSomiIIp+ubsjqze6w6CWIgcWWLbrKWN/M+fD1K7QRuKJD9SUDb0QwHBImKXG6T/zpDzFRyr//3/5XfN9Hm55tIzk4OOFHPznj0Q8+Y3R4hDo5J57M2L7+ing2o21LRJJQbAusEfRtTylKVvmGcLZPXuxuJUWYcNcr1vMci2S1ztlLIqztaPuasmoYBynxcMyjdEo8GqGExkiYTEeEdY81mrZtaOoaVxqGiWL7639HPp4g24K+rVGHp4i2wdQ1aZrgotGO2q3r5iWD1CXxavaPQu5tQl4UTHSLcCxaKpzDs5063fNQ/tFusOEG2L7COuAdHCCGPs8mjyj/7bdcLBt0UlMHIV98MSVNfT792T8C4bO5ukA1OUfnJ9TZnEwXBGKL7DaEcYrj+lilsNJDuhNMucKfHKPLBtp2lx7TPV3fYl2PKlvjOgLP8/B8DxGnfPlX33BdvKF3vmJ0OOX0M5e9o3187ZMMUsIwxjqGqm4JnYTA9xFK0FuDnyYoTxMMU+b1lv39EXVr6KzAasH8wxXzhzV+EKOCCXvJENe6OHFKpwaMz0952j7CekeknzznqNly96uXu/fj+bRtg+/HyHiA0QarJMoVu9toFYJ00G1F9vCa6/mWq16xqBtmooVqw+0mxz8YAZpxHNC7iq0TocMBvXJBiN2q9VVFGsBA90yqG4SaYiWYXu8apu2G9cM9614T7e2hyw3S9bDSYoSkFxIZhqjAQ0mPutuwRtFc3vJy8QY/8CnbAs/06HiP5Pwx9XLOX73+CMMZgSxx/JC616T+Hxh1GkqtKIMeXbVUnWFRK86Ugz8YUxdzmu2cvdmMwI9BCJq6oVo/YLMCFx832YO2p63vkcEApEVYjRASgcRaDX2D7SrMZoU7O4bGw3ohwung5oaYhE9GKeqhoAlmvJg9pVzdQFAxGcfEqUFRYQOXTvbILqd/aLBtA66Du39AdXdJ03aIZIiUin61pcpaGtNS5Q3tSjDPO262K+7bktSPcJKYUricHp4SOx2j/ROiySHKEeR1jQ4igtMT2tcVVrgY18ebTgnmC6Sw9P7ODHjz/hY6Qzg4xIoC1w9JJ3ukowF13ZMkCb1zSpTC6u6WvldgOsLIZb6p8SKFShVtJzDWxcoIbUD5KWqQontN3XZkXcu67vANCGUQnsBUoIsa6SdgJM5wgpUBBp90OOQHj/5jZPUj2lVLe7ukvF0i+4ZpConvIOuOPsvRVmCkotc93faO7fqO7GbBIAxxfRfKnrqpKT5c0NiO3iqyvKO2DlXnIoTAsQ5esocRAdIYIt/hoSr4ze9+R+9BmITMzo7ZG0/QZYUwHgMVsFnn9E1Fna1xIheBxRpDXVc8XL1ne/+Royef0BZrmmLJ/TJn3XmkiUPweB8xDHAjiWlL2myNFRqJYLNe4QsBgY9cb7CtxQ3i3XNTb+nbFmNdmqajbzus62OkZP9sxss3d7SOx8ZLuJ5fs2x7jFQcRIKDKsPKhEXZM5gdMDs+pkZgipoizyi2Pcc//AeIpsCV+S7hnEQYC13VUJUrmt7gBTvId9921FnOOssoDbzfFFTCIh3BeJAQD4f0Bnwlka6k9SNkNGB7Myd9dE7+9Zc8vPsGGQaIYkpsTmAQ/022uH9r6u+GJn9N5fke0lE4ShElCUIKojimth6JcKBv2JYNoXBw0wFu1xGpCGU66CqcJOR+cc+L0yHK8bB9vZu4A07gU85XCCXRSiH8iM5ReFJgbI+scxAFdx9e0nY10SjhwAj6+48MXUkQj+nahI/zFb+//cCiqXGikP34iij2CCYpdVVx83BPoircWPGw3ZAJh/dv3nAw9QiFQGqBGp0gA58uf8CxGuP6WCnoupL7jxd4fogRFj8IceNwp/ZMYkwQIDFIq9mbTTkOAuLxiGgQ8+qbr0jTAePHTxHDmEejZ7z/6oqbh4J8W9G3JfN1zrJsuN/k+I7h/CBlEEZEtuDxyKHuHLKyogO009D2Hf4gxo0TgotrtF6z3ax3+6adS+AZjAjopIetSto8ww73OHj+Cd1mhdfvmu3V/SUiDGmWK/bGIYusxRvHvF1lXG9ztp2h15JeOtysy12DkThMjeBuWbGpG7L7NSenB5ycP6YTAt2WTCZ71Nka15GYrsfoFiME2uod/Lcr8VwfKX2WVce7qzveLwo6Kzk/OOV8GvF8NuDJ3ojQdTFqgJwc8FA1bJaXGCH+EIf3uL255sxziUNFpxuWHx5wHYnWLq9fZWjjEHVbFtuCk6dD5PqObVWjUASugxKS3tpdVNKaXZPgSEphWVQLxKZmMDinWtdopbC2QJsNm3LFxc0t29/Bo7Mxqw9vdkmjdMRMSsabgmyz4vLdKw73J7z48U/45JMfkPQNenODH3t0KMrFFX3fgID81bcczqbIySnq4ATjOmgpYHpKs/qWbnFPtpzTCot1Ihzfw/MjlBchwgQ6jefHeK5D3fY4YYAnFNXDCuG6aM/DHe8RDiL8s1Mue83ln/85z77/Oen+PjZJiAKfbVuSRx6ukNx8vEG0Lpc3Be5gzKfpOe6gBmUpqozNaoWWEJ6cULy/wKQp6eExxh1w9U1ObVz6riEJXKJQ0OcbWgMtFiU9uvUl5vYdeZ2Tmwec2/dUd+/4+O3v+PNf/Zbz1Of4ZEL45hXOYY1RPm3ZkT9sWFzdsFjlvM0sJ48sbmoI4j1U6vHluwueTcdE0YDL95fIwEW3Fd12jp9Guyh2OMCxNXmdU3cGE+ygqE7gUjc11vFZzO8ou57eQld1vLnZMnEFh9ZF4OPHQ6ptiR8NGU1SyvmCZDyBtsA4HqPpmNvNhpMnz9l79ASlLDcf3nJ6fELy+BO+/sWvePnNv2RVdvjjAfEwIgw9uh7iQUhdlcxXC45me1jXoagLlBvRtzvFo+nbne1J7tYdu+2COqtxT2L6bkO3uaWrayo3YfDkGar3+OzsBe36nru7ew4cTbVcUG5bmrblzd2GNxc3nIwHuE1Jme0Og1nbcv7kBKEtTjCgcWKU7Fl/eMMkPUSiwNmtCDXbFVIpmiKjaWq2myXSD6l0u7v5ShLKrObDb79mni3Y//QUXwoORiN8XfP8aERdFFxcNQTJOe/f3tIGKUHbsDccoaxCuh4GiOOIZDplfnuLLDWiN3z48tdc//qXKKMJHGeXLJCSy/sHPOeYsZRUZcnB0Yw8bxCBpVMeyjM4ylB3JY518AOfou45ODikNTW217R1Rn415+HNK+4WGYusIpIw9Fz0YsPpySPG4xcE0R7l1Zr27SUH0zPc4ZTWdsyOnxIJyWi2T7B/iPR8pHLw0yHWNrS9xhq9Swq6DkZbiqygqDN6V9D2GuNZwmHK3ariflNQrDI8N6SoOtbrnMkwQTmWUmoWVcfI9Tk72MMKy8s3b/A8l+k45fLXvyHffkrTWeIkIkz3KbtDmtc+t7//JTj/EfHJCTIMcJqIwXSKJzRtU+OOxsTjPaww5Mt7Kl2QDF26bo+s76nblrbKccIUG6bYMAE/At0jTLYzywQBIhjtbA/tEH/U8cV/dszqdsmi8Ll739AEc6TbU5VLnGjCar3lLFZEwR7F4g5dLTDtChH6mNojOniCFyRY4eyG9oGzMw/5BpOtEE2FcSUmGVM1LQQe4TDFSoUaT0n2Otw4RLWG3gsYJQPCtifWBuUoyk1BEo2Zjia0ZU2nBE4saDpBrSRZ17J3dspkb8Q2X1Bry/3NLVfXCzxnp992XJ98s6VblZikwFc+T58YepGgjp4RUTH85BP8fZfx5z8leLsgy3OqsiRQ8W49THcIqZC+R993CD/FdBXl/QWL1ZLL22tWjWRdGkzT0+iSi7slxgrOMTw7PuRBN+yNIrRUNFLR+gErFdDpHhEnNOWGOB7Rb26RscDU0FcZ5e1HVuuMjfRInp7SNBXalORW7exuStJZgXQdur7HjSIcT9Lqmm9vFry9vMdLhwTTjng6YTAZkllokymlWhM5km40ZiUdhk3NqGuRUlE5PioReEODKnMC3bItIWssXjpm21RkakqmPaxxiQOXwFNs50vubm5x5Yhor0N6Mbrp6AZzTBegnGCnCbaA7aEv0A8fEVah9o+xWQXKQV9+hd28oV8ahsMY1w+J+4oPiws+1GvybMvfmymSx2cYH5rVPSYU2DbDUS74Pka2GKExBtq8ptP3OIGPtSHVeksjS+7nD2xKwSbz6LoQ1Xf4bkqLxzCN0F2NdiOceIzwfLKi4t13Gz57ccbx9322tid58YTBk3PyhzlxntPNjvHtiPndnHLbEnsD0nSMxCcaDGn7mnyzpdGQ7h8wdIY07RIVhkyOZvTlhtevvuI2zxl5u2SjVT573/8cdxAg3BYROqjAR0YRVsE861lUhlC34CmcsCeRDoEXoqSPGw1RfozyI6Q1CMegAoF0xmRNSzlO8KMZ4WbB7AfP6LfXNLdz+jDGVh2d7emlpNrUu9XUxKcqC7reQ5eaujdcLjK2dcl4b7wzIDoWqRVKuSgDbjRi+/+x915LkmzZmd63hWsPHamzsqrOqaO6Dxrd0zM9tCFmzDiPQOMr8PVovKMY45CgDTkAugG0OrJ0ZaWIiAzlHq59782L7FcgcIH+78M8Llzstda//m+ToUTIq+/e8/rhI99dv+Lo4pzLyQhnOmQco84uadsH+rpD+ZLhbIBpDzROUhcZYTygbxrqqmB1fUcYhbRFTl41JEeXtK3FNCWdVpR9yUkUURQ1+WFH0Ldkmy2D0Yiq7am2ewZSU72/YzScQN9gig1d1yGDGLSis6DDlMFkSms9kmTP5lBQSI9ch7zcPJB3HaN9zk/GQ7yihnSK7Xr6+xuijcLTit7B4Mkp1y/f8uTFJ3TOouDxWran0wEPt/es1muuPvscLxI0h4Jin5E3LYvi8ZkOY5/JJEXHMVEcohHQP4IJWi/EKYXwffRwzOD5C2S2ZvHydyxfWsqrT3g6n8J4+s9a5/5L0J+bJv9Esk5gpCaZX6D9iEg9omOV5zMapcwmQxY/fMuuNfjSkR7NKcuOal9impZp6FM83LHfHhGlQ7SnMdZDax/6HtNbUAoVhyhPYsOIpuvQOJToqHcPVF3LcJrSdJbpPMVzIQMvpKgM1ld8MknoRM3HbMtv3rziZ0c+82nKJAm5LRyFlxBIR74/sCk6vHTCh8WWJz++I2x60iiB4AgZ+xjfp7MWZw1NmXP9/bfs1ktEb0jiCKk1ZdszODoGLdBRwnQ8oj45fkyXToc0XoAfBpxdPSU+OWF4PiWdRJzPz7h/k/H21T03VUYgerJDRWcVoe8zTiICrfGUZLMtGQeO01SQGcXtriZvMr58oTFC4iUjvMAnShL6ek+RbUgmM1TkobRECEEHNFIx/8tfPlJ06hIdhHTFjsa2LDclk4sZpm5IhoL/+uM98SRiHocUXUNrIGtaQq1JIp84tNQ99HnLhIi71Za8bsl3B47nR5i65+lgjJcOqRY3lNmOvrM0dU0QxyAesbO+EhQ1LNYtN6uWu4c9RZGx3G+o65ST4IxsteG86bHpkJv1G3IV0AqN8wdIv2Dx8QOXF5esN0uW2ZaqKlDCByPQMqCzmvtFz5dXFyhl+fG3N5jO0KOIwxDf9xhPphz2D4RhAE2NNx2ighDiiM1iSWpDdLahyVtW725YXX8g31bcrHI+FA2rpqBqTzC7NdFwhD+cEsYDfuZHrD5+5O2H9xzuF7z++38gvD/QvHzJenVLMI549pOnJLOQxjmclOA69B/+yOw/vHi07LoG0SrQAW0wo25vyYsdvdOUpiVRY6QK0cpHSo2SYPrHXIkkCigqn7Jo8EJFNJwxOLlkcjpHC0fjBTx89z2r7QPJ+IZh23ExGLC6v8XerxicnTM5PeHNm3cs393yci1JgxOWRjOVgrLc0TY1i7slWiui8Qi3nXD/7bdMJxXhkaRTkl3ZYoUH3pBegZfUdJ6k046mPSCRMDrCC7Zsbm+wSuMheHW/pEbRWPi42uOtd+jacfdxx/LjhqxsOPSGb5Y79PyE2TQhiWKk9jg6f8p8MmH/8Qf8ZMzX/+6/IYwCwqFPV22h2hFPrrB1R2sstRFU0qe3PWkQgBI0ZQFpSFG2JGHMIm+53jSsS0M68PBD79FujsNWHdOLx2yn4TDmsAto+oam7bn/cIN3fsHg/Bnzq2dkdx/43f/1n/nLTz+hsinfmDHvVyvKOuOXZ3OS0MdTAiF8osDHOkfT91gh6LwA0Te0QqLHY4qmI44HOCmxfYvpe6qHe0Tg6A8L2qYh3+4pOoWXjul6SxwOiJxDPz9j8+Z7btc76kKw3TTc3y15v94xCz12fc93i5rBvuLidMTF81OcAjuY4hlNH2iU7snu35B++hdoHSIE2L6jax4PsX3bP1J8etgfVljPJxqE6CjgdvEAYc/Z8TGlctzc3PDi7BTVHgh8QRAljI/m/Pom58f1kmdPn/FJOCHxHXWxoS4yulJyefo5w+NP+H615e9/9y2m6Xh385aua9BKY22LrzStcShnuN9sEWJG0FvOZkfcrzLa3tIbC2lINBrhaR/P0xhriecz4umYh4/v6K8PiNZRLLcEseQhL8E6Qi9kGPrMQh+vLCh++D3y4jOcNvizMcPhFOvF+L4iCXvS2ZAgHiOTwWPgn9AIT5OcndMtFjTWopxDRCG0Lb2y9CgQ7pFy1vZcv1+Q1y3am2ABIxxR7LOrK/blgbytSPuOsKn54eUPHB2WtNby47v30LX81b/+Gl/Dhw9vOD45YzA8gaZG+j7ek+d4Ry/g6Ajje0gcQkroOwg0/mhMIGydwwAAIABJREFUV1boUFNXLduyppUeXl8zmg7xhaU5ZNT5hmA4Q/8J/SqEoa9W0BTI6QUyOEIEPjiBSD36fE3Z5DCa4Q4Z80SSlwVz6keLeFsQh5Iyu8d/eY+lplqtHt1JfcuQiH75kpEyeJNPwPRIP6BvG5STmDqnvr9FXT6jR+LEo2tCeD5OeUg/hCB4XEeaDBk9v8Sh2BUVo6anly2jqc9D9oBKBJUFP0zZ3K7w45DXb98+htqbR0T1YBSwvtkxSFMGgxEOaERLmZUURUnfOcaDY3xvjKgsZecw6YTgxRhvBJgWfzhjevWc/Xff0lse6VTax2mNUApnW6xVKGGptrfs8oy7XcXOeqwPOdvK0smQvOy4qw0nShCXFWJxj96skPqIqqlIj6d4UUgjWnSUYNqKs5/8hPgswsiGZvUagmOavuFge5rxDC8ZgNBIZ/GikEBq8DS9lAShR29bst0GVfdk+R6jFV4UMB4nHH/1U9JxwoeqIRykONdy9fQpmfA55BmH1YJmv6MdJeDHKCMIQ0PX7tGxJY57+tZQa58Ptwt+/sWnbJWPaQo89XivVocaJxQ6SsnqivXHFfW2Ih7PEF5Ar17iT+doFTxi7ZE429HvbrGbW/zjK0Rxjyl6TFHgTE6xeEOXjsnbPdOrOb4c8Os/LJj7I+behGxdPBLmrGD36i0n8wGjeEicppjNA7tsTTif0fYNH179SDqfMX1yQd8WlE5zKErWVc5NnbPYZoxCjyDyaKTksCkYOIcKAky+p3z9ii6o+V//j/d0+pKjC8mLZ884bztUvqOvGnoH29WKusgpgo6yLjnkBckoIi9ylJcQ6hTXO1bXW1Ts4weWYTLAbw1ikJAVe15994GHbIOKBFtTgj9BeBLhK4QvQBtQLTKJULbkflew7Voq21NmPbt1zRd9jO+DkYbQWfrDA7PzkEkaE4QxTrQYs6baVphSM5rMaduC+acnyDBA+o9h4+39Pa7eUyz3WOVhhKAqS0TbUq+25IeK+eSYphfc7SpWWcF90fL1l1eIvkE0hrJT7DrFUIQ4J7BY8r6kalucjqhcgDc6xw8CkjRhlx0YHg/54fUH3n18TXgR4omvKLdLEBprLMKPqYsDOMf99XvidIILxjgrafYbnK9QQYgfBCjfR0iHxXF3t6A9FDR193hP5xVfPr3CNC3d/QZbt5h8Tasd6dxDR4ro5IL46HHNWLc1UeIhc0ApeqdIwoSDLfCV5K5p0FIRGYvZZ8RdhN8bnl5dkT47xQuGsL2mevuG0dNPUHVL3XWoHoTnMzw7IZyPsTrk0LYsrt8jpEdjHH//ccX7hx2j1OfkeIyQCuEcOIvyfXZ5CV3/iNA2hiLfU+UZdrdldjRjeHKJCqJH1PKf9f+7/tw0+SeSsQbbN3R6wnGc4JQG7dF1HZiO0/mA9dUFy/WBxcePHE884kjhEXEoJVIK6Coe1lvS8RSVhigJXVvSlSXaOHTnCMMAGT5iAV2g6ZRDhSmH/YEktuzzHU4FBJ7FvzghjVNGnSC//ki+L0l8TV31vFos6Q6C0/2Q495ntSs4ZGtq41E5iRvNuDiesL1+zbvVhlEcoUYCFW3xZY/nKTrn4ZSkvF9x8/YVfQ9JGOFbh2cs0fkF0ckZ+WZJWz1ixPzBiEafcLDQ5FuSoxM+e/KUKr9mt/pAOLhitblj8fE1uzwn2+2w9YFRHHEyHdO0CWms8BRkuzWroqdqFY2T6CAkSaDte4IoJIojojRhcHrJu9t/xAmNlhmD2Q4vjCAcYLqeno7g5JQwknSbDV1Xk+9uqW1HdHb6OHnzFaIKsY2k0DmHwpGOJkzaPU3fMQ0gGYQoDco5TO/47NMXRKMYvbzlj9e3rPctn+wso6nFOoNORoTHFiMkdrsncA7lK7Ry2L7GClhkJdcPe0CRHRqMlFgBise0djUY0gs4VBX3eYUYRTihkNojTIZcnF/ghOT9uw8c+o6iblFSoYRCCI2xPdvVju8PFeM4QquGpmmQQUSSpBSHA6rp6ZBs85x91eCCBC0MXdEyPDth19TYhy35/Zpvfvdbfv/yHduyxTrJZDLFemN2neTTiydo4SGSGetlSXuzJ2kDvjr+nM3dN7z88S1v/vCGkbUEriFbW37/4YbT6YD5yZiT0ynBICLr7xnevCEcTh6LYdthigP0BYcuJSt7+jCgNT1DLUmSAVES4bTECR+lNU1RYJ2lalpuHpb0TcVQK8rdirs3NcPplNFshvEj1HDKoenpHh5QQUj28ZaxUJzMJvhJgvN9msRjLC21e8f97hodezSHhsVqw2r9QJSEfPr8Bf7TZ/TLFW/evcY8PPBmuaLoG1r7SFFwAOkxnoW8KBgOU1AKqTWDi2NctuU3b97R9ZZUaU7PjvAUrPIS89tv2XQBm9rj28WCb1cLdlXJs/GE//D0mGexYxJGJEenaN8gQskw/prDJqMt9gRehPVS4uMziuvvCH2J0Cmyyek6QTgeAQ5cC4D1YvKsoGs7PD9GBhFFtaOziqIBZySpgHEU4Q+OSK3DxgPEpYdLY/K8Yre4oUIRDE/YG5+XNwuWP7zk169X/OHtHhXNGR09pYrGVEagfI80CfGVoqge95ZXmx2bbcEvvv4LWkAGHl0gaG2DqWq88YyuM3heSNdXVLslznU4MWCbddQmJDye4ZqG4TjFD1Iq4WPpYHKEr0aIXuLmJd9Vire3O1ZtDRImowGffHFBOo7wkoTe04TaQTykbksQltZYdu+/Z/azU2xZ0u42j1PcsqBrOtqyoq4PlI3h+HiCCjyMUrTFmuEwwkym/N033/Lt6/eM0pjnRyPe71YUy5xLlfL724K2dah9y6BusJsl+faBfVbgHb/gyfOfkM7mbMqAh82asi1YBz5GSAZhhO3cn8J8O7R6XFvb5AciLRF3S1A+aZIijKF3AqWgbQ8EwRBrAyJtCUTD6OQJb3+8ptltmfmW4dEJPy86ltd33GUN26rl61nC0TAiHUmCBHScICIPF0p6ZZChwg8FUrVIr0NqAQKwHZIW5xpkkmKLHNOU+MkQIwV575BxhO87rBBsGkfZP/7fvG2xnkcnNWEg8YwmLwxN12CUIzMVv/tP/wuzizMuP33Gmx+/4+uf/5wwHTM5PuXD/QqhFLNxjOxK6vKAOrnk6Iufof0EW+VY+xg+KKMIqx/dL65rqOuK8GiOPhxYPFwT5hWjNEQnEdL3EL6gqQ7IsER4AR3grEAGGhEmOO3hnMP1GW2R00pNXpQURU5bGro2pdmAGTX4dkuSDPGuTnn44UAvQXgptixoRMXsyRwlNbYX5DdvGCD+hLYX9G2JUAEuCvHOz3HJCFdXSKmQvg/CYZDcfLzG1A3nT5+w+v4VXF8Tn51wND5Gochsy5kvOZufEScR317/yH2e8ebDLSdHx0Q6xAnDdv3A/u7VY9C4cwgVMpuP2G52uL4i2+9pmh5Mz83Dmvj5GdlugxUOFYf4nqLe3iDKnMZKjJ+iB1NctcYLQqyQSP8RcypwKBXR5TvyImdVdizyik3Rsq97aqdwbY01PXHgc3nxhMnFFxjrcRYmRMMEXS1YZg88nStCP6HvM3zPI6DDqBFCW2pPc3h4T3r1UzxPwGZH15boaIDSEj0aMVYBXd/RGkOoFY0x7O7umFyEKCUIEo2OoJYBD5sNH7drxi8+hShk83DPk6eWn371gu/fXFPsdwykwB1KqE4JkyGmt9wLSyOX9F6M9C2FSfjuZsdnl2s+nXu4tqHrHWkSIm1F03T4bsRkOOPVb/6ei590+HnGcHJEX0q8ckfkhfgqQgmNqXPyH74hGnuYqkR1PX3vU9c+vnW0bYKT4L34KUfRHFtEXG7vSHJFl/os+wW3eYqUJUEQs9wWrN+skIXh/Pk5wmvpypL1esH/+Zs/8uWnZ3wxnuCFIettjmkMtpIEwnJ0PoKqpmkNt/s91z+8IRqMGUzmNHXJ9PgJD80di01IOGpYrDvGQc3Fs+esP74mv7tHWcPq9ob9zQfKoyl5vqNuG97c7gk8j08vJszHR/jBgKZsUYmmtw2jwYR2scfSoqTDSUNvLNuHPaWw/OziCE8KpAvxkymeqihuXtE0AeX6AWt6xpOYaml4v99zOZ6yNzEqAyNrgmZHOB+zWbVU9YZE13iBwU8F/uSM4XH6Jyf6GNHXj+HkxqeLFH3Y0OxKquZAvuk59DCchdA1iDii7R1Zb1g85Cz2Nbe7mrBteN5USDp0oNhkJS6d0tFz2GTEoyFB4mNEzHB0gR8l1FbiH50zPjtnuV3zw9s3tNMR2QfHfr3CVHsOmxUySGjwCX2fwXj+eOapSoJ0iut7mjrH9i2dCuiNoO0tTgf0XU+2yzlUPYesIju0CCSgWBcNsfSwziIin8qNSWYp/vwIPRgSjceoKKXqBIGnifyA0TAlK1oEjlEYs6kbgvjRud9pDUi8qiAeDjgZHyNlgDI+erPhdD6jKxr0vmc8f8Zm8Zauc8RpjNUKoWJK53N3e8v1cs2zqyesspr7qidrejxf4oSi63uMsXj+Ywhz9acAa3PIiKOQbJ+ThCHX2y1NXWJkwPOf/xtUEP8zVLb/8vTnpsk/kaw16HSG80dUdYUaD3FBQtBuqHZrpFI8fXpJpdZ0aDzlyO7v8Z0j9CS3qwf+1adPKPZb9psNkjHj8Rhp28cur9aESYRWFcILMSgIfYSnqKsC3yupiwdQgiTRNM4jGh8zmozAQRpL6r7k5jZHCXioBIdesaj3pNsfUVKBcpRK0AUxT77+gqEWDHTD5v6eyvT0no/Dgm0RzkeHEV1bk2827LMDKE0UBhjnkA7EPuPQ1NTGonyPTSdwwwlhECN1SONL4jAg8DV/XGyh37I1hrKzOOERRAM4VGyLDanvc346IkoSxrrFdBX3+5KLic+3S8NtZpiOQSuFkgIpPJTSeMLy2Zcv+P6778hMz13ZMl1v8XxHLxwID4QiijRtvmG/vMF4AZ33aCENBiNk0xLokOXDgev7DHkiMCJivbrFjzUjWzDwevKuIxCKq9NjLs+uePH5F9SyxR8NqBF8//IdgUrwgoaqKIgnR+BHeDLAEtN1BpWmGNHhgpDWSl4v37GueyrbEkcey82GF2dzfvL8iuc/+SnDNKLe7fnjj6942B8Y6hBrDEE8IJYes6NjPt7d0baCIm8YJgO0DLCtoatA4Gi7gtsiR8xSYj+gb3s8T+MJwWyY4HsC08MuO5BVLVo4bN8Q+x7OOLzxlP3dDTfXb1kUOQ9KUPua4yTi4nzK+GSO8EIG4wEBgh9+fMkP373ivz2+QosAMzwmqS23m9/hTM1xEOO3j1kCt1XHarmnX2aEL+/41VcXfPl0TvX2W8InV8hEYbuOfnGPOVhMu6dRAXlVoIcTRvM52tNI7SP8AN0WgKWqGxyCVVVzt9kSeZr1YYXnbTlyz1FDQeo6ZDogCgJE4LPZb9HxjrIsuDw5xhsMWWzWvF4suDyfYjcZst6yXL7Ei56wfLjnw4cPbPY5zz+94IXq2Vc7Tv/ia/5mnfPu3TsedhuiJKBvKwJPIJzEejGmPDAYp4TjI+gybG3APuXL2c94/b/9Dd+9fIftW34xT0iSmN7z+e3HLQsbkFmPs8tnDNqa2Jf8xfmYJyNBmz/AeECzyhh9dUW1WSPiKclAUa/uaMwWZXtCBfH8FCN80D4iCWlWK7QdPmJnq4q6alFRgmv3eL6mxaJ9jbEGP4hBC+43LS0RVeN4ePuOq598yej8FP+Q0VY7Wn/C4s1r7sMZ55Nz3tzv2Pzhe/bLLV18yXq9xW6XfD274NnnX/Du9Wtyk3DmR3haEBqLVj5x6HPTbFhu9zw7O6JXikNXI4RD6hBnG3ToI4ShLPfUtkcEKfttS9koBsdTED2D2RitI6xOyZwi8kCfXqLaDNMJ8Mbopz1B3rK+v+NyEvLs2Zyj8xPUbIjCIrSidIbEBx+JbFrqXrHbrhi2OaKp6OsaZ6DbNxzWKwrlyJuGwWSGALTysFaQZyXxZMp9q3n1ccUiy2kQBLNTdDDBVxlPnpxzXVre3G7ZWcnH3kfvcza7ivTsc47mzxmcTFHCZ0qAPblgrX0Wix3KCvwgRoiAXZZhHSgE1nT0ncZISZUd0EFMJGAwGtGbA05o4uRxGhiGmrbYUNSQ1RUu0vi9IB2PCWYTfjGbU335nL/7zY/8T79/jXWGi6EgLCU+c+RoSK8DOgxOtehm+9j0jqe4PsQ83GDbHNMriCJs4CM7g8eA7eIGGYZY5ZO3lkiVKBXS946b+xXCCwl8QbMp6JqGNB7S1yW+F1KUPVZNcDrm17//hqo3XIyPOTu9IE0T0sGY5Tbj3bt3nD75lOVmh/ruH5mEhuVyTejHHFtDVx/wgxCHACmQowmhsNA7pB+SfXhHXrdcv3/P6vaWyBaEviCJY6znYenpyx2mHdG1CcIL8EZzhKdxfoDD0KyuaaoNbRDTWk2zXfOQd+RVxKENiaMj2kPGxfEUPzmidx11mLLcFLg0ZvbkjO72B4rmLSrwCY9OcemA4vaWwaWka7tHelPXIeRjFkvb94DBdA1NZwiTkHyX8XC/oDSW8/GAj6MhxhkiIfG9kCgaMIw0nhUU25LxeMr86Jg//vAjzcOKo08/QwYxD7sV75Y7ppHgzcv3nD/9hGy7pSkbrLN0VY3vacqypmw6+vIjQRQw9Ods9hlNUxJFIxhMyG7fs19tEKNnqNkZhzcLrOlRWmOlhDBC2h7XNPRdwb4xbGvDvqgfJ7t9h+haikPFapMxnJ3zOpN8t/gW20uOfcH89Cmfng55fuVzNElxyTHvHrbs+prw+g0XV1NwLU57mMEIE4SoOEDseqSKEL6H8xSychgUxaFAjQfoMCQcRIggpjeWMDAMxnus2HCzrzFFxezpM0Rr8YuK8ek5VnpM0oD5OOQh8sitIxiGdLai0SP62CE6gdJTBBanHXVe0PeGv/79Hf/9X33JYDym6x29kwir8IRED44Ryw2hFbz5/fecfv6EquoIByEcoFAeofPRnaN52JNdv2V0NcFji+gcYv6EOstIQgg++xTTOvyTz6ACGcLP/+0JbdawOayYhc+pRIvTI9JYkLclyYsetc5pY4/xxTPKbI0WA/67f/dXdNqQFRmJ9uhrg6nBE2P8KCaRBzZ5SW80L99e0znBcndgaGIiYbCbLcEwYpxqDqZmWyn+839d8G9/esLpxVPqasduecdGaHSUINoOrCROI4piz3A65NBkXI0V4+Ojx8GorXF9j3OOdBzT1i35rqTNShQapX2qquV2VfPTTySel9BVMd7wCBc8kC8+sNutGZ2OOJGOtjVIDy6mJ2AjuqpFTHy09FH+gK5TUHVYvyEIHvNRhE4QQYSWkk60CA1dtma3XtC1DQ2aA4YKKFrDx0VOvxN8cj5AKUE8SWgqh4wCKmcxWlF1/SO9r+/Yd/B6fSB1EadNjXID6rwiiROUXzFKpljPogTcbzK+8AKSsyNmuw1xElHcTRgEPnWR0/Q9Bovp9oxCxXB+jKBHOJDJhPp+RbfboJwAqfCDiK5XVLWj66FzgqxuQfvcPGRUVY/vecTxkKvjOUVxII1TosEIlYYYT+MNh4/PoZL4QoLTRKOUoVBE25wo0BgBQ98nDGNcFOErxTQJmErH8SBgEAvSoWRAxeh8gggSkonD3d0Rf/4Fui+5y1eYtqOzFqsDttuSw6Hk8sklKomJxuck1xvU4pYw0DS2ZzCZoXyF0B779YZumxGfPqfL9vhxSqkU00GCiYdoX7LfZyy+/y3dVz/95y1y/4Xoz02TfyJ5YULVa7TnCIMQ48BvMto6J3MBvoWmOnCeavzkGau7e0JPQvc4CTk9OaIfzsA1LD++YzT+S+q6QUuB8D0a2xOEHpoQFQUYDNZ7RH66wz3r7ZJCxHTegGB4xDD0GR/N0b6HdJZYXnK4+8Bss+OhdRRW44UBWdvQSsNwEBKFEhPEXPzs33ByeUHYbfH1U5SEbdNy5llUEj52ej0flKIuS6r9nsY6Zsdj4tEID0meHQjCEJUmDBJFoUL2qzvQHqMwIo4TvPSSvmuwbc/4/HO2D++RXoTSgqOnPkpuiUajR8Z7scFXgqsnlwTKsHzzA+82FYvCPAaWepqiqACHVArl++DA04IgHfDZZy/427/9O1SveRh4xNOQ1IYEkUT5EUI6DuslHJ0TKIvSe1Q6xZaSMJL849/+Pf/zr7/hpnZYQrpOkOiOJ8kAwhbbNiTDkMtpyhc/+RzPOfrIMJ1MqbRH3hZkRcmr1Zaj+ZymyEi6Ak8KnBdhgxpjR1jpYwUY5ZE3W17fbvCSEY3piaOQi9mUkeczTBNCeqrdjn/8/Tdc7zKmJ3MUjihOKMuS0/k5pmsZOJ9F3VKUNUJJojDACRgOJVVfP+6kCseHmwWn4wQtNZEvaW3NxdkZwvPIH2rW+z3r3ZayLkgxNE3H9OQcZRqYjcmmR0zrjs+HI9bbkknoEccRvmuJ/ZBGBKSB45PLKZ+f/RWBiGmrjL0L+OsfOqazK/79ScAnx0/JPvyeD4trzrQHiYf0JZuq4lCWWGmoyzVm9RqnXlDvdxSbnHyxZrXY0GJYlw3HY4nyfVQUIjwP4WkiF5DGCecXl9wUDbf/8C37qqboNL4Oab0xk3BGpVIWh5pwkjC/fIKwljCKeFivsdaxj0dQdSxWO/Km48NyjXOGMIo4lAfefrzn48cPXH+8oetbZhenVGVGtl8wevoFl7/4V/SDCdvf/wY/9rHCw+kIh0R2DXGikSqmDo+omxb6jsFnvyLqAn5VSN5nJS/fXfNqW5Aqx5tdyfsWVn1FnA55Ohnzq68+R/Y9R+MpZh7jzYckF5d43pTKRnTRETLwkF3H6OkLqruX9HZHs+nRSYzxE0zT4CcJaZzgGosQEkzAdr2jSDWHsmOT5fRNhVRDtPJpRUdRdUR9yN/+7p5g9hOe/fILRp9dIfMF9f09MpngRTGDf/UrikrzDy/fI4XE9oLx0QXXr9+SFSXaNqz2GX6cYMqc9yuP6SDm2ZGgcQbnHL6nGMQBLz+858nFKUEQ0pYlcRLj6DDOYbHUVUuZrzHhgM0qo7SS4VGK9gXxaIZSPtpPyMqa0WBAFAZEoynt/Q2+6bHOZ9z4fIVGXB4zi2AyjJlfzNBpgohiqA8UhxznC0Q0wJMa264p0FS7W1Tv4aSkO9Ts7z5wt18Tz8Yo30MHwSMy1DhM20CU0k7O+eP//V/I25a8btB+R3boOTt/ymfH8OTJMT83hn0jMEHE+6bnYnTEwAyQYooMIsLRI2Ld7Q0XoyOqXUH9sAWjHokqsqOpG9q6xEiFQKKVQhqL/VOIsjAtdb7D2pa2HRPFjxQcLXuk8iAMqPY5rs7xbUsYDBBCM5yfMLt4wjgaEDSWD4s7lnlD67ZkzTek+R51/gIXxeTvPkB2x+xqgimOCEc1ZlfjjRWogGDwHKxBeBIlJOHsBKSHbTuSQUzoK3pn2RUN+SGnaTv8dMhhvUPaR3ddEMf4QlDSs6wFadWyXNyB55NtNyxvP7B4WHP15S+4++MP7O4e+OIvf0VbZXzzw+9YX/+IrQrCMCYczJjPTxCjGQgFQhCEIdr29HWGyTKC8Yz1wwbb1hhr2RUtV87icASBh3SKw8dXRKMJ1owwrQfCIP0R0hn67Xse3t9iBymUGbKq2K8zLApnJGr3HaPJiGR8hnf5Uzob0h8eaAvDw65jsa4IFzXPRc3N8geatmM6nzE9e8Lsi8+Ixw1tl2NFgAdYC954TtcZurrD2EfCWWcMH5drtvuc+ekxaTTk9Dhjm2VorfFDi9AVcnpBlKS4WrDartjsVti641//4pd8+vxT7rYbyCQHG9JsM7wwpvZi1uWGm/f3VJs9oXQUZUdjoLePAbHLzZrvA8W/LyuaKsekj9+w6JOv4LjisCrohaKIJjjtAQaBw5j+EZ0cRbR7Td7DHz7csbi5IVGau13Fu9WKqq4ZhCmiqLjOFpwGPlXnMK6mKe4xmxmzF2cMz1J6ZzhKI4pes9yuST++Z3ScYJNj+uoBIxRCSXSY0AsP6SmUH9JJTbvfsT4UnJ9foX0PEYQkgynOWQL1wKJ8z5vlBn8wZTAPCZ88Y3j5GYvr3/Hk8i+JhhOU1ghTk21XBGlMITrKQYKQPYiORBm21sMLxri6xLkDbW+4OVj++tWevzjv+IKOLo3QUqOTEIzBqR1hVHP3ese1FgyPpyR1QjAKocvxjEK2jtV370CUNJ7ANz7DIESrA14r8ccjgtMTjA3oq5ByuUK4jnfffodXl+R1TWkl0XjM+x/fEf70BV4C6zBAygzX7QndEOMkMpRMBhc0oiCvD4iqwVMBg2nAZrdlLBxNK1H43K8OPGwKVBiQjCZ0TcN4MkI4g7QNl0+OOdgBTnu8zWZ8859K/sf/YUS13iO1j4xikouneJsAT7vH9ZjJiJKWr375OcOrKYN5zDDRfPO7P7JZ7yiOYqZnR7AosLZjNDxiPDywCvfQS+53hn1pmckGHRuE7jF+gPY7AhFTLWtGyZhu0jMcT0iGJ5Qbgy33BMGQaHaKU5okSugERHGCkx5ORfQmxNYWocyjS6za0u42tL3GZIJ+7zBtBH6HjDRFd+DVYoHyBFfnM0LPw9UdtqkIfU3cNigpCVEIL+L1Q4Y1j2SXQ12i/ZDV+gHj+URHE4bpEUEYoAeS8mB42FQM55ecDN/z4x/+luP5EU3XsH5Y4yVjeuvjrKMpC8IoJBpMuX/3EvYHrDWURcY4fUTV+8GAqjUUh5ZocoI/mPKQv6EpKjoRsOt7ZN8zKxrOhSMaRhgcKtDU7nEFsyu2SNsgnUMIH5nMiU8ukUnJvOrIy4rUCASWWvjYrmGflXwyvmI6TB8ztQZDWuPQfkDvYHR8jJISKy35b/8L4fEZAz+iNS1V0dEnCav1jtBXnJwfMfr0C8xyz9EsIZuNGIaS0WCAaxsTFjkXAAAgAElEQVRaNLZz3N89kIYBJtsgPMkhLzi7fMLiUHJ8ekKxXhC6jqooMH3/z1vk/gvRn5sm/0TqrUAnIzylaVTAwWlOpMALfJpdQ65idpVlfX+PNeCKht4JtBBMLq44fvaCJE4pPrxluVwShS85efKESEnq7Z5DtmM4P6FvFa5tkXGE0AqhLHmdkzuf3h/jj45IpyekoxF+GBAECmU7nPKYnV1xucnY2YpeSRrc40s8jRmNYmSgOP/Vf+Ti5IShrFG9JIw85PkJ1WpF78C0DX46RgYBvXM0RYaTj/SK3nR4g5DBYERiHCJKsLNjpLCsVzvyrmc+mZNOpnRW4vkx5eIGazoGYUSdHtO4HpQiGiScnMUkZcEgHXK4e0fXN/TGEsQpg+mU9FBys6vpHcySEE87wiTF9AZrHYESKOWDcXz11Ze8ffee++WeOIo5enJB4kBojQx9hBaIfspgOKJ/eI8cnGGJ8fuCV7/+G/73/+fXlL1mFsXgOawOuJxOUMZwNv2cqM95c7NkolMmyTF1fsv1D7/l/NNPGZ9c4a8nXDy9hK6n8zRFnTNoSzwZYUJNnfjUfY4fhVj32PC5uzuw2/TQ9YwnQ9YP95xMRlwOBwQ6oNxm/Pr77/mwO3B2+QQdRMRRzKGF4eUYpTxu3r8C43hYL+mNIvZ9wCG0oDM12jUAWGex1rAtWpIk5XgwYrta8pDtEVKQVxV13/Hy9UvWnz2hDz0m0yOSQYwrOtogYvL51zTxBG/7gBD3yObRFeWcQ4iOvtrS6pR0OkT6E7p8T2tKtusHTo8abHHgXZ1zOT6m2oKnHokrWhuGg5jL6IggihlMp5hwyvb6jtifUu0z8qxkmZWsypLV+kA4SBGeR9PUGCVQfYUKAqzUj4do38e2AtMbhBA4KdiVJaGK6XA0xS2dGBEoiZIWJRyL/MDtck0SBMizJ8TjFLnLyKqa3e7AbDygdS1S+tzcr1neb2g7w2g8obKSu/sbTsYTNrt7nFdD2JPMEgLTsctrKqcY+KCxqCChSS55OJRIrZhc/ZJejDh0JSYKEZ7EeJo3VYNcP/42Qz3uPmvJ2+UdXz87p95vCcYj4jCkdYrlw47Z02N8ZfBGE+osx/dDokFKEP+c/Q//LxKDN57RdtBnBzy/J0wH2GCC1oKaBhKf1f09Jj1m33h4YURTtBzqlr6zxEIh2x4RHPNDOcduHEHeEOsEe3GFP50RWUhFgP3xA+/evuPk5ILnl89x2R4nYTgakmrByWxGrxP8KEIpyd2+IY0knukYRJph6KOlYrk/UFUNgRcQJClOOqqqZIShKSr8P2UF7Q4tq7xmdHLOYDwlCDziKAWr8YIU1wriQfrYIFIh3ahhu9hzPBzzqytJEQj8doxwHc60jOKYZDolGKUctqC0Zf+wYXo8pmolKkmQgzH58oYgPUEIn170ZH3BJt9jUo/B+BnC83Di0f1VlQXrxvLuN7/h/c0tu6ygNZbWCWan57RS8eSTS5TI+er5CRvr8cetYxSGOAzS13Si55uXv6f3roiCAZ0zNEZz/fED+8UdoQX9/7H3XruapOmV3vOZ8BG/d9ulN2W72pDspp2RA0UJAnSdOpAACRjNQNBIRLPJJtmuumxWZlbu3P73JrzXweYtiDyYXhcR8b7rW+96pEK7JknVktU1h7yk40LPtDCahrYVICHNCmxDE8cxaVrjefX9uU6V00iNzkt0FlJGO4aDDqbXw5o8QBsSLVq6Lz7mR7FD79vfE+9ueHWoOL9ZcjxP+SiqCfOG9WKOfzRgLQus7ZZu36DfczBShWkrZNtSFRFNmVG3LqV2EcWBXLgYpkFe5sRVzUbY94s7EVGUsd5GSOmgbElNg6Cm42hiNJl0KIuCb3/zTxiWpEj3ZGnKp3/y77l99x7T6yK1geMG+J0+X6xCfv2r3yGBFslPfvgZD198Snd0hFSKlgZhGYi2iwKaPIM9KC3p9rtsyoTFes+JZWJ5PlJA78NP7s9IzJRWWCSrmMD3qMuEzdU5CSZFmGLUJdn8jk53wvYuI7x4zYlrMzFOyc0H/PL/ecvq9pp1ktCvN8j2wCqtWNeSOxExD5fs05Tx+wWz4JKH31/zafM3nPzpB+xv3iINA2Fqkv2OxnLvU2O+S5YmtI7Low8+4PYXvyTNCryOwcvnT/j7f/oNpmFyt1wzEJKqbJl8MqKtCqK05vL8hoenDzk9OSVwffZlQfQ+xxmMuXy1oWc6JGlBFGf4gwmLxZ5SCBru6bZCm3T8AW6nT2147NZrkt2SzDFQUtBUFVGakxYVluvgPH5GWe8RWtHQYmiNkPLejDYtsjRkZOR8/NlTOt6Um5slb19/zeXtEpOWKlrRl4qBqdgVMb0256hpMVKDb76tWb7+HtcTdB+NsY5PmWcV7377O84+fUr38RThDSkPd9i2i3RzRCkwXYeqLBCyZRdFRJVkvdkym/g0TYUhBcLwWe16vLo9ojUVTV5TNzl2ec7uqmDYMYn3N+jjGcuwZbtd058cEX13TWtB1mY4noMoakynxOkqkjimYI+0NW0hkVKTagfT8zjEMf2yxOoENEh0WyMNQW884UFuklQp84s7nKHDRI/RhnlPGEwKwmpNb9ihKcFIFWVdgRthKIPW7LNdpIQ3W1b/+IrDPiVRLZdhhNQ1RiC53h6YtAUXYcbun3c8n/jkPRNp1dyVKT9wFJKKqIqwXIWUwGFHKAT28BRRFTRGSKkUyS4mKWt+8/0lWSMws5x9u6E3tJCqB0Lhj6aMTvo86gwZjQ2eqoDbmwP7SjEZT2jiHWanjy8XJGWM7ng8efoYr+OiqXn05CWbaM+T0xlHQ4/X7yTFXUJRJiyTltl0yqzM0abP7XxJf9DFM026/SGxtAmzCLfpIJVCm5o0LtHSwlENSVvRs3160y7fXWzoKIPDbkO+29I5fYSyfLRhYnom3ekEIUuaGgxtIWgospgqjEhXa6oyp8wTyLYUyYFcmRwKg29u7vhP376jlRVuz+eD589ocgiChiyJcTOF2x9ga4Xl2Byaku+WG9JGY9ewO+zxfJOiSnCCLq5/T9Ia92f4MwfTMygKwS5qGJ4+pXl3y/rQctIxiTKJZTu0UiDjJXEeUdd9pLJxgj6H9YKea1NZ+t5Q6fpgGFDWlGWL1+3TGc2wgg7zfcbtLqRuBZZsebeL+BhwJDiBzdUuxrBNRlYHbTtkhxBXGyAlRVFRFJBGLUr0ODsNMC04N95RGR1ItqRpSLqL+HwRchnt+fOPP+DhyTHpYsPZQ4t0t8RzXPR4SqljwsvvkYMuBTW1NFhd36BFxaPnT3jywx+QI9ilKZNRh+W1jRYVWV4QZyWWNlnt9ygpyesGER5wg4A63lCImo51n1DL4gPb/YY8HdwbwH/Q/+/6g2nyr6QGCaaHoEYqTVTCvDIZIRBlzHq5QUoT2/WpkoRSSwqpkL0Teg8eIdoaQ7b0BwPu3r/n+zffI5qa4WCAqBqQLa1lYll9RFNTImi1SZXtOIQJSaOxlMXg6Cn2cIphmViyhu0t28vv2a22uE4H1x7waFAzMwIKf8jNboPvSvy+z/DZx4xOj5kYiqBMcEb3fHNZWcSjMeW/IJBbqWmFoG1akv0OrVqOHpzgjAbgBqheD6NtqJRFU5cUZcp3337N7aGixsDv9SjKmvRQIJ2ANo9ZRwkNEtu0KbRi3J1SOlBcXjAaTVCPHrM8f8UqzCjKDEsKlOvR7DJ2cU5ZtwQ2PJ5OMLw+Qqn78wFpImRJx3T5y5/+Kf/7f/rP3G6W7A8Huj0Xs65QWiFdjZEpZLwkiw603WOSi3fsXn3Bf/y7z/FqixfjKbrjsmtyyhry9QolDJb7iB8+P8ObdvB7U7Z7zfOXn7H+8hcsNyuePPsIfzxgt9/TPZnQmXRYX71l8PAM3enQmppGQeNYtKpGCkgKeHN1hUQx6s7oz3qIIsFqK2ZPXtAg+P3tLd8st1i2hd/v3b+6B13s8h7vZjhdHvtdLN3y+j/8LyT7GNsb4GgTiaSI4vuSxRayrECJ+x+caTkcnzzk5dGAxXpDgsQz+uyiiLRuudrssScDusM+dZEitYE5GNGoDGcmaPMKZ1JTLhfkZYbvdynSlKROMfID5nhKkcUcVtdILahlzfHUZ7MMSduSi2jBoqwptKbnB0CKE7jYvoc1GNH2+zSmSyIE9eqOuIRtmPDm7Q2rbcy2yPhkNubJ6RGtUiil0a5Lq01UXRDuQ5Tfod3NeXA8pcgSkJI0L3H7PSiWXNwknL0IsHwfgSBOIuIkJM0LsjQjqwVRlpMkGa2QXK9CGqGYnExYxnCISpTXY+D7BN0ehzAnqxyKCoS0CAJFmH2F6WnyfYrb8dCGRuiKrDYwuiPaPMELLEzRpTZ80rLhdn7F6+++pmozlGo51CXfxoKBJfnR0ZSsKHizWTLrd9jEEU1dElURbZohzC5ma5DtVjRBh7aKMRwPpxugBBiORfDgA+L3v8PcLtAtiCamMfqIQUAd5wjR0jg22SonKVI2dze0UrLZJ2zDCtty2OQ52u9i+F2c3pDAbPE6FvPlBpcS027pjydQN+Tvb2iEplEWNYq6EcRhRJ3l7PZ7Gtej0x2w3e7pD8dUdUON4naXoeMdWil6/T7BYkuRtrzf5gx6BoZuEYApFHXVolyLZL1mF8Zc392h3D6DcYBhSGxtIPL7s5h6H+H7GpVuaVtJdLVERDmBNli/WmHkK078Dtq12dxEdAc94vmc95db3K5Nd3hP1Kmygnye4VoaWaTo7I7COrknRGQlRZPiDmcMKclMB+25mIamLnIqaXC3CvnVl1/z5vKapK5Zru4QUtMAi8WKxw8ecPv+munYYDzu85PnM1794g2Lq/e8+MHHtGbOPp1zPX/P28svmM6mBL0JYRhy/fVXLFY7XoyntEhc2+VB0OdNHFNXDXkj2McJ016PcL/DsSzatkEHI3whOcQJrmfSH3bJ9xmGZWDVKVmaUaOwemP09ASz4yG1QFg+Kjhi2A5Q3QH7zRz1/XuCMONqveHdZckXUYHtjXgsfeLUYNxxUAV42iMrQnx1ILt9fT+AK0V1OKCUpBQORQlSaeo8ZZHU6IFNeLukKAo2UUlWVbhBD1O4aNHCfodpO2jDorK6BJ0+nfEM+9ELvn37mr/4sz9ls9qgm5LB5IjrmxWqTSkb6A8nTCZjkqJhl0ElDLTtg5CYpkHbCWibFrvjkWgF2ztMWzOejVmu1sRxh9XqkuNjQEuU42IYHahymjLBsC209ijblO36jnVc0OQxm+UGXUNVKc7fXrN/f8OZb9MKn9+8yfn1zVck23PsKsXvPyXxjtGHN9Tlgrhs+aaUDO2AWaB50FU8nHY4fjTC7tRgeZjdEVW4IA9DkrwhMB2swKc4rFFeh32cIFXLj//izzj/9luyosD1OgzHE3Jh0vQ8tOkyMR1kmrOqJNevX9MNepw+eIJpG2RpSVwJatMgXh9whjNqo6blPg2iBViujesYqDxCUVNLH2fwGMcJQMEhydgfIvxOhGdKkjAiSgTKshlPR2ThgbpUVE2ISXuP9tYm1BVaSZ6ejHh6eoI2+6SpxpY2Q1nyQa/PxfWcb1chyyJHKgvZKEwUVgVnSmL6Hv98sSC63HC6W/Iwz3HPHnO73NNZ3qFdj7gJqIixbROzOyBZre+76YQgyUuubtfUTo+qLribLznTCtPxKIuUMMkxvSF+XxCrAtPV7PcZy+tv2fkWUj3Cvbvi7z5/iysqUjy07dIWOcrtUzouJimpP6BIFvenX21NmIM2DJSS6EYwefSM/O6COMtwez1MZVDlBVlRYz15wYu/+Jjrf/pnDr/7z8zf3OLYJr3hECHu0xLO0MIJFDev3yPWBbOzHn5niuGN+e3//RvWFymUFXla48sBSevTO/sBhZ7z47/6AeU/fsH01KONW7789nPu3q6wPQt/EmC1Ofr333A286ntY7rjI6J4yzYtMIyCqdNQFQp3NEBXJYfthvdhwvV2A+L+Jd+xLNJ4R5m4HJ885eT5cw6rOdKVDLwh2lMczzocP3AYOy7nX0ekZU20ukMGDzGDAb3ZjK7rYyLZLQ4ckjnnr2LWvYDN8pLnQ4fb699zyDv0n7ykKFMOuzsGY5f++AMWby+Z9aeYTsB8vyfoJdiWSVMq2lKiyhppNciqRSub7vSIf//gjMXFnF9enPO7rz/nR0rTPz7GOT3CDWZopbBsg7askcKgynPqQ0oZF9RpThPtydIdcbYnXGvO5ytuLy642254fHYMjaBsS2rTxLIEqq5wK5eJPUCZFo40aJTBPAypWont+zTaJExyDLtAaIkwDdI8Jsv32J0+rgzwXJs6a3j79TnOAI5mM5y+xG4LwsJis4zxfAeztjC0INnvUbaLP3rAYrXHrQvqOkcLge06tCgC10e3ijSucPsTxidn3G0TDvOIGoGlJPU25nYfYbkN/niM3QuokzXxZoHl+GSlZKs9ZO0SvlsSxSlm09AXgiQ+QJTxyXRCa/ks34cEj16wShLeLTbETc3vlxH1UPKjTz4k+OAZ9X5NRotoatRoRLY/YKmKIkvZ7g7EreTZH/2Mx08fYzkm5WaOlALDMDg+mWA0Fb7r4Lou+zRnu9rS8T3apkEIyOKQpqohDknXK7qTCbPnH3JYrTAsB8Ow/m2X3P9C9AfT5F9LQqAMB0OUuKai0YowLxGVgKako0uuFhvSvIK8pJGa1h/y4NlzLKVwlaBnWeSOjzmacvn6S6RoKaIDvuORpTF1U2AoRdNUZFGKEQQ0ZQVCYXt9grOPsMZPkErQhAvmr77k/W9+S1nWiLZAWxaVsPn2dk+pCv74Zx9hyg2DhyPc0wn92YjAlgyMFle7NIc90eEdI8dl1u8RL5e0bQV1TV2XFGnObnGHahpGgUtclCRhRBuHdEZDzI4myULObxasWgupGlaLO3wNuTQYjkc4yiQ3GkR+f0vfD/rslEmcNxhS4/UGDAYDlATbd0FZVOGc2djHPH/L7e6fGSpJXVV0+n0sR2GpgjKLaZEgFFmZYuiWTt/ns88+5Bc//0e2ux1D18b1AwQSgUkdhpTlHhl0WSzukNtLvvn6LT979JgH3oxlJfgP56+4PIT4RgdHKrqypGdr5hcbnj5+xlfXc6YPe1xfLbFETXcwwhAKz3KYPDjlrq643WxxvQ7hboflBigKjFLSlC3SNSloWOUp80OEUIIyjnCZ8vDxp/TGA7xBl/rie6Sy8PyAfuATSBh0u+wPB16fn3MyGdAfjGiFy2Z9S3iIkIYijPc02sJzfBpKkixHGDaOK3BlixQSx3Hp+QFPB0NOjk8oafnN2wuy4QQlBJswRj06pSlyWlvTGhYqPuDZDnsh7guutE2pDaoswiwcZBazzwtCUyBMhyg/YBsm0u+RxS2bXcq2MnG1RaNNZG9Itt0xnh2TJTuUJdg1BtUqxNjnWL57/6K73pJWLeuo5t3tHZtDzOnDY8bTMdJ2cbVBGkZYQUBLS5ZlpDVIz0a1JcezGR3PZ79dUwmLq6hgHcUI0VKnO7IkpalKlhcX3G0idkmEZ2jSrGBZZURpQRRFJGXFoZRI2UULE687Yh8ndANNnibc3dyyG5kMgwGDTofDIcRRAakoqbWNlgKtBXFe0hoBKssoyxpLS5R2qJVNNH9PEW9o25xBr0sYR+RVxSbOKOqCm/UtmdI8efqCXtfDB+oqI5tfYQ9HLOMCqQeYSYQ2V1heH+Wm1BKUY6JMA8dzKbsTatkiybGnR7QqQGclcRQiDfv+1db2uN1fUzQFd6stVQtaQVEU9HozzN4jpBvx8qjD5MRCtwXd8Zg6i2g9C2G75NstL374Y76rvuQmhbOHj4lXG757c81qccN+v6H76AzH99B2wPrmnM3qFvfhA/I8JIwyTCmJDjG0gp4T8Oabd3x4+hjPqmnrHMe2oSopK8khz4mSGGkHPP3oCWZb01YZuTaxdEMRL9FVwmEZU+QtyaHArEsCO8CSkoHpEm9CdJXRKuD2krdff80qzYjygqxKyKXk9NGE6UmPaJ8jB8+I9msCDxzXoWkgjw4kUYgwBJVp441HNLKlqEvKqqZoW37/9obP31xQtQJhmHSHpwxGQygyBr0uJ8czbpbf8c27Nzw5HfCTv/wZx0djfvftO6TSNDLn9vqC7eqOu8WCr7/4msH4iMlgwi6pcW0PJQVGC66hcSYzxqs5t4ucsGywdEtR5ti2iVKQ5hVNU2G6NmGS44QJynHI05KeUbKKDmStQLgdOpMplilRTUZrDcjNLrLKsU+G2EmI8l3c6RnJOmK8WNH0RuiswTdjLFfjBCZNXd3350iXOK0RMke3MdBi+j3qqgDU/TJIS1vC7T5kjw+5Ji0q8qLh5m6FF3SwTJNPPvqIy5uYQ/EdluOAtgjXIa3R55Of/gUvj07xT495f35BvF7ywYvnRGhEJQm3CeHdkqqVDI8f8KB/gj8ZoZwuQt6X1UptoE2L/LD+l1RDQlULbNejOhzIy/o+zRdWbHYxnfHk3lQyDbSjkY2Hsi3aRrJbXbHfh4TzLavbiLt9xrqExV5QrpZ86JvsqprXyzXf7G8ZtiZ//eJj+iZ4jsXw7CHe5I+IsjWX5294fX3OVbKjqS7JPZPUtEnagm6xoVhdoP0exf4Wq9tDodBKoFGUtk1h+9h1QbpbcUgqprMpYVFTlyW+aaAcG288RgvJYX/gkH7HLmspS4FlCsJdxu7mQJxcsBUVjWrRto0ocwbjEduL91iOJMsbLN/EtFr6nZrReMIqPcL1Z/dR+aZhkTQcKhM/Ayla9nGK2TsjMG2icEvTHZDeHgjTA0p10U1NU5bIugalsDo9lNmhLiHf7yjrjP70AUnlsX6/I1MN0nVwB2eo3Qq3OSDanPKwY9gU/FfTPj+fl7xaxqTdOyZWB+0MubqLCGYFvldTFpAXFVlRgmhIkoi0UdzcrXg339AfCMYvP6RUFUmWIg8b3P4Uy3JxgzFXX11xO7/h+fNTbvYVt/MlT54/YxkrfvG//b8UccyDx2cIv4s0DJSd0MoaU9pI9xjSDVUmyZMWI7PotA1xff+tVEVNEDyiIyx2q3M6/RKv0ydvDujBBO/kCeHFOY3OcPw+2c2S77+74dMfu5RCISyT/vGUfiDpuS3p3Za0KPn24po3t29YzlMOOSihGBo+oyAgbgs2uxXD4xG/ex1hHf2YVXzO8w8/JdtEXLx/xd9984b2XGFaip+ONbb7IY+fHNNgYgRDemaPUhxj6gDLgLJW1IcV0aHlm4stZVkglaKsa2zTZRfu6fZz/KMJdb6jO+rzw09ekEUht9dXPHx0Qi/waZWic/YQ625J7HTpjyaIzpBDuMdVNh1nyKsvf09c3ZLuanyv5tlshCNLvvrma3r7EZ5wOOp0cByHJsmo6orJZEjXd7A9DyrF1eUKqhrDCKgriaGhyGKSbYgbjHHtIcL3OHrk8d/7Dv/wt79FZ0uG5ghfGpCE7L64QLhd/H4PLRyquqLNCkSRUYUJV68u+fLqilfzHevFgZ5o+ejBjJ/+1ccMn5zw7VdfcD4/J8tDgl4Po1RowyVJtvT8Ho7tUlcNq0NKp9+nMTwaw6ZsGqI0IqtammyP72YMpn0MXzA77ROvt6w3K4q4QCrJ0YMJ+1fvqVDU0kAaJrt9iOc6+I6DyjMMwydvDIYPPqDcvKI78ZhfXDPxDAzTwmjv4Rp5VmF5Q/zemNMHGfMw52qxY58VWJbJd/MtnaFJ0LT0+z5uv6ZZXvP2zS2rUDIdnWJuckRaoj2P+WFPGYWIMiGrCqzOADl9yL40SKOSTVIQ1QK7N8bq9pk+eUxwdERjWrS9AWanSxnuabRLcXNBWYa8v12QmB1OX77k9HSKor2fjRsoGonSGksr6qJGaoOoaNgudiRhhqU0pm2xXW2pypLe2RlVXeA0KeX8CiPo0+0P6Q4naPMPpsm/hv5gmvwrSSiNshy0NIjimGHPAARZ3bKKauo4oz/oY62XHLKWVVbx9NEZoogJd3tuFyvO65o8y0lNk9iw+P7qjjLLmHR9uo5Do0DoFlFUCCmoq5IsLyiqlu5gQufJZzTaQdQJ3/z2t/zt//l/YAiPfv8pTXpHlS+4LVoWheRAy9v/65e4WjN7t+FP/9zlxfiE8u4GezigyVP2b74nv77h7Gc/QdqKdKvI0hTlZtBWRIsl25s77EGX/miMYxikaYzrWbS2S2m4fPvmNb9/9YbE6qHEffzT7vRRbYPjujhasq8sOoGN8Cx0Cx3LpcwSwtUOP+gwmJ1wOGyZdXv3mOVRl8nxCcLp83Sz5dXX32BqgVIZftAiqgpERVmVOKLCMOT9kFSlTLomP/nBS8L9jrgbECyXKNPAtkZkcUSyW6GPnxBu1gyalv/2v/4prjEkW5foquXPOiWXl0sCs49uJFGUstyukXXMq4v3zHoeYnPOdl+ClojtBrG65ONHZ2zLM3SjmV+8Y59mmAqSxS226SLSCmqbqmypHcXFckuZFwijxesaNHWGabuUrcBzArpHp3QMTdHkVEWCFPfkhi9ffc1+c8OD4cfMz7/iYr6GpkIbmqot8TqKnudSpjV5lZIkMQID2+1iyJYiiZnMTnC9gCCwGbgOwtAYjse76y7zuzsOUYzjOrSyJYwjlM4okpSmbOl1+oRLiSNatlVFkWZolpRZiZYKTJdD2VAISdU2iPhAlMREYXzfseD5VHTp9Tro4oqO1cVSQxabJdtwS1PV97edSuL2LGS3wyLKWO3WXC3u6I0GHM0GmIZEWwqn16MtK1ohqdqWzXqD3elSNg3Hx8c0nTHrN9+iatBakRg1Sd1gWy2+dSA53LBMKm7mK4Thg9Zoy2a9XVNkKa6WlK0gqwRN/wHB8WPSosApQrodSVILkqIh6PXZpZKb6wsC1yX7F0yvGhss5BbLsmmaGqE00W5FIhRCKvpS0xQ5RXNA5Bl5Ehlqkt0AACAASURBVDIcdZFaURfpvSEqW9I44bvdkpeDPv/Dn/wxaV2SZyFOYPL+ckcbNsRVTN+4ZEWN7Ri4zpJdHrKQLaPTKb1HT1DKRLoBUkLV1lRZjdcRGIbAMhtKJEXZkGUZUZahnR5xUbI9RKR5hVISQ1k88Wuedz3E3SViGND9+ClNtMMMPNZhjJfl7MKYUlZsbxf0O30C1ycJb+l1x1jSxLY7JK1kfnnO6OwpncGIIAi4ultg9gziJEc4LgJJXSjezReE+4hPH8zo//RjhGmgmpwiTsjXO8o8p9Eu0yONJieLI+paYSc5JSbf/forxmbL9XxFmDb0DcXEscB2yAybtDXZ71akqwVl6yDIEEGXYddj5ptURs2X767YhBHj0qOUDWF2hzYktbLuO6DiA6vFDYYhaJAIb4Rl2ZRlgWE7hGHCep9xu8k5e/YTAtdBGxrbceh0euzCPQO7JW1rfv75axZXr/noyYynn33MeDbBXeds0oy6KoiSiCgKSeKM7vSI0eSEXtCnqA2y/YE2LzB9m8DxGGpJNZ2w36yIihzTNBFhwnHXBUNjagOtBb7vsrzdUtYuWZaDEMRpTlvV5LXi5NEptmwwlEQ4HUpl0dQpGkXbSJzjHsnrNUUrqUyDwlK0Tc3EUQw7FsnhgGtKclmxW+7Yr5eMZ0PCvGJ8eoTX7YFhcIjnCGqs/hjDMdgtV1ztUkovQAH2YMx3v/otNSYYNp1un81qS2O2NP595B0UVdUQjKecPhjw4tEx33/1ii9/+VuePD9i8vAxl8sL+kGEFIL5vqTcl4xPPmT64BmB75OIlrIqEQKk6dLYfdokoQrXtFVBWZZUdY12XKSUBJZD6njsd/c9CFI4aNNG64a2kbRKYZoGcVSyvF7y7XfX/PL1kqswB0z8suKprXi7KGkai2UhGGufzyYf03pjCnUgsBLsIEQbNa5pMz0dUJo51sHiYpmgrBxzOKRxXNbXFyjLwDh6TJandBwHbbgIIWnyhMU2xDmdoE0TISXRZs3o7CEGNUlakmYJbVFg2RbSdlFCspyvubjdcggLDHWDdG+xen06fR975lAVIVrddzTMFxviOCVZ7xnOjvG6GVW+48VPP6aUZxQXFbPjY2zDpKlS2rqmtDsoNyAXDUb/BNv3qYsMgDQMifOaKsxwbQsiA9t2qaqSqqgQdo+sgnB/YLddIWTDqmzYWx79szPaXYL0jvizD35AeP6GsVkhowVWMmd8dEL35BlPtODbt1+x48B2d8U2GuE/nlIbAa5joB2HAkWRRQgBtTBY7xL+/jffEMU5np9TbFcUsyl51WJXFWm0wzQMbEPy4aMp07GH3Q2ozIROr8vusOfz336F4fsc0oy4rBmbAtqWxHBR3gDbsGmzDFd2sLVJ1/e5W2xo2/tZqMlKPNdHCBg/+JR8vidcbrF1QFVWtKYmvH7NYbEiy2Jkb8rsscnV+pb5fM9w0sURoLSBaA2Gj1+SWjds45L551dcb2OkhJdHfT559oKmdilzC+P0GeeHDdqUZAeBrgVadNi+SjH3fSbWMX/50MYISg4qJj3cgq3Jqh3rFTidAW7/CXkpaaihbqCsSZKa94uENC/uCVNNTVkU1E1DKw1mj57TKINet8vZyUOqQ8TN3YJkveDz2+8Z9f4ds9GAdRgxOD7mwZ/8OeKg8IdTmrLCcxxMXRFlK7758ucMhzV//ifP6Uif+WLD7fzAZn3AM3t0nz7l6OgB2SFnOV8y8LsEfR8Dh6Y2uL2+g7pmOK6oqgpDmyR1hXAN9smeoZC4lkFdNgyOp/zN//zXxO8XBKMZ1vQM/0GPMlwSVyY3v7pk8+6aXbhik61JRcT79+9Qcc08K1mXNXFRsKsj+vmIzwanzKZj6vYlYblHNw2m1IjWoNjvqPKCOstotMvtaktFi6k0Vn/ILooQlsd6f8ByXFS+4tMXAX/51x/xH//2kpKa3vGYslKUBdjaZr7cI3KBpUHVJYZp0un30IZB1bZ4o2egFU5TUSQZDT3i7JbgaIg3nmFqk2i3xzUlpm0yOBrz/vwNfnfP04dnVK3kEMVorTnkDau0JtglDPwBhhvgDj7h4bFAfTdnfbch3uzJFhv8yWNGnRGOdMkOa7IqZhVDc7OgrEquVhuWWcq2bemePuLs+Bg7uC/nzrIcp9u5p082kOcZq2jHu4v3qF4Xy1A4yZ42tGlV756Sk6RUeUaZJhR5jlaKvCjZRztublccdzqgLOpWIeqKju/h2RZxWuNaDnWWILMQP+hSRgfKJPk33HD/y9EfTJN/JYm2vb9nNiyS3QrX1PS6PdpGE/QHrIoSa3tDXoH0Bxx1NKKuuXz1mne//4K7+Zofz45xx0NOP3zG1pIszr9nlVVUbQJCs91t0eP7MqIqz8irmjIvyYuW3ughluuiTZcmbblMa5785Ef0rQ6W8unmE2xpUmSKXVawyWq+Wd/x7eY9v3r3mry85WGnZHrksjn/hvm33/HqN79m1gl4+Vf/jtZp6IxGFFGEHR9olOb29XfEWcYoOMXr9zB6PYIiB63YZyVRZfL6asnbmxVWp2E07DM7e8B4NKRMQoJuj12U0BsMEEpjGIrD6garBalb3KCl0VCWJVKZeN0u6eUlmaxxggHC6jMc9Th7dMzl5TWmU1HWe7zgIUWliNOSwG9oZUNRFrRJhCprprMj1ld3LBYrZFtx3PGwuz4FNaW2qPY7qjyjVQqnE5DuVmyLiE1a4ZsVxz0TVStm3VNm/SnRasOXb79mtdsAMU+fHWEPOiSiZBseePfqFcfJgd7xC14+/ZTkkNISkWw2GEpAZ8Ih2ZPmEtcfkmSC+btrfMdhH29J65woijmbnGBoze7qAuWYxF6Xq8MeOz9w/Pgx61pSljlatBR5xgePH2NZkvU+we34aN+l3+vg2h5NWbEJ92h7ixQWnU6PcLMkr1p6gxGG1jha4HcDtO0itMJ3TR4eH1EXGYbSrO+uSLOUMsuoaqjKHG0YuO6YSoDf8dlEW9b7A64T4PZHmL5HUhRgWNRIZJEThykdXAJf0bFtdDtmfb6nDSVfXb/D1JrJ2RjdZlBnULS0SpItE5J9xGYf891ygxk4PHj4kOOjI1TbEO0PWLaL7XeomorNdsvd+sDg8THR9fdYhs3Q9Wk6feLNHsOxmNoGhVHiiYTOyKY2Kl69vWa7z/EHNkoZuG5Alpbc3C0Y97q4nS5OCscffEJdV3RcG1nsCQvB8hBhq5Z4d+D7uiV41mdxe0lVO3hel2S3Y9r18C2FZRrcXtxydzfnUGlEUdExNNNxgOUFSATH/S6l4/Lyoc2z2ZRf/PzvWMiGypTopuV516S7fcezT3/G3WqH7ozIzQV1uqZDS/juiq7ncTm/pShz9mVBnEd0hgE/+8s/4uyDD9Ba4J6csHn1JdbxI9q6palKcu2TpzlZFHG72nF5c4MZ5JRVyXq3h7Zl6nUIPIFrSdzTYzxXofoORV2iLEV62BEnKYvbW7aHkJ//w6+4jAXHLz5jf3uHRBI4HYadIZ1un916xes3lwxffkrXvO+1CCtYpwdEayIOO/aF5pt5yMXNHUUR86vP/4EPf/IcxwsQQlJREO/XhElFWgsC16CoWvaZw90333A0cgmCHqenE5Kbd8gy4cTU3C3XnC8T+tqj404QzgiVV9iyj+V6WL4mGNhos8IcOuQyYTxzMfsBcVGQZA3RZo/jWpiGS3g4kIcZq/0Wy1Z4gzGj4QSlWvI8J80Krucr5rsCM+jy/HgMhqYbBFRZynB4RLcs0OUOoQs++2/+hovfuPzxB8coL8BtDR5/4KGqlFJp3MBnu7GxBzNGZy95fPwA33GRTsD5++8RbU0rBJ3AxZYVj2cTrjdbdu/PQbSUTUPVQtE2+N0ecSvoVCmDXoDrByStxpEGyjapWpeszDCaknixRtvPSGQBSYVsG4TWNGXB/v1rskNCLvrIxsCQBVR7dGOgUsHt63Pubq9xOx0i2yATLfL1FYeq4q/+wuaHo1O0FqzubvDHE7TUhGnO66s7ruMW39METUOhHaKyxrIEpm1QiXtSkN/WJMpECs1gMONmu8C3BKZh0PH7tGXARy8/wZlaHJ+esV5FvL5YYnFfyl52HuA//Ai/38E2BfNkzyzMCcYutbYpSdjFKSrZU5Y1i9s7RFsDAgcJWYbVNNzehJw83GBZFtrUaO3SNhlCugjDZjg9YfFmjixKfvR4wHCXsF+H7HYpb8IaSyh82XBsOozNmjD/nvjNHNO0mNsNy+03GJZBLSW2r9Gyoi1SuqMJZXrBIYxRAmQ3ID3sqKw7hLYR0kBqA2gpqprK7VI3LcFgyvbuhs6gh9AGUtjopsBxfaz+CbJ3yuZwgPiW3/z6S1bbmF1c0R08ZnDcZ9LXVK1BUbZAS9I2nByNWN6VdLwJicopywLL1DRth/P9EZPugOkMgsCn0/WJlnf0+mOSLENKgWk72NqiAdq2xvV8WgSq8okOBvswpSMUbStRdU5V1Sw2B6J9TNQ6FFFCWTa8u9ux3e3JwwP7pKCqBatoQCu3pIbJ+MlT2tuatmfCxMcb9fjh4yl5coWeKnJ7xhevlmSthydb4uUttTdmH0UUdUvWlPz9795wfrXk0cuPaMqIaHGFazSElYOoHZxa4PYG1FWFJWtG4yn7qiVtCr6/uGU+nyO0xeMnDxgfzTiECaOZAu3itQ2B8NHaR5otidHQaB/b2tHaBnESYrgmuyJHBBYNOaYj6D2asbx9izrs8IWBFXRJtltq00BOR0gzpq1SyoPkq++X/JkDbadPGlYMfIc8SSl1n+3hjkdnJ3x0coqsWvKoYmJZDJ59RnSxxvpgxsvZS7Zvd7RiRPQqoTM8Zb8LmR49w549xTs2WEQLFvF7snSL5VpstiFG0GG7n2MFNr5SIFvypqYwDM6Xa5ZxeJ8iDlyiJKOmpYxDHj77CKM7I4oOUFUczt/SMVz6wz7fX77h7e8+5+qbL/iL/+6v6AYe++WW+XKN5ZwQWA5Jk7NabzAHJv0pTJYuJ1ObccclC7coIdBS0LMkdhty9f2XDHsjhkfHhJuQNIk5OZmhsEnLmLwx+dXX73n55L6MfzCYkGclSZqxCBP6+1ucvsVhF6KkwWRySrc7oy0UytMUjaIJxvi+x0nlMh26xOsud1tNa/V46IFRGby+viP1etiOzWZ3RWcQ0LqK1jQZjro4rknQ92naDCyXXBcIU2HbFocsZxcWOF7vHnZQNThCEO62CL8PgCwimrjg8tf/K9PuZzx9OiZPC2Q5Jlu1JNsMY+gwfTil2iwJby/Qpo1tWBiGwpCSAwrfdSgMi67l4fXP7ue1aEXfP6HNK5QEbbmMp0OUKHj2/Anb5Q2DQZfTouIQxhRpRtG07BvN3eZA57ShtXuI3oh+z0HpCQ8flyTLDTevzvn4T/8nLG9Es17B6o58O2c5v2CTptykCV/tD9zVNc74lKPjGcfjEcPJBG80Ik1jVAV5FFJslrw+X/JP//QFXSPjf/zZj1itNxyShGESY3seDS1xXhCF9zh61wuwTYP9PuG7qxVBXVPKBGE6KMshRZLlBW5ZMhiN8cixDUXbCPZFRVLVKJp/s/32/2PvPZYly84rze/so7Xr635l6IiUIIgqoIlmdY26e9DiZbsHZVZlZLPKiigQBDKTKSIzMtSVfl378aPVPj24fAZwQK532Gb7X7bW+v416d9Mkz+TZFMjFCgbiT8Y0rU1TZXjuw6izpG6pNBVOq1H2Rr0RcHrb//ED199xbvrO878Aerpc06ePcJ0NYJej3K9omtrOmGyiVPOxzmKrIjjhENRsonWSCGQioHWP0KXBZqs0e2O//P/+CuUeIFlD3DGj1CwKSLB7jJisNkS3Hxk2Df4Mre4jvb8f5dv+M9/p/DlqzNu5h9Y316jNQ3/7ukrsDRamaMHAfluSxVtyQ8pd++vaXSdNEtwywK5i9A8mzzPuJ+vWZKy2cdE0YFQt9ltId1t6QKPppOsN1s606LvOAwmU3b7A53hohQRosgeus2mzu3Hnx/IJ6aC3XdYzC/5+d1rtvfXyLbECUOehB6e1pBEa9omIggDpBCUVYrKA4o4jROk8jAOp/sO69Uau7QwN1tURwHNJOg/sNp3dFQItrs1SdHy9pCwyWrcrkY2cIj3vNsU/PsnIz45/ZKBM+R29RMf7z/iuwPu1glpXVK0Hbf5gatdyn/wevRnE8aTC+LlW2QFlaoR3d6z38eobohlany82ZNlGbpQ8EwN0xDolknZ1AyHMzbXazZNzL6q6B8d09NOqO0eVu+IwayiiV3KukV0Nb4GxqTPWfucxXaL5QQPJA0FlE4yOz6GzqZrW3LNwA8NwnCI2hviDASmaWL5AZZlMQwc8qKmzB4W169+uubm/obdIaOsOyjrB1rLaILZn3FowXQ8srIgGA4xwjGu9pCSyquWvmPw4WaOk5QE0mS3veXQSHJ9g1IJhKIQhj4i31K/+5nZ8Qjns1+g2gZlV5PUW6IqxY9g7GaIns2Tl6+YjHsIXaMtHz7XrW6xXq24unxH2WlkbYfjDjBMg+T6HrUAW3/ARJ7bKpZh8uFOoW5tXrzqczdfsj6UdHqH7jq44wFOZ8Bmy81qy+npjC+e/RI/7KPUGSiCsuuY7xKk4dKlcw6HLc12xXL4OcPRmMDw6FsmhWwR0sK0bZqq5Kc3b/nqwxqrbvhyOsK3LOJdhDw6YXxxhB72EF1Llx8YnU5QXj1mpX/ErSVD08K0VMTymv0/WfQ/+S2L5S0XRsYw7OGfPiO5HOOfPCK7/IEyi7lZ3vOH9+/49v0NOZL/ezBgcjKjimOKsiT0Q+g6qrxENi2WY1NXGfe7PdskozxUjCdTqq7DEgLf1jkbmPzyxRG+2tA7moChY3oOWVXxcb5icnqMGYRcHJ8StSrFjzeEjkUpVe7e3XLYblHalmA44/HjL2mamkNScjwx2e5S+oFHTE3qn9NuPvDu+oar5ZysylCUju8XC7776Ud+9ctfgmGhtx1RmpDWkv7Yww5NqCRBoLB0DParHabocF2P/nREfzRhvaswuogXTsZQtRgPzjDdY7L7DxwOc+JyS1yWxHFLTEmxGHB8PsTSSrJEIE0PRS/QLciqDK1uKOItm/WBbZJxFk4QjosiK0oJdduxTTI+Xq+oMZicv8IKh4hOoBvqw+Gtu4SDEU0VctrXyS8/cPKb3/DiNOB2V7MqBV+cHLOZX1NuD6hCxbB9Tk5OmB2dYKsao16fIs5Z6AZdk6GrGroQaKZNa3rMnhrcLFbs0hQ39MlkhzxEGI6D7bg0isQyNULX4CoqsMZjOtHSd0x0sYNOkik2SpqTLvcosqWjo+skzX5Fs1khVA3TSlAVE60pkXlJGWcc8pRRA48fndMcnfL1zZKykxyyhlio/OMfv+Hk8TnDyQDTc8H0iPOKN1crfvf9Fe5oii070iyjqFtM+6EvrtPhWB5C1RGGgdYLiJdL3CrHdSzSdM/NPuW3nsnoyMXvPQdT4Ww8Qr56webrS/a7FUJVefTZFwyH/YcKrGyI05Y3tynOuKXf5dy9/gPXl+/ZbvZcXDxFt10Oi1tkltJmJRoSz7JYbHa8+/kWy7YxHA/Z1LRVjm7bdG2OY+Z8+uURT85dNqXg9Zsr/pj+jOVLQlNnbNp4ioGNYOT7hL0esoObqOIm76iqBtc28W1BWRVst2vWRYV1fIYRDNHVkiLP2VcFfq9HYBpgWAhdB6GiqoJtkpJV4OsmdVUyuniEn+VUmoPaCCq1oLMT9oWBVeoMBxO2eUKWV3y8ucMMThiYPTzHpqk7StXGMDXSQ03dZORtgJSCQyqpsegHJpUEf3zK2clzkvmcoNdjMByCaBnOjpF1w+ruI/tpSOhPUeiQ7cMOWF2mWJrKroGk0kn2W5qqIugpdB1Em4TN/oCqWyxXO2TeER0SdD/EbCRxElE1OTYLmu0/0w87g7UlUSyb5uY9ipJQVTOU8RT7yTmKo9Bzbb70QjalRiob9mlJ00bEWLy/uuJy1/DN1z9gWD6l4WE6Dor6YJJrukVdS4wODnGMQHD06BV5pzG/ukUKg9Onz1jtI1zHppUtxeHA6PFj7uOYqa3g6Dqdp6CYHYqhoTQ57ghuljmCDAWFPDng9wMmJx5CiejECMuzyOuatz9+z+PZlKMXF1B3+IbL/YePFHlMlu8o2oqrfYl/l/BLx0WRJUVnMr/dc5i3CDugU2u2SUKoq3ieQbzfYn77NaoSUv3DN3i/+p+Z9E/wHx+zOtzRf3VCvFhTzivClxMYO5yd/yW/+x9/JE83qIFByAp/MiDKMzbre2RT0eg90k6wLhpef3z7z4h2Bc8xqduWVra0skE1Pc7On2E3e5LDjnWUEfb67O4+sr5+T5xHrJf3NH8jefX4AqWucaSKbARFlFBRs15dsl/suJi62FzgGx1ptEN4Lv3+Ka8eP2LqCTbLFctdgvKkwfdD7NCmyQsMw0RpBfE+QraQp4LXb+YYrs7wUGJbJrukZF/UfPj4lsF4iOdZVFlOhcAez3AMi64tUPIWDINyl2P6CtajgM5KefriU/L1DUaeYwfHrDrJ9PQJltEw2bZs6hJ9aNMaHXWjc3Q8QyiSUtaoesH6sGWX1JhBR3SIORQSv++TGyMGoyMW3/49jmNTKYI8K+ifDjH7U+5bj6df/BUdkGUJRVojaWlbCZXC+HSE7DLk1R3JfkcJKEJD1Uwa2aLUDY5t43ghnu9jOTMGo3N8x6MsI4RsGY3HqE2BzBMCx2U4nBDtDxxP+hgK3OcZvutSCp00zdjuH2rYRgdFtMG2XXo9D+PpS56//II8t8hRsb78Ddlijb++xZ69YLRbc7TdMd6s+du7Nzx++YyjZ484//Q5qutQVh3ZLuNy/o79/T2gEdWSx1/8JX/1F+c8OglxJ0fs5gukojwMuquCpoOsgX0h6ToNUTZcLXZYUhIaBq7rUaUpQtfQNAPLMBFti6tDqGoPyczTR8zGM4o4wraMf8EL91+P/s00+TOpk5Iiy5iMhyhtietYaAK6psAJApqjKeluTdtWjMIeyd2c9z//yM3iHtsyMUKfKrSwLJMkzblLYlQrJFAyhq6BqmokZU2QRAghoamoZEvdQuAHiKagqRKqMkPtcrIkRlVd9EYnPNyjFDV1arBPEiL9iG72FNNVGDLgWEkJegp/evuOvpngux3jFyd4roc+7VGWB7B0OlmgOyZdWrFerWlME6/n0Wk6aRITTGxa2VAkB3a7iJoUT1dQLQ+Jgtcb0LUdm/t7dNslrlrqOENzAvryARs83yXUyZ4jrcJRTQytpiojaCWPTl5yNBmyPsr4T//l/+X2w5JPnp2RFBq+P4ViS3hkkcUFui5AVCgIirbDFA3BwCerVfZxzuBohGkYKBoUVUoamQymE0SdEi3vaLqasqmQiuB2H/F+c0AogqyqEJ1CRY0QBe/vv6JOF0xDl0ePH3M2mXGI1zz//BXW4IimqFhsb/lvr7/h9es3/PrRZzieyvZWsL49YLs+2yzlfr/kPPBIJMy3EVlVgwRLN2jyDHOo0nQNUVuiGhZqVZMt5pycn+H2+tzd3mK0Nzi2R5bv8XyfOM64+/gGb3rK7Mlj4lagKSYXj07RHZum0YjuD5R5TbyLUHUb6hzd0HEcl9Zx0WwwLQ9c6FYpdVdh+h5C1nS0zFcRd4uEQAgcoUErWeyuacQt9sVjCqngBwHb1T1+esAd9FF1nbbq2G0WLD+8Q68bPsQVU8Oih03PDLC9HiIQ+C74nUSp9/ifXdB5CjU5mqbQJhJnOGHwdIbrLLCcgMnZCWY/RNYFSSQoWsnu8pK71Zr1aoc/GGFToxgGbdVQJymaaeENB0hNUikdajgjVEx6w47zJ4/5pX6EMtty/OiU49MzbGEgr3YUteSn19+jOCGPv/iMNC2Q+wNa16LZFrpRIxVJctjTdRB4Lvt9zDJVsEKfOjng+kNU26bWBFlWonoT/uNfnjGoK46nFxhFSr1fc/3hLdviwOAkQNAi/hkJez4JCDMPuTvQlAVRLKmqHOUQY1cdF0djZicDhKYh9JpWHFAOH/AGBuHjZ4yeHfP8+ZS9bGnCPoqm0XYSN+jTf/Y51AWoBnQN3qD3cBBd3/FhvsW0LGTVUskOw7BANniuQxjYyOsPOM8uQGboQFPG/HC9JopzJo90LNejfzTjL7w+i9bhfp2xXDwgDfM8Y3n5jnNMnr/4BdEuYv1mxW0doqotqqIwGAxI4pj3Uc3lckndVKiGilBVjCDkMil5tEuYjAx0w0JtFcx2h+t41LUkPyQ0RYkdPGCe2w7aTqWzQlxvyItznZevWtrNHcVqT1U21HoFswB73CDTJel6x9VmzVwqKFlELZecn/SxDJUiizEsDWFoFI2k2UfsNjHrbcLz58/QHQPPtRDGg2EZZxE/v//I1f2ccHRGoAq6piarWsxGI40jhkOVyckJOxHi6jVnQY9SOyM3Fd68v2JwMSXOcjTTQdEdNM3hs1/8mhadwPEQdUMaxeyWS/ZximUJVMA0TUzDojB9RM/h4umnXP/8T0RlhW1qDAcBpq6iiw6pCqwgQLcdemnB2ABveordlbimoC5LqrplMV9RxQntPyfRZJmj5QcsTaWtOortB/S6w9NU2qzAC3sMzi/o/cX/RNdzWUdbznSVSjMww5Dh0OVQJmTRDtPW0bw+jaJzfTPnd1+9pkWQ1R239yu8fp9KD6gQmJqK0A1UXceyPezQQx2PSYd9ujhHaVvKtOPj9z/x342Oo8EUTdPRbJObxRIpISskwggZnJ4wHvQQCOqqRlEBzebjzT1ub8TRJCCudX7+cMMhrfmvf/h/OB/3OQo8giZHTRMMw6QFdCH4p9c3DMYhbm+AZbsoQkXWFUW2JV8tUdIDpulwEvTRmxn1LiWLcvxgjG6fYOYlZhHjGx1WMMENQ8a2wnGaYTg67iLzXgAAIABJREFUlelzeX1Ld7jiICW5ohL0QnpugCsSer6LqTz8Jdqmxgr6SFRUpSNOEr797jsGx49JsoT7aIunVMyevGC52LLZ7thlDUVR4QQqxwOL++uPLBdrNnGJ5oyZnH6CHwS0rUS1bAxVoy5y7F6POlWxPYdku+X80SPevqkIj3qols/04lO60uDQ+eiKh2M/jHE3RYPn5dzHa354e0vgDgldA5qGMk8odmtklrO+3aPaAfNDQrXco64SbK/HIW3ZbyqypsRSOrq2pdUdFKHTAqpu444CLEPnKo0RyQEViX2I8d2AXtvhNjlHvsCfujRqRrzPsZIKu3eE0/rsCsHlKidTW67WOatDwft3l8RlRyBKumhJpQXEhcFmE2FZJmavR1NLuqai7HQEJqqm8eUnX/DjfEGj6VwvtsR3H2nrmrZToG0oi4ZOU8EHLMAFtdExHZt22xHM+nB/z8AT3Kxyxn7Ak1kf33dRqgzD0DF0m3ncsomu+Atnii47mqwh2h1Y3c85ZAmlUAkGI24TGG9iTocGm13E6jbixH2MdTykqHMiw2P38ZpMFaRxxbrN8e0Y3w7h7o5WX6FVJb2ehuFVDEcD0qDF+/IRel/QNSlPv3jJzWJB1XXs3r9DKfbU/RlxXNGIEtW2abC4+uEfkEqN6Tk0mxpNwCBw2Rctqmlz9PILVh/f88mTKbrnopoeaRQhq5q6kYDK4GiKZXpEWYncbzl9/gnLtCYUDdlhyW7+PQM7Z/jkJcHFiM3tDWlRksQpL4dnnAwDbn/+EdO0+fyTL+n1QqrdPUPfpVIFCh26KmirDNHWOKrKh+sV0oZ+UhN4NkJ0VLJluVyxvLtl1ncQTUK8vsQen2HpCqoqEUoGMkOTHUUUIdOIqmkw1Smi9VDUHjtMlMkEZxyipFvSUuL1pziexeEQYeoWI3PE7v49Vl+nbRqKTqMVBjd3G7JGpRdOUBSdTtGYX9+gVzmGZZOWJaqq0O8NePbpr9FmF4x7PdK8wNIUknZP0caMLoYYoYJwFaq9RhgEyGpLkiTsoohG0TBdH0VClJf4Vcd6s6N/csrg7ALdMEnbHf7wCLNpKKOItqtoqDk7Oeb+7o4uTfBdk24Y0jYNslPZlZJBFNEb97HKik5TCE4uUG7ndDLHOBmjRTX1mxtkVdGWCm2ZkNcVtTeiEwNUHJ4HNkevXhJezDD8AfE+YTe/Jyk6quuY03BC72SGMXDRPZ2wb6E5GqO+gqIo2DJHMXWSoiLp9Aeql2mS71L++P6GdZTxLHBJUQkVnSQ90A9DhFApyxyr9XFVDd1ymXzxG5zRDIlgc/0eEP9i9+2/Jv2bafJnUouCarp0CHzLwBAtrmVTlylKB6bj0JsdU24LDF1lu7yjzBKmoyGdZhOMZty9fcvg+prB4zM+e/aU1cYm2cwxdYGqChRNo7ZdRBPR0lBWBYVU8ft9GiHYre7ozA6bghyLJG0pqpiB2KPFWxaLlI83O6zwgihKcPQUfzjm8cUF//7I5vTxjNPnL5ieHrNfXXNY31BoOlkWY/vHqFmKF7pQVdQK+KM+pmUT9hwQD5/TMk9YbRNqYaIKcHWFo8kYxXQxTZMyzzEmIzZRxldf/QlXk+iGRm8wIOgN8T2Pj4s5SrOjzlTs+ICQFb/67FM8W4CsMHSdqa8S2RpKp+I7GsvFDb7n4feG0G6ptQZDq7Bsn3S5ehi0UnXirCSKNwxcF8+zkC0IXUHRNegkaCZZ2VLXNaau0dQ5NDUXfYuyKNlVLYpQCW1J39Jwuw2tkrNMBZIeoTNGy1u0NqPIlgjXYXja538/+jW17qBYPuH5OYu7OYcyp5SCj4sljdWBG3J3KBB6R15l+HaIQOGQ5zi7NXqaIOuUcDrFmUz45fPPMAKX11/9A1kWU5UpljGlq3KybUE37JMXGe+++j1H/9cnHD9+xcA0uTie4nsuvjXgd3/z30n0isM+Q1UNZNtimAaaaVCaPfy+ikaD0jVIy0LVbaSUUG4JwpBfffk5/5vwiNYJumGilBX75Yr1fkUjG1pNoOg98vQeXdfJsxTHslHrhuXiHoWWk+mIV2cG9aFArQycwKPMtoRGjarUqMcz9osDdz98gx24+LMxta2iTp7ROzrBFg71XUFJAnqHEBIjGJAXNberiMv7FXkWQ9fR74doXY0VBlRZhjkMUIF219IpDZdpTWl4fPKLF1T5DbZp8+tff0qs3yB0G38whlpijR/e3fTRU4JHr0iVh9izMxyzvrmhVG3OxhrQUdnPKZoWU9ORUuWHb98TmPD07AzZ6cR5Si4rerbPpxcnlHcfsf0hdjjA8UMUx0KvU968+Z71wmB0MsJ2faSE7d0Nm/mS7272tI2BiYJUQFcqnjXf01sPMObnmMfPMCcmUnEolx8oixIj6AGS2rLoP3qO9+QVmWKSfPgGOzmgdx1CuBRZhmJ7RMt75vdL/vjzFSiCi+kRaVGiuj7b9QbbcHEsnZO+z7Co0D0X8/QExXFYphk/XV6SVi1PXzUURUHZNBi2jeL6iG2FbeioRzPs9Q7bGxI0EkVAb+xjKCN22w29kx6zY4f13T22Y5HWBWkWPySK2oZ+L+TXv/kNlqJxt14zCn0608TrB5gW6LoDqk6lNei+Rd20CDskTwpc5WG0rkrXlNuHnQ7RKUhLILUc1Y4pKsF21SCTLVmTsWpaMkVh2nMxeiGKrtKpAl3paLoOdIesLDnEW7b3Ec+fPGE0HiINlaYTUFYUdcnV3Yp//O5n0qLl6NwhjiO2Hz6imQah26OqGjx9yyHLkZqGp+lMR0f87ps72n3J7Ow5Xhjy7YcrHg17KLuE6ePPGYQ+WVZgKlAcct789I7vv/0nkijBFS6aKjC0Bxxr2oCvwNIOcMIRRbJhn+WM+gGqprHebHj6+ALd97E8j7Gm4ygVPc+iKqCVKZrXp24E13fXfHi9oE4SdKHhGxqO4mNWGWHbchJO6LsO/tEJdWdQFhHDv/4tWs9CCQL0exDzOzS/h+VodFRYouFwOCB1g7zT2S63/Ombn6iqFqkafLy6xvACZppNZyj4YcBkMsbzeljeDKlZbOKYvMohyTieTLhfLSnaljpOuL9eM+4fc/HoKa1n8NPVR05Pn+C4C6RQGQ+GWIbOPk5wLZO6fMBrt6rFjz/9jGwvOBxaFjF8/d0blvM53ygdz8+OeTLuc0rFeGChmDqmobNbVvzj1z/jOQLXfY6mqihlSr5bs7hdYpYVRrnAMO/wrB6fHAd8e8iRaYGhSSzVJByd4g6O6T+a4V7McGd9nhot1e6Klo7nScTlV3/P/T6iMH0Gx0c0bUm1u8YcjfFdB7OMHvDHmo6ia1RS4e2Hj2i6ILRB1VUsP6SpcsoWqqqkLnI8y+fp40e0wiaND9zdLVjFBUXnM754jG546LqF0ikMQp8aBV3olLKDtiXNSgaDITf3KzRdQ3MCnj36hLJo2e0SsizBnA4xWmizDjVt6fyKtiz46R++RkkNfvn5YzotpSxL0jiDtqO2fdb7hH2csy8yygYOZUqrGMxsjZEB+1xS5C1FI5FxTFekHB+N0KyQssiRuxTD9wgNgdmVjMcWs4uXhAMbpefTdDUSlaJuSWpBqKaorke0SpnXDl3VIjWDukkpqxanN6DrJMiazXaDYZ1SCofscCDZrPEnR5imgam7uGGf5WaD4/X47aef8Ga54fxozHW0xDAMDNdFaCpjxyOMVTy7xTFdLMtGrWpCb8TQyVjdRriaS8IWTUhevnjKo0ePGIR9mu0WUTVYio1oBcvNgf/yd3/Dq6lHr/cU0xsye6ITVpJe3pAXGfHuwST2dInWtFRSo/J0ZB2jaALb1imPT0nmt6Ap3CUFdr7m5PEAZ2LQotH6AmNk03kCMfZRKcjn78lXLVJtcMMQSxdcX32gy1rS9R3H02fo/cc4oz67Q87V+7dEmzVe6HMoG0xDRdQP1eSLUR8RDjnMP9CfjKmEwDZNgr6HcB3qQ0Ga5lSNxBIqu9UK07E4mRxhDPtYak1ebajSOc8fDTCaLVm0ZTgak+gqu1WKY1n4pkZX64S+y+ziJX2/z+///nfosuZodkrQm9DqNjIt6JoGuhaaFlm3vNkkjIuW42kPzzIYD0KGgz5FllCHFq3o6Iot+foD/uk5aALhBnRtQbu7oSlSyiKlrjry+T3ZLqE0PHLVYvzsOcVhQX7YY+Mx6c2Il0taAdOhS7ptaGodtTNZbyvu9xWLKMUxXXw/IAgCZFWiZVsmqkrthaSqgaZ30FZY+Rw5/4nAFdh6gmEGNIbE7AuMk5DbrCZPMoQwmAzGeKYN3Qd0peOw23K/WlF1C9xghBVOaUwTihit0TBGJ8DDbofvuRTbLWVaUjYJQu1QDhkD22O/2+M6DlXbsVsuaQ2NVijso5jjukXVxAMtkQIxDihXG0xVQ+0U+l7K/tv/TJ3WHEyXtJIPBrvqsG8qvNkJrWbRYfPjdx9Is45f/Pa3hG8/4IRjzp7NYNRDnQ1p6z0qGcLw0XUbvxdgNjrCtNhvYg6tQl2VyDIjLWo2cYHv2GRVg0wLnjsWRm+EYbloSk0apxw/66EYNuGrf4c5Okd3XMqmpdBcVNv7lztw/xXp30yTP5MUodI0LU3TUHUVgasi6RCqyiTQuZsfSMsKL/ShrTG6EmE5/MWvfsF6uSLsjymzgkyR+KokTw900YoqSYhtn+O+jWY57KIUV6h0qkbT1AhNpdN0qiJBLWJU2yNrFKI0JutsNFqqqiDqbF5nsEx36Nk78nTPNOxwRoJtpmGZIB2X/fqO2dkUx3VoSx+pwCHPMGhRNA1NN6i2ETUtlq7SDy2swQDNshFCUh5q9mmF7QdUeU4/8HCLlFIR+LaFF3isUsm+8fGnz1E2H7GNhx533bZk8YHOMB7woYt7lK7g4vExuu0THyK2198h24RSakyPZuzilNA1GQU6XVezjfY4ro7ttmimDoZLVa9JswK9U1DUgkMSI+OU8WSKIgWm3aOpK7bzK9qmJSla3KBPoHfIUmGARp6kFKmGaz8g0YxOsk0bqqZkaqXoSDZpTisbhOxQlh8ofQ+96WH1J5i9KYpu0UhJlESUqkKnSqIyoxSS4WjG4lBgj/tYmkTVBY2s8PyAVrNwgj5KB4PJFGs4YjweIBRo2gpFQBZt8RwLvWs5OX+CUuzQZc1kfMRqH7GYbykag+Fpn7xqcOqGru4YnDzjk+GQy9Mbvvpvf4t/8pi2qh/weLpNrgj8NsKwbaRsaZKUqpFUaQbUnM76KI2Ogo7euQhPw297eNqAVVcS9gxKwDFtdpt7zK6ibFrcTqJ08PnZEa7jkEQHkibG9ULyfklRLIjefcDzXZxkQ6nr6L5DKyRVeSD3L9CESbrfY/oORuNQOw1plqHqBnUreHN5y09v33JoBSePntMzJaomUA0N1RTomPijHklWYBUa61KwEyZh0EfRTKYXX7DJYdqYdJ3g8uMczfJQq5rTzkQzdfonZwhDpx94pEVCluesG43y7pq+o7PNcrK6pqxh6LrIvGS1vucns+A4cJidPKEtYsqiwh73yVcrDtsNzsQm+fg1+X5JHsXs11uWizXv3xWcJQWjUQ+lzPnTdx+4Wmd8eXrO56MjLAFK09DJFplmVOtbSq/P5Ok5dddB5bBaw9X1kqNxjhb0qN2QMI9R7t6hjh6TmwPSXYRlG6hBH9nALopY7DO++bhB6Z3hVi39wMLLMrZFy+nJMenhQBHtUJoa4+wEjqdEVY2iJLx7/S0f75fEFfzu9XvM4RGKs2VfK0S31+TrhOFgSDLfokuNz371vzBfLrj+7ntmLx+TlGvyPCKUBnl2yczbcl0m7OM9sm3RdY1GthxPJxwfH3H14898dXfN2ajPZDBEYKG7AYqikFYP6QbVVGirijwvSWOJ3kk8o0DpJEqngu5Bsibebbi9uuFmn3HAo6w6Pp/q9Hs+p7bFbRRTYBDnEssSnI0dNG/AIY5JsoKPy5jVfM8nFy846j+CtkWTBUJaSNVguY75+z9+y7vrOaezGWWrUCyXLJYrzi6eUMuGyXRMU5Todc2TyRCvyfl2l7NrOigqng9nOH2X33//E9KzMS2f4XjMpO+xv7lksUnRw2MWqz+xur+jLnMix6AxvQe8qu6g1xqqzAktG+/lL/jx679nnyfcbGN838dyLYSmIlEo0XDsDqE8bBO1EmSr4E6ecnm54w/f/R1WHNFzfULX5WQ4Zjoc4hg6elngmhaOpmDPJuhPn5Ev3oEmqasC4pwG0AOXINTpZEW826M5LpVsWa12pGnB19+9YbFJ8AYjHDR2P7/HNhzCTqW4v2bgmXSGwuBiwunZKXmlssx63N3M2exWpEUJYUh59QOyyFmtYhaXc0ahT5613P74M7JWEaqO5fr4nguyI44PKI2FZVpUCCQaUbznD3/6DlcpmK/3rNdbojRD1gU0Ofutz3Z2xOemidFBi8TUDf70bkXP7hgeDegPQppDRLzZYYdj7KBPefuO+c2CptiB1PBMmK83pHGKa3pknmRoGPjiCNk1dN3DyKTSP6FJd/QGBu2Lz9Ba6E+ntPmWLMt4v7slryos28Y5foYwQNUEZdtxvdrx+6//iVnfplMktg75IcUUCvdX72mkyuzpC5L9geJuzjLeo/kjFHfE7U3L+LP/FaqWfuAgDytcP6RUbVrbQXNrRL3HMQ3K/KFaq9kOnz47ZTx5TJq2RLs7drs5htnSaSX7JMaSHmZgUbEky5ak9Z5/+P1/4u72U379H76krDI2hxKh2twtlzRdR1I1tIVkvt4TxQWnfR+l0XmzjagbAUKjb6j0/R6n51MGoYuwHAzboUtO0ao9puuS3LzF6PcJX77EsQQoEqGbKJqGbQ7ZbNYc0hJDr4iyjCSJMA0NR1WgrRBKh6ZCP+yhatDrDxCGRbZZcr/OcHt9xCFB7/dxJ0f0+mM63aaoa2xd58x32A169L/4kn0as01zVBTysiIQAssQeIGPpWmoqkWSNfTcHo7t43o2za7h/GTMF59/wng8xtVtdtstdVWgNDlZtMNzhry+XvD+4zWfjSP83oimaeiPRpDXiCZHVxoyYXO5rjn1VPqTIY3IidYpRVNgWAGNYtB4AZWW4Vo6eVQzmpkoyRscZ0iLTV5nFPcHONi0qyVKdqCxLbxHY3QhCHsu7y87epMp3aYi6Wx6syO2ccJiH7NdrwgcD4RCVW3wdEGqKtR1hy1zPA70mh1qN+D2w/fM7ytMw8OTCndXa6K6YR1FnIyn+L6PbZgc+y5qVZBaKtEuwtNKLo4GDMMj4v2WbL9CQ+K4AWXV4HgBQmnQj2aE4YCv/vgV8X5Dzw9583FOr1fw6pWPbhq0AoLA53qxodUfzMnrVUSrwPl0wEho2KaJZdo0jUKUdCiKhrVfUvVD1P6QulMQuo8ajKFuqTuN2tKQnYs5OEFrapRozXJ1TZIcaLuS0VihKecskwi/36Nua7L8nkNWIgufN5dX/Hi9omgUnlycYFsedZ6h6iZWb4jsIFV7KKaBnmyRyQpZHFDSBeVlQRF52KcvGJo61sWA8dgi+XHPrsgY2hZ9w6BrJd5ogiJbenHMKoq5n6/YJjXn7hH7Q4qhQBj2MBGITuK7DrItyMo92WEFAnRVUB9ihobNlaojZUPPs6Hp0zQNTVkidA3dMNAtF1lVlIctitBo0xWyzUHro5o1IlTJFjcc5hnbDIzRE6Tpsj3sMcYe8bbg9eUPLC9v+Otf/TXK6zsGPYfJi19geBqNpWG4Bk0q6FoQpk0rJUIBww2Ia0lUtiRFxfrumixOeXuzBKGC0NgXGacqbOOUftB7SB+WD5tZmD7a4IJWsWhbSdsJ9mWNDKdojv8ve+T+K9G/mSZ/JimqCpqBomrYZoetd1iWQdvpFOsfMTqNoqwZDULWb7+HtuTi7JjxbIqrVGw2C7JDTnnxiLguyG6vCXWNYHJE7+wEU33YKzEsG03VEXaOaRlgB3RuD5Waw36L5ZhohoqpgelYaM2BRowoS4VxuSDLdaJVTF4X7HIFdbVkt13gaQ1VkbJSFPqhgW1peI5LXtc0SkedpahS0ik6XW+I6N7TVhnRQaVpK9zJjKzMmS+W6H4PVB3d12mQeOqB6BBzbzmkaoN/MUI0Jb3RlOmLJzw+OeJoMiFKExzPf3BeZUl9f41tqXSKxnafcXpkcbncsrv7CTc8Rmkb5ustniXohR6OHVCVBbv9FqFroPuIVsPUA+Z3b9BsHQ0d23BZbiOMusazenQ16K6AzgQVQsPBMTTIDxSRgqtIhuMTbNemqyrS9RLZCfxtxnqzodMbhgOT0NWwfQth+yjBmCg7UHkDuv6MUkqSOEZHI1kvaOuCdVoghIETBqSVxDRs+qZNh4LQVHb7mNHQwnN0ZNfgB0Nc22XgeQjZUssWUwfPNDmdjhn2+2hqR31YMT0aYwUhduCjhWP+R9ES7fbs/D7RLsVgCWiMj2a8eHpC1bSsXv2S0DHI2gLTC3AslRydXm+K2hV0WUJRJCzubki2cx6NHIqiQMqcUu24u7xEpjVyk6OqNkmyp0ksJschoqtRPIefr9ZYRcUz3+Z4FOK5Nrqi4Hk2pmEQV9BZEudkzN329sGEpGF4esrg+BjZlmw7UJ2QOjsgNUGhe1Ryj+p5qLqB6vjMF2veX77ncrGid/aCwckFZhtTViVadnhI1BgmTZWhaTqq5TFfruhagSEEUtERhkdV1sxvUwaaS3fe43QyI14s2C82GKaOorT0Rz0M0VHRkNYVpz2D/X1B0wq2DcTrDdNRD5kdWC1W7Ldbbh0VYdqEPZ80z0ivN8imI0pTqqqEMmK/3bJb3D+MKuY1USXZVC33Py15GktMmZNX8NuXF7yaDtDLFNMwsdURtquhdRW0O7LsPVff/g2FsFhstxRlwbpq8A0NO+zR6oL0sMeQNZaUmAjiTtBKjWyX8uHjFcso4qePN1zvJbHUmXgzDKvE0AwM38TKKlaKxpQczXeJzh4xmQ1Z31+z20bc7WN+fPuBYHTEzXLL3/7hG7787BN000ZrJEfDIW2rUuc1/uSY6eyYrrSRdytuuETxKt6//pEqvuXXv6jxHj/G8hKaJqPtWlzXx7RMPvv8M6aDMYl7z77suF9GBLaOYYFmechGYlMg1Ib9vkB3+yAK4vUljX+EYjhIKWlbkzyrEJWkVRQ6w6I0VTrV59FYcnQU4PgWntIxKQvu9xvKTpKlGct9RptBnFd8+/MNtzf3/OrJJ5wejRBCIlBpm5xGdBziiP/6+6/46cMN56cnDIZTQONuuaapaoqqIegZRNGW4WCMQ4MWx6SeSakoCMNkOgowEXiKzS9nJw8Y1UGf415A31SxJjO2xZ4fvv6Wdr9hYNvM0z2J1CnsMQd3giYlSlujlDlFkjB4+pLp9Jjt9Y/Mt1sMQ+XF+TH2cEST5XRIOtMFTUO2EqkoOCePqMwBV+uPJFLl8dk5F4OQ3XJDuV5heTrD86fYkxnm5AjNMlDLPdXyB6RMH4Z2vQFlHrM6bNAtC9FVVHVOo6iYhgV1x/x+xeZ+y8+XK4azGT3fJUkqwukJnWGx2q1o7j7gnR5T/P/svceyLtuVnfctk979fvvjL66Bq4KkUoEiKQZDotRQWy+oCIX4AGoxQoyQgsUiUFWoC+Ca48/Z9vcuvVdj8xlQjcLoZTcjM9aaY875jeTIw+0t08mEq4szvvTOuQ0G/D6RWK7gcFxTJDltntE2JVkVs1jdMTk55SeXT1k/PGBZFwRhiGUYtGVKsd+Triqef/UlhmGQVjXK8tivtyTlga5p8cKI+WqF7FroG+hyNsmB3yF5PvIolMSwTJTQ/JfXa14+e4/3F1+heoHhR4QXz1B1SsUQTMV6UxJnPSYpUSfY7GraMqPub1AqIbiHrn6AZIgOByAN0v0W7Sm2h4zwdETkKDrtY4me2eklhRewaWpU3VIlCeHE4Ga14z/8p//CfL1jMrAxDInqKs5OxvR5TBk/sr32h4qCiGO+oFc2m0NDJgec/+u/Zr7Ys//7vyFXAi+c0pkOoWPRGJIiPtDpDmVYIGv8IOCXly+RZkh5KDgeViRZS1rk+FrTIvFch5k3YFfuMUSL6+YYZsH6kHH39u9pR5pvrkZsjgfWi8+sN3tEVZCVLaEbAIJZZHMSeby9fqBtNT+7uuTE8Yk8n9l4DK6L3dfYroE3jtDiCWw+YIY+sfdoHpmqx5Ad0gvBdGiaBl/XmOcntNJmu99SVTUXZ1PaqmBbCLaHHMdxQZlkZUuTl2RJxhcvNIYtMb0xdS/JsxZptgwdH0MbSKHobBfb9tnfL7n+dI1jmzyZTrl8OiCRgkVWYzsWg/Hj2Rn4AcUuwTEd9mpHNHLIf8zQAn75Fz/l62++xnF8tFIURUp62NLmBxzXI+4dOgyW+4rFwzVT/4bp0KWLRhx3OzwlyYqSqmsRwynSlQQjn7bIEeKRI3TMGhxvDIZ6BPGXORfnEyoK4l2GrCpUnmAaLg9HQTTw6Msa7ZpIJ6BOElSa4A0jZs9+Qr16hz5/hTU+4/5hQ7xes7tdEhkuadtguhZquUb20NLSaMDqsESB2N/Q0fJmeU9eHPEdDy1N6rpjvYsJxjP6V1/z4uKCbL9BOT5mEaOsEC1KLs4CvnhxSV3EaNGyTI+sl3OCcMTZyQluMKDpGqSVku3W9EWM5/j8uK0pspxZ1aCca85mJyRZgWX7CCci7mpMUyGV4GaxwbdspFgzHAyZmAYojeu6jIdjlNTkuz3u6ATRNkjDwAimmOGYEIOiKMmzhDQriRcrssMdyW5DJ8EXGUVZkx1aDp3GChri7EhCzd1uj69svn17w9025fz8OdtU4Ac2I9Fg2w617dK0PYPBOfvlA7QNzy6nhGODxf2ceLkgDl1OLBd7eIK0XexAYXgC23Domgohe8TmgTLPcR2PyeSEOC7ZHXJudinGasPlyzNB2LZVAAAgAElEQVTi9IDh+TRFSeeYCHqkkrR+yP2bH1CqxxKSNi3YrzYMLYe4a0iSGNc0aKXgUNdIw6ShR0vJ8bjHCIfUvUS6PtVhj+koujzDcCTh6YzN8T33VUd3jBGewUZoyusFdXnLeRDwxdOf8CJwmQxNovMAFTl0fYUduQjRPKY/mh5pmtI0DaY7pKNlffcZ3bVsPv5IHCc8JB2bQ4Zn22ilUV5AT0clFTSPdwaDjtHpGYV7QRa9Ivn8CfX+HbOXXzHfbKgNi6fTIYFr/9MWuv8M9GfT5E+kruvo2xYtBFpKHMdBSeiqkjirSPYP0Jlsb94Rb5aUZYM/GDI2OzrHIAod2qLg4eYT9tUT2jSmtmwuXryi2i7YWjbnsxBtGmTHGClhNAwp3AHGIKLINpjDEdL16KVA2RFd0xHvU8pyRZbk1IeYmVti+QWLNKdpFMfkQGj24Ci6IqOxXfbLFZmCy2dX+J5Lqx4nZpRpIQyDVrTYpoGybAanZ6RFyd3HDywPCYXhE7kWyrbpO3A9qKo527Sl9G3KwmQWTAijmh8+fGR4eoXp2lh9z8jQXI5HxJs9dad4+uw5J2cDqk6RVJK+r3n54ikLsydPW8rsgJY9q92an7x8RuDZlLrBNocox8c2bGqhkFYHquXz7ZwgjJChR5Mcubl/4GRYEQYv0ElKMJkCPaKp8Qyoig7pe3hWAL2kzkvqskGbFo4tCIcBz56NEWmM0+eYokapHqF7tKUIw0vu44Z0fyRPDxgSesMkzwqQksH0lKLISdIcM/CYRCF9sQNT40QT0uSauttzOCScSk0YPoW2RPYNNRrDNghtwcUsYiNK4tUCS/f4nsc2bcjyksunT8nbA4PhlE5WSG1jKs1xu8f3Lcqm4Q+//4H1Zsd0MmK7uMeyGqTS9FLTCsk667gMbYToSeIt7959T50eOQle0dU1eZpR5iXYHdvtgeVxTVY01G1HdQDL/4JB5GKpjn42Yr4/0AmfXkqapkNpheW41NWBzW6PIaCViiQc01uak1nEsSjYP6wIBwN2vaK8e2Dsu5TKQJtLYiuhr3t04dAdYm6uP3E7X9AKRRgNiPMMU9dYwxHt+JJI1NR5hu26ZGXDNi+5ns8ZjEaURYXbdvRlyy4+opTG1YpgNmIyiDiudlR5/vhtOQ5CSAZRyO7+njyJsSwT9/IJ20PMleez6CrMIiErWuLDjjTZ8v33R/72dy/5+ddfo2gpjhvWS5v1ZouuW/IkJj0eWcQ5qRPhngxo84b9csX13QPV3ZqnI5enU5eBWZEcFtSdYhIMiK4CTEdjKJNi27F6u+H+x9+hT1+RCJtMwcVPvyEYmijTYVfDYDqh9wMarembjiwvKZqeqk2otcvr+T3/33e3bLZrtNYYX/6EqC8IHE3gBvRWz261oHVsnOmY+O4962pLb5tkVcePtyvqtkMojVSKqqpZ7RIcpyWrwSwLVAsD14e+YjYKeLjdkNc11f0t8kmEFSjmn78le37FPqkZhB4XFyfEhwNSKJ4+f8qLJ08ZDTy+/uVf4lsh+5sbbq+XPDMkuqqpigLfMYiPKbvbOQdrgBsOKHooy5IqGBBEAV3bYJqAO0T6Nt5gwpeGixnM6Puavk3oaciamr4skHnLerPhfpdTLmKOjWB+iMmShJ9dTOi7mGOxQ+QVrhPRS5c8K/iPv/k9v/nDj49pXW2NZZvczOfUZYVpOBwOW0T3aILUoqWpUppKsNtJTNlwNRsjtWK93qOlgWn55OstFzOfi6GPZZhIYfL1E4f2+h1/1xR4to1nmTiDc2L/KbF7QtgfqbbX1MctQ8ck229xDMnzq1M+3j6wPcTMjzHT1RLRdriGwrJOMEanlMkWoUyk5bI7HJBNxb/4639BKHtGZs3s4gnJaknapvjrGwydoe0MZV/QDwLyu5Qu8HBPL2nblrrKsXwPfzalLXO6ukQnCa1psXyY8+nTPVlWc3V2gumaSAGeKZmNRwjL5u7Ta/oqY71Z4w8jnvjPKcucYxIT+j4//eqMKIh4ff/A6rsNA8vkLktp6oRVfMDd2UxmZ3zx8iVd/Y5SuiipUAIaBKKHT+/eEU5PCVwLL/CJd1uSeEdZVFjeCNc9orVJW5YYEroe+q5mejHGCCPkcIh3c4tVVqSHA2/eLbg8H+PaJsHVK4y+huqIEBLlBDRByHJxDZ1AOpKxYWG5IwzbpxAmN4c52zrGj7c4roflT8gOGYdqw+jUxKpiks9btKFQSnB+csKbXQqWxf5wROYJjbL5j7/9I7//4R1Xs+ARwq0NpOywLEknPbTtcUgc7laK8WBCbsaUVUdtuAwnp9idwh56vDY0cd4SXF4gRUZdFViiJxj6rMqUTveE3oBw+gV5KdhdL+nzgrZuaOueohJkqweuTk/pDEksC4JhR7LJcMiJy4LWtpgNB3x4/3tUOuZidsZRt7T5gbqqaZoOEQ25fPaCE1fiWzaD0RlRlaOLEk2FNCSHqkQZJrLJ8L0xxAXKMYEA1XpMfv5voDyihgO6NqfO9zRC0iYbjOEEXSTUvcAMxqzKI5YQDIYBd9cHpGETGjYqmrHZHtjcLTDrFMqcvqnwR6cMxxNOvZjtx4942sD96kumgzHnjktV5RTrBSeDEGkFKDXE7l0Cx8KySuw6IYgGj8B218MQBvu2xPBssromy0pOT2f85a9+ycnJOZbj06Q5bWuyWO3J90fGsxnX1ymOUXA+lLzJJYuHI/bywEK8w+0qbMOkLmqCMEC6AaWjWWc1RtPhDYcY41MORY/T9WipGPQN62PG2dVzTp9eUpY598s9aVmhKTFdm7TtUX5Ibduk+w1ym+HLFndpMLr6ipU9QZuaQ9JxjGuSEkyzx/Md3NzgGG9xlImlHNJ8T6f+66R3ljH0bO7n3/PpesV4OqDvTQ67jH2c00hwygNutaNYwSgM2NYdI2lSC4lJxcAPMRR0bc7d+9ckSU6W5mTZgsFoAG3F5OySY5nx8bsf+O7DPZtSInTAfLNnvY8pmx6hLHQ4oc1bsrSAvsN3XfreQRgeDRb3qx3q7UcGYcggHBAOXKSyMGwbpSy6tsPzXLTng5T0HUgEfSso6h358obFxw9kRYYhKmS8oWhyCmVi2xZ+lrK9r9gvl/zh/S1Z0bO7+54f7tb0yuL+UHOqJI0R0LmSygno3DMMWtqmwTQ1fVwxcE2kNhGmw+r+Ayr4gsViyTMvpO5WHFub2pKPa4ttS6cswsEE10opjkc8N+Ls9IK6aEjKe3ZpgXWI+fpn3+B7PofDnpk/ogdqZdH6Q2Q04P333xF4HmbXPSaGxhmt5+D7PnGSUpYNSgjqtqVrO9q2oa4qiqrCNjXCtFBKIdIdynQonn3DwWupw2d4+4o4zSjrFl20jByH6eg5bjTm/KdfMZ54aNdAjjy6dIUZuI+NgqoAJUFAsV9jej7K9shXnxFVySrJ2dQawxuxfPM9aZbhWya6qemrGsIIy7GxlKTsBH1vsd8Lxp+X7NQtKtnR5zHN8TVV33Hcr0ieXDIdj/5J69x/DvqzafInkmwqzK6GrqMzA4Rp4LsWVWVQugN2H95wXNWEg1P2+wNBFHESDKibGrqevi44xHvyNCOpSn7x6hXD0zOaIkE1FWUakwxD6HLqpkEFEwQHXMeikxUMQqTjgIK+aWlaSdIa7FMY6BbDGxKE5zTxltFkxMlpwnq+osl2RKbDcDCidx0cUz8eYLZBX5XYjkPWNTRlgfIj+qYh3+5Q3mNCy8Nix3a75Xa+opIG08sBCIFhWCAkTdvh+COMSrJY7QgrKLMKfTrh+UsL242o2pLdbkfTNFzPV0RdjnNyguxGyMDhbDam6WpqITAtk7ToEXR0TU7oKG4eNmRpwDh0cIYj6qqmqMHQDqIrafsOZWj2xyN3dyvOZjMs2yXepqy2W4IogCDArEoMbdAVFbefPmF7PnXTI45LlDDRhoVoOww/xHF6vMhGBWO0NcSQHe3H36HOXtFbITgeIjmg93f0nf0Y2drVYMS00qCRGtqGze5IEIyI/Iiub9lnMamymFxdcffuj+RxwnT2hMnpKU3TIE2bDkHkmdiWQlUxXZ5Q7uYYSjCanFFrj7cf57S6xQ5LBsMpx2BELWu0aTHwPZQQ5HnF2HdZZgnx8YBA4QUBq/lH0izn+Ysrku2CSpssjwWyqpkv5tw+PNC0LV8cEwyl6JBI00ZaFjNtk9clD9crjmVJ1bZ4t9f8yn+Jkoqr8ZBzz2YfpySdpGla4rzE1YosSVgnGQ9ZhWlaWJZLaXjYTYDtBxziHYcuYRB5DMIQLwhBCpAKK/KplEEvFIv7e+4fluzTEn98gmhr+uMKxgHKMglkieO6VMkBpTX7tOMPnxes7j7jD4ZUvaITJsXugGfZlE2NAKxjin3WM51OuFvtUE0DecHt/QLHUPi25jYvKPMMQwgi3wcl6Xybgo6sKGjLlDw70gnJ737zd9z/T/8Ku685LB74mKesFku8smRsSZK8pB+dc3n1jON+S7K+IbIFr04jrtdb3i5yzPMhftvSC0lcdPh9Qrv+gfk+IRMe2rVYVT2/XcZcWkvC4QBHVqx2BReX3+C4HkP/8V82TIdO21i+TR3vyYqCu23Ct+8X/O0ffuDT9SfoeyaBhat7VHiKLQsay6IpMrxwyNnYpZOC82dPKPYryq7lbneg6xqG0xnKDelRCASbQ0HdWNBBV1aMLRtn4JDtV6jMYjKsSCYJ477l+w/vkJ7F5PmXuGbJZODw+fqI7SjG45DD9oBtmYxnQ8bnV5yeGyS3Kz7eLphv5jiBSRS5WP6YH99+5BAn5PuULvIxsxVp0mNxpKl7qkmLbEtEJwgGQ1QwQIUlQph4p88xwhHl5o78eA+bB5LkQNe3LOKEm/matG5JmxbXdfnyfMDpxCMMPNzIRPsutZIUecrf/vb3/M1vvyWJE14+u2Q6GrBNKjabNeMwwrBNijwm1x1P/AuSzZLUdUm0RoURjuVRFCXH/Z5XT68o9hkfvn3H82cWkdXhmJog8KnykrxOMeqaX//rf8fy+gNvv68Jzy8xvADP1uxTRd9J+rZnEEVkmxVmX3H17AI/cPhws2C32fDZNjmfjNgXFaLo8JVB0wHpHoGmXh04H9iUcYZHiXYilDKJXB8vCkG3lPUeVeaIIkXaJvZXf83++g1GlT2m3XguUyckjWOk8ulbGwPNw80d37/+RJmVaG0SjKdgGSTxnr5T+L7H8bBj6hkcWsXxeGS5XnO6e+Dps3Ncw6Tve6Tsubhyeb2X0AtOxhcsb2+43+3wX77Ai4YsFitapZk9fcpxDUgJSDzLYDYZsh0MefPH7zm7fIIfOlhSoKTEtS3SUiOVzXh2Qbn9hBQ9lh9wfjkjT9YErmQ0mzCZfkV0NuTdP37H6piz2xwxTyaYro8lKurSRfojbBPO3Bbb1Nx9uiYrTHrpsRYerm3jmAbV+AmGYVC7NpYG4bQUVY9qM5qyptikCCUpnQDbqLGCAWejkKIqKNKK0At5fbfmD28+8PFujWkZ7I45Z1mCY1s4foQxmFG1mrEt+cbuWG8y4l2CsEMMd0CKgaBjJmrE6Yh/eHuLLDPsgYsTjWi0RaMSTNtBKsHli5+RZB13N/doega2Sd52VFmFNnzuN3d8en/Lq1dfYHiPaUXhKGS/O8Mae1xZIZ/fveUYp2zWe/7trycMPINi7JNnFbvD49Tei5Mxfpfi25KR67B9OPKwXaAx8Y57JrMpE5XSthXJpqAzHWorwlIDZK4Qixy6EixQXoQOTbp4RW0EVDwmAR42K7aVxqqPmLam6S2OZYvn2si2o4g3dGXO+uEWTUuRHIk8FyFNQs/j5n7BdBTRrO9JfigZnZygZqdQ95y5Ed1YPa4f4XB2ckmWJhRVjm0beK6L44Uo00FrC7tMKBc33M1XOJ7HL37xc66uviQaXYIR8P6Pv6M7JDysDuSlzRdnDk+LLb95/xnX1DiqIBEdcV7z3bd/xLc1fuDjRQM82wFD07kBq9UDYr/mxc//G8bDCaOqx7MUXZXTiI6z4JRXL16i+5K2yAhmKXlnoYMBSgsOheQQZ9x8fMtxd4drCvrAxbRNZFXimgbKiVglDfe5xEwOtNWGYHyCwKHNUmLHhrohjksmgcRsBNqAosjZpTlX0wjLs7k8n9INOuKs5A/XN6RlQZUlzL76ObYX0LRAFGIc5hhG/2i63iUcl3es7ucslnuE4eL6FmVRsd1usGyPY9Hy4WbOx9s1N0nHbNoxm87Qps39OsOwVnx9+QRZHrCKipFpkGmLspM8GZ3RixZHB1RVwu39PaPhgLPgAq0tLMtDaYNqt8M2LbTlQd/TdTzycbIS3XS0aU2WlEjRYGZLmjzFDzw8w2af5CRJiTZgl5Zcr/Y8bA5sjzl5I9DKpKxbOm1Rt1CokPHonLK3SNIYLRVl1TD1BbrNaSvFyek5Zbqn6To2d7eYZc7s8hWdN0M5mmZ34Gx6ilUJwsGY2rAx5CPPbRBBdVLzVSP5dGywaXkynWJ3LZQNTd1SVj0f/vADSVliJQ2+P+b1u9ePAHjTIosTjqst5188w9AludT0vaAockzLpCkKHMckP2xxLgKk4dFrg3L+gBicEBeKSuyomxRlKkZOQFlV1ESE41McZ8Dzl69oTJPGUlTLO1TtYbsay7Zoqpy+zBBaUJQ5dZ6i/IiuSMjSjNT02OznGEJytyto25aLyQDanjyO8WwHpTS7Y0K+PSLaJbPT51z4AVGeY23uGZ+fofQ5Td9jeTZR5OG63j9lifvPRn82Tf5EUkKSxAlh4BNnGTLyEaJHKYll+2RFzce3r/nmFxHeYMjAtjG0QZ6XJHFMj0QLyTrOKNYH2jLn3/oG7mBEnBQMnzynqUuOeYlt2+RZTNK7iErgSEFjWgghMJWmbwRCdLRFwTiwMawIWZZUeY7n+ygRMpnZPP+J4LhekDzcMDB6BpGLrxX71R1WC8QHesPA8n2aosAKB1C1dCi07bE7rLhfLlkdUrQT4r38KX2bIZAIbYHQSA2NHpImK3b370nWBvHzGatbl4uLJ3SBQV2m3D4c8CdT0hZ0p3BNg76yyDPJuTsB1VAZJclqQ1u3GEpguw5dWzEdD9nuVlxOA4LIp9IOsvOR0qBravq2oe8FjmnxeXXHfl9xOjlFmw5pm/P+5jPiyRVVlTKejGmylNYZst3lDFT5yArRCkP0yPEUJwjwQhdtu3QYGNEARUfnr+m7DiwfmvrxEu24JMrCcy3yUqItG8dKOGqDzXpNLzReOEbaAaUS3B8y9OgCyx3z6ue/4sd//M90hkHZVijZ4vk2g9CFviJwB+TljtC1EJMJjXJodEiOjTQTbG3w+d0Hnr98gk2FlhVpXhN6BuPI5N1mw+f4QLn4gKks1ocYSyuGFy/pDA+6+pFjYxu8v37AFR3K8tCGSVpXJHmN0WcMxyeYpoOUkmR/JJiMOe97+k3C9pDy+ZBxud1ydXqCNhyU56Gl4mGx4s360az5cjpECpvL0wDLNPBHU4ZhxDgKqYTCMk22xRmL5S3KMHFdF8dxqLsOqoK6h+KwJ5ea13/8gVjZDM5e4NgWZZ5BaJMeDziujaV6OstEmhb71uEf5td8vH6Mr06zBNuyWe+OWIbBUAe4ps0mPbI9zkmOCcPpGO2F5IctbQ+73Z7XXcOp7ghsTdO0PMznVHXD2ckpg8kJbw83+BrmdUHfg2WZfHz7ln//f/xf/KufXLLbHvjw4ZGpc2oIBnRUbsD5i6+x6Ch2HS+envHsfMLymPOL44713T15Cbu6p6gL9lnLLC9YlxX7Q8u7zQrbDenocCyDh0PK6PwM1wigylilOS9OLzBcB6sHpSStsmiDIX3V87DKeHOz47ffvedmvqFSAeehw5nTovZLpK8pTI2vHneyM9EQ+jbDy6ccNkts2+Xduw/859/8PdOzc44NaFosyyTtNU0vyLOaS8sijUsc16bZbSmbhL//7WdiegZTn/tNwbmfsyfFVwa98sh3G0yt8VwHrRSGZRI4JmHgMBgNqNKMON/z5KsvuP67hP/wN//A//Df/gy1zflwsyDJc+arLaKdk3eaIIjIPYNQx3xju7RFySAcYGNQ5hlNlmFYYBYVx+01++Ucy6zZZSXvF1u2aUJbNVzOLim7HicwcR2Fb1kYjk0leiopyJKMNM754c0PfP/mmssvv+Yy3/PkbIw5eEq/LTDmD7RVQjAY8nA3Jxx/89jd6goMDY1h0Jua7fpIkaVMZ2eE3oB4fscpLufnlzTZkv3+iOeHiLZm9+kd+80Ky20wu4YnFy/Qz78iMFpkHiMsi8wP0GVObXtYw57F6hN1XfPsi6e4gcdmvuZhvqTtWqLJCb2Ezf01Nh1FYxAVOVWyQ+CwW89pRIvrODhBRNN0jxdXb0rfe/gnASoM6A2B0h695VHVDcoykJaHyGo6bWGNTpi/e816vuLNzZL1ck04nGJ5HsI0qPsOoTXR7IJ4tcQs1rhWy/lPrvjN79/RWj5xXrNaPHB+eUktNZXSNFnKv/z6ArGe83ofY/ghvSFp11s+FDWn56fkhuby579EJQVt00DbYRiaMIj45ptv+Pb1e/7xb/5fvvzZz7EsA8vxWC8ecLRCa4lSCst28dyWaBgxPjmlTZdMJyGSEt+3uPjVK6YuPHz3mv12z9mTJ1i2h5IeKJ/m8Dh55zQNraNozk/ZpoLeOyVqe5oip+oF8f4etCbPXHrdY0yG9KbD/Hhk2hsUssM9OWM4Hj4aAEpSpyvipERZNtsC/ub7z9iy53Q2xjFNuq4jzXIuno+xohmd9Nhd30NZEVoB1/NbPv32NwxGU6LLl0wvX1B7A9rO5uT0hOd5Q5ulmOczyhaKpsKWLcrUXFw9pajh7nZOnuVczIaYCtK0wNAGTdviDs9Y3G/58OkNz55NuTyLaDYHesPl+ctLfvj+NYZlYVY1w6tX/HGZMaqOyLZBiB7XMkBL0u0Dpu+RlTValChL0VgmSQGzF085H1vYTYrtBRh2gDA8cAdUZU3X9/RBSL/NaD99gIGNCkyKuqWsSuglq9UOLwjoDg8MhyFl3RJX4Dua1rdIDgmr5Zz4sEdJQZZXpFnB9piiDQe7/4wqUsahT4+ibxt2mz1X51f0VcsxbimOGWQlly9/gutbrLd7jocc/2SKMiwEEiUM6iYjy2NW6w1WOOV/+9//F54/e8bV82dIw+OHh5KPNzlfyBrf9Pl/fn9P24KVZ3jAYrkhTju0MDhWBbaU7Cs4Jhl+VdM2BYb5Cm1aaCfE0gYimGF4A5SZIZqa4OkXSNMkOLlAlRnlYoMoamQ4wzN9kk6xPMRkdclxPaemwxrOKHf3XMxOaKSBK1qG0YDcDPntj9d0hwXPnQ7t+JihQmBiVhqVZezbHS0lUtvYpkL1gq4TjH2fyAsJxhHbJGEcDBB9y7/79V/xcbGFPKFYzRHapOoEQ6mxqZEa4t2KjJ7tcsubN9ckWcWTp1f4rstgdkXRWbx+e8v+fkNSS272GcdWYaU5QdjhD8f04RMa2yMWHsNQ4fgBES6uaZGnCXYYImRPmfQ4joXnBkhaijTDm0SPcGYM2rrmeDfHLzuktKjigqYuOC6uydqW3XKLbirsfo8OfNT5JVVdkSYJqu8Jw4hN3vD7d+942KZs9jlCeViWxrQ9omCA7wXEWUXdgXZCmrwlGEyo8yOR2TMSHfEhxalKjrLHUgZnp5d8vvvM4uYjlhNiuUNkkTILTVTbPKZfKg/RCvqmx48ULQ5RozhvBJU8MDmdMrU1ppRYgwHbsscWkvZ44B9//yOTYQTxEcvwuV3OyY0SWVUkRcGb9zf89MvnVHVH37ckaUGapEwnI4SUNG1F3YJtGvRtizh9QqlGpOtb0sMGqWAwCTkmR+zAw59cYpo+gwqKNz8iDEV26qD6jEKX+OMrmjymOyQIP0B2PfFmjRItZnkkb2pEMGBx/55eSrLkyHG/gb4n8FxoOuI0xVKKJM7YJwVPJ2f86he/5tXsnGnoUjkG0y9fIBVUZYlpOQgNk9kJtvdnEOyfQn82Tf5EkpaN7Ud8vrnnm3OXfmZTlyVFnlBXOcPZBeOTDVWVY4QjtOMimpp2nxAFIXme0SuJ4/scszXL9YJs/RlPlvhnT1Bass9zJtMTqjwmy1OMMGSd1hTLHerylK4Hu+6xlKDqDRyrBvsMmpKmFJi6J7QEjhVhao1vmdgnJ+iXX5Lf31Ncv6HbLal2exJDsFtnXDxLGb54TufYiL6jrAqquuD71+/47sMtaQWFe0o0e0U3eImwBEG+AGVj2j51MyBPM0zdUhzXYLS8//Y/cfLFX7DVgi+nmk5Jenoe0orZdMJuvyfJakLDwg1c9quYXFaYzRYnXzEZDNgf11RNiRTw7HzI/GFOU+xRuWI8eoktBmjRUXUdPR2tKGhFRSs6VqsHGql5ejZjOhnRlQV38yWD4ZhGJViyx5SCcOjgmBFN3WMaAtn1mMpE2xEyOqevSqr5PZY7oE/31HlNW/X0yT2GJajLlL4z8EKPSijqOibbZ9QN5OmRvGk5OTmhdx16Q3G7PvIgfab2AEtLoqdfcVnVbBYP3M8/8eyyJztErPuCwTikLUxUD10vuF4fWe0fsLwxsxe/JIjGzD/8yHazojgc0T85QZuCoR8ys0wMw+TFucXHdx9p6xh/MEQlGQ93N9wW8PXTV6QXKYYfQltRZEd26ZHB+AlffJ1x2G059BK7yLGqFgxJutmyXu+o/DHJ3R0GBVdPTrFth1QrskZwOo7oiwTH1EwiH1srBm5E6PrEZY0TjXGjAaHvY7ohvh+iTYsagdu22KbLYvGexvMoDYtwekKRxvRJTuuEfHp/w8Mx5+xihK1tjHAAVYHphTTZGikEphuRY3Fv+Hz38ZrkmJBnCSCp4gPtZg69iQzG9GZNE1pIx4a2YHN/w/ruGn31kizP6duO8OlzVssl9RnFRJ0AACAASURBVGaFKnMGUcRwesoiq4izHMts8T0b3aV4to3oWloEaV1y/fYtD3bDarvjer6ma3vCswFFL4iuXjGbjaFIGPnP0Vriz04wbm6Ql1PqyxnFfk9WlTRly6jOabueh0zTS4UOHVLbwzZ7Bl7LrjbYlDV6esJMRoi2pJYS23LQCJRtkx5ibr/9ln94d83DLuPt/YrlesPA1nw5e8qLcYgtMpL0SLLf451MadqaJEnY5DUf25CHDytsW2Gub7m7/UTWtKRlTeR4yDBiV4FQPiPDoc8zchSRZTB/9waqis1+/9i9GjukouBm9UDgtJyOHUIVo2rFcblgNvmCJD6jLgrubhaPqU+mSxCEHMoKK3DYNC3GdMb2zQ3/8MNnzqdjKgTz9ZG75WMajSkUhrHh1rCZ+g5p2TIOAjZZx6iStOme/LjD8X2GiWC32bHe7/AHHvt8z+v5nq6pmE3Psd0hZdfjeprtcU3eSlwpWBwO1NKixOBufsv9cs7P/upXOBrGWnH+4ksGl7/gfnnkcmry/t01Zbyl6RpGQYhsW4ZBQN90HMscS0bMdzvihztUD5WQWFrys1/+lGOfcNgl7DbfU8UH0vmc9P4ap695Ph2gLqYkNZRPvqDdL5FNzjHd06PJhYEZRKSHAyocU8seyzGZXkx58vyCt9+/436xZja+p6sr7CcvqLVFqyRxnj/CqfdLqmTHUWrk/IE8SxlMJjS9zT5NCKoF/thBCZDaom0bCmFSZTG6dTGERVpUJE3P8u1bVu8/8fHmjt999yOOYeObLrWU9NmRQ54TjsY0xYGROHJ2OaQTPcPxBKltCjfk8uIM23Uoi5hIn9D0LUiwtOTX//3PKNOC67sL+jKm/68j9XeLJUFbIwZjTH1GWde0ZYWybUzDYBCFvDo7Yf3pPT98+y3R2VPGV6/QA02/fUPXVkyGPsvKxXE7RFdQZ3tsbeC5Dpv5A6vrPadnJzy9OmEURVQf30DbIg2NNB265ojheJDmFHlMkaRkrc3s8gnaCh6n8byIXkjqDqgSku0WA+ikpCtSdg2MXY/o7ATfs5BKoS2XRgq8cMih3LBNMtJG8uF2wcgU/Hc/fcGrr3+K7jLMwCUmIK18rt9d01x/JDA0+Tamz8BRmvVihdQuvm3jWprOUtTTET/RFn/88ECRlYQTk1lg0cqGWFsIw2KzOrCdbwhnYwzXQ7Ytpopp2w6tTfLiAS8IKBtNuluiLsdsG5+8zjAjGy07lATbDfFPn7K6ueHdu09MXYvIsVFC4IiaNCtxbZO+yOmalq4uCAKTL//iSy6HLqZWyFKRZTl9UaLMGH1Y0RY1HRJ99NG2AbqnmH9G7DTCtNnECcNWkFQVu6NBKn226zsOrUVeVrRlTk/Dwz7lZr5CdzWGZXKIY8qywokGNGVNdow5D13asuWH3//Iyf/4azzXpawFH+4OPCy2yL4l6xVvVgt+cTJk+OSU++xInsPiIafKYnz7ccKjNgKe/+X/zK//1xlaPZr4dVHT1wnxOuHJ0yfE33/g2dmAf/F8iWkK0jZkMhjz4XbF53nMSRRgKEHbdfiGgrbBOu6Js5hv64Z/+Vd/xdnslHA4AddBhyHFHlxbgTCwx1NMx0a7Lsp0abOWNqnZ3K+Is5w0jdlLhbYejU/LcUmlSYfBcHxK3wli5fJ+GRPKHYIjvm6w7TFlmRAMJMO+Y70pqZoCZIsyWjwbTiKffZkTjQZM7JBXX37F8rgm35U8mZ4zPX9G4N6SHo+U2xW1NHn6xVeYSuD7JlUjqSvJYfXAbnuk6WF7yHlmuEwvnrNZ7vn4/p4qL/n86Zam7vGGF/S9xnFstDJZzJckDDl9dsb8puGnkcPkyTeM+5av/81f83//n/8ebWg68ZhcVpYN728yepY8udSE4Yim6fFCB6OSpJs183+8gaahaR+fb29u6G0Dy1GcDxS2P6PTJvtj8ch/cgRtb/JpueN2l7DeHOh7m9OTU+q6oWoqyranLkoW8wVPnzzB9Ia0QnN2OWMd11hacmqec/f2nnQT4+ua1WLBi2eXNMcjomnJ0hwQ1GVJvF1xcnWFPxrT7RoMMwIkshfUtcByBJGyyLKaEyyiqyumJye0VUFtuSwEyF3JLIx4OhqydkPu3r8n360xRM863uFITVpX7G8fmE2GXJydslwtaeuS9XLFZDLE933CiU2aZVimjZAa5Q6p9gVWVxIMR3h2yDItsboSpVvKwzV5VpPuc8yiwwsDbDlj/OwS7Tp0eUJdtijHQGlBfNhRliXDyKMTPZbnUx0PLDdbTC+kEpp4v8PzAxzLoNpt6XvY7RM6DP76xUt++dXPGF88xbIDdOARvbjC8C1UXSDqil4K7MkY5bgI+edy/k+hP7/lP5GapqVTmij0iVuDH643fPH8AkMI8jSmLnNOT6Yc4gzHGbJve6I8Jz/uqZqeNjpFmAtkf8A0HjtVUksQPcVxhehqpOUTd5Imf4zDrFd31PuYQ1bjpRnl02e4ssJTEse2yXpBKP9/9t5syY40u9L7fv9/n8czR5yIAAJAAsisYhXJ4tAtk8y6Zda60gPodfg4egOZ6UZqtXooks3KqqxMIBMJIADEeObj8+y6CJoegbwg1xO4uV+47bX3+lZNMRhofcaAhm3YOEqjTWMMc4EdTnHOHMbPXzPcv6b58Jbxx584HHe82e35/ec/8O+qjos//QU0LVWW87De8Yf3X0ibnlyfEr38a8zLrxmGliqc07oWSivRjUcGy8TvaWXIYbrEt2sizyS+eUe/v+KDnjAbT0kHRZrVnCwXGBLKJGVICxIv5Vjco+k1r08NwkmE1CShH9C1LZssZmQanF/MCXyXoqkwsmuWT0/oJZR9T90P9L3GMAg0pUDAfnPHKLBYns5YLM9Js4QsL1nvDriWia0rfMug7ASu79F3HYOmqMsKLW+Q9YDpjRFeRbU90N1dcXj7lsF06DSLVmn04ZTJV1OEpch6m3q3J8lryrImPiaEowm6YyO0lkNZ8G5XoM0v0ZSFLnoM0+V08Zxn589I7m8o8pzr2w+89F4x6CO+e/uGv/+P/zeiH/jjT+9wLYc//7Poke1yEDhSkrUtu82Wyes5TV3htApbtcynI2xDUMc+d1VCXlUEoUtbRySbI4cvW+qnp4Qzj/ywohcS3fLZpBlpZ/DsdEnddNzfFNS3K4JRS1lkJEVJmeQoXUfTFUppLJ8u8Q2FYboUxzW27+OMF4QXrxiKFMoOzbRR6QFdCYY2R7dG6IZG23coy8WWEqPp0JbPyQ87srxEOB779Zq2abiPCzZ5zA8/f2Q2itCBNEsxDANnNEZoBnUvaZqWRjNZD2Me4j1NXVFkMV3XYzsudd8g2gKkoKGjtnV2aqBHYHgextCRHI8YfYUXuFRFgWX0mCOH+7uU49013XTKeBSgT3yyTNF2YNg21b5D13Wm4wmr3Y7AC8jzmnXacvOwZpfkDMOAaD3kaMHibEkUuLTUeOMpQ9fR5Edc12C0HHM4jpGff2Y0WlCXFUOe0jQVUlfESc6sr9E1yaq2WdgS65Byuy04aSsKQycwdYpBx7cDBl2nyBPyuuH6kHF3SPj2j284xEfmts1zz+TU67CmUwzP5bB7INldU1Y1ndHy5eaau/WWuBOczGf0dcznq5/xXZtXT5fojsvgjNlhIXWF1aYYjYGtw8INOLzbMJ5ENO3AQ17SdBXWxCarUuRQ0w8gdY3DMcUxasYjD9fZMR1b5OmItizIi5x2EFRlTZ7lfPxyw8P6iNANms7gy+0tnaZj6gZeNGLWtcyGgTQtsJXJ2eKcrhN8ftjxsNpiOWt08wtdXVP3HbZuIflE07RkdYG2sYiTI67QODv/BeOJTS8Vrhjo6prNIUMqxaBMgtkJpe2z3e652+148vwZT2YebZMycx1Op4o6uyUcWv7Nb14yD0z+6+8+E/ge8W6Dp/UYYUSepaRZgesEBNM5Ijkw7B/YFhlPLp/BLOTj3/492cMV+/s1Pzsuf/biKZfPXvLkpcN0NEEzba6ThqtW4nQl9C2KntQw6DVJ/HCLGAaEVAx1St8JbMvA8hz+4q9+zXd//0euv1xTFwVSKkazM/ShpUiOCKmDECRZwiSacUhy1rs9iyJnvuxZtZJsSPDyAgyDKt2jWQ7C0Ekzh263R3WSu13MfVJy//mGT59v+MObNxS7NVE0wc5jpsGCItvTDT1W4EN1oBctTjjFdxWu6+CO5xzKlsiCJydzxkGEMXR4ukBZARoDnm5w+fQp708/ke3u0doec3A4W/pIS5J/viV6foYhNeqyYPBNTMOkbmtGrsU3L57z488fuPnxO24/fsCZnRLYAXawYHX7HqlbHIuYJ089OiHp/5FJFYU+Q5Kwv90R3x05OxljX76iblq6ukHTHbq2pS4K6izjsEu535QsXn6FbBqaJKEzdQwdVBiBJhiGkGg0oakq6jwlj295+c0Lzk5mhFGIskz6KqHXNEw6qk6w/fFnik7w07rg+vqW8fMFom+pkz3G7JK9OSHfCvT1R97819/iH4/83Y/vsXWb8ckTTk5OEEmN5XmIoSOoMnTPJ/ddfMflfp/QtgOG59Hqin22wx457DYx6+sVXd3g6ApDGWhDi+UG+GHKaruhFRqtrtis95w9eUE/QNUrlO2jBAThCE1IimPFzz++QQnBen/kcJszmc4IHQszyfGUpO86PMvCtD0c2yGcz1mEFoZjoZs2xmSKaBqKzR31cU+V5dRFTS97pFzgjc9wJnOsfsz93Q03n+6pyoxVXpFUPY2suN/vuP50Q6UZNHnC5WlEEAZUwqYbJE2V4ZoGSjcwpMJWijZJoLeo5cBxEFzfPGBJjd/8u3/PzduPJHFBlx6Qlo60HHxToykK0qqhaFuaWvBwH/P9t1e8fvmar/+nX3L2PMQ0JW3TkKYZeZ5yzFIWixPOAw1bs/g0u6B5eM9IVTiOzm6fYvQg0DiLvMfrtKKiGQSR4WEbElcIJlIjORzYvX2Lr5tkSQYnp4zmM8LLV0hDR5OA4yJMCzGA8k2E3uLqNaIFpRf0rfYYAVc9uv0Uw3fx5wtKBuLOZFAuh6wjMjWSYo+ntUTehKEssM0IS+vQakFz19CnDc9ODV48dVlGDqFtoNKeZ8/nePqMxdmI89MJoTelTFqii5eU0uX9H75lMhozPllgFhmWaVDYHnYfIpUgj4/0/Zq+7Ti7OOPs5S85xBU///F7hrrFmZxQJBUPDxtm4xkLf0qPwDEExyxnVzWcWhFZ3tK7IYvTJe36lvUf3zE7fUIpFO0Apq4haLi7+wRdSZsWWErniVIIoTHUBVIDO3Co04wyTcCWPL2cYxgCzZbIwKOtUrTqSHxcYY7PGKTOZn/P57sN19sENJez2QTbirjf3FGWOX3bobxHk8b0QozpnEPRM2yOGLbHdOyTbwO02S/p856Hh7e8uDxjMl3geSFGGuM8eYHwRrx52ONPZtRSZ9X2WNLgXDcRfU9Zd3ihTt/0KL0njEJqZXHxq1/TOzo0Bh/jmkZplJuStsrwlCRdbzC6gRpYxwmibZHDQK9pZHXFuy83zB3Bi69fkez3xFnM4f4e6/ISqSm0vqGuaiwpMXSD1paET19htVDUDa3cEXc6cZKQVSV0A0L1dLOAPoxQo4gUiaMZlFVFKwb8yZyyHzge93i+hbQdLN+jHQTbwwGtK5G4aFIyDGDrksN2S36MOWYVFor/cPmMuWmiGTZqFDA5PUMpSV7lRIGFFBrSsuktG91yQRMI8c874/5L0b+aJv9EkkOPPgw4/ohwMmK3P/Kfvr/ll0sXKU2qquL27p7tNuFXs3N8OTBoA5rSaKuSZntNYAoqz0RqAbItafue6GQJgyDbrqiLnK7MUMqkQqMtMgalGPSeh4/vkds9yfk5gedipTmyqhkcF71rKTqDqK9AmAzCIgg92rstmvARzhR95kJkU+UPlAeB4UX81fMJyyLnzZcvTC6WuE7AYb3jd9//yC7JSfUR47PXmK2Gtt/DyH/clPkzqmyNY9h4I49f/1nEd2//juHlOa7nEMwWSF2Rxluk1Ok0hTaaE5o2rdDwdYEKXXpdoYyOh23M2aRjGoXopoEaBhAGhmezMM8w9ZZwMkN1FTYNRbylSm4Q1mMNdNdWtN1jDavGgKHr6KbHerPj2ZML3PGIk5OIdH3L6u6O4tDRmw59oVO4Ed1QYtsuwg7p0g3J1S1ereEuT5GGSRsfWL+/54cfrrAsA3s+I3z2NfPLC4xRwGG3QRcGnaZT1QW79Z7F4gLDscmKgqG3+H6/o7bnnBguljCgLtEtF800CUOXV1+9RNoayA7HD9l18Hmz5+p+9Y88kCOvz8+YhAHp3SfMeMPL5YLINAmefMWt8whI60RDUhywjtBWNbrsaJWFb9vc3a6Qts7syQmpXvHu9pbUSnC0HoYeK/RZ3X1Gy/eo8TnRyRxleXz8/lu2n28QQsAwcH42J/NM0mKE7/lEtkYURji6RlYMCK1GUJEmOYGh453PMfsGdXqOPT0hWe24/XJDMJ4gkKhhQDohmtRxlMUkXHBfbNnePlA0DXdpyV1S8vDwQOi5LE5OkVJSbba4kylNWRBXCfPFjEF3+VQ61EVBnMSPLJAko+trmkZDaC5S1zBci225pd32WJMQMRujdy2e56KFEU1VMhqFDIHD7v6OPs0fuSumy/ff/ZFfXJwRziYsp2NUV7NpO7amAZqGsiw0ZRBFY9rjirvVjkHo5GWNqQR523Nyfo7reZiWiSh1mjSmzlI0kXL61TmV8hiSFbPzMZ3Q6YyWLM6RuqQTHaLJ8Nyem7sDh8ZDzsZEkce+ERyrnjI5EH39mmx7QzY/oYl3HHdbPn684ofbLb/74Ud2D9f8cjHjxXzG8vQUKwzpmhTLHyOsZxwPG+os5b7oef/llrbv6Xcr8niLVBq36yNR09F3Na8WrxCWYBAS03fodUVgKYJRCEmFaeno4xG+7+JUOUZk0Jg1Ti948uQJQrXQJTh+wG69Zjoa8ezJgrtNzNDPsXXFbh+z2a14cnbG3e0N2/2O9e5AUir8xRO+vP+R6v175ifn+I7L65ev8R0bpUmKuOBkdoJteRRlz8Pqnp/fv2V394msa2mamrbKKOuaQWgIyyTyI148/4r5KMTxIlrHoEz2KDVwKFq80Qmz8ymG59CUOR+vPlEcV7y4HHFyEkJ3xBEdU98itHSKIuO7tz8hECyfvOLpckpZ9WTxEXUyw/FckqJhX/UYeY82GOz3OcnhDu/5M+JiT7eJqeID211OHve8vvyGX/zlXxLNFzR1T5sX9AhMLSNcPVBrA6btkOYCy/N5OOyp9wlVU9HrJnV/pOsbPDdkMAw0Jfm3f/1Lvny84f3nB9qupcljomiMVBa6blP2MYYm2McHpBPRDjrJ1Q2JEVEIxZeyxBgfmHcwtA3e+YimT8CLOG7X1F3KH75/x271wOfrB1IrJJjOuf1yhReMKOuau5sb/H+Mghm0mJbEFiaaY+BPpuTbWy5fXfB//qe/Y1+09NPnNFbNTCvpBg3X8TF1HaUkv3z1hDb9t7z59g+kyRFnNKKiYxZEZNcrdE2ArijjjKYssFyHYRD0bYtr2zx/+hRfH3i4/cj2+x9YKZv56QKhm7hyoDhk5HnB6ckMC40y3jOenzxypW7WWLpJ/bCj1jQ2kwD34yemFxc0WUa22VCVHfukZv7iF0R+SBmn1IeMIdfJ8h5XeDjjiLYpQbMxTEWZJFzd3HIualLPAHqicYQRTOmaAqFp1HHB5pCBE/D2xw8kaUHR6WjLP6eYPiPVTYgLpmOb/c/v+Pzljne//47j7sC56/Gn0sR/eUGsa3inFxiGRl4UuIaF5fo4js2f/uIFv317y5fbHS++foojI0R/ZHW/YX93Tz9oiF5gSYWpDLoSJounVEKj7nLa/EjVSw5lRTnoBIFDJyS6FRCNDtzd3LJPavb7O05OligBu/WKNsvI/RDbssksg6askVMdaYFhWoS+gzIUmlIIjcfKUF2hPI96gFo3qc2KXXLEaHO6KqXLLZACYekY81N++//+F9oPt9S9YLvbsTskZNWA6fr86vWCxdmUXR+BlaNMgzRuMHWF57rUWYpkoNEUD4eE5eix1cYdTejcKffrI7rVsJiMqQbBOqnYbxIMzaYxdlwsT9n7HvV2T7M9Uu+uOG5ctPYVbV3hOD5919F1Hce4RlcuUncI5Y6hLVgu5/x095lN3PJ8GnIx7tnu75Gajq00tllB23WkdcdBVyxGITYajuPiAd3mQHb1idHZKeuHB6bnZ2hWwHS0oOsadD+kbmuE1DB9F1n3tGaJNxqhpTXBcEndt5RtSdl2bHZ7TEsymYy5uV4znhoYdY7Wd3THHNu1oe7BtrG6HJUWHG4P7OOai4WP78PEMJn7EUqXzKXGxckc1xo/thmVGlXRMz9/Qh8EhJdfcbbfs5wvcKIxVZbj1iVbXTDoDk0fY3gRytljOS7jxSmWaXN/f0Noe2T0xGmLv7igH3S6vMRM9jSDoA4ilmdfIeqIz28+cDEacZAD/eVrpouAw26Pp5kMcUz6cM8kdMnKClPpJEnFb++/cMhiqiLHsww8L8TzPFwvwj6JsJoKeujaHDSNTkFdHZF9gdQnnH51Qh7nDEg0qVitt2yPHePonJPRKXU7kDkTLDukaWEQOkXeoOsOx0NOUpVcPD3jycwnX99y9fMnjvsjgX+G3uUEswmaG9AbNpUwOL38BfteEfkSLxrR6QbXu4xnVoRSOn3bYtsOZZ/heC55WRJNZwwLh7FrMWQxVdmQXd0yHnuUdcXv3l/zlW+hqhKzrqmaFk+T5LTUVU3edxQa+KdnPKwfiBYjzr5+RR/H1NmOJktBV2iDTt00OLaPtGwsZTGkNbLuoDjQWxbGfEbZNTSGospSdocDWp3THDck9Z4gn9FoT3jx/ILRbIK0Fb4hGcQzZJVi+z6aktRNx+rhgb6pGdqa/W6H1DQMBiqpiMuWodP4nxdLJoOFGZ0yunxGOJ+hTElbZJiei8kjQksYOoNpYug6rYChH/6Zp9x/GZJ/8zd/88/9DP8idH+Iv/mw2f5vummIyA9o25bbj1c8PKxoDRffNSnTA/ukoO8FUeDTtw15XrDf74iPR/IsRQK6BvPQYho6LJ68wLAtqCsO159IjjHlIFC2Ty8EZVEi/RFlV7PLM7KHO6o0pc4bqrKkrUr6pkMWGVov0Z0Jlh1gWTPMtsc0XPrdDmnrCMegSjds/vhfOGYxcZpjWwbLi5PHM1Xb5re//4H//MM1sfTRw3MM06OvS6LAoxpNwXIQtkMwNPjhCH88Aa3i/vonsjKj0R22eYNhW4xDj1IaVJpiefmE4GSBFAObzRqFxDc7yj7FdTouly5+FOCYOnXXoBkG9mSGEU4o3SmFEZG1kqyoGJqatmko8pS6rdluD2x3O/a7A1makWUNp0+/IQhniL7hZBYwXZzijyaESqE1LavrGw7bPcXxQFxU5EVBnjUMgyBPUurdhuJ4pI73HB4eyNoCd+JTy4HBlkyeTLECD2E45FVHnKd8urknLwsmixlOEBInJYe85Drv+LxLCZYX2EGErXQsQzAoQVHGRJbObBwxnY2ZL085IogHSVKUaEWO09aEpmIaRVRlRblfcxYFTMYTnn39K8LFKalsiEKf8ShifrrEkHDz4UfuDy1pJdAGQd+13N59YTQZE4Qe/onF3cMHbla36FRc//A7jrdXGKbFKByxOL3ADUYYlku8XvHx9hYlYDSZYOgSUxNE4wmmkhT7DX2RULU9nqnRdg2i77i7uUGrEmTf0NcZ9eHxEmW3fmC7O+K4HkrXMFwP3fGhqqmKitXdHTfHlKvtnjc399zc3jL1HE4nM8IwwrFM4qYnGo9Ruo5oa8aLMxJrQdEp+r7lcEhJy4b3796RxxuGpsANAwzXwbQMqqrANC1822JkWdiWiaVpoGms05TAUhg8Np7syx7LttB1SZMl2JMpaVWjVSmarugQCGWSH4/YhsLzAwzDoksPdMOA1CTX6y0jS+dXT5c8ff6MaDxBp6VOjtRVgZCS0dKhrnOqsgDDxPRc2jJBtBVCCAoswvmYsmgYjV32u4T/9u1PZGnGoCRK6QTLFzSDRl+X7Hcx25vP3Lx/x/39hkPd8+bNj8Q3V/zF2YJfPHvGqz/9DYvL19jjOXmW4HkGdhCy2W5o2oo3V1+4ur4hyVKSOKYqS9xogu1YhK7OdOyDkoSewXxkoDyfQnPQXRfdtshXDwSuT9EL3EmIqw/IoUQ1GVVTIRyPzjAJRz7zUKLrgvHEg7ZiEIJWmKRJTd8JoMNyPNJjzId370mOGdIO6XrwJifs4pr96hbXsnj65CknJ6dMohFK1+nrkjCaEfkjonDCdLqkVhrhN79Bawu2uy2d0rFdHzeaoDuPbUO9UCRlzk1esX64Y1fVZIaFPY0o24aiqrm7/Ux+vOP5hY/lebiTc2TXEo5nnJ1NcXVBtt6x2xf88bu32LrE9yPiomN5dobjemiGw+eHhPn5c3Ir5O7qM56uM7EcwsBjPIuIrz+gB3PGy+eM50+JpifMnz1lvJhhGCZKaNSDYHOM6esKJQXN0NCgURQ5WZaipCQ7Hhjo0LqM2djFcW1828GVEttUBLbO1Hc5HGOOuy15ekT0DcKwyOKE/TFGSINDp7NJK7ZZTVrDodX4cixZrw9s04r7bcpROhzWG3a3N2z3MfvVGq3rkZrk4/0OY3HJZr0iPayxLYOqLLD9gPFiQRU/4A4HXj6/YHn5FWYwxpQdZXbk4vwUYfqIi2/wJwtG4wl935EWFe/v1mR1Q5FmDH3HbB4SBiFlOWAEDsq18aYTfMen030sXadvSso0xbZN6DvKJKGtcortHcX2mmx/T3J4IN5es13doEmBoRRN26INLWcTE9cx8H2fMsuRuoFhWNhDh9ZDn1QcbrfcnZDe5wAAIABJREFUf3lgSA80ZUFRNtRlw+pYcnrxHMvykMpEAg+f7nFMG9EO9GWH6HX6tqIsSlarB/77j++IIh/HcXAdi2EQKF3RdT1933P/sOH/+e0/UOQF72/3LJ7/itHzv+DQ+2zyHqRFl63pm5pPb95yc3PLk+WSy8mI6nDENUwml6/YdDpyMn9kfVkGHYK2G9B0g5NJiKMEtdBphGRsQ56nbO4eSI8H8mOO40WcLE8JXZc+E9x9yRGOz/zrF8yen/PVN885fXKOcn1mkU8HdL3G6u6B7WbD7pCTHBKUVGjxgWGQlHGM0bdoXU/dDY8Rpqqi7gbatmHk+ygJWt9R1xV929I2DT1gTeZYoxma41E0BQ+bDXmVUdYVq82aQ5EhpEIPfPJBo+gGrq7vidOCYBTx1csl508mmLNT7mNBUTRUcUyV51iWjW/qDG1N18OAYuLahMGY1p0xWpxhOxaGAjSdtFP4Z2fYswXpMaNtBUL3qKVJMnTIuytkc+Srl6dcvH7C4tkJZZGi9MeWsrIVTCZTLMPGc0xEeSDf3NHkR6y+YLXZkXYGg+1TJTE/fLpB6Yqha4nLhmYYyJueC8cmMk1C18VzbGylo8oOR5kI6sd4q7JwvOixKlzppHGGJuTjuy8KyrTEmk1AKVAShEbdgzIthg5k12MEAZXQEErS0/P5w498+sPfYSvJbDJBiBrRFeyuPjHxDN7eXPPkLMBU4Nk28zBiMZ1SdjXPXj4DobB0j8N2w82XO/Zli/Q8Ll++Rm87yrTAmy7RLJ/V559JHR2NFpqKNE7o244kyYnCKaYwEEXN9ZcHPn65wzRd9K7DMSxc10dX+iMotAfNdjlfntJXDU/OF+jzKbgG4TTC9XzyNKVKE47bFWmaMfQNVVOhCY31dk1yPOCJlni7YShyLMNA2Q7KdFGOC6IDKVFeQNcVNGVC1zXIYEEndeq65ZikvLv6xMe7mF++/iu+Wn6NozuUWUrbgI6OMj280YjxYsHk7Iyk6jh59oxXry6xxcCHH95w9+WK7XqFZhn40YjANZgtZtzcr/GWL9ANH0cY+KbLaL5AKoMsLYmUyVi3oWsfWT39QFdV9AwYfsT4bMl+taHIMrp+oJGS7dVP+PpAXOQk+yOurpGXKXVXcSgKjlmGZKBsG8q65njYsRy7NE3OyeVTlO2gGSZtkUFRousGRdUTjBePUcaqoW/EYytRmj3ygCzrMX6naRyPCVWW8un2ljg7ULcNr379a776+jV+FKJLgdLlI+C/a9C1AdO2EVJyLCu+/+53FGWJ7fikacL+foXvOKRxQlu0/Ntwxp8vf401fsbJckkwClBSoGRPXefYnoc2DFiGgVYXyCACpRj6AS+0/3fdVD/9M465/yL0r5cm/0SSuk5RFriuyz5JOCQZz5895/3b7/m8rTgZR1RmSDSuqaucrCgojkd006DrWyxLZ7d7rL+ia/Ckie9ZKF1HCdCVwDAUu+triocN3nyJNE10JyQtM6q2RXMsiqom+XyF6nt810Y3Q0IvwlAmFgaIAjUEOBMHpi8YtAKtK2nzDFRNWZUclU9VHR8BiLpG5JlIJXjz/gP/8c0tQ3DK3B+TZjV0Nf5kTtVpVEmOCEc0dY3pRyjbYaBj++VHtHpPMJmx/PpPuLm/ZTjeUkidh6zi1A8fh8DDinroqIMR3TYDOaBrNZMQ5vMRpuUgpMSwTGqlc+wlVXYkPu45KhfRKSaNzi6VyNU9vr5mcbJE6QIhLboeuq5lGDr6vuPp6z9/3ERVKV3fM4qmZEmH20hmRcX7Dz/x8eNH+gF8yyO0AmzHwzUUSpM4DzcEgc1kOWX5fMr9VcLmesM3z7+mpyfNc9ZxxiFJ2B0SDN1kPJ/RGhbb7Y7bu1taI+Dt7R397IRcM/CkolEDzdChhv4x2961GHLAQHvMKGsalikwbQNDaQhdo9clf/zpHfPpgrGhyF0bJU16f44/WWAIi052rIqUOj5iFCnv72LKLiAMIrIkBaVwLJdet7A8KMsdUgru77a8+fgOY3fL5eUlGAZZGmM5DtYAw3wB3/wJGnC1WrO+u8ezDbIkwXV9lCWRhkZZlOy2O+7vO5SAk+mIQfZM5hNcf8TQVhiGydDEnJ1G/PTxnkN6xB2PaOmgiCmakpIK7+IM8XDL3fVnPn/8wHI+Zzae4dsuljLQdZ358gSkjpQKK4jI8wIRujSaQ7rboGmSqu0psgJlj7FFiqZLNNXRN3s0+QhQ1CwDve8x/7HWTtQ1geeS5yWOpehMF8tp0MXAcX3P81dPeHp5SXo8UsYxwg0wzY6qSZicnVE+PJ7Gzg2J47uUVY3hOjw7O8OsEkxDRwwgpaTJH2tHo5MnNHkOsmIoYto649jrNNMFajJHNRV5uyJY+PQd2JGHsgWuZVKmOZ/ymodtzPmTcwbNxHdHvPtwRZ6mFHlO1tQYXkTeC+4+feCryOPi7JyzZy9QUsfzfbb7LaauYVoWumVgOy5f9lt++nTNIckwvYC2KfE8SVI1+EGIUC297aGfPqezFb0ciMwWczRC2CFx2xMFPqa0cCybbRKDGFCixvZs6r7B0TSUcMhWNxCZjGaXOL6GpimufvqAPr4gmExYH2743Xc/s9qVLDyLu7sbulrg6wFpkuOMTjm5eM5+6/FpvWO+3nJxfs4ojLBdj3dv3tFcfyHyppRJTdXk2ENLvbuhLSsMy0Y0DWVd0sTQ9Fv6u5ZbqWG5NqPAwZ2fgGvihTZIjf3hSHm8p4uvWZ74SNPEPX3FLslZipq5VWDqIdVxz+2bt+x2GtfblMlqS2trHHZblGnjewHrtEOZDjQdpyiGxibebBg9P8NbBtShyZPwFT9vOgLTxXvp0OYFu6qjWadYTYVZF1TSIClrXBOqpiOTOmgV8XGDbuikeYzhWKxXK2o6dnnDSLehqx9bHXQbo+vQmpZfvTjjYZdye7fifrXH97a43gipFEWV0QhBfEyJO8HD3Q5/qmh1hyvnlKwCv8/h3Y+EssKNAhaRD1pIKSz+9u//AW3o2X16x36zwnZ8TDfAjqYEpxf0bU7gSC5OxxTJDstUPJtNkc4FE09hSHj54ikyl5yNPEJToXSLvOn4sj7y3z6+4StXx6xrLhYLRhOff/M//op3dxu+rB5ohIG9CGnTnr4b8DyX7ZctsdTwfAdNG6BvaIuEMk9RmsB1bPZFSVE13N/c000DTs7OEEbDIWuYLxdkecndpztcxyOPM76KAiLfo5cWpm5xWB35u//rLbpvMr1cUpYF5vj08crSdtCdRy6Js0759OFnPHeDPztBd2w0W2e/3/PbH/9A1zYkcUyeBKS2/Whk2A5CE1RlwX///VtWu5R4VRItv0b3Zxwbg9koZDr2oM4wdY3desXtpyvUAMFswevnL7F+vWF9df24RT1sCF2bpvHRLAPhuPiBS9o0tLXk6XKOExes+pq+6jluEqQQGMqgbSt2779wf3JK9PIp85nDbg3f/f4tRwvChcPEO+cQtyilsUdnUCZ5uScYRQTRGL+QDMLAEQPbLMPVFfZ0TnM8IPocSyhyZTL0Gnm5IT4cMBXMAgfPtnAsC9N1YIDR4oROKrqmJu+6R1P9+h7Pd+nutlRdy+nFGaOxycX5Ce5oxGqXsT5myId7HFfR9zW1abNyT7nZ/Yxl6Tiex0EM0NXY4QTPMOmSmInSuAhdZDAjmD9h0ARxUrKwdaZTSXA+wl2MuKs17idj2qrH0hVj20K3InpdRwmLxbMLouUJpqlRpx3xPsGLJkRBSLyLkaJjEIKiGdiv7wijCbv0wK8uF/x0d2S1iukND2laMHT0w8DYNjHqjrRpWSUZM13HNwzCcUBbSUaWT59mGEOHbh65+ekNhuPjjyLG8xPcMCROMsyhgq5DWjpZXlAcEmgEZV1jjjyauqTJcpQ/phw0esdmtVrTtg3/+R9+i9fkj0alaKnLlOzTD5yOPEx6/vKXL0gENEWMkjXeyMWNbPzOphcNk5MzkpsVv//jD/ztD59ZLs/4a0vhei6eb2HaLxCux2FzxHJdjkNHnqVo3YCSkqpq8JyAiRtQ7xPKQ45EsFheEI7mpPcPWJrEdmzUbE4fhpxqNaKr+PLwnunkgtI0ECOX8PKUbXJEHPYoz8MfjRjnJ2TpnvS4pixzfNvgdLLgsL/mw9UVjpIYbY8pdGSnkdkH3Mijb3OkaWPS0lUV6XFPWhywm5Yek+12y+puw2ZT8hev/wLfnrLddoxfPOPLek0Sb0mrEuUE2GJgvDyn7hXWKEA6Jo7noB07lDDZXB8pmgI3qmhsnx8+3FD1Le50jtZ0NLs9keUSSoc2qR6XppaJFI9Nnlrf01QNAsUgdFQU0JgOVVUg+5Isz8lth99d/cxJkxM4Psr3yRFEsqFYw+DYNEmGZlkUVQmaRtv07I8JaTEmbC0OhyOXl5cUfUWaQ1xkjOoWfzSn7xrEMECWMGSKXhsYOmAYUFLhOQGt1JlWFbQVflWStAN//b/8r3z1yz/BMBSmIaGt0ZQNAvq+Q9c0hJQMaKw3O4o8I0kSgukJo/kpbuDjGjpJXvM0CLgIR5iTMcIaUa6/cHB7BgVNscceBTR9h23boAl643H+E1JR5QUM/T/zlPsvQ/9qmvwTSWgCZVl0bUPX9+huwPV6jRwEP3/7LeI3v8L1x9ze3KOEZHvYELgeSZKjDEWdppimopchlhoI9QIpJbppMjQ1UpmYloVl2RxWO1brHXowwls+QbM8eqGRdD2mZTGajkmTA+vtPUN5zV7Xse0RjhlQrB8Qs3PUxVPGswmaA46jM9CQJxmH/Q3uOMQKTdJDhqYEjVBcrTN++3GPtKeY3UAS79knJfPT5wyDeHS9BUyVRqQN//9Wq9qtcI2Gv/zNL/i0WnP16QeG+AFNDnzeS7IsR9QJmIJxFHLy9AmuNPEZGA4rjCFhHHk4foimS6SAMks4JvdUukVrBAgJdnwDyifPM4Ze0PUGtx8/UdU1rjemB7rh8TtJCUWW0LY9i9NnhJFLPRxpewjHAdebz5RDC5piGAbyqqPROoohxdVaJnbEOHCwAptgEuFNxlR9gzUb8z88//dIUxFXgvS4Z5+k1L1kNFtgBQElj5ng+/sbNvsdpaWx3haMpzqeYWA0OZppUw4DviawbYsqP6BJha4ESoOR6zAcY+rtBtMwaBwPkcTkWUpsGESjgJ8+vuPScLCPOw59R+lB1pXc7Xb8/nc/IvKM2fQMz/Uo8gLP94jvYoSpM5m4dKQkh5QiO/L22z9S39/xdBJiWTZ9nbNJj/Q92JZFEEZ0+Zz24gW+E7JJjsRJiikG0uSI3pkYls5AR6c0krxktT2y3e65CC3atsD0TnGml+iGTpuV+EJijqZ8+/0VNw9rxs2A1BTHNCUucrbHmNv7ez59uWYRjXm2fMqLy+cIDUzLZpA6TV0wDnRMx2V/f43tBXiGIGshzmuUNlB3PXWRo5RgMELKWqDaI3aXMZhzWndJ1reM5EDXtFiOS9a2SCnJ6oauEaRJitINuqbG9Bycuma+CJh4kE0C0qwmSzJcE1rZovkehyTlUFQURcnID9DpeH22ZLfbo2mCti7pmxptkLjjE5TpoekGQsWItkHkMdmu4JjmCCvA0hWm74MGdZmh1Uc66dCWDX99Oeb8bMH/8e1HPr6/4rg5YPWPQ8PEd7nNGj7cPtCyxlaSr0KX2WzOMHQk8Y46y4CeIo8JplPsYEKt6fT9wPaYUfUmRrBA6AZWNMXTS0xTYXs+jiPR9I6qSJlEC5wopPcW1FWN5/aIoccZjaEcQGpoXU282+CWBYXW40cheVsjixLNDTFMm6pTVIOF9o+Efl3T6D0ff3rKsRD8fHXHVVOy32wRmoU/amn7AdqCwQxwbJ/Rs6+5yRPsn+948Vwn8HyCyYyfvvuRL80dU39CVqQUx4w43lFmR2Q/PFbiCuiqFMPQcEYOtutiBj7oJr1lIyyDoq3Z3Vyx/vA9ZhuznNtYxhR/ssQydUZdja9ZmI5P3zTs3nxPtd2gMskkCpD+mKvbA57nshhF1JrF5phyNl9iSp34eocqHF7PXvPsxRTrxGXdxPT2o8leNT2+ZaIYGI08dnHO2/dXPB25DJbDWaTTF7DLGvxoypDliAdYb++hqejKGttzSXYxH48d55bPWMsxTQulSwwVQdtQZRkjW0NNPLZJSd61rFd39JpF3bQ07YGuysiLjl1zxMXADHXO3IDzqYl1/46zcMTJ6Tn+KCBZ31NKi2PWsN7tEbri6u0bwmiEP32KOz/Fdl02+x0zV7AwSpJDS7hYEu/X7G9/4us//0tevv6GOE3IdyWzaIylFAyP/yWpmzxZnJAnKVldsl+tyA87nsxmXF484U+enaJcC+kF3G5jQqlhKEFfD1iWycPNLcNihqFMDCUJwpAqnyI1aNEIVIRv+Wyvf+LhYYMyTMTYIa0NDknJOHDR9P+PvfdYlmXJzvQ+F6FFyp1bH3VFCQAEuoFuimaPyLfgi/ENOOcDNAkzGkkjgYKqQlWdK47eKnVk6Ah352BfgMYXqB6wlllOwtKFRWZ6hv++1v/5rPcl1eaA3ZX8+TcvSKcLwjQjzRbM8hO7/YH1ux0q8PAyx2ZzYCklfpBi3Mjkes7n3YEPn34gfvhMlmYYFfDPD1/4MFpeXM3Z7Ao8/YB1lihLGaSkbRq+3N3zq998x4dNR3b5CmRKnk64ePmK6TTFDjWxb/Cd5GG7YxwceRyhpUOGAWf/7r9CRr+mLA1aSZTWTGcTIq04WUHVdEySmMFY/Mgnvcg4HmqKvsFXGm++QCgfTwQoE/LP//tbRqf4+tWC26/mOH3Lh48/0nQHukNAnL6gPZWU+x7PU7QEyMmK2z9JiC4rmqJg/49/w9PYI7UkCWJqz6esSnonmfoRSTrDeZpTV/JPv39PngQs84TpJCUIIqZ5Sj1YPD+gGwaatuFud+Rxe+Ch6plcXHB5dcX88oLZ4gzhaXpZ8vHTZ05Pnxmqks4TiCzDXP+Mv/vNI/JUkKYxk7NzjncfkMbQdx2r+QI8n4UwpPMzwtUV9TgS+gFTT+Id79n3JSo/47F8Qvgxf/HtNxjn2B1PbDYb9Dxn+uINSb9hGA1CexyKmiSdMRhBVVS0w54kCAkCTV1WGD8ju/gK2WxROqBqjqyyiGEY2VmfWZ6y3+0JlKbse+LAZ3SOsu/hJ0qJ0oo0meCjCXWGFSPu1JG5E0+//SeGm1vqZiTJJ0RhgAp9xqZH6gBXlnRVSbsrGfCJlKJsjoyBz2gHxt7yw3dv0Tg+/PB7nn73a158+zXWg4/3nyk//5YX04DckzRNy8/+5Jec/exP2R0KtFaIocKOR17MFhg7EkwmnPYdf/M3v2ezr/jLm2v04Y72ISJZvqGxE1A+Z1crykhA9QlrLHYYnjOBnCTzY2zbg3Fkec7C8ynCCfZUcDztGMKUcJIjPcfti4y5/wkhFGVtqIIAmafIac4TinJf0//4jmb9QJIkxLMcMbb4neL+aUPorYjilKhNWR+OXE1SPn75gmk7lIUkyzGVjwx9nNghlKTpCh6/fKAxllHt6eqeh7s1xbHjfPqGMFxw3Oz5+OGOf3j3T6yrNd1QI72YZZTh50saoanajmzmmF6cE2rFoBTpbM5ivuT7dxvauoXFhF1luA0neEHOtjcMbqTtBvxkQv/4gMpzfO0jrEPgsMYitMIJTXh5xdHBl3c/cjGNyUONJ3x8T5F3BZEc+fDxA2p1jpGWv337G0IcVd9h3YgfRYz2mY7FIGiHkc3+QBTAG2fxg4BBS5quIcpmzN+8JqfDHd4xhCljUTI8VQxGY4MQncYIT4IISKxlmM05VDVhb/kv/8N/x8uvXjN0JYEN6JUkiEOQisEMdE1FlAaApGp7Pn96z2hAafXsoxIGTKcz9p8+EfsRX59fEi0uSf/0F+jDjm43Yk5PtBtFeHWO6XoEAqkk/dDhRwEIEBKEkpg/luf8QeKPoskfKIwZMeLZrOhiPuWw2xG7HpnnJGHIxw+fuZo6kvmCyeoc8/iR/WmHDGKi5QwpHH7XEwUxw3HDaj5hvrok8D36rsM5hx9E5JMJTTvQ7goOm0e2RYm+eY23PCcIn7MSrBCEfoi/uqYvjpTFgXr9gf1o2YiQ3fvfcvXujNdvXrG8PGOymOIlCb/dVvRjynL5isSeUGJNKXx+W8DHCkZvSpq2bI8ntscD56tbnLMoX9PhcLMZT+NIIEBmEc45NAMv37xEhwElkv/lb39FIDvOb67IpM9oBoYgpIsydOBhxpa6rPF2j/jFHfNkxI4DSghC7XE6bmiqEhUE1P6KddkwlA7ZCc4o8ZOQQ9dRtx06ydjsS8pqQMmIJEs4ljmygrLY01ZHTF+RhEvydELf7IAOL0pp+oGirBD5GWfzM1xbYYzBYGj7Hj/yOH9xzWQxxQ8CwmzCRRZhx4795gmzfmIQisXVC7w4YzCOwUlGqen6jvXjA8ZZ7h8eEHgkWiPLDiMlGylY5hHKCeI4xImUbuyQnng+BWobnIP5YkF994UwvkLWBX/58684Vj3WCeI05vHpjkUQUz58xvz8lqrtqPclrmiJkilCBXi+h+ktY90RKcXs62tydWDz5Y6yrkmimGnkc5QOpTVBlGDahrbYs9vc8+rl18gkpUsSgjAgimJmxjDYBDNUjCjwPcqyZOgtVdVyvztx/3hgcj1jdr5CRRGWDmcavHRJMDtnrBu6dmA58fnHH36Hfe/jhMQimU5ynAo5nirO45Tb80teLFcEUqODAIGjdc9+A34QsL37RBRFKOHw+wJvNHiewvN9hnHz7Eo+NjgvxEuXjK6hGTWYPfnVwGFsORM5sZL0WBo70tQNCIHyPMz6kdrArhlIwgQv82n6lptVzmFXUh4bAi1xvgI7YDDMlkvax89IpTi0LbHpWS3mvHjxgk70jG1LUxRMlyuUH+AwCKlAJhDNsW1HGo7c373nNCjiJMEzPVJJ6uKENg4pFV/uHnl1s+T2mxv+e+H4n/7TrwnGkbPLFdpX/Pj5nr95f4eQkpvFjIv5nOXZBecXZ1gL+92am+trxuFEEAf4cYQXx7RNT9H0PLQeevaKwHUkocaPPIb6iSyMUJ5HqA23cUWNh++d4wU+fRgThCHOWRaeRRvorUF2I81hy8yzjFoRRgnb0SIWl6TNAUnJbDllX5/4dN9jhUWJC9IWsolDxyk6yVBNz+P2wGazJ/FDFosKMQoM3nPqa5wQafAnUyoXsDl2HCpL3z0LT++/+55//P0/I6Uk0ArjBpRzRF6ACCMcDqclYTZBhx5BluIkGKVoDRT3D5TbRw5fvuds6vPN10vySJGlIcoZZm5PnEiQOXE2Y3j4ge3nB0IvJFQjf/bmEu/snMFF+F6C8lOq1hJYxcPnB/qsxJQt5yLlT//8Z7hJQOscaZ6zrg/gCcpijxlHLpKYL09bzNCjtEOnEaGvGPqObmyJfE03tHSHJ8IwwFOSzbEmddAc9+goYXcoeHh8YrHwEaGPFgpnB8IsYzIYtvf3SDfi25a2qtltawaZYKWPUAG+r5lLRe4kZf2EnwSIT7/ldNdxfrXk7PoF8SRByAGnFPHykqeHt+gw4nD3yCSfkk1m+NmUs9dfUx0PpO2eTA08PtxhL2+4nZ7z/jf/F29enTO0DWNXEscJj7/7RL/MCJcwCZ+NKWtjaXBcL+f02x3NfElfHtnvN2jh+PrN13xze8mv3t9xOc8Ytj0SUEoTJSn14cDT58+cnS/RXoDnPa97TT8hkjGreE6z/4yZpDStohsd7WCR2qdpO+6qgiAOUf1IZRz7pw0vFzPSyZxkNmPw+2eazGxK1jSYocfuK97tf8PdJCGbzdFCUTUtbV+xNS3fPX1BSp98eUE5veI8SwnSCIaS2tPclz3D7pHwfkt1PPDbjw/84/ePxKs3eOmMi5dfkU5y4iShqhvS8YGLpaIYcqzyePlv/oJpErHIYuJJhB9YFhczzI9fyLOEdDp5LsswA7PZjKbpqbvhuR5feayrhsXZhLAWVNGKZugRyicKE0LjYVpDt93ylpIskHhJwsWr10hlyGcpQRTSjR2HY00S+AxWUhxLbNuwDCQnRk5CEkcR+2NFHkQEnof1NPvjjqZtaOqG2XzJIguJwhhnex72JetjSaAESZqRxhFBGNINHd0wUI4j5z/7E6LJFC9KmJyvINLYMEUJy3bzxPf/+Pc0hwNREjM7n6Ovfs6vv2t4+tu/4/xsipjkzGcTurNz2mKPMpby1OAHOa3v00VTUiVIBGSBIG1qgvmUTetQD3vq2DF5eU5RtngK5nnGfluQRB6hmpAoj+PuQPtwQDjNfG4YDUynKc46tO+jtKBtOsa2Jb95Q/PJoJVHXbc0bQ/FlmKzJfQ8FnmGbXv28hkPHxpH3XX0RmAajSsNQRqQTWYM9YlZkuOFOYO0HDcf2RVP+PMHxlc/5xjGuI1PHIWEqmUwhv3ThvbYMl2seHr3Dhdo0IL945pD33H38AWz2/Gr/+1/JbcOaS0fv/+OfvOBq4lPtoqxXYcvJEmUkE1mSC9C+TFaaZLZjH44sn34NU4YgsWMP/lv/wO/KE6skoibN2/IL29RQUy9H5hMZtxtCp6OHUo6xrEFa1FSMjQdKQLrHMvrG+p6pCi+EMxiTF0TRjF1VfLlc8/r6JahrDmMI0Pf8c3LN/z9xz2Pd4aLxZTjZk9bt3z3ZY15/EiqFYvlBXU9gItYXb7CdiVd37E8u8F2Mc60tMNIUTf88OMPLJcr9DRmtDVOCU5dTbnfcjgdaUeD1gF9YwjiCW/efMNQaU7NSHEYOdYb7k5P7PsKZMjFaomfTal4Lp/69ttvuHlzw1USUj0d+fC771k/PJIu5+T7JZ5MGJF882e/IL8458tuT3pxhbSGaRLS9xX7Y0liHNF8ie9psOa5LNjzCCcpdTfQfr5jFjjGviNJQjos3fHAXDuTud0iAAAgAElEQVSyKIK+ZHf3ju8/foQ8ZbPbkipBlIQUp5rKgZLPfTpjKJqe0Ywcdnucc0gJQRjwzc+/YaIN67fveHz7Heff9qThNaeHjzSVRc5WaHGGVAmEAWjBUG1oO8Of/Pv/SDabP8MEXEc6XyAdCP1c9laVBX1TIvKE3ljev/uB42aNDCKktegk4+nLI1GasR4dL6+uyZIpx/sHDpOP/OzmErJv6CMfL4nwPE00m5FmMXbokMYyDiOec/TDiNAS/mgE+weJP4omf6AwzlF0A5EUHE4FsRa4LKM+HZjkCa1yzJZzOs9Q759QQDkMZKpFjCVx5jFVS6qyIw8ls/mEIAyxo8ULfFwQUjvwtSKJY9L2mal+6juaT+9pu45+dYHLclQUo4RANBU6zsl1SF+foG2x3cCGjqbe8vS+YXr3lovlBa/+6j+yLjve//COm9evuZzkqPMLfrhbs6uP1G3H2DVsDgWb/Q4hFH6UESYZTVOTX7/k08OGP//Tr8nM86Y+kgZvmqG0wGgPszhj/pf/Nf32jnIo2T99Ibp4iZ5PMaYlSGOOhzuEmlAXW6LhSJZM0Fphhp7ONNT1iXoAOT1Hd46oqpBOUtmIj6eGjIaL+QI39DT9QD80DENLUR2R2SU6maBKQ3uq2Dzdcbp+SVvNydMFXphRlwf60SL8iOzqK2bzW9af3oOQKC0IvBAr4f7picUsZXr7gmh1ged7ODvS9waZLcjjFZn0wIxU5ZG66TBBhlMBxbFgfyxpjaSsRrzJlHEc2NdHTKI5856Ng60vkUoTphl102CdZXCOdjA47ZEsF1zfnFO9/x4/i+h9j2yZcapaVmczpDFs1g/s25azP3tNEkScOYXsLFmW0fcDvTGk0xR72OPnMNCwvn9iHEaqsiQJIq5ffEXQtjhrkVrjpynl7okff/9bXr54gxKSIIiZTJcU2wKMRGmfsu451DVF41BDjXQdu6rlaV/ys9UZ//bnr1ldrciWc4TWdKctfhiA0NS7A9sva7brRzbrO54aw83lJT97/TX58pK3X+4pthvmSY6vQ+wA0mi6tiPJUwZgMZ9xrFvsaOjLkj5N8MTIzSyitJLOKsbB4oURrjjiezFuaBlcQmMFaSKIxiO3V+eEtNytd4ggJMozImPorKM+HVlOQ0YnEbsjRbEl+Po1VeJxwjCaDoHFCz2GxnBxPqP98TPKtjRupBt60jjBDiP73Y6FUixf31I7j+N+z/R8hekbEBbt+zgkeCm9DJG5QG4PtNs1Y3nEDAahPMrtAQaDqVumeczV1RlxmrKcT/j5ZcaXbYtB0rQD//f7z/TW8Wo55/L8nLP5GVI42qZlcX6BHQcGa0n8EM/X6MBHAP0wsD42JMuv+Mu/eM3uh79lv79H+hFCrTDD80nMkwuRhLy6WCKUpu4tvhdCZ/B8jScl1a6hO1V42kO5kcDXhNMJDohDCBYpYr1hPp9w6hS1iDk9fs/N5Rmb2lCMHmHzQLq4RvkRSmvyNKZaXlE8PXDYPTGdnlHs7omXt2STOV6ScXpa4+WaH+7WxJ6PL8E4jzDJMcc9H+7fYceOPJ2QJhlhHOEHIcoPkaHHoBRCC3bHimHsIQipt58o9lv0WDCfaC4WAaHvEycBWQghB2Z6ih/GWB2jg5AvH+542rXcXE+ZBAHp7Uv2vcRnoKobRgbGtmMqY05aIecxVzdzZsWGQ/OEZwOkSui7kf3Djmw+J0siAgleErLfbNB9wy+/uSKJIurtI2YosaaHKKXcFTRD/9Pa1+FFEaZrkdYQoplevGRdOpopCKVRQYAdOrSWxHmKaSfYrqVrWioJiR75uLunNRLrpWg/RfoJQZozi2KUP5LZklmekI41qj4h51NMGEFUsms6Ri/gaX9ABR4Xq2+Z3byi7Xua9RdCYYhlQ3PYMUsiri7OSGKfl998S6g7hqbEWUu1X2OHll014FctR1twGXnMwgDnKx7DiDCJqQ4Hwp+Q4o+bJ86vrsiynF+8uuKHpz2hfhbP+nrAD3wm8wUPH0+sHx7IogCpNH4QE01C7MRHMKJri5hPILrm9VevsNWO3jSMxuGJgA8PG2w7cmxanDXsThVnZYMOM9L5jL5puVzO6AdBsS1ojyd039LUI3fHj5RtT1O3PBYl94cSJQWvXt9QBguiNHtGJCuPaggoip7+8UgwnnD1iWoU/M13X5hfvmF++xWT8ysuri4pmpGh2pPIE4nfEyVLtjvDi2++Ik9CVvOMaQDD5hPj+jcoTxOvNFdpRD+2+BJCKQhsgw0TyrpBKI92e2A5y/HFCL56NtosHU5poizDVz6TNKSzhv3QchxbquJE1xterCbkSc7owGiN8j2cg/Z0JHQ92TTHliXV0HO2nDMOI3p9hBE8b6BXHqEfULc1T48f2e8fKdOAFxcrFj/5hAV5Tjs4kJoO6JxAJTMskCUhi/NLwuS5bCWfzwjjBLCcHt+z//Q9cai5uVkh/JjWTfnw3Z71+79D1gfsJMKMhsjzObu85mnoaVqDCnKEH+A0HIojVihub1/hz87QXQyLBROraPsWbSruf/+Bqzc3TJcztHS4zRHPQpQnNPWInyU41/Hju4/sHye8/vnX+HFC3/ZY5+jaAWtGpFaUVUuwekF42FP8wz9T7TZsDgcEjuJ4pB0dMgqhNVihEFJihaK0A8a0+PqSRIcEGqKLBVpoIm9CHARkV+dUTU8QJ5RfPjJYQxNG7Hwf655pMSqUGNPz8btHTqcWP4/ZH7YIHbOvT3x+9wPbH35DsX3An8x4uvuMHo4sfUGmEzQKIRR4EpU9wwcC38dPUnQQYo1EupSzm/+GsnlEpi3nt1dEgSP2Ilyc4eUzPD8hPK057e5QOmF1Nedu/YizI6MTtFVDX7W4OCbOcrLlCmEESTsSeJJNU3O2WhFLy7FYM3Zr2q1PH+ZIp5hlE/7qL1MeTMoQwbu3b5FmZMDx4/0TS8/Qlge0Hz0LWM4j9TMcz34dgT8hjWfkiUfgKQINT/WWrrrjcKqoq5Jm6KmqisEZzpdzpqsF+fIML5jSVR373tD0e5rTDwjb0vYlw9CwWJwhfc2hObJ68ZLzqxu+vV5xliUUnx7Zfrnj4eMdH358SxJozm4uQBoMksUkwTYlia9otk98dfuS5WLG9tMHhq7labPjMs1IfZ9eCEbpUFHAYAaKYoc9rQmCiNYKNmVNfTxw2u9YRDH7quXUOqY4/v2Lc777+CMHYdmWHdpZtILpckbb9niVYBr4dEJQdwP79QNtVaCk4Pr1V8xmOfu3//SMLC5KxOYRE47U5YanxxO2OKKKI8FyTjif0bQdh32JP78knZ2xfnxibAv+7M9+gcom2NDHeJrWWLa7Hf5g6AbL3ccfeff2d+wPJ6QXEk4vKKqG0Vnquib1A26XS/ptwWU44dV0yWDAO7/G9SUqjhHWYtuGsevJz1a4scMBrQU7DIxC8Ed8zh8m/iia/IFCeT4yjIERzw6MSO43W1ZJxGw5pdESwpj64Y7ZNKLZnoinE1ozYMxA1w5k8zP67hFfS5I0I5lMkcrDOcHoBEEY4EyMX9ZEYUDvJL0YGK1j2G0wOJqqxssTEq0IshzXdwyNQKLoRE3ravq24fHpAe46zmc509Ut28NAoiTb4sSyKXi0PslkTrk/UNYN/TDSGxjGAe2FTKaXLBYrrB3ogwm1M7w6n0JxQGUhwhkCNdLVJWFyRm8txWHLt9+84Pd5jPnu7/GznH7oGOuSWVdwetxDNCGaX1HVR6pyi109bwis6RmGnv2xREwviX2fstyTygFP9IzCUcmQ2vP59LjBlxHx4hxXnRhOBWVT4OkGla0IxoC2vWP7+IXHux9ZznKSNCSPA6QXYIaeqnUsX/2S3bFmdnbFUMVE3jMezscSKkfTD5yePqHSlMRfPrPUgwmeGTBlRVc8URZHtvuCMUhJ0pz6tGe/3TMMhrIzGKmwfUt12ONPZzRmoGk6gjhkHAZGCQYHUnGqW/w0x2mP4v4euVuz8AXJasnWjEhqnuqGxYtfEEQ+YXegNgX78kgSeggU/TAgA4XnSSwWIQyh6uhjR+N8ysOWqm9xZiBKMxZnS+h6zl694fT5Pfv9jpvrK6bzBeVxx36/ZTZZoHwfpTRJFNLVHTaMCPqOwT1nl9SdpalrmrbDR/DqckkQxQRhhBeESK1Iz1boeMLYG0RvCSYF86szfhmE3FYDYTInSWIOxwNv3/6eSAV4UjEJA/IkQztHGIfIQCF7C9LDuoa26ymLA5PlktEYEt/xzXnK201P1UM+W3I83YMbnk9GLNjB0O82ZGcpstvz9vOBIZpznucEWhEmMbpvUV6E50I2h+qZpjPW3D2tublc8vbU8iLOSHPLZnMkSnz6Y0E+idk70IGP7BrWmwcWaUo+SQmk43Q6MJtO2J8arvsGrX28OMJhGJsTdXGgJWBnHGMU4YXP5X1FNeALyXFfIY0ljyQvX58TZDGPnz7Sty2rScTv747884dPbJuOxhiuFzNWywXT2Rzte8xXS0bjQCmC1SVdcaCvK6LkHCE9pNbs9yeEt+DV9QvCWU60y9g+vacbR7LFimH3gcAJZtMJsVcjvAArPVSc83BsOJ9mSGcI4oyhGDn1PV11Yh4GKGmI44x9PxBi4XSgOzb4ng+hQFqP1cwn9g2Xvs9pgM5o+rJCBRFhFOH6BN+PkEHC4/qRMF2iTE/QbpBRiO89o7nT+ZL1ly/0naGtC2T3bLDrZxnhKWa/r3gqNtTOkClF6IdoAbYbMEONcxYzjljb0jz8QHVcE2qY5iFp7BH4PvlsSpzExL4j1R2KnlAnBKkHbcP2cYMV4E+nLM+/4YfPe+4+fUYGz+LYaAR927M6n6LnC0Qg2Qm4PJthqOmPG6KgpxksZVEwXUwZrcFa6J3BD32u5gHZJMYNPVpb9DTncNiDDun6gdYKHrd7lJQ0+zWplIQCloFHZjomi2s2zrIyI6kbCdME0/bYtiZMU9L5QD901G1NmgTM+pFN0XCsdtimJoxyFIZxqPCXK7Kza1yeMYiO5rgmvr1FBAFfdjuOxJTdiAoC8igGpfBsQ5plcCqQ7Q5tjsymAb4fknqSqig4v7zAHB9I85g0TVg/Pj5nKDpDXxxZxAHDIGiFYBUF5Dplazr05Tnl+p5AKKphZF2UHL0D8+mU62lMM3YwWjzhGMyAFo75bEJ53HM8HgiUQkhFNl/RFTum2uCiAB1q0D6RaAgyn+vbW/rdA11Xspjm3N1t6QfDpmh4PJa8GiwxkrrtieOYsemQvsf85RXdvqavKqqxIxACVXeEdUWnt/Q4ZssVJzwedk/MhpbBjDTVms5auuaENh1ZoFimER/Wj6T5nLPrW5LlEqUDmq5HiYE8aOlOR5yU7EuLVB5n85zXlxNEvYOupKqOCDsi7Eg69znPQ7YlOGFAe3imQfU1nkwZh54giklCjfA9RmEYMbSdYOw6ysZyfhkhQ5/j508QKIrjCSk6jNPgDEM/UNiezrTcJClV3eJFCel0Ru5rnk4nktkczw7UVYMOc9ZPO8a+x/NDfGMYrGEYOqrqyGOvWaQhznZI5bjK5kzmKaOT4AcIP8RIQRp5eFGEH/qE0zmxFmRZTJ74lJsHtDZ8+/qWtq6xaHYnx5fvPhGmBf16TZxnSKnp2xEbatLJCnkhaA47xq5DHPc4XxJPZxyrjnM/4cWLV2zftewPBUkc09Qt02mMtuPzf7cWgMIbBKIfOYmOJPQYRk253ZBNfaIkfUaz5xmeVhyKkkkak0QBfefY708MWpJdv+abP/83/NNf/zVNb9j3A1oIxr7DOkEUJVhjyZKUfjyy6XsOZmBFT9eWSM9nkk0I44wwiNFRCAGkmcR5IWdpQtOPHJsDm+JEexSUVnHfHGjLA4OFoZMMj3fUo2MUBbvHT3z67u9pj2umWQrCUuy2BNpwnmSEOgAnUWEMsU8yy/GjEG00DkmcTui7hqZuefr+HYdmRE4nOON42p/4t//u58wu39CpHCclfuJRrrfEiwzrebj7nsEA40jX1EjhnrMXPE3V1fTSR+cTQkDHEaZpmK1SdHji/DJBeBXJcobSZ/TdiUwHxMuEHzYlQRxR7/b0dQNYNvsNoQCvbdBKIXXIIAVJqJlnKZ4vKYcKNYDyI5IsJpJbXNEju47qWFP1HVES82Y1Jc9zgmRKHEaMg+NUtVRG8Lh7pGz3VG3BYFvSMETamkPxQBanYFom04TOQXk60RwLvnv7PQ+f3pH4IUZAHAc4NeCkZb3d8tXXN5wvzzi2PefnS3xPEoQe46Gi6DviuiEJA0o30IwDxhmQks12i2maZ5yw89kVJ5aeZqhOtEXFl8cN56++ZVh/xLQ7YjeS3t7gTh1dU+PqE8IaxqFFao2zln3dUI8R93ePnLYPzOcLLl4+Z+2MXQvWsHr1hvz2guphTRcYGtFw/2VPt97ifw4Jz28wvqbCcXbzgi+fPnH/+Ud++cufY7wYq0BKizEj9TCyeVpzMY348f1HPn3/Ww6HI70BPw6I8gVNcaRreobBEccZofYYlCSbTHncvmd2fU21bgkvL3DZHNOd8KWjP6wxixnK9zCjQSjJqawZpGT1x/KcP0j8UTT5A4WnZHWZxT9G2iHqmtrCz1+/pD+eSKYJva9Yb584X56xnCi2Q08QzWjLAhvFtLsdkZOcv36BV89Y3XxNPLnCT6aM1RHlLFEYUJ9aRLwkONWkVc2kN5SjobMCpz10EKO8gDj2EDogUSAGS910tG1PVbeMbUnXtrixYTGd4OVnWDOQBR4/++ZnLJcxpq9wUhClIedZQjc4lOcRPySEccxiccmpa0jObvCmK+a5RijFNPLJpzmhqRBuRCYxOksI+oZpHDHNMqRU3B+uCAKfWir8QBOLDqqR1e0lKs3YZPHK1WSnssN4NTKMGOoDXWuYoIicZKodMhE8lh06TWF/QvaCJIjZP9zhPI/JZIF1kgk+ZSmIlcVGMcNkSVkVPDzek2YZVVdxtpgjhppT22OiDBfHmO0BpQTRfP5MNgo9xNggA42JPY4ipn5c4zcjSns4ITDNCddXtHXJdndgEAFZqhn7iv12T9s0+GFAICWpHfHz9NmAtNzTPw5sd4oxinCRxsY+PSMkCf3DPXM3oMOI1DQM3YHDdk09OJKvf4b68gHKFj3sCM9fo9uO/uE9F/OIvm+ouhExlORZSFcVpFnKMFZ0xjJNDcX9geNhj1GCrh/Ig4T87JJm/URyHpJqGKuC6rQniGN6ZamHBt0eqas1TbvGyA5Sj74uCFMfGWvWTxVxGiIin+5p5HypCcKYspN4lWUMa6TnUeiS3GmcE0jfMWRTJkGGjbaIzZHPd2ua/sT2WKFtyc3VglAFxOkEPEWrDPZUY8WMoq0ZPY/Nbs9pvcYMFYftA14+oTKWMA5I25bruCfINME8I5rGRJOMxHtGs754dU68uODd5y3tqcFXMafjniwJ8LRCCJ+manF9Q1WfMHagrE4UTcNFBD4jd0fDdR4RxSvqosAsJhivx48Cpl7H1reUcUgchERJhJ88/z7auqR08N1vf00ymeNlCWZo6MoNTgi2ZYXQjrZ5fsgrjaI2hn3V0bRgho4gybg/NJzGHfvHLXVbY6xDasV91YBzXOYJkyRCSfDlgFI+p/0Ds+mcfjQIyU+EroyhKjFhhEVS1j3f/vkvGT2N3+4Y/J7L1QIb58wvVlS0ZIs5+Xji9e0ZeraijlfUA5zHFt/3OHUCXygGYdFigFDTCYGPwQQ+yXLBtirw63tGr4RkiXQDKhTUhUA0JaEwzEINiyV9e4Cm5xBUFF7Hm7mm0iltWRHKFpnMSCMfMR45fK7xlaS4b7HlAR3G9KcnhrokCgPiPObSnRHHIJFIrRnHBj0M9K0k8L2fRICOyLX0XY0QgnSWEkcevoLlPCWKfNwocU5T9z1IQ1tCAgRDg6kbytFj8fWfIi+/ppMZXX3HZJ4zWd1y3ycYq8mXOcNhQ3So+Oov/gvWTYPS4JqezGtQBsJxAO0YbI9Tls5a6rZimfm0XcOpKenbBiEE1nY0csA2d8SewdgenUTs7z4i7AjaR/s+0WSOJyWq6UhWlxxFh2tGYl8zDODw0IGBSKHzlKjrwdc4P2QyF3zZHimaAakGnK0Q2qPrK7a7Dcl8TqcMP27W7N9/x7FtOXUNIxX3v3+LbfdE0wVWaryhJpcNUaa5X+/xtSXPcqZnV2RZymH9I1v9gmmW0VpJUY9E0wuqt/+AVCeUzelOe/LFikxZqmLLdnCU6x+ZKEsw0YzVQGc1+77AHASDUoxVhTXQdz1teaIvj7ihp6gKBAOjaeiqimbo8bKRMDJoT2IWMzzfQ5qSadiTJjGrWYibvGD74QfsaMiTgFOoWSwm9MrjqaoJjEVHKWXboZRPXZb4XsfoHMYXWKkp64ZTVXC/2VFWFeF8ToHi02ZNXZ4YK58gehajnQRXHpidrzi/vGa33zG7uCDVGcsXZzhTo6IIzxYk4UB7ONCNFhFKhuMDSbpECZ+mG+n3G4a2RQQ5zlZIZ9HRBGEilApxw5G2t7i2phuhaCzZ8pxsFlD2LUo5jO0Q7YnADsxDw2b7iNm13O2g7CqWXkIz1NTFCS8M6WrNftPTKxC2x6RzMu0hANG1xF7CPM/Yno7Mzxf4tqcqa1Krue8EZoDeBTxDl+0zFl1pjm2P9kO2uyM2eGSmFNl0hgxCmtHSjo7Y8xBIPO1T7g+4yEPbjvHQQL1nKAtOuy2+cGRByKe374irBjGeCG3PxIvJbUdUl5im5upsyjCJqNSUvuro2BJHMZ0ImS8vQKVsDyUogx5OVEVDPLvCKE0aStJg4Icvj3hhgh8ourplbPc0ssUAvv9c3pPkDtsVrN/tWayWVKPB11P2bUecxSTzgHq/5akosElCdr7gReLRblpkPZCq07MgFqf0VlGWDWOQcOh6DmnGXddwaiNyz3DRO2JpCfWIbko8nT2TRUaDKo8IP0JqQeSN6KCnbQWJdNh8SVdXdH2LFh5KDxwePzIeP7OIQCUrojCEocWEIUEQQhyw7iH0EoxNmJ9dUvWC8TiifB/sSLne0uw3vP/db9mXBZPlOd2oqLw5NSFVbSirklZKlDV4wtH5iqrZ03ctHZoB90wz63pkEOCkoRla9psHdk8bZJLzYCxXr84pN2u6bodSPUp5pNMZs3TkWHwgn75kXRWY6juWfsq6rTC25mIRE7++4PgoiOMc5Sxu6Ek8S1kVWBWDSnBBRBgHaP95vW5PJcoLKZoDfWdJPE0ehQTpBD9IifMFo1U87FswPSfTY/uOvt5g5ACRYxUk+J6P8UPiyYLJMuR8Ioj6HcOhpZeWOPbILyJOTYKwLdnZGYaRSAX4nsaYgigKmEymJHMP240oz2M0giibUNSGqmpgtSisduumH1DSozcj+B5eFmLESJIkdLUEYQl8yUlbLlYTbF8yX0yoi5HcKcx0xlcrg3TPmZf1seCiqzg1Dc0wEvkeee7x1e2zT1K+uiHK59hKkl6+YlWPhFmOP18gdYC3NIyzBae7LcMAldAM/oBMYsJ0Sjs0jEPHixe3LG5fEscaM9Q0BtAeu7oDa9meKrb3dxjpIf2MszTEz6eoJCeyAmYDyfWAXg2k8nlvZvwIP5aYyBCkKX5oUWmA9EdwR+Jwgh1OSJ0gw4iRkXpo8dOE0dnqP+ce9/8vIZz7ozr1hwhjrR6NDRHAT/f8+eHUPavVCJyzz2VpzgE/XeOnz8e65weBn9pLKRFCPl/4qT9n3U+uzT+1cc+t/+WF++ntiH/N5PqXhC7nHDj4f78N7nkcIRBSIYV47tu5f50DQuKc/ZfhEc/TRAiQQmJxCCERQvw0Lkh+SiNzFiHE/2cuxlgQAovDGfOv6WZCCJy1CAFCKUDwq7/+n//HX/0f/+f/cKokwcUN+3qDqXa80gNSKM6ur5GiZTw9gYT8m78imKyoTmuC8jPxbMXs4gozNuyLnlOvuH/3ic9vH0lvv8VKyb4pmSch+8d7mq5ldI6mrjisHxDW0LaG+7t7jus1QZQSTc+4uLhAMTDUDdOzC5arBb/++79jMom5vr1hev2G0/0nQjFy/dXXxLMLHPBwf4cYW768+0i+OOfi5Qu+vP+e/4e99+i1Jcuv/H7hvTneXPts5st8acuxqpvsZrfcpCXqg+g78KNoookGagkNoaGBiBZIVBWrsqrSPv/e9fd4Fye81eBmkQQaECABEsVGruE+5+zYcYAdiLX2/7+WruuImkWeZyxuLgi3W5a7mOVshkRBx1bxbQ3L0PB8H6fVRbE72N0xlCX1bgOSgnY4xO84mPWe8uJXtO5/huSecvbqFWW45sx5DxEZuWlwrYooXdE1RQp1wOXVN0hZxnxlEAUxi6sznPEjDk5OqKuKMgkxdZUPDm2UdMF0W7LPYNRWcOSMzfyaYHHL4vaWV+/mtAf3+PzPfoot7mjUDq/+8OrOk2B0SBzteP3NtxwfjLmapdQCbGfnxElKUop8/pNPePrkfQ68jKtlSW90SrN7S7ScE8cbBEmnUHy08pwglhH1AQ1D6trg5bNnrIo9iyhkd3OFqmhkTc3QVGl0F5WCx0c9xNaQ3eKWf/5Bi8c/+ik3K4H1Ykbv4XtUqoprStCUSL0TYsViNpnjbee8OL8lGR4yPj2hqnKuri8pmhopmDDMr9msl3gf/pgsizk2VPzdCtkb0Lr/mNJ08fMY0oQ4lwnCjGr+lnVQEol3SQDVZkFh+WSza4LphKt9TpRmrNdrwv0GVYR9kqNoBrbr0215NGnMcDigqGq6oyMWb55TpCGWqrJOCuKsoOsY6BJMbqe0XIfJekcq6ViWRZWn7NYreqaKIQm0XBvPdfBsE0kA07GRm4o8L7EtE8NyqTQHyfSZJTUXFxfouxseH3uo9z7m4Gf/JbrbIq5BkgTy61eIqkLZGbLWbJZhyH4xR5IktllOz/fx68wGXEsAACAASURBVAKtiriZTXhzM6FzMOLDh6dIlUJSZszXE6LdltnkkvPVBMGqOBj7/PlRi/vtIavVBFUp0LKYMqlIdgHXFysyWtQY7JZrykIgzGA5n3M9W9LIBr3BiGCzhjSiZaqYski/36XlGRycHnH86AC9Stivl6iWxXY2oS4yNkFB2WjktUgS7tktFoiiRGt8TFgIRMGSq9sF995/wmq7IctyzidLan/IbD5BMTWOf/FzthdTet1jfLfNwPf58MEJ476H6/Vo2xZ1GhPNZ2ymK/JMoH7zFW6VcPyf/1fI7TZfv/2GJMsp05zXX/2W9oP7DD7/U8KsvEsR0WSOWy62pvH28gqlKonWK9JwxfL8OZLu8PBoyC//9vfs1QEYLaZvX1OmMZIgQFBhukMUxyQWQzTfRW8N8VseVbynpVS0LBnqBLmK2K83qILIaNChKnKqvOLs3Tnb1YYoLXFbfbbTKXkjgtkmCXY0ZUacZdiez2J6S1UWdEyV2S4gyUtUTcXWVXSxoutq+L5Lv9tmvlwyOjwhyxKcVovRw0d0j06YbTLmicT9B485OTrk22+ec34zQ0+vaHV6zGOBntmwuX3N6PQxTZVDNuOnv/gU1b/PZLMjSya43fskYpuLyZKL6wVxWrCZzTClktvzd5ydX6NLkO8DRoMOuiRj9occD7pIAnRHB0hZiJqtePBgTDA9Izh/xoOnP0bUXUxVRVcNFtuIeabx5u0Nt29fsVpvyFSdIi+Ji5rtaoHQ1GyCkKqqoMopshRdFqlq8F2Ho5MTOoenFFHA6uotD48H9I9PefjBR9S1zJe/+5rPfvZjhkc9vvnl39DudEi2Sy4v3jLqd4iDLZLdJishKWsazYUiI1/d8O5qRq63OXr8IX/46juqBloHDxgdHiFUJaP7j2h3u6hZQJrEFAjEt+cYuolm2vhyiWBaNMNj9k3N9uwZo3qDrptU8QYnv+HFs3P+9t2eTVrz0x99Bl6X9x4+ou35vHjziu16SZLl7FYJH8ljnnz8iMgtybKYahNzuTxntVnwp3/2E3ryhrM35xT2KVg9Frcz5vMl89WGbL9js7hFpGIdpsSVhN45oDsa07VNPNdCyGLaR/f53a9/xUHXImskZFHg5u0rLKHCkKAqcsSywGgKTF3C0A0UXUcuU3ShYrKL2VYSj06PUbMNMg1i+wDTUBnfO2Sln5JUOvPLc0pEsgZ0dMTCoH3f5uzqa/78Y48f/cm/oVI6nL9+wS//7f+A5Xhk449YRhXDXouWY9DRzlF2b9EGx6i6SRPP7loqNwHN7Zba7WHff4DqtvjmJkToHPNoqPHl//a/cLOUKYKKo54B5Dz5yZ/z4ptbphdf8N77PUrJ5naesm98UqmN5bkoTUBw845kd0uSFbjdMel2QREuWV7dYGgKixiWyxVKU2AoCmkj0e10MYWS6/kazXRIkoiBVnN/2GG9j/jgyfuYtkmw26OmewRN4+jpI7765iWjB6f47WMcV2N6eUYtW5Q5bMOAMNrQ6j8iSe4qm98tAi7P3rFarTj85Of863/z3/L0wELZvWE06qIrInprhOb4bBcXCGabeVJSRLc0u0vOZzbBekYUbFnuYzptk7GW8+bZa95e7+iNx/i2ynq5IEgKHj66Tx6uMLw+59drekrI00ctwsWSd69nTGcbwjCjEHR6o/f5+b/6L/jk459gKzrVekc+nVNHAeE+IpAiLrcLrFGf3PZZzlfsNgsGhsTF+RnL85dcr3ZskhpEGU0oMFWJ7uiQpBQYHRxS5yGL2ZQnHzxCqnP6psBqMkGhZtB18G0H23FQzBZOr41eLpFUGf/pn1BpEpcvf0uoipztlqjGAXWpY2s6ZSMx7jwgnofEtsr4ZEy+SWCXEGz32F6b2/PX1PspmuOSSBr/4s/+9L//5OnH/x3NHbFpvuc9d4RCuHvvb5rvDbqb7/nRnX+M8Pcs5Y+k6I4z/ZHANM2dt9gdJUIUhTsuIwiIkoQoin8379+nzgh/N+fd9f7Id4S7Jf7xO/+AlyAIf8/L/gEH4o/M7Y/X+J4yiZL4PVer/26c7+/nj/P/XZfN9+u9++Tv71kQv+d93P0/zfdrEQQhEUWh4gf8v4ofKk3+P4IkiqUkiuE/9jr+/wPpPx6R/sGYovxf/jpJ86KUVUTHIEr3BMEez7ZR1Jgi2jO5fI1mmLitPm63Q5aUpPUWXVfJBZWuqSJJFSg+tgzRfIqsg9xWQK0wNYU4rajrkrxsUJCI1zOSMELICzbLBXEpoioqmiJR5QlSXdJQsNmGSHlMlUS0DIH7R13i3RLXAFtu8I6OSbYRRaFSpCmW5/Hk0x+zuLlGQMexTMp9QDRboN9/j/lkQR7vKKIY2/HQnDZeu8N2dk2RR0RxjCQ0yMEO6hqzBmowLJtSFpB00HSZRhCQxAKz6yPIAoqu0+qPWCQbluEOzTM57jg0yQa1vkUUaupKoA5F8lSnqjVUXcJ0O/S6XbaLBaPjY9ZhyMtvvuJYbHPv/kOmuxA5X9ASVNazJUJVUmcZeZLy5GGP93/0EbUokk4WWH0T3/JRCwux0VAaDVmykM02Tz5scTudcvb6FffuvccmVZjMEi4u/oo/++wes20OskUZxGiYqJZGvFsiNDmNaJDtpyi1yNX1BMMYce/hPcTFhNl6BYKIZvlE6xmN1lCXOSXw2zcL/rM/Pebo0OHFxZ5p/Y6f//RjTg8eso4y9rVIUYr0BiPiRkDIcnxDw7UP0Wcr1vM5r+IIRRERxYpou+KRX2HEW1ZFybu//TW6VHNy0CVXDUb9DqpuYmoKDQZ1LSJnEaYqsBVUFEPDbGTIMzZRTBGEbLc7krwhSAvW+4T5akO836IrMllR4Ss6m+0WQ76Luru6vESUZAajQ0S7hWM7KJJCZ9Ri+d1XvL2ZM/AdNklO2YR0uj3OZitMy+bo/gNs2ybe7xEVgVUYQ1PRVAW2ZSDGezRZIk5iVFVAKjRkUYa4YaC7hLbJ5azhuxc3fDJ8QhFFVCi0uy32mwVuu01j2iSmy0BRELKERJRwFAExL5ldXxPqKgNLR3baWG1wzTaCYJHVJcvtnl3Y8PLtDY2r0XnyBLlY8+HxkIcDDzHZ07NtPFsknAbMgyW7bY0g26TBnlIy2YQNdR4zn8zYVyKm5eAOTul3PfL9FlmQMCSVfrdLr+1zfHjA0fEhg75PvDjDHbbI6hKjZ7NbRCx3K0pBwvXb2J6Bo/RZz9doeUjv8D43dYo0aOi1XXodn1ev3tCxNPbxDiMvaPseybtzoigh2m0ZPPmMluzz+voKQSjotn0cHRSnRa/tYGU7NvMY8dGnEMwgzyHaYUoaoSwQrq/pn9wj0Hps9xnb/ZZGkWk5HlmScHV9jaMpVHnI/PaMdHuLkKzp9zt88YfnnO11Gr2kvvgSSxap5ZJXr98SJw2ivKV/+pTBoz6F0KBWOelujqWI6JZFuL1lNZ8xsFQ2sxtURWHcaeEZOtPVLccnD3CtFWFaI2kOktGhjAL2cUxFyXofoIsCwXKJKojs05R9lTPbhZQN+IKIo4gEWYntthEFGSlPOOl4jA7HxGGAbuoI0Zabb+do/fs8evAp5uCAlzcrLtZ77NExxfquPFqXQr745V8z6mmcvfyO955+gKa7hAkcHfl0m5QX6ylJ1KVBZL/ZkGcJcRRR5jFxHrEKAtIkABoc20KWFTTDoNMf4Lc7aFKDqSkIZcHTT95HFSu2lxXrecL23/8V733yGe6jx0i6jTU8IDu7JUvTuzhpo6QpCtIkYZ/mlIJIuNsRRhHUDUX2ffSkItFxTHxTA0CVFYIkw/S6pOXdAUu0D2gEiY8+fMqTJx8QJwsc32M8HHKVRQz6fahydust4j5BdHoYtkOQRCiqAbqDY+25DWOC7Q7H9SgFCdt1MS0Tw3aoaCiaBsPvEgcXqFWCYdkoioak6axX11hVQb/bIcoKXEVAKiCLNlCVyJZHq+dysCtRc53+0X1yp4PbHTCZ3nJ1/o7NdAOSQdfrslYy3syv2V2ucXyD518954P3Drj33n2Oey3yIMXuHCH6x8yXIctNRMZdZeA82DJbbVFNG8FqI+Q1gqQwffeKldBgmQ4/+dkvKOKU+8eHWDLUZc7l1TW2JGErKrbr8/Ll87u2Y6FBlEQsJcbXBEYtk0oVGbZdxrrFaNRBTkRUXaUWFQRZRNRsbm6XNLLJ7XINgkjdwL3T+1DKiIqI0z0ik2SKPEJF4KOHQ7SffcxvX14g1jm9dhtDriHekOUbTK+F57lkcYAoCsTJnjrZkMmgujZeu4XidelnCu8mZ1Tjn1L33ycPVnz4icv0+oxEMLiNY05+cszwfYubi7e8fn2N5H+A7RzS1U3yuiAIcmqhQZMaVEOiqivyIidYLCibhv0u4Px2TVGUeIaKqJqEcYywWoIu45g6tmMxifekWYHUFNw7HmObMkenByxWG1rGCdtpiLqLOTFjVtffEi4u2MQSP/r5zyiznHfvrvnuxXNGQ5vVQkXW+lydnTGdr3BMC9lQuPn9X/MfihL+9Z/T1aBY/o7B2ENzXFR0HMdFsNqE1Zar6wXl4pqbK4UyK5DqgjKL0NwxZsvgngi1NiWKCl4+f4VhyGR5TZTm+J0DdMPiT39xwOlBG6UIWWuvEdMSsc65rQQKfD77/M/4/JN/xsFoCJsdRaWQFQ2bbUSqVER1jjockJkut7M1N2fvKIIlpWeQBCtWcQ6Kji1JSJKA0pSUWYJQZIi1SJ4myMqd59j5zZwnD45QtBpZN6jSkDzLCIsEjQKxLBBMCaNtoTsalqkgWBaj4/u8vr0gXWZshBtMy0XKBbzOgKyeM69SBGXIIs8xWh7LTUS0XXFxcYEswPXZBLcd44/b7PaLQpHl/+Q40X/MbH7Af0qQ/vIv//Ifew0/4Af838b5xeu/2IT7T7dRgqRr5FlKXVeYTc7Fq1fsgxivfcRmlbHfh0znAd7hiH20w7VU3LZPLShUkk5ZVVRVxWq5Yj7fIOo2qmIQrgLETCZYL9ntd2zXc5I4JI4TgtWK2WyJptkk+4A0yTB0FUQNrcmYTWd4hkSeRBwM2uwWc0SxYdDvQqnSdocMD4+wdQ3X05FlCa/VpT8+pkFmN1+geV3QPV6/fI5s+txeX7JZzFBUk9b4mBwZoalYLhaUdY1m2ZheC9WwEGUFUdfQLB1Fl5FVFU0ziJe3eC0HzbCJk4z9ZsN6vuN8m9MoFYoWsFu+ZDF/TRQlTNciZHelvo0gkeZ3ZltlnnN8coqpKRBMONBj7p0css001ss5fS1m3HPwLJVsNaOj1zw87vPg/iGG10NsBNQEdGPEyxevefnmBdagw7vn72jKhtV2zqefPUBHpN/1abUMHn/0mO++/C15vMc2JJLGJgp2nL14g5TtkJucJI7I0gJZsplNtwxHfeIgJ52kSLVOrcCD+w/xeyP2mw111bAJE5qmIYwiGtVnF+aIdYXQABXoVo+6yCmiLaJlgSghUGJoCrukJtgnqIbOuG0yXUdsplP6/TZtR+PIFpGqgqCQiJOcOo4Z6w2OVOH2jjg8OkGRFURJpS4b8v0eRZHJkgRVhO1qQx1HrGcz5pMZV8s9bqvL9fUVwW5HXtaEUUSW5TRNQ6vVxmt16FsqdRZ9fwpf07E1TM3A6h+RpRWHBwfE+4AK6XszUQFZVljvQ2xNw9I04iimZZlM50sG3Q6G62Nq6t2JCZDFMYooIDQ1XquNJknkeY5Ec5dGJEo4vk8i6Ey3EbvV5q6vXpYRoiXy+hLZ7WJ1BmiWRZwXvLi6pi4Lkt0KV5GwLZu6SJkt16yWK5aTa/xeH1FSSbKMuizJypo352fczifIwxaHvsaPj8b4dYJQVrQ8nWhxzfJ2QhRlVLXOcpvz/PkFs0VAmtVMJkuCOKcSVYzBCel6hlPl5HHOg8P3ef/99+h2Wzx4cMz4qE237yFXIZoGUiOS7gpkvWI3W1CVOSNfRZYqNqsdkiAzHHQxLR1JUXE8H0sR6XZbjE6PURWZfu/OnNXSNXzXItltCcOE7c0Vqm2RxjVt1wNBIc9KfFVBokYqc2Qq8vmcfDmnNewgSQ3JZkayWiD4XbZZhjU8ItYMrie3zGYzNmmO7bmU4fbu+RXt2K+mBMs5XUtArzNuIoNpKHN4+gA5jRCLhNurS25upiyjEkyb1slD7n32EUZH493LN8RFQZ5kkKc4Usrs4pz9/BaykNPDQ4bdDh3PpNvr47gemqLftXAoNqKk03JddFGk43nYmo4hgCwI5FmKrmpIAlDV1HUJNGiSSFM3iJKMZjr8/tUF1AKrIMaVoe8aHI57HIxGaIpGug8wRLAcn7xR2OxDkjzng88+owR+/+vf8O7bL9CkEs93iPcBo+MRVX1XKp+mGa+nG/7mNy+YvpqyupwiOQ5ynSPkEav1it32bs/6nodl+3QGY45HY05O7+HaNkkYUKc73jsd0Ov43Lx7zVe/+i1vbiOuXl0jztZYmoPYu88yKlkuNxRNTRrs2MxnFFFInmbUokQURux3O6ChKDJkalRZxjYt2p5Dy3OxTYs4yXBaLTRFRJMaZEpURaLX63N0cESr32Y2nSCjYik2z7/+FtvT0HQTVVGRJYkyT9FUHcX0sF2fqiwo8pSkaFB1C0kSmUwmrKc3NEWGrhs4nR6u75OXNRgG0W7PcrFEUg3EpkQWagShYb/eINsWklCiZyskoBEkFKGkzEt2QYzo9JG8HrM4Qwx2rM8vedA/pef3ub6cMjm7ZHs1J95teHf7jtMDF7tYcK+n8uN//lM6XZ9gvSRWXErRIc8boqRgu17y/LtvmE3nhHGC5bUplTtvsO3tBWKZYdsOh+Mhlmly8fI7ep0O0WaFWUccDMdcX84oyprDoxOqOEApM7ZxRqvTI61gstiQpDlS0+BbCscDB0+X8DttVEVCkhrs4SmF3mGbwMXVFYvVinCf4dtdjMLG7rXISO8iTx0XcT/lzW9+xXp2Q7vrEapdNo1NGsdkaYLn2YxHFqZrUuQZktBQ5TFkMXmSYHaPaA3HQIVi97Esl8tX74iqDo8//ITTgxZKMuVmmTE4OOXo6Ihou+D5l19yO1/B8Cntex8gajLzm0ss20AzDHxDokq2rLYZ8T5icn7Gzc2U9T5GEEWyskFVVRxVYTwcoVU5h20P3/XodoeUgonf7lFmGWNbZdh1MG2bw3tHnNy7z+BkhNtt4fS6KK7No0ddRp0cS4kJ4xRZlVBkGUkqeHexQVRsRFki2G3pez49x6Ntuni6ynx6w34XU6NiOyYPP/oY0/XJkpCyKVlHGcvtmmh3iww8f3ZGuF/jmCZhFCFIEqPjE1qeQxTsuD6/xNZquh0TgO74gIPjQ7IsQip23DsakiUxL//wHS++fkO8S9D1NqePfs7Tz37OoNtGqBrEtCLZpGxuL9mQsJBr5lnEdL0mTlP2wZ5su6RO9lxeTwi3O+arNZsop3twit/p4WsS446HJgkYugGiiCQqhOsVRVkS7EN6gy7jfgdVEtgt12iqjKNKOKqI27Kw9BLTtxDsNoIsoTsuKQaLzZ7l1Tk6AXmwINmvmS+nPJ8tuQo27LKMYBsQzie4psbydkqZ5+RxiKor2K5Glua///zTn/y7fxwG8QN+wP8z/CCa/IB/knjz9tVfLNbLTwXDIstS6qZiu96QhxHxcs18EbK53FGEBYN7B7QOjzF7HUylwDUlFFXG8AYoisV+u+P67QXTmynJPmIXZDh2iziIacKGxeya+eya/T5gH6Xso5z1YklT1ZRJQs8zME0N07JxvRYPTo6gTPEsB0cVMeSadBvw4tkbOj50ej3i+Z7h6SOyOCUJV6iycBfXW4KpKVRlgdke8eKbZ1ydn+P4B7z66rdMZzMKQSFMS/qDPoUoU6QxQbCjyBMaKiRJQvfayI6PSA1NhaIZOO0xm22BKJuM77/PejmlCAMkReciqAmzhNXqlpfPvuHdmxlpc4imj5AK4U6MqAQEUaZJQ67evCQO93z6YMT9loyYBpQVmF6PMlryqK9gmhae5+G3fDy/hybIqN4BaW1AI9CUDnoiQlOTCDlFVdMYNkWe8e23z6FIGbVVep027U6XeBdj6AIyDevFDsP22W/3kKesZwuOuwrR7QXrxZokyWl7FiAhVA3lriCfbtAKkTQPUCSR/XJO0wjIfp/59BZZqKmBPImpFJfTrsQHj8d4g1Mcx6JItpRZTC7JlE1NVjWkZYOuG3R6fWzD4OzdBN3UuTdqMTRqosUNN/Ml6zCjjPaoeUjPkpEklcef/ALTtFBUjboSiYK7aMuyrKjKinSz4vb8mu1yTVpJTNYhm7gkLGr2qzlhHFOJMl6rjSiAY+h0TJV0v0EoYlxDo+U6jAddDkZjZFXHMS2aPEfXFKLtCkWzEXWH1TagEkRUUWQfxQxcC0WWabc7hJsVZZowHA3JKojjBEGUsG0HxLsXVLGpKBuR1uAQsUgRaZBkEVW3MCyb6dUV0eQKO1oTL64wiohtDqloonX7rLKSXz57yfXVBcHymnh2iU7JsNthtdiQ5BmWY+N3WvjtHhIyZVkxnS1J8pptEpKvb+jWa37yoM2HHQdTqLGtO6+j28szdus9by8jXp/vmC0zZrM7N/vu6JTz82tkQWG53JAHW8w6w9IMjvojHj06YHza5uT+iF7LwDZVhHrP7fyWOlsiFiGqKKPbIsvJGsesafU8Xr2c8OblLcFuDwjYtoNjmXieS10JNFWDqutkjYlcF7i2w9HpKZIsUNY1VZmgqQrYNqZpMru8RPb7NHlDlVX0Wh5VsCG4mTF5+ZYv/vf/wItf/xop2CKbLnklILU94jji7XbLbruiTDJUTbxLpIr3RMs5miKBIPD62XcA/Oyn/4xUcJkENY0gMr+55N3b17x+/YayEsAcIKg+VSUgUvDgZIyhC8TBmpbXokwj+r4G0YY03LPfbehaCp2Wy/jkIV5nQLRPuL1e8up8yeXNknSzQozWCElEGOzY71PiOEYochxVRRMlyqrGUlXankMaJziKRFdX6NsWx90OYlnQMzS63T7LtEIVYTpb4GoCjm3iyRXHxwd0PB2z3HJzu6SQdYaDLqenp4SlxO1yz82rr+l3PVqdIaqi0ul79MZHxPsI1zZJ05Sr2xsOjo4YDoesovhuP0Uh6+2W/XyOb1uoskb35DH3j08Y9np4nsd2vWY9v6GlFpycjhkM+xhSg9sdMB4dkiQlvd6Iw89/Tq5YzJdrigb2k0s2N5c0dUUFFHVDmuVsNhuKPKOqa8SqQpdFhq0WTz78iNHwgI5jku7WbDZb+sMD2u02siKRphGiKNMg0Or5VGKNrGi02x2yMOPdi+coQsnkZobt9Gl1epR1QV5WNFWNJKuolgeiTBSniKqBoqpsdxvUOsYs91TBnNvZnFoykFUV3zVpOxYgUNcV2+UNUpNhWhaN0yJTdOLlDXoVkeYFURSTxSmmKhBtt2RJTFSonLg2PVXhZx9+Ts/wOb+84le/+RXvrt8x382o6z2fPeryYU/jJz96ysnDh7THR2yCPcu4YR42KJqLQM2b16/59pvvWC6X2JZFlObYbhv3+D0KJIrdAseyePzoCacnx8xefcvDrsPjgyFHoy7v3TsmzxtatoWm6LQsg65rkgc7VKFh3O0QphmKIpMKKmGYsg8iLFlEuwt4AQFUf4zePSDbBwz7PqVskYYhlqwQLlO8bgfvyOXi9grNtpANh5cvX/E//4//E8FyxujogLXU5dnLa7K8Ik8jpKZi2BWRmgRN1ynzlDLaEW4W+L1DTG/AbrGmzjKWu5gkrgjmGcmuwvJkJrMJaa3TH7zP7UXIt7/6mm9/82u++P1LVqlL7+R98jxn8vJrWo7Bg/efsNusuXj1gsnNlOura14/e04YxizXa7q2jiELmK4Hqk2RZQxNncPxCbVo4A1OsLon3HvvI0xZxLdNsqKgZ6poYk6RpuzDFNNQaGSFrKyo8obp7Y5CtlmcXfFXf/MdTbVn3Bcp8hy/06EWFSbXV0hVgSAKaKaHIWn0XRdFVblerRgdH2J7Fv2+h2NpJGmIYA04m86ZL29J15f4pkES54RBQJxk2JbL9PqW2c0FQpUjCyKmqtA0JW6/g93qEpcF/f6AxXTKycBHitdklUohebz86gWrqy1PTz7nwQc/ZnA4RhKhqQuiMGa9XXC1veUyWXM+veDN1RWKZvDm7RlyXfDtN18znS8wFIWmKDjtuMiCgNRAt9Wm0+kgZQl936bbat21pjQ1kiiwWizYbXcYKpi6xmjcY9Dx6LRMLFWk5Zk0RYhuysi2T6VqqLqKanooZpdGsWmZBXqzRWkibqYzXl9O+ebFBYvZjOXNFdvzczxB4Gg85ujoiOVsRpQEzNYzZE3h/sGD3z99+vEPoskP+CeFH0STH/BPEpdnL/9itpx+ugtTalGkrEoM00LVLF49f83r11cctO7x6OmPqdQCt28jNglinaAqNZrlUaAR7QPC5Y7JdAuSyG4xZ7Nao9sd4jhmGaxZbzdMbi4JNmtU22e53FJUNXmcoIkCtiLTciw6nsNR36fX9njv0SkHBx1cQyEPQ5okpGXIGE2JLEF/3EVUDI4eHJDtrzBNnSIJqbOELI2xTQ3H0VGVisHBMcFyxeL6DFmz6A4PWa9XLJcLRh0Xp+VTNRVJFGHqCrIsACWKIiJIMoIkIOsOvdFDPP+Qq5dTvHaLps5ZXb1C0nWmsUEl6ohNRbTdUYsu9x7/Aldro9LcRe9qLkUaEe83GBQ8HvoMxZjnv/uC88kOrzfGNDV6wgZVbJBVE1mWKfOcKkoQBRPDe4DZiEj7DfHylpvLNxTlnqpMUHSJew/v49sGRx0fnZqXXz9nttxQNgYPH56S7ALCbYqqqJTxnqYo2M8nCHWFqpooeUIZ71ksA0RRJtnuqYuSdmuAKbcwahVN1lANiVbLQRRqsixDVHXCp9UJlwAAIABJREFUcE+ehviaiG1ZfPz0CbapcngyxvJ8skZhh8x6F6AKGb6tUgkKL16+xffaCNuG5XcBuiExvf4Dwu6SNM+xh8esNwHN9AxDKHGcFvcef0R/OMZ1XagKgu0eWWhQRIFguWJ2ccV6OuP2ZsrFbI958IiirFisVtwulnj9MZvFHEkQMFWFcr8hi0PyJOTE13EtlX63zejohJOjEzRdx3I8lKag55lcv36BaVlEUYzRGdIeDLm5uCCIQlRJoCgKup6LpGiUaYKhqSiqRq9715aQZAVVXbOcL4n2e8qyQnPbRGmJWKZoingX1SyIaKaDqWusJ9eE2y2+ruI9/pjO+58RLGbs4pjFdst0csnbZ1/w+rd/hZgu0IT8LlY3jBicnjIYjOi2e2RpwvV0yfXlFbqhs1hsiII1Hx57fHDvHu8NDzloOagCJNGO3XzG+btbvvpuwpdf35Cio+gOVZyymW/xvD6G5eIrGras0NJk7h33+eDTxzx4cMDBUY/eYEBbt6n3O7ara4Kr1zhNxOhggG5qWC2HZLdHRoBGxhufcPnsgmQX4aoCz8/XrFZ7FFWk1XKxXJ8iL5AECW88Zj2bs1ncslpHWN0efruHKDV0hiMmszVdEd5O5szSkn67R7TPaLKKrmciKgrr+QoHkdu376CWGD79iDhLKOIYV2zY3J4zevSQ0fiAnBrPNFhcnIEo0215LK/foqkah48+xvOGzNYhQVJx/vY1txdnTG4mSKJOb/yUprRYrHfI/hhRljg5OeDe4wd/17bVpBkdS2V1e8t2G9DuDtG799CdAZpmsriZ8rsvvuaLb96SlDJxmiElwV2bm+uhagZJpWAqKourC+IgoClLeu0WomagidKdMCyA1FQ87LcYtVxGjsGw5XB/2GfY6bJYrAnjBLfTZ71cIZV3oqTT7mOaJm1TRDJcDk4fEubwV7/8A167RS0puHLKYrEgjVbk5Q7ddIijENv3MXQb2XFA07heTCEXyaqaJE7ZrddIZYEiiHS6fdquw7jlYJkuV1eXnL99jpAuaekN9x8/odvxUA2De08+RbFcKtnEHx3QOjhitdkRbgOi+YRwMUeS5bvUowYkzWC+3hGFexShwRTB12V806TtOvQ9hypNMIQKpa4wVZm4EekeniDSkMZ7Lm9uEBWRxTaglmScdgvbtJjNrzDUFFNR+fYP36E5XQYHx4iyhCCr5I1E/b31gKSZiKrJ7WyJZXvUgsj85gqRknHbAkXn+nZDUYtYrsOg20KpK4LdBlWWUSlw1AbVstks5yT7AEcVUGWZLI5oBIFe+05suriY0O8f8C/+5b/kyGwjvtzwm3//fzBNd9wmAdso5KDn8c+ejPjktEfHc+n0+7T7A0Bitc/ZpyXL9ZZur8f85pYvf/8lq32KYreRmgZBVmgEifHRPfJgz0Gvxajb42DQ59Q1eW/oc280YtBqM+yMsEwPz9RQJQkxLxCTGFWS8EyDli7iGxo91wZEFpsdaZahShKqoiECmqpgtrpYfg9N07BsF0mzObl/im7KzNcrrGGf0UmP2WzKyzfn7OMUx/Ho+D4WMb3xIacffk6sj7idzFktV+zXC4Iw4N5IxjIUJFEky2J26xmmbmK0Trj47i3f/uobvv3dC65u5qx2O/Y5PP3sfb7427/mf/23/45lUVJLLl98+yXfPvsVqzyg1Az69z/END22kxkDV77b16nA+ZsX1EWOqKi8/v2vIc9ouT5KnTO2VXzL5Gjcp+NayGmEqymMhwd4g1Mk/4DP/+QXWFKFJdV02m1ExWM1n9O3JW6nayxdxTNl7E6P6fk1mqYx6HeZ3OyokoaqyPnogzHx9pooCbHbfVrdNmev35EWFY7bQjFb+F6bApEwLXFtl7MXz3CKgPXFS2xdoX38BFH3kSQZgZJyc04Zb4hyGUuXqbKI3TZgvdkTBjHLyRy1bqizBEUVECSFt2+u0RQF3/N58t4JninhtvqcfvCju+S+3Yanh4/pte9jjcY0EndehaJAmMZMkzlvlle8O3/DdLFgvQtxWm2++/pLLFnAtW181+Ow30EWBVzT4snxGKmpsBWZga3R9V2qKMQ3FLotn22cY7U7ROsVu2BPR6rYb3d0uh7DwxMcy8Z3bUxLwzJVZFOncQYUdY4k1tAUSIKMqWk0coOuxihqjmiK3K63TM535PMtep4y8ByGvQMM1abX7SJIkIkpVk9n0B/z/oMnvz89vf+DaPID/knhB9HkB/yTxJd/+M1fXK5Wn2LqBMGOuoFWd4DTanF1fU3L8TFlDa+noXgVopixnN1Q1wWdTgtBkpHFu/i8i6sZamfEbLViuZiw34bsgxxLsrg6u2RbFdxcX2PIEkJ9p9ILosLRwQFHPZ++Z9EfH9DvtWmbNY6h4DsGLVuj41sMBh2Ojw8YDNu0fIci3GOaBogyXsfFssAwDaQmZHd9i2U4aLZNEUcIdYgpQ8vTaPttOq7H5cU1q8UcSxPYrWa0um1Mx70ziKpLDMtEd11k3UCWFRRdx+uMyCsBuZZZPrtEqGvizYKL198yX6zZ6UN032bc9fFsD0X3ORicoGsm8XaPKopM12tEakxN5eDgkINRj9nZJdvKYBclOKbKyJPRhBwakaooyMMEoapQBBlNcZm+fkUwmzK9esdk8gbF03CPTugfHbBch8yul7QVi1Gri15VrLcRi12CY5hcv3yLrYiMem1MTcU3DFqWgq2ptB0DqakQhQbLUKkqKCuJcL1FSXJUWUU1VHRfoz3s0u459HwJWSzwu112u4AwDHAMBUNq6PgtTt/7EMfWKZI9ZV1itX2iYI5iORRFwX4fYLktTEvnxVdfc/lmQbapCTYT7OYFWjKniELi1Qo52qJTUWQpj+7d5+DkMW6rTVUUxLstVZpQ5SXvvnvO5es3rKYLpvMt83XEfBuDZhFv15RlgdRUNFlCyzYIgy3xds3QM3BUgUd9H9/R6bZaDA8OuHd0gK6Aqci02m06rkFw8ZJut0u035OUUNYiru9TBhvSvGATRqyCPZJwV2Gk0GDod6X6mqZhmhaCcBcXrCkKddOQpSlZGEKRIuUJoiig6QaSYqDqOoosoVLhODbWySPsD35G1si8O7ugKAo0x8PUFdLdhGR7Qx1tcZWa9c0FitXB6x+gNDJRkLLabImzAllV2Ww23E6W+KrI0XDM5x8+5aTbQSr2JLsN08mC59++42wS84cvr7iaJURZw4PxIWIFlBVt1+fhw0cYQsZJv8Pp6SFHj+9xdHyK7XVpd0fIcU28XFCmK8QipWXLtD0Hq9enjGr0tkcVBJQJaHYLVdPYXM5ouS4vbvck+4Rh+25Pp0GA23Fo9UaomoImN2hOB4UaCUh3EftdzKA7ZHJxSbbZopsWF7czpLwivZ3SHz9g22gc+wa6JtM/PkazddRGwDMsZElk/fYNSQ3Dh/dpDItIN5ku12RpSrIPSXZrDkZDqqJgN7uhzivuffAnmIaJKgl8/dVX3F5dYtQlHcfB8g8wvBNqbYx578/59L/5r5EtEduQ+MUvPiYLA+L1nHi9RhAkzt+843a6ZLYMQLJQNYNwG/Hi2RuuZmv2YYLXbrOd3ZDGMZIAruOg+X2C3R6/3aYMArS6Jt6H1A2cHh2iGRaOLGLIdwkXvibfPYNdE126G+9323Q8l65rUkkiSZrQVCV1XaMKDWUSoYk1PVNBNV1ez2MyyWJyc83ocEwabIlWE14+e0a7ZePYHrZvMhiN2UU5i8ma67dnqMg0ukcc7on2O6ok5v9k7z16Lc3S9Lr1uf15c/y53sSNiMzIzMrMqq6qplpkNwcCIRECOKP09zQRJJDggIJAoaEWwaYKreqqyqx04eN6c7z5vNfgNjSnJo0CYv2CMzj74Oxnv++zyixBNwxGoyFNGiE1Off3N/z00x+Z318SaAW+o7Ozt0vPaslnHzCcDpaqITQT2/HIo4TF1S3LxZymblDUx+mMuqqQNJ00K5lOH9DaBqVtaMoSXQJLaOx4NkPP5HDY53hvhNQ2yIqKY1ksplMaVSdJUpbzOR+uH3gIY5BbDNuhF3g0WYhv6iyvJ0xvJxyePkdSFXRDUANvPlyRlg3CtDEtC0VVUHWLChXd61CXFWiPZz/xjujunRJ0utAoaEJD1zUmt9e0rYwmLNaTGyRZQlJ1kmSLL2pUCYpog9TyqLYPHDpGS9cccDA8ZfPDB/79f/gbDn71Kb/6b/+KWZqjtTWfBZBuFoTLOaZl0Q066DIUuUKuWRRVSpZn+H6f3//+j0wf7piuQ9z+gHy7QVEULNfHsy2enp2wt7/P0ekB+mpKMZtiWw6t9Kg1N1UTQzFQtBZD0/GFjllVCEXFEBqmKmMKjU7QRVEVRFvhCZX+aJd1pTB5WJDGGZbQUGUJx+/iD8f4/QFO0MHwR/QGO/Q6fbRC4g+/fcX7m0v8UZeOFdDENV98/imHz14wOHzKbLWhrzf01Yh/+ZdfsIprRgMN1zVpmoY03BAupgT9MXHa8M3f/ZHfffee203G/XTL7uknDI7OKJuM3/7hNe9/uOHh4Zannw948+Edlz+8JFxuOTzZY7kq6Q0OsGWFppaRJZn7d6+x5JoX+w6Lq/fcXVxgSvBkPMbzXDqOzs6ww65nEHQ6+J6HUST0HJPD0ZCTo30srcU3VOSmYv/0DMvtI4TDdrWmTVN++8N7PKFycPwEQxi8e/kDWdWwMxpQVw3PP3tKVkj8u3//B5abjCiKefLsGE1WWG9j7mcb6iJnsd6y2IZQ50hVhiZLLFcriuklwf4TxOCEyXyFbhhsow2eaOh2O+QlyFINVclytuDq8g5FVjk7OcKg5fbDOQ/TOaZtMBoN8Dwf09bp+TY9z6G3e0bQ38W1daQook5lSuGgDvsYHR/FMVhvptwuHnj57g0/fv8dppCQZAnaGkdT0FUZV4Ynox6upbOzf8BO4COXGUPXYhAEGJqgiVeMAo/AddHaBk2q8SybMM8pk4QijugaGo5uEK6XOKIlGI7RHA8RDMD0aA2fbRhSlSmy1KLKDVQxitSQNSrL/NGoE0o2N4lBf7yHo9n4lkHP79Dr7uI7DooEQeBzNb1F1mXyJufs5PQPx/tPPoYmH/mT4mNo8pE/Sd68+u5fTZfTr1ZlQZpnqCgMh0O8oIfuuuweP0GYoBkxiloxmz6wnE04Pj3FD/xHK42icXMxJc0Eph1w+e49y4cZi03IJknQVYvbt++5vrog6Ph4jotUFniWzunAZ6/vcrg35GC3y3jQZdQx6Ac2w94OjqGh09IfDOj2xgS9XWzfxg+6OLoG1eNo7uz6it3DPm2TYAqZeLHk+vUNTmeEadnYBqiiQdN1fKdFqgp0Gbr9ALktyMMNtufx/MUzUBRaRSOJQ0zXxesO0A0d0/FxggGb1ZKrlz+R3N5QT9dMzt+zWi9YLLeI/edoboBvW3i2h2l3MYUBDSwXcybTB6LNhqap0ajoD8dYjsfg9FPc3TPaIuKzoy69nku8XpMmMW0js7m9osljZHfEcrth8fAD1o7Dcruhf3yAc/IFm6Tm/fktf/ubb9gxNeSy4Pr8nDTNCXZ2OBoHtHVFnccURQm0aHVGliRMFyHLpGI9X7BaLInikrqSCHpdvMBFyXPMsqIMc4Rt0wgNoTb4hsx4b5/ueMS463LYtxkP+8iKia4ZHIz7PH96gqxayDKockHdpGxricVmS1VXxFnOYh3h2g6b5R3TzYzGllDMDEuJma+25LVEI8mYtoukamh1yS9//jWqMHAsg816TbjacPfhnOs374nWG9qq4epmyvlDiGx1QLf58PpH1KYgikI26yWr+ZQ2T3A0cJQWX1cZ9wI6vs2g38HzXHb2DrANHV0Bt9ulOxpBEuLZJpZt0x/s4Nk2nmWipVuqoqR38py2LLENA8txWGxDsiSlrCoC18Z1HO6mSyRJwnY8qrqm23ksGpRVGd/zqSTIkxDqEsNxkISBqqkUrUKYFyRVy4c37/jtb7/hYbFB9bo0rs9yPkOVJDq+RxyuOH/7Htex2T04ZbtccP3qLR9+ukb2XbZhxGy+IJIdJvd3nLzY46svP+fItjHKgu1yzmw+4/LinOvpiuu7nJev7nCEzjjwaIuKk7NniLaBokStYHB6hKkrdN2AndEYWzfQasH2dkKxfEBqE3Q5Y9h3MA2BbgpqSQXdQLcMmrSkSDWcfgdhSKhFwWTaks9nPDnoYOgu02lMmGakSYJpmgSdLk1e0On0UXQb2wno9/p4hiCL1o9qT9ujVXXM/g6T8w8spxNO9g+wd54SSSZuk9AUMVXb0FYFr/7P/0Dx7hW/u7xn//PPEd0ukqry04crws0GWRdUZYGpPhYar8OIaLHg87MTPn9+hq7Ah9c/cHV1jV/EGDKs0hr/4GeI7jF//s/+kvj+NbrScHTcQTQT3OKBzf01q8mSzTpGswMW0wmKpNDvdjnc30NNI+7u7lFkmSLPsRyf7nBEmSSYuoamSqiKRiNp2IaO2raIukZIMk1e4JgOjjDY6XXY3d/HpMazHZS2Yhg4BK79eC7jhEYRrMKEm8sb4k3MLMx5dbviZhazvb+nSUOkqqBVVPJ0Q6E53NxNebi9wrMEeRyShGsW0zssSyWPt+zvjwmCgLyUyeKK9TZBUTTuVxvkpibarCmynHg1pzcckm9XJOspk/srXr15yWz2QLpd8OnxkC+++IQ6jTDaCHl5webqktX9jCyXkMqG6Oqa6ftzSiEwhIxqWiiqSpmE6JZNjkw4fyBNErKyQpMlfEOw59r0FLCbgsAxEKZDb2cfz1CIJrdEaUYrqyxXK+qyJApDNpsNitTyxSefYJY1liyzvb6lCHOenB2xd/wE29XIsgzh+MzmCzabLfPlCoAqTzAMk1rRqVsZWdNJ0wzZcLm5vUM1DX7+6z9nHW5R2wahC5IoRGol/N6Qtm0xLZO6bZGkip4pIaQSTWmhrWkamd6gjykETWlj3DX89f/x1yyMin5/j+XdDEsDn4irqwtEWzHQW8aBhes6aKaBdfCUXIU8T5Faicn1mnev3/Dm7TskXXB0eIAhtRwfHLK7s0PXs6njJY5cUs/vEaqGnOR4rU7H6dK3BvTsHmplUUQlRbJBqSqaJCVeR4RhjKVJFNslQlUZ7+7i6Qpd38XvdLF1ge26DI9OEHaAbvuoqoKi6ahCIISOsFyyHAhz7n66pTIKVN9gcX1Pu81p45z+To9gsEOUN4ysFlctEXXC6OgZ69pAZUOnYyMjsVktyOOY5SLm+vKe6y1czRMcx+Ls80/Z+/TPaah5/+YHLP8Z88sHsnDJ5Y/fc/PqParuMtzdw7RtSq1HW+nobc1mMeHi3WuOdgLOBirr8+/peg7zyRJR5Pi6ybMXX1Bs5+x5Bl7gMPJtTp49xfa75KsFw24H2zbpdQO8wKW7u4flD9AtC8O0MS2BJ1oW05CybvAcg/FwgCVa1osNXrdDb9zD7Y85f32BVslEUUktaez0fSRaasnidrrgbjIlFzaZrDGfTKjKjAZQhc4qKlhdzAiG+/gDmziJmF9/z+HApygaLs6voXkMKdfLFTQtuwcHHBwfEEcbFtstUm9EJjv4rsk23DLqDxi5Ald38DtDhG4yeXjg/O098aYkExaaabCOVrx7+4rz8zf89Po1D/e3lPGGJAxpGonlfImvyny+N8DXJKqiYL/jIjSN/eEYU1EQiiDdJjzZ26HOI3ytoeNZ9MY72EEfQ9eQ65J0G1EVBaOuz85wQJFmpHGIY0hIwnzsy6Ig3SxABsX0qYVHnUXIUoMkqWxTmUkmKJuC9TZFdYd0tYCe5WPIErbpUBc1utCQkFCoqZsEsyex3tyjNOIPv/jizz+GJh/5k+KjPecjf5K0soIkBHrZoBg2KhKyrGG6LsfPnlOmGYmrkS7eczNZUuUpwhRIhk0hOyhZSVnkbBYxne4pcd5QZxLxOmNy80CGTJ03OF0LJ5Kp4xhV19ntd1AUiVHg0vct3MBHqXPaPKWMMmZ5zrSZoGkVqmZg2R7e4ABVhlZOaQqQVQOaAuKQYjXn8vdbOmMH0/Hodh1m12seXr1FuB5+38HUbVA3NGpI4BUUByPkVURbxuyeneB4OlWaEPgukqZQBj6zNIfFgtFggKfpKJqBpm5Z3b5m+upH/jhZ4PV89l88IVUzNMvE1AWO6WLIMrrVEq7mVHlJnj4GFNfX50TLGV9//gIn+BWqYTLaP+H++pKvPz1m3Htcx6nrG96++cDJ2RNKSbC6XHLSt0mTCVGpYRcyg+MntJpDm8Hs3Tmu3+Vf/ou/Qq9Sqjjkyckp/vgAXdepsgTPscjziu16TRZFzOczLNegH7igCcKFjlJlbFcb4lplMgnZ6TX0uz75NkYqW2pbEBYxndEZ9eyO3NrQ3T1AcnI8rWXv4JB/8hc+28Ua3xF0fIdK1rm+eoOiJJj7p8iWh1yumE4uMUwD2dvj4e6GwLVZb3JkW6XT2WX76i2+1yOvWrTOmKKqMCTo2DvIsoqu61A3UNWomk7QHyPLFuv5kt/85ncktUIpGUiywWS7JFNNXr4/pywLqqqkaRrmy4ynPYeDvkfgGgz6PRzfx1DBdz1kw8Xp9ajDJYPBiEZS0fsjKt2gETatYuJmOVWWsp5PGfY6FIrJoSvYrOZMJg9cZAVVWbBreSR1y/nVDattRL/XJc0KoqxG6CauYeAbFnm8wdUk3M6YRlFZLFf0dQtN6PiDPm+ubnj76gfutjl7Z59hPv2aUPdwZYPJw4zF5ILNZkLbWqiyilRX3F9fs9jWPEyWePsvsJGoqpI0TXmYxTx7/oRfffYpJ46BFm2Ii4iriylhsuJhseFv/voHPjk7ZGfQR80KuuLx88p1y9PnZ0SbhLaRkJKcwf4xliZomoLF9QVKLdHvOrgetHmBZZi0kkGZLbH9PrWqYfdNFKVGNTWcoYXV8aiKGFVxacJbvvz0EMVTMYTN58/2KWXwuj1atSGdP+CO9pHqlEG/R5RUpPEGtYnR1B51C75i0KiC+u0VjiSBrnO9WBG9+onmZI/9JwOsaEU8nRPefeBvJw+8kBX0/RM2UYKTpsiaSk9RkYoVqF2iNCVwHTRNQZZVVMN9NC/mWzzbYdj1sOuURm75cbFCGz2jcX0GT59x8tkpz490NuF7FpOX3N39kXf3IAsb2/aQpS1CqtntBvS6XQa9HlUY8u0fv2c0HLCzu0vbyhiDQyTbZTDOsJuM2XSCHfRBt1GymK7nEmcJq6KiMj2Gg310CswwxHMtemfPaFWZJFyj5Vs0rWU8HhGGMee3U0o0Bm7A6+s7Xm4inj4/ZpHWJGXG2/s3fHkWsZuCcWxRbd6w53XYDAbYnsfyWmI0CGijAVJdEW4ipve36KZC/+BnhMWKVMnI5RZPCJJo81hQW+bIEkTzB6LllDxNSbKcsm5I0oRPdkxeHI/47PkLZvdX/Lt/+9csru/Z6Q558Yu/oH9oMrm+5+bmhpAGpShQhYltmkhlTifoEJctZTRBSGBrCh1Dh7qiq8jk64hMkVCULqKV6PcGqKbBKnxg4DvIpcTt5IoqTGjrCk+RkHSDJ37A6sfvCJ4+p2wyuv0OncDF6AzQTIfZbEanPyYuakYd/3GNM0nJVjN0x6GtWhw7YLmKcbyAaLMmi0OIZrz53X8kON2jyiGalNSHx2RNSxGusCwDxXCoqxwnCMiyLUJTkLIaQylR5QbLUGlrCae7S03Dw/t73mzuKHH4n/63f8N//eknfPXPvmD6dkXPNjgcuJztj3E8QV5mVMLE6HWx4g2zlYRmmNzdvENqavr9AX43wFPg8PgQXVXJspDi/pq6rphNG0b9LkIo9A53sVuT+GGOnrcocU4TFzR9HVODLGtwNQurq5FVPnkZI2cZbRgjG1tO9g9I84RtUTMYDTFsB6vTo9issPo7tJpKGMbIpoWs6QhLwXQ0Zo5K8OWY2/OE+M0DrRDomk5H97i6WuL1hghDpjDh7YcLvvn2B6LfvOHXv/4lutGwni8ey+U3DZfvFqzDkE+/+gVf7wd89U/+jPVsjukPEZLK3cWKq5s1lnFJIbZ0BwEjX2cQdEkr57GPqckYn3SZ3txxO8053B3y7GenjDyJ7f05RTjn55+eIfg13/6n/4xUppiaScdy8S3BaLyLd3TEYO+YtpWJ5kuiq1vk4nEqy/Z2EZZNIwtcz6YpK07Gn7G8sknqgHcXV3z/h1dsJhN+9utfYngD0qJmuHcMbcbx0SFNlLA/ttg5tvnm1SvCFA6Pn7Ld6fP95j1Xr79BsXscHj1FkSCJ18iGRTDYY7N8YHL+I95uy93FT9TRnDn9x9W0JIK6xhSCvd0BjuNi9noUVCRI+LvHLLchF2/fE000dscDlCZi3DtFbRSy2R3b6Q3vvn+LJboszYTp4pz56pJtnmE6BusoJY8isu2Snmti6jqHp6e0eQHRGlNT8UbHqKpGsVkgyQ2+7yIUCUe1uExeotU1jjBoq+pxFajV8Xae4RQVuriixaKMC04Oj3B9C8dzmD9cky5m+KbBuvbo+DaaKtGmK5o6R6aioEClwFAF+0GHWdLy/cJCa3U66wi59IizCkUT1FXBcnqBqHPa3pjWc4gepmzub3HGLqop/2NfIz7ykf9iPoYmH/mTpBEmKDpynmPqJmXZEBUZA1mhaSQ0oZO2oLldhk6HcD1l2LOQqcmLBIqUNGlRFZW2qlnerciynLAtUDWNer3l9v17et0Bo+EQua3YGfdwbRPX0HCoMWWZ8H7KZjalzjP8bkC2zfADCyEbdHo+3XEHNzCQ2xbV7CBbvUclZJmxvr9BKTM2b26olgKnb2EFOxSbJZe3t8jCZud4h6NP9pGqFinXCIIu/aHC09ZjMfNZzybMliuaTg/XEKSKhizLBJ5LU5fUZUmDii50TMsia2vefXhPR1MRYogzOGSTZTSaiet2ELpAo8VRWxI0Vg9twJwdAAAgAElEQVTXGLpKkWU0RY7nunzy+ReUeYQ7HOD5DlrdR09q8mTD9fUDQnRoJYuX37yk43fYGZ1Rrwtm7+/Ye36CM9wliVLqukIqQr54dohhuXhdD82wkcqMtmnYbGPyeA1FTphsWG0SRrtjzCZD73fAsMjDkO4oIPZKiu2WJLCQvSGr2zvaIkdtKsx+n2gTo5sKspCQhErWGSCvNrhugDsaoSka2yRCMU06Rw7T6w/cblYcPv0EzXSZxy35xS265+I4JtQxt+fnOP2C3t4ZqzDBtG1aQ2e5WtHRGpSmIC9VstWSbtdDqQsc0yLNSnQ0dNMnkBTWqxVhIzGZbbm5fABJQTEsFtMV7TZkkxZEVUWraqRpClWFpiqMuwGeb9Pp9+kHDqZQEYrEeNSnrRs818JUWozhAFOoNIoOkoNUN0iSQiPJKLrGZjXB1xQQMps0ZKA1uIZEprQ8PzqkESZyXfHh+o4kjvFsC0PfZb7eUOYFVV1R2DY7OyPkPKNRW6aLFd1eF7/XI1zN0XSdYLjL3uEB92HBrleiyxXdcsnh4RfM7m8JDJ2X5++RmoRg2KNzcERNQ6c/pjYa/PEJ3mDI+cVb3r/+nqSCzmifr5/8GZ+bDtY2okxS0m3Car4lq2P+09/8SF00pEnD1y+eUoUJSivTShLpeoaFjyErCMtCV3Lq1TWLtMS2NPYGfQLPp8lj8tUc1zZRlcdLXpuvUQwL4XtIVYRi6JiuTZPJCLNHlSZ4O10++SRAGAIMB1WREZaDrJlE24TNbAW6jlQ21DSPEyDmGGHbYDg0bcaT559S1hUXb95hVQlDz6KQDZazNbW8ZLwz4PUs5QvbZr2MmC9WICxiy6I76JMUMfH8gcawGA960AlQPRtTkbEMBSEMLM+n7wf8/MUZ475HlYa8ODvC/+//Bf/mf/m3hLXC09PnZBUIKWf78I42mZCHrzn/9j+TbtdEskDXA3THZNDvoZQ54/0TDKEiVwXLyQRHCEaWQ9fv0Tp9ctNF3c6xHJv1w5rd0T7W6JA2z7B1FU1RMUwT17FxVYuDwT71+g7TMRGKQA/6yEKmDAKE0pBOLzFtC+H4SLXEzc2EtKzomhZelDJbhLRSixh0uVznXP72LV9WNuJmTbfn0j045cvjIzZanzvT42DUohYPxFHE3vExZWugqgYaLf3hAUIbkRQbfpxcUJUFNA1RFEFVsJ0tWC5XJEWFoQvSNKGtSr46O+TkyRlSXbO9vSWMcyzX45PPPmX35Iwog7fvL4lWa3rdHr2jI0zbpigztKZCKSvaNsNqSgJD4MkgywoGNaYiY0sqapSgpQXZ3T2V49M9PcAcDOj0x5h3D8jRBrtS2OYNm7Rh4Ji08wcq0TB7U3N8eoatOwTHYyShE2cNfl9Dq2B6cY5t+2gSTPNrlmWOaG0MpSZZ3NLVXZIyRVUkNNtkvZQptjP+7n/9nwlGBzw9PiXxuyiqQJVbijRCUSSqIqLVNVzfRYiUIlywnS3JywZF6LiBS7aNuL+8IawsxgcjLlvY7Xl89uUeL47G1A/HrAODQdejaHmcAhMySjCiKEt0oZK1EVVbY+igCZXTozGmJbAVlfV8RlGVrNZrRPPYC1E2JXc3MZEbkHoxsirQG5nNQ8jIyYi2U5J5Tgb0DRt/2zJfr1jnGyoqdl0dTegYZY0hC6yeQ09VWK7WZGmC0Rtxe3FB3cLxV19z+/pHNpsEVUzo7e+j2y6bxZzZdIZlqjz/6hnULdks5Daa0S1sNpsII2uRWpX1NkSoLX/+2RmfHHe5e/dHCqUhkXzevbnm1XdXWLrCL/75kM9/+QtUVeftmwu2qcK3v3uFY4/YzjKMg4JPnh1hB12yomF9/gE2CX3XwTCGjMbHWNk1ppTz9HSAY9Qsr35gPbnk61//Vzw5O+Rof4Ccrnnz7Vua1T2jfsCTL59h9fsMRn1sW0K4PurhDs3zE+osJ15tqaMpEo99IqrbZTRy6Rn6o8Y42EOzfV7/+Htcdcvrb3/kxc+/ZHc/YLuc8vLbP+AfP+e/+x//Ndv1lB9/+3/Rrlckhcn5+0tO+x3as0NuJytmUUm8WbFzcIBaRFxfX2N+8hy3N+Ltj6+QRMarH/4OXa4wsjPauiTNNFRA1x7XTSTdRzJMwm3Mm9fneI6LZup0fJf7q0s+Pe5zvD/G6fQxVJP162sWizVqXXI7ueTlTz9RSBl2dwe/G7DdrlhN7pFp8YVCW9X0hh5tHDHuBrijLookk+U5w45PbmrcT+ekRYvf7WCUOuPeDt2xjdQ2PNzf8OzrfTSvg6SB6nfwd3dQdu6hrhgNPFxbI4tCynTD7t4hTVtDtOJ6vWQ47uOYXSytQqu3SEGfuipIFhNaLWQou3SyjOuLa9qqosrnrNcZjaiJZgl1nNEUGdvViqDToalzpKbi7//2DZ1//tk/9jXiIx/5L+ZjaPKRP0lkVWU5mSAsm6ppKfOMZLskS8fIbcVmvaJSFKJlSraZU+Uh476F0hTIZUzV1NxczdDdMblSIIkI3y6R5AbDFBSRQlO0aEVKf9xnb2+EI1SaNEUpSm5urynTFMqKwNIRVOiqRmWZGN0+TbTk8odXbCdDTH+FqbfYfg9ZW9Gi0mRzojDG0DUkSWF1uyDfbpk09/jBEd2kIU5jvvvDN2RFyeGhz2jvKXi7LK7eUc3f0VEeX53d0xPQXTazKyzL565QcHoBtvo4kVPXNev1miJLMAKb3b0hWqFx+uSXyN4uJ6cGD2hIEihyS1HkFFVNuNwgISjDFE1S8DyPJy8+pylyrl59x/HRCYYQ1DQoDcxna0p08jTB9fvcXd3StAK/J9GzBaPTI/TRAegWVvFA28oopo7a1OjCQFIFQlGIFxuKPKOtJVzToCxjEBa7n5wRvv+RInmc+lF1C9fSUSkpygJZVnD29lDLiu6wyzpMUXUVSVIxTRfD04lrDVNuaHUdozFBNUiiEsdxcXo7CMdjvZyS2zZJUdHUJcvZhFpVqYTM1ZvX+K6FKVyifEkVVzSTOYoqaBQF39Eo8uRxTapqsGybPEt4991b2jwh+LOvUHUd27KQFAWKipuLW4pawXMc4jCklDXuVls2WcpqcofpdQgXc4QsMfADLKFjyC2OJmGpMg0qpiYYjgb4/SGqLCHaEs/WEbaPrqmoqobi+EiKwebiPaosozodlCKlHzjkrYovqxRJyHZyz00Z8fT5JwyjlO/evufD7Q2bJMY1Tdoo5urmFllRQFaxrYBVFKGGHRyzh0KG0FvSKMJyvMdz0tSUWUpvOKS/KTDTlMDvoClw+9v/SLie0u36nO7tMJveUkYZ1kEfvU1BVQkGffYOjpHkhun9B6rZLfF0yfOdPT5zTbRNSLJaUy9WzG5umUQTtuWcJqnZC3zGgyHd0YhcWeP6AbKikW1XqKqO0hToskS336djm8hlhiEEtq6yfbhhfXfB4f4I3bJB1dAVFanbRxY6qulRZy11mCIrGoqSoUgaSt3ijYa0yQqlBGodSTeQLYuqbBBSweD4DFPo5NGCOMlJVwnVNkYZPQFU0jCBWuL67TssQ2ev36GVZFQz4LsPV5RFyU1golombzcFdWPC3nPOfqlQpBlib0xn2GPx8IB/eEhVZjykOVZdoGoCu9dHljUczeBkPGB31CFfXvP6m7/n5ZtzVCxE95je6S4d1yGa3yPf/B15e4DpmDxcTqk3Cb4mQPEoC5XVwy39o0+o0g2upSHqgofzCzRZY9zrsT8cYCkyfr/PYrulFAq6qmGdPscY7OO4NiKcoqKQbjOCThe1gv2jnyE2M2otxQgGKGpDMn1ADPu4gw6tAkoZs12tMGybbtenCVN+upliex6nssrb+YJUkem4OUlWcb9cMfvdT5i2SaDXfPJiTe+ZTG2u+fzJALtpMaQz2ionjHIu3n/gydMTku0Ky+jy3at3KMJAQqIpSpJo+/8ZbB6imDjLMYIeSpni2iaaZuHbOrsnZwx2z1hvUl7kCuPBgCfHz2nMAe++/QlVUemNd+j0uiBBUoMkCyRN4PVGoG/Z63cItJYqzSjKEqEo0NQcD3qU0wXldI65jpj/+AoWUyrLwhoOEdslB52A3dEu63BLGW0xTZ2d0YBux6O/t/MPvxsGjWxQFlDVLbrQKOuSfqfHdhMRpi1Ct2E7Y4tCbRgsNxsqthhugGfpRGlFZ7jDPNyg0qBWOWWWM32Y0hn51G2LKkukmwd0RSJaFOiiRhnqxOGKTZQgLA9ZM0jDhNn1HXfXV9yHDcPBkNM45Bdffc4//fWfYbkOxdNnXMotxWqKpeuoeh/hDbECH6nOicMFptbw4eIHyjpjb+hQlgWr2ZRlmKJIMqYi0Rs47PW6WEKnkUviumaxbdBVQacbUCky+SrhNrnhdnb1OGnX8biPax626WMBc54xFBpxmOLoEllVozghneAQYZsMRnvUyKA76D//1ePaqLCYvnuL1h+ze3JCHEU4wuR0OODuh0veXL0h0WrQNZarDXv9LsoqZztb03oyKAZep0eyXbHTMZHie2Z3c7JkTaFYPEwSNnnLLC74f7674ujTFzT5giLPubxY8uNP37J/vM8v/umX6JXEzdv3XL79wHyZUMdL9sc99k+eYlo9dka7PNkZ4uotQq65eP1HVreXfPX1Fzz72ecESkShqfw3//p/wLP+dyZv3tDoPfzdPfo9j06/g6qoNFWIZtmIg0OaIqd7ZtPmOZT5o9K6Suju2JBVEBgotsDUn3A4AFk2eHlxxfj6inR5T76ZoxUFk3fv6XV7TK5nuP4+Zidl8+GWvpDwNY2O2hKZKod7u+RpQ3h/QUdIdE2FyfUFzu4ACYhmWzyhEc0XXL25JtpuMJ/9DNkwiaIYy/bQlApFFzxMZ9RNzTaMWFxdEQz7nH26x9MnPfp7+8jCoEUhCmO88ZCrtxNevn6NaqqPCnrLIE5Dbi4ukcsMBYWjs6fsjQYU4Zphx6WpSi4v5lhuj+NxBymNkZqGTifA8SxcXWE1u0P3DHTLQhcmrjCQah3L7iIMGRF4tJKKE5z+g348R9rMkIqc4+Nj3H6PMokpshiSLVcXOXvHhxiN9hjirGZUTYWsqlDXyI1Kz/b4Y1gzvbxkHedIhkE6DZGSEl3ohNsE2+9zdAS+LrOzd8C6MRkPe/+4l4iPfOT/Bx87TT7yJ8nV3c2/ilbnX7VNCcJBlnlMspsGz3KYTSe0isLs9orl5B5VadnbP3hUHhYJq+WK5QZG4z0aueHhww/k2zltVRLPt7imzenhPof7e9iGoE1itDQm36wIVyuy9QpX1xg5Kt2uj1TmtFnFcNQnQ2DXKdv7O1RZQQhBcnPJh5cfKJOSaDYhmk9QkdhutmxXG9bzDWlWkOZbyho2YYVlWxgmTO+XqJqK1mTI1Fi6ShnFhOs1Va2gu0Py9R1RuEJVNbZJSphXjMYHOG5A27SUDZT5Y5mX0Wg4rc+wc4piGRgdi1BqMVSZIktI45AsTYlWKZZhowuXJI9QDJVnT07IFveMdkb4QZ8qS9GKGNItshVgCp1w/oBjGRi+j+gNGZ88we0EyEJHaAaGpqC2JbqmoSJRbZZILdSai2jKx0mX7oDucAdbafA9n25/hEmD5+gMBiP6/R56m5PEMVWaUsSPf2Jcw0ZqQUYh6PbQFBmhmVh+9/FVS3eQVIFWJFCm5Hn1GGZVBWWSILctlqXRGQ0wDJU8T/nt7/+e+fSKaHmDMDSKNEbVHR4mWzTDxTAdHNtCGDZ5K2GQky1vySWTpiowNJn5fEFdtxzu7jIajBiORkTLJTcX1yDpOJbHy29/5P3lPWFVM9tsqJqKzXJGmSV4loWna3RNjY4fcHB0TC/wGPY6DCwV1zXo7J0Q9PrYpkCTW6S6xumPUTUdQwjkusbqDJCyBD3oYQRDVFXBsU10XUdVFeQiocoz3O6Q7s4h8XyCmsfkWUrdSsiaSprn1E2NJkzSIqcpU+qqRNUEafVophoMh7RVQZ4mFGUFkoppmhimzcvbGa8/nLOKU15dvOP23Q9sZzeUWUq328eybWSh0ul4aHVEa/XwBqcEnQBFgrZI8Cj55OyQp+MOT3suyWpBuFgSXs1ZRyH3mxlvXr9DNHC6t0fXebQDbOYz6jTG0ATd/pCg2yHodun3BnQDB6ktyTYrHMMgmd9TrWb0XANh+ShmgOH5yG2L7gW0WYgkS6i2R9vUKLpB20S0ZYvUaMiaSVOryFVG2eqoloOUF+hCwXQdLOMxxJWaFsPvYQ8GiLoin19SlTJuf0CVRlCkVEWOKsv4vT6rTYwudE6O91nPF5RGQJtG5MkaxdQRroPrBniBR6sIShryOCPMK1LdJMkT9N6IRjPxhYEO/Oz5MVoTcv/D33B9fcnw07+gCBte3cT0nnzJ7tjDVjKGnqApc9o6Q60LOrqMUbegOKzDFF3XMYTOaPcQWyiUD1cEmsp4Z4eR5aIUJY5tYagyelMhLIed3QG608Xv+Pi6gtPpIuv24wpVXhEMntGzLBS5QLct3L0dmiqlrTP8vR0026CK148v+o5LU+Q0WY6pqOg0GH6XeLOlSBMcPyBKUh5WW9ZxQlaDqglmyy1X0w22luM0c7pWwWjUJS9KqkZFcwP6gYFrq1idHZo2ZZXOyBtYb2OauiKPwsdSybZisdqiaILAdRl0HILAwzE0Wklmd2eEH/TYbGJqFCxN0B3sklewvL2l3K6xTQNdF9CA1LZoNAhNUJQVGi2asLCFiiZ0NE1gqBKHrsl+YNPzLALXp2MYmLqBGwToQkNTVfLNgm7g4wZdhKzS0WR6hsrY0RF1i6hSmmhL1TTIpkuFSl2WaFJLW6ZIsozpeEiKRloU9LpdtH/Q2tuWyfX9nLJq0GSNojHQ/C5YDqamITXgBT5xluD6DuQZqiqznNxCnWEKhbbO6JgQLhe0skoSZ5jCRJYVLj5csE5yZje3mFLOl198xunp2aMpKNqyvL9BDleMvMd1VOf0Z5j9XVzPQpZk0jgnC7foioIp1+TrDavZHLWtsYRgbzTkSd9l3DMwDRVTM+gGAUEnIBj2mU1ChoMhlqWzc7BD0O9gWw5F7vB/v3zN5d0lZVtSGwrn0yl/uLtDo+bdckWcP34f3cEIoWroloPlB9j9IWanj98fYNsW6WrBYrVCMgzevXyJ63n09/Zpkoa7n855c3NB1RT4lo4hSRC12LmLaduIrsCzWtrwHteUcG2VV99+RxzFlLJJ1QjSJGEw6GKaJlfvzjn/6TvGwz7f/3TO9P6Wh/mSy8kCdbhLnpUsZhV209IT8MXnZ4xPvuLk5CkH4z6WUKmziHg95/U3v+HsMOCLn3/JYBBQp1taVUDT4vYfTUZVFDHwLXxXRykLmjzBcLsYtocqtSiqhqyoKBIodYmiaph+B6GrqFIFZYLi9nFNhd6wi+M51FmEWiaEswmjnX3ScMPmYYLjeNxfvCOPQo52Rriuh9qUyG2J63e4ubnj/fUdtWagKgqb7RpdkzE6AypNkC7nuI6Dath89833XN8sSSuZoy++wBA6qiKzni8xdA0Mi7ZtQYKmkkjChDiOODvq86u/+ksGu5+i0FLEIct1SGHIfPvHH7l/uINWIklibu+nXF7fUYUrmrLieH+fYcdnu17R5CXhaoEvFAa24OTLnzMMPIRck8Qpg8EYyprVYobbsZjOF3iOg2moNGWFIVv0jw6RDQF1hWEIDE2hN+jjWhK6UJGbhM6oj6ZIaLpOWVU0Wcp6tWa5TahVi6SQkQwbmQYkyCuZTdxwt8iZFDIvv/mR+f2W6c2aeJ2SpxV5XpIUDaOdfQxNxRAyR89egKry5Yuf/eH48NnHTpOP/EnxcdLkI3+SVPGaNFyjqgb9gUZUaMwXD7i2h6WCaRlsNmsC16VJA/r9PoHbIY8SJLlm/hDiiR7NckNRl1iaQVyDWTbs9wJMy6dVVDQq9LrBEQq21+HizQKTAtvVCYxHn73uBTyEEUJtMKUCr9OnWOrYQsPzLTyhkOsGV5NLWs/n7uqayXyJMHROz05Qhcx2seHhPGGZpvT6GzQ7QDVsBuMeshIzma9JNmu6yzn9nSPcToDvSuT/L3tvsizJkV5pfmqqavPg450jAhEAEkAnmQOLZBWrRXrRT8A37X3Vpqulq8iikDkwgcQQCCDizu7XR5tHtV5c9AP0qiVFcPa+cHMTF9X/P+d8bUvRtHihi2QCYUJuSr58+x2LScKwWHJydonjOXRlSxhO4ewlVdeiL0+Y/tULvv3692xpGJKQrh3ouwHTaubxkqZscaYewSEijF3OkoSH7bMlOD/u6FbXRFcX2F6Ed9zTlgVXy8Wz2ySKUPGEvm4pd2t8R6Ewz1tRZdOVGWIYML0hiGKQAk/ajAygJNJ09MZgex4oSbPf0aQ5Wlt0VU7bG5bTCV3Xc/7iDaau6bsWy2jarqYxHdr2kMEUg6AdwZGGbPWeUWnC6SmuF1E+3TDGHtJxGAno2p4q2zF2PevtjqJqSKuKfXHkpMhJ646XKF5/8VuOacHQw2RywsEojnWL0/WEfUngKEYzkGY1y9NLtFQUZQvDQLnfUWQFxgycnJ5ze/PELhuYn7/h6e03UFeUxx2RrdBCkOiRs+mEMIqZX71BjSOhVCSOYKgzXv7if2G+XDCUGX2V47kO4XSO6FtkECJdH1MXiHxPcvWSLK1w4gnGAjU0WE2OKVIcC6IoAjeiG0Y+Pp8RqpFpkvDl9T2r44HCDFR1RRh2lE0No2QRhpRlznS25Gn9gOxiJrNTlu7IZvVI19T0dUGQzHlxdsYPh5x3N9fsnu4Z0g0z3ybPciyl8c8vedrt6IXFq0lEUZWcRhG+59LU4NsO/+k//j2T6QLdlhTbB8qixRjJZtzz1fU3pE3BdDplci7ZPaU0eUnoSD794nNoG7S0CCbzZ7qU6bHqI83uyNi2TG3JmO8QxycmnkbbLl1dw2GHkyxID0ci6eFHc9r9nnZ/RHoulvQwpY3pMoTlo5TGdSO67nn7ZoUJ/foBSyvGzmANGcqSyMCh7QdMkYEa0XFMVmxp0p6JF9AnCdofGbwYW1mcLhe8v93w9uYtlbPgVRTw1f/4Z7xuxyx5Hhom0ymmyAlMR12XVE1P7dgIz8W1Rtp0j2dp1GyJ73iEgYdJ12j2nM884pMZ3e6AWsYsPr5gPg9YVbeM1RN1WqKdGZuHe54ebplFMR0ttrLQUmJLiW/bnDsjx9inqzvGLCNd7bmYTfEHUE3B2XKCcHzWrcPJLMKj4XDIMcEC6QfYeUH8+gsCO0D1GcafI7XEGlss22L6yRuq3SOuOqGranTgY5kB0Q8EUUCFIahjtqs9J3GIEQJ3lvCn+xVSO5jxmRAVq5E9HYtQsbn+mnMVUJkpNa/5xSefoyWMQwF9RCdD5tOIt1/+Dl80lK7ClppmbDkeMyaBTzv02K5HsliymEYsQklRVhR5xud/9Uv2uw3//b/8HzBI9llLtbjkNK84PH7g+u1bbAS+tqnykg5wGHHDgONgUVbPtJUmz7Btj8zkuJ6PyipeLKZMkpB8d2T56Qv2332PqEuUaxOczkA7NOkeyxhkmRH1Nd4kIV0/0O563HiK1dskiyVWFNNsHyhkSKdcyrHHsyVW1xP7PmvtgLQZ6QniCN8MHI8pFxdnPG72THzF8vIzGtNhxpasH2AcOezXyCimqkpibZOXBZv1A84soLEV2lXUVYeUktXNE1rA2BTUQjKiGIVNPIlZniwIghBtBorVmvzxFlUWuFKy327Yhy+4wsFvG8a2pW4HhrrDkw618HnKWqpjwUkyYRo7nAQS346RShLEGuE4WL1iqAfcOKBBUOeKJFzQ9EekHIlPpkymEa8+gRe/9Lh9947NvuHy9Ao/jrlsWsKh50xA03Z8s94ifviAH4V8FieIroe+xfV9bNeFvmF5ekk4X7JtatbbHeZPX/IP568IXsx58es3fP1//sDu9g6TTLDCiL4NqMcju0QznkmiecR8GpDnOeXhgXyb4sU23iShqLb8w9++4cXVFbfrAmsccKVFleU4SjBJYt69vWYQFV8f/yuWFlijpOlaAi04u3rJq6tTJqFHmx9YP9wix4b19Vuoj3z82d+ipaJ8/JG27kF59PWBT1+9YVxGVL/6grHIUXWD5Xh4ySVOOEc0FfQtphd0jcF2XUTXoMIQYwbGvnmmKE2W9McU5dqMamSsCq4uTugOa/Y/vuXt6PPxi1dE4fP/5MnshG+/+ZrVJsebTDkcjpjQJfIS/uZXX9D/y7/w9t1XtMZiFgVYQ4ztNEzdkLyqyasS3/FxgwCTZtR5Tl3mBNMpTQNF2YByKIsnTs9PGPoWrSqQNr3oOLtaYNkJT08ZsQXr9zdcv78lbwvqpgOtyIoKP46xxJE+OzC2LRcvLhjqknd//nc+++g108WCi0VM6LkMbUdoSer0SJWWVHnO6ckbytUtQtTc/PBElJwg0GzX97h+yPJigSwNav6SrnxirCuk6+NZFrYMkGGJev0JY53S5nuKtERLhRclhFXJOj1y0/acXL3EmAEzVISBwJI1zvxTiu+uYZ3jjD6H/Y5hMM+/l5ZIpZh5Dl1VUls93ukbyrTCNC1Zmv7/fY34WT/r/7N+dpr8rL9I/eEP//Mf7x9vfnNxcYZoC9arNWPfMzQNQzdguy62tmE05FnKYrHEtQzatFhGcPvDI5MgQfSG4zHnq6+/5+H6jr5siIOYKIzxxp5ICgILsjQjWZ7QHjZEyjAJXBan58TLc1xt42lB6GpcLZ+7JVwPy9RMp1O0EGhpUR+PTOIQbzR0eUlVPB8WFos5YeCRRAFyhH1actwd2Wx3OLbNNz/e0/UVOoyxLAVDRzR/Ad4M0dX0ec6oHZp6wI7mNHlO09RgSVzPocgOWNJCivG506Ub0Z6PPnUIPprTmJpvf/ye/e6W3eaJ4pgyTS4IvQjHdlgu5rRtTehZiNzm5u23zC/P8QvyXAoAACAASURBVHyP3Xd/ZDGbMyDQdYrVVdRFydhVVHmGHAcCLXElCDNga03ftwzNc9YVJEOZE7oudB2mGyjTHCU1kpEuO9DkFWYA2g4/TpCWIoom+PEM23FRwqYrGpr0SLo5IKRDECcEYYwfTeiaBktqmqZlu7rHGgeU57PabsnTA9EkJEgC7OmSTvr0ZUZ5TJGeSz5AZ9lk/YhwPLRtk9cGo56RsW1rsM3A1HMxjsehbWibErdOGdsaS1pkx5yqbrl69RG2tJjG4fP3HwwXrz5m0wn+7//xz3z95Z/485d/4njY4FgjYnzuGzhNfD5/+QKExenFFaeTiEQbEt9GjR1XH/+C+fIUaQmUJZgtl0jLQtseXjwFLBw/RKvnbfPYDziTJaauGKocx/fp6wolLbQXYYcJtpKItsIaB7TrMz894yTyiZVAjj2jMfieR9e1DOOIBWjbo6hqTFORlRU6mOHFCbap6eoCzw+xXR8/nrGue/a7DWNXEyjBwnO4XCzoeoPnOviLJXpocBTgzYiXr/AcRdu1zDzNZx9/SpzMcExNtd+BlOy2G24fHqgZiSKPaaDIj3uWiwnKkoSOpM0zmqomdhRajpj8SBy4mHyPK0di95lgJdoS0feIscdVCj9OsKVgaBqU7ZLdXYPpsYSmOWzpsozu0CL9BUNZMRpB+7Si362wLBvleXTNAN3z5y2lMUXKMAiEGzI2FWJoYOgxpqfOU4rNFiMk0WSJ79n0RUb+eI8ZBI0xDAjefP5LQsfl/e0tT493pOtr1ps1+XFHnR2wtCavSgoGjsZicrZA1Dkfru/ohY10Ej45nXIyDSmrikEFDCoEU7MtagZ/ghIjh7svmbFm/eN3uAKOWc2HDzd0Vc1yvgBjsG2bJIlZTCKmcuCjhU+TFWzvnxiLitB2iB2LqeszWZzghT6T2OHidIYWUBcVi/MzJoFPFIRMT88IHInJ9jD2aBds36bOUlToYvqWrszxT88Q9v/rgBkwTYUUhjzNEX6I69q0xrA8P8P0HdtjSt33SEtwMo2YhZLzxCLwRk4nClcOTGOfcr9ieTJnfn7O5dUFrmOThBo9NqxWa757e41SIftsIN1vaNqWSRLRtzWurbi4OGURe5RZxupxQ1bUWH2Dq0bS1TW/+/03bNOeN1/8hlky4+3v/8ifv/yOC9elvblnVA5SCnxp0UibourwXB8NqC5jaBqCeEqfp3wxczhdzvGCCNqGcBLhhRFdmuEJsKTCkhDNF3h+gOPa2Oq5N2Z+fsXizadMXrzBWywwZsBWEkaDGAdKo8CPaNqWrnt2jwWTKQ+bLdffv6M4VGg1UpYljuOjbU3btgzSekaRVyW+62EJwW63oet7plGCoyRFfiR9/IA2LfH5R9S9QdGjJDzer0lC9zneN1rMTi8Y2oaJ6zCfLpDCJlKSdnWLNbTcPGW839XsnvacvHzFfDkl8AyDtBlMB2iyTcHt9QNlVZKEMR9dXXK68LmcucxmMeHyFKEVtuPjBwm2cLG9CdoL6esOW2o+/uxjjvsV4XxC6Nl4dss0Cjg7nTNfTPGUYh6HDErT9S3nicebN2+IwpAwCLk9puyPKa4j8W2J7XnYfoAlwJIWbhTRCwFOANpleXpC3gy0/UA/DGTbPV3T4gUBk9kSE2qMU+NPY2aBTZlu2R0O/PjhlkABUrMrR64WDv/b//or8rxg9bh+xtZPZ7y7S1mtDuwed/heyHwx47B/Il89oOqUrpMszy75+3/4ewInoDkc2K8eORz2pLdv2T38wCK0uTiZoYUhWz3QCB9Gm9PTEwIFru8RLk6YXlwQzJe483OU6yOEpD+mmMYwVi3O7BIdTZ/JVkJiDEipsRjADJi6xnQ91jhiqhxlCQRQZxl//Lc/EtoSLAtbKfZ3dxihUH6I7dg8Pq542h7omgYQjE2FbQ00Xcc2rzgWFWWR0rcFoQ1dkZMEEVeJ5jy2WSwXiMkURgtLDCgpcWybpqkIkwnS9ISRT9l0tNWRLz59wdX5OeVqz7//1/+Lf/1v/8J337/l/Q/vub655eH+gTQruX94Yr/dos2Aa9tEymIRefzqszck0xmn8xnnL14wlimOFzKdxqjeoIaa3gyMXc/T4z3d0NOWBa5wSG/2JOGUl7/+DG8yR2BhORbStjHNgFQeY7lHMCCFh2RAyYFxMDT5EUtLRgb6YWSoK7a7I9b4XPCqtGboesq6ocgbPM9l/X5NXlbsdntMb3CVJAlczhZzonjCJ7/8DZPzC+RQkkQW71drvGTyu7/9zT/87DT5WX9R+nlo8rP+IvX9D9/+Y9vsflPlOZtdyuzkglFIHu7vKYvj88WiB7DQtmYxn6LGjqFpqduem/tH5ldXpGXDn//wFV2e49mK15eXBK6LZkC2FQoY6pJxNHjxCbKvccaOJPLQ9jMeUJuWJHIJPBvqiqHrCaKAMJkxnQZUuwOu69A2A6ezhHy1YR7YiN6gLUFTd0ymCUPXEYch49AjxgFHWUS+xzbLuF9v2G+faAbI84a67ognCcaM9EIjpKLLUxpj0fY9MFJXJcl8zqHMseT4bPU3hh5DkW24v/4z77//is3uyNsPt3z49i37px3LyTnLyRKBZPN+xf56x+r+PaHv8SJ6gzItl198zPXdLcPmjlnkY48G3TUU6YFjXtD1PXp8RiUr12GoShQGrSQYQ7Hb4Ccz8EJoKhwGLGWj/AR/cY7pO1wtCGYnOMkcS2gsJyBZniNNR3U4osOQw/0DpmkZqhJHa3Q8Z3ZyyVj9REQRmrYsaZseYVm0TY6UhqKu8BcnmK6jLDKEBUIYxq7GCwKEtOiwuF4/UTcV3myBsSQGxXp9oB8l09mCcRDMoojQtpnHIevDkcNhQ9wfCAMfg2AcBcIOUJZFYBkiWxNHEdPFGd1o8ftvvud3//Tf+fDhA1ILzuYxF7OI2HOY+A6LSYJEMJnO+PjqHC1gEvl4tiAKfS4+/pQoSXBtiaMkY9sgLAutnwk9tlJYZkTaHsrxoO+Qo0HaLl3XoV0PwYi0HXqhkdpGmIGhLrAsSbw4oUmPtNkBTQt9Sxg4tHVFP/Q4SmIJwTBaMELb1FgYTs4vGaSDZw1EnguWwg1jRttj9bCGcUS09XPcxdZo28ZSionnUw0DT9ffE6kab3GJjs8Zmxw59Hz+8pLJbMrQlBxWj6wf1xwORzZpxnQ24e7umsgRrK5v8SzB1cmSi8tLoumCZDrj4mRC6Co8WxE4Nl16QLQFWgisOoMqw5aK6w93TEMP2VdgCfq6pD9uGbuavqnJrm8wRmNJC1NkVLs93SEDQCifrsgwVUGXHRlRWMGCOj8itEM3SuharL6jPTzRVyV5ltK1LUIptK0Z65zd/Q1t16KERZNnVEVNVTe4rsP88pJofkLZDlTtQItm87TCmI6iroGBrmupu577Y84wO2MWx3jjEc9TtEXONPZ5czbFdyV53XNdRVjBknh2hh2dYCzF5uY9i0jzu3/6F45PT5RFySFrub+9ZRL6nC4X6GhCEE05ObtiEnhMrJpJ6KGkpl6tCZXm1Ucf4+kQNY7PSPNwgpYDjqMIk5jp2RlhHOG7Gs+RKEtgsj1aa9yJB22FGXqCi0s6pVC2Qp+cMoqREfPT+1RiiZ5BWISvPqZK9whpE06et8/D0KGloi0LRmWxmCbkZUlVFUxij3gxxXE088TnZKqwACeaMDYZm/ff0R1WWAy8vz9wyGq0ihgGyXq1oqsrTk7mxJ4kciSustiu79k8PbFercmzgt3uyJ+/+ZF/+/aRh3wkuXjNr//qV1jpnu+/+x4/mhE5Llk74C9PaZWkEDblcU9+3OFLQbN/ZBrHmLamq3LMccPrRUwSx/iT5KfLlY07naM9F8tWeNMJtiWoy5ogmSKFxA8DhGURzs/QQcDY11hSI7Ri6AeGYUAIQVnVdMPAIBTSEojx+UKpHc1+98j93TUPD6tnHH00pczLnwYdHo4f0nc16fFIWfe0w8DyZE5fVthKUR03JJGNdHymZy+xhpq+zrFdG4NkMBrTVkwnU5T02D8dKQ4ZgePh2y5temT18MD71ZF9UVEVBcdmYPLiY4TvEcaSQQz0ouZpX7D+8Q4lO2aTgBcXJ8znczzfR9k+CJvRjfGmU4aux3N8Ru3gxgHSsTmme+Lz+TN63bNp04xoMkOOAtdSOI5HEsfPMRzP4aOLM85mE/q+YzKdoLQm9Fzc0Ce5vGR1c00UhjC0jEOPclwwPUV24P2Ha4qq5bjfE09PuXs84Ho+24cn7FbQZiW7psC4Fjq0sGzJLAqYLSK6OqMsKprOMJmEVFVNtrrn128mZLXk3373NZvrGwJpcKMluz5CC808XpAkC+4eb7CaEmkEaTmyTE75+K9/y1999oby/pbD4wo3mnP3/TeMux85rm5ZTHxCW1KkJUaGnJxfcTaPiDwX0VQoL0YCw3GHqQ3toaTe5vRpjqU9dLhEKo20nedlSteA9gGLsa0w5QEzDAhvgvI8xnRDud+T1h3504a27fmff/gzosgY+oH56RlDnvLw/j2HqkGJEd3V9H2P62i072GZHs8asS1DEgfkTUuRHmnKkmiSIIqM2HM4nU5I4oTp+QWj77DZ7PFdB6UdTD+g1Eg3CvxogrAsZtMpJxenBJ5EDT3fffWWf/3DH8nqkrbtKauKLMvJi4q2aVGWwBHgK8HJJOZiMeOjqzNefvILFCOhrSjWB8LZkqf1BonBVCWr3SNNY6jblMMuoywr8qc9rtLMZnPO/8NvsX0P6TqowEYwIpQCoRk7wALR5QhGuuwJ0/cgRtqyRPk+Aov8+Ix4btua+6cDrYFwMsEMJW3TIoQADDpQaNVjugHHjEyiGN93OTs54/LlL5DRCWEgCWRDUR+4We/55Rd//btf//Xf/Tw0+Vl/Ufp5aPKz/iL1/c27f3x8vPnNu+9+xJ8tefHyNUpJ8jTl5ut3ZLuGZHbCdrNl1Jr5cvLcUVDXHJ72WI5Dj+Cr737AaltOJzGLMEQwcv3De6ymZOoosrLFpsfTCjsI8b0QJQS2BYFvYw81oa8ZugFHSxxl/XQI80iWC6y2hL5FejF+EDEcD4RSob2AIAro+x4/8JCeT13XjH1PEMbUZUHbdkit0G5I0zQcipIBi/npBeNQU5UlUeBhKZeuKhF9zfGY4c7OWG+3tFXF+cUZWVNzrEti0zGOA0IM5PsnHj98h/RcFhdnpFlNXXaMnWAeL3E8n7rKydMNh+M9Vb3l5PwSIRT+VNObmsfv/shp6DCdTujaloeHB8p2QAQTqrLAmJbRdamHHt23aEZM3+P5Afu7D8SzGdYIfdczNjX+bIkwA64f0qYlKvSxhMB2A9zFBcIo+u0tbXpgGAWHxzXT03N8W+IHPsMIbjynzQ4MZYlBUdctjm1TlAWWEKxXj7R1Q1kWCKloyoxJElNUJQMG15WYrgPp0AnNV2/f8fWfv+K431Oh6NoWx/XRWuH4Ien+wNV8huu4SO3SjM8HkKRPsbTC8UL2aU0UhCTSINI9tlSEyQzpJKzWe/74z/9EsVlxcnrK+dULXiyniL6naQ2R53CxnOO4Li+Wczz9jMAchh5tOuYXF/jxFDW09HWNERZiFDh+gHAirKHDHNa4no/0YkZjoZSCtkJqF2lr6Fv6usINAizHo6srpDG0dYflhDD00GVoesLZlLJIedrueNpuEAKGvsOxJZZSBFGC6VuGvqPKM8TQM18ucdWIHwQYqZFexFc/vEcKiKIJ/WjYpym1ULSj4HSWwNjRVylRHODMX5DXhlApHCl5dbHEEiNVlpLefWAQgvRwRGlJXZYc0h2aEVdKPv/4Nb77PNAcu5bY9wk8G6UsuqqiqwpMccRXgvp4hPKI1TWsVhsAEkfStxVDXdPWDeNQcNhuqbIcZcHTt9+y//CBfpc94xnbhiZNqY8FpmsR40hbVqSPT2jXAzek6wxl1zN6MbLaoYyBASzlg/Vs5ceMHLZbbAbK3Yq8KIhnM8IkQQYBQnsYb0pe1swSn9YIWiPwTy55983vSI97xAiuq3m33tHEE8x0iq8cXl0khL7k81+85mQSoPqGJPbRVsfMkyShh9SSUVh8++VbZNuyL/b827/8K31REDqSzb4izQpev7ginMzQ48DJ2QuWH31O/fgDF4mNHhq0afBsF8e0LM4umb98Q7KIcFWHLStc30b7AfInZ5XSGtFl2L6PUhLpedjTCdLR2LEPnkcbxIjJDDyPvi4QgBgNUilM2yKMwRhDXxUIa8Tzn/t62rZBMDJ0DZ5r89Enb/jy/S1Z1ULfI4RBRqfs1keaPKWpW6LZEte2UENL9vCB7d0dwp+y2rdkeYkVROStJkv3DG3NfBoTqZpXry6JZktur6+5ubljfyho+4Gu7RgRWNphcXrGx5cXfHZ5Tn840hxTTpen6LHH9R1wHPZZQdd35LsNizgiDn3UULPeHDEI8t2eyVjzcjllHDrkaBEsz8iPB5ASN5mA4+BPJthhjGUJlFI4tqQtUpQFxnRoWzJ0LVVVo5XF0NWMQjEMPYxQ5inl8YgAuvyIdhzkYEhin6480DUVVdNQ1S2T0MeRFo+bA62wKMuU3WELgYdr+5zOpmjXJnt6Ysi3OJ7L/OScJEm4v3lPX1fYtsX88gpLBSSOTaQV2WbLdpdiWwKGkawV/HDzwI+PW24PJU95R9b2CNslXJ5g+zbT2KFpC3bpPenhBmX1ONaIEqAsTZkVFGVFWbTQVEgt6MyAUB62E2OHMcrVtH3H8Xjk5esXz2QgWyGlxowS7bgoYUHXY7sO2vmpeFx7JNOEIHRJ9zuqtiGIE6LQxRJQlRWW1hyPGxJfU5Y5loD7m2uabmC722EHIUK7PO5TJvMZaZ5zWO85tUOut2tqWvx5zKuzC3bbI5PlDNMUHHYbyjLDldC3DcK0/HiXcr0quLnf87grmMch97nmFx9/SpKESNWxWn/AGzI4brndpDT9iK9tvvjkNRenJ+yeNmR5yzDC7Z/+mU/OY552B64ulpyfLEguPuLk9IxYg9U2iKalqweKbc6QVgxVj/ASnGiKZMSJIpT7fIahSaFtMXXBWGaIpoD+OcpD1zL2A0Pb0RcZ1W5LOwjyhzuKNGW9OfD443vuVlukGbG1xhaG4+HI4+6IFyfc71Judhmdcnj34QHf1sS+i9HOMxHHGmk7A0IQhBFdnmKLkdnJKSeJjRGS1WFLFMW0g8FzbOq2JYoi2qpkUC6uO6HIdyxPl5wtZlAO/PDdNWHi4wc+jusSuBJXDozGMBpB6Pt0VcnFPGE+mTBZLFlMJnR1S5odMccMS/lcb7bcrh8JHM1uu+fm/pGh79isNrRVw9D0nL244pNf/4pwHuPPpugoZhwHug5UFD+Xtw8VFCuG9sjQZHRNwagkBkGV5xjLQloCuoam65CWpCxrDmnG0+FIWrXPRblFxXG/o206jPJpRpf5yRkai9PzS4TUnJyfcrZYsDyZkB/WuNbANzeP3N6v+Ltf/fZ3v/rNf/x5aPKz/qL089DkZ/1F6t+//e4fr+9WvxmMQIVzPFex26w5ro8MucUkeoHjxjiRTV/nvJxH7B4eaLZHpBEwwtAOTD0PW1kUWcrTes2f//wdc8di4dt4nk8chriuj6MlvhiwHQfv5BXxy0+RfUMc+jheiB9PcTwPZfv4UUSYJIx9yzBKRu2jHY9IQf7hGm1J7HiCO51Q1S3BdIrnO4hxoK9q/MCj7zqqpqcZBZbtICwo65qs7Xk67DkWFZY14nkBUZJgOx4jgrbp6KXDcb9ls90yPzvD9T2K7AhNjdSKYTQoV2KJGpmcUacjtj+haUbmkxMWiyVFkXN7/QM/fv8V6f6R+Szmt7/+FdOJx+6wYb9/JBAtD49PCO3y4f0HyqpmOptRZkeGKiNwJHIccYce+6cNpaU1AsHQd3gahqZ+zhuvHogDG0eB1gIVz8nXT3iOYuxaxNBjdTnVZkVX1VhuzPz151h9T5seaauW3mgOqyccy6JrOyw3wgwDQ98xDNAhqMqUvmupuh7XCyj3B+p8T5zEFOVzMazvOEhlU4823373DZunRx4ennG7o7Tp2o758pRu1Ght0z+tOT29wAojyuzIfOKh2pRxFNiuj7IdnK7CaZ+xo9r2Obm4wo2m3N6t2Pz4jpPphFcXl1wupty8e8f7uyeW8zlvPrpiEQecLudME58k9On6gTbLODk7YbI4YWh7xr7Bcb3nrXoY4PgRgwHR9xSbNZ4fIqWD0vrZZfJTSV9f5nRFhhuESPn8rMeuQzo+wg2xlIOpckRb0zUFph+YnZzi0KC15HKRUFU119sDWdVwSI+UTYvnPNM05GiouoF5EuAEPsINUNrj7Ydr1vfXhElCFCZMbAsxPeXV69f0hx3TOKIXA7PFgmB+SV311OmO05MlSWDTNTXp04r19Q/kacpgRq7Oljg27Hd7mrpmHkW4tgt2SCc9Ys9nmjzHBPJjRpcfsJqKUI80dU1x2DDWJX1vWO9SJq6iTDOMgXSbszlUVHlOnmeMQ02x3dMWOWroKDcHVm9vOa6PVGlKXeWYrmd/f492nouqy/SAAWQY0x5ylGvTFcWzzTyZYMYBaVq6psFIxdCUZMcUyxJsnx65e9gRei5jVbDNcnaPd0g6XEcyO7kAN+Sw29C2NW1xZBhHDm3Hpu0ZHBfH9/BDn5kvcJXF1dkCX1t8dHlGFPjPcbgmp6xyiiLl8LTi7TfvmS9n/OmbL3l4/4H8WOD7IXnT42mb0+UZgeczSwIS12YsDjhtyiLU1NsVpqqYnl4QTGckvsINNX48wU0clFYIZSMRMAxISyKGCktJlOsztiXadYABhopRaYwdYgwMSjFqG0yHkBZ26NNlB0x+wHQtXV0jMXhxhBl62r6naRrKssSPA67efMRoOtK8YLs7kBYlkW3hU/F0KIijGGNPaJsBkx/51//y3/j6D29xXJfRnxJEU+4ethg7IN1XbLc7hq7h8nzCf/zP/4lf/s3fgfa4+fEDH374QNMPCEuhtU0YeEgpCP2AX/7tfybyAmwhsCxJd8w4vnuLHg27pkMJEONAEgZ0KNb7I3lRU+zWBMIQ03I18ZjNFwx1hcn2qN7gL0+pqwY3ShDip2GvZ2ONhup4wJaS7f2K6WJBunlEuw6jkgip6KuCpukQjJjBPNPpzEjVdVRFgYVAmJE+36NGnos7pUUQT5hOEkLPoe9bWgbSKufh7p48PSJtD6sVLKdT6rpmd/cjwnp2AJ5dXFAUBXmRk4QObjLB8k+5+OhzFtMJx/UTVZbz+JTSVjWjpfjuds3DMWd9SAl8n2kQMgk0YehTOhFJoIj9kSJPaeuSbFNQ7Uq0UQTRBCUMrm2IkwjPdogXC7woeI536BApHLTtPbs4m5o4DnHdAIkFlkA6Ln0/4kQ+ttaIUQCgHZuhKrF1gBtGxJMJs8WC6njk3z888uajS5QpcTyPbZrR1QVJ5DDUOX3X0TKyP2asH+5JFqdYto+QirLtcDyXh9UND8cNTVdTNM+OnUjHBMkE2xek20dCzyOZRARq4LjZ0w3g+T6DHXJ/98gkCRktGzucEfgu33z7Ndvdjpu7e95fP/BwqKh6g6s1r6/OeXG+JEiWrLcpbdPx/tuv0NkDJ6GNYmB6ds7FxTm+baPbGrKMEQcGCyFs3PlLrH7AjmIMFtrRWH3N2A2YuqE/HDBFxjgIut2RcX+L2T9AXzMUOV26Y9g/Yg4bRuUx9j3VdoXdZvTtSJMesU3H5ljy7WpL0Fd0VY7j2KRdz9nlBY+7PZ0ZCYOAviqgbxmljeX4RNpiGjpYQhA4DtPQe15EDT3TZEowFAgpuctyOiPQUlCXGQjQ2qEuUoaqJK1aZklImR1wbIf9/YGHr36gbVuOdUNWpKweH3l8eGK9y1Hq+b1Zhi4XZ2ccywZrfB5SUGc4ls3V1RnSWLiBxqGFdmB3u8f1LVarLVXWELtTXr/5lPNXr7C9AH8+xdLyebipJN0g0I5Ne3hiVC7G9PTNDlyPUUr6dM9Qp0jbha7GtBVmfD6zjcbQNg1VXfPhcUdWFBSdwRIKM4ysN0dsf4IMT3CdiL5uWLz6ghcffYFpUk5OZxTFkZubW7QXoiYz+q7lzetPfvc3/+HneM7P+svSz0OTn/UXqd//++//8e7mx9+4tiJJIrw4YLPacngs+dXf/u8kSUJf1lxdvMJzXZTsOazXZIccO1ngex590/Pj+xvKvCTdbEiPR85Dh4skIIoStJKMQ4+tLFypcBwXpTSeNPhjzWyaoLX3TBOwPdTiBa7no6VAjAYjbZQfIy2B79iU798TTRbY8RRTl1haESwXDCMoWzN2HUPfUZcVSgmEZSH9mLpr6bvnxnJlCbKq5P3DI3dPO3ZpA0KTVjVBlKCVom8q6qbj7mnD8vKCzWHPLI4wZQoCbNdHOg5GaNxoinZDjPKoqo55HDOdLuj6jvXjNTfvv8e14PL8gjD0OR62fHj/A8NQIfqOEZhNJljmOV4zNgXlYYvjOjjawjI9pn0uchsZsZSNJQTasujSA+NgEFJhKUmzuiHwfUY0EkGzXyHaGuVqmqKgfroDBP7yBW6yREuJ1grMgDc7x/ZjhrZHOw6WdrCkpipLhDE0TcUwDihb0gF+MqPqBuTQIH+6mPhOgBTPBz3Ht0GPrO/vyA9bqqriUNRI7TBKTTA9JW86hB9Rb1YsJzFGa8zQ0FUpxWHHbDrDsxVuV1JmGZvVE7PZjGi2xNMWdV6wurlhqEos7fDudsV+s+FuteFsPuXjj654cTIljGKmcUBXVQz9gBOEnJwu8T0XSzsMXUcUJwRhgiUEpqnIDylCqOcojjG44QTHC2AYsRgR0kYoibRAjgZla6hyaGqElIxSYrrhebtXd0hpoWyFEAJbCfwwJAgTxq6hrUqKukNIyfqY0nYdddPgSIusqpDjgOt5LE9PsSwNliQvKt59+IE+3xG6o+ph/wAAIABJREFUNpYULGdzujwnZMD0LScvLrFtRWEkWV7TFhmLaUIYOHR1zeO3XzE0Fb7rcbZc0NYlu/WatiyoejhdzJhFMafnZ5ydnzMNXdoiJT/ssdoKW46orsIyPY+rDVZdMBrD9brAlgJHCYq64XGTsd0ViAE26y27wxH6hv0qoywH6qJl7EfkqBiFpCgayqrBSJfqaYfE4rg+gKUY+oqyE4SLBKttsMRIm22pqwoBSMvQNy3dKGDoyNMdttY0Xc9mv+fxUBBHIdZQ0bYNSEXoeVhewGG/p8hTZnHCcb9BCMPjYc+oLFxH4zkefhKTmCMeDXW258XlC+aTCU2xZ/94TVOkSGdCKzTvv3/H/d0Bxwv48stvoKjom5rFNEFYikkUM18sOD9d4ioLW0vyw46JHvEdzXb1hN01+KLBdyzCWYKyfdTYIYYO4S2x5y/o739EjR2mSpFC/JSbV7TpHq0llrKwbPvZCWINjGZk7BpGbaN9Dz22aGWhFUhL0A8GISywNUKMtG2LpRXK81i8vMJzNKYpsNoa5Tis9wfarqdsesbuuW8pzWtkP9BmR6yu5s/vNhyLhpevX7M+lPhRRDRd8PC4ZXXoafqepkj5u99+xutXF1z/+I7rb7/i7uaO27sVAI7r4vshpqsQI7z5+BOScEJgWmbxBDkq0usPzOYLnqoW+/SMaHlCVZWk2yeqYaCuO7LtmhehzeVsgmozYi3QysIVgnGzpfjhFicOEEowDh2O6+D7NnWWY1kCSzmMdUOxXuEqTSfEMwq7qqCtAIPUNnlRY/r+OToiQdsO2XZLU9dEyYQ229OVNa7tsnp4pBsGHMd77jsoa/K8pGz6nxw2LV4YkkQBnq0QQ0VTHcjLmrOrc4qqYhx6hq4m8ByMjlgVFsvZlFczF9uCLC0Y7ZD0kLHvJI+7I2boeT37f9h7s15Z0jM77/mGmCNy2vM+Q52aSHZTlihAMFoSYNmGf0D/XAO+8YXRrbaalNlNsslinaoz7Sl3jjEP3+CLLOgH6EYgcNblvkrsiMz44n3XetacL5dzhr7lvje0QUw/TdxcLRFTxTSOtE3F0HZk+Yq2F+y2B9qqpqlq6mODGS1D1TENI+NgybIlSoRESYzzHj9awjAnjCKEGU/OMCTH/R6sJQyD072r1AkAHQVI4TEDWGMJs5jtYQc65Ob6gsPjR8JQU7Y9RSSZ6gPeGNq6IUhzqqalajviYsXj5kAxm5HlGdbBcbPDiBGhBNaZE8cHz/L2giJylIc9ViiCOCLun0+xsMaQzM75w5/en1wE3hPNl1y+fI2xlsN2w+Pjjo+f1uAhCAJmCr64OufnX39JoBSL1SXVoeQP//Rr6qcPXEZwmSmurs4RxlAEihiH7XqSfImOZjgf4McR4WBqDkgz4sYJhgq7e8b00DxW0DS48sjQCjADpj6y+/MfcG3FcNwz7NZMm0+YrqNbP2Ke72m3a8a2xztDe9zTTY5+NPx4bBB9T4hDRxHJfE45OvZ1QzdMTEjqpkFKSUtAHodMXUsaRaShpogCsihklkZ0TcNFkhC6BicEfjWnKAq8szRVg9QRSRQwNCVdVVJt1ogo4vLmJWZo+MM//hPrzYbN5onjbsPd/TNmHCnrHu8lq1lBEsUsioxEa9w08bOXV1wVEWeLlFBF9H3DNHS0uz1IePjwSFe3fLy/J4oKXtx+yTJfcXZ9Q1YUBIEiOTtF8FzXE8YaZQekH8ELhLenBVu7PblNfmpnw5sT8NxZTNMAHhnGWC+YvKfve+q248Ompms7ys7Sd8PJfeY1h30FQ0MRJ5xfXDGbx2wf3vLh4Y73Hx+YpylBEJEUKbtyz7/6+S9+829+9Tefhyaf9Relz0OTz/qL1Mf7d3/7dP/hV6vzJdPQs3t65uGHB17d/k98/Ytf8v7dn5CZozweGIcWZXsentYEZzeoKObh/oGHT/fY0ZAowXg8kEm4KHIC78nTDAckQYDygqxYEM8WREqRhwJtDd4rwjgCHUI8Z6oqwuh0aFLRCXKW5AmRA7d+IgpjgihHAGGRIYOAqMjo+4EwK7DCE4WSvm2RUYQXMBiDkAEGGEbLZA06CCnbjkNTU3Y9g/UsFqeNv50GjmWFdY5olrOvK57XjxRFSrpaUdcNeTEH52najsOu4uWXbzgcJ6IowxqDtwO7zR3v353aF5Igxo0wT69xg0SHiqEvqY4HhIDqcNq4T2PPsTyyKDJ0GNCMI3iPchY/9igVEgQhOIsQClSAygrSrMAct4TCw2RwzqOURmuN6xvsYPAyIClWpLMTR0QFKf64O+WcgxgZpjgH42SYLMgwpqmOuGnEThPD2DN0DUkccjge6LqBEEmEODlfJoeUinRxhQhChtHgQ0nfN2z3z1gd0UxQdT3pYkVcrHjx8hVFqMlCRZKk6NUlh6FH+ZFwLDlfFIS2xwwjh/JUK5hmBd/8/JcoBJu7T+y3O7JiiZkM+U/OpjTNOJvPeH19ztn5BUUaY7uWqW0pVhecLRdIM6LDGOME2XyBMiPOetqmJVSS2dk5YRCinCWfLVBBhjOWUIJAgvMnBoRUSCmh2VN/+A7v3Ol/aSzSTfjRgHdI7dFxjghCurIhTEKk75FuIlKgpWRT1VT9SD2MjNPIZCeM9eR5gRkH8jxnfn6BFhAlMfdPTwxtyXr9SNs0dHXJ1JZM48Bhv0eLiVmm2XSetu1IA0EcaQIcrtqy+fCeWZERKY/A8+Of/8w4Dpxd33J7e8lsueLm5UvyNMUMNZv378FP5AEss4j1/ZpZJOnGgXfvH073qFT88cMzsRI0ZcN6V6MQeDyP2xJjDefLlONxJBYBeZQS6gSZZqhsRjQ7I8lXRPmSeL4gypc4oTFBzmgkJsiRzlPvDwTCoaPT74AOYvqmwRiP0xEqCHHWMHU9Kg4ZrKVta9q2Yd8Z5vMlgRSMTclgJqyUqHzG09MD84sznHd8+PQRF0hUoEAIpJTIOOOLRcAqC7lY5iSBYqh3PLz9HQKHTpYMKmOUMT9+/z2PHw5EYcjYtBQ65c3FFYuLBdevXrG4fMl8tmC5nDN0Dc4YTL1nEXqmaSTSGt+WZKEgn8/Q4ZLs5heY455QGcLlEj/USH+6d4UD11UEWcJYHoiyHB2EKBUiMUz1hm63IywKnPXoJDpds77CbD4x7p9RoUKkGSzPsGaiLSuG6RQfE0rSDwPNYY+ZenoviKKQSWm2VcMii6i7kUBAhMM2JWLsuFxkZHnCy/Ocupt42jdc3V6Rpwnt6ChNxHG34Wye8Pp2ie0bbq5fYA9r/vEf//k0gJGSeR4zDh3OORbLJWfnF7ixJwsCrl+8YWhbhsOO/aFm9sU3mLHn6eMP1FVJqAWTc6fr63q+fXGJNBPa9qzO5oTe46wnLGZkNyus4sQzmHqkPQ2CiBJknCIDjVKKer3GdgPR8gwvPG4cKXc7vIWq6ui7hqlrOW431M9ruuOeJAno+oEgSmjLPcJMhFKig4RNXTH2PVppmq6jLCtklDMYRZrPmM1mLOcp1XGPDmB1viQqZqzXB9qyZJYXrFYzZJTwaVOxftxwm1qm9Y9EWhEvL/nn+47NvqQsK5TWXC2X9DLk7d0dnw5HGikJk4hh6Lh99YpQTmzWa+p2JEwW3N2tqbuWLE+IQkmoHUUgybI5QZqRJCkqjpAqJslzJtsjg5ihHgm0RngHk2McRsIoQvsGqRzCDqdB3Whpu4koS1ASkiJhmiY+ffyeDz+85+WLG4zwfPf9D5wvCqRU3Ly8RtiBrhs41jXGTkRJAlHKx82B3XZLms8ItCIJE/aPB+6fPtF3LctVQpglJEmMxDGbpTzdP2ARWDNS3//ANFp6K+iHkf12j1CaKI6Q+ZK/+Q+/4n//T/+OarPnj7//wJuXl7y+umQpBl4mcLZcMcmYpFix/vSJzdMdz5/e0TUV357n5LHibD5jNl+cfksOW4bx5OK1XUtbtwQ4+ud7qqdHbFVRfrpjeN5hOo+te8auRSEYt48oaen3B4SUIB2TFQgdUd7dcf/uE6ORtFXD1Hd4HbI7HBn3W9q6pGoHdFIgnafsB4RQZFlMvjrj9z9+4P39I8e6wTkP1vLYWXQQnOrcnSWSnrPzS4yxZFGAMqfrkQ0N1oz048BWBFhrT8y1JEUicEPLdlcSCMGsSKjbniyPeff+A+OxY3I9x8OOY93RG0k7TDTdyCrLWM3nWOMospQAxyqJOV/MEday31ekWjN0De3Qsd4eef/hI/vtnnZomSRcn71ktjzn6stLsiLB1+0pUhaFCO+JihzbNgip8M6BGbF1gzWGaWjZvfsDbVUxTANtP9HWFd7703O+brHO473HGEvbdQxdz7ZqeSp/WiAJhRQe5xwXV9ckUUigFd9//0fq7TvuH9bcbVts3zKfFwghmZzj+bDm9vb1b/7mb/7T56HJZ/1F6fPQ5LP+IvUP//nv/vb5+eFX0zgh8Tw/buieDVfZlxyeSnb1j/zb//XfouKQdhoootPDcbM/sH+4Z6wqyn3FWRIzi0Me1htWccgyjShmM6yDIs9RUjM7v6RYXeDbltBP+HFkmMDFBZEUZLOEUIH2E3ESEcQhUnhC4RHVAbPZEAQRKgqxTUXz4TtmL6/wUYIKFVjDODmy5QrTVmhn8DpGxBnT2FF3A2ES43VAUzfoMOTuWDJYR5ak3D08YmXMF1//DCsUd+++A61YvHrDw/MToe0IpKebLHEYEcan+M84efZ1x8OnB3Q4J4kTFDA0W4TpWC7nLOYLuqbjdvU1sVwxW8WEmefx/gMex2a7YXKetm5puoHb2xvCQDE2NdYLkiQj8hZnDbOLm9OWuDsBRnW2wOsYnCfLEvqqIc1mBEmG8xrTOcw4oqKEOJsRBQnjbo/vT+4J6SxmmDBe0NcVSgnKdiTI5/RNy9TWYCYmOzIODVPXMPQ1URxQth1TW9PVLcFPB22rFaOURFmEDhVd2yLFyNTs6T2IOAM0STHjUFeM08TPv/4axpE4TRhVyOM4sAxgITqasiYOwAwDu6qjm6CvG75884ZYa6ahYbKSYzNx3O2QXc27uyecDHh5ueKiOEXEvBB4MzI6ycXZCj8OhGGEilJGJ5llKUoJ2qYjyQvy+YKp7Qi1ItIBeFDy5N6xbQfWn7aTXYPp29M22YyUH94S5DP08gKUxg8dQ9+TXF0ghpqhrZHxDGc9SSIRbmAcBsIko2p6sCOBkiAl9TBSjxMChzOWszxDAGmWEM+WTOPEbrdls10zy2LKpmLsapIkZXHzJW3foU1DFjoaGdMPlqlvOFsUiLGhfbpHjB1aKRgH9tsdh6bl9vqai5sXnF1cIryj29fsnjeMuz3zRHO2SAjsyNhUHDdbAmFo+olDWaGso65arHUo7ynrnsnCMDrqbiJIQhYXSzCesCgIZwUynFFkS0ScES5m+CABQrLZGdZLwtkSnRWobE76+jWT1Mh0jhWScZjohonBScJAo7TCOM/2UDNOBi09CI/QCc55yrpiMhO7suGxbklX5xQ3L/DJiQsQJRk6UuhAovOUh6dPNE2NxxFlCaMT6Djh2+s5gTVo03F4/BHX78GOqDAnXpxTVwf6csundx9Z//iM6Qd++PFP1NUepSFJIgZjybMc2zQskuDErwHM4ZlcO4QZma+WJIEmLwpCJQkChz0e0WpCRwq6HaLbIgKFWpyh8gSVxYzHHUIopBbYrkVJgQxDYMSLiWixREiP6wdc1xGnKa5t0Voytg3WezZ1gxk6sjwnENDVNX3f0zcnV1QgPTpLiYucQAuyQND1HYtMkychbhhIlOc8UcxWM37+5pok8AxDz+XtDc5B07SMXjOYU0vb5WrGsP2IcPDFt/8KITW//q+/xxhLFEcEwjFZiOOYWZExK2aMo2GWxFxd3RKriMPDI2Ex5+Znv+Cw35AUKaKv2dU13334yNB3XCQBS21RY4OOUs4vzpAqISoihHQERY61lqEdqZ7WBJHCqwAXhHhrMMZhsSyuzvEKZBgwbjcMTUeymDM4Qd0N1NWRpjzw/Lzl/nlLXZeUuz1aB4DHDBO+ObJ7XjNbLjBRwvN2j7WOYZwYzEQ1jegkBeeIlEI4w/6wRUUxV6+/pqpr6v0jkQ5/avVJKHtH01uaY8nh4T1//w//hWNTkZ695LsfHjg8P1HWJXXbUNieH57XHMeJchi5vb4kDiSz1Yrr22tsd4JvTjLlw8OW7fMz3hiwjuawg2nkfD4nKRaEWUIQh0zWkcxm6CAEIcGBHSaMt+gooN8+0B12BGlEN4z0dYVonwlDgZ9qwjREhAVSaiQWJQ1ddWSZzWnbhrfrHbNQEEnIXn2DGzviOGASAZOdGPsOLR2N8TzuSz7ePzI/v6QfDR7FWX7Fd39+T1ltOZYVSp9ir9eXS8Q4cDzsUEGMtYb+4T1901LkCY/Pe7RwjFaSzeecnc/46198w8vrC6pDzfPdmqbcIvuGv7rWXC1TnlpFN1jyNGX39ICUiqdPH5F24psvXrFII8I4RoUJcaDYbw/kiyX52RXCDGgpkKbFeoXWCa43xPkCFS0pH+6wg6F9XDN8+jOHH/6EH0rMMIDyICT9YNFRSqA8SZbTDI6uHdjVHSBI0gQpHO3xQJKmJEmE1AFtN7BIAtLVknYc8NNIZz0WiQOWWYwLEow9tfL4aSTwhiRNWS4XeDfxvN7Q1S1qGji0HZMHN1+w2xyxPwHQNZZyvyMvFmSznChN6JuW8rjj4b7mu99/5Mcf3rM5NJTtiQUTBJpEK86zlFAHgKCIUrQzLJdnTF2NNiPeOIbeYsaOtx8e8NZSHWviVJIt5nzz8695/dUbrr/5AgVgLbPXL9FFhEChowjhHGYaseOE60ass1jnTuUGaLYf37J/emTzsKbvWpqmZRgnpmEimc047HdE+ZwJGLqetmvBWe4PHWXd4rxAK0mWpURRQte0PNx/ZPO0pjrsOFvOObu+RdiBbFZgphPw+KuvL7m5vf3Nv/3Vf/w8NPmsvyh9Hpp81l+kfvObv//bP/3+t7+az2eMXcv9w5Gbl29Yni2omwfevvstx/qZuw8f6MaemRR8+O4tzfFAGmrK3Y7zWUYaSIZ+oClLbpY588WSJM2J0ow4jlFKkOiA7vjMcb1B4AnimKiYEWlNngYEXUWWR6SzmDhW/w1MGCqD9BNhEhIulwg3QrPFjwPxzRU+ntEPjrRI8UONxqCUxBiLF45pGjAO+snSTI4gL6iqI5OHbjodSuNiwWAcx/JIMlsxv7ilH0eyImOSAjMN1Mcd2o94M7G4vEYFEQ4FQtJZUFFMml4wTY7m+Mz5PON8Mefrr77F/+TemC1mpGcxr7694P7uLQ+fPrBYzMnShBTLKgu5uTqnq0tsU5JImEXBybYvBdY4ktkZfhyR04A1BmfdKZsfJwgRERRLTNsSz64IkgWzm1foOANr8eOE2Wwx2zUqSDCjxTpBUCyQWiBMgx0GWgP7w4FxGDBdzdD1KBFRVUfq+sg4DDRdR5jl7MsDaeTp+hbjDWEcM+KxArIoAWux9QFvRqqypOotOo4IZkvefXpEv/qWT+/ekoQBaZ6iFHzabHHHZ0S1ISvmHPd7IhXQNQ3jYCjikHmoWJxfcax6Pn66Z+w6pqFju99TTYLrizMiP3G2LE7xG2Pw1pNlOVEU4NoKZIAq5igp0VIwDCNhmpPFIbY6EGqNMIaxqk61jGaCyRAkKcgQISVC+NNwJDy5HZLLa0Q2ZzD2BPSNYuw0oIXFDc3pRT4KkW7CDQavAqI0A+fRpmPsaparM6Iowo4jzTAxWYd3hiRQrNJTG0KYZHjvaYaBu4dPeCDUmmEcuVgtGSfL5fUNZpoQfuLZKNrRIk1PrEGPLaYpiaSEYWC3O5yae6aeOMlBpjRlg20FYjKIfuDyLCKPIHATpm/oy5q+a+mbmk+Pe/w4sdlVeAdVN3HsDRLJZKHsT+6ufDHHTIKYCKkiVJycODI+IkwKVBCcwI0yxbWOIMsQcczoIE4SpqbDS4mQDrIZ4uKaYTI4JAaFGz1hViDdgDUjUZoyTO70wpFkHI/PSGnBO94+10xmRAnBtiwxQ4/SgsEaejtRjgPHrqcZGoIkQYUJRmqsENyqjurhAwktxSzl4vwM3+/x4RydnTMNPZv1Hfefnnn37gd0InF4dKhxZmI1X5AnMXkeEQnLfDY7fa+qksLVSGdZFQmxG8iWlwRhhNk/oU0F3pHevoDDO3y5hnQG6Zxqt8WYgcn2DNOAiCOksrixwXt3ghPPMtzUY7oRMRmkkPhJEIgA0/YoHSHjFK8CtLUnmOnQE+YzUAqPJwg0KkmRcYqJYmLp0H4k1JK7T3eM/cAigOt5xO0iZL4q+OLlJYGwaAVnF+cMFsqyxkwQZQv2JkYx8h//51/wv/yHfw1mwhHyh9/9C9/96S2jl4Ra0XUtE4ogStASzq5ekMxXyGniy4tLjh/fs3+8Z3F5Sas0Uxbxhz/+kX95/55PT2sOZckwDlwnAZdZhLCWN69fEswvEUiUmLCHA6Zu0FFIVMyIFytcGEGcAJ6xawnTFOsckxkxOgE3Un66YzyWqPmcQYYM1lOVJdv9gUmcHJVl1bI+NHRtTZalxFEIfcvD45rVxTlOCDovsQ60DujGkfXzM6NxOO+wdmC2PKPvO7I04mxxxpuvvjo1IkUhznmqfuRQDuhwxmq15MUyYb2vObSWIF1yd/fAw+MDTd8RaEXZtWzrhtHZk5Pl/BIlPUPfEkcJY9/z/LQjSedsjgdc32LaFjlMrPKU24sVi9UlYZafXv6DADdJ5qsLpNW4yTKWR5w7NcP1uwcodwQJeCVBJihnkLY7xXGsRNgjptkicZTHkt3mEREFBPM5203Jd9//wLevzkhW12Q3XxBoxdiWiCTHCzB9R9W0DMPE07GnG08stUAKRjsQLWL22yes6ZmmidGc4pnz+QLTVjTlkbLt2ZY90+6ZTHnCJKUdLSjNoep4+eqWlze3PLy74+HdH/jT7/6Z3/3LDygzcVVovrha8sMOUAGL+Yzt0xP1YBj6gWq/YRFKvrpakMcRq8tr6tFi2prlcoUeKrrtGikV/faZzf2ezVPD5qFmPLTsNxX7hz3tfocXp4iSM4axLRnNxDi0tE/vYWiYRsfUtqggQGtJPs8IAgXes9/tEEOLUwE2iMkDje2r09BbScI4IpSOoe+xQO0E8XyB1poOzeOu5LDfM02GOIrAjswTzfZQs5jn5KHl6ank0Bt23YSRkq/++mturi+xDurjnsPzmiCMOL84Zxgc0k0EEh4e1vz2n7+n6QesMzjhCaLTEsQYxzJOSAMNQnI9SykUDNaTJxl67DDThHeeoTlyOBxoOkswOV6+uOL226948+1fc17kzGbpKYoUaIrlChVpJPIExf5pGeInA9NI8+F7gssLRBji8SfniRuZmpqq7vjx4wO77Z6qrOi68hQFryq0UgzG0rQdtmvAGLSSPFYDYRiSpAlFljKf5fhpYKhrXtxekaQR0fKCth0YxwnnBc44ikXB7dUllxc3v/nrX/67z0OTz/qLkv4f/QE+67P+e5TGAWYaePz0EWMFL754TRJqinOHXqYsDyFPf/oXitUFF1mKHXviJKYZJ75/9x5pLS/PF+y3BxKlmCUhaVawvLji6dMdy4trRBgj2yPt9hGFYzWLCcKQLNIEfiBW4NdPGCnxWQzNBjVL0fkcRInE4P2IcQkeQ7RKiOZfEb95RTeCmSxBGqGlJ0w1YzMQpRkJAle3TJRU/cRqsaArG4IA4ijGDiOzKOLQdVhrSdOcMND806//C8Mw8Pr1a3wwYrsNNxcFZ8Ubjrst1jvatqVtW/JiSSA1435Hks9YP61RUjHLEpQbuHnxhjyfcX/3wFnxkq9+/guCyNN0A/ePj0xdz2a9ZbGc46IcYQeO9w9cLAqCKKDtT6A1rTVSBagwJvAW407bDqEjPIJAwHDYEN9+jYoLulGzvy/J8ompHlHKMpUDTkD74RN+6JnHK1RWsN+sWYUhtj3guopRaIrlLSOK7nAgTgvevn/PcnkGIkCrgKqpKfueGSlFtqSujwRaMFrD5C0ehfYZH9898vLFDWPrwcWocEnTPVOsCuazjPlqSTU0/Pj7/w/9i19yfXmOCCOef3yLTxSRObI/diRxyObhjsV8xtVCcVEkbB/uCYEwnRMoTX3YIrwjiBO+ur6kbSqsPFVujsPIskjwgcSHKaeCP4XxngRP3TXkcUhXlqRhiG8npqZFe5BJgYiD0wGs3p8OUP0CEWUIqZFZgtchzowwHPHe4ZOMIM3pyxafJsiuxg0lExEu4MQBiQLsFILRzGcBion+GHGxmCGvXlH9+R3CWxax5jAYjsNA1TQ8H/YUyxVdXZNmOYHS5GlOZ0bGcWKWZ1gzkcXQHLc4Y5B44jDifncgniUw9hybjrkS6JmmPlQ459BxQZbNaJqexw9/ACSrixfcXq64eXnJWD8ipgEzNIz9SNu2BFLwcDwdUMuqO/ECOsNzPaG0ppOOWGuiOGVZZEReEyhFlmaoSBOFAII0i+i6icXqHCk9Xsfo5RwvBU4YpIhwNkAjiRPJ2E1MXcOhHQmGHiMmyOeMwFgNhOkS3XdUuy0ySojSiKY+kucxQeg4Dh1KOB53B5IsoRwsddNAXvB+V3L56hXGhVz+1Zf0lxm+N4z9iI5yhPHkuaIIBYt5QhwHWNszVmvy5UvEcGRz957t5oiwFu8t9x/fUVxfUbcN8yhBmhOfozg7p9veUx62HA9bbFsxmJrZ9Q1l3VIsUpRpQYREV18g3IBOElzzjPGevh0Q6YClwycxu25k9+493W6LcZb5Iufi8pyx7bj48jWB6jDOY6xB6hw5tSfwYFshpDy52KwAByJIKc5z+v0zTdNivSCeLThs1iSRYpIRoj9ixo40Ury4WvHyfM7dwxrhwYyGVigutcKUR7KLCyYv0DpmMYsJE0vvJZu6Yv1oRJzhAAAgAElEQVTpiXr3wOL/+NeoeM79rufpt/83v/+v/8ThsD/BFYU78ZvwaAXXV1eIqefwWOKFwIwjdVkyPz/Dy5F3b/+B//yPv6EaDHXdEnh5el4EmsY6ptkFV0lIvLwmTFPUcolt9gSrG8LoFGucxgmZLXHW46aBabem6XuCvMBbhwwShHAI5churxmbgdFxiokmMfnZBTI48aYmJ5isYH18ZFv3GL7n+uIcITWXX37D5lAS5xl5EtNUNd04EYYR3nokAmMGhqmh7ytevnmDE4LDpiaNCi5XL3BdyfP+maqfcDImijI6b1DpGVGS8c2XX7FcnvHiuqTZPxOqFYfjkXIYSOMIpKIfe0Y7sX1+4vxsyTS1RKFkNk/4+PE92+2GIhCsspCzWJFLhxIaERXESY63BjdOzLIlth7YPTzQ1CVO9bRlTSh6wtCxWK5OfIuhx5uBYb+jWKSIeM5xV6GGBjUZzAzu1x0Pu5Ln44G6aan3FbNVxhhkWEJyKZisI0gypvoIfYMzA23bMQlNkQYcGol3I7/+9a958+U3GB2yOrtku92zWHqU9qSRZoZA9xPx6prv9g0fPz3yjbIMkWbqRnCeqplIopAkiAkHz/Zhw//5f/2OzaHkuTUoHaC9xwcZtQtZ5SlDXWKdY3uoceNIIAWJAjdNRFqconnDwOr6HG0n6rpkdJJtbdmtd3hisnRJc/cD2SKl6iw6Lqj391TlnqppSeMQpTVic8CZETG1nC13BMtzorPXqBiUt7i6JClmxFeXpMohhYUgYbmY0e6e6WtIGPj29RX9ONB3LcNoyZOYxCgeq5aH/RFlDStn+OAs4yQpuwmVJ7RNf4pdK0E7SfaT4NBb8lBQzCOqpieIC5ZFhsxCthuB0DHbzZ44kKAF2/WWzeOGumqIo4RiXmCnkb7tEUgkgjzQp+acUOO7FmZz0ihGD/VpqGEMTdUzTS1V15HkK26vX7C6OCcKYmYqJIw0orfoJCLNl6g4RAJ+HPFKo5IIZy0qTcEY4p/9AicVyjk8EsKE+Pol53okPc9xkWP/vOOw33EsBcfySJ6nSClOHL5hACGZZRkvdcRxcOyHkWEYiaMArQUuiQnzFOsd3WgxZUMUp8SRQumAYTBs94+kWcDVjfsf+AbxWZ/136fPTpPP+ovU3/39//O3283jr3SY8PH+mdc/+5Y49nTlA5IJO04kWc7q7IppmHhePxDlBc/Pz+zLChHHXM0XdHVD0w3EYcSbVy9RzrB/3rAoZuhAMzUlzW5DkuWksxWBkgy7/U/Z5hE/dIRhiK9K2K/RcQgqQgUCt/sIxw06T5kmj1qscEGESDNcEGKsJ1Di9GLhFXK2REUhOopxGMbJgFIYO+L9qQ7vBH0TWO8YrSNIcm5uXpOkMVoJcBPN1BEqy1RtsM6TzRYIpcF7yuOBJEmwXhDFKX03sHt8IsiWSCl4ebtiqHes5gVD3/P8sKGtNdJAkng+ffpI1ZQEUjGNlmQ+57jfsnu4J4sUZ6s5fd8RC0ESxacKWiR5miKdY6hKdBghkgUqKVA6pNpWPN+tMXWPkBEyOoE+q+2Gri6RgAhisvNr0rMriHKCYkWUxphqy/7TB8w0YUVwamiIcxonkFoRSU9ZVSiliIIALSKmyfD4+EzfTIw4ZJzgvEcKj3We12++oq0r4vnsxEXpOprGUbYGN/bM5wvifMaLPKUfekIl+PJnv0AmKZOZkM6iqh3/8sNHBgK2+5KH9ZZFMeNitSDTASiJ0BFMA0kokUISZUvW+yNjU/L69or56ow40ideifOn+mUNIoxO+XrBKW889oQSEglu6NBBjA4iTFvTVidCv45jgiTFGQfeERQFOs1OPBgpMNUOBKchSnNA4RnqmiAQeCEYwhSVxripYxpHZJJSLHKGtkS5CaxBB4rl1Q3tbosde7QQ1KMlCkNaYzDGkucFy+UK6wVNXbE57BBhBELgf/qbmQxpHKElqDCiCwtKA+erBbLZQdeyyhP8MDEYR7G6IAwCZnGC9DGpDjg7e8Pl5QsWEQjXocbTlrnrJ477EulGunbg6VDTtz3bqkcKzboasEhmcYSWmiROmKcJWTEjmy9PMZMkoosSwjQiAWRYUMwKkAFGROgoQcchzkEyS0mCkCxK8IQQhEjlCIUmxRGogEiH2LYh0AFeKYbuVPsoFXjpUYHE2BZnOkzXI7IFP65PjjOrQqIsoepGdFbQesfl5TU6STl6zxRHxBcrzl++JssKXtzc8m+WPRc5xLFGSEkaa4wDH60odxsiqXh6/8TYSMptxdjUxMJzsbpiFZ/z5tVXvH71kihybB7vGbueaRhpj3viUDE5mC+WzLOIMIoRYUacZgShQnjLZAKMzwiWL2htQCBHmuc79DhwvoyRQlA5T7nZsH+45+P7H6nqHZv1E4NX2CA+AaDtgBAOO47oMEN4S18fkGHM5mmHmSZUlKPyJTbOMeOEkwovHEo5+qYiKxKklkzNEScUz9sTGyEOTqwiMQ0kWhIkKcuXX9KXe2Zn57RNy4d37xFRyrv7HZv7O/705/f85p/esq0cT7uK3//zH+iHEQ9oJbHOkGUZq3lBmmXsts/UxwOrKOb2bEWoHPePP/DHt7/j//3t71hvDpRNh3AgrcVbx0USYS2A5OLmDedXt2TLBR6PWpwTLq8hCDiBs2J8VKCC8CdQtybOF+hA47xEhSFIjQgTVJLh0wIbxAgECIEIQ2Q6wyPou47tbs9oIU5S9u2AcAahA6JshjjNqvBhzDCOTGNPP4x0o8FYGKeRvi6JhKbeV4xTxzQdMUPN1fUV4zCyO+4YvaIZYHKKvjoSxCFvf3jHvur4q1/+khCotxvatmFTlrR9Rzf09NMIUlGkEcI7rPXMlktC3zNPNEM/sdkemLqewAwkyrHIMpYXL8hvbpBo5OhJkpxh39E+PyPcRL6YERWKVZEym8fEYcDYddTHI0maEWiFaTvSMGWyjvL4zOL8nAnBtqwpy5q6PFA1ez68e8/oBD4KePvnt9x9/MjT4yNCRayfN+g4xTnDaAQiyOiaBgM/AchjqrpiX67J8hyFZL19ommrE9Q1CEmBizQnNpajgyjLuQ5ODVxCgBCOure8evOab776Jb//u99SPj4i2pZgmk4xNi8p8tMwfT5bMIwGaydq4zmUNce6ZqkFl3nC1c0txawgFJY0z9Aqou966m6iya4wQ88q15zFI1RrbFNS1hU/rCu2ZYOZOuzYsz9WSG/oJ4eXit3uwKae6JoOnKNpB4R3mLZmqDtAki0KAh2e4p/jiO0bfN8CJ55ZJD1JcHIKdqOhtZ6HzZHDYBnsCQp7GUpGY/FSnuD0YcRqVqARPG8rRHKDkiFCtry6THn95oZ4vsCPE9ZYzDiQZQVOxqifIp+HXcnhWGKs4/FoTnFaa9nuKwIdoIQEM7EIQjyQa0WiJcgIZSdSLZBxhjGe9WaHjEIWF5d8+1c/5/U335LEEcuLVwTekM1WhLMZi9tbVBQR5DNEFMOsQBUn/pgMQ4QO8FIgdAjWIr3FW/tTA5RCJhkyzRBaEipJ3/fsy5rN5kjVDXg3oXWEcdCWRwJhmaUxUZJilWa2WJ6cc4sCHWXsdiVPmyP7duL21TWri0t222eaugEUD+tHHvcPXF+/+s2///f/22enyWf9Remz0+Sz/iLlzMjxuKNYnLO4uMSHMToW/Pj9d1TrDQ8fn1jMrnjx5py3735keb0ki0OOhz11VeOMQRhDGoY8Vh0XF5c4B2IauSgS/Fjz8P0dWRqjwpy6kUxjSSwM0o6oIEHoiEhzsrZ3LV3bEKQBKlkx1BXD44H04gw5TOhsziAi6v0TRZ6g85wiyZFtRXcwJNkSLQTTNMEwEHsIrSRSHYmvSHzP2I/EgcZ6SWMsszCgGU7RjiRUpGkIrmaoKx5sQBp4lsEcglu8nOjGI13bUh0rZOiZ50vE2FOsFkx+QhnD+t2P7B5/4O7dj2TzG7IoQicV63pH97RAKcV8ec7j7k9kYYxrO+IgoLg4I48kIQY3dsgwwCJAhQxjdxr2/NRq4VAcH+/pmomug8XqCmdHYnsCtEUClBKk84woik4tBoszhBd464iSgqnrCIs53fM97z/e8/L1K5KkODkkQsfFcsnY7okub+mdwE0N/bFm6BuSWIOyJJGj7AfWXcu3336DFBIzTLjhyDA0lM0BnYZQWsRUk4iRZuj4+PYHkosXfLq7YzXLOVsssFi8GVjkMdYGiGPEKk8Z+463nx5RwHZ3ZLO+4Bcvb/nm9hVRtuDdxzt2T48E+YL7wzNNeeSqiMnnC/CcoMCBxBlzAqDqGDtN6DjCtC1T2+GUJkpy/CjoqoZs5hna8lTjqiNQCV46RFQgQ4UKE7zUCGegOmKNQQQxYZFhnESokLEuMU4RpjPKbsAGCpTGBBH5RYRpK8zYn2DHq0sMgmC2YhwHvjjPKdQFn7Y1QaDpZcj75z33Hq52O14PI4ExREnOME4YAc57VBgg1QwrAx43GzQjr8ILhJbM5jOUDiiyFKqBYRiZ0IgoojYWeTjSyhSnFyxX3zBfXBAPB9afPnB2rZnaluZYnZoDzIjmBLabRkvVG3oD3TDihSKNY4IwIAsjkiRhHgUkaYpwhnyW45xjNcvJI4loLEkaEMcREzl6MWdsJ4IwJpyF2DDAG4Xzlv+fvfdasiTLzvS+vX1v135kyNRZmVXVEt0g2CBnDMMZ2pjR5lH5GOQFBgZCtKoudFWljMwMeeIo1+5b8OI0+QCYi7Y2y+8JwuKE8LX8X/8Xa8PQd+gsOWhzGRnbEQeMvqPelijpGIeOINZ4GYM0jH2HCCBdRNTNwCSSOAG7psNuN6g0JZtOuFtvGHTIfrvh0bOXqKxA3t7w6uIdwZHk+PgRsyji9sPviDKPBqIogyBm+eSnbNqA16+/JY9ziiwmUSHHv/obtnc7iA4pken8iFAHSNnR7kuqqkc6CV5zebtl9uiI3FpUoGhNgBIxeZzhTI/QFj2dI5Mzmn1DkBVM3YjoNkTFnM3NJdXtDq1izqIA8/wJdxcXjE6xutyTZob72z3zs3P62YRyuydPMvLFCYHO0Hi6cUDrlHYY8bst3hmmy2PSomArE8pAM58EKLMjMSOdGQ9q4izm5HiO0oqmhKoeOc4Ukdasti3BzBDf3qC1QtmR3a7EWs9YVUwXx+z3Fe+u9jzRM6bByG9/+w3NaPEeQiEJBRDH5LMpIlTcXF9irCOSmul8wf7mI+uba757/Yp+bOnrgSJSRIOhSDSpkFQDPJ4WYAb69R3/9pt/ZZmlJDpFT44PAxMWkUUYffgZ094x1nsQHhklyCjFtg0qDnBe4q3FeoEQIKOYCH1Qsjf1wajlLEPn6buWu13Hyy9eogJJ5T1VV6LihLErkX8ykrhiwXJ5TNN0DEOJ9w4nBEiJ81CWJdOJYChrjucPiPKQbBbi9Jxlt2XbjJSdQXpDFMZUjeeLX/0d437LOI5s71c0bcvH6ytq42jalkCAFBLnHGXTMU1DBP6g3naWyg60+y2LLMH2jrw49C8sjp6TTc+QUhIqUFGMliFqofEmJggMgzcM5UgYBYyVx/YOa3och26I+m5FLENM29MOHbM4JlQhlfO4ds9yGlHd1syk4SdfPaUk5fWrVwx1xb7uce+v+O7immURMY9gOZszBod68l6EqAAifeiQCXAMIuT27pbZbEa6TKnbLdb7/19Db5xlNpvyYHHC9ocfGM1IPzroHL0MWJzOeP7yEfe7a2rR8d3lNcMwsFSCk2lKFMSgE+IkR+qIm5t7ksAzWNiVe7w1RETEoSZOc7zUpMsFCElw/hzRdBwdlYTKoR8WDOtPdKs966ZCJRmDk4TekEqDbR1l2zICm2aAwBE0kEQJWRzQDx0fbvZEpWd9c8diEiNCRX9xzenlJcU0QeVzsuUjTLthDAN8a1FtDUHArqxQUcpgdyT6UOfdNg1JPmVft7zr4STN2Y8jxhiabqAHnjxekCyn/Pxv/nde//7X/OEPEmM6vIChaZktjun3a0Sg6EaHtjVVtYeuoTOOOM34tOmw48hut2VsG5wdsTZgtB0xAo0jUCHDaJEqIvCWNFHsBmiuN2ANJ8sjnr94RjEr0B5CJOPQo4Ul/tMplkpOGHsDSoF3iDjChynOc3gRYcY/neaOWA6LTYdAJAlYg04zVFowOM38RFLvR8j21Dc7eiNY3VXc1YbnVjNfLBidIA5DBPBoGlIZB0qwnKRILHkeIsMUmcKT5ZLdtuLi3bd0fUccCkzdMzQt2SRkcpT/eYaHz3zmf4DPS5PP/EVijaOuLfFMM1ssMG3Px9st9/uWrjUU8yXz6QNMH/P4/DlGGy4urvDGECtJpBUBHoaWHz85J81nDHVDi8MYR9f0FPMl3ShpG8+n9xc8yAI0DuE8548FcdZztMyIogTpNGF+itcJ9etX6ElCMDtCPfkKV5WIKGOsatIiR0+mKB3iRQBZBlmBNR45GFwzsNm2rFuPnhwTyx1GCoowoRc72tGhvaEIA7oxRAYaJSyB1Ji+YblU6MmA15a8mDN0NU1VIsOEm+tb5oslo5OEIqBrGgLvMOtbgolEypBXnz5xc3XFclrwcvaCZu+5urznwcMFR8slcZ6yXX3ku3JP6Uqef/GUIp/Qbu9xArQU1GNPPw4UkyOszsiEwA4jnfM4pbh785r3by9pfcwXL36KSAqOHy8Q3iGjCB1JNAPSOlQ+Izt+hO8M1Du8jkAnBDLBDSXx8QN+9ncTvIpwBgLtaMst7b7EWYOUjuPZCev1DZOznM60lG1DOox475hEmma15btv3/Ojr78iTDT7zUCSLg7x2jxk39ZYuwcF/ej5ePmeMwk/+8mP6XV2+Cz7nhGBlIJFGjPkOZEUrHc7Qh3y8XbFSngwhgDBix//hF3d0PYjKoxY3a8xNmCZRWgJYZYz9g3FJAMc0g8MY8PoDjfl1hj6quT45ITJ0SOs8/R/UlZX2y2BH/Dd4fsz2glNPTCVIVImOOMIp1MYK1y5xTYl6YPnmNUlznuMKgjyGc4F2ODwwFgai8MSxzF1fUf78QfifEk+n2CGiihLCeOQZjtwfjxnPi/Iix3zecn3lxuGSUo9evrRcHt1xXy+RBUTkiiibPc01Q7vPGmSIuOMLJS4dov2BiUkxyfH6M0l1nb4tqUeRqQICJQi0jWmHcimCUE04fz0GeXVFV25JgwUKnAMbc00DnDOUTUOayFwh2TR4AS9cQgRMM0S0iRmnuVkaUyaZEgVkoQhkQ6IVIg3PZGK8K0j0AlWhIyDIIwloVIE2WH4CtMZbprhxxEZGDAO1W9QSUS/XWOHgXJzw+gDRByjA4PtB4aqwXUCnWryo5iq2uODFp0P6K0n8BVHy5S7yz1t31OXW8LpjGI55/XlJUfCYF3Posh5FD+hDUOqqmK7qxjDhvBqi1MNL18+xcqOwde8PH7OuC/pfcD91S3762uSMGU+WTDNZzR1TxQ5+r0lnE4YgNVqT9+N2NHTtj31MOCtJaVHVGvCyXPcOGL6hiCMMHqKTA7lo9Espt5ccf/Nb2jXJS6e0HY1N9dXPHi4ZP7oCZOiIH36BGOuKJZHDOPApCgoV/dc3VwSRjGtl+w337GvHAJJPp+S5B3r9T3FJCcWEiksTV3ikfi2hOkZpZNkJwVic4HwCjFINDXPzuYoJP/67g5nLPYk5clJju4q3N6TLOYMw0ha5FQXl+igZfBTBplx8viU+XzOxbt39D7AeAneHSLtecRoHca6g6Fm7AjzGUprpomm3O+53Oy52ZRkWqIGw+NpxJc/fkGUTKg6z6YxPM4zhv0G5yxybNn98HuCuxvOf/zXpI8e4apbgjxGRuGhk6epSbIEKx02iLEAUYI1I9a7Qz+MtSAskZSIMKYfYlQxpdrdY4YW07aHZIAIEEJw9vAxNoCbsqLd3+O6Q7dBnGU0IkB4R5EnXK3FoX9CK5IoJC80kzREhVBMT4iCHDXA7/75t9xefeDJ+QlZesxwfcPq9pLlZMokCwnx5JMM6fuDRWSzPci/zEGFHsUxIYLpZEqRTYhijelruv0OkwV0vQc/4JuGxXQO8YSTx+fMT+aH3gUtCWONtAqlQ2zfM3pP35WMXYmrG8y95PBfqafsOmaLY0BgjKQdDME0JZpPwDb01YApd8ix5vrdWyLnefDsmNZ4Wqd4EJ7z+t0nfl+3bNses9lzv7W8PMpZ3W9YHJ0xm04Y+pYBz/HJKbUVKBUi2gHTWEzqyIopZbbDDz3WOO7HBm0M6cuf83f/9b+R/Os/8e7/+j+RQUk3WI6ePCCfh/zir58hnGIWwvX1De2YkCp4+HCJbD2omNPljNtNCXju9xVN15OHAXVncDokjSPiwBFpQTxd4GWEbzsWZ2ckwZJ+d48fKqqmB51x9uPHSJlRNR2z/S1RYKj35aEcWURsW8/tqiYRHuMcXoUUxQTX1vROsm471s2eItb05lAKHt8pzp5q9vd75mcFoliSzGOC1RV9vScqZgS7Gq1C1ruS1B/sfHXTslgsuVtv6I0n9ILaGwIlqZzj0VdPOTo74dnzJTFPePPuB95e7Fh3jodfnNA1DaYpCVTMQE8aOBhHNvtD90rdtVRVwzgMDEog/pTuCIQnCUMCY+lEQKJC8iTCmQ68xokQE0iKieIkDphMpiT5hCTOUAJMVRHphMAbZBCRnT86/I0JQ2SWY73A7Q6dN96O+DDChhO8aJHeEQiHIAYcFnkIpHlJfb3CrLfcX9yx/jSwvwNFjPEj42i4v28ox2teDpbEjQgRo6KIQAd8cZ5yW3YMXY8KZmgp+PLFA24qx9njh1y+e8d+t2WxmNJ2DYHwpFHKFw8fEQfJn3GC+Mxn/n18Xpp85i8SHaXMjk6Y5BkijihmC9qm4dHzr6mXG8I4QusU28LufuR3v/0dQkmO0hxXVsRSgTm8EY2SjEQYIuGJ0hwXJoTHj1DJjObV96y3N4wCvr9aEeIJtWI9DMRBz8uHS/JJwSQ7Y3ayRCcxkfCYoUYfPWDwEdb3+NYQxxpdFPg4w6BxDgLfo8IY3ww4W9M2O+5ubuiFIpkf4cMJcpYTBntiJ0mtgKCj/ZOq0hjH2Lcs51Paumd0IbEMiZOeNNYkyycMYs7RYsHYNXjT0bQDOhCUq1uwBoKQrJjSNAdrz2K+YD7JIUpoTYPVlnw2QaqIJEn5tFtRtw1pnCO05s2rH1CuZ/r0AWGaYowFKRGBor6/Y5HF1F1H14/84dsfKMsaREScBPzuhz8yvf3AbDnnyZMzikix6weUT8jmj8mbPdQfidL0UOgoPPv1htnjZ5jdiJGaaLLEe884GvrOoOIJwdgw9CNDVyMCRaIjRuMxRhGKkHm6pMcRxiFpMeP1q/d89/YdL77+gsEZpkenVJefsK3A+ZABjYg10kuMveXt+zeEecSLv/pbrPWgFJcOVts9Z/s7ToYR7xxFkvDw/Iyxa2n7gW0/0ju4vbvFdR1RILgbBJ82FQ9OzjDWgLAIO2DdgEDTbNd0XUPZjny6umOWaabTGU4qiHJ2Tc+siPFW0hoIbIsOBbvthrMiJymmRPMj+r4nMGvidA5NhWDAVyUqK/DVHrqWcPEI140gJGJ/R+dK6GpCFWOTlLG6Zvv2O1LRUW87wuwFY9sgPAfD0xhjzEiW5qTzI5LbDUle8Gm1Z9+MrO6u0XjS6QzhHPx/KRMZ4BkZ+xLTlog0IVQKFYZo2/HpwwUvMovtWlw/ULoO6QVRktHWLa4fGcIzXp4e8f533+F3e8b6gulCURSHh05hB8aqIVWCzgk64/DO0Q2GINBkacIkz5lNJkzzlCIrCMIY6yDNUkbr2TtBEiaETqCQqDCDLEIWU1wzIK0nXRTgQ8LZHBV45FTTOYXtK9BLNvuGTx8bfHtN2+xQSrG9HZDSQT9QpClV25OHsNsZsiLC+hZjQlQaYV3ApNCIQIJUrMuKqNoyn8yYTzJGa7HGoFzD18+/QB0d8f23f2R3eUO5vee5kugw4oe3K5ankiOX8P71BaePHvP0q+f8y9//P3xY3TNVezarex4/fQFhTKhiTuZThq5mlIL1bstmWzH2/Z/KPDXOWawLUMJju4owywkEhPkM4hnr+4aLV/+G6Ne8+/4NTdsSi4Ri0vDFi2eESU4xzYh0Sn93T7nf8OjpA0ZCijAhCECHEd4MBJHCWLhdbekHwxgkuMGzXe8Y+oY4P8WZgajIcc2AtYK+a5FYbL3DihAZJth2SxgqfBAhveFkGnOehQSB5GSWcrzICEMN3uGFpO8NWRSTJQl7I9lUJeV2jTEjhVbc31zT7TY4M6B0RJzmOB1S7e8QsqPre2It6XYbrFS4vuZ6teby+g6Q1NVA6h1nWUwsPMNgeHhyypMgZR4IyiRlt6+Yh55qt2N7fcvQtDxvfoLWI5IpYrbAOwn59NCXlOaYumQYDN60eGfxQUQaKoRUWJkzeMHoPDIIMHZECMcfv/k9AkCE/Jf/5SdMTh5gHYxjz9nyiNuxZ726InGCOM2JtKBtHbFWzCYZt2XJ0NQMe0vVtdwKi/WOZLZnPjtB9SOTXLNerZhmOcLVhHGIGw3e9Xy6eI0YW/72r3/Mo/Mlu7tTsrxgv9mjpObk5JgsjpkPgnEY+HB7cxhEMSymOXZ0rKoS07VMQo+yDV88+JKnz87RkSaeJ4RRjAxi8JK6bFlfXxK4mtGUKGWRHmJZMK723G5uyB7MMFVDebMmXp4gwphd2RGst+hZRHlzi7dr6vtbjqYJ0WKKDUKkHWFTYk3L1ycJk+iEf/rQcNd2VGPPJpHU+5KL+4o8SyiyiJMHD2iHkn7wzJcTxu2e0Qy0ZYsTYEYQeoqcnlHWO85mGQYo764o0phqlESBItIRgYCvni5YFineSvqq4vTsBV+9eIHqrxn7jjcf1zw8WlI2PetdSTuMfFxtOEo0kXAYJdFxyjQJiTFMjk5xOlRQQDEAACAASURBVCOfzA+LZeWRKiFaPkaYBp2k+CDGdJ5+39J9umF5cnIwY6l7lB85efCUR4GiHgKu3n1gXN9gfIDpenQckwYRs3yBpcWZluNUEeC42dTsfnhDoaEtU2ZnS5xUxElEt+nRgScKJFkAg4ReCSZhQGlHvAk4m+cMVUshoTKWwY44F4CeMQwjv/nXf+b27o69T5gcPyBIYqqqIwkCVKAIhKMtS/pA0jUds2lBJ0JMOWK8ROCo6g5nDZEQKClx/vD1hM4RSwle4oKI2gdkShFZyzxRLJeLQ2JERwiVkkQh0gwUyyXCjpjREmcFSknqridLEry1qDCCOMXstygBLnCgUqSpCUQIfoRAAw4GQ/PhI+X+nhHB4uufsPzJj3j+8Xsuv/+Bt+8vsKs1m75mte9QV1seTzXLRUiAQ3pJLh21lhwdLYi1QuI5WRRcbS755l//hbvVBm9H9vuROM3Yrm8o8pjtdUXfmj/rDPGZz/x7+Lw0+cxfJNaMxKFifX1NmAz4SvDo+QsirXj7zR9Yv7uhC3b4SPDpzSv6tkNoTR8qkjQjzxO0Hzk6OWIfKGxVEaQZmgCfztlvG25+uCAJD+3xtutIj87YbtdclTtstSfTll4JjuuWUFS81Jp4/hilCzwekhznISiOkTpEKIkPQqpeQSAYmz1pGiNFQNnVvH97weryE5M0IlQpu6ri/bZjX1d0Q48SApFMCERA1HYUwL7syFTA4fBd4GWKio7Y3b3Fl5eYAoTuqLxlc3sNtocgBBmih5Z2syOcHnG7bZFBRFdXBAiifEFdbbi7ucKbkXEEJRSu7RCjJYlDglThA4+WnsCBQCC1RMUhdTugi5x+V3F1e8/Hiyt2bUdZtyyXp4Q6ZTmfE8cK70bSWNNeXZEWMcopitkcMVhEoDD1Hq0UfVmi4phIScb9jmFfg3H40eCVxDuwOKSSJEWCGWsCNcEaT1v1oBSZSmi6lmmQsHXiYPYJDPNFwd2+4bfffctfJRK9mDCYnsyDVpLeShyCNC9QUcTd7Zp317eYyXuePn7C9eqOfnnC4AWrqmUhR0Ih6ZqeZRSiTo+xzpIVBT/+6guGas/lpyu2JmDfdDyaJMwi6H3IMgkYx45JkVNtVwxdSzf0tFXJ0SxiUWSoMMKEEhcoTFNzX9WoJGc6mRHKjP3qlr2R2G3N8cxxNNOMdUW/uydLcmy5JwgVtq1Jzp7SXV+DC1BNg8BDW2HrG9rdLcnpI8YwZXP9jvW7byiUoxk1m/s7nrYdeZJgvQc3YRghWyyIF0t03VMOI2a1Zdd2XFxvcB7EekV68ZYnX7ygH0bwAp3m1OUWNwwEQUBV1xTFFIKQsR+JvMcOI5GAXV2TJjEtAav7LaEdGY0nHV9TyAnt1QbX7CgSQ5idESmHl1Cv98TR4SzBOYP1gsF6hFRMsphZMWGxWJBkBQjFbWd4/+4jCEkWBnjn0VFMMV/w9WJGJoJDxHpTQ5gTpFN8GqOTBBVFkOcEgcSbhrHdM44Vuw+fePtpjVMBxkMzjvRNyafVnkBrMi0J65pikh/6aZwgX8SIcUSJg32pbA1hJDheZFzvLLaz6H3DGN8yOTplrjVhABfvv+Vnywn/6elPCWvL765v6QI4WUywVUMQR6h4xqerNa+/f8Mv/ueWh0/O+Y//4Se8/NE51WaLqCGfzsgmS5SLMbs99aahVSGf7rZs9hXaGCYRiCCgN+DjCb0VFIFEzs/ZVJb7Ty1X717x4d1b3lxdEISa02nMj54+4/TsDGs1Zw/PIIoIJwvM/Wt2t2ue/+yXrPYtWaQPCZ8oYdO3zJ+9oKlLQmc5DRS904wyZZIntMPAOJ3gJIczLikI4hRpwAWKUOtDfB1JoCKcNXgvUUpivcTrgGenU3xfMzYNZkiYnJ6hwhAjJPl8ga8bIhUgvWJze0NXlSznE/arG3bbDV3bEAbyUPLqwQwjTdvTGUcSH1S2gXQ4ZyirGuEMpm0Ro6EIBP/hy8dkSchtJ5llns3qjjzNuTSWm1WNaDuyeU4gNWC5/nBBLOHpL/4Ku28I4gy9PEWgwY7QGxhGtApwRIBECoX1FS7Q1J2BZEIQBAx1ifAj796/4Xq9J9cJz589ZX76FB+naBUQWouQjkBrNtstKiswBBhjkUKC9RTJoVtpsOPhdMAdPo9hHOiaC0ItmcYJDsXx2Rkewfb2ln6U5JMpfb3HdXt+9vVT/tdf/YyTszP6znF3sWUeLHD0iMhQ7Wvu6woRwGhGmhHy6RK8QlqH6S0myNkMPU9OHnP+xUtUGhFohcqOafYDd7d37G/WVLs9lorTeYgfK1QSQzcyySNkHnKeP8YHA0NbI/qWzZsSoROcVBjXYT/ukX4gKSKy+RKZaHonsF1FkIYkeQhGMw1T5g80y4ee76873n78SILhpmnopKE2lrrv2ZYV0+Uxg9C8/XiFTnMm8+KQXLAKFca0VhOrCYsnD0nmCR8//MA/fvNrXJSQhZJm75lmAcezmMyMtB9uefu7t7z6xx/46Ve/ZLmEk+wB//2bD0wXx4xe8unjR9a7PVma8aCIqfuBJIBJ4CnikGI6J0hzRFJQ9ZLvf/2ahyfnRGEEQ8u62lNXW376yx8R9I5uXxPFOUdfZ/TlHmsc8+IY4Tp0nKGzKfPJnEc//QnV1UfW17fQVmg8PpojwzmDaxG2xO1usF3Ls5Nz6t0O0bdYLyAqME1DEApA0q/uECIiiyN26x2xd2gp6AaLEAODNRwdT/BmZNIGjHZEAJ/e3iGez2lMz4u/+Wse/1Rwd3nNd9++ou8bvHeY0eCcY2xrTBASRSF4TztY3n66Y7+rMY7DMjmO0M4RBArnPalWqDjBi4AOQeRhFsfoOGNe5JhhYCsU9xbSy2umas3ZbMlyOcPHOX3Xo0JFVTaYcUTHit3FJek8x4QhCTFSKxQeV60ZjEVohfcgUYBgaHfUt/d4MZA8WjBNE5AwmBYdnTJbas4fTXj79gP+1TW//XiPWe2ZRROiND+ktL1BSUE8OjZ3t0T6nMlEEgYQ25bt/T1+HAjDkPtthfXQNi15mtB2I4H9880Pn/nMv5fPS5PP/EWSFDlaa27LClEa3EygdYzre1Yf3pOoGNMaPnz/gXq9outrOmdIgxPSOEOHCSrU5PMlbdmS6ICsmCLTJaprebKY09JTjop4mRKrgF0jCHTEYl7wfrenT1N+vdnxwnpk16D0BxSK5fGEQEYErSM6muK6HXiHo8AYcPtrdFFg+h0DI3c3O/7lX37PfrthpiEvHrAaBK9WFbfbHa/evyNWCi0FSilmeUqSJox4ZoknsD1j04CO6Puei4sb5vmMd++2LLM3nDw4p5FQ5DnWaDabPaa5InaGMJ2Shppt1SNDTxyHzCdHRFFC0zbU+x2PH58jnMTVI+v7e+5u1jT7Bo3CGgPWISykYUrQexKdsNv2vHt3y3a9p5gtKY4fkQUBygWk2YRpkZLpQxmtwyKkRdgeLSWxCxFWIl3H0HSE+ZTRjNCWmFbhEQz1lrFv8cAwdHg5MFgLzuP7ESkD4kXEGORokZD3MxAdXbXHYxhFQ+oDiuUMU66ZOkPj7lhttnTG8PaH1yQ6oK17hIIoDhgqgwgPPQdSKfruUNYbSjg5PabqWsr9hmmeEwye9b5CRyn96pYiCsmLgvOzU06Ojti8e8Xp2TnT3lCWe8qqQuUTuqql7A1m6KkrS1NWlPsdxnrCUNOWOz5VFUoI5tOQNzdXpPMjjqYT7rYVMtUs4xSpI0Rc0OiUdzd3hGlGkWlM6aibPQktysY4N2D7Dc3dByZffE1f3tAzcPPxHQYPacH25hNv7rdsL17h9vfUo+LJ+RlD0+OHge04oKanJEFIvohIpxlN3aO0+lO57kGNe3Z2jPCeXdWyWt8xPz2mGwfapkTHMVkc0+EQHqSUWC8wLkCGIcN2RRsOCDvSDIbe9ZTVGm89OlA4GdPXLb/+/d9zkh6jzcBYtRy55SHaLBzFPMNbRz8YkILBweglUV4Qxgk2zvn2rmT95obBQW8cWgYkcUiuNad5ThKERKNlaCx5UTAGAcFieug4AMimGC/RKiHUFuMHXv/bH9neXfLq/euDGjzUDMbyse5ovKcsKxKl6FyLCmAWBUTjiNKwPJrRfCp59miKcuNBc5sWlN/doAPB40czBqm5qQaq7RrynNPAI7st8zTFDR3h/o6/+eIh9uYxr765gyDi9NlDmrplvatpm4EnD87xY8Pv/uWfWc4WvHz8JfrpBNMbhmpD3ey5ub/i9uOWNIm4urljv7qjbVp675jHGUGYMBLQWonVEfVgqK8v+e6Hj3y4uKdvGhZJzN++/JIH5+fYdkMWe86Oz8mW5wRSIKRBZglWnCG0RoUZsdgjvWAcDTJVTOZTvBuIJlPwjvjoHNNbbNMTz5YIrSGAu7vLg61LRej0mHZXE8YFKIVUEQQhUg4QRDhv0UoxWEHdDIRpRmsdt9uW+cKSD4ZoviQ/OsIGIbH3PPviOeNNTV9VhFFEGCXU93c4GTFZJIixJ9AR1jhMP5IF4K3HIai7ESU809mcMVA8OTli3Je8ePiI89mMaSLBjZz0PfV+z9v1nv/7D6+4Kluc9UyV5ugq5WcPzvj6ZEkaau5vVhSfVix/9GOcF4hqSzA/hijDuRGVT3AcBsrAGuxgQKeIgEMqRVjGvmaz/sjF5SW//uE9x8sHfHlyxtHxKeHRAwwO0ddIbwkDhS+mHJ0+wCiJE5LAjnR9w2BGFJ5IC+73PT5QeBEQyIAoDAm0YNjvqIYWpQXz4gjnDwXncZJQ7jZEjDx7sOTl03M+vX/P7d2aSM95cHKO7CSVWzH6jg83l9zt18ySGCUdsQqJXc9UwWrb0FmNsYIomvPk5S/R2TG9lKzXNb/+4zfcr7e05RolBF5qlGjYbQbiWJCmjkLHjO2WPM1QWmKRCKm5WV+xbUZW25peabwcSL1nMZ0QtCPz2ZRoEKTTlLpaI92eJEvIj1N0mmIHSZxa4tBznhyzvltxqxyX6w1BmGCLjHCW0ZQlyWTOfDrnbr2jqgeOjo7RkcKgKA1IY1hOj5HLBe39JTd3P5Adn/Ew8vhQM4yO0+M5z58cYdf3RLd3PJtmTHTFUVLQWUlnDF4otvs9eeAwsaLrewIdI5xk1VQcJSH5dMbi4WOublb8/tU/0NY913drLJJUBQgzcNs3yFDz3//hn/jpi+dooemHlq9/8ZLTaYaTFt87QDEOB3uLjDICP7D4+ufMfxRg2h2muqcfDOsPFf3Gs9u1jD7kem9IiikPnz4kKLc41/D+YsV0OqXbVAihaBvHbnODWMyJo5imt6RSMboebQ3eGq5uK5bLCfk0REmJFJ5BGt5/eEe6OKIve3bbLeubCyZyy60TNGWPwmPaFpnkeH9YvFdNzSBz2m4kTFLUaDHWEFiDDhTKe/Aeh8R7T2Usp3HEPM2ZTCZE+YSPVcPV1TUyjKjGjpM4xLWW6XRJEKcc7UZ+9csfMw011hqazT2JzzFthxKWUQukO7zg8lKgfIRWDi8l49iBEgzlPXVTEWQBPpoQxhkwsqt39NtPFNFBvT0/PyZOBJN5zugMq11DOUJvPLF0RDqAQFJMCqphoKwqvBvJ8imTSDGUJderDWmeUXUjQ9vihUSGmicPjigS+eccIT7zmX8Xn5cmn/mLJNQBQ1+js5T56UPOHz2kN579/QY/taz6PRfvLujutrRVSTN2qFjB0BOnKRpPHMU4Y+nX95w+ekIyPSbMlwcl29CSnL0ky5f0o8Wm58xuP5DQUe97Iuco64HOKf5wXZOaERlcMVjLl/U5yycL1ChgdY9wIzZxEFpMe08gJf1mQ13vePfmgut1y+2nNZlSlGPAm+/e8KGGm82Gpms5mhQExrDdbzFCgOt5cjwj92C9wFqPGzuiomC9Ldlt7pHHx5x98Utke8v2bs0smqKCAGsk9ze3FN4QpAnCg81mFHnGrqo5KFQEMkxo9zUez+nxEWPT88ff/BoxNLRdSZqkWCSRDBm6gSRSHOUzfNthe8t8MuXt2wvOzs5QOiLyCU21RwaaSRESGsnQtsgR8uJwj5vkM0ZnkAT4xtCXW3QcYv2UbrT4fqT5+Aakoiy3GHMwDQzG8/rjB6yrWU4jkjxi5wJkOiMMEkIdEucKu79nGhUUi2N6VjgREM8WpGNPEOW4E8VmtPz6N9/z1fPnLB6eUu/uqaodDgdY4iRmfnxCbSX9eIjZCynwxtHs96w+fuDs4SlChZRtz5EGJQTdYDhfLEnTBPoW42B7e89dMxAKR92NVKsNVd0woefnXz1iMJZt3dJ0I72TmLLGD4amLNFa0wwBiYRX3224iDWL4wmb6oYnRyecP3hBiKXzltXVW1Kz5cFySZEV3L7+huOTMwJ9jpxMqS8vsGZktA2rzRXv3n1P6T1ex9x/vORu33D98ZplGhHKjBzH/VXJs7MlMlwis4go0cyKAO85GF6ASar48qe/INKapy8sZdOzW2/YlxUizNnutnigHUYIJM55InV4iB6sZJoWBCIgCcCMA6N0bKuGuh/odhWjcYeFSBxT5Dn7XU1blqxX93z99BHTkyXFMiOd5fQY6AOGvkdYQe0s67pjlIq9hW5XM95XlKNFCEma5sRJCoHkdLmkUBGhlIgoZtAal04wPkAQMoyG0ffkZoNRAXI6xWrP5f0VNx8u+Ie//0due4PoS5RSjKE/nGnJmCiaEcymaO2RY8/oLW+rNYX1zCcxn76/4HSa0XcJX359RKD3jCJg31i8A8aGxod0QhDnglHXtM2KH1Yf+eUv/4rjbM40yTiLIy6U4W1b03WSwFuKJOJoMQcs9HtevXrDt398x7KY8OzJmpPjRxydHdNtrnjz5g1vrvYIrzlbLPjdt68ZrSUQglkcHyxMQpBEAXVd8W/VntHc0tYNCklZtZwVEx6dHnG0nJHGknT+CGV77P09KkqJz8+wQ41MQnT+mKFt0UqwmC1pu5bo7Jhqs8GGKTiFDnOapoW2QgyWNJ2QZlOEChmGmsn8AfNnL+m6BpXm0FcUpwtElBNPIIwF719/ZKw7jiYKrUOawTEaRxSnJLHhw6ohvNwjtMYYT9N0RPMpo3GU2z2m6QiUJgwjut4wOkUUR/R1iRh7tI5ouh5TNzxIJUKCEZ7GeuIkQocRm7rny8mE//Z//FfOzx8RoFhf31LfX2OHgX50nOQ5L8881t3warVn13Z0fUfblxiz5z998RTrBq6+/xYRxRT/049QsUALi0wi8CkwYAkZ91uwLXES03UBvelomx06y9h8fMXtdss3v/+es/kDfvHzXzGNNIMVBMmE0DWYrqastvRYRJSSJCGbwaD+lKrRSqNDxegliyzi4/UddWMI0oKh7zFDSyhCUhRKhqzvVmTZBCUDrLc0+x1CCAItmSaa3//mtzx6/JD52QMW84LnX5+wmHt++/0n3nz7PUOz4/EsYRomWCUYgDyMsA42VU3X9UwffsEvf/UfyR98wYf1juu7DdW2pK63tNUW7T3TSPNp9YG6byhCEIHhi/NjZO/py5Kf/+QrAgdJFBJFjtrA9e2KD5uS0RrMYDgrMtp1g0gj3l6smU5ijBo5mg+c5nPCLEH4mHS6wPsIt9vyOJ8SOU84NthxBlLx6q5k70ZCb4hSQz9awjChrCvCOKauKmIn6JMj7GQG2YQeiUknzM6fcNY2dCJgqD+ho4hsOqPICyZFRC+WHP+nJ8ysZLy/ZVvVbBtDqDS+btis7xn6lsBbjA9wMmJbb0lUQJxkBIHGWs93372hIWbTWqahpGsqVnWHcJY0jrivW75rS65215ws5jgPb25+4D//6udM4wlj0+CcYfngFKkk3lQMQ0UUx0SzORIBYwB6ZPboCJ+NVNGE+/2au+qa3/3m35DCs5zkZKbCNSWyqXgxTTg+PqXeD9zvOkS7QkQhSmuyOCDqPFXf0tuReZEgTcC+H5gkHpko9nWD9DVvr9ZECkYjDr/jWuNsjwCMl3SDwQwWFYR0wiBEQFVWjOOIkAF48O6wKOmNRRhHKgUOSeslkbekkSI8esBtueH71QVmfU84tPTWM01SbnXAYn5C7QKauuPmzWuaYsr/9sufcCSAqmW13RN46G9WFNMJVXuNDDSRzgh1jE5irDIYM9CVO9q6wgceoWKM84cXSW1Pv71BJ5Ku7Ai8Y3AB42TJQif852rH9xd3bAeo11uKZQZWAJApuK4Ny3lEW/W09S1N13M6TWiqmqbr6KqGUYXEeYbWitvrO1b3+z/L7PCZz/yP8Hlp8pm/SMzQcXt7y4DiJFK0Xc1YV7T/L3tv0itJlp7pPXZsHn2+842IjCHnqiKLxaEJqsGNBAoQBAjd0k7/TT9AWzXU2lCtAlkcOouVVVkZGeONuLPPbm6z2TnHtLj9B7o3RAH5rH3pgJ/v8+993u0du+UNF5f3VHVLXuQURYMwwBM9UmkcyyBwHexkQN00nB1NOHjyOWZ0hOuEmMUON56Smz4yK2C3IQxDDiYJnXVMORghHA9rOUcJl/uupTJ7fr/bIAOT7UXBi3ZMePGOw8dP8EIf7diYTkNdL7AHPmXv8frb3/Lbl9ektcHj2SFaK35/cc1V1lHhcH54wvlojDY0kW2ArB8epbaN63p4lksrTIqsxDUe7PBdmdFXBZu7lukowAkcwuSYyHUoteDy4xX1bodhCQwMtHCw6optXpFW6qEeNZ4+PPbLitFgSJpuubm8Yf7xiqMkxvMdirxh1+z5/Pkn2L6D7fsEYUBdFlhOwCgM2GwKyiylLls6y8cCBsMQ33cxzQ7T9hiNJ2itMIWJKQzapqUVNo7voduSdLsEw8ZLYkQvqLqG929/T1Y1bOsHh4lhPogHe8Pm4m6H1ApMC60+YLkBlhvQ0+C2FUJ7JP4B0WDM5OkRwnTQjcRxAkLDYmh53N7fso/nbB1IBiHb3GRfSdq2xtEwnh3iJQPeX16Tly14AZ7vMd/s2RcV28U9h0lAJDRIhWeZhFHIJPTo9ls6c8w2zVjlFXVvkowiHEfQAFfbHcHQoylStJ9QdpLCMAmGU9wqw2gsTMtnvtuj9j0uGs8LuVlsuZhn9IbgfXzD8ydLBuNDwsNP8BPNze0N27tbPvvsa9pec/PxPedeTN+2lKsd2CaXP3zPOtO8vat4v9uStSVpXiF6g8RyGAwHZEWDH3rYoY/pBXROiG1oEKBMG0N2mH6ErhsMAzxLcXR+jLdL0WLGyulZO6CCMa/vdygUUvfsyxbbdpBK4nsetmEhALdriRyLZRzjUrEsSvZ5RVG3mD0M4xgvjvl4d09XNyjV0/YGJ4nNdBYzPj3GdhtobNpeIZQi14rvbzfMa9g2il1ZPETLgMfDBK179rIlCnzODiYsFltUOEZZNjpPWRUFY+eOP390xqNhgpAVFoqdmzAwU1SzR5U+b3/4jv/4D79BdpqD0GU68IlDC8MwiHufynRwowTbtLirOp6PYyzbpLFt8nLP7v4WIRXbdI9rasazkNnkALXfIaXCNAUaSZN2WBpk34IH31+nPDk+RTYW0zBg6Htc/P5bzkKHP3nxlCELAktTdwbb5S3pbocBpHnJZDBkPDhCelM6V9P0NdfbDRdpTjia4lsRv3l5xe0mI/QsTmcTuuZBGDg5/4QunXNzu6GRErQgsGwiz+aLZ2eMh2NsNF7s4w0GGIaFbSc0d+9Z//B7JnWKc3yIUBLd1fiDIdX8mrYXFK1GtTuW6y1VfgWeS1bWrLZbDuOI8eyEHpfFhxtu7tZsbu/wkiFiFMPApC1/RV1lJKHLshhR1hFqfc3Nh5cEJvTihJFrIAxBr3r6uuH5ZMgs8tkUOYu8Z3+bMig6wiynqGrm2xodznAD/7/EJiYU2w35dkNVVdimweAwom8VTdcibAuTmhaD0WgAShL5Dqv1imwYI4s94SDC8odUZcPy+pJ/fvMBLVvWRU3bG4yDgP/+RcBqvWOT1ySOzabY8c2t5kmScL/Y4t1OSNWKyV88JwgUVvtwDagNhZIpViBo1gVtuadpe1rLZLW+xS4sLt+/4/uLe4ajQ54//4puX1JbYD/9Cm98AF2JrnOapiLbrXHiAfluhxag/ADLsdC9xHEtsqzDNQSubbMvSpp2jfB9wiABpWk7iSs7HMemNwRd16IVNHUJWnP+7DFFXTNfLFlvthjfv+Pf/a//G4OJT7YvmEwcvvp8QroWLNYFqzQjMSLKThMmFutKUVQdjycxX3/1gqZW/D+//EfK7RJZl5yOh5h9S+yIh4jrco+dl/iWYrvc0WjJh5t7PMsgsByWsufxeMbAlDye+IziGDmrsZRmm1YErs1uV/K7OmWDQdZWGDYMYpuTic+T3OJkEzPxDQZVheFrtJWwWeywgiEHx9D3glYapHlJLhXbrEQVLa5bcDQZY1sOq33FXjo89mIMYdF7M6yDc4aHHtEwwvU/Jd6nLN69wig7YhMGhoZyy+6u4fCzP2cyfsT2+orfvPmOt6uKu33Hcl+zWdwzdEDbLnebLUUjmQ4MEt+mbxsC24S+53a5pXc8Tqcn/GQ0hf0Ks81Yr9dYjsMmLzkcxNRdQ2Q2bIsljRXSWD7fvX7Ls8kMlMZCYTs2QTLAtEyUrLGEQV3mYEW4wzF9vmVwHiAOTaSp6C3Bus6xQ4d0u+T+ao6tNZHRU5cFb7Yp8X3G2BIMhIFuGqxWYw9CJhZEVceuhlZq0rJEmB4vnj4jdk1WmyV3yw2PTxPUvkLrjt99+wN38x2H4xGGCaFlgNLQG6imwxtFqKokywuqShO5Fo3ssYVBx4MnyPc9enpk36NNG9vziF2HWptcvH3Prtek6yWxbnE8l9hxCRyT4WDAKPYfPDNmQI/i4+++4z/e3vOnn5wSjYdUbcfibk48iDinR5gGo+khfVsihUFvWQ/Xgrv1w1LHt0GYlO9f01cNlu2AZWGqhmrfIMTDnxiNUtzfmAjwDgAAIABJREFUL7Es8OOEk0NFnBZorWjLBi9wHi40MfGMjs1mhxOE0PdsFit0p0jCgO1iCxjIvkdhYNkeMt9imj+Onz/yh8eP39of+YNEti291liGJFveoPY2bVmyXuy4vVuB7KirhqJu6Q3oMTCEIApcLMvFjIZ4UUI8MDDdIZ09JLJMbN3gD0a0TUWIwg5MlAio1ymtZeMcnuKUOZZnMz4Y0nUt9uWSuyxlU2z5brnjzBWk5Y5x4LPYN0yGMcNhQDCMyPYlxe2Olx+vuLlb82Fdcn6Y4PYZGC5/9tVTZquKyvDprIizJ19wdXuB1WY8ffYJq9UGyzaYJCGyrEHE3MuOTkks1RGHPpauGXkG7eI9husQPnqK5zqslilyc8+RWXOb9TQSDvwE0pT5ThNHIb5l0tOz224IfZ+jkzNWdx/ZbFYEnstgOKCVHVJqdN9zv14ym804GCSUZUOnNNOjY5rthtjqiacjbC/CNByOTp9jOSYCk2A0xhAmtrLZ7XNEoGhVTacUdVZiuZJWWJR5StcLwnyDFQzQWtEoTdE1mLojCQWnR8eoIKErNeMopZMtsutoZEYmJduqImtrDo0Ooy7Ji55itUQtL3j0/BF22TByA4aRz2w4ILxfcns/x9IN+zTEGE5pRQNU1MUe4YW0dcUf//xPsNyAaegim4o63WBHCYvVnEdCYRgGlh/hWQ3xcAhaEbgO47PH7HYpBnNENEQLQb6taeo9sWehu4pyv8VzXNJakswOiT3Blz/7GVVjcztf016+Z3N9SdlpDi2Tg9GUouvYFiWbqueX333k6KjmcCexLZu2rNkvF2jdczY7pGk0H16/ZOiPaMqGrG95fbfmel0w329Z5Hu6rmLsO4SuTeJHrLKStpYcDyLOTo7pTY2mI5kMUbtbuqwmnh2ge5Pes7DckK7cMZqMcOOEzf0doW/jnJ1yrxzqywWG0eOaDw/LonpwV+zLlvEoYmQ9RGhiRzCIfdL7LdusJM1rWqk5GiV4YcR2u0XqFomklJrk4ITP/+gnNPs1pu8hTDDsACuwKGrN2+Waq13O7b5kXTYUnWLsufz8aMTPnj7C80Is08JwAkzLY2k7vFps+biuKGSHZ8DbqmRbpPz1i6ecOxCbGjDZC0loCsrtHbaU/OTsGNWW6K4kr0uktlHJDHt0wBTJILKIR2MOtIHvD1isWx7NBjijJ6jiKbvbO67uX7Pa3JMXHcnogK5rCSOX+7Qh2z4sj55NIqRts3qdMppERKGL1pJqs0BdvWFz8QEnjvnF55/ww+/uefv+kn1eYIqHiJztBowTk7KoMAcHKMfHClyCKOb0yWcER09YXl7z3e8+cjG/QZiCXmnSrORgMsPqKii2DOIQQY+UBn5yyDgcYxod43jEcDLAMxTZZo4nPPxkTJbv0f6U1c1rdk1FtFriTQ+wwpC2Lmm0Zt9oLi/eUUjN1XKNVh1VW7NtJHEUs95VNB+35Pk3LHc7GgGxY+E4HhJBo2o8s2Yc+YwmE0bnLXn+e7L7NacHYx6dP2YwGNIbGsf6jlxp7B5iQ3B2dMjOOOLVzZxvL24JPZNHxwO8yMO0HWzbJhhMaJqGtiyoihxhGDiui2Ha3Fx+xBQCx3HICQgjm6p8cBQdDWPKNKXMSj5eX/LHj2fQlbijQ4KBz3p5ycf5nMDzmIYeZ8cnPHr+Odssp1rdkd99pGk7PNfizdWCt9aagevh3FxwJo7I//Geo5+/YHj6Jbbn0dd7qtWa4OiUIl1R1zl2mJDuC+6vPtBLuL1f4zs2nz4+JxEGIhkwPH9K9OwFwrGocpPeC6iUZpWX0HvcLAuarqZvLgkjD9sP2O9ybu7n9IZBZPss+hStFPVuj+NYJLGPF7kYtoMfRdALojCi7Uts18M2NI6pyYuKq5t7lusd/+YXf8UwGRIP4KvhF4SR4Fd3N7z/uKYqWsbDmFq31NJAaY3RdRz6Jv/d2QSz2fP91S2J7vly6mNZCWlRkZcF+12DMA2avOEmTzFcC6162rqjo8PzPSzfIC9T3tWKF9ME2/cZxC4Dc8Kx4/FhvmNtaK5fveV9WVObFnld4/cOQzNknhkU9Z71qqczYBAH+FGC5zz4ZTzLwjc9vNGUg7JiEgdc32xxPYvQNUk8h9hzeWS6KGGTdQJleoyCAbPYY+RKbCnZtj2fxAOaTlGVOZFUdF2NUD6bbcnmfs3/8OlfMnANVuWOTna0qkeqHs/zmE3GVHnKfJexrzukkmRVxXnkYPUdgzAkGYzZ7DI+OTqjd3w+3NyQpTvSYo8lazph0pkuoTaIDYu0UyjR46icQGjIW+7aFiGsBxGx7TCIDIy+x/RjijrHcGPyXCAmE26u3nJ5f4PhuCzXFXXd4KL4bOqjB0e8v7ulznI8YYBlMC8VS1mwti0G9LhKMY0C/ChgPA45ynOWhYHUgn1d4USa4ZNjfvHiHFMKfv3dWzy3xjF3fPPPv8GoS7qqoW1DXFvQiwc/SN20WKZJk+Xs0xypFIEb0DhD8ttb+r5HCAGGoNc9mh7Pdem6jr5rUarmVZqzbiU9PZF4+Myu7ghtQYdFI2qWzYqLImd0eEwcJLjllre3l1y8fUswGvHlbIjZ1Mx3G/r2kNkwxLVShGlQ5Ht0alKXe8rlPSIOKbOa1XKNkeVMZ1N600P10OzXhIFivy5RhcEq3eIOPeyiwdEaN0qQmMRBTOAKUCW9UtgOFGVNUTdYdYtheVSdZrcvKZuOxLPJHZdGgeu6uLZNOBriOs6/8hTxIz/yX8+PS5Mf+YNksdiQ7jK0VgSuiRuG9Konrxtk22IZELoCYo+66ugk9IagV+rhUevHtE5EqTWeFRD5FralcEwH0zahUziuB0pgihLVlDjJAKVBdyXD0xFtHtPuM748t7E+dti6ZV9WLNqeODIZ+DYfs4xM5sw6l1EdgrC5WWy5u0l5M694NHA5DwXT2MM5eIpIDuDFiNfvr+hkg0g8fnrwc+LARBiKzd0NdpNhoynMnH6fkoUxWZZidR2xZzHrDXxLo03oDI0st1hlh52tCTyHbP/gC1ltdtSy5/jUwouOcByD2/mKvDUIQp/Hj04psjmybojDBDN/kH6uK4npuLjC5uL9PY/+7GuePHqB2K4eLkeUBPqHJUscIcIZQXKC8mIM16F1PPaqZz/fUtzfs92ukE4Hdke7TVEd+G5A4Ll05R7DtBH+ELG7o8lLFIrVdofUGt92yasrOsMCQxNaJkPHJTDADwIGvsupHVGLnm43p0j3GL0mNE3epWu++dUtYGIbDk8PDvBsGCYDPqzmTLqOLE1BGhR1C4aB0BJDtRS7LUfnz/jJ11/Sti2Xb19yPg4p8gxlu3SGiSs0riUwsRn5LrJuGB6M2b59Sbpa8upmScmWcRIRBi5Np7lfbxj5Fm3fI9oSR2imR4c8PfY5mJ3SmAHTx1MeHwluDx2yAkwdsdvmtJsbDocJ317NqU2T9d2G3ugJbYv7bY1te7zfpmwbybODM8pCsd9dI4XgJs+426y5WW2plSIwQVgevoCz8ZRFZyFbxSdHhyTD+KGa2Pcx7T138yWzwCUKBF06RzpDEC6O62H3IarJsNwEf3aC4XgUZUl1tUOZ1kPVr/mwKLIMQd1JwjAmiGMehRbXyx390YSDQUy2MGlbhVKayPcehqS6ouoktmPS9B2e63Hy7Clnn3+G2M4ZzQ4x1teYjoNWcL1veLfaUiuNZZocDRM+fXTGJ4dDjnybQTTEDgZUZkzdQbVLMd2Qo7HADFvKtsGsCzYo7lYL/l/V8b988QkD16ZuKqTVY9Qt5W7Drshx0KRdw/02J29qes9Hdgq3zngcgKVjXFcwPDknmo5xDgXrYs1Y7kjGMXF0SDyBy3caWUv26w7PHVLse6oMHAwi1wKlGfoW4TRgk5Ws7u745PgYeVmg64qwrXCzFs83WSxTNquUOLCxbRthGIS+S7XZoZTCcUoenYx4dDQhXSqWdw0SyeWHG159+EijIAwCzL7DsSyGroXrBoRGz2Q844uf/hESFzucEAcJZbpA9B1931JryabNuLgoSEY1qs7wmj1COHTbjFkPXtHS02OGD40ujZQIP2R+fc9ylyJ1T9V27GXPNt+wym+oVE/bddi2RWP02KZBKOAgiHjx5CknBzN6Q+GPEz7e3bKd3/P0cMLhwTG91lR59pDjn46YL3eYwiARJgeuz8nxKb0d8Z/f3nG1yWkVDGcCEdloXeI4HvvNhslkgmWZdF1L3Xa4wcNVkWMJOqnQtk8SC6qqpKkaGqOn6xRd3VD1HY0syXd77GDP/PVvyfZbeq2YhQ5fPDvn7JNPCU4/Y3j0GWEYkH7796z+4f9GNSm+0fPmfser1Q4rvsM79clezlnXK37xPx/RlgZqswVLkN4vSLdLzMCikylXN3dUWUbVu/ywKvjLTx9h5XtMc4h/MGT47BnGaIA2eopsxYf5Hdfbkg/bhpfffkPTNczimLPxgM2+QBcl1x+v2Wc5w2GE5wUPg2OvsCwLIUzauqPvc5QX4lguZb/HIqSuW6qiJJyM6HVHXRU4js2Tx6f84hc/w5A5o9EZ1bbj9vU7fvj9R2zDYDKJcC2DVamxDRPbtKCr+OnhgMjpUargxXFCEvqIeEhlxEz7jogWIQTpfsPV1TXO1Od2t2fe5AgLhDTQfU+SxEx8ySgS2GaLtjWybBBZhpA14jDG0y3HuwF+7JM2PXeZgW1Z2PLhn/nGsbioakqpeDIZExcNx+OEJHSJwwG9tjCExygO+OmzU353u2OZZqgePn/6gqbMiD2fx7OIWpvEcURr+RRdx/7+FvfkHBpJ6VqUnaJTmqauCW1FWzds1zvub9cs/o//k4PZlMiBm03FDx+WrLMW17VBK97cLDEdF8sUNK1kX+SI4SGdVCSDITES4ftkePzy+zesNvdo2XDiGSh67kTCcDbl1xe/p+8aHD9i4FqMLEVSSarW4zjoMXtNHfoEkUu20bRaEA4NhCrIzYQ37264nq8eRPi6QQrBZDDA0AZOEGDJjrxpeDEeER5P0bIjrxW6KVkXLZuqIzQ0bVWR9QpPtqTrhrHTMwlcur7HdEyqNmN+/471sOJnf/yn/M2Lf8sPv/mWxd09q7TkMLaoyx3LuztOTo5otEZJTdd0KMugKCvqqmEyHDI9PGLkDlkvlhhao4SJa5lorfAtE0uAbVmUnWRfF5RdR2iZVKqnxsQ0DMJoAOGIsu1QwicXPmVW4bRrnn425snxjFhJdnVLrRT6kxeY6w3Fhx+4vF3idDWiabF9n84wUL1EWB2FbtgtSvbLJVQ1BweHLDqTzhNk8wsuby5JF3t02ePaNoEf01+mTIcepmsxGw6IpwmJZ6KylCAc0DUVlmUhDZv1bokXaMp6i5YdUiqKumOV5/SWTTyZMhiO6FvJfLcj32f/2mPEj/zIfzU/Lk1+5A8SYQhcP8BxLEbTGWhFmeaURcnB4QzdVnhVh2HW9CpDq5YeE6kM7K5Ca01etviBje0IhEy5vLwmjkccnT3HGR3gJgfoIqfKFyjLR4RDms0tNQ15ByKw0aUD8YBHZ6f4S5e0zpnvU94tCxrZMwkDNl1H4iQ0gc3Ljwsub1esi5pfPD7hZBaS+BCcPGFunfF215Oqimgy4uvHU6ym5Pw4AX9KubxlcnaMLAKaosToFLIuOQiG1ErTKYXvmnSdQgpBkiRo0yRQJUYlCV2L3p/wfnlJYgGqZ7cvMN01k8eHFFX7kCXvO86Pn/H47IxXr5c0TY1jucSHA+xhSFfvaWRHus8Yj0eYjebAcelcl67K6QEnCPE7hR2PaewJd+scqbes9htSqbifL1B1RbrdYBgarVp828SkJ3R9VNPhew6u7UDbMZkMwXOgaYgCH9M0mWcZligZ2uA6EAQ+wvZpdI1UDo7p4VgWth0+eFNm53hdg1FI9n3BoCspt1su73dsi4675QJD9ARxxGg4ItMGWVlidj1uFCOwMVTHZHyINk0sXdGWFe/e/MD65oqnL55zNhuzaUuMtnqoc/Y8jg4OcUwYuCbr+zuaukY3NVppLKFRSlNULeuiZTYaEjk9pu1S79b4wxmPzo85ijqq1RVlVdMbJqHvcvb8ObkY0Moj/Lc/QJMjHIOvnlhcLXcstnt+tdpyOE3QpsdgNuXl/Q1xULIsCg7DMW1esqtrul7RKEU8HlCnGzb7iqFtMxzE3Dc9P2yXfDYdsm12CDvkrlhRr3dk93OeHI/IYp/LZY70AnS35+D8CadBDUo/uBtskxaLdNWiZIdtarwgZCAEi5uKVmqgxxDgOjZPHj3BEQbZzZrdeoOejAniGNf38R3BbDKEHpzQIR6YmI6mnkuGkxk//bOvmR4d0euWXmm07WEYHi2Si/mGsukQhsFREvLo6Iif/du/JnIFqshZbHIWi5q02FMVBV1eUNUFTduiupYeTWgJJp7FxBmQRD6WIbHdGNcG3Va0XU1W7GnKkttS8dtNTfOwtUWmFcU2J/Q9zMMBjhfgGjZduafcGJjhgK7XvL38wCiwMS1B4gnG0yFxPGYxv8U3XZI45na7xLIsVqXE7x4eutNZzDDycQKbA7dncjBj5EesX3/Hu9dv+PjqDW0P2gpIy45HwwEH0zGGktyWLZ4fcJj4iHTB3/32N7y8rNBmyJNHj+hkj0Jg2Ra96vE8H9e2sITg5PgE17IIx4dI/wTTDkB2CM9FGjHvvv17Xr15y/1izr7qKCUU0qTvGg58C4OekW3ydBzx5198znA6w3UNYs+nNV2qTlE3FVWR0miDtCvQqmFRVKR1i0GPJQwC28BxXEbDhPM44PnkkOdPvyY8PuMfvv+BX/72gnW65MTRvL9LycoaXzxEHrtW4ngBsgehII4GJJMDvMmMz/yYz19d8Lv3F0gsVlmD7j1ioXC0fvgNEhZFI1FKYZsC3bVEnofSElMI3L6jLRVl2TCIPLK8oKtavNjlT/7yBedfnGJ2Ffu7VzR1BobmySjEMzSuaT4oXLVCWBadGXP8079iZmg+/tMvcYTN0Lao3t7xzeWCVkjOhg7z32ccP/ue2eSE9G5BOJrR1gV5XuL2Jttdx2pfUnctv3t3w9ix8ZqCqjWZHUWMnj1HjULybstv/vnvuXr1ivnVHffrDa8urmi7lnGc0EtJ2zRMDyZ88/YVd7stY98kGdpoz8VZ2rSqQ5gWSiukIaBt8TyfvmtpEdR7hef4eK6DajvKTLLf55yfHnFydsxq/ZHrK5vjo4T5xSX9fsefffGMRkrqbM02axgPElpcMBSnsUsoJFVVI6UFs1M2vYMwp4ynEyKhGegGdIUhG/rJhEnXMnFsjh3QGirZUlUF+WaF5Vv4joszHdFqTRJatA0YyRC9yvDKihdHQ6q2Z7PNsWRNrRSyKFiWNZZp0irFL84m/GQ2YjgeECchlu9ihwmqaUmv3pKEHpPTAX9yt+PbizmO54Njs7zdcnxgMx4fkzUGceBzndW8/nDH0eGMJ2eK0IH9zTsS3+XJo8eUb+/QvSTwHHxDsS9qLr57x0++Mnh+dsg3b665WmU0siexejzXwhU9VV0yCjwsbdKpnqZtGMYJk8kUp2u4y1v+6eojVZPy1VHEoReThDbLaMTuY4cMz0meDkg//hPSH5AbGi13RDZssoai7Xg2mTKJICSlSnOs+IS7y2tcV/DL775lU9f0neR4HHO5KZkFDlZREIUDLKWxkjFEJqauudyUDB2L2GvRQpM1kukwYr4vcMKEnVLQKAZ09KohcWzmhaDH4Oxohq4a7lYbgnev+Plf/AUvnp7w/sMbxmqELvfUjSSrFednAt0btHVF0ypk25FnNQfDAaezQ2aBj/Rs3vo+yzLHsgRlp7CFAZZJozRVL8mzjE62NKpHAb7r8vT5c9xecXx4TK8FwWDG4ckRe39IoRSv3rzh5esPdIdDHk3HLD8sub245O+KmkmQ4OgOx1Cs8ofrw0BLwkGA4Zl8WMx5f3eLahSBadO5A/7lvuQmv2W+XTGdeGzmKZaqCU0D1xXYsxGhOKeq9ny8u2NWm/zFF4+xKbB9n6ZVgIUlwLcdsqplU+0IPI8yL5FS0QmHSoJpmigNnuOxWq6gzCny6l9zhPiRH/lv4selyY/8QVIVFV3TEIynCH9AlaYsdgWzR58wDCx2d9esy5yWHstusDuFEAaWYWALGLuCyOwJXOthYJI1yWDA5PgM5Q+5yiCQGe12xeZux2w4oipThNnTKs1is6YwoGwUR8kEUbv0Tg/S4vjghLotEIYBvcWT0wGPHp1QVCU3m7dga45HLseeYjgO0KMD/qUYcLu95dWHV/ybv/5jvj6bEWQf+PjxkrtFyOj4K1CCwXSKkSTsVwuyzQ7PsrGjiOJAkG9WaNmwKDVFB52tGYfQ0yMMC+F4bHdL1pWiMjTTyOOmqDH3e6z1iiAePTRPdC1H0wOOD07osy2vf/0NfW8yHgVoAcIwCZMAXJujo1MenT8hCHzaLqCtK9x4SNM2uIbPepVyv/pIut3SKk1vKmzX4vloShSeIuUxWjfURYbM9uRVSdVU9EpS7TOk7TBXkqptGSVDBBataXOc58RWx6aqSKuaTiqMqkOaNb0wUYaNZI9W9/T6BiyB6QbEwmc28pkEPAxLhs3BIMS2G8CilhJhwCgZsu8leVHjSLB6SNOUaWwz8h0mR+cP9cbVku7+As/xePvmgseffka5XqHLAssLGY4nYMB4kLC6vWa+TknLB8nek+kA0/PZNAptmIzigCj0mcQehiEwesWTJ6ecTiLym9fkiyWjoxOi4SFSSpr5Jfd3N+hgjeVJwtmY7eIeo2qJLAsxGlAqTVbUIBR1c4GlW3Y7RTGMKA9MQtsHYVNuM+pO0SgDf3zISdhgGSZ7Da82Ozb7LVm2wzIF/cU7AM4Dh9NxwvVC8vJ6RVFe4sUxJ4cz7NExZfoGq0r55NkJ7jRBGA8eDtMyaRqJbZvc3KwxhYkwoO40k/GAp+MRz0Of6PCM2+tbis2S3rIIHZenT54idAGyJC1KVnnJ+BzWZU98FnL26WOCsY3hmCSTQ1xLgXRRgUu6uOF2s+HtYsPJeMxPv/yMs6++Zjwd0WV7FD3+aMjTUUCWNczv77mrS2QPbdeRVhW5AlNrnkcmoWXgyZ62cOknU+LRiC4v0G0JQIrND01PjkS5Hpt9Sdc2nIQ2nu3yuw18NBvO1T2jNGSUNIwHHUHgsGh7Lq+v+GTqkRxOCTwXbPFQtVzWJFHMan+D7zxUvDqGYJ9LfKvk6Ojgoe52s2X07Es2//nX/NPf/X+8XqVstYF9dkZvORyOE1zboiiKh0iD5SFMh8u379ivFiwKSTQ7xogmxOMx2/U9lilQGuglZdMzCT3KumaTlSjL4102Z5QaHAcOkWPz+ocf+MfvvyHPtjh1SqskaddTGzZSt5h9TdUaWIYgxeEy3RN8eMfPQg9/cIRwHELHwrBMTAR5WXCbN2R5yV4b9KZgmIR4WhOYBoFtEoY+TjjEdUdsdcRVHzEJHhN+PcHdNxyNh8zkmoElqWXLdrPFaGqOZhM8z8YwBL5tMT48IhhPCaYz5HbL10/O2JZ7XN+nMU2kYVI0HdJwUFJjSI3rujheQFXkWKLHMG1s20OYAscy8CwDTxis5lvquiNwTf7m55/wp589xjcF2/kdddGx396RDIYYTkK+WbNardC9ib6ds//Hb+iFzygKoSkpcEkLzYFh8VePpzQ3O373bsUq8pkFgle/fsl6tGN8OMQ1oO16NrXEUiW7NGVxt+f9xzVGK3mWeFjBgNHRM8LnL5Cxz2bznl/98v/i+uM1+b7h5atr1mmJ4zg8Gk85m4xJbPHwWyR8DhOPwdMpkWOTJAmt7eJ7Fnneg9FjmSaubeJ7Hr5tYRgC0zSpyhLPtFFdRxD7pNstq1VKEnhslyuqEuL4iOvXr/C6hi+//iOy1YbrD2+5TjW2E2JHE95fz4naDtt0+bitydYli2pFY6d8+uXP+fNJyZEbYUcBTSOo9pJdB5frAtqGtiuhasmwcMdjxsMBsmkxqh1SdrgW2E6AF9r4ozG2YXGe7Fi9fM/N5S2LRrKtJbdZRaN78k6BAYYE3zZZFz1/+/oO7B3T48c4kcnRoOB4HKE6QeRFRN6IP3vxiKps0H7M0WzCbn7DIAqxh2OyuyWGbPGlweDkCb5rMgs8fFXx25e/pZAdoSsoVAemwT5raNOau13FwfEZp0cnfPf+lk2a03c1WvYUCpLAJXRsjiMT0xQYlkPZdFi94mgywZEN18slb5Y5Nh3/+9/8MbPJAdl6iXItPn30gqc/97jZT7m+uKagBqOgzLa0rUNDy9QBS1Ss6y1f+wlSNXQiZOqCEAaLbUpVZsROz3DoUpk9kdnT1C0H4ZgvPvua19uS91nL6VmE3iwZ9gUJBrKrGPg2bWVwvVnRVJI3pURKych1GJowtHri0GXse9zs91T7ivHjT/kf//3/hPACimpLPLD5+uvnvHzVcfl2T9E+tDppTOga8rxGSUVRVxyHAeejEbMwJjIt6rrhdJCQbtdoDbrvEYZgXVY4gUlZPcSiwmSA1pqBK/jZV58xPTimzzOSxMN2fA6++CP6wQRVSmLHxJ8d8t33F3z3z3/H3DcYyoJA1hSLOScHivHAw+0tPm5LoqDGwaDoBI2Gj/crIq3JWkWm4P2+ZJ6uqWXNaODz1Wc/Qx5vEL1mPHKodilhkhDFA1ZzzaYa8vb1K7r5Fb/4/BGff/GcbLVC9B0GmsA1KVpNVj9cVcauRV5LOi3xbBNlGMwmE4y6xdjvH9oqPe9fb4D4kR/5b+THpcmP/EHSdhLTH6J6n+1esZnvSQvJ7DimqUuW25rVYoXuBaFj08sOQ1gow6aTYChJ6DuMhjGgGY0PKPOSzo6Z9zH/8Pf/gXR+i2s/5OPfd3s8yyJMBhiGQaccru+vuNvvWE6WHPghduxTpjtmnkccDvDD+wfpAAAgAElEQVQsC8sQWI6HY2p630L0iqosGE18Nkh+/eaetd7y++uUwNZ8cprQvX/N3/7qHwiQqE7ydDYEPSCMD1i2c+LDA8LZKeFiDb2mEQajMMLUEooNpfsg4/OMHsIpNAuE5WALl3y/Zzoc0HUtbuDhNDltKxmMJhh2SN32HB4eMB2NKBd7olLzxcGMD7uC2WTCcn5PU5TQtJgozo7HTKcj0Iqua8ENEMkhxeUFm9WG2+tr+v4hGhUlHpbV47g20jG57xSbRlJlKbIooK7RsqNrWmRd4/cKX3ZUhkFRFxyePsbSUKUbxkbFo9OAtLT55lbwYbujNEBYAsM2Eab54Bioc6QIUJgY7OhlRXgvGHoeZ17C0DUYxBZHQw9Ml072dEASR9T7jG61oi4qFCCLnGQwwsh2pGXLdrth/OKEr16ccZcZVFqwXCxJBiNiKqaTMYZtM0oi2jJjvdqwyGo2VUuWphjC4MnpCfuyo1USUzU8Oz2k6RqEVsSBy/k4YX31gfffvyZ2PIZDjS5aqnxHnVZ0ac7Vmyt2taLTFo6y8XqXkQN91TAYTeg3mwchX+jgeDHFdkNVNQjP4ejTz9B1Qf2yQRY10+mM8ad/ztt3FyxuL0n3G+43G0wEynbYZyWJbzIOPMJ4ROcM2NQVXW8wPjtjaHYMPZf2w3fU9Dx9coRt2xhdhueNEMJ8iCpYLnHi4Dl3yF7jOB6WI4jjEVM/RNzfMooTprMDftjeI1drRC84PX3M9CCmKJZc3X3Emwr8kUPgDsg7KBuDumoeRKlehC0KVG2gLY+86dj+l3aDn34y4+xswmjg0e1uqYuaWpt4Z59TL9ZsNgvuthmpCFjplrrNUKqn71oq3fMx1cxMBZ1NN4qw4ojw5DGy2COFxEZwXdyTFytk27IqJZ2GxDKRUrEuGi5byfHpY4azAZ99+jUffndFVi7xVErsSoTv8uHjgj7bcTKd4Iqe48MJ1/MNcRyDISgbxcnAZuhbxL5Lj2C3WDMZDTA7zeLbf+Hv/tN/4j+8vGbfKVzX5tmpSWSbmKomyzRnjx6zXWw4GA2IHcHFhzl1KblZF+j9nMefn1IUJYt1RtlIVNfh2zZxEtBIzdVyw+VyjTAdTk4eM/NMst2ev335ll3dYdkuXx2fYtYRrzOH4+Epi/2W9fqKsrqjky2OEFA1LHJo25bA9zg8PsZLhhjWQ1xycHBIcnVF2u3xBxPOAhfRm6BshJTk6ZZ1WfLuPmf9YU0w/YSj4y+p3v4zZ7drnEDSdVt6qekMC9sUdF7MfbXDkZopBm3b0BsG4ygmiBOS0xOsKIKrC86HMV88ecr7u1u04yI1dLVkW9zjBv8/e2+2a0l+p9etmOeIPe995nNyrqqsrGIlyW42SahtSjYEQRLsOz+A4Qu/gp/EN74U2rBhSIAhq4FumQSbFIcia8jK+czTnoeY5/DFoV+gbxoEcj1D3MT3/33rcyhqj0YQqRuQVe3OD9U0bO0dsJlPyJMYWagJo5RFWCI3Nf/V833+23/2Pcyy4PjNK5azBUIKbafNzrO/4mYWc/3lr5jfXLMYr2h3e3T6O3gdF8nyuOrt83+PQ5YXAXUw5ad7HveGPSw/5MKPmWc11sWY3u6Qb796xd69CLe7Q5bf+Yhub9dEm4K0EPnedgfHszB3epTbu4S9Pdr9Fq9//vdcHH/H6/dLZrOGnt3m8bOnuI6LUGbYZPiBT57EmEBf7+AM2xSbFAuTwlWxNIlQlSnqClXWqcq7laq8qNDEmiRYIxQpmmHjWAZpkjCd+wSbiJvbKc8+foDjulyfn/DJSGA42KLSCnJ/gwTUtXSncm5qyiJHUgXGszWvp2uSRmBgmrRaAo+6MjsuxLMLNu99ZquIq5sJs41P/Ce5eJQGGKKIINZUaUxntM32/j2k8QnUAU0Yo/UOUQQTrWOjGhJJ7HOdx8yilONlyu6wj5A1LDcBaV5T1jUNFSQCN0lNnk9RZBnjYoyh67RtG13XkLmrRu53Aw60mn/x+SeIgwFoFlq6j+l4rKq7Coopuhxtj7j++oLRg3u0ZIHy7Gv2tYJvk4xcVkgrCa2pibOaWZARZSVBFPH23THni5BlnBHGOXnVIACjtsD39gaIRUISBTTUBKLMpqwxbI+yuvMKeYbGzx7t8ODRRyitI3qPFYztfVabhOrlVxTrUzIqnP6QLJxi5wlJviHKC66zikNb4t7AotVpIaQxpaRRFjlOy2ITzZDqlGBTcLUKaRrYtjUcU6ci5g/vX3KV5Ii6SDGxEYI1z54eIaYxeRLiL9a4asPDgUMrBS9MWSYZYSmwKiuKLOPIqejZGpvKIq9qxFpAKlQ+/uw58+mY9//l72h5Fm63R/n2CkWRkcX/f6mwpigrojDBFUQOPI+uaaM3NelmQ7hZY0UBqqSQNiV1XRNlFUlZ0mRLJFnCtQy6/S6O47LvSjw62ibzYyKxpsgFuvefsqpVBrZFNr9hdjIhCkKKsCLLSk7Hp2zbCkLdMMt8PLFASg3c4S6O6pGkOr2+iyLXXMwXiHHMpqi4ma5Y5A21JNHRZfqjPfodl2YV4KktHv34x1gtBf/iHcHNDflyRlfIeOCIrA2b312OOVuF/BtRo6sLeHKJppvYhkpeNUR5RVlVbKIMBIGqbrAME83Q6VkWQhwz9LrkRYmhmf+UvxAf+MA/ig+hyQf+LLEdl0ZQ8DchsR8yvr5GURQuj8/wlyumsxUrP6I/HNCyFYK6pqigylPSTCROCvJGYrNckPhLsgOZRm4xe/mO99e/wr89Y75cEuYpeRZRJBEAkqoyGg447O0ShCW1aPGb16eYUsX9QZu0SlnMJjy5v4+gWGTJXdWmrGT8NKJj68RByOk4YF4ETHORsCg5GjiYrR6mN0Ty2uyXNXYR0aQpG79henyDaq0RJPDmU7aOPsEc7FKXOXmYMLu+QTdMVNNlq+1TVQWmLiNXCbLl0lQgUmGrIk7PoWNblP4GW1URWn3WUY4kFsRhyNrXOXn7mvx2SjG9QZVLthyLOs+QGtCQaAwTW+HuJFSsycKIIg7RLI9ofsXt6SviKCKvCqK8Jm9EiiClqHOKsqCUFZz2FrkocnpxfHeq2TRIkogqNChNgy40dOsKR82pmwSh1cdSNKYnr9HqGBWRNK+QZZWkgVVRUmYFGSmVWCDWBQoyhu0x7PZpmUNuJ+/wPI9wMeYiDshrGSQdr2XTablIssp8vgHXYpoX2I5HWZUIFOgSVHGMEMX0Wwa9joEp1XQPH6D5KccXt5y9ecP29jY7poOqqHiuiVTlrBYL8jxHrgqaqqIoShRdR9R0mqyiSDIOt9o0WYxYFqiSQa/XQdY1rs7nLOOSvZ5H6vtE65CsKkmSCsXu4JYK8TJFECUm4yWeJFNnDUWUsg5usEyTTrcDgoDebiMBrtywNdhi9+gIf3qF/sXnbD/8HuMIBLOFsg55+8uf39WBEBApKauGnm1jayq1oPDVxZpNco1pGuyOujyQGrZHXWwpx7Nsui0bWRGIogRb1WmqDU6rxe0yoC5SIj+kznOKJLmb7a3Asxw2t1Peruc4mkG71aMoG8ZXt7i2izKs+eTBD9CqhPPON5zOr0lli4uzFbdBzOefDxAliwKFxWJCu2OApCGYd7LZL/a7jFydZ4+OkC2NxdtvicKEztY2tdrm9vyC2ds3rFcrzvyM0ZMvCFYbgqwkjTI0SnShJhcbEvFuelOuMlRy9AePqZOCWlUZ62ds3p0QxDHLrKRsRAxJIMhzFo2M22qzXr1m/ctrjPgJ93bv87e//R19W+C+Bx21xHZMTG/I8WpKFZ7T73ewOx1KQUQuMzRFZhVEZLmK1dJoypIk9TEdizyJSbOS91fH/PpsSlI3rMqajtygyyJ5kTNd5GxtDUmKhsPtEWIe8u7dW4Kw4GZdMuj2EZqaA6MkXa+5uJ1TliVNUyPJCrpmUjU1hqohNA2e4yFnPhdvrrmdzTE0FUUQuF4seD2+JM9zEqmNtIZH//x/4NOjHc5+/je8+/1/5Ikrc9RzQRIxhYY6SwiSmG23dbeEVVRoxhzDdui6W/R29yiWM5IgYrXJmdYyortNU04Qs5xaENjkKZbb4frsmvO/+w/s3t+iJZfsdvpIwQJP75KLKsuiYXmzRJVkDvptdFWha6lYEqjUhO9eks2meK0OXE0QdYuiFhCoMEyF9ekEs1WiWC2EukEQRKhLBAQ0WWQ5uaGsKhZ5wWGvx+5ApKflqE3J9qjP3sEjxCAgCl7xx+9u2bFafPRX/z1y54Bq8g2mZqFoHs79p7Q+eY6rVXhWi6a9xy9fnmD29jgazblMQ/72dMm/3muxowsMHYfrLOe7kzVC64Jtx+LFN6eY3hJFrDBsFUmWmccZe9sd7MMhtSKzSnwcXSAOz3j35df89je/5vS7K84mOY93H/FktEOv18WyHNIkYrMZE24WFGnCdnsLSQPPsqhLHb1WCXQBx1BZSSKCKCIKIrpjUlclTQMq4K9X1EWO4nioTof1JsL3fYqiIEwLTMNkd2+H1XRMU2QsJtecvX2LWJbYqkLPMTEElVgQaTkWeRyiKw1P+y5bvS5bjoXltdnVS4poTZmVNFWCLVWYoswmq7ndxAR5SVzk1FWFLDa08uKuVmRZbHeHlLc+pr6NffQ5xn6Xyj9GIabOG6ZpRWp5lCH8+mpKWJbUVY2uqGySlLKpaOoaqoaqKu+E5WWOKrn0NAXH1pB1B9vUUOuaKM3Y37URLYPT83PKJEHv9YnnMaYs4koNw4HH/ME9Hh7sYGdLqnyDY0qcTDeMYwFVkZGpSdOMdZSRFBVnN1P8KEN32iRZCYKIpCgYmn43bazpGIqAVWcsgwIRgZah0zYUxCLik6MRnz49ou+JyHKNlIdkiU0QNEyvfMbH71mdviWVTBKzS9LEIK4QiMjSnFKGtBbI4xDo0d3vQlVzdbMkyyFNQ5K6ZJ0XJFWFJAqcbErErKGcBTj6nOHOkG13QE/T6Rz9BFmVqcIJkm5TNwJQoRgG/ixiKMo4ukrSiIw3PtuKhqc2aIbCZQSqKZE0Pq9+8wtMVaNMJc6/GxMyod3WEVUTzzIQmwZTltk0AmlakKUFe6MuiiBSpndhaxLFrKZTNkGEJUjEkkxRp3fuPVVGV0QcQ2HQdRFMEU0seHh0iKEIxEXEap1w+KOf0bn3EX6wYHz8kjIKCWYXzG7HnF1HtA+eod9/yJtf/J+0dYm0qLhYl8SlRYHAo/0eg1YfWRKp6xpdgDyrOB3PiWoJyTDI6pIy8zm/jnn95j2eZrI12iH/9c8ZtAe0dY2dwQ50LVbjCW2jg6y0uf11yvlixt/99mt++mCA0rORdRVZU8lrKKq7QKmoG4qqugvDG9jb2aUqRbZkk51hnzzPaZkfQpMP/PnxITT5wJ8lw06blu1gtjqYqoxSJHQ7HWhgLqpUWYNuezzc66BRcFWWrP0cURBxFAkJAbHIuLq+5nK2Qp2DPXqEsLimWlyjFAkPnv4lt6sVk3e/I8hKojyjImayjjg5X6AId71nVVSYrjesNzGOKt15FM7P2ekOObJlbFOmkTtcvLtmr+1w0FP4z9+NOZvFWLLIxz2bympRGgPE3hH9jolXrFGSDGWwj6A9JIpyotmYJg5YJDmypLE/7GNoKuFmw2Jyi6wq2J0+hu6gpUtaronhOJRVRl7X1HXFsG0zckwMGjZVyn23TdXZ4strH/IK8pjT49ecHb8k2axpNxU/fXCPrmlSawaOW5P5MU2SIJkKeZqiajpSVmCaNptgydXbVywmKza5QFgJ1I1AKcnUkkpYicRpArLAZhEQFjBbhZTFXS2mZcjYcgOiQKOYbLKIPRUsVwJXxevfo/7yHzAMjeuZT2V7dPsVo9ok3tQkRYmhecRZgW45rOcrwtmcdVCgqRGPHu/y/MkRV+cOi5sLHEPC8yx6211MQ8V2XKIyJzcMsmJGg0AYRdRFglokLKuSrpvQ3+1gdT3KbAllikzDej7DcSxEalquh9vx0ETIswJZ1WmqmjC86/KKokjbNhBFEVOR0C3t7tvJU0RRQFF1FEWmWY+5PD2h43p/eqEOSNKKpJKICo2oEMgbFbNRWfkbbEMhXy9Ik5ymERHqAtKYvKmxbR01SdnpDvn+T36CUgQ4psng409ZBBG12SZJVrz73f/L2fs3iKqImIKiyGiqiqZbiChcRRmr9QxRUfj8X/53PHnykN/9+/+LX754y2dLh/s7LVSxQ9HroQ53EChYL2/RNB3NHhGnGUpT0SQ+jutQVzVikqPWDcJyhlmVFIpGWlb02m00RUKpCqS85Gmrh/biK4LNEtsQ6dmH/OHilnDi0x8dMBge0BvscHlxRXx+w+jTHepwgygItA0N8/4220mJOxxS27077YwSEcku42XGxauvmI1vuFyuuQkzXvkN69UMuczRRYGyblBUgZamMOr1cFUB15Bxyjmm5MPuLknkkQcCSZ4QVw0ZEqap41o6JAVplHKxuKSq74Snby+mnPy7/wMxLXDKim9vA0y9YdSy2dnbRmptczE+QTUTRnlOEwfYmkjb0ojiBFFoiLOC3a0BVRigiiKyZLCeRyhZxn7HxbIKlGWAqkrYukpaN0Rpxnq94f7jj/FUiUoWsG0HWbfR7Ixep4tBiWNpvLlJkU2HcLZAl0Vsw0A3LVRBwBZqWrqKJqtQp4S1TLfXYrzyudmETJOCMIkoKlAMnXJ6TFYl7Dx5zH7xzyknZ7w9/ZrnXZcH2yMETUZQBFRdojIcVM1m/PYt60oCs8XRwX3qsuR0c+ehyuU2T//Fv6XjeXz5H/6G4fYAZbng7fFrjn+7oowqTK/L7fk5/edPUJSStqWQWxZJUuBnGZs0w48TmsrB01RcTafcrAlefMNyMqPY2mbVwPV0jqwoCGWNoOnohs167ZNXNYPRNqZlIszulkjqugZJIo5ixOZOVrxWevzsX/6ExclLkttrDEMDw8AQZJ5+9IR0k+A9+hGdB58yv77mwUcPkXYGjL/8hqq1Q6R5yNIp4vSK+c17mqsr9HVKreo86w4pphX/6XTGP+sbdHd73NvqIUxWBNcbJk6G4bbodmR6XZesrrn/YMS8GNPoHXyzh9jEvD/3aZa/JM3W9AYtIn/OJFYYHtynYzrUWUy4FgnLgtvI58V332GmSzqqzCRcMujvIQg1nb0utSAjKRW2pmFoCmItoOoagiSTV3euFrkpUQQYhzF2VpI0EcvVkqoqcRyHdqtNURYYYkXncIckjwk3K85uxtzfHtJ221RIBFnBJFO4mc3Ikpinj/fYcXRUWaIsc7IkIljOyAqPtzczJpMZ07nPNBKY1TlHjz8nnU7YXBzTlDWKKJA3FV1TZ3x5ib2zz4PWNntb+5i6hdnrkmdn1KlMvk4oVyGOZvJk3yU8u0BMU0RDo93q8362IqlKkihEtdpUZUYRb6jKnDQOOLlKeNIPGG71cL19jkZ9hOmUtqWQiTWzdUiSxEh+QhyV7A0HDD2XjiLwqNtCmU056mt0n/+U33z9GygvGVoqctdmNR5TiQJZmhJlBWkFrdZdJcpUZXRNI20UTFVGlAWOx2vaporXyAwsE6uRCNGpi4K9wz0Grsb24SHZaky1WVOKKcvxgvlv/hN5XSEXEZ5bs843zBczqnCNHwQ0ZYmhSiR5yThvkNYln8gadreLNdpiGbxgcX7Dm0nIbSVTyQ1BURPlFapQIxQBhWZyk8q8vcoZLFM6qkh7ds7B/R2GnRaWpiNpKma7h1gVqOEFRZXTbXuYmkpTGJR+iFDXZLbG0LVZZSmVmNFoFcHqFWGYUTHl8t17Ots9XFMn8WyEssTUZKJIpiortnUVR1WRFRWxyFkt5yxWG87XG5K6QpJkdFlDlWRSGpx2B0cqeDCyMFWVWRDitNs4hsn09JiL2wWtx3/J9scfcfSgy+Q8otmkzOcLJE0jK2NUqeGz55/x9X/5NQgW62hDU+WsFImPdwbouoiqyRh6g2hbd06d5JqVnzBNGyoFyuWKzWaD1Nxd+G0NHLa2Oxzs2ByODHb2W3itDpJhUdcw2l+RLlb09woEreJ3X36FkIbEwZpQKTEsHcnZQbFclKwgLwqqsqJuGmRFwbZMLEGAOOaLH/0US7epqhRN/VDP+cCfHx9Ckw/8WdJ1HCxNpswzZrNblDKnbdss1hFxkEGj8IPvP6PnQJWExFmNH0wpa6jrGk2V8IOEVZChiRKb6Q1SkuJqCq4sIkkC5eyCZjrDLmvQdHRJ5SqKSdKAuLkTIKp1TlNkmKpMz7ZwLJ3FYo4uVJCHCNggyMhGG0NS8XSdwaMD/ubbFZZWoskqrwKVdVCwo6sop2esA4XF9XvqNOPh8wc8ffwRTquLH6bMrqbkyYoqvKXxG1zXZj1fIFMzXi4xAh/PtXHUmi1VQdckilKhqmo0QabnGuy0PU7fnJJGKYO+wb37B3x59geyvMDRBM6nU8IoRAMOtw8YDPdwLYmzwAfLYK1KVGFB+SePlyzLGK4FlUYjgWmYRPmCsZ9SyyZx3bBJE3JBpmgayrwgbzJEFVRdpyhKAHTHo8xDorzAME1a/RH+9Ipuz6Hda2NqNe7BHorpkKUK1egBvqCxmLyna4gEKNysC2qtor8/QEZjvYio6oYyXlNWKeg7+OGKvb7DZiZgOAayIqAZKo7n4HT7tPKGr99dU+QFrdbd6/ebt68xJWhZOlmZkeYRujREbw0osxzHbLHVG1DXEAUhhtTBbXcRkhAhL5gFAePpnKulzywpSOsGxTDQ4xTbsjBslTSNUGSJ/s4hoi5CmRBcvGU1XdDrDgmyjKtNwatFgR+WdBHQZRlFN1BUm5bVR5dlVM2i9Kdcjpf4ac5aEJDyiu7+LsODhzx4/JiDhx9RhAtsT6aoEtrbh/zyl7/gt7/8ByaTGQ+efET/h3/BydtjsjwnXG/wk4zJ5JYiv/tRFyWZ2bv37HsOpioimybHs4g8z2nyFEMVkKhoj4Z4+/fZTG5R6pSqKEiS/M6nMZ4gCXchZuhvmBcFT57/iL2DfWwxI458OpZJ4Xrsun3Sm0t+cXpCGCeogy22fvAT9js1cqUibx3g9g6YXE0ogznpcsN42Wa/7SA1OZoso1gu6AJG/4Dp1TmT5QrVHfBiXHH84hVVGjNJYJWWJGWBFPtURcnRvSd4xZLJdILj2vS7XaSmwtYaJEVCsFvUWUL8h18yf/01Vsum7Wjs9Fvs2x3WtYbQdvmelHH+7h3vVgm1YJHnGUEQoaDw8aND7qkx8qbh8nbJ1XjOTVDSGWVYmkOrlNiZT3CVBtm1OBh4rDYheVFS1TVBENMxNAxNwzYtJosl+22dXtuhJYp8dLjFm+spQZBQSyJCIyAg0hQZWZ4hiRLD7X3KRsH2ffzpBL+qQO8wD+9+uIqypOt4dDttDNPFthzMeEnbcVEVkao2uY4KrnKJzOvQVFcUwRWSqiDIKlUeY/X3UaUA3b/AsR2ef/SMf3/2HTfrgM8eyvT3DlEsHavtYncGKO0uvHlD7a8YDXfQu0ecXZ2wXG7QBZOnjz4Hv+Y6XHEbrtjZ/QxZ36I+P6UKlwi1RhWu0SwRQaixBgcMnQ5icMmoirjnaPRGXXZaFgo1jm2iuT38UqPJUqZlTbReIfS2MDyP89sxRrdHreiswoisKKiDkCJLMEwdz/OINkt0TaUua3RZpKUpiKLAej6nUFx+/Nd/jbC8JE5CJNlFYklaFOw+us+jf/Wv0asaS+qTjEOy9i497yVJcYLsR5hShJhptI0OH8sbRrXPbbrmm8WUrEhZFDVfrTN+4BZsd0ye7ivIQoag6tSqSsezcI8eUyUZRivkuSLx3U3Oi/e3vD+9RKxzhgOX9n6Xk5dLblc26yBmPnvDVIahqWPrEh1PQO2aJGSs1wFOy0SWKsQmpW3oOLaAJNQE6LQsHde2CYuavCios+LuJZqKoSnT77VYBSGrtY9iApKG6ciYuoLb7qJIEleXF+wdHGL3dknSU05vlvzwi8+xJIkoCAmiGD8u2YQRXU1CkiRs2ybebFiGCeE64moZcJMqCIJC6V+RSDZrQWXiJ8irmEa3KesKAQG91UWoKz79r/8Vkzdf4a8CvI8P8Lo2KiFNGKCqJnlWUOQFbU3Cbgq+mizRRYmNoGDZHp/84C+Iv33FzXjM1t59nv3lT/j297/n+JtfoUrwxc4ArUroq6DGPtffvsCI7/PJThvTUtEcF1MW8EZb/PyPr7GcLlpVMXIdZFlEKXzy42/xVxrVsku/0+bydsrYX/GgJaEpClkcUVQ1SVkjijK6YWGZBo8P96hElbJRWfs+t4sFbU0gi0Pm1HzcMbF1DQOJlipycLCDJVfkqyXpKmB5ew26wzpJOb29ZezHzHOFoIK8SFiECZVYY1PTtRRaMkxSCaO3x97+Hr2Pvk/7YYc8a6B5RVAqvF9VfO/ZMxaXJ/zxfMw6vXtEQajIo4C8UdCVjFSJWFsW0kziq4t36LpEV5dp6yot28UxZJKiRkCkrsFSBDTDIa1rFEGg6fbYLTPSiwuWZ1ec2SJHT3bYPrQpVyLvXse8eHGK5XUwdQ0hr6krAaGqMGSVtgxqU1NECYs4IQgDLoOItCipaUjLkrC4WxoTKpmdoyOa+SWD4QjHNhEmS9pdhyLPWScFdmeX+4+e4cmQLGbEy0v8yRVIFqZhQ5lTRGte/vxv8adjXNPA1dvM5+cURYkrCTwZ2Wzv2qhehbfX4zY1WL97z+UqZBU3pP4CoUywVFA1E0kTqIoMO92ghSr5HNbkyBKYyt0UuKhoqKZMq4748cNtzHTF+cUNmzSBWYDb74LQYOkypaEgNSWJCEFaIUsSbdNCouGTw0MOHj5B1Q3i1QzR+HBp8oE/Pz6EJh/4s6TKc/LVgpvFijoK6Ngmp69eMZ1vSOKM4d4he/cfsN0zCBdjposQTffvqhaiSFsBwzHom3sYVT4R/qcAACAASURBVIIfhnRHO7QHh+S5QLQJWd1e029i1hpEcUChGgwakeur94w3GwRVQzU9yqZCqCvSpKBvWbi6Qa/dwnU8kjwnCVc4ps7O7hD/NiaMGvqGwm0jMElFVnlGxobZWGC8nFHvONhJRCbqiIFEeXLN0X2VotVHHijsGX2ahYzUlMhOB+niAs/UkW2X48sLiiLG7rsIoowIWKYOjUSySSijhFlWcHs7x24aovMTEs8DUabT6yJEC/a7XdS2R5PlfPbkEw6OniDEU969fU9o6fQHbYqmohQhSjOKpkLzWkiSgtLp8cgb0Oi/Y3u2JJYMlkFM1CiczHyCPCVNAioEEn9OuLoT9KqaSne0TeFvyIIFuqzS2dpGbjJGO10Mt42Ux5TLEzRdo5QVnny8xVenK6S1jhzVbKsCiqtxulmzPssQGwlN10iSu8sO03O4fv+K+FqlbVi4usLp7Q32/jb+OmDUb6NoClary3L5mvHNmCfPntJIGoqqkhYZZ6sIz9GxoxW2UEFRoVs2uuXRcj0ubsdESYZrqMiSRK1qSERcXFxxsvCZRClxVWOZBnUDWRJRlTndgYei2dA0KNQoVUayCbiYLZEMk1pUOJ6v+cW357y9nHHU8jBUmVhQSSQVxbSRrBaabqMLJl1rRE9P2BoMCawORbTh9nbCo4+f4bXa6LrK7u5D6vCaIM1JNZUmDRDziK1eC7ftYLS3eXt6zcX5LYpY4lgNVq9PuFhDlWEqCpPX3/KLy/c8GrboGhrqzg47tszJ5IqqPOOvOiaO3EG0HOr6ljrPMGyParwiWG+QRQk/SimLgixNySWZ3v0n7D9/jrQ44/XJMVXdYOs6R9sjpufX/OZ6jGO3OPT2eDcOePjkHrUV8/riHGM84d7Q5OX7FZ5Y8/LtO4wHe/Q9g6oBVTUwaolgcksWrlnEEK5v+OqPb9D1DpOo4WqTkyQJrmtSxRNGlstIK5CEBt3VMVTQFJlee0Q+O6EQTOhtkc4CZpOG9XhJtJkzlBvsns3Dx0d8dbriu4srvtsscUwVz7RIsopS1KjyEq1q2BuOGFgJZr+Frsq8u5hxMV9gOgaq1uMPFxsGns6T/R5pFPNkt8fL4xva+p0rKY4C+nYPJJXFeoOsqJSaTW9Y8ccXx5iOxeFwyNsophKgzDNUSWQxnuIMu9xenvPg0+eEjcrJ2/ekgc+g3yOrQNcUZMVAd9tYlnknhVRUsniDJEFR5qzDnOPpEuwR5taIBpXa36AZCkIjovWOiMeniKtjzv/j/8q71Uv+6tPPUOM5niJh2wY3Rc2DR0+wpbuzfFUC0zE52mvhH8f0D3ZwP3rE9WyFMdilXK+IVlNubibEAtRxwu3Je05vxjSFiIxA06QIVYNutOm3PerglspV2e73KA1wZViuO9R5jEaF3uuSj/ZYlRXB6UvixRWSto2hbHH04IhlmoIoUogiweQWQ1VoRJG6LOh1h0TLBWQqnm0CAkpV0DQVqnbnrDj/7hs+an+feJNwMHCRVRPNE9i6/4Bdw8XsulRX35Ed/wOGcoiz9RT3hx+RJ5fkRUkelPhJBknG0GtjJjM0P8EyK8ZijaqqXOU1X698hIHNZZDzvR2dfUckl+Cb0xWfeTP2HhzR6zzl1ZtL/v63l2zSDLkI8WydTZDy/rcXfPLxj/lf/uf/iX/3v/3vvHz5e1he8aRJMYoaNRGRxQ6ff77LL/+fW8Smod1rc+9om3Zfp8oSRFEiyuq76ycRhLqiyIq7Naq6pqc7KGWCaxocDDr4gonq9lBVmSj06XQ8akkmzKCm4LtvX/HFD2x0TePZkyO2trfIZrdYmkLHsRDWGwwJHncdxCwhzSwUWWZWCLxZRlxtZtSygiqp9E2VMAuYhjF7B4/44fe/oJBUFldnpOGGOi9RVZ3j787Y9rZQsisGvS5Oa4DR3qLyc3Tbo042CF6fSFC5nS1R7DaVJJDFU9Qi5/df/o7VekMWJah9GTkOKcIViiShygqSM8CVSybTG0Qh56+f7uN1DNqGgCoLSJ7N448e8+XLS6pKZDafcdDrICBQ1zVtJeKrySvevluQFgWff/EZ+9tb+DV4bZlkPUeQJLIaRAQsXaPr2Yy6HfruDlEQ8vX5nPF0Sl0VeJ5LGacEScL5qubzHQ3XMdkdeHidFuX4lM0sIPJ9JsuEuKoI84IX1z7vVj4BDmGyAf4UJjkqqipQ1SppDbYh8/GDhzwY7WGKJop3yPJXf49KhqrC/X2XHxzUTEWV1zMFU1QpBAUJEJIAU4aCkk26Jis2uKaNJbkYpYGj2QhFTJnEZIJB1YiEcULLM2l320hVgVmkGKZO1ekwyHMWqzV5GfHi6zO+eXvJTluhWG04Hycosgy1iO7YbPcG5FFJxzTRWiV6UdIaHdLdPcRfznn51Zcsy/pP88FQUNNSZO5v7zPNYsLpLQYlbUvFMXUSy8DTZcIoIShkHjw4xKrGxGcLNorHfD5mPZ9TSQHBGtS6xJBrdCGlCKaoVUReJIjIpFnO7WLFp3sDDLOFYdlM356gDz+izHWCuEAIQu55BkJTUxkGlTfk/OW3LOoUPY7x5ws00+bw8B7rQGawU6EbKk0REk0vqeMQWWgYuTqXqsHZ7YKBo/FQ1oizElsRaAwNVRDQlZKqSe5WLmWJoWPx6f17qEJNFQWEqxW2Lf6T/kN84AP/GD6EJh/4s2Q1m7K4vKSsaja+D0WBoVvc291jsw5wPRfXdehtDajzFBEwTZtgsyYqGixVYq9joWoG0XqGpYgMt/oMPnpGXEhM3p7QRAlSVSM0N7iqjChJjMqCe8MO72WR8yAiC9ZUAli6QVTU+GGM29timYTsjnRsXUeSVGS1YXhvhGj3WE1e8+NHI4oKvpqkqFlMXRRsLi5Rm4rry4yOqqCM2vzxZkMkTRl2CurFH5id5XT3e3Q6bUpRJAs3RHFE00DHa1HVFevpFZIkIYgikiRC3aAoGmWV4Ec5N8s5m6RgnuXUZUn88hW6d4TS1LQGWzw73EdYz6kqkT27hdk0iIbOtu1yFQZkDuweHpCUd33vKCtRBjaaZmLrFlZ7C7XIWIzHnI99Mj9CtwxG9z8mi+e8efOS89mGsJFopAKxKZHqArURefr8Z2yWl/g379iyauxRF69lo2gy8fSMIL7BMjJqoUCcXXLQJCRVjJ+UuLZ8181u2ZwsMyoJJFNFs1sIss5or08/m3Nw7z6j3UPy028pWgo3NzOkquLgaBu7Lrl49Yau2HApKdRVQ6flcri9xXK9IolCFnHGMFmQJyeYdhtEi7Kq0VWZEoV2t4di2ahNTd00TMc3iIgYtstI0ZgHIZ6hk2cpMgaeof4pQGhwHQvH1NBViaW/Zu3nNLpBJGocX14xn05wRIEjQ2Zb00kUj2+ursgn10zKiko1aRk6f7U3QHK6OEdP+NFPf8zs3Qu++81/pknW6IqMbqiYjolk9GimKfH8nIN+l/N2l99+c8b75Tnh6mvCxSWyKmDYMqohcjB6xvmLVyThElWXaHVHCE3BbViw/9EPcXWJg/0++ztDbl59ycXxOZ1RD1MASVEIFzNUVaPV7nJ1PSUOfMqixpBEhq7FY8tkL1li5yskU6btmmwPe+jSiJ3RA5KbJQO7zeD+M17OZvhXV1gHu6htBzNu0eQ5tjFib9hGyDJevXpBS23oPTlC13QkARRRYurPuN5UvF+VXJ28JYpCbv0U3epjeB1EuaDtSlRJiEKKv15gSxKGbpAlMU0WkkUiZl3RNi2qZYCYikjzOYtNDVmEXmSUdUMwv2W/7+EnNos6Zb7ZYJotXNWgLAM03aNjd4hvxnB/j+7eY6KgYissWcVjCn+J6jr4tcJXJ3MeHw1pdzrc36nYa5tQC2iaBg2EaYVqyBgtl0aQKDWdLcfgh48K1nmFKGkoec1mvSZLM4S65uz0glG7hed1UWUFK7+bvXwXJIRxjiBmFEmCIVTYpkvHNum2WmiKyrKYIFQiiyDkapNiu0MK0aA/2sMaHfDl5GvM0maeZShSQljkOIrEtmnzfLRPv1iThmP+x7/4C/oPD1gIFUElsPvJF5ThlEaVUEwV01FpTIG4DHEIkYWEoesxj33yek1dF2zWPluuTlxHOGSUlIiiiKYbWFt7HH7SpyUu0eWIcpXgPPg+NCamCI4iEawrijRB9DxO1itUocEwZOSWhaxKrGa3tHbucZTmvHh7TO4HeLbNsNuikXUoMsQiwTV12sYWqiRRxD5CI4IkI8kqtqGzXS/Jj/9IIOjM1gmP8wTZkLG39hHbuyiOS7M1QOIpOAeQNwj6DlJkIp+9Q6o2qHbBJH7Fb29XpIsZVrKmUWseehbPtvr84XbDby43zN8uud/X2aQVhq786RXcJK90prcBll8SXd9SRyvitESTJd6OI/KmoGpqZFEmml7z+b0u4bHI86N73LcFmibH6XusBkcUfklb03EVmYODHbb7DnZLI69NsijBFATqvKApC6qyJCtysjxDlWXqsub4ZslBv83+3j4BBnp7j6wqAQHH7VFVGYusxjAa0iwmDEIQKx49eYyuKhSyhNvpkBdLXGnNg7ZNxzJ4O13iJxn3XRNVkvF62zRqQFQ0XM6nLOMESZBwDA+pEpmcnGB4LYajHW7PUuokxLJbPH/8GHE9pb21xc7OPgoamt2lTDdkfoygubSGPax7H+MHL+kePmRn/zF/+PXPmV4e0yQ+e70Wtumx1W+xPj8lG5/jKAo1IrNNTKQbCLWG5bp0u210U0cbHEB2N5lbCzOurq5RBBhu791J68sKRVIwywI/DnixWNHxPE5Pzvnhz/4b3IefoC7ecL5ZIIgisiigSiJdz0VEZOA5FNGG03cnSLXCTruNLkNPE5jnCVkN4zBhvfbptzxsy0ZTdSTDwtFjLNXD9roEhcJs7dMPC67SgrhoEBUZVSzRVQmRmjgT8Q2LpC4xFAHHkVENBc3t0ggKkjdAtBfsH7RRJleYesXBZ495HGic/u4cP01wDQ2pblCFAkkWMGQBWawx5YIoWiE0Dd3MQTTbHHzvM4SmIHv9LUkUoVsO7e4Az1KI5RLNMJC2+8yUglyGs3fHCFXBchXw9fmctCgRJZGupTBbh4xMD6s1JF1fQy3iGAaOKfHg40/RTY86b1g2MutGRBRlLJo7d5go03J22Xq6zcnrX9FRJJxuH0eTGZQ5cRqRiy6fP/+CgS2Rh3PiRYPkKQzdbVofW0xTEWk+wUi3aFttTLuHEMSY6TWmpFIKQ0pRQhRDBKAIEoyDA9LNNfFsgt1p0W716Ms5utXgtbtoVgtVUtBuHKpcYBFWvBjPMK2M93ORw/2cwbyiJ4lI8Q1JMMYUCwxNIkFGkgRy3eL+vQGG47LJSlxdpc5kJFFEVRvyskFEQKorPt7ZxrUsotktaRxz+/4NPfXpP+1PxAc+8I/gQ2jygT9L5osVVZ4jqTpp2dD2Oriaidjf4enjLrm/oMlziqJmtVhhigKmYbNarZkHEWmcISCimy5FVTMdj9FnE2rzHFHrI9cihumRBSGSIJNVAnkY4oc+mzSiynIcScJVDcKqZJqkVIjYgkJTa4jZipbW0DE87N1tREuCRqJzb58wXNHR4WedDocXc16/uyFJCqJKJi0bDCo0WWYeCowXL2nZCsdfntBSSuJ1TSiFGGKBNdqnMC2SIGDUabH3xXPevPoGpdww6Hrolo0o/3/svceSZVl6pffts4/W5+rr2j08VMrKrCwFogFUA23dTbM2ctBmHHHGIflinNDIEckZYSDQYBEokVkZmREZwsP19avF0edsDoJPgAmszPJ7iN/2v/a/1hLQFJS7LYZpsU0LpuuUTV7SNyVhJ+EfJytip0C2DR2vQ7/boagb9vae0M1qVm/fMzru0o1jtkowLRTT6zv2npyjByElOm374fRV0w0s3cR8/DFO/5DOI0Xo/o6vv/09bfOWTsfn85MxQtW8f1iQ5i2WgNDS8VSDvrjhse/wkHRoNitC0WAbJmWaYuYlWVHgmpJUaUyvpwjLJLbA0gTbXYlm2Di6zcGgw83kHl1rMCwXx7cZNCk/GXocHo/YGyhsd0hWNfzOtLidrHn36gLPc5i+f4dZC56NBziez2w1JTQkZhwiQhvXkdStxv3bH9CHQ+RxjGtK2loR9ga4TY4VxKi2whRgGjaNYfPk0Zj760tcKVCaxiIrWKYFgySkaVoaJdAMi81igR45lLUgyyp0FyJLo2e2fPHRY7KHOV/1Y0wrIE+OWazWLJYNGw3q/gmT21f87estwyDmz4dL6pcvScod+8M9oqhLMj5CGD56k6NJG9tyyGcXXN+sCPyENH1Dsb3n4PCEaZtS5VMsaXD2+V/jmkPS63vuig2tUpwcHeFYBtVuhVmV6LslquNwdHaGr2cE7KBp0Q2LOiuokLimgRAQeB6r5YZdVtKLEj4fj4jyHLl+QEwuKAxBlqcMhnt0gpgoOWJ0tuCp5XErbFQ7Y7eY8PLFC/7yP/07cqdivZqh1BmDoMuLd7+nLAWXlxN+cnaE7brYrksjNIrVNd++fs/vX13StqCj8cXJmPjgGalWs1omlPMpOwGuExNJA7tOKaRLqySOVCxuL3g0CrGaFiltUBXF+oqyyqkkVFVDXjU8LLf4hwNORx5DPedSlqRNg93x0UXFukjZTS+5Uwv0qiBsJGbeEOk6z0Y+p0c9kuMD9GiPxdsfWOwakoMuvW7DST9hudyyK2ucKEJKQVOVNGoDlaKyBsyzDYNBj6Bqifojbl+9o8kz1nXNbr1lWta80A1+9ukzqGpm7y4oi4b9/gDH8yisCHPVUOW3RI6H4/oYlkOUJJimyeLhgdXOwBscU08vORv4GHHC3e0VR6HE6e6T1iWtKZkFx3hFzp/95CuePn1Gx6nJv/kD/cExJ1/9BdPlDd3QRbM8VBWym9/hBwZ6q5NPMxynZv3+FaFVQlDTCY4olUaQVYw2K5pqx64o0BydzS6kbiS93og48Qj1FUE9petq9AKJ7VioTKIZEiUFtVC0rk9j2kxWCwxR07EM4riDFoW0RoDjOvj7h7Q/XFK1OeN+n1rXKTGY3byn2Kw5OjnFEDrUBZkqKOsG3fYwpOTQE6SzO357f8XzZ895sdH5slBE9oeAaFr1IRNLWFiP/g3NekW1uKRd7GjbBmGHVHc3TN5fs6hb/HlOmwlsNyIxJa3QKEVE3ZQ87+l88eyUOKz5f799j9RMas1g+PgxWe2SL1seJhOkYTIIDO53Fcu8xBIaka4o2paL3/8d/yXd8GXS53/67JzYl5AMqKSO49o83R/yGTr6ww8Yi1v2x31M1SLaEtP0qPKWYrtgl5WgANWSpjl129DtD6mbkskuZxDkPD3a53YH4cEJ7y8v8f0YN+pTFxsQgtLR0POCbLsDreLoeEDbVFhBh6xcoGvgi4qzcY/pKuPlquAXj445H3foNRaj3GA6gbmyqIucZVZQKY2nh2dYWsvqzR+ZVhVKCFyp0TRga7B9uMDe3fPpL75EFgXSbaDdYpga+bxip5m4QYQfRnT6PdKHO9LVCtcwMaWJKxW2ZfDF46ccHD2lXNziPrykrSvWZctpx+Hw9Jw3r2v2hh3i0QF6VWA2OXoS0xo+pm5hSZOOpzH2bKLAx5A6phK4tsmnRwcIQyJ6I5I6Y+AayOEp//i//R2N0qibFsuQWFWLbZokcReBJKtafv7zn+P2j9ikKbPrCx6uLshmC4pG0QJF1eKaJtKw8MYnCBM832Vz98C6GnL98g2/u1zyzbQiL1o8Q1IJReRYCNFAq9EJY37x5U9YrJbcTW6JIhfHyPEHCapucPtDTnoJMorof/t7Vu+/IRo+4pdfdLi/3XA73fGQN+waxa5pMWk48iSJ7XA0HGE5Lk2ZIbUVszzn737zG6ZZyWZyQ9/WibSAeW1yMj7BbnPYrXGDiD0kt9MZ48NDHt5fEDkulmq5Wu1YlzW2pZC6Rtt8uJDI1ys0adHxQ/bikNC2aN2AnZIMnICDABIUA9Ei2ooCMBd39Hs21whAUFctXsenTndM51P6Zyc8fXqKrHfIyEa4DpYzwAoCcA5Jdy3T2ZDVcZdsuyZbbjkkZH2zxLQ9DscHfP/uHYbuYEgDqopyNiUeDYk0k8jzKFaPefOHKT/9fI/eXg9NN8gXNc1bk/XaZKMLHNMjbWC2mLCttvxXnQG2lxA9/ohi5nL19e+ZqwJp2ewNezx9fkREikmGoXR2WY5lW+S7ksC3aOqazbYgdD1C3WAzuSVbb7l4/QPXN7d8cXL0r7tE/MiP/Av4UTT5kT9JhGmiOy5umDAYHzHsjVhcveezsxNG5+e8/Me/Z7dac/2upZ0+4AhBP/SZz2wWmy2zXYquSxoluJls+YdXM/6dbvP0Jzb26WOur0+pdr9hXt9Qo6M0SVtWVGXLvGh5KFsqQG9r8qqgRZF4Fh1ToW/u6XYtuqFN1BlhRAOkWUArMfMlcSdmdr2kNxyRjI84sAWTmyXZrqWVHoYZId2YVAkuJu/pzx44PE1wbA/ft/H7HezOADsMWdxdsclykigi8m2Gvo476uNHEZbtYMialhrZFkjdxnU9LDXlq4HPVyd7bPt7fP1P3xEFDqKoKPICyw8xzDmHnT4dXNR0yWa6wh/GHPQTDGGxevU989t73FbRDsc0dQWNwrQNpACzM8QbHJNnJUni0k8aLt/fYPuS2o/pOhqvr02m8xVlniGskONhh2d7EenDDVlbIbSYwKzQNIloa0Tbogwb07DwDYt8m6IkdF2Pg3DHbJtTqopHscukaoiHEdsakIKjEB4fDjnqeSRJjFzfUa53eIHF0dkpKzHh/3nxEmhZzpYEjsvpcI9U09GjDg8Xl+TrDa5r0R+M8ZOQSEtpthVmW6MBURSiLi5ZpxtkMcbwPJqyBik5H/eJhgfcJQEvX3zD6+mcom6pGsVimxLIFtt1PtRQmhLHtsgsD92y6dgw0tf85//uvyGdzLj59hUj6VLmiqofI54+58V332JpkszT0B49wm1Lit2a/PYKb9xHtwRx0GG8f0q5WeG0NaUATVPkm4Kr+4ywf8DidsIwMLmZ5yxur9GEjUZCt/cRn3z85yxmKyzDxjUdLJUSV2uEcDjsdjjQcsaxiZ6tMRhwcLCPZ4PtWogyo0WhWoVmWqi6Iol83rz9cO1UaJKzr35F++o7yroEpdgWNZrl4IiSQX9MlmlYe8/p2wnX796yPzpg0NmnrRpWL9/i9H3s3piqytjtUnZ5wXy5pNzM+esvnzPsROiOQyNNlD4nW07xZY1uWTzp9/nlL37KrtG5fPcWka5Z5CkH42NOByHp7TVVKkgij8gNsZotN5sWUdXo0kLlUOoaabZDbzPQTCqloQsQVYO/fSCWgnXss8pLAgRdO6CTOGx2Ob5hEiUxj588pe9KdH9EvlBkxohO5JN0LdyuQ977ClZX6E5Ip6sz8D20WuEqwevpiir0iIMQJ4iwFai0YLlZsBeM6PUiijKj2W0JLYvIsnBMA1sTaFnB3btrRCtJOj2q/Ibr9ZLI92htn05fsVytSLMMy5SYUsP3fcKkTyM7uLJgN50QSJPD00f0j0NidccssjiIeoRmAQbw1WdEjiRwAkbnProyif/Tf8bwutj9Lm4vpqFAYaLKltC2aWoTpE88OsLwOojlmsB0KUwPYVrYTUnouNSdkDLPqZuWrGqoNYGqJZQ5m9k1+92AwcijF0r8aIRjtbSuiyxLJLBqFHbgkusC05Dc3U/AkwTDDtgmulBUomX/+XOOJ3MeLt6RLxcEnQGL+ZzlckVomZSLOY8+/Qnp5IZd41EIm02WE9s6u82StzdL5rsc036PbxvsLt/R+seIcosULdQV0kgQlUSUGoY9gHADywWlCDHiM5LKwXi4J4wlTWIxXaxZZgLTNSmzlnNHcvxsSP/xIW/fv+F518R1BIX0CH0HzbDQixzldHH7e0T+kqO9Pnc3l/jU9MySYejy8fGQ/fN9DofnxM0cubyn3qzJe09ITs5wOhahyvmLz59z+1KR9LsYWoHNLXV0zHJzx3z2QN4o0lqw2hXoUiCEpGsKngcWLwuXg8hhEIX4ewdsZYRuzugMbDSpkXRHDJOExJLUsY+q16zmC8RRH013sVyX2esrfMPE0jQORn329n10N+HZp59wMAzppxXq938EraY3PqNtTabLNb3BmIOOQ72YMNnV5P0hfUOwWSxICxPLFqymlzw9GWIL0JoKzdLQDJ12t4a2RfcjPtiw/shhx+EuXWPWJZ6pI+KQ9S5DLxuyyYzcmRLaDsM4oSdLXF2jf3KIFoX81ad/weRhggwGBLL8EJDt+KS7HEMYHO+NaYVBYPvYlolrO6i0QFM6R8+/5Np8Q103PDs6JNvmPP+zE16EEevZA7ZpYOmSwIZ+FBBHIWle8Jd/818zPnlEbzzi/asf+Nv/9ZJLTLatIG0Ux45J7Pokw0OkkJi7e9psTlO3FMTc30wpdjmW43Fy3MNWQ6bTN2zMBju00QyDpoKnZ8ecHg3obQwGPQvPMgiMhnp2SWMcoWkGpshQTU5/f496+8D9dMfv/vkbYq2idQTrUlJoJqt8S6oUcfCh8c7rDHCsgCBb4EiNj6IOBTrf3d7zULn0bA2WU35b5Dw93Sc5/Zjm4Qo3CHiUBPzx29+SbRYUCi7nK+a7lG1ZUzQtfqCzFwSgGu4nU/LVhkbLsA0X3w3w3IC8btkXCuvohMZeIjZrRq5PFAQYpiCrK4rFhD1DMqnAs01M08QyJKBzcnpKnATUpY2yJKLaYcg1oimQmY9brenUK7RqRbuaMn9/RbkoSXp7DJKY+c011WbJ518+YzhOEE1Jvlihmy5u10bsWj49G5BvHkFVMvvhCqkq0sUOdhmhYfBov4/l69RthWYJGqGj8gtydY9z6+HqGqNRhz+8fIel2RwkHUahiVHVrNYpunTxDEErDULNuZxywAAAIABJREFUwNU0tgg0qZP098grmH73mmy55OFhyrv5grNd9q+3QPzIj/wL+VE0+ZE/SQbDIa7vM9zbo7d3xvNPf8r81Qt26zX1Yk21Tdk0inZ9j9OUxKFHua3oJhFX1xteXt3zq89L9DxlMBzy1z/9jKNOQLPZsfjuG3Y7l9VsTnZ/S7VYstvN2C4nzHcZq0aQKp2syZGqRIiWA9/mycCj1x0g6oLxwMJxbByzQbZbhBOiCYHUGzpdj3Rikl7P8AcBj44PebzX5/pqTb3NCRwLx3ORQYT9y0+IBglu6FBXNe/e3UGdQp6R3V0zefMaUVfYjsPq7pJuLybyDITjYQcherUiL1uqpmGXbujFPlrs8/xowOGv/4aFkjxdV1hhzGqywDcFxXZNL/BYvvmGHy6uqHZr7H7EwaOP0R2PsDNmt0upmpJMaeyygrxo0YWGqmqk6yEtD6VZ2LHE0SrMp4/R0zWr1YpNqaBQ7DsRnQiswQDLDQltibG8Ra1mjPyEl5M158/66Aj0+sO1gmW5iKzGFgZG06KUhu1F9PyUSIegE+ElXc7KgvlyTq27OLaL69lEvo4jWoz1FLVb0e8ltI5NEo7IXk6ZTLf88Mcryl1JEEV0QhdPM8laweFoj3SzoSgqJrM1/WGfqsnxHBdRC/SqZnF5wez2huODfQxp0CidqtWwNMHT80c0fgdNNVwJ0IWGZZtoQrLY5LSyQdNNhFKk6zWB7+DGMfFqzvEw4Pijj/D3n/Pwm38gOD7G1mLKyZT85g2uG3L81S9JPQ9pSOpyw3xyxzeXLZerLZ9Np6zyFZ3zj9CVws2XmHrBdtKCVrNLN0SyIkl87PMDovyOP1xsKVqbwPfRUDiGzfw3f0udCc66HTxKBuT0syXHJ4f0BnsElsArF8R7+2xWC+KTHrJcYVgWqm5QLQjTQaUZ0pA0TYNtmcyWO/SmYn5/yckgJu7ELOua9XaFqhscodHsUjazgmzw9ENWx8V7rif3HO2d0O0nPLz8PfmNQ//snMW2YRjGdJIODw83rFcLdnmJGcVI20O0IPIV532HX//qU9o8JVAl/bFLa/UY7I9YX33Hbr2mNVxYzXB8E3PQw7Jtqs2K9Ton8j5YEnQhaKsMQYJCh6rC3NVEhs6szMhXG7xxFz9O6Oo6fuhTbVfUts/d2uBh0qJbCQedAT2pOOwF1JWBGnR4yDL8To9QrpFNRtDxEMkxhmVimOA5NrqUTFLFKpvR1ArZCD561seOE4qHO+q8ZXX9QPjYZ3x0gHtxz6ZoqfMcNEW/2+Hs8BDf8cimD5S7jGh0gLIcdq1BmmY0SjDcOyBdLegFHkK12LrEjTu01ohKPvDy3Sv2+0Os0Ud4hyf0yy3GxGOQRNiuR9E0uHqPvmuQWHPc8gH78a9RYyizEmlKlPDJixSpSWRV0tKC1NDDgDjxubi84PjkmDRTOE6A0ATClBiiBUyM0KNuKpQSFNsUKTXSuwd6z5+A0dA57OOGPrbpoe8WKMv4UD+bF1SGgzJddKlhGBpFXXE7X+GzQ6t9jN4+y/WM/vAQO4zIWoVR1eydPKHY/DM0DUVZYUqNXuyx3RpYeoe7UifWddLVjNliw5tVySar+J9/+47/8Sf7FNfvaJ6fIBXQlGjFBjV5h7JjRJEDNkL3MAIPUo2m3SAqm3JdMbmbo4CybjHRsTWN/Y7kq0+f4x2MwbbJZ5eUfZd43OX9XMd1TNBsUA3VYoaOTjfqYIkUbINICY49gzgM2ZQOrfBQTQ7lhnp2je6N6I37uLKgnd2jxz2G3R7Rpx8TBSF1OqcxTsgWJXrbcjdfM98WbNKMoqpp25Ze4PI4Nvn15yfs+wa10AnDgMHBEa+nBa7jUhY7+lGf/aTLo0GP43HEcjrgD1//E/PtFWWRIRqPphDEgUsxfcAyDUzb4fSTnxGGHfYOxkSDBMoMs9kRXS25XO34N1/+lFSZ+HZNMblgsmjp9PoEByeUmwcWTUaJg3BsOrbOnmfhSB3bDTCDCD2IKPMtmgFNtiYtakLDZlrlDBKb+6sHfNfiy+M+hbBYz9bo9Rzn9muKWqHWOQdHEQfPPkIbn7O7/o5Op0vv7EtKpWFXH+YGGLRlTp5mdOKYr1+8pgxiunGEoztowsb0AoLhiGSTkQyP+OKTU66uLmmbGt340JBTFTX9yAM0+klIUxTopk0Uj7GcBNt2aLOUbDkFISjSFE8KHns6o06HoDum69ho0wvK1YpdqiG8fXp+yscnn3NwNWdatySdY1b3FpMaorMzaAqkVLRtQbqaoJqKwAoIKw3PjygyHTFZoqsdRmwgnQCrzAh6A1789gdU2+CEHYZGzbZYsm95vKHiLqt5/VByt57xfqXj6yafOy17/T6xlxB6FofZmruLNftRzGAUctOa1FWG0z9GxCFGU7DX6/Hs6VO++e5/Z73eIAyTrE2xLIu2KECTxFFIWxZc3k0xsoqaCsfZEHg+UXeAua3ZCo0w6XNcaayaGt/ziY+e4UQRqCWmD+PtPX//+hWqKpBS4PoBcVQy7AXIqsWWHo0naVJBOZ3QCoOqgWy9ZLOccX+/oNgqQn+PwbCLKgpklrJYbRgOezx5ckYc2jRZiqo/tBzaXoihQaBV/OInHyMMjbaqWbz9Drl9x5cfnXC9qFnUivPekCQxkarGdgKC4YBS1Vy/fMP9+0s0ITg6OkQFEZ3AxjY+zFzdaKiLGtMwaQ0TJ7DJNh9C7S3R0On0SbOa7WrLzWTGt/cT7vKUP2/Vv+IG8SM/8i/jR9HkR/4kCbo9gjjE9326gzHH50+ITYP7168odjm79RZDtiRGhukY6HGIZqQ8LNYYUjCZL2kUdHoJQzsiTwJYLlleXDNdveZuumJ+NSdMF/xsP0YJjbdTjTe3c24fUlQDkRNgtxWxo3HScfFNE6kZ9AYxo6744HtNHKTrouwEaUikVUMzp9tPsJcpTSHQNIk3HvHs7Bmz2ww1uSV0W/yDDu7BIyzXQuo69XbF2JesHnaUs5ayylltdtiui2HpWI6JYboQxEhDgyqjLiuU0tC9Dt3RAJrviEVNMOhT3V1idAd88Tf/nndff0ft5pi6SVFkyCji6vU/87v3b7hNN/xs+BlP+h1sxydTJk96+1zd3NDr79PpjVFCIQApddpWYiDRJTRlhhf4mKfPsXWN7f0lKAFewuu3U65vF6xnE+wsxSgzykZhGzb7Bwf08ozEqYnDAEPX0Q0XTVoIYWIaFlIJmvrDufH+aMD9VYouJMHwkGAzwSwzdlmJWZTYmoVdl8jSoSkKxo9OcCINzXHxvQG72RHtxbe4umLWNESRj+0nmLXEygQ90yffP2GWb3BcF92yYKNhahZWqyiubjk6PCe6vEe1LXkj0DUNpWl0h3tITRK4Nvg+p/v7zKsGkRZstlsqy8TxrA/BsHkJbUVZVDSiIfId9h6ds3f+lGq7w1YVarCPL2MqJQmckHp8hnJs6nxHuVqxvrvj9WTCy4cpAS2Xb77F7vToJQmBaSLRqMoWpWrqJqfMM5R08CxJ4XcZnTwiHta8fnlFP9IJkhDb8XEdi+ahJit91H6XYrVgtb5if39EkMT4oUM7E8g2p9sPcXwPtV6j6yYNiipPEWZEkS7o+C7ULbZ1hRDQG/TINwsKbJQ9oLUd6vUStV2ix312kynZpKKqbVZqixNGPDt7zL/9q3/L5T/8n2xLmxfv3vHd9SUnz3/C8UdP6ccJ+uNzNrMplu+hmRYYH1o1up7gL746p/vxL6CEareh3GYY9QZP2iQnT6lVTXZ3ybbcMuqcYjgeTZ6zKVOM/oB8viYObIRm0SigBtsJMLQZtarp2TYmLdM0Z72tSLoSyzRIhl2aXogwTT6SJqvFDKV79IZnBI5LurmhLhpaK2Z4ekzfq8huprSawDZ0PN+DVkMtMnpxh9YOWF4/0I0iyjRjt0lZXF7haAJb02hNn7TVuXnxgmy5IBocUFkpb394xfR2Sj5dEqUFg48+xgu6/PDDdzjCwB0dYGkmalOwzhegGvb3D0lcE1llGKpF11oORiGeJmhvj4iUjucNcIIOPc9BOC6RY5EME2TbQFZgZTv0sIe0E3Sp0TQljqEjXZtGg6ZVlIsHVNug+zE0ObolCUMPrazI0pTIdlmsc1onwnJdLFljUKNrEtvzoVFYx0PKdIfqgI6gTp7RHXuYpqItS5TeQHWLbGuaqgXdxDB1oMVxbFZpzm61os4N1ps1T6OETq+LQUnc7zF6/hnl3Q2DyKPpJeT7ezwsFnSSHr5hYcYdLD1g/vYdN1fX3E3uKZqGVdmS1i2+Jvj7iznnL1/x6C9+gUSnzXZodgx2F6WZKEPQXH1PNd0hzID66hXNekO+WlPXLZYb4to2bq+H7UVk2zVFvsMaPEHYBgYbqumGZBBg2B5+7OBYHq2oaHQNQ2qYTkwYZ+zZsGcMubya0taCbNXiq4zd22uuXr7AtjL0qI/z5FO8YUB7/z3CDTCkpDvao2kT6rxE4aDrFjJbs5k+MJ2uQGjkVU1VlQSW5FFosteJuHp3Qzf00fyE+8kcs73A7Z0R+D6lqRMKSa91OI0HVNsVqlKYKkAQ8TDZcDQaM33zDlHW2K6LaRpomqQbh5jnZ9iJR7A3RgiFPxqRLJeM3j/w+jYjyzPaeY5MM3zPp7v3CNv3adQGe2dwVX7IpTgMLIy6xLRNXM9DA1AtDYq2zaHMcTSNoNPBfA+u3uAPI25mG9rdlsRVjPcTeskZQeijipTr320QdUOzShmfg/F8H38QIbyEfHIPTY1p6jS6QTHfIdqWXhyyNxoxuV/Qi2PqLMfp6rRIusMRP7d+SXe0x8FRjwbFi9t7ss0GgSL2bFxLMt7fwwli7lctnSjk7vIdaDW2WGOrjND30e6vsEVDx9IYmwJHKB6+f0FyMkTtnWCFIVovIX8z4ZOffYwmPTrPvmBxNyXL1qxEiy0Fm2qFJirSdY7W1jiaJBWKfhQgWsh2OQE6dZaitRn0upjxHk2eQlZQ77Y8OelidJ/w9e9eESwqZKvx0cEQfXrH9WpDUShWyxXCUHybmdyYMeH7e/7q+T6n+z3ySYSBwlQtjwcdeqdPMYIIozHRRYFMAn7661/z9e++ZjH/jo7nsataagUCsB0by7ZpaKg1A0GJpwmMoiAvcgzToCxTbNuhaHYEjokKP+RJoWvI/WM8Y48mMpF3b/Avb6iLmqbIEdJktHeAYxp4RkHb1BhuQBvsUUcJ64cbyvUOgY3dO+K0/5z2YUPd5LSVwA4MGl3n2emA4fEe/VEXWzaUuqDalRTbLflijSEMLBlAusbwPPThAf3DE+avXlC+f82XI51t07BarxFbj2TYw437lIsC1xGcHI2ITMVsUREGPq6rYbs6bVkghIbrmcgyx5QKIVuKfEfg2ux0jdp22N4/UGYFZdFyLVw+3TuiP7nDsX6sHP6RPz1+FE1+5E8StzNgcPIEPc8wlWL68iWb2xtsJ8QUgqTXw9BSwuRDU0jouQR+xnS5ZruKaauCtgUrjHHiIeHhU8q7CWI+x9Y29Lse3lmGr+0omTGvCib3JVr69wS1y15nH2NxSccC19Fp8hS9bHCLHSJt6ZwO8aIYK+hgCBOtrpCuj2GbaHWL1r5nPVuxf3KGanSawsDwAgZPj3A+/ZR6coW2W9DcfU/jdcEy0XSdZNSn2m0plg9MNzu6gxHFw5TeaICRdKhVi6aBEFCUOaosaMqaQnNZXr3H1DXG5yf0OgnBcEwv6kJ8yrs/fkfgu+iaIt+usA72iIKIX/3qP/CH3Yzk2QFGFKJLk/zNHYkTsHNtsizFdQLqOqUVirpVWLpEUxXleoPuuKAMTL9P78wmCUPaYo1SGl7UITFfUg5sRLrm7vaeTdYwHh9hOS7SEDjGmiSOMKVAM3QsP4G0pBISU9PJKoXeKOwgJvVjNA3kdoFnGwyOR5SNYJs3iKbANxRh3yHYH2N0epDO0FWG3F4Q10siqRBtjWuZJMMxQRBRpTXtJiPSTS7ynG6Y0Ds+ZLNY4VYNratoHqaUNytGTz7n8/NzFpMr2uaDncjVJbYZovsx+XyG2mzY7w+5Llqmb99RpimtUogkJAlDVF2imTpVA2EvRomM8fEJ9ewetZxgV2uk28f1ulDq6M/OyLSGKltQ11vSYsPN5QU9S+c/npzRkQVK1Ox9/AW90T6mYUHT0taCBo2mbmmwGfR08nSBWSwJLBfL8Hi2b1A+vKUz6hP0e1Ap2pFPtIVqvaMwchw/wUFDpFsUFboOTsfDCeIPD2HDgLoiTxdIOyStBLpp0u5WmIZgb9jl/mFBsV4iBgmlFGQommyD1tbkVYNcrMk2NQ/TDRqKwnVRTc3s4j0379/htilf/tlP+ez0kP/j//q/2d68w/zonPGgS+DoMBzhRR2EAE0TSMvg9MvPMWyb1owpc0mmRdjmhu377/GCEboRcnv1HnYFUTzE7XZQ6ZqmzAh6HTZNQ1YKXM9HShPRgBl2ccMBtnNLU1UIGnzTwLUMNkVGWoOlFei2j5P0qZUGtk8w2KfIN9TNltnNNaLYID0Pc3jCeK9Du7qGICLYP8S2HASSMt2BptE/OKcNOzw0Jt3JglRobBdr0jSj3W4o0ZHHn+A6Ht/+7f+CvPsW9ckvEHmGK2BT1vwwXzKdzNjcP/DJJx9h2S7ThyVXF7fsf/QJYX+IHoTkmw2yUnS7CWo+RVQNFhW2LPGOO3TCvyK9uMFs1zirFaZhUns+rqGw8jWOaSICA93pYMUjhDGgmm6RQsPwbYRjQavQmpKmWGPYBirfoAyJkDa2ZeG6LnmlcC3FsNvnbnaHaQYEQQ9Rb7FsE6kqTNdBs3TC7pCmSiBbI/t9DFPHrGbU2ZJWM1F2gKbNKNsW4TpoUvvwM2ubeL7P1WTGw/WGbK9Dc3HPqRMRiBqNmuGjc7Yofvgvf4tUgs8/+4LpxVu+ODxiYJnU3THK9jEnt2DqXFc10+2OQilcXefjfsx54vDDZM0nt7d0uwFNvkHkOZoTIZSAokT29zHbG9JXL9hdv6cWJlHXIx51qErA61HlLW22QyyvcC2N2bv3nDzbo9zNMFuF1x9SodOJu///vC4RqiJvBEIZHCQBq9sVnxzu8aw7Yv2wpM1bhCYIiyv2ejHB2c8Ij08xbQOtyeHgOa0GrZTYXkKxTJGGiWYbFOmafL1lMllxvylZbT5UYxsahIZGlhW8vLjl2IFPPjrF2z/m5e9+wKtMwvgY27IQRc76ZopmHvD1P7/m4v5bel2T0LGwDJP7RUa6zZFtzWazQ3c8XNuhNCSmazPyA7RigxkmaJaNUgItSTH9GXFyw8Prd6wnO8RwiNXtI/2E7WzGQgkiJ2BjCMYR7AUWtuMSRgl2EKNpEtVUtLS0Uqdta2SZEXYsDg8P2bz7I0knwvICtus1iV7j2DWB0xJaNd7+ETENQWiQPDrAPT1EtQqhaahWIEKffHILWNRlS7beYQhYr9c8Pz/HNa7Ji5I2XZIHMU5vgK27jGVKty4xlY4XhhzGEaN+l7eLCb5rcXZ+yMmTJx8C2y8fONx/jB/H9Dsao1EPM8/p9PeQL9+wb0se24LEAE9VrG8ukYmgKU4wxidId5+4EPgDC2XaaJWiEx4g0yWrSMMrVpRSZ71aojydpq7J0hpNM+j4JrqQWJ0+mqVBA03Zkt9fI10PNAvbj7D8gG6SUEuTL54+opxusFWB5rgMez1u5zlpkTIITAwy9kdjTj7/Gec9ncQzaNZTjPKc2cOKzvEzBBqstkhbxwwdhGo+COg9n08/fso//fZ7sjTlJA5ZNS1L0dJPOjimwf2qYjzoYVQavgALwfz2jrrMaVWLZdiobEpb12i+j2kayHIF2ZY46lB5Ls3wADsccv9wz/FhlyAMiHUbSxdIBYZpIDUN3ZC0usT1z6nLCsqUsqmpdi3LdI7lOHh2SLXconcT1onH4PkT/NBBkwrmc2SrQV2Qz+7Bi/GjDsVqimX38Qf7KEMS9AYU4xPWL/6RrlnS6/Vpq5JmN2FXLBG6Td06SMuguzfGsjYoywZNUVc5pmlSZQ1t3eCaGp5tIE2Lus4p8gzPcynSDflyTpqWTDc5//Hf/7cMNivmr36Ha/4omvzInx4/iiY/8ieJE8V0D8/YvntNuZjw+2/+gNbCX//3/wNZWbDLtuyufo8bRoRRSOQauG5Gr/OAb5/z9u0FWVnhDcZY8RDNcHDCAD0d0fkihFZQvv6OtikQV2usfMuhD/3ne3xRg0JD7fbYblOm8zV7x8cMQp9VvkOzNfykg+7GWJqByCuk3SBVi2oEVjSgd3TC3cWEYj0ndEBTNfl8ha9HWF4P9yhGOCbp999Q3l9j98docYRl2fQOhrz84Vv6RyfUXsRkscSJO2BIRNWAptHUFUJopHlFUbW0RkO5XFFu15yffIkKIoY//yvMqMvDH7+jGzu0lka1WFMu51TLhPH5Y1ap5MATfPrTX6Lq9YdgXEqUBnroYrguoi4oqoKaFlRDXVWoqqCtG1BrDNNC0x10w0BlM5Rlo+wIbZdjHRes7m942CzpxCMePTtE00yqpqDOCzpxgCYtNMvEME0000BJRd2WaFKnznJEukGTPofHJ6h6h6hLjKZCioLI8xgddZF+gmhzdFPDCDvoToDQFdX8DtZrrN0aV+osVlv6nRg7ijAsHbPVUJ5LjEIXGttdxqnjsSk+1Fz7us38h0vy2YYirUnOH7HWwGsL2trFcn2aosKwXTy/ZLHeYLQtX5ydMVutaFDUaBi6pGkbVJWR1wq0PnmaMR4Oacqa1eIGUe4QpgO6xHFc5CBCBTFQYTQbGtVSZQU9L2Z8dojIpmwWU4yTXxCefYwpdFjPSLMdjWFjxDFCKlpN4veHeFqL57xj8e492hr6/Udsq5rNzZTtYkP//BDND9HcLso1qe0Sr3DouCZuEmCHPk2xxQsidBQog2I5Q8RDlOFjeYJsl6KaEsfWadqWMPQYRB67zYqFrTHuxShDQ8u3GFLD831u3t+xnO+4X27wpcE4OoWqpLq9YPPC4+Soy15/gK9b/OVPP+NyV7FbLQjCBJn0MFRNVStU20JVIDSBY0dYvTF12WJoNWyWaI7Effo5m7s5Zp1xPo7YbSCtWkwhkY5Lul2QlgXNLqVn2WiGh9AlftghX26ZXN2y2xYICZYuMUybGg0nT2m3W/R+xG4+x9cthBuy2abU6YruIETkS4YnPZzoFKTA7A4QTUntuvi9IaZuoNqGNk+RUqLcDtH5mKJp2W8E33//CsPzEWmOamqoG6qgR+ezX2BO7yi8Li8ebvnzMCEUBnZeExgWu6rm+u1bLmYLjnc5fq/LbZrz9vKKUho4dUtZF7hK0jVtDE0gbPuD3bBSWFUGbkT36ID+6SlNmiOqFKOXYD/7GIcdppRYlgtljdQ+2O1k2WD4oJsSYWgIKaiXc9jMMRyPtt5QbjcoGqTtE+3vM7hZkSpBaDnYUZfrqyvKekIrTHrjIZpR0dY5pmWjtTtMTIzeAUIz0JSGLhra0oIyoyozVCNQ0qXSLAzXRdNaDF2ApnAtg7JVIC1mWY26WdI7rgh3a3pJwEOloUTFHy/esXf8iL3nHzMMfE7OTgh6XRaX10RJiHe4j51tmE0esKqShRLESYfjwz1+ftrHGPZJW4cgzbCtiv+PvffqtS07z/SeEWaec8W9dg4nVy4WgyiqJbfbcoBhGNCt4T9n2Dc2fKUbw224hTZltUg2KQZVYJFV59RJO++VZ55zjOGLTcDXrRuCQD0/YWFhYH7v+Mbz4gwOoDegA4Q3w3+0i5ocEL+3pcsLXGtp85qu9Vnf5tSrK+R6SeY5LkrDw0cpoW1YXy/whiOidECoIiI9BgSr12+oNxucsogkxazv8NqGJJkhbcf+e5/QFhWhgOFQMjw+QIY7aHza12/wT57ivBgXDujrDXL1ArkpMRL6wMcKuLi45XK+YVX1lE2L61uywCNNErLI58ODKad7Q9IsIPIdz795wUEwYyru2+1Wt1d0q4ZflP8vr15/RWNWfPfdp3zvvffp+5rzmwVX8xUTpRhEIbc3cwIvoFcC5QekyQC3bFAiQAdDnJCI7RZfCaLxgMF7z2g+SrE2wHaWapXfe7NGI7xsQtbmTENDm28Z7J+SjGd4oynOdti+w3Qtq8WSly9+h6NlMp0wmY0oXiWoxvFwktLvj1neLUlET0rFIEwYDD12//JfE4xH6GGKCgPAYIstpu5RMsRZhZKKerXGWksUJYS6wjM97zx4yNvzC/LllrYTpL0mUYrV5obfffofeTB/nzlQzPawxhCFAaNxyunZMR989xMsPYaWYr3ke3/554z2Du49Or5iuy2RwGHksZt5ZJ7EkwbZVnRlRXt3g1YOby9j4Gt0V2LaHJH3NKVCra/pV9fobIRKYqQS9F3HorNYoTnOfIJuC15GMBwBEiF9nFLYco2rV8ggIdg95jt/OSVKB8zP19TPf8HT02Nurt8QeC07WciHh7t4QjAYZijXMp4OyE4njAcxdn19/7uenFJ31xhCRlnA5OgAd3NDc/kWvbeLlRV6IHm0m7EzGvP7N/fV2WEUsTcZMx6PsabEcx2T0R7hytCXBa5r+ebNW/LlLcPxHss3PUpquqbGeIpwNiUdxQTFKy7/+TneKKUQBqqW60VJbTSRdYSexhRbOqUIsxQpJKq3+NLgJPSBQgpF13X0IUw+/hDVNph5gTp+hLEWeycYzmboQOPaGjkc0ogKZ31c32Lakr7VCE+T7D4kGh8h04B+8Ybk/feJBgnrT3+Cpw0Md1BRgPY1VkuUn2KaHqocrzWUTY9REUEY0tY5WENTdwRBhO9p8DzGk4jlpkRZsM4iBfx+seLDJON4tWG6d0LqaeRw9McbIL7lW/6FfBuafMufJAKHlwyIDh5g1ndoZdl/8ITJ2Sk4S3F7zvOXhj6ICcZjMl8gjOPxgyM3Y4XAAAAgAElEQVTym1v6epdVXiCkQgUeOvCRUYAcDhDSo7+5IngwwfkJ/pMjvPkLJnff0NxBmVs2twtWfY7e9OzsTTk5OcAPPfQcgllMmEzQWtGu56ggQrYxUkf44QBlLcnskChJuHn9NWvX8P5ffIJYLaleOfxa4R8d3a9Tf+cT6rfPkUGMQGOrBl0VHD59SuHFLLf371n9wMNLQopNh0XQtoa+syBD2rbCdDV2u0V6Pn4YU5+/hps3aF/j5m+RfYeUjsVmTiwM89tLJn/+AU/f+YRJuWZnOmT51RUKgUhjvFCRSNgUOYu7a2y55cnZMcY5egy9EQhnoWnRvo+fDcH29DJEaUmXF5i7Fd3FDc1ixXB8xM70KdYJnGmhL4j7BdlwRDI7wlQlSoM2JSKwKM+gAkG9rmkKQeDdH2a26/G0QGgP1xWo0CD6Hm3BGx6gAx+dTRDxEDqf9uItZptjNlsGox3u8pbpbAc9mBEmA4Rn6NqOkJ54NEQLRxgogknKLPXpNiVXiw0vzi8x51fsljmDgx060xKaFh3tIEVNaAzb83M2V7fMHj3C15J/9e5jfvFccrXeUtYtCIG1Fhn4GGPQWPxkQLUt0dEYf3BEu9kg6h7SEJmkCDpUW9B2PV1e463v2M0C2qaCqqFRKbOHT9BBjGvWUFWEvofBUG8WlMagBwM8HeAPBsQ+pEnC1c+/JLQeo/c+pO9ruvnX9JfneOEaHQqUbcnbiv2jfbK9Q7QGT3rozENWLZIeKxxOjnBeQle3gCMMfKQzKHriUHN4uMebV5dcvr2k7jPwAtxyTt336GyEUz7LomTd1DS2Y4cOFSYMgyVdFmOajlDBl7/4KTc3N2jt8+j4lLfFhiCISAdDrt68ZORlmMa//5AzFf4gg07i+RGeqBDjmGpRoOMhex+ckH/9KcpLiMf7dH1Dv15Sz9f4OsXzO7rzDfHsEGk74nhCsn/M1We/5fzinG3f0tQVQaQZ7Q/xpMBIi12uaeKQbLKLtpbpIGLP8xCEeMMddPAMrR3+ZB/bbjFNjjeY0A12EF2O6Du6prqvEq5r/HQX2ylMY4izhmSQ0jlHE/hYHFYrZk/eQdxdsr74PZUKmD55n92jI3RekQQxJ9nHzB4+4h/+5/+JoK3w0gx//5Dll1+RJAnL1Rqur2CcoWSPFholBGEQo6xD9T2+UTgDSahRWqOHI7QyeMIhzob0dwuUcci2x9zNsZsF/XqDmCqcs9gsQbgB3e2KtsxRWYySJaY3WAGiLkAIvDDk7L3HfPPzn7JZbNGPH/Pu+ydcf/0aUW7ReYAKPPxhig5jlJ/S9wbRW7T20H2DwmJlhNAxFEvaVmFdT6UkUoHvSbq2psER+ApPOPBDLtYWlY65KyT+1S3jJ8eoxvD5esk0iRj5HiYvOHv4CKk0u0cPkVbx/D/8mO3dFa9evWY/CDmYzVigSHZ20cbRWcF7H37E4P1P2P7+Z4jNCuxr9PQJzggkCinVfXji94g4Q9gc2y5Rgwn15Qa73ZKu56goQwifKH/B5uI5yd57rDewe3bA7Ow92rKiJaOsHEr4nBydUUvNerNiFGe8fHvLerFgP4oZDQZ4Dx8TTEaYtqWtayKn6fMCNTvBRRGi3aBDg0hCTJjAzQ04B0GEsT0vXr/lcr1l3TTUbUPoKU6HCQ+P9vlgd8Du2Smir/C9jvPLK2Q4oDMgjUNVJYurt2xWS+42d8Sh4a//8hMeHB4xHA8RyqeuLS9evGV0tkdf58QYrIsxViCVxQ9D/L1DxN0VXhLhEOjpLi4d0+db1HpDqCO6ylEv19TtGmVK/NGUSEN3N+fu/BJjYDzbxUuHqOkOtt7SdxWmrlhfXnL51dekwxhlOnZ2djg6O2H94hxWWyZ7O0wenuGkJRulJJNdkt095PgUPdpHYtAB2DbH3F2jVIR1CmPVvQy7hb7rCcKELEw5P79mNJ3db4l1LdX6Dp34bF5X/C9/+79yfbfgwa/+kb/4y3/Nr79+Q9X0TKYTBpkiG4UMJgPabstk6vjti5e8/MWnnLzbIpXH818/p9k0dGVPIH0mWcJokOB5IeW2xxQV5dtzkiQmfi9CDA+RZonYe0Acjhis5rSXoO48/NEZV2+/oWt7GqsZ7Ew5ky3StFRNhD89IlQhHhZPSNoOTJnTr+eIcYDvJ4y8hi5f4osClfg8HaYcPtzn6uYVJ/spCoP2Jox2zkj3T6C4pbu9oCkVXV4RRT5xkDBJY3ohyIYpKtbop09xyzuqxS1BkmDefENQbokk+FrxsuzYS4ZI4UjigMj01J4g9RVenLE0kr7ekpcNr3/7BZ/8YMIgTSmWC+IgZGEaKmdR0x0y7QjuFtT5inK7pV/PUX3Dm8sl03dPwBqU5A/bS5LY85GmRagIqxVeX2GCBBUmkIb4tcGaLXY8hnRKeXtz79n5Q0BPFGHCAK23CLukK3okjj7fgpNoP0a1jn6+QlqBn0boh2fQVuTPf00gPHwvxBvs0PcdTnqo2MP2DsMGTwgkPcJI6ral3uRgegIdkyQxy8YQpyGyrNk0Hb7nUa4XbIqcD3d3UcsLvA8+INlPMEn7xx4jvuVb/pP5NjT5lj9JtOcz2DuktRpfWM6OjwgHU8rFLXGcEGpJlGXoIGIQBoTSYUOf/SyiaBI874AsizFdi2sqRJwBAqTE9R3O1jgncE1P24PUQ7TxcPiY6oawyAmNx8FwzPn1FWn0mG1e0KM4OzpGxUOca7m9uKA3jqP3Q3Rv2PQhQ2GQnkBNYlK5x/L1G6q6YTCeMv/6AqNSmqrC3Yj71F/HuK3B5AsII4L9hySjfW5++wVNnrPz7hPCKKSpahQCcFgh6YyjrXqElaimQgnJ4ckppusJ257f/u//G/HTd7CPPsR2PW2+RkhLWTd8/eYtD3/QYDzFOI3o8wXOWLabDVE8wfkKmorqOseFIX1dUrYtvrQ4BM46bFUSKInyQtxiThhF6OkJlEvC8QAZlmAiVLbAiohWxOSLa5QCiSAdRsSTPbwwxdceUit8JXDFAmMaLu/u2LY9YWkYZAFKZXiESNEjlEIQY41DOI3SKdqfIpIB9XJJOhrgWoPyIuq8QWuPptlwsD/j8NFTbFOhhhOcNPe1idKwv7dHr8C1hiiOiXZmCK/kdfVLfjJfMRtkNNstf/7sMcJapNaIOMXvOtx6ydvf/Y6r2wVH3/8hnYL9vQM+CTRfX1yA9gniECE6pBC0vaXYbKAdoaNjktEuWkPoSYrza/AkXhRBscVtlwjZYWNBvDtA7z+iXeYUV5agd/htjVldoH1BNDrAeB6NsvhNQXl7wabr2X30CFdXCKcYzw5wT0oWn74i9HYIhlNksoNVCmkKyrfXVDd3ZIMhWTBCbkr8zMMLI6SQ9/9TATLQCJUinKSpG7AWTzqGoxHfvHhJkKRo3+foYIcu3zLMEkRXU5YtfhwhnEU4RzzaIZsqUqnZWM2yvm8qWm63+Bq6suCff/5LuvWG9979Ho+fvsfiy8+4ub3CDyP8KGZ5t6IdRbi2I/Q01vX3z8ZigW1bpPOIZg/plznl9Ru0UXhBCGWNK5e4JidI9pDNHMmadTC8byBRGhEkiGCE1iF7+zMeZYZ2VXFxc0u12KBGKU5oFsuaJM5JowyhEvp1SXbyCH+QoIf7aFHgihtEW+PFM9RgjK0rVAvGQLm8w1qHk/fPt9qupLMxWinq5YadbEjjHKv5LUEUsn98wMMHuywXG369bbhNDggDR5Cm7Bwc0M+mhMMJfdnx/R/+Bco0KF9ShzF+HOIlGTfrNZMyZxDHhH6A799vlmk/wDoLxmJ6h9eDqiqU10Jjkf69ENqZknAYIIXELbZYJXBdgzM1tqmxWtCcv6ArSpwXocZjdBehfRBdd1+zG4dIT4LpCAcxg9kEsWnpqgXSKR48OWP16hJVFgzTCbaYo12Pn54ikgjRN3hhhK16+tUKrUK60iKKDteVWNfSaQkIhDFIJVDGEHiKyWRIevAO4f677IUdVBe8vcvZeVcSZTv4J+8wfvMa6yx2cUt2coroWjxjGShNGmV8Pf89jx8/pVmu+fzFS66WS+Rqw+PDI7Tz2XnwjHDvkLe3JywvPmM3HmO7Btf2iN7QX71CZDv0LkRIhQTk9IB2XkLVIRcXjFOJ8wqaTcXjvRCXeax//huGfsJotsfw/b+gubukXq3ouy0iz9l7/wkbNaQvW7LDx1gZ87tf/orDdx/jqh7f+vRtzOA738cXErvaopxFCIEzNf38BrO9pe8rrGlo1gtcnOHanuVmwbauuSwaqua+nWgSeZwMQ469jsiU2PUdypO0Bi67jMnePtiO9XpDvpyzWtxyu7jC0PBvvvsRf/Nf/7fEUcbiJudsf4+L8zdcXG45nU4YCA/fs2yLBuknOCGR/n3duzYebj1HjA9wfor0wQtGCHtLd3UFdU+zXeF5gsnhKZlTLM8/Z351Q7MtCUaT+5ArS0ErhPagLxE4It+jr3puNrdopZlNM6Yne4ziMfXdHd0mJ/VD/FFEPN0j3j3DGwyRnkYJhbAtgj+EY/Eu3e0NspUETlM5wctXrxkOxvRVj2h7XN3y269e8OBwH23uHTGWlqubBZ9eXjFfb9CBxzfzBXZyzOmDh9SrVxw/jBnt1KiwJ/Eks2lK/FdP0XRcvPwN52+2LG9uMbJnUzdMfciSlCBO8VXIOO1oKvDCCeHTj1CDMUKFuHoHlYwRcYYOB/jDCd7imrv5msNJiInGSM9DKo86Nwjn3QfKcUZVNPcetuEMWzVYY++Fom0NXYcXREipyKKGw8dPWX/6DUenI2bTMeXNG8LIx4tHJE6hl0sULekwRogQNdvHljk0WzJlqJRDmQ31zSvC/Qd40x287S3lZ79ERZJ5C69KyyAOqUSNaSum+7tI23K2E/Dxez/kzes7mq4mC0NeVTnKD3j72694mo4QraK0ArRHVyzwtMUKQwcMDnYJ6o52pQnvHBbH+u6KzWrAwekDTG/wfQ/fNrhNiwgThADPOWzX4oTAi1Jkr5Gypbcado7ohSDaGeMoaVdrwkGKSmJIB/TpmL53COlh6w5TNviuo92sGewe4SufvvYRtkdrSI/3aG5naFuhmhrR9gSDKeXVBTodImSIpyOafItVKXW+JV+suL6eE48SdN8yiHxeLdY4URJFEdugJE5Crm7XKFNR5be8LVYITxN/8AwXZ3/MEeJbvuVfxLehybf8SSKjjMbd0noB8uCMJNE8evqUtqhZvb2irbeIMCANJJEWKKloy5bF7ZyD6YAw1ERpdL8K3bdY04Oz2LaGvscKiTfdgeoWtbmm7Wqc87DbCruq8UnJIsdnX73AE4I3XzzHasXud75HNtqhVyFF0TEcjAjTGb4M0ds1fjTCAZ1oaeOEg50huwOP1c2SwdMzhsMJ1eU50Ts/QBiBcgFKZzhp8MZ7iPGI3hm81QLf1wRZjLxX0qGUpKoNnb23mDnPR+uA4uqK+d2SZH9K6CtMb5GzA+SupN45Jnn4LtFPfkqeb1htV1SbDWHkUy9eEOg/I3eKWEvCNKG+vKTctnTxmDQbEg/WlEVOWRU0bYvyoG1q+rah2S5JoxgvihEoqrJEKx/fH+NMjDUCI0d4aYhxEmsVcdbRbef01YLB8QARDjCtIVAKoROivX26tkIriIVl3fd0+Ji+oq/WpNkuwoGKPFzn0a2vacycQGWIwQ7B9IRw7zF2/hbqHBrB9q6g6yTW9Dz9zkeMjo8oF1u0Edhe4Mcp2hp02eCEwhuMCFOP0fFTuuCOgzDhyWSXj374I0pfEHoeMh3geZqsL9EaCjz2n31IlAwRyqMfDPhqsWR2eMJBteR6vqSlIZRQtzVeZ1BaEMcxgR+jFXha45QinozQ3QYvGeFkBOMnCF0RblvksMCpAW40JPOGNM8/5faXP2P4+BHZgzPCwRATBPi+YnH+mrvrOcnZA4Qx+EYihEOaDk91TB/O0IsbvN4ShFNsXtAtblGbJX6g2X/2GKFCmqpE9KCsI8pSbDegnV9AkKF9D9d31NsNhXcvm3Vtw3i6Q1HX+EpwdLCD2G5IfQ3FFh3HmLbHFwKhYPL4GZFOCZDcbhzzRc7udMBstEVKxWBnn/c++hBrLX/+3/0P6J0pp23Oy3/4KV9XJdJZZORT1y1WgzCKPjeElaHnDTLJCHaeILsWF2msTLCtT79ZYIoFqm3pGlDRAK3WOO3jRzO0DEgHjtBzuLsrxicPGD49QZsF3e1Lpi9irlclLvC53Vg8Z3j55pLd3SEBMV40AOfhqQCxvUIEHt5wHxlnKKmgN5iuxW7vsE7T1BXSj7Daoy02eEFGtdmyXqzpVvfbAm8XCwyS4XBAKhWZE7SjKc/+y/+eB5NTXnz5K7KdiHg4QKUpsQiwbAhOTyiVpKu3dE1Lv91iii2bqmJVFMxGDV02QCcRSIeTFpRm21TIcsMoDGjnDaFnkNKhsgClfYQxKOFwXY/xPFSWYOuQPs8pi7dUL29oqhpBTzyaIKyP6Dz6zmLXDf7ePoQdOIkMQ4Tnc/TJD6lefkkjBG23YHn9nPEwQzqHn+yilMGWc1TXoeMB1BUib9AyQouYdrFB1gJUSFWW5H2D0QohFXg+1sk/NEYpAgWZqHnvdIjLz9nmBU+ffUIqK5L9CZdnZ/S/36G6umJxowjOHhPdXlLc3XH1zQvW8yWHxyecPn3G17/+lKbued/z+cGzj3n6N3/D2X7A4NETGucgGvH8fEUUL8jCfVxnsfkGNhVKdjitwBfo2RH9coUrCuR6wSTy8FTJ8ndviI7GhCcD1OFTRjT0xZLGWlY/+XfI2RF+MkB/84pIdKRHB7gqxcUtorym2h2SDCIuLq55Kgcos0sSQPX1DfqDx4hZhCgKKHNc3dDnBUZYbLemuXtFYXyCwKcrt7y9uOS6tdzkFa7vSX3FLAkJlSRSYJzAEyD6DpMdsbtzQGkEOJ+ubijnDXRwOknoOgWLgre//oqd4wNQKaePTvn8i1+zWS357NOe7777gDT20HcXSG+AbSxOCJyf4HR0L/mSyf0FgpK4QCF3j9DRADNfIZMRYVnR3C25ff45dn3L0d4hWz3Hn+wRjib3IWDf4YQD51BSkkYeT88OcF7Aly/fMJtoJg9Sgsd7sLuLWS/Jry/xhhq3XCKiKVJ6SKdQQ40c7OG6HPotopyjtaBb5bi2Je9gOb/FOoXrJamFsG8JTMvbqkOHHq2G3vcZBEP+x//8r3h7dY2IY57nFc8+2se7u2bnZIezJxn7hwPK+Tn3iavi8ff+C5ROefPrnzH/zdcIHGW/Je+3lJEHgSSKAqI4JZOS8s01Kp1BOgApkFEAvk9/cY3/bBeRjZHBANMo9MWS1BlEmuKcxcVDlPZotytsU2HzFVkUQqmRoxme1nRaI7XEdg1KhnQIvCQmiAcIsUDmx4hVTbw7YXa6y+h0HyME1DV+3OPHO0ghMJst+CGojsYBwQhXLzF3OYW9AaXxHn+ECDxsvcLImMu7DR3QhEM860hize7QRzUrBrN3+O5f/YjkZ7/gH3/9iqKxoCU7WcL5dstnv/uc977350TCwfktnpQYA/V2y3B/F5FmeF4JRYEQAegAKRSri0uyNMOfHSAN2O0SMZggvRgdBZjNDTqM8ZMxGAn1GuWnuGGETTK86N7BFK5voCoov3lFYzv80Yzs9ASdZNjeQ6cKVxR064Lm5op6PEH5hm59gxfHeGmKDGIGRweUz7/AOIGMW+xmjahbnK1wbYOraqwR1Jucxd0t55fXtIGHsg7dW6SSDCLvvgDAGFCCaJAwv5mz7mp+dnfNrlDM25KT4pzxf/XXf+Qp4lu+5T+db0OTb/mTxFlDb3rKpmJOwMQFVE1LlEQUixtubq9oTEMceuggoKtb1vMtTdESPBmTjDLiZIBpS5wb068X2O5eKmerAqkjbKUxN3Ps5XNs3WPzkn7TorxdhHVcvPgt+5Mhx7sTXByzKQqmZ48QWYwWlkwYrK+p1jVhr+nmG/rFLzG2wuUN+zqjPH9O01YEswMuP/8No2gETY7ZbvEmT9GBh0hiHC0EHSKOUK5H3NWEoxG96SjzEi8K7m/AHDRtgxWCsinvFfBRwPRoD3+Y4JSEMMIJ0MePaA2YquJgd4KaX1B0FRk1D052iWVDv74hmswYjw4QtDz/ySW9CxkPJzhgunvA+uKcOB3Sdj2hVvRtR1MU3L55w3Q0QqiI4VAhjLkXnwqBDgzdeo5ttjSNRQ+OCeIM0/S03Q2yL/HTM9Y3C4Y7h+goQvYaLUNUMma4t8dpUdC8XiDCmNHjh1TXlzTVknS8j9QRwfSUyoWIckl7cwvCBxvjzY7o5xtcvsLkFqxktdpwenrM0bsf0PUQTCJcc+9NMV0HUqPDCJUOaHVMLTXh+AC5KPj42btE0YCDo2PUTozXVdSdYT8MCH2FTqaUsc/02fdInn/Guq24M47VdkPbOIaTCbvSkleWoq6QCKp8TbQzwxJg6garFCIIkM6QHe7DdoudX8LGwxUtdAZd9pi7Fc5OiQKfu2++Yv7mG45/9G+YPXtGMJsg0gmdjjBY6F8BivFgQDqYEHmWcrOl315w+/Y169e3PH36PmL+lvqb10gjMNUKbzTj4IMPEUrRlyWxEHS3C/wsxV5fQ59jTA+mwZqWtnPkjUX7CicEQeCzn2Us1znz5YYsCjkYDQjannpTIFvQniK0BmshjjJ0ckQnIsr1W/LiijwMOdmb0dsObzRj9sgxmk6JB1OE77N/uEcWSq4vXxMpTbN/xGa7IU2i+wC1aejXG/TmmvDkKQEJwra4pkUYg20azOqWrilxvcHzDxEIWp2Rl3fE2sdu14SzPaLdI7TThLMdou98SPHl55Q3K1b5FXerio+/+4w4WfBVsWa7Kfnmq5e8+47DBD51OUduY4bHJwSTd5HxENdU2OIWs5ljuwZTFhgnkUFIJyTGCoRT4Fps6BENY/wiRG8UsRfhC83xYELUdJibK0Yf/AhvvEcjfYr5lDB1GF8RhEOKixtWb9+CsOx8+F1uXr/EvHqBHwRcVTWtc8ggQknNSEqq7YbdLAbrsL5HudkS+or1bcsgiKFakI6HWLeHJUd2c1wYIoMBLlS4zNLfWcp2i059gjRGSo0wDRKJ7ynoK4RsIVIgwRvuYFuL7RyoEBkGbGtoig3JwzGf/cd/4OjhU5QnafIl8ewM6oq+vkT6HQIPYWpE57BFgdjmuLyhcS2tFcw3NZUfMFCOvi0RwoHQNMax3RYs86+Yz2/44Okez54dc3oyxekAz9ZE3QbTNTx6cEa1Lfj93/8d3/3wYxZvzvnx3/17bGP4Vz/6hOn7H7D76CnvHewh355z8PBdxg+OyL7zBCEszd0V5XrBdd4wvVkQHQmccUgVIXbO7jcnnIOuxVYlNi+xywW6XKDCgP7mnCjJSPf36bdXLD/7nOS9xySHR4SjQ/pyS3Pze0y6h8hv2S6XFBcXZA8fc/NPP+U3/8f/Rd/BKArJF2uq6o5se42cjBn4Ef3rc6LTw/uzcL3CFEu69Zq2WFLlSwpjUJMh0tcURcM3m4KyqvGFI9SCURjzYDLg0ekhI1/iyjV9viIeH8DJh0yF4vN/+idy57GX1diu5y8+/hDUms8+/4wvXr9hm/9b/uzjD3n4zveJZwOmk5gvL99wWWzYDxUPD2Zoz0eVBWZjESrASQ+nEqwMkD0IDK7NEb6HkPdeIdFrHAVsXtPevMRtzxkeP6Zra4K0YzSeEiQJUgLCYmxHk68p764obq+hLMgSx8PjEza3l9TZJcOPHyIGGhu0SJvgJT6+crj1CjE6Rg8OUGEGFlxt78/wfIUIBjTbJXiCfFvS9zUvXr9ivHfK1bYkaiuu727ZrFaczHbxowh/mDGcZfzowTFffPOa//Mff4k/HfD5Z5/zowcw2x0y3TlgODqgznuef/GcNMrQaoyUAZ5TuHbDfFWzyHPCQJN3LU1dIvem+IFAT2JUnVKXN5jrlxAKROwhBxPU5COE1bi8weVbVC8IlESkKVJ79FWJ80Jsa1gv5piyweta1osFoyjGBQqNpa4NtrWo4RCEj99XSOsQaEJpmJ5O8R7sUF9dEiQT0qOHeFEMfobpDbKrIF+AXyKUBc/Su4IoElR3c7bXC+prR7tZIdsltqqpbc867/jNqys8X1H0gnC8Q6I68vWCd85mHL/zhM61HBxPsb4iiVKivmfd1ORVTfP6HOP9E9PdA4ZpyMo21EXJ+Tpi5zSm6nva9YamaHAyACfxo4Sqs9y9PieOp6S6xu8NzghEaxGuQ6kIoX3oAWMQeKggoytLvDihbxvcZkU8HuCP9jB1RfvmOb/9d3/H4XvvEE2n+IMhSvrYKEEGNZuXL7j52d8zejSj226o6pbk9AQVp2gvQiCpLu5wTQ8ywDiJCSpMXVJul2zzLTfLLV++vGbje0yjkKzr7s/t1tAawzBM6J1jMB1RbyuKvuNlU7NoG4ZKMSwLPijX/PUP/+yPOEF8y7f8y/g2NPmWP0nq7fr+BrssWM5vibxTzBefk3oe5xeXvL28ZGcgcba9r8MtwS59Hj35HmWXs78zvq9C7RtMVWDlvbi06++HpSAZI+oaNRxj5bvYV8/plucQH6JcQvHyGwJhOXh4iJoe4wKJzLf4k0P0bIwrblhfveZXv/hnLs8veDAbMtofsmoawsmUTAR4fQc+DI4fYYzP5s1L6jdfMQyH1Ou3+NF72HiIN0lwylC/+RIvjjG2x1U54XCAEI6y2lKWJV4UYzyFqSzhcIDf9eSrDToJ0X5A3XfEaYqLY6SpmWY+eedoN3MirTgZpTwavstmdc340RFJmhLQsL3+miI44+XL3/Hp178lHh8xefcTpA4ZpoqTbAe/LcnLEmEsvpJI5RFlGW3f0zU5daGxzqGFxqFwTUu5nZOv7wjHR/ijIfndEtW1COWj4xShfGw8ZHT8LlFfIeoSd1o3N7QAACAASURBVHWHaxV+esJwWpF+c0uFJh4PkGZDt9kiVIuOx6hkh/TRFFmtEUqgpKY9f4PdFIgood80lLcL6qolCFNmj5+RDvdpup7erOhsBaFPs7L0zuKUBi/GSY/D/SPiviW1LdMPP2Dn8Igym+IGMXV5hxKGTnvoMCY4ekKwbuiXa7wk5fXFOYtqS9vWrIoem3ocP3hM+fXX1NsObE/ZG8aC+2adpsYYC+MEmeygpKCdn6OGElSKXV3i6g6b57hW0X3zW/LNirurl0TpAGUabv/pxwzf/YDpd/4M4WnKfIP2NdNhyjhLGYwy7HJBf1tTzluKZcHV+Tcs5hv+sx/8gCgQhNkp3uwA6UVQF9imREkwTYPM19iLc3SWYFZLOtlhywKVBpRtS7yzS9O1OGfwtKLvGpIkYrVcYduW1e0dXlmzOxyRjEaYrsFKTSsE1ouIx7vMt4bedAgs53c3HGa7jIdjxGCHcZSy/OmnFP/2FZM/e4Z+x+edp8/IkgTzh2cObWcxfUexafE9H38woFcKIz26i+c404EMMSLE1CXWOlAZruoxdwvUJCMdHpP/7ku++upzHp2eYXpFF00IZ0OUK2i+/JL5b16wbWeIqWX+9o6Lu4LD6ZjjcYzqa4pNweWrNzwNfNKDI8IoBRvgipJ2ucZtL3EOzPaOrm1xUYzxHVIGSD+lXq1AOGzfk7eGbblFxz7rckPR1mS+x+mjRxxGMaxyhlHE3uk+66ajfXCCxyXGtkTDAf0gwN9JaZua11/9lnI1p3MGX8FOFuG3hqJzdF5EV+WkSfoH75DAOktHxzZfYoOUfnNL1PdoqRFBjZYOYSq67Qa95+Es2K7EeRIxGgCOvljTVy2yryjurjn/Dz/HUxH+UOGPfdwwJBqnRDsn6NEh3XpO/tXvabYLSCSf/vxnfHm1YtF/zfe/9wMW1RxP7EPsYbtrPEKcDXCmgbYGW2HdhqZd0LiSou25qQ1BKHD8/7XpKoi5nOfcLAt2JykzryTWDbFc06xekRx+hGy3yMVLdrOUbP8QrW65+OLXvHf2kMTzONt9yNG73ycxtzw8OyIYDLEPjzHzDUp7hO88RaSa6pvfUK7nLF69RQJ3qw1HRYEzAq83SAvWGqTpkE5AXtLdrLG3NwhREu4c0l0+R9Nh1jnpn/8Vgfa4+vnfIz98THyaoqcTrOjorl4yf/OcF68uiH7+D9Q/+zG//PXvaMuekTAcpglyNL73umzmmPUWP95D9QXu7iUUPf16jtmuyM9fUea3bHtFcvKAcJDROUvVdTRVgTE9w8DDH6RME5+dUKGrLc4FBFJhiIlOPsL4MWc7E+anZ3z29o6m6RgeTfn4gyP85pZMNDy/XPLg5Izv/vC7xNkey03FaGcHY7+g63u65YK5MRw8ecRqXbFZ37DXP8a6e2eNFPq+mQYJXgLO/mHjwuC0jxML7OYrtFoz3p9Q6Y4g9ZHBmGRnDM5gqg1lsWV9d02ZrzBtTr+/T6AlXltyYH3ycEqbb+lXt8Q7p7jZCFfNUYFGK4edX+L2P4AeXF6A6XFtjS16bOfo2xXVeoHLBmyrkrys2DSCfLHAdIJpnIFaIJ0lL0pE4OEPB8SzXRiPsHnPcOeCyeExKwt+cMtk95DR7hN04MPNG9J4n9nhM/qtYX31luKupKtybuY5xWaLrxVF3XJROw6lj/IUYRSQvjfBtA3t+Wvs25ckf/XfIGuBsGtoemSSYa++wbke31c4OQbn0E7Qruf0qzX5siGZPECFE0Qj7wXiu3tIpXDlCukH97W7DmQn6Ddz6DqUsISyZfz0AJ7u0W02aCNQdYHwEhwhxjg8HSA6i1QaZxzYBlltyd9eEihL10k6d44XR6ACtkby48++4u3lBX4YkwxniCbn6uqCTbHl8V4G1vDog4950TuWdc0wCZiXJdYYWmdZ9h1/+8VzvtNrHp09JOng+dUdD0dDlmVNSI9nDU3T0FuHlJJA9Pjao6kK1ldvyOQpvooxdY9TW2wAIvLACKT0cfUWSgGhB01Nd3tJ35fQbe/9QrMjQt9noIDPv+Yf/u//h4cffMRotsPJs6ek+zPMsEW2JXef/YpqMsCXCltuKb7+PSqI0Uhc2dKsK+p1jpemiDDAOEtd1aw2a84XGy57yRvn8/rNnGcIot2YQdMghWacJhSbLVHkM0tC3hQVC2NxAtCSAnDAr6qGZ3XzxxsgvuVb/oV8G5p8y58kUmuapqZtK6w1LDcrdBLz5uaWtxcX9FVL6Cf0LsBZQV23ZIcDZAYXL8/ZGT7A8336tqGr7iVZzinaYku3vKOrDNlkj35zQbe+o769pBcRevqA6nKODAKm0wwZKdabNcu643BviOy3qD5gsVzw03//E7ZVxSBLuaoq8qXh5J3HZOMxqquwRYezHkVnwVd02YDz5684G8HILSjnbwmSKc4LQfV4Bw+QWQCbOW2xJhoO0UJinKUvclpjUEGAl1ravr2Xg2nJqiqxTUV4dIIa73C3WZM+OqOLA6QMmS9KvK7h4OwBw+kum7uX9KojPH4H1+Ssr1/yqx//LXlRssmXiDChci2zvVMW/x97b7ZjWXKdaX5mtud95uOzR3hEZOREMsnkIEpVElUTUEDf9F33Zb9Ev08/RAkoNNAqdFeXKIlTkpnMKUaPCJ/9+Jn2PJpZXzifQH0hEMjvEQ7Ohtlattb3rza8//0f3qcxrN4Q+Q44IcLC9OAQtAHXp0iW2CBGRmNUPMXUHWm6Ido9QHlDTJ0RmALjeXgHT8hWNX404eDwCYOTI8TyCqUadFnSJgmO9hCNh++O2OQp5cVrhO3IswwVZrjhBNNsUIPj+0aD7envrrDZmn6zxp0d0BUJZVEQHj1i6s8Iprv0vQbl4g5C6jqjzTcYaynrGs+PuM4bjg5PeO/99/DrEvfgmH675ukP/oJbx+fii1/ias02GhMrn7TX7ErJdOCTbyq+ePEVp+cXuMOI2ihu1inYkMP9gFHsU2SQFz1WGMq2o+ktVVHiOD1EHcJVmCqHtkI4Bus1oFp0naPbGqugzdZsbi7Y5AnHD05QTcdgekhx9orRwxPcoxg/Cpju7yO6mvTsLfnQpU8y1qdn/O7Xv+H25h1KGYRNeDuNOHJc/NEcdx7ep2Y0Aar0EYsadI+pW8zyDjmL6EchNB3Cvx9FrooGN3CpyxykJIpD7m7vyHuJFw5odcrxw0PaJGd8cIwUEmFdetenbRqC0QwrHaomYxi41I4hVg43qzXz3X2CyZSgt7ijW377m79jf7Tl++//R3b3H+FGIzZ3F6S3K4ySeH6ErlIQhq63OMN9+q5B390iuxoVTiGcYusC01v6qiG/qwjnD3Bn++AahIKkLHl2eU03mfO9TyuIppg0IDtdIo6+x97JAcPLC3pb8vyrz+nLCce7e0RKIKIhed2wvjzHsR2usjgo+r5FjSf0dU6/WdHkGb3nYDEYHSADjzZZIBwXYxV90zCOd1FItrcLcF1EEHDw4AG7T55y8OgR/d0CgWboKQbDGOW4nH7zmiiOkNLSmAb3cJe7t29YXV7Q1S0XV5dss5KqKkjyCuEGSN1hlE+/TenxEL6PFZqqKBC+R9cZZLZmJxxQZTmSW7RuCXZ3EdEUmySYtqDvWoh9jHWo8wrlDdhcnbG9W/GrXz3DNy4/fHhA0qT8j9dvWVclR5HPzz444d/8z/+JyfFDyvyKt6uU3/3yC+woZvb0MTsjFxG5GOVQlTdYJMa69wJa5eH4PkKBaVrKpqNxFNukZdFasrbBx8dVHkoJ/NGUVQnPz5dsspZeF4zjgOPe0uYb9GhEUzcUhSbbFsRBxGg0ZnP2luMHxxRFyaOPv8+Pa836ZkErapx4iD+bIPf2QFuMFUhH0r77mu2Xf+A6y7lcpyTLO5zZhDRJ8B0fazps3dwXg1WJ0qC3Dd3VCru+YPS995HhAcEPfkT1m/+X/Ost/dU13l/8Nbodc/Wrb/BP3zD5yScURcWrz7/h979/R4Pif3z2Ake6DEcHPHg8JlaGVy/e8OjhI1w3oslr+iTBTCqc0Yju9Bt6XdLVmvL6lvXyllpKxg8f408mOIGLoaXuNU1VE7mSIIiYhT6ybxBAVbXYzuBMp8yffMxoMmEYKKrnXyAv3jDy5hTW4I+njGcPmfs7zOc7/EJodvb2OHr4lPW7G7arjPFwwnA0Ir+7Q3YNZFvaPMcLI5Jscy+fJcbQY3QNWoBwEH6ElALbtVhHYKWm37xFzWc4xqKWF1x8+QcyIBjtsvf+92juLsibjnWW0TgKd+jiTPfpmpbk7Iz1xS2BH7D/eIrcpFSv3+IToxxJuHeEcAPsdoUSJfryFfb4CCs7bLbEZAU626LznCpNEGGEDgbk7QJrDWVRsUkaOq1YBjEChzLZEHs+neMhXRcVhPiTCQ/fe0KaZCSd5OxmTTA7xAnGKH8HK6Ct4PDJUyYPnyJ9DzD0xZBNb6nrCl8JPDcgqRrOW8VHPUyEwnge+AEqiqnykmAQ0iwWuI3A3ixxdk8QKqLPe5zdXZQfoW2DsBqaFpuWNNuU0e4TxOgAbzDF9aZ0TUaX9cSHO8QnH2NVB+Z+na/vWkyd090saK0miGY42qJmuwT7T8BaRLMFq/GGc9rNK4Qb4Yz2MekGU7f3zaCzG8qkYqMNE28XH8jLBn8y4HS14Q+v3tFLj9kkQgaSl1dLNmWN6/icLXMO/vgHIs+w2ZbUnSasSsIgoNE9bdeybmpumg799i2B4yHiIZPRmKbpWFyf8/h4BxsFeNMR6kxglIMfRjiiwxWKKrkjDXyEM8J3Q7SjEV6ArVtE7yDqDJuXUIW022foMqE5T5BhgCsjxEBSpwX+2KXteqY7M8pvXlM3BUkikacvOOEpAoGIDN4owAun944cs0VrB+sN6ZML8EOCvWOyfEGySdFG02rDOqlZtZp+MCSehDyezSmkolpvaEYedW9phcRzBZEX0StFJz1WTUfW9kRKMvEdPCGpOkup71erv+M7/tz4rmnyHX+W1NbSNTV9UxPFMWhNOBzcj/VnBduiQicxpDHdrKdQG/y9iNXZGe/++IKnD4/w3BrraJpcoFQE0sFYTU+A22uK2yuk7ShvLsjOrxh+8Jdo62DahmDko5yA9M233G0b6miMOPgBfbGksQXnf/wcNx5zMDtEYNHK0ouWqlXQWkyRUi+ucaN7q38Yxbg7E8LZkK8ubvmL6ZTg+gwTH8F4iBh4oA19ktNmGb2x+PEQsEQYdNdQIpCOhwo0um6Q3n1k5tXiDjfw2d87ZL24Rt9dIT96HxON2Hv0Ifldhl+kjKIh4WSOMx6Rlzeo8Q6urlC6w1YJtunotMFazfLuivlHP2LoROyNRnTeADmYgmNRbkDXNDR1g25qotDiWItB0xuD6Btsk1LWOcPDE9xwihIOfV3gDkfo4Yj66kuUbompMNUtXtxj+45iuSK9fkdxe0OTbPHDEJM1dF7MwZMTuufPeffylI9+PEN1IaLfYrFYJ8BKl04rTFPS3Vxj0ZjRnN1Pf8p6tYV4iCMDgsCnrTtMZSmLHCssQRRSSpe94w/oBgd4wxluEDA8OCH99hvQHY7piYYjlldbbvqCYP+I/Pw167KlJOT6mz9wcfaOBAevMxhAYmibmnVacPToMdYa3p1d03QtbZWgXQ/jRxgraLMCR0hMucaZPqApDRiBnO5DIzBNS11m5PmGRVUQHswZ7wYEoUX5AowkefeSYRBhpYPpSjAd2XLJt/9wS1MU/Ld/+EeMMvzNTz9hNp1QrO5INkvmDx+wePV79gNJ9IOfggowbY1QEiEVbhDS1lu6fEmHprc90loqLdiUhtDtME1OmhRM9/dRSuJKjyRZYaqGIiuYT8ZkZYZoe0bzXS7XW+pghOMHpGmKLw2hI3iwM6JcnvH2Nuf7P/4p3nCI02niH37AXx7/bwT7I7zpDB+Xseuw2SwobEVeN+xKUGGI1YamyhFSYI1A9x22hTCUkKzRVYYuK9KNQO58TDc+xB2OUU6BtzPjx3/ztyyrHlNvuPn7v6OMh9i9H9KHBwweH3KZb/ntL/8b2dtnxJ5ka30+PjhE+j7RziHSWNLVDfVqTeeApwTadvepOUVOlydU2wx5cIzW4CgXbQUdPiiJpqVpG4TJCRtDoTW+6yACn+ODQ6ZHx1gvIgsnzPZm0DT3Lp2+ZXF7w85sTOw41EVOVbe8ePGMdLOhbRrKPOcub7hcbxBSEtcZtdZMBhPa9RLdVIjeoK3ESpe0qHBli81LnL4HI6nygtjeoSMHr6tRscZIgRjvYpstbuuxzm4pqxXFesXf//oLrhcb/mp3SrK+4P94ccZl0zL2HHxP8vXtLcPPfsn++jHX25Zf/vEV3gAejycMhyFNV3B7c8owntNEI+LxnDKr6MsE13dojcJtLbaW9GJMVrckfcDd9galDFLcNzKCwQjhRTx7+Y5tkmIQ+NNDWgTb0vDqLGdeX/PYveDNVUXSKL6/v4OUsHN0zNHhPgWSSil2P/0+k9kb1u9O6ZCIILyPvI4HKAt6taB585rN67fcNB0X25IkzWhaw5PlgvlsjjYWxwswZYFoWyg72qSmu7lgZy9CHT9CjY+Q+y6hSmnfbFm8PmV+e40jJeuk5/Xbt1S/u0BHM4rKoKIDXAG9UkS+i+fDoij5D//x3zF9uM/n//w58YP3QMZ0VXnv+fIccHzat9+S5Q3rzYp13RAePsYEAwhCel2jpaDuOqzpiTwXYy0yCFEtSFey+/6HDHwXr20ZCsEgDjg+OmBzd0bUN0inR0gHKe+bXW4UMoyHzPYPGcx38Iwg63KyVUpfdMwnU7L1hkIoTvb3KaqS2Pep05QyTRgMAoTtkV4I0sFqjdQ9tregO5ACXWeIyRDT+ug8o2lqpns7dOuUVFvSMuXm8g1JUZBYAVHAzuEuj376CxavL4iGEyafDhhFClVltJlP/u6CwJsSP3iEHM6RCEQINhaY7QKT3IJxsFVOv9nSlyVtVVNWFTYekBU5Qlgm4zFF0aK8kJtCUroz+mqFDEcYx6VA0Lb3Mlk/jBjFMQNPMZyMOV0lrJOM+WxMknUknebupuQkvD95VByjsjVFW9B1gvl0QrpZcz/m4XCX5aRZjp2ECKGRnkMQTyB3uHnxhlEuGR2nBDtPsO4QoyLcD36I7SuUUdg2Q+gOIyVgsSrCHx6ihaS7e0dzc0Ew3sd7/0PsdoFyDTaIsd4YY2rYJNi7LemrFVU4ZurfYU4y1HgH6XhgLMIfYusMUSY4Lphyjc0zdJpSFRWXi4br6zt85VFkCYMe4sEY4/is05Kvnp+yqnqmu7P7ieQ/3VHGkyldXbEpGrZpxvbujn/+4grrBYSzOUlW3LvhlCLtNZXWPEZTX12z/8EQZzYjtz3v3r5jOnRRSlHJDnxB3RlcNI7rIroWpaCuM9ANgeuBmCBsgxOFiDqlq3L6bUV9k6KLEqUs4fFjbDzG94f0lcHRDcsvP+fu+Te0VcV8PmEymzCIh1y+fIXd3jGbz6jLlOs354jJY8YnxwhZ0mwywvGAXu7Q314j4xB/cIyZFeRlha5r7pYFwlW4jgd5QwMcnzwgOS2otKYVgrrrEbpnk+R4kzG1atDWMA4VNS6dgYGj8KTlru7p7L9qCfEd3/Ev4rumyXf8WaK1BtOhuwZXDfF9D891UUYyGI5JnDuaSqIrDyU8wknMYDCkawQff9hjux7hulRpDoEhjBVtVROEMQQtfdvTpAlUGfl2RS09hgJUs6HPF8QPY6ptQu3GMB5wdpPin18w9jzSIqcVip3dXaq84bdffUujNT/7y+/RYdHbFXWZYzpJtymJ3AiRr3DrFH8+ITtbc3txxdDZpS/XqHQXWbtYY+hNSrNcYMMQGYTYpsILI9y6RvWGVgiEFxAKSZFmdNagg5DJ8Qll13Px63/k8ckB23TL5NETlrcX6M5lcvQY20ucnUNaoG8r8uvXNC6UxZbZzpzi7AIrJX1vuHj1jINPfspockRRl5TrO0Z7MUWypXftfWqJtKjBgKYosMZQVwVeNEZ3NV26pC5yur5FWn2fNOO56DYnf3bF9cWGaVyyT0XfjOiyLcvPn9OjsH7A/MEMb29IdHVDeuOxshHy+pYw8nGkYXXxiqMPQ4TsEW1Cn26gLXFcFysGdHVKiyb+4FOCk/dwutcE+w9oyoa2quiq+4SQ2N1hm2/I8wx3MsQNPIJJiBtFqF6RLDOU5yJtR5fmRNMdhrohO31H3j0hdSNevDhl7wc/px7vYGc5bpGjPI+uqIh8l+XyDt1VHP+7nxNPNzwNAhYXZyjPoW0r5GyOdQKECunSHLu4wzkZYMMYrRXQYByFiVxa23Jb5eSBx9P3njI43qd+ecqrz875epsy/fAjPjEWpI9pGrLVirSquLq54PmbN7xdLnnyeIeV2TIZeBzu76LXI8YPfkSVLLn75pccxBb34Y/BN1jZI3SD3mzp6g06C2h8BUGAcAO2ec0mq6ndgIPpDn0h6HrN/MET0pcvGYYBWV5QFAVdVnC4N2O4v0sdjsiTmjSviNMNWRWj+pyh12Mjj5u6w4+HJEWL6/soRzA68BmNj8lNRTAKSTZ3CGXxQ4/VOuPB/AgtJK4T4HiGqqnRpkcDdjDBHUq63oLtMLpjtdxSdTGetVjHx/Ejot0Z+vj7vPj6lK/fnfJB2CAXp7xeJhzufcvx9/6S8nrNf/nyjyxOP+Oh7NlxBP/55BAZ+ggOCA6f4knLYHeHcn1DuXiD8C5w2hY1HIAfoOMJ0g2xjgQlMFjqpqUWGtsraDtQirZvqJse14sQUjIfDJmPZ2y/eokaTBn8+CfEewegNWWZsbm75Pb6CttmeNbQ1jn5NsNxHfKmo6katIVFktBYsG2PIy1IizENvW3JKhiELmZ5S+OAcCWO67CtLbatQZYwGaPCHZQLmgw2KWr3MaKtkXQ40RB/55DF2SWZE2FcSRwphnOfvcMd/veTCYYWdENuHP6v13d8vkz5/gPN45/9JT8fhuRVwv7eHjuOQfvHrG/fIYWlffM5j3/w7/CDGdbtMVIgZY+hBq+lapakuuWu7UnqChyDkCA9BxnvcJV2fP38HZ6jkFJQp2vkcETsKZQbIGXIl1++4JvTLQ9PPmQyn+IMxsRxgBzN0e/OKNc37HzvE3qpiR8+wPb3yz8Wi+xr6Hr06oLy6oyldcj6mipLWNWGgo4n51e4xuC6AZ7bI9sW2XT0RU2Xp7TpAjkeQ55hRgVUS5J8SXp3yss3t3TBBDMY0aohXqDItcHdOWEiLUGnKbMcqxvurt4RHe/zs7/9KdHOLsP9KflqxcViw/vzI7Sn6NsKnVaIyMcOfdra0LkRvfcn2apu0EmOGo1ACZQSSCkJPAelJMFwhDZDJqMhwXyfncjHXS9QyZLDgz2cwGX2o0/5iVIU1zWvmoi60SSbgn1/j9B3iYMAD9BpRbZIuLo8p7YZrnSIgpBOG7TnM5rPCQZD1jdrbi9vCOKQ8WiEMPdJIsodgJIIQNBjTY/uG4hHmPKSukwpgfCDpxw2kL294LNnX/Pu9Jwuy3FCn+nulJHbUS9OebwXoKshvm9wuwYhY9ydFt20XP3htxwJy+DkIWowR0RjbFaDXdPfvMYJH2HWS9rNhq5rSbcLOi9ACujqCoHAkQ6+kuzuzPhwfMDn1w2t77O+eYfxXBohKI0BIRHGMnAVHzx5xPW25L3jA65u/sAwDvHjOZdnN3zzD7/jkzcpP1nVeDshStVcPHvG1PfopcfYCbjLV/QC0qzgdrPhgwc7GAFIgR951Jml6QW3z08pLy/Z/ZEhCgY43n1j3rYZyHsZPZ6LURLtifskuWnE+vI1ymwIH43J2ikPjx4gMxdBA+EAOzjAJilO+44+aYiffsr85CEsF3S3N7izXYzj3q9a6Qpb15g8wzY5fZ7TphvyxQWXb97x6t0t6Iquq9g5GmPcgrpxEYXk8vKG5+e39DKm8UYEHkRxxOHhIdc3twyjgKoteHedkTcvWVUuk9GQpCzp+w5XayyghWJ/EFF2lj7NGNyu2BnPCOZ7FGVJtsnw44i7JKXTPZHr4mCRCJwgwPVDqqZHBiE3q2umOiMcRThNjM5zNrcbbm8qFJZhIJgfzjGDGOv61MEQx5Fk65ZkWVC3cPfmkvnOkNlkSDAc02RTLi8uuT675Yvnr9gJYqamQ9YVxoKZzegcD0ZzqHOSszOc3QcQ+CivwK0KvFFCXxu0VXijESEdY1+jRh6dVNRGIJRDWqQEgYd1LE1nqNKMke8wDgKWtWGR5YwcRTyIGcTRv1r98B3f8S/lu6bJd/xZIvR9sYOUCEfghT6OkISuYm+6w63/jrxfs+jfsqf2CCcCqQRPfvFXPPn5X1Jdv8R0FU1VIbXGc2PcaIrjD7BVQ5VXiDDEiB6bh9wVG+Lz10R5irYOSI+ydfF29+iSntnxgDc3W9zlPzOeRhh/QLJt+PLZOanxUMGY0+uKiZF4qkO1BtlC3mpamWPbnqhrEKMJw0nM2WLLwWSJn5yh2Ed1IX2yoZcV1eYO9/gEADcMqfIUGYaovsdxFAPb0kqHbVMSxAGzJ0/Y2IDf/vKXuGWGFZbw8pyTjz4iCgPSs3dMUcjBAUa5GMfnOpcs7+4I+zvm4wATRmir6HqL7gzVcslv/+vf8cFHP+JlUTOeD5k6T3B9H4EgcHx0p6maCitd6jyh7lri8Q70GWW6wR+P2F5fMJgZosEY21UUF2dcffuM67Nzzq47Hr19i+PD6vKaR67D3kdPiXwHSY/tamwQMX//U+TMoVx/w9X5DdJzyZMNfZ/j1SukO0WaGp2vaLINzmCMNQ3Wdwl29jF9gxMF97vURmK6mqrZ0P7poqiFRXg+fhjTtTkPpwGBL9E4+KGHE4ZgJcFoSnl3hT8YoIYT1jeXHE6n9Ice02HIXRxhhCHdbhjv7ODFEX13n8hzty3IaoMXD1ktAbclKwAAIABJREFULpmMY1zPoe9q+r4F18F6AmM9zGiODMagPERfo7XGug5VUXCXbDkrcvbfe8j4vUd4e4eE+0+Ibt7ivHjO799c8Pmvf0U0nKKblr4sWSUJbxcL3q23FL1htal4dXqFZyv8Rw+Yj49xJ8fE3/+Y67//L2ye/Z5RY3EGM1BgPI/OgU4alBdiPXWfNOF4XC+uKPKSqusYDh+wu3tAU5e4CgLfIalKpHS4WycczaYUFhxrWRUFZQ/edIY2LUVSUKZ3HO1O0Lrl6MERRsXocErXGTwvRvQ1yYtzgk8mKF8hPUl1u6BIt0SRQ1UX2G6GlhKlIJpMEIj7F0s5uBcy2gZje4qi5GqdIXyfWZuj2wyjelo/ZPy97xOcvsbQ8OvXb6mzJadFxWad8LOiZzR/ze3dgv/08RFHsYuu4GBvQpJV6OFD5HQX13MQ7QgRhVSDgKbL0FJAWSONwbouVrn0pkdgabWlNR1N19JXPYEKKOqa2tRIL8b0FsfxGLseo8EQ6QVMP/4QMQzxPA8roLy+ZnP+CiM80qwiVAvqogAkrYW260E5VGWJNgbP9fEjh76rcEyF60GuHLZtA06BLnPwPIqiJ1Ups0GAxdI4lkpoVLiLJ31QYP09LA6+zpF5jhruIN0af7pDhcsHj3aQxxMe7U3Y3ZuDdJG25frqmn98dkMwGeHN94kchW4b3v/wA0yRgHSoFhc025peBzhSUvU568uvmD39FKQLjkJri/Vd2qqkDDySpmeV53Q4DIIAJ5hgR/ss+oC3F9/i2JJBHNAZkOLehXN9mzAZSIw74NvzhlUdchRMmB4e30eUx3vkVYcuUzZvnnH06CnanzA+PKLZ3NIkGcEwACQohe47KjTDgz32Mp+3aYmuMpK84OvXbxj6itl4Sl+uibyAuu6wVUddplRdTu2MkSZD1kuoc4KjPbJv3/JtUdNeLRhPG9wowvaCaDBmMJ+xSRN2dvfQ2y1nL7/i0d6U7/3sEyaPPkTFIbbOOf74Iy43n5EBUZPTNQl+ucA6DWWZ48Qesguh69C6pi63lGnGKArBC9Cuh5CCwL3/P3R1jev5YMC1kNWaKCkI8i352Sk28BFxjLc7Yeb5hGcVRVayWqdU012mSKS2dEXC8uqMf/7d/8l6dU3aVCAsO9MpfdcghURakMagu46b16eMJwMcIApDhHLx3AjTVjhS3cs1pcHoFtN2lNsld9c3MJni7+8SRhMeDkf85osvMI5i2VkOvB6nK3ElJJsF4jZnfxziSAO2phY9ddcCFWWX8vqzX/NxDLJvUMEAVI+lpr16hw182uUd9WpF70gaozFYbNeSVyVZXuGHEdJxGHuSJ++fMJwU3NzecatDct1hpcM6a+i1Rrc1yd2Czz7/kkxLPvzrv+WL5Re8efmMixcvePbsLau7jH/6zRf88PPf8Tf/5oecPD2maHoO9g/59uUZFS6ZVPQYpO55mzd8UreEoY/bN+i+JVuvsCKg04Kbs1s6fs++hHA6xvE8umSD+95jtGtAN+BYpCtQzYL0m7esiprDT75H3k1I2wjheojRPtK0iDhA4+G6EUb45KnHaZLwJB4xmRzR3Z5h0jtU32Old3/2NQ12s6FLN1R1w+btKafffsX53ZrzJOfnn54gyvtJ4qrcYlOJdSXXyy1VbzCORRuNdYcI1+PgwUM0grvLM5Q1KD8iawEhEK6Db8H0Pa4K2DQto519/ubf/0+U337Nr7/+IyZNsGXN7kmIGwSc32x5tAcj16UdDamTFqxEIZHSQXkO1jhoKXCkoKiKe69U2lAsC27SjjaIsbrDi0PawS5OMEIGETaK6VSIlaCTHOqcSkqcpqHKNpRtQ9b32Mkuv//mlLuq4/i9Y5ZVSn2bMphMCeY79LLD6TpE5NP4Aislyo/wPEWjDcNJxHZjOfjwU+p6g9NukJ7h1vUQnkspXJqmo9LQSwik5OZyCW1HZ2H/wREDf8Szzz6nlJb5eMhsGP/rFA/f8R3/P/iuafIdf5ZobTBC4AYOSirGwsdKRa56dNyhph5FtuF8m/GwUcyjPfra4nsSFXjkCxfRthgEfW9Ad8i8QBCAARRIx1JnJVc3C1bLDcOuo9MN6uAxTPeJPjBs1hts6KAI0IxYFZZnZ1sW2zMcozFICukQScubmy1PgwlqdMAsKgjCFf3VDXnWYbD4k4h6k+H5ijutSbuGcXmDJkFIS1dn1NUtvXRRBrqmBtfB8SNcLKJtib0A23Y41mCUB7qjWFzy3786526b4ylJ00X079bw9UsmO/u8enODsTWHD1q6Nme1uOCrFy95/CBmN94lWVxQZRlVWWP+FP/bNwa9WJKoV0TjEZf5DfPDHZTngOtQVhWmKMiKjNFogAx8tFQ0TYtneoLJLuFU8uJ3f2Cz3DCZ7mHrmmS55E1eUIz3uEgzfvPLFxx7DYeR5uP3Ypz8BcIbk/shqRzhTEeEUYDrlIx/+AlHH/0A8hVv/ul3rNMUf3qAEiDCABl5wAjpD5C2Q/oO1tQUtyvqoiHYPcHxPGrHo/MtGgUIjOvS94YwCPj913+kaAum8/+MqDPMq2eMPBd39wg/GuCt4Wa7ofViSuFRtJq9w318RxAFHsYYHEdB39NWFeiWyPdpCbi4vuMnH+5DcUu5XSKcnk7XEIbYwEeFCpSHbiKE8qCo0EWBEB51lZFt7jhd3KLigHg6ITw4xts/QjQVxlYcWUk7GPLN23Pe3dyQFDV1UZIUFeuyZtlZgnBAZUN6OUapA3Q1h/EJZjRBTKbs/eIXpL/5Fc32ljbZ4Loj8BX1MMSO9zFegA38+zjaqqVqW7I8JRRDyqbH7EzJrs7xwxrfD/BCMHXLfHfC5HCfydFDzpdbsqogFyFtY7DrBWnakKwX6HrLw+MDPNtzeHzA7NExlQHf98iKJfmgQboVZ988ZxhFJGlKssoR0idLtpT5kGC+i/I9TFnR9z2+sui6wuLRth19XbMqG1J8osGUBoMqU6J0ST10aJbnSFHTiZ5nrQIbMBx4yL7hXbplJxzwVx8+4vhgSti34FvWrcD15+wdP8b4MY0U+LGPKyoaHdC5M6BDConVPVbcF5vS9zAqwHQdXdvRVwaAvGtZr1a4s737bxqLH0UcjHYYxAMmD0+IPnhy/9rb1hglOX/7nOdf/hY53afRDaukwFYptXYZjGdE8YqqruktBJ6LCKcUyRo3cLk8P2U+GSKjAav1OdgeYQ0+irLKcKTACIHXd4RBgHUUVgl60+G4EhVNsH2F1QXWiTByQtctwA+ots8JlGEae6hhzDLfsBeC67scH4b823pOO95l9PhDYrdkNhlSJjdoU9OIAaO9Y+oWdLKhrUtM31GktwybBjkcY10FymBMh3ZdmmhEu0pRaBwpcJVL78Sc3eZok1C3LYM4ZJuW7O7toGwDUrNOS/Z3Dykayd7j7xHFJzz+0QcEwRqkwbohIzdg47sszt/yJNkwfPAEna9xRE1z/gr3g49wfIlwFEYKjOcxOjqivL7kcL1lU7UsEs3VNuX8+hZpDKMgQmcJUgX0ZU5eV3TC0Lg9jmyR6TUkN2RXKWnlU/kxlxaqumJuLcFojhsMGUYTZpMxve356ut3+H3Pp3/9b4n399F9TtlYXAyMdzg82SdNNGFbEaQLnEEA44Bgf4+7q2t6W9OKFt8d444GxOEYK8FoTVeVf3KGdAilyMqS0O8IXJdt07M3H+GNBoQ7E0wY8vVnv0IXBe//r/8LoSPpTzOEEiyTNct0SqACZnlFbxPevfiSN6++wlrBm9Wa3Z099mZz1PoGN4yoyhrdtMSe5OrsOYu9EVEc4YfB/ZyP6ZAKdNMilfhThLCmL9asL67I1YCjR4/wduY48Zjj6S7z2vLHs/+bq/JeBPrwZJfeFXzx+9/i9TnVoz0ePNgnCAxR6OAPxnReRbK45vmrcw5+/AOC6Q4632Lahr5vMW2DWd7SljlVm1MUHUTxvXy6a6mLmuFkihGSZJ2Qr1fcvvyW+XwfFVlK15LicbvOeHD8kCTLUes12eKW/WGA1ymuLy9xsyWmzvjmzYJN3uF6IYmpWG8NXnREbSS7J/u8e3vHRVvzan2LdV2aMkcqyW2tyZuWpmuweU4gQCpNYxrKpiZLSpq31yD+wGRnTDjdp3YjpsoB0VDfnd3754qcbHHDbdog9k8oxJRwvs8JLe3bl7TbgrpTTN/fxxn22CwnPUu5uDglngeU10si7yegHMK6wmY5lgAjJLatqG/eUK5X3Lw+46svX5DVBcu2RkQB/vwYYzfYrKLMBcOTIXdZy+tVyTJrCGZDTFsg5YDxZATBkG2aYfQRssswVvPzn/2I7d2G19uSou3oeo0xGisk++MJk/lD9nZLzEHO5/mWSZISLjbMHj7iZnPL69slnu8gkHR9hzYW4Xp0fYtQElcJBlGMthrfD3AcjzbrWdeK6HiXMlnx/G3F3rrkQy9m6IZEwYTYWozRaAtEIZlyuNUuy5sFxrHknSXvJau0Ro5HiCyn0S1VdoPVIb1wmIQZQjb3Z47R2Oh+Os0oje0lQTzA9RQ7+1Mc06LyDeFsSOG5NPoZY1eRVS1F3YHjoAJFklekbcc6LSg7jV+32GTB0e6ISRwRxyFh6P1rlQ/f8R3/Yr5rmnzHnyXa9TCOj+/59Bi0J2iFxkhDbwRRHHDeNuS3W/ZPI45nI4bDOfnVa9Z3W+okZbazixeG0PVYC0JodF/R9w3+MELXCdfnZ3TSp9GGxWaDDn1mUURd5TRdyaYoYDDHUZLAMTRSUMsIT4aYrmXqtNSbktKGqLrj4uVbdueGgw93me1Kyo0mqTK6ULIpe3SvadX9pfqmaJmXOcHVN9jpQ3RfUiQbzHh+/xv0HVYKlOdCpxBKotsOKV3qOqfEp+wt56sNl8sVjhcS7R9RTQ9pn/4F/oOPUNM5buWTnX1B++w34Ln8/utviCY7jEcf4bkGS8ftaoG1GuU6aH3/8j1xfSLXR2mPPi/ZLjccPjiAvkQ5PngOsTuhty26a+irBv/hCBeDsNCXKfPjKS+/fsnF9RlSeUgnIHz6hEFeM498btev6dqCynf5f85yvOuSDx72lHLA/tMxhzNJOAwIvfsYXTH0qeuM3Y8f8/L5LXvf/5h2s8KTQ8Rwh3DkYHWDtBlWOhTnr+mEpjKWncijqRqEaxntHNKmBWXRYpAMhkNq3fL8xVd89sU/8fXzz/jFT3/Aozalkj60LWZ2gO5T1nVJuPc+6TajW2958Pgx49mY9NYj2D1k4vgsV2taFdJ0FdIaRsMh6WZDng5wwxEjR3J7s0JbAaaj1w5lb/B0hxP5SKExgYMipEtKmibnNrllKwzH8xHC8xCOQriC6uwdRjp4xw+YeoIH1pC+OWdZFWRVQ6kBz0cKF+NO6dw5ejCnnx/QHh9RHx7hzRSdTRk9eEh4fYkyPn2asr14Dt4AIgcVTDBG309vSIfVesVmtSbwXLI0I1muONwf0ePhCIdWd8TjKdFghBIGNRihZjNCL+L0xTn+eES7e8h2syLbrtimCbfLO5o649Mff8Lk5Jj9wym4CqEMqWixQUGZtdw++xKOTlDxjJ2nA+6+/ANlnZEkCZ7j48wmKB8cx0O0JW17Lwd1hKHWBu266OheEll0NZ6uaIWFuzPa5TsmvuH9oyHXRcKLy4z9gctH/oi6tRzPIvbmE4Q3xDotSgj0bJ+dB4+IJkM8X4LW9M69UNWdjCjKHuNHKF3jeT667hGuQ2slCIe6KymbhlYKmtqy3ab3jomqIc9qduZ7MGwYzsZIz2X26CHebIytW6rlgmWx5b///X/l6vqKBz8ag+NhjURpSNOEqpNM5zPEegXTMSiHHpcBMZ4nyRpD27UETsWdI1lWNZ4AxxrKpsF1HSZxiMpbiu0GT4Ebu8jKIZycgOOCrhAq5t1nXzPevyUV9f04fnFHLBtc38dWGyZjh8EgxPNjPBViC4Xa3ec62yDtmsaDukwQ431UueSmkBSbClVUdMMxyvGQ65ZmvSQYjmjrGikNGE0tPLI2I2kbsrbDEZJgMKWzAUp05FXOaLLH4uoaIRVNXXCyN2TsW6aTIcFkl9NFi9QlTvuOzdue/oM5jhMgHQ9dpRw9fZ+lF2ObinDoozpDu7jDci91NosrAkeTvf2WLhpS5AlJmiPCCbOppsNS1Q1vVwnjwAMsfjhCJCnCaopeU7cdeZmhsmtUmXH5/ILW7KEGO4SjLS+2Sw67gNnhLm6o8EZDIt/FDxRNkdJtNvzww11MfsXi9xeED48I5hP6yEF4O3iDEV1dk+cJce/hthmO8HDmM+ztLVWb0tqOYNcDX9IqByUEtZCUVU0chhR5DlIx3NlDmZ5OOJSdZRDHDJwjHvziPzCcTzCBS7ZZEO3topd3GCExVlP1NV+/fUG3N2V0tcG1GWdXp/8fe2+2bEmSXud97jHHjtjzmc/JsSqruqYe0EBTogGEkaYLmXTBx+SNTFcyUQJIgWwCBHpuVHVVVs6ZJ8+w5x3z6O66ONADCDewNsvvEdwizPxf/q+1eLvbsthlpEqg4imfHR4jfQeEIfRshOpxupamrrm9vGQ0meBZBhGOsBwfITuEBiP9O/Girsgv3/P+asns4yfg2ljDKTgeQjQcPnpIMZxR5R1ZWfLXr9dM9xn9Zs98aBOKBifdMpuEhEMXWxq6IkNJBxFFZEXB8SRGah/WG0y6p+9amsUVTd+R5DkqjOmLCn8gUAJqbKRt4wQDBuMJbpGRrxeUSY52HCplkOEI4fn0WpBWinq1ojctf/ZnP+Fqn/Off/sNn33ygKsXLxkOpyhTYrs+qrL58af/hjg8QTo5eWHx/PaSN2++p+sqiqZHmn/Ky9KKXkGR1RDCIk0QdYWSA9JqT2kMbWuwlnuS9ZLZE4ujP/vXqGSJGY1phIfJUpLFiv2+ovIjtJC0eY0rFadex/7ZH6jyjvSmIvne4eRPH1IsEjZvvmfy+ICqy9i+eYUbTBjO5lTXL7DqHpRAVRnN5pY0b1huCi5fP+dysyfDxQiLT05PCX2BOJrTBhmOyjBakeYZ+6YnKWucUY8whr5vMUZjo/nJn/6IF99+x+3bF0SDgPk8ZuBJ/vvfPiewHcI4QvQdUy/g4el9os2O2Ik5+uzPuPnDLzGDIUfTIZUjyLoWa+BSdx15WSOlhZDQNBWWgb5VGAnG0YSOi5Rg2zZi4DI+GTK4OGHECdtoy/r1NcGmYNDdcozLZp8Qjqcgbd6+ec3N+2sKP2K5WpK+uSGKBxyePcT2Nam2cMYz3ixu8McOjrSJvJpudUUUWuiyxPU96qZn5Fj4niRvNKaosCyHNk3JixprHGKCgCJJsVybWgMKyq7HdRyKsmVfVPRSstoX1L2me3vNvYM59iCmM7BKC9ZJ/i85QnzgA/8sPogmH/ijxEiJ53t48Yi+Lum0JrQsZK+I8VjVLm0qKTrFr393yeHokC+/mDAZxyT7hE2W48UjgjDEBaQrabsaI0fgOHiBoNoXxIdHFO9X1MqwaWtCz8ZYirbYU6cr1GCOMwtp9xU9FgPjUkmPxnPIdmtOD4eIdsG6h0GdczZx8PU7qsv3RON7fHQ65fm7FqNLsubOl9wJCztwKPqWXa/x9jdErke1TzDeCMefQ+uhrYamyBCVpDP6buiwHHSZ0RTV3UAjXPKmx3Ns2r7FdyXDYcj9R484vP8QbxBjt5KwvEEvqzsPuudwMhvQNA2hzsi2K4wX8ejTjyjbN9TNXUtPK627Jo3eo0p89is4PbURpkbIjla1CKHp+55st6UvCvLNLaHnIqQFfUlHz/njY/zxMdKJ8EZztklJ++IlV5sFhycXVDvDq2KDqSUfP3nMGxXx6eefEbgZ2mjqusSxLIzlgLQgGqPylOG5IdneMo5P0dpHE9xlpxQFOnTw42PyPKXuM0w0pknXdF2PVJpAOghp02IQWIRxxNVmRa06Wkvw/cuXfPTgjLotWbz+jvMfuky7ji69IYiGdNmOwHHpTMSu7jgMQnzfo85ThO6wVUOPIE92zEIH0XfghyRFiypbxoHH8fkFThjTKU1sO2gsOstDuj69kXcCVllT5Cl5tuF9mhBNhwSnxyhpqPdr0mqHHYdY8Ri1T6DLcey7i3k0GGD5A5zm7ttpE49SzzDhPXYipBpEEGlUmCJdCdKi6zy86Ql22aNMj1UP2FxeERyfE/gOGontODS94vX7a4qyxDMuQltk2x3rd4LJaIQQguE0RoRT6t2SSkiubheMjObBo0c07pDvr7d39oB0S1nl3Gz3pFkBToB3nRE89JkIF8codF8zPIjo8Sk3K5rFLZnjYp0+otjtcT0H1cBuu2MyGdGrHuk4CNdBI2icCsex0Z3AimNcpXDSgqZvcT2b1vSoKkFvb0mef4PaVjxwJNlJwDZ1aNBINOfBiBNngJEhYjRG6x6JIVE9cVMw7H3UaIosSwwVyrQ0jcFzBMIV9KWNNhpjgbB9dKdoy4y+VyRlSyIk6S5lv0txvQHDoeRwfghaE3gB+W5PZdtsrt7hupI+Ldlcv+d/+/lf8X//p/+H6SjGO3uINxjjugGy81G6psoz9kVKHHrYgUMcztFGkuw6BBAePuDkky/Jr18SepL1vsLSimHgYiyJdARtU9LvdgTxGKMMfdtjBR5d3WAbiUWEEi3zL35I5xTIqsPTCkeCF47whcENhli2hXYiLGdMyxAZWNjBBUO1QtVbkl2Gciz264r8dsXqekO+ythVGuOHBNMZn5/PGO8LZo8EtrTQlkeHpFis2a1X7HY7Ot1jBwGTowsqIak3K0JXUrUNk+ERi1VFmV2ykAbvMCbJKyZPzjk+mDGazCj3a9YvvmE3+YTDs4f0RuBPj6DYc/rpGOIhMvSxgilB6KH3G3ZFx6/+5ucEt98Sjcak2iXf3NCUJY1xGR+ekBU5fa9Iy4qkaohjQ10WeL1BChs5CNgpRVoUBHXG1T8+o7IPsH2LOq95dHHMu5c1v9rsWZcl/86WnAxDZO6inTm//d33iOEBz99tmB3mnHz+FWli8/L3v8AfSA4//QQtHYLBXZbONt/h91NCo9FK40/HRHXJvrykyjIcy8YLbGQQ0OQljbSxh0Pa3R7d9jgG3DiCwRDyHe3CMP/zvyC6/whUizk4YnI8Z59tKfKE3WbFdBRRlQnvLlfU+yE6DRnZiu+vV9x2iuuyRo7PMYND/EHMcDpiZCrsuma32BDGQ/pFTVY2lMmexLNwmgbbssF2cBwfU5WYKkc1Hdt3bwiHAX5gYc3O6L0BQiuwJfdPD/lf/5f/iV/8/G949u1z3i/2lIXDsOvwopDA+MhCsUs2FLFFMB5jomPcRweczDXTj+5hrA4xOUYqgUlTys2aVmvKukR5ASYIsGyXtq3otSEtS87uPWJ0eEJb5Zg0BONSa5cOw+3Vhsq2mAkbpQRpZdhs13z3m3/gV7/5NUWrWJmQHxwfMz84oaiHBH7KYrPj9PyYez96xPTeEdm+4eU3Nzz95h1dWdNoQ2cMgWWhVAdth9AGIx3oYFcoXGuAqFssVxLOpoSjY/I2Z7vP6BYbhrevUV1F+NXPaNqeZpuy2Ve8LwT2wKbqNJFSeNSkoqapMkxXk1g2bdnQ/+bXKG2opiFVq1lvawbC5f3zp3xx/ucIa0K/WtCXKf3mhjqrePZmy7O3S8oiZ9v3ZKbhdDZiGntEUUjXd+D6jInZbde8XVU8u05pOk1bVlQjwUk84eDkmFrbjGKfJ5/ex5clnzx5RDCcgLFo/ilAeGBJpGUzGY6xxke4s0PcWCKyHV+cXPBiu+MmmzKfhsyiiMUqIwxCtmmGbQxp1eEgsKXEMhZYIX0LODZSSFzfBX9wl6E2CIn8kD8NJvzn6zUqnJDtN1j2AgKPruu52e3ZJAmW7XDb9KjZAZfrKyZ2Q7NdImQAxkaojtu0YbzJ8XvYVw0HUchNtmE4mZDsO0LTcnxiYYcxTrMiK3JU3aDsAcH0gFTXDFRFm66x/QAjJa0WXG8KRnHAdrPHclzevV2S1T2OkESuT90riqxEa4MlDW2v/oWniA984P8/H0STD/xREvoBrpRMRyMW2R7V1VjK0Cvo65psuUJ2iixveVFV/PXff0ddd/z4xz8kSXOuNhnzY4lnaWzfQdo27sDGUNN3NUY7KK1ZX13y7nJHUreExtAL6JuMpMsoy4Z2qMivn3GZdLRY3FaK6dEpY3wiRxNPxhzbA5pth4VCTl3+yzd/gKLiv/7yN3x0fMinP/ohdtBSW5KmVfSOxBq4ZL2m9QLyfYLgirJ38edDpGvIN1fYBxGtbjASOm0Q8RC0IV2uAUmW5RitEVIwHHhUvca2DIfjiHJxCZ99TFNV+K6D7fk48wP6tuL4cMrZQczJ4ZR+v0Og+ejJj3EIGI8zNtsMHA8VeljDgGxXsypysndvuPjyjMD0mLa+8ygbaMuMosoZSEG2ukGOJhgpEKqi7yqm8ylyMET5Ea6tGIeahw/P2KZ7Gt1TmTMe3z/G0SlFkzObxuh8RRM0NFaIZxnKxsKKBqAkJozwDw85HzjkizW5O2I4PMKyI4zu2e0a4pMLmtoFuwdd02jo6gzXChHRgL6ryEvIuoK0aYkpQdT4gwApA9q6x4xPaTvDi+/e8c1/+Su+uj9iMo6wz38CjoOuKx5c3MNyHLpsj++7TI+PuXz+PXlZID2N53m4wxHO/+fNNy7Xtwn+vTmxLVBti0LgBD6O46I7hWsL+lZjmhpVVeg6Z5skGNfj5OEFgWvRakGe7VDKIZqNMH2FshS1BTIOOTw+obF3jC2HptHUjWKlDtDtObgx3mSOG/lMop4gvUIOLMpiSZ7PmTgg2gxVVwht4VsO2XaDPxnjBi7C90nWK/KmJSlqpo7NdDZCC0GR1djGEEQetu/RICiNxU3Z8MunL5hvtxydHfKjn3xF5V3xcluySAp8YXH84AmDzmJ+7wEXP/ntdJY0AAAgAElEQVSC0wcPSYqa5c0tj45iHGGzyzN8RzI5PSecHdFKid/UHERDOm2o0g11WlC5Ls74AGlbKGUTTw6w+5aitjFNinY8ZnOBsQIczzAcOwzsijrdkN5uWW5LosDj4/mA5VFM3bYMhMbVik6V+DicHZ9Rm46qLVF5yrbeU1ylnJkS3wuYxAJlDCLyMW2DrRuswKavepQRGMtGe4JqW9H2huvVhraX1FVL192dYRzHCCGQaIxl8+3Tr3m/uObem2/45NFjBrM5/+233/C//8f/SFlmSBRKGYQ3YpNV6MoQGgfX86n2K5JtxuzwBCVdjBMyFprRKMKL51RVDqbDsxSdVtRdjxFA3yDx2e9TAhz6RiGki2p66rIhCGp6DVpD1WbY4xOydEsUh3RZyuzwiGS5QQ5DtO2ipYW0fEyekCcFKstY3n7L4GTOi6sCf+awS3dsCs3NOuftKiPdFSS9oSLhYJsxHQY8yncoLbHDEKNatBFoIzCau62EQcBwNGPkzpiNxuwvbzH9XdVom5cILZCWRGlN1mmG9y9QlsX5w3sE4ZBuErNoc7I8w1qvGYxmBL5E+AMmowmOdJCWjeoVSgt0NGHz/bcsr9+Q3q5p3m1w4xldtkN3La5l4VUFB9MD4qglT3YUGnoMceAjhKFIEpK+IlWaZVLCq1fcZBr3MMYWChU4FJbNRw/PUW8NIw9+8eo9n/fQvL1COSFHn3yJN5lQ7C6RfcHlEharFeurDLut2RQt09MjrGiOHB5QFHuqvsTuMuw4psgLXN/l3v0HNM6ArkpoHIHtBGyTlL5p6JTBHU/p8hwHw2q54nQ8BydAewENAmnBbr9j27SINufm/TN+8/sFSWIT2pAkW66v33F7VZOfTXk8HzN3bX5yOuOxA8n0lI8fPKBoO47mx3R9TuQ7TB3Bfp8yjUOWmxWvXljE4yGUNdV+jzIwnB8ijUGVOc12RdcUnH7xBVY0wI5iemNwxF34suwM6nrH/lZRZAr6jlgKHt87w9gDvrmxuT/zORs1WKFPFR4iowPCC4+T0CUahlieg+72GF/Q2R6Fgm2WYoRCSIPVesiuwRKGvGy5uV0wms8psj24FtHJDINL5I94/vIlt0nCw4OHuI6D0oJ36x2LfMf7bcp/+D//jkE44P4nP8b87IzJ0QlJsuH43mP8t68YTQ8YnQ2Yng2xlYUoCuq8wrEt4hAsy2Dau+rovuuolAAktu9wMRrSipAuTdDC4MVzkp3gZtsw8Edst3te//Zr/NP7RO+vUW1Dst1yvdyR2QFtmhN6I9o0oZbghj4cnJNtluRtzfOXSwKHu3Y1UdLVFUW+J3EEoik5TzKOHlwgtAajMHlAkVS83aasy4JN1ZDrDtu3CEceZZ9h2TbCFQhHonYWq07y3aKgUIJWQ1GWDOuU3W5D35/hiBatNffOQuz+gEeff879h/fIVzccDv+WuqgIBgOqznDx5Evi+QVifsjFZ5+R/sNviXZLnMTgjubsyxUWCrwBu6LEuAOod1g6oC5rtDCUXoCPR+9purbFjSOUEViuIYgcpO9gbI9h2PPDz3/A5ctrxuGc/eu3BEcTXq+XGN9jcXlJHA1xHJs06cgqRRS4vL9aEE9m9FVH1xtMpzC1Te9H7Fe3lFFBW+TsX61ZJhk/+vxzfjKaY1wwUqO0oqhaxvcfUPU9qqtwhIvSCukHVFVFVZcYYZHkLZWSCC3Y7EokFrPhED+M0U3H4WhGPBgwiV0+Pjv9lx0iPvCBfwYfRJMP/FHiSsEgCGmqnDDwyfKUaDRAasnN9pZVuUQOoNiWeLbNPz67ZJO2/MPvX+MIzdHRKfu6Y+CAtEMc38UxGkv2NK6hVw3JasXVIgHXJ4otTFXSW5BtF8gwJDEuy+2GdLsjkT43ZU1RVfhGkSYFpulY5ZpBPObe8Zi1kPzNy/fs8har63idl7yrSzZ9gX9wzFefnSMtgSU6LFfSSMG+aRhFIUVdYR0eIyMf01W4I0mjavI8pRGSIPDvakyXa/bblNHxKY7bUNU509hlkVg4uEzGMcdHc8aOZL+45eT0lE8HNnvTEU/GbJc1UWAzGoYM4yHSv09e9AymR9R5R9NB6HgM54fsqp60KrhOd3x7/YqjymO3vMCajzH8U8he06NUi7AEq+UG3QqEtInmI7KsIAwdLE+CZ6OFgr5GtDnGwEePz4mGPkmWUW/WnEnJrklxhUK1GVYY3dXF0tMLm6YscEIbjKAz4Lge/mTIfvEWd3ofL7CQ2AzPTmn3t0j3CKU7TOiQFnsOdI60HGwpUFZHY1pusx2VB6Fd40Ud/sBmEB5S9SAHR2T7Desih2rNYq/wAwuTrli79xg7AVW65WJ6QV5Wd2usxtD0PWndMZ+fcTiaYauagewJfA+tehQOr15d8smje1i2QnQtTZZiBgLbdlG9oqsLLGOj2pKubqi6noOzC4bn5/RNjd+WKCmptcCqS6q6Qdo2vfYZxSNGqUvfBUwHPr/87h0TN2YcHxK453x6IgjsjFlvwSLFsiDbL9levWV5+5RP/+QTJjrDMgG61uiqozEFwvOxwpBOWCx3KVfLDb3SNJ2i0+D6Ht5ohpQ9o9kRq6Kn6CwSZfNyuaf3fKKjE9Je8NODmOVHD7l9doMbjUjznNN7D5iEI+49OCcaj+mU5vX7FWORk+dQZDn7tERvFyzfvOSkqDj89Et80yMGY2ps+r4j2a4ZjEIMDXVR4gYRpq4R3P3/XRhiZRVePGA4mmD7IY4FjifwT48obq5I8oykSDk/mfEgiFmLjDCUXIxG7JOWkZcRNreEwwgxn7NfRRTpLdbQ5erdLWf3J+z3d7WTSdvgqgStwAvn4ILVK8q6JUvWJHlNagWkTUe+Tgn9mIPRjPHhCRYG276zRrRdy6YoWZQdYl9ygM3b9yt+9d0LPFew2/cIyyU4fMQ2bbl88QrPlUwij4HtMz0+J91vqesGYxmiMIZ4xCC08ZyO9bvvGYYekacZDyy2ac8+L+m6Bls6VGXPyWR896K422NHh6jFFZ4Be3yAZRtMV9C3GW1XMlIa0+cob4gVQ6M0jh/R2x5VVrO/KfnFm4bWeASWIlYdlzcKZ7ujqlOutimL2lAIG3s0wduu0VJw7+SYo2FM0gvGdcNkPMIxAtP39AiM6HAdsIKQ+XxGul7RLDdUqqRRHbt9QS9aelNwOIvwHUVHT6MKZlHBOKiYnD0i72akbcPm6V8hAX94gCoy4mGMJS3CeED57B9Rjs9un+JMR+SrK+bDkPJWU3Y9WVFS5DVNb9jnGeiO2bji/PSI6WSK71kI10VbEmSDNfTpyw1Z3/H6piDJXXJrxrErqcqC3T5lb6DUGuX5nBwMmcQTpuen/OHpNT/+4c+YfPQx33z/HNkZ3lwtybotvjchR6A6KF5nXK0VrnfFpz/8EcRTWqOwHRcLyXAypFMeSdYTuZKqNggpSYqS3XZLbwSuH2K7PhXQ9D2DyYw8Szl6+Jgu8Mnbll/87jdkacJwOub1d7/jr//T/8UmH+L49/BlT5LuSZIdeb6n3i1xv/yUP310xkfTgNW+ppk84PDkHpubd6RpSmNBOB7hogibktnpMa9fvOdmteb46ob5ZIiHRNgeXbrHkXe20jovGD14SHx+j1Ib+qbB9DX4Pk2u+MPvX7G9SfnicMZHfs0+T7CExbfvKso6AWn4tS340Zf3+IvjQ6pc0GZrpvMJg2GEDIeIwKdZX9O3DXmX03sORXK3LXR2OkWrlh6LwBVcbxPKKuO//tX/wb2zAyYPnzB7/Ogum4oV2/2CIByQ5jlHc0NvWby4uqIzNTgeYTRECxsjBWVRI+2AweyQ0cERJQFBFHF0PEW4FtppUGGNE4ZUWU3f98SuRitFqnp6I+jqil5HIGxwXVwhcUchdSnYpDVXrxPcwEUJwbrssVqHi3DK9ukzvNmApILrvEaOHIL4EM+AjyDsDOP4iDwTCC8kGlY4H8/prt+yvrlBaENRJrRdzfVuQ6kavtrvOZAnmMAB36UXgsoY9tmOZZFRGEPs20zGAwwWRhgQCoxEK01Wa17f7Hm7Sum1uLMrGRi6gqBYUCYLHjy8j+cLQr/m8Ucj5kcHSMtC9x1hGNKVFW3TMjp6SDg65GA8Id/uKN7c4oURth/gJIJQ2iwtl6FpmLqSt7WFaiuKuue4LrFNT932uFLiSVCOwViappEIY2F1BoOFsgqEMdjhkOnpMY2Mqa42zGaGbb6mVzXlckG5XhFagqkdkvcled/y5irFtD3ydsf9owOs3uHh8JjqzZLqzKfSFpdvrjHS5tV+wa7ecj6T9OIHyEbTdD37rMQaxlR1zibLOToM0XRUbQeqwyBotcEYzWqX4/set8sNAz/kwcExQTigyisOZzPOTk5xPRvfhUHwIQj2A398fBBNPvBHiec4RL5LX0EUBrx79xop7pLUV7cL2rqkNQpET2sEole8fn9D1R4xGgzo1imD58+YfvGQER3S8pEYMCBcm3q5JE1Tetvj/PET3n37lCxVtMZgwoDc8rnpUq7XO9JGse/vXlNN27NerFHKpix6fnV1SVI/xwlc9vs9rVZ4nsU4GiGqnNu6wVutmUsYLmMuxorDmc8OB9k61KZDWxHKsjCOR+/aOA6YUmK0QfohTZbhRUPWVzesr67xhUQ0DdIL0EZyPHZ4s7IYD6fMZmPm0yGf/OAHVG2P01ZgO5RNSV02JGnCOJCcnJ8wiEMkAaNdhfECkssVSV4yHQyIfY/VLuPy7Vu+ffuWxWLBUE/IX7whDr8iCFyUNLS6odEK1RdkWYprR4xRlHWDMTVOFEJwZxGwbIOSEj0IiW1F6FgMrDlJ5HFr2RzHM477HW1dY4qesqtY7BdIUuaHE4aH93GHGte3aLVFkjbEfoBxc7SsEa7AsTxUayGNoC0ShHOXD6HsmK5psZwSjKGrK+qioegF8dSl7VNcTxJFA67fr7j35H/EIeLlm99y/+E9soW6C4Idzmhtl77KqbINwcMzLD9gVWkqc5dFEoqW85MjWtXR9II03XN47wTbGNq2ZTia8OrlknhT8CCeoywX6Ue4fohUHUpIOtvHdBppufRa4w4nxMcHhHHIri4ZRSOqtMeZ2mwXt6yXG4zxkFVAk6QYy2JzueTe54+5mB4xDVxmw2Py3vD5/ZjNmxu8Zcf25ob8+CG766d8f/0e/2TGF4Gh3GTIrsa4DvZkiNnvUJaDCAKyfcof3t3QSxvTNhR1w3k0pKhKqkbTqBovyegGZ4j4iMn0kJ/phPnJnMtlhuXb9Frz8PyY796tqSZzaEOSXjCLZyz3JefH8OzZa4QqefnyBYP+HmmW8vXLN5wcH3L24CPOpiOsrmMYDNjaUKYZoT+gLDaUSULgBvhRiGlyED297uiEIBwEVEYzGM6wXR/LcbAcFxwPdzzi8Z87nD86Zb0ueL+tcIdnzKeK68Uzxn3L8dkRtt/w9Td/T64ln370mKOzjxj7I1bLBU1f8/7b98yjEHc0xh67tK0hzxvG7LG0RGqPNkvImp5Fo0mrPcnNCm0HBMMRlu9j2Q5GtfRdhx9EtG1FfHDED09O+OqnPwExoL1ZMpvNEX1KluUcHB8ijMV2veX2ZoklDfLjj4lGI5yBx9GpxebVN9T7Bdl+R+BbPP7iCa+evuBq0zO4f0Zk93z6YM7ffX1N0bZ4tk1SV1jCwS5yWiHwOhfdwsgKqdoGvylQSuJYIa4NfbpBeCPaoiWYntPqLW7f0Xcd188uMVnH1+uGF8ZBCk1XpxxeXvF4YvhoHlGPpxwNIsTskHY8p9vt8G5ekwcRn/7sXzORDds6o+lrhNUg2gZTZHh9hdGC8TDGCwPsgcfbzRI/CMD3ybKGd+/fEMUhYSAJojlFk+EMAvzRBGULJDV9sQIlUdmG7T7FDUu4ecvo3jlS1bjBAZbvI8ZDtt9/zXZwSliWWKpkn1ZoyycMNLdZgS0FlepokSx2Oc+v1xxcXvOvvvwBvncXYNobA8JQq5rO9Gg0rWWxFT6z2Zim2FNlKbWwyMqKrAOlDGkDp+dzhuNDhsMGORnz9vaGJkvQZUuZa1bpntnYYjI5pfNrcFz8ocu33/ySrqr44qc/vtt6MhLX0qB6mrbFMjV2OMdB0BnBs1evyJqW4XiMsSx0qymMRhpFrQVHsyMsx8Xstmz0DxDeFOdgxDSo2E5Dzh5ckL+q0Fqz2q0py4K6ram7jqu65MVyx7/58RfcO/+ce1ZIYw9AOmzfv6EqCrZtSzx+yDz0sWqfyBowHI1p2ob1bocrNWFw1/piGc3ACTBdRW/ZDJ98hjOeYhcZKk/I9zveph0v3m3IFktunv+B9WpDiMZzXN6WLevOxrIFkQ2davnVb7+mbVJ++ief4IUeXbWjKX1Wty2zswcILyJ79YpWaBoUVjSgy3KKpiMMLTzfoxM2RdvSGY10HRovIBgNaItr5vMxr6/24HtE8YBhPMAIwfV2zavLa+aHE2xvyHgyRzgBm82Sd68jAiIOLn7KwcUTwrmmXZdE3hQ/CpCTM/yTcyzvGQEB+2VF3StsY+PYgrpT7LKK03FL19+dt6SjbEv2Pbx8fUXTBviWItM1H33xQx48eUS2WdNvi7t7Q9WjbIfpbEYUjkh3GcNxyHh2xpvfPMN3T9m/v6RvEhTQOjb+9AydbfCVJilbpOWzTHNU29J3Nd1mQfnuNcViyc3thlprprMRI6DrKqYDB9X3SCnoek3dNry5vOGbNwu+udygtEZi44UDfNswHQ0YxTYPzya0TUq23bJstkxmMyYnJUE44P3LN5heIaSFtgMGwwMcJyAOhwxo6FYLfNfDlRaPHjygNQbl+lzdvmMCDFXD4TTmsvLou559VbHPC7KuoxWGqCvp1QTqDt/ucF0bqRS+HeBKC6tt8Echo2CEdXBM9f498sbCLdZEkSQwsCt7Ar/ms5Mj8vmIzpI0mz1dVjKwAlSpyMuCoqnoLr/HB0bK8PPLN3SujTOM2HQWi8tXjIMR28sNeakRvsU22RIHFq5QlEpipMSxXNoiJytbkrKn6AxVVzMKAz67eMDQCC5v1kzdkPPJMbF3Zzmqii192/7LDhEf+MA/gw+iyQf+KGmbGm0MvueyvtlSphv+/tm3xFEEVUOx3dIZTeg6ZFVLYEm6puH1m7dEg5DIhkE556OzOXHgEw80wnHB8ul1SZFXiGCIJ3bkl69oyxLHFthBQNJoEtOwLhtyHErHw7QFh9MJB84ReQ6LvGeVJ/jHU+xkS9lUjCcBbb4lLXbUnkfoRXRNz7bW+EXFm+WGi9mYIB7yZldhXAvPVGjtYE1P8IYjtNGIIMDCYFpN01WEoynrrOLF0+c4loQgQLsOOs9xLLAGY6bjFuMHTEZDhvGAURgwGzlsr9/QugPW+y23b55S5Rn/81/8jGAwwh1MkPQMDw5ZrTJevLvh8PgAV2mSJGGz2rHJa0zdIFWP6nqW1yuY7xh9ch9d5QSeDQQkuiVrcqp1wuhoytCWuJZCBx5l3+EYRZcmKDy6VpMkFes3l1TpHse2ibyIJTFdXiO9GH/9mmr7ntNRjHEkye+fcestiA5mOKMRynFId0tslXL/fELX7LHmDzDGQQzGWIDd99TJkvhoiudMCVybvi7o8oSqMuw2KXVaM5mHFFVNGAwY2ANE35JeJ2TvEtJNQhwZjs8vGHsCZzAjmh5zsm/Q7gG1cEmqjnVaMfFcxPyQ4fyQxYtXpHmN57nMopDQ92nyjEYrDOD5Ma8ub3Bcj+kw4uT0AmHZSAyqrXAcD0cqWs+nKGuGp3PC8YC+rTF9jQlilDDURc6izFguEgLhYrcFTd3RGnCVhdpLnpz/AIngyx98xatf/oLN333L5eodxXNB5M9Idq+5WrwCT/NvPz7FCkIK6dMkC4bDA/Al1mSCDHy063L99i1NUXBzc0sc+viDgN3te+LJBNXkhN5d1aIYnTA9/5i+vOZw+FOyquDtRnN0fsb79Z7adTk5OiJd7IniE5Tl0YgG23FpOsVufYWVL7m6uUT2e7549IjT0KHaFfSnM+LTU7p9io7HOJbNIN0y8iVJ37DZlXjODtexUYOQfpeg6hLL85GmRYf/VIUZuNi2g3BcLMtCeAHW2cdI7xDffYVff8/EsXlfWBwdPyZTLVFwSFPWdCYk32355a//QPyHp0zHMadnp2TljpuiYInh0fGEA+cCixB34NB1EmU0fZ2yL3pWlxuuq4pWdTi2x3h2xGA8ojaKXvdYjiSIQowWJFmN5Y04vf+Ah5/9kO2iRGnBdDxA6gOyJOHo5JzdPqETIQ/+5C9Z37xlcnKf4Sjg/sefIoymrlraumf99gW3dUZfbJC2R4qPNobAsxgEiscfP6T97jlZltIrh66t6Y3GH0VUlmGoKjrPppICz7ZxBjGe6GiMJIgPwQkIjyLqfYVrd2wun/P0N78nXWyoWoVRcNO1HNiS2JKsDJjcY7u1CQ8OsOanTIIh84FHs1ecf/Yx+vAYFXhEVs266ajqHGVOcF0f2xSYTmDLMbbt4XkWgedwfO+c9WrF5ftrXjx/CqbFdQXCslFtxenFIzLV4Q8P0NEDWiIiNH2+R+8XtHXB+8WCum2JbYXz8AkDP0T6AXY4YDo5ortZUC9eEViCMAwxRxdUbU+5fkboCqRtIUyLMQYjBLfbHb/+x2/5d//qp3RaMvIcOtHR9iCEoOx7xgHMDmIOIpuu7mkai14bRp6PrTowsNjnjFYrOlfwfr/m5u/+OxhDtctoW0XRFdhOQxQrDi5mKDPm9dV7hrFD7HrQ9rx78YLRV0+QdgfBlEILklWObXf4gwrLtlntEn759BnxaIKOR4ykRNkuwXhCnqYERqHSPZUlmZ3fw3KHLJKSk5Ggyq/49MsvWS8vKeqUm2WA0ZoqSWl7hWV7DKKYbVZQaAsdTggGQzxhsV6tKIsUv655f7vm/kcPaU/OaLqetmx5+OQR3z39nra5s5vkWY5R+k4AnYTQtQjPQY4OMEYhtKLarXjxdsvf/u4Fsq1YvXnJq8WWi8khSavZlRoRnPDnp6f4botnSpI+4x8XC37+m+d0veBP/vJ/IBwMWK9KohhGJ2ALi85I8ipn2xlc32U8CRF9g9YOdZmj3QFlWSOEwI8GONLQZCuQGU4gycqCaDLFvTVgOdjS5duvX5L3BcM2IowmzI9OKdqe9dU7Xry+5iw+ZHJssB2HoROwvZZI5WK0Aq0YDyPGoSJHEY0HpFuN6zpYRpHUHbssI80jZtMpdVmjjCHLa642GVfbBN2UzMWUJz/6jAdffQVCMzo4Yp1WLFYtTe+ihEQbwfPnL4mUy15dc/lug9047JY/J61Ldp0iGo25d/8B9nBKJ+8hO8Vj0VNdvSb/xd/jlg3Fm7dsnz5l+fot2nYIDw75UTxhm+SsF0uyXOFYDkjB68UW9fV3tNhcrza8Wu5Z1Zqu10ShhVEtgW0xdgT3j6cEgY8rPHbX12yuV9RNSGtfIfRbvv7b39F3hnh8QN5CEEQMowm259MUDWVTQdshi5Lj0/uUuqFqFfPZMbvXL+/a+oTgYDLCaXZI26KpO/7b7TWH24r7syGWv8eOhxwNfGbTMZHlgbVBuB44EqSNIx0CL0RaHpU2NDeK6/drzsKAU89lu1mQJDluGCMlnE0/4if//i+5evWKWlkopSiKBeW7b1ku17xOthwNPe4/uMCbHTM5nfD2dkfrN9wutjTYrJMcafdcnJzguA62MgS2QGtDqxTrXc7lKsH1PC4OJ0z9gNBySIsGXJeRO8SXAarWtHXGPk2o0g9BsB/44+ODaPKBP076lqZIKbMdt+9esXjzisXVNbdKY0sb13VQUiJsB9+2MVoThQNE1VDXNUoIbpZ7nr+9ZRBHRPGAkR9ipEAZUMBsNmIgTuntEcpas7m+JOsUbVqw7gTXm5Si7bGjKdP4gPuDAX//hxsWeUPRVdSeT9uWOG6IAboyRfQ1E8vglDVPzu8hJnMuky1CQmgaOiFohEvjCLZpw6jTPBzHDCcBbRwhLAccG5SiyfdorSm04OW333L59CnxeMz400/o2oq+rfDCCKftOZqOuanl3dn0LTcvvkUhefniBcHkkL5qiAOP+cDGSAvLDXHcAYYOx/Pp1JJdsubxxQVt0fP6xSVXt0vmpxcgBH1dYRzJri9ZvvmeiydHhKGgLSp6q8Ef+ITDkOvtht77FG1KVGCoVUHfSrKblJ//+jVP3yw5sy1OpebhwZDTyCOQIEyK3WTogYccRvTylMgzhOOITteIQ4e9MVxvaq5va3a94Wa34vQiJohqxmWCjAKEdkBX/y9779Ur2Zml6T37297FDh/Hp89kkqwqsrrLtJmanoYGGmkAAbrXL5wrQTPSSFBPQ23QPV1VXVUkk0wyzTl5TJwT3mzvP12c0g/Q3DQK4HMfNxGBQKy11/s+tGpDKyQVFblionV7KJ0O9eKOvCxZbGPerlYovQO2DSBshGayy2M01+Tw2OLy/Nc8fzAgr0K0ckXQHzO9vcWsPVLNQ3W6LEqJF0WQRJj2gNx0yKwAadhIJadpaoKOj9q2tK2kqSqEbWE7NnFTMV8uOT0cUxUlpqajoqBaHrTKfRdLWdE4JrqtUMQ3bBMNzdBJq5xS3scmlEpilBkkW15P19A6nAye8dGjn2F2J7iDIY5oUO7mzL/5Fetwx/twyQe1ZnT8jH+8uUITEf/Ln3zMwdBBVBGFanG73KI2NZY7QNcMdM9msd7wD7/6ZxKp0XdtVMsiq1q2+/scuNC6qK5HpjpkrcRTCk6HPuFqRzcY4Iw+ZrO65L/88is6Bw3O5AxF1e9LBsloZY3RH7GLIizN4OZ6yt30lvPXX2O3Jc+ePUcF+uMBrWahd8DNUywhcD0PaoP1PmIV7zHyCpHG+EIBRcUYnaCWMXEcYTgBOA5C01FUgSZrNKFSREtu5nuKtCQLI/aNzXa7Jc9ahCPikosAACAASURBVN2hbDVevV2iVBmGbRLYXbb7DVebmMvbiJvbHY+OxxhC5WK74m55xy+o6RwcowuNtspJsz2rpObuasVm19BSorgW/fGEwOrgGhZp2+AZ5r3iu5WkZcXF9R2DyQlHZ49RhUmnb5JEW0zTZr9eMxgNOX76gllmcXQ24OzJU64vJ7hazfhwhEQliWPipEUfvEBOYzabkCyPOHns4QcusihoLIVWEYyGHvuzI5a3sFrt738n6pp9kWOnCl0UeoGHozUIS6VUFNT0mswdI3oTMiFRvSP28wve/OZLvv7qd9yu1iRlw6Gq8FPf4yfBCUUj6I5PUUwbx5Jcrq5QFEFH5hjhDN8oOD0KMA6OmdNl0NMpw4JWuS/EPXv6gFa2VK1GJkDWczxTxbRcFAR3Nx9YzO748OGcuq5xXRtN3BuzyrqlsgecHo/o2GvSIkUYz5BRxO7mhjxLOQl0qjZlc7PivNgzOn2EsF3MoI+iNKhxhGlp5JaN5vU4OlEpFteUOCwHffJoh2GYKKKgaiBMM4y25sh32GxCHhz0adqKsm7wbJ2VqMibBllnPByrlFnJar0lD1OaXCKlQmDauB2XMGtYxjlfffUOpIUbzdCaGt/V2aslnb6D3T2iMk3mRp99WfEhW+MHfcajMQ88C+k57Dc7eGmi2jaGJun0HepGRWgWSVLwzftLZusNs32MqgrM02Nk3VA29+J2tdPD6fRI11uK/pg6KSjbmk0+Z3r7a37yF/+On/3scxp9RvqFpKlLdlGI63YYHZ7Q92yaNOJqm/FYCgxFQzPuFeG6YyHjhDLOQGqowRjFCDCThJGjsdytSKMEyz6hFSpu0EW1TIomp61yGjdAkQ1NliPLmqyEX39zyW+/+JKBqdOmJX9yeMaz0+c8PnpC00jWYUinjVFcwfx2xt9/uOVDXBHVNePpiuHb96QPHuKJllrW2FdvsQwVxTLRPBct31FJgUTQCIWqljRNiVRtGqEyevCU7fIWRdbYWg5agfAsrLGHHZn0JjZKo3E723K72GB1DLIkw3P6OJ0+29mUydPntErEYOQBG+5uztH1Adt9Rrh20AKd+fU58fSGcdAjsDSCrsqbRqNtoE4jJCofNhHHvQ6jsqYFiqolTCriMCEuoG+MOJyccvLsAaohMUybFkFweEBxdck6qqkwyMuaV++vGDtDcuuIJk5w4h2uIrnahKx3If27Fcl0zv/wP/3P9H/0A/Rhl9mXr/jt9BJHZvzNf/4rnp8OKfOUeRwzPhph9z20+RZDKvQ0CztQkRpkdcP1Yk3cQi0VZruY7+Z7CkWnki2tBFPAyaDLZhUysDWK9g3fzQturq847hqonoqVtmwXU9K8AtPC6wwYdMYEQY/A92mLmqr9/UOfoiHoDugMD5inS8L9lE7fJrF1FqsleqTxaOhAo9M1NHahxeJqw3I/Z7tOeXI0olc2VE1AY1iodkzWSqxOnzLeo7kqtqqi1SUffvsr/u//9L9xaNq8WU8pZY7bNphS8tNHz3k5PEFpWlxtQPsu5GDwEs90SNZ7blsTPh3RzRKif/wrRr7k5OwQvT/C6gZk4Zz3VzNm6xzh+yiGwpOTEbZjI1FQaDENg00UUVUN0+UOS9c4Pj5g0u9SRQlSCOq6oGO7HBw+wFQtsmhLuF2zCdfUUvwLDhDf8z3/bXy/NPmeP0iadE+5XbCdT4nmNyyvLlmvd+R5ianrOLaNH3Tw+i62we9zuQpep0fT1GiaxtV6RefqlsBoMS0dYToYokKpE/rjHkpVsmlLqsMf4WfvyHZzpGEQVZK0rkiqGkV3WC53mI7H35xPuduHRFWBaVnoVYlYrlFVQZ6lDC2Ds2GX8fAjfN+n1+szvf6AUhf87AeneEMD2yypdIOkKSh0g9brkhg+fX+EYhjIsqSiQSoCt9cnj3PuvvqKzdUl1BVluCML92S6QLdcin2MZnY56imsFwnxZse73/0Ow3YZH5/SURV8W0OMulhDna7vYqgqNSpVXdHSEKY7bteXFEqBqgl0y2QdpjR2gOr2oKoZT8akFFS2xmY3Yzqf8uKwS9MU6ELgGi4PDwd8/HKE1e9BeMt2dss+ryjDiunlgq+/m5HHCXsBQ9cmN0eYw0cMD09xxg9xOvf2BXoTDA2aZEGZR5RFxiZcMHBN+pOCh/uSsEnQOid0nz0hrBUWN99wrGuowgIcjCYhC3cojk+RFhyO+sgiI4t3hHHGh7s98zjn6KSLrAoUOrhWh35/gJQxVqfl3atfYatPePLsDFP3cXTJvLwlT3dE/RG+qvKga2NSUSoty9mUwNJxOz7dw2N2mzVCaFi2RSnvL52EYSCocUyNIlWpipLNek2aJlimhabraJaFUtbkhUbVZmAVaJrCfr/DMjoUeUtetwS+g6SlGzjs3i55c7OmqnR+8vATjo4/xTl6gD8eM39/xfrDOe16yp99+oJUVGz+7m+5TiMub8/Jdcm/+aMXHD2doHo2eVWh6zVpC2HV4nZ8bGEgVZ23371jEyakZcXk9IgChSRJsUyDqlbI0pqgoyElPJ74dHwVISVVXeEaGsQp//X1Fe9nMb12jt89Qh1PmLgVeSuJ84q0KIl3KW6tMJ9uef3de1y1YbPZMl/MefbiCaZno1kmjazQ84Z8s0d3LZpKp2wbrMmEmyiGZocKuL0+tSIRpoXIKqSqo7c1YremLEsSYVDEGVleMtvWkNdkRUNRC0y9z7AtudhJHFVi5zGt0FneLpm2FU0dEzcVWSN5N1vw5mbKR5MB3qDDXRzz7nLKx0ZLYw4ok5LlJuTDesc2SbGFid8bYvQCjP9Pp6tqGIVkv9niOCbaYMByu8frjhC1AnnNYp2SFSnz/R1XV29Iy4KPHr2gMzwhCiUyb9BpcGyDugLLshkNByyKjM7kBQYdNq9XHAwNSquiPwnwTIludogqicII07LpuCrdR4fQ1kRRhm7atIpCIRVqKakajUwDq8kwXQvHm1BkJbWqYAzO2CeC2XTB37/6mlfTGVV7ryPXhcESyUcnA2y7w+TxZ1SNTmc4pPvhFb2+gX1wiGxjtI5LZWo4gw6uIlEdl30TItc689sd8WpGd3hKbY+ommsMA1xXRVoOjWWw3+8I45R9lN0rR4uG3KhxnS5uxyKwG1x2uLqFrYFdhfiOzodCQTF9RnYXVTGpRgO6gxGma6CbCm2TUaYJTVUjdJMwrSizltubGfl2i+P6tIpCVZYolkODRtVK6kby8ckxj04fUMQp4b5k0PMQess6VfA6OqOhjWgK/K7FXaOzCTM80+fUc1CEINxuiNuWY9+n2+sSZAmvp3e8DiP6gU9a2fjjCaPeCQ9+8Zc4UkUzVApLQakLbCr644KxYeA9e85mM0VoOm2Vs5stMPQGvz8hbRXen7/nzWzJKs1Ji5BGCDBMRr0Apa2xHIeqKKABOxiioFKlOW+//iVn/RhLlKS7GRoto9GQwVgQxzGG7dEfCj5+8TGuY5CFWwp7wDZr8Lu/t4zoGrptcPj8Kbp2QJw4lHVNr+ciOxbIhoPjA24ur1jvdthHhyi0ZMkOWv/e/CMalCJFNjWyqcilwnjc56eff46yuONQM7BbjRcHR0yOx+TxDkeV5OGeD4sVX85WGFrOy4HNvtLZxDEf3n/HfjvD912uVIXVwZiTgyG2baG4Pk7T0lY1RVuiVDVFkWK5HmHVoKkKaRqz22xwJgF5JTgcPGaTuEilwQ0G6OaSaJfw9uY9e6VEiABFUxGqhh9MeOi6HD47RX//JY5jYFkZt29/yd1tSt8+YnkGtWlx9eZbol1CU+usNgWqEBz3x1zerRFtg6qr7Cv49eWc8WhMYpjUdcVqF1I2kqgqeTDpo3ZLZLulKnVoNEhSyjTH7/pMdJXlSkFS0RuMOT58RF7r3Nxe88jQkJqCqboMfIePJn36ug6LLelX56T7NWW+5eJmyiLaUVcKZVtxdnaMZ9gs84og3SLqFIuWrCxQDYFimexWe26iglJPCGtY7GPCSlIrDZqqYWoqfd9Fsz32ecFf//aKxycZ//zujo5jUndGCM3k9uoDhq7h+z7zfYEwffrBmFFvjKXbaLrG9Pw9bbiiLRrOPv0M1bQwkhryDCr1/vWeR5bErKOcQ/s+/jfOK8bWkseuQ9fU0MoSXygoVU2TJBS6hi2hXMyxBi1tC0LzEJngB0cTrD/+t2TnF5xYPf7h7htIt/zF05f88MUfc/DHf4zZ76HGOZuLG26//ZpFZZCkGcIVRIS8On/Lbjfnz56dYPoKtcjI9yVXNzOafYzieAx9i5N+gK9JRNsgTBOllShCoZAa53cbVFWlN55gAm1RUmwjHEtBVGB0OvSPjzClRpHfd+yomk1ayn/hKeJ7vuf/P98vTb7nD5J8tyKeviVfzVGSPa6siGVDWddkRUVb1aDpdIaCjmNTy4pKmKwzECgkux15GJNnOV//9jf4XQffAsNusFWVdhCQ3C1w+xNuvztHrpa4vo9iKdDWKJpA0wwWccZ6PmNRltTo1KbNsDPhxYOnGL0e4fyW54cTtosph4+fo95+4OzFc3ZJSHxzy8tBlx88mHDwyTOskYkur1jGLetohWZZ1EoLlkWp2ei2BbKlKSuKsqQoShbTBZu7JYpm8+ijEyzfRW1r0AyEbpC3sJ7v6fk2jlYw7vr3p+XAsNdHBW5vLjl99hDb1AhMgW3cn3AqQiXZ7Yj3e6LtjEImtKKmbiSFpuGNT3k3XfPg4RllsqZnJOiGhZVK3n8z5fFwTFNJRJZjKDbSEHgDF8fMWG8Kvvv6mrswpX94Rts/5Y8+cqk3S7LlmrCs+XadMWsznu5XvEgMFGOL6XcxfJuqbGhWDcViSVxtUU6P8D7/EwxDxb56h735QCMSRLGg1zsiD06QioaiqdSAVDXKpuR2tiTPU4rTDWWWsd9GTLcps02E4QyQ8f05smXYyNbHth1oF7hORL8vsEVKW6b0hodYSsHLj55TuUOa1sGocxwVrqe3KIZFEW5xBj6WJinTkMnDBxhlQZUlUORYroNuGDRlia5IdF0jSzIurm85ub6h2+0hxX2hnVR1VKMGvcG0VIpaoRY+RlMjioju5AmdySkUa5R0Tdi1OYhsHo8nyGLN9bd/Q/emj3J2SjpN0bQTHv3pvyd47vLqn/6Kk3GfKNJIioKXhzafjlWseg+pRmxYVFXFoO/SaialbAgmB8zWO9abPY1UoOV+QXI4Jq1aHFPFDxwsXUFpGoRuoWkauqay3UZ89/4d+Ztvucscfv3FO05ODrHsDnUSoQtBkefERUOv36MUJWFcoGLj9D7nxcDi5x93efn5E3755ivyNucnf/onFPEW23QwOz3KVkU1NJL9Hq/f5/L2mlpK2tbEsmM0y0U3zd8PfDqqLIivr9ntYtJKgtCI44qyVGlrjTip0Kioa0HXMiixGJiSttyxyRVWpYJZSubhHkOrOeh6RK1km8VcbSI81+fffvaUH/z8J9Szc/K8poyXzNcZ87Agahssx+FwdIJrujS+yyYJEa5+H9vzO7RJiN8bEKcFN/M1VaEy6PfpOi5CN/jrv/0dV+e/pZQqbqdL//gBVQOm45AVEdMPb2lVk6OTB1S1hLqmLSRtpXF7ccX6dsV4/AhlaKF1JX0fdLVHuA6BQyzbRhdTHE/nk4+fcHM9o21AkQqqJqiKFFQVy3YRlo1heGSM0JiiOR0QNmVd47odPn32nCyJyZOUkW4zsGwKUXOTZbgSmvCG1BlxsI7QewHdTx+jmg6qaZKt79BtnSxJ+XD5nuEwQDE9dEMjX94hZU2pKKwXV2z2tyhWTWZYSNNEF9BUJY2ikRQ1oi0xVEHbKKRpThbuMGSCZp7RnzxkH1ekyQ3t5JSjpz9iN73g0IX+5Bh/dIyq6rTo3F1+R7haMD48wRudsd5HLK4/0DEFSSs4+eHPKTdLmtfvWMcZgW5h6CqyaXEsm89evMRzLXxVI5xOkWeHxGWCbhREYUUuJbtQYRtW/O7Niot5zJ8+G+KNz3jyw8+5ePXXONWC65stSZYT7SNMNyUuKsq2wy9+8d/zo88+wWlbxo9eMDg4pFgt2U5vUJ0Jq/01g4M+81mEa1mcnR7gdF3SvGWfZAzGI8LVLVebnOtNxCpOWUYJilC5Xa1xbRvb1LEUSVKlOP6AneExUlV0r8uqgenrL2k7JX/2b36MpQuu3n1gMRMEwQ+IkxhDEzw6esjjs1MUGiLbxemPSHSfWoLMUpSmQvd7VK5D/5Mub2dzunGD444QqkDWLX7X50QesbxdM6oqHHlvLVMNDd3yECi0TUUrNFqp4HSH/OynfUSeUy1jsusF4fk55fUFyW7FXZGxq2O+W0Z8s1xiOQrHwz5N26KkCfsi4+Im4nKWoqgaiqbhWXOOxgM+eXLCuKsjq4QsLegFPWQdU5c1ra+zWKxI0pSqTfF9l7ptcbsDrN5TFomgbiMM16Db7/LuzQW7JKLRBKggW4miaPjdIcPOhKdPTtiuPiCFwCInzGZspu+5Sn5DLOe8+PiIIsl5cz7l2/dX5EXCMHAZjzsosqZtGwLPJSkrLvYZv35/iW+aaKpOWVXEaYpqNbT2lhKX9eoGIRoa0WJIUL0+TamShnv6wxFZm+A4MVf7nKYx8I6f8s3lO6qqQgoViWBzM+Mvnz4mSUK++9v/E981CZWSdnVO3xFkTcssLPCXOf7BEL3ZgmGgtjsoC1pVwfY9UkNjW6xpVZ1lUhKWNavs959x22AhcTSBa5k8eXBEXlX01QNcQ3K1zalaUDSbIm+otRZJg2saGJaOptr0+z18x8czHGgLXEXyfrPg5Q9+hDHoYQAScPtj9mWCkDWOaGj0ez1vUlVM+gGD8ZCT/i1nrsUnZxOcIIBgQIlJt9tFNUzKSlJnOcV6g5G3mH3n3s7ljemPn/Hun/4Z7+aKf390wuvvfke0TciXc5qLW4TTxT09wn94wuTylnSz5+72jrurD6jVlkdGxuGjAd6oSy4UknhP1ipkeYrpuwwHHSYdDc/Q0FUVXddpVA1NgyzPWWxjbrcJ3ckhg0GPYh+yj1IUod5fA5oOWB7BwSG6opHVCrrtUWgC1w3+JUeI7/me/ya+X5p8zx8kVZYwu7pgu16zultQJCkGEks3kbrCOOig+QGdoE9gC0pyFEUnLUvCMCYJQ4os43q2ZJ8v6f7D3xG4GubIRgQBwtJoTJsyz9DDN6hCoXcwIilifAFZFVNrNjfTS5QioZaCQgg++eznfPTkY/qOzeD0mOn1Dc8HA5poxcnRgN03kjbfM1Bqzn78OYrpUnV77NczyCRnP/ghs29nxPUHTi2B42hQptT5DqMTQJuDqtFKSYnBfLZmfTNn5PvEYcajlx+j0aLUJZVpY8qabZrwajYjr1raPKevCzqDEUorubu8wNEFum6hCAVFt9BtFSkhjjNWd3M2iy3r1Z7Zak901pDVDe7RCbtpynp1y9HDY1rZMh6MURUdQ4NwkbGclehCUld7bE2lEg2NbBHekFwsuZgtmaeCH/6Pf4mpdli//RrtYEV0O2Wz2JLik9g9vksl69ff4rUVjhNgvP4GQxN0sgWe12Ce9FAdheXyCsMU2E6DkkO0L6mTlKGh8/DxKUJWSNVGmDr5Kma2WNL7+CdMX/2Sb7/9GkO3yPKSi8WGRQZe1yVtMmw/oBU6im8xOPDYbhvi3TW9vo7mQhB46EJhMD5hpMKuMVEulgTDLrQVTqdDmhc0TUUa7xkMBnS6AcvrK0zboWoltufTNtV96WNRUSPojUYYhk4UR1x++MDZyTE4DobjIUwH2ZbkVUGZRni9HtLrYDs21rgCc8zdNqNXbukGDsMHj/AHpwy6AU1RM3/zgbpYsin72D/+c86vcqKrG15IyRfvb2k7A37x0QPiPERXIjxDRbQKt5fXSFXSPRihexZqBW1do5oOs4srUA3Ojo4J93tuo4RNecNo2KVtFXbbmHFXpypbXNulLkryPOOf/uGX/K//5W/I8Ykzg5PHH3Fy/ADVgCTLqPcxGC5dV0eRIBSNXZghbRVr9JiPS5ePTkwKOyBV3jFbz1msLhkfHKM6LrKoMGRDvF2z3qyIs4gwjIjCkMz2cMQIXd/jeQ615aFpJmUasowS7pY74kJBNgJVQha1tFmNJiFFIBSN99M5qtll2O8TxymOdkyz3/Cg6/NgGPD4YQ/Vd1nM75huNmi64OGnP+PjX/wlXtdkc33E+qt/ZLuPyKsKO/CwVFAsF9NzCXojclWhNVSsVkHoKrmsUFyHsCi5uF2RJjEds0NdVaSLkIPJiEfHLzEVi7yakCQrjp4+52aZMRz38W2PJImwgiFe0MORNZv5jMXijvn8ll10x05uKZcKfecxZ+4hoyMfGZbUTU6StTiNwLAc6jq91xKLI4q8IClatKamoUaTGZo7RtEkilKhFBUSG5QOrTRAqHjDY372+b/iJ5MzwtdfMLJ8BpOHRJpJSkLqGNRWjWlENEJgeh3C2bc4wzGmPkYTKVUukZ7L8MFjmjyiSWN6B2Pm6zXT6Y6JnHJ7fU5WNmimhW1IDEPSlDVJHBLt9li6QlkK4jTDDAYo+wg121M6FrXqk4Yp2XZDoThU2phP/uiUYc+jW2hYjk26vmNxd83l5R0X85iT4wf8dw+fk9Utry9m3G1zfv5kyOOHpwzGAw4+fkJx856b+YIGha5nMw48bNPm+OCAaLlA2Ww46HXZfbhj+PIB6801adNB98fkacP5vOViXbDTHP7xasW/7hyid12skyPKNOd4YnO3LEi/ybgIDTa1zr/6/I94+vELDh+cMjBsiqRkFVbso4rdYsv76wsGj4/odlqcOmHotghFx+gG3L76FtPRmM7vKKqat7Mtr2cbvr2+I8wrDO3+6fH7uxn9UZ+R66JKhbas8PME3e+g6jYfXn1FKzwuZktG73YcPTP45LNPka8T5t9kNMmaJ2OPP//5D3nw7FNmsztutimPHj/l7OyAen5DnaX3sTDbR3QHhJsF1/k1wyhjMumiCouyKTFtE00b8e79FavNFt+1MS0TVBWpCqTCfXEtggpwTBVbqYnCFK0/JNmUrPU+mtTYZypfrhNmuQD9gOGghybvsFTJtqhIiwZdtxGmiZQKddNSFjXpPuJmuuZXX77jyXGPZ4cddNEgpWDgOehOTVHXJEmMoQsEGkJTmRz00A2TOIcsK+kPJ2RKQMV9aXudFeiGRZNklGZKlqcEvT7C0O//J5g2rSpYLZcobYljNJRZhpQplqmx2e2J0x1Vm1O2FWlT4vVtgr1DnmcoqgaipSgrfnU557TXwTIs8qKgLnPatiasQspFea+jbRW6QYCnKaisiBOJ3nUZOT6ryECKJVGscHjQxev0UQ2T9e01ZVPg6BpaK/lyccciXKNqJkVRMpwo/PxnH7ENdyTbiNvrJbNFgmcf0Fg60SalbQXbskHvdSk1ge46lEWOUFV2lSQsW/L63qSjyJZG3uveaQoGImP06BCv20UISfcy5W65wXK7mP4Qy7CAhnK/ZNwZMer2cHQbSzMo85Jmn7C9W9F4PXovnyMagzaNiOuCw4dPef3lb1AxseWeSWBRVJI4a2hqCDodHkyGOFVO0PPpH04weyPiTUz0+i3HP/5TzEeP0HsD8jhBeAGa16VGxTQ86g4MzU9RftXS3ecY2k9ZXr7ndrXlcVmgz7cUdYt5MsI8GKEHPUzPxhcFtXPGSbpg267B1Um2W1bbPYphYnsuh5MhrtYgmohaCIRoKeMU3Q9oDZvZNuHyeophWgx6AU1V4dkmnnV/jbpfxowMl91uT9PUyLbFMCxqx2Zy/Ajb+d6e8z1/eHy/NPmeP0jyKGR7e0uaJNiKRDF1dN1hOHlJGCWQ7xkMJgwthZ5VkzcGCS5eltJUFW2mkkQ11ze3OOScdFS++e0/Y3z+A8athqOVCNNENCs6jyYoUUosDdSqg0wL9mnBLErJ8gS1bWgUqKVktbrjXFF4V1ScLM941OtwfHDCdJ+iFyoEPp3Dl+SNQu/kiIuLDfl8iV4l2E5JWXikhaBrW7imihmMEJ0JWVlhJFuqoqRqDbK8ZfX+jny6pa/7LG83ZKrk858pjI5PWS/ntEJHRRLQUPkdXp9fM72Z8jDwGO9TRFby/KOXBIM+iu1QFhF5HqGrLnWrkEQh63nEzeWWm5uSeKWwW4BUdSaDPlfvvqTKVqSLd/QnI3zfo2oluiGocsHVzZzDo/uIiawkedLgRQXtWOWw6/Gjjx5xW3ZA0dC27+iaJWmpMnr0FMWNyOdblukaz1Bp1Zq9poJS0xYp7T7DbjKOqpyxtiddvSfWLZ59+imKZ9N4HUxvgNeENPUexzZQLRuhayTriOVqSVgorF6/4mY6wzB1gl6XVVgwC0uENUAmFSg2qCaRaBn6JsNuh99sdrhqQLiL6doOjaLijU+xOzbr9ZpC10lbiW9ohJsVpWoRxynXN3d0zsacOBZHoz7hZkPd1Cw3e/zDAxrTwdE1ai2jahpoJLqqYyC4uV1wfX6OPBjhdCosp0RVGlRN0D04oKlqDMfDtO9tABgmYweE8hhdyTj9UQ+ZV6C6mBoMHo1ZzxqC57+gyGEWrvib//pb/v7tgsJWMAMPS1F4ejyhLR06nnPfnbDZMY+2PJQ5nubSc4YoqkpWQ1k3GIqKyCqydYiiCsqmoq19Ek3DrWrsbkBwekqapGibJW+mt/yH//C/88XXb3G9Rzx8+ec8f/gZk5HDPluxvFuict/lYhkmaV6RlQ3bcIfQNA49m51V8h+//AZjZdIMPD55qHJz+zWDh4dkbY5haRTbBFMzqfKYLM1pigIhYT2/RTQZilB4oGpYIsMSkjiM2O9DLsOKu8WeNmt51vF5MRnQPR1SS4syhXi7JFcCPuzhy++WmOWCSVfj3z1/gtVRqUTGyx8+Jy4ztLZE1RSM7ognLz/BQtKkBa3X5642WK9DXavFxQAAIABJREFUAsemF3Sxux2krlBkCnrHRaoajWWilTWoBnWRESU5u3jD3XxDU7Z0nZZOV6CImKYKOX3YpdJPuFmFPPn0IzqTY/qdDNKS7nhAnjtYnR7LXcIo8Fiua0xdxXElN/mKWC6I25zJ6AmdQQ8oKJQcaaYYmgpZi66bFFWCoih4no3nGthZzWYb0Sj3p/QoFUKzaIotwvAoGhVLF+zjFCVP8eoQ2xL0P/mMxrZhdoc3HnLQv+8u0Loees9AcyyE1TC7esf0/RvMeEcwyZDRGm8UoKkOjmETlhnRfkG2TZHCw7R8FtMZs3WMagZ4hofULUxDsAlTVEVBURSaqqLICyxDw2gbHNMirSp2+4ry9VtER+NuOiPtPuNMOeXjsx1ZestlOMU1YfbhHV+/fsu313sKrcvLP/oLVDvg26sF87iktfvcZSptkbM/P8dwfsCiaCgVlfU+4njY53TcxfV6mLIgSrccjPvosqUt9oiioXfwiHWUo5k2Ua3wzc2eTSkxLBNF6Pzy27eoaEgqosbGGJxyl67QBwFPAwV9X+I6Fr/54mus/gnNUQ/zwCWVCbFZUHYlLz57hjs+QQ0v0A1BE87oPn+CFBbRcsYmLrmZTqkUFeF22CY3hHmJYZp0u30oEpq6ZrneobaSvudRC5U4CXFtj+vLG86/eIXhO2i9M6aJz9+9inhxbPLhLuLqakt4845HHz0kC3dcnr9jtdmTGgHd0RDVsMD1+ObtFd8lJtI1OJAQawWzfMfbec7zh8/wlPv3RCgGaDVu0OHL797huhanjoMua5D6fY9Z2xJu11TRBqPTp6lK4qpF812OPnrMo7Mzwrs9X16umM1X2N6QsWXgk3K9mlHkDfu8xOn0yIR2X+BtGegC9rsti92GVhHYpsU2zLloKzqugWXtGfguhm0S12CbOo7nIm2HKAxRNQ2p6pRFQZkXgILodNANC9ka1JmGpei0rSBryt9f2Sr4qsF0saLnOPiOhrLdorYtvqOiWwOev3yAbRs8ffKQOg05OBrQtjmz6YJJYHOBgu95tIoKqs4+K4iyiqzZMrAtXNulkhq20tIKjWAwpNfv0hkOMGwTTYVkG8JwzNFwQJSVrJOcjPu42HA8xHU8HNtEtAVplNA3BcMgQK0lZpPfR0FkhXN2SpTNMN0uwUHJw7NHfP3FDZt9gVRaekaPulHBhbptcUZD2joHBYRQqdqWqGhoANqWtm0pVY1O0OPgoI/X6/HyJz9Fqhof3rzB6BzgtQ790QmHj16SVRXVfkZi2NjCw9cMiu2WMKsQtc7uekYewWc//imB6pInObXWYB1OMIaH+J2ANNuQC502zvBcG893ibKKXrfL6fERxfUVjuVgej6O7+IHA/wGHN1GyVV0Z0BZNiiqglQVhGYiNEExnWNGKQ+fPic+X9JTA4xWI5yd8/Xrr/lUSsyoRzm9xn4wAQlxOEM5CTB1i3yf4hk6OQ3R9Q20GpqwOBs4qBroQhKnNYpdIlwH23SQQrBY7ZmtQzaZQuD7hJsNw8BDcxx0wyTNS7ANvP4BxBXT794RBENkKSnDFJQWQ3w/fn7PHx7ff2u/5w8StakYuQbWuI+q6ex3e66XCcHZQxppsLq7ptvvMjjoMuIthd6wLhRiS2d2vaFpalzXpaoKlmnJm02JXOVY57ekheQEA1PXUbt9ZLRDiWMMVcH0e2CVGLsGI435dDLibheyySqUtmF1/haxXdMbD1iva9S8Q7K75eRkyLeLBYPjBzCe0HcNqmhFvX1DfbdCtCE7aSKvfXaziONRwOHYYdwLmG9CPEMDowI0ygpWy5CqsdivMo4mJ1hPf4ThOzi9Q0TTgKqhSYmqalRNQ2DZPDs9ZnpZUec5vSrjUS9gODmgLXLKeEPd5OSaSlUWaIbBfhvz4WLG9fs9s1VDnknupntOz47xuz6OrTHs91AMi954gm7fD9aGLdgXEbNwSzA+Qmg+WbRGb6Ba3KH4NkJIDp88ZvH6lv1Xf4+iVghVQ5QNStNy1rPoO32WUf575ahEMzx6vQHjwETkKaroo9g2ewrqfM5w4AANrWyRmo5E4PSOSDcK6DpSFaRJxG674fJuwZdvp6wKSZwkfPzsjHgbsdjm7LMaW2sxWolvdDDsAUWbIktBxx0ReH3Cbcp+k3MttwTDFU+fScoqJ24gykIcy0KaDrG8V3WqmoYiVITlsdvtSPKcydERdZ5xG0Zs44TT8QRfUZCtSpiX0IJjOdjGvVb4u/MrqqLg2XOHVrboGpR1S7iN6Pf7+N0hQgo0RcU0K/yOixQuWl2jmwZUJU11b6MQisvRuI/eC1hf3kB1xYflV4RC8qnXY2IbuLT0PB/XHTNfzlhGOVfLHZusZvfqlufHY9QAJicPiKIU6pa2KNhutlStpGkbdnFMt9/joOej6Rp5XaNaFotvviGT8Ks3M+zgKccHQ3T3AR//6F8xGg8ZDQ1uvr1is9nhBSMGvQBFQisb6jwiTUIMQ+foNGAwMbmI4erygp8/e0amLHhzcYH76CHD0VP6jYowNPLtmn6ny2a+wDEMAtNlURfcbHdUKDTC4KhbEbg6dSt59OIJLz5xSaKUizeXOHnL2ckZ1uCEpvOAeFngnv8WKQJ67YDT6Q120cEcD3j8Jz+hriJuv/hbFl/8CvNgRJWEmIbB4METmmjBbbqk0zExOi52f4C8vcHu+tiTHp6j41sdslzi+D6yLNFrQauo5FnOcrcnLmrCrGC92+MaJobXQ9V0snxPU8VgqmRayOggQO8MeH23Y7dbc2hYOJZF05So1BwOOwS2QxF2UeoS5XiMwWOGnkA1XB4/7WFbOU0bkVdrciXFzBQa1UBTLaQAQ1WpkDi2j+Eo0DRkeUmWpTTZHsMzkUZAkacUjaTYrIjChOx2ysjQyIRBHIxwnrpk278jv76jvPqAqhZ4PQNz4FDmIU7XRaKw2G4wEUjLwVQlplCgrlBNE9VQUUWF4XTY3O24PH9PFCckRcUw0PFcG9u1sGyLosjQNIVux8NxPZabPWWl4sYprRCIpkFqOWYLUSLYtmPGo08Qdwte/+f/ROVLiL7j5fPH1JrDYpuSSY2PPvkh47Mn7LOabdZye/kBQ1O5UAVidsnt5Tv+4//xf1ErOobns9/t2SQFRSk5cEyiLEVVVex+j85gQBZFLO7uGFpndIMxV8odimFzuU9J6pZRz+fHTx+zmS359uaCH54d0XN6lGlNp3vERkYkWcXzJx0GA5vBo1P6ExWvJ9CbDL8u6KkpVUewXyVw+4pGqaB/SK42FHVNNj1ndn3Nbrdl9OgZqDrnNzekeY5l2bhBD5OGvKnp9wLQLCzHo65rqqLA9GykbvD//PNvuF2tODr8IV5b4todVrlD9C7j7ttr3nz9DqUI+V2TkwiPE2ny9vwSbfICy/PxOxbLjcr70mChGFRJxWKxQ6sj4gTevopIXig43RJFyvuCZaHRHw6Z36359as36IbB8dERihAIVUVKiagz7P6QRtGp4wi7N0Bt9qTbGUUN50WN9ArODnX+X/buY9eWM03z+z+8jxXLm23O3seQPDRJZjKrU1WNNtXVAlqa6EY1EDSQBg0IqlJ5k5kkk+Sx25vlTXj7hQZHN6CaFBI4vwuIWQDxPfE+76eEB4ZJya7KaITMoqipTBvZ9Zh2AwwJbFlnv17TVoLj8Yhvvv6Ck/MZRX7g7uaCzWpBnOYkSYpuGuRxhEJLkaeUWQZtgyK3NHVFUwsqdE6efELaWmzaAyExjZZTyYJWUpAcg+HpE5A1Vo87Fsk1fzprGPoerWhQLI2m7qENnuH7LnG4ZzLqUZ8/5/FhRykqHNkm24U4lolhuRimzf3DPbahs60r9nlN2WR06wbXMChasD2HXt9FVWsM00AzbVQNTMCfTCnLijDKyKsP4U6/7zOZDHE6fRQhYZUFzXZF1/XZZBW3UUSUlZx7NU/PjuieT+geahbLe+7me2xJEEwNDqs9attSNjUFCnXbIGka4+mUcL/B0FSktqWWWiohoG2p64ZGCHquzXQ0pN/v8rufrjCCEYZt81d/8yOrZYbfG1AbQ/ThU0a2SvTuwC4LSO5K9sslUt2QZjm60OgrPX7z4tcET56SLLcU8QLn04B+Jlgc5owGHd5cxWhFDrqOOT5CLnPaLCbLG2bDEbfbPbKmotkuquNhWA765zb1pkGzfFrVRPcDGqmhEQ2GIiMh0EWCoZUopoM68Gj7A3LHovYs7u+uiN+84nzUI3BVkvCGWgFhCoygB1KOalQolkW525CXOe7AY+jZyLqOaemkRYRhGlimiaI4NBKIVuLnd7fMdxmu30WzHdospC5KLD+grBoURadQTSpNZ9R32a9X6JKOLpm0WcN2N4eq+Lc9RHz00b/Cx9Dkoz9Ko+GQZ599QV41eF7ApCpwr29JdDj+/FsuO90PG/EFaJ0JdfIzWqtiiIzTQOPNfUScFEjth+vnrvYFQVKzqxTiV+/IdjuOTk7xBiMaSSbKSuJqy9FghGo6fF6UnP3Xb7A7A14tMv773/2eKi0ZeTaqKZA7Cv6TIZ998imTXh/HttFkiaY8UO//iTS0Oaw33O8L5DLl2cBCMQ2ur1aUhx19T8fxPMqm5XG5ZToaIMKUtm7RzS4/v7rgcLOm6/bQe0c8/Yv/QrKZYw09Vhc/kMoypWgoywZLUigkFaWMeHZ0QlHWfPrijK7pwPUN2XZD8UmHVlMQVoDUShzu59zd33F7d89qt6eoSmpqMtZ0py/YHlJOpgOOjsYsKxO/M0VVBUoVkbUCRVPIy5JwtWU89JhXa7ptSZs3eMkBc3aG2CXoTYhcZOjjAWWj4oiMLC5Idwdcx6M/NNBETSN0HhKJpFaZhy1assfTKgJjQscwKKxj+qdDHFMCy0XkEdnmEanqU6clSDrJIWJ5f8thv+XN/YLvb+asDzGdbpesaVlsDmxjyCoFSdMxLYdM07FRUTQXZA1D8ZiOzvnhd/+EpFgcwoS2rUGkbPcVaZSgWjb+7IgcOAiVwDZowgOyZvC4PTANjqjyguV8iaKoBKMxdlMxsDyqxwd6ko7s9yhkgSzLrA4Ztu2yjjPE7QJJUZjOZiiS4BAm6KpGlWXIToYZTIgur+ieeQhdQVYVFMkESaXMdfL5HooIdjtwK0RZcVjccVhe0tEFQ9fAlmompsCVE8L1NXnhsEkLNklEWLekRUOSFYhqgZhUdIIb3CdjrE6H/XyBa5iIViZtK1yzx8N8ha7JHH3+CZqqcf3uit3mQOnnqH7Asz85whyGHJ0/51AtCMuSoOjTlCX9joOkqBwOIV3XRW0rJFWjFQX71SO7bkDPc9E8C12WOB01/Pj+nsoqubz6K7qzEdChbPbk6R5dM1CQOBlP0BRB3Oy5u92zu01oUalOjjjqWTiWgWoYKKLB1SU+f3HCflUgmg+TDfU+IooN4kZFkwRCiTC9Fq8/xht1Cd/+M4Kcx8crSgT25pEQCM6fIcqQm8clulRz/OIcTykZ+QZzU/vwFzGLyUqL2jRoJButlaiajFaSaGSV3WHP2+s70rolKxqSJMUybDTbxhiO0XVAqtCVFFXPWEcZV//yL5QoeH4fU21JFvcUIud6O+fZZ7/A0jzUUiFbp3Rck9K2mX7xJa5vYqLgKjJtIbGJM6S0xvU0it0BxVHJypauKmOpCi01qqIzODplt1xS6zZJWqIcQiRdp5QkHm8uwAy5/N13TGyDYDJBM2yS3RsOaU3bd7m9eOTN+/d4csbUlDgeesRpyIvPznGef8bzz1Q0z8A/PcPoDVFpqJqaJEmQDIdlbaO1Buv9HYdMY5MpfPv5MaZWoZsGiqLRiJYgMPiTL465vNsRFS0PDw+UVUXWyChhyHnHJ1UcNGvEOBjx6ZMpe3qkq9+z3u749M++5c3yDTe3cz55+RlHz0O0XGH24mskt8+uVrne5cSNjFILZLXg1LdRxl1i2WEbJkxcA6lMkS0L2/HQOz38roc77GF0xwhNwbItNvNbfv7he2yng2/4SEKmBdq2ocgzqvzAbBwQ6iZJIXN0NEbRXEQLYy2kiDYIX6I/tug4EtL9T7SrEbnnIWstehJS15CFIVazQw8G2NMp+eaGuml5uLtlvQsx/AGS1FCJlqoq6Pc64I9RDZP9wwVd10EzLBRRcYhTTBlUy2N3CPlp+5o3F2+QdRvL66IrCkoroaQppCH75Z716hFDlbFtF68/wvJ8HjYhaXjNby/WnI67FNuGQv5wk1yyjajCBr/bpSh0klXN7y8y/uKXPm2ToZkKeZuBJWhUKNKU7374A6ZpMRh0MVSTItyi6RqtrFDnKXVdIYkdYRSymd8hMCiUIWq7QRFzdklEq3YIZZmN1FJaJk7QY3b+FKnJmd/eIOk6RRRiSvD5+RM+e3HG6bMnZPkO31N581Zis1xR0VJVLftGwrAsRJ7QIKOaDnFeYBY1WZTz9Jf/ieefvuTibkmT/hNNk9DKKa2moDgOk5df4zkWt9/fc3t3TSrm/OloiKnqWMMeWq3Sn/bJ9GPMzpifX+1Z37wm3B6Q0Xj59JTv/xCyXK/p9yfUrYzXHVA1grJu2KQZtWgoG0FclsiKhqFobA4RL7RTXNdAMy0MXUWuYqzxDFlTyfIc3ba5+90FgW7w/PiIo9EQW1Yowz1OR0X4Z7y9i1k9LEjLnERVELMp068GqMkF2faGkWGQeA5Xry8xNItUREyMgLIVRGHM6hDx7Isv8S0dVQ7wHYvckJlXKZIsU5Y1ddMgSZDXgu9fv2OzChgPB/z4+o5XFw8sDzmj4QC5FSRJznKXcDR7Rt4/JihzivcbijhCVCV5HhGJhqdf/gn2QEKxW/Jc4L4Y4R77NJuc21fvcFSZ4XhMsq6RywSxfkRVdTTDoIxL+p0OR7MT4qxiomqYhoVqOaj+gFQ6ICSB6li0TYJpOeSiQSBQJIm8yig2KwzFQhIt+aEgmAxIpD6qbRAf9rzKI/ymoG8pmIMxZsdG0XLqMkaxdDRNY3V7D1mOrDQ0ropr6DRtgSpL1IZBkknookayFRbrDYv5PYesZPzkjDJLMGybjmWgaSqHMMV2h3z6q284LDdsFkuquiHJcqygg2SYmKpKnVf/hieIjz761/kYmnz0R2k4mvLpF79ml1ZUAnRFoLQyy1Sh45pMj07JshTH1SikgEpPCBcPGKLA9y2cpEcpRYi6pCwLClTQbdIGgs6Q2/UWVJtuKdFkCeu8RtMdqrqh1+/TkSqUp1NKxSPvhvw3t0f8uCZebyjqjCJPKH76ntdhwmp6hmaYKLSoUo4V3yCUln3pc2gUnh5PGE9U1nGEFO/ouCrjUUBl2+zTjLwsScoKRzPYRQm76wsWt3e0UcnkeMpR0EX+6RWyXJF3DdbLFXQDwijE0AxSIRHILZXf4fT0Gfs4Zfj8KZ9+9Q2aphNevuOfl78lb2okU5AlFZv1lof7e8L0QFRFpFWFHejYgYw3tLlbrDg6PWUXZWSVRSvryIpE3WTUTY6EQFMgWc6RR18gqy6b6IDZCtqHByZuB9UKMHUVx7TIkpjDNsWWDRylJUdmtQkJRIGrKziOy696XQzPRXMDEqas715Rru/weh1sQyELXdxghqIrNEWIG/Sp6wZJ1Qlzhfu7n1gtFoRlw3dXc97ePqLpBs9HIy6vFlSSRZUJoKZMY+regFpXqRUVSVOQNQPX0Mli6HaPSbOI2dkRpt/n4f6aIs9JD3twOjifnZClKaIu0JKcsizoDwYk4QHZ+PBhaRj6h6mMLOP0xScodc1iuaKUVV78+Z/TahKH9SNJC5ph4Xldijzh5nFD0yoEgfthSVwrUGmRVQ1dlRiez5A9A6kRKBqUjcrmbYiZVjiDKcKsUUyPzR9+j9jucUyd04HHl2MPwzcZD1yEyNFVlfttgkgbGk3jcX0gKSXyWtCUJXVRYEk1naDLL39h0K4l0kPI/rBDMjV0U8dXFFIFEAJFkdms18z3MdPTc3ZxSSI59E+myN0BWZ5x+e4C337CqGvTDbrotkNZKyxXFWXV0NYt1CWaJrO8v2fVcTHGA4SrYsgytZWjlDXRJqHuQLH+Pcrxb3B9SM2SJCyxTI3xpMd8ecfbq1veXC2RJI0ibSlqiaYcMB310NoEmprlwwLDHzN7+pzk8or94gbRtGRZwyZpiWsdQzFRWiCPWN7+I+OOzlYI3m4OVFVOJ3XwT2YoWsvj1Ru2SYRi6CjXAnXcR8gquqEjmT612WcyHtHIEkVZEad7ojQjziuyNGd5iLhf7DDcDqvFCl1R6Q+n9CczWsVDKCptI+N5Kqam8ub9FarnMxmPsAwbebdjP79lvZ+TSS3DUZ+zroum14iiJMljukaXnm+jyAWKEJioRHGJOBRYjcF2uUM1NIqkJRI1s1mDZlgUeYXp6CiaSW88pdiu2LctlmUCKg/rNanQiS7ek+6WNMaEx8Ujh/UGz7Yp45T0/pZwveMTz+TZeMxo9ITO+Bc0ZY458ZCOnqO7DWX5gNHzEVKLaMDQDVA1tu/ekVU172/W7JKM1f2a4+MTFFlg2TqWpaEYDk1d09UzNPmAmPZ4XCXYuoLcChxqJE0jUi2m57+gPz7jyPY4Gp2w3zcoL77h3ftXFI8Z45NnuFaLavl4vk/cVsimS5TXUIQcypJaM1nM57y9zykHEr5sYxo1u8MWiQBdM5CzA0leIU+G6KaFHYzQdQO5zJnfPXB1cUGOTJjNEY3AczsYtkPbNJR5wcN6R88RyKLl7eYekwxNVkGSyMOUqqxpVjLZIqXsPzKcBtjHPUT3lN16gSpSWs1FlTVIckQW0aYRsu4Q7za8+e53KLaP5lrkRcT97T1ZlvOnv/4Vf/3qnvnlGyxNRbNsbMukruoPgV7HZ7PdcrfPuHhckhcl44lLsttz8ouvUaMFnuOR0TLwuphOB0Np6Y9m/N9/+TdkSQyGi+rp/G//6//F//wX/x5LKmilEkUS9DtD5pd7VrsMuXGpifj95Y988dJkpIPQBHVR0CQJmirxycsXhOs1lxdvkOUX+K6DLIFqGCRRQlIIlLKk1STQLTpHZxzWW5LHC3YPd+y3O/ZJxo1SYnUGGN0RvcCnpUWqKvI0R6kq1KTi22BK11CwdB81zz8EV22OYuhItkdUPFIjoWsyvqmQlYBmIDSbQd/FVGWKqsbyBnidgLquKMoaWUhYpk0kElTF4tn0OUO7y93je/7hn/87WZ4zPhqj2j6qaeG4BiJpsP0B3d7n3N5vqYXKd+8eqcMdy/WGH374DgUYnjxDDcZYtouhaXh5RBpFrCqJcLeiQZDUAk9REZJEXldcP65g4BP0B3gdl1qqUTWTLM2Yz7e8+uk947rh+PNfc9bp4+QF8es3aKZBXii8vVzShBGTbM9//o9/RqRJpOWWoaEgtTbW8Jj944ZAUXA7Drpmsl4JhKqxiQtuH5copk3fMdE0DUNRUAyToigwFBlTU8nzjKZtkVrIy5K00smrmtH0iOFowCYBoUV0RzN2ux3aZoNz+wbpLOD8s8+ZZ0syp0BTe+y3G1bxnLzJuV9eMz49okoNRl8Ocac9hKio6oAwKUCU9GwFLIOiLmiR0FWZpmlQZAOt1hkOznhcvgNdRTMtFMNCczo4Rofd3R5pvUDv+EgITMOkLCqE2mK6BvP3OyQRYSsmxWFBvXiLbVqYHZ/heIRUeqgiQw5c5NMjHLnAUHUIa6RGcFit2a43aKYBikRZFYT7As9xqFBRVR3KhNZUiUXLdw8hl49bPNvF0iT2qxgcB2E4FCVo9pTP/+K/Mej2iJdz1q7Bm3/6Hb4Cuq1hZRpy0Kfb6f0bniA++uhf52No8tEfJTuY0CkVHEllsVqjqTLK/JGzfo8ij3lyNOPhIeL+4p6zz8Zgn2L4gsX1NYUeYNgWHirZfoWiyPSPT+mdPcfuW5imgVB0rh5XhElBUzcUSYxqt6irA8OjUwwvR++PyWoF8X7JxLTQOyPK3oyL5ZZ11ZBkjxSLBYd0i6ZLoLgYrkfpDTH0llnX55e+w8hXUUTKtqpQPQ9HgdqwSLOMXZTgD3rs45Ra2XP5/oGbt1copYTteLxfP1IrMpauMfv2Wx4ur0iiBKFbyLJOVjTYQZ8sS6AsUVSF409eknd6yP0pmmFgSjLJzd+zOkSUTUyeSrR1gy451FlOXR0wA5nnXz2hq0+538JodszV61dEhcTs+TFUOQ0qZVliqTI1Em3TEIUHHh8fcQcDbjf3FIpEuowpuKbT6eJoBnWe4wVdgplFEacEQQ/PdpDKGpGUuLKN7h2he7MPf2Go6DV7Zs8/oWhSWs+hUWWyMqRYr9BHQ+IkI5V0gt6A+dUbHi6u+d1vf09RZsw3W97ePuJ6Do7XYbXYIbcytmViqQb7PEGXBHpZIIocaPBsiyqtCWZDxt0Zu/uMu7slebtlMDtFiQv2i3tu3r2mc3zO4Ow3qLKMUpcs4xTddFA1neXjA2/v5tiaQRglrNZbNCG4X20ZHZ/w5GjK8hCBZXP++ado0ueML95z97BkH2WULZR1xt02Ii8rDEWiyTP0nkIehbjdPlp/DKKgTSNaQyN72OHlCZbhoUo6bSsjFA9DHXDz+99hnI8YHB/xm9GYSuR43S4NJYf9lu3+krvbHdvtnqoCWfuwJ+BiFdK2NWFSIUmXnL/8CdfskxUpkq2jex8mJB4el5iOjWLaRGlOIpv4Tz7HPzvm5x/esrUcqk3M8vKCh/sbuqMBmiSwbIcAGUWCq3d3JGGOORyg6jpCVpB1nTze8Xj1HkeuQFFQbR+5kJCFhJRJrNcG+8dHjrvXGJqBOzGJ6wjXN/B7HRbze0zgz796jiGZLBPBdrHlQjRIQqCMe3iWztEnX6AJgSK2mEcTNuGB1WZLlhcI0ZIJk0rScOSau3hHE615v23IkNmLFsP20HsBXuCyXz9SthKaYaMYKllRs9uHtKqOZ7v4uonctuwu8v9iAAAgAElEQVSjkE4vABkeHheoqsl686FWltUqh6wiXl8hqoaXz58xnE6QDZdDZdMvmg+1LEXldOjT6fe4vpmTLfc44ynl8p7D8oGbhyvQWvrDIXa2JzpIyEqJ21pIiYTtGFRNgW0bSBXImYEVKpRFiSE1LNKUnApJLVntTE5mPhI1quygaxqKI+M7JxTLD4u6q0OChES43nJ/94AqJMKsJOg5OJMZy5trlvdzqs0CWxaYls3o/IzuyS+xpl8iaTJ58Yjil5imSqt3aGWNQ5JgqQ2Hy9c0psP7iwfePq5YYvPqboXTGXB8fo5m65iug+vqFI1MJWrkRidMFOpoBU2FqWvs4pSH1YphMKCw+sjuCMUaoKk6juOjqA03v78gLBIW7xfMvrB52C5xO12EPaBWPITdZbWPMU2TQIWNKFg9XNM0gr9dlvzJLz7FsAUdx+TmccH56ROGjooeh6yXDzzpd1CsI1QatusN9w9zfn7c8YeHNdt9xMSyMCTo2iYYOkeTIduioJYyZoMeyW7Hu+2SqeuQHSKkVqXr+pjdAM8J0K0O1apAOFu09c+MFKikmvXNJR1LoAzOaZoKVddZXt9wiGKWUUnveMKr61vCzRxD0/jyq89pvR7GT28wDR2/N/xQySkLqiylE1iERcFqG3IfpWz2GzqdPo5u0rPMDxNMwRg76CP5Acdly7NcYTu/w+wf42oJy/AaS0jokmDsVijyjpSaSsQUVYLruvzis0/44R9fkRQ+rTRnu73n5/shR1+eUOctKgoKNv1eD1lT8Fyb8BCymD9inJ1hWg51LdBlgWxINIpLJSnotsP6YU2tudg8sJNahOVyNj7CMD2EYlK2DYWoSZOYdLsmjxJGislvZk8INBNHVZFGfSQ9J1peU1UpaZyg1DloOnmr0cQxeVFSCiglmV7HRpVl0rLhzf2Gr05NekEHVVV52ET43SHD0YTVTUjXOmbgjdiHe77/8TvifMXx7AVf/uqX2P2AWsqpKoERnGI/+RXbTUJVVbz6+Q84psz1quTdfIciy3wx7XL65BTJ8HE7PlJR0SxUvp6NQVK4qTJ2SYRoJbKyQFIkNmGEtolIGwnV2+K5Fqqi0aQZq4cNb7/7iZmm4fRHmI2OUsu8/pvvWMUVhRHgWT0+m47pnxZogcToN58SlQnXF6/ZRzJTe0SWJHQ6PlmyQpNlfFPH7fZY5jW7w4aHrOVXJyPKssDQP7xTy7ig2+2StiF5XaErEBcVaV6iKQqObVPKFm8fDxydPUNRFySlTPawQTFsdKEx9W3UtsTpHJF1TojT95hmD2U2gv0F98sV8fsc/XjIV19McQYOpqVTVy2KpmJIFcvHO2QEiiTj6DJy2yBkDd20yFuJXFZx3Q5qNuJ6k+KeqBiej2y66J6BU8sk4QbFUpF1E1XTaesGmgpNU9FlieiwJ5FVWiknTZYk24ZgMMLUFRxDwTZl9N6MTmCgZgWSJCMJyMqKV+/eY+oSuqGjOCZxmuCNAoSmoggJUQm8TpdWtFyuQh5v7wnzmmnfpa4qDFXl+OQYXXewW5lnz77i3POZ9AMiXWMWeEj7kHCVsVzMGQ/GZIc9aRL/2x4iPvroX+FjaPLRHyXVDrA6ErVosLOS7fyeoDfBC/o8Lg+4msx0fMT2fc32NqLIC5pWpdOd8HjISbOCQeBxqCMsQ2IWWBwdTbBtHcfvkFYVh/mSh/kldVHhuw5q3PLkm/9I3kh0/D6K5aMmBV3Px+17JKvfYeg2T3/xlItVxv/zumCfpEhSCVqLYwh8XaJbNVitipIeyHaC4sVzBsdTzgdT+nFCliQsooyyyCiRWc/3NK2MWF7z5g+vqRuVX/6H/wmlabn9/rfs05Cj8y+QLZ3lxT1ytKdVFKyjE3RNRZRgBH30JKKtCixVwT05Y1MKBr4DwZCHRcI6TLHcDsOgQ5U1lFGFEBJm4PDVn36CrU1p8i43tyllE/Ps5BlitUWnAmrIc9QqJccka2UU0bKIK9L5jl91bdxgwOLmCldT0ZdrmsMBRdPQdJX+eECVpZiKht/tky5W9HtDjKCPIjuIXYbaKhidPmq6RfInyD0XU2pINo8U+xWq7ZJWGTev37LabdD8AWEu89Plgqja8OrdDa6jEWU5g+GQvJQpS6BsMFSJSq2xuj5tmZBnOWVS0PQFRZ7QHfZQqhy5aPn282+5/ucdv3z2n6i6MW5nxt31j8hpjSzrxIUgXh94Mh6imwbdbofLxQ65jBnMjpivtoxtnWG/T3IIKeKEPDxwcyP48hffcOwH2JMZncBHbmKmfQuRKSgCFFkhj2VqFPaHCKVKMR2XMM7x7YJOVSNFB3QVZFWnShtsOcM8G4LeR0oF7SJCSlts+njBp7ifHeMcdbD3B24v3+AfHROhkKlrlAPImUy1jjBVjWG/R2to5JrFZrPC7XXwegPKqiCY2fQmAS0pVq+HIRnUlo+qa0iWy6LSGD77hMHpU+q2IW9VyvEZV6XAsFxefvmSKk8YDPrEcUIiKVSOR2w5yFJOEiY4ronpWDiug9cbsLy9wpNLhrMhji7R5A1SXWLbOuk+Z7UseXRf8+LFCyZTixCJg2rQnfR5ko75X/7i1wz6J9y8XhNqY/a3FxSmwv06oaoFn5wfMzAkDM2ijGOy6B6j5yKSnDhKSGqFpDhQVxVVFlNUBUVZ4Goyiu3xzadnPHn2hCTPefdwR91WDHyXnmsgyS2yCocsoywS3MEAr+dgqypxU7FZrtmkGWlRoqGyOES8e9wRpTW7Q0xTZbx89oLZ6RMMw+YgGeRml1pvaKQWXVEY2BJnk4DHdcTw9AlBr8fm4pJSGGjmmKvb1+z+9/+Dd6fnDHozdMlCsftM/AGGyoduf1tRRzF5U5AmEWqtEOcJiSrIlJpKqlGWB07HMxyrR53XKJqEpss4lg1Vh/lqjWO77Hd7kn2IrqmYioTd7aPoGkK0KH6AtlpSmTpxVfB+HzJ8uCKXfJy6wTnuIYySMt+jGQGSLJGmMbJmcPHqD2jRltvNHX//7oGDpHO7vaVB49/9+mv6rorleuiWjaa2VKLBNCyaRCNTAubxA67rM+512UYplQBZt+i7JsdNyEATOJpEHG3Jq5zS15iMX7JYXiP5Np6hEtYmq0YjmJ2TlS1RWrKJC1Ra9rsNbZGSxCHb7Q5NafnNy1O63S5Wb4yh6cRNRdnK6HZAoTtIRYasypRJRisb/GFx4G69w1ZUnvUGnA0GYNm83m253mUoTU4sLJQww/Z9sizHCwb0eyN6/TFeb4jdG+F0Bph+h1ZIIEO4uEZOY4zRBNPpke+vEUmN7HWoRc7dYs3qkHC13PK7y1uKquZ06PLVy2cYnkFex4w7OnFko6sSpusiCpW4KijqmihOWaU5y9UCSVboeB6KruOoOlXd4E8m6IMelaiRSonxoUWWTdJCwu+PcXcHsiSmK8tMxwMkSSBERVNVJNEWRVXQPImXf3rC+388kGYmRZZyuU+5L026VYGoNGTVIOh6WLpJ0coEmkHT1DzMl0xPn6BaLnLbYEjQSDZSUZAt7mjzmr5n48xmuI6HpNkY3gghmzRFxq6Eu9sb7CbB100mZyeYQqNpK/JigSIZ1ElM3iSs0xRNlZAUGVlW6fR7yG1FXpWkZUXRynj9AYaus9/vuFglrFsf/WqO8/333B0aGsnHsF1020NzLNz+mKwRXF2vcD/7Dzx5+pyHH34m3Cc0jMjqDM91KNWAm6s7ot2e68srNss5E+/DUtJO4LMPE1rTZfr0OVXRIusG290d/eGIQ5wxo0LxHGrZJCly8rqirhtqtUU+RGhtzcW9jt9xGPe6HHYb3l8/MJ0eIw45NAailfn5D2+5vN/y9a/+E0+eH3F0EuD0bWgbss2cbPuIpCnYHZ+bn7+j8+WnuEdn7N//xP3rWwql4i4XrOOCy82Bsm05P50hygxR21St4Ppxia5reK5Dt24IXANR5bSqzpu7DUgqX3z1Larhk9Qmf/8u5epRQuq8xG/2fPvn/5Ug8Oh3ZGxLQ+Qhst8lKUKyMqSRZXRf5bl7yuqw469ff4d01MHwFWbWM2hbRCNQZajLHFOBx9WawHPRpRZVk5FkCdtziYsWtwWvO2Szi7heJpyZJb6jIhkm7mxGXd5SZhGaIqFLDqqmIgOF/OE5uqUTHQ4kcUzZtiRNjSkEpBlGJZCMLq7jYez3qJpMUabkyPx4cUO1nX+Y5jUUZLmlVHU00yaODqRVwyDoIVBY3j2y3abcPq4xLRNNblGkmn7QQasl5Kbi/Kt/x9n5OX3LxkUjGIyJPRO+/Ya//D//mlGni2pauN0hpmP/G58iPvro/7+PoclHf5SEooNiUGQhRRKiJhv80TGOPyTdy5C22J6G77S8f/OW8XmXQpXQOzlGuWAwUrCJ0YddqrrEMjTc3pBxx0LOY0pVRfcCNoec7XbDZhfR6/a4u3iLOAQ4X36JVNQ0SYKbrqnCFcrUIlxuib+/pMTiiVqyS1JuwwaVBpOCwFwy6naYPXnK+PwZg5EHUoSs67iWjeW7XF5cIuqMTVxz+Rix3mxRW0FWQRhn2HbAu9c/fegqdwIs20X3Pe7XC1bX75h4BoQHtppNo5kIJSMIulSqQrpfE2cpbVORd4fk7Zc4jg2txqg3YTSaQKOQ1ntqQPIMzr/8BNn/hN0yJzAdsnTNxc0jZfOc7mAKbQWigVZQ1DW5yNE0haZM6XQcNocDsfIZxzOVw2bLfrcBQ6OVWrqeg9QqqJaN1kgkYUWx2eHpDrpsoNQCRcopygIMnfrhlkBu0HonaMdn1OtHEApRlKJIJo9JyXc/vcOfHWE0Dj/+w2+5mD+QlYKO7TAOHMazGX/3L+/YbLZYtoNiKgilRVZlXNcgV/sIoaJpKm1RgCzRihLdtqiSlJPjMf/jn/9nFusE96sO+3JP03hoFuh+jdOfkBoGiyhBaVVcSSbLMlw/QFPg8e6OaP7AySCAtqUoCpLwwMN+y5HvMPvNv6d/NMEyNbJdSrRfs7i75P79BWaZMw562MNTyqylbmTIU3LJIKkldss1vdGQJoywxqeU2xC5ahDbBaqZodQy6CBrOrrdp9OxiNMYyhr0D/UQdAvTcAiv7hG1INpu0YTMJBhiWR7e2RGdk5p/+Nu/QdcNnpyfYXUGmK5HI7dkRY6jGTzcLlkeYhpJwQpGfPXsJbrtY9o2TVUxHPQpipA/e3GKCGLWYcZiI9htt8RJxPD8Bbdxgq6D0BviwwFZVZBqCLoD0tk5u8Wcm/s3CGnPdNYnz0DRLdLogBCg6Ra0EofFG/qewfT4CeO+Si1JdAKP4ehXqEqAKjr8/POKydOvkYc99g9v2Syv2O33qG2Fa2ikuUAyPfbLW6YzGyc4Z7OLmK8PpFFF0yi4rkdfdrAti+NJl8GgQ1kkiKrgdDakakr6XR9N1dgnKYWoCTyHXIZ9GtERPlUNLTIXizX3d494fkBSbPjh4pFt3rBdr2iqludPzxlOj7A9H60ToGoyrimo93ssbBTVwBAtT4cKP42H6JaNo2s0/SmhZCEdUkzFYr9a0NPnjLw+Z8+PGPd6jHpDDFulbmuqUiYpcxIiMq1CagrCOqVuGtZNhWZZPD7GxOcJQddHUlqqNscxfCSgE/iEYUIjGoSA/mRKfnNLf9BnMhuhSRKyaBl6Fk8nAfl2SRqFaMhUoxPEOABnj+I7aN0ZraFR7eeUjUS427GKUu7XEUUBf//THVfLLY7r4no+L58dMzABWlRdR9ZthGKCqmEqLWl0z9iDxICylem6NhPXJG5Uuo6BJwp8kSJne2Ih2G/uOHsyZnsyZL878PSbb2itgsd1h/fzhN7ZSxpFoRUN631Ei6A3OSIrSqqqIIsj8njPxcUFgW/z7VdfY2Zb3v74E2Gcs4pzshoCTabefpigGJw8wehP6P58yd18Qd/QmXa6PPviF/z++pbjZ5/QNXQWF5dcP95DDU8GXSxHp0DmyfkzNFlGqRukpEQduih2DwmBZFoETodycQW6he63NOmIKotoy5If3l5zvdjz6vae+e7AbNzjm5Mu456LY0lYnkW9j+k5Ku9FiRA18fIegLKuEaJF0gyyZIWlGzR1g6aogISuQp5EBPKE9f09QlVZz5cURYXfG7BbL7BaG103SQ4HBrJK1/uwDFOSQddVRC04rJeE+x1SWaOdmTwbn7Hd3pMWMovSIzokTEwF3THJdxHr9RbTcj9U/+KIIo0w1gta0RL0B//fXh4FkLBtnaeWRm2O0cwR3W6MrBpIho8iG1RFTj8redYfUKzuMYsIVbMxkVksbpknWxyppVmrvM0z8romcDQ8W0PSNDptQ7xPWYcZYdEwnE2p65LDLubt7ZqfNgKl36OHw1//yxWyHXD+dIRuWTgdD7/XYzDtUTWC58+e89WvP6PZ3vN3cUOyC9mHKX1Tp/bO2Esu++0DxWbH+59/RNQ1f/v9WzRVRVdkTgcdXp4/IQi6mHaH+Tb6UJnLMywkJNGioXA2GDKPIpI0pBQCWSjUssEqytle3CE5Pp9Wgv1yRSl7uMM+/tQg3eaE0Y68Knj59S8YBDZOklMv9qTLLaI6cPXqr6DvY4wnNFLD3eKe6emIIHDYhzHbMGQnq1Ryze18TZzlTGcTWsOlaHOismG+Dbl5WKAbJp6uMTo/oYgPUOX0hgM+PZnwuC84Pzvh6YuXZI3NfFuSSDOG03Pa9IHn58fotk1bx8wfb1E3LfEm4fx4iCJLyLpB3U7ZpwfEo0nbG5EKmD8ssGwLf9hDlj9Uq6JDSGNZlEVOZhgMBh0AatGgmRaOb5OLFt1wsFsIS4NF0tDKWzoTG9U0cWcT1rd3CFnFsD1USQIJTM9Htx00w8QNAtIoJoliBq1M0O0jRRsMkeP1p7heDyXdYyhQaSZ3P/1E+v5nupqCYWpIosJ1faJDRBiFrDcHnG4PWZNZPNwi8pbNNiZMagJHJ4kTPM1iOpmQRDWfffs/EIwnON2A3qCPpWpkRYntdfC7HrNAY7l8YL5YcDSdfbxy+KM/Sh9Dk4/+KMWHLfPLC6p4j92WdAZ9KkmDxiJQJly/SzA/2eJOC+rLjP21Tl5XmD0JXVVwlZKOa4M+YLfdoMkCW5Xp+F2aPCaTZYadDi0aQrG4e/0zeb7A/Me/Qf70M6Yn57imQbZeg+lgWR7h/kColWzljGi7plJtvv70U1RVpaob8jxBriKmPZcvXp7hT/voXQ8FC0lTqFuIopjFes3NOuUPtzvevn6N0jbYfp/dek++PyAvV2xXC45n5wTPXmK6Fqs05u3710jRFr13gqLKNPsljmuzbgRRmjEYjJFlBakVZPMbzGzHKt2zCoZ4vTGj4RhD18mihLip0XWV6ZOvmU6e8+rHC3a7A1989oKg32WYJKTRltNPPmMX7jDqHNfvUm13FGmIZnnsDzt6vR6fvfwCDJ1Kk/nmq0/5q7/7J1ZpSt221LScdHvIEui+R7Jas7l/RB3OaB2PPNohCRnnyXPsowGq7ZN//1uUKiNbbyiTnDSvCbOGtIj47fUbHg4JUviepr2gIsEf9vh8FNC1DJom4y9//453lx8qG5blgJCxZR1H+3/Ze69lObI0S+/z7VqHjjhaAEgAqauqu7q6i8MZGo00kmPGJyV5NWY03pBN0TPTsiozkQlkJnCAI+OEDtfanReoF2Dzoq3N8nsH973X/6+9lkKdRMz8IYUwScsMrc5R05hh08c0Xeo0RNZKXv7+gOO8o/VN/pf/6TX3b9ccno4w/TMU3UYuc6qyQGoqSsXDmh4x7XssH+f0Dk5YfCi5/nCH67jsFgvugj2/f/6M2DCRDA2DkraWKJuWsirZLR64u71ht41xjDkvn9ZcXj7F7/XIk4S6yllvduiGTnN7Q288Q0QpTV0jNI0OQVkkNGFKk7WQ5Ih9SLXNWbY1+maIOXNQFUFWNdzdvuP2zWtuPtyQhiFHTo+j2YxuPCCoctLdnv/mr37NSU/D91yQFZAEkmEwmo7Zpym3jwtWYYrt+lx8fY7l+gjdJM4b+q7FyBJky7cktznb1SOB1sefHVLFS3zPQZdaLnSZu7bmZr8i2hQYhonrGCiS4Pj4CK36itd//D+4vrumqUOOT05wDRnDUEiSnJ9/vKLaC+znDofuAcnyNRIKsrLBmR1jWROqQsc7MZDfPCL5PXLdRTMMDi6fk5QBwc0dp4czhFDZP94hXBfXAkOvODs7RnBIFlfsooyuzijLmijOqOm4Wy0+biUNgxPHY3B4iYpE2dY0ikq5XlKious1QdKS1S1BuCIt4Mf3N8hCpQhTHpZ7rh8WbPchmm5zcfkp508uMDQFf3SAMFzqqsJ1SlrfAk1GUiSaWmBIFZ7TEVgWciMoiw7XtJj2e4h8xtAyMHWN6WDMxdkTBsM+mqwgVBk5T5GBRjeRNZ1KqdjVCagdUZZ9DEGuW+KsZLFY0xvN0HUFoZs0RYRhuSi6zunFCbvtnqHdJ40i/OGIyWyMYVoo3ceLSKMZNKbP4ZOX6HYPd3qK5fZQlZZ6/4BQJNANqjInr+Hh7o5V0vLDfMfq4Y77xwXvFzss22YynXJxeYZngKLI6IoEQCWpSJqJTUaV5yyCGENW2WcF9/M1hiYzGY0oljuaMkexDSJF5/31B57/5nfMnp3SyC2+bpNJgkWQsM/g/dWK4dE5ljekSANkRWa9CsmTGCGrWEeXlG++p6tLurogXD3w5ruav3ra57efnXHQN/nj62uOdZ/vfnjD7XrHdrPhxYsXHF4+JVivmfV8vmlaLN3k8skTVG9Azpz/7r/975H2e27jli+Hp/z1d3/Ho5RwNPCphEJS1tiahu4PaSSdcrdH9wfIvT4AmhB0wwPqpkKqU6qq+uhg+eEtf/vdK358WLMtMs6nA55MLTRdYXx2itQUNEVG19YYmkrXNVR5imk7NJ1g7PlUnSDabTk7PGS+XrPb71GlBkcR7DdrZr0Rj/dzPvn8JePBgH9MWtR9jmdrNEVGuF3SdR2yoiD6Q2pDBllCaqWPVeSKQtc1vPvxNclug4pgOjzl7OIFnVIjdRkJMfNNiG8NiEKVvMqQ1I48z5FRsByfSrVZz28xpApFNZBNC1WVcX2PttOIpD5WV9NsNxiOhkAghI5jKh/bSDSZZmgSXL1m+fMrKk2nKQriOqcWEq2lYvo+SvHxm2mahqLuKKqaeZITtTJNB3ryMWx1sQn55i6h6FSGbkqaZiRpycnlgK5rqMsaW7cY9af01BFPh5dMnk/pD0wWRcrAmkJQUxcl227ILlRRRM2PDwH1fM/dvqBtJITh8PZuzkAT/O7FBcOD44/ium0QuyWeKhN5feCWJK+oJcHAkMkzQaO7tLQIAUleUgqJKitRr+YEu5A6L3n66RmNkNnlKbqjEe62CKuH98kBqmuz2tes7u4xmxJJzvnP7z7Qz/q4ZUHclKwWS9ZhBIrgZhUTCoPHICKsKlZpxenhIaU/pFF09lnOrqiQ0oKyk6iKCrmpGVkmjVSjCQdF17h8ck6Kxi4qUKo9v/r8OZXsoo4DDHMEaZ+761t0S6eipAivOT49wPH6tMMxqtzSSIIw3HMdZ4jZOdPjAzTbI8wy9rsthueS5TlRkhBmJUVZUDctVRwh9R1aVUE3DBohkHUFQ9Ip8wLN77O5n2P3bES8pw5T/MNjFNvH9nvMHx6RTQvP9ZA6UDUNw3FQ6o9LK992yPwS1eyhOT20ZEu3maObPWzLRUgVXZ2z+P4n0h9eQRDT9Fws26c1ZFIktkHIPoBGUhgrEqvrd5imQu1oLKIAqSlA0tnnNUeDAappIFrB5PCAw9mE08MZhqwgSzKSrtJKNZ0A1xVsG5vLo3M0TUOxzH8x/fALv/DP5ZehyS/8qyRZ3JPOb/F7PoY1oOrAtzyCXUCwTgjXS7K+TBRv0E2VxzdLDFOlEyWHExO93uGeXVKU0EngKhJKGtFKR+hun37dscruKNOS45dfkGYly3c/crtYI6sf6A2+4/j0DEVoOMcH5ElKmi7Yxwm7UsIYnzHp9xjODvGGQyzPQet50BSI9BHH/liFR50h93w6WSGLExaLe+Ky5n1Q8t0PP0JdYNku26Tm8XFJvlt9bBZQVSzRoCkSt4/3tPdX7O8/cD4bo6kGqoBgt6ahxe0NoMzIHm5o/SH96QGWrlLu1oRRgrK8x+2N6PfH1FlC1cq4loczkDEPLynzBlqJvKh48/N7np7M0DUJ1bSIkxjDsKjrgl0YkpcFHR1Ct+jNDpkeXzI5GlEEdwxnA/RY4qtnh/xff/yJJIpAQFWuMPsOelZQNiVhXVPM59SSjFwCVYsyO6C9f4szmlLIDXUQIGsqcRpwt7zlsUrY1QmTQ5+zFye0QoG2Brujq0ooMqok5H675YfXH+ja7k81wBJCUUACTVeRZRlPV1Ati/t1SFcVGJpMmaVkuxpNlWmqFHcwRO8Uyk7jrz7/M/xYsNhdM7qckXYVdduyXa+Y+C5FniEJieubG2Ynp4Tpe7T+iC6PcXo+szwnWK+R/B7+6QmyZXx0uXQdddOh2X0GowOE/J5GNmiMIR/2NdH7R37z/Iz+YEi0fiQPI9ZCoue7uIOOIkmQkJF1HYCmyNBPjumAJklJrq4otRpHHbMoOuq3HwiahmPdYjF/ZP7hPbvFgoHlcXQ0o+5ZfLwhZ5y5Cp5co2k2smYiZA0JGPRc7sOAd9f3zHchsmZw+vxTJofH5FWN2nRouonQDLzRjKe+jX9yQtwJbHvC2dBBJBp5GtPkMWO/zzzcU2weCZd7ZFXBtl6iGTpOX2esnjPw/w0/fv9P1KIgCAP8mYPn7ZHp8GwFSxcYoiHabtitdh9zcZSA8eUReZ0jaR5ioDN8+YzHqGRqwG3bMTp7Rnj3M3mypTNcTF3BcDwcTYJsT6UIbE2hLnIcR0VGIsgUECmuBI5jolguLdC2NfbAxx341K2E6Fo8JaRoxsl5GxoAACAASURBVLjTIbc3C2pZ5mET8PC4ZrHeswkSDNsmTNc8LjdsthHC8BgcPGU6vcA0HFzXQph9JKFjGwJTaTGCByTlhE50bOOQRRTTxWvW9xvSzuaJ10OrCvI4wLNdRoMey9Ua0/QoawndcpFlGVEXKLpBWgjUtkakAmSLsg1oJIlStBTlx1Dgti2538WcKzJym+No/Y8NKkIQBhuGvSHqwYwgTDBtE1eD6eERtC1SWRIFKX3XRB86KIaPPZiiWA6ybSOJDs24oAiXVEVFHCVs1xHffPsjq1rherHmer2jLgpc3+fo4hnnhwOaeEONjXCG6I5P3ihMBhOa+Bbb9SnThJvlhr7bwx+O2b1dYssSgpama2m7hqatCaqC6ek54/NjFE3jIYiwdYGUxqRJQev0UXsTZidHqJpMV+vslkvKGtIk5813r+i7JsPxAfF2Sdc21GVBHm5R6gi13HM+Mhj87nP+07fv8YZj7lcrymDD1/dzzj77Fb4kczIeMXYcPjs/pT85pChrTvs+bqdz/7hi+PIThn6PcRLy+u0r8jJnt9uTFTXj0YRBa+CqDqbqUQUxiuvRZDld91HUtMhEwYoKwe2Pb/nPf/iWm82WKEsZuCo9A9Kq5PLZKZpUUeYxmqGiqiq7ICTNC1zfRnd8sigmynIU3eLpr34LcUCZZ9R1zXL30ekh9mu8YEfv5IRU1VnrGqPTI/b3j8RJwnh2gCRatvsbLF3HGVlUbQBSH4FE17U4mkkrOg5mA36c37BZRFR7E88acv7VFFmSoWv427//A0/Pz3H9AU2VEQc5TdehKgq6bZJnEaaQ2O53TI5OqLMUUatILUjeFCutaaqU1XJJE2dodoYzOkZ1HExHp9zef/yf+w4bVeJmfk2maDSqgtSzEKbK1DZA0qjKgjiKSfOKm6giTkqMno+gIA22rB5icu+QqgNZaknjgCyNaBoFyzIQkkD+U8334aSHo6t4mYQlqZRZQbyquPAveD65QAxzquGULEnZbZdMTi/4Zp9x/m/+Pen7H9h89y2ebfHywGcym3H6/DMM2yJfr6nrhqiTWWxXCEWwr0p6ro+hCJ5fnHOf1vz09g2tJCFJgg6ZTpK528bESYLvOGzjnE6C/eMcXzdpG3gMK+z9PWXW4bs9nGcOqtD4h3+64c16RT9fIS2XyJrCMgj47ue3mM6A1eOGqyBnG5e0Enz24jnnI4fvNyGVJOPaFp2i8uFuzi6K6VkaA8/BcVxa00YKt5T7kHo04uB0wsvfPGW13JGESw6fTvgf/+2Mf/op4G5TML/fYdgqzkEfd3hEqXo0qkEjmzQ0zHc7HpYbhNDQW2ga2Kw36OMeSVaQxhFNVZJkBZ7vEK/XSJqJZhrkSU5PMWhrkGWZqqzRXR+RyyR5iWdrXH33LReHM0RaIeoOVV+huj6mLFhff4CjI1zXRVZVNF1FSBJS16FJArWDRhZIeY7YB8hFgaloEGVIbcnu9SvSqxsmw+fI8oar8J4oayirluvNnGCzw++5TD3IFtfYloVrO+zTCrqSKMk/njf9Hp5lEiUF52df4ugGPdtCqtuPIfSGSltXVFnGwWRM9fI52bslUbwnC1NOXhz9i+mHX/iFfy6/DE1+4V8lmgDPtUHI1J2KYXnkSQRVQtEsWO7fIl2rRFXIw+Mdd0HMr0YXjHoyShPgDIYMxyPKvERuKyZ9F6VI6OI9qq5TGTaSrHHw4guSumE0mZEnKXEYEIQ5P3z7PUmQMhoOOelPkeoa39BoXQOlk3iIKpJthOQVmP0W8Sf7pCrXNHGDarTopk4Rr5BUgzTPeFyueDOPefV2wdubBzxLQxIWSSXRyTr2YAJtQx3tiLOM6/sbHlZLdAno4GA8xLFtVF3FlGUMoMsLvP6Agga118O2bKhLhGqgeQNc06JuG1JtTCM7DMc9XDtiLkGnmuimy2a7RlI1sqIm2NziWzq93oC264gXNwSqidpWOJaG3h9jWT5FDl2ZMTu8wNBien6DS0jdVfii4s9PZ/yfP95wXe+xVIF0JXPmGRiKjOwa3O8SotUCvzehWN1SuSaD/pQsXKL3R9SuRdumPO5vcZ8cMjSndFWA7E5IkoC6SMiaklaBMq1I1g1BUvHD2yVxWNB20HUSSAqSrqEbGrJQcHwDWW5xVYmLaZ9FUqCLDktuUcuAzcMjenuO1fNwfQ+ExqefHSE2AeOVyeTlKYs8Iio3WJZFJ2SatsZWDfyjQ0zHYXh4yBcnI+qzCXdX12BYaIpCQQcCTEPF8VzatkHXTVTVwhtOOTh7hn+gkNUyyXbL9c0DZV7zq19/zXR8hJmGVG1DnhZsl2v6oxG6DELTIEvQHA/V9emyAEGFcniO+cmU7XKDFkXUScf67ffEP7/n7etXbNfrj0+aDg7wRmMa1WG3WnEgNcho5HmMriYMpgeoqkrTQdHCH99+4HYd4Pp9BgenHB0fU6QxuumgaRZN09JJMsOjM+bxloGSMlBTyvCeoJAYejZ5nrG8jjmZ5kTrBbvHW+JdRJKUOO4I79kFpqFg9FVsDw4HULstvtMwHrQU6ZoiCni8SymWEi8mEwwh2DwmCApkJcPu35OUCarvU7Qy9vER/PCO8O5HpDKlSGOKtkaxfDpFIBsWjtfDlhraTKNZLwiXC+K0ROo6pK4kjCpyJExdwewNOD45Is0LVNHyYR3jySp5U6BKKrnQaNSC+WLPKtjxuI8py4LlckfddghV52EdMH+ck+Y1mjdl9uJ3eI3K8PgcZ2AjpI4WDcc0aZsKFIXGtWgNhaDI+Zu7OW3bkYd7dj/tOH7xa/zRAV0UYyUReZJiWh/DBkvNRDVs6k5gqhoNAqkpEaKhrgRSCVVR0woIdyGqptA2FUmVIVSJINnRiBrLscjjAGcyRWpKLENmv75jOD5mNBnjmjbpsEdRVNBBJ6noWklTV5R5ia4LmlSQ7AMYN6i2hqJKZEnO+vY9QVHxx1c/8e5uR5Tn7KMES1ZQLYPeYIhv6hRJjOf1GHzyJWWVU7Ylg4MT7HaPoVVYvk9RFJSdzM18SdVqaIbFbrPGN3QOBh7rYMd67zMYzJgcH6JILct3P7HXhyxvlthlxWAyYaO0fPLJE2zHJitqNElCahuW8zl5URFuV0iTHlJTMJ4ekScxWV1wOHTIOkHrDIjefstmseaFO8Z7cc5/jAOq1iLrBKmkY/kDLs+fcDz6lucXzzBtG7sT5JrD+ptXbF9/y+DPv+Z//ebv+HFzQ6wI1vMVJ6MJyd0W927DzHrgV0fnOJ1KochIPZduvyNezkk1iboM2S2uuL+/5WG95NnzC5prwe7nGKlt0DXBZ5+cczQbYlJTKA6q43AfbrlfbFEUla6piYKANMs5PLng4M/+S1xVJvjpFX2vj+H1uX585MPjA7NO8NzWcMocRxHUQQhJhipU8ga6rqNpwPM8RJMyGHTsdzdYPRtd0TA0A9HpiKbj6OgMRRKsrjaos6eohwatFKNrMwpZJSor/vrvf+DiYMLA1LFVwdXNA5ZlUpQFk+mUvKmRZUGUJnRZgVqXGK6PXJcIWaGVBcbhKaJtifZrFKmCqoeU66x+/gaZhmCzZBeFNLqO8DxmfYNdHPPu/UfX58HAxtU7SloiFAoButWhVSHhbsddGHMw8ukGGl5/RJ4maJrGcr1lODlAlhVKVSND0LY1o4mHabf8/c3P+O82nFQOk1mfmd9D1SXmTs79doWsKmyRkbOKk/NzdkHI4Mu/4qho8fwhQ0fj/LOv6U2OkGSVDon+cIhZFOxvEsKqxDVNbNdGyDIH0zFHiolPyeubD+ySBEXRUFSDOC0p844ajfr6DlmWMbuGsqci1RVhLrHebSnLiMjZ8uzJCT/tc/7DX//vyPmOqNHJdyGmqlCVJeWHO3x9xbvrG8IkRREypxfP+P3Lc4r9Ao+KLFrjTMcUdcU6iFjvAgbOAQIowz2dpOH1p3RljmgburamKFOefv4peSlRNhWGLfHixKALbQbWr6g1FXMkoygFeVvSmjZKb4usKEx7fbIWyiJGSJC2HbqQSbKKxWqHbpvE4Y79bk+6C1jtQ/q2hemb6J6PohjYrYxadAhLpikKesMx2X5Do3Qossb3b274+vIYSZJxnI4uzZCbFpFnLN79TDWeoGsGNDWCDk1RoKpQ6vrjglAy0HUH1ethTo8RlkF1c8v9D0uyXEDWYDJACz5wVzyyqisW4ZaRb6DFG+pWwZwO8Xo9NNNEaiuWQU5Ztwx8E69nc3d9T290xsAyUCWBo+qodY3pmFRdi6EKHM2kNHzyoyPefPeW8ewZ6qHFaDT+F1YRv/AL/9/5ZWjyC/8qaTsQksA0DOIkZbPYoImWKglpqwDDamkMFU/XuJiYSFlGzRaRVYz7MDm7RB/6hOstrWtycHREFQbU+y2J3Ud3h7iHHVKcka3m9A2JqueQewPiSmaXtpSv37IbbCmTCkNV0enwLIeqUXi3XrGNMkpFR7ZtlH4fu66p8xxVsamamC7LKFqZOkp4XG549eMVr94tKFSbT188ZzW/ZROW7IuSZL+gSSJ6ozFhHtMJwS4KSbIVE9dh0h9gmDadUHFMG110eKZBVFbogDc7YL3asKsihqMhtA0VElJvBG3NkXtAFezQBx4yDbbj4mMRb3PaTtCU4A8m/Pw45/bugaPZgMFgwGg8QxaCtkzZbVfs4xwpEOipx5PjF4x1B3+QUWwykv0eQ7fouhazzfnLkwHfr/cEacGbN1eURxNORz0UV+d03KPOG+JghXs4IFElJBmi+w84WYhuPaKpDbPTA7yTc/L9NcFiizMa4zojylgir7KPdtNkQxfHLG8f2W5jZEmmU2RM20IIBR0LQzHRFA3HtvEdD6oG09A57Q+Yjn0cXdDt9sTbR76ZP1ArBodPbaomQ5JapmcGtWTi6hq57KHlS+q6plQUCEJGhx667fL4+MhfnPSR4h27FFzPJVhrOJaKacrkyQ5VbmjriihJyLKCsijohMHpF79n+bhivQn56c1bbEVm3JtRJ4L3jyGzsYFtdBRlyW65hlbg9zwU9hiG/jHPoSho0oomb1AHx+RZxdCzsTSJxFKYr9e8ffMjWRhj6zqO10M3XHYPe5R0xfHQZ3p2gjkaIkyZt9/8R6KHaxxbpq4aXr3+kdvHJcuk5OBwwOn5ObLUUZYFsuGCAFVWyNKcwXRMVXX8b//0j2yvfuTx/p6j00PUp08oZYva9fjHb79FLQsUXUfp9tCkfPjhH1BtlbMXT/Bsi8aa0ju3Seot++COfZvy+a+fobYRd9cxX5wN2S4zpKzFdj0ebrfUec5gcofqW2SrW4rapmst3Gmf+Q93dG3J+uZnyqbGc0yWuxjLnyCUDlQTTVGp9js8y8buVNIgpOoUzl2VpIXKdui6lkxqCeIQxfJp5I59WlHEHwNj375/YBdFFHXDJikIwz27JCXPCmShktct231IJ3Tc0Sm9iy+xD17Qs2ysgYdhCcqqxuvZ5FVFz7MRZUCp68RSxzfvvkf3PSamzPand/zm6QWeY1JXBU2co2sOfX+Ibpg0isp2s6LuniIJBUlW0CRBXUqUck5aBbRajiQKdAGaCnFaUDY1Qmqoq5a6rFCEjmxOUNoFi+Wc8bCP5TioXUm0n6PZDY2uI9s9DL1CqTKSKEVzXdLlPVIbUCY11tCmqzPugxvsvo/uWNy8v+Hu/RV3m4xvrxfsdiFF0zKwLXxbxzRMOsNC0hVkS8c4OqdIE0wpYzjQmdk1CiWq7SFEQ0vLyekR97dzdvMtiJagbpGrGkOArQo0AaOejWgL7t9fEd7ekeoh+6ql//wpiSpjSjm274AQJEWGQo3nmtiWwfv376mKhDxY4BsqRZ5yfHpKuVc4GlvUkozZnyCPR+zmK15995pf/1f/Hu0vfk2yWaFqJnEck2UxT09POJodMZ3NsE2VZL5CCULmiw1VkvB3f/s3XG/mXN/P2cUJddNRKi7Pv/4fOM+3OGlKfHPLUoAUL8nCR3RNZbGeUyotyfqRuIxRPJOvjl+SBiv+73/aIMsSx2Of3/3+t5wcDjDbnDRI6I3HbLOW29sHtlGGpuq0Hay2O2aHx8y++ktOTy/J7q4oHZe+7zKWFA7HE642W5K04I9v3/KZ6WNvtkynI1ZSg+nYZGWGLBQs1yHPQl48PaMp1kRxxuP0BEcx8XUD13QJlxG+42ENZ5hNQ1Dd4CgjXGeMq0Ddtei2xfWrbwDB7JMLLs6m0NT88c0VzXLDcr3l6OiQNK9pVR1FVqniFC8vcPIaTXepg4hOaKimSb1v2K/fI7YKqm6RpRFZGhOGe8KqZvr0nOnQoMwDJqMRB1OPJElRRIduqUiaxnEBqhQTRwX77Za75Z6m7XhhaRTk7KMcw9AxHZ+7h0fOL57gOhZKXVJnKY7rQl2hOS0P2TV1nHMhnmC7GjgyrQxJnNEJWMYpuuWwWTzw9OSYuw8r+odHvPiL/wKHFjVP+fTZObbtISSBUDWq/Z4qz1k/zFmGGappoQjQdA1N0VAUmcvpEFHnlP4xm32E0R9RVhXb1ZxlEJO0gqaVOOg5DPoCSdYRSoehKVj2kP5wiGbZjHSb2cSlLmSquibNYh4Wj+iqQl5W7JqKx/2egWHw26++5PefXSJ3OVfznN6gT7QJ4E9PS8oiYx/H+L7PYDQh32/wPZcoTtF7I4TpoNge0W6F6/cYXnwJqkMYF2h6x8mhTY3Jtugo1ZLlbkNS1zRxwalQ6SRBUwt0Q8cxNfZBQJnmyJLEJgmJE53eyCfYRSRhSANEac75qI8qy6RljmOaaK5FUlUgmWAbtFqN07fIhAyazma7492HO86PZkgIHMdBqiqkuiXaLUlWS3TDQkXC1gyqFtq8Qi5rJDWny1PaSqItCvLsA51lcf36jvtcMDw8Q2tr8jjBly3+08091+GSWU9HFymdIeNOjjAtE9NU0W0DKgnH1OnZBrIQFCUopsnx4QHGaIQ/7NPWJZ2Q6TQF1dDQVajDPW1doesaw75NUhR4hk0lpH9ZEfELv/DP4JehyS/8q0Q3DDJZUKYxphAUVcTj7Q11kVA3NZbe0gpBJ2rMsUm2zonDDefPnuKdHmBODnB9j65padoOy7JoJMjinKzc4QmNrqoxu5K+ZRCtlkiaTdEY3N3foV48p84iHt7dcX2zZOD6uF4PQ1NJyhZZaCRlRjpfUiGzDVK28wV9S8Pr6cTFDkUr0Fybu33K9WpPXgg+/frP6fV6zH/6jlRWKEd99NM+f/wP/zOUOZ2mICsqXdNStA2+aXA+GnJ2dEJc1jzuYs4PjxjYJo0TEGx2VEnK8eEBg9GU5WaPGE8ZWDp5tKdVZGTVRm4rNFWwf1xg+j0azWNVRBR5iaGZeL0eQRhxeP6UMo2QdJve7ABDU7i+uqKtCj58eM9mG/Pl1/+WT8cTLscyfSNk0BfsEoX7+QP6SEbVNOq6hrLg2cDgXrRELXz/bsF8GXJwMGEyUfEdj4GiYLt9SsXBGnp43lP88RDVtaHJUPwBreiI9xvc48+wLIuqbRG6g6TAPs2Id1vevb9hl2VYpoGsaNC2yJKCoRofA+5kB6HImLqLKWuYmkLVQdHV+K5Jvl1S5iV5J1hulsh/+Du2Ucr5s5fUUUhZBchyzvynN7SzEbUkgaoRC5WeBHkccjAe8PzLJzhlwHffXxFFGZ8cn+BRsJULdOOj1bZrGrIsJy864qwiy0r00QnZdo+kKPSGI756+RljTUVvFOKHLdF+y/W7kIunMw5OjpAUhSCMadKYbjBE8n20OkXxR1C3QAdZgNubUpcZTZkSZjHBbkueFyDruL0xtuGwe9hwLKscHp/iHx3hzQaotkp/OiSpvmLz/hXePuI+3PDTh1s2acl0POaTZ5e0Rcqurjg4PMbtD4iCiP5ogiYL1KZh6rj8KLu8ut6jyybYIza1QqVoxLKCOL4kfvsaf9BHFRrD/owgzVj//EdUq0Wc9Rn3YZGEFFlGEFdEqz0nvxrwxa8vuRwvuX214DEq8X9zTLxNkToFRZG5fXPL6WdTqqogb11KyaPcrHCPJqRJRVHV7B7es923nF08ZbGPMRSDztKwhYI2OsCVoFuucBUVMT4gD2OSYEvYdGR5xm4fso4KVPljCGS1WrDf7fjpZs56t0foOlFSEKYZHd1H8WdWbLcxWV5h+2OG51/QVDI9b0xPrRkfDmiqlEZyGPQNhNzi2hZSW1M3Eqoqsw838PgdXzw7ZbGW6GsG+yxmefOB82MPzTSoq4rOcBgcHtNXTnn46RsWiwWXTy5QNYU6y2iFoOpa8jKmkXIySZC1gCRRtPXHlhlJou6gsScohoeqqcjygO3uB9arlMnQRzUNLFMmiXas5xX+8BCDlmi/QHKPSRdzGsUkerwnTZbo93PKrqVI1jjDMUkr+ObNO+5XGxZBAkKm3/O5HHgookXIErJh0Bga6viQLo8AqPMd/sjA6xmUVYnmuMhqC7S0bUfXNviey4fbNY7cMrMU7vcp4+GIC1/G8332qwcuLi6pO4X7XUpv7OLPDshk9eNg2tAxDJUozvF0heXdPV2R4uoKY8/i7uqG5W6DdnxEXZbIbcvXnz7BVGpmoz6mrqLOzqlf3zJ2EopXf8PRwRnx0SFFUyM1FVEcUUuCP/vkGZaiYjsjaiVBljass4jHNuf/+bs/kDUVUVmBUJAVjSDckNx9x+zikpMvv6ZBZvvuDe31FfH8NQ1QKRINNbqrc3R+yOjkmPDmZ+abJWVRcDH1+Mvffs7zy2PaKiULI0zTQLd95vfXCONjNkFe1URZge16HDz7nOnZUwxdRXFdmtRkejBDbcEQGmeHZ/z0sGAZx/zw5ntSw+BLzydvJEQHUtsALZom89u//Ay6hJvr9zSyzsPdPW2W8vLkGN3sqLuCLtRwbI3jQ5ejRhDH93idhdy1FFWD61i0bcu79/f8u8+/wrccnj+7wNIV/uGHK35+f8NqvaXne6zCkPF4gq2bBGmBly9RyjuMBpIox+6NqPOQNM/J0oi67kiikLLKsHs9Pvnzzzg4HlEkEa4vo7kuw6Ii2Kyp24ZKEoT7hK4u2S8f2QV7wqxkH+f0XBPLNhj3TP7w5oG8dsh1E8/z0GQZWQiC3ZauyfE8m2C1RBMtX39xSd0oNEVNWZRYnk2YZ5RVidJWzCwFoSokXYXU1limRlumnH7yAl+ReDrtY3ctyT5E6iSSzQ6nPyC6veFxtWXfCFzPpW1bFMMEWUIXDVFXo2gmX3z2KRguO9WmVDWqeMdPr9+weXggSTZIUkte1QxsF93yaYsMyx8g2z1y1aM/cvnN80vu5/esllt0y2XZPFAmW9K6RqJj5Lr811+95LNnp2w2EWMXbMfBtcbISUNWfgwd3YYJs0Gfo6MZmgb7KCTKak4/fYbUVfSPDynSiJqPiyPFNNAMk4cwZTe/I95GZK2L7Hs4tkJZGMxsi4fFIyoyCJUGFdu06MoMRZLQ24bDk3NWd3dUecHNhxuKNCKKIhaLBTodSlNgNBqe6aDQkFQZleWRBXumh8eoiobZtpRtS1FXuL7H3bsrBoaCaGpkWUL3PBwh0bR9rt/+RJlkuK6Pr5sYgGgVuk5mG8/RGgWrbkkf51SaxofdFtlSGT85xOq7lFFEV2cUQuKL8yMevl/iUNJWMp2poisyMiAJFWSNqsmw5YZOkhGqToHMb3/3O6QoZWRb1NsdoW2R9gW7LGbq9WlFR622JF1BWsRkeU7vaIBheHRV+y+iHX7hF/7/8MvQ5Bf+VdIUOWUSIqsaaRRBkWGIhrf3N6AqVLLAUCskU0WTW148mXB380CQFcwOztDdHrJl4bZQpAWKBJKs4Do2y23M7bu3jH0f1TBYP9xTNS3C6hPdLQnjGAybsq7JUEmilGVcYD8sUWQVye5RWjaG72O5LsK22Ocp3IfMRYNQwfFk3IHLLpVI2xa1LtBMg56pkq4fkLoWzfEYDQ758MMP6NS0svSn4L2Gom4Z2DYjy8RRFfqmgW8pbOKYq9Uex+/jej52HKMqKl1ZMZt5mLrJPs2RixbPMCiBJtwStzlJ2ZEnMSPd4UMqELpBsFpTqCaGZWJ4Hm24J6kMgjjn/uaWg9kYy1DZxVuenB3y+acuzy5PONRSgvk7zoa/wbZkUk2jbXOScItEi+vI5ElFtkmxkJENGQudXZAR1WsYThEYSCJDKjM0b4pkmXS1QWX1kFQQaoswNPbBnm7wjEzp0+upKFVIoTaEmz23V2/58P4tuinhVTJm49C0S1Q0jE5DlhQyuaISIQibWpJRDQOl7TB1HXc6I0tCZHeIUAy0vMIpKv72mz9gvb/nYB5w3OvhdS27xSNhklOKmnLkovoqpuhowoKqrhHUnEx6BPMQ2TC4enOFbjnMzi9IFItov0TdbonCHb3pMYZpkO0bhGbSYpFlc+okRJYNZudPiB/uWdx8wJAM6irhfnnLItzwl6ZNv99jOD6mzDIWiz3J44qeP8DQNrRlQdU0NI5EF+aUZc72/pZllPDu3QecQR9ZlmjSlN39nJliMro8xT+a4R70MXou2W5B5SjMZjO2D+/YhRnfvL5CaiqenJ0wm85oy4IgKbH9MZKsEkUJB5eHVHmBYurIXYet6xw/fcnpakedxtSmS1rXtPGOzfyOyxefEn/QGY2nFHbGwcEZx03LcnVHX41RaNjHJWEUoho6eZziDifcPOZ8NjtmetggiorgMUd0Ase1ScOQ5TzEMmo85wqlNyOvajpDsF7e0mo91OE5ZZoSFCXJdk0um4wdG0s7Jg4eODo4olMHqG1NkS1Qh6dgunRhhmQ45Js1m1KlqRZkik7y7gaJmmC3YRUmmLaNZRv0eiOOD1WysqFoChpk7u4fQakYHhyi+zNUd4w9mOAPx3iuQ5fFGIYGnYJQLWRFo6o7TFUhzgrqaI/08IhXd8Qfrnj305oP8wTdPcDrDUFR0BSdPAiwcE7uGAAAIABJREFU+iMUS2XQ72NLX7PZPDDfbDiZ9OjalraFMsqgasnTgiJOaMuKuv3o9KvrHEURaLrNi8+/xDBskDR0W2d2dsnt229psxWeZaErOnVeUlVbdkWM749JG5nd7S1SsqOoOprBBa205MPDDYv1higKSFqF+zAjywtcU+N0OGDku2iGhW5a1FJH3tRowylhuMWOtqh1SnBTcHx2QM+GKg8w3B6aIiNkibLI6GiwB0PC4AOOJnh7v6Oqas5GLlKvhyHrHD55RrFekGzn9EdnTI6PELKBowmKaEfXWahuj6JqsAyd3eOWriyIwz3hfo9m6EyOTtFESxwG+IM+lqniHxzQ10pUaoRmYR1+wvPnCx7iLbdXt0iViuFVDM+e0dU5cZaz3mwYzQ4JooyZBKUmYxkK6n7Ld+9eE2QZedfSdNDrjTBMi7aqeHXzni8nU76ajHAmB5y/fEa437IOV7y7eoUtrzg6PWZ8fIY9OqAuElZ/XJDEGb95ecL50yOOTw/RVYU4TBBSR38yJqw7qqpEU1XqDvZhSitrzJ5+ij57hmJ7mI5Fs98jnD6urqFUoMo6opM4nhyyzSrexQn7fcrruOTC9ZDkJYqQ6ZqWp5+cMHFLrt4/0tU1g8GY7X7Hmx/ekN1dcXl5juZCEEeYnoemqojOoMtlRNuy2qYUtc7/y9577EqyZWl63zatzVwdPzLUjatSVCaqOtHNJgiy0QBBgiMSIMd8URIckNXsbpbIzKsy770RceJI9+PCtN62OTj1AtWTQgLxPYEP3OC+lv3r/5wwIl4mfHyfIkaJ4/kYFlysZ0z9BZ6m+LhN+Xm34/37a8IoYT5f4nk+ru3g6xq+0NC6DnYH5DAyDC1tUyLHgdC3+eq3nxMu5qxeXFIft8wuThEKdFOjKnLMKkdTcHu75cebJ+4PKcfDgXp81ucW/cRnsxDfc4k8i/VyzrHqYOpRVoQbzSjKmlEz0F0PV1cUusAwNd6sTnh4SIkNm0lOFE3LU3rkWOT0Y42lSV6fn2IuFhyqhtPTU/7m9Smvzub0ZcbUHjBPXqLXPcXdR9qmId/s+fPvf8/NoeLi5QtcP2B/POAqDT8KcWSDJkA3TCzTxHEd1vM5maZR2BLzd39N3v2G93/4PYebDzwcc7Ki4iSs+ElI9k+PrC8rltGcky++4O3Llwz9SNcOTJNkEQZsu5rYdVmFEb84CTj1DBglSejhOiOWZWKi8B2L4/5AGAboQuPq7IRFHKKmibwVXH11RZBEjG1Bnh1Yfv036KbN6ZvP0cWElC3l2PLt9/+IXo8s3/wVtqPQgWS+YtQFkethhgbTNJE+dfizJX3xRLdtmK/mbG5vcITF43aLbgiqbE9e1WwOKb+4OMG0TTTTRIwdmmnjagJdjfiWi8ozpmSOEYa4E5hyQhMKpSnuNg9Y2sTYNYTrNa4XETo2L16+5qdv/shPf/qe2PGIbY96EBy6iWHQWCid6mlLMU3MTk8IfZ94meDHMc0wMAlFd9xTNgVXL874nxd/w7d/+hN1XbGy7Ofy+LZHA4SuEzoGV+sZP9wcSYuGN796S+K6tGVHt99zNw4k8xkzV3Fm23jWhGPbTPYC03OQmiB+84TjRBiWg/FJOfyJv0A+LU0+8RfJJAfk0NF1HfQ1xX7LUOX0Q0fVtXTTyOk8wvRjxmkiXjp8aQnypqNpW7zkBM0ysA2XICtBjrRFjmU4zIKQqdrydHONEBrpIcUOFzTSIwhbdPkOTAtt7Ej3G0zTwjRdjm2LNYHdt1hDhO75pNWB+77GsyY+//I1nSGwUTRDwDD5zGIbp8jZFhmu7XJ8eqTIMsIowpU684tz0vuPBLaJ0lzkMGJp4JsmllBMcqSTkpvNlnWS8OL8ggKLfBQYfoQfFM+K17JEk4qT1Yphu2WsC4IwoE6PDN1AGy75cZ+RHRvm04ZMaoSBh2lZHNMDs/AKI4kZ8gzTtnBdn6JsWU8SoQnOTxJO1wtML+DtpcPNH74hbyss18HSGxzXIvAdjptHIi9mUiOruY8pLW62B3o10k4D6BNN0fCP/8/f4scxb1cR52fnhOc+vrPAFSZCk+jzJdR72jonK2vcq796TpfoO6q8YP9wzfsfvmF/s+VXJydsH7aYi4iHrkZHYhs6BoJ+lJjjxICFITyGscXylpjTROz7BLOYLC2Yhz6OGJBCkmcpD9snvFbh3LzjuItZJgvmQYIhUmToEi9mVIcdBoJj0zDWFe50gmqO6KbG4ouv+TI+gypnGDu+fn1G+jChDS1STkxDyzgNaEID02PqBmRT0BR7ylYRRGtML0T6R7I0I0sP5F3N7fWey5fn6KZBsFgxOzlDxQvaY8rdZovW1DRlzWRoSO0GpRlUTc0+K6hRBKZOm+6oy5LqeGRuOegLh7w8YD9NoDd0jUuTbRE02PM5drzkmz99x/X1NRKFpcbnJQQKNzxhtjyh6weSRcQ0ShQCy7IZhxHfhUUc88Uvf80//Of/xM3P3/N6bfP5L79mdn5KqRucvXkF+z1B3eAGDp7vMHojVqyR1wd0y6DrWoa+ZX1+SXHY8tDphIbGpX/J8sohiBuMUdAc9/iRR9gI2rzn/U+3zFcd7skbxsHGNAR39x9YeSGu5TA/OUNIye7nb9lbHv3Q8eXpDN1Mn/Xb/YjExhhGpqcnmjxn1w4cJrjZPOBEAWWRUXcddfu8LImiCMv2sD0P65+eJS8UVE3H+9t77rdHDDdGD5c4izWm4zNbxHRNRafpDFWNv17h+RZh6ODoJhqKvm3Jbjccfvh/GeuU1ZlP6tZ8eH9PfHaBE/mEywTPCxiyBuGZ6KGNE3j4oUMUXuH7Ezff/T1685I4WSIni7xsaaueKs0xZI82jQyjYhwHNCHw/Zg3v/5r1uszXD9magdwfKxwzduvfsnm+k9sNo8wDPh+TJ6WjOVPuEFCfPoGWRR0dYu0Irr0ka5tsGyN9UmCF1hsDwWzTpBYDpHvsAxdgiAkSJZITaNoOpQYKHZbtDHjcCjwZwu++MUv8bUSNI2mh0iOqEmimzZD06KJEdt16CeNqmn4r/7Vr1HjyIkjMJZnGP4SNzkl20QIdNzA4M3Xp/x8fcQQUFclyhI4zppjVqKERq8ETjSjylOmcaQrUroyJfA9PEOABsliyezF5yTjjtU6QmkmcZiQdhWyazlZnXAzatx/9wO/tgOG1ZrQdXhCUWsKTbYcN/dYnsd/+uE7+q7BMzSGafonjalPPJujC5PkJGYRzfjYNJRtSuhdYLkJvgOt1hKcnnFx8YrYKPEXMwzX4eH739PWLa++/oo3rk3bZEyjoEhL6qzkdB2DblIcc0zDZpoa+n6gaHsuLs/wVy8Rjo/t+QhTx/A8AvMFTfmE1TVYhkMYzRF2xMqL+IXv0JgWt0qn32XYhvZsPAoEi1CRHfbEkUPZh6zmczw5UTqn3Pz4kfwp5dWbF5jDQLrrOH21xJokVjwjiefc3m8wg4gxOCU+f8Eb3eOjbPnXvocjNYamYT5vWRc1T2lB00yUdccxK7m5vcNxfFzbwzItLDR0oWFrOvEshCEljhxWjsvMnnACC8MSWLZN2Xf0ZYkdhshRUeYN+0PGiME3f77hp7stbdcBsGsHtmXHfBZyOvdxfRvXsejamiKrsfw5s/NTNKFRFAW97mDaDsNYIdQICmzHJnIdnLqhAWTsUfcjke9hWw5tVzMMPaZtke73/Pf/5rfMtIqn2x+ei0idgMmp8KI53fUHjo978ruUu33L1dsvKbqOQAgix8azLUzUs05aaIz9wIBO9rTnlW5w9fKCNFgjyobi/oEXv/iC0Lfomp4+yxjUxM/3D4SWycPjE2enF6Apwi4ncByWiyVplZLECQ4TL+cxapREjkZd5MRhxvLiHD+asdkd0SwHw0sINZ0qP3BM9/zm8xcYusILQ07P1phIxm5kMALOf/07lOnguBa2G2CaOmVdYFEjZI2cBg75hmXkYroJg2ly1zR0hsnSFaSHA+cvZgTLiPxoklVH9sc9nhPRdxNd1nI/XFN1OcfjkcixeLGM8TSNsRsoJoVp+fQKHMthGXqotkIPrqgmA0PXmDMxljlhGHB7e8tZEuC6NtXmjk48oZsOQuicna5BKPZ3j2weH/k//vwOQ2p85i94sgNmsxNOzk4JZzHrkxXh6QJlahyebtnefeD2z99iGtD1A8v5kv/m3yy5/4c/YA+KPqvwHBPZjVhKI0kCLi5WhN/e4EUhr1+cI8aWrmv58e6at//qt1y+/QyHCcc00YUGCBQKXdMIkjmrqwseNh1JcMKkfxo/P/GXx6dv7Sf+Ihn6lq6pEbpOk2dMY0+eHdFsi/NFQl5kCDXR5gWWYaNsnZM1vLQ1mvQOlZ5hXr6hNTzE4gxZHlFyYnfYEs5PCKMAXUk2D1s0YVDh4SdL2uzAehZx93f/JxaCui6o+4EgXrJanZLES0zHfS6ly/d89+MfqfMNX748I1u5nP3b/xZcm9hzsJuUoco5PD4wNR15UVF1HbP5EqHpOI5NEgXEYcDyZEk7gpITPRNT39P2PY5hMegWq9UJZ7MEJ4nwzIgamxPPIkxaPMdG1hmqqWC+IDy7ZP/xPcfrd4g4AQ029chouTSi5D4tn0tqB4PFLKZPK0TTPScwPI+xyDikGb5jMciJ1TJhzB5xTMF8NcfQFU5kg6OBeB6sdGA+jzg83JPvNmgT6JrBySrE0gN+3jyQ9wNKB9VPNHlOlR453FmcP2WcHGqOX/yKMz+k8wzcPqPrctTU4iQr2i4ncuD2/o7D9Xdk138k2+T85uVr+rQgjnys2CU43GKYgnZoaekwJwtXunTNiAJU19MPkihw8OIAbIfzqwXHNKN/+IgmFBqKVRITzuYc65bQXbAtW+wXr1ktlkyriNYCaTu0ZY7jWASmoksfeKQAw+bF6Qs006K+7/nh93/gLHR59eYtWVbSTYK2yinSDOwETbeQbf5svVGQ7e6pyxKEg8nEZAnwbIQ0meqBf/zpHbP5nKjpSOY6umPjLuaMrsPj7T1//OO3HPd7LB1MTUOZNq1mIDTFOrCoypL/6/YjtlI4oaKjZbIFOCbl2JO9v8YcazRjwtMEdd/z/vaOsu2wXY9wtiBI5kg0opNT+qbEkDVDu2AcEuQ0MaGhGwaGmnA1xfky4TFxkdJkMnRung6cfH7GULfEUUjXdxhxzNB1DKaOEVpMeotAw7ENNC2mzPYMY4ecFGGS8JgdaGXAG8/C8g4MZUvRmPTVyHIVkYqOuhq4u9lwYQX05oBvCzR9Yvd4x+riFVESIasQ1YR0VcG7b/+eZn9Jvt9zerLEFiain+i29yjZk7UtaVOTtjlpnmJmO0Y1IQzxbDrwPaJwRjd2GGaAbdkkiwVZmfH4ccf7j/dgBbgnV5jeDMOxGUdJnpUMdcd8PmexuGQ+i3A9F6E0DN1galqy+z3f/Me/5d03/4GZazMcZ1x9fcJ6MUdYNv5sxuSHoJkoSgYTkjjAsDSEKXBcF0tbY9Fz/ecfsOZrovO3HMqKvsjIiuL5dKwfmJRinDSWpy/47LMvWJ6csYhP0AwTdxFR5EdG1WEpnfnpCwzd5LDZ8LQ7IJXB4ZDS3dwx/OMfSWZrPNejVzskJl070rY1w6QxjDpKmMzimMBzSEKfMJpjuiEtFllRccz3VOmGrj7SDQ3nlxd89le/waSB8UhR2rhBQt+36HrMNIECxiajrmuu3n6FFqwxZYceLZHFlvXpnLas8LWU5ZWL6S1oJotoaDi7nHPcl/irFY3rYls6QeDx4eaB/X5PbDu0wsIJZ3h9i+yflw1FN3B2siC0FEOVEV1dYDsSpgnqA64hOVmeUPY+/YcDu7Lm7/7u/6NuW9789je4AuqqwJvPSH96R3HMuDnu2WTpc7mlmpBK4ZoubrjmizefEVsmL2YRYhj44WFDfHGOw0hbpNx+eIcdGThRjGnaWEFC/nhPudsze/ML8rKmq1McP8Y5e402DthjxVCW2LM1uhCMQ89+s6UfJfM4IFquwXTRbBtsD2EIetMjsCdME+Rhi2W7DEqSxBFTvESzTBbzkJe2yXsmfrq9RRiSeWQh+ozsuEd3Dc5fnCNETOi1fPXFL3GchDuZ83AouYwd6rKk3WoEC5COTqcked9xFbg8fr8hjGdEGigbSt3i1DPom5qwbVnMfE7nPnlRIqVE6BqTMCjHiUp2WBb4tkPs2AjbRQsTnu5uOFlZCN/juN8SHp+wbZNs+0DX1JTpAcv1qNuRx4d7jseU908ZH7YZulLoAu7yll3Vgq4z9wxC18J1PVzXZb46oZg6JuGROD6q7TmUPbY3EgcrkAIBLBczbMeiM+ChTAljl7os6SawbB3b1GjqAaQgcjTmS5PEaMjTAz98+w/M4gWz08/I72558+oN689fMMmeH9Wf+NXr/4m7zS3q/hpNTPi2ReRa6JoJhoZSGmocSKuOxXxGZRjYro8vJqyuJ5gnqKaid0zWyzn2OmIcRqQE19ARTUdAS/fxRwopOKRPz2fVUqGUJPE9Jt2kb1t0zWa5PsGNA7wkwY5nmMkBp5EYSlJ2PQ+Pj7ia5PT0BNvzscKIYJEj5Yi/WtHPX6BFJwxtThAntF3PiEMnJ2auyatX5zw9PmFGDlKODNPIvqpRcsA3oUNSywHbdnBdiyh6hW3q7O5uyI4Fm4ctytbZ7Y9cP1xTVRWfr+fIccDQLVzXwfNdhgm6foShpWoUiyhBR2EFPnXVEM2WyH6gKwqeHjakaUYU+PjxDF1BlVVUdUvZV4x9g+tbCOXy1cmMv3t/T+8l2J6LY+ioqmZ++RIvjOibln5S3D/d84fvv2Gze+Drl2sSy2CaRtan56x/+Tdoj1uejlvwB8SVxaSDiYbvWIS+g25q6CjeX99gegmvvvyS5Zs3lF1HVRVolok0TVzfRww909Ch5IAbuIh9gwhMlGP+i84Qn/jEfwmfliaf+IvE1J7TJnWeMTQ1bV1zrFqi8wuUmAhnC5KTOb2U+KGPrDI62bNcXbKezRi0Cq3cgLdCRCHd0OBFIZubW5q6IwxjpFR0ErTZOToejucwyYEoCujqmrubO5gmhnGgyo9EloPmBFyeX1IZFvcohGXjuSZN25A/bYjuPpJ89UsmN8SYzdj98R84PjzSljVDP7I6O8UNIhoUsqopDjvCKGE2m3HYH3HnK7Kmouk7bNsmWKzwzl8RnF5i6xNCSoJFzK4XKMtGi8E1JU1f0ZcV9CODbSM9n9EwcBkZ8wPh1VtaG6quJn/a4wYek5LM5wmimcjyFMcI8HyPoizo+x7/dMmIQdt21OmB16+vMHUN3bYJ/ee3bmrskX2HoT2fVHm2zf6wY2wnAjfE9TXCM5tXwRVyc8/1Zo/QBX7gIEdJVff89P6W3eaJ/cf37E9PWCwSrNmccH2O+9lvEfUjTvcnqo1EG3LKzQeyu3uuzl7gmRbtKFm9ekFqgBvs0DWNEYkQkr6qUJON8FyqvEB3dIa+ROHRjZLIdpgUNHXN6MZYcmS9WqH5c0p3TSMilG1ji4mibTDnK0Jdw1ANk5TPBay9gSc6dg8fyR4lV2+/5u7uBs9xGExBuD6nNx0eng6cLues5jF1uqPKK7TIAyGo6hLD0NF0GOWArAvKeochBG3d4nk+wvewhKLpWj4eM8LsyGq5wDd0BgVt11GVOVYUs9tsKI4ZCJ1ktSaZufz1Lz6j7xv+/h+eaKVkHbqEgc1oCIqupHtsaKsU0xCcrOe004ToW3abB24P5fPJ2OmccHVB3TTPhXF9SVPkeIsFfZ2jOMf1AvpxQmgak1QAOLbF28/fkgZghjb3RYmoO2am+bx7cyxMzQBN0YwlwoK27TFdQVE05HnO+dmKrsmRSqHUxFM9oRkjH6TDqbnEt3OCuOOnu4JjqaGGCU03qbue779/j+XvCFfnhI5BMTZs729Ynl3g+QFaErGtSxbJ4lkj3TT8/ONPCEZkN9ApDdkUMEmKvsezBa8vI9AMyl6yOaRYjovtOgjTwLIdnDBEoHNMU+43jzylBcoOiBdnYPvPhYNKJ0oiHC/COw/RDZP5IsEyNHzHxdAV46CotyV3v/+W/O6Bt6dfMLMkQuaYcmIVRmSaicFE0w2MVv9sA7JMLNPAsU3yssQKLHTPIZgnjH3Ljw8PjJs9QVuRPd2jppFeTqBZKMvk4vyc1fqCKA4wTAvPnSFMi1EHP/Zpy4GqsemPjxiageWHyH6iz3IM26auOsoi5Wn/jraXhGGMH86x/RjbDZlFaxQmF5MENaAZFn1XM7Qdx8NH8qqkKPfkVUFWlzTDyPky4MXliqHY0jVbvPMVxzQnCEJMy0IJQVOXZPsHDpVisufssh7/5ddMx0eUHWL7Pjc3v8dNTkk8m+z2O9bnPcn8NfakM+kdUrr0k0ZXZkixoGka+mFgNZ+ze7zn/uN7xNjC2GN7PrYOSk1Ums2F52GrHsOy8Vdz+mFgcl2EpjEMivN//V+ziX4m1SaeHjb84cefKMeB9ZuvUBNsbq4Rus7UlKRjRysm9n1HYBi0fY8QGsIwcYKIs7NTXi5jPAVaU/LN3/9nlJx42m04qpp//z/+O4axw14saZuWcrdj+epLikOKrXU4YYLumNi6znB8QNYZ/nr1rGg3FHfv3jE2NV9dLrgdfKQdo5TEkANyHCGIcQIfTygGQ6MpUqqq5PLVW2o3xLRNjCgCx6EXkHcNtq2wbEloS6r0SJ0fcEWEJiHvK8aqwAxiopdzDOWxffcD3WBg6lA2FUZhEq0iqr6nSvccRYh+nFhdnLCfBpJZTLp/4vTNS7xkID/usQyD0HeJfIe86aibAdPUmMcB8fKC6Ow1p5evSLINm4db7MDmT1XH9TblpWFjGR73949044jx8EBdNRzyimkcqbqOcVJMhoUfhrwYR+62e7ZFw6ZokcBJ4pK4BratE4Y+huvz4uVLbtI7lpcvmeiZhGIcFToCTdOxdB2EhmUaeJ7HqGDTjpw3NcM/nT6qsaXqByyhCCyJpypOTjyq7AE59Jia4u7jT0TLCzRdp9r/yCIMUEbF4tJk7rsUo0dXelhyQMkBDJNhEghhYjoepq5zf3vDydUr9DCk1BzmgY6127FYLmm2HbljkaiSoT3Q5Rlt3fKw37F2TWwn5P5aI47m7HZ7dEOwr1Oy4kg6Ddw+bfnV3MEwLPzFDDmA0G2wXPLRoGprQtfm9jYl1AfeXp2TJDMcP3z+7+E5OH5I7a/wZqd0UmIbAoHi/pBjxxqh4+LpgquXF2i6ovN8snpANiWeZ9M3HXQtHSPxaUQQuWRFQRRHzM/OyA8HonFiOOn46c8/kmZHyqLk/GTB6SIkCHyqrsedWWCYmNOAaQoaOaI7MzTTQJMdU5VjB3OUUpimyenFKfluy9Nux0k34MLzGZofY2Qpw3Fikx64u/1IN0gsUyfxba6LPTMvxIrmBH6ILAp6z2awFDfXH/n9D99xt73jNy9WLM6XaPpzIkQYOuHLc4Rp4zRzPjz8ieGtxLcMNDUSBQ6h7+LEMTfXD8Snr/EuLumFxu37D5wnMfX+yKDrnLk2nueilKRIU5Qc0TUBDOR1xWwZ/EuOEJ/4xH8Rn5Ymn/iLZBQ63TjQyAnDttk+7VGLNQQhjinQpobIFRzSHMv0sWILU0ToccLkugTxHBHMqboRJWvQwfADZvMlP//5zwihY9gBTjBDujGREzB0FQwlhqkTrJZUecnTdoNrakxCoISGbzmMeYm6eoXZdbiejWktUFNPnmccP7zDnC2RCBz/HPvqLermgeJwy/nVC0zLwnUMin5iHscc9zvGqsTxApyywXafb+gNKYkti4U2cTqWmOWeXPbMTi7wPY9jVzHoNoOtmBwNo6vp+pb24SNDvGQ2S9jsI9ppQA8jRtNCNzS8yGUsBIYpGQ2BZgiC2GHXWjRdje65mJ4PUlJmKZqp4URweX6GZerYpk6WpljJGq3c0/U1DQVVkWLoGpZjYDk2ZZqBqnH9GX6cYIYwejbCsrm9e6Q8lgip8C0T3dTRPZfGNqlsndksxD0/p42vyKaARE64osMxFcVuy/H2Z3zXxAt9MDS81RLv9ISqKjF9H8ez6LuWtq1xrIhxHGiqnKNtYuY5x6cdjqbRTT3m6YhwPSpvxjJK0A8mMztCSYuqtyi+/55GSr548/o56WA6PNYDw8LAsm3Gpif2bdrNPWI4sr+7Jg48Fldf0qY7unTLm6sTcGLGvsMyYOhqiv0ezQlpmoqmHlBCY1AKy9AIXJNt1mJ6PunThqIs8PsG3TRRusahbjgc9zw+7Xj92ecMSqNOd7TpkWHoUSjCOKLXn0uFe6Hx2ZuXBGHAT99f82G7J3QsBiHI2p4+S3lMcww1sIo97FnIKCyEpjO0LTf39wRRwtlshe2HDG2FZ2qMY4+jJmzXxXVt4tBHSknXtswWc+SoQIyYk8bQ9wRJgqFd4NgCa7Zg302owCM7PGFLSdFUYAny7InkdEE/CEI/YiiO6NoEY09XN6xWC5RuUDUdIolI65EXaw9DtXS2z8nZgv2uQpgBt7d7hkGga4LH+z3LUSCcCDFJFJLyoGHZHkrTsHyf9ekJXrQicnSCwKSpnjje39Lv94xti2UILhc+Zy/OUbrO/lCQHwsm3aTtOsqqo59KomRGXbdYrs2hruk1k0PR4oQL5ASe56GZHpqpY1g2QiiUgjgOmSbBYpaguh7fsTneHXn65k8YVcO//91/x/l5gqZV/PzD/41m6izDiKZXGJrOahExVALN1rAMF6UpDNehbxv2hw2xpaHpEi32OA0jHn/4M32+p6gzinEinWyEFzKLE8IoRhMChQDbYTQEUsCoRkxNYJsuY9fQm3M29z8jhn8qKPVjHGHT9Yql7XJ3fY/GxHZ/ZNxXuM4ez/GYz1pcf0YyW6CZDlEUUVclx+aOocwp0y2P6ZF9UdKOA/PQ5nzhI9XAw8efWM9d7m6fpYA2AAAgAElEQVTuWF9cYNouummTpzkaI7f3GVZ4ihOHBNMRQ6YYkc672w3xq3Pc1RnH1sSrG4Z0Q9t3LN0Vo+Nhz1w82ZAdJ1zfpxtHyrrCFArZlJTbewwxIdVE1zW0fUPo27h+hOs6MI2Eno2uRmzXp9p/ZN/oCCfEv7xC+iHr8xVV+5bV2Zr9oeL65hFZTXjzJeFiyf37D+QC3CgmGwZcW9KicCfF0FU8PXzk+6lFn35LZBusA5dJCqp64OHd9/x8uOV/+1//ByzXpc1rxn6kzBvsq79i2GzRphLXChho0IROs72n334kmoVYyRKlRm6vP2JpE29fnvHxz0fC5IxeKOTYMYmRaZJIBcLwMGwDOUjKQ8pqniB0h7KVrGYmadUwmAbSMBg0wUSPY0p01VM2FWpsyfc9oenihB6d75A+PTFZFmZb4dsabVOzPD1HDi260rBMk8eba6TmPv9+KJ2+7AhmK1zH4un+I5999hma5aCbDkpomJpO6FgEtkUvoexGdlnBaDf45xazKMFqc2wvZHJc7CDkWNbYh5w+zzHkiHmzQ/GcItAFnC8jlssZfjxnmBQPmy1PbUvW9BzbASEEjqHhG4LQswn9AMP2UJbHIhLMPFBDg+dEKBQNGq7toDPiWDqGrvF48+G540dTFFXJzZNAGCah17KOLWJdMpYF1iCJAhvfcSh3D5R1zyx2mbqUdP9AcvIZfV9z8+4d09Rw9+4PDJrD+Zvf0tQVdpZSdB1MAk0927JQGrrhsbm7phX/jiBOqOqa0Y7AdRB9xTgpEl/w83/8W8o0RY4SLwz48P49ch6jrS/pRovtx3c0w0DXNxzLPUVboKP43dkcS404loWpG6AJ1DQghUXRDOiuS/X0QGy0JJdLoiQkSEKG/tmCVQsT++wt0pvTtQ112UD9wD5LIVqzcFwsJQgtget6RElMYXlgGBQj+IaBqSt0XdGOHZoSzM0ATbjU+RGEQrMsbq9v0UYTbXrWVseLGVeXK6yxxxIKM0n4eZex8DtCMXGqGyxXK7aHjMTz6KoKLzbpJkkQRWh9hGpKLl+94m4cybqRWEqUbmFGEWEYMVk21Tjy9LTl+z//RDtIDMMg63puugxSg1719DR0nqQ04ffvvqPNN1wmDsI1MCyDPE9ZnJ8yKckkJLrvEr+4ZKYrprrBsnQmYRKGEeergN6x6ISNNptTdT1TlhHbOmockZbNNi85GSVZWUFdkh72WJqgrSvUNCKEouu7f+kx4hOf+GfzaWnyib9IJsumlBOTZZMWGa0b4MURTuLhTRVdNdD1Nb6tcJOAptFYnl6iTB1NGzFVyTB4RMGcThNUo6SvSyzHYnmyYlt2uMrFWpwgTY9q0uiVhu8ENFWNZbskkUee6vTDwCxISOYLhqGjaGo8z0XbSxzXYWoaAi/E1CUPH9/hnp5jLRYMTYPne6zefoaFZGwqmCY000LrKjzXxYtjrr//4Tm+m4SURcrMc6lqG/qeXB/Qjhm60rhcPutDhS4wLYtaaahpYtAM+nhFLxtUlWEaAjvxMVyPvu8oBkibFi10MR0DN3Yx7QlpmOi2hu/oxIlLn5d0XYdl6ui+i6YbyGHCjM9Znpq4rkCTA83xyLbuiJYrmqpFNSXbm49kux1MCs+zUbOYqp4oqhrD6/GjOZdOiGU6uIbLvXnHZpeRNR19B+44MmOiDkzqds4SSV08snJaTiIwRkV2+zP7uw8MTU14foZ3dk5Z9oRzD92LGfKOvjXw/ZD9voK+xzB6qrHAGhVG01G3gmOWo/qKN29ekx8eMaMBz/HYHlNeLs+xjZTDJmO2XvK1+QuyrMTQBVWa0fkzTNfANm3GrsY0dfq0wjYN+lqSLFbcXH/EiE5xdI3AM2mUIMsLXi1C5p6DGkZwK7LdI6aXUFUSzfSZhIGwfBw/xGsnqrFHdz0cOdKNI5OUjJNE6DqPac5pkXEoK3TfZVRQtj1NP5B1HdgOthLkdYdnaji09NMEGijdQLNsajXRdD0ME0pNrByDTgk0J0CzrWe18WGH7gRcXJ3SDf2zzWo2xxQS1zNBA9fz6aqcVrsliFYoKWGS1N1EoATmKKmLmlQpMEIMY2JhQ9nnRLaFciyqQ4XSR8qmRZgaUo54bohj2WgTRK6HYRrsjgWTEqwXASeJy2oWE00t+pDSVjWtsiFMSDSDJms5WSdUncahHDAZ2GYVVi0ZdRulVZR1R+yFVO2El6yZlMAPXTQEru9ychJxvpqT7R5o65xhlPhxgjQtLNOmHsBqJFVWo+sWUhm03UD9+EA4X7A7HqgHxc/vPiJMF8O0sKI5muUwTQLb85ET6FjM5jMcQ2M9cwldHd1yKDZ77v7wHV5VsD45YbEMCE8jLM/jdHpBJ2tUPIPNET+OUJPEsASDZoMasUKHTvRYAZS7HfJQocuRYtLpB40kcHjcdxxGQelEWIGFUs9JGcTzrboYTVop6IaephoYXZO62WMOirboGEeBN19T7B7omx5Vlc/2idmKOjsyn8W0g0IvWrZpS9s1lFXDPq3w3IDQtdEtD8/S6fqWY3ZgX2Tsi5yibZDTiGPrLH0D2zbpuoGhbUjTnvnqBN/3EIZLWkrqKscSA+78krTV0EadyZ3x8OE7Ys8icA2OTx+ZWT1xGGAHAdGbL9Fsn7JpeNpdE69f4kQGJ67J7aFhSI/0fcvQldSHPWWW0rY1tBVD3+Fqgq5tOTldIzSBa034gUeShBw/fkf+dM9NnvFqHmFfvcXwQ/JjiWPa+FcLlHdEX/RU+wL6GgNJKUeeuo5KjuRypFUTg3hObLXjQHW8YTcW/Ie84Ob6PaswwhOKuthTphu++vUbbNdhmjqapmOzLZi/+Zoxy+nLhq6qmOjBNjCEQd8NCN2CaMXgLdh9/JH761uWiznX6YgerQn8iKdjwdA1jMqkaTsMQwPbARMOVYU7W+EGLk9ljTcP6cuSh7JDVB2GazE0NUIfmfkKIUb66sDYluwreEqvOX8Bur9ktowRumD7WOJaDtMoGGuN0LdYrBbkZcU0CZaLkNvNlpKBz95cEXsDRpNStR1lWeKoiUFKurajaHr6SWDYNrbU6JCMukOnW0y2Q8+E4zlYwbMW1rB9NF3QTjqdsNnsc/RxILYMZq7BMg6IPZc4nqGFEfv7B+qmoZUwCYFt6khgEbms5j6LRUyQhBjJknJ00LSKmSdI245hGKmLEk0YSDlijC2aJlguZgzljo/f/z22cmjLHZptEroOpq6gP9D2KXNPR7UFvn2O7DLyp2u6psf0Y5IoYpbY7A9PWOtzsmKivXtPWuYkr9bPfR3zkG4csQcNOUy0VYnpxVhuSDgbMGTKzWZL9NkrxNjx8LghtnRU33I8pszUgI5kmCSaoVOOI42U7OsWdk+Ers+hrZ+La/uGduzpxpGr0MM1DTop0W2Laepojz3hXKerBMIKkKqiqo+8uFoxdR2L9QLTdWmbgbwamMJT6slGGxQfHx4Yjje8v7vh9Itf8bt//Zp0fwBPx45smEY8z6cZFMvYpz5UIEZO3BGlWhrPph0GyqaiyCtUX9BXFXXVccxL8t2OSXacX63p+wHbcTBGDdM2GIXgYhGyfdxQjpL7w4HZ8cjJfM6HLuNkMeds+TsM20ROE7aps1ifYNg2kxT0eUE+GBg94BtMjot0SwZAGAZ+4PHhbsukQE4a5VRz1woK0ZPoDa5Z0DOgVMZybmGYEVEUkmcZuu9huC66aSDlhBZaOOcLzrTXbDY/oFsOXuAQFgVni4in0WFxeo7SIEwClGmj2y5F1xKfn3F9c8e3P3/k69eXz+dZbU/bVaT7I2PXU+63fP75+b/wFPGJT/zzEUqpf+nP8IlP/LO5/v6b//323c//dlSKQUrqpkMzLaLIYmortEmhCXCNDmV5TLbPchGhmJBdQeBbWMGcTjn0I3RVzdg0dHmBlBotFlXd4wc+sh/pR4XSDJrDlux4RDcNmjx97roYemzbIQwTbMPC9BKEFzDIgbbL6MoUnYnEc6j6nnh9Rnz1gtD38UzB1NaUh5SpLmm6gfnZGa2caITAMQza9MAxKyjyAiZFk6W0TYOSE6HnE4YRc89mHvroboweROTd81uTqStJbIXhObRSYdCjqhRnvqKTOm3XoneddSu1/6UTWjhUJaqvsRipDjtsP0bXHYpOse8F9x+uqd5/j+4aRGdnLGYh5pjy2Vdf4Xsuvt5x3HxgfyjQF68IQo/y4Vua/S1VrbPb7pBlgZCSohNIYTGbzbDtAM8PaPoBmpZ9kTHpFm2Rsksz7GhGvJixmHvMQgffdbDjBWOX0ZYVx6c9aZZi2jZTnZNENvb8FSiYzX2K3mCfpWzTjg/v7knvP/B4bAjjE9q6Rp9GYs8iilyiwCNxHT47m3Fxec5oRYxOghmdsgxi9O0d20Yw+6uv4PCBwQ75/9m7j13J1vTM7//lvQkf2+femXlOHlueZBUpNaRpj3QZHOgeeBk9bEBzDQRoJkCCmi2yJbIKrDp1XNptYoePWN4bDXZBc40KUuXvChYCCOBb33qe97Vsn8dNSKcaaKbKMj+QZjF9EyGlS6LjEU3umZ2cIsgSli6jNRkGOTgzolqkP4Skx4Lx/JTRyGD75nuqzkDULArJpKobis17Vo9bwgKW6yNd2yLmMaKsIksiwX6DZtqMXJur2YgXn3+JO5jRpBH7xXvC6Egnu1RJwGq7pehUXKlGaWuM8QnZfsU6CCgFha4qSPOcIKtQJYmx2mMZGt5gjOm4DFydKgsoRAVjdEKRHBm5GrppYro+SA2t4ZNVPSods8trKhSOuYIkNEzGBpY/Zb0/ErUFnQSdNaTodKqHe/Ik4eTFp7RdTZpFNGVOWeaIEowtCaGrcU7PSfMKuU+IV6952B9oehWtDjh3WobuGSItrpZiZRHlMeWYiUTHjCwrKVuJqlE4Rhl13YGkUFdPMXRFUekkHVORkVQd13YQ6hapbRiMRkgKpEWJZ2k0dYasy1RJSK+4PKy2T2smFYVjnBOFEa6hIekGkthR9xKGbZA2Mm2ZExUNqjdEpANZxxifIFU5ui5huh7e5AJRVPA9m+6wxjAdBFEmWbznfh1Qd6DIElJTcPLsHPV0SLF8TSWq9NYpAgKdIoPjU7UqedMjtBVT1yBvBchTxCykbAu28RaprpE7DVMSiY4pUdpS1AJNV2F6QwxBJjsETKZTRMdlUzZoskhbF+j+gGD7iJTsIctp+hJB7NE1gyI6MvVNTNMjzwrq+IhITxrlBFnBYrVDEmR836fMC6osxbU9ZFnBsAzEvkbUZPq6oJdlGkGkl2T6vmaoCoiGwiFNqcoc1VTpJBHbUukVhxqV8XhEdDygqiayO2W/WiEJLaauI1tDvIHD9v57bCnjxZe/JMgabF1hPvBpqpZlkJIoNuZogK5IHJKOri3p2+ZPKZMd0fYOgY44KUGWsRybidNRdz2K6eEaGmNXpu1qZGqK4450d0ATVWzLJ60lNtsEWZLZHBPaqqYqKvJGfLpwFEVERUETYbcLCNIYzdCpe4kqjpA1lTxJn55JEBlPxliSCnWFUScUbcOnn15zNh0iKgqP2z2T6SkYBruHB5S6REqOQI2tS4iKgeh6pHGKOxmQlRX5bknZNyyTls0+xJtPKVoBTA9nNGF+fsPg8gJvOEVIW3QZjmWOryhYaUyOiDwYklQZptJRVAWtbpMnJdV2gdUeQGpIi4Jw/Ui42lH2BrZ/RlaqzIY+/tTncAzJowQxjjjs17z6u7/i5afXFPmOpogpi4SqEYgPa+oiQRYF+iJHtUaY9oCxpSAUAVm05PvvHnn9PmQTdIR5RU+BZauI9pz5ZIpm+cxtA6UukKWW3rSxKNjcvSVOK4owYLU74KgyquEx9F3Oz2b48zEVLbvHe7a7PVmV0fQNrWwjiDmKIDI9v2Fgypx+9gt2qcx2UyKgUhZ3GJMhkn2G6/sIooDWF0x9F8u0kIoju2DHd3ePEO4RFBFh+orx6Ut6ocdWQ3aHHWqTMVBqfM9hG+aYUkebJsRRyezFJyiOz7ff34Go8Ww+5uH3fyA+BIiuS1yVuLLI/ligdgLT2QRHNck6EVk3oc1ZbffsCgnJ9RCalHi/ouk7zMGUOtwi5QH3335DW2bMhi5RWSPQYTs2umEjywaKLLLfrpD7Fm/ggawycFwkZKq6ResqFFmiLStUy6eXZR4PMZop0XYljqWTFyWD+TmuqTxVhe0BrTGm61sOScIxb0mDDVUec3L1gi9+9de0XUsTH5iIKa4lo40uKFWHtJXZ5TkiHWUWIYl99Nyd/49V1dSS8HTRpogdZVGSZynhbovYN/Q9yLpOWdU4jk3blNiSRNs2dGWFJkKe54BA0baIHaiSzMnJOeOrT/AmU6BHaBq6LKYpS+pOIA8juq5DUnU026JpO5L9ijyLOAYB68OeXRSTlE8D5C1Fw9EMRFnE8Zyn+Vh5iiCJKJL0VLdRnpKCum1h6TqGZSK1LbKsoDjO09k0DbHP5iD1FFlCEGeUgk4t2SBKaLpG3Ul4rkPTCsia+VRHq2tsXUECxL6jDPbkcUSJTJQ3fPHVZ//p5c2z/+HP+iLx0Uf/L31Mmnz0/0lXn335H68++/I//rmf4/8P+rZ1X9798O/6vnfaqqLtOuospF7uqYQKdXpBq9hEacXr/Xf8c7lAdwzmUs3MGKG1ByZNx2j4U2TdxNZ8Bj6Uls/9w567+wTbvCaVJY4tBGHN/e2CrAV7MMQ+HNGEI60gYXlDbq5PcSSZr//6r1GFisc3b/BPLxGbnOKwYL/b8v6QgWpz+/49QVIStyqVqOIMJGxvSnC7hvYbsihiOJKxxyfcnI/RFJOrq1O0ekNNTye3bBdr6rJkp8hMA5nMMsgcl2L7SPBwh+mPMaY3jGYtchaQ/u633Dx7xQsXRLHDuZyhnn0BAhTrO9b7A//zP90i1jGjsYHuabzbVcStyWg043ymIlU76lykiApWb/4z9x9WbAOwR6dITo9k+eRGj6AYpHlD2yQUWUqQxkSyRSYUqKZIG8VM5gMm83PEpiAYagxHHqZtYPouYbWjL3tU26EeyPhnl4RBQiuLmJ1Jm9XkVce+aimXC8o0Ruo7JFWklWUMU6MUJHoEgjJjX0TMJJl8t+Xs6pI6OOJoArrSMx4OcTwTXSqxpAWmb9AJMZ3nIDqnCFpFvn5D9Lhndf8j6aXD2We/psg7+ixibHeczr9m15zyv77+I93DPaeGjjY9oVZM5F7gxHfZrx74embTJ0fsoUalnLJ49x2ebWFlEavFjmB5x0NfUF6UPH9xglPF5KstyS6mbCwW9wHp8Ugu6BiOTxwluL5L2TW4mkRb14zGNnUn0RQVlqkgSzWb9SOiIFGoCrvlgrLqEE2HVhCxdJM0jlhtP5DGMefzCWVRoEtQJCmCZyPXW9yRjyyKyJqKi4DU5Hx2fYHm+IyGDuVxA80DQw9c36JSFWres9uHyKnBm//yT+iDAe54SlfFvHv3nlUtoZ6cExcZZ8UbzL3F6czFPf0ZPSNuhkMUwyRrYH/cgNTSdyKt6VDnOb2qUpQGmW7xx2PAmSAxNXWs4ZDTFwMOqwOGaSMaOrOzC8K7NXLdono+x6oleVixeP+Oum0JX99SBjuqKCQ+bkjSmPHFDQo9TdHw7PmAq7MhP3z3O5ANpgOX1eGBLG9oZYfRcMTkdE643zAwdQbugDgIGY8HOK7DYDRkPB1hmxbmwEMfTPjh9WuKsuSP3/xAGb1hdVjTHDseFh/Iq4owDJA1E296hmlqKE3K0PfoETiGIYPRmKtXX/Lu/S2yLODZDuf6hLLpyRsFcofNwyPrQ0BixHw+9HCdAXa950Yt0U0TTbUpDz1tpTKenXJMSjLBYjQb09c7sv170t6lbgWqIqZpZY5BRtNGHJqS7SFF6Ha8/f4dUeeT5Q3rxT22YWDbPrJq4noupmGhIdKqAsZ4xsnLV9imS1dWKIKG4Wo8fnjNwBtiOw5KV5EfI9JwRxFJCKrC4n7F4/ffk+UZgmnwT8d/JM5KelmhFAS6PMNXJVxdZejaCIaDZvlIh57V4h1NmeJP56SdwGq5oShSTi4neM4A3zE59Swsqcbot+i+S69KuJqP3iu4woiyLWlkgXxxx9dXM6SmoaxSPqgSi6ilXe5wTi9oJRfDjvCtgEp2WO0j1E5BNGyKMEMrS9ogYHf7A1gtl9ceX335ArG/ItiviaMNffSGQm/4x395QFCGqPYUCYG+2hPEKVYfEi8fCe5zzmevSIMjZf49l/MOUZcwvI7lD/8nm7xBOJvz1SdXnKjw6jc/x9RV3v/vG949HnA+/YJ//u03fPthw5U3QrQ8fv92i7OV8GYegjuFVqY/rJif+hRFjVC12K7Dzc0UqcuYjaARShZvU1RtgiyK/PrnN9T2S87PLzhxNeokpEpiurpi9X7BbD7gXVnzfr/gxpb58kYklFJEY8jbZU1ajNncfeDEFLhpYHPs8C8/R5cK8nxF1o5Y3EZ8f7dHbkrUWmbfDjDnA97+8Jq0TJmOPQQ6MtHAvXiG0OacDwaYmkIf3RMsV/S7I+GHmCbaobQlSdHSjadURUm83VAWFYYEYtZx7trMLi4Y3dzgeD6GJBFvl7g/mTO9uGRwegGaxX61Yrl45GGfsN3sSQ5byrwgffhA1bbs0xpZFMg7gdOTKVFRMY1zZufnOLKIlTXY5xaipiOoEm10ZDh0acOCZvuBH34rYE0vkESR7374Hjtd8Pxnf4V9+oyjoBOLBpvDEVGSGHre9te//MV/ryly8uc+s3300Ud/HtI//MM//Lmf4aOPPvqz6rUyCf++TkJf+FM1o2pqKI+Iuolg+KiWQ7R+YPnhW8I0QdVlLi9meAOHixevGF+9xHDHtE3H6nHJIahpZJfDektbl1StxOPtA8vbO4J9QoOMoGrUdUceRBzDDM8fM7244ouf/wxX6/nki0+Zn83x9J75+YSzsymDoY1WhQh1ieMNkJuUvsxJyxbPnVI2PXXTcHpxitAptHVNVRTMxwOqqqTvNaJgR1vlOK6HqauEYfynif4dadWRVC0SAgPLQOwaemQuX36F5zrISUC5WXL9d7/BmU4xhqf0TY/sDmmahqaqOCYJ/+mf/5laaKj6DluRELqGNCsxXR/LkujrlOS4Z79aEAcJnWQwOz/j2fUMTenYPK4oGgmhUyiyFkmQiYKU/S4iTTPS44Fiv8dVRHRNf9rks1xg2jbD0Qx/ck6RVxiqwezkGcH+yH6zpSwN7m4XvP/2NcvFlq4TaTqBxcMKU1ZoyxLqBkmQGE+nKLJKEiUof/pCO7E0aFt8XUEXBc5cDUsSmA0HiFnMYOTjT8aY7gCxq5HJqYsIUTcAgbpIKYuMOjtiSjWS6XH1+V8xdFUUWUazhiyWEUUYYcodqu1SKQZ13+HIsF0+MlJL1PwOyxSRnSH79Y4iWBMt7lm+XxJuI/JjTJJWPHt5w3yoIcYRTVbR9xJVKxMcY4IgpSwqurpGtx0ESUQVesLDAdd1GIzGKDLsVkekvkMoEqq2Q3dHbDcJRdfjD8ccj0eSMEbULT68f6BoRVTTpW97sixH9Ub4gxE/3j7SdxJK3yMUGRIgNA2GIhJvV4hVium4pJsVjm1gagqqqoMo0osyXduSpym7xwWirDxtctJ1VnFOlMbkVY5lG8hygyr1iJrHsXd5fn5JHx7QFBnJcjms7xCakunpKXlZk+cFRRTjmCa91BMFB4QoQO4FNEmDXkQQZVTbZjyfoYoKQi9hei5l03J/yEh6mYFt0VYZpDEUOUWW0fU9w9kplq7juR6uO+D84hrXskjDCEl4Sqc83r4jCQ/Ioohj20wnU6SmZOS6LD7cYmo6jmvjj0YMXY88DTkmId5whKLr7I8Bu/2RKAiwPR9RkrB0HbFt6ASRGgFRM+l7AVmW8QcjNElEkCT8wYiq7XH9Ibe376BuuH7+An16xnx2gVhDVRU8Piy4/XD7VB8ZPn3pb8IdIzkjLTsOuwBF7HD9AcPRAEVqEQwX2xvQywZd09N2T/9XuROJdo/UcQxNT5X3iKrDdnskTEuqVuTxcU2RFwg9RFlO0wtkcUyRFNAIaLb9NCR8MuKwD7E1ib6tGJoSL55dcH39jNP5AFMROJuNGNgeqqyQ7gKaNOV4PNKUBZ4iosgihm6gKBK2IuPoGn3X0db1/1OnS/OMum0x3CG6rtJ2DY6lPaU3+5qmB8nQUSSBvlLJyppW6kESKRGeKimCSFeV9JKIYZi0ZYan9QxHM8osocgi8iilbiTyomEkpBSrO5KkpBAs0rzAHc9wJhOSNObtNz+we3fPzSefcXo1w/ZNTH9AUAvMZlMMuUMod9RVj6BPQHSoq565A8s3rzluDhx3IZttQSfo6PoAU085ncl4kzmq4tDkJTNb52Zi8+pyyvPnz3j2xef4jklXJHiOg9wUSIKI6zpodcqz+ZCT0xHBbkWdRSx+vEfMZExnTKNaaKaKYyjIfY7taGiKwHggk21vKeOIybMT8hQso+Ll118gaAPC1Y6x52DYFl3XUwQHyq6j7GC1WrE9HHBPzpgZMpIog2LysN4S7gOKJOGwP3B5NsGyTHSxxR1OORwj4u2Wrq7oAVuTuXtYoaoqeZywuP3AMY85v37Gr376M05ml0j0rNcPSHKPacjc396hWQM+OfWoFq/ZbA588dXnFE3PwB9QhCF90zBwLEaehWVbWMMxvWKiyBoT30LvK8aahGuauJMTdMMkXD6yW65J0gLZsNEMDUXsEboaVVWoBRWQSeIUWRLRFZkizzFVFcmyqVpwRyMUAURBxJvN6WSRIAwItxse7x5Ie42saDjstkznEyRFo+k6pqdnDH2PohOQJJk0yxCq4vibzz75D7IkVX/Gw9pHH330Z/QxafLRR3/h+h6aPKOnpy4L+qpEKBOKvMZ0T+glmSpLKKMlggJffPUpsqExuzjFtmp1YNMAACAASURBVDU006QqZHaPazbL12w2rxk9/4q4rBAFga6WWD8GHDchmuSzymN2wYaybRiaHhejE1589TUnZyOufvIzri4n9PEQXZUYn56hiw3x+g7Dn9N3Q5795K+wJxt6UeH5xZjtZscqyLhbR9wfc9TRkF4zsS6G9GqFI+iIXc13/7Zhdi5yONwi9BWa3tI2LVenY+66jjLPqZqOqKhJ1wHbIOYnZxM+mzjEuzWDOmWzuMebn5Hu1phaj3z9Kbo7pctzWgE6WUUyTGRT5375yKR1YZdx/+GBVlDxBnPaExtNENBsjxNNwfJiJEmnB7a7Le/e3aG5FtcvP0eRTZIoBt0jzdckQUhVFDThEUvoEPseSRChLp9+r8mctumpi4KmqFFti+X7t6zvHwiPMT0BYhpy7rmIozFB2aLKCifjEUNdQdCgE2UmJ6c4tkUUhRgCWFJDFshIXY0k9NiWhqV1+IaG7k/RpI4kKdDrkvD1GybPLtH8MU1roWsVvSCx3R1Is4y6bkiCmKlr0of3xI/fI4oyouaw3jfEhwi1SZBUkSKJGZ/LLI4RGRWqLFA1LVWvoviXZJVCsl9wXCwpkxbbGpDFHVXRUtclhlphiRl915BWLbpusNseEUWZfVTSIyKVDRYio8kYS9cw+5am6WjTHE0RmboGiq7RFRVd2fDu3Zq7zRFZVtjtMpbbNarpYIxlZMPBUlQuxhOq5IA6nTJ5/pLD4wNDf8whSiEBHYFut8RV4OXNGQNdxzEs+jig36+oqKnNa/JKwNIkyjxBEiTC3Z4OUGQRiQZJ7FF07Sn+nKUIMvSOhDUQSJsjtiOwpePC0hG6hiqJyLIMw/XI0oIiLtmtVpRhhHt1RltmVIsl8fFIiITyQsE6tQiTDG86w7VsmqxDUhV2YcRqvWPbauwrWN4uELb3tElAXZa0ogCySlFW9F3P/PScgethaCq7fYDlebz98Ud8z0FVZDR1gG3bjAZD2rKgz3IEw0BuW1zPelo3KkCze2Bx9w7r+eeomkqapHjjEUlWcCwywt0W/rTSU1IMbAOCokXUbDTHp+9qirLFsA2aukDWJKaXz2llBdtxGE/H5L3AchPw8vIGRVD54Z/+yOrdmg9vvmVUjXEHFvPZCUgqRbbnw90dUd7gOyq//NnnVFWHKOnMByPytkXtShpRRewFdquYZH9H3eUYjkMUVKiOznFbs17vyPKKxTYkzWvqqqJrO0x3hOb6eKbBxPMwLQfL9xAlkcNmxXw6xGxLrs9mjCZTNF1DFmXqMscWbNIgQugbRr4DUw9TrMijANvS+XG5xjFVdnlN1oGqaU/10CzDkiDISwhTTE3BK58uLVTLxNQt+r7GMmRa0cWZnFKmDfvuCILOwJ6xezyyOe4ZXV+h9g1NHTCwLDTBpqkbNE1nffcGV9cRu4oyONCVFVXZcjKzKBZ3VHWH0PfIgog/8DFcm91+xe2PP7J5u+ZvX/w1X339N+zy1xwXC9bTM2bPv6CoGtQ+wBy8IJEF9OIDerFGoSc/rinyElVRcBQF256iWgM6xUDcuuz2Eo+Hgr7McZucs6nJcOhy8eknjK9fItU5d7//HbJuMBj6TM4vSSvQlDX25zfo/pCiafnlZ1fcbzN0PcFxNdpjjSfJiI7/NGtiYqGKJbpY8/vfvSNtdfyrT/nKlchHKbYzRJRNto9rju8PyHHA+Ys5ruNR5ynuZEYZHmirjKvzOaeTOWEL2TFkrPqIbYMsCli2Q9o2ZEXHs7nDdr2k7gTmF6dslissUQBR4e7ujs1mhaGotGmJaetsbldoAjijCTIS71+/wR/aXN1cUOchn3z6DIuSJgnono0QFIXJ2RllA5ppYYktfTNGbitkOgTDIekUjocEVxTpTRGBhtuHFeZgRCp6FK8/sHrzhu8eDmAYnN5c441HqCfnmKbBfr2maQKEomE495H0p/qxN5ihmQaOKhPudqSDEcPTK9KqgqbBcz1oG+LlPbusInq4p7n9gKWrjOyf8dlnX0GZEsUZ88kFahrTxDGH9QZ5OHg6LH300Ud/sT4mTT766C9c37Vaunz39/SdL8oygiBS5zF1HiOoT5sFDvsDRXKkSEKqukEUVYReYXH3wIe3P/D977/hcbElTI80ioo1nVOHCXHastjsycOILD6wvL8lLyIMXWE+nfP88iU/ff6SF5/ccP3qBVfXl9i6zHgyRmhqnMEARZWQ25y+A8V06UUDSTARhQ4FAcfxUHWb6eyE85Mhrm8wOJkymQ4YeE8VkzoLqZqeaLfn/WJDVbfUTUNdlqiKiqKoaG3F0DQxFB3XMGh6gceoIIwSvKZAqUtmV5+gjM4YmwJWs0AyB6imA21DJ3TEm3fEwYqHIMbQRUaOwcP3P3L78MDxGDGwhlxczZAMGUUzqDsZXTeoqpLlesMxCLi+GfPJq2dYk2uiBNK0pMgLDps1VVGSHAOi7Y6BZSB0PY5lYDsOjm1gWRYD18aQoMtLks2aIthhKjpnszGzoY2ldBi6gT+eIfc9tqFj9i2eLmM7LnIvsNvumdk6ZVEyn83wXYerZxd4lsHAkPAtHUeTMSQJTRTQAUORGMzmeJaO7Tnk2y1d1yM5Y3rNpZd1dtsjRZpQpyH7XcR+E/Dw9g2yoiGY5/zbHxeofU2bRYRRhju7wPOHqLZJkcZIoszm4Q5LrhidXrN62FCER6gy0iAhb02avCcPNmi6xOjE58RWyI8xsmIQxQVdmoKksN/FHOISVVZQVYVwH5Du9pRVi6OptGlMcgio0pQ8Lnh4OHL3uKOuGsqypm86dM1EV3TqvCQMIp7N5k9pkNUS2p7BaIbYdRyXa6L9EYDReIRrGGy3B2gFNN2ijQLEMkenYzoZ4A/H6KpGedxT7jc0RUkSRKy3ezTbxhwOkfqOVlL5UIq0kkRfFiQ9bMMAayyh2NADquXh6BYaoBsmr+8X3C9W9B0IDaRBSLjdcNzt+PDmHdFuz3q5os4rXMNGN3Ri4NPPXuFoFklcsHrcsN3s6HqR3WbL9sM7hOSA0lSkeUYch+y3K6LoiOcPmIwnDIcjzi8u2O22BMERVVHo25a6brB0nbqqmEzGnM1POdzfobQVQ9/FcR1Oz04ZWAZ6umP53R94vVhz+fw5mmVT1w2qodBLKnVW0aYFTdOQpDGGYRBGAaY/ouwVOmfM9u41ggCCKCIrMrqpMnAd+rrGUBQUySDPWlzbwrQ1NosF929+5IdvfkuYbFA1geevPkWTNZI85dX5mKqoeXxYQh7guiaqqqJoJopmIgkCbR6RRQFN06IqMp5toWk6TR1TpHuO+wPLxY5jkLLfx+yPKW0nQCfg2jauP0AzLSbDEa7nIqs9lq4z0Dpupi5fXJ8x9NynWU+GjiqKiH2H0LXQP62ldm0boW9o64ZelHA8j7JpCYMIVZZIm46kbPBdj12SExYFvSBSdnAoa+q2BXqquqKpKrIkZb9dYagSqAamaeG5Jp6lso9CwigkEXpuH+/4Ybmi6BrUtsYxTAzbQZZUmqbGVgTaIkVRTRrFYrfbQFVhyh1ZGLBd7RBlG218iucOSNKU1998w92HBZYy4G9/8huEtuP2/gPIBfHqHk2IkfqE0eyGVhnStz1CUxDvH1GFBk2R0FWF+XyGf3KD7s05RDVvP+w4HnM6QWW72aP2LXpbcjp0GJ+cEicFaZKxev+WZLvidD7j9v0tlmnQZCllliLpJrswJtztiLZbRp6JZWtMLmZotsHDYk1b62imT15LeJMpSRhiajLmcM7NF79iKBwQkgWXX/4KUbf5X/6n/4133205mU7IojW6JlPEIaLjstvvWEZbVqoKioGV7plfXiJ2sIpqdNNBlWRkSSHLS/I4ZHP7gYfFltH8lNOLEzRL5257pGxrsjjguI2R2g7L0RmPXEajCbKpMRn7zC7mXF9fYogNQ1vFbXfc/uv/gT6cI7kjdHeC7k8wdQ3KguwYcXe7ID2EtFWDMzmh6kXKIEDKMyxJQKFHqhtW6yP+7IR4f2T5uCFICpzRhMddQIWE5o1QJQlV7FH6Bt8x0QwD3bKxXAdVkeiKgrapEEUZ1XZRTBtDNzFsC9WyyeoWXZUJ4oxov6YK19wvlswurnn27Axb6lguHilFnabtWK1WZKKEYRjH//qLz/6DIssfkyYfffQX6mPS5KOPPqII90iyguwMEQSBrimpigyl64jChE5QaHqJPI148+4eyxqx3/6e9+sP5H2ON3JQNJVf/PJrrs8/o8pVZM3gcPgeUSzJyw1x8Aik9KJA2XWcqiojXebFzYzxqc/s4oThaIDQV6iajGi7NGmKrChYgxFlVtApDmUSouk6Qucgmy1KHqMbA+JDyWwyZySWlJpIIxvUvkNfhmy0lp4lP0QBhiwRZQ1RnGMooGklruNjDUdPM0JcE11RMUyHbdnhmAaPYc7LOah1hlQlVN2Iqh1hNzJtEIGmoLpTfN/k/R/+M4dtzMXNHLnJ8UcTjOWau+WO4PGBNrtAsm0s3UHsOsJdxP1iSy+LfPmznzAeedR1RVSX5EVB33WICKiazn53IN8fMOiQerBtC12UEJoG1/fos4IkCIk2O5QevPEQZ3aCpjtkeU1TJiiigns+43F9oMkLXNtEMnR0VeXbH98jFSknYx/qmjLJGDou8/MZ2fGArGhkqs/79++Rq5ITz8DxHRRPZ3JxzmDoI9k2QpNjTSaEacbbd/d41y9B1ZmdXbJ4X6CbNu8eDhSCwsmzC/5w12NnS4a2QfDwluN2w/XNS0RZ4Yf3twyurmhlgzyNaeqMsePy9u0CXVaIw5S7b7+n701mMwfDV6EYEyYRSVwi9jaCLFOX4tPhXBDwqbiZmGhCTyUonA89gu2OphG4nFioaoPvaDS4CNqIIBWIgrdceiqHqgVNphMVXMvFNUw26xVN06LlLXbdUfUKDjrVao2c2lwMhkwtC0HVMV2TLkuQq5auqqGT8YZz8sOSpMqQEwuVHlPX0GyHPKk5hhFhkFEFEYPpkDY4oLoOQdPTVjmqomCMxuR5yWEZ8G6lo24yvnxV0Jl37LUAWVSRtDGHx+XTLBBVQpcVTudTyHIe3t7x9vUbdrsHEDrsF89RdJVakXh5c4NrWliKxjLe0VQVlqFzCDOEsmKgSezSmsVuT5ZFhOsHNElk5HtYhsl0OkUQZbq2Q1VkyiSE2sD1h9RFjir6TEcjBraFmEbYbYXnGNimie+YqF2Fnh+wLQnjk0uioqQ7BmRJyXRsoAoSytCneH5DkacEb48IXYvrjFDkJRPHplYESsNAMRzKtkMQZbbbPevNiqysqcsKAXj56SvGs1Muz+fIkkhPhmEXzC8s2I9wLYciiMn8mCYLEAUPU9d59ekLgsUbtnd3mEKHcmmg6TZtJxCJLYO5zpCeOIo5LmPKMCFcH8nSgiavydKS3T7lGGZ0XU9TlRimj+mMGA+HpFXFYb1EE1pO52M+PR0jVBlCVdDlKbJq0XQibdfRdU9pJN12qVqBWuzRq5giiXHncyTTRdxvybOU8/mMrinRtBozr6jahrzI0RQVz9J5fwhpBZG66unSArIaodthawK+Y5FmIo6h0ss9dRGjKx5jxyFre2YDF11q+fb1a+Trc8a2gCpVKKqGKimowylTfUK0fIus6hhSgZgfECWdqpef6kwiWOMxqmVT5gXlYUmextR1x+TFM7ZSj3R/R7Jc4wynbJIQ490DLz//GmSLOgkR6xTKnMuzC7oyoS4KhqNTfrzdsn6/wHcd1o9r1usj/nhKlRfkScpoNmEoSYzPLnnYJ6z2Ab/65ZQf3i74cmbSdx2m5fLH1w8MpZauqcmzgjJvuF8eOewPvKgqGlVHtWxe/vTnuCcDtkeIO4l//ecfuL9VmU5MJiOPU6WCx9+yzGNOLs7xbZXb1SPv/vh/cf9hQ/jwO/79v/81qvS0fl6nJzisKYOAoSI+Df81TJICvL5CrgsOaYalmziWQdfJpE3O8NkXGGVJHMREccz53Ob8xOG4WtBlFcv7R6qhzbAx+atf/x3PP/8c3VaxdIWBbVPFB7IsAqnj7ve/55/+8Xf8xj2lE1QkUWb9/pYqzwmWjywWG5KsQafFlDqKMOHs/Byn72ijA8EhxQakuuZmPsISetTR6KnaeGLyx4c1x8dH+rajl3WaYMPFfMT0RGH/+MD+GLM9rECSaRAwdQVPkjAdnYE/YLtcgyDy1c9/jmr7aHEBpy84yUWKpqPa1rjIhJsF9e4U//KUajYmziIMx2fsWITrHZIEoiD8mU9qH3300Z/Tx0uTjz76i9cjyjL86bKk73u6HrqyoKg66k6h63s6QSOMco7HgF2Uoho6++MRwxYwTZef/uoLPv/iJ8T7HgmTUsig69ivMxY/PrA57DkWNZKicvnlV0zGA37x1VfMz58xv3mO6riomoqiWtCUiKZFW8b0VYsoqshySV0GaIpGHmVIggqaS100eKZOmWmUZUNdZ7jTpxcj2TAI8y265jKe9rR1S9N2NGFJkjakefu04jSpcHWNgSwiqzqypDDXFT6/uWRbi9RZwh+XAc9ubp5WnwZbinhHlddIr36GeOrTIyMqHsr4OYL+DYgCddfjzeb8zDG5ebmjrRLK9BHaa4qioMxzlsuAKOz4xa9/yWygQ1/T1gVCGUMvYpgGi/cr8mNIn6YITYVlPX2ptgwd03EQipzNmz1VmiL2MpZuMhiO0XUXRTapqp6BPyGNRHzPpWgbyihk6jm0TU2PyLffvqFOIgaOjq4oSILMq+tL/IHLYbUlPWzR/SHH/RbX8TnsDvyX93uGZsLLixHeoEA2XUzLRGhkqlxCKxv0piFNMjqlJggTDHeCUGX87FVLWiu8W63Yv37P2cUVs7/5W/ZhiiSKtG1LWzWomoXWd0i6RhHucTSZ+2VEL7ZsWo3vfrgni0z+q69uqIuSsugx7CnO9JSuTWjanr6TMUyD5hhRpgVlUXM2cRj6DrLpYjkO6VDHcD2c8QDHaFEUyHuTqBrRbWumzhpV07Fa2AXp0wyHqsVwZF5dP0eUROqqYuZZJMcYEZBkAUNWUXpQNQPdcRFlEcWWGb90qNMSQxdR5R6t7ykOS1qtptwfqLIKfTCkRUZEItgHeJ5NWZToqk3di0iigtAJhEVFr8kYQ4upMqdQfJJtzHd/3KLi0yoRQZThXP4Eb3KCbmiMhwOCfULXCIzGl8SrEk1YYMkWmtVjGBKn11cMJzOm/gBT1QiSDMFW0XIDkY7e0LmtCr77/b+wfLjHHnoE2wfS4xrVG6BqUwxVwbEdyqIkPBwo44B8u8CanlIHGzpBRvM8dFFAjo9sbj9w4pkMjQFGmaMbCpoo0AcR4szHOz/jbyanLLch6X5LYuhMHYd4ucBSdS6vzmnKnJE7om1bhraHLsOzkUMqyEjTGV1ToRkOXRajGRZFlBDFAYppkeoCilRSdC1GXVMlKZ7t8fVXXyK//RHdH2I7PsPRkEztyYOAMo2wrAGFN0FWW6qqoGtKiiwjzjtMy6JtCg7LW+7u7okPEZqiYQ18sjJi+bgjzCVW2yNV1SIpBqIsYQxc8ioj2gvoqs7N8wumswmqJFAGezbrDZdzj7oosbwTTNcg03x6SUDtKlRZJglyJidj8nWLJBokQQWCTBiVyJrF6fkldRaRZSm2+6c6DgJRUaCIIqIgoigqbVMSVuA4DnkaUmYNrVyDqtOHGbJxQPcntKWIYVhYUs/QH+LMppxMxriGxMQfQN+SxXvQPWaTKZapEx4S/u3ffofYhhRFgaTqlFlOJ6qI1oCy7pGyhDyI2R0i0l5CQWBoj5l8/Uv49jXvfvsvHP2ev/nv/hu8i6un5EqRU2x3lNGW+emM+9fv+eHbN0RRydn1De/f3VKWLa6usDukOO4QSRBZ3j8QJikvL89RZBFnOCZJE/7bX3xG2LQEh5hVn+N6d4zOr4jpef1mQVMWbIOMXd2zTgoMWeThWFC2Gb5ocvZFwbNPzpm1CqttTxY33C8D1usdUdLyzR+WfH5h8em1hSib9E1Js/qe09Mp3337A4u7A8sfB/jTAdNnl6TBBqktOb16RlaWGKJM0nY4okC233Lcx7S9TicKiKJIXRScnc25vLrguN2xWq/o+p4//H6NWDUMRQUmIwSpo0lDzi9nTM/HXD+/xNVlkv2e9esHLFslXi44Fgn7sGNy8Zzb2w1dL6LICsflkqbqKGrYFAKtoJBGCdeuhbTfkfUdw7NLZN+jyXKarkWoOsy2RUwjvMmUr37yFZu0ATpeJzu0tkKhY7PeoHQ1Ly7nTKZTNEnGUWTuNgGbY8xGFBnkFdfPbSRRIAhCuh5W9yuuR+eI9CRRyGAyovjkc9LhGHX9yNA16JqMNI2YjUeE6wxTlRkOPfZFhec4wMdLk48++kv2sZ7z0Ud/4bq20Xbf/evfd73oy5pG0z7VVjoE0lYj6XXSYI/UN+RRhNgV0KRMTiw+fzXjy8+u+Oqrz5ifXNA3Nfe7EMufcPfjB9782w+8/vaOxeZIWpRIssLZdMzVyOY3P/2cq8ns/2bvTZZlydLzuuXb+96jP/1ts08UqwCqCFCAKCNMMiPfBG/E95CZTANNYKLEYqEKSKAyszLzNueevone+25v1+AUnwGDvGsegwgLd3P/9/d/i2S8wI5HjA4PEAI0TWC6HkPfIasUTSlU1zD0Laqp0AYDXQ9oCwn6gCYGVN9RtgNGGD3FsLdbhn6g3m/Q2hLZ6zR1QdMWKEzSvEYbJJ0aaDqJpg0oqZiFAbblEkUxqu2ZxgmHJ2ck0xnbzYZZEuGYxtNL3Cal+PYt0esvMZIARYei54fv/sDlJkUXitVqjXBjDp59RjRdYHoWdHtmB3MG3eVhvWN3e8sXr77gcHaAjqLO9qTbDUWaU5YKlMf91S2uYbNbPjK0Lb7jEHg+liYY2pZqu+f6ww1dlnJ0eEo32Czmz3C8EYbvkBweEk+m6EIw5BVtm1HXLdPxiPfvL9mutxhKElsG08hnMZsThiEy2xH6PtlqQ+JaxL7HYjrhYDpiFNhgepRK5+2HO9LHDXKzQmtbzL6m71oGYSGEoHIDqlZyc3HBPi1AM/CDkEnkMh7PcMOIcRKRzI8YTyakj/eMJjMeKg3dC/BHE6q6Yf94RWC0vPvpHT+9vUWzYqxkweeffoFnCqJkjj8+wxp5dENF1dUsYhPfcTB0h/T6BnuQWJYFQmN+dMj09IwkjpjNxoTjKUPeUVytQJo485cI55DsbkkgNGzPw4sTTC+gyHJsoaOaDk8TxEHI0cERsR9i2w6z8RzDthmEoJGCrhsYBgGdxDNNJtMpB4cnjKYTwjBi6Aa6VpKnBUqzMNyIpulYP6w4P7/FiUIG28WNRzRSUSmoO0U3GNzi0hkmUgzokcYwm7NftcTRFM0K0YM5uvAJkglZ27FePeJZFiiNzeOWrml5fLxHs8AJBGWVMz494YuvvuZgfogtbNJ9wc3tLY+rJX3TUnc9319es9xv+fF3vyFwHULXYHt7iRrAsR1OTp4xHY+xDUESJ6TLB+p0iy47kiigrVrmo5jYUGQX57h1zsQSTOKI0LMJTJ1ut8PWBvS2xolDLNvBG8XE4wTD8SnqFst7Kphs65bd44q+V/h+hBx6poHNbvWA6jsmR2c0bU8lJUYy4fr8R9q2hr4nCXxsy6BpGnolmYyfkm67+0ceb9YsjubMDse4i1O+/PJr0rKg7jr8OiPdbEDYnH3yGYapMxqFGLqgKXPSdEeZLxmaFcv7B1pvjrACZvM5ZV1yd/WBh9WWq2XGdlMyaDq66eAEPtVugzW0zEchRwfHjOdzzg4OaIsUQ5aMxiNePz8gL2B++BLTNpmMA9Rg4Zo2aDoYNoMw6NuOx7s9q80Ox7FZPm64X21IQg/HNvAdCzFIRnHA4WyCH4TUVYn6U41D2XWoAQI/pmkayrah6Qcc16eqWvpWopTGyI9QyYRB6EjDxnc9Jo6BkD2+5+F7PgKNwA/RNIFjmeyyCsMdoRjYry8ZJHhuhCxyUANN3jBIxfLxkbzucK0AlVa89A/wOaD6/oZq9y3JRPLnf/vnTI4WaDwpWevdirLM+c3/+1v+4bffcn69YpnW/PLz15hC8OL4CK1pmEzmKMPh6t17zK5hHvgcLg4JkhFjV+f1qzPi+Zxvvz/nYbWnKmpGlsb91S2//fGWTdESWCaq7ymbnkETdAMsK4kUFsHRKePxGH1oEbpkenSIMZRoTcP08BlV27NNJW+uNjzc79CbHHY3mCrHCmIeH7fMk5Cj0xOe/+KXjOYTtvcX5HXJRV6x7XoOg4C+bZgEDs3DistcoDTBbrui7GrGccLL00N8P8BzAjQ1sE137B43bLd79mVOVuSkWU6Wp/zlX/2Sl7/4dziWgazWvPuX33P+0wPjsUO5vuNf/vvvWGc921IyjkZYArRhoC4blqstwfyY0DIZ8pRjx+AgdHAFxJ6DaFsc2yEwDPwwxrEsjKGHXtH/aSDs6wNREmLpgjDwCMZjZK8oeugxmMzmuKZBHIV4roup6zRdjxI6n//i33C/2vLj5TWaMPFdH8c0mR4u2BXVkxrY9emkIgoDfEtDyCfT1svPvn7SGsuedL/j/eU1Uqrtf/iLX35cz/nIR37GfEyafOQjP3cGqPIcU4GSPcJ26KSiwYW+IyvWqLajr3JMHcau4vTgCDsKUboPCAwjJN/nGK5Pb7o8rO+4fP8Hvnv7hrtdjWPAcTRiMj9iMh7x6bHLLHFwxzHeNGZAgK5jGCaqqej6HiVBd2J291ekD+cs5gmyrhjciN60cROL7eWPKK1G6zvcZEwhRrSUyLojK3osu6Jvc4Z2wJQS3/OIpj4nWFy8v6Rqe4RhUdQVvTFwV/S8nCYoJ0BqFftOElo2B6OI9Dbk5v07Qu2M6PgM+/kL8Eb0YoeuIjTpkz/+SHn9PY30qYqOq8tbpi9iurunThjZ9Yxfjet9awAAIABJREFUnaJpBvvdmuXtJYuxzfGzGDvqMLDY7lLybM/19ZJ1YRHPfAxdx3X/9FubFr4fUhU13T7FMUyub+5RZcXJ8QFt0SIiH28xp6sU3uQAI9JpFPSNoGhrhB/iRB0P65TH5Rar75h4DrawkW1PvdvT7TMWsxjHMDicjzFkS5CEtBK6umLx8hmnrx3aweKbv/+vvL+4YP+P77g/v+XPvjrj2a9/hTmZYkznqKJiuV0yPjzh7U9v+f1PH/jiV79iEhvIesnrkyP00TG2ZeAmU+rjY1JpkmUVhr2D/oC+60gcnXSZc365xp8+R1g+vQTDLDBsUGbHYFjIbYXsUor1HReGxS8/fUmTFoACAUkUYMZTdNOla2uyy3NMy8acneLoFvHhAUxipBXhtE/63V5bUBUloW2jgjGqGyj3OZHrEwQ+keXR5yVRGJGcJqi24dQ7wApD2l7S1BVWEKHTYQ4wmk0YekXblZTbDcHkkCBI2N+ds7y/Jm83mLZJUxdYfsRgB3RAtd3RDQrN95G6wuwVegUbL0FTLcgAJxzz/N99hSs7ZvMZdTdwEplUmw0DCgbJbrdlOp7RNCX71QbhKWTVYTgOXjTi6OSMWimkZWJbOnm6ZXN3z+XNhhcnz9jXNb4wCTvJ0WJG37XoRY5jOdRFStc5T72JdUW9kegK9ne3BL6NHkb4fsjU9+lWj7iWwbFvI3dL4ijElh1yn6JpGrYAxzARmsRxXYa+xxgG3DAgNixaDHpZ0SkTzzE5OD4kmk2ompb4TrJrllShzeU2Y/dwzdnRAUYesEozml6ihxHVZklbdxwcnLAYTQmjkLZsEIbi5MWnOPqKNC159eUxF9sCdIFse3Qh/lRia1FmW6pqTD8I4tkxVbrh/Y/fY8RTDl68oFcG0mxpO8Hh4ghZZtxfPFDnA8WuptyVDGpA6BYMOqPZKfZM4VIRhg7TsxFjRxE6A5Nnr1nfveWT54dM5jOckYXBkwXH0Q2swKVtBu7O78k1gbJ61G7LTbbjIS0Quo7SbdaForxc8e8/P0Y3BeNnn5Bul7TljiieMpuPiW7vWe9yZnVLXReoQRIGEeWmpmg6Pqwy4sCm02pW3ZKNoTGfhrSDyck+R5Mmh8+nOG6HbQgaqXA9F8MyGVRHvn0ke7yiNQK6XuIHAW/vKs4iC8O0qJsdBlDVNY/7PeHJayzdo79/xK1X7H/7f5AMW14f6Hzxv32Cba2xjRPyXcnm9obrt2/4x3/8novbPY4fUtWK06MZURjhnOmkj4/oQcR21/P+3RuKpuc4CHBRWH3F4dELBlentwPi55/wH6MpU9/kD7//A4/bhs++eEF/kXKzr/j2bseXiUMl4TpvyOWA0AUnkxjbC4h9m3qboWMRTwQvPzklSRxW2ww/CFGq5kYI9irj7/95zX694fWLKfOJy3/63/890vA5/fO/wp5OqYo1u9UDadOw+nDFy5fPybdr7DBCr9fYdoOOhRA2ebZn4swYhxGapnN99cj6fs/m8ZYPt+fUTU2xWSEGg8B3MdAJgoih1PAx0fOCu6t33DxsmZ5M+e6f/wHVFmxqmCUWk+mUyXRBvVuTbTbMpxPK/Klo1dYFp77N1HZJwhDX0vE8D6kkLj3VPnsaos4maPoU2be0RUsrU6SsCQ9OOD4+oS4yelVhHU6pNBPN8elcmybLCSOXIz9ktDhk9PCI4UeMj0755r/9jlWaInRBUaZk6YbwcE4vXAxTYx46NP2AKXvabMPV8pZXL05ppEYcR7z78QdcXScwBMXjHSj1r/mk9pGPfORfmY9Jk4985GeOktJeXrz5O1lXiTBNqqqi7SS6JshW91RFSd5ppF1PevMOT9RssxTTsRmkZNBMpLBxvIAqryirgZvza/7pm2/ZljW+73K8GBN5AbbwOPBDPn9xTBTZBNMj6Ab0QSJVD22JpjqGvkb+aXBiOj5aV9LXHUo2ZOs9puUxdCVtXtHkBUrTqPIGqXtU+0c8s6RXJaVwKFpBvltT5HvyvOFhL1Gmj23q0Lc0PQjTRnUdAwN9mT215NshwrKZRh6yzBlFAfubD1iqg+QQfxzieIDcogcWbZ1RZg/cNwa5plPlO65uljz/8pfcb1K++e0/UGUpZ89fcHw4Zr1+RFUlLz97hWEL7jf3vHn3ey4uz3n/wxV3l2uqokNYAaEfo5SGbFp03UAbNFb396hBp8hr6u2OryYxYz8knkwQYYzwApLZFMOLEW6Akh22b5B1PZbvInWbf/ndN+xWSyJDwzdMRvEY13GJQpfDic8o9rHsp5JHoXpMQyPwXRzbJowDFs9OGc0OeXn6iiPLYV9WpFJi9D1BFGK5LqbrM8iOdVnTSclgOKTZnttNgz56zuZxw8PjEjEMOI6F69pkVcd37x4QwmBycoY0LK4+XHA0jan2a1opGE0W2I7L6cGIiEfausawLer9hvT+jv1uQ51luLLj5GBBvU/Z3j1ieQ5WModeo9xsSEIXNx4TzQ9JZmOc0MWbT7BGx2hajCw6NKkQQsf1Q2RVYzgJySe/oLi5YBJETIOQoarQuo5RlOCHAdHiENl0eJaOa+qMJ2MODg8ZjRM822NoSsQg0TUN+pbt3T1SCCzboa0bLm6XKDvEnh3RGCZpkbPfbajKgk4TDLpBLwc6OVAULfelIIimNIWkzVospTMKIyyh4dguhmlhy45tkdEUBZYGliZIs4KqKGiaFtexMTSTyWzOs7NnTGYzMtljaorz80tuH5ZYdsBsMmGT7tF1jXq7p+taLt//SJfvOJtN0IXB4WTG6WxEutvS1SVJGODqikkcM0kSXNURWwKr2BEYJuPpDMoCre3QpcS1dSxLx/FsnCRCoDDDEGc8RReAUuiGwdDW0FQo9CedqmXhCYnVlGhVRleV6Cgc0+BqtcF2PWahj6Na9psNmuuRru7pNZs8lZjKIkxchkEwi494/uqUZ5+dISyHwDXYZimX51eURYFqK8T+Acf1GFSPrveMZjMmR6d0GOxWGUZyiGYa9FJSNB3heMYsjLn4/i03lzcsH1ds04LVtqDpoG8ksget15j5HifzCaORT+TZuIZBEMREvovbP52wh/MxXhgSxSFxFKEQrHY1RdpzdZ2TphW/+/6P/PHynqvLG2oJtnDo+xY/CGilRhw5PFuMsdGYTMaYhsGgFNrQMz84oDdsuiIjcmyGQcPUoet7bF2jHyRK6Hiuh9R19oNGsyqY+jMmYUK6LzkbJ9i+TRAEtFLihmP8IMEwdFYffqC6e8//83/9n6T7R6KRS9E20JSEwdN9zzRt7pYrVlmGNZvjOjZOljK3BW16jep3vPrPf83rv/2fqHaPbK/PWd/c8tObD3z3hze8eX/DwzbHdQN+8ekrDhdzzk6O6bM9ZbrnZplze/vIqqiRvSJybebjCN/32e4zgmRENJmj2oZmt6Jcb9llCtcwOH7xjJt9zU1ac7vd0/QKQ9OYhz6LUcJ8dsjR8TFfPTtkFFj4oymqgbKqEMJAky31PkP2kjAO8R1wLIHr2GyLnrLR6dXAZBQwnyUkvoUmNK5++IauKmjkwCYriZwQ2/GYTHyy2x+YLyBlzj7t0HqJKTxen71mfnCEZuu8vfmBtz/8E4/bRzrTYnN9RVfXjIIRpSyYHh3wZ1++IjBb9ncXbO4f8f2AevXA5ft3REHMbDrFtSws08HxQpo8pysK9tsMQ7fZ73bIzZrj0GaaJITxCNcLcEyBaBsc08T3Q6wyx5ISYXu40RgvilBNQ19WyKLEtS1sz8NxPPq2RaYZQ1ujmhYrmdG3HYauMwwDRy9ecPL5FxhOSNNL8nSLLhumsylgEYQTLu4fWT0+IOiJPZem7QknC5LJjMU4ZjQeoaFRVwW+bSGFIAzj7V/+6pf/xfiYNPnIR362fByafOQjP3OUUvbDhzd/11VFMsinlRXN9qn2G4p0T98rqrrm4s13/HD+Dt310IIIy+x53KVwsMD3I/LtBkyLd5crrq7vaZua8WjE7PCUvlO0RUGjBF9+/inPpyP8OMELI+LpHFNrME2BqlJUuUU1NcOgUGVBs91iaALZ1Gj6QL3boOuCZrdGaB373R7NctFUw267IZWC9P4WqoJyu2G32fC4XtF0DYNuscwldfukG9aFoO87tAEQAlOAryvqqkB4AUpKwqFjaHK0KqUr9xiaIvz0K0zXxnY0iot/Ir/5idayMA9e0boTbh5v6auULCtohE+Oz3ffvcMbnfD1Vy8YR4quyJlOZ3hByGr1wN31LdfnV1x+dwPlQOKFiMGkHyyS2SkMJoZh4fgRSg4MnWQ6njKUFZ+OY14/O8YydILQRQ8DGt1kcXyEVArXfXoRXN0+UjUDyWzGm+/fs7m9JXYsfFPgGgIbjXiUEE/G0HeYtoNpWVi2gTea4JgGru9jxWPqLCc5XmA7Au/okMVXv+CZl3Dx40+si4KZ7+FFAQBtXeNMF2zzmiZPqXoYgmN+/MMPbLKK5599icy2aPTYXoBhh2wajeXdHZYhyIsCQ2gM6FzcbhjPD5DZhuPTY0S3I93eY5o6RV1zc7PEsTxMNyBrWpo852iRINqOLM1x/BDdDFld32AKsAyTthmQ3hxTd7HkgC4cNHuE6Cz6pkMMGqZhYTkBmlI4mqDuFDoa3X5L4occHRxgCYE+gJQDhqlzcHSApZvYloHt+Owe7mmz7Ml8U5UIw8C1Hbqmoul71vcPT9/fsNhsUm5XO7ZpDkJjk27JqxppWhieS9N3KKHTStgVLXUHrhszS6YYmo2uaVhiwPcsRsmIpioxEAjZ0FQVmhxomxJNDDiuh65bdMVAFE5IRgnzowXz8YR0u6crC3zLBqETOD6u55C1Hdf3S7Su4v7mA9Q5fZ0ziQI+fXZMYJucLaZ4rsckiZjEIZFrYgsds6uwZY1t2U/x/bbC90IcYTAeTbGCEIaBYBSilMS1LYSpow8DGgoYsFwb1ICqSvaNRlpLZCvRVYdqe9r6SW+tFMj/cUI8KAbLJwxD2rrG930s32N9e8Ega+JJjC5bulbD0Q+xoxHJoc/Z2QkIDdqW9xcX/PTTWyxNofIdB54iLxt0y0Q3NRYHE7x4jGbYLLc5yjCxPZvs/kdMJ8R2bKrNmsv315jOwGa95O37e3ZZheN5DIPADWOCZIxrCuYHByzmUxLD5JMXn6FbBgMpp/MRQpfYozFeOMMLR5i2R7rLuFluuVqmZGXH1dUd6eOatsho8oKiannYbhBCI61aXC+kqCo+f3mE65h4vofvBrhOQBCEuHRMIpfFOKZuO+q6QQhYZiVCGOhCo2pa+l4RWDZNC4Ef0ec58xcLxonNyeGE4U8rFrYxgBAYToTQBtLdiut//v9I72/wPcV4arJ5eOThZknshxiaTpnlXN/cYExmxK6Jow2MbRNT6Lz48gtO/vrXvPqPv6JKH0gf71g/bvhwueO//vfvWW12JK5JEiZ8+vwVn336ithzCXyfzcMj24c1N3crhl6ymC2QwsbWNCzDYBZ5nE4iXB36dIMsaxg0OmFzv2oZxREnr17xuKrQ64ZlUeBaFrWUCAYCx2ZA8PxozkFkk4xi5GBx+/6Ch9sNZfdUrrp6vOfN20vSvGeb1tzfXEFXkTg6j/sa5c+ZTSfYdJRVztUP/8Lq9opklLDPCrRwijB8xqFFVy2xq7cYZs9Dd8R6U+MaOr7rguYwOz7ADHSqZke2z7GDkL4oGKTCsm3GswTTNXn5yUt++dVnZPfv+fv/++8xjQBLdUSeTuSZ6LpPpwaK/Y5eadh+xO7hgbqoubl54PLihliH09glikbEYYItwDUttKYiTEIsy8YLAwzbwXA8LM9D0wWGYWIAphAMecb26gZd6PjjhOj0Oe5oQhQEjEcxoyRiOp8jZEtfl1i2Bab1dA+bzYgDF9PQmc7mbIuWZBLT0pOWBds0R0PDtQT7/R7LdpjN5gRBgO85uJagr3PaQafTre2vv/7qvxi6/nFo8pGP/Ez5uJ7zkY/83BmgyDI0qciyLW48hrqlTDPquievKsrNA67MkKbJH24zPv1kQjgKOZwNxElCsbyHQVCXNXQNpiFYzBd0SqPDQPUKP4g4PX3Ji8MFvqHhagai3rC/3uK4AX36gGFbVNmefSNZLTccTsf4tslQlyjV0dU72q6nKyVq0NA1m7KFyI0pdxtkkRMnx/yxbLFkhex74mSE7ljkdcnt3SOyVvRKsN7siH2X2PMotJpCSuQAaSsJRMv6+h1iPOO2rzhbjEg3K3xdgh2gNpeI8BmtY6I//wRpCgrDYXt7ze3dhiKrCH2PZ8czPly/5c35LTLf8Yt/+5+YHcSU+3s0qWHZLo+PBW++vWB1c06ebjkcj/HtKR8udpzf3jI69nn2aYRSNabbM5oeU44PcU0Xu284PdU5nYT4rs0gFT0ClCTbZLi+S2B7mKagW645SGKaoqZtDdqi4HA+xRx02myHrw8YQ49Oj+g7kvkhuga2ZSAMi6YDzbDo2g6h12DZtEWFOUpoyhwvTjj+q6/52/aBf3jzlvNlSvVPf+Tl//wrLNfF0XWEoaFUx+vTEbfbmnzY8OE25bsgJrEV06MFtuej6yG2vkYVe3TTQAtGmKph+XDPcrnB6ytoGx5vbzEcB7M1WK6uKYXDq1f/lljTOP/wA6rsudyUvNlVfGaDruugWdRFS5lV0HSYkzNkdEhieZAXGKGHE09pvRmaarH0BkMfGFSPpgasMEHqNk6+Z3x0yH1dUm6XSNdifLBAt2yiyZj1zQ0P5xeMJzF1VaG7HZP5nHL3NBTUlCTyPNp8jy3E03XUKNxJQnMPdhhR5wWPyzWbpiWeRXSioFWCalcSJAG6grrt6QeDsmhR2xTXDZkmIZZvY7gWjuMxGDZyKMn7lqYsEZbNPt1iKI1O9hh+xPxgwWQ+BaXR6IrB0nB9H+1hz9XlAweJT+i4OH5Mmubcb9bcLO+YaBIXDWXbBCIhMgWuBtMkpK1bHMsntAaMcgtNRa10Ro6OqStcz8KeTFCrLQMDum3TlgVhlGDOphi2QTCN6aviqchSDdiDpCsKBmFg2Caq6wgdk7Zp2RcKq3VwHQ3LC/A0ncHxaNIted8SCkmdLhnimJOjA3Tfod6nHL54gdn3OIZgX+7xhwOIHC62P5H/tOHsbExX52RlSRwmtG3P7eUFr58dIRiwjAGpNAZrxOPjknAUk9cN87MFUlgUXcsurRiJDtPqSauaZqio+x3pdofqYVAafdMRJRG65eOFJuODQxAa2a7i63/zBa6tsVcDL2YTXMtHR6fvB7JWp+sHun1K2jXc1D1vPlzR1T1pvmPi68y1GBk6GLpGVXY0dcsoHpPuUuLggLS3mDoDYjBRho4mS2RZ4tkefd5g+AneJy6L+Y4310uSTkOWGQJF2UNWtVhFQ3g85052TBYTfrq95POXp2yLNc8WLxkME0tYWJaJ1uVINCxTULaSq/sVJ85A9cOeXovwI5/lck1g+pRFSYfG6PSM+ThhyDLGJy/J319hRjbRzGB1+S2r+wvyfYrhjNnstk9l2bbDzLd5+fw5yfQAU2gYlkNVSR7uduy2GXrfYSrwVcufPVuA4eBYJn7koxkwP5zju4JgHCIsi2BTcrsceP16DoZO0nVohs6NZdF5HuPxiJiWxIRkOmXhCzwxQJHjhwaLcYK6z7j74Ud2kc3s9BhppNwut4ynU+6WjxSujux8MBy+/f49+07nINYoN7fYlsDzXDbrLYXUiTwL11I4lqIvd0ynJh+ultxuzqlKCyuImE2m5OWWH3/6HScHCVPL5OvPPyEvKh5cn53j0uQtQ6/x7Pkpn529xO5a1vs9Z8cTDuY2WlPx3b/8wIBOND15+s9rJp7rka53SKVzef3IZrMj0jWOHYNxFBPEYwwG7LZgKHPs8QjdjnHjMcLSMC2HQTNwg4CurVC9BMdFCJ1mtcJTivb2nrTpmToevW5QtiV91jA4Nvpogp9MsB2Xum0wTQNP6+g1nVevvmB8dMoff/yJuuqRfc36/pZgvGAexXT5Hl09fWa5eWQ0nfAinuK50OZb0t2W5a6laBTDv/az2kc+8pF/VT4OTT7ykZ85w6Bo0g2ablJWDUYI1C27TUZdFZR5SrNfUg2KX3z9JU3bsEejrCsM06RfrSnKnkEN9KoGAZrjM0jQi4wq3SE0Dc/QWHg6drtHmi50AzKvsOIFsm+piz20Fbrjkj0uqbOUy80Vvq5j2Q69psMgydIUk0faVlINHtIdU682DINNOkgSKYkdk9X9Pbt9ilw+IvyE+31O2w60bU9Zd7Rtz0O55nAaY3cdVhQi1UBb5uzqBt+z2RUFoilpsjWyyPnq+QLdshj6mnr7gKZChO1RWwHZLiMKfbLbt2w3ivg04fmrV4iwQjMNhP6c+Wgg9HTyxzX31ze8e8wJrZDYjujdgMQxwHb4zbfvWN4X6JqD3/Z0/YDpxTjNQNdJUBpHJ6fM+4zIkPiejWlbqE6hdJ0+b7Fak/sfrvj8r39JefeAynYYtsMkTFgt74ksg8eqRtgBk6NjRJkxCn0GQDd1+j8V5SlN0acpmA5d9JQAcB0fJXWy7QajaWjrGnv6a0zH4ORvfo316oB0m3H9T79nf78iOj7A8TVGvs9FXWMLeB4PeF+ecPLap8Jme/VHGvmMXukotKckRluyXy2Zzk8JLYv79z8RRQGRObDe18gshXLHZv1I1da8/PxLPEdn9f6efFVzd70hbxreXS558dkpluHSZi3pPiNavKTNKoqdwkhCzNkxgZC4nscQThhqHaW2aOEYjy3tfY5hmEhNYCQh3ShEMwRR4LD84x/Z39/gey6mNUPVFbOjI4o0o97sMCydocpZv0/xAwu9q4gXh1T7NYZt4kiNQkrGSYTp2mizEZr5OY3t8uPFOfuyxKh9NNdntVsBA7u6x3RcTM9j0Ex022GbtVhlR22ViG6Hp2IyXRD4Y0JdIIuG3XpH33Ws0i2LKKCtW7LlFsMQoASmZtIqhRfaGK7J8dEpTap4WN4i6TiYQ7uv0dKUQFWUdUMySTBlidEN6KqhWN6gvAjXi3CDBmuw0GWN5kQkjo9jauhViik0TMtEDyKi8Zj85opgMqa8v8OsU9zQo5I17jjGiRMG00J4DubQ07YtfV4hLOvpVLpPsXUf3RRUZY9lWWhdg6XB6PiUXhM0LNkvV/T5hqxvsfqBU98jODql7ySWZ/N85BEfvaBSBY5siQeNDz+8o85q6ralKiueH815vL1jW1TsLInrOGhaw267xrECqnLF5u4ddfQZTaHhWha2PUYWPanMKIsdo1jy7sMdlA2OMHBMB8cO0TWLWTxl0Cy03uLw+SGW2RJEJlHssFqmBM4Yw3TRDRtD17lertivV6wuVmzyNZdtxu76irkb8OzsJePQJUBhWQb50GO2DRN3TCoVj6sVziDJq5azgzGeb7F/vMWIXOqipGp6XN8lu1/SdOD2gheTEV1TsqNFaQabtqDpatZpSmddYk1DhkLHsSawK7gcBsanpxiOi+V4aPQgOxzboTRNjn/5a37MHN6df8u413j56ZyyBjc8IPF89psl0XiEGSe4SHTPZYhGRM8UZblknymWtylVWbOYH5DtS0Tb8sXxFFPo6IPE1KBaPWDGCYNmsNtXvL95hB7yXucgckh8EyewCSdz7HiGaQomkzFREtOlO8LXn2EMNZrxwK//lz/HdxTph3PGWoEX6ozEQK1Bm+dogUPgu4SmRhD5BL6HynbIviHyJqgDHU1AJjV0Q+fZ2QmrbYZh2uzLhqLs0NXA8XHEdlfx7Tff8HB2yv3lBYvY5NnJAmXoyGiGHzggNNY3tyyOp2zzkt/+t+/RTl8wSEHf9TysH6j6nOOTl4wDn1BYlMuWD1e3PNw9sLm9J9+WnLw4haEj0AfWFxfsdh1lCfeXt6TpDtX1hMkI2UmCaIQXhayubqiVgSEVzjBwEgXMHJNpHGMiMKsa2VRovo/h2ITzI9zRGN316escdzJF6BamY2N1DegGbVmgmgaZx+yWS6wwREejurtj9MlnhPFzqrqlN2wGy8INI4Zsx0gIlOy4vV+Sly3J0Rl1UWGgM5vGyLZmaDM2txVvvs/4s6++4ODoGKVpvH/7E+cfzhmNIvrYYn93TZpmnL+5xPEiho+dJh/5yM+aj+s5H/nIzxwpe/v9t9/8XbbfJ7oukEqn2GZU+5SqaVime1Z1wz9e3jJYGmevz5iFAXGQICyX7T7FCEb0pscwDGR5STvYFI1E1jWmkjQ9WNrAq+dH+JYiCnT66mnNJt3sqcoCoWlQpagqwzF0Aj+EpkDQI4RG3ik03QLZAxpS2GiGjtJ0ynTP5c0D1vSELN3ji57VLqXtJKvtjs12T9MP7PISQxcUTUfXS5Qa0DQdW0BTVwgh8F0LKRVV19E1FV1TU1U1M8/Ec3Vs3yU5miPyDaZp0CjF9cMDrTCxbAup6fz++wuSxOf561e4jk9gmRwspuh2yOE04eHiLe8urnn24pDXn72kWK7Y3tyy2uT85nfnXN3saXudk+MzPNdj0C3G8xNMJ0AXOp6mUOs7prFHkvi4UYRhu+hugGVbOIGHNUg290v6fYnKc2wxkG/3BElIvV2jtRWWbJB/SuAIw6SVCk3XKeuOtCjpNPPJTmKZuGGE0DV026VNd6TbPYZtIvOUdzcb/OMFliyxPB8DhW5bGH5AXddgGpi2ja4ZSCvi8vyckd+hO4J4Muf5qcvB1OX09CXvzx/o9xvoO8q8ZHx0ghpAkz1pmhK6JnaT43s+SZSwWy25u1vy6vlrRpMpD1dvefPDDyzXW8oixdQVs1FI5Hk4pk3baKyWBYVymPzF/8rBfEHYlfiaJF4cMvgTqn2D3OdPSl/Dp91s8bQe//AQzXUxPAfbNdBQ2JZgsphjadCsl4i+wVIdghZvNiGczrE0iWsIkoMDLKFjmwNDU9INGnoyp0vXyDJfZf0AAAAgAElEQVTDjmK6uqArUhzXxp8vaHoomppugCBJ2BYF+7ygahVK2LTqyc5TNAP25IjVLmM4OmZ5/Q5kje/a6JZDXz6d8m5uLtEHCKMYYekcHk7RHZ2i79g+LGnKFtMwKNqC2fPnPJ+PafZr7td3OIsD3EHweH3D8vaGMtsyHUekj3c4qmXkWIRBROC5JHFE4FgEtonOgO0FOMmYuhcYto9lO+iOj+s7tHWHHwUgwB0vGD9/zqApHM9BE9rTNS87hv5pDUZDYnguwnYY+o6+bejriqrpYdDQjSeLSZPnCA1sx6EuCwxdp65r9mn6ZGdarqmKEt+LCMOYJBmxmB7z8viUo/mIwDLoy4rd3QqhWVzc3XB7dcV0nKAGjawoeHW6YFAS2ffc3d4wTjymsxHrrOHyIcNWJqITqLajkQ2FaVJv1+QPK65+OsfCQtMclIJt2SF1l8AJiJyIIJwymUz59PkBvmOgOo0hq3GEQ1vblK1JKhUfHrf89OGcm8sLvvv2G4rlPYmtk1gBKiuxLB0xQN+YBL6PZvsMQiClycnBHM91We73uLOYxNWfBlFOiInDtulIIpe+qVnne+7aDtU0mLpO3SqqtqfsOoQYGIYeoSSH8zEOPS8ODgiwsfSIg9cnJLaAvkEXOvqfNMZd21AOFv7RS4LIZhQovGSGbtn85V//OZPDgOt356S9SeQ4BCjMoYemRlMDKgi42aypqxVqkCSTGf/wm28osi1CSka+Szg5wI0SPC/EckJKKfjpp3dcX9/y3dUdvuujSYXl+sRhTFa0LOYTXKFwHJdyV1IWHadffwZtB22HNVQ0qyuW33+P5fuYgUeeF2SDxuLsGZPpmMQVuIsjZKfQ2oahyhCDYL9e4S+ek1U9ZVMTTaZEcUSSxOhKUqSbP1mcFDPfIR4ldFLh+iFp3VA0HU1Z4IYeh2cnoFt06Yqh2VGmJaODI7p6RWme0LcC2/FIi4LIN3lxuGDoer7/9pyrh46r3ZrL6zc83FySFzvGs5izl6ccjQP2m3vKPIdB4pkaXZYyTRKSZALCoK3aJy01AqPvcV2XerfFbktOxjF+EOF7AfowEEUx0fEpydEznNGIYORj2gZe5GMHAVboMUiJ5TkYto6mG/RNi6YJ+q5DdwNM28IJfNDAD31GJ6e4YYBpaHR1xaB66s0DRVmi6ybxeES627DPU2zHJ0rGPC437Pc7FIKrD2/pB+hNhy++/JzI99isV6SrFQYDZd1wdffAw/0jo+li+7d/8zcfO00+8pGfMR+TJh/5yM+dAdb7FKvvwDDI9hlmBWIH+TqjNQWrWrFNC9rzO/K65m9+/RdYdoRuGximTpFv6aWOEAOjyKDZaUihGDRJVmwpNzmffP2LpzTL9p6UiCAMUYOLaTylKKr9mjZNsQxBmuXkVUveSEx6OglmEJDlNW3XMfJMyqbnZl3y6cmCfVpR9waj3TXNbs291FHRAbv9B1w/oE5T9rst+7phPFuwfbxj0AykJkB1+IlH7NlgmE+FpEnI/XKDGp6MO7PQx/etpxfm0KNuSmzfpx16Vldv6aod/z9797EsSZae6/ldwrUIHVtmZmWWaFHoRjdwcMgByQGNN8M74mXQjMb5odkxIwEC3ehuVJeuFFtG7FAe4Xq5+zqDDfIWMKh8rmF5mPsf//q+02OA/4sv+eaHGxCCuqo4bHe47ggtFD9+e8/ZFzOapqPpA0avf8fy6ozt/Ttu12852Zyvvn9ktapQ2uPs7BzPCwh9F9ca2qqgrVpAMA48Fq8/YaIMrgYnDPDDhDYv0EpgEYRRgufv2a8/sM0zknSCN5rx9O3XdHXOeeRQAMtxihvEHNuB0kKoXZq2om8HfKm5v/mJByUZjVKWF+fobourICsN7mzG+ps/4V28wq93dEXPoApwE1xpGE9ntOMRTVXRtxZles6SiMP5K8r6Fu3ULMYt2hVMXrzCehNEv+Xxww+M5mckozGn2hCEPav1iuN+SziOaExH05Q8HHIe71a8cgPcKuX7P6/o2ifut3sWV1e4quDTq5dcfXpOLXsS12Xz/gNqvGD5u/+R8ZtfIcs9YzlhNJngjOdk6wyz3aE7S3XMcecXzM9HSO8S6floO9BVR4ZhIIwTulpRrFdMX7+gjSPq+w+U1Zax84bheALPIHtDVx7AtrjjGdWuhrZBRSPMfgNdh8TSIdAWlHJo2wZXCF6/vMCLPIq2pleKxfycqoN2sOSthb5FBw6263CsJpxc0nQ+4tVv2K++RdzfsRSaeZJirWV29ZLi6QnHSgIvQAuHX7z5lENecdAOTVWidIvpFO/Xj0ylJJppLtUL9qeOqmi4+fAjh+2O88mY8vEBjju80CcKE/q2wkvGuKGLLwdao0jDGOUq+n4gSMe4YUR9KoiCGDNIkvEYmg4lBcl8jJQKr57D0DE9P6OrMqQYcIKAHosxLZ7WeNJS95oBj+LYkJ1OiBzO38TUpSGanWHakibf48iBrm2ZTSZk+S0hAxMv5t3TA1VXMZ7N6StL/vaRcj9QdDvK6sAgLFEY8kvXpR16Hu9vCbUkHo8I5xPy4yOjOOSUF+zu7/l/VlvOLi8Zj6d03Y7TZoUVM8Iwouxb7JDT1T3DCSInRWo4FQcW0wm1qvDDmNYOqMCh7SsGKYiEwCfg8fae8nRguy1pG4/b1Z5Hk1HbjuPTE1Fr2DyumCY+1umpBoG/eMnusEXNLjj3NItkxujseTPBdgJRG5hHuBMXs71HjJe4rsWamvQ85VViqaoaL464GgXI2zvKoyLSIXdZg3AkwrHETsAx20FnSRvJ2fWCw2FPWVs+XUxpmpJOaYxpyIRGRQORFkgxUBY5Xj1gqyNRHFGVBdaU2PoHimNO0VcMMsBtG7QfkmdHbL0jun7N3dM99+//jUC0mKZhOlnQDSBlhBMs+csPa66uQqJEcH11RhJGZOsD337/I40xXM8mHMuaZbogilP2Wc7i4gVDXVPXR8rDidHyBaEvaLdPyK5D95Jmu2Pz1Q2yj6gHQXG44c0yhqeM4umeKvdpJgFRXWH65xpdVITuBSY78PTNn1hevACjkYPg8eYdbdsSap+//4f/gZsfv+a4ucfRGl9Jvnh5TatdDjuHw25LuJgzmo3preDp9id++uu/8vpyyXw+ZjAlX/z9lwzbFzze5YxGKX5VczwdyPY7PuQlm7ImfHGJzQbq3Y6mrUiDgKvRnE+nZyhjWC4umYUB2T7D9JaLS01zysi2Ww5Fz2g0RcuQZhiYjBL29/fM44DFPMWaHt91SOII//wcP4mQErw4RqgB1w+o92ui169p9ke0LwhnKWa9Yug6vHRMn0Q4rmLhuuTHnKHvCJMRQjsMxyO11KjxlMANsGXLICxWCBwleMpOWATVMSPQAWEywaBBSJR2yMqcMIpQUvLVN19j5MBnZwuiOKY4ZKyfNkS+h6NdZvMZYRR+vJ7z0Uc/cx+HJh999DNnraVuLY6Szw0kNkVUHcO6whgfd6wZih30A24Ucn25ZLc+UOUNf/t3vyaOz3la3bPZ7VlvNpTHA0PtAC5FVdF2PYtxQqoHhjLDoDgVHUYYSlPQFRkDK9oBimNG4giOTYvQDnVd0VvLsTSc9hVtWXK+nLB52tGqgMnVS1a7NTIYM5+kiPwJn459UXL/dCLLi+dQVwaauiZNRhy2WwSWuq1R2qXroBsA0+Jika7Ly4tzLsceffW8beA4PsHZnHgS4UYBRZFz3G6Zz8bcPG75cPOez7+4Zv3wSG8l52dTXGv40z/9M8fCkm2f2Oc9i1/+jsFK/GTKF9Mpwgw8PhxopMNPt0dWu4bRaEISpixnC4I4ZTGb0XWG7rjDj1LK9QPWhzhy0GrAS1KE8umrkiQKMG1Dj8Z3FN4sYRxa8p3g7n5FVRYIa7BNRq4kaRjTtQ26NyznS/Km4YfbFdoa0vkZ/b7g9injYhSxO95y97jis9cviLSh3O74y+0HmvLE7z99w+n2PdnhhFSKdDJDuhHVfotNJ4hwxGB7bNdg657Aj9DRFU35RJWtUOOXxPMlOphRme+xXUdXlXhhhFEOZQ/peIpqK7ryhO0t3/30jt4KgmGgUw7/9Y//N44f09MgAo/LM4+Lz75gnoxoO4OQinXZMX71Bts5XCwvsNsVrmjwZjOEG1MWHZu37/FawzAMROmUaBrTDy24Hp3jINsSLwjQns9garq8Ixil9KVBX02Iz+eU93dkT/c42Q6cAAH4nqU87iif7pBBiFAOQ1dj+wHhPFctV6Yib3vCJMaejuxPObPzF+RNQ7uvkFIwHk9plOZht+d0KpnPZxigNR11Z5mNRwwDuPGUYXiJQ09nenrTogbLbLZkHIQspnP6XtBUOaubPXnV0NQtTd3QOZYwljz8+d+YmYbumKG1x6R3EZ3hsNvipx69LTDZE5gSR4VI1yVQmkAL5CBxwhDtO0jHpR+es1QHm1MJD2MaSBcMZkD24EUhHDuQPdJxCCYT8s0KHXlYneA6EuWFaAG27Rnahk70YC3C9UhHMU2Zc7P+QNYeuLy4QDsxUgi0F+FNF+iqo1ytkFLStwVnl1M2TcUp39PVLTp1ieYphRpw52Oam4YI8ZwB2zcowJWS1eMDCwGdtCTXDmVV4AYe4STm8Fjw1z+85epXS06Hkq5zCM8SmsCBY44tDmArytOWxHXZFiU4PWkYEbeSpq5Ip2P8ICRNQ/x+z+HQ8PbbI48/PFGrgVWVU7aW1eMtTqDxpAN1jQwCLicjfrEck85H+F7AbDpmcjljFMJs+QK/k+Bo/FFMkZ2wUuBGAUGoyRV0dYV2PbzQcjxkOL1GuR5yNKLITwTnr9m7O3b7DaNI0VrFzHqUdUngunRdS77dcnV+xme/ecPT0LIdMuxgEDpEak0UxIBEWsN+80C3vceLFkwChdIa3fWs7j7wX//PD6yfSlp9hpYxQgkOpyOD1NjQ4end12AbZNMymnn4yxRhwVM+3/x4g5BjGsdn1ZT8/pMrMC11UbA/HDBdx+5wYBF4fHn9kuX5FcoUnE2nTGcxWkqGaMb0xTWu6KmfbqkfbxBNg60N+2++ptts6Ab1fI3puEXKnuvUgyjFKI+yMXgSjPIxQiBdn66v6dqOtlxzm2VMP/0lWitsU3HcHxniKfvsyHR2xnI6ZuhKqvyEHydcXl5RtTWjxOHscoxULm+//4bj5j3X85D8sObNZ+d4vktpXVzH4+I8xPVcbk8ntBuCMyJKAu4Od/yX//3/IG5KRnFCbwyTIODN+QsmTojrCA67J6rsgGagNy3Z7okmr7DSQwkXT0p6Y/EcH217tBSMY81ouiSIJ9iqInAsmJLuaU/XG9Tygvjl1XMDVlkhmwo5GKSQKKXouhYnGWEQOI6ibyx+FFD3Ajf0UUoifA8UtGXBdrvHncxwoxAGSVuWmPKENA22MzgCssOeKivJO4sb+IS+5od397x9+w7teUwWS3744x/ZxwFniwV1VXPfGb54MyOdC3anHKkFiP/AF7WPPvroP9zHoclHH/3MSSWZpBGnzRqBxOqOY7bCjiVvP9ySDjHC9lwvz1mcXxIFCX/885/5u//8hqo7cHe3p9g80p52lHnN5pgz8iPKWlK0lta6XEzGOBLqbIf2XZq64VwOlMceVysGQPaWVEuUlISux6FsGHkeceizPA9p2xYsmLoiQ5BMzkiGlq0ApQQfvv+WqTuAkIyChC8uZ9ytena+T16WnM8csjwnGBpqYbFa0A2GqjLscodx5FO3FRejhDgOGSWC48GivYir6xeEoc9x/UB1X+C7Dp4CEQW83275y80WI3o+Deecn70iXz8R+A5Nnj0HsmpJHwuGLgf1gtnZJUmU8PThgSS6Zl90PO4GXOESuxGO9phNZ8SjMca0CDoOD++5+OQXzCcJiWNx1cDQVignQAhFrBy0kgTTBWpoGOoaG4fgOSSjKZNRyuPtI9vtiTI/0VkLfkTRGAKtub39QCcd5tMJqm9pqoL77RbbW05VDU3OQ9FQtT3LUGG7hn1RcfXqijj2yI8VTWPAV1DkpFGEcB3EYOgGaOkZOotjB5TpqYiIxwJV3+HaA053INQzzmLFPgnZPK1Rk2t838VdzAnbHBmE7KqaU15TND1Ku1xNJ3z37j15a3m5OGMZJniJ4sXFEmUbqq5HdAOnU00UpuQ1/Ke/+zvCyQxZ5WhCfD/i6e07zHbNbpNzfn5OdHaJDEe0pkVqiQ5DgtBHGk23zxBdh9QuXhKT37zDS0fg+WAHInVGdLGkelrRnY40ZUlenogmM/BDRNdiAx9ndsFQnjB5hlYDjhCko5DjZofnOoTaoekNYeBTrlpMXWMAoR2UlEynYwY7UNUtMGCqNW0zZx4H2KrFD8ccigPWidg8bRm7Dvsyx9EuOvC5uLxmt1nz4e6GH3/4ke36AaqW6+s3/N1vn8/Z3Vd/xGSGTz//JflmT9sICDy81OH+668YCUugJRiLKVtG8wRrBhw8XB1iRI10IfFGdGh6T2JVgzsLCaIpVXYiHHto1///N6n6ocEJfRAC5bmgLENb4aoe2/WowMG0FtsP2N7SDzW2bwljn7Oh4mH3xEYrknHH4WbF7GKOdlzS2Yj7x1uUspT5gXky5WJ6wWazYru5J2giuq4kHs+we8s8Tgn8lEEVtFVNol3GScKH9+/xgoiXl3P6riGJQtq+J0kjrIU//fEfKYfPsM7A49stL9uaLop5OZ5Sth3N6UjT5izmI9blibM0prEej7IjGY3pWsMyTdlkW/5y81e+C3z2mx1Z1rIrjlS9wdqey1FCMAjKU8HleMliErOcjLmaX1FVR16/usSPRyymKdF0hNI+nhfRdzWqM89NT9rFUQqExBnPqLMtxSkjmUVEwrLdHCk6g/J8AhTl5pEglMQiYYnicfsjo8ADWpQT0LYW6xk2h1t+n37JYrrETwOazZrMGCbT8XNehQWrLCiL6Avy0qexAlHVJHHIvZVsD4r9yWd65dKgGTyPrjKcUFR1xf6Q0ey3vJpFeI6HKxSnvCJOJyTRlq6t+O3vfoN2A6Zn58gq5+HDLV9//QNh4LFMQi7GCRexw1gZ4jgiGMW4XY1yA/w4ZDhmHPMtQ1mSdW+JIkVXHHEChXQ6du8/UDSWdZZxNvbBE3imJPUcrpMQPTQcmpLo/Jqua9k83GM6kENPtl2zqXo+/duA+WQC4ZRaeXz/zTcoJfjyl58hu4DbqsFYTZbX+PGI/LRh/bjFmIYy31DkBa+vRnz6ao4/SnjYVnSDS1s3HEsNh4w0TpmdneON5qy//gPrH37gxXhEd1Ls9jvSJGW5mJAsAnqbk20KRNcgTMnhlLPf7bBoyspi2yPXiwVDZxj6ntj3MXnGZDwi8ua4rot2HaSWDMWBoW+Il0u6ukD6Ln3T0e3vEabDHDK6fsBTHuZ0xDoeVmqkkDTHA+0xo7eC0WQKQYQQPAdbA8FgKPMjN1/9CTedEiQJjny+DjwI9ZwpVTWovuW431MIh1SNMaah7wxWwGaz5ze/++9wlMvDh7fQGoxpSUZjDnnBbBQySlKMGRAfpyYfffSz9nFo8tFHP3PDMHA8ZjRVhQ5TmiKjVhUHc0JEz2F1o0mI1g6L2QVBohm9uuSTL75EaE329BNVN3BsB+5XO3pjMa7FZFv2mw3XV891nZ3pqNqaJE2J5YDoOvqm4lQLrHRwtSbUirZ9ziW4HEV4SlCbnq4xtLUh1JZBwChOEKbGlDmhVpSnjMvYZb1+onMDzmPF3HNxllOKt3fkpqHtWhzb0/QdSggUPbUxWCE5nk4kvovv+NRmoChrfvX5guVIscka3t/ccHW15NubB/qqZjZNePnJCw6Hise84cenkstFzGQ65eF0JMtORO4Y1wsJI0FZlbhaYuo9FkiXL1g9ZOSFYb444/TnrzjuWwInIEpGLCdjXC/g6WnPLA3JdjukdHGbHUGYYG1PEgb0fY1schztoXwXN0iRXYWjNXa6YHBjpIRhv0H0mmXdM5vNadqCQ9myXu9BaPLW4Dk+0lqKw47IlVgrCQeD8DSqN/QWlOOxqwyH/Z5xoEknI8IkoW6hlj4yCrl/fEToI4u6RgqJl4zxA4mV+jlrIj/i2Y5dLgkXr+jaAXMsSc49urogjn1W0iErKzy1BT9Bd4Y623E45QRxgjlsePPmM0zbIQVM4oQ311+ghSQWFbN5hGgbijJHS41roa06lKd5+fKayHcwuwfcKMWcTjzd3fL03VdgQUcT4jhEhjFV1+EHHn7kM5iGbrt/rj4uT+h4xOClqKYkjlx0qLGjlPLuA6Yr8dI5tnTwggn2qFCRR681Khkh0xm1cJBeQnvKCcOQ4nikVxqQqCCCwTAejzAMhNMJ6/KSnz68x/SGlgY5gOMH7POMtm0Z2hZVbiiOW+I4JvV84jRG+T6OI+krH2sHOtPSNwVP+y0V8NP333F/85ZhaDjtnwi1ix16UjUwZPfs7jeIJmIbHghmMU27YxwMHH78loQO1WvOF1dsdxnRUlCZksXoHGEUwnooJQmSgKax9E2D78a0dUO8XOA7Du4ooq5yHO0QTiKsGLCmo+864tClNzXaUfS9QPseQ5UjqRCRRhCi2wFz2iKlpBt6hm5AlHsyU9FWR4xU7FcrvMSnL0om8ZgiLymOGeeXFWk6JUpjdk8PuFJys17hRgHTswVJPKJsjnStYTqNefHiNVoq+r7H6Rr8JKXROWVxYuQNTKc+ps5po577H74iWsRcfX6O65Z4taW8N88h2487Uj98DtJUWyLPQ+mYgwkpKwNacfPhHX1z4PHxA7W17I851gqEsMRRyPLFG/y8QtgeN0749Re/wtcdg1DQWc5nS0ajM0Znl+hheH722h4/VfTKo9xtKPc16eUC2TaIoUW5Dk4U0bQnTNMjlUOUBGwen7CnlshzGc2m1LsjkYhYnjIcJ0GKjqEHMQzM0phRolF9yeb+lt9OlgQ6ZjR/ruuu644+0LiyIz8VdAMc9hv2XUmQppTbNdNJSpQGJPGUZtjTtwaratr8gB4G5GFN3XSEg+Hl5ZwwSLm7v+fV1RJr4HI5wROf44dzLi8/YTSeYJvnevp/+/pb8v0eX8H1IuV8OmE0WdL18vn6SBCgXRdT1zSrHS3+c9ZQ23Lzp/cspgpb5LSHHZvbNcWpxkiFr+FoBtI0waqBoSmRoU9XtyySmHL/xGBBez5iKNgfS5q6ZZvdEYYROko4f/EZN5sjl/MJvpYM2ZbRfMJseYGKRrxbrdFacHf/RNOU/GKYc/1izIt/+CWi2XJ2JZleB/zhbszqm3cQpbTGUmVHPns1YZ7O+PDNLT9+fcc4meC4Lic3RGuf2lTESYTsa9pKc3d3S9fm2PrENm8wxhB7kof1lldnC1AOVd3hhQ7WDRi6HcoP8KfneLLBGXqk9tHjEUpKtFaEzhLpuWAHik1JOJ9i4wQ3SBjc5+07LxpTbR5xkgQvSWj3a4L5EjldkucVgxWEQYhGYruaKIyg/sA+P/FQVURJjA5SrHjevjOmp65qhGl5Wt3xuPJZXi2YL844GvDTEdPLK1rX489//APS9hwe7/jiF7+kagfyZsALAqT2Po5MPvroZ+7j0OSjj37mrAWhPMwAg2nJ8wN5fkQ5HuOzOZU5stpsicYJs6mP9DQXZxfkhaQ7FqxuVqz2ezonJYgXFP2ephfkp4zQdXDpEL3icDyxXD6H0CkXBiuwQjGazTBmwJWKOt9TDxqBpeuhqSqk4xOOxjiqpKlKAsdBuT5t2+JFMdusZJYEiK4kdC756SnjX7/+nv/+d79mNk+JXI+vPjxwOmU0GoQA5fSYukANHUU3YG1P23X4jscgHepBUw4uYRgzQtLbnPx05JMXS3bHI+l4xCozHLuSydUbflU1vPniEw6nkodNT1sb6rqlqhqEEzAdzVmOA2yV8bDaUTaKp7xmMY8oyoqqViwnSxazc6bTBWkaU1QlIhhj/ZCLpUMgOk6bDeGFw3KaQFviuR6e56OFJEjGtPstQeCjw4TeT6nzEllneP4IIovj71EIdBTjpJJ4ekU39LR1zbZo6bF05Y6yyKmaAZ2miPrI7njCpkuufY/ddoNKJwyiw/MDJLAtO7yzK6RymLgx7777lrw8UHQ9L6Y1ceyjohFtW9M0LarvaA85Zusw88DzU6ptxo/vviP0A/zRDKEfoS2JQxdZnyibmqpp8OkBQdMNdINF2p75fEkXBoihI9IOobZsHlcoz0N48HC7Ih7NObv8nOVyyjB09ENHi8KUJW//8I/YIqeXLp+fv6LqIbt9eF7l1inUHY6wOI5Eap8+7hHSol0YfIXxXayEIjvi6IGqq+hdl7ItSOIRpnHppaDJjjgDlMcD6avPOe3XBBrMINDpFOH5FNkOHWgsms4M9MbQNQUvF1MOxZHdfkdVNbSdoVaS/bHA9gYhLH32RHx2wgwDdXZiNIpZLM+pjntaLyBb3RC2JUIJ/vL//hNNU6MYuJjP2ewy8vEYR7vI4cjm8T1aKyTQ2iOH1fdMzv+eg22RdYFtSiQDWkuGpuTlxYLK1BjTUiQn4nSCNS2e9rHWxfF9urYmdDwUHqEb42lF07Q4dDhSMPTOc4uPaBHGEI9iGFoYHNA+tm2wfQfi+ePTtC1C9ijPpUeCLWhOJdnuQG+B3lBWHbmbcuEsOZ0KGATKakxXYPoGPxkI0gS9XeO5Hvv9QNVkmDZn1WscN2aSxFydzSnqmqs3n9P3hjQOOK4eiC9ddOBQ2w5TnnCdgWnisLrfke12dFVFMG8ZqoBJPMbpBqpTjUKxb07oTqA9SVnsCZMEI+Dudk3gujys3nM4nWi7DiUdzsYLYl/hOppp09GZnvE4YT6dEAlLU9TMzmYErst0eUaYjHCVxnUFp9tHphdL+tOBLMsZupZ07KLqAtPUuLHPab/H8RRe4NMe1nR9i9Aunyw/IXeONKeGYVCcLTVV3fKwyni9mDb7b1wAACAASURBVLKnoNKKMjuQKs31dMJgCpr1ivbTgv444I1cklGKdDzatqRtSyQ9+X6DHDruv/uG2YvXKHrMAEE85+t//QHTadKrc2JP0/eG4tTQCcl8HBF7Y6a+R5bn/PrzT1F+yjc/3XKZBKSLc9L5FdOLS07rA12e8/bmng8PK2IJOtD4WqMdh7I0XL54AcWecnOg7SHwNCoIUF7E7u4BV/b4YcjNj++odnu8ISc7tBR1TZBo/MDDCIVFUuQl4TjGmI4wHVNne5AudZmzP5wo2w7iCdsyJ+8Hiv0a9ltuHnd89rt/oBxPOK1vGUKPvofLyYTvH5+YRCG9dvAdjzRShLGHoOLp/gdeLeD42GKqjIsX/wtVaGlch7vH7XN4tuuyebhlu7sjmUfEscPj45bt04Fst0Z6kunffIH0fNZPa46nklZYKDuwwDCwWq2pqoasHfCqnjgN0FHKdrPiYjLDUxJXWnw3RDrPdeDD0KG0Rg41TVaigggdJ0SXVyAF0g/Q4wlWaqzVmH8Phe+NASfglNf4QU04lsggxZMWW9X0pqSuTgx9z2RxxsN337NZP6IEuGFENJqC42Gkg+eFOGVNqDVvH+6oTcvFZ5/x5nVMLVwebu95f3tDWVWUJuR4yqmblux0wgoLecmbl7P/0Pe0jz766D/ex/acjz76mRv63vvrP//j/1qcjuO6bVk9PuCHAY320J7meNyz3mwZrMR2GsdXbA8H8kOGaOGw31JXJ6JgjJQeSmuOm4w8K/GU87wJEHg4AtLAJ9KSIAyQfoSQikFqiqqhrBq6pkFKxSRJCB2F57qESYppeupOMo5jfM+nHySeH+EIwXQyJU5S+s6SpCOWkxFjR7F+XGHbmpHn8OLyGql97GARQqAGg+1azNBjLJjBkrgaXyuUVLiOwzT1wdbPqfxCUJqOomlYPR34808bNtsBoQL+9vd/wxe/fMOL129A+USjM755d0viCTxH06mQxWLB0BRs7m553ObsdwdsucHFcMoaVvdPuEKRpBMG5SEdF8+TLKYLUiVoyoxd0ZBO5lzNE0LRYZqaOJ6g5PM/b6KpcXxNOJmg4gRpBwI14HoOFoHoDf0gaCqDUg7Cf24fkQxoJFGcMB3FpGlMEkZcXV4xixwCLTi7uGZ58YLUkfhK4E9meHGCFJBMJkyuX1ELSWM6rJAoL2BfGfKq5sNqjR0sWEtdNUipKaqarq0pRcSHxxM/vd3wL/92y7HscYOQ8WTM+x9+xGHAX1zipxNaY3AZMNmOzXqD8HwcpQi15FCW7Hdrjts7EtWQpiGOUkRRSCAti1lEPL/m04vXnKcRuh/Y77ZsP7xl9dc/cfPhBjsMpHGCUR6b2ztmypDqAXdo0cUa15YoJZF+jHI1yrEo26K0ZKgqZBhBlTMIRaug1w4eHaY4UnU9KgypqoK63FMdtxxXH3i4fcfxmFEaS2U12X6LKTOKY0YP4IVs91uK0xHluZzajqKoQD3nTJi2hm6gbVo816WzgmC0YBLP8FyfSli60YSR6+JKGExNIgdMXVMWOV3TcPXiJV/+9vd0VnDYHRi6Dl92TOdT2q5ju94QRT6TOMBmBX0v2bz9jkgrkshjPB4zKIHrOMS+hwJQglZ2LF6cEQgPxw3p2wHPdWjymvFyyfJiCp1BmB5zagijBMeVuL7CVBX0LeEoRrkOfpziKIHrOtjeIp0QqXyEVEitsf1A2Rje/fCOoYP8lHP/tKKoKrSj6MoaIyTj8wXF6UhRnggSnzCOEcpF6ITyWBO7EWWZUdYNZVkT+z5BGBFHMa8+/wVqds6r60vSOGLzcE912ODo6vlcKE1eVThmoN6X2KanNYa7mx0it5wtZ7haUBcl+dMRKSW+Y4l8B0cJBmtRCKQ/Yrd6YrvfsD1s6LuWiefzYnzFr19+QpsfGAUhioFff/KKF9Mxs1AT+j6j8ZwwSblIfXxl6eqKNsvojyd8z+e0XnN6XOH57vNWz2Ax+ZHmlGPagT4vaIrnsya0osp2uGFIftjjRQFKCG7f/kRdnOgYIHKpjWFblAglOR5OXE9iImcgjh3yqiA8W3L+8hV5XpMkMVXfMLgu1fFAtV2RHw883tyzWm3RnsLVHZIW5c04nCSNOGe8XLIYR8+/H46P6XpE3xJgeNwe2GYF6WjGdzcrbu9XnJ2dc35+zmy5pD7WNIccMVS8f/c92/tbZlHIdDJnOh7hYomTBEcIOlPh+gFuOKbXHl7oUGcZoWdxBoMQLb2Q2L6jk4q7zZHI8xEO+HGE1gohwHcUSIVwQ6pqwAwDWli2mwOm6ykbQ960PBUtwvfRStKZhqYqoGtZXFyQRAEiiKm6nvq4o69KHg9HZss5aeLgiIKrmUZHIf/pU0mVbfiXf92SJj5x7PC0atnkgmNeMU5GVFVNZ1pu1vfEoeTH777mu+++Zfe0wg4DFxcv+c2Xf4NrGurTCdPWnA476iLjbpVxvzlh++fGOe1FqGCEJwWT+YK+blDFjvl4hBosSI03OSNKUzwNmIZy+4jF4kQJ0nNRrotwfaSjsUIi/n24IvqOruvBTxiUi+OHxOeXNG1NXVVAT5PvEV2J9Hwa09E2LdnxyOPjmg/3KyrTU1UVXWewVtINA6fsSFmWZKec7f5IMjvjiy9/w5s3nyKU5rBeIYXCD1M8x+fFi2tWt+8RfkjiO8zn8/1vv/zyf9NKfWzP+eijn6mPmyYfffQzZ63lsN/TOx7l+obQk+zLBj+NMMWRIq+pqoZ46SOSEUPn4uGBbWm6HDdMGLkeWmiq1iCtw/rpRG9g6GrSJKWVLheJ91wLqhOKU0dd54SuxgsVfl2SupJ4FKPjEdqLwbRoacmbHqM8Xl6NsG1F1/cc6pLlbEZ7OtA3zXNNoR/j+z662rNIPNL4gizL2T1tmSwdfrEYcxY4vH9a821VInyfth9obc/QP7eRGNMyGaU0dYGVZ9jecChr7g8Vm9KSVyV0hnfrjOlIMPEXhI7P3/zuN2yyE2/f/ZXt7pEgDOh6Qd1C4DtEgcd239G3Azd/+EfqQXD98oqX//P/xLExnOqeQWlq0zGNXOIgRpoj1eaBu0NOMh0RT1KWsxGJK2mOR4TQCPV8y1pai1YDrudhAdFWCKGoywbtekjbYqXCnZ1TVz3YDi01g3QZ2g4n9iisgzEN0j4PJ2gqrDF4jod1PaxWeGlK5Dns6hpjB2bTKdHFFbWKUEpgTEHTNDhuQDIZ01hL1XZ89W6FvNviKoWfxPTGIIee2uxQyYT9aYOm//cQW4dR4LMYJ+z3e5qmpj6e6KoGT8JjUXI0hmUU0u135E1F4PnEsxmn/T3jeUwQBCgl0P2AdAOGukYan6lWmCKn2m/Zv/2WfLPnX775CWUtJA7//NU7LtYtf7tMubn9nlfXC4ZRRNV1TD99jckzgiBFOQraE9IJsMEINV0iTI2rXYbO4sfQ5Fu0K7G+RErL/f0N8zhlf9xTlhXSdXh6fKJznqiH77FDz9nFFaPRFGyP7jNsUeCHIZ3t6LqO0A8IAh/RW2xT0FtB77t0bfi8fSEMnrWQ5cyTMTLQrLIjfRrQVRVKSE7HA/kppyqq560NO3CzXvO4eqAzBmEF9AOm6gm9gOXZAjfw6Kotm9U9529+QxAourLAEwkYBy0Eg5QM1pL6CU7gkTUldbZF6IAEF8/VtG3NaJ6Sxi5dcaA+FTiDi3Y0XhrS5Ufa3OBKCxpcPWDRKFwGU1OdChwvYug1OvBpV1tAUFYdN7cfEIGlXmfssh2Pmz12nxEdMhbzGbGaUx6OVOUJ5Qpm8zNM1eKokthJcVyFcAEtmM4mFGVJ1bR4fsP87JzWNLwcR5xfXhIHHvv7WzbVnq48UpiKY9vQ9Q3rfc1QGerWsNmdyNuBzp4QwT2vzsakMqL1FItpTNfX7ArLsah4dXGGv6+oji15WXLKDzjCMokDrtMJs2TC5nHFYHrmUcgnizFXyxmL5YKhKfE9jed6KK1I5imUFaYric+ucZOErurwnBBzOtDnT6wff8QJQ7w4Jjc1QeijfMlQWersiE5TelyKw5Guq2myGq1durZkvdoTBCHeZMxyErLNA9aHE1HgksxTlqmEoSaJAjarO84+eYnnx5RVCS4csg3m6R53aDgcj5yqljLPOVMW3/PYPj4yOQv59JdnZPWYF7/8LRf+hn/6L/8XH+5P7I8npBTMfcF2d+BseclT3rBZr3i5GPPqaoknYff4SFv1pIHLbr9hc/dEqDSqa1B9h6kq4iTBKh8RJowvz/HTEbghZr9CNSe01yO0R3480fYNpmtwI5eiKUjmY6zoEVKQD5D4EZ7n4sgO0Q+MQpdqEHjpgq5uuY4mHI4Z9nDk6XGNFj2+53DKa4TtaZCkhzUnRxOdXVJvD8iuYWhrksDFqQ19leN7mnA+Y2cEyvsVD/l3PGxThNI8PhSEZ2vmF294eNtjheVw2JMGMZ2jiQPN9vGGu7c/cdifYJDEkxFn0ytiHdEWe/aHjNX6kbY+YpoSMQwErqQdJEHgUzYN09ESKzo2j2tC22KNwVQ5Op3RKB+5XaPSBPwROpySxCE230MYYuMJdjA4rkMvJK5SCNtDeaJ3ApzZBX1bYsuKwXGo/r+twr6l3a0Y6hOd8jDakBUVT+sNdVXhaJdT0/N0vybwPF5cnjMWmmi6QMnnZjzVdZTHA2+/+ytR7PLJZ5+Thgn/+W+/pPrd71mtd/T5liFbMZQ5oqmJzq6x3cDH+pyPPvp5+zg0+eijnzmLZQBMcaJvKgp8qnbAEZq6qanKkrLqOBQVcvOAaCb88OMPXL1OmS5/jeyPVOsH2tOGZDTiVAjyoqGvayI/wI8SegHZMSdwNNX+hBNExFrQ5EdGwnCRhs91pJ7P0A+0VYWSCsdxGKTgYnmOrXM816E4doymS6RyCMOEx/0RNxwTRyldZ/CVRzFAEnhY6XOzfce4rhBS4knBp5fXhErxfrtHHDPK3YGh63GUprdg2pY0iei7lrKtiQPFpTuieMyoO00Qe0yLhkOVsy1qnrYGlOTD7Tu+//Aj2aHk/OUrurrg4eGJF69jqmNOnRc83Nzy490TQrv84vVLTKfJTxmetMRhyKHtQPQ83r5DSEvdDHzy5lMW45i2OOBUR2Q8o61bgnFI19WkiY9wB4QTIeKQrhcMpwK0j0hmCM9lyDZYR2GKGj+NMVXNgEBYC8oFV1OuN/+NvfdatiNJs/Q+9wgPHbHl0QASImVVVtZ0d/WQtCHNSOP70njDqyEvhjPTgqWrUgGJxAGO3nrv0MrDeXH6Hfqi8D2BW5h5mPvyf61FnESYDpo8xwwDGhikg1IOba+xlYMKJxwLTb5/QARjlo2NMhWCHuWHKKEo9htsbJJ4TJ43rLN7xnHIfrulW24ZANeW+EFJ4MZkLYxdQTSKMLqj1wbfU1hHx/RCooWk7Rr64gB9xzT2kFWJMYZhMAx1wWbzQNkXVCc2RZUjowlDtiGOHqccjiYWbZOjfJ9st0EIm9cfbjloi2qAH97d83Q8wcewvL5BDR3HSYHjGEbPXtC7J5SLD5j2t8SvvgRlYVyXQXcIP4R+QGCjHENfdwxdh2nBCaa4dkHkCOhaemmzOmR4YUySjPnx+paiG+gFVINhuL3DDwOqqmZydIrWD7i2BY7HD7dLfE8BhqpuKbuWqjeE8znp6gFLGsRQIzqHsYyY+IoniU1TZex0RzdoQiUJxiNc10MI6PKMdw8P3C/XWIOFaWymRwnzoxld1zE0mlD2DFWBbisWV39ExT02kr4bGCcJjufSiZ4o9mjKlqGoiB0H1YCybdL1ksCL/01AhGG/QtsSy0ikbZNMfWgOiKFBdB1DXRL6AtF1CEuA6RgGgRtFj4KVLdB9i1GGThhut1vSYo079Ly+vuR+t8EOfLQ2ZHmFdHKi/YbZXOA5Au2MMdJhPB5Rm5Z8u8CPXDCGwI8YHAd7ANOWOL7PxbNnJEqgVzfUrsUoSvjyi8/5oTuwu/szThTg24LD+kCVlRSHlgaLdarZFSVj5fHN9CvIG7Z1h+NH3O/3lH3D9lDyyWxKWTxOrOwPaxhqJq7HOHKYRSGxk/CwXVF1Hc9PTvjlySmhPRAzIOoeFxB9x6AlwTzCUQ4mkJgshb4g/7BECtC9hgEMGvI1+aaBoxOUo+i2OY0R9F2HNj2DrRmakq4p6enZ7De4wYjBUfSD4K8//sx0OuXkkyfMJ2M6R5LrDFv0DMbBkz6+UrR1SVOkRLFP12XoLKOvSnSRschzisFlsXq0BEoGLCT7rWa3f8fnX/+Cs7nk5XTL/uo7bi5fc32d0mmDJSSVMHz25IT5dETRNDw5nvH89Jjl9Q3R7Ji26QhGY2w/5O7HJev1jkQJIt/DocN3R8jgmOTZF9iWRsQ+mgBRDtiuhy17dAdCKpxkSvNQEVkK4/Ssu45ePtaDu3YPTU/VdY/WwqHBdjRGgBf4KFc9TjSZganvIl0PFQQslkv2VU3bdnTSQnguvR7Yre7Y1j3zkzNkL1h1At+1Ua5mudgwiUFZGiMDjgIXO37J05cR//E/zVjcvCb2PEzbYxmJrxw26y3hk5hst6UTPVf3Dyx3e9pOM5l/wunFK47mp3SWQ0fPcr1mtTtQ1yX0LZYtqOseg6RuWuYzF7O/R4+nOOGIcrkjcQyWbRHGCf7oCIoVrRkQyRh3NEZUI4b0jn6AXZoync0f97J5tOpaBqwoAWyMtOnyPcp1qTS0lo/jecimoOoqNqsV/vSUtDK8+eH7x8wSOyQvOyLPZ7XekjY9g1xhux7heI4fJYx7OGQF+6qkXD+Qrm65lT2uH/Ds2XN+8cUv+dWLY5Y3t7z5PqNNIjyhUe6jdQ3zUTX5yEf+lvkomnzkI3/jCCFwHZvaaOoO9kWKHfjIrsRxPIQliQKHmSfw9YGHuwVStli9xermivvFjr7cowQ40YzFYk3TtIiuZ7BainQPWmN5DqHnYwZD4lioNmPqK06nx9i2IYgSbNMjpcPQC+LxGNFWzHwb37XQRpGv1vjBBC8KMdogpMv85AwDBOGYYr9Aui7r3YFPRgkj1+XTV5/SVBVTz8PQYlyfRFk8nYwYhKAVNou8pO166A1t39MMA340ptjn7LZrOiRRGNAIGyEMz1+c8vPdgePnF2zyNVfX7/ny7/6OT778ksuf3vH+9SVl19I2Lau7O2QS8/7Nz7z+cE+jB756dUY4mpEVHXlRsFutcW1J6IW4nkdqV7x8foHQhuNRhE3LMl3TdBZdHKB8D58KVkvSg48RFu5kjshn2Hog8CKElNB36LbGNJq+6ujrBtH1SGPouppOOqgkweR7nDan2dT0XUdZtThyYHADRhcvGYSA9T30HSZ0UK5FHDwnkxLbNBRZRY2FW+TosoCmJs9rOsdDWpKL8zMwA74tKKv6sWITMEKi1zdMJmOU6XFs6zFnpqxoNChlISxBUdcElsB4HkrZSNETRB70LciAzf0dXd/SdS29hsk4oC4OZE3KfugZhTPOLk4JPLh7+wO3q5T7D9e8Xuy5yR4nLp76Hs9mc8IwYRQ4fPLsCWFsk8y8x1Ycq2fy1S/R19/TL17jvPg1uD5DXiNdhYlDbKulflhghzFCHFFt9witsFtD6Llg+UwcD288oWihr3JeSUHRG364umGXF2A74CjeLJY0t3cIY5iNJ4SjMberHcK2mISP1qTuUKNcl745MEoeW6Kses38tKHPVwTBMyazEZcfDhSLBzbbBU+jR5vLoaxJ05w6P7BYb2m7gfHsGFtWxKNzuqZFIjHaQgiFY4fgQlVWmKoAy0EFPm6k6Psex1XkZU6ZZsR+hNsLPCkRRU3oufiRYegLykODbDVxGBEmU/zgcfrHVIY63aGEhec62E6EUD6W54EUOKMIZQ8MZQqDh5Y9WA132y2L65+o10vWpabvJb/8xZcYY8jTnPUhwyB4eFii9UA8mzIWDgySpm5QoaLYr3FVQttp/DBmfUiJJ1PK7UA4mqBsxedfvKAvDrz/9o/Yjocxj/uoLGrSomLoNV3dkO4y8qyl7CTSjRiEYhzPsIhYLNbUdUOjFdaQcTpJmNgK2Q9UTU6rLZTo+Pr5OX1W44vHNp3r2zVSak6nIyIh2NzcchAttm7x3RDTHbCnJ4TxiCD0kNJloMc/OqUra4amoEl3WLaNM57R1Q3F8oGha1gs78CxqHqNP51RFiV5kWNHIUo6pJuUqhtY5ynGWVLmHYd9ydvNnn675bM6Z/rsKeezGfsip6l73LMIV2iUcpD9QL/b0x1NWN1vwZasek273uJLm/XihjzLSKYT6BssQrpWk2cV//pP3/P8+Yqx/pF3P17x/GzK5y+ecHe35fJ6RVYPjEcTFtsMYwTHvs3i7ob50QWilzw5f4WKPCzRs1hvkbomDjw8x8F1XQYVILwQR4GwHSzXQ2qJNAOICGF6Wl3DYNN1FpbnUmxrHG0w2iGKfOr6QDcIwiRAWgHSDHihjx/4uFFM1xtsJ6DHhmqHaWsc12PIG86OjwkOO3a95PpQEpmBQ5YzGo+4+/ATP1++4/z5S85efk5X5YRZRp4eaFwXlTicRB2vju7pjE/XD1y9u2Q6HXF0dMy7360pyxhbjYiSMbrrOaw3ROfHhE5I5EfYU59kdkQQO8QnY0pTc7dcUNUVutfUQhEowT7NQEgcZRGOJiSTCeiO/WaFGgZkkTJ99orRZEy3v8fK71GTU6KnTx+zo7IdnfRwR8e4Q0PUrdBNidYW0osgjLDMo3UWy6bd7bBdB7wQFc5o0z31esGQbdF9y/TlFyy2Bz7cXPGn1+94cfGEtjcII5jEMcJxeLtYUTYtVd3Qdo+5bZYlSaKYSduwKgryNOPk4pzEV+zXD1xLOD8/ZzoZ8dnnXzIbj3Ecm6ZpebhfMHwUTT7ykb9pPoomH/nI3zyCQSqapqXWA8MwUFUtSdxySHdE0YST82ecPp8jh563r3+iHwYOpcOh3JNlGXlacDFPSPcZ93cPpFmOIwWOhLau8YQhkDbohuqwo9kumXkeYRRg1Q3aDEgVI22F4/q4iY+SNlWeolyBqSvAYnr+CdJ2MYPGti3avsOxfTDQ9wbPtmmLhuPTZ0jp4wg4ikN2lk1V5dieTyMtYtcmdB0cS7IvSmZJTNN1YDRt3xH6HlpYeNGMfLFlW7SP4/dG0JQlTujzq6+/QLQFmzYla4/5x6/+I+V6yf7DA9/tthzqgbPTMyaBz1DmBMriyXyMJQRJHDObn5CVJbe3d9ijOYEnEVVFM0AYB4xdSVhlkBbcb7Zk93e8+uZL2rJkqDN0KNnvNjjS5vTTLzDFDlM1mEFQ6BR/fkzdLPESnzJviCYz6qKCDvqiAjNgTE152GEPPVZ1oBsMnbZoB0E8PaKzFa2wEMYQjaYUuzWmrRH+GMf3SfyBsm5RUUKU79nebxjqgUH3mLqiLWusIEALi67TOMrF6ns6YbHNCupiw2Q2JZx5ROMJZbrB9bzHakcDiaeoLcOhqx8FATPQ1gVxGKGNIPB9tg932Mql0xptBJXl4/qKSAlcEWEHMb2J6WvNj69/5Or9JZfrAtFDWrVElsXz+RylO0I5UBx2vPzyc6In5yhRIscRlmUxdBmilaijE/LL73GaCvX0c0QwBRWBDVIoBkejAkmvQUUx5T59zF7xR+Rlg+NH4A5YxjB0IaPZMf3QEcUhv397w8MuZZMXdEi2ZY2UFtUhQ2QlN9sdQRDSD2N8JQl8j6I27Ksd49kE5ft4Flj1O4IEjDnDMvDF86f4puX9FWwvvwf92BB1e/+4V4WA2elTHNPj2obB9KyWtyRhwmg0JnQkTtSRak3baxxHIBDEvoMYGo7iCC9yWCz3OJGL77n0rWaz2iK1wfMU62XL+ckc6UfYnqTvS+ptQ78BhMQomyDxsYceP/Zxkhg7DrCVT1+XYAa6PEPnKcHFE8q7JV2fsr15z9UPbwidAEzEl69eYCcWQmn6smaSVtRNwz7PKKqKGIHCo2kGNBrHshjFY5b7DAaFwmKSxBhh0K6HNHD18xu+eDrn7PQM3XV8/+c/8OH9e+4ebjBD8bh+I9nuSsq0piw7qtZg+5L56THPT46JtEYrB28QuJbC8gNE39B2DdvNBt/zMUZyNh8TB2Pa3YGyKhDYjF2f8eyEBoOnO8xg0L1mqFv6wxL35ALf9xFtjc5AVxobjXBcVOig/DPcUUyT5dR1R1eWYNs0ZUHfd+hWYhybDz++IfBdjDDcrhYcioaq7ui0JOthXZRkbUPRdBzalkZ3ZFfXTLOcL169ZGQEySgmDl3qsoC+J7RdmtWObD6jHXoay+Fwf01QFTxsMm4/3GC6nuViTzwaYzsa3/NY3O1YXC1J5J7h+IiLp8eM5k/YrlN+9+0NHx52HM+O2FSG5WbHJyfHeBhm8zHj4zl2cor0fIa84Or9BzYfbghtCyXA9UKkN8OJpgSBS122ONM5wguhKRl0TVu3KGmw/ICuarFFQ1UOSN3Tti3Kc7CVg20Unm2hMYShg2NbzE5P6I2NVAle7GBEi6LDsgNEpcnShkEqdN9R4RKPY54KQVvVLMuGsNeMHME+Lfnuxx8p6hbPdPiByzSJEK6D7UtGYU6+rVkUgqP5U04+u8AyGXpY48j+0SZqFE7ic1htyIqC6n7J/Pgp6XZLmqWUq3vOf/lrZtMxu+0CndVY/cAoDvEQLO8XGOmi/AjfVXRaUFU9nX4MIS6akov5nNFkQlvV2MZQlw84Zy6mszCDh657PD+hHiyU6xBNp9RpisbD1CW6qxCej2kaZDLCdm26rsVgke63KDlQZWt29x9wxxMerj7w+/s9796+4+lkStFZ1HXBJ0+eMDs9ZptlSPcN72/vwLJRtmTQA5YQzCdTSiwa+0BVae6WO9xwxNOTCaEDNi2j+QXBZE4Shwxlyrc/fSDNHycbP/KRj/zt8lE0+chH/sYxxtC0jwfBptdUdYmWLgwDqGCKfQAAIABJREFUddOxXqT88uuXbPeau9tLjIEWxe3djmKzRAgIowjbi/j551uyLKVuGhxXoYSiylNkGPHuYYtvZbycTgkVnI/H+K6HUj5K2bi2ixf42LZEGoWQDu7pCyzfg06DkYihRboufZWjtcFRMU2V0WV7pBMiBxtbeczHHoNy0KbG0gOOF9GmgC3Rux1+FNL0GuX7nG33FLs9ylXYXkwYeI+iida4ro/yQ6p9AdJhaFp8y6I65GR5wcXFDKFr/vLujk/vbvj9f/0v/Pi73z6+5KYFSRhxPJ9x9/6ACmMSqSi3a8ZxgheGrJZLwsCjLUqQHsQjgsgnkYr86meKumJVVCyymhkNd1fXXDw5Rhc1Nj7zZ59TrtccPvyE4/u0xY7p+TnKhez9O4wSdJlDcnZBu7mnWx8YpINlK/ryAF2DjQUSBgx1cUCox3A+rUJEGJM3FYkaKIoD8dNz+mRO3fcQKupqQZYXpNsVnlJ0ZY0TxlidIisKdusN/nTGNElY7PaUdcPPV/e4YYRrCaq2w6kaVNdRNzWnF+eAYZ8eqOqKu+LA0CnU0bPHNWUbIsdA3xBPT8j3B7zRnMEc6LIcYWymR2cIKTDCZjSdk7cti6trJmLgdnHPJj0wiQKW6wzHUSip6KXixJdIUzENI2wlcVwbLzlGK4XtDoi0QJcr7HiKff6cerdg97t/pndsjr76D8joCGMLTBCSrlOwBFhgKajThiZvCaIxNUCdEo+nVLrEH/soz2I6nyKDKa/fvqMZNNKL2FZvKOqKOIq5Wq/pupY07dG64/T8nK5uKeoG27LI0j3HL15yHFrYtPTNgpF8iewjHh7WKMtiGoa83aV0bUPge1i2wg8jBj3Qty1tlXPy5ATleGR1zbNpQtd1KNuiyPeUWY7yFG1n8F2fWRTz6tUrZN1QNSnxUcx6u2OQFSIKaNOKumzptcehqtCV5vwThTsKH2s8tca1LaR0MK6HCjzU0GEMmKqk1yVt+2h3ko7Esg1d2WDu17RFwzqHt29uWG1zTl8dMz1+Rjw5QTsDus+wowDPOnD5IcXxY2xfoYce7TQITyD7AoRhPB6xOKQUVYMdxDjeAH1Pchpjmoof/vDPpDdv+OabX5GEAUW6Z78/UPcC3XTs84Zd1lDXLX3bgx5wlYOyLRxXMT06QVkKRybUjqYsFowti2WWscwNz6cjqqbDWHA+O8fBZ3Bchoc76rrj4viIJJpy6HtOQkmblRw5DpboiCMP3wHfFwyNwPQCpMYeh1jWgBqPkX7E0HckrkvbD/R5Rn77geiwJj9kDNLCCiPcZEtX5/TWwMjxIWowh5LNcstNVrErC1rdAwIjoesNVVE+Bh0beHZ+zCxwcaWN74UoIVHaou8MVtOhFDy8fUu2WrE57JGWosfifrGhKhuyQvPCFVihRHmKJPKIwgjXH7O6r/n2p5+otcXmUBC6ish3GYTDk+NjTudzTNtQVC06LWiyDzx79oTdwxV/+cNvsfsKpSyUF6OFjz+ZEUYBwnOotebu9XecPhszjUfYwqWzHIRUdO0S27SYoUXoGsc2kESs8j3dIJFK0jT/FjjqK6QT4EQRzaElmZ5ghYq2zdFOTltAVcDdck2WFdS6R9ku+X6PT49UNsqVOK7CwuHMdllcb/jxzRu+fP6SfFsiHdBNg21G1I2FVjanZ88ZjSKmJ5/huAOX//3/4MPVAZNcYNsOZdmQZXu0MXRpwdpSlFrTdi2z6RmxM6FrOnbbLWnT0WpNnxXUdUs3WDhBRDQ7Bj3gWWC7MbOLp0ySAE8KjkMFWATTCxzPp68Tmu01QpfI0RMON7e40QQrHJOZAaU7HM9BM5BnByJfMdgWdd3gez27dEMQRtRZjqkOdLrg9uo1lrTJepv//Ps3FGWL13TI2GeaJBy9OuL47IxwOuWkKfHjhDz/f+nbx6DYx5DXiLZtuTjxWWQZm/UaGTi81j19MSX0PSwpiaOY06NT4nnMz6/vsBmQlvUo5n/kIx/5m+WjaPKRj/yNIwS49LR5Rp0diIMIbId+GBAY/Njj6ddPqO2K71//kfXDlu0hxRKPgotl24QTn0Oh2e32lEUB0qZuO1bGEOMwSIuXozmfJBOSJMEUO2xhEyenqHBMMB7hRAFKdthSISwflUxB2UgbTN9Cb9Dp9nFsfxAM2zXOdAxRR191SLfFDydUuxVWA8ILqHSA7nKcoSeYjunbGmea0DcNpu5wPJ9fv/iEzra42mxxpCAJPeLIwaajx8PxE3q9fAyMHQxKD3i+T7kvyMY5SRjy1z+/ZpT8nzy8u+b0ZMzb7Y7AD3BtSZGneH5I1BvqsuTs4gmT0ycIFG3bsj/scd2QUlhMLMOxrDGbJe+vrni93FFicT6bopTg6voahg7bkvijhCw3NM6I1fsbns4rpsmM6z/8lpOTT6j2A9ozjJ4/oas7suWWfr8GaTO4LnWa4liSrq/pNOTdQFU3SCPQjoUVxxwOe1Sxxpwc4U8DBkfDWBEGI9b7Nfu6Yp9t2d7cEEcRQTCiyEuW90u6pqHpOrLlmtPnz/H8iG1ZIiwLL/Ao05Ssbkmkha0USRJS5hnj+RxT54xcWG1yaFqGssDVLXW2xjQN4/mY4rBBWQ7a9Wmcx+yJWTAjliGW7sizHaNxTHEomKiS25tLbq/XJGHIdZax7zuKriVUEl+BEYbFfsPJpCddvebbzSWOO+LJF99w8XKKcRRpusIXEtsbYyUK+i2rd9+Sb7fIYEw9SILpDMvyCKZPqPMN5XaNF8ZU2xLbsjB9jRYG2WnmR8cMQweehx0qfvM/PSM+Oefu6gO2sCAMuLm/Y7FaMXEV2pb00qIzPYvVijga0zYFUg54kcdMtPTFQHB8wXw6Yjg8sFguqWXAYvXAu/fv0EYipGSz2VBnGZtDjucHCAbmrsKRIQYH4QW0dUlV9zjJyaMIGbhoofEcyXgS8I//89/TL9fkTcbtTz9hWYa71Zpcd1SeRxQlBE6EsC1wBNssx7peEFczwk9cXMfB6IGuLHCVAtOjASfwkRKM0Rjdga6xLJ8yLRh0g7Rt9sucy/cPXF8v+Ydffs3nv/4GFURo4zCYHmlC+vqA7bq0NLy52RM4PkNvEF6P6xrqvsNQkfg2euhxPIuGiuxQU+/3nBzPGcoMZUvSw57Xf/0Trm2TFRVZWRLEYy4fPlDXLW3T0Q/m3/6pAktIptGIqT8issdYbse22rLa7zkbRdwdMsq6InQCHrYZadbw9GLOeDyFoifbH4jGR0x0A71FP7ic+xG2pxiHM0ItcD0IYgvP6qEq8WcznMBBBGNUEIPpQQrsMEBaAqSDRNA5ivT+A70UOOMEbfnYkxlWOKUu1rRNz9FIUN0tuL36nnU/oHyXE9elHwyHomAQLb0BWw/0w8CmKZnkOWkW8sXTmLat8G2XrtMMuqNaPnBf5yxX9zRZycM2pbcs0qzlflVg9ECepfjuC5bFQF21xGFI2Vi8+WnPP//2J3719afEx6fw3VtiTzJNAhzbZqgy8u2Squ1w/REvkhmB6RiyDT/88V/YbVcEUj3WzVsSXIdKNFxd3dErj/XiHjF0tP9S8OrkBU+fvIIQPnnxFMtXOMal3h+wPUmV9gyNhaV8TA+WHxBHMW1V40gL143AGpNMW/yxRW95VF3LoWi5ffc9h31FfqjwbUMYePiOQ9cLimqg7RpmoxhbDCgJk9DleOzx09U1/2W7ZJ4cc3J8xNHTY6aTBAfN6cVTRmOP/P5nfr78PW4UUJaa3krQg8C3bTaba1ZpSpmldE2NvVsxTkZYZnhsbHId2h50q3BVgh1NKfqBrLNwPRfLdnG9iMh3mc6PODuac3RxThL46N2WkS7x5heEkxOwJJ4ecXi9QTSK7OdLHi4vqRrJ+Rff4CpFl2+xpWH67BVNmdJqm2q1ZCgqnr76kj47MIwT8vuf2e2WLBYr3lwviMMZb//yW26uF5i65LPnz/jyi69I4pjpq88fK+KVjXdIKaYpn5xdULU1ge3Q1xo7iQhHkr7rORtF7Hd35A/XOEPFxu7Rk/ljgLQRDE1F17RUec72/pZwdoIxw7/vYe0jH/nIvysfRZOPfOQjj5ejrsN1XMp0T6klRik8R1HpFESKrDvS5ZqibEHalHWNbQn80CeJIvryQFGW5E2LMR0iDDmOp7yaTJl6ISPXgX+rII6SiHByhBod02lBbQZUqLCjKdI4KDdBKAeExnIddFtjGY3RPdZogvAcjNEIq6EubnDORnSDg6lbvCSk3uVoY1DhFKvzKDY3uOMYbSk810U3NVoWeNM5fhQyOBYq8NjUHbp5fIWump62a3E8D2HbVEWHRjL65BnFYoEA9vuUk6MjjmczQs/lN3//K2g7Xv9whTDQNQ2DY9PnGYGUzOdz/CBgNBpTtR2HfYoRFrPpFL1eMJqPSbdb/vzdW7LDgYc0I4giZkfHjIY9hbTwZ0cEnoPle4yPFIMQHJ//A8u3P9J0OZPxwI+//W/YMiE6P6MVFtbNA44XMdQ1Q9diOS5SPLYBFPstdhA9vpAHMdK2aJqSw/Ka+rDGT1ykbeGen5OWO4Z2wWZ1oGhb3v7wE7buGc2P8dyIumj58O4SJRVF2dCYAW825nA4IP0ASxjm4wTLlhjP48hxiKdTZsdzdvdXCNvh+OwY2wwUVs+LZ6fsVMSu7+jbnLZ+vFzvDwfMIEmCEVEY4fnnzM+OaNISS7hYRhK7HlKDqTr2+4JFPRBELu/Xe95tD5T1wIntM59MePbyM4a84DTuubl7z6iz6RG06YYP11ecHJ1xPLGxvYFnv5wTey6m7WjqGmO5rNYNi833ePGI9s17wvERL79Q6LKgH2r22xohetb3H5BxiD8eEYUhyvPQaoZMYoyxMMPAi19OsfyIrswZGUPkuUSyJ00zdK/pjSBvG7ToUbSMk5iqrjBGkGcp8/GItu2xAGUJ3n//J7LBIUwijhKPoXS4vLzBdPVjpbfr4DqPjUWT6RTHDRhqidtL8qLB9yMsyyH0H/NpdllKPAn5xRcv6fMN6X7B99+/4X65ZRR42NKl2OWURUHb1JT2jlH8GNSMq2n6iuXbS7I85+uvnzMMA7YSCNPSVy2WpWilxIpjLKVA93SFpmtqtqtbkvGYLi94/de/8O3tPafjKd/8D/8742dn9Aa67jG8FGOjc43lNJzaFxzamkVRMQ8T7K6BAVzbwpICpCEKAw77FG/oORwy+kHz8+V70tUDShjmkY8NbHdbPM9jfnrB/TYlrTratqfqB5pWY7TBkxZnnsvItvGEi+gtymLHcrtm4trQtey3KbEjWac7JArfVhw5EU4n2WUZsa8YuQFZ69DrAdUJnMmUIEoItKS4fc/kdIx3FKP6Fr17QFsG6c6wh+ax/t33EcrHGSeYtqWrG2wvJNultFmJZSyk5eCMxpgwQQURTu1T3h+4+vED3715Ry5tPv38K6qsgK4lqyr8JCQvShQWaV6yqQvcIKDsO7K6phcK0eeUXYpSj5OC/TrDNDkPb+7Zrw+kfYdzNMLzApTnkh1KpBMgnISWDcloTFN3rA4NLg2epdlcX/HDv/7MoWyZxIq7VcpcxJR5StVHBPGY09kpjnLQZc63//I71jcPiEGAJQniCGMPbLJ7vn3/PU3dge4fs7ADnzQv+P82e7abBU6ouL35gX/8u1/Ta5dOgnRCetFCJ4j9GUJC1x8QDLiuA2bg9NlL1GSOndgIx6cpBv7wz/+d929+oOoOWNbAxPdxwglHpyfUTYssUrQUCNeBskbKGOkGWG3H8zH0hUM+CC4397iBws891guJ/+Un2MmUw/Vb3v7xT3y4vMPxbX7zP37J58+f8q8/7VjcrQjCBMt28fyQbLeh3FVoPWYUB4SjCPsopu0FZV7QdZpGuByMj3FsjO4xXYVIF3zz9X/i6Vd/jx40pi1w3RDb6/CsKfuDwT1x8acTZOERf/a/IZqc9v3/hWgL3ry95fJhwS9+8Q199Sje7POSZDKhTns2myUXR3P2iwda2dNsrvjw87e8/umS7+93HE/mfPvbP/F2vcOxFP/x5XN+8/e/4ezl58ggoSpTyrJAOg5lWVJXFacnJ6w2W0xrULZCuj6D6LFtm5PpEW/fv6PvOrIsJz56fMDpakNTVKTpgdH8jG4Y2C3vGU2mSCn/nU9qH/nIR/49+SiafOQjf+MYA5UW1INkf8ho2wZ/PKcsKqquZrnY8P/8539imxUstgVd39FhYTsevquYHx3jey7r1QNZ0T4m8k+P+PTiKc/9gEAMCCPw/IRJHOL7FsqF8Mk5RW1jOQMDDcXtT0xOn5GcvsTyAizpIdAIR2J7Hnq/QwYeg6vopYM2Du3hDu20dLaN8KY07QI3CrGtkGLZ4PgC3BAtHWQQ4bghxvTYTUVR1ThugFSS54zxEp93d/fYnoPvSgYbaqMxEkZRSNbktG2HZYE9aJbbDOMHfLhacHJ+jBsk7HYbrn+8AmEBoPsO3WvSLEPXDTII8OYzosBjm6V4QcJ0PMXwaI/p+56//PyBn3YHjjzF+Sjg1aefYCczouSMp9OE6XyKTYdvabyRBYPGthXmky/YXH0gCQPOX874l99fkbgWkdakd9dEymUURTh+TDi2Gdo9WVNRDRbFdosT+ATjOVVdMjQN6/ufmB8lWMcn9EHM1S5j9GTMj9//if3Dgt1qjRccMz37FDRc/vQzxW4Nw4A/GsEgSOuKD++vOB3FTI6PsC2B60ik6yBcl5nn4XuKIV8TxgHxaMrFxZzrH664P1Qsrg4QtiSfvGLoGozRFIcM23bw/YSjs8+JZ0/o9Z4yvWVjCdQkRvOAwNC10GQtuyFi2xf8eHNLmdUUdYuyfaLRlM9efs6rz7/i2dPnDMMW/df/Bn2DqA8MsqYTNR821xS1T1tXfPt+w9HxhC9fPcVyW/LqgG0H2K7N++sb2kEwLmpM3cJQs93nzI9mbHc77CTkaBojXYWYTMGfIK2QsqhYXV0yPp7hHo1QYUO5zyiKjq+enBIrw4cPV7R1BUJStzW17mhtyOsBBg1NQ1e0mNDCcV/geVM8C778xRd8d3lPvl+y3qeIrmPke/S2QFoWz5/OaHrQ2qAHMKbC9yK6RmGUhRO5GHNA2gMKha0cEs/DtSU/ff8j+9Wad3f3GCG5GM05vTjnFc9opabWgmy1YbHIOWwrLMfi2YWPtlq+v7xESnh2PmYUhdhDR3VIcf0AdIcxHU1VEbsOfVvT9R3b9Yo4sFne73l/d8ns6Ih//F/+V46/+BwjBuQg0J7CcQWm1jhigpENkRXw9KKle/+BocvpkFjCI4gCuqHB0YbjZEpb15he4Dge+0PF5u4aT1l0dUVrw+aQoYVC2Ta+spF9g5SSbjDUrabvB5S0iB1F4vkkSUwcO+ihYNdmeKGPGFqEVGAFHIqGza7GCQyfn8WMfElXN4wmI2xpI4WDGQRKCOpak5yc4XkBVttgy2O6/EDmKKbjhKa1CXDphYNlSwbdwgCW6zP0BQIL07YIITHVBqNL3DhGo3CTGZ0ToE1HVWz588/f8dfXHxiShP/wza8Zm4HteknWtCSyoxOaOi8QKMqiZrJf0wh48fwcaTrSQWJ1DX7goYVAWg5tlaPkQBi4iCTE5DV3VxtmFxJ/HKEdB+M6FPsNgT1wsASd1qT7jJfHc2Yjh4snI84/HfHuOuXd5R2u5+AriT+b8uziDF/55HnGbgftbsXN7R3aCISQDI7Lz3lFt13T9x3KcYksm1k8ZZK4BMchRVNzeXlDurvnhBHvl7dYXclkfk6+TfEGwUQ5uI6PkBpjBqSMEaKnNYbIHyFHY7yTE2TosN+v+f7nv/Ld639hEiU0OXz1yTPCJGaIRiyrhl56SFmy7XtcIVG+R280ksdWmdhzmIc2btNSHkXcbR5QnmQ0CfH9ELNZ8ud/+gP/97/+SGQZvn455/pqy6uvj+mKA5tVhjwUTOMJu65lsBRmqCgPBbHtMvnsCZu84Ug5+G5AYwtuDjvKtsNxLNIsZRK5/OrTJ7x4eg5dBV2N7YeoYMR8dsHIVXS654/f/ZlP/+ErjpIpyvYwuyW2P2XILhkpiz9d3VCWORPXYZG3TEe3hOMpJ8cz6rrk29UtFyevsEYh1fbAt3/5ntdXK/JO8HCzY7EvmCcjPrt4xnx2TJu36LImnhwhjUOZblgtKwYp6foBa5DEygMl8adTgjCg0Q0gmI6PiKMJu3rDarGikS5dbVGM59j+C57OnvB2ueZhuWG7WnJ0dPqxPecjH/kb56No8pGPfISqHWiqmjTNcMOI9T4lb3riUYSxLLL1A8tdCcKiaWss18b3fKazKdpyEdIGY7AtyXQ645sXT5kw4FsNju0RhiPOnj5hHiuWy3es9hnvDyuUClFuzGC7tE2Ke3nNydkNk7OXnD/7jFE8RgqJ7doY16frKyQZfbWmLlb0Q4uxQ/qupSjvkELQ9D1dN5DVe4a+Z3T8BO/iU3rZ4SQBBo2lK7zigOVYWF6CHdnElstkmvDnH36ki+ZoadH1PabXCGHTdy1KCG5fv+Zc9oyV4uU3X9HsG1rL5ebyhlESYgYNlk2eHuibhiQZITAI12UIEsLpMVXb4fsejnIYBs1+s8adTFnvl6w3G07HEb8+T3CURTCes0xzmmSGPZuifMNkfobEApOiswU0BZOTAMd7SnWoiWev+GVn8V+/vcTbbajSgpE0tNGIaNYjLFC2phxsLrcZvudzbEuEYzOIENRAMeQ4rqEVHcZq+MtP32G9e/wedz/fcTI/4fSr32BHR9z/8Xfc3twSeQ5hFLOuGt4tFqzSjNBRtL5LlefgWriOpKwzBulQdg1KePTDwJPnzzh//oRpLOlPZ2RZhZEl92VPUxZ4esDCYDkWtq04OTtnNJ9Q1VcU+3eEnsfLT4+ZziReBdgK0wVsK4ubQ8nNzTVd0yA1KMvieBoSzqa8+NVvOHl6TnB2jJRPeDqKeHj3Hf8/e/exLEmanvn9759rGTpOHJkndWZliW5UdxNoNGEzoJEc2NBsVjTjjhfGNTfkhjSDEcBwgEGjFbqru3RWVsqj4ojQ4Vq7c5HgVdT53UAsws0j/PH3e943n/2G1WyGUBQOD/c5X+dYbUOwuObVzSUX8ym7noHUgj9bMxiMsMyc1WJDWa9QhEIQ+lyvttjLOUJXebA3pNU0DKdHUdak0pb15QmL6zV7xwMKLWJ2PSXPV/T2uqRXMUISPLj/CGFYzN69QWqgtiwyKpKiQKlKZMUhl0smI5Ojwz66mlOnMyTH5d7jJ1SKwa9/fUGWlyhFgtS0lEWOomp0vA6aN2a18inzEEUoVGWJOxhzc3PGpKdjy1DQUJYNXcvBdd/fI7Ren3uPHrD/k4SybhnaDnJeodseQVyRphW2vqFITrhZb1hHW8Isxu112WYlr06vuFn5/OIXz0hWc5QWmrqhaSqyPCSNMhTHgabC9zfvu0Qu4ez8CqVj89HP/5zdp49oKZBVl7ppUSVBnCQUYYWOTLRJuF4uiZKcjtchSkpUXacu6397oNaQJDA13q+7bsEwW8TcZ2hpOLqCM+4RpxmLjc94vINidwjjFF2RMFWZWlORVB3FtKEoafMSzXAYjCeYnkerChZJTllLVEnFovLx/YQwylhHKfuyxl6vizvqo3QH6IaB2irktYrWSFRJimoYdCb7SGVCKSQMYx/Jdbk+fUkRLVDzkGrTUmcZd370jLqqkKSGcPkCd3iAIrsohkqVhqSLa0RbITU1imWjuyailtms1/z2T1/y/PlzWr3Hsx//lP3RECkvUC2VPUujSiKkqqYoE6JWUCQ1k9WAk+tT6jRnNBojVTKtcMjSGKEWiOJ9UW6V5niaoFSU9xvPFJmb6RKn6xAtAowqxyBFllVM0+HqYsb1bM15X+PZvS66rvLzv/kF1xeX/B//+wbLNui4BhKC+c2MNE5Blnnae0oUpURFjVAspmHCajklLXOatkGRVYQkYagmHaPmUT3kRwcdnO4e9+8/Rq9q1u/OqYqc67Mpnm6TxlteXlzz7/7sE4yOhaV1iLcb2iYnTzL6XhfdG9JUa4zhA7749a84efuGk9ff05YFtqqgKSqO2+M0zlhdvCQJfK79iKaukWUZTdfZHw7QFEErSagyGAIcVSHLc/Z6OmWjkNc1TVmgZxGXF2+5uF5wPLCR2pqOa/P89Yzx4T6K1NC0DTeX53j2irppcR0L21BQ2hbNcLlJC9Qs4NBzackRmkJdN1C9v17HkzFPnz5mb9zBNk2CYEm8mjF+/GMaWcPuDWj9kHKdsj854s0fvsH9xU/pmCpVYuAePuVYaJinr7lafsXJ9ZprVcXV4KvFkp675vXlDYOORpvG2HafMop48fY7ZpuA1SbBzxqqVuKg1+XOeMyDyQ77e3exuj3qsiXabCmrlCbLWK+WaG4HWRK0dYvaCDquB4ZOkZfoQqNSWpxhH7fbJVr6KLpBWde8fv4lvb/6OctwwfTC4LNf/QqyFEWVoSmA29Dk1q0fstvQ5NatH7q2RdASbH2ypmW+3OIn799oq6ZJK1S2UUSZFxiGznA4QAJkXaNCsDuZ4EkJgaawN+7R64xwKcjznEztsi5qFKPk7bvntOGcMokJw5C0rOkOhni2g2uY2JpNvA15c7bCMV9yd/cNDz76lP2Hh9iyC4ZOuU5QhUTpB1RJ/n4bQ1WwPJ9yPb2isRxevzlFEwa7936M5XVo1fcPNPObczSWtEVAz5aRjAY/XzEcHiMkE0nS6ArYC2J+++1rLtcRmiLhGgqFpKGZHeIkRFZ1ck1lMuxx8eUXKE6fo4M/Q8oCbi6uyMsaIQSGrmIZBkgCpzcgCQIsS0eWQDQVfpyhdsZk2yVhltHvdGhkiYGr8cHjBzheF9HK5GlAkWzRzTFjr0KrQ+q0oTa7CCFodYN0saERDUbH5eYmRBvtsPfsmP/WkFitUtSdDrPZlks4EIn8AAAgAElEQVQ/4L6nsd7mDIddhKLi+wEjq0XXe2RNxaW/Zjq7QFLhPK0wtg3n8z9Q5jGaotJWgjt37+MO9pifXROnV1y9eUlSliRCYja94SZOqLMYVZKgaLna+lSKwsAbU+RbbEt7f2zAcrD1ljRcQR5gkCDqlslOj81yxcl0SVtrFOs53ZGH3h1SxSG67mAYJhdvPqOqbjg6GnDnziEJJo6UIBSZuihoyWgdifR6haxAVzWQKwlLV9EcHWfsMToeYA/7hG2FVJUEQUpTuVj9hyy38OXFBd8sz7A0i8e7E1xNUPpbfvP8AtfS0GUoGsHdrEbVHSIpZJ1kBJeXNG3LZRCxqyvcubOPt3NAW8LqasViFfDm7XMc12L/eJ9S05ievGC+WDHe2SdtEty+TTTbUuUlvZ092rKhDbakRUFbFyDLtGWDplt0d7v0+i1dS6PXdzE0k6bO0WUJqSmxdI3XJxcoVU4Q+GiahqmbzGYz7nT73H98j+1sg9AkVNchzEsky8KwzPfTQYagKRM0TUFqSrJa4uijH+H2xgghyGqo8go5LxB5jCFy6iajseDoXg1SRjYPmfoha1rqQhBkBdoSWjXjowf7WI1B3oZkeUxS1+hIOE1GXWWEq5A6K1ksl2xyePjJj+kPPBRR0QgJRVepkpLr8zlXZ6f0NcHF+fecXc6ZrwIcW8OzLQa7EwoqaBskISiKBkU0mNb7XpOyhjxNkauSgWczcE2qVuJ6uaaVBF3PZX//gO3imvVmQ5qV2JbNZGdMFFdEfojaCmxNB6FjuD3enpyQbRZQ5LRVSbANaFCIyhohVHRJRlUcvOMPEOYAWRhcv3lN7K9ZL7bYtsf44WMyVUWVbWRZgVZCMiy0yOf5yz8wtFqYXaJYDp3DHmavh5TVRGdnmLKB5CiUccjq/Iy6yJBQkFWDVhJosiBabvnqT5/zy1//lofDe4wefsCzZ4+RadC7Fm02IlzfoAwsyqSkbjP0vCSPU2xbo5YbgiwmTQukVuP4yc+Yvf2SMprTSjJNKwi2CVlaM1+F3GxiwrQgqWos2aCjqRRxQpqkJCmomvG+hFgWrIOSWoxYLgN+8w//CmWMIgnyWmYZpNRpRNNAlBTsDPuUq0vqJCRF5nSxwc8yiqqgZ2h0TZOqAYkWR9VwjZYiXvL6u5wnz36Mtv+Eni3TsbvEgU9R5hBm3BkNIQnZblcc3n+E7Q2I0hA5y9B1C2PQR7cdGlHxxW//nl//8vdoxoCP7z2miLf0LYOk6HOTl6w3G9qqxekMsNKSKI4I8hyzqXl+GiEJDVVVuTvy6GkKlmkx0QzmUUibpGRCIi8LttdT8vklP/3wIcv58t+OA0rULWR5Rdd1EIsCSzfwN0uSNCUvK4SQ6XU8aiGYTc8ZDUZUvR6NVBAkMYosUP7tN/nes49RLJXO5IC2qiCLidYr9MtzHh89otluKKMYWapQgwgjyPnyv/4tn/78L5BFTe06uPeeUpfw6XqFM5tzHRaskgrqktfXSw52W6pCoq1hGPis/YTQj9gGGZZpoSmgyoKuotA1ZOJwjb+2kN0ehjdmvbyEMiMoaqY3Ab1KRdYMvPEEXTfQLJ1GCBQaVFVlGwY4XY2juztstxfIKFRZiukqnL36lvnUolrNmJ6cIEugtLzvXLotgr116wftNjS5desHrm1bNsslZd2yDROutgFJXtLtdPCTnJ1RF6lMKGyHvGmJowxVanBlCcdUOD7cJV9c0HVNRt0+dWswv7ggTDLu9o+QhMrZyRvSPEFuCsqswDYMwqzk8t0UxbSwDYNPjh4ydvap0oRlGBFtvuZmds7+2V0efPKE8aBPG29pooYmqYinG6I64MuzN8zDhOubG7Ia1lFKqzqM2w6iPSX99X/F9VxcRaWOQqo8QBEFnquTlhX7h1NGwwmubmGoMns7e9zNJb75z79EpkIeeAhdRpYVDMPEMFSSskBtBOO9Pt3JMXvHe2wvC6anb9n1+uRVQZhlmJpKC6R1TW/QR9U1kjhisn9A2uYE6yVyWzPqjymbGrXX4ae9e/R6XSJjjC4ZBGcBlVTSG5gkyxkn52+RHY+8ge5wH1WpMYWgOrtg7/iY1pK4Wr1hqOr07zxgHl0gipR9z6Fb1ixvVnjjHpm8gyorOLZJIRSmy4Cr6YrT1YooT0nrFsfuk51fkFYBuibheiZP7n1EZri8fH3N9N1btmnOJg6oBOR1QNU0FGlM1VQYsqDWVIqmQY9NnLyiFQptnSBLFaKsUd0eSqeLKtVUWUJr62zmlyTBkrppkGVBHm4Qww5lXlHnBcLSmZ6dkMan3HloYagJ8+krdg6eodY6qpBphEZdLRnaCfcOTZabBjMrkSqFthVktcrOzojVcsHN5TXrLCH3Q6rrNTvjHfZHxxSJxOtZxKvZFU275fX1kgfDEWOng2Yq3CQxpiaTZSmSmuDJMRIl8zAB1+TeeIhtm5idDuP+Lq8+f0WY5DSAn8YgRSTKgNmLAOn1czRTpb9/QHfvA/TGZDO/Jq0z8jQmzSP6wwGlEJRxhJJskRFIpkxTFehSTVuoBH6BrhVYoy6mUpJvrhj2PHq9Lq7jkK4zTF2nrirqqsSwLJJggyygOx5iyCZpU5IVMdQVTZZQCYEitziuhx9vsDyVw48+xhkeQN2SlxWn84ggSqniiLIt6CoeSqEjhEMpluwc74Co0bc+y7zmKs2gUXAUlT9894qyDNh3BhzujcnCiLQssXoutdQQbmbMVimerhBHCYd37yIUgUCiKksaO+f19895880bZudvGe90eLvc8OLlK5bBBlkV7Bl7OM4+52FCEc3QRYNUNuz2d9CEjq0LGtESbn1oBIYEjmjxFMFNUqEp6vvvUpXJwxBNFqhtjW3amLaNLimonR53Dp9w8/3X6IqKUre0ZUkVJRhCIacgqiUySSGtauIqpyhrNmVL6x1gurtcv73m3fWad29fkeZb4mBLWkPv4ozRoMOzB8fs7+zjdbrE2wR5sIe3/5Tp5fesb+YU2TWJbvLkL3+EFmUUcUQ8m2NkKtvFhqvXLxCNhKnaGFaB3unjL5d88a9/5Je/+S0d3eDgYMTh0zuoHR1FAdGWoDU4/S6ikJE6Gk1ToscJgViT6CWtLJD9DUWUMp/dMOzYaKpKhUaapjStwN9mbIqUmIZUFlRAT9Oo85yxa2MpClUtoakKUlXRc00kSeLRo3sYjoHaNnz/zWuuNjWzwkASPuOBwl7HwVRVPny2x+bmBrvKydqKom2I85SyqhgYOk/GfTqOjWE6uLqJLDUURU4QxgRBwm8/+5IPlA6BgEefPuGnf+My/+5LbLtLd2cXq2nQHR174GK6HczBHsH5G3w/RBsUBP6Gi29v+Ic//hGair/48ZijYY+3swvO04rv/JTvLy/IawlTNzE1DUezeNzzsC2dm82aMM24WAY0kkCTG4aGh6BFVSSGXZO9rCJoG+L1msLI2PVsDh48ID7c5eybr8ntDm2n937jlR+QJxFhsGG7WZGXBarhYjpdLK9LGIf4a5+kN4aHz9AtmzzL8BwTBYmd4QRRh6TbGs1+RBWsiYMA1+3RkSA7fUVld9B0kzLeQFkwGA44WW74wzdf8mjcZz1bcHRwn0bXMW2He4cSR43MbLvi+5stHQq6rkHX84g3K4K4YDR0WW991DpFV2V6roXelAx3d2kVHVM3kXSJLE1YT69YB2skRcUb7NAZ58iKjtPzkGmQAd0yyESLTktdlkgSZHVLf9xnb6fLdpuQ5CVZlpIVKeQ5b8uGIIjoWzpJmpAkGbeTJrdu/bDdhia3bt2iqWuCOGYTxSRZDpKgLCsCP2Iw2WUZlcRpTtWCUBRMU2Xc7/DswSEf3DvgxfqSyWiM5O6xuNmiaDP2h3v87D/8L9T+jAdHu4imYnFzQ+RviZKEiRDEaUKaZ1hyzdX0Hakb0rNsDNPGMFXmZUD57jnR4pTDwxFDScbqTwjWN0SbFYvEZ732WW585Bq0psVUNBZJyDdf/xZTtzGRaO0+w4N7TPbvUodrDKlG0QwUzeTdu5dEU5+D3V1UWeDt7fCzH/2IdzdrvvniT2RVQ5gEVIpOmiS0tWC0v8fu3oT1dk2RVxRJTOyHBEFCR1KQaTF1DUFDlmc4joUf+ATLBXuPnuJ2+pTViipYUzYKsuG+L1kManZHDlJTQjxnOQ+p8oJ+30M1dNq2JqtatidXzP2I7l14dHzA929PsNuQk9cn6IMBWd5gffAxnlSyOzaZTn1mRcu2aNAVhcFghLs7QYoi7h3s8N1VgO7AMlizjrYERUUrVPx0St80Ge7sso181lnBP371JWfXK/IsIckLmlZCcfooksA0JUxVoXEcdFNDoyVZzLA0BVmRadoWSZJBUlBVBdUwkTUTRW0xlYzV7Aa1v4vi7NBxN4g2ZDLo4YcBju2wXFxTpiXr/JIoWdLr1RS5YD3L0euCvXGLouhQNui0ZMTsmAVuR5A5Nst1QJFUbOOWpmyQsho1b3AUi1pVeXvxjjxMWG0i3lzPuQm2XIUBk4//HEnUbM7f8dXlFEWS0WTB0NExGom2UdiXZD7a61DmMfeGNpam45hd1sJi5a8Jgojz1TWBIpOnOWmSUFGwuZxhmw5ZUfHx8QEPHx+hpg7bTU68XGGqGrpu8m62oKpbup6N1tZ4RUTVyDSWTeVH+EufofOQqkwpSw3dEGhlSOEn9CeP6HU8Pv3oCW++e8F6vSRJGuI4od/xUJoS0TaEi2u6O8ckaY2jmwRxSJmBZhnvN9mICsXWcIcTuv0jok3KdrnE7u5zcO8hv//dP/Ht5//Kcr0lDRSkSkXTTUxbYmzDkdFnz1WQpC0FgvUyJq9ahAxfnC2ZmmsugyVP9weUqQwdQZSlLNKSTCpRywKza9JYNbpe0So2KB3+9Mdf8/mXL7k4vcSQJb74PuVmtkSqKzodh6AQrE6v+WZ6gyu3DB2dnmUhJJmuNaTX71K3BUJqKLMYUzWZdG1cVWB2ekjFFsdQcA2Vtq6Zza4o04jRYEAdxhjdDoPhHmkM/mrJ3UEPT5aRipis6lDKCovNkm0UswpCxt0OURiRZClFIyG8Hr37j3j15oyXX33Dtmg4z1I2YUjub6GtmL9ZM7u0+PaL37I3mHDv3hN6PQ8F8LCx7UMSNWS5nvPrz14wSxIOH/QYKC1KtOXmcoGEQpEnqEIBQ6GRcuJ4wedffMu/fP4nkjzm8e4xzu6A/sGIMt1idk3aPEO3bYpuFynVaYua7XpLXpVkWcl2NcN0HHRNRXMFeZwxW21IVwtsS3rflVMXCAmyoqYsG+QGXE2hI8s0NAx6fZAEkqwitxD4IZ5rs3cw5ujuIUkUMLsOiAuJi02JrJvsj2y6nS6dYY8mSwnjFFd7v5qeIqXr2AztAEUY7Ho2k46NJKsswzVR61FGJabQaFGphEycZ/zTP/0tg/Eu15rg2JNxFI3+4V3cgycYpsP26hWa00c2bRSl5dXFNaLKWH4bchlGvLneojUlH+2NOTIq/vTNN7y7nvPSj1jUcHT0hM1mxcvpBQNTY6ffw1RdxqJGAe4MPWoE2ySn69rYro1cJfhxSlUW9HQFXbOgiCnCgqSE0++/x9B0OqqC5DmMdw9ZzS44u7gkiyFNYpoWxL9NFrU0DAZ9orREk2SstoJMIEqTnm0SBj5ZVqM6BrE/I4pDksUxXcNidPSACo2zP/2K1+enDJ58gp777HkebVrQZAKv1givnvMutRF6l1gCSaswbImmMGncCZUBk7rl2Ovhel1kKnTVZHcyIc0aLHHDQX+MO+pSFwWOoiAZLq1moFgGUSNY+D6+LdG7d4BnDbB0B0tICFWh2zFp0xhTUbAMnaQpyFWFPAhp0hRF0egbKpO+RccxCYsWP9hSlzWtpKCpOt2OB0VGGGeswoi6uQ1Nbt36IbsNTW7d+oFr2pZllJLlJU1d0zMMBp6H5Q2oZI2ylLCdDmW9RkbBtC0GnoFlajzYtRmoKbZt4zkd5oWDcODuxz+jMzpkZ3cHbcejfXQf8piv/vnvKVOf6U2ApFkEUUaaZwgaJClmlSR0HZudrsuO3mVgWZiqgWk6RC2YRUS7vMKPfHIpJUp9mrSkq9ssmhy/zEFVUIoKTWsJipRtI5MRUl2esVhe8xdPHrN/5zHqYIiaRIx6FnFZgiQIllP6rYRpmHx4OGEz22WT5Nysl2hOhwaFPEvZXp2yY2c8O95D8RyUNiOJEwzTZbYJGIx66LpKHEdolsfFbMl6dk2/azPuOcStwmCyj9qAXzSsNiFFmtAaFlGZsuOZVFsfw6pZyQp505KEOYWmc/zRX+JPT1GnVyj2gM1shVzUzIOG7c0Gc5bg1zVpGvHnT++gdyUejR9ydh5QnDQcdruY411aoSL3XDxd5amm8O3JJdsoI4gzZMPE6nZJs4xYNbi4mBElEXFRktZQZil1WaH3j9DsCc/+8q85vHuPz//v/w1Xa7ANnUG3h20aTF9/z3p2/b5ks8xpaBCiQRISjaTQCAUlz4j9mLxJyb75GtPtsIlbXMfE6LjIikK49cnCmDCM8ZMYSS7xOg4dd49Of0i7nqMJFc1UKZIASZGoJQFVy07HhVbBqBRe5yuQa0gqSj8l9VO+izb88k+fk2+2mMAmiihUG6O3S1XVNJrGj//qL/jyH2u2yy1NK7HXG5JnG9ZxjBAKRd3y4Y5HX26xNJOsVSkkjW1Sc7UMeXW9ZJ1lrPPi/fh8GlMJgappHO0ecDiYsKMavPjn33Gq/I7DO3fQTAO942HoFkEQsUxCYtvGUkDoBnktaNKUKq/QbEFDxGhs49g+zeIcnC6uN0HUKYd7YxzHZja9ZL5YIRQN89+2QaxmC5B1Du8dIysN69maepOzvzvCMk1s16LKYuI4wlRhMp6Qb32m03N6Iwe9k3P19gtGWsn9oyFCt9m6Xbb+lmVwSXnh8yaveS4M7nk2hqpw5GkYaUOQNgRpgS43JLVgIUJsveXh4BipVinyDWVVojYNtdoSKDVxsuXe7h650nLy9Vf87f/zX4jLgrOzG4q0RJZAFTL3Dw9xRxO+PL1i46/RNZnOzoCDw33u7U7YLK7QlRZDk2jKHFOucNUGTbzfhtK2IDkDgpMr6rZl5kds44wsCdkf9dG9MaosIZsWw50JctmyJaVNWqbLNXd6AxLfJ4xCSmAV+qiyglam7OoyaS4wVZsHT54hhEwRbnFck+V8gaYWdFwNp79LW2VcLuYssy1t2bBKQ75cXtLp9RlqLq5k8Pj+HRp3SBOEvJrPyJ7D5y+e8+Nn+/x8eMBmc0ORx5RphqzadEYDojDk68+/5pvpBfNtyOFghD3o0Oo559PvacuETuAwnhzRGg4RBrM05PXX3yPFKU2eMPJcqjKnSiVKP+bN2Tl3dvdIsoIsqxEU0DYUVUVZV4RJSVW26BLomoItJExFoLYltjdBIKEUOWWao+kae4eHqLLg7dtLvnmxZu2HHI/67PdMoiSgMgyUcZdl5NO2FrtdGzlMyMsKQ24ZWTqmrjPseGyziqQtWccZeQ5+kFCXFWXd0HUGGLpAB95dnvPi4h2P9gf8+48e0VcM9u/eJdMMyEOi6Sl6Z8Ds5ILzeYAqVdA0TOOIsmr4xd0RFC3/8u1rvpht8JOKDx/9iHR1ys9/9lcUl6/ZM2T8MORitWaxWtO3dcYmCMXhzx4dYDkG/V6Hpqo43axpqhbP7dCmKYKaMM64ui45LzJutm84tDU+vbfDcAiVaXBTVNimwU1UgKKD0lBmGVJTM+ge0BuOcbISv0oJspBtOMdyDXS5YpVl2N6A2fycm9M3SJLC5eUloyefYO09YDlfM135nEWn6PN39JWahzsHDAd7jEcjTKkkjVzS+YJKvyTtqVRSgHp0H3mzRtZ1VO2QI1VFkyR2nz5GoWK9bui4HZbnN5imSWc8YHj8mPD8FXWZM2sUvDzirAiZa0d07n7A/YcDVAGu5uHZPVpZRlJatHJLGW7wr5a0dp/R3bvMywxZ15GSEjYpuwceU9NCVmo0x8Ktc5o0pWgVbNNAqQqmixlJlpOk+e3hnFu3fuBuQ5Nbt37gJElCkaBsamzDout1GNkunc4QY+eIVNU4zbbMZjcIFdq6IfAj7k86JOs5xc4ejttFcwa8fH7JZGeMLqDrWZhySX/YxbYFlC765gF/qCJOA4lVVLItY8I4oa4rasB2WxLRME8i3i3m7NsG+65NGjjsZT3q3R3i9Zwiq9CGLm5To24L6iDhbBmwShKKtqVooWkaqgaqBpZBwHQxZdc2WKYb7m2W3NnpczTysD0Vb3iPEomdQxfFttFMnUd39jCVls/OV5wvNtS0pFGAqcsUpczp+YqmEYyOHDanV2QrH7kRWNb71bqyrGMaDdFmRRQmlE2FZ8mY3S6maaFKGWa3Q5NAsE3YbOesYp9m4LCrydRJitnp0tdrtnFD3xnQ6jZltKXIFHp2H4WWsm5J44R8G2KqOm8uEmpD5uTyDeF2ycdPH3I0HNKvJbZbndZxGd6fUEYF9sEx9cUZZhrw0aM9kjONeZrRKjp5K5j7EXG2IcoLyqYBSUe1OsTbLUggqQa9e5+we/cp2/kVqH0cV2Lo6oz7fSzbRMkSgtWKRshIQmK5iUEvsUwdTZagbtDamk1Q8W4e0htIlOUlTZmhmS66YZHVMrPpOettiL/1icuC8dBBajTWywxh2LjWASCjNCmGJ5PnFfMkweu5WIqgTQusvke0CnizWOHKBlfLa9Suy9/96WvenU8ZDieMh3s8/WDCeVoxevoJ0W/+X86/+Jzrb7+iSBJARYiGOPY56pm0ro4tSxwNPBzHoEpz6qblKky4CALKGrIsZx6GhFVDUBZkdQ1CphEyznCPRupjaRPMfodxC028oShKdg/vU5k2slSwv7tDv9lBaAqNJggVhU2xporXFEmK5zYINWR9dYVq5ojdHczOCFXTyOMlPctGVvvvV5yqKrKQQZJIs4I6L5idv6PXURk8+wn9pmQ1v+Ts/C2H7n0QBpKosF2LVEhIusX86oq9kY2hwubyBBGnyPGG416Xx09+Ar0POZ1d8PKrf2H56ox8E7Dehvzp2sdVYCdU6RgWHVUCWeWgp6NXDQYOB3YPT6tRpATV2WdiuFxdz7lOErZZy+7hiLjS+M9/+39xdrYgiAsuLq4QbYtnmAwsi729Q+w7T9hWYG5S0ramzBLOrxfUZUWn2+Pe4w+QshhVLnBlDVfrsiiWaOb7Dg5N15heXODHEWmWYmgaeRKy23OxDA1NkZFkhQYJSVExDINGU5nNQnTbpskT4qIgqxvOF0taSeLebo8dWyMMMvplhTPc5dHRMXUDg8N77D78kI8sk1bUVHVKOr9gO33HcjPmws9Yb2PiKCXMK2aXl6wkGSEE79Ir7h8ckKgalu1w429Q5JI/fj9F0Z5zp9dlc71F1SRaueJ0esXpdMWL0yv8MsXqWdRdja0U8cXvfoNn6zy5ex/L+4TTDM5envH8zRmXJ5e0cYxc5tSxz57X4Xhgo8c+N6uQ52/fcHZ1zc9//Amxv2HSaJhCokgz2hp8P0EYCkIILF3FbGr2hx6NKmEograVKeIcuWwxx13cbof5zZyb+YoorzF0HZ2Wf/3uhKwR/NV4l+Xsmpdv3vGzD59gShDXLbHqEFYrLEPFczwSSeflckHaNMjC4D/9x/+eP33xnD98/SVpnHEd5AghcdB/vz6+qlte38Q04oSzZcB/6juMXZdKqqmzgmi1IAnmqIbM+fUWkBCazs/vHlCTs6Dm3WbFw7FLk0rctRzuDZ7SawP8IuKJ3RIZJsd9gziKmAYpbxcp8zBBNkx+uuPQdzWKykIVEroikecFdsclD3NkGq78nFezLTuaxGhg4NkWIq8ZdzvUd/b4/cuQumlpm4ayyGnbBs/tYrkey7WPVKYkZcSTTz8kyDeMx11U0WApKrqmcH76mvViRVW1fP/yLX/+o09ZffkZl+/ekWy3ZKs1beHxIpjzzbtrPvzLX/CjOmIiKyTTBc79I15Mv+Ldu7/jr//6f0CvdeRkgWQ1OO4EUyloiwhdKRnceYqkntPWLqYzZ3S4h378MVIQolYlmufSbBJ+P9tS7Dzk+PGP2H/6FLfXUocrtpspebxAamrSMGBiNpgDg/FoD1VqqfUNnmYTbSqSTcgmCfB6PUzFZHpxxiaYstls0GTodVzK9fspyvUmRBISgvb2cM6tWz9wt6HJrVs/cBJgKAqGZmKYPY7uPiGbX7O9mdOXPXaefEg8OuDNqxekcQ5CpT/yMOT3f4BVWaeScmRzQKcf0esYFP6GImzQ2whzc4n/6pI4LQgkD+3h/4hr5eRbn+i7X2FWKXmaUNQNlaoQojDUZAxZJqwbCnJM1UQ0CaL2MXcP2V5dI1smuiRzsFezri/YM2Vs3SarW2Rdp0JilRQUnUPqUqAuX5ALlZWwCN6dcHb2kuOew2jQZ7y/ZHywx2R3h1YIDE1iZ9SnkGSeGAP+9esXFHVJlsSYrYxrOxiqhp+rqFdXtL7P9HrL/tEddAkkIWHoMmUtWG9Dmqpi6Fns7Izx/ZC0nNLv2Ki6ipymWI6g09VYLzdcnK952DHpyRpG02KaNlQNqzAnnAW0aYpayhSZimEZmN4I4pZmmZCnKRPXZJHVpJLF777e8uLtc+4dLHlwoCEMnXfnc9D6jJ5+iGx3aOpTtMEuN35GaaT0LYO0N+Hs/Jy8qqmFgiS3lEVGU2dUzf9/3UhQgP/yK3598hrLtHAtj8nDp4z7BtMXX3Lc8fC6A3qOi20bCFXHjzLkoqbTA1tWUKocTW7YHXtsW4OzyzVnF1dYisTR0R7Huy11UVOkBUGcEaU5pmOzu3dI15ExJYtsUyF5DrmmI1k6ZVgS+DGLTcOjDyc0Scwqgm8vr8jLkg/vjGmzGr+I+ObdO85P39ExB/zlz/6av/rkY1zHZmFYJKbDyz7W+QoAACAASURBVJM3xMsF28U7mqpG1SSGwy7h8obTdcHI1hnaMqaoyFuBaTqsliteX26QVYugaJAlgaQ7BFVCVudomkGl6MRxzNn5GVeXVzz3XvFwNOTAsRg4OvFsRVm+4ODDn9CKmn6vR1qUyIZJY1iYdsxyuUY3FLSgIQ5yyjTFsyxUXaPKK5LlAhSV1WpLJtmo4we0TYmmKKzCLUVVYe/s0DQpdVESzZZciVcc3p1ge3fItpdsswWt6qKh0dYgq+8DvZFtkM5vOFvOqWWLOC5J0gDb8VDaGXKs4dLSNfbRxjKpfk3fNIjjknkUcr7e0DQJnq6DDDebgg+GDmNbYFOD0iIrJbpagtphMBFcvT3H0ExOz3xevFnw+clrojihygs0GWxVw9B1Es3h81XB+vRfKPMEVZERVDR1SVukvIm3tKrC/v4+o45Dm2U0JQysDtf6+/LbthEoqsZyOmXl+5Rlhey07HgWu4M+N6sNs02IZJkUWoXvB8hdGcc00QY9ZKHj1SVlp8PJdk0QxTw7PuDTR3uk2w163ZC4Dsd3H1DEGd5wiGy5dCf7RHlKp2OyXC9Ync+5nCVcXF5z7SeEjYwsNFRZwzVN8rQABJfnF/ibBR1bo2MKVNVEkVWKImO+umJATV3U0EokUs3vr97wYrqkykokAaIpSWp4cXGNouvsehNE6/H81YzPTv7IyWxOKWuIMqcNN9RpjEGJGnvodQ9dKHx7dsUs2LKJQ/7x9wn3hl2G5ohCaSmbliDNiauarmYiNAXLMnCzmO7ODrmQafIYTe0hK4Iqi3E6dxGKTJrl+HFO3TS4tsVNkJDXDQejPsPhgCpP2Rn2+fjRHbTtku/mW97ON9iKiqZbvN1GXG2nuIbBx/fvIDcN755/wWK55uHumGSbsQhhlcw4W9xgaQqGZuA4Okna8s9ff89yveR/+skn7N5/TK/XZf3iS9Zlg+5qmLHONsgZKDWS2HCVCZaLFXddHamBB3eHeD2IE430xWt2BjrS6CnTuKb2fdr6jEOp4Y9RTBnn+FsfzTpGFRKKIqOrKkKRcU2dZZSyiQuyrMRRJYaWzP/8F33IZSzPRpUFib/h8vKKHBWhqCiqgqqq6KaN7XVA0eh7FvGmYl21GIcTXn32lrFe0u33WK98Lt68JNyusBWJnqUiVlcsTk4Ib5as5peohsXHzx4yOXzC+duv+Oy73/H7v/t70gf7PO55GEXL6osVOBpXVwl/96s/8ounx2i2RV4lnLybYssVhw+eIuw+wXLGdjZntGej9kd09h5i9ztcf32J3HX54u2UF5sC5+FPOXr8CM9TUPIlq5chq8UZr77+DFEG9C2HyXhE78Mfc/TBR2j+Jbm/xHNdgkgiqytWmymy1JBtwFA08ixHqsv3PUSiJfYD9K5N2WgoqkZZZHiehyTdzprcuvVDdhua3Lr1A9e2LXGeg9RycHDI7uEDSt1m+vWXvHj+PeNYpdVSRCtRFgWmJrM/dHB0wd7uHqoiMC0Tuz9ib72g3s7w1xGKrDD7/ncoHR1NtxgcHmMaE1ZnJQOhcB2dUNQSlTBAk7CdPpqWc+doH6tq2QHqJmerNpQCtE6HSjMQloS5t4eqNeSBT7aZsonWdFwDtSjZlg2ponGxCtnkFcMPnlLfLFA0h8Fgjyd/879C1XD5T/8nWZETbxNKZYafRihVgTccoLcNHctEO9hB6gueffghv/zHf6AscnIhY9Qq/93DexSKgkZLpJqcTFfEcYxiaGiSge3YLNMUVdOQ8gxV1ugMJxTJmiyYki4LhGzSCA9FtFRlzGDgsV5umZ6e4e7vIRs6TVGi2R7vLk44e32K0shEWU5W1dSKSn88RrMsWm1MKU2Q6pzt6gVoMr3+mGi94esXJ1xvLO7dvQN6w/en5zh7h+QsMW2Ns1XOqjGJ04JP7u5zWqrMOj3W1ylJ8j7QkiQJSYa2LbH7Exynw+7RJwgMRNMgyxJCVrlz9z537gxYPH/O9XTJ0aSLa2js9jukqkpWlCzzgp2kpKjBknNkVcNyOxwogvU2YmjKSEhoAqQyxZIq5LbBNd5/Vn93Qnewh1rEnL6Zk0ZTOvcf8+jZn6HWKY2skIQJR+MehmGSBCnLG58iSPnJ/hhNNZCNHr/65pLzswscSeXf3/uQ/2ayz52DCXrHw2oVjN0Obz79lGh2g+Np+PNz8iQli3NoWvKiZNW2HHsdVEkw3cQkwqMpPZyOTFDrDB1BZ7TLpLdL8Nv/giNLWI7N7P9j7z52LU2vNL//P+/N9nsfH+eEj3RkJjOTtroMSt0CqhstQII01ExT3YfuQOiBXKMBqdAC1KVCkeVYNEkWybQRkZnhTpw4bnv3ea9Btq6BA8bvGt7BwoN3PSuMKYscRIG6KpksriniLQtDp60bPDg+YbpYknz9JYcnu4x6bUxBYnI1xTQNDKECSaARJGTZQBVLZEFEMx0KSmRZJFyumAUJQVKx2F7SnE5QRQGhKcnSFFGWEZsKoWlQJembtxbOSc8ysjxGb0lYtkydVCiqBoKAamqQbJEljTRN2QQp49WCpKzY7XUo85JkvUTaJBiaRa8xOSsFyqJClVQsT8HyJAhEJouALM+oaoF13nAeJfgGiLKJLKmYvoVst1HlDuomQLm4ZBateTmLuZ5/cwLdkBRioaSq4XIV0kgNWvsGcZ4z/PBfIhoS5//4n6i2G3aGHTxZJ4wCos2Cy4vnaG0dWdIw3B6yPKbIE5KoxrA80qJg5JosVhLbskCmoee6FHkKVY5nObj7O6xqlVquMXQN17WYhRtICsaLBc/OXjHZrDFVmffuH7E7cAllgcwVqLWA/v4u2+WM8+df0T65zfUXZ+wdDXHNAzxvh7b/53Tv3KD96c/QPv6YT5+ec72NgRpN1tBEDUUARzfJ4oRZHCC5LlIJlqlx1Lbw6oZgNqUWYTxPqTWVx6+mrMIEuWmwDQNFUsjzigYRS9dJow1PH/2OTVyyCBriVCLNctL1JZ5t8uBol3t3jug6GqpQ0hQi27hmtZyBILGJE55dp3i6zNDSKLKcWRijajI1Dbah46sSu47H4OYhjuOwOH9GladIqoJgaFiugSgIRFFMVVQcHx+giQLBZIalmXiehyBqhOESW5HotAwW85S6yBh5Fkkl8JtnlyiqxL1dj/22T7/tsIojTidTbEocUyevFYoyomd1yXLYZgVSo7FerXhRZniuyW+fXpHWcGcRsefq5KspKxq8dofusI9SCSzmM4LVkjRNGVkSvm5gGDpCUVKdlrwxPObov7lD1Yy5XNWI9hHL33zM+dfPUaSanmfiSA33j1roukBdpoiiRFnUyLJMIQjExTeF7W1T4chTscSE2TIlCBpMZcXuro3p+xzuD+lcrrhaJiBImPY3XSmm7VMXJZIgIDUSZdLw//y7/wNHU1m5b+OrDmQyVZzw1k6Hk36bItiSxQmnn/4KVXFZhFuWtob+wT0E7ZgTScA3RP75k5/x69885mrgcX/Upy3LxMsYsxH5zUefkV+f8vadm7Rv3aF4es5VUOD3Q1Srg2RoSLKArJuEkwUXy4jl7z4iWU6IU0j7x4z2PRS3g1iv+PSXP4WiwFJMqHJ2hn1a7gED26Hv+vRsCz1NMCwPuYqRFIuKgMvrZ0TZHKFusEIJxWqjmB1mq0sm8w11mdF3NWTPpjFdbhyaXF68omqA16HJa6/9QXsdmrz22h+4hoY0S1EVjVHLpaNLrGvo2/vc6Bzwj89+DnKAgUCuqfR8m8Oex7Dr0fJaCGWOrsqoTYGtiVyGIY9ejnn69JQHPZm/eP8W+0dHxHKHFy8uefx0wj/+6lNm0+fUArT3biKma9r7d8jzBrmeYiolBgK6YhAKNeuy5qjM0a09FpGK33dpxILVasU6zRE6I9bzgEkQsogzIrFA7++QPPmS05/8ByTFwBYL3OFtIsnBKmI875jRSY8sWhGsn+F7Ik0UIzo2NSCYBpquMKxSbu/1+MK1WAslcZaR5hWaUPKtuzfJqpLTV2P6rkpd1VxOJtztmKiyQFaUJEVFhYzr+aRpxtX4ijRckeURdsum1d9jdj0j3cb4XgfLsJmHAZIiYWo6gqKTCyrB+JLlfMw0KlhFCVVZsc0zhBc6hu0hlQ3vvfsX3Dk65hePvoYmQt0W6IpMS1a5GBd8PX6GoqrsOhn3wylCZ4DeHqIsHjMwRbaDAbPVlPPLcy4v58RJhqYq6JZBmuc0FCiygq4rDFoOx13Y3+tjGm2yEmRRodsUaNcXfO/+IVMRyiyCpkGoK9Qsw9ZN0jBlvlhh2w7a0KapKxRZpVqN6dUZmSJxtkqwNjHyy5eIso1vu+SLJWarg9fqsZquCKcz6qyia5oYcYKRCogSpFGB0Ah0ey3yPGayGlOx5a2jDnujLmFSkchtfC8jO7tkv+Xz9t0hQnrGxbOG3sldyODV0+fcEhrk+29yMfaJPJfVYsZ8OaUQRI59g5Fn41oGmqrg6jJ7oyMm1+ecr0N6pkxRlKzHc4SsRkkTREVDd3vcfOuE7Uf/RBZs0O0uumFRbGdIhkVYNvz84ee899bb6KrCqGtRxXNEw8LudIivrjEcDUkQKIoMz7EpmwwqEV2zKIqMNE/otH3SSuXl+JrJfEOcL+m2OyyaBkmS6fktOo5DS1NZrtYE25Adz8Ogpi5zmllOFhtI+xqyKKKoFrIiI2gqk8WSR6dnXK5TJquAjm0wzHO26ylBUnO2qLiYzphuU8Iio227dIUaQStwWiL9toVn7FCGIZfrLdOg5GWaM7RauKGAJIvsjmzQbOy9Yy6fPCTYZFzPQ8qqptPSWa9jZssYBRmts0PSXBNvAzyz5uAH/4Y3/+w7nDzo8P9q8Nv/63+jURzeuDcgnJ+TpCnx/IrAHGHqIo7UkOQlgqwhywrdlsvLF6eEUYomSuzaKgc9j72uj1CmWLLA/uEhxcEhblERZzVNnSHJ4Hg2ma1wfnbGZLvl8Pgm9eqKqsxBVfHbLcpaJTOH6JbFi+dfoqolnY7BUdtgv2PgaAKVJpOLLlI2gvk+yuUZ3iYlYE0SBiR5TNJEyKmIpqqoikT1//8EqyuCbcRYarjtKghSDQ3URcHlOkSuSjqagmuayI7JoshZriM6qoaZ5aTxlqCoeLwsSdQTBvc+4O3vf8Df/bv/iTp4RRAkSIrJ7bfewhJTsiInS0viYMIqjJFUi8l8wmyzwdPbzIOIbZYhiBJKDS1dZdR2aNsqHdPAsB1i20coBURRwvJNbFNjE8TUtcDBqM3+UR9N0XhFzcuza7568YrR8W06vRam9M11qEUjoskKQVLy9HzC0LfY9112fZVWu4Xt9zl50OdgesnFi0vGl1ekksS9toOkaKiYtOQ9vvXW9/jbLx/xyfkvCMOSjmUTr5b89p9/xZlr4homt46PyZKMmyd36faGvHr6BZ9/8piOpGCpIkZZEgYFtj/i5MF/yc1bD/DftAief0KraqC7SzQa87VkkUkyf/7dQ7pigmMKSKIMVU1T5RiWR7gqKKISWYSBLbHXM7g5VBCqgM/PEm62bNRaAF0nzjOiJGM9v6apa3TdIi1SBEHCbbfRFYUkCqnkHK/n0UwCVssNk9WU0aFF19OwhD4/fPMGydWYzy4mjLcR0dmCUW+fRDV5OLngH07/ZyzF4lsHN7jtmtzZO4JGJK8qXjx/xUJXSTSdVSXhOB1+9eWYYFtzv7SQDYsXTy45uFmgTC9YRVsEbw/ZdVE7Xda/+BmPnp2imyZHb3yH00XE4y9+h27bKHLO+OyUrudQdzsc7e/j2i1u7B7iqjJatsDRGqQyoskzDM0hTSuy9Zpqs2a1SOm6MkmcoBgFUlWhqDqy0GCoAp6p04gyN3d71FWNkEVE2y1NXf8+R7XXXnvt9+x1aPLaa69R1xW6IqOXGVoR0Wp1uHnnh3SsmxT/acsnpz/Gt3VSy+D9ezfoeyq27aJqBmUYY2GhVjGWrrCNK6bzBWWyZLuWeXU5QVJsvvzNjBdXG1LJI9tOkMs1teXQO+yjbyqyZMLdow+xNjLp9BGlrpCWOYoCzuiIIlsikNPu9vF8m1qsOVdkohrmYcgqzpgFKY0o4Pge2s4R6nyCKlgU6xXbYMXZxRnNP/+CtlhzZ+Rz8713qWWLT/7qL7FWl1iORV2VNK0datOmXo2R8wo53dLzHOQ6Q7FUZFmkyDJkqUazbVzHoN92uFoXSJKEICqIQoNATV1XuK0Wo9EQ8gxVNdnma5IY8rpgtZmwGo9RJQFJ0ChrFSPPQZJRHRtZNfCzin2/xZW1JlhcIysaWRFRFDmKZdO5cYfFxZxlYfPv/8//lThNsAyfZbBAlCQWCPgyKIpAVFWIXZWL1Zb9B29RFzWqZbE7HDLYE/nxL39DkJwiVTl9z8bwepT+EcvZgmL5DLmucUSRJsvQswjm1xheycixMDUFnRq/0yfU2/h5zPJqxbWlE8cxNAKuqrAsG4JtTB4F5KWNpvsg6ThizZPJHAmRm6MOsuOyWm3YH3rITU3fcahbXTZhwmQ8Jg4j4iTlUla55bR4OU/ZdUCWBGxVQbVaPH/6kNl4TlkW7Ox1sTUV37NZRyH3b7e5nA5pNRV1OkZ1WiyjMz76+8c88HsYto+eFOhZgJ2sqeOQSmrAMqlzjbZl4kgijmHgeQ56U1GLDbooM2q3US2fKs1YjC9Zfn1GnmWIosT4/BRhdk2+WSIpBre+80N2d494/NO/odUb8ubuDn/3Tz/mN89P+UGrhS0p+I4JQoMp5Zzp31zBEEUBRRKoihJL1cmSkiLNUHUT2bAB8AydW3tDNmHKNt5gqhq6LDPqdDBliWK7QabB1TRiZFZpRa/6ptcgTXOqpKBqBFRVQBRKNMNimRR89uVX/PyLF0w3KaZlcjRskYYBeVryYlnwz0/P2QZrRFnFGQy5860/o378MV9OX3AaVXS6Jm92LI5tCVOsiKdLDvwOk/GMW17Nwf19NFOlLtYsH/+MVy9ecrUIqfMGRRSYXs8Qq5ooSfAtn/17+zRPV2RRSLI+peuAtpoiXuf09AbfsYnCGKm1z56UIuRbep4Jmk6jGSRJxCaIUCQRzzKQgbwSMCyPXVEkDRbYisTJ/oj+7i6nX36J3h+hnxygb0KevbhgPnnJQNPRLY2L0wsW8QbqhuVkyp2Rx83jHaqiIm8k/Fablqfx6JOPIFlw7LQ4adXYHROpjCjDFVXWkCYKT7+65G9++jlXXz0ljhIUf4Qm2RTBBKlKEOqaPI8oSwlVklgHAV3dQpckVkHG5UrlfscmbzKOfBtZ1pDVb3or1nHJy/mG6SZiz7HRi4b1ZomAwFKymAYlN7/7Q37053/G3X2f2a03WFyJlOmKf/rlJ7S8Hu+/e0wyf4nXEtgfeGRFxtl0iiiJbMOEyEqIs4y8qhkOetRZjCHCzr37dJWKo7s30fdPKBSZ7VcvKNKSVsv9Jsx3OvR3brI3mHLr7pDpywuuNJla1hClDNPQaXcd9nyduqhxHRtkldVmi9CIKEg4qkjba9Fu9RHtDvEWwssV9XaDK0vIaAiCQllo5JJGUJtcnorc2DlEsXPGk6eUJFSqzL6W4+oCjSwxvPkG26sz9ndcrL7JZqEx8HSezwSeLwNcYNTr4u4OaI5V5B8dUYUh28cKG0nEckFbxRy2PFJH490PP0SKxhSbMaokkW5ixDpi2HeJwg3rrCTPC3RFpN/3MVwBBIlv39vljeMbSKuQ2tCQjJrZ1QVFVaMqCklRIAoSvcEOg8EBfU/n1fOnzGcTNpsV280GWZbI6wbEkjfuDdHkPU72hpyGKUJZc77NeJEnvCV1sQZ9xCKE1ZyL5Aynex/F6bGePWOS1ZRpwIeuyjzMeLZMWGclgqRQNCV+XON89Yg4LVA1A0Vv4XdtNuGSICmINws2ScOX4y2ni4iOoFEtNqSNyHp5RTPOkSSRtmdz5+iE/t4RvqUihFuK7RK11SGeXBI3OebhPbK4RLMMpi9fEsUR0Sam3R+QJFtMSUXOU6wmQq8TWo5JlUbIsozttRh1fGbXV/iORaUbiP+5OPu11177w/Q6NHnttT9wzX8uTbWEimizYO/kLrosgRBxffUZihSy02rRamt0b9/k+OSQItngOR5iVZPnCVVToQ/3UXcOsUYJvasV90YWZrpiHab8/OOvWC5SMslHHeyxPzrg+fka99aP6O+/BervIJxwyEt0LefasLEshaaOWCYxvdGAbBlRUeH4PmZ3SCnWGPYp/a5NvJGZjS+xZZGdlo1gijx/9pCO1UP0bzLd/oqShjyJmTz+KTdun9D2b+F4JklQ4PT3GI83pBcLbssKiSiir3W0dIvS7aHKoDU5Lbmha+t0XJ0sTijLEs/SaHkWe6M2V8trxLLEsS2qukAUBUxVRpFEVEXClCUmqxBFcygWa+qkpJIbqgqapmTHMbB37rB48pC6rFEUA0W30KSKXreNcjbm3Xtvso0L8uWCoCpZSxpSbfHG9z5gd7DH5RMo4pKiWvPOG99mspwQLGckCASFgCUKjFoWcZZy9uz6m9OcRkm2neO1howObqA+O8UMckTNYRqUdIc+dsekFkvaWknPMXE1Fb2IadYJ+mhIKUqkwQIJm7oZUastxPUEJViz321zvd5ycXXNoNOh7vaIggXReksx7CEObyCT0Dc1dk2Tv34+49ahRXfQRw8zFF2nXC4ZjkYsFZvpfIWSF9hNQyOKyLKEOxwSlyWFpFHUa2RFRioFlldLhLpicrXi3uEeNQpFBp3+DspAY7mB2cszju/dxO90ODAsDuIl8XjKfDrm1YsrHr4c03UcqnANeU6VFnQUBbURyCoJz2nhGgq6qpIWAe12l7bfJpJs8vEFWxkaz8NzXCSxoqvYaLpFcniIvXvCg3c/wJAttqcvWK8iYrnFu/fe4eWrh1hFjCaoGLYLVYFYhxz0bRbbDEsx0GSRWtBIswxdFsizCr9toloWiinz/NEvGG9iTFlid2eHTqvDbJWSz+ZMZxOoKxxD5/DgELKGIKlIGhFfEZFEg0qQEGoRQVBRDBGEhtVywen5lMvJmm1S8Ma9B3iujxglTCuZp1cv0WWFxnK5+cG79L79FuFXC+ZxQV6qOG2LRh1x8oMPaa1OCarPEdcNt7sSRaqh1iVWr4+xc4sinBHMHvPi5QVBnpFVBaeziPUqwNQ1PEMhTJf8+id/TdNICKKIIjuYJeSvLllvXvHAahj+6Xs8fPKKzSakrci4qoE7GNF541tks2vqdYQi1CiKgohAjYQsKwhVyajbR3RU0mjLdDxmONzh7ffeR2m1SHdbKLrB5eU1L758hTLs46kaRRThqBplFrBdTlD3jnFMk0G3x/xigtnvElxecLxnkC1kTHFLtr5EEguyNKJWNsyDM/7+nx7yVz//DYEIaVLgHNj03/qQ/NmW7ctHJKtX2E2JItaUdf1NMXSaEcoKbdNCq1M6hoZQN8gC5EXB9SrjbJ3zxp6BUqUYeU5Hlpmvt4yLkhuGzLeOD9g6O8w/fkh8+guWnxv4zvv8j//9f8f1Ysyjj3/Bw0e/ZbacEizazF5dkS+XtHUVsaoxZDA1FUMSSfKCdVLQHR1ydP8ek8e/w5DAbBn02gaCVCLJOa4vE+oNSiazXkcIrRjfH+FIa+6+tcv87CWf/PoRq1Dmxs6AYaeD79l4/R663pBHG7xhl/2o4avJlm26ZLc/pN3u0/INclWlf9Bn82qKTo2naKjozBcJ2zCiLlNsfUg2bPjL63/m1vAmmC6eY9NUBY8mKwrfYCjonF3MyT/6GScdFdW/j9oeIdZfkAQbHl+uKBoR1bcI0pIvP7/kbHuJ9z2J+mdLPv7xY8w7I7Zffsrl4il+y2L01gma30XMAqpaQVJ8gmSOEAW47RGCpJPlEdswR9UFJFmmyDK+tdtC09s4jUKAhNax8QZ9Do9HSA+fkecZiqJiGuY3v4qEhrJu2IQhnm0TrQIM2cTxNCRZoS4L/MEAy3Zwdo64/x7os1f0FIm/fLUhr2DH9+lVIXKeUFQ1P/gv/gXi2TWTPEPujHj5+JL/ewsDx8RTVaSm4SJK6O7tc7auCeMAV6hp2w1dOaUKalzXJ5gt+OgnDzmbhayXWxrV4quLBfLsd+RZSlXEmJqCbTnous1isWX6/B+4cbBDt+0T6zrzIiWZLmnSgqpSUE2HeDxldvGMEpkmL/BMg3G4JVgHaNI3KzeWobENQ2RZpkFk0G3TMVS+uBqzSWo8w6Ouqt/ztPbaa6/9Pr0OTV577TUMoaEoc2bbkPeUhraW8vDTv0VUhrT2dlF6Gi234u7776KQsBYa6gqmV9eYmkxQRjhFxmD3BvfulrS0AreYsTg7RUDBMFrUtcVyWxBlJfeHXW4efBdn921uPbjNRxefka037I1sEGF07xBFKIhCCa+08GyTLNYR3DaSaaOaOppm0Nk/5noyYTybsXd4wuL5I3RZotPu0RtpXJU69q1vcSquGX8do2oNt3Yc3tp3GTBh9uu/xrT3OFRFLnKB3z15jiLA/f19LF1FVR1qScBSBbI0pSxLFFHD0GTCJCfLS2RVw3UddCOF7CVlVaKrImWlosoympBQxAGSpGLaBpa0IspTBp7D5XTJbDFFVWQOhi6GULCjhGSGQl0UaJqFJBs0IqzipxwfHbC3c5PL6zmT589puyZbUUM+eYvWzW/Tslo0f/qv+fnf/Xs8S2V3f4+ggmA958HNfcbbinIzxdZl9vsOhpzhd3x0sSbZzBCtnG5ryNFgwGRbEacJI0fFDE856g7Quwcsrs8QigTLtfFV0GmQpk9Q3B6WaeMoJWbyilzqs11vqeOU/WEPWdV59uqKy/GY3s4IscxIipomSdGqCFutaWyLN+4cUio6S8unjAIcr0eelKiGhTvapw4ixJaP2+4hVyWT5ZJVI3Lj6Ii+BEmsYGoaOBlSsWRHF3j41QITAd8x0Ec+ttFCbFF9hwAAIABJREFUFR1czSJ/b8DlcEh3b0QTh4hhQ6sR0BUJvePRUVx6RzfZXL8gCGq2WYGVgJrIiGmA57lYVKi6D5KKVpYobZ9svUKVGyLDwLZsdE3jWGsQG7BNFdsb4t+4T7s/RNNL8tmY93oqL7KYD759k2JucmAm3Lt7hNobgC4gljnNYoFaiyRJSRxE2K6DIchs1yvyLCXZhIijHvHkmsa2qRqVVxdnTJOCg1u3sHQTnYpgvSROE9KqQhIFFEVhMZkx2N0nLBp2Wh7b5RxL1zFkC0NRMByDLPumX8Jy28jSNQ+OB7z7xl0sXWX96pzJYowmCdx7822qWuCH//JfIfge/+En/wvzYE1VVawuJ+w2Fp1cIar7PFrJ9F2PTqeDI0hsl0u07i1Uq0sRBBRJQx7WLLYxhdBQVfk379JQkBwHr+OxmqbkQYQgmYyGN/DHD+n2HY4HB+zs78H9HTTTJkhL2lYX24CO42BtNySTMZrloKo6cRhjiBJO+5uVpLblQFXgt7uUmky4DXn4ycfcPNrnwH8H2VapCp2eq/FFnnIxmSF02piqhG9qxGmMUOQ0SCiCgCw09AZdFFenpe0QdVXScICuqDSyQpylrIKCabTgi0+fMl4WSKbOyYO3ef7sb3j7v/4WunGPpLrgOj5jq5hUyw2WKKKJAoKgME8ikjgibmr2LR2rLjA0izwvyQRwTY0TyWSzTehZCrKj8dl4TV00gIwiSMhFSq9J+R++9y7ujbt0j3c4Hoi0dnboNQOWi3Oi1Tn7LQsqmb7lY5YFdQ4NArosM3AtPEVGpEE2LFr7hxidHfz9JVo+xxQyXM+gf/cYQW9xUWeISo1hmoRlSZmXdEc2UT4hurzg7ItnnAwdvGWOO/J4NY3YrhbsnhzRKA1FvMRwXd78/jtsRRHj40d8+KM/ZvdgDzUPScIFm6uIerVCLksKweB8s2GVJmyrkjd6fQ7aJuqdAw7EB/yL//a7jCdfcvbTkkF9Tf6xzOfnc85XMTu2wvrqHP/4+yzO17i7Jv6d75D94jNu+yGfXW25VhyeXI15IO1xNn5EHv6EXXtF+50ui4vHfHX5EOSY9rCDo4hoVY412kUpAuqmoEgqpLpEqiNcT6Ge1aRpQZhVpHHC7kim3x6Sr0XCy2vkXgfVVHn2u9/QbmmYlo5TS9SSRBrGTKbX1JaE4dxgOOyzmoyxXRtZlnFtGbGuuR7PcBWVNhJ3u30MV6NZXKCLn1AKMy5yiUHLwzErzsuQqsqY/frvGShdDqw2T86+whNErsqK3YNbmJs1STxhaCjUQUxdCjwcz/ANix+ZNhcPH3Przm28YR9D3XD56pIsiBAbmSgXqPMcRRJQNJVMrEnynHi+oUlLxCjhaNBF1F2czj4oKs9enjF+cc5ev8s0ETmfLinTLT3PxuzuI4owHLYRpAa5iFDFhrysKRsBRTMQhJpGEOh7Dtv5FFcWyU2Ftmv/vse011577ffsdWjy2mt/4ESgpcu8zAuyPEKsMvyWxTvv3GVZtlD8AZ9//Et2H9xkf9QnnJ8Tajrn4ylaXZBHGxrLp6obHF3k9oHPoXeLKnC5EAXSdUirt4tm71HhEk3XxKvnPNjrkckZs0cfMSgmPPj2PQYtlzKHKg/YrlbkcYrT6iE1NdrwgPbuHqoIeZCgixp2d4fcOaRz3MVt7/PZJkBgi6IpaP6Ad1oDHN/i4M6IV+mQYcfn9u0H3Di5gSVtSGZzhI6JNrrBQFfYkXJkVaJeL6B1gOS1aeoCwzTQDZVCajB2Dzm+fYMmHENdQtPgOA66EZMnCZauIjU5km5iOxbbTYAiiVjtPmKVMGx76HXF6fOXbKMMygrXtRlaOsc379LkObYsUNVQ1DWaraNFJXUUcWfvAMetcGqNIurR021aRUYwvSAXNcqdm7x1+z7h5ft8+dkv+fhn/0Rc5ohFxHQ2JYxLbg1bdG0TXdVpt0zMbg8JyNOIOomoZxNuDToUosHDZ0/xTQFLSbGrLR3bxd4b4oo5/XYHx9JwdBk210j1CkM1KeMNddCQiTLBZIapyFimgZvXdC2di9mc9WRCt+VQ1zlllKDmGYImUQsazmDELXfIXHXYvnyE7Tm83Mzod/ro7R18eYmZley6HrIgcfeuzIvrCX5TwyYkEhPcoQRVQyOlSGqDLQlYmoGh+Xi2ha5bCLWC3HY57locPriFGm/IF5csXjxnfj2llCoKTGpMxGqDo8coTYOkQNdzWF8FxLmCZzrYuoWkekgCyKRE0QrZkAmml4iihNlqY6YbRFGgrkRUx6fVd/EtES3dIqzW6Os57++1eePwNoe7LTZuilke4DsikhCiaC3KeEOTRchej3Syoa5yijSi1R8gCz5JFFJkNeEyRtksuXz0Ncu0QJUVnJaNYVlYqowli9wbdFivFkyiBM8yqMsCWVYwFJFwu0E7aOPZOkLTIAgVgigiCSWWY3Dr7h0mac1qes0Pvvdd3vijP+Pqak568Qo2E7pWi13bond4k3s3b4Oi8acffJ+/upqgyyJVCUf9NsunD3ny9Rnj8QRJzDlsV3x47z5Xk99RTa7Iwjnh5IqyrOnaBnmcsMlSNKFBFRoM2cQwLKRY5VbLpXYTDN+nP7rBoNPm6OYuXkuniCeotsaN4zs8/uJzxNYephyjyQpSkVJnBaVckZU1qqJh6jqqAAPfI90uGV+PSVseb94+hGRLksRUSYQk1FiOQ5MW7HdsuqbOZLKkZ9kIItiOiZunLNOMLMuRagWRGq2lIikFeZqj6AaN6KLZPlQpaRETpxnTJ6842n+LLHzCjeGUwXHMVx+t+fR//zXf/tEDLEoOdzLsUcmvf5kyTWUOHYsbno2jQJiWdCyN2y0PXZNRlRrL9NCSlGy74uE2xDYdXF3jerXFkSU+3OmjKy18SlpCxNCSaL/9Acqt+0gkSMEV8ekKQWroaCLnQsNey2bkq5TagCaLMPUQURDQVQXP9ejbBmEYYek6rumiNTW94S5C44JQkksJgqlgdUbYw122Vy+pZQ1LsFBUBbPJUA2Ri0dL4kRkm+SEq5CdQchO12ATzYmWY5x2j2CTYNkuiqLxwZ/8McNhB3e4hzO8ibDZ4vk7lPGWF+PnpIJGpEu0h20WL0+J4wzR3qNSFdbziD/6Vzd5+8TFljV+o25omTYXmxdousm+I3PbV2gbBlmU8vjn/4ilC6SNQiibbGuDolqzWCwQBJHfps/Qm1eUn1+h3PZZJjJqlfMnH9xC10rCLKdaT1l9MUU9PAJJRWkalLJgNdug1jW+62HpKpqiEsQRy03Eg1s72LvHbPIrtLaBOHDI0yXx6Ve0/Qf43Q6BCIv5jM12SVnXWD2T45PvclVnRNs1llhT5FsGwyFFXvL0eomDSqd7guL20Cqd4ff/GNmyiHem9M7nxOma0YNjBDVETjeUX3+C+9afg6bypq1hlCqJJHLPbHNbLNFdgVyVeTLf8niV4g881LLh0NboOQYqAmxj5DRi5GiEXYe+NWD+xRXEMn1DYlE0xEmN2bmB3tujkHKG779LK92iyCprzSZZTPn061Pm0yndZYD98pJgs8C3VQrpBideTctto4sSrlgjKDKJqGK1B2wuzrAViEsZW9Owm5Ku5/D+f/UXfPT1K5Zp/Xo957XX/sC9Dk1ee+0PnCgKDB2TBSVFnJDnKXr/Hq17I9JffcLm+ilDV+bGbhtLV2hMi2IRswkKmiwiCVb09mwUzcDSFXTJpLT6pJGOLOpcffUC17DQbZVG1OnrHaQ7HSTPp/F6QEJx1qbZTKmjlE24JYsCZNXAVm1KTaRqKtq7B0iGi5bnGLoKoooqKgxG+zw5/QXZ5QLf89CjFFdocKWKKp7h6Dl7Q5E/Hv0RhttGcw2cro2QFYSZSSTV2F0faeuhHB5QiCGWbUO0pZBq8rqiKUu6g13OX73g8HCfvcMhntxBLTY0RYZpeSg0CEWBa2nUVYnaFBiahiYJ6IaB6bgEV2vSKGV+fsVkEaJIOpVQ0tZEPF1Gag2QwxWHO12iRCSvoS4q8sWMXneHliaQzc8Rtxv2VBHJ6GA6Lq2sYD09Z/nyOWGc0I4DftDrI4sZmyKARuZ5VNKzVd462sN2h6iliKS5GK6PmMdUrRHT6zGJ7LD71l3Krz9BynskeYbjurQsC1dV2G/1UfMASTIo5D2WacLJ8R59F1TTgc2YUnGoz64w5G/6XxzHpipL7g1bxJs1qzBC1HT2By0oY8oopHK6CDLUmyX33nyPx+cThoejb4odFQnPs6HMcE0fUVwSX8/5/r/5tygtF+fxp4R5wuWrMcWyZrd3H0s3ycIViirRaulUmYQm68ilgFhJyIaHqhvoXhfB7FGvl2zjNZ29PQzXIa4S4jgl2mzpbNckdY5U5yiSQaN6JM0VjaxgICAbPprh0uQJgirQ1hXSPGPdFGyWc9Kqomokarmmbckc2DJVuuHZJ7+lJaikVcibd4YM2j0axyeK1thKDeY3K0CaKFNuA9LFDGSRpCypkiWurRLEUOUli+WKIgzZ7XdRJA1VMYiWa04nK4aDDlqvh9fqkkQJ3VaXtqbzrb0WyzBklTbolo6gGKw3c1zboigrFEVHamqgRBBlhDJEs9pYmoHbRPzJt+9y7733UFQJvUnQVJEffu9dVLuPFuVE50/5+D+m9G8d0Wl53Dw+5slXnyM0Al89f875RYNWFMhNQVsUMIM5F0++QJJr4skplaGRbwIEVHqDFrfaBrNIwDRlTEUlTGWETYKjCXjdHu3RDbzBbfrDY8TlFV6d0SzX5PES0xhwuNsjXXSQ4hVBmWCWGqWwRUEkrBSyJMXUVKq6QZZldLFmvN5S1QJ5FCGKCps043g0YO/GDWTLJ48TTFHEFQTu7rYJlmuicIuj6bR8FwSRZZoQpTF5U9JoIqopI9cqhVQwv14gaj7KwYjV5Zek8wnhKsDVKgiesivMiFcLPvuPP0aMYtKo4ek//IyRk/PuPrCBXVPncZDybBVxo7XDntlQKiltR0UoEoRKxju4B2GE0kxYKCF1VSLWGS2rxbePFN5XNEwkWs4IQzEQ8hiFhny6Yr19wqv1JWY1oeeZDA+HtGSNlucgNRkUCYahoioqmqzTNA2+49KxbHzfJxd1+pKBmSYYeUr34Ih1ukXqyig+ZFWGVgQIaUBV1dRCjdNqESYBRQqeLbN7vM8yMzh/ck1VSmh1xofv7nG51ambnCRaIaYJUtUgpDl2S+D46Da5CF6njdgdUm0j1s8+R5VFjj74DncG93j8mzMmm4KTwwNc7T7z7RXp4pyHf/1NcPdw+ZizJxI//eJnKLKKpyh4iky63SCbFttNxGYb8/R3n9J4PX70xg6Lwz7yryXEsiapSyarhLLICJQFX12vuDfSOTk4wpcVwvmE1WpJb2eImDUkkzGCbpMVKZra4DgWQVAi1TG+69KJUxSlQZUVPK9NHWaIWUlaNvQO+8jKknc+2CNTG8o0RhI0kjQmirZ0fYM7B22+/94bXPcGrKZjLoM5+zd2URWZq+sJVlEgSzKi5VCLAk0jovojWt/5c965G+P87Y+ZnI2xXQ/3xgMmqcSTl68YXzzGUh1mjUpQQ5VHzC6fcKtls+trzLIa2TI5svu02w3CYsaJBY4KiiEg1VuERmDYPSSIXxHaKm1DoOuqpFVJsM1A0GmPDgmzknybIlzF9A/v8ZNHj3l5+jMcJSeYTUmjkCrLqC0D17ZoeRaO3WJ8+oq9nT59v024mVFkBVmWsFyvkAWQJJlcKvBMnaoosHZ2MDsj+p2QyYsLBPH19ZzXXvtD9jo0ee21P3CiIHBnp4c8bZPGGVW4oREF+oe7LJ8+pAkn+PsjFEX/ptdAkuh32ryabvns2QssVaKer/mupaOpCqIKJRlqoyHsHZGscqSsQlJMlDLHNCL0tofZVdA8gWS5ZavnxGFKWKwQlZLWwR5ZEFMEWyxPR/MdTMtFkgwkQ0Zru9R5jhRv2OuaPNhvYQkSt/sjtss+0mqMWeYMejaCmFCt15RSTrRckKsFysE+klQjlQlOvUTLZ0hOiXV/n3W0RpVqBEMnr2pqGmrgne//ALPaoCyfYeYavb0TmrpFHS8Q6pxoMUMTRE72BshCg6ooqIqE73s0dYOSx0iyxjKuIYM8rfA6Psc7Q3rVkpbn0FUbRif7bCcyr85mpJVEvFkjigK7gzZi3aAoCbHp41k26SqENKYpJSzZwnEtJNdASWqSKGQWpPSsDpmsUS3WWJrGwDcwlBKhkcmCkqYUkWQZ21XJGGBdxxSbnE7bp9hYqGYXSdEpgxwlT/A0k3a/DbKIZEiEkUZ0tSDbrjHaDoqhEzQCsWDiDnbxdBFJkZDyMW1D40bLQt9EVFWBp8pIOcTbmGKk0HFNgvmMaHxJx9RQDJ8glJFUFce2yMIAPcqZvXzG/tEbjG6/QVqnGKbNcrtguVyQ6yrLdUWvZdMIMYZmIikamQCCKSE2NbJiINUyomigGxaNpDK+CDHsNrbvUWyuWU8uicQKIRdJIr45tyuqaHaHulGAmpahoksyiqQglDViVSLWBYpjIcsy3W6HZZDQkOOoJppRo9Qxy8mEVHVQVIn9/4+9+1qWJMnv/P51EToitTj6lOzqqu6e6RHAzABLAtwl10ijGfeCZjTjFd+LD8DrpVEuuWYLYrjEAhjVI7qmu0vX0akzIzKkh/Oi9h1wMfV5hfQ08/j5Xxz1OJg+IHQbfLcCvUR7E/JlTRAPqdM96TIjMDVmu4UoZn51SbG4gXpPf9RB+RG9uMN6vUWtdpS3Jd1On2m3S9Lt02pF0esRDYbY1QbPs8yWa559+X0O24aXr94RDXqYdc53796jleR2mfLooAdNA8aC0Gjfwx9NqddberKh8+mnnNw7oykb3IMu4viU7z3+ktJEZC/+wPr9G/bpNRe/uGK9zBiYhieTKfvlisJUVPuCbV2xNS0dzwNrSNczzu6fUlQtdbZgu9zB4RdMJx7fO73l66sVUTfA80M6KGSR4uLQblNWaU41L7BvXjBJfFb7GP/wjGT8gE7Po97smauaMPCoK4GtK6JOROuFrDc1y+WKXhDQSxJ8KVhVDbtdhq1yzkZDDiKXtkz47uKKXLpoEXFoM3xKNlcX+Bj+8odPuHh9QRBoAh1Q7zOO+zGlbNhVKZoxgY7ACBzHI4oj9kVNQEnrVIzHPZyjc4pdyuW33+ANFe3oe7Q3BXX2nPVmQXrxB+aBw22ToOqIaRQTHzXMdjsudnNOAoe+56CMoapqAneE2O6QUmNFSxx6OEJgTIupBUH/AYPAwczeMegldA6OabM7ktEIJV2cbsjx5pzdVUkYO3Q6CVpH3D85pN9JCDsR0pF4oY8REikV56MRh/0hwg0IA011c4sQgtDzOfj0KUmnQ9ssEDpAB0O2N6+ZvX+LUA5hElCXLrHus3i3IT7SSFnxn/71F/zlz57w8u9+hWprtIhoGkvZVFRFhcpLTF2jihKR7ZHSpTeY4FMjPYE+6LH+neLR4yc0o3OKtsX1BD/88T+nSeeEtzc0uy2jWHD3+u9Y3TpciJKrt+/o4PBXn33G4dmQr/7+1zhCUZuW9SalsD6/fX3Fl18kiP0OJ8v48dNzXr28xK53PJm4CDzGYcwg7BKILXZ1wXIxI9uXjA4nJLSU+5w8ywk7I/LLN+hW4DQWi0UYQa/jc3VncR1B6DsfKh+ynGKZIqcHjB6MKe5W9D95xt/8rz/HmoReknDpKs7vT3kwTOi5DlIpQkfwaHKAzDbkVcEmr2iaBldrvn71kt7hBJF/D5MvaY0gGBzja80kVMSfnLLbbfHjM4KnHofn97h9/Zq71R0n4wmB09AurngzWyFbl9LVaDfg/MGYF29X7N6teNp1cLX7ITAMJtjFFVFvwNnJFC+O+fY3v+S4LdlLwZfHRzhRwe+uFqxefUUyOuf7X/6Uv3jwgLPxAVsvIhOSu1/+b/TdCN31OAhDzsZ9zh8eUDhwd1czkA5np/cg6CClRirNbLFgdfehZVVKiaMdYsdhMV+RzReIzZaLt1ektcC29p/2svbRRx/9k/oYmnz00Z84ISVHDz/D21uWs/WHOQLrNWZ+SbcTEnzxBa3foSlybCBxsETVlifHYxznhyxXC0JZ0+3EKCURBuzmjqB3iA5j6vst8+cv8VuBazNCr4bijv3bO0rZ0FY19WpOu1siafG7PaTbQQqBZ0rc0ZSkO8QgqeqaIHSQfoLyBHEnY3294Gx0gsVFOAnZaEf+ThKQ42BQVuIPugS9BLW+IurFdB5OEaai3e8wYQeRuDCZUhcFZm7Jrt4jOjFeHHN7N8MJfDxTMT05pa+WWFMhpEINH1C+WVMVFdlqzZ99+TmffvqQN7sbhDVEYcASi68l9X6LCDtMj05YLRY8cnyk4zJOInpacfbgnNOzEwJX0rSG7mJLkWUkQUvihzT5HoPA70xInZiO2BFon6YS9EZDRBDTygi7usDdl5T7mnbpITt9bu9u8Kzi/rjLIJCEnkJJQZneojjHcXyQigOvRJuGN1czXNdn44f4oqYXgx4f4FUas6+IKBmMPby4ptYe67sj0pcr3HaPP+0RHB7zRGfIKgNTsr69Q5sKaVrGwwGNcnE6CZ4WyEZiipJqscSeHNIdTXF9F+l5XFxfs9nC6OgQY1oiLciW12y2O7yrGW9+/nO8vkY2OdY0FFmKEl3uFjuSJMJPehjT0B/vSRdbhKoQrqSxJbbZE9BFNSVttuLofoe2tNS7Pa3U+F6HIvNoy4zD4QQ5mrBc5pS5oKLF8zX1PkdEMZ3xAZ40LK7v6EURwkpcJej5HvcOBtR1Q+2FPH//Hlnl9Dsu987H3Dvp0/csvqfwvIim2iOkQNUp+6ykyi2OlGzev8H6imy+QlaSYl/RtoK6bqj2DaHTI4wT1GiIbh18GaLdHtPhAc4gIS0rXmcFxXrJUGpCT6JGQ+59/gNun/8WaSr6vSFvdjNaobjbZEzKllaHqGaDNRatE5Q2CFtDUxLQcu/J9/Edl81ihlnMGEQJyvqUb9/iVTsSX+P4A9xgwO67F2xmS86nI7JOjGlK8u2CWdHycpdyvVvxj6bgX376gMnwkGpb4QlLk2c0qxsm5xN6gcSXFq0ljivo6BbhWpLJCZF/iCprpG3QlCSdGJscYfwJsVrRLubE1iEOE+KgRVWCclugBFgUs/kd8/kSPRiSBCXhQOMryePJgM+mCaeHAzq9iMF4xIt3l+ysy6tf/oon6zHCZDha88Mvn9JaRULDZlMSxz75zqe/dyi1ZJ0WWCURAqz00KGD4IJRFNIpd/T6Zwgvxg0CiuWcqAErYw7EkIdnlr968gXV7ortZk3Zukw7Hu1uwWbfsF3NiFXLvm0wbUmNRLQNwvHontxDChC2QKiAQOVEjiZvPoQqd1dbvPMHPHzwBZ1eHyfwyC4XUM7Rk1N8p8e9pw9I7x8jyh3aVXjaIVodMDyb0o1cTJHiaJftvmA8GDIajkg6XZQfMttdIcs9btzh3ZtX6PEhT758yj7PaGufXalYXGdcvl9yeJjgxgl2H9JqQ73eslCWbjdGi5LHXz7E3VyyTT0qdcB6d4EVhqas6bYCi6Xabwg9l9CLkDXY+R0i9lG9A5Ju58N/pN/l5u//nonr0Ds9JrvesK9X5O2Mu8UFxipuqz6To89R2Yq22PD2xRscBYm22FpTpAXag0GvQ765wyyWGAWxExCKCn025Q/bnM2ywKGg2LdUiUM46tOWdzhKc3B+iqbEFS3S0SAlxfqG7fyWtq6Q1uI7GnwX3yoOj4dcXt1R7DJkumd7saG0ivGDA4rFivXVmn/491/zy+8ygs4A6Vju3zviJz84Y391xbvL1/x//+7/4N7BKT/78SfodsvlbsvV3ZymqrkzJdl6w4+yDJHvaLdrLAr38Iz9yyvGn/6AbDln+/vnBGdHNEpg05xhWaK1IN9nBLQknR6VDAn6DoISkTeYiyXTsiD2PA7cAFVLzC6jePOWRKWI/gQnPmQc78h6CaM3NyyDBBEM+Bd/fkD6//4j2tEcn0w5Pz4jPHuE6iY8VprftJo3WYlfC35y/5STYczRpEvbTfjt9S3OZsP3zw9R7g60hxWW0kqWqzUOFixIBH3fwcVy9fotXpGz/O4VMxTnf/ZTxMdCk48++pP2MTT56KM/cVIpJmcPsIstezPk/LO/op6/wqxnRIMeTq3J9jWuqbH7mrYsEaZkOjxEKcn7fI6f9IjjDtZaHGFxRhNEPEQ1ktHxmHI2g/0a7dZo1wcJwrHksxm2Kslu5xT5nnh6iNMZ0uwb0hY6B2c4vT6OH9E0La0VGOlQFimeDgjimF6/ZZs2tIs59SrFUyFO/5ggv2Iy6hJ2fTzXQwc+TCPCo0d4nR7YElvltN6YVnmYqkKoFr1sqR0HipLWKdimGVEUQQPH9+/jpB6+56ElFFWNDPvY9I6pp/j0xz+kc/6Aq//wb/BcB6E0o+EAU5TcXF0zfjhgm+cEwxH9sOIP37xkFDocPbvH+ff/nN7BCKfZU+Y1g+Mz7i5v8JMJrjSUWUYwPka1La2V1HVA3FOEgwhbZThyTWG2VOaKbLfEZjnDMGZjXbLljqGnOOiHBHEPPB/RGhpctLSI1iKUhxIO/aRAHlhmy4xmfESxvsATgtgt8PrnmGVNoksi+WG+RxCFjA4PybwNqq7wT89ppCLoehgbsL6+pN6sqJcrAgybuibyHZJ+gt8W4DpYISizDFGXuF7IernC/fQz+lXG9X6OEaADD9+2LC2MHz+hqiT/5//8P/HjH31K99lTrGixTUPkO2xurmkOH1DJGscJ6fdHGCswWY5w9phmTcua1kRUZQdHKljfYPcLbN4iTYCipXMY05Qr2nTLbp2iKkGiIiDjs8cPefXqHVYYqjqnMxyA1HiBjyPApHva/R6vtcRxSI3hyb1D4mFCGEb0dcVYGRwU0kAQXtw6AAAgAElEQVSdW4Tj4bgevpQs0i0yCGnSOZvdlhLY5w1xFCJVTSsEvd4QlaWYpsZzPJzOiLow+JMpTSeh3/0crQqquxn+dk9dFSghOT0+wFhN5CimvRB7PsV0eoRhiuNoWqEpjaKUEZGqcCxYIbFul9ZoQt1wcjKlNzmg3ueEYYTb3ePmKU2+ZegXFLVCDw/wiwq5mGGFxOn0qG2LZ1Nmt7csNxvKVjFSDY8HXUJRc3TQI9A1UrU0BdjSYObX2IM+lDVjV5PtM9bLDXrQodMN6EUKR6UMxhO0k6C1g2ozbFyTBBe0mzm2LRFeh24cUG7ucLVFeyFqeMp2vuH2ds4g9JHWYLE4jmbU7fB0GHHe9+idnNMqH2skvXtdtteXXL99C82Go8Muf/nnP2A06JOmJc3xmGrccrOs6CYBReazyivyTUbTNJRNgWpbqA2h5+IJgetr/N4ULxwghMXXLpEbssgcDmqHc3GJTWK2ywEvNkuaQYw0OYtsw2y5I93vCDRQGzwBLQ37umYc9+joAFXXWCWQ0qXju/R9h9V6z3K74dHplHa3pHP+AC8a4g2PCB0fdflb/M4Atz9CD8foImX38g5twB2NOZwOiJMAV0nqUiKahk2W8ujhQ7pJh0hpiGJ28xnXyzUTofh6teXdb37NpKuZHEYsFxm1s+Pi+Q1l3mKalm6nT+uF5G1BdpPhdQb444Bet0BIh8r4hCeP2VQu6zRDYnGVxkoBbYlVmrZu0DZHliVutwMixLaCNhCozvmHIbOdEd35a9TaQWKwrBk6JUQ93qd7zo4GuOXXOGrJdWW4yXLEizecxALHU+Bp1lVFvWjoJx2aVlBbSShdHA294y5Hk2Pe/OK3CLOnkziMzs6J4x7FTBGP+8j6w5pyWxqqqqLMK9LLa+pdhikrwjigFRodBAQNBMrFFDV+NyRdG+pdjZA+y/dXtHXIfN7yu282WOnjhy5+GPLki3t88eSAX11dsr2d880v/56f/A9PORofURUp9pvvELbFCsnd1S3dXodGSkzdIJAoR2P3K5StsEFCvXuDWc1o/LdE/R42cBj86Kf0TUtx9Z5mu8ZEBscJaIoCq3dEnkOb7rm7XtPpHdCNfUy6oVctCSpwvAixWVFWb2kbydBz+LN7J/zi/ZJVoQl2LU8Pj7ndzvAF5JcXfLu65ffphmZ1i3/zhtOOR5blqGqPayxtasirBu+m5FEyQAsHBdA2SOWy2s5ZLpcIIXCDGFeBL1oKK3i13PFusSESgh/cP6Lf7yHFx5kmH330p+xjaPLRR3/iBOLDOtz+gN4+Igq71NOHbGZXRB1BUzSYlSEQllZGNP4BwSBkuZijmpp7x0Pcwwe4foAUAqk9pDfFyg8rWKWtOHp8xObFOzwDUgaoOEa5Fj9xqYuK5PH3qHdryrShXGeYxiD8Lk5vRNyJqW2FdRRWQpZlKO3ixRrHcQhFw2QYM88LzN01neEQMTygWgDNDlVkBN0u4eQEp/MZKh6CaD5crpG0LbQIjBLYfIeSkqKqEV2HdLVmty/wOgnWVuybisHJQ+KRQ+gJHJki4pAmE9x/+AmelGgsrquxtiEIE6QQpGVJ7PqUqwWeVnSOT+ilBau7Je1+xzAJ6B8d0R10aa5fE/ouzXDCxdsVZVpioxBH9dHOGKktI5myLwrcowNsvcZUe8xuTbWc0xQFLj6ogNvUJc1u6HsODx5NCfpdgqCLpKIwgl4S4QcuyomQykHUFXWWUu2usfuMUeSzklNktUYDvsrxJ31k1QNlieMEvx8idU7y7AhhKmwcU+WS1as7VOARJD3CIGRjWqSVdMOIsiyJRfshyNLQ1hWB68IuxU6PEFJS1xVVljHsxNzs9ihvTOS6JOMpcvo53XjI9vkvUB0HvztCutcMRiPC/9gSVVUCRI0wBjfqERYN1c5gHIPIZjhyh1lrBJZqu4d9jUlT2rqmKQPI5tTVCpku2c32mMbB92IcbbDyw1mcDIZsdxt+/ctf8Pn3v0dTGUxREyoH2hZTFEjXJ4pjyrpELWaMz88ZDEZou8NpJMIojBMTdGK0aNBtTp3NCYeSV999Ta+TkOcZaS2RwvnwISodeoMe2XZHdzCikhFt61KWS27vXpMWf+D8Bz9k/PgJUXbF8vqagat4l2XUcUw3icmWc+r5DQf3HxMOD3g539D1NYnvU0gPYS2L1Ypk4NPaAtEWNGVM4wm8qMNgMkGZlsZYpFA4nQmxCNnepGjlEoQ9pHQpRUY4dakOHvPdP/wNm+9+S103eBiGwjAKBaPBkDovaEVAx1Poco0OY6SCwHfxg5Ddq3foumUUCKZRRKkDdmlOWQoS7RAqi64LgriHIKfaXGFXb9muugQUuJ6P5/UYd0JeXWyJ4oAg6bLNUrbzFe12jY/F1s2HdjoleXh6SG/9nnY5Iw16dH7yU8oXfyQajbn+7VccHp9ydtZnOkno9Qf4QcT6bsGoF+F6IfHE4fe//prucECz3LBYrsl3JcNujLUlVHviqP/hJT/o4EV9dJBgLHhodFXR9zuktzeU+YY8N+wrh+j0C2TU5c2v/5bZzR1NVRErSWMsiVS0TYXSAlcoPKmxUuJ1pxhP4zUZnufycFdxs3mPSXPuLi84mt6jthGB8AicAD0+xzm6jzMa0GoX7Yco2cKgR51t0dohimOaIkV2Bwggawz9uEPY7xJ5EY5w2DYWL4qYnp1xlRU8X87p1QWz1wHD8BHLRcPrb7d4+Z4g6lM2FVI6dIYj9vM7gv4hD3/2F0SdCu7+yPr5NW58Hzk8Iy5qHCTGtrRC0O0H1HWN3m0wVqB1TSs9qjBG7SvcSOC6PcIopnFaiCP27y3rd9/g9qeEQYwqChJpOZlMgZxduWHZCqZJD6RmlHj0XImxkFORG8ubWcY4i0E4nCUd2O/xqHFzxfj4U0Zf/pDd7/8DQdvizWbobENnNMC6CXW++TArww0wWcbs6pbl/BZlLWHgkjXg90IMgjDSeFVIKySLXcnLF7eEZUnS04StpNjlBP0hw5NTalOTSjg56vP0yTmP7h9hvn9NGGq8yKd/MKU3Oab/7oIODUE/IVaagYR8tSEvSqpW4PcmCCFBeNSzBfniFbd/+AOzt2/ZvnzPz/6b/5buw09pUCTlBisPaLYRO+2yzSqiZk4SKew+43JWMeneYzCOqMqaYSLpRBrH1yAkrhsSe4K9sfhnT4k7K4567/mb55fM7t7RVCCqktXq1zTubxhHfQauJh5E/PDZCX7vR3z99j2LN9+Qr2oWlaT/5Bn//X/yjKja0WxmiKRDoVzyouDdfMO2EShTwWZLJwnRsY8KYuZVS2ssJ72A4dERq+bDOfvoo4/+dH0MTT766E+ctS3NZk7YTxg0EdXtJU2TEw1Dlt9+S/zwGfXuJZ4y2MilLTW2bBBpRrPfIpIYIxSaFiU0UiloGiwglcT1PJJE4T+9R7PMEHWFbGtkVSCdBG/UQ0hFLTWeaNjucrZ5hpj2kRqqIiUt9wglWL99gbAN9z/9giTsolqBNuBsFkynY65TsE1N1AmJBs/Qt1/j2B2u1igsotgh/QjVPwAhaMst5dU32KAHrUAISVM3bBqLzXO2uxQnSoh0iytgbiqEbVktVhzdf4DrRBTzS8LREx50E67//ufczW+RApSWmLYh7nxYWSqlpa1LRNMQBQmX714wCSMikeOKFrFPgZL97QVCR7hBSP9gynqzYqJTdDzC8wIc30G6MW2l8RwfrAdJj7KsKQKB44F0BU0jub/esmpL+s9OqFTI7u6WdXGJ9F2sdvFUjOvFOMkQITTC1Nx995JO1MPzhjx/+Q3D8xPWVwWyAq81BBF4/RghDe3yGvIGNThEDae0OsY0Ak8rVPF7ikUGOkBUJU1tUK5LUBfErWA66VObhjqHvKmRlUG0EEiQp6d88/yP/Ooff8XZJ0/wwgmWD5UK43se5vwpD0fH5MMOvl/RupLecIR8+BhPGKTUZGmB8sB3NcrzaXcbirpkn6a4bYtUNcXNGmfzHNYLmiaE3gOam++o8wYraurlK4q0QIkevh8jpaFpG1ovIFIt++17BIqqLPj6d7/n0+MTXFfTmQxJbypaNL1OH1Pv8bXEV4Kbl98yHg8InAGuAYGHNxlhd3McR2FbSZOV2E1Gu12x3qzxkzHL2znHp2M0AoUhDBwwPgUhXjBGuQnL9Z6Hn3xJ/OAZeeDiTE6xL264fvGW3ukJ2WbD0eNn6PGE08mUcHxAPJqQ/eEfmF+/p64qDqdTLrc5jhK8+O5bxj/+goYWa+sP7QO6gwi6yMAgHRdHFrRCYlqLGya4fkldfqgoa4qKerdgfn1FXtQkxQ1e36dqPdLdhlg1CMehbSUulsJapHTRniAZT7HbFE82mFZTZSluUdANXOJeROmEREFIuspJb9dEwx7Vfo2sdljT4GhL78FDtOOhyjXCGCyCUAucFhyhMG5Inre8e/MOt27w44isbrEt+NqjG0q++8f3vL68JZcv+dHOcvToCTqKicdHHJwfMe1WJKEAobh98YLF1QKrLb1RzHDYZXo6Ybsv6PQ7VKZktlxydDBCGoMwFc1uhXU7oH2k66McF5uXKCQ67qBRJMGYahiym+3YLEqc0pAu50yHfRbXmoFrCJOQDMVqPkc0gJU4yhKEPjYOEVGXQLtINcWJu6xv77g3HDMMFJ4jEKTs1zO6fkh7d4kzHqGTAbp3BMpimz3SWpxul7JoMSrAtxt0EGHqhqaBsqiZjoc0yscbHqOqmvXz3yPTjEf37rNe7wgu3nMQeaS7HdfXC+YyZDDo0pITu9DYD6uGVScg7k3pnxxxeP8MawqkP2D13a9xxzXCcZHaIwwTZqs5R4MEoTXZboPWEgVobXFUhA1S9k1Llda4UmFmK6TZE4/6uJ88Q7gLitsZkanwSKA/ocFQLO5oWsHttub9LuOwH3DedXEdh6yoQCnsOmVdNqyrgnl+jXPP4SQJ8I0laAVubul8+lPcxRwnXeENpjTafFgnnASI2NKkK1rfpZGaxXrNtrI4tkV5lk7SI4ojlKsxSuMJxbDbZbfZcrfKCWkJei1ta/DCCBPG1A3MZlse/fAZvUTTi32UNXz+/c+5d35A0OkxOZog2gZd79lsNvT7Y3S7JTAVw4MxdVVS7jPoD3C8CGsEdSG5/u3vefPtC2ZpRoblq3/49/zFv/xX0IZUix0mbfCG5wTxlPDyV3huRJHtqfKKs/E5WdqwvrpCGUvnUQcZaRwvxBChvC5K+CT9CbuXf+T6+R/Rsc+/+vEPeX59xd9+/Y6uo+n3u7iew7h7TD/W1KLg4HBKMDmmdzjif3n9RxrrcvLwMd//ySP6I4moA9Z+j9aJWL99xaY0XG5zFrs9/UDj1TV1Y8BK/CjhvNfBCsv9wzHHzz4nGg4/bs/56KM/cR9Dk48++ggROEjZEh8k5K+uyNcbTv/svyQ6f4CUlvjqDenlFUHcpRANbbbGCk2Q9LgrG7otWNNAq7CNQQqQQiOkRnoxwWCMk22w0YfAxeYF5es3yP4xbifCZhmmEoiqxVEuIuyhow6VrUj3OdvdGpoPU+0d1ye9vsCMjhDCwfVcZLpBuSGHD47Z3F5ht29plEM0OkTuKoRpkK1h/5tf4518QvjjY2zbAALVmdDmObaFOi/Y7XbQNGR5RVY1TCcdErdgs8s4GA+pG8PFYsHpao3r5XhSk4wfYFOP4eAxG7sgMA1lXlHUK3wvIlOapN/Hti41PmGc4NUNu33JdNzFl4Ly4hVradneXhOdnGOFQ7frsy0VZdOQJKBsidYR0vEIxjFCNcigwlYSZ3pI/2GXNltRbhbst3uq1ZKjz84RwYj84h1ebeh1BtzNZiyKDbtdw/0f/Ijx6AQpLU1W0D89RiuXl//wGw6nU9rWkEwOye7e0/cNVjc07YbO6TnBySkynX14iWwTZOMiHA9TN7hSkN+9pvEGtK2lRiDblrJu6fe7H0IEzyWjIVtvaLFoP0DLlnDQ4eH9Ey7ffEdtoapbdrVkEib0og6iKbG/e8G9pweYENa7JbJKcU1FWZRsdhknR0Nk6Hyo+lEaPwox+zVZkVKjqYzBkXskOaLIMSKnvF7jNCXNPsfUFaYBUXt0ez0QILRFBAmt8NnsGxzhcH23JK9LiqxEHR0jrUZJje9Jktjn5m7GcnnHcBhh6oI49khfP6f7+BFu2MWJuqAMQkK1LhA2Z/t+SZlDm9as8hwvV4xHfSaTKUWd4QUBVdvgWoN0YryTT9jNtkRxQnd8j+Gf/5j36yXai3g/26OdGD08pN8Z4vR6bOsaWWbYumDz+msuL9+x2GUftilFLSedQ9LdHavNjtdXK46iA9qmQWr94ffFRY8eYa3E8QLqxe2H6jDhEEUBWZpTZjmudukPxySuYv71VzSeZlc6tLsCzwr6nS74IfPtnnWaI7wAz+3g+RZZN4ggIUhiMFDO39NVkiZI8F2HUBs82ZKogLJqqIqW4aCDGzhEh4c4vodyApRSWD/EVCWt0h9aCCWUjaHE4+3dNU5d4juK1rTUwhJpcG2JJUI8/JKTo5r97JLdco4bfI9d2OPRP/vPafM5vWTPoOexvX7Pi1/9ksWm5HA64ov/6r+jbmsOsw0Xsx0dP2F1/YLFakXVVIRSYqoWayyyqWmFpCkKtBOgPRfl+9ikhzAWU1VoJyfcPqdVKX7oEjSaxD+C/AFtmVI1FcUqJRYKPJ+6bmgbkK3Eqy26KrGmptEtjtfFCSOe3e9CkfHy4oIfffoMqlva3MG0XUhipASZZ+BoTJEDJW3ZIpJDbJkSigYvTMiKhuV2RxBoTNNgopjBJ0/Zf/tHZFkRxQmh1px3E8IvPsMzOVGnx0UtySgJ9wV2n+NWOVJL3l/O8KNz6jbClRFaOXiRQynAhgmeI7BCEWjF8ekh692aLM04HBwwv1rhRQpH7Em1iyMljpijen2ELFA2Rrk+ojGYLMfXmuDeMSaJyK7nNG6IHR+Qv/8Oz93x5uKazXbLaTIkCSQHYUBwcErhRFSmJK+/4S41ON0EW+94vdxwMOigPIF2Y/xOh+jBPezsKXo1x8QJwmtQRmKkxTgBGAOmYF0aLlYZWV4w7YUY6aAcBUqhfQ9hJY7nUTYGtEtqFabIme/2NOstwSSgUj4q8OgPEs4O++ybhut3b9mvAwa9hOMHTwjCkCCOSS/esZhdcrPcYJ2Ao+Nj7h9OeP3qPev1ivntBd1BF8/zEX6Ic/8x3uyGuKiYXd9QZhm21+Pq5Xec3XuAN+lBJ0TFB5R5jhs4LN8tcBJF9/gTZAVfPf9HHk0SHj4e4h9NcTyDrIHGQzoJQvUQqk//z/6aMI755ud/Q3w65id/+YDo+IZ/+2/+L/rK0juckiQDTsY9XEcTJAPaaIjwa54dnXJ60OPgPCGu5jgco4dT3DRndXVDmubsrcsiLUiLAt+J8IMAOTmlrHa4GD4/mWICxej8hE5bcf90yseRJh999KftY2jy0Ud/4oQQuH5Evl9iRY5yU6rta9bLW4bnZ5i79/T6AeVcUllDWRps6yMdQZ5vuJ0tsEFAvtviun2EMbStQSYR8KGHXoZDdNDD1nuoCtqqQDX3sTXYuzm2qlG1QTYVwnXonj0kV4q6yjG1oSN9bNug5jOcYZ/ucIptDKYBaoUXjFnNMzqHB3ijE5rVNU4g8DtDVBQgPYXwuoSf/RTn8AFCObRZism2CCnBWOq8YJ9lzGZzkA5lWaDDGE1Nx5PQ+lSipZEO1T7j9fNvObt3TG96SuD22c9qusljvMN7vH3xf1PkOUW6o3Mwoj+eEEQJ0k2osxIn7vDg8y84FS71+pbI96l2W5Qb4O3WiGKETvrYFqxU5KbGtxlV66BLhZIuvgWFosUDR6P8gNaNsbuMdlvSbnYMDwfo8Zi2kWRugmkrTg4f0417ZN98w6tXb/m3//p/5z/7L1KkLal3G8p9Stu0SNWwvFvQO+xw8Ogx71fX7HcVSeRi24b969eI4ZSgO0DEXaQTUL//Ha03wEgXYzSlcSjSkiLds1ptCT2N6zsMpkP6HcW+bmlqhzAKMLQIx6FpBEmvx0Hk8+jqHYvGY914WC8gzXMOz05xaoduJyY+HlGWJV62QNuW7e016+UaN0woswBvOkAoF4EiCrpkhSGvDUWxRZYNXRmircJaC0rQtjktYF1JYRROf0p/6iPKCu351LKmqS2OMohqRexKlMkYRAHScWgbgxQ1otzi+YK4n9BFs97u+cOLSw5HCZ88ekjQ7Khe/h4xmKDGBabJKTYbTN5Q7FI2dxt2jWSTZmS2ouM1+KOEwi4Rvo8QksCVSKUorCLwJZUQJMMx+c0F+zev8ZMIV1hev72kPz7CjxPGnkdZ1Swdwf/z859jditOhz22ecm8DRglB/QnQ8qy5pu7a6yVvHt5yWky4cEBKAzGNCgvRHghWIswFhV2KG8vaHcrKAo8PaCpdphc0hpLmZa4Xoc2zaGqkQKmJ0c0MuLN7Q2+H1Mv5+imxbUfBhU3mwVp2tCUe6YPnxIf3WN4c8nSQhwl6EASm5SqUbhuH6m6dAZDgk6C15tgTYsKXJp0DmWOtC3CSKxucMIOGzwWix1X337LkaOpPJc03dNWJUoItFRMvvgxwfdinGTEN1/9kvbdc2o/onNySJHu+epvf8nwUZcjr8v1YslsueP2dstw2KcuUlpqjh7d47TQ3F2tCbsDqsayXKfEox6taT60qnWmFOsFjnQwjocXdRBSIazAKoV0fJRQqOPHOIOGal+SrG6ZvXzO6WjAfh9wc3WJW7ecjA5QSURWFeSrFQqF6wU4bkBV7rGyQiiXg/MnrN694fnFmpP7nzE4/oztxXPq3Q1VZ0hhDXb2BtGsUP0+NAVlusYYEG4D+RblSlok2WpFtVsS+B6NsRhXYHZrdFOTdHscPXyIlJa6qDg7PmL+5hvazoiXyy3L7YbTex7DsItQsM0z3s22LNdf0/Mes/tjSi0yRkcegWMR7octJ1orlKv49NMn3F5eUllLlhs2eYPTNjRZjRdI3EBTsMWVBZ5w0LWDSfc4SuP0j9E6pDUafe8Y21lAsWJ7e0F5/R1N2ZBuFjwb+iSdmPfplunZE5LjY27evwOlGI+7HNY1ru+zuE0xtkFGQ/xOgJIaMRhjtYcNY4TT4gQBlZC4yqcqUkSVQtBS54Y3d2sWeY1tLUVtPsyewiKqEh2HIASdKKRpBU1VUWtJbzTCHSREcYgIfWovRAm4vprxaZqy2Oz49S9/w72TEQ/ODugFDs7hGdlyzvNvXvDN6wvWixme6/Hw7IRB6NHkObdXt8zevWIYSIKnPs3dLVWZsstzrlcbllnG9OEjjk/OMauU7OvfkXT7uMMR7fIKObtg88dfMRqe4Z9NsaLP3XcvGAjJ4XDCzVywf/cGLXdMRyGTZz9BujH4A4Q/oagyhEw4PD7D7iHpPuJHP3tIef2e2bv3pLdv6Ts1+7uUaHCEcBqCgUez2/BX//W/wDoKWe6Iu0OigxOM9Nle/B1lYVHKITcWy4c1w2lZk4SW7fUNwlWYuOR82qXpeqjA57vvXjB49iVKqX/ay9pHH330T+pjaPLRRx/Ryg8vsNvtHCFrgqDij//6f8QbTHnw9Al2t6RzckQRRqTv39GUBVWTk5kGU+8p17csb68IOzHScZDa+RCMYLFC0gqBChIEGmsdlNtHPhhD+eGF0SwXtFmJDDr4ckqxr9EmR5sGtUu5/fYbArnj8bOn+CfndA7P0WEPUbdgwdY5u+sbfCfA93t4QZdqv6KRKcGw9+GD1nqo7hArNSbPsE1NNb+jmN0iekOKsuTq3QWr0uCHHtr1SIYjArGjKQye49KNFXfLDZ04RoUBReuC9mjbiuzqNVY2FGlN27aAQGgHqpQwGRHGXYyBTboj1RGTT56QpRlbUaK7A3qHI1ht6E4mGNVilUuUdMFatrNb0rt3EF/hju/hd45REtrtmrYF7cfU2xVtXlLP79BaMTx/QuNWGCH46tdfcff6lr/42T8jCF1QAxLPo2klv/j1V5z1u7jaYKRP7frc/f4ryqZkQ81fPv0rwrDD9JNP2PzmD8TugN5kglAfKlP227e4UYDjQrNd0Xo1+8LQmJpK90iXM1abNVqD8l1E5HNwOMSTBpntqcqapqpoHUmR5wTdABWFFLM10vNAJ6jGxQqBcMCKEhUGNI2AykKao23BaNDjVmscqTD7nGy+oj0fIC1oLakRhFFEs0vJ8gK3tej1Ds8PcWIf0dZYU344q56iM5yitYNuW1pXgeMDPtJpKBYbzG5FZTb0pgOOjg/YZzV5U9GkW9rDEV6ccHA6JNqmNKbh4vqSIOjQnx7ill24e4d5+5rlu/dUdU6FojSGrLbsNgbpBlglGHYS/DhAiz1SD7DC4DoO9j9u6AnjDmW6J1QKL+ny6g9/ZP23/47v/fO/ZvN2w/rNG7zDIb1+l9T12aQ71nnBPogQxf/P3n3typqk6X3/R8TnTfqVy23vq7qqq9pUT88MxaEoEkOBogwFAbwBXZPOdSBIgIABRUlDSOL4Hrav6nK7tt97+ZUrfebnv4jQwZp74EHv3zVkIjMevO/zltReh1cnbwk6PpX16fa6XF7NiX2PIvCZzqa8PJnwvYeH7CBwlUQKi7UGrYFWY/0Ed7BPU9bUkymmXqAnU0TYx4oAmedI29JUFTLoMdjfweiGb55+R6sh7cLt4Yi6qZCNxnEHiMTj8NYYvTqmKZaE+3eJooiyNnTSiLre8ubpMWXT8vjHn3D45C7W+tjtCpFnCNdHlGvE6gqTbyDsIjyJtQIT99F4vPzZ3xO2mo7jkguJDgKcpiXt9kh7fYYPHqFy+O7dnNmiYnfvLnMbMfJ8quyK/u4+xhNUlcb1fR5+9kP2FgWuVExPXxP3QtLD2zx+0FLOrvDTkP5gxCYrYJQiLCgh0cWaymqUbhDa4rkRUgls02kvX+8AACAASURBVKCSPrTN9YMtiJGmgjyjaEo8a9DKo9QlQgTcP+gjhCAcdOg2FSZOcOMuaX/M7MVLXr96Ruu6/PAPfkTv/g8oMs1jr8fBwQOaqyuawlJHFpld4d28i9sfUtNiCwNuhE5c2mpDky3xuwnGNmSrDZOTYxwFrqcItU8pFLGC2WbF/OgtzWbFjR9/xsj1EGHExdk71q7Pk48+ZL5aMd4ZswaKTcvR6ylFWfHdiy9x1GtMa/nVccLjTx7zL//oIxIkwkKVbbHbhtXxCUmVsfVjajStkBzPt4hBQKpL8u0Sz3q02kUb0BdTUioIhpBXqMEQuf8Ef9RHT58x+fwvafKc0HOp/S43eiHjW7f5/56d0OQZm+NLiqsrch+EH9BPRnxyv48bdTj3XvPLr77icnnO4f4HOOkO3uEBVmlaz0Omu3jxEFtnIB0kFjeKqOp3XMwXXC1WSKVwpKW1hiIvMf0OWhukNfh+ANZlmxUslltuCIHshOgqw08G5H6E8QPC/oDSnfLu9IzZdM7Ldxd89c1zPnlyE2GhezLhct0yvVqyXCzJ8pztdot0HNaLBY7R3L97k1oLTl++oj8cQ2VZvX7D25ev2eQ5Nox4/IPPMLMlapPROJY62yBwaC/POXv5Ff1HH5Ds3oZkgHa6zK7+nlEvJty9TfrkMyiPOPub/4uf/eIVPzY+D/70Hv5+hByPsM8zsuNXvPvuOTuPHTruf0bU73Ovf8h+1GPVZJy+fk3b7eFKl53hLlqAu7fP4vwptz66j592aOcT9CqjXByTX5yjurv4cULNAmENSRQhrKGoa9woIumPmBFw4EjifoiTdNkf32BRa9q2RTnuf9L/au+9995/Ou9Dk/fe+z1nrcXUFbptyLYr8rygNxiQNAXCbnEP7kF5AxWE1JXBqiM2qwtEEFJJRV7XFBcThs+fMtoZQtLB80NUucFULsJLQHlYWWKX5yAkMhqBkyD8PqIDIupCUWEXOTrb4jqGsmoolxtOnn5LsXxL//EDZGdMNDrAiwcoP0I6DabIKS6vWHz3Nc3FJYPxDYY39ol7Y4xqaBYLnDhBCkU9v0JVJcL1afMNdV6xzQqMWTBbTjk+O8MYS9XUdNKYvZ0OarmhWm8RrsBPB+iqoMg2jPZ2MRa0gGzxCrdfIqMBxtkirEUFEfu9Pro1RMMufjqg3mwI+kO2/TuEvsAsL5G+wqRDnO6Qzt0HBIMx29fP2M4apHQQ0ieOh9Qrzez1SyhzvIM1SkRk5+esz2e08wX9tEN3PCTaPYCki+j0qWzJu9/+jl/86nfsdQf8z3/+H9i0LbuxoBWWxXpN3mj+3f/77xGBT5TEOL4DVqOk5nsf3qXTj5C6ZvfuHfK3ryhWZwS+S7K7D66D8AOKxRV5kdMWGbKr2azmtNqSrRes10tWqxXKc8jrivsfPiB2LF4U4foORkpmEw8tFNumxRE+9tVLjp5/TVY1+EmfTdMSB5K2WpFnHuFOwmZ2QnA1o20y5FjSGfQZ9EaszudMp1MCz6duFInyscbiOS5CWcoyoywLtOPiOw3KMWD19Yh3r4fSBU7SQboJqq0R1qV1PYxV2EZTq4qCmjcXl6xKw/BgdB0WRg6iEJTGYXE5IR73sTJDNmuszohTh4P9BFPmBPt30LWhKo+xZUa2LqmUT2YMpQWZ9HDckN0ooAViP0RZBw8H6UcgG4SUtGWLn6ZoL0UOumTPX/Ps4oS1sRy8ucns6pR//qMPoZ/idntYC67WHL34jjiM6YYdvCCkN8xYbSuCdEhelIi2IY0SlqspOJJWb3lzsuTmowP6PQumRXnXwY12AkyRg/IRyQ7u0FK8fUmz2tAuM3BDdFXTFiUq7eB4fSwubX7K7W7E4w8e4cYeddnSllviAMLBAY7vEwwPKd4YgqGPrSRhPCBo5nR6Cfl0xe1hj/NZyavffMuN731IMt4BsYfZbLBVgSiWiGyKLXLE8BZWKmoBtZLMj96xnk356MkjOrZGWU2T5XiNj+u5dO4/xusNGaWWwYsXbAKB7Qw5LS2JknRHA5LoMavTp1xuWwb7ewxUzPn5kjj12H/8iMXFW7R12Nk/4P6DFYvTC9LRLtZqisag/Ai9XLG5uiAIInRRUxUaR3kEforwUsxyg+dadJ5hixbRlMimQAmLG8ass5pahdz99CfMTo7421/9io9v7LF3MKYzGBN0e/hBQK/X4/6dm/z68y+ZvHxL9+YH7H78B6hqRbvcYhcZ2fkZ35YNP/5JSrCaUsYdgl4fqwSEAW2RA/Y6NBPQNDnvnn9D25ZI6RN4AcZKVJAQOYLLPKNpW9pWg9V0hkMuLi+I+33Yu0mpG9bLHFdlVNLgW4fpqmY2z1kslxR1jRYOyWbM4fc/QaLwXI9mMydfzZmcHvOrX/yO1dWcx997gukmOFGCFi3Luka4znVQahpc4bFcb+H8NdpI4m5D2jQUtiS995j82Zcsv/hrqBfIKIVoiG00zmiPyo2JRMaP74/oeRrn5g18R9BqQeJLkspy48ZdHt3ocfruLc9eveT2MCUIfLLpO9oVeH2FE0ZIXyKrBNBYE2LyLattxbM3R7SOjzKGAHBdheMoBJYoSa9/N/2QZrXGCwKydsnJbEWqNHvj25SeS/fWA548fkAnkEwWNYv5kqN355xeLCialtC7YJX9PbN1wZ0bt7h5cEhZ1Xiex2o+5fjoiMPBgO/9+DMsDlprZs+/YvrmNWHU4Wp2RVGXVMJy59ETYidiu3pDW6wpgxhntaCZTZmevSO6c4dgsEMddvB6Y7LNDBF3aVZr8qKm/M0v2cyPuLpYMs1r/uwvvuC/JeTeH35C2K6w0ws2zYY3ZYvJM3r1BZ4ICJoGEfRJ9u5y78kn5MWccO8m3v4jdBATx7Apd1kdH7Fz5z5e74Dm6oLLb56yraHvOgS+B1aThD5VmeN7Pp7ngLFkMiBMR+SDCLE9o12v2LnTQ5fL64nE99577/fW+9Dkvfd+z1lrybdbjNFkecYiqwgGHdRY43d62GRIuD/E1C3rp1/jpj38oou20GiBdFwuLi84n2+4d/wKeXAT6wfIOsMLE4JejMBithvMYoF7cB9kiLASjMRWFbYRiEwjyhpaQ5s3bBclq8s5l6/fMepZqvUavZ4jtxtkvIMIfRACFUSEwx1GyYDh/gGryQVrCoa9HdzePkhDUZWoTY1tt5j5Bq1cdNNQFjnb0qHYLphMpxigRYAxOGHIaDSkNWvOv/qGorDsfjYg7URIW0NT4AQJVZEze/4NZAG7j7osl1tQLlob8u2Gnf19on5KsrPDUufEqkJHArk6Je0FRJ0AE3Wp8hqGHro2OG6Ip2CjWxzlEQ1j2iimFg56W3D+5TG6yJmdnJOdXXL3cIQ/2sEdHuL0B5AOsEFK8+4N67MleVXSuIYnn9wjX6z5699+jtY1Rih2ugFlU0O9oclmjPZ2+PSnn+HFIe3yiuXFGTee7ONHOwwefMr2t19RLZYEvoNwPVTaw+3tUzWXVLpAz5YsZufUrWY+n7GYXrHKC7rDPkGnzzAN8KMAN/AwAlzXJYiuPyNb3fLFz37OYrMkjSQff/oBOvAIG4NDi9IlVZEznRyhmoLLNxdIHDrOIelwn93d+3zz8y/Z5jVlY9lWlq7ro6zBU4q20BgsXhzhWEle1ChV4wmJ5yZ4EqTv4TghUkicIMa0ErYtNQIpPHSTs9xWrJcNtx484jhbkc+WHN56gJ+CFYamqdlcnlPNXerlkuHNA35y2Mcsr9DlDMMuInRx05CyqsFNsQZ0tUKFIXGSkiYjinKDUS1townSDtb4gEApj7opsI5FJAnaWEQSofoJ1nfZXF3x8uvf8qeffkCQeETjIdtOgr24ZLXacn4x5er0HQf9Ho8efsSHH/+QF0+fYoUkSjp40iBCxVrW7NVrysUly/UeR4uceFwjjEUqifRCcBx02+B6PkK6WOEi0x28scFpGtrG4PgC61fYWpHXLpHQBELx+Kd/DEjOX3/LydWSe/dv0eummMkxOuxRmwDTSPR2hpUKYWBw5x7pgyfEh2P6N65I37zlzXenrF59S/f+PWglxCPseotelIggxfES6nwDcYT2UuYXp7z69muefP9DdmMfkWmqMICiJA58rBfQ2TtEBQGuVOzcOmSSt6xaw+TkLdPVBTdu7aNMxeV8w6qM+cPv3SEJFNofcO/Tn+IGDm53QJYbFC3dnQGyaVCuQjketTWEQUStLVVeXE9ctZAdneNa6N14QBh3UEA9n2EtOEmHdlkgRIvWLYU2VCrk5o9+SBzGvHr9mru7O3zw6CG6KvFcge9J9HrFzqMPiI8kvWcv2W7XrE+O6Y73EIDjKUzS5daDR3z3m6c8e3HJp6PbOMUaHVxPVJAXSEDb6/XLMt/w5umXnE/OGOz1rruoXAdfKtwkQYmWXGv+8F/9a3KjSbvXK3i2rtm5/xjb22G5njMYbLl35z55kXH5+jsmVytWyw21NljpkcQdOr0Ro8GQwPex7RatLcViwbuvv+Xo+Vu6foAoSyJlcQcdLt/NCATUjcYWW9IkoW4qGl2wzhu0sOjlEoEgtJrtV7+k2W6ZXlwSjvYxjgJH8vbygpPM8nBseHQw4OHHj+nceUDw/R9QzC9YnLzhf/mzP+cXL475YP8u//T7DwiVZlvXzPM142yBHwpwEtq2pW632I1EVwV+p4emZXr6nJevXlAphXLt9XfcaKRSuIEH1tAWGWHs43ohy3JOp9tlv6rxTUPUjfBGQ5puj8RrOX/+JZfvXlFnU16dLFmsclwl6MchnTjg9dGEqtaMBvs0CNIkYjzsMZmvOLm44PbBHm1VcfPDD1lnFZvzt1RtjV6vEa5CBi5Bp8Pt2/dpthsWl5fs9HfQBvKypljPMf1dOjfvoFwP40qcXpe23DD67J9z8vm/5/PPf8W76ZRfrhec1BW+EAyUQv/13/Iv5q/Ye3IbObhN/P2HPNCak61m9/w5zekx/t4OSobkyxXdW5/QGf0Ipxcj4hRtWhpdMtq9xfJ3P6Pyr3DijPmrF1wcnZOM93CwoFwiGjpRSF2VtNrQVBVdR6GqnNSXeEFAN95FtAVV03I6O0O8bzV5773fa+9Dk/fe+30nBJV0yRtD1rTkdUMtfeLemHC0w2IyI925TThM6V1OOF9fYJMRVZWj10scAVGcMN1WHM/WROkC08QI18dxAprt5rqIMohwxg+AAKslQnmYLIeqgKoFqxCNQGeW/HLL8u0R06PnfP+jD9i5PWJ59BKvLFBVi6xqzDZHeT5C+vRv3SL74jvKhWX34AO22Rn5ZkHYG4AXYtwY60hMsWF9eoauFtRaU9QleblhvZ2TlxnG8fGc6xOZvutdF/D5IdV8jj++SZiEpK6D47jUraGrfCbvNmwvBkTdgJPLCY2sKWWA72uMMigF/d0RbuBjdnfJNlvyiy+40AH3ejGD3gBhFGdffE2Kg44WlMevUH4fiUIicJRL01o8v4sxAa0TMZm9ZDLZcDPp0N+5QdzfxU36yM4BNohpq5Ll2TH3/+AhtxZnOPUMefwtPZvwP/7xR8zKllW2obI1JgiRjqJYLylNi2oLgu4uO7f2KJczytWWpO/Tu/mAq89/R6KgzgukKHGcEGs0VjngeWSzC6bTGZVuWS1nyMCnE0R43S5+mhB7BkdobFXiOj6OEviBh5KKtVBMs5K6abnbH5B2OpyXJcJNkLbFUYo827JZLgmMQSaK07NLdHvIzvgh8cCws3ODyXZL0TSURUGrLUiJ0CBaia1agiil3FT4QmIqg+MrFOr6Ooif4kYhri6QfoCpDbYx1wGBrtFuimoa7u73MI7DYZTyerGmHWd0xjuEjsQVGl9B6lrEjSGtqxgGPc6e5mSzKVF8hoel1iVELkaDYzSjbp+o38FPrssvsywhV7BcTFAdhesKrDVYC8pTuEoiHIU+ukSpNU5tubu7w2JyRipa4ps3iH2BE3lcTE6w6xWX52uyvGWy3jLLtnQPDrj/0RM+7Q64Wll6owF1LulqnziGi5cb3F6X1WbG7O1zykGLu/8QrVtsvkFIF6MbTJlj2uZ6CsVVeGkflXQplytWsyUFgqxcks8WdEa7DMeHjH74j0FZvL5PePSWq6slycznxt1bWMCsJjg6w1Gg8w1KWtLH9/Fu3oesR11meFqzf/c+erEGESK7fWxZgBIIv4PoCmxdofMtUmjKyufq9IKHHz/kRsclMAItErJVgeO5VHVD0O3QKgfpSKptxdGbOTbosL484fL0Ehl4/ObnP6cbu9x+co+gG7H2R7jumu7uAdumx7AT0cicop6xWVziKpeo28XWIFyJlC5VVRB1umxWCxwJs/mEally/uIpQiiUEuDFNHlGMNzBVFuMLmmbiqKs2VSG7oPv09vbxxGGJIq5/cPP6N+6wemr55TlFlnXuE1OtTjjarVhowKGg138OMbzPWjAujVeJ6RG8un9W/ztt8/Zu3PFYaeHF3pIXaOCEOG7tG3Bdjnn7NUzXr1+gREV2m8Zhw6+6uC4Hn7sYpuW248/5uaPfspqPUNv11xtM8LhGKKI9TZDVzVlVvD81WuqtuD8+B1FVeN4Md3OHkWT0+316Yx2iePrAldES15XzPOcoJvy04/ucDFvmFaKvdqCsAgnZL1doqyg53pYQIuGbVmwFQpdVYjQwTGgtYGzI6rtmvThA4w25Oslz9++4Xfzkv2HHyPimEK3/Nu//zX/lVOzezOkvpywPXpD7AlcX/Lq9AXu6pi1rokPb/Dq5Ij9UUo3uYk/3KHRlmbxlnI9wWhDls0p84bL+ZxNa9jUDU2Vg5W0wqEVim3R0BFrVDdBBjFu0qPWJ7ieTxgG9IOEaG/IufX5IPZ495tf8fTbl9y7d0CvF+Oeb9kfdgh9h9iTvJmsuJiu8P2A7WZFWeQgFU2r2R32WU8uyM5PWdYth3dz9HpBlVd4tzpQNSBhNB4hvS1BHHP+69/iSYWUoI3BCJDdLn6vT1NlmO0MF4OpxgRhjOne5ocf3+Tpn//vvPjr/4f1UpOGfRJpCVyD04k41i6eChju77Ipt+i+ZFtoXn/3ins7h4QHB7iDPZb/8ZzOu5f07z6mlSHB7g44gno+Qx4dU1iFrkpW0zOeffkFpfW45YcEkU/lSYR0CMOQbtNydnVFKAXKGoauQGUb5LDDIhggyyuev3lH46Vo8/7k8Hvv/T57H5q899575Pp6JSXPC5Tn0kiBjGKMdDl7/QyvcRj6e+RvZ8zma4JhSF3WGATrzZptluNs1sxXOa+fPyft9emNdlHW0qqQIHSx2xLlXndC4MUIabBFiS03WAPttibfFMzPTrl885zpd7/j8eMPGf/kpySJRi0W9PtjkqiLUuH1KVuhQPp4SZ/dH3yf869f4/dTtByynVxCr49oIrRy8HyXJtvSei6bRUGWrcFzWKxmbPINWgkcDK4X4EUJRjhszo4IVc2DP/lDiDo43T7ryRVKSCySxVWBnvjYaoy3s4PslDSLIxxbY4WkN96jNxriew6LTY5WCUHaZ3G15LcvTpncuMs/2btH4gry+Zpf/0//K3R6dMcp449d3GhEW9fkmy2+VFgrKMuK9WTCepPjuC47tx6QHHyE1+2i4h1E2Adbk128wY2WpHu7/Os//YTnf/UbemFE/8ZNtB8xNJbFesPs6pIsr5BxgqcE1TpHCosjFXFvh+HhPep5hi1LXCFphgeslxPS0T5B3KFZXKDSEJRDW1eUxZbNdkXZNlRVQZrs4AYd8ENiCc3VJW2TIBwHNRwTJClxr8Qql2q5Jg2d6wJEAWVVYGyAsdcrNG1rMLpCVJqiruh0U7zAZXXyhmerGidrcdKYaLiDSVIuZjNu3d1BIFEIPCSBG6JtQWNzhPBQjUOhXdyyxg98pJHXl1scFxF0UbJFriZIX+K0DoFqGfUV0f37FNuG5VrR1jnF8pIrV7NRkt39HeLQQynQcUgQKHyb0e+5nL1dkwZTZDfGBhHSs8SBQFcV43t3cWKfVoLWljgNaLY5YRtT6pywE2MbF1NXOEGAUAryllS46LolL3N2hwn37t+ie+OA2XAPc/kKOV9wtZiRGcFqtqCsSjw/4k/+yz/h00++z87+HSLd4j47Y7HJ6I/38IVGLzPUeBchJbYxZKenzO7s4nfmyDbGegEOILh+MAnfQ7cWLRTC82g2a8qiohEgRc2LV8+4tTMmSGLiTooKXc5/8TNmr7/l8f/wb3joKS7/4t/RlDXdH/4R1mia8yNUb4CZntL6Aj92EfmS8sV3TP/uF2zdlNEPHlNOXlMvVoSdm4jQx1QN5vwYWtCtwToeIghospLHj3ZJ3QZPaLAOBYIgDWnWa7Q1FH7ERjg8//objp9OqFSMVRVV27Apc4KqoeslOFJz+8Ejkm6HWkVMqxWOvmJfLsmqlqtly/HLOUdvfsfdGykdP2HQSdFaI4ym0Rov6RAmXZqyoKkK1ts1XJzhd7rotmK4fxPXjzFNjm1qdF1S1xV126KjEZ1ul6TXvX78+xGmLvj13/41Ugh8R3B0coofRjRaY6xgb3fA3Xt3COMApEC4LsI4bM8bvP4hY+GQnl5xOV3Q39/gRhFOGCDblnYL2+2G8zfHvH55xMnVAiErhhjSoE8vNERhSOS7aOnQBApTVlA0tFLyel1eT6c5CZ1xis1CUhr2b94gCkO+8AU5XRwV4gVd5rNz+uMxveGIoNNBKxcPDyEV0hrG928RPr5P825BSYDwHCgK0ijAmgA/8HHdgLoqabSmtbC2gNXUVmM7XWxviJ8kBHpEvS1ZTc95cXLK3x3NGN15QG+Q0AQxu3fvUr38ju/+5i9oz3/LPBoyL11+/MEdbuz2ObtakrYFk9xy96MnvDt/zbPvviEJBEp9jHADyvWM2ekxWZNjwxijHTZNRtbWNG1N0bSUdQ2ugigB5SIDH+GFOK6P2+njxylxf0CURuTLGZlwMZWhOxxw8vxLPDRp1yG7cBmNxvhtThy4rBZziqqmNobUFWR5wWq5YthNrlfhOgPKquWbF6/5cWfA69ev8X0PL/JRfoBwQtJOcX3pR3pslguyxZT9wQ5KOKhYUTQFi8klB6Eiq5aknoNjOujtCrd7Hz/tkz7q8v3iPyfJr0h/8TVNPCAa9HDJUNJQuT7HE0vWPsMfJJRJgtNd8/p4yU6/D6bAszV3/vE/Y3V0TDh7h3/4AFtVyKLBnk9pLs8psobi7JyTo5e8uJxyMN4FU+H7fRrR4rsKT4DvKkLfY7nZkIYe3V6XcrtksU65uX/A6WLBNKsZRQ5Svp80ee+932fvQ5P33vs9ZwGEoMxzsBphJJ4jr0tMpcIqy1/+H/8bSe1jMQT3Rpjcoq2l1gLXj0iEoNgsqFpNbSWTiwt0mVPGEaPDhygVYaoGJ6twe/5134AoMG2JrUtwPOpiw3p2yqaacnX0JaOORLgt1elbqskZuzcfEY3u4Q1uINMR1vuHx7RUoFu8m3fpFi7Z1oAN0NsJ+ewck6S4fki5qqjzHCMkWb5hNj0nHI5ohIO2BmsltTZEfni9P47GlZp4OMDt9NiWNU2rGfUSTvOCsoZiWrA3PGRjN2RiQ6wUpWnxfUVRFJimRElJWbc8e37E0cxycXzC21cvaQ3MCkV//x7/xQf7+DdvMJ1pzhcVB+6IXQ+QFjeIkNLDaVq0WWHrGqE1jhcgopAwTXBHezh3bqFiH3wPvVrQzF7Q6beUR99y/IsjBt0HiMkbtD8nvpUQRTFx2iX2FZen59AfELcuuXWxzRanXmK2fWQyIh2k2KrE1pK+GzMpDbvNiraCpljj9lNarXGikBaLUJJud0jaH6CFQvXH6KrA6pLy7QneqEf66B44Ct8P6Y00V8sted1wOpnjuzAepcxWBaR9lrMJNgyprSbxQlLRxVRrsqwibwx3bx1impZCtHBjB9UWnC1mtCpA2warfGpdgdsgIh9VV1RFiTEl0tM0uoNMOwid4bgJKgixQqDCDm0xwfFr8CqitEv9as7uoI/T69Hd7SDfLcitYDI5JyvnbAPNZnFBrxsRpAkq8thJXGTqIOyarN5wdjZlT/k4vkerLCiNkpIoCbDCJ+zE1HlGaWtiz0FEMcqR6LJGtgLP9dGmxXcD6rxECIF0HTbLOZvtkiffe4D2PKqTp6zrNaFrqaXg4uKSsm6JogQhLf1hn+HeAXfu3KHOtuxVBrFcM7x9j9W7Yw5v3ca/VBgs5TqDOmc6r4njBaLb4oUNRggwGgOYYn0doEURrnTIl0uEXeILw2J5xna75BjDwe4eppGsP/8LokgQ/ehjios3jH/8Rxx88iP0+THVd7+mXi2J7j4AKZBpjO/sQr6i/vaI/O07wu/dZPz4CUJYNrlPu1zDTY2QFuEoRJjQzM9pWgPdDvgxzM8ZRwpHuhhdo6sGF0tVVGgBi6pm+exLTjc1uoBbo30++vRTzs5KhHLZ1iUXF0f0x312hjvcuP8Y31OUbcbV1vDVr/6K3QdL9ndvMZus+eIvf05ZnPDy2PDjB48ZPunhKknbNOiyQvkpYTokX7+jNRo3CBGui7aa9fQMnW/pjQ4I0x5SiusS7sZgeoeYyQLXtpiqRAqFBGbTKYe7I8YHu9A0fP6b36B1S8eTOF5AHMW06wz6LTgKKRxs7eDdekjn3gO6ywt+UGi2TUG2zfC2a3zPQRSasq2ZTaZMji45envKdDvFj1zSqItu/uGykpJIqaiEQ2s2VNNXBMMhf//FFRfrDYPDMYkfsHe4Q6cYs39wm/39HZzAZbkqKMQI1/XZljWVsgx39xjujjFSoN2QtqnBxmAC0tEANRwzjHIsDq7ecvr0W5IwYaMbhKuuVy5rg9SW5WLJqmzYbEvSuCZuajzTYustwotoPZfpesWr+ZppWXA/STBNxiKzzOqARw8f8uJXV5THOXUo6fdThuMu+5/8lMNVic03/KQbs2oaCH91uQAAIABJREFUMj3j/PURr968oGwawiBhenHBKi8oRUt5+RbPD1jONbquQCnCOEJIoK0pypJOGlG4EYQx0XCIH0ccHOxT65azizN6+westUUjaazL598teH40p/foMW6vj1hdsFqtObqasdysmWxLfNehbg3z9ZZNWbEz7DMaDam1Zby/x/ToiG+ffstHvSG3d+4TLGMcz0HgEO6MMRa22mEyucTzPTzPw0Y+n3/7NcdHJ/jCUuqKO+MhYlEjG4vbuEQf3iZOIApA1y0UDj/56T8iuH2DbT7n9PSYqmpYlQWnL9/ixTE7t/bp3rqB9Qu2tmVaFbApccMZSTxg/1/8U+pvvgVTQLGheveW4uKY7eSUvCxZrVecnE842B2R9Lo4roMjwQrwHEMSeZRVSRwGZE3LcLxPW1WsakMqFJHnEXQHuFJimor3lSbvvff77X1o8t57v++MoVhcIkyD0C1+p0dVV8QmoDGWVkpsAMfTl/R6fUwZENvgOqzwQ6zjsZ1NUJ5H01R4yQGz5Vuwa4o8x+Iz3lf4bgJOiM1LlBSYKkcrAUpiqpxcZ5gQOiIgQGO1w+bVd7Snx9y6/ynLecvGXrIX9vCjEUIpZOCjM4t1XFqhWTsxwZ0+9cUZTbZi9uI5Tl/hdUZoI8izDMcPKHWJ3++R1xXrLCPPC6JuSm84RLkO0hF4QYAKIuq6wVhBEkdsi5q8FtSN5Wq2JA06zLI3FJRsLxX1eYFjKpzQIDD4UYQNu7w9X/KLn/+S//j1GXlek0Y+aRyzWK/54suvuNHxuTPeJ31Y46xy+ncPcA5vUh8d4YgAqSRmU0EQ4fWHOK0g9CKqJcggQDQZtDVGdlCugnpFMzvHFIKjb8/J7YDDB4comYOpsJMLkgcfECQpgevQrgvWWhJ2hniZpbxas5i/QB3kOK3GGd/FNAKzaQispNzmFEoS9AcEaYyua6zrYP9hXzwZjXACn7IFx3VprEEDRVazuMzYHfQJpaINAoTj4Wy3EPh0h33+63/z35NfvGGnF3G1Lq/H1xc5xbTBWsH9g/sIaSnKlnW2wO10qK0gHfTwHZ+vjiesy5y6yphmkumm5XYU09LQtpa2hbIG/ABpappqe93v4iiIuiB98AKkLqgn77DFDKfbx7guzfwCvykJdm5AGtN6AfZyiQoEbuyRVwXlpmK9aZnMZgRpRCe2RA/2yeqatlhjE8nXr18TdF0Goy5Sa/zAB2PQ2Qq/c4AwDsoonErgtD62yq7PXxsHz49o2xrhSFoNKgoQvsfbp68oipywm9DUBYODEYOdPr6JEFZTXE45ncywTp+9g5us8yWnC83u+Yy93hJfOYx3B6xW53huS65LkkgR9QdcTS5xpET2d6nnEzY7HcKOQukGU1RYY1HGYqsCa8BJEnRjEa6LG4V4quLl7BKE4WhySfWrn/HhnRvs37pJ994T0hu3UW3O5ukvCfwYOdrHzo6Q+ZTq1QbV6SEdwFSY5YbFYsl3z6b0d0Me+D5OtsLdtqhBC9qCNFAXmO2auqqpcAnCCN1UyGxFq+V1l4eSYAQmK5BSowWcTGYszud0jxp++skfkHS71/1LykIcoDyHTTYn2CqKokeUdHAVTC+nvD275NtXU/7qb/6MR598Rm8noejBxjqcThaY6iVP7twn8j2UcNAGzmcL0qiDG3dYbDaESYLB0uiWIO3QtC2LqwuE4+K6Lo22yP4NRGlBrthcnCGtpbUCW9cUmwzjwdWbDOE4+I6ikRIn8OmmKdJ3ybdLOvUIu55jXUGzLgh2+lBnmKIgdh1G95+wKdbUWiOqCiugzLcsVlNOL89Z5hsax9KNvX+4MuJhfQcBKEAqh8HtQ5w44s1WMl2VlGVFVZV0uT47rYxkd7RPr5tQWctgfIPBWmHbFpMXJEFENwrp74xxow6NGyFlSWsc6m2L8IPrPitlKQqLsJaL//AX3Lm9T+A5ZGWJF8XUeY5uW5abLUVdUdWGd7Ml0vOv18l2+jRtw3K25nixoWprbice/dDBSpftNseXguXG8GarSN2Awzrj5sMx9z/7mPnWxY1Bly6BMISrDcWgT50vuCxz5OISkx9T4rFc5syXa1TogypQWrC1ktpohBD4roPjOziui3I84iQh8iTpYEgroVxN+fbzX7N36zalNuTaIlrLyfmCaW7o7u/h7H7IwbjH1799yeW7M+abNa3UdBIfT0iybc3KFlwtN9y7c5tOIrg8P6MSDul4TJSmfPGLv+P5V18wHnR48OQxvuvRIHB8D+lkHF9c8jAO8XyPNyen7O0MabKCv3vzlvOioMgKHg9SwrrBqRrEbA5uhEk02atj+g8eM7y1w8XiCsc4VE3ObL2lNZLKSpaLNe9mC55kOaPxGB16nNuacSjI1xPcQZ/NNEZ1RhRa0CxmNNslF0evaHSD9VKqcsmdDx6Thh4WS7rTwYtd7FpTFg2OkFQarFQ8/PAjfvDBY65efMflpmRfung7+8jZjLOrOd62xLxPTd577/fa+9DkvffeQ7cVRVUSDvt4oqVtKpwgpKhK1tkWJ4np3LqNkj6uDDG1xIYeRlZs65oWgdUGq1xcz8ePOqzWK6oStL3E92KiuCXwBa5Q2DLDKoXT7WGtRtsWGQXEwT716Za9gz1kUSPdhDgc4A5v8rf/57/l+PKEu7fv8PE/+ZeEN2/jD7v4jkAUK85eTLDjm5TChXRItS1YzKccP/uC0UGfeHyI3x1Q1SVFmdEql6YoqOqKvChIRyM8P0A5EmsNQkjq1pKvlvhJjFuXeH7M1WJLVmbk5Zq9wzHvXr3g6N0p08spbdvw8P4tHv7wQ5K0e72+VBrenszY5hWOrUhCDyUttRHIpqG4fMuf/99X/Hd//AP6ezu4aUbU8WniIWX7jsAVKOkgul2cwMd4Lj4CednS6UQw2EN2rtdfVC9CqpL64oIq87g6mnA2s3z2z+4TdRyEewcmb6iqClFmRONbqNYw3t/HwzLXOaKxPHt2Rt9NODpZsnt+wcd/JInDPnrbYtoWWstqcUVn7ya4AdINId8CLp7n4mqPzXqNVAqCHbACNwrRTc7w0U2c2weIXg+3N8C2Gm0Nw35CZ9wniFyenVScvpuQtZZl5fPm9QW+4+Arn2Gyh9cNEWnMxet3jIdj1pstEkOrSmbTCZIGayymrXk3Lxn2Ojja4EQBsdX4wYBys6EpDK2wFGVBU1U0TogyBmVbdLFFWI3sDZGeh2kqVBARjFNUP8FEClMZhvf2MG5L22bo6QzhR5yvNhjlsV43LIocN25IoxRHeHRv9Hh99IK3xxO6kY9UFgO4ysUJFIgCXYNyHAQC21QYJ0AoiQgiyqJGuBKDQYYxVdNQFQWnb58TBw5uJ0anCfXOLtoUOK6DlIpN1WKFIEo79Mc77ISH/KN/9d8QS8Hs7ASaDfdvH3B3b8RqOaW4OGI5nRIPRnR6XVwhyLOaq/mG5OoCP4rBeIRBAE2LrSpEnCCFg1AKZWtcz6NVgrLKuZrPOMtKaiuIvYDo5j7e/oj09h7W91F1i6ld1qdv0ZMl9vKMo/+fvTtbkiy7zvz+33ufefA55oiMHKoyq1CFgSBANgxkU6Rkpjbput9AZno2XehGamNLZhRpbE4gCAJgATVkVg6RMUf4fOZxb10E36EvKn8P4Fd+3I8tW9/6vnlFUtfYw5CPnu3h+i5J0ZBbLs8+e4ZjVfR2iDYt/WaB6sFkKTgGk60xfUnnWLiTPaRvs7l5hVYpyo4QRkDTIy2NG0msElLdskgyGuPxZC8mHh+wszOkagryumZ2uIPVKaqmRkuIp2PSrKDvSt6fX/HF71/RyJDBwEdXDkGwhzkMKQXIHgrPZVPXRL5Ph6Q3PZvVnLKTjIcTfG+Na3l4XoASBmUpbN+jSnN6Y1Dy4TepH4T0bcnw4IB0saRfLGnmc54c7PP7fMuX19fYUmNJ6NDUWtH0LZ5lMXCG9EKz+PYVo3hA3WgWueFAC/xkTbbc4AyH7D4+RKx86mKL1j29MGzSLddv3yJjl2gaEXoRs5GPH3ioBshrhGdQUuC4AY2xaOIJWZbjew5auHRViUVLsllTZRYne8c4jkeZZDjSIwxcylrh1S2Hjw4o6pp4PAJhsW0kYxlQWSG5gapKGVktx6cT7ucNV2e3iMGM+/k9B9MpwwCaqniIVUgbIySNtEh1z5tVgjQ9XV3S0+KPprRtgUWL77r8+MUBx7sh4tFHbAuw6paZnUOxYDh5xKR4y45no3SO0jWOCunIMEohHIkTROyf7OJooAxYVdfcrm+5WGypSo3jewg6PMfHCIttmhN6Hn1VEQcO4WhCPIqJZUM8nSIE9GWG1Vc8OTmkQBMOx3z9+gLjeTwvKz55vofju9iq5fM//EP+6i//klr1OLFFHDnsTGJMY9jkS/qqQvctO3HA/C5BCbhcbdjZmRGNY6aTGG0UrmPRCAtPCKTWCNvjdp2SVSV6EFHZNp/88AdE0x1i65dclg2/v7qE2w11UvDHlo1lAsx4g/+9T0h/9Svqcs5adPzqv/wT1u6Uzx7t0W623M83VMJld2eXxxOfi/ktv/rdS/7Tn45x/ZB501N5DvVqg331GmE6Rsc/pq4qujKhrgr8gwPq+R0q9skWNbuPDxmMAmgbVBCgBiHlMsHzXCgsBp6D5fv89I9/zvHxIbO9A7yXXzHZO0B3DW2eMZ1O8fwA8SGd88EH32kfhiYffPAdZ4C0rCm6jsHuDsurSxxPPVSa9g3rvKBHcPT8c7zCZ/nNG6S0EbFLVWaEgYduIqwgwLJtdN8xHI/ompI6z2h7wzZN8AY7GFuhlYUWDlYQgW2h2xZpWSDUw4uNgo9+9DHZckOeWriDR9i7e/zFf/7P3L55zeL8Hef/9gvyr3+D8KcE9gxjKUaPR9CtEd6QXji0yqXAJlcx2avXzLqeyAgkUOY5eVHgey5d1xDGMU4Yoy2HycBHa03X99RNS3lzjndyijOb0UiXpF7TtDWD2OP+/pbf/PYrzs+uCBzFwcGM0c4urZaYzpA3DY2osYOYII4ZDCLKWmAMdH2Pq1pMa1jnOb/49oLP98f4Apr6hiaasqoNe7LFDnxEbyjSBFsa+q6h191DLamUsH8EkxHCk+jtima9JF013K46Pv2jnzN78RwbRc+C9v4W0bQ08w3WIEFJi8Hxx5TXr5FVRZOs+cX5Pa6b88PnB9y+esfd6r/w8z/5C0JcTFvSS8l6kzNN7hnOTrEtRYfB6WvE2kbUkiov8KIBruuikBTFFi006vSIdjqlNQZLSoqmQXo+g9jBHg6whyO6ZE6+8khNwO3ZljTJmVcVEzekHW+xdg7RwPTRE+4uLwgODkmNIUNB11KWNUpoRFtzd3tHczxB2DaqrVFdS68Nru3SNi3uzgjhBLRtQtcqTCjoygzd1jjRDGGDkdC2HtYggrGkLlPK+wRndoKpQ8a7R3jOAKv5hotUM96Nud+suV/MiSPJ27OSJ0djolFAHI+Z7u9TbTOUP8QyDZ7nQN3Qb1dY+wO6zS1ONMSYiooO1wZLgO4bmr7D81x6YSEti/fffEMQDBFK0zYlrvFoN0ua91CEHm4cYExP6DlYrsdoOGEYh2hp2PcVjrL55fl7zn71dzz+3/83ovE+pqzZDwO+fpcyX6w4+OgpgWXh9JqGCQaDLlNKK8J2HJRtPxzb1T1CWljSpq16DAJhNIv7C96tNhhheLY/4yc/+wnj0MZsb2jyPWwpwVTIYIg71bTLW7Z3F5zMPJLSoRsGLFcJMnCxBkOCyKXPl5S+wDI9djyiiQ2OApPegW1jpIOJp0jVYMUuXZfRJEtsB6TTY5sAhKZqajrdUZueZZLjuQ4HkwlHH00JBw0oRUOLe7KHVWtk5/Dp8x8zORozGk746ndfUXUFL1+94fzdgkdPP0bENsFghudOaZGEzoDKr3BHPrebjGkQYEtB14PMCpb3C4rRmMAfkK7neLb9EAVQNtKyiXZ2H27s2AHWZESvFUq36K5mOJtg2pr8IkXrnt2dGYlu+Lsvf0fblHw0HfJ4OkaInqzMiSxFlRTM1xsujU0e7nDw/BlVXiFx8J89YfdwF6MbgsClaeyHiIuG7XxOOl/gRyMiJ8KiZahihuEOgfRwhcSyDMJ26EzPanFPdvGaTg2xHIHdhGyLAN8fgwd353eMk30YCrI85f79e4LQJc87jg8PiMOYQAs0gkE84HqeYVRLrg3b0MPPrjhSjwjDHfa7Dfnbf8VzttzfJ+wfH1F3IHVJ12mKvMFyPaSqMLbDttEsyoaxEMjhGNuxEI4i72D30Smnz59hugq9vGA3HOFNHdq6pg5d7lpNGJ1QtQrdx8Q+CONgwn3ysiSrMsJYQ2dRbXuU1Dixi1lr0rLlNmlw8oZRaNP14Dgege/StA2DQYTrB7hSM1Id09093MBD+DGOtOnbjsEoJl0lGG/At5d3TA4OOV9rPv/+C3YmGjmK8M0Wx9JM9yO8cIwXK3aPpqTLhKt1Qp8JtLRZawdjLKQX4gY9q+WCdeiwO9ujKwtW2yXz2xviR0/RQpFstrxdJ+RNi44i0irHK322L5ec39+TtA8bQF8XBVnTMHx3wfOdGksFiECQLV5yXSb8H3/7K0rf5X/9ySc4lub48RO0uuEX76/48vdfMBlO+CQKafKGpuiYxhH32yUFEhGMWJQl5e0VrhPSlx3CcrGiiK4qcPf2qfuOzgjK7YbZ7g4qHiBlSyt6sipFOQZLSWzL4WCyxySMyUzA8U/+BBnFFFXJ/PKCbQPCiZjfX6P1h02TDz74LvswNPngg+86IXCmMwrdkqcJrmsRDkeUdY2xHJIkIYoG2GFIU8Dw5CmMFHmXEMYxy82CtmsZ+D7TwQDz7wcHvXBAV9Us53dEgwlGSYwU9BiEH9C0JaItMQiUsMH0yGL9cE/FHTHcOSTApcokrekIpjMeuYbF9pxX1xesW4Pj33E8OuB0b4Su71lfa4aTU/J5Rza/p4l99MamuG/Q5+c0VY07meK4IbZjkdUNQirC8QTbtmnW99TEOMEA2gYLi4OPX+CNZzRNTZqkuKLFt2F8cMDvvjnj6n6F49pMpiHHp/uMpjGNhk1aIeJdilUOUqCcgDAesfv4lKqqyK4viBz5cNTQgm1Zs+kk726u0VXF7rYgHgyZhSFd0yCFxB9PSW5v0bqnqRuGUYTlhmgh0RYgNc1qQa171nXB0z/6OSc//QnewKOfX/Hqb/4b77/5BlcZnn3yHOlFuE8/xXUMoq8o1gmv3t9iLMlK1/zmdsXJJOTtV9+Qa8PP/uCPkR20pkNGe1R1TVCssEZ7SE9hKgvpeUTePj0KbBstbBCatte0RtNZLq20yFFQ1Fxd3zLYm+EMPNLVPQe7B7hSse4E9mQXP5JMx2OuL284Cca82H3Mtm7odc8oHtBlG6qmYrRzwPXVnOU2xcKgLAsjBMliwd1yzf7OEKMFTa2xhMAom6rvmM52ET0YP6JtGpqm//eX4wAnDOibDentAvfwU3rVU+cLsiylzDZkb+4oc0HdNQhjcZdY/PLfvqZyXfyBzXR3nzxZsU416mbF93aGtG1PPBjgRCFu6EMjMZ3CC2KkkggtUDKgqwRtB47v0puOpqhRwuD4Hp1UGAnr5YazszNmu8eM9neps4w8y9B9g20J8HaomxZ0T+g4xIMh7nBAY3rcMuXtP/4VTV7x13/5//KxVZO8e83eZz9ieXmJXdf0tk2RZrzLGtr3X/LkYJ/BeMI2y/HjgmgU0/cdUtnYgUe3nuPGY2halFL0VYPwBPPlnA7BDz8+JJzt0XYNF2/fUKdbZkXB6ec/INg/Rq+vqV59SX9xweSjCe+/vqVSLhhDpyyEEKi2xm3A8hSWBNXWxO4IPZ7SU0OfYZwYLSTGC7HdGOUIivM73K5AShtL6IfvhwapbEzeUqUgKsXeZIA/tBBeTxAEeMpj0/bsjgNu0jkHT3bxPIve9BjL4bdfvWI8nqDcAcPZAZYTELiDh02WHrpC4Hkh0XjAwZMndOmKOiswto0UNgZJ2XTcv39LMI6JLUneVAQGkBJ3MEGgUG6AkBLPUuisQuse3dVoJak2S7bZhnWW0YcheC57B7vUScK6LJmUGeN4hmcbLpItXdkjPY94esDT55/iD2cEno01muEc7tPRI1oFMkFJhRaGqmrIqwbb95C2Ymcwo6tyLMumbHOGAxfbcUEpOiRFmbCZXyCVpvYcTC9xmpj7LOJWRzwbOfgv4Mt2xfVdys38mpvrbzg+eoSFw3g8xrZdRmHA+e2S2HSstxllugaZkkYxabZhryiI9gLqbMHEXWOJjqJIKdMUd7JLX5YkixUYRVuVaN2hTYdtS3KhiIYxlu+wyRu+fXOO8D1++MNPUaqj63wcKWllyfxuTlFsuU5bgpHLmz6G6ZDyi28JWeOWDaOf/AXj048QnkHqFa6ZkLZLsnRNg8YJPGaTCdfJHeuyoO4E+4MY2/axLIUlBeNhxGg44PEkwA0CentAh4UKIu7u1nx7eYs3iNg72Od8k7BKMrxd+LeLlN2PfsI4Snj+9JTffvuOunrYNHvy8UOV98mTU5J0yya3qOYGb7TPXarZH+6Q1hW6rtgmCZdzD9e2STdbsrLh0d2KJ88+oU1WJItLNvMbammB0HS+xzxZka233PYtq65mfzbibi04zzP+PskIYhuz+Ib2bcVdvuD//N1bLjvBf3x+Qn73DWkUcvzxU45ffMqTywv+7stveXl1w7frJU9GQ56ePmWZFXz17j2rq0ui6R7bVlIu1oyje0Aiwik6HIBloXVPh0aGPkm+pUpTpsMDEA6rTUm1KGlTaJsa21f4oxjLkvzBZ8dYvst9MOTizTueHE84efyEZdbQltsPhcMffPAd92Fo8sEH33XG0NUlSilU1xEMIpq+YZNlBPGI/d0pZaNZbBJm412sgc319WtkJIhGA+StTRiH2NIwGoSItn5obvADcjeGtmc5v2Ln4BFSC7QGx3UxuqWtKvzhFNNXdMtrbFuhxmOwFFpaeMrC9jp029NtlmwuvsZulxwNffbjCWK6/9BQM3Fp8iVyteLyzReUmU2JYrC/j/k2A2NYrzdIzyd2XHTXg+1iBT5hPMCzDQO7xwoH+L5L21d4YYxxXIxlMFrT95qyrmmKLZPpmHgyZb78LXlRcnI05dMfPGMYhvRCsS4F/u4LHn38Ke9efsPl5SUai5NHj4lGB9SbNbdFgioTlO0glKHpepSlcDyP5Tbjzau3TJ99j7GTMB3G9HWHMjZKeChvjBOk1GWJJVyEbqHN6QtFX3asFhnxo2c8+vM/xw49ED19mbN7/BiNxf/1q3/m//77f+F/ubnjp12N2PG5fP2Sf/r2ivPFiqPZACcM0I7Nti5pLcHf/PYrDJJnh4/J24qxbnEHU0zfo1xBi6JzbJTvQ7JFIwjGMzoUZZYge0M4mlIhWBc1yWrNNn1FIRR/+OiYzgicvY9ZJT3nt2uGe6dU8SM4yzjdPyBSDtIoskCy3K6IggBVGaLRmCJL2awX1Ms7uqYiFIZa2rieR9N1pNfnhMETLGUTBj4Cg9AhqsiwLAfX6ckW50hviG8CtJAo16FpNzTpAhkHdFQ0ZcZ6fkOa17SbhKKoyVJB3/e0HZzNWz4+/SmCgsJseHL6hJsk5vrdG1oB27wk3p8ROhmHeyOiHZ920yE7FyEF6BqEQjk+LS7SU9CWVEVNn3UEcYzRFgZB03a8e39JUVUs10u8ICaKB5BqmqqnERZdUdIJgfJ8qrYnHI7YOdhndXPB7tijWi65/vpLPh+4HB2cUC0WyLZhEvssLEMXRgw9j1cvvyBPc7Zlw9Ek4enjQ6rOUNc1fhghJbR5Qtd12G2DsgOE0hjZkm7X3K5TPv3ohNEwZl42tPMbmm1GWRnaZcbdf/0bTo72OHn0nMtvXmPu5rR9Ty4V8dSh7XuE0chaEzoS8oqu1nS9wk4cRi+eAS1GtPSbG6zwIa6G6XAVtOkC2wj6TiKUQekKQQ+doMtbmkZQN4I4ikn7CseTjIaSrqvRrWY2m1Hphl/84p/YLm4ZDEc8enyKMxriNj12MGQYRZRt/zAoqUrKssMyCse16MqGJ9NDPtnZw9ItZdOTphmOEPS29RARazqyuwVbS9GULZa08cOYLq6xbR8NGGWjmwbdlHTbJU3/EJlYzW+5TzYkXQ+OBUpyOJ3SewHbzYrrxQpZ12ySgsZYOI6P7/hMew8xmTONInAD4shDV1s6ZSONpAOE0KA1XVNhoRgOZwRDn1aXqIGPEBpbKrQQaCnR0qbItlxe3pI0Hf54SOPYqFBzt1ii2nMu71OGk2eEswPiyCPyJG3oMD874/b2luH0MX7gMR2PyMoaL7R49c2X9GWLyFZErsB2R9xsc/7h9xmWs6XfQJoGLFdnD5XMRcbRdEzmxliDFtnWiDyl1x1CCfqmRzg+Mg7puwrHFuw/2mVnb8hgx0OXHUIKmrrh6vqOLMnRLTidYWQnaO0yf/01RqYoT9DqFvf2W4TZ4sUuo3hCZnKafkgqDI5OGIxspC1Z1hGvzjKKRjLPW3rVsBv7uJbEVDn7T45RssUfxOAo6GqqLOXym68Jj075zb/8M4ePH/ObN5cYqdhmFeGhx70YU5a7vP7HaxohCIYz3DYEPcJTQ0bBKSd7I4r8kLvLJdvVhvv7FXI2YTDYxc8qkrbnzc2CIi+g77GlxdXtDfXmnnI7Z5Wm5F2PH48QXoiuKrK24WK55OX9gpu6pPM9btuGyhi+KBq8uzUvqhY5n/PrdcKXZccn+yOu336NdRgx9G2ay5eMnnzM8NGM/+noiCdv3rPJOj7/3mcMdyZ025SU33F+N+f7u/sY26XrW5b3C1zPZTKc4ds2ejTE1zXl8h4/MBTCIe23jK1dmjrn6v6cy3TLtqjpETijmEL33CyuEL+X5H3PzV2KE0TsHezR2gOeVprzLn3Y6vwJOU+2AAAgAElEQVTggw++sz4MTT744DtOCIGix7QVSmjyoqY1FnIQM3I9UDZX9/f82Z/9lMcnH/H2izeU25zxdBcpWsLxlGRxz2RnH4FAI6myBJAEgY+uKtaLhJvzt8xmJ4RRTLZZ0nYtutdI29CvNzhCo5RHL2xc18cKBoi+QddL8jzBtA0cDBkHP8JpfapgSqUMIgxZa4imIVJ45PUNve/heEPy7T2OrpBhQL+pqcqSsbIe6lHRjEYDlAJVrHF3HiO9EGkLHP2wLSOVRd2WVMsltVGUjca3DG4Yc7fcUlQdyrLwPRvf9wCB5/lQxyRF/5CBFhLbG2D7Fb4XcHKwz0ZoylvFtvORlssgDlHBgHUrUJaL7TjMN1sGyYrt0CUeDvEsBUkOXY/sNUI5NLpC1zWirpEyRrQSnfe0vc3xn/+PqEChRUWLQp2cEnkj7L/dYFyLL9MU+e49t3nKyaMB12XLQTRi9jhgsBehXUVrudxvE67anlXa8DdffMU6K9gfz2iqgi4tsA92acsC4XloYajzgq43eHFMNBpRlxWm81mpBCEN75Oau99+zfz2DiMVe49PqDvN9NEznNkjurLgez/7HzBOwL++WQOSnemUo9kO78+v+dcvf8Pe6TP8/SPu3r0kKUvysuBzz8GhpzUSpIVrW0SeT7ZecXafMTmocCNFJzXK86iSHOlEaGGwPR9n7xSpLbR6uIUiPIsiS+lbie2FmLZjcX1DmVSkm5y6aMmlzX2V41gOle75arlEhTNeHB/z+NGPyJZv+A8//T6Xez5SNOwc7ELTsntoM91RqFAg/V26m3ucaATGpS4X2EGEqVq0Ekht6JqULhhTtBm+H1N3FlXXs1xtycqaMOoQpqWsChxbIYUPfsRqu6KvCrz9I4Qf4LsWfuCjoggtNafPn3N6dIypWvLtluknP0ALRW2g9TymO1POv/k92XqFG0Ro1+fbszfsBJrp5DlN/xBjsywHy/Vx/ABhBALo24I627C8vcEdjIjDgHlVE+yM2SwWuMMp8cRBC8WmKll++YaLszn3Z3dMdE2pe1TgsskrHh3ts+sGWNucTntskjV539Mue2glez+KUBP1EM+bzhCuixARlgM6W+DoFC0dhDfBtAWysZCOoKibhxsyTkvv1kinZXcyoKWl7nKcsYWMDYFv8erXZ5hNzdFgzNPPPmW6MybvJYPaoJHYrkc4GGKKhG2yId2sSdMNh0+ecvTiU+K24HA0QY0nnL3+mmx5yclgiK0VoRdQBTXrMqNIS6qip28FStlYjks83gUNQtkYbejrlDTfkjtDRmXJcrHgerHGBAF+W2Esm/FoiBcEhPSkSrDcbHk0mSKMhTebYdsKu6rJvv4CsbnD+vEfUdlQehG2EFhC0nQ9dVMhHJvtYklyv8B3Xcq8R3cVUewiHAkYjBB0GtZJwjIteH9zi3J8rPEI25F4ZsHejqZTOZs35/z161u+//M/4/g0wLVsjuwR34oB98Wa4UyAMDiOwsXCLuH64ozFu9fsjwfYOzs4xke0Pl/86i2r17ccTAfcX5Z8/X5NnWY86TRd32IrwcC1KcqS8XBCpQWirCjEFtu2sJWDbUtC0zM9mmEd7GGhkOLhP+BmsaXeFFB3tJ1C1C3TXjDbDejKHcJgH7YXpALaqzv69YZoGuN6AY5v8LRhaDSWtNif2dR9QdI3nF3NqWuNrQQT32IU+4xdhWxKLHrC8Q6O62N1HY2wsTqBcCz++V9+iRaKi1XCzWpL0XZYPYhoxLY1DCbHXJeGX//qXxg7E/xAsUkenm/bTjl6NMYVAzynIhcJ5+/fcX32js8/fszJ4Qllb1gmNW9uVrgSfMdjneXM7y7Zzu9IvDHCy5FSYLRmm2eUecZtknC12ZDphyPo2IrAWGRtwy+TkrOyoxMWahDz7HjMpk6ZBgP0ICbTPaqt6O9e4+1/RI2kNzmfPz9lMo2wj47p2vc0jsubvEe+es3e7gF13ZHKnngcQ9dhCUGnHBr9MLyMnACjBFWqqbVhtd1ytrwjURWd3dHWLseTj0lil//nl/+I/qv/ytGjE/74Z39CPDhEuh77+0cstjXjvQPkh6HJBx98p30YmnzwwQdYrksUOvRtR55lmGiKTw9CEM/2iZKOIHKwY5CDjt6vuVtccfriCZbUjKYTiiJHKoUtHZSOwEiKPCeKhrQ9XJ+dQW9RpFu6ugDxUDe7Ldb0my2R4yF3pkRHu0g3oKw6LGPotSSvWrqqoigKOsensgJqJ6TpS3TdkNJSdYbbxYb5/YKsk9jWPW62YicKML6DsGzyZEuVZxwffowwPfsHYzbX71ktb2gnY4IgQikb13Mpm+6hcllbaAm6hyrbMrAULTaDYcjBwS5fuzZB4LFYbHj+0Ue4QcTtbUlZb6BYkrUKa3LMUDiszt6QuB6kCZ1yccdDZvt7UKTYjo20LPo8p2w6DIJiM6fZm6FdH9HWrKsNQTSgz7b0tqJ2XNq2RBclfWEwbUa1WeOfvsDZ2Uf3S0Szpm407WrJ4svXfHv2mlZqvj/0+eP9GQe+y9HHp+zZu8xvliRFzuR4n22jKasCbz/CCIckv2aRF7y8vcFSilEUU+YZbTVG2gpMj+5btOVQrNbMXnwPIzTK97ANQM9ilfPy7IKbu3vSLONHT46Q2tBIBzsIGcQBuS7xJzNKbfPm9h3LxZJnkUMYhhyenND8e5PHpm7IlENXLamNYFM0FEZRlCWdC+MwwnU9CkuS9orlNscIjRvGBMYi9Bw8x6LvBb2x8MMIig7puZhmS1NX4A1xHI8271mevaTVHVK5+IFHNAkYWg61Oefi3Tuq1vB+seFA3XGWu4yi58RhyN39nB//2X+iTe8wfU1x9ZJ4aOHEIc5gTF8JrKEDxqYTPq3uacsGFQyQXYvparaNYRCAQVKJh0rn5XzLJs1RjkNaFBSt5uDkMX2RIE2NXs9xhyP8gU+todGCsm2puo7RbJdW11jRiMFwQnL5niJPsMc73Jc1TZYSRAHNxRUIie/ZOK7L1c0lVrbgzduO/eNdKt+mH8QIzwMBUoJu24eoEwYlNZuipLUdnCji8OAQ4Tv4kx10qwkcm+uXr9GezyYtKIqM2rNp6p6qM1ha0OUVXVMxe/4RXtXRG8guGnTdkjU1bHpOsxzbjrHDMcIfY7wJ0ihkWdEtLrHtFjdQ2GJGs1ogXENtaggNlrJpF5rOgLEE9D2jOGZi2yhdo5RgtVlyP3/Pn/7wmKcfnbK7v4v0Al7fLnmbVdRlS19WhLbDqtVUVclqdUvdnrP/Hz5j+uiYqdY4YYTSEkFIZTyu71Y4Bqw4xqPD6RpQPUZY3C63+N4tliVpyxzLChkegBIWRbahLxNkWdOgWKxXJFWO50hCGXK4O2PkKlbv3qOTlJlrY0UxJ89+xP7jz+ijAG8ywFcKT5fkZ18z//IL9ONnqINDMttBaoPQJWVbY7qe2/maKIrA9AzGMb1RlHWFNmDqBpGXNDKhahpu1ltWecVwJLCVS+kEqEGASW6wlU15XfL65T9y/vVX/OR//o/84Plz/Br0uiacHhIPh1TFw5FuJTR9smXkWlwlWy7XG/bGExyhCF0Hz7b523/4Z7LVkq5raIuMUehxfrvle492cCxDbymiaMT9Yo0XuxilkV2IIy0cW+BYDbYXMvDGWEFIlSzZXt8yv064S0psPyR0JpRGYEKw+gnlvMMeHNJZIZPvPae8+B1XSwPbgrAQuKHHYO+IcCxxrDWnn03xPI/bmzes0pJf+5fcdw1Dx2Lswth3CIMAT0QMZzso09EmG6zxBDseYxyPTd0RRwNuNwk3yy2r5OEuknED0kaT9JJICZxRRLy3x7SdEEibXncsLt5weXFL2SoW97fcX1+wuL9hs1yh254LW/H853/EH34esy0r3p9lGGFhG8P9/S3n73xUr+mRRGGAg6DtWppekzQtV2XJqmvovAAjBJ7n8vxwl2K1RrYV4DAZjHD2djCOzbS4JdoZk2Y5bZ5gNz1O0zEUb4n3nyOCEENBuTnH//73KboG4QcsNhvKsuJpawish8HNo/gjesdCRhaW9DCVAd0zGHlYYcz65pauqLg5n7NdVmyzlqrUPHr0B3zv8x9x47Wc3ZyRva853tkF3VOkWzJXENY1TV0x2z/iwyXYDz74bvswNPngg+88QS8smh4c0WF0zfL6Pd/70U8IAodJbzjY3+fu/o77myuS+5S7+YZg6NE2NXE8Ik0TWg0Yg9ZgECwvzwFDPNpnJDxWizlXV9fs7+3iuw5GazAdy7sFFIbo5AA72kcZH11aqKoiu72hyit0XeKFHmYypJUK1xuyqgXV3YpKaOomY1tXJOmaLq/IiwbbkrC5oYxchqMJB9GAhZLovqNtWoajiPEwJo4+YWdvhvQiHM+hrQq6XuJ4EXXdUWdbhJJsSw22z8Gzpyy2NUJZuK5H4HsUWcUgjBmNpvS2jxfaBDaUWcZGTQnKmqZpWaYZdnMGPew8+4RVkhHYFs54TNO0OEYT70xZJA8tDK0RbOuC5P6aYBwzPpqSbhPq2EOJAfSKomvJjaavS0xX0aAYnp6ilKYtVlDektwlXL284+Z2S+OETEcDTmXNj//wM5wWguEO3WCXUm+pSxsdacZBjFwYunXGx7snbOYlad3QCsm3qxWT4YDVdstgOELaoFxF2Xco38ffO3iorR6P6csK29eUveDV2/e8u75lleU8ngyIPBd7OKSJJ6zygvNf/QOLbcbe4+e8u1rjRiNSY/FuueUuKXFtG09I9kYDTL7GjzwaM+Zqm7EqW16+O6esS2rbQzo+kzhktbVRXsCbbY7t1ViDiKouUKJDS0XTdQhLYtsa72BAX+WYTuMMRmDF1HnJ5vI9bW+wnIi8FQitaMuK0e6AFwfHvNiZ8le/v2JgJdSbO1Ztzr9R8NkP/4BNVlL+/e8IvB69ucb0JavAZb9teBKAp0COh3StwPQWpldI5YAlodXkdUPTdDRti+OHGCnp+p7z6xs0AmXZ2GEEwiKvK3zr4TPyqoKqohhPKKoaDbx8/Z7d0xdYvocfjrjdloSHuwTjCftSMr+94PXbtwSWwR1MaIaHFGfvcduU5eqes/NbXhztkBQld9dXjGcz6qrGczygx/K8h2hRVZIUJWXbkLU9B/u7PH/xERsrwp7uoISFU9d0ZcE4nLC9u0MZSWN6irbFeD5dVtC6LsaBy7Rm/cXv+PzZEU8fPyHQFfVyS5VohLboKkk8mSDyDcKNEG6AaTu65Q397SXO6Q4q9NBdh4w9jGdQBrSW9L1FWvZobIahRe3UKN9D9wpd92h6Fvc3HNgLgqaleHfPtj5hS8imk3RtT9VqqqbFEWBLhzqvqdOc2dGIfrPAah8xiGL6FiwkHz/+hHye8/UX/8z3D1xsAYHn4wwHFI5DkTeEoU/VVWyWd+TJhjAcUxUV0WBMkWxxfJeqUmRFye1qgRuGTHem7O9NGCqDSLfs7+0yGQwQEibbG7bpgoMoZHawi+M0mLqjWK9Yr5as7q+pb+7Ze/4RzkdPafRDdXOPJl0uKJMttmsTDWNwLWw8mr4hzxMaNGlTo1droskO//bqNUEQEIwHNMkds6EF7gY1bmgs+PrdPb24x5QLfvf3Cdt3H+MaQWtZTB49QyjBfJPQWRqlO6okoUpSZrMTmswmtCbEvo+Mhmx6jR9/y8X5GV1VIYzGs23O7lPmuWCsGmz7oQp9UCn83uE2rxCWQhtBS00vPZzAwR67VFbP+9df8/79HVWn8K2I7VKyuG/w/SmBNJwtc4SqiHZmjI72SOfvMcalLxKwJautBi/l1asFrYDRySF/+oNT3Nhn2Jbs7T7laOcC3a84CMAzLbptGXk2nu8jyoxgGGF5IfZ4h/Oz9wxmFelmy3qzpTMCicT1QxrbocozGj9GVAWBZVH3Bt8LGI8DqsWC0A9g94BsveL66pLl/S3Zesnd1SXxeJfhaJedvT32JntcX7zij37wQ8q8ZLNcYFke66Lhrrc5tHoiqXC7CscJabQhTROSsqLWhhLBeDhkoOB4d0yebLkvMj6ZxDS9wLGgXC0IXEHnQlFXIATZpqRrITYF66bl2WQfFUQslSZwNdX2nrpKGPsOSeFwmyYEZcX3j3bJywIjBcINqbKGwLPAsuhEg7Rttsk1BB3vF5d8c3nJ2d2GUigG0ZSTzx4RH0YoOl6cHPM2TVktN9jxgu99usdgNKJtWqRSHB09QUr13/VN7YMPPvjv68PQ5IMPvusEaGmD42KqGmE0bZkyv7shigfMZjOkMyHLGtJVxjTaZeBvMVZOnmfs7Mxoyop8k9C2HZ7t4IQ2s8MTinVKGE5Rdk8YuOTra5LtHHfviMF4gqWg2vrkd1uyVU800OTJPVpCVazpyi1VJ9DhmEx4dH2IjaDJe0LbpbMeDuTdnK1xRE+XlijLptMNZruE1RynCgnsADcK2T9+TDCb0qDBcul7jbAcwp1jurJCFxVtmYHv4wRghKDsJXnR4Q3G+LLD8yLsEpAWo8mM4WDEfH7D0ydPENJCugOMlZGsC9JW4c1C7m+v2c5vef3yFe3JKd//5FMmszGh50KyRLgurbAI945xywTv+o5kvcJxLALbQgxHVEIQBQGhF6GTlFqsYZujRmM63dD1DVgS+9Ej3EEEtDR5RrYxvPndgvt1zburOwaqwbElfdOTbObIsqD3aizHQncJfdfS9yFGg/FtRAZpssC1IfZcTk6OeX11w9v5gvFgzHAyhcjFLSSt1mRNSzybEcQjurbBsm3yLKHpKs4XS6RtI4KA6UfP8UcB0WSCUBLtBtSADGNuc0EtLHYO93n3Zpevfn3GIB6wPx7wJLIf6jcFuLZL1nY0WqCbHtO3TDybdZYRT3ryq2uK3rAT2DTpmis3JJp0SFNjlEPfa6TUtG2JCT2qssXBoyo3ECkcR7M4v+Q+2TK/T7m8XOHFT/nhs08xTUGa+FjhECuUPN1zWI2XrJuSrOmpbu940/+aOPZoEou62JAs7sjLnMjuOT3aZWc4IzyaIhyFLGvQCsqSJk0RowPSPON2uSXvNb4WiN5gdEtWVdxcXyOkTdt1ICTCdlHJFuFaOALinV3cMIZ4hEg3LJcFt+sUQc90PETaLjfbLdXbM6JqRX7zllf/7YIwHrH35Dn5xVvKd29h+YYy3XB+uaAsWzr9EJu4vbnm4OiQ0LEYxPFDpEi3CDTKdZGuS9aD6/t88uIjhqfP0Y2h3CZY25Szb97iYRO5Pk+cKacvQoo84V45+NKizhoWRcZ5tWXVVGSbgiY3VP4jfvTjn6FefsX25bc4A4/awFBZSCGQbgCWRb9Zsf2nv8XxNV3iQaSRDphCI60Ay/Fpi5aqNtxvCrbrjGAwxBsNWScptD2WlFTpkovf/n9cffuSfLPkZz/6nL/+7dcw2OPRJ5+Tbf9/9u5sWZLsOvP73923zx7uMUecKc/JrBwqK2sAwMJEggCobkotmrW12Gb9EP0WfAw9hKxNulCb2kBjEyIEogmiUENWVlZOZ45zYo7w8HnYrovEO+AC+XuCCDO/2Hvttb5VE2U1qlSoDYuy0ND0gMcP32fv7pi98YDy4gz18IjC9hiP9ojmMN9WvHlzzqG5R6/vYmsquaxxXJedsUE3VSzToJIVUZgQRxFxmhAkI9I0R1EFlr/HfBrS91r4oy6akhFdvqAWLpVqUyoFumVSSw2ze0SeZvz26a+ovjVxZYGpNphC4ho1oqXyxfNrfnt5xQ/ThNH9e9SiQcqSm+kty+UMbxBgOG3aw4AsjcllQpkpby+WQsFxWpxNJlyfnTG6c0RW5NSaoIh3eI5D23B5Ob3AsjLu3BuSRBGB7+KaNUmSIfwxmgp5lNIoDb//7AV+nZLENbtdjmH2GA7G9A/3kGQYmorSTCgxUFSVBkDR2CUZSpnz+vSajw47OKaKrBIU0SAwsQwb2Rg0eUWa1SjCAF0hV+HN77/i//vsnEVYklUKVZmSJgm69gGPOp9gBippWDOyt5xeTFBuM0TylI65Qyo5oSLIVMFttmGeR/zZR0949ONPqIsIKSWW5TDotXn43h1knnE0tnHb+9S5pKkblGiD1Hyk71IWBVVesr68os4Kuu0OTrsLUuX16SVxkqI6Ov3DIT0NOqaBDEMcRUGrGwbDIVGjMrs6Q28k68WCSlFxWi1uzl/Rbrc4Gnf58d/8R5KzUy6ffcFkPufez/8XPnqw5LQpKWVDoxlUqo7mmjTzGLU7xDYMhPJ2BGa1jimyEkMzuLc35MSsaIocs5JsI0hliaoorKuYBihUDUMI9NRE5hWbsEaYFuvrDbpnoXmvaXXuoDt9Zos5ZvCaVr+FsCysdoebxZSz2ymOYfCw7RFGMSfDI8ptjD4cEi/W7JIIG0G8TqmEwnJxxWQTEsYRRrtHsH+IoumU0iAqc6QlOHl8nzROuffBY/b3DrBtG9kI3rv/ANsxUN51mrzzzp+0d0WTd955B8sU5CFUDRRlRZpkTG7nKKZL0MnZu/sxfs8g61TMX16jWgq7PCJOYKANGA+HhI5HVUukroAwcfseth0ghEUd7yiSHMczseqaPF5RtXs4lkt3r2RzOSFfnbKVGxohCZOYwvJR7B5Ca2FrbXwVVM1Esw3i7ZrtNsaoBLtVxKDdoaoz4kpSZRlqqtCsJ4iypM4SZtMZD7ofcvDkY8IqowlXtAIfWZfo1DSqAaWGUkrqJMP0XIpKopCTJQml1GipCr4tUFWB43jMlmt0TSX/QyeOYxooaBiWw8XVK2Re4A8P8GyLJjHZFCVlkXN1ec6jR49xTIOWplB3fRJVR2kaNNPAES0GnTbT6S15kVEWJXWWUnsutWFA3WCaKopMUQ1BaZio7S6q5aBaOk3XRNVUiiomjmtef/WGz599w/VqQ5onjDs+9zstmiinsSykDtI10b0Oer6HrcdUwqUqC+IkISwLNllK3kgevXfC6PgetbDZrZfMwh29MMTq+pQKRGGMYph0RgeosiL7Q0CqlBpl+vbgLHWNg4fvc3S8R1CEeIFPIRsaYaIYFrVs8Lp92v0Rry8mdBxBeXRIXZYI22Wa5+wWS2q7jbaYYcuGPEn5+vocW1WoS8nNeothTmjZNn7bRVNVdMNkvorxWxOGnQ4tz0XPI7Joy1ZpcP0OLUdDkyCCANHpkW6WXL664NX5lpbl8eTkmO7gI1oPf8jNbsvZdkM2WSKX58j5G+62fXqVi9/t8vz6kujmmnxlUAQuhlB4MVlR5RF/88kxdw/G2AcPkXqC0EATDuXNjKw2KKSOLuF2seZ6sWLQH1LJhjrNiKuG529Omd5OKBuVdrtLVUsCv41otVBpiHYRmRT4/gBL05GawfG9e/y7ThfTcbEdh12WczNfove7TMKScrnFtF1czyOeXbK+ekO1uKXMInZRTFXXKEBW1fgtjzSvePHNcyzLwHZbWI6LqgoaVdCUOZoQYFncffgedm+AEXTwa0gWM37zq3/g27MZWglHONwJhnQMQV0VKKuYMM9ZJjFfJiGFKwi6DnqUkYQbvqq/xBMBDw/v099uSBVoypJqNcPQNJqypslTqtkVRZ4SzVf4hoZRV2iGhWZrqLZFXUGRxcyWW84nM2yn9TbUWBUIy6WqKppsx++/+ZJ/+OWvOL245qf3R8RZxMn9D+m/94RXi5TdbkWRKwTdfRzXxXZ9hO1yb8+kNwjYO7mHkaQMewGxpvFPr96wffEN//ybXxCvL3l9JRkOP0KxXFIkmszxAw8hFJqyBLUhLXKyuqCSOkla4nXaOLaHQk3dSKxBm6hOkGmIUlYkbouMBq2MEHWMMDRUrYXX76CLCK3fp4oLOuPDt6Nihoq6XPD57O/5p8+esf29wX/aH2F6Nnmtcr1cE25W3GQ7DFug6RKpqUhVxTIEDQaG65PkBd9+/TWyqUnDFeFiQufOHlqjYbs2ZdLg79/hkd9mdjuF6YQyL8jSlLqpMaiZvHmNaAy67YD6dsGXF6/ZxRmGOWI86tJ9vIc97oJSkVxNGLe7DNodrjVB8YeNsKoqqMuazXTGpGXx6LCHLDKE2rApSlzbRq9ypKGxjbYsIwvR7mKEOcvbDU8XBV/cbnE1k3stQWALKNeYbZ3Hf/aE+PWOsRVyXw+pyyXe4QjRe0wpKs7mU37x/DnCs/jffvAxh+9/yPHxiM3ZU4y1idANdNvg4dGQIgnZO+ijxQlFLen3uogmRzc0hO0QFwrnXz1Dq0uEppImObJq0E0HRVHxHA93dEi3P6KtqSh5wcXZBYf7Q/Z7bURT0+t2WE3Omd9MMey324D2RkPSeYejQZvxeI9PjwM+fz7h73/za642Cdeqx89+8D5DZcdilyK8LqvlmhO3T3cwoh1dk6xjyqCDbBoURUHRVGzP4b2OhVbFrOKYTSVxWiaGoVDEOarG25Efxebu0WNkDR2rYJNkRIVEKB1eXk149XLKo/dd9kf75DhE64LGs+gHDtuywnU8RF1xMZvjuQHHZUYtc4yWS5mlbztOTAvhmtyeXhDFO2rXpchyFBSGxw9oHxyzXRUELR26A374l3+NUyecn55jex6GrtPrdCilit0IFKG+m855550/ce+KJu+886euaaDISZIUXdUI4+Jt4eTmCtHqcXobs5YB3//+pyh6RHq6Bj1ju9rQhBGPvPvkicCxbeKypuWqVFWFplWUZYowDIJui9ysSbcVZVmg64IyXqAGHkG/z5O/+C5KUWK6HnpvjwDB7c2OxXVENduyt++TJjssq01YDxBhRKfa4Sg6dllwfXvDIpqzLTK2ukAzVUzfZTNVMHSLD04ecvLwY4KThyjhAlEn2FpNGcVU1JhOgExqFNVEtzvUUgFZUeQ1Uli4TguNhpbrIhsV1wvYvL7g+vKKu/ce4OoNWZqQZxnZ7c3bF8XeHkFvgN/yME0bFYU0y7mZTLiZzzm6c4jX7YHQEIpKK4kg37oVc9QAACAASURBVCE0cAMfrdVlu51T1RlQUasqlaypi5J4t0UzHezApJYlUlOpDfPtJh5F0lgm2XLDfL7l2ekpZ9sVtVCRjUFclRze/xCnGjM6uYehVFiujfQ7GHWBrvtUZUG2WSHRCMbHYEfUbkR/cEAw2Oee5XP26jmTzZZRsiXIuuRhTtMonDy4j2EZFGFGY5gkjUpRbpC2QvdwTOV6HB0fMd4fk63nxIqK10CByrbWeXo140G7ZH/gI5saUwj29w+YXV0xnU5xTJMS2N6+5v4HHxNen7KNdyhlhuYGhFmOrgteXb7ivb0+7cGH6KZNQ4FalNzcrrFsB9POsTSdWrjMFiG9vWNsVFAqGk1FKg2a79M/uYd+1OX+g8fYhoAEpGzoDo9onPeZvrjgt//HZ+xZBobfolQUmqpidHBAlKdsipx1mvHF9IbNZs3PPnzEx9/7HpaeUScbCtaonS7oFmVTE66WqK0O29mUN5MFpSKIk4Q4TtAtmxeTGc+ePWO73tDxXDZZwSiwiSX0DJM82tI0CopuYQU9Ll69xKRmfHJC93if2g+YZyVlmrKLt9xS0PFabBQTo9gQhiuaPCMtS7qjPTTL4HqxQW0aGlnTbrcxTIesiriYzHA7N7heBz9o4dj222wToWKYGoPDO5hUyDxFGjbCbKH0Q1qPP6LZ/CuW4dMa3KOqbDZJg8hqksEdVuE1O33DT+++R/uoQyYkQaLQaTqUgULL19ADn9ZojKwkUhUU4RZMByUpkLsNjWXQ+/OfMP3Nr6iEjq4pqF7rbUFFKpR5wWKx4stnr6GsydIE13dpkLSCFkJVKPOIL7/8itfXM0aexaDlYvdG/K//8W85ncV8s3xDFu6w/BGO4zDoD0izghqN7nhMt2Nx4LdxHA/LsrGEIPci1tMLtOiWpMw5v73hA/kBnt/BpKbebfFcA0FFrajkVY5haMhSJStiNFMjrzNMUsxGwTYbtnmNpmpYRhtVt3H7Rzx79gJrM+dH33uMezikqaBGI4tr3vvoPuuL5wQffoRpO8wn1+x2S25WEd97eMJg0CZvajzLJk1TkuWSStYkwqUWgrJIaVQV3dAxXB/NayirmqffvGC2XCM8D4nCLkko05gGj6wCKSw+/Hifr18tUdcp+0cmV7cL5jdTvE5AdHNDkaiYtscijdnNliRRxXZToTcNR8MhjtdFt2wstWYmVaq8xLJaCFVHUTWQDZYh2GYZ09RCpDUHgCUUhO1hhGuSPEdXJSkVy1RFRDlWXGFQo7sG/9N37rF/EaKqPvcHfYo4x8o9rPA50a++RSlyVuWKVt/h8Gd/jZrMsPYGNMUC2y4wWw/Z//QnOOMBRbyhTDdcn54hBXQ7HWzVpN8Z8fixRmDV1BuF3LMwHQOZpKDolBW8evmG9XLNXj+gbjSiKMSzXaTtsz88JJFv/9PYMhm0PBY3U6Z5yn6vjU+DZRrMp1cojWTv8Jhvnj3j/geP2d5c0un0aN+5xwePH0B0S7q64mw6Y1cpPPvy9/z5dx/yyfd/xPz0JYtdQVGUaKpAygLHtqnS/O3WPNklLHL8XQvTtTnoOLz4+oLnt0t2RYlQJMLTCVyTlmnRaQcoteD+qMvweB+9jCg1j/lkRrha4BsOv351ShRmKGmBJk3qXMX1VBxFx6tr3jvYYzWbslouKA4OiPMKYRuoioKmwG55g+EJNtEaodXM1yGibqirErvtsf/eCZZlU1sW/WOPbt9FFQ3Rdk3QCmm1+1AruG4LzbRYRRlRntM0f+Sz2jvvvPNH9a5o8s47f+KapiGLt2RJTKYoJEnOahODMFh8/hUP/+zPSaqaV+dnOC2dIkhZZLesozlq3EZRTAbDHlWVsVouEWMLnQbZgNvRqXJJstohmwKpaOiGidA06iQiira09vcQqkpTFAivjdQsqsagt9+hyiZk0Q0OW2Qd46kOg7ZKM37Adrbm8vWEs/Mt62XKbRjzajfjMgz56MOH3HU8fvhX/56hN8Da38fbHyDLArvY4gwDkBXJdkGxniKOTlDst+2/1BpoJdusZBvH2LaNJkzqqsAUAikVqgp6nT4fP3mfs4sZuzjGdizSJCNrKnrjfUpFYHktnFaAECn1oODwQY3THRHJmuUmpN0OsFotbEUl0xTu9O9w7/iY59++4WlYsYo23MwWBIMRphOAolA3NXZvQNvymJ1dUSugqLy96FsmigKq2iCTmKdffE2YpNiOgy40FBp8XUc3LMb7Y/zBXZqiYrOLSAqYrBqmyw1lHlMIj25/iKqqdA7GKMYNmuPhtAP2/DayaTh9+Zzr1Rqn18HyfA5OjtFaLmmeI22dJEuJlZJMKFRBQPztG+4/eJ+j/pBos2a3WOHdfY9C1sRJwsUq4YuzBV9c/gOPP/6Y7e01NiAUjScPHjBfrllt17SCNuQp56+f0/3DqteiSJCKiqqbWE1GFNUIvaRSU6qqwBANomUTRgnT6QoUnX5vgLAV4tmSye0M584+qmWRb0O0uiaJMtof/RS5UzG7Fn6ni2Z4NAXkpxO2kx3qNuL9e99ht76BJMQUCkG3h9dto1kWVVWSa4KHr18zvXrN4YMHjI7u0+QTaAricEPT5ODus9plGP0Rq9sJN7MlizjDt02S8u3LuVpKvvn2Jd9eTXEE9Lo9vKDLMooYmQ4Xz75h1A3QDJtOd4yjapSzaz57fcb48orh8THHP/opummyWq1YxzlFnNIVCn67y+VXr2i7Ogd37/LJv/m3qErN2dPfMV1uWEcZWd0QBP7bsNzdFqWqefbV15imjSUUDg4PkYaKsCxMx8V0WxSLCbs8Ry1rVK2gF9iMfvJjPr7T4/T1nM0K7JGPo9homxw/ydH0ko9HJ1h2SumpjBwDV3fR5hJ15KENfRTLRO/08GRNnUUkwqTRQSlrjL0DdFNBbqcYrzvovo00Hco0BOFQViXhLuLzp6csbxYYroMqJclmi6cZCKtFXkvKJGG32eAFbVzPpj54xE0hcL0WR1aH75gt/se3Z7QsG6fbpVQ0Wm4LapCNxmh0QFnUbKOUwPXotRz03pDrgw+5/8OG7T//vyxnE7ZJwVC3sWzJLpLIOsZwTZJGUtclRSURQpDGGZQhjuOi6G874QJfZy1b2KaKrSp4nTZmq8Ph+GdkL16wmuyoxwP0vkN//4CRqbFdrUnqEW6mEl7dsJ6c8vrNlA8fvU+/b1M1OXWeIgwXW8KDO/s0jFmWBVIXYNggVFRNwVQ0oiTh7OKaN+fXoAqaLKV2DaqmYXZ1QWdvjCkV9kZdZqsFtg537uyxmEwRio5VRCAbGt1E01VM3UKWOaZn4dQ+YvCIvfF30HWFWElRdQtZSZqmBhQyVUNYFnqsUckKVBPPehtimtysuHJr7vZ8VEXBDXyscEuagxq0uIlWWGFGttng6hrjgxOOv3uA/9mXROuGw49+RLTTKW7n+OmGu0cj2v4YFHAPB9jvn5BftKjnb9gtb1glG4bvPaR9Z4yhQyxV0utTLq42xMmOjx8r5Nrb7qwhDoYGuWLSpGA4NjkVZS2ZXM347Vffst9tYYoudV1wO51SSBUhTPKiIskyRv09kBKKHKUsKbcbZJ7iWyZFmnHQ9cnnCtbwAPvqmrYtSDSFRNgkacFuPeN47PC9P/uEN2+u+e3VhtxrU9gdBh98TEtrcCcTrjcFWQVqEiJ0A398iGwkmm7gmDqHvTbOnRHjwOEbqTJLK6KiRFdBbSTdkY0hVPa6AbKCTmBzMBqwnEiuXlzw298/481yzWA85O7BfU6vFnz3Xsnh/l0a00HvuDiTGZZloeo6liU4GLRRZUaRxuRVg66+7chahrdUjs31JqSoa/zAojFUpK6zf/8hhqawvL2m1Cze3Lh4g8eQVazXW7rtgFZ3hIuKY1mopoGalcxWKe9qJu+886ftXdHknXf+1CkKRVawmc9oNINGsyiLkrJSCLM1v/zFf+PDT39Anp/geQ1RPKd2U8J6i5lqVFVNv22zXOboTpvbxYZR10eo2tu0ebVG1eq3L7KuA3VJnpXsdjV5eUu3P8R1XGpVRVEUbr75hlz0OXr4kOOTAU0AhumCNNAQ6C0Ltd9DHo84eXiM/fIuZ08HcPqSUm/xvU/HGFZOur3i/vc/wG2fgKVT5iHZ9hqVBE0RSE1g+gFVUVJIjTzZ4BgmqlKT1tBoBoZeohke07jmoV2BpmM5LXTLRafhtk7I+hWTmzmK57DehGitLqobQFlgGAaaoWPKmsBvAyqHdx8wn05IqorpcsHYNnFcjyKqsf02iuXgj/c4PhyhTwPOJ1cI20VRNWxTRVUUUBSW1+csz16htdtwtIemAX/Ik6jznMuLc2arJY2mMR706bgOuhWw2VV8dpZiyoYyhlevLrhdL4nLkqhpWFcVq7LB1BQ6+xkffucTOt0uXrtHttuiaiqeFzDsDdmEIaezW3pun0PHYJ0kqLqGkDW6oaNJhUDLoWlTxjlH/SHNNmStQByucFo2techq5qiqgnDEFmlXJ+9ZrlaEnQ6HMgGd7dFWEPGQYAoMi6+ecbtekXQH0HTsI12xEmMqCFo+azDDNkoNGYHrZGE0ZZB18c2WqhFyS6qsbcJCivavofXbrOKEm7nC8a9Dkle0uxSjGBEmKbo8ZZCsykcA8dx0S0THhzx8v/8gur0ip7boju+gwg6lGVCev4tbAuE6eA9OMI4GHHnB9+HqzdczC+pigLDbr3Nbig10lVOlYTcLGOqRUy6XSP8Hid3Wqw2O4QwWK0X7OIEnA4PP+yRXL9ENlCmO/x2D8106FkmnmFQVCod1WJktrj/N/+J4b/+hl/9y6/ZbEMOfvxzFKBSNOpWh8nVKQOjwmxK9h99QLfT4sMf/QjPAIod3o9+jNkbkf+X/wvtcopu2whhvM0OyjfkZc03Xz3FE5KO52JZGaqxh2q7NOGSJInZbNa4mw3dgYpFjVQanP4BB3mBXl+xurwg3FVo6xS/O6L3+ATVLJjPr8ljE0v3GbIFJcKx96m3OxS1g9XrsYsjFKFjCB2tFaC4LkW8xshKZBFT1SVNoeP4OrJRKZIdm7jiq2dnfPnNObYCuyhhfNSmlKAZOqWqo9gOUmmwDYPv/fRnkMYsW0ccPXzAYh3SPzohSEFoOppjozo2LcNGq1RqsyCNM6K4om1oyEajqCThNuf8dI5qB9z98Ie8uZrROC2SXYWi6Oimi2rGJGmN+YfLsaZkCE2QZwkNDetdwZ5tkmQxmG1WSUStNnQ8B7PO0dIVtmNjD3pUHzxGXxUMP/4u0JCmFa3hHsPxPZzVfaCmVGKWO0mrP2Y47CGLHUURkWUhjVZiNhn9vR6oKiPbJlwtUDTlbdC2rlPKnHUY8vz1Obauk0tJhsSsJdF2ja1JLl6+5NHH32EzO6cpFBxrwPJyQ7he4aoNuaqj6RaGqVLvUm5nFygq5JXCtpT8/H/+AZazTxaHrMIZeaQQRhnJdgOOh2xUfNejSSIqU6UpE7LSZFmluIZkPinwdJ2O59CoGZqj4mo6IQ2+LTBUDeqKOvC58+lfkVUC5/UV4fQF4dm3aHvfp64admnEaivwn/wYIwhoREw2PaVYPGcxW3M5n2MGPYJBQPjmC/I0Y7e45XYTcnu75PkiRLNsvvPoPioSL7BoMLHaBvLyFmSJpmkUWLy+eIEpBP1uF9XxKKuGKM3wvS7Cb6OqGveO30NYNkcHx7iBT7oNMQybar7C9D2KMsTQanpCkqRb7hwesN2syaqatKhwOj1Opwse7t3lk3/3t1jjBzx5dsb1dsuDfovp5Jb9dg9nMWPsNtyenWPpJjE1s92Wg8Bn7BmMOh6ea9DqBay3K8I8h6ZBoJAWNbdlA3LNX5z06boajVRw9Jovfv0b/usvf88mjNAsF9u22W5CFlGK7tqcXm94/24LJdgjb0pcoWDrKkJXkHqAG3S4N26jFDW73YZu1yecL1mGO4aHd8kubtiGMVGSImuF8cl7jA6OqKOM3U3Ey8sXPJ/MeRMveTDsYtYlgd9G1RsGXRddV6ip2WYx0WIKzQd/vHPaO++880en/d3f/d0f+ze88847f0R1VZr/8vf/9T/fXl20kygiqxryGpJKY7qJiMId4eyaq4s3ZNmO9v6Ik4/uUqoVZVry/r1HtD0LzzUpqhwhDOoswrNt6qaikZLd8ob59JpgMGBxO+Pz56eEhUbZGORFw+Gdt5ffOi9Qm4bB4SGiKWiqlDpPEMJCBAMa0yVeb0huNshNRjpZEy2mFMUGW8R89OmH9PdaRLslWhFxcmdAMBwAObpRsltPkEmCUmuAikwzTL2Dbrbejsk4FqiQZRlV3dAgiJOS4uaMcTdAtPqY3QNUQKOhShMMXediMuPbV6doto/RGTNTHPKqwdR1dMtG1jU04HV6+L0efuCz3wuoZc1sPqNsGqJwQ5xljIYDposF5fSCZLNkGaVkUYiuKtiWCZog2ixRAcP0UXYNvUEPxdTRFBVNF5RRyPOvn7Kaz7h/dMJ7ewc4mEyvV5ydX3MzueH8ZoUar7menKPVKT2jhnxHEu+QZc4yilgup2zSiv7BId3BHkGvh10WDE8eIoRKlMaEUUjT6jAcDmirJSg1QgVNlkihk+Yl2zzm5uoNRq+P65osJpfEsubkg8colovf6VCjsgkTwqzk6uoGw3Fojfa5YwuU+ZTFco2QIIocV9bc3E6ZrZYgaxaLW/I8xXfbOJrPLlxRNCWHh4fs922KdIum6bi2S1M1lFmB3mqjqVBUBbppYbhthDDQG0mWxGjCROoOKpDOb9HLDJlFpIsbiu2a7Q5ufv+aareijta0tJpW22J0PCIwJO39Pu2HJ3hdE7MK0ZoI1SxR2zZxssISNbVuspoviUuVZVhwu9yiNDC+c4TX6dIAiqpT1JKr6wlpUWL7PQzDQeYZlmOjKw3+/j0G/TGjTpf1ZMaT3gP2zRHB4ADbDxB5ye3thKDTpnXvAYWioSsKsigokx1NWRD4DtvNik/+4icMx2Py7S3dTovOcJ9tnOF1ApJwi9PuIWhQG6iKkjxOSLOMWip0RgPMpkIPupiGQblZsNjsUP0eqBpdR6dYr5AlKFaXusqpsg15luH0x9hHI1K55nr6msVqSVSUmJaKKVSUbEtWRZS2jeUFqE2D1C0yVIJuF1EVGO0eRjdA6DX1bkP87F/ZzheIoE1ZVSRRzDbO+ebFhH/856fEcUaWl7QMgXRcnJaPpKZRoLA8/NEeUkp6J/cwWx7jgz1+9m//DdsoYjGbsi4kX397htfpMhiOcYWJoKEpC6LNijyv2ev4eI7N7arim7OYm8trNvGW5Tam5QfstfsYUmX/YIBKgSYaomRLUeS0bBNZlqhNhdIo6EJHKAae22YdVUSNRh5vGJoSs87+sL1Ho4pC0l2I4XXQ3Q5mu0OvP0DPCupGIY5y0usZtiWwfZ+W38VTVdSywB/v0zQKcZbQ7Q0QtWRyO6WpKgylwvMcFCEQlkVZS7abLc9eX4CU5HnGchcjDAPd83AtA1nXVHlGjo6KynY2ZXp9zfn5hDiMGeyNkUIjM0zKMGJ1ecH85pLJ5JqsLGn3Bxx/52P0/oDLyYKr55+jZzFxGGJbNtMoxaxS1OWUoqppqgzP0Bi0XGgUuo5NXtTUsqTXUVFkQ1Ur+MMOmiLRhaDrOQRBh979u5TxmmJ5y2q55PLyjDIPseuExfySy8un7KIVyfyCYn1FdP17otUV6A2nqxhzPGJw1MUQNcQbkuWCy9Mrwl2CsNu8uJrRbpmMOiaqorDbbShNQVMkVGEIqoruOMRZjqwqDKHQ9RwswyAsG169OafXH6BaLeoaut0+f/bpD3j04CFGUeJLBaOs2F5PmVxdIjyHybdPuX31LZ3AY7A34vZmwny55vDue3zw5DFPHj/ANgW9/Xu0T55g9w8ZNTtsDd5MZizjgn6nRVMVlGVN1mhcvTmlZQgqWTEadDE1ybDr0+61ma9WfL0IKZOEti6oyhpLE6ySnOUuwax3LNcbnr654r/8+ivO11sUVeX79+7y4+98l7/43ickux091yHepTx58ATX71M2DfPZNVmVYZs6WbTDtHQMw2DQC5BNia6rnL7+hlTV0ByHzfkbrm9nCNvl+GjM4P33sXQFGsmrV+c8e/oV3z79HevbM6pwjmNZ7B8cMB4NcU0DTVNJs5jfffWMxdXF+off/eR/F0IUf8Tj2jvvvPNH9K7T5J13/sQ1TUO83RGFEXFWoAqdbWFws45J84pwF7HebjhodHRjH8t/gCEkH34UEO6tKSpJkef4QcBw2GO92rFeJ7RcD10IGgoU08Jr+dRFyYvJgl/87in7wz3+6gc/YZMbTDfQNyVVGmP3R1ieDVIihUIpBXkao5ZrNMND11Oy1YztrGS6LpiqKrYd4fotSnbs1jvS9ZKRVpJslmSDDVWZo5mCMolpVimaY6G3a2qpoQmXRm0QTgsUSZql5GUBmsIihWIxpdWkpEmOL2zK3RaEjqxA0y3agcH3P3rEl7/5Z355MeHxdyuiey0WiyWyLil1C1GXCEVh33Vp+S0KASfdAYuFxW+/nPPsn/4RrYoYD8d8/fVT2pbAj1ZI28MeHTF79Rzj/AJhOYx7Ca7bQmgGZh2SbxaUszVmv4Na18i8IE4y1mHEgwfvc+x6fP67r/j2co6sFe7YFnu9HmpdEGAw7u5zeO8O0zihvL5lz9PY9wPa0ylRFlFMz/nyt7/F/OnP6PX6aKoFVfE28HUwwtusWS+nLPttegc9rF6Ppi6oqrerGlVF4TaPyds9aFTqaMOmKmj3xuieR50nFJVEFxLLdtHtBH8wRtF1vHaAmG14fO+E2SLi+vKaeLuizlO6psX05oqz7YK8Kmi1PPrtgKZRcIMWSZiiyJw4NxG6h9BMVGFiu2+/+WSxRL97H6XYUaoV3f0e7XYbNdvQ7Y1orC6O30EpC8rtliJKcVJJPHvNdJcRKSe4hgJdH6XM2UVzquczsgsLt+VQ6ZLV/CWVkHT3Asz9EWLgo8cJ2SJHiWoMzWRXGyRZSVpUeH6XYcem1W5RlhLHMUmLmvPrW95c3bK3t4epCVAaWp5Dme5wu110VcFFkEymBKZPYHmsX27oHDisbi8pd5Inj77LVu7Yrjekekq70+Zg3ENXG2yhYWQzHjw44ejkDkJtmMxmLK5f8Olf/jWPn3zIdruhtzeiUTUURWMTRTidNnlZke123EwmvLy4wT0Zw/wGbbRHXErsvbuk6xkGNelySRLnbwOMN9cYpkX74AFu/zHX57ecn78hnK+QskDRCvz+AMXwMeoK03JxD++ief7bjUdFgelIZFGg1JLGdFAsnTpeINOQzfOnLC6vyKoGHUG8DtksV1yvYr58cUuYlVimjquppFWJSBJCRWW4P6LRdJzRiEp3OHzwkE1R8fP/8LdcriP8bhdaHv/49//A5dU1hgK2qmHmCW7LZrGNKfKMMku4+PYp+45CK+igtXsc+TZfLRq++N0X3F5d84NPP6U/PsHIYzTLgmSHblRIPef1xQxFDnF1QVODYZjohoHaKCTrLQ1g1QWuoeAqNUKx2MaSq+mMRZxQNBJbfs2nP/w5qmPgIHFbPmYvAE2lNjWkUMhRyJotxXJF4Ae4jsdmuUaqFk1dkVcFFSCFiVpVuI6CqguqsiTJK97Md2SaxSa8YbHZYZs6UlXJo4RtJWgHNtdXU8Lc4IvfSSgSPKXGsAN2lYFmGAz2R9iFZDpZUWQqmnOIEBmGpdF3fD775a9JvddMv72B+RQ3izg+voPjBYhmx1iTKI5BtNOhsiniNZtNTq/lUcoa6pKzqx19T+Pg4IB0tyCKUvq+TVJplIXEafeQScpXn/8ey3BQCpWqlqx2W0zjjEHXR0sEV9M3bMNrurMuvXGX97/7A4xen4eH71FRYTUZyeSU+cU55y8uqEyXH/z8L2magrwOaQcuqH/ILyo0Lj57wdA3cWyXYa9DHqWE25DtdovTCrB8nwJI05SDvSG2KdA8j17Q5s7xCXu9Pl3Doq5VJtdL3pxdsdzm3G6uuR/HtM2a04sr1MDn4d4hqtXCa1d0ez2Cdp/R8R18vaGoFUxD4bilIk2TLQrzxZRwvWYauHzvwR2cuOT5v3zF88sZwSrm3r171HmOpakE3TZ21+eLK4eiKHk0avEg0LhepuxyhaslnO5i/tuLNaqmMEkkQtM5sE3GvsXxXsCd+yfQ3ucnjaSUktPzUzazSzp7B8gsRFgWUhGUWc7NfMZAgBN45GpDnUVMpxm3UUnQa3P61ZfkVcHx8QG1qtK5/4Bahe1mgWp5tA4czBsH42pJSy3RVUHgt7FtB5ociaDISs4m1/ziv/8jNiCl/GMe1d55550/snedJu+88yeuKkvzv/8///d/3m627ayCTVIyX0fs4oQsL5BSYhsGB8cPcM2AltNlPdtweO8Jvj8kWS/peDq2Y2Jbgrbvsosi8nCLZVmgCIQCmm6Q5xVPv/qG1xdXmO0hw94Ar46JV3Mc00QoYA3voCrQVAXCdDH8ztsLRbwi3YUU6Y7Z9SlPL25I9sY4Bz717oJwPWOV5dRVhbm7RVMqhO3S6vSpyxRSBbWQzCdTyiRG02sU1UYqCrLZoJkGZZUTRgmlZrIp4PrVa5wiwxQalqljtAK6nQ6m7aEaDmojMU0TUyjI9YLTF6ds45TEaVMrCgeDHqN+B0/XiNOMzmBI4Oh0LZWOo+F5DrvNhs38ghfffM7Zm+csb87YLm/oBy3CSidPcxpFY7VcEcUJaiUxLZumLIizlFQRJJsNZrtN00gUVWG9i8iKkve6bTbzOb/64jmu7fNXDx/x5P779IZ3KCuVgyc/ROmcMLj3mGmY8ur6lgiLjtfBpUav4N7RPR48uEdmmkCD0BSaZINpm5idLrPtmtViSbfb4aAXIHSBoWs0qkLZKJRFRpLnXCxXRLMb5psN20Ly+MkTVFWi1BXBsh/AcwAAIABJREFU3iHCcEgUCzvooJsOUlHwsh3V+Rv2/Da9/gGeFVDFNTfzBbPFlCjL2MQ7dFNw/2TMcNBFFQqr3Zosz3C9FrZSYFkWtvV29r4paoRQ2ZQwCTM67R6aLGh1e3T2DqmyFDPo4Y5PMIWGroKuCeJtiSIdXr665PPXC3rtfRxdp84jqqYkN3VKx2Grwm2cMJldEqZb/L0uzp270OmTFzEg326pKkoaIEorsHy8/pDAavCNGmEYSEWjkArL9ZbPvn6JZdkMghamLtgmKY2sUOqawXCMQkOxmrO4vuDjjx5zcLKPqQp2tyvsgy7+0RjH91kurwlbbbY15EmE7zqMeh1UoRC0A947OaDf71GkIdfX13zx7Bu+/t3/QCki4jgj2UUo4m2ehKJAmaUojaRWFDRVI68kw/0xjtpQ1iUpKuVugywKdFVFON7bDAvLoCkSyjhCt9poWcXs8oIkClE1FcML0NwOdwcOZpVQFSWKVBjt72FSkYYbhNeiAWTTYLY7aELH7gTIaM365dc8/9fPSBSDRmhEWc3pq9ec3yzJFR1VUTi/WVKVNbquYdoODWAYOqrlogpB/+4D6rpGaBpCSjLDZnx0TFOWZGlGtN1gqoIwg7KqcUzr7VrVxZIiWmNpFevpNcvVAtN0Ge53WSy2JDuoVxnb9QxdVRgPAkxbo93RUJULovSMyc2Gy2nEZLahH7QQgKwrNF3FsR1spaFtmQTm/8/efSxLcmd5fv/637UMDx1X500FkQAKpVhN656hzZZiFtzxPfgCfAcu+AA045I7ktbTNhxrzlR3VVcBhQQykYkUV0fEDR2utXOR9Q69QH7ewM3N3fx//PzOUdEVlcW+4PcvZ/zH529YxRmJ08U8OUf2u7Rtw6DroTQtlu+jew6aYyIrClVds7lbsP7+JZaQcF2X7cU9ye4e2bWx2oK0aijaFs/VEW2N5dpIskaUl7x9f0kQx8ynU9Jwj+/YCEVGdxwMQ6cocra7mOvpljfvbrm7vEXKE056Lk/ODul3+yyjBNf1cGyH+W2EbR0yefAUobmMzr9AiQuKdcDs+bekdzf4ap/zx48ZHvXJ25Jyu6CnfhjiqbQFq/WSbrdLU1WobUlZl2iaQpjmNGnKaDhAl0AuGzoDD5oaRzFxOw7Fbo3lDzkZD5DLiiBMma/2KFWN7yoMD484eHDOg0+f8ujrrzh//Amd0yOM4QTdddEtA6It4d0NRSGzut/w4OuvOf/lZzQ0xMkeRbR0fYflZsvd5YbXb+ZUSYnftTH8HvF2z3q15Xq2ZjDsY5g6+0rQOTxls5gjCwXN6VLXEt1Oh08++ZRgvuXtd2/59vk7DMNjus6pa5VSK4jKFKffp5EV3NEBRdOimzZPP3nMYDKh3+/T7bjUZU40vyG5ecfV65+InA4XP71kt10zm85IasHRcMDqfkFtdrnfxkhRSO/ohHHXwHY0ukcHTJdbJqT8t//2cx4fjzgQMkPbZKAKpLKkkmRu44pWyJz1HD49HmEYJk/PD+kOfb754Tnjrsno7JjRcEAexdiWTlgV1LqCpgp0Rf7w7sxSVMNEqgrmN5fMlhsiSUGSJS7fvUOhJcgrHj79EGPKgi1tkSKZBv7QZzgZ05+MeXB8yqDf4+DgAE1XaJuUaHPLarPk//rTC/74l5fkebb9n/79f/+/aar6sdPko49+pj52mnz00c9c07bcRy3TSCIIMqIoJkpTsrKmRKCqBseHB6hNy/T6hvFoRBRveN8ZYtkmzXaP+XBMWeZ/3WIAJ+MO7y5TNvsdvu8jyzJ5JSjijJ4u8+9/+wsWQUF4+5by+ICSnJuLluMHJ8jrOYZlo1kewrRoqxrV1Gi1Q6Sqoc4zXM1l8shCkXdkSUo8GFEoOnWt4G1vMQZdkiQiSUqC7RrX67BarPF8wejhkHIfIkwJLAXqlFaoNIpCWRYUkkrSqrz/6QXNbErijzAsj1KyqG7fUvseptNHNM2HrHmR4ro9nj37JbPrhH1/zKLXw+/2qeoSRbRoCrRVwpvLS9ynp/SMmkF3yG6/5+xoRLw9ZnXzI8tFhKhlVOFQ1hV5XZMHW+S2xehNWK6XlEWNrOqMTIM6iEm2MWGSYZ2c4GuHVFFEWVWcT4bYRYT/1Zf8z8++Ri0Vsm1Cg0YYBKhVTHrzA2mw4fpWIdzdM2o2WLIOSULj+hwdf8ng8BT/0SO0Tx7y7ft3GGmALFSqJMb0fbpel3sxJy8KkrJBzXNyYSArGlARlzWruzuW798T5jlZlvL54zO6jvxhToNi0LQyQtHQSWiLkihJqHYrQq+DgsxqsaLbdzHMIZMTC9cc8+fqP3MdvEC2bL78/JjJeIgudPIiYzA5JK8KHFtHMXWktiUKImzDQdVVyrKitQy2N1N+knUej2zmt1N6k2O83oCmaVBUDVHVNE2F6Rh4fY+7acIclauo4Iu2Zh/vicItlBmrYA1tjWgbTEVGpuXAHyJrCnHdkE8vEXWIbdt0BwN2ElRNheqqHwaptjmGlCJUi6qqQQjKuuHt9S1hsOPhwZh0v0FyujijY7LVHW1b0koSpmEw3ew5GvcYnYxxT0fIDz3iXUURVeyvVug9jYHbYdnWOEIQBAG5LjCULgfDPmkSkMoGaVEQBhvWyxlffP03fPfqLf/L//q/czzo0u10OD1+RFyG6EImTT/E8bp9m7yFOEm4X+8ZHBygljltA6oChupQZhmKaqHqMm0cotQVWSVhuhNkLef0YEfHH2P3ekhNRh4sEWVE3RTsgpCybDlGRtQ5ummiGwaKaXyI9bUtuuuRRyHzb7/h4ofnbLOGjiEzXe1Jszt2u4Bu12PU8WiFiqkp1I301zXrJV3bopUVirZF0SzaVkJWZcgqzroOvi6htjWb5YZXz79FZAnW0QM6McznCwLDINvtCFZrRt0O1AUyNS+fPyfNWhRfZbZNePLpZ/Q7f0PvfMx3f/pHttsZnmdTyxZSu2QfZISpwSbacnUzpa7h1+djdElBFRqykDEtG9uwoW6ZLyP++fU9P97ds01SPrV8hpqONRhwdnxEE+zZFhl6XTD94Xssx8eYnFCFMdHNDXkU0LdMNEMQLJa8e/8TjV7Rt6DBYR/HFOGWeF/jOiZhUpKWKa9fv+J+u6dB0FQ1o/EEXRVs9ztyIajrls0mIMlK1vuEsmoYuCYnoyEHp4/oDUaMFYXFmxlvXvzIZ7/6FU+efEa4a9E8C7Uz4PzZl4jpDXevX9HRdW6u5zw4HDA6HKBTEC5m1JsVYuDTHwz49HTAfrfmfh8gNSVBWaHnLU3b4psG7xc7zm+uGI/HKK5Bo6l4ig1liZyuiIqWTs9mfz8lTVIGXYflfMl+H7ByPBxP5fyTL7B7QzxPRe0OEJqJohgIDdL5e8o4IYsjFtdzWteiaCJuvvszdtfj0fkD/vTnH+mMGizL5OtfHPDo7Cl5raC7OUI0BNstaVUzHg+wPZd9ViL1JliHRwzmdyRZiaaApiqcnZ+TpQW3P81I2hGPn6l0bAgrGVVRmXLJbLPi6PiYs9OHyJpK3YBtu5iWjanr1FVFEYSQxwRly3QTIR0/QKormrahaRuKsmK+jdlt33DgdfCzPaWhYbQNbZYhu2dYDsiayZORS9GecPjwK775bs18V6HEAWPL4HenHd7v98hiQ8dVOToaoXZPORiMcR6coXe7/OprB//gFFW1sZKAsrMhJQdriNYqWPGeRbBFUWWoVaS/Pv9BEjNPW8rsnm8294w7JkK16R2dEDcas9cX+K7JQdei0/exRkd88ljhbvvhfkltjSzX3F6/ZrNZoKiCRdyyKB0e/+JritWCjzuHP/ro5+1j0eSjj37mJEAqc+I4IS8qqroiLwuSrKSWFA6HE85GY7ZBgjc6pTs6xVrLvPh//m8yueLLMx/L/Q11ukfUFbIko1BzfNDlxbslrWyiNhWy1FIUGbZp4fcnPDRchKJjWxayqqP2D4iSgjZdgGMiH1q0VGiGSttUoOqoioKqw8iboOU103lGUa6xVIFzcsjsckrX7mC5B/TVlqYqaJuSWjSUWkaW5kiyhDHuIlSdRggUw6aoSrIkYZ9V3FYWP734germLQMBdRbRijMqfUKQbAjnAZpboWqCJs+RFRXdsJgcnXHceY+QTEJVoeua5FHG7dsfcT2H3W7DcvceLV/if3rCVqupqxrP1unYOqOuR51GyIpBx7aJypY0iYnCHVWW0x9MSLwu17NbVM1koWl0TZOiqrAVhc1qidzzEJKBq8oUSYF2fIjfP0BOK+L7kDLIyfcb1OSez897yG1JbZqopkXX0yi0B4Rlyq5KSURNaOeU6o6k2tANHYQp2JeCKo7o9PqIuuLo+JDNboelqIw9E9nvUBclZV2TpBmb1T0vLi7ZJDG7KOHkaMLhqPthbSkSuiojqpymLAnWS9Ig5mzYYWPr1E3LE99lvM8I77eojsrx4SnvLtecdx/xZrvl8Fzl4amPLJu0uUFnfIKoI4o8RFFkHM+j2K1RFQWNGsuy2YQFcV6iqhpFlnK1hiMkXvzlOz59+hjH0CiLHMvUqesCUSugR7xbT3mzWnIXbHg1u0YpaxzHxrQdukrF8n6Oqwl6owFOz2c0dDF1CSVfEVc1XcdAURUaIeF4HmkrobdbdFGTLu8xPR1JktE0maSW2Ox2/PTmHb6hEW03BHHKULfRipi0SDFUFZr6r0MlXSxDQbF1NNemqhXKtqRqNQxZRVJVjh+cc1fmJE2LIgSqqjK9m+N4Hv3BiKxI2e4DpBbOnzzF74+5mt4jawa3qz1p0fDgoQK0tJKE4bgkUUhRgN7vIVsuq2jPfL3m9PQUKYnQPIdmt6Pcrcm7h8hCQSDQbI+Oa2HJLWm4o3/yiG6j0lYZ6foGOYspG4GseQw6oHb7qIqCUHwkSUKoFpKQKfMCy7QRdc7dxTv++MfveHc7R7U9ppevCOOEqsx49uiAR4+OUXSbRpHxPIsoSAnTHLPrEWcpfcf+cF1+58OB2jSRmoLTgzFyXfL6n/4/bndbJr6Ffn5Kanlo04COrnD15kfUpqHv+Vj6gKqSMDSVpkz4p//yH9hWK375t3+L1O5wO0uK4hKja/Hi7RWfPzmiwSaODcLYpmoKwn1EUVb8y6v3KE3JF6dDNFXFEiq6biDLAtW26UgaZ0kNisv15QwlrukLg3q+5NX1DM/W2agy8hdf0hMqURQgqhKx2eD7HeQHJ9RZzPz7P/B2Nuci2uBJOv32Q+fNanFPkmb4no1qd4jqmm+ff0+VJUgtSJ0+Z65DHgYYpkGcJMi6xiYM2UcZQZyTFxWmKtO3DPzhIWFcsL694WAy4tefPOTv//AdN69fcXj2X9HV+hRFxkHHQQ1jZLvP6OCU9CLh8OyQwwObkbYn2u5Z3F4jSy1V6/D503O8JuOL8YA8CgiQyIuGui6QJAnXH9A/9PnpZo5hm9RSy7gFxbQwPIk8LdA6HpZisI1TtkGKrAieffYJP/zwmmx1jzToY1s6Rltg2BM0/xBZamnSjDZIUBUXuakpooTbaIN7MCHcr6lzDcoMZXCK7zrITc1g2EcWHebxlsFEp8pCqqSiECZWV0cKIoosZ5fXHJ89pNV1+keHRBc3KJbGWLdR5ZbZdIk7OaCaqByMzgnmG85QqXSDat9S3ZYMjo7ROz5x0aKaNicPHmKYNoqQKNKY2+0V5fqWwYNnGKMD0s0SvWpQZYkkjkAoRNstry/esTo45henjymjljyLie5u2XVdhpaPYVk4jkuVd1GtCV//7gHVV7+k3ZVsb5ZcvnrB1eoPDBWVnufyZpkRrG44jFr2isNZXCBLFV9OTlCKDxHOqpZQvR5pXlJu5zidDspCQ6GkLzVYhkoQJ7yZ77iarZGkBpMS07Q5++JzhCQxXW4os5K4BXoe/vCA7sERmuPh5zWL9QpbbtlPL3n+4nve3S7Yxg3DgxMefHrEoG+xAqSPRZOPPvpZ+1g0+eijnzlJgr4uGDsGK1qKLEFFomuaPHr0GY+e/oLz8YBgF1KNntAbnhHnMV8+ecwqDegMXDQBquNT7Hfoto2oS3QqRr7O+5sbeo5D13FA1mkUA2d8hCm1VEmGochopk2dJVRuh1LXCfM9Vpaiuj0kIRCaB4oBWQt1SRMGqKsVXdmkGZyiSxVxFCPFFcLs4vh9ZEelJWP+/iWZsEhXeyS1wvZd6hYkIdFSs13tUC2bXV7xbpPz4sW3bC/fcNaxkBqQiowyjkAyaN0RNYJ0cUfr6ghVRrY6SGlEx3f54ukB4etrpDyiincoTcn07j0v/7JiH66pk5Bnh/8Din6ORMl29pZdmFKkMWWeYxoGvd4Y0zBokBDUFFnMdhtg6BZSK2gVjevZjL1lYzx+xGA0RpUkKhqEkJB1FdG2aJ6P2RtAWxIHa27vd9TRFl8NcJ8cohg2TRjS1jL26TOUYEctatrFNcHsBfvthu3sgnw3pxsuGBdrYt0lyGuOhKBqSrzuhJ6Vc3w4Ik0yEhS0oqRuW8Ik5f7ujh8ur5guFyy2e04fnHI8smmTDZI+oG0ldE1BbnKapkG0Dbap4zgmSVERXl9ijUecP3lK7MYsL1fs3iwIdwm1qPjy6QG9MwtVN9BtF1uzwLB5dx0ihESRl1RNS1k3mKYBkkyWpUiahSQVmLZNS0sQJfiDCdI+4bt/+TMHx0ccSAbm2SkKLbPplM0+Z59n7IuMaRTwT+9+4nePn2J3PXQBmmdxeHxAt+Pg911sQ0CV0tQFxnCEY6hQZuRViawbSIZJst6gmxbJzQ0dycDSXdA1UBTqNOHy6poyDkmAoGo4Oj79sLI6CrFkCUO3KOuGPI0wTItKVdnEMb08YXs/xZ48pvE16tka78Alkwzqywt2QUjHdRiMxsiaSVbWeIpOVddc3a950FV49Ogpf/n2X7i5nTIZj4iCD9GZrCxQTYOsyCmTmJqWPIrR+n1GkxF5tOP95QVap4ff8T8MMdUNVMMkT1MMx0dxHIq8wtAt2rxG9I4wFZv09ppkfoMQNVKuEO/2dA7HUJb0zx6h2BZ1HFJGO1TNopE0FF2iLROu3/7E//F//j2vLm5Jm4a8WrPLcvKiRFcVXHvL48ma4VBgmxq+Z5EVNZ6poZk6siRohKDT7yKkGs+1abKc02GfrucTzWdYwRR7tWQZGpT7CNkbk4UBabgnml1xdHjKcDCi2+mC1JLFEaPRiMVqxu3b7/niqydcvJixn93RGCOSeE+VL0jLLttdSRoZNE1OXcbUTYtAUJUFf3x9Q5mVfHl+iG17tEJB83vYvs+2+RBtPD05QsTwoP8A/+QR4/MhL17/SE9K8ByFi1ffIz/6DLNVkNczCOYoikayumK7nPHjqzfEtBRVQdUovL+b0bYFSVnQG/bZByG7IGF68YZou8E0VBpZ4/hgiLxbk0tQSBKjrocxGHL3zfeUVUtVtwhJoqNrKMD9+7dYp8cYR116HYfEsPn1r37NahdSVzluf8R2NcfXVZLZlE1Yc7NYEpYOZ+eHoEWsVit20Z7tPuDk+ADfsXn0+Jzo6h2PjsdczW7Y3K+pmoaqbZGrGlnR+OWvvmZ9+YJweU+TpOTDIQotSBqtUBkdnqAHS3zHwDt5iFYJyjRHNz2uX76kSSPU7RL37BxNURBRgOw6CFUivb8n294QzK54eT0jbmVGukoUZ2iGCoaKSk3Xtun5HqphsU1qdKdiN3uH1++yT2qWYUK23eLYFhd3C6wHn9MbjFCKGOPwiFWcwWjE6cimDe7ZrVX6x08YmgqKJRMFAc75AU1vQnodY3QtJsfHqFWBZRm4HRXX79Hv+bTZDmEMeX9xy2ZxzXCxRrF8wl34oUDQNhi6RlUL8nBDU6a8ffcTQnP4+ne/odoumL59TW+zJhoqdCVBlLUMBkco1LThFFG14HbwHo4571gsNhc0q4RFUPJuuSdtJBbLNTezOYbU0vdMwt2M4/GEJ89+g6QbNKqEUuQMPY+6zBj3e1TLDVq/R12VvJzv+O71DXESIbcN3W4HkVVc3M0p4pgoihj4HgfekCyrKGSTWqhYps2ZLbBFw2Z2wesfX3BzM+Wn15eoTh/Dn7DabFHVGFdXPmyu++ijj362PhZNPvroZ06WZb56co6aReSSxiY6oi5zijTj86//huNPf4NU5SykGbmms3j9njbeI9k+v/xv/jva+ArRlKiGDZJFOd3TCkGNwLY1uo7C3WJFVEh0FB2j41MhI+saUpFTxHsM08LuDLA9n6apUe0jslZFiTI0xwEhQFIpqwoRZtTLLcV2jzwZcTAY0JQ5y8vvMApQLJU2KynqAtVokGSVcLNgj8CoJOqixuhatKpOuNlQI7NKa366XvCXP39LmSVIZYmqqAhaijRDr1PS6RXOpMdutcPSaiTLR+gdaCRUVaM2NU6+fsJKrrgoW7bzW7I0ZHn7nturd5TRmo5nkUcrVpt7TOEimhghNcTRHkvXsE2L8ckjwijFdAcE0ZQszwjiiGa5wLEcZFXGUhRWmzVhdsTYtTg8GCPXDYptImkaaZLgDicICtIkYR3HXK7u+aJfoZkmYZViSBJ1uUPWOqhtRBTMaKSGRlVpzSEiWGD6Fo0kcxcERNNbdL+P5g+JswplMaMzGeF3u+iOS1nVpJIgKiqyPGd5c83l9TXvrm6RDIff/vaEQcegWb6llQ2qpsF1PWRNI9iuGQ3Pcbt9ivs55d0Fn45OeOn5eG4Hd9jHVGy0umZzu8Q9LHA8k648Jjd0bM/FMnQ0zaBoYdDzuRAC09TJ0oJWswiCAMsw6HU80uJDpMB1Xda318RlyX4wAdtEVlRevXhJ2bRURc7q/p7vfniJQObd9T2bfYhGztX0PY8nA44fnKKrBqKI8UyFbtfFti2UOkLoOqJ/jBiOqcuCutmiSgLJtMjjhKJq2d5OUbd7nMkhumrRaDJVXVGXOfPZnCDJ2eYZTw7HoNsIt4+SJghZQTdt9vsASWqZPHqK1+3y/PtviJMICQ2tqJDTGEOVSOcJ1nBC0UqYfg/NMhGageG2tJKgBab3G0RTkK6u+I12gqgzdFEjCUEYRRiKQpykuLpBXuYI08RsG4SUES9WrDtdXN8nidZM375CPPsdsmWh2wrx9I7qfkZWCA6HGtk+QMNA84dYeodkuUPRbQQ62+vXqMMJruOjmIKi2lPUJQb8dY6JRJwUyKpBkwe8/fGSP/3xG5I45eDkhKxpuF3tScI5UV5hNy1X9zu+eXXLv+v2cX0TS9ex1YQ4K2jLEl0IhK6iGipZHtNWJT2lYTA5ROQSdSEzefAQeTTmslSpy5rL2Yrj/hClyJDHE4bDEY+efILaarieRStUNtslZ+fH6ErG/vI7vv7yMybuKVFtoJUukWkShDtmUw0pb1BVlaKqKIoCWUhIikrbtjy/ukepGzShIgmB4XXo6DqqJCEkQc9zUE8OWW9TeocT+p894fORz+ab39O3FCxb4e72ko7qEGy3bO9uyauaNI9JJIV3qxWKIvB8C6fzYUDz7S4ibWS+/fEnwqJit3tOnsSYiqCqDAZHffw6p1QVLMNnL8kIqUVxPHzXJolT4iRn4Dk8HQ9p6oovH57xi198xeRoRLfr8eo+4dnXv6CkYb5omW8bxh0XUZeoukA3DVS1ZiIVeNKe/T5gnWypypxtmHAuBF998gDfsUkVhc5wyIPDD4fdaZhRty1SXbO7ek2oB3z17CFXNyV39zPs2yvOjw8o9mu6j5+hyyBkQf/wFMmyyVcRSWPg9B4w+tQkufuJ/fsX6IqGVFa0ZYTcGYICxW7J/Q/f8fzNDdfriLPjDrok43fHeGaLaVsItcAdupieQ5kJwjymLkLSIMQ/HnG7iIm3G6RWcL/L2NeCRw8OEekOWSioTpdBv8N69gK371HrHtvQYKAKFEtl+vYGwzRwm/JDHGrQo+07OK5DE+1RNIUHD84Y9nyaaEORrJgvZuw2W+Jc8Oab7xl3OzjdIbbXp6lr0jjBcnwUVUZCQlckttc/ckvILz57ivWbX3L17jW2WtA5eoB1cIZIY8r9BiE+xBSL3R1kKU1a0So5m6JlmpbYsoZBS1vUpPN7EgmClUwahhz3bWY3N3z9y9/iSAfIukHQqlRFTlXk3K+XTDSVV7f3/Om7l2zjDOqGtirR0oyhkHn38kdUWeHo5IgnD44xpBpDkmiyD91PaRwjUVNGO1aLJVVZEOUtXv8Aze4S7EP0+yXPnj6io6v/yl9qH3300b+2j0WTjz76mRNC8Onnn+HqKnGrkzUa87tbimDLw8+/xB+MyHZLGs/gzdvXhCn4tsx+eU8zuOSrc1BlkNoGwxbspltEv4NpuWxmc1RR4BoVV5ev6PUOcU2bNg1ozQGSrLCb32F0BniKhNzmKLJKnsa0uYBdjOUNULp9ZKVFt2XaVqVOVHS9j3M2Ia8q4jQhmN5QJku2xRaaHqZnsZjOaUWF2++SlCWS49E0JYWw2K823N9MCVSDnxYRr1+8gDLFUCSaskQqcjTLRpSQRzmdQYUqG5TxhireQn+A0D1kw4aiRdFUek+ecBAH2BdrNtMF+8U1ok7pmjIVBp5rcPv2BT1HJbsrafOcqNQps5jhZEK03UKZ4rk+8uiEznxBVTc0ksz1fE7f8/AHBzx8eM7r1z9yN73m4GjEvhnR932EaSJUGQwbWXw49If7HXW245OHFnoTstts2c+nSEAbF1iGjb2ZMnvzmroqkDo91lVNTcVhv4NkaGxjmBUlTbSnVXTMzpA6/rD1Jt7vSKqKXJHYaAaLMKBezLh795btYsHQ0Pl6MuD4yUMu3z9nW+RYPRdNbmgBVZHIk4A2CwiznHZxiyFalHjPg/OHaGWMXMcotoo0cSjUlNMHRwThlGmuMDh5iK00SPEOSZWJ4wTHsen6HUSVMPBd2qZls8jQFEGUVCj+GCUsydMYqZWow5C33/yR7uSYR08/QzZ6vH/5A0bwyUh/AAAgAElEQVQj+P7H96xnN/T1li9dmVQRLGSd1mm5vnnD2WRM9+QxnjlAyQJs1UHTPRSnj9TGyIMDGt0ib1MQe4Si0yDYhTHBYs7+9oaHR6eYfg9h6DSaoCpi6qpkEyVcLTc8PRjQ6gbm6Ij1aomvKiAM8v2OIE7pm8aHldOGTqEq/OmH50wmRxyLklHXw3Fc0jhg+X7F7e0K9+wB5Sbl9OiA0XjMJohQdZM0zbifzek5Ev/wD/8B3zXYrBfIkoRQVDRDI08zLM3AtCyS7Y44yTAMA92wkLKSqtKRh1+wKUKyN5ccnD3iQUcnRmO9icjmr6EoYb1CqaFuNaomJbq7oYxjNosb1usNR48+Q9YV5DalLlzC1eJDl0mSktcSikhp4x1vvn3B5e09sSQxOjwjN3tkWhfnKMDvv2R2v0TkCQddjfv1nlev3vKrXz1DNlX6PZdktqaqajKlZdL3qeuSKI7RdZmJ42I7HbKqYvjZl4ThHfusRrlfYZQ1SXjLw9/8HWvNwdZMZATdjoOm24i6wDAaugODyeQp6e4WqYkJ1lM+/frXNFWNlSrMUo3pruJudotnmfQMgyBKQchoigLir4Mvm5a3ywBFvqFtW2Sh4nSHCFqwXTqjYzQjZJndElQlqSwzOTrA5pdEr7/HH3holsTrt3N8y6W2dKqqIM7gcnpL2eSYqoWuyiR5TpKX3M8X3N/PmG92JGlKWZa4hsbJsEPQSDzuuFRVQdPU+L5PHYYYPY/CUBkNB1xfzzAUlUeTQ3pH5xyN+jweW/QOHnHw5BPkasdESrEPDzBdlyq5JViE2J5NIRt0jwaYsqBZKOSza6owJAz3zGcL0nCHqpscPPyE4fgAOQkwTAtHUTjyfZKjCcXVjLswoqoqVmHNYrvmU4747NEBr8qEP7+4JNgGTMZ97HBPZRqYuoZiqUh6Fx2PslghCsHW67Nd9/nnyxuONv/IUb9Dqyioto0oUvZByNv5khCVL54+xPYsRFvRNQT+wRCpKZGoMW2TdJeyD1u2qzmeXNAd9ckqjfurOUrTEKYVF1HBb/7ubxn5DkpV0Sg6qmLSGR4R7y5Zz5cc/Pp/JPnLlI2QGbsuZVGTzK/Z7fZ0JzlyX8I/OqIsSwzRoArwPRtNkVgkCQPdZHr9ivVqyXwTkoQ5F++e4zomX/zit3jDI6TbKVJbo+sGpq6jKwKDFl2V0F2PUX+E2Rbc3LznfLXA7h8gxVuE7SCVNVUSEs9v2C5WrIKMTSnx+WfP+De+j1xJtHHFbpdS1g2N3DDPIq5Wc17tVgS7lCQI+PXv/gaj06M0HAohozkdXMtCyDLT6ZzddkubpyhSg21q9DseUlZgyIKeZ3Hc9XBMA6kpsQwDMwlxaNDbnGB1RxgVhEEAikNU6QxGQxyvQ1gpjE/OMF2fzmD4MZ7z0Uc/cx+LJh999DMnSQJvMEaSZDbbhKSEIgzAcem6LqItMAwTul0mfoimlJiuxW5zRT77CfNsjKJYCE2jVVS0oz7rMMRWHVpA1jQ8M8VuA25f39M/fkplmuhZiq0bOOMJem+MkAV1kaPbGoap0ZYt+/s5xf0etRsheR0098OMgapuUftdsrxksw1ZXl3w8ps/4uoyfqdDsF/g9RyiLMRwHRRFwSxzJMkhoWFze8v11Q17YXAV7Xn34nuaPMK1DIokRa8rsqLE1Gs0oVOVgjqraLIK0ZokQYZXC6qspCr26JqM5gyQVBWzP6H64Yo6WOBooGkOniGzWdYf/gY3NT/98JxyqBBuQ5zBIyaTEXVZoykaUVzg+S5WW7AXLY7c0vg+RQP3ux3O6WOKTpdPv/icKE64ubrEN1V21RhTBk126Dg6MgVILWZ3RCMbWPWOdDqlrhKELAg3W8IgJs9m0Lxlv91QNA1uvkd2bFQdmniLURu4kobQBW9WCXFU4Bg2qSwRBHsCSebNfI7wPFbTe/LZDcX7V6SLGbZj8fDkhGefPyZRFS7yHJqazT5moDmoWoZoHTqeSx1tGciCTIOb95csXr1n8PgZ3Y5DQgmSTlhViAMPN68I0xp/cEiva5DuApoa9LYhjCPqumUwGHJx8R53H2DZLpnQSZKEzqhPbTq00opgtUTUFa7rMl1uubm8wp08wlI8/HzP8395jVzHfH06wrNk5CxGEip7O6JG5f19wNuXz3FUh87JOS0KQreRDRPVUWlqiboqKcuSzewGo02w+gNubu5Y3c9ZXl3gWzr+oIcxHFAUEUgtkiQRpxlJmvDJyZDTgyGu16MI1yhJAm6HLIpY3i8xe30Ur8Pw4BC1qTC6Q9pGYnxyii41OL0BTdOy296yWKxJ1zFlXYKqER5PcGwTIX1YryrLMtP5jEVbIKURDwcpqqZj+z79oiENtoT7Lf1eDxkJXdOQvQ5p0dIfn/Po6TN8VaXOQ4L9ll045+KHHdbXvyVTLOJ8T3S/5P+dzhg7DoPpAlW9pM5LtvuAaL8jzjOE2cFIAhxJJW8b4qpheX+PUecobYPRP8JLdty+fMkur3C7Y3JN4W1Qs1ztKOoNtuthT55RhS/p92DYl+lWO+7XO5q6ouvovL3f0ApBUNWMRn2yqkbkOTWCjqg/RHVkGXviISkKWRXSlBFux8eUdUaHAbZl03T71HFKniXUeYxqaUTxmnB1ga0EjAceYvCY5eqePFhx+8MfMG0LlRavO2JXFrRKxnqzRh6OcDs+glsUWaCqCo5pYugGeZ6zzFvutimKvMDs3CLLCprfpe73cbwuR7VCOFugIzNyPFq5S3xwxvXsjo78IZp0eX1BGO4J0pQ8ydB1jZNRj47rIjSN1WbBxXTK/WaLqslYhk5VZFiKxrhjk9Y1HVNDLhOKsmI4GuPZBnUSonguTSthOy5VC48GfY6PH3P46dcM5ZjR6SG948cYnQF1UDIcuEjWh7lAkmlg9Vr0rotiaKy3O+w2o5vNuQ7uyIKQ1XLLbDZFVTV+/auvOZsM0VWZqm6Qsgzbteh6FodDn7ZtUeZLbjZ7oqJmF+Xkac7IsznqqmSRxp/fTPGuVnQsnxNTQng9tINnyIoDToqidpAubxm5JoFuMRMWt5czxMUUx1BomxpNKKimxuj0mMdnh2iWgq73SLcbBq6CLMm0Tg/0ljqIyeqSrApwlA8dD9Q24e2SYrsnKhteLAIefvI5Z76JlGaUioXmqAgho9oO6uCc+eIHzNUcrafyfBny245Nb9jjZrHAdDuUEqgdH9M2kFMoSpn+sI9rqmTxnjzPKYVgs1pxe/mOVrG5vJ4SBTuupzWzXcUnTx7j+T126xVHgzF9v0OdpXiugz88wOkOIY7oGAZXJXz7p+/59HHIYDhEVlSaqsSwDYynnyP3Yt69uOGTT2UcWycKY7qHAzzdQWktuqNjCiGja4Jgu+I//qd/4L+8fs5/+sMrojjjv/63f4feKbA6PaK2xlRV1knNTzf35FmOqUjYmsao18GwTGRJ5WAyxpBbkiCgHg/puA6WbWNoGulySrpXSbKAi+sZFTLzbcb44AjDMBCKhn/4CHSTvWIx7k1AyP/an2sfffTRv6KPRZOPPvoI1bQx3Bq3UWl2Eb1Oh1bR0cWHduXKtJEaif6oZB/OuVtsyGgYyhF10aFFom1yEAqtZVJGW1brBaqmoGmCfRrhm4JVvmb68p8pjh8jyQqH3T6KaiCaGgkJRTehqtF0A8XUKVqZxXff0757g+IMUb0OumuS1AVaNiCVFbZhxNVf/ol4e0eAYLVdY5smYRHhD/voukle1dRlyTaI2AchF7dTNq3GItlw/fYNUlsy6HkoUst2u8WUGzRdRTJ0ylTCMIcYWoc6TNBtlXQfEe8DHNVAdxyoa2TDAglqZNbX77GkHHc8wLJ01ot7ZPkIXWkYDfvohslkbHB2KNB7D0iCmEoU6EMf06pQu12CzZZiM8PWFWSvh90/4OrlX8iTkF2e82g0YqgqkKcYMiSXL1nu71GOTpCGQyxLxnZs5BraZYwwZRACRTexH55gP1bw4z2ruznTy3csm5p9mmFtG3pyS1c1WF0s6I37SMNDbE2ipzT85eULpLbB748IWol5nLAtS7Q0pfnTH6hv3lMkIePxgCcPzzg9PcH1XJo0Jq9rAExNpao+xD7yNPpwv6k5cAwyWyWTGy4u3jC7vMH77a9ZVEPwx7iTMVQRu+WKXV7hK2BINcI2yIoCFI1WVnGUBn3UJwxigniD43SQhMw+LZHTgvnqiu3dNcF6Q5RlSK1EUbVkTcmrP/2eLycTbM9D1xU6XQvTFLRFjFB0ltsQU1OQZR3f0FhO92zfv+Fin3A08EmCPXgWzW5LJRUkUUyU5mxXU2xLZVs0vH//nmRxRxXu6J88Q3FMGlWGRgXRUpQ5r9+/4cHxCFcDWZKYrXbU9ZYwKbherinzgtNBD8W2UCenNG2LogrcQRchBHG4Y3R0hKRoFHGMbfv4PYmRN8LpeHT7PfIkokgzXNvG0GQUVcVyXF5/9y2jns3f/+MLNKlm9PgzWkkijCN6vS6yZoEaU7SCuqz57Jf/hvPPvkKsZ2zf/cAm2LNY3/B2tqSVVcJ9yKeffYHjeFBJlJsFd7M77uoaUVWEqs2r6Yq3d1N6nQHHnZab/DvGwy6OaVAVGVmh4skWjwbHdLKC/OaKs4HHkZPzz++v+ePllnfbgkJ2cA7OKYZHCNdgGf6Zu9mWxc7lb887jF1Bkqa4HevDNeU5laaCaaCoMmmV0Ruf0HNddNNDVnWE7lA0kHdGUMs0JZR1w+D0jDRKKNMMTZbR/R5RGlEWO4LdlLfP/zP9nk7jaZx99TuUi+dk2yl1kSK7NttU0FpjDs9aXv7Ln8jKgn0S0aoasqaiSBKmLLAth47bocgzzMEEOh1CMt5f3HB0coISr9EVmTRt8HwPZZqw+f1b9NMu3lEPcdSj8+RTfvr9HyhMmUrf0s5XnPldWrcmayoORyPKumYT7Pjp4oK8Kvnq/JCHD89Y7wLevHlDlsaoikz5/7P3Jj2zXemV3rP3Pn0XffN1t+UlmUllp3RWAWVX2WUYLgOGDZQB/wD/NY/tuQc2VGWUJFiQlJlSJpPkJW/z9dFHnL7fHnz5H2rA+8xiGCcQwFkL71pLa9qyYr/dspjN8T0X27JwXZdOmUTnl0RFx3gw5Ndf/pSrL3/DZLHEqLbMn32OHw1oyhpvMEc0DXmZUShFVpb05lOfSk+FISqqbAd1SZvsydOCtszxbJNfvHnBL5YhM6NEGgYtGk1H3YLj2riey8DP+PJ8wjRyEYaDazSURY5gjKE7RlbLv7gc8g/vt7z97h0/XUYo5aCTLULvEd4Ee7EgqnvqzSMvLhd4uua679kdE0oMpCOZXl4yePGC+cBh/nyJyhOUFEyGEUIpRH2i7nLy0mTXaOqq4HD/gK0Utm9yPDR8+907VruYj4cMP4p4PfagbkjjmGjsYdsuyrRRAvzJc7ZJwe//9MgwuuLju2/JJz4DUyEtE8v3GV28ZO0XZFmG0daMBj7D0EWhyY8n4u2KaOShu4YoDFgnDVmWk+YlCMVxv+Nv/3bP1XLKaDhjcvWCOkmodM9kcUa4uMSzXYrDjmS7I7Jdvvn+htMp5je//gW2Y2NqTd+DEU4oN5LnywtU+zS33WUpuzzluqpQWjDyB5gaLl684uxnX/Dv/+f/gS9+t+S33/4Df3r7keXFlC9+9WuaosBUBtoJ2G0OhIYmiBw8UxJ5LsHkjLKsUUIRhSHpYY1uBFlWMjk7w3QtLNch7iWb1Y78tKJremQwpDPcpz63sysM3bM8m7HCIs0LDmVJr/V/5je1T3ziE/85+WSafOITP3aEwPQjnKajbXq6piU/CizfRSmNcn2U8uiyDMsQhNMJjyeXQpecLwMM26LTEpuWuutQ4RCzyMm3j6zXe2hKdFtRVjmOIVg9btFdR5Ml1K9/wdAf4iGJ+g4lNEIamJYHncC0PcavXrL59o9cf/13SOWhohGVa8N6RSIELglDu2NxdYUyTCzXxQsChCFRUqIti91mT1FXJNcPrI4JyvVBah7vbqirnPF0AronjU+UWY4xdGnrHKWdJ9OlrHGdECE0/TGmbk/IukEBui7QwkD4FtqQmJbJ1G7wpmNM36dsW8IgYDZfEIYBSbxHmh6D8RmG0PiDAN20FF1NmWZ4honRJVRNimwqgsBnNpny8faRQeAjyozjdk15sUQpjU/H+OKKu/TE+2++Jlk/cPH6DfP5FNFPkbSItgVcnPMvGC+eIYRJ02rqJMELP2C5LsEo4ub2jsfjgYGA0TDAG/mYjkHjeRSGxdSFPC/44f33eHWHSEqKNIWy4LRZ0ycHBp7HmzevWYxCAsfCDwJsx8MoE6pkT900oARt31NVBWhQyqCvcpzBGG8ywnr9gpeLJT9crzDoqMMIaxiRtBUP9w9UbU9w+RJvEBKNBmRxSpfngEYok6ZrMICfv7rg5kGRZQmm69KguLtboTqYG4JMSJSyWIQRWVbwcDhiZSk/GY3ptWIcuXiBJO8K4jjBc0P2LeTHE1czh6SqadqGyyhgGQyR+yNrnSPLE0q21JYgLmvoKtK6JC0ctm/fs333DX1b8tM3r3Fd50lYWQZCGLRNyjfv3tMh+NUvPmdzd01e9TyuV+ySEtf2WEyWXMzHWI7L2pvRTl6wVyFFscOUBsFsgZHHaN1T1RWG7WEMBM5gyLKRdIbB9OyMuumphcHVeEiVZ/Rtg+d7ZMmJTZ2S1hrZVPRvv2E0mxIEA6oOcsMlGi6os4bLv/w1L3/xrzGvv+f2b/8TH27e0Y0jMt1wu004lD0fj/8f0oj4i2dzIlOSWDCIArKsgL5nHfcc+55TXdJWBgMZoI8p8e47Xv3kl5xd/JwvXJ9ZnWPvH/HcCuNffUHpCP74+//A7757zybRXM6viF79EuvFr+ijCbvrb2jKiiJNWPU9f2vY/C8/W9B2LaaUHIuCdVawjIKnNaM8Rzo25xcLvNEU4fm0hkMrTSotMAYjBrbPmjX72xt26zWXUUPgO9jKJc0OxPsVi1mE6NcM3J7ZbEJbF2zf/xMDq2N8NqPGouwcaqFoy+pp8ng6pXhcsT/F9GVDFEWUhz2WaWOZNnYQ4gQhrusSjBeoaMjju6/h8YAXBtiyh67h+HiHQcT+3XcIccbIfoE5HTB0Q159/lMsS9LsTzxfwnAyouoavr/7iNSarm253+wRyuRf/uQzRpFLOPTp2oqBrZCdSWeaWD0kp5jGdzCEQHU9fVUz9FwK26UenYG85s2zK17/xV8yvnqNbZrYvYXjB0glcX0PQ2l6KTneP9D092zv1tzFBkJWBGaLJRri5EB6PFKkKYNwwtL3CeWUoWkgVj8Q/PIZwlBAj/J8vK7lsH6KNHUa+rbl5XLAV199jh2NMLsEQYlp2TRty9gV/K+/PuN+n3D7w1sWw0f8x3uMcIwaX2IFM0xbYkmFqxsGnsV8GOFbBmmRM1ycETsBgyDAG/rYhkU5WuCEIWZTo8qCch/T5TlFB81qT5eeGAYhRZGzO9Q87jb84Ydr9lWL43m8Pl9C0/L4uEF4NovL1xi2hTQMpOgZj0c07Wf8zW9/izNRzF685O+SE78MXMYvLtjdrlCqokr2OO5TTDOcRAw8G9E3GHQUqxtiPaOoe9JGYbsWL59fcf3xIx2KMi9oyoxvjjsun73B8o5MJxP2bYsXTpmePcekI6trpGlhOy6zKORhdeA//u1v+W96ydC1MAE3NJEdGFXJ9v6aUxGTpCfyTnO329EBjpAEShCXB4TXUtc5uj3w2XSKIyRvv78nmIyJhjPyuiGuSr5/+x1OW+I5itFkggzn3N89ku13XJ2fY3shx/UdQoDVtAhhY1ou2g44FR2FNni4/sg2TvGWJY5lIlwfczhDS8FoEOEJg49JzO6bf4Z/9bOnDfVPfOITP0o+/fs/8YkfOUIIDC+kzTMc16avbVzHAnosy0TSUHcVtmMQDGz87MQ8HPDceI5vr1F9RasFmh5DCYq2phEGwhvgBwW7+y1xlrM7xBzihLKqyTYbDNNk9fbvaZaf4UQDtDKZixrb6DFliWl6KGmhA5/Rq9fowOfu7Q/s7v5IUZZkSrF8Nmd0NaE0FU7gUxYlCEnba/abA57vcf/4yOP+SBzHWJ7HbDIh0wbv7ncUSUzou0jdPeXe9ydsIZFSIhDUZcNkPMFsCrLVltFshuUMkJ1kd/2I45pga9TsJVprpFSEozGfvX6JNp7mHDFt0qxA2D7LizMmkUmSVbQY+I5FnpUUeYlBh+e7vHz5kiTrWf3hn7FtxcQZo22Ds5FLsYPCMgk9m/S0R7ougyBECAiGE05xyu//9DXXH97x5rOXfPb6OVEU4noOyvXwBudYTkBT1RiWgk7g2BG2cjGtkLPlGePFhLLOCGZTvCik6wV1b9GsDuRpjacE22NCJlf0/QP1fg/JEc82ODs758XLV/iOTVPWhPM5vh9gWza2YVJkCXFRMmtblPV0XVS3TwtBg2hI37VYoxmDssR7MSe8qtketuzLivT2BsNWGEZHNBnQNjV517C7ecQwLYaez3F3ZD6MqIuMIt3TaXjx7ILr9+8p0oJDpbgyNIvJhDRJmIYhdi85m5/TxwkUHT+ZneEpD+X4BHZL3TRI0yHXFl3TsS8aHvcpdae4PxwwlUHWZtgDg+UXX7KN73jcfCCpK/quRnctlWHQCIP9dytOmwc83+Orz19hKYkQAjMI6A1Jesp4+8M3pEXBT375S5oiYSdgd4gp85xfXAwYTi7AGuEYBloa6HCM7UfoYEosTLrVCk9prMCjKApaaeMPAzrXwtYdTuCRo9iVPYe05bQ6cawtRrIkPewxlUEwWVKsrqkrzXGXYhkGZZoi+xbb8+jdCDn2GRoRP/nLf41RtNz/6T1310fe3uzZP+6ZPltySAvyTuEJhz++v2c6mvHlKMJSBpl8ErXb44FTmtL3Ha4bcDYbcmG3nO4fiTwXa71HhQ1RduT852e4f3mGsARNVZJef8393T22ZfKbn77iVIFoE84j+C5LWN/dPj2DusIYDmmUQx2dE1c77tZb/ni7I4pcTEvRtRVaSnzfZ7JcooYTUmWRlx15k3CIMzanFD+MOMQp3mzJ8yBkVJ3omoJk88B+dcPyLCCwPbBhsRhRVyWj8QhHdQyGA6pG09lzmqzB9Y98ePeBZLtjNJ0wP7/glFfsbu8Zj0es4hjLMNC6J/RDLNvGcQPqNObu4YEX5xfUTU2fFYyH4DoutSNYbdbkVcvDPz8w3a64mC1RUpJnKeuHW9w6x7Ztposzbj5+pI1zVuaeh6LAWrzg3/1Pv+Hmt/8vdQ9NB6uHFRY900lE53g83q9wlcA0FXVdUsZH7OkCPxjhKEVjmigEVy/f4I/GBL6LEpKx59C3Daah6LVGa4Fh2ziyo8tjzkYWmALX8ujqiqrsEU2D0dR8fnXOfDim2+/YXv/Au92R33z1Jbpu6XuNYZpYQtH0PYHtsusVTSuotcHV5YIq3TGdDRldfkl3XGHvj3QoHg8ZY1vzL76Yc8gLPnzcY8kVnjfAsNdEs3O0cinajiqJidOMuC542K347OoZpgHzxYilrQi6DokCoUiKnKXv08UH2sOBrO7Ybjb0aUJZdGhdPnXFVD2/v77n7pgwmY5585PXRH7A6rBhtY/5b//7/w43CLBth9ZUmK5BXVUslnO+eH7O3/7+a/pDxugLReyecTZ1MJRJvvkTyjWpOoVsqqffixbRd4iuwtAt+8d7tDDRlo9EEE3Pmdc96+0eZdTkVY3nedTFiUM84LM3z9FVh2PaeH6EbYISFnW84rA/UKQZWXwiOe75Pzdbfvb5C14s5jyfvaApMjb39+yPB7LySNl1tAiEY3F7SghNk06ZPCRHJqtb2janqnMaUTMeOVh9xcPtI0kF+67jD2+v0fGB0LWIfB9tBKyv79muV4x9D1sphGHTNh3TyZAwjJBlhhmdU7hD+vLAenPgZpPhuSZtkaC0D2iiwEG3HWmS4Ho+kaUwOomQnzpNPvGJHzOfTJNPfOITCEC5AaqoUFIyGA44xRlSKqRQWPTUSqEMheNqpmLDdKJo0hpBS5/t6J0xUkpco8USLduqQVsOhmUTBB5N5FHnBYdTzn6bYNpHLNvm7vobdFPgfPFz7OkZ48GIKi/o+h4DyJOMIkvQCKTr0JpQ5iXT+Zir8yF11YDl4gYDpBNwOJ1oTgnrzYYWzemwx3YslmdnjEZD4rrnMW9RXYGpnl62ewSr+zVZmnEVOqiuo6kFRD696YOy0KLH9m2U7LHkiDI7Er//hsmb10+7zfTQtzi2zXg6B6WJc5e2hqUbsdnsKLOYwDVRSuE7Jn4YYjY9sk4x8Ai8gLwRXL+/QZYpnmXgT2Zs4hLLVHi+xz6JSaqGs8EEZZp4tsR0XJRpoJXBaDbn5vaej3/z99zf3vCLrz7n2auXmOEYuieBIfqe+hjTrNcUNw/srx/YHh5RvsXy2QVxWdBbLuZgCo2gvXvk7vqWTdaQJCl11dKfcg6HHYZuGYYB07Mrnl9dMfAc8uTEcBDhBT6O62KYFqZpsox8yrbjlBZIw6FsNaORS12klGWO4/jIIKCxXczRktDteCwrTnnG+GKG61ioNkV2Nb1jsNvvQBg8nk6sqprpZEZXxAwcE+l5JFUHUvD6+YK/+91b7Lbl6vyMquoIwxFXmHz7uMMwXXqdEUmTy2CAJRWToU/LnrzIcJXLcjridrOh6hrujgn7JON4zPh3X35B3hZ8f/snvNlfEs6GqKHFerPi3e2a++2RrO1oEDiDCfMvf81UFXRFDlGAYdm0GjbvPvDdN/+E9E2miwUS6NuOx+2Jcv/IL859Jssp/tkL0kLQpyf8wYC19VR8qNua24cNfS4Iqj1932NFAaEQbPYnxrMlm9U9a9ekNQWbm0ceb25om5bD9hJRFeyvv0faBovnz3hI92ig6iSZcDCKni/nts0AACAASURBVJeXC6LRjIHnczWdMxjNCbyI7e0P9I7D/MUbDobHN2//QLo+kTctVdvieh6mN+aHfY8/HPJy4JKnKZbrU+5PPK4e6DuF5Q95PXKJP/7A9piy3x2gGfPmV69piwy1fI71fEyXbtH335MmR0bPXvFvf7rgQzOk/f6aPD6wu7vB9Gcc797SlilSSjSCoqz401EwPQv4q9/9A03bYiiJIaFueybzEaNnr3AWL1nnNQ+r+6cIkrRoteSv/vrvmE+mRJMZt8WB14shTR1TxTHFccUokOTHLRtRYRsC13MwPZ/sdKAobDplEpcac6w5xTlKSoaOReuY7B7vEEoxmV/g2y51mnN4XGEZBkprVKcZjCYYps32h7d0RY3vBPRGT9O41HVHEEV4zyJwTWKpuFmv2H/7D7z7J7BNE0ModNcSOTZF13LK/kCpNebZFe/SmGNn8dX5M8LFOdqwaYsjb68/kO23DCOP1rVp0DR1zXQYIHVHcHZFcTrQ3N1hXzxnsLzkUHVIM+RiPiTPY4LsiO9HdHmBMAZoDQJBr0y0aWE5LnGyp5eKwdAFBJ3oyPcnnL7h/OoZkbLIVvfsP3zH+/fXnJ9dMrAd2mOJrhp6BMp16Fc1CvAtA0MJ3rw8w/Yc1jcfCQdDJlef4V98RZPkTO63fHdIuT+UnJ83fPHrL7m+P/H3f/2WLD0xlCuG/keU6dEgqGzB/XrP/f7I6+eXLCYDhGkSiY56c8sxGtD2FVqZhAOXIok5Payo8pbV/R3x7oS0TIqi4ZAXvL1Zk5Q1j0nKy+Wcs5dXjCYjmjTj492Kf/Hzr7iYjOilQaVMWqXp+x7XC0jjmpfnC+r0wA/HAnvzHt3lPI6mhNOIwdBlt92RJzmLYYAleqrkRJbGlGkCbcPtzS3e2SsmkwnH3Za2rXCDCLcCZbqIXuM5FlleoJSBGJ8zbTu6uqFIEvRihukFtEWG1bWcygLHNPhhc8IqCpIs4eso5H90x5yuVxx3dxRlStK0BKGLZZi8HA0wXAfDNBkZEseUeIMA159T5RlJErM/bNhtUlbff4Rdyr6FYrUmtEw6rVmtDgy9ipkXYkYBy8WCyYtXdF1PEITMZ3PC0QjlOJTKRpgeabVltU8psoK+VyyiIaLvmI8jsoePPH/2jFZIeiFxByPswEPwyTT5xCd+zHwyTT7xiR89GnSPQKMsEzsIaJsOI04QWmN6LmVRY0ooihPIgunIpq4zTMtC6x7TENR1jeU6CDSeqrH7lF1e0tgjWrOhR9I0DUpo2q7n3f2GaDRmGDhcX//ALsl4/fILrpaXTIIBluFhIymKnKYVlEVJ03dMZz6XFz5936F1T5wkGAFoIRGWotZwff/I3d0toWMwHQ0IxiOmwwG1YVFJi6nMODwkuEFA00s2dw/k8YmBbWLJp0uVvmwxW4luauzQIa9rjruEcWjSW5JwckXVF+SxgTXXCCERAnRXY/shVZ3SakFdpLhewChSVPEGZzQmTWIOtsJXLXlyZO723N6s+RBLskox6jVdWeANRwS+Sy9NqrJkPB6SmzWr7QanrPks8EFXKNPACUJsU3GflUjLAan4mEmMQ0B+W/O83TCuwQsaurImfvcDj99+xzFO2KwfeLe5Z7AYEzULhotzkA1d3ZPtY26vH3h/u+bt5kije16enZE0OQ9FwTj0CAaDpzLI4ZAmixF9h+/a2K6HaTlPsSnL5XK24JAkGIZJmhdMzkzKPGE0GdH3NXl2Qtc50jb4cDgQhjMaN0BJgWFbGJ7Hbl9CkfFsNqYqK+q64ecvFzw+rFgnGVK56GyH7do4qsP2HOT+gKMbXr34nIGtOBRHhOtgOz2hm7PfruEUEyiFKQVmq7ENg67rsQ1YbdYI06DKMtq2x7FMVsenBYbQt7Aci3185A9f/xOzsyG79MBv//gtP9zePU2ATiaM50uWr7+kiw8IIWh6jWUY1HHKn77/Rw7xCTl2sQIXw7QxTcHtZkV+OrAMDaQyCcMAW3YkVYmpBGHoY5YtWZFxdr7E8Vxub3IUDVVVs2t6PGlgWx5p3aBtn+3hSC0k8emE7Gss1bG5/8jZ1XOM2RVf//V/ZH42ZXr2jN39DS/ml1ieS7G6pe0U89mcV/MZXrzFDZaAoG07ujAiPHuFbUfYacH7D3+gqxpAU1U10rDx/IDHTNDLkNniNe7ugZoH6qrgdExQ4QLZ9twddlRly2fC5sw4xxos6UYVZSsJbY8+h8P6DuGO+PK/+oKb6zsYPOcmFzz+45oL3XO4e08Tr9BthTIkfdfRth1vv3/g9G7L+lQQegamqZC6xbSdp+u4s9e8fzzwcPv107yx6XL+6jPc0Gd89YLNasNobjAdDNmnOa90T10mRCMH15XEx57762tmyzHSCRkvLlmcnVOkJ9K6plFDiryhqlva5ETbabwgQjclhu64+8e/4VBqhpefE86WcDxgGyZZljID8qLkmMScD4bYCkazGUWeU+Q5cVIxGwU8u7zk0HcE44B87NNnNX2jSbIE07ZoEBimwbFtWG0fub6+J+97irrhb45rqiJm+/AI64/0Rcx0GGC6DsJQpHGOZ5kMfBfTdqj2a87mS+pDQtdD10oGps9iOKTrWoajEXld4o3nZGVFIKBOYzod4jsOWkhMxyOKIgLdg3Ap0oQ6S3C14PziGWbZsr+9oUw2GIbFq5cv+cXPfoUZH6j3R5q6RUuFtgTCdenpqYsMz7f4/KvXXL//nmOcP12b3dygLl/hji9ZXj6gmob14cQpLpibIZvVPWXfcZ9l/G73gCsMhpZNrBWmaZJUNZfjEf/lb/4lduBQbB9x6iPr1YpiZSGlJhqMsV5ecne3oitrklNCGh8o654kqdilKe+3R64PRxzf48vPnjOZTXFnU9zA45Rk/Juf/QXnl+eYXgRhiLZMlNJI5T7Nb4uOsqu5vLxAmmuEZ9J5Bm1bUtYwnM9wW02a3yJ1R12V5EXF8fYDXZEihSQtG7rDgdIa0Bo2WqeovmQ+DjhkDk1VohS4hv/nzi6BN56imgrLUGTbNUKDahp2q0ewLaqu4z7LMZVk6jvsD0f+r//n/2ZquBRZgZDg+S6m7xH6Lq4fMJ2O8F0LyzLxPQcnDIgil9yEfX5iU3ekdkDSmmQPG0TXYjc1x6xgn+XQdhh1SejaDAIXz/cIRzPqrmUwGKEME9O2wHbpkOjr7zndrbAsj0NScuEFmIbCkQLPlBRliexqBrPpk8npuehG8ckz+cQnftx8Mk0+8YkfOxq0bkGCkE9xHdP1cS2LPjuiJgssR1EXBVn9iB1I0uyIMAShZ6HbDiEtpDQo8wylJMqwGIQ+dZqSlwlZKyiEDa6Psksc1yJNGn54PPLlmxme1XPc3PNdkfK4WXP57A3z6QxX2UhpoGyXKhpwMbGwcovksOXhfkvR9RSdxEKzW+85pDkfbu7Js5S5ZxOELoZlEg2HiHBIY4WMupztzTV1VdFLm05ryqJA8PROVHcdlpK0KOpGQCsQwsD1XJIyJwp9zKZCtwr/+SuEyKm39ziOQpsBTdeR5gVJlj6ZUEqzuf/IdOwyGAb4oY8hWnxVU59uEUXG19+t+f33R3pjzK8+ewmnPUoZmLZD1/VEgUsx8CmVZOTX1EXD6bs/klk/J7N66qbF9j2CKMSwLNLtjrZp+fKr/4Lp8hm17Lhfn3j8+IFB6KG0ZHN7w2m/p5QmB9FyrEuqwwF3teXcGzIMFQ+313z8cMe3P9zzzc0aQxlMBiFKarZJQTQYMBwGXJwtmc+n6LakyFMCP8CxHQwhEYAUEtN0mM4vUe9/wDUF2B6dUJiWpChitDRwvDGnOIE0Zv34FnvyjC4Y44Qhm+2JuWkymEzYrRq22y22bWE7FrZjc36+IPn+mvF8iNptuH/3nsnVl1TZEUP3GEHE5TKgj4+U+Z4mr3DGF9h+QRonpFnKUpm0XYOmo5E9QknsXmN2OT0WjqXwmoy5JegNQD8ZBuEwwA597k4xv7u/4fHxlmN8RCpB0xn0fYdlSvLTFlc3aF1h9h0fr3c0XY7hD7AGAZYjsCwT27HI4h27zSOvFw5929P1Jq5j0kgT3ZywbAvHs6Go+fCH35FtZzheSKNs4qxm0GvacEamFQJF2fTIcMTAqCibBlNrElqCaEBelJTpntlyweVf/Ip0e0c0m+J5JtL2CIZD8kFIYEv8cMSAhtPjHdaLGZHrox2fQ9Lw/Z++o7IV1vg5+uZ76laDbujbmiRJyIscyzC4zY/k4wGuNUTaHp5lUlQlSu/R8iUXo3MGY4vP8WhquM5qfvaLEXm1pzg+cvzwe7K+Y/jmL3CmC/Ky47v/9Ff0DzFlV3P/cE+cxTT5ESk0yniKTHjRhKrp+HjcI6XEsU3yvGI8Cum7FulNOCQtycNH4qzC9312dx8YDQYYpkXZNEzPL5COTei4tI3AyhWGYxGGLkq0aNFRpAeUqZg/PyeuBJ7pU5FjewFOdMbdw4G2aekNE9O2SbUgDAJOj3es1lvu9jnWvuJ8NsVF47hPQvmY5VT1kyE2iiLK+EA/GhJEIePxhN3NNeubWwIvwjYNwrqgzkviKqdHkGcZoi5Jypxat6TJidvVPfQtKIO77Zbp/IwP79+xe/c9dn7g2cAl8H1sx30S3tnTNYEWkDQtw66mUeCPJ5RpjR/1BMplOJpTpVukYeH7AdqQ2MEAhEArg0woVN8hWo3tWrS1h8gK6iRBVAWRgmg2oj4dqeMdukmIDzF2EPLyq6+IpkMqXZH0Le5uj+0qsEOMyRgzTzDjlOEgx5AtSZLTa0Hd5ORFTH64QzUljmMzmYaMfQHOgPWh4e37NTfrE4thwOqYclvV/D7OaBD8JIr4cjjll89fEUUTnJGP2VaU2xscBbvtHcdTwdki4eb9PY00KcqOtkrp5dMiVtm1PJxO3CQZo9mI58sp4WhEMAwxBwOwQ55fWLhI3PEFcrJEmM5TUbqyn65Nkg1GX+F6IabtcmoETVdh6AbdKzxvhJAKYdkoU+J5JtBQVRlC9Dx+fIclNeeXFzycWoLBmPJwxPKHNJ3kdIzxXBvvbEF2OuIqCy8YIKXCdxyk1BgKks2OQIA7HGM+PtJKyWOckLYdfdvRSYVlSrb7FasWLGkxDwb4hoFv2/ie+xSPdR280MMbjfF8h77TpEXJQThUk3Mse4TYHyn/9A1NW9NUFcc0J8krmrYhtAzqpiZLM6LRFC8aUucFyhQox0FaLo3lIwyb7PoDrudgWxbDSDI5u6InJy1qRuMArWvcYECSF1hljmcFNPopqvzJNfnEJ37cfDJNPvGJHzsChBRaSKGFaSGtBlnE2FZDWZ0QskZJTVId0VZLnuWkWc7582fI/oQtTaoiYzCIoCwp4h2tMCkaiTY9XLukqKEZzUjLHpIaL+iwqpQ0L1mnNee+jWF05HmCsbvjQSiSw4FRGBKaDqLvCSKXLt3SGIrG9PCXzzhuNxzijP11yj4tOaUFfS/wLQdlmwh3SLhY4kZDtDQZWALZaNZFSVW3qCB8Wr+oa2wpngwjQ9F3HZZlYqERdYcwLYTr4hsGZbrCHzhIVdKXa8zlAjO00V2N7js6JKekwrRMuqbGdxUnUREOF5i+T9X0PH+xxKx3bD584JApvr0+UZUtP/vqnEHoUzQ1QdViOz4yHNC3LePFnFwdyByeuiZWKzZv/5nl5RmHQ8Q4ijANg2HgkgYepu0RTeYUVc7ZcoDTd5yqPe/ubsmTnLJ4EmBNk3KoGiploZuOrCg57ndk25TbmztuNweOSf4kPNE0bUNR1YxGQ4TomQ5DZtMJSkjyNAepGEY+rmOgREdfpkjHxDAMBoMhQ88jrxKmY5+6yrFHc/r+gNYpx+yEYbjEWUFZpuSP7+DCobVtIaUkSVPaBFxTczqdmPszBtMl+zhDtDWu3dNtvufx7dccS01+947LuY/nRyz3MYFRsKti6rYgrStOUlE0FbVu6VVHb0iObYpZ72l3OVWf43kWvutQVxXbOEH1HSNbwCCgrDtuDyeevxA4QUBfN2xWG3ZVQ9n2TFyHtO0QacKyiik2GVVTkLYNUroIZ8bQd7EMgWlJlG0glEHfdexv3uG1KefzEVVvsj9V2K7L8bQDKel0j1YSqWvGrkbv36HrERYNjM5oxzMKy6EJBzjtUyyr6nsMQyHqml73RKMhuu0YDX2KTCD7ks+/uCQeVMyHIa4zpeoUuu3x1BJXwmg04bA+UJUtE12C6DlZAXfpiR+u/4AeLtitbpHKwfYGGH1B15Q05ZE4PtL3mulkxM31B0zTIhMRhj9iPipJ84rcCBifPycsD6R4YLhst3/kuH1JF6+I73eYQY978RlqMMQeTwnOn3H1/APH/Z5NICh0Q3bcIHSH43oIKTAME2W7lPtHXNtAGT5V12HZT0tIvbJpDY/DdsfumDB//hItFcrN2G0PuNEQu2qompgq9KhOBya+xPYcBmqEqXq6KkYIzeLqgrLNqbUgGIbUZcv+kGI7NcORAN3gWZJdVtDrnvnQJy92tEWB7jqQiqbMub69Z+b7uFVDGLpsD3vqukJYFqZlUZU1+9U9s4vnKMfBHE8QTc3HDzf0dYvuOvbxnn1+ou07PGFBpnFMgaU78jJB1wW+4/AxPtF0HVoI7j++hfTI3DUYDkJcz6cTNm1XIQyFbjts2+WYZmwPCaazxpwtCScjGg1tB5PFktiscIYBlTmgtxW269BkKYKelpa8a9Btj9+VaN0TDTyd1S1VnENTPRXwZnsO+zVBEDFeTDm1Fu5kStXWdG6EDCKOxy3Z249cvPkCY7wgUAZOVRPJBNGWSGng+S6GsNDCJSsLZJWghEIaFtrymX72Ez7cxGyOJXdxg283BK5Fr3qkUiRVx3kYcDmbsfzsFcI0KE4HivRAdjpxKlKKSnMq4Xh/ojcjcKAsCnpDUWUZdVsSly2NErx5OSMcDQmjCMN5uoDwBhHBaEn97j2mF+LML7DcgFZohKUQqqMrUnxTUrcGyoRCKSqhSfYbwlGF40+oy5zatqmrEs8P6LqO1XqNo2vKokZ4ITf3K84+f8XQhdoNsRvN+vaA7QRML0ak+we0MjH9iIGt6KqENC9ZPLvEzve0uifTGkcKtG3hz6bc7fbUCISS9F1P1vScBy4fkpSkqhHkJH1D70ikbSAsAzkeYkUBGR1+mWDpBtcPMKYLAtHTpjWHx0fi61uQ0LQ9WdXQaKjRmEqiLBPT9egNk2gUIU2L0/HI2dUlthkizxZ8TArk+/csxyFCzUiKnsHyjKtnO/brG4Q7wLXAswrKYEElLPZxjm23CMul7vVTCvcTn/jEjxahP01ofeITP2q01kZX5v+17jqv73v6tkO3JX1T02mB4UVoAVWe0jYVeV2juwbP95H0GIbEUALDfSpRa6qCHuiFSVmUdF1P13X0vSbLcpqypKk7yqpGC4Xl2Ni2g9HVCA3Gny9VlGkBAtcwMEwTKSVdvkeYNlJI6rajaVryPKdp2qf8ca9pe41AYxqKTigsx8FEY1sGhmXStjV5mhOXFb2Q1HVDW1coIZ6+h5C4hsQwHVzDwlAK2wuRysIyDfo6xTIVhuMilURaNqbrggQQlGXB+nBAiKfIU09PVZTYro2QCiUNXKtD9BVZklHUEq2ha1t818WyPdqqpmsaDNt5mtEVAvqOuq4omp6ih6aqEF2LaxqEnk/g+xR5Rl2WdG2LFgLHG2AYJo4pgR7RlTRtR1M3tF1P17V0bfckdNoGQY8ynvpHdFeju476z7GGqusBkFJhWyZCSdAa0zSxbQtlGLRth20ZOH/+bJoGSplIy0L3mrJIiA9b0qoiHPogLaTh0DcZplJgRcgemrqmKwuUZfMf/vHr/+2v//H3//58OcINLKQtMfYPBEIi3JCrz9+gmhOPHz9ijc8hO1Ks7wimF5S1RumcUHfsHnek+yN/2pTYwymRqzjsTmxrk6pVbHcb6ngPdYEhNFmyYxzZLJdn2JbNab/9c6FgSCdMpmdnpMcjg9EUoTWOZdB0cLM98e7dB/zBkKbI2MYZsinxjZ46zzkWDaYbkacpQ1tiByOUO2A89qmbAncwZDAaI7uCKs9wB1O2j3estwfGF1dUpz2z83NKJIvP3tAct5wPXAxDMj2/ZN8YpL3BZL7g48MdURTwwjJI85rfffcOY7Gk0oK2qQmoWK82jBZn9G3F1FdcBD355g57uEBIxWDgktx9h6kMth+/pW4tehWwvr5hPFvw6jf/hl647K6/5fBww/2uoG5aDpsNlAlpXvDZm88ZuAbTQYBAMVqcs7/5SNkLjpsNp6Rgtd1RS5u573G/3qP6lnHg4ZkWCo1hGpRNzeJqgD1ZcIwLTocjzy7mqL5k6NtkZcNqt2dw9pI8STjcf2BwdkEwHNLLntYf8fH2hqFRMzlbkN5/5P37O/xwhj+dYJkOlgJ/+YLJqy/I6paxb1Ncv+OHXUE/PMcxTYRlYo/HjB3FqNgQpwnH1R2jgUOaFRRJwvOrMakG15dMvQlG09MjWCzO0cc1++t3yOElu0PCw/t3iLriLqnYbPfUZUXRCMxgTKsNjpsVeZHRKxOkokiODAKf4XBMOBgTOQ77/RZDCEZBiGEqaDvqLKNsGsLRkPL0AE3H5XzOPit5uP/IMvSYjIYspzOy1SNnP/kJ/tmS/Nuv+f53v+WxrEiEZLZcEI1HVE1Dq3s22w216TKeLvns9SuU6omPe7JSIr0LHpOaY7xjEiqcwZBo8RLdVoRkDBzJerfHX1zy5c9+hjjdku4f8KZXvP7s8/9jMT/733VTozuNIQVdkVI3Gtu00VpT9RLPdxB1DdL4s0CvaKqS4XiIcjx63VMWGbIr6duaMn+KphhSYvs+pmkg+h7RVNC3CClRjkt8zDkmOVXTYCqBEuJJLOv/n7376Jkl2878/o+9w9v0+frjy11HNg0oAk1wotasAX2j+2U00FDQRBCggSBBUkvsey8vq265U8e9Lr0Lb3aEBofDgtgasKsgxW+cGblHKxIP9lqrQ7XgGwaDMMANQjRNAB1VltA2JXXTktUNTQuGYVB1EseSNKqjbjvoFE1dgpDoxsdWTsMyMDRBJw3qtsPxXYQwKZIcx5SYroemG2i6pBUSQ2qousaQHapWtFpHXtakWUbbVFiWCZpE2j66EGS1AjpQNbQKXWi05ce5ZUVRImwXU5e0mklWlDRF+nEIuvg4qLetS8qqxrMMuqbBcEN818PqKoQuqYsC25DkWUIcZ2RFQdk0FI2i7ToGloltGiRFSaMUQtOQQmBIHds08SOPVjf/+S3ZIVuBKUE3JEK3QerUbUec5qRZRpUmNHVF27Z0aCjVAGDo+sf3ltBwbYumEwj5sSVHtx0aodHkGZZqsCyTTpckDThhSJ2f6JqKpu0wRIvv25RKB8ujUYqmqpGmhS5E+mQ6/p+lEOqn+J/W6/V+ev1Nk17v/+c0TWt0x/uf/qXP+cPRf47j/Aue/dQH+Bf5jos/HP8nfXZy/q98mJ+ZkDmzy5f/r77zx9d3f1cmCftlRRg8JTtmxJuc4PyCw/aE/P41kpI8ybEGEmNwTRTN0duGNE4I3BHbRJFYOjtNMXhyQ2v5/PDhA4d1wiZXDMczat1inaU0VYltWRyOCaqtKboV4/kl0eVzdN9DcyzCMKJB8fSTF4SDAYekIt7vKLM9ZZVh+R76cMLtLqYzPVQr2B93HPYJQuq4pk5cdSyPe4xDjh2WDOoRNhXtscTclQzHU/zoGceqJTNmVK7Fm22DaG26zsfzbeKiwZPguxbnl5eYXsjIDNgXCmkZ2KbB0DFxHJOiyAkNjUOSEgP1YYNj64gqR5YpgW1wPh7wcqSx12vePBwJBz5TVzK9HlMe1+ybLZbmsD7sOJUx0+AZpqzYbxYkuwWd1vHsekQcl0SOZHObMp9d8+JiiNEkjAcG0gkwLUiNhmyzJl09UJYNIz/ACofcf/8dVVbgeR5Jodjsc2rVkLctoyhg8+ZAtD+wSSpWiyX/9NUfeHEx5vpsimkaRL7DJLKxRzbt3MGPQgwnQLgeJzQmQ4/3X/8js1HA1egTkt2WTXoiVAaDQDC6/gJ0E7+NeXV9waFzeffl1+zu7wiFQWG5NB0UTU2n6zRtQp3H5FlJozqaokCralbrhO3ylmdji+6iJtEiJuM5HhqqKTDrmjxOOS23NGWHFZ7hi5zjPkWJlmAyxwmn3N3dskti4uSElDqW51EAVZazrtfcDEYsHm+JD1sMWuJw8HETleHw/LNPGIcjDFWz3Tk4QqCaluViweJ4xDEkkWExOpvz4mLO2dU1l5+/YilbzNOJ+P09tRAcmxZbCHaVou4EcnROdojRi4Y3H255djkjKVo+bFPSx6/BClhtj6TNgLBOqbsHdrstJAtePL9GaSbxYkVk/RPlYUUwHFKmFUXZvL65vPrv/1WKz3+CyU/1w73/R/+6r8nZv+rTe73e/3fI3/72tz/1GXq9Xq/X+1F/evf+371+8+5vm6bi4uqcYBCQJikGDbpoOew27DdbRtMJV0+eMQg9bMMAVeNYFqpIKRV00iQ+7NguHrm9XbDfHUAa7E4x+82awfk1qsyxTJMiOTBwTAxDx/VCBqMJUejz8tkF8SEmCiMu5hPOxiFS1Xhag5HHaGnC2/cPNMiPq5pVR5xXH2805QVd0+C7DrZp4/5zy48pITvuqZXCsl0e728pyhJNNwnCkOl8jmFZeNGArCiQrkfJx+1Lvi3Rm5zxMMJyXXTToWqhUi3vH++p2oab6zNEXbK8v+OYN2RAVZZE5sdZQEJ+HHw4HA+ZjAcMXZPt8h7L1vni5ZhIjzktvuftN19xv9ijpMt6XzC7vOTq2VMMPyAvS4RW0VQdZSXJa8izgk4pLi7O8WWDyg74YYRuOhRJjOs4UFV4lsF8Nmc+m+I2JZZqmIUBrmFRHQ+s9kcM0+Dy7AwrGuG4Lm7oEQ6HFd2R2AAAIABJREFUdK2iSFNsQ6KVGVHgEc0uGE9mHB/vcA0dYdhYhoHWtRimhbBsyrZFVSnBKEKd1qxuPzA/nzB/+RlVK5icnVNmKToVi/t7it0jQtMYTM/Y7PaczaYcsoLRbIpMN5w2Gyxd0jSK+LDm+ZlPF68YOwLTdBDSYhCNuDybI4oT2w9viLdbWt1FM1yKuqZuWoT1cSWvJiVN03E6HkmynFYpLMtE1yWmoWOHAxrVYXk+lm4wm8yogfV+x363RUcRBjZC04hCD8vV0T2X3WpBVVU8Pj4SxzFt3TC0DHwhmIUus/kMexAgpE6eJGi2R5ZnGL7L6OyS+fk5jmPjuxZSCDrVIJoKUec87FO8ySVlGuN5Hq008cMRhjcgGAwRukVeN9RZwujsgk4VGGXM/GxK0wnu1wdevnzxvz65vPoXA/xer9fr9f5z62+a9Hq9Xu9nSzQ1lqEjhE75zzdHHN9hs16QblP2my1//Ve/4uL6Ga6ukScpmhAod0a8eEQULWR78s2RrinJsegcnaZuGfoeE6BSkB021E1DncUEts7QMhnPznE9HykEgSHZ3D6i6zaX5zMCvcIXHVDQqJo0T2izGL+rUFXHruow3ZD9uw+40QDXC5FNja1LLKmhCQPv7AxV5aSGTis6LEPiOy5FWXP35gfiU8x10fD81Uv0LMOPCh63K87O51Ttgd3+yCdnZx9bNkqFZmqYtsExXfPl66+ohc5k7OGWOabesV8vKXQTYTuUUqdqSgwBbQumaaMbOlld4och4/EMUe357ss/8sd/+B1vb1dI2+Hl/Dm//LOXFA28vVvwWXTFbpXw8HpNnZcfQ5gsw5Qt40GAq5V0TYttGEjdwh+MsM2UMj4RBT6B66BhsLp/JN/tGZkG7/cZi+UWmoqngYvru0Sehwx8ujCiswy6tubzT59zaxuoPGc8HWCaNnarKPdrPEuiuwHuYEod70A3sHUDy3SYjKcgaoTUmD55yudtQzAO+Ju/+pRvv/yK+2//QFm3VGvB9OopZWByyGt2hxPjwZDkFEOa8rBbcDnx0KSG1AVC13l2dc5x+ZrNasXZfMr87NnH1o3tilWnMHUDa3TBGJO72weC8xc8Ng15kpK0BnmpuLtfEJcNphWgaRIhddLTjrIoiKbneOGEum0p64JtEfOLX3zBOjkSvXjB8f1b7g9blCExvZD75Y7nnz9n+f075qFPfEppypLIshjZBsftgdeHmNHhwNQwmL18RhNYRDeXeJViLp+SJieaJCWa3hDOn5OmJ7LsK0SdMR8NOOU1RWcTSMnF2RlCSrabWxanIy9+/VeMz84p3nyPFDpJrbHdbjGrA+bTS8LRDEdaLHbfUOfFT11uer1er9f7UX1o0uv1er2fLdO0iMKA+BSzXiVEwYDL+YTHLEOrTa7nV5xfzOmaCtoGKTRU3ZFkB/JTzJs3SzTXY79t+f42pdZ0RhdnuMMxx8UHyuOeolHkClSV02YnLi8nJElGMBixelziGxqabyJMi5dPLvHrDE/rcLHQtIbjYc3A81ncPRBZku3jBtMKyFSLa1vE6xX2ZIYbjWniPY6uUdY1UjVMpxMOJ4uiqrC6midXF1QK0qLGdF26LOG0P1BVJZkOumPSuQ3r+3e8uBzTyoLh2XN0wyVTEBcZq92ap0+vyFXH5u4947ZE00zG0ymLBuoWalUzdD1O8Qlp2wRhQKda4ixhFEU0tckPf1ii20OU5nJ7n/LX//ZTnn3ySx4Xe16/fsfNxRVtkrB5eKSuW3744Z66yHn18gnjcYjelh8H9o5HtG2DISWW0KjrElrFcDhk+7Dg/u6BonM4rmOGuqDYJzhlQdEqZtMhFzc3bA8HbNuiqBrmz56TVxm+2REEIf/4u3/icZ/hh0OKLMESiiCMPm7OqFJMy6TVJJph0hU5yXaDMQwZmj6tsphOnvF4f8f/8N/8txTJnlzOGI6HyGjMbH7GbrunKbdk1R7XtT/O6fEjyjJFNYrD4YDmWri2yZOrIcvU5rjtsIIJP9xtuLu9xdE6vvjNX/HJp5/hCXj/7WuWtw9EyibdHzg0Bs54BnmDqitsKei6kjStUJqBaX1c3+15PuFgSJbsoUxRVU7ZNHxy85RDkVEMx+wW9wyikLyGT84vGPsh8uaGma7xh//zd7iGzjHv+LA9UFUNL32X3TgkL0uy1Q7dMrBNh4vLK/L3t7x9/Zov/vwMTVWk+zXh+IzLz/4S/fiOrs7ZqYab8QTf90iTmK4qGJgtyenIwze/pziscG2T0XhMfBI0dU28emQym3DY7xgOh7iuS1XXP3W56fV6vV7vR/WhSa/X6/V+tqRpUuQ5WZKw2x2wXY9fffaUmyewspZkcczhdCCyhkjDwnYCTqsNw0BgNTrn5wF3CRTCYDL2gY714pZ9VrN7vKM8bLg4n7LdnvBNuAwEnlTYkzFR4CHrgElocH3hc3V+TeSYDMMBluNRxTuSQ0JzOlJ3ObPZnOVii6d1VPsVWbXFdkKE71HkGZbnYgUDKqUIhxOq3ZIuS3hycU5Lh9IknSbRhCAra4LZBYPZjA+LFXFe8eo3v6Aoxry7fc/qhy3njs9eHMm6nOl0wuvHPcU+Zzo7Iwo8yuLE69//jh+2a84vnzA+e8H93ZKmSBiFAY1qaJqWYRCSJxkqLrG6gslggt1aRLMh05sLVsc1nzcNv/q3f4cXTukWG67PJ2wWGyzzA69ff0mh4JBt+eTZE2YXI3wT9ssN2+2eyewMx7FpgTxJUEUOquPxccHDd98zHM/JdgllnJI1Nb8YRuxocAKP8cUFwXCI2dYI00AEHqJpcAYDSlVz8+klgRfy4e073m1iTrs1X7x6wYV0iUjRzRGmqVN3H+d5tEWBrAq+/6d7or/7G2zf5/VXb5hGERgatWVQxSW3794xHjrc3d5TtxqG7eFZEXEc4/oRrmVh6z6WzBn4AbKrWb79jksxxjM0Xj5/yVGZSBosFFcXl1yezxl4Lsc//gP/8B/+I+tK4OcfmN08B2vE/f0jbSeJJpds14+cThsOSYYVjPG8CCF1qkpRJxmRO2DoOpwOW06PS15ePkEddpyNAv7+r/9rBB22afDk/JIqzxkHzzl89w1d3WAbBkmncKVg4lhcBQ6WJWiLjGa5oG0a2njPdHpBHJ+4mk8Ix2fskhStVdiOjVM3fLVuEC0UZcUx+UATfVx1fHf7DktIZpHHKt6RWTrBbMrpUGCYOrQF4dkzlDVmtT3y5f/1vxM9/Rw7DH/qctPr9Xq93o/qQ5Ner9fr/WwlSUp8PLBbLzHCgKIpONUf21w6pSjShMLuCCcTyk5iY+L6Y5rsltVixf3ykcOupC0lfihZtQmbfMV6WTCJAt48vOd0tBg7kompeBIGSNtk/PQFtin4fHbFOHTwLYeRH1KlJ7AbknhHtrmjPu3JjjFpVrJLK6auSZd1dFIj70qS7YLW8rGCAaLr8D0f0bUYlosIRzgGmBrolk04mmIHIaKtsDwfFUzZpwWTUcNEmtiaoJACo1aMggHptobI5PF+y/p45H6f8+zqFdPpFBpFnKYcNzvqqqEVOuvNBqVaCtVB25IUJUHgI9qG5eMDvi5oy5jzicP4aoiXGrx7947rV18wubxhOL7gtMs4bY68e33HcpGyX8VUhwOt1vHrL644m50zDBySw4HV+ohpmmRxQnQ2A00n3W0o0oz1JiZ7eCRd72n3KdNoiBMFNIcTU8fmbD5B9wOE4xLvt0SuizMaUuqSIo2ZzSMOSicIAsLnT5i7kseHR74XLceqZfn6jqvZiKiS+I6JZpicTkt000DHwNMtlvc7Xry45NW/KTht9kwmU/Tdju36TwSOSVtnLO7fIy0PJxqSNDqnU0wrTdL9kboqGc4cirLAVBVZmvDHP+148eQSPRgxHU7I84zx4Dc8vbrCs026/ZL07i0oxa9efcqHQoI7pK1bLMvk9vY18WlPVRcIw0C3XGw7wAvHHPZr6rqkKTLGozGyiPGChni9IYkmTKMhOiXV/Vsc12Py7Dm2JphO52SLFbHqmEQDAttm75pk+wNNmpMlOYe3DxwOGfo3r5FehPWrT8g2K+bjAeIXnxNdnaM/PGLaDoYf8c0333Jzc4Pj+8TrO/L0iKBh+/CWx4c7IsdmfP0JhTHEm1yB7aAbNaftIxNfcHZ1zWKxIPM9tscStVrRlNVPXW56vV6v1/tRfWjS6/V6vZ8tQ+vI84Ki6bCExh+//oqEmmeRjid07t/vuJx4hGFI5PlUeYUlC5a7gseNSW5fcnQWbDc7LGPCOlO8/eM3iFag5BWBY+FZOnO7Y2xqnM/nrNOSqQOiOhER4bfg65L8uKOparLDgnh/wDcV+SEh2Z1I4pQsLUnLmros0JuOSEAhW3b5ibJVyGBIVhREQYgjDLzBDE2VdFpLm56I2wazqxjOzzCGI8oiI9UaiiIBQ1C2BdHcojh6mGrI6bTlw+09m+2BSlq8+vUvuZhfouqOw2JFk5VcXl6S5ymZkqzu7sAJUHX1cS24ajFMg/SwZ7taMglDqGreWwFPr264+OTPYPaENs/wky2nY8r6w5ofvnzg+/cf+HC3ItnO+MvfPKPuKs7HQwLPIk4zOk1HCIHZtagspswDYmmQHgtU0fDu2+85sy20tqM8xVSqZRoOkZ5N17bYloPlB7RNjRGGmIOQUjMJJjPK457DYsPoxQt8w0BTBmdPnjAwBBdn52yTnA93d6RFTbdZcZ9nbI8Jed1wfXON53n43oAqL7ld7Dl//gnDmyPx3Xtkd+STTy/QLZMgcGlrg23eEPgmotI4SknRaVi+j2+EmGbLaCJJ7t8RhhH5cUOheQxNjyDwsA3BzeUFUkiq/ZZ4ecf05im/rCWLxubqas7X337DIasZTGcgJKcspihyvGDCeHqG6iS268Kuw3UdmuMGg5KL6RTv6pztKUNkRybzIX4QYDkOQv94Y+aknch2B+Rph2fZaGVBvtvjOC5a07ApCwwE3+6O3K93/P10xPTXQ3Zff0Nj2oy++JxXn35K2sLZfE50+RwlJC/OZ5w6i+snz3mQFmr1ntvvv+LbH26J4xNj32Y29CiCAVYYMLm84fj4nl2RoAc+jw+PvHv3lqvra8ZX10zmF1Rl+VOXm16v1+v1flQfmvR6vV7vZ6uoakxT5+rqCk0oHu8/8L/9d3/i8OKcP/vVXzIdXzAcXKA1Cl10VJTcL1YsFhWN7nL/7lsWyw8YShAGA3ZvVni2i6cLRp6DPxsytWDuSeahjeU5eF6ASA+MfAdP12mOezrR0bUSQ9MxTYu8LElOMfv1iu1mTasUGhIThYXEdXVEVmD4Dl7dkSBI8oSk02i9iOyYMPE9pq6LZklGdkRoS5zBiFa3Oe5OdChCqbi5DFglG374/ivS6gVO55NnNevlmqatuP40YHZ2jm3afP37b1FFQ2AJfK/DCQJ0L+TLL19jGzbSsijzDNPUOZtNcCR8WBxY3r1jXbWMvRnlGj759AXPfzFnOrBZx9/TtJLbd/d88913fPX2lvuHBcPAIQhNVFUyHQfIFtpKUaQVnekwmpyxW90TVhXJ8UjV6sSnjHxxT+CYOFHI2XiIVVcIYWE4EU0rIU/QqdAOO6Rl4Y2nnIoaexKg6wJZK4xO4BsWvi7YHQ6Mnz5lMCoYdB3RdoulzrhbrlBZQ+B4nLISw3Hp0CmrlqxIkHVJmse8ff/AL3/zKcKIWCy/Ia9a5s8/57SreNgd0YM55+MAlW6YjEIejjmaFIwdl6Y40pUFWqcQQmB5EZrhcjafUhUZoQkqT8CwyeIjQoE9vMR7FvHMn/DhT3+g3C9pNJfDbo+h6zi2j+dP8AZzjqcTXV1gaBIpBGQx557Jc19j5GhohuDq889ZL5actltE42JJA9MOuLq5ZLdaclhtiYTC1OBsFNEdtxzihN+8fMp2NGCz3rDTDpw7FrnnsPjwDn86pShblo9rVDRmNPTwz2YI10YVCb9+OuWHxwOBZfDkcoYuBdHgHMcdUh0f8IIAzbAw6oLD6pauyamSHbOBS4ugaDpMy8a2DDrTxfCHeH17Tq/X6/V+pvrQpNfr9Xo/W0IILNMiGg6RGqjrp+wcm2A4xPYtnn8+4XRKmFy2FEVJVpckeY4ZOrgi4+rcZ2I/R5UG79ZLXFViGIKBZzFzWmzLpk5jJqMpA1enVSWD6RDbEKg8BzTSJKfOG9qmxTZ0pCaJH96jS4M2y4gsC993qcuCprVp0dnujzhRwH1aU9cl49Aj0SwWScVmcUdsWGjGM4SmUdYtuhliaRrVdovoNriTc5SqCQcBQeDRtDVq/IIysxjM5mRpjOnpqLYkL1qOhwzf2qFTc352xmg4RKNGZjmvP6w5HY50kQQpkZZBWdWYhoVuSlRdkRx2LO8eeXAX/PIv/pav3q/xLwaYokFQ8fCw4fC44d37e24+v+T80mXkmUSWiagaRNOi6RoC+fG3jJLp5TWqVtQqZ78/MjI82q7DGo4JvYCB5+IJDbspiZcn8lNGNJpg+QGqjOnyHEyTOk5xPA/qEql5XMwGuLMpojwhrRGObUKrgVKI/Mg4CoiiIcPI5xSfSBXsdltWmy33DwtsP8AWHaPJiNHkOfV6w//xP/4vTAY+7uCGQOqUwuf+9gfqTuKNHFpNQ6maWjVEnkOjadTSIIoClh92dJ2GIQXD+Rw/DBgFJut4w/u7O87mF5w/eUUlHWYXY1oNtOKE59gkxz2WP6DWLHbbDWV6IAoirOiMNMnQ2hpdaGSnHRNb5/lszE3kEroeXVdTnja0Gjy/PMO2r2jbGsswcH2P5ddfY1uCoW3Q1R2n3Z7Lsynt+gF5OuLmDfZoytl4TBaf0OoGmhqha9SBjTE+5zGvWX/9Pc+/+IJzB7r9PYZpohmSVy+ekHUVWpOyWzxw9fQ5F//Vv+fbP/wHtusFlm4gmxNaVaHiBqqM7XFPrTpefPYrHF0ghKTCQrUCqWk/dbnp9Xq9Xu9H9aFJr9fr9X62NKmTVoqhbqC1ghfPPmM2m7M9bNjFJ9Jig2vblHmBbtpsdiV102JbHeku57TecKhNTpsT77//E+cDg9azcUwDq84IzQ4Ci8iz0eoc19Dp8hxhD6HNEFmM4wV0monZNMjsSLpYUW93NEKgtS261tIUDZ0CwzSpO4FjGAjLZZeeaDQNqSqi0OFmOuM+qTlJl6zOSeItxuyCQ5yxXewY2hpj36RYQ+hYGMMBjjXgydwjPr1mPJnQei1eaGBaQ3Rd4Dkmk0HAcOxj2iZROEDYNqdjzv6UIIWGFw7QDZM6T7BNi6qqsCY2tBVSaDSqQnUFZ59dcvnFU0Y3UxbLBWPX4GGxIa1abC9gPg7RhGD68gXkJevHRybRAKzg43OzlMh3SIuKOjlx8/ITsuSEOq1pyoKJYxLOJ4SWgWVbqKxA12xCx6VZbsnWS+xohBzNsD+bUFUlGjW6GyDCECkVwhC0nUajFCo/MZldoqmKplEUcY6pNKRpMRAak+snPG52pJMz4rxEt3VaTRCfjuiWxZlqybOc4/7A7d0DUsB4OEQz97StQjgelC1KKTTV4BgOZVlhOAGiytkfdx8HFGsNVZriBhGBKdi8+xN/+qevWScN8+tXnGpBpZnY4ZD6sOfyfM43P3xgl+acsoKsOGC1FZ5jYAcBiapRdYkhBK4uCSh4MguZByaOBqIpEUAQjUHUWMWRukgZTMYEoUednJjZihYNK/Qp0pRS03AMnVHgodsGrDdMPv0V7jxg//iI4bqoRlFlJ7JaUSwXGOEQojHrVJE/HpmLHKFy/PGI88sxpyQlrmDgWXSqwXNsxtcvMU2JqnIOhx1v7h6YTOaoJuXdmx+4urkhOWy5uLig6ATH44mV9oGu/OynLje9Xq/X6/2oPjTp9Xq93s+XqjGE5HCMQQms8TnHfc4Pb96TbDX+/JPntG3D4XQiynPyw4nk2OA7gsf7Hae8Rdk6D4u3lMUJ0XhMLfB9QRi4aE3FxDVwqOmkjmM75EXxcUDmKaOVOobZYektRlVxuL2l2h/JswJp6PjDAQ0dlh9SFjmW65LsTnieS4NAb1oCN0I6Bo4EW1fMb2bUhsvjMaPoIqxgxIf37xF1RlUaWKbFswg02bLbbRk5LuFgyjAYkFUVtq/x8PCIK1wMrUP3BDEFrThy7HRqbBxN0RyPuK7DYHiN74fkSYIzcqjqGtd1qPMUx3Vw/YjR2TnnlxF//+//Sy4u/5zL8YR6/YYP337N7//xj/ijMWdTl18bL9GUznZz5N1igWx1HC/AFIIiiXFth0ngIpRC1AV1vMeXAuf8Elto+K6NqAoMWrpGYQwnyDzFcSyE6zM8r9EQqLJENhV2YILhYQ+HNFmBKlLaSscZhNSVBrqg2G+wbRMpNVzfp8ly6qKgjmNoaubDCd5gwOX5hO3hxMNyjakLgiiEpkY3LGppsY13OIZGli8/tvJIA9PVOAtyinhLaAm2CizHYRvHaK1DuVjiOBauMHFNgW1IysOSP/zhP/KPrx94+eIV3727JziUXBhQ+w5p3XFfaHy7LTjkNZ2qGbgWgeXi2zaJ8Dktd5ii43o2ZmIKQtvAokFvKnTboWs6XNdC0uJ4NoahYbkeriPZ394S+BZ1kSMsB9OQxHmGpQss22JyPkdLYigVnmdhSQNXk2hSIoMQ/WxGkuQc4pjlKUbtNkjbwxCCO00wcCN83UHVFaFjYbUhf/HymgMOpqZo6xonmpIdd+iDp1iHkqIsmJ1f0Kn64zwVTSNrJYPJjP32Kzbff0+8+4ufutr0er1er/ej+tCk1+v1ej9bWZahaR2G0NB0yePyDZvtirauuP+w43wQ8OzmBY4bEO/2HA9bBpM5y3cL9psCqbXc//AthqbwLAMLhSs0pp6F57mUcUngmCgFth3Q1hVWp+iqmrLSGA8cjK7DSPbs3t/TlgXFMWV2cUajS0zboukUhmkgTRPdsDHNAl2XqLIm8BziUhGEc6r8iKEbOLrAMjuevbogFy6FZnI9HZHVDX4YYUrYPb7l7m5FNKyRloMtHULXx6hzygwCy+R0OrDfHxGiRZcdZV2S5RWGHnI+DRlENp++eoHvOjheyH67JVlvEPrHwGi1WBO9eEYwmTO8uOGzpwOenj/BcQXzwOL9QrFa7WiKElEVHLYVnu6z32V8eLekQzAcDtC0j60xjmEgOoVqGiajEZrQEEIiuwYzjzFNg/aYoYsOPYhQVoihgaRBomGYEpXVOMEIfRzR1RW6IWi1DrVdYboeSko6y6KtQWs+tkwZbUtXtujSRDNb4u++wR2PmYwm3N1+YOR5jAcTaBuOmzWBIdCNgLptoSgIDYm0HBxDMrANVrsdSVHjjeY4doCjt8SrB6L5hKGm2JQ5vueTFQX54wNRFNJZBpfjgHnkIssjo9GE51ctpzjlyz/8nj//839DFkUUqmW9XHK/OlDmGTqKX764wTcNuqYkLTuUHuHsT1xFDueuTlekuKZNFR/RRIvoTAzbxnEdPD9EIaBpafOY1fqRcDyhykscz8UdTWmqBtfSse0xoi0wTZPZ9RXpwyPitMLQIgLboPVd7MinbRQydNCExqksedjvqVvIggjLMlGFRycEz8wdddfRtQ3TyYhAQZEmjB2D1UnhzF8h199w9ewzVLamLituXv6KrChpdYftbk+LIHAturRDqH57Tq/X6/V+nvrQpNfr9Xo/W7phUlYlpuMwHQ6RkUecxZQPFevFmtU8JArGnGUKIQs8E+LiwPZ4j+V2PL7f4pkOwoE4lYi2QeoutmFioxiPIjRNgO6iCYklTWrVoTc1Ly8m6GVJvTlxXDxiGSank6LVLdzxmEI1OJ4LdAghOGQ1uu2imw5+NKA77vHMgrou0JoGzw+QVYnZ1rh2iEPLZODiDMecWpM8y1hs9hxOKdFwyC9HITkSZXpkxwNKM8njBMN3mY+nPD48UpYlpiWpi5rl3YIqT5kP59iDCUM/wrZdfNdHtQ/UjUJqGpZt01Yl1WnL/jBgNBlzcX5JVZ7omhrZldwuf+D2/nvKrGY+vcR0baq240/fvSOPE1rREYU+XZVjdA5dnqI7NrruYJsWndRpuxaqDF8HWgU1OFGELTqkFFRljuO5tFLHsgyIE5LtFrup0OaXyGCIbgiQEqSGMCWq1tH8AU0HdQ5CgyJOaPOMtlHoGli2w/rLPzH84tfomkEZp5Sthi3g6vKG4/6PNHmGZrscjwfMcICvKjLHRrUKNEHTfFzDnCrByFT4kUFbFXiuz2p3QHgS29CpDIPDMWZ8NcOQGq5lcP3kc2wpeXe74cPjmovJgMCQdN6ITpN0tJi6hmdZvPqzP8M1Jel+R9toNJpGt9/wfGBgVTlkCkFHmx+xZccwilCNxDQcVAV5VuH6EWVeYHQtjuEQuC5dXWIZUG4WKHQ0VRONB5A1KM+lMyyMrkWul3TZAfPyCeZgiDAlZX3ClgI8h5FjkuQ5i4db9taGi7MzxqFPUTY8PO6YRRbWcExTZnRNi641vJo7ZPGBRWbh+R7pYo+qFV1TYpoGF88/5f7unjJLUGVCWxbcfbgnS04/dbnp9Xq9Xu9H9aFJr9fr9X62VKtompoyL9iuV1xcXeBOxqgPFsowuHvc8vwVJFlKmuYoKt68/Y7ADtkWJZbjoJkOSRxTlznK0NGlwA18yGIQOmgas9mIyBKYnaLMK8hT1H7L6e6R/XLPaDREdwNGwYCiabAHA4xWkWYltmXguA6V3qAbFkKalLXCtD0sN8NrGrLjBmc8QgqFL8E2DKxohmHayCJh4g9JNRspRoRRRFXmHG+/pdQturZjMhuTpgmGbnHY7zmbhkyuz0je3FIVFaHvMRiPqEuTi7nL7DJEN0wO+wNn14rj6cgpPnL15Anl8UTTprR1weP7twwjl19/ckW+WfDhq++Y3zyjq/a8/d0fEcYQw3Ypjy1NleE7H4eQ1mWJKGJUE1fPAAAgAElEQVTi+IgpNNA0OqWQuk7XduR5jKkqTF1S1wq96xheTlBCJ68rrDqhazpwLDpp0mkC6foMr01MrUPXBZoUIDo6w0T3HLq2QQLVbknVdGB51E1Nq0AaJq0qKU572qqiKwqOH26xZ1MMISmyDMP38Uyd55/8gncP92yPRyxdx1QNko5hNGC/31HWDftTguVHaMmG/SInMi8oVcewUwSm4P64p9E0HEOgOx6uY3Pa7ykHAZo0Wa2PeMGA/+I3Z4SDIbk7xRxcEVNjWw5OaGJ4Lb5loAuNWgo64eBrHY1jotU1eRyTtxJTdJiqxh8M6DDwXBfVdLiehxeN8YYDVFPRpVtEndMu3yBpUVKgGy6qk0TRgPa0wdZBuC4EJrg2WZHTHrY4okNVGcIMMd2AtlV0Rc7lbIDeNoRtyfK04f1tjWNbBL5L53oYWofX7jANnU51NFJHmCafPRkiVwkbUWOJmuVhzXg0YrV4ZHrzCdOzc9LTAdnmqDLlWHTsjulPXW56vV6v1/tRfWjS6/V6vZ+t435PkuU0rWS/2WPbNrMw4tXTZ3iyhSIhPaXkSUWcJFieJN3tyLUDGh1S03A9l4OuowuBpMOmQWYxliFxXZ+mbrCrBGo4pCWyyqiOCclyT7o9YZgOuuMTXV+TViW+ZSPaCle3sGwHITRoFZaAFvDDAafjiWgyJjud8MwM1/boLA9DKNqqQnYtVakQbY5lCjy3RDNdLC9APyXkUuMUzHm8f6Q7VlR1jWFoeP6AzgvI0pTnr37N4WQQ392hNYLhaEKtfLpAklYJd6sl0/GQi6cxdaOoihJJSxg4HBcfMDWN7cNb3okTl3/zV0xvbiizjigckKcl9vCMFoHt+8yiIafHW/aqYbNZ09UlTRJD11FXJa6uo1sOXd2SZDF21+A5Bo+rFVdXl/iWQacJylqhIxC6g+no6GgIw0ZJiS4V9ugMigzddRHBgLbKkKaJZpo0lUaBQrN9TKHTqoaiUCAMNBRd29LVFXVdUWga1WpB6LgkeQmWQUtH0ShcL2A8GiNMizjNqIwOOg3bNDF1A00TaEJS5SnuMOCYFOzjinN06uSIg8SUBqEfUqw1At/HMCSYJtc3T5lfnPHq+TOk5aGkCc6QZVph5SmpUORpyWwyp4iPGCg6TUfTPoZ5ZZFhCY3l4UCRlni2ja1pWPrHeTu6arGocIIIoel4hobafaApcroiRqszbENDWga2NSCvM1xviNVkkB0Rjk3VZJj+AGGaBE+ecmwbnEFEKQRt3SJtF9lWqDzB0XXOxiOmgctkueBdUvHuhzf4roUfeGgvXuKEAUWtUG0LhkNTFdBVzO0jIrulyXfsNkscU0MzfRZvvmY0mWAJhdYqzLbgZj5kNBr91OWm1+v1er0fJX/729/+1Gfo9Xq9Xu9H/f7Lr/7d42L9t3Ga0ClFHqdUZYVlCtJTzHGf0hY15+cXGIbFcrMkS0p2myWmJhCoj60LQsPsaigSJp5JYOv4rodmBnimjqt93JCiiobjLkGlBUppnF89YXZ9iTufYg0GuKMx0pCYoqXrFG4YoZoGaWh0jSLNS3w/4rjfYQmNqqpo6wpJh2k7hLNLHDdAZTGBqSM1gahz6iLHsF2qrMRuUyxTgmHTqhryHY8P73l3v0Vzhli6YL1cYts2edVSVQrRtSRpTJqnDEKP/XrD7bsPTMZjnMGU9WqNpgmE7TJyJapIqIqM1d17nK6iLjNUp/AGAcPIRQoQNBhGhylK6sMDr19/IMkL0iRn4Dk8PCzQuxbP0BFCYAC71Zr8eEC2DW1VEkURfjjEdF1kq9CFhm17OJ6HrUsEQAe2rtFVBcJyEZaL5vp0totmOdAqFBqG69EJnU41KNWhax1amSLrgjaPacuSDknXghA6m80O0/PQhOS4O5CnGY7nU5YFhzSl7cAfT+lUx+l0oFMNrVIkVYPqwPVChNCppM9gMGI6cNDLmEopXH9IqgTNfsVkNCD7v9m7j2VZsuzM7/8tXHvoo8+VeTOzshRQhUZXAQVrGtkkBz3iC/Tz0YyzHhBNckBrkgBBA8FCl8jKSnX1kREnpGv3vX1zcDGsHmcO/PcK4bbM4rO115cfkA6enJ9ycn6B8kO09pidP+F91mHQHB/NibucKs9BaDQ9vhAIocE5bF2SHQp2h4zDfsM8jUjiiMjTCOFIBVBkiKZEYZEYpM0R+S1mv6TLM0JfoD1FmIwQykP7AYHokaZCSYEQkiBOPxx9laA8RRCFVEVF9Og5vfJQWBCAUDhjkEJgqhJPS4K+xTlLYXqEVGgJi6MFSkLrNHXnaLsGR05R3PHN9RYnNUVZkeUlJ6fnaF9TbFfU+xVtXTI+PmMWK376k5/+/Uef/fh//04HzmAwGAwGf8KwaTIYDAaD7635fIYFDoecaRJwdX1LeyN5fHHGbDalLSoOVcv7d/fMj8do7aG1RgqP3X6HryCKUvJsSyh6ut4ihSCKE/Ky4Xzi4TsQGmxZ0zlBcv6MfnPHaZqSHD1CJQkaA0JSWcV4FNO0B4IoQCURVkpkU+EiwclkxM37W0aeYH99RbI4xdWG5nAPbU0fRYyfv0DLMXo0wx/NMNsVrbV4XUvgevquQEjNOIq4OD3BU5bpWPFQNmyWr6E/QSvIm5yuy0gmHl0hqR8KtpsPTyV8WxF4inQ05eZmxXa14ujklKl2FPuMOAyoswNPL08IJXz1uz/w8osv+Ou/+gvco2dUlWB5W7G8uyHPtzw8rEmTlNFoxDiN6dqGKstZLMZYY6mznO3bNUXRMJ1OGS+meFqRTKZEaYKvJYGSKOXRS43oaiQ9KgiwfkIvHLQVaE2fTnC0CNdihI8/moHpcNoH45B+jG0PmLaiLw8U718j/IhWKKz0sDqi0yEqCGmLAnrHYb8nu7qhzAtOP/shRyOPl+/f0u52xNMZozghbxp6aqRU9Ci8eArzM2RVIE1F9XCDDiVSeri2QjWS3knatmW1XJPtN/z4bEQ2DlkudxCOeb3ak2U5TnnUtvpQrTw6Ik5DvKZht17jew5fSqqmoyortusl01gTa4eSEqUUURDStQ37+xWTOGQ6TvFUizYF7WGNaQ3jk0uEFOjQR0URQngIHLIrUWGK1AolJQiBjkKEg3a3Ij4+RjqNHo2gaXFNiSkq9L9sVBlnaT0fioy+zAnKlvtVweT8giTSbB/WBEmMNR1hmqIc1ManNpqiKPF0yNPLc8qqRglLHHicXcxZvn/Nu9sVfXrK4+SI7W64aTIYDAaD76chNBkMBoPB91bvAASz+ZwuX3P17g3BeIztKhJPsZhNoXfs8g1+qijyA6vbFWEQ0glLZ1p2t/ekvgapaU2PdI6mKAnDBM82+FohdYgfCNJRjCkr0ufPCaIE6zSit/T0WK2J0hBTbem7FuEE1va4qsLzJL0foqKQ+XzO3XaJaEqKuys86SFkQFlWZNfv8fsGP/QYnzxGtA4H2Kqmz3ZUZU0QaqpsTXp8Su1J0nTGvQGp11weSTpRsFkvmR2Nub2+QXkaT4NzhqYquX1/y0cfPeFkEYKQvPzdrwmimHK/YT4dIZXE1Q3Hk4gub3j5zbfsdjk//eEL7t4tuXn3wG6zZ323ZV+USE+Tpgl+GNN1hkD0FHlO27YUWU5saq43Gbp3xFHE45MFkR8QjkcfnjZZiy1zGE8QfkjXWibpGJs9YFqQ2kAQ441neJ5DagvSBy/AT6YYY1BK09TNhw+ia7BVjhel2L4n226Iji7wJhP6vkc0FunHqGSCEYJmd2CzXLMta7LW4EUR06fPmUwXvL25RaQ9UmlsX+KAzlhGkylRFLK7+gbdZDT6jJ0eo2VMGGoiDCaIEUmCVD4g2O4z/uP/+Q/sD3tmz/+co6M5yz98yVffvCI9v+Dpn31M4CmiLKfZrcDz8MOYKIwo1hu6DtqqYpL6KNGj4xQrAoSWOEAHIeloTBTGFGXL0SxF9o6mNcwfPUKPjhFSooRB+TGmaZF9g/Q8msYQC+gOG4LFKdJZPK3xj46xxhEEI/qmIopjWilxDmhK8u0a6xRRmmLrDIHg6m7FcRjR9Ya66dis1xx7Gj9J6NqOujG02kOKmK7cczAF0/kp8zjGk4Lq/hVfvNqzzDqsN0GuVqRyio6S73DSDAaDwWDwXzaEJoPBYDD43tJKYuqC8WjMzfqG8XRMMptTrO95vVqyDFM+ffFD4pMpZVZxd32PosfDQBSxfyixxmKUIJSSKPBpqpp8n3MynlCuHzDOIiczoqNL+iJDNDnBYoY/miC1T98UCD/B+QlCOOpiRzoeYXvJturo2wZX97Sdpc8KtOeTzmbYqqLYbDB1i0ymTOZnWNOQXV8RB4rQ9riyRMYp2BZbQlka8rzHl45qcyDwfMZdBmnMrbXssh0nk4Lk0YKCgKPFObfLG6KFz3QakO8CegRNZzlNx+QPd5hsi8IxuXyMCiKaomUSeKS+z5v7a0JP8/zZE46OzwkCj7puuL6+xdY1Ssd4no+nNcJZ4iRGNhnWGEBQ5iWrAqyxpKOEy+MZqreIukKGCV4iccbgBRFKSjxfo4IQoRQimUFvULJHaEUPdG2DF3YoP8T0jr7KUX4IxuApgWlajO3xFuf0VY6IYoLFMf7ZU9q2pcmWqHCKjmOiJGW73VDVDZ2QHFrLfnvgrGiYWsvTywtuVisOmw1G+cSTBQ95RxQlGOfIlu/wbIMneor9hjIJ6Bnh6YCyM+AL8rJCY6nKEmMMbR/wZlMz+9GIb9/f8O7qivTRE86fPEZIQLS0bQ2mJ418IulQQvP6YUm5u0fpnNpBbz80Mh22D3hpghUe8ShldnmJ0j7j8RgZOvqyZ3R+SXz+HOmFKNEjrEEoBcpD9CFCeUTO0dvmwzcdRmB7OlPhxQnefIGzFpdtEa1AOgjSMaa32MMefzSi2ue0jeH9aseyqPnJyTGl6FFKUxYl67tbZk+eY50E0aPkHl/nHM1Sbl9v0GHJJI7Y3N9gbcvbmzXh8TMePf+UrspYLZcoz/+Op81gMBgMBn/aEJoMBoPB4HurzAucEAip6Sycnl+w2+w4bPeYtmVXPPCy/xY/SZiG8kO1rRSU2QGlPZLQJ5qm5Ls9eVlyFEZs9nvm6Yimqul2O2RdopuWAIkUisnZY0BT1AY/iUjCCFNVmP0WW2cEnsQ1NTJIUdaghKQrK4osI4wCatejPU16ekY6nbG/u0VFY5LTM3CG/buXrG8e6AwcBTF0NYoe5weMRimru1s26yXz8wtUnOLjsPsdl5OUqC/IdiU2CfFDwXk8Yt105HclfQdpmtC0lirPaLOYts5RrkMKS1ccaIqUQAkSTzMdjxmNpxjjODk9xwqJrwS36w2bhw1pOiIIQ6y1RFGEVhJMS9cZ1usdURSSb7b4Guahz/EkQXcd7cOGvGr55AcxWknC01PwA6ztkH2LNR02iFDpDKE9uvJAoD9U8oowxJoG50eYriV0BmFbGmMQxmDbGpGMsV6EdQ6ZTEmf/4TGyQ93Qvz4Q+NOb+hdz37zQK8UHYK8qolGCTKMKYqSSRTy6PKSr9+84WG1wk8n+EmKXzVsl7d0dUmgJTiDNR1VUSJkQG3AYRhNZiwFZPsdWXbA0z6Ls0vK3uP99Q23D2vE8Tmnx8d0ZcFhs+Hio4/QgSU2a4r9gaP5jO2uoOkOVH3Gps2pbccs8Lm+OlC3jiiJiAKPVijCICCIY7zJhyYmLwrQQYiXjPD8EK1AOEvXWqTXIvsPWzQoH+EsWglkEKP8ECkF0veROsR05kMVdV0iTI3sG3rXsfj4B6xef8t2d+Dqfk3ROn7+o884OrvA2o6buqKLInohMGVBLyRh9KGGuW22KCWJQ59xHOKkZnx0RrbfkSwCXvzkL9ntdxz2e5r9A23Xf9fjZjAYDAaDP2kITQaDwWDwvdW2DWWRky5OESr4sJUgHHEcoZ3FyJamzdhvVqgkQmqfpmnw+g8VucoLyYsKKwVSSnyl2BqIlQRjUH3P7UOGKCrUYcv86BixOIYowUvGxJGP6BWqqmhW7wmOT/ACH4fDaUXU9xy6ht5TdF2L1BIjBOF4hIoURZ7z6BdPqPIGIzVRGJKkIeVqz3Z5Tbnd0CuJ6R2x8InGME4S7t8VTNuaHoHtSsImp3ooCZTChaes9gVxZLB1DUJQ5SXa98GLkc0BJQRXr16xmCTEUUQcxxy2a0aTCU3fYdOeuikZT6bE6QThenYPD9iD5ebqBusEjYUYxyTxkcqnKBuS2Zi6sxyyklgJpNJ0piOJA2IpsVWLThLKrqba5eTbA8euI744gyhFJmP8rqMxPdoPkXGKlo7etGh6TNegkhFqNCfuO0R9AOXjhIcMBcr36XtHnjckQtI4D9IjzH6PKXN65WGMxWkfOZkxOjlhtXpgnxU47XF2evrh9+sMoodFGBJFMXl1j3AFTbdju92TpGMapRCmha7DuR4lBdLzcb0ljiKsMVjT42xP13Scnx59aIAJx1S2R6QJaW+5vn6D73lcPj7n9dsb5tbgpwkNlsr17OQB5Rs658idh6lyXl8v0WgiPyHbrdBJTWmnnBy9wNcSP/SQ0kOHUzzpcEIheoP0fPx4zIdiqQytBBiDseB5PloLhPaQYQxS49qKti1AhRCNcELj4+iyLUJ7EE94v/xH9kWDSeZ8cnrO6ZPHJIszqmxDc3XNwXR0tse2FdLzqMsaX2kKxqjAUOY3mO4d6JBRmiD8EEvL11/8hqZpcLZjFEW0dghNBoPBYPD9NIQmg8FgMPjeaqsSSU9b5jx6dMb7Vy/ZbXcc9hldcUA6x2ziUxc5uTP01tD3EPveh0pcWYFUBFqj+p7QD5hHwYdtjKJEOImfjPnj1S2uNYxmJ5jDnnEUoc0Bt67RF88xXU14fIp/dIzwQly4xxiL9AUmy0jGMW1eIpTCn0yR02NE3hKbHn90gj5KMF2HR0vw+BHJC0l49Zb6sEQEIVZ6BEmK8kP6tmI0GiO8kM5YlJD0hz1aF0zOFuxFyOTkiMpawllAcG9Y3+6oO0ccBaS+otmv8XtD6wnSJMY2NZ1TuLYG4SjKnukkJByHFJslxW5DW1d0QFm3hGGA5/kkoUcchrRdS5yOoO8/VCYLwfZQcBZ7pChG2seWFbPZhNFkTjyaEqZz8u2a+9ffsHA7xPEFnQfpaI7qO1xb0/U9nnAEcUTVVMggxDUN6IKuzvG1xvYWh8APfLomp+/BU44gjOirnB6BkA6hA4TWSAd1teawuac2HaUxtELy8fOnnF+e4WuNFwQ0VYXWmjQZIT2fq6trTk+OCCQUTYupG6ZpRJT4hL4iiRNAIBGEWtDZCte3VGWO9n10OMKi+OyzT/DHM/7xy1dEnqO7u6HxAt49bAmKPecnx9hGEngRvZPsbm9oyo591rN+2CO6EuEEx2djbF6z3W5pi4rZ1HCXpjw7PyeIA9q6RXohQRJgm5q+72nrFm8UoHyNNOCUxOsNHg4pBNrXONshsOhkjBrF9J2hbS3K92nLLQiQ6YQuO3D79ee8X++pCPjxj3/AxdkpOgwRWqE9ODct3eYAzlEWBUGoCQJF1Vn6DiJl8D2f5WqN9CPqpuFoOibfPrDa7Lh8+oJf/urfIIWgquvvetwMBoPBYPAnDaHJYDAYDL63PN+ja2oebm94/uwS5xwWgfUCms6i+p7JePKhDacqsHWBFArTetRZyWQ6J4li6rLE6yy210RhTNMaGj9kGvpMwgBfepRthXBQv31JmD8QPH2C9/hjZKSReoG/OEFgkEJifA/XlPhWIbMWS8vk5IRsl6HHsw9HSostTilsL7CdJQwjhAzRs2M84aH8GMxjKuswFlbv36JbGI8SxotjrLEkcUTZQpKOuXr1ljj2cYGhbjQEIQEekdQ422M7w64q0eOI0PcJHAjbIXEkaYTQCZ7WuHqPH4SUZcFsMqU7CF7e3DJOExr74T5JGEQsZim2dyAVsR/Q95Ki/vDkw1cSF/g0xnI5jrC9QwNREOAnCUSaIBkjleOrP9yQzjqa/pa8qUh+nKBGIwQe9ALrJFYlKN9DjVK0NLiuQNLj+z7SC7Gmw1UHhJRYBzLwcEoRxBH5zQ2eH9GNffoqp9w9cPv2FZvNmtYKgtGEZ2fPmM8XTEcBUZqgfR9bVbRZxjxOODo+5c31HfuHFfPJmEh63FcF1hqMbfHCBKl90iSl3d7THFrkNKLrLEr0hFHA3f09VZVjnKWUAWZ6xOb+jtjTEHiEylGaFnyFL3y6Q0GbN9BWXC+X3Cz3ONOTegFRkOB7IeFYU+5z0tSnakrWt6+JRcH4eEo4maJET5tvCOIJzvbIHqy1SKkIpwu6qsB10O9v0aMR/vQR1fKaIJxA39EjUKMRqrUI52izNcnJMVnZ8frdFW+/+paVkfxX//2/5dmzpwglEa6nyTZ4UUAQeCxGETWCeJRirMH0jsiXVJVkLCpenCdgdtS9pms7TFMR+ZKziyc8ffqCLtsynkyQwn3X42YwGAwGgz9pCE0Gg8Fg8L3VWUfblChtubu6IlAOTwr83mGUh+9LRqMxzloOeUXgeYzjiLZuSNKUoqqxxlAeDlzOZyipMaYkmMyIo4jj+QjZ1ly++Cnbqyu6dku5XuLKA7rvCB49RiBRUYoMY6SymLwg35VE8YTAWeLFMa7K8KKEJBwjoxS8iGgmP9zQCFJElFBXNUEUIoAOH9ITtJoT2o5iu+Xk0RPKskZomC1OKJd3uEOB6luSZEQcxRS7iuTpCWXb0FgYRSGeDnE9tE2N5ynqqiCIA9AeQegjXE8cRxz2NeV+i+cadsWOtpzgSw9lDKM4Aieo6o5REhNrQVHWxHGCFJJAS1pn6buOum5x/YfNhVEQEAcegaeZpjFBMqErLGGYYq1gevGYx3kNTnB8csbbt2+4jl+SXjxifvERVA4Ph0AiXUtXbmnDkDSKUb3DCWi7FuV6qsMBqxUynRALich39E2BP53jrKKvSuqu4erNt2yznN6L6T3N+aOnjI/OiAKNMy22LunzLUoFCKeQbYuWgueXFyzvb+l6x9iTtPMjTL6jalvcKEUpyXZ1z/79Sy4vLyi7e7aHkvk4YeT52O0Wawz/9J9/x9FP/oILZyDwIUmZTKbs7+9pDxX2TOKwOCUpmz1lV7Apc4Q2HI9DjsYj0iQhOT7BtzntwwEtJKeThD/84QsevAP15w0vfvhnTOM5om3wAKV8cNAVGUpr/KkiSEd0Dzd02RItS0ye4EwDElSS4JoCU23BG9GWBVb0vP3Db3h/t2TXKL5YHfjLX/4V89Nz9NEZvnR0myVhEtPkGU5obFuhpUextcSzKXWR4/k+oY7oG8c06jhdTFhn4AchSvb4wuHouP/6n8mFYTSd8Iuf//i7HjeDwWAwGPxJQ2gyGAwGg+8trSV935M9LKnDGIdEewGeroiTEePRlDBMcF3DNEkQpqXc7/DCkKrt6XvLYb/mIk2YRTGtrYk9H40j6muyAzgVMepKRkmC7EMiKXFNRVd19Nsd/uwCEXofbjYs5iA15uEAixN0nnGy0NRNhLWGYAoGEELhZse0xqL7DqE0Mh5ji4xmv2f0aEIrNFoLpBX00kc3B8KkRbQV7pBhb5eIXsFRTNlY4vmUIq/gkCHSKdI2RLbF7w2B/vDsou5qnHJgDaXnk6QxOoypygrbWTxCtsslcRyRTH2Wd3eMPMHx0RFV01HUO/ogoOl6eufwgojK9ETWMkljhAt4e3+HAJIg4GgcI/oOX2tMY+l7hXCSyWKGiBI6L+Cjn/+Cuz9+jtm0+PGYz3/3O/76IuXm6huOJgvU5IRqm+OHIUJqUAU4iXAa05RY5SNUD6HmcMiYRhFK+/RC0HsawpSmrigeNrz++ktevb3D8zw+/dmPiRaP8f2AgA+bFKYqsaYh31cUzQEZRmgtoW0ZRSHq+IRDdqDWHrPAo5UptpGMRyNS7di//Qa6jmx/oPYcvRNYI0jGMaZtKIqcYDLj0cUZXZGjvBARhjhPkxcFbVGyblvCoKVp17T1iuu7B7ZVi68VOJhHCU+ePmX+wx/x+qvf07SGuoOy91g8OuXh4Yp/vvmcu6bnZz/71zy/eEK+WqHqLaJXTM4f0WUbdBojAPoWUx4woUQXG/q+Q6UJIvCxbU6ZFehZzH5/w82Xv+X6ZsnOwJu7PX/+lz/j5NlHRE9f0IURpjdEkwnV+yWNATE5xW42uN4itUe93yKVIj+U+HGIFCGH/Ra8Y4Qu6OsDSjnaMsOKhrIuOHQt99st2WH33Q6bwWAwGAz+C4bQZDAYDAbfW8KBaTu06GmLHbusJJmdMZnOKcWBT3/yl4w9w82rb1BCU9c1oqkZjadsTMNuv+XIl8RRhGkrrLA0vWCcRLR1RjA+JRylNPmGujRMFmeMEgtVjfTHlK/eIqgJnnyCd/wIpEUlMSKOcWEMrUMrH9+zVD1o6xBdzd6AF8XUecXIl0jXE2kJKsGFC1o/REtJu7wmOLlEjCaYviG1FZube5Zvr0mOLqm8FpGESNOgbEez2hPVlvtqzexkwaGz1NmB2SghN4b9ekXVdQghmQc+1kGcpFg/pt1tsE2B/y/tMsX2AZcfCBYLjs7PaazAOkG2F9R1h1ABURQT+R7jOCCQPYGzXEsBDhZxQCwhcArl5IeGHS2J0gm9Vowmc3rXIxFc/qu/ojysiLYvmYQe3/7mK8KjCZEn0VFKH0pq7YhiS1duKco9STCn2q5Zra+5/PRTOi+hdwLdFQjnkHGCNQf29Y7b+/e8+sPXtHlFUTX87IfPOPv4B4zGc4ztkVVOt1/j+gonwQ982rbF1i2tlCTOkdc1aRigvDn3RY3veiJh8ccpcRQi6pLt/YpD3TGuOibnmr43lGVDJv/lOG4SMRqNODwsMb3DDz1urt6i4jGPz8+p5JrSWjwvpjIbXCc4HGps2zObj/lXP/6EH7/4ERfPn+OnYz598pSHq7d8+/svEFOVAiEAACAASURBVHlPpx3h4wn5uze8f3fNq/d7/rt/+9/ydBGRb3ccH51SPNxim4xe9Hh+jGtqirLAG3k0+yUiGiE8TbV6j20b+tGCh/V7vv31r7n+9j2HrOTdLufjv/glp3/2C0YXz8mVT3v3lnB7Q2VbbHagGZ1idELnRdT7e3RT4Yc+vZBEoxllkaOk5mpVgNchHOz3O5qmojOKvC3ZbXcY0zFKErRS3/W4GQwGg8HgTxpCk8FgMBh8b0kcURTR4tjlD7RNR3l7zdnZBZ999hk/+OgxJt+y8gI60xMGEaHvsc0KNkVJYwzRZMqhMSjPp+8M5/MpvlD0eAhTcf3la54eT+ialrvPv6VLAs6ePMULgP0Wt0+or98SeD5yfolOfeZPj+mswioPqSR+KDBtj2xb0JL2kCNMS+gLXNvTNQdUkCKCEX0Yc78vmEYaKT36/I54MicrBIf1km++/oJ0dk4Wh1hraPOGMPTRcYg/SSmNo5cddZ6x7T12ux1lWaB7OH3ylGK9hLbC0xLnHNF4zKFTzOZHdNkttulIo4Tq5haz3dA+rJFCsnj8HE9+CEBmozHaD3BSIpVHWTUkusH0Dk8rfCUZhRG+AiF7jBP4yQh0TLS4RGiJVj1Se0Shhz+boeoxhzc1SZlxdb9B7UusVaS7jO0u4+RiwXF3QmBrbK/pWkmdLdlnd4zzI5yp8GgQ1qNvDlRNTWl3vHz9NV998Z5QSTaHJS8+nhOdLJhePiJUgnp1j5UtfVdSbe5RYYxKRvQGmkMGfoCnFbssJxklBEnMsRDkncGWJaL3gTF31/f87u2SReSTxDFFlqFUjFSSd9e3dD34cYgxPddv3hGkI+psBV3H/JEiTCPO5hdoVdMIH89P2Oze01mJLz2eXH7CD3/+Nzw+P0NoDz8Zob2IdH7O0elH3H31JW/++BVl1nISJ2zblm83K/7Df/xbfvj0MT//7DmFqykOO4K+RSpBtrsiGiUIX7K6veHkWYhiiqkP9CInz7fk6xt+///8HU3dc3e/5CGvePyLX/EX/+5/IIxTOtMgdiv6Ys3qYUX8L41CXXBC1RYsDzWhAUtLLzXO9Zj8Fk8LnDWcHs35/OVbOieYJyGb7RY/SsnLAtkbzmKP2cUF48XJdz1uBoPBYDD4k4bQZDAYDAbfW1J5OBR1WdKbjrapMTIAz+Pi9BThHLXVKD9Cdns8rSg7RW1b2rYlcYansUejIpIooit7Zj5cX98gPcX9ekO+39FVOSfjhKpsWK8OBFqzWMw//PEXAucczc0NLs8JnzzDCxKKIsP4AVop2rJChxHCc5iqougqQgumrFA6wYsm4PvsO4sfKDqbYyrJLDbs372keojYFi3vv33FtvXovYT93TWufSBJj7FthBdLRosph8ow9j1EErF7e0eI49AL+qYiL3PGkxk6iRilAScnx2RNz6vX77i4vCSWPmkEIXCcBnjJGfTQXF1RKck41Kw7gxSavG0JA7BtxyxWRJ7GdYZZ4NNEAWkYoIWAvsdPx/TBGJVOKFzDeHJEF/iMZ8doZajLHW4yJv3oBVNTss4L3l1v2W5ykN+QLBLW62vkZx+TegGBHxFEAcv7e2wnqfKaKIjwwgVNbSiXN9S24vXDkl//5nPiGA6Hnmy1ZXp+zum//m8YnzzCrm8/fBMPO6QXUFuHlCE7A6vdGqqKSXKG8T2KrmUsRx8O4QqB05paSqSQqK5FVCXPRiFJHLKvauKyRkcjmqahaTtGkxkinLApK/b7DXa1ZDaJOZpNuLy44GeffcSrL/8znd3jnfS04Q49clgLR/GEnz76iJMgwtMBwXiMjlOUDHC9ZXTxGBXMaHK4+rIm1BXN/o7zUcLX13d83tZk2YaPT0dczqbEcUy+z5gIR7G9x4qabL9hYZ+hZEeX3bL6+g9s8o73Dxnv3txydbVFjyd8/Mtf8YNf/dfQHajev8TVhiD0ycua26v3nM3mlEVBp7Y87HbcP6x4dn5Cla2pWouKRghhaMs9qu8Jkgmz8YjWWF7d3jP3QEgY+4qzyRStJJ1SRFH8XY+bwWAwGAz+pCE0GQwGg8H3Vl2VlEVOj6SoDU3T0NqaQ90yv3xKKiRF2fLk5Ij8pqDYbpjankMn8OmZ+JJU9pxdnLEranB76rZB+D432z1502OLjjfbFUfhgU/mIb7s+f++eMePzw4sEk2zy5n96q8wUpO/26KmY/TUJ5yGvP7mhvj5JV1uUKKgLQtaappuj1IRSgc4NDZKaWzLrrrFvPqGJAwxu5wi9OlMxc03r7jblaj4kuPHP2WX77C+oKtBNgXS9aACGtsjnMNXIRZJtXnAdQ2PZinfmg7f08SRz2yyYJR4jGZz9nVLWxdcv3/D4nSKMA5ZFmhn6eqWrjNIX3O4uWJ0fkEaRqggpD5U1Eh8z0ch8XWM6FsiSh5Npmg8tFbkZcMmK7G9ozYtQeFhmzXe2QluJLF1Q+QFyFRjnaKcjpmNxxhnuL47UJqGt7dLCAT79QMfXR5z+fQ5qqm4vbri0x98TOyNMban27ymayzVdse67fjtF99yWO/JVhZX9gSLJzz5s79hqmKazQOmyFhdv2e9fqAwcLevWL/6/YeK4s5werzASUdvOjwpsa7HlRWJp5DWEUxmjLQl6FvG05TTcUypI8bJFOUF3OxrkjjCc3POn33Mtqw4LG+omoI4DhG2ZTSZM45nfPGPv2F58y2fPJpA26CkYX7ks5glPFqcc3E+QtQlJttDbynR9FIxVoJ2l9Nle05fvMAYg3rt05iGq/Wa83HC3SHnq8bw8PDAk3nE6fEpz44WOAyir+m6nJ6erq2Qdc7D1+94/+aO213HN1+/pS4Kji9PePKTH3H6/Cnl6hvqNxmzOCJb7lgeasrGcHfYs7xa4pAEZ1B1LdL3ebOrMYWhFy355g1JnHI+SRBS4xQgBPuiwMMyTUKclEzPj4iDkPnTT3j57or9+v67HjeDwWAwGPxJQ2gyGAwGg+8tawzO9uRFi0MCgr5rMU2Jd/oY/7Albl5BIDHjOVd39wTOMPMjRtGUhe9IJiOCdEx2v2bc5rxd5Tx59hHPz56xWd5yWEm6smBbtexZcORZRLnl97f3/M1fPEbS8u7/+gfGH72g8iL6Vy+ZPOkRyQzPtRyyJfl2j5aGaJKyvr4jSY+wKkD4kO92tPmS0mVoH9x+zcObPeM4plATnPQ55DmLJ4/h6GM264y23JD6muT5c9qmQTqJ1CE239F1Hb7t6HtJKAUWgbMtp+OE0nScTkJmx2OCIKA4HEimx4yTkIfNnm4acxYH9NuS6/sl682BQ9MxTiLOHx0TTudMJ2NQiu0u57Dd8OTxE8o+QKgY5WuipGI0ijgUJduyZZROSCYTqg6E56FMz/4+I7tbMo5/z/PHR/gXj6BWpLajlYIyClnfdJwvIrZ5T56XNJXh1ctrVNcQ6ACVHhMHGtFLnGmRzrLNMx7eX3OzPHC3z6gOe8Z+TNE67rXkhx/9GA5bfve//E+0KqToDLd397y9WdI2NZ2xJD7MplMmUUTnerJsD51hMhpx2O2ZJzFGKDzbIIOYxJMkvsJzHednR+x6xettzW6/YxYnFKVBBwHJfM799W9pdlvKpqbKMmwzRYt3iAbmvmK/eiB8cYEwglD6HM2mfPZxw8fPz/CDPbv7K/KVj7c4Q41OuTia47ZroMfUBQ7F5OSMIt8zaZc0pmGuNF5Q8vZ+zUGE/Gb/wMm6YHma8fPHC/piS1GVHM8n5IeCh82O7XLNpnJ8+/oWT0OrPY6nR6jdgfU//RMqjpklPldfrciznk1h2NSWTdsReookjjlpWx4qw9Vmy8t3b/Gl4OnxFE84jjzJOPYpTUvzsMYYS55X0PdoqRiNEjoryYqKk3TKo8cCb6gcHgwGg8H31BCaDAaDweB7q8wLlvf3CKk/HIXtWpQEr60RpiEaj5FK8XbVkjWgghDbZJzGmmkScKpbjlJNGygmQc+b6x2NddT+imdnPk/nE06fzOiKHe3hQCd8DuuQ1glU3PM///Gef/fLp+yXLXp9x/JgUG2NnE7QXY8ve/74+St0lxEpUDvJITNMjk5ZX7/HGsN2u6I3OxZnc9Zvl+xvb3GNo5yeICdQtzte/PJndOkxf/sPXyBu3jNTcHR6wtnTj9jvD9RVjetAJpbQr3FKIXrBfByBGaECn3g2o24KotDHao/3N/c4qZBexsliwW6zw7Y1XiAQQcBsvmB/KKnLGpqGT2KPIA6Q0qesayaxhycFD/e3nB6fEYdzlPSYuJ62bdFdz8V8hNYztPa5nMwIpjO07/PmzWtW19+Q7pa8X2/5KLcEX77l+PEp9XaLJxxJ4NhmBYERnEQpd8WB0+OIqjJ0QtCWB1Q8oi0eKDaC/XbH/dU9Qih833EoHlgsJtwtaz5/uyadTSl3V3y+Knj95j3XecO2bgmEQMsP9zWmcUo4PcK2hne7e2ZFztF4jPYipGmZRj5ROqIRgr5psIcDOzrGJxOE7yHCiKnUpPcr7rd7lHfOdp9jexi9fsNFHKHnc/54dcOhqtnbLaEO8C/h5atvsaImjUKENCgrWExHLH51xHQUs3r9ktVmhes0jxdz/O0d690Kc8gxdcHy3WtcEGJrgxf0LOYLsA13DxuezVPGoce2agm9lLuHPR5Lfl1mvFgkFIeWcdxjjKSyId9c71mud9jO0gnJD59d8OTpCU1TcltP+ekv/pzizZeUpuN93fLtwXC73jGPQ86jGdH8iNdlx//7+RestxuUcCS+ZrnpeXF+yvz4GExBHMekU0d/e4+WAs/3QCjGozGHzZbmsOH2n/4T86fP6dr6ux43g8FgMBj8SUNoMhgMBoPvrb7vUdLD8zStNfhhguhbzlMfvbkmG53y1dUD76/e4rqGF6lHCHyS9iTzmMRLwAkWI5+vu5qsNZwnIUcuI8hviS4fMTt/jF9umT4XBIGmunvJ2z82/Pam4p82BwxX/PDxhEdPPsL8/p43v/sDdeB4+pd/DWgUls12S2IzgumM8ewpxcN73nz7RzocOgw4GQv2b15y9/I1JT7CT9CjCY8+vcCTlyQXL/gf//bv+f3//fd8Ok3wnzxB+j6bvGWVNTzc3VEeNnie4tHRERKJ9DSxABEHzBYjji4WtKXi6u6BrOvYZyXjUcJuvWIUx8ymY6aRzyhJmD06xumE9f5/46kvGU3HjBYz1usNRd0hPJ/xeEzbWeqqojjs0NELoiDEi8aUWYapehQBCItAYLqOyDpOzi5wQczN/ZrPlxWVWXFv73jsWfbrPdpXOCFQDspDxWQ+ReDw4imZyTj96Cm7TmHrjJPLp1jPcPP+DcvVFk96pKfHiLxkfaj49bcrss7DWENEwe9/98+0Xc+u7CitRAqQSqEDj4vTCx4/f8HF6RnV6g1ff/kHyqqG8YR0NmOaH1DOQhRj8owO0AJUU2JKzdmzp5SL57jlG+aTGBeEvMk6yrKkrlrW1vLo009wozHtueDtZkdV7PCMxdYdUofMjuaMAvCcJVkcEY8jkiCkWa3wVcijZ0/Z1xVlBNX+W7IGuhykF3C1v0cYQ5tljJIpRGPCcc6kOHC/23DIKmorSY9nHI9j1lnO+WzM3abidBSDga6F3WpD03REXsKTpyecjRTC85gcn/If/u63/Jt//+85/sEx37z7LV/WBf/rV1s8L+DJdMSjozlHF0+5dz7/6e/+D/aHLaMkItL/P3t30qxJdtjn/TmZJ+fpne881FzVczcaIAgStBk0FaJla+ew1t77C3klbyyFTTooiSJDMgeAhEgARKPR3VXVNdy6dcf3Du885Dx5gW3vuxf5+xD/zHgi8xwdT1MwNEmtKKxHQ7qbHaRjsSEtjt5a5FmGbqhITWdrcwOiFdZmF1VqqEWBbrrf8to0Go1Go/HNmmjSaDQaje8s1/MxTZMiyzANizAKcXQDXy149Yu/pfXkU44ntyzHQwzdYG64POy00AOPdreHU64xVRUZeIgaOo6JISqi9RpXqmQ14G3iOA6ep2K1Je0HOt39FvbPT7h9LfjHqzUnZY29N8UNYD6KmHzxlFWZY/busohjVM2kLNeUccY0HjKaXDOeXjFPKu7vDpgM16SLGctVir65wfaH3+fwgw+YXPyaSJj8pz//a37yNz/jkauw2dpB0RzezkJevfhvnFwOicI1m6bOvV6H2LIw+32EptLyHfL1lGK+IFcSLNdCoYKqouU7FGXNcj5HK1P2tvbZCAxajo3wBszCnL39HZZLi/agi5BwcTrk+GbJRq/N+y0fU5dIpWaynoNjYmoOSr0m1ySKpnM7XhB4AbgGUZKipQlpUtLr9Png0XskkwWvowV/+/UVvpaxqwu2HYeHOxsUmSAqatQ8p9Wx8QwfdSUYnl2xvQWdwKTOY+ruBlqZEA1vmSUlX3/5S25mIfPVigSDrFKw1Yo0i3D6PmlmsBouSfKUsqoQaY5MSxIxo9CGSCHQohjfC7BNHakb7O4fYNUJl5cXyDwEXSPPJUWyZr4MyZOU1XzJ1sECUwrCMGL/4A4nL26hLLHKFGVd8PrrZyzihNp0ePTRD1gef03bNbA9n9vFiv7gAAcHx6iQisTv7qMsblE0gzgvWE9DcgnpfMTZyTlJBlp3lyJXKYSOmkTMrq+xvZT7730fUynplClpXhKnBVWcsh5PUKSGLyUiiun1umx0AjSlJg9DWp6Pabi8t+NTJSvywqJ75xFfDhf852dn5F+9wthz+U+/vuH6IqfWWtzbazFwdEor4GVccnr8lCpZ0wtcfNPA1TXUqmTDMdk2VDbbLeoKVKFiZXO2ex2Ojt+SpjmeZRG4NollMFzPsR0PRddQqb7tuWk0Go1G4xs10aTRaDQa310C8qKgKAryqoS6xjR1yizl8ugFw/MLHM1mEi1J1yUnhc/mxgM0x6bv6bSNHuQZSRmx6RhcFgVvo5SeqWHa0I1yjkYhD7oSI5xBUaJzTX47pmPDBy2V4ULwxeWK+U/f8PGOh1QKTkZLrr8+4Uc/vsvR5Ywn+wPagU+hOwjD5uyff8blNGcjMFhdnZOqKr1uH9XdQvZ2UIKAWrP4zeen/PTzV7y9XuFLCBWbf76ecv1qyHA8Js8y6qpCrSuclktiuyync2zbx9Etep2AQA1RpIIlC2LToVQzJqMxaq0gVB0BSGokNd1uH5Gl6GVEKwsRjouiSQzbYLxaEmYlQdCi3RtguAG6kXN6coLW6aHZNhqSrKxREXz1+ojH+/fIsoTl9ZplnLJMK3z/GZoqmd6eM19NoSoRBYyLnJso4yrOOFlkuFKS1jodQxBVOb1eQCYU6tk17ZZHlWXkScJn//wFl9M1o+sxr0+vyWuVsKiJkwKhCnRLwWpL3N0ttO4BVtxm8uWfURQZQggQoEhJkoTE6wWL8ZBB4OLqEhEnuIGPmcxQs4houUYzLeygTZppVKLmKimZRzmq1Lk8vUBKldZGn3Z/QPl8RMc00NSKjq7z9nrE+TJCdzx2PnYZvPshejKjpsLUdDSAskBKHcd2MKuCshJkWYWoBGFZgaZQRgkGKsdvXrM8OkfvbPODP/wTyvGYLM84e3PC0dV/4eOPP2Hv4B16tUTU51yVOWkpMEyNnmvT1RR2bQXbsjFMm3g1o86WvLs3oM5ijhcRgTdgPFrzb//rL1kuZzz96V+wv6NzMoy4vcnZGQQUWcEwr0muLhFZyH3X4L///gcMdnYoNYcXb46IlwtsCY4iyJIMR/ewdZ0DIyPz4GU7YDwZU+Y5IlrTcWxeHZ2zXif0tyvyPPuWx6bRaDQajW/WRJNGo9FofGdVRY7vWizGEVlVErQ7KFXMaBWxXodUozm6pjPQVUZxznK1ZCEU9JaD33GxbQdR11TjJYGas61DXkik2+JVKGGV8WD+hqfnS0S/z2YroygvKU+vOHm24jyuMYuSTlVzfDPD8RQ0FO7s7TPOBP/xr/+Rg80OSqQRuW2OTsb0LBUpTQQh6wQECu7mNr+8jqhEzoNWSBgu+dM//TP+6q8/YzJPUKVOoRUouY1ltTm++ZokXKEKFVvX2Wm59EyVMIyJHZcszei4HvV8RpHEuLaG32pzuVQIk5w4SlmGMXEBloSylIxGI9LdPpZpUaEgFNAkVKrJ5XyN7di0fY+LRcG9jz9BVSysYsFmv4uQLl6lI6oaiWR4fs1et0O6XnE9X1IoKi2vw8HuDtsHDxCK4PyF5NnLKZNFiFrqVDIgLWacJGumRkEaF7QthWH+2xuJHvZr2kIgdZe2v0mehlycv+E3Ly45Hs6RhkGcwyJJqBG0tvb5H/7Xf8Pk9pqf/oc/Z7aacv/77/O93/tdTp7+mqu3r6kRKJpGXeQomiTLS5ZRSFpWWIZOR4OtrYrF9SXRakmYZoiiRnd9WqZKZUls0+DF1ZRlVvKw59FpefQHA8o0wZQ1rmciSoMnDx5gF7/CVCTb+3fYzCO0ZEVcZThqxVLkqEVKXQUotcBt9xGqguZ45FlJqd4yWiXEowhdmbGIMkzDZFqoPP/ia754dcv9x+/iKjb+gw84e3vGn/1/P+EPPv2Id9oDekVJVdZMpnOSvODNxTUbd7apkehViakp2O0O8+mEk+EVl8uQ06hm11rxj798xsVkxpPdgK2+x7/7P/+K4fmItm0i0pDOzkP27jxicnZOfnvM/YHD3t42ve1tlN4Ouuvxm88/YzEbUwcWmgKW56IpJWqdcbjZ4939NS/ziK4p0SmRrQ573YAwybEsG0PTv+25aTQajUbjGzXRpNFoNBrfWYZukKUpcRqjSB03aKGsK1ZxxNUqhbJilxpXlQhVMKlr3h69ZvRwm7rbQ9clZCW+NsVXc7qujte2qa0OZ6HF5kaL5dVLxhcrFi/e8Lv3dB78mz1KQsxnc34zifm8rPnQUsjTkr/78ppWx2Ohrgg8j/uB4NGGQ+CYXK1z0umQ3pM77Pyrf8lf/oe/5OR2xnlqM744pt9z6Tgaz94MefY3n7OKc8aTOaoCRR7zoz9+yOHDh/zuj/83/vw//h0/+X//PelsTM91eTJo4Sk1cZSgKlAWGSoatfxtyKiLktryCW8mFFXFMs6Js5zbWYgQUFU1plszn0wwWz6uF1BnC3RL5dX1glkJj7tdsusRgadx9fIps8rh0d09+ps7FHGF1HXUskRqKpZh4ncNzi4vmCwXRALGYczJeEw3jOhv7pHENZpuYxgZ0WxNljsgbdBVFlmKSomiSuZhRZ3O8foX9LsuutvF1hxUamK/T8ccU7RMpquUKC1QENiuTxrlHJ+OWN0uCGchpamzuB0hlJr9xw8ZX5xRVwVCVRGqimfZGIZOlq4JlBrKnGUNChBYFkanw+XNlFz97a8igamyWsLA1rg2NRxNpSgrer7NVs/n9HqCZWjomoehmtx57yMOWgGPzy5x9x8wurrg5uQYc3sThKTVHVAIE0mFlCq1YiG8NuH4JbeXI07e3rIYrzm+GfHBO3fYPNxDLyRmXbNMPufo6JS//c+vUaROb/cO/W4bYRj8+V//HS+2Bvz4g/dwugVZActVzIZlIMuKAo1yvULEEcK2CTyPfiE4np0h8hX/9OwFr2cRWSn4ahjym4s3SKBjGdzrOvzww0+588kf8PBHP+L51yd88e//D66GLxj4FrFl0Gu36W/0CcM1WRxT0sY0bUzTQklm6LqOKiq+/2CPjixo2zotywDNxfcCFD2nkBp5kX/bc9NoNBqNxjdqokmj0Wg0vrOicMV6NSNMYmxXYtgmpvBIoyWaJjFM+JN3Osh5zK/P14QFWFXFyVfPuPEEu59+ipJErIc5lqXTbXvU7W2WqcZ7XQ9Zr8HpkBslTycLgtAm/ec5669jjKzikSH4aVjx4I5D7zpltSpZLkNeHV/wu4+32Qz67G71MDtbWLMJ10clX768YXVacLkquZ6H5MUKYeggHM7mOZ+/fElWCgK3jQY82A9IpYHU7/Hwvf+Z7vY+g41ddvobFJZDMrliMlUI+h62ZeDYDpahky3HaHmKpqiYnsfNKsegpExT6rLAsW3aleD6dsrtfMUdz6OMVqiujpIKNM/lNiwIuhKxWpEVNaiScL3ms+evcfrb3H18B6dtU2sxGFAnv/1yY7DR/+1XBaKmLEuuVyHrfEqW59RnZ7S3DxmendL1OnjCZlkvWUcLihoUTSCVmr5jU9U1Iod1lNFeLlhrBgfbHko4o6hKAk3l44NtTi2bzy6WGMmaxXpJWWQoiuSf/u9/S1UWqNJAs1w0qXD02U8RyYrdw/vMry9RdY0iz/BbHe49eMTt6ApxfcJWxyGvK9IsZ2djiyyJ+eL4AsMwsXWJUUWEikK/22JzFWMr8GB/g4d3tqmWC1bLJaYToMYRO+2Aju+w8+M/YvXiJTkK9wYdfjY8YVYLPMNBtSW1qEg1l7qs0EyLanxDdXXD+OiUN6e3nI2mzNcxynXGfV+yHg6Z34wpb0Z4ikqiqYRJxOmLLziuNbx2G19Kng2vObkd8U7Px1cVTEPDzwuMPEGjxhaC7O0Zne/9kNDw8dSY93s2t/MJ19MZWaGgqzqygrYpudv1+OTONvfu3qWztU97K0BPQ4L1LY86HsNbwWdfvaB9dc2nrou+dZc4zajyDFs3MA0Lx7JZLm7JRI1apWx6Lax7d6iTNbZlUUvJLEwI0wynIzAM89uem0aj0Wg0vlETTRqNRqPxnZWlMXmSoABSSnzHxFBzyrVFUeTcvbPJD//oAY/EDX/ys3N+MtN5k2boRcLR2SX3P3iPtmWQuQFIid9uo+w8xs5q2npCkRrke/eQq9/grr/m7UWIUFT6lc3I0vjBA8nlUcrT84S0FFSKYMOUvLNl0TNhEcN0kjMorjDKlPsDj2c3GbP5DePbG9Iso6hhMoqYxDXrrCKJY4Sikayn3O17fHgo8fY9qs17dDce8LO//4ybz37B7x3s0N455Je//Cfq0Rl54junXAAAIABJREFUXrDRaeP6bSzTRBQxmqgpLYtMWpycXmMYCjueRnCnh+H53I5nvMpjlkjW6xjPMTA0GF6cs31wgOo5hDcjri6vEApcXt5wOw9Jipp39+5yenrK/e0BXUdBqSWGAWQJ0tawRUAn3WAzr1jUsF6sqZSaJIspRkMKVP74f/rfGT3/NW9+8X+BolDpNoOP32f09FeczSNmhkkgNTQFkhXEWkX/rkbX0VC9DUbTEZcXQ+briKNxgjQ8NlTJ7WKC07Jpb+1Q5jGWWmO7Ltr6hvoi5tHuYw4Of8hXP/tL0njFuq5wLQdPqlSWRWRamFLiGDq3YYZuO6wmIwxNxXVM2r5JNFsTxglt3+HxwMeQKvsdF1cqHF9cUyom3e0eehwhs4R0OiXobFGtYwbf+wErS+fd6zPOllPcQOdmsaJSNOLZhEixUSip4xWCioP7D/DvP+L1i5dkYYx5+JDeRx/Ar/+C5Sxhy9Lpi4pNy2KZl1yOxsj9uyzGUxbzFbYKC83gy+s5rioYaCqDns261nHSGLPbobA8nIN3KNM1+eUzFrdjxpM1TwKfBZKwBAXBnqdx4Em2VIEnNDb6ffRkSf7qBTvxlHvff4/lx4/51VdPuX37HE2U5MsRlgaDfpt+t4Pv+dRVieP7pMuQvCgxqfBdh5wMQ1PIq4pS6lRxhoJAk80raaPRaDS+m5onVKPRaDS+s8qiQBEC0zSBCoUaqapsdFq4js4Pf/gpB588pqudcffH/5qPd/87/umn/4XnTz9nPJrw+qvf8NEnn6C4FlbLpy4M3MEuZh1ixiOWlUZSVRx029ipiVErqHHFqtaZbhww3nJpry+o6jWrWmLpCusiJ8oz5ouITa9CW4xRFZdaFfS39/ndbcnnXzyj8FSuVcnT6yVxBtlijqlr6JZJXJb4psBWMq7PY06Hc66TP+PVr29RwjEf9DyeHDygc3CPjqkzfv5zbAWcoIfneRR5jmnp1GVKrZt88fqcuBIYwuDjgx7SNHlzPUHLdPQ7fYZhRa7otGydLEvo9NokqolYhYhoSduxUC2XQa8PQsV2HJL1nIvlDF/XsEwbyopKrxBajeM5aLpGKSRxDpbTZivM+OrkmDBJiNOUjY13ae0NODtTUTXIyxTPd4iHZ7/9naisWGUVWVbxybaLa2rc63fwhEor6KBt3SE32viXE66+OMWqEjzDoS4rJBDOZnhGhm1IKrVCDVe4hsXu9vt0Dh+jmQGjnecMj7/EM03sLKR885zDlkexs4MoY9IyJ4tChm9PGS2m2JZGp+3gOQ7LyQhLl7Rtnd3ONnma4kjB7c0E1zIYdDt8uVzQb7WRSsXZi6/YmC7ZPnyX9uMP0JYTWt0+tWeRKIJOu41FhlmsOL0K8a9HdOoMzbXwrR6tziYtW2d+dkZwd48ozAnVLe798UPy0Yjzp19idje5PjpB2W7z05NrynWErmvstG0mizWrKCe3DUS/QxK0OYsF/STBECWWoVOO5xh7m8SqTVdReNjyUV2fqdnnajJHWY6wC5W+7tNXddrBNtWiprVrotgOmVJSlhWm5/NDQ+ckUPBabTy3xWHHY7/lM+h2MAwDVdFIyhKFmjDNqdYLHNejqgpEVbCICnSpEts2dtCCsjkIttFoNBrfTU00aTQajcZ3lu1YdDotbuYr4jRFtUwsS6IbClqmsfXkEUqni9rxMbY/pTb2+fRPfo80fslf/eTn/LevzvlfItjXa1JhILweXssjKFJKdAxRUiYjWtWU2GixyhZEywU3pcZYQPb5DUqWIV2fTUcnLgpkAaNoRcup6SoVjlZgGYJUC8jCAsqIXUtwWlTYbg/fLMmyNYEKm5ZJpDtYls50PGY6ixjPoVRMTLvGm13w0Z19Hjy6R7fbxjJUfvBghwveI0sT3G6fIlpTFwmoCnVdczpacj1aUKqSlprTcjts3d3HVksuypjHg22+nuQcz357qK5a11S6RZLH+EWMU8XUNVhSsr2/hWsKRvOQ69sRQa9LlqfMNAiLNdJwUaSGqWoIYdHSAmbTCD8wsCYL8qqiNlWuLq4onYBf/vwfuZ7f4O8O0GTNZneXy6MTorxCVBmHvo9pu6DkHG7YdNwUwZpa0dG8Fjou3X6HHzw+QH87JMtCVLvGETbLKKdrVPRaHqXfx/DaOK0BZhBgiZR4cYOHim86tEXBQKlomyr9tkvaOiCcnTJbLrhZrHl+dYtIl/T3tvEcC6XI0TQNpcgZtH08z2N8dU24WOMPBrz77iPSNOH5l+f09/cYr2acvXhBexGyt/+IyfOXKKIkqEpOxyPijV38wKKtCs4vrjm6CRnzJX/0aBN9dE7300cIVSD7ffSiYDUbU4U39FONvr1D1tXQ76YkeU2l6wSWwuDJAS/envB2kvM77zzhdnLFy9MhZS2YXs/5+dWS7/mS1qBHrVnU97aRAw/DENQP32MzjPiev+Q2V5iMFpjrKZoQCEXystK5Swpnzwgef0BxEyOkR1nmqK0thOnS3upj2e8zG4/IFlO+d2effreLbRhUZYmqCW7DDEV6SBHR8l2yvKQG0rxgFJb43S5aDWkcUSTJtz03jUaj0Wh8oyaaNBqNRuM7y3UtWm2fXJUITSNer3EdC8f1UaOcIi+YzNcUWYy/vUApLyjXP6FafMVwkfF2OGEU/YJ/8Xifw60BZu+Qh46GnahE04x6uSRo9xBOQB2GCMtlocBGUWOGU1I1J/R12qZKnkWMwog4l4iq4r5v4OsqWAG1aWMpIHWTfB6jFDEGoKU17zx4zOdffYnIM8I4Y5Q4PG4PuOcqqLpEEzVSMzFck66pYhQFaaGxXqzQDYFSVezsHzIdjSDJSRYLyiJHC3yuZyG3szU3ywRdBaWtISqF4eu3PP3NC7QyZ+twi+1Bm9e3FxSzMVerhGD3kMDzWIyv2ev4hEWF17VYrUp+9nTMep2QJhVKXVMVOcU6Zrqe4gQuuqogFYe6qsHU2e4MKJOYCkH/X/1r9PKGL//rP/JsOsKVd/E1jUrdpNVziGYFujCwFZXdjs87mw6KFKwz0B0X07WRsiS+eYFm1jhWB8cwuffgMbrb4ej1EUWesBs4xFGKyMF3DTQRoucCJzZYnNySHhfUCB5T8smT94iiOcnNMbIuIE9wkzG2byGqgmcn50xvr3n8+BDHMXBsgzJT0EwLQxXYqoRSYTZZ4OgSt67Ijl8xD2O6ZguSiPHNiKyu+cWb13SCv+HRe9/D6XQolhPmuWAVZnQ7CmqRYigataLz93//C8TkkE97Ct5iRJbW1GmCpGY5PGc0nLJeJfzpT/8Bo7XBwe4+hHPqIiM7u6XMFLqriFKBF//8lI1AZVcXGI7FRSLJUoV377SxbEmR15idLopWohRrTMeh9egTVq+eITAx3YSvq5TVYoZBiJrcUCQudBzW01Nk1sLeaWN0d6GuqOopmlajaiYrKyC+GbKzuY2u6wgBul4TxRGzsobpNX2jYrVYMokK1DxCcVucTkNWkwmbe7uomophWt/23DQajUaj8Y2aaNJoNBqN7yxVgceP9nGup7w9u+Hy5ITg7l28zgDH0ohvZ7we3XJ2+ZLFcsGjfZ3x8c/54ssJSpJCDRfDK/4+T6k1m61NiW7qGDJAuDPCt+eI1RrL8onjGxxDRTFr8jjDarkonkEsLBbjMYuq4sm+x4ftgIvzJV3Xwgo6+K0WXuCSlQIrXKDUFVYh2HIt6rxE6/VYbu2RzS8xKNm3UrrlAltCrGp0Wh32ehbrIkfVdbZaGmZ0iVGbxKsMu93D9ALGJ8fE4wk1Cnbgo5g663VInObM1xEHgU7HNYhXC158fcKz4xukVIhVibZtkmcZw5MhoSLpH2ooAgxqgm6AMdjGaLU4ebXkoO1ylhfYnkuhKri6hliGFKMF9aBCtQwUVaDbBqJy6XoBohXQ7e5xg4vnVxR725SrN9xefM3A7+OaLRZnl6TrNUYx5+OBx05HQ8lLknWGYdqYrotmu6iiRjUDsgjS5RS1NklKSffegDQtGB4fYRkOvf4WeZjRa2+S5RG+ZbBxcI9VlCLWt2i2RT5fozoBkWEymd9QZCFpGKGbBkHQY51VqNTUuondclGlQDME1AqupjCpVURVk0QR1ILdfo94seCzL8+IpYn10Q43VzeUaYoqdeIy5N/9w8/4veEZT/ptVpbNMlfwNQVTqTEdH91MYH5CPJ/xNz9f4Ly3w96nUAqB5TpEl+ecvTji18+OsaOI87TCfuTy6f/4+5z/5Ce8GAqUKMcrUsqsJNXgOlwyWxcMfINxUXO1yvmd/QMsQ1KrJug+KoA0qPp3yEWENnuDpVtQmuhBQPfTHpPFhNn0kkCm6D0XGUhk30Xffo/K2aWWOVW0pIyX1EWJalk4gcX07AxXTdGkpKhqVEOQFSktz2S9EoxXCTfXIcswYm/QIk4gL2G+itiYjvEfPMLUjW97bhqNRqPR+EZNNGk0Go3Gd5Zt6STRmuVyRl1lIGCxXFAcbtPbOUQIwe3VJWdvJjx7tuTmqODlZzN+/VVCnNa0LR1T13CrDH92hjP8EvnRFqo+wB5oGE90FidD0psLyrykThK8nR6iu01VloTLEeenZ1iuzocHPt6mzwKXelnT7m3R7vtYvT5auw3rEGc4wrd0grsPaXU6XExX3IRr6o5NKFsEdY5ragz8gk5nC8fY4OJyihknvP/pO8wrleHwmmoxQR90cDd3MII+al5RxDFpGmM4AapjYPgWRVmxijIGpuTxdpu93Q3Ojo/5q2dDThYZdxxJaxaSF1cIwA58djZ6GLpKnZfoAgadLnk4h3TB7kYbrT6k3Z4xLwTLUuDUFXFVk0URalqiGTZS0yiqGs1VyXouqgRRSbwoY72OObizi1lJXp9POB2+RMRr7Cxl4BQ89FtYluR0vGCxWFDUNQ/fDWgboCsCqelI3aRGpcwKZAV9XSWUAd3BJslkBGmMQU5nbxNdbzNwdymVkkzqeN0eRbJEdwIM0yZdrrGiFW0/QPrbqCooVYRpm2STFY4mMCxJXpaUeU5ZFrQch363w5l6wmK+oMwL+i0PypJwFTEOS7bvtslVnTKa4msaSxGjOw6qiHi7WBGmEbt7WywTSVsV2LJCrzPapsK9votn6Gh2gKKXJLMJ7s5DtPCW61cvSNKcj3Y2MBdzDp0WY0ch/vpzjKpi0+mSlAWFmFEoK8I8J1TgKi44ndWUQmHH0tgzwa1rDEWilRVCralUg2xZUucVtdAJdI34/BRzcxfda+P3tti98wBNFgglJZMxs8WYILjF0CuodRShorY61EVBupihCoU4yrDqCk0zUA2dUgiSSjAaj7m+njKaz6lQ6Lg2lWYTlZLDR4+xun20+Q2BquLq+rc9N41Go9FofKMmmjQajUbjO6uqai4vhmRhQrftYjsu5XJBVuV4m1soizG3N7dkcU6nNaBvl0T7d1AxeJRUUKmIKKFbpCjhksF6iFKVKK6L0H2ku0O7NyV7+kt6u/eh3yVO11RxDdEIo1jgSYXHO23sQYvKt7h9PWGz28VvdbD8PoblY2zco5h+gWMHCGlSxTltReI4bbbihF7L4+q0xnN0PJHgtR3k5hO0lcl7h11Oj76gmkccPPmE/uE9bt88pdUNMLrbaMKmXI1Qqxqr5WPYFtLQQJG4lsZBxwK74P5eH9t1GC8TdKkRmBWPBy6OY/GrqxmdrR1aHZ+WbSDqAmn7ZJ6HYelkkxvSdUjwwUcwAF1RObuZYgqHOE6oaoWirBGiQhWgomLZOoVUUTc2UfMYwgVpdI0ySygXS8yi4J7n0CkiIk2imyq57bNnwfHLE7Y1ne+/u8domdHd3aBSNBRvA0SJ0F1qRUM1dKyipointJQVnYMDHFlxe/KGdLlAsSxURVKnBYHv4/oKSjkjcjXULAJdUhQzimxKq2Wjtz0Mx0IBUlUjT0Js22G5jlkuVvTbPoHnoqsS1aoxNI0ijDFUQXtjg6OvX3M2HPHwcIPHHz3hpPKpFxP8ThtLqaGuicsWrcDHc0xkv0/69VsMXcHWwA96tLd32Tk8RNoBSpZy8/VT5uentO+/j661uPvRQ/p3M2rhEp+fQQ2l2yclIe4pHKibLG4zVuuQUrNZlBbWIiJfC3RDsjno0FUEXU0iVQPKmpqaulYQlYJWlySrFXW8xpIBA2fF6OIWTB/Tht6DJ4TTGyzLQHE8VNsAWTB/+wq9v4nmb6G5AVUcUYgZOgK1rkmXS0zHxtAkVVmQoXA7mXGzCDGlxLcMhOUxzDT8wOLeO4/ZOHrBmgjqilUUfdtz02g0Go3GN2qiSaPRaDS+s8IoJk0SLFXguzqdnsfx5Jb1YkmeF6hFhiWg12tjOS16Bz2k6bNxMMP2OxhZSvj2iOHzr7E9g93tTchTFNMGYaG3dOrhGebWDnXvgLgocaNrhDpmPVsyvlqg5RWjRcZ777QZTyv63oBSgwrBs6/e4J2NeFeYKAWY3R5lUpPcXjA/PyOnYmO7j7PVpqXYjG5u6Pb30QIP3e1gdNqY4YRD4yHSb2G6HpZu4H34+6wvjgiEhmJaDKdjFrM524/vkRU1QlUxpMTRdTY9SXtnm83DA9pWzb1Nm/7Ou0zXMS3XpFB0tOUl7VYbt9Nlcn6GLucMnryD0WtjtXz8re9RI0gWK+IkJJvcQq0yXy5ZFYId04ayJMszqjRHQ0VVDYRmI00FoVoQplS2jq9JpLoiux1SVwWmXVCaBlGl8PjRO1TXb2gd7rDx7gFVueD4JsHuB9iuQdv3sVSBkgtyoVKXAlAwbReFFM/yaT15j27LYT685uLoFFtaaBLSWYyq6LS2d+h0+kxfPqXV7xHs9MijJahQIVHzDCFNWK1R84q8KInziiKvsH0H1TCgrqilimlbJFHIYHNAv+NxScZWP2CZ5qAbqEmFY7tsbm0SyBohBfNCQbdMup0WVR5SVzmiKsD20f02jueh1SXZOqauUuTmNtPTUygKdE3BVcB/9xNqxaTY2yMenlEWKtnohvn4BDmZ0/UFzrsdFnJANK3YvjgliRS27m5i2D2qMCZ9e4WbGSi1QZ1EiKpE6BZSEdi+RTTJKewuasvAjo6ZHZ3j37fIOhUbDz8mvzlBVTSE9JGBS2dwF9KEMi8pViFKWaMKiaEq7G1tUBYZVuCQ5SWKaUFaoOk6/W4LioxXVzP8roNFxuGGwY5aob37mJPZkNi1MRzn256bRqPRaDS+URNNGo1Go/GdpmsqVVlhWTbj8QzPs1gvp6RFjq0Z9A4O6UpJ2zKgULn7/o9QhSAZDamvjjkJF+zubLF55wlmpUAYgdQx/Q6yiMmLEG2wTa676FmEzFXS5YTrt9fkVcHHD7rElU66lJiaiTQTMkVlNonIoxSvb5LejHGCLopUKLKYKle4/+mPCOczxq+es/PeFu3eHm3HJzkfYoQZ1irHdOfohoYz2ELZPqAWNrYqMFWFdSGYv3mFEDpvXjxnvlzgT9YE/S5ZUaCokrbvM70qUfsWvY0Orq9zGE7Re1ukacpyFfP5qyGH2z06vRbCdtAMk2S2ZDGfs3OwgWLqWFs7WJ0uxWIK8ZyJ5xDPa24nFxTSouwOECiQqiimBtTopiDPQRgKlQr4OlrpkV2cUKzn7O4fQLQkGq+RrU16uz2kmhIVBu7gPq3tPuFxRCBSRFXieV0Us4tIl6hCUGYJ+SphfXNLnUSsohR/Y83hxz/ANBW6jmBzq83Vq0tW0wm9vU1abQs1X2CqPqZlUoQprd4OVTBAFAlpuKRSJWWakS2WGKaBZzukccJ8tWYeztlv77FeJriWSctzqKuC1mafVt/jD358n/rOh/zqJ78iLQVWnaIZko2tDcpAJ8lLtKwmU8C3JbNpiVqXLKcjFPUeqjTRFIV6do1SSgzbQndMMtOELEKIFKlp6Ns7VOuI+vYSczEDfw+pOxi+xoYG4s6AtTOg//j7DH/2D2irkrrboX/wiFpYrK6umNQ1iu0T3c5oPekCFaqhka/X5DenrOYjwlRBKyrctsfizSumRxKJxTpeE+wOEE6AYlpIIVHymkq6qLKmni+p0zVkKcI0kIaJHvgIKjQlJ81TLJGz1Ql4OR3z8nxEJh3yMOVJp0N4e4EV7WH4Pk63j+z0qMviW16aRqPRaDS+WRNNGo1Go/Gd1Wp5mIZGUdbkWc7NzQRH1zD1jMVijt1yqYWCb3vYukY0PMNXFVLVRM0qstmMzvYubu8OntBYv/ycMi7gQYpSx5CG6P0+GD56b4A2ek0+vGR5PuQ6qri36fP8asnjTx6guQN026eYXYPqsp4e47kBjt/F6Oxh9gbUyQp1saI72CB+fUS9isnXIbPXR+z8/r/A+nSfafCG9Ve/wdEzvK02am8H2j3o9ihVhXIyRpAQmC3evn7DaDblcjJmlSfUx2/YryqcbhtVSro7W+gyw3cV7JYHlgMb95i9fY3uudidDZLoiI3BFrVU0Cwbf2ebt+gUpse+4xBHK+LTUzZNC2qFRSV5PY05n6VohoGmSDQJRVVSq5BlMZbqUkUKqlchigRZF+RlCcLA7e5jYFAOhxShoPvoE5yDbYRcsjj6jHGmcueDO6jpmkKoLC6nHLz/AVZnH1PVkEiSxZqXR5ccH78hW8046PW4/+GHnLx9ye6dBb07d5DKGiMa0/LvsJgkTK5GjFbP8FyPImjh9bpU8Yq6ynBaA9LhMXpdgdSZ3YxZjKc4hqTtG6ySnESpWIVrwjCmKAqiMsPqbZBlKYbjUKgG5r0fcBtW3P3wQ+q6pogrFEUiqppgYw9T0cgmE9xsRZmsqYuUwJSIIuX26hrP0GnbbcLJFe77/5J8eM7qdsZiETNIEvB9jCcfURUpqmthP35EqqtU8wSlChDmE6g9CmWC6w+Zffn/UE/GKGXJ7vd+gG6YxOuYi9Wasi4xXYs4TyFJUdyU5Og5F59/wenbC6a1gq8LbGFiAYrUGN2cY7X6SF3DqAXW/Q5a20OYGiJdIXWLKi+ppE61LIiur1A67d8eCqub5PECVSqspisyRSFOEmaLNefTCLPtkJFjmTaH+S3K6AxNbLHx7gdMcg3bb33bc9NoNBqNxjdqokmj0Wg0vrPqIkeqEkUVhFFGHCakUYwfuNyevWVz8APsVgepm5DmlIslZWtOufs+RsvA0iCIYsrFguzoJYvnz9D33sGPllSyhKREqAay14dqQb4cks9G3CyW3NsKqPr32LKvae0PqL0DhGpSVznzqwmmYtHbvovb20DvbmHs7kO8IB69Yvrin3j94oK+G7D3wX3C4Q1ECc79h+hOl7XnET79nMXr57irOXI1QE36GK0+VVWRjCeki1vm8xWFZuD3u8yG5wxvh0hTZ8818Mo2jmsQT6GzsUmRZBjtDbyP/pCFcHB6XeLrS/a3+lzVJrfXYx4O2qi6gX3/Id7GBqWpokmFq7cXnL76C4RQOB2OeHk5otQdwixDU2GdJciuTaWsEYYgKzVElaNnC+oSVEXFyGsUBFW+RsxHUKo4H/wOxu42tVxRjacsT2658/EfIMOaZLZE0yQHdx8TbNyhtnqIrADR5fzomL/5+58zWa/Y0A3S0SvqMkUaFtVsgffxgHw1wGrB9PVzep2Ag4MfES9jiirFaHdRdB3oIzUTtcypNJW6UsnDlHKZUpQluq3R67SYX4eYaMSh5MWrYw4P9zBsC7vWMNQaRQqSMGHr/U/paiaTV894ezXC7fVxhEE2nRDs7FOpEjm+xhYFN7M5VZlj6ZKjt+dUlWCwtUWlCLTBLmm6xr7zGGG2KHrnhONrgq0+wmijolBFc+p4hd4fkE5/TTU7o1onmB2V/OKa8G3Cel4gtTYPfvyHKHqH+eURl8cnpHHNdS5wjs9xNcnbr1/hd2cc3yy5HE8JupsolkW5WhA8eECnPYAsIjl+xfH519xv+ZhLBf36EuG7qO02tRRUo1vqSoCukWUxcRihGiaa45FEEXWeUiGpTZMyydB1neE8YpnVxNMZeq+Lq1S4u4dsfPoHKOka6XaJpmtsu7lyuNFoNBrfTU00aTQajf+fvfvolS070/z+X2t7Fz7i+HPPdXnTJ02yyDLqqqJa6JYaLWggCJrpQ2kqCOiRBDUkQVB3qyg1q0lWkSyyiunzmrzu+HPCR2zvtwZZw6xx5mD/PsHCHjzAfrDW+7a+s5pG4LgOVVWxutlAXaNrAhVokoQkzTDsPnvjAXmeUQgNvTPC6ffQpIKm7hM+f4qiOJTDO+jHa+JCUgRbKnKaMKHJSlRZ0IRTytRnHaUoZs541yOxUk6nMYZeoe32KIXF5uaM2C8YP3yXm8WMZ2eveLDc8KapUM6uePm7v+fZ+ZbDh+8iopRnv/2cg1GP4MuP8D78CYrZQcnu0h2O2L7+kumz51j+EmN+hdYbkSOIo5CQit7JMSIMkZQ4/oblekmYxmR5QSXA6fbRZI2/XtJzJmhJTLB+yejkIYZtEN2eIzsDzh6fMRkNyeXXBdTuyTF14pMKB7vTR7fmLOcV8+mMqR8TpxllpTAajqjqBj9MSWqNulaIGgNRBcg8oc4EujdEd3ooWgelXBLPnxO9fMnOP/vvMe/sg5pRZSFZsKB/sou8PSXbhmi9EUHisP/hB5Rul8bqYHa7yCQjjX9LtynZm+zygz/+Kdrzv0fp2vQOjnEslzpM6e3fI1lnjA8PuPzFl3jHFqPdt8g1g1LRkGjIqkTEEVXhf/0sabWiQUHVFUrl6+dW+/0dsromLguuVxv27/RIogBbU7BMDd3dQZE1ehwRvnxC5+4jFhufZnyHItyS1xm9o0Nms2vwPDxbw78KKLOS5XZLHYakWcnFOuaLz79kZ+LiDvcxPZf08nOi5YbFbIpR+kzeehdF15GKimpaoOjUeYZ59w0ocsL8itVVgJJ71KpF/2SEsfOI1XXMy8c/x5/foJk6uw/uc3jykNnL1ySOiaN4/PLLV+zs3eHBu285sIypAAAgAElEQVSh2qBpJmo4h06fVDfp9QYMI5/Hs8e8nJ1hmPdRZteovQ6G7dGYBk0NIguQhku2WaD3RqBrUJds1mvqeEF/bw+NBksVZI1C0qhYtk2W5+h1TlnVrO099Ac/QkZLmjymefGCyGpnmrRarVbru6ktTVqtVqv1naWZLt3BhPXsmo6t4uod1KbCkg1alXD6+HPe//BPMVSFcJuShBnS7GLVBfgLklefUm0CjJMfEvkNgbAJkoidRqFqQOgaasemJqeoS7KyIAh9zI5KPehiDvbRFz7pdIY6XpFGNUWYc3j3PqHn8fi3v+JiuuHXv/sDb/7V/0vf7DAY9Xn7vbcZT4Y4puRv/+0Nn744552Nz+D5l1j3H9HIgtp06H/wPrnuEW8WqKMxWVVTKyr66BgjiUiCLU2m4nkeu9UBURqhKAKBgApM06U/6LHZbMhqg+74kB2ho1g2m+kVhbSIpE3ZNERRQJiVqJ7OUc9i6t+SJA2xqmB4Fl6/SyNVCjGj48fcJDW9rkeelSRxRurniEpFrStqoRAHAY4iUAydRhoIxaZcLkjOb6n23sB8+xhBAVFMs14g3CHmYEy5WdF0GnLTZfSj74PTp6KgUnIMS5JPZ5yc7NGR30e3XXoHAxr9fShT+o/exRzt0DSg2T3M4utCozOeMf30Ix6YY4zd+4jRPk2SUtyekq+uaLIURgOqqkAzbRTHJF/UWIrAsQ2Ge4ds1jdYQqGJKlRTUuYNlUjpuF1UU8ebTGiWM8LLF5TUTG8uiW9uee/BXTSvS3J1RrK6pZ+niKwk3GwJgxAhFGqhMD0/xY0v+Yw5b/zJf8G+69E0Cf7yjGA9JypL0s0Sx7RBNIgaRJ6A2afSMpSjd3D6D7A2K4rLpwhNYO3eITi/JXh2zrGWMzU1hse7uPt30ToW+/ceoHlD4tk1H7gHDJwewurgdAtM4ZBFNmV3Hyk16jRH7fUQ3Q7rmzOuvT6GKjFXS3R3hux0qcuGMi+obs8pywzhuEhLww9jwjTB7XaYzm/I6oZK6lzPVqCbaKWCYZoYmopwOsimIZpP8UxJWks++/gT3u9Nvu24abVarVbrG7WlSavVarW+s0zTQKoS2za5e7LH6uaW66sp/tZnZ9injjaEixn64IQy2hIHPsvlhsHuAXVVI40OWs8hryRp4pNst+RJRJVmsNtDUXWEJqnzlJqGKvZJQh/f97nZzgiza5I6Z9Ibo9yeU4Qapb8CoRAkET/80z/j6HLB40/+jtv5DGPHY6A6KKIBQ0PaBu988AP+t3//f6FUFZ1f/X/sa4J6GUJnB2n1Gf1oxMvf/C26adC5c48sS/Fnc8JwS5bGWLaOahjs7e+xXCxwHQepCIQmMWyF3HbpGia9h2+jdMeUSUrqr5hNpzTeAG/c4HkOtu2QInAtB3+zJE0D5rNrim6PQa/PcH+MommUZcbl0ocspTfqk2189LphG2yoqgqFhjIVGGqPKryhbEy0gUdTpYitj27vMP6v/jXSMyCJqcuQNAFt/4A0XeKXBZ//4QVpccmg8yk/+u/+NcbkGMXwyJZTLLdhfDSkVjPOp3OizS33Huwy+/XvcK6usFwPYdvUeY1i7yFLBVN7xc38M/LVHHt0hJKFkCXUZUKxuCQNE0zHQBENsqqpFBOJikSgi5qj/R1yq8GfzzCrijxM6fYGaJaOamhorot5/BCtP2J9e4N6/IjO5TnBK5/Xr15QioaVvyW9vaaxLKRiUpcCRWioyZoT1+asEFxNNzx+/AI0G61OkFmK7nrsPehx8fgJq5dPUYVEs120qiC/OUMMjigzSBcp2WpD/vopllPQf/dHJOc3qHXFnUOPx1/colQ1rm6jOyZNIzAdF21yCEaHe70jmvUKEKiKwvTjT1mvrth7z6fxxmiKQW1qjHou8zTixaunWN730DeXmH0b1VAhSWjSjCyKqc0OWselpGK1XhFspojSYFNUZEVBdzDEdF0E0B8MqesawzNpNIPhsI/MY4q9hzz/8kvOsHjP63/bcdNqtVqt1jdqS5NWq9VqfWfleYYsM07undBxVFY318wWAVIz+HHXY6drESdrqvqEKk8JlwtePH1Ot9vHFSWqN6IxJfFsRbjaInaOYbtg6/v0yyG1qiPqmiqLaMqMjJKkKHkVSRxRMdp3CKcBm0ohOV9jZDnBJiKIY2ZpiSgrzq5mbP2EO8Nddvd32Ds+ojfZxd0dY/V7dAMf09A4q0p2L85xnn6C3ttDqRqEZqJ0PIY/+CFXf/cbFEunVBV8f0G0WeDHIaPDY3TDQhMGk4N9ijRH1VU0TaEuUpydA0QDzmgftTvh5evf8+LTv0cbjNFlgecY7N85oS4bjG6Po8MDmmxNlkacXZxxe3nKT773Q/qjPUokSZZgd13Gika3Z5EUBXUBQVaSiwwaEyEb0siHpkDJYvQshjylKROMkzfQugMaApo8IJpdoe7dpRIBRVmSRxnbxuLB+28SLG9YvPiIriIZPHiXJkiIlms+/dUv+f2zp1SezZsPH3D3UCFbX+A/q3H3d9F7HUSZgyKRqPQGFsfvPCQMIvQ6QTV1qHT0nqDzUKJuZ5RCUsUx+mBEJWqsYQdVgqrq6IbH/o7OZLhDHfuIJET1Opj7+9jlllo0aI5FWQ+IEoiMHXy5prY6PH19iugOocm4vDhnYToMugPW/orFckuS5lhdGPc8ttuCTVrz5MUZokxxbIfx3gGrdYCf5Jy+eIWhmbgH91EP7iJ1hzoIKFYLthen3Hz6MQd9Se+Pf4ocPcAwDxGzW4LPfsbzqxn/+V/+GN0ZoJo2TZpgZDlq2WAe3SO9OqUsYwp/StNklMWKx69vuFlteOvHDwjUMdvtlvG4g+3Y/PyjT3FvXmNaR9jBBWadQalQK4LGcdE0jUIWlFnGOtgy32w5X3y9znsy7JOkOVVZMey6VIZHo5mMRkOCvKTYzCmrnM3pCxpV4fDNd8ik9m3HTavVarVa36gtTVqtVqv1nZUmCVWeYmoKcRBydLhD33VZrgJGXYM7h7sEmcBUJQtps8Ug+eoxTh5xcHwH1/Mgr8myAjncpw4yVNVhPbtmf6+HPpTUmo7S6VDFK8o8Y5ZVFE6HOycT0mzJV6sE7WIGyYYySlhHEbdpxbwosKmoasnh0T0ePXiTneEAb9DF7ntIvSK6fkaVh7y1P+KrzYbHG5/e8yeMH5nYzj6yKKnRsI/vYZ2esbm9RhkMyKuSOEnw1ytst4OhW1iuxXA4ZLFaopsWjYAaSVMLdFNnff6Sl+vH/D8/+2ssJedQc1GLCK2K2N3bYeUXNFLj/HLKjpMjRMPF7YzpbIPn2fzZ3jHeaMI2WoOtsu961HmBudPjYrFAagZxXZDmEWotQdakUYrSFCRVjtHpo3Y62Hfvo1jQxBHFdkmtOui2SVHGZFlAGi2ZTi/59eNXPLo7wXOHuEenxGc+TVLx5Ge/QBtM+P6ffECpScR2w2//9/8A65TlVkU8fcJ+18b0LISh0ZQCZdTBSo9ZXYUU6Q1qtofmTqijCOzu198q3X69NtkUhKFAqCq6aVKpEsVQqAtBFAbYCpj7+5h336TnqNSzgGAzp372EUUlsI6/hxsL8jRjk1c4gz6bMGR2ecpivibKF4w7G5IoIfYzJo5HHRWc3N3jVbQmLRpWYcHnX11gGwbvGV3Wqw2qoXAxnWObZ+xJF7IcJQ/IN2v8qxXTV6/x04gHO/dRDu4jOruIZkUjXxJHEZXr8vHrOd/73gQjDVFVDVFWNFkETRe906FJrpg+/pQvnrzmel0x3rnPyr/k40+/4t4bGZV00HpDmjrA82w+vbzAtGByNEI0CebkCFWzkVlIWhYkfkCZ+tBUJLUgQ8UxTQzbQZGSwXBA+eocqebYtk1ZZOB2Obu+xXzyBfnkiN6DN7AuLOLt6tuOm1ar1Wq1vlFbmrRarVbrO8vUVZIkYT2/xZQ1f/EvfopwR3z2N3+LXUYgBKNhF0VKgqxhFcbU6zn1dkm09dm/8xA9T0n9kMboY/eHbKqc+dVrFtMhmmFg70+o8i1FnpD5AddJzcNH+yhqQV1r7O4MeD4NUaOEs3VKUFWgm3RcE7PbZ6Sb3D08ZmAaOLZDEy04PfuS3/zhU17f3PCGpWNRU3f77O10+fj1DX+kmGjeCOoRghp7d4zz4JirXzzHUEwqVNy9PbzJhCzN2azW7Dkuru2xXq1QVIloGlTbYTqf0TQeq8trXlzPuD1/yZ17RyRpgatKkrJBKwssy6DbsVhvfG6KiijKqeuKH/74CMOMyOuUjjdEtzw6zoQkKqmqho0/xegYyFij9EsKtaERUKYqntEnD+bIVKLqJk3TYA4tinIJ8YY8jdFGI/LaJ759yvr5V2yDgAcPd1jqCb/66hpHpOgiYTyxyYMK6YAfLyg6DuenazavrtkzPArdI9U1vnj5CuvuLuOhjTAcpF7TeCayM8BphuRJiJ5tUYwudG3K2/nX63DTCEW3qRSVIA6J/C2uY2AYGkLV0B2bIM7xt3P0eE5RVYieyXy+ZDk9I03W7B0c8IOjB9y58xB/us/vf/5X7E4mbGczrs4uuZhvoIHzZYRaN/wPP/1Ljo8fcPv6CWL/kKW/YROEZFHI7bbC1DXGsyWarNBUgdHr8NWrc4pcUO+NMDWdomxIaigtG+F1oNtF6AqyDCG7ZfPk96jDA37yk33+w++/YG8xxekoaMaEOo0hjzF7JsHVx0xffsrP/u4Jctjn/f/sLURmMn0ZcJH4GH5Kt6sT+TNk2nDSH/E3py+5mM+5c3bKzj0Tb9ij3IbIMqXZbiGJyOMQpS4o8xTbc3B1lVpImqrhdj5nE+dYSo1WN2yurujUBathl9+dzxibA06/+IJf/uzf8V/+83/xbcdNq9VqtVrfqC1NWq1Wq/Wd1TTgOhbjfoeBZ6FIldHOHnt7Y7749QviDN7+YIyqqmiKoPQ33K585iuf0h4hjBs6Xpd4fk13VyP2BVkasolrXj95gmkaCD1H7XYoggXrdYTnGhjlCnQFabt4XsnNzYJCVfnem8cswwjd6mArgu7ePo7q4tgeg90hdbDg0ydf8Pj6nOHhISemRF0u2FQKb94/wO1Y+OslZ4sFXL5ksDfCKjSKrYJp6zSaIA58MGycbofMD+gOPNKipBYCqZgougUKFHnFdh0TVAUP332T6Iua8y9PkbpJ3TQIAd3BGKV2aGrJYpFSZAGD8YT5OkQoHnfvnfDogzG2moBrIFSdJAAyl7sHB8SFz9nFFbvjEXmRUiQRorTIsoKmqElqQb/TQ5gajdtD6znUMkUWOWUWfr1xxVbJV0+YPnmK5uo4+oC+t0fvRNJ74nI5n/JQGSBvAy6eXdH0bKydAZe3Sy5Pb7jj6mRFzKIANVMYdjt88Q+f8uHxLp6+pBYFDRXCsrB7u+TBKZgmZbBBqiAtDZFmVEGMtCwSSuLthqAsMTY+ltdBQcWVNo7d4/XVgunNLb3XZzx64y5PTuc8f/Il33/Y4fgehOvXKGaPm+mU2XpLlufYoiHISzZZwSIpsRSFt3ouP/mX/xK908fq6SziFUeHe3B5RVxBEKWUTUkcbuj1BxiWYDzo8Tg45Xq5QFEbJkd3MTwXWUsU36eMdIQqqIMl1ewrwuefs1kldB/dYeQ6/CtX8ne/+B273RqjP6CMU5Rkxvx3f8WTv/4Ff/v5C3Yf7GKNd4myiHS7YNaUdI+PWIQbSqlhGyWu3mW8v0dnOWUdBJzfTHE6HlU0RwIVGXnsk6UpaBqqYZEXFWQ1zj/OhumMJqzWPis/wkHF6vaoLIc0S8jkiL/7h8/oXM/oOQY3Z2esg/BbTptWq9Vqtb5ZW5q0Wq1W6zvLsQ0evvM2Rzsdjg6PWC9mvP7sI7766jW//eQFP3hX4c0/6iJ1l67rUakWruMx8yOSRrCJQqSUOAd3SfOaNJnjb9b4wYYyqPC6zxH1mP7JPnmS48cJllLguTml5pBFAav1CihZZwWb2ZJXm4BHw5J7ww6WKNg9GCKyHH92zuMvnqCMevzRX/yIOEzZnOWshMTtu+TpFuXOPt5ul9enS/TFkur5R+zYDVK3kFWJ5dlMpymaUmOoJrarUQGNkiMMSVHkSFMlzDI0s+R2vuDXT17xf/72Y65nS6RqYjseURSjqQqa5TH2+mRJyvnNK7aVjpFKpOaiy4YP3ptw/P4HdAYaVViyurzgZjtjcLjLh3/6If/w8SdoFzZ1ZWC7Er+KCcoItagpioosWmPIHl3dgyKmli41UBclZZVQaoIiPGX65Bl5pBKmBfZeH3SFsk55696Ap0XA49ucD+4cMJUrbm4DFmcLwijn0JAI1UBoOkqds062ZAsVmXmM/+Z3vPlf/yVqvYVoi2Z2afpjStUnLVMsb0yxuqYpMposoxEKjWvgJwmvLxf09gZspWAAOKpE0SRCk8z9gOvpitSRqCvBl2dbkqzCtiVu12Fx85pPX8X8+pNXSFWjKnOufR8pBRWSRkhsy6Dj6ExffMZwd4/o9jVX8xn6wS5C1WjSGM82SFJAgKpAp99H1jXDUZ/p1RzH1+jkCUIKsnBJsl1TNSWV6VKubyivz1i8ukDpTijiBS+ffIamClZBxMXTp0hNYh+8RXxzxfOnT/jNFy/JDINtXLK8uGTsmMQpHLz1iFrXWV1l5GWJpmukMkexXQ4mY16cvuBsuqDf73KYJIgGqmhNnG6pakEcppR5hqrrWJ0OuqHTH/QIs5pVXCJ1mzzLCZYLXO/r1dK5UMgaWN9Ombz/DrbnoWr6t5o1rVar1Wr9U9rSpNVqtVrfWZbXYffwmJ3DQ0b7Oxi2x2//+uc8+/wJmulgDQ9wh3s0FXQHA3YmE3wajk8eYBgGRehT2zalVInSFavrc9KiIitLqqri4uw1o/0uTlWzjSHMCyYjBYyGrAhY+gmLrc8qLSlQcS3Brupwulhwu17yQbKlLEPUIkUXBt7uEAYnTJdLwjBkHsbkSJK0QA8DnHyF6uk4gw5PZyuKnoZczuj1jyjyiBpBlEcMhj3cQY88SJEVGAgaVZDEEUKC1ARB7ONHKf5mxevXV0RFyWisIVSL3rBPXeasw5ThziFFPMW2LLZ4pGqP4dhjcX1GRkPf3cczOvjBjM8+/wXT1GfY6SA6FZHig6Kg6ip105CLhiiNMIVG3pSguhSGS6HqmGqFUBOEsKmalFLWZEXI9KtTTp9toVQZ3++jmBpCVgyHPaxc4Y133iFYrbi9DXjtV8yShkw1CIMYsgaj28GWDVrXQwYRZR5wu204/fKc3ZMr+rsObErkwQ6JAByTYuWj6xFKx6FMfPI8oDIkle0wO73gcLRLLRUaVScvKzJVo9FNSquD0h0TJi/QDJdYcxkdj3jwoc29icobP/wLHn/yEV989Zre7iEsLvFvzln6EZ5lYpk6D4cdDj0TQ1H4t//x5wwtnfnW5yYr+cvdHYYDD0RDUsLQdckqEAKiIEQTDUVdYfW6rNOMztUplt2lLisKIZCqoDJtyqogo2JT1Si6SpQn9O4eQ5Xx8P6K37ya8fH5J9w9WrOJKp4sV6x0CyF0prOIjqFCXNGd7NAZ9alESZn32N7eYikGmq6QFTGea9IbjwibmoW/pWoyDHdIEW3RbAekSp1qrMIAqUo0alRNw+0OOD+7YbaNUU2LxfwWwzCQdgdlcoBmKAyGO2i9HpOdPbRHD+l0vW87blqtVqvV+kZtadJqtVqt7yzV9FCcEcIeEqY1m7jGGN3nw3/W4asvH3Pn/T/B9oYk6yVxUnF8fJfXYUS/08XSVTruBMO0QdWwXZurPMWwXLqyz+L6ktutYDGboriSJM+RosYZaOSonF/MOZ2GLKKGVQ5+liGpsOoaTZVsq4bfns+Y+xtsIShqh+HOCdn2hryMaNIIv5KkRYPTVFTrDGd2hovC3uEuv3k6x1r5BJ9/ykPNRtcc0FSG/S51UVPGFYZuUCsqFQo1BVVdkcYRUkCjFmzymDyvSLKCLMsoakFaNqi6jWpaDCdD0kbnJqwpdBfb6CINm02QY/X2ufJn/Puf/UeOxkek84QXH91ijh2ugxv+zf/8b5Al5DEMjscImbCNEzZ+xtCVlEVJnSnEQYrbGdI4LkIVX/9Il5Ky0Lj+9IoXr6as45JhT8NwHYSQVGgojoOlS5r1FiENTnb2KBvJbL7gqoGbqGAaBVSzgIlncLzXYbfrkYYxq9mW203O9fMzuu49arWDMGr0jk6d9glOr6nyc+RgRGOZVKlESJ2sqgDBYP+IhIJKFizykl7dIBsVUWoMBjuYwwMq18TseTwa3uXRW4dsL57x0dMbZhuNd977PpuoJv8KVkWBYtrkqs7ejsWDva9vW9SqhWk5XD99wks/xc8Lnl8tuTMwkUIgioRCNOiah2EaqHVJ5m9pypreYMJ6seJstqHvVhRImrLAVgSNZdJYFlGRUVoGuawIg4giykjTGDodujuCq3lIOvUJG5XQ6aH1+my2K/IsxhKCUlfZ2x2jihzHVJD9IU1dEgUJPVfBUSr2Rx1eX56ziUL8YYciK78ePlvnmL0OsmoQakPXs9mdDBmNd5jP51xdXvHk2UsU2eCaNonjoWg6SRLjn7+i/+A+77/1kN03HuF6Jk+XZ3heW5q0Wq1W67tJftsHaLVarVbrn7JNam63BX6hcn27YXj4Jm98/0+YHJ0w2j/i3ptvY5kmhmHhiYKmLhCmiaTGHQzQXBdFV2nKHKlp7B8d0x2MqKUkLGuirCHNSrIwJF0v8fY6aF2Xs2nG1Ro2kSAvJElW4xclqzBlFaXUUuJ1HSpT5yxpeB7BMz/n1TblJgkpbJtYVSl1i8bqEVWStBDc3Mb4VYViCjpdg5tNxCZMubm8QNHA7tigShTDoDFtFEdHtxVUDaqmIkkyNmFKkGVso4BSaASl5GY6x1QlTs/DsgySPMft9LHcLkkpebVKeTn3qXWbRmqkZYVQdAx7wCrW+au//pRbv6BRYbNcMep1qeKa+W1M2ZSotobrdfEsCz+uWIcNYSGo6gRUyOMIoUgU24IqoiwzFlcbrq4TpqsNldow2B0idZ2msfADnbPnc26nFaKuuDq/4fMnz0lmtzw7uyCZ3VDkGUGSsQgzhGbgKZK7e0Pefu8R9+/t8dVqzWZxRZgr1I0AJCIJUOIMNc5IVyvizYY49skqhUq3iOIEXBf77iFCbxCGRZnnlFIhbCRBUeJ0upw8eoDZ7bK5PcXRNe6/9cfYd3/K//qrc27TDm5vgqIp7O4NGB4d0hmOUN0OSIkma46P9/mjH7zN2ARVEcQISqFxerMkLEGVAssxcUyNGvH1+aVKWjQMdnbRdQOh2txsMp6+vmS6WHGx2mI6Go1oKKuaOEkx+i7xdsH0ZsV6HbLxE679mLPVlqSq+Wq1oVANDh68S6OZZHGMIRtocnStJgwuubl8zvmL55RZzs7eHoZtE2QVumszHA3wPA+haqhAVZYodUEShzR1gRQViqahaJKDyQghG1RV8uryCj8p0U0XEHSHY7KyQpQFuiLYhgGl06XpjjFsi9F4QGfQ/5bTptVqtVqtb9beNGm1Wq3Wd9ZiHXB+taQoNZRyS1UrJFHEdL7i7jvvM+zYKLqOrmn0bIcnF3+g6/WoBFDm5HVBnOWMej2yosHtD8iyinq5ZpumiKrBT1Kc6ZQkq5kcT4iSAD+s8DNJZXSpZYWsM6oqoCxL4iynKhtMwNA0NMPkcp0yGe6Tuh6O51DbNpau4siSPI4pAotwu2SxBctucPSQyWTI4/M5821O8/oVfUegqy61KmmaFKnnKLagKEp0XWcV+NyuFkhdJc0zkiIiSjIWfowUgjAvUTSDftdClw2qpnK13OL1JyzQeHm94PCwQJE5UtWRqkKTK6RpQ9E0rMoV5l6X4jqj19/BUfp8tH6KaukEdcXA6xOlKXG2oq4SVGq6akVQpnRsQS4FheKhaQr58pL1ywuul2uE5TDq23iDCe5gwuU04Oe//IinlzMaKdjtasSrOS+AP39wh7t37qM0OaP+kN3A52rrc+/+mxx2NQajLsZwzGjgolQNqzgkjCKEJnA1DVHX1GlOpZhspktMVUF1baSjUyiSokpwd47RB2MsP2S1nKLbLqFsuI0CkrLA7bocHOxRv94wO39JvJpRGyY3Z5cMLR3btEiykp3hkBeahdob0jdKrs9fIw2NbSY4m0dIM0A2NaWiUtWg2zZBXvDi9QV3Jh5FmtIbjdE1jUpKVNujJ3R02bBYLOmYFlvbZbVICdYhXVNhE8SkSYbtdcGwMWXIq09ueTILOT7aRbFUNlnOqq6I84J5VrJaztiVCklTYIgCS2uwXMmanM8/f4WsQOQNHe05e7sjTo4mVE1Co+5iW5Ldrk2w0TAMkyTcYmBS1zlVlSM1A100eK7NJkq5OLsizGtm64ggSrAti6SEydEJ6+k1jmVh9gbMN2viPMHxDExPYbK7g9vtfstp02q1Wq3WN2tLk1ar1Wp9Z9m2S78/ZrNacf3sDzz9+9/w5jvvo+s6w/4AXVdp6ga1qQjn1wz39vCTlKRu2PgR+7s7qIZJWlX4yznj0YiyKGmaCse0SIuMzA9IpILp9TD3Blx9tOR66XPuRyzShqwRlLVCrapkZUUFpEiyJIc4JTZy0Dr0Rge4lsbQNRh3FJKlT5VAparc/dF7rNYxLz75A9tVyZ2hwchzSLIbiqTE8eD01RlvvvMBlm2hYNIkMZVqUAFllXO7XhClCVopaHJJpWqojsnRwELeO0DrjSlrQGp4Aw8/jHlyc0N/vGGoKcg7h2iWiSolWZ5R5AqiaNAVDak3JHXAzskJamNxdb2i03MY7fUJo4SmrlF1k16nSzHJKLKSpkipakHZSIokhjKgqTo0pUF8O2WVhNQ6eJ0xO4eHuL0Jz65C/u+f/Z7pasOoO6JC8mq5ZqSNkHnIq+sNvvBxLIO9nSGHuwd8z/IPp2IAACAASURBVFB59Pa7DPSC1dlzJkd3sS2N6v2c0ycXRP6KzvExiq5BVVNmCUVVE1FRRyGWqaI6Nv5qS2N2sLsjrMEB/nSKvwrouw9JG43Z9AZhdpGo7A33SLdrkuszXn/5lMXLp4x2Jlg7d9lEA9zxLlHVEOYlXtejrLbESYatGgzvv8WPf/IjvvzsE4o4p2gEFWCZJhYl87WPJkomgx7hesXAsRH/eAtD1AVCmtjOAH++wpOS2wqKqqJrKsSqgRCCOk9RNLg6nfOHyw1bLFZnK77/cBfH9UANicqEmopVHkKwwHVtFFOSaCWnm5Sikdi6ylHHJIkUcm/E46srLm+WPNwdM+yP8Lo7PDg8wGwE/dEI27VROz2MRmA4DmWZU9YSy3UJ0hLFdMkSH820iZMVeS1wXY9wfktT10hFZZNX5GVN1zBJ1wvU4QGe65Kk+bcbNq1Wq9Vq/RPa0qTVarVa31llkTObL8nDLdvNljTaYntd9nf3sFRBmRdkRYxelYzv3EEbJHz8xVNW6zlvP3pAWRU43T5KHLGtG9Ioosxz1LqhFhJD0whKEJuE3V6fZBtwc+XjVw298YDLsxnCcFBr0IROrWqktSBuapq8QgqBqas4qkpXFhTRlsvphqfLJQY1P3rvRxy/+0P27vbZ+957/Lv/xeHZr37JPIi5N4KjnSFRXVI1Dde3M+7eXaOqfTzXxuk5GF6HOAyJspDL6ymq5eCHW+pcYI265KrN1e0c27U42OujGDbdroOi65wvfRZRwcXmjOX5K+7vT0jGO/QGQ/ICHMdkmQZoHY1qI5A4TCYPMO0R86tX3NwuMTWLXsdCkwplLbBtB8OwyDKfWgiE/o8DVM0ejW4gRU0RbCiR2F2PfbeL4Q5YppJf/81nXJ1dMJ3NOO4PkEVMo7lYbo+6LFE1FT8v0PWacLXmLIn48Q+H3Hn3+3QnE0R4DUlEvZgzny2wRh26XZ2wiMBWqampqoKiiGnSLY0qURwDoRuUgF9CJQv0yicJbnn68jOEpmF4fa5vY5K4wlMLZCPQLIvR3gGb0w7Hxyc0VYqhmQz3jklUm2kJi9ktelHScwyMkctN1+LQFZTXz1mc9VGyGAyDuJFUmoWpKhRFSh6nPK0lWqfHrm0zXW/pD4c01OiKJAozmgI0IeiYKjvjEZptES2nSKlSFhlVEhMt5pzOIiLDwzc6bLcrgle3/PmjO+x3PGRSYKoVqqEznhhMk4h1UTL3CwY7B0wcHaf0EbHggz/9b7jz7lv8H//T/4habchLydXVDYeP9ujZCqEtaZI1yeoGVddQRYlh6F+v/SlKsiQmzUourm8pygbXdmmEpK5rGkVBbRoaKSkbSNMEtTPAO3kLp2ezRUdNM9isv+24abVarVbrG7WlSavVarW+s4Iw4JN/+D3r2yvS7ZS+o3N09w2Ge0d4wwl1XeIaGobeg6rCVmI022abRFyvpxyM9knCCIUKTdMoqwbTsPFch2Gvx2I1I89T8lpS1yXLRcI2q3jwwT3yLOd8E5JbY4JNQt80KOMA2TMo4pCmbLCEQGkURBbz/PnHmJrE0FVcR+A2gsOByejB29ROhmE6vHfngOT4Dmt/yaDX5f2HOk9f3RCnBabhsln69CYmiqUhPY9GayglXFxNaYoMP0wIshzVUInChId3Tjjcn+B0bTqjEZP9I6IwJCoKrq+vcb0RpmYQGCZRXtHzHLIip6HCT2MUXaPOBEN7yNDr4ehd9LGH63ZJuzeIMKLMSoQ0eX614t17h/QHOXGSsY0idEMhSxOEAigaKAp5ltE4HdyhoKPbXG0KfvG73/L87JIqL+ioKkmU0jds6iwmjHyKJKaoSwaagmtrWIogy3JWl5cc7e8TRiuydMOibBDbFeZ4SK3r1FKAZSBcG3RJHm6JVYvU62LKkAKBohnEecnw3kNm1xcUdcb6/Dl5XnJwdIRPwWKx/XoYqzC+frZkaQwmLt7OgNvNCscbYNgW4XLGWLc4sVQGPYeneck83HBy54h37u1y6EqGpsbj3/6S8d4hWlOz3fp0FAXbUJFJSSYlZZ5z7cdoWocjI0dpaqThUtUZqkyomwLDdTClRW6kqFWMZmoUpaCKQ5KqIghzlpWKM+yRZRmpAedhzG9fXPLeqMfRzgQ1iplXOb++nJM1GkLVGe8c8+EP3sEq5qy/inn4/T9F7k9YhAFHb98nePGYRjcw3C6l6mB2e9Q3N0jTpi4h296img6NIhC1oCwrigpOb5dsogzXsqjzjIPxkFWcIwFvOCZKYhbzOWbeo3f0JvuP3qPyF3z07BV7VsqffTD8tuOm1Wq1Wq1v1JYmrVar1frOUg0bTVXQdQ1vNOJwb8Tk4JDJwTGD8S6GqqIbJmxXWJ7LdZaRWIL9wwkvZxdIJUerXMbdIZ1+nyrJKMIQpYaO1yFLfIqsQrEsBgc7PPn0czLFYO9wwtnrG1RFQbdduoMTfvCDP+Xpx3/Nk0//AbWqKRAkdU2UJVCmDHSVD3Z2v56hstNFrTJIVrz4T/+J4Q/foFvmqJcX/OTDtzl9/YrOYR99r8cyKJiFFV7HxLFdkijAsnSE0EnjhOV6zYuzK1ZBwjqKKalRRYPllkyvXnP3wQmK49EoBmktGUx2mD75kjxNEGpI2qj0ez06410qauqi/LpgUhXqRidpFGSvy3A4xjRNdAlSCBiUSMXi6jrhk89fcHF5yewvDP75O7v0g5C6KpFNhW3qKFWCJhokJdI00Hs9OobNKih48uI5T8+vmAcBetOQSY0P3/oL7uzep1ld0yRrDMtgPbvkenqOaCpAkiQJz1+fYulw8tYjllufTRShyIZOGoMUOJaNYVsoikKxPCMLYm6mMelqhWkb6JrB2o/wy4bRRKC6LpqmEc43DHZ2iKTK7GYGucA0O9iGg2ZLpAdKULG7e4im9dhEIWm4gfWCjZSc1SWdUZ9St1GbHFU3uHv3mDtdHcOwUMYn7H3452zmS9znU9bLNWW4RVEkuW5iaSp5mpJFkldhiePOsU0XFUG6maFbQ0SjABWuzEmjAE2TlHVDJQWlUMk1m9ps2Ld0hnnOUFdZGyZREPGbr85Jq4pcCjJVY1sr/PRf/bccHtzh9NmnjD0Nu9zBOehz8oN/xrOzl3TrksODHV6HPpQphu1SZzmGZ6GafRTHxB3vIwofCVR5RoNEiJrtZsvLs3O6Xo/1dkvZwGg8pvFTSgRllqEKhUox0IeHPHj7A8pKsAwLzl6d43saf/4nvW85bVqtVqvV+mZtadJqtVqt7y6pIFWd4c4+ninZ2x+zc+cho8kOmmmjKQJFN2n6e2yCK6bbM0Q5Yx5c8+LiApWKB917xFHI6PiEQkZskgyv54JhEIVzkniLqgpuZ1Mev7jFvHOfTRjz+89OefJ6ysmjHUae+vWthqTiwPn/2buPJcnS9Mzv/6P18eM6PGRGpC7R1Y2Wg5kBhuQMaEYajbeEW+GGxgsgDUYbckhMNxpooLtUVqWojIzMUB7h2v1ofbgorsieddXi/K7gWz2Lx973/XqYqk7TNBSKiuL2sISEd2++5d/86/8ev8q5uv2GsVbRqBWD/IbyxYJ1T8VzNOxOwuF/9wtMW0OLEzyzwjVFdFtDcvtU4RLDdsnykigteHF+ydvrKQoNkqIRRQGFKGCJApoiIDtdBqfPWMcFw45GMPuAWMV4tkIpgShIbDOBEpE0inBMiySKaGoPy7AI1QRRAmcwQFYMBFkizxsW65LvXt3x6uUF69WKNI149fo7zvY6jLpj9CiiSGPSrKAoRbIoQBEyStFC1kzyuGa5W6NoCg8Oj/ikERCzlJ2fIAgVt7s1h6aF62p0H3/G4Pxbjvc+Jkkz7jfXhPdvCKOAL159QDEtBE2jFCQQVJpEIEhiNFGGOKKIfDKxZHX+jjKXCKsKzRywyXO22yWSZXL15htGZ89YLbekRUFUiUw/XIOg0jF7uIqNJtnomoQmNkSFSLc3QbDhSb/L9e2U6cUbXM9m7/ABeRYT4VAbDtLgIacHLg+GJhQ5zmbL8UdPuXv7HU63w6BqkMUaw+sQhTFyGtHTZErVYr1YYPsph4KA3pQ0ssg22OD094g2SyJ/w3DQQc4gjVKCJEc3dGpNx3UFjh2HMMmwbRMjSEjkDa+v7vir4Yj7ICDQTUYnZ5zaNmaVofZMTgb7DE9/RqX20VUVe35Hp9OQiw39j59x98fP+URXEXSdihRTEvAMA7EIETUL3TGpBZEszQiCgPPLK7ZJQlRUAAzGE6ISJCrm8yWG3cHt7/H8lx+juD1soWa22fHtm3Oi3Q5DGxBmzQ8cNq1Wq9Vq/XltadJqtVqtHy1BAEXX8bwJPUdlfzJiMBx9/3uIqlLR0IgKtVDieDaPR30af4/xeI/7dYCqSlzeX3F2fEwcRxiyiGlLSEoH0Q/QVYU0lWgslbvbKV9drZlg8PXLlNSP2e9YLKeX3N1PyYsY/C1PP/sNx89/hqpq1HmJq8iI4YxHZp+f/Yf/gViuMX5nINx+jW46mGGN1evjHnhE6ylC5NNXBmjegDCvAIGilhkZCkZXY1co1IKEn1VcnF/wh6++ocxL0hp0UySroUxyjALG/RMWWYkkGJw9OsBrtvxvv3tBmmZ4dgfV7ZFhYHWhbETsThdV1an8gDgrcHoDtCxDBVTNQDEsiqTk3eWKv//dV1y+uySNYvIipyoL9NJn++Zzqm6PjuNS5Rnw/Z2KKJKpywp1OMBPAhazBWQZn53t81effYzcyETXVwRrn12Q8OHuj3xXwmR0hDR7jyQpPPnFT3BEhyadMr0445++/QP/OH3Pq/NrfvkXH+N0B6h1ipEUVFHNbLehP+7jBz5p1XATlkShjzk6ICgKlnfX5I1MUwtYh4+ZpTZ+OOPNhynrIELWNGxbRLdlRLNENnJk2cEoNOKwwNQcdE/AtG3itCLPKg73ejiuQxjrdCcPGA1HiI6G5HXxjkdEqxn+9RU3n/+W2WKD3B0Rzn0MCaQoQkgTeqaKJMtUeYFfNiwXC2Y316h7eyhuB8WTUFSZMtORZRdBVbi/nRMlBbpl4vUfkqMycmSODwbMdg2So6J6CdPmPT8tBE5HE5wwQn/0lI8+eYihNxiWgP7oY9BOEOQOpZCzvryiIwoYgyFaGnH1hy+5ub4mfniErWnUVYPXdeg4EkbPQ1A1ZE1nt9kSRAkXF+/58u0Fm7TGUCUmoz7D4wd0kKgvLrier0kqgaP9Q06fnFIgs53d8eK7t1y+e8v+ZI/ucEwQJT9o1rRarVar9V/SliatVqvV+tFSVR27N6Y/HmHrCoP9fQzLBVFkuVkTxgmm5aA2GdPzb9gul0jaHtuy4X4X40cJE1khSboUYoJjWFiiA41AUZcohkocgVALTO8adn5B9G7OUa+DpjlkCnhiQ5hVXL9+yYnuYEkqedWw53j0LYP+owfsdiF194RFLnCwN+Lh2SNeXL7gwOjgGhL24VPkkY0jl9iTDmIVI+sKiiKQFhJFXdDoLtHsPWWjMttEfJi+5x+/eI2flsiySpHGJGVEUhZoHYO0FtkJHeyDAWfHB0jJlPn9WxxDZrec43VcKGMG/T4D3WO2WGNYLqIkU0gas90Wb9in0+mwWW8QJAlRUVgvQ747f8+Hd99RVzr7Jx8T+GuC7QxXk5EoWdy+574Bx7ZRBIMkr9j6BWXPxixgdXdH5a9xFYmuJaCZJYqsoxRDHG+fI7WD+vXfc3v7jpurr1hspxyqMkK6pSu6HD4fM+gI/ObpU0RT5cvZLarRQdfA64xoVgF1ENHzHMI4I/7wjmXSMFuuUAyd3fKe9S6miEM6vSG7PGI0bvBvLnn34muWszmmaTKYDCnzAk1WEDSBWksRJIssa6CQ6B6OMT2N6+k9YRhgmxa2N0TXJCrFoNtPePjoDNuxWKUhl+uMidOjMz5mufUpzAGf/PLXrPyI9fQDpu5w2FNpBJFdGNMddhi7FmEUcLPasjeeoLpdJKFEEmQUt4OWiMSNjtyVUIQ116uEk6IhyyrmYcEvHz2mZ445tY/Z1jX/y//8P9EtGkrF4NlJn8bR8T56httxgQrb6SOqPcrLD+SX3yJVOaIjUIgN67dvsTcLTh2dNMiwPJeqqkhWMrUIdbhFdjvkwGJ6w+vrGb//5i2vru4pGgnLdugeHHL2ySeEux1+1uDVHZLdmiwJCTcrJN0m9jd0TZWlazMYjugORgi6/UPHTavVarVaf1ZbmrRarVbrR0u3HSYHR3SHIyRBIBM1JE0HSSaIAq4v35HWAiNPI99MmV/dcJNKvH73mtvrKV6nx/OnY3pdlyLxwXGwbJ0iz5CSGkN3yM0AVzeJ/RJRMfjk9DEjxyLcJsSKSmKL9LOcqoKmUQilGPHmC95ciaidfY5lGaWpaIyUv//8t/yP/X+PJKkkZYXiGJhKB7MjI5oSRezhTE5BSKEqKUqZONqidoZEWc52HtOoDYvrc765mrHyIypJQ6hhF6fUVU2jaRQoqO4ejdsjpeK792+QthesFws0RcO2VLqOgaBbiLqKYOocnT5Atz2iNKdCZHo3g6bhcG8PSVVZb7eIgspitcX3QzTd4eEn/zVNmnN08oTr8z/hKBmiIAENO3/D3f0tk+GQptkDauROl3y5IVncIjbf30ZpJI2yLiGaUWYZkTRglwXYxwdY4YxdnpFE93y1zDlfrdg3hrw/D/GEDLM34NPDCYIuk4sKfdcmSxJM06CUoWoqJKfD7XLO6w9TorJCd2yyqiEIQwajPVa5xO1iyrfffUCWZdz+EN11sQydMisx7S5SY6LILo0oUNUZgiSidBU6ww6mbXI9W3L+4Ypxv0talHQ9D1GSGD9y6I16FGXOer7hqy+/Yl9cEK0WDM6eMei72JXIerdhug5RZJnJXp8gSenZFmpdIJkWL+dLvOWGKC8oyh2KYWCbKrKYE6Pir5bMr6ZskhrNGXA9XXJxO+Nmm/I3iowyclhkOe9ub7i8ec/t7I7Ds5+g9yasoy3bt1fU4wmd/X1U2YJ4gyhFWJ+eUkRb1F3IcrPgWIKzX31EJlpItQVWl3I+R1E13PGYqihAUJgv1nz1+pzfvbnk64spkqygqgqz1YqPmxy5+X4yab0LMFwPXZNYz24J/DWy2WE4OeB4NEQQBU4++gzJthjsTX7gtGm1Wq1W689rS5NWq9Vq/WiZtkt//5i6ypF0i+l8TqfbpZMULDYB//L55+T+jNPDPeQi4u7mks7BMURLdFmAokQ2h2iKgWHo1FVKoajEWYrcQL/jEOUuTrdDJYj85ue/4uc//YQ6D3lzPsV7+JQmzQgWd1AUKCI4lszBwQTHs3BVFV2+RKxyanWJYyx49fUbtHDD9Doi+GjAwcBGVqDMAiS3g39zSd3UdB8d429WbHwfXVARJYG7VUwllGwrgQYNqbdPGgQEScIuK4jjmFpOqIOQGIvCDxhO+tR7Fl/+y5+wDJ1JV8F1XPr9Lr3+HkFtE4o6mreHn9aURU0jiGx8n5vpJWOvw97ePt3uiMUi4LvzKcttxCc/+TXdbp/72yskRAYdE11KEJsKRQQQCJKE2Ztz0iTm8fEhoighFhliUyHLIqrtUtYicpkRrldkux1xcMEsSBAkiUKW6OwdonRGJGlOulmySWM2WYld1DjXV+xN+uxNBtRVhDs6QVJE0ukNlWXQ6w0Jki2zbUSpmsR5xGI6o5Fler0+ld4lNoa8v/0GVRZoZI1CMxBEgUqEQsjIpRw0EbnW0FINxavIywKt66JrKls/4vbujjhJSfIcP8nwJBNfkHHtknWUMbu95qt//gOr+xv+0917fv2Th5z09rhfL8mWN8RhQFHXrP0Q+ewYMctwDRPDtojKGiSV+WrHuw+XPDyc0BvvU6cpWVlQZglRWnG/8jFPfkKNxJfv7klXa/xtxvV0yZPTZ3z3d/87/+vf/R19saQwFC41EUU36Q72ESoXZRmj7V5S9RWMkYvUlWiKklookOoIW0h49OkhDSm1ptNoE7KyYTVd0OQZ0voeqzeiQOTyw3v+8PItn5/fkjcSCiIVBZZtcXM34//+j/+RQtT47t09ttPBsnSSOODD5QXHTz7hwHyCbRn827NTlME+karT67WHYFutVqv149SWJq1Wq9X60dIMDVHTiHcpcR6w20U055e4Xg/T6TPpDbi5eYOYuAxHQ3Z3Uz7/53/h/eWCvueShjGv371mYD3B7hyTFDllWRJEPp1OFzlNkFSVzmjIX/1X/w51tI8iNKShzsmJyHqxINwG5HFEWdUIVUEyX6GGAWLHxuw4CKMBkiZDUtPEIsnV5+wW9/y3j4/ohSB6GiIyqb+mSAJm569Ru0MKxeXF5y/YJRnLbM3NMkAxTHqH+5z1x6jXtyzPLxB0gyLwyfKMqq6pshxVUlCyDDXPKeKMrz+/4c3L94zHPerCY+/TJxyePmM0GLMLU653NbUm8256j1AUpEVBWZbcXN1weXFBt3fFZPKAqrIJgghRlvj0V5/Cxufk4Blf/umPhKsL6pGCioygyEiSRJIX0FRc3c1o8gzigKFnYxo6smEhGzaWZUAeIqsiymSCOpFQkpxguWAbJDiDE2rZoqub7O4u2d1ekYcVqmGiSn3meYaGjJYEZJsNuq1RxAFZWVKVAottwv1qSy5r1FWB7bocHBxy56fcrFYohYRmO/jbNYoqEBcVdZFR5ym6ZaDYKrWaU4kZuuEgiyJlk+AYJoEfcPHhitOzxyCpLBYz3l/dsm504qrm1x+dMb2958UXX/L1H35LEmw5eXCMvfeIXrdLMrvg1cU5aZoQpylVU/PycsqertBYIlpeonQHPD5M+e7VW765mJLVElbHw3U8hHKBUDesgxxDNQhublCcPmWTIgsyA6tm+vaCp7/5a+T1hudDD89QcOwBsuOiqRm1K6ONuzhVhCRElMWadOeT+haJPKTTO0aTXWR1Sry8J1pvSeIY1fUpZYEy3uEMBgiyQBKH7DYh//D6mi+ulkRFg6IIFEVBUTUcP3qCbeu8eP2Gu8WWXLLxsgIj0kmikEfPniFpKsNel5PDfSzLYFeC3e2gSeIPHTetVqvVav1ZbWnSarVarR+tuizJywpF03n//h2qppKLOjeLLU4d8atnH/FATBEokUUd9/Ax8y/fIdQVkR8iSzKb7ZqX371j2PPw7C7L9ZYi3iKJAqooQiEg9cY8PRwQxQXz2wv89Ypk4xPtfKIoIS0aECGrSsosZ/thytyQOOx6nCouj3/xKSI55t6aD6/eolkGahqSbV4QqQ8xH3zEZjHj/MtXbNIcc1My3VW8efGWVVqCY9Pf3+Pxo8dMjo9J4phks0GqRTQEJERkQUTXdWpFo5Y1JAGyOCKPHbZxRZZWLO+XuP0R9tEn7D/+BbqikDdT6vsrwnTKarFAEmXyokJWdRTNIIwT1Exll9lQNURpyt7JmNOHMtnlindXKcvpNwTL92TdI4rGRldlPEvHs3RmizVHPQ+hKri4uSeJXR4eTzA7MpIsE+x29F0FdXiAYLhQw8BwEcuCuoGsEljEAlGwoTEEtnkIVU7ZyIiGTmc0oKxTijRnt9yC6JLWMo1hk1Y5Cz9ikyQglRxM9jibjMkahbc3L5ktl2juljyvcLwuiqIiCwKKZSBTITUKWmMhyzKZGtAYNprsEicSYiNQJDFPHz0kFWRuFxvWu3Om19ecxBGeY6L95CmOplIWJZrlUkQbvP6QKElZrHf0Oh5Vnn8/mVPXpGnGm8sp7kdPeeq65FmGU5eMxvv4dzNmiy2WqnHe7fJoDEkaU9UivfEhKjJFo+CMHgAx64uMaLci3KwJ5nNGA4uafT7czqlXC6xtQKXNSW7eUqsmvlKhWuBY4O6PkcbPGfQklGxBGW/ZrRbEyy0IMrZlIasi2eYWw3MQJJGoKCmzjBfTNd++v8JzbZI8p6hKNFVBVmWC7YY80VmsfFZRhaBW2JKNOzrCTNdM9ieYbg+hjDEUEIsQuVLpayIdXfmB06bVarVarT+vLU1arVar9aO13QWoskQFKKqEICtUTc1sds823+EMbPZOnyFpOotKYp2/x/P6kKfsthG9vkWNxOXdnG/Pr3lyKmCrAkUhEwQ+Yi0DFalo4boeQXjHNq/JZQtBKyijOwRBYn/YRZQ1VMCzOgz6fSRVpYm3ECxI3r7AMHSsuuLRsMN0tWG12KFYGnW2wC0SLj/MWexyckmijGqu794QFwKd8QGHTz6m79ocHB+i6Aqy4ND1emiKStEIREkCdYOoaaiWS4GIqmrEjUieFdxd3zB68in17p7J0QlHp4/JJIt7PyWrHQKxw9t3l2z9mLIRkOqCqhQQZIvewYQHT39BneSEux1Gf5/+8SnpzqdIljw6NvmiWWFpAkVVEWQlsq5jWyYD1yGLUxShZtjxkCSRLCuYLzfouootq9iGidCIyLoOqk7lh1hdC83wEFUTRAmvFlgsbjDkhthP8W8ucVQFSRKRSUGRiBqFvMyYzXdIEuSqyfsPF0zXIcf7h3z88ATLtgk3M9IwomNq3FQF28UdkwdnyHaHzTbCdhzizQK946BrGnmcIxQimqiSpSmm5SCJAlXTMPA6dLp95nHJNm+4Xcc8+vQveHK8R5VFFFnGOsp48OgpRQN3qoYgKoxGI+rY5/b6AhlwDYWuYzJb7VAagVmqoR58xtD/QF2UhFHOWb/H663Pmw/3KIqCLIjI8Q5RddibdFmnW8LVDkOA7sEjzCbn/Js/ce9XLM+/owpCNtMNwXbLJq+Rq4qyEShUEVGAfVdFs1Qe7I/RIgFnu6KpI8q6Js8yBL3L8KMjBGqi2TV1ElE2FbrTpVJ0gvt7blZrvn7xCleFOCqoqhpFUUAASZJYr1ckSUZSNJRomJ19eqefMpoM0aScaPWBprynZ0js5pcomk5t9NCajLrMftiwabVarVbrv6AtTVqtVqv1o1VnCcFuh6RodLt9vGp9OAAAHmpJREFUahouP7zjaNTjZDzgJhM4sT2Cq5dEnQH1/RWiKLMLUkzLRNU1luuIrtclzhtev37PyekIS1W4uZ0hFTWKqLLabHEthzJYc2ga1J0+a0miiUIEa4BUQZaExGGEJMeYlUvfcBk++RQxuiXxFwj+gt0yYbcOSXcxg/4E3ZNQXYNgcU+42YGmUokqGSqi7jKcdNh/9Ixep4NQxORJhO11EKUCSZPJEFit14RRgiIpmI6LqhlUokC6WzF8+JiNIFGkGZOHz9jr/pRHey7pZs7fT5ecPXyK5gxY5vfMdwl1A9utT5FmRH4M6AzHjzAkHW9/TNbdI4gSbEEliWqSUMASFjw59pirIiKgajJFXaPqOr1ejyzLMSUBw1CRmwZRVUnilLdvr3hwUjEcjmgcG6FuEKqGRlZRFZOmlEgXUxRFoHtyhtpRcbIO6rNHvItDPEVCkhpEw0RWFaS6wk9rTFfiajrn/n5BDfz06RlHByM03aSRFZKdCFWBYyjESUKaZUTbJUfDPuPhEQk6otBQlAWa49BUJWEWY4ouVV1SFjmSJBOlKY3XI8lrLv2czBrw4C//A0oWsikVEEV2fsBk0KVraVQNJFGALJdITcXB/gGFFNAxFDQR7rcJ33z7FkHvYkkWX16s+Zuf/5xBPsd/e05jOXRVhSzPuJwHqPIH+h0Luy4w/DmKJtAfOlAvKQOB/ZMjyH3evLlgeXNPuN5S7HboaYOoagiKSKqI+JKAXdc0qklvsM/e818zOTrE8QwoQvLtHL0zwFQ1ymhHFiWopkVR5pjDIXHdcH99zfu7Jb///AVhkiBIMpIADSDLEoZhIIoyUZIRhCFFLSHrKrbjIYoSjaSjWQZ5aBMFUxZ3FUIVc3D6iKapub+/o6MBe8MfNG9arVar1fpz2tKk1Wq1Wj9aZRxCkVLUNaNel8XyHluTUBQR0zRQZZnrKMSSNIq7D6xv3hMEMQgKmuNxP99imjaq3UdTdabvrzA1k7Uucz/fUmcFw26Xm4v3mGWOqSoY/SFVVlBoEqP9CY2oM7uZsfIT4jAg2izwlzP2OxabC4t+38MbDjBGDs6+zlDWia7uaFYfEI0K0TQJdj6DYQ+5FgmTDMOwKWuBu13Iyy9e8O/++l+h9QYIRUaVJMiGiW5bKE2FhIAqSVimiaLqiLJEultjiAIdRUbRZLKjPSY9h7Gn4xkGd9MFdm9MFGfc7lI215f0xIpNZaDJFYIsUJs1VSXjdAZ0uwPGgxFxlNDfixDTGboxYvz0AentF/j+Gtu10YoKSRHJ8hRB13FdC5khaZyiyCq6LBIHIWVREUYpYRAxmWx5eHaGa5mopohm2Ah1hahZBLN3RLsp9skpapGhlykDQ2PR7WKqElkSU9ZQFRWlIFDVFe9evSeOA/Z6LqO9Po5lo2kKkliDJCJICnHkowky/Y7NatfQVAXx+g5VqiizjIePnxDEFV5/gFiBaXw/1aJbLtAgSZCGKWGSkjQyiiKjOR4T2+HuzZIiS9FMnbIBTxHJ44r9nsW1JiNFa5L7C+JBg1zkjA6O+eXwlCaKOJD+D1LngPmuJrif8+3X8N+cddlTDRYu2LqOEBdMuh1utwVRuqPnVjRFRtfU0Hvj79eqJLBcnWef/Yxc0EiTAkXW6PSHPPv0EE2WqOKIIAxJgFzVmNgOR88/xtFUkusLpJ2LJPF9KSUJCCI0iopmFCDWlKpOkaQklciH6Zzfff6SPM85GvepEL4/iNtxEDUTkQZ/t2UbJCRZiaZKKIqEUgTIZYK/mpGFKmmQUwc5J/sWg70DVLvLfSYyELXvvxJvtVqtVutHSPrbv/3bH/oNrVar1Wr9We+ns7/ZRulf6oqK6ZgIAux3TQ5tCdId1eaO5ZvPSaIdUlOSZzEvX50zna2QRInewTG6qvL09ISuKOGvNiRhjmR08OOEd9MFYZwiyjqqKCCKCnanR10BTYUiyVBDmlaUZUVWNBRpTpkkSAj09444/flv6H/8C6zJMebZQ+yjfbqPHyCkc5osQu0PkA2b+zilEhQG4wGS1eH3b97jKzpJVSP5IZ1BF8t1UCUNBPB3Pl+8OCcta5IkodMbYTsO6WZJFoZ4roPjdZAME8u1yLczHKnENgwePHqG7g4QkElu3qNHGzy3Q2V4CLIODRQ1eOMH7E2OMHUNz1IZ7ln0XJE82pBGc37+0ESsS8K4YrQ3IkkyFARUw0RRZHRNQdYMuq6NXJXIkoSASJ6X1HXFNkpYLFbcT2dYhoGh6wgINJWAbNqImkJRFiiGQrq8Y/XhPUlekuYFZQPbKGIbJUxXaz7c3vHh6ooiCegZEh1bxlYVTFNF0XRUw6BuGpbrFbe3U1QJDNsiqyrCMECoa3TXxnRMkrJkPr8nr0vKPCTPU8I0RXF7jEZjmrJCaGokUUbVTa5XPvuWjqtKNHnKsGPSMVUcy2B1NyXezCnDFVW4xtEFwvsrwmCLN5pw8OApvf4IU5Y5Ho958PQT6qJi8e0fufzid7z84nPGIjijMavlknmYcHy4j93pEAQRQVay2QXEScpwcog3PkTrjaAq8Xp9JuMxNA0yIj/9y3/P5OAEoxYI10sWqzUbP6ZERNJMZFGgyVP8zYomTtAVCc22kHQJRJWmqsmCLbWkkdeQNhKvLz7w6vU5ptBgmAaqJFHTcLMNMb0+gqxQlyVxFJEVNaKso5s2pqZR5DlCVZIkGWGUMNw74GDc5+HxIYOz54j2kF0uoNkOB6Pe74a2/n/+0JnTarVardb/Vztp0mq1Wq0fLVXToK5QdQO5KXl62EeJZhRxRFOHNGLGNt9wc3GDatiYpsZk1CXJcgxdRxdqRrbCg8N9muUOQZS5ub6l0xnQ9/ZIgoy303vuwleEosnP1C7CaksTBViWS5nHRGFGnmaIqsfp06dUWU6xW9AzZfrDAzQkRBqkjgeqAkWMYJo4n/wamt8jOA6rpU9VV+wfjSk1l9//9nNefPWC02cfMzk75d5fc9aIbPyAuivgmB6BHyGbJsXWp9/t07MM/O2a+fSaXrePJEnUtUChOex99CuW3/4LdVFxd31NVYl0H/+Mk0kfo2MTNAesKxk5FlELgXIX4U3OODs6QZEFNts1SBpK02AoNblV0Ymvefenb1lsYobDHg0Sxf4e+XqHZmjUWQqCjtWxkUUQ+yOa3YosW6GqMjs/x9BV0loglBT+8zeveV7JPD+zEJMpQegjVDVZVbL95huycMvdIsAPI+bbLXFekhQFad1QCw1FEqOVCbphIjQFcZiiKSEAVi1QNzVhXrDa+ERpSq/v4WomfpKSRCF7wy7DvRHKYMj51R3nl9ecuT3CNEeYzTk8e8wi2FJsXMZihURJksUEyyVZ2hBkJWGWk6QxmqShGiaL6wuu3p6j1BGKAEeTId1+D4unEM04Pjyk1+2jqjrb3QLv5IzMOuRovoO+wpsFfL5YM/3nL/l0vaOny+iKAqJElUT0h0Pmd1O2jcSH2T2K/C3PFY3Jg8dkiYiomTi6RRbEWKcfMTp4QLVeITshvY7HYh1ytZgx3UbsVw3LYMOeY3HcdXE9D6UBSWwQVIumLhE1g0bzaESRIF4z28X88U8vaaIAxzY4GHYpRZFXd3P6oyGa0yXPS+JAIvI3mJZGpbjUeUFRVjR1xv39HbJdcfjJbzh69DFafE2jd5kHEOxiXr14wWR/jxNH5/m48wMnTqvVarVa/39tadJqtVqtHy1LV3BsGcdocMwGT62RBB2nZxKt7tmtUjq6wkoR2GyWrHcyP3t+gu8HBFFCR0j5i48+QpIEdlXJ+GBCsAtJiww5rfF0nYd7e7y9ueX3f/gDVV7x/NEZZllgBjn+LuTqwy1xLtAduYSizv6zj+hqMloRUwQL8jBBjxJq20HSNBrZpKlTmrpEmRyQFiWb6I7eqIfY6fPl1+94++05E9Wiup3zcnrD0XiALMgolkwYJ+QlXM83ZBXYjkvf1AmXM8L5LU1dIVAx6PfxHJd5nmN3+uQnT7DTOUIeoasaI9ugq4joroOsmiRRiRxtKIsCx+vQ63Xpexp1VRKG8Pr2igO3wREjXGHDyFPYLlLC3Yq9zoCklPnpLz/j289fgKAjN1AUOY7XQVEU8vWGRpSQTAdVLeiLElEtstr6bDdrBETOkCiGj8hXC4rllHS3xA8iZuuAxTZkvdvhFzXe5JSCktvVDXZ/RG98zFiKWL75J7I8wxx5DEZ9bMtCMy1026EW4H6+5ubmBtuycW0DBJHPzg6QxRpFFen2bCaPH6Afn9EM99G8Abdf/omB7WB4Hommo1UF3364REpTOpaLabnIqotqdEiCAEOqyGKfJAkp7q/Jtgvc4Yh+3+Fgf0TXc+laCkp5Qn+4R3+0R1M3yCenxEFCnWeo6xlDseSLOEVsGlBU/vT+ms+6JppuUWcpaZLjqBqjyRG77QpR6PP5+zvWxQv+tTXEMS3iQsTuu7ijPbzJAxTHw+yP0GwbSVaRKg2vUXl1P2V1u0B9eMx4dMzxwxMsQ0cUBcqqQAbqsiLPS5Ruj9XFBfebkH/4h38hXy+xDB1NVmlKkA0ZFJnTwz12YUK42xGGAbJhM+4dsUsFtusNcbBBlmr2jn5K98FPGE4mNGWGablc3y5QS5PeYIinipTbJUWw+6HjptVqtVqtP6tdz2m1Wq3Wj9b9Yv43i8XdXzZ5jNwUiHWG51p0OjZynbO5uaSpKtIspxJkhqdPUZ0ertyQJzF9U6MzPKKICtbTOzTdQjQddNsmDSPyOEYTZfqmwW695t30Dj+MiXOR+3XE28tbLhdrFtsNc98nFHVKq0Ot64iSQikpoJs0VYNUVeS7HTQlWbQli3fEYcS333zH3XxFYXT5+u0Vf/rtP1MGEU1RkRQFsigiUPPg4RlNU1AhsPIz/v4PX1EiMO52KZZLttsNcRoSpwme1+f0wRm9wQjH6bC+vCZJMwaDHn3XZTwaogoCA0OBNCLMCrKy4m6xIS5quoMOiioiSSJCU3C/uOXi3Qs28ysmXY2jvo4pZYhNSRru+Pqbc/qjMZQ5aRSQyA5uf/z9So7QYNkWdVVRpxl5kpBVNUFRMgtCVusVQZxyNB7zydkTRGfIfBNRah3iNMe1DSRKmjJFbUoszWL8/Fe8ePOaqmkwO0P2jk9J4wjXMsl3M3S5xnVsDMvE8jxkVeV+vuDld+9I04yjgzGubVALYPeHmN0udZWQh2v6nolr6siGQ9/rMDmcMNmf0BQF19M7iiwjX81Ik4TVco6/WaJJAkEUcXd3hyJD1zHIYp9Jf4DX8bAsk/39CYphMh4PsHUNxzGRJAm746HqOpKskG02LL79ivmLr4iCHDNOsEWJ04dnaKJMFkXouoIzGpFGEZ7nYVoOpaASJBlVXTNdrFmt1oSFQi3p9Hseqvr92pNhWYg1FLuIYrkmXa0IghSahjpJ+OjZc549+wSj10fuDVC6A8qypi5DijSkVjU26zUXb6/4T//XPxAuF6iajmloWKaJ0+tQKDJ509DpDViu1wiijDOcoNh9nKPHKIcfs15sIM+xR6eMPv63HJw8QN5d09VgMuxS5Bk1EnUjoGkqvY7LpKP+7uz0qF3PabVardaPTjtp0mq1Wq0frbrMiLcr6jKjtnTINY73Byh1TpxGSHVBuF3S6Y+QD/qs/Qgxq+iOxvxV3+N2W2I4E+rVkmSzwbRc1N4YUTdhu0ORNVzb4erqAyejIRfbgA/v37GZL9HdPiCT1jV5mZPNL7nerliEW2yny7Az4Mn+kEUU0TMkxmmBpeSwlknW99RlSJRFTIOAyhvzjy/e8PWfviANAnZRSlyWoMh4is7H5oSL6Q1nxwcEQcKXr68QNZ1nh6dUyxnL0EeWFZpG+P7OhiQhNjWmrnC2v8fl/ZyX0xnRyQnDoYvRMWnSiMX8Hq1IuXv9mlrR0a0RA8ehrAryPOMm9FHLmCK4Z6+rUiY5QlNTVpA3Er3eiOX9Al2asbg+p4r2cIdH6KKLn1T0jp8iRmuqIsXQVUhlCkMnTkuKJqWuSmRZRpYrfnJ6Qu2vSTcbgiRDoOH8asZPHuzx+MEDhGjHdhYjD/bYxClRFNIdDjEMjej6JY5S0d+bsAimZFVMkmYQhOSSTBDEvD7/QJSkPDo9ptd1UVSFooJEszDcEX3TZHn7hmg9Z3c3Q1Ec1oKBun+C1+1yefMlViOyu3iDjICf1Qw9jzJPSJY3DPaPEfZ6FIjsGhHFcfD6HqapsZovUB0X07aJ0gzHs0gjH687IE0SbFejVizqsqKYTXnys58x/TCnV8F+USOcPcCY3tNsZiyLjKJuQIAkihm4HvvjA7bYXL57R1LUxFdT7oOctzczohI+Oj1BKiL8mxdIUUo0vSPc7oh3PmEBsmIhsOHzL75m8uAUpeMgpBmSZVMJClWlEkYB/uKeF398wcXXr6h2W/wix7AMDMPEsm00XSOoSqyOR5JnlHlOd3TA4PRjVn7G3a7i+MmnpGlF+PKPyJpNHaxYv9syVFPS1KDMUmxdQfA8sLpoygBDyOl43g8dN61Wq9Vq/VltadJqtVqtH608DIj9DWWRokkeiqshpD673ZzF5Tvi3QZjeMC6MUniAkkUsQ2NYuVTWBOORwP6Rcr53T15nBFsA+xnD9mttxjeEK2uSBb3bAMf9/AEKa8o1gs2fkOz2yKrBpqiIEsqXadLGu6IX/8TZn+IfHJGedQhUmT82ZTb5R2OLmHJOaomUyoCy1JgaQz5z//4z7x6+YposyDJMgRRRtYMPvvVvyK8vmGXJAR+wGKX8ObtBdugwjNdxDhls9pQCTKKqkAj0O/2UWWJKk2p0xRTVTl9+JBK14iDgLDXI9c7NMjUwQp/NSP21yRxTPVk/P/e5JAQqIj8BZJa49kKdeMSSjXLbcjByENVdG6mH1htfD756BFpmrILFpx+9DGLbUnkb7AcF8EbYzcJQrhFzHKaokRtBLKiRNd14iRlPHDomCb+fImqXqAqHcJGJCky/vDqHdZPnxNlBVkNtm4xXS7QDZ08WBBG9xi2itxxKLclHdcmC2NWQUS5DYkvblhufTRV4Wh/hKHLaJoOikKpmGySgqbOyLQ+e5/+GxQhIV9fcju94NNf/BKzo1LEa3RdJlzt0OqEQrKJy4pI0nBlEUFWaLKYvmezbhS2ikElNBi6hi7L1HVDlpYMhzp1XvPhdknjTzmpSw5tm6yErGyIw4T+k+cYmo6e+exep6yHD8m8EZ1dSE3N0g/IsgLb6WAYFrnmshM6LKqUoBLZBCHTJMLxY4Z+TBAEzJ5/jJslJIsFRRQSBD5VUyMoJl1NQSgzskog9iNefvMtclNg94dURU682xEEO27vr7l8e044X9BRNe7LmrIsEDQd0zERFRnVtomXa2RNRdU1xocHHH/8c1BN6q7F8i5h8e4N6uaevmtRFA19rUGSapyOi1hn7GbXVHXGpOOC2kPRVAxZRnecHzpuWq1Wq9X6s9rSpNVqtVo/WnlRURQ1VdFQlw2qIBCtFywu3rC8vUZ3eqjDQ6rZBksV0OsKI0uI7AGyPeTMdchvt1RxSJZlOLKMICsIskTWNGiGC9UKWXeR7A7yZkNTVVR1Si1I5FGCn+cookjHdHFVk+fPPuLw6Ix17POzv/45SZFzeWVjFDF6U7Hxfe5WPktRos5i3v72d+zmdwzqiqaBFGgAzbKJw4S8jPh/2rtzXUuuKgDD/9675jpDnfn2vT24MRghhJBFQMCTExMhi0G2hA1G7unO90x1Ts3DLoJOm7gdrO8JVrSCP1gLD54OR7ZpRXoqmK9fsFhsGIqc9HjA0wqLQhmXZLFhnozpupYyz6ibiniWMLvY8DwekduBN/dHemNYEpH3LttasZguUFrj+oq2abFdjaNbHvY7YscQe5qri2c0Rcl2XxBOLbPVCroSQ8Nxd6ZIc/7xlz+zPfaEqy8xL76g6gdua5hFM1zlEGLo0pRZHH58SzueEPkhnuejGOgOjxSmILUuo/GMoij4+/stT2eHzCS8+XBNlh2psz20JV7gcbY+bntmFl3hrS+4zw+8udvyeMyx1rJKRiRxxNC3KGupB7DRjF1WMrg+x9OZcLbkv7c5i7HDYnHB2HdxqpTTTz8Qz9d4fUPY5TijmDZakOucvu9oxxMqLINxiB3Ntu4xXf3xgOrw8ROR1g7p8YgfOHhaodqerre8f/eBZPWcyOnJnx4ZgOjyklBbyu8rxr//ml0RYlyfyPPpWp9wBKcqY/n6Jen4NUUP3333Dx5u3lKXGVV+/BgzHJd2u+X1KKS5/pEqiKlsR64VmedQpE/kx0feRjN8Y9DKYTye8LennNtv3/DVekdiOtryzHnoOdU1M2VYXj3nzfV7dnmGiny0BjwfZxzRuT7KaFaXlzw+PrC8fMF0tqDRPsvxC6q45F9//QbTNhitMZMJyatforuGcdjRnu9o6hInisjuf0Kf9uRqzLPnV9hh/nmXjRBCCPF/SDQRQgjxs2WNocED1dNjaO3AIc3Jyo6yGVi+/IqzGRGOOvrsSBBoOmeOUnNeXl4S53vKrmUcx6zXa2o7MHQNajpl6FsOzYA7mTBxXazroazFU5BXBY4XYNyAvu9pm5rI9vz+1WtefvFrnsqcza9eoz3DYX+krAuavuGn+wduPlzTdz27rucXv/0NznTC7JyCMThdR3NOKZVGa83N2/8w9TW16/HTu2s2m1f4cYIXz1FuQJnfM9gerQeGwRJFY+LFBuVrjGPwlCHbnZhcXBHHE3rPZT0ZkynNIS/JyopOB+j5FbumJIoC+qZjd9rj6w5lIIpiXAeiUUTkgDI9UeSRZQeixKVTDvEoJIhS4h76rsUzHUN9AtsymY45lBkfrh+JfB/PCSAacCaWSGeAIvICBuMxmiYc7x+Yb0LSouL6bkc0GtMOsC06euVQ5Fv6LqeucjwDte3YHnISPyGMPWrH5zoteHe7o+t7LpKIOHAYxSGjZEo3XXLyEoqsQSmD0Ro3jDGOy9BUGLPiVFuuFhvub695aGsSG1EXOdNRTK99DnXDKI6YKEvsKLJqILeGqGsJvYBzURCMYh63WwZ69vszgWfIm5677Zb8sOXlsxmT5YxTpWiaJ8j2mCBAKcC4BJe/4P7DPzHzNUYbPNvTOD5B5HOfOxSjK7aHPT9+/y3b/Y6ubWmbiq5rcPwxUXJB7DgYPyave5JlQhQPtFWFOR2wfU1VP+KpDm+2wrgRxg8wcchTkbH/5u9cLmZ8/ac/otqB07sbvvzD7zi9/5F//TunHQZCR1NULU1dY9wV3QBhPCY7nbBtTzjf0GuP+XpD1ygUFi+KKcKI0Lr01tKkB+bJmCLd8XoZke0zRrM1k2nMoFz2xzM317d89XrzudeNEEII8UkSTYQQQvxslXXHuWwZxSM6q9mmGbFWtO6I8OIlXrJkSDPi0KV1V0QadvuMV+sZ88DBVopoPmOc5+w7y2NZEZUFwXRDMYC/THhSlrIuyM5nCu1SDQrLQN9UxJ5PMFvTljm9P+J+cGG3ZTIdMbt4yfbDNYc3P9D0hjgOaKsTPjWnMqXrffaHE+HVC27vbhmGnnToMUFAoBRtVeG4Lj2a3oSE0wUVikgrmuJMGbqcHE09GoG1GAYc7WGXF3SuIpomKDXgeQrKM/Mo4l3TY4v645FX22Idg3Y004sN3//nDeNzhaUjHoXY/IhCsZiNcYaOwFFMwhDftYSeYbl8xdCdma42lKcDrXXI8xSrA05Fy3rScz5umSYJfhhSOC7n9IhWUNUtZhhoUQRhiOf61EOHnicEfcsx3eMZn2WkKaqUp/uUrKgxrkt13tMpiMMQrQbqKiN0DMpxuN2fuH/3wDYrCQKPJPRZzEfM5gnRasUQzWgcl/PukXC1Jk1zFpfPcNqMZDymSXKMAuWPeDrveXzYw3hF+vTAKgk5PO5gesk0DunLiolRhMqy73vypkHv9nTrZ7i+DxqKbEdRtRzSlMvNivNhy/nwhEvN3dsfSHczigYWoxD3cMPI99DjMaeHO0jm8PyCPK8odyVmOuP65prOVfiXX3KbnjjcvaXID1jb0rYVtm/RSuP6ERrN/PILTjbn+HDDITuRrC7QQYiJAoZugTMosiyH85H1JmbiVLS7B6rdDYv5hPHLCzw3Idu+Z+5FzDfPqO/e0fctg3HorQbtcGp62u2WeDqmqEpK7eB5Pp4X4McxT3cfuL49cr/rOD88kR4PmDBkEgXEqqHPUjxHc9ptScuO9DHl2bMN2AarwaqOIjt+7nUjhBBCfJIahuFzzyCEEEIIIYQQQgjxs6M/9wBCCCGEEEIIIYQQP0cSTYQQQgghhBBCCCE+QaKJEEIIIYQQQgghxCdINBFCCCGEEEIIIYT4BIkmQgghhBBCCCGEEJ8g0UQIIYQQQgghhBDiE/4Hl4i8kDbIoOsAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "We can then compare our rendered images to the words they represent." + ], + "metadata": { + "id": "UgNUxL_Mq1i_" + } + }, + { + "cell_type": "code", + "source": [ + "# Num cells per row\n", + "n_cells = [3, 7, 9, 11, 11, 13]\n", + "n_cells = n_cells + [13] + n_cells[::-1]\n", + "\n", + "\n", + "c = 0\n", + "for n in n_cells:\n", + " c += n\n", + " n_cells = \", \".join(emotion_wheel[c - n : c])\n", + " print(n_cells.center(137, \" \"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "81882819-130c-4347-cc29-1cf8cfe23084", + "id": "B0Jxx6K6vZMl" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " aroused, inspired, insecure \n", + " sad, victimized, eager, weak, insignificant, repelled, energetic \n", + " worried, hurt, abandoned, awful, empty, exposed, hesitant, busy, fearful \n", + " helpless, let down, remorseful, sensitive, nauseated, guilty, jealous, proud, rushed, frightened, anxious \n", + " despair, grief, fragile, bad, distant, intimate, successful, inquisitive, courageous, nervous, surprised \n", + " overwhelmed, amazed, out of control, embarrassed, violated, lonely, loving, interesting, curious, thankful, astonished, startled, scared\n", + " appalled, confused, worthless, isolated, numb, rejected, creative, inadequate, peaceful, respected, excited, shocked, horrified \n", + " excluded, disrespected, humiliated, judgmental, skeptical, detestable, valued, confident, tired, happy, hopeful, accepted, joyful \n", + " dismissive, annoyed, disappointed, bored, depressed, stressed, dismayed, unfocused, optimistic, trusting, content \n", + " resentful, disapproving, disillusioned, apathetic, indifferent, betrayed, sleepy, withdrawn, free, awe, cheeky \n", + " frustrated, ashamed, indignant, critical, perplexed, aggressive, revolted, persecuted, playful \n", + " pressured, infuriated, disgusted, threatened, provoked, powerful, furious \n", + " angry, mad, hostile \n" + ] + } + ] + } + ] +} \ No newline at end of file diff --git a/tutorials/optimviz/clip/CLIP_TextFeatureVisAndSearch_OptimViz.ipynb b/tutorials/optimviz/clip/CLIP_TextFeatureVisAndSearch_OptimViz.ipynb new file mode 100644 index 0000000000..c0c6c86737 --- /dev/null +++ b/tutorials/optimviz/clip/CLIP_TextFeatureVisAndSearch_OptimViz.ipynb @@ -0,0 +1,1960 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "CLIP_TextFeatureVisAndSearch_OptimViz.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "4d98f277c7b44d53b463d172ecec7d23": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b0779c6d342b47caa6e22c036e2e13e2", + "IPY_MODEL_cf6d4296a2084c598a9646b22fe08ac3", + "IPY_MODEL_4cb7cf8553de4dcbabf33c9c0798a27c" + ], + "layout": "IPY_MODEL_c2f97e1a90b644118290a860d3fc3fb2" + } + }, + "b0779c6d342b47caa6e22c036e2e13e2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dd15379bd9534719ab4488c2270b077f", + "placeholder": "​", + "style": "IPY_MODEL_7e1bbde93d924f2b93c74c694678a0fd", + "value": "100%" + } + }, + "cf6d4296a2084c598a9646b22fe08ac3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_da6745763b764c9c9d026e316c6e76dd", + "max": 1544, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fd60edb03c1242569f3b5a17686ed2b0", + "value": 1544 + } + }, + "4cb7cf8553de4dcbabf33c9c0798a27c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_693faf3b70ca489aafcb3095e04b97a3", + "placeholder": "​", + "style": "IPY_MODEL_74b0b256df6c46658082981f3d82f17a", + "value": " 1544/1544 [01:30<00:00, 17.33it/s]" + } + }, + "c2f97e1a90b644118290a860d3fc3fb2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dd15379bd9534719ab4488c2270b077f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e1bbde93d924f2b93c74c694678a0fd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "da6745763b764c9c9d026e316c6e76dd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fd60edb03c1242569f3b5a17686ed2b0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "693faf3b70ca489aafcb3095e04b97a3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74b0b256df6c46658082981f3d82f17a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2477cf00bf934608ba560d35b5086b04": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_60ffccf308304f0b9be9a7637dc3b673", + "IPY_MODEL_57aa9158b0a54edda567e76ec7ab26cc", + "IPY_MODEL_5a56829ac4724d3b848a77c43282d090" + ], + "layout": "IPY_MODEL_229423305a32404cb15dd1052b0f6f8d" + } + }, + "60ffccf308304f0b9be9a7637dc3b673": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bacb750121b349d9b6276b79351c3179", + "placeholder": "​", + "style": "IPY_MODEL_8839b04f3c474d51ae3b90673a3f70bf", + "value": "100%" + } + }, + "57aa9158b0a54edda567e76ec7ab26cc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1b388192a3774856b551b942a6d98bd3", + "max": 1544, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c06cd0c84cd541e0a0ee19584bcaf21d", + "value": 1544 + } + }, + "5a56829ac4724d3b848a77c43282d090": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b0f9363100834b32a895ea4ece0a26ec", + "placeholder": "​", + "style": "IPY_MODEL_ad418495991f4f769a643947f857aa45", + "value": " 1544/1544 [22:37<00:00, 1.11it/s]" + } + }, + "229423305a32404cb15dd1052b0f6f8d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bacb750121b349d9b6276b79351c3179": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8839b04f3c474d51ae3b90673a3f70bf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1b388192a3774856b551b942a6d98bd3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c06cd0c84cd541e0a0ee19584bcaf21d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b0f9363100834b32a895ea4ece0a26ec": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad418495991f4f769a643947f857aa45": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "30f443aef4ff4653b1994ca2fdf6265f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fd4f3d842ae54b78b1a36c1f9506ad3d", + "IPY_MODEL_c631661c871e49e38ad2fc4323ab83f6", + "IPY_MODEL_3f54e63232e244a584ba99060bb39bd2" + ], + "layout": "IPY_MODEL_58b037efabc542a588408a66af1ee332" + } + }, + "fd4f3d842ae54b78b1a36c1f9506ad3d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7e160f3270a845b3913690fa6374fbf8", + "placeholder": "​", + "style": "IPY_MODEL_c25761926edd47a28d3dbe25089c30ac", + "value": "100%" + } + }, + "c631661c871e49e38ad2fc4323ab83f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9313b7418c60479a81683f4106e07900", + "max": 1544, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_72f9820725eb4f3fa4bf23cda55377c2", + "value": 1544 + } + }, + "3f54e63232e244a584ba99060bb39bd2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d63c8f2408874a29b0db10c18d4bbe0d", + "placeholder": "​", + "style": "IPY_MODEL_177efc0cc3194fbcbb7602a1d37a6d0c", + "value": " 1544/1544 [01:32<00:00, 16.72it/s]" + } + }, + "58b037efabc542a588408a66af1ee332": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e160f3270a845b3913690fa6374fbf8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c25761926edd47a28d3dbe25089c30ac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9313b7418c60479a81683f4106e07900": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "72f9820725eb4f3fa4bf23cda55377c2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d63c8f2408874a29b0db10c18d4bbe0d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "177efc0cc3194fbcbb7602a1d37a6d0c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Text Feature Visualization & Text Search\n", + "This tutorial demonstrates how to search layer channels with text & how to perform text feature visualization on the CLIP ResNet 50x4 model as described in the [Multimodal Neurons in Artificial Neural Networks](https://distill.pub/2021/multimodal-neurons/) research paper." + ], + "metadata": { + "id": "6PyoP2q9bNGJ" + } + }, + { + "cell_type": "code", + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "\n", + "import html\n", + "from typing import Callable, List, Optional, Tuple, Union\n", + "from warnings import warn\n", + "\n", + "import captum.optim as opt\n", + "import regex as re\n", + "import torch\n", + "from captum.optim.models import clip_resnet50x4_text, clip_resnet50x4_image\n", + "from tqdm.auto import tqdm\n", + "\n", + "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")" + ], + "metadata": { + "id": "AFKTgxkmOG_U" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "To start off, we'll define multiple helper functions and classes." + ], + "metadata": { + "id": "LWH8zkmZ7Gpn" + } + }, + { + "cell_type": "code", + "source": [ + "class PreprocessTextCLIP(torch.nn.Module):\n", + " \"\"\"\n", + " Preprocess text strings as per OpenAI's standard CLIP preprocessing / cleaning.\n", + "\n", + " See here for more information:\n", + " https://ftfy.readthedocs.io/en/latest/\n", + " https://docs.python.org/3/library/html.html#html.unescape\n", + " https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py\n", + " \"\"\"\n", + "\n", + " __constants__ = [\"use_ftfy\"]\n", + "\n", + " def __init__(self) -> None:\n", + " super().__init__()\n", + " try:\n", + " import ftfy\n", + "\n", + " self.use_ftfy = True\n", + " except (ImportError, AssertionError):\n", + " warn(\n", + " \"Warning the ftfy library was not found, and thus heuristic unicode\"\n", + " + \" correction will not be used in the CLIPTokenizer preprocessing\"\n", + " + \" module. The library can be installed via 'pip install ftfy'\"\n", + " )\n", + " self.use_ftfy = False\n", + "\n", + " @torch.jit.ignore\n", + " def forward(self, x: List[str]) -> List[str]:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " x (str or list of str): One or more strings to be cleaned.\n", + "\n", + " Returns:\n", + " x (str or list of str): A list of preprocessed / cleaned strings.\n", + " \"\"\"\n", + " assert all([isinstance(s, str) for s in x])\n", + " for i in range(len(x)):\n", + " # Heuristic unicode fixing (ex: mojibake)\n", + " if self.use_ftfy:\n", + " x[i] = ftfy.fix_text(x[i])\n", + "\n", + " # Convert named & numeric character references in HTML to unicode\n", + " x[i] = html.unescape(html.unescape(x[i]))\n", + "\n", + " # Remove duplicate whitespaces\n", + " x[i] = re.sub(r\"\\s+\", \" \", x[i].strip()).strip()\n", + "\n", + " # Only use lowercase characters\n", + " x[i] = x[i].lower()\n", + " return x\n", + "\n", + "\n", + "class CLIP_ResNet50x4(torch.nn.Module):\n", + " \"\"\"\n", + " Wrapper for combining the text and image portions of a CLIP model into the full\n", + " model.\n", + " \"\"\"\n", + "\n", + " def __init__(\n", + " self, image_model: torch.nn.Module, text_model: torch.nn.Module\n", + " ) -> None:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " image_model (nn.Module): A PyTorch model instance that takes image inputs.\n", + " text_model (nn.Module): A PyTorch model instance that takes text inputs.\n", + " \"\"\"\n", + " super().__init__()\n", + " self.image_model = image_model\n", + " self.text_model = text_model\n", + "\n", + " def forward(\n", + " self, x: Union[Tuple[torch.Tensor, torch.Tensor], List[torch.Tensor]]\n", + " ) -> Tuple[torch.Tensor, torch.Tensor]:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " x (tuple or list of torch.Tensor): A tuple or list of tensors, with the\n", + " format: [image_tensor, text_tensor].\n", + "\n", + " Returns:\n", + " logits_per_text (torch.Tensor): The model output.\n", + " \"\"\"\n", + " assert len(x) == 2\n", + " image, text = x\n", + " image_features = self.image_model(image)\n", + " text_features = self.text_model(text)\n", + "\n", + " image_features = image_features / image_features.norm(dim=-1, keepdim=True)\n", + " text_features = text_features / text_features.norm(dim=-1, keepdim=True)\n", + "\n", + " logit_scale = self.text_model.logit_scale.exp()\n", + "\n", + " logits_per_image = logit_scale * image_features @ text_features.t()\n", + " logits_per_text = logit_scale * text_features @ image_features.t()\n", + "\n", + " return logits_per_image, logits_per_text\n", + "\n", + "\n", + "def get_text_layer_attr(\n", + " model: torch.nn.Module, layer_target: torch.nn.Module, text_inputs: torch.Tensor\n", + ") -> torch.Tensor:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " model (nn.Module): A PyTorch model instance.\n", + " layer_target (nn.Module): A target layer instance.\n", + " text_inputs (torch.Tensor): A text input to pass through the text portion of\n", + " the model.\n", + "\n", + " Returns\n", + " grad (torch.Tensor): Attributions for the target layer.\n", + " \"\"\"\n", + " grad = []\n", + " for i in range(text_inputs.shape[0]):\n", + " model_inputs = (\n", + " torch.nn.Parameter(torch.zeros(1, 3, 288, 288).to(text_inputs.device)),\n", + " text_inputs[i : i + 1].clone(),\n", + " )\n", + " attr_activations = opt.models.collect_activations(\n", + " model, [layer_target, model], model_inputs\n", + " )\n", + " target_activ = attr_activations[layer_target]\n", + " logit_activ = attr_activations[model][1]\n", + " grad_b = torch.autograd.grad(\n", + " outputs=logit_activ,\n", + " inputs=[target_activ],\n", + " grad_outputs=torch.ones_like(logit_activ),\n", + " )[0].detach()\n", + " grad.append(grad_b)\n", + " return torch.cat(grad, 0)\n", + "\n", + "\n", + "def int_token_tokenizer(\n", + " x: List[int],\n", + " context_length: int = 77,\n", + " start_token: int = 49406,\n", + " end_token: int = 49407,\n", + " padding_value: int = 0,\n", + " start_from_tokens: List[int] = [],\n", + " end_with_tokens: List[int] = [],\n", + ") -> torch.Tensor:\n", + " \"\"\"\n", + " Apply special tokens and padding to sets of tokens in integer list format.\n", + "\n", + " Args:\n", + "\n", + " context_length (int, optional): The required context length for the model.\n", + " Inputs with lengths less than context_length will be padded with\n", + " zeros.\n", + " Default: 77\n", + " start_token (str, optional): The starting token to place in front of each\n", + " text input. Set to None for no start token.\n", + " Default: \"<|startoftext|>\"\n", + " end_token (str, optional): The ending token to place at the end of each\n", + " text input. Set to None for no end token.\n", + " Default: \"<|endoftext|>\"\n", + " padding_value (int, optional): An integer value to use for padding token\n", + " sets to the desired context_length.\n", + " Default: 0\n", + " start_from_tokens (list of int, optional): Optionally add one or more\n", + " starting tokens to each input.\n", + " Default: []\n", + " end_with_tokens (list of int, optional): Optionally add one or more\n", + " ending tokens to each input.\n", + " Default: []\n", + "\n", + " Returns:\n", + " tokens (torch.Tensor): A tensors containing the token sets stacked across the\n", + " batch dimension.\n", + " \"\"\"\n", + " tokens = [\n", + " [start_token] + start_from_tokens + [t] + end_with_tokens + [end_token]\n", + " for t in x\n", + " ]\n", + " tokens = [\n", + " token_set + ([padding_value] * (context_length - len(token_set)))\n", + " for token_set in tokens\n", + " ]\n", + " return torch.as_tensor(tokens).int()" + ], + "metadata": { + "id": "uZSJVZRZOJAi" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "We load both the image and text models, and then place them inside our `CLIP_ResNet50x4` wrapper class to create the full CLIP model. We also load the CLIP tokenizer, and some additional variables." + ], + "metadata": { + "id": "mAXbDI6i7cKw" + } + }, + { + "cell_type": "code", + "source": [ + "# Load the CLIP ResNet 50x4 model\n", + "clip_model_text = clip_resnet50x4_text(pretrained=True).eval().to(device)\n", + "clip_model_image = (\n", + " clip_resnet50x4_image(\n", + " pretrained=True, replace_relus_with_redirectedrelu=False, use_attnpool=True\n", + " )\n", + " .eval()\n", + " .to(device)\n", + ")\n", + "clip_model_full = CLIP_ResNet50x4(clip_model_image, clip_model_text)\n", + "\n", + "# Setup tokenizer\n", + "clip_tokenizer = opt.transforms.CLIPTokenizer(\n", + " pretrained_merges=True, preprocessing_module=PreprocessTextCLIP()\n", + ")\n", + "\n", + "# Setup tokenizer vocab range & logit scale\n", + "token_vocab_range = list(range(0, 49405)) # Standard CLIP tokens are [0-49405]\n", + "logit_scale = clip_model_text.logit_scale.exp()" + ], + "metadata": { + "id": "4bKGCAkAnS5c" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Searching CLIP Image Layer Channels With Text\n", + "\n", + "This portion of the tutorial demonstrates how to use the text portion of the CLIP ResNet 50x4 model to search layer channels in the image portion of the model." + ], + "metadata": { + "id": "3-KNjxksTSQJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "Below we show how to search target image layers for channels that relate to our text inputs!" + ], + "metadata": { + "id": "Z0sFRWGS7l7m" + } + }, + { + "cell_type": "code", + "source": [ + "text = \"kitten\" # Change to any text input or list of text inputs\n", + "text_inputs = clip_tokenizer(text).to(device)\n", + "\n", + "# Set target layer as penultimate image model layer\n", + "target = clip_model_full.image_model.layer4[5]\n", + "\n", + "# Get attributions for target layer in relation to given text inputs\n", + "layer_attr = get_text_layer_attr(clip_model_full, target, text_inputs)\n", + "\n", + "# Set the number of results to show\n", + "num_results = 5\n", + "\n", + "\n", + "for b in range(layer_attr.shape[0]):\n", + " # Sort results\n", + " channel_strengths = torch.stack(\n", + " [-torch.linalg.norm(layer_attr[b, i, :, :]) for i in range(layer_attr.shape[1])]\n", + " )\n", + " top_channels = torch.argsort(channel_strengths)[:num_results]\n", + "\n", + " # Show results\n", + " b_text = text if isinstance(text, str) else text[b]\n", + " print(\n", + " \"Top {} channels of the target layer for the text '{}' with the largest L2-norm: \\n {} \".format(\n", + " list(top_channels.size())[0], b_text, top_channels.tolist()\n", + " )\n", + " )\n", + " print(\" {}\".format(channel_strengths[top_channels].tolist()))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Bl1Tsk7izk7H", + "outputId": "f2805136-1733-487a-9f09-dee21d9d73b0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Top 5 channels of the target layer for the text 'kitten' with the largest L2-norm: \n", + " [289, 1179, 607, 1543, 1124] \n", + " [-1.4196891784667969, -0.7648456692695618, -0.6109495759010315, -0.5101999044418335, -0.5019273161888123]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "We can see that the text input `\"kitten\"` corresponds most strongly to channel number `289` in the target layer. As the second strongest channel is significantly lower than the first, we can reasonably conclude that channel `289` is the image model's \"kitten\" channel." + ], + "metadata": { + "id": "V5B1jEBBGt4j" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Similarity Search\n", + "\n", + "\n", + "CLIP models produce text & image embeddings that can be used to calculate the similarity between different images and text strings.\n", + "\n", + "Below we define a helper function for comparing embedding similarity, by searching through the model's entire vocab token range." + ], + "metadata": { + "id": "w9Cc8MolbtHB" + } + }, + { + "cell_type": "code", + "source": [ + "def embedding_token_search(\n", + " text_model: torch.nn.Module,\n", + " target_embeddings: torch.Tensor,\n", + " token_list: List[int],\n", + " batch_size: int = 32,\n", + " logit_scale: float = 100,\n", + " device: torch.device = torch.device(\"cpu\"),\n", + " start_from_tokens: List[int] = [],\n", + " end_with_tokens: List[int] = [],\n", + " tokenizer_fn: Callable[[List[int]], List[int]] = int_token_tokenizer,\n", + ") -> List[float]:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " text_model (nn.Module): A PyTorch model instance.\n", + " target_embeddings (torch.Tensor): A set of normalized image or text embeddings\n", + " to find the maximal token for, with a shape of: [1, n_vals].\n", + " token_list (list of int): A list of tokens to search through.\n", + " batch_size (int, optional): The desired batch size to use.\n", + " Default: 32\n", + " device (torch.device, optional): The desired device to use.\n", + " Default: torch.device(\"cpu\")\n", + " start_from_tokens (list of int, optional): A list of one or more tokens to use\n", + " a prefix for the token search.\n", + " Default: []\n", + " end_with_tokens (list of int, optional): A list of one or more tokens to use\n", + " a suffix for the token search.\n", + " Default: []\n", + " tokenizer_fn (callable, optional): A function that takes a list of integer\n", + " token sets and applies padding & special tokens.\n", + " Default: int_token_tokenizer\n", + "\n", + " Returns:\n", + " logits_text_list (list of float): A list of values corresponding to the order\n", + " in token_list.\n", + " \"\"\"\n", + " assert target_embeddings.dim() == 2 and target_embeddings.shape[0] == 1\n", + " logits_text_list = []\n", + "\n", + " for i in tqdm(range(0, len(token_list), batch_size)):\n", + " # Prepare input tokens\n", + " token_batch = token_list[i : i + batch_size]\n", + " token_set = tokenizer_fn(\n", + " token_batch,\n", + " start_from_tokens=start_from_tokens,\n", + " end_with_tokens=end_with_tokens,\n", + " ).to(device)\n", + "\n", + " text_embeddings = text_model(token_set).detach()\n", + " text_embeddings = text_embeddings / text_embeddings.norm(dim=-1, keepdim=True)\n", + "\n", + " logits_per_text = logit_scale * text_embeddings @ target_embeddings.t()\n", + " logits_text_list += logits_per_text[:, 0].tolist()\n", + "\n", + " return logits_text_list" + ], + "metadata": { + "id": "yNW2B9GNKwq_" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Text Similarity\n", + "\n", + "The similarity of two different text embeddings produced by the text portion of the model can easily be determined in the same way similarity between image and text embeddings is calculated." + ], + "metadata": { + "id": "MCBxsWuaK1Wm" + } + }, + { + "cell_type": "code", + "source": [ + "# Setup target embedding\n", + "text_input = \"machine learning\"\n", + "text_tokens = clip_tokenizer(text_input).to(device)\n", + "text_embeddings = clip_model_text(text_tokens).detach()\n", + "text_embeddings = text_embeddings / text_embeddings.norm(dim=-1, keepdim=True)\n", + "\n", + "# Compare target embedding with full token list\n", + "logits_text_list = embedding_token_search(\n", + " text_model=clip_model_text,\n", + " target_embeddings=text_embeddings,\n", + " token_list=token_vocab_range,\n", + " batch_size=32,\n", + " logit_scale=logit_scale,\n", + " device=device,\n", + ")\n", + "\n", + "# Sort results\n", + "num_tokens = 10\n", + "top_tokens_text = torch.argsort(torch.as_tensor(logits_text_list), descending=True)[\n", + " 0:num_tokens\n", + "]\n", + "\n", + "# Decode results\n", + "top_tokens_str = [clip_tokenizer.decode(t)[0] for t in top_tokens_text.unsqueeze(1)]\n", + "\n", + "# Display results\n", + "print(\n", + " \"Top {} most similar tokens for the input text is: \\n {} \".format(\n", + " num_tokens, top_tokens_text.tolist()\n", + " )\n", + ")\n", + "print(\"The top tokens decoded are: \\n {} \".format(top_tokens_str))" + ], + "metadata": { + "id": "8rCV0-_byeXf", + "outputId": "d3840f4e-ff78-4081-8a33-81e4ec671b16", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 120, + "referenced_widgets": [ + "30f443aef4ff4653b1994ca2fdf6265f", + "fd4f3d842ae54b78b1a36c1f9506ad3d", + "c631661c871e49e38ad2fc4323ab83f6", + "3f54e63232e244a584ba99060bb39bd2", + "58b037efabc542a588408a66af1ee332", + "7e160f3270a845b3913690fa6374fbf8", + "c25761926edd47a28d3dbe25089c30ac", + "9313b7418c60479a81683f4106e07900", + "72f9820725eb4f3fa4bf23cda55377c2", + "d63c8f2408874a29b0db10c18d4bbe0d", + "177efc0cc3194fbcbb7602a1d37a6d0c" + ] + } + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/1544 [00:00" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR4AAAEeCAYAAABcyXrWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy96Zccx7Hl+TN3j8jMqsK+AwQIEhQXre9Nvw/Tfc789X3mTE/3mfdGPa0nihTFVRTFBcRSqKrMcHebD2YeEVUACiRFanlMIwu15BJLht8wu2Z2TVSVrW1ta1v7a1r4W+/A1ra2tR+fbYFna1vb2l/dtsCzta1t7a9uW+DZ2ta29le3LfBsbWtb+6vbFni2trWt/dUtnfbg5TtnVHNFc6GUilZQtS8ARRARRCCIQlD7HUAERFF7IrUqWtS+K2DPgvaeKGgdtz1uQ+31owm+zbbdQIj29xBA4vS4ov7+SlXbNjq9qartS63TprX67/Pt+q6GABKEIAGJQohCDEJMQgiCxIikSEqBmAKxE2IMiASkQfx4XLZPqopWKEXJuVJyoQ6ZsinkXBmGShkqNev89DzfBGKCGCElSMG++gX0vbBcBvo+kmIA/BxNh2jnQ6HUyrCprDeVYVCGQckZip+XKNNzj5lOp0xk+lN7WilQqn3VMp339nwJdp7j/C39Y2N27c0fqyef8w1O09Z+eFNVed5jpwIPYheEil9EAbTY79Onq/6vIsp4BSvTlaAKUtvFJbT1o6rTFd82qLYUZL4Nme0MSnDwCUGQABINhGIQxP9GaDuiaFWkKiHYvmhVtI574WAGOj+w2dUrJ3+Q2UL1pasY4ApqC6gBZBAkBELAV409T1WRBj7i50ECAgxVkaiEogQRajAQ/yY2bdvPoUCIkJLQJSHFQPSbgwqEdiQyrdgAaBADryjUAiVMJ6WevBk009l3GQ93AoY6gbzOwL69RBVCtZ9LsP0Q39Z4vzixvfb3+aa39vdvpwKPIKgIQhgXvcwu0PbJj6ATJuBoGKTzX+xNEfcoZPzbdJWOT1VQ0RkuiS1ZUSTICDIh4gAkhBGMBA3jHqAVW+S1GthVqEWmBdAA6ZRiSjkGfn70qqja+zBbmHYQwb/E7+IyHoOqeYZURWql+gErQq1CSIFaBMLkAZTn3jue3s+5tyEBQvOAop8f9wgb4Do+MXeoBCHEQAgVCQaMDZdVITtWhhOn5eS9ROsEDrVOX8dAZ3baq/8T/Od2KzjpWbW/jxi49XT+oewFwAOIoEEQlfECEb/PT1jioKEKRcY7uF2EMt55kYCIouJeh8oxTBq32sBsfkULBL+NW6gDMYp/hdHTCSJ+q7SXqSokpSpoCRbW1IoEoeZKFVv8qNrFrrZY24Xc8KZ9c/gbTWkApGP4lD0GCVVB7dyN4WE7e6qEAEow70tsqU2eUiAEW/gqQhCowtN3/fmZm3s7/nsUC7UaUDdEGn8MzbsUB+fjXkRw4JPppahayIRO4VFkun8okwPVwrHx+yyUfd6xVAXq5LE9C3OPgc7W/uHs9FCrRQBMi07FLlChTB++33LEH5ujyXTnnVZFCAY8taqHPcy8numWqb5M23IXgRijcSspkFIgxDD+PPrlswWo1UCyakWrkqsSinEqEoBcoQSUSp2FhbS3A47zSjNvoYVNDpboBELjCqyNsJi4L3H/Qtu+chw0QhBCCNQoyAzIx1P0PJu/h+NvcMAeT3/7YH1fwszzqWpcXa2Anzf85hEFAkqeeS7Na23OZQvf5psYOTR9+uuZl5z/fXQin3FNzr5NAHfKadna35+dDjyVE8F1u8LE7tRaZx+4hzRtganTLLNVJUHGxSPY47W9bwUNHoaNQGPvFT1EiDGyXCxY7SzYWS3oFx0NaFarJaqVIW+oWqm1EIMt2s1mQ86ZXArrnKkFhqyUbPtRRJ2HqOPFXtvhujVPJDTy3IHQnAY/L/Pbu5PGFSWeDDenUzZhgP9nnA7GW8XgQKeEIOadnQI+zTubb655DS0cmYe0x17XntvCU/xQ2i6Ob+ZhaXHvEPPEQpi2Pw97RqCp0+/fxEbiWia67uTjY7i1RZ1/ODsVeEYStl2FvqiOf9Dz4Hp263NrrvgYQgCIjiBj4UaL52W8eoMEQogsFh3nz51hd2fFou+5eO4cFy+e48L5c6xWC0AptdL3PSEEjtaH5DwwDBtCEJTKg0cPefT4MZthwxdf3+fR/gEpVUqGtWTYlJG7UK3udUwOmB3ILNSQaenaepz8CGFyvKoqoVZKFaQGf549qFWfuvsHd1WiKhqEKhNvpcHO2TEiZmajN9O2bY6c/TqSub7dIOOxjUmAFia5J1rdE63P2l7b58rI+zyV3WpPHbfz7a2BZX36shodyi3m/GPaC4Cn0rJCWmW8MM3L8IU3LhxffLPU1rRm2386hm3qV1IVnBi2MKrvOpbLBWd2d1j2PefPneXVu3e4ef0Gu6sVF86d59y5s+zt7rJY9MQQfFtKjJFaCiVnSi3UWigl8/Wjh9z/+ms2w4bff/QHfveH37PebBACX329z/0Hj1nrYOFFMK5Ky3POCeNBTb/PPaMTIVfVitRArQ6toZ3bWViGjNzXnOxtYBdEKB47SXj+vk0uwGzBN0K3QG58jnNgQRz8xZ/XAKs0AnhylU56MCeP/Yf0Otp2tiDzH8dOB57i6V6/CO2Dn666Y/zGicuiEanHvGSdcT5i7xeDEENkueg5s7fLtcuXeOnmTe7cvMHlCxc4u7fHlStXuHzpMstFz6Lr6fueruuIzoWE4MGOb7PWivk6St5sOFqvOVqvyaXy5ms/4Scvv8zXDx+iCH/+/Evefu99/vjZFzx6+ATVwUBC1PkDmY5t5vW0I1aEihAU57cmornV6FRRSimoBoyukcnbaOdCQVrIx2whtzC1cWNBpxD45Oc181zEPYVSoAS1dLgDF6UizQ0FJ/tnwOPg0ziclomrTj5vbWt/qZ0KPBMpaETjxJlOYQYqk7vOlIlqIdV8pbZKFwlKDIE+dfRdz9m9XW5dv8rdWy9x+9Ytbt96iRtXr3Dp/AV2d5Z0XSTGREqR0FJOYgt9JGVDJFj1IIqnqxHqYsGu8z+KcPXyee7cuM6j/SdsNpmH+494894H/M+33+a9Dz7iT3/+ivtfP+bocKDgRYcnyBmRBkgOPDMnUJ2c0KpoqdSWrZqYoVl4Nr2vEeDuJTk31GiV4It/TkA/18OY8ysOIrl46ChWyxQEijTSJaBin22pntUaizxn+9aSAC3sOSXs29rWXmQvCLXa3VdQLZObPXO1Ww3PdJ2eYAJ9fcl41w6kLrC3s+Kla9d45c5tbly9ykvXb3Dn1i2uXrrE3u4Oq0XPou/pu2h1OWoLMQQ1b6YqSjXwUUADhDh6P+ZdeXVz9GycBBb9ip1F4vLFi2w2lc2Qeen6LV59+S7vf/gh7334Ef/+u/f44OM/8Wj/gIODzch5nDysdhIaj9KI8iBKLQ42vuDHx1QhjGV7tNR6VXtNKVOmr9bjxO9YnMj8fM8/MMeFxte4x2Pn3wsUgk4kMP4BB0GrUsrMo5mFjA10mkcVhDEs3BK7W/sudjrwNO7GC+WsAM8ee6pK+cRSsDAKC4ViIMZAlwKr5YIL587yyu2X+Nnrb/Dmvde4cfUqF8+fY293xSIlK3TDa0jGhWaAIzr5GoqniVWpdYAyoC29oopOBUT2X1BiioQ+0amw6ISiyt7eHhfOX+Durdv88q37/PNPP+E377zDu+9/wHvvf8LXD/fZP1gzDNnI1OPOip+rtmjFwrSiqFRKEYIGJFroZ8AEdZZ3rtoWfaVmqGVW7HiCRG1FlE9/WA4G/rkdC4kKDMLoCTZPClWIxhBXLzHQtg0HwyFbu0Qtts0YPH2uVinwXL5pa1s7xU4HHv9nvCvXRoYCyAg+Y4an3ZUdEEIMdF3HYpHY3TXC+Orli/zk7j1+/sZb3LtzlysXz3NmZ8lqkYiBaVHQQMe8GstyBbRmrNjPWByp6nxMnTJwjcH1xSUqaIiIRETFCGmvbYlqgNh3HWd2Vly+eJHbN27xxr17vP/xx7z97u/56NNP+cOHn/LeB59wuBmMwK7Vw7oGg7bt6qu+eSURgQgGpeb5RAefFqKO9UzFfq4ersksuyRYwDbRvE9/Vg1Lms3BJzdubfZZ1ba/iIV3jei2T5xSlM1gX8UBRgQ7HnPcqFvg2dp3sBd4PHZrq7XaHe9YDtOXwKwADZjK/KNlY1IKnD2zw+uvvsxrL9/h2pVr3Ll1h1dvv8yl8+dY9ZEUjKINztnM82DG4/gXioSIqqdpHISaEyDOQ6FlqknxmEWIiCTIiqRoYVlLb3tGjX7BYrlgd2ePM2fPcf36dd547Sd8+dWX/PGzz/i//se/8e4HH/D5V/d5vH/I0SazycXI6ObBaKu8VV/kU3NtUGd41GtyGvBo200P6QwFxhDMwqYZl/ac8EZH9Jn+NoJPtjaHduMQgeShmDIr4hQdK5hzUfKg1szJ9L6tRKJVNG/Dra19W3sx8Hg6fQSdp5/l2Q9vXYh2x0wpsrNacPH8WW6/dI1fvfUmb732Jreu3eTihXOc3V2xSNErbO29Q4hTOtlcgimtjKJaEIJngdo+Nb/fVpg05rMRL86uiFakFCQEKBhQROOEvNdibE0IIRL7yHLRcWZvl+tXr3D35bvcvXOHd979PR988gmffPYZH336GR//6Qse7x+y3gzT6XEynmr10MC4zUCgeg47jFyMgUxpHuWMnG5p95G85gUL3cHnWZ7PlApXf45486p/tE4yUyeyudTxLY9vQiYA2oZbW/u29kLgsWzQhAAtsJj+nZkEdlZLFouO3Z2eO7eu8aufvsnP33iTe3df4dKFS+ytlvRdoItWhk8tBijBZCYmTglaGkUIoNWxr8z2bQIey7CZ6yCeTbPQo+kuJAuNVIzcFecqglhh3gy8iEIUIYRISsJq0bO3s+TCuT3uvfwy9x885KuvvuSDTz7iN++8y9u//4A/fPwpXz98zHo9eBW0AacdQVv5to8SrLesyBTGjoii1QGnGuHsx91S6N/Eu3jWc+bg09yXqkqalQW3zGWrzTp5vxlZKX9O4FjScmtb+8Ymp3Vk7+712h4/9rzR45/+FoKQYmR3d8Wdl67xq5+9zi/efJ1fvPlTbly9ypm9Pbou0I3ZGSeGsepobSAzlgfb4jOSOYxhX+uOmgPPVLWrSDEgAwgxQYgoSkgdTbhHBKTrrW3bX6wS3VNpPdEyFve1kgHLpAVyUY6Ojtjff8IXX33FBx9/yP/3u3f49W/e5p33PuTrR/sMeTo71vJgm7e0f2PNdSJmFE9j2/mopVJyNS+oMmoZlWIV19/4A5bjX/ZZQeqgS1M7wnjadfre9l/bbjK1UeC1PrlAydtwa2tP22l6PKcCz85u95zgimlRurfR9x0Xzp/h1bu3+NVbr/OrX/yC1+++wvUrl1n2kb7viECQeowEHVsmSrZwyHe15kLTrAHvrNY6ks8CaKkjvxSO751p8BCMzxEhpGRhVpOqiMkUs8Z8dQIJE3/k21WMmB7RVixdXz39fHS0Yf/ggPsPHvD+Rx/y3/6ff+Vff/NbPv3sCx49OmC93jhVa6er6fPYcU48j39QnpEygNEy1fVYK0M1Hig/l+Z59oc8EsuM5yu1ww/T+Zun6psDdvLKGTtnWoVz+9oCz9ZO2HcXAjtpLdzSyTOREFn0HVcuneOXP32d//yf/onX793j9q2XOH/2DMs+mCxDq7kZ9Q5aBohRoGV+7bbMTiuso06pdYHRW2ogM6bRcUciWKmuaOMznJymgIdux0VhMq1CeIofvFetcUOmnDWm5kMQhESKu6yWC86fPcuVS5e498rL/Obtd/jtO+/x4R8/4/GTQ1MSVCX48XokxhxCGvBoK+TzBT5VQn83z2L0YtpH2EhlS7jRDm1ejzWLyI6HWh72zXV2tpiztW9r3wJ4Zu0PvjBTjOzt7XDjxmUDnf/tP/Gzn7zGlUuXOLO3YzUfVGsnoK0iZyKdw7HAxj0br7sRVYJW729q3IOhTstEWQ1PI2jVbrtjWW/jddwf821pda0LLRAMVCRE94TqdIcfi5WMNJ8KY6KtUM1eSiOkYM5SQEh7CxZ3bnHlwjleeekWr96+za///W3e++hjvrj/kEePD1lvNtRSZ0W/k65R9ZWuTui38oVjRLqjx8nU+Te1kU7yTNWIseJ9c/PnMgMXPzcygiFT5fIWebb2Le3FdTwcvxhbBXKMgTO7K166eY3XX7vLz994nVdfvs2Vy5fY21kRQ0WqC1sFQbQCM5FdTxuPYZIw1uGoQNAMVPdUnHNpkhmuotcWxZjTLQ4+IYJ7WCNXo5kaFIJr/KgYWIXooRTH2xjG9nRmgFjQVgrsroA6qMbgHl0fSOf2WPR3uXjuIndu3eL9jz/i3Q8/5PcffMKHH3/GgwePqcV4rZOhDTACz7ji6zM8nvbC72gNS5ug1ygyKcff+vh+2R/muwZb3Nnat7dTOZ6VczxTtau1PPR94szeDrdvXuU//eKn/Ms//YrXXnmFS+fPs7Nc0CchUNCSG0sy07GZUs1azVMRFIkefpVqXI8DhKpS1EhdW4OWcYox2Hs24hTQku0uHMNEOB8DEwcQwauagRCRMEmLSytUbEUqnmEiCJI6e5JW43qqeWWK+M/FSGE1pY2hVI6OMg/29/n0i8955w/v86+//nd+8/a7fPbFfQ6P1k+1YkzNpU83m46eR+ug/x56pWL0mquZyuAUaLZ9mn5x53EErtEZ3NrWTthfxPGcnOjQ94nz5/Z47e5t/uWXP+Off/5T7t6+zYVzZ+i7gOiGMqjfOV1Wo4VUY4jgDZAjiWH1OYgQqbR8rhXbFUIptrhFUA1Uwggwse0fIDEafTOGWvMlVJsGhwU3tVIRK/QT53DEqqHRCMUUFoP3VWnJFpqk5J6ZHdu8I12qe3mqRCxNv7vqWCzOc/bsLpfOX+DyufNcv3yB//6v/5P3PvyU/SeHx8IunbkYxzrcffG3Y/2+FrsXYE96ys8AHjjB5cyivm02a2vfxU4FnhDMqwgxkGJktey5dOEc9+6+xD///C1+9bOf8vLNm5zZXdFFCHUAvGfJdX7bVdrUeKpaxiiYDwMNaGoedYYlBC++E4L0wIaaByeYoy8AF5WZp2LEdG1kJCZmLQa+WlWr3d7xGE+ZpeUbR8QYvtVakRC8cXMwohnG8oJWXWzPdQBSa4uwSC8QE3SpY3njMnurBVcuXmRvZ0XX/Sv//u4H7B8cefUzE6HrvVqjR9EOo82V+Z5sfH95vtLfU7834Klb4Nnad7NTgScGa+5cLBdcOHuGm9cu8ca9l/n5m2/wxr17XLt8iZ1lby0PtaW2veiwgmJpaPMjqgvG2yqyGK4V/lUvJATVgEhH6DqCBON7UqJsNpS88fDCM1SiiMRxu3MCQkf208nmEQPVhkOFOJGjns5Rzy2XkfA1INJqqX0VsTqh2QJtIVFrbcBJckFIAoVCa/1YxMClc3ssUqRPgUW/QET47bsf8vDxk7FYcOJ4pjS1UVeRmIQ8VD/P389F0LyeOpcvhRFgxmOd8zqz8GtrW/u2djrwpMjOasmFC+d45c5N3nzVQOfeyy9z9dJFFn0kaHFpCuM4Rh7HvQtzIBwM/DFa2NTol+p3+FosgqqVmBISrL5HK8SuM0J52Hgzo9+qg6fH2/s0Tka9QjhGtFTKsLHnNTKjtVgE75+Sua5Q8zzsF/EQTLWCxKmGqaWWWjjkDatj0t/bPnQEo0onwtmdBa/cvsGi70ldpOs6/u1/vcP+kyPykI+FVXGs+YEYw1jL8317GrU6yR8aYe7n4QTwtFO0TaNv7S+xU4Fn0ffs7qy4dOEsr96+yRv3XuXu7TtcvnjBQIcZx8GsQ9zrZUodjJR17WYVGRe6ipiqoRiANHnVIErNmbpZQwgGRuPMGY+s1N8PoWYIUcfpF/jWm8LeJC+qqHc7SpCxKGjKLDnR4WJieNaskR6NCFdpxLiFbOqh2dik6q0OiiDVAKiqQjAN6Sg2eTTGBbdvXkHlVwAcHB7yhw8/4+sHj8m5EGLrScMJbDvuYSg/SHjTQq52LzCPlAmIR6Z5Czhb+8vtVOC5cf0Sly+c5d7LL/HT117l1Tt3uHLhPMs+EbQiaunxRhJPZHEFzWjNTuBWahls8aV+qulp7QqlODgEslbT7ul770QHzZnqmSSiZ6C0ouqPN76njTkdSVIdQ58QOzROImFtxhe1bRvwoJAQxvcUCaPOjvWM+RvogGZ7nzYBNOgkH4JOCqUGatEAKpkvkQT2lh13blyh/upnPNl/zM7yt/z23Q958GifUio52xhjVWu6bZzPt7XWhP+il7boVGevGf/+rOdubWvf0U4FnlduX+fOzWu89dprvHnvHlcuXWTVJ0Krx6kFqQ18rHZe1AtDtCAl26KulZoHKpXoKfZSi2VoXLZCJaASqFXp+s4mNKhScmbYbKi1ECSQlivv3WoY4+p5rR4IAGu0LNW8BIkRCQmRaGqAOXvBYeODWhWze0gIhM6yZDCFU+1njCMS9fDL4w6hmnh6VcoYrDDGJqoK0QAkBKGLkZ2+46UbV/gv//LPLBYm0frr37zHg4dPyGXybmIM5PLt2sDHwYTfAiS+yXO3oLO1v9ROBZ6fv/4aL924yt2XbnP5wnlWfSKJ5XZFC0ELUKAOXm2sVC+ys7ArU3KmNo9GK2UzQDVAiikhXsejBOeFLf9VtUBW1oeHDOsBrUrqA7F0xLS057fCwuLhTQjEmCyUytn2MwSr0xFrFtXqWj1arHquZdHEMldSKzVntBYCC9cW9lR6SA5ADlQtpx0m76q1ZgRts7raWNOKViE7iS7YdmOAvdWCe3duIRL44suvee/9T/n64f64wIN37tfNN1vxoU2y+Jag85TpsW/ArEJha1v7C+xU4Pmnn73F9StXOLuzwyIJUgdoifFaME0808ULFGrJlGFDrdk7rDNlyNRciV58l4eBMqzRmukXC2JMaMnUMlBqJcREv+yIycAChCEXtFZi17tejlCJs7t542EKVYv1UHWdZZOC1+5otVbqFlo5mU0tSEz+BYRIRCglU4c1KtneA1B8OsPIrrawUqbVLmK6yq3RVKIXPwY0FHSzccDsbC55rXQIe8sFN69e4q2fvMJv3/uA+48e8+jRoQF0jGO260UWGnf1FxLQW69maz+knQo8d254jU7rbyqmvRu8YcdE1zPkDblsfKZVIQ9r6xxXq7tJ3ZIYI+v1mrxRgvTEfoWqUrLFTDlXNpsj+tWOZbBiBOmRtKDWA0SFrutJ/RJCBwRwYXQQqIWa10Zap34cq9uoJEvxFye/jTyWmBjn8TIVERISAaF627UqEKOBTi3e/oG3ZnjDKRxrnDW2NmP9aG2on6BkK4AU2Gj16utAoHJuZ8lbr93lv/ynX/DZ51/xzuEnDLmQUhg1j59nIhaOjWT0DwUceoxz3trWvpOdCjxndhb0wRszW2+VE8potlS3eyta3BsKidQtUPGQQjpSv0AoiAohJLpFT0odtQxW3YwJXkX3eBChDoUqA7lUqkIXI6nvka63+iD3AGr1LnEVQuyJfUIkTFXTtVKyeVmtSG8+hytGH4lTrM6ozXgP3mphaX8fLxwiImIAV4ZZg6kDjsxJWath0lJM0tUbQxWhqBVS1m5B1/XjOe2icO3SeX751k94+90P+NNnX/Hg8QEhBjbD5rmfk4hJzFa1KRU/hMkJtGntcVvb2nexU4GnEyWSLXRAQUz1STC9Yy0bNFv2ilq8dycTYkdKC2NgQnJupbrqoAFR7HuEjpqNOO5Y2iKOSt6sefJ4n6qBwyeH1GFAklqPkqenaw1s1gPgbQ0pEkPnujtAzdTNxsIlr0pOqaXKDUDEU9zmHFk2rM4ydeLcjY4VzUaIx64nj41Ss9TPrNpPsIx9FUEqVudUBkpVcq1ITiSt1v8Wg82GB3YXibs3r/KLN+7xm9+9z3owfkmf0yMRgtB1iVKKeY8/gD2L19mCztb+Eju9ZaIMFl7hRHItaBm8ktcVoDAJUVWbEw6ATx1NXU+IiZIHI1J39xgzR5ptYUebDNdaJWrdoHkAzVADw/rQ5CtiD4Klmasw5Ewpha7rPcNlnkmtxSUrFFIiRquIa8JbRgmZTk/jbFqfGCihNiK4dUBa5k6b1qfnzlLXOdDYMYcYxlYMVaVsNj7zO1jddq1eHOhSsghlk1HZkBYGusZcKWd3Fvz8Jy/zyzdfYf/wiPsPHj9zoTfQqbWS81+hU3MOQBPGPtNOA6b5a1qx4hbHflx2epNoXlsBoBY0r52MzR7iGIFs4utNqN1G9IaUUDFdYa0bULV+rz45UercEC2rnZHUUWpBs7coFGXIhRAjadHR90tUEptNZsiVUqqNvEnRu+a9mz1nrzA2jRyii3tFy2rhYaPtv7ddjM3pTiLrNNNKop0iqTq2eyD2d0lWjTzWybRCPwnEbkklUwdrNq0VcrZ57gYyBc0bNEZqTGQYRzKv+p6Xb13nn37+Oh999iUPHj55amWGICwWHaVaUeH3bfJMRNHZ4+2HY9/GZ52sfJ6/3bEO+Gkw7LEs3LNCuZOAtbV/XHsB8BxZwZ6axIXLBRoADWsr7EM8BW4Lp0s9MUW0mpiXarWBfikSA6TOC+EqxutEIUilbqxVoNTKMGzg8DFZIzEG+r4jLXqqwtHhmqpCiHGUM40pkmK0i7dGFwGu0wqInnEq6h5bHauYVcTCR6+qBgcYdyC0qhc+dtZTqsUI4diBWKZMgdD13otmvJPN3hJqUfJg3lmtxaqSg1d8B9AUKTlRFDRGui4Qg7K36rl76xq3b1zhnfc+dhC31SYCi2WPqjJshh/gsmAMT4+t8Dm6yAlPZfaLwNjPNgcZ8HrL2XuNj+kEPE+B1UkAevaft/YPZKcLgeUjanEdHa1O2DYVQSsgzBvjIPrFgq5bGI9SM1FbP5QSU+96yzZOpaqJekURJAaEjqNhoGhhyFZfE6iEbtcyWD5+9+hwzcH+EWmxoIuJkitZBkKM5mG559NUDcfux9bI5VyNjG0U1UXUbdzw2KYgNgQQVa+ATuqMcUcAACAASURBVGOzqkj0WiDTcaZrFck9EpId8iajeU3VwjBUcs6UYoMA8zAQRNAYiUkJtTcwRCghkIhIKPRd4ubVK9y+cZVzZ1YcrtccHQ2UUlmuekKAgyfDD3rnP5m+fwowhONDTWdgJM96nUxg8pRD1byeFq3PO99PgNe4D7oFn39Ue8HsdB9n0K4mteI/cqbmTMkFkUC/XNEvl8SAe0NlDFFCTE6e+uhe72VC1fulrGJZsTlOFS+yq4JoJsQFsespqjw5OGQzZJsOwca8HCd8BXFhd9umOv9U1bV/PB7S6uJkTWU+WLgYQiSmaFXOYsJeplAYIPZI7AhppussgqTkaf/gDpY9XgWKbsiqbEpms9lQhmIE8LChKAxBWKxWhDJMs720t9leMdGnwtm9HS5fOMP5szs8PliTc6VLiZQSB0+OnhIR+2uZPIUqpzwXGCm0OYDIiEXH+sJamVSEsX9MT7zmhzzqObg224Z137+dCjx1MG/CSu8L1A06rKnDhpIVlY5usaJbLKBmc/trJoWEpOgjZTpqHghdB1RqdgmJWtBsnoxV+FpWyep+o7VMlGw9WzGxv3/Ak/0DQlwYmIRA7BJdb8WGglI9xNKc3UPDM2WCeqhj4dVU7BdDR/Iudol+1beG01qMiE792I8h4pXQXYekzmRTJRpvlAuaC1UCWW0SZ8mFo8MjahmotTIMwygeH2Mkdj2xWxrYlYFaEmG5Q0qJM7ny0o2rvHLnJg+frE2dMQiPHh2Q8992it5pADAHl9HLkafDruc+35GnLfg5vur4DxOQ6eyx72gy379neGONp9va92OnAk8ejgg1Wqq3ZrQO6LAmDxtKEdKit9CqDOTNEZrdm9jpjWBWqMOagBG/ZbCq3VKK18EEVCIVa1cIrUI4RLIWQrVUfSnKkd/xF11nrQsSCCkROueUlKnVoRYTGYvRJpsKnoWbOiDFidwQzetiHH2jXv+jQDC50+QDqIKrF0pE+gXaWijUwsdaKjUXhs3AZjNYiKXVs1oWZllFdKbJyKZ+aeS7y3LUbF5mWixZrAo3rt/g52/+hPsPHtHFwP2H+ww5+2K28zWtk5NBzvOrl//SVopj3M7xh46HUzPQCSeeN3+LY7+fCMfG9r+/dL+fY/NxzM8KAVGj/ALHOaitfXc7PZ2uBc0ZkzdXq43x5ktT2qtWTKd2pw+CdYFLZBgsHItRCP0K1DyS5u1YoqmjSqBNkIipowMHm0NUsm9/IA9OogqeFbILoHjDp/+FIIHYR8s2hQBSTKNH3fsJTkpL02v2Oh0svNKc7efW0R4SODAqah5PDAQNTia79nLODJvMcHTE5vCIzcb4mBDECPUKuh5ACxWlDpmYOu+scHCs2RrsayGkFWnRc+XyJf7ln37JweETfv2bd3i0/4S+j+QSmCQ/GMnZ42Y9XlYd7XVLzrMNg8mNlFpfWBXd7KnU95zjeVZaa+7tzJ+jTz/9KR7Hn94095va7PSC2fv9BWxz05s+DXiqQqiWgWvAs/V+/jJ7Abm8MYBpFbouFREkIn3y7NVA8RAmxkRI0SQwxraCZOGPCq0wLzhRa+6r6eq0KuIuBMoQKPmIUk3Aq2piGAZUOoJgIUqy961FiT4RNLgXYUoVbQ67S1xIsHR6sH20i7RSnAC3TFc1XZ2UjCdybedaCy1VY21Z0Rf59L42+dP4nGFjpQelFquWlkjqOupiQaUQ8dGbXnJgvW/ZvoKieUPN2cYHrZbcunaVX7z1Bvv7j/jsi/scHG148mTNUGziKDBm5cTPQ/u5cVtgmtkhiC9m9QUlZKw84RtbAxadZa9OujAnbUZKH/NcToDGsZT5bFMjqHxP3oZgEXJ04GlCBHICEatC9OOsM9AJMCZOt/bt7VTg2RztU6uQ+iXdzg5JEjE4WIiPB1brZ4ohIFGcZ1FIPSFYcdtmc+QyqvFYWKC1OLBYK0VKEc0FiYEiiSrFtJbFwrLULekWS1KXiJ0VB0qrOw7uwbRmcPdoaG0QIZg8R62UoXg4ZT68uPiyeTMRicmFysYZoLYNNX5HPHj0oxjlTyUEkyeNgZrtKq0qSLSMV6iBSEDCmhAG60lDIa+tgdQrxMvmiLoxUn3Zd6wXAy/duM5br7/GH//0OX/+4gEPs4FadD3s1BvpDJN8ainVvwplVmDYwGgK17758hlT3SdeMhLE/stJz+FZTknja5o3NALSCe9nVKqchXhTkDm941Ne1HNM/HIIDjwxThUX4+scbOLsj9VF98UTCC1xuw29vr2dCjyPHnwF0rF7JrDa3QOZCV2J6xCrEa4xdfaB+KCmvDlCJNIvVzaKtygiCyOrW32IVtfjMa8qhoQGKEC3WJnuj0AQZWdnB7o9a7eIxjxOhYs+Pz2EsRaHsQjQo3NV3zf8wlbPSImnZVuaxeQ2xu7uthBCHGuH2qqyxlN1eVYX7IqCpkge7OqW1FGHgVqF9aZycDBQhg3L3gFOlZIHgpgAmWjydpQBUiJ1iS4E9naWvHL7Ni+/dI23f/8JD/ePCCJ0nXXwl4oBTCnHdKCr71cz886m30P4bl3sz4qwjlFMJ4FJn/vQU4TxPBSbRZLHXmibOvFOcuJHPb4tmT7icaxPctCZS4nM8axNWAXQOPUUt68m7bTFnm9np/dqpQWpWxBFWB884Shb71OMiX65Amn1L9YQmbO1K4hgi8eJmOb2myC6BcsS7KMSGAf6VYxkJSavrUkglm7e2zuHph0jlYOgWqjFwjPrd2rhl7VyhBitxaMqaBkL4kI3AUcrj60uvdqyam2CqbgLZaOXAyIJJLo35NyRFwua3IeBSh42BpgpMeQNB4eHbA4OefL4IY8fPiBE6M7vGECVSIeT5cGOQRAj8mtPip3Pna/s7Sx5+fYNrl8/z/46o1U4ODzk4GBj0iFzzqeZH2rwYzYBfR+bAxO4fkd7VrHf+HaO+XN+51mbOwZic/5n7gW1J5z64mc/1PZPxCs4HHRiMOAJMr1+zG49K1wE2qih+TDErPBtItWtvQB4Ll2+jogwDBuGoyeUzRqopGR1MooRwoLp7GgtFgalDiSOrQFUoYpJQgSiiVpVjJeJCdUBaiHFwOAsqXk1xmHUOrBIkbizBGyEjRZLoYdgguiW9rcudavzwUAjJQvfUCvyc5BsV1ZtlcwezxfNIIHUdUjTeY5h7Ckb1kcjUW0NsFCGTCnZz9MRm/URWiu5VA4ODnny+BFPHj5iODpgbxlZLiOdZGo+onS9jfFJHZ2n1oPFs2gZLASNkSRCEuXGlSvcvXWVx/trPv70ax7vr0d51Gea/7nMSJKTqePvI1R41nucDMdOf4P2ouPhzlOPn9jmswjp5zx9PN72nBDGqHwkwa20zKfN+gvG7Jo70LXqOO55Xm39Nyqr+oe00z2evmfYDBYO5SNSFBars4S0sLRwzXbSydYWEQARNITRCwl+O6l+N66lWPUvLpQVIlWEkgdiCNb0uMnmCXWdZbcGk+CQYp6MFudosLAvRq+ADsF4GsGeE0BbH1MTcY/J/l6Kaz2DB16WyfIrUVtjaTDBdR0GC8EEwLaDWlYo58ywPuLwyWOODg7ImzXDes16veHxo0cc7j9GtLDcSSwTPHz4FV998TXnLl/l2q0V3WagLBckz+vGmEhNKygPCEbco5WzOyvu3brMhx99bJrW9RTQeY49sy3he7a2EINLZcPk7TzllOlxT0hk7Fjh2dm62XZm72E/zN6XKfobU/uzbeCcYGjfg7SqidFDbM9t+10FahAvijevcRzpXLZ8zze1U4FHgBSE2Pd04ZzXvnhfkZ/lvLbsU1osqVEMSDYbWzjR6160ka+2ueIFdHhYU4tSNmvKMJBWu9ZIWqx1InULC6JrGbmUFk4pQhKB3nq2JMWR25EYfBqog40zAlZc6DPQGxM9E2y3dH+l5gpSLC0vQkqdXcQiNlSvVoacGXJhs15z+OQxh0/2efL4IU8ePebxw4ccHhyAVhbLBUrmyXrg40/u89XDr3n/oy+4eVPpd84jYoAbQkeIPdJF464wnaIUAl3X+aDAzMUzPZf2epaL0DjzyU7wGi+yH7blwr+eeuD492fuQkON1qXzDUPCOc30rBQ9TCFXaJ5fgBhtNHYI6qn1mUvj79vmDYjaNJSpGt4vyWoj27b2YnuBx7OEXn0mefYUsTFqgme3qg2s01KoGqipjYvJaAxkl6mwcS8Q+55STRgrpM7IXaql4fNAPjqAbmkehShIy4YVJ5Etg6ZYtkZqsWGCqgY0ZTAAAqvZWSbjYtxLqnnt+dDGLs0CevfI8mYwLkqsOjpIGGd5Va/1qQglF9abDevDQx4+uM/9Lz7nyz//mS+/+JLPv3xAt4hcvrhH/hoeH6x5cjTwm/f+xOODAz6//4SfbjpuXrls4O5tHyF2LJYrX2QVyIga8HQxEjSzTIHdnZ4uNWUAGTNZTy82B/7v9bL5huahiY5EHsdcmzlx/BRA+PPmwHjqMXxDz22k93yXgoNOCo1klrGmx/axDQCwF1QFqbiHjJd36FgLtA25vpmd3p3uSn6h66BGqy/RTAiRFC1cqe4pxGija7Q6B4O3MHjYAl5HU6wfCrX6GKWl5701YXy+fTWx9loLbDaW1UoRxZs1A4QuEfp+JHTH22TwtHddWwaqZFP7a56OXy2mdtGyYHPiwNogqjQCerC2CBVqVYacOTrc5+H9r/j040/46P1PePfDT/n0/gO+fHxEAS6e20PSgk1V9g+PeO/jzzk4PCJI4OKZR/z5y4fsLRekEOm7jsViRR5WdkclIzFQayCg7O7ssP+o9zu1S42kaOJlfrWf9GC+bRj2fduYWJQppDqZnWpeWsvszzme71IpfGwbpwBS83xi83iieJjlL1Ro2kl2Nfo5FvNsRs5ILEvWihyfeYxbO2ant0yUTHA/V9Q8H3UPRvB4WOxDCeKZrfUhKUWKmPJgTC19bho5WjdAco7Ea2/UZDEIpoMcUkAkUlQJMU0fu1pdTxHzdloYEvoeUod4oC/Fqo9Bxqpl2kyK1EE04XkkkEsle1aqtSsITjAqEAKlFHLeWANjyaPfndcHPPryT/zxvfd5791P+O0Hn/H7Lx7xuAY+f3TI44NDuj89JKaOopWDgyOOjtZUhVWX+OLhYz774iFXzuyx6CKLRaLveyPvd3YQqXRdREkIsNrZZbVzhtVyhy4EVn2k75LLwz4beP4erFambOfz7ATgwBReveiQnuktzR+fZaqctmvRtXs4gZRM2SDOnqs6lVWM3JRWKjpxSuNaMK/HcxDUOcv9LcPfH4Od3iTq42Hm/IqOqWZXGEyWRic0SYnqz0sULd4PZd5JaILpiHW5I969npBFIruMhSkORpbLFRqCdZSLtY/i/EvJeawf8gIiiGFWFBcMdNZrtGwMSPoeSb11w1frmapDpgyDaSPHaMcUIqp1TJPXYnrHUsSK9DRzdHhEPtrn8OHXPLr/gMePD9kU4fzVG1y5cI3179/j4eFHPDk6QvWQWnXUj/Z8Gk8ODvni60c8PrjMmcMFRwdHrFcHBjzYfPTad9SQyNpBTOydOcfFy9e5fvUyZz/4iuXiiKNNE4PXiRtxe25a+K+8EkZn8jTwOZGS/la7OI/XThDMMON1rGeYKA10hBTFCzGZ9IIUWqV6GyndBjuq6LH3bRsao3d//cn9/3u8Kfyt7HRyWWx4zdjnE3sA8zp84UtbIHmNxGSd3lgYJjFQc0HExsfUVg+jLpkarfoZCd5hLuQ2NSIYqGhMaI3UYY3oQCUwbDKgpEVH7DoPrDM2SsZuV6I0eUMT6UpeGy8RimsqYwWMMQgxeKo9BGo1MCo5k73TPcaO1CUCynA0UNYH5PUBEoTl7i67Z55wZQNxE9hoZdElUgzkgTF0FHfrkwhdDBxtNtx/8JAHDx9zYbdns14wbNZsjg5RNWI7L5dI7MmSiYsVOzt7XL96i7u373D93U/489dHHBxZdquUv/9b6w+x+Mao6plkUfN9GcOiVsMTREz1MQopGQCZkuXM29KmpuBZzirU2rK0mMyTez1GSyphxl21rzr729ZexPF4Y0obCSMxmXORh1FHufVZiVZT8ku9tVLUTArWKaV1AOlMRa9kSrXubA0JKdVTmub5UPLYsZdLJXaBGBcIpmbYwLCWTAcjo9cKlCXaLUuzT4HY2fN0qH/kpRHLEalK6iBUay2oJVOHSskbP77EcrmyplIEKOhwBN6AGvsly7MXOHcNrhchdQ+IXz7is4efs1o/YQkcNdIXU2jsg9Cn6NpDcLje8ODBIw7P71LzGfMu84asmaJKUSUtIIv9vtg9w+7uWV66+TIvXf89n3x1wJN1tqbPYl7heHHLsW/Tov8PevXPuRUZ/5lCpxYKxYCBTXBPJ1hRqpVjzF7bAEWVIh6qN6+ngRKToxYw/md8j5n7+dRn8CO3U4GnDGvXNbZwqwzFvRwTOx8Habrest0dKiKuvxytuFBick/Y7iiBwFBsxLGINVwWqaQUSL1JnFawatzNhn6xpF8s2RwdUsuGPFRCiIRuMfItEs1j0ao+ISJ5wO3lpa3Rxgv/yLZ/ZVijR4fmMan1a6V+Qb9YQQjmLUm0i29YUyVATHSrPVbdDtrtIt0OXb9iuVrQdcIiwlLOkeqGdz8vPDpak1XpUmCnT+RsAHHp7HkunL/Ek4M1+w8eUa+fhzJQB0GqeYjZm4oKNntMQ2S52uXGzZf5+U9/yqf3H/Ngf8Pjx+tRo+dYOHMiy9VaAn4s6n0jtzNmrRoAibVNjESyZ6+8wl6YZbPUn4PzPa0zVtWzXm1rU3FmcHK6YnyPUz/zDP2P2l6gQFghWjc6Uig1o6IEicTlgiEXl6XwjmdhHF/cdR2jPGhwj0EgJktP62ZtLRLJuserVooWiJ3X0EDJG9PYqp0XJQIloyFZvU/Xe/YqWXbKxxaTEqQOUNNE9vE7o3CXDeqyNonB+8T6aFXYIZkX1zIaIaClMAyW0SrFBpIWT8P0i4UVkBUfixMCqe/Y3V2ws4ycWXZ8/NVDPt8/JKtSMuRc2ekX3Lx8hQsXLrIjGxSrbwoxEYPVI0lrCFJTSSzDwPrwCTF27Kx2uffKPV756BM++vMDPv/6wLrVtRzTZj7G+TQQUryd5Qe6qv5OzJIEjUSevB5p1e7BboYtpNKRx2nJDOM5TSNcxqrlpvnfQq1j25QpO4cnX6bsGM+ua/oR2qnA0y962ggGCZHgHdQhRkLX0ycTrsploJZMECH1C/McQrTPJBkvJBIsnMHS7l1M5m2ooAEjbWOgeHCdUjKlv2Di8CWbNk8MHX1aELuOkCKhN/lRzRktnvq3XD+UYWqiSR2tSBDPxFEyUk0T2mIu197xq0PVZDOqis3DKtWKiVUZNmtKMbmPKIHFaoezKN1iwXJnxWLxGSkoO51w/eyST77a59GR9VStc6Xres4sIrsdnFvssFhYpi0gdKlDNbMpmTbjXaLxB8NhZRN7+q7jyqUr3LvzMr/7wx/505dPxukbrad+dPdP9C4ox/mQ/5B34OZ5jGDj2jsR43KicZgtTW71Rl4KIo3jMW7HVHBb1397exty8HSFlMxIpfmPFrLJj8jbPM1OBZ7Y9bbYSiEFrNcJNd2d6MLnqRLLwLA5MnmMbkHoOqoKm83aoxsjkEM08AlJSYsVMSbKMJjGsr9vyXXsg+q6xFC81mdO0Pp0CVpxXB4sDb9Y2GvL4MSycz7Bp4X6PGOTohiQki1rpq41FMIYVh270EJAY6LKQA3RZnyFAjrY81C6LgErb1a1r+WqZ29vyd7OgrOrBfuHa442hcOhUAicXQbORGUZoe8jXbK7cN9Fl1C1ktigNu4nImQtrJ88pl90dF3HSzdvcufGNd756Au+fnTg3fky3nHFw4QJbPzOy+T2N7GA/2g2D7NafY5xOTILR5tnY+TwGEW1R71mq7i3Y6jkUDLvjAU7oZXxsRamjfDUMOk/6Pn+NvaCAkKZnUAZU9cigRA780iwRtEQIjlvTM/YH+9iMj0dbWJiAmMoIFPlcilknSQ2AHKpBCkeJ1v1MslqgyRG74gHLUpYdITF0i6mnI2gFrwvy+ebN9+4Gh0obbCez1NXF3wnuX5P64HyiuLmfZWS7f28DcNq5QcUJaSORKBHOCOJ2C9Z7JxhdeYBZ849YH//gIPDNXkoVAJ937NKwqqPXDi/x97ZPbouYRPAMp0YoR59qoe4FzZsMo+/VvrVHhfPXeDey3f47//rD4TwkBiESnDpEp4mFeaZn//AF//JMGusz2HGgblXY4XsMoZBExEs482nqo5pdeHEKTwNRY6l9l30bev1vKCOx4GgdYpL0xTwtHWrKtZSCF0lAkOpJo+RTFQrpZ6cBy/us7qdosowDKTUEWJHCMnTlZHYWXNkaX1ZEimlmupg7Lw40CqUJVrxoKQO1BUERR1s/M7eOJLxSikTqKj120hKSEqeIauoWHV1UEWza9yAPadk47Uk+EVdKSIWRqo4lR3oFit2JBFTT79asXvuDE8ePWR9eEjZZEqx89cHYXd3l6vXLnPh0jmWi0SgUrQaPyBK9Nu2iJoYmVQ2mwOOciYtd7l35w6/fOMVvnzwmM+/esSQK0j1FG6bjzXL7PniccXZY/U188zQP6o1L+dYF/7c5sfnJ0HBCt6bkFxlTJu31HkbSDCm5qenemg2kTvHObTplyBT5uvH7PWc7vHQmuYiqi6a5W0II+NPgODyowhFPV2uavUywUKsmtc2T11MdS8PNmF0LAD0GpqYIkGt4LDxPWi1TFabCoqLpXc+K71dAWLAQZyRFzV7Ch0Lz3Sm4qSKSaH2pq0sPmywiWk5UTBdP+4Bjl6dhW9SinFa2cKzGKP186SErHZIXWK1s8NqtUPJmfXhAXm9QSSyWi04e+4MF86dY3fZkchQNp5NNJ5LqkI07SELGTKhFNbliOHJwNll5D//6qc8enLAf/v1O9x/+IQh41mX9kke45jxo5sIZybuZwwx/4EXRuN35oDaUuBzBgzM22mcDbU92S6VkeOpswJCBJdvGknpyTt6BoKLTOe4VeuL/qi9nheEWli1MfgMdQiqtr6x/qUUGplp0qchVBNIKoXQWxtDSj2lZnuvmKwq2KuhTQXQp0SUYhmwaJIaJRv3g5ouswarRpZsUh1hvJrEwGUEIJlWTwhWY4Q3u5Y86hioCpoYL7QGMrVk1wFSqhYvzhsom4EmtlU9RW8Xsldge8e+urxCFzpSCsQSiSGSYkfOhW6xYjh6YiNszpxhb3fFznJJFyH4iBzDPI8V/BwI9lm0kgSoln4vG25d3OX/+Kc30JL5t7c/4M/39xmyCbq75JeBpp8zGcWSmYhQX03zbvd/tLvyPAya/zJyNoDXwNtjYf4cy16J/2aTbRk5nuI9fSBUFXJtl5LJZNTZJsW3Y2+lI6DD8Xqff7Tz+33Z6ZXLqpiYuaBilcoh2JeqibbbCQ7kYmJbIUDXJfJm42+SqDUj3QpS5xKdddQmliBoiCaPUb2SWHpiHynY9E3V7DKTySpDh7V9uKmzD7fkKVuV7DkGOnYJqAT3fDwXLtjfvEamNbRaStzc65xNA6iU7LUvNsa4ZisnUKmUEXCj7SeCSkQJplKo1Qj2WixsjZFF3xOSeTpdhNVqh0Wf6LpIEoh05BzJQ6WN4DHNYffewAhnhEUMVgCXbRTQvSvnWf3vv+TapbP813/7HR9+ep+jTR47xCdMnhMP023XHEa7sVBP8h3fy/X2V7Gx1wq//zxDD0jH0NNvNjQw1tE7LKqezTTOsRT3fuwCGnmf9t2Kaf10jh2v0/vR7ofjjjL75cdlpxcQloqKj+sVazdQsVlYiI4KfBJatznO00QvM88mR0ok12rhQwQvr5o5KErRauNiSkb6JRoSoQOrEk42ArgWF9/2OvXmdeCjhtunLgJVEVcXtEvFA/+upffdZa4FrUb2qpjeUBDrVNZqe1ox4XTLhiQkFOpQHRQNnCtWPJlr40wMvJzZIiYlBvNY+sUuNsOiWkd6sm7/gI6C8iHNxOdDGMFPUZBo0zUkuvcjCIUgPcv+Ans7C/ZWS/7rv/2O33/8OfuHG9t/S9Ghwb2gifLx7zqGXicXx8keq79bIPKLaiSRZ47d7OHJ2TnGAan/PyOVq024zR6xl9o0x7214imx9xaa6/EqBieU5fiffrT2gibRAtU9nCYj56297eJUD3EUIAbXK8lIEHIxoEj9AjZrA4Ous0Vd2jgZuyP0fU/O1TNl4sS2hWZ1MBW+0MIPrdT1IaUz7yGAeS+eNaCYcp+JfeHZNPwG1HSJZbz7McvQNbm8QCSUggYLQWIXTD0RqzkqpfOZ6K513GToUDtftek0R0K0xy2dG0id9bR1MdAFoYtCpCLVetAkBAJWUyROVDT3HxcybqOT7bRH+pCIfSCGTBd32fn5T7hx+RL/47fv8f/+7gP+9OVDjjbZtJBoFIQzPeOJEDQorjs/cT0nQwL9+wwT5qAyB5wGQq1qud2DxD3GRvgCk1uEQrWWlVyUXO17LeqNvt67pe3i9002ckymGp9jWaw52uiP1+k5PdSKJmxe2wUuRpyOeUV3TWvOEKzyt0qwSmYn0EotiFqWqQxrVwn09HS10vQANms9KFatIkSUoYmbaCNCxTV22mgaAIEYpukPDjZ0XmvjAmb4/K7pwrC0hwQ7RsHeWxWT/2ipdAkgU2qdYH/r+h7VytGTTBmyczJKFCzsDKbbrNE1gfJAxPSDUhDXgAn0faITnKuxbNY0zqWiNYz9Z/PzEEJwlx9aeJAEVinYKCGJLF66zIUzS25fO8+//vYD3v3kc754sD8bfzxjIsTu3rX92amlOTcxXRju1bXf/8Ykadv/sWp4DiIcBx2b4Gq9WuOIm1ldjypOKItxXjCKu9eCD7O0587J6zmZ/CxQbqAzTqyY7/yPEHlOB54QIVj6W72LBybgUAAAIABJREFUu8li2CIIU3ZorMOJSLArVqkGPEAUG11chw0x9RZWhYgGE4IPHrI0z0MEdNiwGQ69laEfybrUmTBWiJHQLxDxkGlYIwjSW7uGlg06bDy96rpA87g+FwcXtckLxVpATIvZjqsWG72cSx5JyVqKqzJW61iP0UCjVEJQYuf+SZuogVoNY7UQzjSKAosu0Efz0pr4vUiw8+LTMeyN4shEmBcUxrCyjsRzRf08L1IkJCGGSiw9e6/e4NbFM7z94Z/4P3/9Oz764iHrTfb6FAcbncIO44NajMWMHPELY0b+NI/ob7F4RsB5zuNt14L4TXPWKmE3UZ9OHebBfyOVlTJKnFoYqszbKrCE7vgqnarBWy59ls1qN45xf/+G5+3vwU6vXHbuQtR4HhMpxS78li3x8IEQyG12uggxJqJUNA+WpVEIKVqGyYlfKzm3u3Ot6kUO0Qm7MmZhqkZEkldAVyrVPJk8QEyUzcb0flIidNG8nprRYW3zqWKTzmhlpaZ6aHRJGr2LkcuIAYot5FozeXNkJHMIHj7JOAu9FT3GriN2gZYZy5sNZRgsvKIgUgldpF8sbIyNQBcqQdVAU4EQqVjBZfAOerMyfSYxMo7gsVQg6EBtTa5Ymr+TgHSJsOqJmolnl5x/4w7nd3r+73//A3/47CseH6xZZ6u7KsUXj5+fOejMk4TPXCgzIDr2+A8Yjs29HJh5HsfirYaXLuTvjaFd60wX48ea7Gzj/ewaVjRWhqamItMl1M6FAIR20Rj0B4UZAs1ODCMQqa+RFq79vYWsfw07fXZ66k1nBwhhptw3O58ixjXYB1aIqrSB1OJVydXHGcdkujzi/Vc2ILCiGo2YxrwfxMhcQiJ1S3Ip1MGkCVbLjtaHVQ73bd9iRJYrxsmmZfDxO4LEBaDUYXB318fuhM76unyon4rV3kgxXelWYNgtbPzwsDGC1sjojIrQdb2lWkuxjmZhrLzuup4+JaQOaK5INDDuut40YLQSghcFegO9FUy2e6iJylsLhJ9r7HcrtjSP0oYijpGR1RWpha9JQFNkt+/QYQP5iDev7HL5X17j0wc3ef+L+7z7x6/47MvHPDnckLOVTBB05O/HhTF3K3xNqeAyEZM9FZW15578+7Oe+4y/PdfmoRXT92c8zT0eG+2cIq4Z5Tc+rZRqPI/MKylh7GhvQ//GcKw5/c845mcdUzsJzkA6puscH3909gIhMFsEoXEh4N8DiAlpmcZju2SsgM54Ex9h4/ec0ALqBlTFCgglRn+l3Xm6iM3gUgORKFi6XW2+VqkmzK01U8vGK4+tAZRSrFnUNYS0qFVQa1uUE49DqYRQrfO+afiMrca2z6bTbDVAdi5sugV1RiCHYBM1WnGhWkNhcGGzUM1fCaJ0fUfqegOuolYJjYd1rVDRiyml2nDDaRDicRACbF+wCmeT2vTRPp5RVPeIBGXRRUpO1KBoL5y7eo671y7x+v9P3ps9SZIkZ34/NTM/IvKoq4/pHhwDLAS7sitC7v//RvKNS4qsQJY7SxwDDObqq7qOzDjc3cyUD6rm7lk9Uw3B8IEUREt2Zcbh4W5u9pken376p1/wf/3jV/yPX/6Ob988cpkW46sEBxXfwZsHse8XvsaGWuxit+qeLMDf4w793gW38+z27/l9YLYHnQ8fsnufAZRsOjzNTcX4ObVAoFJbnM8nS6WFDsw6MpEwffIFH9o02/mIz4cPz0k3EN59+N+i1fPxdLrqdpPKQq3BgMCgxwfW9G+CeI2QVsgZjV6QlzprF0P0wJot6KYRLGJZLHH3SaR3DVy8mr26/41tXaWgoQO1avXqzC5pxL6c2cohzJqpzu5SP1cDCAtwaK2oCBTfgQQLqCO0tsTG57HooknAmtC6iLmjse9BlZJnVE0WJHh9mYjpIsfoZRghoCVRowWaa/Yupg4y1q8m+Aj7+FSPRTXxehoY+r1RGyNLBqjVk61jYNXYNQb6FOi7yGGGy+XEbdfzn37ykp99/hn/6S//hL/5u1/yt7/8mm/ePDAteacb3HwtNtNq99IeIGS/KD80BT4Ai/DBe55klnaPD4+1T4E/Wdyr/6Xr30FklTmVXXawlbLZviIQtLUjcHCw4lDcygyeEAhxdy677/Zv9DnU2Mn23Ca4r09AdQ05/ht8/IgCoXMxtXgFeUBD2xmEEo1LK87tkRZ89kAt3i8q5+ogFgk7wSWtSlQIEpDY1orSGGyh62G5gi7ug5u1VdTclibC3nUdVAO96n6BiOno6GLXYJMnIqlzg9csC3VXyx0Z020uhaCVqhVVF4D3c46u8+O0SuuOoVZbRnXQERNK6zoTqg8xEVKyEJNCkEio1hBRcGEyNetJi62qEINbPHGV8Q0+7kHEy0l2u2rrmLE3SWBdJQEhxY7D4Ygg5LwwTReqVm4PN/zHz5/z5fNbfvaTT/g/f/4L/vnrtzxcJpZSPPBNM2qfPvZAtAOOD7yWDXQ2XHjyelub2n7/4O+9S7UCTzO2d0HcFXvaS66/I81yX8+vujEXqMHIgy2S1r6zehGWtbCxxEBKtkEZZ02enPt6Auu1hl0wiB9YdP+WHx/n8ZTiwuvuiqhZCM1cbSno2paG9zGvag36oiRCd7DYrleMSwsOhOgZbd8l3J1qC0fdEoqd6fvY7uPclRBQElpmynQlDQermsiLR/+cg4TFlcyVMl2EUnW1xJBgFpPrO0s3QoyEsqDT1cmKfs1RrRI+uiVCICSDMMtmufQHJu8RUzLOiKseKsHiT36NglqAXt3eW6UWYNUNoq0rl/TwHIotJGOPS4jOMbIeZ2alWQQhBF3HVzulDxHpelI/IiI8vHvHNM0sOUM4cT+M/E9/8pJPbzv+9rev+e+//JrffPOW83W2NLJbu7UBkON3cx1WHFF+kIbfg4UIO4t5s3SaUbUyix2AnrhfezerXdveAmJ7vj0j0kC8nZ6ux64tU9iOG2R1ze08BSJ0CqWTzVIvPjfgAyRp1o5lS3FjsWorXPHr+bdcqMWPKhCWNTYiYk31ai1moUgjSAWn9dgNLJ7tCiEgMVFcz6TtQNGzWcVnoN2USgyJgHV3KMsMaYBaibGnRoU6b2nN3S5S5itlnlCJK8HP4jutXU4kYA35TB0RVDqP3RRsoril5i4NLp8a1NwuicksG6yOyyw2dSssrB0KQrRdNXgzwuotkrU0cqBVGpoMB2tXglrU4zW+i7rTb4u8ER7dRW0+wm4it5/iCoQiW1wruixtUSMHpqKIJMYbEzlTHpgmA3DmmRgCXx46nv/Vl3z24pb/+ve/5he//Z53D1dTOBRdM5q1/uEdfI37wFMLxH8PYWe1tGM04KlbOQK759kd44nbtresYE0qrQDw5M26WmRoq7VSd8k2P9HOs+kYGfA3q6d9pgXgP7z+DRh3YOtgXDdq2pPP/VuL83wceNR2+IL4JAjuQmUgomopRGkLQdViHL6YJQTfgc1KAndSfLa2vt+i1fk45m/VXEC9er2LXjAabCE5AKzxEM3UeUZS75oq9n3quxxikqHV0+0SohWn1larZWeFKprnVUQsANL1SDJNoTrPoNGyScXjSbVYU72uc9Axzg7VAULV09xAiITdIlPFq9wjIoufg2WkGvhY5sUyV5YS3pntTi2uTuZsveqlWZ9aV0/ZNgdx2dWytl5WiaRxtFKA5Wptg2qhnGfS0PMXL+84/Mc/59XzO/7bL37L168fTVQ+NCvnD+/aq7vk57uWJ/jibkDU/iduhTTrSdc598Ex2Rb1+tj//oesrPa59bjahsksE99Em5XyoRtYFWISYmlW8wYiT+JMW1Jyd147VzD4Pa2GRitI7cbqh1bU02v9weX+/xCwflQILMTOAqtuxZj9aaJY1XvTphAInlJuToJ4UFeiybpJMMtoDaT6V9jAtdqY4ho+kewCYnleQFxTuSpFLR1qgleWuVLKGjys1erBmobKPE2AZTOKq/qFlNb3r0WwqmvwW7wifA1Sq7VNDima9m6wglYACcn7hcFOSBO07ko5fMGpWS0WiNd1Qmtj8Ll2UIvpoGZV1RYMx7KLVnRa2y0yoE/ev4zqQOvjLOZ2lQLTlMmlMJfCNGWWDEUTGno0tIr8yjJX5vMFGTOf3B44/OVPUYHr8s+8eXuxoHyA0GgHPF18zQ7aapX8fregL1sQdltvm2j6E0tIDYTYA9P+eLv37f9tB2pB4TWUt5vbT96Hu0YtJiSrYWnz2ve59loIWM1bcwebsRSa1frhtduPVNgnJyv+dzv/dg0fWHkfgmF77OLWT0Do/+vW08cJhCkRug7RmVjVyGteoU5IUKy4skok+E0Qxd0bq3MJiOnx4MyFurhejt2QIGI916uuvJDU91QJaDYtZ4LS9SNLzh7rUAgmQl9r9nIIaHGXWjL5eqEsxYhjMZF69/OjXVOTswCoi+n7SLSq+eBNDKnWc12qxYFCm2ExrnECcyPNvaG5nLV6HCm1BqqWunUWNSJoAcUtviDEECkiq4THfnsXWj1RsHgF3sMePH6Bc6Mw6VhhlwEzayNEEy7T7DGgkChkrks1rWa3RDVGSJGcM+f3mXo+Mzw/8hdffM6705WfL7/jfF3WSV53wvLbJr8yVhxkZHWT+XChurstsMZ6ArKpgcBq+bRKcPGgjgX3ebIiVfeLTs098vY1sSG6tvIZQHTtrdXYHgFcWtfBzsmtVixtIUOtGL+zCfO0cw8NVNksLfC4G7ZOHOR831t5QftrWKfAzq38wFt8Ak7NbfwXA8+H1uSHv+jvfdv/a4+PAk8KgZQ6E8Wq2euhTMKi5MXPrJpSWwirXx4l2oTwinKTrwje+sZs0VZYKbExgauxkIuii4mqL0u21jpuood2N+smn9p21xDNckGsODXPs+nqqCBJiUNvgWYJrm6IdT3FFruIsbFFFXU7Wh0u7SvqukBahsxAx8TOcKkQippgmbdutvIKU0YMyVzP1pXVoNJZytGLcYPYDGpWl6y19bRVKwLRx1ukcZDMda2lrDVwqw1fKymZrnMpCxF3y6IBWS1KrkL2ZnVZE5eifPc4cZ6vjKfM7ad3/MUXn3O6zPz2uzdM82IhKzXA2Cq9t9XRtpc1mwQ04azV9fg923hLR9v7zSqoTZDLzZ6V07QuyAZ5G/goagTAFLxbqLi1EXzjcWKrp8slyjrPNrfMXLAarGQopXZskGo8rSaK1+ZGA9ofuEW6CcQrSlTdgFI+OHd/jd1x7Jx0PcYPgGebIr/fBfsQTPZ/7wFbf/jeJ4fSD379V6DTj6TTrWwhdgOq1u9cJKB1thosl3kwYaywmvYVk4DQau5FycV9WzWLI2CFpb6AELHWNhqgKvmyWLas5JW4uNRs5q1fZS2tjIPVMilaqMX6q9tNqpRciLEDhFILqLkpuvbYMrnV1gNM1WqztFqhp0l5JDPlSkVdM1qLB3Gjx1pcHjW4SyYSV4CptTgQBHMPPe2uylaRLj5pYwIplm1rmS5Wf8yPY3IYVijrVVy1rD/U6uREWbfBiJKiWqarmIB8clauAnNRLrMyzZUpK+9OC2+vhZoruc5cyyPhZuCv//KvOBx/y69+9zuWtvmwYdy6EbRdGi8Y9s1mP5NVdbUAbeXuYiFi0GVBbLOetWIbExtgBUc8eQJufnz/shSEzsHHk5vYAjZFJcEzhaEVN8uG2apUMU1uo/y4CRvEJTHU5zmrT7TFssyy2SRItuvU3bn6U82htPm9k9/YGVRtkA0b1qQDoJscxw+ApwEcv2eM9tbTmlbcf9P21BMr6gPL6gcW1o+A0cdLJiSitZJCQMV4KFagGHynjSCJqtkIeG3n0bYz2+eLS0IQEhUhRXNbajVrQUWQatZFEKVgGZcYgJxZqsmejmPvBMF2l8wt0bqQ5ytKMG2dbPVV8zyRq9DFxV2atFIEbNGba2WcIs8qtQJQqonRx80VIIQVfPB0P7Vsu1O0+iiJnWs923isQfb2XFNFrMVjUd5DCxBRG0+1VLm46mJp5+c7vbYJrGy60lj5iAaPW+163a+ve0ChFldWVBM0m2vgcSqcrpmlwLXs5qDCcl7Ic6F/dsv98Rl3t++5zud15uoTUqOT9hxUZDcR1yByAx72jpm/ZxeAVmzx52oZvlr82t2yiA0kgjyZ/aLNNbPblpyUauxlQRxMnmhvN1Da/COqCrVGNGyqAS3M2az2Vr+1nrXg1rkP/epwrtjk19xMIt3GqTGnFc8QGxi1WJrSthpxXmfdNIF2Qs97MNGGGoqtnXUTaJlD9WPIDwCjff8Wi2Sbf9sbnpp2PLkVv/fxIyUTQC0W22l1UC76vrYcdnkL9TR768SotU1EZ86CtY1BLQDsd7lKWIEgYPGJGgVx2c7Fe28Rk5cSGOilLlpnz1KBispEEZNLzdPEPE+oBLphNAkLlGWZTZg+JvdklJwX6jx5RsiAJLj1oaVY5XywinBEoAgSEiJCWSzmFJIxk5sjXttEEY/zLLOn4b2zhW7sbW3g5IBtSoh1k4ltLl9oGkh1XYxNH7oWExzDKQzauqb6GKsaW6VUA1+CosGInVMJTDVynjPnuVJrJCL0oVAkMAe3DEtF58Lbb75n0sogPWksaPB4k4Z1/rUyAyuQbUCp25JoLprPCXi6aLc1awtkVforuoIJYhnOFlN56tO0r/Gqf8ydbe5WA59m1rSmfVuWSRzUXS+qYllJjwXFqHTVQL+smsy6OwUDxLZooQWv2Y6/jhVPLD3jcLAmHiqYhe2MoxVE/HOqThVpLOt1iDcLc41TrYC//d3moMn8rrjHpiZkZ7q5ubrdO/+u1S1uw69/JPDgQNCKPuNqDHp8BjdLU4dmaMS3QHUCoDqhNlibG6wYNOP09BjNlcFYwaKsloe6VKkuMzFFtMwsuaNLLpIcTIq0uIWjChoTBCH2cBgOpM4Evooq8zwhqqQYvV+VLX7U6sWSW3LO+ns6DC2Y7u7lGkCOLvTlWkDNnK05o7ms3CCLhxlTu+QFtFJypmTvHNoCAhiohT41jS+7sUEQtdGvta4TYK1BW/fS6CQ/s2SqT9JaYamwqLCo9aSfK1yLcJ5hvhY6As+Ot1QS87xQHx5XkbYQXD52WShLYSmVQEfoCnHIVFqLoOZaicVN9i7LGvlUWhaT1fqxBW/8sNVQ3FlGjW+DLyaPj4WwWlVbr6vtfaaVbKASRNZmfjG2KW2fqbXpa6sD3+rwufwpSFRCFUIJpKSbRk/7jraw3R6JssKAWUB+civ4+LkGf0KafdeMeQedFtNaN6odILTSH33yPh/lViHQhrw2AHOQXTujGqCXZv2sG4FQGry08a+NV1bdomrnvj22jqwfR54f0eOx7poadjcVS+kGzesAhFWqofiARstfqnF0qrsN4Fkb9XbF2iRJrV/WKh9aMk3Rv3EstCzk64U0HihUchZStP7pJhFRfFGCRBMli6lHgUQlifUip+pKD0gxkvre+T02wKIbA7gVaSLG3SBbBk3EppdIk8FwK6bUTZWwNLdDKdm+ryyzuVd5oeaFECIJ9WC5ZdZi6u1G1kKt2UmIFsupTlmgZWgUB0vLNlbEMo3VO6+C8XcqLDUy58L5MvPuceL7h7Mp651nRkm8ePWchY7TeeGBMxouXHLh8TqZ+L7T/+e8MLkiny5wOwa6zqwrq2YXj43Rqs3WCSlt0mtbZnVdGAirVbe3AtoCb3QCdCNWigQX8ZL1mPYWB52CCau5KxKCEhOkGMzqSTa/igq1uLvhFmU7qeTjl/2YqQFhdfWVFotxALJm03hLIl8fDYQc1IK7oWvavW3YrXjNMagNTeOEtTWiDhIiW8VKcdAwTBao7b0NhNhqD6vuQGcHnqs1pSvw2XnY5lUUJ3fKeh83t9SBpzrBsvwRwJMVkk9o0x6244eYVr+8SqSqmfiQffDqbudy31Z9gZCNvUwkLzPLshCH5NXedtNXdcHgQdq2Q1aY54Vx7LbgZZtoi7kcRZVuHOgOR2IrUC0LS87kaTHA8CxUlUCuCi6tGl2jxWIJhUJBaoHFumFEF19vG2L1jhWawXqWV2qp5LyQcybGtKrYKdapQvO8FtXauUDAu5kWA+J1V1fn8VQ7vuXmPW3vCzzSXDxvzROy/x3cTVVKUXIpLEvhPM28fn/iN1+95hgDr25u6IeOfjyii9IPUN9nHk5n3l9mppypi41HAJZauBTlnCtIob9P3N8mougTwNjWXZPY2iw0aivliA4g+0UpW3ciWqyDbaK7E9A+1yyrNe6HL54mV1qrdYrwMhXT5GmCbBZQjrWSQ9kWaVUjawJN/F50Z1mu59QAyCVRnVUeeBrj2YpGWzq+gaRfd3PD1kydOlva1tLGXnf30cEANsupWT1rvKdullGbTrV1w2ii9Q6azY3aAL6hSLOgjD+39pF3K7BZV9u4swHaj/hSH335erkwpp6UOqrgYkrByYBqbpJEA6ZkZEOLU8w8zcLYYjX+jFlIVcTdEQ+uhs4AJxjvR7CAb42BUsWOFyNKpGalRtec6TryFJiuM0uwvuylKtM0EXL2EomtD5Jli+xuWLfSsAo9kRIaLZVu/KFIcl9/vsy20F3BDhTN2SZGqatlVD2gG4MRNLTdFycOmgtaSF0ihmAxjtqsGmNd1+I3X9qpblkJ4wi5XKt4R1cCSy0o1eNfvU2UJXOdLkxzptbK+TLx/dtHfvv1a/75N9/w6jjyk2e3RFWmxxPvThcerle+/vY13779nveT9W+/ThPLkhE/v3OpXHKl6xPPljv6rid5rH2fHl9dcYzy0twu9b/37sfqcoi4/JlaFw+fzAXWzJbt/cbPSW7xaOsQ4QujViU76JYGCmgrd3ONHZuXNVhrJnWLeXW7sBNNvsm25Elxi6G4FdHAxxaqroASG6Agq+u8uaDNvQIJ+gH/p1l7W8bMo4MrADUrGx9DxF2pfUnGap21OFZwYND1GprFszUu3Ow9+2XrpKHr+6ofdyusRbd7Zd+/d8B++PiRItGZ6+WRMUQT8fILtnIF8VRyG9hoaW1VYuwpy3WdfVGCaUxKcDfMpEljN3rKGfJSoVVqC1gqvxJiD9H8cEn9qo9rro+ljUMQRGfmKaN5ZJQj4F0yfBSDq3xrm/202pzK4kHivESrKPcbr1W915R6+tt84ZJly8p5SqMFAWsL7KrXq4lVjGveCbmH4JIQZo1RivF5BC8jaeqLlvK1ThLRZSps2SrVXLFaWVS4TBOlVlJKUCFXZV4q7x7OLPMCIpynmffnK+/PM+8vmTfff8Or2yMvDyPz9I437x757uGRr94+8PrhyttpZq5e01Uropm5FK5lEwwTlC5FmpDjphnk8SF3K1o3DJ8Srvzn9ANl478EoWW+WqStOpBU3cAHMS5VWr9vm+jVzzm1Hd17pCm69rNaVQXdEqPYZhiQdQE2sGkgsVoWtVkQps3cLAjdYcHqSuFusbOs4w50pP0uW4rfNnMr3WjWDc3S8BFRnzsrOHggm7plDNeYD26plOrnvLN0Gqi7dYhf9xosXsFrAxz7bFgD3favvbHoFov7OOz8GHOZQr6eyf1ocZ2ABaXEUu1NbS9oMVcK8ewXa1eKmCKVZGa1JErAMiQB1AeXqs7HCG4y281M3YDogtRKjMk4KkSkswyDWRstDmKM3FqV6TpxnS6k1JlbZaYOiBCjqa6ElKghUnJdwbSqMk+LEet8As/q3VCDpz+DxTvWQLua/k0tluddF5D79FWLazjbIo1g+tJOH9Bilo5PJ3Nod3VWITirm+ZhRfehMzVP5FKZMlwm67za9TbbqiqLArGjitVnnSeTOo39AUk9//Tt10zTP/DvP3tGrJWHy8Rv35341fszry8LZ5czCaLG96nKUt3aiAbah0NkGFrbIgcECz65y4HHfFobHtZsV8IZxesi1dUdqT6R28bRmAjt+bZwVzVBvJZNZaMJtJ2+NokTtRIpm7RbIFQVkUrxzFzcOTLBs3Nb7GBzsWzxtsXYFqAPAzswlZbCdxBzl7EBTgMdc7tbkTHGGfLOo2vmzb+gevJAYG10sZJqP3CF1g3Rs4LNImzgs7qLDXgcNhrgtMlX2K61Vdu347VxbIDUAPhfBTxIIgjk2UTUrQGfxRRil7x2K1iw1ge11R2pS4wSgpG+1rQ3SC1IMW/dJkYmBIshlVyIQddAcIPfKp1vGi3eU32RtorFQD/eUMPQfJvVfG3xgBCtnqkdU9tN8621eEEr2QpAtWQkQIqdafl4wY4RyfwY7TPeRRQNhGDDmrM1JLTzbv3bG79HAZcYQYyeps1SUo932Y0sbQcDluWK1sIyX9y16qhE0nhAigFMqc4Ql8Dh5paUOh5PZ2KcVl2eGDuuCn/zm+/47ffvuU3CdSl8e1l4My1MZbM4YoDoNnXXBYYUqBW6IXH/rKcfmvLh5l61jJYtruALqpEJPRWOqUlGX6C252ybQGiui6+s1V1WM+VD8EyYTb514asKRcOa0SoNdPBMZht9X8jV4zihVvCYmQbdroOdC6lmJW0unGwLfMMFWz6y/YR1Q9risbRAMzsXy0F553dtLupq9ShVwxp/EcFiQnVb+LW5gO2cNKwAgW4Zv/2/qhv9oDUs1PV7IWnY3KwVeDYra/3haTL+9z0+CjyzVmLsEIF5mehqNFM+RSRYv/EQIkG2HUL85oaULNKfm5loybnoAWP1CwjBimOUSlmyZ6jMPSnLRNcd0FKpXtIQk0+SIAT17wsBDT1FxRZdCJY297hK6nuiF+qUnN3PLeRiguwSkmXIAs46FqQEtNVngfNrPJOlUMRuSJBm+VhgOKLGoK5qREQt5tcn6xQaMHb2SgJTc5msSHUz8dviUN9Vc7UU/DJPzPPM+XKGkBhGzwhK9q6XlhWUdd8WT8tWUtcxDh3y9ozWwu3xwHla+NXjwjTP5kbu1k77t7XqTVG4vR0JCOfrzPMXI8+e93Rd8PdvhMCmRxP8BHIoAAAgAElEQVSkxXfEwMaBJUpcCy+b4oCtN6NWhN1Ebieyn+S+07E1m9wAShWnEzQXoS26pzmr6qBUq8ultJajuMvYgFKai9hibR4nKVu63vaSZnooW5W7wU1siEvzuhRcB2gPbtvb7BjaAJzmehvdQ3GF0J2FYmPkdrNTBIzp7aGDnSlSq3dHXa3CDaS38Wa1gjZgcX7SB8CzApWZarvZ8/sfHwWeN+dHjv1IqoUQe0qtDAqxM2Q0ZVGr+6lOAowpUlrQVS3aH6IBiaggJO/TpbuJ026mBXsVaI37FJDQkQSMKhT9Oy0IaSlmQ/YlzxTNqMDsx+66gdhZurnk7OBWyJ6liTE4H2cTzWpgZXEe68u1bwRYytZFtDbf35nB1evIclmQai5KSNFOMEUazcyOVz121FjNdrOCyFov1siY1k7HWxjHSI0DuNzFUjKX68ScrT+9AdqyxUayid8HlKFPpKAELYwp8uz+lpBmvn1fkKr00buy10quhdaCq61/CTbB+jHy+U+OHI+JGB3idoAQ0G3RibmIUbasTltsZrXsFqXIk6r2PfCsYLROaheka/wft44UJ/050Fj8zV2BZm2KULR1+QimjOlBEbNSNnEwmgXilkDb8WNo7op9h6xjYJbbehXiSRk2ULE50Cw2DJDZZ8N0Az0/jzYHG+M6rQC23SMUr22z6EKJuro9mzibPZeKGCO8slJROie5bsBiJ9osn2YFbwkPVrBfrb5/weOjwPO3v/0dn9/fcTeOjOMRiJRhJKSOsT/4NijWOaIY4S/EaNkobJIm57oExFTyNK8mJRrRaELlrU+WaSKbj9uJ9WTXaAFfM9fxhSoQ23EsaJus/NFiCluaheopCNFK6iISEl21rEZyl9F82bruPBJ81yi+M5bsPKXwwQ0oXghq6e7ayhfcxagujh9iNKa3mmtpC8oFwTwGYpk8O0ZuLoKYNVjzAhKIw4GewP1gfbxKXtZyi+k6Ebqefhgo88TlcmK6Xun7jmE8UBUiF4YucHPoGPvI+2lGAtweRy9tEajFLKDydD4o3qwQ5dVnBz7/yXGVm9gWTdtMtpRxC6g2sa0W02k7OR7/sNWx/8edE90WvLrCmDoItFIH2k6rG01B3eiPbdFUt/6wBRsJZI2U4puY39U16LudjvMT7ZlWo1WDWTxosy33I7Vdj9Asp+09sqs/aBZiA+vtWbxKQJ4AD/icBrOSecqSVoVahCpWo9fcT3utna+QUiCW5m4FrzYIbk+pg1j7vD4BFr8DT8CH9W/9UQD6KPD8zS/+mZ++fM6ff/aK++OVhLD0o02UrjfymwixcTUCiBYrfYi+28XoabtdrYunMc0tcWEmNRZvzbNPVqteDNJ2p5YlclMRQSXZfuYDK7Ez8fUYvardKtGXZbLdNpiFE2O0SuUQNzdMLa6DqteDZmrO5po5oBimZHutOtHQG/vRLBgsFhaTtbLpYrTz8UyeiLqrKq4lZJ9ZrQXyegfVd/xaK3O28o2YErn6EvE4DiExHK25IZIIUSgpgFpzwpQ6aKTHWhgDvLgdeXt34P28cFky49Bxvlyt0V81qYxcn86Hxj3qh8BPv7zl/j554HXd5j1+sy3eFtvZc3V8XW3gs2aY1peeApA2ULG/93yaFqFdLaW2wJxaty4WjxlZzGxV+AEVQmwxoOYAb8DTHu15EBNCq628oj7h0bntbt/vi3WNba3v0/U8188p4MH2J98Wmrum6zUrEJoAvz/f4irNEgnSxOp3cRp3w5oFU3UL5Oda3V3yk1mRQzcw2Y3FdqUNzNpzsn7fxx4fBZ7/9g+/5ndfveHd6cpPP33Gy+PAbX9Bk4mk9/ORbpjp+gN9n8wnJZtVEo3jA5ZtUOpKvbdsaDTbOftiFyV2HYToPbXEdH4cWGrbDfzHhN+3ilxLPaqDTjJrCJCsaM5k/LUQiKknpWQ7dHDVQFELnoPFlKqDlHRmxWDxo5wX6mJxgVoylOyxikAQ4+bElEipo+usxMPAskLdUssGGN1mPmtdmcmqBs5BPTgYOuJg5SZzLlyuV5+R0SUtzErsx8EmSFnQIIzHAzF1TEu2Tqi10HXC8ZB4WY88TjOP14llKZyWzKkW4/yorlmk/cMId8rzlyOffX6kS8K+sZaswCIbINDu15bR2hkPHkthBa0GKxp2FkTduVdNchbMChJo2jZ7pAgi6yKAbeG5TUYLMguR0jhQLdvkrzSekaq5XkGSxY+KWaMSrPJdxakV1A2E15OpW5DZXSMDWW0K2jsfRTZJWFquDrYGgf6PquNws/BsDFtL68ZsXtvx6Jad2mI2Hry3kCNB45rlkhV4Njuq/ewvbbW0tK1Ce7Ftlh97fBR4vn/zwOnhzHme+e79S372+Qte3R64VmFW4Xi8ZRhv6PuJwziSopBiInnRpN14W3SWtfIgn8dl2qRYmZ5iVfAFi9OkrrduDHkhIJS8UMQAgWj52xDcjfFUYqmZMhczx6v3xZLWwM2+rYVTKmpuStt92wTFRNCiGrOWUiwFjkAyd6TFZKJ49kx1FdyKwa2uGEghrmZy0LJC5bo4PStmvcpApVKxhoHEjhAHuk5JwGWaeLxcWbJCgH7obeEsF67XC+iVfugQrBWz9WI3Tk8t1niwHztu64Fprrw49jzcjcxzRq5w7hKn62IV4Lt5IFiXhS6Jx3ZuuLuL7ODAr9EWQQ36BGAaJmzEuRUBVl7NFpjmqevVFllDDYTW52u3BraTaGe0xlSa2W87fYMWk3GxzJqx4FopgIGMAU8TXovE2CMkaqkstQAmexu8SUGmKQr4ObReZJoNnBUPOBs9AQegRvFp1ooI3o20gSurcff0eh2edqDkjBS7D265qFtGwcFGdEuba91ic0GhqXusuNPGUy3I3WLnqy24ApC/bQdEfxSBMBeLX3z13RvOlyuX04lX9wc+uX/HF5eJ589fcH/3nMNw4XrpGfqeoT/QjwP9MCLVJn+IYsRAhaaBglprl+gXsFV/K+Ii7NFfVJ9ItWDdKwYTgtcQUOnIkpjyxCVfEPAMlbVUVo8ZxZiI0TR+5ulCXtzl6jpSih7Uru5u2bc2noaClT+ESiKtvngQr8lBvcxDiRKJKTr1IGwGf1WvU7PsXm2M7VIAd9d2rpNRFSwors2a08ggPRoP5FxWJnRIhTmfWa4TVY+AssyTnU/wxRGqczssGTD0gdtjx8u7A7lUhktPDJaiffN4ZXY/S4LQdZFxiPQ9vHx14LNPRw8oN3O/3cTqKgStk/tqzDzZMbelst8p22E28Finru7/2D0lvphWLaj9d+ga/2sr2DSh7HPBWyWFkCyrqjtpEhIxdHShJ8WBJB2qxvlaSmYpE1IqXepZpT2Cc2XUrPtSGtPbWxuL0SQsq1cJYjV/ONi0U12v1S2abQz2zo5s/5ftL/HxE2nlKbK6ZnUHQNLCBqFRCmzMY9yKTtu6259Do5AgG+u83Yudt+Vu3B/haoFYPGFeeF+V39TKu4dHvv3+ge8fLnzx+YnPP525u7sjxcihHzgOR4bxwHg4kFC0VFKKxH70Tg3qnBiz8awyPbSRBjzDE4KTCHsrrfB6sFoLFaGUTM4LKpG5wOwC5sG7Khj713patXiDKlalHqz7Z86BWCp16Om6ziuYk4+km87FJ2qKm9RD89nZaq5M5B5EDPRCyxVDY5t5AWrwYyu4uNTmv2fvwRVcCL51NDB5hq5PFK+Ny+XCZZrJJYMKx5tbynggIszLZGUO08ThcKAbekSEfhgpeSYG4bD0PAuBjMlv9I9Xhj7Sp0D8+g3vThPjYeT27kjXJ9BClZnPP7/ncLRU/RqMdbegRU7aDDR9xybnsS2Z0NyEdu27+IAbND7R2/Ob1dIWF7RAa/umbc42v0abZdUWB7pZQr7ZhdD5uqtuKQhBesZ0w+14SyAyT4XT6cp1VpZZOZ8KucLlupCXTIhCSjbPjgdzd/NypVJYim0wMQipA6IXxkbwXivbwDR1wgaU67jp+t/mCLIDnfZ7s/Fky6p53VcbT4sfe3hBG4XD3czm7vl7zVdpFqrzkGT7rr28R6PA0ty8H4LJk8fHq9PBT8wW9uP5wpIXTqeJ02nmfJ1593jm2fPniAh3N0de3j+j7waeP3tOJwo5k7qOfjggsaMLQuqslW8Q68lVVaC4SqGIiV9hAa/o2jemu2PuWF4WNBfKdEFDYpaOuXq2wgPRqpWYvHpc8G6g1kFCQqBGO7YiSOoIqZnY+MxPiDRWsWXuuj7RGCtBZMtGmZ4HTTy+mfXbzFh2u4BZNRqrAaotRTfRrReWBeyMfImKl5UUmvlfa+bx4T1LLqs1JyGSMKZtL5VxGNCcPb6goIWcM13q0ALjOFJDpoaObhjohwfGPnDoIylgG8uXX/D85TMezhceHt9TJfPs7o4Q82q5yrrr2TKR6mY5bu67unkU13TGohsNcFqWal1MK4DRPBb2ez0OQrJfcevn/EOrXEOLp9j71OdHK5wyDlpc20qn0DHEgSEcOKQjWiOn04W3b8+8ffvI5TqzLJk3bx94f7pSVBlS5PbmwNj3DGNPp5HTdeJ0vhC7xrmpKIUYoeuF2Cl9b1mlIBVpUe/mDj1Zg7paO6qr/d+MojWwvVrWDZHa647rjVqzalzLNqayC8R/OKyrNSX7nyc2l1tADSb9aH+MxdOqeduNL2rs3mtVlnJiypm3D2dub98iwO1h5LPPP+X2cOC6zPSe5Rr6nn64oe8GIkrfD4yHG7rUEdLgxXzGQZGQEIUlZyKJMC/eMbTS9T01F5bpwlJn8vUMXc+ZjofTxbg5IqCmXtj3PcNwMKBpJQ14cWDv4CG9iXipMOey3qnohaomOl8odaECQ9+tgenWXaL16FIs1drCgtaeOK+WUQOZJ4QsGt3fFkt1KkJFLG4r5qaWwpOK6cZ/ialbqQBQuV4uaLUCzhCOnuGwFj/nhweOdzf0MdD3A5dFubvtGbpAH5VDUm4OHX0XeX534MWrG/pDT9BMl26JfeR4iCCndU60MgjFYxNsOx9tVKoRBw0T3Dby359wXD1wbK5pO4TujShfRLaLSwOtNRbBB7+3z7QdGxvZYN1gY4jE0DH0t4RauR2O3HQ3RA1MU+X1u0cezxPTVBASQSuXxxOP7x5ZcqHvOp4dBg59zzAMxBB49/od3755x2WuHA4jh7Gj1MycF4ZD4uZmsDli/jYpKaZEWWhcsBC9jMKvf5dgwg2/9fJaiGf1mHYQ3VYxDbwUPsQDZT+2st6D9aNtSJs1ulo7++Ozbpzoxmn62OPjfbXal+FIKbYggkCuldP1yryYJWQmdOTbt+959eyOx9Mjwzgw9IkhJvruPYfDkT4GxmHgrlS6/obU+0hLQJfiVcO+AOerXWTJZg1hKey8XCnzhWW+UoryUDOn6wW0kly+ArWapnmeAaXresbDza5q3NLn18uZyzzT9YNZYR4Y1lqJMZqlNpjOTrtJa1M9XLoVF7r3mJggtD5iEiJasqUrq8WCcnZpVQkgnUmLuPbyquDo32M964XsmR0RYRhHXr38hCUXlly4nM+cHs/WRrlNJ4+vge8+Ekh9T14yXTday+hlpksj3aGnzBNLF23B3yhdTEzTzPW6ELvEF69e8vLTOzSdOBcjarZdt32nti24+lQODsKybujrhFXwQOdmyqtC3dTNtkp0qdvOrS07tuuv1l58slA2d6690Lq9igh9OtB3B27GV9wdX3KXEmPsqIvy+u0j795fCHHks89fEYPw7u1bvvnd10ynBz59dgsCh7Hn9vZAVSEXO68uBO6GgeNgyYVaKpfTlWkpoImhS/SpI1TMOiwFkUypE1ULEpVYeVIsu2ezy3o/N6AHWWvQWlB5dYJ1c0lX7o2/vuWd/PW2sTUw88Fc8Xz3+xNsYMusta3jxx4/In26D1htJ9kyRJYZqlymaVVgezhdOJ8vnKcrMSVujwd6N7Wf3d/z8sVzhpS4zoXbZ0pflRA6xMmDSyj0KUApZOf2BC/wnBcoy8T1cqbMZ6pWZjrmGohe1R5TNC6P9yqRYDIRfdcTowWGi2cvlrwwzyZ/0Q2F1Gczv4Pxj1KMlN6Cz9XN96IWHxJxsESoakzovFQv+rSM2mpd0SaYx69EsBJcW0DEaABVK1Wz0daxWq/pOpNLa1CId0oI9F0PLMQYmK/K+/fvKKXw4tVLggjzpay72zTPqHSETinLlWXJLMvsusGgRNJwoB8zc7kyDjAVOJ2uzLVyM3Q8u7/lk5f3Vnh6fs95nqm+Q2/bbjOxn3JgxC2yimWOggeDG/jYWvHsom6fVXdSWjo4OyC53WiubvW2PTuXo/2xZfbdvQrWRggiw3DL3eElr+6/5JP7lxxj4nq58mY6QTjwyWfPuHv2HBF4ePeWb776hu9ev+VymTiMPWOfVuGuWiqX82xdTGpxQChIqVynifkyMy/GaO9C4Nj1qESmbK2e1nhgsG69qs41kgbc+gR8AEILLeDXGHS1PsGzybJZSxvXRnf/sclafGBZfvhYcX0PRLQnm4MsnpWTNT73hx4/Elxm9elCEFozM1WTpbC6KCsJULGeTqVmXr+rthBVuTsO3Iw9yzVzPLzj089OHIaOu9v3vJonnt2/JKaBlHpvmpeo2iPWeIrL5UQKoKWYZOd85Xp6b61zQuSiFekSXUxeqiGElBgONziLiBCSJcxKZinLWscyLwtLLpSiyOVMNx4Yxxui94AXIKXIMIwWPPTK9KpWJItE8rKwzAvzdGWZJlcuhFY0mvxYQcztbGZr8yJqsRY+0oBSIyVPzNOVvCzkXKyeRrO7kCabEFtathbGvuezTz/lcjkz9t5RY57Jy2xuWExupSmp78iqXK4TpVrtmFYs1nO4QabCdJpYciZ1kfvbexN508zl8g66K0PXU3VgrgvFyziezjNdr3P//Brjkeqg7RO2lStQkcoaN0Ian8hSv0W3IHMQCAVi8AkfBCG4cgJrRflWc+UdRWLPYbjnxe3nfPHJn/Ppi885dAOnxwuLVrpD4tPblxwOI8s08c1XX/H1t9/x8Hjm5uaG+5sDXVS02r15OJ3JuVrpyjIzXWdA6FJkHHuGGNDDwPO7xPE4cnd/QxDh/HhhWmbSEDgcEjIMCAktV6o1Zl/5Pyt40Hg2PEGIgCLVAKrFWtr8kt1bW5yorj8N0PaO7AcPRxzRjTPXjiotgNbA52nw7aOPH+ky4TT3RsaTRotXX8jKNBcXsnYkDILWwvl8oahJVFwOHWUpvH3/yOl65Xgcub15z3mpnK8zh/HAYbxhHEeSS5m2NixVK0kiWjPT9URZruSLxRjm0FF0JIVsnIrkbV8UrpeTEfywIPLhcKTveoTAUkwhEAnEFJFguj/DMLrQmbONw3ZdpVbjO4iwLMEnQ1ytnWlemKfJrBwxpkgMYi5aLaZJ1CqvXRLDhLwiomGtOVt/EDREUheJqpQ807RUrvMEuRCkEiPELvHs2TPGw0itpuUMlSXbLhzECG95ydzd35NLIfaNrCOIBOqSKQpx6DneHgh9x7VUbu/viCmhLJwvV/J8IiTbJ7uQCAi5LnZta+ChsW6bxazubikZIXreeJ9yt6JoI5KukqCre9WKPX0R+m5uIQVjzgeP9+xJpu1cgoN/DImxv+Xl/Zf89JO/5IvPvuR4vGU6zyz5QjccSWOgLDOXx0e++eYbXn/3mrlUjscDiYrmCbSwZCVWZegsCTFdF5brzDRb1rBPo/07dNw/v2fsO27vbum7xPnhAY2VSCDGQKeC1ESMPYsGlMW4bqGJw4GlV32BPwkMNwKgJ0F2maaGAfuYSwN72wA89uOvmKu8otyKKc2qao+d8+Must/HHUj+YdvJHj8S49m+ScEIeaFp4SgUyEvhisklFDaT7jotXu+UWaZltZwU5eF05s37nvNSOJ1O3N/dcXt7z+3tPeM40qVE11mfq7pYK2MtM3l6JNYZrZXTsvCwKOkAY6kM44GuH1iLBP37ci6WBauVuevouwGRQNcNmIRjIaaekIxFXLK5IdVvZJd6xnFkGA2Uiqp13tTFXSdlngvzXFiyWzvBOhpYlbCVIGg0d7OqkrNzfqIQpMJiUhaWuHOACgLZqovBm/5VsdY/rW5MFWlthVQRiXQp0MdCkjtSiiwe5xkQroJZlEtmGI9M00IuC8NhpEjkNGXmrISu58WzZ5yvV75/+0A/9tzf995pFZY6WzzJJ+2O3rGbnVvq1V7byhRaCEilMYj3u6m7Zh/snA1v2oeLtOB2ZO3K2dyr4D9RTEcqJqIkUhp5cf8T/vwnf80XP/lzxmFkumTOl0yQxHh7ZLqcuVyuvH79hmWB4XBLfnwgX8/M1zOq1nVFQqJS6PoeiRlK5XKxyz2OPTHA+XxhOFi853AcGPtInSf6WLl5frAuvbFjmmfmRqqVjiU7CzkGCBWVZlVu2gF1HU/8bx9F3Vwe2VJZDjh70PEPtsJ+H+An/Jt2/3Zrt7HFN8NnDzrt+36IJR8+Pg486sJJamX9TfvW5EG3O23iQAZGG818IyLVCtaJwACh75R5yWhVptOZZ/d3PHt5pX/3jvu7e+7v7+li4ni8gZopk8V0NF+JAudp5s3jmZoO3B8tS7TMM6JYxikGtAr7Ev7LdCbljqLKYTxCEHON3GzP82SuT1WWPFNrIabEMNwYNb7v/FiChErOhVpnczlLYXaXrTXIK6UyZ5swwW9uJq+gI5hratIdNlmskLSnRUksGOpSqlgboYjR9Italby6jFwpxTd5c79qjcQwUuoCFPphBA08PD4yXa7c3d8jaWCeZ2rsiEMi63vOSyH7BHucMr/95nsOx47+8JwuZUosDP3ANFtrINazZZtwPmHVF8MKQOuO7TN1LfbU7flt9u0O6OTSdVJvG8uaxGqB0VY+4UqPJuyeSHHk5vCKT1/8GZ9+8ieM4y3Xy8T5PBPSwHh7IHaRZSkQEzf3z+F04v3b17x7/Q3TdEXB6B004X0xwfyizKUiSbhJvVmY1ThlY29ZwrFPpAgyRg7jyOEwMI6WdXz38Mj784VpsQzuUrJltrz6nsCm/8TWZKGN9d4V22NC2N7yhx8OHlvUZzVkPnhspSoN9Jokx2pjrbSIH0eej0ufqqctxQ7WxdTOgdbeJgRZXQAJ4jIYELvoC06gWovcuRYu10wpyjB0XC4Xrtcr5+uV03QlxY77+3uen54TY+Tlixfc3xwpy8R8PZOdGPf24cR1WjjeB26c/yMoeZkpy2QTxOulgkQr6lsWMkqvI/Mys+TFrqkbKCUzTRfvzKBGLPPMVl4m5mCkwK6zGq9lsU6fgniAeiFnE4yvRchSma5nSs50fcfQeQpeW1ws+viayzVnsx6sN1d2oLZb2Jr1LXlGiwnId13LgrlsRrEiVgWWZXGWmLCUwjwvKErWK5fz1Sq0VbguC0UCV4XpMtEPA8cXL3iole++fs2vvn2L1sp1nhlHYS4zUSo5T5jERXCdnx0INBD6PZN2fVXwOizdyiVaekVYN6y98JZI3bLmjnDtO2keFTg+CTEmhu7AMBwZ+wMpjozdLZ+++DN++vm/4+ZwT52VugiH4z394YginB8fOF9nQndkCAPn0xkkMBxu6Q9Hx7xi8yxWYoosi3A5K2MfGYcD7x/O5GoCb7UUlmVGwg3D0DH0nRUqB+XmcDSLa14YcuZQlWXJXM4T1zwT+8gh9HTRGPsVMwIaYG8xoI1+sD72KfF1aGXl7tSdrbTGnBuoS7M49wDSQscfRoOemD78yyDHHh8FnuK0/pQsaNfFSFPS0xBWTePsxY19Z1XXzT2w8oGAFguEdohlVEollUoWvIbILIiUEuezgVHXJR5PD7x68ZKgmevpgcv5xDRNzHMm9p0zMDc73/R8LO2e84zWTAzWeDB1B0KMlFI4Xy+ru1XniZJnlvlKrdXa4rhcakzJ4huq5MXUBCcEWqcHrC3y1hytMpfCw7vvefvmNYTA4XjL/e0Nx3Ew3pILvDeVvSanoWqdINz2sX8FtGbyksl5JroV0Zr+aVXyklmW7JOorhT4Nf0p3uddxbN3A0ut1oFB4DRNnK5XYl4oCt+9e+Tn//Arvn/zyMv7Iy/uBw43HZIKuGhXLtYi2rJvPpUbqshmapu1o85R8qnbapg8DmSE0V1swA+h+AJoU9pd2G0ROdg5X9PiSj1dOPLs8IpPX/wJr158wf3tC7rU03cDN8d7hv6AENEYON6MkAYIkbdvvudv/sv/wd/93/+D2/t7Pv/JT4gCt/ev6PojyzJR80wtCyUZ23m+Xil5pu8jMfQ293PhOl29GDlwGBJDCnR9pB97RCtdFPp+JKYBlkrXj9xgTRMezlfmUq01z+KegwRyA+oIIYqrL1hwuJatzs3GdQMAcQuxAbQ912I7OxhZNw4+MJE2YFn1ynW7UQ2QAq2o9skX/8HHR4EnBWuZUqu3IKbVKFkvamqm5uLMZpuAfW+9zufFmK0dabWMjBkcaa07WtowLxk9Xxj6juylEH3X8/jwyMO7B47jwOTaMlqVlCL9EEkhEUOk6wb6fnCOzIxoWOM8MVnrFgmBkhceH9+Rs5UmNNmAkmezWCSYtAZCSk4+bJpAi7o7owy9aRIFSVbHEyGXzHyZeHj/PV/95p/59quvucwLx/tnfPb5Z7x4ds/N8YbD2JsLBcbr8WMG2TipISVLs5fCdD0xXa4gwjiMFnTMxXp3KYhEQjR3K0iy8czFx9FaLUuMzNNE7AeqBPp4a2neolyL8vrdA+8efsd5Wvjlr7/l1797jZbMmJRPX/b0oxCi9S2T6Bas5nXnbWR+pFkqBji7PWEDnZ0Ltu6azWv3eb4J2G2Bzr0l9YRBa6uNZQnUOnIcPuHZ/c/405f/gZ988accb24JWqh5tp5nl4k0jiiJ0+nM48M3nM8n/uv//l/4X/+X/41ff/UNt/f3/M//+T/z13/9V9zf3XA8HCm1MvwTsvUAACAASURBVF9OTJdH8jKhdaYLA2XuKUtGUmflEwhdSAxjx9AnjoduFV6LAXqfqyF2aEz0h1tCXykI/c1MkY6H84mlLKQUyFqNXFgCRW1OxCSkoJSyWGZ2trZSXR8t27maLhjg7++Do7p18HDwafeq7sBnvUM762jFFXn6V7vv7X6wP86/AniGLm5aI80M9i8wDRtrkhezWUb7NqnL7LVLzhRocgmqm8YumHZNbeJX2XsXKpQlcz2feXx4ZBx6K8asZm11faIbesaD1YWFloVKkeQZOFXIZVn1eEQCl/Mj83SlavVM0cKymMXT1AolBBeWt5bHlorXdSHYwBqtNngNV6mVOs8sy8T1emK6npmuZx4fTlwuF8oyc3p/R9cljrc3dH1PCokUIn3fkbwBXi2F1JloVxArlViWzLQspGTKjTkXqnNoVMWD51cjXUokF3X3byIvi5UDiHKZrmSF0HdkFb5+847H68L379/zy1/+mtPj2WJhj1e6AFWE1CnDITAeIhILIsVLH4QP+7W1ebLNcHbgsL3Y3qc+ni0Y79b9ijdbzqvR8dtxzMpt7jUC81x59/VCnGbuPkvIsw4mQaaKyBWtE8vVLOZ5mZHhhssMv/3NV/zTL/6R777+mr//xS/56s2J13Pg3Zsr8vO/J6SOf/9XP+PmONKnjjQekZJZRKkFlpoZh56SF6bJrMDji1sP0maPbwvznLmcrwzjkf72hn44mI0QAjG6VlWFWAOffP4lnwBKQYIB+JwXztfzqrCZuoBIYZ4uPDw+8ObyhsvlwrJkxiEgndWFtax0G9dWymDBeKvTCnXje7aAWbs36yd3mbL9LYZGXdg2gX0/sY89fqRkQkgxrODZGI8Rt2C6QK1WtdsYoU29r1TIuToT2NwKqpoYuQT6FC1o6ynw6ir3UgoZI96FKFyvV5ZpZug6YjB+RPV+XCEG+mGg7zqEaq6da0QjQizRrKlamJczxVOhaFMUtMBt1/X0/UjqRxcJS2uMobW51ZrN0usGq2Sv2XklZl2UPBPEWie/fPUpIQjHd+/IudBH5d3rb7jMExI7+r7jcLzleGNM6iTCYRwIYjVUx2o6zVqLpcZFIBjoLPNkO65zMPI8URbr/R5STy5GZZgm4+L0h4V8rTw8njldJiR1nK8L//Srr/jmzQPny5XT4wM0V1kzh976TD1/PnL3vOdwG9FgFmyTebC2yp4pWYEZWjq8UREkhE1zR3UtPnRV8XVB7B+rO7Zzv/wVw7QgWJcTcy8f3l757jeZ27wwdI/cvrwSzxeW9++Yp4iQma/vefz+W75//b1V96cDb797y1e/+jX//ed/x9IfiPev6OTCy1efc/vqGa/PC//wy1/xZ5+/4sWze1KArkuUEtFq7nAMwUiyXSBoR9fbZjxdr1ynhcfTjMRKDR23VYj9kf5wC2KdXZfrldPpxOnxQkXoD0dStBrCPgnD0EMIvBQoTqQ10LXY3+Vy5rvvv+ZXv/4VX333Fed+4f7ZwG1M1nJoBQ2zThGMK9WG1aYWa4OK2ixLf//ebOXp/Wj8NBOW8Pv+4Xv/wOPjYu+l0oktvhAsO4XHJ6IrsKVkXBjNxfSLg0kotpx+8ziNX2Momj0w2xA/hIBiAukheC1TrYS+o0uRslSvw7LJZhrJhq6p6y1jU02GYP28uiTE0LMsy8r2FTFBLxeMJsRIlzr3uV1iVSKp61xSwvV8q32uLAvV4T2I93lXJYVgEhu3d/Rd4uZ4IH/6KTlnTqdH3nz/PZfTAw9v31ERDre3pL6nlMrNYeTu9oYQAofDwOH0SN9Fb2xoPz3CNM3Mk/crcxmOsnh8CosFlFq5nK/kaub0uzePPJ6vvH77yCUXLpeZh/dnvv3uDQ/nKyGKMcXXcVGOY+LufuCzz2+5vY8MQyWrdc9sEp0R12dRoZq6zaqy15jfIdg1OMV3BQ8Fb2Htk7uZO3jlWovxCJ7c2DInbbdGwJpAKg+PD7x9OxGqcv7171i6EV69Ql4+s9S3VmKdkek9aTmRxgPd8+fc3D8j58zX373l0t9xfv/IsxcHfvZXf82XX35Jx8SbX/89373+nmMXCWNv8YwQzE0aRyBTsrX3qWUxkutSOF8K7x9MXuR4azWJhchS4ZBGun6kLAtlMvb8w8OZbjhQy4Xr+UrOV4Yh0Q0dsbNC3tT3iATPmJlR0Mcjf/rFv+PZ7Sekv/05//jrf2CZz8RwQ7ztdsJiDTM8plYtHlQdjEIjZ7aNAdmQf0Up2N2JzdVll0FraPbHuFpVLS0shHVWaROVEjWXKViVrRkZtgOA0qWAqNDFSDAtTKpWuhjJFKe2m2ZtI5ppdVMtyJotGcaemiolV5potunoJIuFOCiGYP0eBfU+QgUJyVzAGInxQK2FkLvVTZEQSakj/j+kvdlyHFmSpvmd1cx8A0jGlpEpWdnV0iJT0yIjPXMz7/8Gc9FX1bXnEkEGScDh7racdS70mDmYWRJRXQkRBBkkiMXNTI/qr//S5BS06GQxp5cXzpiWz60dOWVijBt+tJl4K0Vpa/LOdRwPA7x7I0D29cr1cm76r4xRius4EW4XLk9JHAUPO85nSWz1TuOspR8GcsmkkHg8PfD49h1UsWIFiOMVpRVhmYgxyDq/xZtMSyRXQyrw/uMnnp6vnC9C6Hy5jBuxsfcCgBoDMVZCzCgKu6Pn628G3rz1dL34x9imSYMisdY5sxL2Vp2OpH/cHRhNsz/5wu60YQelSg4YLUFVvI/y3V6BdVW7MuZbEV7nfoQBbewApYOa+e77X/P2u+84/Pa3HH71Lbt3b+gODpVGdH6m7g07f8Ic32AeHsluTyqVl3Hh81R4OweG0wPv3n3Lw8OJ3mt+fbK4dMU6wS6F3CrYGsrifIcxhqQVKRpiWjaNW2o5ViEWlqUQQmFZxOWx6kJIgu0o12N9RCtDGCfm20IME7eXJDyg4xFjB0o2TONN8LkQmG4XvLf8+m9+w5s3X/Pf/85wvV75+3/5J5yzDL3FGsVrV8Sthrw6C9beZiUmbpsutXkgfvF2x9pkDHtdgOSrVP6df/YfLzx2tQJtnYu1WgAodQcGtQJvLVmJ+bhu879tvie9Fw/gmOvqNiH4SHsRNPKxxbCtmm178HMWiYDrHFZLIsBdMiARNs400d36A9MMmRCriBAWnLWUWiRgx1jBFFBy86x2qFohVqQi+5DD2LY8dcOa526dEA1VBWVMm28l4E8rQ991dJ2n1kKYA7pF2aRcMNpwfHzg5fmJl/Mznz9NpHnhkgLaOtGGxYDrheR4vY4AfP/9d9ymG0bL15xuE3keUUazzBPzEjjfFtleobjNgetNaAXP5xvn6yijVOcpKWE7g3MK5yzWKkISa1SlYL93vPuq581bzzCA0vJ6GOeborptzYyciK/X4korjG3F3LSIZtXeV+Tx1diUa5atYM1UWmpHKdvWj1dFR2uDUXb7fPKVNb3d89WDYf/byP/7//zf/Jff/oavvvmO09t3uL6jGkBpzODZPxzpS6V6TzEJpQvvvnnH//l//R+MS6Qah+t3DLsdQ99jrCYtJ8anj3z88QfZhuoWEmAMJFkK5JyoVZPLgrEFZ6PgeVpwHLQVH+uQWJaF222U8ECt6fePopavhuV6JQO7w45pKizLjLYe43r8sJeI8Ckw3c789P49nz99xHlDKom37x5wznA6HBkvhQ/vJ9697em8vRcFtRYe1Xyw2vNS2/asIuEL5TUOxxfOq/fMr1YB1BrUuOKf7dj4awqPbvPk2tkIuLeeSXLxXZvhk64UIytxKlTTtmFaYaxGGchJY0oloshB8q0kYG7NUqd1UGL4lXMhqWagbjW61A3nscZgtXQHQ9/LpqjK3CujnRauTlmNvAtZa2JjgVZWIZtshEpRkhFfKrmtr6M2pBRwxm4gqXG+RcggboVKvh/XeawW32OjFTGEjVtjjGW/E1B5mHd459C6EKZJklCp1BpJ0yRjSITbZWQJCec6ri8vQp40ijkWLucr+33P+XJlmQPPLyPXW8B3HusdMSWezteNL5RjFLMqDf7QyVjQXkvpNAtKFY4Hz9ff7Pjqmx2HY4sl1nlLupDrXmRFr8RKRHCbKqt2Y0Vz97roaNtG5NdHYrtREWFkzZHVv0cj/KTtWdEi+DXKtCxyjdYd2nSA5+S+5vi9Zvernr/9L7/j7dtH+t1ApbDMV5gyhgRZobsdpmaKhhKFjWxVz9fvdoRUSLlKiqzJ6Dyi0egaMbYS4o0//OFPaGd5fHzgsN+xBgzYdUupCsYqnLdY75imRTSLRTMvkfc/fuByufH1d4Fvf9NzOLxB2w6rDfPlwjJPaGdxQ0dIE707cXr7FfvTCWU0l5cXnj595tOHn3h5fiaFQEXzwx//wNOn91gLn58/k0Lk08fE8/OO/b4lAL9mE1YZYQWPES5DLbpZoVaqrhumvI5f6wil1gaqdTq64Tqa+9ZxDXX4TxceYQGvHnJyEkluVmMht9ZaIyxaayzeGmou5ChqbKXFh7kqYfUqpYmLZlxZtwgeIGCqRJFopfGdGJlTBVTTSmGcAM4y9b3qfLTGOdtwlwY8ao0JE7pFva6pkSkncs5NopBbJpJYWiwpEeJMCLPYo+aMtzICdX2HMw4TgxSf9srK6W6gWWMs89I2dBK+l8Q1nt3xgAuBUiLeW7xz7A8dxsqaPsbEMkvHV2rB6YKyFaMzxInlFpiDdDKrIPGnz2eWJXG9zaRUiFHkD8oIV6ikiLGGzsm4q7Wi9w7Z1IuvdUoZYxSPu453Xw28+2bgcPI4D6uzn2nOizQzBQFVLdr0pLTIvdGSNVZDfXH3s2jlNosQ2Va9XrNrTJU1u2ALlaxavHUV2xCjdQsClEJ2nxEMvTviGTBG82Z4I2OXHSjasUwLMYhViPOSnGr0HuIIMVBSJFWoesZUg8uJME48X27cxhnQdMMO33XCx9nvWGLiH/7Xv3I47Pjtr7/hdDpwOB7ofdcinBMxKHKSDHvnxGI0xcQUIyFlxjnS7fd81Q6tnCJxWVimGeM7jPfknOl2J/rjA4eHR4w1jOONabwx3S6UFNkNHf1giUV0h+fnkRwD4zLidOUaMtOtEJPCOIkU2gr+JjdRG3686rlqKypfGrivm0X1xdZqnVjWRlZtPKu/svBIPrYAvSVnMFriWpwYKa251RKPkVtap4xRRiusXsFaWn6V2JJma2RdPocW8VuxTk4NozSqFqzxKKsaI/iOnlvX8AOl7qNre4mEcCZiUWsFmOu6jtiKQK0VVzwpCVcoFUlSTEX0WSEszItc4PH2wjxPlBjRztLv9nSuw3cDvpOcMedlJJpnSZPQjVio22gALXvc2AauF5x3aFWxVnE47Ol6RwyBMC90bSMS5gWzc+TUiIQ1MV4npmkm5YJ1HeMY8VYzXqMQ0qyRi50D1nXse8e8BJSquME2H2gjvr+b+LXgrKb3huMbz8Pbgf3JYlzThinBKEwzPFObAUylNF9sbYTBbNYYn4bpaCUpI1q9xngqK0mnKtUsMBq4iRLOl6pkEqV9DqPvuev3u1rSaJ0Z0FFjq0ZhWJbMOAaxjc2BHGLDLTKlJvn+U8GWKHhZLixRCHshLIzXK+9/+IGPny+kBH7Y0e/3aG0xtsN3HeM88/sfP/L5+Zn/9jff87u//Rt2ux2KHmqmFgg6UBDm+BKS8IdSYpkl7fXjh4+c3vzYlPSal4+fuJyfUEqz2x/xjzu0dQ0qiFwvZy7nJ6brC9oodocdMVhSDhBgvM7M4yQJKAaG3lG0xFvnIo6Xa4TQfWSqbUJo1UXLtdnsZu9kKrk+2/Viw+rarcAKu90zzviyw/3fLjy8Wji0lXcImb6zWGtwbk2drLhiWhus0Y1Obo1BIVwThWI47eg6IVylmEV60OJTjdJod2dd1lwwTjAT3USXVivxb7biiWO0bukPbFwemZ4KOS2izDYaUzS660SsWRXOJlK2EohXpGjOjOQc0JTGFl5YphfiItG+T58/kHOh8wP7w4nD6YGu39H3A74BjNYYrHGC+TQANJeCdV7a1pyYw0wqSX6GzlFI5AzaytgagohPu04Ay5wlzK+mIGp0BZqCo3A69oRpIpV7TvhKLlPd3U/YaIOSdlN8W0wbca3l9DCwO2iGg6Lf69bpVISVWtBVtIq1zfBVa+FAIVyVdXW+FogVQ1gn/5UXsrXt953Jq+3J+jAorJL0CkVtQYB37A4kYkYpi9UdznimT1fmjyPmlNh1O1zv0Z1GtaRXrZu0A40qIq+Zlgi1sEwT0zQSs9hvLEug73cM/cL5fOXDhxu36U+yzTOeYT/w7TdveLlN/NsfP2KUYXc6YpxjPwgTuevFvG0eR+najMCKKhY0lTQvnJ8+8/4P/4Zzmv3+QKlJcL0K2mqc96RcuDx9EpLjywsvT5+ZbjdKyltnEVNgGkfmaSLF1ApEw1wRcXZYCru90CNe1/9VClWVXGOKkhGrHfKybFznsnWUunc0eh291iuu1jG4HSa/0PL8gh+PEAMVYqBUKE3BXWkBIVhv8Z3BmEyIeS19csJqjbNaikzJaKU5nE7EeZEVecgsS2gvhIB2a9IBiO1GrTLCWWNFaNdkDNY5jHVyEZrkQCqvBjKrY6JuIDTNhF014V3OiRCDeNEg/Jmh7xn7Hu9FiV5KJIVAGCfGaSYsAdB07ie63tPv9hwfHul3e7z3eN/hvccZ38zCpP2si4xGYR45P/1EDBPzeCMsCzEG4hI2351lmqm50PlObpSSKVFCEp1SoMX2VGKEDPveEWNmaZ7U1hq0Ae8EQE65oLWh6junRml5GIa95c3XPbujRdmAda0Nb+BulYlGXAFpo3W9dyrrBkQjn1uv5D7gfsS2O6m8liCubxrR27dC1CxNrRLl9z3GRm/blVxrI17uUNWQUmHvdqhUWeaRLh4wwbbOyxBioMxS6KkLcbmQoywcrreR2/VCVZpu94A/7tG9MJu7w4366YoeA10nBu7GGH51PGKt5//7n3/PP/3+RzKV63Xk+199w8O+xxqw3jPsBjKVPiZijNsGKCbhqz19fubNm3OzTR1QxhOmiRgWyuVCiJFpmvj0/j1/+v0fOD+dm+XtGvpH44+1gMkqFinONaM4q0g5yeFgHNtGUC6YFIeq0FWTWf3C1w5nLTBtkfCq2XztvaxfFZ67j3UzvvtrRq2wiKWDsYY1h8dZ4dykrBtfQ+OcaaNUoJSKtwIEGmM47HsuDSjNqeCswwxqS+mcR9NC79jW8VXmFaiVkjKpglUKmkm8sQ5tpfAY06JgSqZkhEinhVukG9Ct0Q2PMm3cU+RiUdbIA6EkgWE/7Hl4eMN1vGGdJ8aZ+XZDq+mVdYDowPItMo0jl+cnur6jH3YiCO176YC0la7GdwBcLy/czk+ML2cohWWeCTm1mJvafIygRCmaWBGp1satUVphkY5FBuuKKkWIa7pimpWCGOYjW6fWW+uW5qwtYBTWw+7oGHaWYV9xXbtRjPx8K4ZGaUvt9tDo1mpXvd6jqxL8fvZth11tY1VrdaRI3Vt39aoINTrc9nf3P10tHjRKWVAWcOLrkzNYzVfffc8x9pSXmfkyovYXopLC3fcdpcJ4u5FLaP7GM/M00Q87bN8TX86UkgnXK353kuvWDbz59oHTt37btIUQ0Mbgux5jPX/404/8/T//if/1z3+ilELnNDofeHh8g+s6TtbQ7wZSEALsMHTEVFlS4XqbKblSm2WK0rVtdgWayCmyzDPPnz7z0/v3PH8+c73eWC1ndGPpy71zdztQVmgvqmpq0YIvqnXn1Dqd1omvW6iG3lL1OofVO0ZT7v9/5+9sFahhRtvQxetY6r/OgbDdJymlV7NcI4a1L1qqiEn73rPf9SzTwnidyVScNXhrOex7rA54o6AkfOeoqaPmjGk/mLFmy7SyViKIldLyMUra+LoaYhtRj1vrWmKFbaNNGw0bl0RO7caybUWyNf9tPDDkKp2Y7QzVW0A2V3FZRJh6vTBPM2YOrLnptcrDKDekcHvm8SZUP9NO+iqbtVVYl0IkzQs1J7SSjV8sZSsWK3co1+ZaqJtDn1Xo2rw2akUCAButShckIl5RN/ppKyJKfkbvNehKNWC9wg+WYa8ZDgbjNKarssVRtRWeVkRawptupMGqXvMApfMyvCo+myXCeuO8ZuSs/63bAyCfZj0t17/58jO8gi9ZS1tud34uBWUMp8Mb9nVP2Wem28Q8J7KbKVXW9aomCQaIgWmcmgxkT7cfUFTs+czz50+8XJ+I8Y8Mu56qLcbvOL79Bm8dy3JlXmb6fsAay7ff/4r/8T/+O7EqPnx84TaLLUo3DDgvXjz9/gga5vHCy9MTaNHgKetYQmaeFgyZOI0oM6Ct5/T4CFrx+dMnzp8+cXk6cznfuFwnQij3rVGO2KaAr7QO1hm0MygnW7k4BQy1kW31Ru7cxou6uhS2gwWkaLXXXV7mu8r9fs0a105tl2Ubwb4w/v/ZwvJLWi1vZUOTMzU397tJLB+HzuOdxRojHY6CzhsUHWERJ7ZaNDllrNK8e/eA9x5qwWkDvWAueYmkkLDGgjWUnFsSZ2uX5ckSPEk3GXPz9anISruWgnJi+alUIzkmufFX/dMakaPaI7FuwJQxcji37qIWYeU+HB/I6de8vJy5np+ZtBaLAkUjPdfNSNs04I0qHjwpyXwdWxyws+uYx2bdIGtLuXKrsFOUxgVMJaNIQG6AXSmi6Vkf0qLWLPBy3xRp6Sq00a3jQYq01ZhO0+0drtO4DoyvKFOptlBNO/10uxFbe71uzDPND1kr6YIUTSnf1O/3Sf/+cGz/Va/8YuS/ghfpdVj7YtO1nczr51QyMq3jlsKgtWypfNe3B93ifA/WM336wPw0kR4O2KCocSaMFyEnZqEcdLsT2nRYazi++YZ5iXx8+gMff3rmcHrg61/9it3jW3y/QysIMXD+/JmpEyX77vjAb/7mdzy/3Jim/8Xz+YUPPz3xm19/S0UE0lonvHOgDMpaXMlY32O7PfuDY55mpvFKDBHnHce3bxmOD4zjjYrCWE9MlZfzlRgLVRnhobXAAICul5BK6w3eG2ynUS6zjBBTYecsfrBrlgLttpdr0sigdUs5/bJFUe2Dv+TwrG/SAW95dW2lfpfQ/BLC84tbLb29l+YXsixieEURYWXnLK6NLCllfOc4nsSFf5ki1+uINRrnZdU6NGGngK2ReuiIcwMjtbR80vXXZsehUKViW66Va1KGFcCUJkDIhrK2bSZdzR+nNrMpXWTDgpIEi7WBrKW0/18F/oJHGGvYn048PH7F+fkj0zgKlrLERrBqFDa7xtwiralI7reHh9rkHq0grP1trhIbn1aGdK2o5nGUiyLmQqqVqjXWW5wWlbwAzZIgUWqlWvk6pgpAX5sHtrYabRXWW5TTaK/wnZL8c1XBgmrexzSAeL3Z1i5E10p+rXaALZNeo1tUDdtduXoZSXWsW2GRW7UVmTXMsHAvPg2fKw2Ilj+TEXNVVchdnSkqk2tBK0cqC7Fmei259zoZTOe4vlw5354oVUac/f5IzXB5uWGWCdf37I9HwWKODzxURVAW3X/i+fMnfnr/ngcc7/oDp8ORr777Df3+SM6Zw/GBfjgAmm++/oq3b37kNk7847/8wGm/4+/+7r9irSaGEU0lRPFg9sMB53uUkWLk+wHrO4x1HI6PPL550xTuAW8tl+cX/vTHHzi/3Joz5fo0t2WKETjBe0s3eKzXKF1ZamTJhVQ1x9MO52Quvvsmqba9koKzFv21ULy+1EL6vHOX/6KYqLXIyNVN6j8SbCNvvygSVYBz4tyn2wNfCy2MrNHA2pq8FMEB9rse7zTTdWGZwrZetcbgnafvd2itSGESdrQ3wpyHjXwk8ejy0NVcGpGxRRFbcYGrtfFlYry/qAhHJbU1vZaVjDBiVTuxuTNjc7nHFq9+LzRjcGccX331HfN0Yx5H5ilwuy13fYuWDdM2CaVmEKaVsK2dJkSRiqA11WhigSUVxlCZEpQqLnleQ6fBGUBblqopxuP7gd3Did2uoxCYxxfJFQuBmgs66vbAVrRphbt1OdoJ96mimjcz20akrqvxFrj3+sbevHLWNlutsI28ZmuIoeKubJbu5O7xIuBl5p5AIcF265ssA2R0vjuByddfZRQrjlSb+XlF+CVa+UYQzUwh4PWAshXtFcoqptuVT88fqA6G455xSXintlQP7Tyu30nQZK/YZcXj1xo9HMH1/Nu//J5//uF/8vbde/7rf/tb3r77iv3pAWscXb+TpYYxfPfdd/z6Vx/5+FEwmM/nK+M4cTwMhBRJ80SptRFOFcaW5l+uxKHAD/T7A4f9ka7vUcbQh0DNmRozvXPtYBWcdQ2QtE40fX3n6PsO7y2YQqiytBlnSdjV2pBDIVmF9UIg/ZLZsKJosAp4X6kr/vw3/PmfrIev+qLNXYHlny9AP299WhDrB4Sdm43BG9NwGE3nZdO03+04nA5tKyX2DlqLCbc1YgS2G3q6zglPIy046+i7HXmaqREwd/B3lV5454SY1kY0iZcFbaS1FpOuTAihjUt3vyCxDVV3lnFuG7c1s5x1tqA5+K1GS7rlIYmtx7A78O6b33C9Ckt4WRLzvBBzJmeEAFcqsYjocdWaKaoULy2j1Bgz1ynyMhWmWEjFSOSMMdQgGJe3ml5p9nTYOoD1uNNXHL/9hq/eHlBqZho/sszPLOFKTjNhmQkxkqu4J9Y2iCsL7X4npyr2vVq1zqQ1OrxS3ys2e821HVeqbgiLtN1r372mRZb7x7Yupa7z5HYfrlP/Gtd7P1trU/evwID8kqkIpijR1uW+xtUycimtkHjgwBRmNI7aG/GPMopMZhpnauc5j5+p5QMPD0ceHo/shxOu2yO59ArtPH5vOLoOnCcVxZwg/v6PfPr0kVIy33z3zOPjiYfHt2jrG5RWOZ1O/O53UJSCIgAAIABJREFUv+Hjx0/8wz9OfH5+4fPzGe8UTiv5frMAyGFZMMZhXddwSov1HdZ3IpqOEYsSP+9c2e0HOu+xVvyURIrTsR86druOw+nIMHRAJeSZMVyZ5sznlxc+fLzy+Gbf1uS6vbZfVh2FwAN1Bf/lZOE+Wb2el14Pzk2/9WcbMCk467/Wv1R3fsGBsNmKiraKbT0snYdu0gXBLjrn8J1vIHDBe0fsgzCZK+wOh3baSqttraPfHYjzRIoRDThnJJtIa8hS5ZWRTkk7SWBcmdLaWgnga7wZpbQAtbVuLGUFW75VLneR6V3+0bo6raGKsVbNlVyTFE/k4/eHE2+//p7b5YU4L2itmUMQq9Q15gdZRYuAfwXuIObKbcl8ugQucyQUEVtaLcUhJsn5UkWzZEvAs6gOVzzKePRoOYWON+rIfjjQdR0h7pnmz8R4JSxXljCRSyTmSAwCPitbm8eP4Cni7XIHCKVDuW8k7nP5iq1w/7/1BGtdoqR4tjm/USyktLSxqZH2am3Ew9dktK2XX01W7v4vtWYpoHVt2Uvj8sjXLbU07+6IyoFUInOYIAuO5G1Hshp7OtLdHriMN3766RMxRcYlkbD4/shlCnTXUWQPGlJjsFcU2lj2hz3vvnrk86dn3v/4gafPn/nqnbgSfvt95vDwdotienzzyG9/92s+P7/w/HLlD398j1WZt49HnHOiC8ypuQqobRvrlMc6WagsKRNSIsYzn3/6hLaG05tHHs5X/tY4XOfZ7QZOjw88PjzQ915M3WplWa48nd8z/vjC8+XMDz+eGcfM27dyENd2ylS5NA2bYW15UE2l/tq46xWs85f//2rc236n4J6n1p6rP8OM/vztZwtP7xzGNNKeFjS7GMEztNbi61GR8L1lZugd/TAAmpwSKUxcQyAncV+DQgkLGMGFjNmRD0egkENoJ7DBeOkEVtKS0WB8hzIWU2mjlvywpYnbUkqtuCCVu4oC3hjXUHjRBq2F5q4GejUc1DZ2ZVhz1K029P3A45t33L75FSlFzPWMH0cx2wqx2Z9KB1DaZmpKmestcVsS45yZY2mgNqAFDsoxiascFmUrzmhSUZRQSbWgdODlcuP8cuXx4cjQH9gPnax0jWOaLWurUIpChSq4WSsKKzEeva5Lm6VEW3/fs9I2Ngb3iJitj5EbauX1tI95fdfdCX60orH+XmxdlTJIiF/jeLwipsm/LE2tLnyUlbUqf6dfsWilmy1kcgnEfEPXjhQz47zQOXldinOY/Y40X9DOkGPk6elCLgbnd1i/oyrDuAS63hPCwjTeuM0jLy9nXs6fiSlyOB1RyjCPN16ezxil8N2Asa4ZtWe8s3z97g2/+vYd/7osPJ8vPB88vXcMA5SSKDEw3UbG20wulf3pAeUGliVQlgRKZEjj5YXxduX48IbTwyPvvvka4zyH4xHfdXTDQNf1VBQxJaZ54vnpJ8b4zPPLC3/84YnbLdL1nq6TFWXOhZI1uBXDg3XrWjcj61Y06qvy82d1o67/7D6ctd+vcqT7IfULNUeeq5/7y/1OdDAo0GS0lg5CRiGkE2ltdY5tXex7+mFA9wNhMqRl4XZ+oSwLtvPiqjePBOcwrsN6S9d3RKqwlZvcQZuVbr8KSVtrqq3weLRcrHkaiaYJCY1gTWodE7TctKt2SKkKpZBjoa6kQ6Xb3CHr65JLe3BFK+Q6j1aGw/GBr77+tWibvMfaz4TZEkMUElfO5JI2Utd1jLz/PLHE5qQnXgqN/iC+OSmvQGHFaoUxIk/JNaO1JFLOy8LlcmOaA+BxvsOrXkSaiqbuLqSYMTphzXp6V3KRjdhdPSxr8qrbbbIadLU7spWp7Va7n2uvRzB5K6//rt4/Zh2h1g+uNTX+iN5sMtaPLUhmeM4iLbnfwHXjnNSmtVNtNqw1SWdEIWaPqpYSA3HR7Psj3nXS+ZHBabrDAM5Rs+B519vMjz89cx0XHo4DfS/323g7My0j0zwxzRO32w3fDQyHHcYZxvOFT5/P9MMHjocj3gqlAwVWw3GwPBwHaimM48I0Lw1fzIQpcH4ZQRmU6+XdJzARtDDxU6NW2L7H9T1v377lzcMDx9MJ68T3e7U9ybkyLwtLuDKOL7x//4E//vCJ2y3gnOV46DjsPV1vsO6+IFIbUPyKvPCKhgLtGVmLy3ppt7vjL++MLVPrL8ar1zD1X779bOE5HHYbRlPJWEsbpaRvE6GgKMSNEVN177rmVazEW7ZpmOI8btniJWaUsbg+t9C9Kgp2azDWNVdCs928up2UNN2TdR3W9+3Ct/O2YTxiKNasSY3GmJa+2ULdYi3kHMUwvUoXJLlaHvXKeVDW2ko6oyrZ68fTI9M8ShGrhdm55gCYyDmJB24I1BBRLC1ttW0Nat28g3LJQsNv4ktrwDu5oKnR+mvJoISOcLtNPD1dOB1PAip6j7U7nNvj3R5KoOaAURFnW3hfLmjduo/GPVqJiO3Au+M33H/zhf/K2tGshaodjvf1933kWm/CV2cfsvsSsai1nejvtNu2WaUWyAuV1oGW2iwx1lu9geYraF1XdpBwumK6gnGkNBOCdLJLWIgxkmqWeGCvGVyPMR3edAyHIyjDp4+fifGA95qu78k5il2v8bhhoM8FqkhYliVStSItiaePn3j35g3H0xFjPN57tNJCIVkCMVWeb5E3sdBXIFeWmJlDwXcOmvG+JLvKvVdqJYRAbjHPL+cnnK48nA6UHIh5ER1hCMSUud5ufPjwgX/6h3/gH/7pH/mX3/+J9x8vxAxdZ9jvPIdDx24nnY/4ZalXF3VbFbbi0rphg+S5v+5g2yGwvalXhefP/rzdBH8xqv17b7/Q8fTSSuWC1o5h6Ol3vYCISaKAcxIL0TDNeCuOcLUUWUtRcc5yeHggdJawBOZwI8WMttOGuTjrKfr+4pRGkqu1iNLdGKnaRSqxNjIb55LRVVOq2TqxWoXXsiZFSMZUpqawcXVKibJtUPJQlKowTQagtcY0dXuhsoSFuoYEGsX+cBJuU5gw1oiKPUVRGYeA0prcOjTdQBUZF2VkLWUt2nojDnqvsUawBmkISmOkij3INM88ny+cnl94OO7p3CAFh5ZSqiXnSfyMNCpHILX43/W1fAUWtq1U4V58vmQVq1av1gKjN23OWkTX4MT7ymu9Ede7Ufg31nisGXCux2qHNhbQ1FrISMpr0o6YDKkYSplFN1TvD8jaCVW4Jx2gKGUhcSVjqMYxhmdUcZJX1nr+2rpMbeHweOLtm69x1vHxfWRZFlLWhFIxupJSRTWL22G3Y5miEA+nmRQCqhZCjNwuL4RlFqO5grDTtWWOlRALHz5fmz1MxVvFvERQosFSQIqB8XalakOvhEK7LDO367Ud6gVrFA/nJ+Jyg5J5OZ95ub5wvY782x/+yD/+07/yxx8+8PRy4ToHWVgkYUHHLB47uoHx22bsvinYir9auTpbAZGvXxt2t94Uazm6u9y+7ofvR9h6QPxS5fnZwnN6OLWxRdF1Pd47KJEc52awBKUKy3e6TkzXK9fOARnXD1ALKc4oKtYJsVChVjUExnhhLNdMTYocV8BWMJOcRIRonQDJDvHuScEy6xFQ5G63abYU4jy4WiqsY0Opoq6vVXRL1ui2EhU/21QrOS6okkR5b4GqyDmTSm4XTx6Avh9Ylpnd4WEDqnUKxGgoSLdBTDIyao13suZ2Tk76iBSHFYAzTmGtItcGCisBVcWQTPhGIQTGceQ2Tiwho5Rn6Ae8E8nI5HrBeJQmxAuEG9Tacq+amcU6UrWvu6621ziUL96krmz3z5cr1vVP66t/14qPboJDdNtQepwbcHYQ/Zq2aG3bl5Aww6I1xRiSsYS8kJKmlKUdDqWx1e9fV7dfq6qUEijlglIdymRyrJTUQTGU0jR5tRHuFJQSULrgO8/udGK8nomloIuwxY3pCC2/jFykG29bt2mW4jOPkxxqtuPt198y7IbGEJcgxvN1RBYoBa9EyFsRI/5chb9ViuSuScqpQA6ruFIphfVCo4g5E89nXl6e+PzpJz5++swPP37m3374wIePZ5aYyNVQlSWXQkygU2FeMvOSJZG0HTirRg/uI/M6Tq3K/1oruYUzrB8hpb9uh2hpQQdfvKlWmlYgaL2BfubtZwvPbjcACt+C7GoWEy3jHVS7mXbFPmC0psTSmuYCJWGsg+qJeZHtTxQ8RFB2edhKzKhaiGEhzHMrEBIlLNsxT612O1BTLtQQSOXGHCLa3DZvZCjkFMgliSF7bm6EWmYL6xzOOZzv6PoBa1oRoG5repMzyaTGS2oOeUIJxlgnnZIWr+dud2xCvEqIUeQjVawuxYZH4xErD2M1KbdOpz382rTcMZr5fFXy2qhGslNy8qgsXc80TYSQqGisG3DNMH8VvRqt0NPaZWlSDqgWNbyGtJWtVryqJn82XZX11Nr+rBWbbQy6YwOoLVGpnZASB2C0lfHGdji7Fh3fSJxr4K6ito7VNPFj0pASpKzIOchIRm2j4b3oZTIrr4daBRJAHupSnfz7Wig5SMeUMpfrM12/kwgj51DWomsWiKDfo6k451i0YRkvWJfpdw5tKoNXlJiYp4Xn8wvpn/+ZUgvfff/rRozt6boOuGwBj1WJT3UqrRsxGj/L9+O9J+eFeXwB4ykF+t0gEiAjscyX1ll9/Ok9Hz78yI8fPvGvf/jEh6crMQmEIPq1snGsahUMaI04Eqao/kvAtx04K2drvfLCOHktYHkFZbz68+3TtH+6wXyNDPpXabX2u93dbqJmqjYoPNo0K0ojbOQUF7y1LOMk1hDOc3r8Cms803ghx8wyvRBay6qtfNkcwzYKzeNIjnFr5wqN+t/c3Wq9j3V1mknphWVehKVcwXtx+F+ZwuuoYIzB9gPGekmgMGuWtkKrKg+FMxs4bb2XmJv2NY2zAm6isL6jlMI8T+RSNltKwkyKkSUE5hC5jjMhJJzReGtRRhNz85lu20FlTCvAYgS2thiFTK2a1ZpS0UzKQuB8vXEdR4m6rTD4QSgHDYSVzWFFKYsOFwhXEgu1ZMFTlFgzbMExG67zZzfRa1CxCgIjr8CmVxa8SlmUFjvSV2FYiBJafJOc9c3CxEm3s45y6wq3sWrFu0euyQpwQhEzuCYLWekAdfu+WudEBpLwljwkCjVVqhhRAJAqTGHi+fxx67ZVO5DEJA00BucHjLXkUon5Qmcsu12PLhlvZZlwfnoWMunLMy/7A8aYZlYnXjjOSCG0RhJYrmMg58oSIrdxglo4nY68+/oR1y2U0szjuwFjDLFEri9XxssL18uF8+WFl+uNJVb80NONgVIDxjo673FODsRJido/RDGHu149Dw8O55u1yUaQVfdr8IqHs3YyUmjWjrZuhaXWu2HY64FLq9pScVvxQ2gW/+nC8/jwbuPmpBioOULNTXDpmmq9EBcpPsnMTcG7R2vxFNFKwLu57/BL1xZIQjRMYYZmwhRD2PRMSokhmDGv3OuKmE+lJRDmwHibGUexkChVCHjOCbsz5SyvUFO6VyW+QM51mGGQEWpZmuWnYg3Tc86xP+zpuh4QLlLf9xirMK7D+Z1gOiVibYe2jhgTIURulxu328iSMtfLzDLH1r6bLUPdWBFy1hVDQbyYc0ESIqqWUU2Jg4zwFQqqKNmUXS68/+kn3j4+cjzs6b3D2Y7a7cg5kEtsp9x6+uf2LnyYqrW0yq87mnu9WCsNzUl5+6Oy4l9KbBS00VjjZFTWVnCljZmotsKjlRGsy1jElVpuTNUu8kb2pKKJjf9TWNfrtb2r8sUO7Ytf5feFSqQiRuzGV2ytxFhRulJKk8ooxZwW1PWzrN5tRy0JawwxOqz1xJQx2mHdQKkXMWjrOvbdgKGgO83pdETVK5+fz1znTE5wHUdiFCA6NwOwnz6/IAmx4J0lXgNzDFDhzW0ilsRXX39Fvz9Scma8nSklYl1LvJ0mni9XXtp7QXyoTseBXKtgR2thaJgoSiKkrreZ89mx31uU6VDaSWJM84tbX/v1gVvtYWq73vfx9g7sr1enGUb+RZfz2rGg/jWj1jfffY+1RgC265k4yxZKIekRksyQqFoM2zWFPI3MlzNxmbcKqrTmeHrDMOwIy9yyocSHpuQMpdIPvbwAubSZ0mwZV9DmzxiJQeworpeRZYmiT6qVkgxk6WZyyUIEpBKTjEslF3kYnCeESJjFlnSt7tIdWWGGDh22k47EKlG17/Z7jPfEZWp09x6/G6hF+BcvT1deriOpVJZZdGLOyYhojXjVlFqITR5Qa6E0DKKpO5v+SlFVptaE3h5X1RzsFp6en/nw6ROPj0eG3uN6T9ftt6dRupG2NSri1SJ4T0JKd9ODtQ5lVZhXXi9M/xwfVKzaOJGsOJzt5QE1tvldt0NDm2bW1agNaj0F22fabvjGH1o5RKYtFhquU3SimIQuSSQTfwkrbLySWjOlBoT+DtZ4atHMNqO8RsW1UDopQLVI6GGUhYOM2a6BxYXcstas6wlL5HYbmadKZxQGsTINqfDp6ca8XKjAtCzcbjMxSdFZwpXbvDQxtRfnSWsgyn35cr0JW70fcP0O7y0xFWqVpYC2Hae335CxpALny8Tzy5VxDswhcx0D8yK+5cZI5E3OYhRntMFZ3VxAdXMCNay8G8Ft9SafoXHPShXcbVtI3IdsuZ+2jui+lqdCVrRi1BjRfHkw/HtvP1t43jx+jW4SB69h0oowi6VjbWxdbQ2ueLxzzK0zCrcLarkDnBXwXpTE3ntWLxC5c+RBVEZL95JaVG7TdqnW8eScWuKiRB9qFE6LkbXWtq2mZXtktKNasZ4QZLVsUow0z1CFJU2qLEskxCQvlqsUpwlLYbxllvbnzhqcf4IKXSddmOs8/UEe+NxiZFNMhFyw2tDtPL5rJl0xSRHMFa8NuYr6XA6Itn0ROdL2iMoDJUCecDhE+T5OM5fLhes48zYVtHF0Xuj03nc42+JxofGKYvs8kGpsn497u73dP+uYtJqA33k90s80OxTtcKbHma6ZujcXAZqWSDtUcwm8c0SaELeu5MRXRWfFGlBiR6EtWRsxiddtlKupPQxr5/N6RBA3jxY3iFLi9W2dphsMISZKZhtJqYL7ZSXx29RMjJaqtAC9WlNLxuqOUxPtTrcLKS5M00JOkfk2k2LBGk1KM/Mi4Y4o6L0DVeSAnBZ0FesSrQceHw986x7IKZNTwhhNmEaePn2g7zzOe5YizxTKQlV4b3l488gcEs+XhdskqSJhkZTZUgpKYFNZVhjNrrc8HHseHwZ2O4f3Lb9OsfqpbAeCNCwtbqikxuJe7z+5J1bt8732q1fWbPf7Z5VZ6/+APP3n1elKvk/jLGp/oPOeGALzMpOiJGeKGZejZGEqUwo1BRQWP+xw/Y66qsm1wgG+G4hJVpWlNBe1lCStU0M1tjnayU0qcTUNNEUkG723FGOoqjbzL9P+rmmzeMWobJ1ASrlprCpJHOAF52mKa2sqSpUWXFhwKyeqZsIka9YcAmjoU0+MEd918rmjEOW8tZhOjNFQipwXGbnW0wG5sEpLN6WB2GjrstnQTVQiV7RQ0E1IWXJmmmY+Pz3x/PTMN+/eUNFSbHSHsw5rHFqLuDDFREyLdDuxiPVnC8jTWyt9Lzqvz6vXv9OI4fq6Hnemx1u/eSzfDdYsWnnWZIkVlBFGeRRW+Ho9tvdtob/9XrV7r2hDMY5KbkkU5dUI0B4B9er7VUpGUxVxVtN5uOnU1smt1GsnHZQxDQA15CJY4On4gNGalETCczyceDweWMYL83RlvJ65nJ8pUaKxNYWhk9cmF8Vx31FRTHPHNE+oWuk7x8Np4O1jz5vHI8PQE1euURIKxPVy4XZTW2iAdRbfeVCKy+XGdVwYxwVAtH8aslGgjFAm2uGktKJzht3OcXrsODxYup1BtQ30ag4nQX7C4y9VAPmYI6lEUq2kBuisq/MC2zjV6s72y9r5rPggKMq2CPhPFp6aQzN2F9q99R5nDLUkShiFF0PFWsuwP7aRpzCNN4yxDLsT/fHUggHzeqfIF86JnCIhjEQ1o9qLgamsIXB1G4XkB9JKU5RuJuuSdVUbMKmaInI7xbUUntIYn5v7mlLCfs3SNVklbal1hn7wdN6BqqTGbs5ZfKFVSzARNrMTJmiV4lVKISyRnCpdb5qpWQsNVEJvD0GcFEUh3VjDKLJWDbDTbbaW7iHVZgG7diPtpA4xMk4zL9cL19vMEhLD0DNs3UfrFJSMqdZ13MYdt+kjLGfIN9n6kRsoe99WrIFu9/vrPmIJl8fKu9FYbVqR002/57ZuR7cuCCVkOZ0zKTW8YPuh2gn5mnzY3uWAkRytqlvOFmIjIhlc3AHy9gSY9c5Xq9H8/SAJYaEWS+/71kVbrPEYvdIrHFZJ0uzxeJL7LmecLnDak+LEMl54Oe+47AYuLy/89NNPXMqIzYpSLSUXut4x9B3H3FOr2Gh03vBw7Bh6g+/BedDGU9CEPDPHRUS+SYi0vhNpkBo1aM14m5mmhXmJWKM5HgdZi+tITJmQaH7LwgkTeZPCNS2lsXKgoRrsWddOWrXnIxNzJJTUNoKV3Dg8qq7X5l5tVlhovT/k3qn3lTxSdL4gov7vFh5n5QehFkqUlWwpGaskZ7sUqdBUcEbU5nF/QhtDv3ukPz6KkjhFjBa+gtJsrOHMGi3cU20l67DdTqUK9pNL01xlvZlqbXYZtTbC4pe8zPUVMohXj0IRg3xNazQ5t24KyUBy3tIPTuwFgBQzua6grKRtWGfQxtD14qscQ2ztZ9lIgd5pht7LSHSb5cHSmhRlvDFKYYy4+ZVCMwCTx78gEodcCllWBVtqxcoh0qWQU+Y6Tnz8/MznpyfePp7oe4l67lY/autw3tP3A0N/4Hp95Hw5cbn9yDh/JMQLuSxSCMq62q53YKcBxOsfyXqf1vkocbZTpVmXWNkIao82HtWsZWVU0wI4VumKKkVW5LXI36n2EKDlHit5M7nSrXOV8cFgikHHhZgitabtStfX37bWbcST9bHRCnJhvs3UXvRVxniskVyuznts286KVYum3+3onaeURI0LpiZydJTBM/Qdve/pd3tc3/Hy9MT1NjLNmfNlZp5n8Vx2jlyh7zpOxwFvC6lmbtPEOC/UVFlCYVoiz+d1/S4ctlhbPpmTA1ArzX6/491XJ4z1zFPk+Xzl4+dnns5XklDgRQyc5ZBNCZalEmZIAaxt2sVm4iYcNclzK1XGq9RoLKXxq+4HwNpJvu6I+QImWbddIBuu7X76zxaevpOMphSWBgIXtFbsD0f6YceyzIQQKFk6A2sdx8d3DOmI9Tt8v5OgeYyMZd4T4yLVvVRhCLsepURUKixkAUVp1Vh+GE3RjRCoNbaxPWt7cFY7jHU1veqtqpLcK1XbQ1RED+asqKZxFW8trrNYb7BGEWKmFOHx9N6KebYWO1bXdbi+o7RuKaaM1oZQMp13bS2vpag0L2VvLbvBs4QIKFItpAKrF67WpVlM6FZwBWClSSaKarYQum4P57wsfHp64k8/vufx4cRu6AUjMEZyxqylZ5BioZUA9AoqmVwipUS25E7NFzdZEzncR62VH9JuON3W67oVRqstxvjW5RiqanavbduBWvVpr/CcKjC3LkgOPVW66BJli6V0K1YaXQ2FlTIg25JSFKpmGj+ZiqS90lwKUGu3Jmv+nDI5FumijGtYmKfv9jjbYa3GdbJG1yic82jdUZylxBmJxyn44cguVULO7I8F5xz95cLLy9ikDwVrClpVbkukEsnZEIyRJJHSAP+YMMYScyLVwhIDMYn/tjYK46DrDZ13jSYy4LpObFiMoneGXecIu07SI7SWqKhSyVkOqZIzOWfxTVdgK1iLuE7SMLEVQ0RG+br5WdZtMSS3xrqJbDXnjua0f/FqGfEKlP5PFx4rRxqRLDePpqH9vgHGHcssSQlA8ypRpJKa45lMesbICZWzxNx431G7TrY4bZyKYQEUumSKEEflvq1i8Yl1soHQuum0nEgVYqBsntCKbIXHE+ZFrDXaCtkZA67ZhSrwiGWp0S2ltEXyWq3ZDx2KKi6IzqJatyMWquLuj2r2oiiU15iHw1Y4ulKI0ZKbJcUwiIdLCE3GUMF6RwFSibCtLwW/EpWw4COSxlpfdXeFkhLTPPN0PvP5+Zmv3r7l8eFL0pfVBtX1bYtktu4FJZ3BNH8ixBuwoCisvrtbeF5ttQ71qgtq64s2+gj3yaGVjFj39vqORNa2zq9VFhJyyua21csyMlfIJbRO+A56yjerWuRTQSshhqItqmpUza2w6Q3jqxu6IBKV43HgcEykLN2QjISGvhvY7450XY8xhq5lxcUUiMkxDAPG9CQloYeZRDUKtzvRx0jRTtj5diCrM6afWmZagpzp55HrOJLSTC53p0xlLMY52aKZhf3O0zktB5PSGCcFp+8FbK5VkTK8XEZeXq6kEAFNXe/bgLgaWE0pBWsVzmuGwQmnyCmUEixJ4AXpelYYYrVzWYtFaQz69bKv8/6GS2/1pzHjuX+sKCWb0PgXKs/POxA2kpYFtBcxm2sku5wLzlbMzqL0Acnt1m3ujMSm5WoOU4QwS2KFaSzkWqGmpgPTWOupOYvEQms0tp2u7WS1Vew1jMH1e7rdgVoqy3QjzjMpLK0wWZQulJAaP2bNfJIux6CFmGcUa1SIap2TUrQssIY15Izznu6wE9MxkCIXC0oXNIqqDEPfUynM00zMlb5lp0tQqkUZ0+JUZpaUJDXDSeCePFj3TdK2DldGxhG94lJ1uya1SGroOE5iSpYknK7SILQqp6DSgsHI+GUbObLHuR3nl55x/sgSzqSytIeYrdu5w7x3IwSBY5qafyuO8pHrTUzraNbXsGQ5CFKWjiaVSE4LpSYE2VoJonIC16q+LGAgX6MaFEZGuaKaQZ3wyNYAgrWAVxRVCQ51PPS8fVs4n2mrcynEzg1Y69isYnhFAAAgAElEQVT1g7ghaBGeLo0GUktpMAPEUsVONApHx+6OHIcjKQaMv+D7AyFOzckyE5aJooUkGmKAdm20sdJZGUvJlZwCCsmmt06eAd/3dJ2nGzwVTVgiS5i5XG+yzYqRZV4Y57mNaELBsAZ0A5aPR8fuYPCdwnuFspasErQut9ZVTiNF5+6rvM5Md1dBpWV82mxuG+K8jbe8Gnfv4M8vvv1s4fHNkL3znqwNOYX2sGpKkgfPWNcSEuQoN0bjqtt4KyllcoqtKBixhwByCsQop5zBY5Vp8R49JQkvQXQy7TTTrWMxBtft6fo9rtsRdhPT9YXldiUuk4xiTh7QMC9yY1rxq7HOQccmzqR1PLUWckwy3rQHQIA6K+PVbhALEGMl37pUQimk2kIHdx0pJcI8tw6qBfhVSKVSqmYYBoZh4HKTALnV4L1D7FDJVbx1a+N8qpVrYbYxZX2ryL8dp4nnl4voiJKArmizDkVSuNvWybR3lAHtUAgYDUA4b5jPOtVJ/WolSMkGpUpGEKvxWm0xKqzjGu0uRIISS5WCE3Mi5UDKMylNMm7nBohqh1F2A7Dl7n0VBrgC0fLDYZRFZrTK6pd7N/CUkaCsv9cK5x3DrmOeS9vMCTE1xcj19oKzFpst3otUYbxdmcYry3zDNovdZZ6Y55EYBZ/qup6uH+iGPa4bSKfINI3M0w2o6OlC1Zpud2zfv5BKhOnvAU2M8nqv91vxFdPCE6wTSdH0/5P2pk1yW8mW4PG7AYiFpKSq/v8/q9vabNpm3queKklcMjMiANzN58Pxiwj1WFf106MZRYlKJiMQgF/342fZdnx80E71vmbURvuTLe/Y94zWGYVEryz6ml+vCdfrjPM54XTymGYHeBz3q9q1fCUDDo7u+DEOmSEgHd3O8FceeA/r0OD6PFucVxXfnyo805xQc0ZwEVWA0vlQMDud9qYjp2dcROlqOc08YURJJafVBbuG1hs6qIthB0T70BAiXJjR8kZWc38aMYeQTN6QbB5PiNNM8/g0Y5sWbPcPtFYgzmOaZmwrZRijGwgp0kRsrB/tCteyo2wb1HyaBUCYJ0ynhX9XTGT+aodTReidSnzwNHExAevKTULycGmGXx3H0FxQG9AaMC0TrucTam24rRuC809zMJirmgrQx6ZLTV5hXQZGp8hOgljPN/z919/wy89fcLmcMMVk4XUAerPcMDJep3nBdRSIzrC32laKMisFkQJ9sS+VJ24Cz+FTjWMCD+rt9HnkKd9H126cEPKIauNaP9cVOd9RyobWRwppRHATvIsg6dBzdLNbePCZBodHzAGq64thv42h4/N0LywTVYHzESHya1ptyPuOXthlvNv9mGLAPM8UJkOxLAtDFZ0nVcTkOqMIOqFbZhIHkQ1bzghpZmECDgcFCpMJnsPCEnMuyI3crhAjYo2kl7SGdcto76R77LlhXXesW8a6F9RSSQmpFNDSX8kZTsOC4IYW0Iq3dxR2joOQ45Txw+1ePyA58DYTNTeClw0Wt1YvoYD29d06pa7E/yD/quT8HxQeB5LnoDh0NAzmsw5mCP50wJJkyBpvFs5abu8DFsu5ar2hNus0EufeWmkN6c0zR0XgxWFKMznenUj/NC3MMJ/PzzfoHPz5ghQC5nlBq8WAWyDnDWXf6RoYAsI0A6r04zEVfO8VtUT0iRYg3tsNNZ+wnC8WceJQd57UwXm0aUaz1NQGRSkFPQacTwu6CCROjJrVjpQCmno062ROpxMUw0Rqw1Y6alfk1uGbotpM3/WFXer9U7Nm2I8qUz/ePm74x2+/4b/89S+4XJho6g08fwX9RGg/clls9AQV6rVthsl11LZCjy5CzLyMXZI4KzadnJVG0AKQiiaA61ROidJ2pPWM2qp1PA17ydjKjpI31LZDzYPZSUN3iujVAGqBiJnjK1GDkac2XtdhOqVWqGHavmMbx6LZOjeUtQIlN9T9jpIbHByTYKeFh1MtFHqeFsQQEAOdHUuth5WvqiKGiDRNtLyAopaCUjL2fSOtIwS7JkCtO3ot7AateNdakPcNj8cdj5USi6KKtSruN3rtrOuGWgtKY9rIvhfsmT+3vRhuaK4zIhj6cTFiIGPBQTqF8xAMM3216/TkuB3Fy6xsOx90Wxw8uxvBgCr889qDTgzUAbajGB0ZXf+i5/kXBELe9BBPUaXN7fnwxIW1ew7iedN4kCEsQip6DORIiBC4kgo8ORzcRGzbytgW46rAZnHvIsK0UMXtI6ZpxnI6W7wIuUHjpuhpQj9fMeZTWiJ0VCNriZHcai38vX1DLftxIjkzCwveIyTaTKZppl9Pyagp0hsnJrKztx3bdkcvRhA8neFFkEs2c3pFtqbBxQQVT12W8qZw/hN8TLhvO/ZckZqiqKB1Qe0sPLxBLCzaBcN6OAJR+dywriu+/XjD1+8/8MvPX3A9LUghcDHgxoPY4bptlYJ1ApauURu9iaDAtn1HaQ/jyogJN5N1IZRCKBxaVRShKTtTyAacy1u794LWMmojJpJbw152bHlDqfRK5vnJ7lgty8tbgeziDoLj/9rtjIftsGkQ4chljdcTc+B2sdszV2vFtlXknTSItEfs0455WYjlGIicQkIITAsFQDig0yUhpomFx5PKUWrBttGPCcJxp9SCcrxP8sVU2XWXQtJsLtW2lw7bXvF+23G/7ah5x2Nd0ZQGdcU2VOIEMQS+H2f2vk6O58V75s7NizCG+jmxHnFEYpSP3lkwmnF2hCtVfnYymOoDvzGZjAxyKGUwDlwytN5QYI4AeHE+wB9Hr/9w4RlsSPrmAjEE+z2S9QZSz/dEJbFAnlsPHxCGPqY34w6wm+GmKBKJ9wGYZrOGoEWFtgIAiBOzpZflgtkyuWJIUKGhEjVYfKie7fXggnDD0Rrjk7sZgdVaDr0YzDzLW7pEjBHTtCAkxte2kpHrjjhPECOZ7dsDN/2B3iJXr+Yil9KEUgskTJjPHflxp/4FilJZ4GpXqDos84yQJpxKw7YXbLmgNEXtZqXQ9PBvqR2oYHwQHRFHoqailoqPjxu+fv2G97/+Bb98/oTTRLc/Z58TFd7sfQbGMU8nvr/eCOgaA7ZtDa1udk0jnEsQeCPl0cSrqUNpAN0eM2SIdaDH9W8t04K0Vey1YCsbtsrTvCtXzv7AcI6yA4CmbHDd1urjdRuvSYgnchPnaBqGAU4b9DOKj8LM3gwW8GbEJmIgNpn3p/MF0QeklHC5XBEjFd+qCm0K8YrldMGynAy75Li27xu2x+0AVlsnsLytK/a6E2w2ukepldYYAogLaFpw+3jg7e2GvBPr3LYN20ZHRh8ivKOnU7VtsIjYwoLXW80tMATgcon4+a8LfvrLjM+fFsxnDxe4mpQB/KuaqJpJFk+an0kg3MCOx0ZajvHXj8MHYmPYsKIBmjNR79HH2ib6zxae580qBxruvEcUh9Zh3jQge7eSJQo1MyNnyZ5+rEs7gVJqJthJdEUpmRyYwG4EAGRZoK2i98ZOZznhcv2M8/mMNE3coKmi90RbjNZ4wzpPwmInh8E7plRob0z2LIUnYwzoKRHgNADWm5I8TAkxMk6n7DsK7154S7SIg/2qwPnyCeL8MTsPy9GmdhNuq1HjyTJtjRycXCqaAq53xJRwPp+Qa8O2ZxacLijm40J6ApCrIncC0K2xODVrofed4tFv33/gLz9/wWmZ4YM/5CM8u0YrbKv2GCFypveKKmrNyOWBvZDZzO5hnHRPJrIhT6iNUhbXi92Iz9wsFjSmXuw1Yysb9rqjVBMFD98X8Cbnf1crPJaIAD54jN/9I4PaoCf+lxgZ03DDUXw4BvBBSdFhOXm0Jig7tX1pmjHPM1KckOKE8+mC5XTG5Xw5xvRmn6X3js4GPpjbZD0kD7kUG9lJOt23jcCvcgMrnkmezkdMEx/Kbbtje2x4e/vA486v//i44/FY0bsiRofgnGVmJZTKSKU9U6DtLblXtaN2U+QHj5QizpcZ108zlotHSBxlTQZoz0y3n4bH2NhuDSavnwE+8lJ4BKQ1DE8ksXvJu4DoaU3Sej3Kxr+oO/8i3qaMLZa1U7b6FjPdcrb67NLROt/E8DcGwG0X7AaV+JzbrVOqWknMs5jicWOGkOBjoHZLHOI043S5YFkWpDQDZvUJmYlN5HIYxXtPL5Wa8+E6SIIZRxdVEr/cPEFB7MoH4jrOObhAG9W8rvDSgeAQJAHi4QITPb0oppiO91NLMQ8bQW3NBIPcTNTeDJhUlK54PO7YthW5UJzaejfmaMdSK0pph1VGqQ2bKaFFFNLY/fTgrCtqBPtbw8fHDb/+/hV/+eUnmvSHgBRoh8Eqwo6EFAAyYgMizsuZN3AraK2QYHgHWtvR4Sj4c9xqiTw7XVUcOI9zAgc+eGoOdVUrcs1Yy4pcN9SWORpbeKIYgxvgZqSNkapX6toGxDRwG5hXkWmujByN4BzUbmN2ACPq2A4iEcjkUC+BosrGh2WaJszzgmlakNKC5XTB5XzBPNF/ed9gIkxiO6N7bK3ZBpEvoHWl4X83NrUI0ryQpJjYdToIeq8oOePj/TvuHw+8/fjA+9sDbx8PfNxW3B8beuuY54DkKJA+LRMulwtarbjHgMe6o3QzonNkubvaLBXUoZaOsnb082gAcADaOsYsKzy87oCM+UgAWNc7oGaO9A7oNl7BxBEDebYS5MVRsA0yp//TBMJe6SGsnu29cwIfg3UcNmO2xk6l87RyTp6+uOIOpbmbqJiutaDXDtGOICQkiqUPxOpNtUurUx/JQwkxYZpnpCmZ+NKjB7axULaj2hpHphChImgx0IS9E+TtU4K2BehWoGLAWNk6b2bwjn1ByxlaNjgNUO/RK72PB3tTnINOfN1dgSK8sRTAlGaKJEOE+IguAyQVVNNa5Vywbju2fcNeCvb9ycfJOWPb2K7XUugVXTqkDb4P3Wu8e+XPAPu+4+3tDd+/v+HLp0+YU4SfJ1vHGwBpd9txWnkPYMJ5gZH8yKztreG2fTPg0NrmcT/i2T9R+N/plyPmFGiAY+vsdvayodTdIoCMa6SK3uUoLOPU7f1pvOmEIHuwcskTmWOCUx5qImP7IoZDqY3yHN0cjM2uZn1hbHFvY9U0cXQPIUFAn+wYA1n2PgDIAMivGdIQOtuyyGg3B0U4sre9o1PAfMI0zXDiaCJfMtb1jo+Pd/zPv/0d//j1V/zj1+/4/v2Gj/uOPRfb6toIqMPB0SFFgZ9IMjxNCXtmV6EAcs2AdlQlQz3GgDQHpOR4LawI9D46ZNI4FE8ch5toOVh/CtC5E4MrpWiOfD4POexTj8pi1zWI3WeuH6z9P114YkrH+oy0/QAXTJsjJjKrvA3FFNS10lFIOzdcBL8iDbCU6+phUwnPLkKMFh0E0DQdq0h6CntTwI99IJm8znkCi72RBZqmA1sS7xBDRJ86C4LxcwZoLS9dmVqqA4wg1VuHiiNDWxwxIQHGgTbsA3qrxtp1CKKAd1y7pwniI4V+PgA+QEIAnD8KUO+Cbc94rCvWnTdeLRXruuL9/Tt+/PiKVjICFAEdXdQEnG5MGuzivD9G3toa7o8Hvn77js+frgx9CwEuDu/psTDlw+6scHjxCHHCslxwLRnr9hc8thtyqyiFGFU1rolT4iw6NGS28WlabXVMu1qmaGTkmpl31ph3fsykMExQKbRtTg/cpvVOw6pukhjtR8fz3NO5o4h5Z8xskLfjIIBad6aCUhrWXbFtglq84S6KGCfMyxmnhZ10DMESac0cznv6ZIeIFCcKVodLZBvjaYcqC1NMCfM043K+MI5YgLJvKGXD/faOf/zj7/h//u9/w7//+/+L337/jvePB3LugAimKSD6QIA4eSxTwjIxhba3gugjUhA2AF4AgxqABDTgtm/UcTs16gpdFUfRqfZT+xPTIUDPeqNWgKB6cMj6WCB1Wra6AVYrbS+GoFh0EBycPUO0420v5m3/4cJDKrq1u458Gx+sWDgH1zpXsSBY6LRDejlehIM7OqRmhkshRXZHnsA1LTnpI9LAWNloRcSHYOB2g3QHRWEahbPNkGMxFDfWvaBh7wDKnIN05rJzHLAL7AZHRQCYCNZAwFYyeincmpiJiYNHE3Z30hXdOdSN412cJsynGT5RBOvjBHXB9EqePJ/AQgSQ6dw7cOqKa+Psfr8/cL/dIRC0uqMV+9nIdYm1oXRFVY8qAR0OFRTp1kYsCEJT+PePD3x/e8f1csZpnjCPZFb0PwzeY2bvQh/oGNgBLPNnnE4/I5cVaA257ZRtmJ0HtyQEH0cp0z68jVnka2+oWlGVywLaAcmBP3fwc3f2IDR5npCi7SiSQT28mvuAAaoCQGUwnDu0CUQUXowHpDYegB7Xj0fH27vifhf0FrBMs3UzHtoFrXXs24YswtdeMkTVxiSOZGmeucyo9NVGB0ou2Dau0WOaMU8LTsuCeT5Zmkih5cX7B/72t/+J//bf/jv+7d/+jrf3Dzy2DECQJuJYKdGA7nxKuJwmnJaE6zkhRY/7umF77DZADtZ6R1VBU2DNilwaphYgCFYQG3pneqwqaQXDPyuImLrKOs6jDD0L0BjLusKCFwatQ57139kBPoBmGdtNgTpqEP904XHWkTCYzL7t4JSoQluFKNd52pwRAC1S2DmCrLW9SC0Yf2OGNFB0kMBqCLkFl4l2njjBI6SAVvnQ98rpPQR/tIna9dDtuBgAkysAAtFnXui4UAfydWwHSJWnj1BB3zdIb4aJEFtxwUHUoeSMtq1wIpiiyRCmiPmyIMwLJCTARY6Y5qkMGb86gp7VfFhUIUopxRwjslNIz+h1Z7TJ5y+YljMlKMUsEEqnn5ACW1WsuaNnFsPWu3ntPvDxccPt/sCnywlzSph9ZNcgxHoOFrSH5WuT4LnMC67nL8hlNzFv5pZLOQqMkmVzCwt8b3Sh1Ap063YsEVRNwtCPu3qctwCM8dwBSAccmLuuTlCVViRNFJOwkzm6HgOW+QAM8uCQsBAMV3jkJnhsHbd7QKkBU0qYpxPOpyuiHZyqiu1xR7EO2NkBmKaEFJI9Xw61FMuE6+QDtY5SO2KacEpM+TwtM07LDCeCbV9Ra8XH+wf+x//4v/Bf/+t/x7/9+99xu68otSE4jnQxBqQYMU0Jnz+d8POXC37+csL1vGCZItIU0Tvw/fsb/v1vf8Pv395xfxRCDRBsmeN9jOzutq0h7x3r3iGhIE0ezlvRt9HaObM5PXg3L8XELrB2RbeghC4V0inx4XGtEEedo9MhJaa7p7gAz0/y8F76U4XHp8SN1ijzNhKpAiiFeIlhNGxcTFMklEaIqskpxBZ2NN6i8zQviAvGVg0OvvEE4sjEeBHttMEAyDplIGChwkdG0F8FuqM9hmE1GPKAKoAap0WMQWprRV5sU+a2Bi0FTg3LGXe48u/UVlEzixLzrwPilJBmJnCIeyqj4UjSU4yRwp48VWijFEQGnlI70Om1cj6dIF6QM0/W0pnrte0FeS/Y9h3r9sCeM1xpRrQLcEIQunUqnddtRd535ExZSgiOItmByEL4tNvNJg5U/KcJ1/MVtRXkstNHu2b0wmLiwJwzpxWCaK18gZqqXI2Upl2PgjA+Z7W1ySDTNxlnAE9yZ4VpGP2TXdsgg3/kbLNla/UjFNBY6bBoZkCw7x3vd8X95rFvEbUSewQ8Tqcz/vqXv8I5h23jet8J42lS4uYqBBah1s0LyIltPoN5ik+4gh7dPtDC4nxa4AT4eH9Dzhk57/j6+6/4+tvv6LXhejkh+IA9FzNG4/vwPhzRR7Uptq3CSTk0hxCHaSadZM3f8f22YzC2KzU2mJeA1ASlVdzuO9JJEOYE14UwgKp58rgxqRJCGNyDZ79jHSxFA+QT8aCrMtJIBd7ZZkuGat3ZZ8RnmcTU+ucLjzO/4xGFImav0Gsh+WuebGHSEabEm0btThYcCZvjZuvH0ffCExhm4d6hoWLYM/pAHgW0H+Az/3o9MCcJZo1qfA/hXnH0jxx1pvi8ktqPr4V2aKnG1XgmmjrzoXXeU1pRbEvTGkKM8NNkjodCCUaMHMlYZQzAHQ8aP0pnhDNtjCp24tFaRUWHRzcexoLT+YSfOshU3TP2Whipu2dsueJUKtb9jMf6wFIb5q3APzJ8aPB74fq9NdzvD7zfbvh8v+JyWjClxISQgWPBhIEHR4ZTeggR0zzj0j5hzzv2/YZt+4Gc77RzMPyjd0B6hsChaUFvtNkYnkG03zCdSAdEHZo+3Q8HqF/Ma1G6feZ4AT3B4tXASGeBs4gc06/ZgKCU0NsBCZRWsW6KvCZ4WXA5T9BOeUeyQD2o4qcvXxBCNAc+ns7eOvVoSw3avZC9PA7Q1hp8DFjmGdI71m2D83Iw8FdbCqy3N/S84q8/f8ZlmZFrY6LotvNn5lbzft9xu2/4+Ljj+49EI/eSMaWEyznhej2Tof72gVwVpSqK+VkBQIjOHAQbci4oBXg8BPOJwLQaNuOFawkKbukSqDJ8vl+3ULb9xRDc8t7PKOjwmEStKDZifo44JwMcIu8Pom9/vvCoUicktk7VVtC3jc+0bXVEO2SercMBtHJs6a1C0f4XINcc9gygPKAuMRwpevQ+HnziN1A5AGZ2QObXAnY3LkTrvdWO7slAsG6q4NGBgWy8URGcB1yHlsIupA+qQOJl11GorItTRZpnxGniBg3U2YiPUB+AEDmCOg/1Hocr7djw9WaSEjA4UOityxOUQHBrim3LCIGGY70rcvuM/diC7Vi3Daf9jNYU67Yjvt8xrxmPLeOxbtT7rA/8eP/A9XrF6TQjxcTtILh5EOsMDiN2UwJKI+kyxYjTfMIyX5DiiT7IjddUtaNJB/p49JvZXLAAaK/m4De6ljFqDaIfb8nBF3FscYwQyc/VY7BjuVAYXKOxpn19TJyzDtwKaC8CbUCKETGcEMMJCg/vCf6mGFHyjve3N3z6/BnTNEOEn11w3Ba64BFjorK+FsRg6SWV1AjvHVKKKNZR9p2Fa10fWO93bNsDedtwuVxwOp0OF0tY0e5dyV4GMZj1vuLHjx94e3+Hc4LH7R23jxu+bjs+PlY473G7b8jF8tONCKsKy2UDaOHKTC10oNeGVu39WLMjwimkG2Dvji78j+tvBxyuhVCO43QqpODCOd5D3IpaCzUEzXBw2hCOefhPFJ6uFAKzbc60M4Nacqf9pTFBQuRquxaIN3ylkhw3WnsG67mXPCnwFupPwabz8Qj0I4BNmYI4wMUArx69VKLslu116Imcx2F2M7B6pc8w2zI7RwfWMHRmfYeWfOBK3IY0aO0gKg24EJgwEAhgqvMWbuhZcHwEQgRcMG7KsLHots17jhjSCkRJjIRZbg7Fd2uNY6WcDp5OtTje1joL0E5a/bZnrNuO5XTH+/2Bt48N87Jjz5nYxbbhdr/j9jhhmRNCHKJB03KPrYR91tqfzG4nDilNOC2fcD7/wo6nbSgts8M5HABfVuFqxaaR1JatWxkQ4zDyet2iyAHYWNfjeUuq/T41ZVxU9FGsxmZTcBROXnIHAdfkvTvUnRHSKXrEeMKynHG5fMLpdIaImIOkUrc1TfxsrQOMU8I8Tai5oDhhSoijW4ETehzVRsHmvu3IeUPed2zbAzVvqIXWGlOaGSA5zeT1RJJTObLwuhA+qNiM8Xy/feB2+8DX33/D128/8PH+gVIavHMkNNaGUtnlVKMxKIiLegnQLsi543HLZgIXydrW0Wfa/Wlj0tBGyqAlNJ4Mzg3CoJgFU4cKqQmlA149fO827ld4jTaJ8Fl7biL/ROHZt+3wD3boCE4MzyGwDIlPXEOUqLc6oHW4NPEk7TqEuZAU7M8P7ge9caBqnsksRgJABgCYDfMxjIYMWnY7T1EJT2x4B7TyfJwssZKjVj++/4Bc0Ind8GF7usCgqynYQXxLgYNR24qlUE4csXyAuvDy/zu/p9rmx1b143s7EbiQICGxWxq4mQjEBwQIx0WQrsAlj0B7x75lPPYN18sFuVas647rpweWtw94/wZ3e2CpzA1TKO73hxWpE5ZlQrRtDsZIDDOBOt5nJ1QighQizssV2/kXbNsH9v0NuT6IscG6QbuMrePYCmrjzdmHvuplZStWgPox4uG4Ng68mYd/k4jASzCHw2APCKAy4gXtI7Z/jELkZML5dILOM1rxcG7C5XzB588/4/PnL7hernCOq/OmwDxPmFNiF64dztM6trcG9Q3OJcMYYViPZ+DBuuH2/o5WK0JkaGEIAb3MqI1bSe3FjOwUUwyYFxag4QHlzQ62lozT5FBmj0sSLF4R2gMTCr77TkuMrricJlzPEz7uD6zrjlwLumPXQwE8oYLk6bnsDDvzdq1frxmj/+xgcM9CqLwBaI0iYgRU2FLUNmt42qOqNrPw8XDaDX/jPfTPfvzTwvN43BEC5QxwggaB426amyTrKngnCE/9DpCIIVxtW8cijryW45QdWx+7iSUQe/EwW1JzxPfRWcdgN6m5InKzYviOGxsbx8LXB0mcv6c+AK0eDwvsdEZrL34k7lmvvAckQfedLWuhqLGXAhGmbiAmfu+jQDRAK9Sil4lBWcyLXc+jk4vBChdxAz45BsLTI5bdE+wlW1vtQoRLZGa31rDMO5Z5wjKf8OlyxY/birePG759f8PH7Yb748FMqOsVpTS0wJNTB5vZHmGuqAEG8QHiOGos84JlvmKarvBhOR7OpsMfebBiB36HowMa4W6sMWYsZr9S4Hg0wwYa22ja7cZHQAwLUlyYomGcIX7jSmLVCD5Ue/0iiH6G91eILujNIYYTPl1/wtn0WACJdtPMIpAiO4JuolkWfL6PaaI8pjbKbegIkPF43LGvKwXQVwYWeu9tWVDRWkav/FnyhrKv2G4/UNYbppms8hFFAyjy+sDj9o77/Ybb2xu+/XjD437Huj7wWDOc91iixxQ9ggOiF3xYUGTVBhcE0+yRzL43RRMKGRMAACAASURBVI8Ug1n8yvOgfakFz7GV186qBa0tFBhq9yC2bFexz3toI9XGbABNIcrAxG5f/zq6/YcLTykNzgW0RrlEMyp3CuSpUKDJda54az+0Hyc2OrVXLMd8uyw6jlgIcBQEsa8TCP+/dQIuOL4xP7RCGEcnXosLzJcEPgFCbxkALEIyztTn+IPWoLXymffDWNwdotiRYNH2HVoLJFiaQkzsxI5LK9bVUZ7BQuYN+PYH6g+zooBn13hYiI6V/jDY8onvYTA3PB8sgYfEBBcjaqF0IBlp7XSu+HS94vJ+w5LS4dWz7zt+vH/gfD4Z1uNJxJQxm+MpILTbhR45NPnygYLZ0/IJ8/QJ6/YdPd8Of5pmT6gqiXvOjZuXQG/TsX8ZY5HdDrzYPCfkeSKPK+qFRWeaLpjTFVNYjC3f0LWia4a2HV0LV/kgka/BYfIzlumKafqM6BdMtkJnp0FS4DzTyCtGFrRuG7haC3qvQAdcZAacc4L10bE9Hsh5PyQTaZpMv0WfcHZlwMHpZvuLVjY87h/4+PENeb8D2uCMO5Y3WmS8ffsdbz9+YH1syHnH+/2BnAuBdz+yshJSirieJlyXhPuW8eP2wPvtge4Fp8XjfPG4nAOmFBGDIHiP6AM/c8dO5YmSDYAZRwfsIQetwDkKg72xwwXsapvFYasIKliI/JgOLAnWefnD5/0fLjy9dzzuHwAsgzzQC5bkwcYXWLs9VxYSZlwZbZVFxb0UpNaf3YoOoJe3m9q4xRrx0snwLdufCxgugbyDBU9VtJV0sY6hW7yrgF/vBFAPrUrwu/LUdCLEqIDna1JiHXYIwE0TJHj46OHSZKORN2mIYWA2zon3ttJ3EHSapXvr1Jy9d3l5X44dnIgHfCK4bQVWbCWhQtyKJDlAAl+nbwXO7fChmMk8dWlierpff/sd9/sD33684Xw+YU4RU4g2ltjHouNG1NerCOt/kGLCab7ivPyE+/oNt+2HAaTUmAFDnxcssZJ2JGjK/PJuYPbLyC/2Z8Q5qLXlBKeNMRxmzOmC8/QFp+mKdBSejqYFre+obeVI03b0ms1yRlHzBg0Nk0+4Xj/jfP6M5XQix8xwmuEb7uw+87Axywla4wsNcUaMCbUWCB5otSKvG+Ad0jRhmmfMMxnPw7dn6Bq9t9W7AL0V7NuKx0+/4OP9G9XsFvWUoegpAp+/IMWIx+0dtSt+UR4IPrjjOXQiEFU8Hje8f3zgp674cp/x+4+ErTS4BMwRZD3PAVM0HdvwsJaxSe4HCfKYcXt/dqR+jLcRwUUmBJsKvTfmb9FFoh0hiso1J6R2eG0I6l4Eyn+i8Pz4/e/wni9mmmb0UKGtotXGUPoQ4APnyqZqOK8FprUK0QYJjuSyA2BtkJfaIaP+dHYLakQ/dcMmATj4J7ZdO/QLeC1geHZBYg+5NsMMbJ4yFbuqsoB1BYIj61kAtMrguDZ4NoCfJlpkgMp8iROlAv21TpEHdBR57dZN0afoaNBe8By+fGfdj73fQTYchRr6/FoMLouHA60spPE0FJeOYud8oNBVBLVWfPvxxvXtSl1YadU4KTJYErx59OXXlx58jEEwU3Z+nen27CSk0NfU5AB8d6hQbqu0PcWgx6+GHYhAg9ksKAFQ7yOmOGFJZ/t5whSfjgStR9TqkQcm0ekLJHCImuByxV6/49EDzvMZwSmic5hSpPTGfroRIs5XBCBat2r2qNE4bCZ89cFjWmaIp+Hc6XzmKBajaRWpRoeQEewGfaE3pDRhWWZcrlc87u/Y7jfUvKG1mY6UJWPfbsjb1WJmeE1cjAiRYuY6dHzrB65vP3C/f+A0e3hR/P72wL0UrGuHixWQhtYdFjNw89EM/B2gcPCHrzW3W034K3GqhOgnTPGEFGmE72wB0JplcNXdXCQztWio6L1CtMKph+8GGfzZwvP+43dcPn8BKrVJwXtk51FsPp6XE0nIEGiv1mpuGL6/qh0uDAdc5QPe+PsyTubRtLQO9bwAKspx7bWgjGPaBQxi3/PO0eev4+kYD/AoWrBBz4DagWs8bz7rdFq1f7WuYpr4OlUphbBj4rAWMFIdG7URk9uOQjE6nAHg0kfGnljbbMGyxsnsAr/nKDx/aEP4NbwPBHQeYTKHc+PmIidKAQKojWSudd+w7TvqaUEMHU7twTNMhlyObvIGnrIvAACZ0S1jbzsUFd6TdOidR/TDwoLA9XPk4Otu2sekjZGVzma/MXrIlgYe/F6TT5hDwhwT5pSYzmpM41I7RB169yjjemjChIRTuGCez/BuQVpmTMHB28bHQVgc4/Q8aMalHVuY4E2trYBWJs5aiECaZsRpZnTQfMJ8Oh+OBiEmDF+nY8w6YADeAsF7yDzDO2CKEXm7o+UNvSUSMM8J2mgiVgtJhuoTfJxQW8f9fscjr1gfDzweG3683/H9xxu+vz3wsVWoA3wgxaKqoAk3rj4OjZkByKLwal2m486FzoMBKcxI8YSYTpjTBXNauBWzZ7l2Kzxlx5bvZmO7YtMHWlupiexUyz+dCP9E4ekQy56uaJ7anBATcimYZ3Pcj4zw7W0ngi+gdamfyHY1TRW5OJQzaC+sxN4dgKYPAfANYp2P+PYsGvKHCgGExK7nBTtih2DMZOAFD3JjQLWHjGxUFbH1OcFo7YzJFVvRazXg1cY9tfelSjOp1gYpEYZX+GNUFDFZibd1vzs4/scv4gznIsHiGHREBznMtgbj6T3eIzVKg8Ur9t6cCB8KMQ2N+QS11vH1+3fs+4513ZAvFVOIBAEH68BmdQLGeFpjorN2jxgbZxQE+33nHVLgtmzkUqg+x7eAQIJeq7Y/Ebuv7O5SOfhN6gHvIw25fEBwDtEB0RNM9TYWqmuoYt7YKnBIEAmIEjGHCZ9OF0zzJ6TTFyynE+ZpwjxNiGk6PJVe76mBPx0Gd3ZwaG/otaDVAhHBPE+Ha0JKE4mj43vYODKY8d04YGRu8wBx5kXlhHqp6B2K96hlpejUdfSq7BikIBdF6Rnrfcf72zt+/e1X/Pbbb/j24w1vtw0f6477I2OvHeoDpoXXDKDOqnYmr7bjHrL7Toy6IoykFpCK4sKMKXKRENPZCs9sgDzF1q13lN6xlx1x+8DDT3DuhqaC3Ata244OEf8ZrVbrHffbB9ALdF7gfEAHT4JWK7Z1pT2oD2j5wUPcB0A7fJyfWwhVxLTAx4lttQXmhRg5u45xwhszVSsEu+m3khnM2oM3xiYj6/EeLtZljG5HWJh0PLT2zBtib72PCTeJR2nl5kqmxA8oNPghsxgsZnD7MbY60o37YxYNYnSDo423ejFM650o4CLN0bxhOceqXwGpUDjDO+zm5YoP0HJ0cmNTxC+zraB4XiY4SKRdaVfleFULHusD67rh/lgxeQ+RdADCh45rYFUAOyqBCUjpWLhMV0xpQckZkAbvTK/mLeYaYhqfBiEbkRnlvZE8epwd/eiKBONzMXDbk7/jpcNJg6d0mGb7vDpHlrx0hXQWixHWF9NM1fn1JyyXL5hOF4Q4c5t4fCAEnf4IgKoVIn5wVPyTajHkFC6YE6MDoMPWtBvHhc6Oz8JV0Uoh/633Z/PtHD2xkSBgGmstilwpT8n7im1bcV93PLYd7+/v+Prrb/jHr1/x/f2GtVQ8csfbo+D9tiE3RZpmTCViyg5fvsx8F4QykUtHzI2AL2xrJebp4z2N9v2EmK5I6Qvm+QumxACFOU7mOkquUeuK2ju2WBBcIs1TOe7WumIt21MedGj7/kThyTmj5hU9r2jnC+K0IE5neG/sx5xRcuYDhW6AGrdULhdor4ftRSsFPi3PttROMG8UeKCiI8N50tOldbay4jiKBBuxjm2WIWMiIGg0uCUDHwExHXtIj7t+FCbBS0sMdisxsUupFW6anp2SbfBa72TmNgPUDIN5dh/W6Rz4A/i6BFbAxtBpGzhzXOQPgaLaa+VdMzg+LKKDRe2OG51+xzbUDJN2O9W8EyTTEH3+dCXZLWfc1xXLNNGTyIrFGNPUB34OqsfaO3iPKc1YlitOp58xr5/QdYVq4Wdlhfbgd2ljp2WFgneGHBsuvD7sMvx2Xh9+tY+1Q5T30BOrI6mT9ht22PSGgIg5LJimM9LyCdP5C6bTFWGarfPj1hGDKzYOOzy7nfHvEEcOT2/Q1iy2+oSYZo7OZrPSS+HDWGkJItADP9LeUPOGfb2hlXxgkoP0KmCnR2B8Q93vyNsd+3rHtj7w/f2G3799x91y09ZSIfOMRQKwV7THBrffoc4dPJv7fUet3Gi1LkwYBSU6NTnExsWDOrUdhzluuoAYZ8zpzC3izBFrihOmGBFDxNBejaTS4AucOtqo1h2oO0pYUNx6qAX+edn5V+v0ylSAnldGGbcKhSDEBJEEryC/oVfESJyiaaGMQjNvud4Q0kTQdueDOzYAFYD6AHFA0wypGQ4dMQT4aYamBGsGATiomYD98bQaK5MnQfAPv9h6VEetMr3WYQQwilScyEIexcp78mwqVfGtd7RSaK7UwXHH2ZBso5S+fr//H/BtJ61SBY9h9en4fsa483wMreigs4Cawl3Q7L3YVkgBMZMtGFZB24qO4AXLFHFaZtxSpOo8c80+J1qaNuPmeOeejn2NyZMw4qZ3HlOYMMUzgqO5GLTaZ9ABx8VCB9jxwBgLXankHoZsFrszlpECAM4dD4B3LxtBEW5O2o7q3EFXoH92Rm9cfQ8z8hhP8H6ypNDI2l0LxY2RmqIneD9ukFF0XoqijeOtstuZZkZxOx8hdtB07eYykNGqddq9ouwPwg41s5A8bmiVMU1s0oMpxPm59rqj5RUtk3BY8o73+4p//P4N7+8fyOZ0GOYzzukEt2f4taBLwKUCHQ7rtuGx7nhsFaVGpBSQClNTg/MosSNvlTnyCYgR5p9j94oVYe8CYqAqf4r8GUOw51rgG0McuuN2jBntZ5R8Qc0rgiREF3gWvNzF/7sf/8JzGZhOZzTvGN0B3gBQUrcH4kDpQuCDJ2OqMTHZaGvN/GOcPIKxpBoaj9GedbTSILofmh8oLTvJ8VFiPPLSVhwg6EuLN7qaag+q3TSHrMK6Ge2dnBvPaBIdhccefurLOnotpn+h35AL7gAUOS66J5/HjZbdQFaFFQbyd3TgHaawhpq+ySokaQkWTdLttQ5xK+yUHh1bt4gRIxke/OuucNIxRY+TpVPmslNv1GjOpdEfGWNdGWLojQ91IDJGyxfrfvxgads40rTCqwdTPXEA1V07jd5Lxl4yhal23byNeN45BB+RQkTyEeITvE8IzkbF1lFlB+sTlw3FvLgZdwwbcQOZ0r1Ce0EvG8oKaDshgVIX2EjQ7TMTP3K8eA9RdkA8in5ImTnr8xnO8K2DPd2rdYn23/aZtdawPW5oZUMvO1pZud5vhdc2stDz6eQGtdn7aa0jV8WjNkIOgRYTzT7TWhu2teDj4477fUXeM7Q3A36fE/2+Mb4n78AaAHEdEtvBrWEYoxrTGVBnNhiWqWaCGkomTJXvPMM5ydsjMO2dp4dTXLD5iCCKAHqCs5H4TxSe0+XK0Lnz1YpOJ+iXJq5zRQ5BmbiA2ohDxJjgosfgxIiYxsbANobUxcOpj1aVnPNFAqBAA+BNbV33DJQKnxJTOqcOjfFYRR8brLYbniLsQkYR6k/rBG0NKGZd2Spvwjjx69roXngKauWf4wOmJvbrlkI6Nkg02nqygXGcmhgPLzr1XPY6x2eiJtmg45KdnAO/0heLEc+H/XU0fJIzA9fpzTqpxkRRL4zwZfyzwzJPuD8e2HLGvu8oy4zYhmKdpk+Bqzl2OVZIvDgDfCNSXJDSCXGfsNdM3U5rECnHjZ97Q240q9pyxrrT0pWKeKFQNXm4kJC8x2xbrBQXuBARfYIX2qxUaUBhYgVN9U2JXSu6jZy9N1TdIXGBoKHXFTUT75JgnytGnpt17D6YEn3s16xgdlqflH2FdkU6n7jO1uMT43ezsdGbe0OvlOlEH1ANiBV08/km23m/r+hQPD3L9WB67HvG47Hhdl/xsW2oHZjOnzALx8RcMrrecVrMY7xWrHvhNbJFx7ZVlCg4nQjSi3rU3JEDMGWgz9aN1o7uBN2zi3fmQ+XqjlR3pJbRNUH1mePWuxhplB1/p0bGnn2mT0BfBqznEPC//fHPrU/nK2EJs6YAxC6y5WS1+rT1NM6K1mw+y6ZdrpyFYdYLzjKnhhBwUOshtGscrTDJTrAtGJu3ngu0NEgp8PMEpOkQZ/JldgpVxQF94D/+AHcBZb7QMaU5YjlE+ADpJpcQ9NrRSmaqQM7mCMjkCifCrCFz99OXb3kAtGrr9RjZ2g0HQrvBj1nYQG+OR2MF749r8rpV44WxT1S82auS5YxqFh9dj9ImUITgMKWENCXM84S87zSkb/2poTNag8IM3HEgUTh8Y0JCiidM6QLvZ/i+oitvxL0WGpR1QW7EAXIp2PKOXCy362hIO7Ep2wQxstdSYn08iHdqJ2x1at4uau6NwoetC9fE4jGlM+b5itkkEFOakKYT4syFRlP6aEPNztesWABTeYuDakOr+YhMimlGmhaTUyg3n8rMsN4rAdoY4bxHE0BrgUZuvVpZCbz6GSlFtGXB+vjA/e0rbu9fse0rSu2oHSit47Fm3O87N60pYTpdTMpBq1bvAIeOKQYkL3C14X6jOfztnvH+sSI3YPaRjpQNqEUQYkAriseHYpmAFIAKPWxqBR69ZxYJvyGEFSGSMuAFUEQTBFPFsGeOlr1zjO6NDPJheatjPD9wjT9ZeERIB2+lYJrpXVIb14whUEtUS8WIyY1x4hxrXJm83RE8rT+5viMZkQAeZ3UnkzF3R0b66wvgONPaBucTeuDGAEbYcq1C0gQJyQiH9odt+6Xi/wBcqlmXimm7XAxApLWHqoEPjuS7ph15y9jXO1rNLAzeH5GtxCleQGYYiMwLxwI2WNoQev4oOT9DqnEIbAceJKPojLdv31DsNZu1BMSZ2yFHWQXIrJYJAlhsM7d63nnMU8IcI4FoVaO+d9TGFjy6F+xjYByd4/RIJRDxiHHBkj5hCmf0fuP3aRW5FjRraOlLoyilsTMxce6Iu2Y+l5FDHQ8b72jUNbZozhYEzW7m1oslWDh0FVvRk9rgfcA8XXCaLyywaYEPMyARTR1qLqhKPC2lBNgioFXKLVgAA/ooOp0g8XQ6cxGiLMK9Fz5onRsrgACtDO8e56CtYJpntO0d2mndSxP4E67XT9jOV3z/9ne8/fgdj8cNbdugpcJ5wel6xkiYjdEjTZGJptrRCvB9u+HH23f8+vWG7++USrzfN9zWgqoOvTfcHysU9AX65cuFwZe1Iz8y1luFdIeYHNIscE5tQaCIQdHhIG4Gc9TIy4st2ujdUWpBtkgfgIzoXHZs+x0lP9B7BmyU7f0V6/wThUcB1ExKOmzUaLVAW0VKE0Q8as7w3mEGO6AUI3EbH+HTAoDEwZAYiEfqulhV1OeAamvMsUoWCFyMBFCtQlNAGI/XorlAaoPEwo3UcECzIDUesf2wqgCeFhWUKLgDixl8G3U0gCp7Rq7MxCIr2fHD6p3FqdPA/Ei3FJhi3jY8EBILG1ep3IrZpmRs8qTbKl6sWD1BczlGSD3wrBfYme/RjOlHwZVBjESnpqgrVNlpLtOMZZ6wbuszgRXdzOsNoj/6Yzl0OdW8ZETpvxLjghROKCWioaILxaLV7EwIKJM/ZE+trZHlqf0x03QHM9+C7b5spd+HnQg6AFqN1t4wjDx46zBtQzqDDknNNHvZxsijun+gKtDh4WOCns8IIaC6Z1ceUkKrTPaAkp2e0sQcdAKB1n1R9GmRivYhFAAJzidIb+idB/KUElrfATR4GQmpDX4OkC+fMSWPbfuMUjJyrti6oCrvGXEUePpAE1HUHXkTIM+4v0fUWvF+37FlSpamwIOqVSa2rusK5wTn04xWAe4uI/aHOfDoEORSZ+l8hQ8NoSi6zFyvA9BW2DQ4QNFQSjEzfPAZU0GpO50L8o1OlabpZGf4z0Gef1p4giUkNLvY3ooLlDwe5waYLCh5N0JxwjQvECdI8xWiDbXucK0hpWED4W2hEyEhYIjtD7WQzYvSKyRMcN7cCJ8tBaUbY/bedzgTUGKkVuhxBGMobRXsmIbB2XETw1bzZm1R94yyPlD3lSejAj7wezoZpvE4gHQAhz5qpF+OcavDXN4Me9HegQCzDaCRPF+LRewcqPsTf4BF6xxDkFZo2QioH5saZwA7Dc188LaRI7g+pYDLacH9cWdA3J7pEeyc4Vgd0l+6rEF5N6BYQdP1GGekdMK6TyiWvUWPsNFJwbApktQC36Z1OiMFwr5ecXRUauzm3ofNAu+FrvSdKUYvcOLhEeB8AtQhxjN8WNAkoqtH6YJWGup+w2PN2EqFIuD0+QvSNJk1a7MR02NbV+R9A0Ar0xATQpxIL7BubcQ4ERM0sqijMZ6W9TkatwKpO+Z5QkOBth3QDNcatO5wrWL2Hf40Y54m5FK59euCBo7OPgQEJ9CeUbY71tqYWLoXiA84LTNS2IG+I/qAz5eIdc88GPdsnWrF/bHix1vA5+uCz9cTphgAZaJuyQ1bLgA6fHDwoSMuCnF3JB8gvaEWWn2IKLpW5LIjlx0MdyRDvdYd6/6GPd+ol2sUDDdjP/zpwjPFhC5Aj7Q0VCseIu4oBiOdc/gIt5LRXIBPHnnPdv+yMKkIIvjnvQ8DReDGTAmSsUYMx3rHMc4Bw1DLDeW64kgQ7b0DpdILeWIeFyDHKMQKzdcHRzMyNXSfWyUrPuLRakF+3JHXB8q+ordKtisACLkqXRpCCNzkdWPy2gPVj5PZtk82sozNGhmtBn5zRXAUrAF2jpU/jn7s+Tq1MmuLDaLn3+3DIc0QF7l5Eg+RSiJf7WgemFJCCBGl0L95zxkxmnpZ26HZsYqD4TPMqGL+dzRavbjIfsS6HOJLMFIzDcfgn2C7jCptPzm2A7l1ONcRLE9KB11ivAqh/0+HhyrN3MVN8H6Gk4jgJjiTnBR1aAXomi1ieEfODX4+8b5xlH4UW5WXxwPbtsF5h/P5fLCbRzrsWAxray8uCozeFhfIyDZzPFq4ZvS6QtAtj93zgGg7WtlsC+UQQ4CLAWGy7qwDpXM97r1HrRnr404nwvsDX7+94bff33BfmU5xXSJaP2EtDY/HDn9aMM0L3m4PPLYdIqS5lFKQwhcs04zoHaAOvWZsrZJ/FpiP13sDXMEeVqwukE5hYYTiuKndy4pcdwQX4YVlo7aMPd9R6vbsom3c/lcZxv+08JyvV5tpu13kCpELZRIi2NabtefsBkQUvWZuITTQFKrmQxXc9p0zYOODG0KCakTo7ZDjD72SYa7mMmVeIDjMUnGMTvZamQJA/98eIlxKBF9FbJnWnubzYhxWlWOlDscOId/u2O8P5G1FzasV2I7eytEdPMegTqKWECxV4En6A+x7vxiMvbx6gK9FDPt4iuoUY1POMcX4vdrZweSdWEmcDiMx9YOjEo6/2/sKuMKUAC1wXWmjMc/Y9x21EvxNKWISKtYVytEQODpMcY6dripCDQTV4Q1g5AgkgB0IVlF4IeDFoVu0Ue/09pUDvLZ3KhEuLIjpiime4WVsU9hxSMvo4g13slELitYyai+QGDkSdrokiHFwcs2ovSHOM64//cJoYlU8Ho+jgxFxSPOE87wgpoSQZgRvWFhr9kF1so+NbQ3g4L6IAL1s6HkjE6tt6PkB0caDrmdoWdFbJgdMO1TMHjQA0SfSC5Q1uvaOfc+4Pza8v9/x8fGBx2PHVrjccVDMUfCXn05YzgmPreKrA/7x9QPve4H3AV8+n3jdHH2CYALuVgHnPWr22IuggruZNHV0rxCp2GSDqKC2grlE+gU5BdCwlwdaq0guwbsIiKL2jFwfaK1Y0RnWrq9P5p8oPPPlCoFy9MgbnFlEhpBoK6EM3SOWNOTaCTXvZHA6QHtB3u7QNFuOOkE3FYda6/FBcnMjFgjBcaX1Yt2VMYLBaiovb6obEEqOgWAoqiFCSYNZXgzfZLopOqjr7Ae7aaJaoz/K23fs24aSs90gJqtQhfb6dEYcfBDnj/ZbjzFLDx9nUur5KEGowHbDNsGZVsweNT6Q7LzGNuv4Xza+0Gw+GKBu5tqGKeHJdgJiNICbK+TaO4KnzWdKkQS4UlBrRfQeLjw9ekZZYLGgjYKImHo5Eoy1B4VbF4ETGtq3xvleVQyYlAMDynXED/N7zWnBMn/BcvoJp/kTlrQgyPi7lWkXLdEutma4VqxrGFtA/p37viL5GU48N2MhIqnAB0Waz5iWBcOuVI4lh8M8n3C5XA8bCz/uFTMX431D7RF5Xi/3nsk2et7Q9gdarxBUaN1ZqIxV3fbt2OSpC+a75M2Bs6FBUJtpq2rD437H437HlhsUHs4B8xwQ3Bnn84y9KO7rjrkoznsBnMf7I+OWGawQQ0RI6bgvH+sGEcFpnhACbVH3AvjkgGQxNaJcn3cg7/Q56hogwbSA6Chth1PSLPijoZonkpNuNAx3HJTtn6fb/PPCk5YLlb0uIkwTCWRm89BKxjSRIdpqQ62ZZKkeaECUTugAphSxGY7TVdFbRSkVIVohEo8Om//dsMW0h9qegd4ZWytGeT0+fn26q404Fe0dTZW6ZWWqttiI5Ai6mEWrHMj7ANH32wfyRpIdhGte8Z52qgMktc7gaElshe0MsGu2tepGtBTbVj2V4yw4g6WLA1z+I8isVoxhQKwMNbpzGBlGEAMkDaBXPNe+wwzcveBSAiA6PvTVsttrqegxQvUZi8wHzsy5mhUTK6DBJ8Rw4qkHNTKZpcCqoEHRpKF1Iwyanqeab3HtHKdTiJjjBcvyMy6nv+DTcsUSA6Kn0X5tGXsRhBqxG0Uii6IUdk/eIotVSXWoZUeNCSHQQsP5hAgqx6M3i5Su8JG+UiFGzPNiejwDXHvDkwE/lh0vYuFRQYpsdAAAIABJREFUl5XkRW0b0DPQC3pZ0XvhaNW5HWO2HHPu1aQ/iqHiVzLilZ/DvheU0pDzDmjHPCVMKSDFgJJ39KUbnuZxzR33x85wwNzx008Fe+24rTta6wieavg5RQTn0WrHnitad4ASp/O+wQvfL+1ZeQjXmtFF0cRDioOYE6igIzmGHNIobkAMepyPYjSTICPS6U8WHmfuZeICVLsJ5HgihZT4oYGFoeQddV+PFy9C3opAMC0n+onsKwmBpWBbH5iXCwTECLjm9k8jbH1RkNu2awwqDIobPBg9uhntnbHGhSCbDwEaAi+W90zNHNocfZ7uvVVk63IO4vNIjLBNg/dMhGC9em7KnFJwRxzCzLtrNUzJOL6O8zS/RyAo74Y5mN3UL2p6PdbqhgP1zn8f5EIx6YglZ0JeXAQdmAbS8rP4uOEsZ8VFgFwY17tMM+aJvsJj5X0kOhiw3HrjRrNTFZ/MqCvuE5xUeGF+k/YBmitUOmByC6/CRFDnkM3QPrqIGBec5i+4nn7CZT7hlBwmV4GekWvnSSodkAhulwrX2trRwYc//X+kvVlzHFmSpfnd1cwdAMlYMrtmpP//7xqRnu6qyqogCQLuZnbXeThqDtZLlEwGQ0IYiSQId3MzvapHz+IWGJN67MSY8adPc5Rj37IsBK/POKZF5MEQbFVtIxc6EM/Dzz2uvw4ne0t6AN386GjajhtFhabt9FaYvQjncwGFAYT/CqT3yjT/GkW7OdlvtMboQj1jECbZO6zrE3m5oPRVz8CR24DwzrfXd46jEmPgl0/PpBjZayOm832fqnlsGjlFwXo/7ZjgBsuCXQsdmHV2ZpNg10d1w0vMpLiQ05XoPW1s8uMZRaXandljgcEg/fk2/b9bpyt7WnqsYWFn8UGjnvYhBRw+ifjE6EYa7I/VdewX8xpZaaVyu71xsk6d8/I+dg6pMoJ93lqpn+CuD2eKhDOqunuExz04MM49pAOuadYfhiWlJeP8x0PlbGsxeqMV8V5EJJu0VghWbB3BTtCPVffok+EnjEoIwdpUu7l6fyjGBSCfrX2wLPOM87bSPwvOCTTjPgqP+0nI6LU6fmy7nMBpZ+OpPgF9XhKjLvjQdXO3wqSS02BdJtfeeCqF+/1OrWIWXy+ZlMQMxuw4xNE5x6Zz1DTMynlyvLCEC8c8pCRH+NYwe00lpRpDMQS9Qu9w3Rnml1iXZ54uX3heX3haF54Wx+I7rXmgU1uluqFs9RAYITJ7oHp1YcEFUnzCz0Rrg1oq3ldcko1GsC3heZ85ZMkyhsYuvc+O7yIJng9qjMFU3Nb1jcZDSQ8w6gPkd3OAJaeOaSt9MHDfDhrrXEerGsuadWh9MIn2mQZidLi0aFlSJmMv1D4fSwOco9XGdhy8vd+5bQe16tl5frqS14U2sJHYm21N1FrcWQBgO4XZg9pk9x6DYyTkxDiGCiGVGcClQBqZNV1Y0splueoa9EHrB74HHVLOrG3sPvXjLwT63W53jl0GPz4oOqR1gc3O2uzTze48ScWRibjHh+dJacIUN6KWwgxRBktYdvo04V0f+DCAn5z4nJ3o50PMBybkpsef7NOTOSlkyxZVk94dIZiA8hwlDBzWzTIfK/6TIPmI3rWuyVu7OeaHAgtOMt4p7rSi94jT4TFehSAeSUgJlxMngPxhWG9gtx2t7rTKeOA/DueGTKpEJ4YZkLDEjmMDLeHkEjk5QPoIvkJM+LjgQqD2wfv7O++t0nqj1MaSByEM/Em6tBn2vN7n9Wijq0jPIVmGjTw/NQXaJnaNvOImRaKt1gXV6ZrkvJJjJoVkUc6R5K39L7u9hIE3ZndwZ0a3OkDnVoJfCUiLNYaWDD3oMOq94b2IgyEGU8NIqNwbDG/i2BC1xh/+QWZkTpyfJr0x94MTwxiDUQuj1QeIOp3y1FQkpjah9kycu+Xp1bG0IcLenINhLoCikakg4wMxL8SsOKP9qBy1U1rjdnvnH//4D/7jP7/z+rZRx9CGdQzyssgN0usALX3gQibl/CACink8aH0yu2O2KNJ+OFeOdtBNqCdc4ILwHXdamk760HWLIWOs2o/HNQT6+AvWpz9evzN6J+VEiAo02/edbsH2coXThxJOw3RTOYcYyeZt+zD8ComwBNYQqHum7Lveqtl+9jnxfZiBtjRdKSYbA4zmfm6hMMLb2Uo2R6M/Hpjzl0htYg2fSYfqjM6T3Fa7rVNLobUm8PYk0w3rXCaPyBaZw6sgKudJr/VBGbctlfg0kZCywv9OzOjUcVnndv5yD+xofhSUj/UWJ1/ntJL9+JqZ6/9sk4F1VXbaxRBwXp3rS73y8vwsLpZ1BKdv8M93xOmUqMJu2NEUr6ONgzEb3s3HeOVRJ+hQd9TxdviANxuOOQSmem+c6/mR7sCJk41JaV2M6C5zMqYwo+CzcIs+6F3U/RgTc0BtnTkPcDJ1d8U0Qy6b13Li5HNJJ3WmJJwbLIxL5ei94ob8k50VK4HZjtnao6vXmwu4uBBw+prTpnMyJMPo1R528zs2m5cYoVXpvEJM+JDMOyjhgLg0XC5Mf+doN/Zj4/39xrFvwCB4GYoRJ6Pq+l9iIHpHaUPXCcg5c1kXZheW1FsnxsAYWZ9lqYql8xPnBalIgtPEEk/q5Es5KGE3+sUk+syMxouzNbrvgmj8+HOx1p+Dy1nhZdHo9mIn9o/NUm+2SuuEYUZL0x4gB0dSSkGyDHZvJzEukBb93aN3u+jqZk7sV2OEHuzgP4zVH7qiZv4zlrtEaOAq06JfJrYdQ6THUbVmx0foU8h9Fx5T94NWjQYfI2dS6eP7mxTnPzOJP7RkeojOLsG5M/hPr9WHQFhOP4KffKSxZ82+72zTZL1ggtCfHA7BGShuYlLDmE7mtK6cmZ/NU891egXZKewgR8/zZeXzy4uxUaX+niZ/OF/TdCYeHcPU7ONxGHgbSftUWuzJOcSha4sKuodHR7GkRHDogZ0NWYvulHqntAt1LBzVUebBtm/cjjtbOcxYHNpw9KEi4gP4Xpg94H0mJnXS2/1OcJNlWR9g+xgy9p+pM7qXO6DzxKzx/Rwr5xjky5W0rNArrRaTcUR9JtPy0rqcCnoX7uWmuMynZEfm/uoae2kcx04pm8YnWwZgnj+nv4078UJLzHXBVtkh0fG0BmuDo1ZiXlifX8BnnLszftxMcc+jU54+kNdMcoGYV9brlRQ8xwbHFBcoZ2FftR0czdEOszdOnpS1UJnmIzTa5CiFu7/BaKQkjMw7T/SZEaDRH/eyBx6G3v9M4Xl6+SLQaSp0DNRlhHUlBv/gQ4Cpbg2M672abmNylJ1u7aAPFtvrIyHpIj/+3mBkQT1WhJzFLbHVrHM8sAbvPSEHo2fbTe4jMZvLTim6Kby3iONJmxNqxYUPfEd6sp267w/lckiZUZtwICuUc3SBkDbmaNS0k+3BMtbDqgic08DMPUDpc9WoEdEIgcOD6x9F6AS8nVa1Z1ej4mI15bGfGuZXLPMt/b9dH/gJPtsa/KTjTefwMbHmwZeXF8YYvL0rReQEP+l2A538oZ86kYmzlxQtx1zdiw4LA/g5ZSkCmpMPsr3IC56Bm53SoI/KXt7Yju+klFmOzOyR0Xe24877fWMrO3OIpt+H079EmCbMdcq82vc72/2d+9sPYx8vMB1Pz0943yh1xzHYpgz8r8+fSHmlHDv7URgDLtcrixmH1bLpwDM5xxxNoLC9r5MkOs3WpOHlNyQoh2kgbWuKOG4PoaxZo2CwQUDbpMe9Peij2XVS+kXykAMsyXHJiW3J3O+RNvQa1RhE0pLoVZhOXlZFJ49hnuGSNrVeUPyMN9eCQIweDk/pOzhnneHE+UyvneEkVSqlcpudVneWHLmuKylmu98sUdQJxzu3sP904UlZs3PrTYDUKjtTZ+j/NDLgsIt24gFjNIGN2BwzbQU+tfkYAez4srWw+d1OtfS1dfyS8TExT6nB2W2gDymkbIET5mnSrQCFKP90V3UzDDGVu7XhTr2gofwydOq92kZrmojVthdY0QvBtEP261z5z9MzWkU3pvDo7HyM5mfyX2ddB+KDzFMgZR+QdAL62T8Ze2Fj3eP9t2oftlOBsfgcOE3STqzn44Z2Tjf4NIFuHIOndWGOZ2BwlGJCWR6iTtUedU7eBbtkwjy8D8S4EkOmD890Z9CJ+do4iF5cmRQCKViqxYBh/9RR2I5XYki2PY0cIdPawX4IOD3qxhwy0hoT2nRMFwnughueWe/cj86ckWPb8S5Qauf7t6/MOShlY11XXj4902uhtoqPC0+fvvD29oPb7caYnsuTBKbOIeC3NbN60Rp59KqO2YqLBxH6wmR08YlGN0dEN+VoYC4N2GEWzvvf/hVxNDCCs2usY2X2Iq2bPTu1NabFxnh/WtEGlmURdw1w3mnTVHVve6+Mr5QscWSqo219ML08kM4D03tRZMJM5BxYUieEjnOZNjrFTRiO0SbVd/kodbG/dQ8O2jC/JQPUpz1b/3Th8UmRHynnR/qhuoyuqj8kVJtgmib7YTM/OpTWmm15zlZsMLv4HsNIdt57TQd24pej4GMk5wvgH/owZwDxSRoMIUod7BCY2bvxdcBFeZJ8fNhS0uvmcOaf+18B58e2DqeomzG1gj8pa/PEM6yEWAczx8QFW1kb7uRt++cMEMeA0om1xP0nvsi5w7fT4lGYLDp3WrcGp+rdSyzrM/iEc6fnsY1YP/GTftIx2EJs4D2k6LnmxHi6co+BUosV5/G4ZhhFYMyPnLETYJSFRSL0+IGXGL7kvSMlR0iBHILkEwz6bCIFzgqzMcuwbkzs2hQWemvUqq5nK++MfpcBvnMIUE54V/AjQ/NEp+Kflme89/RSlKjx7/9G9J5ffvntMYrW1vjl17/RemfbN9pQekQ28LUdO30ob22Y+b9PjtmlzK7lwLspwqVtWR/bSQaj7kyHNlbtxI1OOoZ59wy7Tw37Cie/C3M4oOFxhmENA6LNXG1M+4wdS15Z8oL7IuyrtybsLEQmgxASY0Adg1a7nqdlwbVOCMK7Ugg2RsKk48bB6Fp4TLcgQqSKil8gpsiSF6KXS0DrnTEPOkXdvU/MeW6b/7Tu/DeF5+wMsDbdS13sLFiOaWtUBr0n2VL29kAxRu8kr2iY0bUePW0kNLJohKnFxqIT1Q+eWgq1VpvDnW285N8iewQTgDpnfszKdheYbF2ZC+aTPB/A8LSC4sPK6VbkfCCvtgpkMkOn7XpIwrnuNNmFdv5wbq7m6Jyh99NwH/yp9rZVubFcGSdYqy7QzWkcLLvGXaOq6mA4kdHHpk6RC6s6Nh/BLZxZ6GY4+lEMjXioN2iOj14dnI9BuN3UGhTjZh22Sp0P4aYKSRudNtoDkA/2IIkI6QxWtjHZTVyYpGBtu/kX9dGorXL0SusF7wLDQ6s3tg3GbAS/ml1HZds3tuOdMaQIV/co4qSfEmAu4YXoI8zIGINSDlrdqbUxBqTgyfsdXr8qQXS5gPPc7xvguD49E2NmXRZwju3YCV6r+NEbfTZG7QQ3tXyoHUah+Uk0Z4PTX8kQMcMXT/2dtlxjIh7OGJZHaXglGAlyPBwlBenZiOstS4xBm47a1Z3uu8bD9XplyVqY1H2XEsA5lKoqakOrjW0rJlsRLoVzJNSdxxBY14z3w/CnjneDMRtzeBjnvW2i5zEZZvXS+6SOxnCVlAIPvaGDn+aD//+Fp7dqs7Qnej3M4RRw2sOiN9QMZzDykz2Y8vDVhexjEFql1UYvZqYEjxsGwIdEa52UM6U33LZxeXom5kzZN05hgDvxoNkegPVpRRGi2tg+5kMzMo2bYvit+Echijldm7oIFIDn0AYmLguj1Mfp5L02IREenJYzAdM5s7TAuoqzltgaWMDA5JF62i1MUPm9H/Xh/C/n7dSxDiY4CUFjxOjLhuP8BDY/us3z+04sKDwKDziJPr1W9c4HsoM2B6UWapPFxLAbrA91aH1KC/UoSEDwEmg2nwxr0EbjlPdEp9A+5wZzNlqDvR7sdvgMe7Yg0Nudsk+mi3q4WuE4NnUgvTPdNNLfSggrYkTLgKsZoD6ahJG9yws6LcqDKq2QS+FyubDkhTkG+76RL9cHj2e6yVEO5hz6M10GZ601bsed6OXqN72n9Uk5NvxUt88c6o6n7p3WJ/hIyCvTpcd90PtgcBILOw47sExPqCRa3RalVo6jcNROxdE6bPeN99ud/WgM52lTXtZ+ToIfeDe5XBbicmG2ztfvP8wPSZYyY8BxHFrV84H7+eB5Xq7sm+N2m9zuhZA6k4M2qqSTA/b7pB+VniZ5mcSUmH4wPbjoGG5SzZxf/kR/AeNprRvS/pGrJAxGgJl8aqalDRqAydmm8yhM3kA457zBE+IE4CbDNj+jqa2rDVotD8V2zqsB04rZqH3Yxfb03iz6JJ51EBcTgcRslXbIAGpMff2MjtVIFQUc24c/zZlQE9F8PPznqXbOznIpNd+bPh/buDnPk2o+/hmjy/jexq1T7KHR8wRhTwKZe4BzLsgX6LEuD2Z/6h5PqxUcU8JP7OvxQ2rxKDxOP8uJ4+POOOTgIHvS6OQ2WPNi1g+D9nCU65ywtcMLnTHtlicQzlHPHL6Dca7GqbJ3nT4KrQ/KnBzGpnbTPbg5LsgXZs6D1kSqa7XQ28Gc2pi2MWkj0IeRD31giVb0PdC0Us8WLw2OWnZFxRyF4DexyKcnLRem66SpQuWco5SDJS9cLheNXKOrQzNZSXUQg+7L1g4RB3tBHJdJmBrxXUwMAqM5ZtV4KH6Q3XfGXA8u4Ux0+nEvBkZvHGWnHJW3e+V92zU2lsr99s7r1+/cbhsDT8qZ0Sr+IgeJlGTa5WdjOIhucDsOeTY7Z57KCChvjuonc3hxvcaZAus4tsrYKsRDEU+LKCytd1HEjKs2midkj89igLfWqZbA4bqnlT+tO/9Nx2MFwiEj61qOx/p8Dp360rqccW3ijpy/VGmHqV+swkaxgHutiv6wPc05IuEQUIfm3vcJ/VSv27w8TkEqTgkGfYhBPCYhJRllhwD1xmzII3Z+dCrRB+OmGD8o2utpep+DaRdXXVmwNbjW5O6x7j5dEx/Z0nOaulq4j9Q1Z73Q6aiW2o6Rs9LBB5nw8Q18tE/Yav2sJ6d30E/XWlffhK+PPPmfvv/83/Y9GrHkkui9srGij+Aqw5mi+TH/8187RmNpK+HBm95u4sdZlLTpaDTG8MzWaBNm7yREh5CcRAXKOY2KH4Zglj/OyTwW1nFUCXfXnPDs0CGy4EYgarY1LK9wv93lMdQqx37jLSZqn7TpuD5/xoVMthX/fnvHg0zs7B6ppbBtRmJE49T9/s7723dG3VlzEEZikgofM3SBq7V1ehuKrxntgf2F3kkxEPJCyBeCs3HcWYc5HYOATxfS1bOEhb0P+n0TT6lPvn5/4/3tznJZ+e2XL0T/iSUalhg7+/3g2OtjZH27FfbSqE0QR0qRnBOMzlYOyuG5XBZSVJZ8zpnbVqh1kFaNTqMPhkfYY/9gr7sQmcUJs3WFvVZ6FaeoHn+BuRxD1Ad+3+itiHAG6oCiAsx8cAbEmT2CMXW91wx4dgDnWHIWjJDlRIjdWMMc81V4tEnY7tJ07dudp5fPujDLQkzxY/syTg9ZK3rN7CxDkreJKbDHON359OdaaBqpctRNcvJVasE/Tip1K4+c7zll4+qDdXs/r5yxYnyOVhpnNDdbdXk8xVY8HoVF72O6aWtI+3OmI5q23ZohwfyJ5WzX8mPFDqfIUU2QxrnTGM05x0fqkb12Fx6+Oylnlp/YyQZIGLA5HhIVfV6yDg0Ts3oYND6askmn0zkmzC7zejedmM64x+elRYMZ6KMtSwyoMwuB2Ru+d3wb9CnsqvbORMLIUuCaP/Pl+QsMdcGtNYG5Xb427z9+UNvg++vGbz/e+Zf/+38ycfzy+RPHBnuRglzygkAzr+h936Q9spHsfrvz/dsf3H9853pd+PR0VacQEyF7ZW85T2uV2/sbfXSFIcZEiPIar7Ydi7UIv7QPa9gYexyin0wXWdYLn1BxGu0PZWBFOXyWQ2F/OUzc00pI0uJ15xU33RrOJy7XiHOFOTb5Jp0js3NGWAwGCENeMs/jKqnN3tjvRX5GWRu+4SbNi+CpDikKu3KaHI59sG+TVj3ldvzzhee+3U28pjiRYMpmNwajDJqTFkpEK3usbebRmlmbGWcFx3sBX5yPSQw4dyYfTrpvj/Xv0busOEAmYmMqq711luvFRhw7LcfEmT9wMCFnWoLm7O3QGF6apqfTzH0Y1mLd3LAOp9ciPMMwk5RXTn0X5wP8AN3ng6Nz1ophso05IhEHXqdZCAb4PjoRO++HFQubqiAwuw373jPj6d1shaqfG54P0F9znv8JzjOy2gSFHQqnOzuXs/h6F7S2RYmWKUbWRThIK5VBF0nQTJ7GNPvb0ei9mEiw4TAyp3PE4E3QOMHGpDEnbgT81MrfT3VnfprFKl3uAwigDN7jnbRJZ4AANJNqdNmK+Ey+vvCy/sany9/IcaXXRuwN7zzb6Nzeb3z/9pW31zd8Wnh66WzHzr/92/9h2zbq8ZsKlFPiqvOOl6dnepNR2m4ExmbFYru98vb6jdv7K9s2GfWF55dfpX8anpCUPJHWQDgKP779B3NO4u1d2esWCRzCxE3ROJo5BKj+6NDSASEl+m07KHuR95JPDOe5rKthqHJV2KxI1/PvGfJJzymTs6O3jj8cbej+DymyLrqvW2lspZLTJEUtdXrrks4Mx2g60IIZ3/XqOEqmbw7v1eHGuODjwrZF7rfOtlf225/PWn9eeO43OFXH86ST6xSXOK4zmiQFQuMxoKzTzofTOaPl60Y8zbic5flMUyvnZaE1T9k3Rmui39fKUTZ8Wh6izZgyE/3umIQYrKh5neatgQ+ENB/2B+U4bOJwxr+I1lnNB8itUz/RXKHP9hE4x9m1odPfcrect1g0Zx3FSTUY6lBGa4roiYHpYZysVvzjlJtGxVcB80JmH4XbLij+sflyo3NmrT9ArTF4aLZUWQUwW0E5/zIVPSvsnMXfbC2co9l7eLwn7+lmO9qGis4w3Kr3ShuNNuVJDfLkOQMB5+y06XAdHShNFIo4By7yMBNzQBmN0hvDQ/ZTFInzmnpP9I7F6RNoveukv+3k8MyvLwrx62Nwu71TjoN927nfb9ze3rjf36nlIC0X/vb3v/Pb3/7OxPHt63/y7etX/vf//l88v7zwyy9f+NIax36n/PIrMUaZpY3BtkmvWMtOLXem81xePuNnZxLxMTOmiKK9VcNxEk+fPtOZ/Pj2lbe3d9xtIy+yBD5Fm6VsD9xxGKDtgyelLMvhDu/vN75/f2XbDo2JT8/UGB+JE25Uy/PaeXr2lFK53+7UPiXa9pH92NmOYgJvCb/HOB4UlFYbJeha197xPrJ6x2yD0rWS7y0aRKC1eQ/efKUCowfaNml14kcnADle/vnCA6LHD2PRjqHDV2DqoLVK6e0Bmjq7yb2RlFKSFKJP29g83PimfFqcCFEKrTdPHucsDyrQly6KOxp9xAI9qGVjWa7ypz1BteBlPjanCIi1CpheFlIptkn7sGY8Qd8HL8d5QkqElhkGiAtYFlt3NttI+MH0TukBJ17hxa/xSZ4ubvIRlNdNQGkXx6y/hX+ZhYYP+n5tLIeBwaizcj91R0ZcPMmGJ7D8cD08Tcfc2QFNTgtKeUH7x8h7bvtcENnRmVbrXLGmlOHY6bPa2ObEsj2RGOOVtNFws8uOIiQpnZli+tpWsfdBP5wt3QchOsucGtDRyDQbNQ3SHBYWJ82RM36V49ygVvGkHNS+cb9/p3Dw9vrOt+/fef1+Y7vdaVUbz+tl5dcvTzxdn8l5obbKvt/Yj0JKCyEF/pZ+BwZvb98px53L5UKM2fKqdi0JQiAvV9bLM3NCOTZq2yilktcrznk5AYxByJllufDp5QvRR2J+4ygHyrf3HEdh397FnepdOKETbhKiZ6+F3iTkfH9/59u3H7zfdo4y1LF4RODr4KZ0iKXv9NEJKVLH5NuPd9z7DiGwH80cFj42lrXsHIdtrZnkqLimnJLSQ6ccEt/vd257kd3MdHIVyOI+nYuVdlR6nwQfCYu2rv6vMJdr7R/+O+ZS55zo7r1VWtkpx25Wp6eSWTdK8F709SBZvlzznQGxSml4eMhYV+G9uB/DAFqZT5mpkIMxmsXiKNUzL6t+ZjIzeKcTd7RGPQ5ZtJpWKlZ57vTW8C2Q8mLGXP6xyvQhslyugDob74KIgUbw6qMTQ7auSVs+5un9Zw+wz8a7UVF4uCGaO+DZz4yh9eScw7ZqikiW0NQSSpezqCUm3uw4p/19zjrNn7ofVHSmkFsjJFoxOqUdliJ3EiJP3pA3HlWIgTQTa+7sSQ/qML6RNbCcCu1SC6UWYoDsk4L/UrKOr+D6ziyT2RxUey8d+Xw6AKVctNaoXdhDa42YIt6vBC/ldsCxRPlop9Bo3dGao/Wdt/IH7Qi8fnvn7e3O7f2gHI3RBt5Hy2gMXJ6e8XmhHBulHNRa+fz5C//j7/+Dz59/fSRN3G9v3G6ZdX0ylbVZpMZsPDUtBXxcKGXn/e2NLzHTbCLo86DWnTmGMsnXi7zG953jkE4qpgS7HDhbEyMZ7/Cu4Xug2Uq6HgLJb/eN+33nqCL/XdcMTrYXziEbD3P1HGa4vu2Fo+1crld6V8LnmJIMxmCxVXbfeMzeJpq9ytD94X0gxcR1seTYMUgmOF0vKyFE4Wl4Fiee0V4MU+1/AVxupmLNObGkhHOTo+60Y2c06VdaPaitCC851dtO4LLyuJWwuK4XUhIDevZTuWqn+zgLjzqlPhu1KsvqXNV7k/rPjs366ghCTA8leZ9q1ZlTHjtj4nwipEy+muDxOBitQ0ZGR2fCw2mt2qOUuPvGPLcOp70BOs0D9lrQw/TY9kwlMXgzxwdUmOZPCRRjmtAuiEMCAAAgAElEQVRw0srAR2czedMq3U6gOTujFD2sA5HRMAuOCWeywdn1ODcEMjseWy1NZGLVntYdBiI8uqiP6+6ZQwme0ztS7Cw5sx0y7xJAL2X6GJ0+Kkfb2Fsh+8DVO8tXX5g+0v1BqHeYFTcm2XlWpyJyxjxPOm1U4UhzUIoevtb6w5Izuo9Ilhy19i29cxuVUjdGbey3wV7V5cUYaW2iwNhOa5sejpy577Zi3zdSzqzXZz59/oUUI8f9je3+Q52L2UakvMBUKKXDWbds9AiXyOszfXvl/v4DmOQcWdYn+tHVIa8NH6MU5MuC9559F18oZyVeaLwSF6qVg+1259vrd5z3xCDr0lI7tX+kvYbgyCnSi/C34ePjSCulcuw73nsul8yyZAO8dWosy0JeEiPqf5ejUmthjkAbSiVJZlrnPOQkntyxd4t9OjicgOhljdLgXR17OTh+3DiOnZNm8E8XnqPsxPhEjkrj3MudY7+rpWzdNFKVM/PqwxZCtG/JLgeHg7LdjJ6+KOI42MUyXsAc09bg0VbZMlsKXg8yKKlC1qkV7/sD6+itPSQKM0lK0ccQ2LiYFWaSfevozbqLZh3K6W88H0d6jJHugwrcME8ZE9Z5Wy92+/neO/pELJcOE0dKtmaPZ8igrTud05hUimJCUsb5j6LgDIzWBs1eThOW5ry0MOd7Pj2dT8uO6dBW7JzrhoHY4VwzncC/M0a0tS9m5uaDJ87wEIsGE3fGcLKCi9bTTt1gH005Ya7b6ehJMZPCKqCTC8ElmAduQnQCQzkfNoQh1dHodKYTDjTPzdVRiYhqN+1AScno+q4Lb0+67ss6GQ2xrjmFk5m46AC8XFYzyerCMGLger1aN9B4f3/jfr/RWyMtixFeG74LxyvmDfT09Cz/n6Ckjlaj1sx1Z45KrwO/XnTZPUxLWgUV9uAVJ3S/61lZ3cUsZCyUck7ef7xS+uT7t2+814N9P9iPJjb+hBwjS07axlYdwiFp9JTNhwD4GAOXpydePr2oo56YEl4TTJsqMscukuY+K2FTQXNesddn0OWwTW2fg22rHLXa9jFyuV7BObZy8HZ/56ibGcxt/3zhWRZVzDEa+3Zjt1TNOc94W0+MGedkRDSnLo4//WusI2o25qTtLo1IXlSAYjQcxXx0e2TGZOtxras1/0p/Mkan12ohguBcoR2HbC7Xi1rYCS5LT9Ra0Y3kdQvHvFAPSzzs3XRnWvM+ss6dgMJ4phe0KjXviYU4dTZjnkIBswsFGIOO6PPMaSt1U3TbytubZseHSF6vDCpzVmExzrZgj82T2l5G1c+xnKOHN/NDOOs+/jXLkjOW9+wMT2IdWNGSibVtjoJAfyZxTvo4SaOKYgneJBHn2IYwMm/FxJ8dlXWm3ieCy4BWtcxp0tD+GDUnMN1guMH04gsFP/FdnUUtHW+6OybEMAgzyMjcUjHW7MlLpmfwrjJmp7dI8Bk3A0vOrGvm+eWJdc2UchDMjzinxHHsfPv+lRwjbopeIZqGhJnDtIjbdqOPwfV6JcbEkhOXdRFWw+A4NlEfYlL8cdL96PMidtI8u2LzRwqJulbOxJUQE2dC6tPLJ/42FYjwn//4B+/1Rjeu2uzqCsvhcFOZXKU1XPXkLDlJ7529VlofbPvGcrlwidnoXUoEPY7CsVfe3t7ZS7OF0STlzNPTlZy1yKll0JvkKk9PCyFoQzb6YNt3/PsbR6200Xm/b7RZ6H6HfPB0+Qsi0ZQWaivsdWffbsxaBPxlA46N4+LPeb3rgQ5mpjR6o5p5dTfHtlYLtVR2d1Nudkw2Wzq6L4yYPm5we7CGxWc428h4GzPKsVP2HR8i1zHIy+WxyJmAT5XeZF8aY2a4QEiHOcdJS9b7h+TgPPnTsjxGqX3fLA6mkXrWxsF7wyM6KXl5p1hX4Qwf6nMKkBuTKfooLkbSukCzh3TRdqN3J3uQKTqAC17jmFDcDxC5iSnugxnFO5QFb5YbznnhO0Ki9d96wnmQpFRdDRfStTktU50LejAjxNgIUQ9ozgupFmrFipl0ZtELsJZ/klIV5rBCYiTDMTT7jzlIfrB4j4v+oWf10RGm1u/OCmftXYAzjgTSey0REqYdcuSQ5YDnA811LldPKY7j3nHRc1mufPr0zNPThZQ8tRZy8lzWZ1ofHPvB6/evxOj59OkzHjPqp6tjP+kJc7DtAoJzXh/3Sk7yHO9j8rZt9P2Nl2cI6QJ+EJExvnOeWpvAYLRddD4Sk9nKzPMj8QTjWtWys+TEuihOWPef2W6MwOiV/WZeRcBWCs5ri3u/F7ajUmqnbYW9dF6en3GmXi+1Umvj2Av7tluHLtzm+WllySq++3HAhLzmn5JNHbV0jnJw3zfqaOT10MrANfJT43nxCh1c/rTu/Hnh2fYNedQWMTvzypIzS85yBvSWeW2/j1ZpRebTpxnWnPJ46bVS9jvv72/UcsjG0r7PeTGHW+2SSzh9ON7c+s4PZxrvJpovbd2VAulDFLhmf2bMQR5Da/W4S0VteI6PyaQBnd46rhRcjIQUzTXQ4XOm1aqYlAWauc1ttxsl7MKqUlLUy8leDsFyv3l0T+Asd2uKeOy82NB9PCQgMoJXemPvEzfQ3xuglWoPsPE7DGfAnRYkwmOkB/OnxtW6ISFS6oLa44GdZ4EyLY00dh/yihMG986RQiCnzJIXDhu1ajn1P1NRJz7gvV5Pb1WHx5Q1hEBKjVRuTHU3EVy00Q5YSbakq4+NnJzyBrc2yS7wvCwsyWs8JajbSSqUogeo+2pHoxXHJa/8/ttnXl6eidFTjp05B5eL/HZeX98prdPe33l6fta9HB29NWA8YrbVZQ/bPKlWl6LDc7Rm63HPINBdokzlVc02GfedNgMuJO73O/dt0+bUB2FlXe7U3nmNnikqQLNXdZNGqlyWhfViUdK9yiVldO73jX0/ODUD2y6XxT4dwcS5+23n/f2OuXMYoVfdO6c7ZlBn+Px8ZVmyba/1vlPUdjEvIq7mJRPiTt2UW9ZdJ18Tl2vAp4nPnXX1XNKU3fE/W3hO8WfwgTVlliRv3CUlctb8rwdiiv6eM1wGpylYCM5YvpXeGv165enlk7xwH6tsfQi1HOaNI+DYhyCZRpUdqajwJo9ISUBxa7TeGAZwt9Zo65WJugKOHR8SablQi33Nndk/snPkMDJdTBq5bOUfojx8gtHdZQ9qotHaiIaFnJYFMWm7dsYQq3tSwgXT4TvSPrVDyUQ2M9PUmTw0Y06YkXK6GqUUzk7lUeDhMRrNru7DufN3Z9ssG8UswmTaz5wPYPqUYFh651QrPsxGwztnY8XCsizEfYeyM2Zn9GL/KvFBAnxprIrubUovuK40ieDVJcxzqeYRjoDjQlJXFybVhLTJT/YxOI5OmRPvMtdh78l7sg8MG3mZnjF0mt9vd75/77y5jd4bpVaul8VEyJPeFLtTu2gOrTfe394pZSclVe3r5YLSMGRDMqYsJp6fv2jT5aCVne1+p3e5HYa04EMgX69ShU9opVD6IMRELdUYy+ied3DsB0eRuVjvkgRdL1da2dhv7+Z1Psnrwmcb4aQeKLzf7+z3nVKrChIQS2NdF67PT5LB4AhHZdsq/Xa3k9txuVy5rgvhurLvO8delHoKej1WaGutttnVYRyixq/JYLqBj7BcJ5dPjevz0HQxdhuoI2vI/3zh6aORY+DpcuVpvRqjVH4kOcfHSOWdLqg375VhDv4B82Uenpl18S7jYmxfU3XN+fjzE2emYgJJa63c3m/sm6wjS230WlUUJ6wXFZlj1+Ziu99oVat+vOPiPDvvemhDsrHqNNVCOFTrdF9lmORluh2C1u3T5BhjIO/oLPOlyXx0OT5Gm9vPaGSjFMRIWFa814PV9p1eTaiH9GcueGqRYRlOdhXOe1obODNuqq0/1t/eO4113ZkP9cd44r0XM9g7G58m042H2+E8K4/3tu4vPNwKg1JXz4UXYHwqTwqJHLM6gKFupLeijqY3+uzW7XbaLMJGXKOMA9dhmZHqOu3k8wxLrnBW3KYjDAiWQukQt6ulwFEmW5ncyuCpdJ7aYEE+3G3IWXD2CF22rfu+8/XrG/d75f/867/x6eWJp+sFHxwpiqKh0IJETgvX64Uf76/4ux6wnAOOz9QqLV9MCzldWNYn8rLqHjCWvnP+QQTMy2oUEkz2sOkwM5Db+WgCVkc9yiPIUtaj6vLvr3f+GP+Bd5NyF8+otsFmmjEGpKjXOEbCHQehOUofD1tgZdeLJX8mhOz7QWt3HdgxGihepNeyQ7O1xtv7O8F7liypkYiBnVIKMapJaE3RPOsl4LNjfZlcXgrXq8f5xlE7rQ9yWsnpz2etP4+3mTxOvTPWJgXdkCfnJpjQTpw1fX3GIGq/6Zl8UhonZvLtorEQ8WAm4meo3YnLgtD068tnJT8gf+ZWDlopHKVSizyD932jtaIbuzVOV/9TQ9aOneXixTId0uSUWqxbEz+m1wZJRQQv35/eO77JxqM3FYepKoYLmWDFFydR5SzHQ0/m04qLutmwh3WOYm6IJ1lPhaobMzh5eSOP2W1Lo9OnN/NePrfl3gn0jQoGxIu+OWWvjkrMB44D6OYcWMDgOQqqw/AnmxpnoPHHjfyz/45zzng3UpL3If/kXh3NFeoMYjOPRplVOVF1koZ5tzDYStVr8pHkvQH42pBpxBMvJVwiznXmvRlBrlLqwWhio7sxaG3Qe2EOrZiXS+LylKlND8zr2+B+7GJnexnAX5/Fz3l6TiyXxO0mHtplzfiQqa1QijrsZQyWRZHdrVdq2XB5JS+ZdV30dwYtS2pr9LZTjju9VGF9QYGCIrnq+nl0oG73G8d218fqAyk43t5v2tgiMfVludK58+37G/u2y7xtTfaYeNr4EPGGEOjT8frjRkqZvTbe3m98/f4mwqx3rJa1NZH1hjcqyD4FBVzWzKfnKzkn5lAE+TAZknN8dDt5kq4QFn3N4WT4FlZqb3x6unLJf6HjkTBQN82pAA9RzMZs6QneOUY3lbn3uBhwwwSV3hsz9vSDUXE6nwk3BnAaoNvK90G+mwQnq4HEtJMbRluY/Uw7+NgwjdGVmV2qsVb9Q0Oln93kE2OkwXARMxUTPTI6Mjj7AGBjzoSjUOZBrWc6ZJASmUZrVR2CJS3kvHB9epYg0H0QE0cr2vqh19vmIDorwj4Q4mTYSOl8ZhJos9Mn9Okopf5E3FNbPsckzYnLDuaHabncDU07Nz+MxK3KKjjROXis5pFsQ2slA+8dKSfaGITRSdGz5qxU2M3TZ2dM+fee69lRGzLtEpC7t0obApdn72YmJnKkrxH8YHdiMp/JFHjhS9EU6OsacGHjx105VMcONTkqChmspdBnYC/QDmEzzy9PMD37JnA0JWO3h8TT8xO//foLv/7ymRQ9+3Gn9op3nsvlSQbmPuLjQghmEeocx3Hnx+s7P2Liy5e/8cuX31gW2bWsecF7x/1+5xgV5yIh2FKlVWpIvDx/4nK9Gi3B0+pB2eBWbnz7/ias0QVuR+EojacXWbF2F5g+kdLKdleG1ruJPMXil4TGBU/pQ1PJnOy18fX7D95uG7f7QR+DnH9OG7FlxHAP0a/2EeLEecMOJ9Aa1Kqs+jkH6yUxA8wka9ejQIieGcxgLkB3hTr/glZLHcMQLTxYMqj3xGQn/RTo5R3KGHfuwdo943rduWby53ijo1sWnjykBVo/2yZGFcq+1h+FyCHS6/SmSXJw+vzMIT5PzhrHumlgzhzz2Rv0QyNhjITocEm8ldGFsXhnBcjGwBgTl+cnhoNiAtJhxSqd3UCUotlFRZPk5WJ568Jvemv0shuOI5LjyTj+WC1PG7G6uhGv7OnR0Vrc6/2dFgq9dWnAgNbNfhMVmWD42jD5w0mJH8zHSHaCz+dKvncTqc5pth3qjoTDaQmwpMyS10fuPSHgZiDNqL3YxJi0kzY691I5OhKC9vnRbY3O8FD94BgNFyAvZ2CiKTwmeqjThTZ1Os/WKMVz7DuBTp2NfUy8j8JOzGPIhZO5LaW/t5P+t9//xu+//8bL85Xg4e31O6+v39mPjcu6cpTCnI3r9Teeri/q6PrB/fZKbZXWijx/lifW5Vn4SzqtQ7VgqaVQ9vsDu9yPnbe3N/qx89vvf2PJieQ8L0tkXjLu8zPBe759f+f1/aCPyXYUjv5KTgv3TbKGWnZut/f/YgEcYpC0yMuLB6/D53K9EFrn/V64bVW+6dWMzbpGMZngRb3eUhmtsSwLLkjO0au3rW8zS9XG5WkhZUliGp3hPZXKtlfqrDSXuCyelGBrm+xt/9nCc7+/i8uRlJOVcmZZL5LmS7koOb7d7IwqZXUIuLRqjDIKN33ihlzaXLDQuZBsE9WYvdqfFRApEFgZUrM1a1O9xa7wKGKT0ztnyIGuNUarxscYJqKc0AqjFeJygSo3f2m8gjyHQsR7udE5UNeQMnnJ1FY1Hxdt3mjSGIWUNC4hN7+UVxT3bBujIVd+DEAstRJCeggw/ewQHKNaygMwesHNqLGyNXoXs7XNrgJha+fDmNnRhHo+Cmc6zfXPxu28lvO8XsM6i2BK8TAf2xY/HcMpiG/MKeawrdTPbWaIGZgCxrHtI9omliE18UbnvTfuWyNO+SLDmWcvqPuYjcNMweLiyOHDm7p1qH2QM1xT5JID99E4WuN2l8eNCzAcGuvGpM3Muia+fF6kKYzRcrECnz498/ffv7Cugd4OXm83vn39ig/w22+/yGtneyP4Z0JM7MedfX9jItbysR+MMfnt93/h5dOvXJ+eRBgdjffbD7xPpLSQc2K/qbNblpXROz9eXzmOG70ffH55seKdyTmT1yde/ArxSr7ubPvBerlwv28cTQz1tx8/+PHjh9wDkeC21koKgZfnK1++PKtIjP4oLEzHl8+fGX3wj+N48OFSFM75+voq2GBALVVC3j7ET0oZDP+R2l3deDgcy3JhuSSaS3Q/udfKXjdKGYRmMTpJ27V5pqf8M4XnPElyXokpEYMwhUc3E07/4U4vB/Quv5oQtcWw053e7AFw5qTnrdMRX2f2DpZxhQlSZQk6RD3vaumHB5xlbDltUrA5t520/qYqPUcnGOfCJi5jcE6g4ywdco5uxDzk9O8cMqNSJZjnbO5FpT+OjTkdIVR8zaTadBKkzKlncbZOF/9IHc1xFFptjGTpBV4uddFylHDduCQdZqM3bRZOz+hu69RWm2JJgsdZphUYhmMWr/PM4zKm8SnNVXutkbWbb7OPioieIdrDfI5lWrE71B15w5VOk3fJJxzRJ23sXZC2zkMdnmNO9jZItuk/N3mNSXedOlW/rynifXp0Ox1FEc3WcftO653owUdPbZ23o1NnYM0BoqO7yXSRyyXx/LRyyTI8//Fj0Mog4Egp8fZ+475tpJwopXF9fnm4jYxupMK8UGvh2G/iJTkVntbkongcG6MXlqwo79kb+3anHDvBOY11UQ+td7CsK59//Y3b7Y3XH2+U2nl+/sT14qjDU6ene8/6nFmfP7MfB//4t3/w+noTCG2JraU27pt5LSNs1UfPURu9w/NTBu8odfD+9s77bef720arjdP+xDnPflQRPs10LsbMsq64OUgpPvR3IXpjogtPkt2tuRh6x5I91UP2ntQ8rTR6F1t6WUVF2P+84fnzwrMuV67XFy7rRfYTppfCzI9wMJvW2XSTIARtBDjn/5+8bUDEOAHRUbjnaPZn1GM/stCHJTUatgOYr9WQnUWTh46zzqjWSj2MHDjlRTtt5ayZDuEZ/VRTG5/FSG+tFYZ3hJgf/CGHVtiXNdNfnuhjctTOfbszyo73gbw8cXHPXEE40OzE4B7bGYd4JPIDHnQOeu+klOjd4mFjxrWGm00FeJy4FfRmdqNd27XSZLx+vaym9XEPABtbrTPP8XSYx49xdLw3rozYOszObJM5Gn3I98aFbOb5AmTnmCb0TaSYiUGrd1mKQEjxIYGpo9G6DqDpZAPi2sT5yfTKrNinDOUJnjVkVltc4LQtxDak4NntEBE24bnXzlEb0wsszS6SUiAvkSWbCNl56nS0XrmNifeJGTy1N1zI9DFYlqzrPxqjHepoHTAbb29fzQo12+LAxLPAjx/f+V//7/+D94G//+1fWFLi4q64baP3qlHITVswXElM0uWJ9fLC6+t3vr7dedsbn14ay/rEDJnb+xvlKKzLQoyJz58/c2w7r+0bc3o+vTyB8yzLxh9fX3m/b9A6tXmWFHi/HcQY+f33F9bV8f1tl5/Oafw/dUCLJqFnYQ4Ys9HqICdJMFJKxBgp5kt0WS8sizqzM0duXRaerpGZIDBw4cMmZgkLq1/IPlKpHO0vjFrrspKSaZ3Mk/XMjZ69aZY250Cfsk4+KxYK0vs4aVU87M1PeX2opZAua9QK/GSd2vWwCRty9OlES5/+wRlpvYvv0get7Co6Y3A6/o+hAMGzQM7xYVglgSowh5JCESeH1JlmtUGv+KAH6+XpiveRUhu37c5eivCRKQ7QcRS1sykyY9AHRqDUXa5yU9uqWRq1daOpe0qtIkSes3tIGi35oBeMxxpavyv4TVR2NwbJwRkrAsNAe9tOTcPKZn9gEefXnBd+JG+kphNtamw+/eLl5qg4lCUv5LQQ0yJLiZ5IPrDGBR9X4mgczuH3AzccEUc80SznOMbgvaqTuLjAkgM56fQ2dBPXIVk6gzwMxR1hTkUb98k6paw+haMuTXxoeALLZWEpDuZOCIHr9Yl1WY2XFEV+Dfp8tu3Gt9sfTLr8oKo2aK13xthJZhMRUsYNaE3eRHtp3G43SpADw7JeOPZNXenUZ4EPPF10WMGN21bkZewTw0WG86zrhWsdbLc7//nj1dKNHHmN/PL7rxylsN3u3O8KHpxOG9MleJYcTRNoEpspiZN3Bz4GjtbZdgHszrtHVtiwwq9hpFGYln1mDoYn43zODyfRIVpMTquMAL04X53CkgPOLVzXK5f8jHeDevzgKH9BMvH5yxeeLqs8c6xqtgGjNE7rC+dOaYB7PNiS6J9Fx6vX7k0jlncfG60pi9NuDv/o3hNmZCzbs1CM8RNucfJRejcphoDfXstjLHjgPzg1VeagyMkTstN8mrHVGPXsC1QkQ1QWtvvIiX9ZIu5vslD416Itw1EOlqGcb3+oI/TOU5u8Y2rZaFWn+Qlk11q1MXPKJsLbLH1uvuwGBHmn9K65vpnvsswTzc95TjjxKrPvcGh7dXJswk+8qbOwzxNj0pvV+3byCaJP5gzMORgEAcNMUgw6CfPV2vDMkuRA4BhmBhYf4HT0jrzo4ehuMisMJ/LebEM8JC9gu3MyZiEM0QrKEADdRtfqvAxqHexxkOKgTbkXRqnF6FO5VAGd2EwJevdN+EgKiXY0cgrs28bb+yvbtsGE929vrEvk+fnJrv/kcOK7ZOP/j9EN5yvctw3vA+sCSzISpks8f/qd6WTBelQZe5Xa+eOPV/79P/6TGANfPm+8fP7Euq703nm/3/n69Q+WnHj69InLy4u8rM3gbK+D931wtB/ggtTpWVHbrXfux8E/vr7y8vLMsmbiXshLNi6Q6BhjTmKM6saDN57PwHc5cLbRSai7zTHhcWz7Ri3mCJmTCm9FEhc6zEoMWm5cLhdeXn6jtlc96n8lO/3p+mQ7fG/s4sIMZtjlAyOYctrJAgOw2XfAKBDTo+U/Y2DUZIxHZzSmODpyzuOxeg1edgjikvSHbcXsjdNBr/eh0HsLXxu9Sfbg5NivAhToRp7TzzdhqBHptI4MwnyY8hp2AVermqIx8V36H+ciz0vkf/5ffyelxD/++EYbsrvc9p3aGk/It8f/JM7tfRgFXzlftTVibSyrt5Vle2ygtKo2kN0K7RhDFPVWP9ad0zYUAqKsgIhBPoe6HlkpDSvmUUWqV2E7GLhxdhROJ578wswkzPhV04q/90FpDOszOT0xxh0fVUxau0sI2jt+ThbvaVkGVyEYP6i7s/sXwO1huG4H2uQ4Ou2YpNlJPtL8pAJ769zuhfvWwTuOPsi9k0fF14HLC9kpJLL1Sp/SGx1boxblk++HZD9risLkomfMhqdTj4N9e2d7d5R9J8TMelnofMT59CqB677f+frHv+PG5MuXX8k5m76qct921suVlLNpECWp+eXX33h9u/Ov//jKv/7bH/z7P77y8vLMy8sT67pw7DtvP975ozc+7Y1ffhkslko77aF+fn6idkk2ei9MNxXTFhIDz9u98Pr+lWXJxkg+rIO2CIYhXPExhZhj5JIjMQVKbaT4/5H2Xj2SZdmV5nfUVSZch8jMUmSxyAaBmW72w/z/5wEGGAFw2GSRWVWpIsKViauOnId9zLNnHhqYrAQSSHggPdzN7J6zxVrfimyGoWJORXRp6+gkpogPHreCyYFiE1ZbDJqkE00zoE3LMgk4bXB/jXI5yfwj6YTVihQLUYlq1tRtClVwlo3FWFtBSZKVXoUr5Bhl0150bYtE1/Kms6mzkAtqgcvhVPPXpWoqdUMFikyK4hy/rPMvL2gp8qCaOiuIOQOX9NHqTSzl7SFWb6tlqnDx0oGV6qYuFBI6KtHvGEvvDF+/v2cYep6PE6dxYTmfcM6JD03rqmhtsUYcw85eaIyZkBLGi4NYFyglVn+QrpWg/K26ShcusPoQg6iiFXhraRtLLkoiRxTk+mBrSkUIVRd5EY5LUVV9XCoVytR5Ws18UtrW1IkL4lYOwFIHy6kgWqVuS9vsWP2JrAIQ8bnmzxeFNYW+M4QoB5imkCJERR2OGrZdQ980XDLQks+sS8T7TNYZ1ygaawhFE1Nm9JGoFENrKuVQqqisJeivcR0pa7nl80rOgdN54vlxImXFZhjo2kYqTJ+xusFQpFL2iwhetWEcZ0pZ8SHXSDILa8CvAi+32vBp9rw+vnB7e8fd7R1dbalyjpJ1ZTQpBXb7GxkmDwP/8Pd/4Orqmv/7X/6Vv3z3PY39UEQAACAASURBVMfTxDgt7HdiZr26vmGcZ07jyOvhQEmJcRxZ5sjqEz7I59c1FqOqfzAr+r5lsxnIJTOOs9ACU0XIRvHUOStSGBHAXuaoUk3HmFFIN+KsXKC5ZPq2xdoWcmGaZ5E39C3i9WpBDzXFt2Cs5vrma7TRrNHXyur/Hd39/+vg8d7XIalCVUwEXDKM3Nu2ByURJ6ma34pSFJUxdXsk+dKlupdrS1HxDZfETzlRqj4nX3gvWaDTCtlUXfQ+iNo31VW90pqiRJQmqZOSmiCLqQvbRlWpkEz6S6lrdMWbbYlq+FRGHNsya6kRK0pTcqwGVkNjNXf7bQVPeQ6HidNZ1KACPhvou158adqwGbb1MBbI1OI9nQ9v1Det88+wsLeeUgL4RMIub1Xwax1qV/Ns7eG5jOBzpORI0apWRqUeOPlN0JnflMo1pgRVt4yXqOlSPaf1hixSTVitaF3LZtjRNluWxZCSR1s5nEKsYkxV6FqDtVLBpZgoSbZLg9JoFEPX0DYV85HkNdFF4ZSoxl1j0E5hklwCbWPptGZojWx7tUJZjWk7jGnRNGjtaK1iMRMosVScx4mS5b02Ctq+wygl2qo6X0x1QJpSktmjdsyLzDC7oVAQd3nJmWM+EZfEMnvMH/+d7WZgt91xdXPL9dUV2+0G1/WM5xOPX564ub3n6vqGTd/xzcd33Fzvef/hPf/xH3/i9fWF8zhirWG32bLdDLy8Hnh5PbKGwpenMy8v52rZkSFwqXM8SsKiRGOUwtvnQAzF9XNcOVCyLFG1mIjklKun8L8LOsgS+2SsKLy1Fk1P8IGYZHOrlTCXtWqwzoBeUTrTb3Zshmu+HL5jnM707c+X+C86eNIFy5gl9aHkVFsG9TaHUVXgFmp1VJJ88HJuMCbKtksplJY5idJGYE65ekzKz5UV1PjhStmTlFBD8B5V2TIl/yzAQ4vATRSMBW0zpFiHo/ZtVS8PnZHyNCNoCyW/WK6aFWWsOIW5hBBW/1SpACWra2aW9N66HshXmw7z/h5rFD99/sLj0xMpRrpuACCGwHZ3RUgZZyxt2zLOo8Se9ANNaesWRx5yOUTU2zkCokVpmo7Vr6RVkh1K5R9LwJ5GZcjZQ441a1wOHFPDAXOW4asyBqPq51DVlvOtnZJDniw56EprjBL8RUqZpBV927Ltd1xtblnmH5nDEVQQ7KaWG0+RcVZUsiFJq+Sc5d2uI2s4L5IaEnLCKclua12D0bmutjVNZ6UNTxnXWD7uNvL7Ji/aI63RjSEb8ARMWiW9tAj7zFpoOo11jnXOTOMs6vB5QvIBcqXBqrcZn9ZGtppWs06BtnWEIHolEbdncvbEVJh9IIXAMs+EdSWFhfn4xFdffeSueYczhu8+/8Cfvv0z+/0V1/sttzfX3Nzd85uv3rPfDPz06RPffvsnXp9fOWup6r2PkMGYhr4bGFsR/3VdS982dTgc0crRto6maUApltVzHid8TIIPrmLQCzWBunzQSqMqHE6pCp8rl2GzDMtRCh8TAVH6t03HMAxoJTB511hM28ilYTJttyfmzOH0LFo1a5jDXxFvU6gr3ZxZU4CSJCg+JwiCPxBNW6iqVblljTHyAiqxPRgtzBWFmEyFWVwHXOmSiVXeeD5KVdFhHbClSiS8nN5KXwbWl4xv5Htq2awpQNd1dVzF5WttXfMrS6mthK62BmVkmKatkYF1HaQb24oiFIE5aWTWRUwkJTeMtg37oaf56iO77YbWWX786QeOx0dOxxO5KG5D4jRN9F3PzdU1h8MzbdPTdB19STjjyFkMeMY2Vdwtw3NRqVqatsH5jmma6kBcDtSsJMHKmCpdQLYRKosGhCKpDzm/ubbELaEvh1z92gUWpnRdafMmVZDkV8kStVaz22y52j1wHh84rZ/x6yyAcCQOOUeZ25i3gbamcY6bqwHXGp7OmtNpZsny+zba4qy0AYKrlRDFdU3EkNg0jo/3N4DheHxlDSJ90EoTc2TJclHZnDAY2hqzu9u39EPifDizxMRiFZMVI3Osr23baJwVr5dRhuALJsvs0diGeYrERiFFg+Sgp0JdlIgZN8aIzoFGGYo/Mx8g49i2htenkX/58RMlF673O7766gPvP7xns73i7vqK+NUH/vJd5MdPj8JfVoJsPc8Lh9PIuoZqaRDTtcxKC65raZrubQYrHXMlNkSpsq0xknlVxMOolH5bm5ciHU3OGXNxI1hBjnjvocAwdGyGnmHTsd/KvLdQsFa2oiVTLRiKaT4yL6Msc7JmXf8KAeHiV7kdcyFe7AbZUoInRgEcKWYp3ao5Un44CX3XWng0gkUVvYgtlmJU1apkLuRfOYSiDPJSxS3m/NbalBJFEa1FY3I5cC5DVaUrqFpdtjuafBnIolC6/ZngV71ORWsURtIikNsB05BjXVkXhTOOi32j5Cys6ZzfHlodM9qKd+3dzQ2bruf6as9fvvuW0+mVz19eeD3NFODh9obp9p4UPU07o51iSAPbbo9RBR0UfbencZ34X6p5VBuDScLGMUYLx0+JaVaTKFYU3UKFrMND4+RIqbOrnDIJqQ61SF2rdub/U2FdqkpVB8vKvokIDZlUEp1ruLv9wGl65cv5e+JywOiE045WG6bsOS8RqxVdU9tEoyk641rLtlh8NBQvr7lV0uqFis6gMq1DkDZ921n6VjxUfulZZxnAayfCz5RhTJ6yRK77LcYZXKfpegNEltXjFxGSXgboxii6tmG769gOEkyZUsZ7qXRFYqE4nmasUwxDQ+MuqZ+hMqIuLnVNyfB6HFkWz253pG97FJq+lfSJT59f+fzlic+PT9z95Tturm/Z7a+gInVTzsJXXhd8jIzzwvm8EqNsaWOMLF7mlm0ruhtXB7/z5Fm854J8iTESQpJn4EKkLGCMvMlKyZztDWAJFY0hG1RFJtVL3xhD13Zv2idrL2bhhcRKUcJqnuZXYlzlfSlA+B/3Wv/Dg+c8HeTDXn/CgsZX74bWEl8rNHklwXdBo2KsO38xk4YgkCZnHVpJ8uDF6S2Z57IqzrG6xatiVuYN9Va++EuUFu9SlsA5yaWSOYXWF2axvKA5SQCcxMc64e1owYGiaxVQatRLUT+vobXFNhUrUEtQhRyS2Usvnamq5lxQMWNq66WtY7cZaL7+hu3Qk8l8ejnw/U8/EUJkns4cTyc2w4Cz8iCueSDnRGM6ik5kRDfT2hZtDWmV10pVZaxgMushmBHUalTSbilBhWZTD0Vd43curSdyW8uZk99aMrSI/YpCbCv1adZZ4la0kex6U0AtYrbd9hturj4wPN0z+yeUkvxxZywlJuZJhpyuXgQ5F8Z5QdmfZ0CpLgxCFMDYkhI+y6GqlWb1AW01rdOk4iuaRIbcIcps3Gn52c7LwnlcUNrRdJZ+2zOsM+2QsQ6ChxgLpcicrh8crnFsNhvZzOVCJtL2spEKVpS4h+OMXqXSyH1L4/TbYX3R9VijWXxi8cKJfne35bffdGw3PcYYlsWzLivzvDKOIyVFXp5fadue69tbtHP0jWMZJ5Z1YQ0SImiMHBDWXmKOpHJ3TryAKckyZg1y8OQsF3bKcuOknPA+QCm0bfs2J0wpYayun0NbCYmBGJNQNav6Oob4RoBIyVYeszwzPkZCiZQMOs6EMMtrkhPneeV8Hn/5wTNPZ3LX0zZip0812tZUaqAICoVxE3LGBF+JdQ25yHyGLIIsbeRWizWio7EOSiasHr96uGhOrH4zQFK1Puoyy6kzCTnRA5fU0ouQSqPBWlKsQ3FrsG4j2zQtSNEcc50LVX5JvGA5qEPIyxZNtDA5xVpdXRi88ntlcjVuqrekVFVki9Q4w/3tPf/TP/5ntOv4X/+3/4M//vFbfvz8hcM4c3u1J4WVNa684xpUZr95R1ERtRxpbM0tsgYV1JsrXsgALSEEWZNDzZSvreFlE5VzNZYmMYtqXeFhvAXIUTIq1MpIazC1LUORlQYjXieVsuQlOVF0u7aBELFodsOO3XDH4TyIr8s0oCPOWKyqK+0oLZezirgmDszCfFGaokWJHNfEski+d0yFOVzmC4rbTQsWYkm0ptBuLW5sSGvAKti2PUY3vIaZMXiauHBlNihlMA1s9479dUPOgXVKiCZV0haurne4VtpXgLZtca38bMMwEGOpY4OVefYoZchZoplWHzifZtY18HyY6bqGvusYGsscYPKJZhBQ2Id3dyileHo+MS/SRcQUOBw9IUb2V3v2mx6tFD6spDyxvlUiCueMVBoloVURM7PKhBQ4TzO+mqJjvFgbqFslqWSVkv/fNa7qNHNN8gjCFNKaHBNTXEkxs9/v2PbikFcV+xJTlNidbAgxMC8z0SzkCKUmS7Sm4xTOHJYTa1p++cEjURUiUGuaVj6YOZMuXqmqzVFKYfIlS1zEb28xtqh6Q0Uh9+vL4SHALr8uBO/RWtFccBJ18KWNIV82X1BbrIvQTtSrl/x1+WNFqI7atm1wVrQEMUhWtJg57VvpmSqStVDbryQ3YsmrPLxFKrBcb+GUwtvqUbg+DcpKRhF1M1IR7Witudnu+Kf/9I/c7m/4v96/449/+jOLlw3JDz995jCOrPEdIS0429M2HSGtrGGiC734uKqZ6CKHvGwjtJbBn9NauO1FKk+ZdVWJQNVIpaLFGFUiYJDEirqxSkkqyizvFUrVYbT455QOJG2xuWCaViQTpWBKpu8Hbq8+8Pp6xZrFSLn6ldM8s/qIVQqspnGWq7YhlcBhWYkoOteQlSepQFSKWMWlDYWY6owF8W8ZDJ2R6BztOm4jrNOCMbBpGnFIxyJVd5VeFGR2uNt2PLxX5DxzyDN+zXRdy83tFcOmFzNq2+NaS+PksHTW0rcN8+JlOO0j4GR2schFtMyBkApNP/Bwd8vt1Raj5CLuGoPPmsMU0SozrZGEsLxjEalI12qGuq00urDdtG+G5IxQB2JVLIv4T8lshZrsGsQkHFPVfdUDh7ouj3XlKXn3mdWLB0vUzVZ0eTERpxFJQDZ1fioG7rZpKSUzThPOGrksrFRFy7oSi6fZGUHG1urYaSe+bIS99IsPnpQiy5rekiWAt2jfki/eGoWxjq7t6yxGDJvFe1HoVkVtKboqW5XoJHIWqFfFmjbW1gNasqlQ5QLslJtdi8WAEqueR709YClFAqVqWZLkWtnmLWNc6SJgEXXh1OTLWSWbEwUKK7zmJDoXdfmLlTyQpSJCLgdAKZA0qCAuaRVET3L5H1WtsDZO8/e/+ppvHu44nM8sPnA8n/nnf/03Pn95ZJ09L49PbPsrbm8/orNmXkfaZqDjwgD4GaFxabuAanCVgb5CVWyGDBSt0WLZypfIE0mEKEqhq13iTUmec/XByeEusgUQbGqQ75kyOiVM29YlgaExjv1wzaa/Zj59Zp4mDqcTLy8T6xLYDR1D67geWm67jsnDefSoJLMzhaG4hs4otq5gisgm+pRYiid6T2MMDsdWb+nsltRadDQEO7HmmVBWXqeZTb/nXb8hppWSV3IKkGS7NvSGrtPMrZAU9vsNTSMYiWHoGYZN3SithCAaIFnpOxrnSB1Y44ihhlAWhXMt9w/v+MMf/sD7hzsMhfPpyDzPOGvYDBLlpI2hm2dsd6IbR9ZV0CrWarq+pWkaXCN6Lx8iWINpHUUbMhLMR31fbJ3x5VJYvWeaZgndNCJu1VoSdxXSkoUYKhm0BhIUMNrinJUNXp2V5kotlEdcOptpmuicoe1aUEVg9Ys41pdlBQO2b7E0aJVIKpJYaUyDThrlL0/YLzh4YqoxqYh8WlfsY654hos601w2TShR5i7zm6WisdJWFSOQ64TAzy8CQUFMOrQ21TRZNwc5V/Vx1eRo+7b1oq4JL6d5iFFgZFpyueTP6gHAzwNXimR4iR5JSxqolYE22giJMGe0rW/KJYVCSh8uSFaKuI9VSZRYq8Iqjrv0wGhdURXSdtxsem62Qx3GZf7hd7/hNE18fnrky8snUikEH9DOsaaFZZ1RaFDVzvDfKb/Fb5WhyMFhVLU1XNbjWtX5lZTaF1gaWZTbKCU57qYOkuWWkdu4VL/c5XuV+vqliL78a1yVQhSca2mbHd4nXscD8zQLUqioOlNRYhB18r5ZrzAlQ5TMMmM1XdOhq8csO4fJWXLXG81Ns2GwnShvk2zISr0wAoGXZWEpivv9Fa2Bw3xiTZFUIsZlipHMLmsNw6aFYug6gbt3Xcv19TWlFMZxJMZqr1DQNiJwvL2/IRfNy/ORw8u5zl00D/f3/NM//Rf+8Pvf0zYN5+NBMqaKKH5dI6ZapRVhXdntTxyPR1EVryK2tNXT17YtKI12ls57+n7g7u6eod/w+PTEXLOvhMSZq1WjldeW+e3zL5qsWhm8ca3ANRdUsaZUAkJKEZ9EQNh0DcmLz6zvN7ROVvS6adjtNmw2PRSYp5WYstAjG0PjurrQKIQcyUphVENZFS3ulx8803gSKpvKxLi+mUXlA9dgXENbebO5iKVe1xjhN81NkfjjHOShV0q+piteQ6KALTmKSVOJiJ2cIzFndC64tierGrBXH/AMdYAmit4YzqSmZ+g2glat5ac8M3WuUdfyl+m/UmLwzFUblCXk/Q3rkWp44EWQpY088Loqk8V9L6I7qmVE5Us1ktFZZOmoJE5tLfMUozXddsfN1RVfvXvHtP4Nz8cjp2lhyYIUnddzvaEaYfhQ9U61Wmmahq5aEuTcNGjXyKFQCil6mU9FiXzWxpDfFOLiLDYYsq54knpA6zpMp6qcL4cqpUoX4lqRGvK+Dc4xdHtSVCxroG0M133DMiaWVFijYkyJRhlsY9h2LTpq/DrzeJ5Rmw7dQVoC6zSDUejOkbOn0QqjM85Iu+v9Cp1mTp6X44E1BZ6nBWc2OAOFEVgJKaBMoRkU9ixsH+9ly6OtQdJQLTEmzmdJv5znBaUU87zQdZ0M4LVhu9kSQ+Q5R1bv0Qq6znF7e82Hhwc2my1WG3y78tAN9F0naSbaSIIoQi14yO9IObOsnnmemaaRaRylfVcyFC5FlgevryeO55mu77i9v+d4PErbXAQUlnMSzU3TstluOZ3OpBQI1fMo1EQ5dbq2pesGqWhyZlnmtwXOsgiqpVtbiSg3hs2g2Q49bevY9ANdv8HaBooEL6hMnaeK7MG2VQ/nE7OfmPxMLGKx+OUHz3Si6x22WcklQWixWvQntg4bxT0tD1Y2HmdbNNV3VbU56zLJA1hPY6srzVBRkxIi6RLFEisHpR5k1lhcKqS0voW7CTKivCVQeL8yL2dBkWpLpy3WSZSxbKrktpRZzSUKuIoVtalvvCAktBavWco/095EsCgViTUa61ogkaO49C/tG0pW9Jja615KXSVJqJSqj6kkQZSwapumYeh6jtPE8+mV43IgxBmtRN+ilEYVKu4y/Oy0bhs5glOqB0NB2Z/Z1CXX/LBavalasSklF0hCZmYg6FZ5V+pNWeUOl32r0sL20dX5XgBNYmsVv7r/SFz/Z75/7Fj9E6okBpOYQiJYKFqR6+/Zqg1+jkxrYFpDBVdBmyW905dEmxM6FUIsfJmPxK6wbQr7jaSTKmXELDoG1kNAD5FlM4LyrEnQnyWISjKoQiyeZV1YJrE8WGfIsVCy2DFStRbEEKqUQzaG1jTkVJimGaWg79tqEo08fn7k+x9+EDheI8uAzdDTtu2b0NZZCxXWtq4rWiXa7ZZt35OurshI0sU4nhjHWXAr+VJpirRgf7XHGMU0SuY7RdIqUkqEOEtqxNDL72Bq+6zM2++UkiBi7SAhCyWKIwAkUSO3Movpul6kBkq9vQbncSTFwDB0GKOYp4lctXwZh/eBDQ7sSlaiYgYhQjj1V1Q843QG1YFesM2M1QPKWIzZvg2IYxSfkTFykxLB2UZUsjmTSiZHMY86K+Dri/BqXo+kODN0exo3yJu/LhQlqNElrgzdANNcxWtCvg+xDsaCwL98DCxxJaaZYdjR1nZQQGOZEqMUJNVekZPMdS6bslw9YgrpkVOMGKVE5VvNqRoIUZzwxTbUqUpNmDDVDhKJiC9NDghphWRdXb1nQfQUqirAlZGfwaLYtQ2GPb3TjIsn5Cx/Z86CDikicW9s/WBW1zxG5AEpFUqoESVR7C3aSBRxqiRCmUNV8SRU+Dvy+yLnY841HrnI91DVWiJJOVE+AwpU0VgNH3ZX3Pz+v/K797/hy+v3vIxfOI3PHKdnDuEEStq3xjS4xuLnIzpBkxTnFJltoLeOkBOLTcQIJclKf5oC65K46gu7+49s3C2+15yaEzYacq9Yy8TLQeHajuMaeDp5Qsj0g8O0mv37htM5Mn47M5+9aFP6LMZZVd37SrRizjUY7aopWWwD07xwYYiLBKrgY+Z4PPLy8sKHDx8Zhh7XNKK3mSdKSm9+xlwyfg1M05l5ngkhVDW6wzqx9kjrhETUDB2fHx85fj7Td52E8HnpAgpga7xTCJHj8cQwDOx2O+ZlJsUklqZdUytfGVfYCusvFBrt3gBzbde+zYG00rXlDAybjr5tiVEwMBI/XWjbhlQgBs/pFGk2Hf0mU7IXjZzSbPstV91foeNZ/QJk1qWwu1I0VwHsmcxATFZwmdV6UHNd6twmonSpymDqgyDKSZKlNQptFPN4Yhwfq6CpI6csSQJFMAkhR07zmWX2dE4EXCGsdetRqj4ky4Q+BEznsLZBXyKJi2wASs6S4FA9WOjKaVbSqsUQ60EA0zyRUqDvNjTG/LwqV+AaV38POXYwFzwrb94UHz0pzKQQ6dpBZlUhoYuv8x9FqtoTKflE+amFdYHOhcF1OO2Y18gUZM40rWes6YGM05Iv772XJIO6AVT6QiqsVMWa8JcB7VqUcfKeGWlFU4i14pF/ZGguHrAqQxR9k/7ZIkNJ4nBXCk01lSKSiofNHdfDHWOYeDp+5vunPxKe/8iUTvg1MuoVtY6M84nFLwQyfd+w2fQsk+d59pQenAKdCyaK8NHriGflMD2jTw1GOXabG6ZSyI3mPCaOZ08TNZGEriZYv0T6QdPtLMOVxjWK5VzqrE8qWGMsm0HU4ta11VApy4PgJdcshVz9iRm/erRx3N2JB+vu7o6Hhwcaa4kxsC4zp+OJdZlIKdH2PU3TYI3FmJbgR15ejqzrgjaFrpXDuOsHtO3Y76+4urqi6x+Z5oXD8SgzUCMb2ZRFMWzqexiChPt1rfzsKUrgojGi91n9UsWwEUpdxISMsw3Gugqng+wDts5jcy4s61qTfjXrIvKNpnFoLdFRTdeQiyZ6CK6QknQSu+0NqqzctH/FVku5TEgrIUDbbUhek3iWbRbvKabHWSGUXQa7MsKp4r9aURgnFUKuWyJTM8hRmiUunOYjRveUDD4G8VJZR/Rn6UGtHBQxVu2ONkB+Q0xcWi5tZHgbUsToQg6S/aS1QdkGrQW8RS01tTFSwZQMAkpl8hMhrhjncLZHVauGqgpmqx0grOBLdaSquTKVzBTOnKYjJWTur99Lm6UTZZYIWqUt1FlZVoasrWh0qjo6xUgmi7LWShXik2bRGh9GStGk5AnlQtZxGGcqUrYSG5XMnIyRgMGslNhClMJKr8eFEiknTkbCjGtjJZrN6nGTOWWuYkzRSyRKWms1WZW8KZGyyA+2uqPbf8Wu2bHrbvnz079yWp45+AnSQkkLz+PMccl8dTOw63s+HWfOKZHmQusLvTVS2WbYtBbTaQ7zE1/+/MIaFb02Iiwki+u9WM7LhDILjdU42xKzonGWlBeMVbhO41rRGzWNw1jL+/cPaKU5ncaaMiHQfe8Ti145n8+EGBk2coBobWjblv3VnncfPvLNN79h6NrK6llla1uFezll5vm1fl+xaSzTzLpMnMeRnBKNk3ndsIu0m4z3E+fTa53/iNhVaUXb9RhtJJV0mvFTfc0vWOCUaBpLLpmwRqlsKju55EKOGWU0rkY8xRilta5LIWus5Gq1DY1zhLgSY8CvkHOUTZgxVHYqSlnIhnWNFBPRumXbDQy7LZqFgb9Cx+NaIcKlKDb8+Qy6jcTuR7LLbM3XoBou6ZuKC4RL5jNZp7fUA7T4QFLyLF7T2AZre5Ry+OQlebLUmVGRUEAfFpSy2KYTxXPONMZWMV8mBBnEFnKNMFaSFqDBqMSynGiMYdheo7SRrUDdhOWUsDiZ/xQRSeWSWMMido8SUWEhR/ETKaVJOZDCQoqLmE9jgBS4AABySYzhlR8e/8K+veE63BAYkUatVhIVsq6UxN2Gomk3YpMo1azqjKqIHUVTIs4aitrwfHips6kiHJaUKMZKi3uhAiDD8YsOStUPFCDtXkqicckCcLIX1fJlnlNX6Zf5QEqFhEDS5DUWLIdTFqVE2pDjChVKFXx40x/tbM/v7v+Wq+6a75+/5TT+RLEnTvGFeR05TZk1SDTNuHqKU8RSRLgYIHoR8HVdT990GGU5zTM/vpy5ver4uL3FKo1pe4ZB83g6onKiqVG+fbPh/mbP8/Ez3WZid+NQyWJVi1K2EhZkWNq2sijJGbSSRNsQI6sPLKskqKYo6aT7q2s+fPiKv/nt37DdSlJETgE1DJhqRxDPVWBdPE+nE+fziXmaBBxf21vnDME1sLVo71nziePhyDwLmkLpGkdsLX4RfO48L0yzlyjpJFIR6wylpNrqyL0sKRmBpgZTFiXvdfBBWi9ra5ZZ3RSaquPSis2upySLX72Yi3WFuaWE9xKtvPqZmBVZK5ocKI2n7x0Uw3a7Qa9/hUl0nA+iYLQWpTzLHNEL6BAp20es7XDGYewgVQ5WeuV0WVtLYkEpC223QbeNKDNLQhXQGGmxSpKvoeptW4lzOWN0NUBW2NXqV3yYCHEmJU9jO8Fh6EwIM8syEtSC9yeUKnQ3H3BNI5VEEjtH1qlGOsjqPCNScMlun3FGwTIRlJVUhZQkWjbOzP5Imidenz9jFGzcQO96qWB05jQfGOPI7e6BkmXIm1KSKkMptC0YK+NZ1IyNDgAAIABJREFUHz1KN6iwUoyTdkj/vPIuKhGTWAVu9zus1jw/vdA4jbWKFGQGE0MkVx2P0mKC1KaC1OpQW8D3NcG0lDdjbt3BcVFCl6o0z/VwT8GjspD0qOZPSREAi4Ic8MtMRrFGWflevm9RQiK4He7Z9jfENOH9C999+ZZx+QvDMNEZTVol6WDbWoIuRC8Hz2Ab+k1Lox0mWXLWuNKxbwqd1Vht2fVXrMuJ1+nA4SngbENqLa+Hic1Oc3+/YdM39I3DNYl+B8VrjBLbwel0wrmG/e5y+P8cuHfZhoruReEr5eD9+w/87je/YbvZvA3jjTbYtkWVROcshxgI68x8nnh9fWUcR6Z5Yanbs6Z1aBw4hw8r/nXBx8yX5xe+PD8T68q7lEwKwvmJIbAGEfHJdvPtrEAbRUag7SkVEc2WTIxBMBcVN6I0hCBoDJDRQqyfo65rQUWaRrMdOpTKrH4VdbNpidFTSiJEL4LL1hBVobfQNfL1l9eJ7fArNsPtLz94lvWI0wXXb0EhK8mkcHTMqlDyFxyOxoraOCYt+ed+peRY41ZkeGdzghhY4oTLIksPOaKUxceZOZxxeqg4xlTPhcSyHCVA0GxIoeZzh5HVH2WY3O3ewsaWZWRUR1Y/EcKZ93e/hqJYl4XVj/TtRpSiSsFb7s9lxZpYlxNpPbLrd5hSQGVJy0wBrwJjnAjLmfHwwl8e/8im22J3X2OR4bovK8f5xLgsLMtCaCrCAtGzGGdIKlB0yzyvZArXVwOmJEyRcvWSoZWSeOJCiigNnd5yf3OLLooQZhqjOM0zpXTVY5UkA6tGEef8M80QpCUtKVOSx9bhsjaaYjQ5yodass0vorJcLxP5ZF8Opaxk4xeCSCa0VvgEIayELLepNn0dymtSrYU1FtNusfv3XG+/5uv3rzyen/ny8hOP5+9I4ZkUCt3OEK0IGq82HbtuoKyR1/OZwzlStKXrG3TMvL4eubrekkNkGgPjITNNIzlNTGfPZr/S9oWvPjbcdR1PeBakDepbUbWvFdHBpki14ix94yhJYm2MAtsIfiLFhMJwd3PNbrup8zAjqu+S3/yCTSvCQL/MNI3h+vqKYTswTxJhI9FFgVwSyzwzTVPNbku8vLwyTRPzvL61azJDFC1XiMLOUfWw0VoLAgVBivgS3+KtU5YL5uL5SimissZaR0qhtmNGXAQpkbLMBFOWmKemq4EO1eok0tkAoVIUsiUlJYbxtUgLrjN+PkL74ZcfPGlcWVC0thCyEkxBUmycxo4t8/zKcp6Ydq+k3LB6iV3dtGKCvLRdbTtgYiNBbNET04IPkyBKMyx+IquVobmG3FGSwufA4o8cjz8Q48xmuMNmWUv7tDCHMyFMpBLqad7go5dZwuETu+GGXArjfGRShXU5Y24FcqS0Rllbo4FLZTdPTKfPNLrQW4c1P2+8lrww51kyjebAd09/4XF8oW12oFpyEebJeZr4dHjky+HE11fyNi1+qWB2i9WGY3qFaDk/zbS25e76ToazeaEEKLYDJdTBi3w+JJHGG5XZbTasEWAkvgSyQlSpVdukaiBhypmY09uwP81zrTLLG5hfPlXSQszzTAKaXm79VD/gEmmkSHEV4JSu1pOisSD0wCJc4aIrbEyrymQ2ZGWJuWJatVTEfbOnczvu9l/xcPU1f/5yzePrwp9++pG2NdzuGgoFowvTMuMPK8dx4TBmCo5hMDiXCCXx1ceBp9eVnz6deXpamCbZovpQGOfEsHV83L/nXbfjOzXz+byyTNA1gpyNJWKAuK64YQMpin2AQvCrEByRh7ZpHA8PN7x/94BrZCAdVs8cg8TbWE0MEdc09NsdKINrJzZB0BbjNDHXqkfC+ham85lxXph9QFvDNM9My8o8L3gfyYmKqzCEIJ2AUtT4p5+ji2KUJcvFSCo6V3H8N0XTmBaFIaeK9wVE3iK0R5MFWRPiyjIrtAr0fYPrNGFNVaoCrtFs+pbdvmXYGEIW7+a2kaSRrCIxeObl6ZcfPJ3qOB8m9jsZO87BU4qlSZo1nzlOE1rBuB55fZ15fU3st+/45v1X3Ow2OJvJeWKb70EbbLb4OOHTCaVgcFuZjIfMEp9YwwGnblF5YA0TU3jh+fgdF82MKx1NOxDKxLS+sPozPrU43dI1O1LxHMZXlvDKVu2Z/JnZv+JMy7ocMKMiZs+2vyYXValyiRI9fn5hPPzE4BpsTui4UJQilsAcZUNRQuH59Mi3j99jtUNliby1bU/RhYkVrwKbbS8bhbIQVJIPTzGYYpiz5/H8A2l17KJUkkplxvMja4kMmwdsu+dwesKnFWscOTtCTIR1JCwLtreM0yfWAF1K1YEvq95UClw8PDmRkieFFZXFddw6cZCbijdIwb8pxRe/UkwF7efypvdRBshKbumYxeTbtbi2IQUhQS7zimlBG0GAQiO3spKYH2ut0CCVEgc+mc423O0fUNrxfDxxOJxpTKZrHGtYOc4LcQEVYq3epNWevQDgUwLvI4cx8uVp5XyWFt62Gt0anDPc3Q9sdz35IAxtrQx3N1s2Q8eyrigUQ9/QWE1YF+EMNxqnFdHLQauqlefu/o6/+/3f8fGr95AT4+nAPE6s60JTqX1GSavqKy41p3SRbNE6Swya0lpMs6MLnchSgDlG1hAoWrPd7lDKcjrNhByhaLyXdgslurQ3am3l+TqjZeeC4GdikrGFM8KDpkwY1VSZQNUqkaXyKZfVP6AiOa/MS0SbwO66Q7nCfEq4pmW/69lvWrq+0HaBpiSGoWN31aOMZooziYwvf4U7/d3DNRvvGIaGOU3YDIN1tD0cpoXDesQ5x5XpyO1KtIHPLz8yjyfe3++52luUWVmSZ18UXdMQy0IoZzEQxkRRPdCSguEQvqDKgVa9R9EQSiTEhfH0WW6i3LJRVyQS83piiS+k0rNkh48zWokeJyjPnI6kU2DoNszzmWl+xpsVjKJr9qSQWJeRtJxJ65nT9Jl5emWzuSWtMwsjWWdWUwg+Mk8jUzjzp8e/8DpN/O7h1xLipxQYxckfeRwfWWOgtQ3n5QVlIpv+iuurO+bTSvARR0PJsNgVHSwJIe69jE+8np/4+KDpUuF4/MwSPUO/x9oeu3pKzPz0/Z/pNwOmM/jkmZcRpTRNo9/Uxakk0XyUTElBBq5tS2Na+l5k7hVUjVLuza+2ek8xBlczpaw1onGhQE1/Dd6DNShr659b9Ogo1LQJrUQZXBIG+7PLrLJfEuott8yHI0tc2bQbfv3udxynTyz5BedaSp4IfiWGjFMS+dLEwrysxCKu95QVLy+JwyGwjhmrFcYptteS6LrfNPzt395wddvz3ZeJ1/NCP7T8L//172ms4+Vw5k/f/ij+oypmvLsZuNo71lnRNa4C3zSu6/jm61/xd7//O26udizTkXk6cng+EL3QC0OUYa1xruIvPFoVuqEXwWff4jrRxuQibe313TWPj0+oz4+8HE+UlDE2o7QjBMhxwoco8dbUQjUXUl3uKnOBrdU5TxEBoFhrqMr2ytnWUhE5ZynFiv9K6ZrRIf4xZ0X/2vWGzZVjewsxRLxPONcwdBqtFnKcKCnSdj2NFdhfO2xJc6HTAmX7xQdPu3eY0BIzPB5WrFVc3wySU2QcWWnaoeP2dk+/HdHmzHpMkBY+vxw5RcuwNZxDYY6J3bDDmIwyK5iGFEWFKjv4lhAhpiMRTd++Q2srwWzrK8Y4rPKU0VO0oCFimTHF4P3Emk4M7YDCknPi5fgjqijuth/x84pxlq224htKiXk6cn79xLy8kvLKPB8k5EU1nNOKLxOlBGIsjN7zPD0yhpGn8zNaI1yWkpnDSA6Jn84/8NPxM4+nAzfbLUd3AmfY7W7Z73Z0puXzl0+s08T15oYxfeZlPDItE43ds4bAOM8CX7Mr6zJzmA+kAm2T0aZDZYPPhU/f/jsff/U1yjhO04GsCoPao5Agu5AkeUMjMcSNVm8QJ+scqoiLfF1mNvsdtgibJqfEeD6xudrXNEnJ6KaCz5SpuEwjmAzjHFoZ+r7jbB3OGYScqas/TOh2qiAcaC4cPZiWFz49/jey1jzc/4Gr7Zav799xXpDVf2NYwspYJkIJwmkeNOcz+FXh14IxmptNyzdXe75sFp6OM1jN7magcy3v76/49bt3KJd5PC0cZ883v97w9/+45asPv+b77z/z06efOLxE9LrQlYbN7o77hx3rvLAGUUFjDff37/jtb3/Lw/0dyS8cXj8zzp8ZjwE/SyvlYyKnTNP1BB8Y+pZukMhnCUConkRniNFLNph27K42jOtCLJnTuHD2ErnjWof11Tx60Y6pQo0Zk+2t4U1trAtEcf+IncGCbcSiUy5tVavpWslvm2eRTQx9x7p6rm82dJ2j7zu21w3aZWyfSV6xjhkdAmk9k1Wi2QRsU8CsrHlG+4JtFCZPNMkgEZe/8OCZOHIcRz7/tLCqyNdf7SglYbXhZrMXc1/fsd1uaQ2UNaB3joLlux+/Z8oz62qIx5nu+MzD1T3bvqcfNFEVSlZovRDTjNKZUgT+pNoTrd0S0kjInnn06Kal73rOxyNtc4vCYJQhJy+83KYXc2RMxDVyml7Fpr84Sghc37+noFnXiXN6YRyfOcyPjPlEiAslrtw2VySlGOPMa37B5MLh+ZXXPLOqldenIyF6NleSE32cj3yZvpCbQiTRtA3+SfE8LXTtyrVq2LXXAhq3iqzFGqKSoYTI63jm+fWJwTWM55HD8cztzYKxCy8vj3w6P3OvHUNRFNWgPLiuYy2RT19+4uH9rxiPX1jizLIuVRsktoeSAtEvtI1DdRuhLVaTIErhY+Dp+TOub7EajFUoW5jHEza0khCKrR40GThmQNnqbDZOBHfGVNWuk2PFGIpWkjNVRLuVKeQY8DnjUZzmEz9+/j95mv4bm92OZnEYc0XfatruhtGvuKy5v9tTYuQ5BrwvXG068k3m89MCxfFwO/A33+z47Yff8uOnkf/9n79ljIHb/YZ9N/C7r77iw80Dn8fPHObA7t7x+/9kUcP36KHBtCfaVtO0DuM0+6sN797f8uGrLaWM6KZnjZqm6/nmV7/im68+okrh+PLCy8sncnOi39xgbCf2mHUlZbH0WFMwRmZkhcKyTDBlbNNgm4bEZUjv8X5hXdda1WSskzlZmyzrLNhVXa0+1SpJ27bYRmE7BRkOzxNQcFZRU6VxDoyuQQsq0XSGq+ue69stWhceP3l8gO2+4b7f8uvf3nM19LSNI5gza86kvFIS9MayPkP0CzSZbi8XjcGgDZisyH5FUUhKcXrxv/zgUU7xdJr5/suJjx97+kb6xpSKcKNiZJnPDG2DU4ptZyhFs6RMNlGER6UQo2fKMz8+Tuy2W27ZYLJBK4Vx4MOMNg3ODCTvCbZgOo+NYog8zDO2n8glMi0Lu0HTdwPFF+Z4wrUNTdMKByRFTvPCOHtudjuO45k1nGhu9mzCzDF5jv6R1S/McWFlZfVnTMi0qsOlhVmvPC2vhNUz+hFvCudl4ceXM10nwX5Jw5f5mdf1SCSw6Tfs9JY4SdDcsvF1U6R4Pr3y6eknzvOBbCDOC7tmz6M9893jD3TOcTi8skaPJ/F0OvAvf/6W5/mF0rTcG0PJGr2KAlU3mXEd6eZXsGLYPM8jy3Ikq4hrWnIKLNMrt1fvRfypwGfPeHyhczumZWKJK+f5REme0/GZ4grZySEqKR6RGD3CgEmsYaXKtt94Rdpouq6lGwZKXN8k3ALBEy5xSpElLEx+ZoqJHz7/By/zt6jhyMqZL2fPVfcP8gF2hl27Y80ea+DYNLSdJ5jMZttzfTWwvTkznrL8965hu7+ifZX01YeHLX/z23f0umU/KHI6Y1Ti3YeO+w8bdveZc3jl9fwXXo4rKWf2u5b9bsP7+4F37xtcf2K4OfHb7d/Stg+4pme329NYw3h65XB4wpcT26HlYfMVRvfkEDgcnvEx431gOb+iSiSsEwWN9yuZTJszTVXmr+vM6+nApy/PPL2cGScvpMplRVUdkDKRfpAE1GFoa3qH5uHdPeM8kl0mrpF5XCgUXH1G+43DaMmP1xq6XnF70/Lx4w0PH/ay0MkTp1Om7eHuXcv7dz0PuytCWvjpONIPHSFoSnRs7hTnsjKfpArSrWxQbdakJVBMQvearu9Zl8i/ff/llx88TmkeHq7oup77K8Nu0zMMAw0OAugkTJ1Rv9DvHHbQnMczsVis1dhkuO972uuGJUWOp4klHfhyXOisZdMbWmdY/ATesmszmoSfxViqreHu4Z6uG3BaA5rD6xfGdeVhf0VJKzlFmmGPVZZpHnk9nXkejygSRas64F04rZ9ojpFde8M6TSx5wetCygE/HclzRA2K1GUWdWbNE4/zyND3bKzlTz89MSZZUT6fVyg/4rVHdYrzceXxdcYtB6zWXF31kDOPry/8W/NHPj8+8vT6zMeHW7559xuImmkZaZrP/PMP/87xdBD9xFVHyJ6nx1e+/fQTZ3+m2/yZYdOxvb0i+BNPL3/mOI407Y6fHkce7n7H4LYEvbCMIy/HT6QSKSrRtz3vut+gXcfqA1McORx/5O76V5zHI+fwiv9/SHuzJcuuI03vc1/D3uecmDIBECBV1aqWVbfM9P7PoVuZZNalrmKRQDIzIyPiDHtYg+vCVyR1VWVGAgYjhmRGxD57+XL//R++3rBaefv8GUKkp8yBj0gI7K2wXa+YwrrdeHn9zPH0xHx88MihtiOSiTkxzRPb4na0tTkNIcSZDlz3het25rpc+PT1V17evnJ6OiJTpOrK6/Uztv1CSHes+zPTHHiY76jfbtzPCfTIXiuPDwceTomPPwa+ve7UCufryh8/PfPvz994W3aOH2aeHk6cUmJdnvn8raGHyH/77xPfXm88v+yk2UWUpe7MB+H+TlH9xt2HFc2ZS1no4coPDyeeHn4hxInaOtt2Y1tvHO5muMs83T/yh9/9IzkdKPvG49MD316+cb1cCVK5nV/Z604I7iYZ1E3Uvr28cFsXztcLb9czpp2Hp4llL1xeL4RgfHg6MOXMy7mz7ZXT4cR//Yc/8PSYCQGWvXD98zd++OmBuuz8+Rg9CDM6P+53P51AG+u1MCUlJZgPhuaNeNi5u8t8WI/EvPLh6Y5ffn/gkHesXZDWuL4uyL6RQmIKiRyN+yc4HjKmnVY7te4UYHnbCbmS7mesVm5bJ5/0by88L88X7u4P/PThEcStJufYuAvFxY0FtrfK5fyKzffoFGihEjo8HGakGcfp4EK4KAQOVOlDh26kQ+T+fqKXje3m7NsoYBoot408BU6nI/OUqNuKSCYdJ263G1VnUnBr0CTZN1PXM5fzmVvdmJLycvkKrXE4CMv+jefXlS1eCSRWKqtWet1Ylxf6bqS7CRFj58ZSd7baefxw5Hpe+PYykg1CYhO49I0pe1JGDZ23ZWP5fOXnpw/8YTpSW+Hfnz/z+eVC10qOyvF44seHH7ldVl6+PVPXlX/59Bt/+stX/vmffscH63z59kf+9Nsba9uYcqKXlZe3X8lzYF3e+HT+E+taSdsbFYj5nhRmSr1y2964bG+8ra90a/zy9Af2Utjrxno9c7l+4fXyifN14Xq7ECbhLj5ye3vj09dP7FZ4+Ph7PvwQQJW9bmxlobbC569/5PO3P/P7X/47p/ufaGZUMyrOxbSAxwdpcJJou+FrLuFadpZWuGxnvr7+SjooMZdBYnPv4vPyxsPjidpgef1G2+oAbZUkQpTE4+HI4WDUpZODMcXEl5edZ73wcrtQtfJwf+Dx/kCMlct6Zrnu3IWZ0AvPnwpfz5WPH+ByqZxfViysvO5nfvrRsFC57isyuc0ntqMKZpVWqq/cU+L4kOiLMMWJlBwTyTGgwSj9xrK98PDxCY2Rl2/PlDYYx7eNUiu3deG2LmxlJx6FDz9O3N46McLjY+If/+HELz/e8+XLja1euH+c+fjwwD/+lw/84ZdHvnz+ypd//cwPTxM/Ph24hMZ//acfGJnWTCEw30OehGiR9bLxersyZeXuCCF4Wu+UjPCY+OV3R37/0yNqlb6uzOnADw8nnm9n6l44ne7d4Gs2tur6vrp3Kp0WnWUfo3j6x7Bc/fHj6W8vPKUX+haJydAIh2D8kHc+5o1gwtwa10th2d1aMVZg8/jiu5xRU+Y0U8wNp1OK5NF+37adcq5IjGQbQkbpEN2kqq0bRQLWXP0ep5lWjZwzve9odk+cIBF65bbu3LYb27aAdAqdy16ZNPBwuGOvO9d9R3UlqVI6bGVl2d6ofeXu/oQ+CLuuXF5XPn+9keeJ3o3X1zPHEFlaJ8fE42kmJTddUjMepsSulW/7xq1WLutK151P327MYWY+RmISps+/8vpy43a78fz2zIULPVa+XHaerjN6KNx448t6Zj4qT4c77nNiuX3j358XWmmcy+IOce3KUoz45V8I0ihl4dPzn/iyfKNp4xgzpVZ+/fxvrNuNum/85eu/c1u/0ZpgTflf/+mfaa8vXF5eKCJsGOf1RjejtMbr5StfX35lLTe+vf3G+frG4f4XPmyFdLmxXG+8XV/RoHx9/UTZd/J88pX3cmNrRprvkTChWjlfzy7kPTUu62esNroK3SKvb585XzdkEs63V4Ia85RQlMM8M0vi7nikx53r2qhETvPM8dSp2oih8fOPB37+ORNyo9oNyZBaRBpsr8Lt7MTJujf+7//nL3z+beVWO2k2Wkh8eW7MR2HunXbt7NE7HBHhtl6p1bi/f0LyFZYFKFwuX8AaMWZKX3hd/ogm5TR9dKOsALflmdfLlS9fXz3qupXvGM/dfSTOir01TofOP/+33/Hjx4lvn2786bcXzmvhY5746adHPv40MZ06+mIsy8KPPz5yfwqc3xofPs6gxnQIpGBclwsfP5x4Ot6zvFbmb0rTzv0p8fGYoUfmvXPVnVOcOMYDooW1LgjGj/d3bLcLl7Kz78VV7IQxQzu9oLbBdjf3SpISQI1ZDzw8Pv7thef+NHGXD0xZ0brzpMbvZ+Hj7BTrvjVOqfG8Qb3utNLYy4bMrufpRdgFejCqNVJQ5jzRGlB3oiXYAnUX9l6xtg6jcKW1jb51OgXSnfs2WyErzKfj8BtORIOyLWxU9uHBfFClGmy1k7ISJCNSWduOlJXH+UCOidsK+1KISUmHAGFn3ypffj3z269nfvz9PfMhMSfhx4cDl1a5O0U+ng40dvbSORB5yok9dFRulFb59nLh8KAcToHlbaWIMuWJf/n2F6x/RoOwlgVK5TRFLteFf/3tK6b3PN1nwpNxjJG7cGQKgWs5s24XSuss75azSWjWeV3/Qn7e2bfC5/M3zt1THycTqlXeli+8XD5xW2+8XF746ccfeJw/8u3rV769/Jm7fM+yFbbSCfOB27py22+EqHx6/o3fnv+N8/bGdbtgBi/XZ/786X+y3P/ApEZvC6WvnG+vbgSnEUyx2nl4KPz404nDdMfy9szb5cr8cE/nmdtqiAX2XgHl0+dnXs+/MX84YMDDQ2a+C1DdBiSnMCQmQsgTMbhfdgiCxs7DLDzkicPkrgpr31k6RAkIidOs/OMf7lhk5eVl41//55UpzHz8eKLnheeXDm+dp8eV5fWFKXbK48L1diZopdorId2h4Z7b/oxZpewXLnzCaKR05Ov5X3m5/YXff/jfoQrdCjlDs87dvfD4OJEn4baae03lyN2HxHxK6Aflw0Pgp58yXz698evnG+dlRYMQs3B6UuK08OXtN3799sJ5vTGtgbs9sZdCngNpEqaT42+5iY/cofL08Qihc9lXTCFp4jQdOBA4pyEz2Rsh+up9XRcCxn2eqECISreGitBE2FvzAM1klNa5rhtl7zzFGWzidLr/Lsn4mwrPfDq6874Wjuz8dDB+mOBhUra9E6zgQXyB7dYofcFkR22E6V0rx2liPk00zAn02ggmPJxmfn762ZXN6xmJ7obXg9O/k3jyIda4LWfezi62tAYxDTdAUfatUMpOi4Zi3E0J1Ljsheu1srbIddlI2Snnl/1KasLj4ZFgSp5OpAnA2M43tmvl5eXKbdlprVC3jWUvvKwLcQrUrfL8cubuLnN/euDtLxc+/+WN2hofnw4c5sT9Xebp4z1rhV/5RguNpVVqh8enEykFLDbKt05AuLtP3Nburn2x0XInTp7m+LoUNttcQIl5HE0EiUoWlyp8ef3inu3qJmuGsLTKX86fmYOv/d+uN2rvfJQniq3kU0By5/nlM8/PF7bq6975dOKyvLGXM9/On3k9v/Hp7YVbLxxy5O36yvPX/5OPD0/84+//C8fTPX/80//gbX9mbSulNqQFjvGOn8kc7n9HaZV///X/5bJ9I9SZtbxy3Z11TQB2N04vYiPX3Me1vSsWGre1cn270qry+OMHpsMMcmW7Fa6vO8eHwO9+ONGqwwG933g7v7BuO1CpSbkLR3754YE/PVc+fXqjNuGXH+/44YdMtcC3a+NqjbeXPzOHwuF3R2fX88Y8N7q9EFWQuLKXC0qiN1wbWIQePvNvX/8vHqaPSIfWN3pbMLsSQycnIWfheHfiHw4PrNsVQmXVjbfPV375+SM/fbzj8nrjct257Qshd453iYcPynx3pnLlvFy47TfmWZmPiZgj0ynw+OHI8SBOZgwTUxRyjhzmE1Hh4zSTLu5osp4L+eRbyQ8f79GolP3C7Xphr4WyecKrhMDpMHE4TYi5/XGO8l0uE8WJmnYP12efFKYU2O/b38fjiVNGgkHrPMyZp0Mlh0arndvaOC+dtQd0nt34XMxp2bWzVaNQh/evO+k3a5S2EnHp/VrO9OLfYFD5nhhh4oLHuu5uwG0dG+Fu12uhTpmcjtTuptel7WhSz8OyEQZXO9tSiVSWrVCsU6mspSHduI9HpqhYPpKPib4vnN/euF4XdqvMj4HSG28vC+ve6JMiOfD5eSEn5X8hIG3n5bbx+bJyN5/4w+8/gjRWmtuSAAAgAElEQVQOj04z6EtjvpvpvbHVyr6svNbuQqoCslbu7jNzjNhkxBDpTdhXZ5a+vX6mlM58Uo49UYYn9XHyMLd979zWhbW415FGRYd6faexl0oLME+RkAW1wNIWtAdSVr69PHN99pHt9W0Dm/g/fvcLe71yvr1yvjzz/OWVpRZ0DtRqrOXGWnauX1/pLNzlB15fXimhUFKnBjfFr9sFvv4Js4hJ498+/Q8snymvoLh4WCbH1GovzHOA+UDTxEEjUyxsZWVvldtaqWegKnFO3KcD08h4a0UITXl6mmhlAe0uEG6NVhpFq0//ceJjOmD7BB1Op8jjY+T+IXHM99xT+TR9xmLj/sMHumzctjc0fKNuG9fbr+T07Fqk+g2luBRIHtj2jS/XP7LsCx/nidLPtNZZ2gt7fyXHyP3DgVYSXRr3D4p0pcjKX952btaRAFtduK03RBs//f5IehNOp8wPP8/E7FvGYMJdnkg/TDw+HcmTd9bTUTE1JBimnbvTxP3pgUOeWYrjjCHD+tr5fD1zmTYenu65f5rQoHQa59uFy21z98Ap0LQjWTGpnhpsBemwLQWJyhR9iaRHJXecCiOO9dT977A+bYMUFc2w7FuO11unrI1PXyv/+gJnPTCdDpS2Q1e6RD/4+07FCAJbryTFhWvNCNJpunEpG9ahi0fD9NY9/0phs8q6rezLToiRKWYKBmGniVtAdBPW3fOAUnSP26IeDdIUDnfeQi63FemCRaNW47LvnJcbISmi5naa8cC2XbkujXSIhO4MrUO6Y86CljMSOz/8MHGwQDT49NszX15vnE73/PzjzwidworOka/fbmzVUI1kEnd3yn3KLLed69vCtjZCUkJKyF5QazQq1626XSjwl5crt73xKJk/PAZ3z+meT59zpqkgEqnSvBU2JeWEWWcvbsmaQ+Jumsg5UKLSVNmscnnd+e3fvnA8ZE53B26lcr7s3OqFt91Ybmde3i68XTd6FA4pYKGxtKsvCFrj6/kTfboRQmTrULuLGA2jlML18ivn65Uqhdf6wiEIbEpAiXniYTqy7xuX2xWxSMJZsukuMqfAWnYu20apbm0dRalWqetOViWinI6R0+zmcq05QbHUhpXOthUW3JvodJxQmzlMM7/7+YE8RaY4hM2aWXljulceHp6Yjkfezjc2faGYsZUbtS2k+EZh4XCYkKb01Emps9uZy/bMD3c/MJ+MHs/u57N989imaXaJQYKX8zNr+cphChznyGOYyXeJmCtvlwuvz1eeHifSY+buQ2Y+CMc73FZXEiEJGgzJjZ46S1mJM2h0kmITt8BNIdH2nd06herprtvO8/PGfusc58zdZefxvHC6z3RW3rYdE/h4mpmCcK43B5O1U0pznytx7pBLc0Y4ZFbCQ2YqSsiBrVbn0P2thaeuN6wKUjsvtcLeiNY4v1b+9KXxl1XQR5gOla2vbLVSxWhiVDq1Qh6JL0Mv6hT0pG4yJp5c2OiojQAylIpRW2ELnaae2w3QQ6eFwq6dtVxJMo3scMNapwehKVQLhCkziXF9W7ksG1kTU0ocJvcWudQrYkZAmSrEMHM8ZMo+0dQTEeZ0ZI5u0F5lYu0rp2MmNeV62/h2XRCN3M0ZaiEencVrBCxNpNhY+8Z63ZkX4fF0z6QrWYVbKeytf4/tDUmQCFvpNHfTZq2dl9cNC3D/6CmW0yABFmugoCkOrxSwoMQUiMMEP8hIYrXK3WmmhMhW3IPXWucwucn3dJy4x7jsbzzfvhDvNtZl4+26UKo7zx1DhCx0mmevY36zhZ2groourfqLrz42dVaoxto35NiJU3INUXBeSlBFMfa1cUwHtMPr9cI+BU530dXWxSh7d61Yr8SluLVJTJgJ80GYZsO0cas7ZXOfob26WDY0YQ4HHqZ7ANIEv/zuiRQyL19eWSm09oKGwsfTA3d397R9ozUXL99Ko4kT4/YNRBtT/gcmOdLpLO2Vb8ufUYH7u5nCC9ttpxVBQyXITGkrwbq/92GnW4EkmDZO95HcxAMDOxxPidNDRubEfBBMN5rtlBaYUiIfIvM9tGWnjvipHiqxBqK6QDSakkWhdWooEN1xcdkKl3Unx8x0SLRe+fL1hdczhANIgp8eHvhwuGPfbu5yIOI2xMVtV7saLZs/56bIDuCx0C0KxRXG/CeT1n+SJLou5KZQledqvK0N68ZlCbw0ZU/KpEZpXnRuW2U3F61J87C5lDJJw7BfHGplE4I5SLWsO313f5UpxGFCHtjazto7JCEKaDNq2Qfbs/F2u3GaQCIo4qu95nR9iZ7xvmvDsrCuDVuF+eCWGEbjWhZoxowHzMewotFIk8cuh6h0aTxfXijdHEPKSpNAq51rrcRj5i6fmGRi23c4TPRq9FKJOgFCT5EUFbk2rpeVW1vZg29zxAJN4XSY3Xc5QToIXYytVB4fJ9atYSaU0sgJJAXiNNI/G1RpVPAM7uRaJTOhmRAaxCxo8qidGAL76nYP94eZH/63nyi1ozlwOM5ucTpDqSu1bASFp6eJh6cDp7vMuq9s5oWnbJ1tazyXG4dDo82GKS4qNSM2Q6MwJ/OcpaAkCy5GTG4ed7teWZaVy3Wn5htlb1yuG+GgHB492ieGgA0ZRttxFnv04L0AoJ2X5Uw2X8tHjW5xK5VIR3rgPmayNvZ6RqJwSDNlK+z7TjL3aprmwOP9A0EThULUzHVZsNCY7xJJhLpt7LVQy848HdjKja0tXNZvHPMdr7dPWF+I5kr85m5IlAbLurpnEVe2tiG7oSWQT5moQlaF1Mg/Zg6HCUKgVOO2Nko3JLjDJQgpRw5DFLzvO9vmtjDzLEw5E4Mg0rEAxRyiiKKcTpn9sRMl8vCYRny0+aWXBA0dleYe5laJh8ShNcftROgKRWBvxiZOZo3dkFUh+mUo1kgG9L+DuVxbJ6nQIpxbpzdPqqyT56YfVQkJGp1u4jIGgA6H5FU1xkhQR/ijJKJkFwuWTquwLp1aO0GMSZSgCUHZJNA9SZgmIxGRThThVjs3KcTonjpN7LvBVQgA4n65t+KO/+5M7poXAzU3Ser4ZuUWDGyntoCkiUMa495Webmt7Gaku0QWoTTBvTYDUwyeb947RNhKYbu5pUFKQ0pwnN11kMQmG2wrTWDb3bTpME/cTxOtGqX7hi1IZ25Kup+Z1dfccwokdaqBDQuMZuYKdOvEFEg5uB2JgZki4re+huS+KaWwr6ub21dhV6EHCCFyd/9APMxsbQEraE6kj56BRjTf4vX3lx83mcITQropKUSP8BkWzhZdQR1y56ABmo9YOnRDt+viNgx7R4JguaNBOEgmpUTQREQ4xsq1gC+gDcU9aFA8DYTG1gttg1ADYU5Mh4lSDFkNRMmqtL5Rwd0tVzcva71SrsVJd+nEXjvaVqwV8iSkKmx7I1oem1bv+Eq50qKnkbzeXtjqiqpSykIS4RDTINLtTHGHFrjdVnYqW98wKzSMFBNW1F0cWyMkY54jQfZx+XrwZekdWmUpG9qcYzUfkmdzJaOZjxONQFPxzkMMWsEaBFOmJOjdTKhCXRrTBCEp3d61XAxP8MqlXGlS/xoBVf0Su9VK9aGEfPDOKoknleytD6cFqM2+u+r+TYWnYVgQLDtAjIxMJ1PmKWFjZVd7IzTjcTpQaSz7zpwSeQTahSDU2lBz0eL32bAqiYxo+84HUA2gkWid2N7TRcFCRSb15MJeqK2xDAp/tU438ypvYyzrDaGRsxuypxiIQQjNUNxsq9bGYr7uFFFiSDzc3xFTZGsrW72g2dt1qx3bhekQCClgW6Oh5CkTVFjOV9qls9XK67oiCj8E5eNxJqdInDPTKcGtodvV18AmTNHdBKMGJhRNHqOcmuezP8yJPiunu8whK4LH0tTW2VunYRCUkBN5Sv4zmniSRYvM5tamZWts2+oZW1GQ6F1iB3rdib0wHTOxGW2DfgyQO/u+cl4X1tLYS2MvhgTXAU0HJZjS1R0K744HBDcK7233aJXmUcseIeQpHzLcD0MQZFIeP8wcDhNBI9vmVPxJI7WuSFMwoXrSMjkHphyZY8CkYX1Fu4+UaQrkQ2Y+TC4d6YC5mX6RylqM26WwLqtbldIxNbpGruuOXs9EM4J2JPmhq1tjsR1yRlsixk4rCyVmgnT2/Y3WCm+tYGo8HA5u37HtbMOgbr8Jr+eVpa9oNg6HhMRAnAK9N78Qyo5EIRoYla3AtrkKv3S3BKEIWRMS0vAsb8RZCQd3GCQGJASqOtVCzDudOPyFcoT7h4kyFVKEmITelFY7zV8jiD4Cuj84UAU1HX8JKkZUJaoQTYkIpTVqHxFJMQxTsr9jnV4FmnqGUxR3AHd/5UAKkY5QS8UqHl6Hufl07YTsm6ogEMYNTe+YdugBteBkwpzYh29ys46JIcGNiYKob6ne0y9jRE0Je2Ovla3ujGQu3vPWvXhBnpy013E3uxC9GwtmbmpuDNfCTu3KdFQOUybnTIiBxg4ihBygufCPAjEbc07UpKzvfsPWqG1F1DdrtsK6Vda90OnkHJlyolalVTfJzkEwT1WmtE4ayRuMcLcu71vARgyBec48TBPd4Lx4tpMBmoZZd46knJz5TQUmokVihV4qZV89uz4oKUeP15UwDMMqt+1CJhPcQYpu1XG2tlPNu43WfGyIItD8xkxBaB1Cw/PMsnespTTW6tsQ74QE6Uqvjg+FpMSk4wU1aLhf0Gmim3dtrQp7MWrxZAUNyjRHphiYQsLwg1tqQ9QtIroV1t1tIFTdAZOgNIZm8HZjuW1+gKZA/m6Uj/vxTMFN4MxzxlptXPaNdJ845EBUhpFWAYykHdsLy+qJEXH2QxpUSVHcRnVrbGthr5VZEvP9zDz8nj2Az7vXtvvfp+D8mFqFshul+6YKKZCNqAbmyaDz0dNKBfc5QgRRL/IqnmtXe/eipoH5EMiToAhBI9ID67ax1wpiNIFOH5YaHgJY8O5WVd1IPwhTDCT3Kcb9xPU9GQ9R/ppQ+7cUHkRoKhQgdUGbQQVToaq/sFsrDmw2Yb1urK3QeS9Qf62UQSIWxFMVUEI3Ny8yj2+p4obUpoyMqOZ6mlJQGcF6vMv7/ZDKkIOY+XpSzP9FiMKcI0JnG/6yhofLu8WDW7Wa+QeLGLN4nEJpGxoyij/4ECOaxoMsfXjN4MmNpdLqRghGTkoKySUDGJdlI06BEP2ATdkL3x4iNQSyCi2qz/+1OMFShvNdMVptVDV26/TaWXZfpaLBO53uLlsp+uiVYiQOIyrDg+syMw3Yiltrak5MKTLniRyGRf2++6FsG/W2EUWR5lvJUnaqdUhKMCM2JVsnRldMt9YJ4po+3aHdCtZsBMZ5sBzdC07WDDLRmo8VPRi9ja7ztmG18OEucH93GIpuNxjb1sa+NZoY+RBJU/Cs7gq1Nu/8ike0BDFs27HNs73BI38UPw1R3beomVM+Gk441RHqKAhRAolAMIXcWefE+VJYykbMyU37mtF6JSQhRUOs0XYfdUoohDm4gDI2SvGgu5yEGCbuDjOP05EY3GWzmxul5ZTY9srtUgnjfe8dpI2OA8Gku0F7c6O2lBIpBrcuwdn4ZkaUTlcBhd4Ky17ZY+AgE4dpJkoco5AiKZNjpOyeChEEhALiXczeKlvrrLVD1mEmFzmE4JBFb3RheDE3evH0ErG/o/CIBVp1FToGyQSzEYinlSKNnUZpBqNIFNwsWqWPEDuD7rM9MYJGeneyn1uodc9nj+oFwYaFwrqxLc7IlSDE7GkVrfQh+Q+kHD1CpyvWFOtejKJ4CkJQJYjnT617oZVGl5GZ1DzNwsQvRWtumr4HLyS1e1yyRvWXuA1DpWhUCqaeY12b38RBPd8q5kSaIndHv5GCNcS655urjDHvPWd9jCB0tuYdTFbP6ar4rK5ZCQqtNG4GGvlOJDQT99cNgRQ840zFn0/AMGvUZmyljGQKRZP7ByfUY6KDISNWp+zN8azxfYUgjBUWdCOLOgAJ3z19qwlR3Hj+dtmwbWOzd8xN/n+Xjx8esUCtndphr8a6Vy5ndwec84GTuTGaP9vGshaWrRInNyaLwcfkbVu43Xaua2WphTQF0kMEHXjgWKUKivaOmocm3g1d1brtrK3heK2hQXz0E9ypEOWYJj7eeQGsVtnG+28dlrpCqFhoxOiui5fbSGXpEGfvskSU+ZDJUVACx+PMcZ4w8/eyVccuQ4zMKXre2OoTgIn4BCD+7NT8gu+40yPRqQseG+UyhnfXR8X9evrI3lr3iomQJvdI79bZa8XoqKh3uqIEjUQJNNtoVmhAeY/RqUpP7v/s/x9/XpGhThjWrBGY3i+2v6XwUDzUzMw8HjUGx0aaYREsQQ/QxIPzau80NSZ146dWqzNquwfDp+S4Bd0zc1o32t7cqDwEpEPfG712bK30rbOv3QHQ1kkBpHp4YNTAnDJRw/eXwbqnKFj3hyBZOeRpeOp6kBkKG42tjrzwoMOh32OT3130t+b8BZF3J4gRLRvtO3dBu7HtzquhAKEQcuA4JXKaBjjvaQg+2tkAhfEYFzwN9L1jLeY/m+EFUYKbNqkEv/kC0Hx0RGy0tuJzvAoy0kX9hvf4k1KKy096h6bsRdlUhr+LdyxBYDfz8MPakKCOS6XoG0UB6UaMStDmo6A1t48dSvRkgjaoGxT1AxBViIHhmFcBx9ekN+hCMc/4rtWJowUo5v4xrXW2UljWna0MzhMOlErzz3Pbdm5b5bpW4to4pkQ+BTQpLfhFUZoX1mSdJMppmplT8vyrbfcxUcUd9CYlTS5+rnsjIswp8HCIXLbqXVIUYhRufaEW8a8xHBe33TdIpTemzTuREIIT7ZIHKeYc0QBlb5RS2XYPAzjGxGFKhGq8bZV9r1gYl4x60XLk1sGXNHm8dTePQe7i28+knmen6jw3TX451a2zb43ttmPJL66tVawX5pjI6nQFVxjYWMIIMSgahWjDArZ2dilsGJPK0Evqd6M4mtAHjvo3F55W+jAnEpiEZn5D9OaHRWKg45yd3fo4TP7yrLViVtyfpHWOASwqSPegvW3DaqcXP3TJIEhFot/k2iFLpAZj7ZVWjGCG1PeHEokWSSMTy6ITHnu1Yf0J0bwTCDlRUmRdN4/NMaPa2JEIw1XPxzcT/yCbNSz4zREGfiQ2vOQUwpQIHTceK0atnU0bayvMzYHenDLTnIkp0qyx1Y1ihf79MDbacJLreGHCHNhD1R3kzMACwYDqkcyaAp6tN4pQ7zBeGnpFtHuee29AIUb3zqnmSa3WCxYDOYSR7c7wwoG9++cXgKRKSMM4vA4gunsX24pRGuzFv4ckQDVqN2exKxySj3++Pax4Cqqzq9/FhuBfA3H3vLVWbBda3dmKj+0hKikFT4it7g1Umhejo0T6GMmWW+HulDzXS95zG23kWHmyrRdpaDn5c68jLUMg4t1jEKEOiYuKMsfkW8dm0IwuwtY718U7gbobZRSIZp1lL7TamKM7KYY5kGIYI77bhpReaNKdw4aQVJljRObEsijL5mfNhEGngK5KTkoI43/F3wG32XYMRvEYKO98xB0nD4pqd8vdS2XTTphkUFEaYorgeqy97FRwyYSIZ5TNRkxu1Ld3x70282ioHOMAlZVM8LMlnf0/rjv/ceHZqx/gEJyV2upIJcSwBrL3kSPdHHkfm4odw2qj9o2tOvCbekNbAXPz6bJuWHGOBybsu2cBHY7u0BZD4DA7Sh/KRpdOVBwfMCH0ALtH1tpQtTdhkBf94CgdFSPEwDRF4qLcNjfwDiF4F9JdoiHDL7iOlAZUnbENnvLpSCCMf3a8ZkSKbL6VwzpyNcJ15e5u4ocnAW2UvlOqsdeN3aqPSeq3elPPvpLRlo+uebT+wdfn3VfHVo1SvaOJKTgo2bunP1jzw2Xdc7B0qPeDkEXp3d0Zm3XfNkkjakbEUyTm5J9DawzJRUeJJIn+s0lFzNAYiF0oxTGSNsbj1rsXp97dBTEIQY2EkcQ8ZlndCU+kox20ClGNGh3PqK1x27ZBud9Z1oKocsiRw3FimtLAlpyomMdIe5c616vrBve9IiliGp1J3T28MEgfY69zikSUQ5oJo4vv3eN/6jCzjynQq0H37zEFw2rFmlALVOC2NpbLe0ySP8cpOX8tincDNKNtnb12f0+zOL+GThWDICRRkvoY2XMgT4F+GxdA8EJjzde7Gl00qjpGK1WCOWCvONlWun0H9VOMpEMkZqNslbI0ylLRHpjvIqou4O7dbS6KecHtOnK4xqZKgtKb46R9dKUyAGhRYVYnsvbeR9yO/O2Fp/Q2fmP3ye0jt9kUf/FWZ0Q2c/awJH8wTRhJn33gEIFmjb04mFZK9e6kdWT3Stw77LVDVO4md+yPKkwSHK1XIQbBgo4zprTioWdoRzpY8gKh6nG8qg78BfUbM+ZAXz1FQd8TNHWsEd06DDPvcFSUMJz3DO8K/JIW/7Wtf38xPTzPKKtTy9vqnUOcI2m9EUtF8Fs9iG+FCr69U3RsBoadCoy53oHO0BULztque/EInOZpmzEqJo3eKsUzA31/ODRvcYxsjhX4UiBgJA3k6JE84T0E0DxPq/ZGHXmHpXe0e/F1QN2/T9eFRbQLUbp3B+1dbxe9aI4b3s08uz/kMFIwRjuf1AtcEAAH1JfbQu8Obm/r7rG6KXhyrgDdOwZRyDFwfzjwcIzcneq4rQvr5l1ltxEyWJxkaSIwkjlTjARR0vCHblVY28qyFZiMTPBAxO6NWQqKWKB0DxwsXVgvcH7zcL35IBxn70SOh+jFhIjU90jkimlHGsik9OAktRA9Vlq1o+LR1XEKkANWfDMXRbEgSPBfj47zJoz31Jn7Jr4Wp/ueN4ii6gTWnJQ9qFviluLLH/OzYvjv53qsTh9m8V3GtswbPf+aClmUHII/Q42e6y4GTShpbED731F4xHezmC983tNtaXjcxrLsYEaYxs0ancDWcLynNPOiJcbWK634HGrdR7Uq40Yq7ziKUnqj0ohqtOqhdCa+Io9xhNC1sWrdvFIb7fvKNoRRePwUsrUdNWWn0pOQJteSifgNH0ScQCbvLarPyGLyXT9W1QiDUOTJqIKVjjUhzYEkTgLbxH8uD+SD21J5TQtTbBynmZwSQZWiLtj0FHal4RuELmO+xm1DEfVtVQiYGZsCOOgdxohoKtTuL0vvNj4oGTcebgwuMlpxyDGRNDDpKDzBX5zWldgbaYg62wBJt+Jsn9a8+7VR2FXEE1e7v6CmQgyBFBIEdT5Hr0hvjuWNg4LXRF/7C84b6uag6eCDtGYeZtfNs967UffG6ktVmlU/gME77HmamGc3LL9sC2/7xm3bvXOrwy1PIc+JOQoahRSm71vE1hsi0ekF1RcRvI9qne8Bejm5TUdv5iN9BSR46GLpTJMTyqfk41kwxUJgNd++YT6W+mviF6l3hkqheMdlnRI6IQcvSKJgjqHEDDGNvDoMJaDm7gNm5pE/A1vp5hhbQJCYmGIkafCgifGeTkGJQcbI71s9zPHO0rsz9mtHuqDRZREpBqYQyRpJQYk6tmrifLg04Berf8dWS+Nfb+M+Qtk6rp9Zlsq2NiTCRGAOyiE5L8Lo3JpR1HES1MFUxgEJYw7tzVmZosKUEzp5hrNvlIKPcNUfSh7Iu0tQBkAgjS7+37Ub2jwLSsYH08zB5m6FzSpNO9PkBcdMvXMYG7MYHaVPIRAlOMALDqaar2utvVMExrp6duS5mYOyhh+MujomtVwaSQscAinUEU/sA7j7xLi0QUbb3HhnoeKFTwMaMlPyEhVEEBbaSK1EfDvWxWUWzmpmrEG7J7928Y4hClNIzDGPUSCgOtpo9Q2XIKML8sPfbGAY3RXnrXvHF1SpzXGt99iVoIpqIKfksTdRqXVo6Ew81gb/DDX4jKviB6k0Q4r3kk52a4z8VcScQU8VrME23oEoEFtnrYXjrByOMykmKp1bq/RS2fbGvlWse9ZWl/dtYMcGhiDBV+mMjWGvnW133Z+Mi0nC+N7GyqiUhtAJwVMcTEcxEBl/7wfaBdBuQ4s6Tw1z+Y8O0iXjUijdvEDR2KwRJyGGOF54BqfMOVgxeA56GHbA7xYVzd4jwx2H1RhBAsESgUQMEUtGmzxmOuuQ1/hp8hFfnLJSR9Fel0pkOCJMgaiRHBJJgkMO4+etrXqBHnhVlb9Dnd5HNGoY57z2zlYb226sW6W1Tg5Om56io/dTdHZtnAJFGzudXb0aW7Xv/AGaYXXAJgPcjVldW9UbNG9PS/c5VhGKdaR3evExp5unSe7NMZ3QnJkccmLglWzFRaXfSVBhPGVAUyBGYcqBFP12SMHTK6z7y9glUM2jYHlnZwZlTtGFnL04c7N6rxJKp62VXo1tM26rEbOxDdq7H9LwvbPRzkhyUE/9xDsWD/2NZMlEyQhOAqu1oL2gg3Sm4xZVke+brm7GXjrL2vx5N+FwTAQJY9swqPCD7t7qwFWGHEJwoLuNm9Q5Vf07e1jFi8rWKrX1QZYLqJgD173T6thLB/hOgx2reRss5i7dcSn1ESJpZM4JMwWrrJt//fdiLRK866yNak6+SxTup8pxChxSpEyNSylocSY7BphHv4j5ds5qo0vxy5DkfBc1ttYcgO+dPi6HKEKOPkbCAOHxLWsMjELq/lAhRseXglLM31PK4KXRfX1vkDqEqsSc0Oi/YeuNtTdqMAdu1dtaEyA6B2mafCsW3wuvBKz7JWso1XxNTjeCOTM+mhLMiYK+lvefyUcZf69V3i9ET6VVM09ZLb6pK+YRjDEN2QtDSjOkTPtW2Frx5FrGSPuf/PEfFh4bQG1vDWkOdpXxQqq4M9kUlCn4h37Mmax+k2c1di1oK5hV9+cVSBoQU89Ix+f39zVjymngQb4G3gc7N6m/pLt5mmfbKq24snttnWoer4H5bTqjyOzd2l47Rb2Fbc1vA8zQpKQUOWZnEftk5nNxMPm+oQtARim9j7dLOvoAABumSURBVO0I33OrRSAN+UUf4HAQvyWdgQ3vKyORQMcB12A+OzMOeDTBRIniIK2Kv1jeLCrSfUaRNnhAQZ1/ZO8HCwdQo4zbx1+q3jq9GAXl0KNLVgYG0PG1eGmVvdeBXw1uzvsCYTwrxvhT68C5eh2/zkcj3+4Line2tbSRyeWrXPHkOb9wRHCWug3szi0dJhVmTRxScj1Vi5RWqc1/rxgcjwHfePrNrnT1rqCPZ5pjJMdIDNv4+s6+le5EzFoaUZUmThvvvhpiscbaOzveYNDdoUDHooHgBb2bEaKRA2zq25+mzoyfkvvTNBpbM9rW6JuLPDfr7M0JgbX4DDx1ZZrDsItxkWUZz7r30XOLkpJyyIl5MKcZGytFB+7mue9JvYt38NdxzvfRztn3zdnyBLoKFX/n/dd40VDxlXxH/lqoW6fFBhYQ66NgQW+VvTW2Xge3DBgKhPr3EAh1EOd2c4GoPwzHWnLwv+YkHKbEIWemmJgkAUo1G9unjvZGjs5lCV2Q5jecSmSSQIhuVBWSR+v22jCroxsyb83F2LtX4m13l7TdvP2X8SfdeReSBMk+q9q4eMXcggG18YIG5uh8lRxwEyVx7MWauSeu+aYgq6Id9tGiW+vuPyRORCy9uV/J3mjdX9YQIKXoVgYxk2IiRkG0ITKY3c2pCIj5+tLU9aedUSQM7Q2Hufv3Vrbbe1st4/sZqaEWULOR9813XMrLVh/gsXuq9O60gbUNdfv4o7c2Rlxzgan416u9j/HLb8n3jaCPtJ3QZeRpefsdoq9YRQb4jksrrA8Nz8CK4nBIjF04psicA83EBbM10nZXvOvgprzTOfoAVt8jdKy/0xEgGKgYGo0w+ThqGK001zFFV6/3HpDuF9pu3S8G8ZhlzLDu/64HGTiWP8ykyoSydXMPoO4j0CErU3Qgdq/uibRvlfJuf2IuVXjnoaUIkn1d/i75wV1FeQfDUgzMyYtaju7F48TI4JwZKnXospIMvKgbtTuJVK1hrYz7ow+xtVC7nw8ZQFalDYKrb1jfpRxhLCbeO77SG9q9+r0b3BUGCRf/fFtv7OXv0GoxkA6zv/7G7b0TiJHDFDkNQ6M0gFMPcvNNQbVAt4jQXNOC+aWHjXHDNwUSRu/4PfHQ3uObvq8JHQ/xWXjp3rY6Zd8JdIgDYDkFsgSyKWB0TVj33YpT5pz1PCfnVnhL6xGsIq6ibr1Rurf5QUY7OrZqvRmtODHSDEr3wlxqZS/OL0G98wjRQVYn3qkzYwfHxaUD1UmDY8sTh/q84183WKO3MjLHfbToPnQ5btK7c61ac26ReWGSwc0JAiiE4GzXffCw4iC5rKU6mItzWcTeiXu+OYpRfcXbHVDv1sc6lb/iVX1cUH2MooOqkHIYGiIvxCLeUY2mEdWIBHxsUHNZjTJmT6dHaHjfGOJgbuyDLd2/366Gd219fCBlq2xb8XcjOIZU31XzA922AWh0a7QmbOKfd2sMBb3jLjYMyFpw6xVF3YQrCjnADGBGLTouUr8EzZxku/bO0poTV8c2cfzwpOhC2AnnJ4kGF2pK4x0NkOgXaY7Bp/ExsWoIrioofUwg70sJ/8FicLZ7BMdVrX7HcboNadL4yFo12v/X3hXtSHLkxiCZ1SMB/v//NGycdruSpB8imDUH+yRgz9BTF7An4bSYqcpkksFgkJk3yhtxQRUqFV2MBHWB6DWbThqFY3/vJofH7W8FNA4Q/GXHU1nYu+kdJ00vGvbk9V9fHLDlSrFacHpGZTQCZgtdN+96NlYVwi46DN31TMpD+TyIClxl7q5+fpaz16owG2GAdBkrguM/nQvOahjTJzs5kqkkqfzZQC3EcjjYzrF1KwaEeiBNxMsct9GQ7hvgbDRqmNhAIfHccTQhPY1TfRyQgyNRvUvckbgZgA7wMlNKxHvQXZWsDR446wfh7c3qw/Aypqi93HBdNMBY7POR6BsJICXs7GJ6VSp/5m68b1WaqpDBCDnl+NrG9guoNYN+m7yH1pctJCL59X3j2Jg9UGNkcKW4Bgf5gh+9sTtx24a/DBeIZnazrQOyH3grRdn446c61LPxx/uN//rjjZ+dwIt7gUp+n3OkBIwo4/3jxh+2sV18Vm2NEVHUL1XyBlU79TNmDEK/oYAM/HShlW7sBElrb7jmApVSoYkEEX6uiLZmmwVcnI24ujNXKk4EBuJZWyQFf+QiWRGFKpmXOfm2TFQatng9ClWZAgVYid03K7DpxXlKNg2kEgW+6MwiTMCD1EYLCIzwNbNpV6Iy68+55b/oTt8sib8b8OLtoQE7qQTPMkO4K/9upFoCOHLA3OCU6sKKfSGXk9dxc2oGdlKbU7JiK1gUlhc6R7fH6IsL+LoK+0pUqYcleMjDQ+/QIrp0eT2lwBQKBrmIlqMzKVrDFmXpvXmwjZEx1Uu21DuRuwSjDe+bDYrV4nPk9Mz5M1XRp/AuWOJfTuQSZ3YNHetJE0yHcCdzfRm8UWwkLoVVOduJzoHvz89w0CGT84HuhpK6FdJddZ8ImGqD4bsMeDHcRUQz3f/ZrYZASHogIlqVSQiVpdTN0aA7lq4ExcD0rD1bZWCteM2mxNsocLTgfdxVRu5CEqVQNc7D0F0aP9GorakAdwpJgjJ+Bal2BYdi/9p/vt+4dZirOLIlLkhMSmg2oRCwk+6Zkcxd4bw/XByKA0CzHWUtw+tqvK5Uuis06HQ8sCeluXVoodSW4jKJBJu9WLPWYQvLqdZmEYJPJTmsMCeMzML7vYFqXELgUACmnVM/5xWITjrZzemhpDZ0vtekfs8elSnQGf1BG6UxrSDN7/1zgvnPBYTJ/p3czKvZC8Jyqzv5kmGxzacsSMJpN9fPgzNBuhcNtKcKQIGWeYkQpRAunFWAKvEWsnRzlmxtXdivxNd9UWOg331SGSGDnFEWOmAkOKkBakWgnsMKancm14axNJw7se9iReTyI8OvbGSBaJD9s+z3gXOoVT+HOJPQs3qkh+rFoimzQlQUuUUDuKgzeu+NLsdLFTaqRNWvU9S8WIXK8uqdykY6Dbxlv3N4yE9rdIF0PlI4MFrVGLLSGwdmVEn2o1gvpW9u49DJR7VIUWkBEFYMIl0nKiePjhqI6aTW68XrhZYhK1kpQ+EelGGQrTln1Yh3E+WAAlgNaqZF/7g3ba+Auhud/GPGVpcC8CMT//3jjT+qqIUpsON80G+LTwq5XH9swg1oq5O6MXbwF1ZLLiAhZb0aX6/Nvzv7r74w2ilI9A9vhkabGqpTiZNTqzRo1qDeRKWbYUHdXDZ6F1b4oSWyyBPyDChVNKIsFLVZgUJbCBEn9pbmWOi1Q13yShhKNjOfzb/M3xPN8xhXUCD5q46nEmjhp9rKH2fHxcNAGpRCI63wxsYbZLkdnD7IzMdQ6iyeiMmFpX6COawWf8q44EeF8K4bjeB1BfJahx/BbGhQYJhGkrTRZOXBhjem+ILMmJyX8PDefRh7ti5wFlApDTAtNLULrWKVw+VUBrWY5ggzD2YpeqcEeOns6YEgssrMKUM5KKihsjcdk9yBhI1cQy8gjJXBailHu9HlbCp0tk3UGKwRaeTWoUwQht9EO1OFWFpHGhmd0aAeKJiE0jkekKKTNSrbyTiTxIXStSqSmsJqMOBE7N+Lkrd0pnA6o0zpx/7jWYdKiSWbzoJD4IB0gOK3QQd2UEBulsevNtyL0xXeTfXzlwe+/GKzZSesAC9+s3kgjGNAruB8qLGbtoAdC4VsjJ3mDhYqrnB8vS6SwFoHGiv5m7LGu2nvECKFsUXJlRq5TYqjYJckhE2FBrij0tV2g2MH3oYLFEXOe5vRhgq03xWkMOgB1YzMtn5VVhtlDgRL7macALEFiI7A0cihGiYzcMG/X3Q8SKMBtFxdN6+qhQ6w8s/NuhtgbGLMTOzuU1lx/X1AMp6i6rdtzh6NuO1xJIIEx9PiVGsMLzOkO0oScVP05eVuo0lgV/JUYHJYevjRsFiTLL6R6DKR3RyjNZy8mR98AigtC2AFJeQlFHScGiBYyyXhQWIrBYwVPUfRMcGQLY1mz0Az8knLWIIPGZRb0AiUoix38EYFIUKIV5KYzWDoSEz3+/RhbTmTTl6//H5rJIfR4QCK2EYBZqWaZJ28b4BtMZe4q3YStIPoWmM8qwzbNDNnp5AK2wIEw/DyhdWGqxxRRIBpjOg+aap0U1SaNzY2x72myroU9iKdzrplC27sWUKyetgN3F54B8eDrFfAYfiP64UrXuhFBe+73xxO5hTQrjDE8kcpbuQ3rHXASHyKv4GCF6uKyyjSS1OLjGzExRFNKmU6EzlcprU6TJjym5z/3gX0DTe+e+qPMLsci53/Z0mBP+vI/WJw86ZdZ7nQFhBgoWe51j8cVMrTZobvmipXq7dQGuOHy9Q6/bLjYSu8o61xN/uT3jthy9g86EZobxRrEZH0gZ6EkWyoXBaE9YLLuxPtzYWYFx3hkaKvm/ENnVqiacerTb1LgnOTQwulNJaH16jKxBgoxB05qychJ9HdapDbnJnT6tkSieFq0hrlDWf8gL012twyZ66r/BdKEUyQGt14Z7LD3pUmtL6hSlWW+Xb+LlelzuYdnNqhKh58Gnkf5Oki/M/MGg+Yqd1B3eSdD6KgnrFwbw78bmtU8mcTauumkHz0TDN/JTSJjsPVfNC20qcWL9GnklXVah4Eq5ptTLedlRMHCVbuzTrRkmn0E5wA8VRqx0mh5x5ZRWvgv9LF1Ry1wlSR39xTbXROwPzteiFswS5HYeH+yVG+Xo0F8WR8yfMwkEHiPeNcJb1vNyUfZXbG6+5ObNRkL8dOVWQj2uFicb06pUyOY6toyE7p48pclaoH8UPqadqPUYCYWsdZewkEC6XAmSp68ABF0H4YWKjsT2ngSqNk3O1ILQ5EF6czc5pt7PlXHM/XtaTdcWDf+Dndu6lWfAzsJAnagmPLeY0NiopXDBpR2Y1zaWSQUBVBL2raSPc+083K+O8U9ZFL+FkkEAtEXcuH0xjc0KfENxzRQySPs6T3ThFt/FEsZs4BarCixyrPQ6DxEJE0dpUfq0akOA6Gw804KpEOAGA9iA4vlYK1EjAatPdj50NAApwL7cs065r3m2M10ZE7YrH0usS3wUHFeJdmxvB7pgqxN9OsEh+Wnago3NtBH9wH/lvocIFNi26uhk86TedyMJDo28ONPydK/I4Om9vhoWB0HFvpEyOma0iake9rEbQulB3UDJVSM3RJ9Mh07YJzNOd14YbhTvJ+Lnk/D5fh5dPoyOpjNvuSeg+qnwPN7xq+LJWeE+mKJDbaxNbwNedrnarnrbW6jLIHHBvtU36vIoI7Q9atJfxuySn6sVM5rKEl+L7OqpKKAnakNHRmDt4WAaXRdyV2FNyphoZ69y4hXga1wC1OcbjLCYjjWlp7aZjzhjMd9Jccz++/fXHEYjxVmLdal0tVhkM2mbQOHljrQvVmhB0o2a1qET3kIAg6ridd6p4oMtoVOoZqDuFe+rgS2uGR1MbISVHvguOAoGAADB9FXqAnTYJ/S+uk1Unm5N0a/dGAV6m0Dx2aR29Egyz1kRnWlIqNB3gspRXVWiggNV9mUsy3ojgl75IGtCE6WAIFVdzpjVo4h8aDh3UNIjsKU6aofdABvmktCnfiQOgsXXeShnXNfCIa0R5SV7YxAcTVcFj9pEamys1a7KpmmsV2AZ/9PgRrcRbzkPw5QUJRvkuDyyFSPHXV9aBQztXuIgI0BZVrkZMJpRuh+T0r/OFr1DF/kHJzFvQljdIUAgpAGR1/9ez16InsfP8EE5MgtL/ZaYqLAjiMf+em8+3Zlz6O3ECxZartIXuK4Eay2CTsA/csJYuo4lwgVCOqKTGw4esMC2NDjTJWnX35QbEwjqt1NAsAgkkjKVGYgQp+0LHme7EqdMYM/1uDwH7/+kI38Lp4n/WKwD/+YE9P3c3IkCD73w1resywgPeNXYHuVNnYT5vWyRe/OQzMoVc02YKfpcbU1lcy2jDCZfeDto5TUdQYHm/Urk2CeTZ5F+v0ZTjHiaRzabjXJiHaQBe7dS1p4Buc+wO50FTE2jIAOgPl8cs0n4SGXHIIaJZAc5N4xby7eJ/VzJmtC6sbX2qgIAbi349gU60LlrdQZxvJwKhx78DAYU6skyRgE6HJh6ohtKlCbtOtlUqF63G2CbZe0Jm7eq7kUKDeK+cIUzeDV+NdIlgnIhrTunLgDSLoGMcjZMuqGhPqCVIThLCUgjbTCRefeVnxFoSXi3gHVi9WqsSrrKksBThKgiQLEgkL3me/pdSvalbDugHM0C2pcyc46W31aTrYTI2mKjiqbyrBxe2VSSOkx4R6kgrlapPAE0JbdB5rUpniiJmdeYL7nvlDpSxIWgqOLQ6cW1g0cG6G383eDvI+WRTsnC7Xxo29cKC7PlrsykyeGCf1S47nt+sFXpbXlP1LKPiPHz9JnG7muV1MXKc87EF0VBvYLj1MjZeFlLfSjhi5pPHgjBqthkTTCAEhh+EmVDEapA9r8UWTo5hcAqN0WT88jSJR9knIYIqMg4Z2TlqEMalHUDeEcQgxdWM38FNpVsAIp8OwLkZ9KJqOA+gm35Kn4nIIEtzNTvgNVtO82bFuSC24KwK2NCqunjpNipQTHf3HlGnNGS1ZpFQ/UE6qwrS5/gkRCS6PE6eYAwV2ixsM1wlqTCWJNsB+NIeaKA0WgfKZ+iiRo/67R6uSAqInGXSKOgXqqHaVW8DA6onFHFweZKsZ3i5lLhqIwhI5ypQYj5NUE/Q0x7I3jNMD6URM7RmGtEY7U74sDT5LlbHBoDanzQwaDys0OYe0GyOEOmQ8HpqEN4swuyiwabhUiOD3m8h2nHSZw/kEqEUvcMxIyRq4J90O683zCp0fa6mY2SJERDp5ktLFc86U5g6+FzfZY8+HRyWSPa0x/+L5C47nxQ9FI4Nl5lQD4lb079Sh7m8v2caKTDR6mWYx56kUNXExI1oZh72bzPcBBCLvcOAlF6wO34KeCsyze96Toj0L5j7Dy0Pak1Lk1N1Dfs4OCbeS2tmbwioldZz804KkyvkVxee9/Ftya+cmDL6LzTfsQm5yLNlEFyZ1L+fo9OGNeOON0rFkPlgHMjxI8JCM6KMbyf7G0bgqlPP3BJ9nyHdWPmFO6aPBzr5WNjqoqJ5es5x0WftFpDPq3kZ3Su+UuIv6HJMGyByaKwM5tdEWTejkzzCRqy7esDH8FQl9GAfPmdJr0/+0pcSXEtAZ05YAh6G5KqhjlZXAj/eblz5OLt2G2vQVvDSSK1yjzapvBDemZQLnWw6/KAQ3+78LQIpnxBzmMRoKrDnaVgio1fTpvGiylQWknEsEL5DKKqqZZacN2jZTxyRPKlR8ork9tjOpIeCPM8QTuKxkcP28F2Rv3cN78iz2n/udP3c8sQjfZ7TiazW+1oVeiXdvCq9KGplmF7XJo6JZWgsfB/ONmC0e1BZszgxVaJ6IOxGCkUstBHMAvvEshw8opn2zhxNN3JXPG/NQd5X/klqake4DQFqe6BQqe5Yz3y4QTY1gke0AAEAxF5op0M7EdubFuziO1EDVcqm0mbvxftchBoEHPQ1RaMaUEc76A4dVSX2tag+jzaH4eYAmkh60o6pZD4eFU6LnHK+nd6nH6ajcG8GUZPYFRYW2z+pKN9NgRZMOhX+nwLStE3irEDASiwUFH8zhIv+hljp9H1PJZY8wtMAUriSERIMVGdi5q5t+vs98ITNT9ZEoyY/WiPs1k/eq+nAligCcjaS1zdEywZHVuDc787dGFLK0zBs3hpz8zt3QVFio2Ch0kksiwuA3N5j6rCvOTRCVw2/Ork3al2oaVtVLKRwXpdFCkhQ/qopVnFJokpQAciwDe/WFDLZ0iMNxDtIcF1mDegbZDIWSQmgTVP7F8xf3askjGw8+7/9ZyH0dvoZDj3glxjgVgyKPPObM+d31iO2qyNfQB2jD9fnH8fAIapHsRCL5KCxwvKdPkCwaiGkjbEqLYPnUgxFjrtwZ2fgw/O4jtnuQFP8dh0QevcTAAqpwH/yeoBhvV/H+I3C0Z/VEOKLGzJQB9UEQR3KuQzacF510otoBi0HdNPjZqjEHcVAGlXMnpdLcFhcUpo4JQkYySsgxGe2G/V78fZlPeoBvqc+4vUExLAowrQ7oDAot7nHQBkRTUuHQTKDEGQdBFThFkFOVnSZlYot+XmFS31IVVByD31Cz5Bw+tglMJaxd10Afx1OaSMCU+ahC2tUqotSkmarfqf46cTTsXDcFGfsnjVajMY27rKLS7aUWnPoa7tm6gLj8FFamQRfF37GjWAL/to+0W/JK2yetM/0u7plXAa6mMKHcc+DOQ2eym8HFYKhNDVrV2L9MX+Ch9E/Tba4l5PMd+f9fz1/cnb4RsYB2oQtO4V/XYs4bhrguRFy4FifoH5JNB2bnxvvevOwLuuEhZ5wFKz8Q8XZioFCACyrLeoVGGMFecgzhOBveipoWfZwP0nSDBHu52hosmXMTqtinEkIw7Ih+0AGoJSNHN2ragQ9K5YYg/16Fe28NjVfUUYLEg551HCxA7ZOdXBly4AC61FtmKE9WrzAO1Y8DHn6IDorGNDdBpA4I03amnGOo5K7qELZE33bSoAj15IHfOW0CjAMSGMoQ24FzV85oboCjt8rhtcBbIyCkA3c5V5KxBVDn8z291idCHAiga3JMXMomMhhRoaHVrgO0a3ZRJQd85VQy7ZvzYZS/N689kkpB1UHa1MybMWtxPDhoitVY2utRNz/AiRU/+99/iII4fL7dOJEgiKxrHCLUeoOS9+X6su3oCY4Gozh1fm7XoS1og7we/GpNMNAZ+4Z7FB4YzbbsdGt433wrhHxPlXRQUmttof7AfyfV+nH/xKsSKy6wh4kNZHEZXnEBZ6g3uBjGsaedqXyTN1C8762SMRQ1WotS8GI+WdWqLoijoAsS0aYVErIIiQ7DeTAmKvYsDFTSHRWvSqdDOurXcPGmqgNWY4ZbGbJu8t+n9Kleq3GGeKQBDvEBzZRrbUdYqHImWFamEbLcagEnTLNmn+8X+V0gt7ICFMYXHWcRKfFurumixyEdebmaXIZxDbg0D1xnp3GdMm4olYxFte4xbBhs9Umjl9Yn8SBE020IYXwHAw7pSM1Ly9ECw6UTJEr3o4huKB1A6XhsEIP22IRu1S7CM1YP1yjbHd5pOKu7krzavIMufzR3bDAY3rt4K0rzm3OcYYNlatesaB3Og+gU+AYWt4/cpI7t2EGEMmaTg46psBkQ+u+GE0DmoGcDAHvLJl0Olcppqqp06ndP9sG1Mthl4LUJ01wx52lK/hO0+M/7ptOpVpuQfs9o8A6pLANm9Y4/1kUJ/NljT7Xl83yez/N5/p7nL/SFn+fzfJ7P8///fBzP5/k8n+dvfz6O5/N8ns/ztz8fx/N5Ps/n+dufj+P5PJ/n8/ztz8fxfJ7P83n+9ud/ABsC+RYbQZ0kAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Next we search the full vocab token range with the image embeddings that we collected above." + ], + "metadata": { + "id": "vn5rHuwqsgfR" + } + }, + { + "cell_type": "code", + "source": [ + "# Collect text embedding similarities\n", + "logits_text_list = embedding_token_search(\n", + " text_model=clip_model_text,\n", + " target_embeddings=image_embedding,\n", + " token_list=token_vocab_range,\n", + " batch_size=32,\n", + " logit_scale=logit_scale,\n", + " device=device,\n", + ")\n", + "\n", + "# Sort results\n", + "num_tokens = 10\n", + "top_tokens_text = torch.argsort(torch.as_tensor(logits_text_list), descending=True)[\n", + " 0:num_tokens\n", + "]\n", + "\n", + "# Decode results\n", + "top_tokens_str = [clip_tokenizer.decode(t)[0] for t in top_tokens_text.unsqueeze(1)]\n", + "\n", + "# Display results\n", + "print(\n", + " \"Top {} most similar tokens for the input image is: \\n {} \".format(\n", + " num_tokens, top_tokens_text.tolist()\n", + " )\n", + ")\n", + "print(\"The top tokens decoded are: \\n {} \".format(top_tokens_str))" + ], + "metadata": { + "id": "Ey4YhZDxLCX-", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 120, + "referenced_widgets": [ + "4d98f277c7b44d53b463d172ecec7d23", + "b0779c6d342b47caa6e22c036e2e13e2", + "cf6d4296a2084c598a9646b22fe08ac3", + "4cb7cf8553de4dcbabf33c9c0798a27c", + "c2f97e1a90b644118290a860d3fc3fb2", + "dd15379bd9534719ab4488c2270b077f", + "7e1bbde93d924f2b93c74c694678a0fd", + "da6745763b764c9c9d026e316c6e76dd", + "fd60edb03c1242569f3b5a17686ed2b0", + "693faf3b70ca489aafcb3095e04b97a3", + "74b0b256df6c46658082981f3d82f17a" + ] + }, + "outputId": "fd87c707-f8a5-46db-8cb9-9f7314414195" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/1544 [00:00 Union[List[float], List[List[float]]]:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " full_model (nn.Module): A PyTorch model instance.\n", + " target (nn.Module): The target layer to collect attributions from.\n", + " channel_index (int, optional): The desired channel index to collect\n", + " attributions for, in the target layer. Set to None for all channels.\n", + " token_list (list of int): A list of tokens to search through.\n", + " batch_size (int, optional): The desired batch size to use.\n", + " Default: 32\n", + " device (torch.device, optional): The desired device to use.\n", + " Default: torch.device(\"cpu\")\n", + " start_from_tokens (list of int, optional): A list of one or more tokens to use\n", + " a prefix for the token search.\n", + " Default: []\n", + " end_with_tokens (list of int, optional): A list of one or more tokens to use\n", + " a suffix for the token search.\n", + " Default: []\n", + " tokenizer_fn (callable, optional): A function that takes a list of integer\n", + " token sets and applies padding & special tokens.\n", + " Default: int_token_tokenizer\n", + "\n", + " Returns:\n", + " logits_text_list (list of float or list of list of float): A list of values\n", + " corresponding to the order in token_list.\n", + " \"\"\"\n", + " logits_text_list = []\n", + "\n", + " for i in tqdm(range(0, len(token_list), batch_size)):\n", + " # Prepare input tokens\n", + " token_batch = token_list[i : i + batch_size]\n", + " token_set = tokenizer_fn(\n", + " token_batch,\n", + " start_from_tokens=start_from_tokens,\n", + " end_with_tokens=end_with_tokens,\n", + " ).to(device)\n", + "\n", + " layer_attr = get_text_layer_attr(full_model, target, token_set)\n", + " for b in range(layer_attr.shape[0]):\n", + "\n", + " if channel_index:\n", + " channel_strengths = -torch.linalg.norm(\n", + " layer_attr[b, channel_index, ...]\n", + " )\n", + " else:\n", + " channel_strengths = torch.stack(\n", + " [\n", + " -torch.linalg.norm(layer_attr[b, c, ...])\n", + " for c in range(layer_attr.shape[1])\n", + " ]\n", + " )\n", + " logits_text_list += [channel_strengths.tolist()]\n", + "\n", + " return logits_text_list" + ], + "metadata": { + "id": "pkiKrT8B9gB2" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "We can now collect attributions for the penultimate layer with a channel index of `289` for the image portion of the CLIP ResNet 50x4 model." + ], + "metadata": { + "id": "yU0Qp4sRKAPt" + } + }, + { + "cell_type": "code", + "source": [ + "# Desired target layer & channel index\n", + "target_layer = clip_model_full.image_model.layer4[5]\n", + "channel_index = 289\n", + "\n", + "\n", + "# Collect target attributions\n", + "logits_text_list = channel_token_search(\n", + " full_model=clip_model_full,\n", + " target=target_layer,\n", + " channel_index=channel_index,\n", + " token_list=token_vocab_range,\n", + " batch_size=32,\n", + " logit_scale=logit_scale,\n", + " device=device,\n", + ")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "2477cf00bf934608ba560d35b5086b04", + "60ffccf308304f0b9be9a7637dc3b673", + "57aa9158b0a54edda567e76ec7ab26cc", + "5a56829ac4724d3b848a77c43282d090", + "229423305a32404cb15dd1052b0f6f8d", + "bacb750121b349d9b6276b79351c3179", + "8839b04f3c474d51ae3b90673a3f70bf", + "1b388192a3774856b551b942a6d98bd3", + "c06cd0c84cd541e0a0ee19584bcaf21d", + "b0f9363100834b32a895ea4ece0a26ec", + "ad418495991f4f769a643947f857aa45" + ] + }, + "id": "Dizt021X7yBm", + "outputId": "96a585f5-6467-42d7-ed16-f4b1c7162db2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/1544 [00:00 List[float]:\n", + " \"\"\"\n", + " Calculate balancing weights for a given dataloader instance.\n", + "\n", + " Args:\n", + "\n", + " dataloader (torch.utils.data.DataLoader): A dataloader instance to count the\n", + " number of images in each class for.\n", + " num_classes (int, optional): The number of classes used in the dataset.\n", + " Default: 2\n", + "\n", + " Returns:\n", + " weights (list of float): A list of values for balancing the classes.\n", + " \"\"\"\n", + " train_class_counts = dict(\n", + " Counter(sample_tup[1] for sample_tup in dataloader.dataset)\n", + " )\n", + " train_class_counts = dict(sorted(train_class_counts.items()))\n", + " train_weights = [\n", + " 1.0 / train_class_counts[class_id] for class_id in range(num_classes)\n", + " ]\n", + " return train_weights\n", + "\n", + "\n", + "class PadToSquare(torch.nn.Module):\n", + " \"\"\"\n", + " Transform for padding rectangular shaped inputs to squares without messing up the\n", + " aspect ratio.\n", + " \"\"\"\n", + "\n", + " __constants__ = [\"padding_value\"]\n", + "\n", + " def __init__(self, padding_value: float = 0.0) -> None:\n", + " \"\"\"\n", + " Args:\n", + "\n", + " padding_value (float, optional): The value to use for the constant\n", + " padding.\n", + " Default: 0.0\n", + " \"\"\"\n", + " super().__init__()\n", + " self.padding_value = padding_value\n", + "\n", + " def forward(self, x: torch.Tensor) -> torch.Tensor:\n", + " assert x.dim() == 4 or x.dim() == 3\n", + " if x.dim() == 4:\n", + " C, H, W = x.shape[1:]\n", + " elif x.dim() == 3:\n", + " C, H, W = x.shape\n", + " top, left = [(max(H, W) - d) // 2 for d in [H, W]]\n", + " bottom, right = [max(H, W) - (d + pad) for d, pad in zip([H, W], [top, left])]\n", + "\n", + " padding = [left, right, top, bottom]\n", + " if x.dim() == 3:\n", + " return torch.nn.functional.pad(\n", + " x[None, :], padding, value=self.padding_value, mode=\"constant\"\n", + " )[0]\n", + " else:\n", + " return torch.nn.functional.pad(\n", + " x, padding, value=self.padding_value, mode=\"constant\"\n", + " )\n", + "\n", + "\n", + "def get_dataset_indices(dataset_path: str) -> Dict[str, int]:\n", + " \"\"\"\n", + " If you are not sure what the class indices are for your training images & the\n", + " generic natural images, then you can use this handy helper function that\n", + " replicates the ordering used by `torchvision.datasets.ImageFolder`.\n", + "\n", + " Args:\n", + "\n", + " dataset_path (str): The path to your image dataset that is using the standard\n", + " ImageFolder structure.\n", + "\n", + "\n", + " Returns\n", + " class_and_idx (dict of str and int): The folder names and corresponding class\n", + " indices.\n", + " \"\"\"\n", + " import os\n", + "\n", + " classes = [d.name for d in os.scandir(dataset_path) if d.is_dir()]\n", + " classes.sort()\n", + " return {cls_name: i for i, cls_name in enumerate(classes)}" + ], + "metadata": { + "id": "0EzmQvA9x4vt" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Dataset Setup\n", + "\n", + "\n", + "For the purpose of this tutorial we demonstrate setting up a basic dataset utilizing Torchvision's [ImageFolder](https://pytorch.org/vision/stable/_modules/torchvision/datasets/folder.html#ImageFolder). However you can use whatever dataset you like, provided of course it works with [`torch.utils.data.DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader), otherwise you may have to modify the training function to support your dataset.\n", + "\n", + "The authors of the research paper recommend that image datasets should contain a minimum of 2 classes, where one class is composed of generic natural images and the other class or classes contain the desired themes / concepts. The basic idea behind the image dataset class structure is to train the model to separate out a theme / concept from unrelated stuff." + ], + "metadata": { + "id": "fVIzo7g4Q9ic" + } + }, + { + "cell_type": "markdown", + "source": [ + "**Spatial information in your dataset**\n", + "\n", + "In the research paper, the authors trained some of the facets on images where the features in each image in the dataset were in roughly the same locations. This is important to note only if you are trying to create similar facets where you want more spatially coherent shapes like those of the `face` facet used in other tutorials." + ], + "metadata": { + "id": "QxyGxILRMVC8" + } + }, + { + "cell_type": "code", + "source": [ + "def create_dataloaders(\n", + " dataset_path: str,\n", + " batch_size: int = 32,\n", + " val_percent: float = 0.0,\n", + " training_transforms: torch.nn.Module = None,\n", + " validation_transforms: Optional[torch.nn.Module] = None,\n", + " balance_classes: bool = False,\n", + " num_classes: int = 2,\n", + ") -> Dict[str, Union[torch.utils.data.DataLoader, List[float]]]:\n", + " \"\"\"\n", + " Create one or more dataloader instances with optional balancing weights for a\n", + " given image dataset, with Torchvision's ImageFolder directory format.\n", + "\n", + " https://pytorch.org/vision/stable/_modules/torchvision/datasets/folder.html#ImageFolder\n", + "\n", + " Args:\n", + "\n", + " dataset_path (str): The path to the image dataset to use for torchvision's\n", + " ImageFolder dataset. See above for more details.\n", + " batch_size (int, optional): The batch size to use.\n", + " Default: 32\n", + " val_percent (float, optional): The percentage of the dataset to use for\n", + " validation. If set to 0 then no validation dataset will be created.\n", + " Default: 0.0\n", + " training_transforms (nn.Module): Transforms to use for training the linear\n", + " probes.\n", + " validation_transforms (nn.Module, optional): Transforms to use for validation,\n", + " if validation is enabled.\n", + " balance_classes (bool, optional): Whether or not to calculate weights for\n", + " balancing the training classes.\n", + " Default: False\n", + " num_classes (int, optional): If balance_classes is set to True, then this\n", + " variable provides the number of classes in the dataset to use in the\n", + " balancing calculations.\n", + " Default: 2\n", + "\n", + " Returns:\n", + " dataloaders (dict of dataloader and list of float): A dictionary containing\n", + " the training dataloader, with optional validation dataloader and balancing\n", + " weights for the training dataloader.\n", + " \"\"\"\n", + " full_dataset = torchvision.datasets.ImageFolder(\n", + " root=dataset_path,\n", + " )\n", + "\n", + " if val_percent > 0.0:\n", + " assert validation_transforms is not None\n", + " n = len(full_dataset)\n", + " lengths = [round(n * (1 - val_percent)), round(n * val_percent)]\n", + "\n", + " t_data, v_data = torch.utils.data.random_split(full_dataset, lengths)\n", + " t_data = copy.deepcopy(t_data)\n", + "\n", + " t_data.dataset.transform = training_transforms\n", + " v_data.dataset.transform = validation_transforms\n", + "\n", + " t_dataloader = torch.utils.data.DataLoader(\n", + " t_data,\n", + " batch_size=batch_size,\n", + " shuffle=True,\n", + " )\n", + " v_dataloader = torch.utils.data.DataLoader(\n", + " v_data, batch_size=batch_size, shuffle=True\n", + " )\n", + " dataloader = {\"train\": t_dataloader, \"val\": v_dataloader}\n", + " else:\n", + " t_dataset = torch.utils.data.Subset(\n", + " copy.deepcopy(full_dataset), range(0, len(full_dataset))\n", + " )\n", + " t_dataset.dataset.transform = training_transforms\n", + " t_dataloader = torch.utils.data.DataLoader(\n", + " t_dataset, batch_size=batch_size, shuffle=True\n", + " )\n", + " dataloader = {\"train\": t_dataloader}\n", + "\n", + " if balance_classes:\n", + " train_weights = balance_training_classes(dataloader[\"train\"], num_classes)\n", + " dataloader[\"train_weights\"] = train_weights\n", + " return dataloader" + ], + "metadata": { + "id": "8zl0aQdnF7fW" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Training Function\n", + "\n", + "The model training function's `dataloaders` variable requires training dataloaders to be organized in into dictionaries containing the following keys and values:\n", + "\n", + "* `train`: The training dataloader.\n", + "* `val`: Optionally include validation dataloader. If this key doesn't exist in the dict, then no validation phase will be performed.\n", + "* `train_weights`: Optionally include a list of training weights to balance the classes during training.\n", + "\n", + "\n", + "Linear probes are implemented as [`nn.LazyLinear`](https://pytorch.org/docs/stable/generated/torch.nn.LazyLinear.html) layers with a reshaping operation between them and the target layer." + ], + "metadata": { + "id": "6gnSpoNhiRpD" + } + }, + { + "cell_type": "code", + "source": [ + "def train_linear_probes(\n", + " model: torch.nn.Module,\n", + " target_layers: List[torch.nn.Module],\n", + " dataloaders: Dict[str, Union[torch.utils.data.DataLoader, List[float]]],\n", + " out_features: int = 2,\n", + " num_epochs: int = 10,\n", + " lr: float = 1.0,\n", + " l1_weight: float = 0.0,\n", + " l2_weight: float = 0.0,\n", + " use_optimizer: str = \"lbfgs\",\n", + " device: torch.device = torch.device(\"cpu\"),\n", + " save_epoch: Optional[int] = None,\n", + " save_path: str = \"epoch_\",\n", + " verbose: bool = True,\n", + " show_progress: bool = False,\n", + ") -> Tuple[List[torch.Tensor]]:\n", + " \"\"\"\n", + " Train linear probes on target layers of a specified model, for use as faceted\n", + " feature visualization facet weights.\n", + "\n", + " Args:\n", + "\n", + " model (nn.Module): An PyTorch model instance.\n", + " target_layers (nn.Module): A list of model targets to train linear probes for.\n", + " dataloaders (dict of torch.utils.data.DataLoader): A dictionary of PyTorch\n", + " Dataloader instances for training and optionally for validation.\n", + " num_epochs (int, optional): The number of epochs to train for.\n", + " Default: 10\n", + " l1_weight (float, optional): The desired l1 penalty weight to use.\n", + " Default: 0.0\n", + " l2_weight (float, optional): The desired l2 penalty weight to use.\n", + " Default: 0.0\n", + " lr (float, optional): The desired learning rate to use with the optimizer.\n", + " Default: 1.0\n", + " use_optimizer (str, optional): The optimizer to use. Choices are: \"sgd\" or\n", + " \"lbfgs\".\n", + " Default: \"lbfgs\"\n", + " device (torch.device, optional): The device to place training inputs on before\n", + " sending them through the model.\n", + " Default: torch.device(\"cpu\")\n", + " save_epoch (int, optional): Save the best model weights every save_epoch\n", + " epochs. Set to None to not save any epochs.\n", + " Default: None\n", + " save_path (str, optional): If save_epoch is not None, save model weights with\n", + " the path / name: .\n", + " Default: \"epoch_\"\n", + " verbose (bool, optional): Whether or not to print loss and accuracy after\n", + " every epoch.\n", + " Default: True\n", + "\n", + " Returns:\n", + " weights (list of torch.Tensor): The weights of the best scoring models from\n", + " the training session. The order of the weights corresponds to\n", + " `target_layers`.\n", + " best_acc (list of float): The training accuracies for the returned weights.\n", + " The order corresponds to `weights`.\n", + " \"\"\"\n", + " assert use_optimizer in [\"lbfgs\", \"sgd\"]\n", + " assert \"train\" in dataloaders\n", + "\n", + " phases = [\"train\", \"val\"] if \"val\" in dataloaders else [\"train\"]\n", + "\n", + " # Optionally balance classes if provided with weight balancing tensor\n", + " if \"train_weights\" in dataloaders:\n", + " crit_weights = torch.FloatTensor(dataloaders[\"train_weights\"])\n", + " criterion = torch.nn.CrossEntropyLoss(weight=crit_weights).to(device)\n", + " else:\n", + " criterion = torch.nn.CrossEntropyLoss()\n", + "\n", + " # Create Linear Probes using LazyLinear so that we don't need to specify an input size\n", + " layer_probes = [\n", + " torch.nn.LazyLinear(out_features, bias=False).to(device).train()\n", + " for _ in target_layers\n", + " ]\n", + " num_probes = len(target_layers)\n", + "\n", + " # Setup model saving\n", + " best_models = [None for _ in layer_probes]\n", + " best_accs = [0.0] * num_probes\n", + "\n", + " # Setup optimizer\n", + " parameters = []\n", + " for p in layer_probes:\n", + " parameters += list(p.parameters())\n", + " if use_optimizer == \"lbfgs\":\n", + " optimizer = torch.optim.LBFGS(\n", + " parameters, lr=lr, max_iter=1, tolerance_change=-1, tolerance_grad=-1\n", + " )\n", + " else:\n", + " optimizer = torch.optim.SGD(parameters, lr=lr, momentum=0.0, weight_decay=0.0)\n", + "\n", + " # Get dataset lengths beforehand to speed things up\n", + " val_length = 0 if \"val\" not in dataloaders else len(dataloaders[\"val\"].dataset)\n", + " dataset_length = {\"train\": len(dataloaders[\"train\"].dataset), \"val\": val_length}\n", + "\n", + " start_time = time.time()\n", + " for epoch in range(num_epochs):\n", + " if verbose:\n", + " print(\"Epoch {}/{}\".format(epoch + 1, num_epochs))\n", + " print(\"-\" * 12)\n", + "\n", + " for phase in phases:\n", + " if phase == \"train\":\n", + " [layer_probes[i].train() for i in range(num_probes)]\n", + " else:\n", + " [layer_probes[i].eval() for i in range(num_probes)]\n", + "\n", + " phase_stats = {\n", + " \"epoch_acc\": [0.0] * num_probes,\n", + " \"epoch_loss\": [0.0] * num_probes,\n", + " }\n", + "\n", + " for inputs, labels in dataloaders[phase]:\n", + " inputs, labels = inputs.to(device), labels.to(device)\n", + "\n", + " with torch.set_grad_enabled(phase == \"train\"):\n", + " if use_optimizer == \"lbfgs\":\n", + " # Training with torch.optim.LBFGS\n", + "\n", + " def closure() -> torch.Tensor:\n", + " optimizer.zero_grad()\n", + " # Collect outputs for target layers\n", + " probe_inputs = opt.models.collect_activations(\n", + " model, target_layers, inputs\n", + " )\n", + " outputs = [probe_inputs[target] for target in target_layers]\n", + "\n", + " # Send layer outputs through linear probes\n", + " outputs = [\n", + " probe(x.reshape(x.shape[0], -1))\n", + " for x, probe in zip(outputs, layer_probes)\n", + " ]\n", + "\n", + " probe_losses = [\n", + " criterion(outputs[i], labels) for i in range(num_probes)\n", + " ]\n", + " preds = [\n", + " torch.max(outputs[i], 1)[1] for i in range(num_probes)\n", + " ]\n", + " loss = sum(probe_losses)\n", + "\n", + " if phase == \"train\":\n", + "\n", + " # Apply optional L1 or L2 penalties\n", + " if l1_weight != 0.0 or l2_weight != 0.0:\n", + " if l1_weight != 0.0:\n", + " l1_penalty = sum(\n", + " [\n", + " l1_weight * p.weight.abs().sum()\n", + " for p in layer_probes\n", + " ]\n", + " )\n", + " loss = loss + l1_penalty\n", + " if l2_weight != 0.0:\n", + " l2_penalty = l2_weight * sum(\n", + " [\n", + " (p.weight**2).sum()\n", + " for p in layer_probes\n", + " ]\n", + " )\n", + " loss = loss + l2_penalty\n", + "\n", + " loss.backward()\n", + "\n", + " with torch.no_grad():\n", + " phase_stats[\"epoch_loss\"] = [\n", + " phase_stats[\"epoch_loss\"][i]\n", + " + l.detach().item() * inputs.size(0)\n", + " for i, l in enumerate(probe_losses)\n", + " ]\n", + " phase_stats[\"epoch_acc\"] = [\n", + " phase_stats[\"epoch_acc\"][i]\n", + " + torch.sum(p == labels).detach().item()\n", + " for i, p in enumerate(preds)\n", + " ]\n", + " return loss\n", + "\n", + " optimizer.step(closure)\n", + " else:\n", + " # Training with torch.optim.SGD\n", + "\n", + " optimizer.zero_grad()\n", + " # Collect outputs for target layers\n", + " probe_inputs = opt.models.collect_activations(\n", + " model, target_layers, inputs\n", + " )\n", + " outputs = [probe_inputs[target] for target in target_layers]\n", + "\n", + " # Send layer outputs through linear probes\n", + " outputs = [\n", + " probe(x.reshape(x.shape[0], -1))\n", + " for x, probe in zip(outputs, layer_probes)\n", + " ]\n", + "\n", + " probe_losses = [\n", + " criterion(outputs[i], labels)\n", + " for i in range(len(layer_probes))\n", + " ]\n", + " preds = [\n", + " torch.max(outputs[i], 1)[1]\n", + " for i in range(len(layer_probes))\n", + " ]\n", + "\n", + " loss = sum(probe_losses)\n", + "\n", + " if phase == \"train\":\n", + "\n", + " # Apply optional L1 or L2 penalties\n", + " if l1_weight != 0.0:\n", + " l1_penalty = sum(\n", + " [\n", + " l1_weight * p.weight.abs().sum()\n", + " for p in layer_probes\n", + " ]\n", + " )\n", + " loss = loss + l1_penalty\n", + " if l2_weight != 0.0:\n", + " l2_penalty = l2_weight * sum(\n", + " [(p.weight**2).sum() for p in layer_probes]\n", + " )\n", + " loss = loss + l2_penalty\n", + "\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " with torch.no_grad():\n", + " phase_stats[\"epoch_loss\"] = [\n", + " phase_stats[\"epoch_loss\"][i]\n", + " + l.detach().item() * inputs.size(0)\n", + " for i, l in enumerate(probe_losses)\n", + " ]\n", + " phase_stats[\"epoch_acc\"] = [\n", + " phase_stats[\"epoch_acc\"][i]\n", + " + torch.sum(p == labels).detach().item()\n", + " for i, p in enumerate(preds)\n", + " ]\n", + "\n", + " phase_stats[\"epoch_loss\"] = [\n", + " phase_stats[\"epoch_loss\"][i] / dataset_length[phase]\n", + " for i in range(num_probes)\n", + " ]\n", + " phase_stats[\"epoch_acc\"] = [\n", + " phase_stats[\"epoch_acc\"][i] / dataset_length[phase]\n", + " for i in range(num_probes)\n", + " ]\n", + "\n", + " # Make sure we keep the best model weights\n", + " if phase == \"val\" or \"val\" not in phases:\n", + " for i, acc in enumerate(phase_stats[\"epoch_acc\"]):\n", + " if acc > best_accs[i]:\n", + " best_accs[i] = acc\n", + " best_models[i] = layer_probes[i].weight.clone().detach().cpu()\n", + "\n", + " if verbose:\n", + " print(\n", + " \"{} Loss: {:.4f} Acc: {:.4f}\".format(\n", + " phase,\n", + " sum(phase_stats[\"epoch_loss\"]) / num_probes,\n", + " sum(phase_stats[\"epoch_acc\"]) / num_probes,\n", + " )\n", + " )\n", + " print(\" Loss: \", [round(v, 4) for v in phase_stats[\"epoch_loss\"]])\n", + " print(\" Acc: \", [round(acc, 4) for acc in phase_stats[\"epoch_acc\"]])\n", + " time_elapsed = time.time() - start_time\n", + " print(\n", + " \"Time Elapsed {:.0f}m {:.0f}s\".format(\n", + " time_elapsed // 60, time_elapsed % 60\n", + " )\n", + " )\n", + " if epoch + 1 != num_epochs:\n", + " print()\n", + "\n", + " if save_epoch and (epoch + 1) % save_epoch == 0 and (epoch + 1) != num_epochs:\n", + " facet_weights = [w.clone().cpu().detach() for w in best_models]\n", + " filename = save_path + str(epoch + 1) + \".pt\"\n", + " torch.save([w.cpu() for w in facet_weights], filename)\n", + "\n", + " return best_models, best_accs" + ], + "metadata": { + "id": "0EHyeCMKiIi1" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Load Model & Dataset" + ], + "metadata": { + "id": "0ds-L3I8okgX" + } + }, + { + "cell_type": "markdown", + "source": [ + "Now that we have the required classes and functions defined, we load the ResNet 50x4 image model without `RedirectedReLU`." + ], + "metadata": { + "id": "X6l71TR0fTKj" + } + }, + { + "cell_type": "code", + "source": [ + "# Load image model\n", + "clip_model = (\n", + " opt.models.clip_resnet50x4_image(\n", + " pretrained=True, replace_relus_with_redirectedrelu=False\n", + " )\n", + " .eval()\n", + " .to(device)\n", + ")" + ], + "metadata": { + "id": "BYGdvCKMFxbc" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Next we load our dataset's dataloaders for training. Remember that our dataloader creation function uses Torchvision's ImageFolder, and thus different datasets may need their own setup functions." + ], + "metadata": { + "id": "8Q9i7KYBfxp4" + } + }, + { + "cell_type": "code", + "source": [ + "dataset_path = \"my_dataset\" # Path to dataset\n", + "num_classes = 2 # Number of classes in our dataset\n", + "\n", + "# Setup transforms for training\n", + "training_transforms = torchvision.transforms.Compose(\n", + " [\n", + " torchvision.transforms.ToTensor(),\n", + " # PadToSquare(1.0),\n", + " torchvision.transforms.Resize((288, 288), antialias=True),\n", + " ]\n", + ")\n", + "\n", + "dataloaders = create_dataloaders(\n", + " dataset_path,\n", + " batch_size=16,\n", + " val_percent=0.0,\n", + " training_transforms=training_transforms,\n", + " balance_classes=True,\n", + " num_classes=num_classes,\n", + ")" + ], + "metadata": { + "id": "48fVVUXmfu4E" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Training The Linear Probes" + ], + "metadata": { + "id": "CJsBWsMuUZzx" + } + }, + { + "cell_type": "markdown", + "source": [ + "We can now begin training the linear probes on the target layers! Below we train linear probes on the same 5 lower layers as the researchers did in the paper.\n", + "\n", + "Note that using the [L-BFGS optimizer](https://pytorch.org/docs/stable/generated/torch.optim.LBFGS.html) will generally produce the best quality facets, but it will also use more memory than the [SGD optimizer](https://pytorch.org/docs/stable/generated/torch.optim.SGD.html). Memory usage can also be reduced by training fewer linear probes at once.\n", + "\n", + "Note that you may have to adjust the default parameters for training for custom datasets and models." + ], + "metadata": { + "id": "3NwqlpzkfdeB" + } + }, + { + "cell_type": "code", + "source": [ + "# Layers to train linear probes for\n", + "target_layers = [\n", + " clip_model.layer3[0].relu3,\n", + " clip_model.layer3[2].relu3,\n", + " clip_model.layer3[4].relu3,\n", + " clip_model.layer3[6].relu3,\n", + " clip_model.layer3[8].relu3,\n", + "]\n", + "\n", + "\n", + "# The L-BFGS optimizer will use more memory than the SGD optimizer\n", + "use_optimizer = \"lbfgs\" # Whether to optimize with \"lbfgs\" or \"sgd\"\n", + "\n", + "# Optimizer specific param setup\n", + "if use_optimizer == \"lbfgs\":\n", + " l2_weight = 0.0\n", + " lr = 1.0\n", + "else:\n", + " l2_weight = 0.316\n", + " lr = 0.0001\n", + "\n", + "# Train linear probes\n", + "weights, weight_accs = train_linear_probes(\n", + " model=clip_model,\n", + " target_layers=target_layers,\n", + " dataloaders=dataloaders,\n", + " # This should be the same as the number of classes in the dataset\n", + " out_features=num_classes,\n", + " num_epochs=5,\n", + " lr=lr,\n", + " l2_weight=l2_weight,\n", + " use_optimizer=use_optimizer,\n", + " device=device,\n", + ")" + ], + "metadata": { + "id": "a0yFS4JQ4zY_", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "bc4a51c3-2e69-4ab5-a265-4c3e3db9f27d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/5\n", + "------------\n", + "train Loss: 390337.9189 Acc: 0.9715\n", + " Loss: [56043.4749, 1363915.4473, 124310.3623, 168846.0195, 238574.2905]\n", + " Acc: [0.9718, 0.966, 0.9722, 0.9705, 0.9771]\n", + "Time Elapsed 3m 14s\n", + "\n", + "Epoch 2/5\n", + "------------\n", + "train Loss: 16781.2769 Acc: 0.9976\n", + " Loss: [14076.3319, 31218.2309, 6106.3447, 19327.1426, 13178.3344]\n", + " Acc: [0.9958, 0.9979, 0.9986, 0.9969, 0.999]\n", + "Time Elapsed 6m 31s\n", + "\n", + "Epoch 3/5\n", + "------------\n", + "train Loss: 329.2152 Acc: 0.9994\n", + " Loss: [689.9083, 327.7661, 481.1846, 147.2171, 0.0]\n", + " Acc: [0.9982, 0.9997, 0.9994, 0.9994, 1.0]\n", + "Time Elapsed 9m 48s\n", + "\n", + "Epoch 4/5\n", + "------------\n", + "train Loss: 468.3097 Acc: 0.9989\n", + " Loss: [546.3372, 485.5594, 319.5212, 988.2269, 1.9037]\n", + " Acc: [0.9987, 0.999, 0.9993, 0.9978, 0.9999]\n", + "Time Elapsed 13m 5s\n", + "\n", + "Epoch 5/5\n", + "------------\n", + "train Loss: 100.6919 Acc: 0.9997\n", + " Loss: [236.6766, 138.6808, 78.6038, 49.4981, 0.0]\n", + " Acc: [0.9994, 0.9997, 0.9997, 0.9997, 1.0]\n", + "Time Elapsed 16m 21s\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Now that we have our trained weights, we can slice out the batch dimensions that correspond to the predicted theme / concept that we are training on while ignoring the batch dimension for the generic natural images. For this tutorial we were only training 1 class in addition to the generic natural images, so we only have one index of weights to collect." + ], + "metadata": { + "id": "YIb8Swx-e0Oi" + } + }, + { + "cell_type": "code", + "source": [ + "# Uncomment to get dataset class indices for ImageFolder datasets\n", + "# print(get_dataset_indices(dataset_path))" + ], + "metadata": { + "id": "8cTCnWIPySRS" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# We only need the theme / concept part of the weights\n", + "theme_idx = 0 # Class idx for the target theme / concept\n", + "facet_weights = [w[theme_idx : theme_idx + 1] for w in weights]" + ], + "metadata": { + "id": "QnX-gDLqUeq_" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "The `nn.LazyLinear` layers used to train the probes require 2D inputs, and thus 4D layer targets like `nn.Conv2d` layers need to be reshaped back to their 4D output shapes after training. For this tutorial, all layer targets have an output shape of: `[N, 1280, 18, 18]`." + ], + "metadata": { + "id": "WOvE54Sk2KEJ" + } + }, + { + "cell_type": "code", + "source": [ + "# Uncomment to view the shape of each layer\n", + "# out_dict = opt.models.collect_activations(\n", + "# clip_model, target_layers, torch.zeros(1, 3, 288, 288)\n", + "# )\n", + "# print([out_dict[t].shape for t in target_layers])" + ], + "metadata": { + "id": "o9n1yOfTDyR3" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Each probe weight can be reshaped to match its corresponding model layer\n", + "facet_weights = [w.reshape(1, 1280, 18, 18) for w in facet_weights]" + ], + "metadata": { + "id": "p6nyJuLW2JW1" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "We can now save our facet weights as they are ready for use in faceted feature visualization!" + ], + "metadata": { + "id": "HdCZlPxAfL5D" + } + }, + { + "cell_type": "code", + "source": [ + "# Save the trained weights\n", + "torch.save([w.cpu() for w in facet_weights], \"my_facet_weights.pt\")\n", + "\n", + "# Then the weights can be loaded like this\n", + "# facet_weights = torch.load(\"my_facet_weights.pt\")" + ], + "metadata": { + "id": "VlKn5QCJUgKA" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "If you trained multiple facet themes at once, then you can save them individually like in the example code below." + ], + "metadata": { + "id": "__NXZJF9Cfl8" + } + }, + { + "cell_type": "code", + "source": [ + "# Uncomment to save multiple facets\n", + "# theme_indices = [0, 1]\n", + "# for idx in theme_indices:\n", + "# facet_weights = [w[idx : idx + 1].reshape(1, 1280, 18, 18) for w in weights]\n", + "# torch.save(\n", + "# [w.cpu() for w in facet_weights], \"my_facet_weights_{}_.pt\".format(idx)\n", + "# )" + ], + "metadata": { + "id": "kcDQ_OetHPsP" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "The facet weights can then be loaded and used for the `FacetLoss` objective's required `facet_weights` variable." + ], + "metadata": { + "id": "o-a5_zOaI5CT" + } + } + ] +} \ No newline at end of file diff --git a/website/pages/en/index.js b/website/pages/en/index.js index d04e321ab7..f97f10b33a 100755 --- a/website/pages/en/index.js +++ b/website/pages/en/index.js @@ -265,7 +265,6 @@ Convergence Delta: tensor([2.3842e-07, -4.7684e-07]) return (
-
@@ -277,20 +276,6 @@ Convergence Delta: tensor([2.3842e-07, -4.7684e-07]) } } -function SocialBanner() { - return ( -
-
- Support Ukraine 🇺🇦{' '} - - Help Provide Humanitarian Aid to Ukraine - - . -
-
- ); -} - function VideoContainer() { return (
diff --git a/website/pages/tutorials/index.js b/website/pages/tutorials/index.js index 9813d06ea2..b46ff267d8 100644 --- a/website/pages/tutorials/index.js +++ b/website/pages/tutorials/index.js @@ -68,11 +68,11 @@ class TutorialHome extends React.Component { We then interpret the output of an example with a series of overlays using Integrated Gradients and DeepLIFT. Find the tutorial here. -

Interpreting vision with ResNet:

+

Interpreting vision with Pretrained models:

Like the CIFAR based tutorial above, this tutorial demonstrates how to use Captum for interpreting vision-focused models. - This tutorial begins with a pretrained resnet18 model and demonstrates how to use Intergrated Gradients along with Noise Tunnel. - The tutorial finishes with a demonstration of how to use GradientShap. - Find the tutorial here. + This tutorial begins with a pretrained resnet18 and VGG16 model and demonstrates how to use Intergrated Gradients along with Noise Tunnel, + GradientShap, Occlusion, and LRP. + Find the tutorial here.

Feature ablation on images:

This tutorial demonstrates feature ablation in Captum, applied on images as an example. @@ -85,6 +85,11 @@ class TutorialHome extends React.Component { Using Captum and Integrated Gradients we interpret the output of several test questions and analyze the attribution scores of the text and visual parts of the model. Find the tutorial here. +

Understanding Llama2 with Captum LLM Attribution:

+ This tutorial demonstrates how to easily use the LLM attribution functionality to interpret the large langague models (LLM) in text generation. + It takes Llama2 as the example and shows the step-by-step improvements from the basic attribution setting to more advanced techniques. + Find the tutorial here. +

Interpreting question answering with BERT Part 1:

This tutorial demonstrates how to use Captum to interpret a BERT model for question answering. We use a pre-trained model from Hugging Face fine-tuned on the SQUAD dataset and show how to use hooks to @@ -98,8 +103,8 @@ class TutorialHome extends React.Component { are more meaningful compared to the vector norms. Find the tutorial here. -

Interpreting a regression model of Boston house prices:

- To demonstrate interpreting regression models we have chosen to look at the Boston house prices dataset. +

Interpreting a regression model of California house prices:

+ To demonstrate interpreting regression models we have chosen to look at the California house prices dataset. Using Captum and a variety of attribution methods, we evaluate feature importance as well as internal attribution to understand the network function. Find the tutorial here. diff --git a/website/sidebars.json b/website/sidebars.json index 0337e1bbe9..9efb1fddb2 100644 --- a/website/sidebars.json +++ b/website/sidebars.json @@ -1,7 +1,7 @@ { "docs": { "About": ["introduction"], - "General": ["getting_started", "captum_insights", "algorithms", "algorithms_comparison_matrix", "faq", "contribution_guidelines"], + "General": ["getting_started", "captum_insights", "attribution_algorithms", "algorithms_comparison_matrix", "faq", "contribution_guidelines"], "Usage": ["extension/integrated_gradients"] } } diff --git a/website/static/CNAME b/website/static/CNAME new file mode 100644 index 0000000000..bbd79c4979 --- /dev/null +++ b/website/static/CNAME @@ -0,0 +1 @@ +captum.ai \ No newline at end of file diff --git a/website/static/css/custom.css b/website/static/css/custom.css index 9b247a46ae..ead1f698c2 100644 --- a/website/static/css/custom.css +++ b/website/static/css/custom.css @@ -294,43 +294,74 @@ div.sphinx div.document { width: auto; } +div.sphinx div.body { + max-width: 950px; +} + .wrapper { max-width: 1400px; } -@media only screen and (min-device-width: 360px) and (max-device-width: 736px) { +div.sphinx div.body h1 { + margin-bottom: 1.375rem; } -@media only screen and (min-width: 1024px) { +div.sphinx .function dd, +div.sphinx .attribute dd, +div.sphinx .class dd { + margin-left: 3.75rem; } -@media only screen and (max-width: 1023px) { +div.sphinx .function > dt, +div.sphinx .function .field-list > dt, +div.sphinx .method > dt, +div.sphinx .method .field-list > dt, +div.sphinx .attribute > dt, +div.sphinx .attribute .field-list > dt, +div.sphinx .class > dt, +div.sphinx .class .field-list > dt { + position: relative; + background: #f3f4f7; + padding: 0.5rem; + padding-right: 100px; + line-height: 1.5rem; } -@media only screen and (min-width: 1400px) { +div.sphinx .class > dt em.property { + position: absolute; + left: 0.5rem; + font-size: 18px; } -@media only screen and (min-width: 1500px) { +div.sphinx .class > dt, +div.sphinx .class .field-list > dt { + border-left: none; + border-top: 3px solid #ee4c2c; + padding-left: 4rem; +} + +div.sphinx .function > dt, +div.sphinx .function .field-list > dt, +div.sphinx .method > dt, +div.sphinx .method .field-list > dt, +div.sphinx .attribute > dt, +div.sphinx .attribute .field-list > dt { + border-left: 3px solid #ee4c2c; + border-top: none; + padding-left: 0.5rem; } -/* Social Banner */ +@media only screen and (min-device-width: 360px) and (max-device-width: 736px) { +} + +@media only screen and (min-width: 1024px) { +} -.SocialBannerWrapper { - padding: 0 0; - background-color: black; +@media only screen and (max-width: 1023px) { } - -.SocialBanner { - font-weight: bold; - font-size: 20px; - padding: 20px; - max-width: 768px; - margin: 0 auto; - color: white; - text-align: center; + +@media only screen and (min-width: 1400px) { } - -.SocialBanner a { - text-decoration: underline; - color: white; + +@media only screen and (min-width: 1500px) { } diff --git a/website/tutorials.json b/website/tutorials.json index 72847e5686..8486942fb5 100644 --- a/website/tutorials.json +++ b/website/tutorials.json @@ -15,8 +15,8 @@ "title": "Intepreting vision with CIFAR" }, { - "id": "Resnet_TorchVision_Interpret", - "title": "Interpreting vision with ResNet" + "id": "TorchVision_Interpret", + "title": "Interpreting vision with Pretrained Models" }, { "id": "Resnet_TorchVision_Ablation", @@ -28,7 +28,7 @@ }, { "id": "House_Prices_Regression_Interpret", - "title": "Interpreting a regression model of Boston house prices" + "title": "Interpreting a regression model of California house prices" }, { "id": "Segmentation_Interpret", @@ -46,6 +46,10 @@ "id": "Image_and_Text_Classification_LIME", "title": "Interpreting vision and text models with LIME" }, + { + "id": "Llama2_LLM_Attribution", + "title": "Understanding Llama2 with Captum LLM Attribution" + }, { "title": "Interpreting BERT", "children": [